Нормальні підгрупи

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

5 жовтня 2022

FACULTY OF MECHANICS AND MATHEMATICS

1/7

Означення

Нехай G — група. Підгрупа H групи G називається *нормальною*, якщо gH = Hg для всіх $g \in G$.

Позначається $H \triangleleft G$.

Приклади

- \bigcirc {e} \triangleleft G, $G \triangleleft$ G.
- Всі підгрупи абелевої групи нормальні.
- \bigcirc $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R}).$
- \bigcirc $Z(G) = \{a \in G \mid ag = ga \forall g \in G\}$ центр групи.

Критерій нормальної підгрупи

Твердження

Підгрупа H групи G є нормальною $\Leftrightarrow g^{-1}Hg = H$ для всіх $g \in G$.

Доведення.

$$H \lhd G \Longleftrightarrow gH = Hg \Longleftrightarrow g^{-1}gH = g^{-1}Hg \Longleftrightarrow H = g^{-1}Hg.$$

Приклади

- $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R}),$ бо для довільних $A \in SL_n(\mathbb{R}), B \in GL_n(\mathbb{R}):$ $\det(B^{-1}AB) = \det B^{-1} \det A \det B = 1.$
- ② $\mathcal{A}_n \triangleleft \mathcal{S}_n$, бо для довільних $\sigma \in \mathcal{S}_n$, $\tau \in \mathcal{A}_n$ підстановка $\sigma^{-1}\tau\sigma$ парна.

Твердження

Підгрупа H індексу 2 є нормальною підгрупою групи G.

Доведення.

$$G = H + gH = H + Hg \Rightarrow gH = Hg$$
.

Приклад

Твердження

Перетин нормальних підгруп є нормальною підгрупою.

Прості групи

Означення

Група називається простою, якщо вона не містить нетривіальних нормальних підгруп.

Приклад

Група \mathcal{A}_n , $n \geq 5$, — проста.

7/7