AL ACT MIL TON AND A A A A A A A A A A A A A A A A A
一、单项选择题(每小题3分,共15分)
1、对于任意随机变量 X,Y ,若 $E(XY) = E(X)E(Y)$,则 (
$A_{Y} D(X+Y) = D(X) + D(Y); \qquad B_{Y} D(XY) = D(X)D(Y);$
C、 X,Y 一定独立; D 、 X,Y 一定不独立。
2、设 $X \sim N(\mu, \sigma^2)$,且 $P\{X > 150\} = P\{X < 250\}$,则 $\mu =$ 。
A. 200; B. 250; C. 300; D. 350.
3、设 $E(X)=12$, $D(X)=8$,下列分布中哪一个满足该条件()。
A、区间为 $(0,24)$ 的均匀分布; B、参数为 $n=36,p=\frac{1}{3}$ 的二项分布;
C 、参数为 $\lambda=12$ 的泊松分布; D 、参数为 $\theta=12$ 的指数分布。
4、设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 μ 已知, σ^2 未知,则下列
是统计量的是()。
A, $\min_{1 \le i \le n} X_i$; B, $\overline{X} - \mu$; C, $\sum_{i=1}^n \frac{X_i}{6}$; D, $X_n - X_1$ o
5、在假设检验中,显著性水平α的意义是()。
$A \times P\{拒绝H_0 H_0$ 不成立 $\} \le \alpha$; $B \times P\{$ 接受 $H_0 H_0$ 不成立 $\} \le \alpha$;
C 、 $P{拒绝H_0 \mid H_0成立} \leq \alpha; D、P{接受H_0 \mid H_0成立} \leq \alpha。$
二、填空题(每小题 3 分,共 15 分)
6、将两封信随机地投入四个邮箱中,则未向前两个邮筒投信的概率为。
7、设离散型随机变量 X 的分布律为 $P\{X=k\}=5A\left(\frac{1}{2}\right)^k, k=1,2,\cdots$,则 $A=$
8、设随机变量 X 服从参数为 λ 的泊松分布,且已知 $E[(X-1)(X-2)]=1$,则 $\lambda=$
9、未知参数 θ 的置信水平为 $1-\alpha$ 的置信区间的定义是:
10、设随机变量 X 和 Y 的相关系数为 0.9, 若 Z = X - 0.4, 求 Y 与 Z 的相关系数为。

→ 计算题(共70分)

(11、人10分)在一批同一规格的产品中、甲、乙两厂生产的产品分别占 30%和 70%,合 (格率分别为 98%, 90%。今有一顾客买了一件产品,(1) 求该顾客买到的产品为次品的 概率: (2) 若已知该顾客买到的产品为次品,求这件产品是甲厂生产的概率。

- 12、(12 分) 设二维随机向量(X,Y)的联合概率密度函数为 $f(x,y) = \begin{cases} ce^{-x}, & 0 < y < x \\ 0, &$ 其它
 - (1) 确定系数c;
 - (2) 判断 X 和 Y 是否相互独立,并说明理由;
 - (3) 求E(Y)。

13、(10分)设二维随机变量(X,Y)的联合分布律为

X Y	-1	_ 0	1
0 -	0.07	0, 18	0. 15
1	0.08	0.32	0.20

试求 X^2 与 Y^2 的协方差 $Cov(X^2, Y^2)$

14. (6 分) 设 X_1, \dots, X_5 是来自总体N(0,1) 的样本, $Y = \frac{c(X_1 + X_2 + X_3)}{(X_4^2 + X_5^2)^{1/2}}$ 。试确定常数 c,

使得Y服从t分布。

15、(12分)设X1,…,X,是来自概率密度为

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & \text{#Ξ} \end{cases}$$

的总体X的样本,试分别求出未知参数 θ 的矩估计量和最大似然估计量。

(10 分) 设 X_1, \dots, X_n 是来自总体X的样本,且 $E(X) = \mu, D(X) = \sigma^2$ 。现假定n > 3,

- (1) 试证明: $\hat{\mu}_1 = \overline{X}, \hat{\mu}_2 = \frac{1}{4} X_1 + \frac{1}{2} X_2 + \frac{1}{4} X_3, \hat{\mu}_3 = \frac{1}{3} X_1 + \frac{2}{3} X_2$ 都是 μ 的无偏估计。
- (2) 在上述的无偏估计中,指出哪一个较为有效。

17、(10 分) 某种导线,要求其电阻的方差不得大于 0.25。 某日从一批导线中随机抽取 9 个,测量并计算得: $\bar{x}=80$, $s^2=0.49$ 。假设导线电阻 ξ 服从正态分布 $N(\mu,\sigma^2)$, μ,σ^2 未知,试问这批导线电阻方差是否显著偏大?(取显著性水平 $\alpha=0.05$)

查表数据:

$$t_{0.05}(8) = 1.8595$$
, $t_{0.05}(9) = 1.8331$, $t_{0.025}(8) = 2.306$, $t_{0.025}(9) = 2.2622$, $\chi^2_{0.05}(8) = 15.507$, $\chi^2_{0.05}(9) = 16.919$, $\chi^2_{0.025}(8) = 17.534$, $\chi^2_{0.025}(9) = 19.022$, $\chi^2_{0.95}(8) = 2.733$, $\chi^2_{0.95}(9) = 3.325$, $\chi^2_{0.975}(8) = 2.18$, $\chi^2_{0.975}(9) = 2.7$.