Dénombrement et combinatoire

RÉCAPITULATIF

page 34

Raisonnement par récurrence

Montrer qu'une propriété P(n) est vraie pour tout entier naturel $n \ge n_0$.

- (1) <u>Initialisation</u>: montrer que $P(n_0)$ est vraie.
- (2) <u>Hérédité</u>: Soit p un entier tel que $p \ge n_0$ et P(p) est vraie. Montrer que P(p + 1) est vraie.
- (3) Conclure: P(n) est vraie pour tout $n \ge n_0$.

k-uplets de E

- · Listes ordonnées de k éléments de E
- répétitions possibles
- $\cdot n^k$

-

- k-uplets d'éléments dinstincts de E
 Listes ordonnées, sans répétition, de k éléments de E
- $\cdot n \times (n-1) \times \ldots \times (n-k+1)$

Principe additif

Si E et F sont disjoints alors $E \cup F$ a n+m éléments.

Principe multiplicatif

 $E \times F$ a $n \times m$ éléments.

Combinaisons de k éléments de E

- Parties de k éléments de E
- Sans ordre, sans répétition

$$\cdot \binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)...(n-k+1)}{k!}$$

Relation de Pascal

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

Triangle de Pascal

Permutations de E

• n uplets d'éléments distincts de E

Dénombrement E : ensemble à n éléments

F: ensemble à m éléments $n \in \mathbb{N}^*$, $m \in \mathbb{N}^*$, $k \in \mathbb{N}^*$

 $\cdot n \times (n-1) \dots \times 3 \times 2 \times 1 = n!$