Zadanie: KON

Koncentracja – zadanie trudniejsze

Laboratorium z ASD, egzamin poprawkowy. Dostępna pamięć: 256 MB.

Powiemy, że zbiór punktów Z na płaszczyźnie jest d-skoncentrowany, jeśli każde dwa punkty tego zbioru są oddalone od siebie o nie więcej niż d. W szczególności, każdy jednoelementowy zbiór punktów jest d-skoncentrowany dla dowolnego $d \geq 0$.

Mamy dany zbiór punktów A oraz parametr d. Chcemy stwierdzić, czy punkty ze zbioru A można podzielić na dwa niepuste zbiory d-skoncentrowane.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite n oraz d ($2 \le n \le 2\,000, 0 \le d \le 2\,000\,000$) oddzielone pojedynczym odstępem i oznaczające liczbę punktów w zbiorze A oraz parametr koncentracji. Każdy z kolejnych n wierszy zawiera dwie liczby całkowite x_i, y_i ($0 \le x_y, y_i \le 1\,000\,000$), oddzielone pojedynczym odstępem, oznaczające współrzędne i-tego punktu w zbiorze A. Punkty podane na wejściu nie będą się powtarzać.

Wyjście

W pierwszym wierszu wyjścia Twój program powinien wypisać jedno słowo TAK lub NIE, oznaczające, czy zbiór A można podzielić na dwa rozłączne i niepuste zbiory d-skoncentrowane A_1 i A_2 .

Jeśli odpowiedzią jest TAK, dwa kolejne wiersze powinny zawierać opis przykładowych zbiorów A_1 i A_2 , po jednym opisie w wierszu. Opis zbioru A_i powinien zaczynać się od jednej liczby całkowitej dodatniej n_i , oznaczającej liczbę punktów zawartych w tym zbiorze, a następnie n_i liczb całkowitych pooddzielanych pojedynczymi odstępami, oznaczających numery punktów przydzielonych do zbioru A_i . Punkty numerujemy od 1 do n w kolejności występowania w wejściu.

Każda liczba całkowita z zakresu od 1 do n powinna pojawić się na liście elementów dokładnie jednego ze zbiorów A_1 , A_2 . Elementy zbiorów A_1 i A_2 można wypisać w dowolnej kolejności. Jeśli istnieje więcej niż jedno rozwiązanie, Twój program może wypisać dowolne jedno z nich.

Przykład

Dla danych wejściowych: jednym z poprawnych wyników jest:

7 3 TAK
5 3 6 4 2
1 1 4 1 3 5 7
4 2
1 3

5 2

2 35 1

Wyjaśnienie do przykładu: Podział opisany na wyjściu to $A_1 = \{(2,3), (1,3), (1,1)\}, A_2 = \{(5,3), (4,2), (5,2), (5,1)\}.$