R로 배우는 데이터 분석

홍 윤 호

서울대학교 의과대학 신경과학 교실

결론부터

- 데이터란 무엇이고, 왜 중요한가?
- 데이터를 분석할 때 빠지기 쉬운 함정과 대책

4차 산업혁명의 핵심: 데이터

4차산업혁명이란?

인공지능, 빅데이터, 초연결 등으로 촉발되는 지능화 혁명, 그리고 그 이상

데이터란 무엇이고, 왜 중요한가?

DIKW 피라미드

존 스노우 콜레라 지도

나이팅게일 로즈 다이어그램

같은 데이터, 전혀 다른 해석

인공지능의 편향: 표본은 적절한가?

Nature medicine, 2021, Underdiagnosis bias of AI in under-served populations

결측 데이터(missing)

11

Complete case analysis can lead to incomplete understanding

평균의 함정

Anscombe's quartet (앤스컴 쿼르텟)

심슨의 역설: 전체와 부분

전체	지원자	합격자	합격률
남학생	1150	815	71%
여학생	820	185	23%

문학부	지원자	합격자	합격률
남학생	150	15	10%
여학생	700	85	12%

공학부	지원자	합격자	합격률
남학생	1000	800	80%
여학생	120	100	83%

숲도 보고 나무도 보자!

어떤 나무를 보아야 할까?

Treatment A	Treatment B	
78% (273/350)	83% (289/350)	

	Treatment A	Treatment B
Small Stone	93% (81/87)	87% (234/270)
Large Stone	73% (192/263)	69% (55/80)

"교란 변수(confounder)"라는 나무

상관관계와 인과관계: 초콜릿과 노벨상

인과성 추론의 4가지 요건

- 1. 원인이 결과보다 시간적으로 먼저 일어나야 한다. (시간적 선후관계)
- 2. 원인과 결과는 함께 변화해야 한다.(상관관계)
- 3. 제3의 변수에 의한 영향이 아니어야 한다.(교란변수의 영향 배제)
- 4. 그럴 듯 해야 한다.(그럴듯함)

다시 결론으로...

- 데이터란 무엇이고, 왜 중요한가?
- 데이터를 분석할 때 빠지기 쉬운 함정과 대책
 - 표본 편향
 - 결측치
 - 전체와 부분
 - 상관관계와 인과관계

11

If I had eight hours to chop down a tree, I'd spend six hours sharpening my axes