1

```
\multiply \langle register \rangle by \langle number \rangle \divide \langle register \rangle by \langle number \rangle
```

These commands multiply and divide the value in $\langle register \rangle$ by $\langle number \rangle$ (which can be negative). The register can be a \count, \dimen, \skip, or \muskip register. For a \skip or \muskip register (p. '\skip'), all three components of the glue in the register are modified. You can omit the word by in these commands— T_FX will understand them anyway.

You can also obtain a multiple of a $\langle dimen \rangle$ by preceding it by a $\langle number \rangle$ or decimal constant, e.g., -2.5\dimen2. You can also use this notation for $\langle glue \rangle$, but watch out—the result is a $\langle dimen \rangle$, not $\langle glue \rangle$. Thus 2\baselineskip yields a $\langle dimen \rangle$ that is twice the natural size of \baselineskip, with no stretch or shrink.

Example:

```
\count0 = 9\multiply \count0 by 8 \number\count0;
\divide \count0 by 12 \number\count0 \par
\skip0 = 20pt plus 2pt minus 3pt \multiply \skip0 by 3
Multiplied value of skip0 is \the\skip0.\par
\dimen0 = .5in \multiply\dimen0 by 6
\hbox to \dimen0{a\hfil b}

produces:
72; 6
Multiplied value of skip0 is 60.0pt plus 6.0pt minus 9.0pt.
a
b
```