

Pivot tables: Analytics in pure SQL

Giuseppe Maxia

Quality Assurance Architect at VMware, Inc

About me

Who's this guy?

- Giuseppe Maxia, a.k.a. "The Data Charmer"
 - QA Architect at VMware
 - 25+ years development and DB experience
 - Long timer MySQL community member.
 - Oracle ACE Director
 - Blog: http://datacharmer.blogspot.com
 - Twitter: @datacharmer
- Curious fact: I learned SQL before learning English

Agenda: pivot tables, ak.a. cross tabs

- The story so far
- What are pivot tables
- Why pivot tables in SQL
- Components of mono-dimensional pivot tables
- Advanced: multi-dimension pivot tables
- More advanced: multi-operation, multi-dimension pivot tables.

The story so far

This is an old topic, which seems to be still popular

- 2001: an article MySQL Wizardry
- > 2003: a Perl module DBIx::SQLCrosstab
- > 2003: an article on advanced cross tabs
- ▶ 2005: hackish implementation in SQL
- 2009: implementations in Lua

What's a pivot table

A bit of formality

- A statistical report
- Data grouped by one field
- And a column created for each distinct value of another field

Yes, but what is it, really?

Let's see it in practice

Suppose you have this table

```
| department | category | name
person_id | country | loc
                                                                | salary | gender
            Germany | Munich | sales
                                                        Susan
                                                                    5500
                                            cons
            Italy
                     I Rome
                                                                    6000
                                                         June
                                dev
                                             cons
            UK
                     | London | pers
                                                         John
                                                                    5000
                                             cont
            UK
                     | London | sales
                                                       | Martin |
                                                                    5500
                                            cont
            Italy
                     I Rome
                                                       l Mario
                                                                    6000
                              l pers
                                            l empl
                                                       I Frank
            Germany | Bonn
                              | sales
                                                                    5000
                                            l empl
            Germany | Berlin | dev
                                             empl
                                                         0tto
                                                                    6000
            Germany | Berlin | pers
                                             empl
                                                                    5500
                                                        Mary
            Germany | Munich | pers
                                            l empl
                                                         Bill
                                                                    5000
```

 and you want to know how many male and female employees are in each department

You could try this:

Group by department and gender

```
select department, gender, count(*) as how many from
all personnel group by department, gender;
 ______+
 department | gender | how many |
 -----+
 dev
     f
 dev
     m
    | f
 pers
    m
 pers
 sales | f
     l m
 sales
 ----+
```

But wouldn't be better if you got this?

A cross-tabulation query, a.k.a. pivot table

+-		+-		+ -		+
1	department	Ī	f		m	
+-		+-		+ -		+
	dev		1		1	
	pers		1		3	
	sales		1		2	
+-		+-		+-		+

Or even better, this:

A cross-tabulation query with summary

+	+-		-+-		-+-	+
department		f	1	m	1	total
+	+-		-+-		-+-	+
dev		1	1	1	1	2
pers		1	1	3	1	4
sales		1	\perp	2	1	3
TOTAL		3		6		9
+	+-		-+-		-+-	+

Or what if you could do this ...

A multi-level cross-tabulation query

country	location		ре	ers		sa	les		d	ev	total
country	location	f	m	total	f	m	total	f	m	total	total
	Berlin	1	0	1	0	0	0	0	1	1	2
Cormany	Bonn	0	0	0	0	1	1	0	0	0	1
Germany	Munich	0	1	1	1	0	1	0	0	0	2
	Total	1	1	2	1	1	2	0	1	1	5
Tholy	Rome	0	1	1	0	0	0	1	0	1	2
Italy	Total	0	1	1	0	0	0	1	0	1	2
LUZ	London	0	1	1	0	1	1	0	0	0	2
UK	Total	0	1	1	0	1	1	0	0	0	2
Total	Total	1	3	4	1	2	3	1	1	2	9

A multi-level pivot table has several components

Column header #1

					C	1						С	2			
A	В		D:	1		D	2	Total		D	1		D	2	Total	Total
		E1	E2	Total	E1	E2	Total	TOLAI	E1	E2	Total	E1	E2	Total	Total	
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A1	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A multi-level pivot table has several components

Column header #2

					C	L						С	2			
Α	В		D:	1		D	2	Total		D	1		D	2	Total	Total
		E1	E2	Total	E1	E2	Total	iotai	E1	E2	Total	E1	E2	Total	iotai	
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A1	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A multi-level pivot table has several components

Column header #3

					C	1						С	2			
Α	В		D:	1		D.	2	Total		D	1		D	2	Total	Total
		E1	E2	Total	E1	E2	Total	Total	E1	E2	Total	E1	E2	Total	Total	
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A1	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A multi-level pivot table has several components

Row header #1

					C	1						С	2			
Α	В		D:	1		D	2	Total		D	1		D	2	Total	Total
		E1	E2	Total	E1	E2	Total	Total	E1	E2	Total	E1	E2	Total	Total	
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A1	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A multi-level pivot table has several components

Row header #2

					C	1						С	2			
Α	В		D:	1		D	2	Total		D	1		D	2	Total	Total
		E1	E2	Total	E1	E2	Total	Total	E1	E2	Total	E1	E2	Total	Total	
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A1	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A multi-level pivot table has several components

Column sub totals

					C	1						С	2			
Α	В		D	1	_	D	2	Total		D	1		D	2	Total	Total
		E1	E2	Total	E1	E2	Total	Total	E1	E2	Total	E1	E2	Total	Total	
	B1	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
A1	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A multi-level pivot table has several components

Column grand total

					C	1						C	2			
Α	В		D	1		D	2	T-4-1		D	1		D	2	T-4-1	Total
		E1	E2	Total	E1	E2	Total	Total	E1	E2	Total	E1	E2	Total	Total	
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A1	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A multi-level pivot table has several components

Row sub totals

					C	L						С	2			
A	В		D:	1		D	2	Total		D	1		D	2	Total	Total
		E1	E2	Total	E1	E2	Total	Total	E1	E2	Total	E1	E2	Total	Total	
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A1	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A multi-level pivot table has several components

Row grand total

					C	1						С	2			
A	В		D:	1		D	2	Total		D	1		D	2	Total	Total
		E1	E2	Total	E1	E2	Total	Total	E1	E2	Total	E1	E2	Total	Total	
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A1	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	B1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A2	B2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Can't we just use Excel?

Why not use a spreadsheet

It is tempting, and sometimes it's the right things to do, but ...

- Spreadsheets have limits (32K or 64K rows)
- You need to export your data to a personal computer
- You need to de-normalize the data (your data rarely comes in one table only)
- you miss most of the fun!

Back to our "simple" pivot table

A mono-dimension cross-tabulation query, a.k.a. pivot table

```
SELECT department AS department
, count (CASE WHEN gender = 'f' THEN name
     ELSE NULL END) AS 'f'
                                     distinct value
, count (CASE WHEN gender = 'm' THEN name
                                    becomes column
     ELSE NULL END) AS 'm'
                                       header
, count (name) AS total
FROM all personnel
GROUP BY department
----+
| department | f | m | total |
+----+
| pers | 1 | 3 | 4 |
```

Back to our "simple" pivot table (2)

An alternate syntax

```
SELECT department AS department
, count (if (gender = 'f', name, NULL )) AS 'f'
, count (if (gender = 'm', name, NULL)) AS 'm'
, count (name) AS total
FROM all personnel
GROUP BY department;
+----+
| department | f | m | total |
----+
_____
```

Four Step Pivot table generation

Pivot table queries are defined in several stages

Define the row header

Simply choose what you want to group by

Find distinct column values

Run a
'SELECT
DISTINCT'
query

Generate the crosstab query

For the values from the previous step to create the query

Run the query

Redirect the query to a MySQL client and run it

Step #1 - define the row header

This is (often) simple. Just say which column you want to use

- Your chosen column may not be in the table that has the main data
- You can define your source as a JOIN or a subquery
- (This is the main advantage over spreadsheets)

Step #2 - find the column values

You need to query your data source for distinct values

You can also generate SQL from SQL

But you will find out soon that it is more unpleasant than using a scripting language such as Ruby, Perl, Python.

```
select
concat(", count(case when gender='", gender,
 "' then name else NULL END) as '", gender, "'")
as q
from ( select distinct gender from all personnel) as
t;
 ,count(case when gender='f' then name else NULL END) as 'f' |
 ,count(case when gender='m' then name else NULL END) as 'm' |
  ------
```

Step #3 - generate the crosstab query

The tricky part

You can do it two ways:

- Copy the values to an editor, and write the query
- Use an application that can generate the query for you.

Step #4 - run the final query

- In step #3 you got a SQL query as some text
- You need to pass that text to a database client

When the data source is not just 1 table

What if your row and column headers are not in the same place?

For example:

how do we do a pivot table by country and department?

The data source can be a join

And also the columns can be created with a clever join

```
SELECT country AS country
, sum (CASE WHEN dept id = '3') THEN salary ELSE NULL
END) AS ('dev'
, sum (CASE WHEN dept id = '1') THEN salary ELSE NULL
END) AS ('pers'
, sum (CASE WHEN dept id = '2') THEN salary ELSE NULL
END) AS ('sales'
, sum (salary) AS total
FROM countries INNER JOIN locations using
(country id) INNER JOIN person USING (loc id)
 GROUP BY country
```

BTW: did you notice that we are using SUM instead of COUNT?

You can minimise data scan with FK

When you select the values for a column that has a key in the main table and the real value in a lookup table, you can get both and then combine them in the query

```
SELECT DISTINCT dept_id AS xcol_id, department AS xcol_alias FROM departments inner join person using (dept_id);
+-----+
| xcol_id | xcol_alias |
+-----+
| 3 | dev |
| 1 | pers |
| 2 | sales |
+-----+
```

Here's a crosstab from distributed data

It gives you some sort of evil pleasure when you do a query like this, knowing that a spreadsheet could not do it (as easily)

+	+	+	+	++
country	dev	pers	sales	 total
Germany	6000	10500	10500	27000
Italy	6000	6000	NULL	12000
UK	NULL	5000	5500	10500
ZZZZ	12000	21500	16000	49500
+	+	+	+	 ++

Completing the query

Once you got the column values, you still need to create the totals

- The column subtotal is simply a COUNT(column) after all the column values;
- ► The row subtotal requires A UNION QUERY made of:
 - a string value to replace the row header ("zzzz" is a good candidate)
 - the same statements for the column values
 - An "ORDER BY header_row" statement, to make zzzz as the last value

This query shows the row total

The grand total will be shown as 'zzzz', which you will need to change either manually or with software

```
SELECT department AS department
, count (CASE WHEN gender = 'f' THEN name ELSE NULL END) AS 'f'
,count(CASE WHEN gender = 'm' THEN name ELSE NULL END) AS 'm'
, count (person id) AS total
FROM all personnel
 GROUP BY department
UNION
SELECT 'zzzz' AS department
, count (CASE WHEN gender = 'f' THEN name ELSE NULL END) AS 'f'
, count (CASE WHEN gender = 'm' THEN name ELSE NULL END) AS 'm'
, count (name) AS total
 FROM all personnel
 ORDER BY department
```

The grand total ends at the bottom

Script it!

You don't want to do it manually. The risk of garbling up everything is too high.

- You can do it automatically
- 1. using a Perl module DBIx::SQLCrosstab (http://search.cpan.org)

or

2. writing your own software

Sample generation script

Here is a simple case of a mono-dimension cross tab definition to use with DBIx::SQLCrosstab

```
$params = {
    'row total' => 1,
    'col total' => 1,
    'use real names' => 1,
    'op' => [ [ 'count', 'name' ] ],
    'from' => 'all personnel',
    'rows' => [{'col' => 'department'}],
    'cols' => [
                 'id' => 'gender',
                 'from' => 'all personnel'
```

Multi-level crosstab queries

Sometimes, you want to break down a crosstab column by the values of another column. For example, you may want to get salaries by country (row header) and department+gender (columns)

To generate multiple level crosstabs, you need to:

- 1. get the valid combinations of values from all column
- 2. generate CASE statements with multiple conditions
- 3. name the columns with the values of all columns
- 4. run the query as before

Multi-level column generation in practice

First we get the values for the outer column

```
SELECT DISTINCT dept_id AS xcol_id, department AS xcol_alias FROM departments inner join person using (dept_id);
+-----+
| xcol_id | xcol_alias |
+-----+
| 3 | dev |
| 1 | pers |
| 2 | sales |
+-----+
```

Multi-level column generation in practice

Then we get the values for the inner column

Finally, we combine the values

We need to be careful. Not all combinations are always valid

```
SELECT country AS country
, sum (CASE WHEN dept id = '3' AND gender = 'm' THEN
salary ELSE NULL END) AS 'dev m'
, sum (CASE WHEN dept id = '3' AND gender = 'f' THEN
salary ELSE NULL END) AS 'dev f'
, sum (CASE WHEN dept id = '3' THEN salary ELSE NULL
END) AS 'dev'
, sum (CASE WHEN dept id = '1' AND gender = 'm' THEN
salary ELSE NULL END) AS 'pers m'
, sum (CASE WHEN dept id = '1' AND gender = 'f' THEN
salary ELSE NULL END) AS 'pers f'
, sum (CASE WHEN dept id = '1' THEN salary ELSE NULL
END) AS 'pers'
```

42

Finally, we combine the values (2)

We need to be careful. Not all combinations are always valid

```
# ...
, sum (CASE WHEN dept id = '2' AND gender = 'm' THEN
salary ELSE NULL END) AS 'sales m'
, sum (CASE WHEN dept id = '2' AND gender = 'f' THEN
salary ELSE NULL END) AS 'sales f'
, sum (CASE WHEN dept id = '2' THEN salary ELSE NULL
END) AS 'sales'
, sum (salary) AS total
 FROM countries INNER JOIN locations using
(country id) INNER JOIN person USING (loc id)
 GROUP BY country
```

When column values are not correlated

You will need to run two queries and combine the values

- For example, when combining department and location:
 - you can scan the main datasource with a join to both lookup tables (expensive)
 - or you can scan the lookup tables and the work out all the combinations.

Careful with multiple level column

Sometimes combining values may not be the best option

- For example, if you want to use two levels, for country and location, you need a correlated query
- select distinct country, location from countries join locations using (country_id)
 - If you use two queries and then combine the results, you may end up with unreasonable tuples, such as 'Italy-Paris', 'UK-Berlin', 'USA-Rome'.

Results may be scary

SQL does not generate hierarchical headers ...

++		+		+	+	+	+	+	+	+
country	_	_		pers_m	pers_f	pers	sales_m			
'				'	'	•	'	1	•	
Italy	0	1	1	1	0	1	0	0	0	2
UK	0	0	0	1	0	1	1	0	1	2
ZZZZ	1	1	2	3	1	4	2	1] 3	9
+				+	+	+	+	+	+	+

But you can format HTML to look the way you want it

country		dev			pers			total		
	m f		total	m	f	total	m	f	total	totai
Germany	6000	-	6000	5000	5500	10500	5000	5500	10500	27000
Italy	-	6000	6000	6000	-	6000	-	-	-	12000
UK	-	-	-	5000	-	5000	5500	-	5500	10500
Total	6000	6000	12000	16000	5500	21500	10500	5500	16000	49500

Generating XML output

DBIx::SQLCrosstab has also the ability of producing XML output that you can later manipulate on your own

```
<?xml version="1.0"?>
<xtab title="Crosstab"</pre>
generator="DBIx::SQLCrosstab::Format version 0.7">
   <country name="Germany">
      <department name="dev">
             < m > 6000 < /m >
             <f/>
             <total>6000</total>
      </department>
      <department name="pers">
             < m > 5000 < /m >
             < f > 5500 < / f >
             <total>10500</total>
      </department>
```

More advanced crosstab features.

What if you want to combine operations?

We can generate pivot tables that have COUNT and SUM in the same row

Some scary stuff ...

Here's a portion of a cross tab with 3 levels by 3 levels, combining COUNT and SUM

COUNT(person_id),SUM(salary) FROM personnel by Area/country/location and department/category/gender

	personnel by Area/country/location															n and	a and department/category/gender											
				xcount																								
Area	country	location	dev						pers					xtab_sales										dev				
	Country	location	cor	consultant employee			total	cor	contractor		employee		total	co	nsultant	con	tractor	em	ployee	total	total	const	ıltant	empl	loyee	total	contr	actor
			f	total	m	total	totai	m	total	fr	m	total	totai	f	total	m	total	m	total	totai		f	total	m	total	totai	m	total
		Berlin	0	0	1	. 1	1	0	0	1	0	1	1	0	0	0	0	0	0	0	2	-	-	6,000	6,000	6,000	-	-
	Germany	Bonn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	-	-	-	-	-	-	-
	Germany	Munich	0	0	0	0	0	0	0	0	1	1	1	1	. 1	0	0	0	0	1	2	-	-	-	-	-	-	-
N		total	0	0	1	. 1	1	0	0	1	1	2	2	1	1	0	0	1	1	2	5	-	-	6,000	6,000	6,000	-	-
	UK	London	0	0	0	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	2	-	-	-	-	-	5,000	5,000
	UK	total	0	0	0	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	2	-	-	-	-	-	5,000	5,000
	total	total	0	0	1	. 1	1	1	1	1	1	2	3	1	1	1	1	1	1	3	7	-	-	6,000	6,000	6,000	5,000	5,000
	Italy	Rome	1	1	0	0	1	0	0	0	1	1	1	0	0	0	0	0	0	0	2	6,000	6,000	-	-	6,000	-	-
S	Italy	total	1	1	0	0	1	0	0	0	1	1	1	0	0	0	0	0	0	0	2	6,000	6,000	-	-	6,000	-	-
	total	total	1	1	0	0	1	0	0	0	1	1	1	0	0	0	0	0	0	0	2	6,000	6,000	-	-	6,000	-	-
total	total	total	1	1	1	1	2	1	1	1	2	3	4	1	1	1	1	1	1	3	9	6,000	6,000	6,000	6,000	12,000	5,000	5,000

Demo

Slides and example online

Slides and examples:

http://bit.ly/pivot-samples

(or check 'datacharmer' on GitHub)

A&Q