Proof of Greedy-EFT Optimality

Question

You are given a set of intervals $\mathcal{I} = \{I_1, I_2, \dots, I_n\}$, where each interval $I_i = [s_i, f_i)$ has a start time s_i and finish time f_i .

The goal of the **Interval Scheduling Problem** is to select the largest possible subset of mutually non-overlapping intervals.

The proposed greedy algorithm, known as the **Earliest Finish Time (EFT)** algorithm, proceeds as follows:

Prove that the EFT greedy algorithm always returns an optimal solution. Use a proof by contradiction, induction, or direct argument — but **do not** use an exchange argument. Your proof should be rigorous and clearly structured.

Preliminaries

Assume the input intervals (tasks) are sorted by non-decreasing finish time

$$f_1 \leq f_2 \leq \ldots \leq f_n$$
.

Let $G = (g_1, g_2, ..., g_k)$ be the set of intervals selected by the *Greedy–Earliest-Finish-Time (EFT)* algorithm, where each g_i is the earliest-finishing interval compatible with all previously chosen ones. Hence

$$f_{q_1} \leq f_{q_2} \leq \ldots \leq f_{q_k}$$

Our goal is to show that G is an optimal schedule—i.e. its size k is the maximum possible. :contentReference[oaicite:0]index=0

Proof by Contradiction

Suppose, for contradiction, that G is not optimal. Let

$$O = (o_1, o_2, \dots, o_m), \qquad m > k,$$

be an optimal solution that agrees with G for as many initial intervals as possible. Without loss of generality, order O by finish time:

$$f_{o_1} \leq f_{o_2} \leq \ldots \leq f_{o_m}$$
.

Define

$$r = \min\{i \mid q_i \neq o_i\}.$$

Thus $g_1 = o_1, \dots, g_{r-1} = o_{r-1}$ but $g_r \neq o_r$.

Constructing a better optimal schedule. Because Greedy-EFT chose g_r instead of o_r , we must have $f_{g_r} \leq f_{o_r}$. Form a new schedule

$$O' = (o_1, \dots, o_{r-1}, g_r, o_{r+1}, \dots, o_m).$$

- Feasibility: By construction, g_r is compatible with $g_{r-1} = o_{r-1}$. Because $f_{g_r} \leq f_{o_r}$ and the suffix o_{r+1}, \ldots, o_m was compatible with o_r , it remains compatible after the replacement. Hence O' is feasible.
- Cardinality: |O'| = |O| = m.
- Agreement with G: O' matches G for the first r positions, one more than O did, contradicting the way we chose O.

This contradiction shows our assumption was false.

Conclusion

The Greedy–EFT algorithm produces a schedule G of maximum possible size; therefore, it is optimal.