Notes for M.A. Armstrong's Groups and Symmetry

Christian Stigen Larsen

March 2016

1 Symmetries of the Tetrahedron

Symmetry group Captures the rules of how symmetries combine for a given object.

Order of operations In the $product^* xyz$, do z first, then y and finally x. If order doesn't matter in G, it's commutative (or **abelian**). Remember to label geometric vertices.

2 Axioms

Group Set G with *multiplication* (addition, rotation, etc.) satisfying

- associativity, i.e. (xy)z = x(yz)
- identity element $e \in G$ such that xe = x = ex
- inverse $e \in G$ such that $x^{-1}x = e = xx^{-1}$

Properties common to all groups

- The identify element of a group is unique.
- The inverse of each element of a group is unique.

3 Numbers

Addition of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$

- Identity is zero
- \bullet -x is the inverse

Multiplication

• For $\mathbb{Q} - \{0\}$, $\mathbb{Q}^{\mathbf{pos}}$, $\mathbb{R} - \{0\}$, $\mathbb{R}^{\mathbf{pos}}$, $\{+1, -1\}$, $\mathbb{C} - \{0\}$, \mathcal{C}^{\dagger} , $\{\pm 1, \pm i\}$: e = 1 and $x^{-1} = 1/x$.

 \mathbb{Z} under addition modulus n $e = 0, x^{-1} = n - x$ for $x \neq 0$, finite *abelian* group and denoted \mathbb{Z}_n .

 \mathbb{Z} under multiplication modulus n Requires n to be prime.

4 Dihedral Groups

When $n \geqslant 3$ we can manufacture a plate whish has n equal sides. These are the non-commutative dihedral rotational symmetry groups D_n . E.g. $D_3 = \{e, r, r^2, s, rs, r^2s\}$. $x^mx^n = x^{m+n}$ and $(x^m)^n = x^{mn}$ provided we interpret $x^0 = e$. For any multiplication table, each element in G appears only once in every given column or row.

$$r^n = e, s^2 = e, sr = r^{n-1}s, r^{n-1} = r^{-1}, \text{ etc.}$$

Each element is of form r^a , $r^a s$ where $0 \le a \le n-1$.

For $k=a+_n b$, $r^ar^b=r^k$ and $r^a(r^bs)=r^ks$. For $l=a+_n (n-b)$, $(r^as)r^b=r^ls$ and $(r^as)(r^bs)=r^l$ — thus r and s generate D_n .

The **order** |G| is the number of elements in the group. If $x^n = e$, then the *element* x has *finite* order n when n is the smallest such n.

5 Subgroups and Generators

A *subgroup* of G is a subset of G which itself forms a group under the multiplication of G. For H to be a

^{*}Rotations, flips, multiplications, additions, etc. Same order as functional composition.

[†]Complex numbers of modulus 1.

subgroup of G, H < G:

- $xy \in G$ for any $x, y \in H$
- $e_H \in G$
- For any $x \in H$, $x^{-1} \in G$
- Associativity in G implies the same for H.

Subgroup generated by x, or $\langle x \rangle$ For an element x in G, the set of all x^n is a subgroup of G (remember $x^0 = e$). Finite order m means $x^0 = e, x^1, \ldots, x^{m-1}$. So order of $x \in G$ is precisely the order of $\langle x \rangle$. If $\langle x \rangle = G$, i.e., generates all of G, then G is a *cyclic group*.

Subgroup generated by X If $X < G^{\ddagger}$ and, for example, r, s, r^2, sr (called *words* of X).

Theorems

- (5.1) A non-empty subset H of a group G is a subgroup of G if and only if xy^{-1} belongs to H whenever x and y belong to H.
- (5.2) The intersection of two subgroups of a group is itself a subgroup.
- (5.3) Every subgroup of \mathbb{Z} is cyclic. Every subgroup of a cyclic group is cyclic.

6 Permutations

A permutation is a bijection[§] from a set X to itself (e.g., replace all 3s with 1s). The collection of all permutations of X forms a group S_x under composition of functions (who each perform one specific permutation). When X consists of the first n positive integers, we get the **symmetric group** S_n of degree n and order n!. S_3 is not abelian

 $(a_1 a_2 \dots a_k)$ is called a **cyclic permutation**, sending a_1 to a_2, \dots, a_k to a_1 . Its length is k and a cyclic permutation of length k is called a **k-cycle**. A 2-cycle is called a **transposition**. Every element of S_n can be written as many such **disjoint**, meaning no integer is moved by

more than one of them. Therefore they are *commutative*.

A few tricks

- Each *element* of S_n can be written as a product of cyclic permutations, and any cyclic permutation can be written as a product of transpositions: $(a_1a_2...a_k) = (a_1a_k)...(a_1a_3)(a_1)(a_2)$. Therefore, each *element* of S_n can be written as a product of transpositions.
- (ab) = (1a)(1b)(1a)
- $(1k) = (k-1, k) \dots (34)(23)(12)(23)(34) \dots (k-1, k)$

Theorems

- (6.1) The transpositions in S_n together generate S_n .
- **(6.2a)** The transpositions $(12), (13), \ldots, (1n)$ together generate S_n .
- **(6.2b)** The transpositions $(12), (23), \ldots, (n-1, n)$ together generate S_n .
- (6.3) The transposition (12) and the n-cycle $(12 \dots n)$ together generate S_n .

Any element α of S_n can be written as a product of transpositions in many different ways. But the number of transpositions is always even or always odd. If α can be written as the product of an even number of transpositions, then its sign must be +1; for odd, it is -1. Therefore, by the first trick above, a cyclic permutation is even precisely when its length is odd.

Theorems

- (6.4) The even permutations in S_n form a subgroup of order n!/2 called the **alternating group** A_n of degree n.
- **(6.5)** For $n \ge 3$ the 3-cycles generate A_n .

7 Isomorphisms

If two multiplication tables have corresponding elements and products, they are *isomorphic*.

 $^{^{\}ddagger}X$ is a subgroup of G.

[§]A one-to-one mapping between the elements of two sets, meaning you can always go backwards as well.

Two groups G and G' are **isomorphic** if there is a bijection ϕ from G to G' which satisfies $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$. The function ϕ is called an **isomorphism** between G and G'. This is written $G \cong G'$.

Notes

- G and G' have the same order.
- $\phi(x)^{-1} = \phi(x^{-1})$ for all $x \in G$.
- If G is abelian, then so is G'.
- An isomorphism preserves the order of each element.
- If $\phi \colon G \to G'$ and $\psi \colon G' \to G''$ are both isomorphisms, then the composition $\psi \phi \colon G \to G''$ is also an isomorphism.

Examples

- $\phi \colon \mathbb{R} \to \mathbb{R}^{pos}$ by $\phi(x) = e^x$ and $\phi(x+y) = e^{x+y} = e^x e^y = \phi(x)\phi(y)$.
- The non-abelian, rotational group G for the tetrahedron is isomorphic to A_4 .
- Any infinite cyclic group G is isomorphic to \mathbb{Z} by $\phi(x^m) = m$ and $\phi(x^m x^n) = \phi(x^{m+n}) = m + n = \phi(x^m) + \phi(x^n)$.
- Any finite cyclic group of order n is isomorphic to \mathbb{Z}_n by $\phi(x^m) = m \pmod{n}$.
- The numbers 1, -1, i, -i form a group under complex multiplication. It is cyclic, and i, -i are both generators. It gives two isomorphisms between this group and \mathbb{Z}_4 .
- D_3 and S_3 are isomorphic.
- There is no isomorphism between \mathbb{Q} and \mathbb{Q}^{pos} .

8 Plato's Solids and Cayley's Theorem

Remember: A surjection between two finite sets which have the same number of elements must be a bijection.

- The rotational symmetry group of the tetrahedron is isomorphic to A_4 .
- The cube and octehedron both have rotational symmetry groups which are isomorphic to S_4 .
- The dodecahedron and icosahedron both have rotational symmetry groups which are isomorphic to
 A₅.
- If two solids are *dual* to one another, their rotational symmetry groups are isomorphic.

Theorems *Every* group is isomorphic to a subgroup of permutations:

- (8.1) Cayley's Theorem. Let G be a group, then G is isomorphic to a subgroup of S_G .
- **(8.2)** If G is a finite group of order n, then G is isomorphic to a subgroup of S_n .

9 Matrix Groups

The set of all invertible $n \times n$ matrices with real numbers as entries forms a group under matrix multiplication: Matrix multiplication is associative, the $n \times n$ identity matrix $I_n = \epsilon$ and the inverse of AB is $B^{-1}A^{-1}$. This group is called the *General Linear Group*, GL_n .

Matrix multiplication is not commutative for $n \ge 2$, so we have a family of *infinite non-abelian* groups GL_2 , GL_3 , etc. For n=1 the single entry must be a non-zero number (the matrix is invertible), and reduces to ordinary multiplication of numbers. Hence, $GL_1 \cong \mathbb{R} - \{0\}$.

 AB^{-1} is orthogonal and by theorem (5.1) the collection of all $n \times n$ orthogonal matrices is a subgroup of GL_n . This subgroup is called the *Orthogonal Group*, O_n . Those elements of O_n which have determinant equal to +1 form a subgroup of O_n called the *Special Orthogonal Group*, SO_n .

No further notes here, at the moment.

10 Products

The *direct product* $G \times H$ of two groups G and H is constructed by (g,h)(g',h') = (gg',hh'), where

 $g,g'\in G$ and $h,h'\in H$. Thus, $(gg',hh')\in G\times H$ and $G\times H$ is a group. The correspondence $(g,h)\to (h,g)$ means that $G\times H$ is isomorphic to $H\times G$. Unless either of G or H are of infinite order, $|G\times H|=|G|\cdot |H|$. If both G and H are abelian, so is $G\times H$. In reverse, if $G\times H$ is abelian, so are both G and H.

E.g., the elements of $\mathbb{Z}_2 \times \mathbb{Z}_3$ are $\{0,1\} \times \{0,1,2\} = \{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\}$ and their elements are combined by (x,y)+(x',y')=(x+2x',y+3y'). We follow the convention of using + for the group structure whenever we have products of cyclic groups. As continually adding (1,1) to itself, we can fill out the whole group, and therefore $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic and isomorphic to \mathbb{Z}_6 .

Klein's group $\mathbb{Z}_2 \times \mathbb{Z}_2$ is non-cyclic and isomorphic to the group of plane symmetries of a chessboard.

We write \mathbb{R}^n for the direct product of n copies of \mathbb{R} .

Theorem (10.1) $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if the highest common factor of m and n is 1.

Theorem (10.2) If H and K are subgroups of G for which HK = G, if they have only the identity element in common, and if every element of H commutes with every element of K, then G is isomorphic to $H \times K$.

The linear transformation $f_J \colon \mathbb{R}^3 \to \mathbb{R}^3$ sends each vector x to -x and is called *central inversion*.

Some important notions at the end of the chapter have been left out, currently.

11 Lagrange's Theorem

Let H < G and break it up as the union of the k + 1 pieces $H, q_1 H, \ldots, q_k H$, then |G| = (k + 1)|H|.

(11.1) The order of a subgroup of a finite group is always a divisor of the order of the group.

Note: The opposite is not true; the existence of a divisor m of |G| does *not* imply the existence of a subgroup of G.

Corrolaries

- (11.2) The order of every element of G is a divisor of the order of G.
- (11.3) If G has prime order, then G is cyclic.
- (11.4) If x is an element of G then $x^{|G|} = e$.
- (11.5) Euler's Theorem. If the highest common factor of x and n is 1, then $x^{\phi(n)}$ is congruent to 1 modulo n.
- (11.6) Fermat's Little Theorem. If p is prime and if x is not a multiple of p, then x^{p-1} is congruent to 1 modulo p.

12 Partitions

Let X be a set and let \mathscr{R} be a subset of the cartesian product $X \times X$. Given two points x and y of X, we say that x is **related** to y if the ordered pair (x,y) happen to lie in \mathscr{R} . If (a) each $x \in X$ is related to itself, (b) if x is related to y, then y is related to x, for any two points $x,y \in X$, (c) if x is related to y and if y is related to y, then y is related to y and if y is related to y, then y is related to y and if y is related to y, then y is related to y and if y is related to y, then y is related to y and equivalence relation on y. For each y is an equivalence relation of all points which are related to it is written y and called the **equivalence class** of y

Theorems

(12.1) $\mathcal{R}(x) = \mathcal{R}(y)$ whenever $(x, y) \in \mathcal{R}$.