CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	A process of testing spacing of wiring in a circuit comprising:
2	forming a plurality of conductor rectangles representative of conductors of
3	said circuit;
4	forming minimum spacing rectangles around said conductor rectangles,
5	said minimum spacing rectangles being larger than respective ones of said
6	conductor rectangles;
7	identifying a possible error rectangle when a first conductor rectangle of
8	said conductor rectangles occupies a portion of a minimum spacing rectangle of a
9	second conductor rectangle of said conductor rectangles;
10	checking whether said possible error rectangle is a true error; and
11	reporting said true errors.
1	2. The process in claim 1, wherein said checking comprises:
2	classifying said possible error rectangle as a possible diagonal error
3	rectangle or a possible non-diagonal error rectangle;
4	determining that said possible diagonal error rectangle is said not a true
5	error when at least two adjacent sides of said possible diagonal error rectangle

BU9-98-118

2	forming a plurality of element rectangles representative of elements of said
3	structure;
4	forming minimum spacing rectangles around said element rectangles, said
5	minimum spacing rectangles being larger than respective ones of said element
6	rectangles;
7	identifying a possible error rectangle when a first element rectangle of said
8	element rectangles occupies a portion of a minimum spacing rectangle of a second
9	element rectangle of said element rectangles;
10	checking whether said possible error rectangle is a true error; and
11	reporting said true errors.
1	8. The process in claim 7, wherein said checking comprises:
2	classifying said possible error rectangle as a possible diagonal error
3	rectangle or a possible non-diagonal error rectangle;
4	determining that said possible diagonal error rectangle is said not a true
5	error when at least two adjacent sides of said possible diagonal error rectangle
6	which connect said first element and said second element are covered by a third
7	element of said elements; and
8	determining that said possible non-diagonal error rectangle is not a true
9	error when said possible non-diagonal error rectangle is completely covered by said
10	third element.

1	9. The process in claim 7, wherein said forming minimum spacing rectangles
2	comprises forming said minimum spacing rectangles to have sides which are a
3	minimum spacing design constraint distance from sides of respective ones of said
4	element rectangles.
1	10. The process in claim 7, wherein said elements are within a single net.
1	11. The process in claim 7, wherein said structure comprises a plurality of nets
2	and said process further includes checking for shorts between different ones of said
3	nets.
	1
1	12. The process in claim 7, further comprising dividing said possible error
2	rectangle into at least two possible error rectangles if said possible error rectangle
3	is partially covered by a third element of said elements.
1	13. A computer system for testing spacing of wiring in a circuit comprising:
2	a unit for forming a plurality of conductor rectangles representative of conductors
3	of said circuit;
4	a unit for forming minimum spacing rectangles around said conductor
5	rectangles, said minimum spacing rectangles being larger than respective ones of
6.	said conductor rectangles;
7	a unit for identifying a possible error rectangle when a first conductor
	BU9-98-118 21

38

8	rectangle of said conductor rectangles occupies a portion of a minimum spacing
9	rectangle of a second conductor rectangle of said conductor rectangles;
10	a unit for checking whether said possible error rectangle is a true error; and
11	a unit for reporting said true errors.
.1	14. The computer system in claim 13, wherein said unit for checking
2	comprises:
3	a unit for classifying said possible error rectangle as a possible diagonal
4	error rectangle or a possible non-diagonal error rectangle;
5	a unit for determining that said possible diagonal error rectangle is said not
6	a true error when at least two adjacent sides of said possible diagonal error
7	rectangle which connect said first conductor and said second conductor are covered
8	by a third conductor of said conductors; and
9	a unit for determining that said possible non-diagonal error rectangle is not
10	a true error when said possible non-diagonal error rectangle is completely covered
11	by said third conductor.
12	15. The computer system in claim 13, wherein said unit for forming minimum
13	spacing rectangles comprises a unit for forming said minimum spacing rectangles
14	to have sides which are a minimum spacing design constraint distance from sides
15	of respective ones of said conductor rectangles

- 2 minimum spacing rectangles comprises forming said minimum spacing rectangles
- 3 to have sides which are a minimum spacing design constraint distance from sides
- 4 of respective ones of said conductor rectangles.
- 1 22. The computer program product in claim 19, wherein said conductors are
- within a single net.
- 1 23. The computer program product in claim 19, wherein said circuit comprises
- a plurality of nets and said process further includes checking for shorts between
- 3 different ones of said nets.
- 1 24. The computer program product in claim 19, said process further comprising
- 2 dividing said possible error rectangle into at least two possible error rectangle if
- 3 said possible error rectangle is partially covered by a third conductor of said
- 4 conductors.