Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2017/2018

2. prednáška

Sémantika výrokovej logiky

26. februára 2018

Obsah 2. prednášky

Výroková logika Syntax výrokovej logiky Sémantika výrokovej logiky Tautológie, (ne)splniteľnosť, falzifikovateľnosť

2.2

Syntax výrokovej logiky

Symboly jazyka výrokovej logiky

Definícia 2.3

Symbolmi jazyka výrokovej logiky sú:

- výrokové premenné z nejakej spočítateľnej množiny $\mathcal{V} = \{p_1, p_2, \dots, p_n, \dots\}$, ktorej prvkami nie sú symboly $\neg, \land, \lor, \rightarrow, (a)$, ani jej prvky tieto symboly neobsahujú;
- logické symboly (logické spojky): ¬, ∧, ∨, →
 (nazývané, v uvedenom poradí, symbol negácie, symbol konjunkcie, symbol disjunkcie, symbol implikácie a čítané "nie", "a", "alebo", "ak..., tak...");
- pomocné symboly: (a) (ľavá zátvorka a pravá zátvorka).

Spojka \neg je *unárna* (má jeden argument). Spojky \land , \lor , \rightarrow sú *binárne* (spájajú dve formuly).

Symboly jazyka výrokovej logiky

Symboly jazyka sú matematickou formalizáciou

- základných výrokov,
- pomocných slov,
- interpunkcie,

z ktorých môžeme skladať vety/výroky.

Dohoda

Výrokové premenné budeme *označovať* písmenami p, q, ..., podľa potreby aj s dolnými indexmi.

Výrokové formuly

Definícia 2.6

Množina \mathcal{E} všetkých výrokových formúl nad množinou výrokových premenných \mathcal{V} je najmenšia množina postupností symbolov, pre ktorú platí:

- i) každá výroková premenná $p \in \mathcal{V}$ je výrokovou formulou z \mathcal{E} (hovoríme jej *atomická formula* alebo iba *atóm*);
- ii) ak A je výroková formula z \mathcal{E} , tak aj postupnosť symbolov $\neg A$ je výrokovou formulou z \mathcal{E} (negácia formuly A);
- (ii) ak A a B sú výrokové formuly z \mathcal{E} , tak aj $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ sú výrokovými formulami z \mathcal{E} (konjunkcia, disjunkcia, implikácia formúl A a B).

Výrokové formuly

Formuly sú matematickou formalizáciou výrokov (viet a súvetí, o ktorých pravdivosti má zmysel uvažovať).

Dohoda

Formuly označujeme veľkými písmenami *A*, *B*, *C*, *X*, *Y*, *Z*, podľa potreby s indexmi.

Vytvárajúca postupnosť

Definícia 2.8

Vytvárajúcou postupnosťou nad množinou výrokových premenných $\mathcal V$ je ľubovoľná konečná postupnosť postupností symbolov, ktorej každý člen je výroková premenná z $\mathcal V$, alebo má tvar $\neg A$, pričom A je nejaký predchádzajúci člen postupnosti, alebo má jeden z tvarov $(A \land B)$, $(A \lor B)$, $(A \to B)$, kde A a B sú nejaké predchádzajúce členy postupnosti.

Vytvárajúcou postupnosťou pre X je ľubovoľná vytvárajúca postupnosť, ktorej posledným prvkom je X.

Tvrdenie 2.9

Postupnosť symbolov A je formulou vtedy a len vtedy, keď existuje vytvárajúca postupnosť pre A.

Spomeňte si II.1

Ktoré z nasledujúcich postupností symbolov sú formulami nad množinou výrokových premenných $\mathcal{V} = \{p, q, r, \ldots\}$?

$$\triangle$$
 $(p \lor \neg q \lor \neg r),$

$$\bigcirc \neg (\neg (\neg p)),$$

Ekvivalencia

Dohoda

Pre každú dvojicu formúl $A, B \in \mathcal{E}$ je zápis $(A \leftrightarrow B)$ skratka za formulu $((A \to B) \land (B \to A))$.

Jednoznačnosť rozkladu formúl výrokovej logiky

- Predpokladajme, že by sme zadefinovali "formuly" takto:
 - Množina & všetkých výrokových "formúl" nad množinou výrokových premenných V je najmenšia množina postupností symbolov, pre ktorú platí:
 - $oldsymbol{1}$ každá výroková premenná $p \in \mathcal{V}$ je "formulou" z \mathcal{E} ;
 - (ii) ak A je "formula" z \mathcal{E} , tak aj postupnosť symbolov $\neg A$ je "formulou" z \mathcal{E} :
 - iii) ak A a B sú "formuly" z \mathcal{E} , tak aj $A \wedge B$, $A \vee B$ a $A \to B$ sú "formulami" z \mathcal{E} :
 - $\overrightarrow{\mathbf{w}}$ ak A je "formula" z \mathcal{E} , tak aj postupnosť symbolov (A) je "formulou" z \mathcal{E} .
- Bola by potom ($iim \rightarrow kim \rightarrow \neg sarah$) "formulou"?
- Aký by bol jej význam?

Jednoznačnosť rozkladu formúl výrokovej logiky

Pre našu definíciu formúl platí:

Tvrdenie 2.11 (o jednoznačnosti rozkladu)

Pre každú formulu $X \in \mathcal{E}$ nad množinou výrokových premenných \mathcal{V} platí práve jedna z nasledujúcich možností:

- X je výroková premenná z V.
- Existuje práve jedna formula $A \in \mathcal{E}$ taká, že $X = \neg A$.
- Existujú práve jedna dvojica formúl A, $B \in \mathcal{E}$ a jedna spojka $b \in \{\land, \lor, \rightarrow\}$ také, že $X = (A \ b \ B)$.

Vytvárajúca postupnosť a vytvárajúci strom

Konštrukciu formuly podľa definície si vieme predstaviť pomocou vytvárajúcej postupnosti:

jim, sarah,
$$\neg$$
jim, kim, \neg sarah, $(\neg$ jim \land kim), $((\neg$ jim \land kim) $\rightarrow \neg$ sarah)

- Postupnosť ale jasne nevyjadruje, ktoré z predchádzajúcich formúl sa bezprostredne použijú na vytvorenie nasledujúcej formuly.
- Konštrukciu formuly si ale vieme predstaviť ako strom:

- Takéto stromy voláme vytvárajúce.
- Ako ich presne a všeobecne popíšeme zadefinujeme?

Vytvárajúci strom formuly

Definícia 2.12

Vytvárajúci strom pre formulu X je binárny strom T obsahujúci v každom vrchole formulu, pričom platí:

- v koreni *T* je formula *X*,
- ak vrchol obsahuje formulu ¬A, tak má práve jedno dieťa, ktoré obsahuje formulu A,
- ak vrchol obsahuje formulu (A b B), kde b je jedna z binárnych spojok, tak má dve deti, pričom ľavé dieťa obsahuje formulu A a pravé formulu B,
- vrcholy obsahujúce výrokové premenné sú listami.

Podformuly

Ako by ste nazvali formuly, z ktorých daná formula vznikla?
 Napríklad formuly sarah, ¬jim, (¬jim ∧ kim) pre

$$((\neg jim \land kim) \rightarrow \neg sarah).$$

- Ako by ste nazvali formuly, z ktorých daná formula bezprostredne/ priamo vznikla?
- V príklade vyššie sú to $(\neg jim \land kim)$ a $\neg sarah$.
- Ako tieto pojmy presne zadefinujeme?

Podformuly

Definícia 2.13 (Priama podformula)

- Priamou podformulou $\neg A$ je formula A.
- Priamymi podformulami $(A \land B)$, $(A \lor B)$ a $(A \to B)$ sú formuly A (l'avá priama podformula) a B (pravá priama podformula).

Definícia 2.14 (Podformula)

Vzťah byť podformulou je najmenšia relácia na formulách spĺňajúca:

- Ak X je priamou podformulou Y, tak X je podformulou Y.
- Ak X je podformulou Y a Y je podformulou Z, tak X je podformulou Z.

Meranie zložitosti formúl

- Zložitosť formúl by sa mohla merať napríklad jej dĺžkou (počtom symbolov)
- Prirodzenejšie je ale merať zložitosť počtom netriviálnych krokov potrebných na konštrukciu formuly:
 - pridanie negácie pred formulu,
 - spojenie formúl spojkou
- Tejto miere hovoríme stupeň formuly

Príklad 2.15

Aký je stupeň formuly $((p \lor \neg q) \land \neg (q \to p))$?

- Ako stupeň zadefinujeme? Induktívne, podobne ako sme zadefinovali formuly:
 - 1 určíme hodnotu stupňa pre atomické formuly,
 - určíme, ako zo stupňa priamych podformúl vypočítame stupeň z nich zloženej formuly.

Stupeň formuly

Definícia 2.16 (Stupeň formuly)

- Výroková premenná je stupňa 0.
- Ak A je formula stupňa n, tak $\neg A$ je stupňa n + 1.
- Ak A je formula stupňa n₁ a B je formula stupňa n₂, tak (A ∧ B),
 (A ∨ B) a (A → B) sú stupňa n₁ + n₂ + 1.

Definícia 2.16 (Stupeň formuly stručne, symbolicky)

Stupeň $\deg(X)$ formuly $X \in \mathcal{E}$ definujeme pre každú výrokovú premennú $p \in \mathcal{V}$ a pre všetky formuly $A, B \in \mathcal{E}$ nasledovne:

- deg(p) = 0,
- $deg(\neg A) = deg(A) + 1$,
- $\deg((A \land B)) = \deg((A \lor B)) = \deg((A \to B)) = \deg(A) + \deg(B) + 1.$

Indukcia na stupeň formuly

Veta 2.17 (Princíp indukcie na stupeň formuly)

Nech P je ľubovoľná vlastnosť formúl ($P \subseteq \mathcal{E}$). Ak platí súčasne

báza indukcie: každá formula stupňa 0 má vlastnosť P,

indukčný krok: pre každú formulu X z predpokladu, že všetky formuly menšieho stupňa ako $\deg(X)$ majú vlastnosť P, vyplýva, že aj X má vlastnosť P.

tak všetky formuly majú vlastnosť $P(P = \mathcal{E})$.

Množina výrokových premenných formuly

Definícia 2.18 (Množina výrok. prem. formuly [vars(X)])

- Ak p je výroková premenná, množinou výrokových premenných atomickej formuly p je $\{p\}$.
- Ak V je množina výrokových premenných formuly A, tak V je tiež množinou výrok, prem. formuly $\neg A$.
- Ak V_1 je množina výrok. prem. formuly A a V_2 je množina výrok. prem. formuly B, tak $V_1 \cup V_2$ je množinou výrok. prem. formúl $(A \wedge B)$, $(A \vee B)$ a $(A \rightarrow B)$.

Definícia 2.18 (vars(X) stručnejšie)

- Ak p je výroková premenná, tak vars(p) = {p}.
- Ak A a B sú formuly, tak $vars(\neg A) = vars(A)$ a $vars((A \land B)) =$ $vars((A \lor B)) = vars((A \to B)) = vars(A) \cup vars(B)$.

Spomeňte si II.2

Je nasledujúce tvrdenie pravdivé? Odpovedzte áno/nie.

Vďaka jednoznačnosti rozkladu má každá formula práve jednu priamu podformulu.

Spomeňte si II.3

Určte pre formulu $((p \lor \neg q) \land \neg (q \to p))$ jej:

- i priame podformuly,
- ii podformuly,
- iii vytvárajúci strom.

Spomeňte si II.4

2.3

Sémantika výrokovej logiky

Sémantika výrokovej logiky

- Syntax jazyka výrokovej logiky hovorí iba tom, ako sa zapisujú formuly ako postupnosti symbolov.
- Samé o sebe tieto postupnosti nemajú žiaden ďalší význam.
- Ten im dáva sémantika jazyka výrokovej logiky.
- Za význam výrokov považujeme ich pravdivostnú hodnotu.

Ohodnotenie výrokových premenných

- Výrokové premenné predstavujú jednoduché výroky.
- Ich význam (pravdivosť) nie je pevne daný.
- Môže závisieť od situácie, stavu sveta (Sára ide na párty, svieti slnko, zobral som si čiapku, ...).
- Ako vieme programátorsky popísať pravdivosť výrokových premenných v nejakom stave sveta? A matematicky?

Definícia 2.19

Nech (t, f) je usporiadaná dvojica pravdivostných hodnôt, $t \neq f$, pričom hodnota t predstavuje pravdu a f nepravdu.

Ohodnotením množiny výrokových premenných ${\mathcal V}$ nazveme každé zobrazenie v množiny V do množiny $\{t, f\}$ (teda každú funkciu $v: \mathcal{V} \to \{t, f\}$).

Výroková premenná p je pravdivá pri ohodnotení v, ak v(p) = t. Výroková premenná p je nepravdivá pri ohodnotení v, ak v(p) = f.

Ohodnotenie výrokových premenných

Príklad 2.20

Zoberme $t \neq f$ (napr. t = 1, f = 0), $\mathcal{V} = \{a, \acute{a}, \ddot{a}, \dots, \check{z}, 0, \dots, 9, _\}^+$. Dnešné ráno by popísalo ohodnotenie v_1 množiny \mathcal{V} , kde (okrem iného):

$$v_1(\text{svieti_slnko}) = t$$
 $v_1(\text{zobral_som_si_čiapku}) = f$

Pondelkové ráno pred týždňom opisuje ohodnotenie v_2 , kde okrem iného

$$v_2(\text{svieti_slnko}) = f$$
 $v_2(\text{zobral_som_si_čiapku}) = f$

Jednu zo situácií v probléme pozývania kamarátov na párty by popísalo ohodnotenie, v ktorom (okrem iného):

$$v_3(\text{sarah}) = t$$
 $v_3(\text{kim}) = f$ $v_3(\text{jim}) = t$

Prečo "okrem iného"?

Kde v informatickej praxi **nie je** f = 0 a t = 1?

Spĺňanie výrokových formúl

- Na formulu sa dá pozerať ako na **podmienku**, ktorú stav sveta buď spĺňa (je v tomto stave pravdivá) alebo **nespĺňa** (ie v ňom nepravdivá).
- Z pravdivostného ohodnotenia výrokových premenných v nejakom stave sveta, vieme jednoznačne povedať, ktoré formuly sú v tomto stave splnené.

Príklad 2.21

Nech v_3 je ohodnotenie množiny $\mathcal{V} = \{a, \dots, z\}^+$, také že

$$v_3(\text{kim}) = t$$
 $v_3(\text{jim}) = f$ $v_3(\text{sarah}) = t$.

Spĺňa svet s týmto ohodnotením formulu (\neg jim $\rightarrow \neg$ sarah)?

Zoberieme vytvárajúcu postupnosť, prejdeme ju zľava doprava:

Formulu	jim	sarah	−jim	¬sarah	$(\neg jim \to \neg sarah)$
ohodnotenie <i>v</i> ₃	nespĺňa	spĺňa	spĺňa	nespĺňa	nespĺňa

Spĺňanie výrokových formúl – vytvárajúci strom

Príklad 2.21 (pokračovanie)

$$v_3(kim) = t$$
 $v_3(jim) = f$ $v_3(sarah) = t$.

Iná možnosť je použiť vytvárajúci strom:

$$\begin{array}{c} (\neg \mathsf{jim} \to \neg \mathsf{sarah}) - v_3 \; \mathsf{nespl\~na} \\ v_3 \; \mathsf{spl\~na} - \neg \mathsf{jim} & \neg \mathsf{sarah} - v_3 \; \mathsf{nespl\~na} \\ | & | \\ v_3 \; \mathsf{nespl\~na} - \neg \mathsf{jim} & \mathsf{sarah} - v_3 \; \mathsf{spl\~na} \end{array}$$

Spĺňanie výrokových formúl – program

 Proces zisťovania, či ohodnotenie spĺňa formulu, vieme naprogramovať:

```
def satisfies (v, A):
  . . .
```

Veľmi podobne vieme zadefinovať splnenie matematicky.

Spĺňanie výrokových formúl – definícia

Definícia 2.22

Nech \mathcal{V} je množina výrokových premenných. Nech v je ohodnotenie množiny \mathcal{V} . Pre všetky výrokové premenné p z \mathcal{V} a všetky formuly A, Bnad V definujeme:

- v spĺňa atomickú formulu p vtt v(p) = t;
- v spĺňa formulu $\neg A$ vtt v nespĺňa A;
- $v \text{ spĺňa formulu } (A \land B) \text{ vtt } v \text{ spĺňa } A \text{ a } v \text{ spĺňa } B$;
- $v \text{ spĺňa formulu } (A \vee B) \text{ vtt } v \text{ spĺňa } A \text{ alebo } v \text{ spĺňa } B;$
- v spĺňa formulu $(A \rightarrow B)$ vtt v nespĺňa A alebo v spĺňa B.

Dohoda

- Skratka vtt znamená vtedy a len vtedy, keď.
- Vzťah ohodnotenie v spĺňa formulu X skrátene zapisujeme $v \models X$, ohodnotenie v nespĺňa formulu X zapisujeme $v \not\models X$.
- Namiesto v (ne)spĺňa X hovoríme aj X je (ne)pravdivá pri v.

Spĺňanie výrokových formúl — príklad

Príklad 2.23

Nech v_3 je ohodnotenie množiny $\mathcal{V} = \{a, \dots, z\}^+$, také že

$$v_3(\text{kim}) = t$$
 $v_3(\text{jim}) = f$ $v_3(\text{sarah}) = t$.

Zistime, ktoré z formúl

$$((\mathsf{kim} \lor \mathsf{jim}) \lor \mathsf{sarah})$$

$$(kim \rightarrow \neg sarah)$$
 $(jim \rightarrow kim)$ $(\neg jim \rightarrow \neg sarah)$

ohodnotenie v_3 spĺňa a ktoré nespĺňa.

deg(X)	v_3 spĺňa X	v_3 nespĺňa X
0	kim, sarah	jim
1	$\neg jim, (kim \lor jim), (jim \to kim)$	¬sarah
2	$((kim \lor jim) \lor sarah)$	$(kim \rightarrow \neg sarah)$
3		$(\neg jim \to \neg sarah)$

2.4

Tautológie, (ne)splniteľnosť, falzifikovateľnosť

Spĺňanie z hľadiska formuly

- Doteraz sme sa na spĺňanie pozerali z hľadiska jedného ohodnotenia (stavu sveta) a zisťovali sme, ktoré formuly sú v ňom splnené
- Obráťme teraz perspektívu: vyberme si jednu formulu a zisťujme, ktoré ohodnotenia ju spĺňajú, teda ktoré stavy sveta vyhovujú podmienke vyjadrenej formulou

Dohoda

V ďalších definíciách a tvrdeniach predpokladáme, že sme si *pevne zvolili* nejakú množinu výrokových premenných $\mathcal V$ a hodnoty t,f. Formulou rozumieme formulu nad množinou výrok. prem. $\mathcal V$. Ohodnotením rozumieme ohodnotenie množiny výrok. prem. $\mathcal V$.

Tautológia

Definícia 2.24

Formulu X nazveme tautológiou (skrátene $\models X$) vtt každé ohodnotenie výrokových premenných spĺňa X(teda **pre každé** ohodnotenie výrokových premenných v platí $v \models X$).

Tautológia — testovanie

- Ak máme nekonečne veľa výrokových premenných, máme aj nekonečne veľa ohodnotení
- Musíme skúmať **všetky**, aby sme zistili, či je formula X tautológiou?
- Platí

Tvrdenie 2.25

Splnenie výrokovej formuly pri ohodnotení výrokových premenných závisí iba od ohodnotenia (konečného počtu) výrokových premenných, ktoré sa v nej vyskytujú.

Presnejšie: Pre každú formulu X a všetky ohodnotenia v_1 a v_2 , ktoré zhodujú na množine vars(X) výrokových premenných vyskytujúcich sa v X, platí $v_1 \models X$ vtt $v_2 \models X$.

- Takže stačí skúmať ohodnotenia, ktoré sa líšia na výrokových premenných vyskytujúcich sa v X, ktorých je iba konečne veľa
- Koľko je takých ohodnotení?

Tautológia — testovanie

Príklad 2.26

Zistime, či je $X = (\neg(p \land q) \rightarrow (\neg p \lor \neg q))$ tautológiou.

Preskúmame všetky rôzne ohodnotenia výrokových premenných, ktoré sa vyskytujú v X:

	/						
p	q	$(p \wedge q)$	$\neg(p \land q)$	$\neg p$	$\neg q$	$(\neg p \lor \neg q)$	$(\neg(p \land q) \to (\neg p \lor \neg q))$
f	f	 ≠	⊨	=	=	=	=
t	f	⊭	=	 ≠	=	 =	=
f	t	⊭	=	=	≠	 =	=
t	t	=	 ≠	⊭	≠	⊭	 =

Pretože všetky skúmané ohodnotenia spĺňajú X, je X tautológiou.

Ohodnotenia zhodujúce sa na premenných formuly

Dôkaz.

Indukciou na stupeň formuly X.

Báza: Nech X je stupňa 0. Podľa vety o jednoznačnosti rozkladu a definície stupňa musí byť X = p pre nejakú výrokovú premennú. Zoberme ľubovoľné ohodnotenia v_1 a v_2 , ktoré sa zhodujú na premenných v X, teda aj na p. Podľa definície spĺňania $v_1 \models p$ vtt $v_1(p) = t$ vtt $v_2(p) = t$ vtt $v_2 \models p$.

Krok: Nech X je stupňa n > 0 a tvrdenie platí pre všetky formuly stupňa nižšieho ako n (indukčný predpoklad). Zoberme ľubovoľné ohodnotenia v_1 a v_2 , ktoré sa zhodujú na premenných v X. Podľa definície stupňa a jednoznačnosti rozkladu nastáva práve jeden z prípadov:

- $X = \neg A$ pre práve jednu formulu A. Pretože $\deg(X) = \deg(A) + 1 > \deg(A)$, podľa ind. predpokladu tvrdenie platí pre A. Ohodnotenia v_1 a v_2 sa zhodujú na premenných v A (rovnaké ako v X). Preto $v_1 \models A$ vtt $v_2 \models A$, a teda $v_1 \models \neg A$ vtt $v_1 \not\models A \text{ vtt } v_2 \not\models A \text{ vtt } v_2 \models \neg A.$
- $X = (A \land B)$ pre práve jednu dvojicu formúl A, B. Pretože $\deg(X) = \deg(A) + \deg(B) + 1 > \deg(A)$ aj $\deg(B)$, podľa ind. predpokladu pre A aj B tvrdenie platí. Podobne pre ďalšie binárne spojky.

Splniteľnosť

Definícia 2.27

Formulu X nazveme *splniteľnou* vtt **nejaké** ohodnotenie výrokových premenných **spĺňa** X (teda **existuje** také ohodnotenie výrokových premenných v, že $v \models X$).

Falzifikovateľnosť

Definícia 2.28

Formulu X nazveme falzifikovateľnou vtt **nejaké** ohodnotenie výrokových premenných **nespĺňa** X(teda **existuje** také ohodnotenie výrokových premenných v, že $v \not\models X$).

Nesplniteľnosť

Definícia 2.29

Formulu X nazveme nesplniteľnou vtt každé ohodnotenie výrokových premenných nespĺňa X(teda **pre každé** ohodnotenie výrokových premenných ν platí $\nu \not\models X$).

"Geografia" výrokových formúl podľa spĺňania

- Tautológie sú výrokovologické pravdy. Sú zaujímavé najmä pre klasický pohľad na logiku ako skúmanie správneho usudzovania.
- Vo výpočtovej logike je zaujímavá splniteľnosť a konkrétne spĺňajúce ohodnotenia.

Zamyslite sa II.5

Ak formula nie je falzifikovateľná, je:

A splniteľná,

- B nesplniteľná,

c tautológia.

Literatúra

- Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. *Logika: neúplnost, složitost, nutnost*. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.