Ivan Cornelius Saputra/ PPTI 17/ 2702363443

1. In Indonesia, there are a lot of people, using a manual gallon water dispenser rather the dispenser takes a bit of time, this felt by workers and students that they delay refilling the cause an ineffiency of time. It is also hard for the elderly, kids, and disabilities people whi while they have to carry a varies of size. Not only that, when filling water, the lip of the gla based on the research we found, in University of Wiscons, the number of bacteria of the gallon that become a concern for us to be solved in this project.

2. 15 International Publications (Column Being Adjusted and Added some Relevant Information

No	Judul	Tahun	Aims	Hardware
1	Water Pipeline Leakage Detection and Monitoring System	2022	Detect kebocoran water pipe by real-time	YF-S201, Sensor kekeruhan, NodeMCU
2	Automatic Water Dispenser Using Arduino	2021	Make automatic water dispenser touchless with Arduino and Ultrasonic Sensor to reduce the water overfilling and increase hygenity.	Arduino Uno, Sensor Ultrasonik HC- SR04, LCD 16x2, Relay, Water Pump, Buzzer.
3	Automatic Hand Dispenser and Temperature Scanner for Covid-19 Prevention	2023	Automation of touchless water retrieval.	Arduino Uno, Sensor Ultrasonik, Motor Servo, LED, Power Supply.
4	Plan built Automatic Water Dispenser with Ardunio by Prototype Method	2021	Dispenser otomatis & notifikasi	Arduino, NodeMCU, HC-SR04, Relay, LCD

5	Dispenser Otomatis Berbasis Arduino Uno	2022	Merancang dispenser otomatis berbasis Arduino Uno yang dapat mendeteksi gelas dan mengisi air tanpa intervensi manusia.	- Arduino Uno R3 (kontrol utama) - Sensor Ultrasonik HC-SR04 (deteksi gelas) - Motor Servo SG90 (buka/tutup tuas air) - Kabel dan dudukan komponen
6	Design and realization of low-cost solenoid valve remotely controlled, application in irrigation network	2022	Kontrol valve via web & SMS	RPi 3B+, Zero W, GSM, Relay, sensor tanah, motor katup

7	Design and Making System Control on NodeMCU ESP8266 with Internet of Things (IoT)	2024	Mengembangkan sistem kontrol otomatis dan manual pada dispenser air berbasis NodeMCU ESP8266. Menerapkan monitoring kondisi air dan suhu menggunakan aplikasi Blynk IoT. Meningkatkan keamanan perangkat dengan sistem proteksi agar pemanas dan pendingin tidak aktif saat air habis. Menyediakan notifikasi real-time ke pengguna melalui aplikasi untuk monitoring dan kontrol jarak jauh.	The NodeMCU ESP8266 as the primary microcontroller that controls the system. RTC (Real Time Clock) for automatic scheduling. Temperature sensors (e.g. DS18B20 sensors) to monitor hot and cold water temperatures. Water level sensors (e.g. ultrasonic sensors or float water sensors) to detect the availability of water in gallons and tubes. DC water pump to drain water from gallons to storage tubes. Servo motor or relay to control heating and cooling. Push button for manual control of heating and cooling. LED indicators as the visual status of heaters, coolers, and water indicators. LCD display to display temperature and date information.
8	Built "Smart Dispencer" dengan Energy reduce	2021	otomatis: suhu, volume, waktu	Arduino Mega, HC-SR04, Load Cell, MAX6675, Valve, Peltier, PIR

			Γ	1
9	Innovative Automatic Water Dispenser: A Cost Effective Solution for Efficient Water Usage	2024	Membuat sistem dispenser air otomatis yang: Efisien dalam penggunaan air. Tidak menggunakan mikrokontroler (seperti Arduino) untuk menekan biaya. Menggunakan sensor dan rangkaian elektronik sederhana untuk mendeteksi objek dan mengontrol pompa air.	Sensor IR (Inframerah) / Sensor Proximity: mendeteksi kehadiran objek (gelas/tangan). Transistor NPN: sebagai saklar elektronik untuk mengatur aliran arus. Relay: mengendalikan pompa air berdasarkan sinyal dari transistor. Pompa air: mengalirkan air saat objek terdeteksi. Power supply (Adaptor DC): memberi daya pada rangkaian dan pompa.
10	Development of a Smart Water Dispenser Based on Object Recognition with Raspberry Pi 4	2024	Deteksi gelas otomatis pakai kamera Al	Raspberry Pi 4, Camera V2, Relay, US sensor
11	Automatic Water Dispenser Using IR Sensor	2023	Membuat dispenser otomatis hemat biaya, efisien, dan mudah dirakit tanpa Arduino.	Relay
12	Automatic Water Dispenser Based on Hand Gesture Detection Using Arduino	2021	Mengembangkan dispenser otomatis yang dapat dioperasikan tanpa sentuhan.	SP04 Serve Motor Arduine Une
13	Design Automatic Dispenser for Blind People based on Arduino Mega using DS18B20 Temperature Sensor	2020	Mendesain dispenser otomatis yang aman bagi tunanetra.	Arduino mega, sensor utrasonik HC- SR04, Sensor suhu DS18B20, kartu SD, Keypad, LCD 16x2

14	Making Prototype of Filling Water with Internet Of Things	2022	Membangun prototipe sistem pengisian minuman otomatis berbasis IoT.	Laptop, Android, Power Supply, Regulator, Relay, Arduino, Motor Stepper, Water Pump, Buzzer, NodeMCU, Sensor Infrared, LCD 16x2, Push Button, Water Sensor, Botol 200ml, 300ml, 500ml
15	Automatic Water Dispenser Machine	2022	Membuat dispenser air otomatis yang mudah digunakan, higienis, dan hemat air dengan kontrol suara via Bluetooth.	Arduino Uno, modul Bluetooth HC-05, relay, pompa air DC, LED indikator, power supply.

an using modern drinking water dispensers, but currently, filling drinking water using a manua eir drinking water because they have to enganged in tasks that cannot be postponed behind, the ich hard to overcome their difficulty in pressing the button or pumping the level to fill the water iss often contact with the mouth of the water dispenser, causing direct-contamination that drinking bottles brought was greater than in the toilet that shows the weakness of the manual

Columns

Software	Technology	Diagram System
ThingSpeak, MATLAB	IoT, Flow sensor	Blok diagram, flowchart
Arduino IDE with pustaka LiquidCrystal.h dan pemrograman logika sensor–aktuator.	Sensor otomatis (Ultrasonik), Embedded System, Contactless Switch, Microcontroller- based control.	Sensor → Arduino → Relay → Water Pump + LCD Output
Arduino IDE, Library Servo.h, Ultrasonic.h.	Embedded System, Sensor Automation, IoT-ready	Sensor → Arduino → Servo + LED
Telegram API, Arduino IDE	IoT, notifikasi bot	Use Case, Class, Flowchart

Arduino IDE versi 1.0.6	Sensor ultrasonik mengukur jarak gelas dari sensor. Bila dalam jangkauan tertentu, motor servo akan membuka keran air, lalu menutup setelah beberapa waktu.	Tahapan: Studi pustaka → Desain sistem → Perakitan → Pengujian → Analisis hasil → Simpulan
PHP/MySQL, Python, GSM AT cmd	IoT, Web, SMS	Arsitektur web + SMS + GPIO

Firmware berbasis Arduino IDE yang memuat program pengendali NodeMCU. Aplikasi Blynk IoT sebagai interface monitoring dan kontrol jarak jauh pada smartphone. Library RTC untuk manajemen waktu dan penjadwalan. Library sensor suhu dan sensor level air untuk pembacaan data sensor.	Internet of Things (IoT) memungkinkan komunikasi data antara perangkat dengan smartphone pengguna. WiFi sebagai media komunikasi NodeMCU dengan server Blynk. RTC (Real Time Clock) untuk menjalankan jadwal otomatis secara tepat. Sensor digital untuk monitoring suhu dan level air.	[Sensor Suhu]\ \ [Sensor Level Air] [NodeMCU ESP8266] [Relay / Motor Servo] [Pemanas / Pendingin]
Arduino IDE	IoT, sensor kombo	Flowchart + pemrograman terstruktur

Tidak menggunakan perangkat lunak (tanpa Arduino/mikrokontroler). Sistem bekerja sepenuhnya berdasarkan rangkaian elektronik dan logika perangkat keras.	Teknologi sensor IR untuk deteksi objek. Transistor sebagai pemicu aktif untuk mengontrol relay. Relay sebagai penghubung/pemutus arus ke pompa air. Teknologi analog (tanpa mikrokontroler) dengan logika switching.	Sensor IR mendeteksi objek → Mengaktifkan transistor → Menyalakan relay → Pompa air menyala.
Python, YOLOv8, OpenCV	Computer Vision, Al	Diagram CV + sensor
Tidak ada. Sistem full hardware tanpa pemrograman.	Sensor jarak + logika elektronik (transistor & relay) untuk mengontrol pompa otomatis.	Sensor → Transistor → Relay → Pompa
□ Arduino IDE	IoT, Sensor Gerak	Blok Diagram
Arduino IDE	lot, Sensor Suhu	Blok Diagram

Arduino IDE, Software Blynk	Android, Arduino, IoT	Flowchart sistem
Program Arduino IDE dan aplikasi mikrofon di smartphone untuk perintah suara.	Bluetooth untuk komunikasi, relay sebagai saklar pompa, dan mikrokontroler Arduino sebagai otak sistem.	Smartphone → Bluetooth HC-05 → Arduino → Relay → Pompa Air + LED.

l hat

r,

Methods	Algorithm / Logic	Proses Sistem
Prototype experimental	Compare debit input-output, threshold alert	View Sensor \rightarrow NodeMCU \rightarrow Cloud
Prototyping: desain → implementasi → pengujian → revisi.	Sensor ukur jarak → jika < ambang batas → Arduino nyalakan relay → pompa aktif → jika > batas → pompa mati. Termasuk deteksi kebocoran.	Deteksi tangan → aktifkan relay → nyalakan pompa air → tampilkan info di LCD.
Prototyping (fast, test, revise, final).	If < distance is 10 cm → servo open, the LED lights up. If > 10 cm → servo closes, the LED turns off.	Object detection → servo control → water out/stop.
Fast Prototype	Sensor → Pompa → LCD → Notifikasi	Object Detection → Pomp on

Rekayasa sistem berbasis mikrokontroler dengan pendekatan eksperimental dan pengujian langsung.	1. Sensor ultrasonik mendeteksi gelas dalam jarak 0–5 cm 2. Arduino mengaktifkan motor servo 3. Motor membuka keran air 4. Setelah durasi tertentu, servo menutup keran kembali	Saat gelas terdeteksi di bawah sensor, sistem akan secara otomatis mengaktifkan motor servo untuk membuka aliran air, lalu menutup kembali setelah selesai.
Manual + database	Web/SMS → DB → Relay aktif	Command via web/SMS

	Kontrol otomatis menurut jadwal: Baca waktu dari RTC.	
Analisis kebutuhan: mengidentifikasi kebutuhan sistem kontrol otomatis dan monitoring.	Jika waktu sesuai jadwal ON/OFF, aktifkan/matikan pemanas atau pendingin. Kirim status ke aplikasi Blynk.	Sistem membaca data sensor suhu dan level air secara berkala.
Perancangan sistem: desain hardware dan software, serta integrasi IoT. Implementasi: pemrograman NodeMCU dan pembuatan interface aplikasi Blynk. Pengujian: pengujian fungsi sistem otomatis, manual, monitoring, serta proteksi. Evaluasi dan validasi: analisis hasil pengujian dan perbaikan.	Kontrol manual (push button dan Blynk): Jika push button ditekan, ganti status ON/OFF perangkat. Jika perintah dari aplikasi Blynk diterima, jalankan sesuai perintah. Sinkronkan status antara aplikasi dan perangkat. Monitoring air: Baca sensor level air galon dan tabung. Jika galon kosong, matikan pompa dan perangkat pemanas/pendingin.	Data dikirim ke NodeMCU untuk diproses dan diambil keputusan kontrol. Perangkat (pompa, pemanas, pendingin) diaktifkan atau dimatikan sesuai kondisi. Informasi kondisi ditampilkan pada LCD dan aplikasi Blynk secara real-time. Notifikasi dikirimkan saat kondisi kritis (misal air habis, suhu mencapai batas).
	Tampilkan indikator dan kirim notifikasi ke aplikasi.	
Embedded & mode waktu	Weekday otomatis, weekend via PIR	Sensor → relay → display OLED

		1
Eksperimen Laboratorium: Merakit sistem menggunakan komponen dasar elektronik. Uji Fungsionalitas: Menganalisis kerja sensor, transistor, relay, dan pompa. Iterasi & Penyempurnaan: Menyesuaikan sensitivitas dan kestabilan sistem.	Jika objek terdeteksi oleh sensor IR: Transistor aktif → Relay ON → Pompa aktif → Air mengalir Jika tidak ada objek: Transistor mati → Relay OFF → Pompa mati → Tidak ada air	Sensor IR aktif mendeteksi objek di bawah nozzle dispenser. Jika ada objek: Sensor memberi sinyal ke transistor. Transistor mengaktifkan relay. Relay menghubungkan pompa ke sumber daya. Pompa menyala dan mengeluarkan air. Jika objek diangkat: Sensor tidak mendeteksi → Transistor OFF → Relay OFF → Pompa mati.
Al object detection + pengukuran air	Kamera deteksi → ukur → isi otomatis	Kamera + sensor → pompa aktif
Eksperimen & perakitan langsung, tanpa coding.	Jika ada objek terdeteksi → pompa nyala. Jika tidak → pompa mati	Gelas didekatkan → sensor aktif → pompa nyala → air keluar → objek diambil → pompa mati.
Waterfall → Prototype	Deteksi gerakan tangan untuk mengaktifkan dispenser	□ Sensor gerak → Servo motor → Air keluar
Research and Development (R&D)	Sensor suhu untuk mengatur suhu air dan deteksi gelas	Sensor suhu → Mikrokontroler → Air keluar

R&D, eksperimen langsung	Sensor level → Pompa → LCD → Notifikasi	Sensor → Relay → Pompa
Pemilihan komponen → pemrograman Arduino → integrasi Bluetooth → pengujian bertahap → debugging.	Terima perintah "ON" atau "OFF" → aktifkan/matikan pompa dan LED sesuai perintah.	Perintah suara dikirim dari smartphone → diterima Bluetooth → diproses Arduino → kendalikan pompa dan LED.

Media Output	Data Communication	Testing	Result & Validatio	Keunggulan	Weakness
Platform ThingSpeak	Wi-Fi	Field + visualisasi MATLAB	Bocor 16L/hari terdeteksi	Cheap, real- time, modular	Wi-Fi dependent
Water from pomp, Status interface from LCD, voice from buzzer (if there is a human error).	Internal: between sensor, Arduino, relay, and output (LCD, pompa, buzzer). Cant using external communication.	Kit tested use for automatic detection hand and flow the water relate to the distance.	System successfully automatic contactless, turn on the pomp while object neared, and turn off while not used.	Automatic, touchless, not overfilling, hygiene, and really suitable for public space or home.	Tidak ada konektivitas jarak jauh, tidak tahan terhadap kerusakan fisik atau air, belum mendeteksi kualitas air.
Water flowing, LED indicators.	Internal between the sensor and the actuator.	9/10 test successful: detection system and servo running accordingly.	Valid system; The main function works stably.	Hygienic, energy- saving, low cost, responsive.	Not waterproof, limited detection, dependent on electricity.
LCD + Telegram	Wi-Fi → Telegram Bot	Black-box 7 skenario	Semua uji sesuai (air rendah, objek, notif)	Murah, real- time alert	Butuh internet terus

- Motor servo sebagai aktuator pembuka keran - Aliran air sebagai hasil akhir	- Sensor → Arduino: sinyal digital - Arduino → Motor Servo: sinyal PWM	Pengujian dilakukan dengan menempatkan gelas pada berbagai jarak. Sistem bekerja baik pada jarak 0–5 cm.	Sistem berhasil mendeteksi gelas dan mengisi air otomatis pada jarak ideal (0–5 cm). Di atas 5 cm, efektivitas deteksi menurun.	- Minim interaksi manual - Efisien dan higienis - Komponen murah dan mudah ditemukan	Sensor terbatas pada jarak 5 cm - Tidak ada deteksi volume air gelas
Web UI, SMS log	Web + SMS (tanpa internet pun bisa)	Real use case	Stabil, valve murah (160€ vs 1188€)	Hemat biaya, dual akses	Butuh kalibrasi, manual solder valve

LCD Display menampilkan tanggal dan suhu air. LED indikator menunjukkan status pemanas (merah), pendingin (hijau), dan indikator air. Notifikasi aplikasi Blynk memberikan info status dan peringatan.	Data sensor dikirim dari NodeMCU ke aplikasi Blynk menggunakan protokol MQTT atau API Blynk via WiFi. Komunikasi dua arah memungkinkan kontrol dari aplikasi dan feedback status alat ke pengguna.	dengan push button. Pengujian kontrol jarak jauh melalui aplikasi Blynk. Pengujian sistem monitoring air (deteksi habis air galon dan tabung). Pengujian sistem proteksi	Sistem kontrol berjalan sesuai jadwal dan perintah manual. Monitoring suhu dan air dapat dilakukan secara realtime melalui LCD dan aplikasi. Sistem proteksi berfungsi dengan baik mencegah kerusakan. Perbedaan tegangan output pada power supply sebesar 1 Volt masih dalam toleransi.	Sistem otomatis dengan jadwal dan manual fleksibel untuk pengguna. Sistem proteksi mencegah bahaya akibat kekurangan air. Notifikasi	Ketergantungan koneksi WiFi untuk kontrol jarak jauh. Monitoring volume air hanya mendeteksi ada/tidaknya air, belum bisa menghitung volume secara presisi. Aplikasi Blynk membutuhkan koneksi internet dan memiliki batasan pengguna.
info status dan		agar perangkat tidak aktif jika air habis.	sebesar 1 Volt masih dalam	air.	dan memiliki batasan
		output power supply diuji dan dibandingkan dengan nilai teoritis.	sinkronisasi status antara perangkat dan aplikasi berhasil.	an keamanan dan kemudahan pemantauan	
OLED SH1106	Internal (tidak cloud)	Uji error sensor & suhu	Akurat, error <4cm	Modular, hemat daya	Komponen kompleks

Air dari pompa sebagai media fisik output. Tidak ada tampilan layar atau notifikasi digital.	Tidak menggunakan komunikasi data karena sistem tidak melibatkan mikrokontroler, modul nirkabel, atau antarmuka digital.	Pengujian Respons Sensor: Akurasi dan kecepatan dalam mendeteksi objek. Pengujian Daya Pompa: Kemampuan memompa air dalam waktu singkat. Pengujian Daya Tahan: Operasi jangka panjang pada berbagai kondisi.	Sistem berhasil mendeteksi objek dan mengalirkan air hanya saat dibutuhkan. Tidak ada air yang terbuang jika tidak ada objek. Validasi dilakukan melalui pengujian berulang dan dibandingkan dengan dispenser manual.	Biaya murah (tanpa Arduino). Mudah dibuat dan dirawat. Hemat energi dan air. Sangat cocok untuk tempat umum dan daerah dengan keterbatasa n teknologi.	Tidak ada pengaturan waktu atau volume air. Sensitivitas sensor IR bisa terganggu oleh cahaya matahari langsung. Tidak dapat diintegrasikan dengan sistem cerdas/loT tanpa tambahan modul.
Visual: kamera & sensor	Lokal saja (offline)	50 siklus, margin ±5%		Vision AI, real-time	Kurang akurat di cahaya rendah
Air mengalir otomatis.	Analog antar komponen, tanpa data digital.	Analog antar komponen, tanpa data digital.□	Sistem stabil, responsif, tanpa mikrokontroler.	Murah Sederhana Hemat energi	Tidak bisa diprogram Tidak fleksibel Sensor tidak bisa diatur
□ LCD 16x2		Uji deteksi gerakan dan pengisian air	Akurasi deteksi gerakan > 90%	Higienis, mudah digunakan	Memerlukan koneksi internet
LCD 16x2		Uji suhu dan deteksi gelas	Akurasi suhu ±1°C dari setpoint	Aman untuk tunanetra, mudah digunakan	Tidak dapat mendeteksi gelas transparan

LCD 16x2	Wi-Fi	Uji akurasi pengisian minuman	Akurasi pengisian mencapai 97%	Otomatis, efisien, mudah digunakan	Memerlukan koneksi internet
Aliran air dan LED indikator status.	Data perintah suara dikirim lewat Bluetooth serial ke Arduino.	Tes komunikasi Bluetooth, relay, pompa, dan respons sistem secara berulang	Sistem berhasil mengaktifkan/ mematikan pompa dengan perintah suara tanpa kontak langsung.	Higienis, hemat air, mudah dioperasika n, biaya murah.	Bergantung koneksi Bluetooth, belum ada sensor air, perlu smartphone.

Development

Add AI, aplikasi mobile

Integration
with water
purifier, use
in public
facilities, IoT
(remote
controller)
features,
voice control,
and
advanced
quality/leak
detection.

Add IoT, temperature sensor, voice command, water filter, waterproof case.

Telegram's UI is more interactive - Tambahan sensor volume - Sensor dengan jangkauan lebih luas - Integrasi kontrol suhu air

Al weather prediction, auto schedule

Implementati on of water level sensors that can calculate the volume of water in liters.

The development of applications that are more user-friendly and support multiple users.

Integration of cloud technology for further data storage and analysis.

The addition of more complex security features such as extreme temperature protection and water leak

Cloud logging, Al water prediction Added a microcontrolle r for water volume adjustment.

IoT integration for water consumption monitoring.

Replace the IR sensor with an ultrasonic sensor for better accuracy.

Added an indicator screen for water status.

Add arm robots, IoT, cloud

Add LEDs/buzzers

Add a water filter

Microcontrolle r version for advanced features

Integration with mobile apps

Integration with IoT systems Integrasi dengan aplikasi mobile

Add water level sensors, motion sensors, custom apps, IoT features, and hot/cold water settings.