Examining cellular and genetic interactions in peritumoral microenvironment with anti-PD-1 treatment

Jacob Harris Robert Haines

Adipose tissue undergoes crosstalk with tumor cells

Zhang et al. 2018. Canc Disc

- Evidence of tumor cell adipocyte interactions
 - Tumor cells can use lipids as energy source¹
 - Tumor cells promote adipocyte dedifferentiation into fibroblasts^{2,3}
 - Adipokines promote tumor growth via oncogenic signaling⁴
- Stromal and immune cells within adipose tissue may influence tumor biology^{5,6}
 - Reserves of memory T cells in white adipose tissue
 - Tumor-associated suppressive CD11b+ myeloid cells
- Zhang et al. 2018. Cancer Disc
- 2. Zoico et al. 2016. Oncotarget
- 3. Pearce et al. 2018. *Cancer Disc*
- Khandekar et al. 2011. Nat Rev Cancer
- Saha et al. 2017. Cancer Res
- 6. Wagner et al. 2012. Angiogenesis

How does cellular response to immune checkpoint blockade influence canceradipose microenvironment crosstalk?

- Do peritumoral cell populations have altered interactions during ICB?
- Are the genetic expression profiles of these populations promoted or repressed with ICB?

Experimental Setup

Peritumoral fat Tumor

Contralateral fat

scRNA-seq experiment

- Sorted by aPD-1 and isotype-treated mice
- 3 tissue type locations: peritumoral fat (FatT), contralateral fat (FatC), and Tumor
- Sorted by CD45+ immune cells or CD45-CD31+ stromal/tumor cells

Data Preprocessing, Filtering

reading

analysis

Scanpy library for

Initial Filtering

- Cells expressing 200-3500 genes
- Genes present in >3 cells
- Cells with <15% mito. gene content
- Normalize counts per cell for 10K counts

Variations

- Select for variable genes
- Mean expr. = 0.0125-3
- Min. disp. = 0.5
- Remove ribo. genes
- Regress out variations due to counts, mito. gene %

PCA, Clustering, Refinement

Initial Clustering

expression

reduction

algorithm

PCA based on highly

Neighborhood graph

UMAP for dimension

variable genetic

(n=10, PCs=30)

Leiden clustering

Initial: 39 clusters

Observed transcriptomes Simulated doublets Prob. density Prob. density 0.0 0.0 0.5 1.0 0.5 Doublet score Doublet score

Leiden Clustering

Filtering

- types
 - Epithelial (Epcam+)
 - Satellite (Pax7+)
 - Muscle (Tnnc2+)
- scoring by Scrublet library

- RBCs (Hbb-bs+)
- Remove predicted doublet reads based on

UMAP1 Final Steps

- Rerun initial clustering steps
- Remove small clusters w/ <100 cells
- Cluster again
- Final: 36 clusters, 88K cells

Cluster Gene Profiles

Cell Types, Locations, and Treatments

Ligand-Receptor Interaction Analysis

- Quantify differences in ligand-receptor cluster interactions between isotype and aPD-1 treatments
 - 2300 curated ligand-receptor gene pairs¹
 - LigXRec = (mean ligand cluster gene expression) x (mean receptor cluster gene expression)
 - Performed for all combinations of clusters and for all ligand-receptor gene pairs
 - Calculate difference and fold change (aPD-1/lso.) of LigXRec values between treatments

14

Fold Change in Average Cluster Interactions – Tumor

Change in Interaction w/ aPD-1: Increase vs. Decrease

	Ligand	Receptor	Log2(aPD1/Iso)
	endo16_T	fib21_nonU	1.32082538
	endo4_F	fib21_nonU	1.27436036
	fib21_nonU	fib23_T	1.15069987
5	pDC33	endo16_T	1.13887923
	endo16_T	fib23_T	1.12912548
)	tumor17	tumor22	-1.0794083
	tumor22	tumor17	-1.1340537
	T_cell15	tumor22	-1.1364758
	prol_myel30	tumor22	-1.1654296
	mac5_F	tumor22	-1.3217422

Fold Change in Average Cluster Interactions – FatT

Change in Interaction w/ aPD-1: Increase vs. Decrease

-05			
_	Ligand	Receptor	Log2(aPD1/Iso)
- O.C	B_cell24	fib23_T	1.18300181
_	fib23_T	mac11_F	1.12835925
0.5	fib21_nonU	fib23_T	1.12223948
13	fib27_Gpx3	fib23_T	1.07904404
1.3	fib_myel18	fib23_T	1.07853636
1.5	fib_myel18	tumor0	-1.3554015
	tumor0	fib27_Gpx3	-1.4533958
	tumor0	fib9_IL33	-1.4914748
	tumor0	prol_myel30	-1.5212681
	tumor0	fib_myel18	-1.5999584

Changes between Cell and Gene Pairs Due to aPD-1 Treatment

- What ligand-receptor genetic interactions between cluster pairs are affected most by aPD-1 treatment?
- Compare LigXRec values between isotype and aPD-1 treatments of matching gene-gene pairs and their corresponding cell-cell pairs
 - Positive difference: increased genetic interaction between clusters w/ aPD-1
 - Negative difference: decreased genetic interaction between clusters w/ aPD-1

Change in LigXRec w/ aPD-1: Increase vs. Decrease

-2.5

--2.à

Comparing Ligand-ReceptorInteraction Changes between Tissues

- What changes in cluster and gene interactions due to aPD-1 are most distinctive for each tissue location?
 - i.e. larger degree in changes of LigXRec differences between tissue locations
 - (LigXRec diff. tissue location 1) (LigXRec diff. tissue location 2)

Number of Unique and Shared Gene Pairs between Tissue Types

Comparison	Shared	FatT	FatC	Tumor
FatT vs. FatC	1428	70	61	-
FatC vs. Tumor	1398	-	91	68
FatT vs. Tumor	1400	98	-	66
All Tissues	1360	30	23	28

Greater abs. value of LigXRec diff. w/ aPD-1: FatT vs. Tumor

Notable Top LigXRec Differences Found Across Tissues

Category	Lig-Rec Genes	Function	LigXRec Interactions w/ aPD-1 (Increase vs. Decrease)
Immune Cell Activity	Myl9-Cd69	High expression shows low response to aPD-1 treatment; blocking yields tumor shrinkage via longer lasting T-cells	
	Btla-Cd79a	Negative regulation of B-cell, T-cell antigen recognition activity	DC8 – B_cell24 (FatT)Prol_myel30 – B_cell24 (FatT)
	Ncam1-Robo3	Cellular proliferation of CD8 T-cells, DCs; poor prognostic marker in AML	• Fib23_T – pDC33 (FatC)
Cell Signaling	Psen1-Notch3	Regulation of Notch, Wnt pathways affecting cell fate; increased Notch3 associated w/ immunosuppression	Mono6_T – peri_endo29_F (FatC)
Cell Cycle/Survival	Hgf-Sdc2	High expression can lead to upregulated tumor PD-L1, immunosuppression	• Eos35 – fib23_T (FatC)
	Ccl19-Ccr7	Chemokinetic for naïve CD4, CD8 T-cells, B-cells; potential increased T-cell, DC tumor infiltration with Ccl19+aPD-1 treatment	 Fib23_T - migDC28 (FatT, Tumor) Fib14_Postn - B_cell24 (FatT, Tumor) Fib14_Postn - migDC28 (FatT, Tumor)
	Btla-Cd79a	Control of T-cell exhaustion, targeting Btla has shown increased T-cell activity	 DC8 – B_cell24 (FatT) Prol_myel30 – B_cell24 (FatT)
	Gas6-Mertk	Cell growth, survival, adhesion; Gas6 highly expressed on cancers, anti-Mertk shown to aid in immunotherapy	 Fib27 – mac11_F (Tumor) Fib14_Postn – mac11_F (Tumor) Fib21 – mac11_F (Tumor)

Concluding Remarks

- Certain gene pairs involved in immunosuppression show up repeatedly in top interaction changes between cell locations changes with aPD-1 treatment
 - Btla-Cd79a, Myl9-Cd69, Psen1-Notch3, Hgf-Sdc2, Ccl19-Ccr7, Gas6-Mertk
- aPD-1 therapy affects a variety of cell types within and around the tumoral space
 - Fibroblasts, endothelial cells, myeloid cells, monocytes, B-cells, eosinophils, DCs
 - T-cells are not the only cells affected by ICB therapy in/around tumor
- Extent, targets of therapy efficacy depends on location of cells
 - How dependent are results on fat metabolism?
- How does cell location and treatment affect cell fate?
 - RNA velocity (Dynamo) for future tests on data

Top/Bottom LigXRec Differences – Tumor (Greater LigXRec Value: aPD-1 vs. Isotype)

Category	Lig-Rec Genes	Function	Lig-Rec Clusters
Immune Cell Activity	C3-Cd19	Central complement protein; B-cell unique marker, triggers antibody response ¹⁻²	• Fib_myel18-B_cell24
	Myl9-Cd69	Myosin regulatory subunit, high expression shows low response to aPD-1 treatment ³⁻⁵ ; lymphocyte proliferation, blocking leads to tumor shrinkage due to longer lasting T-cells ⁶⁻⁹	• Tumor22 – eos35
ECM/Stromal Interactions	Myoc-Fzd1	Regulation of ECM, cell-cell adhesion with actin cytoskeleton using Wnt pathway ¹⁰⁻¹¹	fib27_Gpx3-fib14_Postnfib27_Gpx3-tumor22
Cell Signaling	Ccl19-Ccr7	Chemokinetic for naïve CD4, CD8 T-cells, B-cells, potential for increased T-cell, DC tumor infiltration with Ccl19 + aPD-1 treatment ¹²⁻¹⁵	Fib23_T-migDC28Fib14_Postn-B_cell24Fib14_Postn-migDC28
Cell Cycle/Survival	Gas6-Mertk	Cell growth, survival, adhesion; Gas6 highly expressed in many cancers, anti-Mertk aids in immunotherapy ¹⁶⁻²²	Fib27 – mac11_FFib14_Postn – mac11_FFib21-mac11_F
	Ntn1-Mcam	Survivor factor preventing apoptotic receptor interactions; seen in some cancers ²³⁻²⁴	• Tumor22-endo16_T

Top/Bottom LigXRec Differences – FatC (Greater LigXRec Value: aPD-1 vs. Isotype)

Category	Lig-Rec Genes	Genetic Function	Lig-Rec Clusters
Immune Cell Activity	Ncam1-Robo3	Cellular proliferation of CD8 T-cells, DCs; poor prognostic marker in AML ¹⁻⁶	• Fib23_T – pDC33
ECM/Stromal Interactions	Vtn-Itgav	Promotes cell adhesion to ECM components ⁷⁻⁸	• Peri_endo29_F-mono6_ T
	Alcam-Chl1	Cell adhesion molecules involved in neuron development ⁹⁻¹⁰	Prol_myel30-fib23_T
Cell Signaling	Psen1-Notch3	Regulation of Notch, Wnt pathways affecting cell fate; increased Notch3 associated with immunosuppression ¹¹⁻¹⁵	Mono6_T-peri_endo29_F
	Ccl22-Ackr2	Regulated chemokinetic reaction for T-cell, B-cell, DC inflammation ¹⁶⁻¹⁷	• migDC28-fib9_IL33
Cell Cycle/Survival	Hgf-Sdc2	Growth, proliferation of tissues; altered in some tumors ¹⁸⁻²⁰ ; high expression of genes can lead to increased tumor PD-L1, immunosuppression ²¹⁻²²	• Eos35-fib23_T
	Ncam1-Gfra1	Control of Ret proto-oncogene upon binding	• Fib23_T – fib27

with neurotropic ligands²³⁻²⁴

fibroblasts²⁵⁻²⁶

Proliferation, differentiation, migration of

• Fib23_T-fib9_IL33

Ncam1-Fgfr1

22

Top/Bottom LigXRec Differences – FatT (Greater LigXRec Value: aPD-1 vs. Isotype)

Category	Lig-Rec Genes	Functions	Lig-Rec Clusters
Immune Cell Activity	Pglyrp1-Trem1	Monocyte-mediated inflammation; high Trem1 activity poor cancer prognosis due to immunosuppression ¹⁻⁴	• Eos35-neutro20
	Btla-Cd79a	Negative regulation of B-cell, T-cell antigen recognition activity ⁵⁻⁹	DC8-B_cell24Prol_myel30-B_cell24
ECM/Stromal Interactions	Mmp2-Sdc2	Vasculature remodeling; tumor invasion, cell binding 10-11	• Tumor0 – fib27_Gpx3
	Myoc-Fzd1	Regulation of ECM, cell-cell adhesion with actin cytoskeleton using Wnt pathway ¹²⁻¹³	fib27_Gpx3-fib14_Postnfib27_Gpx3-fib23_T
	Vcan-Selp	Signals involved in ECM interactions between leukocytes and active endothelial cells ¹⁴⁻¹⁵	• Fib23_T-endo16_T
Cell Signaling	Ccl19-Ccr7	Chemokinetic for naïve CD4, CD8 T-cells, B-cells ¹⁶⁻¹⁷ ; potential increased T-cell, DC tumor infiltration with Ccl19+aPD-1 treatment ¹⁸⁻¹⁹	Fib23_T-migDC28Fib14_Postn-B_cell24Fib14_Postn-migDC28
Cell Cycle/Survival	Btla-Cd79a	Control of T-cell exhaustion, targeting Btla has shown increased T-cell activity ⁵⁻⁹	DC8-B_cell24Prol_myel30-B_cell24

Greater Degree of LigXRec Differences Due to aPD-1 – FatC vs. Tumor

Category	Lig-Rec Genes	Function	Lig-Rec Clusters (FatC vs. Tumor)
Immune Cell Activity	Ncam1-Robo3	Cellular proliferation of CD8 T-cells, DCs; poor prognostic marker in AML ¹⁻⁶	• Fib23_T – pDC33
	Myl9-Cd69	Myosin regulatory subunit, high expression shows low response to aPD-1 treatment ⁷⁻⁹ ; lymphocyte proliferation, blocking yields tumor shrinkage by longer lasting T-cells ¹⁰⁻¹³	peri_endo29_F-eos35
ECM/Stromal Interactions	Cdh1-Egfr	E-cadherin production and cell signaling based on extracellular cues ¹⁴⁻¹⁵ ; Egfr upstream of Cdh1 in Wnt signaling axis, associated with poor tumor prognosis ¹⁶⁻¹⁷	pDC33-fib14_Postn
Cell Signaling	Psen1-Notch3	Regulation of Notch, Wnt pathways affecting cell fate; increased Notch3 associated with immunosuppression ¹⁸⁻²²	Mono6_T-peri_endo29_F
	Cxcl12-Cd4	Chemotaxis of T-cells, monocytes ²³ ; Cxcl12 increases activation markers on CD3-stimulated CD4 T-cells in CLL ²⁴ ; prostate tumors express high Cxcl12 levels, correlation with intratumoral expression of MDSC/Treg markers ²⁵	• Fib23_T-pDC33
Cell Cycle/Survival	Hgf-Sdc2	Growth, proliferation of tissues; altered in some tumors ²⁶⁻²⁸ ; high expression of genes can lead to increased tumor PD-L1, immunosuppression ²⁹⁻³⁰	• Eos35-fib23_T
	Ncam1-Gfra1	Control of Ret proto-oncogene upon binding with neurotropic ligands ³¹⁻³²	• Fib23_T – fib27
	Osm-Lifr	Regulates tumor growth and IL-6 cytokine production ³³⁻³⁴ ; targeting Lifr interactions reduces tumor progression and drug resistance ³⁵⁻³⁶	• Eos35-mac11_F

Greater degree

of LigXRec diff.

FatC vs. Tumor

after aPD-1:

Fold Change in Average Cluster Interactions – FatC

Increased Interaction: aPD-1 vs. Iso

- 0.5

Ligand	Receptor	Log2(aPD1/Iso)
fib23_T	mono6_T	0.79894195
eos35	fib23_T	0.6874007
fib14_Postn	mac_mono7_T	0.6866788
myel10_Retnla_ FatC	fib9_IL33	0.52510349
mono6_T	myel26_poorQ	0.51578441
tumor0	DC8	-1.4632225
fib_myel18	tumor0	-1.4707097
tumor0	fib_myel18	-1.4808074
	mac_mono13_m	1
tumor0	ix	-1.6521396
tumor0	pDC33	-1.7976665

Higher LigXRec interaction: aPD-1 vs. Isotype

- 10

Greater degree

of LigXRec diff.

after aPD-1:

FatT vs. FatC

Greater Degree of LigXRec Differences Due to aPD-1 – FatT vs. FatC

Category	Lig-Rec Genes	Function	Lig-Rec Clusters
Immune Cell Activity	Btla-Cd79a	Regulation of B-cell, T-cell antigen recognition activity; targeting Btla has shown increased T-cell activity ¹⁻⁵	DC8-B_cell24Prol_myel30-B_cell24
	Myl9-Cd69	Myosin regulatory subunit, high expression shows low response to aPD-1 treatment ⁶⁻⁸ ; lymphocyte proliferation, blocking yields tumor shrinkage by longer lasting T-cells ⁹⁻¹²	• Tumor22 – eos35
	Cdh1-Klrg1	Self-recognition and inhibition through E-cadherin recognition ¹³⁻¹⁴ ; Klrg1+ effector CD8 T-cells less likely to infiltrate tumor, downregulate expression to become memory T-cells, increase antitumor immunity ¹⁵⁻¹⁶	Eos35-NK12Eos35-T_cell15
ECM/Stromal Interactions	Cdh1-Ptprm	Cell-cell adhesion, mobility, growth ¹⁷⁻¹⁸ ; high Ptprm associated with EMT, metastasis, poor cancer prognosis ¹⁹	• Eos35-endo16_T
	Tgfb2-Tgfbr3	Associated with EMT by cancer-associated fibroblasts; high Tgfb2 associated with poor prognosis in several cancers ²⁰⁻²²	• fib9_IL33-fib23_T
Cell Signaling	Ccl19-Ccr7	Chemokinetic for naïve CD4, CD8 T-cells, B-cells, potential for increased T-cell, DC tumor infiltration with Ccl19+aPD-1 treatment ²³⁻²⁶	Fib14_Postn-B_cell24Fib14_Postn-migDC28
	Psen1-Notch3	Regulation of Notch, Wnt pathways affecting cell fate; increased Notch3 associated with immunosuppression ²⁷⁻³¹	Mono6_T-peri_endo29_F
Cell Cycle/Survival	Tgfb2-Tgfbr3	Downregulation of Tgfb2 inhibits proliferation, promotes apoptosis of hepatocellular carcinoma ²²	• fib9_IL33-fib23_T

Greater Degree of LigXRec Differences Due to aPD-1 – FatT vs. Tumor

Category	Lig-Rec Genes	Function	Lig-Rec Clusters
Immune Cell Activity	Btla-Cd79a	Regulation of B-cell, T-cell antigen recognition activity; targeting Btla has shown increased T-cell activity ¹⁻⁵	DC8-B_cell24pDC33-B_cell24migDC28-B_cell24
	Myl9-Cd69	Myosin regulatory subunit, high expression shows low response to aPD-1 treatment ⁶⁻⁸ ; lymphocyte proliferation, blocking yields tumor shrinkage by longer lasting T-cells ⁹⁻¹²	• peri_endo29_F-eos35
	Cdh1-Klrg1	Self-recognition and inhibition through E-cadherin recognition ¹³⁻¹⁴ ; Klrg1+ effector CD8 T-cells less likely to infiltrate tumor, downregulate expression to become memory T-cells, increase antitumor immunity ¹⁵⁻¹⁶	• Eos35-NK12
	Pglyrp1-Trem1	Monocyte-mediated inflammation; high Trem1 activity poor cancer prognosis due to immunosuppression ¹⁷⁻²⁰	• Eos35-neutro20
Cell Signaling	Ccl19-Ccr7	Chemokinetic for naïve CD4, CD8 T-cells, B-cells, potential for increased T-cell, DC tumor infiltration with Ccl19+aPD-1 treatment ²¹⁻²⁴	• Fib23_T-migDC28
	Cxcl12-Cd4	Chemotaxis of T-cells, monocytes ²⁵ ; Cxcl12 increases activation markers on CD3-stimulated CD4 T-cells in CLL ²⁶ ; prostate tumors express high Cxcl12 levels, correlation with intratumoral expression of MDSC/Treg markers ²⁷	• Fib23_T-pDC33
Cell Cycle/Survival	Gas6-Mertk	Cell growth, survival, adhesion; Gas6 highly expressed on cancers, anti-Mertk aids in immunother apy ²⁸⁻³⁴	• Fib27_Gpx3–mac11_F