DM-IMECC-UNICAMP, MA5	$602/\mathrm{Análise}$	e I,PROF	. Marcelo M. S	Santos	
3a. prova, $27/06/2012$	•				
Aluno:		RA:			
Assinatura, como no RG: _					
Observações: Tempo de prova:	: 100min;	Justifique	suc intamente	todas	as
suas afirmações.					
	0/		0()		

- 1. a) (0,4 pontos) Defina $\lim_{x\to\infty} f(x) = \infty$ e $\lim_{x\to\infty} f(x) = 0$.
- **b)** (0,6) Seja $n \in \mathbb{N}$. Usando a definição dada no item **a**) e a desigualdade de Bernoulli $(1+y)^n \ge 1+ny$, prove que $\lim_{x\to\infty} x^n = \infty$ e $\lim_{x\to\infty} x^{-n} = 0$. Dica: $x > 1 \Rightarrow x = 1+y, \ y > 0$.
- c) (1,0) Seja $f(x) = \sum_{k=0}^{n} a_k x^k$ uma função polinomial de grau n, sendo $a_n > 0$. Usando o resultado do item **b**) e propriedades de limites, prove que $\lim_{x\to\infty} f(x) = \infty$. Dica: Escreva $f(x) = (a_0 x^{-n} + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n) x^n$.
- 2. a) (0,4) Defina função uniformemente contínua.
- b) (1,6) Uma função diz-se periódica quando existe uma constante p > 0 tal que f(x+p) = f(x) para todo $x \in \mathbb{R}$. Prove que toda função contínua periódica $f : \mathbb{R} \to \mathbb{R}$ é uniformemente contínua.
- **3.** (2,0) Seja $f(x) = x^n$ onde n é um número natural ímpar. Sem usar $\sqrt[n]{x}$, prove que f é uma bijeção de \mathbb{R} em \mathbb{R} . Conclua que a função inversa $g(x) = \sqrt[n]{x}$ é uma função contínua.
- **4.** (2,0) Sejam f e g funções contínuas num intervalo [a,b] e deriváveis em (a,b). Suponha que $g'(x) \neq 0$ para todo x em (a,b) e $g(b) \neq g(a)$. Prove que existe um ponto $c \in (a,b)$ tal que $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$. Sugestão: Considere a função $\varphi(x) = [f(b) f(a)]g(x) [g(b) g(a)]f(x)$; calcule $\varphi(b), \varphi(a)$.
- **5.** (2,0) Sejam $n \in \mathbb{N}$, I um intervalo aberto e $a \in I$. Se $f: I \to \mathbb{R}$ é uma função com derivadas $f^{(k)}(a)$ no ponto a anulando-se para $k = 1, \dots, n-1$ e $f^{(n)}(a) > 0$, prove que existe $\delta > 0$ tal que f(a) < f(a+h) para todo $h \in (0, \delta)$.

Não esqueça de justificar todas as suas afirmações.

Boa prova!