阻尼振动实验 - 实验报告

トレセン学園高等部二年生 アドマイヤベガ 1

1 摘要

本实验的原理是阻尼振动和受迫振动的相关知识,意图使我们熟悉实验测量、数据处理和不确定度评估方法.实验通过测量不同大小阻尼力下的阻尼振动和受迫振动,验证理论公式,得到了和理论符合较为良好的结果.

2 实验原理

2.1 阻尼振动

刚体旋转时,设 θ 为角位移, β 为阻尼系数, ω_0 为固有频率,在本实验条件下只能得到欠阻尼情况下的结果,此时 $\beta<\omega_0$,有

$$\theta(t) = \theta_0 e^{-\beta t} \cos\left(\sqrt{\omega_0^2 - \beta^2} t + \varphi_0\right)$$
 (2.1)

振幅随时间以指数形式衰减. 通过测量振幅随时间的变化,我们可以计算出阻尼系数 β 和功率 因数 Q. 这里我使用的是 Origin Pro 软件直接进行对曲线进行拟合,得到 β . 而功率因数 Q 的理论计算方法为:

$$Q = \frac{2\pi E}{|\Delta E|} = \frac{2\pi \cdot k\theta_n^2/2}{k\theta_n^2/2 - k\theta_{n+1}^2/2} = \frac{2\pi}{1 - (\theta_{n+1}/\theta_n)^2} = \frac{2\pi}{1 - e^{-2\beta T}} \approx \frac{2\pi}{2\beta T} = \frac{\omega_0}{2\beta}$$
(2.2)

其中用到近似:阻尼系数较小,振动系统的总能量 E 仍然正比于振幅的平方.

2.2 受迫振动

受迫振动的运动方程和阻尼振动几乎没有区别,只有等号右侧多一项角频率为 ω 的驱动力 $\omega_0^2 A_D \cos(\omega t)$. 欠阻尼情况下,上述方程的解为

$$\theta(t) = \theta_0 e^{-\beta t} \cos\left(\sqrt{\omega_0^2 - \beta^2} t + \varphi_0\right) + \theta_m \cos(\omega t - \varphi)$$
(2.3)

这相当于之前的欠阻尼振动的解叠加上一个驱动力的解.显然在时间很长的情况下达到稳态振动,原来欠阻尼的部分衰减为零,只剩下驱动力的稳态振动.稳态振动的振幅与相位差有如下关系:

$$\theta_m = \frac{\omega_0^2 A_D}{\sqrt{(\omega_0^2 - \omega^2)^2 + 2(\beta \omega)^2}}, \quad \varphi = \arctan\left(\frac{2\beta \omega}{\omega_0^2 - \omega^2}\right)$$
 (2.4)

此时就能通过幅频和相频曲线来找到共振频率,共振时振幅 θ_m 最大、相位差 φ 为零. 通过测量固定阻尼下的受迫振动的幅频和相频曲线,有另外一个计算功率因数 Q 的公式:

$$Q \approx \frac{\omega_r}{|\omega_+ - \omega_-|} \tag{2.5}$$

其中 ω_r 为共振频率, ω_+ 和 ω_- 都是振幅为 $1/\sqrt{2}$ 倍最大振幅时的频率. 通过这个公式也能计算出功率因数 Q,对比之前的结果能够验证结果的正确性.

2.3 瞬态过程

针对瞬态过程,振幅随时间也是指数衰减关系,利用我们在阻尼振动实验中已经测出的阻尼系数 β ,可以将理论值和实验值做出的曲线进行对比,验证理论的正确性.

3 实验仪器及实验步骤

本实验使用波尔共振仪、手机录像,以及 Origin Pro 软件进行数据处理. 实验步骤为:

- (A) 测量阻尼振动振幅与时间关系并计算 $\beta \pm U_{\beta}$, ω_0 , Q.
- (B) 测量受迫振动幅频特性曲线和相频特性曲线,找到共振频率 (两条曲线的共振频率近似相等),利用幅频特性曲线,用另一公式计算 Q,验证正确性.
- (C) 测量共振频率下由平衡静止状态开始受迫振动的频率和时间关系曲线,与上一个实验结果比较.

4 实验数据处理

4.1 阻尼振动

表 1: 最小阻尼情况下的数据

序号	振幅 θ ₀ (°)	周期 T_d (s)	时间 (s)
1	163	1.5818	1.5818
11	152	1.5825	3.1643
21	142	1.5831	4.7474
31	131	1.5838	6.3312
41	121	1.5843	7.9155
51	113	1.5848	9.5003
61	105	1.5852	11.0855
71	96	1.5856	12.6711
81	89	1.5858	14.2569
91	82	1.5861	15.843
101	75	1.5863	17.4293
111	68	1.5865	19.0158
121	62	1.5865	20.6023
131	57	1.5865	22.1888
141	51	1.5865	23.7753

表	1:	续表
11	т.	洪水

序号	振幅 θ ₀ (°)	周期 T _d (s)	时间 (s)
151	47	1.5864	25.3617
161	42	1.5862	26.9479
171	37	1.5862	28.5341
181	33	1.5863	30.1204
191	29	1.5864	31.7068
201	25	1.5863	33.2931

其中"时间"一栏使用周期数据叠加得到. 将数据导入 Origin Pro 软件,用公式 $t=Ae^{B\theta}$ (在 Origin Pro 中选择函数为 Exp2PMod1 函数) 进行拟合, 得到如图所示的拟合图像:

图 1: θ-t数据和指数拟合曲线

根据 Origin Pro 的数据处理功能,得到 $\beta=0.053\pm0.001~\mathrm{s}^{-1}$, ω_0 的平均值为 $3.963~\mathrm{rad/s}$. ω_0 的不确定度由周期平均值 $ar{T}_d$ 的不确定度决定,而 $ar{T}_d$ 的不确定度来源于取平均值和测量误 差两部分:

$$\sigma_{\bar{T}} = \sqrt{\frac{\sum_{i=1}^{N} (T_i - \bar{T})^2}{N(N-1)}} = 3 \times 10^{-4} \text{ s}$$
 (4.1)

$$\sigma_T = 0.002 \text{ s}$$
 (4.2)

$$\sigma_T = 0.002 \text{ s}$$

$$U_{\bar{T}_d} = \sqrt{\sigma_T^2 + \sigma_{\bar{T}}^2} = 2 \times 10^{-3} \text{ s}$$

$$(4.2)$$

$$U_{\omega_0} = \sqrt{\left(\frac{\partial \omega_0}{\partial T_d} U_{T_d}\right)^2} = \frac{2\pi}{\bar{T_d}^2} U_{\bar{T_d}} = 5 \times 10^{-3} \text{ rad/s}$$

$$(4.4)$$

由此可以计算出 $Q = \omega_0/(2\beta) = 37.4$, Q 的不确定度为:

$$U_Q = \sqrt{\left(\frac{\partial Q}{\partial \beta} U_\beta\right)^2 + \left(\frac{\partial Q}{\partial \omega_0} U_{\omega_0}\right)^2} = 0.7 \tag{4.5}$$

也就是 $Q = 37.4 \pm 0.7$.

对于另外两种阻尼情况,重复上述步骤,得到如下数据:

		$s=20~\mathrm{mm}$			$s = \max$	
序号	振幅 θ _i (°)	周期 T _d (s)	时间 (s)	振幅 θ _i (°)	周期 T _d (s)	时间 (s)
1	147	1.5842	1.5842	153	1.5844	1.5844
2	123	1.5853	3.1695	117	1.5869	3.1713
3	103	1.5862	4.7557	89	1.5883	4.7596
4	86	1.5867	6.3424	68	1.5891	6.3487
5	72	1.587	7.9294	52	1.5898	7.9385
6	60	1.5879	9.5173	39	1.5901	9.5286
7	50	1.5874	11.1047	29	1.5901	11.1187
8	42	1.5872	12.6919	23	1.5904	12.7091
9	35	1.5871	14.279	18	1.5908	14.2999
10	29	1.5869	15.8659			
11	24	1.5868	17.4527			
12	20	1.5866	19.0393			

表 2: 更高阻尼情况下振动数据

将数据导入 Origin Pro 软件, 作出散点图像, 用同一公式 (Exp2PMod1) 拟合, 如图 2 所示:

图 2: 不同阻尼情况下的振动数据和拟合曲线

Origin Pro 给出这两种阻尼情况下的 β 值,分别为: s=20 mm 时 $\beta=0.1133\pm2\times10^{-4}$ s⁻¹; $s=\max$ 时 $\beta=0.1711\pm8\times10^{-4}$ s⁻¹. 计算得到两种情况的 Q,分别为: s=20 mm 时 Q=17.5; $s=\max$ 时 Q=11.6.

4.2 受迫振动

表 3: 受迫振动数据

	s = 20	0 mm			s = 1	max	
周期 T (s)	振幅 θ _i (°)	相差 (°)	频率 (rad/s)	周期 T (s)	振幅 θ _i (°)	相差 (°)	频率 (rad/s)
1.6491	51	34	3.81006	1.5896	49	90	3.95268
1.5853	80	90	3.96340	1.5773	48	100	3.98350
1.5932	79	80	3.94375	1.5643	46	110	4.01661
1.6018	77	70	3.92257	1.5505	42	120	4.05236
1.6113	72	60	3.89945	1.5346	38	130	4.09434
1.6229	65	50	3.87157	1.5171	33	140	4.14157
1.6373	57	40	3.83752	1.4919	27	150	4.21153
1.5765	77	100	3.98552	1.6026	48	80	3.92061
1.5672	73	110	4.00917	1.6161	46	70	3.88786
1.5577	67	119	4.03362	1.6322	42	60	3.84951
1.5442	58	130	4.06889	1.6511	38	51	3.80545
1.52514	47	140	4.11974	1.5953	49	85	3.93856
1.4941	32	149	4.20533	1.5831	49	95	3.96891
1.5837	81	91	3.96740	1.5882	49	91	3.95616
1.5851	81	89	3.96390	1.5903	49	89	3.95094
				1.5924	49	88	3.94573
				1.5867	49	92	3.95990
				1.5224	34	137	4.12715
				1.5264	35	135	4.11634

将数据导入 Origin Pro 软件,作出幅频 $(\theta$ - ω) 和相频 $(\varphi$ - ω) 的散点图像,如图 3 所示:

图 3: 幅频 / 相频曲线

其中标号为 1 的是 s=20 mm 的数据,标号为 2 的是 $s=\max$ 的数据.

通过观察两条曲线,得到:

- 1. 对于 s=20 mm, $\omega_r=3.966$ rad/s, $\omega_+=4.069$ rad/s, $\omega_-=3.838$ rad/s;
- 2. 对于 $s = \max$, $\omega_r = 3.953 \text{ rad/s}$, $\omega_+ = 4.122 \text{ rad/s}$, $\omega_- = 3.806 \text{ rad/s}$. 因此两种情况的 Q 值分别为 17.1 和 12.5,与之前的结果较好符合.

4.3 瞬态过程

调整仪器, 使得阻尼为 $s=20~\mathrm{mm}$ 的情况, 将电机调到共振状态, 关闭电机, 调整到平衡位置, 之后突然开启电机, 记录振幅随时间的变化, 得到数据:

1	<u></u>			1. 1. 12	
序号	振幅测量值 θ_i (°)	周期 (s)	时间 (s)	真实时间 (s)	理论值 (rad)
0	13	1.6734	1.6734	1.5441	13.00034547
1	24	1.6038	3.2772	3.1479	24.29898654
2	33	1.5937	4.8709	4.7416	33.66614099
3	41	1.5902	6.4611	6.3318	41.47014478
4	47	1.5886	8.0497	7.9204	47.9815058
5	53	1.5876	9.6373	9.508	53.41718994
6	57	1.587	11.2243	11.095	57.95645574
7	61	1.5865	12.8108	12.6815	61.74761008
8	64	1.5861	14.3969	14.2676	64.91430971
9	67	1.5859	15.9828	15.8535	67.5598351
10	69	1.5857	17.5685	17.4392	69.77001094
11	71	1.5855	19.154	19.0247	71.61652048
12	73	1.5854	20.7394	20.6101	73.15932581
13	74	1.5853	22.3247	22.1954	74.44839319
14	75	1.5852	23.9099	23.7806	75.52546591
15	76	1.5852	25.4951	25.3658	76.42546976
16	77	1.5851	27.0802	26.9509	77.17747123
17	77	1.585	28.6652	28.5359	77.80581591
18	78	1.585	30.2502	30.1209	78.33087372
19	78	1.5849	31.8351	31.7058	78.76959761
20	79	1.585	33.4201	33.2908	79.13622963
21	79	1.5849	35.005	34.8757	79.44257729
22	80	1.5849	36.5899	36.4606	79.69857063

表 4: 瞬态过程数据

因为实验开始时仪器还未正常开始测量,所以要对时间数据进行修正,真实时间并不是周期数据的简单叠加,而是要使用之前已经得到的阻尼系数 β 解出最开始的时间。利用第一组数据,在振幅为 13° 时,有如下方程:

$$13^{\circ} = \theta_{\text{max}}(1 - e^{-\beta t}) = 81^{\circ}(1 - e^{-\beta t}) \tag{4.6}$$

解得真实时间 t = 1.5441 s,所以对剩下的时间数据都做一个平移,得到真实时间数据. 将数据

导入 Origin Pro 软件,作出振幅随时间变化的散点图,同时将理论值 $\theta_i = \theta_{\max}(1 - e^{-\beta t})$ 画在同一张图中,如图 4 所示:

图 4: 瞬态过程数据和理论曲线

可以看出, 理论与实验符合得相当好.

5 分析与讨论

5.1 课堂习题

(A.0) 说明 β 的单位 (量纲) 是什么?

显然 $\dim \beta = T^{-1}$,单位是 s^{-1} .

(B.1) 证明欠阻尼下幅频和相频的共振频率近似相等.

两种曲线的共振频率分别为 $\omega_{\theta}=\sqrt{\omega_{0}^{2}-\beta^{2}}$ 和 $\omega_{\varphi}=\omega_{0}$, 在欠阻尼情况下 $\beta\ll\omega_{0}$, 所以 $\omega_{\theta}\approx\omega_{\varphi}$, 近似相等.

(B.2) 如何判断受迫振动达到稳态?

当仪器上显示的驱动力周期和振动周期相等时, 受迫振动达到稳态.

(C.3) 振动系统达到稳态时,求电机在一个周期内提供的平均输入功率的表达式 (用 θ_m , ω_0 , k 和 Q 表示).

在稳态时,振动系统的能量不再随时间变化,所以输入功率等于阻尼力的功率. 阻尼力功率为 $P_d = 2k\beta\theta_m^2\sin^2(\omega_0t - \varphi)$ (k 为弹簧劲度),故平均功率为:

$$P_{\rm in} = \frac{1}{T} \int_0^T P_d dt = k\beta \theta_m^2$$
 (5.1)

5.2 不足之处和改进方案

在我的实验中有一些不足之处:

1. 用 Origin 做数据的拟合时,并未考虑将 $\sigma_T = 0.002 \text{ s}$ 的这部分不确定度考虑进 β 的不确定 度中,这会造成一个不可忽视的影响,因为本身 Origin 给出的不确定度就是 10^{-3} s 量级.

下面我们尝试进行估计:

$$U_{\beta} = \sqrt{\left(\frac{\partial \beta}{\partial T_d} U_{T_d}\right)^2 + 0.001^2} = 0.005 \text{ s}^{-1}$$
 (5.2)

这样就能得到更加准确的 β 的不确定度.

2. 在瞬态过程中,由于仪器的误差,我们并不能保证实验开始时的振幅就是仪器的显示值,这和最开始的周期测量不准的原因是一样的,因为第一周期开始时仪器还没有开始反应,所以理论上来说不止要对时间进行修正,还要对振幅进行修正。

我个人的建议: 做一个更小的阻尼,比如把 $s=20~\mathrm{mm}$ 改成 $s=10~\mathrm{mm}$,等到仪器开始稳定工作之后再开始记录数据,这样既保证了实验数据的总量不小于 $15~\mathrm{4}$,也能够更准确的记录曲线.

3. 考虑使用 python 进行幅频曲线或者相频曲线的拟合. 我们以 $s=20~\mathrm{mm}$ 的阻尼所对应的幅频曲线为例,用 python 进行拟合,所使用的代码如下:

```
from numpy import sqrt
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['LXGW WenKai'] # 解决中文不显示问题
plt.rcParams['axes.unicode_minus'] = False # 解决负数坐标显示问题
# 从终端读取输入数据
x = list(map(float, input(" 请输入 x 的值(用空格分隔): ").split()))
y = list(map(float, input(" 请输入 y 的值(用空格分隔): ").split()))
x = np.array(x)
y = np.array(y)
# 对 x 和 y 进行排序
sorted_indices = np.argsort(x)[::-1]
x = x[sorted_indices]
y = y[sorted_indices]
# 变量一定要放在第一个位置, 定义我们要使用的函数.
def func(x, a, b, c):
   return a*b/sqrt((a**2-x**2)**2+4*c**2*x**2)
popt, pcov = curve_fit(func, x, y)
print(popt)
```

```
print(pcov)
# popt[0], popt[1], popt[2] 分别代表参数 a, b, c
y2 = func(x, popt[0], popt[1], popt[2])

plt.scatter(x, y, marker='x', lw=1, label='原始数据')
plt.plot(x, y2, c='r', label='拟合曲线')
plt.legend() # 显示标签
plt.show()

将我们的数据输入,得到终端输出结果为:

[ 3.96031646 18.80302683 0.11716302]
[[1.00527387e-06 1.20679138e-05 1.10673460e-07]
[1.20679138e-05 4.17491847e-02 2.98762905e-04]
[1.10673460e-07 2.98762905e-04 2.28624662e-06]]
```

同时输出图像如下:

图 5: 用 python 进行拟合的结果

这一输出结果效果较好,推荐放到之后的课堂教学中讲解.

6 原始数据截图

	卜阻尼(无永磁铁)			A.5 测里2个	中阻尼: s = 20 m					
序号	振幅θi (°)	周期Td (s)	时间(s)	序号		s = 20 mm			s = max	
1	163	1.5818	1.5818	11, 9	振幅θi (°)	周期Td (s)	时间(s)	振幅θi (°)	周期Td(s)	时间(s)
11	152	1.5825	3.1643	1	147	1.5842	1.5842	153	1.5844	1.5844
21	142	1.5831	4.7474	2	123	1.5853	3.1695	117	1.5869	3.1713
31	131	1.5838	6.3312	3	103	1.5862	4.7557	89	1.5883	4.7596
41	121	1.5843	7.9155	4	86	1.5867	6.3424	68	1.5891	6.3487
51	113	1.5848	9.5003	5	72	1.587	7.9294	52	1.5898	7.9385
61	105	1.5852	11.0855	6	60	1.5879	9.5173	39	1.5901	9.5286
71	96	1.5856	12.6711	7	50	1.5874	11.1047	29	1.5901	11.1187
81	89	1.5858	14.2569	8	42	1.5872	12.6919	23	1.5904	12.7091
91	82	1.5861	15.843	9	35	1.5871	14.279	18	1.5908	14.2999
101	75	1.5863	17.4293	10	29	1.5869	15.8659			
111	68	1.5865	19.0158	11	24	1.5868	17.4527			
121	62	1.5865	20.6023	12	20	1.5866	19.0393			
131	57	1.5865	22.1888	13						
141	51	1.5865	23.7753	14						
151	47	1.5864	25.3617	15						
161	42	1.5862	26.9479							
171	37	1.5862	28.5341		β	0.1133		β	0.1711	
181	33	1.5863	30.1204		Q	17.4763298		Q	11.55604893	
191	29	1.5864	31.7068							
201	25	1.5863	33.2931							
β	0.053									
Q	37.38858787									
T	1.585385714									
ω_0	3.963190314									

图 6: 实验原始数据截图 (1)

		s =	s = 20 mm			s = max			
序号	周期T (s)	振幅θi (°)	相差 (°)	频率(rad/s)	周期T (s)	振幅θi (°)	相差 (°)	频率(rad	
1	1.6491	51	34	3.810069315	1.5896	49	90	3.952683	
2	1.5853	80	90	3.963404597	1.5773	48	100	3.983506	
3	1.5932	79	80	3.943751762	1.5643	46	110	4.016611	
4	1.6018	77	70	3.922577917	1.5505	42	120	4.052360	
5	1.6113	72	60	3.899450945	1.5346	38	130	4.0943472	
6	1.6229	65	50	3.871578845	1.5171	33	140	4.1415762	
7	1.6373	57	40	3.837528435	1.4919	27	150	4.211532	
8	1.5765	77	100	3.985528263	1.6026	48	80	3.920619	
9	1.5672	73	110	4.009178986	1.6161	46	70	3.887869	
10	1.5577	67	119	4.033629908	1.6322	42	60	3.8495192	
11	1.5442	58	130	4.068893477	1.6511	38	51	3.805454	
12	1.52514	47	140	4.119743307	1.5953	49	85	3.938560	
13	1.4941	32	149	4.205331174	1.5831	49	95	3.968912	
14	1.5837	81	91	3.967408794	1.5882	49	91	3.956167	
15	1.5851	81	89	3.963904679	1.5903	49	89	3.950943	
16					1.5924	49	88	3.945733	
17					1.5867	49	92	3.959907	
18					1.5224	34	137	4.1271579	
19					1.5264	35	135	4.116342	
	ω0	3.9657			ω0	3.9526			
	ω+	4.0689			ω+	4.1217			
	ω-	3.8375			ω-	3.8055			
	Q	17.1379			Q	12.5003			

图 7: 实验原始数据截图 (2)

s = 20 mm					
· 序号	振幅测量值θi (°)	周期(s)	时间(s)	真实时间(s)	理论值(rad)
0	13	1.6734	1.6734	1.5441	13.00034547
1	24	1.6038	3.2772	3.1479	24.29898654
2	33	1.5937	4.8709	4.7416	33.66614099
3	41	1.5902	6.4611	6.3318	41.47014478
4	47	1.5886	8.0497	7.9204	47.9815058
5	53	1.5876	9.6373	9.508	53.41718994
6	57	1.587	11.2243	11.095	57.95645574
7	61	1.5865	12.8108	12.6815	61.74761008
8	64	1.5861	14.3969	14.2676	64.91430971
9	67	1.5859	15.9828	15.8535	67.5598351
10	69	1.5857	17.5685	17.4392	69.77001094
11	71	1.5855	19.154	19.0247	71.61652048
12	73	1.5854	20.7394	20.6101	73.15932581
13	74	1.5853	22.3247	22.1954	74.44839319
14	75	1.5852	23.9099	23.7806	75.52546591
15	76	1.5852	25.4951	25.3658	76.42546976
16	77	1.5851	27.0802	26.9509	77.17747123
17	77	1.585	28.6652	28.5359	77.80581591
18	78	1.585	30.2502	30.1209	78.33087372
19	78	1.5849	31.8351	31.7058	78.76959761
20	79	1.585	33.4201	33.2908	79.13622963
21	79	1.5849	35.005	34.8757	79.44257729
22	80	1.5849	36.5899	36.4606	79.69857063

图 8: 实验原始数据截图 (3)