PROJET 10

Détectez les faux billets avec Python

Contexte du projet

ONCFM

Institution qui a pour objectif de mettre en place des méthodes d'identification des contrefaçons des billets en euros.

Méthode

Mise en place d'une modélisation qui serait capable d'identifier automatiquement les vrais des faux billets. A partir du jeu de données mis à notre disposition.

- 1. Analyse descriptive et exploratoire des données (valeurs manquantes, extrêmes, matrice de corrélation, Test...)
- Régression linéaire / Imputation des valeurs manquantes (résidus, homoscédasticité)
- 3. Partitionnement(ACP, Kmeans, matrice de confusion)
- 4. Régression logistique (métriques, courbe ROC,matrice de confusion)
- 5. Methode KNN (métriques ,matrice de confusion)
- 6. Test de l'algorithme

Le dataframe regroupe des données **géométriques** de plusieurs billets (Des vrais et des faux).

```
# Importer le dataset billets
data = pd.read_csv('billets.csv',sep = ';')
billets=data.copy()
billets.head()
```

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.46	103.36	103.66	3.77	2.99	113.09
2	True	172.69	104.48	103.50	4.40	2.94	113.16
3	True	171.36	103.91	103.94	3.62	3.01	113.51
4	True	171.73	104.28	103.46	4.04	3.48	112.54

- Length : la longueur du billet (en mm)
- Height_left : la hauteur du billet (mesurée sur le côté gauche, en mm);
- Height_right : la hauteur du billet (mesurée sur le côté droit, en mm)
- Margin_up : la marge entre le bord supérieur du billet et l'image de celui-ci (en mm)
- Margin_low : la marge entre le bord inférieur du billet et l'image de celui-ci (en mm)
- Diagonal : la diagonale du billet (en mm).
- Is_genuine : True ou False

Aperçu rapide du jeu de données et recherche des valeurs manquantes

1500 billets par variables

```
# Imprimons un sommaire de notre dataframe
billets.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1500 entries, 0 to 1499
Data columns (total 7 columns):

Data	COTUMNIS (LOCA	1 / COLUMNS):	
#	Column	Non-Null Count	Dtype
0	is_genuine	1500 non-null	bool
1	diagonal	1500 non-null	float64
2	height_left	1500 non-null	float64
3	height_right	1500 non-null	float64
4	margin_low	1463 non-null	float64
5	margin_up	1500 non-null	float64
6	length	1500 non-null	float64

Sauf Margin_low a 1463 donc 37 valeurs manquantes

Répartition des billets présent dans le jeu de données

Sur les 1500 billets 33 % de billets sont faux et 67 % sont authentiques.

Aperçu rapide des valeurs aberrantes

Les 6 variables comportent toutes des observations aberrantes

'margin_low' et 'height_right en ont plus

Un Pairplot est une visualisation de données qui trace les relations par paires entre toutes les variables d'un ensemble de données.

On observe une frontière, un trait qui sépare les vrais et les faux billets sur le croisement entre les 2 variables 'length' et 'margin_low'

Boxplot des variables en fonction du type de billets ' is_genuine'

VRAI

- Diagonale plus élevée
- Longueur plus élevée

FAUX

- Hauteur gauche plus élevée
- Hauteur droite plus élevée
- Marge de basse plus élevée
- Marge haute plus élevée

La matrice de corrélation indique les valeurs de corrélation, qui mesurent le degré de relation linéaire entre chaque paire de variables.

Les variables fortement corrélées

is-genuine - Lenght = 0.85

is-genuine - margin_low -0.78

Lenght - margin_low = -0.67

'Length' permet de prédire la valeur de 'margin_low'

Résumé de l'analyse descriptive

La description des données nous indique :

Le dataset contient des valeurs aberrantes, des valeurs nulles (37 dans la variable 'Margin_Low')

La répartition des vrais/faux billets est un peu inégale 67%/33%.

Les corrélations semblent être bien établies.

Length et Margin Low.

Test Shapiro-Wilk : Test de la **normalité** des distributions.

```
'diagonal'.
  'height left',
 'height right',
 'margin low',
 'margin_up',
 'length']
#ShapiroTest:
alpha = 0.05
from scipy import stats
for i in DSN.iloc[:,:]:
    stat, pvalue = stats.shapiro(donnees_sans_nan[i])
    print(pvalue)
    if pvalue > alpha:
        print("Les données suivent une loi normale")
    else:
        print("Nous rejetons l'hypothèse nulle, les données ne suivent pas une loi normale")
0.2687021493911743
Les données suivent une loi normale
0.05763062462210655
Les données suivent une loi normale
0.9576431512832642
Les données suivent une loi normale
2.8283876088209786e-24
Nous rejetons l'hypothèse nulle, les données ne suivent pas une loi normale
0.0004760113952215761
Nous rejetons l'hypothèse nulle, les données ne suivent pas une loi normale
1.0767076021107087e-27
Nous rejetons l'hypothèse nulle, les données ne suivent pas une loi normale
```

Diagonal, Height left et Height Right suivent une loi normale

Margin Low, Margin Up et Length ne suivent pas une loi normale

Test de l'égalité des variances sur une distribution normale: Test de LEVENE

Test de l'égalité des variances sur une distribution normale: Test de LEVENE

Variable : diagonal

Statistique de Levene : 0.12571686270898524

P-valeur: 0.7229661175157234

Pas suffisamment de preuves pour rejeter l'hypothèse nulle (égalité des variances)

Variable : height left

Statistique de Levene : 42.350386932887965

P-valeur : 1.0457802387852748e-10 Les variances sont statistiquement différentes.

Variable : height_right

Statistique de Levene : 1.329665358267531 P-valeur : 0.24905337703204727

Pas suffisamment de preuves pour rejeter l'hypothèse nulle (égalité des variances)

Observation:

Nous allons utiliser le test de Student pour "diagonal" et "height right" car les variances ne sont pas statistiquement différentes.

Nous allons utiliser le test de Welch pour "height_left" car les variances sont statistiquement différentes.

Diagonal = Test de Student

Height Left = Test de Welch

Height Right = Test de Student

Test de STUDENT

```
Test de Student pour la variable 'diagonal':
Statistique de test : 5.1967708778045365
P-valeur : 2.3146624660826948e-07
```

Test de Student pour la variable 'height_right': Statistique de test : -21.32295346909739

P-valeur: 4.708598379129022e-88

Influence Significative sur Is_Genuine

Test de WELCH

Test de Welch pour la variable 'height_left': Statistique de test : -16.918693070906215 P-valeur : 4.851593599662053e-58

Influence Significative sur Is_Genuine

Test de WELCH

```
Test de Mann-Whitney pour la variable 'margin_low':
Statistique de test : 19094.0
P-valeur : 3.0465930299427695e-182

Test de Mann-Whitney pour la variable 'margin_up':
Statistique de test : 59858.0
P-valeur : 1.328995693686527e-121

Test de Mann-Whitney pour la variable 'length':
Statistique de test : 470034.5
P-valeur : 2.0735965473634398e-201
```

Influence Significative sur Is_Genuine

Résumé de l'analyse exploratoire

L'exploration des données nous indique :

Toutes les variables ont significativement une influence sur 'Is_Genuine'

Regression linéaire / Imputation

La régression OLS (moindres carrés ordinaires) est une technique pour estimer les coefficients d'une régression linéaire qui décrivent les relations entre une ou plusieurs variables quantitatives et une variable dépendante

	OLS Regression Results							
Dep. Variable:	Dep. Variable: margin low R-squared: 0.617							
Model:		OLS	Adj. R-so			0.615		
Method:	1.0	east Squares	F-statis			390.7		
Date:		18 Oct 2023		statistic)		1.75e-299		
Time:	weu,	15:39:50	Log-Like	,		-774.14		
No. Observations		1463	AIC:	1111000.		1562.		
Df Residuals:	••	1456	BIC:			1599.		
Df Model:		1430	bic.			1599.		
Covariance Type:		nonrobust						
covariance Type	· 	nonrobust						
	coef	std err	t	P> t	[0.025	0.9751		
					[0.025	0.975]		
Intercept	2.8668	8.316	0.345	0.730	-13.445	19,179		
is genuine	-1.1406	0.050	-23.028	0.000	-1.238	-1.043		
diagonal	-0.0130	0.036	-0.364	0.716	-0.083	0.057		
height left	0.0283	0.039	0.727	0.468	0.048	0.105		
height right	0.0267	0.038	0.701	0.484	-0.848	0.102		
margin up	-0.2128	0.059	-3.621	0,000	-0.328	-0.098		
length	-0.0039	0.023	-0.166	0.868	-0.050	0.042		
Omnibus:		21.975	▲ Burbin-Wa	atson:	_	2.038		
Prob(Omnibus):		0.000	Jarque-Be	era (JB):		37.993		
Skew:		0.061	Prob(JB)	:	l	5.62e-09		
Kurtosis: 3.780 Cond. No. 1.9			1.95e+05					

Environ 61,5 % de la variance 'Margin Low' est expliqué par les variables indépendantes

F-Stastistic elevé + Prob Faible = Modèle statistiquement significatif

Prob Omnibus = 0,000 la distribution des résidus ne semblent pas etre normale

Durbin-Watson est une mesure pour l'auto corrélation des résidus 2,038 = Autocorrélation faiblement positive

Jarque-Bera (JB) sert à tester si la distribution est normale. Prob(JB) est la probabilité que la valeur de Jarque-Bera dépasse 5% 5,62e-09 < 0.05

La distribution ne suit pas une loi normale

P-valeurs supérieur à 5% = Certaines variables sont non significatives

Regression linéaire / Imputation

Methode descendante ou backward pour les variables non signifivatives (P-Valeurs inférieur à 5%)

	OLS Regression Results							
Dep. Variable: margin_low R-squared (uncentered): 0.992								
Model: OLS		S Adj. R-s	Adj. R-squared (uncentered):			0.992		
Method:	L	east Square	s F-statis	tic:		5.879e+04		
Date:	Mon,	30 Oct 202	3 Prob (F-	statisti	c):		0.00	
Time:		15:52:1	1 Log-Like	lihood:			-774.71	
No. Observation	ns:	146	3 AIC:				1555.	
Df Residuals:		146	0 BIC:				1571.	
Df Model:			3					
Covariance Type	2:	nonrobus	t					
	coef	std err	t	P> t	[0.025	0.975]		
is_genuine		0.028		0.000	-1.205			
height_left	0.0569	0.002	30.004	0.000	0.053	0.061		
margin_up	-0.2117	0.059	-3.609	0.000	-0.327	-0.097		
				· · · · · · · · · · · · · · · · · · ·				
Omnibus:			4 Durbin-W			2.036		
Prob(Omnibus): 0.000			Jarque-Bera (JB):		39.317			
		0 Prob(JB)	Prob(JB):		2.90e-09			
Kurtosis: 3.794		4 Cond. No			595.			

99,2% de la variance 'Margin Low' est expliqué par les variables indépendantes

F-Stastistic elevé + Prob Faible = Modèle statistiquement significatif

P-valeurs inférieur à 5% = les variables sont significatives

RÉGRESSION LINÉAIRE / IMPUTATION

Hypothèses de validité du modèle

Test de la normalité des résidus

L'allure de l'histogramme est assez sysmetrique.

Si l'on veut tester la normalité des résidus, on peut faire un test de Shapiro-Wilk.

-]: shapiro(reg multi.resid)
- : ShapiroResult(statistic=0.9935745596885681, pvalue=5.671638973581139e-06)

Ici, l'hypothèse de normalité est remise en cause (p-value = 5.67e-06 < 0.05).

Néammoins, l'observation des résidus, le fait qu'ils ne soient pas très différents d'une distribution symétrique, et le fait que l'échantilion soit de taille suffisante (supérieure à 30) permètent de dire que les résultats obtenus par le modèle linéaire gaussien ne sont pas absurdes, même si le résidu n'est pas considéré comme étant qaussien.

L'homoscédasticité (test de la contance de la variance des résidus)

Test de Breusch-Pagan: LM Statistic: 164.6597687524693 LM P-Value: 6.098452163335932e-33 F-Statistic: 30.775783000171042 F P-Value: 6.11040412097926e-35

Rejet de l'hypothèse nulle. Il y a des signes d'hétéroscédasticité.

Dans le cas d'un "grand échantillon", les propriétés asymptotiques des estimateurs corrigent un manque "raisonnable" de normalité des résidus : le modèle linéaire est dit robuste vis à vis de cette hypothèse.

P-value < 0,5

Rejet de l'hypothèse nulle. Il y a des signes d'hétéroscédasticité,

Lien chercheuse CNRS expliquant le commentaire ci-dessus : <u>Non-respect des hypothèses du modèle linéaire (ANOVA, régression)</u>: c'est grave, docteur?? - R-atique <u>(ens-lyon.fr)</u>

RÉGRESSION LINÉAIRE / IMPUTATION

Imputations des valeurs manquantes

```
# Sélectionner les lignes avec des valeurs manquantes dans 'margin low'
nan rows = billets[billets['margin low'].isnull()]
# Sélectionner uniquement les variables indépendantes pour ces lignes
nan data = nan rows[['is genuine', 'height left', 'margin up']]
# Aiouter une constante aux données NaN
nan_data = sm.add_constant(nan_data)
# Utiliser le modèle pour faire des prédictions
predictions = reg multi.predict(nan data)
print(predictions)
        4.070783
        4.104309
151
        4.114361
197
        3.979364
241
        4.133697
        4.098470
284
        4.071605
334
        4.112908
410
        4.088638
413
        4.076757
445
        4.151739
481
        4.164640
505
        4.132498
611
        4.048253
        4.175857
        4.214598
710
        4.113443
739
        4.096128
742
        4.082568
780
        4.099602
        4.118753
844
        4.140049
845
        4.163086
871
        4.119130
        4.116005
        4.200695
945
        4.110948
946
        4.065411
981
        4.145168
        5.250466
1121
        5.265191
1176
        5.278182
```

```
# Créer une copie du DataFrame original
df = billets.copy()
# Remplacer les valeurs manquantes dans 'margin low' par les prédictions
df.loc[df['margin low'].isnull(), 'margin low'] = predictions
# Afficher les informations sur le nouveau DataFrame
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1500 entries, 0 to 1499
Data columns (total 7 columns):
    Column
                  Non-Null Count Dtype
                  1500 non-null
                                   int32
    is genuine
     diagonal
                  1500 non-null
                                  float64
    height left
                                  float64
                  1500 non-null
                                  10at64
    height right 1500 non-null
     margin low
                   1500 non-null
                                  float64
     margin up
                                   float64
                   1500 non-null
    length
                   1500 non-null
                                  float64
dtypes: float64(6), int32(1)
memory usage: 76.3 KB
Les valeurs manquantes ont bien été remplacées.
```

Les valeurs manquantes ont bien été remplacées

RÉGRESSION LINÉAIRE / IMPUTATION

Résumé de la partie

Le modèle par la régression linéaire n'est pas forcément pertinent parce que les 2 hypothèses ne sont pas vérifiés à savoir :

- Normalité de la distribution des résidus : Avec JB, Omnibus la distribution ne suit pas une loi normale,
- Homoscédasticité : L'hypothèse d'homoscédasticité de notre régression linéaire est rejeté : P-value < 0,5

Cependant les explications données plus haut et l'article expliqué par la statisticienne du CNRS permettent de valider le modèle.

Analyse des composantes principales (ACP)

Eboulis des valeurs propres

Définir le nombre d'axes principaux d'analyse afin de définir les axes principaux à analyser

Les 2 premières composantes expliquent plus de la moitié (60,15 %) de la variabilité

Une analyse sur les deux premiers axes est donc cohérente et suffisante

Analyse des composantes principales (ACP)

Cercle des corrélations

Projection des variables initiales sur un plan à deux dimensions constitué par les deux premiers facteurs

FACTEUR (F1)

Length Height_left Height_right Margin_up Margin_low

FACTEUR (F2)

Diagonal

Analyse des composantes principales (ACP)

Projection des individus

2 Classes bien distinctes en fonction de 'Isgenuine' avec des billets mal classés de part et d'autre

Le K-MEANS

K-MEANS - Nombre de clusters

C'est l'un des algorithmes de clustering les plus répandus. Il permet d'analyser un jeu de données caractérisées par un ensemble de descripteurs, afin de regrouper les données "similaires" en groupes (ou clusters).

K-means a regroupé 2 Clusters avec les mêmes similitudes

Le K-MEANS

K-MEANS - HeatMap et Projection

C'est l'un des algorithmes de clustering les plus répandus. Il permet d'analyser un jeu de données caractérisées par un ensemble de descripteurs, afin de regrouper les données "similaires" en groupes (ou clusters).

Clusters

Faux billets = Cluster (Vrais billets = Cluster 1

Le K-MEANS

Matrice de confusion et métriques

La matrice de confusion est en quelque sorte un résumé des résultats de prédiction pour un problème particulier de classification

5 Vrais billets parmi les faux billets

1 Faux billets parmi les vrais billets

Accuracy

Le modèle est précis à 98 % pour faire une bonne prédiction

Precision

Le modèle est précis à 97 % lorsqu'il indique qu'un billet est faux.

Recall

Le modèle a correctement classé 98 % des échantillons positifs

ACP / K-MEANS

Résumé de la partie

Les deux nuages de points en fonction de la variable is_genuine sont bien identifiés

En toute logique 2 clusters semblent la meilleure solution

Quelques vrais billets (5) considérés comme faux par le kmeans

La classification par K-means est fidèle à 98%

Une marge d'erreur de 2%

RÉGRESSION LOGISTIQUE

La regression logiqitique est souvent utilisé pour la classification et l'analyse prédictive. La régression logistique estime la probabilité qu'un événement se produise, tel que voter ou ne pas voter, sur la base d'un ensemble de données donné de variables indépendantes.

Generalized Linear Model Regression Results					
Dep. Variable:	is_genuine	No. Observations:	1200		
Model:	GLM	Df Residuals:	1193		
Model Family:	Binomial	Df Model:	6		
Link Function:	Logit	Scale:	1.0000		
Method:	IRLS	Log-Likelihood:	-29.117		
Date:	Wed, 18 Oct 2023	Deviance:	58.234		
Time:	15:42:00	Pearson chi2:	4.14e+03		
No. Iterations:	11	Pseudo R-squ. (CS):	0.7037		
Covariance Type:	nonrobust				

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-188.0712	290.214	-0.648	0.517	-756.879	380.737
diagonal	-0.4782	1.343	-0.356	0.722	-3. <u>111</u>	2.154
height_left	-1.3153	1.237	-1.063	0.288	-3.741	1.110
height_right	-2.5342	1.238	-2.046	0.041	-4.961	-0.107
margin_low	-6.6439	1.291	-5.147	0.000	-9.174	-4.114
margin_up	-11.1034	2.768	-4.011	0.000	-16.529	-5.678
length	6.5435	1.144	5.720	0.000	4.301	8.786

L'équation de la droite de régression est capable de déterminer 70,37% de la distribution des points

'diagonal' et height_left' sont non significatives car p_valeurs supérieures à 5 %

Après avoir retirer les deux variables non significatives (à savoir 'diagonal' et 'height_left') nous avons procéder au test et fait apparaître la matrice de confusion.

RÉGRESSION LOGISTIQUE

Matrice de confusion et mesure de la performance

La courbe ROC est une représentation graphique des performances de tout modèle de classification à tous les seuils de classification.

Accuracy = 99

Precision = 99 %

Recall = 99 %

2 Vrais billets parmi les faux billets

1 Faux billets parmi les vrais billets

MODÈLE PRESQUE PARFAIT

RÉGRESSION LOGISTIQUE

Résumé de la partie

R2 est significatifs malgré la suppression variables non significatives

Les métriques et courbe R.O.C montre un modèle preque parfait

K Nearest Neighbors (KNN)

Choisir le nombre optimal de K

C'est un algorythme qui peut servir autant pour la classsification que la regression. Il est surnommée Nearest Neighbors car le principe de ce modèle consiste à choisir les K données les plus proches du point etudié afin d'en prédire les valeurs

	Erreur en po	nombre de	k	
3		1.000000		4
4		1.000000		5
0		1.333333		1
2		1.333333		3
5		1.333333		6

KNN le plus performant = 4 ou 5

Le KNN

Matrice de confusion et métriques

La matrice de confusion est en quelque sorte un résumé des résultats de prédiction pour un problème particulier de classification

2 Vrais billets parmi les faux billets

1 Faux billets parmi les vrais billets

Accuracy

Le modèle est précis à 99 % pour faire une bonne prédiction

Precision

Le modèle est précis à 99 % lorsqu'il indique qu'un billet est faux.

Recall

Le modèle a correctement classé 99 % des échantillons positifs

CONCLUSION SUR LES 3 MODELES

La précisison des modèles

	Précision en %
K-means	97.4619
kNN	98.9691
Régression logistique	98.9691

Le KNN et la Régression Logistique sont modèles les plus performants (99%)

Le K-Means obtient un resultat satisfaisant malgré tout (97,5%)

TEST DE L'ALGORYTHME

Test des 3 modèles sur le jeu de données « billets production »

Fonction de détection les vrais des faux billets

```
def prog_vérification_billets(csv):
    billet_test= pd.read_csv(csv)
    billet_test= pd.read_csv(csv)
    billet_test['Prédiction RegLog'] = reg_log_multi.predict(billet_value) >= 0.5
    billet_test['Prob Faux']=(1-(reg_log_multi.predict(billet_value))).round(3)
    billet_test['Prédiction K-means"] = kmeans.predict(billet_value)
    billet_test['Prédiction K-means'].replace([1,0],[True,False], inplace=True)
    billet_test['Prédiction K-nn'] = knn.predict(billet_value)
    billet_test['Prédiction K-nn'].replace([1,0],[True,False], inplace=True)

billets_predict = billet_test[['id','Prob Faux','Prédiction RegLog','Prédiction K-means','Prédiction K-nn']].set_index("id")
    return billets_predict
```

Tester la fonction
prog_vérification_billets('billets_production.csv')

Prob Faux Prédiction RegLog Prédiction K-means Prédiction K-nn

Id				
A_1	1.000	False	False	False
A_2	1.000	False	False	False
A_3	1.000	False	False	False
A_4	0.003	True	True	True
A_5	0.000	True	True	True

Merci pour votre attention

