§ 0.1 Metric Spaces

§§ 0.1.1 Topology

Definition 0.1.1 (Metric Space). Let X be a non-empty set equipped with an application d, defined as follows

$$d: X \times X \longrightarrow \mathbb{F}$$

$$(x,y) \to d(x,y)$$
(1)

Where \mathbb{F} is an ordered field.

The couple (X, d) is said to be a *metric space*, if and only if $\forall x, y, z \in X$ the application d satisfies the following properties

- 1. $d(x, y) \ge 0$
- 2. d(x,x) = 0
- 3. d(x, y) = d(y, x)
- 4. $d(x,y) \le d(x,z) + d(z,y)$

Definition 0.1.2 (Ball). Let (X, d) be a metric space. We then define the open ball of radius r, centered in x in X (B_r^X) , and the closed ball of radius r centered in x $(\overline{B_r^X})$ as follows

$$B_r^X(x) := \{ u \in X | d(u, x) < r \}$$

$$\overline{B_r^X}(x) := \{ u \in X | d(u, x) \le r \}$$
(2)

When there won't be doubts on on where the ball is defined, the superscript indicating the set of reference will be omitted.

We're now ready to define the topology on a metric space

Definition 0.1.3 (Open Set). Let (X,d) be a metric space, and $A \subseteq X$ a subset. A is said to be an *open set* if and only if

$$\forall x \in X \ \exists B_r^X(x) \subset A \tag{3}$$

Definition 0.1.4 (Complementary Set). Let A be a generic set, then the set A^c is defined as follows

$$A^{c} := \{ a \notin A \} \tag{4}$$

This set is said to be the *complementary set* of A.

It's also obvious that $A \cap A^{c} = \{\}$

Definition 0.1.5 (Closed Set). Alternatively to the notion of open set, we can say that $E \subseteq X$ is a *closed set*, if and only if

$$\forall x \in E^{c} \cap X \ \exists B_{r}^{X}(x) \subset E^{c} \cap X \tag{5}$$

Remark. A set isn't necessarily open nor closed!

Proposition 1. 1. The set $B_r^X(x)$ is open

2. The set $\overline{B_r^X}(x)$ is closed

Proof. Let $A = B_r^X(x)$. If A is open, we have therefore, applying the definition of open set, that

$$\forall x \in A \ \exists \epsilon > 0 : B_{\epsilon}^{X}(x) \subset A$$

So

$$x_0 \in A \implies d(x, x_0) < r$$

 $\therefore \epsilon = r - d(x, x_0) > 0$

Then, by definition of open ball we have

$$y \in B_{\epsilon}^{X}(x) \implies d(x,y) < \epsilon$$

Then, we can say that

$$d(y, x_0) \le d(y, x) + d(x, x_0) < \epsilon + d(x, x_0) = r$$

$$\therefore y \in B_{\epsilon}^X(x) \implies y \in B_r^X(x_0) \subset A$$

The demonstration of the second point is exactly the same, whereby we take E as our closed ball and $A = E^{c}$

Proposition 2. Let (X, d)

- 1. The sets $\{\}, X$ are open
- 2. The sets $\{\}, X$ are closed
- 3. If $\{A_i\}_{i=1}^n$ is a collection of open sets, then $A = \bigcap_{i=1}^n A_i$ is open
- 4. If $\{C_i\}_{i=1}^n$ is a collection of closed sets, then $C = \bigcup_{i=1}^n C_i$ is closed
- 5. Let $I \subset \mathbb{N}$ be an index set, then
 - (a) If $\{A_{\alpha}\}_{{\alpha}\in I}$ is a collection of open sets, then $B=\bigcup_{{\alpha}\in I}A_{\alpha}$ is open
 - (b) If $\{C_{\alpha}\}_{{\alpha}\in I}$ is a collection of closed sets, then $D=\bigcap_{{\alpha}\in I}C_{\alpha}$ is closed

Proof. The first two statements are of easy proof. Let $B_{\epsilon}^X \subset \{\}$. This means that B_{ϵ}^X is empty and therefore $B_{\epsilon}^X = \{\}$, which makes it open by definition. Therefore we have that $\{\}^c = X$, and X must be closed, but if we reason a bit, we can say that $\forall x \in X \ B_{\epsilon}^X(x) \subset X$, which means that X is open, thus $X^c = \{\}$ must be closed.

Since we gave a proof for $\{\}$ and X being open, we have that these two sets are both open and closed. These two sets are said to be *clopen*.

For the other statements we use the De Morgan laws on set calculus, therefore we have

$$x \in \bigcap_{i=1}^{n} A_i \implies x \in A_i$$
$$\therefore \exists \epsilon_i : B_{\epsilon_i}^X(x) \subset A_i$$

Taking $\epsilon = \min_{i \in I} \epsilon_i$ we have

$$B_{\epsilon}^{X}(x) \subset B_{\epsilon}^{X}(x) \implies B_{\epsilon}^{X}(x) \subset \bigcap_{i=1}^{n} A_{i} = A$$

And A is open

If we let $C = A^{c}$ we have that

$$C = A^{c} = \left(\bigcap_{i=1}^{n} A_{i}\right)^{c} = \bigcup_{i=1}^{n} A_{i}^{c}$$

 $\therefore C$ is closed

For the last two we proceed as follows

$$x \in A_{\alpha} \implies \exists \alpha_0 \in I : x \in A_{\alpha_0}$$

$$\therefore \exists \epsilon > 0 : B_{\epsilon}^X(x) \subset A_{\alpha_0} \subset \bigcup_{\alpha \in I} = B$$

For the last one, we use the De Morgan laws and the proposition is demonstrated

Definition 0.1.6 (Internal Points, Closure, Border). Let (X, d) be a metric space and $A \subset X$ a subset.

We define the following sets from A

- 1. $A^{\circ} = \bigcup_{\alpha \in I} G_{\alpha}$ is the set of internal points of A, where I is an index set and $G_{\alpha} \subset A$ are open
- 2. $\overline{A} = \bigcap_{\beta \in J} F_{\beta}$ is the closure of A, where J is another index set and $F_{\beta} \subset A$ are closed
- 3. $\partial A = \overline{A} \setminus A^{\circ} = \overline{A} \cup (A^{\circ})^{\circ}$ is the border of A

Proposition 3. 1. A is an open set iff $A = A^{\circ}$

- 2. A is closed iff $A = \overline{A}$
- 3. $A^{\circ} = \overline{(A^{\circ})}^{\circ}$
- 4. $\overline{A} = \left[\left(A^{c} \right)^{\circ} \right]^{c}$
- 5. $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
- 6. $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof. Let $\mathcal{O}(A)$ be a collection of open sets, such that $\forall G \in \mathcal{O}(A) \implies G \subset A$, then

$$A = A^{\circ} \implies A = \bigcup_{G \in \mathcal{O}(A)} G$$

Therefore, being a union of a finite number of open sets, A is open.

For the same reason as before and the previous proposition, we have that \overline{A} is closed For the third proposition, we have

$$\left(\overline{A^{\mathbf{c}}}\right)^{\mathbf{c}} = \left(\bigcap_{A^{\mathbf{c}} \subset F} F\right)^{\mathbf{c}} = \bigcup_{A^{\mathbf{c}} \subset F} F^{\mathbf{c}} = \bigcup_{G \in \mathcal{O}(A)} G = A^{\circ}$$

The others are easily demonstrated throw this process, iteratively

Proposition 4. Let (X,d) be a metric space, and $A \subset X$, $x \in X$

1.
$$x \in A \iff \exists \epsilon > 0 : B_{\epsilon}(x) \subset A$$

2.
$$x \in \overline{A} \iff \forall \epsilon > 0 \ B_{\epsilon}(x) \cap A \neq \{\}$$

3.
$$x \in \partial A \iff \forall \epsilon > 0 \ B_{\epsilon}(x) \cap A \neq \{\} \land B_{\epsilon}(x) \cap \overline{A} \neq \{\}$$

Proof. 1 Let $I(A) := \{ x \in X | \exists \epsilon > 0 : B_{\epsilon}(x) \subset A. \}$

$$x \in I(A) \implies \exists \epsilon > 0 : B_{\epsilon}(x) \subset A, : x \in \bigcup_{G \subset A} G$$

But

$$x \in A^{\circ} \implies \exists G \subset X \text{ open } : x \in G \implies \exists \epsilon > 0 : B_{\epsilon}(x) \subset G \subset A$$

 $\therefore A^{\circ} \subset I(A) \ni x, \ I(A) \subset A \text{ by definition, } \therefore I(A) = A^{\circ}$

2 For the second proposition, we have

$$\overline{A} = \left[(A^{c})^{\circ} \right]^{c} \implies x \in A \iff x \in (A^{c})^{\circ} \implies \forall \epsilon > 0 \ B_{\epsilon}(x) \not\subset A^{c}$$
$$\therefore \forall \epsilon > 0 \ B_{\epsilon}(x) \cap A \neq \{ \}$$

3 For the last one, we have, taking into account the first two proofs

$$x \in \partial A \iff x \in \overline{A} \setminus A^{\circ} \implies x \in \overline{A} \land x \notin A^{\circ}$$

$$\boxed{1} \land \boxed{2} \implies x \in \overline{A} \iff \forall \epsilon > 0 \ B_{\epsilon}(x) \cap A \neq \{\}$$

$$\therefore x \notin A^{\circ} \iff \forall \epsilon > 0 \ B_{\epsilon}(x) \cap A^{\circ} \neq \{\}$$

Definition 0.1.7 (Isometry). Let $(X,d), (Y,\rho)$ be two metric spaces and f an application, defined as follows

$$f:(X,d)\to (Y,d)$$

f is said to be an isometry iff

$$\forall x_1, x_2 \in X, \ \rho(f(x_1), f(x_2)) = d(x_1, x_2)$$

Remark. If f is an isometry, then f is injective, but it's not necessarily surjective Example 0.1.1. Let X = [0,1] and Y = [0,2], therefore

$$f:[0,1] \to [0,2]$$
$$x \to f(x) = x$$

f is obviously an isometry, since, for $x, y \in [0, 1]$

$$d(f(x), f(y)) = d(x, y)$$

But it's obviously not surjective.

Definition 0.1.8 (Diameter of a Set). Let A be a set and the couple (A, d) be a metric space. We define the *diameter* of A as follows

$$\operatorname{diam}\left(A\right) = \sup_{x,y \in A} (d(x,y))$$

§ 0.2 Convergence and Compactness

Definition 0.2.1 (Convergence). Let (X, d) be a metric space and $x \in X$. A sequence $(x_k)_{k \ge 0}$ in X is said to converge in X and it's indicated as $x_k \to x \in X$, iff

$$\forall \epsilon > 0 \ \exists N > 0 : \forall k \ge N, \ d(x_k, x) < \epsilon \ \therefore \lim_{k \to \infty} x_k = x$$

Theorem 0.1 (Unicity of the Limit). Let (X,d) be a metric space and $(x_k)_{k\geq 0}$ a sequence in X. If $x_k \to x \land x_k \to y$, then x = y

Definition 0.2.2 (Adherent point). Let (X,d) be a metric space and $A \subset X$. $x \in X$ is said to be an adherent point of A if $\exists (x_k)_{k\geq 0} \in A: x_k \to x \in X$. The set of all adherent points of A is called $\operatorname{ad}(A)$

Definition 0.2.3 (Accumulation point). Let (X,d) be a metric space and $A \subset X$. $x \in X$ is an accumulation point of A, or also limit point of A if $\exists (x_k)_{k \geq 0} : x_k \neq x \land x_k \to x \in \operatorname{ad}(A)$

Proposition 5. Let (X,d) be a metric space and $A \subset X$, then $\overline{A} = \operatorname{ad}(A)$

Proof. Let Y = ad(A), then

$$x \in \overline{A} \implies \forall \epsilon > 0 \ B_{\epsilon}(x) \cap A \neq \{\}$$

$$\therefore \forall n \in \mathbb{N} \ B_{\frac{1}{n}}(x) \cap A \neq \{\} \implies \forall n \in \mathbb{N} \ \exists x_n \in B_{\frac{1}{n}}(x)$$

But $d(x, x_n) < n^{-1}$, therefore $x \in Y \implies x \in ad(A)$, and by definition

$$\exists (x_n)_{n\geq 0} : \forall \epsilon > 0 \ \exists N \in \mathbb{N} : \forall k \geq N \ d(x_k, x) < \epsilon \implies x_N \in B_{\epsilon}(x) \ \therefore x_N \in A$$
$$\therefore \forall \epsilon > 0 \ x_N \in B_{\epsilon}(x) \cap A \neq \{\} \implies x \in \overline{A} \implies Y \subset \overline{A}, \ \therefore Y = \operatorname{ad}(A) = \overline{A}$$

Proposition 6. Let (X,d) be a metric space and $A \subset X$. Then A is closed iff $\exists (x_k)_{k\geq 0} \in A: x_k \to x \in \overline{A} \implies \operatorname{ad}(A) \subset A$

Definition 0.2.4 (Dense Set). Let (X,d) be a metric space and $A,B \subset X$. A is said to be dense in B iff $B \subset \overline{A}$, therefore $\forall \epsilon > 0 \ \exists y \in A : \ d(x,y) < 0$. One example for this is $\mathbb{Q} \subset \mathbb{R}$, with the usual euclidean distance defined through the modulus.

Definition 0.2.5. Let (X, d) be a metric space and $(x_k)_{k \ge 0} \in X$. The sequence x_k is said to be a Cauchy sequence iff

$$\forall \epsilon > 0 \ \exists N > 0 : \forall k, n \geq N \ d(x_k, x_n) < \epsilon$$

Proposition 7. Let (X,d) be a metric space and $(x_k)_{k\geq 0}\in X$ a sequence. Then, if $x_k\to x$, x_k is a Cauchy sequence

Definition 0.2.6 (Complete Space). Let (X, d) be a metric space. (X, d) is said to be *complete* iff $\forall (x_k)_{k\geq 0} \in X$ Cauchy sequences, we have $x_k \to x \in X$

Theorem 0.2 (Completeness). Let (X, d) be a metric space and $Y \subset X$. (Y, d) is complete iff $Y = \overline{Y}$ in X

Proof. Let (Y, d) be a complete space, then

$$(x_k) \in Y$$
 Cauchy sequence $\implies \exists y \in Y : x_k \to y$

Let $z \in ad(A)$ and η_k a subsequence of x_k , then

$$\exists (\eta_k) \in Y : \eta_k \to z \implies \exists y \in Y : \eta_k \to y : z = y \implies \operatorname{ad}(Y) \subset Y$$

Going the opposite way we have that ad(Y) = Y and therefore $Y = \overline{Y}$

Definition 0.2.7 (Compact Space). A metric space (X, d) is said to be *compact* or *sequentially compact* if

$$\forall (x_k) \in X \ x_k \to x \in X, \exists (y_k) \ \text{Subsequence} : y_k \to y \in X$$

Theorem 0.3. Let (X,d) be a compact space. Then (X,d) is also complete

Proof. (X, d) is compact, therefore

$$\forall (x_k) \in X \text{ Cauchy sequence} \implies x_k \to x \in X$$

Taken $(x_{n_k})_k \in X$ a subsequence, we have

$$x_k \to x \implies x_{n_k} \to x \in X$$

Definition 0.2.8 (Completely Bounded). Let (X,d) be a metric space. X is totally bounded iff

$$\exists Y \subset X : \forall \epsilon > 0, \forall x \in Y \ X = \bigcup_{i=1}^{n} B_{\epsilon}(x)$$

Definition 0.2.9 (Poligonal Chain). Let $z, w \in \mathbb{C}$. We define a polygonal [z, w] as follows

$$[z, w] := \{ z, w \in \mathbb{C} | z + t(w - z), \ t \in [0, 1] \subset \mathbb{R} \}$$

A polygonal chain will be indicated as follows $P_{z,w}$ and it's defined as follows

$$P_{z,w} = \bigcup_{k=1}^{n-1} [z_k, z_{k+1}] = [z, z_1, \dots, z_{n-1}, w]$$

It can also be defined analoguously for every metric space $(X, d) \neq (\mathbb{C}, \|\cdot\|)$, where $\|\cdot\| : \mathbb{C} \to \mathbb{R}$ is the usual complex norm $\|z\| = \sqrt{z\overline{z}} = \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2}$

Definition 0.2.10 (Connected Space). Let (G, d) be a metric space, G is connected if

$$\forall z, w \in G \; \exists P_{z,w} \subset G$$

Definition 0.2.11 (Contraction Mapping). Let (X, d) be a complete metric space. Let $T: X \longrightarrow X$. T is said to be a *contraction mapping* or *contractor* if

$$\forall x, y \in X \ \exists q \in [0, 1) : d(T(x), T(y)) \le qd(x, y) \tag{6}$$

Note that a contractor is necessarily continuous.

Theorem 0.4 (Banach Fixed Point). Let (X,d) be a complete metric space, with $X \neq \{\}$ and equipped with a contractor $T: X \longrightarrow X$. Then

$$\exists! x^* \in X : T(x^*) = x^* \tag{7}$$

Proof. Take $x_0 \in X$ and a sequence $x_n : \mathbb{N} \longrightarrow X$, where

$$x_n = T(x_{n-1}), \quad \forall n \in \mathbb{N}$$

It's obvious that

$$d(x_{n+1}, x_n) = d(T(x_n), T(x_{n-1})) \le qd(x_n, x_{n-1}) \le q^n d(x_1, x_0)$$

We need to prove that x_n is a Cauchy sequence. Let $m, n \in \mathbb{N} : m > n$, then

$$d(x_m, x_n) \le d(x_m, x_{m-1}) + \dots + d(x_{n+1}, x_n) \le q^{m-1} d(x_1, x_0) + \dots + q^n d(x_1, x_0)$$

Regrouping, we have

$$d(x_m, x_n) \le q^n d(x_1, x_0) \sum_{k=0}^{m-n-1} q^k \le q^n d(x_1, x_0) \sum_{k=0}^{\infty} q^k = q^n d(x_1, x_0) \left(\frac{1}{1-q}\right)$$

By definition of convergence, we have then

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} : \forall n > N \ d(s_n, s) < \epsilon$$

Then

$$\frac{q^n d(x_1, x_0)}{1 - q} < \epsilon \implies q^n < \frac{\epsilon (1 - q)}{d(x_1, x_0)}, \quad \forall n > N$$

Therefore, after taking m > n > N, we have

$$d(x_m, x_n) < \epsilon$$

Therefore x_n is a Cauchy sequence. Since (X, d) is a complete metric space, this sequence must have a limit $x_n \to x^* \in X$, but, by definition of convergence and limit, we have that by continuity

$$x^* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} T(x_{n-1}) = T\left(\lim_{n \to \infty} x_{n-1}\right) = T(x^*)$$

This point is unique. Take $y^* \in X$ such that $T(y^*) = y^* \neq x^*$, then

$$0 < d(T(x^*), T(y^*)) = d(x^*, y^*) > qd(x^*, y^*)$$
 4

Therefore

$$\exists! x^{\star} \in X : T(x^{\star}) = x^{\star}$$

And x^* is the fixed point of the contractor T

§ 0.3 Vector Spaces

Definition 0.3.1 (Vector Space). A vector space \mathcal{V} over a field \mathbb{F} is a set, where $\mathcal{V} \neq \{\}$ and it satisfies the following properties, $\forall u, v, w \in \mathcal{V}$ and $a, b \in \mathbb{F}$

- 1. $u + v \in \mathcal{V}$ sum closure
- 2. $av \in \mathcal{V}$ scalar closure
- 3. u + v = v + u
- 4. (u+v) + w = u + (v+w)
- 5. $\exists ! 0 \in \mathcal{V} : u + 0 = 0 + u = u$
- 6. $\exists ! v \in \mathcal{V} : u + v = 0 \implies v = -u$
- 7. $\exists ! 1 \in \mathcal{V} : 1 \cdot u = u$
- 8. (ab)u = a(bu) = b(au) = abu
- 9. (a+b)u = au + bu
- 10. a(u+v) = au + av

Definition 0.3.2 (Norm). Let \mathcal{V} be a vector space over a field \mathbb{F} , then the *norm* is an application defined as follows

$$\left\| \cdot \right\| : \mathcal{V} \longrightarrow \mathbb{F}$$

Where it satisfies the following properties

- 1. $||u|| \ge 0 \ \forall u \in \mathcal{V}$
- 2. $||u|| = 0 \iff u = 0$
- 3. $||cu|| = |c|||u|| \ \forall u \in \mathcal{V} \ c \in \mathbb{F}$
- 4. $||u+v|| \le ||u|| + ||v|| \ \forall u, v \in \mathcal{V}$

Definition 0.3.3 (Normed Vector Space). A normed vector space is defined as a couple $(\mathcal{V}, \|\cdot\|)$, where \mathcal{V} is a vector space over a field \mathbb{F} .

Proposition 8. A normed vector space (NVS), is also a metric vector space (MVS) if we define our distance as follows

$$d(u, v) = ||u - v|| \ \forall u, v \in \mathcal{V}$$

Definition 0.3.4 (Vector Subspace). Let \mathcal{V} be a vector space and $\mathcal{U} \subset \mathcal{V}$. \mathcal{U} is a *vector subspace* of \mathcal{V} iff

- 1. $u, v \in \mathcal{U} \implies u + v \in \mathcal{U}$
- 2. $u \in \mathcal{U}, a \in \mathbb{F} \implies au \in \mathcal{U}$

Proposition 9. If $(\mathcal{V}, \|\cdot\|)$ is an normed vector space and $\mathcal{W} \subset \mathcal{V}$ is a subspace of \mathcal{V} , then $(\mathcal{W}, \|\cdot\|)$ is a normed vector space

Definition 0.3.5 (p-norm). Let $(\mathcal{V}, \|\cdot\|_p)$ be a normed vector space. The norm $\|\cdot\|_p$ is said to be a *p-norm* if it's defined as follows

$$\|v\|_p := \left(\sum_{i=1}^{\dim(\mathcal{V})} (v_i)^p\right)^{\frac{1}{p}}, \ \forall v \in \mathcal{V}, \ \forall p \in \mathbb{N}^* := \mathbb{N} \cup \{\pm \infty\}$$
 (8)

Setting $p = \infty$ we have that

$$||v||_{\infty} = \max_{i < \dim(\mathcal{V})} |v_i| \tag{9}$$

Definition 0.3.6 (Dual Space). Let \mathcal{V} be a vector space over the field \mathbb{F} , we define a linear functional as an application $\varphi: \mathcal{V} \longrightarrow \mathbb{F}$ such that $\forall u, v \in \mathcal{V}$ and $c \in \mathbb{F}$

$$\varphi(u+v) = \gamma(u) + \varphi(v)$$

$$\varphi(\lambda u) = \lambda \varphi(u)$$
(10)

Defining the sum of two linear functionals as $(\varphi_1 + \varphi_2)(v) = \varphi_1(v) + \varphi_2(v)$ we immediately see that the set of all linear functionals forms a vector space over \mathcal{V} , which will be called the *dual space* \mathcal{V}^* .

§§ 0.3.1 Hölder and Minkowski Inequalities

Having defined p-norms, we can prove two inequalities that work with these norms, the *Minkowski* inequality and the *Hölder Inequality*

Theorem 0.5 (Hölder Inequality). Let $p_q \in \mathbb{N}^*$, where

$$\frac{1}{p} + \frac{1}{q} = 1$$

Then

$$\forall x, y \in \mathbb{R}^n \ \|x\|_p \|y\|_q \ge \sum_{k=1}^n |x_k y_k| \tag{11}$$

Proof. Taking p=1, we have $q=\infty$, and the demonstration is obvious

$$\|x\|_p \|y\|_q = \|x\|_1 \|p\|_{\infty} = \max_{k \le n} |y_k| \sum_{k=1}^n |x_k| \ge \sum_{k=1}^n |x_k y_k|$$

Else, if p > 1, we are that

$$ab \le \frac{a^p}{p} + \frac{b^q}{q} \ \forall a, b \ge 0$$

Let

$$s = \frac{x}{\|x\|_p}, \ t = \frac{y}{\|y\|_q}$$

We have

$$\sum_{k=1}^{n} \|s\|^{p} = \frac{1}{\|x\|_{p}^{p}} \sum_{k=1}^{n} |x_{k}|^{p} = 1 = \sum_{k=1}^{n} |t|^{q} = \frac{1}{\|y\|_{q}^{q}} \sum_{k=1}^{n} |y|^{p}$$

Therefore

$$\sum_{k=1}^{n} |s_k t_k| \le \frac{1}{p} \sum_{k=1}^{n} |s_k|^p + \frac{1}{q} \sum_{k=1}^{n} |t_k|^q$$

Substituting again the definitions of s, t we have

$$\sum_{i=1}^{n} |y_k x_k| = \|x\|_p \|y\|_q \sum_{k=1}^{n} |s_k t_k| \le \|x\|_p \|y\|_q$$

Theorem 0.6 (Minkowski Inequality). Let $p \geq 1$, therefore $\forall x, y \in \mathbb{R}^n$ we have

$$||x+y||_{p} \le ||x||_{p} + ||y||_{p} \tag{12}$$

Proof. We begin by writing explicitly the p-norm

$$||x + y||_p^p = \sum_{k=1}^n (|x_k| + |y_k|)^p = \sum_{k=1}^n (|x_k| + |y_k|) (|x_k| + |y_k|)^{p-1}$$

Letting $u_k = (|x_k| + |y_k|)^{p-1}$ we have, after imposing the condition on q of the p-norm as q(p+1) = p and using that the sum is Abelian, we have

$$\begin{cases}
\sum_{k=1}^{n} |x_k| u_k \le ||x||_p ||u||_q = ||x||_p \left(\sum_{k=1}^{n} (|x_k| + |y_k|)^p \right)^{\frac{1}{q}} \\
\sum_{k=1}^{n} |y_k| u_k \le ||y||_p ||u||_q = ||y||_p \left(\sum_{k=1}^{n} (|x_k| + |y_k|)^p \right)^{\frac{1}{q}}
\end{cases}$$

Therefore, summing and imposing that $1 - q^{-1} = p$ we have that

$$\|x+y\|_p\leq \|x\|_p+\|y\|_q$$