PATENT SPECIFICATION

(11) 1221324

NO DRAWINGS

(21) Application No. 7601/68 (22) Filed 16 Feb. 1968

(31) Convention Application No. 2386 (32) Filed 17 Feb. 1967 (31) Convention Application No. 11671 (32) Filed 18 Aug. 1967 in

(33) Switzerland (CH)

100

(45) Complete Specification published 3 Feb. 1971

(51) International Classification C 07 d 41/08

(52) Index at acceptance C2C 1G5B 1G6B4 1G6B5 1G6B6 220 221 225 226 227 22Y 29X 29Y 313 31Y 322 32Y 338 339 456 45Y 620 650 660 779 B4A4 B4H B4M NH

(54) NEW PROCESSES FOR THE PRODUCTION OF BENZAZEPINE DERIVATIVES

We, J. R. GEIGY A.G., a Body Corporate organised according to the laws of Switzerland, of 215, Schwarzwaldailee, Basle, Switzerland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:

The present invention concerns a new process for the production of tetrahydro-azepine derivatives and their addition salts with inorganic or organic acids.

Up to the present, no economically work-able process for the production of 2,3,4,5-tetrahydro - 1H - 3 - benzazepines which, 15 tertahydro - 1H - 3 - cenzazepunes win..., in the azepine ring, have no substituents or, e.g. have hydrocarbon radicals as C-sub-stituents, have previously been disclosed. Although the unsubstituted 2,3,45-terta-20 hydro-1H:3-benzazepine is obtained in good

 Nydro-In-3-conzazepine is obtained in good purity by high pressure hydrogenation of 1,2-phenyldiacetonitrile in ammonia using a nickel catalyse [F. Ruggli et al., Helv. Ch., Acts. 1994 (1935) and 20, 925—927 (1937)]
 the control of the C-substituents in the azepine ring has not been disclosed and would be unconomical. In addition, the starting materials required therefor would be extraordinarily difficult to obtain.

However, as such tetrahydro-3-benzazepines have become of considerable importance in the last few years, it became necessary to 35 develop a simple and economically workable process for the production of these and similar compounds.

According to the present invention 2,3,4,5tetrahydro - 1H - 3 - benzazepines of general 40 formula I

R₁ and R₂, independently of each other, represent a hydrogen atom, an alkyl group containing maximally 6 carbon atoms, a cycloalkyl group having from 3 to 7 carbon atoms as ring members or a phenyl group optionally substituted by a chlorine, fluorine or bromine atom and/or by an alkyl group containing maximally

6 carbon atoms, Re and Re have the meanings given above for R, and R, or together, they represent a trimethylene or tetramethylene radical,

R_D represents a hydrogen or a halogen atom, and

R., represents a hydrogen, chlorine, fluorine or bromine atom, an alkyl group containing maximally 6 carbon atoms or a trifluoro methyl group,

provided that no more than two of the symbols R₁, R₂, R₃ and R₄ may simultaneously represent a cyclosiky group or an optionally substituted phonyl group, are produced by treating a phenylethylamine derivative of general formula II

2

wherein the symbols

R₁ to R₂ have the meanings given above,

and
X represents a fluorine, chlorine or bromine
atom, or an addition sait of such a compound with an inorganic or organic acid,
with a brown of the companie of the
with a brown of the companie of the
the can product formed of formula I, and
if desired converting the compound of
general formula I so obtained into its
general formula I so obtained into its

if desired converting the compound or general formula I so obtained into its acid addition salt with an inorganic or organic acid.

As halogen, X is preferably chlorine or

As halogen, X is bromine.

Lewis acids which can be used in the process according to the invention are, e.g.: antimony (V)-chioride, iron-(III)-chloride, tellurium-(II)-chloride, stamic-(IV)-chloride, tellurium-(IV)-chloride, tellurium-(IV)-chloride, zinc chloride bismuth-(III)-chloride, zinc chloride

and, in particular, aluminium chloride, as well as corresponding bromides and iodides, also borontrifinoride or borontrichloride, hydrogen fluoride, sulphuric acid, phosphorus pentoxide or polyphosphoric acid. The Lewis acid is usually added in an amount of 0.5—acid is usually acid in a acid is usually acid in a acid in acid in a acid in acid in acid in acid in a acid in ac

5 mol %, preferably 1—1.5 mol % to the reaction mixture. The temperatures for reaction with the Lewis acid are from 100° to 300° C, and preferably from 150° to 250° C.

The tetrahydro-benzazepines are isolated by adding a base to the reaction mixture, preferably an inorganic base, e.g. an alkali bydroxide such as sodium hydroxide, potassium hydroxide, or an alkaline earth and the state of the

The reaction of a compound of general formula II and a Lewis acid does not require a solvent or diluent though for example mirmethane, nitrobenzene and o-dichloro-persone may be employed as such.

so a sovern or mineri mongi for example intrometane, nitroberazen and o-dichlorobenzene may be employed as such. Starting materials of general formula II may be obtained e.g. by adding a hydrogen halide in a known manner to an aziridine derivative of general formula III

wherein R, to R, have the meanings given in formula I.

Compounds of general formula III can be obtained in their turn according to the British Patent Specification No. 692,368 and

British Patent Specification No. 692,368 and according to Herbert Hestian, Ann. 566, p. 238—239, by adding alkylene imines to styrenes in the presence of an alkali metal.

The process according to the invention enables 2,3,4,5-ternhydro-IH-3-benzazepines to be produced in good yield and high purity in a simple and economical way. It has a particular advantage in that the starting enable acceptage of the process of

In muerials necessary are easily accessible.

Some of the 2,3,4,5 - textshydro - Hi3-bemazerpines which can be produced according to the invention are known (P. Ruggies
of al. loc. cit). Both the known and the new
compounds of general formula I are very
participations of the production of
pharmaceuticals.

Compounds of general formula I are used eg as intermediate production of N-guanidinosallyl derivatives which have antihyperensive properties, and the unsubstituted 2,3,4,5 - tetrahydro - IH - 3-benzazepine compound is used as intermediate for the production of aryfulphonyl ureas having a hypoglyraemic action (only

antidiabetics).

The hitherto unknown 7-chloro-2,3,4,5retrahydro - 1H - 3 - benzazepine and the
salts thereof, which are embraced by general
formula I, have an anorexigenic action on

oral or parenteral administration.

If desired, the 23,4,5 textrahydro - 1Hbenzapines obtained by the process according
to the invention, may be converted into their
addition salts in the usual manner with inorganic or organic acids. For example, the
acid desired as salt component or a solution
thereof is added to a tolution of 7-chlor2,3,4,5 textrahydrod and 1-preferably, organic
and organic acids. For example, the
acid desired as salt component or a solution
thereof is which the salt has a low solubility
are chosen so that the salt can be isolated by
filtration. Such solvents are, e.g. accrose,
intrahydrody the preferably components of the
methanol/distriby ether, thanol/distriby thenmethanol/distriby ether, standol/distriby then-

methanol/distriys energy, contany/dressylvester or distriys elists or distribly elists. Fore base, a pharmaceutically acceptable add addition sair can be used in the preparation of mediciaments, it., sails with 1 those actists the anions of which are non-toxic in the normal dosages. In addition it is advantageous if the sairs to be used as mediciaments represented by the control of the control

benzazepine.

The new active substances may be administered orally, rectally or parenterally, The daily dosages of the free bases or of pharmaceutically acceptable salts thereof vary

between 25 and 200 mg for adult patients. Suitable dosage units such as dragées (sugar coated tablets), tablets, suppositories or ampoules, preferably contain 5—50 mg of the sactive substance according to the invention of

a pharmaceutically acceptable salt thereof. Dosage units for oral administration preferably contain between 1-90% of 7-chloro-

2,3,4,5-tetrahydro-1H-3-benzazepine or 10 pharmaceutically acceptable salt thereof as active substance. They may be produced by combining the active substance with, e.g. solid, pulverulent carriers such as factose. saccharose, sorbitol, mannitol; starches such as 15 potato starch, maize starch or amylopectin, also laminaria powder or citrus pulp powder; cellulose derivatives or gelatine, optionally with the addition of lubricants such as magnesium or calcium stearate or polyethylene 20 glycols, to form tablets or dragge cores. The latter are coated, e.g. with concentrated sugar

solutions which can also contain, e.g. gum arabic, talcum and/or titanium dioxide with a lacquer dissolved in easily volatile 25 organic solvents or mixtures of solvents. Dycstuffs can be added to these coatings, e.g. to

distinguish between varying dosages of active

Other suitable dosage units for oral 30 administration are hard gelatine capsules and also soft closed capsules made of gelatine and a softer such as glycerin. The hard gelatine capsules preferably contain the active sub-stance as a granulate, e.g. in admixture with 35 fillers such as maize starch and/or lubricants such as talcum or magnesium stearate and, optionally, stabilisers such as sodium meta-bisulphite (Na₂S₂O₃) or ascorbic acid. In soft capsules, the active substance is preferably dissolved or suspended in suitable liquids such as liquid polyethylene glycols, to which stabilisers can also be added.

Examples of dosage units for rectal administration are suppositories which consist of a combination of the active substance or a suitable salt thereof with a fatty foundation, or also gelatine rectal capsules which contain a combination of the active substance or a suitable salt thereof with polyethylene glycols. Ampoules for parenteral, particularly intra-muscular administration, preferably contain a water soluble salt of the active substance in a concentration of, preferably, 0.5—5%, in aqueous solution, optionally together with suitable stabilisers and buffer substances.

The following prescriptions further illus-trate the production of tablets and dragées: a) 250 g of 7-chloro-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride are mixed with 60 175.80 g of lactose and 169.70 g of potato starch, the mixture is moistened with an alcoholic solution of 10 g of stearic acid and

granulated through a sieve. After drying, 160 g of potato starch, 200 g of talcum, 2.50 g of s or possess starcn, 200 g of talcum, 2.50 g of magnesium stearate and 32 g of colloidal

is pressed into 10,000 tablets each weighing 100 mg and containing 25 mg of active substance. If desired, the nablets can be grooved for better adaptation of the dosage. b) A granulate is produced from 250 g of 7chloro - 2,3,4,5 - tetrahydro - 1H - 3 - benzazepine hydrochloride, 175.90 g of lactose and the alcoholic solution of 10 g of stearic acid. After drying, the granulate is mixed with 56.60 g of colloidal silicon dioxide, 165 g of talcum, 20 g of potato starch and 2.50 g of magnesium stearate and the mixture is pressed into 10,000 dragée cores. These are then coated with a concentrated syrup made from 502.28 g of crystallised saccharose, 6 g of shellac, 10 g of gum arabic, 0.22 g of dye sruff and 1.5 g of titanium dioxide and dried. The dragees obtained each weigh 120 mg and contain 25 mg of active substance.

silicon dioxide are mixed in and the mixture

The following examples illustrate the production of compounds of general formula I according to the process of the present invention. The temperatures are given in degrees Centigrade.

EXAMPLE 1. a) 389 g of N-[(2-chloroethyl)-phenylethylamine]-hydrochloride are finely pulverised, mixed with 470 g of aluminium chloride and the mixture is slowly heated in an oil bath to 180° (bath temperature) and kept at this temperature for 12 hours. After cooling to about 100°, the melt is poured onto ice. 2000 ml of concentrated, aqueous sodium hydroxide solution are added to this stirred solution and, after the precipitate has dissolved, it is ex-tracted with ether. The ethereal solution is dried over magnesium sulphate/potassium carbonate, the drying agent is filtered off and the ether is evaporated. The residue is fractionated in vacuo. The 2,3,4,5-tetrahydro-

His-denizacjine obtained boils at 65°/0.1

Torr (M.P. 10°); n₀° =1.565.

The hydrochloride melts at 248—250°.

The starting material N-[(2-chlorocthy)-phenylethylamine]-hydrochloride is obtained as follows:

b) 900 ml of styrene are added dropwise while stirring to 745 ml of ethylene imine and 9 g of metallic sodium; 100 ml of the styrene are added quickly whilst the remaining 800 ml are added so that the temperature of the reaction mixture is maintained at a temperature of from 40-45°. On completion of the dropwise addition, the mixture is stirred overnight at room temperature. The unreacted sodium is removed by mechanical means and the excess ethylene imine is distilled off under reduced pressure. The residue is fractionated in vacuo. The 1-phenyl-2-(N-aziridinyl)-ethane so obtained boils at 48°/0.1 Torr; n_D²⁰=1.5205.

c) 500 ml of methanol are stirred and, saturated with hydrogen chloride in an ice bath. 100 g of 1-phenyl-2-(N-aziridinyl)- 130

ethane dissolved in 100 ml of methanol are added dropwise at a temperature of 10-15°. The solution is then evaporated to dryness in

yacno and the residue is dried in a drying

chamber. The N - [(2 - chloroethyl)phenylethyl-amine]-hydrochloride formed melts, when recrystallised from ethanol/

Example 2.

10 a) 234 g of N-(2-chloroethyl)-8-methyl-phenylethylamine hydrochloride are heated for 15 hours at 170° with 200 g of aluminium chloride. The reaction mixture is poured onto through the still hot, and the mixture is poured albaine with 2000 ml of 30% aqueous sodium hydrogide solution. A brown oil separates. The alkaline solution is extracted several times with ether. The combined extracts are dried over potassium carbonate/

tracts are anned over potassium caroonate/
or magnesium sulphate, the ether is distilled off
and the oily residue is fractionated. The 5methyl - 2,34,5 - tertahydro - 1H - 3 - benzazepine so obtained boils at 72° under 0.5
Torr (n₀²⁰=1,5580). 1 orr (no = 1.538).
 b) 281 g of phenyl-1-methyl-2-(1'-aziridinyl)-ethane, (produced according to example 1b) from a-methyl styrene and ethylene imine)

are added to 800 ml of ethyl alcohol which has been saturated with hydrogen chloride. 30 The temperature of the reaction mixture rises to 30° and a crystalline precipitate is formed. The precipitation is completed by the addition of diethyl ether. The precipitate is filtered off and washed several times with ether. The N-

35 [(2 - chloroethyl) - β - methyl - phenylethyl-amine]-hydrochloride formed melts at 178—

a) 120 g of N-((2-chloroethyl)-p-chlorophenylethylamine)-hydrochloride are finely
pulverised, the powder is mixed with 133 g of
aluminium chloride, the mixture is slowly
heated in an oil tash while stirring to a temperature of 170-180° (bath temperature) and 45 then kept for 12 hours at this temperature. After cooling to 100°, the melt is poured onto ice. 2.5 litres of concentrated aqueous sodium hydroxide solution are then added to the

solution formed while stirring and, after the 50 precipitate has dissolved, the solution is extracted with ether. The ethereal solution is dried over magnesium sulphate/potassium carbonate and concentrated. The residue is fractionated in vacuo. The 7-chloro-2,3,4,5-

55 tetrahydro-1H-3-benzazepine obtained boils at 110—115°/0.1 Torr; n₀^{**}=1.5765.

When recrystallised from acetonitrile, the

hydrochloride melts at 171-173°.

The starting substance, N-[(2-chloroethyl)-p-chlorophenylethylamine]-hydrochloride, is

p-chlorophenyiethylaminej-nydrochiotice; is produced as follows: b) 138 g of freshly distilled 4-chlorostyrene are added dropwise to 200 g of dry ethylene imine and 5 g of metallic sodium, the addition being made while stirring; 30 ml of the styrene are quickly dropped in whilst the remainder is so added that the temperature of the reaction mixture does nor exceed 40° On completion of the dropwise addition, the mixture is stirred overnight at room temperature. Any unreacted sodium is removed by mechanical means and the excess ethylene imine is distilled of under reduced pressure. The residue is fractionated under high vacuum. The 1- (p - chioro - phenylethyl)-aziridine obtained boils at 93°/0.7 Torr; nn*0=1.5357.

c) 500 ml of methanol are stirred in an ice bath and saturated with hydrogen chloride. 140 g of the aziridine obtained according to b) in 100 ml of methanol are added dropwise at a temperature of 10—15°. The solution is at a temperature of 10—15°. The solution is then concentrated to dryness and the residue is dried in vacuo at 60°. The N-[(2-chloro-chly!) - p - chloro - phenylethylamine]-hydrochloride formed melts, when recrystal-lised from accumitrile, at 189—191°.

EXAMPLE 4.

14 g of polyphosphoric acid are heated to 150° and 1 g of N-(β-chloro-β-phenylethyl)-phenylethylamine]-hydrochloride is added in portions. On completion of the addition, the whole is kept for half an hour at 150°. The water is acpt for that an nour at 150. If a clear solution is poured onto 15 g of ice whereupon a precipitate is formed. The mixture is made alkaline with 30% NaOH while cooling and the oil which separates is taken up in methylene chloride. After distilling off up in menyiene chioride, anter distinling on the methylene chloride, the 1-phenyl-2,3,4,5-ternalydro-1H-3-benzazepine is distilled under high vacuum at 140—150°.

EXAMPLE 5. The phenylethylamine-hydrochlorides listed in the first column of the following table are obtained in a manner analogous to that de-

obtained in a manner analogous to that do-scribed in examples 1 to 4 from azidin to derivatives according to the British Patent Specification No. 692,368 and according to Herbert Bestian Ann., 566, p. 238—239. The 2,3,4,5 tetrahydro 1H - 3 benzazepine 110 derivatives listed in the third column are obtained by the process according to the in-

phenylethylamine hydrochloride	M.P.	2,3,4,5-tetrahydro-1H-3- benzazepine	physical data
N-[(1'-methyl-2'-chloro- ethyl)-phenylethylamine]- hydrochloride	160—165°	2-methyl-2,3,4,5-tetrahydro- 1H-3-benzazapine	B.P.60°/0.2 Torr
N-[(β-chloro-β-phenylethyl)- phenylethylamine] hydrochloride	168—170°	1-phenyl-2,3,4,5-tetrahydro- 1H-3-benzazepine	B.P. 140—150°/ 0.01 Torr n _D ²⁰ =1.4670
N-[(2-chlorocyclohexyl)- phenylethylamine]-hydro- chloride	165—167°	2,3,4,4a,5,6,7,11b-octahydro- 1H-dibenz[b,d]azepine	B.P. 150—155°/ 0.01 Torr
N-[(2'-chloroethyl)-x- methylphenylethylamine]- hydrochloride	149—151°	4-methyl-2,3,4,5-tetrahydro- 1H-3-benzazepine	B.P. 64°/0.2 Torr, np ⁸⁰ =1.5507
N-[(2'-chloroethyl)-β- methyl-4-isopropylphenyl- ethylamine]-hydrochloride	184—186°	5-methyl-8-isopropyl-2,3,4,5- tetrahydro-1H-3-benzazepine	B.P. 71—72°/ 0.2 Torr np ¹⁰ =1.5554

WHAT WE CLAIM IS: -

1. Process for the production of 2,3,4,5tetrahydro-1H-3-benzazepines and derivatives thereof having the general formula I

process comprises treating a correspondingly 30 substituted phenethylamine derivative having the general formula II

R1 and R2 independently of each other, represent a hydrogen atom, an alkyl group containing maximally 6 carbon atoms, a cycloalkyl group having from 3 to 7 carbon atoms as ring members or a phenyl group optionally substituted by a chlorine, fluorine or bromine atom and/or by an alkyl group containing

maximally 6 carbon atoms, R, and R, have the meanings given above for R, and Re or together, they represent a trimethylene or tetramethylene radical. R, represents a hydrogen or a halogen

atom, and R., represents a hydrogen, chlorine, fluorine or bromine atom, an alkyl group con-taining maximally 6 carbon atoms or a

trifluoro methyl group provided that no more than two of the

symbols R₁, R₂, R₄ and R, may simultaneously represent a cycloalkyl group or an optionally substituted phenyl group, which

X represents a chlorine, fluorine or bromine 35 atom, or an acid addition salt thereof, with a Lewis acid at a temperature of from 100 to 300° C and substantially isolating the desired 2,3,4,5 - tetrahydro - 1H - 3 - benzazepine or derivative thereof.

2. Process as claimed in claim 1 wherein X represents a chlorine or bromine atom.

3. Process as claimed in claim 1 or 2 wherein the Lewis acid is aluminium chloride.

4. Process as claimed in any one of claims 1 to 3 wherein the Lewis acid is present during the reaction in an amount of from 0.5 to 5.0 mol % of the reaction mixture.

5. Process as claimed in claim 4 wherein the Lewis acid is present during the reaction in an amount of from 1.0 to 1.5 mol % of the reaction mixture.

6. Process as claimed in any one of claims 1 to 5 wherein the reaction is effected at a temperature of from 150 to 250° C.

7: Process as claimed in any one of claims 1: Process as camera in any one of the to 6 wherein the 2,3,4,5-ternahydro-1H-3-benzazepine, or derivative thereof, thus obtained is converted into a pharmaceutically acceptable acid addition salt thereof.

8. Process as claimed in any one of claims 1 to 7 wherein one of the symbols R, or R,

- represents a halogen atom.

 9. Process as claimed in claim 8 wherein 10 the halogen atom is a chlorine atom.
- 10. Process as defined in claim 1 substantially as hereinbefore described with reference
- tiany as neremotrore assertion with reference to any one of the examples 1, 2 and 5. 11. Process as defined in claim 1 substan-tially as hereinbefore described with reference to example 3.
 - 12. Process as defined in claim 1 substantially as hereinbefore described with reference
- to example 4.

 13. 2,3,4,5 tetrahydro 1H 3 benzazepine and derivatives thereof having the general formula I and the pharmaceutically acceptable acid addition saits thereof whenever prepared by a process as claimed in any one of the foregoing claims 1 to 9. 14. 7 - Chloro - 2,3,4,5 - tetrahydro - 1H-

3-benzazepine. 15. The pharmaceutically acceptable scid addition salts of 7-chloro-2,3,4,5-tetrahydro-

1H-3-benzazepine.
16. 7 - Chloro - 2,3,4,5 - tetrahydro - 1H-3-benzazepine hydrochloride.

3-benzazepine systrochionuc.

17. Process for the production of 7-chloro2,3,4,5 - ternshydro 1 H - 3 - benzazepine
comprising treating a substituted phenylethylamine of the formula II laid out in claim 1 in amine or the formula it has out in claim I in which R₁, R₂, R₄, R, and R, represent hydrogen and R₄ represents chlorine in the 7-position; or an acid addition salt thereof with a Lewis acid at a temperature of from 100° to 300° C and isolating the benzazepine

so formed.

18. Pharmaceutical composition comprising 7 - chloro - 2,3,4,5 - tetrahydro - 1H - 3-benzazzpine or a pharmaceutically acceptable acid addition salt thereof together with a pharmaceutically acceptable diluent or carrier thereof.

19. Pharmaceutical composition comprising a compound as claimed in claim 13 together with a pharmaceutically acceptable diluent or carrier therefore.

W. P. THOMPSON & CO., 12, Church Street, Liverpool, L1 3AB, Chartered Patent Agents.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Sps. 1971.
Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.