

# Network Names in Content-Centric Networking

Cesar Ghali, <u>Gene Tsudik</u> and Christopher Wood
University of California, Irvine
{cghali, <u>gene.tsudik</u>, woodc1}@uci.edu

#### **CCN Names**

- Expressed as URIs
  - -/a/b/foo
  - /us/edu/uci/cs/tsudik/papers/acm-icn16.pdf

#### Encoded as TLVs

# Names in CCN Applications



## Names in the Network



#### **Dual Roles for Names**

- Applications use names to meaningfully express and identify content
  - Human readability is nice!
- Network entities (routers) use names as sequences of binary strings
  - A router doesn't care about readability or arbitrarily long components

Q: Why is the same representation used at both layers & in both contexts?

#### Outline

- CCN Network Names
- Name Translation and Its Implications
- Translation Analysis
- Related & Future Work

## **CCN Network Names**

Goal: translate application names into a format that:

- Facilitates standard network processing (exact match and LPM searches)
- Removes arbitrarily long names from the network
- Removes all locationirrelevant information from the name (as seen by routers)

**Cryptographic Hash Function?** 

Translation should: be a **bijection or** very close to one map arbitrarily long strings to fixed-length output only apply to locationspecific parts of a name.

## Name Translation Example



 $N_P = H'(/a/b/foo/version = 0x00/chunk = 0x01/PID = 0x02)$ 

## Name Encoding



# **Application Processing**

#### Consumer:

- Maps application names to network names for outgoing interests
- Inverts mapping for incoming content

#### Producer:

- Pre-computes network names for all its locator prefixes
  - Stores in "inversion table"
- Looks up content corresponding to incoming interests based on this inversion table
- Signed content objects contain N<sub>p</sub>
  - might also carry app name

## **Current Network Processing**



We obviate the need to hash in order to perform: FIB, CS and PIT lookups

# **Processing Summary**

| Entity:  | Impact:                                                                                                                                  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Consumer | Increased online processing                                                                                                              |  |  |
| Producer | Increased offline computation & storage of inversion table                                                                               |  |  |
| Router   | Faster FIB lookup with pre-computed name-prefix hashes Faster PIT and CS lookups with $N_P$ (Potential) benefits due to fixed-size $N_P$ |  |  |

## **Analysis Setup**

#### **Questions:**

- How big should a hash digest be?
  - What is the impact on packet sizes?
  - What are the resulting collision properties?
- What's consumer processing overhead?

Unibas URI data set: <a href="http://www.icn-names.net/">http://www.icn-names.net/</a>

# Name Properties

| Names                                |             | Name segments                           |               | Segments per Name                          |               |
|--------------------------------------|-------------|-----------------------------------------|---------------|--------------------------------------------|---------------|
| Number of names                      | 870′896′633 | Total number of segments                | 4'855'203'042 | Total number of segments                   | 4'855'203'042 |
| Average name length (bytes)          | 57.95       | Average segment length (bytes)          | 10.39         | Average<br>segments per<br>name            | 5.57          |
| Name length<br>standard<br>deviation | 77.60       | Segment length<br>standard<br>deviation | 30.02         | Segments per<br>name standard<br>deviation | 8.14          |
| Minimum name length (bytes)          | 1           | Minimum segments length (bytes)         | 1             | Minimum<br>segments per<br>name            | 1             |
| Maximum name length (bytes)          | 764′867     | Maximum segments length (bytes)         | 764′867       | Maximum<br>segments per<br>name            | 210'658       |

# Name Properties

| Number of segments $n$ | Number of names | Percentage      |  |
|------------------------|-----------------|-----------------|--|
| 1                      | 13'952          | 0.002%          |  |
| 2                      | 141'904         | 0.016%          |  |
| 3                      | 71'327'647      | 8.190%          |  |
| 4                      | 187'307'048     | 21.507%         |  |
| 5                      | 253'852'565     | 29.148%         |  |
| 6                      | 144'130'578     | 16.550%         |  |
| 7                      | 93'837'904      | 10.775%         |  |
| 8                      | 70'875'144      | 8.138%          |  |
| 9                      | 25'611'959      | 2.941%          |  |
| 10                     | 10'464'092      | 1.202%          |  |
| 11                     | 3'973'961       | 0.456%          |  |
| 12                     | 4'546'842       | 0.522%          |  |
| 13                     | 1'206'905       | 0.139%          |  |
| 14                     | 835′124         | 0.096%          |  |
| 15                     | 844′552         | 0.097%          |  |
| 16                     | 195'491         | 0.022%          |  |
| 17                     | 121'486         | 0.014%          |  |
| 18                     | 317'628         | 0.036%          |  |
| 19                     | 168'228         | 0.019%          |  |
| 20                     | 50'742          | 0.006%          |  |
| Total                  | 869'823'752     | <b>99.876</b> % |  |

## Name Size Impact (for interests)



Ratio of "network name" to "standard name" as size of T()/H() grows

# N<sub>p</sub> Size Overhead (for Content)



## Collision Assessment (32-bit hash)



## Processing Overhead (consumer)

#### Per-name costs (µs):

- Average: 1,029.279 (≈1ms)
- Minimum: 3.812
- Maximum: 2,474.567
  - → Reasonable compared to network I/O

#### Throughput (c/b):

- Average: 1,577.688
- Minimum: 1,218.037
- Maximum: 3,494.538

#### **Experimental setting:**

- Intel 2.8 GHz Core i7
- Un-optimized implementation based on PARC Libparc libraries

#### **Ideal setting:**

- Use Intel intrinsics for hashing (~9 c/b)
- Work on wire-encoded packets

## Wrap-up

- Motivated separating CCN application and network names
- A concrete mechanism for name translation function
- Assessed quality of name translation function and performance implications for all CCN entities

#### Related Work\*

- ☐ CCN names
  - Requirements [Ghodsi et al., ICN'11]
  - □ Location-agnostic names [Van Adrichem et al., Nomen'13]
- ☐ Focus on FIB algorithm improvements.
  - ☐ FIB algorithm modifications based on tries, hash tables, Bloom Filters, etc.

[Quan et al., Networking'13], [Perino et al., ANCS'14],

[So et al., ANCS'13], [Fukushima et al., Nomen'13]

- ☐ Several rely on lexicographical name ordering
  - □ Our scheme breaks this!
- ☐ Hop-by-hop optimizations, e.g., passing length of previously matched name in FIB

#### ... but not on FIB inputs

#### **Future Work**

 Compare performance of current FIB techniques with and without network names

Play with various hash functions & sizes

 Explore further uses for translation function T()



/this/is/the/end/version=0x00/chunk=0x01/PID=0x02