----ОДОБРЕНА-----

Задача 0.1. Да разгледаме следната функция:

```
swap(A[1..n],i,j)
01 	 t \leftarrow A[i]
    A[i] \leftarrow A[j]
    A[j] \leftarrow t
Bubble(A[1..n]: array of integers; m: index in A)
    for i=1 to m-1 do
@2
     if A[i] > A[i+1] then
@3
@4
            swap(A, i, i + 1)
@5
            j \leftarrow i
@6
    done
@7
     return j
```

Да се докаже, че:

- 1. ако j е резултатът от изпълнението на функцията Bubble(A,m), а A'[1..n] е модифицираният масив A,
 - A'[j+2..n] = A[j+2..n] и A'[1..j+1] е пермутация на масива A[1..j+1].
 - ullet A'[j..m] е сортиран във възходящ ред.
 - ако m > 1, то $A'[j+1] \ge A[i]$ за всяко $1 \le i \le j$.

Доказателство:

При m > 1, нека \boldsymbol{j}_i е стойността на ј преди i-тото достигане на for цикъла от ред @2 . Нека също така \boldsymbol{A}_i е състоянието на масива \boldsymbol{A} преди i-тото достигане на цикъла от ред @2 .

Дефинирам $I(i) \leftrightarrow$

- 1. $A_{_i}[j_{_i}+\ 2..n]\ =\ A[j_{_i}..n]$ и $A_{_i}[1..j_{_i}+\ 1]$ е пермутация на $A[1..j_{_i}+\ 1]$
- 2. $A_{i}[j_{i}...i]$ е сортиран възходящо
- 3. $i > 1 \rightarrow A_i[j_i+1] \geq A_i[i]$ за всяко $1 \leq i \leq j$

Ще покажа, че I(i) е истина с индукция по i.

База: Нека і = 1. Имаме, че $\,j_{_{i}}^{}=\,\,j_{_{1}}^{}=\,\,1\,$ (инициализирано на ред @1), тогава:

- 1. $A_1[j_1+2..n]=A_1[3..n]=A[3..n]$ и $A_1[1..2]=A[1..2]$, значи наистина $A_1[1..2]$ е пермутация на A[1..2]
- 2. $A_1[1..1] = A_1[1]$ сортиран е
- 3. Предпоставката на импликация е лъжа, следователно цялата импликация е истина

Нека сега I(i) е истина за някое $1 < i \le m-1$. Ще покажа, че I(i+1) е истина. Изпълнява се i-тата итерация на for цикъла от ред @2:

----ОДОБРЕНА-----

1 случай: Условието от ред @3 е истина. Тогава $A_i[i] > A_i[i+1]$ и $j_{i+1}=i$. След изпълнението на ред @4 $A_{i+1}[i]=A_i[i+1]$ и $A_{i+1}[i+1]=A_i[i]$

- 1. $A_{i+1}[j_{i+1} + 2..n] = A_{i+1}[i + 2..n] = A[i + 2..m]$.
 - а. $j_i=i-1$. Тогава от ИХ имаме, че $A_i[1...i-1+1]=A_i[1...i]$ е пермутация на A[1...i] и $A_i[i+1]=A[i+1]$ $A_{i+1}[1...i+1]=A_i[1...i-1]\circ A_i[i+1]\circ A_i[i]=A_i[1...i-1]\circ A[i+1]\circ A_i[i]$ следователно $A_{i+1}[1...i+1]$ е пермутация на A[1...i+1]
 - b. $j_i < i-1$. Тогава от ИХ имаме, че $A_i[1..j_i+1]$ е пермутация на $A[1..j_i+1]$. Имаме още, че $A_i[j_i+2..n]=A[j_i+2..n]$ следователно $A_i[j_i+2..i-1]=A[j_i+2..i-1]$, така: $A_{i+1}[1...i+1]=A_i[1...j_i+1]\circ A_i[j_i+2...i-1]\circ A_i[i+1]\circ A_i[i]=$ $=A_i[1...j_i+1]\circ A[j_i+2...i-1]\circ A[i+1]\circ A[i]$ значи наистина $A_{i+1}[1...i+1]$ е пермутация на масива A[1...i+1]
- 2. $A_{i+1}[j_{i+1}...i+1] = A_{i+1}[i..i+1]$ и $A_i[i+1] < A_i[i]$ следователно $A_{i+1}[j_{i+1}...i+1]$ е сортиран във възходящ ред
- 3. i+1>1 остава да покажа, че $\mathbf{A}_{i+1}[j_{i+1}+1]=A_{i+1}[i+1]\geq A_{i+1}[k]$ за всяко $1\leq k\leq i+1$
 - а. Ако $j_i=i-1$. От ИХ имаме, че $A_i[i]\geq A_I[k]$ за всяко $1\leq k\leq i$, но от 1а имаме, че $A_{i+1}[1...i+1]=A_i[1...i-1]\circ A_i[i+1]\circ A_i[i]$ и $A_i[i+1]< A_i[i]$, защото условието на ред @3 е вярно, то следователно $A_{i+1}[i+1]\geq A_{i+1}[k]$ за всяко $1\leq k\leq i+1$
 - b. Ако $j_i < i-1$. От ИХ имаме, че $A_i[j_i+1] \ge A_i[k]$ за всяко $1 \le k \le j_i$ и $A_i[j_i...i]$ е сортиран във възходящ ред, от 1b $A_{i+1}[1...i+1] = A_i[1...j_i+1] \circ A_i[j_i+2...i-1] \circ A_i[i+1] \circ A_i[i]$ и $A_i[i+1] < A_i[i]$, защото условието на ред @3 е вярно, тогава наистина $A_{i+1}[i+1] \ge A_{i+1}[k]$ за всяко $1 \le k \le i+1$

2 случай: Условието от ред @3 е лъжа. Тогава $A_i[i] < A_i[i+1]$ следователно

$$A_{i+1}[i] \, = A_i[i]; \; A_{i+1}[i\, +\, 1] \, = A_i[i\, +\, 1] \; \text{u} \; j_{i+1} = j_i$$

- 1. $A_{i+1}[j_{i+1}+2..n]=A_{i}[j_{i}+2..n]=_{ih}A[j_{i}+2..n]=A[j_{i+1}+2..n]$ $A_{i+1}[1..j_{i+1}+1]=A_{i}[1..j_{i}+1]$ е пермутация(от ih) на $A[1..j_{i}+1]=A[1...j_{i+1}+1]$
- 2. $A_{i+1}[j_{i+1}...i+1] = A_{i}[j_{i}...i] \circ A_{i}[i+1]$ от ИХ $A_{i}[j_{i}...i]$ е сортиран въходящо, следователно и $A_{i+1}[j_{i+1}...i+1]$ е сортиран във възходящ ред
- 3. $A_{i+1}[j_{i+1}+1]=A_{i}[j_{i}+1]\geq_{ih}A_{i}[k]=A_{i+1}[k]$ за всяко $1\leq k\leq j_{i}=j_{i+1}$

---ОДОБРЕНА----

Следователно I(i) е истина за всяко $1 \le i \le m-1$.

При i = m, когато цикълът завършва $j_m = j$, модифицираният масив $A'[1..n] = A_m[1..n]$

- 1. $A_m[j_m + 2..n] = A[j + 2..n]$ и $A_m[1..j_m]$ е пермутация на A[1..j + 1]
- 2. $A_m[1...j_m+1]=A'[1..j+1]$ е сортиран възходящо
- 3. За m>1 $A_m[j_m+1]\geq A_m[k]$ за всяко $1\leq k\leq j_m$, но $A_m[1...j_m]$ е пермутация на A[1...j] следователно $A_m[j_m+1]\geq A[k]$ за всяко $1\leq k\leq j_m$