

IT3160E Introduction to Artificial Intelligence

Chapter 3 – Problem solving

Part 5: Constraint Satisfaction problems

Lecturer:

Muriel VISANI

Acknowledgements:

Le Thanh Huong

Tran Duc Khanh

Department of Information Systems

School of Information and Communication Technology - HUST

Content of the course

- Chapter 1: Introduction
- Chapter 2: Intelligent agents
- Chapter 3: Problem Solving
 - Search algorithms, adversarial search
 - Constraint Satisfaction Problems
- Chapter 4: Knowledge and Inference
 - Knowledge representation
 - Propositional and first-order logic
- Chapter 5: Uncertain knowledge and reasoning
- Chapter 6: Advanced topics
 - Machine learning
 - Computer Vision

Outline

- Chapter 3 part 1: un-informed (basic) algorithms
- Chapter3 part 2: informed search strategies in graphs
- Chapter 3 part 3: advanced search strategies
- Chapter 3 part 4: adversarial search
- Chapter 3 part 5: Constraint Satisfaction Problems
 - CSP introductive example
 - Definitions
 - Backtracking search
 - Choosing the next variable to assign: MRV and degree heuristic
 - · Ordering the values to examine: LCV
 - Can we detect inevitable failure early? -> forward checking + a few words about arc consistency
 - Summary
 - Homework

Goal of this Lecture

Goal	Description of the goal or output requirement	Output division/ Level (I/T/U)
M1	Understand basic concepts and techniques of Al	1.2

Constraint Satisfaction Problems

CSP introductive examples

□ 8-queens problem:

 place 8 queens on a chessboard such that no queen can attack any other

Configuration that does **not** meet the goal

Configuration that **does** meet the goal

□ 8-queens problem formulation using search algorithms:

- States: Any arrangement of 0 to 8 queens on the board
- Initial state: No queens on the board
- Actions: Add a queen to any empty square
- Transition model: Returns the board with a queen added to the specified square
- Goal test: 8 queens are on the board, none of them is attackable
- Difficulty: Search graph is HUGE!!!
 - \circ 64 x 63 x ... x 57 = 64! / 56! ≈ 1.8 × 10¹⁴ possible sequences to investigate!!!

- Why is the search graph so huge when using search algorithms?
 - Because the states are defined as « Any arrangement of 0 to 8 queens on the board »
 - Each state is atomic (not "divisible")
- Idea of CSP algorithms
 - Each state is divided into n variables X_i with value in domain D_i
 - The goal test is a set of constraints over these variables
 - o In the case of the 8-queen problem, the variables $Q_1,...,Q_8$ are the positions of each queen in columns 1,...,8 and each variable has the domain $D_i = \{1,2,3,4,5,6,7,8\}$.
 - Positions of queens in each column are enough because 2 queens cannot be in a same column
- Using that idea, CSP algorithms can solve a wide variety of problems more efficiently than search algorithms

- □ Problem: colouring map of Australia
- Variables
 - o WA, NT, Q, NSW, V, SA
- Domain
 - D_i = {red, green, blue}
- Constraint
 - Neighbor regions must have different colors
 - Color(WA) ≠ Color(NT)
 - Color(WA) ≠ Color(SA)
 - Color(NT) ≠ Color(SA)
 - •

- Solution is an assignment of variables satisfying all constraints, e.g. (if 'WA' stands for Color(WA)):
 - WA=red, and
 - NT=green, and
 - Q=red, and
 - NSW=green, and
 - V=red, and
 - SA=blue
- Other solutions exist

Constraint Satisfaction Problems

Definitions

Different types of Constraints

- Unary (single-variable) constraints
 - o e.g. SA ≠ green
- Binary constraints
 - o e.g. SA ≠ WA
- Higher-order (aka global or multi-variable) constraints
 - Relate at least 3 variables, e.g.
 - Y is between X and Z, is a ternary constraint between(X, Y, Z)
 - Alldiff (in Sudoku rows and columns for instance)
- Soft constraints:
 - o **Priority**, e.g., red better than green
 - Cost function over variables

Constraint Graph

- □ In CSP, the constraints can be expressed using a graph:
 - Constraint graph
 - Node is variable
 - Edge (link) is constraint

Types of variables

- Discrete variables can result in finite or infinite domains
 - Finite domain, e.g., 8-queen and map coloring problems
 - Infinite domain, e.g. with integers or strings
 - With infinite domains, it is not possible to describe constraints by enumerating <u>all</u> allowed combinations of values (infinite)
 - Instead, a constraint language must be used
 - E.g. in a factory where task 2 must be performed at least d1 mn after Task1 (e.g. d1=time for paint to dry):
 - Task1 + d1 ≤ Task2
 - Linear constraints (in which each variable appears only in linear form, as above) are solvable on integer variables
 - So far, there exists <u>no algorithm</u> for solving general non-linear constraint CSPs

Types of variables

Continuous variables

- CSPs with continuous domains are common in the real world, and widely studied in the field of operations research
 - e.g. start/end time of observing the universe using Hubble telescope
- Linear constraints are solvable using Linear Programming
 - Constraints must be linear equalities / inequalities
 - About Linear Programming: https://byjus.com/maths/linear-programming/

7. $y < 5 - 2x$	8. $y < x + 3$
9. $x - 2y \ge 3$	10. $2x + 5y \ge 10$
11. $2x - y \le 4$	12. $4x - 3y \le 24$
13. $y \le -4$	14. $x \ge -2$
15. $3x - 2y \ge 18$	16. $3x + 2y \ge -4$
17. $3x + 4y \ge 12$	18. $4x - 3y > 9$
19. $2x - 4y \le 3$	20. $4x - 3y < 12$
21. $x \le 5y$	22. $2x \ge y$
23. $-3x \le y$	24. $-x \ge 6y$
25. $y \le x$	26. $y > -2x$

 CSPs with different types of constraints / objective functions have also been studied, e.g. quadratic programming

Examples of Real-World CSP problems

- Assignment
 - o *E.g.*, who teaches which class
- Scheduling
 - o *E.g.*, when and where the class takes place
- □ Hardware design (e.g. VLSI layout)
- Transport scheduling
- Manufacture scheduling

Solving CSPs by Standard Search

- □ State
 - Defined by the values assigned so far
- □ Initial state
 - The empty assignment
- □ Successor function
 - Assign a value to an unassigned variable that <u>does not</u> <u>conflict</u> with current assignment + constraints
 - Fail if no "legal" assignment
- Goal test
 - All variables are assigned, and there is no conflict

Solving CSPs by Standard Search

- Characteristics of CSP problems
 - Every solution appears at depth n (with n the # of variables)
 - Use depth-first search
 - Path is irrelevant
 - It does not matter if NA was colored before NT, or NT before NA...
 - So, local search algorithms (hill climbing, simulated annealing...) can also be used, on top of other "Al-search" algorithms (*cf.* Chapter3 part3)
 - But, the number of leaves is n!dn (with d the domain size)
 - Huge branching factor!!!

Constraint Satisfaction Problems

Backtracking search

Why is standard search not adapted to CSP?

- Standard search is extremely inefficient for CSP problems
 - Because they don't take advantage of the fact that CSP solutions are
 - A set of actions on separate variables (variable assignments)
 - Standard search algorithms use assignment of the whole set of variables at each step, instead of single-variable assignment
 - Where variable assignments are commutative
 - *E..g,* it does not matter is NA was colored before NT, or the other way around...
- -> Backtracking search instead of standard search

Backtracking Search

- □ Variable assignments are commutative, e.g.
 - {WA=red, NT =green}
 - {NT =green, WA=red}
- □ Single-variable assignment
 - Only consider one variable at each node
 - o dⁿ leaves
- □ Backtracking search =
 - Depth-first search + Single-variable assignment
- Backtracking search is the basic, uninformed algorithm for CSPs
 - Can solve n-Queen with n = 25


```
function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var← Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result← Recursive-Backtracking(assignment, csp)
if result ≠ failure then return result
remove {var = value} from assignment
return failure
```

Called "backtracking" search because it's a depth-first search that chooses values for one variable at a time and backtracks when a variable has no legal values left to assign

Improving Backtracking Search

- Which variable should be assigned next?
 - Function SELECT-UNASSIGNED-VARIABLE
- In what order should its values be examined for assignment?
 - Function ORDER-DOMAIN-VALUE
- 3. Can we detect inevitable failure early?
- 4. Can we take advantage of problem structure?

```
function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var←SELECT-UNASSIGNED-VARIABLED/ARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(vor, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result ← RECURSIVE-BACKTRACKING(assignment, csp)
if result ≠ failure then return result
remove {var = value} from assignment
return failure
```


1 - Choosing the next variable to assign

- Minimum remaining values (MRV)
 - Choose the variable with the fewest legal values
 - Idea: if a failure must come, let it come ASAP so that we can move to the next branch
 - The MRV heuristic performs better than a random or static ordering, up to a factor of 1,000 (depending on the problem)
 - But, the MRV heuristic can't help in choosing the 1st region to color in Australia (initially, every region has 3 legal colors)

-> Degree heuristic

- Choose the variable with the most constraints on other remaining variables
- Idea: reduce the branching factor on future choices

1 - Choosing the next variable to assign

Minimum remaining values (MRV):

choose the variable with the fewest legal values

Degree heuristic:

choose the variable with the most constraints on remaining vars

Latter ofter used as a tie-breaker for former

2 – Ordering the values to examine

- N.B. Ordering the values to examine only has an interest if we are looking for <u>any</u> solution
 - Not if we want to list all possible solutions!
- Least constraining value (LCV)
 - Choose the least constraining value
 - the one that "forbids" the fewest values for the remaining variables

2 – Ordering the values to examine

2 – Ordering the values to examine

- □ **Note**: Using MRV + degree heuristic + LCV, one can solve the 1000-queen problem (with a BIG, 1000x1000 board ⓒ)!
- But, we can go even further, by detecting early any future failure!
 - -> forward checking

3 - Can we detect inevitable failure early?

- □ **Idea** of forward checking:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any unassigned variable has no legal value
- □ Step 0 of « simple » backtracking search with forward checking

All unassigned variables still have legal values -> continue

3 - Can we detect inevitable failure early?

□ Step 1 of « simple » backtracking search with forward checking

All unassigned variables still have legal values -> continue

3 - Can we detect inevitable failure early?

□ Step 3 of « simple » backtracking search with forward checking

- With this configuration, SA does not have any possible value left -> prune search tree there (stop exploration of this branch)
- This algorithm is called **forward checking**, because we did not yet choose which variable we will assign next, but we can detect that in any case, this will lead to failure
 - We're looking forward in the tree before devoping it -> forward checking

3 - Can we detect inevitable failure early?

- □ But, forward checking is not the best for detecting failure early
 - o **Example:** at step 2 of «simple» backtracking search with forward checking

- In forward checking, all unassigned variables still have legal values -> continue
- But, inevitable failure could be detected here already:
 - Given that WA is red (step 1), if Q is green (step 2)...
 - then NT must be blue (given the constraints)
 - then SA must be blue (given the constraints)
 - but NT and SA are neighbours, so they cannot be BOTH blue!
 - So, Q cannot be green!

3 - Can we detect inevitable failure early?

- Limitation of forward checking:
 - Does not verify, at each step, that each arc is consistent
 - X -> Y is consistent iff for each value x of X there is some allowed value y for Y
 - -> arc consistency algorithm (out of the scope of this course)

https://www.cs.ubc.ca/~kevinlb/teaching/cs322%20-%202009-10/Lectures/CSP3.pdf

4 - Can we take advantage of problem structure?

- □ **Special case #1**: Independent subproblems
 - o E.g. assume we have a new region T (Tasmania) to consider
 - The problem of T and the rest are two independent sub-problems CSP_i
 - Each sub- problem is a set of connected component in the constraint graph

If assignment S_i is a solution of CSPi, then U_iS_i is a solution of U_iCSP_i.

4 - Can we take advantage of problem structure?

- □ Special case #2: tree-structured problem
 - Any two variables are connected by only one path
 - Example:

□ Theorem

 If the constraint graph has no loop then CSP can be solved in O(nd²) time

4 - Can we take advantage of problem structure?

- Algorithm for tree-structured problems
 - To solve a tree-structured CSP, create a topological sort (several possible in general)
 - Then, specific algorithms can solve it in linear time
 - For more details and the proof, check the reference book.

Constraint Satisfaction Problems

Summary

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values (after all variables have been assigned a value)
- □ Backtracking = depth-first search with 1 variable assigned per node
- Variable ordering and value selection heuristics help significantly
 - Variable ordering: usually MRV + degree heuristic in case of ties
 - Values ordering: usually, LCV
- Forward checking prevents assignments that guarantee later failure
 - Arc consistency does additional work to constrain values and detect inconsistencies as early as possible
 - Out of the scope of this course, but very interesting -> please have a look
- In some special cases, the CSP problem structure can be taken advantage of
 - o Independent sub-problems can be solved jointly, and then their solutions joined
 - Tree-structured CSPs can be solved in linear time thanks to a dedicated algorithm

Constraint Satisfaction Problems

Exercise / homework

Exercice: cryptarithmetic problem

- □ Problem:
 - Each letter corresponds to a digit 0..9
 - Each letter corresponds to a different digit
 - F cannot be 0

Variables: $F, T, U, W, R, O(X_1, X_2, X_3)$

Tip:

Domain: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

You'll need 3 extra variables

to solve this problem (if the sum of 2 letters >= 10)

Constraints: alldiff(F, T, U, W, R, O)

- Solve this problem by combining:
 - Constraint Propagation
 - Minimum Remaining Values
 - Least Constraining Values
- □ Note: there are several solutions to this problem

Exercice solution

- □ First step: define extra variables X1, X2, X3 and their constraints
 - Constraints and domains:
 - $T \in \{0,...,9\}$; $W \in \{0,...,9\}$; $0 \in \{0,...,9\}$; $F \in \{0,...,9\}$; $W \in \{0,...,9\}$; $P \in \{0,...,9\}$
 - $X1 \in \{0,1\}; X2 \in \{0,1\}; X3 \in \{0,1\}$
 - C1: 0+0=R+10*X1
 - C2: X1+W+W=U+10*X2
 - C3: X2+T+T=O+10*X3
 - C4: X3=F
 - C5: F!=0
 - C6: *Alldiff*(T,W,O,F,U,R)
- Second step: build the constraint hypergraph

FOUR

Homework

□ Find at least 2 other solutions to this problem, by using the same strategies

Chapter 3 – part 5

Questions

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attention!

