

A **estabilidade** de um sistema é definida em função da localização dos polos de malha fechada.

Estes devem estar no semiplano esquerdo no caso contínuo e dentro do círculo unitário no caso discreto, para que a estabilidade seja garantida.

A estabilidade relativa de um sistema é definida em função da proximidade da curva de resposta em frequência com o limite de estabilidade (ponto crítico):

$$-1 + j0$$

→ Diagrama polar

$$0dB \angle -180^{\circ}$$

→ Diagramas de Bode
Carta de Nichols

A proximidade da resposta em frequência com o ponto crítico (-1+j0) pode ser utilizada como uma medida das margens de estabilidade do sistema:

- Margem de ganho (MG)
- Margem de fase (MF)

Considerando a configuração abaixo, a grande maioria dos sistema de fase mínima que são estáveis para valores pequenos de ganho tendem a se tornarem instáveis para valores elevados.

MARGEM DE GANHO (MG): é o inverso do módulo de $G(j\omega)$ na frequência na qual o ângulo mede -180°.

Definindo a frequência de cruzamento de fase, ω_{CF} , como a frequência na qual a fase de $G(j\omega)$ é -180°, a margem de ganho pode ser calculada por

$$MG = \frac{1}{|G(j\omega_{CF})|}$$

Em decibéis,

$$MG_{dB} = 20\log(MG) = -20\log|G(j\omega_{CF})|$$

Para que um sistema de fase mínima seja estável em malha fechada é necessário (mas não suficiente) que sua margem de ganho seja positiva, ou seja, $|G(j\omega)| < 1$ (0 dB).

Uma margem de ganho negativa implica em instabilidade do sistema em malha fechada.

Para um sistema de fase mínima estável, a margem de ganho indica o quanto o ganho pode ser aumentado antes que o sistema se torne instável.

MARGEM DE FASE (MF): é o atraso de fase adicional, na frequência em que $|G(j\omega)| = 1$, necessário para que o sistema atinja o limiar de estabilidade.

Definindo a frequência de cruzamento de ganho, ω_{CG} , como a frequência na qual | G(j ω) | = 1 (0 dB), a margem de fase pode ser calculada por

$$MF = 180^{\circ} + \angle G(j\omega_{CG})$$

sendo $\angle G(j\omega)$ medida no sentido horário.

Para que um sistema de fase mínima seja estável em malha fechada é necessário (mas não suficiente) que sua margem de fase seja positiva.

Uma margem de fase negativa implica em instabilidade do sistema em malha fechada.

Assim, um sistema de fase mínima é **ESTÁVEL** em malha fechada se e somente se <u>ambas as margens de estabilidade</u> (MG e MF) são positivas.

Margens de Estabilidade (Diagramas de Bode)

Margens de Estabilidade (Diagramas de Bode)

Margens de Estabilidade (Carta de Nichols)

Margens de Estabilidade (Carta de Nichols)

Margens de Estabilidade (Diagrama Polar)

Margens de Estabilidade (Diagrama Polar)

Exemplo 1

Seja o sistema de controle com realimentação unitária cuja função de transferência em malha aberta é dada por:

$$G(s) = \frac{10}{s(s+1)(s+10)}$$

Será avaliada a estabilidade do sistema em malha fechada considerando diferentes representações da resposta em frequência.

Exemplo 1

Em frequência tem-se

$$G(s) = \frac{10}{s(s+1)(s+10)}$$

$$G(j\omega) = \frac{-110\omega^2 - j10\omega(10 - \omega^2)}{121\omega^4 + \omega^2(10 - \omega^2)^2}$$

cujos módulo e fase são dados, respectivamente, por:

$$|G(j\omega)| = \frac{10}{\sqrt{121\omega^4 + \omega^2(10 - \omega^2)^2}}$$

е

$$\angle G(j\omega) = tg^{-1} \left(\frac{-10 + \omega^2}{-11\omega} \right)$$

Variação assintótica de módulo e fase

Frequência	Módulo	Fase
ω = 0 a ω = 1	-20 dB/ dec	-90°
ω = 1 a ω = 10	-40 dB/dec	-180°
ω = 10 a $\omega \rightarrow \infty$	-60 dB/dec	-270°

$$G(s) = \frac{10}{s(s+1)(s+10)}$$

Valores assintóticos e reais de módulo e fase

Eroguôncia	Valores Assintóticos		Valores Reais	
Frequência	Módulo	Fase	Módulo	Fase
ω = 0,1	20 dB	-90°	20 dB	-96,3°
ω = 1,0	0 dB	-135°	-3 dB	-140,7°
ω = 10	-40 dB	-225°	-43 dB	-219,3°
ω = 100	-100 dB	-270°	-100 dB	-263,7°

$$\omega = 0.1$$

 $K = 1$ \rightarrow $20\log(K) - 20\log(\omega) = 20\text{dB}$

$$G(s) = \frac{10}{s(s+1)(s+10)}$$

Exemplo 1 – Margens de Estabilidade

Frequência de cruzamento de ganho: $| G(j\omega) | = 1$

$$|G(j\omega)| = \frac{10}{\sqrt{121\omega^4 + (10\omega - \omega^3)^2}} = 1$$

$$\omega^{6} + 101\omega^{4} + 100\omega^{2} = 10^{2} \qquad \omega = \begin{cases} \pm j10 \\ \pm j1,275 \\ \pm 0,784 \end{cases}$$

Margem de Fase (MF)

$$MF = 180^{\circ} + \angle G(j\omega_{CG}) \qquad \angle G(j\omega_{CG}) = tg^{-1} \left(\frac{-10 + \omega_{CG}^2}{-11\omega_{CG}} \right)$$

$$MF = 180^{\circ} - 132,6^{\circ} = 47,4^{\circ}$$

Exemplo 1 – Margens de Estabilidade

Frequência de cruzamento de fase: $\angle G(j\omega) = -180^{\circ}$

$$tg^{-1} \left(\frac{-10 + \omega_{CF}^2}{-11\omega_{CF}} \right) = 180^{\circ} \rightarrow \omega_{CF} = \pm \sqrt{10}$$

$$\omega_{CF} = 3,1623$$

Margem de Ganho (MG)

$$|G(j\omega_{CF})| = 0,0909 \rightarrow MG = 20\log \frac{1}{|G(j\omega_{CF})|} = 20,83dB$$

Uma vez que MG>0 e MF>0, o sistema é estável em malha fechada (K=1).

O ganho pode ser aumentado em até 11 vezes (1/0,0909), que a estabilidade do sistema será mantida.

Exemplo 1 – Carta de Nichols

Com os valores já obtidos de módulo e fase

Frequência	Módulo	Fase
ω = 0,1	20 dB	-96,3°
ω = 1,0	-3 dB	-140,7°
ω = 10	-43 dB	-219,3°
ω = 100	-100 dB	-263,7°

traça-se a **Carta de Nichols**, de onde obtém-se as margens de estabilidade, mostrando que o sistema é estável em malha fechada para K=1, podendo o ganho ser aumentado em até 11 vezes (20,8dB).

Exemplo 1 – Carta de Nichols

Separando parte real e imaginária tem-se:

$$G(j\omega) = \frac{-110}{121\omega^2 + (10 - \omega^2)^2} - j\frac{10(10 - \omega^2)}{121\omega^3 + \omega(10 - \omega^2)^2}$$

$$G(0^{+}) = \frac{-110}{100} - j\frac{100}{0} = \infty \angle -90^{\circ}$$
 $G(0^{-}) = \infty \angle 90^{\circ}$

$$G(+\infty) \approx \frac{1}{(j\omega)^3} = j\frac{1}{\infty} = 0\angle 90^\circ$$
 $G(-\infty) = 0\angle -90^\circ$

Cruzamento com eixo imaginário: $\omega = \pm \infty$

Cruzamento com eixo real: $10 - \omega^2 = 0$

$$\omega = \pm \sqrt{10} \rightarrow \text{Re}[G(j\sqrt{10})] = -\frac{11}{121} = -0,0909$$

Comportamento em torno da origem

Seja o contorno pela direita e s= $\varepsilon e^{j\theta}$. Neste caso, θ varia de 0^- a 0^+ , de -90° a +90°, no sentido anti-horário.

$$G(s) = \frac{10}{\varepsilon e^{j\theta} (\varepsilon e^{j\theta} + 1)(\varepsilon e^{j\theta} + 10)}$$

$$\varepsilon \to 0$$
 $G(s) = \frac{1}{0}e^{-j\theta} = \infty \angle -\theta$

Ou seja, um semicírculo de raio infinito no sentido horário.

Análise de Estabilidade

Como P=0, para que o sistema seja estável é preciso N=0, que é obtido quando

$$-\frac{1}{K} < -\frac{11}{121}$$

$$\downarrow \downarrow$$

$$0 < K < 11$$

Ou seja, o ganho pode ser aumentado em até 11 vezes mantendo-se a estabilidade.

Margens de Estabilidade

Uma vez que o ganho pode ser aumentado em até 11 vezes mantendo-se a estabilidade, a **margem de ganho** é dada por:

$$MG = 20\log(11) = 20,8dB$$

Margens de Estabilidade

A margem de fase pode ser obtida (graficamente) a partir da frequência onde o módulo é 1 ($\omega_{\rm CG}$) ou seja, na interseção do Diagrama de Nyquist com um círculo unitário.

A partir desta frequência mede-se o ângulo de fase e, assim obtém-se a MF.

Sistemas de fase não mínima

Sistema de fase não mínima

As definições de margem de ganho e de fase não podem ser aplicadas diretamente em sistemas de fase não mínima.

Faz-se necessário um estudo adequado do sistema.

Neste caso, recomenda-se utilizar o Critério de Nyquist para análise da estabilidade.

Sistemas condicionalmente estáveis

Sistemas condicionalmente estáveis

Neste tipo de sistema podem existir múltiplas frequências de cruzamento de fase ou de ganho.

Para sistemas **estáveis** com <u>duas ou mais frequências de</u> <u>cruzamento de fase</u>, a margem de ganho é medida pela frequência de cruzamento de ganho <u>mais baixa</u>.

Para sistemas **estáveis** com <u>duas ou mais frequências de</u> <u>cruzamento de ganho</u>, a margem de fase é medida pela frequência de cruzamento de ganho <u>mais alta</u>.

Sendo

$$G(s) = \frac{s^2 + 2s + 4}{s(s+4)(s+6)(s^2+1,41s+1)}$$

tem-se P=0 e, portanto, para estabilidade é necessário garantir N=0.

Esta condição é observada em duas regiões:

$$-\frac{1}{K} < -0.0625 \implies 0 < K < 16$$

$$-0.016 < -\frac{1}{K} < -0.006 \implies 66.5 < K < 166.7$$

A margem de ganho é calculada considerando o menos ganho:

$$MG = 20\log(16) = 24dB$$

