Esercizio 1.

a) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

b) Si consideri il problema dell'albero dei cammini minimi di radice 1 sulla seguente rete. Completare la tabella applicando l'algoritmo di Dijkstra e disegnare l'albero dei cammini minimi.

Esercizio 2.

a) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

b) Si consideri il problema dell'albero dei cammini minimi di radice 1 sulla seguente rete. Completare la tabella applicando l'algoritmo di Dijkstra e disegnare l'albero dei cammini minimi.

Esercizio 3.

a) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

b) Si consideri il problema dell'albero dei cammini minimi di radice 1 sulla seguente rete. Completare la tabella applicando l'algoritmo di Dijkstra e disegnare l'albero dei cammini minimi.

SOLUZIONI

Esercizio 1.

a) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	5	(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0)	5
1 - 3 - 5 - 7	8	(5, 8, 0, 5, 0, 8, 0, 0, 13, 0, 0)	13
1 - 2 - 4 - 6 - 5 - 7	2	(7, 8, 2, 5, 0, 8, 2, 0, 15, 2, 0)	15

Taglio di capacitá minima:
$$N_s = \{1, 2, 3, 4, 5, 6\}$$
 $N_t = \{7\}$

	iter	iter 1		iter 2 iter 3		iter	iter 4		iter 5		iter 6		r 7		
	π	p	π	p	π	p	π	p	π	p	π	p	π	p	
nodo	-									_		_			
visitato	1		3		2		5		4		7		6		
nodo 2	12	1	12	1	12	1	12	1	12	1	12	1	12	1	
nodo 3	11	1	11	1	11	1	11	1	11	1	11	1	11	$\begin{vmatrix} 1 \end{vmatrix}$	
nodo 4	$+\infty$	-1	$+\infty$	-1	31	2	21	5	21	5	21	5	21	5	
nodo 5	$+\infty$	-1	19	3	18	2	18	2	18	2	18	2	18	2	
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	40	4	40	4	40	4	
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	32	5	32	5	32	5	32	5	
$ \begin{array}{ c c } \hline \text{insieme} \\ \hline Q \\ \end{array} $	2,	3	2, 5		4, 5		4, 7		6, 7		6		Ø		

Esercizio 2.

cammino aumentante	δ	x	v
1 - 2 - 4 - 6	5	(5, 0, 5, 0, 0, 5, 0, 0, 0)	5
1 - 2 - 5 - 4 - 6	9	(14, 0, 5, 9, 0, 14, 0, 9, 0)	14

Taglio di capacit minima:
$$N_s = \{1, 2, 3, 5\}$$
 $N_t = \{4, 6\}$

	iter 1		iter 2		iter	: 3	iter 4		iter 5		iter 6	
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato	1		2		5		3		4		6	
nodo 2	7	1	7	1	7	1	7	1	7	1	7	1
nodo 3	15	1	15	1	15	1	15	1	15	1	15	1
nodo 4	$+\infty$	-1	26	2	16	5	16	5	16	5	16	5
nodo 5	$+\infty$	-1	11	2	11	2	11	2	11	2	11	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	25	4	25	4
$ \begin{array}{ c c } \hline \text{insieme} \\ \hline Q \\ \end{array} $	2, 3		2, 3 3, 4, 5		3, 4		4		6		Ø	

Esercizio 3.

cammino aumentante	δ	x	v
1 - 2 - 4 - 6	5	(5, 0, 5, 0, 0, 5, 0, 0, 0)	5
1 - 2 - 5 - 4 - 6	9	(14, 0, 5, 9, 0, 14, 0, 9, 0)	14

Taglio di capacitá minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6\}$

	iter 1		iter 2		iter 3		iter 4		iter 5		iter 6	
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato	1		2		5		3	3		1	6	
nodo 2	7	1	7	1	7	1	7	1	7	1	7	1
nodo 3	15	1	15	1	15	1	15	1	15	1	15	1
nodo 4	$+\infty$	-1	26	2	16	5	16	5	16	5	16	5
nodo 5	$+\infty$	-1	11	2	11	2	11	2	11	2	11	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	25	4	25	4
$\begin{array}{c} \text{insieme} \\ Q \end{array}$	2, 3		3, 4, 5		3, 4		4		6		Ø	