Lecture - 5	
* Verilog Operators	· Service F
* Arithmatic Operators	morning from Allela La Si
> Unary operator -	+: unavy plus: Eg: +A
	-: way minus: Eg: -A
Binary operator -	> +: binary plus
a to me to me it was the	· binary minus
	* : multiply
	divide
	>1.: modulus
Brighty and Matheway	>* * : exponential
see single as wine as	
* Logical Operators	
! logical negation	These should be used for
& & logical AND	checking condition like in
1) logical OR) "if" statement
	12= 11 1 1z;
(S & A) = =1	
* Relational Operators	
!= not equal	
== agnalatoring ===	
>= greater or equal	
<= less or equal	
> greater	
2 Jess	
* Betwise Operators	
~ bituise NOT	Eg: wire a, b, f1;
& bitwise AND	assyn f1 = ~616);
1 bitwise OR	
1 bitwise XOR	
.~ A bitwise XNOR	

AX x Conditional Sperator · condempr ? time-empr: Jalse-corps; · Eg: wire a, b, c; 1 / 1919 wire [7:0] x, y, z;assign a = (6 > 0)? b:c:augn z= (n==y) 9 x+2: x-2; * Concatenation Operation Eg: assign $f = \{a, b\};$ assign $f = \{a, 3'b | b | b \};$ assign $f = \{n[2], \gamma | b \}, a\};$ * Replication Operator

? Replication Operator

sepeat m', n' times · ¿g: assign f= {2'b10, 3 {2'b01}, x} Lagaron on on one x

parentheses can be used to change the

precedence.

* Momework

* statement 1: assign f= a+b;

statement 2: f= a + b;

Of When to use assign statement 9

Dind the meaning of == == == ...==