Google Data Analysis Certificate Capstone Project Matija Mosunic January 2022

R Studio Cloud timed out uploading Cyclistic files after 100 mb, approximately five months of ridership data. I uploaded the 12 months of data into MS SQL server, performing data cleaning and analysis here. The original data can be found here: Kaggle.

I uploaded all to Bike_trips_class, a database I created.

I noted inconsistencies with latitudinal and longitudinal axes, and downloaded correct data via the Geocoding Add-in (Smart Monkey) for Google Sheets.

Ħ	Untitled spreadsheet ☆ ⓑ ⊘		
_	File Edit View Insert Format Data Tools Extensions Help	<u>Last edit was o</u>	n November 22,
	○	- B I	<u>s</u> A .
Geoc	odeAd - fx Full Address		
	A	В	С
1	Full Address	Latitude	Longitude
2	2112 W Peterson Ave Chicago, IL	41.991291	-87.6823108
3	63rd St Beach Chicago, IL	41.78203	-87.5733146
4	900 W Harrison St Chicago, IL	41.8748013	-87.6497831
5	Aberdeen St & Jackson Blvd Chicago, IL	41.8778287	-87.6545587
6	Aberdeen St & Monroe St Chicago, IL	41.8803847	-87.6546537
7	Aberdeen St & Randolph St Chicago, IL	41.8843936	-87.6544326
8	Ada St & 113th St Chicago, IL	41.6875395	-87.6556092
9	Ada St & Washington Blvd Chicago, IL	41.8829377	-87.6605935
10	Adler Planetarium Chicago, IL	41.866333	-87.6067829
11	Albany Ave & 26th St Chicago, IL	41.8445503	-87.702566
12	Albany Ave & Bloomingdale Ave Chicago, IL	41.9139028	-87.7051725
13	Albany Ave & Montrose Ave Chicago, IL	41.9611982	-87.7058024
14	Altgeld Gardens Chicago, IL	41.6541653	-87.5996863
15	Archer (Damen) Ave & 37th St Chicago, IL	41.826565	-87.683685
16	Archer Ave & 43rd St Chicago, IL	41.815437	-87.7020764
17	Artesian Ave & Hubbard St Chicago, IL	41.8895378	-87.6878961
18	Ashland Ave & 13th St Chicago, IL	41.8650727	-87.6663421
19	Ashland Ave & 50th St Chicago, IL	41.8031316	-87.6647605
20	Ashland Ave & 63rd St Chicago, IL	41.7794627	-87.6641495
24			07 000000

I transferred the resulting data into a table I created in my SQL database and uploaded it to my data tables.

```
UPDATE Bike_trips_class.dbo.divvytips_proj_all_data
SET started_at_lat =t4.Latitude,
    started_at_lng = t4.Longitude,
    ended_at_lat = t4.end_lat,
    ended_at_lng = t4.end_lng

FROM
(SELECT t2.Latitude, t2.Longitude, t3.Latitude AS end_lat, t3.Longitude AS end_lng, t1.start_st AS start_stn, t1.end_st AS end_stn
FROM Bike_trips_class.dbo.divvytips_proj_all_data t1
INNER JOIN Bike_trips_class.dbo.divvy_long_lat$ t2 ON t1.start_st = t2.full_address
INNER JOIN Bike_trips_class.dbo.divvy_long_lat$ t3 ON t1.end_st = t3.full_address
AS t4
WHERE t4.start_stn = Bike_trips_class.dbo.divvytips_proj_all_data.start_st
AND t4.end_stn = Bike_trips_class.dbo.divvytips_proj_all_data.end_st
```

Further cleaning of data deleted rows without a start or end station, rows without a start or ending time, rows with ride times equal to or less than one minute, rows with ride times of equal to or greater than 24 hours, and rows with a start or end station of Test. I tested for repeats of ride ids and found approximately ten.

In my quest to find patterns within the data, I calculated the average, the minimum, the maximum, and the total ride seconds and the number of rides per month, for members and for casual users.

```
SELECT * INTO Bike trips class.dbo.divvytrips proj all
   SELECT DISTINCT started_at_month_name, started_at_month_number, 'member' AS type
 ,PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY ride_seconds)
   OVER (PARTITION BY started_at_month_name) AS MedianCont
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY ride_seconds
      OVER (PARTITION BY started at month name) AS MedianDisc,
 AVG(ride_seconds) OVER (PARTITION BY started_at_month_name) AS rs_avg,
MIN(ride seconds) OVER (PARTITION BY started at month name) AS rs min,
  MAX(ride_seconds) OVER (PARTITION BY started_at_month_name) AS rs_max,
 SUM(ride_seconds) OVER (PARTITION BY started_at_month_name) AS rs_total_sec,
COUNT(*) OVER (PARTITION BY started_at_month_name) AS count_rides
 FROM Bike_trips_class.dbo.['divvytips_ProjQ1$']
 WHERE member_casual = 0
  SELECT DISTINCT started_at_month_name, started_at_month_number, 'member' AS type
 ,PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY ride_seconds)
   OVER (PARTITION BY started_at_month_name) AS MedianCont
 ,PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY ride_seconds)
   OVER (PARTITION BY started_at_month_name) AS MedianDisc,
 AVG(ride_seconds) OVER (PARTITION BY started_at_month_name) AS rs_avg,
MIN(ride_seconds) OVER (PARTITION BY started_at_month_name) AS rs_min,
MAX(ride_seconds) OVER (PARTITION BY started_at_month_name) AS rs_max,
 SUM(ride_seconds) OVER (PARTITION BY started_at_month_name) AS rs_total_sec,
             OVER (PARTITION BY started_at_month_name) AS count_rides
 FROM Bike_trips_class.dbo.['divvytips_ProjQ2$']
 WHERE member_casual = 0
 SELECT DISTINCT started_at_month_name, started_at_month_number, 'member' AS type
 ,PERCENTILE CONT(0.5) WITHIN GROUP (ORDER BY ride seconds)
```

I entered data within <u>Tableau</u> and created a dashboard to answer the questions posed by the Marketing team. My suggestions for increasing membership purchases are included in the dashboard.

