5.2. EXERCICES D'APPLICATION

Exercice 1

Soit les suites (U_n) et (V_n) définies par $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{U_n}{U_n+1} \end{cases}$ et $V_n = \frac{1}{U_n}$.

- 1. Calculer U_1 , U_2 , V_0 et V_1 .
- 2. Montrer que (V_n) est une suite arithmétique dont on indiquera sa raison et son premier terme.
- 3. Exprimer V_n en fonction de n, puis U_n en fonction de n.
- 4. Exprimer en fonction de n, $S_n = V_0 + V_1 + ... + V_n$.
- 5. Etudier la convergence des suites (V_n) , (U_n) et (S_n) .

Exercice 2

Soit les suites U et V définies par $\begin{cases} U_1 = 2 \\ U_{n+1} = \frac{1}{3}U_n - 2 \end{cases}$ et

$$V_n = U_n + 3$$
.

- 1. Montrer que V est une suite géométrique dont on précisera sa raison et son premier terme.
- 2. Exprimer U_n en fonction de n.
- 3. Déterminer en fonction de n, $S_n = V_1 + V_2 + ... + V_n$ et

$$S'_n = U_1 + U_2 + ... + U_n$$
.

4. Calculer la limite de V_n , U_n , S_n et S'_n .

Exercice 3

Soit la suite U définie sur \mathbb{N} par $U_0 = 4$ et $U_{n+1} = \sqrt{3U_n - 2}$.

- 1. Montrer par récurrence que U est minorée par 2.
- 2. Etudier la monotonie de la suite U.
- 3. En déduire que U converge vers un nombre réel dont on déterminera sa valeur.

Exercice 4 (Bac 2004)

Soit la suite géométrique U de premier terme $U_0=4$ et de raison $\frac{1}{2}$ et V la suite arithmétique de premier terme $V_0=\frac{\pi}{4}$ et de raison $\frac{\pi}{2}$. Pour tout n, on note z_n le nombre complexe de module U_n et dont un argument est V_n .

- 1. a) Exprimer U_n et V_n en fonction de n.
- b) En déduire z_n .
- 2. Démontrer que (z_n) est une suite géométrique de raison $\frac{1}{2}$ i et de premier terme $z_0 = 2\sqrt{2} + 2i\sqrt{2}$.
- 3. Pour tout n, on pose $Z_n = z_0 z_1 \dots z_n$. Exprimer en fonction de n, un argument de Z_n .