Supratim Biswas Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Vector:

- 65. Let P(-2, -1, 1) and Q $\left(\frac{36}{11}, \frac{43}{17}, \frac{111}{17}\right)$ be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are α , -1, β where both α and β are integers orf minimum absolute values, then $\alpha^2 + \beta^2$ is equal to : [JEE (Main)-2022]
- 50. Let the vectors \vec{a} , \vec{b} , \vec{c} be such that $|\vec{a}| = 2$, $|\vec{b}| = 4$ and $|\vec{c}| = 4$. If the projection of \vec{b} on \vec{a} is equal to the projection of \vec{c} on \vec{a} and \vec{b} is perpendicular to \vec{c} , then the value of $|\vec{a} + \vec{b} \vec{c}|$ is _____. [JEE (Main)-2020]
- 15. If the line $\vec{r} = 2\hat{i} \hat{j} + 3\hat{k} + \lambda(\hat{i} + \hat{j} + \sqrt{2}\hat{k})$ makes angles α , β , γ with xy, yz and zx planes respectively then which of the following are not possible?
 - (A) $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2 \& \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$
 - (B) $\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma = 7 \& \cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma = 5/3$
 - (C) $\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 1 & \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 2$
 - (D) $\sec^2\alpha + \sec^2\beta + \sec^2\gamma = 10 & \csc^2\alpha + \csc^2\beta + \csc^2\gamma = 14/3$
- 55. A vector a has components 3p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to new system, a has components p + 1 and √10, then a value of p is equal to
 - (A) 1 (B) $-\frac{5}{4}$ (C) $\frac{4}{5}$ (D) -1

23. Three lines

$$L_1: \ \overrightarrow{r} = \lambda \widehat{i}, \ \lambda \in \square$$

$$L_2: \vec{r} = \hat{k} + \mu \hat{j}, \mu \in \square \quad and \quad$$

$$L_3: \vec{r} = \hat{i} + \hat{j} + v\hat{k}, v \in \square$$

are given. For which point(s) Q and L2 can we find a point P on L1 and a point R on L3 so that

P, Q and R are collinear?

[JEE (Advanced)-2019]

(1)
$$\hat{k} + \frac{1}{2}\hat{j}$$

(2)
$$\hat{\mathbf{k}} + \hat{\mathbf{j}}$$

(4)
$$\hat{k} - \frac{1}{2}\hat{j}$$