Formulaire d'analyse vectorielle

Quelques expressions et théorèmes à connaitre (seulement pour les parties encadrées), avec beaucoup d'applications (mécanique des fluides, électromagnétisme). Les hypothèses mathématiques permettant leur emploi sont supposées validées.

L'opérateur gradient

grad est un opérateur très utilisé. On s'en sert notamment pour écrire les développements limités à l'ordre 1 des champs scalaires :

$$A(\vec{r} + d\vec{r}) = A(\vec{r}) + \overrightarrow{\operatorname{grad}} A \cdot d\vec{r}$$

Sous forme intégrée :

$$\int_{\vec{r}_1}^{\vec{r}_2} \overrightarrow{\operatorname{grad}} A \cdot d\vec{r} = A(\vec{r}_2) - A(\vec{r}_1)$$

Exemples d'utilisation :

— statique des fluides : $\overrightarrow{\text{grad}}P = \rho \vec{g}$

— électrostatique : $\vec{E} = -\overrightarrow{\text{grad}}V$

Expression en coordonnées :

 $\overrightarrow{\text{grad}} A = \frac{\partial A}{\partial x} \vec{e}_x + \frac{\partial A}{\partial y} \vec{e}_y + \frac{\partial A}{\partial z} \vec{e}_z$ $- \text{cylindriques} : \overrightarrow{\text{grad}} A = \frac{\partial A}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial A}{\partial \theta} \vec{e}_\theta + \frac{\partial A}{\partial r} \vec{e}_z$

— sphériques : $\overrightarrow{\operatorname{grad}}A = \frac{\partial A}{\partial r}\vec{e_r} + \frac{1}{r}\frac{\partial A}{\partial \theta}\vec{e_\theta} + \frac{1}{r\sin\theta}\frac{\partial A}{\partial \varphi}\vec{e_\varphi}$

L'opérateur divergence

L'opérateur divergence (noté div) traduit de façon locale la non-conservation du flux d'un champ vectoriel. Le théorème de Green-Ostrogradski permet de trouver une relation entre le flux surfacique d'un champ vectoriel et la divergence de ce champ :

$$\iint_{\mathcal{S}} \vec{A} \cdot d\vec{S} = \iiint_{\mathcal{V}} \operatorname{div} \vec{A} \ d\tau$$

où $\mathcal V$ est un volume arbitraire, $\mathcal S$ est la surface qui contient $\mathcal V$, orientée vers l'extérieur.

Exemples d'utilisation :

- électromagnétisme : $\mathrm{div} \vec{E} = \frac{\rho}{\varepsilon_0},\, \mathrm{div} \vec{B} = 0$
- conservation des quantités physiques en l'absence de sources : $\operatorname{div}\vec{j}_A + \frac{\partial \rho_A}{\partial t} = 0$ où ρ_A est la densité volumique de A (qui se conserve) et \vec{j}_A est le vecteur densité volumique de flux associé.

1

Expression en coordonnées :

De.Delbarre

— cartésiennes :
$$\boxed{ \text{div} \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} }$$

— cylindriques :
$$\operatorname{div} \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta} + \frac{\partial A_z}{\partial z}$$

— sphériques :
$$\operatorname{div} \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta A_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$$

L'opérateur rotationnel

L'opérateur rotationnel est noté rot. Le théorème de Stokes donne une relation entre la circulation d'un champ vectoriel et le flux du rotationnel de ce champ :

$$\oint_{\Gamma} \vec{A} \cdot d\vec{\ell} = \iint_{\mathcal{S}} \overrightarrow{\operatorname{rot}} \vec{A} \cdot d\vec{S}$$

où Γ est un contour fermé orienté, et \mathcal{S} est une surface orientée délimitée par Γ .

Exemples d'utilisation :

— électrostatique : $\overrightarrow{\mathrm{rot}} \vec{E} = \vec{0}$

— magnétostatique : $\overrightarrow{\text{rot}}\vec{B} = \mu_0 \vec{j}$

Expression en coordonnées :

— cartésiennes :
$$\overrightarrow{\operatorname{rot}}\vec{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right)\vec{e}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\vec{e}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)\vec{e}_z = \vec{\nabla} \wedge \vec{A} \text{ (voir l'opérateur nabla noté } \vec{\nabla}\text{)}$$

— cylindriques :
$$\overrightarrow{\operatorname{rot}} \vec{A} = \left(\frac{1}{r} \frac{\partial A_z}{\partial \theta} - \frac{\partial A_\theta}{\partial z}\right) \vec{e_r} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right) \vec{e_\theta} + \frac{1}{r} \left(\frac{\partial r A_\theta}{\partial r} - \frac{\partial A_r}{\partial \theta}\right) \vec{e_z}$$

$$-- \text{ sph\'{e}riques} : \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} (\sin \theta A_{\varphi}) - \frac{\partial A_{\theta}}{\partial \varphi} \right) \vec{e_r} + \left(\frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \varphi} - \frac{1}{r} \frac{\partial}{\partial r} (r A_{\varphi}) \right) \vec{e_\theta} + \frac{1}{r} \left(\frac{\partial}{\partial r} (r A_{\theta}) - \frac{\partial A_r}{\partial \theta} \right) \vec{e_\varphi}$$

Le laplacien

l'opérateur la placien, noté Δ , se définit comme $\Delta=\operatorname{div}\left(\overrightarrow{\operatorname{grad}}\right)$ Expression en coordonnées :

— cartésiennes :
$$\Delta A = \frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} + \frac{\partial^2 A}{\partial z^2}$$

— cylindriques :
$$\Delta A = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial A}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 A}{\partial \theta^2} + \frac{\partial^2 A}{\partial z^2}$$

— sphériques :
$$\Delta A = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial A}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial A}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta^2} \frac{\partial^2 A}{\partial \varphi^2}$$

— sphériques (expression équivalente) :
$$\Delta A = \frac{1}{r} \frac{\partial^2}{\partial r^2} \left(rA \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial A}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta^2} \frac{\partial^2 A}{\partial \varphi^2}$$

On rencontrera aussi l'opérateur laplacien pour un champ vectoriel :

$$\Delta \vec{A} = \frac{\partial^2 \vec{A}}{\partial x^2} + \frac{\partial^2 \vec{A}}{\partial y^2} + \frac{\partial^2 \vec{A}}{\partial z^2}$$

2

L'opérateur nabla noté $\overrightarrow{\nabla}$

L'opérateur $\overrightarrow{\nabla}$ (nabla) est souvent utilisé pour donner une écriture alternative aux opérateur $\overrightarrow{\operatorname{grad}}$, div et $\overrightarrow{\operatorname{rot}}$ en base cartésienne uniquement :

$$\overrightarrow{\nabla} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \\ \frac{\partial}{\partial y} \\ \\ \frac{\partial}{\partial z} \end{pmatrix}$$

Remarquons que les opérateur \overrightarrow{grad} , div et \overrightarrow{rot} s'expriment simplement à l'aide de nabla :

- $\overrightarrow{\operatorname{grad}} A = \overrightarrow{\nabla} A$
- $\text{div} \vec{X} = \overrightarrow{\nabla} \cdot \vec{X}$ (« · » est ici analogue au produit scalaire)
- $\overrightarrow{\mathrm{rot}} \vec{X} = \overrightarrow{\nabla} \wedge \vec{X}$ (« \wedge » est ici analogue au produit vectoriel)
- $\Delta A = \overrightarrow{\nabla} \cdot \overrightarrow{\nabla} A$

Quelques relations entre opérateurs

Les plus utilisées sont :

$$\operatorname{div}\left(\overrightarrow{\operatorname{rot}}\vec{X}\right) = 0$$

$$\operatorname{div}\left(\overrightarrow{\operatorname{grad}}X\right) = \Delta X$$

$$\overrightarrow{\operatorname{rot}}\left(\overrightarrow{\operatorname{rot}}\overrightarrow{X}\right) = \overrightarrow{\operatorname{grad}}\left(\operatorname{div}\overrightarrow{X}\right) - \Delta\overrightarrow{X}$$