Conversion Factors 8

1 Introduction

Sections 8 and 9 give factors for converting values of quantities expressed in various units — predominantly units outside the SI that are unacceptable for use with it — to values expressed either in (a) SI units, (b) units that are accepted for use with the SI (especially units that better reflect the nature of the unconverted units), (c) units formed from such accepted units and SI units, or (d) decimal multiples or submultiples of the units of (a) to (c) that yield numerical values of convenient magnitudes.

An example of (d) is the following: the values of quantities expressed in ångströms, such as the wavelengths of visible laser radiations, are usually converted to values expressed in nanometers, not meters. More generally, if desired, one can eliminate powers of 10 that appear in converted values as a result of using the conversion factors (or simply factors for brevity) of Secs. 8 and 9 by selecting an appropriate SI prefix (see Sec. 3).

2 Notation

The factors given in Secs. 8 and 9 are written as a number equal to or greater than 1 and less than 10, with 6 or fewer decimal places. The number is followed by the letter E, which stands for exponent, a plus (+) or minus (-) sign, and two digits which indicate the power of 10 by which the number is multiplied.

Examples:
$$3.523\ 907\ E-02\ means\ 3.523\ 907\times 10^{-2} = 0.035\ 239\ 07$$

 $3.386\ 389\ E+03\ means\ 3.386\ 389\times 10^3 = 3386.389$

A factor in boldface is exact. All other factors have been rounded to the significant digits given in accordance with accepted practice (see ISO 31-0 and ANSI/IEEE Std. 268-1992). Where less than six digits after the decimal place are given, the unit does not warrant a greater number of digits in its conversion. However, for the convenience of the user, this practice is not followed for all such units, including the cord, cup, quad, and teaspoon.

3 Use of conversion factors

Each entry in Secs. 8 and 9 is to be interpreted as in these two examples:

To conv	ert from	to	Multiply b	y
atmospher	re, standard (atm)	. pascal (Pa)	1.013 25	E+05
cubic foot	per second (ft^3/s)	. cubic meter per second (m³/s)	2.831 685	E-02
means	1 atm = 101 325 Pa (exactly); 1 ft ³ /s = 0.028 316 85 m ³ /s.			

Thus to express, for example, the pressure p = 11.8 standard atmospheres (atm) in pascals (Pa), write

$$p = 11.8 \text{ atm} \times 101 325 \text{ Pa/atm}$$

and obtain the converted numerical value $11.8 \times 101~325 = 1~195~635$ and the converted value p = 1.20 MPa.

⁸ Adapted from Appendix B of NIST Special Publication 811.

Notes:

- 1 Guidance on rounding converted numerical values of quantities is given in Sec. 7.2.
- 2 If the value of a quantity is expressed in a unit of the center column of Sec. 8 or 9 and it is necessary to express it in the corresponding unit of the first column, *divide* by the factor.

The factors for derived units not included in Secs. 8 and 9 can readily be found from the factors given.

Examples: To find the factor for converting values in $lb \cdot ft/s$ to values in $kg \cdot m/s$, obtain from Sec. 8 or 9

1 lb =
$$4.535 924 E - 01 kg$$

1 ft = $3.048 E - 01 m$

and substitute these values into the unit lb · ft/s to obtain

and the factor is 1.382550 E-01.

To find the factor for converting values in (avoirdupois) oz \cdot in² to values in kg \cdot m², obtain from Sec. 8 or 9

1 oz =
$$2.834 952 E - 02 kg$$

1 in² = $6.4516 E - 04 m^2$

and substitute these values into the unit oz \cdot in² to obtain

and the factor is 1.828998E-05.

4 Organization of entries and style

In Sec. 8 the units for which factors are given are listed alphabetically, while in Sec 9 the same units are listed alphabetically within the following alphabetized list of kinds of quantities and fields of science:

ACCELERATION

ANGLE

AREA AND SECOND MOMENT OF AREA

CAPACITY (see VOLUME)

DENSITY (that is, MASS DENSITY — (see MASS DIVIDED BY VOLUME)

ELECTRICITY and MAGNETISM

ENERGY (includes WORK)

ENERGY DIVIDED BY AREA TIME

FLOW (see MASS DIVIDED BY TIME or VOLUME DIVIDED BY TIME)

FORCE

FORCE DIVIDED BY AREA (see PRESSURE)

FORCE DIVIDED BY LENGTH

HEAT

Available Energy

Coefficient of Heat Transfer

Density of Heat

Density of Heat Flow Rate

Fuel Consumption

Heat Capacity and Entropy

Heat Flow Rate

Specific Heat Capacity and

Specific Entropy Thermal Conductivity Thermal Diffusivity

Thermal Insulance

Thermal Resistance

Thermal Resistivity

LENGTH

LIGHT

PRESSURE or STRESS (FORCE DIVIDED BY AREA)

MASS and MOMENT OF INERTIA

MASS DENSITY (see MASS DIVIDED BY VOLUME)

MASS DIVIDED BY AREA

MASS DIVIDED BY CAPACITY (see MASS DIVIDED BY VOLUME)

MASS DIVIDED BY LENGTH

MASS DIVIDED BY TIME (includes FLOW)

MASS DIVIDED BY VOLUME (includes MASS DENSITY and MASS CONCENTRATION)

MOMENT OF FORCE or TORQUE

MOMENT OF FORCE or TORQUE, DIVIDED BY LENGTH

PERMEABILITY

POWER

RADIOLOGY

SPEED (see VELOCITY)

STRESS (see PRESSURE)

TEMPERATURE

TEMPERATURE INTERVAL

TIME

TORQUE (see MOMENT

OF FORCE)

VELOCITY (includes SPEED)

VISCOSITY, DYNAMIC

VISCOSITY, KINEMATIC

VOLUME (includes CAPACITY)

VOLUME DIVIDED BY TIME

(includes FLOW)

WORK (see ENERGY)

In Secs. 8 and 9, the units in the left-hand columns are written as they are often used customarily; the rules and style conventions recommended in NIST SP 811 are not necessarily observed. Further, many are obsolete and some are not consistent with good technical practice. The corresponding units in the center columns are, however, written in accordance with the rules and style conventions recommended in NIST SP 811.

5 Factor for converting motor vehicle efficiency

The efficiency of motor vehicles in the United States is commonly expressed in miles per U.S. gallon, while in most other countries it is expressed in liters per one hundred kilometers. To convert fuel economy stated in miles per U.S. gallon to fuel consumption expressed in L/(100 km), divide 235.215 by the numerical value of the stated fuel economy. Thus 24 miles per gallon corresponds to 9.8 L/(100 km).

6 U.S. survey foot and mile

The U.S. Metric Law of 1866 gave the relationship 1 m = 39.37 in (in is the unit symbol for the inch). From 1893 until 1959, the yard was defined as being exactly equal to (3600/3937) m, and thus the foot was defined as being exactly equal to (1200/3937) m.

In 1959 the definition of the yard was changed to bring the U.S. yard and the yard used in other countries into agreement. Since then the yard has been defined as exactly equal to 0.9144 m, and thus the foot has been defined as exactly equal to 0.3048 m. At the same time it was decided that any data expressed in feet derived from geodetic surveys within the United States would continue to bear the relationship as defined in 1893, namely, 1 ft = (1200/3937) m (ft is the unit symbol for the foot). The name of this foot is "U.S. survey foot," while the name of the new foot defined in 1959 is "international foot." The two are related to each other through the expression 1 international foot = 0.999998 U.S. survey foot exactly.

In Secs. 8 and 9, the factors given are based on the international foot unless otherwise indicated. Users of this table may also find the following summary of exact relationships helpful, where for convenience the symbols ft and mi, that is, ft and mi in italic type, indicate that it is the U.S. survey foot or U.S. survey mile that is meant rather than the international foot (ft) or international mile (mi), and where rd is the unit symbol for the rod and fur is the unit symbol for the furlong.

```
1 ft = (1200/3937) m

1 ft = 0.3048 m

1 ft = 0.999 998 ft

1 rd, pole, or perch = 16\frac{1}{2} ft

40 rd = 1 fur = 660 ft

8 fur = 1 U.S. survey mile (also called "statute mile") = 1 mi = 5280 ft

1 fathom = 6 ft

1 international mile = 1 mi = 5280 ft

272 1/4 ft^2 = 1 rd^2

160 rd^2 = 1 acre = 43 560 ft^2

640 acre = 1 mi^2
```

7 Rules for rounding numbers and converted numerical values of quantities

Rules or rounding numbers are discussed in ISO 31-0. ANSI/IEEE Std. 268-1992 gives rules for rounding the converted numerical values of quantities whose values expressed in units that are not accepted for use with the SI (primarily customary or inch-pound units) are converted to values expressed in acceptable units. The principal rules for rounding numbers are given in Sec. 7.1, and the basic principle for rounding converted numerical values of quantities in Sec. 7.2. The cited references should be consulted for additional details.

7.1 Rounding numbers

To replace a number having a given number of digits with a number (called the rounded number) having a smaller number of digits, one may follow these rules:

(1) If the digits to be discarded begin with a digit less than 5, the digit preceding the 5 is not changed.

Example: 6.974 951 5 rounded to 3 digits is 6.97

(2) If the digits to be discarded begin with a 5 and at least one of the following digits is greater than 0, the digit preceding the 5 is increased by 1.

```
Examples: 6.974 951 5 rounded to 2 digits is 7.0 6.974 951 5 rounded to 5 digits is 6.9750
```

(3) If the digits to be discarded begin with a 5 and all of the following digits are 0, the digit preceding the 5 is unchanged if it is even and increased by 1 if it is odd. (Note that this means that the final digit is always even.)

```
Examples: 6.974 951 5 rounded to 7 digits is 6.974 952 6.974 950 5 rounded to 7 digits is 6.974 950
```

7.2 Rounding converted numerical values of quantities

The use of the factors given in Secs. 8 and 9 to convert values of quantities was demonstrated in Sec. 3. In most cases the product of the unconverted numerical value and the factor will be a numerical value with a number of digits that exceeds the number of significant digits (see Sec. 9) of the unconverted numerical value. Proper conversion procedure requires rounding this converted numerical value to the number of significant digits that is consistent with the maximum possible rounding error of the unconverted numerical value.

Example: To express the value l = 36 ft in meters, use the factor **3.048** E-**01** from Sec. B.8 or Sec. B.9 and write

$$l = 36 \text{ ft} \times 0.3048 \text{ m/ft} = 10.9728 \text{ m} = 11.0 \text{ m}.$$

The final result, l=11.0 m, is based on the following reasoning: The numerical value "36" has two significant digits, and thus a relative maximum possible rounding error (abbreviated RE in this *Guide* for simplicity) of $\pm 0.5/36 = \pm 1.4$ % because it could have resulted from rounding the number 35.5, 36.5, or any number between 35.5 and 36.5. To be consistent with this RE, the converted numerical value "10.9728" is rounded to 11.0 or three significant digits because the number 11.0 has an RE of $\pm 0.05/11.0 = \pm 0.45$ %. Although this ± 0.45 % RE is one-third of the ± 1.4 % RE of the unconverted numerical value "36," if the converted numerical value "10.9728" had been rounded to 11 or two significant digits, information contained in the unconverted numerical value "36" would have been lost. This is because the RE of the numerical value "11" is $\pm 0.5/11 = \pm 4.5$ %, which is three times the ± 1.4 % RE of the unconverted numerical value "36." This example therefore shows that when selecting the number of digits to retain in the numerical value of a converted quantity, one must often choose between discarding information or providing unwarranted information. Consideration of the end use of the converted value can often help one decide which choice to make.

Note: Consider that one had been told initially that the value l = 36 ft had been rounded to the nearest inch. Then in this case, since l is known to within ± 1 in, the RE of the numerical value "36" is ± 1 in/(36 ft \times 12 in/ft) = \pm 0.23 %. Although this is less than the \pm 0.45 % RE of the number 11.0, it is comparable to it. Therefore, the result l = 11.0 m is still given as the converted value. (Note that the numerical value "10.97" would give excessive unwarranted information because it has an RE that is one-fifth of \pm 0.23 %.)

Factors in **boldface** are exact

To convert from	to	Multipl	y by
abampere	. ampere (A)	1.0	E+01
abcoulomb	. coulomb (C)	1.0	E+01
abfarad	. farad (F)	1.0	E+09
abhenry	. henry (H)	1.0	E-09
abmho	. siemens (S)	1.0	E+09
abohm	. ohm (Ω)	1.0	E-09
abvolt			E-08
acceleration of free fall, standard (g_n)	. meter per second squared (m/s²)	9.806 65	E+00
acre (based on U.S. survey foot) ⁹			E+03
acre foot (based on U.S. survey foot) 9	. cubic meter (m ³)	1.233 489	E+03
ampere hour (A · h)			E+03
ångström (Å)			E-10
ångström (Å)			E-01
are (a)	. square meter (m ²)	1.0	E+02
astronomical unit (AU)			E+11
atmosphere, standard (atm)			E+05
atmosphere, standard (atm)			E+02
atmosphere, technical (at) 10	. pascal (Pa)	9.806 65	E+04
atmosphere, technical (at) ¹⁰	. kilopascal (kPa)	9.806 65	E+01
bar (bar)	. pascal (Pa)	1.0	E+05
bar (bar)	. kilopascal (kPa)	1.0	E+02
barn (b)	1 ' '		E-28
barrel [for petroleum, 42 gallons (U.S.)](bbl)	. cubic meter (m³)	1.589 873	E-01
barrel [for petroleum, 42 gallons (U.S.)](bbl)	. liter (L)	. 1.589 873	E+02
biot (Bi)	1 1		E+01
British thermal unit _{IT} (Btu _{IT}) ¹¹			E+03
British thermal unit _{th} (Btu _{th}) ¹¹	. joule (J)	. 1.054 350	E+03
British thermal unit (mean) (Btu)	. joule (J)	. 1.055 87	E+03
British thermal unit (39 °F) (Btu)	•		E+03
British thermal unit (59 °F) (Btu)	•		E+03
British thermal unit (60 °F) (Btu)	•	. 1.054 68	E+03
British thermal unit _{IT} foot per hour square foot degrees [Btu _{IT} \cdot ft/(h \cdot ft ² \cdot °F)]	. watt per meter kelvin [$W/(m \cdot K)$]	. 1.730 735	E+00
$\begin{array}{l} British\ thermal\ unit_{th}\ foot\ per\ hour\ square\ foot\ degr\\ [Btu_{th}\cdot ft/(h\cdot ft^2\cdot {}^\circ\!F)]\end{array}$. watt per meter kelvin [W/(m·K)]	. 1.729 577	E+00
British thermal $unit_{IT}$ inch per hour square foot deg $[Btu_{IT} \cdot in/(h \cdot ft^2 \cdot {}^{\circ}F)]$	ree Fahrenheit . watt per meter kelvin [W/(m·K)]	. 1.442 279	E-01
British thermal unit _{th} inch per hour square foot deg $[Btu_{th} \cdot in/(h \cdot ft^2 \cdot {}^{\circ}F)]$. 1.441 314	E-01
British thermal unit _{IT} inch per second square foot d $[Btu_{IT} \cdot in/(s \cdot ft^2 \cdot {}^{\circ}F)]$	egree Fahrenheit . watt per meter kelvin $[W/(m\cdot K)]$. 5.192 204	E+02

⁹ See Sec. 6.

 $^{^{10}}$ One technical atmosphere equals one kilogram-force per square centimeter (1 at = 1 kgf/cm²).

 $^{^{11}}$ The Fifth International Conference on the Properties of Steam (London, July 1956) defined the International Table calorie as 4.1868 J. Therefore the exact conversion factor for the International Table Btu is 1.055 055 852 62 kJ. Note that the notation for International Table used in this listing is subscript "IT". Similarily, the notation for thermochemical is subscript "th." Further, the thermochemical Btu, Btu_{th}, is based on the thermochemical calorie, cal_{th}, where cal_{th} = 4.184 J exactly.

British thermal unit _{th} inch per second square foot degree Fahrenl $[Btu_{th} \cdot in/(s \cdot ft^2 \cdot {}^{\circ}F)]$ watt per me		-02
British thermal unit _{IT} per cubic foot (Btu _{IT} /ft ³)joule per cul	bic meter (J/m³)	-04
British thermal unit _{th} per cubic foot (Btu _{th} /ft ³)joule per cul	bic meter (J/m ³)	-04
British thermal unit _{IT} per degree Fahrenheit (Btu _{IT} /°F)joule per kei		+03
British thermal unit _{th} per degree Fahrenheit		
(Btu _{th} /°F)joule per kel British thermal unit _{IT} per degree Rankine	lvin (J/k) 1.897 830 E+	⊦03
(Btu _{IT} /°R)joule per kel British thermal unit _{th} per degree Rankine	lvin (J/k) 1.899 101 E+	+03
$(Btu_{th}/^{\circ}R)$ joule per ke		-03
British thermal unit _{IT} per hour (Btu_{IT}/h) watt (W)		-01
British thermal unit _{th} per hour (Btu_{th}/h) watt (W)	2.928 751 E-	-01
$British \ thermal \ unit_{IT} \ per \ hour \ square \ foot \ degree \ Fahrenheit \\ [Btu_{IT}/(h \cdot ft^2 \cdot {}^\circ\!F)] \ \ watt \ per \ square \ hour \ square \ foot \ degree \ Fahrenheit \\ [Btu_{IT}/(h \cdot ft^2 \cdot {}^\circ\!F)] \ \ watt \ per \ square \ hour \ hour \ square \ hour \ square \ hour \ hou$	are meter kelvin	
	K)]	-00
British thermal unit _{th} per hour square foot degree Fahrenheit		
$[Btu_{th}/(h \cdot ft^2 \cdot {}^{\circ}F)]$ watt per squ		-00
British thermal unit _{th} per minute (Btu _{th} /min) watt (W)		-01
British thermal unit _{IT} per pound (Btu_{IT}/Ib)joule per kil		+03
British thermal unit _{th} per pound (Btu _{th} /lb) joule per kil	ogram (J/kg) 2.324 444 E+	-03
British thermal unit _{IT} per pound degree Fahrenheit [Btu _{IT} /(lb · °F)]joule per kil	ogram kelvin (J/(kg · K)] 4.1868 E+	⊦03
British thermal unitth per pound degree Fahrenheit		
$[Btu_{th}/(lb \cdot {}^{\circ}F)]$ joule per kil	ogram kelvin $[J/(kg \cdot K)]$ 4.184 E+	⊦03
$British \ thermal \ unit_{IT} \ per \ pound \ degree \ Rankine \\ [Btu_{IT}/(lb \cdot {}^{\circ}R)] \ joule \ per \ kil$		+03 +03
British thermal unit _{IT} per pound degree Rankine	ogram kelvin [J/(kg · K)] 4.1868 E 4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ogram kelvin $[J/(kg \cdot K)]$	+03
$\label{eq:British thermal unit_T} \begin{array}{lll} British thermal unit_T per pound degree Rankine & joule per kil \\ [Btu_{IT}/(lb \cdot {}^{\circ}R)] & & & \\ British thermal unit_th per pound degree Rankine & [Btu_{th}/(lb \cdot {}^{\circ}R)] & & & \\ & & & & \\ [Btu_{th}/(lb \cdot {}^{\circ}R)] & & & \\ \end{array}$	ogram kelvin $[J/(kg \cdot K)]$. 4.1868 E+ ogram kelvin $[J/(kg \cdot K)]$. 4.184 E-	+03 +03
$\label{eq:british thermal unit_T per pound degree Rankine} British thermal unit_th per pound degree Rankine} British thermal unit_th per pound degree Rankine} British thermal unit_T per second (Btu_{IT}/s)$	ogram kelvin [J/(kg · K)]	+ 03 + 03 + 03
$\label{eq:british thermal unit_T} \text{British thermal unit_T} \text{ per pound degree Rankine} \qquad \qquad \text{joule per kil} \\ \text{British thermal unit_th per pound degree Rankine} \\ \text{[Btu_{th}/(lb \cdot^\circ$R)]} \qquad \qquad \qquad \text{joule per kil} \\ \text{British thermal unit_{IT} per second (Btu_{IT}/s)} \qquad \qquad \text{watt (W)} \qquad \qquad \text{British thermal unit_th per second (Btu_{th}/s)} \qquad \qquad \text{watt (W)} \qquad \qquad \text{British thermal unit_{IT} per second square foot degree Fahrenheit} \\ \text{[Btu_{IT}/(s \cdot ft^2 \cdot^\circ$F)]} \qquad \qquad \qquad \text{watt per square foot degree} \qquad \qquad \text{[W/(m^2 \cdot^\circ$]} \qquad \qquad \text{watt per square foot degree} \qquad \qquad \text{[W/(m^2 \cdot^\circ$]} \qquad \qquad \text{watt per square foot degree} \qquad \qquad \text{[W/(m^2 \cdot^\circ$]} \qquad \qquad \text{watt per square foot degree} \qquad \qquad \text{[W/(m^2 \cdot^\circ$]} \qquad \qquad \text{[W/(m^2 \cdot]} \qquad \qquad $	ogram kelvin [J/(kg · K)]	+ 03 + 03 + 03
British thermal unit $_{IT}$ per pound degree Rankine $[Btu_{IT}/(lb \cdot {}^{\circ}R)]$	ogram kelvin [J/(kg · K)]	+03 +03 +03 +03 +04
$\label{eq:british thermal unit_IT} \text{British thermal unit_IT} \text{ per pound degree Rankine} [Btu_{\text{IT}}/(lb \cdot {}^\circ R)] \qquad \qquad \text{joule per kil} \\ \text{British thermal unit_Ith} \text{ per pound degree Rankine} [Btu_{\text{th}}/(lb \cdot {}^\circ R)] \qquad \qquad \text{joule per kil} \\ \text{British thermal unit_IT} \text{ per second } (Btu_{\text{IT}}/s) \qquad \text{watt } (W) \qquad \text{British thermal unit_IT} \text{ per second } \text{Square foot degree Fahrenheit} [Btu_{\text{IT}}/(s \cdot \text{ft}^2 \cdot {}^\circ F)] \qquad \qquad \text{watt per square} [W/(m^2 \cdot British \text{ thermal unit_Ith} \text{ per second square foot degree Fahrenheit} [Btu_{\text{th}}/(s \cdot \text{ft}^2 \cdot {}^\circ F)] \qquad \qquad \text{watt per square} [W/(m^2 \cdot British \text{ thermal unit_IT} \text{ per square foot} \text{British thermal unit_IT} \text{per square foot} \text{square foot} square f$	ogram kelvin [J/(kg · K)]	+03 +03 +03 +04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ogram kelvin [J/(kg · K)]. 4.1868 E+ ogram kelvin [J/(kg · K)]. 4.184 E+	+03 +03 +03 +03 +04 +04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ogram kelvin [J/(kg · K)]	+03 +03 +03 +04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ogram kelvin [J/(kg · K)]	+03 +03 +03 +03 +04 +04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ogram kelvin [J/(kg · K)]. 4.1868 E4 ogram kelvin [J/(kg · K)]. 4.184 E4	+03 +03 +03 +04 +04 +04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ogram kelvin $[J/(kg \cdot K)]$. 4.1868 E+ ogram kelvin $[J/(kg \cdot K)]$. 4.184 E+	+03 +03 +03 +04 +04 +04 +04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ogram kelvin $[J/(kg \cdot K)]$ 4.1868 E+ ogram kelvin $[J/(kg \cdot K)]$ 4.184 E+	+03 +03 +03 +04 +04 +04 +04 +00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ogram kelvin $[J/(kg \cdot K)]$. 4.184 E4 ogram kelvin $[J/(kg \cdot K)]$. 4.184 E4	+03 +03 +03 +03 +04 +04 +04 +04 +00 +00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ogram kelvin $[J/(kg \cdot K)]$. 4.184 E+ ogram kelvin $[J/(kg \cdot K)]$. 4.184 E+	+03 +03 +03 +04 +04 +04 +04 +00 +00 +02

To convert from	to	Multipl	y by
bushel (U.S.) (bu)	cubic meter (m ³)	. 3.523 907	E-02
bushel (U.S.) (bu)			E+01
, , ,	. ,		
calorie _{IT} (cal _{IT}) ¹¹	. joule (J)	4.1868	E+00
calorie _{th} (cal _{th}) ¹¹	. joule (J)	. 4.184	E+00
calorie (cal) (mean)	. joule (J)	. 4.190 02	E+00
calorie (15 °C) (cal ₁₅)	. joule (J)	. 4.185 80	E+00
calorie (20 °C) (cal ₂₀)			E+00
calorie _{IT} , kilogram (nutrition) ¹²	. joule (J)	. 4.1868	E+03
calorie _{th} , kilogram (nutrition) ¹²	. joule (J)	. 4.184	E+03
calorie (mean), kilogram (nutrition) ¹²	. joule (J)	. 4.190 02	E+03
calorie _{th} per centimeter second degree Celsius [cal _{th} /(cm \cdot s \cdot °C)]	. watt per meter kelvin [W/(m·K)]	. 4.184	E+02
calorie _{IT} per gram (cal _{IT} /g)			E+03
calorie _{th} per gram (cal _{th} /g)			E+03
calorie _{IT} per gram degree Celsius			
$[\operatorname{cal}_{\operatorname{IT}}/(g \cdot {}^{\circ}\operatorname{C})]$. joule per kilogram kelvin $[J/(kg\cdot K)].\dots\dots$. 4.1868	E+03
calorie _{th} per gram degree Celsius [cal _{th} /(g \cdot $^{\circ}$ C)]	. joule per kilogram kelvin [J/(kg·K)]	. 4.184	E+03
calorie _{IT} per gram kelvin [cal _{IT} /(g · K)]			E+03
calorie _{th} per gram kelvin $[cal_{th}/(g \cdot K)]$			E+03
calorie _{th} per minute (cal _{th} /min)			E-02
calorie _{th} per second (cal _{th} /s)			E+00
calorie _{th} per square centimeter (cal _{th} /cm ²)			E+04
calorie _{th} per square centimeter minute [cal _{th} /(cm ² · min)]			E+02
calorie _{th} per square centimeter second [cal _{th} /(cm ² · s)]			E+04
candela per square inch (cd/in²)			E+04 E+03
carat, metric			E+03
			E-04 E-01
carat, metric			E+03
centimeter of mercury $(0 ^{\circ}\text{C})^{13}$			E+03
centimeter of mercury, conventional (cmHg) ¹³			E+00 E+03
centimeter of mercury, conventional (cmHg)			E+00
centimeter of water $(4 ^{\circ}\text{C})^{13}$			E+00
centimeter of water, conventional (cmH ₂ O) ¹³			E+01
centipoise (cP)	=		E-03
centistokes (cSt)	_		E-06
chain (based on U.S. survey foot) (ch) ⁹			E+01
circular mil.			E-10
circular mil	*		E-04
clo			E-01
cord (128 ft ³)			E+00
cubic foot (ft³)			E-02
cubic foot per minute (ft ³ /min)			E-04
cubic foot per minute (ft / min)	_		E-01
cubic foot per second (ft ³ /s)	_		E-02
caste took per second (it /3)	include per second (in / s)	. 2.031 003	L 02

¹² The kilogram calorie or "large calorie" is an obsolete term used for the kilocalorie, which is the calorie used to express the energy content of foods. However, in practice, the prefix "kilo" is usually omitted.

¹³ Conversion factors for mercury manometer pressure units are calculated using the standard value for the acceleration of gravity and the density of mercury at the stated temperature. Additional digits are not justified because the definitions of the units do not take into account the compressibility of mercury or the change in density caused by the revised practical temperature scale, ITS-90. Similar comments also apply to water manometer pressure units. Conversion factors for conventional mercury and water manometer pressure units are based on ISO 31-3.

To convert from	to	Multipl	y by
cubic inch (in ³) ¹⁴	cubic meter (m ³)	1.638 706	E-05
cubic inch per minute (in ³ /min)			E-07
cubic mile (mi ³)			E+09
cubic yard (yd³)			E-01
cubic yard per minute (yd³/min)			E-02
cup (U.S.)	_		E-04
cup (U.S.)			E-01
cup (U.S.)			E+02
curie (Ci)			E+10
darcy ¹⁵	mater agrand (m²)	0.860.222	E-13
day (d)	•		E+04
day (sidereal).			E+04 E+04
• •	* *		
debye (D)			E-30
degree (angle) (°)			E-02
degree Celsius (temperature) (°C)			
degree Celsius (temperature interval) (°C)			E+00
degree centigrade (temperature) ¹⁶			
degree centigrade (temperature interval) ¹⁶			E+00
degree Fahrenheit (temperature) (°F)	_		
degree Fahrenheit (temperature) (°F)			
degree Fahrenheit (temperature interval)(°F)	_		E-01
degree Fahrenheit (temperature interval)(°F)	. kelvin (K)	. 5.555 556	E-01
degree Fahrenheit hour per British thermal unit $_{IT}$ (°F · h/Btu $_{IT}$)	. kelvin per watt (K/W)	. 1.895 634	E+00
$\begin{array}{c} \text{degree Fahrenheit hour per British thermal unit}_{th} \\ (^{\circ}F \cdot h/Btu_{th}) \end{array}$. kelvin per watt (K/W)	. 1.896 903	E+00
degree Fahrenheit hour square foot per British ther $({}^{\circ}F \cdot h \cdot ft^2/Btu_{IT})$. 1.761 102	E-01
degree Fahrenheit hour square foot per British ther $({}^{\circ}F \cdot h \cdot ft^2/Btu_{th})$	mal unit _{th} . square meter kelvin per watt $(m^2 \cdot K/W) \dots$. 1.762 280	E-01
degree Fahrenheit hour square foot per British ther $[{}^{\circ}F \cdot h \cdot ft^2/(Btu_{IT} \cdot in)]$	mal unit _{IT} inch		E+00
degree Fahrenheit hour square foot per British ther	mal unitth inch		
[°F · h · ft ² /(Btu _{th} · in)]			E+00
(°F · s/Btu _{IT})degree Fahrenheit second per British thermal unit _{tt}		. 5.265 651	E-04
(°F · s/Btu _{th})		. 5.269 175	E-04
degree Rankine (°R)			°R)/1.8
degree Rankine (temperature interval) (°R)			E-01
denier			E-07
denier			E-04
dyne (dyn)			E-05
dyne centimeter (dyn · cm)			E-07
dyne per square centimeter (dyn/cm²)			E-01
dyne per square centimeter (dyn/cm/)	. pascai (i a)	. 1.0	E-01
electronvolt (eV)	. joule (J)	. 1.602 177	E-19
EMU of capacitance (abfarad)	. farad (F)	1.0	E+09
EMU of current (abampere)			E+01
EMU of electric potential (abvolt)			E-08
EMU of inductance (abhenry)			E-09
•			

 $^{^{14}}$ The exact conversion factor is 1.638 706 4 E-05. 15 The darcy is a unit for expressing the permeability of porous solids, not area. 16 The centigrade temperature scale is obsolete; the degree centigrade is only approximately equal to the degree Celsius.

To convert from	to	Multipl	y by
EMU of resistance (abohm)	ohm (Ω)	. 1.0	E-09
erg (erg)	joule (J)	. 1.0	E-07
erg per second (erg/s)	watt (W)	. 1.0	E-07
erg per square centimeter second $ 1 \text{obrkt} \& 1 \text{ru} /(\text{cm}^2 \cdot \text{s})]$	watt per square meter (W/m^2)	. 1.0	E-03
ESU of capacitance (statfarad)	farad (F)	. 1.112 650	E-12
ESU of current (statampere)	ampere (A)	. 3.335 641	E - 10
ESU of electric potential (statvolt)	volt (V)	. 2.997 925	E+02
ESU of inductance (stathenry)	henry (H)	. 8.987 552	E+11
ESU of resistance (statohm)	ohm (Ω)	. 8.987 552	E+11
faraday (based on carbon 12)			E+04
fathom (based on U.S. survey foot) ⁹	meter (m)	. 1.828 804	E+00
fermi	meter (m)	. 1.0	E-15
fermi			E+00
fluid ounce (U.S.) (fl oz)			E-05
fluid ounce (U.S.) (fl oz)	milliliter (mL)	. 2.957 353	E+01
foot (ft)			E-01
foot (U.S. survey) (ft) ⁹	meter (m)	. 3.048 006	E - 01
footcandle	lux (lx)	. 1.076 391	E+01
footlambert			E+00
foot of mercury, conventional (ftHg) ¹³			E+04
foot of mercury, conventional (ftHg) ¹³			E+01
foot of water (39.2 °F) ¹³			E+03
foot of water (39.2 °F) ¹³	kilopascal (kPa)	. 2.988 98	E+00
foot of water, conventional $(ftH_2O)^{13}$			E+03
foot of water, conventional (ftH ₂ O) ¹³	kilopascal (kPa)	. 2.989 067	E+00
foot per hour (ft/h)	*		E-05
foot per minute (ft/min)	meter per second (m/s)	. 5.08	E-03
foot per second (ft/s)			E-01
foot per second squared (ft/s²)			E-01
foot poundal	joule (J)	. 4.214 011	E-02
foot pound-force (ft · lbf)	joule (J)	. 1.355 818	E+00
foot pound-force per hour (ft \cdot lbf/h)	watt (W)	. 3.766 161	E - 04
foot pound-force per minute (ft \cdot lbf/min) $\ldots \ldots$	watt (W)	. 2.259 697	E-02
foot pound-force per second (ft · lbf/s)			E+00
	meter to the fourth power (m^4)		E - 03
franklin (Fr)	coulomb (C)	. 3.335 641	E-10
gal (Gal)	meter per second squared (m/s²)	. 1.0	E-02
gallon [Canadian and U.K. (Imperial)] (gal)	cubic meter (m ³)	. 4.546 09	E-03
gallon [Canadian and U.K. (Imperial)] (gal)	liter (L)	. 4.546 09	E+00
gallon (U.S.) (gal)	cubic meter (m ³)	. 3.785 412	E - 03
gallon (U.S.) (gal)	liter (L)	. 3.785 412	E+00
gallon (U.S.) per day (gal/d)	cubic meter per second (m³/s)	. 4.381 264	E-08
gallon (U.S.) per day (gal/d)	liter per second (L/s)	. 4.381 264	E-05
gallon (U.S.) per horsepower hour $[gal/(hp \cdot h)]$	cubic meter per joule (m ³ /J)	. 1.410 089	E-09
gallon (U.S.) per horsepower hour [gal/(hp · h)]			E-06
gallon (U.S.) per minute (gpm)(gal/min)			
gallon (U.S.) per minute (gpm)(gal/min)	_		E-05 E-02

¹⁷ This is a unit for the quantity second moment of area, which is sometimes called the "moment of section" or "area moment of inertia" of a plane section about a specified axis.

 $^{^{18}}$ The exact conversion factor is $10^4/\pi$.

¹⁹ This conversion factor is based on 1 d = 86 400 s; and 1 Julian century = 36 525 d. (See *The Astronomical Almanac for the Year 1995*, page K6, U.S. Government Printing Office, Washington, DC, 1994).

²⁰ In 1964 the General Conference on Weights and Measures reestablished the name "liter" as a special name for the cubic decimeter. Between 1901 and 1964 the liter was slightly larger (1.000 028 dm³); when one uses high-accuracy volume data of that time, this fact must be kept in mind.

²¹ The value of this unit, 1 nautical mile = 1852 m, was adopted by the First International Extraordinary Hydrographic Conference, Monaco, 1929, under the name "International nautical mile."

²² See Sec. 5.

²³ The exact conversion factor is 4.535 923 7 E-01. All units in Secs. 8 and 9 that contain the pound refer to the avoirdupois pound.

 $^{^{24}}$ If the local value of the acceleration of free fall is taken as $g_n = 9.80665$ m/s² (the standard value), the exact conversion factor is 4.448 221 615 260 5 E+00.

(based on U.S. survey foot) (mi ²) ⁹	To convert from	to	Multiply	y by
pound per minute (lb/min)	pound per inch (lb/in)	kilogram per meter (kg/m)	1.785 797	E+01
pound per second (lb/s)	pound per minute (lb/min)	kilogram per second (kg/s)	7.559 873	E-03
pound per square inch (not pound-force) (th'in')				E-01
pound per square inch (not pound-force) (th'in')				E+00
(Ib/in^)				
psi (pound-force per square inch) (lbf/in²). pascal (Pa). 6.894 757 E+00 quad (10¹5 Btur;)¹¹ joule (J). 1.055 056 E+18 quart (U.S. dry) (dry qt) cubic meter (m²). 1.101 221 E+00 quart (U.S. dry) (dry qt) liter (L). 1.101 221 E+00 quart (U.S. dry) (dry qt) liter (L). 1.101 221 E+00 quart (U.S. liquid) (liq qt). cubic meter (m²). 9.463 529 E+04 quart (U.S. liquid) (liq qt). cubic meter (m²). 9.463 529 E+01 quart (U.S. liquid) (liq qt). liter (L). 9.463 529 E+01 quart (l.S. liquid) (liq qt). liter (L). 9.463 529 E+01 quart (U.S. li	(lb/in ²)			E+02
pasi (pound-force per square inch) (lbf/in²). kilopascal (kPa). 6.894 757 E+00 quad (10¹¹ Burr)¹¹				E-01
quad (10¹¹ Burry¹¹¹ joule (J) 1.055 056 E+18 quart (U.S. dry) (dry qt) cubic meter (m²) 1.101 221 E+03 quart (U.S. liquid) (liq qt) cubic meter (m²) 9.463 529 E-04 quart (U.S. liquid) (liq qt) liter (L) 9.463 529 E-01 rad (absorbed dose) (rad) gray (Gy) 1.0 E-02 revolution (r) radian (rad) 6.283 185 E+00 revolution per minute (rpm) (r/min) radian per second (rad/s) 1.047 198 E-01 revolution per minute (rpm) (r/min) radian per second (rad/s) 1.047 198 E-01 revolution per minute (rpm) (r/min) radian per second (rad/s) 1.047 198 E-01 revolution per minute (rpm) (r/min) radian (rad) 5.25 8 E-04 remitten (R) coulomb per kilogram (C/kg) 2.58 E-04 rpm (revolution per minute) (r/min) radian (rad) 4.848 137 E-06 second (sidereal) second (so) 1.0 E-01 second (sidereal) second (sidereal) 9.972 696 E-01 st		•		E+03
quart (U.S. dry) (dry qt) cubic meter (m³) 1.101 221 E-03 quart (U.S. dry) (dry qt) liter (L) 1.101 221 E+03 quart (U.S. dry) (dry qt) liter (L) 1.101 221 E+04 quart (U.S. liquid) (liq qt) cubic meter (m²) 9.463 529 E-01 mad (absorbed dose) (rad) gray (Gy) 1.0 E-02 rem (rem) sievert (Sv) 1.0 E-02 revolution (r) radian (rad) 6.283 185 E+00 revolution per minute (rpm) (r/min) radian per second (rad/s) 1.047 198 E-01 red (based on U.S. survey foot) (rd) ⁹ meter (m) 5.029 210 E+01 red (based on U.S. survey foot) (rd) ⁹ meter (m) 5.029 210 E+01 rememen (R) coulomb per kilogram (C/kg) 2.58 E-04 rem (revolution per minute) (r/min) radian (rad) 4.848 137 E-06 second (angle) (") radian (rad) 4.848 137 E-06 second (sidereal) second (s) 9.972 696 E-01 shake sho (sidereal)	psi (pound-force per square inch) (lbf/in²)	kilopascal (kPa)	6.894 757	E+00
quart (U.S. dry) (dry qt) liter (L) 1.101 221 E+00 quart (U.S. liquid) (liq qt) cubic meter (m²) 9.463 529 E-04 quart (U.S. liquid) (liq qt) liter (L) 9.463 529 E-01 rad (absorbed dose) (rad) gray (Gy) 1.0 E-02 rem (rem) sievert (Sv) 1.0 E-02 revolution (r) radian (rad) 6.283 185 E+00 revolution per minute (rpm) (r/min) radian (rad) 6.283 185 E+01 revolution per minute (rpm) (r/min) radian per second (rad/s) 1.047 198 E-01 rhe reciprocal pascal second ((Pa·s)⁻¹) 1.0 E+01 recond (assed on U.S. survey foot) (rd)² meter (m) 5.029 210 E+01 rem (revolution per minute) (r/min) radian per second (rad/s) 1.047 198 E-01 second (angle) (°) radian (rad) 4.848 137 E-06 second (sidereal) second (s) 1.0 E-08 shake second (s) 1.0 E-01 shake second (s) 1.0 E-	quad $(10^{15}Btu_{IT})^{11}$	joule (J)	1.055 056	E+18
quart (U.S. liquid) (liq qt) cubic meter (m³) 9.463 529 E-04 quart (U.S. liquid) (liq qt) liter (L) 9.463 529 E-01 rad (absorbed dose) (rad) gray (Gy) 1.0 E-02 revolution (r) radian (rad) 6.283 185 E+00 revolution per minute (rpm) (r/min) radian (rad) 6.283 185 E+00 revolution per minute (rpm) (r/min) radian (rad) 5.029 210 E+01 revolution per minute (rpm) (r/min) radian (rad) 5.029 210 E+01 rowengen (R) coulomb per kilogram (C/kg) 2.58 E-04 rpm (revolution per minute) (r/min) radian (rad) 4.848 137 E-06 second (angle) (*) radian (rad) 4.848 137 E-06 second (sidereal) second (s) 9.972 696 E-01 shake second (s) 1.0 E-01 shug per lot (stigy) kilogram (kg) 1.459 390 E+01 slug per cubic foot (slug/fi³) kilogram (kg) 1.478 930 E+01 slug per foot second (slug/fi³) square meter (m²)<	quart (U.S. dry) (dry qt)	cubic meter (m ³)	1.101 221	E-03
quart (U.S. liquid) (liq qt). liter (L). 9.463 529 E-01 rad (absorbed dose) (rad) gray (Gy) 1.0 E-02 rem (rem) sievert (Sv) 1.0 E-02 revolution (r) radian (rad) 6.283 185 E+00 revolution per minute (rpm) (r/min) radian per second (rad/s) 1.047 198 E-01 rhe reciprocal pascal second ([Pa·s) ⁻¹] 1.0 E+01 rhe reciprocal pascal second ([Pa·s) ⁻¹] 1.0 E+01 rod (based on U.S. survey foot) (rd) ⁹ meter (m) 5.029 210 E+00 remetren (R) coulomb per kilogram (C/kg) 2.58 E-04 rpm (revolution per minute) (r/min) radian (rad) 4.848 137 E-01 second (angle) (") radian (rad) 4.848 137 E-01 second (sidereal) second (s) 1.0 E-01 second (sidereal) second (s) 1.0 E-08 shake nanosecond (ns) 1.0 E-01 slug per foot (slug/ft²) kilogram (kg) 1.459 390 E+01 </td <td>quart (U.S. dry) (dry qt)</td> <td> liter (L)</td> <td>1.101 221</td> <td>E+00</td>	quart (U.S. dry) (dry qt)	liter (L)	1.101 221	E+00
quart (U.S. liquid) (liq qt). liter (L). 9.463 529 E-01 rad (absorbed dose) (rad) gray (Gy) 1.0 E-02 rem (rem) sievert (Sv) 1.0 E-02 revolution (r) radian (rad) 6.283 185 E+00 revolution per minute (rpm) (r/min) radian per second (rad/s) 1.047 198 E-01 rhe reciprocal pascal second ([Pa·s) ⁻¹] 1.0 E+01 rhe reciprocal pascal second ([Pa·s) ⁻¹] 1.0 E+01 rod (based on U.S. survey foot) (rd) ⁹ meter (m) 5.029 210 E+00 remetren (R) coulomb per kilogram (C/kg) 2.58 E-04 rpm (revolution per minute) (r/min) radian (rad) 4.848 137 E-01 second (angle) (") radian (rad) 4.848 137 E-01 second (sidereal) second (s) 1.0 E-01 second (sidereal) second (s) 1.0 E-08 shake nanosecond (ns) 1.0 E-01 slug per foot (slug/ft²) kilogram (kg) 1.459 390 E+01 </td <td></td> <td></td> <td></td> <td>E-04</td>				E-04
				E-01
	rad (absorbed dose) (rad)	eray (Gv)	1.0	E-02
revolution (r)				
revolution per minute (rpm) (r/min)				
rhe				
rod (based on U.S. survey foot) (rd) ⁹ meter (m)				
roentgen (R) coulomb per kilogram (C/kg) 2.58 E-04 rpm (revolution per minute) (r/min) radian per second (rad/s) 1.047 198 E-01 second (angle) (") radian (rad) 4.848 137 E-06 second (sidereal) second (s) 9.972 696 E-01 shake second (s) 1.0 E-08 shake nanosecond (ns) 1.0 E+01 slug (slug) kilogram (kg) 1.459 390 E+01 slug per cubic foot (slug/ft³) kilogram per cubic meter (kg/m³) 5.153 788 E+02 slug per foot second [slug/(ft *s)] pascal second (Pa · s) 4.788 026 E+01 square foot (ft²) square meter (m²) 9.290 304 E-02 square foot per hour (ft²/h) square meter per second (m²/s) 9.290 304 E-02 square foot per second (ft²/s) square meter per second (m²/s) 9.290 304 E-02 square inch (in²) square meter (m²) 6.4516 E-04 square inch (in²) square meter (m²) 2.589 988 E+06 square mile (mi²) <				
rpm (revolution per minute) (r/min)	-			
second (angle) (") radian (rad) 4.848 137 E −06 second (sidereal) second (s) 9.972 696 E −01 shake second (s) 9.972 696 E −01 shake second (s) 1.0 E −08 shake nanosecond (ns) 1.0 E +01 slug (slug) kilogram (kg) 1.459 390 E +01 slug per cubic foot (slug/ft³) kilogram per cubic meter (kg/m³) 5.153 788 E +02 slug per foot second [slug/(ft · s)] pascal second (Pa · s) 4.788 026 E +01 square foot (ft²) square meter (m²) 9.290 304 E −02 square foot per second (ft²/s) square meter second (m²/s) 9.290 304 E −02 square foot per second (ft²/s) square meter per second (m²/s) 9.290 304 E −02 square inch (in²) square meter (m²) 6.4516 E −04 square inch (in²) square meter (m²) 6.4516 E +00 square mile (mi²) square kilometer (km²) 2.589 988 E +06 square mile (mi²) square kilometer (km²)	-			
second (sidereal) second (s) 9.972 696 E-01 shake second (s) 1.0 E-08 shake nanosecond (ns) 1.0 E+01 slug (slug) kilogram (kg) 1.459 390 E+01 slug per cubic foot (slug/ft³) kilogram per cubic meter (kg/m³) 5.153 788 E+02 slug per foot second [slug/(ft * s)] pascal second (Pa · s) 4.788 026 E+01 square foot second (ft²) square meter (m²) 9.290 304 E-02 square foot per hour (ft²/h) square meter per second (m²/s) 2.580 64 E-05 square foot per second (ft²/s) square meter per second (m²/s) 9.290 304 E-02 square foot per second (ft²/s) square meter (m²) 6.4516 E-04 square inch (in²) square meter (m²) 6.4516 E-04 square mile (mi²) square centimeter (m²) 2.589 988 E+06 square mile (mi²) square kilometer (km²) 2.589 998 E+06 square mile (based on U.S. survey foot) (mi²) ⁹ square meter (m²) 2.589 998 E+06	rpm (revolution per minute) (r/min)	radian per second (rad/s)	1.047 198	E-01
shake. second (s) 1.0 E-08 shake. nanosecond (ns) 1.0 E+01 slug (slug) kilogram (kg) 1.459 390 E+01 slug per cubic foot (slug/ft³) kilogram (kg) 1.459 390 E+01 slug per cubic foot (slug/ft³) kilogram per cubic meter (kg/m³) 5.153 788 E+02 slug per foot second [slug/(ft · s)] pascal second (Pa · s) 4.788 026 E+01 square foot (ft²) square meter (m²) 9.290 304 E-02 square foot per hour (ft²/h) square meter per second (m²/s) 2.580 64 E-05 square foot per second (ft²/s) square meter per second (m²/s) 9.290 304 E-02 square foot per second (ft²/s) square meter (m²) 6.4516 E-05 square foot per second (ft²/s) square meter (m²) 6.4516 E-04 square mide (mi cin²) square meter (m²) 6.4516 E+00 square mile (mi²) square meter (m²²) 2.589 988 E+06 square mile (based on U.S. survey foot) (mi²) square meter (m²) 2.589 998 E+06				E-06
shake nanosecond (ns) 1.0 E+01 slug (slug) kilogram (kg) 1.459 390 E+01 slug per cubic foot (slug/ft³) kilogram (kg) 1.459 390 E+01 slug per cubic foot (slug/ft³) kilogram per cubic meter (kg/m³) 5.153 788 E+02 slug per foot second [slug/(ft · s)] pascal second (Pa · s) 4.788 026 E+01 square foot (ft²) square meter (m²) 9.290 304 E-02 square foot per hour (ft²/h) square meter per second (m²/s) 2.580 64 E-05 square foot per second (ft²/s) square meter per second (m²/s) 9.290 304 E-02 square inch (in²) square meter (m²) 6.4516 E-04 square inch (in²) square meter (m²) 6.4516 E+00 square mile (mi²) square meter (m²) 2.589 988 E+06 square mile (mi²) square meter (m²) 2.589 988 E+06 square mile (mi²) square kilometer (km²) 2.589 988 E+00 square mile (based on U.S. survey foot) (mi²) square meter (m²) 2.589 998 E+06 square mile (based on U.S. survey foot) (mi²) square meter (m²) 2.589 998 E+00 square mile (based on U.S. survey foot) (mi²) square kilometer (km²) 2.589 998 E+00 square mile (based on U.S. survey foot) (mi²) square meter (m²) 2.589 998 E+00 square mile (based on U.S. survey foot) (mi²) square meter (m²) 3.335 641 E-10 statcoulomb coulomb (C) 3.335 641 E-10 statcoulomb coulomb (C) 3.335 641 E-10 statcoulomb coulomb (C) 3.335 641 E-10 statcoulomb siemens (S) 1.112 650 E-12 statcoulomb				E - 01
slug (slug) kilogram (kg) 1.459 390 E+01 slug per cubic foot (slug/ft³) kilogram per cubic meter (kg/m³) 5.153 788 E+02 slug per foot second [slug/(ft · s)] pascal second (Pa · s) 4.788 026 E+01 square foot (ft²) square meter (m²) 9.290 304 E-02 square foot per hour (ft²/h) square meter per second (m²/s) 2.580 64 E-05 square foot per second (ft²/s) square meter (m²) 9.290 304 E-02 square foot per second (ft²/s) square meter (m²) 9.290 304 E-02 square foot per second (ft²/s) square meter (m²) 6.4516 E-04 square inch (in²) square meter (m²) 6.4516 E-04 square mile (mi²) square meter (m²) 2.589 988 E+06 square mile (mi²) square kilometer (km²) 2.589 988 E+06 square mile (based on U.S. survey foot) (mi²)³ square meter (m²) 2.589 998 E+06 square yard (yd²) square kilometer (km²) 2.589 998 E+06 square yard (yd²) square meter (m²) 3.335 641	shake	second (s)	1.0	E-08
slug per cubic foot (slug/ft³) kilogram per cubic meter (kg/m³) 5.153 788 E+02 slug per foot second [slug/(ft · s)] pascal second (Pa · s). 4.788 026 E+01 square foot (ft²) square meter (m²). 9.290 304 E-02 square foot per hour (ft²/h) square meter per second (m²/s). 2.580 64 E-05 square foot per second (ft²/s) square meter per second (m²/s). 9.290 304 E-02 square inch (in²) square meter (m²). 6.4516 E-04 square inch (in²) square meter (m²). 6.4516 E+00 square mile (mi²) square meter (m²). 2.589 988 E+06 square mile (mi²) square meter (m²). 2.589 988 E+00 square mile (mi²) square kilometer (km²). 2.589 988 E+00 square mile (based on U.S. survey foot) (mi²)9 square meter (m²). 2.589 998 E+06 square mile (based on U.S. survey foot) (mi²)9 square kilometer (km²). 2.589 998 E+00 square yard (yd²). square meter (m²). 8.361 274 E-01 statampere ampere (A). 3.335 641 E-10 statampere ampere (A). 3.335 641 E-10 statampere ampere (A). 3.335 641 E-10 statampere henry (H). 8.987 552 E+11 statuho siemens (S). 1.112 650 E-12 statohm. shorn (Ω). 8.987 552 E+11 statuho. siemens (S). 1.112 650 E-12 statohm. shorn (Ω). 8.987 552 E+11 statuho. siemens (S). 1.10 E+00 stilb (sb). candela per square meter (cd/m²). 1.0 E+00	shake	nanosecond (ns)	1.0	E+01
slug per foot second [slug/(ft · s)]	slug (slug)	kilogram (kg)	1.459 390	E+01
square foot (ft^2) square meter (m^2) 9.290 304 E-02 square foot per hour (ft^2/h) square meter per second (m^2/s) 2.580 64 E-05 square foot per second (ft^2/s) square meter per second (m^2/s) 9.290 304 E-02 square inch (in^2) square meter (m^2) 6.4516 E-04 square inch (in^2) square centimeter (cm^2) 6.4516 E+00 square mile (mi^2) square meter (m^2) 2.589 988 E+06 square mile (mi^2) square kilometer (km^2) 2.589 988 E+00 square mile (based on U.S. survey foot) (mi^2) square meter (m^2) 2.589 998 E+06 square mile (based on U.S. survey foot) (mi^2) square kilometer (km^2) 2.589 998 E+00 square yard (y^2) square meter (m^2) 8.361 274 E-01 statampere ampere (A) 3.335 641 E-10 statarad farad (F) 1.112 650 E-12 stathenry henry (H) 8.987 552 E+11 statohm ohm (Ω) 8.987 552 E+11	slug per cubic foot (slug/ft ³)	kilogram per cubic meter (kg/m³)	5.153 788	E+02
square foot per hour (ft²/h) square meter per second ($m²/s$). 2.580 64 E-05 square foot per second (ft²/s) square meter per second ($m²/s$). 9.290 304 E-02 square inch ($m²$) square meter ($m²$). 6.4516 E-04 square inch ($m²$) square entimeter ($m²$). 6.4516 E+00 square mile ($m²$). square meter ($m²$). 2.589 988 E+06 square mile ($m²$). square kilometer ($m²$). 2.589 988 E+00 square mile ($m²$) square meter ($m²$). 2.589 998 E+00 square mile ($m²$) square meter ($m²$). 2.589 998 E+06 square mile ($m²$) square meter ($m²$). 2.589 998 E+06 square mile ($m²$) square meter ($m²$). 2.589 998 E+06 square mile ($m²$) square meter ($m²$). 2.589 998 E+06 square mile ($m²$) square meter ($m²$). 3.335 641 E-01 statampere ampere ($m²$) square meter ($m²$). 3.335 641 E-10 statampere ($m²$) square meter ($m²$) statampere ampere ($m²$) square meter ($m²$) square met	slug per foot second $[slug/(ft\cdot s)]$	pascal second (Pa·s)	4.788 026	E+01
square foot per second (ft²/s) square meter per second (m²/s) 9.290 304 E-02 square inch (in²) square meter (m²) 6.4516 E-04 square inch (in²) square centimeter (cm²) 6.4516 E+00 square mile (mi²) square meter (m²) 2.589 988 E+06 square mile (mi²) square kilometer (km²) 2.589 988 E+00 square mile (based on U.S. survey foot) (mi²) square meter (m²) 2.589 998 E+06 square mile (based on U.S. survey foot) (mi²) square kilometer (km²) 2.589 998 E+00 square yard (yd²) square meter (m²) 8.361 274 E-01 statampere ampere (A) 3.335 641 E-10 statcoulomb coulomb (C) 3.335 641 E-10 stattfarad farad (F) 1.112 650 E-12 stathenry henry (H) 8.987 552 E+11 statohm ohm (Ω) 8.987 552 E+11 statohm ohm (Ω) 8.987 552 E+11 statohm cubic meter (m²) 1.0 E+00	square foot (ft ²)	square meter (m ²)	9.290 304	E - 02
square inch (in²) square meter (m²) 6.4516 E-04 square inch (in²) square centimeter (cm²) 6.4516 E+00 square mile (mi²) square meter (m²) 2.589 988 E+06 square mile (mi²) square kilometer (km²) 2.589 988 E+00 square mile (based on U.S. survey foot) (mi²) square meter (m²) 2.589 998 E+06 square mile (based on U.S. survey foot) (mi²) square kilometer (km²) 2.589 998 E+00 square yard (yd²) square meter (m²) 8.361 274 E-01 statampere ampere (A) 3.335 641 E-10 statcoulomb coulomb (C) 3.335 641 E-10 statfarad farad (F) 1.112 650 E-12 stathenry henry (H) 8.987 552 E+11 statohm ohm (Ω) 8.987 552 E+11 statoolm volt (V) 2.997 925 E+02 stere (st) cubic meter (m³) 1.0 E+00 stilb (sb) candela per square meter (cd/m²) 1.0 E+04	square foot per hour (ft^2/h)	square meter per second (m ² /s)	2.580 64	E-05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	square foot per second (ft ² /s)	square meter per second (m ² /s)	9.290 304	E-02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	square inch (in ²)	square meter (m ²)	6.4516	E - 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_		E+00
square mile (mi²) square kilometer (km²) $2.589~988$ E+00 square mile (based on U.S. survey foot) (mi²)9 square meter (m²) $2.589~998$ E+06 square mile (based on U.S. survey foot) (mi²)9 square kilometer (km²) $2.589~998$ E+00 square yard (yd²) square meter (m²) $8.361~274$ E-01 statampere ampere (A) $3.335~641$ E-10 statcoulomb coulomb (C) $3.335~641$ E-10 statfarad farad (F) $1.112~650$ E-12 stathenry henry (H) $8.987~552$ E+11 statohm ohm (Ω) $8.987~552$ E+11 statvolt volt (V) $2.997~925$ E+02 stere (st) cubic meter (m³) 1.0 E+00 stilb (sb) candela per square meter (cd/m²) 1.0 E+04	square mile (mi ²)	square meter (m ²)	2.589 988	E+06
square mile (based on U.S. survey foot) $(mi^2)^9$ square meter (m^2) 2.589 998 E+06 square mile (based on U.S. survey foot) $(mi^2)^9$ square kilometer (km^2) 2.589 998 E+00 square yard (yd^2) square meter (m^2) 8.361 274 E-01 statampere ampere (A) 3.335 641 E-10 statcoulomb coulomb (C) 3.335 641 E-10 statfarad farad (F) 1.112 650 E-12 stathenry henry (H) 8.987 552 E+11 statumho siemens (S) 1.112 650 E-12 statohm ohm (Ω) 8.987 552 E+11 statvolt volt (V) 2.997 925 E+02 stere (st) cubic meter (m^3) 1.0 E+00 stilb (sb) candela per square meter (cd/m^2) 1.0 E+04	=	=		E+00
square mile $(based on U.S. survey foot) (mi^2)^9$ square kilometer (km^2) $2.589 998$ $E+00$ square yard (yd^2) square meter (m^2) $8.361 274$ $E-01$ statampere ampere (A) $3.335 641$ $E-10$ statcoulomb coulomb (C) $3.335 641$ $E-10$ statfarad farad (F) $1.112 650$ $E-12$ stathenry henry (H) $8.987 552$ $E+11$ statumho siemens (S) $1.112 650$ $E-12$ statohm ohm (Ω) $8.987 552$ $E+11$ statvolt volt (V) $2.997 925$ $E+02$ stere (st) cubic meter (m^3) 1.0 $E+00$ stilb (sb) candela per square meter (cd/m^2) 1.0 $E+04$	square mile			F±06
$\begin{array}{llllllllllllllllllllllllllllllllllll$	square mile			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	*		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		* * *		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
statohm. ohm (Ω) 8.987 552 E+11 statvolt. volt (V) 2.997 925 E+02 stere (st) cubic meter (m^3) 1.0 E+00 stilb (sb) candela per square meter (cd/m^2) 1.0 E+04		-		
statvolt volt (V) 2.997 925 E+02 stere (st) cubic meter (m^3) 1.0 E+00 stilb (sb) candela per square meter (cd/m^2) 1.0 E+04	statmho	siemens (S)	1.112 650	E-12
stere (st) cubic meter (m 3) 1.0 E+00 stilb (sb) candela per square meter (cd/m 2) 1.0 E+04	statohm	ohm (Ω)	8.987 552	E+11
stilb (sb)	statvolt	volt (V)	2.997 925	E+02
				E+00
	stilb (sb)	candela per square meter (cd/m²)	1.0	E+04
	stokes (St)	meter squared per second (m ² /s)	1.0	E-04

To convert from	to	Multipl	y by
tablespoon	cubic meter (m ³)	. 1.478 676	E-05
tablespoon	milliliter (mL)	. 1.478 676	E+01
teaspoon	cubic meter (m ³)	. 4.928 922	E-06
teaspoon	milliliter (mL)	. 4.928 922	E+00
tex	kilogram per meter (kg/m)	. 1.0	E-06
therm (EC) ²⁵	joule (J)	. 1.055 06	E+08
therm (U.S.) ²⁵	joule (J)	. 1.054 804	E+08
ton, assay (AT)	kilogram (kg)	. 2.916 667	E - 02
ton, assay (AT)	gram (g)	. 2.916 667	E+01
ton-force (2000 lbf)	newton (N)	. 8.896 443	E+03
ton-force (2000 lbf)	kilonewton (kN)	. 8.896 443	E+00
ton, long (2240 lb)	kilogram (kg)	. 1.016 047	E+03
ton, long, per cubic yard	kilogram per cubic meter (kg/m³)	. 1.328 939	E+03
ton, metric (t)	kilogram (kg)	. 1.0	E+03
tonne (called "metric ton" in U.S.) (t)	kilogram (kg)	. 1.0	E+03
ton of refrigeration (12 000 Btu $_{IT}/h$)			E+03
ton of TNT (energy equivalent) ²⁶	joule (J)	. 4.184	E+09
ton, register	cubic meter (m ³)	. 2.831 685	E+00
ton, short (2000 lb)	kilogram (kg)	. 9.071 847	E+02
ton, short, per cubic yard	kilogram per cubic meter (kg/m³)	. 1.186 553	E+03
ton, short, per hour	kilogram per second (kg/s)	. 2.519 958	E - 01
torr (Torr)	pascal (Pa)	. 1.333 224	E+02
unit pole	weber (Wb)	. 1.256 637	E-07
watt hour (W · h)	3		E+03
watt per square centimeter (W/cm²)			E+04
watt per square inch (W/in²)	watt per square meter (W/m^2)	. 1.550 003	E+03
watt second (W · s)	joule (J)	. 1.0	E+00
yard (yd)	meter (m)	. 9.144	E-01
year (365 days)	second (s)	3.1536	E+07
year (sidereal)	second (s)	. 3.155 815	E+07
year (tropical)	second (s)	. 3.155 693	E+07

²⁵ The therm (EC) is legally defined in the Council Directive of 20 December 1979, Council of the European Communities (now the European Union, EU). The therm (U.S.) is legally defined in the Federal Register of July 27, 1968. Although the therm (EC), which is based on the International Table Btu, is frequently used by engineers in the United States, the therm (U.S.) is the legal unit used by the U.S. natural gas industry.

²⁶ Defined (not measured) value.

Factors in **boldface** are exact

To convert from to	Multiply	by
ACCELERATION		
acceleration of free fall, standard (g_n) meter per second squared (m/s^2)	9.806 65	E+00
foot per second squared (ft/s^2) meter per second squared (m/s^2)		E-01
gal (Gal) meter per second squared (m/s ²)		E-02
inch per second squared (in/s ²) meter per second squared (m/s ²)	2.54	E-02
ANGLE		
degree (°)	1.745 329	E-02
gon (also called grade) (gon) radian (rad).		E-02
gon (also called grade) (gon)		E-01
mil radian (rad)		E-04
mil degree (°)		E-02
minute (')radian (rad)		E-04
revolution (r) radian (rad)	6.283 185	E+00
second (") radian (rad)	4.848 137	E-06
AREA AND SECOND MOMENT OF AREA		
acre (based on U.S. survey foot) ⁹	4.046 873	E+03
are (a)		E+02
barn (b)		E-28
circular mil		E-10
circular mil		E-04
foot to the fourth power (ft ⁴) ¹⁷ meter to the fourth power (m ⁴)		E-03
hectare (ha) square meter (m ²)		E+04
inch to the fourth power (in ⁴) ¹⁷ meter to the fourth power (m ⁴)		E-07
square foot (ft ²) square meter (m ²)	9.290 304	E-02
square inch (in²) square meter (m²)	6.4516	E-04
square inch (in²) square centimeter (cm²)	6.4516	E+00
square mile (mi ²) square meter (m ²)	2.589 988	E+06
square mile (mi ²) square kilometer (km ²)	2.589 988	E+00
square mile (based on U.S. survey foot) (mi ²) ⁹	2.589 998	E+06
square mile		
(based on U.S. survey foot) (mi ²) ⁹ square kilometer (km ²)		E+00
square yard (yd²) square meter (m²)	8.361 274	E-01
CAPACITY (see VOLUME)		
DENSITY (that is, MASS DENSITY — see MASS DIVIDED BY VOLUME))	
ELECTRICITY and MAGNETISM		
abampere ampere (A)	1.0	E+01
abcoulomb coulomb (C)	1.0	E+01
abfarad farad (F)	1.0	E+09
abhenry henry (H)	1.0	E-09
abmhosiemens (S)	1.0	E+09
abohmohm (Ω)	1.0	E-09
abvolt volt (V)	1.0	E-08
ampere hour (A · h)coulomb (C)	3.6	E+03

To convert from	to	Multiply	y by
biot (Bi)	ampere (A)	1.0	E+01
EMU of capacitance (abfarad)	farad (F)	1.0	E+09
EMU of current (abampere)	ampere (A)	1.0	E+01
EMU of electric potential (abvolt)	volt (V)	1.0	E-08
EMU of inductance (abhenry)	henry (H)	1.0	E-09
EMU of resistance (abohm)			E-09
ESU of capacitance (statfarad)	farad (F)	. 1.112 650	E-12
ESU of current (statampere)			E-10
ESU of electric potential (statvolt)	* ' '		E+02
ESU of inductance (stathenry)			E+11
ESU of resistance (statohm)	-		E+11
faraday (based on carbon 12)			E+04
franklin (Fr)			E-10
gamma (γ)	` '		E-09
gauss (Gs, G)			E-04
gilbert (Gi)			E-01
maxwell (Mx)	* ' '		E-08
mho			E+00
oersted (Oe)			E+00 E+01
			E-02
ohm centimeter $(\Omega \cdot cm)$,		
ohm circular-mil per foot		. 1.662 426	E-09
ohm circular-mil per foot	ohm square millimeter per meter $(\Omega \cdot mm^2/m)$	1 662 426	E-03
statampere	,		E-10
statcoulomb	1 , ,		E-10
statfarad	` '		E-12
stathenry			E+11
statmho	• • •		E-12
statohm	. ,		E+11
statvolt	, ,		E+02
unit pole			E-07
unit pole	weeer (110)	. 1.230 037	L o,
ENERGY (includes WORK)			
British thermal unit _{IT} (Btu _{IT}) ¹¹			E+03
British thermal unit _{th} (Btu _{th}) ¹¹	joule (J)	. 1.054 350	E+03
British thermal unit (mean) (Btu)	joule (J)	. 1.055 87	E+03
British thermal unit (39 °F) (Btu)	joule (J)	. 1.059 67	E+03
British thermal unit (59 °F) (Btu)	joule (J)	1.054 80	E+03
British thermal unit (60 °F) (Btu)	joule (J)	. 1.054 68	E+03
calorie _{IT} (cal _{IT}) ¹¹	joule (J)	4.1868	E+00
calorie _{th} (cal _{th}) ¹¹			E+00
calorie (mean) (cal)			E+00
calorie (15 °C) (cal ₁₅)	joule (J)	. 4.185 80	E+00
calorie (20 °C) (cal ₂₀)			E+00
calorie _{IT} , kilogram (nutrition) ¹²			E+03
calorie _{th} , kilogram (nutrition) ¹²			E+03
calorie (mean), kilogram (nutrition) ¹²			E+03
electronvolt (eV)			E-19
erg (erg)			E-07
foot poundalfoot			
_			E-02
foot pound-force (ft · lbf)			E+00
kilocalorie _{IT} (kcal _{IT})			E+03
kilocalorie _{th} (kcal _{th})			E+03
kilocalorie (mean) (kcal)	joule (J)	. 4.190 02	E+03

To convert from	to	Multip	ly by
kilowatt hour (kW·h)	joule (J)	3.6	E+06
kilowatt hour (kW · h)	megajoule (MJ)	3.6	E+00
quad (10 ¹⁵ Btu _{IT}) ¹¹	joule (J)	1.055 056	E+18
therm (EC) ²⁵	joule (J)	1.055 06	E+08
therm (U.S.) ²⁵	joule (J)	1.054 804	E+08
	joule (J)		E+09
	joule (J)		E+03
	joule (J)		E+00
ENERGY DIVIDED BY AREA T	ГІМЕ		
erg per square centimeter second		1.0	E-03
· · · · · · · · · · · · · · · · · · ·	watt per square meter (W/m^2)		
	watt per square meter (W/m²)		E+04
	watt per square meter (W/m²)		E+03
FLOW (see MASS DIVIDED BY	TIME or VOLUME DIVIDED BY	TIME)	
FORCE			
• • • •	newton (N)		E-05
0 , 0 ,	newton (N)		E+00
1 , 5 , 1,	newton (N)		E+00
tip (1 kip=1000 lbf)	newton (N)	4.448 222	E+03
tip (1 kip=1000 lbf)	kilonewton (kN)	4.448 222	E+00
ounce (avoirdupois)-force (ozf)	newton (N)	2.780 139	E-01
oundal	newton (N)	1.382 550	E-01
	newton (N)	4.448 222	E+00
oound-force per pound (lbf/lb) (thrust to mass ratio)	newton per kilogram (N/kg)	9.806 65	E+00
on-force (2000 lbf)	newton (N)	8.896 443	E+03
on-force (2000 lbf)	kilonewton (kN)	8.896 443	E+00
FORCE DIVIDED BY AREA (se FORCE DIVIDED BY LENGTH	,		
	newton per meter (N/m)	1 //59 390	E+01
_	newton per meter (N/m)		E+02
HEAT Available Energy	•		
British thermal unit _{IT} per cubic foot			
(Btu_{IT}/ft^3)	joule per cubic meter (J/m^3)	3.725 895	E+04
British thermal unit _{th} per cubic foot (Btu _{th} /ft ³)	joule per cubic meter (J/m³)	3.723 403	E+04
	joule per kilogram (J/kg)		E+03
	joule per kilogram (J/kg)		E+03
	joule per kilogram (J/kg)		E+03
	joule per kilogram (J/kg)		E+03
Coefficient of Heat Transfer			
British thermal unit _{IT} per hour square foot d	egree Fahrenheit		
$[Btu_{IT}/(h \cdot ft^2 \cdot {}^{\circ}F)]$			
	$[W/(m^2 \cdot K)]\dots$	5.678 263	E+00
British thermal unit _{th} per hour square foot d $[Btu_{th}/(h \cdot ft^2 \cdot {}^{\circ}F)]$	watt per square meter kelvin	5 (71 166	F : 00
British thermal unit _{ir} per second square foo	[W/(m²·K)]t degree Fahrenheit	5.6/4 466	E+00
[Btu _{IT} /(s · ft ² · °F)]	watt per square meter kelvin	0.04445-	E ^.
Dutaish absorbed contact	$[W/(m^2 \cdot K)]$	2.044 175	E+04
British thermal unit _{th} per second square foot [Btu _{th} /($s \cdot ft^2 \cdot {}^{\circ}F$)]	cuegree Fanrenneit watt per square meter kelvin		
/3	[W/(m ² · K)]	2 042 909	E+04

To convert from	to	Multiply	y by
Density of Heat			
British thermal unit _{IT} per square foot (Btu _{IT} /ft ²)	ioule per square meter (I/m²)	1 135 653	E+04
British thermal unit _{th} per square foot (Btu _{th} /ft ²)			E+04
calorie _{th} per square centimeter (cal _{th} /cm ²)			E+04
langley (cal _{th} /cm ²)			E+04
	Jane Pro adams arres (2, 22, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,		
Density of Heat Flow Rate British thermal unit _{IT} per square foot hour			
$[Btu_{IT}/(ft^2 \cdot h)]$	watt per square meter (W/m^2)	3.154 591	E+00
$ \begin{aligned} & \text{British thermal unit}_{th} \text{ per square foot hour} \\ & & [Btu_{th}/(ft^2 \cdot h)]. \end{aligned} $	watt per square meter (W/m^2)	3.152 481	E+00
$\begin{array}{l} \text{British thermal unit}_{th} \text{ per square foot minute} \\ [\text{Btu}_{th}/(\text{ft}^2 \cdot \text{min})] \dots \end{array}$	watt per square meter (W/m^2)	1.891 489	E+02
British thermal unit _{IT} per square foot second $[Btu_{IT}/(ft^2 \cdot s)]$	watt per square meter (W/m²)	1.135 653	E+04
British thermal unit _{th} per square foot second $[Btu_{th}/(ft^2 \cdot s)]$	watt per square meter (W/m^2)	1.134 893	E+04
British thermal unit _{th} per square inch second $[Btu_{th}/(in^2 \cdot s)]$			E+06
calorie _{th} per square centimeter minute $[cal_{th}/(cm^2 \cdot min)]$	watt per square meter (W/m^2)	6.973 333	E+02
calorie _{th} per square centimeter second $[cal_{th}/(cm^2 \cdot s)]$	watt per square meter (W/m^2)	4.184	E+04
Fuel Consumption			
gallon (U.S.) per horsepower hour $[gal/(hp \cdot h)]$	cubic meter per joule (m³/J)	1.410 089	E-09
gallon (U.S.) per horsepower hour [gal/(hp·h)]	liter per joule (L/J)	1.410 089	E-06
mile per gallon (U.S.) (mpg) (mi/gal)	meter per cubic meter (m/m^3)	4.251 437	E+05
mile per gallon (U.S.) (mpg) (mi/gal)			E - 01
mile per gallon (U.S.) (mpg) (mi/gal) ²²	liter per 100 kilometer (L/100 km)divi	de 235.215 by of miles pe	
pound per horsepower hour [lb/(hp \cdot h)]	$kilogram\ per\ joule\ (kg/J)\$	1.689 659	E-07
Heat Capacity and Entropy			
British thermal unit _{IT} per degree Fahrenheit			
(Btu _{IT} /°F)	joule per kelvin (J/k)	1.899 101	E+03
British thermal unit _{th} per degree Fahrenheit (Btu _{th} /°F)	joule per kelvin (J/k)	1.897 830	E+03
British thermal unit _{IT} per degree Rankine (Btu _{IT} /°R)			E+03
British thermal unit _{th} per degree Rankine (Btu _{th} /°R)			E+03
Heat Flow Rate	J		
British thermal unit _{IT} per hour (Btu _{IT} /h)	watt (W)	2 930 711	E-01
British thermal unit _{th} per hour (Btu _{th} /h)			E-01
British thermal unit _{th} per minute (Btu _{th} /min)			E+01
British thermal unit _{IT} per second (Btu _{IT} /s)			E+03
British thermal unit _{th} per second (Btu _{th} /s)			E+03
calorie _{th} per minute (cal _{th} /min)	` '		E-02
calorie _{th} per second (cal _{th} /s)			E+00
kilocalorie _{th} per minute (kcal _{th} /min)			E+01
kilocalorie _{th} per second (kcal _{th} /s)			E+03
ton of refrigeration (12 000 Btu _{IT} /h)			E+03

To convert from to Multiply by

Specific Heat Capacity and Specific Entropy	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	E+03
$\label{eq:british} \text{British thermal unit}_{th} \text{ per pound degree Fahrenheit} \\ [Btu_{th}/(lb \cdot {}^{\circ}F)] \text{ joule per kilogram kelvin } [J/(kg \cdot K)] \\ \textbf{4.184}$	E+03
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	E+03
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	E+03
calorie $_\Pi$ per gram degree Celsius [cal $_\Pi$ /(g · $^\circ$ C)]joule per kilogram kelvin [J/(kg · K)] 4.1868	E+03
$\begin{array}{llllllllllllllllllllllllllllllllllll$	E+03
calorie _{IT} per gram kelvin [cal _{IT} /(g · K)]joule per kilogram kelvin [J/(kg · K)]	E+03
calorie _{th} per gram kelvin [cal _{th} /(g · K)]joule per kilogram kelvin [J/(kg · K)] 4.184	E+03
Thermal Conductivity	
•	
Britsh thermal unit _{IT} foot per hour square foot degree Fahrenheit $[Btu_{IT} \cdot ft/(h \cdot ft^2 \cdot {}^\circ F)]$ watt per meter kelvin $[W/(m \cdot K)]$ 1.730 735 Britsh thermal unit _{th} foot per hour square foot degree Fahrenheit	E+00
$[Btu_{th} \cdot ft/(h \cdot ft^2 \cdot {}^{\circ}F)] \dots watt per meter kelvin [W/(m \cdot K)] \dots 1.729 577$	E+00
Britsh thermal unit _{IT} inch per hour square foot degree Fahrenheit $[Btu_{IT} \cdot in/(h \cdot ft^2 \cdot {}^\circ\!F)]. \qquad \qquad watt \ per \ meter \ kelvin \ [W/(m \cdot K)]. \qquad \qquad 1.442\ 279$	E-01
$ Britsh \ thermal \ unit_{th} \ inch \ per \ hour \ square \ foot \ degree \ Fahrenheit \\ [Btu_{th} \cdot in/(h \cdot ft^2 \cdot {}^{\circ}F)]. \qquad \qquad watt \ per \ meter \ kelvin \ [W/(m \cdot K)]. \qquad 1.441 \ 314 $	E-01
$ \begin{aligned} & \text{Britsh thermal unit}_{\text{IT}} \text{ inch per second square foot degree Fahrenheit} \\ & [Btu_{\text{IT}} \cdot \text{in}/(s \cdot \text{ft}^2 \cdot {}^{\circ}\text{F})]. & \text{watt per meter kelvin } [W/(m \cdot K)]. & 5.192\ 204 \end{aligned} $	E+02
Britsh thermal unit _{th} inch per second square foot degree Fahrenheit $[Btu_{th} \cdot in/(s \cdot ft^2 \cdot {}^\circ F)] \dots watt per meter kelvin [W/(m \cdot K)] \dots 5.188732$	E+02
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	E+02
Thermal Diffusivity	
square foot per hour (ft^2/h) square meter per second (m^2/s) 2.580 64	E-05
Thermal Insulance	
clo square meter kelvin per watt $(m^2 \cdot K/W)$ 1.55	E - 01
degree Fahrenheit hour square foot per British thermal unit $_{IT}$ (°F · h · ft²/Btu $_{IT}$) square meter kelvin per watt (m² · K/W) 1.761 102	E-01
degree Fahrenheit hour square foot per British thermal unit _{th} ($^{\circ}F \cdot h \cdot ft^{2}/Btu_{th}$) square meter kelvin per watt ($m^{2} \cdot K/W$) 1.762 280	E-01
Thermal Resistance	
degree Fahrenheit hour per British thermal unit _{IT}	E : 00
$(^{\circ}F \cdot h/Btu_{IT})$	E+00
(°F · h/Btu _{th})	E+00
(°F · s/Btu _{IT}) kelvin per watt (K/W) 5.265 651 degree Fahrenheit second per British thermal unit _{th}	E-04
(°F · s/Btu _{th})kelvin per watt (K/W)	E-04
Thermal Resistivity	
degree Fahrenheit hour square foot per British thermal unit $_{IT}$ inch $[{}^{\circ}F \cdot h \cdot ft^2/(Btu_{IT} \cdot in)]$ meter kelvin per watt $(m \cdot K/W)$ 6.933 472	E+00
degree Fahrenheit hour square foot per British thermal unit _{th} inch $[{}^{\circ}F \cdot h \cdot ft^2/(Btu_{th} \cdot in)]meter kelvin per watt (m \cdot K/W)$	E+04

LENGTH		_	
ångström (Å)	meter (m)	1.0	E-10
ångström (Å)	` '		E-01
astronomical unit (AU)			E+11
chain (based on U.S. survey foot) (ch) ⁹			E+01
fathom (based on U.S. survey foot) ⁹			E+00
fermi			E-15
fermi			E+00
foot (ft)	, ,		E-01
foot (U.S. survey) (ft) ⁹	* *		E-01
inch (in)			E-02
inch (in)	· ·		E+00
kayser (K)	` '		E+02
light year (l.y.) ¹⁹	*		E+15
microinch			E-08
microinch	` '		E-03
micron (μ)			E-02 E-06
•			E-00 E+00
micron (μ)	• /		E+00 E-05
mil (0.001 in)	· ·		
mil (0.001 in)			E-02
mile (mi)			E+03
mile (mi)			E+00
mile (based on U.S. survey foot) (mi) ⁹			E+03
mile (based on U.S. survey foot) (mi) ⁹			E+00
mile, nautical ²¹			E+03
parsec (pc)	` '		E+16
pica (computer) (1/6 in)	· ·		E-03
pica (computer) (1/6 in)	· · ·		E+00
pica (printer's)	· ·		E-03
pica (printer's)	* *		E+00
point (computer) (1/72 in)			E-04
point (computer) (1/72 in)			E-01
point (printer's)	` '		E - 04
point (printer's)	. ,		E-01
rod (based on U.S. survey foot) (rd) ⁹			E+00
yard (yd)	meter (m)	9.144	E-01
LIGHT			
candela per square inch (cd/in²)	candela per square meter (cd/m²)	1.550 003	E+03
footcandle			E+01
footlambert	candela per square meter (cd/m²)	3.426 259	E+00
lambert ¹⁸			E+03
lumen per square foot (lm/ft²)			E+01
phot (ph)			E+04
stilb (sb)			E+04
	1 1 , , ,		
MASS and MOMENT OF INERTIA			_
carat, metric			E-04
carat, metric			E-01
grain (gr)			E-05
grain (gr)			E+01
hundredweight (long, 112 lb)			E+01
hundredweight (short, 100 lb)	kilogram (kg)	4.535 924	E+01

			•
kilogram-force second squared per meter $(kgf \cdot s^2/m)$	kilogram (kg)	9.806 65	E+00
ounce (avoirdupois) (oz)			E-02
ounce (avoirdupois) (oz)			E+01
ounce (troy or apothecary) (oz)			E-02
ounce (troy or apothecary) (oz)			E+01
pennyweight (dwt)			E-03
pennyweight (dwt)			E+00
pound (avoirdupois) (lb) ²³			E-01
pound (troy or apothecary) (lb)			E-01
pound foot squared (lb · ft²)			E-02
pound inch squared (lb · in²)			E-04
slug (slug)			E+01
ton, assay (AT)			E-02
ton, assay (AT)			E+01
ton, long (2240 lb)	<u> </u>		E+03
ton, metric (t)			E+03
tonne (called "metric ton" in U.S.) (t)			E+03
ton, short (2000 lb)			E+02
, , , , , , , , , , , , , , , , , , , ,			
MASS DENSITY (see MASS DIVIDED	BY VOLUME)		
MASS DIVIDED BY AREA			
ounce (avoirdupois) per square foot (oz/ft²)1	kilogram per square meter (kg/m²)	3.051 517	E-01
ounce (avoirdupois) per square inch (oz/in²)			E+01
ounce (avoirdupois) per square yard (oz/yd²)			E-02
pound per square foot (lb/ft²)			E+00
pound per square inch (<i>not</i> pound force)			
(lb/in²)	kilogram per square meter (kg/m²)	7.030 696	E+02
MASS DIVIDED BY CAPACITY (see M	(ASS DIVIDED BY VOLUME)		
· ·	IASS DIVIDED BY VOLUME)		
MASS DIVIDED BY LENGTH			
denier l			E - 07
denier g			E - 04
pound per foot (lb/ft)			E+00
pound per inch (lb/in)l			E+01
pound per yard (lb/yd)l			E-01
texl	kilogram per meter (kg/m)	1.0	E-06
MASS DIVIDED BY TIME (includes F	LOW)		
pound per hour (lb/h)	· ·	1 259 979	E-04
pound per minute (lb/min)			E-03
pound per second (lb/s)			E-01
ton, short, per hour			E-01
ton, short, per nour	knogram per second (kg/s)	2.517 750	L OI
MASS DIVIDED BY VOLUME (include	es MASS DENSITY and MASS COM	NCENTRAT	TION)
grain per gallon (U.S.) (gr/gal)	kilogram per cubic meter (kg/m³)	1.711 806	E-02
grain per gallon (U.S.) (gr/gal)	milligram per liter (mg/L)	1.711 806	E+01
gram per cubic centimeter (g/cm ³)			E+03
ounce (avoirdupois) per cubic inch (oz/in³)	kilogram per cubic meter (kg/m³)	1.729 994	E+03
ounce (avoirdupois) per gallon [Canadian and U.K. (Imperial)] (oz/gal)	kilogram per cubic meter (kg/m³)	6.236 023	E+00
ounce (avoirdupois) per gallon [Canadian and U.K. (Imperial)] (oz/gal)			E+00
	gram per liter (g/L)	6.236 023	E+00
ounce (avoirdupois) per gallon (U.S.) (oz/gal)	gram per liter (g/L)kilogram per cubic meter (kg/m³)		E+00 E+00
ounce (avoirdupois) per gallon (U.S.) (oz/gal)	kilogram per cubic meter (kg/m³)	7.489 152	

	Multiply	by
pound per cubic foot (lb/ft ³) kilogram per cubic meter (kg/m ³)	. 1.601 846	E+01
pound per cubic inch (lb/in 3) kilogram per cubic meter (kg/m 3)	2.767 990	E+04
pound per cubic yard (lb/yd³) kilogram per cubic meter (kg/m³)	. 5.932 764	E-01
pound per gallon [Canadian and U.K. (Imperial)] (lb/gal) kilogram per cubic meter (kg/m^3)	9.977 637	E+01
pound per gallon [Canadian and U.K. (Imperial)] (lb/gal)kilogram per liter (kg/L)	9.977 637	E-02
pound per gallon (U.S.) (lb/gal)kilogram per cubic meter (kg/m^3)	. 1.198 264	E+02
pound per gallon (U.S.) (lb/gal)kilogram per liter (kg/L)	. 1.198 264	E-01
slug per cubic foot (slug/ft³) kilogram per cubic meter (kg/m³)	. 5.153 788	E+02
ton, long, per cubic yard kilogram per cubic meter (kg/m^3)		E+03
ton, short, per cubic yard kilogram per cubic meter (kg/m^3)	. 1.186 553	E+03
MOMENT OF FORCE or TORQUE		
$\label{eq:continuous} \mbox{dyne centimeter } (\mbox{dyn} \cdot \mbox{cm}) \dots \dots \\ \mbox{newton meter } (\mbox{N} \cdot \mbox{m}) \dots \\ \mbox{newton meter } (\mbox{N} \cdot m$. 1.0	E-07
kilogram-force meter (kgf \cdot m)newton meter (N \cdot m)		E+00
ounce (avoirdupois)-force inch (ozf \cdot in) newton meter (N \cdot m)		E-03
ounce (avoirdupois)-force inch (ozf \cdot in) millinewton meter (mN \cdot m)	. 7.061 552	E+00
pound-force foot (lbf \cdot ft) newton meter (N \cdot m)	. 1.355 818	E+00
pound-force inch (lbf \cdot in)newton meter (N \cdot m)	. 1.129 848	E-01
MOMENT OF FORCE or TORQUE, DIVIDED BY LENGTH		
pound-force foot per inch (lbf \cdot ft/in) newton meter per meter (N \cdot m/m)	. 5.337 866	E+01
pound-force inch per inch (lbf \cdot in/in) newton meter per meter (N \cdot m/m)	. 4.448 222	E+00
PERMEABILITY		
darcy 15 meter squared (m ²)	9.869 233	E-13
perm (0 °C) kilogram per pascal second square meter $[kg/(Pa\cdot s\cdot m^2)] \dots$	5.721 35	E-11
perm (23 °C) kilogram per pascal second square meter $ [kg/(Pa\cdot s\cdot m^2)] \ldots \ldots \ldots$	5.745 25	E-11
perm inch (0 °C)kilogram per pascal second meter $[kg/(Pa\cdot s\cdot m)]$. 1.453 22	E-12
perm inch (23 °C) kilogram per pascal second meter $ [kg/(Pa\cdot s\cdot m)] $. 1.459 29	E-12
POWER		
erg per second (erg/s)watt (W)	. 1.0	E-07
foot pound-force per hour (ft \cdot lbf/h) watt (W)		E - 04
foot pound-force per minute (ft \cdot lbf/min) watt (W)	. 2.259 697	E-02
foot pound-force per second (ft \cdot lbf/s) watt (W)		E+00
horsepower (550 ft \cdot lbf/s) watt (W)	. 7.456 999	E+02
horsepower (boiler) watt (W)		E+03
horsepower (electric) watt (W)		E+02
horsepower (metric) watt (W)	. 7.354 988	E+02
horsepower (U.K.) watt (W)	. 7.4570	E+02
horsepower (water) watt (W)	. 7.460 43	E+02
DDECCLIDE on CTDECC (ECDCE DIVIDED DV ADEA)		
PRESSURE or STRESS (FORCE DIVIDED BY AREA)	. 1.013 25	E+05
atmosphere, standard (atm)pascal (Pa)		E+02
atmosphere, standard (atm) pascal (Pa) atmosphere, standard (atm) kilopascal (kPa).		ETU2
atmosphere, standard (atm)	9.806 65	E+02
atmosphere, standard (atm) pascal (Pa) atmosphere, standard (atm) kilopascal (kPa).	9.806 65	
atmosphere, standard (atm)	9.806 65 9.806 65	E+04

To convert from	to	Multipl	y by
centimeter of mercury $(0 ^{\circ}\text{C})^{13}$. pascal (Pa)	. 1.333 22	E+03
centimeter of mercury $(0 ^{\circ}\text{C})^{13}$	kilopascal (kPa)	. 1.333 22	E+00
centimeter of mercury, conventional (cmHg) ¹³			E+03
centimeter of mercury, conventional (cmHg) ¹³			E+00
centimeter of water (4 °C) ¹³	pascal (Pa)	. 9.806 38	E+01
centimeter of water, conventional $(cmH_2O)^{13}$			E+01
dyne per square centimeter (dyn/cm²)	. pascal (Pa)	. 1.0	E-01
foot of mercury, conventional (ftHg) ¹³	. pascal (Pa)	. 4.063 666	E+04
foot of mercury, conventional (ftHg) ¹³	. kilopascal (kPa)	. 4.063 666	E+01
foot of water (39.2 °F) ¹³	. pascal (Pa)	. 2.988 98	E+03
foot of water (39.2 °F) ¹³	. kilopascal (kPa)	. 2.988 98	E+00
foot of water, conventional (ftH ₂ O) ¹³	. pascal (Pa)	. 2.989 067	E+03
foot of water, conventional (ftH ₂ O) ¹³	. kilopascal (kPa)	. 2.989 067	E+00
gram-force per square centimeter (gf/cm ²)	. pascal (Pa)	. 9.806 65	E+01
inch of mercury (32 °F) ¹³	. pascal (Pa)	. 3.386 38	E+03
inch of mercury (32 °F) ¹³			E+00
inch of mercury (60 °F) ¹³	pascal (Pa)	. 3.376 85	E+03
inch of mercury (60 °F) ¹³	kilopascal (kPa)	. 3.376 85	E+00
inch of mercury, conventional (inHg) ¹³	pascal (Pa)	. 3.386 389	E+03
inch of mercury, conventional (inHg) ¹³			E+00
inch of water (39.2 °F) ¹³			E+02
inch of water (60 °F) ¹³			E+02
inch of water, conventional (inH ₂ O) ¹³			E+02
kilogram-force per square centimeter (kgf/cm²)	. pascal (Pa)	. 9.806 65	E+04
kilogram-force per square centimeter (kgf/cm²)	. kilopascal (kPa)	. 9.806 65	E+01
kilogram-force per square meter (kgf/m²)	. pascal (Pa)	. 9.806 65	E+00
kilogram-force per square millimeter (kgf/mm²)	. pascal (Pa)	. 9.806 65	E+06
kilogram-force per square millimeter (kgf/mm²)	. megapascal (MPa)	. 9.806 65	E+00
kip per square inch (ksi) (kip/in ²)	. pascal (Pa)	. 6.894 757	E+06
kip per square inch (ksi) (kip/in ²)	. kilopascal (kPa)	. 6.894 757	E+03
millibar (mbar)	. pascal (Pa)	. 1.0	E+02
millibar (mbar)	. kilopascal (kPa)	. 1.0	E-01
millimeter of mercury, conventional (mmHg) 13	. pascal (Pa)	. 1.333 224	E+02
millimeter of water, conventional (mmH ₂ O) ¹³	. pascal (Pa)	. 9.806 65	E+00
poundal per square foot	. pascal (Pa)	. 1.488 164	E+00
pound-force per square foot (lbf/ft²)	. pascal (Pa)	. 4.788 026	E+01
pound-force per square inch (psi) (lbf/in²)	. pascal (Pa)	. 6.894 757	E+03
pound-force per square inch (psi) (lbf/in²)	. kilopascal (kPa)	. 6.894 757	E+00
psi (pound-force per square inch) (lbf/in²)	. pascal (Pa)	. 6.894 757	E+03
psi (pound-force per square inch) (lbf/in²)	. kilopascal (kPa)	. 6.894 757	E+00
torr (Torr)			E+02
RADIOLOGY			
curie (Ci)	. becquerel (Bq)	. 3.7	E+10
rad (absorbed dose) (rad)	. gray (Gy)	. 1.0	E-02
<i>rem</i> (rem)	. sievert (Sv)	. 1.0	E-02
roentgen (R)	. coulomb per kilogram (C/kg)	. 2.58	E-04

SPEED (see VELOCITY)

TEMPERATURE degree Celsius (°C)	kelvin (K)	$T/K = t/^{\circ}C$	2 + 273.15
. ,	degree Celsius (°C)		
• •	degree Celsius (°C)	•	
_	kelvin (K)		
, ,	kelvin (K)	· · · · · · · · · · · · · · · · · · ·	
• , ,	degree Celsius (°C)	`	· ·
TEMPERATURE INTERVAL	degree Celsius (C)	17 6 – 17 11	270110
	1.1.1 (II)	1.0	E . 00
	kelvin (K)		E+00
	degree Celsius (°C)		E+00
=	degree Celsius (°C)		E-01
	kelvin (K)		E-01
degree Rankine (°R)	kelvin (K)	5.555 556	E-01
TIME			
day (d)	second (s)	8.64	E+04
day (sidereal)	second (s)	8.616 409	E+04
hour (h)	second (s)	3.6	E+03
hour (sidereal)	second (s)	3.590 170	E+03
minute (min)	second (s)	6.0	E+01
minute (sidereal)	second (s)	5.983 617	E+01
second (sidereal)	second (s)	9.972 696	E-01
shake	second (s)	1.0	E-08
shake	nanosecond (ns)	1.0	E+01
year (365 days)	second (s)	3.1536	E+07
year (sidereal)	second (s)	3.155 815	E+07
year (tropical)	second (s)	3.155 693	E+07
TORQUE (see MOMENT OF F	ORCE)		
VELOCITY (includes SPEED)	/		
	meter per second (m/s)	8 466 667	E-05
=	meter per second (m/s)		E-03
=	meter per second (m/s)		E-01
=	meter per second (m/s)		E-02
=	meter per second (m/s)		E-01
* '	meter per second (m/s)		E-01
_	meter per second (m/s)		E-01
ī, ,	kilometer per hour (km/h)		E+00
	meter per second (m/s)		E+01
	meter per second (m/s)		E+03
•	radian per second (rad/s)		E-01
	radian per second (rad/s)		E-01
	(ad/ o)		2 0.
VISCOSITY, DYNAMIC	1 1 (D)	1.0	T 00
	pascal second (Pa·s)		E-03
	pascal second (Pa·s)		E-01
_	nascal second (Pa · s)	1.488 164	E+00
poundal second per square foot pound-force second per square foot	•	1 700 026	E I O1
poundal second per square foot pound-force second per square foot (lbf · s/ft²) pound-force second per square inch	pascal second (Pa·s)		E+01
poundal second per square foot pound-force second per square foot (lbf \cdot s/ft ²) pound-force second per square inch (lbf \cdot s/in ²)		6.894 757	E+03
poundal second per square foot pound-force second per square foot ($lbf \cdot s/ft^2$) pound-force second per square inch ($lbf \cdot s/in^2$) pound per foot hour [$lb/(ft \cdot h)$]	pascal second (Pa·s)	6.894 757	E+03 E-04
poundal second per square foot pound-force second per square foot ($lbf \cdot s/ft^2$) pound-force second per square inch ($lbf \cdot s/in^2$) pound per foot hour [$lb/(ft \cdot h)$] pound per foot second [$lb/(ft \cdot s)$]		6.894 757 4.133 789 1.488 164	

VISCOSITY, KINEMATIC			
centistokes (cSt)	meter squared per second (m ² /s)	. 1.0	E-06
square foot per second (ft ² /s)			E-02
stokes (St)			E-04
VOLUME (includes CADACITY)			
VOLUME (includes CAPACITY) acre-foot (based on U.S. survey foot) ⁹	cubic mater (m ³)	1 222 480	E+03
barrel [for petroleum, 42 gallons (U.S.)](bbl)			E-01
barrel [for petroleum, 42 gallons (U.S.)](bbl)			E+02
bushel (U.S.) (bu)			E+02 E-02
bushel (U.S.) (bu)			E+01
			E+00
cubic foot (ft ³)			E-02
cubic inch (in ³) ¹⁴			E-05
cubic mile (mi ³)			E+09
cubic yard (yd³)			E-01
cup (U.S.)			E-04
cup (U.S.)			E-01
cup (U.S.)			E+02
fluid ounce (U.S.) (fl oz)			E-05
fluid ounce (U.S.) (fl oz)			E+01
gallon [Canadian and U.K. (Imperial)] (gal)			E-03
gallon [Canadian and U.K. (Imperial)] (gal)			E+00
gallon (U.S.) (gal)			E - 03
gallon (U.S.) (gal)			E+00
gill [Canadian and U.K. (Imperial)] (gi)	cubic meter (m ³)	. 1.420 653	E - 04
gill [Canadian and U.K. (Imperial)] (gi)			E = 01
gill (U.S.) (gi)	cubic meter (m ³)	. 1.182 941	E - 04
gill (U.S.) (gi)	liter (L)	. 1.182 941	E - 01
liter (L) ²⁰	cubic meter (m ³)	. 1.0	E-03
ounce [Canadian and U.K. fluid (Imperial)]	cubic meter (m ³)	. 2.841 306	E-05
ounce [Canadian and U.K. fluid (Imperial)]			
(fl oz)	milliliter (mL)	. 2.841 306	E+01
ounce (U.S. fluid) (fl oz)	cubic meter (m ³)	. 2.957 353	E-05
ounce (U.S. fluid) (fl oz)	milliliter (mL)	. 2.957 353	E+01
peck (U.S.) (pk)	cubic meter (m ³)	. 8.809 768	E - 03
peck (U.S.) (pk)	liter (L)	. 8.809 768	E+00
pint (U.S. dry) (dry pt)	cubic meter (m ³)	. 5.506 105	E - 04
pint (U.S. dry) (dry pt)	liter (L)	. 5.506 105	E - 01
pint (U.S. liquid) (liq pt)	cubic meter (m ³)	. 4.731 765	E = 04
pint (U.S. liquid) (liq pt)	liter (L)	. 4.731 765	E-01
quart (U.S. dry) (dry qt)	cubic meter (m ³)	. 1.101 221	E-03
quart (U.S. dry) (dry qt)	liter (L)	. 1.101 221	E+00
quart (U.S. liquid) (liq qt)			E-04
quart (U.S. liquid) (liq qt)			E-01
stere (st)			E+00
tablespoon			E-05
tablespoon			E+01
teaspoon			E-06
teaspoon			E+00
ton, register			E+00
ton, register	cubic ilicter (iii)	. 2.031 003	E+00

To convert from	to	Multipl	ly by
VOLUME DIVIDED BY TIME (i	ncludes FLOW)		
cubic foot per minute (ft ³ /min)	cubic meter per second (m ³ /s)	4.719 474	E = 04
cubic foot per minute (ft³/min)	liter per second (L/s)	4.719 474	E - 01
cubic foot per second (ft ³ /s)	cubic meter per second (m³/s)	2.831 685	E - 02
cubic inch per minute (in ³ /min)	cubic meter per second (m³/s)	2.731 177	E-07
cubic yard per minute (yd³/min)	cubic meter per second (m ³ /s)	1.274 258	E - 02
gallon (U.S.) per day (gal/d)	cubic meter per second (m ³ /s)	4.381 264	E - 08
gallon (U.S.) per day (gal/d)	liter per second (L/s)	4.381 264	E-05
gallon (U.S.) per minute (gpm) (gal/min)	cubic meter per second (m ³ /s)	6.309 020	E-05
gallon (U.S.) per minute (gpm) (gal/min)	liter per second (L/s)	6.309 020	E-02

WORK (see ENERGY)