Trabalho Final

Metodologia II - Coleta e análise de dados quantitativos

Alexandre Mário de Freitas* Maria do Carmo Rocha[‡] Juliana de Almeida Evangelista Barone[†] Maria Elisa Rocha Couto Gomes[§]

29/03/2021

Introdução

Ao longo deste semestre, na disciplina de "Metodologia II: coleta e análise de dados quantitativos", aprendemos a construir, interpretar e aprimorar modelos de equações estruturais (MEEs). Segundo Neves (2018), tais modelos consistiriam em:

uma técnica de modelagem estatística multivariada de caráter geral, que é amplamente utilizada nas Ciências Humanas e Sociais. Pode ser vista como uma combinação de análise fatorial e regressão (ou a ampliação dessas para a análise de trajetórias ou caminhos). O interesse de muitos pesquisadores e outros profissionais em MEE deriva, muitas vezes, das construções teóricas que podem ser desenvolvidas a partir dos construtos latentes. As relações entre as construções teóricas são representadas por coeficientes de regressão ou coeficientes de trajetória entre variáveis observadas e/ou latentes. O modelo de equações estruturais implica uma estrutura para as covariâncias entre as variáveis observadas (NEVES, 2018, p. 7).

Neste trabalho, portanto, construímos, interpretamos e aprimoramos um MEE voltado aos significados do trabalho. Para tanto, utilizamos o $software\ R$ e dados coletados

^{*}UFMG, alexandrefreitas92@gmail.com

[†]UFMG, julianadealmeidaevangelista@yahoo.com.br

[‡]UFMG, carminha47@gmail.com

[§]UFMG, elisarcouto@gmail.com

pelo World Values Survey em 2006, referentes à amostra brasileira. Abaixo, é possível conferir os comandos rodados para extrair o banco de dados que nos fora fornecido e também para identificar os valores das variáveis que, por serem respostas como "não sabe," não respondeu", "sem resposta" entre outras e que não deveriam ser considerados em nossa análise:

```
library(dplyr)
library(tinytex)
library(foreign)
library(lavaan)
library(semPlot)
library(readxl)
# Ler base de dados - World Values Survey (2006)
df <- read.dta("data/WVS_2006_met2.dta")</pre>
names <- as.data.frame(colnames(df))</pre>
# Limpar base de dados
df_2 <- df %>%
  transmute(SX = V235_b,
            ID = ifelse(v237 \le 0, NA, v237),
            N1 = ifelse(V50_reco %in% c(1:5), V50_reco, NA),
            N2 = ifelse(V51_reco %in% c(1:5), V51_reco, NA),
            N3 = ifelse(V52\_reco \%in\% c(1:5), V52\_reco, NA),
            N4 = ifelse(V53_reco %in% c(1:5), V53_reco, NA),
            N5 = ifelse(V54_reco %in% c(1:5), V54_reco, NA),
            CA = v185_{ca}
            PR = v185_pr,
            NI = ifelse(v244 \le 0, NA, v244),
            NC = ifelse(v245 \le 0, NA, v245),
            NIND = ifelse(v246 \le 0, NA, v246),
            CLA = ifelse(V252_rec %in% c(1:5), V252_rec, NA),
            EDU = ifelse(v238 \le 0, NA, v238),
            RE = ifelse(v253 \le 0, NA, v253),
            CTR = ifelse(V8_recod %in% c(1:4), V8_recod, NA),
            OBJ = ifelse(v48 \leq 0, NA, v48)
```

Modelo 1 - Análise do modelo apresentado

Conforme indicado pelo material fornecido para a realização desta avaliação, na literatura sobre os significados do trabalho, considera-se que podem ser analisados a partir de um Modelo de Equações Estruturais composto pelas seguintes variáveis:

- 1. Variáveis demográficas:
 - SX Sexo (V235_b);
 - ID Idade (v237).
- 2. CTR Centralidade absoluta do trabalho (V8_reco);
- 3. OBJ Resultados esperados/valorizados no trabalho (v48);
- 4. Normas sociais relativas ao trabalho como uma obrigação;
 - N1 o trabalho é necessário para desenvolver habilidades (V50_reco);
 - N2 é humilhante receber dinheiro sem trabalhar (V51_reco);
 - N3 pessoas que não trabalham ficam preguiçosas (V52_reco);
 - N4 trabalhar é uma obrigação para com a sociedade (V53_reco);
 - N5 o trabalho sempre deve ser posto em primeiro lugar (V54_reco).
- 5. Religião:
 - CA Variável indicadora, católicos (v185_ca)
 - PR Variável indicadora, protestantes (v185 pr)
- 6. NATIV Natureza da atividade laboral variável latente que, por sua vez, seria constituída pelas seguintes variáveis observáveis:
 - NI Nível de atividades manuais a intelectuais (v244);
 - NC Nível de atividades mais repetidas a criativas (v245);
 - NIND Nível de nenhuma dependência até total independência (v246).
- 7. NSE Nível Socioeconômico variável latente que, por sua vez, seria constituída pelas seguintes variáveis observáveis:

- CLA Classe (V252_rec);
- EDU Educação (v238);
- RE Rendimento (v253).

Posto isto, em seguida, apresentamos os códigos referentes ao primeiro MEE elaborado:

Desta forma, obtivemos os seguintes resultados:

```
standardized = TRUE,
fit.measures = TRUE,
rsquare = TRUE)
## lavaan 0.6-7 ended normally after 132 iterations
##
##
     Estimator
                                                        ML
##
     Optimization method
                                                    NLMINB
     Number of free parameters
##
                                                        35
##
                                                      Used
                                                                 Total
                                                       653
                                                                   1500
##
     Number of observations
##
## Model Test User Model:
##
     Test statistic
                                                   323.299
##
##
     Degrees of freedom
                                                       108
##
     P-value (Chi-square)
                                                     0.000
##
## Model Test Baseline Model:
##
     Test statistic
                                                  1165.473
##
     Degrees of freedom
                                                       130
##
     P-value
                                                     0.000
##
##
## User Model versus Baseline Model:
##
                                                     0.792
##
     Comparative Fit Index (CFI)
     Tucker-Lewis Index (TLI)
                                                     0.750
##
## Loglikelihood and Information Criteria:
##
     Loglikelihood user model (HO)
                                                -14478.803
##
     Loglikelihood unrestricted model (H1)
                                                -14317.153
##
##
     Akaike (AIC)
                                                 29027.606
##
     Bayesian (BIC)
                                                 29184.461
     Sample-size adjusted Bayesian (BIC)
                                                 29073.336
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                     0.055
     90 Percent confidence interval - lower
                                                     0.048
##
     90 Percent confidence interval - upper
                                                     0.062
##
     P-value RMSEA <= 0.05
                                                     0.103
##
## Standardized Root Mean Square Residual:
##
     SRMR
                                                     0.052
## Parameter Estimates:
```

Sumário com o resultado do Modelo 1

summary(model.fit,

##

##	Standard errors			Standard			
##	Information	modol	Expected odel Structured				
##	Information	saturated (h1)	model	50	ructurea		
	Latent Variabl	es:					
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	NSE =~						
##	CLA	1.000				0.304	0.370
##	EDU	6.008	0.799	7.516	0.000	1.826	0.753
##	RE	2.487	0.416	5.982	0.000	0.756	0.361
##	NATIV =~						
##	NI	1.000				2.420	0.768
##	NC	0.873	0.068	12.764	0.000	2.113	0.696
##	NIND	0.192	0.056	3.449	0.001	0.464	0.156
##	ST =~						
##	CTR	1.000				0.072	0.156
##	OBJ	-0.881	0.801	-1.100	0.271	-0.064	-0.059
##	N1	3.885	1.448	2.683	0.007	0.281	0.266
##	N2	6.913	2.365	2.923	0.003	0.500	0.428
##	N3	7.065	2.383	2.964	0.003	0.511	0.497
##	N4	7.003	2.351	2.979	0.003	0.506	0.539
##	N5	7.101	2.414	2.942	0.003	0.514	0.456
##							
	Regressions:	.	a. 1 B	-	5611	G. 1 1	a. 1 11
##	NCE	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	NSE ~ NATIV	0.104	0.015	7.036	0.000	0.826	0.826
##	SX	-0.062	0.015	-2.367	0.000	-0.203	-0.102
##	ID	-0.002	0.020	-2.786	0.018	-0.203	-0.102
##	ST ~	0.000	0.001	2.700	0.000	0.010	0.122
##	SX	-0.011	0.009	-1.182	0.237	-0.146	-0.073
##	ID	0.001	0.000	2.083	0.037	0.013	0.165
##	NATIV	0.006	0.007	0.849	0.396	0.193	0.193
##	NSE	-0.127	0.069	-1.841	0.066	-0.532	-0.532
##	PR	0.007	0.012	0.596	0.551	0.097	0.039
##	CA	0.006	0.010	0.615	0.539	0.082	0.040
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.CLA	0.584	0.034	17.013	0.000	0.584	0.863
##	. EDU	2.540	0.347	7.313	0.000	2.540	0.432
##	.RE	3.810	0.223	17.069	0.000	3.810	0.870
##	.NI	4.078	0.455	8.962	0.000	4.078	0.410
##	. NC	4.754	0.401	11.866	0.000	4.754	0.516
##	. NIND	8.676	0.484	17.927	0.000	8.676	0.976
##	. CTR	0.209	0.012	17.765	0.000	0.209	0.976
##	.OBJ	1.143	0.063	18.026	0.000	1.143	0.996
##	. N1	1.040	0.061	17.143	0.000	1.040	0.929
##	.N2	1.111	0.073	15.284		1.111	0.816
##	. N3 . N4	0.794 0.627	0.057 0.048	13.967 12.963	0.000	0.794 0.627	0.753 0.710
##	.N4 .N5	1.005	0.048	14.810	0.000	1.005	0.710
##	. NSE	0.027	0.010	2.791	0.005	0.292	0.292
##	NATIV	5.858	0.638	9.176	0.000	1.000	1.000
##	.ST	0.004	0.003	1.539	0.124	0.802	0.802
					· · •		

##		
##	R-Square:	
##		Estimate
##	CLA	0.137
##	EDU	0.568
##	RE	0.130
##	NI	0.590
##	NC	0.484
##	NIND	0.024
##	CTR	0.024
##	OBJ	0.004
##	N1	0.071
##	N2	0.184
##	N3	0.247
##	N4	0.290
##	N5	0.208
##	NSE	0.708
##	ST	0.198

Antes de analisarmos a qualidade do modelo, faz-se necessário, portanto, observar que, no construto, apenas a relação entre a variável latente de significados do trabalho e a variável observável relativa aos resultados esperados/valorizados no trabalho, representada pela sigla OBJ, não foi estatisticamente significativa a um nível de 95% de confiança uma vez que P(>|z|)=0.271. Isto, portanto, significa dizer que, embora tenha sido indicado pela literatura que esta variável seria importante para a construção dos significados do trabalho, ela não foi estatisticamente significativa no banco de dados analisado. Seriam necessárias pesquisas com um maior contingente de observações para analisar a relação entre a variável OBJ e o constructo ST.

Já na parte dos resultados referente às regressões, observamos que as seguintes variáveis não apresentam coeficientes estatisticamente significativos em relação à variável dependentes significados do trabalho (ST): sexo (SX), natureza da atividade laboral (NATIV), variável indicadora para protestantes (PR) e também a variável indicadora para católicos (CA).

Posto isto, para analisarmos a qualidade geral do modelo, é importante observamos as seguintes medidas: qui-quadrado, Standardized Root Mean Square Residual (SRMSR), Root Mean Square Residual (RSMEA), Comparative Fit Index (CFI) e o Tucker-Lewis Index (TLI).

Em relação à primeira medida, qui-quadrado, tem-se que ele consistiria, segundo Pereira (2013), "em um teste de ajustamento da função de discrepância minimizada durante o ajustamento do modelo", cujas hipóteses nula e alternativa correspondem, respectivamente, à ideia de que a matriz de covariância populacional é igual ou diferente daquela estimada

pelo modelo. De acordo com o sumário dos resultados do Modelo 1, anteriormente exposto, seu valor foi de 323.299, a 108 graus de liberdade. Além disto, é importante observar que ele foi significativo a um nível de 99% de confiança (p - valor < 0.001), ou seja, aceitou a hipótese alternativa.

Já no que se refere à segunda medida, SRMSR, cabe dizer que Pereira (2013, p. 25) a define como sendo "a raiz quadrada da matriz dos erros dividida pelos graus de liberdade, assumindo que o modelo ajustado é o correto". Ainda segundo esta autora, tal medida deve ser interpretada como inversamente proporcional à qualidade do ajuste, sendo que este será considerado bom quando seu valor for igual ou menor que 0.05 (PEREIRA, 2013). A partir da leitura do sumário dos resultados do Modelo 1, observa-se que seu valor foi de 0.052, ou seja, seu ajuste está um pouco acima do desejado, sendo necessários ajustes para melhorar o SRMSR.

A RSMEA, por sua vez, estaria relacionada ao erro de aproximação na população (PEREIRA, 2013). De forma semelhante à SRMSR, para que indique um bom ajuste, portanto, é necessário que apresente um valor inferior a 0.05. No entanto, como fora indicado pelo sumário de resultados do modelo 1, seu ajuste é apenas razoável, à medida em que obtivera o valor 0.055 para esta medida.

Embora sua RSMEA, aponte para a razoabilidade de seu ajuste, as medidas CFI e TLI apontam para sua má qualidade. Se, por um lado, a CFI seria a razão entre o ajuste do modelo em questão e o pior modelo possível, por outro, o TLI corresponderia a uma escala de qualidade do ajuste, variando de 0 a 1. Para o Modelo 1, estas medidas obtiveram, respectivamente, os valores 0.792 e 0.750, reforçando a ideia de que seu ajuste pode ser melhorado.

Em busca de seu aprimoramento, nós utilizamos o comando modificationindices, cuja principal função é indicar quais melhorias podem ser implementadas para aumentar o ajuste do modelo. Por meio dele, obtivemos os seguintes resultados:

```
modificationindices(model.fit, sort = TRUE, maximum.number = 6)
##
        lhs op rhs
                             epc sepc.lv sepc.all sepc.nox
## 76
        CLA ~~ RE 92.320 0.599 0.599
                                           0.402
                                                   0.402
        NI ~~ N5 16.392 -0.428 -0.428
                                          -0.211
                                                   -0.211
## 116
## 67 NATIV =~ N4 15.686 0.076
                                  0.185
                                           0.197
                                                    0.197
        NSE =~ N4 13.319 0.624
## 57
                                 0.190
                                           0.202
                                                    0.202
        NSE =~ N5 12.343 -0.696 -0.212
                                          -0.188
                                                   -0.188
                                          -0.174
        EDU ~~ N5 10.387 -0.278 -0.278
## 97
                                                   -0.174
```

Como é possível observar, o comando, anteriormente mencionado, apontou para a existência de covariância entre os seguintes pares de variáveis: classe (CLA) e rendimento

(RE); nível de atividades manuais a intelectuais (NI) e "o trabalho sempre deve ser posto em primeiro lugar" (N5); educação (EDU) e a variável N5. Além disto, seu resultado também indicou a possibilidade de inclusão no constructo da natureza da atividade laboral (NATIV) a variável "trabalhar é uma obrigação para com a sociedade" (N4), e no constructo do nível socioeconômico (NSE) as variáveis N4 e N5.

Após uma série de discussões entre os membros do nosso grupo, optamos pela incorporação das relações de covariância existente entre os pares classe (CLA) e rendimento (RE); nível de atividades manuais a intelectuais (NI) e "o trabalho sempre deve ser posto em primeiro lugar" (N5); educação (EDU) e a variável N5. Nesta mesma fase do trabalho, também optamos por incluir a relação entre as variáveis entre a natureza da atividade laboral (NATIV) e "trabalhar é uma obrigação para com a sociedade" (N4). Tal esforço seria importante à medida em que nos possibilitaria remediar o efeito de relações espúrias existentes entre as variáveis latentes e observáveis incluídas em nossos modelos.

Modelo 2

```
# Modelo 2 - MEE
model 2 <- "
NSE =~ CLA + EDU + RE
NATIV =~ NI + NC + NIND
NSE ~ NATIV + SX + ID
ST = CTR + OBJ + N1 + N2 + N3 + N4 + N5
ST ~ SX + ID + NATIV + NSE + PR + CA
CLA ~~ RE
NATIV =~ N4
NI ~~ N5
EDU ~~ N5
model_2.fit <- cfa(model_2, data = df_2)</pre>
semPaths(model_2.fit,
         whatLabels = "std",
         layout = "tree",
        residuals = TRUE,
        rotation = 2,
        nCharNodes = 0)
```


Comparação dos modelos

Modelo 1

```
fitmeasures(model.fit, c("cfi", "tli", "rmsea"))
## cfi tli rmsea
## 0.792 0.750 0.055
```

Modelo 2

```
fitmeasures(model_2.fit, c("cfi", "tli", "rmsea"))

## cfi tli rmsea
## 0.923 0.904 0.034
```

```
fit.measures = TRUE,
rsquare = TRUE)
## lavaan 0.6-7 ended normally after 139 iterations
##
##
     Estimator
                                                        ML
                                                    NLMINB
##
     Optimization method
     Number of free parameters
                                                        39
##
##
                                                      Used
                                                                 Total
##
     Number of observations
                                                       653
                                                                  1500
##
## Model Test User Model:
##
##
                                                   183.645
     Test statistic
##
     Degrees of freedom
                                                      104
##
     P-value (Chi-square)
                                                     0.000
##
## Model Test Baseline Model:
##
                                                  1165.473
##
     Test statistic
##
     Degrees of freedom
                                                      130
##
     P-value
                                                     0.000
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     0.923
                                                     0.904
     Tucker-Lewis Index (TLI)
##
##
## Loglikelihood and Information Criteria:
##
     Loglikelihood user model (HO)
                                                -14408.976
     Loglikelihood unrestricted model (H1)
                                                -14317.153
##
##
                                                 28895.952
##
     Akaike (AIC)
     Bayesian (BIC)
                                                 29070.733
##
     Sample-size adjusted Bayesian (BIC)
                                                 28946.909
##
## Root Mean Square Error of Approximation:
##
                                                     0.034
##
##
     90 Percent confidence interval - lower
                                                     0.026
     90 Percent confidence interval - upper
                                                     0.042
##
##
     P-value RMSEA <= 0.05
                                                     1.000
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.040
##
## Parameter Estimates:
##
##
     Standard errors
                                                  Standard
##
     Information
                                                  Expected
##
     Information saturated (h1) model
                                                Structured
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|)
                                                             Std.lv Std.all
##
     NSE =~
##
       CLA
                         1.000
                                                              0.264
                                                                       0.320
                                                     0.000
##
       EDU
                                                              1.888
                                                                       0.778
                         7.166
                                  1.136
                                            6.308
##
       RE
                         2.468
                                  0.379
                                            6.512
                                                     0.000
                                                              0.650
                                                                       0.311
     NATIV =~
##
##
       NI
                         1.000
                                                              2.393
                                                                       0.758
##
       NC
                         0.898
                                  0.069
                                          13.084
                                                     0.000
                                                              2.150
                                                                       0.708
```

Sumário com o resultado do Modelo 2

summary(model_2.fit,
standardized = TRUE,

##	NIND	0.184	0.056	3.299	0.001	0.441	0.148
##	ST =~	0.101	0.000	0.200	0.001	0.111	0.110
##	CTR	1.000				0.073	0.157
##	OBJ	-0.910	0.791	-1.151	0.250	-0.066	-0.062
##	N1	3.924	1.434	2.737	0.006	0.285	0.270
##	N2	6.747	2.274	2.968	0.003	0.490	0.420
##	N3	7.143	2.365	3.020	0.003	0.519	0.505
##	N4	8.086	2.682	3.015	0.003	0.588	0.625
##	N5	6.407	2.161	2.965	0.003	0.466	0.413
##	NATIV =~						
##	N4	0.065	0.021	3.108	0.002	0.156	0.166
##	_						
##	Regressions:		a. 1 =	-	D()	a	a. 1 . 11
##	NOR	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	NSE ~ NATIV	0.091	0.015	6.024	0.000	0 000	0.829
##	SX	-0.059	0.013	-2.548	0.000	0.829 -0.223	-0.111
##	ID	-0.002	0.023	-2.554	0.011	-0.223	-0.111
##	ST ~	0.002	0.001	2.004	0.011	0.005	0.112
##	SX	-0.010	0.009	-1.081	0.280	-0.132	-0.066
##	ID	0.001	0.000	2.069	0.039	0.012	0.157
##	NATIV	0.003	0.007	0.417	0.677	0.102	0.102
##	NSE	-0.129	0.080	-1.610	0.107	-0.469	-0.469
##	PR	0.006	0.011	0.551	0.582	0.086	0.034
##	CA	0.005	0.009	0.588	0.557	0.075	0.037
##							
	Covariances:			_	- () ()		
##	a	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.CLA ~~	0 504	0.000	0 504	0 000	0 504	0.376
##	.RE .NI ~~	0.584	0.068	8.561	0.000	0.584	0.376
##	.N1 .N5	-0.510	0.113	-4.495	0.000	-0.510	-0.241
##	.EDU ~~	0.010	0.110	1.100	0.000	0.010	0.241
##	.N5	-0.357	0.091	-3.910	0.000	-0.357	-0.228
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.CLA	0.607	0.035	17.317	0.000	0.607	0.897
##	.EDU	2.330	0.462	5.049	0.000	2.330	0.395
##	.RE	3.959	0.228	17.366	0.000	3.959	0.904
##	.NI	4.252	0.443	9.596	0.000	4.252	0.426
##	. NC	4.599	0.394	11.663	0.000	4.599	0.499
##	.NIND	8.697	0.485 0.012	17.947	0.000	8.697	0.978 0.975
##	.CTR .OBJ	0.209 1.143	0.012	17.779 18.025	0.000	0.209 1.143	0.975
##	.N1	1.038	0.060	17.160	0.000	1.038	0.927
##	.N2	1.121	0.072	15.514	0.000	1.121	0.823
##	.N3	0.786	0.057	13.871	0.000	0.786	0.745
##	.N4	0.566	0.053	10.642	0.000	0.566	0.641
##	.N5	1.052	0.067	15.621	0.000	1.052	0.829
##	.NSE	0.020	0.008	2.366	0.018	0.287	0.287
##	NATIV	5.728	0.621	9.222	0.000	1.000	1.000
##	.ST	0.004	0.003	1.564	0.118	0.810	0.810
##							
	R-Square:						
##	CT A	Estimate					
##	CLA EDU	0.103 0.605					
##	RE	0.096					
##	NI	0.574					
##	NC	0.501					
##	NIND	0.022					
##	CTR	0.025					
##	OBJ	0.004					
##	N1	0.073					
##	N2	0.177					
##	N3	0.255					
##	N4	0.359					

```
## N5 0.171
## NSE 0.713
## ST 0.190
```

Ao compararmos os resultados obtidos pelo Modelo 2 com aqueles obtidos pelo Modelo 1, observamos que todas as medidas de ajuste melhoraram. Em relação ao qui-quadrado, notamos que, no Modelo 2, seu valor foi 183.645, a 104 graus de liberdade, mantendo-se estatisticamente significativo ao nível de 99% de confiança (p-valor<0,001), ou seja, também aceitou a hipótese alternativa. No que diz respeito à medida SRMR, observamos que seu valor obtido, no Modelo 2, foi 0.040, indicando, portanto, que seu ajuste é melhor do que aquele que fora apresentado pelo Modelo 1. Tal tendência de melhoria no ajuste, apenas foi reforçada pelas medidas RSMEA, CFI e TLI, cujos novos valores foram: 0.034; 0.934 e 0.904, nesta sequência.

Modelo 3

Embora o Modelo 2 tenha apresentado grandes avanços na qualidade do ajuste, nosso grupo decidiu por rodar o Modelo 3. Tendo em vista que, no construto ST, a variável OBJ se manteve estatisticamente não significativa, assim como as variáveis sexo (SX), natureza da atividade laboral (NATIV), variável indicadora para católicos (CA) e protestantes (PR) nas regressões, nós optamos pela exclusão das mesmas em nossa terceira tentativa. Para tanto, compilamos os seguintes comandos:

```
# Modelo 3 - MEE
model_3 <- "
NSE =~ CLA + EDU + RE
NATIV =~ NI + NC + NIND
NSE ~ NATIV + SX + ID
ST = CTR + N1 + N2 + N3 + N4 + N5
ST ~ ID + NSE
CLA ~~ RE
NATIV =~ N4
NI ~~ N5
EDU ~~ N5
model_3.fit <- cfa(model_3, data = df_2)</pre>
semPaths(model_3.fit,
         whatLabels = "std".
         layout = "tree",
         residuals = TRUE,
        rotation = 2.
         nCharNodes = 0)
```


Tais comandos nos possibilitaram a obtenção dos seguintes resultados:

Comparação dos Modelos

Modelo 1

```
fitmeasures(model.fit, c("cfi", "tli", "rmsea"))
## cfi tli rmsea
## 0.792 0.750 0.055
```

Modelo 2

```
fitmeasures(model_2.fit, c("cfi", "tli", "rmsea"))
## cfi tli rmsea
## 0.923 0.904 0.034
```

Modelo 3

```
fitmeasures(model_3.fit, c("cfi", "tli", "rmsea"))
## cfi tli rmsea
## 0.944 0.928 0.035
# Sumário com o resultado do Modelo 3
summary(model_3.fit,
standardized = TRUE,
fit.measures = TRUE,
rsquare = TRUE)
## lavaan 0.6-7 ended normally after 122 iterations
                                                       ML
##
     Estimator
##
     Optimization method
                                                   NLMINB
##
     Number of free parameters
                                                       33
##
##
                                                     Used
                                                                 Total
##
                                                      656
                                                                 1500
    Number of observations
##
## Model Test User Model:
##
##
     Test statistic
                                                  125.628
##
     Degrees of freedom
                                                       69
     P-value (Chi-square)
                                                    0.000
##
## Model Test Baseline Model:
##
##
                                                 1110.226
     Test statistic
##
     Degrees of freedom
                                                       90
    P-value
##
                                                    0.000
## User Model versus Baseline Model:
##
     Comparative Fit Index (CFI)
                                                    0.944
##
     Tucker-Lewis Index (TLI)
                                                    0.928
##
## Loglikelihood and Information Criteria:
##
                                               -13500.974
##
     Loglikelihood user model (HO)
    Loglikelihood unrestricted model (H1)
                                               -13438.160
##
##
                                                27067.948
##
    Akaike (AIC)
##
     Bayesian (BIC)
                                                27215.991
     Sample-size adjusted Bayesian (BIC)
                                                27111.216
##
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                    0.035
    90 Percent confidence interval - lower
                                                    0.025
##
    90 Percent confidence interval - upper
                                                    0.045
    P-value RMSEA <= 0.05
                                                    0.994
##
## Standardized Root Mean Square Residual:
##
     SRMR
                                                    0.040
##
## Parameter Estimates:
##
     Standard errors
                                                 Standard
##
    Information
                                                 Expected
    Information saturated (h1) model
                                               Structured
##
```

Latent Variables:

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	NSE =~						
##	CLA	1.000				0.266	0.323
##	EDU	7.151	1.102	6.489	0.000	1.902	0.782
##	RE	2.478	0.375	6.610	0.000	0.659	0.314
## ##	NATIV =~ NI	1.000				2.397	0.760
##	NC	0.897	0.069	13.052	0.000	2.150	0.708
##	NIND	0.188	0.056	3.365	0.000	0.450	0.151
##	ST =~	0.100	0.000	0.000	0.001	0.100	0.101
##	CTR	1.000				0.073	0.158
##	N1	3.834	1.392	2.754	0.006	0.281	0.266
##	N2	6.663	2.221	3.000	0.003	0.489	0.419
##	N3	7.082	2.318	3.055	0.002	0.520	0.506
##	N4	8.099	2.653	3.053	0.002	0.594	0.632
##	N5	6.376	2.125	3.000	0.003	0.468	0.415
## ##	NATIV =~ N4	0.063	0.020	3.060	0.002	0.150	0.160
##	14.4	0.005	0.020	3.000	0.002	0.130	0.100
	Regressions:						
##	O	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	NSE ~						
##	NATIV	0.091	0.015	6.210	0.000	0.817	0.817
##	SX	-0.054	0.023	-2.401	0.016	-0.204	-0.102
##	ID	-0.002	0.001	-2.447	0.014	-0.008	-0.105
##	ST ~	0.001	0 000	0 202	0.004	0.010	0 460
## ##	ID NSE	0.001 -0.098	0.000 0.037	2.303 -2.615	0.021	0.013 -0.354	0.163 -0.354
##	NSE	-0.098	0.037	-2.015	0.009	-0.334	-0.354
	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.CLA ~~						
##	.RE	0.589	0.068	8.620	0.000	0.589	0.379
##	.NI ~~						
##	. N5	-0.508	0.112	-4.537	0.000	-0.508	-0.242
## ##	.EDU ~~ .N5	-0.374	0.091	-4.122	0.000	-0 274	-0.241
##	.No	-0.374	0.091	-4.122	0.000	-0.374	-0.241
	Variances:						
##	, ar rainess.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.CLA	0.607	0.035	17.330	0.000	0.607	0.896
##	.EDU	2.293	0.409	5.610	0.000	2.293	0.388
##	.RE	3.969	0.228	17.378	0.000	3.969	0.901
##	.NI	4.206	0.444	9.479	0.000	4.206	0.423
##	. NC	4.595	0.395	11.643	0.000	4.595	0.499
## ##	.NIND	8.715	0.485	17.984	0.000	8.715	0.977
##	. CTR . N1	0.209 1.038	0.012 0.060	17.815 17.227	0.000	0.209 1.038	0.975 0.929
##	.N2	1.120	0.072	15.567	0.000	1.120	0.824
##	.N3	0.783	0.056	13.875	0.000	0.783	0.744
##	.N4	0.558	0.053	10.483	0.000	0.558	0.633
##	.N5	1.052	0.067	15.653	0.000	1.052	0.828
##	.NSE	0.022	0.008	2.715	0.007	0.309	0.309
##	NATIV	5.746	0.621	9.249	0.000	1.000	1.000
##	.ST	0.004	0.003	1.588	0.112	0.836	0.836
##	R-Square:						
##	n-square.	Estimate					
##	CLA	0.104					
##	EDU	0.612					
##	RE	0.099					
##	NI	0.577					
##	NC	0.501					
##	NIND	0.023					
##	CTR	0.025					
##	N1 N2	0.071					
## ##	N2 N3	0.176 0.256					
·r· rr		0.200					

```
## N4 0.367
## N5 0.172
## NSE 0.691
## ST 0.164
```

Sendo assim, quando comparamos os resultados obtidos pelo Modelo 3 com aqueles obtidos pelos modelos anteriores, observamos que as medidas de ajuste melhoraram, exceto SRMSR e RMSEA, cujos valores permaneceram, aproximadamente, iguais àqueles que haviam apresentado no segundo modelo. Ao analisarmos o qui-quadrado, observamos que, no Modelo 3, seu valor foi de 125.628, a 69 graus de liberdade, mantendo-se estatisticamente significativo ao nível de 99% de confiança (p-valor < 0.001), aceitando também a hipótese alternativa. Já em relação às medidas CFI e TLI, observamos que seus novos valores foram, respectivamente, 0.944 e 0.928.

A partir dos resultados, aqui, analisados, considerando os objetivos deste trabalho, concluímos afirmando que o Modelo 3 seria o modelo que nós escolheríamos, à medida em que é aquele que apresentou as melhores medidas de ajuste.

Considerações Finais

Este estudo realizou a estimação dos dados do World Values Survey (WVS) para o Brasil por meio do software R. Vale mencionar que a base de dados WVS disponibilizava a medida das seguintes dimensões: 1) Centralidade absoluta do trabalho; 2) Normas sociais relativas ao trabalho como uma obrigação e 3) Resultados esperados/valorizados no trabalho. Essas três dimensões compõem o construto latente dos Significados do Trabalho.

Para tanto foram analisadas as variáveis elencadas na pesquisa WVS por meio do Modelo de Equações Estruturais (MEE). O uso deste modelo é justificado porque é uma técnica multivariada de caráter geral, que combina a análise fatorial e análise de regressão. Além do que, modelos de equações estruturais permitem que se trabalhe de forma simultânea a estimação e mensuração, bem como a estimação de efeitos diretos e indiretos. Destaca-se que estes modelos são considerados bastante robustos e apresentam facilidade interpretativa (NEVES, 2018).

Portanto, considerando que a proposta deste trabalho era de chegar a opção que melhor se ajusta aos dados disponíveis na base de dados disponibilizada, através do percurso metodológico e direcionamento do modelo de equações estruturais, percebeu-se que o Modelo 3 seria o modelo que apresentou as melhores medidas de ajuste. Corrobora para esta afirmativa as observações acerca dos testes de qualidade de ajustes que foram realizados.

Bibliografia

NEVES, J. A. B. Modelo de equações estruturais: uma introdução aplicada. 2018. PEREIRA, S. DOS S. Modelagem de equações estruturais no software R. 2013.