《计算方法》课程考试试卷

(A 卷)

	院(系)	专业班级	学号	姓名
--	------	------	----	----

题号	 =	三	四	五	六	七	八	九	+	总分
得分										

得 分	
评卷人	

一. (20分,每小题 2分)填空题

1. 已知自然对数的底数 e = 2.718281828... ,则其近似值 2.7182 有______位有效数字。

2. 设
$$A = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$
, $X = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$, 则 $\|A \otimes X\|_{\infty} =$ _______, $cond(A)_{2} =$ ________.

3. 设
$$f(x) = 6x^5 + x^2 + 9$$
, 求积公式 $\sum_{k=0}^{2} A_k f(x_k) \approx \int_a^b f(x) dx$ 是 Gauss 型的,则

$$\int_{a}^{b} f(x)dx - \sum_{k=0}^{2} A_{k} f(x_{k}) = \underline{\qquad}_{\circ}$$

4. 对矩阵
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & -5 & 9 \\ -2 & -8 & 12 \end{bmatrix}$$
 进行 LU 分解,则单位下三角阵

L= , 上三角阵 U= .

为_____。

6. 若求解方程
$$x^2 = 3$$
 的迭代格式 $x_{k+1} = ax_k + \frac{b}{x_k}$ 在根 $\sqrt{3}$ 附近平方收敛,则 $a \times b = \infty$

7. 求解常微分方程初值问题的两步 Euler 公式:
$$y_{n+2} = y_n + 2h f(t_{n+1}, y_{n+1})$$
 是

得 分 评卷人

二. (15 分) 对函数 y = f(x), 已知 f(0) = 2, f(1) = 0, f(4) = 6:

(1) 试求过这 3 点的 Newton 插值多项式 $N_2(x)$, 并写出其余

项表达式;

(2) 如果还已知x=0处的导数值f'(0)=1, 求三次插值多项式 $H_3\left(x\right)$ 。

得 分 评卷人

三. (6分) 用最小二乘法求一个形如 y = ax + b 的经验公式,使之与以下数据相拟合:

x	1	2	3	4
y	4	7	8	10

得 分 评卷人

四. (15分) 应用 Romberg 算法计算定积分

$$\int_0^1 \frac{1}{1+x} \ dx$$

的近似值,要求所得近似值精确到10-2。

得 分 评卷人

五. (15分) 对于线性方程组

$$\begin{cases} x_1 + 2x_2 - 2x_3 = -1 \\ x_1 + x_2 + x_3 = 6 \\ 2x_1 + 2x_2 + x_3 = 9 \end{cases}$$

(1) 分别写出其 Jacobi 迭代公式、Gauss-Seidel 迭代公式及基于 Gauss-Seidel 迭代

公式的 SOR 迭代公式 (取松弛因子 ω =0.8);

(2) 判断上述 Jacobi 迭代公式和 Gauss-Seidel 迭代公式的敛散性。

得 分 评卷人

六. $(14 \, \%)$ (1) 用 Newton 迭代法求方程 $x^2 - x - 2 = 0$ 在 1.5 附近的实根的近似值,要求取初值 $x_0 = 1.5$,计算精度满足

$$|x_{k+1} - x_k| \le \frac{1}{2} \times 10^{-2}$$
;

(2) 证明迭代格式 $x_{k+1} = \sqrt{2 + x_k}$ (k = 0, 1, 2, ...) 产生的数值解序列,对任意初值 $x_0 \ge 0$ 均收敛到 2 。

得 分	
评卷人	

七. (15 分) (1) 用改进 Euler 法求解初值问题

$$\begin{cases} y'(x) = y(x) - x \\ y(0) = 2 \end{cases},$$

取步长h=0.2, 试计算y(0.4)的近似值;

(2) 确定解 y' = f(x, y) 的公式

$$y_{n+1} = A(y_n + y_{n-1}) + h(Bf_n + Cf_{n-1})$$

中的待定系数 A、B、C,使公式具有 2 阶相容性,并给出其局部截断误差和绝对稳定域。