- 1. Define Algorithm. List and Explain characteristics of algorithm.
- 2. Explain why it is important to analyse algorithms before implementing them? Provide examples to illustrate your answer.
- 3. Discuss the factors for comparing algorithms
- 4. Explain the types of analysis done on an algorithm.
- 5. Analyze the performance characteristics of algorithms based on their rate of growth. How does the rate of growth impact the efficiency of algorithms?
- 6. Explain different properties of notations.
- 7. Define Tree. Provide a glossary of key terms associated with Trees.
- 8. Discuss the concept of AVL Trees and their role in maintaining balance in BSTs.
- 9. Analyze the following binary tree and find the Pre-order, In-order, Post order traversal.



- 10. Explain Depth-First Search (DFS) and Breadth-First Search (BFS) algorithms with examples.
- 11. Calculate the minimum cost spanning tree using Prim's Algorithm for the following graph.



12. Evaluate following graph and find the shortest path using Dijkstra's Algorithm.



- 13. Write a short note on classification of algorithm by implementation method and design method.
- 14. What is Greedy Algorithm? Explain with example.
- 15. Explain Huffman coding with example.
- 16. What is Knapsack Problem? Explain with example. trees and their role in balancing binary search trees (BSTs).
- 17. List and explain the properties of Dynamic Programming Strategy.
- 18. Explain advantages and disadvantages of divide and conquer.
- 19. List and explain the commonly used asymptotic notations to calculate the running time complexity of an algorithm.
- 20. Write a short note on Dynamic Programming Strategy.

- 21. Explain Binary Tree Traversal with example.
- 22. Analyze the following graph and find the minimum spanning tree using Kruskal's and Prim's Algorithm.



- 23. Write a short note on advantages and disadvantages of greedy method.
- 24. Explain the Master Theorem for Divide and Conquer.
- 25. Define asymptotic notation and discuss its significance in the analysis of algorithms. How does it help in comparing different algorithms?
- 26. Explain why it is important to analyze algorithms before implementing them. Provide examples to illustrate your answer.
- 27. Evaluate the properties of asymptotic notations and their role in algorithm analysis.
- 28. Compare the Big-O, Omega- $\Omega$ , and Theta- $\Theta$  notations. When would you use each notation in algorithm analysis?
- 29. Explain the Master Theorem for Divide and Conquer algorithms.
- 30. What are the characteristics an algorithm must have explain in brief.
- 31. Explain different types of binary tree.
- 32. Consider following graph and explain the working of topological sort.



- 33. Write a short note on DFS and BFS.
- 34. Explain different types of binary tree.
- 35. Explain pre-order, in-order and post-order traversal with example.
- 36. Find the minimum cost spanning tree using Kruskal's Algorithm for the following graph.



- 37. Describe classifications of algorithm in detail.
- 38. Explain Greedy Algorithm with example.
- 39. Write a short note on Divide and Conquer Strategy.

40. Consider the capacity of the knapsack is M=20 and the objects are as shown in the table. Apply greedy approach to solve this problem to gain maximum profit.

| Objects | Profit | Weight |
|---------|--------|--------|
| 01      | 25     | 18     |
| 02      | 24     | 15     |
| 02      | 15     | 10     |

- 41. What is Dynamic Programming Strategy? Explain properties of Dynamic Programming Strategy.
- 42. Explain the longest common subsequence problem.
- 43. Compare the performance of two algorithms using asymptotic analysis. Provide a detailed explanation of how you would determine which algorithm is more efficient.
- 44. Describe AVL Tree in detail.
- 45. Discuss the significance of common logarithms and summations in algorithm analysis. Provide examples of how they are used to analyze algorithms.
- 46. Evaluate following graph and find the shortest path using Dijkstra's Algorithm.



- 47. Explain Huffman coding using the following character frequencies:
- 48. Message M = 100 characters A=50 B=10 C=30 D=5 E=3 F=2
- 49. Discuss the factors for comparing algorithms.
- 50. Define asymptotic notation and discuss its significance in the analysis of algorithms. How does it help in comparing different algorithms?
- 51. Explain the terms in Rate of growth.
- 52. Use Master's theorem to solve the recurrence relation shown below-
- 53. T(n) = 3T(n/2) + n2
- 54. T(n)=2T(n/2)+n
- 55. Describe Big-O and Omega  $\Omega$  in algorithm analysis.
- 56. Explain the Master Theorem for Divide and Conquer algorithms.
- 57. Define an algorithm. State its essential characteristics. Develop an algorithm for calculating factorial of an integer the user provided.
- 58. Define the Following terms of Tree:
- 59. Path 2. Root 3. Parent 4. Depth of tree 5. Degree of node.
- 60. Explain the working of topological sort considering following graph
- 61. What are graphs? Enlist Types of Graphs. And State Applications, Advantages and Disadvantages of Graph.
- 62. State and Explain types of binary tree traversal. Demonstrate with suitable example
- 63. Find the minimum cost spanning tree using Kruskal's Algorithm for the following graph.
- 64. State and Explain types of Graph traversal technique.
- 65. Enlist the Algorithms Classification methods. Discuss classification by implementation method in detail.

- 66. What is Greedy Algorithm? Explain Advantages and disadvantages of Greedy Algorithm. State its applications.
- 67. Explain any 5 applications of divide and conquer strategy.
- 68. Calculate how many bits are saved using Huffman Code of following Example:

| Character | Frequency |
|-----------|-----------|
| A         | 12        |
| В         | 2         |
| С         | 7         |
| D         | 13        |
| E         | 14        |
| F         | 85        |

- 69. What is Dynamic Programming Strategy? Explain properties of Dynamic Programming Strategy.
- 70. Describe master theorem in detail.
- 71. Explain Guidelines for Asymptotic Analysis.
- 72. Describe Advantages and Disadvantages of Threaded Binary Tree.
- 73. Discuss the significance of common logarithms and summations in algorithm analysis. Provide examples of how they are used to analyze algorithms.
- 74. Consider following graph and find the shortest path using Dijkstra's shortest path algorithm using Prim's Algorithm.
- 75. Explain Fibonacci number using dynamic programming approach.
- 76. Distinguish Between a Dynamic Programming Algorithm and Recursion