ER to Relational Translation

Recall Database Design

◆ Steps in database design

General Rules of Translation

- Translate each strong entity type to a relation.
- ◆ Translate each relationship type into a relation or into a foreign key.
- Translate attributes in ER to attributes in relations
- Translate keys in ER to keys in relations
- Need rules for specific situations

Simple Translation: An Example

<u>Professors</u>	Advise	Students
p1: 123, Jack, Prof.	p1 advises s1	s1: 456, John, 3.4
p2: 234, Ann, Prof.	p1 advises s2	s2: 567, Carl, 3.2
p3: 345, Bob, Prof.	p3 advises s3	s3: 678, Ken, 3.5

Simple Translation: An Example (cont.)

Translate into three relations:

Professors

PID	Name	Rank
123	Jack	Prof.
234	Ann	Prof.
345	Bob	Prof.

Advises

PID	SID
123	456
123	567
345	678

Students

SID	Name	GPA
456	John	3.4
457	Carl	3.2
678	Ken	3.5

Actually, two relations are sufficient:

Professors

PID	Name	Rank
123	Jack	Prof.
234	Ann	Prof.
345	Bob	Prof.

Students

SID	Name	GPA	Advisor
456	John	3.4	123
457	Carl	3.2	123
678	Ken	3.5	345

Translate 1-to-m Relationships

Translate one-to-many relationship

into relations: $E(\underline{A}, B)$, $F(\underline{C}, D, A)$

◆ Relationship R is translated into a foreign key.

Translate 1-to-m Relationship

Example: Translating work_in relationship.

Employees(<u>SSN</u>, Name, Age, Dept_name)
Depts(<u>Name</u>, Location)

Give meaningful attribute names to indicate relationships.

Translate 1-to-1 Relationships

Translate one-to-one relationship

into either $E(\underline{A}, B)$, $F(\underline{C}, D, A)$ or $E(\underline{A}, B, C)$, $F(\underline{C}, D)$

Translate 1-to-1 Relationship

Example: Translating "manages" relationship.

Either: Empoyees(<u>SSN</u>, Name, Age, ManagerOf)

Depts(Name, Location)

Or: Employees(<u>SSN</u>, Name, Age)

Depts(Name, Location, ManagerID)

Translate 1-to-1 Relationship (cont.)

Translate one-to-one relationship

into E(A, B), F(C, D, A)

The entity set with the total participation is transformed to a relation with a foreign key.

Translate 1-to-1 Relationship (cont.)

Example: Translating "manages" relationship.

Employees(<u>SSN</u>, Name, Age)
Depts(<u>Name</u>, Location, ManagerID)

→ Why not let Employees have the foreign key?

Translate m-to-n Relationships

Translate many-to-many relationship

into $E(\underline{A}, B), F(\underline{C}, D), R(\underline{A}, \underline{C}, Y)$

- ◆ Transform the m-to-n relationship to a separate relation.
- R has two foreign keys & they form the primary key of R.

Translate m-to-n Relationship

Example: Translating "takes" relationship.

Students(<u>SID</u>, Name, Age) Courses(<u>Cno</u>, Title)

Takes(SID, Cno, Grade)

Exercise

Convert to a Relational Table

Translate Ternary Relationship

Translate ternary relationship

into E1(A, B), E2(C, D), E3(G, H), R(A, C, G, Z)

 Translate n-ary relationship to a relation with n foreign keys.

Exercise

Convert to a Relational Table

Teacher(TeacherId, TeacherName)

Subject(SubjectId, SubjectDescription)

Student(StudentId, StudentName)

TeachSchedule(<u>TeacherId</u>,<u>SubjectId</u>,<u>StudentId</u>)

Translate Unary Relationship

- ◆ Create a **shadow** entity type and translate the unary relationship into a binary relationship.
- Apply the rules for translating binary relationships.
- ◆ After the translation, remove one redundant relation, or if there is no redundant relation, remove the relation with fewer attributes.

Translate Unary Relationship (cont.)

◆ Translate many-to-many unary relationship

into Courses(Cno, Title), Prereq(Cno, Prereq_Cno)

Again, use a separate relation.

Translate Unary Relationship (cont.)

◆ Translate one-to-many unary relationship

into Persons(<u>SSN</u>, Name, Age, MotherSSN)

Again, use a foreign key.

Translate Unary Relationship (cont.)

 ◆ Translate one-to-one unary relationship (special case of 1-to-m)

into Persons(<u>SSN</u>, Name, Age, SpouseSSN)

Exercise

Convert to a Relational Table

Translate Multi-valued Attribute

◆ Create a separate relation.

- ← E_C.A is a foreign key referencing E.A.
- **←** E_C.C must be a part of primary key.

Translate Multi-valued Attribute

Translate attribute authors to a new relation

Books (<u>ISBN</u>, Title, Publisher) Book_Authors (<u>ISBN</u>, <u>Author</u>)

◆ Define Book_Authors.ISBN as a foreign key referencing Books.ISBN

Exercise

Convert to a Relational Table

Translate Composite Attribute

Method 1: Keep all simple attributes & discard the composite attribute (in the same relation)

Method 2: Translate the composite attribute to a separate relation.

Translate Composite Attribute (cont.)

An Example Using Method 2:

Employees (<u>SSN</u>, Name, Age, Salary)
Emp_Pic (<u>SSN</u>, Bitmap, Format, Height, Width)

Exercise

Convert to a Relational Table

street suburb number address pcode SSN Person given name family

Translate Weak Entity Type

Translate weak entity type

into $E(\underline{A}, B, C)$, $F(\underline{A}, \underline{D}, G, H)$

- ◆Use the key of strong entity & the partial key of weak entity to form the key.
- The key of strong entity is a foreign key.

Exercise

Convert to a Relational Table

Translation Guidelines: Summary

- ◆ Translate entity types into relations (exclude multi-valued and composite attributes).
 - ▲ Translate multi-valued attributes into separate relations.
 - ▲ Translate composite attributes by keeping their simple attributes.
 - ▲ Specify a primary key for each relation.

Translation Guidelines: Summary

- ◆ Translate unary or binary 1-to-m (1-to-1) relationships into foreign keys
- ◆ Translate m-to-m or high degree (> 2) relationships into separate relations. Specify key and foreign key carefully.


```
◆ Use method 1:

Employees(EID Name, Age, Cname)

Employee-Hobby(EID, Hobby)

Managers(EID, Budget)

Programmers(EID, Years_of_exp)

Cities(CName, Population)

Projects(Pno, Name)

Languages(LName)

Work_on(EID, Pno, Hours)

Use(EID, Pno, LName)
```

```
    ◆ Use method 2:

Employees(EID, Name, Age, CName)

Employee-Hobby(EID, Hobby)

Managers(Manager-EID, Name, Age, Budget, CName)

Manager-Hobby(Manager-EID, Hobby)

Programmers(Programmer-EID, Name, Age, Years_of_experience, CName)
    Programmer-Hobby(Programmer-EID, Hobby)
```

```
Cities(<u>CName</u>, Population)
Projects(<u>Pno</u>, Name)
Languages(<u>LName</u>)
Work_on(<u>EID</u>, <u>Pno</u>, Hours)
Manager-Work_on(<u>Manager-EID</u>, <u>Pno</u>, Hours)
Programmer-Work_on(<u>Programmer-EID</u>, <u>Pno</u>, Hours)
Use(<u>Programmer-EID</u>, <u>Pno</u>, <u>LName</u>)
```

Exercise

Convert to a Relational Table

