Respiratory Illness Prediction

Zhirou Zhou

Dec 11, 2019

Overview

- Preprocessing
 - Variable Transformation
 - Missing Values
 - Feature Selection
- 2 Validation
- Classification Tree
- Random Forest

Variable Transformation

- Numeric: normalization
- Sequential questions

Any furry animals	How many pets	Pets
No	NA	0
Yes	3	3

Virus and bacteria testing: 'tlda'

Alias	visit_id	Adeno	B.pert
C5E05	2	FALSE	FALSE
C5E05	4	TRUE	FALSE

Vaccination record: 'vaccines'

Alias	pCGA	DTaP (2 months)	DTaP (4 months)
C01D8	44	0	0
C01D8	52	1	0
C01D8	61	1	1

Missing Values

- One row per subject
 - Mean
 - Most frequent category
- Multiple records per subject
 - Last observation carry forward/backward
 - Vaccines: most frequent category grouping by pCGA (whether most of other babies with same pCGA received that dose of vaccine)

Feature Selection

Correlation

	Weight	НС	Length	Age	Temp	ВМІ
Weight	1	0.938	0.947	0.910	0.040	-0.025
HC		1	0.944	0.920	0.057	-0.036
Length			1	0.927	0.048	-0.068
Age				1	0.041	-0.035
Temp					1	-0.013
ВМІ						1

Feature Selection

Collapse infrequent classes

#Pets	#Obs	#Pets	#Obs
0	2020	0	2020
1	155	1	155
2	97	2	97
3	43	3	43
4	11	4	11
5	2	5	13
6	2		
8	2		
10	6		
28	1		

Validation

- 10-fold cross validation
- Blocked by Alias
- Over-sampling to balance the target variable

Tuning Parameter

- Grow a large tree T_0 by stopping the splitting process when some minimum node size is reached
- Prune T₀ using cost-complexity pruning
 - Define a subtree $T \subset T_0$
 - t is the number of terminal nodes in T

$$N_m = \#\{x_i \in R_m\}$$
 , \hat{c}_m , $Q_m(T)$ (Node Impurity),

• Define the cost complexity criterion

$$C_{\alpha}(T) = \sum_{m=1}^{t} N_{m} Q_{m}(T) + \alpha t$$

ullet For each lpha, there is a unique smallest subtree T_lpha that minimizes $C_lpha(T)$

Results: is_illness

minimum node size = 50, α = 0.03

Results: threshold

threshold = 0.5

Results

	is_illness		Accuracy	0.6405
			PPV	0.6293
Prediction	FALSE	TRUE	NPV	0.6509
FALSE	1458	782	F1	0.6277
TRUE	771	1309	AUC	0.7034

Variation

Random Forest

For b = 1 to B:

- ullet Draw a bootstrap sample $oldsymbol{Z}$ of size N from the training data
- Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached
 - Select m variables at random from the p variables
 - Pick the best variable/split-point among the m
 - Split the node into two child nodes
- Output the ensemble of trees $\{T_b\}_1^B$
- Classification prediction: $\hat{C}_b(x)$ = the prediction of the bth random-forest tree, then

$$\hat{C}_{rf}^{B}(x) = majority \ vote \{\hat{C}_{b}(x)\}_{1}^{B}$$

Results

threshold = 0.375

Zhirou Zhou Pec 11, 2019 14/16

Results

	is_illness	
Prediction	FALSE	TRUE
FALSE	1609	828
TRUE	620	1280

	Tree	Forest
Accuracy	0.6405	0.6661
PPV	0.6293	0.6737
NPV	0.6509	0.6602
F1	0.6277	0.6387
AUC	0.7034	0.7352

Q&A