Relatividad: Cuestionario 3

Tomás Ricardo Basile Álvarez 316617194

2 de julio de 2021

Pregunta 1

En clase estudiamos el fenómeno de la dilatación temporal. Para esto, consideramos dos sistemas de referencia inercailes O y O', tales que el segundo se mueve con velocidad 0 < v < 1 respecto al primero. Nuestro resultado final fue:

$$\Delta t = \frac{\Delta t'}{\sqrt{1 - v^2}}$$

al medir el intervalo de tiempo que hay entre el origen y el evento B, ¿Cuál de los dos intervalos de tiempo es mayor y por qué? De ahí que se diga que O concluye que el tiempo O' se dilata.

Como $0 < v < 1 \Rightarrow 0 < v^2 < 1$. Luego, si multiplicamos todo por -1, se voltean las desigualdades: $0 > -v^2 > -1$. Luego sumamos 1 a todos los elementos, $1 > 1 - v^2 > 0$ Entonces, como 1 y $1 - v^2$ son ambos positivos, y $1 > 1 - v^2$, si sacamos el recíproco de ambos lados, se voltea la desigualdad: $\frac{1}{1} < \frac{1}{1 - v^2}$

Y como ambos números son positivos, podemos sacar la raíz cuadrada, que no voltea la desigualdad: $\sqrt{1} < \frac{1}{\sqrt{1-v^2}} \implies 1 < \frac{1}{\sqrt{1-v^2}}$

Entonces, el factor $\frac{1}{\sqrt{1-v^2}}$ es mayor que 1.

Por lo tanto, $\Delta t' < \frac{1}{\sqrt{1-v^2}} \Delta t'$

Pero esta última expresión es el tiempo Δt , entonces $\Delta t' < \Delta t$.

Es decir, al medir el intervalo de tiempo entre el origen y el evento B, el observador O mide un tiempo estrictamente mayor que el que mide el observador t'.

La expresión (1) del enunciado la dedujimos en clase, pero es fácil convencerse de que efectivamente $\Delta t' < \Delta t$. Pues el observador O' se ve a sí mismo en reposo entre los eventos A y B, por lo que su intervalo es puramente temporal $\Delta s'^2 = -\Delta t'^2$. Por otro lado, el observador

O ve que no sólo hay una diferencia temporal entre los eventos A y B, sino también una separación espacial Δx , por lo que su intervalo es $\Delta s^2 = -\Delta t^2 + \Delta x^2$

Es decir, el intervalo de O tiene sumado también un número positivo relacionado con una separación espacial $+\Delta x^2$.

Para que ambos intervalos sean iguales (que deben de serlo por la invariancia de intervalo), el número $-\Delta t^2$ tiene que ser más negativo que $-\Delta t'^2$ para compensar la suma de Δx^2 . Por lo que $\Delta t^2 > \Delta t'^2$

Pregunta 2

En clase también discutimos la posible existencia de una paradoja, pues O' también puede asegurar que el tiempo de O se dilata. Sin embargo, nos dimos cuenta de que no había paradoja alguna. Con eso en mente contesta

a) ¿Cuántos relojes usó O para concluir que el tiempo de O' se dilata?

En el diagrama de espacio tiempo vemos los eventos relevantes desde el punto de vista de O.

O usa dos relojes en reposo respecto a él más el reloj que lleva O' puesto para concluir que el tiempo de O' se dilata.

O Tiene un reloj en el origen del eje x y tiene otro reloj puesto en la posición a la que va a llegar O' al terminar su recorrido. Al inicio, ambos relojes se encuentran sincronizados según O, pues están en los eventos A y C respectivamente, que tienen coordenada t = 0.

Al final del viaje de O', O compara el tiempo que marca el reloj que estaba en C (que está sincronizado con su primer reloj) con el tiempo que mide O' en el viaje, y concluye que el tiempo de O' se dilató.

b) ¿Cuántos relojes usó O' para concluir que el tiempo de O se dilata? ¿Son los mismos relojes que en el inciso a)?

O' usa dos relojes en reposo respecto a él más un reloj que lleva O. Mostramos el diagrama con los eventos importantes según O':

O' ve que O se está moviendo con respecto a él a una velocidad v en la dirección de x' negativa.

O' tiene un reloj en la posición x'=0 y un reloj en la posición final que tendrá O al terminar de medir. Al inicio, estos relojes se encuentran en los eventos A, D y están sincronizados según O', ya que en este momento, ambos tienen coordenada temporal t'=0.

Después, cuando O' ve que O se detiene (evento E), O' mide el tiempo usando el reloj que tenía en D (que sabe que está sincronizado con su primer reloj) y compara con el tiempo que marca el reloj de O. Con ello concluye que el tiempo de O se dilata.

Como vemos, no son los mismos relojes que en a). Pues para empezar, en a) teníamos dos relojes sincronizados según O y un reloj que lleva O' mientras se mueve. Mientras que en el inciso b), tenemos dos relojes sincronizados según O' y un reloj que lleva O mientras se mueve respecto a O'. Los relojes no son los mismos.

c) ¿Cuál de los dos observadores está en lo correcto? ¿Por qué?

Ambos observadores están en lo correcto. Lo que pasa es que están midiendo cosas diferentes.

O mide el tiempo entre los eventos A y B usando dos relojes sincronizados según él y compara este tiempo con el tiempo que mide O' entre estos eventos.

Mientras que O' mide el tiempo entre los eventos A y E usando dos relojes sincronizados según él y compara este tiempo con el tiempo medido por O entre estos eventos.