

Big Data Processing

L01: Module Introduction

Dr. Ignacio CastineirasDepartment of Computer Science

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Presentation

- Ignacio Castiñeiras.
 - Lecturer at the Department of Computer Science.
 - o Email: <u>Ignacio.Castineiras@cit.ie</u>
 - Office Room: C131
 - Telephone: +353 21 433 5857
- Qualification:
 - o PhD. in Computer Science: 2014.
 - o MEd. in Computer Science: 2011.
 - MSc. in Computer Science: 2009.
 - BSc. in Computer Science: 2007.

Research Experience

[2018 -] Cork Institute of Technology **Lecturer** at Dept. Computer Science

Research Group Ríomh

[2015 - 2018] Cork Institute of Technology **Assistant Lecturer** at Dept. Computer Science

Research Group Ríomh

[2014 - 2015] University College Cork **Postdoc** at Insight Centre for Data Analytics

EU FP7 Project GENiC

[2007 - 2014] Complutense University of Madrid **PhD. & MSc.** at Declarative Programming Group

Spanish National Projects FAST & MERIT

Background: Optimisation and decision analytics.
Application of **Constraint Programming** to real-life
Constraint Satisfaction and Optimisation Problems.

Research Background

- Constraint satisfaction and optimisation problems:
 - Examples: Manufacturing & service industries:
 - Feasible/optimal allocation/scheduling of company resources.
 - Challenge: Combinatorial nature.
- Constraint Programming:
 - Subfield of Artificial Intelligence.
 - High-level declarative problem formulation.
 - Problem solving: Inference process + search on top of it.

PhD. Research Experience

- Tackle real-life problems with Constraint Programming
 - Employee Timetabling Problem.
 - o Bin Packing Problem.

- Algebraic Object Oriented (Functional) Logic Programming
- C++, Python, SICStus Prolog, Haskell, TOY, etc.
- Implementation of constraint solvers:
 - Adapt object-oriented solver library to a logic programming environment.
 - Extend solver with high-level user defined search strategy specification.

Postdoc Research Experience

- GENiC: Globally Optimised Energy Efficient Data Centres.
 - Green computing.
 - Sustainable DCs.
 - Renewable energy sources.

Postdoc Research Experience

- Develop scalable decision support tools:
 Optimise workload allocation of single and distributed DCs
 - Single DC: Reduce power consumption.
 - Geographically Dcs: Reduce overall energy consumption.

Lecturer Research Experience

Ríomh: Intelligent Secure Systems Group.

Research Areas:

- Future Networks & Internet of Things
- Virtualisation Technologies
 - Cloud Computing
 - Network and Information Security
- Data Analytics
 - Machine Learning
 - Optimisation Techniques

Contact us: Donna.Oshea@cit.ie (Head)

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Learning Outcomes

Module Descriptor:

https://courses.cit.ie/index.cfm/page/module/moduleId/13442

- LO1: Appraise how the velocity, volume and variety of data will impact how data is stored, managed and analysed.
- LO2: Survey the different tools that constitute a big data framework.
- LO3: Process large-scale temporal, geospatial, text and graph datasets using descriptive and analytical tools.
- LO4: Design and develop a machine learning algorithm for performing large scale distributed computation.

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Syllabus Week Plan

Week 1: September 9th – September 15th.

Lectures

- L01. Module Introduction.
- L02. Big Data.

<u>Lab</u>

Lab01. Sequential-solving: Programming Exercise.

Big Data Mindset.

Introductory example of a Big-Data driven society.

Syllabus Week Plan

Week 2: September 16th – September 22nd.

Lectures

L03-04. Distributed Programming.

<u>Lab</u>

Lab02. Divide-Map-Reduce Lab Demonstration.

Big Data Mindset.

The thinking or mental shift big data requires: Sampling => All data.

Syllabus Week Plan

Week 3: September 23rd - September 29th.

Lectures

- L05. Functional Programming.
- L06. Gentle Introduction to Apache Spark.

<u>Lab</u>

Lab03. Divide-Map-Reduce Solving: Programming Exercise.

Big Data Mindset.

The thinking or mental shift big data requires:
 Clean experiments => Messy experiments.

Syllabus Week Plan

Week 4: September 30th – October 6th.

Lectures

L07-08. Spark Model of Parallel Computing: RDDs.

<u>Lab</u>

Lab04. Functional Programming Exercises.

Big Data Mindset.

The thinking or mental shift big data requires:
 Causation (Why?) => Correlations (What?)

Syllabus Week Plan

Week 5: October 7th – October 13th.

Lectures

L09-10. Anatomy of the Execution of a Spark Program.

<u>Lab</u>

Lab05. Inside Spark Lab Demonstration.

Big Data Mindset.

Datification (or the art of extracting data from the most surprising places).

Syllabus Week Plan

Week 6: October 14th - October 20th.

Lectures

• L11-12. Spark Core API.

<u>Lab</u>

Lab06. Assignment 1 - Part 1

Big Data Mindset.

Data Reuse: Data's multiple lives.

Syllabus Week Plan

Week 7: October 21st - October 27th.

Lectures

- L13. Spark Core API.
- L14. Spark SQL: RDDs vs DataFrames/Datasets. Catalyst and Tungsten.

<u>Lab</u>

Lab07. Assignment 1 - Part 2

Big Data Mindset.

• Data regulations: Data ownership and its accountability.

Syllabus Week Plan

Week 8: November 4th - November 10th.

Lectures

L15-16. Spark SQL API.

<u>Lab</u>

Lab08. Assignment 1 - Part 3

Big Data Mindset.

The dark side of big data: I know who you are. I guess what would you do.

Syllabus Week Plan

Week 9: November 11th - November 17th.

Lectures

- L17. Spark SQL API.
- L18. Spark Streaming: Concepts and Infrastructure.

<u>Lab</u>

Lab09. Assignment 1 - Part 4

Big Data Mindset.

• Big data industry revolution: Education as a use-case: Get to know students better.

Syllabus Week Plan

Week 10: November 18th - November 24th.

Lectures

L19-20. Spark Streaming API.

<u>Lab</u>

Lab10. Assignment 2 - Part 1

Big Data Mindset.

Big data industry revolution: Education as a use-case: Adaptative learning.

Syllabus Week Plan

Week 11: November 25th - December 1st.

Lectures

- L21. Structured Streaming: Concepts and Infrastructure.
- L22. Structured Streaming API.

<u>Lab</u>

Lab11. Assignment 2 - Part 2

Big Data Mindset.

Big data industry revolution: Education as a use-case: The dark side again.

Syllabus Week Plan

Week 12: December 2nd - December 8th.

Lectures

- L23. Structured Streaming API.
- L24. Module Wrap-Up

<u>Lab</u>

• Lab12. Assignment 2 - Part 3

Big Data Mindset.

• Big data: What do you think?

Syllabus Week Plan

Week 13: December 9th - December 15th.

<u>Lectures</u>

Lab

Lab13. Assignment 2 - Part 4

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Methodology

- 1h lecture (twice per week):
 - Concepts explanation.
 - Application via code examples.
 - Put together to extract conclusions.
- 2h lab session (once per week):
 - Reinforce the concepts seen in the lectures.
 - Assignments split by weeks.
 - Weekly parts: Solve a bunch of exercises and submit.
 - Assignment demo after submission.

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Evaluation

Module Descriptor:

https://courses.cit.ie/index.cfm/page/module/moduleId/13442

Assignment 1:

- Use Spark Core and Spark API to perform descriptive analytics of an real-world open source dataset.
- Compare and contrast the efficiency and expressiveness of both approaches.

Marks: 50

Deadline: Week 9 - November 17th - 11.59pm

Evaluation

Module Descriptor:

https://courses.cit.ie/index.cfm/page/module/moduleId/13442

Assignment 2:

- Use Spark Streaming and Spark Structured Streaming to perform offline and online analytics of an real-world open source dataset.
- Compare and contrast the efficiency and expressiveness of both approaches.

Marks: 50

Deadline: Week 13 - December 15th - 11.59pm

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Motivation

Why is important to study this module?

For any module I teach I usually take some minutes during lecture 1 to justify/motivate why to study the module.

In this case, the motivation has grown so much that it has become part of the indicative content: Big Data Mindset.

But, in a single point: Why to study big data? Because it is transforming our society.

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Thank you for your attention!