Mercer's Thm. : Kernel PCA

Rund

Principle Component Analysis identifies directions of maximal variance in data

 $X_1, X_2, \dots, X_m \in \mathbb{R}^n$

by disposelizing the (sample) coverimes

 $C = \frac{1}{m-1} \sum_{j=1}^{\infty} (x_j - u)(x_j - u)^T$

where $u = \frac{1}{n} \frac{\mathcal{E}}{\mathcal{E}} X_j$ is the sumple mean.

This makes PCA a useful dool for many foundational tasks in data-scrence:

=> Model identification i reduction

=> Oe-nothing and filtering

=> Chestering i Classification

=> Preffort processing for Late

Many extensions and adaptations of

PCA to various application domains.

PCA! Nonlinear Effects

A fundamental builtatton of PCA is that it only captures treads in aluter. It dragon lizes the covariance matrix, but is bland to higher-order stabilities trends in detar.

To incorporade higher-order correlations, one might consider "adding" new variables

For example,
$$X_1 = \begin{pmatrix} X_1^{(1)} \\ X_1^{(1)} \end{pmatrix}$$
, $X_m = \begin{pmatrix} X_m^{(1)} \\ X_m^{(2)} \end{pmatrix}$

all =>
$$X_{k}^{(3)} = (X_{k}^{(1)})^{2}$$
, $X_{k}^{(4)} = X_{k}^{(1)} X_{k}^{(2)}$, $X_{k}^{(5)} = (X_{k}^{(2)})^{2}$

- (+) The new SXS covariance matrix now contains higher-order studistical moments of the duter.
- (-) However, the size of the coverience matrix grows. For high-dimensional duta, PCA wangemented duta is intractable.

We can write down this iden in a slightly more general setting and then work out how to do computation efficiently,

het $Q: \mathbb{R}^n \to \mathbb{R}^d$ be a dictronury of features that "lift" the data into a higher-dimensional space (d>>n).

 $Q(x) = [Q(x), Q_2(x), Q_3(x)]^T$

In the new space, the men and conversance of the mapped dute is

 $u = \underbrace{\hat{\Sigma}}_{i \geq 1} \mathcal{Q}(x_i), C = \underbrace{\frac{1}{m}}_{i \geq 1} \underbrace{\hat{\Sigma}}_{(\mathcal{Q}(x_i) - \mathcal{U})} \mathcal{Q}(x_i) - \mathcal{U}^T$

We can run PCA in the very, higher dimensional feature space,

C=ULU⁷ => 4(x;)= U⁷(O(x;)

Proposed of proposed components

Covertence metrics of respect dute

for features in feature space

Kernel PCA

To get around the "curse" of domension dir, Kernel PCA computes the heading.
Principle Components of the dute in feature space without ever manipulating the d-dimensioned features directly!

In particular, the doct covarience matrix C is never formed explicitly.

$$C = \frac{1}{n} \sum_{s=1}^{\infty} (Q(x_s) - u)(Q(x_s) - u)^T$$

= 1 BBT rank on medital

To compute noncers egenpuis of C?

DED Cuzhu (=> min BiBvzhv u= fin Bv We only need the man metrix BiB. To comparte the principle components, we do not even need a explicitly!

$$u^{7}(Q(x_{i})-u) = \frac{1}{\sqrt{m}} v^{7}B^{7}(Q(x_{i})-u)$$

$$= \frac{1}{\sqrt{m}} v^{7}(B^{7}B)_{max}$$

So we can recover principle component of duta purchy in terms of B⁷B.

The Kernel Matrix

To avoid norking in d-domenssoned feature space, we can frame PCA entirely in terms of the Gram mutars

$$(B^TB) = Q^T(x_i) Q(X_j)$$

$$= \underbrace{\sum_{k=1}^{\infty} Q(x_i) Q_k(x_i)}_{x_{k-1}}$$

We can associate this with a Kernel

$$\mathcal{U}(x,y) = \sum_{k=1}^{d} \mathcal{Q}_{k}(x) \mathcal{Q}_{k}(y)$$

So to do PCA in high-dom feature space we only need do be able to compute entires of man Kernel matrix and work w/mdimenssonal vectors.

Mercer's Theorem

Mercer's theorem provides an implicit cheracterization of the dictionery/feature map by a continuous, self-adjoint, semi-definite metric. Spectral decomp.

K(x,y) = E doubly)

converges pointurse, absolutely i uniformly

So feature may for Mercer Kernel 13

Onla) = \Julu(x) = 1,2,3, ...