

Escola:	Escola Po	litécnica	Campus:	Curitiba	
Cursos:	Bacharela Computa	ado em Ciência (ção	da Ano/Semest	re: 2023/2	
Código/Nome da disciplina:	Performa	Performance em Sistemas Ciberfísicos			
Carga Horária:	60 horas	60 horas (80 horas-aula)			
Requisitos:	Não se ap	Não se aplica			
CH/Créditos:	4	Período: 3/5	Turma: U	Turno: noite	
Professor Responsável:	Luiz A. de	P. Lima Jr.			

1. EMENTA

A disciplina de Performance em Sistemas Ciberfísicos é de natureza teórica/prática ofertada a estudantes da área da Computação. Durante a disciplina, o estudante analisa aspectos de concorrência e paralelismo em nível de *hardware* para sistemas ciberfísicos, considerando os sistemas de memória e processamento. Adicionalmente, distingue os mecanismos de comunicação e coordenação entre processos e *threads* responsáveis pelo desempenho dos sistemas ciberfísicos. Ao final, o estudante é capaz de empregar mecanismos de performance em sistemas ciberfísicos de acordo com a situação-problema e os recursos computacionais disponíveis para obter melhor desempenho com os recursos do *hardware* e do sistema operacional.

2. RELAÇÃO COM DISCIPLINAS PRECEDENTES E POSTERIORES

Esta disciplina pode ser cursada por estudantes dos cursos de computação com domínio de programação orientada a objetos. A disciplina fornece a base necessária para tratar da performance em sistemas ciberfísicos para as seguintes disciplinas:

Bacharelado em Ciência da Computação: *Data Science*; Sistema Operacionais Ciberfísicos; Redes Convergentes; Arquitetura de Sistemas Distribuídos Paralelos e Concorrentes; Avaliação de Desempenho de Sistemas; Experiência Criativa: Projeto Transformador I; Experiência Criativa: Projeto Transformador II.

Bacharelado em Sistemas de Informação: *Analytics* para *Big Data*; Projeto Final: Implementação.

Bacharelado em Engenharia de Software: Arquitetura de Software; Projeto Final I; Projeto Final II.

3. TEMAS DE ESTUDO

TE1 – Sistemas de Memória
TE2 – Sistemas de Processamento Paralelo
TE3 – Comunicação entre Processos e Threads
TE4 – Coordenação de Processos e Threads

4. RESULTADOS DE APRENDIZAGEM

Quadro 4-1. Resultados de Aprendizagem e Temas de Estudo em relação às Competências do Egresso.

	ELEMENTO DE	RESULTADO DE	
COMPETÊNCIA	COMPETÊNCIA	APRENDIZAGEM	TEMAS DE ESTUDO
C. Desenvolver infraestrutura computacional, considerando os aspectos de qualidade, incluindo a sustentabilidade, escalabilidade e segurança, com senso crítico.	C1. Projetar infraestrutura computacional, com senso crítico	RA1 – Implementa técnicas para reduzir a latência em nível de hardware considerando as hierarquias de memória e processamento paralelo, de forma precisa.	TE1 – Sistemas de Memória TE2 – Sistemas de Processamento Paralelo
		RA2 – Implementa programas concorrentes que otimizam a utilização do hardware disponível, de forma autorregulada.	TE3 – Comunicação entre Processos e Threads TE4 – Coordenação de Processos e Threads
	C2. Implantar infraestrutura computacional para suportar aplicações diversas	RA1 – Implementa técnicas para reduzir a latência em nível de hardware considerando as hierarquias de memória e processamento paralelo, de forma precisa.	TE1 – Sistemas de Memória TE2 – Sistemas de Processamento Paralelo
		RA2 – Implementa programas concorrentes que otimizam a utilização do hardware disponível, de forma autorregulada.	TE3 – Comunicação entre Processos e Threads TE4 – Coordenação de Processos e Threads
	C3. Avaliar a qualidade da infraestrutura computacional	RA1 – Implementa técnicas para reduzir a latência em nível de hardware considerando as hierarquias de memória e processamento paralelo, de forma precisa.	TE1 – Sistemas de Memória TE2 – Sistemas de Processamento Paralelo
		RA2 – Implementa programas concorrentes que otimizam a utilização do hardware disponível, de forma autorregulada.	TE3 – Comunicação entre Processos e Threads TE4 – Coordenação de Processos e Threads

MAPA MENTAL

6. METODOLOGIA E AVALIAÇÃO

Os Resultados de Aprendizagem desta disciplina serão desenvolvidos de acordo com o exposto no Quadro 6.1. Nele são apresentados os Resultados de Aprendizagem (RA), os Indicadores de Desempenho (ID), os Métodos ou Técnicas empregadas e o Processo de Avaliação.

Serão conduzidos os seguintes tipos de avaliação:

- Formativa: realizada durante o desenvolvimento das atividades, com intervenção e *feedback* imediato dado pelo professor ou pelos colegas, reforçando os conceitos, quando necessário.
- Somativa: composta por atividades com nota atribuída a partir de entregas (trabalhos e atividades) e avaliações por pares. A nota atribuída é necessária para aprovação na disciplina, conforme regulamento acadêmico.
- Recuperação: composta por atividades com nota atribuída a partir de entregas (trabalhos e atividades) e avaliações individuais com o objetivo de recuperar resultados de aprendizagem menores que 7,0. A nota atribuída é limitada no máximo em 7,0 pontos, substituindo a nota anterior no RA, se for maior.
- Devolutiva: apresentação das avaliações realizadas corrigidas, geralmente uma ou duas semanas após a sua realização. As entregas somativas também possuem devolutivas, com comentários nas entregas.

Os seguintes <u>critérios de aprovação</u> serão considerados:

- Para ser aprovado nesta disciplina, o estudante deverá obter no mínimo nota igual a 7,0 (sete) em cada Resultados de Aprendizagem (RA), considerando todas as avaliações realizadas para este RA.
- A nota de cada RA será composta por 60% da nota obtida na avaliação e 40% da nota obtida nos trabalhos realizados relativos ao RA, incluindo TDE.
- Caso o estudante não atinja a média semestral 7,0 (sete) para os Resultados de Aprendizagem (conforme pesos do Quadro 6-2), serão oportunizadas recuperações parciais e uma

- **recuperação final** na Semana Estendida de Recuperação, na qual o estudante poderá recuperar o(s) resultado(s) não atingido(s), por meio de atividades específicas. A nota máxima para cada recuperação (parcial ou final) é 7,0.
- Para poder efetuar cada recuperação parcial é necessário que o estudante tenha feito o(s) trabalho(s) prático(s) relativo(s) ao RA em questão. A sua não execução impossibilita o acesso à respectiva recuperação.
- Para poder efetuar a recuperação da semana estendida de recuperação, o estudante deverá ter nota maior ou igual e 4,0 e menor que 7,0.
- Caso o estudante, mesmo após a Semana Estendida de Recuperação, não consiga atingir a nota média 7,0 (sete) para os Resultados de Aprendizagem, então será considerado reprovado, e deverá cursar novamente a disciplina.

Quadro 6.1 Indicadores de Desempenho, Métodos ou Técnicas Empregados e Avaliações por Resultado de Aprendizagem.

RESULTADO DE APRENDIZAGEM	INDICADORES DE DESEMPENHO	PROCESSOS DE AVALIAÇÃO	MÉTODOS OU TÉCNICAS EMPREGADOS
RA1 – Implementa técnicas para reduzir a latência em nível de hardware considerando as hierarquias de memória e processamento paralelo, de	ID1.1 – Distingue as hierarquias de memória em nível de hardware ID1.2 – Seleciona o hardware de acordo com o contexto, baseado nas características de processamento paralelo em nível de hardware para	[Formativa] Aplicação de atividades práticas, com feedback imediato. [Somativa] Avaliação individual e em grupo com questões discursivas e objetivas sobre os temas de estudo	- Problem Based Learning (PBL) - Project Based Learning (PjBL)
forma precisa.	reduzir a latência ID1.3 – Codifica os principais algoritmos de hierarquia de memória, de forma precisa.	[Somativa] Aplicação de atividades práticas para avaliação e fixação dos temas vistos durante a aula.	
RA2 – Implementa programas concorrentes que otimizam a utilização do hardware disponível, de forma autorregulada.	ID2.1 – Codifica programas com processamento paralelo em nível de sistema, de forma autorregulada. ID2.2 – Codifica aplicando técnicas de exclusão mútua e de resolução de impasses em programas concorrentes.	[Formativa] Aplicação de atividades práticas, com feedback imediato. [Somativa] Avaliação individual e em grupo com questões discursivas e objetivas sobre os temas de estudo [Somativa] Aplicação de atividades práticas para avaliação e fixação dos temas vistos durante a aula.	- Problem Based Learning (PBL) - Project Based Learning (PjBL)

Quadro 6-2. Composição dos pesos dos Resultados de Aprendizagens na média final

	Peso do resultado de aprendizagem		
RA1	40%		
RA2	60%		

7. CRONOGRAMA DE ATIVIDADES

Abaixo o cronograma estimado de atividades é exibido. É importante ressaltar que a disciplina também consta com uma atividade no formato TDE (envolvendo os 2 RAs), além de somativas a serem realizadas de acordo com o andamento das aulas em momentos oportunos.

Quadro 7-1. Cronograma estimado de atividades

Data	Temática das aulas	Aulas	TDE
31/7	Motivação e Introdução à Disciplina.	4	
	Memória e Processadores com vistas a desempenho.		
	Conceitos Fundamentais: Arquitetura Von		
7/8	Neumann/Harvard, conjunto de instruções, ciclo busca	4	
	instrução		
14/8	Hierarquia de memórias	4	
21/8	Memória <i>cache</i>	4	
28/8	Gerência de Memória	4	
4/9	Memória Virtual (início TDE)	4	2
11/9	Memória: exercícios	4	2
18/9	Somativa RA1	4	2
25/0	Pipeline de instrução, Paralelismo em nível de thread,	4	2
25/9	Multicores e Multi-CPU e Arquiteturas Paralelas	4	
2/10	(Semana Acadêmica)	4	2
9/10	Recuperação parcial RA1 (fim TDE)	4	2
16/10	O Modelo de Processos e IPC	4	
23/10	Sincronização de Processos e Programação Concorrente	4	
30/10	Problemas Clássicos de Sincronização de Processos	4	
6/11	Escalonamento de processos e desempenho	4	
13/11	Somativa RA2	4	
20/11	Atividade de revisão para a recuperação	4	
27/11	Semana estendida de Recuperação		

8. REFERÊNCIAS

Materiais de apoio serão fornecidos via Ambiente Virtual de Aprendizagem (Canvas).

Básica:

- Sistemas operacionais modernos / Andrew S. Tanenbaum, Herbert Bos; tradutores: Daniel Vieira e Jorge Ritter; revisão técnica Raphael Y. de Camargo, 2015, 4a edição
- Stallings, W. "Arquitetura e Organização de Computadores", 10a. Edição, 2018, Pearson.
 (livro texto disponível pelo site da biblioteca)
- Arquitetura de Sistemas Operacionais / Francis B. Machado e Luiz P. Maia, 2015, 5^a edição

Complementar:

• Sistemas operacionais: Projetos e Implementação / Andrew S. Tanenbaum e Albert S.

- Woodhull, 2008, 3ª edição
- STALLINGS, William; BROWN, Lawrie. Segurança de computadores: princípios e práticas. Rio de Janeiro: Elsevier Campus, 2014
- DAVID A. PETTERSON, JOHN L. HENNESY. Arquitetura de Computadores Uma abordagem quantitativa. Editora Campus, 2013.
- COULOURIS, George F.; DOLLIMORE, Jean; KINDBERG, Tim. Sistemas distribuídos: conceitos e projeto. Porto Alegre: Bookman, 2013.
- TANENBAUM, Andrew S.; STEEN, Maarten van. Sistemas distribuídos: princípios e paradigmas. São Paulo: Pearson Education do Brasil, 2008.

9. ACESSIBILIDADE

Não há necessidade de adaptação.

10. ADAPTAÇÕES PARA PRÁTICAS PROFISSIONAIS

Flexibilização do ambiente de desenvolvimento: alunos podem escolher seu editor de código preferencial, podendo optar por qualquer versão gratuita e reduzindo necessidades de configuração de ambiente diverso em sua máquina pessoal.