Laboratório 6 de CCI-22 Ajuste de curvas

Alunos:

Andrei Albani

Vinícius José de Menezes Pereira

Q1.

a)

Na figura 1 pode-se observar a reta de ajuste obtida na regressão linear:

Figura 1. Regressão linear nos pontos do problema.

A função de ajuste obtida foi y = 0.73x + 49.87

b) Na figura 2 pode-se observar a parábola de ajuste obtida pelo método dos mínimos quadrados:

Figura 2. Parábola de ajuste nos pontos do problema

A função obtida foi $y = -0.0022x^2 + 1.65x - 42.21$

c) A figura 3 apresenta uma comparação entre os dois ajustes:

Figura 3. Reta e parábola ajustadas nos pontos do problema.

O melhor ajuste é aquele que possui a menor soma dos quadrados dos resíduos. A figura 4 mostra os valores obtidos para essa soma, para a reta(R_L) e para a parábola(R_Q).

$$R_L = R_Q =$$
2.9622e+04 2.9039e+04

Figura 4. Soma dos erros quadráticos da reta de ajuste (R_L) e da parábola de ajuste(R_Q).

Portanto, conclui-se que o melhor ajuste é feito pela parábola.

Q2.

- a) Ao se realizar a regressão linear nos dados do problema obtém-se a reta de equação y = -36.962x + 2625.4
- b) Basta substituir x por 20, do que se obtém o valor da força y = 1886.1 psi
- c) O coeficiente de correlação r = 0.9466 indica que o ajuste não se adequou perfeitamente, pois poderia ser mais próximo do valor ótimo 1. Porém, ao analisar-se o gráfico, mostrado na figura 4, pode-se notar que há uma dispersão dos pontos em torno da reta de ajuste praticamente aleatória e um comportamento aproximadamente linear. Dessa forma, o que se pode concluir é que a idade do propelente é uma boa variável para prever a força do propelente com uma aproximação razoavelmente grande, porém não é capaz de fazer uma previsão que possua grande exatidão, fato indicado principalmente pelo valor de r.

Figura 4. Reta de ajuste obtida pela regressão linear realizada nos pontos do problema.

Q3.

- a) y = 997 0.5x
- b) $y = 1.3 * 10^{98} e^{-0.11x}$
- c) No ajuste linear, o coeficiente de correlação 'r' encontrado foi 0.84. Já para a regressão utilizando a função exponencial, o 'r' encontrado foi 0.96. Pelo critério solicitado, o menor 'r', vemos que a regressão exponencial teve um melhor desempenho, como também é possível ver no gráfico a seguir:

Q4.

- a) $y = 32.3 * 1.42^x$
- b) $y = 3.65 * x^{0.96}$
- c) A primeira, exponencial, se adapta melhor, com 'r' = 0.99, enquanto a segunda ,potências de x, com um 'r' um pouco menor e igual a 0.96. Isso pode ser visto no

gráfico a seguir:

Comentários: Analisando o gráfico, vemos que a regressão exponencial nesse caso se adequou muito melhor aos pontos dados. Observando a natureza dos dados, vemos que isso é esperado, pois o crescimento populacional de uma espécie é proporcional ao tamanho da população. Observamos também que, nesse caso, a regressão baseada nas potências de x só é próxima dos dados em na região intermediária dos dados, extrapolando muito os dados fora da região desejada, como era de se esperar, já que a função exponencial, cuja eficácia foi comprovada pela regressão exponencial, cresce mais rapidamente que as funções polinomiais.

d) Utilizando a função exponencial, o resultado encontrado foi: 386.

Avaliação da dupla

Aluno	Atividades	Percentual
Andrei Albani	Q1 e Q2	100%
Vinícius Pereira	Q3 e Q4	100%