Supplementary Material

The Eight Lowest-Energy Vibrational States of Benzonitrile: Analysis of Coriolis and Darling-Dennison Coupling by Millimeter-wave and Infrared Spectroscopy

Maria A. Zdanovskaia,^a Marie-Aline Martin-Drumel,^{b,c} Zbigniew Kisiel,^d Olivier Pirali,^{b,c}

Brian J. Esselman,^a R. Claude Woods,^{a,*} Robert J. McMahon^{a,*}

- ^a Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
- ^b AILES Beamline, Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette cedex, France
- ^c Institut des Sciences Moléculaires d'Orsay, UMR8214 CNRS, Université Paris-Sud, Bât. 210, 91405 Orsay cedex, France
- ^d Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland

* Corresponding authors.

E-mail addresses: rcwoods@wisc.edu (R.C. Woods), robert.mcmahon@wisc.edu

(R.J. McMahon)

Table of Contents	Page
xguinea module of CFOUR and brief explanation of input file setup	3
Table S1. Infrared transitions excluded for six-state least-squares fit	4
CCSD(T) / ANO1 geometry optimization (Benzonitrile_opt_CCSDT-ANO1.out)	Separate file
CCSD(T) / ANO1 VPT2 anharmonic frequency calculation output (anharm.out)	Separate file
CCSD(T) / ANO1 Coriolis zeta output from VPT2 calculation (corioliszeta)	Separate file
CCSD(T) / ANO1 magnetic calculation (benzonitrile_magnetic.out)	Separate file
Input file for xguinea (darling.in)	Separate file
Line, parameter, and results files from SPFIT for updated, single-state least-squares fit of vibrational ground state benzonitrile (<i>benz00</i> .*)	Separate files
Line, parameter, and results files from SPFIT for triad states based only on millimeter-wave data (benz2233triad_2021.*)	Separate files
Line, parameter, and results files from SPFIT for six-state least-squares fit, including millimeter-wave and infrared data (benzo6_EqGa.*)	Separate files
Results file for six-state least-squares fit giving term energies directly (benzo6_EqGa_E-Abs.res)	Separate file
Results file of extrapolation of six-state fit constants to frequencies measured in 8 – 18 GHz frequency region (benzo6_EqGa_Extrap.res)	Separate file
Line, parameter, and results files from SPFIT for $v_{21} = 1$ (benz21.*)	Separate files
Line, parameter, and results files from SPFIT for $v_{15} = 1$ (benz15.*)	Separate files

xguinea module of CFOUR

Used to compute the Darling-Dennison interaction term and anharmonic energies of the $v_{22} = 2$ and $v_{33} = 2$ overtone states.

Having completed the anharmonic VPT2 calculation for benzonitrile, an input file for *xguinea* is saved in the "proc" directory. The program is directed to use the given input file using the command *xguinea* < *darling.in*. The input file used to acquire values relevant to the Darling-Dennison resonance is as follows:

Table S1. Infrared Transitions Excluded from Six-State Least-Squares Fit

Table 51. Infrared Transitions Excluded from Six-State Least-Squares Fit				
Upper rotational level	Upper vibrational state	Lower rotational level	Lower vibrational state	Frequency (cm ⁻¹)
4946,3	$v_{33} = 2$	4845,4	$v_{33} = 1$	186.790845
5046,4	$v_{33} = 2$	4945,5	$v_{33} = 1$	186.888208
4848,0	$v_{33} = 2$	47 _{47,1}	$v_{33} = 1$	187.789794
4948,1	$v_{33} = 2$	4847,2	$v_{33} = 1$	187.886901
5048,2	$v_{33} = 2$	49 _{47,3}	$v_{33} = 1$	187.984463
5148,3	$v_{33} = 2$	5047,4	$v_{33} = 1$	188.082165
5248,4	$v_{33} = 2$	5147,5	$v_{33} = 1$	188.179455
5348,5	$v_{33} = 2$	5247,6	$v_{33} = 1$	188.277194
5448,6	$v_{33} = 2$	5347,7	$v_{33} = 1$	188.374734
5548,7	$v_{33} = 2$	5447,8	$v_{33} = 1$	188.472531
5748,9	$v_{33} = 2$	5647,10	$v_{33} = 1$	188.668517
5848,10	$v_{33} = 2$	5747,11	$v_{33} = 1$	188.766483
5948,11	$v_{33} = 2$	5847,12	$v_{33} = 1$	188.864671
6048,12	$v_{33} = 2$	5947,13	$v_{33} = 1$	188.963241
6148,13	$v_{33} = 2$	6047,14	$v_{33} = 1$	189.061318
6248,14	$v_{33} = 2$	6147,15	$v_{33} = 1$	189.159800
6348,15	$v_{33} = 2$	6247,16	$v_{33} = 1$	189.258451
5350,3	$v_{33} = 2$	5249,4	$v_{33} = 1$	189.377656
6548,17	$v_{33} = 2$	6447,18	$v_{33} = 1$	189.455981
5450,4	$v_{33} = 2$	5349,5	$v_{33} = 1$	189.475225
5550,5	$v_{33} = 2$	5449,6	$v_{33} = 1$	189.572883
5650,6	$v_{33} = 2$	5549,7	$v_{33} = 1$	189.671005
6350,13	$v_{33} = 2$	6249,14	$v_{33} = 1$	190.358457
6450,14	$v_{33} = 2$	6349,15	$v_{33} = 1$	190.457042
6650,16	$v_{33} = 2$	6549,17	$v_{33} = 1$	190.654609
6750,17	$v_{33} = 2$	6649,18	$v_{33} = 1$	190.753730
6850,18	$v_{33} = 2$	6749,19	$v_{33} = 1$	190.852433
6950,19	$v_{33} = 2$	6849,20	$v_{33} = 1$	190.951687
$70_{50,20}$	$v_{33} = 2$	6949,21	$v_{33} = 1$	191.050853
7150,21	$v_{33} = 2$	7049,22	$v_{33} = 1$	191.150107
$72_{50,22}$	$v_{33} = 2$	7149,23	$v_{33} = 1$	191.249626