1/1

慶應義塾大学試験問題 物理学 D (一斉)

2018年1月29日(月)1時限(試験時間50分) 問題用紙 回収不要担当者 神成、木下、齊藤、高野

注意:とくに指示がない場合、答案には結果のみならず、それを導いた過程についても記すこと。また、万一与えられた条件だけでは解けない場合には、適当な量を定義したり、条件を明記した上で解いてよい。電気定数 ϵ_0 、磁気定数 μ_0 、真空中の光速 c の記号は断りなしに使ってよい。

問題 I 真空中に、半径 a の導体 (金属) の球と、内半径 b で外半径 d の誘電体 (絶縁体) の球殻が、中心を共通にして配置されている (0 < a < b < d)。この中心を位置ベクトル r の原点とする。このとき、中心からの距離 r = |r| が $0 \le r \le a$ の領域が導体 (金属) に、 $b \le r \le d$ の領域が誘電体 (絶縁体) に、なっている。誘電体の誘電率は、中心からの距離 r の関数として、 $\varepsilon(r) = \bar{\varepsilon}\varepsilon_0 \left(\frac{d}{r}\right)^4$ で与えられている。ここで、 $\bar{\varepsilon}$ は $\bar{\varepsilon} > 1$ を満たす定数である。導体 (金属) 球に Q の電荷を与える。

- (1) 位置rにおける電界E(r)、電東密度D(r)、電気分極P(r)を求めなさい。
- (2) この系の静電エネルギー U_E を求めなさい。
- (3) 誘電体の内側の表面上の位置 r(|r|=b) における分極電荷面密度 $\omega_P(r=b)$ 、誘電体の外側の表面上の位置 r(|r|=d) における分極電荷面密度 $\omega_P(r=d)$ 、両極板間の中心からの距離 rが $r_1 \le r \le r_2$ の範囲の分極電荷 $q_P(r_1,r_2)$ を求めなさい。ただし、 $a < r_1 < r_2 < b$ とする。

問題 II 物質中で、電界を E、電東密度を D、磁東密度を B、磁界を H、真電荷密度を ho_t 、真電流密度を i_t とする。

- (1) 物質中のマクスウェル方程式を書きなさい。
- (3) (2) の平面電磁波に対して、時刻 t、位置 r における電磁場のエネルギー密度 u(r,t) とポインティングベクトル S(r,t) を求めなさい。解は ε 、 μ 、 E_6 、f、 \hat{k} のみを用いて表しなさい。また、u、S、v、 \hat{k} の間の関係を書きなさい。

問題 III 半径 a で無限に長い円柱状の導体がある。導体の外側には、導体と同軸で、内半径 b(>a)、外半径 d(>b) で無限に長い円筒状の磁性体がある (図 III-1 参照)。導体円柱、磁性体円筒の中心軸を z 軸にとり、z 軸に垂直な平面内の位置を 2 次元極座標 (r,φ) で表した円柱座標系 (r,φ,z) を用いて考える。z 軸の正の向きの単位ベクトルを e_z とする。位置 (r,φ,z) において、z 軸に垂直で z 軸 から遠ざかる方向の単位ベクトルを e_r 、z 軸を中心に回転する方向 (石ねじが e_z 方向に進む方向) の単位ベクトルを e_φ とする (図 III-2 参照)。互いに直交するこれらの単位ベクトル e_r , e_φ , e_z を 用いて位置 (r,φ,z) におけるベクトル量を表す。磁性体は b < r < d の領域にあり、磁性体の透磁率は r の関数として $\mu(r) = \bar{\mu}\mu_0 \left(\frac{r}{b}\right)^4$ で与えられている。ここで、 $\bar{\mu}$ は $\bar{\mu} > 1$ を満たす定数である。磁性体のない領域の透磁率は μ_0 である。導体に e_z 方向に大きさ I の定常電流を一様に流す。

- (1) 位置 (r, φ, z) における磁束密度 $B(r, \varphi, z)$ 、磁界 $H(r, \varphi, z)$ 、磁化 $J(r, \varphi, z)$ を求めなさい。
- (2) 磁性体の内側の表面上の位置 $(r=b,\varphi,z)$ における面磁化電流密度ベクトル $\mathcal{I}_{\mathrm{m}}(b,\varphi,z)$ と磁性体の外側の表面上の位置 $(r=d,\varphi,z)$ における面磁化電流密度ベクトル $\mathcal{I}_{\mathrm{m}}(d,\varphi,z)$ を求めなさい。
- (3) z=一定 の平面内の $0 \le r \le r_1$, $0 \le \varphi < 2\pi$ で指定される半径 r_1 の円形の範囲を e_z 方向に 貫く磁化電流 $I_m(r_1)$ を求めなさい。

ヒント: $i_{\rm m}$ を磁化電流密度とするとき、B または H に関するアンペールの法則の積分形を参考にして、 ${\rm rot} J = \mu_0 i_{\rm m}$ の積分形を考える。あるいは、B に関するアンペールの法則 (積分形) で、全電流から真電流の寄与を差し引く。

- 問題 IV 半径 a の無限に長い導体円柱棒がある。導体円柱棒の中心軸を z 軸にとり、問題 III で用いた円柱座標系 (r,φ,z) を用いて考える。導体円柱棒の電気伝導率は r の関数として $\sigma(r)=\sigma_0\left(\frac{r}{a}\right)^4$ で与えられている。この導体円柱棒の内外に時刻 t に依存した一様な磁束密度 $\mathbf{B}_{\mathrm{ex}}(r,\varphi,z,t)=B_{\mathrm{ex}}(t)\mathbf{e}_z=(B_0+\beta t)\mathbf{e}_z$ を加えた。ここで、 σ_0 、 B_0 、 β は正の定数である。また、導体円柱棒の内外で透磁率は μ_0 である。位置 (r,φ,z) におけるベクトル量は、互いに直交する単位ベクトル \mathbf{e}_r , \mathbf{e}_φ , \mathbf{e}_z を用いて表しなさい。
 - (1) 時刻 t で、位置 (r, φ, z) における電界 $E(r, \varphi, z, t)$ と電流密度ベクトル $i(r, \varphi, z, t)$ を求めなさい。
 - (2) 時刻tで、導体円柱棒の単位長さに発生する単位時間あたりのジュール熱P(t)を求めなさい。
 - (3) 導体円柱棒中を流れる全電流が、時刻tで、位置 (r, φ, z) につくる磁束密度 $B'(r, \varphi, z, t)$ を求めなさい。