Handwritten SigNature forgery detection

Di Lieto Gabriele | 874143 | g.dilieto@campus.unimib.it

Poveromo Marco | 830626 | m.poveromo@campus.unimib.it

Tabella dei contenuti

Introduzione 2.5min

Preparazione dei dati _{2.5min}

2 Writer dependent 4min

Writer independent 4 min

Risultati e valutazioni 5 min

5 Conclusioni 3 min

Tabella dei contenuti

Introduzione

La firma a mano libera è una caratteristica biometrica. Es.impronta digitale, la retina e la voce.

Rappresentazioni: firma statica (offline) vs firma dinamica (online)

Contraffazioni: firma cieca (**blind**), firma semplice (**simple**), firma esperta (**skilled**), tracciamento (**tracing**) e trasferimento ottico (**optical transfer**).

Esempio contraffatto

Introduzione

Le firme genuine di un utente possono essere molto variabili tra loro, l'inconsistenza di un utente nella scrittura rende difficile verificare le firme esperte (skilled)

Il nostro obiettivo è creare, valutare e comparare gli approcci writer dependent e writer independent al problema della forgery detection, nel contesto di esempi statici (offline).

Writer dependent

Quando gli utenti presenti nel testing **sono** già stati elaborati in fase di training

Writer independent

Quando gli utenti presenti nel testing **non sono** stati elaborati in fase di training

La nostra **ipotesi** è che i sistemi writer dependent siano più accurati dei modelli writer independent, ma richiedano più risorse (numero di esempi, tempi di addestramento)

Tabella dei contenuti

Preparazione dei dati

CEDAR 2640

N.utenti: 55

Genuine: 24

Contraffatte: 24

KAGGLE 300

N.utenti: 30

Genuine: 5

Contraffatte: 5

ICDAR 2294

N.utenti: 60

Genuine: 12

Contraffatte: 24

Preparazione dei dati

Preparazione dei dati

PREPROCESSING

Originale

Grayscale

Thresholding

Inversion

AUGMENTATION

CLEANING

Preservazione degli utenti con immagini di dimensione almeno 128 x 256.

Il dataset integrato presenta 109 utenti, cioè l'85% degli utenti precedenti

Approcci: Writer dependent vs Writer independent

Tabella dei contenuti

Writer Dependent | Basic model

IPERPARAMETRI

Batch size: 128 Epochs: 30 Optimizer: Adam Learning rate: 0.00003 Dropout rate: 0.3

Basic model | Analisi Training/Validation

Writer Dependent | Fine tuning model

Writer Dependent | Fine tuning model

IPERPARAMETRI

Batch size: x Epochs: 500 Optimizer: Adam Learning rate: 0.00003 Dropout rate: 0.3

Fine tuning model | Analisi Training/Validation | User 87

Fine tuning model | Analisi Training/Validation | User 88

Fine tuning model | Analisi Training/Validation | User 89

Writer Dependent | Tailored model

Writer Dependent | Tailored model

IPERPARAMETRI

Batch size: x Epochs: 500 Optimizer: Adam Learning rate: 0.00001 Dropout rate: 0.4

Tailored model | Analisi of Training/Validation | User 87

Tailored model | Analisi of Training/Validation | User 88

Tailored model | Analisi of Training/Validation | User 89

Tabella dei contenuti

Writer independent | Siamese model

Writer independent | Siamese model

IPERPARAMETRI

Batch size: 32

Epochs: 15

Optimizer: Adam

Learning rate: 0.00006

Margin: 1

Writer independent | Siamese model

CONTRASTIVE LOSS

$$L(r_0, r_1, y) = y(d(r_0, r_1)) + (1 - y)max(0, m - d(r_0, r_1))$$

NEGATIVE SELECTION

Le coppie facili, cioè quelle coppie di immagini che producono una loss pari a 0, sono state escluse dall'addestramento

DISTANZA EUCLIDEA

La **distanza** euclidea viene calcolata tra i due embeddings in uscita dalle CNN condivise.

$$d(r_0, r_1) = \|r_0 - r_1\|_2$$

THRESHOLD

Writer independent

One-shot learning, è sufficiente un solo esempio di firma genuina ! Data in input la coppia di immagini (genuina, x) restituisce 1 se x è genuina, 0 altrimenti

Nel caso si abbiano a disposizione più firme genuine, allora si possono indire le elezioni

Le elezioni permettono di classificare un'istanza in maniera robusta, confrontandola con più genuine

Writer Independent | Election siamese model

Tabella dei contenuti

Election model | Approximated accuracy

Dato un insieme di ancore $A = \{A_1, A_2, ..., A_n\}$, il modello Siamese S, l'istanza x ed L(x) la relativa label.

Assumendo che:

- \forall i P(S(A_i, x)=L(x)) = p, dove p è l'accuracy media di S per le varie ancore;
- $\forall i,j : i \neq j$, $P(S(A_i, x) = L(x))$ è indipendente da $P(S(A_i, x) = L(x))$;

Allora l'accuracy (approssimata) del' Election model con n ancore è:

$$P_A = \sum_{k=\left|\frac{n}{2}\right|+1}^{n} \binom{n}{k} p^k (1-p)^{n-k}$$

Approximated accuracy

Election model | Approximated vs experimental accuracy

Experimental accuracy

Approximated accuracy

Valutazione ancore per Siamese model

Mentre l'elezione mantiene fissa l'immagine di test e rende l'ancora variabile, la **valutazione** mantiene fissa l'ancora e rende variabile l'immagine di test.

Per ogni utente e per ogni ancora (genuina) viene testata l'accuratezza sul test set

L'accuratezza minima, media e massima sono un **indicatore** della consistenza di scrittura di un utente

Utente 88 | Inter-class similarity nel training set

Genuine

Forged

Models comparison | Accuracy per n° di istanze per utente

Range di istanze : [0,30]

Range di istanze : [0,10]

Models comparison | Tempo di training (per utente)

Model	Tempo medio di training per singolo utente
Fine tuning	968,5 s
Tailored	39,7 s
Siamese	None

^{*} Assunto il numero di istanze genuine per il training pari a 5

Tabella dei contenuti

Conclusioni | Valutazione dei modelli

Il modello **fine tuning** presenta le migliori performance (a patto di avere un dataset sufficientemente grande) ma costi di training maggiori.

Il modello tailored è un buon compromesso tra performance e costi. E' probabilmente la scelta migliore se si ha la possibilità di trainare e si vogliono ottenere buone performance in poco tempo.

Il modello **siamese** ha costi ridotti e permette di essere applicabile anche in casi non sia possibile fare training o non sia possibile generare delle istanze forged, ma presenta prestazioni peggiori rispetto agli altri modelli all'aumentare del dataset disponibile (problema mitigato con l'approccio a elezione).

Conclusioni | Flowchart per guidare la scelta del modello

Esempio

Come ultima prova abbiamo testato il modello con le nostre firme

COPPIA POSITIVA

Similarità 0.78973215

COPPIA NEGATIVA

Similarità 0.01974825

COPPIA POSITIVA

Similarità 0.8332546

COPPIA NEGATIVA

Similarità 0.01670848

Sviluppi futuri

Valutare l'applicabilità e le performance dei modelli per task simili (es. firma online, altri tipi di forgery).

Ottimizzazione la scelta delle ancore per i modelli writer independent.

Valutare i modelli sulla base di diverse necessità di performance (es. per avere una maggiore negative precision).

Valutare gli effetti di una pulizia più oculata dei dataset sulle performance di generalizzazione dei modelli (es. il problema della inter-class similiarity).

Grazie per l'attenzione