Aladynoulli: A Dynamic Model for Disease Progression Understanding Cardiovascular Risk Through Temporal Pattern Analysis

Sarah Urbut

American Heart Association Scientific Sessions 2024

October 31, 2024

Outline

- Model Overview
- Mathematical Framework
- Clinical Example
- Model Benefits
- Future Directions

The Big Picture

Key Ideas

- Individual risk profiles evolve over time
- Diseases share underlying risk factors
- Genetic factors influence progression
- Time-varying disease relationships

Clinical Relevance

- Personalized risk trajectories
- Natural disease progression
- Multiple disease interactions
- Treatment planning implications

Individual Risk Profiles (λ)

Individual-Specific Topic Scores

For each individual i, topic k, and time t:

$$\lambda_{ik}(t) \sim \mathcal{GP}(\Gamma_k^T g_i, \Sigma_k)$$

Components:

- g_i: Genetic covariates
- Γ_k : Genetic effects
- Σ_k : Temporal covariance

Clinical Meaning:

- Personal trajectories
- Genetic influence
- Smooth evolution

Topic Proportions (θ)

From Scores to Proportions

Via softmax transformation:

$$heta_{ik}(t) = rac{\exp(\lambda_{ik}(t))}{\sum_{j=1}^K \exp(\lambda_{ij}(t))}$$

Properties:

- $\theta_{ik}(t) \in (0,1)$
- $\sum_{k} \theta_{ik}(t) = 1$
- Smooth changes

Interpretation:

- Relative risk weights
- Competing factors
- Dynamic profiles

Disease Topic Loadings (ϕ)

Disease-Topic Relationships

For each disease d and topic k:

$$\phi_{kd}(t) \sim \mathcal{GP}(\mu_d, \Omega_k)$$

Components:

- μ_d : Base disease risk
- Ω_k : Topic covariance

Clinical Meaning:

- Topic-disease links
- Disease patterns
- Time variation

Disease Probabilities (π)

Individual Disease Risk

Probability for individual i, disease d, at time t:

$$\pi_{id}(t) = \sum_{k=1}^K heta_{ik}(t) \cdot \operatorname{sigmoid}(\phi_{kd}(t))$$

Components:

- Personal risk profile
- Topic contributions
- Temporal dynamics

Clinical Use:

- Risk prediction
- Trajectory planning
- Intervention timing

Cardiovascular Risk Profiles

Three Key Risk Domains

- Metabolic Risk
 - Strong diabetes link
 - Gradual vascular impact
- Vascular Risk
 - Primary CAD driver
 - Early HTN effects
- Inflammatory Risk
 - Accelerated progression
 - Late complications

Disease Progression Patterns

Temporal Sequence

- Early Stage
 - Hypertension
 - Metabolic changes
- Mid Stage
 - Type 2 Diabetes
 - Early CAD signs
- Late Stage
 - Clinical CAD
 - Heart Failure

Key Advantages

Clinical Strengths:

- Personalization
- Natural progression
- Multiple diseases
- Interpretable

Practical Impact

- Better risk stratification
- Informed treatment planning
- Early intervention opportunities

Statistical Power:

- Temporal smoothing
- Uncertainty measures
- Principled inference

Next Steps

Clinical Applications

- Risk stratification tools
- Treatment optimization
- Prevention strategies

Model Extensions

- Treatment effects
- Environmental factors
- Additional outcomes
- Real-world validation

Problem 1: Topics Need to Evolve

Standard topic models assume fixed disease relationships within topics, but disease associations change over disease progression

Problem 2: Individuals Need to Evolve

Topic models struggle with individual-specific temporal evolution and varying disease sequences