

A Practical Guide to Dimensionality Reduction

Vishal Patel

October 8, 2016

- O Vishal Patel
- O Data Science Consultant
- O Founder of DERIVE, LLC
 - Fully Automated Advanced Analytics products
- O Have been mining data for about a decade and a half
- O MS in Computer Science, and MS in Decision Sciences (emphasis on Statistics)
- O Richmond, VA

Dimensionality Reduction

- O Dimensionality Reduction: The process of selecting a subset of features for use in model construction
 - O Pre-processing of data in machine learning
 - O Can be useful for both supervised and unsupervised learning problems, but we will focus on the former

"Art is the elimination of the unnecessary." Pablo Picasso

When (Process Flow)

Completed • \$100,000 • 2,226 teams

Springleaf Marketing Response

Fri 14 Aug 2015 - Mon 19 Oct 2015 (11 months ago)

Anonymized features → Predict which customers will respond to a DM offer

Train	Test	
1,933	1,933	features
145,231	145,232	records

Challenge: To construct new meta-variables and employ feature-selection methods to approach this dauntingly wide dataset.

Why Not This

```
from sklearn.linear_model import LogisticRegression
import pandas as pd

train = pd.read_csv(r'C:\train.csv')

y_train = train['target']
train.pop('target')

modelFit = LogisticRegression().fit(train, y_train)
```

The kitchen sink approach

Because...

- True dimensionality <<< Observed dimensionality</p>
 - The abundance of redundant and irrelevant features
- Curse of dimensionality
 - O With a fixed number of training samples, the predictive power reduces as the dimensionality increases. [Hughes phenomenon]
 - \circ With d binary variables, the number of possible combinations is $O(2^d)$.
- Value of Analytics
 - O Descriptive → Diagnostic → Predictive → Prescriptive

Hindsight Insight Foresight

- O Law of Parsimony [Occam's Razor]
 - Other things being equal, simpler explanations are generally better than complex ones.
- Overfitting
- Execution time (Algorithm and data)

Dimensionality Reduction Techniques

- 1. Percent missing values
- 2. Amount of variation
- 3. Pairwise correlation
- 4. Multicolinearity
- 5. Principal Component Analysis (PCA)
- 6. Cluster analysis
- 7. Correlation (with the target)
- 8. Forward selection
- 9. Backward elimination
- 10. Stepwise selection
- 11. LASSO
- 12. Tree-based selection

Information

Redundancy

Predictive Power

Greedy Selection

Embedded

1. Percent Missing Values

- O Drop variables that have a very high % of missing values
 - O # of records with missing values / # of total records
- O Create binary indicators to denote missing (or non-missing) values
- O Review or visualize variables with high % of missing values

1. Percent Missing Values

2. Amount of Variation

O Drop or review variables that have a very low variation

$$VAR(x) = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

- \circ Either standardize all variables, or use standard deviation σ to account for variables with difference scales
- O Drop variables with zero variation (unary)

2. Amount of Variation

3. Pairwise Correlations

- O Many variables are often correlated with each other, and hence are redundant.
- O If two variables are highly correlated, keeping only one will help reduce dimensionality without much loss of information.
 - O Which variable to keep? The one that has a higher correlation coefficient with the target.

3. Pairwise Correlations

1. Identify pairs of highly correlated variables

	x_1	x_2	x_3	x_4
<i>x</i> ₁ ←	1.00	0.15	0.85	0.01
x_2		1.00	0.45	0.60
x_3			1.00	0.17
x_4				1.00

Correlation tolerance ≈ 0.65

Correlation matrix for all independent vars
corrMatrix = X.corr()

2. Discard variable with weaker correlation with the target


```
absCorrWithDep = []
for var in allVars:
    absCorrWithDep.append(abs(y.corr(X[var])))
```

3. Pairwise Correlations

```
# For each column in the corr matrix
for col in corrMatrix:
    if col in corrMatrix.keys():
        thisCol = []
        thisVars = []
        # Store the corr with the dep var for fields that are highly correlated with each other
        for i in range(len(corrMatrix)):
            if abs(corrMatrix[col][i]) == 1.0 and col <> corrMatrix.keys()[i]:
                thisCorr = 0
            else:
                thisCorr = (1 if abs(corrMatrix[col][i]) > corrTol else -1) * abs(temp[corrMatrix.keys()[i]])
            thisCol.append(thisCorr)
            thisVars.append(corrMatrix.keys()[i])
        mask = np.ones(len(thisCol), dtype = bool) # Initialize the mask
        ctDelCol= 0
                       # To keep track of the number of columns deleted
        for n, j in enumerate(thisCol):
            # Delete if (a) a var is correlated with others and do not have the best corr with dep,
            # or (b) completely corr with the 'col'
            mask[n] = not (j != max(thisCol) and j >= 0)
            if j != max(thisCol) and j >= 0:
                # Delete the column from corr matrix
                corrMatrix.pop('%s' %thisVars[n])
                temp.pop('%s' %thisVars[n])
                ctDelCol += 1
        # Delete the corresponding row(s) from the corr matrix
        corrMatrix = corrMatrix[mask]
```

4. Multicolinearity

- O When two or more variables are highly correlated with each other.
- O Dropping one or more variables should help reduce dimensionality without a substantial loss of information.
 - Which variable(s) to drop? Use Condition Index.

	x_1	x_2	x_3	χ_4
x_1	1.00	0.15	0.85	0.01
x_2		1.00	0.45	0.60
x_3			1.00	0.17
x_4				1.00

Condition Index	x_1	x_2	x_3	x_4	
$u_1 = 1.0$	0.01	0.05	0.00	0.16	
$u_2 = 16.5$	0.03	0.12	0.01	0.19	
$u_3 = 28.7$	0.05	0.02	0.13	0.25	
$u_4 = 97.1$	0.93	0.91	0.98	0.11	\rightarrow Discard x_3 , It

Condition Index tolerance ≈ 0.30

4. Multicolinearity

```
ct = len(corrMatrix)
if ct > minVarsKeep:
    print '\n' + 'Performing multicollinearity analysis'
    while True:
       ct -= 1
        cols = corrMatrix.keys() # Update the list of columns
        w, v = np.linalg.eig(corrMatrix) # Eigen values and vectors
        w1 = (max(w) / w) ** 0.5
        # If the condition index <= 30 then multicolinearity is not an issue
        if max(w1) <= condIndexTol or ct == minVarsKeep:</pre>
            break
        for i, val in enumerate(w):
            if val == min(w): # Min value, close to zero
                for j, vec in enumerate(v[:, i]): # Look into that vector
                    if abs(vec) == max(abs((v[:, i]))): # Var that has the max weight
                        mask = np.ones(len(corrMatrix), dtype = bool) # Initialize
                        for n, col in enumerate(corrMatrix.keys()):
                            mask[n] = n != j
                        # Delete row
                        corrMatrix = corrMatrix[mask]
                        # Delete column
                        corrMatrix.pop(cols[j])
```

4. Multicolinearity

5. Principal Component Analysis (PCA)

- O Dimensionality reduction technique which emphasizes variation.
- O Eliminates multicollinearity but explicability is compromised.
 - Uses orthogonal transformation
- O When to use:
 - O Excessive multicollinearity
 - Explanation of the predictors is not important.
 - A slight overhead in implementation is okay.

5. PCA

5. PCA

```
from sklearn.decomposition import PCA
import pylab as pl
# standardize the input data
train scaled = preprocessing.scale(train[allVars])
# perform PCA
pca = PCA().fit(train_scaled)
# plot results
pl.figure(figsize = (12, 9))
ax1 = plt.subplot(111)
ax2 = ax1.twinx()
ax1.plot(pca.explained_variance_ratio_[:300], linewidth = 2)
ax2.plot(pca.explained_variance_ratio_.cumsum()[:300], linewidth = 2, color = 'r')
pl.xlabel('Principal Components')
# select the number of components to keep and transform data
reduced_data = PCA(n_components = 250).fit_transform(train_scaled)
```

6. Cluster Analysis

- O Dimensionality reduction technique which emphasizes correlation/similarity.
 - O Identify groups of variables that are as correlated as possible among themselves and as uncorrelated as possible with variables in other clusters.
- O Reduces multicollinearity and explicability is not (always) compromised.
- O When to use:
 - Excessive multicollinearity.
 - Explanation of the predictors is important.

6. Cluster Analysis

```
from sklearn.cluster import FeatureAgglomeration
varClus = FeatureAgglomeration(n_clusters = 10)
varClus.fit(train_scaled)
train_varclus = varClus.transform(train_scaled)
```

- This returns a pooled value for each cluster (i.e., the centroids), which can then be used to build a supervised learning model.
- O In SAS, using PROC VARCLUS you can choose one variable from each cluster that is the most representative of that cluster.
 - O Use $1 R^2$ ratio to select a variable from each cluster.

7. Correlation with the Target

- O Drop variables that have a very low correlation with the target.
 - O If a variable has a very low correction with the target, it's not going to useful for the model (prediction).

```
absCorrWithDep = []
for var in allVars:
    absCorrWithDep.append(abs(y.corr(X[var])))
```

7. Correlation with the Target

8-10. Forward/Backward/Stepwise Selection

Forward Selection

- 1. Identify the best variable (e.g., based on model accuracy)
- 2. Add the next best variable into the model
- 3. And so on until some predefined criteria is satisfied.

Backward Elimination

- 1. Start with all variables included in the model.
- 2. Drop the least useful variable (e.g., based on the smallest drop in model accuracy)
- 3. And so on until some predefined criteria is satisfied.

Stepwise Selection

O Similar to forward selection process, but a variable can also be dropped if it's deemed as not useful any more after a certain number of steps.

10. Stepwise Selection

```
for j, var in enumerate(sortedVars):
    okayToAdd = 1
    modelFit = model.fit(X_train[:][sortedVars[:j-dropCt+1]], y_train)
   # make sure the coefficient signs are not reserved
    for k, modelVar in enumerate(sortedVars[:j-dropCt+1]):
        for varName, corr in corrWithDep.iteritems():
            if varName == modelVar:
                if np.transpose(modelFit.coef )[k] * corr < 0:</pre>
                    sortedVars.pop(j-dropCt)
                    dropCt += 1
                    okavToAdd = 0
    if okayToAdd == 1:
        trainPreds = modelFit.predict(X train[:][sortedVars[:j-dropCt+1]])
        testPreds = modelFit.predict(X test[:][sortedVars[:j-dropCt+1]])
        # generate evaluation metrics
        trainAccuracy.append(metrics.accuracy score(y train, trainPreds))
        testAccuracy.append(metrics.accuracy score(y test, testPreds))
        trainROC.append(metrics.roc_auc_score(y_train, trainPreds))
        testROC.append(metrics.roc auc score(y test, testPreds))
        selectedVars.append(sortedVars[j-dropCt])
    if j-dropCt == maxSteps:
        break
```

11. LASSO

- Least Absolute Shrinkage and Selection Operator
- O Two birds, one stone: Variable Selection + Regularization

12. Tree-based

- O Forests of trees to evaluate the importance of features
- O Fit a number of randomized decision trees on various sub-samples of the dataset and use averaging to rank order features

```
orderedParams['DTree'] = {}
orderedImportances = {}
minSplitNum = int(minSplit * len(train))
minLeafNum = int(minLeaf * len(train))
selForestFit = ExtraTreesClassifier(n_estimators = 100,
                                    min samples split = minSplitNum,
                                    min_samples_leaf = minLeafNum).fit(train, y_train)
importances = selForestFit.feature importances
selForestRanks = np.argsort(importances)[::-1]
# Ordered list of best predictors
for rank, ind in enumerate(selForestRanks):
    var = train.keys()[ind]
    orderedParams['DTree'][rank] = var
    orderedImportances[var] = importances[ind]
```

Workflow

Comparisons

The Kitchen Sink Approach

Dimensionality Reduction

All you can eat Eat healthy

THANK YOU!

QUESTIONS?

vishal@derive.io

www.linkedIn.com/in/VishalJP