Online Matching with Stochastic Rewards: Advanced Analyses Using Configuration Linear Programs

Zhiyi Huang¹, Hanrui Jiang², **Aocheng Shen**², Junkai Song¹, Zhiang Wu³, and Qiankun Zhang²

¹The University of Hong Kong

² Huazhong University of Science and Technology

³ Hong Kong University of Science and Technology

Online Advertising

About 46,500 results (0.40 seconds)

Sponsored

Hotel, Shanghai | 2023 Updated Prices, Deals

Check **hotel** deals & facilities Read Reviews and Book Now! Wide Selection. 24/7 Customer Support. Mobile Deals. Secure Payments.

Check Hotel Availability · Hotel Deals Worldwide · Book Now & Pay Later
Ho Chi Minh City Hotels - from \$14.00/day - Up to 80% Off, Book Now · More ▼

Sponsored

10 best hotels near Shanghai Exhibition Center in Shanghai, China

No reservation costs, Great rates, Book at over 1,400,000 hotels online. Choose from a.,

Sponsored

Hotels Close To University - Quick & Easy Booking

Over 1.2M hotels in 200+ countries and regions. Compare prices and save on your stay

Sponsored

Hotels near Shanghai International Studies University

Price Guarantee on Top-Rated Hotels. Book Now & Start Saving Today! Great Hotel to...

Online Advertising

Hotels near Shanghai International Studies University

Price Guarantee on Top-Rated Hotels. Book Now & Start Saving Today! Great Hotel to..

Online Bipartite Matching

[Karp, Vazirani and Vazirani 1990]

- A bipartite graph G = (U, V, E):

 advertiser search query
 - $u \in U$ is known upfront, $v \in V$ arrives online
 - When v arrives, its adjacent edges are revealed
 - Must irrevocably decide how to match v
- Goal: maximize the cardinality

- Pay-per-click: the advertiser pays only if the user clicks the ad
- Click-through-rate: an estimate of the probability an ad will be clicked

- Pay-per-click: the advertiser pays only if the user clicks the ad
- Click-through-rate: an estimate of the probability an ad will be clicked

- Pay-per-click: the advertiser pays only if the user clicks the ad
- Click-through-rate: an estimate of the probability an ad will be clicked

- Pay-per-click: the advertiser pays only if the user clicks the ad
- Click-through-rate: an estimate of the probability an ad will be clicked

- A bipartite graph G = (U, V, E):

 advertiser search query
 - advertiser search query
 $u \in U$ is known upfront, $v \in V$ arrives online
 - Each edge (u, v) has a success probability p_{uv}

- A bipartite graph G = (U, V, E):
 - * $u \in U$ is known upfront, $v \in V$ arrives online
 - Each edge (u, v) has a success probability p_{uv}
- When v arrives:
 - Its adjacent edges and their success probabilities are revealed
 - Must irrevocably decide how to match v

- A bipartite graph G = (U, V, E):
 - search query
 $u \in U$ is known upfront, $v \in V$ arrives online
 - Each edge (u, v) has a success probability p_{uv}
- When v arrives:
 - Its adjacent edges and their success probabilities are revealed
 - Must irrevocably decide how to match v
 - If v is matched to u, u succeeds with p_{uv}
 - If fails, u is still available for future match, but v can not get matched again

Online Matching with Stochastic Rewards [Mehta and Panigrahi 2012]

- A bipartite graph G = (U, V, E):
 - search query
 $u \in U$ is known upfront, $v \in V$ arrives online
 - Each edge (u, v) has a success probability p_{uv}
- When v arrives:
 - Its adjacent edges and their success probabilities are revealed
 - Must irrevocably decide how to match v
 - If v is matched to u, u succeeds with p_{uv}
 - If fails, u is still available for future match, but v can not get matched again
- Goal: maximize the expected number of successful offline vertices

[Mehta and Panigrahi 2012]

Successful Offline Vertices: 2

Alternative Viewpoint $(p \rightarrow 0)$

• Stochastic Budgets

Alternative Viewpoint $(p \rightarrow 0)$

- Stochastic Budgets:
 - At the beginning, $u \in U$ draws a budget $\theta_u \sim \text{Exp}(1)$
 - Initialize u's load ℓ_u to 0
 - If match v to u, increase ℓ_u by p_{uv}
 - θ_u is not realized to algorithm until ℓ_u exceeds it
 - Goal: maximize $\sum_{u \in U} \min\{\ell_u, \theta_u\}$

Competitive Ratio

• The competitive ratio (CR) of a (randomized) online algorithm is

$$CR = \min_{G(U,V,E)} \frac{\mathbb{E}[ALG(G)]}{OFFLINE(G)}$$

Competitive Ratio

• The competitive ratio (CR) of a (randomized) online algorithm is

$$CR = \min_{G(U,V,E)} \frac{\mathbb{E}[ALG(G)]}{OFFLINE(G)}$$

- What's known to OFFLINE?
 - Online: future arrivals?
 - Stochastic rewards: match succeeds or not?

Benchmarks

• Offline algorithm knows G and $(p_{uv})_{(u,v)\in E}$ in a priori

Benchmarks

- Offline algorithm knows G and $(p_{uv})_{(u,v)\in E}$ in a priori
- Two offline problems $(p \rightarrow 0)$:

Offline non-stochastic optimum (OPT)

[Mehta and Panigrahi 2012]

Offline stochastic budgets with $heta_u=1$

- u gains deterministic p_{uv} if match v to u
- *u* gains at most 1
- Goal: maximize the total gain among U

Offline **stochastic** optimum (**S-OPT**)

[Goyal and Udwani 2020]

Offline stochastic budgets with $\theta_u \sim \text{Exp}(1)$

- The match succeeds with p_{uv} if match v to u
- u can not get matched again if succeeds
- Goal: maximize the number of successes

Existing Algorithms

Ranking:

- At the beginning of the algorithm, sample a random seed $\rho_u \sim U[0,1]$ independently for each offline vertex u
- On the arrival of v, match v to unsuccessful neighbor with the lowest ρ_u
- Balance (Equal Probabilities):
 - ullet On the arrival of v, match v to the unsuccessful neighbor with the least fail attempts

Our Results

- Equal probabilities: If $(u, v) \in E$, $p_{uv} = p$
- Vanishing probabilities: If $(u, v) \in E$, $p_{uv} \to 0$

Our Results: Ranking

- Equal probabilities: If $(u, v) \in E$, $p_{uv} = p$
- Vanishing probabilities: If $(u, v) \in E$, $p_{uv} \to 0$

Ranking	OPT		S-OPT	
	Vanishing	Non-vanishing	Vanishing	Non-vanishing
Equal	$0.534 \text{ [MP12]} \rightarrow 0.572$	$0.534 \text{ [MP12]} \rightarrow 0.572$	1 – 1/ <i>e</i> [GU20]	1 – 1/ <i>e</i> [GU20]
Unequal	???	???	???	???

[MP12]: Online matching with stochastic rewards. (FOCS 2012)

[GU20]: Online matching with stochastic rewards: Optimal competitive ratio via path-based formulation. (EC 2020)

Our Results: Balance

- Equal probabilities: If $(u, v) \in E$, $p_{uv} = p$
- Vanishing probabilities: If $(u, v) \in E$, $p_{uv} \to 0$

Balance	OPT		S-OPT	
	Vanishing	Non-vanishing	Vanishing	Non-vanishing
Equal	0.576 [HZ20]	0.5 [MP12]	0.596 [GU20] → 0.613	0.5 [GU20]
Unequal	0.572 [HZ20]	???	0.596 [GU20] → 0.611	0.5 [GU20]

[MP12]: Online matching with stochastic rewards. (FOCS 2012)

[HZ20]: Online primal dual meets online matching with stochastic rewards: configuration LP to the rescue. (STOC 2020)

[GU20]: Online matching with stochastic rewards: Optimal competitive ratio via path-based formulation. (EC 2020)

Randomized Primal Dual

[Devanur, Jain and Kleinberg 2013]

Standard Matching LP

StdLP:
$$\sum_{(u,v)\in E} p_{uv} \cdot x_{uv}$$
subject to $\sum_{v:(u,v)\in E} p_{uv} \cdot x_{uv} \leq 1$ $\forall u \in U$ $\sum_{u:(u,v)\in E} x_{uv} \leq 1$ $\forall v \in V$ $x_{uv} \geq 0$ $\forall (u,v) \in E$

StdDual: minimize
$$\sum_{u \in U} \alpha_u + \sum_{v \in V} \beta_v$$
 subject to $p_{uv} \cdot \alpha_u + \beta_v \ge p_{uv}$ $\forall (u, v) \in E$ $\alpha_u, \beta_v \ge 0$ $\forall u \in U, \forall v \in V$

Randomized Primal Dual

[Devanur, Jain and Kleinberg 2013]

• Dual constraints in Matching LP [DJK13]:

$$p_{uv} \cdot \mathbb{E}[\text{gain of } u] + \mathbb{E}[\text{gain of } v] \ge \Gamma \cdot p_{uv}$$

Weaker Dual Constraints

• Dual constraints in Matching LP [DJK13]:

$$p_{uv} \cdot \mathbb{E}[\text{gain of } u] + \mathbb{E}[\text{gain of } v] \ge \Gamma \cdot p_{uv}$$

An amortized among online vertex set S [HZ20]:

$$\mathbb{E}[\text{gain of } u] + \sum_{v \in S} \mathbb{E}[\text{gain of } v] \ge \Gamma \cdot \Pr[u \text{ succeeds}]$$

Weaker Dual Constraints

• Dual constraints in Matching LP [DJK13]:

$$p_{uv} \cdot \mathbb{E}[\text{gain of } u] + \mathbb{E}[\text{gain of } v] \ge \Gamma \cdot p_{uv}$$

• An amortized among online vertex set *S* [HZ20]:

$$\mathbb{E}[\text{gain of } u] + \sum_{v \in S} \mathbb{E}[\text{gain of } v] \ge \Gamma \cdot \Pr[u \text{ succeeds}]$$

Weaker Dual Constraints

• Against OPT: $\forall u \in U, S \subseteq N_u$,

$$\mathbb{E}[\text{gain of } u] + \sum_{v \in S} \mathbb{E}[\text{gain of } v] \ge \Gamma \cdot \Pr[u \text{ succeeds}]$$

• Against S-OPT: $\forall u \in U, S \subseteq N_u$,

 $\mathbb{E}[\text{gain of } u] + \sum_{v \in S} \Pr[u \text{ is available to } v] \cdot \mathbb{E}[\text{gain of } v]$

 $\geq \Gamma \cdot \Pr[u \text{ succeeds}]$

Ranking: Dual Updates

- Ranking: the rank $\rho_u \sim U[0,1]$ and $p_{uv} = p, \forall (u,v) \in E$
- A usual plan: if algorithm matches v to u,
 - Split the gain of p based on the rank ρ_u the non-decreasing function $g\colon [0,1] \to [0,1]$
 - Increase α_u by $p \cdot g(\rho_u)$
 - Set β_v as $p \cdot (1 g(\rho_u))$

Ranking: Dual Updates

- Ranking: the rank $\rho_u \sim U[0,1]$ and $p_{uv} = p, \forall (u,v) \in E$
- A usual plan: if algorithm matches v to u,
 - Split the gain of p based on the rank ρ_u the non-decreasing function $g\colon [0,1] \to [0,1]$
 - Increase α_u by $p \cdot g(\rho_u)$
 - Set β_v as $p \cdot (1 g(\rho_u))$

Against OPT: $\forall u \in U, S \subseteq N_u$,

 $\mathbb{E}[\text{gain of } u] + \sum_{v \in S} \mathbb{E}[\text{gain of } v] \ge \Gamma \cdot \Pr[u \text{ succeeds}]$

Ranking: Dual Updates

- Ranking: the rank $\rho_u \sim U[0,1]$ and $p_{uv} = p, \forall (u,v) \in E$
- Our plan:
 - Split the gain of joint outcome of u and all its neighbors

Against OPT: $\forall u \in U, S \subseteq N_u$,

 $\mathbb{E}[\text{gain of } u] + \sum_{v \in S} \mathbb{E}[\text{gain of } v] \ge \Gamma \cdot \Pr[u \text{ succeeds}]$

- ullet Consider arbitrary online vertex u and its neighbors N_u
- Fix the ranks of offline vertices except u: ρ_{-u}

- ullet An imaginary run with vertex u removed
- Define online vertex v's **critical rank** μ_v as:
 - If v is matched to u' , $\mu_v = \rho_{u'}$
 - If v is not matched, $\mu_v = 1$

$$u', \rho_{u'} \bigcirc \qquad \qquad u', \rho_{u'} \bigcirc \qquad \qquad u, \rho_{u} \bigcirc \qquad \qquad v, \mu_{v} = \rho_{u}$$

$$\bigcirc \qquad \qquad \bigcirc \qquad \qquad \bigcirc \qquad \qquad \bigcirc \qquad \qquad \bigcirc$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

• Let $N_u(\rho_u)$ be the set of u's neighbors whose critical rank $\geq \rho_u$

- Let $N_u(\rho_u)$ be the set of u's neighbors whose critical rank $\geq \rho_u$
- $N_u(\rho_u)$ is the set of vertices matched to u if u never succeeds

- Let $N_u(\rho_u)$ be the set of u's neighbors whose critical rank $\geq \rho_u$
- $N_u(\rho_u)$ is the set of vertices matched to u if u never succeeds

Contribution of α_u

- The probability u succeeds: $1-(1-p)^{|N_u(\rho_u)|}$
- Thus,

$$\mathbb{E}_{\rho_u}[\alpha_u | \boldsymbol{\rho}_{-u}] = \int_0^1 (1 - (1 - p)^{|N_u(\rho_u)|}) g(\rho_u) \, d\rho_u$$

Contribution of β_v

- β_v is at least $p(1-g(\mu_v))$
- For $\rho_u < \mu_v$, if u is available, v would match to u
 - This happens with probability $(1-p)^{|N_u(\rho_u,v)|}$

Denotes the subset of $N_u(\rho_u)$ in which vertex arrive before v

• β_v increases by $p(1-g(\rho_u))-p(1-g(\mu_v))=p(g(\mu_v)-g(\rho_u))$

Contribution of β_v

$$\mathbb{E}_{\rho_u}\left[\beta_v|\boldsymbol{\rho}_{-u}\right]$$

$$\geq p \left(1 - g(\mu_v) + \int_0^{\mu_v} (1 - p)^{|N_u(\rho_u, v)|} \left(g(\mu_v) - g(\rho_u) \right) d\rho_u \right)$$

- Expected gain from α_u is $\int_0^1 (1-(1-p)^{|N_u(\rho_u)|})g(\rho_u) d\rho_u$
- Expected gain from β_{ν} is at least

$$p(1-g(\mu_v)+\int_0^{\mu_v}(1-p)^{|N_u(\rho_u,v)|}(g(\mu_v)-g(\rho_u))d\rho_u)$$

Non-stochastic Benchmark

$$\mathbb{E}[\alpha_u + \sum_{v \in S} \beta_v] \ge \Gamma \cdot \min\{\sum_{v \in S} p_{uv}, 1\}$$

• Find optimal value of Γ and function g satisfying:

•
$$\alpha_u \ge \int_0^1 (1 - (1 - p)^{|N_u(\rho_u)|}) g(\rho_u) d\rho_u$$

•
$$\beta_v \ge p \Big(1 - g(\mu_v) + \int_0^{\mu_v} (1 - p)^{|N_u(\rho_u, v)|} \Big(g(\mu_v) - g(\rho_u) \Big) d\rho_u \Big)$$

•
$$\mathbb{E}[\alpha_u + \sum_{v \in S} \beta_v] \ge \Gamma \cdot \min\{\sum_{v \in S} p_{uv}, 1\}$$

$$g(\rho) = \begin{cases} \min\left\{\frac{c}{e - (e - 1)\rho}, 1 - \frac{1}{e}\right\}, & 0 \le \rho < 1\\ 1, & \rho = 1 \end{cases}$$

$$c \approx 1.161$$

$$\Gamma = 0.572$$

Balance

Structural Lemmas in [HZ20]

Stochastic Configuration LP

Equal: 0.613

Unequal: 0.611

against S-OPT

Summary

- Online primal-dual analysis of Ranking based on Configuration LP
 - Improve the competitive ratio from 0.534 to 0.572

- Stochastic benchmark
 - A new Stochastic Configuration LP
 - Improve the ratio to 0.611 (0.613 for equal probabilities) in vanishing case

Thank you!