MTH420 PROBLEM SET 6

- (1) Let V be the two dimensional subspace of $C^{\infty}(\mathbb{R})$ spanned by $e^{2x} \sin 3x$ and $e^{2x} \cos 3x$. Notice that $f' \in V$ for each $f \in V$, so that the formula D(f) = f' defines an operator $D: V \to V$. Let $\mathcal{B} = (e^{2x} \sin 3x, e^{2x} \cos 3x)$ and compute $M_{\mathcal{B},\mathcal{B}}(D)$.
- (2) Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and for $X \in \mathbb{R}^{2 \times 2}$ let T(X) = AX XA.
 - (a) Prove that T is linear.
 - (b) Find the nullspace of T.
 - (c) Find the image of T.
 - (d) Find the matrix $M_{\mathcal{B},\mathcal{B}}(T)$ where

$$\mathcal{B} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

- (3) Take F an arbitrary field of characteristic 0 and let $D: F[x] \to F[x]$ be the unique linear transformation which maps x^n to nx^{n-1} for each positive integer n, and x^0 to 0. Find the nullspace, image, and nullity of D.
- (4) Define $\mathcal{T}: \mathbb{R}^{2\times 2} \to L(\mathbb{R}^{2\times 2}, \mathbb{R}^{2\times 2})$ by $\mathcal{T}(A) = T_A$, where $T_A(X) = AX XA$.
 - (a) Prove that \mathcal{T} is linear.
 - (b) Find the nullspace of \mathcal{T} .
 - (c) Find the rank of \mathcal{T} .
- (5) Let $\mathbb{R}[x]_{\leq 2} = \{a_0 + a_1 x + a_2 x^2 : a_0, a_1, a_2 \in \mathbb{R}\} \leq \mathbb{R}[x]$. For $A \in \mathbb{R}^{2 \times 2}$, let $q_A = \begin{bmatrix} x & 1 \end{bmatrix} A \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathbb{R}[x]$

 $\mathbb{R}[x]_{\leq 2}$. Then let $Q: \mathbb{R}^{2\times 2} \to \mathbb{R}[x]_{\leq 2}$ be the function defined by $Q(A) = q_A$. It is linear and you may use this fact without including a proof in your solutions. (It's similar to (2)(a) and I don't think it's worthwhile to include two such similar problems in the set.) Take \mathcal{B} the basis of $\mathbb{R}^{2\times 2}$ as in (2)(e) and $\mathcal{C} = (1, x, x^2)$ (an ordered basis of $\mathbb{R}[x]_{\leq 2}$). Compute $M_{\mathcal{C},\mathcal{B}}(Q)$.

- (6) Let $T: V \to W$ be a linear transformation. Let V' be the kernel of T and W' the image of T.
 - (a) Prove that $T^{-1}(\{\beta\})$ (which is defined as $\{\alpha \in V : T(\alpha) = \beta\}$) is an element of V/V' for each $\beta \in W'$.
 - (b) Define $U: W' \to V/V'$ by $U(\beta) = T^{-1}(\{\beta\})$. Prove that it is an isomorphism.