Contents

Preface			
M	athen	atical notation	xi
Co	ontent	3	xiii
1	Intr	oduction	1
	1.1	Example: Polynomial Curve Fitting	. 4
	1.2	Probability Theory	. 12
		1.2.1 Probability densities	
		1.2.2 Expectations and covariances	. 19
		1.2.3 Bayesian probabilities	. 21
		1.2.4 The Gaussian distribution	. 24
		1.2.5 Curve fitting re-visited	. 28
		1.2.6 Bayesian curve fitting	. 30
	1.3	Model Selection	. 32
	1.4	The Curse of Dimensionality	. 33
	1.5	Decision Theory	. 38
		1.5.1 Minimizing the misclassification rate	. 39
		1.5.2 Minimizing the expected loss	. 41
		1.5.3 The reject option	
		1.5.4 Inference and decision	. 42
		1.5.5 Loss functions for regression	
	1.6	Information Theory	
		1.6.1 Relative entropy and mutual information	
	Exer	rises	58

XIV CONTENTS

2	Pro	bability	Distributions 6
	2.1	Binar	y Variables
		2.1.1	The beta distribution
	2.2	Multi	nomial Variables
		2.2.1	The Dirichlet distribution
	2.3	The C	Gaussian Distribution
		2.3.1	Conditional Gaussian distributions 85
		2.3.2	Marginal Gaussian distributions
		2.3.3	Bayes' theorem for Gaussian variables
		2.3.4	Maximum likelihood for the Gaussian
		2.3.5	Sequential estimation
		2.3.6	Bayesian inference for the Gaussian 9'
		2.3.7	Student's t-distribution
		2.3.8	Periodic variables
		2.3.9	Mixtures of Gaussians
	2.4	The E	Exponential Family
		2.4.1	Maximum likelihood and sufficient statistics
		2.4.2	Conjugate priors
		2.4.3	Noninformative priors
	2.5	Nonp	arametric Methods
		2.5.1	Kernel density estimators
		2.5.2	Nearest-neighbour methods
	Exe	cises	
3	Lin	ear Mo	dels for Regression 13'
J	3.1		r Basis Function Models
	5.1	3.1.1	Maximum likelihood and least squares
		3.1.2	Geometry of least squares
		3.1.3	Sequential learning
		3.1.4	Regularized least squares
		3.1.5	Multiple outputs
	3.2		Sias-Variance Decomposition
	3.3	Bayes	sian Linear Regression
	0.0	3.3.1	Parameter distribution
		3.3.2	Predictive distribution
		3.3.3	Equivalent kernel
	3.4		sian Model Comparison
	3.5		vidence Approximation
		3.5.1	Evaluation of the evidence function
		3.5.2	Maximizing the evidence function
		3.5.3	Effective number of parameters
	3.6		ations of Fixed Basis Functions
		cises	17

				CONTENTS	χv
4	Lin	ear Mo	odels for Classification		179
•	4.1		iminant Functions		
		4.1.1	Two classes		
		4.1.2	Multiple classes		
		4.1.3	Least squares for classification		
		4.1.4	Fisher's linear discriminant		
		4.1.5	Relation to least squares		
		4.1.6	Fisher's discriminant for multiple classes		
		4.1.7	The perceptron algorithm		
	4.2	Proba	abilistic Generative Models		
		4.2.1	Continuous inputs		
		4.2.2	Maximum likelihood solution		
		4.2.3	Discrete features		
		4.2.4	Exponential family		
	4.3		abilistic Discriminative Models		
		4.3.1	Fixed basis functions		
		4.3.2	Logistic regression		
		4.3.3	Iterative reweighted least squares		
		4.3.4	Multiclass logistic regression		
		4.3.5	Probit regression		
		4.3.6	Canonical link functions		
	4.4	The I	Laplace Approximation		
		4.4.1	Model comparison and BIC		
	4.5	Baye	sian Logistic Regression		
		4.5.1	Laplace approximation		
		4.5.2			
	Exe	rcises			
_	NT	1 37			225
5		ıral Ne			225
	5.1		forward Network Functions		
	<i>5</i> 0	5.1.1	Weight-space symmetries		
	5.2		ork Training		
		5.2.1	Parameter optimization		. 236
		5.2.2	Local quadratic approximation		
		5.2.3	Use of gradient information		. 239
	<i>5</i> 2	5.2.4	Gradient descent optimization		
	5.3		Backpropagation		
		5.3.1	Evaluation of error-function derivatives .		
		5.3.2	A simple example		
		5.3.3	Efficiency of backpropagation		
	E 1	5.3.4	The Jacobian matrix		
	5.4		Hessian Matrix		
		5.4.1	Diagonal approximation		
		5.4.2	Outer product approximation		
		5.4.3	Inverse Hessian		. 252

XVI CONTENTS

		5.4.4	Finite differences	252
		5.4.5	Exact evaluation of the Hessian	253
		5.4.6	Fast multiplication by the Hessian	254
	5.5	Regul	larization in Neural Networks	256
		5.5.1	Consistent Gaussian priors	257
		5.5.2	Early stopping	259
		5.5.3	Invariances	261
		5.5.4	Tangent propagation	263
		5.5.5	Training with transformed data	265
		5.5.6	Convolutional networks	267
		5.5.7	Soft weight sharing	269
	5.6	Mixtu	re Density Networks	272
	5.7		sian Neural Networks	277
		5.7.1	Posterior parameter distribution	278
		5.7.2	Hyperparameter optimization	280
		5.7.3	Bayesian neural networks for classification	281
	Exer	cises	· · · · · · · · · · · · · · · · · · ·	284
6		nel Me		291
	6.1		Representations	293
	6.2		ructing Kernels	294
	6.3		ll Basis Function Networks	299
		6.3.1	Nadaraya-Watson model	301
	6.4		sian Processes	303
		6.4.1	Linear regression revisited	304
		6.4.2	Gaussian processes for regression	306
		6.4.3	Learning the hyperparameters	311
		6.4.4	Automatic relevance determination	312
		6.4.5	Gaussian processes for classification	313
		6.4.6	Laplace approximation	315
		6.4.7	Connection to neural networks	319
	Exer	cises		320
7	Sna	rca Kai	rnel Machines	325
,	5 p a 7.1		mum Margin Classifiers	
	7.1	7.1.1	Overlapping class distributions	
		7.1.2	Relation to logistic regression	
		7.1.2		338
		7.1.3	SVMs for regression	339
		7.1.4	Computational learning theory	344
	7.2		ance Vector Machines	345
	1.4	7.2.1	RVM for regression	345
		7.2.1	Analysis of sparsity	349
		7.2.2	RVM for classification	353
	Ever		KVIVI TOI Classification	357
	LACI	CISCS		551

				CONTENTS	xvii
8	Gra	nhical l	Models		359
Ü	8.1		ian Networks		
	0.1	8.1.1	Example: Polynomial regression		
		8.1.2	Generative models		
		8.1.3	Discrete variables		366
		8.1.4			370
	8.2	Condi	tional Independence		372
		8.2.1	Three example graphs		373
		8.2.2	D-separation		378
	8.3	Marko	ov Random Fields		383
		8.3.1	Conditional independence properties .		383
		8.3.2	Factorization properties		
		8.3.3	Illustration: Image de-noising		
		8.3.4	Relation to directed graphs		
	8.4	Infere	nce in Graphical Models		393
		8.4.1	Inference on a chain		394
		8.4.2	Trees		398
		8.4.3	Factor graphs		399
		8.4.4	The sum-product algorithm		402
		8.4.5	The max-sum algorithm		411
		8.4.6	Exact inference in general graphs		416
		8.4.7	Loopy belief propagation		417
		8.4.8	Learning the graph structure		418
	Exer	cises .			418
9	Mix	ture M	odels and EM		423
	9.1		eans Clustering		
	,,,	9.1.1	Image segmentation and compression		
	9.2		res of Gaussians		
		9.2.1	Maximum likelihood		
		9.2.2	EM for Gaussian mixtures		
	9.3	An Al			
		9.3.1			441
		9.3.2	Relation to K -means		443
		9.3.3	Mixtures of Bernoulli distributions		444
		9.3.4	EM for Bayesian linear regression		
	9.4	The E	M Algorithm in General		
	Exer				
10	App	roxima	ate Inference		461
-	10.1		ional Inference		
		10.1.1	Factorized distributions		
		10.1.2			
		10.1.3			
			Model comparison		
	10.2	Illustr	ation: Variational Mixture of Gaussians		474

xviii CONTENTS

		10.2.1 Variational distribution	475
			473 481
			481 482
		3	
			483
	10.2		485
	10.3		486
			486
			488
	40.4		489
	10.4		490
			491
			493
	10.6	\mathcal{C}	498
		1	498
			500
			502
	10.7	1 0	505
		10.7.1 Example: The clutter problem	511
		10.7.2 Expectation propagation on graphs	513
	Exer	cises	517
11	C	- Por Made de	53 3
11		1 8	52 3
	11.1		526 526
			526
			528
			530
			532
			534
			536
	11.2		537
			539
			541
		1 6	542
			546
	11.5		548
			548
			552
	11.6	Estimating the Partition Function	554
	Exer	cises	556
12	Con	atinuous Latent Variables	559
14			561
	14.1		561
			563
			363 565
			363 569
		12.1.4 PCA for high-dimensional data	ノロラ

	CONTENTS	xix
12.2 Probabilistic PCA		570
12.2.2 EM algorithm for PCA		
12.2.3 Bayesian PCA		
12.2.4 Factor analysis		
12.3 Kernel PCA		
12.4 Nonlinear Latent Variable Models		
12.4.1 Independent component analysis .		
12.4.2 Autoassociative neural networks .		
12.4.3 Modelling nonlinear manifolds		
Exercises		. 599
13 Sequential Data		605
13.1 Markov Models		
		. 610
13.2.1 Maximum likelihood for the HMM		. 615
13.2.2 The forward-backward algorithm		. 618
13.2.3 The sum-product algorithm for the	HMM	. 625
13.2.4 Scaling factors		. 627
13.2.5 The Viterbi algorithm		. 629
13.2.6 Extensions of the hidden Markov r	nodel	. 631
13.3 Linear Dynamical Systems		. 635
13.3.1 Inference in LDS		. 638
13.3.2 Learning in LDS		. 642
13.3.3 Extensions of LDS		. 644
13.3.4 Particle filters		. 645
Exercises		. 646
14 Combining Models		653
14.1 Bayesian Model Averaging		
14.2 Committees		
14.3 Boosting		
14.3.1 Minimizing exponential error		
14.3.2 Error functions for boosting		
14.4 Tree-based Models		
14.5 Conditional Mixture Models		
14.5.2 Mixtures of logistic models		
14.5.3 Mixtures of experts		
Exercises		. 674
Appendix A Data Sets		677
Appendix B Probability Distributions		685
Appendix C Properties of Matrices		695