PATENT COOPERATION TREAT

	From the INTERNATIONAL BUREAU					
PCT	То:					
NOTIFICATION RELATING TO PRIORITY CLAIM						
(PCT Rules 26bis.1 and 26bis.2 and Administrative Instructions, Sections 402 and 409)	FITZNER, Uwe Lintorfer Str. 10 D-40878 Ratingen ALLEMAGNE					
Date of mailing (day/month/year)						
13 July 2000 (13.07.00)						
Applicant's or agent's file reference 3377/99	IMPORTANT NOTIFICATION					
International application No.	International filing date (day/month/year)					
PCT/EP00/02701	28 March 2000 (28.03.00)					
Applicant BASF PLANT SCIENCE GMBH et al						
	a priority claim(s) made in the international application.					
The applicant is hereby notified of the following in respect of the priority claim(s) made in the international application. 1. Correction of priority claim. In accordance with the applicant's notice received on: 22 June 2000 (22.06.00), the following priority claim has been corrected to read as follows: US 07 February 2000 (07.02.00) 60/180,687						
even though the indication of the number of the earlier application is missing. even though the following indication in the priority claim is not the same as the corresponding indication appearing in the priority document:						
2. Addition of priority claim. In accordance with the applicar the following priority claim has been added:	nt's notice received on: ,					
even though the indication of the number of the earlier application is missing. even though the following indication in the priority claim is not the same as the corresponding indication appearing in the priority document:						
3. As a result of the correction and/or addition of (a) priority claim(s) under items 1 and/or 2, the (earliest) priority date is:						
4. Priority claim considered not to have been made. The applicant failed to respond to the Invitation under Rule 26bis.2(a) (Form PCT/IB/316) within the prescribed time limit. The applicant's notice was received after the expiration of the prescribed time limit under Rule 26bis.1(a). The applicant's notice failed to correct the priority claim so as to comply with the requirements of Rule 4.10. The applicant may, before the technical preparations for international publication have been completed and subject to the payment of a fee, request the International Bureau to publish, together with the international application, information concerning the priority claim. See Rule 26bis.2(c) and the PCT Applicant's Guide, Volume I, Annex B2(IB).						
5. X In case where multiple priorities have been claimed, the above item(s) relate to the following priority claim(s): US 07 February 2000 (07.02.00) 60/180,687						
6. A copy of this notification has been sent to the receiving Offi 区 to the International Searching Authority (where the interior the designated Offices (which have already been notified	national search report has not yet been issued).					
	Authorized officer					
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Aino Metcalfe					

Telephone No. (41-22) 338.83.38

Facsimile No. (41-22) 740.14.35

ATENT COOPERATION TEATY

ı	D	1	•	٦	Г
ı	_	ı	_		

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

From the INTERNATIONAL BUREAU

To:

Commissioner
US Department of Commerce
United States Patent and Trademark
Office, PCT
2011 South Clark Place Room
CP2/5C24

in its capacity as elected Office

Arlington, VA 22202 ETATS-UNIS D'AMERIQUE

Date of mailing (day/month/year) 21 February 2001 (21.02.01)

21 February 2001 (21.02.01)
International application No.

PCT/EP00/02701

International filing date (day/month/year) 28 March 2000 (28.03.00)

Applicant's or agent's file reference

3377/99

Priority date (day/month/year) 01 April 1999 (01.04.99)

Applicant

DAHLQVIST, Anders et al

1.	The designated Office is hereby notified of its election made:
	X in the demand filed with the International Preliminary Examining Authority on:
	11 October 2000 (11.10.00)
	in a notice effecting later election filed with the International Bureau on:
2.	The election X was
	was not
	made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

C. Cupello

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

PCT

REC'D 0 8 JUN 2001

M/FO POT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

3377/99 F	or agent's file reference PCT	FOR FURTHER ACTION		ation of Transmittal of International Examination Report (Form PCT/IPEA/416)
Internationa	application No.	International filing date (day/month	/year)	Priority date (day/month/year)
PCT/EP0	0/02701	28/03/2000		01/04/1999
Internationa C12N15/	Patent Classification (IPC) or n 54	national classification and IPC		
Applicant BASF PL	ANT SCIENCE GmbH et	al.		
1. This ir and is	nternational preliminary exam transmitted to the applicant	nination report has been prepared according to Article 36.	l by this Inte	ernational Preliminary Examining Authority
□ TI be (s	nis report is also accompanions amended and are the ba	asis for this report and/or sheets c 607 of the Administrative Instruction	e description	n, claims and/or drawings which have ectifications made before this Authority ne PCT).
3. This re	 ☑ Basis of the report ☑ Priority ☑ Non-establishment of ☑ Lack of unity of invent ☑ Reasoned statement citations and explanat ☑ Certain documents ci ☑ Certain defects in the 	under Article 35(2) with regard to to took to the statement sited		and industrial applicability entive step or industrial applicability;
 V 	 ☑ Priority ☑ Non-establishment of ☑ Lack of unity of invent ☑ Reasoned statement of citations and explanat ☑ Certain documents ci ☑ Certain defects in the 	tion under Article 35(2) with regard to tions suporting such statement ited international application		

Date of submission of the demand	Date of completion of this report
11/10/2000	06.06.2001
Name and mailing address of the international preliminary examining authority:	Authorized officer
European Patent Office D-80298 Munich Tel. +49 89 2399 - 0 Tx: 523656 epmu d	Page, M
Fax: +49 89 2399 - 4465	Telephone No. +49 89 2399 7322

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/EP00/02701

ı	1	Rac	is	f t	he	r	n	rt
ı	-	Das	iis		uie		U	11

1.	the i	receiving Office in	nents of the international application (Replacement sheets which have been furnished to response to an invitation under Article 14 are referred to in this report as "originally filed" this report since they do not contain amendments (Rules 70.16 and 70.17)):
	1-32	2	as originally filed
	Clai	ms, No.:	
	1-22	2	as originally filed
	Dra	wings, sheets:	
	1/6-	6/6	as originally filed
	Seq	uence listing part	t of the description, pages:
	1-45	5 (SEQ ID NOs. 1-	15), as originally filed
2.	With lang	n regard to the lan q guage in which the	guage, all the elements marked above were available or furnished to this Authority in the international application was filed, unless otherwise indicated under this item.
	The	se elements were	available or furnished to this Authority in the following language: , which is:
		the language of a	translation furnished for the purposes of the international search (under Rule 23.1(b)).
		the language of p	ublication of the international application (under Rule 48.3(b)).
		the language of a 55.2 and/or 55.3).	translation furnished for the purposes of international preliminary examination (under Rule
3.	With	n regard to any nu o rnational prelimina	cleotide and/or amino acid sequence disclosed in the international application, the ry examination was carried out on the basis of the sequence listing:
	\boxtimes	contained in the in	nternational application in written form.
		filed together with	the international application in computer readable form.
		furnished subsequ	uently to this Authority in written form.
	\boxtimes	furnished subseq	uently to this Authority in computer readable form.
	☒	The statement that the international a	at the subsequently furnished written sequence listing does not go beyond the disclosure in application as filed has been furnished.
	×	The statement that listing has been for	at the information recorded in computer readable form is identical to the written sequence urnished.

4. The amendments have resulted in the cancellation of:

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/EP00/02701

		the description,	pages:
		the claims,	Nos.:
		the drawings,	sheets:
5.			established as if (some of) the amendments had not been made, since they have been ond the disclosure as filed (Rule 70.2(c)):
		(Any replacement sh report.)	eet containing such amendments must be referred to under item 1 and annexed to this
6.	Add	itional observations, i	necessary:
III.	Nor	n-establishment of o	pinion with regard to novelty, inventive step and industrial applicability
1.			e claimed invention appears to be novel, to involve an inventive step (to be non- ally applicable have not been examined in respect of:
		the entire internation	al application.
	×	claims Nos. 22 (parti	ally).
be	caus	e:	
			application, or the said claims Nos. relate to the following subject matter which does ational preliminary examination (<i>specify</i>):
			s or drawings (indicate particular elements below) or said claims Nos. are so unclear binion could be formed (specify):
	⊠	the claims, or said claimeaningful opinion c	aims Nos. 22 (partially) are so inadequately supported by the description that no buld be formed.
		no international sear	ch report has been established for the said claims Nos
2.	and		I preliminary examination cannot be carried out due to the failure of the nucleotide ace listing to comply with the standard provided for in Annex C of the Administrative
			not been furnished or does not comply with the standard. Ie form has not been furnished or does not comply with the standard.

1. In response to the invitation to restrict or pay additional fees the applicant has:

IV. Lack of unity finv nti n

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/EP00/02701

		restricted the claims.						
		paid additional fees.						
		paid additional fees und	er prote	est.				
		neither restricted nor pa	id addit	ional fees	3 .			
2.	Ø	This Authority found tha 68.1, not to invite the ap			t of unity of invention is not complied and chose, according to Rule or pay additional fees.			
3.	This	s Authority considers that	the req	juirement	of unity of invention in accordance with Rules 13.1, 13.2 and 13.3 is			
		complied with.						
	Ø	not complied with for the see separate sheet	e followi	ng reasoi	ns:			
4.		nsequently, the following mination in establishing t			national application were the subject of international preliminary			
	×	all parts.						
		the parts relating to clair	ns Nos.					
٧.		soned statement under			ith regard to novelty, inventive step or industrial applicability;			
1.	Stat	tement						
	Nov	velty (N)	Yes: No:		9-19, 21, 22 (all partially) 1-19, 21, 22 (all partially)			
	Inve	entive step (IS)	Yes: No:		9-19, 21, 22 (all partially) 1-19, 21, 22 (all partially)			
	Indu	ustrial applicability (IA)	Yes: No:	Claims Claims	1-22			
_	0	the second contractions						

2. Citations and explanations see separate sheet

VI. Certain documents cited

1. Certain published documents (Rule 70.10)

and / or

2. Non-written disclosures (Rule 70.9)

s e separat sh et

VII. Certain defects in the international application

The following defects in the form or contents of the international application have been noted: see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made: see separate sheet

The application concerns the provision of a yeast and plant polypeptide and polynucleotide sequences allegedly corresponding to diacylglycerol acyltransferases. Function is shown for Saccharomyces cerevisiae sequences, but neither the function nor any structural relationship to the Saccharomyces sequences making such a function plausible are demonstrated for the other full-length and partial sequences.

Re Item II Priority

After considering the priority document, the documents cited "P, X" in the search report are not considered relevant for the examination of novelty and inventive step.

Re Item III

Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

Claim 18 (claim 22 as originally filed) seeks protection for cells or organisms with altered PDAT activity, "wherein the altered PDAT activity is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme". No reference could be found in the description for alterations to the catalytic activity or regulation of PDAT activity and claim 18 (partially) is therefore considered to lack meaningful support from the description. The claim has only been examined with respect to alterations in gene expression.

Re Item IV Lack of Unity of Invention

An international application must relate to one invention only or to a group of inventions so linked as to form a single general inventive concept. Unity of invention is fulfilled only when there is a technical relationship between the inventions involving one or more of the same or corresponding special technical features. Special technical features are such features that define the contribution of the claimed

invention over the prior art.

The identified 8 inventions relate to a group of sequences with the claimed technical feature of being diacylglycerol acyltransferases as the sole common link. However, this feature cannot be considered to constitute a special technical feature because it does not define a contribution over the prior art: SEQ ID NOs. 2, 3, 9, 16, 20 and 22 have all been previously disclosed in their entirety (D1, D2 and D3).

Although the prior art does not disclose the function of the encoded enzymes, they do disclose the nucleic acid and polypeptide sequences of the respective claimed SEQ ID NOs. The encoded enzyme will have the activity claimed in claim 1, regardless of whether or not this is disclosed in the prior art.

The application therefore does not meet the requirements of Rule 13.2 PCT in that there is no common special technical feature linking the 8 inventions of the application, these being:

Claims 5, 6, 8-22 (all partially) and 1-3 (completely) (form rly Invention I claims 1, 3, 6, 7, 9, 11-27 (all partially) 2 and 4 (completely))

Enzymes catalysing the acyl-CoA-independent transfer of fatty acids to diacylglycerol in the production of triacyglycerol from Saccharomyces cerevisiae and corresponding to polypeptides with SEQ ID NOs. 2, 16, 20 and 22, encoded by polynucleotides SEQ ID NOs. 1, 19 and 21, fragments, derivatives, alleles, homologs and isoenzymes, the corresponding polynucleotide sequences, portions, derivates, alleles and homologs of the polynucleotide sequence, expression vectors, transgenic cells and organisms, processes for the production of triacylglycerol using such cells/organisms, the product of such a process and the use of the enzymes and polynucleotides in such processes.

Invention II Claims 4-6 and 8-22 (all partially) (formerly claims 1, 3, 5-9 and 11-27 (all partially))

As invention I with SEQ ID NOs. 3, 13 and 23 from Schizosaccharomyces pombe.

Claims 4-22 (all partially) (formerly claims 1, 3 and 5-27 (all Invention III partially))

As invention I with SEQ ID NOs. 4-6, 18, 24, 25 from Arabidopsis thaliana.

EXAMINATION REPORT - SEPARATE SHEET

Inv ntion IV Claims 4, 5 and 7-22 (all partially) (form rly claims 1, 3 and 5-27 (all partially))

As invention I with SEQ ID NOs. 7, 8, 26 and 27 from Zea mays.

Invention V Claims 5 and 7-22 (all partially) (formerly claims 1, 3, 6-8 and 10-27 (all partially))

As invention I with SEQ ID NOs. 9 and 28 from Neurospora crassa.

Invention VI Claims 4-6 and 8-22 (all partially) (formerly claims 1, 3, 5-9 and 11-27 (all partially))

As invention I with SEQ ID NOs. 10, 14, 17 and 29 from Arabidopsis thaliana.

Invention VII Claims 4-6 and 8-22 (all partially) (formerly claims 1, 3, 5-9 and 11-27 (all partially))

As invention I with SEQ ID NOs. 11, 15 and 30 from Arabidopsis thaliana.

Invention VIII Claims 5 and 7-22 (all partially) (formerly claims 1, 3 and 5-27 (all partially))

As invention I with SEQ ID NOs. 12 and 31 from Lycopersicon esculentum.

Re Item V

Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

- 1) Reference is made to the following documents:
 - D1: PETER VERHASSELT ET AL.: 'Twelve open reading frames revealed in the 23.6kb segment flanking the centromere on the Saccharomyces cerevisiae chromosome XIV right arm' YEAST, vol. 10, no. 7, July 1994 (1994-07), pages 1355-1361, XP002112572 -& Swissprot Database Entry Yn84_Yeast Accession number P40345; 1 February 1995 XP002112574
 - D2: DATABASE EMBL [Online] Database Entry SPBC776, 21 January 1999 (1999-01-21) LYNE M. ET AL.: 'S. pombe chromosome II cosmid c776' Database accession no. AL035263 XP002150203
 - D3: DATABASE EMBL [Online] Database Entry Al398644, 10 February 1999

EXAMINATION REPORT - SEPARATE SHEET

(1999-02-10) XP002150204 & MARY ANNE NELSON ET AL.: 'Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa ' FUNGAL GENETICS AND BIOLOGY, vol. 21, 1997, pages 348-363, XP000952173

D4: KEITH STOBART ET AL.: 'Triacylglycerols are synthesized and utilized by transacylation reactions in microsomal preparations of developing safflower (Carthamus tinctorius L.) seeds' PLANTA, vol. 203, no. 1, 1997, pages 58-66, XP002112573

D5: WO 98 55631 A (CALGENE LLC) 10 December 1998 (1998-12-10)

Novelty - Art.33(1) and (2) PCT: 2)

Claims 5, 6, 8 (all partially) and 1-3 (completely) Invention I

Claims 5, 6, 8 (partially), and 1-3 (completely) lack novelty in light of the sequence with the accession number P40345 provided by D1 (identified therein as N2042) which, according to the description of the present application, encodes an acyl-CoAindependent acyltransferase. Although D1 does not disclose the function of the encoded enzyme, a polynucleotide or polypeptide sequence is not rendered novel by the discovery of its function. The disclosed sequence is 100% identical to SEQ ID NO. 2 over the whole length of the protein.

Claims 4-8 (all partially) Inventions II-VIII

Claims 4-8 (partially) lack novelty in light of the sequences provided by D1, D2 and D3 which, according to the description, are polypeptides and polynucleotides corresponding to phospholipid:diacylglycerol acyltransferases. As stated previously, Identifying the function of known polypeptides does not render the polypeptides novel.

The description, for example, defines a "functional fragment" on page 4 lines 30-32 as being "any polypeptide sequence which shows specific enzyme activity of a PDAT" The enzyme N2042 disclosed in D1 clearly possesses such activity and thus the claims lack novelty.

Similarly, allelic variants are understood to be "any different nucleotide sequence which encodes a polypeptide with a functionally different function" and having an undisclosed number of substitutions, additions or deletions (page 5 lines 28). Again,

INTERNATIONAL PRELIMINARY Inter EXAMINATION REPORT - SEPARATE SHEET

the protein of D1 clearly fulfills these requirements.

The definition provided on page 6 lines 17 and 18 for the term "isoenzyme" meets the same objections.

Furthermore, the definition in the description for the term "portion" is meant to include any nucleotide sequence which shows specific activity of a PDAT" (page 5 lines 7-17). The term includes within its scope the polynucleotide sequences Al398644 of D3 for example.

Inventions I-VIII Claims 9-22

Claims 9-19, 21 and 22 (partially) appear to be novel in light of the cited prior art. although polynucleotide and polypeptide sequences according to the claimed invention have been disclosed (e.g. D1 sequence N2042, D2 sequence O94680, D3), these documents do not disclose gene constructs, vectors, transgenic cells ro the use of such in the production of triacylglycerol.

Claim 20 (partially) lacks novelty in light of D4, which discloses triacylglycerol made with an acyl-Co-A independent acyltransferase (D4 page 59 left-hand column paragraph 1). Even if the claim were restricted to triacylglycerol made using novel subject matter, the Applicant would need to show how this product differs from previously disclosed subject matter, as a product is not rendered novel by a new method for making it.

3) Inventive Step - Art.33(1) and (3) PCT:

The following comments on inventive step are confined to subject matter which could be acknowledged as being novel, or for which novelty could potentially be restored as outlined supra.

Invention I Claims 9-19, 21 and 22 (all partially)

The closest prior art is document D5, which discloses a the polypeptide and polynucleotide sequences for an acyl-Co-A dependent plant diacylglycerol acyltransferase as well as the use of the sequences in engineering plants with altered triacylglycerol content (D5 page 3 line 22 to page 5 line 20).

In the light of the prior art, the technical problem can be regarded as the provision of further polynucleotide and polypeptide sequences encoding enzymes that can alter the triacylglycerol content of cells or organisms expressing them.

Claims 9-19, 21 and 22 appear to be inventive in light of the cited prior art, which does not disclose the enzyme activity of SEQ ID NO. 2. There is therefore no motivation to combine the teaching of D5 with that of D1 disclosing the sequence N2042.

9-19, 21 and 22 (all partially) Inventions II-VIII

Again, the closest prior art is document D5, which discloses a the polypeptide and polynucleotide sequences for an acyl-Co-A dependent plant diacylglycerol acyltransferase as well as the use of the sequences in engineering plants with altered triacylglycerol content (D5 page 3 line 22 to page 5 line 20).

In the light of the prior art, the technical problem can be regarded as the provision of further polynucleotide and polypeptide sequences encoding enzymes that can alter the triacylglycerol content of cells or organisms expressing them.

It cannot be seen how inventive step can be recognised for claims 9-19, 21 and 22. Although function has been demonstrated for the enzyme encoded by SEQ ID NO. 1, no such function has been demonstrated for the sequences from other species, nor has the Applicant shown that there is a structural relationship between the sequences of Invention I and those of Inventions II-VIII that would make such a function plausible. This is true for the full-length sequences as well as the partial sequences disclosed in the application.

Re Item VII

Certain defects in the international application

Contrary to the requirements of Rule 5.1(a)(ii) PCT, the relevant background art a) disclosed in the documents D1-D5 are not mentioned in the description, nor are these documents identified therein.

INTERNATIONAL PRELIMINARY

International application No. PCT/EP00/02701

EXAMINATION REPORT - SEPARATE SHEET

R It m VIII

Certain observations on the international application

Several of the SEQ ID NOs. appear to be identical duplicates of each other, resulting a) in a lack of conciseness as required by Article 6 PCT. The unnecessary duplicates should be removed.

PATENT COOPERATION TREATY PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference 3377/99 PCT	FOR FURTHER see Notification of Transmittal of International Search Report (Form PCT/ISA/220) as well as, where applicable, item 5 below.						
International application No.	International filing date (day/month/year) (Earliest) Priority Date (day/month/year)						
PCT/EP 00/02701	23/03/2000	01/04/1999					
Applicant		<u> </u>					
BASF PLANT SCIENCE GmbH	,						
DASI TEANT SCIENCE dilibit							
This International Search Report has been according to Article 18. A copy is being tra	n prepared by this International Searching Auth	nority and is transmitted to the applicant					
This International Search Report consists It is also accompanied by	of a total of3 sheets. a copy of each prior art document cited in this	report.					
Basis of the report							
a. With regard to the language, the language in which it was filed, unl	international search was carried out on the bases otherwise indicated under this item.	sis of the international application in the					
the international search w Authority (Rule 23.1(b)).	as carried out on the basis of a translation of the	he international application furnished to this					
b. With regard to any nucleotide an was carried out on the basis of the	d/or amino acid sequence disclosed in the in	ternational application, the international search					
I 1777	nal application in written form.						
filed together with the inte	rnational application in computer readable form	n.					
furnished subsequently to this Authority in written form.							
furnished subsequently to this Authority in computer readble form. X the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the							
international application as filed has been furnished.							
the statement that the info furnished	rmation recorded in computer readable form is	s identical to the written sequence listing has been					
2. Certain claims were four	nd unsearchable (See Box I).						
3. Unity of Invention is laci	dng (see Box II).						
4. With regard to the title,							
the text is approved as sul	bmitted by the applicant.	•					
	hed by this Authority to read as follows:	<u>.</u>					
	HETIC PATHWAY FOR THE PRODU LES ENCODING THESE ENZYMES	JCTION OF TRIACYLGLYCEROL AND					
5 Meh arranda da akan a							
5. With regard to the abstract , TX the text is approved as sul	hmitted by the applicant	•					
the text has been establish	ned, according to Rule 38.2(b), by this Authorit date of mailing of this international search rep	y as it appears in Box III. The applicant may, ort, submit comments to this Authority.					
6. The figure of the drawings to be publi	shed with the abstract is Figure No.	1					
as suggested by the applic	cant.	None of the figures.					
because the applicant faile							
Decause this tigure better	characterizes the invention.						

INTERNATIONAL SEARCH REPORT

International Application No T/EP 00/02701

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/54 C12N9/10 C12N5/10

A01K67/027

C12N15/81 C12P7/64

C12N15/82

C12N1/16

Relevant to claim No.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Category °

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N A01K C12P

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Citation of document, with indication, where appropriate, of the relevant passages

STRAND, EPO-Internal, WPI Data, MEDLINE, CHEM ABS Data, BIOSIS, EMBL

х	PETER VERHASSELT ET AL.: "Twelf reading frames revealed in the segent flanking the centromere Saccharomyces cerevisiae chromo right arm" YEAST,	1-23,27	
х	vol. 10, no. 7, July 1994 (1994-1355-1361, XP002112572 abstract; table 2 -& Swissprot Database Entry Yn84 Accession number P40345; 1 Febru XP002112574 the whole document	l_Yeast uary 1995	1-23,27
V Sudd	per decuments are listed in the continuation of hex C	-/	
X Furth	ner documents are listed in the continuation of box C.	Patent family members are listed	in annex.
"A" docume considual "E" earlier de filing de "L" docume which i citation "O" docume other no "P" docume	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or neans nt published prior to the international filing date but	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the c cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the c cannot be considered to involve an involve an integration of the considered to involve an indecument is combined with one or moments, such combination being obvious in the art.	the application but sory underlying the laimed invention be considered to cument is taken alone laimed invention ventive step when the re other such docusis to a person skilled
	an the priority date claimed	"&" document member of the same patent	
	7 October 2000	30/10/2000	па пероп
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Montero Lopez, B	

2

INTERNATIONAL SEARCH REPORT

International Application No
Y/EP 00/02701

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	/EP 00/02/01
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMBL 'Online! Database Entry SPBC776, 21 January 1999 (1999-01-21) LYNE M. ET AL.: "S. pombe chromosome II cosmid c776" Database accession no. AL035263 XP002150203	1-23,27
X	the whole document DATABASE EMBL 'Online! Database Entry AI398644, 10 February 1999 (1999-02-10)	1-23,27
	XP002150204 the whole document & MARY ANNE NELSON ET AL.: "Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa " FUNGAL GENETICS AND BIOLOGY, vol. 21, 1997, pages 348-363, XP000952173	
X .	KEITH STOBART ET AL.: "Triacylglycerols are synthesized and utilized by transacylation reactions in microsomal preparations of developing safflower (Carthamus tinctorius L.) seeds" PLANTA, vol. 203, no. 1, 1997, pages 58-66, XP002112573 page 58, right-hand column, last paragraph -page 59, left-hand column, paragraph 1 page 63, right-hand column, paragraph 2	25
A	WO 98 55631 A (CALGENE LLC) 10 December 1998 (1998-12-10) page 9, line 36 -page 10, line 7 page 12, line 28 -page 13, line 18 page 14, line 34 -page 15, line 13 page 20, line 5 -page 25, line 4	1-27
Ρ,Χ	DATABASE SWALL 'Online! Database Entry 094680, 1 May 1999 (1999-05-01) LYNE M. ET AL.: "hypothetical 69.7 kDa protein C776.14 in chromosome II" Database accession no. 094680 XP002150205 the whole document	1-23,27

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

EP 00/02701

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9855631 A	10-12-1998	CN 1266460 T EP 1003882 A	13-09-2000 31-05-2000	

RLD INTELLECTUAL PROPERTY ORGANIZATI International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/54, 9/10, 15/81, 15/82, 1/16,

5/10, A01N 27/067, C12P 7/64

A2

(11) International Publication Number:

WO 00/60095

(43) International Publication Date:

12 October 2000 (12.10.00)

(21) International Application Number:

PCT/EP00/02701

(22) International Filing Date:

28 March 2000 (28.03.00)

(30) Priority Data:

99106656.4 1 April 1999 (01.04.99) EP 99111321.8 10 June 1999 (10.06.99) EP 60/180,687 7 February 2000 (07.02.00) US

(71) Applicant (for all designated States except US): BASF PLANT SCIENCE GMBH [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DAHLQVIST, Anders [SE/SE]; Hemmansvägen 2, S-244 66 Furulund (SE). STAHL, Ulf [SE/SE]; Liljegatan 7b, S-753 24 Uppsala (SE). LENMAN, Marit [SE/SE]; Revingegatan 13a, S-223 59 Lund (SE). BANAS, Antoni [SE/PL]; Wiolinowa 14, PL-08110 Siedlce (PL). RONNE, Hans [SE/SE]; Dirigentvägen 169, S-756 54 Uppsala (SE). STYMNE, Sten [SE/SE]; Torrlösa 1380, S-269 90 Svalöv (SE).
- (74) Agent: FITZNER, Uwe; Lintorfer Str. 10, D-40878 Ratingen (DE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

(57) Abstract

The present invention relates to the isolation, identification and characterization of nucleotide sequences encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol, to the said enzymes and a process for the production of triacylglycerols.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

25

30

A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

The present invention relates to the isolation, identification and characterization of recombinant DNA molecules encoding enzymes catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

Triacylglycerol (TAG) is the most common lipid-based energy reserve in nature. The main pathway for synthesis of TAG is believed to involve three sequential acyl-transfers from acyl-CoA to a glycerol backbone (1, 2). For many years, acyl-CoA: diacylglycerol acyltransferase (DAGAT), which catalyzes the third acyl transfer reaction, was thought to be the only unique enzyme involved in TAG synthesis. It acts by diverting diacylglycerol (DAG) from membrane lipid synthesis into TAG (2). Genes encoding this enzyme were recently identified both in the mouse (3) and in plants (4, 5), and the encoded proteins were shown to be homologous to acyl-CoA: cholesterol acyltransferase (ACAT). It was also recently reported that another DAGAT exists in the oleaginous fungus Mortierella ramanniana, which is unrelated to the mouse DAGAT, the ACAT gene family or to any other known gene (6).

The instant invention relates to novel type of enzymes and their encoding genes for transformation. More specifically, the invention relates to use of a type of genes encoding a not previously described type of enzymes hereinafter designated phospholipid:diacylglycerol acyltransferases (PDAT), whereby this enzyme catalyses an acyl-CoA-independent reaction. The said type of genes expressed alone in transgenic organisms will enhance the total amount of oil (triacylglycerols) produced in the cells. The PDAT genes, in combination with a gene for the synthesis of an uncommon fatty acid will, when expressed in transgenic organisms, enhance the levels of the uncommon fatty acids in the triacylglycerols.

There is considerable interest world-wide in producing chemical feedstock, such as fatty acids, for industrial use from renewable plant resources rather than non-renewable petrochemicals. This concept has broad appeal to manufacturers and consumers on the basis of resource conservation and provides significant opportunity to develop new industrial crops for agriculture.

There is a diverse array of unusual fatty acids in oils from wild plant species and these have been well characterised. Many of these acids have industrial potential and this has led to interest in domesticating relevant plant species to enable agricultural production of particular fatty acids.

10

15

20

25

30

Development in genetic engineering technologies combined with greater understanding of the biosynthesis of unusual fatty acids now makes it possible to transfer genes coding for key enzymes involved in the synthesis of a particular fatty acid from a wild species into domesticated oilseed crops. In this way individual fatty acids can be produced in high purity and quantities at moderate costs.

In all crops like rape, sunflower, oilpalm etc., the oil (i.e. triacylglycerols) is the most valuable product of the seeds or fruits and other compounds like starch, protein, and fibre is regarded as by-products with less value. Enhancing the quantity of oil per weight basis at the expense of other compounds in oil crops would therefore increase the value of crop. If genes, regulating the allocation of reduced carbon into the production of oil can be up-regulated, the cells will accumulate more oil on the expense of other products. Such genes might not only be used in already high oil producing cells, such as oil crops, but could also induce significant oil production in moderate or low oil containing crops such as e.g. soy, oat, maize, potato, sugarbeats, and turnips as well as in micro-organisms.

Summary of the invention

Many of the unusual fatty acids of interest, e.g. medium chain fatty acids, hydroxy fatty acids, epoxy fatty acids and acetylenic fatty acids, have physical properties that are distinctly different from the common plant fatty acids. The present inventors have found that, in plant species naturally accumulating these uncommon fatty acids in their seed oil (i.e. triacylglycerol), these acids are absent, or present in very low amounts in the membrane (phospho)lipids of the seed. The low concentration of these acids in the membrane lipids is most likely a prerequisite for proper membrane function and thereby for proper cell functions. One aspect of the invention is that seeds of transgenic crops can be made to accumulate high amounts of uncommon fatty acids if these fatty acids are efficiently removed from the membrane lipids and channelled into seed triacylglycerols.

15

20

25

30

10

The inventors have identified a novel class of enzymes in plants catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the production of triacylglycerol through an acyl-CoA-independent reaction and that these enzymes (phospholipid:diacylglycerol acyltransferases, abbreviated as PDAT) are involved in the removal of hydroxylated, epoxygenated fatty acids, and probably also other uncommon fatty acids such as medium chain fatty acids, from phospholipids in plants.

This enzyme reaction was shown to be present in microsomal preparations from baker's yeast (*Saccharomyces cerevisiae*). The instant invention further pertains to an enzyme comprising an amino acid sequence as set forth in SEQ ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof. A so called ,knock out' yeast mutant, disrupted in the respective gene was obtained and microsomal membranes from the mutant was shown to totally lack PDAT activity. Thus, it was proved that the disrupted gene encodes a PDAT enzyme (SEQ ID NO. 1 and 2). Furtherm, this PDAT enzyme is

characterized through the amino acid sequence as set forth in SEQ ID NO 2 containing a lipase motif of the conserved sequence string FXKWVEA.

The instant invention pertains further to an enzyme comprising an amino acid sequence as set forth in SEQ ID NO. 1a, 2b or 5a or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

Further genes and/or proteins of so far unknown function were identified and are contemplated within the scope of the instant invention. A gene from Schizosaccharomyces pombe, SPBC776.14 (SEQ ID. NO. 3), a putative open reading frame CAA22887 of the SPBC776.14 (SEQ ID NO. 13) were identified.

Further Arabidopsis thaliana genomic sequences (SEQ ID NO. 4, 10 and 11) coding for putative proteins were identified, as well as a putative open reading frame AAC80628 from the A. thaliana locus AC 004557 (SEQ ID NO. 14) and a putative open reading frame AAD10668 from the A. thaliana locus AC 003027 (SEQ ID NO. 15) were identified.

10

15

20

25

30

Also, a partially sequenced cDNA clone from Neurospora crassa (SEQ ID NO. 9) and a Zea mays EST (Extended Sequence Tac) clone (SEQ ID NO. 7) and corresponding putative amino acid sequence (SEQ ID NO. 8) were identified. Finally, two cDNA clones were identified, one Arabidopsis thaliana EST (SEQ ID NO. 5 and corresponding predicted amino acid sequence SEQ ID NO. 6) and a Lycopersicon esculentum EST clone (SEQ ID NO. 12) were identified. Further, enzymes designated as PDAT comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID NO 2a, 3a, 5b, 6 or 7b containing a lipase motif FXKWVEA are contemplated within the scope of the invention. Moreover, an enzyme comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence are included within the scope of the invention.

A functional fragment of the instant enzyme is understood to be any polypeptide sequence which shows specific enzyme activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the functional fragment can for example vary in a range from about 660 ± 10 amino acids to 660 ± 250 amino acids, preferably from about 660 ± 50 to 660 ± 100 amino acids, whereby the "basic number" of 660 amino acids corresponds in this case to the polypeptide chain of the PDAT enzyme of SEQ ID NO. 2 encoded by a nucleotide sequence according to SEQ ID NO. 1. Consequently, the "basic number" of functional fullength enzyme can vary in correspondance to the encoding nucleotide sequence.

10

15

20

25

30

A portion of the instant nucleotide sequence is meant to be any nucleotide sequence encoding a polypeptid which shows specific activity of a phospholipid:diacylglycerol acyltransferase (PDAT). The length of the nucleotide portion can vary in a wide range of about several hundreds of nucleotides based upon the coding region of the gene or a highly conserved sequence. For example the length varies in a range form about 1900 ± 10 to 1900 ± 1000 nucleotides, preferably form about 1900 ± 50 to 1900 ± 700 and more preferably form about 1900 ± 100 to 1900 ± 500 nucleotides, whereby the "basic number" of 1900 nucleotides corresponds in this case to the encoding nucleotide sequence of the PDAT enzyme of SEQ ID NO. 1. Consequently, the "basic number" of functional fullength gene can vary.

An allelic variant of the instant nucleotide sequence is understood to be any different nucleotide sequence which encodes a polypeptide with a functionally equivalent function. The alleles pertain naturally occuring variants of the instant nucleotide sequences as well as synthetic nucleotide sequences produced by methods known in the art. Contemplated are even altered nucleotide sequences which result in an enzyme with altered activity and/or regulation or which is resistant against specific inhibitors. The instant invention further includes natural or synthetic mutations of the originally isolated nucleotide

sequences. These mutations can be substitution, addition, deletion, inversion or insertion of one or more nucleotides.

A homologous nucleotide sequence is understood to be a complementary sequence and/or a sequence which specifically hybridizes with the instant nucleotide sequence. Hybridizing sequences include similar sequences selected from the group of DNA or RNA which specifically interact to the instant nucleotide sequences under at least moderate stringency conditions which are known in the art. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. This further includes short nucleotide sequences of e.g. 10 to 30 nucleotides, preferably 12 to 15 nucleotides. Included are also primer or hybridization probes.

15

20

25

30

10

A homologous nucleotide sequence included within the scope of the instant invention is a sequence which is at least about 40%, preferably at least about 50 % or 60%, and more preferably at least about 70%, 80% or 90% and most preferably at least about 95%, 96%, 97%, 98% or 99% or more homologous to a nucleotide sequence of SEQ ID NO. 1.

All of the aforementioned definitions are true for amino acid sequences and functional enzymes and can easily transferred by a person skilled in the art.

Isoenzymes are understood to be enzymes which have the same or a similar substrate specifity and/or catalytic activity but a different primary structure.

In a first embodiment, this invention is directed to nucleic acid sequences that encode a PDAT. This includes sequences that encode biologically active PDATs as well as sequences that are to be used as probes, vectors for transformation or cloning intermediates. The PDAT encoding sequence may

encode a complete or partial sequence depending upon the intended use. All or a portion of the genomic sequence, cDNA sequence, precursor PDAT or mature PDAT is intended.

Further included is a nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 9b, 10, 10b or 11 or a portion, derivate, allele or homolog thereof. The invention pertains a partial nucleotide sequence corresponding to a fullength nucleotide sequence selected from the group consisting of sequences set forth in SEQ ID No. 5, 5b, 6b, 7, 8b, 9, 11b or 12 or a portion, derivate, allele or homolog thereof. Moreover, a nucleotide sequence comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected form the group consisting of those sequences set forth in SEQ ID No. 1 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12 is contemplated within the scope of the invention.

15

20

25

30

The instant invention pertains to a gene construct comprising a said nucleotide sequences of the instant invention which is operably linked to a heterologous nucleic acid.

The term operably linked means a serial organisation e.g. of a promotor, coding sequence, terminator and/or further regulatory elements whereby each element can fulfill its original function during expression of the nucleotide sequence.

Further, a vector comprising of a said nucleotide sequence of the instant invention is contemplated in the instant invention. This includes also an expression vector as well as a vector further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell and/or the integration into the genome of the host cell.

In a different aspect, this invention relates to a method for producing a PDAT in a host cell or progeny thereof, including genetically engineered oil seeds, yeast and moulds or any other oil accumulating organism, via the expression of a construct in the cell. Cells containing a PDAT as a result of the production of the PDAT encoding sequence are also contemplated within the scope of the invention.

Further, the invention pertains a transgenic cell or organism containing a said nucleotide sequence and/or a said gene construct and/or a said vector. The object of the instant invention is further a transgenic cell or organism which is an eucaryotic cell or organism. Preferably, the transgenic cell or organism is a yeast cell or a plant cell or a plant. The instant invention further pertains said transgenic cell or organism having an altered biosynthetic pathway for the production of triacylglycerol. A transgenic cell or organism having an altered oil content is also contemplated within the scope of this invention.

Further, the invention pertains a transgenic cell or organism wherein the activity of PDAT is altered in said cell or organism. This altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme. Moreover, a transgenic cell or organism is included in the instant invention, wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.

15

20

In a different embodiment, this invention also relates to methods of using a DNA sequence encoding a PDAT for increasing the oil-content within a cell.

Another aspect of the invention relates to the accommodation of high amounts of uncomman fatty acids in the triacylglycerol produced within a cell, by introducing a DNA sequence producing a PDAT that specifically removes these fatty acids from the membrane lipids of the cell and channel them into triacylglycerol. Plant cells having such a modification are also contemplated herein.

Further, the invention pertains a process for the production of triacylglycerol, comprising growing a said transgenic cell or organism under conditions whereby the said nucleotide sequence is expressed and whereby the said transgenic cells comprising a said enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol forming triacylglycerol.

Moreover, triacylglycerols produced by the aforementioned process are included in scope of the instant invention.

Object of the instant invention is further the use of an instant nucleotide sequence and/or a said enzyme for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids. The use of a said instant nucleotide sequence and/or a said enzyme of the instant invention for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism is also contemplated within the scope of the instant invention.

A PDAT of this invention includes any sequence of amino acids, such as a protein, polypeptide or peptide fragment obtainable from a microorganism, animal or plant source that demonstrates the ability to catalyse the production of triacylglycerol from a phospholipid and diacylglycerol under enzyme reactive conditions. By "enzyme reactive conditions" is meant that any necessary conditions are available in an environment (e.g., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function.

25

30

10

15

20

Other PDATs are obtainable from the specific sequences provided herein. Furthermore, it will be apparent that one can obtain natural and synthetic PDATs, including modified amino acid sequences and starting materials for synthetic-protein modelling from the examplified PDATs and from PDATs which are obtained through the use of such examplified sequences. Modified amino acid sequences include sequences that have been mutated, truncated,

increased and the like, whether such sequences were partially or wholly synthesised. Sequences that are actually purified from plant preparations or are identical or encode identical proteins thereto, regardless of the method used to obtain the protein or sequence, are equally considered naturally derived.

Further, the nucleic acid probes (DNA and RNA) of the present invention can be used to screen and recover "homologous" or "related" PDATs from a variety of plant and microbial sources.

10

5

Further, it is also apparent that a person skilled in the art can, with the information provided in this application, in any organism identify a PDAT activity, purify an enzyme with this activity and thereby identify a "non-homologous" nucleic acid sequence encoding such an enzyme.

15

25

30

The present invention can be essentially characterized by the following aspects:

- 1. Use of a PDAT gene (genomic clone or cDNA) for transformation.
- 20 2. Use of a DNA molecule according to item 1 wherein said DNA is used for transformation of any organism in order to be expressed in this organism and result in an active recombinant PDAT enzyme in order to increase oil content of the organism.
 - Use of a DNA molecule of item 1 wherein said DNA is used for transformation of any organism in order to prevent the accumulation of undesirable fatty acids in the membrane lipids.
 - 4. Use according to item 1, wherein said PDAT gene is used for transforming transgenic oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, such as medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.

5

15

20

- 5. Use according to item 1, wherein said PDAT gene is used for transforming organisms, and wherein said organisms are crossed with other oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, comprising medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
- 6. Use according to item 1, wherein the enzyme encoded by said PDAT gene or cDNA is coding for a PDAT with distinct acyl specificity.
- 7. Use according to item 1 wherein said PDAT encoding gene or cDNA, is derived from *Saccharornyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 30% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
 - 8. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharornyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 40% or more *identical* to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
 - 9. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from *Saccharornyces cereviseae*, or contain nucleotide sequences coding for an amino acid sequence 60% or more *identical* to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
 - 10. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 80% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 2.
- 25 11. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from plants or contain nucleotide sequences coding for an amino acid sequence 40% or more identical to the amino acid sequence of PDAT from *Arabidopsis thaliana* or to the protein encoded by the fullength counterpart of the partial Zea mays, Lycopericon esculentum, or Neurospora crassa cDNA clones.

- 12. Transgenic oil accumulating organisms comprising, in their genome, a PDAT gene transferred by recombinant DNA technology or somatic hybridization.
- 13. Transgenic oil accumulating organisms according to item 12 comprising, in their genome, a PDAT gene having specificity for substrates with a particular uncommon fatty acid and the gene for said uncommon fatty acid.
- 14. Transgenic organisms according to item 12 or 13 which are selected from the group consisting of fungi, plants and animals.
- 15. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants.
 - 16. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a storage organ specific promotor.
- 17. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a seed promotor.
 - 18. Oils from organisms according to item 12 17.

5

10

15

20

- 19. A method for altering acyl specificity of a PDAT by alteration of the nucleotide sequence of a naturally occurring encoding gene and as a consequence of this alternation creating a gene encoding for an enzyme with novel acyl specifity.
- 20. A protein encoded by a DNA molecule according to item 1 or a functional fragment thereof.
- 21. A protein of item 20 designated phospholipid:diacylglycerol acyltransferase.
- 25 22. A protein of item 21 which has a distinct acyl specificity.
 - 23. A protein of item 13 having the amino acid sequence as set forth in SEQ, ID NO. 2, 13, 14 or 15 (and the proteins encoded by the fullength or partial genes set forth in SEQ. ID. NO. 1, 3, 4, 5, 7, 9, 10, 11 or 12) or an amino acid sequence with at least 30 % homology to said amino acid sequence.
- 24. A protein of item 23 isolated from Saccharomyces cereviseae.

WO 00/60095 13 PCT/EP00/02701

General methods:

5

10

15

20

25

30

Yeast strains and plasmids. The wild type yeast strains used were either FY1679 (MATα his3-Δ200 leu2-Δ1 trp1-Δ6 ura3-52) or W303-1A (MATa ADE2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1) (7). The YNR008w::KanMX2 disruption strain FVKT004-04C(AL), which is congenic to FY1679, was obtained from the Euroscarf collection (8). A 2751 bp fragment containing the YNR008w gene with 583 bp of 5' and 183 bp of 3' flanking DNA was amplified W303-1A genomic DNA using Taq polymerase TCTCCATCTTCTGCAAAACCT-3' and 5'-CCTGTCAAAAACCTTCTCCTC-3' as primers. The resulting PCR product was purified by agarose gel electrophoresis and cloned into the EcoRV site of pBluescript (pbluescript-pdat). For complementation experiments, the cloned fragment was released from pBluescript by HindIII-SacI digestion and then cloned between the HindIII and Sacl sites of pFL39 (9), thus generating pUS1. For overexpression of the PDAT gene, a 2202 bp EcoRI fragment from the pBluscript plasmid which contains only 24 bp of 5' flanking DNA was cloned into the BamHI site of the GAL1-TPK2 expression vector pJN92 (12), thus generating pUS4.

<u>Microsomal preparations.</u> Microsomes from developing seeds of sunflower (*Helianthus annuus*), *Ricinus communis* and *Crepis palaestina* were prepared using the procedure of Stobart and Stymne (11). To obtain yeast microsomes, 1g of yeast cells (fresh weight) was re-suspended in 8 ml of ice-cold buffer (20 mM Tris-Cl, pH 7.9, 10 mM MgCl₂, 1 mM EDTA, 5 % (v/v) glycerol, 1 mM DTT, 0.3 M ammonium sulfate) in a 12 ml glass tube. To this tube, 4 ml of glass beads (diameter 0.45-0.5 mm) were added, and the tube was then heavily shaken (3 x 60 s) in an MSK cell homogenizer (B. Braun Melsungen AG, Germany). The homogenized suspension was centrifuged at 20,000 x g for 15 min at 6°C and the resulting supernatant was again centrifuged at 100,000 x g for 2 h at 6°C. The 100,000 x g pellet was resuspended in 0.1 M potassium

phosphate (pH 7.2), and stored at -80°C. It is subsequently referred to as the crude yeast microsomal fraction.

Lipid substrates. Radio-labeled ricinoleic (12-hydroxy-9-octadecenoic) and vernolic (12,13-epoxy-9-octadecenoic) acids were synthesized enzymatically from [1-14C]oleic acid and [1-14C]linoleic acid, respectively, by incubation with microsomal preparations from seeds of Ricinus communis and Crepis palaestina, respectively (12). The synthesis of phosphatidylcholines (PC) or phosphatidylethanolamines (PE) with ¹⁴C-labeled acyl groups in the sn-2 position was performed using either enzymatic (13), or synthetic (14) acylation of [14C]oleic, [14C]ricinoleic, or [14C]vernolic acid. Dioleoyl-PC that was labeled in the sn-1 position was synthesized from sn-1-[14C]oleoyl-lyso-PC and unlabeled oleic acid as described in (14). Sn-1-oleoyl-sn-2-[14C]ricinoleoyl-DAG was synthesized from PC by the action of phospholipase C type XI from B. Cereus (Sigma Chemical Co.) as described in (15). Monovernoloyl- and divernoleoyl-DAG were synthesized from TAG extracted from seeds of Euphorbia lagascae, using the TAG-lipase (Rizhopus arrhizus, Sigma Chemical Co.) as previously described (16). Monoricinoleoyl-TAG was synthesized according to the same method using TAG extracted from Castor bean.

20

25

30

15

10

Lipid analysis. Total lipid composition of yeast were determined from cells harvested from a 40 ml liquid culture, broken in a glass-bead shaker and extracted into chloroform as described by Bligh and Dyer (17), and then separated by thin layer chromatography in hexane/diethylether/acetic acid (80:20:1) using pre-coated silica gel 60 plates (Merck). The lipid areas were located by brief exposure to I₂ vapors and identified by means of appropriate standards. Polar lipids, sterol-esters and triacylglycerols, as well as the remaining minor lipid classes, referred to as other lipids, were excised from the plates. Fatty acid methylesters were prepared by heating the dry excised material at 85 °C for 60 min in 2% (v/v) sulfuric acid in dry methanol. The methyl esters were extracted with hexane and analyzed by GLC through a 50 m

x 0.32 mm CP-Wax58-CB fused-silica column (Chrompack), with methylheptadecanoic acid as an internal standard. The fatty acid content of each fraction was quantified and used to calculate the relative amount of each lipid class. In order to determine the total lipid content, 3 ml aliquots from yeast cultures were harvested by centrifugation and the resulting pellets were washed with distilled water and lyophilized. The weight of the dried cells was determined and the fatty acid content was quantified by GLC-analyses after conversion to methylesters as described above. The lipid content was then calculated as nmol fatty acid (FA) per mg dry weight yeast.

10

15

20

25

30

Enzyme assays. Aliquots of crude microsomal fractions (corresponding to 10 nmol of microsomal PC) from developing plant seeds or yeast cells were lyophilized over night. ¹⁴C-Labeled substrate lipids dissolved in benzene were then added to the dried microsomes. The benzene was evaporated under a stream of N₂, leaving the lipids in direct contact with the membranes, and 0.1 ml of 50 mM potassium phosphate (pH 7.2) was added. The suspension was thoroughly mixed and incubated at 30°C for the time period indicated, up to 90 min. Lipids were extracted from the reaction mixture using chloroform and separated by thin layer chromatography in hexane/diethylether/acetic acid (35:70:1.5) using silica gel 60 plates (Merck). The radioactive lipids were visualized and quantified on the plates by electronic autoradiography (Instant Imager, Packard, US).

<u>Yeast cultivation.</u> Yeast cells were grown at 28°C on a rotatory shaker in liquid YPD medium (1% yeast extract, 2% peptone, 2% glucose), synthetic medium (18) containing 2% (v/v) glycerol and 2% (v/v) ethanol, or minimal medium (19) containing 16 g/l of glycerol.

The instant invention is further characterized by the following examples which are not limiting:

5

10

15

20

25

30

Acyl-CoA-independent synthesis of TAG by oil seed microsomes. A large number of unusual fatty acids can be found in oil seeds (20). Many of these fatty acids, such as ricinoleic (21) and vernolic acids (22), are synthesized using phosphatidylcholin (PC) with oleoyl or linoleoyl groups esterified to the sn-2 position, respectively, as the immediate precursor. However, even though PC can be a substrate for unusual fatty acid synthesis and is the major membrane lipids in seeds, unusual fatty acids are rarely found in the membranes. Instead, they are mainly incorporated into the TAG. A mechanism for efficient and selective transfer of these unusual acyl groups from PC into TAG must therefore exist in oil seeds that accumulate such unusual fatty acids. This transfer reaction was biochemically characterized in seeds from castor bean (Ricinus communis) and Crepis palaestina, plants which accumulate high levels of ricinoleic and vernolic acid, respectively, and sunflower (Helianthus annuus), a plant which has only common fatty acids in its seed oil. Crude microsomal fractions from developing seeds were incubated with PC having ¹⁴C-labeled oleoyl, ricinoleoyl or vernoloyl groups at the *sn-*2 position. After the incubation, lipids were extracted and analyzed by thin layer chromatography. We found that the amount of radioactivity that was incorporated into the neutral lipid fraction increased linearly over a period of 4 hours (data not shown). The distribution of [14C]acyl groups within the neutral lipid fraction was analyzed after 80 min (Fig. 1). Interestingly the amount and distribution of radioactivity between diffferent neutral lipids were strongly dependent both on the plant species and on the type of [14C]acyl chain. Thus, sunflower microsomes incorporated most of the label into DAG, regardless of the type of [14Clacvl group. In contrast, R. communis microsomes preferentially incorporated [14C]ricinoleoyl and [14C]vernoloyl groups into TAG, while [14C]oleyl groups mostly were found in DAG. C. palaestina microsomes, finally, incorporated only [14C]vernolyol groups into TAG, with [14C]ricinoleyl groups being found mostly as free fatty acids, and [14C]oleyl groups in DAG. This shows that the high in vivo levels of ricinoleic acid and vernolic acid in the TAG pool of R. communis

and *C. palaestina*, respectively, can be explained by an efficient and selective transfer of the corresponding acyl groups from PC to TAG in these organisms.

The in-vitro synthesis of triacylglycerols in microsomal preparations of developing castor bean is summarized in table 1.

5

10

15

20

25

30

PDAT: a novel enzyme that catalyzes acyl-CoA independent synthesis of TAG. It was investigated if DAG could serve both as an acyl donor as well as an acyl acceptor in the reactions catalyzed by the oil seed microsomes. Thererfore, unlabeled divernoloyl-DAG was incubated with either sn-1-oleoyl-sn-2-[14C]ricinoleoyl-DAG or sn-1-oleoyl-sn-2-[14C]ricinoleoyl-PC in the presence of R. communis microsomes. The synthesis of TAG molecules containing both [14C]ricinoleoyl and vernoloyl groups was 5 fold higher when [14C]ricinoleoyl-PC served as acyl donor as compared to [14C]ricinoleoyl-DAG (fig.1B). These data strongly suggests that PC is the immediate acyl donor and DAG the acyl acceptor in the acyl-CoA-independent formation of TAG by oil seed microsomes. Therefore, this reaction is catalyzed by a new enzyme which we call phospholipid: diacylglycerol acyltransferase (PDAT).

<u>PDAT activity in yeast microsomes.</u> Wild type yeast cells were cultivated under conditions where TAG synthesis is induced. Microsomal membranes were prepared from these cells and incubated with *sn*-2-[¹⁴C]-ricinoleoyl-PC and DAG and the ¹⁴C-labeled products formed were analyzed. The PC-derived [¹⁴C]ricinoleoyl groups within the neutral lipid fraction mainly were found in free fatty acids or TAG, and also that the amount of TAG synthesized was dependent on the amount of DAG that was added to the reaction (Fig.2). The *in vitro* synthesis of TAG containing both ricinoleoyl and vernoloyl groups, a TAG species not present *in vivo*, from exogenous added *sn*-2-[¹⁴C]ricinoleoyl-PC and unlabelled vernoloyl-DAG (Fig. 2, lane 3) clearly demonstrates the existence of an acyl-CoA-independent synthesis of TAG involving PC and DAG as

substrates in yeast microsomal membranes. Consequently, TAG synthesis in yeast can be catalyzed by an enzyme similar to the PDAT found in plants.

The PDAT encoding gene in yeast.

10

15

20

25

30

A gene in the yeast genome (YNR008w) is known, but nothing is known about the function of YNR008w, except that the gene is not essential for growth under normal circumstances. Microsomal membranes were prepared from the yeast strain FVKT004-04C(AL) (8) in which this gene with unknown function had been disrupted. PDAT activity in the microsomes were assayed using PC with radiolabelled fatty acids at the sn-2 position. The activity was found to be completely absent in the disruption strain (Fig. 2 lane 4). Significantly, the activity could be partially restored by the presence of YNR008w on the single copy plasmid pUS1 (Fig. 2 lane 5). Moreover, phosphatidylethanolamine (PE) were efficiently incorporated into TAG by microsomes from the wild type strain whereas no incorporation occured from this substrate in the mutant strain (data not shown). This shows that YNR008w encodes a yeast PDAT which catalyzes the transfer of an acyl group from the sn-2 position of phospholipids to DAG, thus forming TAG. It should be noted that no cholesterol esters were formed from radioactive PC even in incubations with added ergosterols, nor were the amount of radioactive free fatty acids formed from PC affected by disruption of the YNR008w gene (data not shown). This demonstrates that yeast PDAT do not have cholesterol ester synthesising or phospholipase activities.

Increased TAG content in yeast cells that overexpress PDAT. The effect of overexpressing the PDAT-encoding gene was studied by transforming a wild type yeast strain with the pUS4 plasmid in which the gene is expressed from the galactose-induced GAL1:TPK2 promoter. Cells containing the empty expression vector were used as a control. The cells were grown in synthetic glycerol-ethanol medium, and expression of the gene was induced after either 2 hours (early log phase) or 25 hours (stationary phase) by the addition of

galactose. The cells were then incubated for another 21 hours, after which they were harvested and assays were performed. We found that overexpression of PDAT had no significant effect on the growth rate as determined by the optical density. However, the total lipid content, measured as µmol fatty acids per mg yeast dry weight, was 47% (log phase) or 29% (stationary phase) higher in the PDAT overexpressing strain than in the control. Furthermore, the polar lipid and sterolester content was unaffected by overexpression of PDAT. Instead, the elevated lipid content in these cells is entirely due to an increased TAG content (Fig. 3A,B). Thus, the amount of TAG was increased by 2-fold in PDAT overexpressing early log phase cells and by 40% in stationary phase cells. It is interesting to note that a significant increase in the TAG content was achieved by overexpressing PDAT even under conditions (i.e. in stationary phase) where DAGAT is induced and thus contributes significantly to TAG synthesis. In vitro PDAT activity assayed in microsomes from the PDAT overexpressing strain was 7-fold higher than in the control strain, a finding which is consistent with the increased levels of TAG that we observed in vivo (Fig. 3C). These results clearly demonstrate the potential use of the PDAT gene in increasing the oil content in transgenic organisms.

10

15

20

30

Substrate specificity of yeast PDAT. The substrate specificity of yeast PDAT was analyzed using microsomes prepared from the PDAT overexpressing strain (see Fig. 4). The rate of TAG synthesis, under conditions given in figure 4 with di-oleoyl-PC as the acyl-donor, was 0.15 nmol per min and mg protein. With both oleoyl groups of PC labeled it was possible, under the given assay conditions, to detect the transfer of 11 pmol/min of [14C]oleoyl chain into TAG and the formation of 15 pmol/min of lyso-PC. In microsomes from the PDAT-deficient strain, no TAG at all and only trace amounts of lyso-PC was detected, strongly suggesting that yeast PDAT catalyses the formation of equimolar amounts of TAG and lyso-PC when supplied with PC and DAG as substrates. The fact that somewhat more lyso-PC than TAG is formed can be

explained by the presence of a phospholipase in yeast microsomes, which produces lyso-PC and unesterified fatty acids from PC.

The specificity of yeast PDAT for different acyl group positions was investigated by incubating the microsomes with di-oleoyl-PC carrying a [14Clacyl group either at the sn-1 position (Fig. 4A bar 2) or the sn-2 position (Fig. 4A bar 3). We found that the major ¹⁴C-labeled product formed in the former case was lyso-PC, and in the latter case TAG. We conclude that yeast PDAT has a specificity for the transfer of acyl groups from the sn-2 position of the phospholipid to DAG, thus forming sn-1-lyso-PC and TAG. Under the given assay conditions, trace amounts of ¹⁴C-labelled DAG is formed from the sn-1 labeled PC by the reversible action of a CDP-choline : choline phosphotransferase. This labeled DAG can then be further converted into TAG by the PDAT activity. It is therefore not possible to distinguish whether the minor amounts of labeled TAG that is formed in the presence of di-oleoyl-PC carrying a [14C]acyl group in the sn-1 position, is synthesized directly from the sn-1-labeled PC by a PDAT that also can act on the sn-1 postion, or if it is first converted to sn-1-labeled DAG and then acylated by a PDAT with strict selectivity for the transfer of acyl groups at the sn-2 position of PC. Taken together, this shows that the PDAT encoded by YNR008w catalyses an acvi transfer from the sn-2 position of PC to DAG, thus causing the formation of TAG and lyso-PC.

10

15

20

25

30

The substrate specificity of yeast PDAT was further analyzed with respect to the headgroup of the acyl donor, the acyl group transferred and the acyl chains of the acceptor DAG molecule. The two major membrane lipids of *S. cerevisiae* are PC and PE, and as shown in Fig. 4B (bars 1 and 2), dioleoyl-PE is nearly 4-fold more efficient than dioleoyl-PC as acyl donor in the PDAT-catalyzed reaction. Moreover, the rate of acyl transfer is strongly dependent on the type of acyl group that is transferred. Thus, a ricinoleoyl group at the *sn*-2 position of PC is 2.5 times more efficiently transferred into TAG than an oleoyl

WO 00/60095 21 PCT/EP00/02701

group in the same position (Fig. 4B bars 1 and 3). In contrast, yeast PDAT has no preference for the transfer of vernoloyl groups over oleoyl groups (Fig. 4B bars 1 and 4). The acyl chain of the acceptor DAG molecule also affects the efficiency of the reaction. Thus, DAG with a ricinoleoyl or a vernoloyl group is a more efficient acyl acceptor than dioleoyl-DAG (Fig. 4B bars 1, 5 and 6). Taken together, these results clearly show that the efficiency of the PDAT-catalyzed acyl transfer is strongly dependent on the properties of the substrate lipids.

<u>PDAT genes.</u> Nucleotide and amino acid sequences of several PDAT genes are given as SEQ ID No. 1 through 15. Futher provisional and/or partial sequences are given as SEQ ID NO 1a through 5a and 1b through 11b, respectively. One of the Arabidopsis genomic sequences (SEQ ID NO. 4) identfied an Arabidopsis EST cDNA clone; T04806. This cDNA clone was fully characterised and the nucleotide sequence is given as SEQ ID NO. 5. Based on the sequence homology of the T04806 cDNA and the *Arabidopsis thaliana* genomic DNA sequence (SEQ ID NO 4) it is apparent that an additional A is present at position 417 in the cDNA clone (data not shown). Excluding this nucleotide would give the amino acid sequence depicted in SEQ ID NO. 12.

10

15

20

25

30

Increased TAG content in seeds of Arabidopsis thaliana that express the yeast PDAT. For the expression of the yeast PDAT gene in Arabidopsis thaliana an EcoRI fragment from the pBluescript-PDAT was cloned together with napin promotor (25) into the vector pGPTV-KAN (26). A plasmid (pGNapPDAT) having the yeast PDAT gene in the correct orientation was identified and transformed into Agrobacterium tumefaciens. These bacteria were used to transform Arabidopsis thaliana columbia (C-24) plants using the root transformation method (27). Plants transformed with an empty vector were used as controls.

First generation seeds (T1) were harvested and germinated on kanamycin containing medium. Second generation seeds (T2) were pooled from individual plants and their fatty acid contents analysed by quantification of their methyl

esthers by gas liquid chromatography after methylation of the seeds with 2% sulphuric acid in methanol at 85 °C for 1,5 hours. Quantification was done with heptadecanoic acid methyl esters as internal standard.

From the transformation with pGNapPDAT one T1 plant (26-14) gave raise to seven T2 plants of which 3 plants yielded seeds with statistically (in a mean difference two-sided test) higher oil content than seeds from T2 plants generated from T1 plant 32-4 transformed with an empty vector (table 2).

References cited in the description:

5

10

20

- 1. Bell, R. M. & Coleman, R. A. (1980) Annu. Rev. Biochem. 49, 459-487.
- 2. Stymne, S. & Stobart, K. (1987) in *The biochemistry of plants: a comprehensive treatsie, Vol. 9*, ed. Stumpf, P. K. (Academic Press, New York), pp. 175-214.
 - 3. Cases, S. et al. (1998) Proc. Natl. Acad. Sci. U S A 95, 13018-13023.
 - 4. Hobbs, D. H., Lu, C. & Hills, M. J. (1999) FEBS Lett. 452, 145-9
 - 5. Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G. & Taylor, D. C. (1999) *Plant J.* **19**, 645-653.
 - 6. Lardizabal, K., Hawkins, D., Mai, J., & Wagner, N. (1999) Abstract presented at the Biochem. Mol. Plant Fatty Acids Glycerolipids Symposium, South Lake Tahoe, USA.
 - 7. Thomas, B. J. & Rothstein, R. (1989) Cell 56, 619-630.
- 15 8. Entian, K.-D. & Kötter, P. (1998) Meth. Microbiol. 26, 431-449.
 - 9. Kern, L., de Montigny, J., Jund, R. & Lacroute, F. (1990) Gene 88, 149-157.
 - 10. Ronne, H., Carlberg, M., Hu, G.-Z. & Nehlin, J. O. (1991) *Mol. Cell. Biol.* **11**, 4876-4884.
 - 11. Stobart, K. & Stymne, S. (1990) in *Method in Plant Biochemistry, vol 4,* eds. Harwood, J. L. & Bowyer, J. R. (Academic press, London), pp. 19-46.
 - 12. Bafor, M., Smith, M. A., Jonsson, L., Stobrt, A. K. & Stymne, S. (1991) *Biochem. J.* **280**, 507-514.
 - 13. Banas, A., Johansson, I. & Stymne, S. (1992) Plant Science 84, 137-144.
 - 14. Kanda, P. & Wells, M. A. (1981) J. Lipid. Res. 22, 877-879.
- 25 15. Ståhl, U., Ek, B. & Stymne, S. (1998) Plant Physiol. 117, 197-205.
 - 16. Stobart, K., Mancha, M. & Lenman M, Dahlqvist, A. & Stymne, S. (1997) *Planta* **203**, 58-66.
 - 17. Bligh, E. G. & Dyer, W. J. (1959) Can. J. Biochem. Physiol. 37, 911-917.
 - 18. Sherman, F., Fink, G. R. & Hicks, J. B. (1986) in *Laboratory Course Manual for Methods in Yeast Genentics* (Cold Spring Harbor Laboratory)
 - 19. Meesters, P. A. E. P., Huijberts, G. N. M. and Eggink, G. (1996) Appl. Microbiol. Biotechnol. 45, 575-579.
 - 20. van de Loo, F. J., Fox, B. G. & Sommerville, C. (1993), in *Lipid metabolism in plants*, ed. Moore, T. S. (CRC Press, Inc.), pp. 91-126.
- 21. van de Loo, F. J., Broun, P., Tumer, S. & Sommerville, S. (1995) Proc. Natl.

- Acad. Sci. U S A 95, 6743-6747.
- 22. Lee, M., Lenman, M., Banas, A., Bafor, M., Singh, S., Schweizer, M., Nilsson, R., Liljenberg, C., Dahlqvist, A., Gummeson, P-O., Sjödahl, S., Green, A., and Stymne, S. (1998) *Science* **280**, 915-918.
- 23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D.
 G. (1997) *Nucl. Acids Res.* 24, 4876-4882.
 - 24. Saitou, N. & Nei, M. (1987) Mol. Biol. Evol. 4, 406-425.
 - 25. Stålberg, K., Ellerström, M., Josefsson, L., & Rask, L. (1993) Plant Mol. Biol. 23, 671
- 26. Becker, D., Kemper, E., Schell, J., Masterson, R. (1992) Plant Mol. Biol. 20, 1195
 - 27.D. Valvekens, M. Van Montagu, and Van Lusbettens (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5536

Description of Figures

FIG. 1.

Metabolism of 14C-labeled PC into the neutral lipid fraction by plant microsomes. (A) Microsomes from developing seeds of sunflower, R. communis and C. palaestina were incubated for 80 min at 30°C with PC (8 nmol) having oleic acid in its sn-1 position, and either 14C-labeled oleic. ricinoleic or vernolic acid in its sn-2 position. Radioactivity incorporated in TAG (open bars), DAG (solid bars), and unsterified fatty acids (hatched bars) was quantified using thin layer chromatography followed by electronic autoradiography, and is shown as percentage of added labeled substrate. (B) Synthesis in vitro of TAG carrying two vernoloyl and one [14C]ricinoleoyl group by microsomes from R. communis. The substrates added were unlabeled divernoloyI-DAG (5 nmol), together with either sn-1-oleoyI-sn-2-[14C]ricinoleovI-DAG (0.4 nmol, 7700 dpm/nmol) or sn-1-oleoyl-sn-2-[14C]ricinoleoyl-PC (0.4 nmol, 7700 dpm/nmol). The microsomes were incubated with the substrates for 30 min at 30°C, after which samples were removed for lipid analysis as described in the section "general methods". The data shown are the average of two experiments.

20

30

10

15

FIG. 2.

PDAT activity in yeast microsomes, as visualized by autoradiogram of neutral lipid products separated on TLC. Microsomal membranes (10 nmol of PC) from the wild type yeast strain FY1679 (lanes 1-3), a congenic yeast strain (FVKT004-04C(AL)) that is disrupted for YNR008w (lane 4) or the same disruption strain transformed with the plasmid pUS1, containing the YNR008w gene behind its native promotor (lane 5), were assayed for PDAT activity. As substrates, we used 2 nmol *sn*-1-oleoyl-*sn*-2-[¹⁴C]ricinoleoyl-PC together with either 5 nmol of dioleoyl-DAG (lanes 2, 4 and 5) or *rac*-oleoyl-vernoleoyl-DAG (lane 3). The enzymatic assay and lipid analysis was performed as described in Materials and Methods. The cells were precultured for 20 h in liquid YPD

medium, harvested and re-suspended in an equal volume of minimal medium (19) containing 16 g/l glycerol. The cells were then grown for an additional 24 h prior to being harvested. Selection for the plasmid was maintained by growing the transformed cells in synthetic medium lacking uracil (18). Abbreviations: 1-OH-TAG, monoricinoleoyl-TAG; 1-OH-1-ep-TAG, monoricinoleoyl-monovernoloyl-TAG; OH-FA, unesterified ricinoleic acid.

Fig. 3.

10

15

20

25

30

Lipid content (A,B) and PDAT activity (C) in PDAT overexpressing yeast cells. The PDAT gene in the plasmid pUS4 was overexpressed from the galactoseinduced GAL1-TPK2 promotor in the wild type strain W303-1A (7). Its expression was induced after (A) 2 hours or (B) 25 hours of growth by the addition of 2% final concentration (w/v) of galactose. The cells were then incubated for another 22 hours before being harvested. The amount of lipids of the harvested cells was determined by GLC-analysis of its fatty acid contents and is presented as µmol fatty acids per mg dry weight in either TAG (open bar), polar lipids (hatched bar), sterol esters (solid bar) and other lipids (striped bar). The data shown are the mean values of results with three independent yeast cultures. (C) In vitro synthesis of TAG by microsomes prepared from yeast cells containing either the empty vector (vector) or the PDAT plasmid (+ PDAT). The cells were grown as in Fig. 3A. The substrate lipids dioleoyl-DAG (2.5 nmol) and sn-1-oleoyl-sn-2-[14C]-oleoyl-PC (2 nmol) were added to aliquots of microsomes (10 nmol PC), which were then incubated for 10 min at 28 °C. The amount of label incorporated into TAG was quantified by electronic autoradiography. The results shown are the mean values of two experiments.

FIG. 4.

Substrate specificity of yeast PDAT. The PDAT activity was assayed by incubating aliquots of lyophilized microsomes (10 nmol PC) with substrate lipids at 30°C for 10 min (panel A) or 90 min (panel B). Unlabeled DAG (2.5 nmol) was used as substrates together with different labeled phospholipids, as shown

in the figure. (A) Sn-position specificity of yeast PDAT regarding the acyl donor substrate. Dioleoyl-DAG together with either sn-1-[14C]oleoyl-sn-2-[14C]oleoyl-PC (di- $[^{14}C]$ -PC), sn-1- $[^{14}C]$ oleoyl-sn-2-oleoyl-PC (sn1- $[^{14}C]$ -PC) or sn-1-oleoylsn-2-[14C]oleoyl-PC (sn2-[14C]-PC). (B) Specificity of yeast PDAT regarding phospholipid headgroup and of the acyl composition of the phospholipid as well as of the diacylglycerol. Dioleoyl-DAG together with either sn-1-oleoyl-sn-2-[14C]oleoyl-PC (oleoyl-PC), sn-1-oleoyl-sn-2-[14C]oleoyl-PE (oleoyl-PE), sn-1oleoyl-sn-2-[14C]ricinoleoyl-PC (ricinoleoyl-PC) or sn-1-oleovl-sn-2-[14C]vernoloyl-PC (vernoloyl-PC). In the experiments presented in the 2 bars to the far right, monoricinoleoyl-DAG (ricinoleoyl-DAG or mono-vernoloyl-DAG (vernoloyl-DAG) were used together with sn-1-oleoyl-sn-2-[14C]-oleoyl-PC. The label that was incorporated into TAG (solid bars) and lyso-PC (LPC, open bars) was quantified by electronic autoradiography. The results shown are the mean values of two experiments. The microsomes used were from W303-1A cells overexpressing the PDAT gene from the GAL1-TPK2 promotor, as described in Fig. 3. The expression was induced at early stationary phase and the cells were harvested after an additional 24 h.

20 TAB.1:

10

15

30

In vitro synthesis of triacylglycerols in microsomal preparations of developing castor bean. Aliquots of microsomes (20 nmol PC) were lyophilised and substrate lipids were added in benzene solution: (A) 0.4 nmol [14 C]-DAG (7760 dpm/nmol) and where indicated 1.6 nmol unlabelled DAG; (B) 0.4 nmol [14 C]-DAG (7760 dpm/nmol) and 5 nmol unlabelled di-ricinoleoyl-PC and (C) 0.25 nmol [14 C]-PC (4000 dpm/nmol) and 5 nmol unlabelled DAG. The benzene was evaporated by N₂ and 0.1 ml of 50 mM potassium phosphate was added, thoroughly mixed and incubated at 30 °C for (A) 20 min.; (B) and (C) 30 min.. Assays were terminated by extraction of the lipids in chloroform. The lipids were then separated by thin layer chromatography on silica gel 60 plates

(Merck; Darmstadt, Germany) in hexan/diethylether/acetic 35:70:1.5. The radioactive lipids were visualised and the radioactivity quantified on the plate by electronic autoradiography (Instant Imager, Packard, US). Results are presented as mean values of two experiments.

5

Radioactivity in different triacylglycerols (TAG) species formed. Abbreviations used: 1-OH-, mono-ricinoleoyl-; 2-OH, di-ricinoleoyl-; 3-OH-, triricinoleoyl; 1-OH-1-ver-, mono-ricinoleoly-monovernoleoyl-; 1-OH-2-ver-, mono-ricinoleoyl-divernoleoyl-. Radiolabelled DAG and PC were prepared enzymatically. The radiolabelled ricinoleoyl group is attached at the sn-2-position of the lipid and unlabelled oleoyl group at the sn-1-position. Unlabelled DAG with vernoleoyl- or ricinoleoyl chains were prepared by the action of TAG lipase (6) on oil of Euphorbia lagascae or Castor bean, respectively. Synthetic di-ricinoleoyl-PC was kindly provided from Metapontum Agribios (Italy).

15

20

10

TAB.2:

Total fatty acids per mg of T2 seeds pooled from individual *Arabidopsis thaliana* plants transformed with yeast PDAT gene under the control of napin promotor (26-14) or transformed with empty vector (32-4).

* = stastistical difference between control plants and PDAT transformed plants in a mean difference two-sided test at $\alpha = 5$.

15

30

Description of the SEQ ID:

SEQ ID NO. 1: Genomic DNA sequence and suggested amino acid sequence of the Saccharomyces cerevisiae PDAT gene, YNR008w, with GenBank accession number Z71623 and Y13139, and with nucleotide ID number 1302481.

SEQ ID NO. 2: The amino acid sequence of the suggested open reading frame YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 3: Genomic DNA sequence of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 4: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AB006704.

SEQ ID NO. 5: Nucleotide sequence of the Arabidopsis thaliana cDNA clone with GenBank accession number T04806, and nucleotide ID number 315966.

SEQ ID NO. 6: Predicted amino acid sequence of the Arabidopsis thaliana cDNA clone with GenBank accession number T04806.

SEQ ID NO. 7: Nucleotide and amino acid sequence of the Zea mays EST clone with GenBank accession number Al491339, and nucleotide ID number 4388167.

25 SEQ ID NO. 8: Predicted amino acid sequence of the Zea mays EST clone with GenBank accession number Al491339, and nucleotide ID number 4388167.

SEQ ID NO. 9: DNA sequence of part of the Neurospora crassa EST clone W07G1, with GenBank accession number Al398644, and nucleotide ID number 4241729.

SEQ ID NO. 10: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AC004557.

30

SEQ ID NO. 11: Genomic DNA sequence of part of the Arabidopsis thaliana locus with GenBank accession number AC003027.

SEQ ID NO. 12: DNA sequence of part of the Lycopersicon esculentum cDNA clone with GenBank accession number Al486635.

SEQ ID NO. 13: Amino acid sequence of the Schizosaccharomyces pombe putative open reading frame CAA22887 of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 14: Amino acid sequence of the Arabidopsis thaliana putative open reading frame AAC80628 derived from the Arabidopsis thaliana locus with GenBank accession number AC004557.

SEQ ID NO 15: Amino acid sequence of the Arabidopsis thaliana putative open reading frame AAD10668 derived from the Arabidopsis thaliana locus with GenBank accession number AC003027.

Further provisional and/or partial sequences are defined through the following SEQ IDs:

25 SEQ ID NO. 1a: The amino acid sequence of the yeast ORF YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 2a: Amino acid sequence of the region of the Arabidopsis thaliana genomic sequence (AC004557).

SEQ ID NO. 3a: Amino acid sequence of the region of the Arabidopsis thaliana genomic sequence (AB006704).

SEQ ID NO. 4a: The corresponding genomic DNA sequence and amino acid sequence of the yeast ORF YNROO8w from Saccharomyces cerevisiae.

SEQ ID NO. 5a: The amino acid sequence of the yeast ORF YNROO8w from Saccharomyces cerevisiae derived form the corresponding genomic DNA sequence.

10

SEQ ID NO. 1b: Genomic DNA sequence of the Saccharomyces cerevisiae PDAT gene, YNR008w, genebank nucleotide ID number 1302481, and the suggested YNR008w amino acid sequence.

15

30

SEQ ID NO. 2b: The suggested amino acid sequence of the yeast gene YNR008w from Saccharomyces cerevisiae.

SEQ ID NO. 3b: Genomic DNA sequence of the Schizosaccharomyces pombe gene SPBC776.14.

SEQ ID NO. 4b: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AB006704.

25 SEQ ID NO. 5b: Nucleotide sequence and the corresponding amino acid sequence of the Arabidopsis thaliana EST-clone with genebank accession number T04806, and ID number 315966.

SEQ ID NO. 6b: Nucleotide and amino acid sequence of the Zea mays cDNA clone with genebank ID number 4388167.

SEQ ID NO. 7b: Amino acid sequence of the Zea mays cDNA clone with genebank ID number 4388167.

SEQ ID NO. 8b: DNA sequence of part of the Neurospora crassa cDNA clone WO7G1, ID number 4241729.

SEQ ID NO. 9b: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC004557.

SEQ ID NO. 10b: Genomic DNA sequence of part of the Arabidopsis thaliana locus with genebank accession number AC003027.

SEQ ID NO. 11b: DNA sequence of part of the Lycopersicon esculentum cDNA clone with genebank accession number Al486635.

15

20

25

Claims

- An enzyme catalysing in an acyl-CoA-independent reaction the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway
 for the production of triacylglycerol.
 - An enzyme according to claim 1, comprising an amino acid sequence as set forth in SEQ ID No. 2 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.

10

20

- An enzyme according to claims 1 or 2 designated as phospholipid:diacylglycerol acyltransferase (PDAT).
- 4. An enzyme according to claims 1 to 3, comprising an amino acid sequence as set forth in SEQ ID No. 1a, 2b or 5a or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
 - 5. An enzyme according to claims 1 to 4, comprising an amino acid sequence selected from the group consisting of sequences as set forth in SEQ ID No. 2a, 3a, 5b, 6, 7b, 8, 13, 14 or 15 or a functional fragment, derivate, allele, homolog or isoenzyme thereof.
 - 6. An enzyme according to claims 1 to 5, comprising an amino acid sequence encoded through a nucleotide sequence, a portion, derivate, allele or homolog thereof selected from the group consisting of sequences as set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12 or a functional fragment, derivate, allele, homolog or isoenzyme of the enzyme encoding amino acid sequence.
- 30 7. A nucleotide sequence encoding an enzyme catalysing in an acyl-CoAindependent reaction the transfer of fatty acids from phospholipids to

diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

- 8. A nucleotide sequence according to claim 7 encoding an enzyme designated as phospholipid:diacylglycerol acyltransferase (PDAT).
 - 9. A nucleotide sequence according to claims 7 or 8, selected from the group consisting of sequences as set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 9b, 10, 10b or 11 or a portion, derivate, allele or homolog thereof.

10

10. A partial nucleotide sequence corresponding to a fullength nucleotide sequence according to claims 7 to 9, selected from the group consisting of sequences as set forth in SEQ ID No. 5, 5b, 6b, 7, 8b, 9, 11b or 12 or a portion, derivate, allele or homolog thereof.

15

11. A nucleotide sequence according to claims 7 to 10, comprising a nucleotide sequence which is at least 40% homologous to a nucleotide sequence selected form the group consisting of those sequences set forth in SEQ ID No. 1, 1b, 3, 3b, 4, 4a, 4b, 5, 5b, 6b, 7, 8b, 9, 9b, 10, 10b, 11, 11b or 12.

- 12. A gene construct comprising a nucleotide sequence according to claims 7 to 11 operably linked to a heterologous nucleic acid.
- 13. A vector comprising a nucleotide sequence according to claims 7 to 11 or a gene construct according to claim 12.
 - 14. A vector according to claim 13, which is an expression vector.
- 15. A vector according to claims 13 or 14, further comprising a selectable marker gene and/or nucleotide sequences for the replication in a host cell or the integration into the genome of the host cell.

16. A transgenic cell or organism containing a nucleotide sequence according to claims 7 to 11 and/or a gene construct according to claim 12 and/or a vector according to claims 13 to 15.

5

- 17. A transgenic cell or organism according to claim 16 which is an eucaryotic cell or organism.
- 18. A transgenic cell or organism according to claims 16 or 17 which is a yeast cell or a plant cell or a plant.
 - 19. A transgenic cell or organism according to claims 16 to 18 having an altered biosynthetic pathway for the production of triacylglycerol.
- 15 20. A transgenic cell or organism according to claims 16 to 19 having an altered oil content.
 - 21. A transgenic cell or organism according to claims 16 to 20 wherein the activity of PDAT is altered.

- 22. A transgenic cell or organism according to claims 16 to 21 wherein the altered activity of PDAT is characterized by an alteration in gene expression, catalytic activity and/or regulation of activity of the enzyme.
- 23. A transgenic cell or organism according to claims 16 to 22 wherein the altered biosynthetic pathway for the production of triacylglycerol is characterized by the prevention of accumulation of undesirable fatty acids in the membrane lipids.
- 24. A process for the production of triacylglycerol, comprising growing a transgenic cell or organism according to claims 16 to 23 under conditions

whereby the said nucleotide sequence according to claims 7 to 11 is expressed.

- 25. Triacylglycerols produced by a process according to claim 24.
- 26. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the production of triacylglycerol and/or triacylglycerols with uncommon fatty acids.
- 27. Use of a nucleotide sequence according to claims 7 to 11 and/or an enzyme according to claims 1 to 6 for the transformation of any cell or organism in order to be expressed in this cell or organism and result in an altered, preferably increased oil content of this cell or organism.

Fig. 1:

Radioactivity in ricinoleoyl-vernoloyl-TAG (% of added)

Fig 2

SUBSTITUTE SHEET (RULE 26)

Relative TAG-synthesis

SUBSTITUTE SHEET (RULE 26)

6,0

mono-vernoleoyl-DAG

2'9

di-vernoleoyl-DAG

4,5

di-ricinoleoyl-DAG

C mono-[14C]-ricinoleoyl-PC

C mono-[14C]-ricinoleoyl-PC

C mono-[14C]-ricinoleoyl-PC

C mono-[14C]-ricinoleoyl-PC

8,6

di-oleoyl-DAG

C mono-[14C]-ricinoleoyl-PC

5,7

mono-ricinoleoyl-DAG

0,3

6,8

none

B mono-[14C]-ricinoleoyl-PC

Tables Tab. 1: 1-OH-TAG

2,8

3,2

A mono-[14C]-ricinoleoyl-DAG mono-vernoleoyl-DAG

A mono-[14C]-ricinoleoyl-DAG di-vernoleoyl-DAG

A mono-[14C]-ricinoleoyl-DAG di-ricinoleoyl-PC

A mono-[14C]-ricinoleoyl-DAG mono-ricinoleoyl-DAG

Substrate added [14C]-lipid⁽²⁾ unlabelled lipid⁽²⁾

Tab. 2:

T1 plant deviation	T2 plant number	nmol fatty acids per mg seed	standard
32-4	1	1277	<u>+</u> 11 (n=2)
	4	1261	<u>+</u> 63 (n=3)
	5	1369	$\pm 17 \text{ (n=3)}$
	6	1312	<u>+</u> 53 (n=4)
	7	1197	<u>+</u> 54 (n=5)
	8	1240	±78 (n=4)
	9	1283	$\pm 54 (n=5)$
	10	1381	±35 (n=5)
26-14	1	1444	±110 (n=4)
20-14	2	1617*	$\pm 109 (n=4)$
	3	1374	$\pm 37 (n=2)$
	5	1562*	$\pm 70 (n=4)$
	6	1393	\pm 77 (n=4)
	7	1433	<u>+</u> 98 (n=4)
	8	1581*	±82 (n=4)

Sequence Listing

<211 <212 <213 <221	<pre><210> 1 <211> 1986 <212> genomic DNA <213> Saccharomyces cerevisiae <221> CDS <222> (1)(1983)</pre>															
<400	> 1															
						aga Arg										48
						ggt Gly		Val					Glu			96
			20					25					30			
						cag Gln										144
						aga Arg 55										192
						aga Arg										240
						ttc Phe										288
				Val		aat Asn			Ser					Asn		336
			Asp			: aaa 1 Lys		Tyr					Lys			384
		Glr				tcg Ser 135	Phe					Gln			aac Asn	432

								2	/ 33							
tac	tcc	aca	tct	tct	tta	gat	gat	ctc	agt	gaa	aat	ttt	gcc	gtt	ggt	480
Tyr	Ser	Thr	Ser	Ser	Leu	qaA	Asp	Leu	Ser		Asn	Phe	Ala	Val		
145					150					155					160	
aaa	caa	ctc	tta	cgt	gat	tat	aat	atc	gag	gcc	aaa	cat	cct	gtt	gta	528
Lys	Gln	Leu	Leu	Arg	Asp	Tyr	Asn	Ile	Glu	Ala	Lys	His	Pro	Val	Val	
				165					170					175		
atg	gtt	cct	ggt	gtc	att	tct	acg	gga	att	gaa	agc	tgg	gga	gtt	att	576
Met	Val	Pro	Gly	Val	Ile	Ser	Thr	Gly	Ile	Glu	Ser	Trp	Gly	Val	Ile	
			180					185					190			
gga	gac	gat	gag	tgc	gat	agt	tct	gcg	cat	ttt	cgt	aaa	cgg	ctg	tgg	624
Gly	Asp	qaA	Glu	Cys	Asp	Ser	Ser	Ala	His	Phe	Arg	Lys	Arg	Leu	Trp	
		195					200					205				
gga	agt	ttt	tac	atg	ctg	aga	aca	atg	gtt	atg	gat	aaa	gtt	tgt	tgg	672
Gly	Ser	Phe	Tyr	Met	Leu	Arg	Thr	Met	Val	Met	Asp	Lys	Val	Cys	Trp	
	210					215					220					
ttg	aaa	cat	gta	atg	tta	gat	cct	gaa	aca	ggt	ctg	gac	сса	. ccg	aac	720
Leu	Lys	His	Val	Met	Leu	Asp	Pro	Glu	Thr	Gly	Leu	Asp	Pro	Pro	Asn	
225	•				230					235	;				240	
ttt	acg	cta	. cgt	gca	. gca	cag	ggc	ttc	gaa	ı tca	act	gat	tat	ttc	atc	768
Phe	Thr	Leu	Arg	Ala	Ala	Gln	Gly	Phe	Glu	ser	Thr	Asp	тут			
				245	•				250)				255	5	
							aaa									816
Ala	a Gly	Tyr	Trp	Ile	Trp	Asr	l Lys			e Glr	n Asr	Leu			Ile	
			260)				265	;				270) .		
ggo	: tat	gaa		aat	aaa	ato	g acg	, agt	gct	gcg	j tat	gat	tgg	agg	g ctt	864
G17	y Tyr	Glu	Pro	Asr	Lys	Met			Ala	a Ala	a Tyr			Arg	J Leu	
		275	;				280)				285	5			
gca	a tat	tta	gat	cta	a gaa	a aga	a cgc	gat	agg	g tac	e ttt	aco	g aag	j Cta	a aag	912
Ala	a Tyr	Leu	ı Asp	Lev	ı Gli	ı Arç	g Arg	, Ası	Arg	туз	r Phe	Thi	Lys	s Le	ı Lys	
	290)				295	5				300)				
gaa	a caa	a ato	gaa	a ctg	, ttt	cat	. caa	ı ttç	g agt	ggt	gaa	a aaa	a gtt	tgt	tta	960
Glı	ı Glr	ı Ile	e Gli	ı Lev	ı Phe	e His	s Glr	ı Lei	ı Se	c Gly	/ Glu	ı Lys	s Val	l Cys	s Leu	
305	5				310)				315	5				320	
ati	gga	a cat	tct	: atg	ggt	tct	cag	g att	ato	ב בבו	tac	tt:	t ato	g aaa	a tgg	100
															Trp	
				325	5				330)				33	5	

				,				3 / :	53				•			
atc	gag	qct	σaa	ggc	cct	ctt	tac	ggt	aat	ggt	ggt	cgt	ggc	tgg	gtt	1056
-				Gly												
			340					345					350			
aac	gaa	cac	ata	gat	tca	ttc	att	aat	gca	gca	ggg	acg	ctt	ctg	ggc	1104
				Asp												
		355					360					365				
gct	cca	aag	gca	gtt	cca	gct	cta	att	agt	ggt	gaa	atg	aaa	gat	acc	1152
				Val												
	370					375					380					
															•	
att	caa	tta	aat	acg	tta	gcc	atg	tat	ggt	ttg	gaa	aag	ttc	ttc	tca	1200
Ile	Gln	Leu	Asn	Thr	Leu	Ala	Met	Tyr	Gly	Leu	Glu	Lys	Phe	Phe	Ser	
385	•				390					395					400	
aga	att	gag	aga	gta	aaa	atg	tta	caa	acg	tgg	ggt	ggt	ata	cca	tca	1248
Arg	, Ile	Glu	Arg	Val	Lys	Met	Leu	Gln	Thr	Trp	Gly	Gly	Ile	Pro	Ser	
				405					410					415		
ato	j cta	сса	aag	gga	gaa	gag	gtc	att	tgg	ggg	gat	atg	aag	tca	tct	1296
Met	: Leu	Pro	Lys	Gly	Glu	Glu	Val	Ile	Trp	Gly	. Asb	Met	Lys	Ser	Ser	
			420					425					430			
															att	1344
Se	c Glu	ı Asp	Ala	Leu	Asn	Asn	Asn	Thr	Ast	Thr	Tyr	Gly	Asn	Phe	e Ile	
		435	5				440)				445	i			
															a atg	1392
Ar			ı Arç	J Asn	Thr			Ala	i Phe	Asr			ı Leu	Thi	Met	
	450)				455	5				460)				
																4
															caa	1440
_	_	o Ala	a Ile	e Asn			Leu	ı Sei	r Ile) Gli	ı Trp) Let	ı Gln	
46	5				470)				475	5				480	
																1400
															a gaa	1488
Ar	g Ar	g Va.	l His			туг	s Ser	Phe			r Sei	c rĀs	s Asr		ı Glu	
				485	Ó				49(J				495	>	
		_	_		_	_			=						 -	1526
															a atg	1536
GI	u Lei	u Ar			ı Gil	ı Let	ı Hls			o Hl	s TT	, S€1	510		o Met	
			500	J				50)				210	,		
	.		.	 -					-	~ ~ ~ .		- +	- +~-	· >+·	a tac	1584
															a tac e Tyr	T704
GI	u Val			ı PTC	انی ر	T WIG	520		o ne	r ny:	3 TT#	529 529		, <u>.</u>	A T	
		51	ر				221	,				243	_			

								• • •						
											aag Lys			1632
											agc Ser			1680
											gtg Val			1728
				Trp							aac Asn			1776
			Thr					Lys			gat Asp 605	Arg		1824
		Gly					Ala				Ile		agc Ser	1872
	a Glu					: Ile				a Sei			gat Asp 640	1920
					g Gli				ı Se				cag Gln	1968
-	•		c cca e Pro 66	o Met		a								1986

<210> 2 <211> 661 <212> PRT <213> Saccharomyces cerevisiae <400> 2 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 25 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly 40 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 55 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 70 75 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 85 90 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 105 100 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 120 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn 135 Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 150 155 Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val 170 165 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 185 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 205 200 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 215 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 235 230 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 250 245 Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 265 260 Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 275 280 Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 300 295 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 315 305 310 Ile Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp

330

					`			0 /							
Val	Glu	Ala	Glu 340	Gly	Pro	Leu	Tyr	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
Asn	Glu	His 355	Ile	Asp	Ser	Phe	Ile 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
Ala	Pro 370	Lys	Ala	Val	Pro	Ala 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
Ile 385	Gln	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Glu	Lys	Phe	Phe	Ser 400
Arg	Ile	Glu	Arg	Val 405	Lys	Met	Leu	Gln	Thr 410	Trp	Gly	Gly	Ile	Pro 415	Ser
Met	Leu	Pro	Lys 420	Gly	Glu	Glu	Val	Ile 425	Trp	Gly	Asp	Met	Lys 430	Ser	Ser
Ser	Glu	Asp	Ala	Leu	Asn	Asn	Asn 440	Thr	qaA	Thr	Tyr	Gly 445	Asn	Phe	Ile
Arg	Phe		Arg	Asn	Thr	Ser 455		Ala	Phe	Asn	Lys 460	Asn	Leu	Thr	Met
Lys 465		Ala	Ile	Asn	Met 470		Leu	Ser	Ile	Ser 475	Pro	Glu	Trp	Leu	Gln 480
Arg	Arg	Val	His	Glu 485	Gln	Tyr	Ser	Phe	Gly 490		Ser	Lys	Asn	Glu 495	Glu
Glu	. Leu	Arg	Lys 500		Glu	Leu	His	His 505		His	Trp	Ser	Asn 510	Pro	Met
Glu	. Val	Pro		Pro	Glu	Ala	Pro 520		Met	Lys	Ile	Tyr 525		Ile	Tyr
Gly	Val		Asn	Pro	Thr	Glu 535		Ala	Tyr	· Val	Tyr 540		Glu	Glu	Asp
Asp 545		Ser	Ala	. Leu	Asn 550		ı Thr	Ile	Asp	Tyr 555		. Ser	Lys	Gln	Pro 560
Val	. Phe	e Leu	ı Thr	Glu 565		Asp	Gly	Thr	Val		Leu	. Val	Ala	His 575	Ser
Met	Cys	His	580		Ala	Glr	n Gly	Ala 585	_	Pro	Tyr	Asn	9rc 590		Gly
Ile	e Asr	1 Val		: Ile	val	. Glu	1 Met		His	s Glr	n Pro	Asp 605		, Phe	Asp
Ile	e Arg 610	-	/ Gly	/ Ala	i Lys	Sei 619		a Glu	ı His	s Val	Asp 620		e Leu	Gly	Ser
Ala 625		ı Lev	ı Ası	n Asp	Tyr 630		e Leu	ı Lys	s Ile	e Ala 635		Gly	/ Asr	ı Gly	Asp 640
Le	ı Va	l Glu	ı Pro	Arg 649		ı Lev	ı Se:	c Asi	1 Let 650		Glr	ı Trp	Val	Ser 655	Gln
Me	t Pro	o Phe	e Pro 660	o Met	:										

- <210> 3
- <211> 2312
- <212> genomic DNA <213> Schizosaccharomyces pombe

(21)/ Schizosac	charomyces pombe				
<400> 3					
	GAAGAG CAAAACTCAT	AAGAAAAAGA	AAGAAGTCAA		50
	TACCAA ATTCAAAGAA		GCTTTGAGTG		100
	TCCGAA ACACAATCTG		ATCAAGAAAA		150
	AAGATT GAATTTTATA		TTTTGGGAAT		200
· · · · · · · · · · · · · · · · · · ·	TTTTCG CTGTTGGAGA		GTTTTCGACC		250
	TAAATTT GGGAATATGC		AGACTTGTTT		300
GATGACATTA AAGG			ATGCACCTTT		350
	CTTCGC AGTCTCCTAG	•			400
	CAATGAG GGATATCGAA		TGTTATTATG		450
	CAGCTC AGGATTAGAA		TTAATAATTG		500
	TTAGGA AACGTCTTTG		TCTATGCTGA		550
	TGACAAG CAATGCTGGC		AATGCTTGAT		600
	TGGATCC GAAGGGAATT	AAGCTGCGAG	CAGCTCAGGG		650
GTTTGAAGCA GCTC			TGGAGTAAAG		700
	TGCTGCA ATTGGTTATG		CATGTTAAGT		750
	GGCGGTT ATCATATGCA		AACGTGATAA		800
ATATTTTTCA AAG			ATTGTACATA		850
	GTTGATT TCTCACTCCA	TGGGTTCACA	GGTTACGTAC		900
	GGGTTGA AGCTGAGGGC	TACGGAAATG	GTGGACCGAC		950
	CATATTG AAGCATTTAT	AAATGTGAGT	CTCGATGGTT		1000
	TCTAACT TTTGAATAGA		TTTGATTGGA	1050	
	TGGCAGC GCTTTTATCG		AAGATACAGG		1100
	TTAAACA TGTTAATATI	TAATTTTTGC	TAACCGTTTT		1150
	TCAGTTT TCGGTCTATC		AAATTGTTGA		1200
	TTTACTG TTTAGTTTGG		TTCCCGTTCT		1250
	AAATACA AATGTGCTCT	ACTTTTTCTA	ACTTTTAATA		1300
GAGAGCCATG ATG	GTTCGCA CTATGGGAGG	AGTTAGTTCT	ATGCTTCCTA		1350
	TGTATGG GGAAATGCCA	GTTGGGTAAG	AAATATGTGC		1400
TGTTAATTTT TTA	TTAATAT TTAGGCTCCA	GATGATCTTA	ATCAAACAAA		1450
TTTTTCCAAT GGT	GCAATTA TTCGATATAC	AGAAGACATT	GATAAGGACC		1500
ACGATGAATT TGA	CATAGAT GATGCATTAC		AAATGTTACA		1550
GATGACGATT TTA	AAGTCAT GCTAGCGAAA	AATTATTCCC	ACGGTCTTGC		1600
TTGGACTGAA AAA	GAAGTGT TAAAAAATA	A CGAAATGCCG	TCTAAATGGA	1650	
TAAATCCGCT AGA	AGTAAGA ACATTAAAGT	TACTAAATTA	TACTAACCCA		1700
AATAGACTAG TCT	TCCTTAT GCTCCTGATA	A TGAAAATTTA	TTGCGTTCAC		1750
GGGGTCGGAA AAC	CAACTGA GAGAGGTTA	TATTATACTA	ATAATCCTGA		1800
GGGGCAACCT GTC	ATTGATT CCTCGGTTA	A TGATGGAACA	AAAGTTGAAA		1850
ATGTGAGAGA ATT	TATGTTT CAAACATTC	T ATTAACTGTT	TTATTAGGGT		1900
ATTGTTATGG ATG	ATGGTGA TGGAACTTT	A CCAATATTAG	CCCTTGGTTT		1950
GGTGTGCAAT AAA	GTTTGGC AAACAAAAA	GTTTAATCCT	GCTAATACAA		2000
GTATCACAAA TTA	TGAAATC AAGCATGAA	C CTGCTGCGTT	TGATCTGAGA		2050
GGAGGACCTC GCT	CGGCAGA ACACGTCGA	r atacttggac	ATTCAGAGCT		2100
AAATGTATGT TCA	TTTTACC TTACAAATT	CTATTACTAA	CTCTTGAAAT		2150
AAGGAAATTA TTT	TAAAAGT TTCATCAGG	C CATGGTGACT	CGGTACCAAA	2200	
CCGTTATATA TCA	GATATCC AGTACGGAC	A TAAGTTTTGT	AGATTGCAAT		2250
	GAACAGG GAAATAATA				2300
CCTAGAAATT AA		231	.2		

<210> 4

<211> 3685

<212> genomic DNA

<213> Arabidopsis thaliana

<400> 4						
ATGCCCCTTA	TTCATCGGAA	AAAGCCGACG	GAGAAACCAT	CGACGCCGCC		50
	GTGGTGCACG		GCAAAAGAAA			100
CTTCCAAATC		AAATCGAACG	GAGGAGGGAA	GTGGTCGTGC		150
ATCGATTCTT	GTTGTTGGTT	CATTGGGTGT	GTGTGTGTAA			200
TCTTCTCTTC	CTTTACAACG	CAATGCCTGC	GAGCTTCCCT	CAGTATGTAA		250
CGGAGCGAAT	CACGGGTCCT	TTGCCTGACC	CGCCCGGTGT	TAAGCTCAAA		300
AAAGAAGGTC		ACATCCTGTT	GTCTTCATTC	CTGGGATTGT		350
CACCGGTGGG	CTCGAGCTTT	GGGAAGGCAA		GATGGTTTAT		400
TTAGAAAACG	TTTGTGGGGT	GGAACTTTTG	GTGAAGTCTA	CAAAAGGTGA		450
GCTCAACAAT	TCTCACTCTT	CCTTTATATT		TTGGATCTGA		500
TGAGATCACG	CACTTGTTGC	TTCTTCAACA	TCACTCAAAC	TTTAATTCCA		550
TGTTTGTCTG	TCTTACTCTT	TACTTTTTTT	TTTTTTTGAT	GTGAAACGCT		600
ATTTTCTTAA	GAGACTATTT	CTGTATGTGT	AAGGTAAGCG	TTCCAAGGAC		650
GTAATTGGCT	TGGACTATTT	CTGTTTGATT	GTTAACTTTA	GGATATAAAA		700
TAGCTGCCTT	GGAATTTCAA		TGCCAAATCT	GTTGCTAGAC		750
ATGCCCTAGA		AACAAGTTAC	TTCCTTTACT	GTCGTTGCGT		800
GTAGATTTAG	CTTTGTGTAG	•		TATGTTTTGT		850
TGGGAATAGA	· · · · · · · · · · · · · · · · · ·	CTACATCTGT	GGAAAGTGTG	TTCAGGCTGT		900
GATAGAGGAC	TGTTGCTTTA			GTAATTAAAG		950
CTAGTTCCTT	TTTGATCTTT		TGCTTTTCTC	AATTTTTTC	1000	
TCAATTTCAA			CACATGTCTT	GAATTTCGTC		1050
CATCCTCGTT		GCTTTGAACT		CTGCTATGGA		1100
TATATTAAAA						1150
TCTTCTTCTT	TCGGCTCAGT					1200
AATGTTATTG		CAGTGGTATA				1250
TCAATTATCT		GGCCTCTATG		-	1300	
TTGACAATGA		GATCCAGCTG			1350	
TCAGGACTCG					1400	
AGTGCTGATT		CACATATTGG		_	1450	
ACATGGCTGC					1500	
TTCTCATCGT					1550	
TTACTTAAGG						1600
GACTCTTAGC		GTAATATAGA			1650	
GTGGAAAAA					1700	
CTACATTTTA					1750	
TGGGCCAGAT					1800	
GACCATTTCT		AAAGCTGTTC			1850	
GCAAAGGATG			ATATCTGCTT		1900	
TGATCAGAAC					1950	
		ATCGCTGCAA			2000	
				ATGATGAATT	2050	
GATAATTCTT	ACGCATTGCT	CTGTGATGAC	CAGTTTCTTA	GCTTCGACGA	2100	
				GCTATGGAAA		2150
				TTATTCTGCT		2200
				TCTTCTTAAT		2250
				TCCTTAATAT		2300
				AGGATTCTTA		2350
				TGAGAATGAC		2400
				GGTGACACGA		2450
				CTGTTGTGGG		2500
				AAAACGGAGT		_
				TTTGGGAAAG		2600
				TTTTCGAGTA		2650
				TGTATGATGA		2700
				TCAGAGTATC		2750
				ACATGGGAAT		2800
				GCTGGTGAAG		2850
LOCIGORIC	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

			,				
CTATAGATCT	ACTACATTAT	GTTGCTCCTA	AGATGATGGC	GCGTGGTGCC		2900	
GCTCATTTCT	CTTATGGAAT	TGCTGATGAT	TTGGATGACA	CCAAGTATCA		2950	
AGATCCCAAA	TACTGGTCAA	ATCCGTTAGA	GACAAAGTAA	GTGATTTCTT		3000	
GATTCCAACT	GTATCCTTCG	TCCTGATGCA	TTATCAGTCT	TTTTGTTTTC		3050	
GGTCTTGTTG	GATATGGTTT	TCAGCTCAAA	GCTTACAAAG	CTGTTTCTGA		3100	
GCCTTTCTCA	AAAAGGCTTG	CTCAGTAATA	TTGAGGTGCT	AAAGTTGATA		3150	
CATGTGACTC	TTGCTTATAA	ATCCTCCGTT	TGGTTTGTTC	TGCTTTTTCA		3200	
GATTACCGAA	TGCTCCTGAG	ATGGAAATCT	ACTCATTATA	CGGAGTGGGG		3250	
ATACCAACGG	AACGAGCATA	CGTATACAAG	CTTAACCAGT	CTCCCGACAG	3300		
TTGCATCCCC	TTTCAGATAT	TCACTTCTGC	TCACGAGGAG	GACGAAGATA		3350	
GCTGTCTGAA	AGCAGGAGTT	TACAATGTGG	ATGGGGATGA	AACAGTACCC		3400	
GTCCTAAGTG	CCGGGTACAT	GTGTGCAAAA	GCGTGGCGTG	GCAAGACAAG		3450	
ATTCAACCCT	TCCGGAATCA	AGACTTATAT	AAGAGAATAC	AATCACTCTC		3500	
CGCCGGCTAA	CCTGTTGGAA	GGGCGCGGGA	CGCAGAGTGG	TGCCCATGTT		3550	
GATATCATGG	GAAACTTTGC	TTTGATCGAA	GATATCATGA	GGGTTGCCGC		3600	
CGGAGGTAAC	GGGTCTGATA	TAGGACATGA	CCAGGTCCAC	TCTGGCATAT		3650	
TTGAATGGTC	GGAGCGTATT	GACCTGAAGC	TGTGA	3685			

<210> 5 <211> 2427

<212> cDNA

<213> Arabidopsis thaliana

<400> 5						
	CTTTGTCTCT	CTCGACTGAT	CTAACAATCC	CTAATCTGTG		50
TTCTAAATTC			TCCGTATAGC	TTAACCTGGT		100
TTAATTTCAA			TCATCGGAAA	AAGCCGACGG		150
AGAAACCATC			TGGTGCACGA	TGAGGATTCG		200
CAAAAGAAAC		TTCCAAATCC	CACCATAAGA			250
		TCGATTCTTG	TTGTTGGTTC	ATTGGGTGTG		300
TGTGTGTAAC		CTTCTCTTCC	TTTACAACGC	AATGCCTGCG		350
AGCTTCCCTC	AGTATGTAAC	GGAGCGAATC	ACGGGTCCTT	TGCCTGACCC		400
		AAAGAAGGTC	TTAAGGCGAA	ACATCCTGTT	450	
GTCTTCATTC		CACCGGTGGG	CTCGAGCTTT	GGGAAGGCAA		500
ACAATGCGCT	GATGGTTTAT	TTAGAAAACG	TTTGTGGGGT	GGAACTTTTG		550
	CAAAAGGCCT			GTCACTTGAC		600
AATGAAACTG	GGTTGGATCC	AGCTGGTATT	AGAGTTCGAG	CTGTATCAGG		650
		TTGCTCCTGG	CTACTTTGTC	TGGGCAGTGC		700
TGATTGCTAA	CCTTGCACAT	ATTGGATATG				750
	ACTGGCGGCT	TTCGTTTCAG				800
GACTCTTAGC	CGTATGAAAA	GTAATATAGA	GTTGATGGTT	TCTACCAACG		850
GTGGAAAAAA	AGCAGTTATA	GTTCCGCATT		CTTGTATTTT		900
	TGAAGTGGGT		GCTCCTCTGG			950
TGGGCCAGAT	TGGTGTGCAA	AGTATATTAA			1000	
GACCATTTCT	TGGTGTTCCA	AAAGCTGTTG	CAGGGCTTTT			1050
GCAAAGGATG	TTGCAGTTGC					1100
CGATATATTT	AGACTTCAGA	CCTTGCAGCA		ATGACACGCA		1150
	AACAATGTCT					1200
GGCGGGCTTG	ATTGGTCACC	GGAGAAAGGC				1250
GCAAAAGAAC	AACGAAACTT					1300
AGAAAAGTCC		GGAAGGATGA				1350
		GATTAATAAT		GAGGTGCTGT		1400
		. ATCACACCTG				1450
ACCATGACAT	GGGAATTGCT			GTATAAGGTC		1500
TACACTGCTG	GTGAAGCTAT		CATTATGTTG			1550
	GGTGCCGCTC					1600
	GTATCAAGAT			GTTAGAGACA		1650
		GATGGAAATC		ACGGAGTGGG		1700
GATACCAACG	GAACGAGCAT	ACGTATACAA	GCTTAACCAG	TCTCCCGACA		1750
		TTCACTTCTG				1800
		TTACAATGTG				1850
CGTCCTAAGT				GGCAAGACAA		1900
GATTCAACCC		AAGACTTATA				1950
CCGCCGGCTA	ACCTGTTGGA	AGGGCGCGG	ACGCAGAGTG	GTGCCCATGT		2000
TGATATCATG	GGAAACTTTC	CTTTGATCGA	AGATATCATG	AGGGTTGCCG		2050
CCGGAGGTAA	CGGGTCTGAT	ATAGGACATG	ACCAGGTCCA	CTCTGGCATA		2100 2150
TTTGAATGGT	CGGAGCGTAT	TGACCTGAAG	CIGIGAATAT	CATGATCTCT		2200
TTAAGCTGTC	CTGTCAGCTT	ATGTGAATCC	AATACTTTGA	AAGAGAGATC		2250
ATCATCAATT	CATCATCATO	GTCATCATCA	A TGATGCTCAA	CTCACAAAGA		
AGCCTGAGAA	TGATACTTTC	GTGCGAAATT	CTCAATACCI	CTTTAATATT		2300 2350
CTTATTGAAT	GTAAATTATA	A CAATCCTATC	TAATGTTTGA	ACGATAACAC		2400
			TGTCAAAAGC	ATCAATTTGT 2427		2400
GGGTTAAAAA	AAAAAAAAA	AAAAAA		2421		

	**		11 / 53		
<210> 6			•••		
<211> 671			•		
<212> PRT					
<213> Arabi	dopsis thal	iana			
<400> 6					5.0
MPLIHRKKPT	EKPSTPPSEE	VVHDEDSQKK			50
IDSCCWFIGC	VCVTWWFLLF	LYNAMPASFP	QYVTERITGP	LPDPPGVKLK	100
KEGLKAKHPV	VFIPGIVTGG	LELWEGKQCA	DGLFRKRLWG	GTFGEVYKRP	150
LCWVEHMSLD	NETGLDPAGI	RVRAVSGLVA	ADYFAPGYFV	WAVLIANLAH	200
IGYEEKNMYM	AAYDWRLSFQ	NTEVRDQTLS	RMKSNIELMV	STNGGKKAVI	250
VPHSMGVLYF	LHFMKWVEAP	APLGGGGGPD	WCAKYIKAVM	NIGGPFLGVP	300
KAVAGLFSAE	AKDVAVARAI	APGFLDTDIF	RLQTLQHVMR	MTRTWDSTMS	350
MLPKGGDTIW	GGLDWSPEKG	HTCCGKKOKN	NETCGEAGEN	GVSKKSPVNY	400
GRMISFGKEV	AEAAPSEINN	IDFRGAVKGO	SIPNHTCRDV	WTEYHDMGIA	450
GIKAIAEYKV	YTAGEAIDLL	HYVAPKMMAR	GAAHFSYGIA	DDLDDTKYQD	500
PKYWSNPLET	KLPNAPEMEI	YSLYGVGIPT	ERAYVYKLNO	SPDSCIPFQI	550
FTSAHEEDED	SCLKAGVYNV	DGDETVPVLS	AGYMCAKAWR		600
KTYIREYNHS	PPANLLEGRG	TOSGAHVDIM	GNFALIEDIM	RVAAGGNGSD	650
IGHDOVHSGI	FEWSERIDLK	-	671		
TGUDÖAUDGI	1 114011171111	-	* · -	_	

<210> 7

<211> 643 ...

<212> cDNA

<213> Zea mays

<221> CDS

<222> (1)..(402)

<400> 6

CGG GAG AAA ATA GCT GCT TTG AAG GGG GGT GTT TAC TTA GCC GAT GGT 48 Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly 1 5 10 15

GAT GAA ACT GTT CCA GTT CTT AGT GCG GGC TAC ATG TGT GCG AAA GGA 96 Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25 30

TGG CGT GGC AAA ACT CGT TTC AGC CCT GCC GGC AGC AAG ACT TAC GTG 144
Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val
35 40 45

AGA GAA TAC AGC CAT TCG CCA CCC TCT ACT CTC CTG GAA GGC AGG GGC 192
Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly
50 55 60

ACC CAG AGC GGT GCA CAT GTT GAT ATA ATG GGG AAC TTT GCT CTA ATT 240
Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile
65 70 75 80

GAG GAC GTC ATC AGA ATA GCT GCT GGG GCA ACC GGT GAG GAA ATT GGT 288 Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95

GGC GAT CAG GTT TAT TCA GAT ATA TTC AAG TGG TCA GAG AAA ATC AAA 336 Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 100 105 110

TTG AAA TTG TAA CCTATGGGAA GTTAAAGAAG TGCCGACCCG TTTATTGCGTTCC 391 Leu Lys Leu 115

AAAGTGTCCT GCCTGAGTGC AACTCTGGAT TTTGCTTAAA TATTGTAATT TTTCACGC 449
TTCATTCGTC CCTTTGTCAA ATTTACATTT GACAGGACGC CAATGCGATA CGATGTTG 507
TACCGCTATT TTCAGCATTG TATATTAAAC TGTACAGGTG TAAGTTGCAT TTGCCAGC 565
TGAAATTGTG TAGTCGTTTT CTTTACGATT TAATANCAAG TGGCGGAGCA GTGCCCCA 623
AGCNAAAAAA AAAAAAAAAA

<210 > 8 <211 > 115

<212> PRT

<213> Zea mays

<400> 8

Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 5 10 15

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25 30

Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Leu Leu Glu Gly Arg Gly 50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Phe Ala Leu Ile 65 70 75 80

Glu Asp Val Tle Arg Tle Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly 85 90 95

Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys 100 105 110

Leu Lys Leu 115

<210> 9	sa			
<400> 9				
ggtggcgaag acganggcgg	aagttggagg	ctaacgagaa	tgacnctcgg	50
agatggatct accetetaga	gacacgacta	centtgcace	cagcctcaag	100
gtntacngtt tntatgggta				150
tggcgcccga tcccgggacg				200
actttgactn aggggcacat				250
tggcacagtg aaccttatga				300
aaatgaagag atacaatcct	gcgggctcaa	aaataaccgt	ggtcgagatg	350
ccgcatgaac cagaacggtt				400
tcacgtggat attctaggaa				450
tggcggcagg tcgaggcgat				500
cttaaatatg tagaaaaggt				550
acataggtta ctcaatagta	tgactaatta	aaaaaaaatt	ttttttctaa	600
aaaaaaaaa aaaaaa	2	616		

<210> 10	
<211> 1562	
<212> genomic DNA	
<213> Arabidopsis thaliana	
<400> 10	
ATGAAAAAA TATCTTCACA TTATTCGGTA GTCATAGCGA TACTCGTTGT	50
GGTGACGATG ACCTCGATGT GTCAAGCTGT GGGTAGCAAC GTGTACCCTT	100
TGATTCTGGT TCCAGGAAAC GGAGGTAACC AGCTAGAGGT ACGGCTGGAC	150
AGAGAATACA AGCCAAGTAG TGTCTGGTGT AGCAGCTGGT TATATCCGAT	200
TCATAAGAAG AGTGGTGGAT GGTTTAGGCT ATGGTTCGAT GCAGCAGTGT	250
TATTGTCTCC CTTCACCAGG TGCTTCAGCG ATCGAATGAT GTTGTACTAT	300
GACCCTGATT TGGATGATTA CCAAAATGCT CCTGGTGTCC AAACCCGGGT	350
TCCTCATTTC GGTTCGACCA AATCACTTCT ATACCTCGAC CCTCGTCTCC	400
GGTTAGTACT TTCCAAGATA TATCATTTTG GGACATTTGC ATAATGAACA	450
AAATAGACAT AAATTTGGGG GATTATTGTT ATATCAATAT CCATTTATAT	500
GCTAGTCGGT AATGTGAGTG TTATGTTAGT ATAGTTAATG TGAGTGTTAT	550
GTGATTTTCC ATTTTAAATG AAGCTAGAAA GTTGTCGTTT AATAATGTTG	
CTATGTCATG AGAATTATAA GGACACTATG TAAATGTAGC TTAATAATAA	650
GGTTTGATTT GCAGAGATGC CACATCTTAC ATGGAACATT TGGTGAAAGC	700
TCTAGAGAAA AAATGCGGGT ATGTTAACGA CCAAACCATC CTAGGAGCTC	750
CATATGATTT CAGGTACGGC CTGGCTGCTT CGGGCCACCC GTCCCGTGTA	800
GCCTCACAGT TCCTACAAGA CCTCAAACAA TTGGTGGAAA AAACTAGCAG	850
CGAGAACGAA GGAAAGCCAG TGATACTCCT CTCCCATAGC CTAGGAGGAC	900
TTTTCGTCCT CCATTTCCTC AACCGTACCA CCCCTTCATG GCGCCGCAAG	950
TACATCAAAC ACTTTGTTGC ACTCGCTGCG CCATGGGGTG GGACGATCTC	1000
TCAGATGAAG ACATTTGCTT CTGGCAACAC ACTCGGTGTC CCTTTAGTTA	1050
ACCCTTTGCT GGTCAGACGG CATCAGAGGA CCTCCGAGAG TAACCAATGG	
CTACTTCCAT CTACCAAAGT GTTTCACGAC AGAACTAAAC CGCTTGTCGT	1150
AACTCCCCAG GTTAACTACA CAGCTTACGA GATGGATCGG TTTTTTGCAG	
ACATTGGATT CTCACAAGGA GTTGTGCCTT ACAAGACAAG	1250
TTAACAGAGG AGCTGATGAC TCCGGGAGTG CCAGTCACTT GCATATATGG	1300
GAGAGGAGTT GATACACCGG AGGTTTTGAT GTATGGAAAA GGAGGATTCG	1350
ATAAGCAACC AGAGATTAAG TATGGAGATG GAGATGGGAC GGTTAATTTG	1400
GCGAGCTTAG CAGCTTTGAA AGTCGATAGC TTGAACACCG TAGAGATTGA	1450
TGGAGTTTCG CATACATCTA TACTTAAAGA CGAGATCGCA CTTAAAGAGA	1500
TTATGAAGCA GATTTCAATT ATTAATTATG AATTAGCCAA TGTTAATGCC	1550
CDC3 ADC3 AD C3	

1562

GTCAATGAAT GA

WO 00/60095 <211> 3896 <212> genomic DNA <213> Arabidopsis thaliana

WO 00/60095		PCT/EP00/02701
	17 / 53	

						_	
GGTTATTACT	TTGCCCCAAG	TGGCAAACCT	TATCCTGATA	ATTGGATCAT		2900	
CACGGATATC	ATTTATGAAA	CTGAAGGTTC	CCTCGTGTCA	AGGTAATTTT		2950	
CCGCAATGGC	AGAAGTAAAA	CAGGAAGGCA	AAGTCTTCTG	TATCAGTCTA		3000	
GTGGCATGTT	ATCTCAGTTG	CATAAGCAAA	TTATTAAACA	ACTAAAATTT		3050	
AAGTACTTTT	TTATCATTCC	TTTTGAGCTT	AGTGGATGAT	CAGTGGCTTA		3100	
AAGTGGGAAG	AGGTGTTGCA	TGAAACATGA	CACTTGTATC	AAAGATAACT		3150	
AGCAAAACAA	AACTAACCCA	TTTCTGAATT	TCATATTATT	AGGAGTAGTC		3200	
GTGCTTTTAA	AAAATTTGTT	TTAAGAAACC	GAAAAACTAG	TTCATATCTT		3250	
GATTGTGCAA	TATCTGCAGG	TCTGGAACTG	TGGTTGATGG	GAACGCTGGA	3300		
CCTATAACTG	GGGATGAGAC	GGTAAGCTCA	GAAGTTGGTT	TTGAAATTAT		3350	
CTTCTTGCAA	ACTACTGAAG	ACTAAGATAA	TACTTGCTTC	TGGAACACTG		3400	
CTTGCTATGT	TCTCTAGTAC	ACTGCAATAT	TGACTCTCCG	CTACTTTTAT		3450	
TGATTATGAA	ATTGATCTCT	TATAGGTACC	CTATCATTCA	CTCTCTTGGT		3500	
GCAAGAATTG	GCTCGGACCT	AAAGTTAACA	TAACAATGGC	TCCCCAGGTA		3550	
CTCTTTTTTA	GTTCCTCACC	TTATATAGAT	CAAACTTTAA	GTGTACTTTT		3600	
CTGGTTATGT	GTTGATTTAC	CTCCAATTTG	TTCTTTCTAA	AAATCATATA		3650	
TCTCTGTACT	CCTCAAGAAC	TTGTATTAAT	CTAAACGAGA	TTCTCATTGG		3700	
GAAAATAAAA	CAACAGCCAG	AACACGATGG	AAGCGACGTA	CATGTGGAAC		3750	
TAAATGTTGA	TCATGAGCAT	GGGTCAGACA	TCATAGCTAA	CATGACAAAA		3800	
GCACCAAGGG	TTAAGTACAT	AACCTTTTAT	GAAGACTCTG	AGAGCATTCC		3850	
GGGGAAGAGA	ACCGCAGTCT	GGGAGCTTGA	TAAAAGTGGG	TATTAA	3896		

<210> 12 <211> 709 <212> cDNA <213> Lycopersicon esculentum			
<400> 12			
CTGGGGCCAA AAGTGAACAT AACAA	AGGACA CCACAGTCAG	AGCATGATGT	50
TCAGATGTAC AAGTGCATCT AAATA	TAGAG CATCAACATG	GTGAAGATAT	100
CATTCCCAAT ATGACAAAGT TACCT	PACAAT GAAGTACATA	ACCTATTATG	150
AGGATTCTGA AAGTTTTCCA GGGAC	CAAGAA CAGCAGTTTG	GGAGCTTGAT	200
AAAGCAAATC ACAGGAACAT TGTCA	AGATCT CCAGCTTTGA	TGCGGGAGCT	250
GTGGCTTGAG ATGTGGCATG ATATT	CATCC TGATAAAAA	TCCAAGTTTG	300
TTACAAAAGG TGGTGTCTGA TCCTC	CACTAT TTTCTTCTAT	AAATGTTTGA	350
GTTTGTATTG ACATTGTAAG TATTO	GCAACA AAAAGCAAAG	CGTGGGCCTC	400
TGAGGGATGA GGACTGCTAT TGGGA	ATTACG GGAAAGCTCC	ATGTGCATGG	450
GCTGAACATT GTGAATACAG GTTAG	GAATAT TCAAATTATA	Y TTTTGCAAAA	500
TATTCTCTTT TTGTGTATTT AGGCC	CACCTT TCCCCGGTC	A CAACGATGCA	550
GATATGTATT CGGGGATGTT CACC	TGGGAC AGAGTTGCAG	ATTGAAGAGT	600
TCTACATCTC ACATCCTGTC ACAC	TATGTG TGATATTTA	A GAAACTTTGT	650
TTGGCGGAAC AACAAGTTTG CACAA	AACATT TGAAGAAGA	A AGCGAAATGA	700
TTCAGAGAG	70	9	

<210> 13

<211> 623

<212> PRT

<213> Schizosaccharomyces pombe

<400> 13

MASSKKSKTHKKKKEVKSPIDLPNSKKPTRALSEQPSASETQSVSNKSRKSKFGKRLNFILGAILGICGA70

FFFAVGDDNAVFDPATLDKFGNMLGSSDLFDDIKGYLSYNVFKDAPFTTDKPSQSPSGNEVQVGLDMYNE140

GYRSDHPVIMVPGVISSGLESWSFNNCSIPYFRKRLWGSWSMLKAMFLDKQCWLEHLMLDKKTGLDPKGI210

KLRAAQGFEAADFFITGYWIWSKVIENLAAIGYEPNNMLSASYDWRLSYANLEERDKYFSKLKMFIEYSN280

IVHKKKVVLISHSMGSQVTYYFFKWVEAEGYGNGGPTWVNDHIEAFINISGSLIGAPKTVAALLSGEMKD350

TGIVITLNILEKFFSRSERAMMVRTMGGVSSMLPKGGDVAPDDLNQTNFSNGAIIRYREDIDKDHDEFDI420

DDALQFLKNVTDDDFKVMLAKNYSHGLAWTEKEVLKNNEMPSKWINPLETSLPYAPDMKIYCVHGVGKPT490

ERGYYYTNNPEGQPVIDSSVNDGTKVENGIVMDDGDGTLPILALGLVCNKVWQTKRFNPANTSITNYEIK560

HEPAAFDLRGGPRSAEHVDILGHSELNEIILKVSSGHGDSVPNRYISDIQEIINEINLDKPRN 623

- <210> 14
- <211> 432
- <212> PRT
- <213> Arabidopsis thaliana

<400> 14

MKKISSHYSVVIAILVVVTMTSMCQAVGSNVYPLILVPGNGGNQLEVRLDREYKPSSVWCSSWLYPIHKK70
SGGWFRLWFDAAVLLSPFTRCFSDRMMLYYDPDLDDYQNAPGVQTRVPHFGSTKSLLYLDPRLRDATSYM140
EHLVKALEKKCGYVNDQTILGAPYDFRYGLAASGHPSRVASQFLQDLKQLVEKTSSENEGKPVILLSHSL210
GGLFVLHFLNRTTPSWRRKYIKHFVALAAPWGGTISQMKTFASGNTLGVPLVNPLLVRRHQRTSESNQWL280
LPSTKVFHDRTKPLVVTPQVNYTAYEMDRFFADIGFSQGVVPYKTRVLPLTEELMTPGVPVTCIYGRGVD350
TPEVLMYGKGGFDKQPEIKYGDGDGTVNLASLAALKVDSLNTVEIDGVSHTSILKDEIALKEIMKQISII420
NYELANVNAVNE

<210> 15

<211> 552

<212> PRT

<213> Arabidopsis thaliana

<400> 15

MGANSKSVTASFTVIAVFFLICGGRTAVEDETEFHGDYSKLSGIIIPGFASTQLRAWSILDCPYTPLDFN70
PLDLVWLDTTKLLSAVNCWFKCMVLDPYNQTDHPECKSRPDSGLSAITELDPGYITGPLSTVWKEWLKWC140
VEFGIEANAIVAVPYDWRLSPTKLEERDLYFHKLKLTFETALKLRGGPSIVFAHSMGNNVFRYFLEWLRL210
EIAPKHYLKWLDQHIHAYFAVGAPLLGSVEAIKSTLSGVTFGLPVSEGTARLLSNSFASSLWLMPFSKNC280
KGDNTFWTHFSGGAAKKDKRVYHCDEEEYQSKYSGWPTNIINIEIPSTSARELADGTLFKAIEDYDPDSK350
RMLHQLKKYVPFFVIRNIAHRSSLAGFLLYHDDPVFNPLTPWERPPIKNVFCIYGAHLKTEVGYYFAPSG420
KPYPDNWIITDIIYETEGSLVSRSGTVVDGNAGPITGDETVPYHSLSWCKNWLGPKVNITMAPQILIGKI490
KQQPEHDGSDVHVELNVDHEHGSDIIANMTKAPRVKYITFYEDSESIPGKRTAVWELDKSGY
552

5

10

35

50

<400> 1
Mer Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser
15

Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 20 25

30 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Gly 35 40 45

Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 50 60

Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 70 75 80

Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe 40 85 90 95

Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 100 105

45 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 115 120 125

Let Pro Glm Gly Ile Ser Ser Phe Ile Asp Asp Ile Glm Ala Gly Asn 130

Tyr Ser Fhr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly
145 150 150

Lys Gln Leu Leu Art Asp Tyr Asn Ile Glu Ale Lys His Pro Val Val 55 165 170 175

Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 180

60 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 200 205

SUBSTITUTE SHEET (RULE 26)

Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215
5 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 240
Phe Thr Leu Arg Ala Ala Glr Gly Phe Glu Ser Thr Asp Tyr Phe 11e 255
Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile 260 265
Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 285 15 275 280 Tip Arg Leu
Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 295 290 295 200 200 200 200 200 200 200 200 200 20
20 Glu Gln Ile Glu Leu Phe His Gln Leu Ser Gly Glu Lys Val Cys Leu 320 315 305
The Gly His Ser Met Gly Ser Gln Ile Ile Phe Tyr Phe Met Lys Trp 335 325
Val Glu Ala Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val 340
Asn Glu His Ile Asp Ser Phe Ile Asn Ala Ala Gly Thr Leu Leu Gly 360 365
Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp Thr 370 375
35 Ile Gln Leu Asn Thr Leu Ala Met Tyr Gly Leu Glu Lys Phe Phe Ser 400 385 390
Arg Ile Glu Arg Val Lys Met Leu Gln Thr Trp Gly Gly Ile Pro Ser 415
40 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser 430 420
Ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 45 435
Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 455
50 Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 480 465
Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 495 485
55 Glu Leu Arg Lys Ash Glu Leu His His Lys His Trp Ser Ash Pro Met 500 500
Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 60 515

		530					222										
5	545					220							u Sez				
					シウン					•	-		u Va				
10				580)								~ As				
			59	5				00	U				co As 60				
15		61	0				07	_					sp Il 20				
20	625	5				ده	U						er G				
	Le	u Va	ı G	lu Pr	0 Ar	g Gl .5	n Le	eu Se	er A	sn L 6	eu S 50	er G	ln T	۷۰ وڃ	al S	er G 55	ln
25	Me	c Pi	ro Pi	ne Pr 66	co Me	et											
30	<2 <2	211> 212>	2Q 387 PRT Ara		psis	tha	lian	.a.									
35		1				>							Pro (
					20								Lys :				
40				35					=0				Lys				
45	1		50					22					Ser 60				
	C	Cys 65	Phe	Ser	Asp :	Arg :	Met 70	Met	Leu	ŢΥŢ	īĀī	ASD 75	Pro	Asp	Гел	Asp	Asp 08
5(,	ĪYI	Gln	Asn	Ala	P r o 85	GīĀ	Val	Glm	באב	ATG 90	Val	PTO	His	Phe	Gly 95	Ser
	ı	Thr	īvs	Ser	Leu 100	Leu	ستكت	Leu	Asp	P r 0	Arg	Leu	Arq	Asp	Ala 110	THE	Ser
5		TYT	Met	Glu 115	His	Leu	Val	Γλ2	Al=	Leu	Glu	Lys	lys	Cys 125	Gly	ፈጓኋ	Val
6	Λ	Ast.	Asp	Gln	ستت	:le	Teu	Gly 135	Ala	Pro	JĀZ	Asp	Pne 140	æg	TYT	Gly	· Leu

	Ala 145	Ala	S	er (Gly	His	P= 15	o S 0	Ser	A_*;	y V	/al	Ala	Se 15	r G	ln	Phe	Leu	Gln	A = 16	0 50
5	rez.	Lys	: G	ln	Leu	Val 165	G1	u I	ŗĀ2	Th	r s	Ser	Ser 170	G1	.u #	lsn.	Glu	Gly	Lys 175	P	ro
	Val	Ile	e I	ren	Leu 180	Ser	Hi	s S	Ser	Le	u (Gly 185	Gly	Le	eu 1	Phe	Val	Leu 190	His	; Pi	ne
10	Leu	As:	n 1	Arg 195	Thr	The	. Pi	. 0	Ser	T= 20	ф 0	Arg	Arg	L)	ýs '	ŢŸĬ	Ile 205	Lys	Hi	5 P	he
	Val	Al: 21	a 1	Leu	Ala	Ala	a Pi	ro	T <u>r</u> p 215	G1	·Y	Gly	Thr	· I	le	Ser 220	Gln	Met	Ly	s T	hr
15	Phe 225		a	Ser	Gly	As:	n T.	hr 30	Leu	G1	ΓĀ	Val	Pro	2 2	eu 35	Val	Asn	Pro	Le	u I 2	.eu 240
20	Val	Ar	Ē	Arg	His	G1 24	n A 5	rg	<u> </u>	S	2.	Glu	Se:	- A 0	.sn	Gln	Trp	Let	1 Le 25	u 9 5	Pro
	Ser	Th	ır	ŗŷs	Val 260	i Ph	e H	is	Ast	A.	rg	Thr 265	ΓĀ	s I) <u>.</u>	Гел	Val	. Va. 270	Th	r I	Pro
25	Glr	ı Va	1	Asn 275	Ty	r Th	ır P	la	Туг	- G 2	lu 80	Met	. As	£ q	ric	Phe	289	e Ala	a As	g :	Ile.
	Gly	/ Pi	1e 90	Ser	Gl	n Gl	.y 7	/al	Va. 29	l P 5	ro	ΤΫ́	L.Y	s ?	rhr	Arg 300	va:	l Le	ı Pi	:o	Leu
30	Th:		Ìυ	Glu	ı Le	u Me	et 1	rhr 310	Pr	5 G	ly	Va.	l Pr	· 0 · 1	Val 315	Thr	CY:	s Il	e T	ŗī	Gly 320
35	<u> </u>	g G	ŀ	۷aI	. As	T. T.	<u></u> 25	Pro	Gl	u V	7al	Le	u Ma 33	t '	Tyr	Gly	, Ly	s Gl	у G: З	l⊻ 35	Phe
	às:	p L	ys	Gli	n. P±	:0 G	lu	Ile	Ly	s 7	<u>.</u> ΥΞ	G1 34	y As 5	Ģ.	Gly	As)	o Gl	y Th	r V	al	Asn
40	Le	u A	la	Se:	r Le S	eu A	la	Ala	. Le	:u I	iys 360	s Va	1 A	gp	Ser	Le	u As 36	n Th	ır V	al	Glu
	=1		.sp 70		y Va	il S	er	His	37	<u>1</u> :	Ser	r Il	e L	eu	Lys	38	p G1 0	u II	.e A	la	Leu
45	<u>Ly</u>		llu	ı Il	e																
50	<: <:	210: 211: 212: 213:	> 3	889 PRT	oido	psi	: =:	nel	ian	Ē.											
55	٤.	1	Ĺy:	e Ly			5														
60	.	Ly '	I1.	e Vi	al T	h= ; 20	Gly	G1	уL	e:	Gl	u L	eu I 25	,TP	G1	u Gl	y L	ys G	lm (30	Cys	Ala

	Asp	Gīy	Le E	<u>eu</u> 9 35	Phe	A_g	Lys	Arg	L	eu 40	TIP	Gl	, G	Sly '	Thr	Phe 45	L€	eu '	Cys	TI	Þ
5	Val	G1:	1 H:	is 1	Met	Ser	Leu	Asp 55	A	sn	Glu	Th:	= 0	31y	20 Fen	Asp	Pi	ro	Ala	Gl	y
	65						Val 70														
10						85	īīþ						•								
1.5					100		Asn				100										
15			.1	115			· Glu			120											
20		13	0				. Val	13	⊃												
	145	5					Gl <u>y</u> 15(י													
25						16						. 4	, 0								
30					180)	s Ala				-0	٠									
30				195	i		1 A1			200	,					_	_				
35		2	10				<u>- T</u>	۷.								•					
	22	5					ஓ Gl 23	O							•						
40						24						-									
45					25	0	al Ty				20	3						_			
40	P			27	5		ne Ti			20	U					_					
5 0		2	290				al T	2	9=												
	<u>L</u> .	eu : 05	Ser	Al	a GI	Ly T	у т М З.	et C 10	ys	<u> </u>	•			-	-						
55						3	ly I 25						330	3	g Gi				. د	: 3	
					3.	4 C	eu L				3	= -									
60	A)	al	Asp	o Il	.e M	et G	ly A	sn I	Phe	e Al	la L	eu	I1:	e Gl	. 12 A.	sp I	ile	Me	t A	==	Val

SUBSTITUTE SHEET (RULE 26)

	355 360 365	
	Ala Ala Gly Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val His Ser 370	
5	Gly Ile Phe Glu Trp 385	
10	<210> 4	
15	<220> <221> CDS <222> (1)(1983)	
20	atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat too atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat too Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 10 15	48
25	gat gaa aac aat aaa ggg ggt tct gtt cat aac aag cga gag agc aga Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 20 25	96
30	aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt. Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly 45	144
50	att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat tic gac agg Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 50	192
35		240
40	the standard of the cog tit ago tit	288
45	ggo got tat cat gtt cat aat ago gat ago gao ttg ttt gao aac ttt	336
5(gta aat tit gat toa oit aaa gtg tat tig gat gat tgg aaa gat git Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 125	384
٠,	ctc cca caa ggt ata agt tog ttt att gat gat att cag gct ggt aac Leu Pro Gin Gly Ile Ser Ser Phe Ile Asp Asp Ile Gin Ala Gly Asn 130	432
5	tac too aca tot tot the gat gat one agt gas aat tit god git ggt tac too aca tot tot the gat gat one agt gas aat tit god git ggt tac too aca tot tot the gat gat one agt gas aat tit god git ggt tac too aca tot tot the gat gat one agt gas aat tit god git ggt tac too aca too aca tot too aca too ac	480
ϵ	145 130 145 145 146 147 148 148 148 148 148 148 148	528

				:	L65					170)					175			
5	atg gt Met Va	et c	520 (ggt (Gly 1	gtc a Val :	att Ile	tct Ser	acg T <u>h</u> r	gga Gly 185	att Ile	ga Gl	a a .u S	er ge	TIP tgg	gga Gly 190	gtt Val	at Il	t e	576
	gga ga	sp 1	gat Asp 195	gag Glu	tgc (Cys :	gat Asp	agt Ser	tct Ser 200	gcg Ala	ca ^t	t tt s Př	it c le A	rgt Yrg	aaa Lys 205	cgg Arg	ctg Leu	T:	T T	624
10	gga a Gly S 2	gt er 10	ttt Phe	tac Tyr	atg Met	ctg Leu	aga Arg 215	aca Thr	atg Met	gt Va	t at 1 Me		gat Asp 220	aaa Lys	gtt Val	cys	t g	.b Ia	672
15	ttg a Leu L 225	aa ys	cat Kis	gta Val	atg Met	tta Leu 230	gat Asp	CCT PTO	gaa Glu	Th		gt (ly : 35	ctg Leu	gac Asp	eca Pro	b.c.	A A	ac sn 40	720
20	ttt a Phe T	hr	Leu	Arç	A1a 245	Ala	GIN	GIV	1116	25	0				_	259	5		768
25	gca g Ala (317 188	tat Tyr	tgg Trp 260	att Ile	tgg Trp	aac Asn	aaa Lys			re G	aa In	aat Asn	ren czâ	gga Gly 270	y Val	a a l I	tt le	815
	ggc :	tat Tyr	gaa Glu 275	Pro	aat Asn	aaa Lys	ato Met	acc Th: 280	. JE.	r A	ct c la ?	gcg Lla	tat Tyr	gat Asp 285	_	g ag p Ar	g c g I	tt Leu	864
30	gca Ala	tat Tyr 290	Leu	gat Asp	cta Leu	gaa Glu	aga 1 Arg 29	- A	g As	c a p A	rg :	tac Iyr	Phe 300		Ly:	g ct s Le	a a	rys	912
35	gaa Glu 305	caa Gln	ato Ile	gaa Glu	t Ctç	tt: Pho	= Hl	t ca s Gl:	a tt n Le	ga uS		ggt Gly 315	gas Glu	aaa Ly	a gt s Va	t tg 1 Cy	t s	tta Leu 320	960
40	att Ile	gga Gly	cat His	tc: Se:	ato Met	E GT.	t tc y Se	t ca r Gl	g at n Il	.= -	1e 30	ttt Phe	ta: Ty:	r Ph	t at e Me	و هـ د لـا 3:	12 /5 35	TTP TGG	1008
45	gtc Val	gaç Glu	g gc: L Ala	c ga a G1 34	r Gji	y Pr	t ct o Le	t ta u Ty	.c gg ~ Gl 34		at Sn	GJĀ āār	gg Gl	t cg y Ar	t 99 g Gl 35	ю т У Т: 30	tb ie	gtt Val	1056
	Asn	gaa Glu	2 C2 1 H1 35	s Il	a ga e As	t to p Se	a to r Pr	c at ne Il 36	.=	at 9 sn 3	rca	gca Ala	gg Gl	g ac y Th 36		eu L	tg eu	ggc	1104
50		201 PT:	c Ly	s Yī ē ēc	a gt 2 Va	t co l Pr	:a go :o Al :0	75 D4	ie a: su I:	tt a	igt Ser	GJ7 GGT	ga G1 38		g æs et Ly	aa g /s A	at sp	acc Thr	1152
55	att 11e 385	G1:	a tt n Le	a aa u As	t ac n Th	g.t. I Le	eu A.	cc a: la M:	29 2 82 5	at : y= (317 881	ttg Let		a aa u Ly	ig 1: 's ?:	to t ne P	tc he	tca Ser 400	1200
60	aga Arg	a: Il	t ga e Gl	.g ag .u A.	ra gt g Va 40	77 77	aa a /s M	et b	ta c eu G		acg Thr 410	TEE	g G1	r gg .y Gl	t a: .y I:	ta c le P 4	22 270 15	tca Ser	1248

	atg ctz cca aag gga gaa gag gtc att tgg ggg gat atg aag tca tct Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser 420 425	1296
5	tca gag gat gca ttg aat aac aac act gac aca tac ggc aat ttc att Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 445	1344
10	cga ttt gaa agg aat acg agc gat gct ttc aac aaa aat ttg aca atg Arg Phe Glu Arg Asn Thr Ser Asp Ala Phe Asn Lys Asn Leu Thr Met 450 455	1392
15	aaa gac gcc att aac atg aca tta tcg ata tca cct gaa tgg ctc caa Lys Asp Ala Ile Asn Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 480	1440
20	aga aga gta cat gag cag tac tog tto ggo tat too aag aat gaa gaa Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 495	1488
20	gag tta aga aaa aat gag cta cac cac aag cac tgg tcg aat cca atg Glu Leu Arg Lys Asn Glu Leu His His Lys His Trp Ser Asn Pro Met 500 505	1536
25	gaa gta cca ctt cca gaa gct ccc cac atg aaa atc tat tgt ata tac Glu Val Pro Leu Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr 515 520 525	1584
30	ggg gtg aac aac cca act gaa agg gca tat gta tat aag gaa gag gat Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp 530 535	1632
35	gac too tot got otg aat ttg acc atc gac tac gaa agc aag caa cot Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 560	
40		
	atg tgt cac aaa tgg gcc cag ggt gct tca ccg tac aac cct gcc gga Met Cys His Lys Trp Ala Glr Gly Ala Ser Pro Tyr Asn Pro Ala Gly 580 585	1776
45	att aac git act att gig gaz aig aaa cac cag cca gat cga tit ga: att aac git act att gig gaz aig aaa cac cag cca gat cga tit ga: Ile Asn Vai Thr Ile Vai Glu Met Lys His Gln Pro Asp Arg Phe Asp 595 600	1824
50	and the car of a dad atc off ggc ag	1872 r
5:	geg gag tig aac gat tac atc tig aaa att gca agc ggt aat ggc ga 5 Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly As 625 630	U
6	cto gto gag coa ogo caa ttg tot aat ttg ago cag tgg gtt tot ca Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Tro Val Ser Gl 655	g 1968 n

•	atg c Met F	cc tro E	he P	ca a Pro M	itg t let	aa											1986
5	<210><211>	66 3	: 1	, , ,													
10	<212× <213×	> PR' > Sa	r ccha	romy	ces o	ere	risia	1e									
	<400 Met (5					10							
15	Asp	Glu	Asn	Asn 20	Lys (Gly	Gly :	Ser	Val 25	His	Asn	ŗàz	Arg	Glu 30	Ser	Arg	
	Asn	Lis	11e 35	His	His	Gln	Gln	Gly 40	Leu	Gly	His	Lys	Arg 45	Arg	Arg	Gly	
20	Ile	Ser 50	Gīy	Ser	Ala	Lys	Arg 55	Asn	Glu	Arç	Gly	Lys 60	Asp	Phe	Asp	Arg	
25	Lys 65	Arg	Asp	Gly	Asn	Gly 70	Arg	Lys	Arg	Trp	Arg 75	Asp	Ser	Arg	Arg	Leu 80	
	Ile	Phe	Ile	Leu	Gly 85	Ala	Phe	Leu	Gly	Val 90	Leu	Leu	Pro	Phe	Ser 95	Phe	
30	Gly	Ala	Tyr	His 100	Val	His	Asn	Ser	Asp 105	Ser	Asp	Leu	Phe	Asp 110	Asn	Phe	
	Val	Asn	Phe 115	Asp	Ser	Leu	Lys	Val 120	īāī	Leu	. Asp	Asp	Trp 125	Lys	Asp	Val	
35	Leu	Pro 130	Gln	Gly	Ile	Ser	Ser 135	Phe	: Ile	Asp	gzA o	Ile 140	Gln	Ala	Gly	Asn	
40	Tyr 145	Ser	Thr	Ser	Ser	Leu 150	Asp	AsŢ	Leu	. Sei	Glu 155	Asn	Phe	Ala	. Vai	160	
	Lys	Gln	. Lev	Leu	Arg 165	Asp	Tyr	Asī	ı Ile	: Glu	ı Ala	Lys	: His	Pro	Val 175	Val	
45	Met	Val	. Pro	Gly 180	y Val	. Ile	e Ser	The	: Gly	r Ile	e Gli	se:	TI	Gl)	y Val	Tie	
	GŢĀ	Asy	As:	o Glu	ı Cys	: As;	Ser	Se:	r Ala	e Hi	s Phe	e Ar;	1 Lys	arı	j Le	ı Trp	
50	Gly	Se:	r Phe	e Tyr	- Met	Le:	. Arg	g min	r Me	: Va	l Me	22	p Ly: O	s Va	l Cy	e TIP	1
55	Беч 225	. Ly:		s Vai	l Met	: Le: 23:	: Asī O	p P ≃	o Ġl	ı Th	r Gi; 23	y Le	u As	p Pr	o Pż	o Asr 240	<u>:</u>)
23			r Le	u Ar	ع الم 243			n Gl	y Ph	e Gl 25	u Se O	r Th	r As	p Ty	- Ph 25	e Ile 5	È
60	Als	2 Gl;	አ ፲አ	TT:	p Ile o	e TY	p As:	n Ly	's Va 26	1 Ph 5	e Gl	n As	n Le	ս Gl 27	y V≊ O	1 Ile	=

	Gly	Tyr	Glu 275	Pro	Asn	Lys	Met	Thr 280	Ser	Ala	Ala	Tyr	Asp 285	Trp	Arg	Leu
5	Ala	Ту <u>т</u> 290	Leu	Asp	Leu	Glu	Arg 295	Arg	Asp	Arg	Tyr	Phe 300	Thr	Lys	Leu	Lys
10	Glu 305	Gln	Ile	Glu	Leu	Phe 310	His	Glņ	Leu	Ser	Gly 315	Glu	Lys	Val	Cys	Leu 320
10	Ile	Gly	His	Ser	Met 325	Gly	Ser	Gln	Ile	Ile 330	Phe	ŢYĭ	Phe	Met	Lys 335	Trp
15	Val	Glu	Ala	Glu 340	Gly	Pro	Leu	TYT	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
	Asn	Glu	His 355	Iļe	Asp	Ser	Phe	Ile 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
20	Ala	Pro 370		Ala	Val	Pro	Ala 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
25	Ile 385	Gln	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Glu	Lys	Phe	Phe	Ser 400
23	Arg	Ile	Glu	Arg	Val 405	Lys	Met	Leu	Gln	Thr 410	Tro	Gly	Gly	Ile	Pro 415	Ser
30	Met	Leu	Pro	Lys 420		Glu	Glu	Val	Ile 425	Trp	Gly	Asp	Met	Lys 430	Ser	Ser
	Ser	Glu	Asp 435		Leu	Asn	Asn	Asn 440	Thr	Asp	Thr	Tyr	Gly 445	Asn	Phe	Ile
35	Arg	Phe 450		Arg	ASD	Thr	Ser 455	Asp	Ala	Phe	: Asn	Lys 460	Asr	. Leu	Thr	Met
40	Lys 465		Ala	Ile	e Asn	Met 470	<u> </u>	Leu	. Ser	: Ile	9 Ser 475	Pro	Glu	ı TIP	Leu	480
1 ∪	Arg	Arg	. Val	. His	Glu 485	Gl=	TYT	Ser	Phe	Gl ₃ 490	r Tyr)	Ser	Lys	AST	495	Glu
45	Glu	l Let	ı Arç	500		ı Glu	ı Leu	. His	505	Lys	s His	TIF	Se	510	Pro	Met
	Glu	ı Val	Pro	Leu 5	ı Pro	Glu	ı Ala	Pro 520	His	s Me	L Lys	: Ile	Ty:	c Cys	s Ile	Tyr
5 0	Gly	7 Val		n Ası	n Pro	The	Glu 535	a Arg	; Als	l Tyr	val	Ty:	Pě:	s Glu	ı Glu	1 Asp
••	As; 545		s Se	- Ala	a Lev	1 ASI 550	. Leu G	: Th:	r Ile	e As	Ty:		ı Se:	r Lys	s Gl	560
55	٧al	. Ph	e Le	ı Thi	= Gl: 56		/ Asī	o Gly	/ Thi	72. 57	l Pro	Lev	ı Va	l Ala	579	s Ser
60	Met	Cy:	s His	5 Ly:	s Tri	o Ala	e Glr	a Gly	7 Ala 583	a Se:	r Pro	ту:	As:	n Pro	o Ala	a Gly

	Ile	Asn	Val 595	Thr	Ile	Val	Glu	Met 600	Lys	His	Gln	Pro	605	و نیم	1116	noç
5	Ile	Arg 610	Gly	GJA	Ala	Lys	Ser 615	Ala	Glu	His	Val	Asp 620	Ile	Leu	Gly	Ser
	Ala 625	Glu	Leu	Asn	qzA	Tyr 630	Ile	Leu	Lys	Ile	Ala 635	Ser	Gly	Asn	Gly	As <u>r</u> 64(
.0	Leu	Val	Glu	Pro	Arg 645	Gln	Leu	Ser	Asn	Leu 650	Ser	Gln	Trp	Val	Ser 655	Glı
15	Met	Pro	Phe	PT0 660	Met											

```
SEQUENCE LISTING
<110> Stymne Dr., Sten
<120>
<130>
< 1442
 <141>
 <150>
 <210> 1 b
 <211> 1986
 <212> genomic DNA
 <2113> Saccharomyces cerevisiae
 <220>
<221> CDS
  <222> (1) .. (1983)
  aty ego ach ong the oga aga mat etc cas and can may agt eat tec 48
  Met Gly Thr Lou Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Sor
  Sat And and and day God Got tot Got cat and day con gas ago aga
  Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg
               20
  act car att cat car car eag ggs tta ggc cat asg ags ags agg ggt
   Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg ,Gly
                                40
            35
   att agt ggc agt gca asa aga ast gag cgt ggc asa gat ttc gac agg
                                                                     192
   The Ser Gly Ser Ala Lys Arg Ann Glu Arg Gly Lys And Phe Asp Arg
                            55
        50
   and aga gao ggg and ggt aga and ogt tog aga gat too aga aga etg
   Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu
    att the Att out ggt god the the ggt god ett the dee the age the
    The Pho The Leu Gly Ala Phe Leu Gly Val Leu Deu Pro Phe Ser Phe
                                         9 ℃
                     25
    99- FOI THE CAS GET CAS ARE AGO GAS AGO GAS TEE FAC ARE THE
    Gly Ala Tyr His Val His Ash Ser Asp Ser Asp Leu Phe Asp Ash Phe
```

100

gta aat tit gat toa ott naa gig tat tig gat gat tig aaa gat git 384 Val Aan Phe Asp Sor Leu Lys Val Tyr Leu Asp Asp Trp Lya Asp Val 115 120 125 ctc coa caa ggt ata agt tog tit act gat gat att cag got ggt aac 432
Leu Pro Gln Gly Ile Ser Ser Pre 110 Alp 140
tac too aca tot too toa gat gat oto agt gas aat tot goo got ggt 480 Tyr Sor Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 145 150 150
lan can etc tta egt gat tat ant one gag gee har ent gut gut gut sin Lyn Gln Leu Leu Arg Asp Tyr Asn Ile Glu Alt Lyn His Pro Val Val 175
atg got cot ggt gte att tot acg ggt att gla ago tgg ggt got tot 576 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180
ggs gad gat gag tgd gat agr rot gag car ttt ogt aas oog otg tgg 624 Gly Asp Asp Glu Cys Asp Ser Ser Ala His Pha Arg Lys Arg Leu Trp 195 200
ggs agt til lac atg cig ags aca atg git atg gat ass git tigt tigg 672 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 210 215
tig aas cat gts atg tts gat cat gas acs ggt ctg gad cas cag and 720 Leu Lys Mis Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Ash 235 240
tot acg one cgt god god cag sgo the gas tod ach gat tat the acc 768 The Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 245 250 250
SER SES THE TES ALL TES ARE REE SET THE CRE RAT SES SER ALL THE SER ALL SES ALL SES SER ALL THE ALL SES ALL SES SER ALL SES SECOND SECO SECOND
ggo thi gam doo and han hys Met Thr Ser Ala Ala Tyr Asp Trp Arg Deu Sly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Deu 280

Sca tat tta gat cta gaa aga cgc gat agg tac ttt acg ang cta ang s Ala Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys 290 295	12
gaa caa atc gaa ctg ttt cat caa ttg agt ggt gaa aaa got tgo coa Glu Gln Ile Glu Leu Phe Ris Gln Leu Ser Gly Glu Lys Val Cys Leu. 310	€0
att gga cat tot atg ggt tot dag att atc tit tac tot bog abs att gga cat tot atg ggt tot dag att atc tit tac tot bog abs att gga cat tot atg ggt tot dag att atc tit tac tot bog abs att gga cat tot atg ggt tot dag att atc tit tac tot bog abs att gga cat tot atg ggt tot dag att atc tit tac tot bog abs atc tit tac tot bog atc tit tac tit tac tot bog atc tit tac ti	L008
gtc gag gct gas ggc cct ctt tac ggt aat ggt ggt cgt ggc tgg gtt Val Glu Als Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val 340	1055
and gas one are gar too the ath got got ggg ang out ong ggc Ash Glu Mic Ile Ash Ser Phe Ile Ash Ala Ala Gly Thr Lou Leu Gly 355	1104
get eet mag gen git een get eth ett agt ggt gan mig man gat mee Alm Pro Lys Alm Val Pro Alm Leu Ile Ser Gly Glu Met Lys Asp Thr 370	1152
att cas the east edg the god and that ggo the gas eag the the toa lie Gln Leu Asn Thr Leu Ale Mon Tyr Gly Leu Glu Lys Phe Phe Son 400	1200
age att gag age gie amm atg the cas ang tigs git git ath cos the Arg lie Glu Arg Val Lys Met Leu Gle Thr Trp Gly Gly lie Pro Scr 415	1248
atg cia coa mag ega gaa gag etc att tes egg gat atg mag ton tot Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Met Lys Ser Ser 430	1296
toa gas gat gos tog ant asc asc act gad act tad ggd ast tod att ser Glu Asp Ala Leu Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile 445	1344
ogs tit gas agg sat acg ago gat got too asc has act tog acc atg Arg Phe Glu Arg Ash The Ser Asp Ala Phe Ash Lys Ash Leu The Met	1392
and get got but had and add the tog and toe cot gas tog one cas bys Asp Ala Ile Ash Met The Deu Ser Ile Ser Pro Glu Trp Deu Glo 480	1440

yre res	yld	gta Val	cat Mis	525 614 485	cag Gln	tac Tyr	tcg Ser	Phe	99° Gly 490	tat : Tyr :	ser :	rya :	7.sr.	gaz Glu 495	gaa Glu	1485
ejn See	tta Lou	yre ses	ETA SOO	aat Asn	Glu	cta Leu	cac Kis	E O E Mia Cac	TÀS	cac His	tgg T rp	teg Set	aat Asn 510	520 CC8	atg Met	1536
gia Glu	gta Val	Pro El5	Leu	eca Pro	gaa	got Ala	000 Pro 520	cac His	atg Net	aaa Lys	atc Tle	tet Tyr 525	tgt Cys	ata Ile	Tyr	1584
6 <i>1</i> Å	gtg Val	Ass	: Alc	cca Pro	act Thr	ess GJn Gss	age Are	gca	tat Tyr	gta Val	Ty= 540	Lys	Glu	Glu	gat Asp	1632
925 924 948	Ser	: Se:	. VJ:	: cts	aat Aen E50	. Leu	acc	atc Tle	ÇEC	tac Tyr 555	Gjr Gas	agc	Lys	caa Gln	DE 0	1680
gta Val	Phe	e Le	z zc	c gag r Glv ses	r ej	gac / Asp	o Gjå e 885	acc Thr	gtt Val 570	Pro	ctc Leu	gtg Val	gcg	cat His	Ser	1728
atg Met	tg: Cy:	ca E Ei	c zz s Ly ss	s II	g gc	cag a Gla	g ggt	coe : sla v ese	. Se:	r Pro	tac Tyr	E AST	222 222 593	ة شيط و	F GJÅ	177 <i>6</i>
at:	e aa e As	c gt n Va 53	l Th	t at	t gt e Va	g gaa	e ets u Met 60:	t Lys	ca:	cas Glr	r cca	e gat D Asp E03	o A.T	e tti	t gat e Asp	1624
Et:	e cg Ar 61	g Gl	17 G3	is ec	a aa a Ly	a ag s Se 61	r Al	c gaa	e ca u Hi	c gta	R 520 L As) 620	5 77:	e ie	n ey. e ee	c ago y ser	1872
gc 21	a Gl	.g t!	eu A	ec ge sn As	t ta: יף דע 63	T Il	c tt e Le	g aa u ly	a at s Il	t gc: e Al. 63	a Se	z Gj	t as y As	t gg n Gl	e gat y Asp 640	1920
c s Le	e gt	e g	ag c lu p	22 23 24 22 24	e Gl	iz tt Lr Le	en Se	it ea er As	t tt t De	್ಗ ೯೯	c ca	g tg n Tr	g gt z Va	it to il se 65	es cag	1968

1986

atg ecc ttc eca atg tas Met Pro Phe Pro Met 660 <210> 2 g

<211> 651 <212> PRT . <213> Sacchiromyces cerevisiae <400> 2 Met Gly Thr Lou Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp'Ser 10 Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 25 20 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Gly 40 Ile Ser Gly Ser Ale Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg . 60 . 55 Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 70 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Lau Pro Pho Ser Phe 90 35 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 105 100 Val Asn Pho Asp Ser Lou Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 120 Lou Pro Glm Gly Ile Ser Ser Phe Ile Asp Asp Ile Glm Ala Gly Asm 135 Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 155 150 Lys Glm Leu Leu Arg Asp Tyr Asm Ile Glu Ala Lys His Pro Val Val 170 155 Met Val Pro Gly Val Ile Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 180 Gly Asp Asp Glu Cys Asp Ser Ser Ala Mie Phe Arg Lys Arg Leu Trp 205 . 200 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 195 215 Lew Lys His Val Met Lew Asp Pro Glu Thr Gly Lew Asp Pro Pro Asn -235 230 The Thr Leu Arg Alz Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 250 245 Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Glm Asn Leu Gly Val Ile 265 Gly Tyr Glu Pro Asn Lys Met Thr Ser Ala Ala Tyr Asp Trp Arg Leu 260 250 Als Tyr Leu Asp Leu Glu Arg Arg Asp Arg Tyr Phe Thr Lys Leu Lys . 255 Giu Gin Ile Giu Leu Phe Ris Gin Leu Ser Gly Giu Lys Val Cys Leu

310

305

Ile Gly His Ser Met Gly Ser Gln Ile Ile Pho Tyr Phe Mot Lys Trp
Ile Gly His Ser Met Gly Ser GIR 110 110 110 110 110 110 110 110 110 11
Val Glu Ale Glu Gly Pro Leu Tyr Gly Asn Gly Gly Arg Gly Trp Val
Val Glu Ala Glu Gly 925 hed 175 and 345
Ash Glu His Ile Asp Ser Phe Ile Ash Ala Ala Gly Thr Leu Lou Gly
Ash Glu His lie Asp sel 1 360
Ala Pro Lys Ala Val Pro Ala Leu Ile Ser Gly Glu Met Lys Asp The
Ala Pro Lys Ala Val 220 375
375 375 Ile Gln Leu Asn Thr Leu Alz Met Tyr Gly Leu Glu Lys Pho Phe Ser 395 400
395 390 395
Arg Ile Glu Arg Val Lys Met Leu Glm Thr Trp Gly Gly Ile Pro Ser
405 405 AND THE SET SET
405 Met Leu Pro Lys Gly Glu Glu Val Ile Trp Gly Asp Mct Lys Ser Ser 430
425 Ago Tyr Gly Ash Phe Ile
420 425 Ser Glu Asp Ala Leu Asn Asn Asn Thr Asp Thr Tyr Gly Asn Phe Ile
435 640 Ash Lys Ash Leu Thr Met
435 440 Arg Pho Glu Arg Asn Thr Ser Asp Ala Pho Asn Lyz Asn Leu Thr Met 460
450 455 Lys Asp Alm Ile Asm Met Thr Leu Ser Ile Ser Pro Glu Trp Leu Gln 475 460
Lys Asp Ala Ile Ash Met IRi Bed 555 475
455 470 Arg Arg Val His Glu Gln Tyr Ser Phe Gly Tyr Ser Lys Asn Glu Glu 495
Arg Arg Val His Git Git 192 July 495
485 Glu Lou Arg Lys Ash Glu Leu His His Lys His Trp Ser Ash Pro Mot 505 510
505 505 The TVT
Giu Val Pro Lou Pro Glu Ala Pro His Met Lys Ile Tyr Cys Ile Tyr
Gly Val Ann Ann Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp
535 540 FTO FTO
S35 S35 Asp Ser Ser Ala Leu Ash Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro S55 S50
550 SSS TO VEL ALE HIS SET
545 550 550 Leu Val Ala His Ser Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser 570 575
565 STO TYP ASD Pro Ala Gly
565 Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 590
585 585 Phe Asp
580 580 580 The Asp Arg Phe Asp 11c Asm Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 605
Ses 600 Ile Are Gly Gly Ala Lyr Ser Ala Glu His Val Asp Ile Leu Gly Ser 620
Ile Are Gly Gly Ala Lyr Ser Ala Gar 620
fin 615 Ala Glu Leu Ash Asp Tyr Ile Leu Lys Ile Ala Ser Gly Ash Gly Asp 640
Ala Glu Leu Ash Asp Tyr 115 Hot 25 635
630 625 620 625 620 625 620 625 625 625 625 625
Leu Val Glu Pro Arg Gim Her Doo Arg 550
943
Met Pro Phe Pro Met
650

<211> 2312 <212> genom <213> Schim <400> 3	ic DNA osaccharomy	edmoq. 200			
ATESCGTCTT	PAGAAGAAGA	CARARCTCAT	ADAAAKABA	AAGAAGTCAA	50
ATCTCCTATC	GACTTACCAA	ATTCAAAGAA	ACCAACTOGO	GCTTTGAGTG	160
AGCAACCTTC	AGCGTCCGAA.	ACACAATCTG	TTTCAAATAA	ATCAAGAAAA	150
TCTAAATTTG	GAAAAAGATT	GAATTTTATA	TTGGGCGCTA	TTTTGGGAAT	200
ATGCGGTGCT	TTTTTTTCG	CTGTTGGAGA	CGACAATGET	GTTTTCGACC	250
CTGCTACGTT	AGATAAATTT	GGGANTATGC	TAGGETETTE	AGACTTGTTT	300
GATCACATTA	AAGGATATTT	ATCTTATAAT	GTGTTTAAGG	ATGCACCTTT	350
TACTACGGAC	AAGCCTTCGC	AGTCTCCTAG	CGGAAATGAA	GTTCAAGTTG	400
GICTTGATAT	GTACAATGAĞ	GGATATCGAA	GTGACCATCC	TGTTATTATG	450
GTTCCTGGTG	TTATCAGCTC	AGGATTAGAA	AGTTGGTCGT	TTAATAATTG	500
CTCGATTCCT	TACTTTAGGA	AACGTCTTTG	GGGTASCIGG	TCTATGCTGA	550
AGGCAATGTT	CCTTGACAAG	CARTGCTGGC	TTGAACATTT	AATGCTTGAT	€00
				CAGCTCAGGG	650
				TGGAGTAAAG	700
	CCTTGCTGCA				750
			,	AACGTGATAA	EDO
				ATTGTACATA	850
				GGTTACGTAC	900
	AGTGGGTTGA				950
TIGGGTTAAT	GATCATATTG	AAGCATTTAT	' ARATGTGAGT	CTCGATGGTT	1000
GTTTGACTAC	GTTTCTAACT	TTTGAATAGA	. TATOGGGATO	TTTGATTGGA	1050
•				AAGATACAGG	1100
				TAACCGTTT	1150
				: AAATTGTTGA	1200
GATITGITAC	TANTTTACTG	TTTAGTTIGG	: AAAATTTT?	TICCCCTTCI	3 2 5 0
GASGTATATI	CARAAATACA	. ANTOTOCICS	ACTITITEES	ACTTTTAATA	1300
GASAGCCATS	: ATGGTTCGCA	. CTATGGGAGG	AGTTAGTTCT	ATGCTTCCTA	1350
AAGGAGGCGA	. TGTTGTATGG	GGNATGCC	a gtigggiaac	: AAATATGTGC	1400

IGTTAATITI TIATTAATAT TTAGGCTCCA GATGATCTTA ATCAARCAAA	1450
TTTTTCCANT GGTGCANTTA TTCGATATAG AGANGACATT GATANGGNCC	1500
ACGATGAATT TGACATAGAT GATGCATTAC AATTTTTAAA AAATGTTACA	1550
GATGACGATT TTAPAGTCAT GCTAGCGARA AATTATTCCC ACGGTCTTGC	1600
TTGGACTGAA AAAGAAGTGT TARARAATAA CGAAATGCCG TCTAAATGGA	3,550
TANATOOGOT AGAAGTAAGA ACATTAAAGT TACTAAATTA TACTAACCCA	1700
ANTAGACING TOTTCOTTAT GOTCOTGATA TGANAATTTA TTGCGTTCAC	1750
OGGGTCGGAA AACCAACTGA GAGAGGTTAT TATTATACTA ATARTCCTGA	1500
GGGGCAACOT GTCATTGATT CCTCGGTTAA TGATGGAACA AAAGTTGAAA	1250
ATGTGAGAGA ATTTATGTTT CAARCATTCT ATTARCTGTT TTATTAGGGT	1900
ATTOTTATES ATGATESTED TEGNACTITA CCAMTATIAG CCCTTEGTTT	1950
GGIGTGCAAT AAAGTTTGGC AAACAAAAAG GTTTAATCCT GCTAATACAA	3000
GTATCACARA TTATGARATO ARGCATGARO CTGCTGCGTT TGATCTGAGA	2050
GGAGGACCTC GCTCGGCAGA ACACGTCGAT ATACTTGGAC ATTCAGAGCT	2100
ARRIGHATET TERTITIAGE TERCARATTE CTRITACIAN CICTIGANAT	2150
ARTGTATGE TOWNTHAND THE ARTGAGGG CATGGTGACT CGGTACCARA ARGGANATIA TITTARRAGE TTCRTCAGGC CATGGTGACT CGGTACCARA	2200
CCOTTATATA TCAGATATCO AGTACGGACA TAAGTITIGT AGATTGCAAT	2250
CCOTTATATA TCAGRIATCO ACIMONIA ATGAGATAAA TCICGATAAA TAACTAACTA ACCGAACAGG GAAATAATAA ATGAGATAAA TCICGATAAA	2300
	2312
COTAGAARTT AA	

<210 > 4 \(\bar{V} \)
<211 > 3685
<212 > genomic DNA
<213 > Arabidopsis thaliana
<400 > 4

ATGCCCCTTA TTCATCGGAA AAAGCCGACG GAGAAACCAT CGACGCCGCC 50 ATCTGAAGAG GTGGTGCACG ATGAGGATTC GCAAAAGAAA CCACACGAAT 100 CTTCCARATO CCACCATAG ARATCGARCG GAGGAGGGAR GTGGTCGTGC 150 ATCGATTCTT GTTGTTGGTT CATTGGGTGT GTGTGTAA CCTGGTGGTT 200 TOTTOTOTO CTTTACARCS CARTGOOTIGG GAGGTTCCCT CAGTATGTAR 250 COGRECGIAT CACOGOTICT TECCTORIC COCCOGOTOT TRAGCTCARA. 300 AAAGAAGGTC TTAAGGCGAA ACATCCTGTT GTCTTCATTC CTGGGATTGT 350 CACCGGTGGG CTCGAGCTTT GGGAAGGCAA ACAATGCGCT GATGGTTTAT 400 450 TTAGAAAACG TITGTGGCGT GGAACTTTTG GTGAAGTCTA CAAAAGGTGA GCTCARCART TCTCACTCTT CCTTTATATT GGGATTTGGA TTGGATCTGA 500 TGAGATONOG CACTTGTTGC TTCTTCARCA TCACTCARAC TITALITCCA 550 TETTIGICIG TOTTACTOTT TACTITITIT TITTTTGAT GIGANACGOT 600 ATTITCTIAR GRGACTATTI CIGTATGIGI RAGGIARGCG TICCARGGAC 650 GTANTGGCT TGGACTATTT CTGTTTGATT GTTANCTTTA GGATATANA 700 TAGCTGCCTT GGAATTTCAA GTCATCTTAT TGCCAAATCT GTTGCTAGAC 750 ATGCCCTAGA GTCCGTTCAT AACAAGTTAC TTCCTTTACT GTCGTTGCGT E00 GTAGATITAG CTTTGTGTAG CGTATAATGA AGTAGTGTTT TATGTTTTGT 250 IGGGAATAGA GAAGTTCTAA CTACATCTGT GGAAAGTGTG TICAGGCTGT 900 GATAGAGGAC TGTTGCTTTA TTATTCAACT ATGTATATGT GTAATTAAAG 950 1000 CTAGTTCCTT TTTGATCTTT CAGCTCAATG TGCTTTTCTC AATTTTTTTC TONATTICAA AGTITCACAT CGAGTITATT CACATGTCTT GAATTTCGTC 1050 1100 CATCCTCGTT CIGTTATCCA GCTTTGAACT CCTCCCGACC CIGCTATGGA TATATTAAAA AAAAAGTGTT TTGTGGGTTG CATCTTTGTT ACGATCTGCA 1150 TOTICTIC'IT TOGGCTCAGT GTTCATGTTT TTGCTATGGT AGAGATGGGC 1200 1250 ARTOTTATIG TIGHTGGTAR CHGTGGTHER GITGHTAGTA TOTTARCIAR TOANTATOT CTTTGAITCA GGCCTCTATG TTGGGTGGAA CACATGTCAC 1300 TIGACARIGA ARCTEGETIE GATCCRECTE GIATTAGAGI TOGASCIGIA 1350

TESTCISSS	1400.
TCAGGACTCG TGGCTGCTGA CTACTTTGCT CCTGGCTACT TTGTCTGGGC	1450
AGTGCTGATT CCTAACCTTG CACATATTGG ATATGAAGAG AAAAATATGT	
NOATGGCTGC ATATGACTGG CGGCTTTCGT TTCAGARCAC AGAGGTTCTT	1500
TTCTCATCGT TCTTTCTATT ATTCTGTTCC ATGTTACGTT TCTTTCTTCA	1550
TTOTCATOG! TOTTOTTO TTOTCATGTTG NATIONATAGG TACGTGATCA	7600
CONTESTAGE CETATGAAAA GTAATATAGA GTTGATGGTT TETACCAACG	1650
GTGGARRAR AGCAGTTATA GTTCCGCATT CCATGGGGGT CTTGTATTT	1700
CTACATTTTA TGAAGTGGGT TGAGGCACCA GCTCCTCTGG GTGGCGGGGG	1750
CTACATTITA TGAAGTGGGT IGAGGCATON TGGGCCAGAT TGGTGTGCAA AGTATATTAA GGCGGTGATG AACATTGGTG	1800
GACCATTTCT TGGTGTTCCA AAAGCTGTTG CAGGGCTTTT CTCTGCTGAA.	1850
GACCATITCT TGGTGTTCCA AAAGCIGTTO CAACCATITCT ATACTTTTGA GCAAAGGATG TTGCAGTTGC CAGGTATTGA ATATCTGCTT ATACTTTTGA	1900
GCAAAGGATG TTGCAGTTGC CAGGTALIGA ANTOTACT AAATATCAAT	1950
TGATCAGAAC CTTGGCTCTG GAACTCAAAG TTATTCTACT AAATATCAAT	2000
TCTARTANCA TTGCTATATT ATCGCTGCAA CTGACATTGG TTGATTATTT	2050
TIGCTGCTTA TGTAACTGAA ACTCTCTTGA GATTAGACAA ATGATGAATT	2100
GATAATTOTT ACGCATTGCT CTGTGATGAC CAGTTTCTTA GCTTCGACGA	2150
TAACATTIGT CATACTGTCT TITGGAGGGC ATTGAATTTT GCTATGGAAA	2200
GCGCTGGAGC TTCCATGCTT GCATTCTTTA CCAATTAGCG TTATTCTGCT	2250
TOTTCAATT TTCTTGTATA TGCATCTATG GTCTTTTATT TCTTCTTAAT	2300
THE STEE TISSATTAGT TESTCTATTA GTCACTTEGT TEST TARIA	
ACAL COTTAGE TITICTICGAR NATIGCAGAG CGATIGCECC AGGAILCIA.	2330
CONCECNTA TATTIAGACT TOAGACCTTG CAGCATGIAA TGAGAATGAC	2400
ACGCACATGG GACTCAACAA TGTCTATGTT ACCGAAGGGA GGTGACACGA	2450
TATEGEGEGE COTTGATIES TOACCEGAGA AAGGCCACAC CTGTTGTGGG	2500
TATEGGGCGG GCTTGATTOG TANGELGGGTG AAAACGGAGT AAAAAGCAAA AGAACAACGA AACTTGTGGT GAAGCAGGTG AAAACGGAGT AAAAAGCAAA AGAACAACGA AACTTGTGGT GAAGCAGGTG AAAACGGAAGT	2550
ANARGERAR AGENCARCIA RACITOTO TTCCARGRAR AGENCETTA ACTATGGRAG GREGATRET TTTGGGRARG TTCCARGRAR AGENCETTA ACTATGGRAG GREGATRET TTTTGGGARG	2600
TTCCARGRAR AGTCCTGTTA RETRICO. TO STREETER TTTTCGAGTA	2650
AAGTAGCAGA GGCTGCGCCA TCTGAGATTA ATAATATTGA TTTTCGAGTA	2700
AGGACATATA AATCATAATA AACCTTGTAC ATTTTGTGAT TGTATGATGA	2750
ATATOTOTAC ATTITATOTO GIGARGGIG CIGICARAGG TORGAGIATO	2300
ATATOTOTAL ATTITATOR CCANATCACA CCTGTGGGACA GAGTACCATG ACATGGGAAT	2850
TGCTGGGATC AAAGCTATCG CTGAGTATAA GGTCTACACT GCTGGTGAAG	:

CTATAGATCT ACTACATTAT GTTGCTCCTA AGATGATGGC GCGTGGTGCC	2900
CTATAGATOT ACTAGATIAL GITGOLOGIA TOGATGACA CCAAGTATCA GCTCATTTCT CTTATGGAAT TGCTGATGAT TTGGATGACA CCAAGTATCA	2950
AGATECCARA TACTEGTEAR ATCCGTTAGA GACARAGTAR GTGATTTCTT	3000
AGATCCCAAA TACTGGTCAA AICCGILACA OMATA	2050
GATTCCAACT GTATCCTTCG TCCTGATGCA TYPE	3100
GGTCTTGTTG CATAIGGTTT TURGUTURAN GCTTATATA TTGAGGTGCT ARAGTTGATA GCCTTTCTCA ARAGGCTTG CTCAGTRATA TTGAGGTGCT ARAGTTGATA	3150
CAIGIGACTC TIGCTTATAA ATCCTCCGTT TGGTTTGTTC TGCTTTTCA	3200
CATGIGACTO TIGOTIATAA ATCOLOGGI TOOTA COGAGIGGGG GATTACOGAA TGCTCCTGAG ATGGAAATCT ACTCATTATA CGGAGIGGGG	3250
GATTACCAA TECTOCTEAS ALGGRANTET TO THE ALCCACT CTCCCGACAG ATACCAACGG ARCGAGCATA CGTATACAAG CTTARCCAGT CTCCCGACAG	2300
ATACCAACGG AACGAGCATA CGIATACATO TIGCATCCCC TITCAGATAT TCACTICTGC TCACGAGGAG GACGAAGATA	3350
TTGCATCCCC TTTCAGATAT TCACTTCTCT TTTGCGGATGA AACAGTACCC	3400
GCTGTCTGAR AGCAGAGTT TACAATOTOO TO GCGTGGCGTG GCARGACARG GTCCTAAGTG CCGGGTACAT GTGTGCARAR GCGTGGCGTG GCARGACARG	3450
GTCCTAAGTG CCGGGTACAT GTGTGCTTTTT AAGAGAATAC AATCACTCTC	3500
ATTCARCECT TEEGGRATER ROACTITION CGCCGGCTAR CCTGTTGGAR GGGCGCGGGA CGCRGAGTGG TGCCCATGTT	3550
CGCCGGCTAR CCTGTTGGRA GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1600
GATATENTGG GARACTTTGC TITGATED TO CONGCTOON TOTGGENTAT COGGAGGTANC GGGTCTGATA TAGGACATGA CONGGTCONC TOTGGENTAT	3 5 5 0
	3685
TIGARTEGIC GGAGCGTATI GACCIGARGC TGTGA	

210>	5 b	•														
:211>	402	2														
<212:	. cDi	Al														
<213:	AT	abido	eizç	; tha	llian	La										
<220:																
<221:	CD:	S														
<222	(1)	20).	. (40	2)												
< 400																
			TIGT					ے <u>ہ</u> دیت	53TC	C CI	AATC'	TGTG	TTCT	AAAT	TC	60
NGAA	ACAG	CICI	TIGI	CICI	CTC	المتلاق	- 4 <i>i</i> 1	1,000	~							
			TGAC			>-	×	- <u>.</u>	CTGG	T TT.	AATT	TCAA	STGA	CAGA	T	119
CTGG	ACGA	GATT.	TGAC	D <i>A.</i> A.G	TCC	GTAL.	٤٠٠	120-0								
			ATT					000	אככ	CAG	AAA	CCA	TCG	ACG	CCG	167
ATG	CCC	CTT	ATT	CAT	CGG .	AAA.	عامرتر حدد ح	Dec	アカト	Glu	Lv≡	Pro	SCT	Thr	Pro	
Met	Pro	Leu	Ile	His	ATS	$r\lambda z$	TIAR				-					
									~ x ~	TCG	CAA	AAG	AAA	CCA	CAC	215
CCA	TCT	GAŁ	GAG	GTG	GTG		GAT	GNO	3.00	607	Gla	T ₁ V5	Lys	Pro	His	
Pro	SCT	Glu	Glu	Val	AST	HTZ	الم هدير		,			-				
										220	aas.	GGA	GGG	AAG	TGG	263
GAA	TCT	TCC	AAA	TCC	CAC	CNT	AAG	лдл	TCG	2	~7**	Gly	GLV	LVE	GIT	
Glu	Ser	Ser	AAA Lys	Ser	His	His	LY_5	355	Ser	ASA	Gry	O ± y	-	-1	•	
												CTG	TGT	GTA	ACC	. 311
TCC		270	GAT	TCT	TGT	IGI	TGG	TTC	ATT	GGG	101	17-3	CV	Val	Thr	
	Care	710	GAT Asp	Ser	CVE	Cys	TIP	Phe	IJG	GIÅ	CAR	A 77.7	Cy-			
202	C y 2			•••	•	-								بالمات	CCT	259
			بالمنصب	صهر	TTC	CIT	TAC	AAC	GCA	ATG	CCT	GCG	ے درجر	770	9-0	259
7.60	766		Tan	7 811	phe	Leu	TYI	Asn	Ala	Met	Pro	Ala	SEI	2330	Pro	
Trp	J.E.D	Pne	שפע	2-4			•							_		402
			. ACG		cca	LAT	CAC	GNO	TCC	TTT	GCC	TIA		G		-,02
CAG	TA	. GTA	. ACG . Inr	- CAC	5-0	2	ಚಿತ್ರ	777	Ser	Phe	Alz	Leu	PTO			
- C7=	Tyr	. A=7	. Țnr	. GTG	PTO	F,=		• • • •								

<210	s 6 🎗	برا														
<211																
<212	> cD	AN														
<213	> 2=	em s	ys.													
<220	>															
<221	_															
		.) (402)											•		
< 400	> 6															
					GCT	-TTC	226	GGG	GGT	GII	TAC	TTA	GCC	GAT	GGT	48
2	GAG	7	ALA TIO	27.5	Ala	Tiell	Tive	Glv	Gly	Val	Tyr	Leu	Ala	Aso	Gly	• -
~± =	GTH	-9-	T.T.E	5	~ ·		-1 -		10		-			15	•	
-				_												
GAT	GAA.	ACT	GTT	CCA	GTT	CII	AGT	GCG	GGC	TAC	ATG	TGT	GCG	<i>4_4_</i> 4	GGA.	96
A.=5	Glu	Thr	Val	Pro	Val	Leu	Ser	Ala	Cly	TYI	Met	Cys	عيع	Lys	GJA	
•			20	-				25					30			
										000		~ ~ ~	2 ~~	T2 C		144
TGG	CGT	GGC	777	ACT	CCT	TTC	AGC	CCI	212	C14	56-	Take	40 m	TV-	V=1	
GII	yzā		Lys	Thr	Arg	Pne	40	715	A-7-C	GTA	~	45		* 7 -	•	
		.35					40									
20.2	~ > >	~~~	7 ~~	C A T	TCG	CCA	CCC	TCT	ACT	CTC	CTG	GAA	GGC	AGG		192
ACA	61	TV	2600	His	Ser	PEO	Pro	Ser	Thr	Leu	Leu	$Gl \pi$	Gly	Arg	Gly	
True	50		562			55					60					
VCC	CAG	AGO	GST	GCA	CAT	GIT	GAT	ATA	rtg	GGG	ARC	TIT	GCT	CTA	ATT	240
Thy	Gln	Ser	· Gly	Ala	His	Val	Asp	Ile	Met	GIV	Asn	Pho	Alz	Leu	775	
65					70					75					5 0	
									~~~	7.00	COT	. GAG	G Z Z	عب ج	CCT	266
GAG	GVC	GTC	ATC	AGA	. ATA	GCI	23.	GGG	. N3-	. ACC	. GC:	. Glu	Glu	Tle	GGT Glv	
Glu	Asp	val	. Ile	Arg	ile	ALE	AL II	GIY	90 912	***-	027			25	GJA	
				.8.5										•		
			- ~	י דבי	. TC2	GAT	ATA	TTC	AAG	TGG	; TC>	. GAG	AAA	. ATC	YAA.	336
GG/U	. GA1	. CAC	, 3757	. IA.	- 50-	Ast	Ile	Phe	LYS	Trp	sez	Glu	Lys	Ile	Lys	
Gry	P.S.	, 01.	100					105	; -				110	•		
TTG	AA	TT	TAP	. CC	TATO	GGAP	GII	AAAC	AAG	TGCC	IGACO	ica i	TIAT	TGCG	TTCC	391
Lev	Lys	E Le														
		11	5													
				>		, - cc.	777.72			يعدج	L TAC	TGT	LATT	TTTC	CACGC	445
تحم	reig.	TCCT	GCC:	. فنهرف	م کی۔	4. M. C.										
					~ תת∽	نينت		יי הי	ACAGO	SACG	בם ב	TGC	FATA	CGAT	GTTG	507
			~~~	٠	ن تالت	ובדבו	TAR	AC TO	TAC	LGGT	ತ ಇಸಿ	AGTT	SCAT	TTG	CAGC	<b>5</b> 65
ŭС.	122T	TGTG	TAG	TCGT	TTT (CTTT	ACGA:	et ti	AATA	מכאאו	G TG	SCOG	AGCV	GTG	CCCA	523
																643

<210> 7 b <211> 115 <212> PRT <211> Zer mays <400> 7

Arg Glu Lys Ile Ala Ala Leu Lys Gly Gly Val Tyr Leu Ala Asp Gly
1 10 15

Asp Glu Thr Val Pro Val Leu Ser Ala Gly Tyr Met Cys Ala Lys Gly 20 25

Trp Arg Gly Lys Thr Arg Phe Ser Pro Ala Gly Ser Lys Thr Tyr Val

Arg Glu Tyr Ser His Ser Pro Pro Ser Thr Lou Leu Glu Gly Arg Gly 50 55 60

Thr Gln Ser Gly Ala His Val Asp Ile Met Gly Asn Pho Ala Leu Ile 80

Glu Asp Val Ile Arg Ile Ala Ala Gly Ala Thr Gly Glu Glu Ile Gly so

Gly Asp Gln Val Tyr Ser Asp Ile Phe Lys Trp Ser Glu Lys Ile Lys

Leu Lys Leu 115

GGTGGCGAAG	ACGANGGCGG	AAGTTGGAGG	CTARCGAGAA	TGACNCTCGG	
AGATGGATCT	ACCCTCTAGA	GACACGACTA	CONTIGUACO	CAGCCTCAAG	ioo
GTMTACNGTT	TNTATGGGTA	GGAAGCCGAC	GGAGCGAGCC	TACATCTATC	150
TGGCGCCCGA.	TCCCGGGACG	ACAACGCATC	TTTAGATGAC	GATCGATACG	200
ACTTTGACTN	AGGGGCACAT	TGACCACGGT	GTGATTTTGG	GCGAAGGCGA	250
TGGCACAGTG	AACCTTATGA	GTTTGGGGTA	CCTGTGCAAT	ANGGGGTGGA	300
aaatgaagag	ATACAATCCT	GCGGGCTCAA	ARATARCOGT	GGTCGNGATG	350
				ATACGGCGGA	500
				TAARTACGGC	550
				TTTTTTCTAA	600
ALLELLANALA					616

<210> 9 \(\) \(<211> \) 1562 \(<212> \) genomic DNA \(<213> \) Arabidopsis thaliana \(<400> 9 \)

ATGRARARA TATCTTCACA TTATTCGGTA GTCATAGCGA TACTCGTTGT.	50
GGTGACGATG ACCTCGATGT GTCAAGCTGT GGGTAGCAAC GTGTACCCTT	100
TGATTCTGGT TCCAGGAAAC GGAGGTAACC AGCTAGAGGT ACGGCTGGAC	150
AGAGAATACA AGCCAAGTAG TGTCTGGTGT AGCAGCTGGT TATATCCGAT	200
TCATAAGAAG AGTGGTGGAT GGTTTAGGCT ATGGTTCGAT GCAGCAGTGT	250
TATIGTCTCC CTTCACCAGG TGCTTCAGCG ATCGAATGAT GTTGTACTAT	300
GACCCTGATT TGGATGATTA CCANAATGCT CCTGGTGTCC AAACCCGGGT	350
TOCTCATTTO GGTTCGACCA AATCACTTCT ATACCTCGAC CCTCGTCTCC	400
GGTTAGTACT TTCCAAGATA TATCATTTTG GGACATTTGC ATAATGAACA	450
ANATAGACAT ANATTTGGGG GATTATTGTT ATATCANTAT CCATTTATAT	500
GCTAGTCGGT AATGTGAGTG TTATGTTAGT ATAGTTAATG TGAGTGTTAT	550
GTGATITTCC ATITTAAATG AAGCTAGAAA GTTGTCGTTT AATAATGTTG	600
CTATGTCATG AGAATTATAA GGACACTATG TAAATGTAGC TTAATAATAA	650
GETTIGATIT GCAGAGATGC CACATCTTAC ATGGAACATT TGGTGAAAGC	700
TCTAGAGAAA AAATGCGGGT ATGTTAACGA CCAAACCATC CTAGGAGCTC	750
CATATGATTT CAGGTACGGC CIGGCTGCTT CGGGCCACCC GTCCCGTGTA	800
GCCTCACAGT TCCTACAAGA CCTCAAACAA TTGGTGGAAA AAACTAGCAG	E50
CGAGAACGAA GGAAAGCCAG TGATACTCCT CTCCCATAGC CTAGGAGGAC	900
TTTTCGTCCT CCATTTCCTC AACCGTACCA CCCCTTCATG GCGCCGCAAG	950
TACATCARAC ACTITETTEC ACTOGOTECE COATEGETE GEACGATOTO	1000
TCAGATGAAG ACATTTGCTT CTGGCAACAC ACTCGGTGTC CCTTTAGTTA	1050
ACCCTITGCT GGTCAGACGG CATCAGAGGA CCTCCGAGAG TAACCAATGG	.1100
CINCITCOAT CIACCAAAGT GITTCACGAC AGAACTAAAC CGCTTGTCGT	
AACTCCCCAG GTTAACTACA CAGCTTACGA GATGGATCGG TTTTTTGCAG	
ACÂTTGGATT CTCACAAGGA GTTGTGCCTT ACAAGACAAG	

TTANCAGAGG	AGCTGATGAC	TCCGGGAGTG	CCAGTCACTT	GCATATATGG	1300
GAGAGGAGTT	GATACACCGG	AGGTTTTGAT	GTATGGAAAA	GGAGGATTCG	1350
ATAAGCAACC	AGAGATTAAG	TATGGAGATG	GAGATGGGAC	GGTTAATTTG	1400
GCGAGCTTAG	CAGCTTTGAA	AGTCGATAGC	TTGAACACCG	TAGAGATTGA	1450
TGGAGTTTCG	CATACATCTA	TACTTAAAGA	CGAGATCGCA	CTTAAAGAGA	1500
TTATGAAGCA	GATITCAATT	ATTAATTATG	AATTAGCCAA	TGTTAATGCC .	1550
GTCAATGAAT	GA				1552

<210> 10 b <211> 3996

<212> genomic DNA <213> Arabidopsis thaliana <400> 10 ATGGGAGCGA ATTCGAAATC AGTAACGGCT TCCTTCACCG TCATCGCCGT TTTTTCTTG ATTTGCGGTG GCCGAACTGC GGTGGAGGAT GAGACCGAGT TICACGGCGA CTACICGAAG CTATCGGSTA TAATCATTCC CCCATTTCGS TCGACGCAGC TACGAGCGTG GTCGATCCTT GACTGTCCAT ACACTCCGTT 200 CGACTICAAT CCGCTCGACC TCGTATGGCT AGACACCACT AAGGTCCGTG 250 ATCTTCATTT CCTTCGCTCC TTATTCTGTC GGTCGAGTCA CTTGTTGATG TEGTTEATTA GTEARCAGTG ACGETTETGA ATETGAGTTT AGAGTEATAT AAAACAGCTO ACTCGGCGAG TOTTTCCCAT CGCTTTTGGT TCGCTAAATG 450 TAGCGCANTG ANTGTGTANT TAGTCTGCGC TTTTTATTCA ACTAGATCTG CARGITTITC AGAGIGCICA ATAGIAGITA GARARIGITA GGICATITTA CTTGTGCATT GTGATTCTTT TGGTTGTTGC TTACTGATCG ACGTGATGGA 600 TGGTTTACAG CTTCTTTCTG CTGTCAACTG CTGGTTTAAG TGTATGGTGC 650 TAGATOCTTA TAATOAARCA GACCATOOOG AGTGTAAGIC ACGGCOTGAC AGTGGTCTTT CAGCCATCAC AGAATTGGAT CCAGGTTACA TAACAGGTAG 750 TTTCGGATTT TTCTTTCTTT TGAGTTTTCT TCAATTTGAT ATCATCTTGT 800 TOTGATATAR TATGGCTARG TTCATTAATT TGGTCAATTT TCAGGTCCTC 250 TTTCTACTGT CTGGARAGAG TGGCTTAAGT GGTGTGTTGA GTTTGGTATA 900 GAAGCANATG CAATTGTCGC TGTTCCATAC GATTGGAGAT TGTCACCAAC 950 CARATTEGAR DAGCETGACC TITACTITCA CARGCICARE TIRETCCITA TONGGOTART GTOTTTATO TTOTOTTTTT ATGTARGATA AGCTARGAGO TCTGGTCGTC TTCCTTTTTG CAGGTTGACC TTTGAAACTG CTTTAAAACT 1100 CCGIGGCGGC CCTTCTATAG TATTIGCCCA TICAATGGGT ANTAATGTCT TONGATACIT TOTGGAATGG CTGAGGCTAG AANTTGCACC AAARCATTAT 1200 TTGAAGTGGC TTGATCAGCA TATCCATGCT TATTTCGCTG TTGGTACCGG CCHACTATCC TTANGTTACC ATTTTATTTT TYCTCTAATT GGGGGAGTTA TGTTGTGACT TACTGGATTG AGCTCGATAC CTGATTTGTT GTTGATTTAG GAGCTCCTCT TCTTGGTTCT GTTGAGGCAP. TCAARTCTAC TCTCTCTGGT GTAACGTTTG GCCTTCCTGT TTCTGAGGTG ACCTCTGACT TCTCTTTAGT 1450 TTTAAGTAGT TGATATCAAC CACGTCTTAT AACTCACTGG ATTITCCTTT TGARAGTATT ACTITICATA ATTGARCTGC TGTACGCGAT ATGGTATCTG 1550 TAGATOTTGA AGTGCTAGTT ATCAAAGAAC ATATTGTGGG TAGTATACCT GTCAGCGGCC TTAGCTAATA CAACCAAACC ACATGTACAC TGATTTAGTT TTCAGATTAT TATGGTAGAC TTTAAGTTGA CAAGAAACTT TGACTGAAAT 1700 CTTTTTATTT TAATAGGCTA TGATTTGTTT ATTGARATCA TGTGACATAT 1750 TGACATGCGC TTCTCATGTT TTTTGTTGGC AAGGCTTCAG GGAACTGCTC 1800 GGTIGTTGTC CAATTCTTTT GCGTCGTCAT TGTGGCTTAT GCCATTTTCA 1250 AAGAATTGCA AGGGTGATAA CACATTCTGG ACGCATTTTT CTGGGGGTGC 1900 TGCNAAGAAA GATAAGCGCG TATACCACTG TGATGAAGAG GAATATCAAT 1950 CARACTATIC TEGETEGECE ACARATATTA TTARCATTER ARTTECTTEE ACTAGOGGTT AGACTOTGTA TATGOAACTG TAACACTAAC AAAAGTTTCA CCAAGAATGT TCACTCTCAT ATTTCGTTCC TTTGATGTGT ATCCATCAGT 2100 TACAGAAACA GCTCTAGTCA ACATGACCAG CATGGAATGT GGCCTTCCCA 2150 CCCTTTTGTC TTTCACAGCC CGTGAACTAG CAGATGGGAC TCTTTTCAAA 2200 GCNATAGAAG ACTATGACCC AGATAGCAAG AGGNTGTTAC ACCAGTTAAA 2250 2300 GAAGTACGTA CCTTTCTTTG TGATAAGAAA TATTGCTCAT CGATCATCAC TIGCIGGCIT CTIGTACGIC ARATIGITIT GITTARATCI CTATATCARI 2350 2400 TGTTCATATG CTTTGTCTTT CTTACTATAA GAAACAAGTA TAATCAGAAA CCTTATTATT GATTATCAGT ICTCTCCTTA TATTATGGAA TGTCTTTTTC 2450 GYITACAGTT ATGAATGCAR AAGGGGGTAT TTTAGTTGAT TGATTCTCTC ATTOTOTAGT ITGTTTTGAC TARTAGCGTC ARTTTTGTTT TTCTAGCAAA 2550 TOTTTGTGAR, TTATATATA, CATGOTRACT ATACTTTTCA GGTTGTATCA 2500 TEATGACCCT GITTITAATC CTCTGACTCC TTGGGAGAGA CCACCTATAA 2550 ARRIGIATT TIGCATATAT GGTGCTCATC TARAGACAGA GGTATGATGC 2700 ATTOTCAATA TCACATTATG CGTTGACTTT GTTATTATAT TCCCCATTTG

	2500
GTTTGCANTA TCTTTTTGAN TTATGATTTN TCTTCTCCT TGCNTCTTAT	2850
GTTTGCAATA TCTTTTTGAA TTATGATTTA TAAGGTGTCT GTCATAGGTT GCTATTAAGC GTTAAAGGTA CTAAATGTAT GAAGGTGTCT GTCATAGGTCAT	2900
	2950
	3000
CACGUALATE ATTACON	3050
CCCCCCIGC ACTAGGAAA TTATTAAACA ACTAGGAAA	3100
GIGGERIGII AICTOR TOTAL CAGIGORIA CAGIGORIA	3150
	3200
AAGTGGGAAG AGGTGTTGCA TOTTTGTATT TCATATTATT AGGAGTAGTC	3250
ACCARACRA ARCTARCECA III AGARACCA GARARCTAG TTCATATELL	3300
GTGCTTTAK AGGARAGE AGGARAGA AG	3350
GATTGTGCAA TATCTGCAGG CCTD SCTCA GAAGTTGGTT TTGAAALAL	3400
	3450
CTTCVTGCAA ACTACTGAAG ACTAAGATAA TACTCTCCG CTACTTTTAT	3500
CTIGGTATGT TOTOTAGTAC ACTOCATION CTATCATTCA CTCTCTIGGT	3550
TGATTATGAA ATTGATCICI IAIAGSIA TRACALTGGC TCCCCAGGIA	3600
COLGATTE GETEGGACUI MARCUTTURA GETACILLI	-
CTCTTTTTA GITCCTCACC ITALATA	3650
CTCCTTATGT GTTGATTTAC CICCIST	3700
THICTGTACT CCTCANGAAL IIGIATTA TA CACCACGTA CATGTGGAAC	3750
GALLITANAR CARCAGCUAG ANCACCONTO TO THE CATGACAAAA	3800
TOATGAGUAL CONTRACTOR AGAGUALICE	3850
GCACCAAGGG TTAAGTACAT AACCTTTTAT GAAGACICIG TATTAA	3896
SCOOL STOT GGGAGCTTGA LACOURTE	

<210> 11b <211> 709 <212> cDNA <213> comato <400> 11

CTGGGGCCAA	AAGTGAACAT	AACAAGGACA	CCACAGTCAG	AGCATGATGT	50
TCAGATGTAC .	aagtgcatct	aaatatagag	CATCAACATG	CTGAAGATAT	j.00
CATTCCCAAT	ATGACAAAGT	TACCTACAAT	GAAGTACATA	ACCTATTATG	150
AGGATTCTGA	AAGTTTTCCA	GGGACAAGAA	CAGCAGTTTG	GGAGCTTGAT	200
NAGCAANTC	ACAGGAACAT	TGTCAGATCT	CCAGCTTTGA	TGCGGGAGCT	250
GTGGCTTGAG	ATGTGGCATG	ATATTCATCC	TGATAAAAAG	TCCAAGTTTG	300
TTACARAAGG	TGGTGTCTGA	TCCTCACTAT	TTTCTTCTAT	AAATGTTTGA	350
GTTTGTATTG	ACATTGTAAG	TATTGCAACA	AAAAGCAAAG	CGTGGGCCTC	400
TEAGGGATCA	GGACTGCTAT	TGGGATTACG	GGAAAGCTCG	ATGTGCATGG	450
GCTGAACATT	GTGAATACAG	GTTAGAATAT	TCAPATTATA	TTTTGCAAAA	500
TATTCTCTTT	TTGTGTATTT	AGGCCACCTT	TCCCCGGTCA	CAACGATGCA	550
GATATGTATT	CGGGGATGTT	CACCTGGGAC	AGAGTTGCAG	ATTGAAGAGT	€00
TOTACATOTO	ACATCCTGTC	ACACTATGTG	TGATATTTAA	GARACTTIGT	650
TTGGCGGAAC	AACAAGTTTG	CACAARCATT	TGAAGAAGAA	AGCGAAATGA	700
TICAGAGAG					709

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 October 2000 (12.10.2000)

PCT

(10) International Publication Number WO 00/60095 A3

- (51) International Patent Classification⁷: C12N 15/54, 9/10, 15/81, 15/82, 1/16, 5/10, A01K 67/027, C12P 7/64
- (21) International Application Number: PCT/EP00/02701
- (22) International Filing Date: 28 March 2000 (28.03.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 99106656.4
 1 April 1999 (01.04.1999)
 EP

 99111321.8
 10 June 1999 (10.06.1999)
 EP

 60/180,687
 7 February 2000 (07.02.2000)
 US

- (71) Applicant (for all designated States except US): BASF PLANT SCIENCE GMBH [DE/DE]; D-67056 Ludwigshafen (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): DAHLQVIST, Anders [SE/SE]; Hemmansvägen 2, S-244 66 Furulund (SE). STAHL, Ulf [SE/SE]; Liljegatan 7b, S-753 24 Uppsala (SE). LENMAN, Marit [SE/SE]; Revingegatan 13a, S-223 59 Lund (SE). BANAS, Antoni [SE/PL];

Wiolinowa 14, PL-08110 Siedlee (PL). RONNE, Hans [SE/SE]; Dirigentvägen 169, S-756 54 Uppsala (SE). STYMNE, Sten [SE/SE]; Torrlösa 1380, S-269 90 Svalöv (SE).

- (74) Agent: FITZNER, Uwe; Lintorfer Str. 10, D-40878 Ratingen (DE).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

[Continued on next page]

(54) Title: ENZYMES OF THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL AND RECOMBINANT DNA MOLECULES ENCODING THESE ENZYMES

(57) Abstract: The present invention relates to the isolation, identification and characterization of nucleotide sequences encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol, to the said enzymes and a process for the production of triacylglycerols.

WO 00/60095 A3

(88) Date of publication of the internati nal search report: 1 February 2001 For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.