Class 14: RNASeq Mini Project

Josie (A11433761)

Import Data

Counts Metadata

```
counts<-read.csv("GSE37704_featurecounts.csv", row.names=1)
head(counts)</pre>
```

```
length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
                    918
ENSG00000186092
                                           0
                                                                0
                   718
ENSG00000279928
                                0
                                           0
                                                     0
                                                                0
                                                                          0
ENSG00000279457
                  1982
                               23
                                          28
                                                    29
                                                               29
                                                                         28
ENSG00000278566
                   939
                                0
                                           0
                                                     0
                                                                0
                                                                          0
                   939
ENSG00000273547
                                           0
                                                     0
                                                                0
                                                                          0
ENSG00000187634
                  3214
                              124
                                         123
                                                   205
                                                              207
                                                                        212
                SRR493371
ENSG00000186092
ENSG00000279928
                         0
ENSG00000279457
                        46
ENSG00000278566
                         0
ENSG00000273547
                         0
ENSG00000187634
                       258
```

```
metadata<-read.csv("GSE37704_metadata.csv")
head(metadata)</pre>
```

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd
```

Data Clean up

[1] TRUE

Filter out zero counts

It's standard practice to remove genes/transcripts that have zero counts in all columns

```
to.keep.inds <- rowSums(countsData)>0
cleanCounts<-countsData[to.keep.inds,]
head(cleanCounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Set up for DESeq

library(DESeq2)

dds<-DESeqDataSetFromMatrix(countData=cleanCounts, colData=metadata, design=~condition)

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

DESeq

dds<-DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

res<-results(dds)

Inspect Results

Data VIz

plot(res\$log2FoldChange,-log(res\$padj))

Pathway Analysis

Annotation of genes

First I need to translate my Ensemble IDs to my res object to Entrez and gene symbol formats For this, use AnnotationDbi package and it's mapIDs function Let's map to "SYMBOL" and "ENTREZID" and "GENENAME" from our "ENSEMBL" ids

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

columns(org.Hs.eg.db)

```
[1] "ACCNUM"
                                                                "ENSEMBLTRANS"
                   "ALIAS"
                                  "ENSEMBL"
                                                 "ENSEMBLPROT"
 [6] "ENTREZID"
                   "ENZYME"
                                  "EVIDENCE"
                                                 "EVIDENCEALL"
                                                                "GENENAME"
[11] "GENETYPE"
                   "GO"
                                  "GOALL"
                                                 "IPI"
                                                                "MAP"
[16] "OMIM"
                                  "ONTOLOGYALL" "PATH"
                                                                "PFAM"
                   "ONTOLOGY"
                                                 "SYMBOL"
[21] "PMID"
                   "PROSITE"
                                  "REFSEQ"
                                                                "UCSCKG"
[26] "UNIPROT"
```

```
res$genename <- mapIds(org.Hs.eg.db,
keys=row.names(res), # Our gene names
keytype="ENSEMBL", # The format of our gene names
column="GENENAME", # The new format we want to add
multiVals="first")</pre>
```

'select()' returned 1:many mapping between keys and columns

```
res$symbol <- mapIds(org.Hs.eg.db,
keys=row.names(res), # Our gene names
keytype="ENSEMBL", # The format of our gene names
column="SYMBOL", # The new format we want to add
multiVals="first")</pre>
```

'select()' returned 1:many mapping between keys and columns

```
res$entrez <- mapIds(org.Hs.eg.db,
keys=row.names(res), # Our gene names
keytype="ENSEMBL", # The format of our gene names
column="ENTREZID", # The new format we want to add
multiVals="first")</pre>
```

'select()' returned 1:many mapping between keys and columns

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at

http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
library(gage)
```

```
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
#kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Examine the first 3 pathways
#head(kegg.sets.hs, 3)
```

Let's save our top genes to a CSV file

```
top.inds<- ((abs(res$log2FoldChange) > 2) & res$padj<0.05)

top.inds[is.na(top.inds)]<-FALSE

top.genes<-res[top.inds,]
write.csv(top.genes, file="top_geneset.csv")</pre>
```

Now we can do our pathway analysis

```
kegg.sets.hs=kegg.sets.hs[sigmet.idx.hs]
```

The **gage** function wants a vector of importance as input with gene names as labels-KEGG speaks Entrez

```
foldchanges<- res$log2FoldChange
names(foldchanges)<- res$entrez
head(foldchanges)</pre>
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

```
keggres<- gage(foldchanges, gsets= kegg.sets.hs)
attributes(keggres)</pre>
```

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	stat.mean	p.val
hsa04110	Cell cycle	8.995727e-06	-4.378644	8.995727e-06
hsa03030	DNA replication	9.424076e-05	-3.951803	9.424076e-05
hsa03013	RNA transport	1.246882e-03	-3.059466	1.246882e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val s	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	.995727e-06
hsa03030	DNA replication	0.007586381	36 9	.424076e-05
hsa03013	RNA transport	0.066915974	144 1	.246882e-03
hsa03440	Homologous recombination	0.121861535	28 3	.066756e-03
			400 0	T04500 00
hsa04114	Oocyte meiosis	0.121861535	102 3	.784520e-03

hsa04110 Cell cycle

```
pathview(foldchanges,pathway.id = "hsa04110")
```

Info: Working in directory /Users/josierivera/Library/CloudStorage/OneDrive-Personal/Document

Info: Writing image file hsa04110.pathview.png

^{&#}x27;select()' returned 1:1 mapping between keys and columns

```
data(go.sets.hs)
data(go.subs.hs)
# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]
gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

\$greater				
		p.geomean	stat.mean	p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GD:0002009	morphogenesis of an epithelium	1.396681e-04	3.653886	1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GO:0007610	behavior	1.925222e-04	3.565432	1.925222e-04
GO:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376	5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665	5.953254e-04
		q.val se	t.size	exp1
GO:0007156	homophilic cell adhesion	0.1951953	113 8.5	19724e-05
GO:0002009	morphogenesis of an epithelium	0.1951953	339 1.39	96681e-04
GO:0048729	tissue morphogenesis	0.1951953	424 1.43	32451e-04
GO:0007610	behavior	0.1967577	426 1.93	25222e-04
GO:0060562	epithelial tube morphogenesis	0.3565320	257 5.93	32837e-04
GO:0035295	tube development	0.3565320	391 5.9	53254e-04
\$less				
		p.geomean	stat.mean	p.val
GO:0048285	organelle fission	1.536227e-15	-8.063910	1.536227e-15
GO:0000280	nuclear division	4.286961e-15	-7.939217	4.286961e-15

Ψ±000				
		p.geomean	stat.mean	p.val
GO:0048285	organelle fission	1.536227e-15	-8.063910	1.536227e-15
GD:0000280	nuclear division	4.286961e-15	-7.939217	4.286961e-15
GO:0007067	mitosis	4.286961e-15	-7.939217	4.286961e-15
GO:0000087	M phase of mitotic cell cycle	e 1.169934e-14	-7.797496	1.169934e-14
GO:0007059	chromosome segregation	2.028624e-11	-6.878340	2.028624e-11
GO:0000236	mitotic prometaphase	1.729553e-10	-6.695966	1.729553e-10
		q.val	set.size	exp1
GO:0048285	organelle fission	5.841698e-12	376	1.536227e-15
GO:0000280	nuclear division	5.841698e-12	352	4.286961e-15
GO:0007067	mitosis	5.841698e-12	352	4.286961e-15
GO:0000087	M phase of mitotic cell cycle	e 1.195672e-11	362	1.169934e-14
GO:0007059	chromosome segregation	1.658603e-08	142	2.028624e-11
GD:0000236	mitotic prometaphase	1.178402e-07	84	1.729553e-10

\$stats

	stat.mean exp1
GO:0007156 homophilic cell adh	esion 3.824205 3.824205
GO:0002009 morphogenesis of an	epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesi	s 3.643242 3.643242
GO:0007610 behavior	3.565432 3.565432
GO:0060562 epithelial tube mor	phogenesis 3.261376 3.261376
GO:0035295 tube development	3.253665 3.253665

To run reactome online we need to make a little text file with a gene id per line

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote

