EE 25088 Convex Optimization II

Problem Set II

Due Date: Ordibehesht 18, 1400

- 1) Let C be a nonempty convex subset of \mathbb{R}^n . Let also $f = (f_1, \dots, f_m)$, where $f_i : C \to \mathbb{R}$, $i=1,\cdots,m$, are convex functions, and let $g:\mathbb{R}^m\to\mathbb{R}$ be a function that is convex and monotonically nondecreasing over a convex set that contains the set $\{f(x)|x\in C\}$, in the sense that for all u_1 , u_2 in this set such that $u_1 \leq u_2$, we have $g(u_1) \leq g(u_2)$. Show that the function h defined by h(x) = g(f(x)) is convex over C. If in addition, m = 1, g is monotonically increasing and f is strictly convex, then h is strictly convex.
- 2) Consider a convex function $f(x): \mathbb{R}^n \to \mathbb{R}$ and an affine function $h(x) = x^T w h_0$ with $h_0 = \sup_{\boldsymbol{x}} \boldsymbol{x}^T \boldsymbol{w} - f(\boldsymbol{x})$. Show that the function $h(\boldsymbol{x})$ minorizes the convex function $f(\boldsymbol{x})$, i.e., for any $x \in \mathbb{R}^n$ we have $f(x) \ge h(x)$.
 - 3) Show that the function

$$f(x) = \frac{||Ax - b||_2^2}{1 - x^T x}$$

is convex on $\{x| ||x||_2 < 1\}$.

 \checkmark 4) Suppose $\lambda_1, \dots, \lambda_n$ are positive. Show that the function $f: \mathbf{R}^n \to \mathbf{R}$, given by

$$f(x) = \prod_{i=1}^{n} (1 - e^{-x_i})^{\lambda_i}$$

 $f(x)=\prod_{i=1}^n(1-e^{-x_i})^{\lambda_i},$ is concave on ${\bf dom}\ f=\{x\in{\bf R}_{++}^n|\sum_{i=1}^n\lambda_ie^{-x_i}\le 1\}.$

- 5) Problem 3.15 [1]
- → 6) Problem 3.22 (a)–(c) [1]. [1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
- → 7) Use KKT conditions to solve

$$\underset{\boldsymbol{x} \in \mathbf{R}^n}{\text{minimize}} f(\boldsymbol{x}) \quad \text{subject to} \quad h(\boldsymbol{x}) = 0$$

for the following cases

a)
$$f(\boldsymbol{x}) = ||\boldsymbol{x}||^2$$
 and $h(\boldsymbol{x}) = \sum_{i=1}^n x_i - 1$.

b)
$$f(x) = \sum_{i=1}^{n} x_i - 1$$
 and $h(x) = ||x||^2 - 1$.

8) Derive the dual of the projection problem defined as

$$\underset{\boldsymbol{x} \in \mathbf{R}^n}{\text{minimize}} \quad ||\boldsymbol{z} - \boldsymbol{x}||^2$$

subject to
$$Ax = 0$$
,

where the $m \times n$ matrix A and the vector $z \in \mathbb{R}^n$ are given. Show that the dual problem is also a problem of projection onto a subspace.

9) Relative entropy. The relative entropy between two vectors $x, y \in \mathbb{R}_{++}$ is defined as $\sum_{k=1}^{n} x_k \log(x_k/y_k)$, which is a convex function. Through the following problem, we calculate the vector x that minimizes the relative entropy with a given vector y, subject to equality constraints on x:

minimize
$$\sum_{k=1}^{n} x_k \log(x_k/y_k)$$
 subject to $A\mathbf{x} = \mathbf{b}$,

$$\mathbf{1}^T \boldsymbol{x} = 1.$$

The optimization variable is $x \in \mathbb{R}_{++}$. The parameters $y \in \mathbb{R}_{++}$, $A \in \mathbb{R}_{++}^{m \times n}$, and $b \in \mathbb{R}_{++}^{m}$ are given.

- a) Derive the Lagrangian and the dual of this problem.
- b) Simplify your answer to obtain the following optimization problem

maximize
$$\boldsymbol{b}^T \boldsymbol{z} - \log \sum_{k=1}^n y_k \exp(\boldsymbol{a}_k^T \boldsymbol{z}),$$

with a_k be the k-th column of A.