Chapter 2

Fundamentals of the Analysis of Algorithm Efficiency

Algorithm Design and Analysis Process

Basic Efficiency Classes

00200	1 022550	II II
Class	Nome	Comments
1	constant	May be in best cases
Ign.	logarithmic	Halving problem size at each iteration
n	linear	Scan a list of size n
n×lgn	linearithmic	Divide and conquer algorithms, e.g., mergewort
nº	quadratic	Two embedded loops, e.g., selection sort
n².	cubic	Three embedded loops, e.g., matrix multiplication
2*	exponential	All subsets of n- elements set
н	factorial	All permutations of an a elements set

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the *basic operation* as a function of *input size*

• <u>Basic operation</u>: the operation that contributes most towards the running time of the algorithm

Input size and basic operation examples

Problem	Input size measure Basic operation		
Searching for key in a list of <i>n</i> items	Number of list's items, i.e. <i>n</i>	Key comparison	
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers	
Checking primality of a given integer <i>n</i>	n'size = number of digits (in binary representation)	Division	
Typical graph problem	#vertices and/or edges	Visiting a vertex or traversing an edge	

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

- Worst case: $C_{worst}(n)$ maximum over inputs of size n
- Best case: $C_{\text{best}}(n)$ minimum over inputs of size n
- Average case: $C_{avg}(n)$ "average" over inputs of size n
 - Number of times the basic operation will be executed on typical input
 - Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Example: Sequential search

```
ALGORITHM SequentialSearch(A[0..n-1], K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n-1] and a search key K

//Output: The index of the first element of A that matches K

// or -1 if there are no matching elements

i \leftarrow 0

while i < n and A[i] \neq K do

i \leftarrow i + 1

if i < n return i

else return -1
```

- Worst case :O(n)
- Best case: O(1)
- Average case:O(n/2)

Types of formulas for basic operation's count

Exact formula

e.g.,
$$C(n) = n(n-1)/2$$

• Formula indicating order of growth with specific multiplicative constant

e.g.,
$$C(n) \approx 0.5 n^2$$

• Formula indicating order of growth with unknown multiplicative constant

e.g.,
$$C(n) \approx cn^2$$

Order of growth

• Most important: Order of growth within a constant multiple as $n \rightarrow \infty$

• Example:

- How much faster will algorithm run on computer that is twice as fast?
- How much longer does it take to solve problem of double input size?

Values of some important functions as $n \to \underline{\infty}$

\overline{n}	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Asymptotic order of growth

- A way of comparing functions that ignores constant factors and small input sizes
- O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)
- $\Theta(g(n))$: class of functions f(n) that grow at same rate as g(n)
- $\Omega(g(n))$: class of functions f(n) that grow at least as fast as g(n)

Big-oh

Establishing order of growth using the definition

Definition: A function t(n) is said to be in O(g(n)), if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., there exist positive constant c and non-negative integer n_0 such that

$$t(n) \le c g(n)$$
 for every $n \ge n_0$

Examples:

- $100n+5 \in O(n^2)$
- 100n+5<=100n+n for all n>=n0 n0=5, c=101

Big-omega

Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

Establishing order of growth using the definition

Definition: A function t(n) is said to be in $\Omega(g(n))$, if t(n) is below and above by some constant multiple of g(n) for all large n, i.e., there exist positive constant c and non-negative integer n_0 such that

$$t(n) \ge c g(n)$$
 for every $n \ge n_0$

Examples:

•
$$n^3 \ge n^2$$
 for all $n \ge 0$

Big-theta

Establishing order of growth using the definition

Definition: A function t(n) is said to be in $\theta(g(n))$, denoted by $t(n) \in \theta(g(n))$ if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist positive constants c1 and c2 and non-negative integer n_0 such that

$$c2g(n) \le t(n) \ge c1 g(n)$$
 for every $n \ge n_0$

Examples:

• $n/3 \le n \le 2n$ for all $n \ge n0$ where c1=2 ,. C2=1/3 , n0=0

Some properties of asymptotic order of growth

If
$$t_1(n) \in O(g_1(n))$$
 and $t_2(n) \in O(g_2(n))$, then
$$t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

Then
$$t_1(n) \le c1g1(n)$$
 for all $n \ge n_1$
and $t_2(n) \le c2g2(n)$ for all $n \ge n_2$

$$n \ge \max[n1,n2]$$
 and $c3 = \max[c1,c2]$
 $t_1(n) + t_2(n) \le c1g1(n) + c2g2(n)$
 $\le c3g1(n) + c3g2(n) = c3[g1(n) + g2(n)]$
 $\le c3 \ 2 \max[g1(n) + g2(n)]$

Establishing order of growth using limits

order of growth of T(n) < order of growth of g(n)

$$\lim_{n\to\infty} T(n)/g(n) = -\frac{1}{2}$$

c > 0 order of growth of T(n) = order of growth of g(n)

 ∞ order of growth of T(n) > order of growth of g(n)

Examples:

• 10n

VS.

 n^2

- n(n+1)/2
- VS.

 n^2

Orders of growth of some important functions

- All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base a > 1 is
- All polynomials of the same degree k belong to the same class: $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0 \in \Theta(n^k)$
- Exponential functions a^n have different orders of growth for different a's
- order $\log n < \text{order } n^{\alpha} \ (\alpha > 0) < \text{order } a^n < \text{order } n! < \text{order } n^n$

Basic asymptotic efficiency classes

1	constant
log n	logarithmic
n	linear
$n \log n$	n-log-n
n^2	quadratic
n^3	cubic
2 ⁿ	exponential
n!	factorial

Time efficiency of nonrecursive algorithms

General Plan for Analysis

- Decide on parameter n indicating <u>input size</u>
- Identify algorithm's basic operation
- Determine worst, average, and best cases for input of size n
- Set up a sum for the number of times the basic operation is executed
- Simplify the sum using standard formulas and rules (see Appendix A)

Useful summation formulas and rules

$$\Sigma_{l \le i \le u} 1 = 1 + 1 + \ldots + 1 = u - l + 1$$
In particular,
$$\Sigma_{l \le i \le u} 1 = n - 1 + 1 = n \in \Theta(n)$$

$$\Sigma_{1 \le i \le n} i = 1 + 2 + ... + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$$

$$\sum_{1 \le i \le n} i^2 = 1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$$

$$\Sigma_{0 \le i \le n} a^i = 1 + a + ... + a^n = (a^{n+1} - 1)/(a - 1) \text{ for any } a \ne 1$$
In particular, $\Sigma_{0 \le i \le n} 2^i = 2^0 + 2^1 + ... + 2^n = 2^{n+1} - 1 \in \Theta(2^n)$

$$\begin{split} & \Sigma(a_i \pm b_i) = \Sigma a_i \pm \Sigma b_i & \Sigma c a_i = c \Sigma a_i & \Sigma_{l \leq i \leq u} a_i = \Sigma_{l \leq i \leq m} a_i + \\ & \Sigma_{m+1 \leq i \leq u} a_i \end{split}$$

Example 1: Maximum element

```
ALGORITHM MaxElement(A[0..n-1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n-1] of real numbers
//Output: The value of the largest element in A

maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] > maxval

maxval \leftarrow A[i]

return maxval
```

Example 2: Element uniqueness problem

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```

Example 3: Matrix multiplication

```
ALGORITHM MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

//Multiplies two n-by-n matrices by the definition-based algorithm

//Input: Two n-by-n matrices A and B

//Output: Matrix C = AB

for i \leftarrow 0 to n-1 do

C[i, j] \leftarrow 0.0

for k \leftarrow 0 to n-1 do

C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]

return C
```

Example 5: Counting binary digits

```
ALGORITHM Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation count \leftarrow 1

while n > 1 do

count \leftarrow count + 1

n \leftarrow \lfloor n/2 \rfloor

return count
```

It cannot be investigated the way the previous examples are.

Plan for Analysis of Recursive Algorithms

- Decide on a parameter indicating an input's size.
- Identify the algorithm's basic operation.
- Check whether the number of times the basic op. is executed may vary on different inputs of the same size. (If it may, the worst, average, and best cases must be investigated separately.)
- Set up a recurrence relation with an appropriate initial condition expressing the number of times the basic op. is executed.
- Solve the recurrence (or, at the very least, establish its solution's order of growth) by backward substitutions or another method.

Example 1: Recursive evaluation of *n*!

Definition: $n! = 1 * 2 * ... * (n-1) * n \text{ for } n \ge 1 \text{ and } 0! = 1$

Recursive definition of n!: F(n) = F(n-1) * n for $n \ge 1$ and F(0) = 1

```
ALGORITHM F(n)

//Computes n! recursively

//Input: A nonnegative integer n

//Output: The value of n!

if n = 0 return 1

else return F(n - 1) * n
```

Basic operation: F(n-1)*n

Recurrence relation: M(n) = M(n-1) + 1, M(0) = 0

Example 2: The Tower of Hanoi Puzzle

Recurrence for number of moves:

Tree of calls for the Tower of Hanoi Puzzle

Example 3: Counting #bits

ALGORITHM BinRec(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation

if n = 1 return 1

else return $BinRec(\lfloor n/2 \rfloor) + 1$

Fibonacci numbers

The Fibonacci numbers:

The Fibonacci recurrence:

$$F(n) = F(n-1) + F(n-2)$$

$$\mathbf{F}(0)=0$$

$$\mathbf{F}(1)=1$$

General 2nd order linear homogeneous recurrence with constant coefficients:

$$aX(n) + bX(n-1) + cX(n-2) = 0$$