Unstructured Data for Economics

Lecture 4: Feedforward Neural Networks

Stephen Hansen University College London

Introduction

Neural network models have driven many of the important breakthroughs in machine learning and Al over the last ten years.

They were already well-known and popular in the 1990s.

Several interrelated drivers of their recent growth:

- 1. Availability of large datasets for training
- 2. Hardware advances: GPU/TPU, cloud infrastructure
- 3. Software advances: high-level frameworks for model estimation that hide many details from the user
- 4. Algorithmic advances: efficient gradient computation

In this lecture, we describe the structure of the simplest class of neural networks: feed-forward neural networks.

Basic Architecture of a Neural Network

A neuron

As usual, suppose that each data observation i has J associated covariates which we stack in \mathbf{x}_i .

As in linear regression, we can linearly combine covariates and add a constant:

$$z_i = \theta_0 + \sum_{j=1}^J \theta_j x_{i,j}.$$

In neural network jargon, the $\{\theta_j\}_{j=1}^J$ terms are sometimes called *weights* and θ_0 is called a *bias*.

We can transform the linear combination via an activation function:

$$y_i = \phi(z_i) = f(\mathbf{x}_i \mid \boldsymbol{\theta})$$

Activation Functions

Traditionally:

1. A sigmoid function (logistic regression):

$$\phi\left(z_{i}\right)=\frac{1}{1+e^{-z_{i}}}$$

- 2. A particular limiting case: step function.
- 3. Hyperbolic tangent.
- 4. Identity function (linear regression): $\phi(z_i) = z_i$.

Other activation functions have gained popularity recently:

1. Rectified linear unit (ReLU):

$$\phi(z_i) = \max(0, z_i)$$

2. Softplus:

$$\phi(z_i) = log(1 + e^{z_i})$$

Activation Function Plots I

Activation Function Plots II

Effect of Varying Weight (Sigmoid)

Effect of Varying Bias (Sigmoid)

Combining Neurons into a Neural Network

Now suppose we have K separate activation functions operating over the same input \mathbf{x}_i .

We first obtain K separate linear combinations of covariates

$$z_{i,k} = \theta_{0,k} + \sum_{j=1}^{J} \theta_{j,k} x_{i,j} \quad \forall k = 1, \dots, K$$

Next we linearly combine each separate neuron to create a final output

$$f(\mathbf{x}_i \mid \boldsymbol{\theta}) = \theta_0 + \sum_{k} \theta_k \phi(z_{i,k}).$$

This is known as a single layer network.

Consists of K non-linear transformations of linear combinations of input variables.

Classic Result

Result

Universal approximation theorem: [Hornik et al., 1989] A neural network with at least one hidden layer can approximate any Borel measurable function mapping finite-dimensional spaces to any desired degree of accuracy.

Adding Layers

Additional layers can easily be added as follows:

$$z_{i,k}^{(1)} = \theta_{0,k}^{(1)} + \sum_{j=1}^{J} \theta_{j,k}^{(1)} x_{i,j} \qquad \qquad \text{(Input Layer)}$$

$$z_{i,l}^{(2)} = \theta_{0,l}^{(2)} + \sum_{k=1}^{K_1} \theta_{l,k}^{(2)} \phi \left(z_{i,k}^{(1)} \right) \qquad \qquad \text{(Hidden Layer 1)}$$

$$z_{i,l}^{(3)} = \theta_{0,l}^{(3)} + \sum_{k=1}^{K_2} \theta_{l,k}^{(3)} \phi \left(z_{i,k}^{(2)} \right) \qquad \qquad \text{(Hidden Layer 2)}$$

$$\cdots$$

$$f(\mathbf{x_i} \mid \boldsymbol{\theta}) = \theta_{0,m}^{(L)} + \sum_{k=1}^{K_{L-1}} \theta_{m,k}^{(L)} \phi \left(z_{i,k}^{(L-1)} \right) \qquad \qquad \text{(Output Layer)}$$

Overall structure is called a *feed-forward neural network*.

(Output Layer)

Graphical Representation

Feed-Forward Networks

Multiple layers allow for complex downstream structures to develop by combining simpler upstream structures.

Typical to have $K_l < K_{l-1}$, e.g. fewer units as we move along network.

Output layer can have multiple dimensions or represent class probabilities by specifying

$$z_{i,m}^{(L)} = \theta_{0,m}^{(L)} + \sum_{k=1}^{K_{L-1}} \theta_{m,k}^{(L)} \phi\left(z_{i,k}^{(L-1)}\right) \to f_m(\mathbf{x_i} \mid \boldsymbol{\theta}) = \frac{\exp\left(z_{i,m}^{(L)}\right)}{\sum_{m=1}^{M} \exp\left(z_{i,m}^{(L)}\right)}$$

where M is the number of classes to predict.

Estimation

Objective Function

The first step in estimating a neural network is to define an objective (loss) function to target of the form $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} L'(y_i, f(\mathbf{x_i} \mid \theta))$.

Typical choices:

- 1. Continuous y_i : $-(y_i f(\mathbf{x_i} \mid \boldsymbol{\theta}))^2$
- 2. Categorical y_i : $-\sum_{m=1}^{M} y_i f_m(\mathbf{x_i} \mid \boldsymbol{\theta})$

Idea of gradient descent algorithm:

- 1. Randomly initialize $\theta = \theta^0$.
- 2. For all $i=1,\ldots,I$: update $\theta^i=\theta^{i-1}-r\nabla L\left(\theta^{i-1}\right)$.

r is the learning rate and is set to small number.

Stochastic Gradient Descent

For large datasets, computing the gradient over all data points is expensive.

Stochastic gradient descent forms an unbiased estimate of the gradient by randomly sampling a data point.

Mini-batch stochastic gradient descent instead uses a random draw of N_B data points where N_B is the *batch size*.

In practice, data is often randomly shuffled once and then cycled through N_B -sized-chunk-by- N_B -sized-chunk.

An *epoch* is a single pass through all of the training data.

Gradient Computation

Analytically deriving the gradient is in most cases straightforward and involves repeated application of the chain rule.

Efficiently evaluating the gradient on a computer requires some care and is typically done via *backpropagation* which avoids repeated evaluation of the same expression.

The combination of efficient gradient computation with modern hardware ($\mathsf{GPU}/\mathsf{TPU}$) allows for the estimation of large models.

Regularization

As with other machine learning algorithms, overfitting can be controlled via regularization.

The first approach is to add a ridge (or LASSO) penalty to the loss function which adds minimal computational overhead.

The second is *dropout* whereby a random fraction of nodes is left out of the network when it is being trained.

There is also a large number of parameters to tune in a network which can contribute substantially to performance.

References I

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359–366.