Bryan Ngo

Vector Differential Equations

Change of Basis

Inductors (Preview)

EECS 16B CSM

Bryan Ngo

Computer Science Mentors

2020-09-21

1 Vector Differential Equations

2 Change of Basis

Who am I?

EECS 16B CSM

Brvan Ng

Vector Differentia Equations

Change of Basis

- 2nd year majoring in EECS
- first time in CSM!
- took EECS 16B Spring 2020
- Pertinent fact: ate a chicken bake for lunch

Who are you?

EECS 16B CSM

Bryan Ngo

Vector Differentia Equations

Change of Basis

- Name
- Pronouns
- Year/Major
- Pertinent fact

Logistics

EECS 16B CSM

Bryan Ng

Vector Differentia Equations

Change of Basis

- unexcused absences in first 3 weeks → auto-dropped & NP
- excused absences: email bryanngo@berkeley.edu & cc mentors@berkeley.edu
 with subject line [Request for Absence] <course>
- Slides available at https://github.com/bdngo/16b-csm

Expectations

Me to You

EECS 16B CSM

Bryan Ng

Vector Differentia Equations

Change of Basis

- Be skeptical
- Constant feedback
- Become passionate about 16B

Expectations

You to Me

EECS 16B CSM

Bryan Ng

Vector Differentia Equations

Change of Basis

Bryan Ngo

Vector Differential Equations

Change of Basis

Inductors (Preview)

Vector Differential Equations

General Form

EECS 16B CSM

Bryan Ng

Vector Differential Equations

Change of Basis

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t)$$
(1)

- lacksquare if $m{A}$ is diagonal, simply a bunch of exponential differential Equations
- if not, we can try to diagonalize

Bryan Ngo

Vector Differential Equations

Change of Basis

Inductors (Preview) Change of Basis

Motivation

EECS 16B CSM

Change of Basis

- conversion from one linear coordinate system to another
- 3Blue1Brown video

A Visualization

EECS 16B CSM

Bryan Ng

Vector
Differential
Equations

Change of Basis

Diagonalization

EECS 16B CSM

Bryan Ngo

Vector Differentia Equations

Change of Basis

- want the eigenvectors to be the basis for a vector space
- makes math way easier

Diagonalization

EECS 16B CSM

Bryan Ngo

Vector Differentia Equations

Change of Basis

- want the eigenvectors to be the basis for a vector space
- makes math way easier

$$V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$
 (2)

$$AV = \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \end{bmatrix}$$
 (3)

$$= \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$
(4)

$$= V\Lambda \implies \Lambda = V^{-1}AV \tag{5}$$

Diagonalizing DEs

EECS 16B CSM

Change of Basis

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t)$$
(6)

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\frac{d}{dt}\mathbf{V}\mathbf{z}(t) = \mathbf{A}\mathbf{V}\mathbf{z}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\Rightarrow \frac{d}{dt}\mathbf{z}(t) = \mathbf{V}^{-1}\mathbf{A}\mathbf{V}\mathbf{z}(t) + \mathbf{V}^{-1}\mathbf{B}\mathbf{u}(t)$$
(8)

$$\Rightarrow \frac{d}{dt} \mathbf{z}(t) = \mathbf{V}^{-1} \mathbf{A} \mathbf{V} \mathbf{z}(t) + \mathbf{V}^{-1} \mathbf{B} \mathbf{u}(t)$$
 (8)

$$= \mathbf{\Lambda} \mathbf{z}(t) + \mathbf{V}^{-1} \mathbf{B} \mathbf{u}(t) \tag{9}$$

Bryan Ng

Vector Differential Equations

Change of Basis

Inductors (Preview)

Basic Properties

EECS 16B CSM

Bryan Ng

Vector Differential Equations

Change of Basis

$$V_{L} = L \frac{d}{dt} I_{L}$$

$$(10)$$

- like a capacitor but for magnetic fields
- resists instantaneous change in current

Basic Properties

EECS 16B CSM

Bryan Ng

Vector Differential Equations

Change of Basis

$$V_{L} = L \frac{d}{dt} I_{L}$$

$$(10)$$

- like a capacitor but for magnetic fields
- resists instantaneous change in current
- what happens when $\omega = 0$? $\omega = \infty$?