Lógica Matemática – 1^a Avaliação

Rogério Eduardo da Silva e Claudio Cesar de Sá

13 de abril de 2015

"Se A é o sucesso, então A é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada."

(Albert Einstein)

Nome:	Turma:
101110:	Idilia,

- 1. (1.0 pt) Determinar por tabela-verdade se a fórmula abaixo é uma **tautologia**, **contradição** (ou insatisfatível) ou **contingência** (ou satisfatível):
 - (a) $p \leftrightarrow (p \rightarrow q \land \sim q)$
 - (b) $\sim (p \land \sim q) \rightarrow (p \lor \sim q)$
 - (c) $(q \to \sim p) \land (\sim p \to q)$
 - (d) $(q \to \sim q) \lor (\sim q \to q)$
- 2. (3.0 pts) Determine as formas normais <u>mais simples</u> (FNC e FND) equivalentes para as fórmulas abaixo:
 - (a) $(\sim p \lor q) \to (q \land \sim r \land p)$
 - (b) $(\sim p \land \sim q) \leftrightarrow r$
 - (c) $(p \land q) \rightarrow \sim (p \lor q)$

Finalmente, reescreva-as em sua forma dual de cada uma das FNCs e FNDs resultantes.

- 3. (3.0 pts) Utilizando as propriedades e equivalências fornecidas na página seguinte verifique **SE** essas fórmulas apresentam uma relação de implicação lógica verdadeira:
 - (a) $(p \to q) \land \sim q \Rightarrow \sim p$
 - (b) $p \lor q \leftrightarrow q \Rightarrow \sim q \rightarrow \sim p$
 - (c) $(p \to \sim q) \land (r \to q) \land r \Rightarrow \sim p$
- 4. (3.0 pts) Utilizando as propriedades e algumas equivalências fornecidas na página seguinte, demonstre **SE** as equivalências abaixo se aplicam:
 - (a) $(p \to q) \to q \Leftrightarrow p \lor q$
 - (b) $(p \downarrow q) \downarrow (p \downarrow q) \Leftrightarrow p \lor q$
 - (c) $(p \to q) \to r \Leftrightarrow (p \land \sim r) \to \sim q$

Equivalências Notáveis:

Idempotência (ID): $p \Leftrightarrow p \land p \text{ ou } p \Leftrightarrow p \lor p$

Comutação (COM): $p \land q \Leftrightarrow q \land p$ ou $p \lor q \Leftrightarrow q \lor p$

Associação (ASSOC): $p \land (q \land r) \Leftrightarrow (p \land q) \land r \text{ ou } p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$

Distribuição (DIST): $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ ou $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

Dupla Negação (DN): $p \Leftrightarrow \sim \sim p$

De Morgan (DM): $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q \text{ ou } \sim (p \lor q) \Leftrightarrow \sim p \land \sim q$

Condicional (COND): $p \to q \Leftrightarrow \sim p \lor q$

Bicondicional (BICOND): $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$

Contraposição (CP): $p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$

Exportação-Importação (EI): $p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$

Tautologia: $p \lor \sim p \Leftrightarrow \blacksquare$

Contradição: $p \land \sim p \Leftrightarrow \Box$

Conectivos de Scheffer: $p \uparrow q \Leftrightarrow \sim p \lor \sim q \ e \ p \downarrow q \Leftrightarrow \sim p \land \sim q$

Ou-exclusivo–1 (X-or): $p \veebar q \Leftrightarrow (p \lor q) \land \sim (p \land q)$ Obs.: $\veebar = \oplus$

Ou-exclusivo-2 (X-or): $p \lor q \Leftrightarrow (\sim p \land q) \lor (p \land \sim q)$ Obs.: $\lor = \oplus$