SP Exam Miniproject Life on Mars (?)

Mattia Paterna

Sound and Music Computing Aalborg University, Copenhagen

- Scenario
- 2 Design
 - Physical Models
 - How does voice drive models?
 - Fx
 - How does voice drive fx?

Assessments Life on Mars (?)

- environment: some unknown planet
- let's suppose many carbon based lifeforms exists, which are different from ours
- let's suppose sound is able to propagate
- how to describe them?

Inspiration

Figure: Environment thumbnails III (courtesy Alba Francescut)

- Scenario
- 2 Design
 - Physical Models
 - How does voice drive models?
 - Fx
 - How does voice drive fx?

Physical models I

- three different types of blows have been combined together
- aim: represent a complete set of possible wind sounds

Physical models II

- air turbulence against a solid surface: sdt.windflow~
- air turbulence inside a cavity: sdt.windcavity~
- air turbulence across thin objects: sdt.windkarman~

- Scenario
- 2 Design
 - Physical Models
 - How does voice drive models?
 - Fx
 - How does voice drive fx?

Modifiers I

Figure: descriptors and their use → (→) → (≥) → (≥) → (≥) → ()

Modifiers II

sdt.windflow~

envelope follower: speed

sdt.windcavity~

magnitude: speed

skewness: diameter (heuristics for scaling) and length

sdt.windkarman~

rectified flux: speed

kurtosis: diameter (scaled and inverted)

- Scenario
- 2 Design
 - Physical Models
 - How does voice drive models?
 - Fx
 - How does voice drive fx?

Filtering stage I

Filtering stage II

Input parameters:

- min-max frequencies
- ripple
- order
- (topology and response fixed)

Filtering stage III

Figure: use of poly~

- biquad filter using Max filterdesign object
- poly~ allows for many instances

Delay stage

- using tapin~/tapout~
- feedback path

Pan stage

- using random signal
- scaled and shifted between 0 and 1

Samples scrambling stage I

Figure: sampling scramble using delay~

Samples scrambling stage II

- using sah~ to dinamically change delay time (in samples)
- resampling depends on instance of poly~, as well as on randomness

- Scenario
- 2 Design
 - Physical Models
 - How does voice drive models?
 - Fx
 - How does voice drive fx?

Modifiers III

filtering section

variance: fluctuation on filter min frequency (heuristic for scaling)

delay section

pitch: general time

pan

centroid: spatial rate

samples scrambing

flatness: randomness

spectral flux: sah~ trigger signal rate

Result

- electronic wind + insects(?)
- shiny perturbations and resonances for high ripple values

(that's all folks)