FSS

FISH SCHOOL SEARCH

ROTEIRO

- Hã? Quando? Por quê?
- Qual a inspiração?
- Como funciona?
- Pseudo-código
- Critérios de Parada
- dFSS

HÃ? QUANDO? POR QUÊ?

 FSS (Fish School Search) – Algoritmo de busca baseado em cardume

- Desenvolvido recentemente pelo grupo de Computação Inteligente da UPE
- Tem como objetivo resolver problemas multidimensionais e de difícil resolução

QUAL A INSPIRAÇÃO?

 Comportamento gregário de muitas espécies de peixes

 Pelo menos 50% das variedades conhecidas de peixes se agrupam em cardumes

Por que nadar em cardume?

POR QUE NADAR EM CARDUME?

- Meio de defesa contra predadores
 - Um por todos, todos por um
 - Vai encarar?
- Ajuda mútua
 - Nado livre
 - Revezamento
- Busca por alimentos
 - Centenas de pares de olhos são mais eficientes para encontrar comida do que apenas um.
- Reprodução
 - Mais machos ao redor da fêmea para fecundar os ovos expelidos

INSPIRAÇÃO BIOLÓGICA

- Comportamento sinérgico pode ser caracterizado:
 - De acordo com reações comportamentais
 - De acordo com reações de curto prazo

RELAÇÃO DE CONCEITOS

- Aquário
 - Espaço de busca
- Alimentos
 - Regiões do espaço de busca que podem conter boas soluções
- Peixe
 - Possível solução para um problema
 - Atributos:
 - Posição
 - Peso indicação de sucesso

Como funciona?

VISÃO GERAL

- A busca é conduzida por uma população de entidades (peixes) com memória limitada.
- O peso do peixe representa a quantidade de alimento (melhora na aptidão) que ele recebeu durante a busca.
- Quanto maior o peso do peixe, maiores as chances dele estar em uma região potencialmente boa no domínio da função.
- O peixe representa uma possível solução.

OPERADORES

Duas classes:

- Alimentação
 - Qualidade da solução para o problema
- Movimentação
 - Guia os peixes em direção ao ótimo global da função objetivo.
 - Movimento individual
 - Movimento coletivo instintivo
 - Movimento coletivo volitivo

MOVIMENTO INDIVIDUAL

 O peixe escolhe uma posição aleatória e avalia essa nova posição. É importante lembrar que o peixe se move se, e somente se, a nova posição for melhor do que a atual.

MOVIMENTO INDIVIDUAL

$$n_i(t) = x_i(t) + rand(-1, 1) step_{ind}$$

- 1
- 2

3

4

- 1. Posição candidata
- Posição atual
- 3. Função que retorna número randômico entre -1 e 1
- 4. Porcentagem do espaço de busca

MOVIMENTO INDIVIDUAL

$$step_{ind}(t+1) = step_{ind}(t) - \frac{(step_{ind\,initial} - step_{ind\,final})}{iterations}$$

1

2

3

- 1. Tamanho do passo no tempo t+1
- 2. Tamanho do passo atual
- 3. Número de iterações
- 4. Tamanho inicial do passo
- 5. Tamanho final do passo

OPERADOR DE ALIMENTAÇÃO

 Os peixes podem aumentar de peso dependendo do sucesso obtido com o movimento individual.

OPERADOR DE ALIMENTAÇÃO

- 1. Peso atualizado
- 2. Peso atual do peixe
- Diferença da aptidão entre a posição atual e a nova posição para o peixe
- 4. Função que obtém o maior valor da diferença da aptidão para todos os peixes do cardume

MOVIMENTO COLETIVO INSTINTIVO

 Somente os peixes que obtiveram sucesso individual (melhora de sua aptidão) influenciarão na direção resultante do cardume.

MOVIMENTO COLETIVO INSTINTIVO

2

$$\vec{I}(t) = \frac{\sum_{i=1}^{N} \Delta \vec{x}_i \Delta f_i}{\sum_{i=1}^{N} \Delta f_i}$$

- 1. Direção resultante
- Deslocamento do peixe devido ao movimento individual
- Diferença da aptidão entre a posição atual e a nova posição para o peixe

MOVIMENTO COLETIVO INSTINTIVO

$$\vec{x}_i(t+1) = \vec{x}_i(t) + \vec{I}(t)$$

- 1. Posição atualizada
- 2. Posição atual do peixe
- 3. Direção resultante do movimento individual

Derivado do sucesso do cardume como um todo. Se o cardume aumentou de peso, a busca foi bem sucedida. Assim, o raio do cardume deve contrair. Caso contrário, o raio do cardume deve dilatar. Este operador é responsável por balancear a capacidade de busca em amplitude e busca em profundidade.

$$\vec{B}(t) = \frac{\sum_{i=1}^{N} \vec{x}_i w_i(t)}{\sum_{i=1}^{N} w_i(t)}$$

- 1. Baricentro
- Média da posição de todos os peixes ponderada com os respectivos pesos dos peixes no cardume

$$\vec{x}(t+1) = \vec{x}(t) - step_{vol} \, rand(0,1) \, \frac{(\vec{x}(t) - \vec{B}(t))}{distance(\vec{x}(t), \vec{B}(t))}$$

- 1
- 2
- 3

4

- 5
- 1. Nova posição se o peso do cardume aumentar para iteração atual
- 2. Posição atual do peixe
- 3. Tamanho do passo usado para controlar o deslocamento do peixe de ou para o baricentro
- 4. Função que retorna número randômico gerado uniformemente entre 0 e 1
- 5. Função que calcula a distância Euclidiana entre o baricentro e a posição atual do peixe

$$\vec{x}(t+1) = \vec{x}(t) + step_{vol} \, rand(0,1) \, \frac{(\vec{x}(t) - \vec{B}(t))}{distance(\vec{x}(t), \vec{B}(t))}$$

- 1
- 2
- 3

4

- 5
- 1. Nova posição se o peso do cardume diminuir para iteração atual
- 2. Posição atual do peixe
- 3. Tamanho do passo usado para controlar o deslocamento do peixe de ou para o baricentro
- 4. Função que retorna número randômico gerado uniformemente entre 0 e 1
- 5. Função que calcula a distância Euclidiana entre o baricentro e a posição atual do peixe

PSEUDO-CÓDIGO

```
Inicializa aleatoriamente a posição de todos os peixes
para cada peixe faça
   Avalia sua aptidão;
fim
enquanto critério de parada não for alcançado faça
   para cada peixe faça
         Executa movimento individual;
         Alimenta os peixes;
   fim
   para cada peixe faça
         Executa movimento instintivo
   fim
   Calcula o baricentro;
   para cada peixe faça
         Executa movimento volitivo
   fim
   Atualiza o tamanho do passo
fim
```

CRITÉRIOS DE PARADA

- Número de iterações
- Tempo limite
- Raio máximo do cardume
- Peso mínimo do cardume
- Número máximo de peixes

dFSS – VARIAÇÃO DO FSS

- Density based Fish School Search
- Capaz de localizar e manter ao longo das iterações do algoritmo múltiplos valores ótimos de um problema multimodal
- Dois novos operadores
 - Operador de memória ou afinidade
 - Operador de divisão de cardume

dFSS – VARIAÇÃO DO FSS

FSS

Operador de Movimento Individual

> Operador de Alimentação

Operador de Movimento Instintivo

Operador de Movimento Volitivo dFSS

Operador de Memória

Operador de Divisão do Cardume

Operador de Movimento Individual

> Operador de Alimentação

Operador de Movimento Instintivo

Operador de Movimento Volitivo

dFSS – VARIAÇÃO DO FSS

- Alterações nos outros operadores do FSS para:
 - Permitir a divisão de cardumes em subcardumes
 - Preservar os subcardumes nas regiões correspondentes aos seus respectivos valores ótimos

dFSS - MOVIMENTO INDIVIDUAL

- Para o dFSS, a única modificação em relação ao FSS diz respeito ao mecanismo de atualização do tamanho do passo de um peixe.
- Há o decaimento na velocidade de um peixe que recebeu a menor quantidade de comida em um subcardume.
- Redução do tamanho do passo do peixe que recebeu a maior quantidade de comida em um subcardume.

dFSS – TAMANHO DO PASSO

- Balancear o comportamento de busca em amplitude e em profundidade do dFSS
- Preservar nichos localizados ao longo das iterações do algoritmo
- Preservar a localização de peixes que receberam uma quantidade relativamente grande de alimento

dFSS - TAMANHO DO PASSO

FSS

$$step_{ind}(t+1) = step_{ind}(t) - \frac{(step_{ind\,initial} - step_{ind\,final})}{iterations}$$

dFSS

$$step_{ind_i}(t+1) = decay_i \times step_{ind_i}(t)$$

$$decay_{i} = decay_{\min} - \left(\frac{R_{i}(t) - \min(R_{j}(t))}{\max(R_{j}(t)) - \min(R_{j}(t))}\right) \left(decay_{\min} - decay_{\max}(t)\right)$$

dFSS - OPERADOR DE ALIMENTAÇÃO

FSS:

- A porção de alimento encontrada (variação no valor da aptidão) podia ser positiva ou nula
- O peso do peixe pode diminuir

dFSS

- A porção de alimento encontrada por um peixe é partilhada com os membros do cardume do qual este peixe faz parte
- O peso do peixe não diminui ao longo das iterações
- Cada peixe possui uma memória que armazena a quantidade de alimento que recebeu de outro

dFSS - OPERADOR DE ALIMENTAÇÃO

$$P_{i} = \frac{\Delta f_{i}}{\sum_{j=1}^{N} \frac{1}{(d_{R_{ij}})^{q_{ij}}}} \qquad C(i,j) = \frac{P_{i}}{(d_{R_{ij}})^{q_{ij}}}$$

- 1. Porção de alimento que o peixe *i* irá receber
- 2. Variação da aptidão
- 3. Somatório das parcelas de alimento que os demais peixes *j* irão receber
- 4. Parcela de alimento que os demais peixes *j* irão receber

dFSS - OPERADOR DE ALIMENTAÇÃO

FSS

$$W_i(t+1) = W_i(t) + \frac{\Delta f_i}{max(\Delta f)}$$

dFSS

$$W_i(t+1) = W_i(t) + \sum_{j=1}^Q \frac{\Delta f_j}{(d_{R_{ij}})^{q_{ij}} \sum_{k=1}^N \frac{1}{(d_{R_{jk}})^{q_{jk}}}}$$

dFSS – OPERADOR DE MEMÓRIA

- Quantifica a influência exerce sobre o outro.
- Ou seja, quanto mais o peixe i receber alimento por meio do peixe j, maior será a influência que o peixe j irá exercer sobre o peixe i.
- Influência manifestada em termos de sincronia de movimento.

dFSS – OPERADOR DE MEMÓRIA

$$M_{ij}(t+1) = (1-\rho)M_{ij}(t) + \frac{\Delta f_j}{(d_{R_{ij}})^{q_{ij}} \sum_{k=1}^{N} \frac{1}{(d_{R_{jk}})^{q_{jk}}}}$$

1

3

- 4
- 1. Memória atualizada do peixe *i* em relação ao peixe *j*
- Regula a dinâmica da rede de influências entre peixes por meio do decaimento da memória
- 3. Memória atual do peixe *i* em relação ao peixe *j*

dFSS - OP. COLETIVO INSTINTIVO

- Quantifica a influência exerce sobre o outro.
- Ou seja, quanto mais o peixe i receber alimento por meio do peixe j, maior será a influência que o peixe j irá exercer sobre o peixe i.
- Influência manifestada em termos de sincronia de movimento.

dFSS - OP. COLETIVO INSTINTIVO

FSS

$$\vec{I}(t) = \frac{\sum_{i=1}^{N} \Delta \vec{x}_i \Delta f_i}{\sum_{i=1}^{N} \Delta f_i}$$

dFSS

$$\vec{I}_{i}(t) = \frac{\sum_{j=1}^{N} \Delta \vec{x}_{j} M_{ij}}{\sum_{k=1}^{N} M_{ik}}$$

dFSS - OP. DE DIVISÃO DO CARDUME

 A cada iteração do algoritmo, o cardume principal é dividido em subcardumes

 O peixe i está no mesmo subcardume de j se e somente se j é o peixe que exerce maior influência sobre i

 Cada subcardume criado corresponde a um valor ótimo localizado pelo dFSS

dFSS - OP. DE DIVISÃO DO CARDUME

$$M_{ij} = \max_{k=1,2,...,N} M_{ik},$$

- O peixe i está no mesmo subcardume de j se e somente se j é o peixe que exerce maior influência sobre i.
- Cada subcardume criado corresponde a um valor ótimo.

dFSS - MOV. COLETIVO VOLITIVO

 Executato independentemente para cada subcardume criado. O baricentro é calculado para cada subcardume baseado no peso dos peixes

dFSS - MOV. COLETIVO VOLITIVO

$$\vec{x}_i(t+1) = \vec{x}_i(t) + (1 - decay_{max}(t))(\vec{B}(t) - \vec{x}_i(t))$$

FSS

FISH SCHOOL SEARCH

