

Parallel Fourier Transforms

lain Bethune, Gavin Pringle, Joachim Hein EPCC
The University of Edinburgh

Overview

Fourier Transforms and Fast Fourier Transforms

Parallel FFT in 1 Dimension – shared memory

Parallel Fourier Transformations of 2D arrays

Intro to FFTs of 3D arrays

Example application: large integer multiplication

Fourier Transform

Fourier Transforms are important and useful mathematical operation

$$\tilde{f}(k) = \sum_{x=1}^{N} f(x)e^{\frac{-ik.x}{2\pi}} \quad \forall k \in \{1 \cdots N\}$$

- Every word of output depends on every word of input
- Implemented simply has $O(N^2)$ complexity
- Fast Fourier Transform (FFT)
 - Very clever class of implementation algorithms O(N.log(N)) operations
 - Cooley Tukey 1965 though basic approach goes back to Gauss 1805

Fast Fourier Transformation

- FFTs are often "the" critical bottleneck
 - Still a lot of data movement in FFT. This is often the limiting factor not the number of floating point operations.
 - preventing parallel application from scaling to larger numbers of processors due to communications
- This lecture discusses reasons and how we might parallelise an FFT to overcome this

FFT algorithm

- Parallel nature best understood in graphical form.
 - O(N log(N)) floating point complexity.
 - O(N) potential parallelism with good load balance.
 - Non-local operations imply significant communication. Performance of parallel implementations tends to be limited by communication/memory-traffic.
 - Longer range interaction have to be performed first.

Parallel 1D FFT

- Parallelisation of a 1D FFT is hard
 - Somewhat easier in shared memory but still communication (memory bandwidth) limited
 - In practice use one of the many high quality numerical library implementations that support thread parallelism.
- Algorithm is hard to decompose without shared memory
 - Distributed approaches usually rely on converting 1D FFT into a modified 2D FFT and decomposing that (see later).
 - Only worthwhile if N very large.
- Typically N≈100-200 in many scientific codes e.g. materials chemistry small amount of data
- Literature examples:
 - Franchetti, Voronenko, Püschel, "FFT Program Generation for Shared Memory: SMP and Multicore", Paper presented at SC06, Tampa, FL http://sc06.supercomputing.org/schedule/pdf/pap169.pdf
 - Tang et al, "A Framework for Low-Communication 1-D FFT", SC12, http://blogs.intel.com/intellabs/files/2012/11/SC12_FFT-pap147s4-final.pdf

"Traditional" SMP

- 4 processor Intel Xeon
 - Communication via shared Memory (Bus)

- Benefits from:
 - N=2048 (Spiral)
 - N=16384 (FFTW)
- Improvement for large problems (Factor about 2 for 4 CPU)

(d) 2.8 GHz Xeon MP (4 processors)

Multicore Processor

- Intel Core Duo (laptop)
 - Shared L2 used for communication

- Benefits from
 - N=512 (Spiral)
 - N=4096 (FFTW)
- Not as efficient for huge problems

(a) 2.0 GHz Core Duo (2 processors)

Multicore processor with shared bus

- Intel Pentium D
 - Multicore chip
 - Communication via Bus
- Benefits from:
 - N=2048 (Spiral)
 - N=8192 (FFTW)
- Little benefit for huge problems (shared bus)

(c) 3.6 GHz Pentium D (2 processors)

Summary: 1D parallel FFT

Parallelisation works for large problems only

Sensitive to contention (shared buses) ☺

 Multicore chips with communications at cache level appear beneficial – might "be there" in a few years time

FFTs in two dimensions

What needs calculating for a 2D FFT:

$$\tilde{f}(k,l) = \sum_{y=1}^{M} \left\{ \sum_{x=1}^{N} \left[f(x,y) \exp\left(-2\pi i \frac{kx}{N}\right) \right] \exp\left(-2\pi i \frac{ly}{M}\right) \right\}$$

Do it in a 2 step approach:

$$\hat{f}(k,y) \equiv \sum_{x=1}^{N} \left[f(x,y) \exp\left(-2\pi i \frac{kx}{N}\right) \right]$$

$$\tilde{f}(k,l) = \sum_{y=1}^{M} \left\{ \hat{f}(k,y) \exp\left(-2\pi \mathrm{i} \frac{ly}{M}\right) \right\}$$

Distribute array onto 1D processor grid

Example:

- -6×9 array
- 3 processors
- Assuming row major order (C convention)
- Perform 1st FFT:
 - Each processor transforms 3 arrays of 6 elements

What next?

Data transposition

 Divide up the array by columns for 2nd FFT

Depending on
 FFT library
 simultaneous
 transpose can be
 advantageous
 (shown on figure)

Perform 2nd FFT

 What used to be the columns of the original array is now in row-major order ©

- Do the 2nd FFT
 - In the example:
 Each processor performs 2 FFTs of an array of length 9

- Rearrange data as required by following code
 - Examples:
 - Undoing the transpose
 - Redistributing data onto 2D grid
 - Sometimes: nothing needs done ©

Example 2D-FFT on 32 BlueGene/L CPUs

Fourier Transformation of a 3D array

• Definition of the Fourier Transformation of a three dimensional array $A_{x,v,z}$

$$\tilde{A}_{u,v,w} := \sum_{x=0}^{L-1} \sum_{y=0}^{M-1} \sum_{z=0}^{N-1} A_{x,y,z} \exp(-2\pi i \frac{wz}{N}) \exp(-2\pi i \frac{vy}{M}) \exp(-2\pi i \frac{ux}{L})$$
1st 1D FT along z
2nd 1D FT along y

 $3rd\ 1D\ FT\ along\ x$

 Can be performed as three subsequent 1 dimensional Fourier Transformations

Parallel 3D FFT

- Below N processors only need to decompose in 1D and use 1 transpose
 - One dimension always local
 - "slab" decomposition
- Above N processors Can decompose in 2 D and use 2 transposes.
 - "pencil" decomposition
 - Two transposes double the communication cost
 - Communication is frequently most of the cost anyway.
 - FFT width can impose a scaling limit on many codes.

- Some application areas e.g. computational number theory need to store and operate on very large integers
 - e.g. largest known prime number has 17.4 million decimal digits
- What representation should we use?

- Integers
 - Precisely represent whole numbers
 - Range limitation: 32 bits = \sim 4 billion, 64 bits = 1.8×10^{19}
- Floating point
 - Range still not enough (s.p. = $\sim 10^{38}$, d.p. = $\sim 10^{308}$)
 - Only finite precision (8 or 16 sig. fig.)

Need to define an arbitrary-sized large integer format

We work in base 10

 Numbers larger than 10 we expand as a series in powers of the base e.g.

$$-123456 = 1 \times 10^5 + 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$$

In general we can write any integer a in some base b as:

$$-a = a_0 * b^0 + a_1 x b^1 + a_2 x b^2 ... a_{n-1} x b^{n-1}$$

So we can just store the terms a₀...a_{n-1} in an array

- Free to choose an appropriate storage format and base:
 - Want a base so that no arithmetic operations cause overflow (or loss of precision)
 - Using 64-bit integers, b could be $2^{32} = 4$ billion
 - Using double-precision IEEE floats, b could be $2^{26} = \sim 67$ million

Example operations:

- Addition
- Multiplication (or Squaring)

Addition of two large integers is 'easy' and fast (O(n))

```
c = a + b:
carry = 0
for i = 0 ... n-1
c_i = a_i + b_i
c_i = c_i + carry
carry = c_i / base
c_i = c_i - base * carry
```

Check it for yourself

		1	2	
X		3	4	
	2	Х	4	

- 1 0 x 4
- 2 x 3 0
- 1 0 x 3 0 8
 - 4 0
 - 6 0
 - 1 0 0

- We compute the multiple of each digit with every other digit – O(n²)
- Sum per-digit, then perform the carries
- In 1971, Schönhage and Strassen observed the analogy with the convolution operation (e.g. in signal processing)
- Convolution can be calculated in O(p log(p)) using Fast Fourier Transform

So multiplication of two n-digit numbers X and Y becomes:

```
Pad X and Y to 2n digits
X' = FFT(X)
Y' = FFT(Y)
XY' = X' * Y' (multiply each term)
XY = FFT<sup>-1</sup>(XY')
```


- Still need to propagate carries O(n)
- Instead of doing an integer DFT, we do a floating-point FFT, and round back to integer (subject to errors)

Summary

- Parallelisation of an individual 1D FFT is hard
 - Presently works best for large problems
 - Recent advances in algorithms & hardware encouraging
- Multidimensional problems need to calculate many 1D FFTs
 - Parallelisable by distributing entire FFTs onto the processors and using a standard serial 1D FFT library
 - Requires redistributing the data between FFT dimensions
- FFT can be used to reduce computational complexity of convolution from O(n²) to O(n log(n))
 - Applications in signal processing and large integer arithmetic