R_o or R_e or Doubling-Time: Which to Follow?

CA-ANG/SG

25 March 2020

R = reproduction number

= average number cases arising from one case

$$R = 3$$

R = reproduction number

= average number cases arising from one case

This number changes as the epidemic progresses

As people recover, more of the population is immune to the virus. The virus has a harder time spreading. R decreases.

R_{C}

= initial reproduction number(at beginning of epidemic)

 R_e

= effective reproduction number (at later times in the epidemic)

- Generally $R_0 > R_e$
- Generally R_e falls as epidemic progresses
- \bullet Epidemic ends when $R_e < 1$: spread is no longer exponential

R₀ & R_e: Hard to Measure, Sometimes Misleading

$$R = 3$$

Yes, R₀ and two more quantities define epidemic

And it should be obvious that:

$$I_{total} = \int_{t=0}^{t=\infty} \left[\frac{R_0}{(1+d)^t} \right]^t dt$$

$$I_{total} = \frac{\exp\left(\frac{\ln(R_o)^2}{4\ln(1+d)}\right)\sqrt{\frac{\pi}{\ln(1+d)}}}{2} \bullet \left[erf(x-\mu)\sqrt{\ln(1+d)} - erf(-\mu)\sqrt{\ln(1+d)}\right]$$

Where

$$\mu = \frac{\ln(R_0)}{2\ln(1+d)}$$

"Doubling Time" is a simpler way

- Graph the number of total cases over the course of the epidemic
- Extrapolate from the last few days of the curve
- From this extrapolation, calculate how long it will take for the number of cases to double
 - This is the "doubling time"

Graphical approach

(note logarithmic y-axis)

Doubling Time changes during epidemic

Governor Cuomo uses doubling times

PLAN OF ACTION

Evidence suggests density control plan working:

- Sunday: hospitalizations doubling every 2 days
- Monday: hospitalizations doubling every 3.4 days
- Tuesday: hospitalizations doubling every 4.7 days

Summary

- R₀ is good for describing early stages of epidemic
- R_e is hard to know

- Doubling time
 - Is easy to calculate
 - Has an easily understood meaning
 - Is well-suited to making decisions

References

- The monster equation
 - https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083622