אינפי 3 - גליון בית 2 - אביב תשע"ז

1. תהי $f(\vec{x})=(f_1\left(\vec{x}\right),f_2\left(\vec{x}\right),\ldots,f_m\left(\vec{x}\right))$ כלומר, כלומר, $f:\mathbb{R}^n\to\mathbb{R}$, שרכיביה שרכיביה $f:\mathbb{R}^n\to\mathbb{R}$ והוכיחו כי $f:\mathbb{R}^n\to\mathbb{R}$ אמ"מ לכל $f:f_i$, $f:f_i$

.2

- .Df את הנגזרת את $f\left(x,y,z
 ight)=\left(xyz,x^2+\sin\left(xy
 ight)
 ight)$ המוגדרת את הנגזרת המוגדרת ע"י ו $f:\mathbb{R}^3 o\mathbb{R}^2$
- (ב) נגדיר $n\in\mathbb{N}$ ע"י $f:\mathbb{R}^2 o\mathbb{R}$. עבור אלו ערכים של $f:\mathbb{R}^2 o\mathbb{R}$ הפונקציה $f:\mathbb{R}^2 o\mathbb{R}$ ע"י $f:\mathbb{R}^2 o\mathbb{R}$ אזירה ב-(0,0):
 - $p \in \mathbb{R}^n$ -גזירה ב $f: \mathbb{R}^n o \mathbb{R}$.3
- (א) הוכיחו כי לכל וקטור $D_u f(p) = \lim_{t \to 0} \frac{f(p+tu)-f(p)}{t}$ קיים הגבול קיים $u \in \mathbb{R}^n$ והוא נקרא "נגזרת מכוונת").
 - $D_{u+v}f\left(p
 ight)=D_{u}f\left(p
 ight)+D_{v}f\left(p
 ight)$ אז $u,v\in\mathbb{R}^{n}$ בי הראו כי אם
- $f(x,y)=egin{cases} rac{x^3}{x^2+y^2} & (x,y)
 eq (0,0) \ 0 & (x,y)=(0,0) \end{cases}$ כל הנגזרת המכוונות ב-(ג) הראו כי עבור הפונקציה ב-(0,0) הראו כי עבור הצירה ב-(0,0).
- , אם g עולה, g (t) $=f\left(\frac{\cos t}{t},\frac{\sin t}{t}\right)$ ע"י $g:\mathbb{R}^+\to\mathbb{R}$ ע"י $g:\mathbb{R}^+\to\mathbb{R}$ הוכיחו כי אם $f:\mathbb{R}^2\to\mathbb{R}$.4 תהי g אז ($g:\mathbb{R}^+\to\mathbb{R}$ הניחו ש-g הוא בכיוון g והתבוננו בסדרת הנקודות g הדרכה: הניחו ש-g הוא בכיוון g והתבוננו בסדרת הנקודות g הדרכה: הניחו ש-g ($g:\mathbb{R}^+\to\mathbb{R}$ הוא בכיוון g).

.5

- (0,0) שביבה של כי יש סביבה הוכיחו מוא .rank (Df(0,0))=2 ש-ג ברציפות, כך גזירה ברציפות, כך ש-ג $f:\mathbb{R}^2 o\mathbb{R}^3$ הוכיחו כי יש סביבה של שבה f חח"ע.
- ביבה של בהכרת האין בהכרת בהכרת ויא בהכרת בהכרת פיבה ברציפות, כך ש-2 ב-ציפות, גזירה אין ביבה של בהכרת האין ביבה של האי $f:\mathbb{R}^3\to\mathbb{R}^3$ האט ביבה של (0,0,0)