UNIVERSIDAD NACIONAL DE ENTRE RIOS

FACULTAD DE CIENCIAS DE LA ADMINISTRACION

CARRERA: LICENCIATURA EN SISTEMAS

CATEDRA: CALCULO NUMERICO

Unidad Nº 5

Tema: Derivación Numérica

- a) Fórmula central y lateral
- b) Extrapolación por Richardson
- 1- Utilizando las fórmulas central y lateral hacia adelante, calcular $f'(25^{\circ})$ para la función $f(x) = \cos(x)$.

*Nota: calcular los valores en radianes.

- 1. $x=20^{\circ}$
- 2. $x=25^{\circ}$
- 3. $x=30^{\circ}$

Construir, la tabla necesaria.

- **2-** Siendo $f(x) = x^3 e^{x^2} sen(x)$: aproximar las derivadas centrales con h=0,1 utilizando las formulas que minimicen el error de cálculo:
 - a-f'(2,19)
 - b f''(0)
 - c-f'''(1,5)
 - d- f''''(1)
- 3- Dada la tabla

X	0	0.5	1	1.5	2	2.5	3
f(x)	1	1,65	2,72	4,48	7,39	12,18	20,09

Estimar las siguientes derivadas:

- a- f'(1) empleando la fórmula 8 **Rta: 2.708333**;
- b- f''(1) empleando la fórmula 15 **Rta: 2.696666**;
- c- f'(0) utilizando la fórmula 4 **Rta: 0.965**;
- d- f''(0) utilizando la fórmula 11 **Rta: 1.296666**;
- e- Si los resultados se han obtenido mediante $f(x) = e^x$, comparar los resultados estimados con los exactos.
- **4-** Sea f(x) = 2x.sen(x). Aproxime f'(1,05) usando la fórmula 5 de la tabla. Luego extrapolar por Richarson.
 - a- h=0,05 **Rta: 2.2740282665**
 - b- h=0,1 Rta: 2,2706741673 Valor Extrapolado: 2,2751462995
- **5-** Un coche que viaja en una carretera recta es cronometrado en algunos puntos. Los datos de las observaciones se dan en la siguiente tabla, donde el tiempo está en segundos y la distancia en pies.

Use la fórmula 2 ó 5 de la tabla para predecir la velocidad en cada tiempo de la lista.

Tiempo	0	3	5	8	10	13
Distancia	0	225	383	623	742	993
_						

Respuestas | 79.0 | 82.4 | 74.2 | 76.8 | 69.4 | 71.2

6- Los tiempos y velocidades de un móvil vienen dados por la siguiente tabla:

t en seg.	0	60	120	180	240	300
V m/seg.	0	0,0824	0,2747	0,6502	1,3851	3,2229

Calcular la aceleración, derivada de la velocidad, en los instantes:

a) 0 segundos.Rta: 0.0004359722b) 120 segundos.Rta: 0.0043851389c) 300 segundos.Rta: 0.0463151389

- 7- Aplique extrapolación por Richardson para determinar el valor $f''(x_0)$, para las siguientes funciones y tamaños de pasos.
 - **a)** $f(x) = \ln (x)$; $x_0 = 1,0$; **1)** $h_1 = 0,4$; **2)** $h_2 = 0,2$.
 - **b)** $f(x) = x^3 \cdot \cos(x)$; $x_0 = 2,3$; **1)** $h_1 = 0,4$; **2)** $h_2 = 0,2$.
- 8- La abcisa de un cuerpo móvil viene dada por la siguiente tabla:

Centímetros	X	25.6	28.9	32.4	36.1	40.0	44.1	48.4	52.9	57.6
Segundos	t	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4

- a) Hállese la velocidad instantánea para t=1.6; t=2.0 y t=2.4 . Usar h=0.1 y h=0.2, extrapolar por Richardson.
- b) Hállese la aceleración instantánea en los mismos instantes y condiciones que en el punto anterior.
- **9-** Un cuerpo móvil de masa 15 kg. se mueve sobre el eje X, su velocidad y distancia están dadas por la siguiente tabla de mediciones:

Segundos	Metros
t	X
3,0	87,000
3,1	95,573
3,2	104,704
3,3	114,411
3,4	124,712
3,5	135,625
3,6	147,168
3,7	159,359
3,8	172,216
3,9	185,757
4,0	200,000

- a) Hállese la fuerza que actúa en el instante t=3.0; en el instante t=3.4 y en el instante t=4.0. Usar h=0.1 y h=0.2, extrapolar por Richardson.
- b) Hállese la velocidad instantánea en los instantes mencionados anteriormente y bajo condiciones idénticas.
- **10** Durante intervalos de 2 segundos se han realizado las siguientes lecturas en un cuenta revoluciones de un automóvil.

Tiempo t segundos	Velocidad angular x revol. por minuto			
2	1000 r.p.m.			
4	1500 r.p.m.			
6	2000 r.p.m.			
8	2500 r.p.m.			

10	3000 r.p.m.
12	3500 r.p.m.
14	3800 r.p.m.
16	4000 r.p.m.

Calcúlese la aceleración angular instantánea en los instantes t= 2, t= 8 y t=10.

11- Un cuerpo móvil de masa $10~\rm kg$ se mueve sobre el eje X, su velocidad y distancia están dadas por la siguiente tabla de mediciones:

Segundos	Velocidad
t	v m/seg.
1,4	37,482667
1,5	39,000000
1,6	40,277333
1,7	41,298667
1,8	42,048000
1,9	42,509333
2,0	42,666667
2,1	42,504000
2,2	42,005333
2,3	41,154667
2,4	39,936000

- a) Hállese la aceleración instantánea en el instante t=1,4; en el instante t=1,9 y en el instante t=2,4. Usar h=0,1 y h=0,2, extrapolar por Richardson.
- b) Hállese la fuerza que actúa en los instantes mencionados anteriormente.