Week 3 - Local Search, Planning Models & Languages

Due No due date Points 6 Questions 6 Time Limit None
Allowed Attempts Unlimited

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	3 minutes	3 out of 6

Submitted Apr 20 at 10:29

Question 2	1 / 1 pts
WA* with w = infinity becomes	

A*
Uniform-cost search (Dijkstra)
Breadth-first search
Greedy Best First Search

Correct!

Question 3 1 / 1 pts

For the following graph, assuming the h=0 node is the goal, Enforced Hill Climbing is guaranteed to find a solution

Correct!	Yes		
	○ No		
	We can guarantee the search will never get stuck in a state that doesn't lead to the goal, as a path can be found from every state to the goal.		
	Question 4 0 / 1 pts		
	Conformant Planning has:		
rrect Answer	A set of possible initial states and a probabilistic transition function A set of possible initial states and a non-deterministic transition function		
ou Answered	A probability distribution over the initial states and a probabilistic transition function		
	A probability distribution over the initial states and a non-deterministic transition function		
	Question 5 1 / 1 pts		
	POMDPs have:		

Correct!

A sensor model given by probabilities drawn from observations about the environment

- A set of possible initial states
- A deterministic transition function
- A complexity that is identical to classical planning

Question 6

0 / 1 pts

Given the following initial state in a Blocks World problem, how many propositions are required to specify the initial state

ou Answered

4

orrect Answers

6 (with margin: 0)

The following are required: onTable(A), on(C, A), onTable(B), clear(C), clear(B), armEmpty