Tópicos de Matemática Discreta

——— prova escrita — 19 de janeiro de 2013 ————— duração: 2 horas —

Justifique TODAS as suas respostas.

exercício 1. [1,5 valores] Dê exemplo de uma função

- (a) $f: \mathbb{N} \to 2\mathbb{N}$.
- (b) $g: \mathbb{N} \to \{1, 2, 3\}$ não sobrejetiva.
- (c) $h: \mathbb{R} \to \mathbb{R}$ tal que $(h \circ h)(x) = x 2$, para todo o $x \in \mathbb{R}$.

exercício 2. [4 valores] Considere a função $f: \mathbb{R} \to \{3, 10\}$ definida da seguinte forma

$$f(x) = \begin{cases} 3 & \text{se } x \in]-\infty, 4[\cup]20, 30] \\ 10 & \text{se } x \in [4, 20] \cup]30, +\infty[\end{cases}.$$

e a função $g: \mathbb{N} \to \mathbb{R}$ definida por $g(n) = 2 - \frac{1}{n}$, para todo o $n \in \mathbb{N}$.

- (a) Determine $g(\{1, 2, 3, 4\})$ e $g^{\leftarrow}(\{1, 5\})$.
- (b) Determine $f(\{x \in \mathbb{R} : x^2 16 = 0\})$ e $f^{\leftarrow}(\{10\})$.
- (c) Mostre que $f \circ g$ é uma função constante.
- (d) Indique se alguma das funções f ou q é injetiva.

exercício 3. [2,5 valores] Sejam $A = \{1,2,3\}$ e $B = \{a,b,c,d\}$. Considere as relações binárias $R = \{(1,2),(1,3),(2,1),(2,2)\}$ e $S = \{(a,1),(a,3),(b,2),(c,2),(d,3)\}$ em A e de B para A, respetivamente.

- (a) Determine $R^{-1} \in R \circ S$.
- (b) Indique quantas relações binárias T em A tais que $\mathrm{Dom}(T)=\{1\}$ e $\mathrm{Im}(T)\subseteq\mathrm{Dom}(R)$ existem.
- (c) Indique uma relação binária R' em A tal que $R' \subseteq R$ e R' é antissimétrica.

exercício 4. [2 valores] Seja $A = \{1, 2, 4, 6, 7, 9\}$ e considere a relação de equivalência \sim em A definida por

$$x \sim y$$
 se e só se $x + y = 2n$,

para algum $n \in \mathbb{N}$.

- (a) Indique todos os elementos da classe [2].
- (b) Determine o conjunto quociente A/\sim .

exercício 5. [2,5 valores] Consideremos o c.p.o. (A, \leq) com o seguinte diagrama de Hasse associado:

- (a) Seja $X = \{c, d, f, h\}$. Indique o conjunto dos majorantes e o conjunto dos minorantes de X em A e, caso existam, o supremo e o ínfimo de X.
- (b) Indique, caso exista, um subconjunto Y de A com um elemento maximal que seja elemento minimal em A.

exercício 6. [3,75 valores] Dê exemplo, caso exista, de:

- (a) um grafo com exatamente quatro vértices de grau par;
- (b) um grafo desconexo;
- (c) um grafo bipartido que contenha um ciclo de comprimento 8;
- (d) um grafo conexo com 8 vértices, 3 dos quais com grau par;
- (e) um grafo não euleriano.

exercício 7. [3,75 valores] Diga se cada uma das afirmações que se seguem é ou não verdadeira.

- (a) Se $f: X \to Y$ é uma função tal que existem dois subconjuntos $A \in B$ de X satisfazendo $A \neq B$ e f(A) = f(B) então f é não bijetiva.
- (b) Se R é uma relação de equivalência num conjunto A, então R não é uma relação de ordem parcial.
- (c) Dado um c.p.o. (A, \leq) e um subconjunto X de A, $Maj(X) \cap Min(X) = \emptyset$.