Lattice Boltzmann Method in Multiphase Transport Phenomena Research Overview

Nicolás Bueno 1 Advisor: Dr. Ayala 1 Co-advisor: Dr. Mehmani 1

¹Department of Energy and Mineral Engineering Penn State University

Table of Contents

Motivation

- 2 The Lattice Boltzmann Method Formulation
- 3 Dynamic Validations
- Ongoing work

Table of Contents

Motivation

- 2 The Lattice Boltzmann Method Formulation
- 3 Dynamic Validations
- Ongoing work

Motivation

Applications:

- CO₂ mineralization, gas densification, and gas diffusion
- Solute transport and phase distribution
- Relative permeabilities wettability

Why a new code?:

- 3D version for arbitrary domains, forces, and boundary conditions
- Future parallelization
- Coupling with other transport equations

Fortran 90, Object Oriented, LBM code for multi-component (N_c) mixtures. Output in VTK format.

Table of Contents

Motivation

- 2 The Lattice Boltzmann Method Formulation
- Oynamic Validations
- 4 Ongoing work

The Lattice Boltzmann Method - Formulation

The Lattice Boltzmann Method is based on kinetic theory, that states:

$$\underbrace{\frac{\partial f_i(x,t)}{\partial t} + \mathbf{c}_i \frac{\partial f_i(x,t)}{\partial x}}_{\text{Streaming - DF Advection}} = \underbrace{\mathbf{\Omega}}_{\text{Collision}} \tag{1}$$

What in its discretized form¹ becomes:

$$f_i(x + \mathbf{c}_i \Delta t, t + \Delta t) - f_i(x, t) = -\mathbf{M}^{-1} \mathbf{S}[\mathbf{m}(x, t) - \mathbf{m}^{eq}] + \hat{F}_i$$
 (2)

where \mathbf{m} are vectors of moments, \mathbf{S} is a relaxation diagonal matrix, and \mathbf{M} is a fixed matrix depending on DnQm. $\mathbf{m}^{\text{eq}} = f(f_i^{\text{eq}}, \mathbf{F})$.

¹Going from 1 to 2, what about spatial derivative?

Macroscopic variables

Density and velocity are computed as follows:

$$\rho = \sum_{i} f_{i} \quad \mathbf{u} = \sum_{i} \mathbf{c}_{i} f_{i} \tag{3}$$

Two important constitutive equations:

$$f_i^{\text{eq}} = \rho \omega_i \left[1 + \frac{\vec{u} \cdot \vec{c_i}}{c_s^2} + \frac{(\vec{u} \cdot \vec{c_i})^2}{2c_s^4} - \frac{\vec{u} \cdot \vec{u}}{2c_s^2} \right]$$

$$\hat{F}_i = \frac{\mathbf{F}}{\rho} \frac{\vec{u} - \vec{\mathbf{c}_i}}{c_s^2} f_i^{\text{eq}}$$

where ${f F}$ is defined in the multiphase problem, as the Shan Cheng force:

$$\mathbf{F} = -G\psi(x)\sum_{i}\omega_{i}\psi(x + \mathbf{c}_{i}\delta t)\mathbf{c}_{i} \quad \psi := \sqrt{\frac{2(P^{\text{EoS}} - c_{s}^{2}\rho)}{G\delta tc_{s}^{2}}}$$
(4)

Table of Contents

Motivation

- The Lattice Boltzmann Method Formulation
- 3 Dynamic Validations
- Ongoing work

Dynamic Validations

The main validation sources are: analytical solutions, Cheng's codes, qualitative physics understanding.

Single phase:

- Channel flow (**F** & ∇p -driven)
- Couette flow (plates)
- Cylinder (turbulent)
- Cavity flow
- Porous medium

Multiphase:

- Static droplet
- Oscillation droplet
- Falling droplet

Single phase validations (quantitative)

Figure: Results with direct source for quantitative comparisons.

Single phase validations (qualitative)

(a) Arbitrary porous medium (real image).

(b) Cavity flow, imposing a velocity on the upper wall.

Figure: Single phase cases qualitatively demonstrating the ability of modeling arbitrary porous media and arbitrary boundary conditions.

Multiphase single component - Oscillating droplet

Figure: Oscillation droplet case. Viscosities are different in each case.

Static results - Young Laplace

 $P_c = \frac{\sigma}{r}$, for a 2D geometry. $\sigma = 0.12141$. Here, $r = R_e$, the equilibrium radius.

Figure: Young Laplace and R_e change due to thermodynamic inconsistency.

Oscillating droplet

 $R_{x,0}=60, R_{y,0}=0.9R_{x,0}$, in a grid of 400x400. $\tau_l=\tau_v=0.56$, to reduce the viscous dissipation.

Figure: Oscillation of the X axis compared with Cheng's solution.

Fourier transform

Analytical solution:

$$T_a = 2\pi \left[\frac{n(n^2 - 1)\sigma}{\rho_l R_e^3} \right]^{-0.5}$$
 (5)

Giving a period $T_a = 9989$. This gives a relative error of 2%.

Figure: Maximum amplitude at $T_n = 10010$.

Table of Contents

Motivation

- The Lattice Boltzmann Method Formulation
- 3 Dynamic Validations
- 4 Ongoing work

Ongoing work - Raising bubble physics

- Main properties
 - Surface tension
 - Body forcesViscosity and density ratio
 - Boundary conditions
- Bond and Morton numbers fix $R_e = \frac{u_t d_b}{\nu_l}$

$$B_o = \frac{g\Delta\rho d_b^2}{\sigma}$$

$$M_o = \frac{g\Delta\rho\mu_l^4}{\sigma^3\rho_l^2}$$

• The drag coefficient, C_D , function of R_e , and defined as:

$$C_D = \frac{4\Delta \rho g d_b}{3u_t^2 \rho_l}$$

resulting from a drag and gravity force balance.

Taken from Amaya-Bower L., Lee T. Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method. Computer and Fluids. 2010.

Experimental relationship of C_D with R_e

The constants may change due to the 2D approximation.

Taken from API Specifications for Oil and Gas Separators and PNG 480 Handout. L. Ayala, H. Emami-M.

Considerations

Goal

Test the pseudopotential approach for partially misc. mixtures, under the action of gravity.

Methodology

Test different flow regimes based on Bond (Eotvos) and Morton numbers. Validate against terminal velocities and bubble shapes.

$$R_e = \frac{\rho_l u_b d_b}{\mu_l}$$

$$B_o = \frac{g \Delta \rho d_b^2}{\sigma} \quad M_o = \frac{g \Delta \rho \mu_l^4}{\sigma^3 \rho_l^2}$$

A thermodynamic state fixes ρ , $\Delta \rho$, σ . At a given temperature, in a single component case, some values are provided $(\rho, \Delta \rho)$ and others can be obtained by simulating the static droplet (σ) .

Procedure

- Select B_o
- Calculate the gravity $g = \frac{B_o \sigma}{\Delta \rho d_b^2}$
- Select M_o
- Calculate $\mu_l^4 = \frac{M_o \sigma^3 \rho_l^2}{g \Delta \rho}$
- Select the viscosity ratio
- Calculate $\mu_g = \mu_l * \frac{\mu_g}{\mu_l}$

The LBM parameters are thus fixed:

$$\tau = \frac{\nu}{c_s^2} + \frac{\Delta t}{2}$$

Try single component and then the multicomponent case.

Simulation setup (Amaya)

Domain: (!) 200x360 mesh (2D)

Fluid: Water at 485.33 K ($T_r = 0.75$), and $P_r = 0.092$.

 $\rho_l^0 = 7.679 \ (), \ \rho_v^0 = 0.109. \ \rho_L/\rho_g = 70.$ $\tau_l = 210.5. \ \tau_g = 0.8. \ \mu_l/\mu_g = 10.$

Initial condition: Spherical droplet with $d_o = 40$, and $w_o = 8$.

Boundary conditions: No-slip condition on all boundaries.

Parameters: Shan-Chen G=-1.0.

Beta = 0.9

Time = 10000 (
$$\approx 10\sqrt{\frac{d_b}{g}}$$
)

Single static simulation:

 $\Delta \rho = 7.2 \ (7.7 - 0.5), d_s = 40.0,$

$$\Delta P = 8.5 \text{e-}3 - 5.87 \text{e-}3 = 2.623 \text{e-}3$$

$$\sigma = \Delta P \cdot r = 0.05254.$$

First, the single component case was tested as follows:

- **1** $B_o = 1$. $M_o = 3$ e-5. $\mu_R = 100$.
- **2** $B_o = 10$. $M_o = 2\text{e-}2$. $\mu_R = 10$.
- **3** $B_o = 10$. $M_o = 2\text{e-}2$. $\mu_R = 100$.
- $B_0 = 0.1$. $M_0 = 1$ e-2. $\mu_R = 100$.
- **6** $B_o = 22$. $M_o = 8.4$ e-4. $\mu_R = 100$.

Preliminary Results

Bubble shapes

Preliminary Results

Velocity field

Difficulties in single phase

- Reach low Morton values (due to restrictions in kinematic viscosity).
- Reach high Bond numbers (high gravity)
- The cap shapes are not being observed, and the ellipsoidal tends to be more triangular.
- Hard to change Bond with fixed σ . System becomes unstable with other values of G.

Increasing the Morton number

Trying to make the liquid more viscous (at $B_o = 10$), seems to not allow the bubble to rise ($M_o = 8e6$), which later collapses.

- $\bullet \ \tau_q = 0.52. \ \tau_l = 47$
- $\tau_g = 2.0$. $\tau_l = 47$
- $\bullet \ \tau_q = 0.92. \ \tau_l = 4.7$

Velocity field

Potential solutions

- Fix MRT parameters
- Consider an implicit scheme
- Compare against the usual Shan-Chen force which may provide better stability

Multicomponent case - First approach

MC case with the beta model

Using the same mixture that was used for the oscillating droplet, with a viscosity ratio of 10, two cases were run:

- $B_o = 10, M_o = 5e-3.$
- $B_o = 10, M_o = 5e-4.$

Multicomponent case - First approach

Density and Velocity field

Difficulties in single phase

- Same as in single component
- Reach stable simulations
- Seems that walls are affecting more the shape than in the single component

Thank you!