Dynamique d'un système de points matériels

Table des matières

1	Actions sur un système			
	1.1	Résult	ante des actions	
	1.2	mome	nt des actions	
2	Thé	orème	de la résultante cinétique	
	2.1		é	
	2.2		$ m \grave{e}me~du~centre~de~masse~\dots\dots\dots$	
	2.3			
	2.0	2.3.1	Système isolé	
		2.3.2	Système pseudo-isolé	
3	Thé	orème	du moment cinétique	
_	3.1		ème du moment cinétique appliqué à un point matériel	
	3.2		ème du moment cinétique d'un système matériel	
	0.2	3.2.1	Application en un point fixe	
		3.2.1	Application en un point mobile	
		3.2.3	Application au centre d'inertie	
		3.2.4	Théorème du moment cinétique dans un référentiel barycentrique	
		3.2.4 $3.2.5$	Théorème du moment cinétique par rapport à un axe fixe	
		3.2.6	Conservation du moment cinétique	
		3.2.0 $3.2.7$	Formulation torseurielle du principe fondamental	
		5.4.1	romunation torseuriene du principe fondamentai	
4	\mathbf{Etu}	de énergétique d'un système		
	4.1	Travai	l et puissance-énergie potentielle	
	4.2	Théore	ème de l'énergie cinétique	
	4.3		ie mécanique	
			Définition	
			Théorème de l'énergie mécanique	
	4.4		ale première de l'énergie	

1 Actions sur un système

1.1 Résultante des actions

Considérons un système de points matériels

 $(S) = \{M_i(m_i)\}_{i=1...N}$

- un point $M_j(j \neq i)$ du système exerce une force $\overrightarrow{f}_{j \to i}$ sur M_i , cette force contribue à la force intérieure du système
- le point M_i subit aussi une force extérieur $\overrightarrow{f}_{ext \to i}$
- la force appliquée sur M_i est

$$\overrightarrow{f}_{i} = \overrightarrow{f}_{i,int} + \overrightarrow{f}_{i,ext}$$

$$\overrightarrow{f}_{i,int} = \sum_{i} \overrightarrow{f}_{j \to i}$$

résultante des éfforts extérieurs

la force extérieur appliquée sur un point M_i du système peut être :

- force appliquée par un autre système (S') sur $(S): \overrightarrow{f}_{(S') \to i}$
- force d'inertie d'entraı̂nement : $\overrightarrow{f}_{i,ie}$
- force d'inertie de Coriolis : $\overrightarrow{f}_{i,ic}$

$$\overrightarrow{f}_{i,ext} = \overrightarrow{f}_{(S') \to i} + \overrightarrow{f}_{i,ie} + \overrightarrow{f}_{i,ic}$$

la résultante des forces extérieures à un système (S) est donnée par

$$\overrightarrow{F}_{ext} = \sum_{i=1}^{N} \overrightarrow{f}_{i,ext}$$

Pour un système continue $\{d\overrightarrow{F}(M)\}$

$$\overrightarrow{F}_{ext} = \iiint_{(S)} d\overrightarrow{F}_{ext}(M)$$

avec : $d\overrightarrow{F}_{ext}(M)$: action extérieure subit par un élément de masse dm(M) du système

résultante des éffort intérieures

- la résultante des forces intérieures $\overrightarrow{f}_{i,int}$ sur le point M_i : $\overrightarrow{f}_{i,int} = \sum_{j=1}^{N} \overrightarrow{f}_{j \to i}$
- principe des actions réciproques : $\overrightarrow{f}_{i \to j} = -\overrightarrow{f}_{j \to i}$
- la résultante des forces intérieures à un système (S) : $\overrightarrow{F}_{int} = \sum_{i=1}^{N} \overrightarrow{f}_{i,int}$

$$\overrightarrow{F}_{int} = \overrightarrow{0}$$

•Conclusion : la résultante des forces intéreures à un système est nulle.

$$\overrightarrow{F}_{int} = \overrightarrow{0}$$

▶ principe des actions réciproques relatif à la résultante considérons deux systèmes de points matériels $(S_1) = \{M_i(m_i)\}_{i=1...N_1}$ et $(S_2) = \{P_j(m_j)\}_{j=1...N_2}$

- $\overrightarrow{F}_{1\to 2} = \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} \overrightarrow{f}_{M_i \to P_j}$: résultante des actions de (S_1) sur (S_2)
- $\overrightarrow{F}_{2\to 1} = \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} \overrightarrow{f}_{P_j \to M_i}$: résultante des actions de (S_2) sur (S_1)

$$\overrightarrow{F}_{1\to 2} = -\overrightarrow{F}_{2\to 1}$$

• Conclusion : le principe des actions réciproques s'applique à la résultante des actions entre deux systèmes

1.2 moment des actions

▶ Définition

On définit le moment $\overrightarrow{\mathcal{M}}_A$ de l'ensemble des actions $\{M_i, \overrightarrow{f}_i\}_{i=1...N}$ sur le système (S), au point A, par :

$$\overrightarrow{\mathcal{M}}_A = \sum_{i=1}^N \overrightarrow{AM}_i \wedge \overrightarrow{f}_i$$

- dimension : $[||\overrightarrow{\mathcal{M}}_A||] = ML^2T^{-2}$
- unité en S.I:N.m
- \bullet pour un système continu $\{d\overrightarrow{F}(M)\}$

$$\overrightarrow{\mathcal{M}}_A = \iiint_{(S)} \overrightarrow{AM} \wedge d\overrightarrow{F}(M)$$

► Relation de transport

$$\overrightarrow{\mathcal{M}}_B = \overrightarrow{\mathcal{M}}_A + \overrightarrow{BA} \wedge \overrightarrow{F}$$

avec \overrightarrow{F} : résultante des actions

▶ Moment des actions intérieures

$$\overrightarrow{\mathcal{M}}_A = \overrightarrow{\mathcal{M}}_{A,ext} + \overrightarrow{\mathcal{M}}_{A,int}$$

- $\overrightarrow{\mathcal{M}}_{A,ext} = \sum_{i=1}^{N} \overrightarrow{AM}_i \wedge \overrightarrow{f}_{i,ext}$: moment des actions extérieures
- $\overrightarrow{\mathcal{M}}_{A,int} = \sum_{i=1}^{N} \overrightarrow{AM}_i \wedge \overrightarrow{f}_{i,int}$: moment des actions intérieures
- en utilisant le principe des actions réciproques on montre que

$$\overrightarrow{\mathcal{M}}_{A,int} = \overrightarrow{0}$$

•Conclusion : le moment des actions sur un système est égal au moment des actions extérieures

$$\overrightarrow{\mathcal{M}}_A = \overrightarrow{\mathcal{M}}_{A.ext}$$

Principe des actions réciproques relatif au moment considérons deux systèmes de points matériels $(S_1) = \{M_i(m_i)\}_{i=1...N_1}$ et $(S_2) = \{P_j(m_j)\}_{j=1...N_2}$

- $\overrightarrow{\mathcal{M}}_{A,1\to 2}$: moment des actions de (S_1) sur S_2 en A
- $\overrightarrow{\mathcal{M}}_{A,2\to 1}$: moment des actions de (S_2) sur (S_1) en A

$$\overrightarrow{\mathcal{M}}_{A,1\to 2} = -\overrightarrow{\mathcal{M}}_{A,2\to 1}$$

- •Conclusion : le principe des actions réciproques s'applique aux moments des actions entre deux systèmes considérés au même point de réduction.
- ightharpoonup Torseur des forces extérieures $[\overrightarrow{F}_{ext}]$
 - •Définition : le torseur des forces extérieures $[\overrightarrow{F}_{ext}] = [\overrightarrow{F}_{ext}, \overrightarrow{\mathcal{M}_A}]$
 - sa résultante : \overrightarrow{F}_{ext}
 - son moment en un point $A: \overrightarrow{\mathcal{M}_A}$
- ► Couples et glisseur
 - •Couple : On appelle couple un système de forces dont la résultante est nulle,donc le moment $\overrightarrow{\mathcal{M}}_A$ ne dépend plus du point A

© S.Boukaddid Mécanique

•Glisseur : On appelle glisseur un système de forces tel qu'il existe un point B où le moment $\overrightarrow{\mathcal{M}}_B$ est nul.

$$\overrightarrow{\mathcal{M}}_A = \overrightarrow{AB} \wedge \overrightarrow{F}$$

• Cas du poids

Considérons un système continu (S)

$$\overrightarrow{dF}(M) = dm(M)\overrightarrow{g}$$

$$\overrightarrow{\mathcal{M}}_{G} = \iiint_{(S)} \overrightarrow{GM} \wedge d\overrightarrow{F} = \iiint_{(S)} \overrightarrow{GM} \wedge (dm(M)\overrightarrow{g}) = \iiint_{(S)} dm(M)\overrightarrow{GM} \wedge \overrightarrow{g} = \left(\iiint_{(S)} dm(M)\overrightarrow{GM}\right) \wedge \overrightarrow{g} = \overrightarrow{0}$$

- ullet Conclusion : le poids est un glisseur appliqué au centre d'inetie G
- on montre aussi que si (R) est galiléen, les forces d'inertie d'entraînement forment un glisseur dans (R^*) appliqué au centre d'inertie G

2 Théorème de la résultante cinétique

2.1 Enoncé

•Théorème de la résultante cinétique : Dans un référentiel (R), la dérivée par rapport au temps de la résultante cinétique d'un système fermé est égale à la résultante des forces extérieures exercées sur ce système.

$$\frac{d\overrightarrow{P}}{dt} = \overrightarrow{F}_{ext}$$

2.2 Théorème du centre de masse

- $\overrightarrow{P} = M\overrightarrow{v}_G$
- $\bullet \ \frac{d\overrightarrow{v}_G}{dt} = \overrightarrow{a}_G$
- Théorème du centre de masse : Dans un référentiel (R) et pour un système fermé on a :

$$M\frac{d\overrightarrow{v}_G}{dt} = M\overrightarrow{a}_G = \overrightarrow{F}_{ext}$$

Spé MP

2.3 Loi de conservation de la résultante cinétique

2.3.1 Système isolé

- •Définition : un système matériel est dit isolé s'il ne subit aucune intéraction avec d'autres systèmes matériels.
- •Conservation de la résultante cinétique
 - \bullet dans un référentiel galiléen $\overrightarrow{F}_{ext} = \overrightarrow{0}$ pour un système isolé
 - théorème de la résultante cinétique $\frac{d\overrightarrow{P}}{dt} = \overrightarrow{0}$, donc la résultante cinétique se conserve

$$\overrightarrow{P} = \overrightarrow{cte}$$

• on peut écrire aussi $\overrightarrow{v}_G = \overrightarrow{cte} = \overrightarrow{v}_G(t=0)$

2.3.2 Système pseudo-isolé

- •Définition : dans un référentiel d'étude quelconque,un système est dit pseudo-isolé si toutes les actions extérieures se compensent.
- •Conséquence : la résultante cinétique se conserve pour un système pseudo-isolé

$$\overrightarrow{P} = \overrightarrow{cte}$$

3 Théorème du moment cinétique

3.1 Théorème du moment cinétique appliqué à un point matériel

- ▶ Théorème du moment cinétique en un point fixe
 - •Enoncé :Dans un référentie galiléen, et si A un point fixe, la variation temporelle du moment cinétique du point matériel est égale au moment de la force appliquée sur le point matériel M.

$$\frac{d\overrightarrow{L}_A}{dt} = \overrightarrow{\mathcal{M}}_A$$

► Théorème du moment cinétique en un point mobile soit A un point mobile dans un référentiel galiléen

$$\frac{d\overrightarrow{L}_A}{dt} = \overrightarrow{\mathcal{M}}_A + \overrightarrow{P} \wedge \overrightarrow{v}_A$$

- ▶ Théorème du moment cinétique par rapport à un axe fixe
 - le moment d'une force par rapport à un axe $(\Delta): \mathcal{M}_{\Delta} = \overrightarrow{\mathcal{M}}_{A}.\overrightarrow{u}_{\Delta}$
 - $L_{\Delta} = \overrightarrow{L}_{A} \cdot \overrightarrow{u}_{\Delta}$
 - le théorème du moment cinétique

$$\frac{dL_{\Delta}}{dt} = \mathcal{M}_{\Delta}$$

3.2 Théorème du moment cinétique d'un système matériel

3.2.1 Application en un point fixe

ullet Enoncé : Dans un référentiel galiléen la dérivée du moment cinétique d'un système fermé en un point fixe A est égale au moment des actions extérieures du système.

$$\frac{d\overrightarrow{L}_A}{dt} = \overrightarrow{\mathcal{M}}_{A,ext}$$

•Remarque : dans un référentiel non galiléen le théorème du moment cinétique s'applique en un point fixe, en tenant compte du moment des forces d'inerties.

3.2.2 Application en un point mobile

- on se place dans un référentiel galiléen
- A est un point mobile de vitesse \overrightarrow{v}_A
- G: centre d'inertie du système (S) de vitesse \overrightarrow{v}_G dans R
- ullet M : masse du système
- le théorème du moment cinétique devient :

$$\frac{d\overrightarrow{L}_A}{dt} = \overrightarrow{\mathcal{M}}_{A,ext} + M\overrightarrow{v}_G \wedge \overrightarrow{v}_A$$

3.2.3 Application au centre d'inertie

au centre d'inertie G et par rapport à un référentiel galiléen le théorème du moment cinétique devient

$$\frac{d\overrightarrow{L}_G}{dt} = \overrightarrow{\mathcal{M}}_{G,ext}$$

3.2.4 Théorème du moment cinétique dans un référentiel barycentrique

- le référentiel barycentrique R^* n'est pas nécessairement galiléen
- \overrightarrow{L}^* :moment cinétique barycentrique
- $\overrightarrow{\mathcal{M}}_{G,ext}$: moment des actions extérieures en G

$$\frac{d\overrightarrow{L}^*}{dt} = \overrightarrow{\mathcal{M}}_{G,ext}$$

3.2.5 Théorème du moment cinétique par rapport à un axe fixe

- le référentiel est supposé galiléen
- L_{Δ} : moment cinétique du système par rappor à un axe fixe (Δ)
- $\mathcal{M}_{\Delta,ext}$: moment par rapport à (Δ) des actions extérieures

$$\frac{dL_{\Delta}}{dt} = \mathcal{M}_{\Delta,ext}$$

3.2.6 Conservation du moment cinétique

Pour un système isolé , le moment des de la résultante des actions extérieures est nul, il en résulte que le moment cinétique de ce système calculé en n'importe quel point est constant.

3.2.7 Formulation torsorielle des lois de la mécanique du ststème

• Principes des actions réciproques

$$[\overrightarrow{F}_{int}, \overrightarrow{\mathcal{M}}_{int}] = \overrightarrow{0}$$

- •Principe fondamental de la dynamique
 - R est un référentiel galiléen
 - $\bullet \ [\overrightarrow{F}_{A,ext}]$: torseur des forces extérieures
 - $[\overrightarrow{P}_A]$: torseur cinétique

$$\frac{d[\overrightarrow{P}_A]}{dt} = [\overrightarrow{F}_{A,ext}]$$

4 Etude énergétique d'un système

4.1 Travail et puissance-énergie potentielle

- Puissance et travail d'un système Considérons un système matériél $(S) = \{P_i, m_i\}_{i=1...N}$. les points P_i sont animés d'une vitesse \overrightarrow{v}_i dans un référentiel d'étude et subissent une force \overrightarrow{f}_i .
 - •Définitions
 - la puissance \mathcal{P} que reçoit le système (S) de la part du système de forces $\{\overrightarrow{f}_i\}_{i=1...N}$ est donnée par

$$\mathcal{P} = \sum_{i=1}^{N} \overrightarrow{f}_{i} . \overrightarrow{v}_{i}$$

• la travail δW que reçoit le système (S) de la part du système de forces $\{\overrightarrow{f}_i\}_{i=1...N}$ est donnée par

$$\delta W = P.dt = \sum_{i=1}^{N} \overrightarrow{f}_{i}.\overrightarrow{v}_{i}.dt = \sum_{i=1}^{N} \overrightarrow{f}_{i}.d\overrightarrow{OP}_{i}$$

• le travail que reçoit le système entre deux instants t_1 et t_2 est donné par

$$W(t_1, t_2) = \int_{t_1}^{t_2} \delta W = \int_{t_1}^{t_2} P(t) dt$$

Pour un système continu $\{d\overrightarrow{f}(M)\}$

• la puissance

$$\mathcal{P} = \iiint_{(S)} d\overrightarrow{f}(M).\overrightarrow{v}(M)$$

• le travail

$$\delta W = \iiint_{(S)} d\overrightarrow{f}(M).d\overrightarrow{OM}$$

➤ Forces conservatives

• Définition : une force \overrightarrow{F} est dite conservative s'il existe une fonction d'état \mathcal{E}_p ne dépend pas du chemin suivi tel que

$$\overrightarrow{F} = -\overrightarrow{grad}\mathcal{E}_p$$

 \mathcal{E}_p : énergie potentielle

► Forces extérieures conservatives

 $\underline{\underline{\mathsf{supposons}}}$ que chaque force extérieure dérive de l'énargie potentielle :

$$\overrightarrow{f}_{i,ext} = -\overrightarrow{grad}e_{p,i,ext}$$

l'énergie potentielle des forces extérieures $\mathcal{E}_{p,ext}$ est :

$$\mathcal{E}_{p,ext} = \sum_{i=1}^{N} e_{p,ext}$$

► Forces intérieures conservatives

• chaque force intérieure conservative $\overrightarrow{f}_{i\to j}$ exercé par le point P_i sur le point P_j dérive de l'énergie potentielle $e_p(P_i,P_j)$:

$$\overrightarrow{f}_{i \to j} = -\overrightarrow{grad}_{P_j} e_p(P_i, P_j)$$

• l'énergie potentielle des forces intérieures $\mathcal{E}_{P,int}$ du système (S) est définie par :

$$\mathcal{E}_{P,int} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} e_p(P_i, P_j)$$

► Energie potentielle totale

$$\mathcal{E}_p = \mathcal{E}_{P,int} + \mathcal{E}_{P,ext}$$

4.2 Théorème de l'énergie cinétique

•Théorème de l'énergie cinétique : Dans un référentiel galiléen la variation de l'énergie cinétique d'un système fermé entre deux instants est égale à la somme des travaux des actions intérieures et extérieures du système.

$$\Delta E_c = W_{int} + W_{ext}$$

•Théorème de la puissance cinétique : Dans un référentiel galiléen, la dérivée par rapport au temps de l'énergie cinétique d'un système fermé est égale à la somme des puissances des actions intérieures et extérieures du système.

$$\frac{dE_c}{dt} = P_{int} + P_{ext}$$

Energie mécanique 4.3

4.3.1**Définition**

• Définition : On appelle énergie mécanique \mathcal{E}_m d'un système de points matériels (S) la somme de son énergie cinétique E_c et son énergie potentielle \mathcal{E}_p

$$\mathcal{E}_m = \mathcal{E}_c + \mathcal{E}_p$$

4.3.2Théorème de l'énergie mécanique

- ▶ la résultante des forces appliquées à un système (S) s'écrit : $\overrightarrow{F} = \overrightarrow{F}_c + \overrightarrow{F}_{nc}$
 - \overrightarrow{F}_c : la résultante des forces intérieures et extérieures conservatives \overrightarrow{F}_{nc} : la résultante des forces intérieures et extérieures non conservatives
- ▶ théorème de l'énergie cinétique : $\Delta \mathcal{E}_c = W(\overrightarrow{F}_c) + W(\overrightarrow{F}_{nc}) = -\Delta \mathcal{E}_p + W(\overrightarrow{F}_{nc})$ donc $\Delta(\mathcal{E}_c + \mathcal{E}_p) = W(\overrightarrow{F}_{nc}) \Rightarrow \Delta\mathcal{E}_m = W(\overrightarrow{F}_{nc})$

$$\Delta \mathcal{E}_m = W(\overrightarrow{F}_{nc})$$

•Enoncé: Dans un référentiel galiléen, la variation de l'énergie mécanique entre deux instants égale au travail de la résultante des forces intérieures et extérieures non conservatives entre ces instants

$$\Delta \mathcal{E}_m = W(\overrightarrow{F}_{nc})$$

- $\frac{d\mathcal{E}_m}{dt} = P(\overrightarrow{F}_{nc})$: puissance des forces non conservatives
- Intégrale première de l'énergie
 - si $W(\overrightarrow{F}_{nc}) = 0$ alors $\Delta \mathcal{E}_m = 0$

$$\mathcal{E}_m = cte$$
 : intégrale première de l'énergie

- dans ce cas on dit que l'énergie mécanique se conserve : l'énergie cinetique se transforme en énergie potentielle et inversement
- l'évolution du système de points matériels est dite conservative
- Conclusion : Dans un référentiel galiléen l'énergie mécanique d'un système de points matériels en évolution conservative reste constante. Cette constante représente l'intégrale première de l'énergie

$$\mathcal{E}_m = cte$$

• Remarque : L'énergie mécanique est non conservative d'où le premier principe qui introduit l'énergie totale qui est conservative

$$\Delta \mathcal{E}_{totale} = W(\overrightarrow{F}_{nc}) + Q$$

avec $\mathcal{E}_{totale} = \mathcal{E}_m + U$; U représente l'énergie interne