

Dampfdruckkurve (2)

Aufgabennummer: B_073

Technologieeinsatz: möglich □ erforderlich ⊠

Die untenstehende Gleichung von Clausius-Clapeyron beschreibt den Dampfdruck p einer Flüssigkeit bei gegebener Temperatur T.

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{p \cdot H_{V}}{R \cdot T^{2}}$$

p ... Druck in Bar (bar)

T... Temperatur in Kelvin (K)

H_V... molare Verdampfungsenthalpie in Kilojoule pro Mol (kJ/mol), konstant

R ... ideale Gaskonstante, $R = 8,3144 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

- a) Lösen Sie die gegebene Differenzialgleichung mittels "Trennen der Variablen" und dokumentieren Sie den Lösungsweg.
- b) Die spezielle Lösung für das *p*,*T*-Zustandsdiagramm von Wasser ist durch folgende Funktion *p* gegeben:

$$p(T) = 2,52 \cdot 10^6 \cdot e^{-\frac{5418}{T}}$$

Bei höheren Temperaturen weichen die experimentellen Werte von p vom theoretischen Wert ab. Experimentell ermittelte Daten:

Temperatur in Kelvin (K)	Druck in Bar	
313,15	0,0736	
323,15	0,1230	

- Berechnen Sie durch lineare Interpolation den Druck für T = 318,15 K.
- Ermitteln Sie für diese Temperatur den prozentuellen Unterschied zum theoretischen Wert.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Dampfdruckkurve (2)

Möglicher Lösungsweg

a) Lösen durch "Trennen der Variablen":

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{p \cdot H_{V}}{R \cdot T^{2}}$$

$$\frac{1}{p}dp = \frac{H_{V}}{R \cdot T^{2}}dT$$

$$\ln p = -\frac{H_{V}}{R \cdot T} + C_{1}$$

$$p(T) = e^{-\frac{H_V}{R \cdot T} + C_1}$$

$$p(T) = C \cdot e^{-\frac{H_V}{R \cdot T}}$$
, mit $C = e^{C_1}$

b) Berechnung der linearen Interpolation durch Technologieeinsatz: Lineare Funktion g durch die Datenpunkte $g(x) = 4,95 \cdot 10^{-3} \cdot x - 1,47518$ $g(318,15) = 9,966 \cdot 10^{-2}$ bar

$$p(318,15) = 0,10127 \text{ bar}$$
 relative Differenz = $\frac{0,10127}{0,09966}$ = 1,016, es ergibt sich eine Differenz von 1,5 %

Dampfdruckkurve (2) 3

Klassifikation			
	-!! A	M Tail D	
□ Teil A		☑ Teil B	
Wes	entlicher Berei	ch der Inhaltsdimension:	
a) b)	4 Analysis 3 Funktionale Zu	usammenhänge	
Neb	eninhaltsdimer	nsion:	
Wes	entlicher Berei	ch der Handlungsdimension:	
a) b)	•	d Technologieeinsatz d Technologieeinsatz	
Nebenhandlungsdimension:			
a) b)	_ _		

Schwierigkeitsgrad:

Punkteanzahl:

a) mittel

a) 3

b) mittel

b) 3

Thema: Chemie

Quelle: Handbook of Chemistry and Physics, 64th Edition, 1983–1984, CRC-Press.