Lights out!

Menno Bartels Formal System Analysis, TU/e

23-04-2025

- Tiger Electronics 1995
- Popular puzzle in video games
- One player game with (presumably) symmetries

- Tiger Electronics 1995
- Popular puzzle in video games
- One player game with (presumably) symmetries
- Not in the examples/ folder of mCRL2

1	2	3
4	5	6
7	8	9

(0, 0, 1, 1, 0, 0, 1, 1, 0)

1	2	3
4	5	6
7	8	9

1	2	3
4	5	6
7	8	9

1	2	3
4	5	6
7	8	9

\oplus		(1,	1,	0,	1,	1,	0,	1,	1,	0
\oplus	x_1	(1,	1,	0,	1,	0,	0,	0,	0,	0)

1	2	3
4	5	6
7	8	9

	$(1, x_1 (1, x_2 (1, x_2 (1, x_3 (1, $	1,	0,	1,	1,	0,	1,	1,	0)
\oplus	$x_1 (1,$	1,	0,	1,	0,	0,	0,	0,	0)
\oplus	$x_2 (1,$	1,	1,	0,	1,	0,	0,	0,	0)

1	2	3
4	5	6
7	8	9

	(1,	1,	0,	1,	1,	0,	1,	1,	0)
\oplus	$(1, x_1)$	1,	0,	1,	0,	0,	0,	0,	0)
\oplus	$x_2 (1,$	1,	1,	0,	1,	0,	0,	0,	0)
\oplus	$x_3 (0,$	1,	1,	0,	0,	1,	0,	0,	0)
\oplus	x_4 (1,								
\oplus		1,	0,	1,	1,	1,	0,	1,	0)
\oplus	/ -								
\oplus									
\oplus	$x_8 (0,$	0,	0,	0,	1,	0,	1,	1,	1)
\oplus	x_0 (0,								

1	2	3
4	5	6
7	8	9

	(1,	1,	0,	1,	1,	0,	1,	1,	0)
\oplus	x_1 (1,	1,	0,	1,	0,	0,	0,	0,	0)
\oplus	$x_2 (1,$	1,	1,	0,	1,	0,	0,	0,	0)
\oplus	$x_3 (0,$	1,	1,	0,	0,	1,	0,	0,	0)
\oplus	x_4 (1,	0,	0,	1,	1,	0,	1,	0,	0)
\oplus	$x_5 (0,$								
\oplus	$x_6 (0,$	0,	1,	0,	1,	1,	0,	0,	1)
\oplus	$x_7 (0,$	0,	0,	1,	0,	0,	1,	1,	0)
\oplus	$x_8 (0,$	0,	0,	0,	1,	0,	1,	1,	1)
\oplus	$x_9 (0,$	0,	0,	0,	0,	1,	0,	1,	1)
=						0,			

An assignment that makes this equality true is $x = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

```
x_1
0 1 0 0
             0
                       X2
          0
             0
                       X3
             0
                 0
                       x_4
          0
                 0
                       X5
          0
             0
                               0
                       X6
                 0
                       X7
                       X8
                               0
                       _X9_
```

```
x_1
0
                 X2
0
    0
                 X3
    0
                 X<sub>4</sub>
0
         0
                 X5
0
    0
                 X6
                 X7
                 X8
```

$$A_{3} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8} \\ x_{9} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$A_3 \cdot \bar{x} = \bar{s}$$

- Linear algebra tells us we can find \bar{x} if $Det(A_3) \neq 0 \mod 2$.
- As $Det(A_3) = 1 \mod 2$, we know that any arrangement of 3x3 Lights Out is solvable.

- $Det(A_2) = 1 \mod 2$
- $Det(A_3) = 1 \mod 2$
- $Det(A_4) = 0 \mod 2$
- $Det(A_5) = 0 \mod 2$
- $Det(A_6) = 1 \mod 2$

- $Det(A_2) = 1 \mod 2$
- $Det(A_3) = 1 \mod 2$
- $Det(A_4) = 0 \mod 2$
- $Det(A_5) = 0 \mod 2$
- $Det(A_6) = 1 \mod 2$

Possible alternatives: more colors, change switching rules

Γ1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0
0	0	0	1	0	0	0	0	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	0
0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1

Γ	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	07
	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0
İ	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
-	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0
-	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
-	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0
١	0	0	0	1	0	0	0	0	1	1	1	0	0	0	0	0
-	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	0
İ	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0
İ	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
-	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
-	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0
L	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1

$$\operatorname{Det}(T) = 1 \mod 2$$
,

Γ1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	07
1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0
0	1	1	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0
0	0	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	0	0	1	1	0	0	1	1	1	0	0	1	1	0	0	0	0	0
0	0	0	0	1	1	0	0	1	1	1	0	0	1	1	0	0	0	0
0	0	0	0	0	1	1	0	0	1	1	1	0	0	1	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	1	1	0	0	1	0	0
0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	0	1	1	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	0	1	1
0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1
L0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1

 $Det(H) = 0 \mod 2$,

Brace for some mCRL2 code.

```
sort
     Button = struct on | off;
     Row = List(Button);
     Game = List(Row):
     Press: Game#Nat#Nat -> Game;
map
     PressMiddle: Game#Nat -> Game;
                                                               8
                                                                        10
     PressBottom: Game#Nat -> Game:
     rowflip: Row#Nat -> Row;
                                                             12 13 14 15
     flip: Row#Nat -> Row;
                                                         16
                                                             17 18
                                                                        20
     Press([],i,j) = [];
ean
     Press(r|>g,i,0) = rowflip(r,i) |> PressBottom(g,i);
                                                             22 23
     Press(r|>g,i,1) = flip(r,i) |> PressMiddle(g,i);
     j>1 -> Press(r|>g,i,j) = r |> Press(g,i,max(0,j-1));
```

```
Button = struct on | off:
sort
     Row = List(Button);
     Game = List(Row);
map
     Press: Game#Nat#Nat -> Game;
                                                         1 2 3 4 5
     PressMiddle: Game#Nat -> Game;
     PressBottom: Game#Nat -> Game;
                                                             7 8
                                                                        10
     rowflip: Row#Nat -> Row:
     flip: Row#Nat -> Row:
                                                            12 13
                                                                   14 15
     Press([],i,j) = [];
ean
                                                            17 18 19 20
     Press(r|>g,i,0) = rowflip(r,i) |> PressBottom(g,i);
     Press(r|>g,i,1) = flip(r,i) |> PressMiddle(g,i);
                                                         21 22 23 24 25
     j>1 -> Press(r|>g,i,j) = r |> Press(g,i,max(0,j-1));
     PressBottom([], i) = [] ;
     PressBottom(r > g, i) = flip(r,i) |> g;
     PressMiddle([], i) = [] ;
     PressMiddle(r|>g, i) = rowflip(r,i) |> PressBottom(g,i);
```

```
act
      win;
      press:Nat#Nat;
proc LightsOut(game:Game)=
        (all_off(game) -> win.delta) +
        sum i,j:Nat.(i<N && j<M)->
          press(i,j).
          LightsOut(Press(game,i,j));
init LightsOut(on_game);
mu X . <win> true | | <true> X
```

size	explicit		symbolic	
2x2	0.16s	<1000	0.06s	18
3x3	0.22s	<1000	1.24s	468
4×4	1.97s	± 4000	41.4s	3526
4×5	12min	± 1048000	>108min?	431910?
5×5	-	-	-	-
	'		'	

Thanks for your attention!

Thanks for your attention!

Jan Friso: enjoy the gift