

Manual de Prácticas Dispositivos Electrónicos

Práctica 6

Transistor bipolar de juntura (TBJ)

Circuitos de polarización

Nombre complete	del alumno Firma
Suxo Parez Lugs Axe	
0	
N° de brigada: 4 Fecha de	laboración: 18/05/2020 Grupo: 3

Suxo Pérez Luis Axel. Trabajo previo Analizar, disegar, simular y armar los tres circoptos de polarización de la figura 1 usando Vac=15v, IB=0BmA Vac=7.5v con beta=90 Vac Re Re

De la Figura 1 a) obtenemos Re y Rc

VCC-RBIB-VBE=O VCC-RCIC-VCE=O

RB = VOC - VBE RO = VCO - VCE
IB IC

R8= 15v-0.7v Rc= 15v-7.5v 1.8mA

R8=715KM/ Ro=4.16KM/

Ic= IBB= 0.02mA.90=1.8mA}

Suxo Pérez Luss Axel.

De la rigura 1 b) obtenenos Re	, Rogars ogodoyT
Noo-RoIo-Noel-ReJo-Olumez Ama0=aI v21=20/ donazo + supera al Re=.IRc OP=ots	de polarezación de
Vcc-Vce-Ic(Rc+.1Ro)=0	
Vcc-Vce-1.1RcIo40	Re= 378,787 n
Re = Veo - Vee 9	
Rc= 15v-7.5v - 3787.87 1.10.1.8mA	(0)
Vcc - RBIB - VBE - REIE = 0	Ie=(B+1)IB
R8 = Vcc - VBE - ReIe	IE=(91)0.02mA
RB= 15v-0.7v-378.7871.01.82mA	Ic=1.82mA/ V
RB= 680.5K-2/	DI DI
Re= 15, - 7.5, 1.8,A	RB = 15v-0.7v
Ro-476KA	RB= 7-1.5 KAL
-40+TISUBTE	Am80.0 = 88I = 0.

De la Figura 1 c) obtenenos Ro, RE, R1 y R2 Vcc-RoIc-Vce-ReIc=0 Ic=I6 Vcc-RoId-Vce-REIG=0 Ic= IBB= 0.02mA-90 Voc-Voe-Ic (Rc+. 1Rc)=0 Ic= 1.8mA RE= .1Ro Rc=Vcc-Vce 1.1Tc R6= .1 . 3787.87 Rc=15v-7.5v = 3787.87-12 RE= 378.78 IL 1.1.1.8mA VBB = IB RB + VBE + ICRE RB= 1 BRE R8=.1(90)(378,781) RB= 3.4KJL VBB=0.02mA-3.4K2+0.7+1.8mA-378.7852 VBB=1.449V Ra=R8-Vcc Ry = R8.VCC Ra= 3.4Kn. 15x. VCC-VBB 1.449 Ry = 3.4K.2. 15v 15,-1.449 R2=35196.68 12 / R1=3763.55-1-1

Simulación de la figura 1 a)

Simulación de la figura 1 b)

Simulación de la figura 1 c)

La salida es el canal C el morado y la entrada el canal A el amarillo, y como podemos ver, nuestro amplificador está funcionando.

Estabilidad del punto de operación Q(IC,VCE) para la figura 1 a)

Estabilidad del punto de operación Q(IC,VCE) para la figura 1 b)

Estabilidad del punto de operación Q(IC,VCE) para la figura 1 c)

