

Personalized Recommendations using Knowledge Graphs

The Problem

- Generate content-based recommendations on sparse real world data using knowledge graphs (KG)
- Knowledge Graph:
 - Think of the content (also referred to as entities) as nodes
 - Add links between:
 - Items-Entities: e.g. Bridge of Spies \leftarrow > Tom Hanks
 - User-Items: e.g. Alice $\leftarrow \rightarrow$ Saving Private Ryan
 - Entities-Entities: e.g. Tom Hanks $\leftarrow \rightarrow$ Best Actor
 - Items-Items: e.g. Finding Nemo $\leftarrow \rightarrow$ Finding Dory

Proposed Approach

- Given that a user has liked specific movies and entities in the past, rank new movies (e.g. The Bridge of Spies) for that user using ProPPR
- ProPPR: **Pro**gramming with **P**ersonalized **P**age**R**ank
 - First order probabilistic logic system
 - Accepts rules and queries in a language similar to stochastic logic programs
 - Inference using a variant of personalized PageRank
 - During training, can learn weights of edges for performing the walk

- The search space is a graph |
- Score for a query soln (e.g., "Z=sport" for "about(a,Z)") depends on random walk
 probability of reaching a

hode

Proposed Approach Step 1: SeedSet

■ Step 1: Generate a seedset

```
seedset(U,E) := reviewed(U,M), link(M,X), \\ related(X,E), isEntity(E).
related(X,X) := .
related(X,E) := link(X,Z), related(Z,E).
```

■ E.g. seedset(Alice,E) \rightarrow E = TomHanks, StevenSpielberg

Approach 1: EntitySim

```
reviewed(U,M):-seedset(U,E1), likesEntity(U,E1), related(E1,E2), link(E2,M), isApplicable(U,M).
```

likesEntity $(U,E) := \{ f(U,E) \}.$


```
reviewed(Alice, M)
                             seedset(Alice, E),
                            likesEntity(Alice, E),
                          related(E, X), link(X, M),
                           isApplicable(Alice, M)
            E = TomHanks
                                                     E = SSpielberg
     seedset(Alice, TomHanks),
                                            seedset(Alice, SSpielberg),
    likesEntity(Alice, TomHanks),
                                           likesEntity(Alice, SSpielberg),
  related(TomHanks, X), link(X, M),
                                         related(SSpielberg, X), link(X, M),
                                                isApplicable(Alice, M)
        isApplicable(Alice, M)
     wt = I(Alice, Tom|Hanks)
                                      wt = I(Alice, SSpielberg)
      X = TomHanks
                                      X = SSpielberg
          link(TomHanks, M),
                                                 link(SSpielberg, M),
        isApplicable(Alice, M)
                                                isApplicable(Alice, M)
M = CaptainPhillips
                   M = BridgeOfSpies
                                                     M = BridgeOfSpies
  CaptainPhillips
                                       BridgeOfSpies
```


Approach 2: TypeSim

- **Types** of entities/nodes available
- E.g. Tom Hanks is an Actor, Pittsburgh is a City
- Additional Rule A: Learn the popularity/predictability of each type and entity
- E.g. predictive power of Actor > Country, Tom Hanks > lesser known
- Additional Rule B: Learn Type Associations general traversal probability between types
- E.g. Actor \rightarrow Movie \rightarrow Country \rightarrow Movie

 $typeSim(S,T) := \{ t(S,T) \}.$

Approach 2: TypeSim - RuleSet

```
reviewed(U,M):-seedset(U,E), likesEntity(U,E),
                popularEntity(E), related(E,X), link(X,M),
                 isApplicable(U,M).
popularEntity(E):-entityOfType(E,T), popularType(T) { p(E)}.
popularType(T) := \{ p(T) \}.
related(X,X):.
related(X,E) := link(X,Z), typeAssoc(X,Z), related(Z,E).
typeAssoc(X,Z) := entityOfType(X,S), entityOfType(Z,T),
                 typeSim(S,T).
```


Approach 3: GraphLF

- Latent Factor models successful in Collaborative Filtering
- Map users and items to the same feature space of hidden dimensions
- E.g. comedy vs. drama, amount of action, depth of character development, un-interpretable
- Each factor measures user's preference for movies that are high in that factor
- Predict based on rating data; no user/item information required

Approach 3: GraphLF - RuleSet

```
reviewed(U,M) := related(U,E), related(E,X), link(X,M),
                 isApplicable(U,M).
related(U,E) := seedset(U,E), simLF(U,E).
related(X,X): .- .
related(X,Y) := link(X, Z), simLF(X, Z), related(Z, Y).
simLF(X, Y) := isDim(D), val(X, D), val(Y, D).
val(X,D) := \{ v(X,D) \}.
```

Model Complexity

- Model Complexity = number of parameters learned
- EntitySim: O(n), n = #users
 - Because of constant seedset size
- TypeSim: $O(n + e + t^2)$, e = #entities, t = #types
 - t²: Because of type association between pairs of types
- GraphLF: O(n + e + m), m = #items
- Typically, m >> t
- EnitySim < TypeSim < GraphLF

Recommendation using KG: State-of-the-art method

- HeteRec_p [X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han. Personalized entity recommendation: A heterogeneous information network approach. In Proc. 7th ACM Int. Conf. on Web Search and Data Mining, WSDM '14]
- Main Idea: Find user-item preferences when the rating is not explicitly available, using **Metapaths**
 - Metapath: a path on the TYPE / schema of the KG.
 - E.g. User \rightarrow Movie \rightarrow Actor \rightarrow Movie
- Drawbacks:
 - Choose & tune hyper parameters: (a) Metapaths (b) number of clusters
 - Requires a rich KB with types for entities and links.

Experiments

Dataset	#Users	#Items	#Reviews
Yelp (2013)	43,873	11,537	229,907
IM100K-UIUC	943	1360	89,626
IM100K*	940	1566	93,948

- Timestamp sort and 80% earlier → Training, 20% newer → Test
- Content in Yelp: location city/state, type of business (restaurant, hospital, shopping), cuisine (american, sushi, indian), ...
- Content in IM100K: actor, director, studio, genre, country, language

Additional Baselines

- Popularity: Recommend the popular items to users.
- Co-Click: Estimate conditional probabilities between items and recommend items with an aggregated conditional probability calculated using the training data of the target user.
- NMF: Non-negative matrix factorization without using the paths
- Hybrid-SVM: Use SVM-based ranking function to learn a global recommendation model with user implicit feedback and metapaths based similarity measures
- Naïve bayes uses the content of items as features

+ Yelp: Performance Comparison

Method	P@1	MRR
Popularity	0.0074	0.0228
Co-Click	0.0147	0.0371
NMF	0.0162	0.0382
Hybrid SVM	0.0122	0.0337
HeteRec_p	0.0213	0.0513
EntitySim	0.0221	0.0641
TypeSim	0.0444	0.0973 [↑ 89%]
GraphLF	0.0482 [126%]	0.0966
NB	0	0.0087

- Using Type info & Latent Factorization gives improvements
- TypeSim vs. GraphLF: No clear winner

NB: Using content without graph – poor performance

(on IM100K-UIUC)

+ IM100K: Performance Comparison

Method	P@1	MRR
Popularity	0.0731	0.1923
Co-Click	0.0668	0.2041
NMF	0.2064	0.4938
Hybrid SVM	0.2087	0.4493
HeteRec_p	0.2121	0.5530
EntitySim	0.3485	0.5010
TypeSim	0.353 [↑ 66%]	0.5053
GraphLF	0.3248	0.4852 [↓ −12%]
NB	0.312	0.4069

- Slightly different datasets: Methods cannot be compared directly appear to be comparable
- EntitySim & NB: good performance

Conjecture: simple methods suffice with enough training examples per user, enough content per item

Rating Matrix Density

- Density = #Ratings / (#Users x #Items)
- Density of Yelp = 0.00077
- Density of IM100K* = 0.06382
 - (82 times more dense)

3

2

Movie B

4

5

Users

User 1

User 2

User 3

User 4

User 5

Movie A

Movie C

3

2

Movie D

22

- (b) IMDb Feedback Distribu- (c) Yelp Feedback Distribution
- Study the performance as density increases:
 - Create datasets by filtering out users and businesses with lesser than k ratings, where k = 10, 25, 50, 100

Performance vs. Density

Conclusions

- Proposed 3 methods that use KGs for making personalized recommendations
 - EntitySim: Uses the graph links
 - TypeSim: Uses additional type information
 - GraphLF: Combines Latent Factorization with Graphs
- Our methods gave large improvements compared to the state-ofthe art method that uses knowledge graphs
- Studied the behavior of the methods as rating matrix density increased:
 - Type info became redundant
 - In sparse datasets, KG is an important source of information, especially at low densities.

Thank You!

