

**CAPSTONE PROJECT** 

### MLPROJECT SAMSUNG INNOVATION CENTER

BY S.Vithal-119cs0010

### Agenda

- Problem Statement
- Data Given in a Dataset
- 3 Visualization with inference
- 4 Steps done
- 5 Choosen Model
- 6 Conclusion

#### Problem Statement

#### Hotel Reservation:

A machine learning model to predict whether the customer cancels there hotel reservation or not. By using given dataset containing data of reservations made by customers from different places in different hotels.

### Data given in Dataset

Given a Dataset Hotel\_Bookings.csv contains 119390 rows × 32 columns which describes all the features of the hotel and booking details including their Arrival Timings, booking stats from which country they are from, through which agent they have booked etc..

#### DATASET USED:

https://raw.githubusercontent.com/Premalath a-success/Datasets/main/hotel\_bookings.csv

# Datatypes and DataShape in Data

```
[56] 1 #Explore the data-shape
2 data.shape
```

(119390, 32)

| hotel                          | object  |
|--------------------------------|---------|
| is_canceled                    | int64   |
| lead time                      | int64   |
| arrival_date_year              | int64   |
| arrival_date_month             | object  |
| arrival_date_week_number       | int64   |
| arrival_date_day_of_month      | int64   |
| stays_in_weekend_nights        | int64   |
| stays_in_week_nights           | int64   |
| adults                         | int64   |
| children                       | float64 |
| babies                         | int64   |
| meal                           | object  |
| country                        | object  |
| market_segment                 | object  |
| distribution_channel           | object  |
| is_repeated_guest              | int64   |
| previous_cancellations         | int64   |
| previous_bookings_not_canceled | int64   |
| reserved_room_type             | object  |
| assigned_room_type             | object  |
| booking_changes                | int64   |
| deposit_type                   | object  |
| agent                          | float64 |
| company                        | float64 |
| days_in_waiting_list           | int64   |
| customer_type                  | object  |
| adr                            | float64 |
| required_car_parking_spaces    | int64   |
| total_of_special_requests      | int64   |
| reservation_status             | object  |
| reservation_status_date        | object  |
| dtype: object                  |         |
|                                |         |

#### Visualization

#### Correlation Visualization

Correlation visualization summarizes the association between two variables. I will be ranging from -1 to +1



### Visualizing from feature to feature





### Visualizing null values before and after

-0.100

- 0.075

- 0.050



#### Inference on the data

- Correlated all the features of the dataset in order to get the relationship between the features.
  - Then we have checked the null-values of all features and we had observed that the

feature named 'company' has high null values. So, we can drop that company while training the data from the dataset.

 For the remaining features which consists of null values, they will be replacing with

median/mode/mean of that remaining non-null data in that feature.

### Steps done

- 1)imported required libraries
  - Basic and most important libraries
  - Model evaluation tools
  - Data processing functions
- 2) Importing dataset
  - Exploring the data shape
  - Exploring the Datatypes
- 3) Correlation between all the Features
- 4) Describe Statistical Summary
- 5)Check for Null Values
  - Replace Null values with median for int and float and mode for object type
  - verfying the null values

)identifying and removing duplicate values

- Identify total number of duplicated values
- Dropping all duplicate values



- Verifying duplicates are any
- 7) Encoding: Used label encoder
- 8) Evaluating a classification model
  - Dividing data into Input X variables and Target Y variable.
  - Y with only 'is canceled' feature and X with the remaining features.
- 9)Applied following Algorithms to find best model
  - logistic regression
  - KNN
  - SVM(Linear kernel)
  - Naive Bayes
  - Dession Tree
  - Bagging Classifier

### Steps done

10)Classification report and cofusion matrix for every model



Logistic Regression

| Classification Report |         |        |          |         |  |
|-----------------------|---------|--------|----------|---------|--|
| pr                    | ecision | recall | f1-score | support |  |
|                       |         |        |          |         |  |
| 1                     | 1.00    | 0.96   | 0.98     | 6026    |  |
| 0                     | 0.98    | 1.00   | 0.99     | 15819   |  |
|                       |         |        |          |         |  |
| accuracy              |         |        | 0.99     | 21845   |  |
| macro avg             | 0.99    | 0.98   | 0.99     | 21845   |  |
| weighted avg          | 0.99    | 0.99   | 0.99     | 21845   |  |
|                       |         |        |          |         |  |



KNN

| Classification                        | Report<br>precision | recall       | f1-score             | support                 |
|---------------------------------------|---------------------|--------------|----------------------|-------------------------|
| 1<br>0                                | 0.79<br>0.86        | 0.59<br>0.94 | 0.68<br>0.90         | 6026<br>15819           |
| accuracy<br>macro avg<br>weighted avg | 0.83<br>0.84        | 0.77<br>0.85 | 0.85<br>0.79<br>0.84 | 21845<br>21845<br>21845 |



SVM-Linear Kernel

| Classification Report |           |        |          |         |  |
|-----------------------|-----------|--------|----------|---------|--|
|                       | precision | recall | f1-score | support |  |
|                       |           |        |          |         |  |
| 1                     | 1.00      | 0.96   | 0.98     | 6026    |  |
| 0                     | 0.98      | 1.00   | 0.99     | 15819   |  |
|                       |           |        |          |         |  |
| accuracy              |           |        | 0.99     | 21845   |  |
| macro avg             | 0.99      | 0.98   | 0.99     | 21845   |  |
| weighted avg          | 0.99      | 0.99   | 0.99     | 21845   |  |
|                       |           |        |          |         |  |



Naive Bayes

| Classification | on Report |        |          |         |
|----------------|-----------|--------|----------|---------|
|                | precision | recall | f1-score | support |
|                |           |        |          |         |
| 1              | 0.91      | 1.00   | 0.95     | 6026    |
| 0              | 1.00      | 0.96   | 0.98     | 15819   |
|                |           |        |          |         |
| accuracy       |           |        | 0.97     | 21845   |
| macro avg      | 0.95      | 0.98   | 0.97     | 21845   |
| weighted avg   | 0.97      | 0.97   | 0.97     | 21845   |



Decision Tree with

criterion = 'gini', max\_depth = 1
Classification Report after training:

| Classification R | eport   |        |          |         |
|------------------|---------|--------|----------|---------|
| pr               | ecision | recall | f1-score | support |
| 1                | 1.00    | 0.96   | 0.98     | 6026    |
| 0                | 0.98    | 1.00   | 0.99     | 15819   |
|                  |         |        |          |         |
| accuracy         |         |        | 0.99     | 21845   |
| macro avg        | 0.99    | 0.98   | 0.99     | 21845   |
| weighted avg     | 0.99    | 0.99   | 0.99     | 21845   |
|                  |         |        |          |         |



## Choosen Model

Bagging Classifier Classification Report after training:

| Classificati                          | ion Report<br>precision | recall       | f1-score             | support                 |
|---------------------------------------|-------------------------|--------------|----------------------|-------------------------|
| -                                     | 1.00<br>1.00            |              | 1.00<br>1.00         | 6026<br>15819           |
| accuracy<br>macro ave<br>weighted ave | 1.00                    | 1.00<br>1.00 | 1.00<br>1.00<br>1.00 | 21845<br>21845<br>21845 |





#### Conclusion

- In Bagging, each individual trees are independent of each other because they consider different subset of features and samples to predict a model.
- In this model n\_estimators as 150 with default base\_estimator and random\_state=0 are used.
- From, all the evaluation with accuracy score and confusion matrix we conclude with bagging classifier we got the best model which gives 100% accuracy.

Thank You