Due: 2/18/21 @ 11:59 pm

Assigned: 2/11/21

Name: ______ ID: _____

1.) Please consider the differential equation below:

$$\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 5y = u$$

- a) (10 pts) Obtain the transfer function Y(s)/U(s) for this system.
- **b)** (10 pts) Find the free response of this differential equation analytically using Laplace transform with initial conditions: y(0) = 1 and $\dot{y}(0) = 0$. Please plot the response for 10 seconds using MATLAB.
- c) (10 pts) Plot the free response to this differential equation by numerical solution using MATLAB. Compare graphically this numerical solution to the analytical solution in (a).

ES3011 – Control Engineering 2021C Homework #3		Assigned: 2/11/21 Due: 2/18/21 @ 11:59 pm
Name:	ID:	
2.) (10 pts) Please solve Problem B-3-6 from Ogat	ta (page 98).	

Name: ______ ID: _____

4.) (10 pts) Please find the inverse Laplace transform of:

$$G(s) = \frac{2s+4}{s^2+6s+10}$$

ES3011 – Control	Engineering	2021C
Homework #3		

Name:	ID:	

5.) (10 pts) Please find the inverse Laplace transform of:

$$G(s) = \frac{s^2 + s + 2}{(s+1)^3}$$

Assigned: 2/11/21 Due: 2/18/21 @ 11:59 pm