MOOC Econometrics

Training Exercise 1.4

Questions

Consider the situation where the *x*-variable is observed with measurement error, which is rather common for complex macroeconomic variables like national income.

Let x^* be the true, unobserved economic variable, and let the data generating process (DGP) be given by $y_i = \alpha + \beta x_i^* + \varepsilon_i^*$, where x_i^* and ε_i^* are uncorrelated.

The observed x-values are $x_i = x_i^* + v_i$, with measurement errors v_i that are uncorrelated with x_i^* and ε_i^* . The signal-to-noise ratio is defined as $SN = \sigma_*^2/\sigma_v^2$, where σ_*^2 is the variance of x^* and σ_v^2 that of v.

The estimated regression model is $y_i = \alpha + \beta x_i + \varepsilon_i$, and we consider the least squares estimator b of β .

- (a) Do you think that the value of b depends on the variance of the measurement errors? Why?
- (b) Show that $b = \beta + \frac{\sum_{i=1}^{n} (x_i \bar{x})(\varepsilon_i \bar{\varepsilon})}{\sum_{i=1}^{n} (x_i \bar{x})^2}$.
- (c) Show that $\varepsilon_i = \varepsilon_i^* \beta v_i$.
- (d) Show that the covariance between x_i and ε_i is equal to $-\beta \sigma_v^2$.
- (e) Show that for large sample size n we get $b-\beta \approx \frac{-\beta\sigma_v^2}{\sigma_v^2+\sigma_v^2}$.
- (f) Compute the approximate bias $(b \beta)$ for $\beta = 1$ in the cases SN = 1, SN = 3, and SN = 10.

Erafus,