CIRCUITOS DIGITAIS

ÁLGEBRA BOOLEANA

Prof. Marcelo Grandi Mandelli mgmandelli@unb.br

Circuitos Digitais

 Circuitos digitais podem ser descritos através de funções matemáticas:

Circuitos Digitais

- Circuitos digitais operam de modo binário :
 - cada tensão de entrada ou saída tem valor 0 ou 1 → intervalos de tensão predefinidos

 Essa característica dos circuitos digitais nos permite utilizar a álgebra booleana

- Criada por George Boole
- George Boole foi um matemático do século XIX (1815-1864)
 - ele nunca viu um circuito elétrico digital (1950s)
 - nem mesmo a lâmpada elétrica (1879).
- Boole trabalhou com as idéias de Aristóteles → Lógica

pensamento humano

Formalizar o pensamento humano

- Exemplo:
 - Vou sair amanhã se eu tiver dinheiro e se fizer sol
 - X = Vou sair amanhã
 - $X = V \rightarrow Vou sair$
 - X = F → Não vou sair
 - D = Eu tiver dinheiro
 - D = V → Eu tenho dinheiro
 - D = F → Eu não tenho dinheiro
 - □ S = Fizer sol
 - $S = V \rightarrow Faz sol$
 - S = F → Não faz sol

$$X = S e D$$

Em 1938, Claude Shannon mostrou que a Álgebra Booleana podia ser usada para projetar circuitos elétricos

- Nos permite descrever a relação entre a(s) entradas e saída(s) de circuitos digitais através de uma equação > função booleana
- Diferentemente da Álgebra dos Reais, Constantes e Variáveis assumem apenas dois valores 0 (falso) e 1 (verdadeiro)

variáveis lógicas

- representada por um símbolo → letras do alfabeto
- Podem representar entradas ou saídas de um circuito
- Ex.: A = 0, A = 1
- operações básicas (operações lógicas)
 - OR (OU), AND (E) e NOT (NÃO)

- Representam o comportamento da uma função booleana através de uma forma tabular
- Listam todas as combinações de valores que as variáveis de entrada podem assumir e os correspondentes valores de saídas

Tabela verdade de 2 entradas

- O número de combinações em uma tabela-verdade será igual a 2ⁿ, onde n é o número de entradas
- Lista de combinações segue a sequência de contagem binária

Tabela verdade de 2 entradas

Tabela verdade de 3 entradas

		Α	В	С	X		
		0	0	0	1		
		0	0	1	0		
		0	1	0	0		
$2^3 = 8$		0	1	1	0		
23 - 6		1	0	0	1		
		1	0	1	1		
		1	1	0	1		
		1	1	1	1		
Intercala quatro 0s e quatro 1s							
Intercala dois 0s e dois 1s							
Intercala um 0 e um 1							

Tabela verdade de 4 entradas

		Α	В	С	D	Х					
ſ		0	0	0	0	1					
		0	0	0	1	0					
		0	0	1	0	0					
		0	0	1	1	0					
		0	1	0	0	1					
		0	1	0	1	1					
2 ⁴ = 16		0	1	1	0	1					
							0	1	1	1	1
			1	0	0	0	0				
		1	0	0	1	0					
		1	0	1	0	0					
		1	0	1	1	1					
		1	1	0	0	0					
		1	1	0	1	1					
		1	1	1	0	0					
Į		1	1	1	1	1					

Portas lógicas

- Circuitos digitais que implementam operadores lógicos
- as saídas são resultado de uma operação lógica das entradas
- Construídas a partir de transistores, resistores e diodos

- Operação OR (OU, Adição Lógica)
 - A operação OR resulta 1 se pelo menos uma das variáveis de entrada vale 1
 - Representação:
 - \square A + B, A v B, A | B, A or B

	C	PH
Α	В	x = A + B
0	0	0
0	1	1
1	0	1
1	1	1

00

- Operação OR (OU, Adição Lógica)
 - Porta OR de três entradas

Α	В	С	X = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- Operação AND (E, Multiplicação Lógica)
 - A operação E resulta 0 se pelo menos uma das variáveis de entrada vale 0
 - Representação:
 - □ A B, AB, A ^ B, A & B, A and B

	1A	ND	
Α	В	$X = A \cdot B$	
0	0	0	
0	1	0	A
1	0	0) x = AB
1	1	1	В
	- Andrews		Porta AND

- Operação AND (E, Multiplicação Lógica)
 - Porta AND de três entradas

Α	В	. C	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Operação NOT (NÃO, Inversor, Complemento)

- Esta operação resulta no valor complementar ao que uma variável apresenta:
 - o valor complementar será 1 se a variável vale 0 e será 0 se a variável vale 1
- Representação:

$$\square A', \overline{A}, \neg A, \overline{(A+B)}, (A+B)', !(A+B)$$

NOT				
Α		$x = \overline{A}$		
0		1		
1		0		

 \overline{AB} é diferente de \overline{A} $\overline{B}!!$

Ordem de precedência

Exemplos:

3.
$$(A + B') \cdot C$$

4.
$$(A + B') \cdot C + D'$$

$$F = \overline{A}BC(\overline{A} + \overline{D})$$

$$2.(\overline{A+D})$$

4.
$$\overline{\mathsf{A}}\mathsf{B}\mathsf{C}$$

5.
$$\overline{A}BC(\overline{A} + \overline{D})$$

Circuitos a partir de expressões booleanas

{}, [], (), NOT, AND, OR, NOT

■ Exemplo : $X = [D + \overline{(A+B)C}] \cdot E$

1. Lei comutativa

- a) A+B=B+A
- b) AB = BA

2. Lei associativa

- a) A + (B + C) = (A + B) + C
- b) A(BC) = (AB)C

3. Lei distributiva

- a) A+BC = (A+B)(A+C)
- b) A(B + C) = AB + AC

4. A + $U = F$

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

$$6. A + 1 = 1$$

5.
$$A \cdot 0 = 0$$

	Α	В	X
	0	0	0
Í	0	1	0
	1	0	0
	1	1	1

$$7. A \cdot 1 = A$$

	Α	В	X
	0	0	0
	0	1	0
·	1	0	0
	1	1	1

	8		А	+	Α	=	А
--	---	--	---	---	---	---	---

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

10.
$$A + A' = 1$$

$$9. A \cdot A = A$$

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

11.
$$A \cdot A' = 0$$

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

12.
$$(A')' = A \begin{vmatrix} A & X \\ 0 & 1 \\ 1 & 0 \end{vmatrix}$$

13.
$$A + AB = A$$

 $A(1+B) \rightarrow Lei distributiva (3)$
 $A(1) \rightarrow Regra 6 (A + 1 = 1)$
 $A \rightarrow Regra 7 (A \cdot 1 = A)$

14.
$$A(A+B) = A$$

 $AA + AB \rightarrow Lei distributiva (3)$
 $A + AB \rightarrow Regra 9 (AA = A)$
 $A \rightarrow Regra 13 (A + AB = A)$

15.
$$A + A'B = A + B$$

 $(A+A')(A+B) \rightarrow \text{Lei distributiva (3)}$
 $1 \cdot (A+B) \rightarrow \text{Regra 10 } (A + A' = 1)$
 $A + B \rightarrow \text{Regra 7 } (A \cdot 1 = A)$

16.
$$A(A'+B) = AB$$

 $AA' + AB \rightarrow Lei distributiva (3)$
 $0 + AB \rightarrow Regra 11 (A \cdot A' = 0)$
 $AB \rightarrow Regra 4 (A + 0 = A)$

17. Teorema do Consenso

a)
$$AB + A'C + BC = AB + A'C$$

b)
$$(A+B)(A'+C)(B+C) = (A+B)(A'+C)$$

18. De Morgan

a)
$$\overline{A} + \overline{B} = \overline{A} \overline{B}$$
b) $\overline{AB} = \overline{A} + \overline{B}$

Avaliação de Funções Booleanas

Avaliação da Função

Exemplo: DeMorgan $(A + B)' = A' \cdot B'$

Α	В	A + B	(A+B)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

 $/\Lambda \perp D$

Α	В	Α'	B'	A' .B'
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0

0

0

0

A'. B'

Em qualquer uma das Leis e Regras, uma variável qualquer pode ser substituída por uma expressão qualquer:

Exemplo:

- $X + 1 = 1 \rightarrow \text{(substituo X por AB + C +EF)}$
- \blacksquare AB + C + EF + 1 = 1

Dualidade

- As leis e regras da álgebra booleana são definidas em pares: para a operação OU e para a operação E
- Se soubermos um dos componetes do par, podemos obter o outro a partir das seguintes substituições:
 - $\bigcirc 0 \rightarrow 1$
 - \Box 1 \rightarrow 0
 - $\neg \cdot \rightarrow +$
 - $\Box + \rightarrow \cdot$
- Exemplo:

$$A + (A' \cdot B) = A + B$$

$$A \cdot (A' + B) = A \cdot B$$

$$\begin{array}{c} A + 1 = 1 \\ \downarrow \downarrow \downarrow \\ A \cdot 0 = 0 \end{array}$$

Exemplo 1 - Simplicação

- $\Box S = AB\overline{C} + A\overline{B}\overline{C}$
- □ $S = A\overline{C}(B + \overline{B}) \rightarrow Lei distributiva (3)$
- \square S = $A\overline{C}(1) \rightarrow \text{Regra } 10 (A + A' = 1)$
- $\square S = A\overline{C} \rightarrow \text{Regra 7 } (A \cdot 1 = A)$

Exemplo 2 - Simplicação

$$\square S = (\overline{A} + B) \cdot (A + B)$$

$$\square$$
 S = $\overline{A}A + \overline{A}B + BA + BB \rightarrow$ Lei distributiva (3)

$$\square$$
 S = 0 + $\overline{A}B$ + BA + BB \rightarrow Regra 11 (A \cdot A' = 0)

$$\square$$
 S = $\overline{A}B + BA + BB \rightarrow \text{Regra 4 (A + 0 = A)}$

$$\square$$
 S = $\overline{A}B + BA + B \rightarrow Regra 9 (A · A = A)$

$$\square$$
 S = B(\overline{A} + A + 1) \rightarrow Lei distributiva (3)

□
$$S = B(1) \rightarrow Regra 6 (A + 1 = 1)$$

$$\square$$
 S = B \rightarrow Regra 7 (A \cdot 1 = A)

Exemplo 3 - Simplicação

$$\square S = (\overline{A} + C) \cdot (\overline{A} + \overline{C})$$

$$\square$$
 S = $(\overline{A} + C) + (\overline{A} + \overline{C}) \rightarrow$ De Morgan

$$\square$$
 S = $A\overline{C} + AC \rightarrow$ De Morgan

$$\square$$
 S = $A(\overline{C} + C) \rightarrow$ De Morgan

□
$$S = A(1) \rightarrow \text{Regra } 10 (A + A' = 1)$$

$$\square$$
 S = A \rightarrow Regra 7 (A \cdot 1 = A)

Exemplo 4 - Simplicação

- \Box S = ABC + A \overline{C} + A \overline{B}
- □ $S = A(BC + \overline{C} + \overline{B}) \rightarrow Lei distributiva (3)$
- □ $S = A(BC + \overline{B} + \overline{C}) \rightarrow Lei comutativa (1)$
- □ $S = A \left(BC + \frac{\overline{\overline{B}} + \overline{\overline{C}}}{\overline{B} + \overline{\overline{C}}}\right) \rightarrow \text{Regra 12 ((A')' = A)}$
- \square S = A(BC + \overline{BC}) \rightarrow De Morgan
- \square S = A(1) \rightarrow Regra 10 (A + A' = 1)
- \square S = A \rightarrow Regra 7 (A \cdot 1 = A)

■ Porta NOR

- Complemento da porta OR
- Porta OR seguida de um inversor
- Representação:

$$\Box$$
 (A + B)', $\overline{A + B}$

		OR	NOR
Α	В	A + B	A + B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Porta NAND

- Complemento da porta AND
- Porta AND seguida de um inversor
- Representação:

$$\square$$
 (AB)', $(A \cdot B)'$, \overline{AB} , $\overline{A \cdot B}$

		AND	NAND
Α	В	AB	ĀB
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

□ Portas NOR e NAND → portas universais

 podem ser usadas em combinação para implementar qualquer operação booleana

□ Portas NOR e NAND → portas universais

 podem ser usadas em combinação para implementar qualquer operação booleana

Porta XOR (OU exclusivo)

- A porta XOR de duas entradas compara dois bits e a saída será
 1 se e somente se eles forem diferentes
- Uma porta XOR de várias entradas terá a saída igual a 1 se tiver um número ímpar de 1's nas entradas
- Representação:
 - A⊕B, A XOR B

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

- □ Porta XOR (OU exclusivo)
 - \blacksquare A \bigoplus B = $\overline{A}B + A\overline{B}$

Porta XNOR

- A porta XNOR compara dois bits e a saída será 1 se e somente se eles forem iguais
- No caso de várias entradas a saída só será 1 se houver um número par de 1's nas entradas
- Esta porta é também conhecida como porta comparadora
- Representação:
 - \blacksquare $\overline{A \oplus B}$, A XNOR B

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	1

■ Porta XNOR

$$\blacksquare \overline{A \oplus B} = AB + \overline{A} \overline{B}$$

