Data Mining for Diabetes Readmission Prediction

Team Evolution

Yi Chun Chien, Xiayu Zeng, Hong Zhang, Yixi Zhang

Agenda

- Abstract
- Introduction
- Data Description
- Problem Statement
- Methodology
- Discussions and Results
- Conclusions

Abstract

Background: Alarmingly high risk of readmissions in the US

- Goal: discover factors contributing to hospitals readmissions
- Methods: C5.0 Decision Tree, Quest, Neural Network and Bayesian Network
- Results: emergency readmissions occur most frequently
- <u>Conclusions</u>: effective prediction on readmissions enables hospitals to identify and target patients at the highest risk

Introduction

- Topic: Diabetes Readmission Prediction
- What Is Readmission Rate
 - A hospitalization that occurs within 30 days after a discharge
- Why Is Readmission Important
 - Reduce cost of care and medical disputes
 - Improve patients' safety and health

Data Description

- Data source: The data is from the Center for Clinical and Translational Research, Virginia Commonwealth University
- The dataset represents 10 years (1999-2008) of clinical care at 130 US hospitals and integrated delivery networks. It includes 101,766 instances and 55 features representing patient and hospital outcomes.
- Link: http://www.cioslab.vcu.edu/index.html

Main attributes:

Attribute	Description				
Admission type	patient's admission type: emergency, urgent, elective, newborn, not available, etc.				
Time in hospital	Integer number of days between admission and discharge				
Number of lab procedures	Number of lab tests performed during the encounter				
Number of outpatient visits	Number of outpatient visits of the patient in the year preceding the encounter				
	Number of emergency visits of the patient in the year preceding the encounter				
Number of inpatient visits	Number of inpatient visits of the patient in the year preceding the encounter				
Number of diagnoses	Number of diagnoses entered to the system				
A1c test result	The range of the result or if the test was not taken				
Diabetes medications	Whether there was any diabetic medication prescribed or not				
Readmitted	Days to inpatient readmission				

Methodology

Problem Statement

Identify the major factors that contribute to hospital readmissions

Measure the influence of every attribute

Compare accuracy of each model

Data Pre-mining

Re-categorize Readmission group from 3 groups (<30, >30 days and No)

to 2 groups (Readmission <30 days and Non-within 30 days)

- Review all variables' distribution to ensure data quality
 - Make Readmission group's sample ratio be 🔀
 - Review each variable's relationship with Readmission
 - Review numeric variables' correlation

Variable's relationship with Readmission

- Remove irrelevant variables
 - (EX: patient ID, payer code)
- Delete unknown value
- Eliminate variables only
 - has majority value

Variable's relationship with Readmission

- Found some variables have different behavior between readmission group
 - Diagnoses Number
 - Admission Type ID
 - Inpatient Number

Review numeric variables' correlation

- No correlation between numeric variables' correlation
- Variables are independent

Perform Analysis

- Input variables: 14; Output variable: Readmission group
- Total sample size: 23,154
- Partition: 70% on Training; 30% on Testing
- Build models from (1) Decision Tree Analysis: C5.0 & QUEST
 - (2) Apply Neural Network Methodology
 - (3) Perform Bayes' Analysis

Model Stream

Neural Network - Comparison

Obs	Predic	Row Percent	
erv	NO	Yes	100.00 80.00
NO	71.8%	28.2%	60.00 40.00
Yes	33.8%	66.2%	20.00 0.00

Hidden layer = 8

Readmitted		\$null\$	NO	Yes
NO	Count	0	5584	2642
	Row %	0.000	67.882	32.118
Yes	Count	1	2831	5152
	Row %	0.013	35.458	64.529

Readmitted		\$null\$	NO	Yes
NO	Count	2	2413	1156
	Row %	0.056	67.572	32.372
Yes	Count	1	1209	2163
	Row %	0.030	35.843	64.127

Neural Network

- Model Performance:
 - 66% accuracy in testing dataset
- Predictor Importance: Top 5:
- Number of inpatient visits
- Admission type
- Admission source
- Discharge disposition
- Number of emergency visits

Why Use Bayesian Network

Have probability for reference

Allow variables' dependency

Well suited for categorical variables

Interpreting the Results

 Overall Model: Training accuracy: 70.67% Testing accuracy: 69.51%

 Model on "Yes" results: Training accuracy: 71.35%
 Testing accuracy: 69.54%

Decision Tree: C5.0

- Model Performance:
 - 65% accuracy in testing dataset

Top 5:

- Admission type
- Admission source
- Discharge disposition
- Number of inpatient visits
- Number of lab procedures

Decision Tree: C5.0

Decision tree (part)


```
admission_type_id in [1] [Mode: Yes] (7,383)

admission_source_id in [1] [Mode: Yes] (208)

admission_source_id in [2 3 8] [Mode: Yes] ⇒ Yes (17; 0.882)

admission_source_id in [4] [Mode: Yes] (31)

admission_source_id in [5] [Mode: NO] (125)

admission_source_id in [6] [Mode: NO] (577)

admission_source_id in [7] [Mode: Yes] (6,361)

admission_source_id in [9 10 11 12 13 14 15 16 18 19 20 21 22] [Mode: Admission_source_id in [17] [Mode: Yes] (64)

admission_source_id in [17] [Mode: NO] (3,999)

admission_type_id in [2] [Mode: NO] (3,822)

admission_type_id in [4] [Mode: NO] ⇒ NO (2; 0.5)

admission_type_id in [6 8] [Mode: Yes] ⇒ Yes (434; 1.0)

admission_type_id in [7] [Mode: NO] ⇒ NO (0)
```

Decision Tree: QUEST

- What's QUEST: Quick, Unbiased and Efficient Statistical Tree
- Advantage:
 - Easily handle categorical predictor variables with many categories
 - Use imputation to deal with missing values
 - It provides linear splits using Fisher's LDA method
- How to improve accuracy
 - Boosting: Randomly re-sample N dataset -> create N trees -> optimal by weighted average
 - Bagging: optimal by aggregated average

Decision Tree: QUEST

- Adopt Boosting method in QUEST
- Model Performance:
 - 72% accuracy in testing dataset

Trainin	a data	tations			
\$R-Readmitted					
Readmitted		NO	Yes		
NO	Count	5196	3030		
	Row %	63.166	36.834		
Yes	Count	2169	5815		
	Row %	27.167	72.833		

	Testing	data	notations			
	\$R-Readmitted					
	Readmitted		NO	Yes		
_	NO	Count	2258	1313		
- 1		Row %	63.232	36.768		
	Yes	Count	932	2441		
_		Row %	27.631	72.369		
2	Yes					

- Variable Importance:
 - Top 5: Admission Type,

Admission Source,

Number of inpatient visits

Discharge Deposition,

Number of diagnoses

Model Evaluation

Top Important Variables:

QUEST	C5.0	Neural Net	Bayesian
Admission Type	Admission Type	Inpatient #	Discharge Disposition
Admission Source	Admission Source	Admission Type	Admission Source
Inpatient #	Discharge Disposition	Admission Source	Inpatient #
Discharge Disposition	Inpatient #	Discharge Disposition	Lab Procedures #
Diagonose #	Lab Procedures #	Emergency #	Admission Type

- QUEST has the best accuracy
- Top 4 variables: Admission Type, Admission Source, number of inpatient visits and Discharge disposition.

Accuracy

Evaluation of top 4 important attributes

NUMBER OF INPATIENT VISITS

(Number of inpatient visits of the patient in the year preceding the encounter)

From the graph, it's shown that number of inpatient visits potentially increases the risk of readmission. For patients who stayed in a hospital over 15 times in a year, they would be 100% readmitted to the hospital within 30 days. Inpatient treatment facilities should better provide additional and more specialized medical care to reduce their readmission rate.

ADMISSION TYPE

- (1.Emergency, 2.Urgent, 3.Elective,
- 4. Newborn, 5. Not Available, 6. NULL,
- 7. Trauma Center, 8. Not Mapped)

ADMISSION SOURCE

(physician referral, emergency room, and transfer from a hospital, etc.)

DISCHARGE DISPOSITION (discharged to home, expired, and Hospic / home, etc.)

Decision tree(part)

Conclusion

- Data pre-mining is of upmost importance in improving the model accuracy (1%→72%);
- The readmission groups are <u>related</u> to admission source, admission type, discharge disposition and number of inpatient visits;
- The readmission groups do not solely depend on any single variable, but the interactions of related variables;
- Instead of tracking all 55 attributes, hospitals are suggested to <u>locus on</u> number of patient's inpatient visits, admission source, admission type, discharge disposition;
- Hospitals are advised to concern not only inpatient treatment but also continuing after discharge.