УДК 597.58:591.5

СТРУКТУРА ПОПУЛЯЦИИ, РОСТ И ПИТАНИЕ ПОЛОСАТОЙ ЗУБАТКИ ANARHICHAS LUPUS MARISALBI BARSUKOV, 1956 В КАНДАЛАКШСКОМ ЗАЛИВЕ БЕЛОГО МОРЯ

П.Н. Ершов

Зоологический институт Российской академии наук, Университетская наб. 1, 199034 Санкт-Петербург, Россия; e-mail: peteryershov@yandex.ru

РЕЗЮМЕ

По результатам многолетних исследований изучены размерно-возрастная структура, соотношение полов, половое созревание, плодовитость, распределение в море и питание полосатой зубатки в Кандалакшском заливе Белого моря. В уловах преобладали особи возраста от 4+ до 6+, размером 35–45 см и массой тела 0.4–0.6 кг. Описаны особенности линейного и весового роста беломорской зубатки. Соотношение полов у зубатки за весь период исследований составило 1:1. Половая зрелость у рыб наступает в возрасте от 4+ до 6+, нерест происходит в июле—августе. Абсолютная плодовитость самок в среднем составила 1725±149 икринок при индивидуальных колебаниях от 420 до 6650. Рассмотрена зависимость этого показателя от длины и массы тела рыб. Основу питания зубатки в летний период составили представители двустворчатых и брюхоногих моллюсков, а также ракообразные.

Ключевые слова: Белое море, зубатка, питание, рост, структура популяции

POPULATION STRUCTURE, GROWTH AND DIET OF ATLANTIC WOLFFISH ANARHICHAS LUPUS MARISALBI BARSUKOV, 1956 IN THE KANDALAKSHA BAY OF THE WHITE SEA

P.N. Yershov

Zoological Institute of the Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint Petersburg, Russia; e-mail: peteryershov@yandex.ru

ABSTRACT

Long-term data on age/size structure, sex ratio, sexual maturity, fecundity and diet of the wolffish from the Kandalaksha Bay of the White Sea are presented. The fishes 4+-6+ years old, 35-45 cm in length and 0.4-0.6 kg in body mass dominated in the samples. The linear and body mass growth of the wolffish is described. The average sex ratio was 1:1. The wolffish attains sexual maturity at age 4+-6+; spawning takes place in July-August. The wolffish fecundity varied from 420 to 6650 eggs per female (mean value 1725 ± 149). The fecundity to size regressions are calculated. Gastropod and bivalve mollusks as well as crustaceans dominated in the food spectrum of the wolffish.

Key words: White Sea, wolfish, diet, growth, population structure

ВВЕДЕНИЕ

Полосатая зубатка Anarhichas lupus marisalbi Barsukov, 1956 является типичным представителем ихтиофауны в прибрежных участках Белого моря и имеет второстепенное значение в местных промыслах. Наиболее широко она распространена вдоль Карельского побережья моря от г. Кандалакша до г. Кемь. Встречается также у Канинского, Терского, Онежского и Летнего берегов, в районе Соловецких островов (Кожин и Новиков 1937; Барсуков 1956, 1959; Алтухов и др. 1958). Литературные сведения о популяционной биологии беломорской зубатки малочисленны, отрывочны и неполны. Гораздо более подробно изучены особенности биологии размножения зубатки в условиях эксперимента (Павлов 1993; Павлов и Радзиховская 1991; Павлов и др. 1991; Pavlov and Moksness 1994, 1995). Несмотря на небольшое рыбохозяйственное значение, данный вид является весьма перспективным объектом для марикультуры (Павлов и Новиков 1986; Gjosaeter and Moksness 1987; Tilseth 1990; Moksness and Pavlov 1996; Brown et al. 1997), что обусловливает актуальность дальнейшего изучения особенностей экологии и внутривидовой изменчивости зубатки в разных частях ареала. Целью настоящего исследования являлось изучение структуры популяции, роста, полового созревания и питания полосатой зубатки в Кандалакшском заливе Белого моря.

МАТЕРИАЛ И МЕТОДЫ

Материалом для исследования послужили наблюдения и сборы, проведенные в маесентябре 2000–2009 гг. в прибрежных водах Кандалакшского залива Белого моря. Лов рыбы производился разноячейными ставными жаберными сетями, сетями-ряжовками и ловушкамимережами на глубинах до 25 м. Наибольшее количество биологических проб в течение полевых сезонов было взято в губе Чупа на промысловых участках, расположенных в непосредственной близости к Беломорской биостанции ЗИН. У всех пойманных рыб (230 экз.) измеряли общую длину (TL) и массу тела с точностью до 0.1 см и 1 г соответственно. Возраст рыб определяли по годовым кольцам на костях черепа – quadratum, anguloarticulare, hyomandibulare, praeoperculum (П.Н. Ершов, неопубликованные данные). В качестве модели роста зубатки была использована линейная модификация уравнения Берталанфи $L_{t} = L_{\infty}$ (1- $e^{(-\mathrm{k} \ (\mathrm{t-to}))}$), где L_{t} – длина рыбы (см) в возрасте t (лет); L_{∞} , k и t_0^{-} коэффициенты. Рост массы тела рыб описан с помощью степенного уравнения W_t = $a t^b$, где W_t – масса рыбы (кг) в возрасте t (лет), a и b – коэффициенты. Уравнения роста рыб сравнивали по F-критерию путем анализа дисперсии эмпирических точек относительно индивидуальных и объединенных моделей роста (Максимович 1989). Для описания зависимости массы от длины тела рыбы использовали степенное уравнение $W = a L^{\rm b}$, где L – длина особи (см), W – масса (г), a и b – константы. Качественный состав пищи был изучен у 124 особей длиной 22.8-64.2 см. Обнаруженные в желудках организмы определяли до вида. Частоту встречаемости пищевых объектов вычисляли только у рыб с пищей в желудочно-кишечном тракте (Методическое пособие 1974). Абсолютная и относительная плодовитость определена у 54 самок зубатки. Для подсчета абсолютной плодовитости (АП) брали навеску из яичника массой 2-3 г, подсчитывали количество икринок в ней, а затем полученное число пересчитывали на массу яичников рыбы. Относительная плодовитость (ОП) определена как количество икринок на 1 г общей массы тела рыбы. Коэффициент зрелости (гонадосоматический индекс) вычисляли как процентное отношение массы гонад к общей массе тела рыбы. Коэффициент зрелости был подсчитан для 64 самок и 38 самцов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Распределение. По данным Барсукова (1956, 1959) и Алтухова с соавторами (1958) зубатка в Кандалакшском заливе Белого моря обитает вдоль Карельского берега до г. Кандалакша. Проведенный нами контрольный лов на акватории Кандалакшского залива от мыса Шарапов до полуострова Турий показал, что зубатка встречается как у Карельского, так и у Кандалакшского побережий практически повсеместно. Распределение зубатки в море в значительной степени определя-

¹Северный берег Кандалакшского залива от г. Кандалакша до мыса Лудошный носит название Кандалакшского берега.

ется глубинами и характером грунтов. Основные места обитания беломорской зубатки в летний период приурочены, как правило, к прибрежной зоне моря с глубинами 5-20 м. Часто зубатка встречается и у островов, подводных корг, около которых имеются каменистые свалы. Характер грунта в местах поимок зубаток смешанный, преимущественно каменистый с примесью ила и песка. Довольно часто в таких местах встречаются заросли ламинарии. Среди камней и валунов, а также в углублениях дна под ними зубатки находят себе укрытие. На илистых и песчаных грунтах, на обширных мелководных участках губ Кандалакшского залива зубатка не встречается. Местные рыбаки промышляют зубатку, как правило, у скалистых берегов, мысов и островов на глубине до 10-15 м. Первые единичные поимки зубаток в прибрежных районах Кандалакшского залива отмечены нами в начале мая, когда побережье освобождается ото льда. В июне зубатка мигрирует с мест зимовок в более мелководные участки на откорм и встречаемость данного вида в уловах повсеместно возрастает. В июле-августе происходит основной нагул рыб. Промыслом в это время облавливаются нагульные и нерестовые скопления рыб, а уловы достигают наибольшей величины (Алтухов и др. 1958; Ершов 2003). Вместе с тем, значительных промысловых концентраций в Кандалакшском заливе зубатка не образует. Согласно нашим данным, откорм половозрелых особей (TL > 40 см) происходит в основном на глубинах 5-20 м, однако взрослые зубатки в поисках пищи могут выходить также на подводные и прибрежные отмели с мидиевыми поселениями. Нагульные перемещения неполовозрелых особей (TL 20-30 см) охватывают как мелководные (1–5 м), так и расположенные поблизости более глубокие участки у берегов (до 20 м). К концу августа вылов зубатки постепенно уменьшается, а с середины сентября она практически исчезает из уловов. В целом беломорская зубатка протяженных нагульных миграций не совершает. Об этом косвенно свидетельствует постоянная встречаемость разноразмерных особей зубатки в одних и тех же районах лова в течение июня-августа.

Размерно-возрастной состав, рост. Общая длина тела зубаток, пойманных в период наблюдений в губе Чупа, колебалась от 21.5 до 64.2 см, в уловах преобладали особи размером 35–45 см (53%) и массой тела 0.4–0.6 кг (30%) (Рис. 1). У

рыб разного пола набор и соотношение основных размерных групп оказались сходными. В ловушки, поставленные около самого берега на глубине несколько метров, попадали в основном мелкие особи длиной 20-30 см и массой тела до 0.25 кг. В то же время на участках моря с глубинами от 5 м в уловах присутствовали разноразмерные рыбы. В целом средний размер и масса выловленных рыб составили 41.5 ± 0.51 см и 0.70 ± 0.03 кг. Достоверных половых отличий по скорости роста у зубатки, как и в работах других авторов (Барсуков 1959; Павлов и Новиков 1986), не обнаружено. Средние размеры и масса самцов и самок в уловах также не различались. Наиболее крупные экземпляры среди самцов имели длину 62.8 см и массу 2.0 кг, а среди самок – 64.2 см и 1.85 кг соответственно. Максимальный размер полосатой зубатки в Белом море составляет 81.5 см (Мухомедияров 1963). В Ругозерской губе наиболее крупная зубатка имела длину 71 см (Павлов и Новиков 1986). Наибольшие размерно-весовые показатели самцов (66 см и 2.3 кг) и самок (64 см и 1.8 кг) зубатки из Летнерецкой губы² (Барсуков 1956) были очень близки к полученным нами данным. Показатели среднего размера зубатки в последовательном ряду лет можно аппроксимировать уравнением роста Берталанфи, а увеличение массы рыб – степенным уравнением. На Рис. 2 и 3 представлены кривые роста зубатки из разных участков Белого моря (Карельское побережье), а параметры уравнений роста приведены в Табл. 1. Полученные построения демонстрируют значительную вариабельность скорости роста беломорской зубатки. Судя по имеющимся сведениям наибольшей скоростью линейного и весового роста характеризуется зубатка из губ Ругозерская и Чупа («быстрорастущие» рыбы), а зубатка из Летнерецкой губы растет гораздо медленнее (различия достоверны, P < 0.05). Зубатка из уловов в неуказанном районе моря у Карельского побережья (Мухомедияров 1963) достоверно отличалась по скорости роста от других выборок и занимала промежуточное положение между «быстро-» и «медленнорастущими» рыбами (Р<0.05). В целом беломорская зубатка

²Летнерецкая губа вдается в Карельский берег Онежского залива между мысом Юдин и мысом Марк-Наволок. В вершину губы впадает река Летняя, на правом берегу устья которой расположено селение Летняя Река.

Рис. 1. Размерный (A) и весовой (B) состав уловов полосатой зубатки из губы Чупа (2000–2009 гг.). **Fig. 1.** Length (A) and body mass (B) structure of catches of wolffish from Chupa Inlet (2000–2009).

Рис. 2. Линейный рост полосатой зубатки из разных участков Белого моря.

 $Fig.\ 2.\ Linear\ growth\ curves\ of\ wolffish\ from\ different\ regions\ of\ the\ White\ Sea.$

наиболее быстро растет в первые 5-6 лет жизни, т.е. до наступления половой зрелости, затем приросты ее в длину снижаются. Обычно к 5-му году жизни зубатка губы Чупа достигает размера 35-45 см и массы 0.4-0.6 кг. У зубатки из губы Чупа и других мест лова (Барсуков 1956, 1959; Павлов и Новиков 1986) в пределах каждой возрастной группы отмечена высокая индивидуальная изменчивость особей по размерно-весовым параметрам (Табл. 2). Например, в уловах зубатки в губе Чупа размах колебаний длины и массы тела у рыбровесников старших возрастов достигает 19 см и 1.1 кг. Скорее всего, это связано с различиями в возрасте наступления половозрелости рыб, а также с разными условиями их нагула в море. Наиболее высокая скорость роста рыб, судя по приростам на регистрирующих структурах, характерна для летнего периода. В другие сезоны года зубатка растет

медленно, а в период гидрологической зимы, повидимому, практически прекращает расти. Связы между массой и длиной тела зубатки наилучшим образом описывается степенной функцией $W=0.010L^{2.957}$, причем между самцами и самками достоверных различий не обнаружено (Рис. 4).

Возрастной состав уловов зубатки в губе Чупа был представлен рыбами в возрасте от 3+ до 11+ (Рис. 5). Значительную часть общего вылова (>70%) составили особи возрастных групп от 4+ до 6+. Относительная численность мелких рыб возраста 3+ в улове была невелика (8%). Рыбы старших возрастов (от 7+ до 11+) были также немногочисленны и занимали в целом около 20% улова. Самцы и самки по модальным возрастным группам не отличались, однако особи возраста 10+ и 11+ были представлены исключительно самцами (Рис. 5). Важно отметить, что у самцов

Таблица 1. Коэффициенты уравнений линейного роста и роста массы зубатки из разных участков Белого моря. **Table 1.** Parameters of growth equations of wolffish from different localities.

Место лова (Locality)	$L_t = L_{\infty} \left(1 - e^{(-k (t-to))} \right)$				$W_t = a t^{\text{b}}$		
	$L_{_{\infty}}$	k	t_o	R^2	a	b	R^2
Губа Чупа (Chupa Inlet)	61.0	0.252	0.75	0.988	0.033	1.672	0.930
Летнерецкая губа¹ (Letneretskaya Inlet)	65.1	0.114	-0.43	0.990	0.009	1.944	0.995
Ругозерская губа² (Rugozerskaya Inlet)	56.1	0.587	3.43	0.871	0.037	1.541	0.900
Карельское побере- жье ³ (Karelian coast)	110.2	0.069	0.90	0.976	0.004	2.454	0.958

Примечание. L_t и W_t – длина (см) и масса (кг) рыб в возрасте t (лет), k, L_{∞} , t_{\circ} , a, b – коэффициенты уравнения; R^2 – коэффициент детерминации. Расчет по: 1 – Барсуков 1956; 2 – Павлов и Новиков 1986; 3 – Мухомедияров 963.

Note. L, μ W, – length (cm) and body mass (kg) of fish at age t (year), k, L, t, a, b – are constants; R^2 – coefficient of determination.

Рис. 3. Рост массы тела полосатой зубатки из разных участков Белого моря. **Fig. 3.** Body mass growth curves of wolffish from different regions of the White Sea.

Таблица 2. Размерно-весовые параметры полосатой зубатки из губы Чупа. **Table 2.** Length and body mass of the wolffish from Chupa Inlet.

Возраст, годы (Age, years)	Длина, см (Total length, cm)		Экз.	Macca, г (Body mass, g)		Экз.
	Lim	$M\pm m$	— (ind.) —	Lim	M±m	— (ind.)
3+	21.5-30.9	26.5±0.89	11	73–238	153±17.8	9
4+	28.5-41.6	35.4±0.41	39	173-615	408±15.3	38
5+	33.7-48.5	39.4 ± 0.59	42	320-1037	570±29.2	40
6+	37.8-54.1	43.8 ± 0.76	34	470-1505	776±39.5	34
7+	39.8-51.4	46.3 ± 0.93	14	698-1165	921±43.0	13
8+	44.1-57.7	52.6 ± 1.81	8	830-1850	1383±159.3	6
9+	43.6-62.8	53.2±4.12	4	632-1772	1085±349.4	3
10+	51.3-60.8	55.7±1.99	4	937-2000	1383±232.2	4
11+	54.1-60.0	57	2	1365-1967	1666	2

Примечание. Приведены средние значения со стандартными ошибками и пределы варьирования признаков. *Note*. Mean values ± Standard Errors and range of variation are presented.

полосатой зубатки в Баренцевом море продолжительность жизни больше, чем у самок (Барсуков и Шевелев 1986).

На других промысловых участках Кандалакшского залива в уловах преобладали рыбы в возрасте от 5+ до 9+ и длиной 30-50 см (Мухомедияров 1963; Павлов и Новиков 1986). В Летнерецкой губе (Онежский залив) основу вылова составили особи в возрасте от 5+ до 8+ (Барсуков 1956). Максимальный возраст зубатки в наших материалах оказался близок к отмеченному Мухомедияровым³ (1963) для зубатки Карельского берега Белого моря – 12+ (TL 81.5 см). Сведения о том, что беломорская зубатка достигает возраста 17+ (Павлов и Новиков 1986) и даже 19+ (Барсуков 1956), требуют подтверждения, поскольку определение возраста рыб проводилось по чешуе. Известно, что чешуя у зубатки мелкая и тонкая, а размер чешуек с одного и того же участка тела довольно сильно варьирует (Барсуков 1959). Барсуков (1959) по этому поводу отмечал, что «методику определения возраста по чешуе и костям зубаток нельзя считать достаточно разработанной и дающей точные результаты» (с. 85). Аналогичного мнения придерживался и Новиков (1995). Вместе с тем, сравнение разных регистрирующих структур показало, что «кольца на костях видны лучше, чем на чешуе» (Барсуков 1959, с. 85). Сомнение в правильности определения по чешуе максимального возраста у зубатки в цитированных выше работах вызывает также небольшой размер этих рыб (TL 53 и 62 см соответственно для особей возраста 17+ и 19+), которого, судя по данным разных авторов, зубатка достигает в гораздо меньшем возрасте (Мухомедияров 1963; Павлов и Новиков 1986). Высказанное предположение об ошибках в оценке возраста зубатки находит свое подкрепление и при рассмотрении биологических показателей рыб старших возрастных групп. Например, по данным Барсукова (1953, 1956) некоторые зубатки в возрасте 10+ имеют массу тела всего 200 г, а возраст впервые нерестующих самок может составлять 11+. Необходимо заметить, что на расхождения данных по росту зубаток с материалами Барсукова (1956) указывали также и другие исследователи (Мухомедияров 1963; Павлов и Новиков 1986). По нашему мнению при определении возраста зубаток по чешуе полученные результаты необходимо контролировать по другим регистрирующим структурам, в частности костям черепа.

 $^{^{3}}$ Мухомедияров (1963) определял возраст зубатки по *hypuralia*.

Рис. 4. Зависимость массы от длины тела беломорской зубатки. **Fig. 4.** Length to body mass relation in the wolffish from the White Sea.

Созревание, сроки нереста, соотношение полов. Половая зрелость у самок зубатки из губы Чупа наступает в возрасте от 4+ до 6+ при длине 33-45 см и массе тела 0.4-0.6 кг. Рыбы этих возрастов и размеров составили значительную часть уловов в районе исследования. Неполовозрелых особей в возрасте 6+ и старше в уловах не отмечено. Среди самок доля половозрелых особей в уловах составила около 70%. Коэффициент зрелости у преднерестовых самок, пойманных в июле, составил в среднем 14.6±0.6% при колебаниях 5.5-27.1%. По предварительным данным самцы зубатки созревают в возрасте 4+-5+. Следует подчеркнуть, что детальные особенности полового цикла самцов можно изучить только при использовании гистологических методов, поскольку визуальная оценка стадий зрелости гонад у них весьма затруднительна (Барсуков 1953; Мухомедияров 1963). Вес семенников у самцов зубатки (TL > 35 см) из губы Чупа составил в среднем 0.33 \pm 0.02% от массы тела при колебаниях 0.13-0.76%. Закономерного изменения коэффициента зрелости с увеличением размеров рыб не прослеживается. Низкие значения коэффициента зрелости у самцов зубатки на протяжении всего лета отмечали также Барсуков (1956) и Мухомедияров (1963).

По мнению Барсукова (1953) возраст впервые нерестящихся самок длиной 30–44 см колеблется от 5 до 11-годовалого⁴. По данным других авторов беломорская зубатка созревает в 6-летнем возрасте при длине тела 30–35 см (Мухомедияров 1963;

⁴Данные Барсукова (1956) по возрасту беломорской зубатки нуждаются в уточнении.

Рис. 5. Возрастной состав уловов полосатой зубатки из губы Чупа (2000–2008 гг.). **Fig. 5.** Age structure of catches of wolffish from Chupa Inlet (2000–2008).

Павлов и Новиков 1986). Павлов и Радзиховская (1991) отмечают, что большинство самцов зубатки начинает созревать при длине тела более 40 см в возрасте 6–7 лет.

Нерест у зубатки в губе Чупа происходит с конца июля по начало августа, т.е. в наиболее теплое время года. Первые самки с остаточной икрой в яичниках встречаются обычно во второй половине июля, а к середине августа все половозрелые самки являются уже отнерестовавшими. Аналогичные данные по срокам нереста приводятся и других работах (Барсуков 1953, 1959; Мухомедияров 1963; Павлов и Новиков 1986). В зависимости от температурных условий года сроки нереста могут немного сдвигаться. Сведения о том, что беломорская зубатка размножается в ноябре-январе (Ивантер и Рыжков 2004), являются ошибочными. Нерест у самок зубатки ежегодный, пропуски нерестового сезона отсутствуют. Места нереста зубатки неизвестны. Возможно, они расположены на глубинах 15-25 м, поскольку водолазы, работавшие в районе Беломорской биостанции ЗИН в конце июля, наблюдали крупных зубаток в «норах» под камнями и другими естественными укрытиями на таких глубинах. В яичниках самок зубатки из губы Чупа отмечалось от 420 до 6650 икринок, средняя абсолютная плодовитость составила 1725±149 икринок. Величина плодовитости закономерно изменялась с увеличением длины и массы тела самок, однако характер взаимосвязи показателей различался. Связь АП с длиной тела рыбы может быть аппроксимирована степенным уравнением $A\Pi = 0.067L^{2.682}$ ($R^2 = 0.538$; n = 54; P < 0.001; где R^2 – коэффициент детерминации; n – объем выборки). Зависимость АП от массы тела описывается линейным уравнением $A\Pi = 2.37W$ – 52.88 ($R^2 = 0.685$; n = 54; P < 0.001) (Рис. 6). Относительная плодовитость рыб в среднем составила 2.3±0.1 икр./г при индивидуальных колебаниях 0.9-4.3 икр./г. Взаимосвязанных изменений величины $O\Pi$ с увеличением размеров и массы тела рыбы не обнаружено.

Рис. 6. Зависимость абсолютной плодовитости от длины (*A*) и массы (*B*) тела полосатой зубатки. **Fig. 6.** The effect of length (*A*) and body mass (*B*) on absolute fecundity (eggs per female) of the wolffish from the White Sea.

По данным других авторов абсолютная плодовитость беломорской зубатки составляла в среднем 2260 икринок при колебаниях от 260 до 7000 икринок (Барсуков 1953), 4000–5000 икринок (Мухомедияров 1963). По наблюдениям Павлова и Новикова (1986) количество икринок в яичниках самок варьировало от 2600–6900.

Соотношение полов в уловах зубатки за весь период исследований в губе Чупа составило 1:1. Примерно равное соотношение полов наблюдалось в уловах зубатки в Ругозерской и Летнерецкой губах (Барсуков 1953; Павлов и Новиков 1986). В августе половой состав уловов может изменяться (Барсуков 1953; Павлов и Новиков 1986). Барсуков (1953) предположил, что после нереста самцы остаются на нерестилищах охранять икру, и поэтому их встречаемость в уловах в августе резко уменьшается. По нашим данным, среди рыб длиной более 35 см, пойманных в августе в губе Чупа (n = 30 экз.), соотношение самцов и самок было одинаковым. В этой связи следует заметить, что особенности естественного размножения и полового поведения зубатки Белого моря изучены слабо, и в этом направлении необходимо проведение специальных исследований.

Питание. Состав пищи зубатки в губе Чупа приведен в Табл. 3. Видно, что пищевой спектр у зубатки довольно разнообразный, в кишечниках рыб длиной 21.5-64.2 см обнаружены 28 видов пищевых организмов, относящихся к разным таксономическим группам. Основу питания зубатки в июне-сентябре составили представители двустворчатых и брюхоногих моллюсков, а также ракообразные. Среди моллюсков по частоте встречаемости в желудочно-кишечном тракте зубатки преобладали Buccinum undatum (41.1%), Serripes groenlandicus (19.3%), Mytilus edulis (16.1%), а среди ракообразных – *Hyas araneus* (18.9%) и рак-отшельник *Pagurus pubescens* (16.1%). Существенное значение в питании зубатки имели также и некоторые другие виды моллюсков Tonicella marmorea, Littorina littorea, Clinocardium (Ciliatocardium) ciliatum, Arctica islandica (12.9 13.7% по частоте встречаемости). Остальные виды беспозвоночных животных встречались в кишечниках рыб гораздо реже или единично. Рыба в составе пищи зубатки отсутствовала. Набор доминирующих в питании зубатки организмов оказался сходным в разные годы наблюдений в губе Чупа, а наибольшая накормленность рыб отмечена в летний период. Исследование особенностей батиметрического количественного распределения указанных выше видов моллюсков в губе Чупа показало, что показатели обилия у них имеют наибольшие значения на глубинах до 25 м (Голиков и др. 1985а, б). Присутствие крабов на мелководьях носит сезонный характер и приурочено в основном к весеннему и осеннему периодам, когда наблюдаются пониженные температуры воды в поверхностных слоях (Бабков 1998). Именно в это время года крабы были отмечены в желудках зубаток.

Литературные данные по питанию зубатки Белого моря весьма малочисленны и содержат в основном качественное описание содержимого кишечников. По данным Барсукова (1956) основными пищевыми объектами зубатки в Летнерецкой губе летом являлись двустворчатые (Mytilus edulis) и брюхоногие моллюски (Littorina saxatilis, Margarita groenlandica, Acmaea testudinalis, Buccinum sp.)⁵, причем они преобладали по частоте встречаемости в составе пищи рыб разного размера (TL 21-65 см). Значительную роль в питании зубатки из этого района моря играли также крабы Hyas araneus. У зубатки, выловленной в Гридинском районе, в желудках обнаружены двустворчатые и брюхоногие моллюски (Littorina sp., Mytilus edulis, Margarita sp., Natica sp., Tellina edulis, Cardium sp., Buccinum sp., Modiolaria discors, Acmaea testudinalis), рыба (треска, сельдь, навага), икра пинагора, ракообразные, асцидии и офиуры (Барсуков 1956). В проливе Великая Салма и Гридинской губе по данным

⁵Некоторые видовые названия моллюсков, приведенные в работах Барсукова (1956), Кудерского и Русановой (1963), считаются ныне устаревшими: Астаеа testudinalis (= Testudinalia testudinalis), Modiolaria discors (= Musculus discors), Margarita groenlandica (= Margarites groenlandicus), Lacuna divaricata (= Epheria vincta), Cyprina islandica (= Arctica islandica), Astarte montagui (= Nicania montagui), Natica clausa (= Cryptonatica affinis), Trophon sp. (= Boreotrophon sp.), Margarites cinereus (= M. striatus). Указанные в работе Барсукова (1956) моллюски *Natica* sp., очевидно, являются представителями семейства Naticidae, а Cardium sp., по всей видимости, представляет собой вид Clinocardium (Ciliatocardium) ciliatum. Определение вида Tellina edulis в качестве пищевого объекта беломорской зубатки ошибочно. Вероятнее всего, данный моллюск относился к Масота calcarea (Gmelin, 1791).

Таблица 3. Состав пищи полосатой зубатки из губы Чупа. **Table 3.** Composition of food of wolffish from Chupa Inlet.

1	
Компонент пищи	Частота
(Food item)	встречаемости, (Frequency, %)
Polyplacophora	<u> </u>
Tonicella marmorea (Fabricius O., 1780)	13.7
Stenosemus albus (Linnaeus, 1767)	0.8
Gastropoda	
Buccinum undatum Linnaeus, 1758	41.1
Testudinalia testudinalis (Müller O.F., 1776)	0.8
Margarites groenlandicus (Gmelin, 1791)	7.3
Margarites olivaceus (Brown, 1827)	0.8
Cryptonatica affinis (Gmelin, 1791)	7.3
Epheria vincta (Montagu, 1803)	1.6
Littorina littorea (Linnaeus, 1758)	13.7
Littorina obtusata (Linnaeus, 1758)	6.5
Littorina saxatilis (Olivi, 1792)	3.2
Trichotropis borealis Broderip et Sowerby, 1829	1.6
Boreotrophon truncatus (Ström, 1768)	0.8
Velutina velutina (Müller O.F., 1776)	0.8
Bivalvia	
Mytilus edulis Linnaeus, 1758	16.1
Arctica islandica (Linnaeus, 1767)	7.3
Clinocardium (Ciliatocardium) ciliatum (Fabricius O., 1780)	12.9
Crenella decussata (Montagu, 1808)	0.8
Elliptica elliptica (Brown, 1827)	3.2
Serripes groenlandicus (Bruguière, 1789)	19.3
Musculus discors (Linnaeus, 1767)	1.6
Lyonsia arenosa (Møller, 1842)	1.6
Modiolus modiolus (Linnaeus, 1758)	0.8
Crustacea	
Hyas araneus (Linnaeus, 1758)	18.9
Pagurus pubescens Krøyer, 1838	16.1
Sclerocrangon boreas (Phipps, 1774)	0.8
Echinoidea	
Strongylocentrotus pallidus (Sars G.O., 1871)	2.4
Ophiuroidea	
Ophiopholis aculeata (Linnaeus, 1767)	0.8

Кудерского и Русановой (1963) наибольшее значение в питании зубатки также имели двустворчатые (Mytilus edulis, Mya arenaria Linnaeus, 1767; Musculus discors, M. laevigatus (Gray J.E., 1824); Serripes groenlandicus, Cyprina islandica, Astarte montagui, Modiolus modiolus) и брюхоногие (Acmaea testudinalis, Littorina saxatilis, L. obtusata, L. littorea, *Margarites groenlandicus*, *M. helicinus* (Phipps, 1774); M. cinereus Couthouy, 1838, Lacuna divaricata, В. undatum, Natica clausa, Trophon sp.) моллюски. Гораздо реже в пище зубатки встречались иглокожие – Ophiura robusta (Avres, 1851), Ophiopholis aculeata, ракообразные (Crangon allmanni Kinahan, 1857), губки, асцидии, гидроиды и некоторые полихеты. По данным Алтухова с соавторами (1958), помимо перечисленных выше групп пищевых организмов, в спектр питания полосатой зубатки Белого моря входят также креветки, морские ежи и звезды. У Новикова (1995) полный список объектов питания беломорской зубатки дополняется еще полихетой *Nereis* sp. Из приведенных и полученных нами данных видно, что беломорская зубатка является типичным бентофагом и имеет широкий спектр питания донными беспозвоночными. При этом набор доминирующих пищевых объектов у зубатки из разных районов Белого моря оказался сходным. Наибольшее значение в питании беломорской зубатки имели массовые виды двустворчатых и брюхоногих моллюсков, а также некоторые ракообразные. Другие группы беспозвоночных (кишечнополостные, губки, иглокожие, полихеты) не играли существенной роли в питании зубатки. Можно предположить, что у зубатки, обитающей в разных участках Белого моря, набор доминирующих в ее пище видов моллюсков будет несколько отличаться вследствие локальной изменчивости видового разнообразия малакофауны и обилия отдельных видов в прибрежной зоне моря. Кроме того, в пищевой спектр зубатки, по-видимому, могут входить и некоторые другие виды бентосных организмов, не обнаруженные до сих пор. Однако все они, очевидно, будут иметь лишь второстепенное значение в питании данного вида. Дальнейшие исследования позволят более полно оценить пищевую пластичность полосатой зубатки в Белом море.

Заключение. Проведенные исследования показали, что полосатая зубатка широко распространена в прибрежных водах Кандалакшского залива Белого моря. Основной нагул у зубатки

происходит в июле—августе на глубинах 5—20 м. В уловах зубатки в губе Чупа преобладали особи возраста от 4+ до 6+, размером 35—45 см и массой тела 0.4—0.6 кг. Зубатки из губ Чупа и Ругозерская по скорости линейного и весового роста не отличались. Половая зрелость у самок зубатки наступает в возрасте от 4+ до 6+, нерест происходит в июле—августе. Соотношение полов в уловах зубатки в разных губах Кандалакшского залива составило 1:1. Абсолютная плодовитость у зубатки с увеличением длины и массы тела рыб возрастала. Основу питания зубатки в Кандалакшском заливе в летний период составляли представители двустворчатых и брюхоногих моллюсков, а также ракообразные.

БЛАГОДАРНОСТИ

Автор приносит глубокую благодарность А.Д. Наумову за помощь в определении моллюсков, А.В. Балушкину, В.Я. Бергеру, А.А. Сухотину (все — ЗИН), а также рецензентам Н.В. Максимовичу (СПбГУ) и Л.А. Краюшкиной (СПбГУ) за ценные критические замечания к работе. Работа выполнена при поддержке программы фундаментальных исследований Отделения биологических наук РАН «Биологические ресурсы России: оценка состояния и фундаментальные основы мониторинга».

ЛИТЕРАТУРА

- Алтухов К.А., Михайловская А.А., Мухомедияров Ф.Б., Надежин В.М., Новиков П.И. и Паленичко З.Г. 1958. Рыбы Белого моря. Государственное издательство Карельской АССР, Петрозаводск, 162 с.
- **Бабков А.И. 1998**. Гидрология Белого моря. ЗИН РАН, Санкт-Петербург, 96 с.
- **Барсуков В.В. 1953.** К познанию биологии размножения беломорской зубатки (*Anarhichas lupus* L.). *Зоологический журнал*, **32**(6): 1211–1216.
- **Барсуков В.В. 1956**. Беломорская зубатка (*Anarhichas lupus marisalbi* Barsukov). *Вопросы ихтиологии*, **6**: 129–136.
- **Барсуков В.В. 1959**. Семейство зубаток (Anarhichadidae). Издательство АН СССР, Москва—Ленинград, 171 с.
- Барсуков В.В. и Шевелев М.С. 1986. Зубатки. В кн.: Г.Г. Матишов (Ред.). Ихтиофауна и условия ее существования в Баренцевом море. Кольский филиал АН СССР, Апатиты: 34–40.
- **Брюзгин В.Л. 1969.** Методы изучения роста рыб по чешуе, костям и отолитам. Наукова думка, Киев, 188 с.

- Голиков А.Н., Скарлато О.А., Гальцова В.В. и Меншуткина Т.В. 1985а. Экосистемы губы Чупа Белого моря и их сезонная динамика. В кн.: О.А. Скарлато (Ред.). Биоценозы губы Чупа Белого моря и их сезонная динамика. Наука, Ленинград: 5–83.
- Голиков А.Н., Скарлато О.А., Максимович Н.В., Матвеева Т.А. и Федяков В.В. 19856. Фауна и экология раковинных моллюсков губы Чупа Белого моря. В кн.: О.А. Скарлато (Ред.). Биоценозы губы Чупа Белого моря и их сезонная динамика. Наука, Ленинград: 185–229.
- **Ершов П.Н. 2003**. К изучению полосатой зубатки губы Чупа Белого моря. Авторефераты докладов III (XXVI) международной конференции Биологические ресурсы Белого моря и внутренних водоемов Европейского Севера (11–15 февраля 2003, Сыктывкар). Коми НЦ УО РАН, Сыктывкар: 33–34.
- **Ивантер Д.Э. и Рыжков Л.П. 2004**. Рыбы. Издательство Петрозаводского государственного университета, Петрозаводск, 176 с.
- **Кожин Н.И. и Новиков П.И. 1937.** Рыбные промыслы Карелии. Карельское государственное издательство, Петрозаводск, 187 с.
- Кудерский Л.А. и Русанова М.Н. 1963. Питание донных рыб в западной части Белого моря. Ученые записки Карельского педагогического института, 15: 221–300.
- **Максимович Н.В. 1989.** Статистическое сравнение кривых роста. *Вестник Ленинградского университета*, **4**: 18–25.
- Методическое пособие по изучению питания и пищевых отношений рыб в естественных условиях. **1974**. Наука, Москва, 254 с.
- Мухомедияров Ф.Б. 1963. Биология и промысел второстепенных рыб Карельского побережья. В кн.: 3.Г. Паленичко (Ред.). Материалы по комплексному изучению Белого моря. Вып. 2. Издательство АН СССР, Москва—Ленинград: 131—143.
- Новиков Г.Г. 1995. Зубатка. В кн.: О.А. Скарлато (Ред.). Белое море. Биологические ресурсы и проблемы их рационального использования. ЗИН РАН, Санкт-Петербург: 67–77.
- **Павлов Д.А. 1993.** Оплодотворение у зубатки *Anarhichas lupus*: внешнее или внутреннее? *Вопросы ихтиологии*, **33**(5): 664–670.
- Павлов Д.А., Дзержинский К.Ф. и Радзиховская Е.Л. 1991. Оценка качества икры беломорской зубатки *Anarhichas lupus marisalbi*, полученной в экспериментальных условиях. *Вопросы ихтиологии*, 31(5): 743–755.
- Павлов Д.А. и Новиков Г.Г. 1986. К разработке биотехники разведения беломорской зубатки *Anarhichas lupus marisalbi* Barsukov. 1. Опыт получения зрелых половых продуктов, инкубации икры и выращивания молоди. *Вопросы ихтиологии*, 26(6): 476–487.

- Павлов Д.А. и Радзиховская Е.Л. 1991. Особенности биологии размножения беломорской зубатки *Anarhichas lupus marisalbi* (по данным экспериментальных исследований). *Вопросы ихтиологии*, **31**(3): 433–441.
- Brown J.A., Wiseman D. and Kean P. 1997. The use of behavioural observations in the larviculture of coldwater marine species. *Aquaculture*, **155**: 297–306.
- **Gjosaeter J. and Moksness E. 1987**. Some preliminary observations on catfish (*Anarhichas lupus* L. and *A. minor* Olafsen) in captivity. *International Council for the exploration of the sea*. C.M.Documents 1987/F, **32**: 1–12.
- Moksness E and Pavlov D.A. 1996. Management by life cycle of wolfish, *Anarhichas lupus* L., a new species for cold water aquaculture: a technical paper. *Aquaculture Research*, 27: 865–883.
- **Pavlov D.A. and Moksness E. 1994.** Production and quality of eggs obtained from wolffish (*Anarhichas lupus* L.) reared in captivity. *Aquaculture*, **122**: 295–312.
- **Pavlov D.A. and Moksness E. 1995**. Development of wolffish eggs at different temperature regimes. *Aquaculture International*, **3**: 315–335.
- **Tilseth S. 1990**. New species for cold-water farming. *Aquaculture*, **85**: 235–245.

Представлена 29 марта 2010; принята 14 сентября 2010.