SOFTWARE SYSTEMS LAB (COP 701

2020MCS2444: Aayush Kumar Singh

November 2020

1 CACHE SIMULATOR: PART ONE

1.1 EVALUATE CPI:

In this part we calculated the Cycles per Instruction(CPI) for a set of benchmarks on X86 with configuration given below:

CPU Models:TimingSimpleCPU, DerivO3CPU and MinorCPU.

Cache levels: Two levels.

Unified caches: L1 data and L1 instruction caches, unified L2 cache. Size: 128KB L1 data cache, 128KB L1 instruction cache, 1MB L2 cache. Associativity: Two-way set-associative L1 caches, Direct-mapped L2 cache.

Block size: 64 bytes (applied to all caches).

Block replacement policy: Least Recent Used policy (LRU)

For each benchmark, CPI is calculated using the following formula:

Let L1ICM, be L1 Instruction Cache Miss Number

L1DCM, be L1 Data Cache Miss Number

L2CM, be L2 Cache Miss Number

L1 miss penalty = 6 cycles

L2 miss penalty = 50 cycles

N, be number of instructions then.

$$\mathbf{CPI} = 1 + \frac{(L1ICM + L1DCM)*6 + (L2CM)*50}{N}$$

Benchmarks used:

- 1. 401.bzip2
- 2. 429.mcf
- 3. 456.hmmer
- 4. 458.sjeng
- 5. 470.lbm

In this part each benchmark was run for 5*10⁸ instructions.

Each benchmark took 45mins approx to execute the given number of instructions above on a single CPU type. The respective cache miss number was obtained from **stats.txt** file.

CPI FOR BENCHMARK ONE: 401.bzip2

i. TimingSimpleCPU

L1ICache	L1DCache	L2Cache	CPI		
Misses	Misses	Misses			
117807	622	117256	1.01315		

ii. DerivO3PU

L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
5103	651	5480	1.00062

iii. MinorCPU

L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
2.09813e+06	1340	740463	1.09924

CPI FOR BENCHMARK TWO: 429.mcf

i. TimingSimpleCPU

L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
15283	476	15588	1.00175

ii. DerivO3PU

n. Derivour c					
L1ICache	L1DCache	L2Cache	CPI		
Misses	Misses	Misses			
629	729	980	1.00011		

iii. MinorCPU

L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
1.03462e+07	916	6.572e + 06	1.78137

CPI FOR BENCHMARK THREE: 456.hmmer

$i. \ Timing Simple CPU \\$

L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
1766	1272	3026	1.00034

ii. DerivO3PU

L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
895	1544	1617	1.00019

iii. MinorCPU

L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
144966	1775	7462	1.00251

CPI FOR BENCHMARK FOUR: 458.sjeng

i. TimingSimpleCPU

L1ICache	L1DCache	L2Cache	CPI		
Misses	Misses	Misses			
1300	336	1635	1.00018		

ii. DerivO3PU

L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
526	512	798	1.00009

iii. MinorCPU

m: wind of o				
L1ICache	L1DCache	L2Cache	CPI	
Misses	Misses	Misses		
1.67207e+07	5475	8.38099e+06	2.03881	

CPI FOR BENCHMARK FIVE: 470.lbm

 $\mathbf{i.} \ \mathbf{TimingSimpleCPU}$

L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
10866	610	11475	1.00129

ii. DerivO3PU

III DOIII OOI (
L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
953	951	1552	1.00018

iii. MinorCPU

III. IVIIIIOI () 1 U		
L1ICache	L1DCache	L2Cache	CPI
Misses	Misses	Misses	
1.40702e+07	1023	7.35711e+06	1.90456

1.2 PART TWO: OPTIMIZE CPI FOR EACH BENCHMARK

In this we determined the optimal cache configuration for each of the 5 benchmark i.e, the one which generates lowest CPI.

To do this each benchmark was run by varying the following things:

- i. L1 Data Cache Size [64kB 128kB 256kB]
- ii. L1 Instruction Cache Size [64kB 128kB 256kB]
- iii. L2 Cache Size [1MB 2MB 4MB 8MB]
- iv. Block Size/ Cache line size $= [16 \ 32 \ 64]$
- v. Associativity of L1 cache = [1 2 4]
- vi. Associativity of L2 cache [1 2 4]

Everything else was set to it's default value. Since, there are total of 972 configurations possible with above variations, here we just present the ones which have best among them. Each benchmark was run for $5*10^7$ instructions.

Each benchmark took approx 4 mins to run for those many instructions. Then we extracted the miss numbers to calculate CPI like we did in previous section. After calculating the CPI we plotted respective graph to analyse the CPI by varying combination of factors and keeping other factors constant at maximum that is in our range.

i. For benchmark: 401.bzip2

i. For benchmark: 401.bzip2							
L1I	L1D	L2	Block	Assoc.	Assoc.	CPI	
Cache	Cache	Cache	Size	of L1	of L2		
Size	Size	Size					
256	256	8	64	4	4	1.12802	
127	256	8	64	4	4	1.12802	
64	256	8	64	4	4	1.12802	
256	127	8	64	4	4	1.12803	
127	127	8	64	4	4	1.12803	
64	127	8	64	4	4	1.12803	
256	64	8	64	4	4	1.12803	
127	64	8	64	4	4	1.12803	
64	64	8	64	4	4	1.12803	
256	256	8	64	2	4	1.12803	
127	256	8	64	2	4	1.12803	
64	256	8	64	2	4	1.12803	
256	256	8	64	1	4	1.12803	
256	127	8	64	2	4	1.12804	
127	127	8	64	2	4	1.12804	
64	127	8	64	2	4	1.12804	
127	256	8	64	1	4	1.12804	
256	64	8	64	2	4	1.12805	
64	256	8	64	1	4	1.12805	
127	64	8	64	2	4	1.12805	
64	64	8	64	2	4	1.12805	
256	127	8	64	1	4	1.1281	
127	127	8	64	1	4	1.12811	
64	127	8	64	1	4	1.12811	
256	64	8	64	1	4	1.12818	
127	64	8	64	1	4	1.12819	
64	64	8	64	1	4	1.1282	
127	256	8	64	4	2	1.12859	
256	256	8	64	4	2	1.12859	
64	256	8	64	4	2	1.12859	
127	127	8	64	4	2	1.1286	
256	127	8	64	4	2	1.1286	
64	127	8	64	4	2	1.1286	
127	64	8	64	4	2	1.12861	
256	64	8	64	4	2	1.12861	
64	64	8	64	4	2	1.12861	
256	256	8	64	2	2	1.12861	
1170 0000 0	1 /1	at abana	ina the a	so of I 1	Inaturati	on cooks	

We can observe that changing the size of L1 Instruction cache has no effect on CPI. Reducing the size of L1 Data Cache slightly increases the CPI, Reducing the associativity of L1 or L2 cache increases the CPI. Similarly, reducing the size of L2 cache increases the CPI.

ii.	For	bench	ımark:	4	129.m	cf

ii. For benchmark: 429.mcf							
L1I	L1D	L2	Block	Assoc.	Assoc.	CPI	
Cache	Cache	Cache	Size	of L1	of L2		
Size	Size	Size					
64	127	8	64	2	4	1.02155	
127	127	1	64	2	2	1.02155	
256	256	2	64	2	1	1.02155	
256	256	2	64	2	2	1.02155	
256	256	2	64	2	4	1.02155	
256	256	2	64	4	1	1.02155	
256	256	2	64	4	2	1.02155	
64	127	8	64	4	4	1.02155	
64	127	8	64	4	2	1.02155	
64	127	8	64	4	1	1.02155	
127	127	1	64	2	4	1.02155	
64	127	8	64	2	2	1.02155	
64	127	8	64	2	1	1.02155	
256	256	2	64	4	4	1.02155	
64	127	4	64	4	4	1.02155	
64	127	4	64	4	2	1.02155	
64	127	4	64	4	1	1.02155	
64	127	4	64	2	4	1.02155	
64	127	4	64	2	2	1.02155	
127	127	4	64	2	1	1.02155	
127	127	8	64	2	4	1.02155	
127	127	8	64	2	2	1.02155	
127	127	8	64	2	1	1.02155	
127	127	4	64	4	4	1.02155	
127	127	4	64	4	2	1.02155	
127	127	4	64	4	1	1.02155	
127	127	4	64	2	4	1.02155	
127	127	4	64	2	2	1.02155	
64	127	4	64	2	1	1.02155	
127	127	2	64	4	4	1.02155	
127	127	2	64	4	2	1.02155	
127	127	2	64	4	1	1.02155	
127	127	2	64	2	4	1.02155	
127	127	2	64	2	2	1.02155	
127	127	2	64	2	1	1.02155	
127	127	1	64	4	4	1.02155	
127	127	1	64	4	2	1.02155	
127	64	8	64	4	4	1.02155	
256	64	2	64	4	1	1.02155	
- I				L			

The above configuration along with many more gave optimal in this benchmark and similarly like prev benchmark there was a slight increase in CPI when size of L1 Data Cache was reduced along with L2 cache.

• • •	-	1 1 1	4201	
111.	For	benchmark:	456.hmmer	

	or bence		456.hmr		Α	CPI
L1I	L1D	L2	Block	Assoc.	Assoc.	CPI
Cache	Cache	Cache	Size	of L1	of L2	
Size	Size	Size				
256	256	8	64	4	4	1.01975
256	256	4	64	4	4	1.01975
256	256	4	64	4	2	1.01975
256	256	4	64	4	1	1.01975
256	256	2	64	4	4	1.01975
256	256	2	64	4	2	1.01975
256	256	2	64	4	1	1.01975
256	256	1	64	4	4	1.01975
256	256	1	64	4	2	1.01975
256	256	8	64	4	1	1.01975
256	256	8	64	4	2	1.01975
127	256	2	64	4	4	1.01975
127	256	2	64	4	2	1.01975
127	256	2	64	4	1	1.01975
127	256	8	64	4	4	1.01975
127	256	8	64	4	2	1.01975
127	256	1	64	4	4	1.01975
127	256	1	64	4	2	1.01975
127	256	8	64	4	1	1.01975
127	256	4	64	4	4	1.01975
127	256	4	64	4	2	1.01975
127	256	4	64	4	1	1.01975
256	256	8	64	2	4	1.01975
256	256	8	64	2	2	1.01975
256	256	1	64	2	2	1.01975
256	256	8	64	2	1	1.01975
256	256	1	64	2	4	1.01975
256	256	4	64	2	4	1.01975
256	256	4	64	2	2	1.01975
256	256	4	64	2	1	1.01975
256	256	2	64	2	1	1.01975
256	256	2	64	2	2	1.01975
256	256	2	64	2	4	1.01975
64	256	4	64	4	4	1.01975
64	256	8	64	4	4	1.01975
64	256	4	64	4	2	1.01975
64	256	4	64	4	1	1.01975
64	256	2	64	4	4	1.01975
				l	l	

The above configs along with some more configs gave optimal CPI for this benchmark. The first slight increase in CPI was at configs

o circinii a	III. III.	11150 5115110	, mercase	III CI I	mas ac c	0111180
64	256	2	64	2	4	1.01976

iv. For benchmark: 458.sjeng

			100.5Jen		Λ	CDI
L1I	L1D	L2	Block	Assoc.	Assoc.	CPI
Cache	Cache	Cache	Size	of L1	of L2	
Size	Size	Size			2	1.05000
64	256	2	64	4	2	1.07928
127	256	2	64	4	1	1.07928
256	256	8	64	4	1	1.07928
127	256	1	64	4	2	1.07928
127	256	1	64	4	1	1.07928
64	256	8	64	4	4	1.07928
64	256	8	64	4	2	1.07928
64	256	8	64	4	1	1.07928
64	256	4	64	4	4	1.07928
64	256	4	64	4	2	1.07928
64	256	4	64	4	1	1.07928
64	256	2	64	4	4	1.07928
127	256	1	64	4	4	1.07928
64	256	2	64	4	1	1.07928
64	256	1	64	4	4	1.07928
64	256	1	64	4	2	1.07928
64	256	1	64	4	1	1.07928
256	256	2	64	4	1	1.07928
256	256	2	64	4	2	1.07928
256	256	2	64	4	4	1.07928
256	256	4	64	4	1	1.07928
256	256	4	64	4	2	1.07928
256	256	4	64	4	4	1.07928
256	256	8	64	4	4	1.07928
127	256	8	64	4	4	1.07928
127	256	8	64	4	2	1.07928
127	256	8	64	4	1	1.07928
127	256	2	64	4	2	1.07928
127	256	4	64	4	4	1.07928
127	256	4	64	4	2	1.07928
127	256	4	64	4	1	1.07928
256	256	1	64	4	1	1.07928
256	256	1	64	4	2	1.07928
127	256	2	64	4	4	1.07928
256	256	1	64	$\frac{1}{4}$	$\frac{1}{4}$	1.07928
256	256	8	64	4	$\frac{1}{2}$	1.07928
	o confirs					

The above configs along with some more configs gave optimal CPI for this benchmark. The first slight increase in CPI was at configs

 256
 256
 8
 64
 1
 2
 1.07935

L1I	or bench L1D	L2	Block	Assoc.	Assoc.	CPI
Cache	Cache	Cache	Size	of L1	of L2	
Size	Size	Size				
64	64	8	64	2	1	1.08646
64	127	8	64	2	1	1.08646
64	127	8	64	2	2	1.08646
64	64	4	64	2	1	1.08646
64	256	4	64	2	2	1.08646
64	256	4	64	2	1	1.08646
64	256	4	64	2	4	1.08646
64	64	2	64	2	1	1.08646
64	256	2	64	2	4	1.08646
64	256	2	64	2	1	1.08646
64	127	1	64	2	4	1.08646
64	64	4	64	2	2	1.08646
64	127	1	64	2	2	1.08646
64	127	1	64	2	1	1.08646
256	256	8	64	1	1	1.08653
256	256	1	64	1	2	1.08653
256	256	8	64	1	2	1.08653
256	256	8	64	1	4	1.08653
256	256	4	64	1	4	1.08653
256	256	4	64	1	2	1.08653
256	256	2	64	1	2	1.08653
256	256	2	64	1	4	1.08653
256	256	1	64	1	4	1.08653
127	256	4	64	1	4	1.08653
127	256	2	64	1	4	1.08653
127	256	2	64	1	2	1.08653
127	256	1	64	1	2	1.08653
127	256	1	64	1	4	1.08653
127	256	8	64	1	4	1.08653
127	256	8	64	1	2	1.08653
127	256	8	64	1	1	1.08653
127	256	4	64	1	2	1.08653
64	256	8	64	1	1	1.08653
64	256	8	64	1	4	1.08653
64	256	8	64	1	2	1.08653
64	256	1	64	1	2	1.08653
64	256	1	64	1	4	1.08653
64	256	2	64	1	2	1.08653
64	256	2	64	1	4	1.08653

Now, we can visualise the effect of different factors on CPI with help of some

of the graphs. These graphs were made using GNUPlot on different values obtained during previous step on benchmark 1: 401.bzip2

VISUALISING TRADEOFF BETWEEN DIFFERENT DESIGN POINTS

Figure 1: Fig:CPI vs L1 Data Cache Size and L2 Cache Size

Figure 2: Fig:CPI vs L1 Data Cache Size and Block Size

Figure 3: Fig:CPI vs L1 Data Cache Size and Associativity of L1

Figure 4: Fig:CPI vs L1 Data Cache Size and Associativity of L2

Figure 5: Fig:CPI vs L2 Cache Size and Block Size

Figure 6: Fig:CPI vs L2 Cache Size and Associativity of L1 $\,$

Figure 7: Fig:CPI vs L2 Data Cache and Associativity of L2

Figure 8: Fig:CPI vs Block Size and associativity of L1

Figure 9: Fig:CPI vs Block Size and associativity of L2

Figure 10: Fig:CPI vs Associativity of L1 and Associativity of L2 $\,$