canSAS 1-D Data Format, v1.0	i
canSAS 1-D Data Format, v1.0	

Not yet licensed. Intended for unrestricted public domain use.

COLLABORATORS	

	TITLE :		
	canSAS 1-D Data Forn	nat, v1.0	
ACTION	NAME	DATE	SIGNATURE
WRITTEN BY	Pete R. Jemian	January 13, 2010	

REVISION HISTORY	
------------------	--

Γ	NUMBER	DATE	DESCRIPTION	NAME
	v1.0	2009-09-25	converted from mediawiki to DocBook/5.0	PRJ

Contents

1	Ove	rview		1
	1.1	Object	ive	1
		1.1.1	Status	1
	1.2	Genera	al Layout of the XML Data	1
		1.2.1	Overview	1
	1.3	Rules		3
	1.4	Compa	atibility of Geometry Definitions	4
	1.5	Conve	rting data into the XML format	5
	1.6	Docun	nentation and Definitions	5
		1.6.1	XML Schema	5
		1.6.2	XML Stylesheets	5
		1.6.3	Suggestions for support software that write cansas1d/1.0 XML data files	5
		1.6.4	Examples and Case Studies	6
			1.6.4.1 XML layout for multiple experiments	6
		1.6.5	Foreign Elements	7
		1.6.6	Support tools for Visualization & Analysis software	7
		1.6.7	Software repositories (for cansas1d/1.0 standard)	8
	1.7	Valida	tion of XML against the Schema	8
2	cans	sas1d/1.	0 Specification	9
	2.1	Eleme	nts of the canSAS XML standard	9
		2.1.1	Required XML Header	10
		2.1.2	SASroot element	11
		2.1.3	SASentry element	12
		2.1.4	SASdata element	14
			2.1.4.1 SASdata	15
			2.1.4.2 Idata	15
		2.1.5	SASsample element	17
			2.1.5.1 geometry	18
			2.1.5.2 position	18

			2.1.5.3 orientation	18
		2.1.6	SASinstrument element	19
		2.1.7	SASsource element	20
			2.1.7.1 beam_size	21
		2.1.8	SAScollimation element	22
			2.1.8.1 SAScollimation	23
			2.1.8.2 aperture	23
			2.1.8.3 size	23
		2.1.9	SASdetector element	24
			2.1.9.1 SASdetector	25
			2.1.9.2 geometry	26
			2.1.9.3 offset	26
			2.1.9.4 orientation	27
			2.1.9.5 beam_center	27
			2.1.9.6 pixel_size	28
		2.1.10	SASprocess element	28
			2.1.10.1 SASprocessnote element	30
		2.1.11	SASnote element	30
		2.1.12	{any} element	31
3	cans	as1d/1.0	Tutorial .	32
	3.1	Case St	tudies	32
		3.1.1	Case Study: Dry Chick Collagen	32
			3.1.1.1 Overview	32
			3.1.1.2 Procedure	33
			3.1.1.2.1 make the basic XML file	33
			3.1.1.2.2 modify collagen.xml	33
			3.1.1.2.3 prepare the SAXS data	34
			3.1.1.2.3.1 Using Excel macros to reformat the SAXS data	34
			3.1.1.2.3.2 construct the Idata lines in XML	35
			3.1.1.3 Final Result	36
			3.1.1.4 Validate your file	36
			3.1.1.5 References	36
		3.1.2	Case Study: AF1410 steel	36
			3.1.2.1 Overview	36

4	Bind	lings an	d Software Supp	ort	37
	4.1	Fortrar	binding		37
		4.1.1	Software Develo	pment Kits	37
		4.1.2	canSAS 1-D SAS	S XML v1.0 support	37
	4.2	IgorPro	binding		37
		4.2.1	Checkout of supp	port code in Subversion	38
			4.2.1.1 XMLu	ntils XOP	38
			4.2.1.2 cansas	XML.ipf	39
		4.2.2	Installation		39
		4.2.3	Usage Notes .		39
		4.2.4	What it does .		40
			4.2.4.1 data co	olumns	40
			4.2.4.2 metada	ata	40
			4.2.4.3 XML	foreign namespace elements	41
			4.2.4.4 XML 1	namespace and header	41
			4.2.4.5 XML	stylesheet processing-instruction is not generated	41
		4.2.5	List of Functions	S	41
		4.2.6	Example test cas	e	42
		4.2.7	IgorPro Graphica	al User Interface	44
			4.2.7.1 Irena t	cool suite	44
	4.3	Java (J	AXB) binding for	the canSAS1d/1.0 standard	44
		4.3.1	Example_canSA	.S_Reader.java: example usage in JAVA	45
		4.3.2	example: how to	retrieve I(Q)	46
			4.3.2.1 GetSA	ASdata.java	47
			4.3.2.2 java-te	est.xml	51
		4.3.3	JAXB		53
	4.4	Python	binding		53
		4.4.1	Comments		54
		4.4.2	gnosis.xml.objec	etify	54
			4.4.2.1 installa	ation	54
			4.4.2.2 quick	test in Python	54
			4.4.2.3 Conclu	usion: OK	55
		4.4.3	generateDS.py		55
			4.4.3.1 Conclu	usion: not ready yet	56
		4.4.4	Other suggestion	ns	56
A	The	Intensi	y Problem		57

В	Exai	mples	58
	B.1	Example XML Data Files	58
		B.1.1 data-simple.xml	58
		B.1.2 cansas1d.xml	59
	B.2	Example XML Stylesheets	62
		B.2.1 ascii3col.xsl	62
		B.2.2 cansasxml-html.xsl	62
C	Glos	ssary	73
	C.1	Listed by full XPath reference	73
D	XMI	L Help	83
5	Inde	ex.	84

List of Figures

1.1	block diagram of minimum elements required for cansas1d/1.0 standard	2
1.2	definition of Q geometry for small-angle scattering	3
1.3	$definition \ of \ translation \ and \ orientation \ geometry \ as \ viewed \ from \ the \ detector \ towards \ the \ source \ \ldots \ \ldots \ \ldots$	4
2.1	The SASroot element	12
2.2	The SASentry element	13
2.3	The SASdata element	14
2.4	Q geometry	15
2.5	The SASsample element	17
2.6	The SASinstrument element	19
2.7	The SASsource element	20
2.8	The SAScollimation element	23
2.9	The SASdetector element	25
2.10	The SASprocess element	29
2 11	The SA Sport element	30

List of Tables

1.1	Basic elements of the canSAS 1-D standard	2
4 1	metadata for the cs_collagen_full.xml case study	40

Preface

canSAS 1-D Data Format, v1.0

The name *canSAS* stands for *Collective Action for Nomadic Small-Angle Scatterers*. canSAS provides a forum for users, software developers and facility staff to meet and exchange ideas on all aspects of programming for X-ray and neutron small-angle scattering experiments. This includes experiment preparation and simulation through control to data-storage, reduction and analysis. The aim of the forum is to provide the best resources to the many nomadic experimenters who combine results measured at different facilities.

The aims of the canSAS meetings are to promote and simplify sharing SAS data analysis methods. Non-specialists will benefit from easily applicable methods for exchanging and merging of data from different synchrotron, laboratory and neutron facilities.

The canonical name for this format is cansas1d/1.0. This work is the initiative of the canSAS 1D Data Formats Working Group, established at the canSAS-V workshop, NIST, Gaithersburg, Maryland, USA from October 29th to 31st 2007. It derives many of its foundations from previous works such as the SASXML format, a joint collaboration between ISIS and ILL.

The home page of the canSAS 1D Data Formats Working Group¹ describes the members, timelines, and current status. There is a discussion² page for some matters that preceded this revision.

Disclaimer

This description is meant to inform the community how to arrange information within the structure of the XML files and to define the spelling of the terms to be used. However, should the information in this document and the cansas1d/1.0 SAS XML Schema³ differ, the XML Schema will be deemed to have the most correct description of the standard.

http://www.smallangles.net/wgwiki/index.php/1D_Data_Formats_Working_Group

²http://www.smallangles.net/wgwiki/index.php/Talk:1D_Data_Formats_Working_Group

³http://svn.smallangles.net/trac/canSAS/browser/1dwg/trunk/cansas1d.xsd

Chapter 1

Overview

1.1 Objective

One of the first aims of the **canSAS** (Collective Action for Nomadic Small-Angle Scatterers) forum of users, software developers, and facility staff was to discuss better sharing of SAS data analysis software. The **canSAS**¹ identified that a significant need within the SAS community can be satisfied by a robust, self-describing, text-based, standard format to communicate reduced one-dimensional small-angle scattering data, $\mathbb{I}(\mathbb{Q})$, between users of our facilities. Our goal has been to define such a format that leaves the data file instantly human-readable, editable in the simplest of editors, and importable by simple text import filters in programs that need not recognise advanced structure in the file nor require advanced programming interfaces. The file should contain both the primary data of $\mathbb{I}(\mathbb{Q})$ and also any other descriptive information (metadata) about the sample, measurement, instrument, processing, or analysis steps.

The cansas1d/1.0 standard meets the objectives for a 1D standard, incorporating metadata about the measurement, parameters and results of processing or analysis steps. Even multiple measurements (related or unrelated) may be included within a single XML file.

1.1.1 Status

Version 1.0 was tagged from the subversion repository on 2009-05-12 as no changes were committed since January 2009. Use this command to checkout the tagged release.

Example 1.1 Checkout tagged release from subversion repository.

svn checkout http://svn.smallangles.net/svn/canSAS/ldwg/tags/v1.0 cansasldwg-1.0

1.2 General Layout of the XML Data

The canSAS 1-D standard for reduced 1-D SAS data is implemented using XML files. A single file can contain SAS data from a single experiment or multiple experiments. All types of relevant data ($\mathbb{I}(\mathbb{Q})$), metadata) are described for each experiment. More details are provided below.

1.2.1 Overview

The basic elements of the cansas1d/1.0 standard are shown in the following table. After an XML header, the root element of the file is SASroot which contains one or more SASentry elements, each of which describes a single experiment (data set, time-slice, step in a series, new sample, etc.). Details of the SASentry element are also shown in the next figure. See the section

http://www.smallangles.net/canSAS

titled Example XML Data Files for examples of cansas1d/1.0 XML data file. Examples, Case Studies, and other background information are below. More discussion can be found on the canSAS 1D Data Formats Working Group² page and its discussion³ page. A glossary defining the details about each specific field (XPath string, XML elements and attributes) is provided.

Figure 1.1: block diagram of minimum elements required for cansas1d/1.0 standard

- SASroot: the root element of the file (after the XML header)
- SASentry: describes a single experiment (data set, time-slice, step in a series, new sample, etc.)

Example 1.2 Required header for cansas1d/1.0 XML files

```
<?xml version="1.0"?>
<SASroot version="1.0"
   xmlns="cansas1d/1.0"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="cansas1d/1.0
   http://svn.smallangles.net/svn/canSAS/1dwg/trunk/cansas1d.xsd">
```

Table 1.1: Basic elements of the canSAS 1-D standard

Element	Description
XML Header	descriptive info required at the start of every XML file
SASroot	root element of XML file
SASentry	data set, time-slice, step in a series, new sample, etc.
Title	for this particular SASentry
Run	run number or ID number of experiment
{any}	any cansas1d/1.0 element can be used at this point
SASdata	this is where the reduced 1-D SAS data is stored
Idata	a single data point in the dataset
{any}	any cansas1d/1.0 element can be used at this point
SASsample	description of the sample
SASinstrument	description of the instrument
SASsource	description of the source
SAScollimation	description of the collimation

 $^{^{2} \}verb|http://www.smallangles.net/wgwiki/index.php/1D_Data_Formats_Working_Group|$

http://www.smallangles.net/wgwiki/index.php/Talk:1D_Data_Formats_Working_Group

Table 1.1: (continued)

Element	Description
SASdetector	description of the detector
SASprocess	for each processing or analysis step
SASnote	anything at all

1.3 Rules

- 1. cansas1d/1.0 XML data files will adhere to the standard if they can successfully validate against the established XML Schema (cansAs1d.xsd).
- Q=(4 \pi / \lambda) \sin(\theta)
 where \lambda is the wavelength of the radiation
 and 2\theta is the angle through which the detected radiation has been scattered.

Figure 1.2: definition of Q geometry for small-angle scattering

- 3. units to be given in standard SI abbreviations (eg, m, cm, mm, nm, K) with the following exceptions:
 - a. um=micrometres
 - b. C=celsius
 - c. A=Angstroms
 - d. percent=%.
 - e. fraction
 - f. a.u.=arbitrary units
 - g. none=no units are relevant (such as dimensionless)
- 4. where reciprocal units need to be quoted the format shall be "1/abbreviation"
- 5. when raised to a power, use similar to "A^3" or "1/m^4" (and not "A3" or "A**3" or "m-4")
- 6. axes:
 - a. z is along the flight path (positive value in the direction of the detector)
 - b. x is orthogonal to z in the horizontal plane (positive values increase to the right when viewed towards the incoming radiation)
 - c. y is orthogonal to z and x in the vertical plane (positive values increase upwards)

Figure 1.3: definition of translation and orientation geometry as viewed from the detector towards the source

- 7. orientation (angles) describes one-axis rotations (rotations about multiple axes require more information):
 - a. roll is about z
 - b. pitch is about x
 - c. yaw is about y
- 8. Unicode characters MUST NOT be used

Note

Can UNICODE characters be permitted in v1.1 standard?

9. Binary data is not supported

1.4 Compatibility of Geometry Definitions

Note: translation and orientation geometry used by canSAS are consistent with:

- Cartesian: http://en.wikipedia.org/wiki/Cartesian_coordinate_system
- Right-hand rule: http://en.wikipedia.org/wiki/Right-hand_rule
- NeXus: http://www.nexusformat.org/Coordinate_Systems
- McStas: http://mcstas.risoe.dk/documentation/tutorial/node6.html

The translation and orientation geometry definitions used here are different than those used by $SHADOW^4$ where the y and z axes are swapped and the direction of x is changed.

⁴http://www.nanotech.wisc.edu/shadow

1.5 Converting data into the XML format

The *canSAS/xmlWriter*⁵ is a WWW form to translate three-column ASCII text data into the cansas1d/1.0 XML format. This form will help you in creating an XML file with all the required elements in the correct places. The form requests the SAS data of Q, I, and Idev (defined elsewhere on this page) and some basic metadata (title, run, sample info, ...).

Press the Submit button and you will receive a nicely formatted WWW page with the SAS data. If you then choose *View page source* (from one of your browser menus), you will see the raw XML of the cansas1d/1.0 XML format and you can copy/paste this into an XML file.

The SAS data that you paste into the form box is likely to be copied directly from a 3-column ASCII file from a text editor. Line breaks are OK, they will be treated as white-space as will tabs and commas. Do not be concerned that the data looks awful in the form entry box, just check the result to see that it comes out OK.

1.6 Documentation and Definitions

1.6.1 XML Schema

The cansas1d.xsd XML Schema⁶ defines the rules for the XML file format⁷⁸ and is used to validate any XML file for adherence to the format.

1.6.2 XML Stylesheets

XML stylesheets (also known as XSLT)⁹ can be used to extract metadata or to convert into another file format. The default canSAS stylesheet cansasxml-html.xsl¹⁰ should be copied into each folder with canSAS XML data file(s). It can be used to display the data in a supporting WWW browser (such as Firefox or Internet Explorer) or to import into Microsoft Excel (with the added XML support in Excel). (See the excellent write-up by Steve King, ISIS, ¹¹ for an example.) By default, MS Windows binds \star .xml files to start Internet Explorer. Double-clicking on a canSAS XML data file with the cansasxml-html.xsl (see above) stylesheet in the same directory will produce a WWW page with the SAS data and selected metadata.

1.6.3 Suggestions for support software that write cansas1d/1.0 XML data files

Some common best practices have been identified in the list below.

- be sure to update to the latest SVN repository revision (command: svn update)
- check the output directory to see if it contains the default XSLT file.
- copy the latest XSLT file to the output directory if either:
 - the output directory contains an older revision
 - the output directory does not have the default XSLT file
- The most recent XSLT file can be identified by examining the file for the \$ Revision: string such as in the next example.

```
# $Revision: 111 $
```

```
5http://www.smallangles.net/canSAS/xmlWriter/
6http://www.w3schools.com/xsd

7TRAC:http://svn.smallangles.net/trac/canSAS/browser/ldwg/trunk/cansasld.xsd
8SVN:http://svn.smallangles.net/svn/canSAS/ldwg/trunk/cansasld.xsd
9http://www.w3schools.com/xsl/
10http://svn.smallangles.net/svn/canSAS/ldwg/trunk/cansasxml-html.xsl
11http://www.isis.rl.ac.uk/archive/LargeScale/LOQ/xml/cansas_xml_format.pdf
```

1.6.4 Examples and Case Studies

- Basic example: ¹² Note that, for clarity, only one row of data is shown. This is probably a very good example to use as a starting point for creating XML files with a text editor.
- Bimodal test data: 13 Simulated SAS data (with added noise) calculated from model bimodal size distribution to test size distribution analysis routines.
- Glassy Carbon Round Robin: 14 Samples of a commercial glassy carbon measured at several facilities worldwide.
- SAXS data from dry chick collagen illustrates the minimum information necessary to meet the requirements of the standard format
- SANS data from AF1410 steel:¹⁵ SANS study using magnetic contrast variation (with multiple samples and multiple data sets for each sample), the files can be viewed from the TRAC site (no description yet).
- cansas1d-template.xml: This is used to test all the rules in the XML Schema. This is probably not a very good example to use as a starting point for creating XML files with a text editor since it tests many of the special-case rules.

1.6.4.1 XML layout for multiple experiments

Each experiment is described with a single SASentry element. The fragment below shows how multiple experiments can be included in a single XML file. Full examples of canSAS XML files with multiple experiments include:

- ISIS LOQ SANS instrument: ¹⁷ multiple data sets.
- AF1410 steel SANS contrast variation study from NIST:¹⁸ SANS study using magnetic contrast variation (with multiple samples and multiple data sets for each sample), the files can be viewed from the TRAC site (no description yet).

Here is a brief sketch of how a file would be arranged with multiple SASentry elements and multiple SASdata elements.

```
12http://svn.smallangles.net/trac/canSAS/browser/ldwg/trunk/cansasld.xml
13http://svn.smallangles.net/trac/canSAS/browser/ldwg/trunk/bimodal-test1.xml
14http://www.smallangles.net/wgwiki/index.php/Glassy_Carbon_Round_Robin
15http://svn.smallangles.net/trac/canSAS/browser/ldwg/trunk/examples/af1410/
16http://svn.smallangles.net/trac/canSAS/browser/ldwg/trunk/cansasld-template.xml
17http://svn.smallangles.net/trac/canSAS/browser/ldwg/trunk/W1W2.XML
18http://svn.smallangles.net/trac/canSAS/browser/ldwg/trunk/examples/af1410/cs_af1410.xml
```

Example 1.3 Brief sketch of a file with multiple SASentry and SASdata blocks.

```
<?xml version="1.0"?>
  <?xml-stylesheet type="text/xsl" href="cansasxml-html.xsl" ?>
   <SASroot version="1.0"
        xmlns="cansas1d/1.0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="cansas1d/1.0 http://svn.smallangles.net/svn/canSAS/1dwg/trunk/ ↔
            cansas1d.xsd"
        <!--
             This file is not a valid cansas1d/1.0 data file.
             It is an example to show how to structure multiple data sets.
12
         <SASentry name="071121.dat#S22">
13
              <!-- contents of the first experiment in the file go here -->
14
         </SASentry>
15
         <SASentry name="example temperature series">
16
              <!-- example with two SAS data sets related to the same sample -->
17
              <Title>title of this series</Title>
18
              <Run name="run1">42-001
19
              <Run name="run2">42-002
20
              <SASdata name="run1">
21
22
                   <!-- data from 42-001 run comes here -->
23
              </SASdata>
              <SASdata name="run2">
                   <!-- data from 42-002 run comes here -->
25
              </SASdata>
26
              <!-- other elements come here for this entry -->
27
         </SASentry>
28
         <SASentry name="other sample">
29
              <!-- any number of additional experiments can be included, as desired -->
30
              <!-- SASentry elements in the same XML file do not have to be related -->
31
         </SASentry>
32
  </SASroot>
```

1.6.5 Foreign Elements

To allow for inclusion of elements that are not defined by the cansas1d.xsd XML Schema, XML foreign elements are permitted at select locations in the cansas1d/1.0 format. Please refer to the section XML Help for more help with XML foreign elements.

There is an example that demonstrates the use of a foreign namespace:¹⁹ This example uses a foreign namespace to record the transmission spectrum related to the acquisition of the SANS data at a time-of-flight facility. Look near line 153 for this element:

```
<transmission_spectrum xmlns="urn:transmission:spectrum">
```

The foreign namespace given (urn:transmission:spectrum) becomes the default namespace for just the transmission_spectrum element.

Also refer to canSAS TRAC ticket #47 for an example of arranging the content in SASprocessnote to avoid the use of foreign namespace elements.

1.6.6 Support tools for Visualization & Analysis software

Support for importing cansas 1d/1.0 files exists for these languages and environments:

¹⁹ http://svn.smallangles.net/trac/canSAS/browser/1dwg/data/Glassy%20Carbon/ISIS/GLASSYC_C4G8G9_withTL.x-

- **FORTRAN**: See the section titled Fortran binding.
- **IgorPro**: See the section titled **IgorPro** binding.
- Java: See the section titled Java JAXB binding.
- Microsoft Excel: Support for Microsoft Excel is provided through the default canSAS stylesheet cansasxml-html.xsl. The ISIS LOQ instrument has provided an excellent description²⁰ of how to import data from the cansas1d/1.0 format into Excel. Also note that the old WWW site²¹ may still be available.
- PHP: The canSAS/xmlWriter is implemented in PHP²² and writes a cansas1d/1.0 data file given three-column ASCII data as input. (PHP source)²³ The code uses DomDocument²⁴ to build the XML file. Look for the line beginning with function prepare_cansasxml (\$post).

Another example of DomDocument is in the function surveillance (\$post) where logging information is inserted into an XML file.

- Python: See the section titled Python binding.
- XSLT (useful in a web browser) is described later in the section titled Example XML Stylesheets.

1.6.7 Software repositories (for cansas1d/1.0 standard)

- TRAC: http://svn.smallangles.net/trac/canSAS/browser/1dwg/tags/v1.0
- Subversion: http://svn.smallangles.net/svn/canSAS/1dwg/tags/v1.0

1.7 Validation of XML against the Schema

- 1. open browser to: http://www.xmlvalidation.com/
- 2. paste content of candidate XML file (with reference in the header to the XML Schema as shown above) into the form
- 3. press <validate>
- 4. paste content of cansas1d.xsd²⁵ XSD file into form and press < continue validation >.
- 5. check the results

 $^{^{20} \}texttt{http://www.isis.stfc.ac.uk/instruments/loq/loq2470.html}$

²¹ http://www.isis.rl.ac.uk/LargeScale/LOQ/loq.htm

²²http://www.php.net

²³ http://svn.smallangles.net/trac/canSAS/browser/ldwg/trunk/php/xmlWriter/index.php

²⁴ http://www.php.net/DomDocument

²⁵ http://svn.smallangles.net/svn/canSAS/1dwg/trunk/cansas1d.xsd

Chapter 2

cansas1d/1.0 Specification

This is the definitive specification of cansas1d/1.0, the canSAS standard format for storing small-angle scattering data in XML files. The standard is defined using the rules of \overline{XML} Schema.

Note that the cansas1d/1.0 XML data files must adhere to the XML rules which includes being well-formed (including the use of closing tags). ¹ Files that can be validated against cansas1d.xsd are deemed to be valid cansas1d/1.0 data files.

In this document, curly braces, {}, are used to indicate text that is supplied by the user. Such as, an attribute may be written

```
name={text}
```

and this means that the user would replace {text} with text that gives, in this example, a name such as final detector. Thus resulting in

```
name="final detector"
```

which is a well-formed XML attribute.

Another example is an instance of the {any} element. Suppose one had analysis data, then {any} would be replaced with analysis and the element might look like this:

```
<analysis>
    ... analysis content goes here ...
</analysis>
```

2.1 Elements of the canSAS XML standard

There are various elements (tag names) in the cansas1d/1.0 standard. Each of these is described below.

Name

Name is the XML tag to be used for this element of the standard.

Type

Type may be either of

header

Elements of type *header* describe the required XML header lines. Without questions, use the header in the section titled Required XML Header.

 $^{^1}$ For example, see $\texttt{http://www.w3schools.com/xmL/xml_syntax.asp}$ for an explanation of the XML syntax.

container

Elements of type *container* have subelements but no text for themselves. These are similar to the NeXus NXDL group type.

floating-point number

Elements of type *floating-point number* are obvious. In most cases, a unit attribute is required. This will be noted.

string

Elements of type string are any valid string (non-whitespace) sequence.

Occurence

The number of times a particular element may appear is described in the *occurence* column. A value of [0..1] indicates the element is optional but may appear one time. A value of [0..inf] indicates the element is optional but may appear an infinite number of times (also known as unbounded).

Description

Description provides useful information about this element.

Attributes

Attributes list the required or optional attributes of this element. Note that attributes must adhere to the well-formed XML guidelines

```
attributename="value"
```

where either single or double quotes surround the value. All attributes must have a value. Attributes may be given in any order.

2.1.1 Required XML Header

Example 2.1 Required header for cansas1d/1.0 XML files

```
<?xml version="1.0"?>
<SASroot version="1.0"
   xmlns="cansas1d/1.0"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="cansas1d/1.0
   http://svn.smallangles.net/svn/canSAS/1dwg/trunk/cansas1d.xsd">
```

Table 2.1:

Name	Type	Occurrence	Description	Attributes
xml declaration	header	[11]	xml version="1.0"?	version="1.0"
stylesheet	header	[01]	<pre><?xml-stylesheet type="text/xsl" href="example.xsl" ?> Declares example.xsl (needs to be in the local directory) is the default stylesheet of an XML visualization tool. Change example.xsl to indicate a different stylesheet in the local directory.³ ⁴</pre>	type="text/xsl" href="example.xsl"

²http://www.w3schools.com/xmL/xml_syntax.asp

Table 2.1: (continued)

SASroot	container	[11]	The canSAS reduced 1-D SAS data (cansas1d/1.0) will be in the SASroot database. (This is similar to NXroot used by NeXus. ⁵)	 version="1.0" is required to identify the cansas1d/1.0 standard for SAS data. xmlns sets the default namespace URI for all elements (with no prefix) in this file. xmlns:xsi sets xsi as the prefix for any elements from the governing XML Schema and defines the namespace URI to use with the xsi: element prefix. xsi:schemaLocation associates a suggested URL (where the cansas1d/1.0 XML Schema might be found) with the default namespace string.
---------	-----------	------	--	--

2.1.2 SASroot element

• parent: XML header

³Refer to http://www.w3schools.org/xsl W3 Schools XSLT Help for assistance in constructing XSLT files. ⁴XML rules actually allow for multiple stylesheet declarations. Explore this possibility as your own adventure.

⁵http://www.nexusformat.org/NXroot

The SASroot element

Figure 2.1: The SASroot element

Table 2.2:

Name	Type	Occurrence	Description	Attributes
SASentry	container	[1inf]	A single SAS scan is reported in a SASentry. Include as many SASentry elements as desired. They may contain related or unrelated data. name is an optional attribute to provide a string for this SASentry. (Use of this string is not defined by this standard.)	name=short-name

2.1.3 SASentry element

• parent: SASroot

Figure 2.2: The SASentry element

Table 2.3:

Name	Type	Occurrence	Description	Attributes
Title	string	[11]	Title of this SASentry.	
Run	string	[1inf]	Run identification for this SASentry. For many facilities, this is an integer. Use multiple instances of Run as needed. Note: How to correlate this with SASdata and SASinstrument configurations has not yet been defined. name is an optional string attribute to identify this particular Run. Could use this to associate (correlate) multiple SASdata elements with Run elements. (Give them the same {short-Run-identifier}.)	<pre>name={short-Run-identif- ier}</pre>

Table 2.3: (continued)

			Any element(s) not defined in the	
{any}	container	[0inf]	cansas1d/1.0 standard can be placed	xmlns:{foreign-prefix}=-
(ally)	Container	[01111]	at this point. See {any} for more	{foreign-namespace}
			details.	
			Reduced 1-D SAS data for this	
			SASentry. Use multiple	
			SASdata elements to represent	
SASdata	container	[1 :mf]	multiple frames. Use this to	name={short-Run-identif-
SASuata	Container	[1inf]	associate (correlate) multiple	ier}
			SASdata elements with Run	
			elements. (Give them the same	
			name.)	
			Any element(s) not defined in the	
{any}	container	[0inf]	cansas1d/1.0 standard can be placed	xmlns:{foreign-prefix}=-
{any}			at this point. See {any} for more	{foreign-namespace}
			details.	
SASsample	container	[11]	Description of the sample.	name={short-SASsample-i-
SASsample	Container		Description of the sample.	dentifier}
SASinstrument	container	[11]	Description of the instrument	
SASprocess	container	[0inf]	Description of a processing or	name={short-SASprocess
	Container	[01111]	analysis step.	identifier}
SASnote	container	[1inf]	Free form description of anything	name={short-SASnote-ide-
	Container	[11111]	not covered by other elements.	ntifier}

2.1.4 SASdata element

• parent: SASentry

The SASdata element

Figure 2.3: The SASdata element

Figure 2.4: Q geometry

2.1.4.1 SASdata

Table 2.4:

Name	Type	Occurrence	Description	Attributes
Idata	container	[1inf]	Idata describes a single SAS data point.	

2.1.4.2 Idata

Table 2.5:

Name	Туре	Occurrence	Description	Attributes
Q	floating-point number	[11]	\$Q=(4 \pi / \lambda) \sin(\theta)\$ where \$\lambda\$ is the wavelength of the radiation and \$2\theta\$ is the angle through which the detected radiation has been scattered. The unit attribute is required. See rules for units for acceptable values. Either 1/A or 1/nm are typical.	unit={unit}
I	floating-point number	[11]	Intensity of the detected radiation. The unit attribute is required. See the section about the rules for acceptable values. One possibility might be 1/cm for absolute units when the intensity describes a differential cross-section per unit volume per unit solid angle. Be aware that there are different types of intensity used in small-angle scattering that may be reported (see the section titled The Intensity Problem). One should be very careful to inspect the unit attribute to determine how to handle subsequent data processing, especially in the area of units conversion.	unit={unit}

Table 2.5: (continued)

Idev	floating-point number	[01]	Estimated uncertainty (usually standard deviation) of I. The unit attribute is required. See rules for units for acceptable values. One possibility might be 1/cm.	unit={unit}
Qdev	floating-point number	[01]	Estimated uncertainty (usually standard deviation) of Q. (optional: see note below on usage) The unit attribute is required. See rules for units for acceptable values. Either 1/A or 1/nm are typical.	unit={unit}
dQw	floating-point number	[01]	Q resolution along the axis of scanning (the high-resolution slit width direction). Useful for defining resolution data from slit-smearing instruments such as Bonse-Hart geometry. (optional: see note below on usage). The unit attribute is required. See rules for units for acceptable values. Either 1/A or 1/nm are typical.	unit={unit}
dQ1	floating-point number	[01]	Q resolution perpendicular to the axis of scanning (the low-resolution slit length direction). Useful for defining resolution data from slit-smearing instruments such as Bonse-Hart geometry. (optional: see note below on usage) The unit attribute is required. See rules for units for acceptable values. Either 1/A or 1/nm are typical.	unit={unit}
Qmean	floating-point number	[01]	Mean value of Q for this datum. Useful when describing data that has been binned from higher-resolution or from area detectors. The unit attribute is required. See rules for units for acceptable values. Either 1/A or 1/nm are typical.	unit={unit}
Shadowfactor	floating-point number	[01]	Describes the adjustment due to the beam stop penumbra.	Tip There is no unit attribute.
{any}	container	[0inf]	Any element(s) not defined in the cansas1d/1.0 standard can be placed at this point. See {any} for more details.	xmlns:{foreign-prefix}={foreign-namespace}

Note

When an optional element (Idev, Qdev, ...) is used, it must be given in every Idata within the enclosing SASdata.

Note

If either dQw or dQl are used, then Qdev is not permitted to be used.

Note

The Shadowfactor element definition needs revision. NIST?

2.1.5 SASsample element

• parent: SASentry

Figure 2.5: The SASsample element

Table 2.6:

Name	Type	Occurrence	Description	Attributes
ID	string	[11]	Text string that identifies this	
10	Sumg	[11]	sample.	
thickness	floating-point	[01]	Thickness of this sample. Must	unit={unit}
CHICKHESS	number	[01]	specify the unit as an attribute.	unite-{unite}
			Transmission (1-attenuation) of this	
transmission	floating-point	[0 1]	sample. Express this as a fraction,	
	number	[01]	not as a percentage. NOTE: there is	
			no unit attribute.	
temperature	floating-point	[01]	Temperature of this sample. Must	i+_(i+)
remperature	number		specify the unit as an attribute.	unit={unit}
position	container	[01]	Location in X, Y, and Z of the	
position	Container	[01]	sample.	
orientation	container	[01]	Orientation (rotation) of the sample.	
details	string	[0inf]	Any additional sample details.	
			Any element(s) not defined in the	
(ont)	container	[0inf]	cansas1d/1.0 standard can be placed	xmlns:{foreign-prefix}=-
{any}	Container	[01111]	at this point. See {any} for more	{foreign-namespace}
			details.	

2.1.5.1 geometry

2.1.5.2 position

Table 2.7:

Name	Type	Occurrence	Description	Attributes
х	floating-point number	[01]	Position of the sample in X. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
У	floating-point number	[01]	Position of the sample in Y. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
Z	floating-point number	[01]	Position of the sample in Z. The unit attribute is required. See the section about the rules for acceptable values. Tip While Z dimension is allowed by the standard (provided by use of a standard element in the XML Schema), it does not make sense for small-angle scattering.	unit={unit}

2.1.5.3 orientation

Table 2.8:

Name	Type	Occurrence	Description	Attributes
			Rotation about the Z axis (roll). The	
roll	floating-point	[01]	unit attribute is required. See the	unit={unit}
1011	number	[01]	section about the rules for	unite-{unite}
			acceptable values.	
	floating-point number	[01]	Rotation about the X axis (pitch).	
pitch			The unit attribute is required. See	unit={unit}
prccii			the section about the rules for	unite-{unite}
			acceptable values.	
			Rotation about the Y axis (yaw).	
yaw	floating-point number	[0 1]	The unit attribute is required. See	unit={unit}
		[01]	the section about the rules for	unite-{unite}
			acceptable values.	

Note

The orientation element is intended to describe simple rotations about a single axis rather than a full set of rotations as in a crystallographic context.

2.1.6 SASinstrument element

• parent: SASentry

The SASinstrument element

Figure 2.6: The SASinstrument element

Table 2.9:

Name	Type	Occurrence	Description	Attributes
name	string	[11]	Text string that identifies the name of this instrument.	

Table 2.9: (continued)

SASsource	container	[11]	Text string that identifies the name of this source of radiation.	name={name}
SAScollimation	container	[1inf]	Text string that identifies the name of this instrument collimation.	name={name}
SASdetector	container	[1inf]	Text string that identifies the name of this detector.	

2.1.7 SASsource element

• parent: SASinstrument

Figure 2.7: The SASsource element

Table 2.10:

		Name	Type	Occurrence	Description	Attributes
--	--	------	------	------------	-------------	------------

Table 2.10: (continued)

radiation	string	[11]	Name of the radiation used. For maximum compatibility with NeXus, use one of the names defined by either NeXus NXsource/type • Spallation Neutron Source • Pulsed Reactor Neutron Source • Reactor Neutron Source • Synchrotron X-ray Source • Pulsed Muon Source • Rotating Anode X-ray • Fixed Tube X-ray or NeXus NXsource/probe • neutron • x-ray • muon • electron	
beam_size	container	[01]	Physical dimension of the beam (incident on the sample). Note: If beam is round, just use X dimension. Note: While Z dimension is allowed by the standard, it does not make sense for small-angle scattering.	name={name}
beam_shape	string	[01]	Text description of the shape of the beam (incident on the sample).	
wavelength	floating-point number	[01]	wavelength (\$\lambda\$) of radiation incident on the sample.	unit={unit}
wavelength min	floating-point number	[01]	Some facilities specify wavelength using a range. The minimum of such a range is given by wavelength_min.	unit={unit}
wavelength max	floating-point number	[01]	Some facilities specify wavelength using a range. The maximum of such a range is given by wavelength_max.	unit={unit}
wavelength spread	floating-point number	[01]	Some facilities specify the width of the wavelength spectrum. The width of such a range is given by wavelength_spread.	unit={unit}

2.1.7.1 beam_size

Table 2.11:

Name	Type	Occurrence	Description	Attributes
x	floating-point number	[01]	Dimension of the beam in X. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
У	floating-point number	[01]	Dimension of the beam in Y. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
Z	floating-point number	[01]	Dimension of the beam in Z. The unit attribute is required. See the section about the rules for acceptable values. Tip While Z dimension is allowed by the standard (provided by use of a standard element in the XML Schema), it does not make sense for small-angle scattering.	unit={unit}

2.1.8 SAScollimation element

• parent: SASinstrument

The SAScollimation element

Figure 2.8: The SAScollimation element

2.1.8.1 SAScollimation

Table 2.12:

Name	Type	Occurrence	Description	Attributes
length	floating-point	[01]	Amount/length of collimation	unit={unit}
	number	[***-]	inserted (on a SANS instrument)	
		[0inf]	Description of a slit or aperture.	
aperture	container [0inf]		name: Optional name attribute for	
			this aperture. type: Optional text	name={type}
			attribute to describe the type	
			aperture (pinhole, 4-blade slit,	
			Soller slit,).	

2.1.8.2 aperture

Table 2.13:

Name	Type	Occurrence	Description	Attributes
size	container	[01]	Opening dimensions of this	name={name}
3126	Container	[01]	aperture.	Tranie - (Tranie)
distance	floating-point	[01]	Distance from this collimation	unit={unit}
distance	number	[01]	element to the sample.	

2.1.8.3 size

Table 2.14:

Name	Type	Occurrence	Description	Attributes
x	floating-point number	[01]	Dimension of the collimation in X. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
У	floating-point number	[01]	Dimension of the collimation in Y. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
z	floating-point number	[01]	Dimension of the collimation in Z. The unit attribute is required. See the section about the rules for acceptable values. Tip While Z dimension is allowed by the standard (provided by use of a standard element in the XML Schema), it does not make sense for small-angle scattering.	unit={unit}

2.1.9 SASdetector element

• parent: SASinstrument

The SASdetector element

Figure 2.9: The SASdetector element

2.1.9.1 SASdetector

Table 2.15:

Name	Type	Occurrence	Description	Attributes
nama	string	[11]	Text string that identifies the name	
name	Sumg	[11]	of this detector.	
SDD	floating-point	[0, 1]	Distance between sample and	unit={unit}
עעכ	number	[01]	detector.	unite-{unite}
offset	container	[01]	Offset of this detector position in X,	
Olisec	Container	[01]	Y, (and Z if necessary).	
orientation	container	FO 13	Orientation (rotation) of this	
Offencacion	Container	[01]	detector in roll, pitch, and yaw.	
beam center	container	[01]	Center of the beam on the detector	
beam_center	Container		in X and Y (and Z if necessary).	
pixel_size	container	[01]	Size of detector pixels in X and Y	
pixei_size	Container	[01]	(and Z if necessary).	

Table 2.15: (continued)

slit_length	floating-point number	[01]	Slit length of the instrument for this detector. This is expressed in the same units as Q (reciprocal space units).	unit={unit}
-------------	--------------------------	------	---	-------------

2.1.9.2 geometry

2.1.9.3 offset

Table 2.16:

Name	Type	Occurrence	Description	Attributes
х	floating-point number	[01]	Offset of the detector position in X. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
У	floating-point number	[01]	Offset of the detector position in Y. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}

Table 2.16: (continued)

Z	floating-point number	[01]	Offset of the detector position in Z. The unit attribute is required. See the section about the rules for acceptable values. Tip While Z dimension is allowed by the standard (provided by use of a standard element in the XML Schema), it does not make sense for small-angle scattering.	unit={unit}
---	--------------------------	------	--	-------------

2.1.9.4 orientation

Table 2.17:

Name	Type	Occurrence	Description	Attributes
roll	floating-point number	[01]	Rotation about the Z axis (roll). The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
pitch	floating-point number	[01]	Rotation about the X axis (pitch). The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
yaw	floating-point number	[01]	Rotation about the Y axis (yaw). The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}

2.1.9.5 beam_center

Table 2.18:

Name	Type	Occurrence	Description	Attributes
		[01]	Position of the beam center on the	
	floating-point		detector in X. The unit attribute is	unit={unit}
X	number		required. See the section about the	unite-{unite}
			rules for acceptable values.	
	floating-point number [0.	[01]	Position of the beam center on the	
			detector in Y. The unit attribute is	
У			required. See the section about the	unit={unit}
			rules for acceptable values.	

Table 2.18: (continued)

Z	floating-point number	[01]	Position of the beam center on the detector in Z. The unit attribute is required. See the section about the rules for acceptable values. Tip While Z dimension is allowed by the standard (provided by use of a standard element in the XML Schema), it does not make sense for small-angle scattering.	unit={unit}
---	--------------------------	------	---	-------------

2.1.9.6 pixel_size

Table 2.19:

Name	Type	Occurrence	Description	Attributes
х	floating-point number	[01]	Size of a detector pixel in X. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
У	floating-point number	[01]	Size of a detector pixel in Y. The unit attribute is required. See the section about the rules for acceptable values.	unit={unit}
2	floating-point number	[01]	Size of a detector pixel in Z. The unit attribute is required. See the section about the rules for acceptable values. Tip While Z dimension is allowed by the standard (provided by use of a standard element in the XML Schema), it does not make sense for small-angle scattering.	unit={unit}

2.1.10 SASprocess element

• parent: SASentry

The SASprocess element

Figure 2.10: The SASprocess element

Table 2.20:

Name	Type	Occurrence	Description	Attributes
name	string	[01]	Optional name for this data	
ITAILLE	String		processing or analysis step.	
			Optional date for this data	
			processing or analysis step. Use a	
			format which is easily	
date	string	[01]	machine-readable such as	
			yyyy-mm-dd hh:mm:ss The format	
			for the date string may be specified	
			at a later date.	
description	string	[01]	Optional description for this data	
description			processing or analysis step.	
	string	[0inf]	This is used to specify the value of a	
			single variable, parameter, or term	
term			(while defined here as a string, it	unit={unit}
			could be a number) related to the	
			SASprocess step.	
	container		This element is used to describe	
SASprocessnote		[1inf]	anything about SASprocess that is	
			not already described.	
{any}	container	[0inf]	Any element(s) not defined in the	
			cansas1d/1.0 standard can be placed	xmlns:{foreign-prefix}=-
			at this point. See {any} for more	{foreign-namespace}
			details.	

2.1.10.1 SASprocessnote element

Table 2.21:

Name	Type	Occurrence	Description	Attributes
{any}	container	[0inf]	Any element(s) not defined in the	
			cansas1d/1.0 standard can be placed	xmlns:{foreign-prefix}=-
			at this point. See {any} for more	{foreign-namespace}
			details.	

2.1.11 SASnote element

• parent: SASentry

The SASroot element

Figure 2.11: The SASroot element

Table 2.22:

Name	Type	Occurrence	Description	Attributes
{any}		[0inf]	Any element(s) not defined in the	
			cansas1d/1.0 standard can be placed	xmlns:{foreign-prefix}=-
	container		at this point. See {any} for more	{foreign-namespace}
			details.	

2.1.12 {any} element

Table 2.23:

Name	Type	Occurrence	Description	Attributes
{any}	container	[0inf]	Any element(s) not defined in the cansas1d/1.0 standard can be placed at this point. (These are called <i>foreign</i> elements. It is suggested to associate foreign elements with a foreign namespace to differentiate them from the canSAS elements in the XML file.)	<pre>xmlns:{foreign-prefix}=- {foreign-namespace}</pre>

Chapter 3

cansas1d/1.0 Tutorial

This is a tutorial for cansas1d/1.0, the canSAS standard format for storing small-angle scattering data in XML files.

At present, the tutorial section consists of two case studies, which can serve as examples. The opportunity is ripe for a better tutorial.

3.1 Case Studies

3.1.1 Case Study: Dry Chick Collagen

3.1.1.1 Overview

To demonstrate how to get SAS data into the XML standard format, consider this set of SAXS data collected at the National Synchrotron Light Source, Brookhaven National Laboratory, using a SAXS camera set up temporarily at beam line X6B (operated by the Materials Science Division, Argonne National Lab).

The sample was dry chick collagen. (Thanks to Malcolm Capel, NSLS beam line X12C for the sample.)

The raw data was collected on a linear position-sensitive detector and reduced to columns of \mathbf{Q} , \mathbf{I} , and \mathbf{Idev} (estimated standard deviation of \mathbf{I}).

The only metadata available for this data (without resorting to digging through piles of old notebooks) was obtained from two

file headers: collagen.asc 1 and collagen.saxs 2 as shown.

Example 3.1 First few lines from file *collagen.asc*

```
Sep 19 1994 01:41:02 am Elt: 00090 Seconds

ID: No spectrum identifier defined

Memory Size: 8192 Chls Conversion Gain: 1024 Adc Offset: 0000 Chls
```

Example 3.2 Full listing of file collagen.saxs

```
dry chick collagen, d = 673 A
6531 eV, X6B
```

But, there is enough information to fulfill the minimum requirements of the 1D standard file format and also make an excellent example of a minimal canSAS reduced 1-D SAS data file in XML.

3.1.1.2 Procedure

3.1.1.2.1 make the basic XML file

It is easiest to copy a template rather than start from an empty file. Copy the *cansas1d.xml*³ file into your working directory and rename it to collagen.xml.

3.1.1.2.2 modify collagen.xml

It is easier to see the metadata in the XML file before you enter the SAXS data into the file. With the brief metadata available, most of the other lines in *cansas1d.xml* can be eliminated. This will result in a file that looks like the next example.

 $^{^{1} \}texttt{http://svn.smallangles.net/trac/canSAS/browser/1dwg/trunk/examples/collagen/COLLAGEN.ASC}$

³http://svn.smallangles.net/svn/canSAS/1dwg/trunk/cansas1d.xml

Example 3.3 collagen.xml with metadata but before data lines are added.

```
<?xml version="1.0"?>
   <?xml-stylesheet type="text/xsl" href="example.xsl" ?>
   <SASroot version="1.0"
       xmlns="cansas1d/1.0"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="cansas1d/1.0 http://svn.smallangles.net/svn/canSAS/1dwg/trunk/ ↔
6
           cansas1d.xsd"
       <SASentry>
       <Title>dry chick collagen, d = 673 A, 6531 eV, X6B</Title>
10
           <SASdata>
11
               <!-- Idata lines will go here -->
12
13
           </SASdata>
           <SASsample>
14
                <ID>dry chick collagen, d = 673 \text{ A}, 6531 \text{ eV}, X6B < /ID >
15
           </SASsample>
16
            <SASinstrument>
17
                <name>X6B, NSLS, BNL</name>
18
                <SASsource>
19
20
                    <radiation>X-ray synchrotron</radiation>
21
                    <wavelength unit="A">
22
                        1.898
                                 <!-- = 12398/6531 -->
23
                    </wavelength>
                </SASsource>
24
                <SAScollimation />
25
                <SASdetector>
26
                    <name>X6B PSD</name>
27
                </SASdetector>
28
           </SASinstrument>
29
           <SASnote>
30
                Sep 19 1994
                                 01:41:02 am
                                                  Elt: 00090 Seconds
31
                ID: No spectrum identifier defined
32
33
               Memory Size: 8192 Chls Conversion Gain: 1024 Adc Offset: 0000 Chls
34
35
                dry chick collagen, d = 673 A
                6531 eV, X6B
36
           </SASnote>
37
       </sasentry>
38
   </SASroot>
39
```

3.1.1.2.3 prepare the SAXS data

Microsoft Excel is used here to convert the table of SAXS data into the required lines of XML for the standard. Some may prefer to use a cell formula but here, we develop a bit of Excel Macro code to clarify our procedure.

3.1.1.2.3.1 Using Excel macros to reformat the SAXS data

Within Excel, with the SAXS data in columns as shown in the Excel table above, let's define the macros for our use. In Excel, type **<alt><f11>** to open the macro editing window.

Example 3.4 Microsoft Excel macro to format the Idata lines.

```
Function XML_tag(tag, attr, content) As String
 If attr = "" Then
   XML = "<" & tag & ">"
 Else
 XML = "<" & tag & " " & attr & ">"
 End If
 XML = XML & content
 XML = XML & "</" & tag & ">"
 XML_tag = XML
End Function
Function SAS_Idata_tag(element, unit, content) As String
 XML = XML_tag(element, "unit=""" & unit & """", content)
 SAS_Idata_tag = XML
End Function
Function Idata_tag(Q, Q_unit, I, I_unit, Idev, Idev_unit) As String
 XML = SAS_Idata_tag("Q", Q_unit, Q)
 XML = XML & SAS_Idata_tag("I", I_unit, I)
 XML = XML & SAS_Idata_tag("Idev", Idev_unit, Idev)
  Idata_tag = XML_tag("Idata", "", XML)
End Function
```

Your window will look similar to this one when you copy/paste the above example code: (Yes, my spreadsheet is called *MyFirst-Macro.xls*)

case study: Collagen, SAXS data in Excel chart

Now close the macro editing window and return to the SAXS data in the spreadsheet.

3.1.1.2.3.2 construct the Idata lines in XML

move to spreadsheet cell E5 and enter this formula

```
=IDATA_tag(A5,$A$4,B5,$B$4,C5,$C$4)
```

Copy it down all rows in column E through cell E335

Select cells E5:E335 and copy to clipboard, then paste into collagen.xml document inside the SASdata element where you see the XML comment.

3.1.1.3 Final Result

A nicely-formatted display version of the final result can be viewed through the TRAC repository: http://svn.smallangles.net/trac/canSAS/browser/1dwg/trunk/cs_collagen_full.xml

3.1.1.4 Validate your file

So you think you have an XML file. Let's validate it using the procedure from the documentation. All the instructions are on the documentation page. No sense in repeating them here.

3.1.1.5 References

All files are available at http://svn.smallangles.net/trac/canSAS/browser/1dwg/trunk/examples/collagen/

3.1.2 Case Study: AF1410 steel

3.1.2.1 Overview

Note

This case study has not yet been written up. For now, see the data file (http://svn.smallangles.net/svn/canSAS/1dwg/trunk/examples/af1410/cs_af1410.xml).

The data file contains multiple SASentry elements that pertain to different samples treated at different conditions in a time series. Each SASentry element contains two SASdata sections that correspond to sector averages from the two-dimensional SANS data. Since the samples had been subjected to a 1.6T magentic field to clear the scattering from magentic domain boundaries in one direction, the sector average for that direction has scattering dominated by purely nuclear scattering moments. The other SASdata section has scattering due to both nuclear and magnetic scattering moments.

Also see the publication: A.J. Allen, D. Gavillet, J.R. Weertman, "Small-Angle Neutron Scattering Studies of Carbide Precipitation in Ultrahigh-Strength Steels," *Acta Metall* **41** (1993) 1869-1884.

Chapter 4

Bindings and Software Support

Bindings (import/export drivers) and other software support have been created and contributed. These are listed here by the language or software environment.

4.1 Fortran binding

The development of the FORTRAN language, so beloved of scientists, pre-dates the development of XML. And it shows. FORTRAN is not a language that manipulates strings with ease, and this makes parsing XML decidedly awkward. So unless you *really* have to use FORTRAN, you are probably better off with C/C++ (or something else more 'modern'), see for example Daniel Veillard's LIBXML2 library at http://xmlsoft.org/ or Frank van den Berghen's parser at http://www.applied-mathematics.net/tools/xmlParser.html.

If you have to use a dialect earlier than FORTRAN-90 (F90), then the chances are you will have to code your own parser.

4.1.1 Software Development Kits

For later dialects, there are some SDK's available on the Web:

- F90:
 - XMLPARSE by Arjen Markus at http://xml-fortran.sourceforge.net/
 - FoX by Toby White others at http://uszla.me.uk/space/software/FoX/
- For F95:
 - XML by Mart Rentmeester at http://nn-online.org/code/xml/

4.1.2 canSAS 1-D SAS XML v1.0 support

Steve King[mailto:s.m.king@rl.ac.uk] (ISIS) has provided a F77 routine (SASXML_G77.F) that will read CanSAS XML v1.0 files.

4.2 IgorPro binding

An import tool (binding) for IgorPro has been created (cansasXML.ipf). You can check out the IgorPro working directory from the SVN server (see instructions below).

To use the canSASxml.ipf procedure, you must have the XMLutils XOP IGOR plugin installed. See the Usage Notes below.

Note

Note that this tool is not a true binding in that the structure of the XML file is not replicated in IgorPro data structures. This tool reads the vectors of 1-D SAS data (Q, I, ...) into IgorPro waves (Qsas, Isas, ...). The tool also reads most of the metadata into an IgorPro textWave for use by other support in IgorPro.

Note

Note that the code described here is *not a complete user interface*. (See further comments below.) It is expected that this code will be called by a graphical user interface routine and that routine will handle the work of copying the loaded SAS data in IgorPro from the root:Packages:CS_XMLreader data folder to the destination of choice (including any renaming of waves as desired).

file

cansasXML.ipf

author

Pete R. Jemian < jemian@anl.gov>

date

2009-09-02

version

1.11 (requires latest XMLutils XOP -- see below)

purpose

Implement an IgorPro file reader to read the canSAS 1-D reduced SAS data in XML files that adhere to the cansas1d/1.0 standard.

URL

TRAC: http://svn.smallangles.net/trac/canSAS/browser/1dwg/trunk/IgorPro/cansasXML.ipf

SVN: http://svn.smallangles.net/svn/canSAS/1dwg/trunk/IgorPro/cansasXML.ipf

requires

IgorPro: http://www.wavemetrics.com XMLutils XOP¹ (minimum requirement: IGOR.5.04.x-1.x-dev, 2008-Aug-22)

4.2.1 Checkout of support code in Subversion

Subversion (http://subversion.tigris.org/) is a program for managing software versions. There are command line and GUI clients for a variety of operating systems. We won't recommend any here but will show the command lines necessary.

4.2.1.1 XMLutils XOP

The XMLutils XOP, written by Andrew Nelson (ANSTO), is hosted on the IgorExchange.²

One good location to place the checked out XMLutils directory is in the Wavemetrics directory, next to the Igor Pro Folder.³

In the future, to retrieve an updated version of this support, go into the XMLutils directory (created above) and type the command:

svn update

http://www.igorexchange.com/project/XMLutils

²http://www.igorexchange.com/

³svn co svn://svn.igorexchange.com/packages/XMLutils/ XMLutils

(or just

svn up

This will check the repository and update local files as needed. If the installer program was updated, you'll need to run the new installer program. It is not necessary to uninstall first.

The installer executables contained in the download will do all the installation for you. They will place the XOP in the folder /User Procedures/motofit/XMLutils, and create a shortcut/alias to the plugin in /Igor Extensions. Packages from other facilities should place the XOP there as well.

4.2.1.2 cansasXML.ipf

Check out the canSAS 1d SAS XML reader from the subversion repository:

```
svn checkout http://svn.smallangles.net/svn/canSAS/1dwg/trunk cansas-1dwg
```

This will download lots of extra files. The file of interest is in the IgorPro directory and is called cansasXML.ipf

In the future, to retrieve an updated version of this support, go into the cansas-1dwg directory (created above) and type the command

svn update

This will check the repository and update files as needed.

4.2.2 Installation

- 1. License and Install IgorPro (should have already been done by now)
- 2. Quit IgorPro if it is running
- 3. Download XMLutils XOP. Either checkout from subversion (see above) or, with a web browser, visit http://svn.i-gorexchange.com/viewvc/packages/XMLutils/trunk/
- 4. Install XMLutils XOP by double-clicking the installer for you operating system.
- 5. Download cansasXML.ipf. Either checkout from subversion (see above) or, with a web browser, copy cansasXML.ipf from the on-line subversion repository.⁴
- 6. Copy cansasXML.ipf file to ...WavemetricsIgor Pro FolderUser Procedures (or file system equivalent)
- 7. Then, you should be able to restart IgorPro and progress from there

4.2.3 Usage Notes

To use the canSASxml.ipf procedure, you must have the XMLutils XOP IGOR plugin installed. This may be downloaded from the IgorExchange Project site. There are installer executables contained in the download that will do all the installation for you. Each installer will place the XOP in the folder ...Wavemetrics:Igor Pro Folder:User Procedures:motofit:XMLutils, and create a shortcut/alias to the plugin in ...Wavemetrics:Igor Pro Folder:Igor Extensions.

⁴http://svn.smallangles.net/svn/canSAS/1dwg/trunk/IgorPro/cansasXML.ipf

4.2.4 What it does

Given an XML file, CS_XmlReader(fileName) attempts to open the fileand read its contents as if it conformed to the canSAS XML standard for reduced 1-D SAS data (cansas1d/1.0, also known as SASXML). If the file is found to be non-conforming, then CS_XmlReader(fileName) returns with an error code (show below), otherwise it returns 0 that indicates no error. All data read by this code is left in the IgorPro data folder root:Packages:CS_XMLreader for pickup by the calling routine. (Two examples are provided to show how a routine might retrieve the data.)

After opening the XML file (with a file identifier fileID), control is passed to CS_li_parseXml (fileID) which then walks through the XMLelements. For each SASentry in the file, a new data folder is created with the name derived from the Title element (or best effort determination). Efforts are taken to avoid duplication of data folder names (using standard IgorPro routines). For SASentry elements that contain more than one SASdata element, a SASdata folder is created for each and the corresponding I (Q) is placed in that subfolder. When only one SASdata is found, the I (Q) data is placed in the main Title folder.

4.2.4.1 data columns

Each column of data in the SASdata/Idata/* table is placed into a single IgorPro wave. At present, the code does not check for non-standard data columns. (The capability is built into the code but is deactivated at present).

4.2.4.2 metadata

Additional metadata is collected into a single text wave (*metadata*) where the first column is an identifier (or *key*) and the second identifier is the *value*. Only those keys with non-empty values are retained in the metadata table.

Caution

The *values* are not checked for characters that may cause trouble when placed in a wave note. This will be the responsibility of the calling routine to *clean these up* if the need arises.

The code checks for most metadata elements and will check for repeated elements where the standard permits.

Here is an example of the metadata for the cs_collagen_full.xml case study:

Table 4.1: metadata for the cs_collagen_full.xml case study

row:	key: metadata[i][0]	value: metadata[i][1]
0	xmlFile	cs_collagen_full.xml
1	namespace	cansas1d/1.0
2	Title	dry chick collagen, d = 673 A, 6531 eV, X6B
3	Run	Sep 19 1994 01:41:02 am
4	SASsample/ID	dry chick collagen, d = 673 A, 6531 eV, X6B
5	SASinstrument/name	X6B, NSLS, BNL
6	SASinstrument/SASsource/radiation	X-ray synchrotron
7	SASinstrument/SASsource/wavelength	1.898
8	SASinstrument/SASsource/wavelength/@unit	A
9	SASinstrument/SASdetector/@name	X6B PSD

Table 4.1: (continued)

4.2.4.3 XML foreign namespace elements

These are ignored at this time.

4.2.4.4 XML namespace and header

The routine does a *best-efforts* check to ensure that the given XML file conforms to the required XML file header. If you take a minimalist view (*a.k.a.* a shortcut), it is likely that your file may be refused by this and other readers. Pay particular attention to UPPER/lower case in the text **cansas1d/1.0** as this is a **key component** used to index through the XML file.

4.2.4.5 XML stylesheet processing-instruction is not generated

The XMLutils package does not provide a method to insert the prescribed XML stylesheet processing-instruction into the XML data file.

```
<?xml-stylesheet type=text/xsl href=example.xsl ?>
```

If this processing-instruction is desired, it must be added to each XML data file by other methods such as use of a text editor or application of an XSLT transformation.

4.2.5 List of Functions

These are (most of) the FUNCTIONS in the cansasXML.ipf code. The only functions of interest are **CS_XmlReader(fileName)** which reads the named XML file and loads SAS data and the two demonstration functions **prj_grabMyXmlData()** and **prjTest_cansas1d()** that together show a usage example.

- CS_XmlReader(fileName): open a canSAS 1-D reduced SAS XML data file
- input: fileName (string) name of canSAS XML file (can include file system path name to file)
- returns:
 - 0 successful
 - -1: XML file not found
 - -2: root element is not SASroot with valid canSAS namespace
 - -3: SASroot version is not 1.0
 - -4: no SASentry elements (NOT USED NOW)
 - -5: XOPutils needs upgrade
- CS_1i_parseXml(fileID): **This is what guides the work**, given a file ID returned from **XMLOpenFile**(), parses that file for SAS data and metadata (1i in the function name signifies this is a function that supports INPUT from version 1.0 XML files)

- CS_1i_getOneSASdata(fileID, Title, SASdataPath): harvest the data and metadata in the specific SASdata element
- CS_1i_getOneVector(file,prefix,XML_name,Igor_name): harvest just one column (vector) of data
- CS_1i_GetReducedSASdata(fileID, SASdataPath): grab the data and put it in the working data folder
- CS_1i_locateTitle(fileID, SASentryPath) : determine the title for this experiment
- CS_appendMetaData(fileID, key, xpath, value): queries XML file for **xpath**. If **value** is not empty, appends it to **metadata** where *last* is the new last row: metadata[last][0]=key; metadata[last][1]=value
- CS_buildXpathStr(prefix, value): this function can be used only with very simple XPath constructions
- CS_cleanFolderName(proposal): given a proposal string, returns a candidate folder name for immediate use
- CS_findElementIndex(matchStr) : looks for element index in structure W_ElementList returned from call to XmlElem-List(fileID)
- CS_getDefaultNamespace(fileID): returns the string containing the default namespace for the XML file
- CS_registerNameSpaces(): Builds a table of all namespaces used in the XML file and appends **W_ElementList** with full namespace-xpath string for each element.
- CS_simpleXmlListXpath(fileID, prefix, value): Calls XMLlistXpath() with proper namespace prefix attached.
- CS_simpleXmlWaveFmXpath(fileID, prefix, value): Calls XMLwaveFmXpath() with proper namespace prefix attached.
- CS_updateWaveNote(wavName, key, value): adds (or replaces) definition of key=value in the wave note of wavName
- CS_XmlStrFmXpath(fileID, prefix, value): Calls XmlStrFmXpath() with proper namespace prefix attached. Trims the result string.
- CS_XPath_NS(simpleStr): this function adds namespace info as necessary to simpleStr (an XPath)
- $\bullet \ \, TrimWS(str): Calls \, \textbf{TrimWSL}(\textbf{TrimWSR}(\textbf{str})) \\$
- TrimWSL(str): Trims white space from left (leading) end of str
- TrimWSR(str): Trims white space from right (trailing) end of str
- $\bullet \ prjTest_cansas1d(): Demonstration \ function \ that \ calls \ \textbf{CS_XmlReader} (\textbf{fileName}) \ for \ many \ of \ the \ test \ data \ sets.$
- prj_grabMyXmlData(): Demonstration function that moves loaded data from root:Packages:CS_XMLreader to a user's data folder. (In this *example*, that folder is root:PRJ_canSAS.)
- testCollette(): Demonstration function that reads an ISIS/LOQ file and copies the data to the root folder a la COLLETE

4.2.6 Example test case

Here is an example running the test routine prjTest_cansas1d().

```
•prjTest_cansas1d()
  XMLopenfile: File(path) to open doesn't exist, or file can't be opened
2
  elmo.xml either not found or cannot be opened for reading
      Completed in 0.00669666 seconds
  XMLopenfile: XML file was not parseable
5
  cansasXML.ipf: failed to parse XML
      Completed in 0.0133704 seconds
  root element is not SASroot with valid canSAS namespace
      Completed in 0.0134224 seconds
9
  bimodal-test1.xml
                         identified as: cansas1d/1.0 XML file
10
      Title: SAS bimodal test1
11
      Completed in 0.068654 seconds
12
  root element is not SASroot with valid canSAS namespace
13
    Completed in 0.0172572 seconds
```

```
root element is not SASroot with valid canSAS namespace
15
       Completed in 0.0123102 seconds
16
   root element is not SASroot with valid canSAS namespace
17
       Completed in 0.00930118 seconds
18
   ISIS_SANS_Example.xml
                              identified as: cansas1d/1.0 XML file
20
       Title: standard can 12mm SANS
21
       Completed in 0.0410387 seconds
22
  W1W2.xml
              identified as: cansas1d/1.0 XML file
       Title: standard can 12mm SANS
23
       Title: TK49 standard 12mm SANS
24
       Completed in 0.0669074 seconds
25
  ill_sasxml_example.xml
                              identified as: cansas1d/1.0 XML file
26
       Title: ILL-D22 example: 7D1 2mm
27
       Completed in 0.0332752 seconds
28
   isis_sasxml_example.xml
                                 identified as: cansas1d/1.0 XML file
29
       Title: LOQ TK49 Standard 12mm C9
31
       Completed in 0.0388868 seconds
  r586.xml
               identified as: cansas1d/1.0 XML file
32
33
       Title: ILL-D11 example1: 2A 5mM 0%D20
       Completed in 0.0213737 seconds
34
                identified as: cansas1d/1.0 XML file
35
   r597.xml
       Title: ILL-D11 example2: 2A 5mM 0%D20
36
       Completed in 0.0221894 seconds
37
   xg009036_001.xml
                        identified as: cansas1d/1.0 XML file
38
       Title: det corrn 5m
39
40
       Completed in 0.0286721 seconds
   cs_collagen.xml
                         identified as: cansas1d/1.0 XML file
41
       Title: dry chick collagen, d = 673 A, 6531 eV, X6B
42
       Completed in 0.0296247 seconds
43
   cs_collagen_full.xml
                            identified as: cansas1d/1.0 XML file
44
       Title: dry chick collagen, d = 673 A, 6531 eV, X6B
45
       Completed in 0.0751836 seconds
46
   cs_af1410.xml
                      identified as: cansas1d/1.0 XML file
47
       Title: AF1410-10 (AF1410 steel aged 10 h)
48
       Title: AF1410-8h (AF1410 steel aged 8 h)
49
       Title: AF1410-qu (AF1410 steel aged 0.25 h)
50
       Title: AF1410-cc (AF1410 steel aged 100 h)
51
       Title: AF1410-2h (AF1410 steel aged 2 h)
52
       Title: AF1410-50 (AF1410 steel aged 50 h)
53
       Title: AF1410-20 (AF1410 steel aged 20 h)
54
       Title: AF1410-5h (AF1410 steel aged 5 h)
55
       Title: AF1410-1h (AF1410 steel aged 1 h)
56
       Title: AF1410-hf (AF1410 steel aged 0.5 h)
57
       Completed in 0.338425 seconds
58
   XMLopenfile: File(path) to open doesn't exist, or file can't be opened
59
   cansas1d-template.xml either not found or cannot be opened for reading
60
       Completed in 0.00892823 seconds
61
   1998spheres.xml
                        identified as: cansas1d/1.0 XML file
62
       Title: 255 nm PS spheres
63
       Title: 460 nm PS spheres
64
       Completed in 2.87649 seconds
65
  XMLopenfile: File(path) to open doesn't exist, or file can't be opened
66
   does-not-exist-file.xml either not found or cannot be opened for reading
67
       Completed in 0.00404549 seconds
68
   cs_rr_polymers.xml
                          identified as: cansas1d/1.0 XML file
69
       Title: Round Robin Polymer A
70
71
       Title: Round Robin Polymer B
72
       Title: Round Robin Polymer C
73
       Title: Round Robin Polymer D
74
       Completed in 0.0943477 seconds
                        identified as: cansas1d/1.0 XML file
75
  s81-polyurea.xml
  Title: S7 Neat Polyurea
```

Completed in 0.0361616 seconds

4.2.7 IgorPro Graphical User Interface

At least two groups are working on graphical user interfaces that use the canSAS 1-D SAS XML format binding to IgorPro. The GUIs are intended to be used with their suites of SAS analysis tools (and hide the details of using this support code from the user).

NOTE: There is no support yet for writing the data back into the canSAS format. Several details need to be described, and these are being collected on the discussion page for the XML format

4.2.7.1 Irena tool suite

Jan Ilavsky's Irena⁵ tool suite for IgorPro has a GUI to load the data found in the XML file. Refer to the WWW site for more details.

4.3 Java (JAXB) binding for the canSAS1d/1.0 standard

A Java binding for the canSAS1d/1.0 standard has been auto-created using the JAXB tools from Sun (see below for more on JAXB) using the cansas1d.xsd XML Schema. Resources (JAR files and documentation) for the Java binding may be found in the canSAS subversion repository 6

http://svn.smallangles.net/svn/canSAS/1dwg/tags/v1.0/java

canSAS subversion repository tagged release directory for the Java binding. Use resources from this directory in your development projects.

cansas1d-1.0.jar

This is the JAR file to add to your CLASSPATH in order to use this binding.

cansas1d-1.0-javadoc.jar

Use this JAR file if you want to add the javadoc documentation as tooltips to your editor, such as eclipse. (auto-generated from the project source code using maven2) Note that this file is compatible with any ZIP program and can be unzipped to provide a directory with all the documentation as a set of HTML pages. Start with the index.html page.

cansas1d-1.0-sources.jar

JAR file of the source code. (auto-generated from the project source code using maven2) Note that this is *just* the source code tree and not the full project development tree for the Java (JAXB) API.⁷

cansas1d-1.0.pdf

PDF file of the javadoc source code documentation. (auto-generated from the project source code using pdfdoclet)

http://svn.smallangles.net/trac/canSAS/browser/ldwg/trunk/java/maven/eclipse

canSAS Development project subversion repository for the Java binding. Only use this if you want to participate as a code developer of this binding.

⁵http://usaxs.xor.aps.anl.gov/staff/ilavsky/irena.htm

 $^{^{6} \}verb|http://svn.smallangles.net/svn/canSAS/1dwg/tags/v1.0/java|$

4.3.1 Example_canSAS_Reader.java: example usage in JAVA

An example (Example_canSAS_Reader.java) has been constructed⁸ to show how to read a canSAS1d/1.0 XML file using the Java API.

In short, these are the important two lines:

```
CanSas1dType reader = new CanSas1dType();
and
SASrootType sasRoot = reader.open(xmlFile);
```

where String xmlFile; is the name of the XML file to be read. You will also need these imports

```
import javax.xml.bind.JAXBException;

import net.smallangles.cansas1d.CanSas1dType;
import net.smallangles.cansas1d.SASdataType;
import net.smallangles.cansas1d.SASentryType;
import net.smallangles.cansas1d.SASrootType;
import net.smallangles.cansas1d.SASentryType.Run;
```

Also, since CanSas1dType.open(xmlFile) can throw a JAXBException, you should use a try{} catch {} clause. See the source code for the example.

Here is a Java class that shows how to use the JAXB binding. Use this with any of the test data supplied with the cansas-1d-standard directory (above). By default, it shows the two samples in the 1998spheres.xml example file. (You'll have to get the directory paths right until this documentation improves.)

```
package org.scatteringsw.reader;
  //# $Date: 2009-11-29 22:37:21 -0600 (Sun, 29 Nov 2009) $
  //# $Author: prjemian $
  //# $Revision: 168 $
  //# $URL: http://svn.smallangles.net/svn/canSAS/1dwg/trunk/doc/src/Example_canSAS_Reader. \leftarrow
      java $
  //# $Id: Example_canSAS_Reader.java 168 2009-11-30 04:37:21Z prjemian $
  10
  import java.util.List;
11
12
  import javax.xml.bind.JAXBException;
13
14
  import net.smallangles.cansas1d.CanSas1dType;
15
  import net.smallangles.cansas1d.SASdataType;
17
  import net.smallangles.cansas1d.SASentryType;
  import net.smallangles.cansas1d.SASrootType;
18
  import net.smallangles.cansas1d.SASentryType.Run;
19
20
21
   * Demonstrate how to use the Java binding for the
22
   * cansas1d/1.0 standard XML format for reduced
23
   * small-angle scattering data.
24
   */
  public class Example_canSAS_Reader {
```

 $^{^{8}}$ http://svn.smallangles.net/trac/canSAS/browser/1dwg/trunk/java/maven/eclipse/src/main/java/org/scatteringsw/reader/Example_canSAS_Reader.java

 $^{^9 \}texttt{http://svn.smallangles.net/trac/canSAS/browser/1dwg/trunk/1998spheres.xml}$

```
29
      * @param args
30
31
     public static void main(String[] args) {
32
       CanSas1dType reader = new CanSas1dType();
         // open the XML file and load contents into a Java data structure
         SASrootType sasRoot = reader.open("java-test.xml");
37
         // canSAS XML file is now loaded in memory
39
         int numEntries = sasRoot.getSASentry().size();
40
         System.out.println("SASentry elements: " + numEntries);
41
42
43
         for (int i = 0; i < numEntries; i++ ) {</pre>
44
           System.out.println("SASentry");
45
           SASentryType sasEntry = sasRoot.getSASentry().get(i);
46
47
           System.out.printf("Title:\t%s\n", sasEntry.getTitle());
48
           List<SASentryType.Run> runs = sasEntry.getRun();
49
           System.out.printf("#Runs:\t%d\n", runs.size());
50
51
           for( int j = 0; j < runs.size(); j++ ) {</pre>
52
             Run run = (Run) runs.get(j);
53
             System.out.printf("Run@name:\t%s\n", run.getName());
             System.out.printf("Run:\t%s\n", run.getValue());
57
           List<SASdataType> datasets = sasEntry.getSASdata();
           System.out.printf("#SASdata:\t%d\n", sasEntry.getSASdata().size());
60
           for (int j = 0; j < runs.size(); j++) {
61
             SASdataType sasData = (SASdataType) datasets.get(j);
62
             System.out.printf("SASdata@name:\t%s\n", sasData.getName());
63
             System.out.printf("#points:\t%d\n", sasData.getIdata().size());
64
           System.out.println();
         }
68
         System.out.println("the end.");
69
70
       } catch (JAXBException e) {
71
         e.printStackTrace();
72
73
         System.out.printf("Could not open (unmarshall) XML file: %s\n", xmlFile);
74
75
76
```

4.3.2 example: how to retrieve I(Q)

This is a slightly longer example. Look for the line (near line 75) that has

```
Qsas[i] = sdt.getIdata().get(i).getQ().getValue();
```

to see the operations that unwind the data into usable double[] vectors. Pretty straightforward although there is lots of interesting yet unnecessary diagnostic output.

• sdt : SASdataType object

• getIdata(): /SASdata/Idata

• get(i): /SASdata/Idata[i]

• getQ(): /SASdata/Idata/Q

• getValue(): /SASdata/Idata/Q (value, not the unit)

4.3.2.1 GetSASdata.java

```
2
       # $Date: 2009-11-29 22:37:21 -0600 (Sun, 29 Nov 2009) $
       # $Author: prjemian $
       # $Revision: 168 $
       # $HeadURL: http://svn.smallangles.net/svn/canSAS/1dwg/trunk/doc/src/GetSASdata.java $
       # $Id: GetSASdata.java 168 2009-11-30 04:37:21Z prjemian $
       */
10
  package jlake;
11
  import java.io.File;
12
  import java.util.List;
13
14
  import javax.xml.bind.JAXBContext;
15
  import javax.xml.bind.JAXBElement;
16
17
   import javax.xml.bind.JAXBException;
  import javax.xml.bind.Unmarshaller;
18
  import net.smallangles.cansas1d.SASdataType;
  import net.smallangles.cansas1d.SASdetectorType;
  import net.smallangles.cansas1d.SASentryType;
  import net.smallangles.cansas1d.SASinstrumentType;
23
  import net.smallangles.cansas1d.SASrootType;
24
  import net.smallangles.cansas1d.SASentryType.Run;
25
26
27
  /**
28
   * Load the SAS data for desmearing by Jemian's `lake'' program.
30
  public class GetSASdata {
31
32
33
    private static SASrootType sasRoot;
                                        // SAS data (from cansas1d/1.0 XML file)
34
    35
    private static double[] Isas;
                                    // input I (slit-smeared)
36
    private static double[] Idev;
                                    // input Idev (slit-smeared)
37
    private static double[] Ismr;
                                    // calculated I slit-smeared
                                    // calculated I desmeared
    private static double[] Idsm;
    private static double[] IdsmDev;
                                    // calculated Idev desmeared
    private static double slit_length;
41
42
43
44
     * @param xmlPropertyFile
45
46
    public GetSASdata(String xmlDataFile)
47
      // load SAS data into memory
50
      trv {
      sasRoot = (SASrootType) loadXML("cansas1d", xmlDataFile);
```

```
} catch (JAXBException e) {
52
         e.printStackTrace();
53
         System.out.println("ERROR: Cannot find or interpret SAS XML data file:\t" + ↔
54
             xmlDataFile);
         return;
       // SAS data are loaded
58
       // grab the SAS data to be desmeared
59
       int entryIndex = 0; // /SASentry[1] : unit base in XML, 0 base in Java
60
       int dataIndex = 0; // SASdata[1]
61
       int detectorIndex = 0; // SASdetector[1]
62
       SASentryType entry = (SASentryType) sasRoot.getSASentry().get(entryIndex);
63
       SASdataType sdt = (SASdataType) entry.getSASdata().get(dataIndex);
64
       if (sdt.getName().trim().compareTo("slit-smeared") != 0) {
65
         {\tt System.out.println("selected SAS data element must start: <SAS data name=\verb|\"slit-smeared $\hookleftarrow$}
             \">");
         // throw something (an exception) here?
67
         return;
68
69
       }
70
       int numPoints = sdt.getIdata().size();
       Qsas = new double[numPoints]; // input Q
71
       Isas = new double[numPoints]; // input I (slit-smeared)
72
       Idev = new double[numPoints]; // input Idev (slit-smeared)
73
       for (int i = 0; i < numPoints; i++) {</pre>
74
75
         Qsas[i] = sdt.getIdata().get(i).getQ().getValue();
         Isas[i] = sdt.getIdata().get(i).getI().getValue();
76
         Idev[i] = sdt.getIdata().get(i).getIdev().getValue();
77
78
       Ismr = new double[numPoints];  // calculated I slit-smeared
79
       Idsm = new double[numPoints];  // calculated I desmeared
80
       IdsmDev = new double[numPoints]; // calculated Idev desmeared
81
       SASinstrumentType instrument = (SASinstrumentType) entry.getSASinstrument();
82
       SASdetectorType detector = (SASdetectorType) instrument.getSASdetector().get( ←
83
           detectorIndex);
       slit_length = detector.getSlitLength().getValue();
84
     }
87
88
      \star @param (String) pkg Java package containing XML Schema bound to Java data structures
89
      \star @param (String) xmlFile XML file to be opened
90
      * @return (Object) root object of Java data structure from XML file
91
      * @throws JAXBException
92
93
     @SuppressWarnings("unchecked")
94
     private static Object loadXML(String pkg, String xmlFile) throws JAXBException {
       // use the $(pkg) schema that is bound to a Java structure
       JAXBContext jc = JAXBContext.newInstance(pkg);
       Unmarshaller unmarshaller = jc.createUnmarshaller();
98
       // open the XML file into a Java data structure
99
       Object obj = (Object) ((JAXBElement<Object>) unmarshaller
100
            .unmarshal(new File(xmlFile))).getValue();
101
       return obj;
102
     }
103
104
105
107
      * @param dt (DesmearingType) Desmearing properties
108
      * @param sasRoot (SASrootType) SAS data from XML file
109
    public void inputReporter()
```

```
111
       System.out.println("dataFile:\t" + dt.getDataFile().trim());
112
       System.out.printf("dataset selected:\t/SASroot/SASentry[%d]/SASdata[%d]\n",
113
            dt.getEntryIndex(), dt.getDataIndex());
114
       System.out.printf("detector selected:\t/SASroot/SASentry[%d]/SASinstrument/SASdetector ↔
115
            [%d]\n",
            dt.getEntryIndex(), dt.getDataIndex(), dt.getDetectorIndex());
       System.out.println("extrapolation_form:\t" + dt.getExtrapolationForm().trim());
117
       System.out.println("x\_start\_extrapolation\_evaluation: \t" + dt. \ \hookleftarrow
118
           getXStartExtrapolationEvaluation().getValue());
       System.out.println("x_start_extrapolation_evaluation unit:\t" + dt. ←
119
           getXStartExtrapolationEvaluation().getUnit());
       System.out.println("iterations:\t" + dt.getIterations());
120
       System.out.println("iterative_weight_method:\t" + dt.getIterativeWeightMethod().trim()) ←
121
122
123
       System.out.println("#-----");
124
       int numEntries = sasRoot.getSASentry().size();
125
       System.out.println("SASentry elements: " + numEntries);
126
127
       for( int i = 0; i < numEntries; i++ ) {</pre>
         System.out.println("SASentry");
128
         SASentryType entry = sasRoot.getSASentry().get(i);
129
         System.out.printf("Title:\t%s\n", entry.getTitle());
130
         List<SASentryType.Run> runs = entry.getRun();
131
132
         System.out.printf("#Runs:\t%d\n", runs.size());
         for( int j = 0; j < runs.size(); j++ ) {</pre>
133
            Run run = (Run) runs.get(j);
            System.out.printf("Run@name:\t%s\n", run.getName());
135
            System.out.printf("Run:\t%s\n", run.getValue());
136
137
         List<SASdataType> datasets = entry.getSASdata();
138
         System.out.printf("#SASdata:\t%d\n", datasets.size());
139
         for( int j = 0; j < datasets.size(); j++) {
140
            SASdataType sdt = (SASdataType) datasets.get(j);
141
            System.out.printf("SASdata@name:\t%s\n", sdt.getName());
142
            System.out.printf("#points:\t%d\n", sdt.getIdata().size());
         List<SASdetectorType> detectors = entry.getSASinstrument().getSASdetector();
145
         System.out.printf("#SASdetector:\t%d\n", detectors.size());
146
         for ( int j = 0; j < detectors.size(); j++) {
147
            SASdetectorType det = (SASdetectorType) detectors.get(j);
148
            System.out.printf("SASdata@name:\t%s\n", det.getName());
149
            trv {
150
              System.out.printf("SDD:\t%g\t(%s)\n", det.getSDD()
151
                  .getValue(), det.getSDD().getUnit());
152
            } catch (Exception e) {
153
              System.out.println("SDD:\tundefined");
154
            try {
              System.out.printf("slit_length:\t%g\t(\s)\n", det
157
                  .getSlitLength().getValue(), det.getSlitLength()
158
                  .getUnit());
159
            } catch (Exception e) {
160
              System.out.println("slit_length:\tundefined");
161
162
163
          System.out.println();
166
167
168
```

```
* @param args
169
170
      public static void main(String[] args) {
171
        // load test desmearing properties and data into memory
172
173
        GetSASdata sas = new GetSASdata("test.xml");
174
        sas.inputReporter();
        System.out.println("the end.");
175
176
177
178
179
      * @return the sasRoot
180
181
      public SASrootType getSasRoot() {
182
183
       return sasRoot;
184
185
186
      /**
187
      * @param sasRoot the sasRoot to set
188
      public void setSasRoot(SASrootType sasRoot) {
189
        GetDesmearingInfo.sasRoot = sasRoot;
190
191
192
193
      /**
194
      * @return the qsas
195
196
      public double[] getQsas() {
197
       return Qsas;
198
199
      /**
200
      * @param qsas the qsas to set
201
202
      public void setQsas(double[] qsas) {
203
204
      Qsas = qsas;
205
      }
206
      /**
207
      * @return the isas
208
209
      public double[] getIsas() {
210
       return Isas;
211
      }
212
213
214
215
      * @param isas the isas to set
216
      public void setIsas(double[] isas) {
217
       Isas = isas;
218
219
220
      /**
221
      * @return the idev
222
223
      public double[] getIdev() {
224
225
       return Idev;
226
227
228
      * @param idev the idev to set
229
230
```

```
public void setIdev(double[] idev) {
231
        Idev = idev;
232
233
234
235
236
       * @return the ismr
237
      public double[] getIsmr() {
238
        return Ismr;
239
240
241
242
      * @param ismr the ismr to set
243
244
245
      public void setIsmr(double[] ismr) {
        Ismr = ismr;
247
248
249
      /**
250
       * @return the idsm
251
      public double[] getIdsm() {
252
        return Idsm;
253
254
255
256
      /**
257
       * @param idsm the idsm to set
258
      public void setIdsm(double[] idsm) {
259
        Idsm = idsm;
260
261
262
263
      * @return the idsmDev
264
265
266
      public double[] getIdsmDev() {
267
        return IdsmDev;
268
      }
269
      /**
270
      * @param idsmDev the idsmDev to set
271
272
      public void setIdsmDev(double[] idsmDev) {
273
        IdsmDev = idsmDev;
274
275
276
277
      /**
278
      * @return
279
      public double getSlitLength() {
280
        return slit_length;
281
282
283
284
```

4.3.2.2 java-test.xml

java-test.xml is an example canSAS1d/1.0 XML data file (derived from the standard test file for the lake desmearing code).

```
<?xml version="1.0" encoding="UTF-8"?>
           <?xml-stylesheet type="text/xsl" href="example.xsl" ?>
 2
                              # $Date: 2009-11-29 22:37:21 -0600 (Sun, 29 Nov 2009) $
                              # $Author: prjemian $
                              # $Revision: 168 $
                              # $HeadURL: http://svn.smallangles.net/svn/canSAS/1dwg/trunk/doc/src/java-test.xml $
                              # $Id: java-test.xml 168 2009-11-30 04:37:21Z prjemian $
                              10
11
            <SASroot version="1.0"
12
13
                             xmlns="cansas1d/1.0"
                             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
14
                             xsi:schemaLocation="cansas1d/1.0 http://svn.smallangles.net/svn/canSAS/1dwg/trunk/ ↔
15
                                              cansas1d.xsd"
16
                              <SASentry>
17
                                               18
                                                               desmearing routine</Title>
19
                                               <Run>Run</Run>
                                               <SASdata name="slit-smeared">
20
                                                                 < Idata > < Q unit = "1/A" > 0.000371484 < / Q > < I unit = "1/cm" > 211554 < / I > < Idev unit = "1/cm" > \leftarrow = (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > < Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata > Q) < I unit = "1/cm" > (Idata >
21
                                                                                 1874.86</Idev></Idata>
                                                                 < Idata > < Q unit = "1/A" > 0.000510348 < / Q > < I unit = "1/cm" > 172441 < / I > < Idev unit = "1/cm" > \leftarrow = 1/cm" > 1/cm
22
                                                                                 505.368</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.0006516</Q><I unit="1/cm">139041</I><Idev unit="1/cm"> \leftrightarrow
                                                                                 373.826</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.000798956</Q><I unit="1/cm">110665</I><Idev unit="1/cm"> \leftrightarrow
                                                                                 299.932</Tdev></Tdata>
                                                                 <Idata><Q unit="1/A">0.000931629</Q><I unit="1/cm">91165.3</I><Idev unit="1/cm" <math>\leftrightarrow
                                                                                 >255.102</Idev></Idata>
                                                                 < Idata > < Q unit = "1/A" > 0.00107907 < / Q > < I unit = "1/cm" > 73855.7 < / I > < Idev unit = "1/cm" > <math>\leftrightarrow
26
                                                                                 218.547</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.00121794</Q><I unit="1/cm">60799.2</I><Idev unit="1/cm"> ↔
27
                                                                                 191.38</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.00168963</Q><I unit="1/cm">33573.8</I><Idev unit="1/cm"> ↔
                                                                                 130.321</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.00227932</Q><I unit="1/cm">17602</I><Idev unit="1/cm"> \leftrightarrow
                                                                                 82.5591</Idev></Idata>
                                                                 < Idata > < Q unit = "1/A" > 0.00325199 < / Q > < I unit = "1/cm" > 7394.04 < / I > < Idev unit = "1/cm" > \leftarrow = 1/cm" > \left
30
                                                                                 50.0284</Idev></Idata>
                                                                 < Idata > < Q unit = "1/A" > 0.00608234 < / Q > < I unit = "1/cm" > 1305.37 < / I > < Idev unit = "1/cm" > \leftarrow = 1/cm" > 1/cm
31
                                                                                 3.52884</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.00891261</Q><I unit="1/cm">464.949</I><Idev unit="1/cm"> ↔
32
                                                                                 2.1601</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.0113893</Q><I unit="1/cm">241.462</I><Idev unit="1/cm"> \leftrightarrow
                                                                                 1.7191</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.0151631</Q><I unit="1/cm">126.664</I><Idev unit="1/cm"> \leftrightarrow
                                                                                 1.46166</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.0264845</Q><I unit="1/cm">53.7715</I><Idev unit="1/cm"> <math>\leftrightarrow
                                                                                 1.27858</Idev></Idata>
                                                                 < Idata > < Q unit = "1/A" > 0.0378057 < / Q > < I unit = "1/cm" > 43.2662 < / I > < Idev unit = "1/cm" > \leftarrow = 1/cm" > 43.2662 < / I > < Idev unit = "1/cm" > \leftarrow = 1/cm" > \leftarrow = 1/cm" > 1/cm" > \leftarrow = 1/cm" > 1/cm" > \leftarrow = 1/cm" > 1/
                                                                                 1.25507</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.0472402</Q><I unit="1/cm">39.9715</I><Idev unit="1/cm"> \leftrightarrow
37
                                                                                 1.25581</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.0566745</Q><I unit="1/cm">38.9685</I><Idev unit="1/cm"> \leftrightarrow
                                                                                 1.25924</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.0996003</Q><I unit="1/cm">38.8772</I><Idev unit="1/cm"> \leftrightarrow
                                                                                 1.27929</Idev></Idata>
                                                                 <Idata><Q unit="1/A">0.144883</Q><I unit="1/cm">37.5137</I><Idev unit="1/cm"> \leftrightarrow
40
                                                                                1.30765</Idev></Idata>
```

```
<Idata><Q unit="1/A">0.190162</Q><I unit="1/cm">39.1407</I><Idev unit="1/cm"> <math>\leftrightarrow
41
                     1.33442</Idev></Idata>
                 <Idata><Q unit="1/A">0.224119</Q><I unit="1/cm">38.589</I><Idev unit="1/cm"> \leftrightarrow
42
                     1.35581</Idev></Idata>
            </SASdata>
            <SASsample>
                <ID>ID</ID>
            </SASsample>
            <SASinstrument>
47
                <name>calculated</name>
48
                <SASsource>
49
                     <radiation>model</radiation>
50
                </SASsource>
51
                <SAScollimation/>
52
                <SASdetector>
53
                     <name>calculated</name>
55
                     <slit_length unit="1/A">0.08</slit_length>
                </SASdetector>
57
            </SASinstrument>
58
            <SASnote/>
59
       </SASentry>
   </SASroot>
60
```

4.3.3 JAXB

• Question: What is JAXB?

Answer: Java Architecture for XML Binding (JAXB): ¹⁰

• Wow! : Is it available for other languages?

• Answer: Ask Google. JAXB is for Java. (example) 11

• Question : How do I pull out the *I*(*Q*) data?

• Answer : see fragment above (gets data for desmearing)

• Question: Has JAXB been useful?

Answer: Very useful. Since an XML Schema was defined, JAXB was very useful to create a Java binding automatically.
Then, javadoc was able to auto-generate the basic documentation as HTML and pdfdoclet was able to auto-generate the documentation in a PDF file.

4.4 Python binding

Specific *support* for the cansas1d/1.0 data standard in Python is being developed by *NIST/NCNR* as part of their contribution to the *DANSE* project.

Here are some terse instructions to get you started:

Example 4.1

```
svn co http://danse.us/trac/sans/browser/trunk/DataLoader DataLoader cd DataLoader python setup.py install
```

The *release notes* have a list of the dependencies.

 $^{^{10} \}verb|http://java.sun.com/developer/technicalArticles/WebServices/jaxb/$

¹¹http://www.devx.com/ibm/Article/20261

4.4.1 Comments

Other constructive suggestions (that predate the NIST/NCNR support) have been gathered on this page.

4.4.2 gnosis.xml.objectify

The GnosisUtils ¹² offer a method to read any XML file into Python data structures. This utility does not validate the XML against a specific XML Schema which can be both good (flexible, especially when XML Foreign Namespace elements are used) and not so good (XML content not guaranteed to be valid *by the rules*).

A quick test of this turned up an acceptable result in that it was able to read several of the canSAS test XML files, including those with foreign namespaces. And *it was very easy*. (Especially with some help from http://www.xml.com/pub/a/2003/07/02/py-xml.html)

Here is a quick example.

4.4.2.1 installation

Here is the condensed installation (without all that output) steps. Your system may have gnosis already installed. You may also need sysAdmin privileges. You may need ...

Example 4.2 Gnosis installation instructions

```
cd /tmp

wget http://freshmeat.net/redir/gnosisxml/22028/url_tgz/Gnosis_Utils-1.2.2.tar.gz

tar xzf Gnosis_Utils-1.2.2.tar.gz

cd Gnosis_Utils-1.2.2/

python setup.py install_all
```

4.4.2.2 quick test in Python

Here is the Python code (without all that output) (called python-test.py):

Example 4.3 python-test.py

```
import gnosis.xml.objectify

sasxml = gnosis.xml.objectify.XML_Objectify('bimodal-test1.xml').make_instance()

print sasxml.SASentry.Title.PCDATA

print sasxml.SASentry.Run.PCDATA

print sasxml.SASentry.SASinstrument.name.PCDATA

print sasxml.SASentry.SASdata.Idata[0].Q.unit, sasxml.SASentry.SASdata.Idata[0].I.unit

print sasxml.SASentry.SASdata.Idata[0].Q.PCDATA, sasxml.SASentry.SASdata.Idata[0].I.PCDATA 
, sasxml.SASentry.SASdata.Idata[0].Idev.PCDATA
```

Example 4.4 output from python-test.py

```
[Pete@regitte,2441,cansas1dwg-regitte]$ ./python-test.py

SAS bimodal test1

1992

simulated SAS calculation

1/A 1/cm

0.0040157139 3497.473 90.72816
```

¹² http://freshmeat.net/projects/gnosisxml/

Example 4.5 full session output

```
[Pete@regitte, 2429, /tmp] $ cd /tmp
   [Pete@regitte,2430,/tmp]$ wget http://freshmeat.net/redir/gnosisxml/22028/url_tgz/ ↔
      Gnosis_Utils-1.2.2.tar.gz
   --11:43:16-- http://freshmeat.net/redir/gnosisxml/22028/url_tgz/Gnosis_Utils-1.2.2.tar.gz
             => 'Gnosis_Utils-1.2.2.tar.gz'
  Resolving freshmeat.net... 66.35.250.168
6
  Connecting to freshmeat.net|66.35.250.168|:80... connected.
  HTTP request sent, awaiting response... 302 Found
  Location: http://www.gnosis.cx/download/Gnosis_Utils.More/Gnosis_Utils-1.2.2.tar.gz [ ←
      followingl
   --11:43:16-- http://www.gnosis.cx/download/Gnosis_Utils.More/Gnosis_Utils-1.2.2.tar.gz
             => 'Gnosis_Utils-1.2.2.tar.gz'
  Resolving www.gnosis.cx... 64.41.64.172
12
  Connecting to www.gnosis.cx|64.41.64.172|:80... connected.
13
  HTTP request sent, awaiting response... 200 OK
14
  Length: 287,989 (281K) [application/x-tar]
15
16
  17
       287,989
                    --.--K/s
18
   11:43:16 (2.47 MB/s) - 'Gnosis_Utils-1.2.2.tar.gz' saved [287989/287989]
19
20
   [Pete@regitte, 2431, /tmp] $ tar xzf Gnosis_Utils-1.2.2.tar.gz
   [Pete@regitte, 2432, /tmp] $ cd Gnosis_Utils-1.2.2/
   /tmp/Gnosis_Utils-1.2.2
  [Pete@regitte, 2433, Gnosis_Utils-1.2.2]$ python setup.py install_all
24
  [Pete@regitte, 2434, Gnosis_Utils-1.2.2]$ cd ~/workspace/cansas1dwg-regitte
2.5
  [Pete@regitte, 2435, cansas1dwg-regitte] $ python
26
  Python 2.5.1 (r251:54863, May 18 2007, 16:56:43)
27
  [GCC 3.4.4 (cygming special, gdc 0.12, using dmd 0.125)] on cygwin
28
  Type "help", "copyright", "credits" or "license" for more information.
  >>> import gnosis.xml.objectify
  >>> sasxml = gnosis.xml.objectify.XML_Objectify('bimodal-test1.xml').make_instance()
  >>> print sasxml.SASentry.Title.PCDATA
32
  SAS bimodal test1
33
34
  >>> print sasxml.SASentry.Run.PCDATA
35
  1992
  >>> print sasxml.SASentry.SASinstrument.name.PCDATA
36
  simulated SAS calculation
37
  >>> print sasxml.SASentry.SASdata.Idata[0].Q.unit
38
  >>> print sasxml.SASentry.SASdata.Idata[0].I.unit
40
  >>> print sasxml.SASentry.SASdata.Idata[0].Q.PCDATA, sasxml.SASentry.SASdata.Idata[0].I. ↔
      PCDATA, sasxml.SASentry.SASdata.Idata[0].Idev.PCDATA
  0.0040157139 3497.473 90.72816
```

4.4.2.3 Conclusion: OK

This has the promise of being a useful approach to reading this format in Python. Now, how to write back out...?

4.4.3 generateDS.py

generateDS.py (http://www.rexx.com/~dkuhlman/, http://www.rexx.com/~dkuhlman/generateDS.html) can build a binding (map the structure of the XML file directly into a Python data structure) for Python from an XML Schema. However, the cansas1d/1.0

XML schema (cansas1d.xsd) does not seem to fit the model. It seems, for now, that generateDS-1.12a fails on a certain annotate line.

4.4.3.1 Conclusion: not ready yet

Either the canSAS standard (by means of the cansas1d.xsd XML Schema) is not ready or *generateDS.py* does not cover the XML Schema requirements we have at this time. Either way, this is not a viable tool to use now. (2008-05-16)

4.4.4 Other suggestions

- http://www.devx.com/ibm/Article/20261
- http://mail.python.org/pipermail/xml-sig/2002-April/007559.html
- http://pywebsvcs.sourceforge.net/

Appendix A

The Intensity Problem

The intensity (see SASdata/Idata) is permitted in three different forms:

- absolute units: differential cross-section per unit volume per unit solid angle (typical unit: 1/cm)
- absolute units: differential cross-section per unit atom per unit solid angle (typical unit: cm²)
- arbitrary units: usually a ratio of two detectors but unit is meaningless (typical unit: a.u.)

This presents a few problems for analysis software to sort out when reading the data. Fortunately, it is possible to analyze the unit attribute to decide which type of intensity is being reported and make choices at the time the file is read. But this is an area for consideration and possible improvement.

One problem arises with software that automatically converts data into some canonical units used by that software. The software should not convert units between these three types of intensity indiscriminately.

A second problem is that when arbitrary units are used, then the set of possible analytical results is restricted (such as no meaningful volume fraction or number density can be determined directly from I(Q)).

Appendix B

Examples

Various topics have been considered or presented in considering this standard. Some are described below.

B.1 Example XML Data Files

This section presents two examples of XML Data Files adhering to the cansas1d/1.0 standard. Thie first file (data-simple.xml) is a basic example and the second file (cansas1d.xml) uses almost all the allowed elements. In each, though, most of the data has been removed to clarify the structure.

B.1.1 data-simple.xml

The example data file data-simple.xml shows just the basic elements of the cansas1d/1.0 standard. Only a single data point has been shown to more clearly show the other structure. The data file is actually an excerpt from the bimodal-test1.xml example file in the main distribution. The stylesheet in data-simple.xml is very basic ¹ data file.

¹http://svn.smallangles.net/trac/canSAS/browser/1dwg/trunk/bimodal-test1.xml

Example B.1 data-simple.xml

```
<?xml version="1.0"?>
  <?xml-stylesheet type="text/xsl" href="ascii3col.xsl" ?>
  <SASroot version="1.0"
      xmlns="cansas1d/1.0"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      cansas1d.xsd"
    <SASentry>
      <Title>SAS bimodal test1</Title>
      <Run>1992</Run>
      <SASdata>
        <Idata><Q unit="1/A">0.0040157139</Q><I unit="1/cm">3497.473</I><Idev unit="1/cm"> \leftrightarrow
12
            90.72816</Idev></Idata>
        <Idata><Q unit="1/A">0.0045408653</Q><I unit="1/cm">3340.003</I><Idev unit="1/cm"> \leftrightarrow
13
            84.95314</Idev></Idata>
      </SASdata>
14
      <SASsample>
15
        <ID>bimodal-test1</ID>
16
      </SASsample>
17
      <SASinstrument>
18
        <name>simulated SAS calculation</name>
        <SASsource>
          <radiation>artificial</radiation>
          <wavelength unit="A">1.00</wavelength>
        </SASsource>
        <SAScollimation/>
24
        <SASdet.ect.or>
25
          <name>calculation</name>
26
        </SASdetector>
27
      </SASinstrument>
28
      <SASprocess>
        <name>create the SAS data</name>
        <date>1992-01-31</date>
31
        <term name="shape">spheres</term>
32
        <term name="contrast" unit="1/cm^4">100E20</term>
33
        <term name="Background" unit="1/cm">0.1</term>
34
        <term name="sMult" unit="cts/cm">1000.0</term>
35
        <term name="sNoise" unit="fraction">0.25</term>
36
        <SASprocessnote/>
37
      </SASprocess>
      <SASnote/>
    </SASentry>
  </SASroot>
```

B.1.2 cansas1d.xml

The example data file cansas1d.xml shows examples of most of the elements of the cansas1d/1.0 standard. Only a single data point has been shown to more clearly show the other structure. 2

²http://svn.smallangles.net/trac/canSAS/browser/1dwg/trunk/cansas1d.xml

```
<SASentry>
8
       <Title></Title>
9
       <Run></Run>
10
       <SASdata>
         <Idata>
           <Q unit="1/A">0.02</Q>
           <I unit="1/cm">1000</I>
14
           <Idev unit="1/cm">3</Idev>
15
           <Qdev unit="1/A">0.01</Qdev>
16
           <Qmean unit="1/A"><!-- Qmean is optional --></Qmean>
17
           <Shadowfactor><!-- Shadowfactor is optional --></Shadowfactor>
18
19
         </Idata>
       </SASdata>
20
       <SASsample>
21
22
         <ID>SI600-new-long</ID>
23
         <thickness unit="mm">1.03</thickness>
         <transmission>0.327</transmission>
24
25
         <temperature unit="C">0.0000</temperature>
26
         <position>
           < x unit="mm">10.00</x>
27
           <y unit="mm">0.00</y>
28
         </position>
29
         <orientation>
30
           <roll unit="degree">22.5<!-- was: sample_orientation --></roll>
31
           <pitch unit="degree">0.020<!-- was: sample_offset_angle --></pitch>
         </orientation>
         <details>
           <!-- was: sample_prep -->
           http://chemtools.chem.soton.ac.uk/projects/blog/blogs.php/bit_id/2720
         </details>
37
       </SASsample>
38
       <SASinstrument>
         <name>canSAS instrument</name>
40
         <SASsource>
41
42
           <radiation>neutron</radiation>
           <beam_size>
             < x unit="mm">12.00</x>
44
             <y unit="mm">12.00</y>
45
           </beam_size>
           <beam_shape>disc</peam_shape>
47
           <wavelength unit="A">6.00</wavelength>
48
           <wavelength_min unit="nm">0.22</wavelength_min>
49
           <wavelength_max unit="nm">1.00</wavelength_max>
50
           <wavelength_spread unit="percent">
51
             14.3
52
           </wavelength_spread>
         </SASsource>
         <SAScollimation>
           <aperture name="source" type="radius">
             <size>
57
               <x unit="mm">50</x>
             </size>
59
             <distance unit="m">11.000<!-- was: distance_coll --></distance>
60
           </aperture>
61
           <aperture name="sample" type="radius">
62
63
               <x unit="mm">0</x>
             </size>
           </aperture>
66
         </SAScollimation>
67
         <SASdet.ect.or>
```

```
<name>fictional hybrid</name>
69
            <SDD unit="m">
70
71
              <!-- sample-to-detector distance -->
              4.150
72
            </SDD>
            <orientation>
              <roll unit="degree">0.00</roll>
              <pitch unit="degree">0.00</pitch>
              <yaw unit="degree">0.00</yaw>
77
            </orientation>
            <beam center>
79
              < x unit="mm">322.64</x>
80
              <y unit="mm">327.68</y>
81
            </beam_center>
82
            <pixel_size>
83
              <x unit="mm">5.00</x>
              <y unit="mm">5.00</y>
            </pixel_size>
87
          </SASdetector>
88
       </SASinstrument>
89
       <SASprocess>
          <name>spol</name>
90
          <date>04-Sep-2007 18:35:02</date>
91
          <term name="radialstep" unit="mm">10.000</term>
92
          <term name="sector_width" unit="degree">180.0</term>
93
          <term name="sector_orient" unit="degree">0.0</term>
          <term name="MASK_file">USER:MASK.COM</term>
          <SASprocessnote>
            AvA1 0.0000E+00 AsA2 1.0000E+00 XvA3 1.0526E+03 XsA4
97
            5.2200E-02 XfA5 0.0000E+00
98
          </SASprocessnote>
          <SASprocessnote>
100
            S... 13597 0 2.26E+02 2A 5mM 0%D2O Sbak 13594 0 1.13E+02
101
            H2O Buffer
102
          </SASprocessnote>
103
          <SASprocessnote>V... 13552 3 1.00E+00 H2O5m</SASprocessnote>
104
       </SASprocess>
105
       <SASprocess>
106
          <name>NCNR-IGOR</name>
107
          <date>03-SEP-2006 11:42:47</date>
108
          <description />
109
          <term name="average_type">Circular</term>
110
          <term name="SAM_file">SEP06064.SA3_AJJ_L205</term>
111
          <term name="BKD_file">SEP06064.SA3_AJJ_L205</term>
112
          <term name="EMP_file">SEP06064.SA3_AJJ_L205
113
          <term name="DIV_file">SEP06064.SA3_AJJ_L205</term>
114
          <term name="MASK_file">SEP06064.SA3_AJJ_L205</term>
115
          <term name="ABS:TSTAND">1</term>
116
          <term name="ABS:DSTAND" unit="mm">1</term>
117
          <term name="ABS:IZERO">230.09</term>
118
          <term name="ABS:XSECT" unit="mm">1</term>
119
          <SASprocessnote/>
120
       </SASprocess>
121
       <SASnote />
122
     </SASentry>
123
   </SASroot>
```

B.2 Example XML Stylesheets

This section presents examples of XML Stylesheets useful for the cansas1d/1.0 standard. XML Stylesheets (XSLT) are used to transform XML documents into other documents such as XML documents, xhtml documents, or even ASCII text. XML stylesheets also can be used to extract metadata from XML files.

B.2.1 ascii3col.xsl

The ascii3col.xsl stylesheet displays all the Idata blocks in a cansas1d/1.0 file in 3-column ASCII form. Be careful using this stylesheet on files with multiple SASdata or SASentry blocks since this stylesheet assumes there is only one of each of these. While it is the most common case to have only one of each, some of the examples have multiple data sets. This stylesheet will concatenate all of the Idata.

Example B.2 ascii3col.xsl

```
<?xml version="1.0" encoding="utf-8" ?>
  <xsl:stylesheet version="1.0"</pre>
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:cs="cansas1d/1.0"
  xsi:schemaLocation="cansas1d/1.0 http://svn.smallangles.net/svn/canSAS/1dwg/trunk/cansas1d. ←
      xsd">
  <xsl:template match="/">
  <html>
  10
  <xsl:for-each select="cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata">
11
  <xsl:value-of select="cs:Q"/>
  <xsl:value-of select="cs:I"/>
  <xsl:value-of select="cs:Idev"/>
15
16
  </xsl:for-each>
17
  18
  </html>
19
20 </xsl:template>
  </xsl:stylesheet>
```

B.2.2 cansasxml-html.xsl

The cansasxml-html.xsl is the standard XSL stylesheet for cansas1d/1.0 files. It shows all available SASdata and metadata, separated by the different SASentry blocks.

```
in a web browser such as Firefox or Internet Explorer.
15
16
17
    xsltproc cansasxml-html.xsl datafile.xml > datafile.html
18
    (or include it as indicated at the documentation site
    http://www.smallangles.net/wgwiki/index.php/cansas1d_documentation)
21
22
  <xsl:stylesheet version="1.0"</pre>
23
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
24
    xmlns:cs="cansas1d/1.0"
25
    xmlns:fn="http://www.w3.org/2005/02/xpath-functions"
26
    xmlns:ues="urn:efficiency:spectrum"
27
    xmlns:ums="urn:monitor:spectrum"
28
    xmlns:uts="urn:transmission:spectrum"
30
31
    <xsl:template match="/">
32
33
  <!-- DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/ ↔
      xhtml1/DTD/xhtml1-transitional.dtd" -->
34
      <html>
        <head>
35
          <title>SAS data in canSAS 1-D format</title>
36
37
        </head>
        <body>
38
          <h1>SAS data in canSAS 1-D format</h1>
          <small>generated using <TT>cansasxml-html.xsl</TT> from canSAS</small>
          <BR />
41
          42
            <t.r>
43
              canSAS 1-D XML version:
44
              <xsl:value-of select="cs:SASroot/@version" />
45
            </t.r>
46
            47
              number of entries:
48
              <xsl:value-of select="count(cs:SASroot/cs:SASentry)" />
            <xsl:if test="count(/cs:SASroot//cs:SASentry)>1">
51
              <!-- if more than one SASentry, make a table of contents -->
52
              <xsl:for-each select="/cs:SASroot//cs:SASentry">
53
                <t.r>
54
                  SASentry-<xsl:value-of select="position()" />
55
                  56
                    <a href="#SASentry-{generate-id(.)}">
57
                      <xsl:if test="@name!=''">(<xsl:value-of select="@name" />)</xsl:if>
58
                      <xsl:value-of select="cs:Title" />
                    </a>
                  61
                  <xsl:if test="count(cs:SASdata)>1">
                    63
                      <!-- if more than one SASdata, make a local table of contents -->
64
                      <xsl:for-each select="cs:SASdata">
65
                        <xsl:if test="position()>1">
66
                          <xsl:text> | </xsl:text>
67
                        </xsl:if>
68
                        <a href="#SASdata-{generate-id(.)}">
69
                          <xsl:choose>
70
71
                            <xsl:when test="cs:name!=''">
72
                              <xsl:value-of select="cs:name" />
73
                            </xsl:when>
                            <xsl:when test="@name!=''">
74
                              <xsl:value-of select="@name" />
```

```
</xsl:when>
76
                             <xsl:otherwise>
77
                               SASdata<xsl:value-of select="position()" />
78
                             </xsl:otherwise>
                           </xsl:choose>
                         </a>
                       </xsl:for-each>
                     83
                   </xsl:if>
84
                 85
               </xsl:for-each>
86
             </xsl:if>
87
           88
           <xsl:apply-templates />
89
           <small><center>$Id: cansasxml-html.xsl 148 2009-11-28 02:24:37Z prjemian $</center> \leftrightarrow
               </small>
92
         </body>
93
       </html>
     </xsl:template>
94
95
     <xsl:template match="cs:SASroot">
96
       <xsl:for-each select="cs:SASentry">
97
         <hr />
98
         <br />
         <a id="#SASentry-{generate-id(.)}" name="SASentry-{generate-id(.)}" />
100
         <h1>SASentry<xsl:value-of select="position()" />:<xsl:if
101
           test="@name!=''">(<xsl:value-of select="@name" />)</xsl:if>
102
           <xsl:value-of select="cs:Title" /></h1>
103
         <xsl:if test="count(cs:SASdata)>1">
104
           105
             <caption>SASdata contents</caption>
106
             <xsl:for-each select="cs:SASdata">
107
               108
                 SASdata-<xsl:value-of select="position()" />
109
110
                   <a href="#SASdata-{generate-id(.)}">
111
                     <xsl:choose>
112
                     <xsl:when test="@name!=''">
113
                         <xsl:value-of select="@name" />
114
                       </xsl:when>
115
                       <xsl:otherwise>
116
                         SASdata<xsl:value-of select="position()" />
117
                       </xsl:otherwise>
118
                     </xsl:choose>
119
                   </a>
120
                 121
               122
             </xsl:for-each>
123
           124
         </xsl:if>
125
         <br />
126
         127
           128
             SAS data
129
             Selected Metadata
130
           131
           133
               <xsl:apply-templates select="cs:SASdata" />
134
               <xsl:apply-templates select="cs:SASsample/ues:efficiency_ratio" />
135
               <xsl:apply-templates select="cs:SASsample/ums:monitor_spectrum" />
136
```

```
<xsl:apply-templates select="cs:SASsample/uts:transmission_spectrum" />
137
            138
            139
              140
               name
143
                 value
144
                 unit
               145
               <t.r>
146
                 Title
147
                 <xsl:value-of select="cs:Title" />
148
149
               150
               151
152
                 Run
153
                 <xsl:value-of select="cs:Run" />
                 155
               <xsl:apply-templates select="run" />
156
               <xsl:apply-templates select="cs:SASsample" />
157
               <xsl:apply-templates</pre>
                                   select="cs:SASinstrument" />
158
               <xsl:apply-templates</pre>
                                   select="cs:SASprocess" />
159
                                   select="cs:SASnote" />
               <xsl:apply-templates</pre>
160
              161
162
            163
        164
165
      </xsl:for-each>
    </xsl:template>
166
167
    <xsl:template match="cs:SASdata">
168
      <a id="#SASdata-{generate-id(.)}" name="SASdata-{generate-id(.)}" />
169
      170
        <caption><xsl:if</pre>
171
          test="@name!=''"><xsl:value-of select="@name" /></xsl:if> (<xsl:value-of
172
          select="count(cs:Idata)" /> points)</caption>
173
174
        <xsl:for-each select="cs:Idata[1]/*">
175
176
              <xsl:value-of select="name()" />
177
              <xsl:if test="@unit!=''"> (<xsl:value-of select="@unit" />)</xsl:if>
178
            179
          </xsl:for-each>
180
        181
        <xsl:for-each select="cs:Idata">
182
          183
            <xsl:for-each select="*">
184
              <xsl:value-of select="." />
            </xsl:for-each>
186
          </t.r>
187
        </xsl:for-each>
188
      189
    </xsl:template>
190
191
    <xsl:template match="cs:SASsample">
192
      193
194
        SASsample
195
        <xsl:value-of select="@name" />
        196
      197
      <xsl:for-each select="*">
198
```

```
<xsl:choose>
199
           <xsl:when test="name()='position'">
200
             <xsl:apply-templates select="." />
201
202
           </xsl:when>
           <xsl:when test="name()='orientation'">
             <xsl:apply-templates select="." />
           </xsl:when>
           <xsl:when test="name()='efficiency_ratio'">
206
             <!-- xmlns="urn:efficiency:spectrum" -->
207
           </xsl:when>
208
           <xsl:when test="name()='monitor_spectrum'">
209
             <!-- xmlns="urn:monitor:spectrum" -->
210
           </xsl:when>
211
           <xsl:when test="name()='transmission_spectrum'">
212
             <!-- xmlns="urn:transmission:spectrum" -->
213
           </xsl:when>
215
           <xsl:otherwise>
             217
               <xsl:value-of select="name()." />_<xsl:value-of select="name()" />
               <xsl:value-of select="." />
218
               <xsl:value-of select="@unit" />
219
             220
           </xsl:otherwise>
221
         </xsl:choose>
222
       </xsl:for-each>
223
224
     </xsl:template>
     <xsl:template match="cs:SASinstrument">
226
227
       >
         SASinstrument
228
         <xsl:value-of select="cs:name" />
229
         <xsl:value-of select="@name" />
230
       </t.r>
231
       <xsl:for-each select="*">
232
233
           <xsl:when test="name()='SASsource'"><xsl:apply-templates select="." /></xsl:when>
234
           <xsl:when test="name()='SAScollimation'"><xsl:apply-templates select="." /></ \leftrightarrow
           <xsl:when test="name()='SASdetector'"><xsl:apply-templates select="." /></xsl:when>
           <xsl:when test="name()='name'" />
237
           <xsl:otherwise>
238
             239
               <xsl:value-of select="name(..)" />_<xsl:value-of select="name()" />
240
               <xsl:value-of select="." />
241
               <xsl:value-of select="@unit" />
242
243
           </xsl:otherwise>
         </xsl:choose>
       </xsl:for-each>
246
247
     </xsl:template>
248
     <xsl:template match="cs:SASsource">
249
       250
         <xsl:value-of select="name()" />
251
         <xsl:value-of select="@name" />
252
         253
       254
       <xsl:for-each select="*">
         <xsl:choose>
           <xsl:when test="name()='beam_size'"><xsl:apply-templates select="." /></xsl:when>
257
258
           <xsl:otherwise>
259
             <t.r>
```

```
<xsl:value-of select="name(..)" />_<xsl:value-of select="name()" />
260
               <xsl:value-of select="." />
261
               <xsl:value-of select="@unit" />
262
             263
           </xsl:otherwise>
         </xsl:choose>
       </xsl:for-each>
267
     </xsl:template>
268
     <xsl:template match="cs:beam_size">
269
       \langle tr \rangle
270
         <xsl:value-of select="name(..)" />_<xsl:value-of select="name()" />
271
         <xsl:value-of select="@name" />
272
273
       274
275
       <xsl:for-each select="*">
276
         <xsl:value-of select="name(../..)" />_<xsl:value-of select="name(...)" />_< \hookleftarrow
               xsl:value-of select="name()" />
           <xsl:value-of select="." />
278
           <xsl:value-of select="@unit" />
279
         280
       </xsl:for-each>
281
     </xsl:template>
282
283
284
     <xsl:template match="cs:SAScollimation">
       <xsl:for-each select="*">
         <xsl:choose>
           <xsl:when test="name()='aperture'"><xsl:apply-templates select="." /></xsl:when>
287
           <xsl:otherwise>
288
289
               <xsl:value-of select="name(..)" />_<xsl:value-of select="name()" />
290
               <xsl:value-of select="." />
291
               <xsl:value-of select="@unit" />
292
             293
           </xsl:otherwise>
294
         </xsl:choose>
       </xsl:for-each>
296
     </xsl:template>
297
298
     <xsl:template match="cs:aperture">
299
       300
         <xsl:value-of select="name()." />_<xsl:value-of select="name()" />
301
         <xsl:value-of select="@name" />
302
         <xsl:value-of select="@type" />
303
304
       <xsl:for-each select="*">
         <xsl:choose>
           <xsl:when test="name()='size'"><xsl:apply-templates select="." /></xsl:when>
308
           <xsl:otherwise>
             <t.r>
309
               <xsl:value-of select="name(../..)" />_<xsl:value-of select="name(..)" />_< \hookleftarrow
310
                   xsl:value-of select="name()" />
               <xsl:value-of select="." />
311
               <xsl:value-of select="@unit" />
312
             313
314
           </xsl:otherwise>
315
         </xsl:choose>
316
       </xsl:for-each>
317
     </xsl:template>
318
319
     <xsl:template match="cs:size">
```

```
\langle tr \rangle
320
         <xsl:value-of select="name(../..)" />_<xsl:value-of select="name(..)" />_< \leftrightarrow
321
            xsl:value-of select="name()" />
         <xsl:value-of select="@name" />
322
         <xsl:for-each select="*">
326
         >
           <xsl:value-of select="name(../..)" />_<xsl:value-of select="name(../..)" />_ \leftarrow
327
              <xsl:value-of select="name(..)" />_<xsl:value-of select="name()" />
           <xsl:value-of select="." />
328
           <xsl:value-of select="@unit" />
329
         330
       </xsl:for-each>
331
     </xsl:template>
332
333
334
     <xsl:template match="cs:SASdetector">
       335
336
         <xsl:value-of select="name()" />
         <xsl:value-of select="cs:name" />
337
         <xsl:value-of select="@name" />
338
       339
       <xsl:for-each select="*">
340
         <xsl:choose>
341
           <xsl:when test="name()='name'" />
342
           <xsl:when test="name()='offset'"><xsl:apply-templates select="." /></xsl:when>
           <xsl:when test="name()='orientation'"><xsl:apply-templates select="." /></xsl:when>
           <xsl:when test="name()='beam_center'"><xsl:apply-templates select="." /></xsl:when>
           <xsl:when test="name()='pixel_size'"><xsl:apply-templates select="." /></xsl:when>
346
           <xsl:otherwise>
347
             <t.r>
348
               <xsl:value-of select="name()." />_<xsl:value-of select="name()" />
349
               <xsl:value-of select="." />
350
               <xsl:value-of select="@unit" />
351
             352
           </xsl:otherwise>
353
         </xsl:choose>
       </xsl:for-each>
355
     </xsl:template>
356
357
     <xsl:template match="cs:orientation">
358
       \langle tr \rangle
359
         <xsl:value-of select="name(..)" />_<xsl:value-of select="name()" />
360
         <xsl:value-of select="@name" />
361
         362
       363
       <xsl:for-each select="*">
         <xsl:value-of select="name(../..)" />_<xsl:value-of select="name(..)" />_< \leftrightarrow
              xsl:value-of select="name()" />
           <xsl:value-of select="." />
367
           <xsl:value-of select="@unit" />
368
         369
       </xsl:for-each>
370
     </xsl:template>
371
372
     <xsl:template match="cs:position">
373
         <xsl:value-of select="name()." />_<xsl:value-of select="name()" />
375
         <xsl:value-of select="@name" />
376
         377
       378
```

```
<xsl:for-each select="*">
379
         <t.r>
380
           <xsl:value-of select="name(../..)" />_<xsl:value-of select="name(..)" />_< \leftrightarrow
381
              xsl:value-of select="name()" />
           <xsl:value-of select="." />
           <xsl:value-of select="@unit" />
         </t.r>
385
       </xsl:for-each>
     </xsl:template>
386
387
     <xsl:template match="cs:offset">
388
       389
         <xsl:value-of select="name(..)" />_<xsl:value-of select="name()" />
390
         <xsl:value-of select="@name" />
391
392
       <xsl:for-each select="*">
394
         <t.r>
395
396
           <xsl:value-of select="name(../..)" />_<xsl:value-of select="name(..)" />_< \leftrightarrow
              xsl:value-of select="name()" />
           <xsl:value-of select="." />
397
           <xsl:value-of select="@unit" />
398
         </t.r>
399
       </xsl:for-each>
400
     </xsl:template>
401
     <xsl:template match="cs:beam_center">
403
       <t.r>
404
         <xsl:value-of select="name()." />_<xsl:value-of select="name()" />
405
         <xsl:value-of select="@name" />
406
         < t.d. />
407
       408
       <xsl:for-each select="*">
409
         410
           <xsl:value-of select="name(../..)" />_<xsl:value-of select="name(..)" />_< \leftrightarrow
411
              xsl:value-of select="name()" />
           <xsl:value-of select="." />
412
           <xsl:value-of select="@unit" />
413
         414
       </xsl:for-each>
415
     </xsl:template>
416
417
     <xsl:template match="cs:pixel_size">
418
       419
         <xsl:value-of select="name(..)" />_<xsl:value-of select="name()" />
420
         <xsl:value-of select="@name" />
421
         422
       <xsl:for-each select="*">
424
425
         >
           <xsl:value-of select="name(../..)" />_<xsl:value-of select="name(..)" />_< \leftrightarrow
426
              xsl:value-of select="name()" />
           <xsl:value-of select="." />
427
           <xsl:value-of select="@unit" />
428
         429
       </xsl:for-each>
430
     </xsl:template>
431
432
433
     <xsl:template match="cs:term">
434
       \langle tr \rangle
         <xsl:value-of select="@name" />
435
         <xsl:value-of select="." />
436
```

```
<xsl:value-of select="@unit" />
437
      438
    </xsl:template>
439
440
    <xsl:template match="cs:SASprocessnote" mode="standard">
442
      443
        <xsl:value-of select="name()" />
        <xsl:value-of select="." />
444
        <xsl:value-of select="@name" />
445
      446
    </xsl:template>
447
448
    <xsl:template match="cs:SASprocess">
449
      450
451
        <xsl:value-of select="name()" />
452
        <xsl:value-of select="cs:name" />
453
        <xsl:value-of select="@name" />
      454
455
      <xsl:for-each select="*">
456
        <xsl:choose>
         <xsl:when test="name()='name'" />
457
         <xsl:when test="name()='term'"><xsl:apply-templates select="." /></xsl:when>
458
         <xsl:when test="name()='SASprocessnote'">
459
           <xsl:choose>
460
             <xsl:when test="../@name='Indra'">
461
               <!-- Customization for APS USAXS metadata -->
               <xsl:apply-templates select="." mode="Indra"/>
             </xsl:when>
464
             465
                >
           </xsl:choose>
466
         </xsl:when>
467
         <xsl:otherwise>
468
469
             <xsl:value-of select="name(..)" />_<xsl:value-of select="name()" />
470
471
             <xsl:value-of select="." />
             472
473
           474
         </xsl:otherwise>
        </xsl:choose>
475
      </xsl:for-each>
476
    </xsl:template>
477
478
    <xsl:template match="cs:SASnote">
479
480
        <xsl:value-of select="name()" />
481
        <xsl:value-of select="." />
        <xsl:if test="@name=''">
483
         < t.d/>
484
        </xsl:if>
485
        <xsl:if test="@name!=''">
486
         <xsl:value-of select="@name" />
487
        </xsl:if>
488
      489
    </xsl:template>
490
491
    492
    <!-- ++++++++ Customizations ++++++++ -->
494
    495
    <xsl:template match="cs:SASprocessnote" mode="Indra">
496
      <!--
497
```

```
Customization for APS USAXS metadata
498
        These will be IgorPro wavenote variables
499
500
       <xsl:for-each select="cs:APS_USAXS">
501
        <!-- ignore any other elements at this point -->
502
503
        <xsl:value-of select="name(..)" />
          <xsl:value-of select="name()" />
505
          <xsl:value-of select="@name" />
506
        507
        <xsl:for-each select="*">
508
          509
            <xsl:value-of select="name()" />
510
            <xsl:value-of select="." />
511
            <xsl:value-of select="@name" />
512
513
          514
        </xsl:for-each>
       </xsl:for-each>
515
516
     </xsl:template>
517
     <xsl:template match="ues:efficiency_ratio">
518
       <!--
519
        Customization for ISIS wavelength-dependent data
520
521
       522
523
        <caption>
          wavelength-dependent detector efficiency spectrum
524
        </caption>
525
        526
          <xsl:for-each select="ues:data[1]/*">
527
528
              <xsl:value-of select="name()" />
529
              <xsl:if test="@unit!=''"> (<xsl:value-of select="@unit" />)</xsl:if>
530
            531
          </xsl:for-each>
532
        533
        <xsl:for-each select="ues:data">
          <t.r>
535
            <xsl:for-each select="*">
              <xsl:value-of select="." />
537
            </xsl:for-each>
538
          539
        </xsl:for-each>
540
       541
     </xsl:template>
542
543
     <xsl:template match="ums:monitor_spectrum">
      < 1 _-
        Customization for ISIS wavelength-dependent data
546
       -->
547
      548
        <caption>
549
          wavelength-dependent monitor spectrum
550
        </caption>
551
        552
          <xsl:for-each select="ums:data[1]/*">
553
554
555
              <xsl:value-of select="name()" />
              <xsl:if test="@unit!=''"> (<xsl:value-of select="@unit" />)</xsl:if>
556
            557
          </xsl:for-each>
558
559
```

```
<xsl:for-each select="ums:data">
560
          561
            <xsl:for-each select="*">
562
              <xsl:value-of select="." />
563
            </xsl:for-each>
565
          566
         </xsl:for-each>
       567
     </xsl:template>
568
569
     <xsl:template match="uts:transmission_spectrum">
570
       <!--
571
        Customization for ISIS wavelength-dependent data
572
       -->
573
574
       575
        <caption>
          wavelength-dependent transmission spectrum
576
577
        </caption>
        578
          <xsl:for-each select="uts:data[1]/*">
579
580
              <xsl:value-of select="name()" />
581
              <xsl:if test="@unit!=''"> (<xsl:value-of select="@unit" />)</xsl:if>
582
            583
584
           </xsl:for-each>
585
         <xsl:for-each select="uts:data">
586
          <t.r>
            <xsl:for-each select="*">
588
              <xsl:value-of select="." />
589
            </xsl:for-each>
590
          591
         </xsl:for-each>
592
       593
594
     </xsl:template>
595
  </xsl:stylesheet>
```

Appendix C

Glossary

Note

This Glossary might not be provided in future versions of this manual.

This section provides a glossary defining the details about each specific field (XPath string, XML elements and attributes) in the cansas 1d/1.0 standard.

- Each term (element or attribute) is listed by its *XPath* in the XML file. The cs: prefix is defined by a xmlns:cs="cansa-sld/1.0" namespace attribute listed in the XML header.
- Elements are shown below sorted by their XPath. In the XML file, the order of elements is defined by the XML Schema. An example is given in the file: cansas1d-template.xml
- Each term in the standard is shown with a comment embedded.
- The comment indicates
 - the name of the element,
 - how many times the element can be used,
 - * [0..1]: element is optional but can only appear once within enclosing element
 - * [1..1]: element is required and can only appear once within enclosing element
 - * [1..inf]: element is required but can appear as many times as needed within enclosing element
 - * [0..inf]: element is optional and can appear as many times as needed within enclosing element
 - * []: element is optional, number of appearances within enclosing element is not specified
 - and a short description.
- When shown in the template below with the /@unit XPath, the unit attribute is required.

C.1 Listed by full XPath reference

/cs:SASroot

[1..1] The canSAS reduced 1-D SAS data will be in the SASroot database. This is similar to the root element of a NeXus file (NXroot).

/cs:SASroot/@version

[1..1] version="1.0" Required attribute to indicate the version of the standard to which this XML document is encoded.

/cs:SASroot/cs:SASentry

[1..inf] A single SAS scan is reported in a SASentry. This is similar to NXentry used by NeXus. A SASentry can use an optional name attribute to provide a string for this SASentry.

/cs:SASroot/cs:SASentry/@name

[0..1] Optional string attribute to identify this particular SASentry. Use of the string associated with the name attribute is not defined by this standard.

/cs:SASroot/cs:SASentry/<any>

[0..inf] Provision at this point for any element to be entered that is not part of the canSAS standard. Declare a default namespace declaration such as xmlns="urn:example-namespace:example-context" to identify that this is a foreign element (where you replace "example-namespace" and "example-context" with your own terms).

/cs:SASroot/cs:SASentry/cs:Run

[1..inf] Run identification for this SASentry. For many facilities, this is an integer. Use multiple instances of Run as needed. Note: How to correlate this with SASinstrument configurations has not yet been defined.

/cs:SASroot/cs:SASentry/cs:Run/@name

[0..1] Optional string attribute to identify this particular SASrun. Use this to associate (correlate) multiple SASdata elements with Run elements. (Give them the same name.)

/cs:SASroot/cs:SASentry/cs:SASdata

[1..inf] Reduced 1-D SAS data for this SASentry. Use multiple SASdata elements to represent multiple frames. Use this to associate (correlate) multiple SASdata elements with Run elements. (Give them the same name.)

/cs:SASroot/cs:SASentry/cs:SASdata/@name

[0..1] Optional string attribute to identify this particular SASdata.

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata

[1..inf] Idata describes a single SAS data point.

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:dQl

[0..1] Q resolution perpendicular to the axis of scanning (the low-resolution slit length direction).

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:dQl/@unit

[1..1] Required unit for dQl. (See @unit for details.)

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:dQw

[0..1] Q resolution along the axis of scanning (the high-resolution slit width direction).

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:dQw/@unit

[1..1] Required unit for dQw. (See @unit for details.)

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:I

[1..1] Intensity of the detected radiation.

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:I/@unit

[1..1] Required unit for I. (See @unit for details.)

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:Idev

[0..1] Estimated uncertainty (usually standard deviation) of I. Must specify the unit as an attribute.

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:Idev/@unit

[1..1] Required unit for Idev. (See @unit for details.)

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:Q

[1..1] Q = (4 pi / lambda) sin(theta) where lambda is the wavelength of the radiation and 2theta is the angle through which the detected radiation has been scattered.

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:Q/@unit

[1..1] Required unit for Q. (See @unit for details.)

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:Qdev

[0..1] Estimated uncertainty (usually standard deviation) of Q. Must specify the unit as an attribute.

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:Qdev/@unit

[1..1] Required unit for Qdev. (See @unit for details.)

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:Qmean

[0..1] Mean value of Q for this datum. Must specify the unit as an attribute.

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:Qmean/@unit

[1..1] Required unit for Qmean. (See @unit for details.)

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/cs:Shadowfactor

[0..1] Describes the adjustment due to the beam stop penumbra.

Note

The use of Shadowfactor is limited and not generally expected in files except those from the NIST NCNR.

/cs:SASroot/cs:SASentry/cs:SASdata/cs:Idata/<any>

[0..inf] Provision at this point for any element to be entered that is not part of the canSAS standard. Declare a default namespace declaration such as xmlns="urn:example-namespace:example-context" to identify that this is a foreign element (where you replace "example-namespace" and "example-context" with your own terms).

/cs:SASroot/cs:SASentry/cs:SASinstrument

[1..1] Description of the instrument.

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:name

[1..1] Name of the instrument.

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation

[1..inf] Description of the instrument collimation.

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/@name

[0..1] Optional text to describe this collimation element.

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture [0..inf] Slit or aperture.

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/@name
[0..1] Optional name for this aperture.

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/@type

[1..1] Optional text to describe the type aperture (pinhole, 4-blade slit, Soller slit, ...).

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:distance [0..1] Distance from this collimation element to the sample.

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:distance/@unit

[1..1] distance requires a unit to be specified. (See @unit for details.)

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:size

[0..1] Opening dimensions of this aperture.

```
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:size/@name
    [1..1] Optional attribute to clarify the name of this beam size.
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:size/cs:x
    [0..1] Dimension of the aperture in X.
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:size/cs:x/@unit
    [1..1] Required unit for the dimension of x. (See @unit for details.)
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:size/cs:y
    [0..1] Dimension of the aperture in Y.
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:size/cs:y/@unit
    [1..1] Required unit for the dimension of y. (See @unit for details.)
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:size/cs:z
     [0..1] Dimension of the aperture in Z. While this is allowed by the standard, it does not make much sense for small-angle
    scattering.
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:aperture/cs:size/cs:z/@unit
    [1..1] Required unit for the dimension of z. (See @unit for details.)
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:length
    [0..1] Amount/length of collimation inserted (on a SANS instrument).
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SAScollimation/cs:length/@unit
    [1..1] length requires a unit to be specified. (See @unit for details.)
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector
    [1..inf] Description of a single or composite detector.
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:beam_center
    [0..1] Center of the beam on the detector in X and Y.
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:beam_center/@name
    Optional attribute to clarify the name of this detector beam center.
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:beam_center/cs:x
    [0..1] Center of the beam on the detector in X.
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:beam_center/cs:x/@unit
    [1..1] Required unit for the dimension of x. (See @unit for details.)
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:beam_center/cs:y
    [0..1] Center of the beam on the detector in Y.
/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:beam_center/cs:y/@unit
```

[1..1] Required unit for the dimension of y. (See @unit for details.)

small-angle scattering.

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:beam_center/cs:z

[0..1] Center of the beam on the detector in Z. While this is allowed by the standard, it does not make much sense for

- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:beam_center/cs:z/@unit [1..1] Required unit for the dimension of z. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:name [1..1] Name of the detector. /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:offset [0..1] Offset of the detector position in X, Y, and Z. /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:offset/@name Optional attribute to clarify the name of this beam size. /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:offset/cs:x [0..1] Offset of the detector position in X. /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:offset/cs:x/@unit [1..1] Required unit for the dimension of x. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:offset/cs:y [0..1] Offset of the detector position in Y. /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:offset/cs:y/@unit [1..1] Required unit for the dimension of y. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:offset/cs:z [0..1] Offset of the detector position in Z. While this is allowed by the standard, it does not make much sense for small-angle scattering. /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:offset/cs:z/@unit [1..1] Required unit for the dimension of z. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:orientation [0..1] Orientation (rotation) of the detector in roll, pitch, and yaw. Must specify the unit as an attribute. /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:orientation/@name Optional attribute to name this orientation. /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:orientation/cs:pitch [0..1] Optional rotation of the detector about the X axis (pitch). /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:orientation/cs:pitch/@unit [1..1] Required unit for the dimension of pitch. (See @unit for details.)
- [0..1] Optional rotation of the detector about the Z axis (roll).

 /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:orientation/cs:roll/@unit
 [1..1] Required unit for the dimension of roll. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:orientation/cs:yaw [0..1] Optional rotation of the detector about the Y axis (yaw).

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:orientation/cs:roll

/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:orientation/cs:yaw/@unit
[1..1] Required unit for the dimension of yaw. (See @unit for details.)

- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:pixel_size
 [0..1] Size of detector pixels in X and Y.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:pixel_size/@name
 Optional attribute to clarify the name of this detector pixel size.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:pixel_size/cs:x
 [0..1] Size of detector pixels in X.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:pixel_size/cs:x/@unit
 [1..1] Required unit for the dimension of x. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:pixel_size/cs:y
 [0..1] Size of detector pixels in Y.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:pixel_size/cs:y/@unit
 [1..1] Required unit for the dimension of y. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:pixel_size/cs:z
 [0..1] Size of detector pixels in Z. While this is allowed by the standard, it does not make much sense for small-angle scattering.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:pixel_size/cs:z/@unit
 [1..1] Required unit for the dimension of z. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:SDD [0..1] Distance between sample and detector. Must specify the unit as an attribute.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:SDD/@unit
 [1..1] Required unit for SDD. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:slit_length
 [0..1] Slit length of the instrument for this detector. This is expressed in the same units as Q (reciprocal space units). Must
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASdetector/cs:slit_length/@unit [1..1] Required unit for the slit length. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource

[1..1] Description of the source of the radiation.

specify the unit as an attribute.

- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/@name
 - [0..1] Optional text description of the source of the radiation (incident on the sample). This can be different from /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:radiation.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:beam_shape
 [0..1] Text description of the shape of the beam (incident on the sample).
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:beam_size
 [0..1] Physical dimension of the beam (incident on the sample). Note: If beam is round, just use X dimension. Note: While Z dimension is allowed by the standard, it does not make sense for small-angle scattering.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:beam_size/@name
 Optional attribute to clarify the name of this beam size.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:beam_size/cs:x = [0..1] Dimension of the beam size in X.

- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:beam_size/cs:x/@unit
 - [1..1] Required unit for the dimension of x. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:beam_size/cs:y
 - [0..1] Dimension of the beam size in Y.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:beam_size/cs:y/@unit
 - [1..1] Required unit for the dimension of y. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:beam_size/cs:z
 - [0..1] Dimension of the beam size in Z. While this is allowed by the standard, it does not make much sense for small-angle scattering.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:beam_size/cs:z/@unit
 - [1..1] Required unit for the dimension of z. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:radiation
 - [1..1] Name of the radiation used (neutron, X-ray, synchrotron X-ray, Cu Ka X-ray tube, ..."
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:wavelength
 - [0..1] wavelength of radiation incident on the sample.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:wavelength/@unit
 - [1..1] wavelength of radiation requires a unit to be specified. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:wavelength_max
 - [0..1] Some facilities specify wavelength using a range. The maximum of such a range is given by wavelength_max.
- $\verb|/cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:wavelength_max/@unit= of the content of the conten$
 - [1..1] wavelength_max requires a unit to be specified. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:wavelength_min
 - [0..1] Some facilities specify wavelength using a range. The minimum of such a range is given by wavelength_min.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:wavelength_min/@unit
 - [1..1] wavelength_min requires a unit to be specified. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:wavelength_spread
 - [0..1] Some facilities specify the width of the wavelength spectrum. The extent (or width) of such a range is given by wavelength_spread.
- /cs:SASroot/cs:SASentry/cs:SASinstrument/cs:SASsource/cs:wavelength_spread/@unit
 - [1..1] wavelength_spread requires a unit to be specified. (See @unit for details.)
- /cs:SASroot/cs:SASentry/cs:SASnote
 - [1..inf] Free form description of anything not covered by other elements.
- /cs:SASroot/cs:SASentry/cs:SASprocess
 - [0..inf] Description of a processing or analysis step.
- /cs:SASroot/cs:SASentry/cs:SASprocess/@name
 - [0..1] Optional attribute to provide a name for this SASprocess.

Note

It is redundant with /cs:SASroot/cs:SASentry/cs:SASprocess/cs:name but it is not the same. It should probably be removed.

/cs:SASroot/cs:SASentry/cs:SASprocess/cs:date

[0..1] Optional date for this data processing or analysis step.

Note

SHOULD WE SPECIFY THE FORMAT FOR THE DATE?

/cs:SASroot/cs:SASentry/cs:SASprocess/cs:description

[0..1] Optional description for this data processing or analysis step.

/cs:SASroot/cs:SASentry/cs:SASprocess/cs:name

[0..1] Optional name for this data processing or analysis step.

/cs:SASroot/cs:SASentry/cs:SASprocess/cs:SASprocessnote

[1..inf] This element is used to describe anything about SASprocess that is not already described.

/cs:SASroot/cs:SASentry/cs:SASprocess/cs:SASprocessnote/<any>

[0..inf] Provision at this point for any element to be entered that is not part of the canSAS standard. Declare a default namespace declaration such as xmlns="urn:example-namespace:example-context" to identify that this is a foreign element (where you replace "example-namespace" and "example-context" with your own terms).

/cs:SASroot/cs:SASentry/cs:SASprocess/cs:term

[0..1] This is used to specify the value of a single variable, parameter, or term related to the SASprocess step.

/cs:SASroot/cs:SASentry/cs:SASsample

[] Description of the sample.

/cs:SASroot/cs:SASentry/cs:SASsample/@name

[0..1] Optional attribute to name this sample. (Should be the same as SASsample/cs:ID)

/cs:SASroot/cs:SASentry/cs:SASsample/<any>

[0..inf] Provision at this point for any element to be entered that is not part of the canSAS standard. Declare a default namespace declaration such as xmlns="urn:example-namespace:example-context" to identify that this is a foreign element (where you replace "example-namespace" and "example-context" with your own terms).

/cs:SASroot/cs:SASentry/cs:SASsample/cs:details

[0..inf] Text string to supply additional sample details.

/cs:SASroot/cs:SASentry/cs:SASsample/cs:ID

[1..1] Text string that identifies this sample.

/cs:SASroot/cs:SASentry/cs:SASsample/cs:orientation

[0..1] Orientation (rotation) of the sample.

/cs:SASroot/cs:SASentry/cs:SASsample/cs:orientation/@name

Optional attribute to name this orientation.

/cs:SASroot/cs:SASentry/cs:SASsample/cs:orientation/cs:pitch

[0..1] Optional rotation of the sample about the X axis (pitch).

/cs:SASroot/cs:SASentry/cs:SASsample/cs:orientation/cs:pitch/@unit

[1..1] Required unit for the dimension of pitch. (See @unit for details.)

/cs:SASroot/cs:SASentry/cs:SASsample/cs:orientation/cs:roll

[0..1] Optional rotation of the sample about the Z axis (roll).

/cs:SASroot/cs:SASentry/cs:SASsample/cs:orientation/cs:roll/@unit [1..1] Required unit for the dimension of roll. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASsample/cs:orientation/cs:yaw [0..1] Optional rotation of the sample about the Y axis (yaw). /cs:SASroot/cs:SASentry/cs:SASsample/cs:orientation/cs:yaw/@unit [1..1] Required unit for the dimension of yaw. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASsample/cs:position [0..1] Location in X, Y, and Z of the sample. Must specify the unit as an attribute to each position. /cs:SASroot/cs:SASentry/cs:SASsample/cs:position/@name Optional attribute to name this position. /cs:SASroot/cs:SASentry/cs:SASsample/cs:position/cs:x [0..1] Location of the sample in X. /cs:SASroot/cs:SASentry/cs:SASsample/cs:position/cs:x/@unit [1..1] Required unit for the dimension of x. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASsample/cs:position/cs:y [0..1] Location of the sample in Y. /cs:SASroot/cs:SASentry/cs:SASsample/cs:position/cs:y/@unit [1..1] Required unit for the dimension of y. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASsample/cs:position/cs:z [0..1] Location of the sample in Z. While this is allowed by the standard, it does not make much sense for small-angle /cs:SASroot/cs:SASentry/cs:SASsample/cs:position/cs:z/@unit [1..1] Required unit for the dimension of z. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASsample/cs:temperature [0..1] Temperature of this sample. Must specify the unit as an attribute. /cs:SASroot/cs:SASentry/cs:SASsample/cs:temperature/@unit [1..1] Required unit for temperature. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASsample/cs:thickness [0..1] Thickness of this sample. Must specify the unit as an attribute. /cs:SASroot/cs:SASentry/cs:SASsample/cs:thickness/@unit [1..1] Required unit for thickness. (See @unit for details.) /cs:SASroot/cs:SASentry/cs:SASsample/cs:transmission [0..1] Transmission (1-attenuation) of this sample. Express this as a fraction, not as a percentage. NOTE: there is not "unit" attribute. /cs:SASroot/cs:SASentry/cs:Title [1..1] Title of this SASentry. @unit Data unit to be given in standard SI abbreviations (e.g., m, cm, mm, nm, K) with the following exceptions: um=micrometres

C=celsius A=Angstroms percent=%. fraction a.u.=arbitrary units none=no units are relevant (such as dimensionless)

cs:term

[0..1] This is used to specify the value of a single variable, parameter, or term related to the SASprocess step. This could also be used in a SASnote element to indicate terms not associated with a SASprocess step.

cs:term/@name

[1..1] Name of the term.

cs:term/@unit

[1..1] Unit (string) of the term. (See @unit for details.)

orientation/cs:pitch

[0..1] Rotation about about the X axis. Unit must be specified.

orientation/cs:roll

[0..1] Rotation about about the Z axis. Unit must be specified.

orientation/cs:yaw

[0..1] Rotation about about the Y axis. Unit must be specified.

position/cs:x

[0..1] Translation in the horizontal direction, orthogonal to Y and Z. Positive X direction increases as defined by Y and Z. Unit must be specified.

position/cs:y

[0..1] Translation along the vertical gravitational direction. Positive direction increases upward. Unit must be specified.

position/cs:z

[0..1] Translation along the beam direction. Positive direction increases from source towards detector. Unit must be specified.

roll, pitch, yaw

Coordinates for (roll, pitch, yaw) values representing an orientation or rotation. Unit must be specified for each.

x, y, z

Coordinates for (x, y, z) values representing a position or dimension. Unit must be specified for each.

Appendix D

XML Help

Listed below are various references useful in learning XML and related topics.

- XML: eXtensible Markup Language
 - http://www.w3schools.com/xml/
 - http://www.w3.org/XML/
 - http://en.wikipedia.org/wiki/XML
 - http://www.zvon.org/xxl/XPathTutorial/General/examples.html
- XSL (or XSLT): eXtensible Stylesheet Language (Transformation)
 - http://www.w3schools.com/xsl/
 - http://www.w3.org/Style/XSL/
 - http://en.wikipedia.org/wiki/Extensible_Stylesheet_Language
 - http://en.wikipedia.org/wiki/XSLT
- XPath: XPath is a language for finding information in an XML document.
 - http://www.w3schools.com/xpath/
 - http://www.w3.org/Style/XSL/
 - http://en.wikipedia.org/wiki/XPath
- Schema: An XML Schema describes the structure of an XML document.
 - http://www.w3schools.com/schema/
 - http://www.w3.org/XML/Schema
 - http://en.wikipedia.org/wiki/XSD
- XML Namespaces: XML namespaces are used for providing uniquely named elements and attributes in an XML instance.
 - http://www.zvon.org/xxl/NamespaceTutorial/Output
 - http://en.wikipedia.org/wiki/XML_namespaces
 - http://www.w3schools.com/XML/xml_namespaces.asp
- XML Foreign Elements: Inclusion of elements, at select locations, that are not defined by the cansas1d.xsd XML Schema
 - http://books.xmlschemata.org/relaxng/relax-CHP-11-SECT-4.html
 - http://www.w3.org/TR/SVG/extend.html
 - http://www.google.com/search?q=XML+foreign+elements

Chapter 5

Index

A	cansasXML.ipf, 39
absolute intensity, see intensity, absolute	case study
	bimodal test data, 6
В	glassy carbon round robin, 6
best practices, 5	SANS of AF1410 steel, 6, 36
binding	SAXS of dry chick collagen, 6, 32
FORTRAN, 8, 37	
IgorPro, 8, 37	E
CS_1i_getOneSASdata(), 42	element
CS_1i_getOneVector(), 42	<any>, 2, 9, 14, 16, 17, 29–31, 74, 75, 80</any>
CS_1i_GetReducedSASdata(), 42	aperture, 23, 75
CS_1i_locateTitle(), 42	beam_center, 25, 76
CS_1i_parseXml(), 41	beam_shape, 21, 78
CS_appendMetaData(), 42	beam_size, 21, 78
CS_buildXpathStr(), 42	date, 29, 80
CS_cleanFolderName(), 42	description, 29, 80
CS_findElementIndex(), 42	details, 17, 80
CS_getDefaultNamespace(), 42	distance, 23, 75
CS_registerNameSpaces(), 42	dQl, 16, 74
CS_simpleXmlListXpath(), 42	dQw, 16, 74
CS_simpleXmlWaveFmXpath(), 42	I, 15, 74
CS_updateWaveNote(), 42	ID, 17, 80
CS_XmlReader(), 40, 41	Idata, 2, 15, 74
CS_XmlStrFmXpath(), 42	Idev, 16, 74
CS_XPath_NS(), 42	length, 23, 76
prj_grabMyXmlData(), 41, 42	name, 25, 29, 75, 77, 80
prjTest_cansas1d(), 41, 42	offset, 25, 77
testCollette(), 42	orientation, 17, 25, 77, 80
TrimWS(), 42	pitch, 19, 27, 77, 80, 82
TrimWSL(), 42	pixel_size, 25, 78
TrimWSR(), 42	position, 17, 81
Java, 8, 44	Q, 15, 74
Microsoft Excel, 8, 34	Qdev, 16, 75
PHP, 8	Qmean, 16, 75
Python, 8, 53	radiation, 21, 79
XML Stylesheet (XSLT), 8	roll, 19, 27, 77, 80, 82
	Run, 2, 13, 74
C	SAScollimation, 2, 22, 75
canSAS, x, 1	SASdata, 2, 14, 74
aims, x, 1	SASdetector, 3, 24, 76
benefit, x	SASentry, 1, 2, 12, 74
objective, 1	SASinstrument, 2, 14, 19, 75
cansas1d/1.0 standard, 1, 9, 32, 73	SASnote, 3, 14, 30, 79

SASprocess, 3, 14, 28, 79 SASprocessnote, 29, 30, 80	multiple data sets, 6 multiple experiments, 6
SASroot, 1, 2, 11, 73	
SASsample, 2, 14, 17, 80	N
SASsource, 2, 20, 78	namespace, see XML Namespace
SDD, 25, 78	NeXus, 4, 11, 21, 73, 74
Shadowfactor, 16, 75	P
size, 23, 75	PHP, see binding, PHP
slit_length, 26, 78	Python, see binding, Python
temperature, 17, 81	Python file
term, 29, 80, 82	python-test.py, 54
thickness, 17, 81	python-test.py, 54
Title, 2, 13, 81	Q
transmission, 17, 81	Q, 3
wavelength, 21, 79	
wavelength_max, 21, 79	\mathbf{U}
wavelength_min, 21, 79	unit, 3
wavelength_spread, 21, 79	units, see unit
x, 18, 22, 24, 26–28, 76–78, 81, 82	
y, 18, 22, 24, 26–28, 76–79, 81, 82	\mathbf{V}
yaw, 19, 27, 77, 81, 82	validation, 9
z, 18, 22, 24, 27, 28, 76–79, 81, 82	against XML Schema, 3, 8
F	X
file	XML, 83
Writing cansas 1d/1.0 files, 5	attributes, 10
xsl, see XML Stylesheet	cansas 1d/1.0 data file, 58, 59
FORTRAN, see binding, FORTRAN	foreign elements, 7, 31, 41, 74, 75, 80, 83
8,	well-formed, 9, 10
G	XML file
geometry	1998spheres.xml, 45
compatibility with other standards, 4	bimodal-test1.xml, 6
orientation (rotation), 4	brief-sketch-multiple.xml, 6
Q, <mark>3</mark>	cansas 1 d-template.xml, 6
rotation, 4, 24, 26	cansas1d.xml, 6, 59
translation, 3, 24, 26	cs_af1410.xml, 6
glossary, 2, 73	data-simple.xml, 58
-	<u>*</u>
I	java-test.xml, 51
I(Q), 1, 40, 46, 53, 57	W1W2.XML, 6
IgorPro, see binding, IgorPro	XML header, 2, 10
IgorPro package	XML Namespace, 83 XML Schema, 5, 44, 83
Irena tool suite, 44	
XMLutils XOP, 38	XML Stylesheet, 5, 10, 11, 41, 58, 62, 83
intensity	ascii3col.xsl, 62
absolute, 57	cansasxml-html.xsl, 62
problem, 57	XMLutils XOP, 38
	xmlWriter, 5, 8
J	XPath, 83
Java, see binding, Java	XSLT, see XML Stylesheet
Java file	
Example_canSAS_Reader.java, 45	
GetSASdata.java, 47	
JAXB, 53	
M	
metadata, 1, 5, 32, 33, 38, 40–42, 62	
Microsoft Excel see hinding Microsoft Excel	