Highdimension Ordinary Least-squares Projection for Screening Variables

Demerits of Existing Variable Selection Methods

Penalized approach

- Can give non-consistent models if the irrepresentable condition on the design matrix violated (irrepresentable condition: the relevant variable may not be very correlated with the irrelevant variables)
- In HDLSS(High dimension low-sample size) settings, penalized approaches may not work
- Computation cost of penalizing methods for large-scale optimization is very high

SIS (Sure Independence Screening)

Marginal Correlation Condition is often violated in HDLSS settings
(MCC: Marginal correlations for the important variables must be bounded away from zero)

Highdimension Ordinary Least-squrares Projection for Screening variables

- Assumptions
 - 1. It follows linear regression assumptions
 - $Y = X\beta + \epsilon$
 - ullet $\epsilon_i \overset{i.i.d}{\sim} N(0, \sigma^2)$
 - 2. dimension of variables p is much more higher than number of observations $n \ (p > n)$
 - $\rightarrow XX'$ is invertible
- Algorithm
 - 1. Calculate $A=X^\prime(XX^\prime)^{-1}$
 - 2. Calculate $\hat{eta}=AY$
 - 3. Rank the componentes of \hat{eta} and select predictors x_j that satisfies $|\hat{eta}_j| > \gamma$
 - 4. Perform data analysis with selected variables
- Properties
 - 1. it can be viewed as projection matrix to the rowspace of \boldsymbol{X}

$$\hat{eta} = AY = A(Xeta + \epsilon) = X'(XX')^{-1}Xeta + X'(XX')^{-1}\epsilon$$

which means HOLP uses the rowspace of \boldsymbol{X} to capture $\boldsymbol{\beta}$

- 2. This projection matrix $X'(XX')^{-1}X$ preserves the rank order of entries in eta
 - ightarrow which can makes variable screening possible by selecting top few $|eta_j|$
- 3. Its computational complexity is $O(n^2p)$
 - ightarrow in Unltra high dimensional assumptions, It is very computationally efficient
- 4. It Assymptotically has Sure Screenig property if we choose γ as

$$rac{p\gamma_n}{n^{1- au-k}} o 0 ext{ and } rac{p\gamma_n\sqrt{\log n}}{n^{1- au-k}} o \infty$$