Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	I/N
Pót-pót nagy zárthelyi dolgozat, 2017. dec. 11.	delta.	grafie		STROE	DRAZZ	gam-	Catalia India	

NÉV:				
		9		

Neptun kód:

Előadó: Márkus / Sarkadi

- 1. Egy léghajó v_0 sebességgel emelkedik. A léghajóból kiejtett homokzsák t_i idő alatt ér földet.
 - a) Milyen magasan volt a léghajó a homokzsák kiejtésekor? (1)

b) Mekkora sebességgel csapódik a homokzsák a földbe? (1)

$$v_{c} = v_{6} - gt$$
 $t = t_{g}$
 $v_{g} = v_{6} - gt_{g}$

függölgesen lifeli' iranyul' $|v_{g}| = |v_{6} - gt_{g}|$

seberx'ggel csayasolik br.

c) Mekkora volt a homokzsák legnagyobb magassága a föld felett? (1)

tetoponton van, La
$$V = 0$$

$$V_{(t)} = V_{0} - gt \qquad V_{(t)} = 0 \qquad t = t_{t} = ?$$

$$0 = V_{0} - g \cdot t_{t} \implies t_{t} = \frac{V_{0}}{g}$$

$$y_{t} = h + V_{0}t - \frac{g}{2}t^{2}$$

$$y_{max} = y_{(t)}, h_{0}t = t_{0}$$

$$y_{max} = h + V_{0} \cdot t_{t} - \frac{g}{2}t_{t}^{2} = h + V_{0} \cdot \frac{g}{g} - \frac{g}{2} \cdot \frac{V_{0}^{2}}{g^{2}} = h + \frac{V_{0}^{2}}{2g}$$

Az ábra szerinti sípálya h magasságú pontjából álló helyzetből indul egy m tömegű síelő. A pálya és a sílécek közt ébredő súrlódási erőtől tekintsünk el.

a) Mekkora sebességgel érkezik a síelő a pálya legmélyebb pontjára? (0,5)

Konzetvent ir enitér
$$\Rightarrow$$
 $E_{pot} + E_{he} = E_{pot} + E_{hin}$

Mgh + 0 = 0 + $\frac{1}{2}$ m u^2
 $V = \sqrt{2}gh$

b) Mekkora erővel nyomja a síelő a talajt a pálya legmélyebb pontján? (1,5)

$$\begin{cases}
\overline{F} = m\overline{\alpha} \Rightarrow \overline{E} = m\alpha q \\
F_{E} - mq = m \frac{v^{2}}{\gamma}
\end{cases}$$

$$F_{E} = m \left(q + \frac{v^{2}}{\gamma} \right) = m \left(q + \frac{2qh}{\gamma} \right)$$

c) Milyen h magasságból kell indítani a síelőt, hogy súlyának 3-szorosával nyomja a talajt a legalsó pontban?

$$F_{\xi} = 3 mg$$

$$3 mg = m \left(g + \frac{2gh}{\gamma} \right)$$

$$3g = g + \frac{2gh}{\gamma}$$

$$2g = \frac{2gh}{\gamma}$$

$$1 = \frac{h}{\gamma} \Rightarrow h = \gamma$$

b) Mekkora a testek gyorsulása? (1)

$$0 \times + 2 \times 3 \text{ ma} = \text{mg Kin 45}^{\circ} - 3 \text{ m mg cos 45}^{\circ}$$

$$a = g \frac{\text{Min 45}^{\circ} - 3 \text{ m cos 45}^{\circ}}{3}$$

c) Mekkora súrlódási együttható kell ahhoz, hogy a testek állandó sebességgel mozogjanak a lejtőn? (1)

$$a = 0$$
 $0 = g$
 $\lim_{h \to h} 45^{\circ} - 3\mu \cos 45^{\circ}$
 $\lim_{h \to h} 45^{\circ} = 3\mu \cos 45^{\circ}$

- Vásári körhintán egy R sugarú, függőleges tengelyű korong kerületére lógatnak üléseket / hosszúságú, elhanyagolható tömegű láncokon.
 - a) Rajzolja be az ábrára a láncon lógó testre ható erőket a <u>forgó vonatkoztatási rendszerben!</u> (1)

b) Mekkora ω szögsebességgel kell a körhintát forgatni, ha azt szeretnénk, hogy a láncok 45°-os szöget zárjanak be a függőlegessel? (1)

Kifejtendő kérdések

1. A [0,h] pontból [v_n,v_j] kezdősebességgel elindítunk egy testet homogén [0,-g] nehézségi erőtérben. Vázlatosan ábrázolja koordináta-rendszerben a test pályáját, (0,5) és írja fel a helykoordináták idő függvényét! (1) Definiálja az elmozdulás fogalmát, és rajzolja fel az ábrára a fenti konkrét példában bekövetkezett teljes elmozdulást! (1). Definiálja az út fogalmát! (0,5)

Jg X(t) = Ux · t

y(t) = L + Vyt - 2 t²

Elmordula's: A morga's herdaportja'bû'l

a morga's regpontja'ba mutat; veltor.

út: A palyagiste hora a norge's herdé-és végpontja hizik.

2. Fogalmazza meg az impulzusmegmaradás törvényét! (1) Mely megmaradási törvények érvényesek tömegpontok egydimenziós tökéletesen rugalmatlan, (0,5) és tökéletesen rugalmas (0,5) ütközései esetén. Egy kosárlabda visszapattan a talajról, impulzus vektora ellentettjére változik, tehát impulzusa nem ugyanakkora ütközés után, mint ütközés előtt. Hogyan kell értelmeznünk az impulzusmegmaradás törvényét ebben az esetben? (1)

Imperleusmegnerades torvinge: Tomegpontrendrev teljes imperleusa idilen c'llandé, har a pontrudhorn hato bilsi erile eredeje mulle.

Rugalmatlar ithérés: - inpulsus megnaradis

Rugalmus iithérés: - impulsus megnaradis

- mechanisai energia megnaradais

t kosárlabeta imperhensa non mared meg, am a kosárlabeta immagábar nem tekenthető zárt renchemek. A kilcsönhatáslam rentverő testek mindegyiset (tehát a labdát és a Földet) magába foglaló rendher imperlensa eristoret megmand.

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifejezésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizika1 tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg!

1.	Inercialendum a magára hagyott testek megőrzik mozgásállapotukat.
2.	Ha azt szeretnénk, hogy egy test háromszor olyan hosszú ideig essen szabadon,
3.	A ferde hajítás pályájának tetőpontján a test sebességének hagg olugu. Olnetur
	zérus
	Könnyen gördülő bicikli állandósult sebességgel gurul le egy lejtőn. A biciklire ható közegellenállási erő egyensúlyt tart a nehézségi erő lej tövel panhurarnas ö metarőj level.
5.	A Föld felszínén a legnagyobb centrifugális erő a/zequalten elhelyezett testekre hat
6.	A Föld déli féltekén déli irányban közlekedő vonatokra . Lelet felé mutató
	Coriolis-erő hat.
7.	Elhajított kiterjedt test tomegszozejszontja parabola pályán mozog.
8.	Konzervatív erőtér munkája nem függ az erőtérben mozgó test által megtett úttól, csak a mozgás kirdő helyzetétől.
9.	Egy erő munkája arányos az erő és az elmozdulás által bezárt szög Cozinus a'bul
10.	Adott sebességű autó megállításakor a fékbetétek által végzett munka
11.	Súlyerőnek hívjuk azt az erőt, amellyel a test . a.z. ala'la'manta'st nyomvja
12.	Konservetiv erőtérben mozgó test mechanikai energiája megmarad.