

PHYSICS DATASET 1: TOP TAGGING

University of Washington, Seattle

Spring 2022

OUTLINE

Dataset Background

About the Dataset

Problem Description

Dataset Background

- Standard Model
- Proton-Proton Collision
- Large Hadron Collider (LHC)
- ATLAS Detector
- Physics Event

Standard Model of Particle Physics

- Describes three of the four fundamental forces (electromagnetic, weak, strong, gravity)
- One of the most successful theories in physics
 - Predicted (before discovery) the existence of top quarks, charm quarks, tau neutrinos, Higgs bosons, etc. as well as many of their properties
- Many unexplained phenomena
 - Gravity*
 - Dark matter/energy
 - Matter-antimatter asymmetry
 - Neutrino masses

Standard Model of Elementary Particles

^{*}explained by General Relativity, but needs to be unified into a single theory

Proton-Proton Collision

- The standard model predicts that collisions of protons at sufficiently high energy can lead to the creation of other particles. (see right)
- By analyzing these particles ('final state' particles), we can learn about the standard model and potential new physics (e.g., dark matter).

Physics Event

- Goal: record properties of the 'final state' particles produced in a collision for analysis:
 - Type (Proton, Electron, Photon, etc.)
 - Energy
 - Momenta
 - Path through the detector (incl. origin: 'vertex')

Particle Jets

- Some particles such as quarks **cannot exist on their own** ("color confinement"). Instead, they **hadronize** into a **collection of particles** known as a **jet**.
- One task in event reconstruction is to determine the **type of particle** that created a jet ("tagging"), given the particles that make up the jet.

About the Dataset

- ~1M jets
- Per jet, variable number of constituents with **5 features** (see <u>Glossary · GitBook (atlas.cern)</u> for details):
 - p_T transverse momentum, fraction of jet total
 - η (eta) & ϕ (phi) angular coordinates, relative to jet center
 - *E* energy from constituent
 - $\Delta R \equiv \sqrt{\eta^2 + \phi^2}$
- Per jet, single classification:
 - Gluon
 - Light quark
 - W boson
 - Z boson
 - Top quark

Problem Description

 $n \times 5$ array of jet constituents, where n can vary

Your NN Model

Input Output