$\begin{array}{c} \textbf{Skill Mastery Quiz 5} \\ \textbf{Communicating in Math (MTH 210-01)} \end{array}$

Winter 2020

Name:			

L5-3 Write a useful negation of the following statement:

For all integers n and m, if nm is even then n is even or m is even.

Useful negations don't start with "It is not true that..." and avoid the word not in cases where it could be replaced (e.g., don't use "not even").

P3-1 The following statement is incorrect:

The set of natural numbers is closed under subtraction.

Show the statement is false using a counterexample. You should clearly explain why the counterexample you found shows the statement is false.

P1-1	Consider the following statement:
	If n is even integer greater than 2 then n can be expressed as the sum of two prime numbers.
	State what you would assume in a direct proof.
	State what you would assume in a proof by contradiction.