

# UNIVERSIDADE FEDERAL DE MATO GROSSO FACULDADE DE CIÊNCIAS DA COMPUTAÇÃO

Paulo Henrique Gonçalves Coelho Carlos Eduardo da Silva Frazão

Análise exploratória de Dados:

## Introdução

# Análise Exploratória do California Housing Dataset

Este relatório apresenta os resultados da análise exploratória do conjunto de dados "California Housing Dataset", que contém informações sobre residências e seus respectivos valores em diferentes regiões da Califórnia. A análise foi realizada utilizando as bibliotecas Python, Pandas, NumPy, Seaborn e Matplotlib, conforme especificado nos requisitos do trabalho.

# Metodologia

### Base de Dados:

O dataset utilizado contém 20.640 observações com 8 atributos cada:

| MedInc      | Renda média familiar na região                                              |
|-------------|-----------------------------------------------------------------------------|
| HouseAge    | Idade média do imóvel na região                                             |
| AveRooms    | Número médio de cômodos no imóvel                                           |
| AveBedrms   | Número médio de quartos no imóvel                                           |
| Population  | População na região                                                         |
| AveOccup    | Número médio de membros na família                                          |
| Latitude    | Latitude da região                                                          |
| Longitude   | Longitude da região                                                         |
| MedHouseVal | A variável alvo, representa o valor do imóvel em múltiplos de US\$ 100.000. |

#### Ferramentas Utilizadas:

Pandas para manipulação e análise de dados NumPy para cálculos matemáticos Seaborn e Matplotlib para visualizações Scikit-learn para acesso ao dataset

## Preparação do ambiente

Para a correta execução e reprodutibilidade deste projeto, é fundamental a devida configuração do ambiente de desenvolvimento. A análise de dados, a modelagem estatística e a visualização dos resultados foram realizadas utilizando a linguagem de programação Python, juntamente com um conjunto de bibliotecas especializadas que fornecem as ferramentas necessárias para manipulação e interpretação de dados.

Para instalar as bibliotecas necessárias, é preciso ter o Python e o seu gerenciador de pacotes, o *pip*, devidamente instalados em seu sistema.

# Instalação no Windows

 Instale as Bibliotecas: Execute o seguinte comando para instalar todas as dependências de uma só vez. O pip se encarregará de baixar e instalar cada uma delas.

pip install pandas numpy seaborn matplotlib scikit-learn

2. **Aguarde a Instalação:** O processo de download e instalação pode levar alguns minutos, dependendo da sua conexão com a internet. Ao final, as bibliotecas estarão prontas para serem utilizadas.

#### Instalação no Linux (Debian, Ubuntu e derivados)

1. **Instale as Bibliotecas:** Utilize o pip para instalar todas as dependências necessárias com um único comando.

pip3 install pandas numpy seaborn matplotlib scikit-learn

2. Conclusão: Após a execução do comando, o pip fará o download e a instalação de todas as bibliotecas listadas. Ao final do processo, seu ambiente estará pronto para executar o projeto.

## Resultados por Requisito

# Requisito 1: Estatísticas Descritivas Básicas

Observa-se uma grande variação nos valores, especialmente em AveRooms e AveOccup que apresentam valores máximos extremamente altos em comparação com a média, sugerindo a presença de outliers.

|       | MedInc | HouseAge | AveRooms | AveBedrms | Population | AveOccup | Latitude | Longitude |
|-------|--------|----------|----------|-----------|------------|----------|----------|-----------|
| count | 20640  | 20640    | 20640    | 20640     | 20640      | 20640    | 20640    | 20640     |
| mean  | 3.87   | 28.63    | 5.42     | 1.09      | 1425.47    | 3.07     | 35.63    | -119.56   |
| std   | 1.89   | 12.5     | 2.47     | 0.47      | 1132.46    | 10.38    | 2.13     | 2.00      |
| min   | 0.49   | 1.00     | 0.84     | 0.33      | 3.00       | 0.69     | 32.54    | -124.35   |
| 25%   | 2.56   | 18.00    | 4.44     | 1.00      | 787.00     | 2.42     | 33.93    | -121.80   |
| 50%   | 3.53   | 29.00    | 5.22     | 1.04      | 1166.00    | 2.81     | 34.26    | -118.49   |
| 75%   | 4.74   | 37.00    | 6.05     | 1.09      | 1725.00    | 3.28     | 37.71    | -118.01   |
| max   | 15.00  | 52.00    | 141.90   | 34.06     | 35682.00   | 1243.33  | 41.95    | -114.31   |

Requisito 2: Visualização Geográfica dos Imóveis

O gráfico de dispersão gerado com Latitude no eixo Y e Longitude no eixo X revela a distribuição geográfica dos imóveis na Califórnia. A visualização mostra claramente o formato geográfico do estado, com maior concentração de imóveis nas regiões costeiras, especialmente nas áreas metropolitanas de São Francisco e Los Angeles.



# Requisito 3: Métricas Estatísticas

A execução deste requisito gera um volume considerável de dados como saída. Por questões de brevidade e para manter a clareza do documento, optou-se por não exibir esses resultados diretamente aqui. No entanto, a saída completa pode ser consultada e verificada através da execução do script Trabalho\_Requisito\_03.py

# Requisito 4: Boxplots e Histogramas

Os boxplots e histogramas gerados para as seis variáveis revelam importantes características da distribuição dos dados:



# Requisito 5: Identificação de Correlações

Neste requisito vamos trabalhar com a Correlação de Spearman ( $\rho$ \_s). Ela mede a relação monotônica entre duas variáveis. Uma relação é monotônica quando as variáveis tendem a se mover na mesma direção, mas não necessariamente a uma taxa constante. É uma medida não paramétrica, o que a torna adequada para dados ordinais ou quando a relação não é linear.



#### 1. Correlação Positiva Mais Forte

- MedInc (Renda Média) e AveRooms (Média de Quartos): +0.64
  - Esta é a correlação mais forte e positiva no gráfico.
  - Interpretação: Há uma forte tendência de que, em áreas onde a renda média (MedInc) é maior, as casas também possuam, em média, um número maior de quartos (AveRooms). Isso faz sentido, pois pessoas com maior poder aquisitivo podem comprar casas maiores.

# 2. Correlações Negativas Moderadas

- HousAge (Idade do Imóvel) e Population (População): -0.28
  - Interpretação: Existe uma correlação negativa fraca a moderada. Isso sugere que áreas com casas mais antigas (HousAge) tendem a ter uma população ligeiramente menor. Isso pode ocorrer porque bairros mais novos costumam ser planejados para uma maior densidade populacional.
- MedInc (Renda Média) e AveBedrms (Média de Quartos de Dormir): -0.25
  - Interpretação: Esta é uma correlação negativa interessante e talvez contra-intuitiva. Sugere que em locais com renda média mais alta, a média de quartos de dormir (AveBedrms) é ligeiramente menor.
- HousAge (Idade do Imóvel) e AveRooms (Média de Quartos): -0.23
  - Interpretação: Há uma leve tendência de que imóveis mais antigos (HousAge) tenham, em média, menos quartos (AveRooms). Isso pode indicar que construções mais recentes são, em geral, maiores.

#### 3. Correlações Fracas (Próximas de Zero)

Muitos pares de variáveis mostram uma correlação muito fraca, indicando que não há uma relação linear clara entre eles.

- AveBedrms (Média de Quartos de Dormir) e AveRooms (Média de Quartos): +0.08
  - **Detalhe:** A correlação entre o número médio de quartos e o número médio de quartos de dormir é quase nula. Isso reforça a ideia de que o aumento no total de quartos (AveRooms) não se deve necessariamente a um aumento no número de quartos de dormir,
- MedInc (Renda Média) e Population (População): +0.01
  - Interpretação: Não há praticamente nenhuma relação linear entre a renda média de uma área e sua população total. Uma área rica não é necessariamente mais ou menos populosa.
- Population (População) e AveBedrms (Média de Quartos de Dormir): +0.03
  - **Interpretação:** A população de uma área e a média de quartos de dormir por casa não estão linearmente relacionadas.

#### Conclusão

A análise exploratória do California Housing Dataset revelou características importantes do mercado imobiliário da Califórnia. As distribuições das variáveis mostraram-se majoritariamente assimétricas, com presença significativa de outliers, especialmente nas variáveis relacionadas a tamanho de imóveis e população. A visualização geográfica confirmou a concentração de imóveis nas áreas costeiras, particularmente nas regiões metropolitanas. As correlações identificadas sugerem relações esperadas entre as variáveis, como a relação entre renda e idade dos imóveis, e entre número de cômodos e quartos. Este estudo fornece uma base sólida para análises mais aprofundadas, como modelagem preditiva de preços de imóveis com base nas características identificadas. A presença de outliers em várias variáveis indica a necessidade de tratamentos específicos para esses casos em análises futuras.