Assignment-based Subjective Questions

- 1) From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable? Ans: From the analysis, the chosen model coefficients are as follows for categorical variables:
 - Demand is high in the months of July to September. Trend increased in the start till mid of the year. In the end, it is decreasing
 - Fall season has more bookings compared to other seasons of the year.
 - Thursday, Friday, Saturday & Sunday have high booking.
 - Clear weather situation demands high booking
 - On non working days, the demand is split across a higher margin. On working days, demand is high as average demand is higher than the average demand on non working days
 - 2019 has higher number of bookings than 2018

2) Why is it important to use drop_first=True during dummy variable creation?

Ans: drop_first=True is used, as it helps in reducing the extra column created during dummy variable creation. In this way, correlation among the created variables are reduced.

Here, we have 4 weather situations:

1:"Clear",2:"Mist",3:"Light_snow",4:"Heavy_Rain".

When we drop first, 3 variables are used to represent. When all 3 are 0, first one is true, hence eliminating the creation of a new variable to represent the first one.

Example:

weathersit = pd.get_dummies(data["weathersit"],drop_first=True)

3) Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable?

Ans: Temp. Temperature has highest correlation with the cnt variable.

4)How did you validate the assumptions of Linear Regression after building the model on the training set?

Ans:

Based on the linear regression assumptions:

- Homoscedasticity: No pattern in residuals
- Multicollinearity check: Using VIF
- Errors are normally distributed: Residual analysis
- Linear relationship among variables
- 5) Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes?

Ans: Top 3 features contributing to demand are:

- temp 0.571837
- yr 0.231429
- winter 0.139663

General Subjective Questions

1) Explain the linear regression algorithm in detail.

Ans: Linear regression is a **linear model**, e.g. a model that assumes a linear relationship between the input variables (x) and the single output variable (y). More specifically, that y can be calculated from a

linear combination of the input variables (x). The variable to be predicted is called the dependent variable.

The variable that is used to predict the other variable's value is called the independent variable. In a simple regression problem the form of the model would be:

$$Y = B0 + B1*x$$

Here, Y is the dependent variable we are trying to predict.

X is the independent variable we are using to make predictions.

B1 is the slope of the regression line which represents the effect X has on Y

B0 is a constant, known as the Y-intercept. If X = 0, Y would be equal to B0.

Furthermore, the linear relationship can be positive or negative in nature as explained below—

- **Positive Linear Relationship:** A linear relationship will be called positive if both independent and dependent variable increases.
- Negative Linear relationship: A linear relationship will be called positive if independent increases and dependent variable decreases

When there is a single input variable (x), the method is referred to as **simple linear regression**. When there are **multiple input variables**, method is referred as multiple linear regression.

Assumptions -

The following are some assumptions about dataset that is made by Linear Regression model

- 1. **Multi-collinearity** Linear regression model assumes that there is very little or no multi-collinearity in the data. Basically, multi-collinearity occurs when the independent variables or features have dependency in them.
- 2. **Auto-correlation** Another assumption Linear regression model assumes is that there is very little or no auto-correlation in the data. Basically, auto-correlation occurs when there is dependency between residual errors.
- 3. **Relationship between variables** Linear regression model assumes that the relationship between response and feature variables must be linear.
- 4. **Normality of error terms** Error terms should be normally distributed
- 5. **Homoscedasticity** There should be no visible pattern in residual values.

2) Explain the Anscombe's quartet in detail.

Ans: Anscombe's Quartet was developed by statistician Francis Anscombe. It comprises four datasets, each containing eleven (x, y) pairs. The essential thing to note about these datasets is that they share the same descriptive statistics. But things change completely, and I must emphasize COMPLETELY, when they are graphed. Each graph tells a different story irrespective of their similar summary statistics.

The summary statistics show that the means and the variances were identical for x and y across the groups:

- Mean of x is 9 and mean of y is 7.50 for each dataset.
- Similarly, the variance of x is 11 and variance of y is 4.13 for each dataset

• The correlation coefficient (how strong a relationship is between two variables) between x and y is 0.816 for each dataset

When we plot these four datasets on an x/y coordinate plane, we can observe that they show the same regression lines as well.

- Dataset I appears to have clean and well-fitting linear models.
- Dataset II is not distributed normally.
- In Dataset III the distribution is linear, but the calculated regression is thrown off by an outlier.
- Dataset IV shows that one outlier is enough to produce a high correlation coefficient.

This quartet emphasizes the importance of visualization in Data Analysis. Looking at the data reveals a lot of the structure and a clear picture of the dataset.

3) What is Pearson's R?

Ans:Pearson's r is a numerical summary of the strength of the linear association between the variables. If the variables tend to go up and down together, the correlation coefficient will be positive. If the variables tend to go up and down in opposition with low values of one variable associated with high values of the other, the correlation coefficient will be negative.

The Pearson correlation coefficient, r, can take a range of values from +1 to -1. A value of 0 indicates that there is no association between the two variables. A value greater than 0 indicates a positive association; that is, as the value of one variable increases, so does the value of the other variable. A value less than 0 indicates a negative association; that is, as the value of one variable increases, the value of the other variable decreases.

4) What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling?

Ans:Feature Scaling is a technique to standardize the independent features present in the data in a fixed range. It is performed during the

data pre-processing to handle highly varying magnitudes or values or units. If feature scaling is not done, then a machine learning algorithm tends to weigh greater values, higher and consider smaller values as the lower values, regardless of the unit of the values.

Example: If an algorithm is not using feature scaling method then it can consider the value 3000 meter to be greater than 5 km but that's actually not true and in this case, the algorithm will give wrong predictions. So, we use Feature Scaling to bring all values to same magnitudes and thus, tackle this issue.

5)You might have observed that sometimes the value of VIF is infinite. Why does this happen?

Ans: If there is perfect correlation, then VIF = infinity. A large value of VIF indicates that there is a correlation between the variables. If the VIF is 4, this means that the variance of the model coefficient is inflated by a factor of 4 due to the presence of multicollinearity. When the value of VIF is infinite it shows a perfect correlation between two independent variables. In the case of perfect correlation, we get R- squared (R2) =1, which lead to 1/ (1-R2) infinity. To solve this we need to drop one of the variables from the dataset which is causing this perfect multicollinearity.

6) What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression.

Ans: The quantile-quantile (q-q) plot is a graphical technique for determining if two data sets come from populations with a common distribution.

Use of Q-Q plot:

A q-q plot is a plot of the quantiles of the first data set against the quantiles of the second dataset. By a quantile, we mean the fraction (or percent) of points below the given value. That is, the 0.3 (or 30%) quantile is the point at which 30% percent of the data fall below and 70% fall above that value. A 45-degree reference line is also plotted. If the two sets come from a population with the same distribution, the points should fall approximately along this reference line. The greater the departure from this reference line, the greater the evidence for the conclusion that the two data sets have come from populations with different

distributions.

Importance of Q-Q plot:

When there are two data samples, it is often desirable to know if the assumption of a common distribution is justified. If so, then location and scale estimators can pool both data sets to obtain estimates of the common location and scale. If two samples do differ, it is also useful to gain some understanding of the differences. The q-q plot can provide more insight into the nature of the difference than analytical methods such as the chi-square and Kolmogorov-Smirnov 2-sample tests.