Convolutional Neural Networks

Gautam Kamath

Drawbacks of fully-connected (FC) layers

- Image classification
- Suppose 1 megapixel input (relatively small)
 - 10^6 pixels
- One hidden layer with 1000 neurons (draw)
- Total number of parameters in one layer is 1 billion
 - Compare with GPT-2, 1.5 billion parameters
- More parameters more problems
 - Huge cost to train, need lots of data, difficulties optimizing, probably overfit

Some properties of image data

- Image data has nice structure that we can take advantage of
- Translation invariance
- Locality
- Lead to following principles
 - Parameter sharing
 - Only local edges
- (Draw FC 25 params, local edges 13 params, sharing 3 params)

- Technically, it's the cross-correlation operator
- (Draw example: input [0 1 2; 3 4 5; 6 7 8] x kernel/map/filter [0 1; 2 3] = output [19 25; 37 43])
- Kernel [-1 1]

Convolutional Neural Network (CNN)

- Input: images
- 3D objects (tensor: generalization of matrix)
- Width, height, depth
 - Depth = number of channels
 - 3 for colour images (RGB), 1 for black and white
 - Will be more than 3 channels in later layers
- MNIST dataset: 28 x 28 x 1
- CIFAR-10 dataset: 32 x 32 x 3
- Output layer: $1 \times 1 \times c$, where c is the number of classes

Types of layers

- Fully connected
- Convolutional
- Pooling

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Visualizing a CNN

Convolutional Layer Hyperparameters

- Filter size (usually square, draw)
- Output depth (= # of filters)
- Stride (draw stride 1 vs stride 2)
- Zero padding (draw 3x3 with 3x3 filter, versus same with 1 pad)

of channels = depth of each filter

Illustrating CNNs

Conv Layer Summary

- Input: $W_1 \times H_1 \times D_1$
- Four hyperparameters:
 - # of filters *K*
 - Width/height F ($F \times F \times D_1$)
 - Stride *S*
 - Zero padding P
- Output: $W_2 \times H_2 \times D_2$
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$
 - $D_2 = K$

- # of parameters:
 - K filters with $F \times F \times D_1$ params
 - F^2D_1K weights
 - *K* biases

Example Computation

- Input: $227 \times 227 \times 3$
- Use 96 filters, $11 \times 11 \times 3$ in size, stride 4, no padding
- Output size:
 - $W_2 = H_2 = (227 11 + 2 \cdot 0)/4 + 1 = 216/4 + 1 = 55$
 - $D_2 = 96$
- $(227,227,3) \rightarrow (55,55,96)$
- Number of parameters: $11^2 \cdot 3 \cdot 96 + 96 = 34944$
- If it was FC layer: (input size + 1)(output size) ≈ 45 billion
- No weight sharing, only local connections: $(11^2 \cdot 3 + 1)(55^2 \cdot 96) \approx 106$ m parameters

Pooling Layers

- (Draw max pool example, 2x2 filter w/ stride 2, [1 1 2 4; 5 6 7 8; 3 2 1 0; 1 2 3 4] -> [6 8; 3 4])
- Several types of pooling layer: max pool, average pool, L2-norm pool
- No learnable parameters
- Only 1 filter (applied independently to different channels)

Pool Layer Summary

- Input: $W_1 \times H_1 \times D_1$
- Two hyperparameters:
 - Width/height F ($F \times F$)
 - Stride *S*
- Output: $W_2 \times H_2 \times D_2$
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $D_2 = D_1$

- # of parameters:
 - 0

Structure of a CNN (draw as we go)

- Input
- Conv+ReLU(+pool) (repeat)
- FC+ReLU (repeat)
- FC+SoftMax

MNIST Dataset

- Digit recognition
- 60,000 training images
- 10,000 test images
- 10 classes
- 28 x 28 x 1 dimensions
- State of the art: 99.9%
 - Very easy task most things can get 95%+

```
43987
 598365723
 319158084
562685889
```

CIFAR-10 Dataset

- 50,000 training images
- 10,000 test images
- 10 classes
- 32 x 32 x 3 dimensions
- Harder than MNIST: bigger images, RGB, inherently more difficult

ImageNet

- 14 million images
- ~400 x 500 x 3 dimensions
- 10,000+ classes
- More commonly used: ILSVRC2012
- 1.2 million training images
- 50,000 test images
- 1000 classes

LeNet (1998)

LeNet

Image: 28 (height) \times 28 (width) \times 1 (channel)

Convolution with 5×5 kernel+2padding:28×28×6

sigmoid

Pool with 2×2 average kernel+2 stride: 14×14×6

Convolution with 5×5 kernel (no pad):10×10×16

sigmoid

Pool with 2×2 average kernel+2 stride: 5×5×16

√ flatten

Dense: 120 fully connected neurons

sigmoid

Dense: 84 fully connected neurons

√ sigmoid

Dense: 10 fully connected neurons

Output: 1 of 10 classes

AlexNet (2012)

- Won ILSVRC2012
- Top 5 error of ~15%
- Best alternative 25%

LeNet Image: 28 (height) \times 28 (width) \times 1 (channel) Convolution with 5×5 kernel+2padding:28×28×6 sigmoid Pool with 2×2 average kernel+2 stride: 14×14×6 Convolution with 5×5 kernel (no pad):10×10×16 sigmoid Pool with 2×2 average kernel+2 stride: 5×5×16 √ flatten Dense: 120 fully connected neurons sigmoid Dense: 84 fully connected neurons sigmoid Dense: 10 fully connected neurons Output: 1 of 10 classes

AlexNet Image: 224 (height) × 224 (width) × 3 (channels) Convolution with 11×11 kernel+4 stride: 54×54×96 Very ReLu Pool with 3×3 max. kernel+2 stride: 26×26×96 Convolution with 5×5 kernel+2 pad: 26×26×256 Very ReLu Pool with 3×3 max. kernel+2 stride: 12×12×256

Dense: 4096 fully connected neurons

√ ReLu, dropout p=0.5

Dense: 4096 fully connected neurons

√ ReLu, dropout p=0.5

Dense: 1000 fully connected neurons

Output: 1 of 1000 classes

VGGNet (2014)

- Deeper than AlexNet
- Smaller convolutions
 - But more layers of them
- 2 3x3 and 1 5x5 can "see" same
- First has fewer parameters
- More nonlinearities though

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool Input

AlexNet

FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 FC 4096 Pool Pool Pool Pool Pool Pool

VGG16 VGG19

GoogLeNet (2014)

- Inception module
- Dimension reduction: K 1x1 filters takes $W \times H \times D$ to $W \times H \times K$

(a) Inception module, naïve version

(b) Inception module with dimension reductions

GoogLeNet (2014)

ResNet (2015)

Deeper is not always better...

ResNet (2015)

- Challenges with bigger networks: optimization is harder
- Can we get the "signals" to where they need to be faster/directly?
- (Draw residual connection: 3x3, ReLU, 3x3, ReLU, residual connection from start to after second 3x3)