Math 9 Fall 2002, 2nd Midterm Exam, November 11

- 1. Calculate $\int_0^{0.05} \frac{\sin(2x)}{x} dx$ with error < 10^{-5} . (You may leave your answer as a sum of a number of terms.)
- 2. a Find the Taylor series for the function $f(x) = e^x$ centered around $a = \ln 2$.
 - **b** Use the Taylor remainder formula and the series you have obtained in [a] to calculate $e^{0.1+\ln 2}$ with error less than 10^{-4} . You might want to use the fact that $e^{0.1} < 2$. (You may leave your answer as a sum of a number of terms.)
- 3. The acceleration of a particle moving in space is $\mathbf{a}(t) = \sin(t)\mathbf{i} + \cos(t)\mathbf{j}$. The initial velocity of the particle is $\mathbf{v}(0) = -\mathbf{i}$ and the initial position is $\mathbf{r}(0) = -\mathbf{j} + 3\mathbf{k}$.
 - **a** Find the position of the particle as a function of time: $\mathbf{r}(t) = ?$
 - **b** Find the distance the particle traveled from $t_0 = 1$ to $t_1 = 5$.
- 4. Consider the depicted parallelogram determined by the vectors \mathbf{A} and \mathbf{B} , and its diagonals, which are lightly drawn.
 - **a** Assign directions to the diagonals, and express the resulting two vectors in terms of **A** and **B**.
 - ${f b}$ If ${f A}$ and ${f B}$ have the same length, show that the diagonals are orthogonal.
- 5. Consider the four points A = (1, 1, 0), B = (4, 0, 0), C = (1, 2, 2) and D = (2, 6, 4).
 - **a** Find the distance from the point D to the plane containing A, B and C.
 - **b** Find the volume of the parallelepiped determined by the vectors \vec{AB} , \vec{AC} and \vec{AD} .
- 6. Show that the following limit does not exist:

$$\lim_{(x,y)\to(1,1)} \frac{y \sin(x-1)}{x+y-2}.$$

- 7. The position of a particle moving subject to a force \mathbf{F} is given by the vector-valued function $\mathbf{r}(t)$; the velocity vector is $\mathbf{v}(t) = \mathbf{r}'(t)$. The momentum vector is defined by $\mathbf{p} = m\mathbf{v}$, where m is the particle's mass; by Newton's Law, $\mathbf{F} = m\mathbf{v}' = \mathbf{p}'$. The angular momentum vector \mathbf{L} is defined by $\mathbf{L} = \mathbf{r} \times \mathbf{p}$. Suppose that the force vector is always in the direction of the position vector \mathbf{r} . Show that in this case angular momentum is conserved, i.e., that the angular momentum vector is constant. [Hint: Show that the derivative of \mathbf{L} is zero.]
- 8. How should the constant c be chosen so that the line $\frac{x-1}{2} = \frac{y+1}{c} = \frac{z-5}{3}$ is contained in the plane 3x 2y = 5?