

Ridge Regresyon (L2 regularization)

Çok değişkenli regresyon verilerini analiz etmede kullanılır. Amaç hata kareler toplamını minimize eden katsayıları, bu katsayılara bir ceza uygulayarak bulmaktır. Over-fittinge karşı dirençlidir. Çok boyutluluğa çözüm sunar. Tüm değişkenler ile model kurar, ilgisiz değişkenleri çıkarmaz sadece katsayılarını sıfıra yaklaştırır. Modeli kurarken alpha (ceza) için iyi bir değer bulmak gerekir.

Lasso Regresyon (L1 regularization)

Ürettiği modelin tahmin doğruluğunu ve yorumlanabilirliğini arttırmak için hem değişken seçimi hem de regularization yapar. Aynı ridge regresyonda olduğu gibi amaç hata kareler toplamını minimize eden katsayıları, katsayılara ceza uygularayarak bulmaktır. Fakat ridge regresyondan farklı olarak ilgisiz değişkenlerin katsayılarını sıfıra eşitler.

Elastic Net

Amaç ridge ve lasso regresyon ile aynıdır ama elastic net, ridge ve lasso regresyonu birleştirir. Ridge regresyon tarzı cezalandırma ve lasso regresyon tarzında değişken seçimi yapar.

Uygulama

Hepsinin kısaca ne olduğunu öğrendiğimize göre artık uygulama kısmına geçebiliriz. Uygulamamız için "Hitters.csv" veri setini kullanacağız. Öncelikle gerekli olan kütüphaneleri dahil ederek başlayalım.

Gerekli kütüphaneleri dahil ettiğimize göre veri setini incelemeye geçebiliriz.

Ridge, Lasso ve Elastic Net. Ridge Regresyon (L2 regularization) | by Buse Köseoğlu | Medium

30.12.2023 11:40

df.info() ile veri setimiz hakkında daha geniş bir bilgiye sahip olabiliriz.

			.frame.Datal	
- 7			ries, 0 to 1	
Data			20 columns	
#		Non-	-Null Count	Dtype
7.77		155.00		27727
0	AtBat	322	non-null	int64
1	Hits	322	non-null	int64
2	HmRun	322	non-null	int64
3	Runs	322	non-null	int64
4	RBI	322	non-null	int64
5	Walks	322	non-null	int64
6	Years	322	non-null	int64
7	CAtBat	322	non-null	int64
8	CHits	322	non-null	int64
9	CHmRun	322	non-null	int64
10	CRuns	322	non-null	int64
11	CRBI	322	non-null	int64
12	CWalks	322	non-null	int64
13	League	322	non-null	object
14	Division	322	non-null	object
15	PutOuts	322	non-null	int64
16	Assists	322	non-null	int64
17	Errors	322	non-null	int64
18	Salary	263	non-null	float64
			non-null	
			int64(16),	
	ry usage: 5			

Yukarıdaki çıktıyı incelediğimizde veri setinin boyutunun (322,20) olduğunu görüyoruz. Üç tane kategorik değişkenimiz var bunlar object olarak belirtilmiş ve aynı zamanda *Salary* değişkeninin içinde eksik veri mevcut. Bu eksik verilerin sayısını görmek için;

Bunun sonucunda Salary değişkeni içinde 59 tane eksik veri olduğunu görüyoruz. Bu eksik verileri Salary değişkeninin ortalaması ile dolduracağız.

Ridge, Lasso ve Elastic Net. Ridge Regresyon (L2 regularization) | by Buse Köseoğlu | Medium

30.12.2023 11:40

30.12.2023 11:40	Ridge, Lasso ve Elastic Net. Ridge Regresyon (L2 regularization) by Buse Köseoğlu Medium
Yukarıdaki " <i>inplace</i> =' uygulanmasını sağlar	True" parametresi yaptığımız değişikliğin kalıcı bir şekilde
	eğişkenleri numerik değişkenlere dönüştürmeye. Bunun için dummies()"i kullanacağız.

"get_dummies()" içinde numerik değişkenlere dönüşücek kategorik değişkenleri yazıyoruz. Daha sonra veri setinden bu kategorik değişkenleri ve tahmin etmek istediğimiz değişkeni düşürüyoruz ve bunu X_'ye eşitliyoruz.

	NewLeague_A	NewLeague_N	League_A	League_N	Division_E	Division_W
0	1	0	1	0	1	0
1	0	1	0	1	0	1
2	1	0	1	0	0	1
3	0	1	0	1	1	0
4	0	1	0	1	1	0

dms'i incelediğimizde kategorik değişkenlerin 1 ve 0'lar ile numerik değişkenlere dönüştüğünü görüyoruz. Veri setinde her bir değişkenin bir tanesini kullanmamız yeterli olacaktır.

	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	PutOuts	Assists	Errors	NewLeague_A	League_A	Division_E
0	293.0	66.0	1.0	30.0	29.0	14.0	1.0	293.0	66.0	1.0	30.0	29.0	14.0	446.0	33.0	20.0	1	1	1
1	315.0	81.0	7.0	24.0	38.0	39.0	14.0	3449.0	835.0	69.0	321.0	414.0	375.0	632.0	43.0	10.0	0	0	0
2	479.0	130.0	18.0	66.0	72.0	76.0	3.0	1624.0	457.0	63.0	224.0	266.0	263.0	0.088	82.0	14.0	1	1	0
3	496.0	141.0	20.0	65.0	78.0	37.0	11.0	5628.0	1575.0	225.0	828.0	838.0	354.0	200.0	11.0	3.0	0	0	1
4	321.0	87.0	10.0	39.0	42.0	30.0	2.0	396.0	101.0	12.0	48.0	46.0	33.0	805.0	40.0	4.0	0	0	1

Dönüştürülen değişkenler ve X_'yi birleştirerek X'i elde ediyoruz. X, y'yi tahmin etmek için kullanacağımız bağımsız değişkenleri içeriyor. y'yi de tahmin etmek istediğimiz değişkene eşitliyoruz.

Bunları yaptıktan sonra artık veriyi train ve test olarak bölebiliriz.

X_train ve y_train modeli geliştirmek için X_test ve y_test ise modeli test etmek için kullanılacak bağımlı ve bağımsız değişkenleri gösteriyor. Test_size verilerin % kaçını test için kullanılacağını (%30) belirtir. Burada herhangi bir değer belirtmezsek defaultta gelen 0.25 değeri kullanılır. Random_state ise programı her çalıştırdığımızda aynı ayrımı görmek için kullanılır.

StandartScaler verileri, ortalaması 0, standart sapması 1 olacak şekilde dönüştürür. Kısacası verileri standartlaştırır.

RIDGE REGRESYON

İlk başta "ridge" adında bir model yaratıyoruz ve modele hiçbir parametre vermeden X_train ve y_train ile eğitiyoruz. Bunun sonucunda aldığımız hata 331.527 oluyor. Daha sonra RidgeCV yi kullanarak bir cross validation işlemi uyguluyoruz. Bu işlem veri setimiz için en uygun parametreleri elde etmemizi sağlıyor. İşlem tamamlandıktan sonra elde ettiğimiz en iyi alpha değeri ile yeni bir model (ridge_tuned) kuruyoruz ve eğitiyoruz. Buradan elde ettiğimiz hata ise 331.299 oluyor.

LASSO REGRESYON

30.12.2023 11:40	Ridge, Lasso ve Elastic Net. Ridge Regresyon (L2 regularization) by Buse Köseoğlu Medium
"I acco" o den dolei mod	alimini alvotumus ažittiletas aasus alda attižimin hata 221 220
oluyor. Daha sonra er	lelimizi oluşturup, eğittikten sonra elde ettiğimiz hata 331.238 n iyi parametreleri bulmak için LassoCV yani cross validation
uyguluyoruz. Son ola eğittiğimiz zaman ha	rak da elde ettiğimiz parametrelerle yeni bir model kurup ta 331.135 oluyor.
ELASTIC NET	

30.12.2023 11:40	Ridge, Lasso ve Elastic Net. Ridge Regresyon (L2 regularization) by Buse Köseoğlu Medium
	ndaki işlemleri uyguluyoruz. İlk oluşturduğumuz modelde elde 7 oluyor. Tune edildikten sonra elde ettiğimiz hata ise 353.737

Ridge Regression

Lasso Regression

Elastic Net

Python

Machine Learning

Written by Buse Köseoğlu

371 Followers

BAU Software Engineering | Data Science | https://www.linkedin.com/in/busekoseoglu/

More from Buse Köseoğlu

Guide to Time Series Analysis with Python—1: Analysis Techniques and **Baseline Model**

Time series analysis is a method used in various industries, such as stock market prediction, product price forecasting, weather...

6 min read - Jul 1

One Layer Neural Network From Scratch—Classification

Classification is a supervised learning method. In supervised learning, we have labels for our data. Algorithms learn from these labels...

7 min read - Jul 28

Buse Köseoğlu

Ct

Guide to Time Series Analysis with Python—2: Moving Average Process

In my previous article, I talked about how time series analysis should be done, analysis methods and baseline model creation. If you do...

5 min read · Jul 15

NLP—Text Preprocessing

Since the data to be used in NLP projects is text data, it has an unstructured structure and, as in other projects, it is very important...

3 min read · Dec 15

See all from Buse Köseoğlu

Recommended from Medium

Single Decision Tree Final Prediction

Shaw Talebi in Towards Data Science

10 Decision Trees are Better Than 1

Breaking down bagging, boosting, Random Forest, and AdaBoost

Guide to Time Series Analysis with Python—3: Autoregressive Process

In the previous article, we examined the moving average process. This time we will examine another statistical model, the autoregressive...

4 min read · Aug 7

Lists

Predictive Modeling w/ Python

20 stories - 737 saves

Practical Guides to Machine Learning

10 stories - 848 saves

Coding & Development

11 stories · 349 saves

Natural Language Processing

1042 stories · 516 saves

Building a Decision Tree From Scratch with Python

Decision Trees are machine learning algorithms used for classification and regression tasks with tabular data. Even though a basic decision...

8 min read - Oct 13

	26.8	6000	YES	WARNIN
	NAN \$	2600	YES	
	NAN \$	NAN \$	NO	
	13.2	3400	NAN \$	
RGENT!	NAN \$	1000	NO	

Hasan Hüseyin Coşgun

Dealing with Missing Data from Zero to Advanced

Simple and advanced imputation; Drop, Mode, Median, KNN, MICE

8 min read · Aug 23

🍪 devin schumacher 🐽 in SERP AI

AdaBoost

AdaBoost: Definition, Explanations, Examples & Code

5 min read - Jul 21

Introduction to BIG O Notation—Time and Space Complexity

A clear and concise introduction to Big O Notation, focusing on time and space complexity in algorithm analysis

6 min read - Jul 17

2

•••

See more recommendations