

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE CÓMPUTO

INGENIERÍA EN SISTEMAS COMPUTACIONALES

MATERIA: TEORÍA DE COMUNICACIONES Y SEÑALES

PROFESOR: GUTIERREZ ALDANA EDUARDO

PRESENTA:
RAMIREZ BENITEZ BRAYAN

GRUPO: 3CM17

"RESPUESTA EN FRECUENCIA DEL FILTRO HIGHPASS 5"

CIUDAD DE MEXICO A 12 DE ABRIL DE 2022

La ecuación en diferencias del filtro digital es:

y[n] - 1.77863y[n-1] + 0.800803y[n-2] = 0.894859x[n] - 1.78972x[n-1] + 0.894859x[n-2]La transformada Z es:

$$Y[z] - 1.77863Y[z]z^{-1} + 0.800803Y[z]z^{-2} = 0.894859X[z] - 1.78972X[z]z^{-1} + 0.894859X[z]z^{-2}$$
$$Y[z](1 - 1.77863z^{-1} + 0.800803z^{-2}) = X[z](0.894859 - 1.78972z^{-1} + 0.894859z^{-2})$$

La función de transferencia es:

$$\frac{Y[z]}{X[z]} = \frac{(0.894859 - 1.78972z^{-1} + 0.894859z^{-2})}{(1 - 1.77863z^{-1} + 0.800803z^{-2})}$$

Los polos y los ceros en el dominio de Z son:

$$\frac{Y[z]}{X[z]} = \frac{(0.894859 - 1.78972z^{-1} + 0.894859z^{-2})}{(1 - 1.77863z^{-1} + 0.800803z^{-2})} * \frac{z^2}{z^2}$$

$$\frac{Y[z]}{X[z]} = \frac{(0.894859z^2 - 1.78972z + 0.894859)}{(z^2 - 1.77863z + 0.800803)}$$

Para los ceros:

$$0.894859z^{2} - 1.78972z + 0.894859 = 0$$

$$z_{1} = 0.998506$$

$$z_{2} = 1.001496$$

Para los polos:

$$z^2 - 1.77863z + 0.800803 = 0$$

 $z_1 = 0.889315 + 0.099600j$
 $z_2 = 0.889315 - 0.099600j$

$$\begin{split} H(z) &= k \frac{\prod_i (1 - c_i z^{-1})}{\prod_i (1 - p_i z^{-1})} = k \frac{(1 - 0.998506 z^{-1})(1 - 1.001496 z^{-1})}{(1 - (0.889315 + 0.099600 j) z^{-1})(1 - (0.889315 - 0.099600 j) z^{-1})} \\ &\Rightarrow H(\Omega) = k \frac{(1 - 0.998506 e^{-j\Omega})(1 - 1.001496 e^{-j\Omega})}{(1 - (0.889315 + 0.099600 j) e^{-j\Omega})(1 - (0.889315 - 0.099600 j) e^{-j\Omega})} \\ &H(\Omega) = k \frac{1 - 2.000002 e^{-j\Omega} + 0.999999 e^{-j2\Omega}}{1 - 1.77863 e^{-j\Omega} + 0.80080 e^{-j2\Omega}} \end{split}$$

La respuesta en frecuencia es a partir del diagrama de polos y ceros es:

No	Fases Ω (rad)	Magnitudes H(Ω) = k $\frac{\prod_{i}(1-c_iz^{-1})}{\prod_{i}(1-p_iz^{-1})}$
1	0	0
2	$\pi/16$	0.94 k
3	$\pi/8$	1.1 k
4	$3\pi/16$	1.11 k
5	$\pi/4$	1.12 k
6	$5\pi/16$	1.12 k
7	$3\pi/8$	1.12 k
8	$7\pi/16$	1.12 k
9	$\pi/2$	1.12 k
10	$9\pi/16$	1.12 k
11	$5\pi/8$	1.12 k
12	$11\pi/16$	1.12 k
13	$3\pi/4$	1.12 k
14	$13\pi/16$	1.12 k
15	$7\pi/8$	1.12 k
16	$15\pi/16$	1.12 k
17	π	1.12 k