CONTENTS MATH5412 Notes

MATH5412 - Advanced Probability Theory II

Aaron Wang

aswang@connect.ust.hk

Spring 2022

Abstract

These are notes for MATH5412 at HKUST, the second course in a two part graduate-level course taught by Bao Zhigang in Spring 2022. The main focus is as a continuation of MATH5411.

Contents

1	February 8th, 2022		
	1.1	Overview of the Course	2
	1.2	Heavy Tail Limiting (Poisson) Convergence	:
	1.3	Stable Law	٠
2	February 10th, 2022		
	2.1	Cont	4
In	dex		6

1 February 8th, 2022

1.1 Overview of the Course

Considering $S_n = \sum_{i=1}^n X_i$, for regular CLT we assume that we have:

- Second moment condition
- In \mathbb{R}
- Independence

In this course, we will extend CLT to remove these three conditions.

1.1.1 Stable Law

First, we will remove the second moment condition, leading to the.

If the second moment exists, then there is a normalization that allows the limiting distribution go to a gaussian distribution. However, if we don't have the second moment, it depends on the tail of the distribution, giving us a class of distributions. We will be able to show that this No matter if it is a triangular array or a sequence of random variable.

This part will take 3-4 lectures.

1.1.2 Functional Limiting Theorem

In the previous case, we only concerned variables in \mathbb{R} . Now we will extend them to get the weak convergence of random functions.

This can be useful for looking at empirical distributions in statistics. For example if we have:

$$X \sim F$$
, with F unknown

If X_1, \ldots, X_n F i.i.d., we can use the empirical distribution:

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le t)$$

We want to compare this distribution with the original distribution, which we can use the Kologoromov Statistics

$$\sqrt{n} \sup_{t} |F_n(t) - F(t)|$$

Note that $\sqrt{n}(F_n(t) - F(t))$ is a random function with $f \in \mathbb{R}$.

To do this, we need to prove the weak convergence of the whole stochastic process. With that, we would have the weak convergence of the random function. Later we will show that $\sqrt{n}(F_n(t) - F(t))$ converges to the Brownian bridge.

Reference:

• Convergence of Probability Measure \to Billingsley Chapter 2 This part will also be quite short.

1.1.3 Martingale and it's Limiting Theorem

Roughly speaking, a martingale can be thought of the sum of a random variable. We do not need independence. Here we will introduce martingale differences, and this part will take up the majority of the course.

Reference:

- Durrett Chapter 5 [Dur19]
- Hall and Heyde \rightarrow Martingale Limit Theory and its Application [HH80]

1.1.4 Concentration (if time permits)

Reference:

• R. Vershynin \rightarrow High-dimensional probability

1.2 Heavy Tail Limiting (Poisson) Convergence

let N(s,t) be the number of arrivals at a bank during [s,t]. Suppose:

- (i) The number in disjoint intervals are independent
- (ii) The distribution of N(s,t) only depends on t-s
- (iii) $Pr(N(0,h) = 1) = \lambda h + o(h)$, and
- (iv) $Pr(N(0,h) \ge 2) = o(h)$

Theorem 1.1

If (i) - (iv) hold, then N(0,t) has a poisson distribution with mean λt .

Definition 1.2 (Poisson process with rate λ). A family of random variables $N_t, t \geq 0$, satisfying:

1. If 0 =

1.3 Stable Law

We have:

$$X_1, X_2, \dots X_n \text{ i.i.d. } S_n = \sum_{i=1}^n X_i$$

If $\mathbf{E}X_i = \mu$ and $\mathbf{Var}X_i = \sigma^2$, we have:

$$\frac{S_n - n\mu}{\sqrt{n}\sigma} \implies N(0,1)$$

Now, if $\mathbf{E}X_i^2 = \infty$, do we have a_n, b_n, Y s.t.:

$$\frac{S_n - b_n}{a_n} \implies Y \quad (Y \text{ nondegenerate})$$

Let us start with a simple case where everything about X_i is known.

Example 1.3

Consider X_1, X_2, \dots i.i.d.

$$\Pr(X_1 > x) = \Pr(X_1 < -x) = \frac{x^{-\alpha}}{2}, \text{ for } x \ge 1, 0 < \alpha < 2$$

Density $f(x) = \alpha \frac{|x|^{-\alpha-1}}{2}$, |x| > 1 Note that this is:

• symmetric (indicates $b_n = 0$)

•
$$\mathbf{E}X_1^2 = 2\int_{1}^{\infty} x \Pr(|x_1| > x) dx = \int_{1}^{\infty} x^{-\alpha+1} dx = \infty$$

The solution is:

$$\mathbf{E}[e^{isS_n}] = \left[\underbrace{\mathbf{E}e^{isX_1}}_{\phi(s)}\right]^n = [1 - (1 - \phi(s))]^n$$

$$1 - \phi(s) = \int_{1}^{\infty} (1 - e^{ist}) \frac{\alpha}{2|x|^{\alpha + 1}} dx + \int_{-\infty}^{-1} (1 - e^{isx}) \frac{\alpha}{2|x|^{\alpha + 1}} dx$$

2 February 10th, 2022

2.1 Cont.

Recall from the last time, we found that most of the contribution is from the large points of scale $O(n^{1/\alpha})$.

Let us define an index set of large points:

$$I_n(\epsilon) = \{ m \le n : |X_m| > \epsilon n^{1/\alpha} \}$$

and define the sums:

$$\hat{S}_n(\epsilon) = \sum_{m \in I_n(\epsilon)} X_m = \sum_{m=1}^n X_m \mathbb{1}(|x_m| > \epsilon n^{1/\alpha})$$

$$\overline{S}_n(\epsilon) = S_n - \hat{S}_n(\epsilon) = \sum_{m=1}^n X_m \mathbb{1}(|X_m| \le \epsilon \le \epsilon^{1/\alpha})$$

Now we have two task:

- Show $\frac{\overline{S}_n(\epsilon)}{n^{1/\alpha}}$ is small if ϵ is small
- Find the limit of $\frac{\hat{S}_n(\epsilon)}{n^{1/\alpha}}$

2.1 Cont. MATH5412 Notes

Proof.

$$\mathbf{E}\left[\frac{\overline{S}_{n}(\epsilon)}{n^{1/\alpha}}\right]^{2} = n^{-\frac{2}{\alpha}} \cdot n \cdot \mathbf{E}\left[\overline{X}_{1}(\epsilon)\right]^{2}, \quad \overline{X}_{i}(\epsilon) = X_{i}\mathbb{1}(|X_{i}| \leq \epsilon n^{1/\alpha})$$
$$\mathbf{E}[\overline{X}_{1}(\epsilon)]^{2} = \int_{0}^{\infty} 2y \Pr(|\overline{X}_{1}(\epsilon)| \geq y \ dy) \leq \int_{0}^{\epsilon n^{1/\alpha}} 2y$$

Later we choose $\epsilon = \epsilon \to 0$ as $n \to \infty$.

Proof. Proof of (2).

$$\mathbf{E} \exp \left(it \frac{\hat{S}_n(\epsilon)}{n^{1/\alpha}} \right) = \sum_{m=0}^n \mathbf{E} \left[\exp \left(it \frac{\hat{S}_n(\epsilon)}{n^{1/\alpha}} \right) \middle| |I_n(\epsilon)| = m \right] \Pr(|I_n(\epsilon)| = m)$$

We will use two facts:

1.
$$|I_n(\epsilon)|$$
 is $\operatorname{Bin}\left(n, \frac{\epsilon^{-\alpha}}{n}\right) \sim \operatorname{Poisson}(\epsilon^{-\alpha})$. $\operatorname{Pr}(|X_n| > \epsilon n^{\frac{1}{\alpha}}) = \epsilon^{-\alpha} \frac{1}{n}$.

REFERENCES MATH5412 Notes

References

[HH80] P. Hall and C.C. Heyde. Martingale Limit Theory and Its Application. Probability and mathematical statistics. Academic Press, 1980. ISBN: 9781483240244. URL: http://www.stat.yale.edu/~mjk56/MartingaleLimitTheoryAndItsApplication.pdf.

[Dur19] Rick Durrett. *Probability: Theory and Examples.* 2019. URL: https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf.

Index

stable law, infinitely divisible distribution, 2