Sputter Samples for ETA-RT Tester Verification

Conditions Setup of the Balzers Sputter was like shown in the Printout of 28:05:98:17:52:10

Substrates with no groove are used

	No. Description	Sputter stat.	storts 1	t[s]	spoys 2	ε <u>ξ</u> ; t[s]	Spots 3	t[s]	sjoijs 4 C P	*## t[s]	stotts 55	<u>ய</u> ி t[s]	spoys 60 P	t[s]
	001 Clear disc 002 Clear disc 003 Clear disc	not sput. not sput. not sput.						:						
>	101 single layer 102 single layer 103 single layer	ZnS+SiO2 sput. ZnS+SiO2 sput. ZnS+SiO2 sput.		9,00 9,00 9,00										
۱	201 single layer 401 single layer	ZnS+SiO2 sput ZnS+SiO2 sput			2	9,00					2	9,00		
	301 single layer 302 single layer 303 single layer	AginSbTe sput. AginSbTe sput. AginSbTe sput.							1 1 1					
	501 single layer 502 single layer 503 single layer	AITi sput AITi sput AITi sput											1 1 1	3,00 1,00 1,00
	601 triple layer 602 triple layer 603 triple layer	RW-layer stack RW-layer stack RW-layer stack	1	5,35 5,35 5,35	1 1	5,35 5,35 5,35			1 1 1	8,78 8,78 8,78	1 1			
	701 triple layer 702 triple layer 703 triple layer	RW-layer stack RW-layer stack RW-layer stack	1	5,35 5,35 5,35	1 1 1	5,35 5,35 5,35			1 1	7,00 7,00 7,00		3,53 3,53 3,53		
2000 100 100	801 triple layer 802 triple layer	RW-layer stack RW-layer stack	1	5,35 5,35	'	5,55			1	7,00 7,00	1	6,00 6,00		
	803 triple layer 901 quadro layer 902 quadro layer	RW-layer stack	1	5,35 5,35 5,35					1 1	7,00 7,00 7,00	1 1	6,00 6,00	1	1,00
	903 quadro layer			5,35					1	7,00		6,00	1	

Sputter rates and calculated and measured layer thicknesses

		100000000000000000000000000000000000000		rc meas		Complex	e refractive.	HIGEX GEL	ived by Pilin	ibs ar ven	្យា	
PC1	PC2	PC3	PC4	PCS	924	phase	AginSbTe		ZnS+Si02		AITI	
[A/s]	[A/s]	[A/s]	[A/s]	[A/s]	[A/s]		n	k .	n	K	n	k
82,2	82,2		20,5	82.2	200,0	amorph.	3,92	-4,85	2,125	0	2.4	-8
						crystall.	4,83	-1,86		PC	1,57	
									-	UV-coat	1.5	1

ETA-RT values

	~			value								
	cal, Tilick	meas. thick.	и	×	thick	fit_dev	thick	fit_dev	thick	fit_dev	thick	fit_dev
No.	[nm]	[nm]	[1]	[1]			ĺ					
		1										
001	0,0			 						 -		
002				_								
003												
003	U, U				45.0			ļ.,				
ļ					45/0		45/90		45/180		45/270	
	148.0					3,328E-05		2,185E-05	156,00	1,977E-05	156,00	6,520E-05
	148.0					1,881E-05		6,609E-05	155,50	3,450E-05		2,025E-05
103	148,0				156,00	2,573E-05	156,00	7,507E-05	156,00	2,088E-05	156,00	2,562E-05
								-			,	
201	148.0	ĺ			153,70	1,977E-05	153,70	2,003E-05	153.70	2,071E-05	153 70	2,241E-05
401	148,0					1,623E-05	154.10	3,002E-04	169.00	1,327E-05		1,673E-04
								.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,0272 00	100,00	1,0702-04
301	55,4											
302												
303												
1000												
501	60.0											
502	20.0											
503	20.0											
1203	20,0											
1004												
	135,0											
	135,0											
603	135,0											
	131.3			1								
	131,3											
703	131,3											
801	107.6											
	107,6											
	107.6			$\overline{}$								
			_									·
901	127,6											
	127,6		+									
	127.6											
				2 -								
300	values	are abl	JI. +/-	3 nm	correct							

8.6.58