Dustin Newman

CS 181, Discussion 1C

Campbell, Mathur

Assignment Five

We prove that L_1 is not regular by contradiction.

Assume that L_1 is regular. Therefore, the pumping lemma applies to L_1 . Therefore, there exists some constant p>0 such that for all strings $w\in L_1$, $|w|\geq p$. For every w,w can be partitioned into substrings x,y,z such that $w:=xy^iz$ for all $i\geq 0$. Per the pumping lemma, $|xy|\leq p$ and |y|>0.

Consider the case when $w:=b^p cc^p$. Clearly, $|w|\geq p$, in fact |w|=2p+1. $w\in L_1$ since more than half of the symbols in w are c's i.e. $\#(c,w)=\frac{1}{2}|w|+1>\frac{1}{2}|w|$.

Since $|xy| \le p$, x, y must consist of all b's, since it is not possible for the length of y to exceed p. Therefore, it is more accurate to rewrite w as $w := b^m b^n b^{p-m-n} cc^p$ where m := |x| and n := |y|.

No matter the specific assignment of x, y, z, we know that x, y must consist of all b's. We also know that the pumping lemma holds for *all* values of i.

Consider the case where i := 3. We then rewrite w as $w := b^m b^{3n} b^{p-m-n} cc^p$. The pumping lemma states that $w \in L_1$. However, $w \notin L_2$ because more than half of its symbols are not c's:

$$m+3n+p-m-n>p+1$$

$$2n+p>p+1$$

The above is impossible since $n \ge 1$. We therefore arrive at a contradiction since $\forall i (w := b^p cc^p = xy^i z \in L_1)$ does not hold when i := 3.

 $\therefore L_1$ is not regular.