

# Problem Set #4



For the data given below, use the maximum likelihood estimate of Gaussian generative model to find the classifier parameters.



#### **Solution:**

- Let the target value for class  $C_1(\mathbf{X})$  be t=1 and for class  $C_2(\mathbf{O})$  be t=0.
- The prior probability of class  $C_1$  is

$$p(C_1) = \pi = \frac{1}{4} \sum_{n=1}^{4} t_n = \frac{1}{4} (1 + 1 + 0 + 0) = 0.5$$

- The prior probability of class  $C_2$  is thus  $p(C_2) = 1 \pi = 0.5$
- The mean of the input vectors in class  $C_1$  is

$$\mathbf{\mu}_1 = \frac{1}{N_1} \sum_{n=1}^4 t_n \mathbf{x}_n = \frac{1}{2} \left( 1 \times \begin{bmatrix} 2 \\ 3 \end{bmatrix} + 1 \times \begin{bmatrix} 4 \\ 1 \end{bmatrix} + 0 \times \begin{bmatrix} -1 \\ -3 \end{bmatrix} + 0 \times \begin{bmatrix} -4 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

- The mean of the input vectors in class  $C_2$  is

$$\mu_2 = \frac{1}{N_2} \sum_{n=1}^{4} (1 - t_n) \mathbf{x}_n = \frac{1}{2} \left( 0 \times \begin{bmatrix} 2 \\ 3 \end{bmatrix} + 0 \times \begin{bmatrix} 4 \\ 1 \end{bmatrix} + 1 \times \begin{bmatrix} -1 \\ -3 \end{bmatrix} + 1 \times \begin{bmatrix} -4 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} -2.5 \\ -2 \end{bmatrix}$$

- The covariance matrix  $\Sigma$  is given by



# Problem Set #4

$$\begin{split} & \sum = \frac{N_1}{N} \mathbf{S}_1 + \frac{N_2}{N} \mathbf{S}_2 = 0.5 \mathbf{S}_1 + 0.5 \mathbf{S}_2 \\ & \mathbf{S}_1 = \sum_{\mathbf{x}_n \in C_1} (\mathbf{x}_n - \mathbf{\mu}_1) (\mathbf{x}_n - \mathbf{\mu}_1)^T \\ & = \left( \begin{bmatrix} 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right) \left( \begin{bmatrix} 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right)^T + \left( \begin{bmatrix} 4 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right) \left( \begin{bmatrix} 4 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} \right)^T \\ & = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \\ & \mathbf{S}_2 = \sum_{\mathbf{x}_n \in C_2} (\mathbf{x}_n - \mathbf{\mu}_2) (\mathbf{x}_n - \mathbf{\mu}_2)^T \\ & = \left( \begin{bmatrix} -1 \\ -3 \end{bmatrix} - \begin{bmatrix} -2.5 \\ -2 \end{bmatrix} \right) \left( \begin{bmatrix} -1 \\ -3 \end{bmatrix} - \begin{bmatrix} -2.5 \\ -2 \end{bmatrix} \right)^T + \left( \begin{bmatrix} -4 \\ -1 \end{bmatrix} - \begin{bmatrix} -2.5 \\ -2 \end{bmatrix} \right) \left( \begin{bmatrix} -4 \\ -1 \end{bmatrix} - \begin{bmatrix} -2.5 \\ -2 \end{bmatrix} \right)^T \\ & = \begin{bmatrix} 2.25 & -1.5 \\ -1.5 & 1 \end{bmatrix} + \begin{bmatrix} 2.25 & -1.5 \\ -1.5 & 1 \end{bmatrix} = \begin{bmatrix} 4.5 & -3 \\ -3 & 2 \end{bmatrix} \\ & \sum = 0.5 \mathbf{S}_1 + 0.5 \mathbf{S}_2 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 2.25 & -1.5 \\ -1.5 & 1 \end{bmatrix} = \begin{bmatrix} 3.25 & -2.5 \\ -2.5 & 2 \end{bmatrix} \end{split}$$



# Problem Set #4



Consider the data about conditions for playing tennis given below:

| Day | Outlook | Temperature | Humidity | Play    |
|-----|---------|-------------|----------|---------|
|     |         | -           | ,        | Tennis? |
| 1   | Sunny   | Hot         | High     | No      |
| 2   | Cloudy  | Hot         | High     | Yes     |
| 3   | Rain    | Mild        | High     | No      |
| 4   | Rain    | Cool        | Normal   | No      |
| 5   | Cloudy  | Cool        | Normal   | Yes     |
| 6   | Sunny   | Mild        | High     | Yes     |
| 7   | Sunny   | Cool        | Normal   | Yes     |
| 8   | Rain    | Mild        | Normal   | No      |
| 9   | Sunny   | Mild        | Normal   | Yes     |
| 10  | Cloudy  | Mild        | High     | Yes     |

Using Naïve Bayes classifier, predict if one should play tennis on a Sunny, Hot with Normal humidity day. Note that since the data is discrete, you can use the frequentist statistics to compute the needed probabilities.

#### **Solution:**

Since the goal is to classify a sunny, hot with normal humidity day as good day to play tennis or not, we first define two classes  $C_1$  and  $C_2$ , corresponding to Play = Yes and Play = No, respectively. To classify the given day with attributes  $\mathbf{x}$ , we need to compute  $p(C_1 | \mathbf{x})$ :

$$p(Play = Yes \mid Outlook = Sunny, Temperature = Hot, Humidity = Normal)$$

and  $p(C_2 | \mathbf{x})$ :

$$p(Play = No \mid Outlook = Sunny, Temperature = Hot, Humidity = Normal)$$

and find which conditional probability is larger. If the first one is larger, then our prediction is Play = Yes. If the second one is larger, then our prediction is Play = No. Note that  $\mathbf{x}$  here is 3 dimensional corresponding to Outlook, Temperature and Humidity.

Since 
$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x})}$$



### Problem Set #4

We need to compute  $p(\mathbf{x} \mid C_1) = p(\text{Outlook} = \text{Sunny}, \text{Temperature} = \text{Hot}, \text{Humidity} = \text{Normal} \mid \text{Play} = \text{Yes})$ . Using the Naïve Bayes assumption which assumes that the dimensions of the input data (the attributes of the day) are

independent, we can re-write 
$$p(\mathbf{x} \mid C_1)$$
 as  $p(\mathbf{x} \mid C_1) = \prod_{i=1}^{D} p(x_i \mid C_1)$ 

$$p(\text{Outlook} = \text{Sunny} \mid \text{Play} = \text{Yes}) \ p(\text{Temperature} = \text{Hot} \mid \text{Play} = \text{Yes}) \ p(\text{Humidity} = \text{Normal} \mid \text{Play} = \text{Yes})$$

Similarly, 
$$p(\mathbf{x} \mid C_2)$$
 can be re-written as  $p(\mathbf{x} \mid C_2) = \prod_{i=1}^{D} p(x_i \mid C_2)$ 

$$p(\text{Outlook} = \text{Sunny} \mid \text{Play} = \text{No}) \ p(\text{Temperature} = \text{Hot} \mid \text{Play} = \text{No}) \ p(\text{Humidity} = \text{Normal} \mid \text{Play} = \text{No})$$

From the available data in the table and using frequentist statistics:

$$p(\text{Outlook} = \text{Sunny} \mid \text{Play} = \text{Yes}) = 3/6$$

$$p(\text{Temperature} = \text{Hot} \mid \text{Play} = \text{Yes}) = 1/6$$

$$p(Humidity = Normal \mid Play = Yes) = 3/6$$

$$p(Play = Yes) = 6/10$$

$$p(\text{Outlook} = \text{Sunny} \mid \text{Play} = \text{No}) = 1/4$$

$$p(\text{Temperature} = \text{Hot} \mid \text{Play} = \text{No}) = 1/4$$

$$p(Humidity = Normal \mid Play = No) = 2/4$$

$$p(Play = No) = 4/10$$

Therefore,

$$p(\mathbf{x} \mid C_1) = p(\text{Outlook} = \text{Sunny}, \text{Temperature} = \text{Hot}, \text{Humidity} = \text{Normal} \mid \text{Play} = \text{Yes}) = (3/6) \times (1/6) \times (3/6)$$

And

$$p(\mathbf{x} \mid C_2) = p(\text{Outlook} = \text{Sunny}, \text{Temperature} = \text{Hot}, \text{Humidity} = \text{Normal} \mid \text{Play} = \text{No}) = (1/4) \times (1/4) \times (2/4)$$

$$\frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})} = \frac{p(\mathbf{x}|Play = Yes)p(Play = Yes)}{p(\mathbf{x}|Play = No)p(Play = No)} = \frac{0.025}{0.0125} = 2$$

Since 
$$\frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})} > 1$$
 then  $\mathbf{x} \in C_1$  Therefore, one should play tennis in a sunny, hot with normal humidity day.



# Problem Set #4



For the data given below, apply the logistic regression algorithm to find the weight vector  $\mathbf{w}$  of the decision boundary. Show the output of each iteration till all the points are classified correctly. Assume that the weight vector is initialized  $\mathbf{w}^{\scriptscriptstyle(0)}$  = [3 1]. Use learning rate parameter  $\eta=0.5$ .



#### **Solution:**

The initial weight vector is shown below and the corresponding decision boundary  $w_1x_1 + w_2x_2 = 0$  shown in red (which is perpendicular to the weight vector). For  $\mathbf{w}^{(0)}$ , the decision boundary is  $3x_1 + x_2 = 0$ . Let the target value t for points in the  $\mathbf{X}$  class be 1 and for the  $\mathbf{O}$  class be 0.



# Problem Set #4



For iteration 1, based on the shown decision boundary, the y value for the points (Refer to slide 20 in Lecture 4)

$$(-1, 4) \rightarrow y = 1/(1 + \exp(-w_1x_1 - w_2x_2)) = 1/(1 + \exp(-3*(-1) - 1*4)) = 0.73$$

$$(-1, 2) \rightarrow y = 1/(1 + \exp(-3*(-1) - 1*2)) = 0.27$$

$$(-3, 1) \rightarrow y = 1/(1 + \exp(-3*(-3) - 1*1)) = 0$$

$$(-3, -1) \rightarrow y = 1/(1 + \exp(-3*(-3) - 1*-1)) = 0$$

The logistic regression update rule is given by  $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \sum_{n=1}^{N} (y_n - t_n) \phi(\mathbf{x}_n)$ 

$$\mathbf{w}^{(1)} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} - 0.5 \left( (0.73 - 1) \begin{bmatrix} -1 \\ 4 \end{bmatrix} + (0.27 - 1) \begin{bmatrix} -1 \\ 2 \end{bmatrix} + (0 - 0) \begin{bmatrix} -3 \\ 1 \end{bmatrix} + (0 - 0) \begin{bmatrix} -3 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} 2.5 \\ 2.27 \end{bmatrix}$$



# Problem Set #4



Since all points are classified correctly, the algorithm stops.