

交大窓西祖学院

Bipolas Junicon

Transis Cor.

BJT and BJT Circuit

Ve311 Electronic Circuits (Fall 2020)

Dr. Chang-Ching Tu

BJT (Before Contact)

Emitter

n-type

Base

p-type

Collector

n-type

E., ———

 $\frac{E_i}{E_f}$ $\frac{q \Phi_p \Diamond}{e}$

E_v ———

$$E_c$$
 E_f

E_v ———

$$\begin{split} n &\cong \stackrel{}{\stackrel{}{\stackrel{}}{N_{d1}}} = n_i e^{\frac{q \varphi_{n1}}{kT}} \\ p &\cong \frac{{n_i}^2}{N_{d1}} = n_i e^{\frac{-q \varphi_{n1}}{kT}} \end{split}$$

$$p \approx N_a = n_i e^{\frac{q \phi_p}{kT}}$$

$$n \approx \frac{n_i^2}{N_a} = n_i e^{\frac{-q \phi_p}{kT}}$$

$$\mathbf{n} \cong \mathbf{N_{d2}} = \mathbf{n_i} e^{\frac{\mathbf{q} \phi_{n2}}{\mathbf{k} T}}$$
 $\mathbf{p} \cong \frac{\mathbf{n_i}^2}{\mathbf{N_{d2}}} = \mathbf{n_i} e^{\frac{-\mathbf{q} \phi_{n2}}{\mathbf{k} T}}$

 $N_{d1} \gg N_a$

$V_{BE} > 0$ and $V_{CB} = 0$ (W_B long)

 $N_{d1} \gg N_a$

The n (electron) diffusion is much larger than the p (hole) diffusion at the Base-Emitter junction.

$V_{BE} > 0$ and $V_{CB} = 0$ (W_B very short)

 $N_{d1} \gg N_a$

The n (electron) diffusion is much larger than the p (hole) diffusion at the Base-Emitter junction.

W_B very short

Nearly all the n (electron) diffusion from the Base-Emitter junction pass through the Base, enter into the depletion region of the Base-Collector junction, and are swept to the Collector side by the built-in electric field.

Summary

$$\begin{split} &I_{C} = I_{S} \Big(e^{\frac{qV_{BE}}{kT}} - 1 \Big) \\ &\alpha = \frac{I_{C}}{I_{E}} \cong 1 \end{split}$$

$$\alpha = \frac{I_C}{I_E} \cong 1$$

$$\beta = \frac{I_C}{I_R} = \frac{\alpha}{1 - \alpha}$$

 I_S is a constant in the spice model.

$$\alpha = \frac{I_C}{I_E} = 1$$

$$\beta = \frac{I_C}{I_B} = \infty$$

VCB ≥ 0 forward-active regran

I_C vs V_{CE} and I_C vs V_{BE} in Forward-Active Region

I_C vs V_{CE} (not considering Early Effect)

At given V_{BE} , DC sweep V_{CE}

I_C vs V_{CE} (considering Early Effect)

At given V_{BE} , DC sweep V_{CE}

 V_A is a constant in the spice model.

At given V_{CE} , DC sweep V_{BE}

Small-Signal Model

Hybrid- π Model (how to get gm and r_{π})

Hybrid- π Model (how to get r_o)

Complete circuit:

$$\begin{split} r_{\pi} &= \frac{1}{\frac{dI_B}{dV_{BE}}} = \frac{1}{\frac{dI_C}{\beta dV_{BE}}} = \frac{1}{\frac{gm}{\beta}} = \frac{\beta}{gm} \\ gm &= \frac{dI_C}{dV_{BE}} \cong \frac{I_C}{kT/q} \\ r_o &= \frac{1}{\frac{dI_C}{dV_{CE}}} \cong \frac{V_A}{I_C} \end{split}$$

Ict Dc

$$V_{BE}$$
 V_{CE}
 V_{CE}