Data Structures and Algorithm

Xiaoqing Zheng zhengxq@fudan.edu.cn

Dynamic programming

- Dynamic programming is typically applied to optimization problems.
- □ There can be *many possible solutions* in optimization problems.
- Each solution has a value, and we wish to find a solution with the optimal (*minimum* or *maximum*) value.

Manufacturing problem

Brute-force

Check every way through a factory and choose the fastest way.

Analysis

- Checking = O(n) time per way.
- 2^n possible ways to choose stations.
- Worst-case running time = $O(n2^n)$

= exponential time.

It is infeasible!

Structure of manufacturing problem

- An optimal solution to a problem (finding the fastest way though station $S_{i,j}$) contains within it an optimal solution to *subproblems* (finding the fastest way through either $S_{1,j-1}$ or $S_{2,j-1}$)
- \square Suppose that the fastest way through station $S_{1,j}$ is *either*
 - the fastest way through station $S_{1,j-1}$ and then directly through station $S_{1,j}$, or
 - the fastest way through station $S_{2,j-1}$, a transfer from line 2 to line 1, and then through station $S_{1,j}$.
- □ Suppose that the fastest way through station $S_{1,j}$ is through station $S_{1,j-1}$. The *key observation* is that the chassis must have taken a fastest way from the starting point through station $S_{1,j-1}$.

Recursive solution

- $f_i[j]$ denote the fastest possible time to get a chassis from the starting point through station S_{ij} .
- e_i denote an entry time for the chassis to enter assembly line i.
- x_i denote an exit time for the completed auto to exit assembly line i.
- $a_{i,j}$ denote the assembly time required at station S_{ij} .
- $t_{i,j}$ denote the time to transfer a chassis away from assembly line i after through station S_{ij} .

Our *ultimate goal* is:

$$f^* = \min(f_1[n] + x_1, f_2[n] + x_2).$$

Recursive solution (cont.)

We obtain the *recursive* equations

$$\begin{split} f_1[j] = & \begin{cases} e_1 + a_{1,1} & \text{if } j = 1, \\ \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \geq 2. \end{cases} \\ f_2[j] = & \begin{cases} e_2 + a_{2,1} & \text{if } j = 1, \\ \min(f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j \geq 2. \end{cases} \end{split}$$

 $l_i[j]$ denote the line number i, whose station j-1 is used in a fastest way through station S_{ij} .

Matrix multiplication

```
Input: A = [a_{ik}], B = [b_{kj}].
Output: C = [c_{ij}] = A \cdot B.

for i \leftarrow 1 to rows[A]
do for j \leftarrow 1 to columns[B]
do c_{ij} \leftarrow 0
for k \leftarrow 1 to columns[A]
do c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}
```

Number of scalar multiplications

```
= rows[A] \times columns[A] \times columns[B]
```

Matrix-chain multiplication

$$A_{1}: 10 \times 100,$$

$$A_{2}: 100 \times 5,$$

$$A_{3}: 5 \times 50.$$

$$((A_{1}A_{2}) A_{3})$$

$$10 \times 100 \times 5 = 5,000$$

$$10 \times 5 \times 50 = 2,500$$

$$(A_{1}(A_{2}A_{3}))$$

$$100 \times 5 \times 50 = 25,000$$

$$10 \times 100 \times 5 = 50,000$$

First parenthesization is 10 times faster.

Matrix-chain multiplication

Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, where for i = 1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product $A_1A_2...A_n$ in a way that minimizes the number of scalar multiplications.

- We are not actually multiplying matrices. Our goal is only to determine an order for multiplying matrices that has the lowest cost.
- Typically, the time invested in determining this optimal order is more than paid for by the time saved later on when actually performing the matrix multiplications

student [<u>学生学号</u> 学生姓名]
course [<u>课程名称</u> 教师姓名]
grade [<u>学生学号</u> <u>课程名称</u> 成绩]
teacher [<u>教师姓名</u> 教师职称]

[学生学号 学生姓名 课程名称 成绩 教师姓名 教师职称]

course

<u>课程名称</u>	教师姓名
Web应用基础	许劭
数据结构与算法	司马徽
Java程序设计	李先隆

teacher

教师姓名	教师职称
许劭	讲师
司马徽	教授
李先隆	副教授

Cartesian Product

<u>课程名称</u>	教师姓名	教师姓名	教师职称
Web应用基础	eb应用基础 许劭 许劭		讲师
Web应用基础	许劭	司马徽	教授
Web应用基础	许劭	李先隆	副教
数据结构与算法	司马徽	许劭	讲师
数据结构与算法	司马徽	司马徽	教授
数据结构与算法	司马徽	李先隆	副教
Java程序设计	李先隆	许劭	讲师
Java程序设计	李先隆	司马徽	教授
Java程序设计	李先隆	李先隆	副教

where course.教师姓名=teacher.教师姓名

课程名称	教师姓名	教师职称	
Web应用基础	许劭	讲师	
数据结构与算法	司马徽	教授	
Java程序设计	李先隆	副教	

grade

学生学号	<u>课程名称</u>	成绩
200701	Web应用基础	86
200702	数据结构与算法	88
200703	Web应用基础	95
200704	Web应用基础	76
200705	数据结构与算法	90
200706	Java程序设计	68
200707	Java程序设计	45
200708	Web应用基础	82
200709	Java程序设计	85

temporary1

课程名称 教师姓		教师职称
Web应用基础	许劭	讲师
数据结构与算法	司马徽	教授
Java程序设计	李先隆	副教

grade join temporary1 on grade.课程名称=temporary1.课程名称

学生学号	课程名称	成绩	教师姓名	教师职称
200701	Web应用基础	86	许劭	讲师
200702	数据结构与算法	88	司马徽	教授
200703	Web应用基础	95	许劭	讲师
200704	Web应用基础	76	许劭	讲师
200705	数据结构与算法	90	司马徽	教授
200706	Java程序设计	68	李先隆	副教授
200707	Java程序设计	45	李先隆	副教授
200708	Web应用基础	82	许劭	讲师
200709	Java程序设计	85	李先隆	副教授

student

学生学号学生姓名200701曹操200702郭嘉

temporary2

学生学号	课程名称	成绩	教师姓名	教师职称
200701	Web应用基础	86	许劭	讲师
200702	数据结构与算法	88	司马徽	教授
•••	•••	•••	•••	•••

student join temporary2 on student.学生学号=temporary2.学生学号

学生学号	学生姓名	课程名称	成绩	教师姓名	教师职称
200701	曹操	Web应用基础	86	许劭	讲师
200702	郭嘉	数据结构与算法	88	司马徽	教授
200703	贾诩	Web应用基础	95	许劭	讲师
200704	刘备	Web应用基础	76	许劭	讲师
200705	诸葛亮	数据结构与算法	90	司马徽	教授
200706	关羽	Java程序设计	68	李先隆	副教授
200707	张飞	Java程序设计	45	李先隆	副教授
200708	孙权	Web应用基础	82	许劭	讲师
200709	周瑜	Java程序设计	85	李先隆	副教授

Multi-join of Relational Model

Join on A, B, CA = 1000, B = 200, C = 500

Selector factor of join on A and B = 0.5

Selector factor of join on B and C = 0.01

Case 1:

Firstly, Join of A and $B = D = 1,000 \times 200 \times 0.5 = 100,000$ Secondly, Join of D and $C = 100,000 \times 500 \times ? = 100$ **Time** = 200,000 + 50,000,000 = 50,200,000

Case 2:

Firstly, Join of *B* and $C = E = 200 \times 500 \times 0.01 = 1,000$ Secondly, Join of *A* and $E = 1,000 \times 1,000 \times ? = 100$ **Time** = 100,000 + 1,000,000 = 1,100,000

Save = 50,200,000 / 1,100,000 = **45.64 Times**

Brute-force

P(n): denote the number of alternative parenthesizations of a sequence of n matrices.

We obtain the recurrence

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

This recurrence is the sequence of *Catalan numbers*, which grows as $\Omega(4^n / n^{3/2})$.

It is infeasible!

Structure of an optimal parenthesization

- Any parenthesization of the product $A_i ... A_j$ must split the product between A_k and A_{k+1} for some integer k in the range $i \le k < j$. For some k, we first compute the matrices $A_i ... A_k$ and $A_{k+1} ... A_j$ and then multiply them together to produce the final product $A_i ... A_j$.
- Suppose that an optimal parenthesization of $A_i ... A_j$ splits the product between A_k and A_{k+1} . Then the parenthesization of the "prefix" subchain $A_i ... A_k$ within this optimal parenthesization of $A_i ... A_j$ must be an optimal parenthesization of $A_i ... A_k$.
- We can build an optimal solution to an instance of the matrix-chain multiplication problem by splitting the problem into two *subproblems*, finding optimal solutions to subproblem, and then combining these optimal subproblem solutions.

Recursive solution

m[i,j] denote the minimum number of scalar multiplications needed to compute the matrix $A_i ... A_j$.

We obtain the *recursive* equations

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

Our goal is m[1,n].

Recursion tree

Recursion tree

Overlapping subproblems

Recursion tree

Overlapping subproblems

Constructing an optimal solution

Constructing an optimal solution

Constructing an optimal solution

Elements of dynamic programming

Optimal substructure

- Dynamic programming builds an optimal solution to the problem from optimal solutions to subproblems.
- The solutions to the subproblems used within the optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.
- Subproblems are *independent*.

Overlapping subproblems

- Recursive algorithm revisits the same problem over and over again.
- In contrast, a problem for which a divide-and-conquer approach is suitable usually generates brand-new problems at each step of the recursion.

Divide-and-conquer algorithm

IDEA:

 $n \times n$ matrix = 2 × 2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r \mid s \\ - \vdots - \vdots \\ t \mid u \end{bmatrix} = \begin{bmatrix} a \mid b \\ - \vdots - \vdots \\ c \mid d \end{bmatrix} \cdot \begin{bmatrix} e \mid f \\ - \vdots - \vdots \\ g \mid h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$
 $t = ce + dg$
 $u = cf + dh$
Precursive
8 mults of $(n/2) \times (n/2)$ submatrices
4 adds of $(n/2) \times (n/2)$ submatrices

Given a directed graph G = (V, E) and vertices $u, v \in V$.

- Unweighted shortest path: Find a path from *u* to *v* consisting the fewest edges.
- Unweighted longest simple path: Find a path from *u* to *v* consisting the most edges.

Given a directed graph G = (V, E) and vertices $u, v \in V$.

- Unweighted shortest path: Find a path from *u* to *v* consisting the fewest edges.
- Unweighted longest simple path: Find a path from *u* to *v* consisting the most edges.

Shortest path from u to v.

$$u \xrightarrow{p_1} s \xrightarrow{p_2} v$$
.

For intermediate vertex s.

 p_1 and p_2 must be shortest path.

Given a directed graph G = (V, E) and vertices $u, v \in V$.

- Unweighted shortest path: Find a path from *u* to *v* consisting the fewest edges.
- Unweighted longest simple path: Find a path from *u* to *v* consisting the most edges.

Longest path from u to v.

$$u \stackrel{p_8}{\longrightarrow} r \stackrel{p_7}{\longrightarrow} v$$
.

For intermediate vertex r.

Is p_8 longest simple path from u to r?

Given a directed graph G = (V, E) and vertices $u, v \in V$.

- Unweighted shortest path: Find a path from *u* to *v* consisting the fewest edges.
- Unweighted longest simple path: Find a path from *u* to *v* consisting the most edges.

Longest path from u to v.

$$u \stackrel{p_8}{\longrightarrow} r \stackrel{p_7}{\longrightarrow} v$$
.

For intermediate vertex r.

Is p_8 longest simple path form u to r?

No. It is
$$u \stackrel{p_1}{\longrightarrow} s \stackrel{p_2}{\longrightarrow} v \stackrel{p_3}{\longrightarrow} r$$

Given a directed graph G = (V, E) and vertices $u, v \in V$.

- Unweighted shortest path: Find a path from *u* to *v* consisting the fewest edges.
- Unweighted longest simple path: Find a path from *u* to *v* consisting the most edges.

Longest path from u to v.

$$u \stackrel{p_8}{\longrightarrow} r \stackrel{p_7}{\longrightarrow} v$$
.

For intermediate vertex r.

Is p_7 longest simple path form r to v?

Given a directed graph G = (V, E) and vertices $u, v \in V$.

- Unweighted shortest path: Find a path from *u* to *v* consisting the fewest edges.
- Unweighted longest simple path: Find a path from *u* to *v* consisting the most edges.

Longest path from u to v.

$$u \stackrel{p_8}{\longrightarrow} r \stackrel{p_7}{\longrightarrow} v$$
.

For intermediate vertex r.

Is p_7 longest simple path form r to v?

No. It is
$$r \xrightarrow{p_4} u \xrightarrow{p_1} s \xrightarrow{p_2} v$$

Given a directed graph G = (V, E) and vertices $u, v \in V$.

- Unweighted shortest path: Find a path from *u* to *v* consisting the fewest edges.
- Unweighted longest simple path: Find a path from *u* to *v* consisting the most edges.

Longest path from u to v.

$$u \xrightarrow{p_8} r \xrightarrow{p_7} v$$
.

For intermediate vertex v.

Combine the longest simple paths

$$u \xrightarrow{p_1} s \xrightarrow{p_2} v \xrightarrow{p_3} r \xrightarrow{p_4} u \xrightarrow{p_1} s \xrightarrow{p_2} v$$

The path contains cycles and is not simple.

Independent

- □ Subproblems in finding the longest simple path are not *independent*, whereas for shortest paths they are.
- □ Subproblems being independent means that the solution to one subproblem does not affect the solution to another subproblem.
- □ For longest simple path problem, we choose the first path $u \rightarrow s \rightarrow v \rightarrow r$, and so we have also used the vertices s and v. We can no longer use these vertices in the second subproblem.
- □ Our use of *resources* in solving one subproblem has rendered them unavailable for the other subproblem.

Four steps of development

- Characterize the *structure* of an optimal solution.
- *Recursively* define the value of an optimal solution.
- Compute the value of an optimal solution in a **bottom-up** fashion.
- *Construct* an optimal solution from computed information.

Longest Common Subsequence

Given two sequences x[1 ... m] and y[1 ... n], find a longest subsequence common to them both.

$$x: A \quad B \quad C \quad B \quad D \quad A \quad B$$

$$y: \quad B \quad D \quad C \quad A \quad B \quad A$$

$$BCBA = LCS(x, y)$$

Brute-force LCS algorithm

Check every subsequence of x[1 ... m] to see if it is also a subsequence of y[1 ... n].

Analysis

- Checking = O(n) time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Worst-case running time = $O(n2^m)$ = exponential time.

It is infeasible!

Optimal substructure of an LCS

Given a sequence $W = \langle w_1, w_2, ..., w_n \rangle$, define the *i*th *prefix* of W, for i = 0, 1, ..., m, as $W_i = \langle w_1, w_2, ..., w_i \rangle$

Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any *LCS* of *X* and *Y*.

- If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an *LCS* of X_{m-1} and Y_{n-1} .
- If $x_m \neq y_n$, then $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.
- If $x_m \neq y_n$, then $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

Recursive solution

Let us define c[i, j] to be the length of an LCS of the sequences X_i and Y_i .

The optimal substructure of the *LCS* problem gives the recursive formula.

C	\dot{J}	0	1	2	3	4	5	6
i		y_j	\boldsymbol{B}	D	\boldsymbol{C}	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{A}
0	x_i							
1	\boldsymbol{A}							
2	B							
3	C							
4	B							
5	\boldsymbol{D}							
6	\boldsymbol{A}							
7	B							

C	\dot{J}	0	1	2	3	4	5	6
i		y_j	\boldsymbol{B}	D	\boldsymbol{C}	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{A}
0	\mathcal{X}_i	0	0	0	0	0	0	0
1	\boldsymbol{A}	0						
2	B	0						
3	C	O						
4	\boldsymbol{B}	O						
5	D	O						
6	\boldsymbol{A}	0						
7	\boldsymbol{B}	0						

$$x_1 \neq y_1$$
 and $c[0, 1] \geq c[1, 0]$ then $c[1, 1] = c[0, 1]$

$$x_1 = y_4$$
 then
 $c[1, 4] = c[0, 3] + 1$

$$x_1 \neq y_5$$
 then
 $c[0, 5] < c[1, 4]$ then
 $c[1, 5] = c[1, 4]$

$$x_7 \neq y_6$$
 and $c[6, 6] \geq c[7, 5]$ then $c[7, 6] = c[6, 6]$

Constructing an LCS

$$c[7, 6] = 4$$
 and $LCS(X, Y) = BCBA$

Any question?

Xiaoqing Zheng Fundan University