

Estrategia incremental y notación asintótica

Alejandro Anzola Ávila 2024-2

Algoritmos y Estructuras de Datos - Grupo 4

Quiz

- 1. Dada una secuencia de entrada de n números $\langle a_1, a_2, \dots, a_n \rangle$, un algoritmo de ordenamiento produce ...
- 2. Describa las tres características que debe cumplir un invariante de ciclo
 - · Inicialización (Initialization)
 - Estabilidad (Maintenance)
 - Terminación (Termination)
- 3. Describa con sus palabras que es la notación asintótica, y describa Θ , O, Ω .

Problema de ordenamiento

Formulación

Ordenamiento

Entrada Una secuencia de n números $\langle a_1, a_2, \dots, a_n \rangle$ Salida Una permutación $\langle a'_1, a'_2, \dots, a'_n \rangle$, tal que $a'_1 \leq a'_2 \leq \dots \leq a'_n$

INSERTION SORT

Similar a como una persona organiza una mano de cartas.

Invariante

Los elementos antes del actual:

- · Son los originales
- · Pero ahora están ordenados

Invariante

- Son los originales
- · Pero ahora están ordenados

Este es el invariante de ciclo.

Características de un invariante

Los *invariantes de ciclo* nos ayudan a demostrar que un algoritmo es correcto.

Se deben demostrar tres cosas sobre un invariante de ciclo:

- 1. Iniciación: Es verdadero antes de la primera iteración.
- 2. Estabilidad: Es verdadero
 - · Antes de una iteración del ciclo
 - · Antes de empezar el siguiente ciclo.
- 3. **Terminación**: El ciclo termina, el invariante nos da una propiedad útil para demostrar que el algoritmo es *correcto*.

```
i: Posición actual
j:
```

```
 \begin{aligned} &\text{INSERTION-SORT}(A,n) \\ &1 & & \textbf{for } i = 2 \textbf{ to } n \\ &2 & & key = A[i] \\ &3 & & \textit{//} \textbf{ Insert } A[i] \textbf{ into the sorted subarray } A[1:i-1]. \\ &4 & & j = i-1 \\ &5 & & \textbf{while } j > 0 \textbf{ and } A[j] > key \\ &6 & & A[j+1] = A[j] \\ &7 & & j = j-1 \\ &8 & & A[j+1] = key \end{aligned}
```

i: Posición actualj: Posición del elemento a comparar y ordenar

Notación de Cormen

Los arreglos empiezan por 1, en Python por 0. aka 1-origin indexing ; 0-origin indexing

Iniciación

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

Invariante

 P_0 :

Iniciación

```
 \begin{aligned} &\text{INSERTION-SORT}(A,n) \\ &1 & \text{ for } i = 2 \text{ to } n \\ &2 & key = A[i] \\ &3 & \text{ // Insert } A[i] \text{ into the sorted subarray } A[1:i-1]. \\ &4 & j = i-1 \\ &5 & \text{ while } j > 0 \text{ and } A[j] > key \\ &6 & A[j+1] = A[j] \\ &7 & j = j-1 \\ &8 & A[j+1] = key \end{aligned}
```

Invariante

 P_0 : El subarreglo A[1:i-1] esta ordenado

Estabilidad

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

Invariante

 P_0 : El subarreglo A[1:i-1] esta ordenado

Terminación

```
 \begin{split} &\text{INSERTION-SORT}(A, n) \\ &1 \quad \text{for } i = 2 \text{ to } n \\ &2 \quad key = A[i] \\ &3 \quad \text{$/\!\!\!/} \text{ Insert } A[i] \text{ into the sorted subarray } A[1:i-1]. \\ &4 \quad j = i-1 \\ &5 \quad \text{while } j > 0 \text{ and } A[j] > key \\ &6 \quad A[j+1] = A[j] \\ &7 \quad j = j-1 \\ &8 \quad A[j+1] = key \end{split}
```

Invariante

 P_0 : El subarreglo A[1:i-1] esta ordenado

Estrategia incremental

Consiste en solucionar un problema de manera progresiva.

"INSERTION SORT usa el método incremental: para cada elemento A[i], insertarlo en su lugar apropiado en el subarreglo A[1:i], teniendo el subarreglo A[1:i-1] ya ordenado."

— Traducido de Cormen

Análisis

Recursos

En algoritmos, queremos saber como se hace uso de los recursos.

Recursos

En algoritmos, queremos saber como se hace uso de los recursos. Usualmente nos interesan:

- · Tiempo de ejecución
- · Espacio utilizado

Tiempo de ejecución

Usualmente estamos interesados en el tiempo de ejecución T. Este en función del tamaño de nuestra entrada n.

Tiempo de ejecución de Insertion Sort

IN	$ISERTION ext{-}SORT(A,n)$	cost	times
1	for $i = 2$ to n	c_1	n
2	key = A[i]	c_2	n-1
3	// Insert $A[i]$ into the sorted subarray $A[1:i-1]$.	0	n-1
4	j = i - 1	C_4	n-1
5	while $j > 0$ and $A[j] > key$	C_5	$\sum_{i=2}^{n} t_i$
6	A[j+1] = A[j]	c_6	$\sum_{i=2}^{n} (t_i - 1)$
7	j = j - 1	c_7	$\sum_{i=2}^{n} (t_i - 1)$
8	A[j+1] = key	c_8	$\overline{n-1}$

Tiempo de ejecución de Insertion Sort

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8(n-1)$$

$$t_i = 1 ; i = 2, 3, 4, \dots$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1)$$

=

=

=

$$\begin{split} t_i &= 1 \text{ ; } i = 2, 3, 4, \dots \\ T(n) &= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^n t_i + \frac{c_6 \sum_{i=2}^n (t_i - 1)}{1} \\ &+ c_7 \sum_{i=2}^n (t_i - 1) + c_8 (n-1) \\ &= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1) \\ &= \\ &= \end{split}$$

$$\begin{split} t_i &= 1 \text{ ; } i = 2, 3, 4, \dots \\ T(n) &= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^n t_i + c_6 \sum_{i=2}^n (t_i - 1) \\ &+ c_7 \sum_{i=2}^n (t_i - 1) + c_8 (n-1) \\ &= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1) \\ &= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8) \\ &= an - b \end{split}$$

Peor caso

$$\begin{split} t_i &= i \text{ ; } i = 2, 3, 4, \dots \\ T(n) &= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^n t_i + c_6 \sum_{i=2}^n (t_i - 1) \\ &+ c_7 \sum_{i=2}^n (t_i - 1) + c_8 (n-1) \\ &= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) \\ &+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1) \end{split}$$

$$\sum_{i=2}^{n} i = \sum_{i=1}^{n} i - 1 = \frac{n(n+1)}{2} - 1 \qquad \sum_{i=2}^{n} (i-1) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

Peor caso

$$\begin{split} t_i &= i \text{ ; } i = 2, 3, 4, \dots \\ T(n) &= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^n t_i + c_6 \sum_{i=2}^n (t_i - 1) \\ &+ c_7 \sum_{i=2}^n (t_i - 1) + c_8 (n-1) \\ &= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1 \right) \\ &+ c_6 \left(\frac{n(n-1)}{2} \right) + c_7 \left(\frac{n(n-1)}{2} \right) + c_8 (n-1) \\ &= \left(\frac{c_5 + c_6 + c_7}{2} \right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5 - c_6 - c_7}{2} + c_8 \right) n \\ &- (c_2 + c_4 + c_5 + c_8) \\ &= an^2 + bn - c \end{split}$$

$$\sum_{i=2}^{n} i = \sum_{i=1}^{n} i - 1 = \frac{n(n+1)}{2} - 1 \qquad \sum_{i=2}^{n} (i-1) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

$$t_i = 1$$
 ; $i = 2, 3, 4, \dots$

$$T(n) = an - b$$

Peor caso

$$t_i = i \; ; \; i = 2, 3, 4, \dots$$

$$T(n) = an^2 + bn - c$$

Análisis asintótico

La formula de tiempo de ejecución T(n) de INSERTION SORT:

$$T(n) = an^2 + bn - c$$

- · Es compleja
- · Comparar con otro algoritmo es difícil

Nos interesa una forma sencilla y versátil de distinguir si un algoritmo es mejor que otro.

Notación O (Big Oh)

Nos especifica un limite superior de una función f(n).

 $O(g(n))=\{f(n):$ existe una constante positiva c y n_0 tal que $0\leq f(n)\leq cg(n) \text{ para cualquier } n\geq n_0\}$

$$O(g(n))=\{f(n):$$
 existe una constante positiva c y n_0 tal que
$$0\leq f(n)\leq cg(n) \text{ para cualquier } n\geq n_0\}$$

$$\begin{array}{cccc} f(n) & \in O(g(n)) & \operatorname{Si/No} & c \\ \\ n & \in O(n) \end{array}$$

$$O(g(n))=\{f(n):$$
 existe una constante positiva c y n_0 tal que
$$0\leq f(n)\leq cg(n) \text{ para cualquier } n\geq n_0\}$$

$$\begin{array}{ccccc} f(n) & \in O(g(n)) & \operatorname{Si/No} & c \\ \\ n & \in O(n) & \operatorname{Si} & c \geq 1 \\ \\ n^2 & \in O(n) \end{array}$$

$$O(g(n))=\{f(n):$$
 existe una constante positiva c y n_0 tal que
$$0\leq f(n)\leq cg(n) \text{ para cualquier } n\geq n_0\}$$

f(n)	$\in O(g(n))$	Si/No	c
\overline{n}	$\in O(n)$	Si	$c \ge 1$
n^2	$\in O(n)$	No	No existe c que cumpla esta condición
n	$\in O(n^2)$		

$$O(g(n))=\{f(n):$$
 existe una constante positiva c y n_0 tal que
$$0\leq f(n)\leq cg(n) \text{ para cualquier } n\geq n_0\}$$

f(n)	$\in O(g(n))$	Si/No	c
n	$\in O(n)$	Si	$c \ge 1$
n^2	$\in O(n)$	No	No existe c que cumpla esta condición
n	$\in O(n^2)$	Si	$c \ge 1$

Todos estos casos tienen $n_0 = 1$.

Abuso de notación i

$$f(n) = O(g(n))$$

$$\updownarrow$$

$$f(n) \in O(g(n))$$

Abuso de notación ii

$$2n^2 + O(n)$$

$$\updownarrow$$

$$2n^2 + f(n), f(n) \in O(n)$$

Big Oh para Insertion Sort

$$T(n) = an^{2} + bn + c$$

$$= O(an^{2}) + O(bn) + O(c)$$

$$= O(n^{2}) + O(n) + O(1)$$

$$= O(n^{2})$$

Notación Ω

Nos especifica un limite inferior de una función f(n).

 $\Omega(g(n))=\{f(n):$ existe una constante positiva c y n_0 tal que $0\leq cg(n)\leq f(n) \text{ para cualquier } n\geq n_0\}$

Notación ⊖

Nos especifica un limite estricto de una función f(n).

 $\Theta(g(n))=\{f(n): \text{existen constantes positivas } c_1,c_2 \text{ y } n_0 \text{ tales que} \\ 0\leq c_1g(n)\leq f(n)\leq c_2g(n) \text{ para cualquier } n\geq n_0\}$

Tasas de crecimiento

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01~\mu {\rm s}$	$0.033~\mu s$	$0.1~\mu s$	$1 \mu s$	3.63 ms
20	$0.004~\mu { m s}$	$0.02~\mu \mathrm{s}$	$0.086~\mu { m s}$	$0.4~\mu s$	1 ms	77.1 years
30	$0.005 \ \mu s$	$0.03~\mu s$	$0.147~\mu { m s}$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005 \ \mu s$	$0.04~\mu \mathrm{s}$	$0.213~\mu { m s}$	$1.6~\mu s$	18.3 min	
50	$0.006~\mu s$	$0.05~\mu \mathrm{s}$	$0.282~\mu \mathrm{s}$	$2.5~\mu \mathrm{s}$	13 days	
100	$0.007~\mu s$	$0.1~\mu \mathrm{s}$	$0.644~\mu { m s}$	$10~\mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010~\mu s$	$1.00~\mu s$	$9.966~\mu s$	1 ms		
10,000	$0.013~\mu s$	$10~\mu s$	$130~\mu s$	100 ms		
100,000	$0.017~\mu s$	$0.10~\mathrm{ms}$	$1.67~\mathrm{ms}$	10 sec		
1,000,000	$0.020~\mu { m s}$	1 ms	$19.93~\mathrm{ms}$	16.7 min		
10,000,000	$0.023~\mu s$	$0.01 \mathrm{sec}$	$0.23 \sec$	1.16 days		
100,000,000	$0.027~\mu s$	$0.10 \sec$	$2.66 \sec$	115.7 days		
1,000,000,000	$0.030~\mu { m s}$	1 sec	$29.90 \sec$	31.7 years		

Ejercicios

Ejercicios

 Ordenar las siguientes funciones de menor a mayor orden

 Establezca una invariante de ciclo, y use sus propiedades de iniciación, estabilidad y terminación para mostrar que el siguiente algoritmo retorna la suma de los n números de A[1:n].

```
\begin{aligned} & \text{SUM-ARRAY}(A,n) \\ & 1 \quad sum = 0 \\ & 2 \quad \text{for } i = 1 \text{ to } n \\ & 3 \quad \quad sum = sum + A[i] \\ & 4 \quad \text{return } sum \end{aligned}
```

 Implementar el algoritmo de INSERTION SORT para ordenar en orden descendente en vez de ascendente y establezca una nueva invariante.

4. ¿Es
$$2^{n+1} = O(2^n)$$
? ¿Es $2^{2n} = O(2^n)$?

5. ¿Es
$$2^{n+1} = \Omega(2^n)$$
? ¿Es $2^{n+1} = \Theta(2^n)$?

Refuerzo: Recursión

Modele una función f recursiva que

1. Computa la suma

$$f(n) = 1 + 2 + \cdots + n$$

- 2. Hallé el elemento mínimo en la secuencia $\langle a_1, \dots, a_n \rangle$
- 3. Halle la suma de la secuencia $\langle a_1, \dots, a_n
 angle$
- Determine si una secuencia de elementos es un palíndromo, de serlo debe retornar 1, de lo contrario 0.
- Determine cuales son los divisores de un número. La salida sería una lista.
- Halle la suma de los divisores de un número n.
- * Determine si un número n es perfecto. Retorne 1 si lo es, de lo contrario 0. Un número perfecto es un número que es igual a la suma de sus divisores. Los primeros tres números perfectos son:

$$6 = 1 + 2 + 3$$
$$28 = 1 + 2 + 4 + 7 + 14$$
$$496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248$$