- 1. Considerando os conjuntos $A = \{x \in \mathbb{N}/x > 4 \longrightarrow x = 6\}$, $B = \{x \in \mathbb{N}/x > 1 \land x \leq 7\}$ e $C = \{x \in \mathbb{Z}/\sim [x \geq 1 \longrightarrow x^2 \neq 4x 3]\}$. Encontrar $M = (A \cap B) (B \cap C)$.
- 2. Se $A = \{x \in \mathbb{Z}/x^2 10x 24 = 0\}$, $B = \{x \in \mathbb{Z}/-3 \le x \le 2\}$, $C = \{x \in \mathbb{Z}/4 x^2 = 0\}$ e $D = \{x \in \mathbb{N}/2 + 3x = 7 2x\}$. Determinar o valor de verdade de

(a)
$$(D \cup A) - C = \{\frac{1}{3}, 2\};$$
 (b) $(A \cup B) - [D \cup \{\frac{1}{2}\}] \neq B;$

(c)
$$[(A \cap B) \cup D] \cap C \subset C$$
; (d) $(D - A) \cap [(A \cup B) - (C \cup D)] = D$.

- 3. Se $A \subset B$, simplificar $\{[(B \cup A) \cap (B^c \cap C)] \cup A^c\} \cup B^c$
- 4. Se X é um conjunto tal que $X \in \mathcal{P}(A)$, para todo conjunto A. Determinar quais das afirmações abaixo são verdadeiras.
 - (a) $X \cap X = X$, $\forall A$;
 - (b) X A = X, $\forall A$;
 - (c) $(A X) \cup (X A) = A$, $\forall A$.
- 5. Mostre que $B \subset [A \cup (B A)]$.
- 6. Mostre que $B^c \cap (A \cup B) = A$ se, e somente se, $A \cap B = \emptyset$.
- 7. De um grupo de 100 estudantes, 49 estão matriculados em MAT131 e 53 estão matriculados em MAT205. Se 27 desses alunos não estão matriculados em nenhuma dessas disciplinas, quantos estudantes estão matriculados em exatamente uma dessas disciplinas?
- 8. Uma pesquisa de opinião realizada com 154 pessoas revelou a seguinte informação: 6 pessoas têm como únicas refeições do dia o jantar e o café da manhã; para 5 pessoas o café da manhã e o almoço são as únicas refeições do dia e, para 8 pessoas a única refeição do dia é o almoço.

O número de pessoas que tomam as três refeições do dia é igual a seis vezes daquelas que somente tomam café da manhã e igual ao triplo das que somente jantam. Nenhuma das pessoas declarou que as únicas refeições do dia seja o jantar e o almoço. Determinar:

- (a) O número de pessoas que pelo menos jantam;
- (b) O número de pessoas que tomam exatamente duas refeições por dia;
- (c) O número de pessoas que realizam unicamente uma das refeições.

- 9. Considerando o conjunto $A = \{2, \{3, 4\}, \{5\}, 6\}$. Estabelecer o valor de verdade das seguintes afirmações, justificando sua resposta.
 - (a) $\exists X \in \mathcal{P}(A)$ tal que $4 \in X$;
 - (b) $\exists X \in \mathcal{P}(A)$ tal que $\{6\} \subset X$;
 - (c) $\exists X \in \mathcal{P}(A)$ tal que $\{5\} \in X$;
 - (d) $\exists X \in \mathcal{P}(A)$ tal que $\{3,4\} \subset X$;
 - (e) $\forall X, Y \in \mathcal{P}(A)$ tem-se $X \cup Y \in \mathcal{P}(A)$;
- 10. Se A,B,C são conjuntos não vazios tais que $A\cap C=\emptyset$ e $A\cup C=B$. Simplificar $A\triangle B\triangle A\triangle C$.
- 11. Mostrar ou dar um contraexemplo para as seguintes afirmações:
 - (a) $F (F G) = F \cap G$, $\forall F, G$;
 - (b) $(A B) C = A (B C), \forall A, B, C;$
 - (c) $A (B \cup C) = (A B) \cup (B \cup C), \quad \forall A, B, C.$
- 12. Seja $U=\{-5,6,\frac{2}{5},\sqrt{6},\sqrt{-2},1+i,\frac{2}{10}\}$. Determinar os elementos dos seguintes conjuntos:
 - (a) $A = \{x \in U / x \in \mathbb{R} \longleftrightarrow x \notin (\mathbb{R} \mathbb{Q})\};$
 - (b) $B = \{x \in U/x \in \mathbb{Q} \longrightarrow x \notin \mathbb{R}\};$
- 13. Sejam $A = (-7, -1) \cup (0, 6], B = (-\infty, 1] \cup [4, 8)$ e $C = [-2, 3] \cup [5, 10)$. Determinar:
 - (a) $(A \cap B) \cup (A B)^c$;
 - (b) $(A \cup B)^c \cap (B A)$;
 - (c) $(A\triangle B)\cap (A\triangle C)$.
- 14. Seja $A_i = \{i + n/n \in \mathbb{Z}^+, n \text{ \'e impar e } n \leq 5\}$. Pede-se:
 - (a) Determinar os seis primeiros conjuntos A_i ;
 - (b) Encontrar $E = (A_1 \cup A_2 \cup A_5);$
 - (c) Determinar $(A_2 \cap A_4 \cap A_6)^c$;
 - (d) Determinar $(A_1 \cup A_2 \cup A_3)^c$;
 - (e) Mostre que $B \cap \left(\bigcup_{i=1}^k A_i\right) = \bigcup_{i=1}^k (B \cap A_i)$, se $\bigcup_{i=1}^k A_i = \{x/x \in A_i, \text{ para algum } i\}$.

- 15. Defina a operação * entre dois conjuntos A e B por $A*B=(A\cup B)-A^c$. Faça o que se pede:
 - (a) Representar * usando diagramas de Venn-Euler;
 - (b) Mostrar que $A * (B \cap C) = (A * B) \cap (A * C), \forall A, B, C;$
 - (c) Mostrar que $A \cap (B * C) = (A \cap B) * (A \cap C), \forall A, B, C$
- 16. Sabendo que n(U) = 360, n(A) = 120, n(B) = 150, n(C) = 100, $n(A \cap C) = 20$, $n(A \cap B) = 30$, $n(B \cap C) = 25$, $n(A \cap C) = 10$. Determinar $n(L \cup S)$, se os conjuntos L e S são dados por

$$L = \{x \in U / x \in A \longleftrightarrow x \in B\}$$
 $S = \{x \in U / x \in A \longrightarrow x \in C\}.$