Quicksort

Contents

- Quicksort
- Randomized quicksort

Divide-and-Conquer paradigm

```
QUICKSORT(A, p, r)

if p < r

q = \text{PARTITION}(A, p, r)

QUICKSORT(A, p, q - 1)

QUICKSORT(A, q + 1, r)
```

Partition

Quicksort

2 8 7 1 3 5 6 4

2 1 7 8 3 5 6 4

2 8 7 1 3 5 6 4

2 1 3 8 7 5 6 4

2 8 7 1 3 5 6 4

2 1 3 8 7 5 6 4

2 8 7 1 3 5 6 4

2 1 3 8 7 5 6 4

2 1 3 4 7 5 6 8

Partition

```
PARTITION(A, p, r)
1 x = A[r]
2 i = p - 1
3 for j = p to r - 1
      do if A[j] \leq x
          then i = i + 1
                 exchange A[i] \leftrightarrow A[j]
   exchange A[i+1] \leftrightarrow A[r]
  return i+1
```

Quicksort

- Partition
 - $\Theta(n)$ time.
- Balanced partitioning vs. unbalanced partitioning

Balanced partitioning

- When PARTITION produces two subproblems of sizes $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rfloor - 1$.

$$- T(n) \le 2T(n/2) + \Theta(n) = O(n \lg n)$$

Balanced partitioning

Unbalanced partitioning

Unbalanced partitioning

$$T(n) = T(n-1) + \Theta(n)$$

$$= \sum_{k=1}^{n} \Theta(k)$$

$$= \Theta\left(\sum_{k=1}^{n} k\right)$$

$$= \Theta(n^{2})$$

11

Worst-case Analysis

Worst-case analysis

- Quicksort takes $\Omega(n^2)$ time in worst case.
 - Consider the unbalanced partitioning.
- Is the unbalanced partitioning the worst case?

Worst-case Analysis

Worst-case analysis

– Show that the running time of quicksort is $O(n^2)$ by substitution method.

$$T(n) = \max_{0 \le q \le n-1} (T(q) + T(n-q-1)) + \Theta(n)$$

- Show that $T(n) \le cn^2$ for some constant c.

$$T(n) \le \max_{0 \le q \le n-1} (cq^2 + c(n-q-1)^2) + \Theta(n)$$

$$= c \cdot \max_{0 \le q \le n-1} (q^2 + (n-q-1)^2) + \Theta(n)$$

$$= c \cdot \max_{0 \le q \le n-1} (2q^2 - 2q(n-1) + (n-1)^2) + \Theta(n)$$

$$= c \cdot \max_{0 \le q \le n-1} (2(q-(n-1)/2)^2 + (n-1)^2/2) + \Theta(n)$$

Worst-case Analysis

Worst-case analysis

- The internal expression is maximized when q = 0 or n - 1.

$$T(n) \le c \cdot \max_{0 \le q \le n-1} \left(2\left(q - \frac{n-1}{2}\right)^2 + \frac{(n-1)^2}{2} \right) + \Theta(n)$$

$$= c \cdot (n-1)^2 + \Theta(n)$$

$$= cn^2 - c(2n-1) + \Theta(n)$$

$$\le cn^2$$

- We can pick the constant c large enough so that the c(2n-1) term dominates the $\Theta(n)$ term.
- Thus, $T(n)=O(n^2)$.

Average-case analysis

$$E[T(n)] = \frac{1}{n} \left(\sum_{q=1}^{n} (E[T(q-1)] + E[T(n-q)]) \right) + \Theta(n)$$

$$=\frac{2}{n}\sum_{q=0}^{n-1}E[T(q)]+\Theta(n)$$

- By substitution method, show $T(n) \le cn \lg n$ for some c.
 - Problem 7-3.

Average Case Analysis II

- Let X be the number of comparisons over the entire execution of QUICKSORT on an n-element array.
- Then the average running time of QUICKSORT is
 - O(n + E[X]).
- We will not attempt to analyze how many comparisons are made in each PARTITION.
- Rather, we will derive an overall bound on the total number of comparisons.

 Let z_i denote the ith smallest element in the sorted array.

•
$$Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$$

- Each pair of elements z_i and z_j is compared at most once.
 - An element is compared only to the pivot element in each PARTITION.
 - The pivot element used in a PARTITION is never again compared to any other elements.

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}$$

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}$$

- $Pr\{z_i \text{ is compared to } z_i\}$
 - $Pr\{z_i \text{ or } z_j \text{ is the first pivot chosen from } Z_{ij}\}$

$$=\frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

k = j - i, the harmonic series

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(\lg n)$$
 Equation (A.7)
$$= O(n \lg n)$$

Randomized quicksort

RANDOMIZED-PARTITION(A, p, r)

- 1. i = RANDOM(p, r)
- 2. exchange A[r] with A[i]
- 3. **return** PARTITION(A, p, r)

Hanyang Univ.

20

Randomized quicksort

```
RANDOMIZED-QUICKSORT(A, p, r)
```

- 1 if p < r
- 2 q = RANDOMIZED-PARTITION(A, p, r)
- 3 RANDOMIZED-QUICKSORT(A, p, q-1)
- 4 RANDOMIZED-QUICKSORT(A, q + 1, r)

Self-study

- Exercise 7.1-2
 - Balanced partition with same elements
- Exercise 7.2-4
 - Sorting almost-sorted input