Aluno: Rodrigo Alves de Almeida

Turma: COMP-22 **Data:** 08/11/2020

Primeira Avaliação - FQ270

Uma isoterma de adsorção pode ser obtida experimentalmente através da montagem de um gráfico que relaciona q (capacidade de adsorção, em massa ou mols de adsorvato por massa de adsorvente) versus C_e (concentração de adsorvato no equilíbrio, em massa ou mols de soluto por volume de solução) a temperatura constante. Num aparato experimental, o valor de q pode ser obtido a partir da seguinte relação:

$$q = \frac{(C_0 - C_e)V}{m}$$

Sendo ${\cal C}_0$ a concentração inicial de adsorvato, ${\cal V}$ o volume da solução e ${\it m}$ a massa de adsorvente.

Desse modo, os principais modelos para a isoterma de adsorção são destacados a seguir:

a) Isoterma de Langmuir

$$q = \frac{q_{MAX}K_LC_e}{1 + K_LC_e}$$

Sendo q_{MAX} a capacidade máxima de adsorção (mesma unidade de medida de q) e K_L a constante de interação adsorvato/adsorvente (em volume por massa).

Essa equação pode ser reescrita em modelos lineares para determinação dos fatores K_L e $q_{M\!A\!X}$:

$$\begin{split} \frac{1}{q_e} &= \frac{1}{q_{MAX}} + \frac{1}{K_L q_{MAX} C_e} \\ \frac{C_e}{q_e} &= \frac{C_e}{q_{MAX}} + \frac{1}{K_L q_{MAX}} \\ q_e &= q_{MAX} - (\frac{1}{K_L}) \frac{q_e}{C_e} \\ \frac{q_e}{C_e} &= K_L q_{MAX} - K_L q_e \end{split}$$

b) Isoterma de Freundlich

$$q = K_F C_e^{\frac{1}{n}}$$

Sendo 1/n uma constante adimensional relacionada à heterogeneidade da superfície e K_F a constante de capacidade de adsorção de Freundlich, na unidade $mg^{1-(1/n)}\,g^{-1}\,L^{1/n}$.

Pode-se linearizar a equação a partir da aplicação do logaritmo:

$$ln(q) = ln(K_F) + \frac{1}{n} ln(C_e)$$

c) Isotermas de Temkin

$$q = \frac{RT}{b}ln(a_T C_e)$$

Sendo R a constante universal dos gases, T a temperatura, b a constante de Temkin em relação ao calor de sorção e a_T a constante da isoterma de Temkin.

Os fatores b e a_T devem ser determinados, de modo que essa isoterma é mais adequada para processos de adsorção em meio gasoso.

d) Isotermas de Dubinin-Radushkevich

$$q = q_m e^{-k\varepsilon^2}$$
$$\varepsilon = RT \ln(1 + \frac{1}{C_e})$$

Sendo q_m a capacidade máxima de adsorção teórica para a formação de uma monocamada (medida em mol por massa) e k uma constante associada à energia de adsorção, medida em $(mol/J)^2$.

Essa isoterma também é mais recomendada para descrever equilíbrios de adsorção de compostos orgânicos em fase gasosa sobre adsorventes sólidos. A partir da constante k, é possível obter a energia média de adsorção, que pode fornecer informações valiosas sobre a adsorção, como por exemplo a diferenciação de adsorção física e química para metais.

e) Isotermas de Redlich-Peterson

$$q = \frac{K_{RP}C_e}{1 + a_{RP}C_e^{\beta}}$$

Sendo K_{RP} , a_{RP} e β parâmetros da isoterma de Redlich-Peterson.