

DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

18PYB101J - Electromagnetic Theory, Quantum Mechanics, Waves and Optics

Module-IV (Waves and Optics) Lecture-16

Problem Solving

Problem 1. Calculate the plate thickness of a quarter wave plate for light of wavelength 5.9×10^{-7} m. The refractive index of ordinary and extraordinary ray is 1.544 and 1.553 respectively.

Given data:

Wavelength (λ) = 5.9 x 10⁻⁷ m, $\mu_o = 1.544$ $\mu_e = 1.553$

Thickness of the QWP d =
$$\lambda/4(\mu_e$$
 - μ_o)
$$= 5.9 \times 10^{-7} / 4 (1.553-1.544)$$

$$= 1.6388 \times 10^{-5} \text{ m}$$

Problem 2. Calculate the thickness of the half wave plate if the refractive index of ordinary and extraordinary ray is 1.544 and 1.553 respectively. Given: $\lambda = 600$ nm.

Given Data:
$$\lambda = 6.0 \text{ x } 10^{-7} \text{ m}, \, \mu_0 = 1.544 \, \mu_e = 1.553$$

Thickness of the HWP
$$d = \lambda / 2 (\mu_e - \mu_o)$$

= $6.0 \times 10^{-7} / 2 (1.553-1.544)$
= $3.3 \times 10^{-5} m$

Problem 3: Calculate the thickness of doubly refracting crystal plate required to introduce a path difference of $\lambda/2$ between the O and E ray for a light of wavelength 580 nm. The refractive index of ordinary and extraordinary ray is 1.544 and 1.553 respectively.

Given Data:
$$\lambda = 5.80 \text{ x } 10^{-7} \text{ m}, \, \mu_0 = 1.544 \, \mu_e = 1.553$$

Thickness of the HWP
$$d = \lambda / 2 (\mu_e - \mu_o)$$

= 5.80 x 10⁻⁷ / 2 (1.553-1.544)
= 3.22 x 10⁻⁵ m

Problem 4: Calculate the thickness of a quarter wave plate which would convert plane polarized light into circularly polarized light. Given that $\mu_e = 1.658$, $\mu_o = 1.486$ at the wave length of 5890 Å.

Given Data:
$$\lambda = 5.890 \text{ x } 10^{-7} \text{ m}, \, \mu_0 = 1.486 \, \mu_e = 1.658$$

Thickness of the QWP
$$d = \lambda / 4 (\mu_e - \mu_o)$$

= 5.890 x 10⁻⁷ / 4 (1.658-1.486)
= 8.56 x 10⁻⁷ m