

SEQUENCE LISTING

<110> Bermudes, G.
King, I.
Clairmont, C.
Lin, S.
Belcourt, M.

<120> COMPOSITIONS AND METHODS FOR TUMOR-TARGETED
DELIVERY OF EFFECTOR MOLECULES

<130> 8002-059

<150> 60/157,581
<151> 1999-10-04

<150> 60/157,637
<151> 1999-10-04

<160> 61

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer

<400> 1

gaagatcttc cggaggaggg gaaatg

26

<210> 2
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer

<400> 2

cgggatccga gctcgagggc ccgggaaagg atctaagaag atcc

44

<210> 3
<211> 477
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1) ... (474)

<400> 3

atg gta cgt agc tcc tct cgc act ccg tcc gat aag ccg gtt gct cat	48
Met Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His	
1 5 10 15	
gta gtt gct aac cct cag gca gaa ggt cag ctg cag tgg ctg aac cgt	96
Val Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg	
20 25 30	
cgc gct aac gcc ctg ctg gca aac ggc gtt gag ctc cgt gat aac cag	144
Arg Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln	
35 40 45	
ctc gtg gta cct tct gaa ggt ctg tac ctg atc tat tct caa gta ctg	192
Leu Val Val Pro Ser Glu Gly Leu Tyr Ile Tyr Ser Gln Val Leu	
50 55 60	
ttc aag ggt cag ggc tgc ccg tcg act cat gtt ctg ctg act cac acc	240
Phe Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr	
65 70 75 80	
atc agc cgt att gct gta tct tac cag acc aaa gtt aac ctg ctg agc	288
Ile Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser	
85 90 95	
gct atc aag tct ccg tgc cag cgt gaa act ccc gag ggt gca gaa gcg	336
Ala Ile Lys Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala	
100 105 110	
aaa cca tgg tat gaa ccg atc tac ctg ggt ggc gta ttt caa ctg gag	384
Lys Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Val Phe Gln Leu Glu	
115 120 125	
aaa ggt gac cgt ctg tcc gca gaa atc aac cgt cct gac tat cta gat	432
Lys Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp	
130 135 140	
ttc gct gaa tct ggc cag gtg tac ttc ggt att atc gca ctg	474
Phe Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu	
145 150 155	
taa	477
<210> 4	
<211> 158	
<212> PRT	
<213> Homo sapiens	
<400> 4	
Met Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His	
1 5 10 15	
Val Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg	
20 25 30	
Arg Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln	
35 40 45	
Leu Val Val Pro Ser Glu Gly Leu Tyr Ile Tyr Ser Gln Val Leu	
50 55 60	
Phe Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr	
65 70 75 80	

Ile Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser
85 90 95
Ala Ile Lys Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala
100 105 110
Lys Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu
115 120 125
Lys Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp
130 135 140
Phe Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu
145 150 155

<210> 5
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer

<400> 5
ccgacgcgtt gacacctgaa aactggag

28

<210> 6
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer

<400> 6
ccgacgcgtg aaaggatctc aagaagatc

29

<210> 7
<211> 543
<212> DNA
<213> Artificial Sequence

<220>
<223> Fusion construct

<221> CDS
<222> (1)...(540)

<400> 7
atg aaa aag aca gct atc gcg att gca gtg gca ctg gct ggt ttc gct
Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala
1 5 10 15

48

acc gta gcg cag gcc cat atg gta cgt agc tcc tct cgc act ccg tcc
Thr Val Ala Gln Ala His Met Val Arg Ser Ser Ser Arg Thr Pro Ser
20 25 30

96

gat aag ccg gtt gct cat gta gtt gct aac cct cag gca gaa ggt cag
Asp Lys Pro Val Ala His Val Val Ala Asn Pro Gln Ala Glu Gly Gln
35 40 45

144

ctg cag tgg ctg aac cgt cgc gct aac gcc ctg ctg gca aac ggc gtt	192
Leu Gln Trp Leu Asn Arg Arg Ala Asn Ala Leu Leu Ala Asn Gly Val	
50 55 60	
gag ctc cgt gat aac cag ctc gtg gta cct tct gaa ggt ctg tac ctg	240
Glu Leu Arg Asp Asn Gln Leu Val Val Pro Ser Glu Gly Leu Tyr Leu	
65 70 75 80	
atc tat tct caa gta ctg ttc aag ggt cag ggc tgc ccg tcg act cat	288
Ile Tyr Ser Gln Val Leu Phe Lys Gly Gln Gly Cys Pro Ser Thr His	
85 90 95	
gtt ctg ctg act cac acc atc agc cgt att gct gta tct tac cag acc	336
Val Leu Leu Thr His Thr Ile Ser Arg Ile Ala Val Ser Tyr Gln Thr	
100 105 110	
aaa gtt aac ctg ctg agc gct atc aag tct ccg tgc cag cgt gaa act	384
Lys Val Asn Leu Leu Ser Ala Ile Lys Ser Pro Cys Gln Arg Glu Thr	
115 120 125	
ccc gag ggt gca gaa gcg aaa cca tgg tat gaa ccg atc tac ctg ggt	432
Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu Pro Ile Tyr Leu Gly	
130 135 140	
ggc gta ttt caa ctg gag aaa ggt gac cgt ctg tcc gca gaa atc aac	480
Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu Ser Ala Glu Ile Asn	
145 150 155 160	
cgt cct gac tat cta gat ttc gct gaa tct ggc cag gtg tac ttc ggt	528
Arg Pro Asp Tyr Leu Asp Phe Ala Glu Ser Gly Gln Val Tyr Phe Gly	
165 170 175	
att atc gca ctg taa	543
Ile Ile Ala Leu	
180	
<210> 8	
<211> 180	
<212> PRT	
<213> Artificial Sequence.	
<400> 8	
Met Lys Lys Thr Ala Ile Ala Ile Val Ala Leu Ala Gly Phe Ala	
1 5 10 15	
Thr Val Ala Gln Ala His Met Val Arg Ser Ser Ser Arg Thr Pro Ser	
20 25 30	
Asp Lys Pro Val Ala His Val Val Ala Asn Pro Gln Ala Glu Gly Gln	
35 40 45	
Leu Gln Trp Leu Asn Arg Arg Ala Asn Ala Leu Leu Ala Asn Gly Val	
50 55 60	
Glu Leu Arg Asp Asn Gln Leu Val Val Pro Ser Glu Gly Leu Tyr Leu	
65 70 75 80	
Ile Tyr Ser Gln Val Leu Phe Lys Gly Gln Gly Cys Pro Ser Thr His	
85 90 95	
Val Leu Leu Thr His Thr Ile Ser Arg Ile Ala Val Ser Tyr Gln Thr	
100 105 110	

Lys Val Asn Leu Leu Ser Ala Ile Lys Ser Pro Cys Gln Arg Glu Thr
 115 120 125
 Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu Pro Ile Tyr Leu Gly
 130 135 140
 Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu Ser Ala Glu Ile Asn
 145 150 155 160
 Arg Pro Asp Tyr Leu Asp Phe Ala Glu Ser Gly Gln Val Tyr Phe Gly
 165 170 175
 Ile Ile Ala Leu
 180

<210> 9
 <211> 801
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Fusion construct

<221> CDS
 <222> (1)...(798)

<400> 9 atg aaa aag aca gct atc gcg att gca gtg gca ctg gct ggt ttc gct Met Lys Lys Thr Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 15	48
acc gta gcg cag gcc cat atg gct aac gag ctg aag cag atg cag gac Thr Val Ala Gln Ala His Met Ala Asn Glu Leu Lys Gln Met Gln Asp 20 25 30	96
aag tac tcc aaa agt ggc att gct tgt ttc tta aaa gaa gat gac agt Lys Tyr Ser Lys Ser Gly Ile Ala Cys Phe Leu Lys Glu Asp Asp Ser 35 40 45	144
tat tgg gac ccc aat gac gaa gag agt atg aac agc ccc tgc tgg caa Tyr Trp Asp Pro Asn Asp Glu Glu Ser Met Asn Ser Pro Cys Trp Gln 50 55 60	192
gtc aag tgg caa ctc cgt cag ctc gtt aga aag atg att ttg aga acc Val Lys Trp Gln Leu Arg Gln Leu Val Arg Lys Met Ile Leu Arg Thr 65 70 75 80	240
tct gag gaa acc att tct aca gtt caa gaa aag caa caa aat att tct Ser Glu Glu Thr Ile Ser Thr Val Gln Glu Lys Gln Gln Asn Ile Ser 85 90 95	288
ccc cta gtg aga gaa aga ggt cct cag aga gta gca gct cac ata act Pro Leu Val Arg Glu Arg Gly Pro Gln Arg Val Ala Ala His Ile Thr 100 105 110	336
ggg acc aga gga aga agc aac aca ttg tct tct cca aac tcc aag aat Gly Thr Arg Gly Arg Ser Asn Thr Leu Ser Ser Pro Asn Ser Lys Asn 115 120 125	384
gaa aag gct ctg ggc cgc aaa ata aac tcc tgg gaa tca tca agg agt Glu Lys Ala Leu Gly Arg Lys Ile Asn Ser Trp Glu Ser Ser Arg Ser 130 135 140	432

ggg cat tca ttc ctg agc aac ttg cac ttg agg aat ggt gaa ctg gtc	480	
Gly His Ser Phe Leu Ser Asn Leu His Leu Arg Asn Gly Glu Leu Val		
145 150 155 160		
atc cat gaa aaa ggg ttt tac tac atc tat tcc caa aca tac ttt cga	528	
Ile His Glu Lys Gly Phe Tyr Tyr Ile Tyr Ser Gln Thr Tyr Phe Arg		
165 170 175		
ttt cag gag gaa ata aaa gaa aac aca aag aac gac aaa caa atg gtc	576	
Phe Gln Glu Glu Ile Lys Glu Asn Thr Lys Asn Asp Lys Gln Met Val		
180 185 190		
caa tat att tac aaa tac aca agt tat cct gac cct ata ttg ttg atg	624	
Gln Tyr Ile Tyr Lys Tyr Thr Ser Tyr Pro Asp Pro Ile Leu Leu Met		
195 200 205		
aaa agt gct aga aat agt tgt tgg tct aaa gat gca gaa tat gga ctc	672	
Lys Ser Ala Arg Asn Ser Cys Trp Ser Lys Asp Ala Glu Tyr Gly Leu		
210 215 220		
tat tcc atc tat caa ggg gga ata ttt gag ctt aag gaa aat gac aga	720	
Tyr Ser Ile Tyr Gln Gly Gly Ile Phe Glu Leu Lys Glu Asn Asp Arg		
225 230 235 240		
att ttt gtt tct gta aca aat gag cac ttg ata gac atg gac cat gaa	768	
Ile Phe Val Ser Val Thr Asn Glu His Leu Ile Asp Met Asp His Glu		
245 250 255		
gcc agt ttt ttc ggg gcc ttt tta gtt ggc taa	801	
Ala Ser Phe Phe Gly Ala Phe Leu Val Gly		
260 265		
<210> 10		
<211> 266		
<212> PRT		
<213> Artificial Sequence		
<400> 10		
Met Lys Lys Thr Ala Ile Ala Ile Val Ala Leu Ala Gly Phe Ala		
1 5 10 15		
Thr Val Ala Gln Ala His Met Ala Asn Glu Leu Lys Gln Met Gln Asp		
20 25 30		
Lys Tyr Ser Lys Ser Gly Ile Ala Cys Phe Leu Lys Glu Asp Asp Ser		
35 40 45		
Tyr Trp Asp Pro Asn Asp Glu Glu Ser Met Asn Ser Pro Cys Trp Gln		
50 55 60		
Val Lys Trp Gln Leu Arg Gln Leu Val Arg Lys Met Ile Leu Arg Thr		
65 70 75 80		
Ser Glu Glu Thr Ile Ser Thr Val Gln Glu Lys Gln Gln Asn Ile Ser		
85 90 95		
Pro Leu Val Arg Glu Arg Gly Pro Gln Arg Val Ala Ala His Ile Thr		
100 105 110		
Gly Thr Arg Gly Arg Ser Asn Thr Leu Ser Ser Pro Asn Ser Lys Asn		
115 120 125		
Glu Lys Ala Leu Gly Arg Lys Ile Asn Ser Trp Glu Ser Ser Arg Ser		
130 135 140		

Gly His Ser Phe Leu Ser Asn Leu His Leu Arg Asn Gly Glu Leu Val
 145 150 155 160
 Ile His Glu Lys Gly Phe Tyr Tyr Ile Tyr Ser Gln Thr Tyr Phe Arg
 165 170 175
 Phe Gln Glu Glu Ile Lys Glu Asn Thr Lys Asn Asp Lys Gln Met Val
 180 185 190
 Gln Tyr Ile Tyr Lys Tyr Thr Ser Tyr Pro Asp Pro Ile Leu Leu Met
 195 200 205
 Lys Ser Ala Arg Asn Ser Cys Trp Ser Lys Asp Ala Glu Tyr Gly Leu
 210 215 220
 Tyr Ser Ile Tyr Gln Gly Gly Ile Phe Glu Leu Lys Glu Asn Asp Arg
 225 230 235 240
 Ile Phe Val Ser Val Thr Asn Glu His Leu Ile Asp Met Asp His Glu
 245 250 255
 Ala Ser Phe Phe Gly Ala Phe Leu Val Gly
 260 265

<210> 11

<211>-465

<212> DNA

<213> Artificial Sequence

<220>

<223> Fusion construct

<221> CDS

<222> (1)...(462)

<400> 11

atg aaa aag acg gct ctg gcg ctt ctg ctc ttg ctg tta gcg ctg act	48
Met Lys Lys Thr Ala Leu Ala Leu Leu Leu Leu Ala Leu Thr	
1 5 10 15	

agt gta gcg cag gcc gct cct act agc tcg agc act aag aaa act caa	96
Ser Val Ala Gln Ala Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln	
20 25 30	

ctg caa ttg gag cat ctg ctg gat ctg cag atg att ctg aat ggc	144
Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly	
35 40 45	

atc aat aac tac aag aac cct aag ctg act cgc atg ctg act ttc aaa	192
Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys	
50 55 60	

ttc tac atg ccg aaa aag gct acc gag ctc aaa cat ctc cag tgc ctg	240
Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu	
65 70 75 80	

gaa gag gaa ctg aag ccg ctg gag gaa gta ctt aac ctg gca cag tct	288
Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser	
85 90 95	

aag aac ttc cac ctg cgt ccg cgt gac ctg atc tcc aac atc aat gta	336
Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val	
100 105 110	

atc gtt ctt gag ctg aag gga tcc gaa acc acc ttc atg tgc gaa tac 384
Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr
115 120 125

gct gac gaa acc gcc acc att gtg gag ttc ctg aac cgt tgg atc acc 432
Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr
130 135 140

ttt gcc caa tcg atc att agc acg tta act taa 465
Phe Ala Gln Ser Ile Ile Ser Thr Leu Thr
145 150

<210> 12
<211> 154
<212> PRT
<213> Artificial Sequence

<400> 12

Met Lys Lys Thr Ala Leu Ala Leu Leu Leu Leu Ala Leu Thr
1 5 10 15
Ser Val Ala Gln Ala Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln
20 25 30
Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly
35 40 45
Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys
50 55 60
Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu
65 70 75 80
Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser
85 90 95
Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val
100 105 110
Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr
115 120 125
Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr
130 135 140
Phe Ala Gln Ser Ile Ile Ser Thr Leu Thr
145 150

<210> 13
<211> 465
<212> DNA
<213> Artificial Sequence

<220>
<223> Fusion construct

<221> CDS
<222> (1)...(462).

<400> 13

atg aaa cag tcg act ctg gcg ctt ctg ctc ttg ctg tta gcg ctg act 48
Met Lys Gln Ser Thr Leu Ala Leu Leu Leu Leu Leu Ala Leu Thr
1 5 10 15

agt gtg gcc aaa gcg gct cct act agc tcg agc act aag aaa act caa	96
Ser Val Ala Lys Ala Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln	
20 25 30	
ctg caa ttg gag cat ctg ctg ctg gat ctg cag atg att ctg aat ggc	144
Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly	
35 40 45	
atc aat aac tac aag aac cct aag ctg act cgc atg ctg act ttc aaa	192
Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys	
50 55 60	
ttc tac atg ccg aaa aag gct acc gag ctc aaa cat ctc cag tgc ctg	240
Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu	
65 70 75 80	
gaa gag gaa ctg aag ccg ctg gag gaa gta ctt aac ctg gca cag tct	288
Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser	
85 90 95	
aag aac ttc cac ctg cgt ccg cgt gac ctg atc tcc aac atc aat gta	336
Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val	
100 105 110	
atc gtt ctt gag ctg aag gga tcc gaa acc acc ttc atg tgc gaa tac	384
Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr	
115 120 125	
gct gac gaa acc gcc acc att gtg gag ttc ctg aac cgt tgg atc acc	432
Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr	
130 135 140	
ttt gcc caa tcg atc att agc acg tta act taa	465
Phe Ala Gln Ser Ile Ile Ser Thr Leu Thr	
145 150	
<210> 14	
<211> 154	
<212> PRT	
<213> Artificial Sequence	
<400> 14	
Met Lys Gln Ser Thr Leu Ala Leu Leu Leu Leu Leu Ala Leu Thr	
1 5 10 15	
Ser Val Ala Lys Ala Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln	
20 25 30	
Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly	
35 40 45	
Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys	
50 55 60	
Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu	
65 70 75 80	
Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser	
85 90 95	
Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val	
100 105 110	

Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr
115 120 125
Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr
130 135 140
Phe Ala Gln Ser Ile Ile Ser Thr Leu Thr
145 150

<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer

<400> 15

agtctagaca atcaggcgaa gaacgg

26

<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer

<400> 16

agccatggag tcaccctcac tttc

25

<210> 17
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer

<400> 17

ggatccttaa gaccacttt cacatttaag t

31

<210> 18
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer

<400> 18

ggttccatgg ttcaacttttc tctatcac

28

<210> 19
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer

<400> 19
 gtgtccatgg ggcacagcca ccgcgacttc cag 33.
 <210> 20
 <211> 34
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Reverse primer
 <400> 20
 acacgagctc ctacttggag gcagtcatga agct 34
 <210> 21
 <211> 72
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Forward primer
 <400> 21
 gtgtccatgg ctcggcgggc aagtgtcggg actgaccatc atcatcatca tcatacacagc 60
 caccgcgact tc 72
 <210> 22
 <211> 35
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Reverse primer
 <400> 22
 gtgcggatcc ctacttggag gcagtcatga agctg 35
 <210> 23
 <211> 16
 <212> PRT
 <213> Homo sapiens
 <400> 23
 Met Ala Arg Arg Ala Ser Val Gly Thr Asp His His His His His His
 1. 5 10 15
 <210> 24
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Peptide sequence TiP 13.40
 <400> 24

Ala Tyr Arg Trp Arg Leu Ser His Arg Pro Lys Thr Gly Phe Ile Arg
1 5 10 15
Val Val Met Tyr Glu Gly
20

<210> 25
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleotide sequence encoding TiP13.40

<400> 25
gcgtaccgct ggcgcctgtc ccatcgcccg aaaaccggct ttatccgcgt ggtgatgtac 60
gaaggc 66

<210> 26
<211> 101
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 26
gtgtactagt gtggcgcagg cggcgttaccg ctggcgccctg tcccatcgcc cgaaaaccgg 60
ctttatccgc gtggtgatgt acgaaggcta aggatccgcg c 101

<210> 27
<211> 101
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 27
gcgcggatcc tttagccttcg tacatcacca cgcggataaa gccggtttc gggcgatggg 60
acaggcgcca gcggtacgcc gcctgcgcca cactagtaca c 101

<210> 28
<211> 101
<212> PRT
<213> Homo sapiens

<400> 28
Met Ser Ser Ala Ala Gly Phe Cys Ala Ser Arg Pro Gly Leu Leu Phe
1 5 10 15
Leu Gly Leu Leu Leu Pro Leu Val Val Ala Phe Ala Ser Ala Glu
20 25 30
Ala Glu Glu Asp Gly Asp Leu Gln Cys Leu Cys Val Lys Thr Thr Ser
35 40 45
Gln Val Arg Pro Arg His Ile Thr Ser Leu Glu Val Ile Lys Ala Gly
50 55 60
Pro His Cys Pro Thr Ala Gln Leu Ile Ala Thr Leu Lys Asn Gly Arg
65 70 75 80

Lys Ile Cys Leu Asp Leu Gln Ala Pro Leu Tyr Lys Lys Ile Ile Lys
85 90 95
Lys Leu Leu Glu Ser
100

<210> 29
<211> 106
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 29
cttcactagt gtggcgccagg cgaacggccg caaaatctgc ctggaccctgc aggcgcccgt 60
gtacaaaaaa atcatcaaaa aactgctgga aagctaaggta tcccgcg 106

<210> 30
<211> 106
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 30
cgcggatcct tagctttcca gcagttttt gatgatttt ttgtacagcg ggcgcctgcag 60
gtccaggcag atttgcggc cgttgcctg cgccacacta gtgaag 106

<210> 31
<211> 85
<212> PRT
<213> Homo sapiens

<400> 31
Ile Tyr Ser Phe Asp Gly Arg Asp Ile Met Thr Asp Pro Ser Trp Pro
1 5 10 15
Gln Lys Val Ile Trp His Gly Ser Ser Pro His Gly Val Arg Leu Val
20 25 30
Asp Asn Tyr Cys Glu Ala Trp Arg Thr Ala Asp Thr Ala Val Thr Gly
35 40 45
Leu Ala Ser Pro Leu Ser Thr Gly Lys Ile Leu Asp Gln Lys Ala Tyr
50 55 60
Ser Cys Ala Asn Arg Leu Ile Val Leu Cys Ile Glu Asn Ser Phe Met
65 70 75 80
Thr Asp Ala Arg Lys
85

<210> 32
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 32
ggcttcacta gtgtggcgca ggcgatatac tcctttatgc gtcg 44

<210> 33
 <211> 37
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 33
 cgcggatcct tacttccttag cgtctgtcat gaaactg 37

<210> 34
 <211> 7117
 <212> DNA
 <213> E. coli

<400> 34

cccgccact	tccggggcat	gagtatgtga	tatccggggc	tgcaccccg	accccgccaa	60
cacatcacgg	-gccacaaaat	-tttttgcgc	-ccgctctgcg	-ttttctaa	-gttatccctc	120
ctgatttcta	aaaaattttc	cacctgaact	tgacagaaaa	aacgatgacg	agtacttttt	180
gatctgtaca	taaacccagt	ggtttatgt	acagtattaa	tcgtgtatc	aattgtttta	240
acgcttaaaa	gagggaaattt	ttatgagcgg	tggcgatgga	cgcggccata	acacgggcgc	300
gcatagcaca	agtggtaaca	ttaatggtgg	cccgaccggg	cttgggttag	gtgggtggc	360
tctctgatggc	tccggatgga	gttcggaaaa	taaccctgtgg	ggtgggtgg	ccggtagcgg	420
cattcaactgg	ggtgggtgg	ccggcatgg	taatggcggg	gggaatggta	atccgggtgg	480
tggttcggg	acaggcggta	atctgtcagc	agtagctgcg	ccagtggcat	ttggttttcc	540
ggcactttcc	actccaggag	ctggcggct	ggcggtcagt	atttcagcgg	gagcattatc	600
ggcagctatt	gctgatatta	tggctgcct	gaaaggaccg	tttaaatttg	gtctttgggg	660
gttggcttta	tatggtgtat	tgccatcaca	aatagcgaaa	gatgacccca	atatgatgtc	720
aaagattgtg	acgtcattac	ccgcagatga	tattactgaa	tcacctgtca	gttcattacc	780
tctcgataag	gcaacagtaa	acgtaaatgt	tcgtgttgg	gatgatgtaa	aagacgagcg	840
acagaatatt	tcgggtgttt	caggtgtcc	gatgagtgtt	ccgggtgttg	atgcaaaaacc	900
tacccgaacgt	ccgggtgttt	ttacggcatc	aattccaggt	gcaacctgttc	tgaatatttc	960
agttataaaac	agtacgcccag	cagtacagac	attaagccca	ggtgttacaa	ataataactga	1020
taaggatgtt	cggccggcag	gatttactca	gggtggtaat	accaggatg	cagttattcg	1080
atcccgaag	gacagcggtc	ataatgccgt	atatgtttca	gtgagtgatg	ttcttagccc	1140
tgaccaggt	aaacaacgtc	aagatgaaga	aaatcccggt	cagcagaat	gggatgtcac	1200
gcacccggtt	gaagcggctg	agcgaattaa	tgaacgcgcg	cgtgcagagc	tgaatcaggc	1260
aaatgaagat	gttgcagaa	atcaggagcg	acaggctaaa	gctgttcagg	tttataattc	1320
gcgtaaaagc	gaacttgcgt	cagcgaataa	aactcttgc	gatgcaatag	ctgaaataaaa	1380
acaatattaa	cgatttgc	atgacccaaat	ggctggcggt	cacagaatgt	ggcaaataatggc	1440
cgggcttaaaa	gcccagcggg	cgcagacgga	tgtaaataat	aagcaggctg	catttgatgc	1500
tgtctgaaaa	gagaagtcag	atgctgtatgc	tgcattgagt	tctgctatgg	aaagcaggaa	1560
gaagaaaagaa	gataagaaaa	ggagtgcgt	aaataattta	aacgatgaaa	agaataagcc	1620
cagaaaagg	ttaaagatt	acgggcatga	ttatcatcca	gctccggaaa	ctgagaatat	1680
taaaaggcgtt	ggtgatctt	agcctggat	acccaaaaca	ccaaagcaga	atgggtgg	1740
aaaacgcgaag	cgctggactg	gagataaaagg	gcgtaaagatt	tatgagtg	attctcagca	1800
tggtgagctt	gagggttac	gtgccagtg	tggcagcat	cttggctcat	ttgaccctaa	1860
aacaggcaat	cagttgaaag	gtccagatcc	gaaacgaaat	atcaagaaat	atctttgaga	1920
ggaagttatg	ggacttaaat	tggatttaac	ttgtttgtat	aaaagtacag	aagattttaa	1980
gggtgaggag	tattcaaaag	atttggaga	tgacggttca	gttatggaaa	gtcttaggtgt	2040
gccttttaag	gataatgtt	ataacgggt	ctttgatgtt	atagctgaat	gggtacctt	2100
gctacaacca	tactttaatc	atcaaattga	tattccgtat	aatgagttt	ttgtttcg	2160
tgattatcg	gatggtgatt	ggtgatcaaa	tattatcagg	gatgagttga	tatacggcgt	2220
tctagtgttc	atggatgaac	gctggagct	ccaaatgttag	aatgttata	tttttattt	2280
agttcttgg	tataattgt	ccgcaatgtat	ttaaataagc	attatttaaa	acattctcag	2340
gagaggtgaa	ggtggagct	aaaaaaagta	ttggtgatta	cactgaaacc	gaattcaaaa	2400
aatttattga	agacatcatc	aattgtgaaag	gtgatgaaa	aaaacaggat	gataacctcg	2460

agtattttat	aaatgttact	gagcatccta	gtggttctga	tctgatttat	tacccagaag	2520
gtaataatga	tggttagccct	gaagggttta	ttaaagagat	taaagaatgg	cgagccgcta	2580
acggtaagtc	aggatttaaa	cagggctgaa	atatgaatgc	cggttgttta	tggatgaatg	2640
gctggcattc	tttcacaaca	aggagtcgtt	ataaaaaaaaa	taacaggat	tattttatttgc	2700
cttcttgcag	tcattattct	gtctgcattgt	caggcaaact	atatccggga	tgttcaggggc	2760
gggaccgtat	ctccgtcatac	aacagctgaa	gtgaccggat	tagcaacgc	gtaaccggaa	2820
atcccttttgc	acaaaaacaa	agcgtgtcag	gctgattctg	atgcgccttt	tttttgaat	2880
gtcacaaaaaa	ttccatgtgg	gagatggat	ctaaaatcct	cgtcagaac	tttccatcca	2940
gggggagaaaa	acttgcgtt	ttgagccgtt	cgggttgcag	aacgcacgaa	accgatcgcg	3000
cgcacatcgctt	tcgtgaatag	ttatgcagggc	ccctgaaaac	gattctgcac	cgttttttcg	3060
gttttgcctg	gtgtttcct	gtcttttgc	gttttttgcg	tcagaacgc	tctgagggcg	3120
ttttaagggg	tgcgtacaac	gggagttatg	gtaaatggat	cgtttttcg	ggaaggatcg	3180
acaggatttgc	ccgttgggtg	tagtgcataac	gactgaaaaaa	caaacgc	cccc gtaaatcg	3240
ctctcaccgc	caagattgtat	cacgaaatttac	cagggcgccg	ggttccgcgt	ttcccgcatt	3300
gaaagcgcgg	ttagttaaac	tgtgtaccga	gagaaatcg	atcacatgag	cgcgcgtactt	3360
caacgcctca	gggaaaaatt	accgcacaaa	ccgtactgt	cgaacgattt	cgcgtacggc	3420
gttcgcattc	tgccgaaaaa	cattgcccatt	cttgcgggtt	tcatccagca	gaaccagcca	3480
catgcactgt	actggcttcc	cttgcacgt	gaccggacgg	gggcacatcaat	cgactggagc	3540
gaccggaaatt	gtccggcccc	gaacatcacc	gtaaaaaaatc	cccgtAACGG	gcacgcgcac	3600
ctgctctacg	cgctcgccct	tcctgtgaga	actgcgcgg	atgcacgcgc	ttcggcgctc	3660
agatacgcgt	ccgcatttgc	gcgtgcgtt	tgtgaaaaac	tggcgccg	tgtgaattac	3720
agcggcctga	tctgcaaaaa	tccgtccac	cctgaatggc	aggaagtgg	atggcgccgag	3780
gaaccctaca	ctctcgacga	actggctgt	tatctcgatt	tgagcgcctc	agcgcgcgcgt	3840
agcgtcgata	aaaattacgg	gctggggcga	aactgctatc	tgttcgaaaa	ggccgtaaa	3900
tgggcttacc	gggcttattcg	tcagggctgg	ccggcattct	cacaatggct	tgtgcgggt	3960
attcagcgt	tcgaaatgt	caacgcac	ctccccgtt	cgctttcacc	tcctgaatgt	4020
cgggcttattgc	gcaagagat	tgcgaaat	acgcacagga	acttcacgc	ggaaactttc	4080
gcacagttat	tggctgatac	gcacacgca	gaaattcagg	ctacacgc	tcgcaagggc	4140
gtttctaagt	ctaagcgcgg	cacagtagt	acatcagcac	gcacgcgt	gaaacccggag	4200
aaatttaggaa	tcagtcgc	ctggattac	caactgaaa	aacgagg	tctcgatgt	4260
accaaataag	cctatatacg	ataacagcgc	ctttttggc	cctttttgag	cagtttgg	4320
tgttgcatt	tccctcggt	aatcccgc	tggcgccgt	ttccgc	catgtat	4380
agcgcctcgcc	gcagtcac	gaccggcgt	agcgagc	tgagcgg	agcgc	4440
cgtccgggtgg	tgcgtgt	acttacgc	cggggctt	tggttc	tgccgg	4500
tggctctgggt	agcttctca	gctcgtaat	cagcggtt	agtcgg	ttccac	4560
tcttgcgtact	tccttcgc	gaaactgg	caggaacgc	cgc	tttcc	4620
cctccgtacc	tttgcagca	tggctgc	cacaatgact	tttgc	cccg tgcagg	4680
tcggctcttc	gccttcag	gctgtatct	ggcctcag	tcgg	caatct	4740
tgttctgc	atttcg	tccgtgc	gtgaaaaatc	gcatttt	tcgttgc	4800
tagttaaaa	actaaactgg	cataatgcac	ggcacat	gaatgc	gc	4860
ctccacttcg	tttcgattgt	gtgggtct	cgacgc	tttgc	cccg	4920
tacggcagaa	atggcgattt	atcatctc	catgaaaatc	atttcgc	aaaacgg	4980
cagtgcgtt	gtttctgt	cctaccgtt	cggctctgt	ataccgc	taccgtac	5040
attaatccac	gattacaccc	gtaaacgc	cgttgc	gcgcgt	tcacccctgc	5100
gaatgcac	tcctgggt	ttgaccgtt	cgttctt	aatgcgg	agaaagccg	5160
acagcgc	aactccc	tggcaaggg	ggttgc	gccatt	cccc gtgagattt	5220
ccgcgagg	gcacggg	gacggg	ccgttctc	tttgc	ccgg	5280
atgattgc	atgtgg	ccatcacat	aggcgt	tgc	catggaa	5340
ctgaccac	gagcgt	ggaaacgg	ttcgc	aggc	agg	5400
ggcactc	cgagac	cggtt	cg	cg	ccgttgc	5460
acgcgc	ccag	ggac	cg	cg	ctgg	5520
cgcgc	agg	atag	gc	gt	gaga	5580
cgcgc	ccat	gcgt	tg	cg	ggaa	5640
cgcgc	agg	cgtt	gc	gt	gggg	5700
cgcgc	tgat	ttcagg	gc	gt	gggg	5760
cgcgc	ttt	acgc	cg	gt	gggg	5820
cgcgc	ttt	atgc	cg	gt	gggg	5880
cgcgc	ttt	gcgt	gg	gg	gggg	5940

gtcccttctg tcagagattc ccctgatgac atgggctgaa ccggaatacc gcaaaagaca	6000
actccgtttc ttggaaactc gggaaacaga ttgaatctct tcgcccacc tacaggccg	6060
tgaaagaacg ggacattccc gcccgtcgtc aggccttga aacgcagtgg aatacgtgga	6120
ttgcgccgga atggcagagc tgaaagaaaa actgtcagca cgggaagcgg agcggcgcag	6180
ggaggagccc gaagcggaaag cgccggaa ggaacaggag catgaggcgc ggctgaaacg	6240
tcatgataac caccgtctga gccgtgaaac ggcattagtc ggggttatta cggagctgg	6300
gcgtgccaga gagccggaa cgggcaggat aaccgcgtac atgatgtga gtaacagagc	6360
cggagaattc acggtatggg gtatgagct ggcgcattac cccagagtg ttcatgaccc	6420
ggtaatgtt tacctgtcgc caggcggggc tgtatggtc tcggatatac gtgaggaaat	6480
gccagaatct catgagacga tggcgccgc tgagcgtgtg agaatgtatt cccgtgcgac	6540
ggtcggcat gtactgaaac agatgcgcca ggggtggccc tcttacggtt ttccggcgct	6600
gcgcacatcac tggccggata atttttattt cagcgcacgc cgcaggccg tagcctctcc	6660
gctgccgtct gcgcacccggg tggacgtcac cgcttgcgc gcaccggagc aactcatgccc	6720
cgttgtattt tcgacagagc gaaacagcag gacgctgaat ctgctgtgt gcaaaggccc	6780
ggaggaagtg cttgtcgat ttgtgcgcga ggaggacggg ctgcgtcccg ttcttgcgc	6840
tccgtcccg gattacagtc atctgttgtt cagcaccatc acggagaacg ggttatgcct	6900
ggcaggattac ggagaagcta taaaccatga tgccgatact ccgtacccac cggAACGCA	6960
cctgatgcag ttccggctca aaggccatca tgacaggctt ttggctgctg tccacaaaacc	7020
gaaagagatg-ccggattatc-tttccgtca-actcggttt-aatcagacct-ggcatgagtg	7080
gaagcgggac gaacagcaca ggcaacaaca acggcgc	7117

<210> 35
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer

<400> 35
gtgtcatgaa aatgggtaac caatggcaac 30

<210> 36
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer

<400> 36
cacagagctc cgctaaacaa aacagcacaa gggag 35

<210> 37
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer

<400> 37
gtgtccatgg ctaaaacatt attaatagct gcatcgc 37

<210> 38
<211> 29

<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer

<400> 38

gtgtctgcag aactgactga attgagatg

29

<210> 39
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer

<400> 39

gtgttagatct-ttaagaccca-ctttcacatt-taagttg

37

<210> 40
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer

<400> 40

cacaggatcc ttactgaacc gcgatccccg

30

<210> 41
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Forward primer

<400> 41

gtgtgagctc gatcaaccag caagccgtta accctctgac

40

<210> 42
<211> 67
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse primer

<400> 42

gtgtgcatgc ggggggccat ataggccggg gatttaaatg caaacgtccg ccgaaacgcc
gacgcac

60

67

<210> 43
<211> 71
<212> DNA
<213> Artificial Sequence

<220>

<223> Forward primer

<400> 43

gtgtgcatgc ggggtaatt aaggggcggtt cccgtggta ttggtaac cgacgggtct
catgacatcg c

60

71

<210> 44

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer

<400> 44

gtgtctcgag gatatcatttc tggcctctga cgttgt

37

<210> 45

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer

<400> 45

ttttttccat ggctattatg actgaaatcg ttgcagataa aacgg

45

<210> 46

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer

<400> 46

tttttaaggc ttcccggttc agacttcagg tacctcaaag agtgtc

46

<210> 47

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer

<400> 47

ccgctcgaga tgcacggctc caacaagctc cca

33

<210> 48

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer

<400> 48
cgcgatcct taggactcg ctttgagtgc ctg 33

<210> 49
<211> 102
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 49
gatccatgg cttatggcag aaaaaaacgc cgtcagcgcc gtcgcataaa cgcgctgcag 60
gaagataccc cgccgggccc gtccaccgtg ttccgcggc cg 102

<210> 50
<211> 103
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 50
ggacagggt gatggtgatg cccgcgtatgc cgatgcggat ttgcggcaa tgcggggttt 60
ccagcggcggc ggaggagggtc ggcgggcaaa acacgggtggc cg 103

<210> 51
<211> 102
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 51
ggcatcgccg gcatcaccat caccctgtcc ctgtgcggct gcgcgaacgc ggcgcgcggc 60
accctgcgtt ccgcgaccgc ggataactcc gaaaacaccg gc 102

<210> 52
<211> 111
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 52
gcgatattcg gacggatcgc aggagcggtt ttggacggc gggttcggct gatcggtgcg 60
cagatccggg acgttttaa agccgggttt tccggagttt cccgggtcg c 111

<210> 53
<211> 111
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 53
 cctgcgatcc gtccgaatat cgcgctccg aactgaaaga atccctgatc accaccaccc 60
 cgtccgcggc gcgcacccgc cggcgctgca tccgcctctg aaagcttcat g 111

<210> 54
 <211> 41
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 54
 catgaagctt tcagaggcgg atgcagcggc gggcggtgcg c 41

<210> 55
 <211> 98
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 55
 gatccccatgg ctcatcacca tcaccaccat tatggccgca aaaaacgccc tcagcgccgt 60
 cgcataacg cgctgcagga agataccccc cccggggccc 98

<210> 56
 <211> 100
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 56
 gatccccatgg ctaaaaagac ggctctggcg cttctgctct tgctgttagc gctgactagt 60
 gtagcgcagg cctatggccg caaaaaacgc cgtcagcgcc 100

<210> 57
 <211> 551
 <212> DNA
 <213> Bacteriophage

<220>
 <221> CDS
 <222> (7)...(408)

<221> modified_base
 <222> (1)...(1)
 <223> n=a, c, g, or t

<400> 57
 nagacc atg gct tat ggc aga aaa aaa aga aga cag aga aga aga atg 48
 Met Ala Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Met

1	5	10
---	---	----

aac	gcf	ctg	cag	gaa	gat	acc	ccg	ccg	ggc	ccg	tcc	acc	gtg	ttt	cgf	96
Asn	Ala	Leu	Gln	Glu	Asp	Thr	Pro	Pro	Gly	Pro	Ser	Thr	Val	Phe	Arg	
15															30	
ccg	ccg	acc	tcc	tcc	ccg	ccg	ctg	gaa	acc	ccg	cat	tgc	ccg	gaa	atc	144
Pro	Pro	Thr	Ser	Ser	Arg	Pro	Leu	Glu	Thr	Pro	His	Cys	Arg	Glu	Ile	
35															45	
ccg	atc	ggc	atc	gcf	ggc	atc	acc	atc	acc	ctg	tcc	ctg	tgc	ggc	tgc	192
Arg	Ile	Gly	Ile	Ala	Gly	Ile	Thr	Ile	Thr	Leu	Ser	Leu	Cys	Gly	Cys	
50															60	
gcf	aac	gcf	gcf	ccg	acc	ctg	ccg	tcc	gcf	acc	gcf	gat	aac	tcc	240	
Ala	Asn	Ala	Arg	Ala	Pro	Thr	Leu	Arg	Ser	Ala	Thr	Ala	Asp	Asn	Ser	
65															75	
gaa	aac	acc	ggc	ttt	aaa	aac	gtc	ccg	gat	ctg	ccg	acc	gat	cag	ccg	288
Glu	Asn	Thr	Gly	Phe	Lys	Asn	Val	Pro	Asp	Leu	Arg	Thr	Asp	Gln	Pro	
80															90	
aaa	ccg	ccg	tcc	aaa	aaa	ccg	tcc	tgc	gat	ccg	tcc	gaa	tat	ccg	gtc	336
Lys	Pro	Pro	Ser	Lys	Lys	Arg	Ser	Cys	Asp	Pro	Ser	Glu	Tyr	Arg	Val	
95															110	
tcc	gaa	ctg	aaa	gaa	tcc	ctg	atc	acc	acc	ccg	tcc	ccg	ccg	ccg	ccg	384
Ser	Glu	Leu	Lys	Glu	Ser	Leu	Ile	Thr	Thr	Pro	Ser	Arg	Pro	Arg		
115															125	
acc	gcc	ccg	ccg	tgc	atc	ccg	ctc	tgaaagcttg	gctgtttgg	cgatgagag						438
Thr	Ala	Arg	Arg	Cys	Ile	Arg	Leu									
130																
aagatttca	gcctgataca	gattaaatca	gaacgcagaa	gcccgtctgat	aaaacagaat											498
ttgcctggcg	gcagtagcgc	ggtggtccca	cctgacccca	tgccgaactc	aga											551
<210> 58																
<211> 134																
<212> PRT																
<213> Bacteriophage																
<400> 58																
Met	Ala	Tyr	Gly	Arg	Lys	Arg	Arg	Gln	Arg	Arg	Arg	Mét	Asn	Ala		
1					5			10				15				
Leu	Gln	Glu	Asp	Thr	Pro	Pro	Gly	Pro	Ser	Thr	Val	Phe	Arg	Pro	Pro	
					20			25				30				
Thr	Ser	Arg	Pro	Leu	Glu	Thr	Pro	His	Cys	Arg	Glu	Ile	Arg	Ile		
					35			40				45				
Gly	Ile	Ala	Gly	Ile	Thr	Ile	Thr	Leu	Ser	Leu	Cys	Gly	Cys	Ala	Asn	
					50			55				60				
Ala	Arg	Ala	Pro	Thr	Leu	Arg	Ser	Ala	Thr	Ala	Asp	Asn	Ser	Glu	Asn	
					65			70			75				80	
Thr	Gly	Phe	Lys	Asn	Val	Pro	Asp	Leu	Arg	Thr	Asp	Gln	Pro	Lys	Pro	
					85			90				95				
Pro	Ser	Lys	Lys	Arg	Ser	Cys	Asp	Pro	Ser	Glu	Tyr	Arg	Val	Ser	Glu	
					100			105				110				
Leu	Lys	Glu	Ser	Leu	Ile	Thr	Thr	Thr	Pro	Ser	Arg	Pro	Arg	Thr	Ala	
					115			120				125				

Arg Arg Cys Ile Arg Leu

130

<210> 59
<211> 444
<212> DNA
<213> Bacteriophage

<220>
<221> modified_base
<222> (1)...(1)
<223> n=a, c, g, or t

<221> CDS
<222> (7)...(427)

<400> 59

nagacc atg gct cat cac cat cac cat tat ggc cgc aaa aaa cgc
Met-Ala-His-His-His-His-Tyr-Gly-Arg-Lys-Lys-Arg

48

1 5 10

cgt cag cgc cgt cgc atg aac gcg ctg cag gaa gat acc ccg ccg ggc
Arg Gln Arg Arg Met Asn Ala Leu Gln Glu Asp Thr Pro Pro Gly

15 20 25 30

ccg tcc acc gtg ttt cgc ccg acc tcc tcc cgc ccg ctg gaa acc
Pro Ser Thr Val Phe Arg Pro Pro Thr Ser Ser Arg Pro Leu Glu Thr

35 40 45

ccg cat tgc cgc gaa atc cgc atc ggc atc gcg ggc atc acc atc acc
Pro His Cys Arg Glu Ile Arg Ile Gly Ile Ala Gly Ile Thr Ile Thr

50 55 60

ctg tcc ctg tgc ggc tgc gcg aac gcg cgc gcg acc ctg cgc tcc
Leu Ser Leu Cys Gly Cys Ala Asn Ala Arg Ala Pro Thr Leu Arg Ser

65 70 75

gcg acc gcg gat aac tcc gaa aac acc ggc ttt aaa aac gtc ccg gat
Ala Thr Ala Asp Asn Ser Glu Asn Thr Gly Phe Lys Asn Val Pro Asp

80 85 90

ctg cgc acc gat cag ccg aaa ccg ccg tcc aaa aaa cgc tcc tgc gat
Leu Arg Thr Asp Gln Pro Lys Pro Pro Ser Lys Lys Arg Ser Cys Asp

95 100 105 110

ccg tcc gaa tat cgc gtc tcc gaa ctg aaa gaa tcc ctg atc acc acc
Pro Ser Glu Tyr Arg Val Ser Glu Leu Lys Glu Ser Leu Ile Thr Thr

115 120 125

acc ccg tcc cgc ccg cgc acc gcc cgc cgc tgc atc cgc ctc t
Thr Pro Ser Arg Pro Arg Thr Ala Arg Arg Cys Ile Arg Leu

130 135 140

gaaagcttgg ctgtttt

444

<210> 60
<211> 140
<212> PRT

<213> Bacteriophage

<400> 60

Met Ala His His His His His Tyr	Gly Arg Lys Lys Arg Arg Gln	
1 5 10	15	
Arg Arg Arg Met Asn Ala Leu Gln Glu Asp Thr Pro Pro Gly Pro Ser		
20 25 30		
Thr Val Phe Arg Pro Pro Thr Ser Ser Arg Pro Leu Glu Thr Pro His		
35 40 45		
Cys Arg Glu Ile Arg Ile Gly Ile Ala Gly Ile Thr Ile Thr Leu Ser		
50 55 60		
Leu Cys Gly Cys Ala Asn Ala Arg Ala Pro Thr Leu Arg Ser Ala Thr		
65 70 75 80		
Ala Asp Asn Ser Glu Asn Thr Gly Phe Lys Asn Val Pro Asp Leu Arg		
85 90 95		
Thr Asp Gln Pro Lys Pro Pro Ser Lys Lys Arg Ser Cys Asp Pro Ser		
100 105 110		
Glu Tyr Arg Val Ser Glu Leu Lys Glu Ser Leu Ile Thr Thr Thr Pro		
115 120 125		
Ser Arg Pro Arg Thr Ala Arg Arg Cys Ile Arg Leu		
130 135 140		

<210> 61

<211> 1565

<212> DNA

<213> Salmonella

<400> 61

gatatcattc tggcctctga cgttgtgatg gtcgcacgtg gcgatctggg ctttggaaatc	60
ggcgatccgg agctgggtgg tatccagaaa gcgcgtattc gcccgtcgcc tcaactaaac	120
cgcgcagtca tcaccgcac gcaaatgtatg gagtcgtatgc tcaccaaccc gatgccgacc	180
cgtgcggaaag tggatggacgt ggcgaacgccc gtcctggatg gcacggatgc gtttatgtcg	240
tctgcccggaaa ccgcagccgg tcagttatct tctgaaaaccg ttggcccaat ggccgcgtc	300
tgccctggcg cagaaaaaaat ccccgacatc aatgtgtcta aacaccgtct cgacgtgcag	360
ttcgacaacg ttgaagaagg cattgccccatg tctgcgtatgt atgcggcaaa ccatctgaaa	420
ggcggttaccc cgatcatcac catgacggaa tccggctgtatcc cccgcgtataat gacttcccgt	480
atcagctccg gcctgcccattt ttcggccatg tcgcgcattt aacgcacgtt gaaacctgacc	540
gctgcgtatc gcgaggtaac gccgggtgcatttttgcatttgcgcatttgcgc gtttgcgcgc	600
gcacatgaag ctgttaatct gctgcgtatc aaagggtatc tggtttccgg cgacctgggtt	660
atcgtgaccgc agggcgatgt catgagcacc gtcgggttcaa ccaataccac gcccggccccc	720
ccttaattaa ccccgcatgc gggggggccat ataggccggg gatttaatgc caaacgtccg	780
ccgaaacgcgc gacgcactgt gttccagata tagtcaaaaa ccggattacc ctgattatga	840
aacatcgccgc ccatttttttgc cccctgagag gccatcagca tggctggat gtcgacgc	900
cagccatgcgt gtacgagaaa aatgactttt tcgtcgatc gacgcacatc ctcgataatc	960
tccagacacctt cccagtcac acgctgtatgc atttttttcg gaccgcgcatttgcgc gccaactca	1020
gccatcatcg ccattgcctt tggcgccgtt gccaacatct catgcacatc cgcttcgcgc	1080
tcagcttcgc tacgtcgccg aaagcacaac gacagattaa tttagcggccg ggcacgagaa	1140
ctcttccca gccgtccggc aaaacgcccc agcgtcgccca gcaaaagggtt gccgaaatgtat	1200
gccgggttta atgcgtatccc cgccatttgc gccgcgcacc accaggcgcc ccaataactgt	1260
ggatagcgaa aggattttc gaattcaggatataactcac tattttttttt tttgggtttcc	1320
atgctttcc agggctctgtt gacgcgaaaaa ggaattgtatgc atagtgtatgc gacgtctgc	1380
tctcacacaaa aacaaaaaaatcccgacacaca tcgtcgatcc gctctgtatgc cgcattttgtt	1440
aatcgaagcg cagttgcggc agaacctttt tcacctgtgc caggtattca cgacgtatctg	1500
accccgatcg accttccgtt cggcacaatt ttgtcgatcc ggggttaacg gcttgcttgtt	1560
tgatc	1565