[DataSet4]

This indicates a moderate positive correlation between the independent variable crim (crime rate) and the dependent variable medv.

This indicates a moderate positive correlation between the independent variable zn (proportion of residential land zoned for lots over 25,000 sq. ft.) and the dependent variable medv.

This indicates a moderate positive correlation between the independent variable indus (proportion of non-retail business acres per town) and the dependent variable medv (median home value).

This indicates moderate positive correlation between the independent variable nox (nitric oxides concentration) and the dependent variable medv (median home value).

This indicates a strong positive correlation between the independent variable rm (average number of rooms per dwelling) and the dependent variable medv (median home value).

This indicates a weak positive correlation between the independent variable dis (weighted distances to five Boston employment centers) and the dependent variable medv (median home value).

This indicates a moderate positive correlation between the independent variable rad (index of accessibility to radial highways) and the dependent variable medv (median home value).

This indicates a moderate positive correlation between the independent variable tax and the dependent variable medv (median home value).

This indicates a moderate positive correlation between the independent variable ptratio (pupil teacher ratio by town) and the dependent variable medv (median home value).

This indicates a weak to moderate positive correlation between the independent variable black (proportion of Black residents by town) and the dependent variable medv (median home value).

This indicates a strong positive correlation between the independent variable lstat (percentage of lower-status residents) and the dependent variable medv (median home value).

Regression

Variables Entered/Removeda

	Variables	Variables	
Model	Entered	Removed	Method
1	lstat, chas, black,		Enter
	ptratio, zn, crim,		
	rm, indus, age,		
	rad, dis, nox, taxb		

- a. Dependent Variable: medv
- b. All requested variables entered.

Model Summary

			Adjusted R	Std. Error of the	Change Statistics				
Model	R	R Square	Square	Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.861a	.741	.734	4.7453	.741	108.077	13	492	<.001

- a. Predictors: (Constant), lstat, chas, black, ptratio, zn, crim, rm, indus, age, rad, dis, nox, tax
- 1. R (Multiple Correlation Coefficient) = .861
- The R value of 0.861 indicates a strong positive correlation between the observed values of the dependent variable and the values predicted by the model.

- 2. R Square (Coefficient of Determination) = .741
- The R Square value of 0.741 means that approximately 74.1% of the variability in the dependent variable can be explained by the independent variables included in the model.
- 3. Adjusted R Square = .734
- The Adjusted R Square value of 0.734 is slightly lower than the R Square value, which is expected when more variables are included in the model. It suggests that even when adjusting for the number of predictors, about 73.4% of the variance in the dependent variable is still explained by the model.
- 4. Standard Error of the Estimate = 4.7453
- The Standard Error of the Estimate (4.7453) measures the average distance that the observed values fall from the regression line. In this context, a standard error of 4.7453 suggests that, on average, the predicted values deviate from the actual values by about 4.75units.

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	31637.511	13	2433.655	108.077	<.001b
	Residual	11078.785	492	22.518		
	Total	42716.295	505			

a. Dependent Variable: medv

b. Predictors: (Constant), lstat, chas, black, ptratio, zn, crim, rm, indus, age, rad, dis, nox, tax

Coefficients^a

				Standardized				
		IInstandard:	d Coofficients				OF ON Confiden	no Internal for D
		Unstandardize		Coefficients			95.0% Confiden	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	36.459	5.103		7.144	<.001	26.432	46.487
	crim	108	.033	101	-3.287	.001	173	043
	zn	.046	.014	.118	3.382	<.001	.019	.073
	indus	.021	.061	.015	.334	.738	100	.141
	chas	2.687	.862	.074	3.118	.002	.994	4.380
	nox	-17.767	3.820	224	-4.651	<.001	-25.272	-10.262
	rm	3.810	.418	.291	9.116	<.001	2.989	4.631
	age	.001	.013	.002	.052	.958	025	.027
	dis	-1.476	.199	338	-7.398	<.001	-1.867	-1.084
	rad	.306	.066	.290	4.613	<.001	.176	.436
	tax	012	.004	226	-3.280	.001	020	005
	ptratio	953	.131	224	-7.283	<.001	-1.210	696
	black	.009	.003	.092	3.467	<.001	.004	.015
	lstat	525	.051	407	-10.347	<.001	624	425

a. Dependent Variable: medv

To create a regression equation using only the independent variables with p-values less than 0.05 (indicating statistical significance), we'll include only those variables. Based on the coefficients table.

Since the variables indus and age have p-values greater than 0.05, indicating that they are not statistically significant predictors in the model, they have been removed from the regression equation.

Equation

medv = 36.459 - 0.108(crim) + 0.046(zn) + 2.687(chas) - 17.767(nox) + 3.810(rm) - 1.476(dis) + 0.306(rad) - 0.012(tax) - 0.953(ptratio) + 0.009(black) - 0.525(lstat)