Отчет по лабораторной работе № 22

по курсу "Языки и методы программирования"

Студент группы М80-107Б-20 Апанович Денис Станиславович, № по списку 4

Ко	нтакты e-ma	il, telegram, skype denis.apanovich@mail.ru
Pa	бота выполн	ена: «15» марта 2020г.
Пр	еподаватель	: каф. 806 Найденов Иван Евгеньевич
От	чет сдан «	»20 г., итоговая оценка
		Подпись преподавателя

- 1. Тема: Издательская система ТЕХ.
- **2. Цель работы:** Познакомиться с TEX и LATEX. Научиться верстать документы средней сложности, содержащие математические формулы.
- **3.** Задание : Сверстать страницы 524-525 из курса математического анализа за авторством Л.Д.Кудрявцева (т.1)
- 4. Оборудование (студента):

Процессор Intel Core i5-3470 @ 3.20GHz с ОП 8192 Мб, НМД 1024 Гб. Монитор 1920х1080

5. Программное обеспечение (студента):

Операционная система семейства: *linux*, наименование: *ubuntu*, версия 20.04.01 интерпретатор команд: *bash* версия 5.0.17.

Система программирования -- версия --, редактор текстов папо версия 4.8

Утилиты операционной системы --

Прикладные системы и программы --

Местонахождение и имена файлов программ и данных на домашнем компьютере --

6. Идея, метод, алгоритм решения задачи (в формах: словесной, псевдокода, графической [блок-схема, диаграмма, рисунок, таблица] или формальные спецификации с пред- и постусловиями)

Изучить синтаксис LATEX, применить принципы работы с языками разметки на практике.

7. Сценарий выполнения работы [план работы, первоначальный текст программы в черновике (можно на отдельном листе) и тесты либо соображения по тестированию].

Для простоты сначала осуществляем верстку текста, затем верстаем формулы. Для удобства я использовал онлайнсервисы, в которых можно осуществлять рекомпиляцию документа в реальном времени.

8. Распечатка протокола (подклеить листинг окончательного варианта программы с тестовыми примерами, подписанный преподавателем).

```
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[russian]{babel}
\usepackage{setspace,amsmath}
\usepackage[14pt]{extsizes}
\usepackage[left=3cm, right=3cm,
              top=3cm,bottom=3cm,bindingoffset=0cm]{geometry}
\setcounter{page}{524}
\begin{document}
отсюда \star = {(1 - z^4)}^{-2/3}, {dx}={8}\over 2^4}^{-5/3}{z^3dz},
поэтому
              \begin{gather*}
              I={\{8\}\setminus over\{3\}}\setminus \{\{z^4\}\setminus \{(1-z^4)^2\}\}dz={\{2\}\setminus \{3\}}\setminus \{\{z^4\}\setminus \{\{z^4\}\setminus \{(1-z^4)^2\}\}dz=\{\{2\}\setminus \{3\}\setminus \{\{z^4\}\setminus \{\{z^4\}\setminus \{(1-z^4)^2\}\}\}dz=\{\{2\}\setminus \{\{z^4\}\setminus \{z^4\}\setminus \{\{z^4\}\setminus \{\{z^4\}\setminus \{z^4\}\setminus \{z
d\{\{1\}\setminus \{1-z^4\}\} = \{2\setminus \{1-z^4\}\} - \{1-z^4\}\} - \{1-z^4\}\} - \{1-z^4\}\} = \{1-z^4\} - \{1-z^4\} - \{1-z^4\}\} - \{1-z^4\} - \{1-z^4\} - \{1-z^4\}\} - \{1-z^4\} - \{1-z^4
              ={\{2z\}} (3(1-z^4))}-{\{1\}} (1)^{{\{1\}}} (1-z^2)}+{\{1\}} (1-z^2)}
              = {\{2z\} \vee \{3(1-z^4)\}} - \{1\vee \{1+z\} \vee \{1-z\}\} - \{1\vee \{1-z\}\} 
              \end{gather*}
              где $\displaystyle z$ выражается через $\displaystyle x$ по формуле (21.15).
\text{textbf}\{21.15\ \text{Интегралы вида }\displaystyle \left(-\{}^{{P_n(x)dx}\operatorname{ver}{\ax^2+bx+c}}\right)
\\ \\ Рассмотрим интеграл
где $\displaystyle P_n(x)dx$ - многочлен степени $\displaystyle n \geq 1$. С принципиальной
точки зрения этот интеграл всегда можно свести к интегралу от рациональной дроби с помощью
одной из подстановок Эйлера (см.п.21.3). Однако в данном конкретном случае значительно
быстрее к цели приводит обычно другой прием. \par
Именно, покажем, что справедлива формула \begin{gather*} \int_{}^{} \{P_n(x)dx\}\over\{x^2+bx+c\}}dx=
\end{gather*}
где \alpha = 1(x)dx - многочлен степени не выше, чем \alpha = 1(x)dx - многочлен степени не выше, чем \alpha = 1(x)dx
$\displaystyle \alpha $ - некоторое число.
\par
Итак, пусть многочлен
\begin{gather*} P_{n}(x)=a_nx^n+a_{n-1}x^{n-1}+\loss +a_0 \setminus (21.17)\end{gather*}
задан. Если существует многочлен
\begin{gather*} P_{n-1}(x)=b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\local{pather*} удовлетворяющий условию (21.16), то, дифференцируя это равенство, получим
\begin{gather*} {{P_n(x)}\over{\sqrt{ax^2+bx+c}}}=
11
=P_{n-1}^{'}(x)\sqrt{ax^2+bx+c}+{P_{n-1}^{'}}(x)
(21.19)\end{gather*}
Здесь слева стоит многочлен степени $\displaystyle n$, а справа каждое слагаемое также
является многочленом степени не больше $\displaystyle n$.
\par
Замечая, что
<text> \left( p_{n-1}^{-1} \right) = 
и подставляя (21.17), (21.18) и (21.20) в (21.19), имеем равенства \begin{gather*} 2(a_nx^n+a_{n-1}x^n-1)+1 dots a_nx^n+a_{n-1}x^n-1
=2(ax^2+bx+c)[(n-1)b_{n-1}x^{n-2}+\ldots +kb_{k}x^{k-1}+\ldots+b_1]+
//
+(2ax+b)(b_{n-1}x^{n-1}+\ldots +b_{k}x^{k}+\ldots +b_0)+2\alpha\end{gather*}
\ \ \ Приравнивая коэффиценты у одинаковых степеней $\displaystyle x$, получим следующую
систему $\displaystyle n+1$ линейных уравнений с $\displaystyle n+1$ неизвестными
\label{lem:begin} $$ \phi_0,b_1,\ldots,b_{n-1},\alpha; $$ \left( \frac{n-1}{n-1},\alpha; \right) = \frac{2a_0-2cb_1+bb_0+2\alpha}{n-1}, $$
```

```
\\
2a_1=2bb_1+4cb_2+2ab_0+bb_1,
\\\
\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\
```

Из последнего уравнения сразу находим: α displaystyle b_{n-1}=a_n/na\$/. Подставляя это выражение в предпоследнее уравнение и замечая, что в этом уравнении коэффицент у неизвестного α 0 b_{n-2}\$ pasen α 1 page 3 page 4 page 2 a(n-1)\ne0\$, найдем значение α 3 page 3 page 3 page 5 page 6 page 6 page 6 page 6 page 7 page 7 page 7 page 7 page 7 page 8 page 7 page 8 page 9 page

\end{document}

9. Дневник отладки должен содержать дату и время сеансов отладки и основные события (ошибки в сценарии и программе, нестандартные ситуации) и краткие комментарии к ним. В дневнике отладки приводятся сведения об использовании других ЭВМ, существенном участии преподавателя и других лиц в написании и отладке программы.

№	Лаб. или дом.	Дата	Время	Событие	Действие по исправлению	Примечание

10. Замечания автора по существу работы

Работу считаю частично актуальной, она будет полезной, для тех, кто постоянно занимается вёрсткой литературы, но на этом её полезность и ограничивается.

11. Выводы

Выполняя данную лабораторную работу, я научился работать с издательской системой LATEX, изучил её синтаксис, а также познакомился с основными принципами работы с языками разметки.

Недочёты при выполнении задания могут быть устранены следующим образом: --

Подпись студента
