WHAT IS CLAIMED IS:

1.	An	isolated	or	recombinant	polypeptide:
----	----	----------	----	-------------	--------------

A) that:

10

20

25

35

- 5 a) specifically binds polyclonal antibodies generated against a 12 consecutive amino acid segment of SEQ ID NO: 2; and
 - b) comprises at least one sequence selected from the following group (see SEQ ID NO: 2):
 LeuCysPheArgMetLysAsp; ValLeuTyrLeuHisAsn;
 GlnLeuLeuAlaGly; IleSerValValProAsn;
 SerProValIleLeuGlyVal; GlnCysLeuSerCysGlyThr;
 ProIleLeuLysLeuGlu; PheTyrArgArgAspMetGly;
 LeuThrSerSerPheGluSer; PheLeuCysThrSer;

GlnProValArgLeuThr; PheTyrPheGlnGln;
ArgAlaLeuAspAlaSerLeu; and GlyLeuHisAlaGluLysVal;

B) that:

- a) specifically binds polyclonal antibodies generated against a 12 consecutive amino acid segment of SEQ ID NO: 6; and
- b) comprises at least one sequence selected from the following group (see SEQ ID NO: 6):
 SerLeuArgHisValGlnAsp; ValTrpIleLeuGlnAsn;
 IleLeuThrAlaVal; IleThrLeuLeuProCys;
 AspProThrTyrMetGlyVal; SerCysLeuPheCysThrLys;
 ProValLeuGlnLeuGly; PheTyrHisLysLysSerGly;
 ThrThrSerThrPheGluSer; PheIleAlaValCys;
 CysProLeuIleLeuThr; PheGluMetIleVal;

GlnAspLeuSer; ValProArgLysGluGlnThrVal;

SerLysGlySerCysPro; ArgAlaAlaSer;

ProCysGlnTyrLeuAspThrLeuGlu; and SerGlyThrThr; or

C) that:

- a) specifically binds polyclonal antibodies generated against a 12 consecutive amino acid segment of SEQ ID NO: 13 or 15; and
- b) comprises at least one sequence selected from the following group (see SEQ ID NO: 13 or 15):

ITGTIND; VWTLQG; NLVAV; VAVITC; DPIYLGI; MCLYCEK; PTLQLK; FYRAKTG; RTSTLES; FIASS; QPIILT; FELNI; SMCK; NDLN; VPR(R/S)TSVT; VPRSDSVT; TCKYPEALE; TGRT; SKRDQP; or SKGDQP.

5

15

20

30

- 2. The polypeptide of Claim 1:
 - a) wherein said polypeptide comprises a plurality of said sequences selected from said group in section b) of part 1A;
- b) wherein said polypeptide comprises a plurality of said sequences selected from said group in section b) of part 1B;
 - c) wherein said polypeptide comprises a plurality of said sequences selected from said group in section b) of part 1C; or
 - d) which specifically binds to polyclonal antibodies generated against an immunogen selected from the group consisting of:
 - i) the polypeptide of SEQ ID NO: 2;
 - ii) the polypeptide of SEQ ID NO: 6;
 - iii) the polypeptide of SEQ ID NO: 13; and.
 - iv) the polypeptide of SEQ ID NO: 15.
 - 3. The polypeptide of:
- 25 A) Claim 1A, wherein said 12 consecutive amino acid segment is selected from (see SEQ ID NO: 2):

 LeuCysPheArgMetLysAspSerAlaLeuLysValLeuTyrLeuHisAsn-Asn;
 - IleSerValValProAsnArgAlaLeuAspAlaSerLeuSerProValIle LeuGlyValGln;

SerProValIleLeuGlyValGlnGlyGlySerGlnCys;

ProIleLeuLysLeuGluProValAsnIleMetGluLeu;

ThrSerSerPheGluSerAlaAlaTyrProGlyTrpPhe;

PheLeuCysThrSerProGluAlaAspGlnProVal;

35 ThrGlnIleProGluAspProAlaTrpAspAlaProIle; or ThrSerSerPheGluSerAlaAlaTyrProGlyTrpPhe;

```
Claim 1B, wherein said 12 consecutive amino acid
          segment is selected from (see SEQ ID NO: 6):
          ArgAlaAlaSerProSerLeuArgHisValGlnAspLeu;
          SerSerArgValTrpIleLeuGlnAsnAsnIleLeu;
 5
          ProValThrIleThrLeuLeuProCysGlnTyrLeu;
          GlyValGlnArgProMetSerCysLeuPheCysThr;
          PheCysThrLysAspGlyGluGlnProValLeuGlnLeu;
          ThrSerThrPheGluSerAlaAlaPheProGlyTrpPhe; and
          CysSerLysGlySerCysProLeuIleLeuThrGln; or
10
    C) claim 1C, wherein said 12 consecutive amino acid segment
          is selected from (see SEQ ID NO: 13 or 15):
          SMCKPITGTINDL;
          NOOVWTLOGONL;
          PVTVAVITCKYP;
15
          GIQNPEMCLYCE;
          YCEKVGEQPTLQL;
          TSTLESVAFPDWF:
          SKGDOPIILTSE;
          SKRDQPIILTSE; and
20
          GKSYNTAFELNIND.
    3.
               The polypeptide of Claim 2, wherein said
    polypeptide:
              is a mature protein;
25
          ii)
               lacks a post-translational modification;
          iii)
                is from a rodent, including a mouse;
               is from a primate, including a human;
              is a natural allelic variant of IL-1\delta or IL-1\epsilon;
          vi) has a length at least 30 amino acids;
30
          vii) exhibits at least two non-overlapping epitopes
                that are specific for a rodent IL-1\delta;
                  exhibits a sequence identity over a length of
                at least about 20 amino acids to SEQ ID NO: 2;
          ix)
               exhibits at least two non-overlapping epitopes
35
                which are specific for a rodent or primate IL-18;
              exhibits a sequence identity over a length of at
                least about 20 amino acids to SEQ ID NO: 6 or 15;
```

10

15

20

25

30

- xi) is glycosylated;
- xii) has a molecular weight of at least 10 kD with natural glycosylation;
- xiii) is a synthetic polypeptide;
- xiv) is attached to a solid substrate;
 - xv) is conjugated to another chemical moiety;
 - xvi) is a 5-fold or less substitution from natural
 sequence; or
- xvii) is a deletion or insertion variant from a natural sequence.
 - 4. A soluble polypeptide comprising:
 - a) a sterile polypeptide of Claim 2;
 - b) said sterile polypeptide of Claim 2 and a carrier, wherein said carrier is:
 - i) an aqueous compound, including water, saline, and/or buffer; and/or
 - ii) formulated for oral, rectal, nasal, topical, or parenteral administration.

5. A fusion protein having a polypeptide sequence of Claim 2 and further comprising:

- a) a mature protein of Claim 2;
- b) a detection or purification tag, including a FLAG,His6, or Ig sequence; or
 - c) sequence of another cytokine or chemokine.
- 6. A kit comprising a polypeptide of Claim 2, and:
 - a) a compartment comprising said protein or polypeptide; and/or
 - b) instructions for use or disposal of reagents in said kit.
- 7. A binding compound comprising an antigen binding site from an antibody, which specifically binds to a mature polypeptide from:
 - a) SEQ ID NO: 2;

20

25

- b) SEQ ID NO: 6;
- c) SEQ ID NO: 13; or
- d) SEQ ID NO: 15.
- 5 8. The binding compound of Claim 7, wherein:
 - a) said binding compound is an Fv, Fab, or Fab2 fragment;
 - said binding compound is conjugated to another chemical moiety; or
- 10 c) said antibody:
 - i) is raised against a polypeptide comprising a
 12 consecutive amino acid segment of SEQ ID
 NO: 2, 6, 13, or 15;
 - ii) is raised against a mature IL-18;
 - iii) is raised to a purified rodent $IL-1\delta$ or rodent or primate $IL-1\epsilon$;
 - iv) is immunoselected;
 - v) is a polyclonal antibody;
 - vi) binds to a denatured IL-1 δ or IL-1 ϵ ;
 - vii) exhibits a Kd to antigen of at least 30 μM;
 - viii) is attached to a solid substrate,
 including a bead or plastic membrane;
 - ix) is in a sterile composition; or
 - x) is detectably labeled, including a radioactive or fluorescent label.
 - 9. A kit comprising said binding compound of Claim7, and:
 - a) a compartment comprising said binding compound;
 and/or
 - b) instructions for use or disposal of reagents in said kit.
 - 10. A composition comprising:
- a) a sterile binding compound of Claim 7, or
 - b) said binding compound of Claim 7 and a carrier, wherein said carrier is:

15

20

25

- i) an aqueous compound, including water, saline, and/or buffer; and/or
- ii) formulated for oral, rectal, nasal, topical, or parenteral administration.
- 11. An isolated or recombinant nucleic acid encoding a polypeptide of Claim 2, wherein:
 - a) said polypeptide of Claim 2 is IL-1 δ or IL-1 ϵ from a mammal; or
- 10 b) said nucleic acid:
 - i) comprises the mature coding sequence of SEQID NO: 1, 3, 12, or 14;
 - ii) encodes an antigenic peptide sequence of SEQ ID NO: 2, or SEQ ID NO: 6, 13, or 15;
 - iii) encodes a plurality of antigenic peptide
 sequences of SEQ ID NO: 2, or SEQ ID NO: 6,
 13, or 15;
 - iv) exhibits identity to a natural cDNA encoding said segment;
 - v) is an expression vector;
 - vi) further comprises an origin of replication;
 - vii) is from a natural source;
 - viii) comprises a detectable label;
 - ix) comprises synthetic nucleotide sequence;
 - x) is less than 6 kb, preferably less than 3 kb;
 - xi) is from a rodent or primate;
 - xii) comprises a natural full length coding
 sequence;
 - xiii) is a hybridization probe for a gene encoding said IL-1 δ or IL-1 ϵ ;
 - xiv) is a PCR primer, PCR product, or mutagenesis primer; or
 - xv) encodes an IL-1 δ or an IL-1 ϵ protein.
- 35 12. A cell, transformed with said nucleic acid of Claim 10.

13. The cell of Claim 12, wherein said cell is:

110

- a prokaryotic cell;
- a eukaryotic cell;
- a bacterial cell; c)
- 5 a yeast cell; d)
 - e) an insect cell;
 - a mammalian cell; f)
 - a murine cell; g)
 - h) a primate cell; or
- a human cell. 10 i)
 - 14. A kit comprising said nucleic acid of Claim 11, and:
 - a compartment comprising said nucleic acid; a)
 - a compartment further comprising a mammalian IL-1 δ b) or IL-18 protein or polypeptide; and/or
 - instructions for use or disposal of reagents in said kit.
- An isolated or recombinant nucleic acid that 20 15.
 - hybridizes under wash conditions of 40° C and less than 1M salt to SEQ ID NO: 1;
 - hybridizes under wash conditions of 40° C and less than 1 M salt to SEQ ID NO: 3, 5, 12 or 14.

25

- 16. The nucleic acid of Claim 15, wherein:
 - said wash condition is at 50° C and/or 500 mM a) salt; and
- exhibits identity over at least 20 nucleotides to 30 SEQ ID NO: 1, 3, 5, 12, or 14.
 - The nucleic acid of Claim 16, wherein: 17.
 - a) a wash condition is at 65° C and/or 150 mM salt; or
- 35 exhibits identity over at least 50 nucleotides to b) SEQ ID NO: 1, 3, 5, 12, or 14.

10

15

20

25

30

A method of modulating a cell involved in an 18. inflammatory response comprising contacting said cell with an agonist or antagonist of a mammalian IL-1 δ or IL-1 ϵ polypeptide of Claims 1. 19. The method of Claim 18, wherein: said contacting is in combination with an agonist or antagonist of IL-1 α , IL-1RA, IL-1 β , IL-1 γ , IL-2, and/or IL-12; said contacting is with an antagonist, including b) binding composition comprising an antibody binding site which specifically binds an IL-1 δ or IL-1 ϵ ; or said modulating is regulation of IFN-y production. 20. A method of: making an antiserum comprising an antibody of Claim 7, comprising immunizing a mammal with an immunogenic amount of: a rodent IL-1 δ polypeptide; a) a peptide sequence comprising a 12 b) consecutive amino acid segment of SEQ ID NO: 2; a rodent or primate IL-18 polypeptide; or a peptide sequence comprising a 12 d) consecutive amino acid segment of SEQ ID NO: 6, 13, or 15; thereby causing said antiserum to be produced; or producing an antigen: antibody complex, comprising B) contacting: a rodent IL-1 δ protein or peptide with an antibody of Claim 7; or

a rodent or primate IL-18 protein or peptide

with an antibody of Claim 7;

thereby allowing said complex to form.

SEQUENCE SUBMISSION

```
SEQ ID NO: 1 provides rodent IL-1δ nucleotide sequence.
     SEQ ID NO: 2 provides rodent IL-1\delta polypeptide sequence.
 5
     SEQ ID NO: 3 provides partial rodent IL-18 nucleotide sequence.
     SEQ ID NO: 4 provides partial rodent IL-18 polypeptide sequence.
     SEQ ID NO: 5 provides full length rodent IL-18 nucleic acid sequence.
     SEQ ID NO: 6 provides full length rodent IL-18 polypeptide sequence.
     SEQ ID NO: 7 provides human IL-1RA precursor polypeptide sequence.
10
     SEQ ID NO: 8 provides human IL-1γ (IGIF) precursor polypeptide sequence.
     SEQ ID NO: 9 provides mouse IL-1\gamma (IGIF) precursor polypeptide sequence.
     SEQ ID NO: 10 provides human IL-1\beta precursor polypeptide sequence.
     SEQ ID NO: 11 provides human IL-1\alpha precursor polypeptide sequence.
     SEQ ID NO: 12 provides primate IL-1& nucleotide sequence.
15
     SEQ ID NO: 13 provides primate IL-12 polypeptide sequence.
     SEQ ID NO: 14 provides full length primate IL-18 nucleic acid sequence.
     SEQ ID NO: 15 provides full length primate IL-12 polypeptide sequence.
20
     (1) GENERAL INFORMATION:
           (i) APPLICANT: Hedrick, Joseph A.
                          Sana, Theodore R.
                          Bazan, Fernando J.
25
                          Kastelein, Robert A.
          (ii) TITLE OF INVENTION: Mammalian Cytokines; Related Reagents
                  and Methods
30
         (iii) NUMBER OF SEQUENCES: 15
          (iv) CORRESPONDENCE ADDRESS:
                (A) ADDRESSEE: DNAX Research Institute
                (B) STREET: 901 California
35
                (C) CITY: Palo Alto
                (D) STATE: California
                (E) COUNTRY: USA
                (F) ZIP: 94304-1104
40
           (v) COMPUTER READABLE FORM:
                (A) MEDIUM TYPE: Floppy disk
                (B) COMPUTER: IBM PC compatible
                (C) OPERATING SYSTEM: PC-DOS/MS-DOS
                (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
45
          (vi) CURRENT APPLICATION DATA:
                (A) APPLICATION NUMBER: US
                (B) FILING DATE: 07-AUG-1998
                (C) CLASSIFICATION:
50
         (vii) PRIOR APPLICATION DATA:
                (A) APPLICATION NUMBER: US 60/044,165
                (B) FILING DATE: 21-APR-1997
55
         (vii) PRIOR APPLICATION DATA:
                (A) APPLICATION NUMBER: US 60/055,111
                (B) FILING DATE: 06-AUG-1997
         (vii) PRIOR APPLICATION DATA:
60
                (A) APPLICATION NUMBER: US 09/062,866
```

		(B) FILING DATE: 20-APR-1998
	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 09/097,976
5		(B) FILING DATE: 16-JUN-1998
	(viii)	ATTORNEY/AGENT INFORMATION:
		(A) NAME: Ching, Edwin P.
10		(B) REGISTRATION NUMBER: 34,090 (C) REFERENCE/DOCKET NUMBER: DX0725K2
		(o) Karakan, bookar Koraak. Brov Boka
	(ix)	TELECOMMUNICATION INFORMATION:
		(A) TELEPHONE: 650-852-9196
		(B) TELEFAX: 650-496-1200

(2) INFORMATION FOR SEQ ID NO:1:

	(i)	SEQUENCE CHARACTERISTICS:
20		(A) LENGTH: 470 base pair
		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
	,	(D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: cDNA

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

35							GAT Asp		48	}
40							GGA Gly 30		96	;
45							GTC Val		144	į
50							GTT Val	 	192	:
30							ATT Ile		240)
55							AAG Lys		288	\$

AAG AGC TTC ACC TTC TAC CGG CGG GAT ATG GGT CTT ACC TCC AGC TTC

Lys Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe

	15	(2) INFORMATION FOR SEQ ID NO:2:												
		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 156 amino acids												
	20	(B) TYPE: amino acid (D) TOPOLOGY: linear												
14.	(ii) MOLECULE TYPE: protein													
# 2000 #	25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:												
Control of the contro		Met Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala 1 5 10 15												
	30	Leu Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu 20 25 30												
	35	His Ala Glu Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn 35 40 45												
Company of the Compan	33	Arg Ala Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly 50 55 60												
	40	Gly Ser Gln Cys Leu Ser Cys Gly Thr Glu Lys Gly Pro Ile Leu Lys 65 70 75 80												
		Leu Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser												

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

130

HEDRICK, et al.

115

130

145

5

10

45

50

55

60

100

114

110

90

120

Ala Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp

(A) LENGTH: 219 base pairs

105

120

135

GCT CCC ATC ACA GAC TTC TAC TTT CAG CAG TGT GAC TA

Ala Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp

150

DX0725K2 GAA TCC GCT GCC TAC CCA GGC TGG TTC CTC TGC ACC TCA CCG GAA GCT Glu Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Ser Pro Glu Ala GAC CAG CCT GTC AGG CTC ACT CAG ATC CCT GAG GAC CCC GCC TGG GAT 432 Asp Gln Pro Val Arg Leu Thr Gln Ile Pro Glu Asp Pro Ala Trp Asp 470 t Lys Asp Ser Ala u Ala Gly Gly Leu r Val Val Pro Asn u Gly Val Gln Gly y Pro Ile Leu Lys Lys Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Ser Pro Glu Ala Asp Gln Pro Val Arg Leu Thr Gln Ile Pro Glu Asp Pro Ala Trp Asp

Asp Phe Glu Met Ile Val Val His

70

(D) TOPOLOGY: linear

(A) NAME/KEY: CDS

(B) LOCATION: 1..216

(ii) MOLECULE TYPE: cDNA

HEDRICK, et al.

(ix) FEATURE:

5

10

45

50

55

60

140

	(2)	INF	ORMA	rion	FOR	SEQ	ID I	NO:5	:					
5		(i)	() () ()	A) L1 B) T C) S	engti Pe: Prani	HARAC H: 80 nucl DEDNI DGY:	09 ba leic ESS:	ase p acid sing	pair: d	5				
10		(ii)	MOI	LECUI	LE T	PE:	cDN	A						
15		(ix)	(2		AME/I	KEY:		.569						
				_					SEQ :					
20													CTGCAG	60
٥٢	TTA	GGCA(GCT (CAGG	AACA	AC AT	rcac(CATA				GAA Glu		113
25		GCA Ala 10												161
30		ATC Ile												209
35		GTT Val												257
40		GAG Glu												305
45		AGC Ser										 	 	353
13		GGG Gly 90												401
50		GCC Ala												449
55		TCT Ser												497

AGC TGC CCA CTC ATT CTG ACC CAA GAA CTG GGG GAA ATC TTC ATC ACT

Ser Cys Pro Leu Ile Leu Thr Gln Glu Leu Gly Glu Ile Phe Ile Thr

145

545

	HE	ORIC	CK, et al. 117 DX			DX	0725	K2										
5	GAC Asp	TTO Phe	GAC Glu 155	ı Met	ATI	GTC Val	GTZ l Val	A CAT L His 160	5	AGGTT	PTTT	AGAC	CACAT	rtg (CTCTC	STGGCA		599
J	CTC	TCTC	CAAG	ATTT	CTTC	GA 1	TCT	ACAZ	AG AZ	AGCAZ	ATCAZ	A AGA	CACC	CCT	AACA	AAATGO	3	659
	AAG	ACTO	BAAA	AGAA	AGCI	GA C	CCCI	CCCI	G GC	CTGT	rttti	CCI	TGGI	GGT	GAAT	'CAGATO	3	719
10	CAG	AACA	ATCT	TACC	ATGT	TT 1	CATC	CAAA	AG CA	TTT	ACTGI	TGG	TTTT	TAC	AAGG	AGTGA	7	779
	TTT	TTTA	AAA	TAAA	ATCA	TT I	TATCT	CATA	A									809
15	(2)	INF	'ORMA	TION	FOR	SEÇ] ID	NO:6	i :									
20		((B) LE) TY) TO	NGTH PE: POLO	: 16 amin GY:	0 am o ac line	ino id ar		ls							
				SEQU						Q ID	NO:	6:						
25	Met 1										Ser		Ser	Leu	Arg 15	His		
30	Val	Gln	Asp	Leu 20	Ser	Ser	Arg	Val	Trp 25		Leu	Gln	Asn	Asn 30	Ile	Leu		
	Thr	Ala	Val 35	Pro	Arg	Lys	Glu	Gln 40	Thr	Val	Pro	Val	Thr 45	Ile	Thr	Leu		
35	Leu	Pro 50	Cys	Gln	Tyr	Leu	Asp 55	Thr	Leu	Glu	Thr	Asn 60	Arg	Gly	Asp	Pro		
40	Thr 65	Tyr	Met	Gly	Val	Gln 70	Arg	Pro	Met	Ser	Cys 75	Leu	Phe	Cys	Thr	Lys 80		
	Asp	Gly	Glu	Gln	Pro 85	Val	Leu	Gln	Leu	Gly 90	Glu	Gly	Asn	Ile	Met 95	Glu		
45	Met	Tyr	Asn	Lys 100	Lys	Glu	Pro	Val	Lys 105	Ala	Ser	Leu	Phe	Tyr 110	His	Lys		
	Lys	Ser	Gly 115	Thr	Thr	Ser	Thr	Phe 120	Glu	Ser	Ala	Ala	Phe 125	Pro	Gly	Trp		
50	Phe	Ile 130	Ala	Val	Cys	Ser	Lys 135	Gly	Ser	Cys	Pro	Leu 140	Ile	Leu	Thr	Gln		
55	Glu 145	Leu	Gly	Glu	Ile	Phe 150	Ile	Thr	Asp	Phe	Glu 155	Met	Ile	Val	Val	His 160		
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:7:										

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 177 amino acids

(B)	TYPE: amino acid	
(C)	STRANDEDNESS: not	relevant
(D)	TOPOLOGY: linear	

5 (ii) MOLECULE TYPE: peptide

10	(xi)	SEQU	JENCE	E DES	SCRII	10IT	1: SE	EQ II	NO:	:7:						
	Met 1	Glu	Ile	Cys	Arg 5	Gly	Leu	Arg	Ser	His 10	Leu	Ile	Thr	Leu	Leu 15	Leu
15	Phe	Leu	Phe	His 20	Ser	Glu	Thr	Ile	Cys 25	Arg	Pro	Ser	Gly	Arg 30	Lys	Ser
20	Ser	Lys	Met 35	Gln	Ala	Phe	Arg	Ile 40	Trp	Asp	Val	Asn	Gln 45	Lys	Thr	Phe
	Tyr	Leu 50	Arg	Asn	Asn	Gln	Leu 55	Val	Ala	G1y	Tyr	Leu 60	Gln	Gly	Pro	Asn
25	Val 65	Asn	Leu	Glu	Glu	Lys 70	Ile	Asp	Va1	Val	Pro 75	Ile	Glu	Pro	His	Ala 80
	Leu	Phe	Leu	Gly	Ile 85	His	Gly	Gly	Lys	Met 90	Cys	Leu	Ser	Cys	Val 95	Lys
30	Ser	Gly	Asp	Glu 100	Thr	Arg	Leu	Gln	Leu 105	G1u	Ala	Val	Asn	Ile 110	Thr	Asp
35	Leu	Ser	Glu 115	Asn	Arg	Lys	Gln	Asp 120	Lys	Arg	Phe	Ala	Phe 125	Ile	Arg	Ser
	Asp	Ser 130	Gly	Pro	Thr	Thr	Ser 135	Phe	Glu	Ser	Ala	Ala 140	Cys	Pro	Gly	Trp
40	Phe 145	Leu	Cys	Thr	Ala	Met 150	Glu	Ala	Asp	G1n	Pro 155	Val	Ser	Leu	Thr	Asn 160
	Met	Pro	Asp	Glu	Gly 165	Va1	Met	Val	Thr	Lys 170	Phe	Tyr	Phe	Gln	Glu 175	Asp
45	Glu															

(2) INFORMATION FOR SEQ ID NO:8:

- 50

 (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 193 amino acids

 (B) TYPE: amino acid

 (C) STRANDEDNESS: not relevant

 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

		(xi)	SEQU	JENCI	E DES	SCRI	OITS	N: SI	EQ II	ONO	:8:						
5		Met 1	Ala	Ala	Glu	Pro 5	Val	Glu	Asp	Asn	Cys 10	Ile	Asn	Phe	Val	Ala 15	Met
3		Lys	Phe	Ile	Asp 20	Asn	Thr	Leu	Tyr	Phe 25	Ile	Ala	Glu	Asp	Asp 30	Glu	Asn
10		Leu	Glu	Ser 35	Asp	Tyr	Phe	Gly	Lys 40	Leu	Glu	Ser	Lys	Leu 45	Ser	Val	Ile
		Arg	Asn 50	Leu	Asn	Asp	Gln	Val 55	Leu	Phe	Ile	Asp	Gln 60	Gly	Asn	Arg	Pro
15		Leu 65	Phe	Glu	Asp	Met	Thr 70	Asp	Ser	Asp	Cys	Arg 75	Asp	Asn	Ala	Pro	Arg 80
20		Thr	Ile	Phe	Ile	Ile 85	Ser	Met	Tyr	Lys	Asp 90	Ser	Gln	Pro	Arg	Gly 95	Met
20		Ala	Val	Thr	Ile 100	Ser	Val	Lys	Cys	Glu 105	Lys	Ile	Ser	Thr	Leu 110	Ser	Cys
25		Glu	Asn	Lys 115	Ile	Ile	Ser	Phe	Lys 120	Glu	Met	Asn	Pro	Pro 125	Asp	Asn	Ile
		Lys	Asp 130	Thr	Lys	Ser	Asp	Ile 135	Ile	Phe	Phe	Gln	Arg 140	Ser	Va1	Pro	Gly
30		His 145	Asp	Asn	Lys	Met	Gln 150	Phe	Glu	Ser	Ser	Ser 155	Tyr	Glu	Gly	Tyr	Phe 160
35		Leu	Ala	Cys	Glu	Lys 165	Glu	Arg	Asp	Leu	Phe 170	Lys	Leu	Ile	Leu	Lys 175	Lys
33		Glu	Asp	Glu	Leu 180	Gly	Asp	Arg	Ser	Ile 185	Met	Phe	Thr	Val	Gln 190	Asn	Glu
40		Asp															
	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	0:9:									
45		(i)	(A) (B) (C)	TYI	NGTH: PE: 6 RANDI	: 192 amino EDNES	2 am: 5 ac: 5S: 1	ino a id not 1	S: acid: rele								
50		(ii)	MOLI	ECULI	E TYI	PE: 1	pept:	ide									

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Ala Ala Met Ser Glu Asp Ser Cys Val Asn Phe Lys Glu Met Met 1 10 15

60 Phe Ile Asp Asn Thr Leu Tyr Phe Ile Pro Glu Glu Asn Gly Asp Leu

120 HEDRICK, et al. DX0725K2 20 25 30 Glu Ser Asp Asn Phe Gly Arg Leu His Cys Thr Thr Ala Val Ile Arg 40 5 Asn Ile Asn Asp Gln Val Leu Phe Val Asp Lys Arg Gln Pro Val Phe Glu Asp Met Thr Asp Ile Asp Gln Ser Ala Ser Glu Pro Gln Thr Arg 10 Leu Ile Ile Tyr Met Tyr Lys Asp Ser Glu Val Arg Gly Leu Ala Val 15 Thr Leu Ser Val Lys Asp Ser Lys Met Ser Thr Leu Ser Cys Lys Asn 105 Lys Ile Ile Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp 115 120 20 Ile Gln Ser Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu Phe Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Cys 25 155 Gln Lys Glu Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Lys Asp Glu 170 30 Asn Gly Asp Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser 185 (2) INFORMATION FOR SEQ ID NO:10: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 269 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant 40 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Met Ala Glu Val Pro Lys Leu Ala Ser Glu Met Met Ala Tyr Tyr Ser 50 Gly Asn Glu Asp Asp Leu Phe Phe Glu Ala Asp Gly Pro Lys Gln Met 25 55 Lys Cys Ser Phe Gln Asp Leu Asp Leu Cys Pro Leu Asp Gly Gly Ile

Gln Leu Arg Ile Ser Asp His His Tyr Ser Lys Gly Phe Arg Gln Ala

	HEDRICI	К, е	t al	L.				12:	1	DX0725K2						
	A1a 65	a Ser	Val	. Val	Val	Ala 70	. Met	Asp	Lys	Leu	Arg 75	Lys	Met	Leu	Val	Pro 80
5	Cys	s Pro	Gln	Thr	Phe 85	Gln	Glu	Asn	Asp	Leu 90	Ser	Thr	Phe	Phe	Pro 95	Phe
	Ile	Phe	Glu	Glu 100	Glu	Pro	Ile	Phe	Phe 105	Asp	Thr	Trp	Asp	Asn 110	Glu	Ala
10	Tyr	Val	His 115	Asp	Ala	Pro	Val	Arg 120	Ser	Leu	Asn	Cys	Thr 125	Leu	Arg	Asp
15	Ser	Gln 130	Gln	Lys	Ser	Leu	Val 135	Met	Ser	Gly	Pro	Tyr 140	Glu	Leu	Lys	Ala
	Leu 145	His	Leu	Gln	Gly	Gln 150	Asp	Met	Glu	Gln	Gln 155	Val	Val	Phe	Ser	Met 160
20	Ser	Phe	Val	Gln	Gly 165	Glu	Glu	Ser	Asn	Asp 170	Lys	Ile	Pro	Val	Ala 175	Leu
	Gly	Leu	Lys	Glu 180	Lys	Asn	Leu	Tyr	Leu 185	Ser	Cys	Val	Leu	Lys 190	Asp	Asp
25	Lys	Pro	Thr 195	Leu	Gln	Leu	Glu	Ser 200	Val	Asp	Pro	Lys	Asn 205	Tyr	Pro	Lys
30	Lys	Lys 210	Met	Glu	Lys	Arg	Phe 215	Val	Phe	Asn	Lys	Ile 220	Glu	Ile	Asn	Asn
	Lys 225	Leu	Glu	Phe	Glu	Ser 230	Ala	Gln	Phe	Pro	Asn 235	Trp	Tyr	Ile	Ser	Thr 240
35	Ser	Gln	Ala	Glu	Asn 245	Met	Pro	Val	Phe	Leu 250	Gly	Gly	Thr	Lys	G1y 255	Gly
	Gln	Asp	Ile	Thr 260	Asp	Phe	Thr	Met	Gln 265	Phe	Val	Ser	Ser			
40	(2) INFO	RMAT]	ON F	FOR S	EQ I	D NC	:11:									
45	(i)	(B) (C)	LEN TYF STF	E CHA NGTH: PE: a RANDE POLOG	271 mino DNES	ami aci S: n	.no a .d .ot r	.cids								
	(ii)	MOLE	CULE	TYF	E: p	epti	.de									
50																
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	11:						
55	Met 1	Ala	Lys	Val	Pro 5	Asp	Met	Phe		Asp 10	Leu	Lys .	Asn		Tyr 15	Ser
CO	Glu	Asn	Glu	Glu 20	Asp	Ser	Ser	Ser	Ile . 25	Asp	His :	Leu		Leu . 30	Asn	Gln

Lys Ser Phe Tyr His Val Ser Tyr Gly Pro Leu His Glu Gly Cys Met

DX0725K2

HEDRICK, et al.

55

60

(ix) FEATURE:

(A) NAME/KEY: CDS(B) LOCATION: 1..504

(ix) FEATURE:

(A) NAME/KEY: misc_feature

(B) LOCATION: 144

5	G,	may		O) OI G OI		INFO	ORMAT	: NOI	/no	ote=	"nuc	cleot	ide	144	des:	ignated	
10	c,		(<i>I</i> (I	ATURE A) NA B) LO D) OT C O1	AME/F CATI THER	ON:	451				"nuc	cleot	ide	451	desi	ignated	
15	c,	,,	(ATURI A) NA B) LO D) OT A, O	AME/F CATI THER	ON:	469 ORMA:				"nu«	cleot	ide	469	des:	ignated	
20		(xi)	SEÇ	QUENC	CE DE	ESCR	PTIC	on: S	SEQ I	ID NO	0:12	•					
										GGT Gly 10							48
25										ACT Thr							96
30										CTT Leu							144
35										GTT Val							192
40										CCC Pro							240
45										AAG Lys 90							288
± <i>)</i>										GAT Asp							336
50										GCC Ala							384
55										TGG Trp							432
60										GAA Glu							480

ACT GCC TTT GAA TTA AAT ATT AAT G Thr Ala Phe Glu Leu Asn Ile Asn 165 5 (2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 168 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: Met Arg Gly Thr Pro Gly Asp Ala Asp Gly Gly Gly Arg Ala Val Tyr 20 Gln Ser Met Cys Lys Pro Ile Thr Gly Thr Ile Asn Asp Leu Asn Gln Gln Val Trp Thr Leu Gln Gly Gln Asn Leu Val Ala Val Pro Arg Arg 25 40 Thr Ser Val Thr Pro Val Thr Val Ala Val Ile Thr Cys Lys Tyr Pro 30 Glu Ala Leu Glu Gln Gly Arg Gly Asp Pro Ile Tyr Leu Gly Ile Gln Asn Pro Glu Met Cys Leu Tyr Cys Glu Lys Val Gly Glu Gln Pro Thr 35 Leu Gln Leu Lys Glu Gln Lys Ile Met Asp Leu Tyr Gly Gln Pro Glu 105 Pro Val Lys Pro Phe Leu Phe Tyr Arg Ala Lys Thr Gly Arg Thr Ser 40 Thr Leu Glu Ser Val Ala Phe Pro Asp Trp Phe Ile Ala Ser Ser Lys 135 Gly Asp Gln Pro Ile Ile Leu Thr Ser Glu Leu Trp Gln Ser Tyr Asn 45 145 160 Thr Ala Phe Glu Leu Asn Ile Asn 165 50 (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1195 base pairs 55 (B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 67..573

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

	(XI) BEQUENCE DESCRIPTION: SEQ ID NO:14:												
10	CCACGATTCA GTCCCCTGGA CTGTAGATAA AGACCCTTTC TTGCCAGGTG CTGAGACAAC												
	CACACT ATG AGA GGC ACT CCA GGA GAC GCT GAT GGT GGA GGA AGG GCC Met Arg Gly Thr Pro Gly Asp Ala Asp Gly Gly Gly Arg Ala 1 5 10	108											
15	GTC TAT CAA TCA ATG TGT AAA CCT ATT ACT GGG ACT ATT AAT GAT TTG Val Tyr Gln Ser Met Cys Lys Pro Ile Thr Gly Thr Ile Asn Asp Leu 15 20 25 30	156											
20	AAT CAG CAA GTG TGG ACC CTT CAG GGT CAG AAC CTT GTG GCA GTT CCA Asn Gln Gln Val Trp Thr Leu Gln Gly Gln Asn Leu Val Ala Val Pro 35 40 45	204											
25	CGA AGT GAC AGT GTG ACC CCA GTC ACT GTT GCT GTT ATC ACA TGC AAG Arg Ser Asp Ser Val Thr Pro Val Thr Val Ala Val Ile Thr Cys Lys 50 55 60	252											
30	TAT CCA GAG GCT CTT GAG CAA GGC AGA GGG GAT CCC ATT TAT TTG GGA Tyr Pro Glu Ala Leu Glu Gln Gly Arg Gly Asp Pro Ile Tyr Leu Gly 65 70 75	300											
	ATC CAG AAT CCA GAA ATG TGT TTG TAT TGT GAG AAG GTT GGA GAA CAG Ile Gln Asn Pro Glu Met Cys Leu Tyr Cys Glu Lys Val Gly Glu Gln 80 85 90	348											
35	CCC ACA TTG CAG CTA AAA GAG CAG AAG ATC ATG GAT CTG TAT GGC CAA Pro Thr Leu Gln Leu Lys Glu Gln Lys Ile Met Asp Leu Tyr Gly Gln 95 100 105 110	396											
40	CCC GAG CCC GTG AAA CCC TTC CTT TTC TAC CGT GCC AAG ACT GGT AGG Pro Glu Pro Val Lys Pro Phe Leu Phe Tyr Arg Ala Lys Thr Gly Arg 115 120 125	444											
45	ACC TCC ACC CTT GAG TCT GTG GCC TTC CCG GAC TGG TTC ATT GCC TCC Thr Ser Thr Leu Glu Ser Val Ala Phe Pro Asp Trp Phe Ile Ala Ser 130	492											
50	TCC AAG AGA GAC CAG CCC ATC ATT CTG ACT TCA GAA CTT GGG AAG TCA Ser Lys Arg Asp Gln Pro Ile Ile Leu Thr Ser Glu Leu Gly Lys Ser 145 150 155	540											
30	TAC AAC ACT GCC TTT GAA TTA AAT ATA AAT GAC TGAACTCAGC CTAGAGGTGG Tyr Asn Thr Ala Phe Glu Leu Asn Ile Asn Asp 160 165	593											
55	CAGCTTGGTC TTTGTCTTAA AGTTTCTGGT TCCCAATGTG TTTTCGTCTA CATTTTCTTA	653											
	GTGTCATTTT CACGCTGGTG CTGAGACAGG GGCAAGGCTG CTGTTATCAT CTCATTTTAT	713											
60	AATGAAGAAG AAGCAATTAC TTCATAGCAA CTGAAGAACA GGATGTGGCC TCAGAAGCAG												

	HEDRICK, et al.				126						DX07						
	GAGA	AGCTO	GG T	rggt <i>i</i>	ATAAC	G C	IGTCO	CTCTC	C AAC	CTGC	GTGC	TGTC	TAGO	SCC 2	ACAA	GCAT	C 833
	TGC	ATGAC	TG A	ACTTT	TAAGA	C TO	CAAAC	BACCA	AA A	CACTO	GAGC	TTTC	CTTCT	rag (GGGT	GGTA	т 893
5	GAAG	SATGO	CTT (CAGAC	GCTCA	T G	CGCG	TACC	CAC	GATO	GCA	TGAC	CTAGO	CAC I	AGAG	CTGAT	C 953
	TCTC	TTTC	CTG T	rtttc	CTTI	A T	rccc	CTTC	G GGZ	ATGAT	OTAT	ATC	CAGTO	CTT '	ATAT	IGTTG	C 1013
10	CAAT	PATAC	CCT (CATTO	GTGTG	T A	ATAG?	AACCI	TCT	rTAGO	CATT	AAGA	ACCTT	rgt i	AAAC	AAAA	т 1073
10	AATT	CTTC	TG T	rtaac	TTAA	A TO	CATT	rttgi	CCI	TAATI	rgta	ATGT	GTA!	ATC '	TTAAI	AGTTA	A 1133
	ATA	ACTT	TG :	rgtat	PATT	'A T	AATA	ATAAZ	A GC	raaa?	ACTG	ATAT	raaa?	AAA .	AAAA	AAAA	A 1193
15	AA																1195
	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	NO:15	5:								
20		((i) S	(A) (B)	LEN TYF	GTH E: 8	: 169 amino	ERIST Dami Daci Linea	ino a id		5						
25		(i	ii) N	MOLEC	CULE	TYPI	E: pi	rotei	ln								
		()	ki) S	SEQUI	ENCE	DES	CRIP	rion:	: SE(QID	NO:	15:					
30	Met 1	Arg	Gly	Thr	Pro 5	Gly	Asp	Ala	Asp	Gly 10	Gly	Gly	Arg	Ala	Val 15	Tyr	
	Gln	Ser	Met	Cys 20	Lys	Pro	Ile	Thr	Gly 25	Thr	Ile	Asn	Asp	Leu 30	Asn	Gln	
35	Gln	Val	Trp 35	Thr	Leu	Gln	Gly	Gln 40	Asn	Leu	Val	Ala	Val 45	Pro	Arg	Ser	
40	Asp	Ser 50		Thr	Pro	Val		Val					_	Lys	Tyr	Pro	
	Glu 65	Ala	Leu	Glu	Gln	Gly 70	Arg	Gly	Asp	Pro	Ile 75	Tyr	Leu	Gly	Ile	Gln 80	
45	Asn	Pro	Glu	Met	Cys 85	Leu	Tyr	Cys	G1u	Lys 90	Val	Gly	Glu	Gln	Pro 95	Thr	
	Leu	Gln	Leu	Lys 100	Glu	Gln	Lys	Ile	Met 105	Asp	Leu	Tyr	Gly	Gln 110	Pro	Glu	
50	Pro	Val	Lys 115	Pro	Phe	Leu	Phe	Tyr 120	Arg	Ala	Lys	Thr	Gly 125	Arg	Thr	Ser	
EE	Thr	Leu 130	Glu	Ser	Val	Ala	Phe 135	Pro	Asp	Trp	Phe	Ile 140	Ala	Ser	Ser	Lys	
55	Arg 145	Asp	Gln	Pro	Ile	Ile 150	Leu	Thr	Ser	Glu	Leu 155	Gly	Lys	Ser	Tyr	Asn 160	
60	Thr	Ala	Phe	Glu	Leu 165	Asn	Ile	Asn	Asp								