Assuming again that E is a Hermitian space, observe that Proposition 17.1 also holds. We deduce the following corollary.

Proposition 17.2. Given a Hermitian space E, for any normal linear map $f: E \to E$, we have $\text{Ker}(f) \cap \text{Im}(f) = (0)$.

Proof. Assume $v \in \text{Ker}(f) \cap \text{Im}(f)$, which means that v = f(u) for some $u \in E$, and f(v) = 0. By Proposition 17.1, $\text{Ker}(f) = \text{Ker}(f^*)$, so f(v) = 0 implies that $f^*(v) = 0$. Consequently,

$$0 = \langle f^*(v), u \rangle$$

= $\langle v, f(u) \rangle$
= $\langle v, v \rangle$,

and thus, v = 0.

We also have the following crucial proposition relating the eigenvalues of f and f^* .

Proposition 17.3. Given a Hermitian space E, for any normal linear map $f: E \to E$, a vector u is an eigenvector of f for the eigenvalue λ (in \mathbb{C}) iff u is an eigenvector of f^* for the eigenvalue $\overline{\lambda}$.

Proof. First it is immediately verified that the adjoint of $f - \lambda$ id is $f^* - \overline{\lambda}$ id. Furthermore, $f - \lambda$ id is normal. Indeed,

$$(f - \lambda \operatorname{id}) \circ (f - \lambda \operatorname{id})^* = (f - \lambda \operatorname{id}) \circ (f^* - \overline{\lambda} \operatorname{id}),$$

$$= f \circ f^* - \overline{\lambda} f - \lambda f^* + \lambda \overline{\lambda} \operatorname{id},$$

$$= f^* \circ f - \lambda f^* - \overline{\lambda} f + \overline{\lambda} \lambda \operatorname{id},$$

$$= (f^* - \overline{\lambda} \operatorname{id}) \circ (f - \lambda \operatorname{id}),$$

$$= (f - \lambda \operatorname{id})^* \circ (f - \lambda \operatorname{id}).$$

Applying Proposition 17.1 to $f - \lambda id$, for every nonnull vector u, we see that

$$(f - \lambda \operatorname{id})(u) = 0$$
 iff $(f^* - \overline{\lambda} \operatorname{id})(u) = 0$,

which is exactly the statement of the proposition.

The next proposition shows a very important property of normal linear maps: eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proposition 17.4. Given a Hermitian space E, for any normal linear map $f: E \to E$, if u and v are eigenvectors of f associated with the eigenvalues λ and μ (in \mathbb{C}) where $\lambda \neq \mu$, then $\langle u, v \rangle = 0$.