

Eng. Mecatronica, Mecanica e computação

Método de Thévenin

Prof. Msc. Alexsandro M. Carneiro

www.ucdb.br/docentes/alexsandro

Eng. Mecatronica, Mecanica e Computação 2012

Tópicos Abordados

- 1. Definição
- 2. Regras
- 3. Exemplo 01 (Exercício resolvido)
- 4. Exemplo 02 (Alunos)

1. Definição

É utilizado quando se deseja conhecer V(v) e I(A) em um bípolo sem calcular V e I dos demais bípolos.

2. Regras

Etapas:

- I. Um circuito com bipolos lineares, todos os resistores e geradores que envolve um determinado bipolo podem ser podem ser substituídos por um gerador equivalente de Thevenin (R_{th} e E_{th}), onde:
 - R_{th}: Res de Thevenin vista pelo bípolo que curta circuita todos os geradores de tensão ou abre os geradores de I(A)
 - E_{th:} E(V) de Thévenin, trata-se da tensão em aberto(vázio) enter os pontos onde se localiza o bípolo de interesse, isso devido aos demais bípolos.

Circuito

1. Dado o circuito qual o valor de V_{R3}?

1. Etapa 1 de 3: curto em E1 e E2

Etapa 1 de 3: curto em E1 e E2, achar R_{TH}

2. Etapa 2 de 3: Achar I na malha para calcular Eth

2. Etapa 2 de 3: Achar I na malha para calcular Eth

2. Etapa 2 de 3: Achar I na malha para calcular Eth

2. Etapa 3 de 3: Circuito de Thévenin

FINALIZAR

- a) Calcular I e V entre A e B
- *b*)

R3=47
$$\Omega$$
 $I3 = \frac{Eth}{Rth + R3} = \frac{12}{60 + 47} = 112,15mA$

$$V3 = 47 * 112,1510^{-3} = 5,27V$$

a) Qual o gerador de Thévenin entre A e B?

b) Qual o gerador de Thévenin entre A e B?

Ref. Bibliográfica

• AIUB, J.E.; FILONI e E. *Eletrônica: eletricidade, corrente contínua. 10 ed.* São Paulo. Érica, 1996.