Nfeature-DNA Headers

```
1. CDK

    Mononucleotide (4)

       CDK A, CDK C, CDK G, CDK T
     • Dinucleotide (16)
       CDK AA
       CDK AC
       CDK AG
       CDK_AT
       CDK TT
     • Trinucleotide (64)
       CDK AAA
       CDK AAC
       CDK_AAG
       CDK AAT
       CDK TTT
  CDK NT
     • Mononucleotide (4)
       CDK_NT_A.....CDK_NT_T
     • Dinucleotide (16)
       CDK_NT_AA.....CDK_NT_TT
     • Trinucleotide (64)
       CDK NT AAA.....CDK NT TTT
  CDK CT
     • Mononucleotide (4)
       CDK CT A.....CDK CT T
     • Dinucleotide (16)
       CDK_CT_AA.....CDK_CT_TT
     • Trinucleotide (64)
```

CDK CT AAA.....CDK CT TTT

```
CDK REST

    Mononucleotide (4)

        CDK_REST_A.....CDK_REST_T
     • Dinucleotide (16)
        CDK REST AA.....CDK NT TT
     • Trinucleotide (64)
        CDK_NT_AAA......CDK_NT_TTT
  CDK SPLIT

    Mononucleotide (4*split)

        Here n is the number of splits.
        CDK Split s1 A.....CDK Split sn T
     • Dinucleotide (16*split)
        CDK Split s1 AA.....CDK Split sn TT
     • Trinucleotide (64*split)
        CDK_Split_s1_AAA......CDK_Split_sn_TTT
2. <u>RDK</u>

    Mononucleotide (2)

        RDK A, RDK C
     • Dinucleotide (10)
        RDK AA
        RDK AC
        RDK AG
        RDK AT
        RDK TA
     • Trinucleotide (32)
        RDK AAA
        RDK AAC
        RDK_AAG
        RDK_AAT
        RDK TCA
  RDK NT
     • Mononucleotide (2)
        RDK_NT_A.....RDK_NT_C
```

- Dinucleotide (10)
 - RDK_NT_AA.....RDK_NT_TA
- Trinucleotide (32)
 - RDK_NT_AAA.....RDK_NT_TCA

RDK CT

- Mononucleotide (2)
 - RDK_CT_A.....RDK_CT_C
- Dinucleotide (10)
 - RDK CT AA.....RDK CT TA
- Trinucleotide (32)
- RDK CT AAA.....RDK CT TCA

RDK REST

- Mononucleotide (2)
 - RDK REST A.....RDK REST C
- Dinucleotide (10)
 - RDK_REST_AA.....RDK_REST_TA
- Trinucleotide (32)
 - RDK REST AAA.....RDK REST TCA

RDK SPLIT

- Here n is the number of splits.
- Mononucleotide (2*split)
 - RDK Split s1 A.....RDK Split sn C
- Dinucleotide (10*split)
 - RDK Split s1 AA.....RDK Split sn TA
- Trinucleotide (32*split)
 - RDK Split s1 AAA.....RDK Split sn TCA

3. **DAC (N*LAG)**

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- DAC 1,....DAC N*LAG

DAC NT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- DAC NT 1,.....DAC NT N*LAG

DAC CT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- DAC_CT_1,......DAC_CT_N*LAG

DAC REST (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- DAC_REST_1,......DAC_REST_N*LAG

DAC SPLIT (Split*[N*LAG])

Where N is number of properties and LAG is lagvalue (1,2,3,...) and n is the number of splits.

For example:- DAC_SPLIT_s1_1,......DAC_SPLIT_sn_N*LAG.

4. DCC (N*(N-1)*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- DCC_1,.....DCC_N*(N-1)*LAG

DCC NT (N*(N-1)*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- DCC_NT_1,...DCC_NT_N*(N-1)*LAG

DCC CT (N*(N-1)*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- DCC CT 1,....

DCC REST (N*(N-1)*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- DCC_REST_1,....DCC_REST_N*(N-1)*LAG

DCC SPLIT (Split*[N*(N-1)*LAG])

Where N is number of properties and LAG is lagvalue (1,2,3,...) and n is the number of splits.

For example:- DCC_SPLIT_s1_1,.....DCC_SPLIT_sn_N*(N-1)*LAG

5. DACC (N*N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- DACC_1,....DACC_N*N*LAG

DACC NT (N*N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- DACC_NT_1,...DACC_NT_N*N*LAG

DACC CT (N*N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- DACC CT 1,......DACC CT N*N*LAG

DACC REST (N*N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- DACC_REST_1,.....DACC_REST_N*N*LAG

DACC SPLIT (Split*[N*N*LAG])

Where N is number of properties and LAG is lagvalue (1,2,3,...) and n is the number of splits.

For example:- DACC_SPLIT_s1_1,.....DACC_SPLIT_sn_N*N*LAG

6. **TAC (N*LAG)**

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TAC 1,......TAC N*LAG

TAC NT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TAC NT 1,.....TAC NT N*LAG

TAC CT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TAC CT 1,.....TAC CT N*LAG

TAC REST (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TAC REST 1,....TAC REST N*LAG

TAC SPLIT (Split*[N*LAG])

Where N is number of properties and LAG is lagvalue (1,2,3,...) and n is number of splits.

For example:- TAC_SPLIT_s1_1,.....TAC_SPLIT_sn_N*LAG

7. TCC (N*(N-1)*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TCC 1,....TCC N*(N-1)*LAG

TCC NT (N*(N-1)*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- TCC_NT_1,...TCC_NT_N*(N-1)*LAG

TCC CT (N*(N-1)*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TCC CT 1,......TCC CT N*(N-1)*LAG

TCC REST (N*(N-1)*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TCC REST 1,......TCC REST N*(N-1)*LAG

TCC SPLIT (Split*[N*(N-1)*LAG])

Where N is number of properties and LAG is lagvalue (1,2,3,...) and n is the number of splits.

For example:- TCC_SPLIT_s1_1,.....TCC_SPLIT_sn_N*(N-1)*LAG

8. **TACC (N*N*LAG)**

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TACC 1,....TACC N*N*LAG

TACC NT (N*N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TACC_NT_1,...TACC_NT_N*N*LAG

TACC CT (N*N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TACC CT 1,....TACC CT N*N*LAG

TACC REST (N*N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- TACC_REST_1,....TACC_REST_N*N*LAG

TACC SPLIT (Split*[N*N*LAG])

Where N is number of properties and LAG is lagvalue (1,2,3,...) and n is the number of splits.

For example:- TACC_SPLIT_s1_1,.....TACC_SPLIT_sn_N*N*LAG

9. MAC (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- MAC 1,.....MAC N*LAG

MAC NT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- MAC NT 1,...MAC NT N*LAG

MAC CT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- MAC_CT_1,....MAC_CT_N*LAG

MAC REST (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- MAC_REST_1,.....MAC_REST_N*LAG

MAC SPLIT (Split*[N*LAG])

Where N is number of properties and LAG is lagvalue (1,2,3,...) and n is the number of splits.

For example:- MAC_SPLIT_s1_1,.....MAC_SPLIT_sn_N*LAG

10.**GAC (N*LAG)**

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- GAC 1,.....GAC N*LAG

GAC NT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- GAC NT 1,...GAC NT N*LAG

GAC CT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- GAC_CT_1,....GAC_CT_N*LAG

GAC REST (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- GAC_REST_1,.....GAC_RSET_N*LAG

GAC SPLIT (Split*[N*LAG])

Where N is number of properties and LAG is lagvalue (1,2,3,...) and n is the number of splits.

For example:- GAC SPLIT s1 1,.....GAC SPLIT sn N*LAG

11. NMBAC (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...)

For example:- NMBAC_1,.....NMBAC_N*LAG

NMBAC NT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- NMBAC NT 1,.....NMBAC NT N*LAG

NMBAC CT (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- NMBAC CT 1,.....NMBAC CT N*LAG

NMBAC REST (N*LAG)

Where N is number of properties and LAG is lagvalue (1,2,3,...) For example:- NMBAC_REST_1....,NMBAC_REST_N*LAG

NMBAC SPLIT (Split*[N*LAG])

Where N is number of properties and LAG is lagvalue (1,2,3,...) and n is the number of splits.

For example:- NMBAC_SPLIT_s1_1,.....NMBAC_SPLIT_sn_N*LAG

12. PDNC (N+Im)

Here N=16 dinucleotides and Im is the lambda value.

For example :- PDNC 1, PDNC 2......,PDNC N+lm

PDNC NT (N+lm)

Here N=16 dinucleotides and Im is the lambda value.

For example :- PDNC NT 1, PDNC NT 2.......,PDNC NT N+lm

PDNC CT (N+lm)

Here N=16 dinucleotides and Im is the lambda value.

For example :- PDNC_CT_1, PDNC_CT_2.....,PDNC_CT_N+lm

PDNC REST (N+Im)

Here N=16 dinucleotides and Im is the lambda value.

For example :- PDNC_REST_1, PDNC_REST_2....,PDNC_REST_N+lm

PDNC SPLIT (split*[N+lm])

Here N=16 dinucleotides and Im is the lambda value. and n is the number of splits.

For example :- PDNC_SPLIT_s1_1,...,PDNC_SPLIT_sn_N+lm

13. **PKNC(N+lm)**

Here N=64 dinucleotides and Im is the lambda value.

For example :- PKNC_1, PKNC_2.....,PKNC_N+lm

PKNC NT (N+lm)

Here N=64 dinucleotides and Im is the lambda value.

For example :- PKNC_NT_1, PKNC_NT_2.....,PKNC_NT_N+Im

PKNC CT (N+lm)

Here N=64 dinucleotides and Im is the lambda value.

For example :- PKNC CT 1, PKNC CT 2......,PKNC CT N+lm

PKNC REST (N+Im)

Here N=64 dinucleotides and Im is the lambda value.

For example :- PKNC_REST_1, PKNC_REST_2....,PKNC_REST_N+lm

PKNC SPLIT (split*[N+lm])

Here N=64 dinucleotides and Im is the lambda value and n is the number of splits.

For example :- PKNC SPLIT s1 1,...,PKNC SPLIT sn N+lm

14.PC PDNC(N+Im)

Here N=16 dinucleotides and Im is the lambda value.

For example :- PC PDNC 1, PC PDNC 2......,PC PDNC N+lm

PC PDNC NT (N+lm)

Here N=16 dinucleotides and Im is the lambda value.

For example :- PC PDNC NT 1, PC PDNC NT 2.......,PC PDNC NT N+lm

PC PDNC CT (N+lm)

Here N=16 dinucleotides and Im is the lambda value.

For example :- PC_PDNC_CT_1, PC_PDNC_CT_2......,PC_PDNC_CT_N+Im

PC PDNC REST (N+lm)

Here N=16 dinucleotides and Im is the lambda value.

For example :- PC_PDNC_REST_1, PC_PDNC_REST_2....., PC_PDNC_REST_N+Im

PC PDNC SPLIT (split*[N+lm])

Here N=16 dinucleotides and Im is the lambda value and n is the

number of splits.

For example :- PC PDNC SPLIT s1 1,....,PC PDNC SPLIT sn N+lm

15. **PC PTNC(N+lm)**

Here N=64 dinucleotides and Im is the lambda value.

For example :- PC PTNC 1, PC PTNC 2......,PC PTNC N+lm

PC PTNC NT (N+lm)

Here N=64 dinucleotides and Im is the lambda value.

For example :- PC PTNC NT 1, PC PTNC NT 2.......PC PTNC NT N+lm

PC PTNC CT (N+lm)

Here N=64 dinucleotides and Im is the lambda value.

For example :- PC_PTNC_CT_1, PC_PTNC_CT_2......,PC_PTNC_CT_N+lm

PC PTNC REST (N+Im)

Here N=64 dinucleotides and Im is the lambda value.

For example :- PC_PTNC_REST_1, PC_PTNC_REST_2....., PC_PTNC_REST_N+lm

PC PTNC SPLIT (split*[N+lm])

Here N=64 dinucleotides and Im is the lambda value and n is the number of splits.

For example :- PC_PTNC_SPLIT_s1_1,...,PC_PTNC_SPLIT_sn_N+lm

16.**SC PDNC(N+lm)**

Here N=16 dinucleotides and Im is the lambda value.

For example :- SC_PDNC_1, SC_PDNC_2.....,SC_PDNC_N+lm

SC PDNC NT (N+lm)

Here N=16 dinucleotides and Im is the lambda value.

For example :- SC_PDNC_NT_1, SC_PDNC_NT_2....,SC_PDNC_NT_N+lm

SC PDNC CT (N+Im)

Here N=16 dinucleotides and Im is the lambda value.

For example :- SC PDNC CT 1, SC PDNC CT 2......,SC PDNC CT N+lm

SC PDNC REST (N+lm)

Here N=16 dinucleotides and Im is the lambda value.

For example :- SC PDNC REST 1, SC PDNC REST 2......,

SC PDNC REST N+lm

SC PDNC SPLIT (split*[N+lm])

Here N=16 dinucleotides and Im is the lambda value and n is the number of splits.

For example :- SC_PDNC_SPLIT_s1_1,...,SC_PDNC_SPLIT_sn_N+lm

17.**SC PTNC(N+lm)**

Here N=64 dinucleotides and Im is the lambda value.

For example :- SC_PTNC_1, SC_PTNC_2.....,SC_PTNC_N+lm

SC PTNC NT (N+lm)

Here N=64 dinucleotides and Im is the lambda value.

For example :- SC PTNC NT 1, SC PTNC NT 2......,SC PTNC NT N+lm

PC PTNC CT (N+lm)

Here N=64 dinucleotides and Im is the lambda value.

For example :- PC PTNC CT 1, PC PTNC CT 2.......,PC PTNC CT N+lm

SC PTNC REST (N+lm)

Here N=64 dinucleotides and Im is the lambda value.

For example :- SC_PTNC_REST_1, SC_PTNC_REST_2....., SC_PTNC_REST_N+Im

SC PTNC SPLIT (split*[N+lm])

Here N=64 dinucleotides and Im is the lambda value and n is the number of splits.

For example :- SC_PTNC_SPLIT_s1_1,...,SC_PTNC_SPLIT_sn_N+lm

18. **NRI (4)**

NRI_A, NRI_C, NRI_G, NRI_T

NRI NT (4)

NRI NT A, NRI NT C, NRI NT G, NRI NT T

NRI CT (4)

NRI CT A, NRI CT C, NRI CT G, NRI CT T

NRI REST (4)

NRI REST A, NRI REST C, NRI REST G, NRI REST T

```
NRI SPLIT (split*4)
  When split 1⇒ NRI_SPLIT_s1_A.....NRI_SPLIT_s1_T
  When split=n ⇒NRI_SPLIT_s1_A.....NRI_SPLIT_sn_T
19. DDN (4)
  DDN_A, DDN_C, DDN_G, DDN_T
  DDN NT (4)
  DDN NT A, DDN NT C, DDN NT G, DDN NT T
  DDN CT (4)
  DDN_CT_A, DDN_CT_C, DDN_CT_G, DDN_CT_T
  DDN REST (4)
  DDN REST A, DDN REST C, DDN REST G, DDN REST T
  DDN SPLIT (split*4)
  When split 1⇒ DDN_SPLIT_s1_A.....DDN_SPLIT_s1_T
  When split=n ⇒DDN_SPLIT_s1_A......DDN_SPLIT_sn_T
20. ES (1)
  Entropy
  ES NT (1)
  Entropy
  ES CT (1)
  Entropy
  ES REST (1)
  Entropy
  ES SPLIT (split*4)
  When split 1⇒ ENTROPY_SPLIT_s1
```

```
When split=n ⇒ENTROPY SPLIT s1,.....ENTROPY SPLIT sn
21.EN NL (4)
  ENT NL A, ENT NL C, ENT NL G, ENT NL T
  EN NT (4)
  ENT NL NT A, ENT NL NT C, ENT NL NT G, ENT NL NT T
  EN CT (4)
  ENT NL CT A, ENT NL CT C, ENT NL CT G, ENT NL CT T
  EN REST (4)
  ENT NL REST A, ENT NL REST C, ENT NL REST G, ENT NL REST T
  EN SPLIT (split*4)
  When split 1⇒ ENT_NL_SPLIT_s1_A.....ENT_NL_SPLIT_s1_T
  When split=n ⇒ENT_NL_SPLIT_s1_A.....ENT_NL_SPLIT_sn_T
22. BPM (4*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 A, P1 C.....PL T
  BPM NT(4*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 NT A, P1 NT C.....PL NT T
  BPM CT(4*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 CT A, P1 CT C.....PL CT T
```

BPM REST (4*L)

Here L is the length of the sequence provided and P denotes the position P1_REST_A, P1_REST_C.....PL_REST_T

BPM SPLIT (split*4*L)

Here L is the length of the sequence provided, P denotes the position and n

```
denotes the number of splits
  P1 SPLIT s1 A, P1 SPLIT s1 C.....PL SPLIT sn T
23. BPD (16*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 AA, P1 AC.....PL TT
  BPD NT(16*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 NT AA, P1 NT AC.....PL NT TT
  BPD CT(16*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 CT AA, P1 CT AC.....PL CT TT
  BPD REST (16*L)
  Here L is the length of the sequence provided and P denotes the position
  P1_REST_AA, P1_REST_AC.....PL REST_TT
  BPD SPLIT (split*16*L)
  Here L is the length of the sequence provided , P denotes the position and n
  denotes the number of splits
  P1 SPLIT s1 AA, P1 SPLIT s1 AC.....PL SPLIT sn TT
24. BPT (64*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 AAA, P1 AAC.....PL TTT
  BPT NT(64*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 NT AAA, P1 NT AAC.....PL NT TTT
  BPT CT(64*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 CT AAA, P1 CT AAC.....PL CT TTT
  BPT REST (64*L)
  Here L is the length of the sequence provided and P denotes the position
  P1 REST AAA, P1 REST AAC.....PL REST TTT
```

BPT SPLIT (split*64*L)

Here L is the length of the sequence provided , P denotes the position and n denotes the number of splits

P1_SPLIT_s1_AAA, P1_SPLIT_s1_AAC.....PL_SPLIT_sn_TTT

25. **BP DP (16*L*N)**

Here L is the length of the sequence provided, N is number of properties and P denotes the position

P1 AA PR1, P1 AC PR1.....PL TT PRN

BP DP NT(16*L*N)

Here L is the length of the sequence provided, N is number of properties and P denotes the position

P1_AA_PR1_NT, P1_AC_PR1_NT.....PL_TT_PRN_NT

BP DP CT(16*L*N)

Here L is the length of the sequence provided,, N is number of properties and P denotes the position

P1_AA_PR1_CT, P1_AC_PR1_CT.....PL_TT_PRN_CT

BP DP REST (16*L*N)

Here L is the length of the sequence provided,, N is number of properties and P denotes the position

P1 AA PR1 REST, P1 AC PR1 REST......PL TT PRN REST

BP DP SPLIT (split*16*L*N)

Here L is the length of the sequence provided,N is number of properties, P denotes the position and n denotes the number of splits

P1_AA_PR1_SPLIT_s1,.....PL_TT_PRN_SPLIT_sn

26. BP TP (64*L*N)

Here L is the length of the sequence provided, N is number of properties and P denotes the position

P1_AA_PR1, P1_AC_PR1.....PL_TT_PRN

BP TP NT(64*L*N)

Here L is the length of the sequence provided, N is number of properties and P denotes the position

P1 AA PR1 NT, P1 AC PR1 NT.....PL TT PRN NT

BP TP CT(64*L*N)

Here L is the length of the sequence provided,, N is number of properties and P denotes the position

P1_AA_PR1_CT, P1_AC_PR1_CT.....PL_TT_PRN_CT

BP TP REST (64*L*N)

Here L is the length of the sequence provided,, N is number of properties and P denotes the position

P1_AA_PR1_REST, P1_AC_PR1_REST.....PL_TT_PRN_REST

BP TP SPLIT (split*64*L*N)

Here L is the length of the sequence provided,N is number of properties, P denotes the position and n denotes the number of splits

P1_AA_PR1_SPLIT_s1,.....PL_TT_PRN_SPLIT_sn