

A Top-Notch tech conference right in the middle of paradise!

Clemens Vasters
Microsoft Corporation
Chief Messenger

CARIBBEAN DEVELOPERS CONFERENCE

Flow Architectures with Azure Event Hubs

https://github.com/clemensv/messaging

Event-Driven Flow

Observe, Decide, Act, Tell

Imperative Flow

Listen, Obey, Execute, Respond

Imperative

Event-Driven

Imperative

Event-Driven

Execution plan with predetermined actor roles

No predetermined execution plan or actors.

Work is assigned, executed, and completion reported.

Work is volunteered reacting to events and completion is shared

Changes and extensions require modifying the execution plan.

Changes and extensions are local to actors or add/remove actors

Command & Control

Dynamic Collaboration

Most complex systems require both models in different areas

TICKETING INTEGRATION FLOW

BORUSSIA-PARK, MÖNCHENGLADBACH

TICKETING INTEGRATION FLOW BORUSSIA / EVENTIM / AXESS

Automated access control: Axess

Signals, Streams, and Jobs

Signal: The capture of an **occurrence** (statement of fact) during the operation of a software system

Event: A data record expressing a signal and its context. The context is expressed in metadata annotating the signal.

Event Stream: A chronological sequence of events belonging to the same context.

Job: Not an event. A description of a task that needs to be performed by some party. Preferably just once.

Inventory Calendar item Meeting Payment entry Signals Meeting added to attendee collected created scheduled accepted shelf Inventory Inventory Meeting item Calendar attendee item added appointment Change removed invited Application proposal Inventor from shelf reminder change deployment verification committed item Aircraft succeeded initiated scanned rotated for sale change Change Pizza proposal Mouse cursor ordered Aircraft proposed commented sales lead Application moved position deployment added report succeeded Eye focus Vehicle Application tracked passed Pizza deployment prepared Advertisement induction Aircraft Delivery Room failed humidity squawk address loop clicked CO PPM over changed code read change threshold Pizza delivered Virtual package Aircraft Database machine Smoke Engine oil scanned Database landed Room record temperature detected started pressure record inserted Stock updated read read trade order Package CPU issued Engine utilization delivered Venue coolant read temperature Engine seat Account Infrared RPM read ticket Stock trade movement Package transfer read Object File reserved picked up order scheduled detected detected Venue changed executed ahead seat Engine oil Tank ticket Venue Stock trade pressure Account released pressure Object seat Visual order threshold transfer velocity Package ticket read Purchased object Package settled File differential completed created classified alert routed loaded calculated

Events: Observations, Signals, Jobs

Discrete Event Router

Azure Event Grid, AWS Event Bridge, Knative Eventing

Push-style distribution of discrete events to serverless workloads or other messaging infrastructures

Queue Pub/Sub Broker

Azure Service Bus, AWS SQS/SNS, Google PubSub, Apache ActiveMQ, RabbitMQ, IBM MQ

Pull-style, queue-based transfer of jobs and control via message queues and topics

Event Stream Engine

Azure Event Hubs, AWS Kinesis, Apache Kafka, Apache Pulsar, CNCF Pravega

Partitioned, high-volume, tapedrive-style sequential recording and unlimited, pull-style re-reads of event streams.

Event Stream Aggregator

Azure Stream Analytics, AWS Kinesis Analytics, Apache Samza, Apache Flink, etc.

Stateful processing of event streams yielding event streams and discrete events as continuous output

Event Streams and Time(-liness)

Event Data Value – Securities Markets

Velocity Matters → Parallelization Matters

What is Azure Event Hubs?

Platform-as-a-Service Event Stream Broker

Use the Apache Kafka® API, but with far lower cost and better performance.

Fully managed: You use the features, Azure deals with everything else

AMQP 1.0 standards compliant, Apache Kafka® wire-compatible

Polyglot Azure SDK and cross-platform client support

Industry-leading reliability and availability

Fast.

Azure Event Hubs vs. Apache Kafka®

Similar yet very different

	Azure Event Hubs	Apache Kafka	
User Model	Partitioned event stream broker with high-availability replication	Partitioned event stream broker with high-availability replication	
Architecture	Multi-tenant, 3-Tier Gateway/Broker/Storage cluster model, with tenant-isolation, all tiers independently scalable	Single-tenant monolith. Need to increase broker instances in a cluster to scale any dimension.	
Implementation Language	C# and Native (C/C++) Java		
Cluster Manager	Azure Service Fabric (inline) Apache Zookeeper (external); KRaft (inline, experimental)		
Partition Mapping	Key hashing, client or server-side mapping of events	mapping of events Key hashing, client-side mapping of events	
Consumer Partition Ownership Coordination	Server-coordinated partition ownership (Kafka), client-coordinated ownership with external leader election. Parallel, direct partition reads.	Server-coordinated partition ownership	
Server Workload Balancing	ynamic and fully automated (100% hands-off). Broker resource allocation dependent of partition count or ownership, flexible scaling. Static assignment of partitions to broker instances requiring operator intervention for rebalancing.		
Storage Model	Replicated log store, synchronous per-message flush-to-disk on all replicas Replicated log store, asynchronous flush-to-disk controlled by host f system write cache settings.		
Networking	Single endpoint access to all partitions, Public IP/DNS or Virtual Networking, Firewall. Endpoint per broker instance. Multiple IPs required. Complex network management required.		
Access Control	Token-based access policy model with unlimited publisher policies, Azure Active Directory role-based access control Local accounts, federation extensibility.		
Protocols	AMQP 1.0 (optional: WebSockets) HTTPS 1.1 Apache Kafka RPC Apache Kafka RPC		
Batching / Archives	Avro-packaged batch-packaging and archival to blob store		
Schema Registry	Schema Registry based on open CNCF Schema Registry API	(Proprietary from commercial vendors)	

Event Hubs

Producers send using a protocol of their choosing, with or without setting a partition key. Partitions can also be targeted directly.

Producer

Event

Hub

Producers choose their preferred protocol

OASIS AMOP 1.0 Apache Kafka® RPC HTTPS 1.1

A log partition is a durable, triple-replicated, append-only storage structure. Each partition has a throughput ceiling imposed by IO and compute limits. More partitions provide more throughput capacity, but also make consumption more complex.

Consumer Group **AMQP:** Clients choose leader using an external mechanism and can break leases using an epoch model. Checkpoints are external. AMQP with server-assigned Partition 1 partitions and CG checkpoints on roadmap. Consumer Partition 2 Partition 3 Consumer

Partition 4

Group 2

An Event Hub is an event stream manager handling one or more independent log partitions. Different from Apache Kafka®, Event Hubs can optionally assign events to partitions on the server-side. **Consumers choose** their own preferred protocol

OASIS AMOP 1.0 Apache Kafka® RPC

Consumers on a consumer group own one or more partitions exclusively to ensure inorder processing.

A consumer group is an optional mechanism to allow multiple parallel consumers to coordinate who owns which

partition.

Kafka RPC: Broker assigns partitions and

checkpoints can be stored in the CG.

Consumers choose the initial log offset:

Start (oldest), End (newest), Timestamp, Sequence Number

Read progress is noted in checkpoints that can be stored anywhere.

{Namespace}/{EventHub}/{PartitionId}/{Year}/{Month}/{Day}/{Hour}/{Minute}/{Second} **Event Hubs Capture** https://mystorageaccount.blob.core.windows.net/mycontainer/ mynamespace/myeventhub/0/2017/12/08/03/03/17.avro **Azure Blob Storage Event Hubs Capture** Event is raised when allows organizing torrents capture file has been Lifecycle of telemetry in batches written Policy that can be easily Partition 0 **Automation** consumed by batchoriented analytics .../myeventhub/0/... frameworks. .../myeventhub/1/... Hot Partition 1 **Event** Hubs **Event Producer Capture** Hub .../myeventhub/2/... **Engine** Partition 2 .../myeventhub/3/... Cool Archived Partition 3 Expired **Producers choose** Size Limit their preferred protocol Capture throughput keeps up Capture policy with the Event Hubs' ingress allows OASIS AMQP 1.0 throughput capacity and balancing Azure Data Lake Gen2 Apache Kafka® RPC

provides automated low latency

capture to batch storage.

HTTPS 1.1

Time.

Limit

latency and

batch size.

Event Hubs* is not...

... a publish/subscribe broker. Partitions are not subscriptions. They are chosen by the producer or the broker on ingress. There is also no server-side filtering.

→ Azure Service Bus, Azure Event Grid

... a queue broker. Read progress over the log is handled by the client and there is no event-level ownership and delivery state handling.

→ Azure Service Bus

... a discrete event distribution engine. Event Hubs does not do push deliveries, and delivery failures need to be tracked individually.

→ Azure Event Grid

... a database or long-term event store. Event Hubs exists to catch, store and provide fast access to event data organized around time axis. As data ages (days, not months), you need better indexing.

→ Azure Cosmos DB, Azure SQL, Azure Synapse, Azure Data Explorer

Event Hubs Namespaces: Virtual Brokers

Fault Domains & Availability Zones

High-Availability starts at the physical reality

Fault Domain Placement:

Cluster VMs are spread across at least 3 fault domains such that the loss of a rack or network poses no availability risk. Recovery from a fault domain failure is fully automated and the system maintains SLA.

Availability Zones Placement:

Each cluster spans three availability zones and maintains SLA without any tolerance for data loss when one or two zones fail.

Backend and Gateway Clusters

Logical Architecture meets Placement

Backend and Gateway Clusters

Principles

Everything is automated. There's no manual intervention in placement of VMs or processes or workloads.

Process placement and servicing/upgrade cycles are controlled by Azure Service Fabric.

Each cluster has a well-known number of virtual machines. We don't use auto-scaling with VMs. We may (rarely) choose to initiate scale up/down to a different level.

Allocation of namespaces to clusters are based on well-established heuristics (Standard) or deterministic capacity limits (Premium). Customerdefined allocation in Dedicated.

Storage Layer – Event Hubs Standard

Storage Layer – Event Hubs Premium

Networking Features

gateway VMs.

Firewall, Virtual Network Integration with Private Endpoints

Each cluster has a single public load-balancer IPv4 address. AMQP 1.0 w/ TLS Apache Kafka RPC The address is generally stable and will very rarely change. But: use HTTPS / WebSockets DNS firewall rules on your namespace. CNAME clemensvams.servicebus.windows.net Client-Side Firewalls & Proxies Namespace names alias the cluster DNS **Customer Virtual Network:** 10.0.0.0/8 WebSockets AMQP tunneling name. EH relies on that hostname to identify allows port 443 firewall traversal. the namespace tenant and it can therefore **Subnet 1:** 10.1.1.0/24 not be further aliased. ns-eh1-prod-am3-403.cloudapp.net 52.236.186.64 **Private Endpoint** 10.1.1.28 10.1.1.42 IPv6 SE TLS 1.2 is the default. All current, supported clients use Each cluster has an Azure-private TLS 1.2 and all traffic "IPv6 Service Endpoint" address for generally uses TLS. private endpoints. Common, namespace-level IP filter and VNet/PEP firewall policy enforcement on each VM. Legacy clients are still permitted to use TLS < 1.2, customer controlled. VM3 VM11 TLS is terminated at the

Networking Features

Event Hubs namespaces <u>can</u> be attached to one or more virtual networks and the public IP address space <u>concurrently</u> and act as safe "Layer 7" stream bridges.

Flows: Automation Tasks

Select template

EventHub replication visualization

Process Event Hub data with Azure Stream Analytics

Process your Event Hub data using no-code drag and drop experience. (Preview)

Capture data to ADLS Gen2 in Parquet format

- Save events to ADLS Gen2 in Parquet
- Specify a time or size interval

Start

Materialize data in Cosmos DB

- Maintain a view of your data in Cosmos DB
- Select the fields to group by
- Define aggregations like count, sum, average
- Set a time period

Start

Filter and ingest to ADLS Gen2

- Preview Event Hub data
- Decide table schema
- Select ADLS Gen2 account

Start

Start with a blank canvas

- View incoming data and define schema
- Define transformations on your input data
- Select output to egress streaming data

Start

Event Hubs Premium is Fast!

Event Hubs Premium end-to-end latency < 10ms for most Event Streaming workloads.

Performan ce Metric	Expected Range	Comments
Throughput	~5-10 MB/s per 1 PU	Maximum throughput can be achieved by scaling partitions For both Kafka and AMQP
Latency	<10 ms	With 1 MB/s load, 4 PU namespace For both Kafka and AMQP

Effective Global Reliability

Uptime – Is the cluster available to accept connections?

100%

Reliability – Are individual operations suceeding?

>99,9999% weekly average

Azure Event Hubs

Platform-as-a-Service Event Stream Broker

Use the Apache Kafka® API, but with far lower cost and better performance.

Fully managed: You use the features, Azure deals with everything else

AMQP 1.0 standards compliant, Apache Kafka® wire-compatible

Polyglot Azure SDK and cross-platform client support

Industry-leading reliability and availability

Fast.

Thank You!

CARIBBEAN DEVELOPERS CONFERENCE

That was a lot, wasn't it?

