

Universidad Nacional Autónoma de Honduras

Facultad de Ciencias Escuela de Física

Adaptado por: Arnold Chávez

FS-210 Biofísica

LABORATORIO #2 Sonido

Instructor (a):		
Nombre:	N° Cuenta:	
Fecha:	Sección:	

1. OBJETIVOS

- 1. Conocer y manejar los conceptos básicos de ruido.
- 2. Aprender a medir con un sonómetro.
- 3. Conocer los efectos ocasionados por niveles de ruido inadecuados en el ser humano.

2. MARCO TEÓRICO

El sonido está asociado con nuestro sentido auditivo y, por lo tanto, con la fisiología del oído y la psicología del cerebro que interpreta las sensaciones que llegan a los oídos. El término sonido se refiere también a la sensación física que estimula nuestros oídos, es decir, ondas longitudinales.

Figura 1: Anatomía del oído humano

El Sonido es una onda longitudinal donde la partículas que conforman el medio material por donde viajan vibran a lo largo de la dirección de propagación de la onda, dicho medio material puede ser un líquido, o de un sólido (aire, agua, paredes, etc.).

Por el contrario, **el ruido** es una superposición (mezcla) compleja de sonidos de diferentes frecuencias y que por lo generalmente se termina definiendo como un <u>sonido no deseado</u>.

Tipo de Ruido	Característica	Ejemplo
Continuo	La presión sonora es constante durante la observación	Un motor eléctrico
Intermitente	Caídas bruscas de forma intermitente	Encender un taladro
De impacto	Elevación brusca de ruido en un tiempo dado	Cerrar una puerta

Tabla 1: Tipos de ruidos y su característica

El oído humano puede percibir un sonido con una intensidad mínima de $I_o = 1 \times 10^{-12} W/m^2$ esta intensidad se le llama **umbral de audición**

Por arriba de 20~kHz se tiene la región ultrasónica. Las ondas ultrasónicas pueden ser generadas por vibraciones de alta frecuencia en cristales.

Figura 2: El ultrasonido convierten oscilaciones eléctricas en vibraciones mecánicas y viceversa, se transmite a través de los tejidos y se refleja por las estructuras internas. Las ondas reflejadas son detectadas por los transductores, y sus señales se emplean para construir una imagen de un feto.

Puesto que el oído es sensible a una amplia gama de intensidades, suele usarse una escala de **intensidad logarítmica**. El nivel de intensidad de sonido β medida en decibelios (dB) de una onda sonora está definido por la ecuación

$$\beta = 10\log(I/I_o) \tag{1}$$

lo cual, al despejar obtenemos que $I = I_o \times 10^{\beta/10}$ es la **intensidad medida**

3. PROCEDIMIENTO EXPERIMENTAL

- 1. Ubicar el sonómetro dentro del área de trabajo, colocando el micrófono del sonómetro en dirección hacia la fuente de sonido. La separación debe ser de 0.50 m a dicha fuente.
- 2. Encienda el sonómetro girando la perilla a una escala dada
- 3. Encienda la fuente de sonido y registre el nivel de intensidad hasta que el valor se estabilice.
- 4. Realice tres mediciones más y registre los datos en la tabla 2

N° de mediciones	Nivel de Intensidad (dB)
1	
2	
3	
4	

Tabla 2: Nivel de intensidad Aparato 1

5. Repita los pasos 1,2,3 y 4 para el aparato 2 y registre los datos en la tabla 3

N° de mediciones	Nivel de Intensidad (dB)
1	
2	
3	
4	

Tabla 3: Nivel de intensidad Aparato 2

6. Repita los pasos 1,2,3 y 4 para el aparato 3 y registre los datos en la tabla 4

N° de mediciones	Nivel de Intensidad (dB)
1	
2	
3	
4	

Tabla 4: Nivel de intensidad Aparato 3

7. Complete la tabla 5 anotando las mediciones en decibeles (dB) emitidos por uno de los aparatos (a criterio del instructor (a)), el micrófono debe colocarlo a las distancias mostradas en el cuadro.

Distancia con la fuente sonora (m)	Nivel de Intensidad (dB)	Intensidad (W/m^2)
0.50		
1.00		
1.50		
2.00		

Tabla 5: Datos del nivel de intensidad e Intensidad

Espacio para cálculos de la Intensidad

4. TRATAMIENTO DE DATOS EXPERIMENTALES

Calcule el nivel de intensidad promedio, para las mediciones registradas en las Tablas 2,3 y
4, registre los datos en la tabla 6

Espacio para cálculos del promedio

N° de Tabla	Promedio
2	
3	
4	

Tabla 6: Promedio de las mediciones

■ Con los datos de la tabla 5 realice un gráfico entre el nivel de intensidad en función de la intensidad; es decir, el eje y (vertical) son los niveles de intensidad (dB) y el eje x (horizontal) son las intensidades (W/m^2) .

5. CUESTIONARIO

1. Según lo realizado en la práctica de laboratorio ¿Qué sucede con la intensidad del sonido cuando nos alejamos de la fuente sonora?, ¿aumenta o disminuye? Explique.

2. Nombre algunos de los riesgos para la salud ocasionados por el ruido.

6. CONCLUSIONES

Redacte 2 conclusiones en base a sus resultados

7. REFERENCIAS

- Sears & Zemansky. Física Universitaria, Décimo Tercera Edición, Pearson, 2013. Capítulo 16: Sonido y Oído, Sección 1
- Wilson, J. D., Buffa, A. J., & Lou, B. Física para las ciencias de la salud., Pearson Educación, 2006. Capítulo 14: Sonido, Sección 1