UNIVERSIDADE FEDERAL DO TRIÂNGULO MINEIRO DEPARTAMENTO DE MATEMÁTICA APLICADA - ICTE

Lista 03 - Fundamentos de Matemática Elementar

1) Quais das funções abaixo são polinômios?

a)
$$p(x) = 1$$

b)
$$p(x) = \sqrt{x} + 1$$

c)
$$p(x) = \pi x^2 + 2x - 1$$

d)
$$p(x) = \frac{1}{x} + x^2 + 3x - 2$$

e)
$$p(x) = x^{3/2} - 4x^3 - x$$

f)
$$p(x) = x(\cos x)^2 + 4x^4 + x^3$$

g)
$$p(x) = (x+1)^{10}$$

h)
$$p(x) = x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$

i)
$$p(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^{20}}{20!}$$

2) a) Se
$$x^2 - 1 = Q(x)(x - 1)$$
 então qual o valor de $Q(1)$?

b) Se
$$x^3 - 8 = Q(x)(x-2)$$
 então qual o valor de $Q(2)$?

c) Se
$$x^4 - a^4 = Q(x)(x - a)$$
 então qual o valor de $Q(a)$?

d) Se
$$x^n - a^n = Q(x)(x - a)$$
, com $n \in \mathbb{N}$, então qual o valor de $Q(a)$?

3) Determine $a, x_0 \in x_1$ em cada um dos itens abaixo:

a)
$$x^2 - 3x + 2 = a(x - x_0)(x - x_1)$$

b)
$$x^2 - 2x - 3 = a(x - x_0)(x - x_1)$$

c)
$$x^2 + 3x - 28 = a(x - x_0)(x - x_1)$$

d)
$$2x^2 - 5x - 3 = a(x - x_0)(x - x_1)$$

e)
$$-4x^2 + 5x - 1 = a(x - x_0)(x - x_1)$$

f)
$$1 - x^2 = a(x - x_0)(x - x_1)$$

4) Verifique se as afirmações são verdadeiras ou falsas.

a)
$$\frac{x^2 - 1}{x - 1} = x - 1$$
, $\forall x \in \mathbb{R}$, $x \neq 1$;

b)
$$\frac{x^3 - 8}{x - 2} = x^2 + 4$$
, $\forall x \in \mathbb{R}$, $x \neq 2$;

c)
$$\frac{x^2 + a^2}{x + a} = x + a$$
, $\forall x \in \mathbb{R}$, $x \neq -a$;

d)
$$(x^3 - a^3) = (x - a)(x^2 + a^2);$$

e)
$$x^3 - a^2 = (x - a)(x^2 + ax + a^2)$$
;

f)
$$x^n - a^n = (x - a)(x^{n-1} + ax^{n-1} + a^2x^{n-3} + \dots + a^{n-2}x + a^{n-1}), \quad n \in \mathbb{N}.$$

5) Sendo
$$x^3 + 1 = (x+1)(x^2 + ax + b)$$
, para todo $x \in \mathbb{R}$, calcule $a + b$.

- 6) Seja $f(x) = ax^2 + bx + c$, em que a, b e c são reais quaisquer com $a \neq 0$.
- a) Verifique que

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}.$$

- b) Explique a seguinte afirmação: "se a>0, então o menor valor de f(x) acontece quando $x=-\frac{b}{2a}$." Nesse caso, qual o menor valor de f(x)?
 - c) Mostre que se a < 0, então

$$f\left(-\frac{b}{2a}\right) = -\frac{b^2 - 4ac}{4a}$$

é o maior valor assumido por f.

7) Dado o polinômio

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

sabendo que $P(\alpha) = 0$, calcule o resto da divisão de P(x) por $x - \alpha$.

- 8) O resto da divisão de $2^{64}+1$ por $2^{32}+1$ é igual a
- a) 1
- b) 0
- c) 4
- d) 2
- 9) Se $x^{100} 1 = Q(x)(x 1)$, então o valor de Q(1) é igual a:
- a) 98
- b) 99
- c) 100
- d) 0
- 10) Verifique que, para todo $x \in \mathbb{R} \{1\}$ e para todo $n \in \mathbb{N}$ vale a seguinte igualdade

$$x^{n+1} - 1 = (x-1)(x^n + x^{n-1} + x^{n-2} + \dots + x^2 + x + 1).$$

Use o resultado acima para mostrar que a soma S dos termos da progressão geométrica

$$\{1, r, r^2, r^3, r^4, \cdots, r^n\}, r \neq 1,$$

é dada por

$$S = \frac{1 - r^{n+1}}{1 - r}.$$

11) Se
$$\frac{x}{x^2 - 3x + 2} = \frac{a}{x - 1} + \frac{b}{x - 2}$$

para todo $x \in \mathbb{R} - \{1, 2\}$, calcule o valor de $a \in b$.

- **12)** O polinômio $P(x) = x^3 + ax^2 + bx + x$ é tal que P(1) = 0 e P(x) = -P(-x). Calcule P(2).
- 13) Determine A e B sabendo que

a)
$$\frac{1}{x^2 - 4} = \frac{A}{x - 2} + \frac{B}{x + 2}, \quad \forall x \in \mathbb{R} - \{-2, 2\};$$

b)
$$\frac{x}{x^2-4} = \frac{A}{x-2} + \frac{B}{x+2}, \quad \forall x \in \mathbb{R} - \{-2, 2\};$$

c)
$$\frac{x+3}{x^2-x} = \frac{A}{x} + \frac{B}{x-1}, \quad \forall x \in \mathbb{R} - \{0,1\};$$

d)
$$\frac{x}{x^2 - 5x + 6} = \frac{A}{x - 3} + \frac{B}{x - 2}, \quad \forall x \in \mathbb{R} - 2, 3.$$

- 14) Determine o resto da divisão do polinômio $P(x)=3x^{101}+1$ pelo polinômio $D(x)=x^2-1$.
- **15)** O polinômio $P(x) = x^{999} + x^{888} + x^{777} + \dots + x^{222} + x^{111} + 1$ é divisível pelo polinômio $Q(x) = x^9 + x^8 + x^7 + \dots + x^2 + x + 1$?
- 16) Obtenha o quociente e o resto da divisão de $P(x) = 2x^3 + x^2 + x 1$ por $D(x) = x^2 + 2$.
- 17) Obtenha o quociente e o resto da divisão de $P(x) = x^4 + 3x^2 x + 1$ por $D(x) = x^2 1$.
- 18) Dividindo-se o polinômio $P(x) = x^5 + ax^4 + bx^2 + cx + 1$ por x 1, obtém-se resto igual a 2. Ao dividir P(x) por x + 1, obtém-se resto igual a 3. Sabendo que P(x) é divisível por x 2, calcule $\frac{ab}{c}$.
- 19 Um polinômio P(x), dividido por x+1 dá resto -1, por x-1 dá resto 1 e por x+2 dá resto 1. Qual será o resto da divisão do polinômio P(x) por (x+1)(x-1)(x+2)?
- **20** Um polinômio P(x), dividido pelo binômio x-1, dá resto 3. O quociente desta divisão é então dividido pelo binômio x-2, obtendo-se resto 2. Qual o resto da divisão de P(x) por (x-1)(x-2)?

Respostas

- 1) a), c), g), h), i)
- 2) a) 2
- b) 12
- c) $4a^{3}$
- d) na^{n-1}
- 3) a) a = 1, $x_0 = 1$ e $x_1 = 2$
- b) a = 1, $x_0 = -1$ e $x_1 = 3$
- c) a = 1, $x_0 = 4$ e $x_1 = -7$
- d) a = 2, $x_0 = -\frac{1}{2} e x_1 = 3$
- e) a = -4, $x_0 = \frac{1}{4}$ e $x_1 = 1$
- f) a = -1, $x_0 = 1$ e $x_1 = -1$
- 4) a) F b) F c) F d) F e) F f) V
- 5) 0
- 7) 0
- 8) d)
- 9) c)
- 11) a = -1 e b = 2
- 12) 6
- 13) a) $A = \frac{1}{4}$, $B = -\frac{1}{4}$

- b) $A = \frac{1}{2} e B = \frac{1}{2}$
- c) A = -3 e B = 4
- d) A = 3 e B = -2
- 14) 3x + 1
- 15) sim
- 16) Q(x) = 2x + 1 e R(x) = -3x 3
- 17) $Q(x) = x^2 + 4 e R(x) = -x + 5$
- 18) 9
- 19) $x^2 + x 1$
- 20) 2x + 1