第一题

1. 考虑下面文法 G₁:

```
S→al Al(T)
T-T,SIS
```

- (1) 消去 G₁ 的左递归。然后,对每个非终结符,写出不带回溯的递归子程序。
- (2) 经改写后的文法是否是 LL(1)的? 给出它的预测分析表。
- (1) 解答:

```
首先消除左递归, S 没有问题, 不用改, 仍为 S->a / ^ (T)
但是 T 中存在左递归,需要改变,可以改为:
T\rightarrow ST' T'\rightarrow ST' \epsilon
```

```
综上,可以改为: S->a | ^ (T)
             T->ST'
```

```
T' \rightarrow ST' \mid \epsilon
递归子程序:
P(S):
Begin
   if ch==' a' or ch=='^
       then next
       else if ch == '('
           then begin
               P(T)
           if ch == ')'
               then next;
           else error;
           end
       else error;
end;
P(T)
begin
   P(S), P(T')
```

end P(T') begin if ch == ',' then begin P(S), P(T')

end

end

Next 是读取下一个句子,再次运行上述程序 Error 是发现错误,进入错误处理程序。

(2) 解答:

 $FRIST(S) = \{a, \land, (\}$

 $FRIST(T) = \{a, \land, (\}$

 $FRIST(T') = \{,, \epsilon\}$

 $FOLLOW(S) = \{),,,\#\}$

 $FOLLOW(T) = \{\}$

 $FOLLOW(T') = \{\}$

由上可知,是 LL(1)的。

预测分析表

	a	٨	()	,	#
S	S->a	S->^	S->(T)			
T	T->ST'	T->ST'	T->ST'			
Τ'				Τ' ->ε	T' ->, ST'	

第二题:

2. 对下面的文法 G:

E→TE'

E'→+Ele

T→FT'

T'→TIE

 $F \rightarrow PF'$

F'→ * F' | € P→(E) | a| b | ∧

- (1) 计算这个文法的每个非终结符的 FIRST 和 FOLLOW。
- (2) 证明这个文法是 LL(1)的。
- (3) 构造它的预测分析表。
- (4) 构造它的递归下降分析程序。

(1) 解答:

FIRST (E) = {(, a, b,
$$\land$$
}
FIRST (E') = {+, ϵ }
FIRST (T) = {(, a, b, \land }
FIRST (T') = {(, a, b, \land , ϵ }
FIRST (F) = {(, a, b, \land }
FIRST (F) = {(, a, b, \land }
FIRST (P) = {(, a, b, \land }
FOLLOW (E) = {#,)}
FOLLOW (E') = {#,)}
FOLLOW (T') = {+,), #}
FOLLOW (F) = {(, a, b, \land , +,), #}
FOLLOW (F) = {(, a, b, \land , +,), #}
FOLLOW (P) = {*, (, a, b, \land , +,), #}

(2) 解答:

对于上面的产生式,

 $FIRST(+E) \cap FIRST(\epsilon) = \Phi$

 $FIRST(+E) \cap FOLLOW(E') = \Phi$

 $FIRST(T) \cap FIRST(\varepsilon) = \Phi$

 $FIRST(T) \cap FOLLOW(T') = \Phi$

 $FIRST(*F') \cap FIRST(\varepsilon) = \Phi$

 $FIRST(*F') \cap FOLLOW(F') = \Phi$

 $FIRST(E) \cap FIRST(a) \cap FIRST(b) \cap FIRST(A) = \Phi$

所以上面是 LL(1) 文法

(3)解答:

	+	*	()	a	b	٨	#
Е			E->TE'		E->TE'	E->TE'	E->TE'	
E'	E' ->+E			Ε' ->ε				Ε' ->ε
T			T->FT'		T->FT'	T->FT'	T->FT'	
T'	Τ' ->ε		T' ->T	Τ' ->ε	T' ->T	T' ->T	T' ->T	Τ' ->ε
F			F->PF'		F->PF'	F->PF'	F->PF'	
F'	F' ->ε	F' ->*F'	F' ->ε					
Р			P->(E)		P−>a	P->b	P->\	

```
(4) 解答:
```

```
P(E)
begin
 if ch == '(' \text{ or } ch == 'a' \text{ or } ch == 'b' \text{ or } ch == '\wedge'
        Then begin
            P(T), P(E')
        end
        else error
end
P(E')
begin
  if ch == '+'
        Then begin
           P (E)
        end
    else if ch == ')' and ch == '\#'
    then error
end
P(T)
begin
   if ch == (' or ch == 'a' or ch == 'b' or ch == '\wedge'
        Then begin
           P(F), P(T')
        end
        else error
end
P(T')
begin
if ch == '(' or ch == 'a' or ch == 'b' or ch == '^
        Then P(T)
        else if ch == '*' then error;
End
P(F)
begin
    if ch == '(' \text{ or } ch == 'a' \text{ or } ch == 'b' \text{ or } ch == '\wedge'
        Then begin
           P(P), P(F')
        end
        else error
```

```
end
P(F')
begin
if ch == '*'
Then P(F)
end
P (P)
begin
 If ch == 'a' or ch == 'b' or ch == '\wedge'
        Then next
        Else if ch == '('
        then
        begin
         P (E)
        if ch == '(' then next
else error;
        end
        else error
end
```