procedure $SA(f : X \mapsto \mathbb{R}, T_0, \varepsilon)$ randomly sample x_c from X: $y_c \leftarrow f(x_c)$: ▷ preserve best! $x_B \leftarrow x_c$; $y_B \leftarrow y_c$; $\triangleright \tau$ is iteration counter $\tau \leftarrow 0$: while ¬ terminate do $x_n \leftarrow move(x_c); y_n \leftarrow f(x_n);$ $\tau \leftarrow \tau + 1$: $T \leftarrow T_0(1-\varepsilon)^{\tau-1}$; $\triangleright T$ decreases over time if $\mathfrak{R}_{n}^{1} < e^{\frac{y_{c-y_{n}}}{T}}$ then \triangleright always true if $y_{n} \leq y_{c}$ $x_c \leftarrow x_n$; $y_c \leftarrow y_n$; if $y_c < y_B$ then $x_B \leftarrow x_c$; $y_B \leftarrow y_c$; return $x_{\rm B}, y_{\rm B}$