

DC Fuses

Workshop for Future DC Distribution, Golden Colorado

Robert Douglass, Principal Engineer Eaton's Bussmann Business October 2, 2024

Yes, fuses are still a one-shot device, always have a spare!

Fuse Types – Operating Characteristic

Time Delay – Fast Acting – High Speed – TCC (Time Current Characteristic / Curve)

Many DC fuse styles, shapes and sizes

Bussmann Series

Square Body (Ceramic)

Up to 7500A Up to 4000 V

Round Body (Composite)

Up to 2000A Up to 1000 V

Simplicity, Reliability, Low-Cost Solution, Infinite Interruption ...

- Solid-state metal element with no moving parts.
- Time-current operating response is programmed within the metal element shape, composition, and melting temperature.
- Today's power fuses provide the focus and isolation of overcurrent faults with current limitation by way of a dynamic melting impedance from the weak-spot.

• This current limiting mechanism can withstand and interrupt successfully a potentially infinite available short circuit current within the fuse voltage rating (+750kA tested).

 The limiting peak current is established by the fuse element melting cross section and the metal melting temperature, typically made from copper or silver.

Weak-spot

AC Fuse versus DC Fuse... What's the Difference?

None! Just the voltage rating.

- AC fuses have the advantage with voltage zero crossing every 8.3ms to 10ms.
- DC fuses are at disadvantage due to positive voltage and LRC time constant
- DC fuses typically have 50% of the AC voltage rating, especially for the industrial UL style fuses.
- Long overload melting time results in a single point arcing along the fuse element, this is the voltage limiting factor.

60A 600Vac / 300VDC Fuse

Overload Interruption

Short Circuit Interruption

The Weak-Spot and Current Limitation

Powering Business Worldwide

Fuses have long been identified as the Weak-Link in an electrical system where overcurrent energy is quickly focused to force the fuse to open long before other thermal damage can occur along the circuit path. The first fuses were simple wires of reduced cross section as compared to the size of the primary circuit conductor.

Circa 1879 – Professor S. P. Thomson produced an "improved" wire fuse with dropout thermal load:

Today – The modern weak-spot and other metal systems provide the time-current response and current limitation effects for extremely reliable overcurrent protection. The weak-spot must deliver all circuit power for its entire life until called to interrupt a current fault threat.

Fuse Operation for Ampacity, Voltage and Arc Suppression

Series weak-spots for Voltage ...

Parallel weak-spots for Ampacity ...

Quartz sand to manage the Arc ...

Section B-B

EBPS Pyro Fuse/Switch ... (self and remote triggered)

Bussmann Series

EBPSXXF40

EBPSXXF40A

Rated Voltage and Continuous loading current

Catalogue numbers	Triggering Type	V d.c.	Continuous Amp. @85°C	
EBPS65F40	Single Triggering	0-500	0.400.0	
EBPS100F40	Single Triggering	0-1000		
EBPS50F40A	Dual Triggering	0-500 External 100-500 Internal	0-400 A	
EBPS100F40A	Dual Triggering	0-1000 External 100-1000 Internal		

Breaking Capacity

ltem	EBPS65F40	EBPS100F40	EBPS50F40A	EBPS100F40A	
Breaking capacity	12kA @500Vdc &20uH	16kA @1000Vdc &15uH	15kA @500Vdc &15uH	15kA @1000Vdc &15uH	
Operating time	<2ms	<2ms	<2ms or <2ms + C-T curve	<2ms or <2ms +C-T curve	
Busbar Resistance	<50 μΩ	<50 μΩ	<70 μΩ	<70 μΩ	
Isolation (busbar Vs triggering connector)	100ΜΩ				
Busbar resistance after operation	≥2MΩ				
Recommended wiring	150 mm ² (For smaller cross section, please contact us)				
Operating and storage temperature range	-40°C to 85°C (-40°F to 185°F) (contact us for extended temperature range)				

FIN

