(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-143230 (P2000-143230A)

(43)公開日 平成12年5月23日(2000.5.23)

(51) Int.Cl.?	識別記号	FΙ		テーマコード(参考)
C01B 33/18		C 0 1 B 33/18	С	4G004
B01J 2/00		B01J 2/00	В	4G072
19/08		19/08	K	4G075
C 0 8 F 292/00		C 0 8 F 292/00		4J002
C08K 3/36		CO8K 3/36		4J026
	審査請求	未請求 請求項の数:	3 OL (全 6 頁)	最終頁に続く
(21)出顧番号	特顯平10-319573	(71)出顧人 59709	91845	
		原口	俊秀	
(22)出顧日	平成10年11月10日(1998.11.10)	丁目11番17号		
		(71)出願人 00019	90024	
		触媒	化成工業株式会社	
	·	神奈	川県川崎市幸区堀川町	580番地
		(72)発明者 原口	俊秀	
		福岡	県福岡市中央区桜坂2	丁目11番17号
		(72)発明者 有馬	悠策	
		福岡	県北九州市若松区北 茂	町13-2 触媒
		化成	工業株式会社内	
		(74)代理人 10009	94466	
		弁理	土 友松 英爾 (外	1名)
				最終頁に続く

(54) 【発明の名称】 表面改質シリカ球状粒子およびその製造方法

(57)【要約】

【課題】 樹脂基材の欠点を改善するため特定の性状を 有するシリカ球状粒子を基材とし、該粒子表面をグラフ ト状に結合した重合体層で被覆してなる表面改質シリカ

【解決手段】 下記性状を有するシリカ球状粒子の表面 をグラフト状に結合した重合体層で被覆してなる表面改 質シリカ球状粒子およびその製造方法。

球状粒子およびその製造方法の提供。

嵩比重 (CBD) $0.8 \sim 1.2 \text{ g/m l}$ 摩耗強度(Attr. Res.) 10 wt%/15hr以下 0.3 ml/g以下 細孔容積(PV) 平均粒子径 (Av. Size) 20~300 μm

【特許請求の範囲】

【請求項1】 下記性状を有するシリカ球状粒子の表面*

1

嵩比重(CBD)

摩耗強度(Attr. Res.) 10 wt%/15hr以下

細孔容積(PV)

平均粒子径(Av. Size)

*をグラフト状に結合した重合体層で被覆してなる表面改 質シリカ球状粒子。

※プラズマによりグラフト状に結合して重合体を生じるモ

ノマーと接触させて重合させ、該粒子の表面をグラフト 状に結合した重合体層で被覆することを特徴とする請求

 $0.8 \sim 1.2 \text{ g/m} \text{ i}$

0.3 ml/g以下

 $20 \sim 300 \, \mu \text{m}$

【請求項2】 前述のシリカ球状粒子に対する前記重合 体の割合が重量比で50/50~1/99の範囲である 請求項1記載の表面改質シリカ球状粒子。

【請求項3】 下記性状を有するシリカ球状粒子の表面 10 項1記載の表面改質シリカ球状粒子の製造方法。 にプラズマを照射した後、該粒子を大気に曝すことなく※

嵩比重(CBD)

平均粒子径(Av. Size)

 $20 \sim 300 \, \mu \text{m}$

細孔容積(PV)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、表面改質シリカ球 状粒子およびその製造方法に関し、さらに詳しくは、特 フト共重合によりグラフト状に結合した重合体層で被覆 されてなる表面改質シリカ球状粒子およびその製造方法 に関する。

[0002]

【従来技術】従来、無機粒子の機能化を図るために種々 の表面改質法が行われている。例えば、特開平9-22 1314号公報には、シランカップリング剤で処理した シリカ微粒子の存在下にアクロレインを重合して得た、 ポリアクロレインで被覆されたシリカ微粒子が記載され ている。

【0003】また、樹脂粒子などの材料の表面改質法の 一つにプラズマグラフト重合法がある。プラズマグラフ ト重合法は、低圧で有機物で出来た材料表面にプラズマ を照射し、その表面に活性点を付与した後、重合性官能 基を持つモノマーを接触させることにより重合をおこな わせる重合方法である。このようなプラズマ処理を用い た材料表面改質法は、洗浄、中和や乾燥等の前処理や後 処理が不要なドライプロセスとして、また、特異な機能 材料を創製する手法として注目されている。

【0004】例えば、プラズマ処理によるポリスチレン 40 粒子の機能化が図れることを見出した。 微粒子表面の改質と機能化やテフロン製多孔質中空糸膜 表面に金属吸着能を付与させることなどが行なわれてい る。また、高分子フイルムの疎水化、表面疎水化SPG (Silica Porous Glass)によるW /Oエマルジョンの作成なども行なわれている。

嵩比重(CBD)

細孔容積(PV)

摩耗強度(Attr.Res.) 10 wt%/15hr以下

 $0.8 \sim 1.2 \text{ g/ml}$

0.3 ml/g以下

平均粒子径(Av.Size) $20 \sim 300 \, \mu \text{m}$

【0009】また、前述の表面改質シリカ球状粒子は、☆50☆シリカ球状粒子に対する前記重合体の割合が重量比で5

 $0.8 \sim 1.2 \text{ g/m i}$

0.3 m1/g以下

摩耗強度(Attr. Res.) 10 wt%/15hr以下

★【0005】しかし、従来の方法は、樹脂を基材とする もので、基材となる樹脂をプラズマ処理し、次いで重合 体で該樹脂の表面を被覆する方法であった。この方法で は、基材となる樹脂には未反応のモノマーが数%~数十 定の性状を有するシリカ球状粒子の表面がプラズマグラ 20 %あるため、このことがある用途においては非常に大き な欠点となることがあった。特に、未反応のモノマーが 存在する樹脂は生体面に関係する用途においては用いる ことが出来ない。また、樹脂が基材である場合には、基 材表面が溶媒に対し弱い、未反応のものがあり表面に毒 性がある、耐熱性が悪い、基材樹脂の寿命が短い、基材 樹脂および表面改質樹脂の比重が軽く高い嵩比重が要求 される用途には向かない、表面改質樹脂は疎水性であり 親水性の用途には使用できないなどの欠点があった。

[0006]

【発明が解決しょうとする課題】本発明は、前述の樹脂 30 基材の欠点を改善するため特定の性状を有するシリカ球 状粒子を基材とし、該粒子表面をグラフト状に結合した 重合体層で被覆してなる表面改質シリカ球状粒子および その製造方法を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明者らは、前記の問 題を解決すべく研究を重ねた結果、シリカ球状粒子をプ ラズマ処理した後種々のモノマーと接触させて、種々の グラフト状に結合した重合体で被覆することにより、該

【0008】即ち、本発明の第一は、下記性状を有する シリカ球状粒子の表面をグラフト状に結合した重合体層 で被覆してなる表面改質シリカ球状粒子に関するもので ある。

3

 $0/50\sim1/99$ の範囲であることが好ましい。 【0010】本発明の第二は、下記性状を有するシリカ 球状粒子の表面にプラズマを照射した後、該粒子を大気 に曝すことなくプラズマによりグラフト状に結合して重*

> 嵩比重(CBD) 細孔容積(PV)

摩耗強度 (Attr. Res.) 10 wt%/15hr以下

平均粒子径(Av. Size) $20 \sim 300 \mu m$

[0011]

ついて、詳細に説明する。

【0012】本発明のシリカ粒子は、球状であり、嵩比 重 (CBD) が0.8~1.2 g/m1の範囲にあ る。シリカ球状粒子の嵩比重 (CBD) が0.8 g/ mlよりも小さい場合には、得られる表面改質シリカ球 状粒子の嵩比重 (CBD) も小さくなり、粒子強度も弱 くなるので表面改質されたシリカ球状粒子の用途が制限 されることになる。また、嵩比重 (CBD) が1.2 g/mlよりも大きいシリカ球状粒子は、製造方法が複 雑になり、製造経費が高くなる。シリカ球状粒子の嵩比 20 重 (CBD) は、好ましくは0.9~1.1 g/ml の範囲にあるのが望ましい。なお、嵩比重 (CBD) は メスシリンダー法により測定される。

【0013】また、本発明のシリカ球状粒子の細孔容積 (PV)は0.3 m1/g以下であり、好ましくは 0.2 m1/g以下である。シリカ球状粒子の細孔容 積(PV)が0.3 ml/gよりも大きくなると、モ ノマーがシリカ球状粒子の細孔内へ拡散して粒子内部で も重合体が生成し、粒子表面だけに重合体層が出来ず、 内部で重合体が生成するとシリカ粒子の破壊が起きるこ とがある。なお、本発明での細孔容積(PV)は窒素吸 脱着法により測定した値である。

【0014】本発明のシリカ球状粒子は、また、摩耗強 度(Attr. Res.)が10wt%/15hr以下 であることを必要とする。本発明ではシリカ球状粒子の 粒子強度を摩耗強度で表示した。シリカ球状粒子の摩耗 強度 (Attr. Res.)が10wt%/15hrよ りも大きい場合には、シリカ球状粒子の粒子強度が弱く なるので、表面改質されたシリカ球状粒子の用途が制限 40 されることになる。シリカ球状粒子の摩耗強度(Att r. Res.)は、好ましくは5wt%/15hr以下 であることが望ましい。なお、摩耗強度(Attr.R es.)は、英国特許737429号公報 (ACC社) に記載の設備、方法により測定される。

【0015】本発明のシリカ球状粒子は、平均粒子径 (Av. Size)が20~300µmの範囲にある。 シリカ球状粒子の平均粒子径 (Av. Size)が20 μmより小さくなると粒子同士の凝集が起こりやすく取 り扱いが困難になり、また、300μmより大きくなる※50 放電ガス

* 合体を生じるモノマーと接触させて重合させ、該粒子の 表面をグラフト状に結合した重合体層で被覆することを 特徴とする表面改質シリカ球状粒子の製造方法に関する ものである。

 $0.8 \sim 1.2 \text{ g/ml}$

0.3 ml/g以下

※と球形になりがたく、中空粒子やいびつ粒子ができるた 【発明の実施の形態】以下、本発明の好適な実施形態に 10 め、粒子表面にグラフト共重合体層が均一に被覆されな いことがある。シリカ球状粒子の平均粒子径(Av.S ize)は、好ましくは30~150µmの範囲にある ことが望ましい。

> 【0016】前述の特定性状を有するシリカ球状粒子 は、例えば、粒子径の異なる3種以上のシリカゾルを混 合して噴霧乾燥することにより得ることが出来る。各々 のシリカゾルの粒子径を小さい順にA、B、Cとする と、その粒子径の範囲は、A<5mμ、5mμ≤B<4 $0m\mu$ 、 $40m\mu \le C \le 300m\mu$ の範囲にあり、これ らの粒子径のシリカゾルの混合割合は、A;10~30 %、B; 40~60%、C; 20~40%で行うのが良 い。前述の混合ゾルを噴霧乾燥して球状粒子を得、次い で焼成する。噴霧乾燥にあたっては、出来るだけ乾燥速 度を遅くする方が好ましい。

【0017】本発明での重合体としては、プラズマによ りシリカ表面にグラフト状に重合することのできるもの 全て適用され、例えば、ポリメタクリル酸グリシジル、 ポリアクリルアミド、ポリアクリル酸、ポリーN、Nー メチレンービスアクリルアミド、ポリーN-イソプロピ 重合体層が均一に被覆されないことがある。また、粒子 30 ルアクリルアミドあるいはこれらの共重合体などが例示 される。

> 【0018】本発明のシリカ球状粒子を被覆している重 合体の量は、シリカ球状粒子に対する重合体の割合が重 量比で50/50~1/99の範囲、とくに20/80 ~2/98の範囲であることが好ましい。重合体の割合 が50重量%より多くなると表面改質シリカ球状粒子の 比重が軽くなり、嵩比重の大きいシリカ球状粒子の特徴 がなくなる。

> 【0019】本発明の方法においては、前述のシリカ球 状粒子の表面にプラズマを照射するが、このプラズマ照 射は、市販のプラズマ処理装置を用いて行うことが出来 る。また、プラズマ照射の条件は、通常の処理条件が採 用可能である。例えば、球状粒子をパイレックスガラス 製の回転容器内にセットした後、真空排気し、装置内を アルゴンガス置換して所定の圧力に調整する。容器外周 に配置した銅パイプコイルに13.56MHzの高周波 電力を印加することにより、誘導方式で回転容器内にプ ラズマを発生させ、微粒子表面をプラズマ処理する。プ ラズマ処理条件としては次の条件が好適である。

不活性ガス

5

 $(1\sim40)\times10^{-2}\,\mathrm{dm}^3/\mathrm{s}$ ガスの流量

50~200W 電力

放電時間 60s ∼ 300s

圧力 5~20pa

【0020】プラズマ処理したシリカ球状微粒子は、大 気に曝すことなく、モノマーの入った容器内に移したの ち、重合させて該粒子表面をグラフト状に結合した重合 体層で被覆する。モノマーを溶液の形で使用する場合の 濃度は10~50 vo 1%の範囲に調整して用いるのが 好ましく、溶媒は通常使用される、有機溶媒、水あるい 10 は有機溶媒/水の混合物などが使用できる。重合体層で 被覆されたシリカ球状微粒子はメタノール中で超音波洗 浄し、沪過後真空乾燥して表面改質シリカ球状粒子を得 る。

【0021】本発明で使用されるモノマーは、前述のプ ラズマ重合体を生成する対応モノマーが使用可能であ る。例えば、メタクリル酸グリシジル、アクリルアミ ド、アクリル酸、N、Nーメチレンーピスアクリルアミ ド、Nーイソプロピルアクリルアミドあるいはこれらの 2種以上の混合物などが挙げられる。

【0022】本発明の表面改質シリカ球状粒子は、基材 に由来する未反応のモノマーがないため、バイオ的な用 途や医薬品としての用途に対して安心して使用できる。*

嵩比重(CBD)

摩耗強度(Attr. Res.)

細孔容精(PV)

平均粒子径(Av. Size)

*これは非常に重要なことであり、未反応のモノマーが存 在すると人体や生体へ適用することは出来ない。また、 ポリマーを核とした場合は得られる表面改質共重合体 は、軽質であり、触媒担体として使用する場合には、水 や水と有機物の混合物を溶媒とする反応では、該触媒は 表面に浮遊して使用できないが、本発明の表面改質シリ カ球状粒子は触媒担体としても好適である。

[0023]

【実施例】以下に実施例を示し本発明を具体的に説明す るが、本発明はこれにより何ら限定されるものではな

【0024】参考例1

平均粒子径が500Åのシリカゾル (濃度40%)を5 00g、平均粒子径が110Åのシリカゾル(濃度30 %) を1250g、平均粒子径が40Åのシリカゾル (濃度11%)を3600gをよく混合した。次いで、 該混合物をスプレードライヤーでスプレーした。 スプレ ー条件はスプレードライヤーの入り口の温度を240℃ で、出口温度を120℃で実施した。 得られた球状粒子 20 を硫安の水溶液で洗浄し、さらに水で洗浄した後、乾燥 し、600℃で2時間焼成して、次の性状を有するシリ カ球状粒子を得た。

0.97 g/m 1

3 wt%/15hr

 $0.12 \, \text{ml/g}$

62 u m

【0025】実施例1

参考例1で得られたシリカ球状粒子10gを、図1に示 すプラズマ処理装置のパイレックスガラス製の回転容器 30 内にセットした後、真空排気し、装置内をアルゴンガス 置換して所定の圧力に調整した。容器外周に配置した銅 パイプコイルに高周波電力を印加することにより、誘導 方式で回転容器内にプラズマを発生させ、シリカ球状粒 子表面をプラズマ処理した。プラズマ処理条件は次のと おりである。

放電ガス

Αr

3. $3 \times 10^{-2} \, dm^3 / s$ ガスの流量

電力

50~200W

放電時間

300s

圧力

13.3pa

処理後のシリカ球状粒子を、大気に曝すことなくメタク リル酸グリシジル (GMA) のモノマー溶液の入った容 器内に移した後GMAを共重合させた。モノマー溶液の溶 媒はメタノール95wt%、水5wt%であり、モノマ ー濃度は31vo1%で、トータルの溶液の重量は73 gであった。シリカ球状粒子表面へのGMAの重合体に よる被覆は24時間の重合時間でほぼ完了していた。該 シリカ球状粒子は自然沈降し、容易に分離できた。沈降 物を取り出し、メタノール中で超音波洗浄し、沪過後真※50 1と同一方法でプラズマ処理した後、GMAの100%

※空乾燥して、ポリメタクリル酸グリシジル重合体層で被 覆してなる表面改質シリカ球状粒子を得た。

【0026】実施例2

参考例1で得たシリカ球状粒子5gを、実施例1におい てプラズマ処理時間を180秒とした以外は同様にして プラズマ処理した。処理後のシリカ球状粒子を、大気に 曝すことなくアクリルアミドのモノマー溶液の入った容 器内に移した後重合させた。溶媒は水100%であり、モノ マー濃度は29vo1%で、トータルのモノマーの重量 は14.5gであった。シリカ球状粒子表面へのアクリ ルアミド重合体による被覆は4時間の重合時間でほぼ完 了していた。該シリカ球状粒子は自然沈降し、容易に分 40 離できた。沈降物を取り出し、メタノール中で超音波洗 浄し、沪過後真空乾燥して、アクリルアミド重合体層で 被覆してなる表面改質シリカ球状粒子を得た。

【0027】比較例1

参考例1のシリカ球状粒子の代わりに、懸濁重合法によ り調製した平均粒子径256μmの架橋ポリスチレン微 粒子 (ジビニルベンゼン3%含有)を使用して実施例1 と同様の方法で表面改質を行った。このポリスチレン微 粒子について未反応のモノマーを検出した。検出方法は 参考 1 に記す。 このポリスチレン微粒子を用いて実施例

7

モノマーが入った容器内へ移して、6時間プラズマグラ フト重合させた。該ポリスチレン微粒子をこの未反応の モノマーと分離しようとしたがなかなか自然沈降分離出 来なかったので、ガラス製のフイルターを用いて分離し た後、メタノール中で超音波洗浄し、沪過後真空乾燥し て、メタクリル酸グリシジル重合体層で被覆してなる表*

嵩比重(CBD)

摩耗強度 (Attr. Res.)

細孔容積(PV)

平均粒子径(Av. Size)

該シリカ球状粒子を、実施例1と同一方法でプラズマ処 理した後、実施例1と同様方法で処理してメタクリル酸 グリシジル重合体層で被覆してなる表面改質シリカ球状 粒子を得た。得られた表面改質シリカ球状粒子は、粒子 が均一でなく、一部は破壊して元の球形を残さず、また 一部は重合体が内部まで入り込んだものが観察された。 また、重合体の被覆状態が均一でないものも観察され た。

【0029】実施例3

実施例1、2および比較例1、2で得られたそれぞれの 20 表面改質粒子について、未反応モノマーの残存量、グラ フト率、真比重を測定し、 表面改質粒子の外観状態に ついて顕微鏡で観察した。

【0030】測定方法は以下の方法で行った。ポリスチ レン微粒子のモノマーの残存量:シクロヘキサンを溶媒 とし、これにポリスチレン微粒子を濃度が1wt%とな るように懸濁し、高速液体クロマトで分析した。スチレ ンモノマーの量は、予め作成した検量線で定量した。 ※ * 面改質ポリスチレン微粒子を得た。

【0028】比較例2

参考例1のシリカ球状粒子の代わりに、下記の性状を有 する市販のシリカ球状粒子 (洞海化学社製)を使用して 実施例1と同様の方法で表面改質を行った。

 $0.41 \, \text{g/ml}$

wt%/15hr 15

 $0.76 \, \text{ml/g}$

300 u m

※結合率=(増加重量)×(100)/(重合前の微粒子 試料重量)

で表す。

真比重:良く洗い乾燥した比重ビンを秤量する(W 1)。その比重ビンに試料を入れ秤量する(W2)。さ らに、この比重ビンに溶媒を試料が十分浸るように入 れ、その後比重ビンを真空デシケーターに入れ、空気を 十分に除く。溶媒をさらに加えて比重ビンに満たした。 温度を4℃に合わせた後、溶媒の表面を標線に合わせて 比重ビンを秤量する(W3)。 比重ビンに溶媒のみを 満たし、温度を4℃に合わせた後、溶媒の表面を標線に 合わせて比重ビンを秤量する(W4)。 真比重は次の式 で求めた。ρを4℃の溶媒の比重とする。

真比重= (W2-W1) ρ/ { (W4-W1) - (W3 $-\mathbf{W2}$)

測定結果を表1に示す。

[0031]

【表1】

NO	未反応の	結合率	真比重	表面改質粒子の外観状態
	モノマー			
	の残存量			
実施例1	なし	4.2%	1.88	良い球形を保つ、生成物の分
ł				離は非常に早く出来た。
			_	親水性
実施例2	なし	5.1%	1. 70	良い球形を保つ。生成物の分
				離は簡単に出来た。
				親水性
比較例1	5. 2%	104%	0.80	生成物の分離ができない。ガ
				ラスのフイルターを用いたが
		ļ		時間がかかった。
				疎水性
比較例2	なし	7.8%	1. 55	球形を保たず割れた。割れな
				い粒子も内部まで樹脂が浸透
				していると同時に外部に樹脂
				がないところもある。生成物
				の分離については、早急に沈
				降するものと、全然沈降しな
			l	い物とがあった。

【0032】実施例4

実施例1の表面改質シリカ球状粒子3gを8kg/m3 のリパーゼ溶液50mlに浸漬し、30℃で16時間処 理してポリGMAのエポキシ基にリパーゼのアミノ基を 結合させて固定化した。この液からろ過、水による洗浄★50 8mmol、水を39.4mmol混合し、この混合液

★によりリパーゼにより表面を固定化されたシリカ球状粒 子を得た。この固定化リパーゼを触媒とするグリセリン とオレイン酸のエステル化反応を行った。この反応に は、グリセリンを69.7mmo1、オレイン酸を2.

特開2000-143230

10

9

にシリカ表面に固定化したリパーゼ0.5gを添加して

40℃で24時間反応を行った。リパーゼ固定化時間1

* [0033] 【表2】

6時間後の反応結果は表2に示した。

反応率	反反	未反応物 (モル%)		
%	モノオレイン	ジオレイン	トリオレイン	オレイン酸
41.9	12. 5	12.0	1.8	58. 1

【0034】比較例3

た。

※【効果】本発明により、モノマー残留がなく、またシラ

4の反応を行うとしたが、該微粒子は混合されず上部に 浮いて凝集してしまい、反応を行うことが出来なかっ

比較例1の表面改質ポリスチレン微粒子を用いて実施例 10 ンカップリング処理をすることなく、重合体被覆シリカ 球状粒子を提供することができた。

【図面の簡単な説明】

である。

【図1】実施例1で使用したプラズマ処理装置の説明図

[0035] Ж

【図1】

フロントページの続き

(51) Int. Cl.7

)

識別記号

FΙ

テーマコード(参考

CO8K 9/04

CO8L 101/00

(72)発明者 大浜 孝一

福岡県北九州市若松区北湊町13-2 触媒

化成工業株式会社内

CO8K 9/04 C08L 101/00

Fターム(参考) 4G004 BA00

4G072 AA28 AA41 BB07 CC10 DD02

DD03 GG01 GG03 HH14 HH19

JJ47 MM33 QQ06 QQ09 TT01

TT04 TT09 TT30 UU17 UU30

4G075 AA27 AA30 BA05 BA10 CA47

EB44

4J002 BN191 DJ016 FB066 FD206

4J026 ACOO AC36 BA25 BA30 BA32

CA09 DB08 DB09 EA02 EA05

GA08