

Microeconomia AA 23-24 InfMan

Emanuele Bacchiega

Varian, Cap. 7

Lezioni scorse: Preferenze \rightarrow Domanda.

Oggi Domanda → Preferenze

- Preferenze *stabili* nel tempo.
- Preferenze strettamente convesse (paniere ottimo unico dato V.B.).

X è scelto quando Y è disponibile.

$$\forall X \neq Y$$
,

$$p_1y_1+p_2y_2\leq m$$

Inoltre

$$p_1x_1+p_2x_2=m$$

Quindi

$$\mathsf{p}_1\mathsf{x}_1+\mathsf{p}_2\mathsf{x}_2\geq \mathsf{p}_1\mathsf{y}_1+\mathsf{p}_2\mathsf{y}_2$$

X si rivela direttamente preferito a Y

Principio delle preferenze rivelate

Sia X scelto in corrispondenza dei prezzi (p_1, p_2) e sia Y t.c. $p_1x_1 + p_2x_2 \ge p_1y_1 + p_2y_2$. Se il consumatore sceglie il paniere preferito tra quelli possibili, dev'essere che

$$X \succ Y$$

$$q_1y_1 + q_2y_2 \ge q_1z_1 + q_2z_2 \to Y \succ Z$$
.

Y si rivela direttamente preferito a Z.

Transitività
$$\rightarrow X \succ Z$$

X si rivela indirettamente preferito a Z.

Costruzione curve indifferenza

Assioma debole delle preferenze rivelate (WARP)

Se X è direttamente r.p. a Y e $X \neq Y$, allora Y non può essere direttamente r.p. a X.

WARP: se X è acquistato a (p_1, p_2) e Y a (q_1, q_2) , allora se

$$p_1x_1 + p_2x_2 \ge p_1y_1 + p_2y_2$$

non può essere che

$$q_1x_1 + q_2x_2 \le q_1y_1 + q_2y_2$$

Verifica del WARP

Osservazione	p_1	<i>p</i> ₂	<i>x</i> ₁	<i>x</i> ₂
1	1	2	1	2
2	2	1	2	1
3	1	1	2	2

		Panieri		
		1	2	3
Drozzi	1	5	4*	6
Prezzi	2	4*	5	6
	3	3*	3*	4

Assioma forte delle preferenze rivelate (SARP)

Se X è direttamente o indirettamente r.p. a Y e $X \neq Y$, allora Y non può essere direttamente o indirettamente r.p. a X.

SARP è condizione *necessaria e sufficiente* di comportamento ottimizzante.

Preferenze Rilevate

Verifica del SARP Prezzi

Panieri								
		1	2	3				
	1	20	10*	22(*)				
	2	21	20	15*				
	3	12	15	10				

Daniari

Esempio: preferenze rivelate tra gli Atenei

Numeri indici Due periodi: b e t, panieri di consumo (x_1^b, x_2^b) , (x_1^t, x_2^t) .

$$I_q = \frac{w_1 x_1^t + w_2 x_2^t}{w_1 x_1^b + w_2 x_2^b}$$

Indice di consumo per dati pesi w_1 , w_2

Prezzi (p_1^b, p_2^b) , (p_1^t, p_2^t) : pesi "naturali".

• Prezzi a t: indice delle quantità di Paasche:

$$P_q = \frac{p_1^t x_1^t + p_2^t x_2^t}{p_1^t x_1^b + p_2^t x_2^b}$$

Prezzi a b: indice delle quantità di di Laspeyres:

$$L_q = \frac{p_1^b x_1^t + p_2^b x_2^t}{p_1^b x_1^b + p_2^b x_2^b}$$

Indice quantità di Paasche

- $P_q > 1 o$ paniere in t preferito a b
- $P_q < 1 \rightarrow ?$

Indice quantità di Laspeyres

- $L_q < 1 \rightarrow$ paniere in b preferito a t
- $L_q > 1 \to ?$

Indici dei prezzi In generale

$$I_p = \frac{p_1^t w_1 + p_2^t w_2}{p_1^b w_1 + p_2^b w_2}$$

- $w_i = x_i^t \rightarrow$ indice dei prezzi di **Paasche** P_p
- $w_i = x_i^b \rightarrow \text{indice dei prezzi di Laspeyres } L_p$

 $P_p < 1 \rightarrow$? Indice variazione spesa:

$$M = \frac{p_1^t x_1^t + p_2^t x_2^t}{p_1^b x_1^b + p_2^b x_2^b}$$

- $P_p > M \leftrightarrow p_1^b x_1^b + p_2^b x_2^b > p_1^b x_1^t + p_2^b x_2^t \rightarrow \text{Soddisfazione}$ consumatore maggiore in b.
- $L_p < M \leftrightarrow p_1^t x_1^t + p_2^t x_2^t > p_1^t x_1^b + p_2^b x_2^b \rightarrow \text{Soddisfazione}$ consumatore maggiore in t.

Esempio: Indicizzazione

