Standard Valid Argument Forms

Modus Ponens	$A \longrightarrow B$
	4

A

 $\therefore R$

Elimination $a. A \lor B$

A ∨ B ~ B

 $b. A \lor B$

 $\therefore A$

~*A* ∴ *B*

Modus Tollens

$$A \longrightarrow B$$

 $\sim R$

∴ ~*A*

Transitivity

$$A \longrightarrow B$$

 $B \rightarrow C$

 $A \rightarrow C$

Generalization

a. *A*

b. *B*

 $\therefore A \vee B$

 $A \lor B$

Specialization

 $a. A \wedge B$

 $b. A \wedge B$

∴ *B*

Proof by division into cases

 $A \vee B$

 $A \longrightarrow C$

 $B \longrightarrow C$

 $\therefore C$

Conjunction

 $\therefore A$

 \boldsymbol{A}

R

 $\therefore A \land B$

Contradiction

 $\sim A \longrightarrow \mathbf{c}$

 $\therefore A$

Universal Modus Ponens

 $\forall x, P(x) \rightarrow Q(x)$

P(a)

 $\therefore Q(a)$

Universal Instantiation

 $\forall x \in D, P(x)$

 $a \in D$

 $\therefore P(a)$

<u>Universal Modus Tollens</u>

 $\forall x, P(x) \rightarrow Q(x)$

 $\sim Q(a)$

 $\therefore \sim P(a)$

<u>Universal Transitivity</u>

 $\forall x, P(x) \rightarrow Q(x)$

 $\forall x, Q(x) \rightarrow R(x)$

 $\therefore \forall x, P(x) \rightarrow R(x)$

U. Converse Error(not valid)

 $\forall x, P(x) \rightarrow Q(x)$

Q(a)

 $\therefore P(a)$

U. Inverse Error (not valid)

 $\forall x, P(x) \rightarrow Q(x)$

 $\sim P(a)$

 $\therefore \sim Q(a)$

Chapter 4: Definitions and Theorems

Definitions: Even and odd integers

n is an even integer $\Leftrightarrow n = 2k$ for some integer k. n is an odd integer $\Leftrightarrow n = 2k + 1$ for some integer k.

Definitions: Rational numbers (\mathbb{Q}) & Irrational numbers (\mathcal{S})

r is rational $\Leftrightarrow r = \frac{a}{b}$ for some integers a & b where $b \neq 0$. *s* is irrational \Leftrightarrow *s* is a real # and *s* is not rational.

Definitions: Prime and composite numbers

Suppose $n \in \mathbb{Z} \ \& \ n > 1$. Then

 $n ext{ is prime} \iff \forall r, s \in \mathbb{Z}^+, \qquad \text{if } n = rs \quad \text{then either } r = 1 \quad \text{or } s = 1.$ $n ext{ is composite} \iff \exists r, s \in \mathbb{Z}^+ \text{ such that } \quad n = rs \quad \& \quad \text{neither } r = 1 \quad \text{nor } s = 1.$

Definition: "divides", "is a divisor of", "is a factor of", "is divisible by", & "is a multiple of" If n and d are integers and $d \neq 0$, then

d divides n, denoted by $d \mid n \Leftrightarrow n = dk$ for some integer k

We can also express "d divides $n'' \equiv "d \mid n"$ as: "d is a divisor of n" or "n is divisible by d" or "d is a factor of n" or "n is a multiple of d"

 $d \nmid n \equiv \sim (d \mid n) \Leftrightarrow \frac{n}{d} \notin \mathbb{Z}$

Theorem (**Quotient Remainder Theorem** (**QRT**)): Given any integer n and a positive integer d, there exists unique integers q and r such that n = dq + r and $0 \le r < d$.

The integer q is denoted by n div d i.e. (n div d) = q &

the integer r is denoted by $n \mod d$ i.e. $(n \mod d) = r$

Corollary of QRT: For all integers n and d > 0, if $(n \mod d) \neq 0$, then $d \nmid n$.

Theorem: The sums, differences, & products of integers are integers i.e. \mathbb{Z} is closed under $+, -, \times$.

Zero Product Property: The product of any two nonzero real numbers is nonzero.

Theorem 4.3.1: The sum of any two rational #s is a rational #.

Theorem 4.7.1: The sum of any rational # and any irrational # is an irrational #.

Theorem 4.7.2: Every integer is either even or odd but not both.

Theorem 4.7.3: $\forall n \in \mathbb{Z}$, if n^2 is even then n is even.

Theorem 4.8.1: $\sqrt{2}$ is irrational.

Theorem 4.4.2: For all integers n > 1, the **standard prime factorization** of n exists and is unique.

Theorem 4.4.4: The set of all prime numbers is infinite.

4.1-4.2: Method of Direct Proof

In order to prove a universal non-conditional statement:

"
$$\forall x \in D, Q(x)$$
"

- 1. Let x be any element of D.
- 2. Show that Q(x) is true.

In order to prove a universal conditional statement:

"
$$\forall x \in D, P(x) \longrightarrow Q(x)$$
"

- 1. Let x be any element of D such that P(x) is true.
- 2. Show that Q(x) is true.

Math 263: Discrete Mathematics

4.6: (Indirect) Method of Contradiction

In order to prove any statement "q"

- 1. Suppose that the negation " $\sim q$ " is true.
- 2. Prove that this assumption leads to a "contradiction".
- 3. Conclude that our assumption is false and "q" is true.

In order to prove $q \equiv " \forall x \in D$, Q(x)"

- 1. Suppose that the negation " $\exists x \in D$ such that $\sim Q(x)$ " is true.
- 2. Prove that this assumption leads to a "contradiction".
- 3. Conclude that our assumption is false and "q" is true.

In order to prove $q \equiv " \forall x \in D, P(x) \rightarrow Q(x)"$

- 1. Suppose that the negation
 - " $\exists x \in D$ such that $P(x) \land \sim Q(x)$ " is true.
- 2. Prove that this assumption leads to a "contradiction".
- 3. Conclude that our assumption is false and "q" is true.

Math 263: Discrete Mathematics

4.6: (Indirect) Method of Contraposition

In order to prove a universal conditional statement:

"
$$\forall x \in D, P(x) \to Q(x)$$
"
 \equiv " $\forall x \in D, \sim Q(x) \to \sim P(x)$ " (Contrapositive)

- 1. Let *x* be any element of *D* such that $\sim Q(x)$ is true.
- 2. Prove " $\sim P(x)$ is true".
- 3. Conclude that the contrapositive and thus the given statement is true.

Note: Proving a given universal **conditional** statement by the Method of Contraposition is the same as proving its **contrapositive** using the Method of Direct Proof.