Exercises 4

Exercise 1 (Weakest Prediction). Recall the definition of weakest precondition:

$$wp(r,Q) = \{s \mid \forall s'. \ (s,s') \in r \to s' \in Q\}$$

- 1. Prove or disprove the following properties:
 - $\operatorname{wp}(r_1 \cup r_2, Q) = \operatorname{wp}(r_1, Q) \cup \operatorname{wp}(r_2, Q)$
 - $\operatorname{wp}(r_1 \cup r_2, Q) = \operatorname{wp}(r_1, Q) \cap \operatorname{wp}(r_2, Q)$
 - $\operatorname{wp}(r, Q_1 \cap Q_2) = \operatorname{wp}(r, Q_1) \cap \operatorname{wp}(r, Q_2)$
 - $wp(r, Q_1 \cup Q_2) = wp(r, Q_1) \cup wp(r, Q_2)$

For those that are wrong, do any of them hold if r is restricted to being functional, i.e. if r satisfies

$$\forall x, y_1, y_2. \ ((x, y_1) \in r \land (x, y_2) \in r) \rightarrow (y_1 = y_2)$$

2. Let $r \subseteq S \times S$ and $Q \subseteq S$. Give an expression defining weakest precondition $\mathsf{wp}(r,Q)$ using operations of inverse of a relation, ($_^{-1}$), set difference (\), and image of a relation under a set, ($_[_]$). Prove that your expression is correct by expanding the definitions of wp as well as of relational and set operations.

Exercise 2 (Programing With Integers). Consider the following program:

```
1
      case class Container(var x: INT, var y: INT):
2
        \mathbf{def} \text{ fun: Unit} = \{
3
          require(x > 0 && y > 0)
          if x > y then
 4
5
            x = x+y
6
            y = x-y
            x = x-y
 7
8
          else
9
            y = y-x
10
        }.ensuring(2*old(this).x + old(this).y > 2*x + y &&
11
                    x >= 0 \&\& y >= 0
12
      end Container
```

- 1. Compute R(fun) formally, by expressing all intermediate formulas corresponding to subprograms.
- 2. Write the formula expressing the correctness of the ensuring clause. Is the formula valid when INT denotes mathematical integers with their usual operations (**type** INT = BigInt in Scala)?
- 3. Is the the verification condition formula valid for machine integers,

$$Z_{2^{32}} = \{-2^{31}, \dots, -1, 0, 1 \dots, 2^{31} - 1\}$$

and where operations are interpreted as the usual machine arithmetic (type INT = Int in Scala)?

Exercise 3 (Hoare Logic Proof). Give a complete Hoare logic proof for the following program:

```
{n >= 0 && d > 0}
  q = 0
  r = n
  while ( r >= d ) {
    q = q + 1
    r = r - d
  }
{n == q * d + r && 0 <= r < d}</pre>
```

The proof should include step-by-step annotation for each line of the program, as in the example proof in the lecture.

Exercise 4 (Iterating a Relation). Let M = (S, I, r, A) be a transition system and $\bar{r} = \{(s, s') \mid (s, a, s') \in r\}$, as usual. Let $\Delta = \{(x, x) \mid x \in S\}$.

Let \bar{r}^k denote the usual composition of relation \bar{r} with itself k times.

Define the sequence of relations r_n , for all non-negative integers n, as follows:

- $r_0 = \Delta \cup \bar{r}$
- $\bullet \ r_{n+1} = r_n \circ r_n$
- 1. Prove that $r_n \subseteq r_{n+1}$ for every n.
- 2. Prove that for every n and every k where $0 \le k \le 2^n$ we have $\bar{r}^k \subseteq r_n$.
- 3. Suppose that S is finite. Find a bound B as a function of |S| such that

$$\mathsf{Reach}(M) \subseteq r_B[I]$$

Aim to find as small bound as possible.

Exercise 5 (Approximating Relations). Consider a guarded command language whose meanings are binary relations on the set states U.

Let $E(a_1, \ldots, a_n)$ denote an expression built from some atomic relations a_1, \ldots, a_n , as well as diagonal relations

$$\Delta_P = \{(x, x) \mid x \in P\}$$

for various sets $P \subseteq U$. The expression E is built from these relations using union (to model non-deterministic choice), relation composition (to represent sequential composition) and transitive closure (to represent loops).

Let us call a relation $s \subseteq U \times U$ an *effect* if it is reflexive (R) and transitive (T).

1. Prove that if s is an effect and $a_i \subseteq s$ for all $1 \le i \le n$, then

$$E(a_1,\ldots,a_n)\subseteq s$$

2. Let $U = \mathbb{Z}^2$ denote pairs of integers, denoted by integer variables x, y. Let s be a specification relation given by the formula:

$$s = \{((x, y), (x', y')) \mid y \ge 0 \to (x' \le x \land y' \ge 0)\}$$

Show that s is an effect.