Diskrete Mathematik Solution 12

12.1 Normal Forms

a) The function table of $F = (\neg(A \to C)) \leftrightarrow (A \to B)$ is

A	B	$\mid C \mid$	$(\neg(A \to C))$	$(A \to B)$	F
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	1	0

Using the technique from the proof of Theorem 6.6, we can find an equivalent formula in CNF:

$$(A \lor B \lor C) \land (A \lor B \lor \neg C) \land (A \lor \neg B \lor C) \land (A \lor \neg B \lor \neg C) \land (\neg A \lor B \lor C) \land (\neg A \lor \neg B \lor \neg C)$$

and an equivalent formula in DNF:

$$(A \land \neg B \land C) \lor (A \land B \land \neg C)$$

$$b) \quad (A \wedge \neg B) \vee (\neg A \wedge (C \wedge D))$$

$$\equiv ((A \wedge \neg B) \vee \neg A) \wedge ((A \wedge \neg B) \vee (C \wedge D)) \qquad |6)$$

$$\equiv (\neg A \vee (A \wedge \neg B)) \wedge ((A \wedge \neg B) \vee (C \wedge D)) \qquad |2)$$

$$\equiv ((\neg A \vee A) \wedge (\neg A \vee \neg B)) \wedge ((A \wedge \neg B) \vee (C \wedge D)) \qquad |6)$$

$$\equiv ((\neg A \vee A) \wedge (\neg A \vee \neg B)) \wedge (((A \wedge \neg B) \vee C) \wedge ((A \wedge \neg B) \vee D)) \qquad |6)$$

$$\equiv ((\neg A \vee A) \wedge (\neg A \vee \neg B)) \wedge ((C \vee (A \wedge \neg B)) \wedge (D \vee (A \wedge \neg B))) \qquad |2), 2)$$

$$\equiv (\neg A \vee A) \wedge (\neg A \vee \neg B) \wedge (C \vee A) \wedge (C \vee \neg B) \wedge (D \vee A) \wedge (D \vee \neg B) \qquad |6), 6)$$

This formula is in CNF. Using equivalences 2), 11), 2) and 9), one can find a simpler formula equivalent to G, also in CNF:

$$(\neg A \vee \neg B) \wedge (C \vee A) \wedge (C \vee \neg B) \wedge (D \vee A) \wedge (D \vee \neg B).$$

12.2 Free Variables

- i) $\forall x \forall y (P(x,y) \lor P(x,\underline{\mathbf{z}}))$
- ii) $(\forall x (\exists x \ P(x) \land P(x)) \lor P(\underline{\mathbf{x}}))$ In the first occurrence of P(x), x is bound by $\exists x$ and in the second occurrence it is bound by $\forall x$.
- iii) There are no free variables in this formula.

12.3 Interpretations

a) i) A is a model for F, because for all positive natural numbers x, y, z we have:

$$x \mid xy \land y \mid xy \land (y \nmid x \rightarrow yz \nmid x).$$

ii) A is not a model for F, because there exist positive natural numbers x, y, z, for which the following does not hold:

$$x \mid x^y \land y \mid x^y \land (y \nmid x \rightarrow y^z \nmid x).$$

The counterexample is x = 2, y = 3 (note that $y \nmid x^y$).

iii) \mathcal{A} is a model for F, because for all subsets A,B,C of \mathbb{N} we have:

$$A\cap B\subseteq A \ \land \ A\cap B\subseteq B \ \land \ (A\not\subseteq B\to A\not\subseteq B\cap C).$$

- **b)** There are many correct solutions. Below we give an example.
 - i) The structure A that defines only the universe: $U^A = \{0\}$.
 - ii) The structure \mathcal{A} with $U^{\mathcal{A}} = \{0\}$ and $P^{\mathcal{A}}(0,0) = 0$. \mathcal{A} is not a model, because $\forall x \exists y \ P(x,y)$ is false (since P(x,y) is always false).
 - iii) The structure \mathcal{A} with $U^{\mathcal{A}} = \mathbb{Z}_3$ and $P^{\mathcal{A}}(x,y) = 1$ if and only if $x+1 \equiv_3 y$. \mathcal{A} is a model for G, because (1) for any x there exists a $y = R_3(x+1)$ such that $x+1 \equiv_3 y$ and similarly for any y there exists an $x = R_3(y-1)$ such that $x+1 \equiv_3 y$, and (2) if $x+1 \equiv_3 y$ then $y+1 \equiv_3 x+2 \not\equiv_3 x$.

12.4 Predicate Logic with Equality

- a) An interpretation \mathcal{A} is a model for F if and only if $\left|U^{\mathcal{A}}\right|=1$. If $\left|U^{\mathcal{A}}\right|=1$, then clearly for all elements x,y of the universe, we have x=y and \mathcal{A} is a model for F. On the other hand, if $U^{\mathcal{A}}$ contains at least two different elements, then \mathcal{A} is not a model, because there exists x and y such that $\neg(x=y)$.
- **b)** An interpretation \mathcal{A} is a model for G if and only if $\left|U^{\mathcal{A}}\right| > 1$. If $\left|U^{\mathcal{A}}\right| > 1$, then there exist two different elements x, y of the universe and \mathcal{A} is a model for G. On the other hand, if $\left|U^{\mathcal{A}}\right| = 1$, then \mathcal{A} is not a model, because for all x, y, we have x = y.
- c) An example of such formula H is $\exists x\exists y\exists z (\neg(x=y) \land \neg(y=z) \land \neg(x=z))$.

If $|U^{\mathcal{A}}| \geq 3$, then there exist three different elements x,y,z of the universe. These elements satisfy $\neg(x=y) \land \neg(y=z) \land \neg(x=z)$.

If $|U^{\mathcal{A}}| < 3$, then, by the pigeonhole principle, at least two among three elements chosen from the universe must be equal. Hence, at least one of $\neg(x=y), \neg(y=z)$ and $\neg(x=z)$ must be false and $\mathcal{A}(H)=0$.

12.5 A New Quantifier (

- a) The statement is false. Let F = P(x), and let $G = (\bigcirc xF) \land (\bigcirc x \neg F)$. Consider the following suitable interpretation \mathcal{A} for G (notice that there are no free variables in G):
 - $U^{\mathcal{A}} = \mathbb{N}$,
 - $P^{\mathcal{A}}(u) = 1 \iff u$ is an even number.

We prove that A(G) = 1 (here an informal argument would suffice, but we provide a detailed one for reference). We have

$$\mathcal{A}\big((\bigcirc xP(x)) \land (\bigcirc x \neg P(x)\big) = 1$$

$$\iff \mathcal{A}\big(\bigcirc xP(x)\big) = 1 \text{ and } \mathcal{A}\big(\bigcirc x \neg P(x)\big) = 1 \qquad \text{(Semantics of } \land)$$

$$\iff \{u \in U^{\mathcal{A}} \mid \mathcal{A}_{[x \to u]}(P(x)) = 1\} \sim U^{\mathcal{A}} \text{ and }$$

$$\{u \in U^{\mathcal{A}} \mid \mathcal{A}_{[x \to u]}(P(x)) = 1\} \sim U^{\mathcal{A}} \qquad \text{(Semantics of } \bigcirc)$$

$$\iff \{u \in U^{\mathcal{A}} \mid \mathcal{A}_{[x \to u]}(P(x)) = 1\} \sim U^{\mathcal{A}} \text{ and }$$

$$\{u \in U^{\mathcal{A}} \mid \mathcal{A}_{[x \to u]}(P(x)) = 0\} \sim U^{\mathcal{A}} \qquad \text{(Semantics of } \neg)$$

$$\iff \{u \in U^{\mathcal{A}} \mid P^{\mathcal{A}_{[x \to u]}}(x^{\mathcal{A}_{[x \to u]}}) = 1\} \sim U^{\mathcal{A}} \text{ and }$$

$$\{u \in U^{\mathcal{A}} \mid P^{\mathcal{A}_{[x \to u]}}(x^{\mathcal{A}_{[x \to u]}}) = 0\} \sim U^{\mathcal{A}} \qquad \text{(Semantics of predicates)}$$

$$\iff \{u \in U^{\mathcal{A}} \mid P^{\mathcal{A}_{[x \to u]}}(u) = 1\} \sim U^{\mathcal{A}} \text{ and }$$

$$\{u \in U^{\mathcal{A}} \mid P^{\mathcal{A}_{[x \to u]}}(u) = 0\} \sim U^{\mathcal{A}} \qquad \text{(Semantics of variables)}$$

$$\iff \{u \in \mathbb{N} \mid u \text{ is even}\} \sim \mathbb{N} \text{ and } \{u \in \mathbb{N} \mid u \text{ is odd }\} \sim \mathbb{N} \quad \text{(Definition of } \mathcal{A})$$

$$\iff \text{true}$$

b) The statement is true. Let \mathcal{A} be a structure which is suitable for both the left-hand-side and the right-hand-side formulas, and such that \mathcal{A} is a model for $\bigcirc xF$. We have

$$\mathcal{A}(\bigcirc xF) = 1$$

$$\iff \{u \in U^{\mathcal{A}} \mid \mathcal{A}_{[x \to u]}(F) = 1\} \sim U^{\mathcal{A}} \quad \text{(Semantics of } \bigcirc)$$

$$\iff \{u \in U^{\mathcal{A}} \mid \mathcal{A}_{[x \to u]}(F) = 1\} \neq \emptyset \quad (U^{\mathcal{A}} \neq \emptyset)$$

$$\iff \mathcal{A}_{[x \to u]}(F) = 1 \text{ for some } u \in U^{\mathcal{A}} \quad \text{(Rewriting)}$$

$$\iff \mathcal{A}(\exists xF) = 1. \quad \text{(Semantics of } \exists)$$

c) The statement is false. Let F = P(x, y). Consider the following suitable interpretation \mathcal{A} for both $\forall x \bigcirc y F$ and $\bigcirc y \forall x F$.

- $U^{\mathcal{A}} = \mathbb{N} \setminus \{0\},$
- $P^{\mathcal{A}}(u,v) = 1 \iff u \mid v$.

The structure \mathcal{A} is a model for $\forall x \bigcirc yF$, because all non-zero natural numbers have a set of multiples which is trivially in bijection with \mathbb{N} . However \mathcal{A} is not a model for $\bigcirc y \forall xF$. This is because the set of non-zero natural numbers which are divided by all other non-zero natural numbers is \varnothing , which is clearly not in bijection with \mathbb{N} .

12.6 Statements About Formulas

a) The statement is true.

Proof. Let \mathcal{A} be any interpretation suitable for both $\forall x\ (F \land G)$ and $(\forall x\ F) \land G$, such that $\mathcal{A}\ (\forall x\ (F \land G)) = 1$. According to the semantics of \forall , we have $\mathcal{A}_{[x \to u]}(F \land G) = 1$ for all $u \in U$. According to the semantics of \land , we further have (1) $\mathcal{A}_{[x \to u]}(F) = 1$ for all $u \in U$ and (2) $\mathcal{A}_{[x \to u]}(G) = 1$ for all $u \in U$.

The fact (1) implies (3) $\mathcal{A}(\forall x \ F) = 1$, according to the semantics of \forall . Furthermore, note that if x appears free in G, then it also appears free in $(\forall x \ F) \land G$, and since \mathcal{A} is suitable for $(\forall x \ F) \land G$, it must assign a value to x. We now define u^* as follows: if x appears free in G, then u^* is the value assigned to x by \mathcal{A} , else u^* is arbitrary. By the definition of u^* , we have $\mathcal{A}_{[x \to u^*]}(G) = \mathcal{A}(G)$, so by (2), we have (4) $\mathcal{A}(G) = 1$.

The facts (3) and (4) imply that $\mathcal{A}((\forall x \ F) \land G) = 1$.

b) The statement is false.

Counterexample. Let F = P(x) and G = Q(x). Let \mathcal{A} be the interpretation with the universe $U^{\mathcal{A}} = \{0, 1\}$, which defines:

- $P^{\mathcal{A}}(0) = 1$ and $P^{\mathcal{A}}(1) = 1$
- $Q^{\mathcal{A}}(0) = 1$ and $Q^{\mathcal{A}}(1) = 0$
- $x^{\mathcal{A}} = 1$

We then have $\mathcal{A}(\exists x\ (P(x) \land Q(x))) = 1$, because $\mathcal{A}_{[x \to 0]}(P(x) \land Q(x)) = 1$. However, $\mathcal{A}((\exists x\ P(x)) \land Q(x)) = 0$, because $\mathcal{A}(Q(x)) = 0$.