Problem 1 Determine if the following function is a Rational Function:

$$f(x) = -2(x-4)^2 + 2$$

If it is a rational function, enter 1. If it is not a rational function, enter 0. $\boxed{0}$

Feedback(attempt): A rational function in this case needs a non-constant denominator. Thus something like $\frac{x+1}{4}$ would not be considered a rational function (mostly because we can rewrite it as $\frac{1}{4}x+\frac{1}{4}$, a polynomial). However, a rational function can have a constant numerator, thus $\frac{1}{x+1}$ would be considered a rational function.

Problem 2 Determine if the following function is a Rational Function:

$$f(x) = -3|x + 10| + 8$$

If it is a rational function, enter 1. If it is not a rational function, enter 0. $\boxed{0}$.

Feedback(attempt): A rational function in this case needs a non-constant denominator. Thus something like $\frac{x+1}{4}$ would not be considered a rational function (mostly because we can rewrite it as $\frac{1}{4}x+\frac{1}{4}$, a polynomial). However, a rational function can have a constant numerator, thus $\frac{1}{x+1}$ would be considered a rational function.

Problem 3 Determine if the following function is a Rational Function:

$$f(x) = -\log(x+10) + 2$$

If it is a rational function, enter 1. If it is not a rational function, enter 0. 0

Feedback(attempt): A rational function in this case needs a non-constant denominator. Thus something like $\frac{x+1}{4}$ would not be considered a rational function (mostly because we can rewrite it as $\frac{1}{4}x+\frac{1}{4}$, a polynomial). However, a rational function can have a constant numerator, thus $\frac{1}{x+1}$ would be considered a rational function.

Problem 4 Determine if the following function is a Rational Function:

$$f(x) = 7(x+9)^2 - 9$$

If it is a rational function, enter 1. If it is not a rational function, enter 0. $\boxed{0}$

Feedback(attempt): A rational function in this case needs a non-constant denominator. Thus something like $\frac{x+1}{4}$ would not be considered a rational function (mostly because we can rewrite it as $\frac{1}{4}x+\frac{1}{4}$, a polynomial). However, a rational function can have a constant numerator, thus $\frac{1}{x+1}$ would be considered a rational function.

Problem 5 Determine if the following function is a Rational Function:

$$f(x) = -\frac{(x-8)^2 + 1}{\sqrt{x-1} - 7} - \frac{7x + 48}{10\log(x-4) + 1} + \frac{6e^{(x-1)}}{4x + 17}$$

If it is a rational function, enter 1. If it is not a rational function, enter 0. $\boxed{0}$.

Feedback(attempt): Remember that a rational function needs to be a (as in singular) ratio of functions. We can combine these fractions into a single fraction by using common denominators and the like, but as given it is the sum of several rational functions, and thus not a rational function itself.