# 트랜잭션의 격리수준(isolation Level)이란?

트랜잭션의 격리수준이란 동시에 여러 트랜잭션이 처리될 때, 특정 트랜잭션이 다른 트랜잭션에서 변경하거나 조회하는 데이터를 볼 수 있도록 허용할지 말지를 결정하는 것입니다.

### 트랜잭션의 격리수준의 종류

- READ UNCOMMITTED
- READ COMMITTED
- REPEATABLE READ
- SERIALIZABLE

#### **READ UNCOMMITTED**

- 각 트랜잭션에서의 변경 내용이 Commit이나 Rollback 여부에 상관 없이 다른 트랜잭션에서 값을 읽을 수 있습니다.
- 정합성에 문제가 많은 격리 수준이기 때문에 사용하지 않는 것을 권장합니다.
- 아래의 그림과 같이 Commit이 되지 않는 상태지만 Update된 값을 다른 트랜잭션에서 읽을 수 있습니다.



### READ UNCOMMITTED의 문제점?

Dirty Read 현상 발생이 문제점입니다. 트랜잭션이 작업이 완료되지 않았는데도 다른 트랜잭션에서 볼 수 있게 되는 현상입니다.

#### READ COMMITEED

RDB에서 대부분 기본적으로 사용되고 있는 격리 수준입니다. Dirty Read와 같은 현상은 발생하지 않습니다.

실제 테이블 값을 가져오는 것이 아니라 Undo 영역에 백업된 레코드에서 값을 가져옵니다.



## READ COMMITTED의 문제점?

[트랜잭션 -1] 이 Commit한 이후 아직 끝나지 않은 [트랜잭션 -2] 가 다시 테이블 값을 읽으면 값이 변경됨을 알 수 있습니다.

하나의 트랜잭션내에서 똑같은 SELECT 쿼리를 실행했을 때는 항상 같은 결과를 가져와야 하는 REPEATABLE READ 의 정합성에 어긋납니다.

이러한 문제는 주로 입금, 출금 처리가 진행되는 금융쪽의 처리에서 주로 발생합니다. (데이터의 정합성은 깨지고, 버그는 찾기 어려워집니다.)

#### REPEATABLE READ

MySQL에서는 트랜잭션마다 트랜잭션 ID를 부여하여 트랜잭션 ID보다 작은 트랜잭션 번호에서 변경한 것만 읽게 됩니다.

Undo 공간에 백업해두고 실제 레코드 값을 변경합니다.

### REPEATABLE READ 문제점?

PHANTOM READ라는 현상이 발생합니다.

다른 트랜잭션에서 수행한 변경 작업에 레코드가 보였다가 안 보였다가 하는 현상입니다.

이를 방지하기 위해서는 쓰기 잠금을 걸어야 합니다.



#### **SERIALIZABLE**

가장 단순한 격리 수준이지만 가장 엄격한 격리 수준입니다. 성능 측면에서는 동시 처리 성능이 가장 낮습니다. SERIALIZABLE 에서는 PHANTOM READ가 발생하지 않습니다. (하지만, 데이터베이스에서 거의 사용되지 않습니다.)