Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Домашняя работа № 4 По Дискретной Математике Гамильтонов Цикл

Вариант № 20

Выполнил:

Карташев Владимир Р3131

Преподаватель:

Поляков Владимир Иванович

Исходная таблица соединений R:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0		3	3		5	1		1			
e2		0				2	1					
e3	3		0				5	2	4			3
e4	3			0	1		3					
e5				1	0	4				3		
e6	5	2			4	0	2	3	2			
e7	1	1	5	3		2	0		2		1	
e8			2			3		0	4	5		
e9	1		4			2	2	4	0	5	4	
e10					3			5	5	0		1
e11							1		4		0	
e12			3							1		0

Нахождение гамильтонова цикла

Для начала, возьмем в S вершину e_1 . Следовательно, в начале алгоритма
 $S = \{e_1^+\}$.

Напишем программу для нахождения гамильтонова цикла:

- Программа написана на языке **Java** в стиле ООП
- Программа состоит из двух классов: Main.class и HamiltonianPath.class

Main.class:

```
* This program is used to find Hamiltonian Path and Hamiltonian Cycle
* @author Vladimir Kartashev
* @version 1.0
* @since 04-06-2023
public class Main {
   public static void main(String[] args) {
        * The INT graphMatrix massive graph is used to contain the graph
         * @param graphMatrix
        int[][] graphMatrix = new int[][]{
                Variant: 20
                1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12
                {0, 0, 3, 3, 0, 5, 1, 0, 1, 0, 0, 0}, // 1
                {0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0}, // 2
                {3, 0, 0, 0, 0, 0, 5, 2, 4, 0, 0, 3}, // 3
                {3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0}, // 4
                {0, 0, 0, 1, 0, 4, 0, 0, 0, 3, 0, 0}, // 5
               {5, 2, 0, 0, 4, 0, 2, 3, 2, 0, 0, 0}, // 6
               {1, 1, 5, 3, 0, 2, 0, 0, 2, 0, 1, 0}, // 7
                {0, 0, 2, 0, 0, 3, 0, 0, 4, 5, 0, 0}, // 8
                {1, 0, 4, 0, 0, 2, 2, 4, 0, 5, 4, 0}, // 9
                {0, 0, 0, 0, 3, 0, 0, 5, 5, 0, 0, 1}, // 10
                {0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0}, // 11
                {0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0} // 12
        };
        * The STRING graphVerticesNames massive vertices is used to contain graph vertex names
        * @param graphVerticesNames
        String[] graphVerticesNames = {"e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9", "e10", "e11", "e12"};
        HamiltonianPath hamiltonianPath = new HamiltonianPath();
        hamiltonianPath.hamiltonianPath(graphMatrix, graphVerticesNames);
        System.out.println();
       HamiltonianCycle hamiltonianCycle = new HamiltonianCycle();
       hamiltonianCycle.hamiltonianCycle(graphMatrix);
    }
}
```

HamiltonianPath.class:

```
* @author Vladimir Kartashev
* @since 04-06-2023
public class HamiltonianPath {
    * The numberOfVertices field is used to contain number of vertices
    * @param numberOfVertices
  private int numberOfVertices;
  private int[] path;
   * The graph massive is used to contain matrix of graph
   * @param graphMatrix
   private int[][] graphMatrix;
    * @param visitedVertices
   private boolean[] visitedVertices;
   * The graphVerticesNames massive is used to contain graph vertex names
   private String[] graphVerticesNames;
```

```
* Main hamiltonianPath() method
 * @param graphMatrix
 * @param graphVerticesNames
public void hamiltonianPath(int[][] graphMatrix, String[] graphVerticesNames) {
    numberOfVertices = graphMatrix.length;
    path = new int[numberOfVertices];
    visitedVertices = new boolean[numberOfVertices];
    this.graphVerticesNames = graphVerticesNames;
    this.graphMatrix = graphMatrix;
    for (int i = 0; i < numberOfVertices; i++) {</pre>
        visitedVertices[i] = false;
        path[i] = -1;
    path[0] = 0;
    visitedVertices[0] = true;
    if (findPath(1)) {
        printPath();
    } else {
        System.out.println("No Path Found");
* Helper findPath() method
* @param vertexIndex
private boolean findPath(int vertexIndex) {
    if (vertexIndex == numberOfVertices) {
        return graphMatrix[path[vertexIndex - 1]][path[0]] == 1;
    }
    for (int i = 0; i < numberOfVertices; i++) {</pre>
        if (isSafe(vertexIndex, i)) {
            path[vertexIndex] = i;
            visitedVertices[i] = true;
            if (findPath(vertexIndex + 1)) {
                return true;
            visitedVertices[i] = false;
    return false;
```

```
* Method isSafe() check that vertexIndex can be added to the path
 * @param vertexIndex
 \ensuremath{^*} @return BOOLEAN value that vertexIndex can be added to the path
private boolean isSafe(int vertexIndex, int vertex) {
    if (graphMatrix[path[vertexIndex - 1]][vertex] == 0) {
        return false;
    for (int i = 0; i < vertexIndex; i++) {
        if (path[i] == vertex) {
            return false;
    return true;
private void printPath() {
   System.out.println("Hamiltonian Path: ");
    for (int i = 0; i < path.length; i++) {</pre>
        System.out.print(graphVerticesNames[path[i]] + " ");
    System.out.println("| " + graphVerticesNames[path[0]] + " ...");
```

Получившийся гамильтонов путь:

$$S = \{e_1, e_3, e_{12}, e_{10}, e_8, e_9, e_{11}, e_7, e_2, e_6, e_5, e_4\}$$

Перенумеруем вершины графа согласно полученному гамильтонову циклу таким образом, чтобы ребра гамильтонова цикла были внешними:

До	$e_{_{1}}$	$e_{_3}$	e ₁₂	$e_{_{10}}$	e_8	e_9	e ₁₁	$e_{_{7}}$	e_2	$e_{_6}$	$e_{_{5}}$	$e_{_4}$
После	$e_{_1}$	e_2	e_3	$oldsymbol{e}_4$	$e_{_{5}}$	$e_{6}^{}$	$e_{_{7}}$	e_8	e_9	e_{10}	$e_{_{11}}$	e_{12}

Таблица соединений R с перенумерованными вершинами:

	x_{1}	x_2	x_3	x_{4}	x_{5}	x_6	x_{7}	x_8	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂
x_{1}	0	1	0	0	0	1	0	1	0	1	0	1
x_2	1	0	1	0	1	1	0	1	0	0	0	0
x_3	0	1	0	1	0	0	0	0	0	0	0	0
x_4	0	0	1	0	1	1	0	0	0	0	1	0
<i>x</i> ₅	0	1	0	1	0	1	0	0	0	1	0	0
x_{6}	1	1	0	1	1	0	1	1	0	1	0	0
x_{7}	0	0	0	0	0	1	0	1	0	0	0	0
x_8	1	1	0	0	0	1	1	0	1	1	0	1
x_9	0	0	0	0	0	0	0	1	0	1	0	0
<i>x</i> ₁₀	1	0	0	0	1	1	0	1	1	0	1	0
<i>x</i> ₁₁	0	0	0	1	0	0	0	0	0	1	0	1
<i>x</i> ₁₂	1	0	0	0	0	0	0	1	0	0	1	0

Построение графа пересечений G'

- 1. Определим p_{2-8} , для чего в матрице R выделим подматрицу R_{2-8} . Ребро (x_2x_8) пересекается с (x_1x_6) .
- 2. Определим p_{4-11} , для чего в матрице R выделим подматрицу R_{4-11} . Ребро (x_4x_{11}) пересекается с (x_1x_6) , (x_1x_8) , (x_1x_{10}) , (x_2x_5) , (x_2x_6) , (x_2x_8) .
- 3. Определим p_{4-6} , для чего в матрице R выделим подматрицу R_{4-6} . Ребро (x_4x_6) пересекается с (x_2x_5) .
- 4. Определим p_{5-10} , для чего в матрице R выделим подматрицу R_{5-10} . Ребро (x_5x_{10}) пересекается с (x_1x_6) , (x_1x_8) , (x_2x_6) , (x_2x_8) , (x_4x_6) .
- 5. Определим p_{6-10} , для чего в матрице R выделим подматрицу R_{6-10} . Ребро (x_6x_{10}) пересекается с (x_1x_8) , (x_2x_8) .
- 6. Определим p_{8-12} , для чего в матрице R выделим подматрицу R_{8-12} . Ребро (x_8x_{12}) пересекается с $(x_1x_{10}), (x_4x_{11}), (x_5x_{10}), (x_6x_{10})$

• •

Найдено 11 пересечений графа:

	$p_{1-6}^{}$	p_{2-8}	$p_{4-11}^{}$	p_{1-8}	$p_{1-10}^{}$	$p_{2-5}^{}$	$p_{2-6}^{}$	p_{4-6}	$p_{5-10}^{}$	$p_{6-10}^{}$	<i>p</i> ₈₋₁₂
$p_{1-6}^{}$	1	1	1	0	0	0	0	0	1	0	0
$p_{2-8}^{}$	1	1	1	0	0	0	0	0	1	1	0
$p_{4-11}^{}$	1	1	1	1	1	1	1	0	0	0	1
$p_{1-8}^{}$	0	0	1	1	0	0	0	0	1	1	0
$p_{1-10}^{}$	0	0	1	0	1	0	0	0	0	0	1
$p_{2-5}^{}$	0	0	1	0	0	1	0	1	0	0	0
$p_{2-6}^{}$	0	0	1	0	0	0	1	0	1	0	0
$p_{4-6}^{}$	0	0	0	0	0	1	0	1	1	0	0
$p_{5-10}^{}$	1	1	0	1	0	0	1	1	1	0	1
$p_{6-10}^{}$	0	1	0	1	0	0	0	0	0	1	1
p ₈₋₁₂	0	0	1	0	1	0	0	0	1	1	1

- 1. В 1 строке ищем первый нулевой элемент r_{1-4} . Записываем дизъюнкцию $M_{1-4} = r_1 \vee r_4 =$ $= 11100000100 \lor 00110000110 = 11110000110$
- **2**. В строке M_{1-4} находим номера нулевых элементов, составляем список $J' = \{5, 6, 7, 8, 11\}.$ Записываем дизъюнкцию $M_{_{1-4-5}} = M_{_{1-4}} \lor r_{_5} =$

 $= 11110000110 \lor 00101000001 = 11111000111$

3. В строке M_{1-4-5} находим номера нулевых элементов, составляем список $J' = \{6, 7, 8\}.$

Записываем дизъюнкцию $M_{1-4-5-6} = M_{1-4-5} \lor r_6 =$ $= 11111000111 \lor 00100101000 = 11111101111$

4. В строке $M_{1-4-5-6}$ находим номера нулевых элементов, составляем список $J' = \{7\}$.

5. В строке $M_{1-4-5-6-7}$ все регистры равны 1. Построено $\psi_1 = \{u_{1-6}, \ u_{1-8}, \ u_{1-10}, \ u_{2-5}, \ u_{2-6}\}$

Делаем также начиная с ψ_2 до ψ_{13} . Тогда, семейство максимальных внутренне устойчивых множеств ψ_c будет:

$$\begin{split} & \psi_1 = \{u_{1-6}, \ u_{1-8}, \ u_{1-10}, \ u_{2-5}, \ u_{2-6}\} \\ & \psi_2 = \{u_{1-6}, \ u_{1-8}, \ u_{1-10}, \ u_{2-6}, \ u_{4-6}\} \\ & \psi_3 = \{u_{1-6}, \ u_{1-8}, \ u_{2-5}, \ u_{2-6}, \ u_{8-12}\} \\ & \psi_4 = \{u_{1-6}, \ u_{1-8}, \ u_{2-6}, \ u_{4-6}, \ u_{8-12}\} \\ & \psi_5 = \{u_{1-6}, \ u_{1-10}, \ u_{2-5}, \ u_{2-6}, \ u_{4-6}, \ u_{6-10}\} \\ & \psi_6 = \{u_{1-6}, \ u_{1-10}, \ u_{2-6}, \ u_{4-6}, \ u_{6-10}\} \\ & \psi_7 = \{u_{2-8}, \ u_{1-8}, \ u_{1-10}, \ u_{2-5}, \ u_{2-6}, \ u_{4-6}\} \\ & \psi_9 = \{u_{2-8}, \ u_{1-8}, \ u_{2-5}, \ u_{2-6}, \ u_{8-12}\} \\ & \psi_{10} = \{u_{2-8}, \ u_{1-8}, \ u_{2-6}, \ u_{4-6}, \ u_{8-12}\} \\ & \psi_{11} = \{u_{4-11}, \ u_{4-6}, \ u_{6-10}\} \\ & \psi_{12} = \{u_{4-11}, \ u_{5-10}, \ u_{6-10}\} \\ & \psi_{13} = \{u_{1-10}, \ u_{2-5}, \ u_{5-10}, \ u_{6-10}\} \end{split}$$

• •

Выделение максимального двудольного подграфа Н' из G'

$$a_{1-2} = |\psi_1| + |\psi_2| - |\psi_1 \wedge \psi_2| = 5 + 5 - 4 = 6$$

$$a_{1-3} = |\psi_1| + |\psi_3| - |\psi_1 \wedge \psi_3| = 5 + 5 - 4 = 6$$

$$a_{1-4} = |\psi_1| + |\psi_4| - |\psi_1 \wedge \psi_4| = 5 + 5 - 3 = 7$$

$$a_{1-5} = |\psi_1| + |\psi_5| - |\psi_1 \wedge \psi_5| = 5 + 5 - 4 = 6$$

$$a_{1-6} = |\psi_1| + |\psi_6| - |\psi_1 \wedge \psi_6| = 5 + 5 - 3 = 7$$

$$a_{1-7} = |\psi_1| + |\psi_7| - |\psi_1 \wedge \psi_7| = 5 + 5 - 4 = 6$$

$$a_{1-8} = |\psi_1| + |\psi_8| - |\psi_1 \wedge \psi_8| = 5 + 5 - 3 = 7$$

$$a_{1-9} = |\psi_1| + |\psi_9| - |\psi_1 \wedge \psi_9| = 5 + 5 - 3 = 7$$

$$a_{1-10} = |\psi_1| + |\psi_{10}| - |\psi_1 \wedge \psi_{10}| = 5 + 5 - 2 = 8$$

$$a_{1-11} = |\psi_1| + |\psi_{11}| - |\psi_1 \wedge \psi_{11}| = 5 + 3 - 0 = 8$$

$$a_{1-12} = |\psi_1| + |\psi_{12}| - |\psi_1 \wedge \psi_{12}| = 5 + 3 - 0 = 8$$

$$a_{1-13} = |\psi_1| + |\psi_{13}| - |\psi_1 \wedge \psi_{13}| = 5 + 4 - 2 = 7$$

. . .

$$a_{12-13} = |\psi_{12}| + |\psi_{13}| - |\psi_{12} \wedge \psi_{13}| = 3 + 4 - 2 = 5$$

Результаты отобразим в матрице:

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	6	6	7	6	7	6	7	7	8	8	8	7
2		0	7	6	7	6	7	6	8	7	7	8	8
3			0	6	7	8	7	8	6	7	8	8	8
4				0	8	7	8	7	7	6	7	8	9
5					0	6	7	8	8	9	7	7	6
6						0	8	7	9	8	6	7	7
7							0	6	6	7	8	8	7
8								0	7	6	7	8	8
9									0	6	8	8	8
10										0	7	8	9
11											0	4	6
12												0	5
13													0

 $max[a_{i-j}] = a_{4-13}$, a_{5-10} , a_{6-9} , $a_{11-13} = 9$ дают множества:

$$\begin{split} & \psi_4 = \{u_{1-6}, \ u_{1-8}, \ u_{2-6}, \ u_{4-6}, \ u_{8-12}\} \\ & \psi_{13} = \{u_{1-10}, \ u_{2-5}, \ u_{5-10}, \ u_{6-10}\} \end{split}$$

Для множеств ψ_9 и ψ_{11} напишем булеву формулу чтобы увидеть только уникальные ребра:

$$\begin{split} & \psi_{9} \backslash (\psi_{4} \vee \psi_{13}) = \{u_{2-8}^{}\} \\ & \psi_{11} \backslash (\psi_{4} \vee \psi_{13}) = \{u_{4-11}^{}\} \end{split}$$

В суграфе H, содержащем в себе максимальное число непересекающихся ребер, проведем ребра из ψ_4 и ψ_9 внутри, а ребра из ψ_{11} и ψ_{13} – снаружи:

