This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09212642 A

(43) Date of publication of application: 15.08.97

(51) Int. CI

G06T 5/00 H04N 1/40

(21) Application number: 08021133

(22) Date of filing: 07.02.96

(71) Applicant:

MITSUBISHI ELECTRIC CORP

(72) Inventor:

ISHIOKA YUJI

MATSUMOTO MAKOTO

(54) IMAGE PROCESSOR

(57) Abstract:

PROBLEM TO BE SOLVED: To secure satisfactory images in every area, e.g. an image having its clearly emphasized edges in a character area, etc., even with an original where the character, photo and halftone dot areas coexist by performing the θcorrection processing and the digital filter processing to the input image data.

SOLUTION: The image of a reading original 1 is formed on an image sensor 3 via a lens system 2 whose focus, etc., are previously adjusted. The image signals fetched by the sensor 3 are amplified at an image amplifier part 4 and then converted into the digital signals via an A/D conversion part 5. These digital signals are inputted to an image processor 17. In such a constitution, the digital filter processing, i.e., the edge emphasis processing and the smoothing processing or the θ correction processing, i.e., the correction processing of density conversion into deep and light colors are carried out in the character, photo and halftone dot areas, respectively. Thus, the picture quality is improved for the input images.

COPYRIGHT: (C)1997,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-212642

(43)公開日 平成9年(1997)8月15日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
G06T	5/00			G06F	15/68	310J	
H04N	1/40			H04N	1/40	F	
						E	

		審査請求	未請求 請求項の数3 OL (全 9 頁)	
(21)出願番号	特願平8-21133	(71)出顧人	000006013 三菱電機株式会社	
(22) 出顧日	平成8年(1996)2月7日	(72)発明者	東京都千代田区丸の内二丁目2番3号 石岡 裕二	
		東京都千代田区丸の内二丁目2番3号 菱電機株式会社内		
		(72)発明者	松本 誠 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内	
		(74)代理人	弁理士 宮田 金雄 (外3名)	

(54) 【発明の名称】 画像処理装置

(57) 【要約】

【課題】 文字領域と網点領域と写真領域の混在する原稿においても、各々の領域において良好な画像を得る。 【解決手段】 写真領域と写真領域以外の領域を判別し、各々に適したγ補正係数を選択してγ補正処理を行い、さらに文字領域と網点領域と写真領域の各々の領域毎に適したディジタルフィルタ処理を行う。

10

20

30

40

【特許請求の範囲】

【請求項1】入力画像データに対して文字領域と写真領域と網点領域を判別する画像データ判別手段と、この画像データ判別手段と、この画像データ判別手段により写真領域用データ変換部と写真領域以外の領域用データ変換部とのどちらかを選択する選択手段を有するγ補正処理部と、前記画像データ判別手段の信号により文字領域用ディジタルフィルタ係数と審選択するディジタルフィルタ係数とを選択するディジタルフィルタ係数とを選択するディジタルフィルタ係数に基づき演算処理する演算部を有するディジタルフィルタ処理部とを備え、前記入力画像データに対し前記γ補正処理および前記ディジタルフィルタ処理を施す画像処理装置。

【請求項2】前記入力画像データに対して文字領域と写真領域と網点領域を判別する画像データ判別手段は、まず入力画像データに対し写真領域と写真領域以外の領域を判別し、その後、網点領域と文字領域を判別することを特徴とする請求項1に記載の画像処理装置。

【請求項3】入力画像データに対して文字領域と写真領域と網点領域を判別する画像データ判別手段と、この画像データ判別手段により写真領域用データ変換部と前記入力画像データとのどちらかを選択する選択手段を有するγ補正処理部と、前記画像データ判別手段の信号により文字領域用ディジタルフィルタ係数と将点領域用ディジタルフィルタ係数と写真領域用ディジタルフィルタ係数とを選択するディジタルフィルタ係数とを選択するディジタルフィルタ係数に基づき演算処理する演算部を有するディジタルフィルタ処理部とを備えたことを特徴とする画像処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、入力画像において、文字領域と写真領域と網点領域が混在するような原稿に対し、良好な出力画像を得るのに適した画像処理を行うことができる装置に関する。

[0002]

【従来の技術】従来の画像処理装置においては、スキャナ等により入力された画像データに対し、種々の補正を行うことが一般的である。例えば、原稿読み取り時における光学系の劣化や、ディジタルサンプリングによる周波数制限に伴う折り返し歪の発生、出力時には再現系

(現像系)での劣化、網点処理の影響によるモアレの発生などのさまざまな劣化が発生する。ゆえに、このような画像の劣化を補償し、画像の精細度を忠実に再現することは画像処理装置の分野においては大きな課題となっている。

【0003】このため近年、画像処理装置においてディジタル化された画像データに対し、エッジ強調処理や平滑化処理等のいわゆるディジタルフィルタ処理を行うこ

とが重要となってきている。ここでディジタルフィルタ 処理とは、上記のような様々な劣化に対し、良好な精細 度の再現のために行うディジタル多値画像データの修正 技術であり、大きく分類して画像データの高域(高周波数)成分を強調することによって画像のエッジ部分を強調するためのエツジ強調処理と、その反対に画像データの高域(高周波数)成分を抑制することによって画像の輪郭部分をなだらかに表現したり、ノイズを除去したりすることを目的とする平滑化処理に分けられる。

【0004】また、従来の画像処理において多値画像データ(階調データ)の出力の際、出力画像の濃度を補正する、いわゆるγ補正も出力装置の特性による画像の劣化を補償するために有効な手段として一般に用いられている。しかし、例えば全体を色濃く処理するような場合、写真領域においては階調がつぶれて再現性が悪くなったり、また、例えば全体を薄く処理するような場合、文字領域においては線がかすれて不鮮明となる等の不具合があった。また、エッジ強調処理の場合、文字領域はくっきりと良好な画像となるが、写真領域では中間調の再現性が悪くなる等の不具合があった。なお、ここでいう写真領域とは、写真のように連続的に濃度が変化しているような画像領域を意味し、写真はもちろんのこと、絵画、デザイン画、コンピュータグラフィックス等をも含むものである。

【0005】そのため、原稿の中に文字領域と写真領域を含むような場合、前記γ補正の係数をそれぞれの領域別に異なった値を使用するといった技術(例えば特開平3-88569)も提案されている。

[0006]

【発明が解決しようとする課題】しかし、この従来の領 域の判別においては、いわゆる網点画像の画像処理にお いて問題があった。ここで言う網点画像とは写真等の中 間調画像の階調データをドットの面積に置き換えること により疑似的に二値で表現したものである。すなわち、 網点画像は本質的には白か黒かの二値画像であり、従っ て前記従来の領域判定においては文字領域と判定され、 文字領域用のγ補正が行われることになり、そのままで は高域成分の折り返し歪や、出力時に用いられる再網点 化処理であるディザ等の基本周波数成分と、網点周波数 成分の干渉によるモアレと呼ばれる縞模様が発生するこ とがあり、著しく画像が劣化することがあった。本発明 は益々要求が強くなる出力画像の画質向上に答えるため になされたもので、具体的には文字領域と写真領域と網 点領域とが混在する原稿中においても、文字領域はくっ きりとエッジが強調され、また写真領域は中間調を忠実 に再現した画像を、さらに網点領域においてはモアレの ない良好な画像を得ることを目的とするものである。ま た読み取り原稿中にγ補正処理を文字領域および網点領 域には行わず写真領域にのみ行うようにして、γ補正処 理部の小型化、低コスト化を図ろうとするものである。

50

10

20

30

40

[0007]

【課題を解決するための手段】本発明に係る画像処理装 置は、入力画像データに対して文字領域と写真領域と網 点領域とを判別する画像データ判別手段と、この画像デ ータ判別手段により写真領域用データ変換部または写真 領域以外の領域用データ変換部のどちらかを選択する選 択手段を有するγ補正処理部と、前記画像データ判別手 段の信号により文字領域用ディジタルフィルタ係数と網 点領域用ディジタルフィルタ係数と写真領域用ディジタ ルフィルタ係数とを選択するディジタルフィルタ係数選 択手段と、この選択手段により選択されたディジタルフ ィルタ係数に基づき演算処理する演算部を有するディジ タルフィルタ処理部とを備え、前記入力画像データに対 し前記γ補正処理および前記ディジタルフィルタ処理を 施すものである。また本発明は、前記γ補正処理部にお いて、前記入力画像データが前記画像データ判別手段に より写真領域と判定された場合、前記写真領域用データ 変換部を、また写真領域以外の領域と判定された場合、 前記入力画像データを選択する選択手段を有するもので ある。

【0008】これらの構成により、例えば文字領域と網点領域と写真領域のそれぞれにおいて、ディジタルフィルタ処理としてのエッジ強調処理と平滑化処理、またはγ補正処理としての色濃く補正するための濃度変換といった一見相反する補正処理でも、それぞれの領域毎に別途処理することが可能となり、出力画像の画質向上に大いに貢献することが可能となり、出力画像の画質向上に大いに貢献することができる。さらに、網点領域においても選択的に網点の周波数に対応した平滑化が可能となり、モアレ等のない良好な出力画像を得ることができるものである。また文字領域と網点領域については、それぞれ別途にディジタルフィルタ処理を施すことにより、γ補正処理を省略し、装置の小型化、低コスト化にも貢献することができる。

[0009]

【発明の実施の形態】

実施の形態1.以下に本発明の実施の形態1を図を用いて説明する。図1は本発明の実施の形態1の画像処理装置17およびその周辺装置をブロック図で示したものであり、図1において1は読み取り原稿、2はあらかじめピント、倍率、読み取り位置が調整されたレンズ系で読み取り原稿1の画像をイメージセンサ3に結像させる働きをするものである。 さらにイメージセンサ3に取り込まれた画像信号(アナログ/ディジタル変換部5においてディジタル信号に変換され画像処理装置17に入力されるように働くものである。

【0010】画像処理装置17に入力された入力画像データQinは、次に文字領域と網点領域と写真領域を判別する画像データ判別手段6およびγ補正処理部7にそれぞれ送られる。

4

【0011】次に画像データ判別手段6の動作において、まず写真領域と写真領域以外の領域を判別する動作について具体的に例をあげて説明する。まず画像データ判別手段6の動作を説明するために、図2のAに画像データの一例として5×5の画素群を一単位とするサンプルを示す。ここで示すような5×5の画素群は、通常一ライン毎のデータとして入力される入力画像データQinに対し、5ライン分の遅延したデータを記録するラインメモリを画像データ判別手段6に備えることにより得ることができる。ここで例えばmを注目画素の濃度とした場合、a~yは注目画素の周辺の各位置における画素濃度であり、また図2のAに示す5×5の画素群を画像データが網点領域か文字領域か写真領域かを判定するための一単位となる。

【0012】次に図3に画像データ判別手段6において、写真領域と写真領域以外の領域を判別する方法を一例としてフローチャートで示す。まず画像データ判別手段6において、入力画像データQinのデータより判別しようとする一単位の画素濃度データ、ここではa~yが記録される。ここでa~yは通常多値のデータで、以下の説明では仮に0~255の256階調とし、0は黒、255は白を表わすこととする。以下に図3における手順に従って説明する。

(手順1)まず入力画像データより画像データ判定のため取り込んだ一単位のデータ(ここでは $a\sim y$ の 5×5 のデータ)の中で最大値および最小値を求める。次に最大値から最小値を引いた値を求め、さらにこの値をあらかじめ設定されたしきい値TH1(例えば150)と比較し、大きければ写真領域以外の領域と判定し、小さければ次の(手順2)に進む。

(手順2) 次に最大値とあらかじめ設定されたしきい値 TH2(例えば50)と比較し、小さければ写真領域以 外の領域と判定し、大きければ次の(手順3)に進む。 (手順3) 次に最小値とあらかじめ設定されたしきい値 TH3(例えば200) と比較し、大きければ写真領域 以外の領域と判定し、小さければ写真領域と判定する。 【0013】ここでTH1は写真領域と写真領域以外の 領域を分離するためのパラメータで、通常写真領域以外 の領域は写真領域に比べて濃度変化が大きいことを利用 して写真領域以外の領域を写真領域と判別するためのも のである。すなわち、TH1は一般的な写真領域におけ る濃度変化値より少し大きめの値が選択される。また、 TH2、TH3は画像データ判定のための一単位(ここ ではa~yの5×5の画素領域)内の全ての画素が、ほ とんど白または黒に近いと判定される場合は写真領域以 外の領域とし、それ以外の場合を写真領域と判定するた めのものである。すなわち、 (手順2) においてTH2 は比較的黒に近い、すなわち0に近い値が選択され、そ れに比較して、判定のための一単位中の全データがTH 2より小さい (黒い) 時には、一単位中の全データの濃

10

20

30

40

度変化が少なくてもその一単位は写真領域以外の領域と 判定するものである。 また、(手順3)においてTH 3は比較的白に近い、すなわち255に近い値が選択され、それに比較して、判定のための一単位中の全データ がTH3より大きい(白い)時には、一単位中の全デー タの濃度変化が少なくてもその一単位は写真領域以外の 領域と判定するものである。

【0014】続いて画像データ判別手段6の動作とし て、前述の図3における写真領域と判別された写真領域 以外の領域から、網点領域と文字領域を判別する動作に ついて図4のフローチャートにより説明する。まず (手 順1) 、(手順2) 、(手順3) により写真領域以外の 領域と判定された一単位は、次に図4の(手順4)によ り一単位中の全ての画素データ(ここではa~yの5× 5の画素領域) について、TH4より大きいかまたは小 さいかにより単純二値化が行なわれる。ここでTH4は 通常階層の中央値(ここでは例えば127)が選択される。 次に (手順5) においてX軸方向に前記 (手順4) によ り二値化したデータの変化点数をカウントする。例え ば、図2のBは文字領域を模擬した図であるが、図2の BにおいてX軸方向の変化点数は一列あたり2個で全体 として2×5=10個とカウントされる。さらにY軸方 向の変化点数は0個となる。次に(手順6)においてあ らかじめ設定されたX軸方向の変化点数であるしきい値 THXとX軸方向の変化点数であるカウント値10が比 較され、さらにあらかじめ設定されたY軸方向の変化点 数であるしきい値THYとY軸方向の変化点数であるカ ウント値Oが比較され、X軸方向、Y軸方向のいずれの しきい値においてもカウント値がしきい値より大きけれ ば網点領域と判断し、それ以外は文字領域と判断する。

【0015】ここでX軸方向のしきい値THXとY軸方向のしきい値THYは、網点が通常丸形状であるため、X軸方向とY軸方向とで同じ値が選択するのがよい。例えば、図2のBの場合しきい値としてTHX=THY=15と設定しておけば、図2のBの領域は(手順6)により文字領域と判定されることになる。また図2のCは網点領域を模擬した図であるが、図2のCにおいて前記図2のBと同様にX軸方向のカウント値としきい値、さらにY軸方向のカウント値としきい値を比較すると、X軸方向およびY軸方向共にカウント値は20となり、前記設定したしきい値15と比較して図2のCの領域は

(手順6)により網点領域と判定されることになる。このように、網点領域の持つX, Y軸に対する対称性を利用して文字領域と網点領域を判別することができるが、X軸方向とY軸方向とで縮尺の異なった原稿等の場合には、その比率に応じたしきい値をX軸方向とY軸方向とで別途選択することにより判別することができる。また一単位中に斜め方向に文字領域を含む場合は、網点領域と同様にX軸方向とY軸方向と対称となるが、文字領域の場合網点領域と比較して変化点数が少なく、例えば前

記THX=THY=15の例においては通常変化点数が 15以下となるためそれにより文字領域と判定すること ができる。

【0016】次にγ補正処理部7の動作について説明す る。図5に写真領域以外の領域部に対して行うy補正の 一例としてエッジ強調処理を、また図6に写真領域に対 して行うγ補正の一例として全体的に画素濃度を薄く補 正するための処理を示す。図5において、補正前の入力 画像データQinにおける個々の画素濃度データに対し て、γ補正後の画素濃度データを示したγ補正係数を表 として示す。ここで例えば画素濃度データとして階調4 のデータは階調1と、また階調127のデータは階調1 27と、また階調252のデータは階調254と補正さ れることを示す。またグラフは0から255の階調で表 わされる画素濃度データ全てについて、補正前と補正後 との関係を示したもので、X軸に補正前の画素濃度デー タ(すなわちQinにおける個々の画素濃度データ)を 示し、Y軸に補正後の画素濃度データを示す。図5の例 においては、中間調のデータはより黒、またはより白に 近く補正され、それにより文字はくっきりとエッジが強 調された明瞭な画像となり、すなわち写真領域以外の領 域に適した画像処理となる。

【0017】また、図6においても、図5と同様に補正 前の入力画像データQinにおける個々の画素濃度デー タに対して、γ補正後の画素濃度データを示したγ補正 係数を表に示すが、ここでは中間調のデータはそのまま の階調を維持しつつ、全体として階調を高くする例につ いて説明する。図6で例えば画素濃度データとして階調 4のデータは階調19と、また階調30のデータは階調 127と、また階調252のデータは階調254と補正 されることを示す。またグラフは0から255の階調で 表わされる画素濃度データ全てについて、補正前と補正 後との関係を示したもので、X軸は補正前画素濃度デー タ(すなわちQinにおける個々の画素濃度データ)を 示し、Y軸は補正後の画素濃度データ(すなわちy補正 部の出力)を示す。すなわち具体的には、例えば0を 黒、255を白とした場合には全体の色の濃度を薄くす ることができ、それにより例えばイメージセンサ3や出 力装置の誤差を修正しつつ中間調を維持した写真領域に 適した画像処理となる。また、前記の場合グラフが上に 凸となるような補正について説明したが、グラフが下に 凸となるような補正が必要な場合であれば、中間調のデ ータはそのままの階調が維持されつつ、全体の色の濃度 を濃くすることができ、それにより例えばイメージセン サ3や出力装置の誤差を修正しつつ中間調を維持した写 真領域に適した画像処理となる。以上のように本発明の γ補正処理部7は、記録系の持つ誤差や装置の特性にあ わせて任意に色濃度の補正をすることができる。

【0018】次に図7にγ補正処理部7の構成を示す。 図7において、図5に示す写真領域以外の領域のための

6

y 補正係数は、写真領域以外の領域用データ変換部10 に、また図6に示す写真領域のためのγ補正係数は写真 領域用データ変換部9にそれぞれ格納されている。また セレクタ11は、前述の画像データ判別手段6により判 別された結果により信号を受けて、写真領域用データ変 換部9かまたは写真領域以外の領域用データ変換部10 のどちらかを選択する。

【0019】セレクタ11により選択された写真領域用 データ変換部9または写真領域以外の領域用データ変換 部10は、入力画像データQinの信号をアドレスとし て受け、格納されたデータを信号として出力する。例え ば、図6の写真領域用データ変換部9においては、入力 画像データQinが階調4のデータであるとき、写真領 域用データ変換部9のアドレス4に格納されている階調 *

> $X = m + \alpha \times \{ (m-1) + (m-h) + (m-n) + (m-r) \} \cdot \cdot \cdot \cdot$ ・式(1)

(5)

上記式(1)でXは求める補正データで、もし式(1) による補正結果が負の値になったときにはX=0とし、 またもしXがmの取り得る最大値(ここでは255)を 超えた場合はX=最大値とする。すなわち本実施の形態 1においては補正後も0~255の階調を維持するよう に設定される。またmは注目画素濃度、1, h, n, r はそれぞれ注目画素に隣接する位置の画素濃度を表わ し、またαはディジタルフィルタ処理係数を表わす。こ こでディジタルフィルタ処理係数 α が正の値 (例えば+0. 25)をとる場合、Xはもとの注目画素データmに比べて 周囲の画素との濃度差を強調した画像、すなわちエッジ を強調した補正画像となり、またディジタルフィルタ処 理係数 α の値を負の値 (例えば-0.25) とした場合は、X はもとの注目画素データmに比べて周囲の画素との差が 少ない画像、すなわち平滑化された画像となる。

【0021】さらに前記式(1)においては、注目画素 に対して隣接する1画素のみ補正のため参照した例を示 したが、エッジ強調処理および平滑化処理において、補 正のため参照する画素の範囲・位置およびディジタルフ ィルタ処理係数αの値を変化させることにより、種々の パターンの補正が可能である。

【0022】次に図8にディジタルフィルタ処理部8の 具体的構成を示す。図8において、14,15,16は それぞれ網点領域用、文字領域用および写真領域用処理 係数のメモリで、前記式(1)におけるディジタルフィ ルタ処理係数 α をあらかじめそれぞれ文字領域用係数、 網点領域用係数および写真領域用係数として記憶させて おき、画像データ判別手段6からの信号により、セレク タ12により選択し演算部13に出力する。 演算部1 3はセレクタ12からのディジタルフィルタ処理係数と γ補正処理部7からの画像データを受けて、前記の式 (1) の演算を行い、その結果を出力画像データQou t として出力する。

【0023】以上のように構成したため、写真領域には ※50

*19のデータを出力し、また入力画像データQinが階 調30であるとき、写真領域用データ変換部9のアドレ ス30に格納されている階調127のデータを出力し、 これにより写真領域部の画像データは中間調を維持した まま全体の色の濃度を薄く補正され、それにより例えば 写真領域部の階調のつぶれを防ぐことができる。

【0020】次にディジタルフィルタ処理部8の動作に ついて、図2のAに示す注目画素および周辺画素の例に より具体的に説明する。まず、文字原稿や線画のエッジ 10 部を強調して、メリハリのきいた鮮明な画像を得るため のディジタルフィルタ処理としてエッジ強調処理がある が、注目画素の周辺4画素を参照画素とする例として式 (1) に示し、これにより説明する。

※写真領域用の y 補正処理を施した後、写真領域用のディ ジタルフィルタ処理、例えばエッジ強調処理を施した場 合は、中間調を保持しながらメリハリのある鮮明な画像 を得ることができるし、またディジタルフィルタ処理と して平滑化処理を施した場合には、さらに写真の階調を 保持した自然な画像を得ることができる。また文字領域 においては、写真領域以外の領域用のγ補正によりエッ ジ強調処理を施した後、文字領域用のディジタルフィル タ処理として、さらにエッジ強調処理を施すことによっ て、くっきりとエッジが強調された良好な画像を 得る ことができる。また網点領域においては、写真領域以外 の領域用の y 補正によりエッジ強調処理を施した後、網 点領域用のディジタルフィルタ処理として、平滑化処理 特に網点の周波数領域部を平滑化することにより、モア レのない良好な画像を得ることができる。

【0024】また、本発明の構成においてγ補正処理と ディジタルフィルタ処理の組み合わせは上記例に限定さ れるものでなく、所望する画像により種々の組み合わせ が考えられる。例えば写真領域以外の領域の y 補正処理 として全体の色濃度を薄くまたは濃く補正した後、ディ ジタルフィルタ処理として文字領域にエッジ強調処理を 行うことにしても良好な文字領域の画像を得ることがで

【0025】実施の形態2. 図9に本実施の形態2にお 40 けるγ補正処理部7を示す。図9と図7との違いは、図 9においては写真領域以外の領域用データ変換部10が なく、したがって写真領域以外の領域と判定された領域 は、y補正処理をしていないデータ、すなわちこの場合 入力画像データQinがそのままセレクタ11により選 択されて、次のディジタルフィルタ処理部8へ送られる ことにある。この構成の場合、写真領域以外の領域にお いては、次段のディジタルフィルタ処理部8において文 字領域はエッジ強調処理、また網点領域は平滑化処理を 施すのがよい。それにより、写真領域は実施の形態1と

a .

同様に、中間調を保持しながらメリハリのある鮮明な画像を得ることができ、かつ文字領域においてもくっきりとエッジが強調された良好な画像を得ることができるし、また網点領域においてもモアレのない良好な画像を得ることができる。この様に構成された画像処理装置17は、γ補正処理部7において、写真領域以外の領域用データ変換部10を省略することができる分、回路規模の省略となり、小型化、低コスト化を達成することができる。

【図面の簡単な説明】

【図1】 本発明の画像処理装置および周辺装置を示す ブロック図である。

【図2】 注目画素濃度およびその周辺の画素濃度を示した図である。

【図3】 本発明の画像データ判別手段における、写真 領域と写真領域以外の領域を判別するためのフローチャ ートを示した図である。

【図4】 本発明の画像データ判別手段における、文字 領域と網点領域を判別するためのフローチャートを示し *

* た図である。

【図5】 文字領域部に行うγ補正処理の例を示した図である。

【図6】 写真領域部に行うγ補正処理の例を示した図である。

【図7】 本発明のγ補正処理部を示すブロック図である。

【図8】 本発明のディジタルフィルタ処理部を示すブロック図である。

10 【図9】 本発明の実施の形態 2 における γ 補正処理部 を示すブロック図である。

【符号の説明】

1読み取り原稿、2レンズ系、3イメージセンサ、4画像信号増幅部、5アナログ/ディジタル変換部、6画像データ判別手段、7γ補正処理部、8ディジタルフィルタ処理部、9写真領域用データ変換部、10写真領域以外の領域用データ変換部、11,12セレクタ、13演算部、14,15,16メモリ、17画像処理装置。

20

[図1]

補正前の歯索養度テータ		
補正前の画素達皮データ	補正後の函素適度データ	
0	0	
1	0	
2	1	
3	1	
4	1	
•	!	
:	:	
;	;	
127	127	
1 :	:	
i		
252	254	
253	254	
254	255	
255	255	

【図6】

補正赦の国素濃度データ	補正後の國素濃度データ
. 0	0
1	
2	10
3	15
4	19
30	127
;	
252	254
253	255
254	255
255	255

【図8】

