

Computing The Inverse of a Matrix with Gaussian Elimination

This page is intended to be a part of the Numerical Analysis section of Math Online. Similar topics can also be found in the Linear Algebra section of the site.

Fold

Table of Contents

Computing The Inverse of a Matrix with Gaussian Elimination

Computing The Inverse of a Matrix with Gaussian Elimination

Recall that if we have a linear system of n equations in n variables, then if A represents the corresponding $n \times n$ coefficient matrix of the system, x represents the $n \times 1$ column matrix of the variables in the system, and b represents the $n \times 1$ column matrix of the constants for the system, then the linear system itself can be written in the form Ax = b. Furthermore, if A is an invertible matrix, then A^{-1} exists, and so we can obtain the solution to our system of equations by multiplying both sides of Ax = b from the left by A^{-1} to get $x = A^{-1}b$, i.e, the unique solution to our system. Therefore, being able to determine the inverse of a square matrix (provided that it exists) is remarkable useful in solving linear systems of equations.

What's nice is that we can determine the inverse of a matrix using Gaussian Elimination. Let A be an $n \times n$ matrix. Assume that the inverse of A exists and let $B = A^{-1}$. Denote the columns of B as $\bar{b_1}$, $\bar{b_2}$, ..., $\bar{b_n}$. Therefore we can rewrite the inverse of A as:

$$B = (\bar{b_1} \ \bar{b_2} \dots \bar{b_n}) \tag{1}$$

Furthermore, let I_n be the $n \times n$ identity matrix and let e_1 , e_2 , ..., e_n be the columns of I_n . Now since B is the inverse matrix of A, we have that AB = I or in the notation we've just defined:

$$A(\bar{b_1} \ \bar{b_2} \dots \bar{b_n}) = (e_1, e_2, \dots, e_n)$$
 (2)

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
(3)

Now the product of the matrix A with the k^{th} column matrix $\bar{b_k}$ produces an $n \times 1$ column matrix $A\bar{b_k}$:

$$Aar{b_k} = egin{bmatrix} a_{11}b_{1k} + a_{12}b_{2k} + \ldots + a_{1n}b_{nk} \ a_{21}b_{1k} + a_{22}b_{2k} + \ldots + a_{2n}b_{nk} \ dots \ a_{n1}b_{1k} + a_{n2}b_{2k} + \ldots + a_{nn}b_{nk} \end{bmatrix}$$

Therefore the equation $A(\bar{b_1}\ \bar{b_2}\ \dots\ \bar{b_n}) = (e_1,e_2,\dots,e_n)$ can be rewritten as:

$$(A\bar{b_1} \ A\bar{b_2} \dots A\bar{b_n}) = (e_1, e_2, \dots, e_n)$$
 (5)

From the equation above, we see that $A\bar{b_1}=e_1$, $A\bar{b_2}=e_2$, ..., $A\bar{b_n}=e_n$, and so the columns of the inverse matrix B of A are each solutions to linear systems:

$$A\bar{b_k} = e_k \quad , \quad k = 1, 2, \dots, n$$
 (6)

Now note that if we take the coefficient matrix A and adjoin the identity matrix I_n , then the resulting augmented matrix is $[A \mid I]$, that is:

$$[A | I] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{bmatrix}$$
 (7)

Applying Gaussian Elimination will simultaneously account for the systems $A\bar{b_1}=e_1$, $A\bar{b_2}=e_2$, ..., $A\bar{b_n}=e_n$. After Gaussian Elimination is successfully performed, we will obtain an augmented matrix in the form $[I \mid B]$ and so we will have obtained our inverse matrix B of A.