# Al for genomics

Lieke Michielsen

Department of Human Genetics, LLMC

Delft Bioinformatics Lab, TUDelft



#### Understanding the non-coding genome

- Only 1.5% of the genome is protein-coding
- Non-coding genome is important for transcriptional control



### Understanding the non-coding genome

- ~95% of GWAS variants fall in the noncoding region
  - Which variant is causal?
  - Which gene is affected?
  - Which cell type or tissue is affected?
- For eQTLs we know the gene and cell type or tissue, but still suffers from LD



### Al for genomics

- Train machine learning models to predict genomic features using the DNA sequence
  - TF binding sites
  - Chromatin accessibility
  - Hstone modifications
  - Gene expression
  - ...



## Tissue-specific predictions



## Tissue-specific predictions



#### Outline

- Modeling the local sequence
  - Predicting TF binding sites
  - Predicting other genomic features
- Modeling long-range interactions
- Model interpretation

#### Outline

- Modeling the local sequence
  - Predicting TF binding sites
  - Predicting other genomic features
- Modeling long-range interactions
- Model interpretation

### Sequence motifs

GGATAA CGATAT GGATAT

| А | 0   | 0 | 1 | 0 | 1 | 0.5 |
|---|-----|---|---|---|---|-----|
| С | 0.5 | 0 | 0 | 0 | 0 | 0   |
| O | 0.5 | 1 | 0 | 0 | 0 | 0   |
| T | 0   | 0 | 0 | 1 | 0 | 0.5 |



Set of aligned sequences bound by TF

Position weight matrix (PWM)

Sequence logo

### Sequence motifs

 Position-specific scoring matrix (PSSM): accounting for genomic background nucleotide distribution

| А | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.5  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

$$\log_2 \frac{p_i(x_i = a_i)}{p_{bg}(x_i = a_i)}$$



#### Motif metch scores

(W \* x)

| 1 |  | l |  |  | l |  |
|---|--|---|--|--|---|--|
|   |  | l |  |  | l |  |
|   |  | l |  |  | l |  |
| 1 |  | l |  |  | l |  |

## Scoring weights (W)

| Α | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.5  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

One-hot encoding (X)



#### Motif metch scores

(W \* x)

|         | _ |  |  |  |  |
|---------|---|--|--|--|--|
|         |   |  |  |  |  |
| 1 4 4 4 |   |  |  |  |  |
| 1-11.1  |   |  |  |  |  |
|         |   |  |  |  |  |
|         |   |  |  |  |  |

Scoring weights (W)

| Α | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.5  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

$$-5.7 * 1 + 0.5 * 0 + 0.5 * 0 - 5.7 * 0 +$$
 $-3.2 * 0 - 3.2 * 0 + 3.7 * 0 - 3.2 * 1 +$ 

•••

$$0.5 * 0 - 5.7 * 0 - 5.7 * 0 + 0.5 * 1 = -11.1$$

One-hot encoding (X)





#### Motif metch scores

(W \* x)

|       |           |     |   | <br> | <br> |   |     |
|-------|-----------|-----|---|------|------|---|-----|
|       |           |     |   |      |      |   |     |
|       |           |     |   |      |      |   |     |
| -11 1 | ₋11 1I    |     |   |      |      |   |     |
| TT.T  | _ + + • + |     |   |      |      |   |     |
|       |           |     |   |      |      |   |     |
|       |           | I . | I | i .  | I .  | I | ı I |

### Scoring weights (W)

| Α | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.5  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

### One-hot encoding (X)



#### Motif metch scores

(W \* x)

|            |           |  |  |   | $\overline{}$ |
|------------|-----------|--|--|---|---------------|
|            |           |  |  |   | l I           |
| l-11.1l-11 | 1   2   0 |  |  |   | l I           |
| ++.+  ++   |           |  |  | l | l I           |
| 1 1        |           |  |  | l | l I           |

#### Scoring weights

(W)

| Α | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.5  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

### One-hot encoding (X)



#### Motif metch scores

(W \* x)

| -11.1 -11.1 2.0 | -4.2 |  |  |  |  |  |  |
|-----------------|------|--|--|--|--|--|--|
|-----------------|------|--|--|--|--|--|--|

## Scoring weights (W)

| Α | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.5  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

One-hot encoding (X)



Motif metch scores

(W \* x)

| -11.1 -11.1 2.0 | -4.2 | -24.2 | -17.3 | -18.0 | -11.1 | -11.8 | 15.8 |
|-----------------|------|-------|-------|-------|-------|-------|------|
|-----------------|------|-------|-------|-------|-------|-------|------|

Scoring weights

(W)

| А | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.5  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

One-hot encoding (X)



Thresholding the scores

0 0 2.0 0 0 0 0 0 15.9

Motif metch scores

(W \* x)

-11.1 -11.1 2.0 -4.2 -24.2 -17.3 -18.0 -11.1 -11.8 15.8

Scoring weights

(W)

| А | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.5  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

One-hot encoding (X)



Measured binding sites (targets)

0 0 1 0 0 0 0 0 1

Motif metch scores

(W \* x)

Scoring weights

(*W*)

| А | $W_1$                  | <b>w</b> <sub>2</sub> | <b>W</b> <sub>3</sub> | $W_4$           | <b>W</b> <sub>5</sub> | <b>W</b> <sub>6</sub>  |
|---|------------------------|-----------------------|-----------------------|-----------------|-----------------------|------------------------|
| С | <i>w</i> <sub>7</sub>  | W <sub>8</sub>        | $w_g$                 | W <sub>10</sub> | W <sub>11</sub>       | <i>w</i> <sub>12</sub> |
| G | W <sub>13</sub>        | W <sub>14</sub>       | W <sub>15</sub>       | W <sub>16</sub> | W <sub>17</sub>       | W <sub>18</sub>        |
| Т | <b>W</b> <sub>19</sub> | w <sub>20</sub>       | W <sub>21</sub>       | W <sub>22</sub> | W <sub>23</sub>       | W <sub>24</sub>        |

One-hot encoding

(X)



Measured binding sites (targets)

Motif metch scores

(W \* x)

Scoring weights (W)

| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |

| Α | -1.5 | -1.4 | -1.3 | 1.3  | 0.5  | -0.6 |
|---|------|------|------|------|------|------|
| С | 1.1  | -0.8 | 0.7  | -0.3 | 0.4  | -0.9 |
| G | -1.0 | -0.1 | 0.0  | 1.5  | -1.4 | 1.1  |
| Т | 1.0  | -0.5 | -0.9 | -1.1 | -1.0 | -0.3 |

1. Randomly initialize W

One-hot encoding (X)



Measured binding sites (targets)

Motif match scores

(W \* x)

Scoring weights (W)

| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|---|---|

| 1 |      |     |      |      |      |     |      |     |     |      |
|---|------|-----|------|------|------|-----|------|-----|-----|------|
|   | -2.1 | 1.6 | -5.8 | -2.7 | -2.1 | 0.4 | -2.0 | 0.1 | 0.0 | -1.5 |

| Α | -1.5 | -1.4 | -1.3 | 1.3  | 0.5  | -0.6 |
|---|------|------|------|------|------|------|
| С | 1.1  | -0.8 | 0.7  | -0.3 | 0.4  | -0.9 |
| G | -1.0 | -0.1 | 0.0  | 1.5  | -1.4 | 1.1  |
| Т | 1.0  | -0.5 | -0.9 | -1.1 | -1.0 | -0.3 |

- 1. Randomly initialize W
- 2 Convolution between input sequences and scoring weights

One-hot encoding (X)



Measured binding sites (targets)

Motif match scores

(W \* x)

Scoring weights (W)

| 0 0 1 0 0 | 0 0 | 0 0 1 |
|-----------|-----|-------|
|-----------|-----|-------|

| -2 1 | 16  | _5 Q | -27  | -2 1 | 0.4 | -2 N | 0.1 | $\cap$ | -1.5 |
|------|-----|------|------|------|-----|------|-----|--------|------|
| -2.1 | 1.0 | -5.6 | -2./ | -2.1 | 0.4 | -2.0 | 0.1 | 0.0    | -1.5 |
|      |     |      |      |      |     |      |     |        |      |

| Α | -1.5 | -1.4 | -1.3 | 1.3  | 0.5  | -0.6 |
|---|------|------|------|------|------|------|
| С | 1.1  | -0.8 | 0.7  | -0.3 | 0.4  | -0.9 |
| G | -1.0 | -0.1 | 0.0  | 1.5  | -1.4 | 1.1  |
| Т | 1.0  | -0.5 | -0.9 | -1.1 | -1.0 | -0.3 |

- 1. Randomly initialize W
- 2 Convolution between input sequences and scoring weights
- 3. Activation function

One-hot encoding (X)





#### Activation function

- Motif match scores can be very high positive and negative numbers
- Targets are binarized (binding yes/no) or positive (how often binding was measured)

Activation function maps the scores to the correct range





Measured binding sites (targets)

Motif match scores

(W \* x)

Scoring weights (W)

| 0 0 1 0 0 | 0 0 | 0 0 1 |
|-----------|-----|-------|
|-----------|-----|-------|

| Λ1  | 0.83 | $\cap$ | Λ1  | l ∩ 1 | 0.6 | Λ1  | 0.5 | 0.5 | l กว l |
|-----|------|--------|-----|-------|-----|-----|-----|-----|--------|
| 0.1 | 0.65 | 0.0    | 0.1 | 0.1   | 0.0 | 0.1 | 0.5 | 0.5 | 0.2    |
|     |      |        |     |       |     |     |     |     |        |

| Α | -1.5 | -1.4 | -1.3 | 1.3  | 0.5  | -0.6 |
|---|------|------|------|------|------|------|
| С | 1.1  | -0.8 | 0.7  | -0.3 | 0.4  | -0.9 |
| G | -1.0 | -0.1 | 0.0  | 1.5  | -1.4 | 1.1  |
| Т | 1.0  | -0.5 | -0.9 | -1.1 | -1.0 | -0.3 |

- 1. Randomly initialize W
- Convolution between input sequences and scoring weights
- 3. Activation function

One-hot encoding (X)





Measured binding sites (targets)

Calculate the loss

0 0 1 0 0 0 0 0 1

Motif metch scores

(W \* x)

| 0.1 | 0.83 | 0.0 | 0.1 | 0.1 | 0.6 | 0.1 | 0.5 | 0.5 | 0.2 |
|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
|     |      |     |     |     |     |     |     |     |     |
|     |      |     |     |     |     |     |     |     |     |

### Scoring weights (W)

| Α | -1.5 | -1.4 | -1.3 | 1.3  | 0.5  | -0.6 |
|---|------|------|------|------|------|------|
| С | 1.1  | -0.8 | 0.7  | -0.3 | 0.4  | -0.9 |
| G | -1.0 | -0.1 | 0.0  | 1.5  | -1.4 | 1.1  |
| Т | 1.0  | -0.5 | -0.9 | -1.1 | -1.0 | -0.3 |

- 1. Randomly initialize W
- 2 Convolution between input sequences and scoring weights
- 3. Activation function
- 4. Compare predictions to targets

One-hot encoding (X)





Measured binding sites (targets)

Motif metch scores

(W \* x)

Scoring weights (W)

| 0 0 1 0 | 0 0 | 0 0 1 |
|---------|-----|-------|
|---------|-----|-------|

| 0 1 | 0.6 | 0 | 0 | 0 | 0.1 | 0 | 0.3 | 0.3 | 0.7 |
|-----|-----|---|---|---|-----|---|-----|-----|-----|
| 0.1 | 0.6 | U | U | U | 0.1 | U | 0.3 | 0.3 | 0.7 |

| А | -1.6 | -1.9 | -1.0 | 0.6  | 0.8  | -0.1 |
|---|------|------|------|------|------|------|
| С | 1.2  | -1.1 | 0.2  | -0.9 | -0.1 | -1.7 |
| G | -0.9 | 0.5  | -0.2 | 0.6  | -1.5 | 0.2  |
| Т | 0.5  | -1.0 | -1.2 | -0.5 | -1.4 | 0.1  |

- 1. Randomly initialize W
- 2 Convolution between input sequences and scoring weights
- 3. Activation function
- 4. Compare predictions to targets
- 5. Update W
- 6. Repeat steps 2-5 until convergence

One-hot encoding (X)



Measured binding sites (targets)

Motif match scores

(W \* x)

Scoring weights (W)

|  | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|--|---|---|---|---|---|---|---|---|---|---|
|--|---|---|---|---|---|---|---|---|---|---|

| _ |   |   |     |   |   |   |   |   |   |   |
|---|---|---|-----|---|---|---|---|---|---|---|
|   | 0 | 0 | 0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

| А | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.5  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

- 1. Randomly initialize W
- 2 Convolution between input sequences and scoring weights
- 3. Activation function
- 4. Compare predictions to targets
- 5. Update W
- 6. Repeat steps 2-5 until convergence

One-hot encoding (X)



• Example of a very small convolutional neural network (CN)

- Train this CNN using the reference genome
- Divide reference genome in bins of ~128bp
- Divide bins into train validation test set
  - Train: learn the weights of the filter
  - Validation: optimize hyperparameters of the network
  - Test: evaluate the performance of your model

### Usually, it's a bit more complex...

- TFs prefer to bind together
- Spacing between the motifs is important



#### Deep convolutional neural networks

• Multitask learning predict binding sites for multiple TF simultaneously



### DeepBind

- Input: sequence of 14-101 bp
- Output: predicted binding for 538 TFs and 194 RNA binding proteins



## Analysing potentially disease-causing variants



## Analysing potentially disease-causing variants





#### Outline

- Modeling the local sequence
  - Predicting TF binding sites
  - Predicting other genomic features
- Modeling long-range interactions
- Model interpretation

### Predicting other genomic features

- Is there a TF binding site in this bin?
- Is this part of the DNA accessible?
- Are there histone modifications here?



### Predicting chromatin-related features

Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks

David R. Kelley , Jasper Snoek and John L. Rinn

Brief Communication | Published: 24 August 2015

# Predicting effects of noncoding variants with deep learning-based sequence model

<u>Jian Zhou</u> & <u>Olga G Troyanskaya</u> □

Nature Methods 12, 931–934 (2015) Cite this article

73k Accesses | 1088 Citations | 148 Altmetric | Metrics

#### Predicting chromatin-related features

#### **Basset**

- Input sequence: 600bp
- Bin size: 600bp

 Predict DNase-seq peaks in 164 tissues/cell types

#### DeepSEA

- Input sequence: 1000 bp
- Ein size: 200 bp

- Predict 919 chromatin-related features measured in different cell types
  - TF binding sites
  - D\ase
  - Hstone marks

### Outline

- Modeling the local sequence
  - Predicting TF binding sites
  - Predicting other genomic features
- Modeling long-range interactions
- Model interpretation

## Downside of previous models

- We know the predicted effect of a mutation on a local genomic feature
- Long-range interactions are important (i.e. the DNA folds)

• What is the effect on gene expression?

#### Input sequence: 40kb, centered around TSS



#### ··· GTGCATCTGACTCCTGAGGAGAAG ···



#### Input sequence: 40kb, centered around TSS



#### ··· GTGCATCTGACTCCTGAGGAGAAG ···



Use DeepSEA to predict 2002 genomic features for 200bp bins



## **Enformer**

- Predicts reads for 128bp bins
- Trained on data from human and mouse



## **Enformer**



### Outline

- Modeling the local sequence
  - Predicting TF binding sites
  - Predicting other genomic features
- Modeling long-range interactions
- Model interpretation

# *In-silico* saturation mutagenesis



• ISM score:

• 
$$ISM_{g,i,n} = y_{pred,g,i,n} - \frac{1}{4} \sum_{m \in \{A,C,G,T\}} y_{pred,g,i,m}$$

- Geneg
- Position i
- Nucleotide n

|            | G    | Α | С | Т |  |
|------------|------|---|---|---|--|
| $y_{pred}$ | 0.98 |   |   |   |  |

# *In-silico* saturation mutagenesis



# TF-MbDISCo: TF Mbtif Discovery from Importance Scores



### Drawbacks of discussed models

- Tissues are heterogeneous → ideally we need a model for every cell type
- How to make predictions across cell types?
  - Can be solved by adding DNase as input
- Personalized predictions
  - All models are trained on the reference genome only
- Learning the effect of distal enhancers

## Summary

 Deep learning models can be used to predict genomic features directly from the DNA sequence

- Advantage of using these sequence—to-prediction models
  - Improving our general understanding of biological processes in a cell
  - Predicting the effect of (non-coding) variants
- Similar models exist for the RNA sequence (e.g. predicting alternative splicing)

### Useful resources

- Course material
  - Coursera deep learning course (<a href="https://www.coursera.org/specializations/deep-learning">https://www.coursera.org/specializations/deep-learning</a>)
  - Seq2expr course Stanford (https://canvas.stanford.edu/courses/174437/files)
- Al to genomics methods
  - DeepBind (<a href="https://www.nature.com/articles/nbt.3300">https://www.nature.com/articles/nbt.3300</a>)
  - Basset (https://genome.cshlp.org/content/26/7/990), basenji (https://genome.cshlp.org/content/28/5/739), enformer (https://www.nature.com/articles/s/41592-021-01252-x), borzoi (https://www.biorxiv.org/content/10.1101/2023.08.30.555582v1)
  - DeepSEA (https://www.nature.com/articles/nmeth.3547), Sei (https://www.nature.com/articles/s41588-022-01102-2), ExPecto (https://www.nature.com/articles/s41588-018-0160-6), ExPectoSC (https://www.sciencedirect.com/science/article/pii/S2667237523002242?via%3Dihub)
  - TF-MbDisco (https://arxiv.org/abs/1811.00416)
  - EigRNA (https://www.biorxiv.org/content/10.1101/2023.09.20.558508v1)
- Benchmarking papers/discussing current limitations
  - Distal enhancers (https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-02899-9)
  - Personalized predictions (https://www.nature.com/articles/s41588-023-01574-w, https://www.nature.com/articles/s41588-023-01524-6)