

Séries à termes dans un evn de dimension finie

Cours		9
1	éries à termes dans un espace vectoriel normé de dimension finie	
	.1 Somme partielle, convergence, divergence, somme, reste d'une série convergente	
	.2 Divergence grossière	
	.3 Opérations	
	.4 Caractérisation par les coordonnées dans une base	
	.5 Convergence absolue	
2	Application: séries de matrices, séries d'endomorphismes	
	1.1 Exponentielle de matrice, d'endomorphisme en dimension finie	
	.2 Exemples	
	.3 Propriétés	
3	Annexe: pourquoi la convergence absolue implique la convergence	
ъ.		
Exerci		ļ
Ex	ces et résultats classiques à connaître	
	Exponentielle d'une matrice antisymétrique	
	Déterminant de l'exponentielle d'une matrice	
	L'exponentielle d'une matrice est un polynôme de cette matrice	
Ex	ces du CCINP	
	ces	
	problèmes d'entrainement	

On reprend essentiellement dans ce chapitre la théorie des séries numériques, et on l'adapte aux evn. Dans tout le chapitre, E désigne un espace vectoriel muni d'une norme $\|\cdot\|$.

1 Séries à termes dans un espace vectoriel normé de dimension finie

1.1 Somme partielle, convergence, divergence, somme, reste d'une série convergente

Définition. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de E. On s'intéresse à la série $\sum u_n$.

- $S_n = \sum_{k=0}^n u_k$ est la somme partielle d'ordre n.
- La série $\sum u_n$ converge lorsque la suite $(S_n)_{n\in\mathbb{N}}$ converge dans l'espace vectoriel normé E, c'est-à-dire s'il existe $S\in E$ tel que :

$$\left\| \sum_{k=0}^{n} u_k - S \right\| \xrightarrow[n \to +\infty]{} 0$$

On dit qu'elle diverge sinon.

• En cas de convergence, on appelle somme de la série, et on note $\sum_{n=0}^{+\infty} u_n$, la limite de la suite des sommes partielles.

Remarque. Étudier une série, c'est déterminer si elle converge ou si elle diverge.

Définition. Lorsque la série $\sum u_n$ converge, on peut définir son **reste** d'ordre n, avec les notations précédentes :

$$R_n = S - S_n = \sum_{k=n+1}^{+\infty} u_k$$

Proposition. La suite des restes est bien définie lorsque $\sum u_n$ converge, et $R_n \xrightarrow[n \to +\infty]{} 0$.

1.2 Divergence grossière

Proposition. Si la série $\sum u_n$ converge, alors la suite $(u_n)_n$ converge vers 0

Remarque. Il s'agit d'une condition nécessaire.

Définition. Lorsque $(u_n)_n$ ne converge pas vers 0, on dit que la série $\sum u_n$ diverge grossièrement.

1.3 Opérations

Proposition. Soit $\sum u_n$ et $\sum v_n$ deux séries convergentes, λ et μ deux scalaires. Alors la série $\sum (\lambda u_n + \mu v_n)$ converge et :

$$\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n$$

Corollaire. L'ensemble des séries convergentes est un espace vectoriel, et l'application $\sum u_n \mapsto \sum_{n=0}^{+\infty} u_n$ y est linéaire.

Lien suite-série. Soit $(u_n)_n$ une suite à valeurs dans E. On a :

la suite
$$(u_n)_n$$
 converge \iff la série $\sum (u_{n+1} - u_n)$ converge

<u>Proposition.</u> La convergence et la valeur de la somme d'une série convergente est indépendante du choix de la norme sur E qui est de dimension finie.

1.4 Caractérisation par les coordonnées dans une base

<u>Définition.</u> Soit $\sum u_n$ une série à termes dans E, et $\mathcal{B} = (e_1, \dots, e_p)$ une base de E. Pour tout $n \in \mathbb{N}$, on peut écrire :

$$u_n = u_n^{(1)} e_1 + \dots + u_n^{(p)} e_p = \sum_{i=1}^p u_n^{(i)} e_i$$

l'unique écriture de u_n comme C.L. de \mathbb{B} .

La suite $(u_n^{(i)})_{n\in\mathbb{N}}$ s'appelle la *i*-ème suite coordonnée de $(u_n)_n$.

Proposition. Avec les notations précédentes,

$$\sum u_n$$
 converge $\iff \forall i \in \{1, \dots, p\}, \sum u_n^{(i)}$ converge

et dans ce cas :

$$\sum_{n=0}^{+\infty} u_n = \left(\sum_{n=0}^{+\infty} u_n^{(p)}\right) e_1 + \dots + \left(\sum_{n=0}^{+\infty} u_n^{(p)}\right) e_p = \sum_{i=1}^{p} \left(\sum_{n=0}^{+\infty} u_n^{(i)}\right) e_i$$

Remarque. La convergence de $\sum u_n$ est caractérisée par la convergence de ses séries coordonnées dans une base \mathcal{B} fixée.

1.5 Convergence absolue

<u>Définition.</u> Soit $\sum u_n$ une série à termes dans E. On dit que $\sum u_n$ converge absolument si et seulement si la série numérique $\sum ||u_n||$ converge.

Remarque. Lorsque $E = \mathbb{R}$ ou \mathbb{C} , la norme la valeur absolue ou le module, et on retrouve bien la convergence absolue des séries numériques.

Remarque. On ne confondra pas la convergence absolue de $\sum u_n$ dans $(E, \|\cdot\|)$ evn de dimension finie, avec la convergence normale de $\sum f_n$ dans l'espace $\mathcal{B}(X, \mathbb{K})$ des fonctions bornées, qui est la convergence de la série numérique $\sum \|f_n\|_{\infty}$.

Théorème.

Dans E espace vectoriel normé de dimension finie, si $\sum u_n$ converge absolument, alors $\sum u_n$ converge.

Preuve. Une justification est proposée en annexe.

2 Application : séries de matrices, séries d'endomorphismes

2.1 Exponentielle de matrice, d'endomorphisme en dimension finie

Définition.

• Pour $A \in \mathcal{M}_p(\mathbb{K})$, on définit :

$$\exp(A) = e^A = \sum_{n=0}^{+\infty} \frac{1}{n!} A^n$$

• Pour $u \in \mathcal{L}(E)$ où E est un K-espace vectoriel de dimension finie, on définit :

$$\exp(u) = e^u = \sum_{n=0}^{+\infty} \frac{1}{n!} u^n$$

2.2 Exemples

Proposition. Si $T = \begin{pmatrix} a_1 & \star & \cdots & \star \\ 0 & a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \star \\ 0 & \cdots & 0 & a_n \end{pmatrix}$ est triangulaire supérieure, alors $\exp(T)$ est de la forme :

$$\exp(T) = \begin{pmatrix} e^{a_1} & * & \cdots & * \\ 0 & e^{a_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & e^{a_p} \end{pmatrix}$$

Proposition. Si $N \in \mathcal{M}_p(\mathbb{K})$ est nilpotente, alors $\exp(N) = \sum_{k=0}^{p-1} \frac{1}{k!} N^k$.

2.3 Propriétés

Proposition. Soit $A, B \in \mathcal{M}_p(\mathbb{K})$ deux matrices semblables, et $P \in GL_p(\mathbb{K})$ telle que $A = PBP^{-1}$. Alors:

$$\exp(A) = P \exp(B) P^{-1}$$

Corollaire. Soit $A \in \mathcal{M}_p(\mathbb{C})$. Alors $\operatorname{Sp}(\exp(A)) = \{e^{\lambda}, \ \lambda \in \operatorname{Sp}(A)\}$.

Proposition.

- L'application exp $\mathcal{M}_p(\mathbb{K}) \to \mathcal{M}_p(\mathbb{K})$ est continue.
- Pour E evn de dimension finie, exp $\mathcal{L}(E) \to \mathcal{L}(E)$ est continue.

Proposition. Soit $A, B \in \mathcal{M}_n(\mathbb{K})$, telles que AB = BA.

- $\exp(A + B) = \exp(A) \exp(B) = \exp(B) \exp(A)$
- $\exp(A)$ est inversible et $\exp(A)^{-1} = \exp(-A)$.

Proposition. Soit $u, v \in \mathcal{L}(E)$ où E est un evn de dimension finie, tels que $u \circ v = v \circ u$.

- $\exp(u+v) = \exp(u) \circ \exp(v) = \exp(v) \circ \exp(u)$
- $\exp(u)$ est inversible et $\exp(u)^{-1} = \exp(-u)$.

Remarque. En pratique, pour calculer $\exp(A)$ lorsque A est quelconque, on décompose A sous la forme A = D + N où D est diagonalisable, N nilpotente et ND = DN. Ce résultat n'étant pas au programme, on se laisse guider par l'énoncer.

3 Annexe : pourquoi la convergence absolue implique la convergence

Théorème.

Dans E espace vectoriel normé de dimension finie, si $\sum u_n$ converge absolument, alors $\sum u_n$ converge.

Preuve.~ Soit $\mathcal{B}=(e_1,\ldots,e_p)$ une base de E. Les normes sur E étant équivalentes, on peut choisir comme norme :

$$||x||_{\infty} = \operatorname*{Max}_{i=1}^{p} |x_i|$$

où
$$x = \sum_{i=1}^{p} x_i e_i$$
 est l'écriture de x comme C.L. de \mathcal{B} .

On note $(u_n^{(i)})_n$ les suites coordonnées de $(u_n)_n$, et on remarque que, pour tout i :

$$\forall n \in \mathbb{N}, \ |u_n^{(i)}| \leqslant ||u_n||_{\infty}$$

Par majoration, on a donc établi que, pour tout $i, \sum |u_n^{(i)}|$ converge, c'est-à-dire que la série numérique $\sum u_n^{(i)}$ converge absolument, donc converge. Ceci suffit à conclure. $\hfill\Box$

Exercices et résultats classiques à connaître

Exponentielle d'une matrice antisymétrique

57.1

Soit
$$a \in \mathbb{R}$$
. Calculer $\exp \begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix}$.

Déterminant de l'exponentielle d'une matrice

57.2

Soit $A \in \mathcal{M}_p(\mathbb{R})$. Montrer que :

$$det(exp(A)) = exp(tr(A))$$

L'exponentielle d'une matrice est un polynôme de cette matrice

57.3

Soit $A \in \mathcal{M}_p(\mathbb{K})$. Montrer que $\exp(A)$ est un polynôme de A.

57.4

Soit A une algèbre de dimension finie admettant e pour élément unité et munie d'une norme notée || ||.

On suppose que : $\forall (u, v) \in A^2$, $||u.v|| \leq ||u||.||v||$.

- 1. Soit u un élément de A tel que ||u|| < 1.
 - (a) Démontrer que la série $\sum u^n$ est convergente.
 - (b) Démontrer que (e-u) est inversible et que $(e-u)^{-1} = \sum_{n=0}^{+\infty} u^n$.
- 2. Démontrer que, pour tout $u \in A$, la série $\sum \frac{u^n}{n!}$ converge.

57.5

GNP 40

Soit E l'ensemble des suites à valeurs réelles qui convergent vers 0.

- 2. On pose : $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, $||u|| = \sup_{n \in \mathbb{N}} |u_n|$.
 - (b) Prouver que : $\forall u = (u_n)_{n \in \mathbb{N}} \in E, \sum \frac{u_n}{2^{n+1}}$ converge.

57.6

GNP 61.23

On note $\mathcal{M}_n\left(\mathbb{C}\right)$ l'espace vectoriel des matrices carrées d'ordre n à coefficients complexes.

Pour $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{M}_n (\mathbb{C})$, on pose : $||A|| = \underset{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}{\operatorname{Max}} |a_{i,j}|$.

2. Démontrer que : $\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$, $||AB|| \leq n ||A|| ||B||$. Puis, démontrer que, pour tout entier $p \geq 1$, $||A^p|| \leq n^{p-1} ||A||^p$.

Exercices

57.7

Soit $A \in \mathcal{M}_p(\mathbb{K})$. Montrer que $\exp(A)^{\top} = \exp(A^{\top})$.

57.8

Soit $u \in \mathcal{L}(E)$ un endomorphisme de E \mathbb{K} -espace vectoriel normé de dimension finie p. Montrer qu'il existe $P \in \mathbb{K}_{p-1}[X]$ tel que :

$$\exp(u) = P(u)$$

Petits problèmes d'entrainement

57.9

Soit $A \in \mathcal{M}_p(\mathbb{K})$, et $\|\cdot\|$ une norme sur $\mathcal{M}_p(\mathbb{K})$ qui vérifie, pour tout $M, N \in \mathcal{M}_p(\mathbb{K})$:

$$||MN|| \leqslant ||M|| ||N||$$

On suppose que ||A|| < 1.

- (a) Montrer que, pour tout $n \in \mathbb{N} : ||A^n|| \le ||A||^n$
- (b) Montrer que $\sum A^k$ converge absolument.
- (c) Montrer que $I_p A$ est inversible et que $(I_p A)^{-1} = \sum_{n=0}^{+\infty} A^n$.