k-Nearest Neighbor (k-NN)

Diego Bertolini Gonçalves

diegob@utfpr.edu.br

08/05/2014

Estrutura da Aula

Revisão Aula Anterior

Algoritmo k-NN

Introdução Formas de Aprendizagem

Aprendizagem Supervisionada

- Fornecemos a "boa resposta" durante o treinamento ;
- k-NN;

Aprendizagem Não-Supervisionada

- Em geral buscam encontrar aglomerados de conjuntos de dados semelhantes entre si (clusters);
- Aprendizagem por Reforço
 - Não damos a "boa resposta". O sistema elabora uma hipótese e o recompensamos ou punimos;

Introdução

Aprendizagem Supervisionada

Características

- Na Aprendizagem Supervisionada, as classes são conhecidas a priori;
- É possível ajustar os pesos em função das respostas corretas;
- O desafio é capacitar o sistema a atuar de acordo com o padrão observado nos exemplos de entrada e saída;
- Qual a probabilidade que um cliente com um perfil compre determinado produto?

Introdução Extração de Características

Características

- Escolha das características;
- Uso de características numéricas;
- Seleção de Características;

k-NNCaracterísticas

- k-NN ou k Vizinhos mais Próximos ;
- Algoritmo de classificação supervisionado ;
- Clássico e muito Simples ;
- Pode ser implementado facilmente ;
- Baseia-se na analogia de vizinhos mais próximos ;
- Assume que todas as instâncias correspondem a pontos em um espaço n-dimensional.

k-NN Exemplo

O clássico problema de classificar Salmão e Robalos.

k-NN Requisitos

A partir de um elemento desconhecido \mathbf{x} o qual queremos classificar usando o k-NN, necessitamos:

- Um conjunto para treinamento ;
- Uma métrica para calcular a distância entre x e as demais amostras;
- Oefinir um valor para k, ou seja, quantos vizinhos iremos considerar?

k-NN Algoritmo Clássico

Assim, para classificarmos um exemplo desconhecido \mathbf{x} , temos basicamente três passos:

- Inicialmente, calcula-se a distância entre o exemplo desconhecido x e todos os exemplos do conjunto de treinamento;
- Identifica-se os k vizinhos mais próximos ;
- A classificação é feita associando o exemplo desconhecido x à classe que for mais frequente, entre os k exemplos mais próximos de x;
 - Utiliza o voto majoritário para definir a classe mais frequente.

k-NN

k-NNDistância entre dois Pontos

Existem várias métricas diferentes para calcular a distância entre dois pontos, como: City Block, Minkowsky, entre outras. Porém a mais comum é a **Distância Euclidiana**.

Distância Euclidiana:

$$d(x_i, x_j) = \sqrt{\sum_{i=1}^{n} (x_i - x_j)^2}$$
 (1)

k-NN Valor de k

Após possuirmos as distâncias entre o elemento desconhecido **x** e todas as amostras de treinamento, temos que:

- Considerar o voto majoritário avaliando os rótulos de classe dos k vizinhos mais próximos;
- Mas como escolher o valor de k?

k-NN Valor de k

Algumas considerações quanto ao valor de k.

- Se k for muito pequeno (k = 1), a classificação pode ser sensível a ruídos;
- Se k for muito grande, podemos estar incluindo elementos de outras classes ;
- É comum avaliarmos diferentes valores para k ;
- A utilização de valores ímpares para k garante que não haverá empate.

k-NN Valor de k

- k = 1
- k = 3
- k = 5

k-NN Exemplo Variando k

Trabalho avaliando diferentes valores de k (base de meses do ano).

Lembrando que tais resultados referem-se a um determinado problema Outros conjuntos podem apresentar resultados diferentes.

k-NN Normalização

É importante lembrar da necessidade de normalizarmos os dados, já que podemos estar trabalhando com características que variam bastante, como:

- Peso (40 150 kg);
- Altura (1,00 2,10m);
- Salário (550 50.000);

A técnica mais simples consiste em dividir cada característica pelo somatório de todas as características.

k-NNVantagens × Desvantagens

Vantagens

- Técnica simples e de fácil implementação ;
- Em alguns casos apresenta ótimos resultados ;
- Pode ser aplicada a problemas complexos, como: Análise de Crédito, Diagnósticos Médicos, Detecção de Fraudes, entre outros.

Desvantagens

- O fator tempo ;
- Ruídos nos dados ou características irrelevantes.

k-NN Exercício Proposto

Considere duas classes representadas a seguir. Usando o k-NN classifique o ponto (?) em uma das duas classes para k = 3 e k= 5. Utilize a Distância Euclidiana como métrica de distância.

k-NN Exercício Proposto

Elemento \mathbf{x} (x,y)	Treinamento (x,y)	Fórmula	Distância
(4,1)	(1,1)	$d(x_i,x_j) = \sqrt{(4-1)^2 + (1-1)^2}$	3
(4,1)	(2,1)	$d(x_i, x_j) = \sqrt{(4-2)^2 + (1-1)^2}$	2
(4,1)	(2,2)	$d(x_i, x_j) = \sqrt{(4-2)^2 + (1-2)^2}$	2,23
(4,1)	(2,3)	$d(x_i, x_j) = \sqrt{(4-2)^2 + (1-3)^2}$	2,82
(4,1)	(3,1)	$d(x_i, x_j) = \sqrt{(4-3)^2 + (1-1)^2}$	1
(4,1)	(3,2)	$d(x_i, x_j) = \sqrt{(4-3)^2 + (1-2)^2}$	1,41
(4,1)	(3,3)	$d(x_i, x_j) = \sqrt{(4-3)^2 + (1-3)^2}$	2,23
(4,1)	(5,2)	$d(x_i, x_j) = \sqrt{(4-5)^2 + (1-2)^2}$	1,41
(4,1)	(6,2)	$d(x_i, x_j) = \sqrt{(4-6)^2 + (1-2)^2}$	2,23
(4,1)	(7,1)	$d(x_i, x_j) = \sqrt{(4-7)^2 + (1-1)^2}$	3
(4,1)	(7,2)	$d(x_i, x_j) = \sqrt{(4-7)^2 + (1-2)^2}$	3,16
(4,1)	(7,3)	$d(x_i, x_j) = \sqrt{(4-7)^2 + (1-3)^2}$	3,60
(4,1)	(8,1)	$d(x_i, x_j) = \sqrt{(4-8)^2 + (1-1)^2}$	4
(4,1)	(8,2)	$d(x_i, x_j) = \sqrt{(4-8)^2 + (1-2)^2}$	4,12
(4,1)	(8,3)	$d(x_i, x_j) = \sqrt{(4-8)^2 + (1-3)^2}$	4,24

k-NN Exercício Proposto

Ordenando:

O i a ci i a i i a ci			
Elemento \mathbf{x} (x,y)	Treinamento (x,y)	Fórmula	Distância
(4,1)	(3,1)	$d(x_i, x_j) = \sqrt{(4-3)^2 + (1-1)^2}$	1
(4,1)	(3,2)	$d(x_i, x_j) = \sqrt{(4-3)^2 + (1-2)^2}$	1,41
(4,1)	(5,2)	$d(x_i, x_j) = \sqrt{(4-5)^2 + (1-2)^2}$	1,41
(4,1)	(2,1)	$d(x_i, x_j) = \sqrt{(4-2)^2 + (1-1)^2}$	2
(4,1)	(3,3)	$d(x_i, x_j) = \sqrt{(4-3)^2 + (1-3)^2}$	2,23

Próximas Aula Conteúdo

- Aula em Laboratório: Implementação e testes;
- Iremos estudar outro classificador que faz parte da abordagem de Aprendizagem Supervisionada, o classificador SVM(Support Vector Machine);
- Tal Classificador foi proposto por Vapnik em 1979 é até hoje é largamente utilizado em pesquisas.

Bibliografia Bibliografia Sugerida

- Duda, R. Hart, P. Stork, D. Pattern Classification, John Wiley & Sons, 2000.
- Mitchell, T. Machine Learning, McGraw-Hill Science/Engineering/Math, 1997.

Dúvidas?

