MATH 2270: Homework 8/Midterm 2 Practice Problems

due October 28, 2015

Instructions: Do the following problems on a separate sheet of paper. Show all of your work.

1. Determine whether or not the following matrix is invertible. Do not try to invert it

(a)

$$A = \begin{bmatrix} 6 & 3 & 2 & 4 & 0 \\ 9 & 0 & -4 & 1 & 0 \\ 8 & -5 & 6 & 7 & 1 \\ 3 & 0 & 0 & 0 & 0 \\ 4 & 2 & 3 & 2 & 0 \end{bmatrix}$$

Ans: The determinant of A is 9, so A is invertible.

- (b) Find the determinant of A^5 . Ans: 6^5
- 2. Prove that if $det(B^3) = 0$, then det B = 0. Ans: Use the fact that $det(B^3) = (det B)^3$.
- 3. Answer each of the following yes/no questions, and then give an explanation of your reasoning.
 - (a) Is \mathbb{R}^3 a subspace of \mathbb{R}^4 ? Ans: No
 - (b) Is \mathbb{P}_4 a subspace of $C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$? Ans: Yes
 - (c) Is the function $T: \mathbb{P}_3 \to \mathbb{R}^4$ defined by $T(a_3t^3 + a_2t^2 + a_1t + a_0) = \begin{bmatrix} a_3 & a_2 & a_1 & a_0 \end{bmatrix}^T$ a vector space isomorphism? Ans: Yes
- 4. Show that $H = \{ f \in C(\mathbb{R}) \mid f(0) = 0 \}$ is a subspace of $C(\mathbb{R})$. Ans: Show the 3 properties are satisfied. $0 \in H$, $f, g \in H$ implies $f + g \in H$, and $f \in H$, $c \in \mathbb{R}$ implies $cf \in H$.
- 5. Find a linear transformation $S: C(\mathbb{R}) \to \mathbb{R}$ whose kernel is equal to H from the previous problem. Ans: S(f(t)) = f(0)
- 6. Consider the following matrix:

$$A = \begin{bmatrix} 5 & 1 & 6 & 2 & 0 \\ 3 & 3 & 6 & -1 & -18 \\ 8 & 4 & 12 & -5 & 18 \\ 2 & 1 & 3 & 0 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 5 \\ 0 & 1 & 1 & 0 & -13 \\ 0 & 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Find a basis for col A. Ans: $\{\begin{bmatrix}5&3&8&2\end{bmatrix}^T,\begin{bmatrix}1&3&4&1\end{bmatrix}^T,\begin{bmatrix}2&-1&-5&0\end{bmatrix}^T\}$
- (b) Find a basis for row A. Ans: $\{\begin{bmatrix}1&0&1&0&5\end{bmatrix}^T, \begin{bmatrix}0&1&1&0&-13\end{bmatrix}^T, \begin{bmatrix}0&0&0&1&-6\end{bmatrix}^T\}$
- (c) Find a basis for ker A. Ans: $\{\begin{bmatrix} -1 & -1 & 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} -5 & 13 & 0 & 6 & 1 \end{bmatrix}^T\}$
- 7. Consider the linear transformation $D: \mathbb{P}_3 \to \mathbb{P}_3$ defined by D(p) = p' + 2p. Let $\mathcal{B} = \{1, t, t^2, t^3\}$ and let $\mathcal{C} = \{1, 1+t, 1+t+t^2, 1+t+t^2+t^3\}$.

(a) Find the matrix for the linear transformation D with respect to the basis \mathcal{B} . Ans:

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

- (b) Let $p(t) = -2t^3 + 3t^2 10t + 1$. Find $[p(t)]_{\mathcal{C}}$. Ans: $\begin{bmatrix} 11 & -13 & 5 & -2 \end{bmatrix}^T$
- (c) Find the change of basis matrix $P_{C\leftarrow\mathcal{B}}$ and the change of basis matrix $P_{\mathcal{B}\leftarrow\mathcal{C}}$. Hint: It's probably easier to find them both directly than it is to find one and then compute its inverse. Ans:

$$P_{C \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad P_{\mathcal{B} \leftarrow \mathcal{C}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (d) What is the dimension of the image of D? What is the dimension of the kernel of D? Ans: The dimension of the image is 4. The dimension of the kernel is 0.
- (e) Find a basis for ker D. Ans: Since the kernel is trivial, a basis for the trivial subspace is the empty set $\{\}$.
- 8. Is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ an eigenvector of $\begin{bmatrix} 5 & 2 \\ 3 & 6 \end{bmatrix}$ If so, what is the associated eigenvalue? Ans: Yes. $\lambda = 3$
- 9. Is $\lambda = -3$ an eigenvalue of the matrix $\begin{bmatrix} -1 & 4 \\ 6 & 9 \end{bmatrix}$? Ans: Yes
- 10. Find a basis for the eigenspace of the matrix A corresponding to the eigenvalue $\lambda = 2$ where

$$A = \begin{bmatrix} 6 & -4 & -2 \\ 4 & -2 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

Ans: $\{\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}^T \}$