Задача 15. (от писмен изпит - 05.02.2016г.)

- а) Докажете, че $(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A$;
- **б)** Напишете всички подмножества на множеството $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\$.

Решение:

Да започнем с **a)**. Задачата е сходна със задача 7., за това тук ще предоставим едно малко по-неформално и различно решение. Първо за (\Rightarrow): Нека

```
(A \cap B) \cup C = A \cap (B \cup C). (A \cap B) \cup C) = \{a \mid (a \in A \text{ и } a \in B) \text{ или } a \in C\} A \cap B \cup C = \{a \mid a \in A \text{ и } (a \in B \text{ или } a \in C)\} = \{a \mid (a \in A \text{ и } a \in B) \text{ или } (a \in A \text{ и } a \in C)\}.
```

Условието от лявата страна на "или" е еднакво и в двете множества, тоест равенството в този случай е изпълнено винаги. Остава да разгледаме случая за елементите от C. За да имаме равенство трябва тези елементи да се припокриват с елементите, които отговарят на условието ($a \in A$ и $a \in C$). Тоест от присъствието на елемента в C трябва да следва присъствието на елемента в A, което означава точно $C \subseteq A$.

Доказателството в обратната посока е аналогично. От това, че $C \subseteq A$ ще следва, че ако един елемент принадлежи на C, той също принадлежи и на A. Тоест имаме $a \in C \Rightarrow a \in A$ и $a \in C$ и като заместим в условията за $(A \cap B) \cup C$ и $A \cap (B \cup C)$ ще получим равенството.

- б) Да разделим подмножествата на база брой елементи:
- нула елемента: Ø;
- един елемент: $\{\emptyset\}, \{\{\emptyset\}\}, \{\{\{\emptyset\}\}\}\};$
- два елемента: $\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\{\emptyset\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}\};$
- три елемента: $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}$.

github.com/andy489