Cal State University, San Bernardino Sample Midterm CSE 313– Machine Organization Instructor: Taline Georgiou

Closed books/notes. No calculators, cell phones, laptops, or any electronic device is allowed. Only one sheet of paper with notes is allowed. Must show all work for credit. Clearly indicate your answer. No cooperation. 5 problems, 20 points each.

Name:
1. Show of work is not necessary for this problem.
1) Give an instruction in LC-3 that corresponds to the pseudo-instruction CLEAR R1, which sets R1 to 0.
2) What is the LC-3 assembly language instruction for this machine code: 011011111111111
3) True or False. LEA modifies the condition code bits.
4) True or FalseEND is an assembly language instruction.
5) True or False. HALT is actually a TRAP instruction.
6) Using operate type instructions only place the value 45 in R1.
7) True or False. In a Von Neumann machine data and instructions both reside in memory.
8) What is the opcode for GETC in LC-3.
(i)True or False. In LC-3 all memory can be accessed with 16 bits.
(j) Give the decimal value for this 2's complement bit pattern: 111111110001
(k) Give the decimal number 119 as a number in base 5.
(l) What is the range of values that can be represented with 16 bits in two's complement format.

- 2. Suppose that register R1 holds the ASCII value of an upper case character, i.e."A", "B",..... Write an assembly language code fragment that will do the following: Convert that ASCII value to the corresponding lower case ASCII value. Note the result should be in R1.
- 3. We would like to have an instruction that does nothing. Many ISA's actually have an opcode devoted to doing nothing. It is usually called NOP, for NO OPERATION. The instruction is fetched, decoded and Executed. The execution phase is to do nothing. Which of the following three instructions could be used for NOP and have the program still work correctly.
 - (1) 0001 001 001 1 00000
 - (2)00001111000000001
 - (3) 0000 111 000000000

What does the ADD instruction do that the others do not do.

- 4. (a) As you can see, the LC-3 binary program below starts at location x30FF. Convert it assembly code. Make sure you distinguish code from data.
 - (b) If the program is executed, what is the value in R2 at the end of execution.

```
x30FF 1110 0010 0000 0001
x3100 0110 0100 0100 0010
x3101 1111 0000 0010 0101
x3102 0001 0100 0100 0001
x3103 0001 0100 1000 0010
```

- 5. Convert the decimal number 25.125 to:
 - (1) Binary number
 - (2) IEEE 754 32-bit floating point representation

Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that modify condition codes

Table A.2	Trap Service Routines						
Trap Vector	Assembler Name	Description					
x20	GETC	Read a single character from the keyboard. The character is not echoed onto the console. Its ASCII code is copied into R0. The high eight bits of R0 are cleared.					
x21	OUT	Write a character in R0[7:0] to the console display.					
x22	PUTS	Write a string of ASCII characters to the console display. The characters are contained in consecutive memory locations, one character per memory location, starting with the address specified in R0. Writing terminates with the occurrence of x0000 in a memory location.					
x23	IN	Print a prompt on the screen and read a single character from the keyboard. The character is echoed onto the console monitor, and its ASCII code is copied into R0. The high eight bits of R0 are cleared.					
x24	PUTSP	Write a string of ASCII characters to the console. The characters are contained in consecutive memory locations, two characters per memory location, starting with the address specified in R0. The ASCII code contained in bits [7:0] of a memory location is written to the console first. Then the ASCII code contained in bits [15:8] of that memory location is written to the console. (A character string consisting of an odd number of characters to be written will have x00 in bits [15:8] of the memory location containing the last character to be written.) Writing terminates with the occurrence of x0000 in a memory location.					
x25	HALT	Halt execution and print a message on the console.					

Table A.	3 Device Register As	e Register Assignments					
Address	I/O Register Name	I/O Register Function					
xFE00	Keyboard status register	Also known as KBSR. The ready bit (bit [15]) indicates if the keyboard has received a new character.					
xFE02	Keyboard data register	Also known as KBDR. Bits [7:0] contain the last character typed on the keyboard.					
xFE04	Display status register	Also known as DSR. The ready bit (bit [15]) indicates if the display device is ready to receive another character to print on the screen.					
xFE06	Display data register	Also known as DDR. A character written in the low byte of this register will be displayed on the screen.					
xFFFE	Machine control register	Also known as MCR. Bit [15] is the clock enable bit. When cleared, instruction processing stops.					

A.4 Interrupt and Exception Processing

Events external to the program that is running can interrupt the processor. A common example of an external event is interrupt-driven I/O. It is also the case that the processor can be interrupted by exceptional events that occur while the program is running that are caused by the program itself. An example of such an "internal" event is the presence of an unused opcode in the computer program that is running.

Associated with each event that can interrupt the processor is an 8-bit vector that provides an entry point into a 256-entry *interrupt vector table*. The starting address of the interrupt vector table is x0100. That is, the interrupt vector table

The Standard ASCII Table

ASCII			ASCII			ASCII			ASCII		
Character	Dec	Hex									
nul	0	00	sp	32	20	@	64	40	1	96	60
soh	1	01	1	33	21	A	65	41	a	97	61
stx	2	02	11	34	22	В	66	42	b	98	62
etx	3	03	#	35	23	C	67	43	C	99	63
eot	4	04	\$	36	24	D	68	44	d	100	64
enq	5	05	%	37	25	E	69	45	е	101	65
ack	6	06	&	38	26	F	70	46	f	102	66
bel	7	07	,	39	27	G	71	47	g	103	67
bs	8	80	(40	28	·H	72	48	h	104	68
ht	9	09)	41	29	I	73	49	i	105	69
lf	10	OA	*	42	2A	J	74	4A	j.	106	6A
vt	11	OB	+	43	2B	K	75	4B	k	107	6B
ff	12	OC		44	2C	L	76	4C	1	108	6C
cr	13	OD		45	2D	M	77	4D	m	109	6D
so	14	0E		46	2E	N	78	4E	n	110	6E
si	15	OF	/	47	2F	0	79	4F	0	111	6F
dle	16	10	0	48	30	P	80	50	р.	112	70
dc1	17	11	1	49	31	Q	81	51	q	113	71
dc2	18	12	2	50	32	R	82	52	r	114	72
dc3	19	13	3	51	33	S	83	53	s	115	73
dc4	20	14	4	52	34	T	84	54	t	116	74
nak	21	15	5	53	35	U	85	55	u	117	75
syn	22	16	6	54	36	V	86	56	v	118	76
etb	23	17	7	55	37	W	87	57	W	119	77
can	24	18	8	56	38	X	88	58	x	120	78
em	25	19	9	57	39	Y	89	59	У	121	79
sub	26	1A	:	58	3A	Z	90	5A	z	122	7A
esc	27	1B	;	59	3B	[91	5B	{	123	7B
fs	28	1C	<	60	3C	1	92	5C		124	7C
gs	29	1D	=	61	3D]	93	5D	}	125	7D
rs	30	1E	>	62	3E	^	94	5E	~	126	7E
us	31	1F	?	63	3F	_	95	5F	del	127	7F