



# **EDUCATION**

: Student Performance Dataset





16기 김상옥 2021140655



16기 노연수 2020150447



16기 임정준 2019190035



## **CONTENTS**

**INTRO** 

**EDA** 

Data Preprocessing

Modeling

Statistical Reasoning

Conclusion















## **Domain Knowledge**

- ✔'지능(IQ)', '거주지 주택 가격(부동산)', '조부모의 자산', '부모의 학력' 변수들이 성적에 대하여 95% 설명력을 가지고 있다고 알려져 있으며, 다른 국가에서도 이러한 변수 설명력이 크게 다르지 않음
- ✓지능은 보통 유전으로 결정되는 경우가 많으며, 부모의 부동산 및 학력은 학생이노출될 수 있는 교육 환경과 주변 상황들을 내포하고 있음
- ✔[Reference]: [학업성적 결정구조(중/고등학생의)].이해명.교육과학사.1988















## **ABOUT**

Student Performance Data was obtained in a survey of students' math course in secondary school:

- ✓ School ID
- ✓ Health
- ✓ Occupation & Education of Mother/Father
- ✓ Alcohol Consumption
- √ Family size & relationship
- ✓ G1 / G2 / G3 tested on each three time



직관적으로 성적과 연관되어 있는 변수는 **아니지만**, 다양한 Modeling을 통하여 **최적화된 Model Selection** 

### **MISSION**

**Regression** about 'Grade':

주어진 Feature Data 바탕으로 학생들의 성적 예측





#### **Imported Library**

From dataprep.eda import create\_report
From seaborn import pairplot, heatmap, catplot, countplot
From matplotlib.pyplot import plot, show







**EDA**[Raw Data]









GP/MS – 두 학교 중 한 곳

Sex

Female/Male

Health

현재 건강 상태: from 1 to 5

Address

도시 / 시골

Family Size

Greater than 3 / Less or Equal to 3

Pstatus

가족과 같이 거주 / 따로 거주

Reason

집과 가까움 / 평판 / 수업 / 기타

Guardian

Mother / Father / Other

Internet

Internet 사용 유무 (yes or no)

Romantic

현재 연애 상태 (yes or no)

**Family Relationship** 

관계의 질 수준(from 1 to 5)

Family/School support

가족/학교의 교육적 지원 여부(yes or no)

**Traveltime** 

통학 시간(from 1 to 4)

Activities/go out

방과후 학교(yes or no) / 친구들과 노는 정도(1-5)

Nursery

보건 학교 출석 여부 (yes or no)

Higher/Paid

고등 교육 희망 여부 / 사교육 여부 (yes or no)



#### **Expected Prime Variable**

- 부모의 직업과 교육 수준은 학생에게 있어 교육 환경 노출 정도를 결정할 것이다.
- 알코올 소비량은 궁극적으로 학업에 대한 집중력과 공부 시간에 영향이 있을 것이다.









## **EDA**[Detailed Features]







#### Mjob/Fjob

부모의 직업
(교사 / 보건 관련 직종 / 서비스업 / 기타)
기타 비율이 비교적 높으나,
상식적으로 성적에 유의하다고 판단



부모의 학력 수준
0 (= None) ~ 4 (= higher than Secondary)
타겟 변수와의 Correlation = 0.2

#### Dalc/Walc/Studytime

Dalc, Walc = 주중, 휴일 중 알코올 소비량Studytime = 공부시간(from 1 to 4)두 변수 간 상관관계 비교적 높음 (약 0.65)Studytime과의 상관관계 = - 0.3타겟 변수와의 Correlation = 0.1













#### **Expected Prime Variable**

- 누적되는 수업에 대한 낙제는 자신의 점수에 대한 부정적인 영향을 끼칠 것이다.
- 결석 횟수는 간접적으로 수업을 따라가는 데 있어서 부정적인 영향을 끼칠 것이다.









EDA [Detailed Features]







#### **Failures**

Class Failure(F 학점) 횟수 0~3 (4 이상은 3으로 처리) 타겟 변수와의 **Correlation = - 0.35** 

#### **Absences**

결석 횟수(Numerical Variable), 0 ~ 93 타겟 변수와의 **Correlation = -0.03** 

#### G1/G2/G3 [Target Variable]

0~20, 정규분포와 유사 점수 간 상관관계 비교적 높음 (약 0.85)

 $: G_{mean} = (G1+G2+G3) / 3$ 

































- **✓ Overfitting Problem**:
  - Dataset shape(395, 33)를 고려하면, Overfitting에 Sensitive
- ✓ Correlation Problem:
  - Feature와 Target 간 Correlation이 높지 않아 Non-linear Modeling이 필요
- √ Categorical Variable Encoding:
  - Overfitting이 쉽게 일어날 수 있고, Non-linear Model에 적합한 Encoding 필요
- ✓ Multicollinearity Problem:
  - 부모 학력 및 직업, 알코올 소비량 간 높은 상관관계 문제 해결 필요

#### **Derived Variable / Dropping**



#파생변수 생성 df['Overall alc']=(df['Dalc']+df['Walc'])/2 df['Parent Job/Edu']=(df['Medu']+df['Fedu'])/2 df=df.drop(['Dalc','Walc','Medu','Fedu'],axis=1)

#### **One-hot Encoding**

**#One-hot Encoding**  $df_1 = pd.get_dummies(df_1)$ 



#### **Standard Scaling**



for i in df2.columns: if i in skewed list: df2[i]=np.log1p(df2[i]) #Log Transformation



for i in scaled cols:

scaler = StandardScaler()

A n = scaler.fit transform(train[i].values.reshape(-1,1)) #train: fit transform() train[i]=A\_n

B\_n = scaler.transform(test[i].values.reshape(-1,1)) #test: transform() test[i]=B n

## PREPROCESSING DIAGRAM







#### **One-hot Encoding**

Label Encoding / Mean Encoding / M-estimator Encoding

Overfitting 문제로 One-hot encoding 활용

#### **Derived Variable/ Column Drop**

Multicollinearity Problem 해결 위해 **변수 병합**:

('Dalc'+'Walc')/2, ('Medu'+'Fedu')/2

'Pstatus'/'Address'/'School' Column Drop

## New Derived Variable?

몇몇 파생변수는 모델 성능에 유의한 효과를 미치지 못함, 과도한 Column Drop은 오히려 성능 저하 요인

#### Log Transformation

Skewed Distribution에서

넓은 부분은 좁혀주고, 좁은 부분은 넓힘

→ Skewed Dataset을 Normal Distribution으로 변형

#### **Standard Scaling**

각 Categorical 변수마다 범주가 다르므로 표준화 진행













## **Preprocessing Summary**



Data Preprocessing







## **Original Dataset**

- ✓ One-hot Encoding
- ✓ Derived Variable
- ✓ Log Transformation
- √ StandardScaler

## **Unnecessary Column:**

- **✓ Pstatus**
- ✓ School
- ✓ Address

















## **AutoML: Pycaret**

적은 코드로 Machine Learning Workflows를 자동화하는 오픈소스 라이브러리

!pip install pycaret[full] from pycaret.utils import enable\_colab enable\_colab() from pycaret.regression import \*















from pycaret.regression import \* reg=setup(data=train, target = 'G\_mean',session\_id=14,silent=True) #Feature/Target setup

|   | Description               | Value     |
|---|---------------------------|-----------|
| 0 | session_id                | 14        |
| 1 | Target                    | G_mean    |
| 2 | Original Data             | (276, 40) |
| 3 | Missing Values            | False     |
| 4 | Numeric Features          | 30        |
| 5 | Categorical Features      | 9         |
|   | Ordinal Features          | False     |
| 7 | High Cardinality Features | False     |

Modeling

|   |    | High Cardinality Method | None      |
|---|----|-------------------------|-----------|
| 9 |    | Transformed Train Set   | (193, 38) |
|   | 10 | Transformed Test Set    | (83, 38)  |
|   | 11 | Shuffle Train-Test      | True      |
|   | 12 | Stratify Train-Test     | False     |
|   | 13 | Fold Generator          | KFold     |



## **Model Comparison**

| best = compare_models(sort ='R2') #Model 간 Performance 비교 |                                 |        |         |        |         |        |        |          |
|-----------------------------------------------------------|---------------------------------|--------|---------|--------|---------|--------|--------|----------|
|                                                           | Model                           | MAE    | MSE     | RMSE   | R2      | RMSLE  | MAPE   | TT (Sec) |
| rf                                                        | Random Forest Regressor         | 2.6628 | 11.5052 | 3.3265 | 0.1456  | 0.3329 | 0.3603 | 0.449    |
| br                                                        | Bayesian Ridge                  | 2.6876 | 11.3955 | 3.3487 | 0.1423  | 0.3390 | 0.3690 | 0.016    |
| lightgbm                                                  | Light Gradient Boosting Machine | 2.7079 | 11.9202 | 3.4179 | 0.1103  | 0.3454 | 0.3734 | 0.029    |
| catboost                                                  | CatBoost Regressor              | 2.7432 | 11.9588 | 3.4171 | 0.1077  | 0.3456 | 0.3814 | 1.191    |
| ada                                                       | AdaBoost Regressor              | 2.7109 | 11.9848 | 3.4173 | 0.1072  | 0.3399 | 0.3667 | 0.084    |
| ridge                                                     | Ridge Regression                | 2.7322 | 11.9417 | 3.4254 | 0.0975  | 0.3519 | 0.3698 | 0.015    |
| lr                                                        | Linear Regression               | 2.7423 | 12.1815 | 3.4580 | 0.0769  | 0.3585 | 0.3713 | 0.016    |
| gbr                                                       | Gradient Boosting Regressor     | 2.7963 | 12.8303 | 3.5044 | 0.0538  | 0.3526 | 0.3773 | 0.062    |
| huber                                                     | Huber Regressor                 | 2.7654 | 12.5885 | 3.5003 | 0.0451  | 0.3601 | 0.3759 | 0.041    |
| omp                                                       | Orthogonal Matching Pursuit     | 2.8499 | 12.7984 | 3.5402 | 0.0395  | 0.3582 | 0.3935 | 0.015    |
| xgboost                                                   | Extreme Gradient Boosting       | 2.8682 | 13.1970 | 3.5911 | -0.0122 | 0.3590 | 0.3713 | 0.345    |
| en                                                        | Elastic Net                     | 2.9831 | 13.5419 | 3.6600 | -0.0188 | 0.3709 | 0.4223 | 0.014    |
| llar                                                      | Lasso Least Angle Regression    | 3.0706 | 14.2402 | 3.7539 | -0.0711 | 0.3782 | 0.4329 | 0.015    |
| dummy                                                     | Dummy Regressor                 | 3.0706 | 14.2402 | 3.7539 | -0.0711 | 0.3782 | 0.4329 | 0.011    |
| lasso                                                     | Lasso Regression                | 3.0804 | 14.3152 | 3.7641 | -0.0771 | 0.3793 | 0.4343 | 0.015    |
| knn                                                       | K Neighbors Regressor           | 3.0266 | 14.4614 | 3.7626 | -0.0963 | 0.3825 | 0.4261 | 0.062    |
| et                                                        | Extra Trees Regressor           | 3.1757 | 16.0971 | 3.9572 | -0.2230 | 0.3834 | 0.4181 | 0.408    |













### **Model Selection**





Blending/Stacking

데이터셋이 작기 때문에 Generalization에서 Overfitting Problem 문제가 커지고, 성능 저하 문제 발생

Ultimately, Single Model

Single Model의 Hyperparameter Tuning이

다른 Modeling보다 성능 좋음

가장 우수한 RandomForestRegressor 선정

→ Dataset의 특수성에 기인

### Modeling







#### **Tuning Hyperparameter**

Overfitting Problem Solution
#Kfold = 10 #max depth Control #n estimators >= 250

|                                             |      | ,,,,   |         |        |         |        |        | 230 |  |
|---------------------------------------------|------|--------|---------|--------|---------|--------|--------|-----|--|
| <pre>params = {"max_depth": [5,8,11],</pre> |      |        |         |        |         |        |        |     |  |
|                                             |      | MAE    | MSE     | RMSE   | R2      | RMSLE  | MAPE   |     |  |
|                                             | Fold |        |         |        |         |        |        |     |  |
|                                             | 0    | 2.6854 | 14.0389 | 3.7469 | 0.1430  | 0.4657 | 0.5599 |     |  |
|                                             | 1    | 2.7617 | 12.0331 | 3.4689 | -0.0463 | 0.3513 | 0.3612 |     |  |
|                                             | 2    | 2.7946 | 11.4950 | 3.3904 | -0.1558 | 0.2771 | 0.2326 |     |  |
|                                             | 3    | 2.8004 | 16.4480 | 4.0556 | 0.0397  | 0.4459 | 0.5051 |     |  |
|                                             | 4    | 3.4465 | 16.4593 | 4.0570 | 0.1777  | 0.4591 | 0.5890 |     |  |
|                                             | 5    | 2.6249 | 9.0307  | 3.0051 | 0.4250  | 0.3345 | 0.3774 |     |  |
|                                             | 6    | 2.8737 | 11.6953 | 3.4198 | 0.3360  | 0.4045 | 0.4836 |     |  |
|                                             | 7    | 2.2161 | 6.6321  | 2.5753 | 0.2985  | 0.2091 | 0.2037 |     |  |
|                                             | 8    | 2.8659 | 11.0383 | 3.3224 | 0.2910  | 0.4045 | 0.5115 |     |  |
|                                             | 9    | 2.9287 | 12.4982 | 3.5353 | -0.1875 | 0.3319 | 0.3519 |     |  |
| N                                           | lean | 2.7998 | 12.1369 | 3.4577 | 0.1321  | 0.3684 | 0.4176 |     |  |
|                                             | Std  | 0.2882 | 2.8774  | 0.4259 | 0.2020  | 0.0792 | 0.1263 |     |  |

## RandomForestRegressor







#### **Definition**

여러 Decision Tree를 Ensemble,

평균/MSE를 사용해 예측 정확도 높이고 Overfitting을 제어하는 **Meta Estimator** 



### Hyperparameter

#n\_estimators: Tree의 개수

#max\_depth: Tree의 최대 깊이

#min\_samples\_leaf: 내부 Node를 분할하는 데 필요한 최소 샘플 수

#max\_features: 최상의 분할을 찾는데 고려하는 Feature 수

#bootstrap: 복원 추출 제어

### **Advantages**

- ✓ 대부분의 Dataset에서 평균 이상의
  Performance 발휘
- ✓ Feature Importance Estimating 가능

## Modeling

- ✓ Overfitting 조절 위해 Hyperparameter 조절 (max\_depth, n\_estimators)
- ✔ RandomForest 활용, Feature Engineering 전 Feature Importance 확인











## **Final Model Performance**





Modeling





## **Statistical Reasoning**

















## Feature Importance Analysis

- ✓ Failures
- ✓ Absences
- ✓ School Support
- ✓ Overall Alc
- ✓ Parent Edu
- ✓ Health
- ✓ Age
- ✓ Studytime

- ✓ 낙제를 덜 할수록
- ✓ 결석을 덜 할수록
- ✓ 학교 지원 있으면
- ✓ 술을 덜 마시면
- ✓ 부모 교육 수준 ↑
- ✓ 더욱 건강하면
- ✓ 나이가 많으면
- ✓ 공부시간이 많으면





#### **Residuals Plot**

- ✓ Residual Distribution은 대체로 Normal distribution Shape
- ✓ Regression의 Quality 대체로 준수
- ✓ Bias-Variance 간 Balance를이루었다고 할 수 있음











- ✓ Regression으로 정확히 성적을 예측하기에는 Dataset의 한계 존재
- ✓ 만점 20점 기준으로 A, B, C 구간 3등분, 타겟 변수를 범주화
- ✔ Logistic Regression, Naive Bayes, Random Forest, Support Vector Machine, Linear Kernel 단순 적용
- ✓ Naive Bayes 제외 60% 수준의 정확도



#### **Target Simplification**



### **Model Comparison**









## 번외: Classification











### **Classification Model Performance**





Modeling'





## Conclusion







#도메인 지식의 중요성

"순수한 공부가 성적을 올리는 절대적인 요소가 아니다 !" 어떠한 주변 환경과 요소들이 중요한지 알았다면 더 좋은 Feature Engineering이 가능했을 것

#Beginner~Intermediate ML-er에게 유용한 AutoML

Models Comparison과 Model Visualization이 빠른 시간 내에 가능하다는 것은 ML-er들에게 있어 Resource를 크게 덜어줄 수 있을 것

**#Data Preprocessing** 

Modeling보다 더 중요하게 느껴진 Data Preprocessing 창의적인 EDA를 바탕으로 보다 좋은 Modeling을 이끌어내는 것이 진정한 Data Engineer

**#Basic Statistics** 

Statistics을 기반으로 DataSet을 바라보는 Insight Level 'UP'

# **THANKS**

16기 김상옥 16기 노연수 16기 임정준