

M5 - KORELASI

-Tim Dosen Metode Statistika-

Outline

Review

Korelasi

Ukuran kekuatan dari hubungan yang linier antara variabel *x* dan *y*, yang dinotasikan dengan *r*.

Koefisien korelasi (r)

- Nilai r antara -1 dan 1
- Semakin mendekati -1 atau 1 maka hubungan semakin kuat
- Nilai positif → hubungan searah
- Nilai negatif → hubungan berlawanan
- $r = 0 \rightarrow \text{tidak ada hubungan/mempunyai hubungan yang lemah}$

Scatter plot

Digunakan untuk mengetahui hubungan dua variabel secara visual

Hubungan scatter plot dengan nilai r

- r > 0, jika x dan y membentuk pola rendah di sebelah kiri kemudian meningkat ke arah kanan
- r < 0, jika x dan y membentuk pola tinggi di sebelah kiri kemudian menurun ke arah kanan
- r = +1, jika x dan y membentuk pola garis lurus dengan arah yang positif
- r = -1, jika x dan y membentuk pola garis lurus dengan arah yang negatif
- r mendekati nol jika pola random/acak

Ilustrasi

Figure 3 Correspondence between the values of *r* and the amount of scatter.

Pemilihan Metode

Korelasi Data Kategorik

Tujuan

Mengetahui hubungan antar variabel yang berupa data kategori/klasifikasi

Beri Contoh!

Kebiasaan merokok (ya/tidak)

Kesehatan jantung (sehat/tidak sehat)

Pemakaian masker (ya/tidak)

Penyakit Covid-19 (sakit/tidak sakit)

Tabel Kontingensi

Tabel data jumlah frekuensi yang muncul dari klasifikasi pengamatan sampel menurut dua atau lebih karakteristik

Digunakan untuk **mengetahui** apakah **dua** variabel tersebut **independent** atau cenderung berasosiasi

Struktur Data

Tabel Kontingensi 2x2

		Va	r 2
		1	2
Var 1	1	011	012
	2	021	022

Tabel Kontingensi ixj

		Var 2					
		1	2	•••	j		
	1	011	012	•••	O 1j		
	2	021	022	•••	O2j		
Var 1	•	•	•		•		
	•	•	•		•		
	i	Oi1	Oi2	•••	Oij		

Pengujian Hipotesis

- Merumuskan Hipotesis
 - H0: Tidak ada hubungan antara var 1 dan var 2 (saling bebas/independen)
 - H1: Terdapat hubungan antara var 1 dan var 2 (saling berasosiasi)
- Statistik Uji:

$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{\left(o_{ij} - e_{ij}\right)^{2}}{e_{ij}}$$

Dengan

- ➤ A memiliki c nilai yang berbeda, yaitu a1, a2, ..., ac
- B memiliki r nilai yang berbeda, yaitu b1, b2, ..., br
- > Oij : frekuensi yang diamati (yaitu, hitungan aktual) dari kejadian bersama (Ai, Bj)
- ightharpoonup eij: frekuensi yang diharapkan dari $(Ai, Bj) = \frac{count(A=ai) \ x \ count(B=bj)}{n}$
- ightharpoonup Degree of freedom (df): (r-1)(c-1) dimana r adalah jumlah baris dan c adalah jumlah kolom tabel kontingensi

Pengujian Hipotesis

Mengambil Kesimpulan:

Jika nilai statistik uji (χ^2) lebih besar dari nilai tabel (χ^2_{α}), maka tolak H0.

Jika nilai statistik uji lebih kecil dari nilai tabel, maka gagal tolak H0

Misalkan 1500 orang disurvei. Dimana jenis kelamin setiap orang dicatat. Kemudian, setiap orang disurvei tentang jenis bahan bacaan yang disukainya, yaitu fiksi atau nonfiksi. Jadi, terdapat dua atribut, yaitu **jenis kelamin dan bacaan yang disukai**.

Frekuensi yang diamati (atau jumlah) dari setiap kemungkinan kejadian bersama diringkas dalam tabel kontingensi yang ditunjukkan pada Tabel berikut, di mana angka dalam tanda kurung adalah frekuensi yang diharapkan.

	Male	Female	Total
Fiction	250 (90)	200 (360)	450
Non-fiction	50 (210)	1000 (840)	1050
Total	300	1200	1500

Apakah terdapat hubungan antara jenis kelamin dan bacaan yang disukai?

1. Merumuskan Hipotesis

H0: Tidak ada hubungan antara jenis kelamin dan bacaan yang disukai

H1: Terdapat hubungan antara jenis kelamin dan bacaan yang disukai

2. Menghitung Frekuensi yang diharapkan (ei)

Frekuensi yang diharapkan dihitung berdasarkan distribusi data untuk kedua atribut menggunakan persamaan ei. Melalui persamaan tersebut, kita dapat menghitung frekuensi yang diharapkan untuk setiap sel.

Misalnya, frekuensi yang diharapkan untuk sel (laki-laki, fiksi) adalah:

$$e_{11} = \frac{count(male) \times count(fiction)}{n} = \frac{300 \times 450}{1500} = 90$$

3. Menghitung Statistik Uji

$$\chi^2 = \frac{\left(250 - 90\right)^2}{90} + \frac{\left(50 - 210\right)^2}{210} + \frac{\left(200 - 360\right)^2}{360} + \frac{\left(1000 - 840\right)^2}{840} = 507,93$$

4. Menentukan df dan α

Untuk tabel 2 × 2 ini, derajat bebasnya (degree of freedom) adalah (2 - 1)(2 - 1) = 1, sehingga $\chi^2_{\alpha=5\%,df=1}=3,841$

5. Mengambil Kesimpulan

Tolak H0, karena nilai statistik uji (χ^2) = 507,93 lebih besar dari nilai tabel (χ^2_{α})=3,84. Jadi, ada hubungan antara jenis kelamin dan bacaan yang disukai.

Pemilihan Metode

Korelasi Data Numerik

Tujuan

Mengetahui hubungan antar variabel yang berupa data numerik dengan skala interval maupun rasio

Beri Contoh!

Biaya marketing

Jumlah penjualan rumah

Pendapatan per bulan

Korelasi Pearson

Salah satu ukuran korelasi yang digunakan untuk mengukur kekuatan dan arah hubungan linier dari dua variabel.

- Skala data yang dapat diuji adalah interval atau rasio.
- Asumsi dalam korelasi Pearson : data harus berdistribusi normal.

Struktur Data

Xi	Yi
x1	y1
x2	y2
x 3	уЗ
•	•
•	•
xn	yn

Formula Korelasi Pearson

$$r = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}}$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$S_{xx} = \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

Pengujian Hipotesis

Merumuskan Hipotesis

H0 : Tidak ada hubungan antara X dan Y ($\rho = 0$)

H1 : Terdapat hubungan antara X dan Y ($\rho \neq 0$)

Statistik Uji:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

- Menentukan df = (n-2) dan α
- Menarik kesimpulan

Jika nilai statistik uji (t) lebih besar dari nilai tabel ($t_{df,\alpha}$), maka tolak H0.

Jika nilai statistik uji lebih kecil dari nilai tabel, maka gagal tolak H0

Misal terdapat dua variabel yaitu x dan y dengan data sebagai berikut:

X	2	1	5	0
Υ	5	3	6	2

Hitunglah nilai korelasi serta lakukan pengujian hipotesis! ($\alpha = 10\%$)

Menghitung nilai korelasi

	x	y	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})^2$	$(y-\bar{y})^2$	$(x-\bar{x})(y-\bar{y})$
	2	5	0	1	0	1	0
	1	3	-1	-1	1	1	1
	5	6	3	2	9	4	6
	0	2	-2	-2	4	4	4
Total	8	16	0	0	14	10	11
	$\bar{x} = 2$	$\bar{y} = 4$			S_{xx}	S_{yy}	S_{xy}

$$r = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}} = \frac{11}{\sqrt{14} \sqrt{10}} = 0,9296$$

Jadi, nilai korelasinya adalah 0,930. Dimana nilai tersebut mendekati 1, yang artinya, x dan y mempunyai hubungan searah yang kuat.

1. Merumuskan Hipotesis

H0 : Tidak ada hubungan antara x dan y ($\rho = 0$)

H1 : Terdapat hubungan antara x dan y ($\rho \neq 0$)

2. Menghitung Statistik Uji

$$t = \frac{0.93\sqrt{4-2}}{\sqrt{1-0.93^2}} = 3.57$$

3. Menentukan df dan α

df =
$$(4 - 2)$$
 = 2 dan α = 10%, sehingga $t_{(2,0.1)}$ = 2,920

4. Mengambil Kesimpulan

Tolak H0, karena nilai statistik uji (t) = 3,57 lebih besar dari nilai tabel $(t_{(2,0.1)})$ = 2,920. Jadi, terdapat hubungan antara x dan y.

Korelasi Rank Spearman

Data yang digunakan pada korelasi rank spearman adalah data berskala ordinal, maka dari itu sebelum dilakukan pengolahan data, data kuantitatif yang akan dianalisis perlu disusun dalam bentuk ranking terlebih dahulu.

Struktur Data

Pasangan ke-	Rangking dari Xi	Rangking dari Yi
1	R1	S1
2	R2	S2
3	R3	S3
	•	•
	•	•
	•	-
n	Rn	Sn

Formula Korelasi Rank Spearman

$$r_{sp} = \frac{\sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right) \left(S_i - \frac{n+1}{2} \right)}{n(n^2 - 1)/12}$$

- $-1 \le r_{sp} \le 1$
- Jika r_{sp} mendekati nilai +1 maka nilai terbesar dari X cenderung berhubungan dengan nilai terbesar dari Y atau memiliki hubungan searah. Jika nilai r_{sp} mendekati -1 maka memiliki hubungan berlawanan arah.
- Tidak harus memiliki hubungan linier, hanya memerlukan hubungan meningkat / menurun

Pengujian Hipotesis

Merumuskan Hipotesis

H0: Tidak ada kesesuaian antara X dan Y atau saling independen

H1: Nilai X dan Y yang besar cenderung muncul bersama, begitu juga nilai yang kecil cenderung muncul bersama atau ada kesesuaian antara X dan Y

Statistik Uji:

$$z = r_{sp} \sqrt{n-1}$$

- Menentukan α
- Menarik kesimpulan

Jika nilai statistik uji (Z) lebih besar dari nilai tabel (Z_{α}), maka tolak H0.

Jika nilai statistik uji lebih kecil dari nilai tabel, maka gagal tolak H0

Jika diketahui data mengenai kedisiplinan sebagai variable x dan kinerja sebagai variable y dengan tabel berikut :

No	Kedisiplinan (X)	Kinerja (Y)
1	75	80
2	45	45
3	44	34
4	70	80
5	75	70
6	64	65
7	80	79
8	77	76
9	92	89
10	66	72

Hitunglah nilai korelasi serta lakukan pengujian hipotesis! ($\alpha = 5\%$)

Menghitung nilai korelasi

No	Kedisiplinan (X)	Kinerja (Y)	Rank (X)	Rank (Y)	Rank (X) - (n+1)/2	Rank (Y) - (n+1)/2	Rank (X) - (n+1)/2 * Rank (Y) - (n+1)/2
1	75	80	4,5	2,5	-1	-3	3
2	45	45	9	9	3,5	3,5	12,25
3	44	34	10	10	4,5	4,5	20,25
4	70	80	6	2,5	0,5	-3	-1,5
5	75	70	4,5	7	-1	1,5	-1,5
6	64	65	8	8	2,5	2,5	6,25
7	80	79	2	4	-3,5	-1,5	5,25
8	77	76	3	5	-2,5	-0,5	1,25
9	92	89	1	1	-4,5	-4,5	20,25
10	66	72	7	6	1,5	0,5	0,75

$$r_{sp} = \frac{\sum_{i=1}^{n} \left(R_i - \frac{n+1}{2} \right) \left(S_i - \frac{n+1}{2} \right)}{n(n^2 - 1)/12} = \frac{66,25}{82,5} = 0,803$$

Jadi, nilai korelasinya adalah 0,803.

Dimana nilai tersebut mendekati 1, artinya x dan y mempunyai hubungan searah yang kuat.

1. Merumuskan Hipotesis

H0 : Tidak ada kesesuaian antara antara kedisiplinan dan kinerja ($\rho=0$)

H1 : Nilai dari kedisiplinan dan kinerja cenderung muncul bersama, atau ada kesesuaian antara kedisiplinan dan kinerja ($\rho \neq 0$)

2. Menghitung Statistik Uji

$$z = r_{sp}\sqrt{n-1} = 0,803\sqrt{10-1} = 2,409$$

3. Menentukan α Jika $\alpha=5\%$, maka $Z_{(0,05)}=1,96$

4. Mengambil Kesimpulan

Tolak H0, karena nilai statistik uji (Z) = 2,409 lebih besar dari nilai tabel $(Z_{(0,05)}) = 1,96$. Jadi, terdapat hubungan antara kedisiplinan dan kinerja.

Tabel Z

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0.9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817

Sumber:

https://drive.google.com/fi le/d/1xKiawocVWJs_0jgM u6pPHOW0qD1mhxR3/vi ew

Korelasi Tau Kendall

Korelasi Tau Kendall merupakan statistik nonparametrik dengan skala pengukuran data sekurang-kurangnya data ordinal. Korelasi tau kendall digunakan untuk mengukur tingkat kesesuaian antara dua variabel yang diamati. Sumber data yang akan dikorelasikan berasal dari sumber data yang sama.

Struktur Data

Pasangan ke-	Rangking dari Xi	Rangking dari Yi
1	R1	S1
2	R2	S2
3	R3	S3
		•
	•	•
	•	•
n	Rn	Sn

Formula Korelasi Tau Kendall

$$\tau = \frac{2S}{n(n-1)} = \frac{2(C-D)}{n(n-1)}$$

Jika ada rangking yang sama, maka persamaan diatas dilengkapi dengan faktor koreksi yang sama, yaitu:

$$\tau = \frac{2(C-D)}{\sqrt{n(n-1)-T_X}} \sqrt{n(n-1)-T_Y}$$

$$T_X = \sum_{i=1}^{s} \left(t_{i(x)}^2 - t_{i(x)} \right)$$

$$T_Y = \sum_{i=1}^{s} (t_{i(y)}^2 - t_{i(y)})$$

Keterangan:

- S: statistik untuk jumlah konkordansi dan diskordansi
- C: banyaknya pasangan konkordansi (wajar)
- D: banyaknya pasangan diskordansi (tidak wajar)
- n: jumlah pasangan X dan Y
- Tx: faktor koreksi ranking X yang sama
- Ty: faktor koreksi ranking Y yang sama
- t : Banyaknya observasi berangka sama pada masing masing variabel

Pengujian Hipotesis

Merumuskan Hipotesis

H0: Tidak ada kesesuaian rangking antara X dan Y atau saling independen

H1: Ada kesesuaian rangking antara X dan Y

• Statistik Uji:

$$\tau = \frac{2S}{n(n-1)} = \frac{2(C-D)}{n(n-1)}$$

$$\tau = \frac{2(C-D)}{\sqrt{n(n-1)-T_X}} \sqrt{n(n-1)-T_Y}$$

- Menentukan α
- Menarik kesimpulan

Jika nilai statistik uji (τ) lebih besar dari nilai tabel (τ_{α}) , maka tolak H0.

Jika nilai statistik uji lebih kecil dari nilai tabel, maka gagal tolak H0

Formula Korelasi Tau Kendall Sampel Besar

Jika sampel berukuran lebih dari 10, maka terapkan aproksimasi sampel besar dengan menganggap bahwa distribusi sampel mendekati distribusi normal (z).

$$Z = \frac{\tau - \mu_{\tau}}{\sigma_{\tau}}$$

Dimana,

$$\mu_{\tau} = 0$$

$$\sigma_{\tau} = \sqrt{\frac{2(2n+5)}{9n(n-1)}}$$

Diketahui sebuah ranking nilai wawancara dari dua orang pewawancara kepada 10 orang peserta dari tes tertulis dan tes praktek. Data nilai ranking sebagai berikut:

Peserta	Α	В	С	D	Е	F	G	Н	1	J
Pewawancara 1	7	1.5	8	10	9	6	5	3	1,5	4
									,	2.5
Pewawancara 2	5	2	6	8	1	9,5	9,5	3,5	1	3,5

Apakah ada hubungan ranking penilaian dari pewawancara 1 dan pewawancara 2? Gunakan tingkat signifikansi 5%.

Menghitung nilai korelasi

1. Diurutkan berdasarkan urutan pewawancara1, dari nilai terkecil

Peserta	В	I	Н	J	G	F	Α	С	Е	D
Pewawancara 1	1,5	1,5	3	4	5	6	7	8	9	10
Pewawancara 2	2	1	3,5	3,5	9,5	9,5	5	6	7	8

2. Bandingkan setiap Nilai Pewawancara 2, satu demi satu dengan nilai yang ada di sebelah kanannya, bila urutannya wajar (concordan) beri notasi C, sedangkan bila urutannya tidak wajar (disconcordan) beri notasi

ı	\Box	
ı	\cup	

Peserta	В	I	Н	J	G	F	Α	С	Е	D
Pewawancara 1	1,5	1,5	3	4	5	6	7	8	9	10
Pewawancara 2	2	1	3,5	3,5	9,5	9,5	5	6	7	8
	2	D	С	С	С	С	С	С	С	С
		1	С	С	С	С	С	С	С	С
			3,5	0	С	С	С	С	С	С
				3,5	С	С	С	С	С	С
					9,5	0	D	D	D	D
						9,5	D	D	D	D
							5	С	С	С
								6	С	С
									7	С
										8

Menghitung nilai korelasi (lanjutan)

3. Hitung nilai C, D dan selisih dari C dan D

Peserta	В	ı	Н	J	G	F	Α	(2	Е	D			
Pewawancara 1	1,5	1,5	3	4	5	6	i	7	8	9	10	Total C	Total D	C-D
Pewawancara 2	2	1	3,5	3,5	9,5	9,5		5	6	7	8			
	20) (C (C	С	С	С	С	(С	С	8	1	7
		10	C (C (С	С	С	С	(С	С	8	0	8
			3,5	0	С	С	С	С	(С	С	6	0	6
				3,5	С	С	С	С	(С	С	6	0	6
					9,5	0	D	D	ı	D	D	0	4	-4
						9,5	D	D	l	D	D	0	4	-4
								5C	(С	С	3	0	3
									60	С	С	2	0	2
										7	С	1	0	1
											8	0	0	0
											SUM	34	9	25

4. Karena ada rangking yang sama, maka persamaan hitung faktor koreksi

$$T_X = \sum_{i=1}^{s} \left(t_{i(x)}^2 - t_{i(x)} \right) = \left(2^2 - 2 \right) = 2 \qquad T_Y = \sum_{i=1}^{s} \left(t_{i(y)}^2 - t_{i(y)} \right) = \left(2^2 - 2 \right) + \left(2^2 - 2 \right) = 4$$

Menghitung nilai korelasi (lanjutan)

5. Hitung τ

$$\tau = \frac{2(C-D)}{\sqrt{n(n-1)-T_X}} \sqrt{n(n-1)-T_Y}$$

$$= \frac{2(34-9)}{\sqrt{10(10-1)-2}\sqrt{10(10-1)-4}} = 0.57$$

1. Merumuskan Hipotesis

H0: Tidak ada kesesuaian rangking antara pewawancara 1 dan pewawancara 2

H1: Ada kesesuaian rangking antara pewawancara 1 dan pewawancara 2

2. Menghitng Statistik Uji

$$\tau = 0.57$$

- 3. Menentukan α Jika nilai S=25, n=10, α = 5%, maka $\tau_{(0,05)}$ = 0,014
- 4. Mengambil Kesimpulan

Tolak H0, karena nilai statistik uji (τ) = 0,57 lebih besar dari nilai tabel $(\tau_{(0,05)})$ = 0,014. Jadi, terdapat kesesuaian rangking antara pewawancara 1 dan pewawancara 2.

Tabel Tau Kendall

Tabel Kendall Tau

_	1	Va	dues of N		_	Values of N				
S	4	5 8 9 8	7	10						
0	.625	. 592	.548	.540	1	. 500	.500	.500		
2	.375	.408	. 452	.460	3	.360	.386	.431		
4	.167	.242	.360	.381	5	. 235	.281	.364		
6	.042	.117	.274	.306	7	.136	191	.300		
8		.042	. 199	.238	9	.068	.119	.242		
10		.0083	.138	.179	11	.028	.068	. 190		
12			.089	. 130	13	.0083	.035	.146		
14			.054	.090	15	.0014	.015	.108		
16			.031	.060	17		.0054	.078		
18			.016	.038	19		.0014	.054		
20			.0071	.022	21		.00020	.036		
22			.0028	.012	23			023		
24	1		.00087	.0063	25			.014		
26			.00019	.0029	27			.0083		
28			.000025	.0012	29		()	.0046		
80				.00043	31			.0023		
32	1			.00012	33			.0011		
84				.000025	35			.00047		
86				.0000028	37		0 8	.00018		
					39			.000058		
				ł	41			.000015		
	1				43			.0000028		

Sumber:

https://drive.google.com/fi le/d/1xKiawocVWJs_0jgM u6pPHOW0qD1mhxR3/vi ew

TERIMA KASIH

-Tim Dosen Metode Statistika-

