

N-Channel Enhancement Mode Field Effect Transistor

Product Summary

V_{DS} 20V
 I_D 13A
 R_{DS(ON)}(at V_{GS}=4.5V) <9mohm

R_{DS(ON)}(at V_{GS}=2.5V)
 R_{DS(ON)}(at V_{GS}=1.8V)
 12mohm
 18.5mohm

• 100% ∇V_{DS} Tested

General Description

- Trench Power LV MOSFET technology
- High density cell design for Low RDS(ON)
- High Speed switching

Applications

- Battery protection
- Load switch
- Power management

■ Absolute Maximum Ratings (T_A=25 °C unless otherwise noted)

	Parameter	Symbol	Limit	Unit
Drain-source Voltage		$V_{ extsf{DS}}$	20	V
Gate-source Voltage		V_{GS}	±10	٧
Drain Current	T _A =25℃	I _D	13	- А
Drain Current	T _A =70℃		8	
Pulsed Drain Current ^A		I _{DM}	32	А
Total Payer Dissination	T _A =25℃	P _D	2.2	W
Total Power Dissipation	T _A =70℃		1.4	W
Thermal Resistance Junction-	to-Ambient ^B	R _{eJA}	57	°C/ W
Junction and Storage Temper	ature Range	T _J ,T _{STG} -55∼+150		$^{\circ}$

■ Ordering Information (Example)

PREFERED P/N	PACKING CODE	Marking	MINIMUM PACKAGE(pcs)	INNER BOX QUANTITY(pcs)	OUTER CARTON QUANTITY(pcs)	DELIVERY MODE
YJQ10N02A	F1	Q10N02	3000	30000	120000	7" reel

■ Electrical Characteristics (T_J=25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Static Parameter						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	20			٧
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V			1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} = \pm 10 V , V_{DS} =0 V			±100	nA
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D =250 μ A	0.45	0.62	1.0	V
		V _{GS} =4.5V, I _D =13A		7.8	9	
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =6.5A		9.5	12	mΩ
		V _{GS} =1.8V, I _D =4A		12	18.5	
Diode Forward Voltage	V _{SD}	I _S =13A,V _{GS} =0V			1.2	٧
Dynamic Parameters						
Input Capacitance	C _{iss}			888		
Output Capacitance	Coss	$V_{DS}\text{=}10V, V_{GS}\text{=}0V, f\text{=}1MHZ$		133		pF
Reverse Transfer Capacitance	C _{rss}			117		
Switching Parameters			•		,	
Total Gate Charge	Qg			11.05		
Gate-Source Charge	Q _{gs}	V_{GS} =4.5 V , V_{DS} =10 V , I_{D} =6.8 A		1.73		nC
Gate-Drain Charge	Q_{gd}			3.1		
Turn-on Delay Time	t _{D(on)}			7		
Turn-on Rise Time	t _r	V_{GS} =4.5V, V_{DS} =10V, I_{D} =6.8A		46		
Turn-off Delay Time	t _{D(off)}	$R_{GEN}=3\Omega$		30		ns
Turn-off fall Time	t _f			52		

A. Pulse Test: Pulse Width \leqslant 300us, Duty cycle \leqslant 2%.

B. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design, while $R_{\theta JA}$ is determined by the board design. The maximum rating presented here is based on mounting on a 1 in 2 pad of 2oz copper.

■ Typical Performance Characteristics

Figure 1. Output Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4: On-Resistance vs. Junction Temperature

Figure 6. Gate Charge

Figure 7. Safe Operation Area

Figure8. Maximum Continuous Drain Current vs Ambient Temperature

Figure 9. Normalized Maximum Transient Thermal Impedance

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Gate Charge Test Circuit & Waveform

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

■ DFN2020-6L Package information

Top	View
正面	i视图

Во	Bottom	Viev
	背面は	

Side View 侧面视图

Note:

- 1.Controlling dimension:in millimeters,
 2.General tolerance:±0.10mm.
 3.The pad layout is for reference purposes only,

SYMBOL	MILLIMETER				
	MIN	NOM	MAX		
D	1.90	2.00	2.10		
E	1.90	2.00	2.10		
Α	0.70	0.80	0.90		
A1	0.20 BSC				
A2			0.10		
D1	0.20	0.30	0.40		
D2	0.61	0.71	0.81		
E1	0.71	0.81	0.91		
L	0.15	0.25	0.35		
b	0.20	0.30	0.40		
е	0.65 BSC				

Disclaimer

The information presented in this document is for reference only. Yangzhou Yangjie Electronic Technology Co., Ltd. reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Yangjie or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale.

This publication supersedes & replaces all information previously supplied. For additional information, please visit our website http:// www.21yangjie.com, or consult your nearest Yangjie's sales office for further assistance.