[- (a) $(\log x)^n = -\frac{1}{x^n} < 0$, so ye logy is concave on $(0, +\infty)$. Let k= ||x||₀. Assume that xix0, i=1,2,..., k. Then $H(x) = -\sum_{i=1}^{k} \chi_i \log \chi_i = \sum_{i=1}^{k} \chi_i \log \frac{1}{\chi_i} \leq \log k \leq \log n$. (b) H(x)= logn, so x is a maximum point. Let C= [x & On-1: N; > V, i=1, 2, --; n] If $x \in C$, $\nabla^2 H(x) = diag(-\frac{1}{\chi_1}, -\frac{1}{\chi_2}, -\frac{1}{\chi_n})$ Obviously 72H(x) is negative definite, so H(x) is strictly concave on C. Thus to is the unique maximum point on C. If x & On1 \C, k < n, H(x) \ logk < log n. Thus, $\overline{\chi}$ is the unique maximum point on Δ_{n-1} .

2. (a)
$$(\mu^{-1})f(u) + (u^{-1})f(s) \ge f(u^{-1}s^{-1}u + u^{-1}s^{-1}s) = f(\mu)$$
 $(u-\mu)(f(\mu)-f(s)) \le (\mu^{-1})(f(u)-f(\mu))$

so $f(\mu)-f(s) \le f(u)-f(\mu)$

(b) Let $f^{-2} \le \sup_{\alpha \le s \le \mu} \frac{f(\mu)-f(s)}{\mu^{-1}s^$

3. ||x|| is convex. x^3 is increasing $\Rightarrow ||x||^3$ is convex. $\Rightarrow ||Ax+b||^3$ is convex.

 e^{x} is convex. $f(x_{1}, x_{2}) = \log(x_{1} + x_{2})$ is increasing $= \log(e^{x_{1}} + e^{x_{2}})$ is convex $= \log((1 + e^{2x_{1} + 2x_{2}}))$ is convex $= \left(\operatorname{let} \left(\frac{x_{1}}{x_{2}} \right) = \left(\frac{x$

 $||Ax+b||^3$ and $\log(1+e^{3x_1+2x_1})$ are convex $\Rightarrow \max\{1|Ax+b||^3, \log(1+e^{3x_1+2x_2})\}$ is convex.

Sublevel sets of convex functions are convex sets, so Sis convex.

Thus, (a) is a convex optimization problem.

(b) 6x2-7x2 is not an affine function, so (b) is not a convex optimization problem