装订线 答题时不要超过此线

中国科学技术大学数学科学学院 2022学年秋季学期考试试卷

课程名	称 泛	泛函分析(H)				课程编号001706.01				
考试时间	1 2	2023年2月23日				考试形式 _			刊卷	
姓名_		学号			学院					
	题号	-	=	Ξ	四	五	六	总分		
	得分									

- 一. (10 分) 在中科大东区 USTC1958 咖啡厅的一张桌子上平摊着一张合肥市的精确地图,证明地图上恰有一个点是正好位于它所代表的点上。
- 二. (15 分) 设 $\{e_n\}_{n=1}^{\infty}$ 是 Hilbert 空间 H 中的一组正交规范基。对每个 $n \in \mathbb{N}$,令 $f_n = e_{n+1} e_n$. 证明:由序列 $\{f_n\}_{n=1}^{\infty}$ 张成的子空间在 H 中稠密。
- 三. (15 分) 设 X 为 B 空间, $\{x_n\}_{n=1}^{\infty} \subset X$ 和 $\{f_n\}_{n=1}^{\infty} \subset X^*$. 如果存在 $x \in X$ 和 $f \in X^*$ 使 得 $x_n \to x$ (按范数收敛)且 $w^* \lim_{n \to \infty} f_n = f$, 证明: $\lim_{n \to \infty} f_n(x_n) = f(x)$.
- 四. (20 分) 设 $K(x,y) = \sum_{n=1}^{+\infty} \frac{1}{n^2} \cos(2\pi n(x+y)), \forall 0 \le x, y \le 1$. 定义 $L^2[0,1]$ 上的线性算子

$$T: u(x) \mapsto u(x) + \int_0^1 K(x,y)u(y)\mathrm{d}y \quad (\forall u \in L^2[0,1]).$$

- 1. 证明: T 是 $L^2[0,1]$ 上 Fredholm 算子且 $\operatorname{ind}(T) = 0$.
- 2. 求 T 的谱集 $\sigma(T)$ 和谱半径 $r_{\sigma}(T)$.

/五. (20 分) 设 X 是一个实 B 空间, $f,g \in X^*$ 满足 ||f|| = ||g|| = 1. 证明:

- 1. 如果 g(x) = 0 对任意 $x \in N(f)$ 成立,则我们有 f = g 或 f = -g.
- 2. 如果存在 $\epsilon \in (0, \frac{1}{2}]$ 使得 $|g(x)| \le \epsilon ||x||$ 对任意 $x \in N(f)$ 成立, 则我们有

$$||f-g|| \le 2\epsilon$$
或者 $||f+g|| \le 2\epsilon$.

(注: $N(f) = \{x \in X : f(x) = 0\}$)

六. (20 分) 设 X,Y 是两个 B 空间, $T \in L(X,Y)$ 且 T 为满射。证明:以下两个条件彼此等价

- 1. 存在 $S \in L(Y, X)$ 使得 $TS = I_Y$, 其中 I_Y 是 Y 上的恒同算子.
- 2. 存在 X 的闭子空间 W 使得 $X = N(T) \oplus W$, 其中 $N(T) = \{x \in X : T(x) = \theta\}$.