Derin Öğrenme

Convolutional Neural Networks

Emir Öztürk

Görüntü tanıma - işleme

Wait, I know you

- Farklı alanlar
 - Sağlık
 - Otonom Uygulamalar
 - Güvenlik
- Yalnızca nesnelerin tanınması değil
 - Lokasyon belirleme
 - Hareket belirleme

Görüntü Sınıflandırma

Getting Classy

- ImageNet Challenge
- Verinin çok ve erişilebilir olması
- Görüntü sınıflandırma problemi
- Eski yöntemlerde özellik çıkarımı ve etiketleme
 - Kural tabanlı

Eski yöntemler

Know your backstory

Resimlerin saklanması

There is spoon

- İki boyutlu
- Her renk için bir kanal
- Opacity için bir kanal

Sinir ağına resimlerin verilmesi

You have to adapt

- Sinir ağına vektör verilmeli
- Resimler matris olarak saklanır
- Matristen vektöre dönüşüm yöntemleri

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

Matristen vektöre dönüşüm

The easiest way is not the best way

- Satır sıralı almak
- Problemler
 - Lokalite
 - Translation
 - Shifting

Tüm özelliklerin dense kullanılması

The hardest way is not also

- Lokalliğin kaybına sebep olur
- İlişkisiz verinin birbirine bağlanması
- Gereksiz karmaşıklık artışı

Lokalitenin sağlanması

Know your neighbours

- Belirli tekrarlı grup özelliklerini tanımlamak
- Bu özelliklerin birleştirilmesi ile daha soyut özelliklere ulaşım
- Özelliklerin manual olarak elde edilmesine alternatif

Lokalitenin sağlanması

Kernel error

- Gruplar arası özellik çıkarımı
 - Farklı özelliklerin lokal olarak belirlenmesi
- Grupların boyutu
- Aranan özelliklerin seçimi
- Kernel

Lokalitenin sağlanması

Cnn Ft. Recognition

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

Kernel

We have to go deeper

- Farklı özellikler çıkartan farklı kernel'lar
- Her kernel'dan elde edilen farklı feature map
- Çıktı boyutu kernel sayısına göre değişir
- (En-KernelBoyutu+1)*(boy-KernelBoyutu +1)*kernel sayısı

1,	1_×0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Kernel kullanımı

Not losing you again

- Eğer çıktı boyutu resim boyutu ile aynı olsun istenirse padding
- Değerlerin 0 verilmesi özellik yakalama açısından problemli olabilir

Kaynak kısıtı

That is what engineering is

- Feature map küçültmek için
 - Kaydırma büyüklüğünü arttırmak
 - Kernel boyutunu arttırmak
 - Dilated convolution

Kaynak kısıtı - Kaydırma boyutunu arttırmak Speeding up

- Gruplar içerisindeki özelliklerin tanınması aynı şekilde
- Atlama yapıldığı için bilgi kaybı

Kaynak kısıtı - Kernel boyutunu arttırmak

The big picture

- Daha büyük alanlar alındığı için alanlar arası ilişkisellik problemi
- Kernel'lar için işlem karmaşıklığı artar
- Daha küçük bir feature map

Kaynak kısıtı - Dilated convolution

Feeling complicated

- Kernel içerisinden yalnızca belirli noktaları alma
- Pencere kaydırma ile olan kaybı azaltmak
- Daha küçük bir feature map

İki boyutlu - üç boyutlu resim

Why does it always have to be harder

- Önceki örnekler 2d resimler üzerine
- 3 boyut olduğunda her kanal farklı birer matris
- 3 boyuttan ikiye düşüş
 - Grayscale çalışmak
 - Her kanalın farklı ağırlıklar verilerek tek bir kernel ile kullanılması
- Depthwise convolution

Pooling

Not the pool you think of

- Veri boyutunun küçültülmesi
- Aranan özelliklerde temsilci seçilmesi
 - Min
 - Avg
 - Max

En temel CNN

Do you remember the shape

Example 1

LeNet-5

Example 2

AlexNet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Example 3

GoogLeNet

Rambo 4

Resnet

There is no end to this

DenseNet

Are you serious?

AmoebaNet

Figure 5: AmoebaNet-A architecture. The overall model [54] (LEFT) and the AmoebaNet-A normal cell (MIDDLE) and reduction cell (RIGHT).

CNN'in öğrenme çıktıları

We have seen it before

Figures from Zeiler et al. (2014)

Object Detection - RCNN

It's getting late

Object Detection - Mask R-CNN

But we are finishing

- Daha keskin konum tespiti
- Konum ve tanıma işini yapan iki NN

Tips and tricks

That time of the day

- Her layer lineer classifier olarak davranır.
- Model derinleştirildikçe iyi olma garantisi yoktur.
- Başlangıç değerleri uniform ya da çok küçük seçilmemelidir
 - Exploding Vanishing gradients
- Normalizasyon
- Batch normalization
 - Her zaman iyi sonuç verme garantisi bulunmaz

Tips and tricks

And another

- Bir kernel'ın birden fazla kanal özelliğini bir fonksiyonda öğrenmesi karmaşıklığı arttırabilir
- Azaltmak için depthwise convolution
 - Her kanala ayrı özellik çıkarımı
- Kanalları öncelikle arttırıp depthwise convolution kullanmak
 - SVM benzeri