

CHAPTER

02

네트워크 분류와 계층 모델

Section

- 01 네트워크 용어 이해하기
- 02 계층 모델

네트워크 용어 이해하기

1. 네트워크 관련 용어

표 2-1 큰 용량을 표현하는 단위

용량 단위	표기	2진 크기	10진 크기	바이트 대비 크기	10진 단위
바이트(Byte)	В	1	1	1B	일
킬로바이트(Kilo Byte)	КВ	2 ¹⁰	10 ³	1,000B	일천
메가버이트(Mega Byte)	MB	2 ²⁰	10 ⁶	1,000,000B	일백만
기가바이트(Giga Byte)	GB	2 ³⁰	10 ⁹	1,000,000,000B	일십억
테라바이트(Tera Byte)	ТВ	2 ⁴⁰	10 ¹²	1,000,000,000,000B	일조
페타바이트(Peta Byte)	РВ	2 ⁵⁰	10 ¹⁵	1,000,000,000,000,000B	일천조

그림 2-2 헤르츠

• 네트워트의 전송속도는 **bps**로 표시. bps는 'bit per second'의 약자.

1. 네트워크 관련 용어

- 100MB 크기의 파일을 100Mbps 네트워크에 전송하면 몇 초만에 전달될 것인가?
 - 약 10초, 이론적으로 8초
 - 100MByte를 100M bit per second으로 전송하기 때문에 실제로 12.5MB 속도로 전송한다는 뜻(100/8 = 12.5), 100MB/12.5MB 는 8초
 - 네트워크에 데이터를 보낼 때 그냥 보내는 것이 아니라 포장지가 필요함(헤더가 필요)
 - 따라서 100MB 파일을 네트워크에 보내게 되면 파일의 크기가 더 커짐, 따라서 대략 10초 정도 걸림
- 블루투스 이어폰을 스마트폰에 연결해서 사용하는 예시
 - 블루투스라는 통신규격(프로토콜)을 사용하여 데이터 전송
 - 네트워크에는 컴퓨터와 통신 장비들이 그물망처럼 연결됨
 - 네트워크에 점처럼 연결되어 있는 모든 장비들을 노드(node)라고 함
 - 노드란 네트워크에 연결된 물리적 기기나 장치들을 의미
 - 스마트폰에서는 여러 개의 응용 프로그램을 실행할 수 있음(무선 공유기나 이어폰과는 다름)
 - 응용 프로그램을 실행할 수 있는 장비를 호스트(host)라고 함: 네트워크에 연결된 컴퓨터임

네트워크 용어 이해하기

2. 네트워크 분류

• 통신이 이루어지는 방향에 따라 단방향 통신, 반양방향 통신, 양방향 통신으로 나눔.

표 2-2 통신 방향에 따른 분류

이름	내용	બા
단방향(simplex)	한쪽 방향으로만 통신 가능	모스부호, 방송
양방향(duplex)	양쪽 방향 통신 가능	대부분의 통신 시스템
반양반향(half-duplex)	양방향 통신이지만, 한 순간은 단방향	무전기

네트워크 용어 이해하기

• 통신대상에 따른 네트워크 분류

표 2-3 통신 대상에 따른 분류

이름	내용	예
유니캐스트(unicast)	1대1(one-to-one)	전화
브로드캐스트(broadcast)	1대 다수(one-to-many, 불특정 다수)	라디오, TV
멀티캐스트(multicast)	1대 다수(one-to-many, 특정 다수)	그룹 화상회의

1. 계층 모델의 이해

• 네트워크는 좁은 지역을 연결하는 LAN과 여러개의 LAN을 연결하여 하나의 네트워크를 구성한 인터넷의 2개의 계층Layer으로 구성됨.

- LAN은 노드를 물리적으로 연결하는 계층과 흐름제어와 에러를 처리하는 프로토콜의 2개 부분으로 구성.
- 인터넷도 네트워크와 네트워크를 연결하여 데이터를 전송하는 부분과 흐름을 제어하고 에러를 처리하는 2개 부분으로 구성.
- 웹 브라우저나 채팅 프로그램과 같은 응용 프로그램이 있는 계층까지 고려하면 총 5개 계층.

그림 2-5 연결 계층과 프로토콜 계층으로 분리

2. 각 계층의 역할

• 5계층 구조는 아래에서 부터 1번은 Physical layer(물리 계층), 2번은 Data link layer(데이터 링크 계층), 3번은 Network layer(네트워크 계층), 4번은 Transport layer(전송 계층), 5번은 Application layer(응용 계층).

5	응용 계층 Application layer	응용 프로그램이 동작하는 계층
4	전송 계층 Transport layer	인터넷에서 에러 없는 데이터 전송
3	네트워크 계층 Network layer	여러 LAN들을 지나 목적지까지 데이터 전송(라우팅)
2	데이터 링크 계층 Data link layer	인접 노드 간 데이터 전송, 흐름 제어, 에러 처리
1	물리 계층 Physical layer	인접 노드 간 유선/무선 통신 연결

그림 2-6 네트워크를 구성하는 5개 계층의 이름과 특징

2. 각 계층의 역할

- 1. 물리 계층
 - LAN에서 통신 기기의 연결을 담당하는 계층
 - 인접해 있는 노드들을 유선 또는 무선으로 연결하는 역할을 담당
 - 아날로그, 디지털 변환, 주파수의 특성, 유선 전송 매체의 특징, 무선 통신 시스템 특징 등
- 2. 데이터 링크 계층
 - 인접한 기기 간의 오류 없는 데이터 전송을 담당
 - 물리 계층을 통해 데이터를 전송할 때의 속도, 오류 체크 진행, 흐름 제어와 오류 제어 (4계층과 유사한 역할)
- 3. 네트워크 계층
 - 여러 개의 LAN을 하나로 묶어서 인터넷을 만들어주는 핵심 계층
 - 출발지부터 목적지까지 데이터를 전송하는 계층
 - IP(Internetworking Protocol)이 핵심 프로토콜: 어떤 경로를 통해 데이터를 보낼지 결정(라우팅 알고리즘 필요)
- 4. 전송 계층
 - 3계층에서의 오류를 보정, 인터넷에서 오류 없는 전송을 담당
 - TCP(Transmission Control Protocol)이 핵심 프로토콜: 흐름 제어, 오류 제어 진행, 연결 설정과 해제를 지원
- 5. 응용 계층
 - 각종 응용 프로그램이 위치하는 계층
 - HTTP, FTP, Telnet, E-mail을 포함한 대다수의 네트워크 앱/애플리케이션

- 각 계층은 상위계층의 작업을 알지 못함.
- 개념적으로 보면 각 계층은 같은 계층끼리만 통신을 함.

그림 2-7 개념적으로 각 계층끼리 통신한다

3. 헤더

- 데이터 전송을 위해 추가되는 자료구조가 **헤더**header
- 헤더는 전송할 물건을 박스에 담고 박스 전면에 여러 가지 내용을 기입하는 역할을 하는 것.
- 하위 계층으로 내려 갈때, 각 계층마다 자신의 고유 헤더를 붙임.
- 상위 계층으로 올라 갈 때 자신이 사용한 헤더를 떼고 올려 보냄.
- 헤더와 데이터를 하나의 데이터로 처리하는 것이 캡슐화encapsulation

그림 2-8 계층과 헤더와의 관계

4. 모듈화

- 네트워크와 같이 하나의 덩어리를 여러개의 모듈형태로 나누는 것을 **모듈화**modulation
- 모듈화의 장점: 여러 모듈(계층)으로 나눈 경우, 수정이 필요한 모듈만 수정가능.

그림 2-9 계층화의 장점

• 계층별 데이터 단위

표 2-4 계층별 데이터 단위

이름	데이터 단위
응용 계층	APDU(Application Protocol Data Unit)
전송 계층	TPDU(Transport Protocol Data Unit)
네트워크 계층	패킷(packet)
데이터 링크 계층	프레임(frame)

• 계층별 주소 체계

표 2-5 계층별 주소 체계

계층	주소
응용 계층	웹 주소(domain name), 이메일 주소
전송 계층	포트 번호
네트워크 계층	IP 주소(v4, v6)
데이터 링크 계층	MAC 주소

6. 인터넷에서 계층의 역할

- 네트워크를 연결하는 장치(노드) **라우터**router :한쪽 LAN에서 다른 쪽 LAN으로 데이터를 전송.
- 인터넷의 중간 노드(라우터)들은 3번째 계층인 네트워크 계층까지만 사용.

그림 2-10 인터넷에서 중간 노드는 네트워크 계층까지 사용

7. 계층별 장비

• 계층별 사용장비

표 2-6 계층별 사용 장비

이름	장비
네트워크 계층	라우터 _{router}
데이터 링크 계층	브릿지 _{bridge} , 스위치 _{switch}
물리 계층	리피터 _{repeater} , 허브 _{hub}

8. OSI 7계층

- ISO에서 네트워크 모델로 개발한 것이 OSI 7계층 모델: 5계층 모델에서 응용 계층을 3개의 계층 으로 분리.
- 많이 사용되는 계층모델은 TCP/IP 모델 : LAN 계층을 하나의 덩어리로 처리.

