

Universidad Nacional Autónoma de México Facultad de Ingeniería

APLICACIÓN DE ECUACIONES DIFERENCIALES EN INGENIERÍA EN COMPUTACIÓN

Murrieta Villegas Alfonso Gómez Segovia Álvaro Integrantes: Reza Chavarría Sergio Gabriel Valdespino Mendieta Joaquín

Introducción:

- Toda igualdad que relaciona una función desconocida con sus variables independientes o dependientes y sus derivadas, se le denomina ecuación diferencial.
- Se le conoce como virus informático o malware a cualquier programa que tiene como objetivo alterar el funcionamiento de una computadora sin el permiso del usuario o administrador. Comúnmente lo que hacen los virus es remplazar archivos ejecutables del sistema mediante otros archivos con códigos alterados.

Objetivo

I. Conocer una de las aplicaciones de las ecuaciones diferenciales en la carrera de Ingeniería en Computación.

Problema – Propagación de un virus informático

Un virus informático, se propaga en un campus universitario por medio de la red, o por medio de las personas, las cuales al insertar sus memoria USB en las computadoras, van creando una cadena de propagación entre la gente y entre los equipos de cómputo.

Modelo Matemático de propagación

❖ Considerando el siguiente modelo matemático de la distribución de virus informáticos¹:

$$\frac{dQ}{dt} = KQ$$

- ❖ Descripción de la ecuación diferencial:
 - Variable independiente: t
 - Variable dependiente: Q
 - Tipo: Ecuación Diferencial Ordinaria
 - Orden: 1er OrdenGrado: 1er Grado
- ❖ Despejando Q y resolviendo la ecuación diferencial:

$$\frac{dQ}{Q} = Kdt \longrightarrow \int \frac{dQ}{Q} = \int Kdt$$

Aplicando Euler al resultado

$$e^{\ln(Q)} = e^{Kt} + e^c$$

$$Q = e^{Kt} + e^c$$
 $Q = Ce^{Kt}$

❖ Si el tiempo es igual a cero:

Considerando las siguientes condicionas iniciales:

$$t_1 = 1 \text{ hora}$$

 $Q_1 = 5/3 Q_0$, es el número de computadoras infectadas

Aplicando condiciones:

$$\frac{3}{5}Q_0 = (Q_0)(e^{K(1\,hr)}) \longrightarrow \frac{3}{5}Q_0 = (Q_0)(e^K)$$

❖ Aplicando logaritmo a la ecuación y obteniendo K:

$$lne^K = ln(\frac{3}{5}) \longrightarrow K = ln(\frac{3}{5})$$

Sustituyendo el valor y obteniendo la expresión final:

$$Q_2 = (Q_0)(e^{t\ln(\frac{4}{5})})$$

Donde:

- Q₂ es el número de computadoras infectadas
- t el número de horas transcurridas

Resultados y Simulación

Considerando 4 horas transcurridas en la expresión final:

$$Q_2 = (Q_0)(e^{4ln(\frac{4}{5})})$$

Simulación de la expresión anterior en Labview:

Conclusiones

- ❖ Las ecuaciones diferenciales son una herramienta muy importante de la Ingeniería debido a la gran relevancia que tienen para modelar fenómenos ya sean físicos como tecnológicos.
- El modelado de propagación de un virus nos es útil sobre todo para poder considerar como es el comportamiento de este y poder tomar acciones ante su propagación.

Referencias:

- 1. Joyanes Aguilar L. *Estructura de Datos*. McGrawHill. Primera Edición Madrid, España.
- 2. Lozano Rogelio J. Presentación de Cartel en trabajos de investigación. Recuperado el 9 de noviembre del 2018, de http://www.paginaspersonales.unam.mx/files/1321/08_PE_PRESENTACION_EN_CARTEL.PDF