Nonlinear Optimization

Derek Li

Contents

1	Review			
	1.1	One-Variable Calculus		
		1.1.1	Mean Value Theorem	
		1.1.2	First Order Taylor Approximation	
		1.1.3	Second Order MVT	
		1.1.4	Second Order Taylor Approximation	
	1.2	Multi-	variable Calculus	
		1.2.1	Gradient	
		1.2.2	Mean Value Theorem in \mathbb{R}^n	
		1.2.3	First Order Taylor Approximation in \mathbb{R}^n	
		1.2.4	Second Order MVT in \mathbb{R}^n	
		1.2.5	Second Order Taylor Approximation in \mathbb{R}^n	
		1.2.6	Geometric Meaning of Gradient	

1 Review

1.1 One-Variable Calculus

1.1.1 Mean Value Theorem

Let $g \in C^1$ on \mathbb{R} . We have

$$\frac{g(x+h) - g(x)}{h} = g'(x+\theta h),$$

for some $\theta \in (0,1)$ and $\frac{g(x+h)-g(x)}{h}$ is the slope of secant line between (x,g(x)) and (x+h,g(x+h)). Or we can write $g(x+h)=g(x)+hg'(x+\theta h)$.

1.1.2 First Order Taylor Approximation

Let $g \in C^1$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + o(h),$$

where o(h) is the error and we say a function f(h) = o(h) to mean

$$\lim_{h \to 0} \frac{f(h)}{h} = 0.$$

Proof. Want to show g(x+h) - g(x) - hg'(x) = o(h).

We have

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x)}{h} = \lim_{h \to 0} \frac{hg'(x+\theta h) - hg'(x)}{h}$$
$$= \lim_{h \to 0} g'(x+\theta h) - g'(x) = 0.$$

1.1.3 Second Order MVT

Let $g \in C^2$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g''(x+\theta h),$$

for some $\theta \in (0, 1)$.

1.1.4 Second Order Taylor Approximation

Let $g \in C^2$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g''(x) + o(h^2).$$

Proof. W.T.S.
$$g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x) = o(h^2)$$
.

We have

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x)}{h^2} = \lim_{h \to 0} \frac{\frac{h^2}{2}g''(x+\theta h) - \frac{h^2}{2}g''(x)}{h^2}$$
$$= \lim_{h \to 0} \frac{1}{2} [g''(x+\theta h) - g''(x)] = 0.$$

1.2 Multi-variable Calculus

1.2.1 Gradient

Gradient of $f: \mathbb{R}^n \to \mathbb{R}$ at $\mathbf{x} \in \mathbb{R}^n$, $\nabla f(\mathbf{x})$, if exists is a vector characterized by the property

$$\lim_{\mathbf{v}\to\mathbf{0}} \frac{f(\mathbf{x}+\mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|} = 0,$$

and
$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x})\right)$$
.

1.2.2 Mean Value Theorem in \mathbb{R}^n

Let $f \in C^1$ on \mathbb{R}^n , then for any $\mathbf{x}, \mathbf{v} \in \mathbb{R}^n$, we have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v},$$

for some $\theta \in (0,1)$.

Proof. Consider $g(t) = f(\mathbf{x} + t\mathbf{v})$, where $t \in \mathbb{R}$ and $g \in C^1$ on \mathbb{R} .

By Mean Value Theorem in \mathbb{R} , we have

$$g(0+1) = g(0) + 1 \cdot g'(0+\theta \cdot 1)$$

$$= g(0) + g'(\theta)$$

$$= f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}$$

$$= g(1) = f(\mathbf{x} + \mathbf{v}),$$

for some $\theta \in (0, 1)$.

Note:

$$g'(t) = \frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{x} + t\mathbf{v}) = \nabla f(\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}.$$

1.2.3 First Order Taylor Approximation in \mathbb{R}^n

Let $f \in C^1$ on \mathbb{R}^n . We have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + o(\|\mathbf{v}\|).$$

Proof. We have

$$\lim_{\|\mathbf{v}\| \to 0} \frac{f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|} = \lim_{\|\mathbf{v}\| \to 0} \frac{\nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v} - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|}$$

$$= \lim_{\|\mathbf{v}\| \to 0} \left[\nabla f(\mathbf{x} + \theta \mathbf{v}) - \nabla f(\mathbf{v}) \right] \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|} = 0.$$

1.2.4 Second Order MVT in \mathbb{R}^n

Let $f \in C^2$ on \mathbb{R}^n . We have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v},$$

for some $\theta \in (0, 1)$.

Note 1: Hessian matrix

$$\nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x})\right)_{1 \le i, j \le n}$$

is a symmetric matrix because of Clairaut's Theorem.

Note 2:

$$\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v} = \sum_{1 \le i, j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j} (\mathbf{x}) v_i v_j.$$

1.2.5 Second Order Taylor Approximation in \mathbb{R}^n

Let $f \in C^2$ on \mathbb{R}^n . We have

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v} + o(\|\mathbf{v}\|^2).$$

Proof. We have

$$\lim_{\|\mathbf{v}\| \to 0} \frac{f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v} - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|^2}$$

$$= \lim_{\|\mathbf{v}\| \to 0} \frac{\frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v} - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v}}{\|\mathbf{v}\|^2}$$

$$= \lim_{\|\mathbf{v}\| \to 0} \frac{1}{2} \left(\frac{\mathbf{v}}{\|\mathbf{v}\|}\right)^T \cdot \left[\nabla^2 f(\mathbf{x} + \theta \mathbf{v}) - \nabla^2 f(\mathbf{x})\right] \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

$$= 0.$$

1.2.6 Geometric Meaning of Gradient

The instantaneous rate of change of f at \mathbf{x} in direction \mathbf{v} (suppose w.l.o.g. $\|\mathbf{v}\| = 1$) is

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} f(\mathbf{x} + t\mathbf{v}) = \nabla f(\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}\Big|_{t=0}$$

$$= \nabla f(\mathbf{x}) \cdot \mathbf{v}$$

$$= |\nabla f(\mathbf{x})| |\mathbf{v}| \cos \theta$$

$$= |\nabla f(\mathbf{x})| \cos \theta,$$

where θ is the angle between $\nabla f(\mathbf{x})$ and \mathbf{v} . Obviously, the instantaneous rate maximizes when $\theta = 0$. Therefore, when it is not equal to zero, $\nabla f(\mathbf{x})$ points in the direction of steepest ascent.