Schutions of Homework 3

Q1

 $yRK, 2RK, \kappa Ry, \kappa R2, R, \Gamma =) \Lambda$ $\kappa Ry, \kappa R2, R, \Gamma =) \Lambda$

where label k is fresh

yRK, 2RK, nRy, nR2, 2: □h, K:h=) y: ◇h, K:h yRK, 2RK, nRy, nR2, 2: □h, K:h=) y: ◇h yRK, 2RK, xRy, xR2, 2: 1 => y: 1) h comp nRy, nR2, 2:口和 => y:()加 $\frac{\chi(Ry, \chi(x)) + \chi(x) + \chi(x)}{\chi(x) + \chi(x)} = \frac{\chi(x) + \chi(x)}{\chi(x) + \chi(x)} + \frac{\chi(x)}{\chi(x)} + \frac{$

Q2.

Rule 12 is devivorble:

RR2, RRy, yR2, T=)A nR2, 2Ry, yRy, yRx, xRx, nRy, yR2, T=)A 2Ry yRy, yRx, xRx, xRx, xRy, yR2, T=) A $\frac{yRy, yRx, xRx, xRy, yR2, \Gamma =)\Delta}{yRx, xRx, xRx, xRy, yR2, \Gamma =)\Delta}$ xRx, xRy, yR2, T=) A n nRy, yR2, [=) [

Derivation of $\Box A \rightarrow \Box \Box A$ (To be precise, the topmost sequent is not an impance of init but it is derivable! I should have written the axiom as $\Box A \rightarrow \Box \Box A$)

ini t
RenR2,2Ry,yRy,xRx,xRx,nRy,yR2,x:DA,2:A=)2:A
nR2,2Ry,yRy,xRx,xRx,nRy,yR2,x:DA=) 2:A
2Ry, yRy, yRx, xRx, nRy, yR2, x: DA =) 2: A euc
y Ry, y Rx, x Rx, n Ry, y R2, x: DA =) 2: A
yRx, xRx, nRy, yR2, x: DA =) 2: A
xRx, nRy, yR2, x: DA =) 2: A
nRy, yR2, x: DA =) 2: A
Ry, r: DA =) y: DA DR
$\frac{\partial}{\partial x: \Box A} = \mathcal{K}: \Box \Box A \longrightarrow \mathcal{R}$
=) x: [] A -) x: [] [] A

Q3 Dérivoition of rRy, R, y:A=) D', 2: DB

In the substitution, we need to choose a vericable K which closes not occar in Γ or Δ' , and which is different from y and x (otherwise we cannot apply the IH, nor we can apply rule $\Box R$.

QL

$$\frac{yR2, xRy, xR2, \Gamma =) \Delta}{yR2, xR2, yRx, xRy, xR2, \Gamma =) \Delta} tr$$

$$\frac{xR2, yRx, xRy, xR2, \Gamma =) \Delta}{yRx, xRy, xR2, \Gamma =) \Delta} sym$$

$$\frac{yRx, xRy, xR2, \Gamma =) \Delta}{xRy, xR2, \Gamma =) \Delta}$$

