

Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023

Question Paper Log Number P71818A

Publications Code 4PM1_01R_2301_ER

All the material in this publication is copyright

© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked unless the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no
marks.

With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x=...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. Completing the square:

$$x^{2} + bx + c = 0$$
: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by either

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks". General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question	Scheme	Marks
1	$\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$	B1
	Method A	
	$\frac{a - \sqrt{48}}{\sqrt{3} + 1} = b\sqrt{3} - 9 \Rightarrow a - 4\sqrt{3} = 3b - 9 + \sqrt{3}(b - 9)$	M1
	[a = 3b - 9 and -4 = b - 9]	M1
	b = 5, a = 6	A1
	Method B	[4]
	$\frac{\left(a-4\sqrt{3}\right)}{\left(\sqrt{3}+1\right)} \times \frac{\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)} = \frac{a\sqrt{3}-a-12+4\sqrt{3}}{2} = b\sqrt{3}-9$	[M1M1
	$(\sqrt{3}+1)$ $(\sqrt{3}-1)$	A1]
	b = 5, a = 6	
	To	tal 4 marks

Question	Notes	Marks
1	$\frac{a-\sqrt{48}}{\sqrt{3}+1} = b\sqrt{3}-9$	
	I v	
	Simplifies $\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$ - Seen anywhere.	B1
	Method A – Both sides multiplied by $\sqrt{3} + 1$, collects terms and	M1
	equates rational and irrational parts and obtains two equations at least one of which must be correct.	
	$a-4\sqrt{3} = (b\sqrt{3}-9)(\sqrt{3}+1) = (3b-9)+\sqrt{3}(b-9)$	
	$\Rightarrow a = 3b - 9$ and $-4 = b - 9$	
	Solves their equations.	M1
	The equation $-4 = b - 9$ must be solved correctly and the result	
	substituted into the second equation to find <i>a</i> Allow one processing error here.	
	This is an A mark in Epen	
	For $a = 6$ and $b = 5$	A1
		[4]
	Simplifies $\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$	B1
	Method B – rationalises the denominator, collects terms and	
	equates rational and irrational parts and obtains two equations at least one of which must be correct.	
	$(a-4\sqrt{3}) (\sqrt{3}-1) (\sqrt{3}(a+4) (a+12)$	M1
	$\frac{\left(a-4\sqrt{3}\right)}{\left(\sqrt{3}+1\right)} \times \frac{\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)} = \frac{\sqrt{3}(a+4)-(a+12)}{2} = b\sqrt{3}-9$	
	$\Rightarrow \frac{-(a+12)}{2} = -9 \qquad \frac{a+4}{2} = b \text{oe}$ Solves their equations:	
	Solves their equations:	M1
	The equation $\frac{-(a+12)}{2} = -9$ must be solved correctly and the	
	result substituted into the second equation to find b	
	Allow one processing error here. This is an A mark in Epen	
	For $a = 6$ and $b = 5$	A1
		[4]
	Tota	l 4 marks

Question	Scheme	Marks
2	$\frac{\sin \angle BCA}{10} = \frac{\sin 50}{9} \Rightarrow \angle BCA = 58.3381^{\circ} \Rightarrow 58.3^{\circ}, 121.7^{\circ}$	M1A1A1
Total 3 marks		

Question	Notes	Marks
2	Uses sine rule or any other appropriate trigonometry in	
	triangle ABC	M1
	$\sin \angle BCA = \sin 50$	
	$\frac{10}{10} - \frac{9}{9}$	
	Note: the perpendicular height of the triangle from <i>B</i> to <i>AC</i> is	
	7.66044 cm.	
	Their method must be complete for the award of this mark.	
	$\angle BCA = 58.3381^{\circ}$	A1
	One possible value is awrt 58.3° and the other possible	
	value is awrt 121.7°	A1
		[3]
]	Total 3 marks

Question	Scheme	Marks
3	$S_n < -450 \Rightarrow \frac{n}{2} (2 \times 16 + [n-1](-5)) < -450$ $\Rightarrow 37n - 5n^2 < -900 \Rightarrow 5n^2 - 37n - 900 > 0$	M1A1
	$n = \frac{-(-37) \pm \sqrt{(-37)^2 - 4 \times 5 \times (-900)}}{2 \times 5} \Rightarrow n = 17.617 \text{ so } n = 18$	M1A1 [4]
	Tota	al 4 marks

Question	Notes	Marks
3	Uses the correct summation formula and sets $<$, $>$ or $=$ to -450	
	$S_n < -450 \Rightarrow \frac{n}{2} (2 \times 16 + [n-1](-5)) < -450$	M1
	Forms a correct 3TQ with their expression	
	$37n - 5n^2 < -900 \Rightarrow 5n^2 - 37n - 900 > 0$	A1
	Accept $<$, $>$ or $= 0$ and accept terms in any order.	
	Attempts to solve their 3TQ using a valid method. [See	
	General Guidance}	
	$n = \frac{-(-37) \pm \sqrt{(-37)^2 - 4 \times 5 \times (-900)}}{2 \times 5} \Rightarrow n = \dots$	M1
	n = 17.617 so $n = 18$	A1
	[Other root is -10.217]	Al
		tal 4 marks

Question	Scheme	Marks
4(a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} \Rightarrow \overrightarrow{AB} = (5\mathbf{i} + 9p\mathbf{j}) - (p\mathbf{i} + 2p\mathbf{j})$	M1A1
	$\mathbf{i}(5-p)+\mathbf{j}(7p)=Q(\mathbf{i}-2\mathbf{j}) \Rightarrow 5-p=Q \text{ and } 7p=-2Q$	M1M1
	$7p = -2(5-p) \Rightarrow p = -2$	M1A1 [6]
(b)	$7('-2') = -2Q \Rightarrow Q = 7$, $\overrightarrow{AB} = 7(\mathbf{i} - 2\mathbf{j}) = 7\mathbf{i} - 14\mathbf{j}$	M1A1ft
	OR	[2]
	$\overrightarrow{AB} = (5\mathbf{i} + 9(-2)\mathbf{j}) - ((-2)\mathbf{i} + 2(-2)\mathbf{j}) = 7\mathbf{i} - 14\mathbf{j}$	[M1A1ft]
(c)	$\overrightarrow{OA} = -2\mathbf{i} - 4\mathbf{j} \Rightarrow \left \overrightarrow{OA} \right = \sqrt{\left(-2\right)^2 + \left(-4\right)^2} = \sqrt{20}$	M1A1ft
	Unit vector is $\frac{1}{\sqrt{20}} \left(-2\mathbf{i} - 4\mathbf{j} \right) = \frac{\sqrt{5}}{5} \left(-\mathbf{i} - 2\mathbf{j} \right)$	M1A1 [4]
	Tota	al 12 marks

Question	Notes	Marks
4(a)	For the basic vector statement	N/1
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$	M1
	For the correct vector (simplified or unsimplified)	
	$\overrightarrow{AB} = (5\mathbf{i} + 9p\mathbf{j}) - (p\mathbf{i} + 2p\mathbf{j}) = [\mathbf{i}(5-p) + \mathbf{j}(7p)]$	A1
	For setting their $\overrightarrow{AB} = Q(\mathbf{i} - 2\mathbf{j})$ where $Q \neq 1$, $Q \neq 0$	
	$\mathbf{i}(5-p)+\mathbf{j}(7p)=Q(\mathbf{i}-2\mathbf{j})$	M1
	For equating components of i and j i $5-p=Q$	
	$\mathbf{j} \qquad 7p = -2Q$	M1
	Solving the simultaneous equations by any method to find the value of p	M1
	$7p = -2(5-p) \Rightarrow p = \dots$	
	For the value of $p = -2$	A1 [6]
(b)	For finding the value of k and using it to find the vector \overrightarrow{AB} $7('-2') = -2Q \Rightarrow Q = 7$	M1
	For the correct vector	
	$AB = 7(\mathbf{i} - 2\mathbf{j}) = 7\mathbf{i} - 14\mathbf{j}$	A1ft
	ALT	[2]
	For substituting their value of p to find the vector AB	
	$\overrightarrow{AB} = \mathbf{i}(5-[-2]) + \mathbf{j}(7[-2]) = \dots$	M1
	$\overrightarrow{AB} = \mathbf{i}(5-p) + \mathbf{j}(7p) \Rightarrow \overrightarrow{AB} = 7\mathbf{i} - 14\mathbf{j}$	A1ft [2]
(c)	$\overrightarrow{OA} = -2\mathbf{i} - 4\mathbf{j} \Rightarrow \left \overrightarrow{OA} \right = \sqrt{\left(-2\right)^2 + \left(-4\right)^2} = \dots$	M1
	$\left \overrightarrow{OA} \right = \sqrt{20}$	A1ft
	Unit vector in the direction of \overrightarrow{OA} is $\frac{1}{\sqrt{20}}(-2\mathbf{i}-4\mathbf{j})$	M1
	Unit vector in the required form $\frac{\sqrt{5}}{5}(-\mathbf{i}-2\mathbf{j})$	A1 [4]
	Allow $\frac{\sqrt{5}}{5}(i+2j)$ provided no processing errors seen.	ניז
	Tot	al 12 marks

Question	Scheme	Marks
5(a)	f(-2) = -16a + 4 + 2b + 3a = 0 and $f(1) = 2a + 1 - b + 3a = 0$	M1M1
	$-13a+4+2b=0$ and $5a+1-b=0 \Rightarrow a=2*$ b=11	M1A1cso A1 [5]
		[2]
(b)	$f(x) = 4x^3 + x^2 - 11x + 6 = (4x - 3)(x + 2)(x - 1)$	M1A1 [2]
(c)	$h(y) = 2^{(3y+2)} + 2^{2y} - 11(2^y) + 6 \Rightarrow h(y) = 4(2^y)^3 + (2^y)^2 - 11(2^y) + 6$	M1
	$x = 2^{y} \Rightarrow 2^{y} - 1 = 0, 2^{y} + 2 = 0, 4(2^{y}) - 3 = 0$	M1
	$2^y = 1 \Longrightarrow y = 0$	B1
	$2^{y} = \frac{3}{4} \Rightarrow y = \log_{2} \frac{3}{4} = -0.4150 \Rightarrow y = -0.415$ $\left[2^{y} = -2 \text{ no solution}\right]$	M1A1 [5]
	Total	12 marks

Question	Notes	Marks
(a)	For substituting ± 2 into $f(x) = 0$	
	Allow sign errors	M1
	For substituting ± 1 into $f(x) = 0$	
	Allow sign errors	M1
	For solving the resulting pair of simultaneous equations.	
	-13a + 4 + 2b = 0	
	5a+1-b=0	M1
	For $a = 2 *$	A1 cso
	For $b = 11$	A1
		[5]
	ALT uses polynomial division.	
	Multiplies out the product of the two factors to give:	
	$(x+2)(x-1) = x^2 + x - 2$	M1
	This must be correct.	

	Uses polynomial division to give as a minimum:	
	2ax + (1-2M) where M is a constant.	M1
	2ax+(1-2a)	
	$x^{2} + x - 2 \overline{\smash{\big)} 2ax^{3} + x^{2} - bx + 3a}$	
	,	
	Equates coefficients:	
	$(x^2 + x - 2)(2ax + (1 - 2a)) = 2ax^3 + x^2 - bx + 3a$	
	$\Rightarrow 2ax^{3} + x^{2} + x(1-6a) + (-2+4a) = 2ax^{3} + x^{2} - bx + 3a$	M1
	3a = 4a - 2	
	1-6a=-b	
	For $a = 2$ *	A1 cso
(1)	For $b = 11$	A1
(b)	Divides $f(x) = 4x^3 + x^2 - 11x + 6$ by either $[x^2 + x - 2]$ or $x + 2$	
	or $x-1$	
	Either,	M1
	$\left[x^{2} + x - 2\right)4x^{3} + x^{2} - 11x + 6$	
	$\begin{bmatrix} x + x - 2 \end{bmatrix} 4x + x - 11x + 0$	
	$\frac{4x^2 - 7x \pm k}{x + 2\sqrt{4x^3 + x^2 - 11x + 6}}$	
	$(x+2)4x^{2}+x^{2}-11x+6$	
	$\frac{4x^2 + 5x \pm k}{x - 1)4x^3 + x^2 - 11x + 6}$	
	$(x-1)4x^3 + x^2 - 11x + 6$	
	For the correct factorisation of $f(x)$	
	$4x^2-7x+3=(4x-3)(x-1) \Rightarrow f(x)=(4x-3)(x-1)(x+2)$	A1
		[2]
(c)	For manipulating the indices to achieve	[-]
	$\Rightarrow h(y) = 4(2^{y})^{3} + (2^{y})^{2} - 11(2^{y}) + 6$	M1
	OR	
	Uses the factorised expression to obtain:	
	$h(y) = (2^{y} + 2)(2^{y} - 1)(4(2^{y}) - 3)$	
	Substitutes $x = 2^y$ into the factorised f (x) to find either	
	$2^{y}-1=0$ or $2^{y}+2=0$ or $4(2^{y})-3=0$	M1
	· /	D1
	For $2^y = 1 \Rightarrow y = 0$	B1
	For $4(2^y) = 3 \Rightarrow 2^y = \frac{3}{4} \Rightarrow y = \log_2 \frac{3}{4}$	M1
	For awrt $y = -0.4150 \Rightarrow y \approx -0.415$	A1
	[No solution for $2^y = -2$ - must reject]	[5]
		12 marks

Question	Scheme	Marks
6(a)	$\frac{dy}{dx} = \frac{(x^2 + 1)2xe^{(x^2 + 1)} - 2xe^{(x^2 + 1)}}{(x^2 + 1)^2}$	M1A1A1
	$\frac{dy}{dx} = \frac{2xe^{(x^2+1)}(x^2+1-1)}{(x^2+1)^2} = \frac{2x^3e^{(x^2+1)}}{(x^2+1)^2}$	M1A1 cso [5]
(b)	When $x = -1$ $\frac{dy}{dx} = \frac{-e^2}{2}$, $y = \frac{e^2}{2}$	B1ft, B1
	$y - \frac{e^2}{2} = -\frac{e^2}{2}(x+1), \Rightarrow y = -\frac{e^2x}{2}$ oe	M1A1ft, A1
		[5]
	Tot	al 10 marks

Question	Notes	Marks
6(a)	$y = \frac{e^{(x^2 + 1)}}{x^2 + 1}$	
	Using Quotient Rule	
	$\frac{dy}{dx} = \frac{\left(x^2 + 1\right)2xe^{\left(x^2 + 1\right)} - 2xe^{\left(x^2 + 1\right)}}{\left(x^2 + 1\right)^2}$	M1
	• For an attempt to differentiate both $e^{(x^2+1)}$ and x^2+1	
	Award for either $e^{x^2+1} \Rightarrow 2xe^{x^2+1}$ or $x^2+1 \Rightarrow 2x$ but both must	
	be changed expressions.	
	• Numerator is to have two terms in either order subtracted .	
	• Denominator must be $(x^2 + 1)^2$	
	At least one term fully correct in the numerator	A1
	Fully correct unsimplified.	A1
	For an attempt to take out a common factor of either $2x$ or $e^{(x^2+1)}$	
	$\frac{dy}{dx} = \frac{2xe^{(x^2+1)}(x^2+1-1)}{(x^2+1)^2}$	M1
	$dx - \left(x^2 + 1\right)^2$	
	OR	
	Multiplies out the first term in the numerator	-
	$2x^{3}e^{(x^{2}+1)} + 2xe^{(x^{2}+1)} - 2xe^{(x^{2}+1)}$	[M1]
	$(x^2+1)^2$	

	Using Product Rule	
	$\frac{dy}{dx} = (x^2 + 1)^{-1} \times 2xe^{x^2 + 1} + (-2x)e^{x^2 + 1} \times (x^2 + 1)^{-2}$	M1
	• For an attempt to differentiate both $e^{(x^2+1)}$ and $(x^2+1)^{-1}$	
	Award for either	
	$e^{x^2+1} \Rightarrow 2xe^{x^2+1}$ or $(x^2+1)^{-1} \Rightarrow (-2x)(x^2+1)^{-2}$ but both must	
	be changed expressions.	
	Numerator is to have two terms added At least and terms assured.	A 1
	At least one term correct Fully correct unsimplified or simplified	A1 A1
	For an attempt to take out a common factor of either $2x$ or $e^{(x^2+1)}$ and set a common denominator of $(x^2+1)^2$	M1
	and set a common denominator of $(x + 1)$	
	For the fully correct expression for the derivative, $\frac{1}{x^2} = \frac{3}{x^2+1}$	
	$\frac{dy}{dx} = \frac{2x^3 e^{(x^2+1)}}{(x^2+1)^2}$	A1
	NB: Any further simplification [e.g., cancelling $(x^2 + 1)$] following	[5]
(b)	a correct answer seen, is A0. $dy = -e^2 \qquad dy$	
	When $x = -1$, $\frac{dy}{dx} = \frac{-e^2}{2}$ ft their K in their $\frac{dy}{dx}$	B1ft
	Allow awrt $\frac{dy}{dx} = -3.7$	
	Even allow $\frac{dy}{dx} = \frac{-Ke^2}{4}$	
	When $x = -1$, $y = \frac{e^2}{2}$	B1
	Allow awrt $y = 3.7$	
	For a correctly used method for the equation of the tangent using	
	their values for $\frac{dy}{dx}$ and y	
	$y - \frac{e^2}{2} = -\frac{e^2}{2}(x+1)$	M1
	Also allow: $y-3.7 = -3.7(x+1)$	
	If they use $y = mx + c$ they must obtain a value for c for the award	
	of this mark.	Α 1 Ω
	For the correct equation in any form For a correct simplified equation in any form but this must be in	A1ft
	exact form.	A1
	$y = -\frac{e^2x}{2}$ or $2y + e^2x = 0$	[5]
	2) marks
		J IIIAI KS

Question	Scheme	Marks
7(a)	$v = 1^2 - 10 \times 1 + 28 = 19$ [m/s]	B1
		[1]
(b)	$s = \int (t^2 - 10t + 28) dt = \frac{t^3}{3} - \frac{10t^2}{2} + 28t(+c)$	M1
	$24 = \frac{3^3}{3} - \frac{10 \times 3^2}{2} + 28 \times 3 + c \Rightarrow c = -24 \Rightarrow \left[s = \frac{t^3}{3} - \frac{10t^2}{2} + 28t - 24 \right]$	M1A1
	$t = 5$, $s = \frac{5^3}{3} - \frac{10 \times 5^2}{2} + 28 \times 5 - 24 = \frac{98}{3}$ [m]	M1A1 [5]
(c)	dv_{-2t-10}	M1
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 2t - 10$	A1
	when $t = 9$, acceleration = 8 [m/s ²]	[2]
(d)	(i) $v = (t-5)^2 + 3$	M1
	Irrespective of the value of t $v \ge 3$ so the particle never comes to rest. ALT	A1
	$b^2 - 4ac < 0 \Rightarrow (-10)^2 - 4 \times 1 \times 28 = -12$	[M1
	No real solutions so the particle never comes to rest.	A1]
	(ii) Least value of v is 3 [m/s]	B1
		[3]
	Total 1	1 marks

Question	Notes	Marks
7(a)	$v = t^2 - 10t + 28$	
	$v = 1^2 - 10 \times 1 + 28 = 19$ [m/s]	B1 [1]
(b)	For an attempt to integrate the given expression for v [See general guidance for the definition of an attempt] $s = \int (t^2 - 10t + 28) dt = \frac{t^3}{3} - \frac{10t^2}{2} + 28t(+c)$	M1
	For finding the value of c. They cannot score this mark without $+c$ $24 = \frac{3^3}{3} - \frac{10 \times 3^2}{2} + 28 \times 3 + c \Rightarrow c =$	M1
	For the correct expression for s. This need not be explicitly stated. $s = \frac{t^3}{3} - \frac{10t^2}{2} + 28t - 24$	A1

	Award for the correct value of c seen -24 [m]	
	For using their integrated expression for s to find a value of the	
	displacement when $t = 5$	
	$s = \frac{5^3}{3} - \frac{10 \times 5^2}{2} + 28 \times 5 - 24 = \dots$	M1
	3 2 120×3 24	
	For the correct value of $s = \frac{98}{3}$ [m] Accept $s = 32.7$ [or better]	A1 [5]
(c)	For an attempt to differentiate the given v and substituting $t = 9$	
	into their differentiated expression.	M1
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 2t - 10 \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}t} = 2 \times 9 - 10 = \dots$	
	For acceleration = 8 [m/s ²]	A1
		[2]
(d)(i)	Method A	
	Completes the square to give $v = (t-5)^2 + 3$	M1
	Concludes that at the minimum velocity [3 m/s] $t = 5$ so P never	A1
	comes to rest	Al
	Method B	
	Finds the value of the discriminant	M1
	$b^2 - 4ac < 0 \Rightarrow (-10)^2 - 4 \times 1 \times 28 = -12$	
	Concludes that as there are no real solutions, so <i>P</i> does not come	A1
	to rest.	
	Method C	
	Solves the 3TQ to give the following two [non-real] values of t:	M1
	$5+\sqrt{3}i$ and $5-\sqrt{3}i$ or $\left(t-\left[5+\sqrt{3}i\right]\right)\left(t-\left[5+\sqrt{3}i\right]\right)=0$	
	Concludes that as there are no real solutions, so <i>P</i> does not come	A1
	to rest.	
	Method D	
	Uses their result from (c) $\frac{dv}{dt} = 2t - 10 = 0 \Rightarrow t = 5$	M1
	Concludes that at the minimum velocity [3 m/s] $t = 5$ so P never comes to rest	A1
(ii)	For the correct value of $v = 3$ [m/s}	B1
-		[3]
	Total	11 marks

Question	Scheme	Marks
8(a)	$\int 17 + 2x - 3x^2 dx = 17x + \frac{2x^2}{2} - \frac{3x^3}{3} + k$	M1A1
	$0 = \left(17 \times (-1) + \frac{2 \times (-1)^2}{2} - \frac{3 \times (-1)^3}{3}\right) + k \Rightarrow k = 15$	M1
	$y = 15 + 17x + x^2 - x^3$	A1 [4]
(b)	$\frac{\left(15+17x+x^2-x^3\right)}{\left(x+1\right)} = -x^2 + 2x + 15$	M1A1
	$-x^2 + 2x + 15 = (x+3)(5-x)$	M1A1
	a = -3, $[-1]$ and $b = 5$	A1
	When $x = 0$ $y = 15$ so $c = 15$	B1 [6]
(c)	$\int_0^5 \left(15 + 17x + x^2 - x^3 \right) dx - \frac{1}{2} \times 5 \times 15$	M1
	OR $\int_0^5 (15+17x+x^2-x^3) dx - \int_0^5 (15-3x) dx$	
	$\int_0^5 \left(15 + 17x + x^2 - x^3\right) dx = \left[15x + \frac{17x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^5$	M1
	$\left(15 \times 5 + \frac{17 \times 5^2}{2} + \frac{5^3}{3} - \frac{5^4}{4}\right) - (0) = \left(\frac{2075}{12}\right)$	M1
	Area of triangle	
	Area = $\frac{1}{2} \times 5 \times 15 = 37.5$	B1
	OR	
	Area = $\int_0^5 (15-3x) dx = \left[15x - \frac{3x^2}{2}\right]_0^5 = 37.5$	[B1]
	For the correct area of $R = \frac{2075}{12} - 37\frac{1}{2} = \frac{1625}{12} = 135\frac{5}{12}$	A1 [5]
	Tot	al 15 marks

Question	Notes	Marks
8(a)	$f'(x) = 17 + 2x - 3x^2$	
	For an attempt to integrate $f'(x)$	
	$y = 17x + \frac{2x^2}{2} - \frac{3x^3}{3} + (k)$	M1
		1411
	For the correct integral including a constant of integration	
	$y = 17x + \frac{2x^2}{2} - \frac{3x^3}{3} + k$	A1
	For substituting $(-1, 0)$ into their integrated expression, which must include a constant of integration.	
	$0 = \left(17 \times (-1) + \frac{2 \times (-1)^2}{2} - \frac{3 \times (-1)^3}{3}\right) + k \Rightarrow (k = 15)$	M1
	For writing the equation in the required form	
	$y = 15 + 17x + x^2 - x^3 *$	A1 cso
	This is a given equation. Every step above must be seen for the award of full marks.	[4]
(b)	Divides $(15+17x+x^2-x^3)$ by $(x+1)$	
	$Q+2x+x^2$	
	$Q + 2x + x^{2}$ $x + 1)15 + 17x + x^{2} - x^{3}$	
	OR '	M1
	Equates coefficients	
	$(15+17x+x^2-x^3) = (x+1)(Ax^2+Bx+c) \Rightarrow (x+1)(-x^2+2x+Q)$	
	Where Q is a constant	
	Minimal working here is sight of the quadratic factor. For obtaining the correct 3TQ	
	$-x^2 + 2x + 15$	A1
	For factorising their 3TQ [or otherwise solving]	
	$-x^2 + 2x + 15 = (x+3)(5-x)$	M1A1
	For $a = -3$, $\begin{bmatrix} -1 \end{bmatrix}$ and $b = 5$ identified clearly.	A1
	SC No working seen [use of a root finder on a calculator]	
	For $(x+1)(x-5)(x+3)$ seen leading to $a = -3$ and $b = 5$ with no v	vorking
	award: M0A0MA1A1	
	For $a = -3$ and $b = 5$ seen with no other working seen award:	
	M0A0M0A0A1 For the value of $c = 15$	B1
(c)	For writing a correct expression for the area of <i>R</i> with the correct limits	
	$\int_0^5 \left(15 + 17x + x^2 - x^3 \right) dx - \frac{1}{2} \times 5 \times 15$	M1
	OR	

For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ ALT Integrates the line	Total 1	5 marks
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R $\frac{2075}{12}-37\frac{1}{2}=\frac{1625}{12}=135\frac{5}{12}$ ALT For writing an expression for the area of R with the correct limits. $\int_0^5 (15+17x+x^2-x^3) dx - \int_0^5 (15-3x) dx = \left[\int_0^5 (20x+x^2-x^3) dx\right]$ Award the B mark for a correct expression for the combined area. B1 For an attempt to integrate the expression for the combined area or just the curve. [Ignore limits for this mark] Area = $\int_0^5 (20x+x^2-x^3) dx = \left[\frac{20x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits, but the lower limit must be 0. Area = $\left(\frac{20\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)=\left(\frac{1625}{12}\right)$ For the correct final area.		[3]
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ B1 ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R $\frac{2075}{12}-37\frac{1}{2}=\frac{1625}{12}=135\frac{5}{12}$ ALT For writing an expression for the area of R with the correct limits. $\int_0^5 (15+17x+x^2-x^3) dx - \int_0^5 (15-3x) dx = \left[\int_0^5 (20x+x^2-x^3) dx\right]$ Award the B mark for a correct expression for the combined area. For an attempt to integrate the expression for the combined area or just the curve. [Ignore limits for this mark] Area = $\int_0^5 (20x+x^2-x^3) dx = \left[\frac{20x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits, but the lower limit must be 0. Area = $\left(\frac{20\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)=\left(\frac{1625}{12}\right)$	For the correct final area.	
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ B1 ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R $\frac{2075}{12}-37\frac{1}{2}=\frac{1625}{12}=135\frac{5}{12}$ ALT For writing an expression for the area of R with the correct limits. $\int_0^5 (15+17x+x^2-x^3) dx - \int_0^5 (15-3x) dx = \left[\int_0^5 (20x+x^2-x^3) dx\right]$ Award the B mark for a correct expression for the combined area. For an attempt to integrate the expression for the combined area or just the curve. [Ignore limits for this mark] Area = $\int_0^5 (20x+x^2-x^3) dx = \left[\frac{20x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits, but the lower limit		M1
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ B1 ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R $\frac{2075}{12}-37\frac{1}{2}=\frac{1625}{12}=135\frac{5}{12}$ ALT For writing an expression for the area of R with the correct limits. $\int_0^5 (15+17x+x^2-x^3) dx - \int_0^5 (15-3x) dx = \left[\int_0^5 (20x+x^2-x^3) dx\right]$ Award the B mark for a correct expression for the combined area. For an attempt to integrate the expression for the combined area or just the curve. [Ignore limits for this mark] Area = $\int_0^5 (20x+x^2-x^3) dx = \left[\frac{20x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$		
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R $\frac{2075}{12}-37\frac{1}{2}=\frac{1625}{12}=135\frac{5}{12}$ ALT For writing an expression for the area of R with the correct limits. $\int_0^5 (15+17x+x^2-x^3) dx - \int_0^5 (15-3x) dx = \left[\int_0^5 (20x+x^2-x^3) dx\right]$ Award the B mark for a correct expression for the combined area. For an attempt to integrate the expression for the combined area or just the curve. [Ignore limits for this mark]	L	
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ B1 ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R $\frac{2075}{12}-37\frac{1}{2}=\frac{1625}{12}=135\frac{5}{12}$ ALT For writing an expression for the area of R with the correct limits. $\int_0^5 (15+17x+x^2-x^3) dx - \int_0^5 (15-3x) dx = \left[\int_0^5 (20x+x^2-x^3) dx\right]$ Award the B mark for a correct expression for the combined area. For an attempt to integrate the expression for the combined area or just the curve.	_	IVI I
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R $\frac{2075}{12}-37\frac{1}{2}=\frac{1625}{12}=135\frac{5}{12}$ ALT For writing an expression for the area of R with the correct limits. $\int_0^5 (15+17x+x^2-x^3) dx - \int_0^5 (15-3x) dx = \left[\int_0^5 (20x+x^2-x^3) dx\right]$ Award the B mark for a correct expression for the combined area.	just the curve.	M1
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ B1 ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R $\frac{2075}{12}-37\frac{1}{2}=\frac{1625}{12}=135\frac{5}{12}$ ALT For writing an expression for the area of R with the correct limits. $\int_0^5 (15+17x+x^2-x^3) dx - \int_0^5 (15-3x) dx = \left[\int_0^5 (20x+x^2-x^3) dx\right]$ M1	•	BI
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R $\frac{2075}{12}-37\frac{1}{2}=\frac{1625}{12}=135\frac{5}{12}$ ALT For writing an expression for the area of R with the correct limits.		
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ B1 ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R		M 1
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1] For the correct area of R	12 2 12 12 ALT	[5]
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ ALT Integrates the line Area = $\int_0^5 (15-3x) dx = \left[15x-\frac{3x^2}{2}\right]_0^5 = 37.5$ [B1]	$\frac{2075}{12} - 37\frac{1}{2} = \frac{1625}{12} = 135\frac{5}{12}$	
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ ALT Integrates the line	For the correct area of <i>R</i>	
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$ ALT Integrates the line	Area = $\int_0^5 (15-3x) dx = \left[15x - \frac{3x^2}{2} \right]_0^5 = 37.5$	[B1]
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1 For the area of the triangle Area = $\frac{1}{2}\times5\times15=37.5$	Integrates the line	
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 \left(15 + 17x + x^2 - x^3\right) dx = \left[15x + \frac{17x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15 \times 5 + \frac{17 \times 5^2}{2} + \frac{5^3}{3} - \frac{5^4}{4}\right) - (0) = \left(\frac{2075}{12}\right)$ M1 For the area of the triangle	2	
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits. Area = $\left(15\times5+\frac{17\times5^2}{2}+\frac{5^3}{3}-\frac{5^4}{4}\right)-(0)=\left(\frac{2075}{12}\right)$ M1		B1
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] Area = $\int_0^5 (15+17x+x^2-x^3) dx = \left[15x+\frac{17x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}\right]_0^5$ For evaluating their integral using their limits.		M1
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] $Area = \int_0^5 \left(15 + 17x + x^2 - x^3\right) dx = \left[15x + \frac{17x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^5$ M1		
For an attempt to integrate the expression for the curve. [Ignore limits for this mark] M1		
For an attempt to integrate the expression for the curve.		MI
$\int_{0}^{\pi} (15+1/x+x^{2}-x^{3}) dx - \int_{0}^{\pi} (15-3x) dx$		3.61
$\int_{0}^{5} (15 - 17)^{2} = 3 \cdot 1 \cdot \int_{0}^{5} (15 - 2)^{2} = 3 \cdot 1$	$\int_0^5 \left(15 + 17x + x^2 - x^3\right) dx - \int_0^5 \left(15 - 3x\right) dx$	

Question	Scheme	Marks
9(a)	$AC = \sqrt{12^2 + 12^2} = \sqrt{288} = 12\sqrt{2}$	M1A1 [2]
(b)	$12\sqrt{2}$	
	$x = \frac{12\sqrt{2}}{\cos 30^{\circ}} = \sqrt{96} = (4\sqrt{6})^{*}$	M1A1
		cso [2]
(c)	$\cos \angle AOB = \frac{96 + 96 - 12^2}{2 \times \sqrt{96} \times \sqrt{96}} \Rightarrow \angle AOB = 75.522^{\circ}$	M1A1
	Area $\triangle OAB = \frac{1}{2} \times \sqrt{96} \times \sqrt{96} \times \sin' 75.522^{\circ} = (46.4758)$	M1
	$4 \times 46.4758 + 12^2 = 329.90 \Rightarrow \text{Area} = 330 \text{ [m}^2\text{]}$	M1A1 [5]
(d)		
	Let Y on OB be the foot of the perpendicular from A to OB $AY = 12\sin 52.239^{\circ} = (9.4868)$	M1 A1
	$\cos \angle AYC = \frac{'9.4868'^2 + '9.4868'^2 - 288}{2 \times '9.4868' \times '9.4868'} \Rightarrow \angle AYC = 126.87 \approx 127^{[o]}$	
		M1A1 [4]
	Total 1	3 marks

Question	Notes	Marks
9(a)	For using Pythagoras theorem on triangle ABC or triangle ADC	
	$AC = \sqrt{12^2 + 12^2} = \dots$	M1
	For the correct value of AC	A1
	$AC = \sqrt{288} = 12\sqrt{2}$	[2]
(b)	Let the intersection of AC and BD be X	
	Uses any appropriate trigonometry on triangle <i>OAX</i>	
	$12\sqrt{2}$	
	For example; $x = \frac{\overline{2}}{\cos 30^{\circ}} = \dots$	M1
	OR	
	$\frac{\sin 120^{\circ}}{12\sqrt{2}} = \frac{\sin 30^{\circ}}{OA} \Rightarrow OA = \dots \text{ OR } \left(12\sqrt{2}\right)^{2} = x^{2} + x^{2} - 2 \times x \times x \cos 120 \Rightarrow x = \dots$	
	For the correct value of x	
		A1 cso

	$x = \sqrt{96} = \left(4\sqrt{6}\right) *$	[2]
(c)	For using trigonometry to find angle $\angle AOB$	
	$\cos \angle AOB = \frac{96 + 96 - 12^2}{2 \times \sqrt{96} \times \sqrt{96}} = \dots$	M1
	$\angle AOB = 75.522^{\circ}$	A1
	Area of triangle <i>OAB</i>	
	Area = $\frac{1}{2} \times \sqrt{96} \times \sqrt{96} \times \sin' 75.522^{\circ} = (46.4758)$	M1
	Total area of the pyramid = $4 \times 46.4758 + 12^2 = (329.90)$	M1
	For the correct final area = awrt 330 (cm ²)	A1
	ATT	[5]
	ALT Height of the triangle of one of the triangular faces:	
	$h = \sqrt{(4\sqrt{6})^2 - 6^2} = \dots$	M1
	$h = 2\sqrt{15}$	A1
	Area of triangle $OAB = \frac{1}{2} \times 2\sqrt{15} \times 12 = 12\sqrt{15} = (46.4758)$	M1
	Total area of the pyramid = $4 \times 12\sqrt{15} + 144 = (329.903)$	M1
	For the correct final area = awrt 330 (cm ²)	A1
	Allow an exact answer of $48\sqrt{15} + 144$ (cm) ² oe	
(d)	$\cos \angle AOB = \frac{96 + 96 - 12^2}{2 \times \sqrt{96} \times \sqrt{96}} = 75.522^{\circ}$	
	or	
	$\angle OBC = \frac{180^{\circ} - 75.522^{\circ}}{2} = 52.239^{\circ}$	
	Let <i>Y</i> on <i>OB</i> be the foot of the perpendicular from <i>A</i> to <i>OB</i>	
	Length $AY = 12 \sin 52.239^{\circ} = (9.4868)$	M1A1
	OR _	
	Length $AY = 4\sqrt{6} \sin 75.522^{\circ} = (9.4868)$	[M1A1]
	For the appropriate trigonometry on triangle <i>AYC</i> to find angle <i>AYC</i>	
	$\cos \angle AYC = \frac{'9.4868'^2 + '9.4868'^2 - 288}{2 \times '9.4868' \times '9.4868'} \Rightarrow (\angle AYC = 126.87)$	M1
	Angle between plane AOB and plane OBC =awrt 127[°]	A1 [4]
		Total 13 marks

Question	Scheme	Marks
10(a)	$\cos(A-B) = \cos A \cos B + \sin A \sin B$	
	$\cos(A+B) = \cos A \cos B - \sin A \sin B$	
	$\cos(A-B) - \cos(A+B) = \sin A \sin B - (-\sin A \sin B) = 2\sin A \sin B *$	M1A1cso
(b)	$[A - B = 5\theta, A + B = 9\theta \Rightarrow A = 7\theta, B = 2\theta]$	[2]
	$\cos 5\theta - \cos 9\theta = 2\sin 7\theta \sin 2\theta *$	B1 cso [1]
(c)	$\sqrt{3}\sin 7\theta = 2\sin 7\theta \sin 2\theta \Rightarrow 0 = 2\sin 7\theta \sin 2\theta - \sqrt{3}\sin 7\theta$	M1A1
	$0 = \sin 7\theta \left(2\sin 2\theta - \sqrt{3}\right) \Rightarrow \sin 7\theta = 0, \ 2\sin 2\theta - \sqrt{3} = 0$	M1
	$\sin 7\theta = 0 \Rightarrow 7\theta = 0, \ \pi, \ 2\pi \Rightarrow \theta = \frac{\pi}{7}, \ \frac{2\pi}{7}$	M1A1
	$2\sin 2\theta - \sqrt{3} = 0 \Rightarrow \sin 2\theta = \frac{\sqrt{3}}{2} \Rightarrow 2\theta = \frac{\pi}{3}, \ \frac{2\pi}{3} \Rightarrow \theta = \frac{\pi}{6}, \ \frac{\pi}{3}$	M1A1
		[7]
(d)	$\tan 2x = \frac{\sin 2x}{\cos 2x} \Rightarrow \tan 2x \cos 2x = \sin 2x$	M1
	$\int_0^{\frac{\pi}{7}} 8\sin 7x \sin 2x dx = \left[\int_0^{\frac{\pi}{7}} 4 \times (2\sin 7x \sin 2x) dx \right]$	M1
	$\int_0^{\frac{\pi}{7}} 4(\cos 5x - \cos 9x) dx = 4 \left[\frac{\sin 5x}{5} - \frac{\sin 9x}{9} \right]_0^{\frac{\pi}{7}}$	M1M1
	$4\left[\frac{\sin 5x}{5} - \frac{\sin 9x}{9}\right]_{0}^{\frac{\pi}{7}} = 4\left[\left(\frac{\sin 5 \times \frac{\pi}{7}}{5} - \frac{\sin 9 \times \frac{\pi}{7}}{9}\right) - \left(\frac{\sin 0}{5} - \frac{\sin 0}{9}\right)\right] \#$ $= 0.9729 \approx 0.973$	M1A1 [6]
		 al 16 marks
	100	a. iv mains

Question	Notes	Marks
10(a)	From the formula sheet	
	$\cos(A-B) = \cos A \cos B + \sin A \sin B$	
	$\cos(A+B) = \cos A \cos B - \sin A \sin B$	
	Subtracts the two equations to give:	
	$\cos(A-B) - \cos(A+B) = \sin A \sin B - (-\sin A \sin B)$	
	For the compatition of the second company and the company and the second company and the se	M1
	For the correct identity as shown with no errors, $\cos(A-B) - \cos(A+B) = 2\sin A \sin B *$	A1 cso
	$\frac{\cos(A-B)-\cos(A+B)-2\sin A\sin B}{\cos(A-B)-\cos(A+B)}$	[2]
(b)	For finding the value of A and the value of B	
	$A - B = 5\theta, A + B = 9\theta$	Blcso
	$\Rightarrow A = 7\theta, B = 2\theta$	[1]
	Or as a minimum: $\cos(7\theta - 2\theta) - \cos(7\theta + 2\theta) = 2\sin 7\theta \sin 2\theta$ *	
(c)	Sets $\sqrt{3}\sin 7\theta = 2\sin 7\theta \sin 2\theta$	M1
	Achieves the correct equation allow the terms in any order.	
	$0 = 2\sin 7\theta \sin 2\theta - \sqrt{3}\sin 7\theta$	A1
	Factorises their equation	
	$0 = \sin 7\theta \left(2\sin 2\theta - \sqrt{3}\right) \Rightarrow \sin 7\theta = 0, \ 2\sin 2\theta - \sqrt{3} = 0$	M1
	For finding at least one correct value for θ using $\sin 7\theta = 0$	
	$\sin 7\theta = 0 \Rightarrow 7\theta = 0$ π $2\pi \Rightarrow \theta = \frac{\pi}{2}$ $\frac{2\pi}{2}$	3.54
	$\sin 7\theta = 0 \Rightarrow 7\theta = 0, \ \pi, \ 2\pi \Rightarrow \theta = \frac{\pi}{7}, \ \frac{2\pi}{7}$	M1
	For both correct values $\theta = \frac{\pi}{7}, \frac{2\pi}{7}$	A1
	_	Al
	For finding one correct value of θ using $2\sin 2\theta - \sqrt{3} = 0$	
	$2\sin 2\theta - \sqrt{3} = 0 \Rightarrow \sin 2\theta = \frac{\sqrt{3}}{2} \Rightarrow 2\theta = \frac{\pi}{3}, \ \frac{2\pi}{3} \Rightarrow \theta = \frac{\pi}{6}, \ \frac{\pi}{3}$	M1
	2 3 3 6 3	
	For both correct values $\theta = \frac{\pi}{6}, \frac{\pi}{2}$	A1
	6 3	[7]
(d)	Uses the identity for $\tan 2x = \frac{\sin 2x}{2} \Rightarrow \tan 2x \cos 2x = \sin 2x$	
	$\cos 2x$	M1
	Substitutes the above into $8\sin 7x\cos 2x\tan 2x$ to give	
	$\int_0^{\frac{\pi}{7}} 8\sin 7x \sin 2x dx = \left[\int_0^{\frac{\pi}{7}} 4 \times (2\sin 7x \sin 2x) dx \right]$	M1
	Ignore integral sign and limits for this mark.	
	For substituting $\cos 5x - \cos 9x$ for $2\sin 7x \sin 2x$ to give	3.51
	$\int_0^{\frac{\pi}{7}} 4(\cos 5x - \cos 9x) \mathrm{d}x$	M1
	Ignore integral sign and limits for this mark.	

Integrates $\int_0^{\frac{\pi}{7}} 4(\cos 5x - \cos 9x) dx = 4 \left[\frac{\sin 5x}{5} - \frac{\sin 9x}{9} \right]_0^{\frac{\pi}{7}}$ Ignore limits for this mark.	M1	
As a minimum they must obtain: $\left(\pm \frac{\sin 5x}{5} \pm \frac{\sin 9x}{9}\right)$ for the integration.		
Substitutes the limits the correct way around		
$4\left[\frac{\sin 5x}{5} - \frac{\sin 9x}{9}\right]_{0}^{\frac{\pi}{7}} = 4\left[\left(\frac{\sin 5 \times \frac{\pi}{7}}{5} - \frac{\sin 9 \times \frac{\pi}{7}}{9}\right) - \left(\frac{\sin 0}{5} - \frac{\sin 0}{9}\right)\right]$	M1	
=(0.9729)		
For the correct value of $\int_0^{\frac{\pi}{7}} 8\sin 7x \cos 2x \tan 2x dx = 0.973$	A1 [6]	
Total 16 marks		