THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA FORM TWO NATIONAL ASSESSMENT

035 ENGINEERING SCIENCE

Time: 2:30 Hours Year: 2021

Instructions

- 1. This paper consists of sections A, B and C with a total of ten (10) questions.
- 2. Answer all questions.
- 3. Section A and C carry fifteen (15) marks each, section B carries seventy (70) marks.
- 4. Cellular phones and any unathorized materials are **not** allowed in the assessmenmt room.
- 5. Write your **Assessment Number** at the top right hand corner of every page.

FOR ASSESSOR'S USE ONLY				
QUESTION NUMBER	SCORE	ASSESSOR'S INITIALS		
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
TOTAL				
CHECKER'S INIT	TALS			

SECTION A (15 MARKS)

Answer all questions in this section

- 1. Choose the correct answer from the given alternatives and write its letter in the box provided.
 - i) All measurements in engineering science are related to the fundamental quantities. What are the five fundamental physical quantities in the SI unit system?
 - A. Mass, Temperature, Light, Time and Length.
 - B. Time, Length, Mass, Temperature, and Luminous Intensity.
 - C. Length, Density, Temperature, Mass and Time.
 - D. Luminous Intensity, Light, Length, Mass and Temperature.
 - ii) An operator man uses a hydraulic press to lift a container. What will be the mechanical advantage, if the hydraulic press is frictionless?
 - A. Greater than velocity ratio
 - B. Small than velocity ratio
 - C. Equal to velocity ratio
 - D. Twice than velocity ratio.
 - iii) Form Two students were arguing about examples of the effects of force which can be experienced on a body. Which is true concerning the effects of forces experienced on body?
 - (i) A force reduces the speed of a body in motion.
 - (ii) A force can cause a body to move faster.
 - (iii) Shape can be changed to a new shape by a force.
 - (iv) The direction of a moving body can be changed to other direction by force.
 - (v) Mass of a body is increased by force.
 - (vi) A force can cause damage such as a crack on body.

A. (i), (ii), (iii), (iv) and (vi)	
B. (i), (ii), (iii), (iv) and (v)	
C. (i), (ii), (iii), (v) and (vi)	
D. (i), (ii), (iii), (v) and (iv)	
iv) An engineer observed that, parts of machine rubbing against each other	causes
friction that leads to unnecessary heat, noise and wear. How can this p	roblem
be minimised?	
A. By reducing the speed of the rubbing surface in contact	
B. By increasing the areas of the rubbing surface in contact	
C. By replacing the parts of rubbing surfaces with parts made of g	raphite
material.	
D. By lubricating the rubbing surfaces in contact with grease and oil	
v) You are assigned to make a presentation in the class on how to r	nake a
sensitive or quick to act thermometer. What features will you conside	r when
manufacturing the thermometer?	
A. A large bulb with a wide capillary tube	
B. Wide capillary in small bulb	
C. Large bulb with a narrow capillary tube	
D. Small bulb with a thin glass wall	
vi) An electric bell is placed in a vacuum room and starts ringing when sv	vitched
on. What will be witnessed by an observer outside the room?	
A. The observer will not hear the sound.	
B. The observer will hear the echo of the sound.	
C. The observer will hear loud sound.	

vii) Form two student was assigned to measure the potential difference between the points and an electric current in a circuit. Which measuring instruments

D. The observer will hear some sort of reverberation.

A. A wattmeter and an Ammeter	
B. A voltmeter and Wattmeter	
C. Voltammeter and an Ammeter	
D. A voltmeter and an Ammeter.	
viii) Kazimoto who is a Form Two student was pushing his books cabir	net to its
position after finishing the cleaninnes of his room. During this act	ivity his
friends Maganga, Gwalu, and Hogoma, who were watching him	made a
coment?	
(i) Maganga said: Good Kazimoto, you are so powerful as you have r	nanaged
to use your energy with respect to time and power with energy to	store the
cabinet to its position.	
(ii) Gwalu commented to Maganga: Power and energy are two	different
things, energy is the Power per time taken and power is the abili	ty to do
work.	
(iii) Hogoma responded to Gwalu: Power is the rate of doing work and	d energy
is the ability to do work.	
(iv) Kazimoto commented as well that, energy is the capacity to perform	rm work
while power is the energy consumed per time taken.	
From their arguments, who was right?	
A. Kazimoto and Gwalu	
B. Kazimoto and Hogoma	
C. Gwalu and Hogoma	
D. Maganga and Kazimoto.	
ix) One student was assigned by a teacher to write a formula for cal	culating
resultant force (R) formed by two forces, pulling a heavy concrete slab	along a
horizontal surface by means of two ropes where the ropes made an	angle of

should the student have before carrying out the measurements?

 90° between them. If the forces in the ropes were F_1 and F_2 respectively which is the correct formula?

A.
$$R = \sqrt{F_1^2 + F_2^2}$$

B.
$$R = \sqrt{F_1^2 - F_2^2}$$

C.
$$R = \sqrt{F_1 + F_2}$$

D.
$$R = \sqrt{F_1 - F_2}$$

x) Engineering Science teacher presented the diagram shown in Figure 1 on the blackboard and asked the students to give the name of the product of the parameters 'F' and 'a' what will be the student answer to the teacher?

- A. Workdone.
- B. Torque.
- C. Moment.
- D. Impulse.

2. Match the linear motion actions in List A with the corresponding parameters in List B by writing the letter of the correct answer in the table provided.

LIST A	LIST B	
i) Is a decreasing velocity with time	A. Acceleration	
ii) It is a distance in a specific direction	B. Change in velocity	
	C. Displacement	
iii) Is a path of an object from one point to another	D. Distance	
iv) Is a rate of change of displacement	E. Gravitational acceleration	
v) Is a rate of change of velocity	F. Retardation	
	G. Speed	
	H. Velocity	

ANSWERS:

List A	(i)	(ii)	(iii)	(iv)	(v)
List B					

SECTION B (70 MARKS)

Answer all questions from this section

3. Given the data in the table bewlow:

Togt	Distance in	Time taken in
Test	meters	seconds
1	30	10
2	42	12

a) Calculate the initial velocity and uniform acceleration
b) Determine the final velocity at each round of a test. The recorded data
provided were as shown.
Draw a leclanche cell diagram showing the structure of the cell, and name its
main components.

(b) (i) Briefly explain the effect of the formation of a layer of hydrogen on the positive terminal.

(ii) H	ow can the formation of a layer of hydrogen on the positive terminal in (b)(i)
prevente	d.
(c) Give	one advantage and one disadvantage of using the cell

5. (a) A form Two teacher wrote the	following sta	ntement or	n the black	kboard '	'friction
force is directly proportional to	the normal	reaction	between 1	two sur	faces in
contact with relative motion" Der	rive a mather	natical eq	uation rep	resente	d by this
statement.					
	•••••				
	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		••••
		•••••	•••••		•••••
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	• • • • • • • • • • • • • • • • • • • •	•••••			••••
		•••••	•••••		••••
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
(b) II-in a 4b a farmania abtain al in (a)		CC -:4 -4	C C.: .4:		
(b) Using the formula obtained in (a),				vnere a	DIOCK OI
2kg is pulled on a rough horizontal sur	mace with a i	lorce of 13	DIN.		
	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••
		•••••		• • • • • • • • • • • • • • • • • • • •	••••••
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
		•••••	• • • • • • • • • • • • • • • • • • • •		••••••
					••••

tempe	experiment of expansion of metals, student heated a steel ball to a grature of 50 0 C to give a diameter of 50.25 mm. The ball was then placed a hole of diameter 50 mm. Estimate the temperature of the ball as a result of the ing it through the hole. (Consider $\alpha = 0.000012/^{0}$ C).

7.	Suppose you are given a 100 g of lead shots, measuring cylinder partly full of water to a reading of 80ml. When lead shots placed into it, the reading rose to 88.8ml
	Estimate the density and relative density of the lead shots.
8.	(a) In an engineering science laboratory teacher received the the following equipment: Wheelbarrow, Scissors, Spade, Nut Cracker, Tong and Fishing rod Arrange these equipments according to their classes of lever.
	Thrunge these equipments decorating to their classes of lever.

(b) A srudent used a lever to shoft a heavy iron block from one point to anothe during the cleanliness session in the worksop as shown in the Figure 2. Calculate the mechanical adavantages of this lever.

9.	(a) A motor vehicle technician was servicing an engine in an automotive garage. He noted that the engine has mass of 150 kg and suspended by a crane with 4m above the ground. Determine the potential energy due to its position.
••••	
••••	
••••	
••••	
••••	
••••	(b) If the engine in (a) falls to the ground from that height; Calculate the velocity and kinetic energy of the engine at the point of impact with the ground.

(c) Determine the kinetic energy and the potential energy of the engine after
falling 3m. Neglect air resistance.

SECTION C (15 Marks)

Answer all questions

10. A form two student prepared an experiment in laboratory to determine the resistance 'R' of a metallic conductor. She closed the switch K, and adjusted the rheostat 'R_n' to different positions to increase the current. For each position she recorded the readings 'V' and 'I' of the voltmeter and ammeter respectively.

Table 2:

I(amps)	1	2	3	4	5	6
V(Volts)	2	4	6	8	10	12
$\frac{V}{I}$						

From the Table 2 answer the following questions.

- a) Find the ratio $\frac{V}{I}$ for each pair and fill the Table 2.
- b) Plot the graph of V against I
- c) Calculate the gradient 'S' of the graph drawn in (b)
- d) Compare the value of the gradient 'S' obtained in (c) and the values of the

e) State the relation between S and $\frac{V}{I}$
f) Which physical quantity is represented by the gradient 'S'?
g) Determine the value of the resistance 'R' of the metallic conductor.

ratio $\frac{V}{I}$ obtained in (a).