

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1544847 A1

(51) 5 С 25 Д 15/00

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГЧНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

БЕСЕДОВСКАЯ
ПАТЕНТАЖ-ГУМАНИТАРНАЯ
БИБЛИОГРАФИЯ

(21) 4383954/31-02
(22) 08.12.87
(46) 23.02.90, Бюл. № 7
(71) Институт химии и химической
технологии АН ЛитССР
(72) Д.-Б.К.Раманаускене, В.В.Медялене,
Г.-К.К.Кунятиас и О.С.Эйхер-Лорка
(53) 621.357.7:669.248 (088.8)
(56) Авторское свидетельство СССР
№ 478873, кл. С 25 Д 3/18, 1972.
Патент ФРГ № 3313871,
кл. С 25 Д 15/00, 1984.
(54) КОМПЛЕКСНАЯ ДОБАВКА В КИСЛЫЕ
ЭЛЕКТРОЛИТЫ ДЛЯ ПОЛУЧЕНИЯ КОМПОЗИЦИ-
ОННЫХ ПОКРЫТИЙ НА ОСНОВЕ НИКЕЛЯ И
СПЛАВА НИКЕЛЬ-КОБАЛЬТ
(57) Изобретение относится к гальва-
ностегии, в частности, к получению
композиционных покрытий на основе нике-
ля и его сплавов с кобальтом, и мо-

жет быть использовано в различных
областях техники, где требуется на-
несение износостойких покрытий. Цель
изобретения - повышение твердости пок-
рытий. Процесс нанесения покрытий ве-
дут в электролитах никелирования, со-
держащих в качестве органической до-
бавки, г/л: метилцеллюлоза 0,15-2,0
и бетаин 2-(4-пиридил)-этансульфокис-
лоты общей формулы $C_2H_4SO_3-C_5H_4N-$
 $-C_2H_3R^1R^2$, где R¹-Н или -ОН; R²-ОН, -
-CH₂OH, -COOH, -CH₂N(CH₂CH₂O₃)₃Cl. Вве-
дение указанной добавки в электролит
повышает седиментационную устойчи-
вость микропорошка в растворе, повы-
шает количество дисперсной фазы в по-
крытии и соответственно твердость.
Кроме того, она способствует сохране-
нию качества толстослойных покрытий.
1 табл.

Изобретение относится к гальвано-
стегии, в частности к нанесению ком-
позиционных электрохимических покры-
тий, и может найти применение в авто-
мобильной, инструментальной, машино-
строительной и других отраслях про-
мышленности, где необходимы твердые
и износостойкие защитно-декоративные
покрытия.

Цель изобретения - повышение твер-
дости композиционных покрытий.

Покрытие получают в электролитах,
содержащих комплексную добавку в виде
метилцеллюлозы и бетаин 2-(4-пиридил)-
этансульфокислоты. Процесс получения
КЭП проводят при плотности тока 5-
8 А/дм² и температуре 45-50°С.

Совместное использование бетаин 2-(4-пиридил)-этансульфокислоты и метил-
целлюлозы способствует получению хоро-
шего качества толстослойных КЭП с вы-
сокими микротвердостью (700-850 кгс/мм²)
и содержанием неметаллических микро-
порошков (6-20 об.%), включая предель-
ные концентрации вводимых добавок.
Добавка оказывает двойной эффект: не
только повышает твердость КЭП, сти-
мулирует соосаждение порошков с метал-
лом, но и способствует получению ка-
чественных толстослойных покрытий.
Она модифицирует поверхность свой-
ства порошка и влияет на зернистость
структуре металла, поэтому получаются
твердые покрытия с высоким содер-

жанием порошка. Добавка также повышает седиментационную устойчивость порошка в электролите.

Пример 1. 20,92 г 2-(4-пиридинил)-этансульфокислоты и 4 г гидроксида натрия растворяют в 100 мл воды, прибавляют 8,04 г этиленхлоргидрина и кипятят с обратным холодильником в течение 16 ч. Затем раствор выпаривают в вакууме, сухой остаток растворяют в 100 мл холодной концентрированной HCl. Нерастворившийся хлорид натрия отфильтровывают через стеклянный фильтр, фильтрат упаривают в вакууме. Остаток перекристаллизовывают из смеси этанола с водой (3:1). Получают 18,77 г продукта, выход 81,2%, т.пл. ~218°C (разл.).

Вычислено, %: C 46,74; H 5,66; S 13,86.

Найдено, %: C 46,89, 46,76; H 5,66; 5,83; S 13,89; 13,66.

Пример 2. Аналогично из 10,46 г 2-(4-пиридинил)-этансульфокислоты, 2 г гидроксида натрия в 50 мл воды и 5,52 г α -монохлоргидрина глицерина получают 12,13 г продукта, выход 92,9%, перекристаллизовывают из смеси этанола с водой (2:1); т.пл. ~239°C (разл.).

Вычислено, %: C 45,96; H 5,78; S 12,27.

Найдено, мас.%: C 45,63; 45,60; H 5,88; 5,71; S 13,02; 11,69.

Пример 3. К раствору 9,36 г 2-(4-пиридинил)-этансульфокислоты в 50 мл воды прибавляют 3,6 г акриловой кислоты и 0,1 мл триэтиламина. Полученную реакционную смесь кипятят в течение 16 ч, затем выпаривают в вакууме. Остаток перекристаллизовывают из этилового спирта. Получают 9,9 г продукта, выход 76,4%, т.пл. ~254°C (разл.).

Вычислено, %: C 46,32; H 5,05; S 12,36.

Найдено, %: C 46,03; 46,37; H 5,12; 5,03; S 12,03; 12,45.

Пример 4. 10,46 г натриевой соли 2-(4-пиридинил)-этансульфокислоты растворяют в 50 мл воды, прибавляют несколько капель спиртового раствора фенолфталеина и 4,63 г эпихлоргидрина. Интенсивно перемешивают при комнатной температуре и при появлении красно-

фиолетовой окраски постепенно прибавляют разбавленную (~2N) соляную кислоту. Прибавление кислоты ведут с такой скоростью, чтобы реакционная смесь не приобретала интенсивной окраски. Когда реакция замедляется, температуру поднимают до 40–50°C. После окончания реакции прибавляют 7,46 г триэтаноламина и кипятят с обратным холодильником в течение 16 ч. Затем воду упаривают досуха с роторным испарителем и остаток экстрагируют кипящим этиловым спиртом (3×200 мл). Образовавшиеся при охлаждении кристаллы отфильтровывают и сушат в вакуумэкскаторе. Получают 15,75 г, выход 73,4%, перекристаллизовывают из этилового спирта.

Вычислено, %: N 6,53.

Найдено, %: N 6,92; 7,10.

Структура синтезированных соединений подтверждена данными ИК- и УФ-спектров. Метилцеллюлоза выпускается промышленностью. Добавку в электролит вводят следующим образом.

Вначале готовят сернокислый или сульфаминовокислый электролит никелирования или электролит для осаждения сплава Ni-CO известного состава (примеры приведены в таблице). Проводят его очистку активированным углем и селективную очистку. В отдельной емкости взвешивают требуемое количество микропорошка, который смешивают с небольшим количеством очищенного электролита. В полученную кашеобразную массу вводят необходимое количество раствора метилцеллюлозы и бетамина 2-(4-пиридинил)-этансульфокислоты, хорошо перемешивают и после 20-минутного перерыва данную смесь переносят в ванну, содержащую нужное количество электролита. Перемешивание электролита – сuspension, осуществляют сжатым воздухом.

Используют промышленные микропорошки: карбид кремния зеленый (КЗ) дисперсностью M5 (основная фракция 3–5 мкм), электрокорунд белый ЭБ МЗ (основная фракция 1–3 мкм), электрокорунд М10, нитрид бора β (эльбор) МЗ. Размер частиц применяемого микропорошка не должен превышать 20 мкм, его концентрация в электролите может быть 50–300 г/л.

Конкретные примеры, иллюстрирующие использование добавки, приведены в таблице.

Как видно из таблицы, добавка имеет возможность получить КЭП с разными неметаллическими микропорошками: карбидами, оксидами, нитридами и бором. Добавка может быть использована для получения самосмазывающихся композиционных покрытий. Например, с микропорошком графита получаются качественные покрытия, содержащие 12 об.% включений.

Анализ приведенных примеров показывает, что концентрацию бетамина 2-(4-пиридинил)-этансульфокислоты можно увеличить до 1,5 г/л (пример 12) без ущерба на качество получаемого КЭП. Полученные покрытия имеют высокий процент включений и высокую микротвердость (соответственно 20,8 об.% и 890 кгс/мм²). Однако повышение концентрации добавки свыше указанного предела может привести к растрескиванию КЭП. Предельная концентрация метилцеллюлозы ограничивается тем, что высокие ее количества отрицательно влияют на соосаждение порошка (пример 11), хотя при этом образуется стабильная суспензия.

При введении бетамина 2-(4-пиридинил)-этансульфокислоты меньше 0,25 г/л

получаются КЭП, микротвердость которых невысокая. Таким образом, для получения твердых КЭП концентрацию добавки необходимо поддерживать в интервале 0,3-1,2 г/л. Широкий интервал рабочих концентраций добавки - важное свойство электролита при получении толстых слоев.

Ф о р м у л а и з о б р е т е н и я

Комплексная добавка в кислые электролиты для получения композиционных покрытий на основе никеля и сплава никель-кобальт, содержащая азотсодержащее гетероциклическое соединение, отличающееся тем, что, с целью повышения твердости покрытий, она дополнительно содержит метилцеллюлозу, а в качестве азотсодержащего гетероциклического соединения бетанин 2-(4-пиридинил)-этансульфокислоты общей формулы

где R₁-H или -OH;

при следующем соотношении компонентов, г/л:

Метилцеллюлоза 0,15-2,0

Бетанин 2-(4-пиридинил)-этансульфокислота

0,3-1,5

Состав электролита, г/л, режим осаждения и свойства КЭП	Пример												
	1 (Базовый)	2 (Известный)	3	4	5	6	7	8	9	10	11	12	13
Сернокислый никель (гидрат)	300	300	300	300	240	240	300	300	240	4	300	320	320
Сульфаниловокислый никель	-	-	-	-	-	-	-	-	-	400	-	-	-
Хлористый никель (гидрат)	45	45	45	45	45	45	40	40	40	25	45	45	40
Сернокислый кобальт (гидрат)	-	-	-	-	-	-	-	-25	-	-	-	-	-
Борная кислота	30	30	30	30	30	30	30	30	30	40	60	40	40
Карбид кремния К3 М5	100	100	100	150	-	-	-	-	100	-	200	300	150
Электронкорунд ЗБ М10	-	-	-	-	-	-	100	-	-	-	-	-	-
Электрокорунд ЗБ М3	-	-	-	-	-	-	-	-	-	100	-	-	-
Нитрид бора 4(14 мкм)	-	-	-	-	75	-	-	-	-	-	-	-	-
Эльбор М3	-	-	-	-	-	50	-	-	-	-	-	-	-
Аморфный бор	-	-	-	-	-	-	-	50	-	-	-	-	-
Метиловый фиолетовый	-	0,2	-	-	-	-	-	-	-	-	-	-	-
Бетанин 2-(4-пиридинил)-этансульфокислота	-	-	0,4	0,8	0,6	0,5	0,5	0,3	0,6	1,0	0,7	1,5	0,6
Метилцеллюлоза	-	-	0,3	0,4	1,2	0,5	0,15	0,4	0,8	0,6	2,5	0,5	2,0
Плотность катодного тока, А/дм ²	5	5	5	6	7	4	5	7	8	7	5	5	5
pH электролита	4	4	4	4	4	4	4	4	4	4	3,6	3,6	4
Температура электролита, °С	45	45	45	45	45	50	50	50	45	50	45	45	45
Толщина покрытия, мкм	50	50	50	150	50	50	250	50	50	50	50	100	50
Содержание включений микропорошка, об.%	1,5	13,2	15,0	12,7	6,3	10,5	13,7	16,0	13,0	13,5	2,8	20,8	4,5

Продолжение таблицы

Состав электролита, г/л, режим осаждения и свойства КПИ	Пример												
	1 (Базо- вый)	2 (Ниже- стной)	3	4	5	6	7	8	9	10	11	12	13
Микротвердость кгс/мм ²	280	630	570	725	580	800	780	490	700	690	680	890	690
Устойчивость суспензии (время седиментации 3 см), мин	16	9	21	41	13	31	19	16	30	125	350	127	250
Внутренние напряжения, кгс/см ²	790	1420	1160	1040	1125	1200	1050	660	1150	450	980	1520	1400
Пластичность, %	4,2	>1	4,2	7,7	7,7	12	4,2	2,4	4,2	4,2	7,7	2,4	2,5

Приложение: Выход по току во всех случаях составляет 94-98%; скорость осаждения при 5 А/дм² порядка 1 мкм/мин; рассеивающая способность по методу Хернфга-Влима 24-26%; покрытия могут наноситься толщиной 1000 мкм и более.

Составитель В.Игнатьев

Техред Л.Олийнык

Корректор А.Обручар

Редактор Н.Яцола

Подписьное

Заказ 473 Тираж 544
ВНИИПТИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-издательский комбинат "Патент", г.Ужгород, ул. Гагарина, 101