

>>>>>

Table of contents

~~~

1 Introduction

12 Methodology

03 Training & Testing

Meb Demo

 $\square \square \times$

>>>>>

Table of contents

~~~

1 Future Work

O6 Conclusion

Purpose

Why NER?

••••

Data Analysis

Information Retrieval

Sentiment Analysis

NER is good at extracting vital information from unstructured text. Many application on Natural Language Processing.

Maximum Entropy

Utilizes a <u>probabilistic framework</u> that predicts class labels (PERSON or not) based on the statistical properties of features extracted from text.

Feature Engineering

Feature	What it does ?	Why?
1) ALLCAP	Checks if the entire word is in uppercase.	Words fully in uppercase are often acronyms or headings, rarely person names, helping reduce false positives.
2) Lowercase	Saturn is a gas giant composed mostly of hydrogen and helium	Person names usually start with a capital letter; full lowercase often indicates common nouns or other parts of speech.
3) After Symbol	Neptune is the farthest planet from the Sun	Names often follow certain punctuations in written text, indicating a new sentence or clause where names are more likely to appear.

Feature Engineering

Feature	What it does ?	Why?
4) Number	Identifies presence of numerical characters in a word.	Numerical characters in a word typically signify that it is not a person name, useful for filtering out numerical data or mixed content.
5) Pretitle	Checks if the previous word is a common title or honorific.	Titles precede names, providing a strong contextual hint that the following word is likely a person name, thus enhancing recognition accuracy.

How do we do?

>>>>>

	X

Result (Training)

>>>>>>

• • • •

Iteration	Log Likelihood	Final Accuracy
5	-0.04436	0.981
20	-0.01954	0.998
25	-0.01670	0.999
30	-0.01464	0.999

Result (Testing)

Iteration	F1 Score	Accuracy	Recall	Precision
5	0.9219	0.9739	0.7924	0.9780
20	0.9657	0.9871	0.9002	0.9862
25	0.9657	0.9871	0.9008	0.9858
30	0.9660	0.9872	0.9019	0.9859

Fairly good performance to identify person's name.

Words	P (PERSON)	P(O)	
EU	0.0119	*0.9881	
rejects	0.0001	*0.9999	
German	0.0453	*0.9547	
call	0.0001	*0.9999	
to	0.0001	*0.9999	
boycott	0.0001	*0.9999	
British	0.0464	*0.9536	
lamb	0.0001	*0.9999	
	0.0000	*1.0000	
Peter	*0.8437	0.1563	
Blackburn	*0.5750	0.4250	
BRUSSELS	0.2250	*0.7750	
1996-08-22	0.0000	*1.0000	
The	0.0542	*0.9458	
European	0.0446	*0.9554	
Commission	0.0450	*0.9550	
said	0.0001	*0.9999	
on	0.0001	*0.9999	
Thursday	0.0437	*0.9563	
it	0.0001	*0.9999	

During show sample stage, model got every single one correct!

Overview of Web Application

Demonstrates the **practical application** of the enhanced NER model, allowing users to input text and see the named entity recognition results in real time.

Built using **Flask**, a lightweight **Python** web framework, which facilitates the creation of web applications quickly and with minimal code.

-Technology Used

Functionality

~~~

>>>>>

Users can type or paste text into a text box.

Application processes the text using the trained NER model.

The results
display each word
tagged
accordingly as
'PERSON' or 'O' for
non-person
entities.

Live Demo

Input the sentence for tagging here:

Jack and Michael are good friends

Submit Clear

This is the input sentence in web application

Live Demo

>>>>>

• • • •

This is the output in web application

Live Demo

• • • • •

Tagging result:

Here 's random sentence that does not have person name .

This is the input sentence without person name in web application

Areas of Improvement

Explore the use of <u>neural networks</u>, such as LSTM or BERT models, to capture deeper contextual meanings and improve accuracy.

Enhance the <u>web application'</u>s interface to support more interactive features.

2) User Interface Enhancements

Extend the model to recognize more entity types beyond person names, such as <u>locations</u>, organizations, and dates.

3) Expand Entity Types

Project Recap

- Objective Achieved: Successfully enhanced a Named Entity Recognition system using the Maximum Entropy Model to accurately identify person names in newswire texts.
- <u>Key Innovations:</u> Implemented advanced features like ALLCAP, lowercase, after symbol, number, and pretitle, significantly improving the model's accuracy and reliability.

Major Accomplishments

- Improved Performance: Demonstrated through rigorous training and testing, the enhanced model shows superior performance metrics compared to the baseline, particularly in precision and recall.
- Practical Application: Developed a user-friendly web application that showcases the model's real-world utility by allowing users to interactively test the NER system.

