Unsupervised Machine Learning with Python

Section 10.1: Clustering Quality Measures

Clustering Quality Measures

Consider clustering example where each data point is assigned to a class

How can we quantify the clustering quality in this example?

- 3 actual classes (red, blue, green data points)
- 3 clusters are found, each with more than 1 class
- In perfect world clustering will identify clusters that have exactly 1 class
 - There should be red cluster, blue cluster, and green cluster

Purity Measure

- Purity measures extent to which clusters contain a single class
- M is number of data points, C is set of clusters, D is set of classes
- For each cluster: determine maximum number of data points from any class
- Purity is sum of these maximums divided by total number of data points

$$P = \frac{1}{M} \sum_{c \in C} \max_{d \in D} |d \cap c|$$

- Purity satisfies $0 < P \le 1$ (P=1 for "perfect" clustering) Example
- 20 data points and 3 clusters
- 3 actual classes: red, blue, green
- Max number from any class:
 - Cluster 0: 4 red, Cluster 1: 4 blue, Cluster 2: 7 green
- $Purity = \frac{1}{20}(4+4+7) = 0.75$

Bar Chart

• Given data set:

- Can also represent clustering results using bar chart
 - In perfect world, there should non-zero bar for only 1 class for each chart

Cluster Quality Code Design

Function	Input	Description
purity	cluster_assignment (1d numpy array) class_assignment (1d numpy array)	Computes purity value given cluster and class assignments Return: purity See UnsupervisedML/Examples/Section10/ClusteringQuality.ipynb
plot_cluster_ distribution	cluster_assignment (1d numpy array) class_assignment (1d numpy array) figsize (tuple) figrow (integer)	Creates bar charts given cluster and class assignments. figsize and figrow are used to configure the bar charts. Return: nothing See: UnsupervisedML/Examples/Section10/ClusteringQuality.ipynb

10.1 Clustering Quality DEMO

Jupyter Notebook located at:

- UnsupervisedML/Examples/Section10/ClusteringQuality.ipynb
 Clustering Quality functions located at:
- UnsupervisedML/Code/Programs

Files to Review	Description
metrics.py	File containing purity and bar plot creation functions

Course Resources at:

https://github.com/satishchandrareddy/UnsupervisedML/

• Stop video if you would like to implement code yourself first

Unsupervised Machine Learning with Python

Section 10.2: Clustering for Iris Flower Dataset

Iris Flower Dataset

Three types of iris flowers in dataset

See UnsupervisedML_Resources.pdf file for links Images reproduced here under Wikipedia Commons Copyright

Iris Dataset

- 50 samples each of 3 types of iris flower species: setosa, virginica, versicolor
- 4 features: sepal_length, sepal_width, petal_length, petal_width
- Dataset available at UCI Machine Learning Repository https://archive.ics.uci.edu/ml/datasets/iris
- File: Unsupervised/Clustering/Code/Data_Iris/Iris.csv

M14 • : × ✓ f _x								
4	Α	В	С	D	E	F	G	Н
1		species_id	species	sepal_length	sepal_width	petal_length	petal_width	
2	0	1	setosa	5.1	3.5	1.4	0.2	
3	1	1	setosa	4.9	3	1.4	0.2	
4	2	1	setosa	4.7	3.2	1.3	0.2	
5	3	1	setosa	4.6	3.1	1.5	0.2	
6	4	1	setosa	5	3.6	1.4	0.2	
7	5	1	setosa	5.4	3.9	1.7	0.4	
8	6	1	setosa	4.6	3.4	1.4	0.3	
9	7	1	setosa	5	3.4	1.5	0.2	
10	8	1	setosa	4.4	2.9	1.4	0.2	
11	9	1	setosa	4.9	3.1	1.5	0.1	
12	10	1	setosa	5.4	3.7	1.5	0.2	
13	11	1	setosa	4.8	3.4	1.6	0.2	
14	12	1	setosa	4.8	3	1.4	0.1	
15	13	1	setosa	4.3	3	1.1	0.1	
16	14	1	setosa	5.8	4	1.2	0.2	
17	15	1	setosa	5.7	4.4	1.5	0.4	
18	16	1	setosa	5.4	3.9	1.3	0.4	
10	47	4		F 4	2.5	4.4	0.3	

Iris Dataset

Iris Data

Examples in this Section

Example 1

Hierarchical Clustering for Iris dataset

Example 2:

 Hierarchical Clustering for Iris dataset after using PCA to reduce dataset to 2 dimensions

Example 1: Clustering of Iris Dataset

- Dataset: Feature matrix X (4 dimensions x 150 data points)
- Algorithm: Hierarchical Clustering (stop at 3 clusters)
- Metrics:
 - Purity: 0.907
 - Davies-Bouldin: 0.66

PCA for Iris Dataset

- Project data from 4 dimensions to 2 dimension using PCA
- Variance capture is 97.8%

 New basis vectors/features u0 and u1 do not correspond to actual measurable quantities, such as sepal width or length or petal width or length

Example 2: Clustering for Iris Dataset using PCA

- Dataset: reduced dimension feature matrix R (2 x 150)
- Algorithm: Hierarchical Clustering (stop at 3 clusters)
- Metrics:
 - Purity: 0.90
 - Davies-Bouldin: 0.66

Clustering for Iris Dataset using PCA

Comparison of Class and Clustering Results

iris class Code Design

method	Input	Description
init		Constructor for iris class – saves data directory Return: nothing
load		Loads all 150 samples and corresponding class labels from iris dataset Return: X (2d numpy array), class_label (1d numpy array) See UnsupervisedML/Examples/Section02/Pandas.ipynb
plot		Creates scatter plots showing classes as a function of all possible 2 variable combinations of sepal width, sepal length, petal width & petal length Return: nothing See UnsupervisedML/Examples/Section02/MatplotlibAdvanced.ipynb

Iris Clustering Code Walkthrough

Code and data located at:

- UnsupervisedML/Code/Programs
- UnsupervisedML/Code/Data_Iris

Files to Review	Description
iris.csv	Iris dataset
data_iris.py	Class for loading and processing iris data
plot_data.py	Functions for creating basic scatter plots
casestudy_iris.py	Driver for iris clustering
casestudy_iris_pca.py	Driver for iris clustering using pca to reduce dimension

Course Resources at:

- https://github.com/satishchandrareddy/UnsupervisedML/
- Stop video if you would like to implement code yourself first

Unsupervised Machine Learning with Python

Section 10.3: Clustering for MNIST Digits Dataset

MNIST Digits Dataset

- Thousands of handwritten digit images with 28x28 resolution
- Data Source: http://yann.lecun.com/exdb/mnist/
- Used extensively for testing machine learning algorithms

Collage of 160 individual digit images

By Josef Steppan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.ph p?curid=64810040

Examples in this Section

Clustering problem:

- Employ clustering algorithm/PCA to group images in MNIST Dataset
- See how well algorithm creates clusters with he same digits

Example 1

K Means Clustering for MNIST Dataset

Example 2:

 K Means Clustering for MNIST Dataset after using PCA to capture 90% of variance (reduces number of dimensions to 87)

Example 3:

 Gaussian MM Clustering for MNIST Dataset after using PCA to capture 90% of variance (reduces number of dimensions to 87)

Example 1: K Means Clustering

- Dataset: Feature matrix X (784 dimensions x 60000 images)
- Algorithm: K Means with 10 clusters, kmeans++ for initialization, 100 iterations maximum, tolerance of 10^{-4}
- Metrics:
 - Purity: 0.596
 - Davies-Bouldin: 2.82
 - Clustering Time: 196 seconds

Example 1: K Means Clustering

Example 2: K Means Clustering with PCA

- Dataset: apply PCA with 90% variance capture to 60000 images resulting in feature matrix R (87 dimensions x 60000 images)
- Algorithm: K Means with 10 clusters, kmeans++ for initialization, 100 iterations maximum, 10⁻⁴ tolerance
- Metrics:
 - Purity: 0.596
 - Davies-Bouldin: 2.82
 - PCA Time: 7.6 seconds + Clustering Time: 16.2 seconds

Example 3: GaussianMM Clustering with PCA

- Dataset: apply PCA with 90% variance capture to 60000 images resulting in feature matrix R (87 dimensions x 60000 images)
- Algorithm: GaussianMM with 10 clusters, kmeans++ for initialization, 100 iterations maximum, 10⁻⁴ tolerance
- Metrics:
 - Purity: 0.574
 - Davies-Bouldin: 3.19
 - PCA Time: 6.6 seconds + Cluster Time: 172 seconds

Comments

- K Means Clustering
 - Achieved 60% Purity result for clustering for 60000 image MNIST dataset
 - Clustering results similar with/without PCA as measured by Purity and Davies-Bouldin values
 - Using PCA can significantly reduce clustering time
 - I have found many more iterations are required for convergence using "random" compared to "kmeans++" initialization
- Gaussian MM Clustering
 - Don't get convergence after 100 iterations even after applying PCA to reduce dimensions to 87
 - Approach is slow for large numbers of dimensions
 - I am finding that method is not stable for other values of variance capture numerical issues because determinant of covariance matrix is close to 0
 - In exercises you will investigate using spherical Gaussian MM approach

MNIST Clustering Code Walkthrough

Code and data located at:

- UnsupervisedML/Code/Programs
- UnsupervisedML/Code/Data_MNIST

Files to Review	Description
MNIST_train_set1_30K.csv MNIST_train_set2_30K.csv MNIST_valid_10K.csv	MNIST train and valid datasets
data_mnist.py	Code for loading and processing MNIST data
casestudy_mnist.py	Driver for MNIST clustering

Course Resources at:

- https://github.com/satishchandrareddy/UnsupervisedML/
- Stop video if you would like to implement code yourself first

Unsupervised Machine Learning with Python

Section 10.4: Clustering for Text Documents

BBC Text Dataset

- 2225 BBC articles in 5 categories: sport, business, tech, entertainment, politics
- Dataset: https://www.kaggle.com/yufengdev/bbc-fulltext-and-category
- File: UnsupervisedML/Code/Data_Text/bbc-text.csv
- Use Tfidf vectorizer in sklearn
- 12915 words in dictionary -> 12915 x 2225 feature matrix

	Α	В	С	D	Е	F	G	Н	1	J
1	category	text								
2	tech	tv future in	n the hands	of viewers	with home	e theatre sy	ystems pla	sma high-d	efinition tvs	and di
3	business	worldcom	boss left b	ooks alone	e former w	orldcom be	oss bernie e	ebbers who	o is accused	d of over
4	sport	tigers war	y of farrell	gamble le	icester say	they will no	ot be rushe	d into maki	ng a bid for	andy fa
5	sport	yeading fa	ce newcas	tle in fa cup	premiersh	ip side new	castle unit	ed face a t	rip to ryma	n premie
6	entertainn	tainn ocean s twelve raids box office ocean s twelve the crime caper sequel starring george clooney								
7	politics	howard hi	howard hits back at mongrel jibe michael howard has said a claim by peter hain that the tory le							
8	politics	blair prepa	blair prepares to name poll date tony blair is likely to name 5 may as election day when parlian							
9	sport	henman h	henman hopes ended in dubai third seed tim henman slumped to a straight sets defeat in his ra							
10	sport	wilkinson	wilkinson fit to face edinburgh england captain jonny wilkinson will make his long-awaited retu							
11	entertainn	last star wars not for children the sixth and final star wars movie may not be suitable for youn								
12	entertainn	berlin chee	ers for anti	-nazi film a	german me	ovie about	an anti-naz	i resistance	e heroine h	as drawı
13	business	virgin blue	shares plu	mmet 20%	shares in a	ustralian bu	udget airlin	e virgin blu	e plunged 2	0% afte
14	business	crude oil p	rices back	above \$50		er across p			tes and mud	ch of eur

Examples in this Section

Clustering problem:

- Employ clustering algorithm/PCA to group articles in BBCText dataset
- How well can algorithm create clusters of articles in the same category?

Example 1

K Means Clustering for BBCText dataset

Example 2:

 K Means Clustering for BBCText dataset after using PCA to reduce dimensions and still capture 100% of variance

Example 1: K Means Clustering

- Dataset: Feature matrix X (12915 dimensions x 2225 data points)
- \bullet Algorithm: K Means with 5 clusters, random initialization, 50 iterations maximum, tolerance of $10^{\text{-4}}$
- Metrics:
 - Purity: 0.943
 - Davies-Bouldin: 8.06
 - Clustering Time: 13.8 seconds

Example 1: Wordclouds for Clusters

PCA for BBC Text Dataset

- Perform PCA for BBC Text Dataset
- Since number of dimensions (12915) > number of data points (2225), can reduce number of dimensions and still retain 100% of variance
- Actually, since some singular values are 0, can retain 100% of variance with 2116 dimensions

Example 2: K Means Clustering with PCA

- Dataset: use PCA to reduce dimension and still capture 100% of variance results in feature matrix R (2116 dimensions x 2225 data points)
- Algorithm: K Means with 5 clusters, random initialization, 50 iterations maximum, tolerance of 10^{-4}
- Metrics: (clusters are exactly the same as in Example 1)
 - Purity: 0.943
 - Davies-Bouldin: 8.06
 - PCA Time: 13.6 seconds + Clustering Time: 2.7 seconds

Comments

- K Means Clustering algorithm is able to achieve greater than 94% purity measure for grouping articles in BBC Text dataset
- Can use PCA to reduce dimension and maintain 100% variance capture
 - Dimension reduced from 12915 to 2116
 - Clustering results exactly the same as in case of no dimension reduction
 - Clustering time reduced by a factor of 5

bbctext class Code Design

method	Input	Description
init		Constructor for bbctext class – saves directory and TFIDF vectorizer Return: nothing
load	nsample (integer)	Loads bbc text dataset for specified number of samples and applies TFIDF vectorization to create feature matrix Return: X (2d numpy array), class_label (1d numpy array) -UnsupervisedML/Examples/Section02/Pandas.ipynb -UnsupervisedML/Examples/Section03/SklearnText.ipynb
create_ wordcloud	X_tfidf (2d numpy array) cluster_assignment (1d numpy array) ncluster (integer) nword (integer)	Creates wordcloud plot for specified X_tfidf matrix, cluster assignments, and number of words Return: nothing -UnsupervisedML/Examples/Section03/SklearnText.ipynb

Text Clustering Code Walkthrough

Code and data located at:

- UnsupervisedML/Code/Programs
- UnsupervisedML/Code/Data BBCText

Files to Review	Description
data_bbctext.py	Code for loading and processing BBC text data
casestudy_bbctext.py	Driver for bbc text cluster
bbc-text.csv	BBC text data file

Course Resources at:

- https://github.com/satishchandrareddy/UnsupervisedML/
- Stop video if you would like to implement code yourself first