Instructor: UVIC Math Student: Arfaz Hossain

Course: MATH 100 (A01, A02, A03) Fall Assignment: Assignment 9 Date: 11/28/21

Express the limit $\lim_{\|P\| \to 0} \sum_{k=1}^{n} \left(c_k^5 - 2c_k \right) \Delta x_k$, where P is a partition of [– 3,1], as a definite integral.

The symbolism
$$\int\limits_{a}^{b} f(x) dx \text{ is related to } \lim\limits_{\|P\| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k, \text{ where P is a partition of the interval } \left[x_1, x_2\right], \text{ as follows.}$$
 The symbol
$$\int\limits_{a}^{b} \text{replaces } \lim\limits_{\|P\| \to 0} \sum_{k=1}^{n}.$$

The symbol
$$\int_{a}^{b} \text{replaces } \lim_{\|P\| \to 0} \sum_{k=1}^{n} .$$

The partition P of $[x_1, x_2]$ becomes the range of integration, $a = x_1$, $b = x_2$.

The function $f(c_k)$ becomes f(x).

The length of the sub-intervals Δx_k becomes dx.

In this problem, a = -3 and b = 1.

The integral sign with the limits of integration becomes

In the given summation, $f(c_k) = c_k^5 - 2c_k$.

In the integration, f(x) replaces $f(c_k)$ and dx replaces Δx_k . Substituting $x = c_k$ into $f(c_k) = c_k^5 - 2c_k$, results in $f(x) = x^5 - 2x$.

Thus, $\lim_{\|P\|\to 0} \sum_{k=1}^{n} \left(c_k^5 - 2c_k\right) \Delta x_k$, where P is a partition of [-3,1], expressed as a definite integral is $\int_{2}^{1} \left(x^5 - 2x\right) dx$.