Rain Fall ¶

Linear Regression

1.PROBLEM STATEMENT: To predict and analysis the district wise Rainfall in a year

Test data

```
In [1]: # importing all the libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

Out[2]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0
336	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3	308.4
337	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3	263.1
338	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7	266.2
339	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9	230.7
340	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5	163.1

41 rows × 19 columns

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 641 entries, 0 to 640
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	STATE_UT_NAME	641 non-null	object
1	DISTRICT	641 non-null	object
2	JAN	641 non-null	float64
3	FEB	641 non-null	float64
4	MAR	641 non-null	float64
5	APR	641 non-null	float64
6	MAY	641 non-null	float64
7	JUN	641 non-null	float64
8	JUL	641 non-null	float64
9	AUG	641 non-null	float64
10	SEP	641 non-null	float64
11	OCT	641 non-null	float64
12	NOV	641 non-null	float64
13	DEC	641 non-null	float64
14	ANNUAL	641 non-null	float64
15	Jan-Feb	641 non-null	float64
16	Mar-May	641 non-null	float64
17	Jun-Sep	641 non-null	float64
18	Oct-Dec	641 non-null	float64
dtvn	es: float64(17)	object(2)	

dtypes: float64(17), object(2)

memory usage: 95.3+ KB

In [4]: df.describe()

Out[4]:

	JAN	FEB	MAR	APR	MAY	JUN	JUL	
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.0
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697	291.1
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643	152.€
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000	14.1
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000	194.6
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000	284.8
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000	358.1
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000	1522.1

```
In [5]: sns.lmplot(x="JAN",y="JUL",data=df,order=2,ci=None)
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x18e4e4d7bb0>


```
In [6]: df.fillna(method='ffill',inplace=True)
```

```
In [7]: X = np.array(df['JAN']).reshape(-1,1)
y = np.array(df['JUL']).reshape(-1,1)
```

```
In [8]: df.dropna(inplace = True)
```

```
In [9]: X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.25)
regr = LinearRegression()
regr.fit(X_train, y_train)
print(regr.score(X_test, y_test))
```

-0.024737972064376113

```
In [10]: y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color = 'b')
plt.plot(X_test, y_pred, color = 'k')
plt.show()
```



```
In [11]: df500 = df[:][:500]
sns.lmplot(x = "JAN", y ="JUL", data = df500, order = 1, ci = None)
```

Out[11]: <seaborn.axisgrid.FacetGrid at 0x18e4e4d6410>


```
In [12]: df500.fillna(method ='ffill', inplace = True)
    X = np.array(df500['JAN']).reshape(-1,1)
    y = np.array(df500['JUL']).reshape(-1,1)
    df500.dropna(inplace = True)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
    regr = LinearRegression()
    regr.fit(X_train, y_train)
    print("Regression: ",regr.score(X_test, y_test))
    y_pred = regr.predict(X_test)
    plt.scatter(X_test, y_test, color = 'b')
    plt.plot(X_test, y_pred, color = 'k')
    plt.show()
```

Regression: -0.007915302891319476


```
In [13]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model = LinearRegression()
    model.fit(X_train, y_train)
    y_pred=model.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score: ",r2)
```

R2 score: -0.007915302891319476

Train data

```
In [14]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

Out[15]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NO
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.

4116 rows × 19 columns

In [16]: sns.lmplot(x="YEAR",y="ANNUAL",data=df1,order=2,ci=None)

Out[16]: <seaborn.axisgrid.FacetGrid at 0x18e53ad27d0>

In [17]: df1.describe()

Out[17]:

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL
116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.000000	4109.000000
)58.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.234444	347.214334
33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.710758	269.539667
001.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000
30.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.350000	175.600000
)58.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.700000	284.800000
987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.150000	418.400000
)15.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000

```
In [18]: |df1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4116 entries, 0 to 4115
         Data columns (total 19 columns):
              Column
                           Non-Null Count
                                            Dtype
                            -----
                                            _ _ _ _ _
          0
              SUBDIVISION 4116 non-null
                                            object
          1
              YEAR
                           4116 non-null
                                            int64
          2
              JAN
                           4112 non-null
                                            float64
          3
              FEB
                           4113 non-null
                                            float64
          4
              MAR
                           4110 non-null
                                            float64
          5
                                            float64
              APR
                           4112 non-null
          6
                                            float64
              MAY
                           4113 non-null
          7
              JUN
                           4111 non-null
                                            float64
          8
                           4109 non-null
                                            float64
              JUL
          9
              AUG
                           4112 non-null
                                            float64
          10 SEP
                           4110 non-null
                                            float64
                           4109 non-null
                                            float64
          11 OCT
          12 NOV
                           4105 non-null
                                            float64
          13 DEC
                           4106 non-null
                                            float64
                           4090 non-null
          14 ANNUAL
                                            float64
                           4110 non-null
                                            float64
          15 Jan-Feb
                                            float64
          16 Mar-May
                           4107 non-null
          17 Jun-Sep
                           4106 non-null
                                            float64
          18 Oct-Dec
                           4103 non-null
                                            float64
         dtypes: float64(17), int64(1), object(1)
         memory usage: 611.1+ KB
In [19]: | df1.fillna(method='ffill', inplace=True)
In [20]: | X = np.array(df1['YEAR']).reshape(-1,1)
         y = np.array(df1['ANNUAL']).reshape(-1,1)
In [21]: df1.dropna(inplace = True)
In [22]:
         X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.25)
         regr = LinearRegression()
         regr.fit(X_train, y_train)
         print(regr.score(X_test, y_test))
```

-0.0035970369409776826

```
In [23]: y_pred = regr.predict(X_test)
    plt.scatter(X_test, y_test, color ='b')
    plt.plot(X_test, y_pred, color ='k')
    plt.show()
```



```
In [24]: df500 = df1[:][:500]
sns.lmplot(x = "YEAR", y ="ANNUAL", data = df500, order = 1, ci = None)
```

Out[24]: <seaborn.axisgrid.FacetGrid at 0x18e53ad3b80>


```
In [25]: df500.fillna(method ='ffill', inplace = True)
    X = np.array(df500['YEAR']).reshape(-1,1)
    y = np.array(df500['ANNUAL']).reshape(-1,1)
    df500.dropna(inplace = True)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
    regr = LinearRegression()
    regr.fit(X_train, y_train)
    print("Regression: ",regr.score(X_test, y_test))
    y_pred = regr.predict(X_test)
    plt.scatter(X_test, y_test, color = 'b')
    plt.plot(X_test, y_pred, color = 'k')
    plt.show()
```

Regression: 0.0639531162288759


```
In [26]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model = LinearRegression()
    model.fit(X_train, y_train)
    y_pred=model.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score: ",r2)
```

R2 score: 0.0639531162288759

Exploratory Data Analysis

In [27]: sns.pairplot(df1)

Out[27]: <seaborn.axisgrid.PairGrid at 0x18e53c1ee30>


```
In [28]: sns.displot(df['ANNUAL'])
```

Out[28]: <seaborn.axisgrid.FacetGrid at 0x18e34180b80>

In [34]: Housedf1=df[['JAN','FEB','MAR','APR','MAY','JUN','JUL']]

```
In [35]: sns.heatmap(Housedf1.corr())
```

Out[35]: <Axes: >


```
In [41]: x=Housedf1[['JAN','FEB','MAR','APR','MAY','JUN','JUL']]
y=df['ANNUAL']
```

- In [42]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101
- In [43]: from sklearn.linear_model import LinearRegression
 lm=LinearRegression()
 lm.fit(x_train,y_train)
- Out[43]: Value Linear Regression Linear Regression()
- In [44]: print(lm.intercept_)

286.04657460892054

In [45]: coeff_df=pd.DataFrame(lm.coef_,x.columns,columns=['coefficient'])
coeff_df

Out[45]:

	coefficient
JAN	2.469164
FEB	0.681177
MAR	0.463948
APR	0.842979
MAY	1.923095
JUN	1.299172
JUL	1.620118

```
In [46]: predictions=lm.predict(x_test)
plt.scatter(y_test,predictions)
```

Out[46]: <matplotlib.collections.PathCollection at 0x18e70db4af0>


```
In [47]: sns.displot((y_test-predictions),bins=50);
```



```
In [48]: from sklearn import metrics
    print('MAE:',metrics.mean_absolute_error(y_test,predictions))
    print('MSE:',metrics.mean_squared_error(y_test,predictions))
    print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 119.58133660913263 MSE: 33858.97884766022 RMSE: 184.00809451668212

In []: