Probability Theory

Exercise Sheet 8

Exercise 8.1 Let X be a random variable in $L^2(\Omega, \mathcal{A}, P)$ and $\mathcal{F} \subseteq \mathcal{A}$. The conditional variance of X given \mathcal{F} is defined as $Var[X|\mathcal{F}] := E[(X - E[X|\mathcal{F}])^2|\mathcal{F}]$. Prove that

- (a) $\operatorname{Var}[X|\mathcal{F}] = E[X^2|\mathcal{F}] E[X|\mathcal{F}]^2;$
- (b) $Var(X) = E[Var[X|\mathcal{F}]] + Var[E[X|\mathcal{F}]].$
- (c) Compute $\operatorname{Var}[X|\mathcal{F}]$, where $\mathcal{F} = \sigma(A_1, A_2)$ where $\{A_1, A_2\}$ is a partition of Ω and $P(A_i) > 0$ for i = 1, 2.

Exercise 8.2 Let $S, T : \Omega \to \mathbb{N} \cup \{\infty\}$ be \mathcal{F}_n -stopping times. Prove or provide a counter example disproving the following statements:

- (a) S-1 is a stopping time.
- (b) S+1 is a stopping time.
- (c) $S \wedge T$ is a stopping time.
- (d) $S \vee T$ is a stopping time.
- (e) S + T is a stopping time.

Exercise 8.3 (Polya's Urn)

An urn initially contains s black and w white balls. We consider the following process. At each step a random ball is drawn from the urn, and is replaced by t balls of the same colour, for some fixed $t \geq 1$. We define the random variable Y_n as the proportion of black balls in the urn after the n-th iteration. Show that $E[Y_{n+1}|\sigma(Y_1,Y_2,\ldots Y_n)]=Y_n$, for all $n \in \mathbb{N}$, that is, $\{Y_n\}_{n \in \mathbb{N}}$ is a martingale.

Submission: until 14:15, Nov 19., during exercise class or in the tray outside of HG G 53.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
Afa-Fül	Tue 13-14	HG F 26.5	Angelo Abächerli
Gan-Math	Tue 13-14	ML H 41.1	Zhouyi Tan
Meh-Schu	Tue 14-15	HG F 26.5	Angelo Abächerli
Schü-Zur	Tue 14-15	ML H 41.1	Dániel Bálint

Solution 8.1

(a) Expanding the square in the definition, we obtain

$$Var[X|\mathcal{F}] := E[(X - E[X|\mathcal{F}])^2|\mathcal{F}]$$

$$= E[X^2 - 2XE[X|\mathcal{F}] + E[X|\mathcal{F}]^2|\mathcal{F}]$$

$$= E[X^2|\mathcal{F}] - 2E[X|\mathcal{F}]E[X|\mathcal{F}] + E[X|\mathcal{F}]^2$$

$$= E[X^2|\mathcal{F}] - E[X|\mathcal{F}]^2.$$

(b) Using the tower property and (a),

$$\begin{split} E[\text{Var}[X|\mathcal{F}]] + \text{Var}[E[X|\mathcal{F}]] &= E[E[X^{2}|\mathcal{F}] - E[X|\mathcal{F}]^{2}] + \text{Var}[E[X|\mathcal{F}]] \\ &= E[X^{2}] - E[E[X|\mathcal{F}]^{2}] + E[E[X|\mathcal{F}]^{2}] - E[E[X|\mathcal{F}]]^{2} \\ &= E[X^{2}] - E[X]^{2} = \text{Var}(X). \end{split}$$

(c) Using (a),

$$\operatorname{Var}[X|\mathcal{F}] = \sum_{i=1}^{2} 1_{A_i} \left(\frac{E[X^2 1_{A_i}]}{P(A_i)} - \frac{E[X 1_{A_i}]^2}{P(A_i)^2} \right)$$
$$= \sum_{i=1}^{2} 1_{A_i} \left(E[X^2 | A_i] - E[X | A_i]^2 \right).$$

Solution 8.2 First we show that an \mathcal{F}_n -stopping time S can be defined equivalently by the conditions $\{S = n\} \in \mathcal{F}_n$ or $\{S \leq n\} \in \mathcal{F}_n$.

If $\{S = n\} \in \mathcal{F}_n$ for all $n \geq 0$, then for all $0 \leq k \leq n$, $\{S = k\} \in \mathcal{F}_k \subseteq \mathcal{F}_n$, which implies that $\{S \leq n\} = \bigcup_{k=0}^n \{S = k\} \in \mathcal{F}_n$. On the other hand, $\{S \leq n\} \in \mathcal{F}_n$ for all $n \geq 0$ implies that

- $\{S=0\} \in \mathcal{F}_0$:
- $\{S \leq n-1\} \in \mathcal{F}_{n-1} \subseteq \mathcal{F}_n$ for all $n \geq 1$. Hence one knows that for all $n \geq 1$, $\{S = n\} = \{S \leq n\} \setminus \{S \geq n-1\} \in \mathcal{F}_n$.

From now on we will use the one most convenient for our purpose in the following.

(a) In general, S-1 need not be a stopping time. Intuitively, this is because to know whether S-1 has 'happened' by time n, information about time n+1 is needed. A counter example can be constructed as follows:

Let
$$\Omega = \{0,1\}$$
, $\mathcal{F}_0 = \{\emptyset,\Omega\}$ and $\mathcal{F}_n = \{\emptyset,\{0\},\{1\},\Omega\}$ for $n \geq 1$. We define

$$S = 1_{\{1\}} + 2 \cdot 1_{\{0\}}.$$

Then $\{S \leq 0\} = \emptyset \in \mathcal{F}_0$, $\{S \leq 1\} = \{1\} \in \mathcal{F}_1$, and $\{S \leq k\} = \Omega \in \mathcal{F}_k$ for all $k \geq 2$. Thus, S is a \mathcal{F}_n -stopping time. However, $\{S - 1 \leq 0\} = \{S \leq 1\} = \{1\} \notin \mathcal{F}_0$, so S - 1 is not a stopping time. (b) S+1 is a stopping time, since for any $n \geq 0$,

$${S+1 \le n} = {S \le n-1} \in \mathcal{F}_{n-1} \subseteq \mathcal{F}_n.$$

(c) $S \wedge T$ is a stopping time, since for any $n \geq 0$,

$$\{S \wedge T \le n\} = \{S \le n\} \cup \{T \le n\} \in \mathcal{F}_n.$$

(d) $S \vee T$ is a stopping time, since for any $n \geq 0$,

$$\{S \vee T \le n\} = \{S \le n\} \cap \{T \le n\} \in \mathcal{F}_n.$$

(e) S + T is a stopping time, since for any $n \ge 0$,

$$\{S+T=n\} = \bigcup_{k=0}^{n} \underbrace{\{S=k\}}_{\in \mathcal{F}_{k} \subseteq \mathcal{F}_{n}} \cap \underbrace{\{T=n-k\}}_{\in \mathcal{F}_{n-k} \subseteq \mathcal{F}_{n}} \in \mathcal{F}_{n}.$$

Solution 8.3 The total number of balls after the *n*-th iteration is given by K(n) = s + w + n(t-1). For $n \ge 1$, let A_n be the event that the *n*-th ball to be drawn is black. Then the conditional probability of A_{n+1} given Y_1, \ldots, Y_n equals Y_n , that is, for $n \ge 1$,

$$P[A_{n+1}|\sigma(Y_1,\ldots,Y_n)] = Y_n. \tag{1}$$

Note that we have, for $n \geq 1$,

$$Y_{n+1}(\omega) = \begin{cases} \frac{Y_n K(n) + (t-1)}{K(n+1)}, & \text{if } \omega \in A_{n+1}, \\ \frac{Y_n K(n)}{K(n+1)}, & \text{if } \omega \in A_{n+1}^c. \end{cases}$$
 (2)

Thus we get, setting $\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$,

$$\begin{split} E[Y_{n+1}|\mathcal{F}_n] &= E[Y_{n+1}\mathbf{1}_{A_{n+1}} + Y_{n+1}\mathbf{1}_{A_{n+1}^c}|\mathcal{F}_n] \\ &\stackrel{(2)}{=} E\left[\frac{Y_nK(n) + (t-1)}{K(n+1)}\mathbf{1}_{A_{n+1}} + \frac{Y_nK(n)}{K(n+1)}\mathbf{1}_{A_{n+1}^c}\middle|\mathcal{F}_n\right] \\ &= \frac{Y_nK(n) + (t-1)}{K(n+1)}P[A_{n+1}|\mathcal{F}_n] + \frac{Y_nK(n)}{K(n+1)}P[A_{n+1}^c|\mathcal{F}_n] \\ &\stackrel{(1)}{=} \frac{Y_nK(n) + (t-1)}{K(n+1)}Y_n + \frac{Y_nK(n)}{K(n+1)}(1-Y_n) = Y_n, \end{split}$$

since K(n) + (t-1) = K(n+1).