## Tipos de Dados em C

Alexsandro Santos Soares prof.asoares@gmail.com

Universidade Federal de Uberlândia Faculdade de Computação

# Tipos

- Em C, o termo objeto se refere a um endereço na memória cujo conteúdo representa valores.
- Um tipo define um conjunto de valores e um conjunto de operações que podem ser aplicadas a esses valores.
- O tipo do objeto determina quanto espaço ele ocupará na memória e como seus possíveis valores serão codificados.
  - Como vimos, o mesmo padrão de bits pode designar números completamentamente diferentes tais como: um número em ponto flutuante, inteiro com ou sem sinal, etc.

# Tipos

- A linguagem C define um conjunto de tipos que podem ser divididos em quatro categorias: void, integral, ponto flutuante e derivado.
- Esses tipos são mostrados na diagrama abaixo.
- Por enquanto nos concentraremos nos três primeiros.



Void

## Void

- O tipo void, representado pela palavra-chave void, não possui valor ou operações.
- Ele é usado, entre outras coisas, para indicar que uma função não tem argumentos, como vimos anteriormente na declaração da função main.
- Ele também pode ser usado para definir uma função que não possua nenhum valor de retorno.
- Outro uso é na definição de um ponteiro para um tipo de dados genérico.
- Estes dois últimos usos entenderemos melhor daqui a algumas aulas.

# Tipos integrais

- A linguagem C possui três tipos integrais: booleanos, caracteres e inteiros.
- Tipos integrais não possuem partes fracionárias.
- Eles são números inteiros.

## Booleanos

- A partir do padrão publicado em 1999, à linguagem C foi incorporado um tipo booleano.
- Um tipo booleano possui dois valores: true e false.
- Antes de 1999, C usava inteiros para representar valores booleanos:
  - Qualquer valor diferente de zero, seja ele positivo ou negativo, representava verdadeiro (true).
  - Zero era usado para representar falso (false).
- Por questões de compatibilidade, os inteiros ainda podem ser usados para representar valores booleanos.
  - Neste curso sempre usaremos o tipo booleano!
- Um tipo booleano é declarado com a palavra reservada bool e seus valores são armazenados na memória como 0 (false) e 1 (true).

## Caractere

- Um caractere é qualquer valor que possa ser representado no alfabeto do computador, ou como é melhor conhecido, seu conjunto de caracteres.
  - Letras, dígitos, sinais e outros símbolos que possam ser digitados.
- Existem três tipos de caracteres em C11:
   signed char para a representação de caracteres com sinal.
   unsigned char para a representação de caracteres sem sinal ou de um byte na memória.

char para a representação de caracteres.

- A biblioteca padrão do C11 também define os nomes wchar\_t, char16\_t e char32\_t para representar caracteres longos.
- Nos próximos slides veremos a diferenças entre estes vários tipos.

## **ASCII**

- Muitos computadores utilizam o alfabeto da American Standard Code for Information Interchange (ASCII).
- Muitos computadores usam 1 byte (8 bits) para armazenar o tipo de dados char.
  - Com 8 bits é possível representar 256 valores diferentes no conjunto de caracteres.
  - O ASCII somente utiliza metade desses valores possíveis.
- O tamanho de um char pode variar de uma máquina para outra, mas normalmente é 1 byte.
- No próximo slide apresentaremos uma parte da tabela ASCII

# Tabela ASCII – parcial

| Char    | Dec | Oct | Hex |
|---------|-----|-----|-----|
| (nul)   | 0   | 000 | 00  |
| (nl)    | 10  | 012 | 0a  |
| (cr)    | 13  | 015 | 0d  |
| (space) | 32  | 040 | 20  |
| 0       | 48  | 060 | 30  |
| 1       | 49  | 061 | 31  |
| 2       | 50  | 062 | 32  |
| 3       | 51  | 063 | 33  |
| 4       | 52  | 064 | 34  |
| 5       | 53  | 065 | 35  |
| 6       | 54  | 066 | 36  |
| 7       | 55  | 067 | 37  |
| 8       | 56  | 070 | 38  |
| 9       | 57  | 071 | 39  |
| A       | 65  | 101 | 41  |
| В       | 66  | 102 | 42  |
| C       | 67  | 103 | 43  |
| D       | 68  | 104 | 44  |
| E       | 69  | 105 | 45  |
| F       | 70  | 106 | 46  |
| G       | 71  | 107 | 47  |
| H       | 72  | 110 | 48  |
| I       | 73  | 111 | 49  |
| J       | 74  | 112 | 4a  |
| K       | 75  | 113 | 4b  |
| L       | 76  | 114 | 4c  |
| M       | 77  | 115 | 4d  |
| N       | 78  | 116 | 4e  |
|         |     |     |     |

| Dec | Oct                                                                                                                                             | Hex                                                                                                                                                                                                                                                                          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 79  | 117                                                                                                                                             | 4f                                                                                                                                                                                                                                                                           |
| 80  | 120                                                                                                                                             | 50                                                                                                                                                                                                                                                                           |
| 81  | 121                                                                                                                                             | 51                                                                                                                                                                                                                                                                           |
| 82  | 122                                                                                                                                             | 52                                                                                                                                                                                                                                                                           |
| 83  | 123                                                                                                                                             | 53                                                                                                                                                                                                                                                                           |
| 84  | 124                                                                                                                                             | 54                                                                                                                                                                                                                                                                           |
| 85  | 125                                                                                                                                             | 55                                                                                                                                                                                                                                                                           |
| 86  |                                                                                                                                                 | 56                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                 | 57                                                                                                                                                                                                                                                                           |
| 88  |                                                                                                                                                 | 58                                                                                                                                                                                                                                                                           |
| 89  |                                                                                                                                                 | 59                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                 | 5a                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                 | 61                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                 | 62                                                                                                                                                                                                                                                                           |
| 99  | 143                                                                                                                                             | 63                                                                                                                                                                                                                                                                           |
| 100 | 144                                                                                                                                             | 64                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                 | 65                                                                                                                                                                                                                                                                           |
| -   |                                                                                                                                                 | 66                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                 | 67                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                 | 68                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                 | 69                                                                                                                                                                                                                                                                           |
|     |                                                                                                                                                 | 6a                                                                                                                                                                                                                                                                           |
| 107 |                                                                                                                                                 | 6b                                                                                                                                                                                                                                                                           |
| 108 |                                                                                                                                                 | 6c                                                                                                                                                                                                                                                                           |
| 109 | 155                                                                                                                                             | 6d                                                                                                                                                                                                                                                                           |
| 110 | 156                                                                                                                                             | 6e                                                                                                                                                                                                                                                                           |
|     | 157                                                                                                                                             | 6f                                                                                                                                                                                                                                                                           |
| 112 | 160                                                                                                                                             | 70                                                                                                                                                                                                                                                                           |
|     | 79<br>80<br>81<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>97<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | 79 117<br>80 120<br>81 121<br>82 122<br>83 123<br>84 124<br>85 125<br>86 126<br>87 127<br>88 130<br>90 132<br>97 141<br>98 142<br>99 143<br>100 144<br>101 145<br>102 146<br>103 147<br>104 150<br>105 151<br>106 152<br>107 153<br>108 154<br>109 155<br>110 156<br>111 156 |

| Char          | Dec | Oct | Hex |
|---------------|-----|-----|-----|
| q             | 113 | 161 | 71  |
| r             | 114 | 162 | 72  |
| s             | 115 | 163 | 73  |
| t             | 116 | 164 | 74  |
| u             | 117 | 165 | 75  |
| v             | 118 | 166 | 76  |
| w             | 119 | 167 | 77  |
| х             | 120 | 170 | 78  |
| У             | 121 | 171 | 79  |
| z             | 122 | 172 | 7a  |
| Ç             | 128 | 200 | 80  |
| ü             | 129 | 201 | 81  |
| é             | 130 | 202 | 82  |
| â             | 131 | 203 | 83  |
| ä             | 132 | 204 | 84  |
| à             | 133 | 205 | 85  |
| ç             | 135 | 207 | 87  |
| ê             | 136 | 210 | 88  |
| ë             | 137 | 211 | 89  |
| ®             | 169 | 251 | a9  |
|               | 170 | 252 | aa  |
| $\frac{1}{2}$ | 171 | 253 | ab  |
| $\frac{1}{4}$ | 172 | 254 | ac  |
| +             | 197 | 305 | c5  |
| ã             | 198 | 306 | с6  |
| Ã             | 199 | 307 | с7  |
| 3<br>4        | 243 | 363 | f3  |

## Unicode

- O ASCII foi feito principalmente para tratar o léxico da língua inglesa.
  - Tentativas de estender o ASCII, chamado de ASCII estendido, tentaram usar os outros 128 valores disponíveis para caracteres de outras línguas.
  - O ASCII estendido nunca foi padronizado internacionalmente.
- Muitas línguas precisam de alfabetos diferentes daquele do Inglês.
- Para eliminar as limitações do ASCII a ISO e o Consórcio Unicode criaram um sistema de codificação universal para representar um conjunto de caracteres mais amplo: o Unicode.
- A versão moderna do Unicode codifica um caractere com quatro bytes e compatível com o ASCII e o ASCII estendido.
- O conjunto ASCII, chamado agora de Basic Latin está incluído no Unicode com os 25 bits superiores zerados.

## Unicode

- Cada caractere ou símbolo no Unicode é definido por um número de 32 bits.
  - O código pode definir até  $2^{32} = 4$  294 967 296 caracteres ou símbolos.
- A representação usa dígitos hexadecimais no seguinte formato

$$U + XXXXXXXXX$$

com cada X sendo um dígito hexadecimal.

- Como o Unicode padrão utiliza 4 bytes por caractere foi criado um código *multibyte*, que usa um número variável de bytes por caracteres.
  - Ele pode usar de 1 a 4 bytes dependendo do caractere.
- O código mais usado é o UTF-8, onde os primeiros 128 caracteres coincidem com os do ASCII e usam apenas 1 byte. Os demais caracteres usam mais bytes em sua representação.

# Codificação UTF-8 – parcial

| código  | caractere | código |
|---------|-----------|--------|
| Unicode |           | UTF-8  |
| U+0021  | !         | 21     |
| U+002D  | -         | 2D     |
| U+0030  | 0         | 30     |
| U+0039  | 9         | 39     |
| U+0041  | A         | 41     |
| U+0042  | В         | 42     |
| U+0061  | a         | 61     |
| U+0062  | b         | 62     |
| U+00C0  | À         | C380   |
| U+00E3  | ã         | C3A3   |
| U+00E7  | ç         | C3A7   |
| U+00E9  | é         | C3A9   |
| U+00FF  | ÿ         | C3BF   |

## Caracteres Unicode em C

- O tipo char pode armazenar caracteres ASCII ou UTF-8.
- C11 define os tipos char16\_t e char32\_t para os caracteres Unicode UTF16 e UTF32, respectivamente.
- O tipo das constantes caracteres podem ser indicadas por um prefixo u8 para um caractere UTF8, u para um UTF16 e U para um UTF32.

## Inteiros

Existem cinco tipos inteiros com sinal em C11. Muitos deles podem ter sinônimos:

| Tipo        | Sinônimos                                             |
|-------------|-------------------------------------------------------|
| signed char |                                                       |
| int         | signed, signed int                                    |
| short       | short int, signed short, signed short int             |
| long        | long int, signed long, signed long int                |
| long long   | long long int, signed long long, signed long long int |

Para cada tipo inteiro com sinal existe um tipo sem sinal correspondente.

| Tipo           |      | Sinônimos | \$            |
|----------------|------|-----------|---------------|
| unsigned char  |      |           |               |
| unsigned int   |      | unsigned  |               |
| unsigned short | 5    | unsigned  | short int     |
| unsigned long  |      | unsigned  | long int      |
| unsigned long  | long | unsigned  | long long int |

## Tamanho de inteiros na memória

- Um valor do tipo char sempre ocupa um byte.
- C somente define tamanhos de armazenamento mínimos para os demais tipos:
  - short ocupa no mínimo 2 bytes;
  - long ocupa no mínimo 4 bytes;
  - long long ocupa no mínimo 8 bytes;
- Embora os tipos inteiros possam ser maiores que seus tamanhos mínimos, eles são implementados tal que

```
sizeof(short) \le sizeof(int) \le sizeof(long) \le sizeof(long long)
```

• O tipo int deve possuir o mesmo tamanho e formato de bits que um registrador da CPU da arquitetura alvo.

## Tamanhos e valores de inteiros

A tabela abaixo mostra valores típicos para os tipos inteiros. Mas, lembre-se que isto depende do hardware físico e pode mudar.

| Tipo               | Tamanho  | Valor mínimo                       | Valor máximo               |
|--------------------|----------|------------------------------------|----------------------------|
|                    | em bytes |                                    |                            |
| char               | 1        | 0                                  | 255                        |
| unsigned char      | 1        | 0                                  | 255                        |
| signed char        | 1        | -128                               | 127                        |
| short int          | 2        | -32768                             | 32 767                     |
| unsigned short     | 2        | 0                                  | 65 535                     |
| int                | 4        | $-2\ 147\ 483\ 648$                | 2 147 483 647              |
| unsigned int       | 4        | 0                                  | 4 294 967 295              |
| long int           | 4        | $-2\ 147\ 483\ 648$                | 2 147 483 647              |
| unsigned long      | 4        | 0                                  | 4 294 967 295              |
| long long int      | 8        | $-9\ 223\ 372\ 036\ 854\ 775\ 808$ | 9 223 372 036 854 775 807  |
| unsigned long long | 8        | 0                                  | 18 446 744 073 709 551 615 |
|                    |          | ·                                  |                            |

# Tamanhos e intervalos de tipos

Para saber o tamanho exato de um tipo ou variável em C, usamos o operador sizeof. A expressão

sizeof(tipo)

retorna o tamanho em bytes do tipo dado como argumento e

sizeof expressão

retorna o tamanho em bytes do tipo inferido da expressão.

C possui uma biblioteca chamada *limits.h* que contém informações sobre os intervalos de inteiros. Por exemplo, o valor mínimo para um inteiro é definido lá como INT\_MIN e o valor máximo está em INT\_MAX. Os intervalos para outros tipos numéricos também estão na biblioteca.

## Exemplo de uso de limits.h

9 #include <stdio.h>

O programa a seguir usa a limits.h para mostrar os valores máximos e mínimos dos tipos char e int.

```
10 #include <limits.h> // contém as definicões de CHAR MIN. INT MIN. etc
11
12 int main(void)
13 €
    printf("Tamanhos em bytes e intervalos de valores dos tipos char e int\n\n
14
         "):
    printf("O tipo char é%s.\n\n", CHAR_MIN < 0 ? "signed" : "unsigned");</pre>
15
16
    printf(" Tipo Tamanho em bytes Mínimo Máximo\n"
17
18
    printf(" char %8zu %20d %15d\n", sizeof(char), CHAR_MIN, CHAR_MAX);
19
    printf(" int %8zu %20d %15d\n", sizeof(int), INT_MIN, INT_MAX);
20
21
    return 0:
22
23 } // main
```

Nota: Com printf o formato s é necessário para imprimir uma string, enquanto o formato zu é necessário para imprimir o tamanho em bytes como um número decimal sem sinal.

## Tipos em ponto flutuante

- O C11 reconhece três tipos de ponto flutuantes: real, imaginário e complexo.
- Assim como na biblioteca limits para valores inteiros, existe uma biblioteca padrão float.h para valores em ponto flutuante.
- Diferentemente dos tipos integrais, os valores do tipo real são sempre com sinal.

## Real

- C11 possui três tamanhos diferentes de tipos reais:
  - $\bullet\,$ float para valores com precisão simples.
  - double para valores com precisão dupla.
  - long double para valores com precisão estendida.
- Independentemente do tamanho da máquina, C11 requer que a relação a seguir seja verdadeira

```
sizeof(float) \le sizeof(double) \le sizeof(long double)
```

- Operações aritméticas envolvendo números em ponto flutuante são geralmente realizadas com precisão dupla ou maior.
- A tabela abaixo mostra os intervalos de valores e a precisão dos tipos em ponto flutuante usando notação decimal:

| Tipo        | Tamanho<br>em bytes | Intervalo de<br>valores | Menor valor positivo | Precisão<br>em dígitos |
|-------------|---------------------|-------------------------|----------------------|------------------------|
| float       | 4                   | $\pm 3.4E + 38$         | 1.2E-38              | 6                      |
| double      | 8                   | $\pm 1.7E + 308$        | 2.3E-308             | 15                     |
| long double | 10                  | $\pm 1.1E + 4932$       | 3.4E-4932            | 19                     |

21/42

## Exemplo de uso de float.h

O programa a seguir usa a  $\mathit{float.h}$  para mostrar os valores máximo e mínimo dos tipo float, além da precisão.

```
9 #include <stdio.h>
10 #include <float.h>
11
12 int main(void)
13 €
    puts("Características do tipo float\n");
14
    printf("Tamanho na memória: %zu\n"
15
           "Menor valor positivo: %E\n"
16
           "Maior valor positivo: %E\n"
17
18
           "Precisão: %d dígitos decimais\n",
           sizeof(float), FLT MIN, FLT MAX, FLT DIG);
19
20
    puts("\nUm exemplo de precisão com float:\n");
21
22
    double d_var = 12345.6; // variável do tipo double
    float f_var = (float) d_var; // inicializa a variável float com d_var.
23
24
    printf("O número em ponto flutuante %18.10f\n", d_var);
    printf("foi armazenado em uma variável\n"
25
           "do tipo float como o valor %18.10f\n", f_var);
26
    printf("O erro de arredondamento é%18.10f\n", d_var - f_var);
27
28
    return 0:
29
    // main
```

# Saída do exemplo anterior

Características do tipo float

Tamanho na memória: 4

Menor valor positivo: 1.175494E-38 Maior valor positivo: 3.402823E+38

Precisão: 6 dígitos decimais

Um exemplo de precisão com float:

O número em ponto flutuante 12345.6000000000

foi armazenado em uma variável

do tipo float como o valor 12345.5996093750

O erro de arredondamento é 0.0003906250

Deste exemplo note que o valor representável mais próximo do decimal 12345.6 é 12345.5996093750. Essa diferença se deve ao fato que a representação binária interna do decimal 12345.6 não é exata.

# Tipo Complexo

- Um número imaginário é um número real multiplicado por  $\sqrt{-1} = i$ .
- O tipo complexo possui três tamanhos: float complex, double complex e long double complex.
- Para usar o tipo complexo deve-se incluir a biblioteca complex.h.

#### Para compilar use:

gcc -std=c11 complexo.c -o complexo.exe -lm

### Variáveis

- Variáveis em C são endereços de memória que possuem um tipo.
- Cada variável no programa deve ser declarada e definida.
- Em C, a declaração serve para dar nome a um objeto e informa o seu tipo. Enquanto que a definição serve para criar o objeto.
- Todas as variáveis usadas devem ser previamente declaradas.
- O tipo da variável pode ser qualquer um dos tipos permitidos em C, excetuando o tipo void.

Exemplos de declarações e inicializações:

```
char codigo = 'B';
int i = 14;
long long divida_interna = 1000000000000;
float juros = 14.25;
double pi = 3.1415926536;
```

### Constantes

- Constantes são valores de dados que não podem ser alterados durante a execução de um programa.
- Como nas variáveis, uma constante possui um tipo.
- Discutiremos agora os seguintes tipos de constantes: booleano, caracter, inteiro, real, complexo e string.

### Constante booleana

- Um tipo de dados booleano possui dois valores: true e false.
- Para usarmos estes valores devemos incluir a biblioteca stdbool.h.

```
bool verdadeiro = true;
bool falso = false;
```

#include <stdbool.h>

### Constante caracter

- Caracteres constantes são colocados entre apóstrofes.
- Algumas vezes precisamos colocar a contrabarra (\) antes de um caracter que não possua representação gráfica associada com ele.

```
1 char c1 = 'a';
2 char c2 = '\n';
3 char c3 = '\t';
4 char c4 = '\\';
```

## Constantes inteiras

Abaixo encontramos alguns exemplos de constantes inteiras.

| Representação | Valor          | Tipo              |
|---------------|----------------|-------------------|
| +123          | 123            | int               |
| -378          | -378           | int               |
| -32271L       | -32 271        | long int          |
| 76542LU       | 76542          | unsigned long int |
| 12789845LL    | $12\ 789\ 845$ | long long int     |

### Constantes reais

Em C a forma padrão de constantes reais é double. Se quisermos que seja float ou long double devemos especificar na própria constante esta informação. Abaixo encontramos alguns exemplos de constantes reais

| Representação | Valor        | Tipo        |
|---------------|--------------|-------------|
| 0.            | 0.0          | double      |
| .0            | 0.0          | double      |
| 2.0           | 2.0          | double      |
| 3.1416        | 3.1416       | double      |
| -2.0f         | -2           | float       |
| 3.1415926536L | 3.1415926536 | long double |

# Constantes complexas

Em C a forma padrão de constantes complexas é double. Se quisermos que seja float ou long double devemos especificar na própria constante esta informação. Abaixo encontramos alguns exemplos de constantes reais

| Representação          | Valor             | Tipo                |
|------------------------|-------------------|---------------------|
| 12.3 + 14.4 * I        | 12.3 + 14.4i      | double complex      |
| 14F + 16F * I          | 14 + 16i          | float complex       |
| 1.4736L + 4.56756L * I | 1.4736 + 4.56756i | long double complex |

As duas componentes de uma constante complexa devem ter a mesma precisão, ou seja, se a parte real é do tipo *double* então a parte imaginária também deve ser do tipo *double*.

# Constantes strings

- Uma constante string é uma sequência de zerou ou mais caracteres entre aspas.
- Abaixo estão alguns exemplos de strings.

```
""
"h"
"Oi Mundo\n"
"COMO CHOVE"
"Bom dia!"
L"Esta string contém caracteres longos"
```

## Codificação de constantes

- Neste e nos próximos slides vamos discutir três formas diferentes de codificar constantes nos programas: constantes literais, constantes definidas e constantes de memória.
- Um *literal* é uma constante sem nome usada para especificar dados. Ela é o próprio valor do dado.
- No exemplo a seguir, 5 é um literal inteiro.

$$a = b + 5;$$

## Constantes definidas

- Uma outra forma de escrever uma constante é usar a diretiva #define do pré processador do C.
- Uma diretiva define típica poderia ser

```
#define PI 3.1415
```

- No arquivo onde esta constante for definida, o pré processador procurará todas as ocorrências de PI e as substituirá por 3.1415.
- Podemos ter mais que um uso de define no mesmo arquivo:

```
#define VALOR_MAXIMO 300
#define VALOR_MINIMO 100
```

### Constantes de memória

- A terceira forma de usar uma constante é usar constantes de memória.
- Estas constantes usam o qualificador de tipo const para indicar que o dado não pode ser alterado.
- O formato é const tipo identificador = valor;
- O código a seguir cria uma constante de memória cPi:

```
const float cPi = 3.14159;
```

## Exemplo de uso de constantes

No programa abaixo é demonstrado as três formas de de codificar pi como uma constante.

```
#include <stdio.h>
#define PI 3.1415926536

int main(void) {
    const double cPi = PI;

    printf("Constante definida PI: %f\n", PI);
    printf("Constante de memória cPI: %f\n", cPi);
    printf("Constante literal: %f\n", 3.1415926536);
    return 0;
} // main
```

A saída deste programa é

Constante definida PI: 3.141593 Constante de memória cPI: 3.141593 Constante literal: 3.141593

### Entrada e saída

- Já usamos vários vezes a função scanf para ler dados do teclado e a função printf para mostrar dados na tela.
- Aqui vamos mostrar por meio de exemplos os seus usos.

## Exemplos de saídas

```
1 printf("%d%c%f", 23, 'z', 4.1);
23z4.100000
```

```
printf("%d %c %f", 23, 'z', 4.1);
```

```
23 z 4.100000
```

8

```
int num1 = 23;
char ze = 'z';
floar num2 = 4.1;
printf("%d %c %f",num1, ze, num2);
```

```
23 z 4.100000
```

# Exemplos de saídas

4

```
printf("%d\t%c\t%5.1f\n", 23, 'Z', 14.2);
printf("%d\t%c\t%5.1f\n", 107, 'A', 53.6);
printf("%d\t%c\t%5.1f\n", 1754, 'F', 122.0);
printf("%d\t%c\t%5.1f\n", 3, 'P', 0.1);
```

```
23 Z 14.2
107 A 53.6
1754 F 122.0
3 P 0.1
```

oprintf("O número%d é meu número favorito.", 23);

O número23 é meu número favorito.

- printf("0 número é %6d", 23);
  - O número é 23.

# Exemplos de saídas

- O juros foi de %8.2f no ano passado.", 233.12);

printf("Esta linha some.\r...Uma nova linha\n");

# Exemplos de saídas

printf("|%-+8.2f|\n", 1.2);

I+1.20 |

•

```
2 printf("Um caracter null\Omata o resto da linha\n");
3 printf("\nIsto é\'oi\' entre apóstrofes\n");
4 printf("Isto é\"oi\" entre aspas\n");
5 printf("\nIsto é\\ o próprio caracter de escape\n");

...Uma nova linha
Um caracter null
Isto é 'oi' entre apóstrofes
Isto é "oi" entre aspas
Isto é \ o próprio caracter de escape
```

## Para saber mais

- Forouzan, B. A and Gilbert, R. F. Computer Science: a structured programming approach using C. 3rd edition. Cengage Learning, 2007.
- IEEE 754. In: Wikipedia, The Free Encyclopedia. Disponível em https://en.wikipedia.org/w/index.php?title=IEEE\_754& oldid=840612631.
- ASCII. In: WIKIPÉDIA, a enciclopédia livre. Disponível em: https://pt.wikipedia.org/w/index.php?title=ASCII&oldid=52053391

## Fontes

- Forouzan, B. A and Gilbert, R. F. Computer Science: a structured programming approach using C. 3rd edition. Cengage Learning, 2007.
- IEEE 754. In: Wikipedia, The Free Encyclopedia. Disponível em https://en.wikipedia.org/w/index.php?title=IEEE\_754& oldid=840612631.
- ASCII. In: WIKIPÉDIA, a enciclopédia livre. Disponível em: https://pt.wikipedia.org/w/index.php?title=ASCII&oldid=52053391