

: 강의노트

소프트웨어와 공학 일반

❖ 학습안내

이번 시간의 학습내용과 학습목표를 확인해보세요.

■ 학습내용

- 소프트웨어 공학의 정의
- 중대한 시스템
- 가용성·신뢰성·안정성·보안성

■ 학습목표

- 소프트웨어 공학에 대하여 정의할 수 있다.
- 중대한 시스템에서 보장되어야 하는 특징을 설명할 수 있다.
- 가용성,신뢰성,안정성,보안성의 필요성과 특징을 설명할 수 있다.

[1] 소프트웨어 공학의 정의

- 1. 소프트웨어 공학의 정의
 - 소프트웨어
 - 포괄적 개념

- 응용프로그램, 운영체계 뿐만 아니라 이에 파생되는 문서를 모두 포함하는 개념
- 소프트웨어 공학
- 기업 정보시스템을 구성하고 있는 소프트웨어에 대하여 이를 잘 <mark>구축</mark>하고 <mark>운영</mark>함
- 기업의 변화요구에 맞춰 수정하고 폐기하는 방법을 배우는 것
- 1. 1. 소프트웨어 공학의 다양한 정의
- Fritz Bauer
 - 컴퓨터 하드웨어에서 신뢰성 있게 운영되는 소프트웨어를 경제성 있게 개발하기 위해 공학적 원리를 응용하고 확립시킨 이론
- ◆ Fritz Bauer, ANSI/IEEE
- 기계에서 <mark>안정적</mark>이고 <mark>효율적</mark>으로 작동하는 소프트웨어를 얻기 위한 <mark>올바른 공학</mark> 원칙을 수립하고 사용하는 것 (Fritz Bauer)
- 소프트웨어 개발, 운영, 유지보수 및 폐기 과정에 적용되는 체계적인 접근 방식 및 일련의 기술(ANSI/IEEE)

[1] 소프트웨어의 개요

- 1. 1. 소프트웨어 공학의 다양한 정의 (계속)
- Berry Boehm
 - 컴퓨터 프로그램을 <mark>설계, 개발, 운영</mark>, 유지보수에 관련된 문서를 작성하는 데 필요한 과학적인 지식의 실용화
- Richard R. Fairley
 - 전산학, 경제학, 경영과학 및 의사소통기술과 문제해결을 위한 <mark>공학적인 접근방안</mark>을 토대로 소프트웨어 개발에 임하는 신기술 체계
- ◈ 교수님의 쉬운 견해
 - 소프트웨어를 잘 만들고, 돌리고, 고치고, 버리는 방법을 배움
- 1. 2. 소프트웨어 공학에서 자주 물어보는 질문들
- ◈ 소프트웨어란 무엇인가?
 - 컴퓨터 프로그램과 그와 관계된 요구분석, 설계모델, 사용자 메뉴얼과 같은 문서를 포함
 - 소프트웨어 제품은 특정 고객을 위해 개발될 수도 있고, 일반적인 시장을 위해 개발될 수도 있음
 - 소프트웨어 제품은

일반적

- <mark>다양한 계층의 소비자를</mark> 위해 개발

(예) 엑셀 / 워드와 같은 PC 소프트웨어

주문형

- 특정 고객의 사양에 맞게 개발

새로운 소프트웨어는 새로 개발하거나,
 기존의 소프트웨어를 재사용하거나,
 일반적 소프트웨어를 재구성하여 만들어짐

[1] 소프트웨어의 개요

- 1. 2. 소프트웨어 공학에서 자주 물어보는 질문들(계속)
- ◆ 소프트웨어 공학이란 무엇인가?
 - 소프트웨어 생산과 연관된 모든 사항을 고려한 공학적인 규칙
 - 소프트웨어 엔지니어는 체계적이고 조직적인 접근 방법을 적용하여야 함
 - 직면한 문제, 개발에 따르는 제약과 자원을 활용하기 위해서 적절한 도구와 기술을 사용하여야 함
- 소프트웨어 공학과 컴퓨터과학의 차이는 무엇인가?

컴퓨터과학 이론

이론과 기초를 다룸

소프트웨어 공학

유용한 소프트웨어를 개발하기 위한 실용적인 면을 다룸

- 컴퓨터과학 이론은 소프트웨어 공학의 완전한 지지대 역할을 하기에 <mark>충분하지 못함</mark>
- 소프트웨어 공학과 시스템공학의 차이는 무엇인가?

시스템공학

개발 하드웨어, 소프트웨어, 공정공학을 포함하여 컴퓨터 기반 시스템의 모든 측면

소프트웨어 공학

시스템 내에서 데이터베이스, 응용, 소프트웨어 인프라, 제어의 개발에 관련된 <mark>프로세스의 일부분</mark>

- 시스템 엔지니어는 시스템의 응용, 요구 및 구조설계, 통합, 배치 등에 관여함
- ◈ 소프트웨어 프로세스란 무엇인가?
 - 소프트웨어의 개발 혹은 개선을 목적으로 하는 일련의 활동
 - 모든 소프트웨어 프로세스에서 사용되는 <mark>일반적인 활동</mark>

요구명세 시스템이 <mark>해야 할 것</mark>과 개발에 따르는 <mark>제약</mark>을 명시

개발 소프트웨어 시스템의 생산

검증 소프트웨어가 고객이 원하는 것인지를 검사

개선 변화요구를 수용하기 위해서 소프트웨어를 변경

[1] 소프트웨어의 개요

- 1. 2. 소프트웨어 공학에서 자주 물어보는 질문들(계속)
- ◈ 좋은 소프트웨어란 어떠한 속성을 가지는가?
 - 소프트웨어는 사용자가 필요한 기능과 성능을 제공하여야 하며 유지보수가 가능하고, 믿을 수 있으며 수용이 가능하여야 함

유지보수 가능성 소프트웨어 변경요구를 수용할 수 있어야 함

신뢰성 소프트웨어는 믿을 수 있어야 함

효율성 소프트웨어는 시스템 자원을 낭비하지 말아야 함

소프트웨어는 설계되어진 그대로 사용자가 받아들일 수 있어야 함

- 소프트웨어는 <mark>이해</mark>할 수 있고, <mark>사용가능</mark>하며, 다른 시스템과 <mark>호환</mark>이 되어야 함
- 소프트웨어 공학이 직면하고 있는 어려움은 무엇인가?
 - 이질성, 납품시기, 신뢰성

이질성 이질성의 플랫폼, 실행환경을 극복할 수 있는 기술의 개발이 필요

납품시기 빠른 시간 내에 소프트웨어를 납품할 수 있는 기술의 개발

신뢰성 사용자가 신뢰할 수 있는 소프트웨어를 개발할 수 있는 기술의 개발

[1] 소프트웨어 공학의 정의

- 2. 소프트웨어 위기
 - ◈ 소프트웨어 위기의 도래
 - 하드웨어 기술의 급속한 발전, 범용컴퓨터의 광범위한 보급,소프트웨어 엔지니어의 위기
 - 하드웨어 기술은 소프트웨어개발 능력의 발전속도보다 훨씬 빠름
 - 새로운 소프트웨어를 요구하는 시장의 수요를 감당할 수 없음
 - 기존 정보기술로 개발된 소프트웨어의 유지보수가 어려워짐
 - 인건비 상승, 우수한 소프트웨어의 부족, 생산성에 대한 위기의식
 - 소프트웨어 개발 프로젝트 진행의 어려움
 - 개발 예산 초과
 - 품질 저하
 - 개발 일정 지연
 - 생산성 저하

2. 1. 소프트웨어 위기의 원인

소프트웨어 엔지니어는 체계적이고 <mark>조직적인 접근 방법</mark>을 적용하여야 함

직면한 문제, 개발에 따르는 제약과 자원을 활용하기 위해서 적절한 도구와 기술을 사용하여야 함

[1] 소프트웨어의 개요

2. 1. 소프트웨어 위기의 원인(계속)

소프트웨어 특성에 대한 이해의 부족 소프트웨어 프로그래밍에만 치중하고 <mark>관리의 부재</mark>

소프트웨어 위기의 원인

"소프트웨어 개발자"

체계적이고 조직적인 접근 방법을 적용하여야 함

직면한 문제, 개발에 따르는 제약과 자원을 활용하기 위해서 적절한 도구와 기술을 사용하여야 함

소프트웨어 공학의 필요성

[1] 소프트웨어의 개요

3. 시스템 공학

- ◈ 시스템 공학의 정의
 - 시스템을 분석, 설계, 구현, 검증, 설치 그리고 유지보수 하는 것
 - 시스템이 사용되는 <mark>방법</mark>, 운영, 건설에 적용되는 제한과 시스템에 의해서 제공되는 서비스와 관련된 것
- ◈ 시스템 공학과 소프트웨어 공학

시스템 공학

개발 하드웨어, 소프트웨어, 공정공학을 포함하여 컴퓨터 기반 시스템의 모든 측면을 다룸

소프트웨어 공학

시스템 내에서 데이터베이스, 응용, 소프트웨어 인프라, 제어의 개발에 관련된 프로세스의 일부분

요즘은 "소프트웨어 공학"을 보다 넓은 시각으로 해석하여 소프트웨어 공학과 시스템 공학을 <mark>거의 유사한 개념</mark>으로 바라보며, 기업의 정보시스템을 다루는 관점에서는 더욱 동일한 부분으로 봄

3. 1. 시스템 공학의 부분요소

 서브 시스템 개발
 시스템 통합
 시스템 설치
 시스템 개선 (유지보수)
 시스템 해체

 서브 시스템 개발
 시스템 통합
 시스템 설치
 시스템 개선 (유지보수)
 시스템 해체

- 일반적으로 하드웨어, 소프트웨어, 통신 개발이 동시에 이루어짐
- 각각의 서브 시스템(단위 시스템)을 구현하고 시스템을 통합하여 전체 시스템이 만들어짐
- 어떤 시스템은 상업용 구매를 통해 구입할 수도 있음
- 구현 팀 사이에 의사소통이 중요한 이슈임

[1] 소프트웨어의 개요

3. 1. 시스템 공학의 부분요소(계속)

서브 시스템 개발

시스템 통합

시스템 설치

시스템 개선 (유지보수)

시스템 해체

- 하드웨어, 소프트웨어, 사람을 한 곳에 통합하여 시스템을 구성하는 과정
- 점진적으로 해결해서 서브 시스템이 한번에 하나씩 통합
- 서브 시스템 간의 인터페이스 문제는 이 단계에서 발견됨
- 시스템 컴포넌트 간에 조정되지 않은 납품 때문에 문제가 될 수도 있음

서브 시스템 개발

시스템 통합

시스템 설치

시스템 개선 (유지보수)

시스템 해체

- 시스템 완성 후, 시스템은 고객의 환경에 맞도록 설치되어야 함
- ✓ 다른 화경

☑ 새 시스템에 대한 저항

- ✓ 동시에 두 개의 시스템이 공존 ✓ 물리적 설치 문제
- ✓ 운영자 훈련 시간 필요

(예) 케이블 문제, 공간문제

서브 시스템 개발

시스템 통합

시스템 설치

시스템 개선 (유지보수)

시스템 해체

큰 시스템은 생명주기가 길기 때문에 변경요구를 수용할 수 있어야 함

[1] 소프트웨어의 개요

3. 1. 시스템 공학의 부분요소(계속)

서브 시스템 개발

시스템 통합

시스템 설치

시스템 개선 (유지보수)

시스템 해체

- 큰 시스템은 생명주기가 길기 때문에 변경요구를 수용할 수 있어야 함
- 개선을 하기 위하여 본질적으로 비용이 듦
 - ☑ 기술적 관점, 사업의 관점에서 변경이 용이한지 분석함
 - ☑ 각 서브 시스템이 변경에 대하여 정확하게 유지, 운영되는지 분석함
 - ☑ 기존 시스템이 가진 시스템 성격을 변경하기 어려움(완전 재개발)
 - ☑ 변경이 이루어지면 시스템 구조가 훼손됨
- 레거시 시스템(Legacy Systems)을 고려하여야 함 반드시 유지되어야 하는 기존의 시스템이 존재함

서브 시스템 개발

시스템 통합

시스템 설치

시스템 개선 (유지보수)

시스템 해체

- 유용하게 사용 후 시스템 사용 중지
- 환경을 오염시키는 유해물질을 제거
- 다른 시스템에서 사용할 수 있도록 데이터를 재구성하거나 변환될 수도 있음

[2] 중대한 시스템

1. 중대한 시스템의 정의

- 기업의 정보시스템 중 특히 기업활동의 영향이 큰 시스템
- 중대한 시스템은 모든 시스템 관련 활동에 있어서 1순위로 고려하여야 함
- 01 안전이 중대한 시스템(Safety-Critical Systems)
- 02 임무가 중대한 시스템(Mission-Critical Systems)
- 03 업무가 중대한 시스템(Business-Critical Systems)
- 04 보안이 중대한 시스템(Security -Critical Systems)

2. 중대한 시스템의 특성

◈ 중대한 시스템의 특징

비교적 일반적인 사항 대부분의 경우, 고장은 심각한 손해를 입히지 않음 중요한 경제적 손실, 물질적 피해, 혹은 사람의 생명에 위험이 될 수 있음

[2] 중대한 시스템

- 2. 중대한 시스템의 특성(계속)
 - ◈ 중대한 시스템의 특징(계속)
 - ◆ Dependability(신뢰성, 확실성)
 - 중대한 시스템의 가장 중요한 특징
 - 신뢰성과 확실성이 떨어지는 시스템으로 중대한 시스템을 운영한다면 고장(Fail)의 발생확률이 높음
 - ◈ 시스템의 고장으로 인해 수리하는 비용이 높음
 - 대부분의 중대한 시스템은 <mark>사람이 감시</mark>하고 <mark>제어</mark>하는 시스템
 - 중대한 시스템은 예상치 못한 상황을 복구할 수 있는 관리자가 필요
 - ◈ 고장 나는 경우

하드웨어 실패

설계 상의 실수, 부속품의 오류, 하드웨어의 수명

소프트웨어 실패

분석, 설계 혹은 구현시의 오류 가능성

관리자의 실수

운영 제도적인 보완책 강구

- 3. 중대한 시스템의 유형
 - ◈ 안전이 중대한 시스템(Safety-Critical Systems)
 - 시스템의 장애(문제)시 <mark>안전</mark>에 대한 위협이 높은 시스템
 - 장애 시 <mark>생명이나 환경에</mark> 큰 영향을 줌

[2] 중대한 시스템

3. 안전이 중대한 시스템 사례 - 화학공장 방재 시스템

화학공장 방재 시스템의 소프트웨어에 이상이 생겨 방재공장이 오동작

화학물질이 대기 중에 배출

소프트웨어 개발자 또는 운영자의 단순실수로 <mark>인명피해</mark> 발생

인슐린 공급 프로그램

혈액 내 혈당을 측정하는 센서 값에 따라 인슐린을 체내에 공급

프로그램 오류로 제시간에 공급하지 못함

환자 위독

- 3. 중대한 시스템의 유형(계속)
 - 임무가 중대한 시스템(Mission-Critical Systems)
 - 시스템의 장애(문제)시 <mark>임무에 대한 위협</mark>이 높은 시스템
 - 장애 시 <mark>중요한 목적</mark>을 달성하지 못하는 시스템

[2] 중대한 시스템

3. 임무가 중대한 시스템 사례 - 우주 통제 시스템

3. 임무가 중대한 시스템 사례 - 적기 추적 레이더 시스템

- 3. 중대한 시스템의 유형(계속)
 - ◈ 업무가 중대한 시스템(Business-Critical Systems)
 - 시스템의 장애(문제)시 (기업 등의)<mark>업무에 대한 위협</mark>이 높은 시스템
 - 장애 시 많은 <mark>금전적 손실을</mark> 입히는 시스템

[2] 중대한 시스템

3. 업무가 중대한 시스템 사례 - 은행의 예금 처리 시스템

3. 업무가 중대한 시스템 사례 - 증권 매매 시스템

- 3. 중대한 시스템의 유형(계속)
 - 보안이 중대한 시스템(Security-Critical Systems)
 - 시스템에 대한 <mark>보안(정보보호</mark>)이 중대한 시스템
 - 보안침해사고는 <mark>안전</mark>, <mark>임무, 업무</mark>에 모두 중대한 위협요소임
 - 보안요소는 모든 사항에 걸쳐있는 절단관심사(Cross-Concern)

[2] 중대한 시스템

- 3. 중대한 시스템의 유형(계속)
 - 보안이 중대한 시스템(Security-Critical Systems)

1 화학공장 방재시스템 Case

인슐린 공급 프로그램 Case

2 우주통제 시스템 Case

적기 추적 레이더 시스템 Case

3 은행의 예금 처리 시스템 Case

증권 매매 시스템 Case

앞에서 예시를 든 모든 시스템의 보안 침해사고 발생으로 소프트웨어가 오작동한다면 <mark>중대한 문제를 야기함</mark> 보안(정보보호)요소는 약방의 감초와 같은 요소

[3] 가용성 신뢰성 안정성 보안성

1. 시스템 확실성

중대한 시스템에서 가장 중요한 시스템 특성

사용자가 시스템에 대하여 신뢰할 수 있는 정도

사용자가 <u>생각한 대로 작동</u>

정상적인 경우에 고장이 나지 않음

사용성과 신뢰도는 다름

※ 사용할 수 있지만 믿을 수 없는 시스템도 있음

[3] 가용성 신뢰성 안정성 보안성

1. 1. 거래처리시스템(TPS: Transaction Processing System)(계속)

2. 가용성, 신뢰성

◈ 가용성(Availability)

[3] 가용성 신뢰성 안정성 보안성

- 2. 가용성, 신뢰성(계속)
 - 가용성(Availability)(계속)

2. 가용성 사례 - 게임 서버

[3] 가용성 신뢰성 안정성 보안성

- 2. 가용성, 신뢰성(계속)
 - ◈ 신뢰성
 - 주어진 목적을 위해 지정된 기간 동안 시스템이 고장이 안 날 확률
 - 빈번한 고장으로 시스템에 대한 신뢰를 할 수 없음
 - 소프트웨어가 작동한 결과가 신뢰를 할 수 없는 경우
- 2. 신뢰성 사례 시스템 고장이 빈번한 경우

서버가 비정상 정지하는 경우가 빈번히 발생 (서버실의 정전 및 전원의 불안정한 상황이 잦음)

사용자는 해당 회사의 정보시스템에 대하여 불신

전원공급문제(UPS, AVR등 고려)

2. 신뢰성 사례 - 소프트웨어가 잘 못 구현된 경우

[3] 가용성 신뢰성 안정성 보안성

- 3. 안정성, 보안성
 - ◆ 안정성
 - 시스템이 정상적이든 비정상적이든 시스템에 큰 손상이 없어야 함
 - 시스템의 사소한 문제요소가 전체 시스템의 문제를 발생시키는 경우안정성에 큰 문제
- 3. 안정성 사례 은행 시스템의 오류

- 3. 안정성, 보안성(계속)
 - ◈ 보안성
 - 침해사고나 외부의 공격으로부터 시스템을 <mark>보호</mark>하는 능력
 - 보안은 가용성, 신뢰성, 안전성보다 <mark>기본 요건</mark>
 - 보안성은 언급하지 않아도 당연시 지켜야 되는 기초적 요건

[3] 가용성 신뢰성 안정성 보안성

3. 보안성 사례 - 관리적 보안에 치명적 오류가 있는 경우

회사의 인사팀장만 조회 및 변경이 가능하도록 권한관리가 되는 연봉조정프로그램

인사팀장 책상에 메모되어 있는 ID와 Password를 가지고 일반사원이 들어가 연봉을 조정

관리적 보안의 치명적 오류

3. 보안성 사례 - 보안성이 결여되어 있는 경우

고객정보를 회사직원 누구나 조회 가능하고 수 천명의 명단을 복사 가능하게 구현 어떤 직원이 고객 개인정보를 손쉽게 취득하여 매매 누구인지 찾지도 못함 보안성 결여

누가 해당 화면을 조회하였는지 조회로그를 남기며, 캡쳐 등이 불가능하도록 구현하여야 함

❖ 핵심정리

1. 소프트웨어 공학의 정의

- 기업 정보시스템을 구성하고 있는 소프트웨어에 대하여 이를 잘 구축하고 운영하며,
 기업의 변화요구에 맞춰 수정하고 폐기하는 방법을 배우는 것
- 소프트웨어 공학에 대한 정의는 다양한 견해가 있음

2. 중대한 시스템

- 기업의 정보시스템 중 특히 기업활동의 영향이 큰 시스템
- 유형으로는 안전이 중대한 시스템, 임무가 중대한 시스템, 업무가 중대한 시스템, 보안이 중대한 시스템이 있음

3. 가용성, 신뢰성, 안정성, 보안성

- 시스템 확실성은 중대한 시스템에서 가장 중요한 시스템 특성임
- 시스템 확실성을 위하여 가용성, 신뢰성, 안전성, 보안성이 필요함