的事员。 《通信在是人子心情·观心相关》 强党的人 () 教 *面果"加"各身份遗憾。到其 之日分不验。

前(建分型),这人自动分。

HONG KONG EXAMINATIONS AUTHORITY 与解答案以说法,如果如何

* ch 容優有能 200 水螅,地。 一九八三年香港中學

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1983

Additional Mathematics II

MARKING SCHEME

This is a restricted document.

It is meant for use by markers of this paper for marking purposes only. Reproduction in any form is strictly prohibited.

p 唇潜寿式局 吴雪坂遭 Hong Kong Examinations Authority All Rights Reserved, 1983

P.2 Marking Scheme

Solution

Marks

Remarks

1. Area of
$$\triangle$$
 3QR = $\pm \frac{1}{2}$ [11k + 7 + 21 - 11 - 1 - 3k]
= $\pm \frac{1}{2}$ (8k + 16)

If this is 20 units
$$\pm \frac{4}{4}k + 8 = 20$$
 $k = 3$ or -7

2. Let
$$u = x^2$$
 $du = 1xdx$

$$\int x \sin^{2}(x^{2}) dx = \frac{1}{2} \int \sin^{2}u du$$

$$= \frac{1}{2} \int \frac{1 - \cos 2u}{2} du$$

$$= \frac{1}{4} u - \frac{1}{8} \sin 2u + c$$

$$= \frac{x^{2}}{4} - \frac{1}{8} \sin 2x^{2} + c$$

3. Put
$$u = 1 + 3x^2$$
, $du = 6xdx$

$$x = \frac{3}{10} = \frac{1}{10}$$

$$x = \frac{1}{10} = \frac{1}{10}$$

$$= \frac{1}{18} \int_{0}^{4} (u^{\frac{3}{2}} - u^{\frac{3}{2}}) du$$

$$= \frac{1}{18} \left[\frac{2}{5} u^{\frac{3}{2}} - \frac{2}{3} u^{\frac{3}{2}} \right],$$

$$= \frac{38}{135} (0.4296)$$

4. (a) Equation of L is
$$y - (-3) = \frac{5 - -3}{5 - 1} (x - 1)$$

(b) Area between curves =
$$\int_{a}^{b} (y_1 - y_2) dx$$

Area 29 ed = $\int_{0}^{a} [(x^2 - 4x) - (2x - 5)] dx + \int_{0}^{5} [(2x - 5) - (x^2 - 4x)] dx$
= $\int_{0}^{a} (x^2 - 5x - 5) dx + \int_{0}^{5} [-x^2 - 5x - 5] dx$
= $\left[\frac{x^3}{3} - 3x^2 + 5x\right]_{0}^{a} + \left[-\frac{x^3}{3} + 3x^2 - 5x\right]_{0}^{5}$
= $\left[\frac{1}{3} - 3 + 5\right] - \frac{125}{3} + 75 - 25 + \frac{1}{3} - 3 + 5 = 13$

1+1A or
$$\frac{1}{2}(3k + 16)$$

1M
1+1A $\Rightarrow \frac{1}{2}(3(-16), 20)$ 0.

Area between curves
$$= \int_{a}^{b} (y_{1} - y_{2}) dx$$
Required area

$$= A_1 + A_2 + \cdots + A_n$$
Answer.

83 A	Add Maths II		Marking Scheme
`	Solution	Marks	Remarks
	3		
5.	Let $y = \frac{3}{2}x + c$ be a tangent. (or $3x - 2y + c = 0$)	lA	
	Substituting in equation of ellipse	IM	
	$4x^2 + (\frac{3}{2}x + c)^2 = 16$		
	$(4 + \frac{9}{4})x^2 + 3cx + (c^2 - 16) = 0$	1A	
	For tangency, $9c^2 - 4(4 + \frac{9}{4})(c^2 - 16) = 0$	lM	
	$16c^2 = 25 \times 16$ $c = \pm 5$	1+1A	
	equations of tangents are $y = \frac{3}{2} \times \pm 5$		
	- -	6	
		1	
		-	
5.	Alternatively		
	3x + 2yy' = 0		
	Slope of cangent is $y' = -\frac{4x}{y}$	IA	
	Sur slope of line = $\frac{3}{2}$		
	$C_{x} = \frac{4x}{y} = \frac{3}{2}$	1M	1=116-11
	or $y = -\frac{8}{3} \times$		7 30-3
	a touto of a commission of allipse	lM	
	Substituting in equation of ellipse	***	
	$4x^2 + (-\frac{8}{3}x)^2 = 16$		
	$100x^2 = 144$		
	$\pi = \pm \frac{6}{5}$		
	$y = \mp \frac{16}{5}$	1A	For either x or y.
	` equation of tangents required are		
	$y \pm \frac{16}{5} = \frac{3}{2} (x \mp \frac{6}{3})$		
	1.e. $3x - 2y - 10 = 0$	lA.	
		la LA	
	and $3x - 2y + 10 = 0$		

83 Add Maths II

Solution

Marks

4

1M

Marking Scheme Remarks

No	te	
kC	1 + C	= 0
⇒	k = -	$-\frac{1}{2}$

ś.	(a)	The family of circles passing through the points of intersection of ${\rm C_1}$ and ${\rm C_2}$ is	
		$x^2 + y^2 - 3x + 2y - 2 + k(x^2 + y^2 + x + 3y - 10) = 0$	lM
	c	or $(1+k)x^2 + (1+k)y^2 + (k-3)x + (3k+2)y - (10k+2) = 0$	
		Substituting $P(1, 2)$ in the equation	1M
		(1+k) + (1+k)4 + (k-3) + (3k+2)2 - (10k+2) = 0	
		2k + 4 = 0	
		k = -2	lA

equation of C is $x^2 + y^2 + 5x + 4y - 18 = 0$

Alternatively

$$C_2 - C_1 : 4x + y - 8 = 0.$$

Substituting $y = 8 - 4x$ in C_1 ,

$$x^2 + (8 - 4x)^2 - 3x + 2(8 - 4x) - 2 = 0$$

$$17x^2 - 75x - 73 = 0$$

$$x = \frac{75 \pm \sqrt{321}}{34} \quad \begin{pmatrix} 2.7328 \\ 1.6789 \end{pmatrix}$$
$$y = \frac{-14 \mp 2\sqrt{321}}{17} \quad \begin{pmatrix} -2.9313 \\ 1.2843 \end{pmatrix}$$

Let C:
$$x^2 + y^2 + ax + by + c = 0$$

Substituting the three points in C and solving,

$$a = 5$$
, $b = 4$, $c = -18$.

or
$$7x + 8y - 23 = 0$$

lM

$$1x + 2y + \frac{5}{2}(x \div 1) + 2(y \div 2) - 18 = 0$$

or
$$7x + 8y - 23 = 6$$

Alternatively

$$2x + 2yy' + 5 + 4y' = 0$$

$$y' = \sqrt{\frac{2x + 5}{2y + 4}}$$
At P(1, 2), slope = $-\frac{7}{3}$

$$y - 2 = -\frac{7}{3}(x - 1)$$

7x + 8y - 23 = 0

83 Add Maths II

	Solution	Marks	Remarks
	$sin(n + m)\theta$ $sin(n - m)\theta$		
=	[$\sin n\theta \cos m\theta + \cos n\theta \sin m\theta$] × [$\sin n\theta \cos m\theta - \cos n\theta \sin m\theta$]	ĺΑ	
=	$\sin^2 n\theta \cos^2 m\theta - \cos^2 n\theta \sin^2 m\theta$		
=	$\sin^2 n\theta (1 - \sin^2 n\theta) - (1 - \sin^2 n\theta) \sin^2 n\theta$		
=	$\sin^2 n\theta - \sin^2 n\theta \sin^2 n\theta - \sin^2 n\theta + \sin^2 n\theta \sin^2 n\theta$	9	
=	$\sin^2 n\theta - \sin^2 n\theta$	iA	
	$\sin^2 3\theta - \sin^2 2\theta - \sin \theta = 0$		
⇒	$\sin(3 + 2)\theta \sin(3 - 2)\theta - \sin\theta = 0$	1M	
⇒	$\sin \theta \sin \theta - \sin \theta = 0$	+ 14	
⇒	$\sin\theta(\sin \theta - 1) = 0$		
⇒	$\sin\theta = 0$ or $\sin \theta = 1$	1A	313 "m"
=>	$9 = 3 \text{ or } 70 = \frac{7}{2}, \frac{37}{2}, \frac{37}{2}$		
• • •	0 ≤ 3 ≤ 7		
	$\theta = 0, \frac{\pi}{10}, \frac{\pi}{2}, \frac{9\pi}{10} \text{ or } \pi$	3A	-l for each missi or wrong answer
	(0°, 18°, 90°, 162°, 180°)	7	or violing district
Alte	ernatively		
(i)	$\sin^2 n\theta - \sin^2 m\theta = \frac{1}{2} (1 - \cos 2n\theta) - \frac{1}{2} (1 - \cos 2m\theta)$	1A	
	$= \frac{1}{2} (\cos 2m\theta - \cos 2n\theta)$		
	$= \sin(n + \pi)\theta \sin(n - \pi)\theta$	lA	
(ii	$\sin^2 n\theta - \sin^2 n\theta$		
	= (sin n9 - sin m0)(sin n0 + sin m0)		
	$= \left[2\cos\frac{n+m}{2} \sin\frac{n-m}{2}\right] \left[2\sin\frac{n-m}{2} \cos\frac{n-m}{2}\right]$	1A	1
	2 7 2 7 2 7 2 3		
	$= 4\sin\frac{n-m}{2}9 \sin\frac{n+m}{2}9 \cos\frac{n-m}{2}9 \cos\frac{n+m}{2}9$		

(a)

· Marking Scheme

$$BM = 2a\cos\theta - x\cos\theta$$

$$AM = \sqrt{AB^2 + 3M^2}$$

$$= \sqrt{a^2 + (2a - x)^2 \cos^2\theta}$$

(b)
$$AF^2 = AB^2 + 3F^2$$

 $= a^2 + 4a^2\cos^2\theta$
 $AN = \int AF^2 - NF^2$
 $= \int a^2 + 4a^2\cos^2\theta - x^2$

	77 75 A1+A1	:
1	2A+1A	D ·C
	lM	Byetu. Thun.
:	lA	
	4	
	2M	Perace thing
	1A	A a s
•	1M	Hadia Thim B
	lA	
	5	

1A

IA

Marks

(c) $NM = x \sin\theta$ Consider A AMN, $\Delta N^2 = 3M^2 - \Delta M^2$

$$4M^2 = 3M^2 + 4M^2$$

$$a^{2} + 4a^{2}\cos^{2}\theta - x^{2} = x^{2}\sin^{2}\theta + a^{2} + (2a - x)^{2}\cos^{2}\theta$$

 $2x^{2} + 4ax\cos^{2}\theta = 0$

$$x = 2a\cos^2\theta \quad (\ \ x \neq 0)$$

(d) If
$$x = \frac{a}{2}$$
, by (c) $\cos^2 \theta = \frac{1}{4}$
 $\theta = \frac{\pi}{3}$

Let β be the inclination.

tan
$$\beta = \frac{NM}{AM}$$

$$= \frac{x\sin\theta}{\left(\frac{a^2 + (2a - x)^2 \cos^2\theta}{a^2 + \frac{9}{4} a^2 \frac{1}{4}}\right)}$$

$$= \frac{3}{5} = \frac{19.1^{\circ}}{19^{\circ} (\text{correct to the nearest degree})}$$

$$= \frac{3}{5} = \frac{19.1^{\circ}}{19^{\circ} (\text{correct to the nearest degree})}$$

$$\frac{Or}{\sin \beta} = \frac{NM}{AN}$$

$$= \frac{x \sin \theta}{\sqrt{a^2 + 4a^2 \cos^2 \theta - x^2}}$$

$$= \frac{13}{2\sqrt{7}} (= 0.327)$$
Any fig. roundedle to 0.346

33 Add Ma	ths II Solution	Marks	Marking Scheme Remarks
9. (a)	$y^2 = 4x$ $2yy' = 4$		
	Slope of tangent = $\frac{2}{y}$	lA	
	Slope of $L_1 = 1$, of $L_2^1 = -2$	lA lA	
	Equation of L ₁ is $x - y - 3 = 0$ of L ₂ is $2x + y - 12 = 0$	1A 1A	
	Solving the above, the coordinates of N are $x = 5$, $y = 2$.	1+1A	
	Slope of ON = $\frac{2}{5}$	1A	
•		8	
(b)	Coordinates of P are $x = \frac{4+k}{1+k}$, $y = \frac{4-2k}{1+k}$	l+lA	
	Slope of $OP = \frac{4 - 2k}{4 + k}$	1.4	
	$\tan 4.30N = 2 \frac{\frac{4 - 2k}{4 + k} - \frac{2}{5}}{1 + \frac{4 - 2k}{4 + k} \times \frac{2}{5}}$	2M	for $\frac{1}{1 + n_1 n_2}$
	$= \pm \begin{vmatrix} \frac{12 - 12k}{28 + k} & \text{according as } \angle PON \\ \text{is acute or obtuse} \end{vmatrix}$	1+1A	•
	'	7	1
(i)	If $\left \frac{12 - 12k}{28 + k} \right = 1$ $= \frac{1 - (2k)}{28 + k} = 1$	lM	
	$k = \frac{16}{13} \text{ or } \frac{40}{11}$	lA	
	By inspection, $k = -\frac{16}{13}$ corresponds to the case		· · · · · · · · · · · · · · · · · · ·
	∠ PON = 135°.		
	if \angle PON = 45°, $k = \frac{40}{11}$	1.4	
	(ii) When PON is a straight line	The second secon	
	$\frac{12 - 12k}{28 + k} = 0$	1M	1 1,2d , 1 + be
	k = 1	lA €	heed we be - 12 12/2 / 12/2
		5	1 28+61

33 Add Mat	Solution	Marks	Remarks
10, (a)	Let the line be		。計論
	y + 1 = m(x + 1)	1M	ें के कि जिल्ला पुरुष्यक्त
	y = mx + (m - 1)	1A	Nor Has subject permitt
	Substituting in the circle,		vu.
	$x^2 + [mx + (m - 1)]^2 = 1$	1111	
	$(1 + m^2)x^2 + 2m(m - 1)x + (m - 1)^2 - 1 = 0$ $(1 + m^2)x^2 + 2m(m - 1)x + (m - 1)^2 - 1 = 0$ $(1 + m^2)x^2 + 2m(m - 1)x + (m - 1)^2 - 1 = 0$.+ 0 LA	- Section of the sect
	If $A = (x_1, y_1)$, $B = (x_2, y_2)$ $x_1 + x_2 = -\frac{2m(m-1)}{1 + m^2}$		also for 12 = - 5 = 15= fac
	C. the coordinates of P are		
	$x = \frac{x_1 + x_2}{2}$	1M	-
	$= -\frac{m(m-1)}{1 - z^2} \qquad (i)$	1A	
	$y = mx + (m - 1)$ $= -\frac{m^2(m - 1)}{1 + m^2} + (m - 1)$	пм	
	$= \frac{m-1}{1+m^2} \qquad (ii)$: 1 A	
(b)	$(i) \div (ii) \cdot \frac{x}{y} = -m$	atte	int.
	Substituting in (ii) $y = \frac{-\frac{x}{y} - 1}{1 + \frac{x^2}{y^2}}$	1/A +1/A 24F	Attempt to eliminate m between x, y.
	$x^2 + y^2 + x + y = 0$. \leftarrow may be multiplied by yer	4 3A	
3	which is a circle.	1A	
		<u> </u>	_ amoral 3 or 0
(a)	Or Sketch by joining mid-points. 2A -1 Proof for	3 + +	for sircle passing through (0,0), (-1,0)(0,-1) for labelling.
	circle. 3A	1	for indicating correpart of circle as lo
	~	i 5	

Marking Scheme

83 Add Maths II

83 Add Maths 11 Solution	Marks	Remarks
11. (a) $\frac{\sin 3\theta}{\sin \theta} = \frac{\sin 2\theta \cos \theta + \cos 2\theta \sin \theta}{\sin \theta}$	1A	$\frac{3 \sin 3\theta}{\sin \theta} = \frac{3 \sin \theta - 4 \sin \theta}{\sin \theta}$
$= \frac{2\sin\theta \cos^2\theta + \cos^2\theta \sin\theta}{\sin\theta}$ $= 2\cos^2\theta + 1$	1 A	$= 3 - 4\sin^2\theta$ $= 3 - 4(\frac{1 - \cos 2\theta}{2})$
Purring $\theta = \frac{\pi}{4} + \Phi$, L.S. $= \frac{\sin 3\theta}{\sin \theta}$		= 2cos29 + 1 / 1A
$= \frac{\sin\left(\frac{3\pi}{4} + 3\emptyset\right)}{\sin\left(\frac{\pi}{4} + \phi\right)}$ $= \frac{\sin\frac{3\pi}{4}\cos3\emptyset + \cos\frac{3\pi}{4}\sin3\emptyset}{\sin\frac{\pi}{4}\cos\emptyset + \cos\frac{\pi}{4}\sin\emptyset}$	1 <u>A</u> IA	
$\frac{\cos 3\emptyset - \sin 3\emptyset}{\cos \emptyset + \sin \emptyset}$	1.4	•
$3.3. = 2\cos(\frac{\pi}{2} - 10) - 1$ $= 1 - 2\sin 20$ $\frac{\cos 30 - \sin 30}{\cos 0 + \sin 0} = 1 - 2\sin 20$	**************************************	
(b) Putting $\emptyset = \frac{11}{2} - u$, $d\emptyset = -du$	lA	
when $\emptyset = 0$, $u = \frac{\pi}{2}$ $\emptyset = \frac{\pi}{2}$, $u = 0$	lA	
$\int_{0}^{\frac{\pi}{2}} \frac{\cos 3\theta}{\cos \theta + \sin \theta} d\theta = -\int_{\frac{\pi}{2}}^{0} \frac{\cos \left(\frac{3\pi}{2} - 3u\right)}{\cos \left(\frac{\pi}{2} - u\right) + \sin \left(\frac{\pi}{2} - u\right)} du$ $= -\int_{\frac{\pi}{2}}^{0} \frac{-\sin 3u}{\sin u + \cos u} du$ $= \int_{\frac{\pi}{2}}^{0} \frac{\sin 3u}{\cos u + \sin u} du$	24	

Marking Scheme 83 Add Maths II Remarks Marks $\int_{0}^{\frac{\pi}{2}} \frac{\sin 3\emptyset}{\cos \emptyset + \sin \emptyset} d\emptyset$ limust cineek steps $= 2 \int_0^{\frac{\pi}{2}} \frac{\cos 30}{\cos 0 + \sin 0} d0$ $\int_{0}^{\frac{\pi}{2}} \frac{\cos 3\emptyset}{\cos \vartheta + \sin \vartheta} d\emptyset = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos 3\emptyset - \sin 3\emptyset}{\cos \vartheta + \sin \vartheta} d\emptyset$ 8 (c) $\int_{0}^{\frac{\pi}{2}} \frac{\cos 3\emptyset}{\cos \emptyset + \sin \emptyset} d\emptyset = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos 3\emptyset - \sin 3\emptyset}{\cos \emptyset + \sin \emptyset} d\emptyset$ 1A $= \frac{1}{2} \int_{0}^{\frac{\sqrt{3}}{2}} (1 - 2\sin 2\theta) d\theta$ 2A $= \frac{1}{2} \left[\emptyset + \cos 2 \emptyset \right]_0^{\frac{\pi}{2}}$ 1A $= \frac{1}{2} \left[\frac{\pi}{2} - 1 - 1 \right]$ $=\frac{\pi}{4} - 1$ (\(\frac{1}{2} - 0.215\) Any figure roundable

33	24.4	Maths	П

P.11 Marking Scheme

Marks Remarks 1A dy = dx 1A $\int_0^{\varsigma} f(x + ks) dx = \int_0^{(k+1)s} f(y) dy$ 2A $= \int_{-1/2}^{1/2} (k+1)s$ f(x) dx1A5 $\int_{0}^{S} [f(x) + f(x+s) + ... + f(x+(n-1)s)] dx$ $= \int_{0}^{s} f(x) dx + \int_{0}^{s} f(x+s) dx + \dots + \int_{0}^{s} f(x+(n-1)s) dx$ 1A $= \int_{0}^{S} f(x) dx + \int_{0}^{2S} f(x) dx + \dots + \int_{0}^{2S} f(x) dx$ 0+1A+2A $= \left(f(x) dx \right)$ Pusting $x = \sin\theta$, $dx = \cos\theta d\theta$ when x = 0, $\theta = 0$ 1A $x = \frac{1}{2}$, $\theta = \frac{11}{6}$ $\int_0^{\frac{\pi}{6}} \frac{dx}{\sqrt{1-x^2}} = \int_0^{\frac{\pi}{6}} \frac{\cos\theta d\theta}{\cos\theta}$ 1A any form in & only. $= [\theta]_{0}^{\frac{1}{6}}$ $= \frac{\pi}{6} (0.524)$ Any figure roundable 1A1+1A may be smitted. Putting $f(x) = \frac{1}{1 - x^2}$, $s = \frac{1}{2n}$, by (a) $\int_{0}^{\frac{\pi}{2n}} \left[\frac{1}{1-x^{2}} + \frac{1}{1-\left(x+\frac{1}{2n}\right)^{2}} + \dots + \frac{1}{1-\left(x+\frac{n-1}{2n}\right)^{2}} \right] dx$ ⊇Α 2% $= \sqrt{2} \frac{1}{\sqrt{1 - x^2}} dx$