Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital Programa de Pós-graduação em Tecnologia da Informação PPgTI3007 - Visão Computacional 2020.2

Ementa

Objetivos

Competências e Habilidades

Metodologia

Cronograma

Semana 01

Semana 02

Semana 03

Semana 04

Obtenção de Notas

Referências

Ementa

Tratamento e Descritores de Imagens. Detecção facial e reconhecimento facial. Processamento de vídeos e detecção de objetos em tempo real. Aprendizado de máquina para classificação de objetos. Aprendizado profundo para visão computacional. Aplicações.

Objetivos

Apresentar os conceitos da área de Visão Computacional, tornando possível para os discentes que acompanharem a disciplina serem capazes de entender a maneira como os objetos do mundo são modelados para serem reconhecidos por uma máquina.

Competências e Habilidades

Ao final deste curso, o discente será capaz de:

- Entender como representar uma imagem no computador
- Saber manipular basicamente uma imagem
- Extrair características de uma imagem

- Utilizar Aprendizado de Máquina para detectar objetos em imagens, classificar e agrupar imagens.
- Observar e implementar seus próprios algoritmos para detecção de objetos.

Metodologia

O curso acontecerá no formato remoto e terá momentos síncronos e assíncronos. De uma maneira geral, existirá um encontro síncrono e outro assíncrono para cada semana do curso. Durante os momentos síncronos, será feita exposição de conteúdo, retirada de dúvidas e conversa sobre os temas relacionados.

O conteúdo será complementado por um conteúdo a ser estudado assíncronamente pelos estudantes através de material preparado ou indicado pelo professor.

Todos os encontros síncronos serão realizados através da plataforma Google Meet e serão gravados e disponibilizados para os discentes assistirem posteriormente.

Recomenda-se fortemente participar dos encontros síncronos e estudar todo o material (bem como fazer exercícios, se houver). No entanto, a entrega do trabalho final será o único critério para obtenção da frequência.

Cronograma

Semana 01 - Introdução e Processamento Digital de Imagens.

Semana 02 - Recuperação de imagem. Classificação e Agrupamento de Imagens.

Semana 03 - Descritores de imagens. Detecção de objetos, facial e reconhecimento facial.

Semana 04 - Aprendizado profundo para visão computacional

Semana 01

26/03 (síncrono):

- Apresentação da disciplina
- Conceitos iniciais
- Processamento Digital de Imagens
 - Representação de imagem
 - Espaço RGB
 - Anotação de imagens
 - Desenhar em imagens
 - Transformações básicas: rotação, translação e redimensionamento

27/03 (assíncrono):

- Processamento de imagens:
 - Kernels
 - Transformações:
 - Borrar e suavizar
 - Luz e cor
 - Histogramas

- A ser pesquisado pelos discentes:
 - o Operações morfológicas
 - o Binarização

02/04 - Feriado 03/04 - Feriado

Semana 02

09/04 (síncrono)

- Recuperação de Imagens com base em conteúdo
 - o Mecanismo de busca de uma imagem
 - Bag of visual words
 - Agrupamento de características
 - Quantização vetorial
 - Avaliação
- Aprendizado de máquina para categorização de imagens
 - o Pipeline de classificação
 - o Classificação de imagens
 - o Agrupamento de imagens

10/04 (assíncrono)

- Descritores de imagens:
 - o Gradientes e Detecção de bordas
- Contornos
- Rotulagem de componentes conectados
- Introdução ao aprendizado de máquina

Semana 03

16/04 (assíncrono)

- Detecção de objetos
 - o Janelas deslizantes
 - Preparação de dados
 - HOG descriptors
 - o Treino
 - Non-maxima suppression

17/04 (síncrono)

• Reconhecimento facial

Semana 04

23/04 (assíncrono)

• Deep learning

24/04 (síncrono)

Apresentação dos projetos

Obtenção de Notas

A disciplina contará somente com uma avaliação: um projeto final prático, que deve ser feito em dupla e apresentado no último dia de aula. O código-fonte do projeto, bem como o material utilizado na apresentação devem ser igualmente entregues até o último dia de aula.

Descrição do projeto: construir um detector ou categorizador de objetos.

Referências

Richard Szeliski. Computer Vision: Algorithms and Applications. 2nd Edition. 2021. http://szeliski.org/Book/

Adrian Rosebrock. PylmageSearch Gurus Course. Disponível em: https://customers.pyimagesearch.com/