Transiently Consistent SDN Updates: Being Greedy is Hard

Saeed Akhoondian Amiri¹ Arne Ludwig¹
Jan Marcinkowski² Stefan Schmid³

¹TU Berlin

²University of Wroclaw

³Aalborg University

Table of contents

- 1 Introduction
- 2 Greedy is Hard
- 3 Polynomial Time Algorithm for Special Cases

Plan

- 1 Introduction
- 2 Greedy is Hard
- 3 Polynomial Time Algorithm for Special Cases

Software Defined Networks

- Centralised Controller,
- 2 Asynchronous Updates,
- Consistent Updates

Packet Routing

- 1 Initial routing from source to destination
- New routing policy by controller
- 3 Consistent updates in few rounds.

Relaxed Loop Freedom

Consistency:

- Always there is a path from the source to the destination.
- 2 There cannot be any loop at any moment in a path from source to destination.

Relaxed Loop Freedom

Relaxed Loop Freedom

The source and the destination are not connected via an active path(solid edges).

Strong Loop Freedom

- Always there is a path from the source to the destination.
- There cannot be any loop at any moment w.r.t. active edges.

Example: Outages

Even technically sophisticated companies are struggling to build networks that provide reliable performance.

We discovered a misconfiguration on this pair of switches that caused what's called a "bridge loop" in the network.

A network change was [...] executed incorrectly [...] more "stuck" volumes and added more requests to the remirroring storm

Service outage was due to a series of internal network events that corrupted router data tables

Experienced a network connectivity issue [...] interrupted the airline's flight departures, airport processing and reservations systems

Relaxed (Strong) Loop Freedom

Goal: Minimise the number of rounds.

- Optimal solution?
- 2 Greedy algorithm: In the round *i*, find the maximum number of vertices that we can update.

Greedy Algorithm (Ludwing, Marcinkowski, Schmid PODC15):

- I It is at least as hard as Feedback Arc Set (FAS) problem in the update graph.
- **2** FAS is hard in general graphs but easy for some graph classes.
- 3 Network update graph is very simple: Out degrees at most two They must constitute a legal path Is greedy algorithm in **P** ?!

Plan

- 1 Introduction
- 2 Greedy is Hard
- 3 Polynomial Time Algorithm for Special Cases

Greedy is Hard

Theorem 1

Finding the greedy solution for each round is NP-hard even in update graph.

Reduction from Hitting Set Problem:

Input: A set $S = \{S_1, ..., S_m\}$ of subsets of $U = \{a_1, ..., a_n\}$. **Output:** Set $S' \subseteq U$ of minimum size such that $S' \cap S_i \neq \emptyset$, For $i \in \{1, ..., m\}$

- **1** Directed rooted tree with 2n + 1 branches:
 - 1 One S-D branch
 - 2 For each element $a_i \in U$ two branches: $a_i^{in} D$ (input branch) and $a_i^{out} D$ (output branch)

- **1** Directed rooted tree with 2n + 1 branches
- Source Connectors: Thick dashed blue edges

- 1 Directed rooted tree with 2n + 1 branches
- 2 Source Connectors: Thick dashed blue edges
- 3 Element Selectors: From each a_i^{in} an edge to a_i^{out} , thin blue edges.

- 1 Directed rooted tree with 2n + 1 branches
- Source Connectors: Thick dashed blue edges
- 3 Element Selectors: From each a_i^{in} an edge to a_i^{out} , thin blue edges
- 4 Set Selectors: n+1 edges from element a_i^{out} to a_j^{in} if a_i, a_j appear after each other in sequence S_t , Thick red edges.

$$\mathcal{S} = \{S_1, S_2, S_3, S_4\} = \{\{1, 2, 3\}, \{1, 4\}, \{2, 5\}, \{3, 2, 5\}\}.$$

- **1** Each set S_i corresponds to a cycle,
- $\mathbf{2}$ Deleting n element selector edge destroys all cycles,
- Minimum number of not updatable edges = Minimum hitting set.

$$\mathcal{S} = \{S_1, S_2, S_3, S_4\} = \{\{1, 2, 3\}, \{1, 4\}, \{2, 5\}, \{3, 2, 5\}\}.$$

- **1** Each set S_i corresponds to a cycle,
- Deleting n element selector edge destroys all cycles,
- 3 Minimum number of not updatable edges = Minimum hitting set.

$$\mathcal{S} = \{S_1, S_2, S_3, S_4\} = \{\{1, 2, 3\}, \{1, 4\}, \{2, 5\}, \{3, 2, 5\}\}.$$

- \blacksquare Each set S_i corresponds to a cycle,
- Deleting n element selector edge destroys all cycles,
- Minimum number of not updatable edges = Minimum hitting set.

Greedy is Hard: Special Update Graph?

Is it possible to reach that special update graph from some initial architecture?

Long Story Short: Yes it is possible, in one greedy step we are there

Greedy is Hard: Forward Edges

Plan

- 1 Introduction
- 2 Greedy is Hard
- 3 Polynomial Time Algorithm for Special Cases

Two Branches

Update graph:

Active Edges: Rooted directed tree with two branches

Update edges: Rest of edges (Dashed Edges)

Two Branches

Cycle:

- 1 If two update edges (e_1, e_2) cross each other, and
- 2 Head of e_i is below tail of $e_{i'}(i, i' \in \{0, 1\})$.

Two Branches: Strong LF (SLF)

- Update Edge: Assign a Vertex,
- Connect two vertices if they correspond to a cycle.

Two Branches: SLF

Minimum Vertex Cover \Leftrightarrow Minimum Non Updatable Edges Graph is Bipartite \Rightarrow Polynomial Time Solvable.

Three Branches

Main Edges: They form three branches

Update edges: Connection between three branches

Construct a similar model as before?

Vertex cover in cubic graphs is NP-Hard (Brooks' Theorem)

More General Graphs?

- What if the graph has bounded directed tree-width Claim: It is NP-hard.
- **2** Is greedy hard even in update graph with 3 branches?
- What if Feedback Arc Set is small?

Thank you