Reinforcement Learning based Resource Management for Fog Computing Environment

Literature Review, Challenges, and Open Issues

Alunos:

Gabriel Freitas Willig Luis Henrique Teodoro Lopes

Fog Computing

- Crescente da IoT.
- Trazer recursos para borda a fim de reduzir latência
- Elementos: Gateways, hubs, roteadores, VM's, switches, drones, carros e etc...
- Ambiente complexo, dinâmico e com recursos heterogêneos

Tipos

- Centralizada
 - Possui um controller e um conjunto de nodes
- Hierárquica
 - Master-slave
 - Federation (Resource sharing)
- Distribuída

 - Alocação de recursos é feita de forma distribuída Fogs possuem uma tabela de recursos de cada fog vizinha

Universidadeque**Transforma**

Fog Computing

Tabela de recursos

Mantém informações de CPU, Memória, RTT (Round-trip time), W (tempo de espera da fila) e f (frequência de clock)

Tarefa

k = (Ak, Bk) : A (Vetor de características da entrada), B (Vetor de recursos necessários)

Desafios

- Compartilhamento de recurso
- Escalonamento de tarefas
 - Qual recurso e em qual período de tempo irá processar a task
- Atribuição de tarefas
 - Qual nó irá processar

Solução Atual

- Sem framework bem definido
- Dependência de informação antecipada das tarefas
- Algorítmos com heurística
- Em sua maior parte, atacam somente um objetivo (ex: Consumo de Energia, Delay, e utilização dos recursos

RESOURCE STATE TABLE OF NEIGHBORS OF FOG NODE F_1 .

Node ID	Fog specification & Resource Status				
	M	f	Processor	RTT	W
F_2	200	10	CPU	2.5	350.2
F_3	100	5	CPU & GPU	3.1	500
F_4	400	2.5	GPU	4.8	239.1

Reinforcement Learning

- Não é supervisionado nem não supervisionado
- Agentes aprendem um comportamento para tomada de decisão
- "Ciência da tomada de decisão"
- Se P e R são conhecidos
 - Princípio da Otimalidade de Bellman
 - Programação dinâmica. Resolução analítica de cada subproblema de otimização
- Raramente sabe-se a configuração do ambiente. Processo estocástico
 - MDP (Markovian Decision Process)
- Instância de RL: (S,A,R,P,γ)

TABLE II SYMBOLS USED IN THE WORK.

Symbol	Description Time step t		
t			
a_t	Action that agent can take at t		
s_t	State that agent is be in at t		
r_t	Immediate reward for agent to take a_t		
\boldsymbol{A}	Action space, $A = \{a_t\}$		
S	State space, $S = \{s_t\}$		
R	Return or cumulative reward		
Q	Q value (function)		
π	Policy		
γ	Discount factor		
\dot{P}	Transition probability		

 S_t

Reinforcement Learning

- Model-Free
 - Sem modelo prévio do ambiente
 - Simples e barato
 - Risco
 - Robôs
- Model-Based
 - Caro e Complexo
 - Modelo do ambiente
 - Carros autônomos

RL na Fog Computing

Três problemas principais: Resource Sharing, Task Scheduling e Task Offloading

Resource Sharing

- Pool de recursos à serem consumidos
 Caso F-RAN (Fog Radio Acess Network)
 - Modo de comunição de um UE (Fog, Cloud ou D2D)
 - On/Off states of Fog resources

Solução

- Recompensa: Negativo do consumo energético
- DRL (Deep Learning + Reinforcement Learning): Permite inputs não estruturados
- DRL dupla para tratar valores otimísticos de Q-value

RL na Fog Computing

Task Scheduling

Cenário IoT-fog-Cloud

Desafio de escolher onde uma task irá rodar: Camada da Fog, Cloud ou IoT

Schedulers (agentes) em GW (gateways) para alocação de recursos (VM)

Entrada: S = {s(t) = (uCPU , uMemory , uStorage)}

 $A = \{a \mid 1 \le a \le VM \}$ Em que é VM número total de VM's no caminho

Recompensa: Valor inverso ao delay de início da task Solução

- DDQL (Double DQL)
 - Dois modelos Q1 e Q2 para reduzir a probabilidade de ações ineficientes
 - Acelera processo de aprendizado

Desafios e Problemas em Aberto

Relacionados à RL:

- Nature of RL-based Algorithms: Necessidade de algoritmos eficientes e apropriados.
- Load Balancing: Dependência de políticas de exploração gera desequilíbrio.
- Task Scheduling: Heterogeneidade da capacidade dos dispositivos na camada de fog.
- Energy Efficiency Trade-off: Treinamento de modelos requer alto consumo de energia
- Real-time Responsivenes: Necessita tempo para processar recursos em larga escala.
- Security and Privacy: Capacidade limitada, necessidade de explorar utilização de blockchain
- Advance of Optimization Algorithms: Necessidade de reduzir a dimensão dos problemas para acelerar o processo de aprendizado.

Desafios e Problemas em Aberto

Relacionados a Fog Computing:

- Resource Allocation in F-RAN: O RL precisa otimizar alocação de recursos heterogêneos sob demandas de baixa latência.
- Power Consumption Optimization for F-RAN: DRL enfrenta dificuldades para equilibrar economia de energia com requisitos em tempo real do F-RAN
- RL for Ultra-dense Fog Network: Falta de soluções de RL para particionar redes de fog em grande escala de forma eficiente
- Reliability of Fog Networks: Nós dinâmicos e falhas de máquinas virtuais comprometem QoS - RL ignora confiabilidade
- Security and Trust in Fog Network: Mecanismos de autenticação e confiança em nós de fog aumentam a latência

Desafios e Problemas em Aberto

Computing Task Related Challenges

- Big Data Analytics: Necessidade de um modelo capaz de gerar resultados corretos e capaz de aprender de fontes heterogêneas.
- Data Fragmentation for Parallel Computing Exploitation: Busca pelo equilíbrio entre desempenho e tempo de treinamento, requer encontrar otimização para o número subconjuntos de dados.

Conclusão

- **Suporte a IoT:** Fog Computing integra recursos computacionais para aliviar a sobrecarga na nuvem e melhorar o desempenho do sistema.
- Ambiente Complexo: Heterogeneidade, mobilidade e mudanças dinâmicas dificultam a alocação eficiente de recursos.
- **Diversidade de Tarefas:** Diferentes características e demandas exigem soluções flexíveis.
- Papel do RL: Utilização para otimizar decisões em compartilhamento, escalonamento e offloading de tarefas, apesar dos desafios e incertezas.
- Limitações dos Algoritmos Atuais: Muitos algoritmos heurísticos não conseguem se adaptar de forma eficaz às incertezas da camada de Fog.
- **Desafios e Questões em Aberto:** Necessidade de explorar e solucionar diversos pontos a fim de encontrar uma solução mais eficiente.

Obrigado!

Av. Sete de Setembro, 3165 Rebouças 80230-901 Curitiba PR Brasil +55 (41) 3310-4545

