

Análise de Circuitos Sequenciais

Ferramentas para análise e projecto de ircuitos sequenciais

Síntese de circuitos sequenciais síncronos

Apontamentos sobre como analisar circuitos sequenciais, os passos a realizar, as máquinas de Moore e de Mealy e a auto-correção, juntamente com alguns exercícios

Page

Principais passos

- A partir da descrição do problema, identificar entradas, saídas e estados. Codificar estados
- Fazer o diagrama de estados
- Definir o tipo de ff a utilizar, escrever a tabela de transição de estados, das entradas do ff e das saídas do circuito
- Deduzir as equações de entrada dos ff e as equações de saída
- Desenhar o diagrama lógico

Síntese de um contador binário de módulo 4

Projete um contador binário que execute a sequência: 1, 3, 2, 0, ..., 1, 3, 2, 0, ...

1º Passo:

- Não há entradas
- Para os números binários de 0 a 3 são precisos 2 bits, logo existem 2 saídas
- Existem 4 estados:
 - 1 01
 - 3 11
 - 2 10
 - 0 00

2º Passo:

3º Passo:

Q _{1n}	Q _{0n}	J ₁	K ₁	Jo	K ₀	Q _{1n+1}	Q _{0n+1}	S ₁	S ₀
0	0	0	х	1	х	0	1	0	0
0	1	1	х	х	0	1	1	0	1
1	0	х	1	0	х	0	0	1	0
1	1	х	0	х	1	1	0	1	1

4º Passo:

Outras entradas:

5º Passo:

Máquina de Moore

- Saídas sempre dentro dos estados
- Tabelas de excitação → saídas à parte
- Circuito → entrada nunca vai à saída
- Máquina mais robusta, imunes a trepidação mas com mais custos

Máquina de Mealy

- Saídas sempre nos arcos
- Tabelas de excitação → saída na tabela
- Circuito → saídas dependentes das entradas presentes
- Máquinas menos robusta, não imune a trepidações, com menos custos

Auto-correção

- Uma maneira simples de obter a auto-correção é desenhar à partida um diagrama de estados em que arbitram estados seguintes para os estados adicionais de forma a que o diagrama tenha auto-correção, mas esta não será a opção mais otimizada.
- Para otimizar a implementação das funções digitais fazemos o seguinte:
 - Sintetizar as funções D utilizando todos os X's convenientes
 - Desenhar o diagrama de estados e examinar todos os eventuais ciclos indesejáveis (sequências que se fecham sobre si mesmas, que não seja a principal)
 - Alterando (X → 0 ou X → 1) apenas um dos mapas, ver qual é a função mais simples que se pode retirar do mapa e verificar se todos os ciclos indesejáveis são eliminados