Logistic Regression

Instructor: Junghye Lee

Department of Industrial Engineering

junghyelee@unist.ac.kr

Contents

1 Logistic Regression with 1 Predictor

2 Logistic Regression with *p* Predictors

3 Logistic Regression for Nominal/Ordinal Responses

Logistic Regression

- To explain a dichotomous response variable on numeric and/or categorical explanatory variable(s)
 - Goal: Model the probability of a particular as a function of the predictor variable(s)
 - Problem: Probabilities are bounded between 0 and 1
- Distribution of response variable: binomial distribution
- Link function
 - $\log it(P(Y = 1)) = \log \left(\frac{P(Y=1)}{1 P(Y=1)}\right)$
 - Probit $(P(Y = 1)) = \Phi^{-1}(P(Y = 1))$
 - $c \log \log (P(Y=1)) = \log [-\log (1 P(Y=1))]$

Properties of Link Functions

This is what you are interested in

- We denote P(Y=1) by P_Y
- They can take any value on the real line for $0 \le P_Y \le 1$
- Consider logit:

- If
$$P_Y = 0$$
, $logit(P_Y) = log(0) = -Inf$

- If
$$P_Y = 1$$
, $logit(P_Y) = log(Inf) = Inf$

Logistic Regression with 1 Predictor

- Response: Presence/Absence of characteristic
- Predictor: Numeric variable observed for each case
- Model: $P(Y = 1|X) \equiv$ Probability of presence at predictor level X

$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \beta_0 + \beta X$$

General form of logistic regression function

- $-\beta_0$: constant
- $-\beta = 0$: P(Y = 1) is the same at each level of X
- $-\beta > 0$: P(Y = 1) increases as X increases
- $-\beta < 0$: P(Y = 1) decreases as X increases

Logistic Regression with 1 Predictor

- β_0 , β are unknown parameters and must be estimated using maximum likelihood estimation
- Primary interest in estimating and testing hypotheses regarding β
- Large-sample test (Wald Test):
 - $-H_0: \beta = 0 \text{ vs. } H_A: \beta \neq 0$
 - Test statistic (TS): $X_{obs}^2 = \left(\frac{\widehat{\beta}}{\widehat{\sigma}_{\widehat{\beta}}}\right)^2$
 - Rejected region (RR): $X_{obs}^2 \ge \chi_{\alpha,1}^2$
 - p value: $P(\chi^2 \ge X_{obs}^2)$

Maximum Likelihood Estimation of Logistic Regression Model

•
$$Y_i \sim \text{Bernoulli}(P_i), (x_1, y_1), \dots, (x_n, y_n)$$

This should be your training set. Those are given values.

$$f_i(y_i) = P(Y_i = y_i) = P_i^{y_i} (1 - P_i)^{1 - y_i}, y_i \in \{0, 1\}$$

Y_i	Probability			
1	P_i			
0	$1-P_i$			

Likelihood Function

$$L = \prod_{i=1}^{n} f_i(y_i) = \prod_{i=1}^{n} P_i^{y_i} (1 - P_i)^{1 - y_i}$$

$$\log L = l = \sum_{i=1}^{n} y_i \log P_i + \sum_{i=1}^{n} (1 - y_i) \log(1 - P_i)$$

$$= \sum_{i=1}^{n} y_i \log \frac{P_i}{1 - P_i} + \sum_{i=1}^{n} \log(1 - P_i)$$

$$= \sum_{i=1}^{n} y_i (\beta_0 + \beta x_i) - \sum_{i=1}^{n} \log(1 + e^{\beta_0 + \beta x_i})$$

Maximum Likelihood Estimation of Logistic Regression Model

• Partial derivatives w.r.t. β_0 and β

$$\sum_{i=1}^n y_i = \sum_{i=1}^n \frac{e^{\beta_0 + \beta x_i}}{1 + e^{\beta_0 + \beta x_i}}$$
 No closed-form solution \otimes
$$\sum_{i=1}^n x_i y_i = \sum_{i=1}^n x_i \frac{e^{\beta_0 + \beta x_i}}{1 + e^{\beta_0 + \beta x_i}}$$

• You can easily expand to the case of $Y_i \sim \text{Binomial}(r_i, P_i)$

$$f_i(y_i) = P(Y_i = y_i) = \binom{r_i}{y_i} P_i^{y_i} (1 - P_i)^{r_i - y_i}, \quad y_i = 0, 1, \dots, r_i$$

$$L = \prod_{i=1}^{n} = \binom{r_i}{y_i} P_i^{y_i} (1 - P_i)^{r_i - y_i}$$

Maximum Likelihood Estimation of Logistic Regression Model

- Newton-Raphson method (gradient descent method)
 - Iterative process

$$m{eta}^{new} = m{eta}^{old} - ig[l''(m{eta}^{old})ig]^{-1}l'(m{eta}^{old})$$

$$= m{eta}^{old} + ig(X^TW^{old}Xig)^{-1}X^Tig[y - \mu^{old}ig] \quad ext{Matrix notation}$$

$$\boldsymbol{W^{old}} = \operatorname{diag}\left(P(Y=1\big|\boldsymbol{x_i},\boldsymbol{\beta^{old}})\big(1-P(Y=1\big|\boldsymbol{x_i},\boldsymbol{\beta^{old}})\big)$$

$$\boldsymbol{\mu^{old}}: n\text{-dimensional vector with } i\text{-th element } P(Y=1\big|\boldsymbol{x_i},\boldsymbol{\beta^{old}}) = \frac{\exp(\boldsymbol{\beta^{old}}^T\boldsymbol{x_i})}{1+\exp(\boldsymbol{\beta^{old}}^T\boldsymbol{x_i})}$$

It converges after 10~20 iterations!

c.f.) vector
$$l'(\boldsymbol{\beta}^{old}) = \sum_{i=1}^{n} \boldsymbol{x_i} (y_i - P(Y = 1 | \boldsymbol{x_i}, \boldsymbol{\beta})) = 0$$
 notation
$$l''(\boldsymbol{\beta}^{old}) = -\sum_{i=1}^{n} \boldsymbol{x_i} \boldsymbol{x_i}^T P(Y = 1 | \boldsymbol{x_i}, \boldsymbol{\beta}) (1 - P(Y = 1 | \boldsymbol{x_i}, \boldsymbol{\beta})) = 0$$

Example - Rizatriptan for Migraine

- Response Complete Pain Relief at 2 hours (Yes/No)
- Predictor Dose (mg): Placebo (0),2.5,5,10

Dose	# Patients	# Relieved	% Relieved
0	67	2	3.0
2.5	75	7	9.3
5	130	29	22.3
10	145	40	27.6

Example - Rizatriptan for Migraine (SPSS)

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step	DOSE	.165	.037	19.819	1	.000	1.180
1	Constant	-2.490	.285	76.456	1	.000	.083

a. Variable(s) entered on step 1: DOSE.

$$-\hat{P}(y=1|X) = \frac{e^{-2.490+0.165X}}{1+e^{-2.490+0.165X}}$$

$$-H_0: \beta = 0 \text{ vs. } H_A: \beta \neq 0$$

$$- TS: X_{obs}^2 = \left(\frac{0.165}{0.037}\right)^2 = 19.819$$

- RR:
$$X_{obs}^2 \ge \chi_{0.05.1}^2 = 3.84$$

- *p* value: 0.000

Odds Ratio

- Interpretation of Regression Coefficient (β):
 - In linear regression, the slope coefficient is the change in the mean response as X increases by 1 unit
 - In logistic regression, we can show that:

$$\frac{odds(X+1)}{odds(X)} = e^{\beta} \quad \left(odds = \frac{P(Y=1)}{1 - P(Y=1)}\right) \quad \text{specific case:} \\ \text{X} \rightarrow \text{odds=1 (P=0.5)} \\ \text{Y+1} \rightarrow \text{odds=2 (P=0.5)}$$

For example, β =1.1 We can introduce a specific case: $X \rightarrow \text{odds}=1 \text{ (P=0.5)}$ $X+1 \rightarrow \text{odds}=3 \text{ (P=0.75)}$

- Thus e^{β} represents the change in the odds of the outcome (multiplicatively) by increasing X by 1 unit
 - If $\beta=0$, the odds and probability are the same at all X levels ($e^{\beta}=1$)
 - If $\beta > 0$, the odds and probability increase as X increases ($e^{\beta} > 1$)
 - If $\beta < 0$, the odds and probability decrease as X increases ($e^{\beta} < 1$)

Logistic Regression with p Predictors

- Extension to more than one predictor variable (either numeric or dummy variables).
- Model: $P(y = 1 | X) \equiv \text{Probability of presence at predictor level } X$ consisting of p random variables $(X_1, ..., X_p)$

$$\log \left(\frac{P(Y=1)}{1 - P(Y=1)} \right) = X\beta = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$= \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

• Adjusted odds ratio for raising X_k by 1 unit, holding all other predictors constant:

$$e^{\beta_k}$$

 Many models have nominal/ordinal predictors, and widely make use of dummy variables

Testing Regression Coefficients

Testing the overall model:

$$H_0$$
: $\beta_1 = \cdots = \beta_p = 0$ vs. H_A : Not all $\beta_k = 0$ $k = 1, \dots, p$ TS: $X_{obs}^2 = 2\log\left(\frac{L_1}{L_0}\right) = -2\log(L_0) + 2\log(L_1)$ RR: $X_{obs}^2 \geq \chi_{\alpha,p}^2$ $P = P\left(\chi^2 \geq X_{obs}^2\right)$

- L_0, L_1 are values of the maximized likelihood function based on the reduced model and full model.
- This logic can also be used to compare full and reduced models based on subsets of predictors.
- Testing for individual terms is done as in model with a single predictor.

Testing Regression Coefficients

- How can we make the reduced model?
 - For testing the entire model

$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \beta_0 \text{ (null, } L_0)$$
 vs.
$$\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \text{ (alternative, } L_1)$$

– For testing a specific coefficient, for example eta_1

$$\log\left(\frac{\frac{P(Y=1)}{1-P(Y=1)}}\right) = \beta_0 + \beta_2 X_2 + \beta_p X_p \text{ (null, } L_0)$$
 vs.
$$\log\left(\frac{\frac{P(Y=1)}{1-P(Y=1)}}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \text{ (alternative, , } L_1)$$

Example - Erectile dysfunction (ED)

- Response: Presence/Absence of ED in older Dutch men (n = 1688)
- Predictors (p = 12):
 - Age stratum (50-54*, 55-59, 60-64, 65-69, 70-78)
 - Smoking status (Nonsmoker*, Smoker)
 - BMI stratum (<25*, 25-30, >30)
 - Lower urinary tract symptoms (None*, Mild, Moderate, Severe)
 - Under treatment for cardiac symptoms (No*, Yes)
 - Under treatment for COPD (No*, Yes)
 - * Baseline group for dummy variables

Example - Erectile dysfunction (ED)

Predictor	b	$S_{\mathbf{b}}$	Adjusted OR (95% CI)
Age 55-59 (vs 50-54)	0.83	0.42	2.3 (1.0 - 5.2)
Age 60-64 (vs 50-54)	1.53	0.40	4.6 (2.1 - 10.1)
Age 65-69 (vs 50-54)	2.19	0.40	8.9 (4.1 - 19.5)
Age 70-78 (vs 50-54)	2.66	0.41	14.3 (6.4 - 32.1)
Smoker (vs nonsmoker)	0.47	0.19	1.6 (1.1 - 2.3)
BMI 25-30 (vs <25)	0.41	0.21	1.5 (1.0 - 2.3)
BMI > 30 (vs < 25)	1.10	0.29	3.0 (1.7 - 5.4)
LUTS Mild (vs None)	0.59	0.41	1.8 (0.8 - 4.3)
LUTS Moderate (vs None)	1.22	0.45	3.4 (1.4 - 8.4)
LUTS Severe (vs None)	2.01	0.56	7.5 (2.5 - 22.5)
Cardiac symptoms (Yes vs No)	0.92	0.26	2.5 (1.5 - 4.3)
COPD (Yes vs No)	0.64	0.28	1.9 (1.1 - 3.6)

- Interpretations: Risk of ED appears to be:
 - Increasing with age, BMI, and LUTS strata
 - Higher among smokers

Nominal Predictors

• Create dummy variables according to the number of categories (c), i.e., generate c-1 variables

	D_1	D_2	D_3
Spring	0	0	0
Summer	1	0	0
Fall	0	1	0
Winter	0	0	1

You can treat an ordinal variable as a continuous variable

Additional Material

- When the dependent variable has three or more nominal type category (no natural ordering): Baseline-category logit model
- The odds of falling in category *j* or below:

$$\frac{P(Y_i = j)}{P(Y_i = c)}, j = 1, ..., c - 1$$
$$\sum_{j=1}^{c} P(Y_i = j) = 1$$

• Logit (log odds) of cumulative probabilities are modeled as linear functions of predictor variable(s) x_i :

$$logit[P(Y_i = j)] = log \left[\frac{P(Y_i = j)}{P(Y_i = c)} \right] = \beta_j^T x_i, j = 1, ..., c - 1$$

As a set of independent binary regressions

$$\ln \left[\frac{P(Y_i = 1)}{P(Y_i = c)} \right] = \boldsymbol{\beta}_1^T \boldsymbol{x_i}$$

$$\vdots$$

$$\ln \left[\frac{P(Y_i = c - 1)}{P(Y_i = c)} \right] = \boldsymbol{\beta}_{c-1}^T \boldsymbol{x_i}$$

• Using (1)
$$P(Y_i = c) = 1 - \sum_{j=1}^{c-1} P(Y_i = j)$$

(2) $P(Y_i = j) = P(Y_i = c) \exp(\beta_j^T x_i)$

$$P(Y_i = c), P(Y_i = j)$$
?

•
$$P_j = P(Y_i = j) = \frac{\exp(\beta_j^T x_i)}{1 + \sum_{j=1}^{c-1} \exp(\beta_j^T x_i)}, j = 1, ..., c - 1$$

• $P_c = P(Y_i = c) = \frac{1}{1 + \sum_{j=1}^{c-1} \exp(\beta_j^T x_i)}$

•
$$P_c = P(Y_i = c) = \frac{1}{1 + \sum_{j=1}^{c-1} \exp(\beta_j^T x_i)}$$

Classify the sample to the class t

$$t = \operatorname{argmax}_{j} P_{j}$$

This applies to the others as well

• (Reference) Likelihood of $y_i \sim Multinomial distribution$

$$L = \prod_{i=1}^{n} f_i(y_i) = \prod_{i=1}^{n} \prod_{j=1}^{c} P_j^{y_{ij}}$$
where $y_{ij} = \begin{cases} 1 & y_i = j \\ 0 & y_i \neq j \end{cases}$

$$\log L = \sum_{i=1}^{n} \sum_{j=1}^{c} y_{ij} \log P_j$$

- When the dependent variable has three or more ordinal type category (natural ordering): cumulative logit model
- The probability falling in category *j* or below:

$$P(Y_i \le j) = P_1 + P_2 + \dots + P_j, j = 1, \dots, c - 1$$

 Logit (log odds) of cumulative probabilities are modeled as linear functions of predictor variable(s) X:

$$logit[P(Y_i \le j)] = log\left[\frac{P(Y_i \le j)}{1 - P(Y_i \le j)}\right] = \alpha_j + \beta^T x_i, j = 1, ..., c - 1$$

- This is called the proportional odds model, and assumes the effect of X_k is the same for each cumulative probability.
 - able to reduce the number of parameters to be estimated

•
$$P_1 = P(Y_i \le 1) = \frac{\exp(\alpha_1 + \beta^T x_i)}{1 + \exp(\alpha_1 + \beta^T x_i)}$$

•
$$P_j = P(Y_i \le j) - P(Y_i \le j - 1) = \frac{\exp(\alpha_j + \beta^T x_i)}{1 + \exp(\alpha_j + \beta^T x_i)} - \frac{\exp(\alpha_{j-1} + \beta^T x_i)}{1 + \exp(\alpha_{j-1} + \beta^T x_i)}$$

• $I_j = 2, ..., c - 1$

•
$$P_c = 1 - \frac{\exp(\alpha_{c-1} + \boldsymbol{\beta}^T x_i)}{1 + \exp(\alpha_{c-1} + \boldsymbol{\beta}^T x_i)}$$

- When the dependent variable has three or more ordinal type category (natural ordering): adjacent-categories logit model
- Logs of adjacent categories are modeled as linear functions of predictor variable(s) X:

$$\log\left(\frac{P_{j+1}}{P_j}\right) = \boldsymbol{\beta}_j^T \boldsymbol{x_i}, j = 1, \dots, c-1$$

where
$$P_j = P_1 \exp(\sum_{k=2}^{j-1} \beta_k^T x_i), j = 2, ..., c$$

• Then, $P_1 = \{1 + \exp(\beta_1^T x_i) + \dots + \exp(\sum_{k=1}^{c-1} \beta_k^T x_i)\}^{-1}$

 \Rightarrow We can represent in a new way, $\log\left(\frac{P_j}{P_1}\right) = \gamma_j^T x_i$, j = 2, ..., c

(Similar to nominal response except for forcing P_1 as baseline)

$$P_1 = \frac{1}{1 + \sum_{j=2}^c \exp(\gamma_j^T x_i)}$$

•
$$P_j = P_1 \exp(\boldsymbol{\gamma}_j^T \boldsymbol{x}_i) = \frac{\exp(\boldsymbol{\gamma}_j^T \boldsymbol{x}_i)}{1 + \sum_{i=2}^c \exp(\boldsymbol{\gamma}_i^T \boldsymbol{x}_i)}$$
, $j = 2, \dots, c$

• (Reference) Likelihood of y_i ~ Multinomial distribution (same in ordinal response)

$$L = \prod_{i=1}^{n} f_i(y_i) = \prod_{i=1}^{n} \prod_{j=1}^{c} P_j^{y_{ij}}$$
 where $y_{ij} = \begin{cases} 1 & y_i = 1 \\ 0 & y_i \neq j \end{cases}$
$$\log L = \sum_{i=1}^{n} \sum_{j=1}^{c} y_{ij} \log P_j$$

Questions?

Appendix

Gradient Descent Algorithm

• f(x), J(w), F(a) are notations of objective functions in terms of x, w, a respectively.

Gradient Descent Algorithm

- Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function (minimization problem).
- Gradient descent is based on the observation that if the multivariate function f is defined and differentiable in a neighborhood of a point x, then f(x) decreases fastest if one goes from x in the direction of the negative gradient of f at x, $-\nabla f(x)$. It follows that, if

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

for $\eta \in \mathbb{R}_+$ small enough, then $f(x_t) \ge f(x_{t+1})$

Newton-Raphson Method

• An iterative method for finding the roots of a twice differentiable function f. Given f, we seek to solve the optimization problem

$$\min_{x \in \mathbb{R}} f(x)$$
 vs. $\min_{\boldsymbol{\theta} \in \mathbb{R}^p} f(\boldsymbol{\theta})$

Newton's method performs the iteration

$$x_{t+1} = x_t - \frac{f'(x_t)}{f''(x_t)}$$
 vs. $\theta_{t+1} = \theta_t - [f''(\theta)]^{-1} f'(\theta)$

Standard Error $\widehat{\sigma}_{\widehat{eta}_i}$

• You can find the second derivatives of the p+1 parameters

$$H = [h_{ij}], i, j = 0, 1, ..., p$$

where
$$h_{ii}=rac{\partial^2 \log L}{\partial eta_i^2}$$
, $i=0,1,...,p$ and $h_{ij}=rac{\partial^2 \log L}{\partial eta_i \partial eta_j}$, $i
eq j$

The approximate variance-covariance matrix of the estimated parameters

$$S = \left[\left(-h_{ij} \right)_{\beta = \widehat{\beta}} \right]^{-1}$$

• Therefore, the standard error $s_{\widehat{\beta}_i} (= \widehat{\sigma}_{\widehat{\beta}_i})$ is the square-root of the (*i*+1)-th diagonal component (since there is no 0-th component).

Standard Error $\widehat{\sigma}_{\widehat{eta}_i}$

• For example, we have

$$logit(P) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

then,

$$\boldsymbol{H} = \begin{bmatrix} -\sum \hat{P}_i (1 - \hat{P}_i) & -\sum x_{1i} \hat{P}_i (1 - \hat{P}_i) & -\sum x_{2i} \hat{P}_i (1 - \hat{P}_i) \\ -\sum x_{1i} \hat{P}_i (1 - \hat{P}_i) & -\sum x_{1i}^2 \hat{P}_i (1 - \hat{P}_i) & -\sum x_{1i} x_{2i} \hat{P}_i (1 - \hat{P}_i) \\ -\sum x_{2i} \hat{P}_i (1 - \hat{P}_i) & -\sum x_{1i} x_{2i} \hat{P}_i (1 - \hat{P}_i) & -\sum x_{2i}^2 \hat{P}_i (1 - \hat{P}_i) \end{bmatrix}$$

where
$$\hat{P}_i = \frac{\exp(\hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i})}{1 + \exp(\hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i})}$$
.