All versions of 10-gigabit Ethernet support only full-duplex operation. CSMA/CD is no longer part of the design, and the standards concentrate on the details of physical layers that can run at very high speed. Compatibility still matters, though, so 10-gigabit Ethernet interfaces autonegotiate and fall back to the highest speed supported by both ends of the line.

The main kinds of 10-gigabit Ethernet are listed in Fig. 4-22. Multimode fiber with the 0.85μ (short) wavelength is used for medium distances, and single-mode fiber at 1.3μ (long) and 1.5μ (extended) is used for long distances. 10GBase-ER can run for distances of 40 km, making it suitable for wide area applications. All of these versions send a serial stream of information that is produced by scrambling the data bits, then encoding them with a **64B/66B** code. This encoding has less overhead than an 8B/10B code.

Name	Cable	Max. segment	Advantages
10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85µ)
10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3µ)
10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5µ)
10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

Figure 4-22. 10-Gigabit Ethernet cabling.

The first copper version defined, 10GBase-CX4, uses a cable with four pairs of twinaxial copper wiring. Each pair uses 8B/10B coding and runs at 3.125 Gsymbols/second to reach 10 Gbps. This version is cheaper than fiber and was early to market, but it remains to be seen whether it will be beat out in the long run by 10-gigabit Ethernet over more garden variety twisted pair wiring.

10GBase-T is the version that uses UTP cables. While it calls for Category 6a wiring, for shorter runs, it can use lower categories (including Category 5) to allow some reuse of installed cabling. Not surprisingly, the physical layer is quite involved to reach 10 Gbps over twisted pair. We will only sketch some of the high-level details. Each of the four twisted pairs is used to send 2500 Mbps in both directions. This speed is reached using a signaling rate of 800 Msymbols/sec with symbols that use 16 voltage levels. The symbols are produced by scrambling the data, protecting it with a LDPC (Low Density Parity Check) code, and further coding for error correction.

10-gigabit Ethernet is still shaking out in the market, but the 802.3 committee has already moved on. At the end of 2007, IEEE created a group to standardize Ethernet operating at 40 Gbps and 100 Gbps. This upgrade will let Ethernet compete in very high-performance settings, including long-distance connections in backbone networks and short connections over the equipment backplanes. The standard is not yet complete, but proprietary products are already available.

4.3.8 Retrospective on Ethernet

Ethernet has been around for over 30 years and has no serious competitors in sight, so it is likely to be around for many years to come. Few CPU architectures, operating systems, or programming languages have been king of the mountain for three decades going on strong. Clearly, Ethernet did something right. What?

Probably the main reason for its longevity is that Ethernet is simple and flexible. In practice, simple translates into reliable, cheap, and easy to maintain. Once the hub and switch architecture was adopted, failures became extremely rare. People hesitate to replace something that works perfectly all the time, especially when they know that an awful lot of things in the computer industry work very poorly, so that many so-called "upgrades" are worse than what they replaced.

Simple also translates into cheap. Twisted-pair wiring is relatively inexpensive as are the hardware components. They may start out expensive when there is a transition, for example, new gigabit Ethernet NICs or switches, but they are merely additions to a well established network (not a replacement of it) and the prices fall quickly as the sales volume picks up.

Ethernet is easy to maintain. There is no software to install (other than the drivers) and not much in the way of configuration tables to manage (and get wrong). Also, adding new hosts is as simple as just plugging them in.

Another point is that Ethernet interworks easily with TCP/IP, which has become dominant. IP is a connectionless protocol, so it fits perfectly with Ethernet, which is also connectionless. IP fits much less well with connection-oriented alternatives such as ATM. This mismatch definitely hurt ATM's chances.

Lastly, and perhaps most importantly, Ethernet has been able to evolve in certain crucial ways. Speeds have gone up by several orders of magnitude and hubs and switches have been introduced, but these changes have not required changing the software and have often allowed the existing cabling to be reused for a time. When a network salesman shows up at a large installation and says "I have this fantastic new network for you. All you have to do is throw out all your hardware and rewrite all your software," he has a problem.

Many alternative technologies that you have probably not even heard of were faster than Ethernet when they were introduced. As well as ATM, this list includes FDDI (Fiber Distributed Data Interface) and Fibre Channel, two ringbased optical LANs. Both were incompatible with Ethernet. Neither one made it. They were too complicated, which led to complex chips and high prices. The lesson that should have been learned here was KISS (Keep It Simple, Stupid). Eventually, Ethernet caught up with them in terms of speed, often by borrowing some of their technology, for example, the 4B/5B coding from FDDI and the 8B/10B coding from Fibre Channel. Then they had no advantages left and quietly died off or fell into specialized roles.

[†] It is called "Fibre Channel" and not "Fiber Channel" because the document editor was British.

It looks like Ethernet will continue to expand in its applications for some time. 10-gigabit Ethernet has freed it from the distance constraints of CSMA/CD. Much effort is being put into **carrier-grade Ethernet** to let network providers offer Ethernet-based services to their customers for metropolitan and wide area networks (Fouli and Maler, 2009). This application carries Ethernet frames long distances over fiber and calls for better management features to help operators offer reliable, high-quality services. Very high speed networks are also finding uses in backplanes connecting components in large routers or servers. Both of these uses are in addition to that of sending frames between computers in offices.

4.4 WIRELESS LANS

Wireless LANs are increasingly popular, and homes, offices, cafes, libraries, airports, zoos, and other public places are being outfitted with them to connect computers, PDAs, and smart phones to the Internet. Wireless LANs can also be used to let two or more nearby computers communicate without using the Internet.

The main wireless LAN standard is 802.11. We gave some background information on it in Sec. 1.5.3. Now it is time to take a closer look at the technology. In the following sections, we will look at the protocol stack, physical-layer radio transmission techniques, the MAC sublayer protocol, the frame structure, and the services provided. For more information about 802.11, see Gast (2005). To get the truth from the mouth of the horse, consult the published standard, IEEE 802.11-2007 itself.

4.4.1 The 802.11 Architecture and Protocol Stack

802.11 networks can be used in two modes. The most popular mode is to connect clients, such as laptops and smart phones, to another network, such as a company intranet or the Internet. This mode is shown in Fig. 4-23(a). In infrastructure mode, each client is associated with an **AP** (**Access Point**) that is in turn connected to the other network. The client sends and receives its packets via the AP. Several access points may be connected together, typically by a wired network called a **distribution system**, to form an extended 802.11 network. In this case, clients can send frames to other clients via their APs.

The other mode, shown in Fig. 4-23(b), is an **ad hoc network**. This mode is a collection of computers that are associated so that they can directly send frames to each other. There is no access point. Since Internet access is the killer application for wireless, ad hoc networks are not very popular.

Now we will look at the protocols. All the 802 protocols, including 802.11 and Ethernet, have a certain commonality of structure. A partial view of the 802.11 protocol stack is given in Fig. 4-24. The stack is the same for clients and

Figure 4-23. 802.11 architecture. (a) Infrastructure mode. (b) Ad-hoc mode.

APs. The physical layer corresponds fairly well to the OSI physical layer, but the data link layer in all the 802 protocols is split into two or more sublayers. In 802.11, the MAC (Medium Access Control) sublayer determines how the channel is allocated, that is, who gets to transmit next. Above it is the LLC (Logical Link Control) sublayer, whose job it is to hide the differences between the different 802 variants and make them indistinguishable as far as the network layer is concerned. This could have been a significant responsibility, but these days the LLC is a glue layer that identifies the protocol (e.g., IP) that is carried within an 802.11 frame.

Figure 4-24. Part of the 802.11 protocol stack.

Several transmission techniques have been added to the physical layer as 802.11 has evolved since it first appeared in 1997. Two of the initial techniques, infrared in the manner of television remote controls and frequency hopping in the 2.4-GHz band, are now defunct. The third initial technique, direct sequence spread spectrum at 1 or 2 Mbps in the 2.4-GHz band, was extended to run at rates up to 11 Mbps and quickly became a hit. It is now known as 802.11b.

To give wireless junkies a much-wanted speed boost, new transmission techniques based on the OFDM (Orthogonal Frequency Division Multiplexing) scheme we described in Sec. 2.5.3 were introduced in 1999 and 2003. The first is called 802.11a and uses a different frequency band, 5 GHz. The second stuck with 2.4 GHz and compatibility. It is called 802.11g. Both give rates up to 54 Mbps.

Most recently, transmission techniques that simultaneously use multiple antennas at the transmitter and receiver for a speed boost were finalized as 802.11n in Oct. 2009. With four antennas and wider channels, the 802.11 standard now defines rates up to a startling 600 Mbps.

We will now examine each of these transmission techniques briefly. We will only cover those that are in use, however, skipping the legacy 802.11 transmission methods. Technically, these belong to the physical layer and should have been examined in Chap. 2, but since they are so closely tied to LANs in general and the 802.11 LAN in particular, we treat them here instead.

4.4.2 The **802.11** Physical Layer

Each of the transmission techniques makes it possible to send a MAC frame over the air from one station to another. They differ, however, in the technology used and speeds achievable. A detailed discussion of these technologies is far beyond the scope of this book, but a few words on each one will relate the techniques to the material we covered in Sec. 2.5 and will provide interested readers with the key terms to search for elsewhere for more information.

All of the 802.11 techniques use short-range radios to transmit signals in either the 2.4-GHz or the 5-GHz ISM frequency bands, both described in Sec. 2.3.3. These bands have the advantage of being unlicensed and hence freely available to any transmitter willing to meet some restrictions, such as radiated power of at most 1 W (though 50 mW is more typical for wireless LAN radios). Unfortunately, this fact is also known to the manufacturers of garage door openers, cordless phones, microwave ovens, and countless other devices, all of which compete with laptops for the same spectrum. The 2.4-GHz band tends to be more crowded than the 5-GHz band, so 5 GHz can be better for some applications even though it has shorter range due to the higher frequency.

All of the transmission methods also define multiple rates. The idea is that different rates can be used depending on the current conditions. If the wireless signal is weak, a low rate can be used. If the signal is clear, the highest rate can be used. This adjustment is called **rate adaptation**. Since the rates vary by a factor of 10 or more, good rate adaptation is important for good performance. Of course, since it is not needed for interoperability, the standards do not say how rate adaptation should be done.

The first transmission method we shall look at is **802.11b**. It is a spread-spectrum method that supports rates of 1, 2, 5.5, and 11 Mbps, though in practice the operating rate is nearly always 11 Mbps. It is similar to the CDMA system we

examined in Sec. 2.5, except that there is only one spreading code that is shared by all users. Spreading is used to satisfy the FCC requirement that power be spread over the ISM band. The spreading sequence used by 201.11b is a **Barker sequence**. It has the property that its autocorrelation is low except when the sequences are aligned. This property allows a receiver to lock onto the start of a transmission. To send at a rate of 1 Mbps, the Barker sequence is used with BPSK modulation to send 1 bit per 11 chips. The chips are transmitted at a rate of 11 Mchips/sec. To send at 2 Mbps, it is used with QPSK modulation to send 2 bits per 11 chips. The higher rates are different. These rates use a technique called **CCK** (**Complementary Code Keying**) to construct codes instead of the Barker sequence. The 5.5-Mbps rate sends 4 bits in every 8-chip code, and the 11-Mbps rate sends 8 bits in every 8-chip code.

Next we come to **802.11a**, which supports rates up to 54 Mbps in the 5-GHz ISM band. You might have expected that 802.11a to come before 802.11b, but that was not the case. Although the 802.11a group was set up first, the 802.11b standard was approved first and its product got to market well ahead of the 802.11a products, partly because of the difficulty of operating in the higher 5-GHz band.

The 802.11a method is based on **OFDM** (**Orthogonal Frequency Division Multiplexing**) because OFDM uses the spectrum efficiently and resists wireless signal degradations such as multipath. Bits are sent over 52 subcarriers in parallel, 48 carrying data and 4 used for synchronization. Each symbol lasts 4µs and sends 1, 2, 4, or 6 bits. The bits are coded for error correction with a binary convolutional code first, so only 1/2, 2/3, or 3/4 of the bits are not redundant. With different combinations, 802.11a can run at eight different rates, ranging from 6 to 54 Mbps. These rates are significantly faster than 802.11b rates, and there is less interference in the 5-GHz band. However, 802.11b has a range that is about seven times greater than that of 802.11a, which is more important in many situations.

Even with the greater range, the 802.11b people had no intention of letting this upstart win the speed championship. Fortunately, in May 2002, the FCC dropped its long-standing rule requiring all wireless communications equipment operating in the ISM bands in the U.S. to use spread spectrum, so it got to work on **802.11g**, which was approved by IEEE in 2003. It copies the OFDM modulation methods of 802.11a but operates in the narrow 2.4-GHz ISM band along with 802.11b. It offers the same rates as 802.11a (6 to 54 Mbps) plus of course compatibility with any 802.11b devices that happen to be nearby. All of these different choices can be confusing for customers, so it is common for products to support 802.11a/b/g in a single NIC.

Not content to stop there, the IEEE committee began work on a high-throughput physical layer called **802.11n**. It was ratified in 2009. The goal for 802.11n was throughput of at least 100 Mbps after all the wireless overheads were removed. This goal called for a raw speed increase of at least a factor of four. To make it happen, the committee doubled the channels from 20 MHz to 40 MHz and

reduced framing overheads by allowing a group of frames to be sent together. More significantly, however, 802.11n uses up to four antennas to transmit up to four streams of information at the same time. The signals of the streams interfere at the receiver, but they can be separated using **MIMO** (**Multiple Input Multiple Output**) communications techniques. The use of multiple antennas gives a large speed boost, or better range and reliability instead. MIMO, like OFDM, is one of those clever communications ideas that is changing wireless designs and which we are all likely to hear a lot about in the future. For a brief introduction to multiple antennas in 802.11 see Halperin et al. (2010).

4.4.3 The 802.11 MAC Sublayer Protocol

Let us now return from the land of electrical engineering to the land of computer science. The 802.11 MAC sublayer protocol is quite different from that of Ethernet, due to two factors that are fundamental to wireless communication.

First, radios are nearly always half duplex, meaning that they cannot transmit and listen for noise bursts at the same time on a single frequency. The received signal can easily be a million times weaker than the transmitted signal, so it cannot be heard at the same time. With Ethernet, a station just waits until the ether goes silent and then starts transmitting. If it does not receive a noise burst back while transmitting the first 64 bytes, the frame has almost assuredly been delivered correctly. With wireless, this collision detection mechanism does not work.

Instead, 802.11 tries to avoid collisions with a protocol called CSMA/CA (CSMA with Collision Avoidance). This protocol is conceptually similar to Ethernet's CSMA/CD, with channel sensing before sending and exponential back off after collisions. However, a station that has a frame to send starts with a random backoff (except in the case that it has not used the channel recently and the channel is idle). It does not wait for a collision. The number of slots to backoff is chosen in the range 0 to, say, 15 in the case of the OFDM physical layer. The station waits until the channel is idle, by sensing that there is no signal for a short period of time (called the DIFS, as we explain below), and counts down idle slots, pausing when frames are sent. It sends its frame when the counter reaches 0. If the frame gets through, the destination immediately sends a short acknowledgement. Lack of an acknowledgement is inferred to indicate an error, whether a collision or otherwise. In this case, the sender doubles the backoff period and tries again, continuing with exponential backoff as in Ethernet until the frame has been successfully transmitted or the maximum number of retransmissions has been reached.

An example timeline is shown in Fig. 4-25. Station A is the first to send a frame. While A is sending, stations B and C become ready to send. They see that the channel is busy and wait for it to become idle. Shortly after A receives an acknowledgement, the channel goes idle. However, rather than sending a frame right away and colliding, B and C both perform a backoff. C picks a short backoff,

and thus sends first. B pauses its countdown while it senses that C is using the channel, and resumes after C has received an acknowledgement. B soon completes its backoff and sends its frame.

Figure 4-25. Sending a frame with CSMA/CA.

Compared to Ethernet, there are two main differences. First, starting backoffs early helps to avoid collisions. This avoidance is worthwhile because collisions are expensive, as the entire frame is transmitted even if one occurs. Second, acknowledgements are used to infer collisions because collisions cannot be detected.

This mode of operation is called **DCF** (**Distributed Coordination Function**) because each station acts independently, without any kind of central control. The standard also includes an optional mode of operation called **PCF** (**Point Coordination Function**) in which the access point controls all activity in its cell, just like a cellular base station. However, PCF is not used in practice because there is normally no way to prevent stations in another nearby network from transmitting competing traffic.

The second problem is that the transmission ranges of different stations may be different. With a wire, the system is engineered so that all stations can hear each other. With the complexities of RF propagation this situation does not hold for wireless stations. Consequently, situations such as the hidden terminal problem mentioned earlier and illustrated again in Fig. 4-26(a) can arise. Since not all stations are within radio range of each other, transmissions going on in one part of a cell may not be received elsewhere in the same cell. In this example, station C is transmitting to station B. If A senses the channel, it will not hear anything and will falsely conclude that it may now start transmitting to B. This decision leads to a collision.

The inverse situation is the exposed terminal problem, illustrated in Fig. 4-26(b). Here, B wants to send to C, so it listens to the channel. When it hears a

Figure 4-26. (a) The hidden terminal problem. (b) The exposed terminal problem.

transmission, it falsely concludes that it may not send to C, even though A may in fact be transmitting to D (not shown). This decision wastes a transmission opportunity.

To reduce ambiguities about which station is sending, 802.11 defines channel sensing to consist of both physical sensing and virtual sensing. Physical sensing simply checks the medium to see if there is a valid signal. With virtual sensing, each station keeps a logical record of when the channel is in use by tracking the **NAV** (**Network Allocation Vector**). Each frame carries a NAV field that says how long the sequence of which this frame is part will take to complete. Stations that overhear this frame know that the channel will be busy for the period indicated by the NAV, regardless of whether they can sense a physical signal. For example, the NAV of a data frame includes the time needed to send an acknowledgement. All stations that hear the data frame will defer during the acknowledgement period, whether or not they can hear the acknowledgement.

An optional RTS/CTS mechanism uses the NAV to prevent terminals from sending frames at the same time as hidden terminals. It is shown in Fig. 4-27. In this example, A wants to send to B. C is a station within range of A (and possibly within range of B, but that does not matter). D is a station within range of B but not within range of A.

The protocol starts when A decides it wants to send data to B. A begins by sending an RTS frame to B to request permission to send it a frame. If B receives this request, it answers with a CTS frame to indicate that the channel is clear to send. Upon receipt of the CTS, A sends its frame and starts an ACK timer. Upon correct receipt of the data frame, B responds with an ACK frame, completing the exchange. If A's ACK timer expires before the ACK gets back to it, it is treated as a collision and the whole protocol is run again after a backoff.

Figure 4-27. Virtual channel sensing using CSMA/CA.

Now let us consider this exchange from the viewpoints of *C* and *D*. *C* is within range of *A*, so it may receive the RTS frame. If it does, it realizes that someone is going to send data soon. From the information provided in the RTS request, it can estimate how long the sequence will take, including the final ACK. So, for the good of all, it desists from transmitting anything until the exchange is completed. It does so by updating its record of the NAV to indicate that the channel is busy, as shown in Fig. 4-27. *D* does not hear the RTS, but it does hear the CTS, so it also updates its NAV. Note that the NAV signals are not transmitted; they are just internal reminders to keep quiet for a certain period of time.

However, while RTS/CTS sounds good in theory, it is one of those designs that has proved to be of little value in practice. Several reasons why it is seldom used are known. It does not help for short frames (which are sent in place of the RTS) or for the AP (which everyone can hear, by definition). For other situations, it only slows down operation. RTS/CTS in 802.11 is a little different than in the MACA protocol we saw in Sec 4.2 because everyone hearing the RTS or CTS remains quiet for the duration to allow the ACK to get through without collision. Because of this, it does not help with exposed terminals as MACA did, only with hidden terminals. Most often there are few hidden terminals, and CSMA/CA already helps them by slowing down stations that transmit unsuccessfully, whatever the cause, to make it more likely that transmissions will succeed.

CSMA/CA with physical and virtual sensing is the core of the 802.11 protocol. However, there are several other mechanisms that have been developed to go with it. Each of these mechanisms was driven by the needs of real operation, so we will look at them briefly.

The first need we will look at is reliability. In contrast to wired networks, wireless networks are noisy and unreliable, in no small part due to interference from other kinds of devices, such as microwave ovens, which also use the unlicensed ISM bands. The use of acknowledgements and retransmissions is of little help if the probability of getting a frame through is small in the first place.

The main strategy that is used to increase successful transmissions is to lower the transmission rate. Slower rates use more robust modulations that are more likely to be received correctly for a given signal-to-noise ratio. If too many frames are lost, a station can lower the rate. If frames are delivered with little loss, a station can occasionally test a higher rate to see if it should be used.

Another strategy to improve the chance of the frame getting through undamaged is to send shorter frames. If the probability of any bit being in error is p, the probability of an n-bit frame being received entirely correctly is $(1-p)^n$. For example, for $p=10^{-4}$, the probability of receiving a full Ethernet frame (12,144 bits) correctly is less than 30%. Most frames will be lost. But if the frames are only a third as long (4048 bits) two thirds of them will be received correctly. Now most frames will get through and fewer retransmissions will be needed.

Shorter frames can be implemented by reducing the maximum size of the message that is accepted from the network layer. Alternatively, 802.11 allows frames to be split into smaller pieces, called **fragments**, each with its own checksum. The fragment size is not fixed by the standard, but is a parameter that can be adjusted by the AP. The fragments are individually numbered and acknowledged using a stop-and-wait protocol (i.e., the sender may not transmit fragment k+1 until it has received the acknowledgement for fragment k). Once the channel has been acquired, multiple fragments are sent as a burst. They go one after the other with an acknowledgement (and possibly retransmissions) in between, until either the whole frame has been successfully sent or the transmission time reaches the maximum allowed. The NAV mechanism keeps other stations quiet only until the next acknowledgement, but another mechanism (see below) is used to allow a burst of fragments to be sent without other stations sending a frame in the middle.

The second need we will discuss is saving power. Battery life is always an issue with mobile wireless devices. The 802.11 standard pays attention to the issue of power management so that clients need not waste power when they have neither information to send nor to receive.

The basic mechanism for saving power builds on **beacon frames**. Beacons are periodic broadcasts by the AP (e.g., every 100 msec). The frames advertise the presence of the AP to clients and carry system parameters, such as the identifier of the AP, the time, how long until the next beacon, and security settings.

Clients can set a power-management bit in frames that they send to the AP to tell it that they are entering **power-save mode**. In this mode, the client can doze and the AP will buffer traffic intended for it. To check for incoming traffic, the client wakes up for every beacon, and checks a traffic map that is sent as part of the beacon. This map tells the client if there is buffered traffic. If so, the client sends a poll message to the AP, which then sends the buffered traffic. The client can then go back to sleep until the next beacon is sent.

Another power-saving mechanism, called **APSD** (**Automatic Power Save Delivery**), was also added to 802.11 in 2005. With this new mechanism, the AP buffers frames and sends them to a client just after the client sends frames to the

AP. The client can then go to sleep until it has more traffic to send (and receive). This mechanism works well for applications such as VoIP that have frequent traffic in both directions. For example, a VoIP wireless phone might use it to send and receive frames every 20 msec, much more frequently than the beacon interval of 100 msec, while dozing in between.

The third and last need we will examine is quality of service. When the VoIP traffic in the preceding example competes with peer-to-peer traffic, the VoIP traffic will suffer. It will be delayed due to contention with the high-bandwidth peer-to-peer traffic, even though the VoIP bandwidth is low. These delays are likely to degrade the voice calls. To prevent this degradation, we would like to let the VoIP traffic go ahead of the peer-to-peer traffic, as it is of higher priority.

IEEE 802.11 has a clever mechanism to provide this kind of quality of service that was introduced as set of extensions under the name 802.11e in 2005. It works by extending CSMA/CA with carefully defined intervals between frames. After a frame has been sent, a certain amount of idle time is required before any station may send a frame to check that the channel is no longer in use. The trick is to define different time intervals for different kinds of frames.

Five intervals are depicted in Fig. 4-28. The interval between regular data frames is called the **DIFS** (**DCF InterFrame Spacing**). Any station may attempt to acquire the channel to send a new frame after the medium has been idle for DIFS. The usual contention rules apply, and binary exponential backoff may be needed if a collision occurs. The shortest interval is **SIFS** (**Short InterFrame Spacing**). It is used to allow the parties in a single dialog the chance to go first. Examples include letting the receiver send an ACK, other control frame sequences like RTS and CTS, or letting a sender transmit a burst of fragments. Sending the next fragment after waiting only SIFS is what prevents another station from jumping in with a frame in the middle of the exchange.

Figure 4-28. Interframe spacing in 802.11.

The two **AIFS** (**Arbitration InterFrame Space**) intervals show examples of two different priority levels. The short interval, AIFS₁, is smaller than DIFS but longer than SIFS. It can be used by the AP to move voice or other high-priority

traffic to the head of the line. The AP will wait for a shorter interval before it sends the voice traffic, and thus send it before regular traffic. The long interval, AIFS₄, is larger than DIFS. It is used for background traffic that can be deferred until after regular traffic. The AP will wait for a longer interval before it sends this traffic, giving regular traffic the opportunity to transmit first. The complete quality of service mechanism defines four different priority levels that have different backoff parameters as well as different idle parameters.

The last time interval, **EIFS** (**Extended InterFrame Spacing**), is used only by a station that has just received a bad or unknown frame, to report the problem. The idea is that since the receiver may have no idea of what is going on, it should wait a while to avoid interfering with an ongoing dialog between two stations.

A further part of the quality of service extensions is the notion of a **TXOP** or **transmission opportunity**. The original CSMA/CA mechanism let stations send one frame at a time. This design was fine until the range of rates increased. With 802.11a/g, one station might be sending at 6 Mbps and another station be sending at 54 Mbps. They each get to send one frame, but the 6-Mbps station takes nine times as long (ignoring fixed overheads) as the 54-Mbps station to send its frame. This disparity has the unfortunate side effect of slowing down a fast sender who is competing with a slow sender to roughly the rate of the slow sender. For example, again ignoring fixed overheads, when sending alone the 6-Mbps and 54-Mbps senders will get their own rates, but when sending together they will both get 5.4 Mbps on average. It is a stiff penalty for the fast sender. This issue is known as the **rate anomaly** (Heusse et al., 2003).

With transmission opportunities, each station gets an equal amount of airtime, not an equal number of frames. Stations that send at a higher rate for their airtime will get higher throughput. In our example, when sending together the 6-Mbps and 54-Mbps senders will now get 3 Mbps and 27 Mbps, respectively.

4.4.4 The 802.11 Frame Structure

The 802.11 standard defines three different classes of frames in the air: data, control, and management. Each of these has a header with a variety of fields used within the MAC sublayer. In addition, there are some headers used by the physical layer, but these mostly deal with the modulation techniques used, so we will not discuss them here.

We will look at the format of the data frame as an example. It is shown in Fig. 4-29. First comes the *Frame control* field, which is made up of 11 subfields. The first of these is the *Protocol version*, set to 00. It is there to allow future versions of 802.11 to operate at the same time in the same cell. Then come the *Type* (data, control, or management) and *Subtype* fields (e.g., RTS or CTS). For a regular data frame (without quality of service), they are set to 10 and 0000 in binary. The *To DS* and *From DS* bits are set to indicate whether the frame is going to or coming from the network connected to the APs, which is called the distribution

system. The *More fragments* bit means that more fragments will follow. The *Retry* bit marks a retransmission of a frame sent earlier. The *Power management* bit indicates that the sender is going into power-save mode. The *More data* bit indicates that the sender has additional frames for the receiver. The *Protected Frame* bit indicates that the frame body has been encrypted for security. We will discuss security briefly in the next section. Finally, the *Order* bit tells the receiver that the higher layer expects the sequence of frames to arrive strictly in order.

Figure 4-29. Format of the 802.11 data frame.

The second field of the data frame, the *Duration* field, tells how long the frame and its acknowledgement will occupy the channel, measured in microseconds. It is present in all types of frames, including control frames, and is what stations use to manage the NAV mechanism.

Next come addresses. Data frames sent to or from an AP have three addresses, all in standard IEEE 802 format. The first address is the receiver, and the second address is the transmitter. They are obviously needed, but what is the third address for? Remember that the AP is simply a relay point for frames as they travel between a client and another point on the network, perhaps a distant client or a portal to the Internet. The third address gives this distant endpoint.

The *Sequence* field numbers frames so that duplicates can be detected. Of the 16 bits available, 4 identify the fragment and 12 carry a number that is advanced with each new transmission. The *Data* field contains the payload, up to 2312 bytes. The first bytes of this payload are in a format known as **LLC** (**Logical Link Control**). This layer is the glue that identifies the higher-layer protocol (e.g., IP) to which the payloads should be passed. Last comes the *Frame check sequence*, which is the same 32-bit CRC we saw in Sec. 3.2.2 and elsewhere.

Management frames have the same format as data frames, plus a format for the data portion that varies with the subtype (e.g., parameters in beacon frames). Control frames are short. Like all frames, they have the *Frame control*, *Duration*, and *Frame check sequence* fields. However, they may have only one address and no data portion. Most of the key information is conveyed with the *Subtype* field (e.g., ACK, RTS and CTS).

4.4.5 Services

The 802.11 standard defines the services that the clients, the access points, and the network connecting them must be a conformant wireless LAN. These services cluster into several groups.

The **association** service is used by mobile stations to connect themselves to APs. Typically, it is used just after a station moves within radio range of the AP. Upon arrival, the station learns the identity and capabilities of the AP, either from beacon frames or by directly asking the AP. The capabilities include the data rates supported, security arrangements, power-saving capabilities, quality of service support, and more. The station sends a request to associate with the AP. The AP may accept or reject the request.

Reassociation lets a station change its preferred AP. This facility is useful for mobile stations moving from one AP to another AP in the same extended 802.11 LAN, like a handover in the cellular network. If it is used correctly, no data will be lost as a consequence of the handover. (But 802.11, like Ethernet, is just a best-effort service.) Either the station or the AP may also **disassociate**, breaking their relationship. A station should use this service before shutting down or leaving the network. The AP may use it before going down for maintenance.

Stations must also **authenticate** before they can send frames via the AP, but authentication is handled in different ways depending on the choice of security scheme. If the 802.11 network is "open," anyone is allowed to use it. Otherwise, credentials are needed to authenticate. The recommended scheme, called **WPA2** (**WiFi Protected Access 2**), implements security as defined in the 802.11i standard. (Plain WPA is an interim scheme that implements a subset of 802.11i. We will skip it and go straight to the complete scheme.) With WPA2, the AP can talk to an authentication server that has a username and password database to determine if the station is allowed to access the network. Alternatively a pre-shared key, which is a fancy name for a network password, may be configured. Several frames are exchanged between the station and the AP with a challenge and response that lets the station prove it has the right credentials. This exchange happens after association.

The scheme that was used before WPA is called **WEP** (**Wired Equivalent Privacy**). For this scheme, authentication with a preshared key happens before association. However, its use is discouraged because of design flaws that make WEP easy to compromise. The first practical demonstration that WEP was broken came when Adam Stubblefield was a summer intern at AT&T (Stubblefield et al., 2002). He was able to code up and test an attack in one week, much of which was spent getting permission from management to buy the WiFi cards needed for experiments. Software to crack WEP passwords is now freely available.

Once frames reach the AP, the **distribution** service determines how to route them. If the destination is local to the AP, the frames can be sent out directly over the air. Otherwise, they will have to be forwarded over the wired network. The

integration service handles any translation that is needed for a frame to be sent outside the 802.11 LAN, or to arrive from outside the 802.11 LAN. The common case here is connecting the wireless LAN to the Internet.

Data transmission is what it is all about, so 802.11 naturally provides a **data delivery** service. This service lets stations transmit and receive data using the protocols we described earlier in this chapter. Since 802.11 is modeled on Ethernet and transmission over Ethernet is not guaranteed to be 100% reliable, transmission over 802.11 is not guaranteed to be reliable either. Higher layers must deal with detecting and correcting errors.

Wireless is a broadcast signal. For information sent over a wireless LAN to be kept confidential, it must be encrypted. This goal is accomplished with a **privacy** service that manages the details of encryption and decryption. The encryption algorithm for WPA2 is based on **AES** (**Advanced Encryption Standard**), a U.S. government standard approved in 2002. The keys that are used for encryption are determined during the authentication procedure.

To handle traffic with different priorities, there is a **QOS** traffic scheduling service. It uses the protocols we described to give voice and video traffic preferential treatment compared to best-effort and background traffic. A companion service also provides higher-layer timer synchronization. This lets stations coordinate their actions, which may be useful for media processing.

Finally, there are two services that help stations manage their use of the spectrum. The **transmit power control** service gives stations the information they need to meet regulatory limits on transmit power that vary from region to region. The **dynamic frequency selection** service give stations the information they need to avoid transmitting on frequencies in the 5-GHz band that are being used for radar in the proximity.

With these services, 802.11 provides a rich set of functionality for connecting nearby mobile clients to the Internet. It has been a huge success, and the standard has repeatedly been amended to add more functionality. For a perspective on where the standard has been and where it is heading, see Hiertz et al. (2010).

4.5 BROADBAND WIRELESS

We have been indoors too long. Let us go outdoors, where there is quite a bit of interesting networking over the so-called "last mile." With the deregulation of the telephone systems in many countries, competitors to the entrenched telephone companies are now often allowed to offer local voice and high-speed Internet service. There is certainly plenty of demand. The problem is that running fiber or coax to millions of homes and businesses is prohibitively expensive. What is a competitor to do?

The answer is broadband wireless. Erecting a big antenna on a hill just outside of town is much easier and cheaper than digging many trenches and stringing

cables. Thus, companies have begun to experiment with providing multimegabit wireless communication services for voice, Internet, movies on demand, etc.

To stimulate the market, IEEE formed a group to standardize a broadband wireless metropolitan area network. The next number available in the 802 numbering space was **802.16**, so the standard got this number. Informally the technology is called **WiMAX** (**Worldwide Interoperability for Microwave Access**). We will use the terms 802.16 and WiMAX interchangeably.

The first 802.16 standard was approved in December 2001. Early versions provided a wireless local loop between fixed points with a line of sight to each other. This design soon changed to make WiMAX a more competitive alternative to cable and DSL for Internet access. By January 2003, 802.16 had been revised to support non-line-of-sight links by using OFDM technology at frequencies between 2 GHz and 10 GHz. This change made deployment much easier, though stations were still fixed locations. The rise of 3G cellular networks posed a threat by promising high data rates *and* mobility. In response, 802.16 was enhanced again to allow mobility at vehicular speeds by December 2005. Mobile broadband Internet access is the target of the current standard, IEEE 802.16-2009.

Like the other 802 standards, 802.16 was heavily influenced by the OSI model, including the (sub)layers, terminology, service primitives, and more. Unfortunately, also like OSI, it is fairly complicated. In fact, the **WiMAX Forum** was created to define interoperable subsets of the standard for commercial offerings. In the following sections, we will give a brief description of some of the highlights of the common forms of 802.16 air interface, but this treatment is far from complete and leaves out many details. For additional information about WiMAX and broadband wireless in general, see Andrews et al. (2007).

4.5.1 Comparison of 802.16 with 802.11 and 3G

At this point you may be thinking: why devise a new standard? Why not just use 802.11 or 3G? In fact, WiMAX combines aspects of both 802.11 and 3G, making it more like a 4G technology.

Like 802.11, WiMAX is all about wirelessly connecting devices to the Internet at megabit/sec speeds, instead of using cable or DSL. The devices may be mobile, or at least portable. WiMAX did not start by adding low-rate data on the side of voice-like cellular networks; 802.16 was designed to carry IP packets over the air and to connect to an IP-based wired network with a minimum of fuss. The packets may carry peer-to-peer traffic, VoIP calls, or streaming media to support a range of applications. Also like 802.11, it is based on OFDM technology to ensure good performance in spite of wireless signal degradations such as multipath fading, and on MIMO technology to achieve high levels of throughput.

However, WiMAX is more like 3G (and thus unlike 802.11) in several key respects. The key technical problem is to achieve high capacity by the efficient use of spectrum, so that a large number of subscribers in a coverage area can all get

high throughput. The typical distances are at least 10 times larger than for an 802.11 network. Consequently, WiMAX base stations are more powerful than 802.11 Access Points (APs). To handle weaker signals over larger distances, the base station uses more power and better antennas, and it performs more processing to handle errors. To maximize throughput, transmissions are carefully scheduled by the base station for each particular subscriber; spectrum use is not left to chance with CSMA/CA, which may waste capacity with collisions.

Licensed spectrum is the expected case for WiMAX, typically around 2.5 GHz in the U.S. The whole system is substantially more optimized than 802.11. This complexity is worth it, considering the large amount of money involved for licensed spectrum. Unlike 802.11, the result is a managed and reliable service with good support for quality of service.

With all of these features, 802.16 most closely resembles the 4G cellular networks that are now being standardized under the name LTE (Long Term Evolution). While 3G cellular networks are based on CDMA and support voice and data, 4G cellular networks will be based on OFDM with MIMO, and they will target data, with voice as just one application. It looks like WiMAX and 4G are on a collision course in terms of technology and applications. Perhaps this convergence is unsurprising, given that the Internet is the killer application and OFDM and MIMO are the best-known technologies for efficiently using the spectrum.

4.5.2 The 802.16 Architecture and Protocol Stack

The 802.16 architecture is shown in Fig. 4-30. Base stations connect directly to the provider's backbone network, which is in turn connected to the Internet. The base stations communicate with stations over the wireless air interface. Two kinds of stations exist. Subscriber stations remain in a fixed location, for example, broadband Internet access for homes. Mobile stations can receive service while they are moving, for example, a car equipped with WiMAX.

The 802.16 protocol stack that is used across the air interface is shown in Fig. 4-31. The general structure is similar to that of the other 802 networks, but with more sublayers. The bottom layer deals with transmission, and here we have shown only the popular offerings of 802.16, fixed and mobile WiMAX. There is a different physical layer for each offering. Both layers operate in licensed spectrum below 11 GHz and use OFDM, but in different ways.

Above the physical layer, the data link layer consists of three sublayers. The bottom one deals with privacy and security, which is far more crucial for public outdoor networks than for private indoor networks. It manages encryption, decryption, and key management.

Next comes the MAC common sublayer part. This part is where the main protocols, such as channel management, are located. The model here is that the base station completely controls the system. It can schedule the downlink (i.e., base to subscriber) channels very efficiently and plays a major role in managing

Figure 4-30. The 802.16 architecture.

Figure 4-31. The 802.16 protocol stack.

the uplink (i.e., subscriber to base) channels as well. An unusual feature of this MAC sublayer is that, unlike those of the other 802 protocols, it is completely connection oriented, in order to provide quality of service guarantees for telephony and multimedia communication.

The service-specific convergence sublayer takes the place of the logical link sublayer in the other 802 protocols. Its function is to provide an interface to the network layer. Different convergence layers are defined to integrate seamlessly with different upper layers. The important choice is IP, though the standard defines mappings for protocols such as Ethernet and ATM too. Since IP is connectionless and the 802.16 MAC sublayer is connection-oriented, this layer must map between addresses and connections.

4.5.3 The 802.16 Physical Layer

Most WiMAX deployments use licensed spectrum around either 3.5 GHz or 2.5 GHz. As with 3G, finding available spectrum is a key problem. To help, the 802.16 standard is designed for flexibility. It allows operation from 2 GHz to 11 GHz. Channels of different sizes are supported, for example, 3.5 MHz for fixed WiMAX and from 1.25 MHz to 20 MHz for mobile WiMAX.

Transmissions are sent over these channels with OFDM, the technique we described in Sec. 2.5.3. Compared to 802.11, the 802.16 OFDM design is optimized to make the most out of licensed spectrum and wide area transmissions. The channel is divided into more subcarriers with a longer symbol duration to tolerate larger wireless signal degradations; WiMAX parameters are around 20 times larger than comparable 802.11 parameters. For example, in mobile WiMAX there are 512 subcarriers for a 5-MHz channel and the time to send a symbol on each subcarrier is roughly $100~\mu sec$.

Symbols on each subcarrier are sent with QPSK, QAM-16, or QAM-64, modulation schemes we described in Sec. 2.5.3. When the mobile or subscriber station is near the base station and the received signal has a high signal-to-noise ratio (SNR), QAM-64 can be used to send 6 bits per symbol. To reach distant stations with a low SNR, QPSK can be used to deliver 2 bits per symbol. The data is first coded for error correction with the convolutional coding (or better schemes) that we described in Sec. 3.2.1. This coding is common on noisy channels to tolerate some bit errors without needing to send retransmissions. In fact, the modulation and coding methods should sound familiar by now as they are used for many networks we have studied, including 802.11 cable, and DSL. The net result is that a base station can support up to 12.6 Mbps of downlink traffic and 6.2 Mbps of uplink traffic per 5-MHz channel and pair of antennas.

One thing the designers of 802.16 did not like was a certain aspect of the way GSM and DAMPS work. Both of those systems use equal frequency bands for upstream and downstream traffic. That is, they implicitly assume there is as much upstream traffic as downstream traffic. For voice, traffic is symmetric for the most part, but for Internet access (and certainly Web surfing) there is often more downstream traffic than upstream traffic. The ratio is often 2:1, 3:1, or more:1.

So, the designers chose a flexible scheme for dividing the channel between stations, called **OFDMA** (**Orthogonal Frequency Division Multiple Access**). With OFDMA, different sets of subcarriers can be assigned to different stations, so that more than one station can send or receive at once. If this were 802.11, all subcarriers would be used by one station to send at any given moment. The added flexibility in how bandwidth is assigned can increase performance because a given subcarrier might be faded at one receiver due to multipath effects but clear at another. Subcarriers can be assigned to the stations that can use them best.

As well as having asymmetric traffic, stations usually alternate between sending and receiving. This method is called **TDD** (**Time Division Duplex**). The

alternative method, in which a station sends and receives at the same time (on different subcarrier frequencies), is called **FDD** (**Frequency Division Duplex**). WiMAX allows both methods, but TDD is preferred because it is easier to implement and more flexible.

Figure 4-32. Frame structure for OFDMA with time division duplexing.

Fig. 4-32 shows an example of the frame structure that is repeated over time. It starts with a preamble to synchronize all stations, followed by downlink transmissions from the base station. First, the base station sends maps that tell all stations how the downlink and uplink subcarriers are assigned over the frame. The base station controls the maps, so it can allocate different amounts of bandwidth to stations from frame to frame depending on the needs of each station.

Next, the base station sends bursts of traffic to different subscriber and mobile stations on the subcarriers at the times given in the map. The downlink transmissions end with a guard time for stations to switch from receiving to transmitting. Finally, the subscriber and mobile stations send their bursts of traffic to the base station in the uplink positions that were reserved for them in the map. One of these uplink bursts is reserved for **ranging**, which is the process by which new stations adjust their timing and request initial bandwidth to connect to the base station. Since no connection is set up at this stage, new stations just transmit and hope there is no collision.

4.5.4 The 802.16 MAC Sublayer Protocol

The data link layer is divided into three sublayers, as we saw in Fig. 4-31. Since we will not study cryptography until Chap. 8, it is difficult to explain now how the security sublayer works. Suffice it to say that encryption is used to keep secret all data transmitted. Only the frame payloads are encrypted; the headers

are not. This property means that a snooper can see who is talking to whom but cannot tell what they are saying to each other.

If you already know something about cryptography, what follows is a one-paragraph explanation of the security sublayer. If you know nothing about cryptography, you are not likely to find the next paragraph terribly enlightening (but you might consider rereading it after finishing Chap. 8).

When a subscriber connects to a base station, they perform mutual authentication with RSA public-key cryptography using X.509 certificates. The payloads themselves are encrypted using a symmetric-key system, either AES (Rijndael) or DES with cipher block chaining. Integrity checking uses SHA-1. Now that was not so bad, was it?

Let us now look at the MAC common sublayer part. The MAC sublayer is connection-oriented and point-to-multipoint, which means that one base station communicates with multiple subscriber stations. Much of this design is borrowed from cable modems, in which one cable headend controls the transmissions of multiple cable modems at the customer premises.

The downlink direction is fairly straightforward. The base station controls the physical-layer bursts that are used to send information to the different subscriber stations. The MAC sublayer simply packs its frames into this structure. To reduce overhead, there are several different options. For example, MAC frames may be sent individually, or packed back-to-back into a group.

The uplink channel is more complicated since there are competing subscribers that need access to it. Its allocation is tied closely to the quality of service issue. Four classes of service are defined, as follows:

- 1. Constant bit rate service.
- 2. Real-time variable bit rate service.
- 3. Non-real-time variable bit rate service.
- 4. Best-effort service.

All service in 802.16 is connection-oriented. Each connection gets one of these service classes, determined when the connection is set up. This design is different from that of 802.11 or Ethernet, which are connectionless in the MAC sublayer.

Constant bit rate service is intended for transmitting uncompressed voice. This service needs to send a predetermined amount of data at predetermined time intervals. It is accommodated by dedicating certain bursts to each connection of this type. Once the bandwidth has been allocated, the bursts are available automatically, without the need to ask for each one.

Real-time variable bit rate service is for compressed multimedia and other soft real-time applications in which the amount of bandwidth needed at each instant may vary. It is accommodated by the base station polling the subscriber at a fixed interval to ask how much bandwidth is needed this time.

Non-real-time variable bit rate service is for heavy transmissions that are not real time, such as large file transfers. For this service, the base station polls the subscriber often, but not at rigidly prescribed time intervals. Connections with this service can also use best-effort service, described next, to request bandwidth.

Best-effort service is for everything else. No polling is done and the subscriber must contend for bandwidth with other best-effort subscribers. Requests for bandwidth are sent in bursts marked in the uplink map as available for contention. If a request is successful, its success will be noted in the next downlink map. If it is not successful, the unsuccessful subscriber have to try again later. To minimize collisions, the Ethernet binary exponential backoff algorithm is used.

4.5.5 The 802.16 Frame Structure

All MAC frames begin with a generic header. The header is followed by an optional payload and an optional checksum (CRC), as illustrated in Fig. 4-33. The payload is not needed in control frames, for example, those requesting channel slots. The checksum is (surprisingly) also optional, due to the error correction in the physical layer and the fact that no attempt is ever made to retransmit real-time frames. If no retransmissions will be attempted, why even bother with a checksum? But if there is a checksum, it is the standard IEEE 802 CRC, and acknowledgements and retransmissions are used for reliability.

Figure 4-33. (a) A generic frame. (b) A bandwidth request frame.

A quick rundown of the header fields of Fig. 4-33(a) follows. The EC bit tells whether the payload is encrypted. The Type field identifies the frame type, mostly telling whether packing and fragmentation are present. The CI field indicates the presence or absence of the final checksum. The EK field tells which of the encryption keys is being used (if any). The Length field gives the complete length of the frame, including the header. The $Connection\ identifier$ tells which connection this frame belongs to. Finally, the $Header\ CRC$ field is a checksum over the header only, using the polynomial $x^8 + x^2 + x + 1$.

The 802.16 protocol has many kinds of frames. An example of a different type of frame, one that is used to request bandwidth, is shown in Fig. 4-33(b). It

starts with a 1 bit instead of a 0 bit and is otherwise similar to the generic header except that the second and third bytes form a 16-bit number telling how much bandwidth is needed to carry the specified number of bytes. Bandwidth request frames do not carry a payload or full-frame CRC.

A great deal more could be said about 802.16, but this is not the place to say it. For more information, please consult the IEEE 802.16-2009 standard itself.

4.6 BLUETOOTH

In 1994, the L. M. Ericsson company became interested in connecting its mobile phones to other devices (e.g., laptops) without cables. Together with four other companies (IBM, Intel, Nokia, and Toshiba), it formed a SIG (Special Interest Group, i.e., consortium) in 1998 to develop a wireless standard for interconnecting computing and communication devices and accessories using short-range, low-power, inexpensive wireless radios. The project was named **Bluetooth**, after Harald Blaatand (Bluetooth) II (940–981), a Viking king who unified (i.e., conquered) Denmark and Norway, also without cables.

Bluetooth 1.0 was released in July 1999, and since then the SIG has never looked back. All manner of consumer electronic devices now use Bluetooth, from mobile phones and laptops to headsets, printers, keyboards, mice, gameboxes, watches, music players, navigation units, and more. The Bluetooth protocols let these devices find and connect to each other, an act called **pairing**, and securely transfer data.

The protocols have evolved over the past decade, too. After the initial protocols stabilized, higher data rates were added to Bluetooth 2.0 in 2004. With the 3.0 release in 2009, Bluetooth can be used for device pairing in combination with 802.11 for high-throughput data transfer. The 4.0 release in December 2009 specified low-power operation. That will be handy for people who do not want to change the batteries regularly in all of those devices around the house. We will cover the main aspects of Bluetooth below.

4.6.1 Bluetooth Architecture

Let us start our study of the Bluetooth system with a quick overview of what it contains and what it is intended to do. The basic unit of a Bluetooth system is a **piconet**, which consists of a master node and up to seven active slave nodes within a distance of 10 meters. Multiple piconets can exist in the same (large) room and can even be connected via a bridge node that takes part in multiple piconets, as in Fig. 4-34. An interconnected collection of piconets is called a **scatternet**.

In addition to the seven active slave nodes in a piconet, there can be up to 255 parked nodes in the net. These are devices that the master has switched to a low-power state to reduce the drain on their batteries. In parked state, a device cannot

Figure 4-34. Two piconets can be connected to form a scatternet.

do anything except respond to an activation or beacon signal from the master. Two intermediate power states, hold and sniff, also exist, but these will not concern us here.

The reason for the master/slave design is that the designers intended to facilitate the implementation of complete Bluetooth chips for under \$5. The consequence of this decision is that the slaves are fairly dumb, basically just doing whatever the master tells them to do. At its heart, a piconet is a centralized TDM system, with the master controlling the clock and determining which device gets to communicate in which time slot. All communication is between the master and a slave; direct slave-slave communication is not possible.

4.6.2 Bluetooth Applications

Most network protocols just provide channels between communicating entities and let application designers figure out what they want to use them for. For example, 802.11 does not specify whether users should use their notebook computers for reading email, surfing the Web, or something else. In contrast, the Bluetooth SIG specifies particular applications to be supported and provides different protocol stacks for each one. At the time of writing, there are 25 applications, which are called **profiles**. Unfortunately, this approach leads to a very large amount of complexity. We will omit the complexity here but will briefly look at the profiles to see more clearly what the Bluetooth SIG is trying to accomplish.

Six of the profiles are for different uses of audio and video. For example, the intercom profile allows two telephones to connect as walkie-talkies. The headset and hands-free profiles both provide voice communication between a headset and its base station, as might be used for hands-free telephony while driving a car.

Other profiles are for streaming stereo-quality audio and video, say, from a portable music player to headphones, or from a digital camera to a TV.

The human interface device profile is for connecting keyboards and mice to computers. Other profiles let a mobile phone or other computer receive images from a camera or send images to a printer. Perhaps of more interest is a profile to use a mobile phone as a remote control for a (Bluetooth-enabled) TV.

Still other profiles enable networking. The personal area network profile lets Bluetooth devices form an ad hoc network or remotely access another network, such as an 802.11 LAN, via an access point. The dial-up networking profile was actually the original motivation for the whole project. It allows a notebook computer to connect to a mobile phone containing a built-in modem without using wires.

Profiles for higher-layer information exchange have also been defined. The synchronization profile is intended for loading data into a mobile phone when it leaves home and collecting data from it when it returns.

We will skip the rest of the profiles, except to mention that some profiles serve as building blocks on which the above profiles are built. The generic access profile, on which all of the other profiles are built, provides a way to establish and maintain secure links (channels) between the master and the slaves. The other generic profiles define the basics of object exchange and audio and video transport. Utility profiles are used widely for functions such as emulating a serial line, which is especially useful for many legacy applications.

Was it really necessary to spell out all these applications in detail and provide different protocol stacks for each one? Probably not, but there were a number of different working groups that devised different parts of the standard, and each one just focused on its specific problem and generated its own profile. Think of this as Conway's Law in action. (In the April 1968 issue of *Datamation* magazine, Melvin Conway observed that if you assign *n* people to write a compiler, you will get an *n*-pass compiler, or more generally, the software structure mirrors the structure of the group that produced it.) It would probably have been possible to get away with two protocol stacks instead of 25, one for file transfer and one for streaming real-time communication.

4.6.3 The Bluetooth Protocol Stack

The Bluetooth standard has many protocols grouped loosely into the layers shown in Fig. 4-35. The first observation to make is that the structure does not follow the OSI model, the TCP/IP model, the 802 model, or any other model.

The bottom layer is the physical radio layer, which corresponds fairly well to the physical layer in the OSI and 802 models. It deals with radio transmission and modulation. Many of the concerns here have to do with the goal of making the system inexpensive so that it can become a mass-market item.

Figure 4-35. The Bluetooth protocol architecture.

The link control (or baseband) layer is somewhat analogous to the MAC sublayer but also includes elements of the physical layer. It deals with how the master controls time slots and how these slots are grouped into frames.

Next come two protocols that use the link control protocol. The link manager handles the establishment of logical channels between devices, including power management, pairing and encryption, and quality of service. It lies below the host controller interface line. This interface is a convenience for implementation: typically, the protocols below the line will be implemented on a Bluetooth chip, and the protocols above the line will be implemented on the Bluetooth device that hosts the chip.

The link protocol above the line is **L2CAP** (**Logical Link Control Adaptation Protocol**). It frames variable-length messages and provides reliability if needed. Many protocols use L2CAP, such as the two utility protocols that are shown. The service discovery protocol is used to locate services within the network. The RFcomm (Radio Frequency communication) protocol emulates the standard serial port found on PCs for connecting the keyboard, mouse, and modem, among other devices.

The top layer is where the applications are located. The profiles are represented by vertical boxes because they each define a slice of the protocol stack for a particular purpose. Specific profiles, such as the headset profile, usually contain only those protocols needed by that application and no others. For example, profiles may include L2CAP if they have packets to send but skip L2CAP if they have only a steady flow of audio samples.

In the following sections, we will examine the Bluetooth radio layer and various link protocols, since these roughly correspond to the physical and MAC sublayers in the other procotol stacks we have studied.

4.6.4 The Bluetooth Radio Layer

The radio layer moves the bits from master to slave, or vice versa. It is a low-power system with a range of 10 meters operating in the same 2.4-GHz ISM band as 802.11. The band is divided into 79 channels of 1 MHz each. To coexist with other networks using the ISM band, frequency hopping spread spectrum is used. There can be up to 1600 hops/sec over slots with a dwell time of 625 μ sec. All the nodes in a piconet hop frequencies simultaneously, following the slot timing and pseudorandom hop sequence dictated by the master.

Unfortunately, it turned out that early versions of Bluetooth and 802.11 interfered enough to ruin each other's transmissions. Some companies responded by banning Bluetooth altogether, but eventually a technical solution was devised. The solution is for Bluetooth to adapt its hop sequence to exclude channels on which there are other RF signals. This process reduces the harmful interference. It is called **adaptive frequency hopping**.

Three forms of modulation are used to send bits on a channel. The basic scheme is to use frequency shift keying to send a 1-bit symbol every microsecond, giving a gross data rate of 1 Mbps. Enhanced rates were introduced with the 2.0 version of Bluetooth. These rates use phase shift keying to send either 2 or 3 bits per symbol, for gross data rates of 2 or 3 Mbps. The enhanced rates are only used in the data portion of frames.

4.6.5 The Bluetooth Link Layers

The link control (or baseband) layer is the closest thing Bluetooth has to a MAC sublayer. It turns the raw bit stream into frames and defines some key formats. In the simplest form, the master in each piconet defines a series of 625-µsec time slots, with the master's transmissions starting in the even slots and the slaves' transmissions starting in the odd ones. This scheme is traditional time division multiplexing, with the master getting half the slots and the slaves sharing the other half. Frames can be 1, 3, or 5 slots long. Each frame has an overhead of 126 bits for an access code and header, plus a settling time of 250–260 µsec per hop to allow the inexpensive radio circuits to become stable. The payload of the frame can be encrypted for confidentiality with a key that is chosen when the master and slave connect. Hops only happen between frames, not during a frame. The result is that a 5-slot frame is much more efficient than a 1-slot frame because the overhead is constant but more data is sent.

The link manager protocol sets up logical channels, called **links**, to carry frames between the master and a slave device that have discovered each other. A pairing procedure is followed to make sure that the two devices are allowed to communicate before the link is used. The old pairing method is that both devices must be configured with the same four-digit PIN (Personal Identification Number). The matching PIN is how each device would know that it was connecting to

the right remote device. However, unimaginative users and devices default to PINs such as "0000" and "1234" meant that this method provided very little security in practice.

The new **secure simple pairing** method enables users to confirm that both devices are displaying the same passkey, or to observe the passkey on one device and enter it into the second device. This method is more secure because users do not have to choose or set a PIN. They merely confirm a longer, device-generated passkey. Of course, it cannot be used on some devices with limited input/output, such as a hands-free headset.

Once pairing is complete, the link manager protocol sets up the links. Two main kinds of links exist to carry user data. The first is the **SCO** (**Synchronous Connection Oriented**) link. It is used for real-time data, such as telephone connections. This type of link is allocated a fixed slot in each direction. A slave may have up to three SCO links with its master. Each SCO link can transmit one 64,000-bps PCM audio channel. Due to the time-critical nature of SCO links, frames sent over them are never retransmitted. Instead, forward error correction can be used to increase reliability.

The other kind is the ACL (Asynchronous ConnectionLess) link. This type of link is used for packet-switched data that is available at irregular intervals. ACL traffic is delivered on a best-effort basis. No guarantees are given. Frames can be lost and may have to be retransmitted. A slave may have only one ACL link to its master.

The data sent over ACL links come from the L2CAP layer. This layer has four major functions. First, it accepts packets of up to 64 KB from the upper layers and breaks them into frames for transmission. At the far end, the frames are reassembled into packets. Second, it handles the multiplexing and demultiplexing of multiple packet sources. When a packet has been reassembled, the L2CAP layer determines which upper-layer protocol to hand it to, for example, RFcomm or service discovery. Third, L2CAP handles error control and retransmission. It detects errors and resends packets that were not acknowledged. Finally, L2CAP enforces quality of service requirements between multiple links.

4.6.6 The Bluetooth Frame Structure

Bluetooth defines several frame formats, the most important of which is shown in two forms in Fig. 4-36. It begins with an access code that usually identifies the master so that slaves within radio range of two masters can tell which traffic is for them. Next comes a 54-bit header containing typical MAC sublayer fields. If the frame is sent at the basic rate, the data field comes next. It has up to 2744 bits for a five-slot transmission. For a single time slot, the format is the same except that the data field is 240 bits.

If the frame is sent at the enhanced rate, the data portion may have up to two or three times as many bits because each symbol carries 2 or 3 bits instead of 1

Figure 4-36. Typical Bluetooth data frame at (a) basic and (b) enhanced, data rates.

bit. These data are preceded by a guard field and a synchronization pattern that is used to switch to the faster data rate. That is, the access code and header are carried at the basic rate and only the data portion is carried at the faster rate. Enhanced-rate frames end with a short trailer.

Let us take a quick look at the common header. The *Address* field identifies which of the eight active devices the frame is intended for. The *Type* field identifies the frame type (ACL, SCO, poll, or null), the type of error correction used in the data field, and how many slots long the frame is. The *Flow* bit is asserted by a slave when its buffer is full and cannot receive any more data. This bit enables a primitive form of flow control. The *Acknowledgement* bit is used to piggyback an ACK onto a frame. The *Sequence* bit is used to number the frames to detect retransmissions. The protocol is stop-and-wait, so 1 bit is enough. Then comes the 8-bit header *Checksum*. The entire 18-bit header is repeated three times to form the 54-bit header shown in Fig. 4-36. On the receiving side, a simple circuit examines all three copies of each bit. If all three are the same, the bit is accepted. If not, the majority opinion wins. Thus, 54 bits of transmission capacity are used to send 10 bits of header. The reason is that to reliably send data in a noisy environment using cheap, low-powered (2.5 mW) devices with little computing capacity, a great deal of redundancy is needed.

Various formats are used for the data field for ACL and SCO frames. The basic-rate SCO frames are a simple example to study: the data field is always 240 bits. Three variants are defined, permitting 80, 160, or 240 bits of actual payload, with the rest being used for error correction. In the most reliable version (80-bit payload), the contents are just repeated three times, the same as the header.

We can work out the capacity with this frame as follows. Since the slave may use only the odd slots, it gets 800 slots/sec, just as the master does. With an 80-bit

payload, the channel capacity from the slave is 64,000 bps as is the channel capacity from the master. This capacity is exactly enough for a single full-duplex PCM voice channel (which is why a hop rate of 1600 hops/sec was chosen). That is, despite a raw bandwidth of 1 Mbps, a single full-duplex uncompressed voice channel can completely saturate the piconet. The efficiency of 13% is the result of spending 41% of the capacity on settling time, 20% on headers, and 26% on repetition coding. This shortcoming highlights the value of the enhanced rates and frames of more than a single slot.

There is much more to be said about Bluetooth, but no more space to say it here. For the curious, the Bluetooth 4.0 specification contains all the details.

4.7 RFID

We have looked at MAC designs from LANs up to MANs and down to PANs. As a last example, we will study a category of low-end wireless devices that people may not recognize as forming a computer network: the **RFID** (**Radio Frequency IDentification**) tags and readers that we described in Sec. 1.5.4.

RFID technology takes many forms, used in smartcards, implants for pets, passports, library books, and more. The form that we will look at was developed in the quest for an **EPC** (**Electronic Product Code**) that started with the Auto-ID Center at the Massachusetts Institute of Technology in 1999. An EPC is a replacement for a barcode that can carry a larger amount of information and is electronically readable over distances up to 10 m, even when it is not visible. It is different technology than, for example, the RFID used in passports, which must be placed quite close to a reader to perform a transaction. The ability to communicate over a distance makes EPCs more relevant to our studies.

EPCglobal was formed in 2003 to commercialize the RFID technology developed by the Auto-ID Center. The effort got a boost in 2005 when Walmart required its top 100 suppliers to label all shipments with RFID tags. Widespread deployment has been hampered by the difficulty of competing with cheap printed barcodes, but new uses, such as in drivers licenses, are now growing. We will describe the second generation of this technology, which is informally called **EPC Gen 2** (EPCglobal, 2008).

4.7.1 EPC Gen 2 Architecture

The architecture of an EPC Gen 2 RFID network is shown in Fig. 4-37. It has two key components: tags and readers. RFID tags are small, inexpensive devices that have a unique 96-bit EPC identifier and a small amount of memory that can be read and written by the RFID reader. The memory might be used to record the location history of an item, for example, as it moves through the supply chain.

Often, the tags look like stickers that can be placed on, for example, pairs of jeans on the shelves in a store. Most of the sticker is taken up by an antenna that is printed onto it. A tiny dot in the middle is the RFID integrated circuit. Alternatively, the RFID tags can be integrated into an object, such as a driver's license. In both cases, the tags have no battery and they must gather power from the radio transmissions of a nearby RFID reader to run. This kind of tag is called a "Class 1" tag to distinguish it from more capable tags that have batteries.

Figure 4-37. RFID architecture.

The readers are the intelligence in the system, analogous to base stations and access points in cellular and WiFi networks. Readers are much more powerful than tags. They have their own power sources, often have multiple antennas, and are in charge of when tags send and receive messages. As there will commonly be multiple tags within the reading range, the readers must solve the multiple access problem. There may be multiple readers that can contend with each other in the same area, too.

The main job of the reader is to inventory the tags in the neighborhood, that is, to discover the identifiers of the nearby tags. The inventory is accomplished with the physical layer protocol and the tag-identification protocol that are outlined in the following sections.

4.7.2 EPC Gen 2 Physical Layer

The physical layer defines how bits are sent between the RFID reader and tags. Much of it uses methods for sending wireless signals that we have seen previously. In the U.S., transmissions are sent in the unlicensed 902–928 MHz ISM band. This band falls in the UHF (Ultra High Frequency) range, so the tags are referred to as UHF RFID tags. The reader performs frequency hopping at least every 400 msec to spread its signal across the channel, to limit interference and satisfy regulatory requirements. The reader and tags use forms of ASK (Amplitude Shift Keying) modulation that we described in Sec. 2.5.2 to encode bits. They take turns to send bits, so the link is half duplex.

There are two main differences from other physical layers that we have studied. The first is that the reader is always transmitting a signal, regardless of whether it is the reader or tag that is communicating. Naturally, the reader transmits a signal to send bits to tags. For the tags to send bits to the reader, the reader transmits a fixed carrier signal that carries no bits. The tags harvest this signal to get the power they need to run; otherwise, a tag would not be able to transmit in the first place. To send data, a tag changes whether it is reflecting the signal from the reader, like a radar signal bouncing off a target, or absorbing it.

This method is called **backscatter**. It differs from all the other wireless situations we have seen so far, in which the sender and receiver never both transmit at the same time. Backscatter is a low-energy way for the tag to create a weak signal of its own that shows up at the reader. For the reader to decode the incoming signal, it must filter out the outgoing signal that it is transmitting. Because the tag signal is weak, tags can only send bits to the reader at a low rate, and tags cannot receive or even sense transmissions from other tags.

The second difference is that very simple forms of modulation are used so that they can be implemented on a tag that runs on very little power and costs only a few cents to make. To send data to the tags, the reader uses two amplitude levels. Bits are determined to be either a 0 or a 1, depending on how long the reader waits before a low-power period. The tag measures the time between low-power periods and compares this time to a reference measured during a preamble. As shown in Fig. 4-38, 1s are longer than 0s.

Tag responses consist of the tag alternating its backscatter state at fixed intervals to create a series of pulses in the signal. Anywhere from one to eight pulse periods can be used to encode each 0 or 1, depending on the need for reliability. 1s have fewer transitions than 0s, as is shown with an example of two-pulse period coding in Fig. 4-38.

Figure 4-38. Reader and tag backscatter signals.

4.7.3 EPC Gen 2 Tag Identification Layer

To inventory the nearby tags, the reader needs to receive a message from each tag that gives the identifier for the tag. This situation is a multiple access problem for which the number of tags is unknown in the general case. The reader might

broadcast a query to ask all tags to send their identifiers. However, tags that replied right away would then collide in much the same way as stations on a classic Ethernet

We have seen many ways of tackling the multiple access problem in this chapter. The closest protocol for the current situation, in which the tags cannot hear each others' transmissions, is slotted ALOHA, one of the earliest protocols we studied. This protocol is adapted for use in Gen 2 RFID.

The sequence of messages used to identify a tag is shown in Fig. 4-39. In the first slot (slot 0), the reader sends a *Query* message to start the process. Each *QRepeat* message advances to the next slot. The reader also tells the tags the range of slots over which to randomize transmissions. Using a range is necessary because the reader synchronizes tags when it starts the process; unlike stations on an Ethernet, tags do not wake up with a message at a time of their choosing.

Figure 4-39. Example message exchange to identify a tag.

Tags pick a random slot in which to reply. In Fig. 4-39, the tag replies in slot 2. However, tags do not send their identifiers when they first reply. Instead, a tag sends a short 16-bit random number in an *RN16* message. If there is no collision, the reader receives this message and sends an *ACK* message of its own. At this stage, the tag has acquired the slot and sends its EPC identifier.

The reason for this exchange is that EPC identifiers are long, so collisions on these messages would be expensive. Instead, a short exchange is used to test whether the tag can safely use the slot to send its identifier. Once its identifier has been successfully transmitted, the tag temporarily stops responding to new *Query* messages so that all the remaining tags can be identified.

A key problem is for the reader to adjust the number of slots to avoid collisions, but without using so many slots that performance suffers. This adjustment is analogous to binary exponential backoff in Ethernet. If the reader sees too many slots with no responses or too many slots with collisions, it can send a *QAdjust* message to decrease or increase the range of slots over which the tags are responding.

The RFID reader can perform other operations on the tags. For example, it can select a subset of tags before running an inventory, allowing it to collect responses from, say, tagged jeans but not tagged shirts. The reader can also write data to tags as they are identified. This feature could be used to record the point of sale or other relevant information.

4.7.4 Tag Identification Message Formats

The format of the *Query* message is shown in Fig. 4-40 as an example of a reader-to-tag message. The message is compact because the downlink rates are limited, from 27 kbps up to 128 kbps. The *Command* field carries the code 1000 to identify the message as a *Query*.

Figure 4-40. Format of the Query message.

The next flags, *DR*, *M*, and *TR*, determine the physical layer parameters for reader transmissions and tag responses. For example, the response rate may be set to between 5 kbps and 640 kbps. We will skip over the details of these flags.

Then come three fields, *Sel*, *Session*, and *Target*, that select the tags to respond. As well as the readers being able to select a subset of identifiers, the tags keep track of up to four concurrent sessions and whether they have been identified in those sessions. In this way, multiple readers can operate in overlapping coverage areas by using different sessions.

Next is the most important parameter for this command, Q. This field defines the range of slots over which tags will respond, from 0 to 2^Q-1 . Finally, there is a CRC to protect the message fields. At 5 bits, it is shorter than most CRCs we have seen, but the *Query* message is much shorter than most packets too.

Tag-to-reader messages are simpler. Since the reader is in control, it knows what message to expect in response to each of its transmissions. The tag responses simply carry data, such as the EPC identifier.

Originally the tags were just for identification purposes. However, they have grown over time to resemble very small computers. Some research tags have sensors and are able to run small programs to gather and process data (Sample et al., 2008). One vision for this technology is the "Internet of things" that connects objects in the physical world to the Internet (Welbourne et al., 2009; and Gershenfeld et al., 2004).

4.8 DATA LINK LAYER SWITCHING

Many organizations have multiple LANs and wish to connect them. Would it not be convenient if we could just join the LANs together to make a larger LAN? In fact, we can do this when the connections are made with devices called **bridges**. The Ethernet switches we described in Sec. 4.3.4 are a modern name for bridges; they provide functionality that goes beyond classic Ethernet and Ethernet hubs to make it easy to join multiple LANs into a larger and faster network. We shall use the terms "bridge" and "switch" interchangeably.

Bridges operate in the data link layer, so they examine the data link layer addresses to forward frames. Since they are not supposed to examine the payload field of the frames they forward, they can handle IP packets as well as other kinds of packets, such as AppleTalk packets. In contrast, *routers* examine the addresses in packets and route based on them, so they only work with the protocols that they were designed to handle.

In this section, we will look at how bridges work and are used to join multiple physical LANs into a single logical LAN. We will also look at how to do the reverse and treat one physical LAN as multiple logical LANs, called **VLANs** (**Virtual LANs**). Both technologies provide useful flexibility for managing networks. For a comprehensive treatment of bridges, switches, and related topics, see Seifert and Edwards (2008) and Perlman (2000).

4.8.1 Uses of Bridges

Before getting into the technology of bridges, let us take a look at some common situations in which bridges are used. We will mention three reasons why a single organization may end up with multiple LANs.

First, many university and corporate departments have their own LANs to connect their own personal computers, servers, and devices such as printers. Since the goals of the various departments differ, different departments may set up different LANs, without regard to what other departments are doing. Sooner or later, though, there is a need for interaction, so bridges are needed. In this example, multiple LANs come into existence due to the autonomy of their owners.

Second, the organization may be geographically spread over several buildings separated by considerable distances. It may be cheaper to have separate LANs in each building and connect them with bridges and a few long-distance fiber optic links than to run all the cables to a single central switch. Even if laying the cables is easy to do, there are limits on their lengths (e.g., 200 m for twisted-pair gigabit Ethernet). The network would not work for longer cables due to the excessive signal attenuation or round-trip delay. The only solution is to partition the LAN and install bridges to join the pieces to increase the total physical distance that can be covered.

Third, it may be necessary to split what is logically a single LAN into separate LANs (connected by bridges) to accommodate the load. At many large universities, for example, thousands of workstations are available for student and faculty computing. Companies may also have thousands of employees. The scale of this system precludes putting all the workstations on a single LAN—there are more computers than ports on any Ethernet hub and more stations than allowed on a single classic Ethernet.

Even if it were possible to wire all the workstations together, putting more stations on an Ethernet hub or classic Ethernet would not add capacity. All of the stations share the same, fixed amount of bandwidth. The more stations there are, the less average bandwidth per station.

However, two separate LANs have twice the capacity of a single LAN. Bridges let the LANs be joined together while keeping this capacity. The key is not to send traffic onto ports where it is not needed, so that each LAN can run at full speed. This behavior also increases reliability, since on a single LAN a defective node that keeps outputting a continuous stream of garbage can clog up the entire LAN. By deciding what to forward and what not to forward, bridges act like fire doors in a building, preventing a single node that has gone berserk from bringing down the entire system.

To make these benefits easily available, ideally bridges should be completely transparent. It should be possible to go out and buy bridges, plug the LAN cables into the bridges, and have everything work perfectly, instantly. There should be no hardware changes required, no software changes required, no setting of address switches, no downloading of routing tables or parameters, nothing at all. Just plug in the cables and walk away. Furthermore, the operation of the existing LANs should not be affected by the bridges at all. As far as the stations are concerned, there should be no observable difference whether or not they are part of a bridged LAN. It should be as easy to move stations around the bridged LAN as it is to move them around a single LAN.

Surprisingly enough, it is actually possible to create bridges that are transparent. Two algorithms are used: a backward learning algorithm to stop traffic being sent where it is not needed; and a spanning tree algorithm to break loops that may be formed when switches are cabled together willy-nilly. Let us now take a look at these algorithms in turn to learn how this magic is accomplished.

4.8.2 Learning Bridges

The topology of two LANs bridged together is shown in Fig. 4-41 for two cases. On the left-hand side, two multidrop LANs, such as classic Ethernets, are joined by a special station—the bridge—that sits on both LANs. On the right-hand side, LANs with point-to-point cables, including one hub, are joined together. The bridges are the devices to which the stations and hub are attached. If the LAN technology is Ethernet, the bridges are better known as Ethernet switches.

Figure 4-41. (a) Bridge connecting two multidrop LANs. (b) Bridges (and a hub) connecting seven point-to-point stations.

Bridges were developed when classic Ethernets were in use, so they are often shown in topologies with multidrop cables, as in Fig. 4-41(a). However, all the topologies that are encountered today are comprised of point-to-point cables and switches. The bridges work the same way in both settings. All of the stations attached to the same port on a bridge belong to the same collision domain, and this is different than the collision domain for other ports. If there is more than one station, as in a classic Ethernet, a hub, or a half-duplex link, the CSMA/CD protocol is used to send frames.

There is a difference, however, in how the bridged LANs are built. To bridge multidrop LANs, a bridge is added as a new station on each of the multidrop LANs, as in Fig. 4-41(a). To bridge point-to-point LANs, the hubs are either connected to a bridge or, preferably, replaced with a bridge to increase performance. In Fig. 4-41(b), bridges have replaced all but one hub.

Different kinds of cables can also be attached to one bridge. For example, the cable connecting bridge B1 to bridge B2 in Fig. 4-41(b) might be a long-distance fiber optic link, while the cable connecting the bridges to stations might be a short-haul twisted-pair line. This arrangement is useful for bridging LANs in different buildings.

Now let us consider what happens inside the bridges. Each bridge operates in promiscuous mode, that is, it accepts every frame transmitted by the stations

attached to each of its ports. The bridge must decide whether to forward or discard each frame, and, if the former, on which port to output the frame. This decision is made by using the destination address. As an example, consider the topology of Fig. 4-41(a). If station A sends a frame to station B, bridge B1 will receive the frame on port 1. This frame can be immediately discarded without further ado because it is already on the correct port. However, in the topology of Fig. 4-41(b) suppose that A sends a frame to D. Bridge B1 will receive the frame on port 1 and output it on port 4. Bridge B2 will then receive the frame on its port 4 and output it on its port 1.

A simple way to implement this scheme is to have a big (hash) table inside the bridge. The table can list each possible destination and which output port it belongs on. For example, in Fig. 4-41(b), the table at B1 would list D as belonging to port 4, since all B1 has to know is which port to put frames on to reach D. That, in fact, more forwarding will happen later when the frame hits B2 is not of interest to B1.

When the bridges are first plugged in, all the hash tables are empty. None of the bridges know where any of the destinations are, so they use a flooding algorithm: every incoming frame for an unknown destination is output on all the ports to which the bridge is connected except the one it arrived on. As time goes on, the bridges learn where destinations are. Once a destination is known, frames destined for it are put only on the proper port; they are not flooded.

The algorithm used by the bridges is **backward learning**. As mentioned above, the bridges operate in promiscuous mode, so they see every frame sent on any of their ports. By looking at the source addresses, they can tell which machines are accessible on which ports. For example, if bridge BI in Fig. 4-41(b) sees a frame on port 3 coming from C, it knows that C must be reachable via port 3, so it makes an entry in its hash table. Any subsequent frame addressed to C coming in to BI on any other port will be forwarded to port 3.

The topology can change as machines and bridges are powered up and down and moved around. To handle dynamic topologies, whenever a hash table entry is made, the arrival time of the frame is noted in the entry. Whenever a frame whose source is already in the table arrives, its entry is updated with the current time. Thus, the time associated with every entry tells the last time a frame from that machine was seen.

Periodically, a process in the bridge scans the hash table and purges all entries more than a few minutes old. In this way, if a computer is unplugged from its LAN, moved around the building, and plugged in again somewhere else, within a few minutes it will be back in normal operation, without any manual intervention. This algorithm also means that if a machine is quiet for a few minutes, any traffic sent to it will have to be flooded until it next sends a frame itself.

The routing procedure for an incoming frame depends on the port it arrives on (the source port) and the address to which it is destined (the destination address). The procedure is as follows.

- 1. If the port for the destination address is the same as the source port, discard the frame.
- 2. If the port for the destination address and the source port are different, forward the frame on to the destination port.
- 3. If the destination port is unknown, use flooding and send the frame on all ports except the source port.

You might wonder whether the first case can occur with point-to-point links. The answer is that it can occur if hubs are used to connect a group of computers to a bridge. An example is shown in Fig. 4-41(b) where stations E and F are connected to hub H1, which is in turn connected to bridge B2. If E sends a frame to F, the hub will relay it to B2 as well as to F. That is what hubs do—they wire all ports together so that a frame input on one port is simply output on all other ports. The frame will arrive at E0 on port 4, which is already the right output port to reach the destination. Bridge E1 need only discard the frame.

As each frame arrives, this algorithm must be applied, so it is usually implemented with special-purpose VLSI chips. The chips do the lookup and update the table entry, all in a few microseconds. Because bridges only look at the MAC addresses to decide how to forward frames, it is possible to start forwarding as soon as the destination header field has come in, before the rest of the frame has arrived (provided the output line is available, of course). This design reduces the latency of passing through the bridge, as well as the number of frames that the bridge must be able to buffer. It is referred to as **cut-through switching** or **wormhole routing** and is usually handled in hardware.

We can look at the operation of a bridge in terms of protocol stacks to understand what it means to be a link layer device. Consider a frame sent from station A to station D in the configuration of Fig. 4-41(a), in which the LANs are Ethernet. The frame will pass through one bridge. The protocol stack view of processing is shown in Fig. 4-42.

The packet comes from a higher layer and descends into the Ethernet MAC layer. It acquires an Ethernet header (and also a trailer, not shown in the figure). This unit is passed to the physical layer, goes out over the cable, and is picked up by the bridge.

In the bridge, the frame is passed up from the physical layer to the Ethernet MAC layer. This layer has extended processing compared to the Ethernet MAC layer at a station. It passes the frame to a relay, still within the MAC layer. The bridge relay function uses only the Ethernet MAC header to determine how to handle the frame. In this case, it passes the frame to the Ethernet MAC layer of the port used to reach station D, and the frame continues on its way.

In the general case, relays at a given layer can rewrite the headers for that layer. VLANs will provide an example shortly. In no case should the bridge look inside the frame and learn that it is carrying an IP packet; that is irrelevant to the

Figure 4-42. Protocol processing at a bridge.

bridge processing and would violate protocol layering. Also note that a bridge with k ports will have k instances of MAC and physical layers. The value of k is 2 for our simple example.

4.8.3 Spanning Tree Bridges

To increase reliability, redundant links can be used between bridges. In the example of Fig. 4-43, there are two links in parallel between a pair of bridges. This design ensures that if one link is cut, the network will not be partitioned into two sets of computers that cannot talk to each other.

Figure 4-43. Bridges with two parallel links.

However, this redundancy introduces some additional problems because it creates loops in the topology. An example of these problems can be seen by looking at how a frame sent by A to a previously unobserved destination is handled in Fig. 4-43. Each bridge follows the normal rule for handling unknown destinations, which is to flood the frame. Call the frame from A that reaches bridge BI frame F_0 . The bridge sends copies of this frame out all of its other ports. We

will only consider the bridge ports that connect B1 to B2 (though the frame will be sent out the other ports, too). Since there are two links from B1 to B2, two copies of the frame will reach B2. They are shown in Fig. 4-43 as F_1 and F_2 .

Shortly thereafter, bridge B2 receives these frames. However, it does not (and cannot) know that they are copies of the same frame, rather than two different frames sent one after the other. So bridge B2 takes F_1 and sends copies of it out all the other ports, and it also takes F_2 and sends copies of it out all the other ports. This produces frames F_3 and F_4 that are sent along the two links back to B1. Bridge B1 then sees two new frames with unknown destinations and copies them again. This cycle goes on forever.

The solution to this difficulty is for the bridges to communicate with each other and overlay the actual topology with a spanning tree that reaches every bridge. In effect, some potential connections between bridges are ignored in the interest of constructing a fictitious loop-free topology that is a subset of the actual topology.

For example, in Fig. 4-44 we see five bridges that are interconnected and also have stations connected to them. Each station connects to only one bridge. There are some redundant connections between the bridges so that frames will be forwarded in loops if all of the links are used. This topology can be thought of as a graph in which the bridges are the nodes and the point-to-point links are the edges. The graph can be reduced to a spanning tree, which has no cycles by definition, by dropping the links shown as dashed lines in Fig. 4-44. Using this spanning tree, there is exactly one path from every station to every other station. Once the bridges have agreed on the spanning tree, all forwarding between stations follows the spanning tree. Since there is a unique path from each source to each destination, loops are impossible.

Figure 4-44. A spanning tree connecting five bridges. The dashed lines are links that are not part of the spanning tree.

To build the spanning tree, the bridges run a distributed algorithm. Each bridge periodically broadcasts a configuration message out all of its ports to its

neighbors and processes the messages it receives from other bridges, as described next. These messages are not forwarded, since their purpose is to build the tree, which can then be used for forwarding.

The bridges must first choose one bridge to be the root of the spanning tree. To make this choice, they each include an identifier based on their MAC address in the configuration message, as well as the identifier of the bridge they believe to be the root. MAC addresses are installed by the manufacturer and guaranteed to be unique worldwide, which makes these identifiers convenient and unique. The bridges choose the bridge with the lowest identifier to be the root. After enough messages have been exchanged to spread the news, all bridges will agree on which bridge is the root. In Fig. 4-44, bridge *B1* has the lowest identifier and becomes the root.

Next, a tree of shortest paths from the root to every bridge is constructed. In Fig. 4-44, bridges *B2* and *B3* can each be reached from bridge *B1* directly, in one hop that is a shortest path. Bridge *B4* can be reached in two hops, via either *B2* or *B3*. To break this tie, the path via the bridge with the lowest identifier is chosen, so *B4* is reached via *B2*. Bridge *B5* can be reached in two hops via *B3*.

To find these shortest paths, bridges include the distance from the root in their configuration messages. Each bridge remembers the shortest path it finds to the root. The bridges then turn off ports that are not part of the shortest path.

Although the tree spans all the bridges, not all the links (or even bridges) are necessarily present in the tree. This happens because turning off the ports prunes some links from the network to prevent loops. Even after the spanning tree has been established, the algorithm continues to run during normal operation to automatically detect topology changes and update the tree.

The algorithm for constructing the spanning tree was invented by Radia Perlman. Her job was to solve the problem of joining LANs without loops. She was given a week to do it, but she came up with the idea for the spanning tree algorithm in a day. Fortunately, this left her enough time to write it as a poem (Perlman, 1985):

I think that I shall never see
A graph more lovely than a tree.
A tree whose crucial property
Is loop-free connectivity.
A tree which must be sure to span.
So packets can reach every LAN.
First the Root must be selected
By ID it is elected.
Least cost paths from Root are traced
In the tree these paths are placed.
A mesh is made by folks like me
Then bridges find a spanning tree.

The spanning tree algorithm was then standardized as IEEE 802.1D and used for many years. In 2001, it was revised to more rapidly find a new spanning tree after a topology change. For a detailed treatment of bridges, see Perlman (2000).

4.8.4 Repeaters, Hubs, Bridges, Switches, Routers, and Gateways

So far in this book, we have looked at a variety of ways to get frames and packets from one computer to another. We have mentioned repeaters, hubs, bridges, switches, routers, and gateways. All of these devices are in common use, but they all differ in subtle and not-so-subtle ways. Since there are so many of them, it is probably worth taking a look at them together to see what the similarities and differences are.

The key to understanding these devices is to realize that they operate in different layers, as illustrated in Fig. 4-45(a). The layer matters because different devices use different pieces of information to decide how to switch. In a typical scenario, the user generates some data to be sent to a remote machine. Those data are passed to the transport layer, which then adds a header (for example, a TCP header) and passes the resulting unit down to the network layer. The network layer adds its own header to form a network layer packet (e.g., an IP packet). In Fig. 4-45(b), we see the IP packet shaded in gray. Then the packet goes to the data link layer, which adds its own header and checksum (CRC) and gives the resulting frame to the physical layer for transmission, for example, over a LAN.

Figure 4-45. (a) Which device is in which layer. (b) Frames, packets, and headers.

Now let us look at the switching devices and see how they relate to the packets and frames. At the bottom, in the physical layer, we find the repeaters. These are analog devices that work with signals on the cables to which they are connected. A signal appearing on one cable is cleaned up, amplified, and put out on another cable. Repeaters do not understand frames, packets, or headers. They understand the symbols that encode bits as volts. Classic Ethernet, for example, was

designed to allow four repeaters that would boost the signal to extend the maximum cable length from 500 meters to 2500 meters.

Next we come to the hubs. A hub has a number of input lines that it joins electrically. Frames arriving on any of the lines are sent out on all the others. If two frames arrive at the same time, they will collide, just as on a coaxial cable. All the lines coming into a hub must operate at the same speed. Hubs differ from repeaters in that they do not (usually) amplify the incoming signals and are designed for multiple input lines, but the differences are slight. Like repeaters, hubs are physical layer devices that do not examine the link layer addresses or use them in any way.

Now let us move up to the data link layer, where we find bridges and switches. We just studied bridges at some length. A bridge connects two or more LANs. Like a hub, a modern bridge has multiple ports, usually enough for 4 to 48 input lines of a certain type. Unlike in a hub, each port is isolated to be its own collision domain; if the port has a full-duplex point-to-point line, the CSMA/CD algorithm is not needed. When a frame arrives, the bridge extracts the destination address from the frame header and looks it up in a table to see where to send the frame. For Ethernet, this address is the 48-bit destination address shown in Fig. 4-14. The bridge only outputs the frame on the port where it is needed and can forward multiple frames at the same time.

Bridges offer much better performance than hubs, and the isolation between bridge ports also means that the input lines may run at different speeds, possibly even with different network types. A common example is a bridge with ports that connect to 10-, 100-, and 1000-Mbps Ethernet. Buffering within the bridge is needed to accept a frame on one port and transmit the frame out on a different port. If frames come in faster than they can be retransmitted, the bridge may run out of buffer space and have to start discarding frames. For example, if a gigabit Ethernet is pouring bits into a 10-Mbps Ethernet at top speed, the bridge will have to buffer them, hoping not to run out of memory. This problem still exists even if all the ports run at the same speed because more than one port may be sending frames to a given destination port.

Bridges were originally intended to be able to join different kinds of LANs, for example, an Ethernet and a Token Ring LAN. However, this never worked well because of differences between the LANs. Different frame formats require copying and reformatting, which takes CPU time, requires a new checksum calculation, and introduces the possibility of undetected errors due to bad bits in the bridge's memory. Different maximum frame lengths are also a serious problem with no good solution. Basically, frames that are too large to be forwarded must be discarded. So much for transparency.

Two other areas where LANs can differ are security and quality of service. Some LANs have link-layer encryption, for example 802.11, and some do not, for example Ethernet. Some LANs have quality of service features such as priorities, for example 802.11, and some do not, for example Ethernet. Consequently, when

a frame must travel between these LANs, the security or quality of service expected by the sender may not be able to be provided. For all of these reasons, modern bridges usually work for one network type, and routers, which we will come to soon, are used instead to join networks of different types.

Switches are modern bridges by another name. The differences are more to do with marketing than technical issues, but there are a few points worth knowing. Bridges were developed when classic Ethernet was in use, so they tend to join relatively few LANs and thus have relatively few ports. The term "switch" is more popular nowadays. Also, modern installations all use point-to-point links, such as twisted-pair cables, so individual computers plug directly into a switch and thus the switch will tend to have many ports. Finally, "switch" is also used as a general term. With a bridge, the functionality is clear. On the other hand, a switch may refer to an Ethernet switch or a completely different kind of device that makes forwarding decisions, such as a telephone switch.

So far, we have seen repeaters and hubs, which are actually quite similar, as well as bridges and switches, which are even more similar to each other. Now we move up to routers, which are different from all of the above. When a packet comes into a router, the frame header and trailer are stripped off and the packet located in the frame's payload field (shaded in Fig. 4-45) is passed to the routing software. This software uses the packet header to choose an output line. For an IP packet, the packet header will contain a 32-bit (IPv4) or 128-bit (IPv6) address, but not a 48-bit IEEE 802 address. The routing software does not see the frame addresses and does not even know whether the packet came in on a LAN or a point-to-point line. We will study routers and routing in Chap. 5.

Up another layer, we find transport gateways. These connect two computers that use different connection-oriented transport protocols. For example, suppose a computer using the connection-oriented TCP/IP protocol needs to talk to a computer using a different connection-oriented transport protocol called SCTP. The transport gateway can copy the packets from one connection to the other, reformatting them as need be.

Finally, application gateways understand the format and contents of the data and can translate messages from one format to another. An email gateway could translate Internet messages into SMS messages for mobile phones, for example. Like "switch," "gateway" is somewhat of a general term. It refers to a forwarding process that runs at a high layer.

4.8.5 Virtual LANs

In the early days of local area networking, thick yellow cables snaked through the cable ducts of many office buildings. Every computer they passed was plugged in. No thought was given to which computer belonged on which LAN. All the people in adjacent offices were put on the same LAN, whether they belonged together or not. Geography trumped corporate organization charts.

With the advent of twisted pair and hubs in the 1990s, all that changed. Buildings were rewired (at considerable expense) to rip out all the yellow garden hoses and install twisted pairs from every office to central wiring closets at the end of each corridor or in a central machine room, as illustrated in Fig. 4-46. If the Vice President in Charge of Wiring was a visionary, Category 5 twisted pairs were installed; if he was a bean counter, the existing (Category 3) telephone wiring was used (only to be replaced a few years later, when fast Ethernet emerged).

Figure 4-46. A building with centralized wiring using hubs and a switch.

Today, the cables have changed and hubs have become switches, but the wiring pattern is still the same. This pattern makes it possible to configure LANs logically rather than physically. For example, if a company wants k LANs, it could buy k switches. By carefully choosing which connectors to plug into which switches, the occupants of a LAN can be chosen in a way that makes organizational sense, without too much regard to geography.

Does it matter who is on which LAN? After all, in nearly all organizations, all the LANs are interconnected. In short, yes, it often matters. Network administrators like to group users on LANs to reflect the organizational structure rather than the physical layout of the building, for a variety of reasons. One issue is security. One LAN might host Web servers and other computers intended for public use. Another LAN might host computers containing the records of the Human Resources department that are not to be passed outside of the department. In such a situation, putting all the computers on a single LAN and not letting any of the servers be accessed from off the LAN makes sense. Management tends to frown when hearing that such an arrangement is impossible.

A second issue is load. Some LANs are more heavily used than others and it may be desirable to separate them. For example, if the folks in research are running all kinds of nifty experiments that sometimes get out of hand and saturate their LAN, the folks in management may not be enthusiastic about donating some of the capacity they were using for videoconferencing to help out. Then again, this might impress on management the need to install a faster network.

A third issue is broadcast traffic. Bridges broadcast traffic when the location of the destination is unknown, and upper-layer protocols use broadcasting as well. For example, when a user wants to send a packet to an IP address x, how does it know which MAC address to put in the frame? We will study this question in Chap. 5, but briefly summarized, the answer is that it broadcasts a frame containing the question "who owns IP address x?" Then it waits for an answer. As the number of computers in a LAN grows, so does the number of broadcasts. Each broadcast consumes more of the LAN capacity than a regular frame because it is delivered to every computer on the LAN. By keeping LANs no larger than they need to be, the impact of broadcast traffic is reduced.

Related to broadcasts is the problem that once in a while a network interface will break down or be misconfigured and begin generating an endless stream of broadcast frames. If the network is really unlucky, some of these frames will elicit responses that lead to ever more traffic. The result of this **broadcast storm** is that (1) the entire LAN capacity is occupied by these frames, and (2) all the machines on all the interconnected LANs are crippled just processing and discarding all the frames being broadcast.

At first it might appear that broadcast storms could be limited in scope by separating the LANs with bridges or switches, but if the goal is to achieve transparency (i.e., a machine can be moved to a different LAN across the bridge without anyone noticing it), then bridges have to forward broadcast frames.

Having seen why companies might want multiple LANs with restricted scopes, let us get back to the problem of decoupling the logical topology from the physical topology. Building a physical topology to reflect the organizational structure can add work and cost, even with centralized wiring and switches. For example, if two people in the same department work in different buildings, it may be easier to wire them to different switches that are part of different LANs. Even if this is not the case, a user might be shifted within the company from one department to another without changing offices, or might change offices without changing departments. This might result in the user being on the wrong LAN until an administrator changes the user's connector from one switch to another. Furthermore, the number of computers that belong to different departments may not be a good match for the number of ports on switches; some departments may be too small and others so big that they require multiple switches. This results in wasted switch ports that are not used.

In many companies, organizational changes occur all the time, meaning that system administrators spend a lot of time pulling out plugs and pushing them back

in somewhere else. Also, in some cases, the change cannot be made at all because the twisted pair from the user's machine is too far from the correct switch (e.g., in the wrong building), or the available switch ports are on the wrong LAN.

In response to customer requests for more flexibility, network vendors began working on a way to rewire buildings entirely in software. The resulting concept is called a **VLAN** (**Virtual LAN**). It has been standardized by the IEEE 802 committee and is now widely deployed in many organizations. Let us now take a look at it. For additional information about VLANs, see Seifert and Edwards (2008).

VLANs are based on VLAN-aware switches. To set up a VLAN-based network, the network administrator decides how many VLANs there will be, which computers will be on which VLAN, and what the VLANs will be called. Often the VLANs are (informally) named by colors, since it is then possible to print color diagrams showing the physical layout of the machines, with the members of the red LAN in red, members of the green LAN in green, and so on. In this way, both the physical and logical layouts are visible in a single view.

As an example, consider the bridged LAN of Fig. 4-47, in which nine of the machines belong to the G (gray) VLAN and five belong to the W (white) VLAN. Machines from the gray VLAN are spread across two switches, including two machines that connect to a switch via a hub.

Figure 4-47. Two VLANs, gray and white, on a bridged LAN.

To make the VLANs function correctly, configuration tables have to be set up in the bridges. These tables tell which VLANs are accessible via which ports. When a frame comes in from, say, the gray VLAN, it must be forwarded on all the ports marked with a G. This holds for ordinary (i.e., unicast) traffic for which the bridges have not learned the location of the destination, as well as for multicast and broadcast traffic. Note that a port may be labeled with multiple VLAN colors.

As an example, suppose that one of the gray stations plugged into bridge *B1* in Fig. 4-47 sends a frame to a destination that has not been observed beforehand. Bridge *B1* will receive the frame and see that it came from a machine on the gray

VLAN, so it will flood the frame on all ports labeled G (except the incoming port). The frame will be sent to the five other gray stations attached to B1 as well as over the link from B1 to bridge B2. At bridge B2, the frame is similarly forwarded on all ports labeled G. This sends the frame to one further station and the hub (which will transmit the frame to all of its stations). The hub has both labels because it connects to machines from both VLANs. The frame is not sent on other ports without G in the label because the bridge knows that there are no machines on the gray VLAN that can be reached via these ports.

In our example, the frame is only sent from bridge B1 to bridge B2 because there are machines on the gray VLAN that are connected to B2. Looking at the white VLAN, we can see that the bridge B2 port that connects to bridge B1 is not labeled W. This means that a frame on the white VLAN will not be forwarded from bridge B2 to bridge B1. This behavior is correct because no stations on the white VLAN are connected to B1.

The IEEE 802.1Q Standard

To implement this scheme, bridges need to know to which VLAN an incoming frame belongs. Without this information, for example, when bridge B2 gets a frame from bridge B1 in Fig. 4-47, it cannot know whether to forward the frame on the gray or white VLAN. If we were designing a new type of LAN, it would be easy enough to just add a VLAN field in the header. But what to do about Ethernet, which is the dominant LAN, and did not have any spare fields lying around for the VLAN identifier?

The IEEE 802 committee had this problem thrown into its lap in 1995. After much discussion, it did the unthinkable and changed the Ethernet header. The new format was published in IEEE standard **802.1Q**, issued in 1998. The new format contains a VLAN tag; we will examine it shortly. Not surprisingly, changing something as well established as the Ethernet header was not entirely trivial. A few questions that come to mind are:

- 1. Need we throw out several hundred million existing Ethernet cards?
- 2. If not, who generates the new fields?
- 3. What happens to frames that are already the maximum size?

Of course, the 802 committee was (only too painfully) aware of these problems and had to come up with solutions, which it did.

The key to the solution is to realize that the VLAN fields are only actually used by the bridges and switches and *not* by the user machines. Thus, in Fig. 4-47, it is not really essential that they are present on the lines going out to the end stations as long as they are on the line between the bridges. Also, to use VLANs, the bridges have to be VLAN aware. This fact makes the design feasible.

As to throwing out all existing Ethernet cards, the answer is no. Remember that the 802.3 committee could not even get people to change the *Type* field into a *Length* field. You can imagine the reaction to an announcement that all existing Ethernet cards had to be thrown out. However, new Ethernet cards are 802.1Q compliant and can correctly fill in the VLAN fields.

Because there can be computers (and switches) that are not VLAN aware, the first VLAN-aware bridge to touch a frame adds VLAN fields and the last one down the road removes them. An example of a mixed topology is shown in Fig. 4-48. In this figure, VLAN-aware computers generate tagged (i.e., 802.1Q) frames directly, and further switching uses these tags. The shaded symbols are VLAN-aware and the empty ones are not.

Figure 4-48. Bridged LAN that is only partly VLAN aware. The shaded symbols are VLAN aware. The empty ones are not.

With 802.1Q, frames are colored depending on the port on which they are received. For this method to work, all machines on a port must belong to the same VLAN, which reduces flexibility. For example, in Fig. 4-48, this property holds for all ports where an individual computer connects to a bridge, but not for the port where the hub connects to bridge *B2*.

Additionally, the bridge can use the higher-layer protocol to select the color. In this way, frames arriving on a port might be placed in different VLANs depending on whether they carry IP packets or PPP frames.

Other methods are possible, but they are not supported by 802.1Q. As one example, the MAC address can be used to select the VLAN color. This might be useful for frames coming in from a nearby 802.11 LAN in which laptops send frames via different ports as they move. One MAC address would then be mapped to a fixed VLAN regardless of which port it entered the LAN on.

As to the problem of frames longer than 1518 bytes, 802.1Q just raised the limit to 1522 bytes. Luckily, only VLAN-aware computers and switches must support these longer frames.

Now let us take a look at the 802.1Q frame format. It is shown in Fig. 4-49. The only change is the addition of a pair of 2-byte fields. The first one is the

VLAN protocol ID. It always has the value 0x8100. Since this number is greater than 1500, all Ethernet cards interpret it as a type rather than a length. What a legacy card does with such a frame is moot since such frames are not supposed to be sent to legacy cards.

Figure 4-49. The 802.3 (legacy) and 802.1Q Ethernet frame formats.

The second 2-byte field contains three subfields. The main one is the *VLAN identifier*, occupying the low-order 12 bits. This is what the whole thing is about—the color of the VLAN to which the frame belongs. The 3-bit *Priority* field has nothing to do with VLANs at all, but since changing the Ethernet header is a once-in-a-decade event taking three years and featuring a hundred people, why not put in some other good things while you are at it? This field makes it possible to distinguish hard real-time traffic from soft real-time traffic from time-insensitive traffic in order to provide better quality of service over Ethernet. It is needed for voice over Ethernet (although in all fairness, IP has had a similar field for a quarter of a century and nobody ever used it).

The last field, *CFI* (*Canonical format indicator*), should have been called the *CEI* (*Corporate ego indicator*). It was originally intended to indicate the order of the bits in the MAC addresses (little-endian versus big-endian), but that use got lost in other controversies. Its presence now indicates that the payload contains a freeze-dried 802.5 frame that is hoping to find another 802.5 LAN at the destination while being carried by Ethernet in between. This whole arrangement, of course, has nothing whatsoever to do with VLANs. But standards' committee politics are not unlike regular politics: if you vote for my bit, I will vote for your bit.

As we mentioned above, when a tagged frame arrives at a VLAN-aware switch, the switch uses the VLAN identifier as an index into a table to find out which ports to send it on. But where does the table come from? If it is manually constructed, we are back to square zero: manual configuration of bridges. The beauty of the transparent bridge is that it is plug-and-play and does not require any manual configuration. It would be a terrible shame to lose that property. Fortunately, VLAN-aware bridges can also autoconfigure themselves based on observing the tags that come by. If a frame tagged as VLAN 4 comes in on port

3, apparently some machine on port 3 is on VLAN 4. The 802.1Q standard explains how to build the tables dynamically, mostly by referencing appropriate portions of the 802.1D standard.

Before leaving the subject of VLAN routing, it is worth making one last observation. Many people in the Internet and Ethernet worlds are fanatically in favor of connectionless networking and violently opposed to anything smacking of connections in the data link or network layers. Yet VLANs introduce something that is surprisingly similar to a connection. To use VLANs properly, each frame carries a new special identifier that is used as an index into a table inside the switch to look up where the frame is supposed to be sent. That is precisely what happens in connection-oriented networks. In connectionless networks, it is the destination address that is used for routing, not some kind of connection identifier. We will see more of this creeping connectionism in Chap. 5.

4.9 SUMMARY

Some networks have a single channel that is used for all communication. In these networks, the key design issue is the allocation of this channel among the competing stations wishing to use it. FDM and TDM are simple, efficient allocation schemes when the number of stations is small and fixed and the traffic is continuous. Both are widely used under these circumstances, for example, for dividing up the bandwidth on telephone trunks. However, when the number of stations is large and variable or the traffic is fairly bursty—the common case in computer networks—FDM and TDM are poor choices.

Numerous dynamic channel allocation algorithms have been devised. The ALOHA protocol, with and without slotting, is used in many derivatives in real systems, for example, cable modems and RFID. As an improvement when the state of the channel can be sensed, stations can avoid starting a transmission while another station is transmitting. This technique, carrier sensing, has led to a variety of CSMA protocols for LANs and MANs. It is the basis for classic Ethernet and 802.11 networks.

A class of protocols that eliminates contention altogether, or at least reduces it considerably, is well known. The bitmap protocol, topologies such as rings, and the binary countdown protocol completely eliminate contention. The tree walk protocol reduces it by dynamically dividing the stations into two disjoint groups of different sizes and allowing contention only within one group; ideally that group is chosen so that only one station is ready to send when it is permitted to do so.

Wireless LANs have the added problems that it is difficult to sense colliding transmissions, and that the coverage regions of stations may differ. In the dominant wireless LAN, IEEE 802.11, stations use CSMA/CA to mitigate the first problem by leaving small gaps to avoid collisions. The stations can also use the RTS/CTS protocol to combat hidden terminals that arise because of the second

problem. IEEE 802.11 is commonly used to connect laptops and other devices to wireless access points, but it can also be used between devices. Any of several physical layers can be used, including multichannel FDM with and without multiple antennas, and spread spectrum.

Like 802.11, RFID readers and tags use a random access protocol to communicate identifiers. Other wireless PANs and MANs have different designs. The Bluetooth system connects headsets and many kinds of peripherals to computers without wires. IEEE 802.16 provides a wide area wireless Internet data service for stationary and mobile computers. Both of these networks use a centralized, connection-oriented design in which the Bluetooth master and the WiMAX base station decide when each station may send or receive data. For 802.16, this design supports different quality of service for real-time traffic like telephone calls and interactive traffic like Web browsing. For Bluetooth, placing the complexity in the master leads to inexpensive slave devices.

Ethernet is the dominant form of wired LAN. Classic Ethernet used CSMA/CD for channel allocation on a yellow cable the size of a garden hose that snaked from machine to machine. The architecture has changed as speeds have risen from 10 Mbps to 10 Gbps and continue to climb. Now, point-to-point links such as twisted pair are attached to hubs and switches. With modern switches and full-duplex links, there is no contention on the links and the switch can forward frames between different ports in parallel.

With buildings full of LANs, a way is needed to interconnect them all. Plugand-play bridges are used for this purpose. The bridges are built with a backward learning algorithm and a spanning tree algorithm. Since this functionality is built into modern switches, the terms "bridge" and "switch" are used interchangeably. To help with the management of bridged LANs, VLANs let the physical topology be divided into different logical topologies. The VLAN standard, IEEE 802.1Q, introduces a new format for Ethernet frames.

PROBLEMS

- 1. For this problem, use a formula from this chapter, but first state the formula. Frames arrive randomly at a 100-Mbps channel for transmission. If the channel is busy when a frame arrives, it waits its turn in a queue. Frame length is exponentially distributed with a mean of 10,000 bits/frame. For each of the following frame arrival rates, give the delay experienced by the average frame, including both queueing time and transmission time.
 - (a) 90 frames/sec.
 - (b) 900 frames/sec.
 - (c) 9000 frames/sec.

- **2.** A group of *N* stations share a 56-kbps pure ALOHA channel. Each station outputs a 1000-bit frame on average once every 100 sec, even if the previous one has not yet been sent (e.g., the stations can buffer outgoing frames). What is the maximum value of *N*?
- **3.** Consider the delay of pure ALOHA versus slotted ALOHA at low load. Which one is less? Explain your answer.
- **4.** A large population of ALOHA users manages to generate 50 requests/sec, including both originals and retransmissions. Time is slotted in units of 40 msec.
 - (a) What is the chance of success on the first attempt?
 - (b) What is the probability of exactly k collisions and then a success?
 - (c) What is the expected number of transmission attempts needed?
- **5.** In an infinite-population slotted ALOHA system, the mean number of slots a station waits between a collision and a retransmission is 4. Plot the delay versus throughput curve for this system.
- **6.** What is the length of a contention slot in CSMA/CD for (a) a 2-km twin-lead cable (signal propagation speed is 82% of the signal propagation speed in vacuum)?, and (b) a 40-km multimode fiber optic cable (signal propagation speed is 65% of the signal propagation speed in vacuum)?
- **7.** How long does a station, *s*, have to wait in the worst case before it can start transmitting its frame over a LAN that uses the basic bit-map protocol?
- **8.** In the binary countdown protocol, explain how a lower-numbered station may be starved from sending a packet.
- **9.** Sixteen stations, numbered 1 through 16, are contending for the use of a shared channel by using the adaptive tree walk protocol. If all the stations whose addresses are prime numbers suddenly become ready at once, how many bit slots are needed to resolve the contention?
- **10.** Consider five wireless stations, *A*, *B*, *C*, *D*, and *E*. Station *A* can communicate with all other stations. *B* can communicate with *A*, *C* and *E*. *C* can communicate with *A*, *B* and *D*. *D* can communicate with *A*, *C* and *E*. *E* can communicate *A*, *D* and *B*.
 - (a) When A is sending to B, what other communications are possible?
 - (b) When B is sending to A, what other communications are possible?
 - (c) When B is sending to C, what other communications are possible?
- **11.** Six stations, *A* through *F*, communicate using the MACA protocol. Is it possible for two transmissions to take place simultaneously? Explain your answer.
- 12. A seven-story office building has 15 adjacent offices per floor. Each office contains a wall socket for a terminal in the front wall, so the sockets form a rectangular grid in the vertical plane, with a separation of 4 m between sockets, both horizontally and vertically. Assuming that it is feasible to run a straight cable between any pair of sockets, horizontally, vertically, or diagonally, how many meters of cable are needed to connect all sockets using
 - (a) A star configuration with a single router in the middle?
 - (b) A classic 802.3 LAN?

- **13.** What is the baud rate of classic 10-Mbps Ethernet?
- 14. Sketch the Manchester encoding on a classic Ethernet for the bit stream 0001110101.
- 15. A 1-km-long, 10-Mbps CSMA/CD LAN (not 802.3) has a propagation speed of 200 m/µsec. Repeaters are not allowed in this system. Data frames are 256 bits long, including 32 bits of header, checksum, and other overhead. The first bit slot after a successful transmission is reserved for the receiver to capture the channel in order to send a 32-bit acknowledgement frame. What is the effective data rate, excluding overhead, assuming that there are no collisions?
- **16.** Two CSMA/CD stations are each trying to transmit long (multiframe) files. After each frame is sent, they contend for the channel, using the binary exponential backoff algorithm. What is the probability that the contention ends on round k, and what is the mean number of rounds per contention period?
- **17.** An IP packet to be transmitted by Ethernet is 60 bytes long, including all its headers. If LLC is not in use, is padding needed in the Ethernet frame, and if so, how many bytes?
- **18.** Ethernet frames must be at least 64 bytes long to ensure that the transmitter is still going in the event of a collision at the far end of the cable. Fast Ethernet has the same 64-byte minimum frame size but can get the bits out ten times faster. How is it possible to maintain the same minimum frame size?
- **19.** Some books quote the maximum size of an Ethernet frame as 1522 bytes instead of 1500 bytes. Are they wrong? Explain your answer.
- **20.** How many frames per second can gigabit Ethernet handle? Think carefully and take into account all the relevant cases. *Hint*: the fact that it is *gigabit* Ethernet matters.
- **21.** Name two networks that allow frames to be packed back-to-back. Why is this feature worth having?
- **22.** In Fig. 4-27, four stations, *A*, *B*, *C*, and *D*, are shown. Which of the last two stations do you think is closest to *A* and why?
- **23.** Give an example to show that the RTS/CTS in the 802.11 protocol is a little different than in the MACA protocol.
- **24.** A wireless LAN with one AP has 10 client stations. Four stations have data rates of 6 Mbps, four stations have data rates of 18 Mbps, and the last two stations have data rates of 54 Mbps. What is the data rate experienced by each station when all ten stations are sending data together, and
 - (a) TXOP is not used?
 - (b) TXOP is used?
- **25.** Suppose that an 11-Mbps 802.11b LAN is transmitting 64-byte frames back-to-back over a radio channel with a bit error rate of 10^{-7} . How many frames per second will be damaged on average?
- **26.** An 802.16 network has a channel width of 20 MHz. How many bits/sec can be sent to a subscriber station?

- 27. Give two reasons why networks might use an error-correcting code instead of error detection and retransmission.
- **28.** List two ways in which WiMAX is similar to 802.11, and two ways in which it is different from 802.11.
- **29.** From Fig. 4-34, we see that a Bluetooth device can be in two piconets at the same time. Is there any reason why one device cannot be the master in both of them at the same time?
- **30.** What is the maximum size of the data field for a 3-slot Bluetooth frame at basic rate? Explain your answer.
- **31.** Figure 4-24 shows several physical layer protocols. Which of these is closest to the Bluetooth physical layer protocol? What is the biggest difference between the two?
- **32.** It is mentioned in Section 4.6.6 that the efficiency of a 1-slot frame with repetition encoding is about 13% at basic data rate. What will the efficiency be if a 5-slot frame with repetition encoding is used at basic data rate instead?
- **33.** Beacon frames in the frequency hopping spread spectrum variant of 802.11 contain the dwell time. Do you think the analogous beacon frames in Bluetooth also contain the dwell time? Discuss your answer.
- **34.** Suppose that there are 10 RFID tags around an RFID reader. What is the best value of Q? How likely is it that one tag responds with no collision in a given slot?
- **35.** List some of the security concerns of an RFID system.
- **36.** A switch designed for use with fast Ethernet has a backplane that can move 10 Gbps. How many frames/sec can it handle in the worst case?
- **37.** Briefly describe the difference between store-and-forward and cut-through switches.
- **38.** Consider the extended LAN connected using bridges *B1* and *B2* in Fig. 4-41(b). Suppose the hash tables in the two bridges are empty. List all ports on which a packet will be forwarded for the following sequence of data transmissions:
 - (a) A sends a packet to C.
 - (b) E sends a packet to F.
 - (c) F sends a packet to E.
 - (d) G sends a packet to E.
 - (e) D sends a packet to A.
 - (f) B sends a packet to F.
- **39.** Store-and-forward switches have an advantage over cut-through switches with respect to damaged frames. Explain what it is.
- **40.** It is mentioned in Section 4.8.3 that some bridges may not even be present in the spanning tree. Outline a scenario where a bridge may not be present in the spanning tree.
- **41.** To make VLANs work, configuration tables are needed in the bridges. What if the VLANs of Fig. 4-47 used hubs rather than switches? Do the hubs need configuration tables, too? Why or why not?

- **42.** In Fig. 4-48, the switch in the legacy end domain on the right is a VLAN-aware switch. Would it be possible to use a legacy switch there? If so, how would that work? If not, why not?
- 43. Write a program to simulate the behavior of the CSMA/CD protocol over Ethernet when there are N stations ready to transmit while a frame is being transmitted. Your program should report the times when each station successfully starts sending its frame. Assume that a clock tick occurs once every slot time (51.2 μ sec) and a collision detection and sending of a jamming sequence takes one slot time. All frames are the maximum length allowed.

5

THE NETWORK LAYER

The network layer is concerned with getting packets from the source all the way to the destination. Getting to the destination may require making many hops at intermediate routers along the way. This function clearly contrasts with that of the data link layer, which has the more modest goal of just moving frames from one end of a wire to the other. Thus, the network layer is the lowest layer that deals with end-to-end transmission.

To achieve its goals, the network layer must know about the topology of the network (i.e., the set of all routers and links) and choose appropriate paths through it, even for large networks. It must also take care when choosing routes to avoid overloading some of the communication lines and routers while leaving others idle. Finally, when the source and destination are in different networks, new problems occur. It is up to the network layer to deal with them. In this chapter we will study all these issues and illustrate them, primarily using the Internet and its network layer protocol, IP.

5.1 NETWORK LAYER DESIGN ISSUES

In the following sections, we will give an introduction to some of the issues that the designers of the network layer must grapple with. These issues include the service provided to the transport layer and the internal design of the network.

5.1.1 Store-and-Forward Packet Switching

Before starting to explain the details of the network layer, it is worth restating the context in which the network layer protocols operate. This context can be seen in Fig. 5-1. The major components of the network are the ISP's equipment (routers connected by transmission lines), shown inside the shaded oval, and the customers' equipment, shown outside the oval. Host HI is directly connected to one of the ISP's routers, A, perhaps as a home computer that is plugged into a DSL modem. In contrast, H2 is on a LAN, which might be an office Ethernet, with a router, F, owned and operated by the customer. This router has a leased line to the ISP's equipment. We have shown F as being outside the oval because it does not belong to the ISP. For the purposes of this chapter, however, routers on customer premises are considered part of the ISP network because they run the same algorithms as the ISP's routers (and our main concern here is algorithms).

Figure 5-1. The environment of the network layer protocols.

This equipment is used as follows. A host with a packet to send transmits it to the nearest router, either on its own LAN or over a point-to-point link to the ISP. The packet is stored there until it has fully arrived and the link has finished its processing by verifying the checksum. Then it is forwarded to the next router along the path until it reaches the destination host, where it is delivered. This mechanism is store-and-forward packet switching, as we have seen in previous chapters.

5.1.2 Services Provided to the Transport Layer

The network layer provides services to the transport layer at the network layer/transport layer interface. An important question is precisely what kind of services the network layer provides to the transport layer. The services need to be carefully designed with the following goals in mind:

- 1. The services should be independent of the router technology.
- 2. The transport layer should be shielded from the number, type, and topology of the routers present.
- 3. The network addresses made available to the transport layer should use a uniform numbering plan, even across LANs and WANs.

Given these goals, the designers of the network layer have a lot of freedom in writing detailed specifications of the services to be offered to the transport layer. This freedom often degenerates into a raging battle between two warring factions. The discussion centers on whether the network layer should provide connection-oriented service or connectionless service.

One camp (represented by the Internet community) argues that the routers' job is moving packets around and nothing else. In this view (based on 40 years of experience with a real computer network), the network is inherently unreliable, no matter how it is designed. Therefore, the hosts should accept this fact and do error control (i.e., error detection and correction) and flow control themselves.

This viewpoint leads to the conclusion that the network service should be connectionless, with primitives SEND PACKET and RECEIVE PACKET and little else. In particular, no packet ordering and flow control should be done, because the hosts are going to do that anyway and there is usually little to be gained by doing it twice. This reasoning is an example of the **end-to-end argument**, a design principle that has been very influential in shaping the Internet (Saltzer et al., 1984). Furthermore, each packet must carry the full destination address, because each packet sent is carried independently of its predecessors, if any.

The other camp (represented by the telephone companies) argues that the network should provide a reliable, connection-oriented service. They claim that 100 years of successful experience with the worldwide telephone system is an excellent guide. In this view, quality of service is the dominant factor, and without connections in the network, quality of service is very difficult to achieve, especially for real-time traffic such as voice and video.

Even after several decades, this controversy is still very much alive. Early, widely used data networks, such as X.25 in the 1970s and its successor Frame Relay in the 1980s, were connection-oriented. However, since the days of the ARPANET and the early Internet, connectionless network layers have grown tremendously in popularity. The IP protocol is now an ever-present symbol of success. It was undeterred by a connection-oriented technology called ATM that was developed to overthrow it in the 1980s; instead, it is ATM that is now found in niche uses and IP that is taking over telephone networks. Under the covers, however, the Internet is evolving connection-oriented features as quality of service becomes more important. Two examples of connection-oriented technologies are MPLS (MultiProtocol Label Switching), which we will describe in this chapter, and VLANs, which we saw in Chap. 4. Both technologies are widely used.

5.1.3 Implementation of Connectionless Service

Having looked at the two classes of service the network layer can provide to its users, it is time to see how this layer works inside. Two different organizations are possible, depending on the type of service offered. If connectionless service is offered, packets are injected into the network individually and routed independently of each other. No advance setup is needed. In this context, the packets are frequently called **datagrams** (in analogy with telegrams) and the network is called a **datagram network**. If connection-oriented service is used, a path from the source router all the way to the destination router must be established before any data packets can be sent. This connection is called a **VC** (**virtual circuit**), in analogy with the physical circuits set up by the telephone system, and the network is called a **virtual-circuit network**. In this section, we will examine datagram networks; in the next one, we will examine virtual-circuit networks.

Let us now see how a datagram network works. Suppose that the process P1 in Fig. 5-2 has a long message for P2. It hands the message to the transport layer, with instructions to deliver it to process P2 on host H2. The transport layer code runs on H1, typically within the operating system. It prepends a transport header to the front of the message and hands the result to the network layer, probably just another procedure within the operating system.

Figure 5-2. Routing within a datagram network.

Let us assume for this example that the message is four times longer than the maximum packet size, so the network layer has to break it into four packets, 1, 2,

3, and 4, and send each of them in turn to router A using some point-to-point protocol, for example, PPP. At this point the ISP takes over. Every router has an internal table telling it where to send packets for each of the possible destinations. Each table entry is a pair consisting of a destination and the outgoing line to use for that destination. Only directly connected lines can be used. For example, in Fig. 5-2, A has only two outgoing lines—to B and to C—so every incoming packet must be sent to one of these routers, even if the ultimate destination is to some other router. A's initial routing table is shown in the figure under the label "initially."

At A, packets 1, 2, and 3 are stored briefly, having arrived on the incoming link and had their checksums verified. Then each packet is forwarded according to A's table, onto the outgoing link to C within a new frame. Packet 1 is then forwarded to E and then to F. When it gets to F, it is sent within a frame over the LAN to H2. Packets 2 and 3 follow the same route.

However, something different happens to packet 4. When it gets to A it is sent to router B, even though it is also destined for F. For some reason, A decided to send packet 4 via a different route than that of the first three packets. Perhaps it has learned of a traffic jam somewhere along the ACE path and updated its routing table, as shown under the label "later." The algorithm that manages the tables and makes the routing decisions is called the **routing algorithm**. Routing algorithms are one of the main topics we will study in this chapter. There are several different kinds of them, as we will see.

IP (Internet Protocol), which is the basis for the entire Internet, is the dominant example of a connectionless network service. Each packet carries a destination IP address that routers use to individually forward each packet. The addresses are 32 bits in IPv4 packets and 128 bits in IPv6 packets. We will describe IP in much detail later in this chapter.

5.1.4 Implementation of Connection-Oriented Service

For connection-oriented service, we need a virtual-circuit network. Let us see how that works. The idea behind virtual circuits is to avoid having to choose a new route for every packet sent, as in Fig. 5-2. Instead, when a connection is established, a route from the source machine to the destination machine is chosen as part of the connection setup and stored in tables inside the routers. That route is used for all traffic flowing over the connection, exactly the same way that the telephone system works. When the connection is released, the virtual circuit is also terminated. With connection-oriented service, each packet carries an identifier telling which virtual circuit it belongs to.

As an example, consider the situation shown in Fig. 5-3. Here, host H1 has established connection 1 with host H2. This connection is remembered as the first entry in each of the routing tables. The first line of A's table says that if a packet

bearing connection identifier 1 comes in from H1, it is to be sent to router C and given connection identifier 1. Similarly, the first entry at C routes the packet to E, also with connection identifier 1

Figure 5-3. Routing within a virtual-circuit network.

Now let us consider what happens if H3 also wants to establish a connection to H2. It chooses connection identifier 1 (because it is initiating the connection and this is its only connection) and tells the network to establish the virtual circuit. This leads to the second row in the tables. Note that we have a conflict here because although A can easily distinguish connection 1 packets from H1 from connection 1 packets from H3, C cannot do this. For this reason, A assigns a different connection identifier to the outgoing traffic for the second connection. Avoiding conflicts of this kind is why routers need the ability to replace connection identifiers in outgoing packets.

In some contexts, this process is called **label switching**. An example of a connection-oriented network service is **MPLS** (**MultiProtocol Label Switching**). It is used within ISP networks in the Internet, with IP packets wrapped in an MPLS header having a 20-bit connection identifier or label. MPLS is often hidden from customers, with the ISP establishing long-term connections for large amounts of traffic, but it is increasingly being used to help when quality of service is important but also with other ISP traffic management tasks. We will have more to say about MPLS later in this chapter.

5.1.5 Comparison of Virtual-Circuit and Datagram Networks

Both virtual circuits and datagrams have their supporters and their detractors. We will now attempt to summarize both sets of arguments. The major issues are listed in Fig. 5-4, although purists could probably find a counterexample for everything in the figure.

Issue	Datagram network	Virtual-circuit network
Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Routers do not hold state information about connections	Each VC requires router table space per connection
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC

Figure 5-4. Comparison of datagram and virtual-circuit networks.

Inside the network, several trade-offs exist between virtual circuits and datagrams. One trade-off is setup time versus address parsing time. Using virtual circuits requires a setup phase, which takes time and consumes resources. However, once this price is paid, figuring out what to do with a data packet in a virtual-circuit network is easy: the router just uses the circuit number to index into a table to find out where the packet goes. In a datagram network, no setup is needed but a more complicated lookup procedure is required to locate the entry for the destination.

A related issue is that the destination addresses used in datagram networks are longer than circuit numbers used in virtual-circuit networks because they have a global meaning. If the packets tend to be fairly short, including a full destination address in every packet may represent a significant amount of overhead, and hence a waste of bandwidth.

Yet another issue is the amount of table space required in router memory. A datagram network needs to have an entry for every possible destination, whereas a virtual-circuit network just needs an entry for each virtual circuit. However, this

advantage is somewhat illusory since connection setup packets have to be routed too, and they use destination addresses, the same as datagrams do.

Virtual circuits have some advantages in guaranteeing quality of service and avoiding congestion within the network because resources (e.g., buffers, bandwidth, and CPU cycles) can be reserved in advance, when the connection is established. Once the packets start arriving, the necessary bandwidth and router capacity will be there. With a datagram network, congestion avoidance is more difficult.

For transaction processing systems (e.g., stores calling up to verify credit card purchases), the overhead required to set up and clear a virtual circuit may easily dwarf the use of the circuit. If the majority of the traffic is expected to be of this kind, the use of virtual circuits inside the network makes little sense. On the other hand, for long-running uses such as VPN traffic between two corporate offices, permanent virtual circuits (that are set up manually and last for months or years) may be useful.

Virtual circuits also have a vulnerability problem. If a router crashes and loses its memory, even if it comes back up a second later, all the virtual circuits passing through it will have to be aborted. In contrast, if a datagram router goes down, only those users whose packets were queued in the router at the time need suffer (and probably not even then since the sender is likely to retransmit them shortly). The loss of a communication line is fatal to virtual circuits using it, but can easily be compensated for if datagrams are used. Datagrams also allow the routers to balance the traffic throughout the network, since routes can be changed partway through a long sequence of packet transmissions.

5.2 ROUTING ALGORITHMS

The main function of the network layer is routing packets from the source machine to the destination machine. In most networks, packets will require multiple hops to make the journey. The only notable exception is for broadcast networks, but even here routing is an issue if the source and destination are not on the same network segment. The algorithms that choose the routes and the data structures that they use are a major area of network layer design.

The **routing algorithm** is that part of the network layer software responsible for deciding which output line an incoming packet should be transmitted on. If the network uses datagrams internally, this decision must be made anew for every arriving data packet since the best route may have changed since last time. If the network uses virtual circuits internally, routing decisions are made only when a new virtual circuit is being set up. Thereafter, data packets just follow the already established route. The latter case is sometimes called **session routing** because a route remains in force for an entire session (e.g., while logged in over a VPN).

It is sometimes useful to make a distinction between routing, which is making the decision which routes to use, and forwarding, which is what happens when a packet arrives. One can think of a router as having two processes inside it. One of them handles each packet as it arrives, looking up the outgoing line to use for it in the routing tables. This process is **forwarding**. The other process is responsible for filling in and updating the routing tables. That is where the routing algorithm comes into play.

Regardless of whether routes are chosen independently for each packet sent or only when new connections are established, certain properties are desirable in a routing algorithm: correctness, simplicity, robustness, stability, fairness, and efficiency. Correctness and simplicity hardly require comment, but the need for robustness may be less obvious at first. Once a major network comes on the air, it may be expected to run continuously for years without system-wide failures. During that period there will be hardware and software failures of all kinds. Hosts, routers, and lines will fail repeatedly, and the topology will change many times. The routing algorithm should be able to cope with changes in the topology and traffic without requiring all jobs in all hosts to be aborted. Imagine the havoc if the network needed to be rebooted every time some router crashed!

Stability is also an important goal for the routing algorithm. There exist routing algorithms that never converge to a fixed set of paths, no matter how long they run. A stable algorithm reaches equilibrium and stays there. It should converge quickly too, since communication may be disrupted until the routing algorithm has reached equilibrium.

Fairness and efficiency may sound obvious—surely no reasonable person would oppose them—but as it turns out, they are often contradictory goals. As a simple example of this conflict, look at Fig. 5-5. Suppose that there is enough traffic between A and A', between B and B', and between C and C' to saturate the horizontal links. To maximize the total flow, the X to X' traffic should be shut off altogether. Unfortunately, X and X' may not see it that way. Evidently, some compromise between global efficiency and fairness to individual connections is needed.

Before we can even attempt to find trade-offs between fairness and efficiency, we must decide what it is we seek to optimize. Minimizing the mean packet delay is an obvious candidate to send traffic through the network effectively, but so is maximizing total network throughput. Furthermore, these two goals are also in conflict, since operating any queueing system near capacity implies a long queueing delay. As a compromise, many networks attempt to minimize the distance a packet must travel, or simply reduce the number of hops a packet must make. Either choice tends to improve the delay and also reduce the amount of bandwidth consumed per packet, which tends to improve the overall network throughput as well.

Routing algorithms can be grouped into two major classes: nonadaptive and adaptive. Nonadaptive algorithms do not base their routing decisions on any

Figure 5-5. Network with a conflict between fairness and efficiency.

measurements or estimates of the current topology and traffic. Instead, the choice of the route to use to get from I to J (for all I and J) is computed in advance, offline, and downloaded to the routers when the network is booted. This procedure is sometimes called **static routing**. Because it does not respond to failures, static routing is mostly useful for situations in which the routing choice is clear. For example, router F in Fig. 5-3 should send packets headed into the network to router E regardless of the ultimate destination.

Adaptive algorithms, in contrast, change their routing decisions to reflect changes in the topology, and sometimes changes in the traffic as well. These **dynamic routing** algorithms differ in where they get their information (e.g., locally, from adjacent routers, or from all routers), when they change the routes (e.g., when the topology changes, or every ΔT seconds as the load changes), and what metric is used for optimization (e.g., distance, number of hops, or estimated transit time).

In the following sections, we will discuss a variety of routing algorithms. The algorithms cover delivery models besides sending a packet from a source to a destination. Sometimes the goal is to send the packet to multiple, all, or one of a set of destinations. All of the routing algorithms we describe here make decisions based on the topology; we defer the possibility of decisions based on the traffic levels to Sec 5.3.

5.2.1 The Optimality Principle

Before we get into specific algorithms, it may be helpful to note that one can make a general statement about optimal routes without regard to network topology or traffic. This statement is known as the **optimality principle** (Bellman, 1957). It states that if router J is on the optimal path from router I to router K,

then the optimal path from J to K also falls along the same route. To see this, call the part of the route from I to J r_1 and the rest of the route r_2 . If a route better than r_2 existed from J to K, it could be concatenated with r_1 to improve the route from I to K, contradicting our statement that r_1r_2 is optimal.

As a direct consequence of the optimality principle, we can see that the set of optimal routes from all sources to a given destination form a tree rooted at the destination. Such a tree is called a **sink tree** and is illustrated in Fig. 5-6(b), where the distance metric is the number of hops. The goal of all routing algorithms is to discover and use the sink trees for all routers.

Figure 5-6. (a) A network. (b) A sink tree for router B.

Note that a sink tree is not necessarily unique; other trees with the same path lengths may exist. If we allow all of the possible paths to be chosen, the tree becomes a more general structure called a **DAG** (**Directed Acyclic Graph**). DAGs have no loops. We will use sink trees as a convenient shorthand for both cases. Both cases also depend on the technical assumption that the paths do not interfere with each other so, for example, a traffic jam on one path will not cause another path to divert.

Since a sink tree is indeed a tree, it does not contain any loops, so each packet will be delivered within a finite and bounded number of hops. In practice, life is not quite this easy. Links and routers can go down and come back up during operation, so different routers may have different ideas about the current topology. Also, we have quietly finessed the issue of whether each router has to individually acquire the information on which to base its sink tree computation or whether this information is collected by some other means. We will come back to these issues shortly. Nevertheless, the optimality principle and the sink tree provide a benchmark against which other routing algorithms can be measured.

5.2.2 Shortest Path Algorithm

Let us begin our study of routing algorithms with a simple technique for computing optimal paths given a complete picture of the network. These paths are the ones that we want a distributed routing algorithm to find, even though not all routers may know all of the details of the network.

The idea is to build a graph of the network, with each node of the graph representing a router and each edge of the graph representing a communication line, or link. To choose a route between a given pair of routers, the algorithm just finds the shortest path between them on the graph.

The concept of a **shortest path** deserves some explanation. One way of measuring path length is the number of hops. Using this metric, the paths *ABC* and *ABE* in Fig. 5-7 are equally long. Another metric is the geographic distance in kilometers, in which case *ABC* is clearly much longer than *ABE* (assuming the figure is drawn to scale).

Figure 5-7. The first six steps used in computing the shortest path from A to D. The arrows indicate the working node.

However, many other metrics besides hops and physical distance are also possible. For example, each edge could be labeled with the mean delay of a standard test packet, as measured by hourly runs. With this graph labeling, the shortest path is the fastest path rather than the path with the fewest edges or kilometers.

In the general case, the labels on the edges could be computed as a function of the distance, bandwidth, average traffic, communication cost, measured delay, and other factors. By changing the weighting function, the algorithm would then compute the "shortest" path measured according to any one of a number of criteria or to a combination of criteria.

Several algorithms for computing the shortest path between two nodes of a graph are known. This one is due to Dijkstra (1959) and finds the shortest paths between a source and all destinations in the network. Each node is labeled (in parentheses) with its distance from the source node along the best known path. The distances must be non-negative, as they will be if they are based on real quantities like bandwidth and delay. Initially, no paths are known, so all nodes are labeled with infinity. As the algorithm proceeds and paths are found, the labels may change, reflecting better paths. A label may be either tentative or permanent. Initially, all labels are tentative. When it is discovered that a label represents the shortest possible path from the source to that node, it is made permanent and never changed thereafter.

To illustrate how the labeling algorithm works, look at the weighted, undirected graph of Fig. 5-7(a), where the weights represent, for example, distance. We want to find the shortest path from A to D. We start out by marking node A as permanent, indicated by a filled-in circle. Then we examine, in turn, each of the nodes adjacent to A (the working node), relabeling each one with the distance to A. Whenever a node is relabeled, we also label it with the node from which the probe was made so that we can reconstruct the final path later. If the network had more than one shortest path from A to D and we wanted to find all of them, we would need to remember all of the probe nodes that could reach a node with the same distance.

Having examined each of the nodes adjacent to A, we examine all the tentatively labeled nodes in the whole graph and make the one with the smallest label permanent, as shown in Fig. 5-7(b). This one becomes the new working node.

We now start at B and examine all nodes adjacent to it. If the sum of the label on B and the distance from B to the node being considered is less than the label on that node, we have a shorter path, so the node is relabeled.

After all the nodes adjacent to the working node have been inspected and the tentative labels changed if possible, the entire graph is searched for the tentatively labeled node with the smallest value. This node is made permanent and becomes the working node for the next round. Figure 5-7 shows the first six steps of the algorithm.

To see why the algorithm works, look at Fig. 5-7(c). At this point we have just made E permanent. Suppose that there were a shorter path than ABE, say

AXYZE (for some X and Y). There are two possibilities: either node Z has already been made permanent, or it has not been. If it has, then E has already been probed (on the round following the one when Z was made permanent), so the AXYZE path has not escaped our attention and thus cannot be a shorter path.

Now consider the case where Z is still tentatively labeled. If the label at Z is greater than or equal to that at E, then AXYZE cannot be a shorter path than ABE. If the label is less than that of E, then E and not E will become permanent first, allowing E to be probed from E.

This algorithm is given in Fig. 5-8. The global variables n and dist describe the graph and are initialized before $shortest_path$ is called. The only difference between the program and the algorithm described above is that in Fig. 5-8, we compute the shortest path starting at the terminal node, t, rather than at the source node, s.

Since the shortest paths from t to s in an undirected graph are the same as the shortest paths from s to t, it does not matter at which end we begin. The reason for searching backward is that each node is labeled with its predecessor rather than its successor. When the final path is copied into the output variable, path, the path is thus reversed. The two reversal effects cancel, and the answer is produced in the correct order.

5.2.3 Flooding

When a routing algorithm is implemented, each router must make decisions based on local knowledge, not the complete picture of the network. A simple local technique is **flooding**, in which every incoming packet is sent out on every outgoing line except the one it arrived on.

Flooding obviously generates vast numbers of duplicate packets, in fact, an infinite number unless some measures are taken to damp the process. One such measure is to have a hop counter contained in the header of each packet that is decremented at each hop, with the packet being discarded when the counter reaches zero. Ideally, the hop counter should be initialized to the length of the path from source to destination. If the sender does not know how long the path is, it can initialize the counter to the worst case, namely, the full diameter of the network.

Flooding with a hop count can produce an exponential number of duplicate packets as the hop count grows and routers duplicate packets they have seen before. A better technique for damming the flood is to have routers keep track of which packets have been flooded, to avoid sending them out a second time. One way to achieve this goal is to have the source router put a sequence number in each packet it receives from its hosts. Each router then needs a list per source router telling which sequence numbers originating at that source have already been seen. If an incoming packet is on the list, it is not flooded.

```
#define MAX NODES 1024
                                               /* maximum number of nodes */
                                               /* a number larger than every maximum path */
#define INFINITY 100000000
int n, dist[MAX_NODES][MAX_NODES];
                                               /* dist[i][i] is the distance from i to i */
void shortest_path(int s, int t, int path[])
{ struct state {
                                               /* the path being worked on */
     int predecessor;
                                               /* previous node */
     int length:
                                               /* length from source to this node */
                                               /* label state */
     enum {permanent, tentative} label;
 } state[MAX_NODES];
 int i, k, min;
 struct state *p;
 for (p = \&state[0]; p < \&state[n]; p++) \{ /* initialize state */
     p->predecessor = -1;
     p->length = INFINITY;
     p->label = tentative;
 state[t].length = 0; state[t].label = permanent;
 k = t;
                                               /* k is the initial working node */
                                               /* Is there a better path from k? */
 do {
                                               /* this graph has n nodes */
     for (i = 0; i < n; i++)
          if (dist[k][i] != 0 && state[i].label == tentative) {
                if (state[k].length + dist[k][i] < state[i].length) {
                     state[i].predecessor = k;
                     state[i].length = state[k].length + dist[k][i];
                }
          }
     /* Find the tentatively labeled node with the smallest label. */
     k = 0; min = INFINITY;
     for (i = 0; i < n; i++)
          if (state[i].label == tentative && state[i].length < min) {
                min = state[i].length;
                k = i:
     state[k].label = permanent;
 } while (k != s);
 /* Copy the path into the output array. */
 i = 0; k = s;
 do \{path[i++] = k; k = state[k].predecessor; \} while \{k >= 0\};
```

Figure 5-8. Dijkstra's algorithm to compute the shortest path through a graph.

To prevent the list from growing without bound, each list should be augmented by a counter, k, meaning that all sequence numbers through k have been seen. When a packet comes in, it is easy to check if the packet has already been

flooded (by comparing its sequence number to k; if so, it is discarded. Furthermore, the full list below k is not needed, since k effectively summarizes it.

Flooding is not practical for sending most packets, but it does have some important uses. First, it ensures that a packet is delivered to every node in the network. This may be wasteful if there is a single destination that needs the packet, but it is effective for broadcasting information. In wireless networks, all messages transmitted by a station can be received by all other stations within its radio range, which is, in fact, flooding, and some algorithms utilize this property.

Second, flooding is tremendously robust. Even if large numbers of routers are blown to bits (e.g., in a military network located in a war zone), flooding will find a path if one exists, to get a packet to its destination. Flooding also requires little in the way of setup. The routers only need to know their neighbors. This means that flooding can be used as a building block for other routing algorithms that are more efficient but need more in the way of setup. Flooding can also be used as a metric against which other routing algorithms can be compared. Flooding always chooses the shortest path because it chooses every possible path in parallel. Consequently, no other algorithm can produce a shorter delay (if we ignore the overhead generated by the flooding process itself).

5.2.4 Distance Vector Routing

Computer networks generally use dynamic routing algorithms that are more complex than flooding, but more efficient because they find shortest paths for the current topology. Two dynamic algorithms in particular, distance vector routing and link state routing, are the most popular. In this section, we will look at the former algorithm. In the following section, we will study the latter algorithm.

A **distance vector routing** algorithm operates by having each router maintain a table (i.e., a vector) giving the best known distance to each destination and which link to use to get there. These tables are updated by exchanging information with the neighbors. Eventually, every router knows the best link to reach each destination.

The distance vector routing algorithm is sometimes called by other names, most commonly the distributed **Bellman-Ford** routing algorithm, after the researchers who developed it (Bellman, 1957; and Ford and Fulkerson, 1962). It was the original ARPANET routing algorithm and was also used in the Internet under the name RIP.

In distance vector routing, each router maintains a routing table indexed by, and containing one entry for each router in the network. This entry has two parts: the preferred outgoing line to use for that destination and an estimate of the distance to that destination. The distance might be measured as the number of hops or using another metric, as we discussed for computing shortest paths.

The router is assumed to know the "distance" to each of its neighbors. If the metric is hops, the distance is just one hop. If the metric is propagation delay, the

router can measure it directly with special ECHO packets that the receiver just timestamps and sends back as fast as it can.

As an example, assume that delay is used as a metric and that the router knows the delay to each of its neighbors. Once every T msec, each router sends to each neighbor a list of its estimated delays to each destination. It also receives a similar list from each neighbor. Imagine that one of these tables has just come in from neighbor X, with X_i being X's estimate of how long it takes to get to router i. If the router knows that the delay to X is m msec, it also knows that it can reach router i via X in $X_i + m$ msec. By performing this calculation for each neighbor, a router can find out which estimate seems the best and use that estimate and the corresponding link in its new routing table. Note that the old routing table is not used in the calculation.

This updating process is illustrated in Fig. 5-9. Part (a) shows a network. The first four columns of part (b) show the delay vectors received from the neighbors of router J. A claims to have a 12-msec delay to B, a 25-msec delay to C, a 40-msec delay to D, etc. Suppose that J has measured or estimated its delay to its neighbors, A, I, H, and K, as 8, 10, 12, and 6 msec, respectively.

Figure 5-9. (a) A network. (b) Input from A, I, H, K, and the new routing table for J.

Consider how J computes its new route to router G. It knows that it can get to A in 8 msec, and furthermore A claims to be able to get to G in 18 msec, so J knows it can count on a delay of 26 msec to G if it forwards packets bound for G

to A. Similarly, it computes the delay to G via I, H, and K as 41 (31 + 10), 18 (6 + 12), and 37 (31 + 6) msec, respectively. The best of these values is 18, so it makes an entry in its routing table that the delay to G is 18 msec and that the route to use is via H. The same calculation is performed for all the other destinations, with the new routing table shown in the last column of the figure.

The Count-to-Infinity Problem

The settling of routes to best paths across the network is called **convergence**. Distance vector routing is useful as a simple technique by which routers can collectively compute shortest paths, but it has a serious drawback in practice: although it converges to the correct answer, it may do so slowly. In particular, it reacts rapidly to good news, but leisurely to bad news. Consider a router whose best route to destination X is long. If, on the next exchange, neighbor A suddenly reports a short delay to X, the router just switches over to using the line to A to send traffic to X. In one vector exchange, the good news is processed.

To see how fast good news propagates, consider the five-node (linear) network of Fig. 5-10, where the delay metric is the number of hops. Suppose *A* is down initially and all the other routers know this. In other words, they have all recorded the delay to *A* as infinity.

Figure 5-10. The count-to-infinity problem.

When A comes up, the other routers learn about it via the vector exchanges. For simplicity, we will assume that there is a gigantic gong somewhere that is struck periodically to initiate a vector exchange at all routers simultaneously. At the time of the first exchange, B learns that its left-hand neighbor has zero delay to A. B now makes an entry in its routing table indicating that A is one hop away to the left. All the other routers still think that A is down. At this point, the routing table entries for A are as shown in the second row of Fig. 5-10(a). On the next

exchange, C learns that B has a path of length 1 to A, so it updates its routing table to indicate a path of length 2, but D and E do not hear the good news until later. Clearly, the good news is spreading at the rate of one hop per exchange. In a network whose longest path is of length N hops, within N exchanges everyone will know about newly revived links and routers.

Now let us consider the situation of Fig. 5-10(b), in which all the links and routers are initially up. Routers B, C, D, and E have distances to A of 1, 2, 3, and 4 hops, respectively. Suddenly, either A goes down or the link between A and B is cut (which is effectively the same thing from B's point of view).

At the first packet exchange, B does not hear anything from A. Fortunately, C says "Do not worry; I have a path to A of length 2." Little does B suspect that C's path runs through B itself. For all B knows, C might have ten links all with separate paths to A of length 2. As a result, B thinks it can reach A via C, with a path length of 3. D and E do not update their entries for A on the first exchange.

On the second exchange, C notices that each of its neighbors claims to have a path to A of length 3. It picks one of them at random and makes its new distance to A 4, as shown in the third row of Fig. 5-10(b). Subsequent exchanges produce the history shown in the rest of Fig. 5-10(b).

From this figure, it should be clear why bad news travels slowly: no router ever has a value more than one higher than the minimum of all its neighbors. Gradually, all routers work their way up to infinity, but the number of exchanges required depends on the numerical value used for infinity. For this reason, it is wise to set infinity to the longest path plus 1.

Not entirely surprisingly, this problem is known as the **count-to-infinity** problem. There have been many attempts to solve it, for example, preventing routers from advertising their best paths back to the neighbors from which they heard them with the split horizon with poisoned reverse rule discussed in RFC 1058. However, none of these heuristics work well in practice despite the colorful names. The core of the problem is that when *X* tells *Y* that it has a path somewhere, *Y* has no way of knowing whether it itself is on the path.

5.2.5 Link State Routing

Distance vector routing was used in the ARPANET until 1979, when it was replaced by link state routing. The primary problem that caused its demise was that the algorithm often took too long to converge after the network topology changed (due to the count-to-infinity problem). Consequently, it was replaced by an entirely new algorithm, now called **link state routing**. Variants of link state routing called IS-IS and OSPF are the routing algorithms that are most widely used inside large networks and the Internet today.

The idea behind link state routing is fairly simple and can be stated as five parts. Each router must do the following things to make it work:

- 1. Discover its neighbors and learn their network addresses.
- 2. Set the distance or cost metric to each of its neighbors.
- 3. Construct a packet telling all it has just learned.
- 4. Send this packet to and receive packets from all other routers.
- 5. Compute the shortest path to every other router.

In effect, the complete topology is distributed to every router. Then Dijkstra's algorithm can be run at each router to find the shortest path to every other router. Below we will consider each of these five steps in more detail.

Learning about the Neighbors

When a router is booted, its first task is to learn who its neighbors are. It accomplishes this goal by sending a special HELLO packet on each point-to-point line. The router on the other end is expected to send back a reply giving its name. These names must be globally unique because when a distant router later hears that three routers are all connected to F, it is essential that it can determine whether all three mean the same F.

When two or more routers are connected by a broadcast link (e.g., a switch, ring, or classic Ethernet), the situation is slightly more complicated. Fig. 5-11(a) illustrates a broadcast LAN to which three routers, A, C, and F, are directly connected. Each of these routers is connected to one or more additional routers, as shown.

Figure 5-11. (a) Nine routers and a broadcast LAN. (b) A graph model of (a).

The broadcast LAN provides connectivity between each pair of attached routers. However, modeling the LAN as many point-to-point links increases the size

of the topology and leads to wasteful messages. A better way to model the LAN is to consider it as a node itself, as shown in Fig. 5-11(b). Here, we have introduced a new, artificial node, N, to which A, C, and F are connected. One **designated router** on the LAN is selected to play the role of N in the routing protocol. The fact that it is possible to go from A to C on the LAN is represented by the path ANC here.

Setting Link Costs

The link state routing algorithm requires each link to have a distance or cost metric for finding shortest paths. The cost to reach neighbors can be set automatically, or configured by the network operator. A common choice is to make the cost inversely proportional to the bandwidth of the link. For example, 1-Gbps Ethernet may have a cost of 1 and 100-Mbps Ethernet a cost of 10. This makes higher-capacity paths better choices.

If the network is geographically spread out, the delay of the links may be factored into the cost so that paths over shorter links are better choices. The most direct way to determine this delay is to send over the line a special ECHO packet that the other side is required to send back immediately. By measuring the round-trip time and dividing it by two, the sending router can get a reasonable estimate of the delay.

Building Link State Packets

Once the information needed for the exchange has been collected, the next step is for each router to build a packet containing all the data. The packet starts with the identity of the sender, followed by a sequence number and age (to be described later) and a list of neighbors. The cost to each neighbor is also given. An example network is presented in Fig. 5-12(a) with costs shown as labels on the lines. The corresponding link state packets for all six routers are shown in Fig. 5-12(b).

Figure 5-12. (a) A network. (b) The link state packets for this network.

Building the link state packets is easy. The hard part is determining when to build them. One possibility is to build them periodically, that is, at regular intervals. Another possibility is to build them when some significant event occurs, such as a line or neighbor going down or coming back up again or changing its properties appreciably.

Distributing the Link State Packets

The trickiest part of the algorithm is distributing the link state packets. All of the routers must get all of the link state packets quickly and reliably. If different routers are using different versions of the topology, the routes they compute can have inconsistencies such as loops, unreachable machines, and other problems.

First, we will describe the basic distribution algorithm. After that we will give some refinements. The fundamental idea is to use flooding to distribute the link state packets to all routers. To keep the flood in check, each packet contains a sequence number that is incremented for each new packet sent. Routers keep track of all the (source router, sequence) pairs they see. When a new link state packet comes in, it is checked against the list of packets already seen. If it is new, it is forwarded on all lines except the one it arrived on. If it is a duplicate, it is discarded. If a packet with a sequence number lower than the highest one seen so far ever arrives, it is rejected as being obsolete as the router has more recent data.

This algorithm has a few problems, but they are manageable. First, if the sequence numbers wrap around, confusion will reign. The solution here is to use a 32-bit sequence number. With one link state packet per second, it would take 137 years to wrap around, so this possibility can be ignored.

Second, if a router ever crashes, it will lose track of its sequence number. If it starts again at 0, the next packet it sends will be rejected as a duplicate.

Third, if a sequence number is ever corrupted and 65,540 is received instead of 4 (a 1-bit error), packets 5 through 65,540 will be rejected as obsolete, since the current sequence number will be thought to be 65,540.

The solution to all these problems is to include the age of each packet after the sequence number and decrement it once per second. When the age hits zero, the information from that router is discarded. Normally, a new packet comes in, say, every 10 sec, so router information only times out when a router is down (or six consecutive packets have been lost, an unlikely event). The *Age* field is also decremented by each router during the initial flooding process, to make sure no packet can get lost and live for an indefinite period of time (a packet whose age is zero is discarded).

Some refinements to this algorithm make it more robust. When a link state packet comes in to a router for flooding, it is not queued for transmission immediately. Instead, it is put in a holding area to wait a short while in case more links are coming up or going down. If another link state packet from the same source comes in before the first packet is transmitted, their sequence numbers are

compared. If they are equal, the duplicate is discarded. If they are different, the older one is thrown out. To guard against errors on the links, all link state packets are acknowledged.

The data structure used by router B for the network shown in Fig. 5-12(a) is depicted in Fig. 5-13. Each row here corresponds to a recently arrived, but as yet not fully processed, link state packet. The table records where the packet originated, its sequence number and age, and the data. In addition, there are send and acknowledgement flags for each of B's three links (to A, C, and F, respectively). The send flags mean that the packet must be sent on the indicated link. The acknowledgement flags mean that it must be acknowledged there.

			Ser	nd fla	ags	AC	K fla	gs	
Source	Seq.	Age	Á	С	È	Á	С	È	Data
Α	21	60	0	1	1	1	0	0	
F	21	60	1	1	0	0	0	1	
Е	21	59	0	1	0	1	0	1	
С	20	60	1	0	1	0	1	0	
D	21	59	1	0	0	0	1	1	

Figure 5-13. The packet buffer for router *B* in Fig. 5-12(a).

In Fig. 5-13, the link state packet from A arrives directly, so it must be sent to C and F and acknowledged to A, as indicated by the flag bits. Similarly, the packet from F has to be forwarded to A and C and acknowledged to F.

However, the situation with the third packet, from E, is different. It arrives twice, once via EAB and once via EFB. Consequently, it has to be sent only to C but must be acknowledged to both A and F, as indicated by the bits.

If a duplicate arrives while the original is still in the buffer, bits have to be changed. For example, if a copy of C's state arrives from F before the fourth entry in the table has been forwarded, the six bits will be changed to 100011 to indicate that the packet must be acknowledged to F but not sent there.

Computing the New Routes

Once a router has accumulated a full set of link state packets, it can construct the entire network graph because every link is represented. Every link is, in fact, represented twice, once for each direction. The different directions may even have different costs. The shortest-path computations may then find different paths from router A to B than from router B to A.

Now Dijkstra's algorithm can be run locally to construct the shortest paths to all possible destinations. The results of this algorithm tell the router which link to

use to reach each destination. This information is installed in the routing tables, and normal operation is resumed.

Compared to distance vector routing, link state routing requires more memory and computation. For a network with n routers, each of which has k neighbors, the memory required to store the input data is proportional to kn, which is at least as large as a routing table listing all the destinations. Also, the computation time grows faster than kn, even with the most efficient data structures, an issue in large networks. Nevertheless, in many practical situations, link state routing works well because it does not suffer from slow convergence problems.

Link state routing is widely used in actual networks, so a few words about some example protocols are in order. Many ISPs use the **IS-IS** (**Intermediate System-Intermediate System**) link state protocol (Oran, 1990). It was designed for an early network called DECnet, later adopted by ISO for use with the OSI protocols and then modified to handle other protocols as well, most notably, IP. **OSPF** (**Open Shortest Path First**) is the other main link state protocol. It was designed by IETF several years after IS-IS and adopted many of the innovations designed for IS-IS. These innovations include a self-stabilizing method of flooding link state updates, the concept of a designated router on a LAN, and the method of computing and supporting path splitting and multiple metrics. As a consequence, there is very little difference between IS-IS and OSPF. The most important difference is that IS-IS can carry information about multiple network layer protocols at the same time (e.g., IP, IPX, and AppleTalk). OSPF does not have this feature, and it is an advantage in large multiprotocol environments. We will go over OSPF in Sec. 5.6.6.

A general comment on routing algorithms is also in order. Link state, distance vector, and other algorithms rely on processing at all the routers to compute routes. Problems with the hardware or software at even a small number of routers can wreak havoc across the network. For example, if a router claims to have a link it does not have or forgets a link it does have, the network graph will be incorrect. If a router fails to forward packets or corrupts them while forwarding them, the route will not work as expected. Finally, if it runs out of memory or does the routing calculation wrong, bad things will happen. As the network grows into the range of tens or hundreds of thousands of nodes, the probability of some router failing occasionally becomes nonnegligible. The trick is to try to arrange to limit the damage when the inevitable happens. Perlman (1988) discusses these problems and their possible solutions in detail.

5.2.6 Hierarchical Routing

As networks grow in size, the router routing tables grow proportionally. Not only is router memory consumed by ever-increasing tables, but more CPU time is needed to scan them and more bandwidth is needed to send status reports about them. At a certain point, the network may grow to the point where it is no longer

feasible for every router to have an entry for every other router, so the routing will have to be done hierarchically, as it is in the telephone network.

When hierarchical routing is used, the routers are divided into what we will call **regions**. Each router knows all the details about how to route packets to destinations within its own region but knows nothing about the internal structure of other regions. When different networks are interconnected, it is natural to regard each one as a separate region to free the routers in one network from having to know the topological structure of the other ones.

For huge networks, a two-level hierarchy may be insufficient; it may be necessary to group the regions into clusters, the clusters into zones, the zones into groups, and so on, until we run out of names for aggregations. As an example of a multilevel hierarchy, consider how a packet might be routed from Berkeley, California, to Malindi, Kenya. The Berkeley router would know the detailed topology within California but would send all out-of-state traffic to the Los Angeles router. The Los Angeles router would be able to route traffic directly to other domestic routers but would send all foreign traffic to New York. The New York router would be programmed to direct all traffic to the router in the destination country responsible for handling foreign traffic, say, in Nairobi. Finally, the packet would work its way down the tree in Kenya until it got to Malindi.

Figure 5-14 gives a quantitative example of routing in a two-level hierarchy with five regions. The full routing table for router IA has 17 entries, as shown in Fig. 5-14(b). When routing is done hierarchically, as in Fig. 5-14(c), there are entries for all the local routers, as before, but all other regions are condensed into a single router, so all traffic for region 2 goes via the IB-2A line, but the rest of the remote traffic goes via the IC-3B line. Hierarchical routing has reduced the table from 17 to 7 entries. As the ratio of the number of regions to the number of routers per region grows, the savings in table space increase.

Unfortunately, these gains in space are not free. There is a penalty to be paid: increased path length. For example, the best route from *IA* to *5C* is via region 2, but with hierarchical routing all traffic to region 5 goes via region 3, because that is better for most destinations in region 5.

When a single network becomes very large, an interesting question is "how many levels should the hierarchy have?" For example, consider a network with 720 routers. If there is no hierarchy, each router needs 720 routing table entries. If the network is partitioned into 24 regions of 30 routers each, each router needs 30 local entries plus 23 remote entries for a total of 53 entries. If a three-level hierarchy is chosen, with 8 clusters each containing 9 regions of 10 routers, each router needs 10 entries for local routers, 8 entries for routing to other regions within its own cluster, and 7 entries for distant clusters, for a total of 25 entries. Kamoun and Kleinrock (1979) discovered that the optimal number of levels for an N router network is ln N, requiring a total of e ln N entries per router. They have also shown that the increase in effective mean path length caused by hierarchical routing is sufficiently small that it is usually acceptable.

Tall table for 171							
Dest.	Line	Hops					
1A	_	_					
1B	1B	1					
1C	1C	1					
2A	1B	2					
2B	1B	3					
2C	1B	3					
2D	1B	4					
ЗА	1C	3					
3B	1C	2					
4A	1C	3					
4B	1C	4					
4C	1C	4					
5A	1C	4					
5B	1C	5					
5C	1B	5					
5D	1C	6					
5E	1C	5					
	(l	0)					

Full table for 1A

Hierarchical table for 1A

Dest.	Line	Hops
1A	1	-
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4 5	1C	3
5	1C	4

(c)

Figure 5-14. Hierarchical routing.

5.2.7 Broadcast Routing

(a)

In some applications, hosts need to send messages to many or all other hosts. For example, a service distributing weather reports, stock market updates, or live radio programs might work best by sending to all machines and letting those that are interested read the data. Sending a packet to all destinations simultaneously is called **broadcasting**. Various methods have been proposed for doing it.

One broadcasting method that requires no special features from the network is for the source to simply send a distinct packet to each destination. Not only is the method wasteful of bandwidth and slow, but it also requires the source to have a complete list of all destinations. This method is not desirable in practice, even though it is widely applicable.

An improvement is **multidestination routing**, in which each packet contains either a list of destinations or a bit map indicating the desired destinations. When a packet arrives at a router, the router checks all the destinations to determine the set of output lines that will be needed. (An output line is needed if it is the best route to at least one of the destinations.) The router generates a new copy of the packet for each output line to be used and includes in each packet only those destinations that are to use the line. In effect, the destination set is partitioned among

the output lines. After a sufficient number of hops, each packet will carry only one destination like a normal packet. Multidestination routing is like using separately addressed packets, except that when several packets must follow the same route, one of them pays full fare and the rest ride free. The network bandwidth is therefore used more efficiently. However, this scheme still requires the source to know all the destinations, plus it is as much work for a router to determine where to send one multidestination packet as it is for multiple distinct packets.

We have already seen a better broadcast routing technique: flooding. When implemented with a sequence number per source, flooding uses links efficiently with a decision rule at routers that is relatively simple. Although flooding is ill-suited for ordinary point-to-point communication, it rates serious consideration for broadcasting. However, it turns out that we can do better still once the shortest path routes for regular packets have been computed.

The idea for **reverse path forwarding** is elegant and remarkably simple once it has been pointed out (Dalal and Metcalfe, 1978). When a broadcast packet arrives at a router, the router checks to see if the packet arrived on the link that is normally used for sending packets *toward* the source of the broadcast. If so, there is an excellent chance that the broadcast packet itself followed the best route from the router and is therefore the first copy to arrive at the router. This being the case, the router forwards copies of it onto all links except the one it arrived on. If, however, the broadcast packet arrived on a link other than the preferred one for reaching the source, the packet is discarded as a likely duplicate.

Figure 5-15. Reverse path forwarding. (a) A network. (b) A sink tree. (c) The tree built by reverse path forwarding.

An example of reverse path forwarding is shown in Fig. 5-15. Part (a) shows a network, part (b) shows a sink tree for router I of that network, and part (c) shows how the reverse path algorithm works. On the first hop, I sends packets to F, H, J, and N, as indicated by the second row of the tree. Each of these packets arrives on the preferred path to I (assuming that the preferred path falls along the sink tree) and is so indicated by a circle around the letter. On the second hop,

eight packets are generated, two by each of the routers that received a packet on the first hop. As it turns out, all eight of these arrive at previously unvisited routers, and five of these arrive along the preferred line. Of the six packets generated on the third hop, only three arrive on the preferred path (at C, E, and K); the others are duplicates. After five hops and 24 packets, the broadcasting terminates, compared with four hops and 14 packets had the sink tree been followed exactly.

The principal advantage of reverse path forwarding is that it is efficient while being easy to implement. It sends the broadcast packet over each link only once in each direction, just as in flooding, yet it requires only that routers know how to reach all destinations, without needing to remember sequence numbers (or use other mechanisms to stop the flood) or list all destinations in the packet.

Our last broadcast algorithm improves on the behavior of reverse path forwarding. It makes explicit use of the sink tree—or any other convenient spanning tree—for the router initiating the broadcast. A **spanning tree** is a subset of the network that includes all the routers but contains no loops. Sink trees are spanning trees. If each router knows which of its lines belong to the spanning tree, it can copy an incoming broadcast packet onto all the spanning tree lines except the one it arrived on. This method makes excellent use of bandwidth, generating the absolute minimum number of packets necessary to do the job. In Fig. 5-15, for example, when the sink tree of part (b) is used as the spanning tree, the broadcast packet is sent with the minimum 14 packets. The only problem is that each router must have knowledge of some spanning tree for the method to be applicable. Sometimes this information is available (e.g., with link state routing, all routers know the complete topology, so they can compute a spanning tree) but sometimes it is not (e.g., with distance vector routing).

5.2.8 Multicast Routing

Some applications, such as a multiplayer game or live video of a sports event streamed to many viewing locations, send packets to multiple receivers. Unless the group is very small, sending a distinct packet to each receiver is expensive. On the other hand, broadcasting a packet is wasteful if the group consists of, say, 1000 machines on a million-node network, so that most receivers are not interested in the message (or worse yet, they are definitely interested but are not supposed to see it). Thus, we need a way to send messages to well-defined groups that are numerically large in size but small compared to the network as a whole.

Sending a message to such a group is called **multicasting**, and the routing algorithm used is called **multicast routing**. All multicasting schemes require some way to create and destroy groups and to identify which routers are members of a group. How these tasks are accomplished is not of concern to the routing algorithm. For now, we will assume that each group is identified by a multicast address and that routers know the groups to which they belong. We will revisit group membership when we describe the network layer of the Internet in Sec. 5.6.

Multicast routing schemes build on the broadcast routing schemes we have already studied, sending packets along spanning trees to deliver the packets to the members of the group while making efficient use of bandwidth. However, the best spanning tree to use depends on whether the group is dense, with receivers scattered over most of the network, or sparse, with much of the network not belonging to the group. In this section we will consider both cases.

If the group is dense, broadcast is a good start because it efficiently gets the packet to all parts of the network. But broadcast will reach some routers that are not members of the group, which is wasteful. The solution explored by Deering and Cheriton (1990) is to prune the broadcast spanning tree by removing links that do not lead to members. The result is an efficient multicast spanning tree.

As an example, consider the two groups, 1 and 2, in the network shown in Fig. 5-16(a). Some routers are attached to hosts that belong to one or both of these groups, as indicated in the figure. A spanning tree for the leftmost router is shown in Fig. 5-16(b). This tree can be used for broadcast but is overkill for multicast, as can be seen from the two pruned versions that are shown next. In Fig. 5-16(c), all the links that do not lead to hosts that are members of group 1 have been removed. The result is the multicast spanning tree for the leftmost router to send to group 1. Packets are forwarded only along this spanning tree, which is more efficient than the broadcast tree because there are 7 links instead of 10. Fig. 5-16(d) shows the multicast spanning tree after pruning for group 2. It is efficient too, with only five links this time. It also shows that different multicast groups have different spanning trees.

Various ways of pruning the spanning tree are possible. The simplest one can be used if link state routing is used and each router is aware of the complete topology, including which hosts belong to which groups. Each router can then construct its own pruned spanning tree for each sender to the group in question by constructing a sink tree for the sender as usual and then removing all links that do not connect group members to the sink node. **MOSPF** (**Multicast OSPF**) is an example of a link state protocol that works in this way (Moy, 1994).

With distance vector routing, a different pruning strategy can be followed. The basic algorithm is reverse path forwarding. However, whenever a router with no hosts interested in a particular group and no connections to other routers receives a multicast message for that group, it responds with a PRUNE message, telling the neighbor that sent the message not to send it any more multicasts from the sender for that group. When a router with no group members among its own hosts has received such messages on all the lines to which it sends the multicast, it, too, can respond with a PRUNE message. In this way, the spanning tree is recursively pruned. **DVMRP** (**Distance Vector Multicast Routing Protocol**) is an example of a multicast routing protocol that works this way (Waitzman et al., 1988).

Pruning results in efficient spanning trees that use only the links that are actually needed to reach members of the group. One potential disadvantage is that it is lots of work for routers, especially for large networks. Suppose that a network

Figure 5-16. (a) A network. (b) A spanning tree for the leftmost router. (c) A multicast tree for group 1. (d) A multicast tree for group 2.

has n groups, each with an average of m nodes. At each router and for each group, m pruned spanning trees must be stored, for a total of mn trees. For example, Fig. 5-16(c) gives the spanning tree for the leftmost router to send to group 1. The spanning tree for the rightmost router to send to group 1 (not shown) will look quite different, as packets will head directly for group members rather than via the left side of the graph. This in turn means that routers must forward packets destined to group 1 in different directions depending on which node is sending to the group. When many large groups with many senders exist, considerable storage is needed to store all the trees.

An alternative design uses **core-based trees** to compute a single spanning tree for the group (Ballardie et al., 1993). All of the routers agree on a root (called the **core** or **rendezvous point**) and build the tree by sending a packet from each member to the root. The tree is the union of the paths traced by these packets. Fig. 5-17(a) shows a core-based tree for group 1. To send to this group, a sender sends a packet to the core. When the packet reaches the core, it is forwarded down the tree. This is shown in Fig. 5-17(b) for the sender on the righthand side of the network. As a performance optimization, packets destined for the group do not need to reach the core before they are multicast. As soon as a packet reaches the

tree, it can be forwarded up toward the root, as well as down all the other branches. This is the case for the sender at the top of Fig. 5-17(b).

Figure 5-17. (a) Core-based tree for group 1. (b) Sending to group 1.

Having a shared tree is not optimal for all sources. For example, in Fig. 5-17(b), the packet from the sender on the righthand side reaches the top-right group member via the core in three hops, instead of directly. The inefficiency depends on where the core and senders are located, but often it is reasonable when the core is in the middle of the senders. When there is only a single sender, as in a video that is streamed to a group, using the sender as the core is optimal.

Also of note is that shared trees can be a major savings in storage costs, messages sent, and computation. Each router has to keep only one tree per group, instead of *m* trees. Further, routers that are not part of the tree do no work at all to support the group. For this reason, shared tree approaches like core-based trees are used for multicasting to sparse groups in the Internet as part of popular protocols such as **PIM** (**Protocol Independent Multicast**) (Fenner et al., 2006).

5.2.9 Anycast Routing

So far, we have covered delivery models in which a source sends to a single destination (called **unicast**), to all destinations (called broadcast), and to a group of destinations (called multicast). Another delivery model, called **anycast** is sometimes also useful. In anycast, a packet is delivered to the nearest member of a group (Partridge et al., 1993). Schemes that find these paths are called **anycast routing**.

Why would we want anycast? Sometimes nodes provide a service, such as time of day or content distribution for which it is getting the right information all that matters, not the node that is contacted; any node will do. For example, anycast is used in the Internet as part of DNS, as we will see in Chap. 7.

Luckily, we will not have to devise new routing schemes for anycast because regular distance vector and link state routing can produce anycast routes. Suppose we want to anycast to the members of group 1. They will all be given the address "1," instead of different addresses. Distance vector routing will distribute vectors as usual, and nodes will choose the shortest path to destination 1. This will result in nodes sending to the nearest instance of destination 1. The routes are shown in Fig. 5-18(a). This procedure works because the routing protocol does not realize that there are multiple instances of destination 1. That is, it believes that all the instances of node 1 are the same node, as in the topology shown in Fig. 5-18(b).

Figure 5-18. (a) Anycast routes to group 1. (b) Topology seen by the routing protocol.

This procedure works for link state routing as well, although there is the added consideration that the routing protocol must not find seemingly short paths that pass through node 1. This would result in jumps through hyperspace, since the instances of node 1 are really nodes located in different parts of the network. However, link state protocols already make this distinction between routers and hosts. We glossed over this fact earlier because it was not needed for our discussion.

5.2.10 Routing for Mobile Hosts

Millions of people use computers while on the go, from truly mobile situations with wireless devices in moving cars, to nomadic situations in which laptop computers are used in a series of different locations. We will use the term **mobile hosts** to mean either category, as distinct from stationary hosts that never move. Increasingly, people want to stay connected wherever in the world they may be, as easily as if they were at home. These mobile hosts introduce a new complication: to route a packet to a mobile host, the network first has to find it.

The model of the world that we will consider is one in which all hosts are assumed to have a permanent **home location** that never changes. Each hosts also has a permanent home address that can be used to determine its home location, analogous to the way the telephone number 1-212-5551212 indicates the United States (country code 1) and Manhattan (212). The routing goal in systems with

mobile hosts is to make it possible to send packets to mobile hosts using their fixed home addresses and have the packets efficiently reach them wherever they may be. The trick, of course, is to find them.

Some discussion of this model is in order. A different model would be to recompute routes as the mobile host moves and the topology changes. We could then simply use the routing schemes described earlier in this section. However, with a growing number of mobile hosts, this model would soon lead to the entire network endlessly computing new routes. Using the home addresses greatly reduces this burden.

Another alternative would be to provide mobility above the network layer, which is what typically happens with laptops today. When they are moved to new Internet locations, laptops acquire new network addresses. There is no association between the old and new addresses; the network does not know that they belonged to the same laptop. In this model, a laptop can be used to browse the Web, but other hosts cannot send packets to it (for example, for an incoming call), without building a higher layer location service, for example, signing into Skype *again* after moving. Moreover, connections cannot be maintained while the host is moving; new connections must be started up instead. Network-layer mobility is useful to fix these problems.

The basic idea used for mobile routing in the Internet and cellular networks is for the mobile host to tell a host at the home location where it is now. This host, which acts on behalf of the mobile host, is called the **home agent**. Once it knows where the mobile host is currently located, it can forward packets so that they are delivered.

Fig. 5-19 shows mobile routing in action. A sender in the northwest city of Seattle wants to send a packet to a host normally located across the United States in New York. The case of interest to us is when the mobile host is not at home. Instead, it is temporarily in San Diego.

The mobile host in San Diego must acquire a local network address before it can use the network. This happens in the normal way that hosts obtain network addresses; we will cover how this works for the Internet later in this chapter. The local address is called a **care of address**. Once the mobile host has this address, it can tell its home agent where it is now. It does this by sending a registration message to the home agent (step 1) with the care of address. The message is shown with a dashed line in Fig. 5-19 to indicate that it is a control message, not a data message.

Next, the sender sends a data packet to the mobile host using its permanent address (step 2). This packet is routed by the network to the host's home location because that is where the home address belongs. In New York, the home agent intercepts this packet because the mobile host is away from home. It then wraps or **encapsulates** the packet with a new header and sends this bundle to the care of address (step 3). This mechanism is called **tunneling**. It is very important in the Internet so we will look at it in more detail later.

Figure 5-19. Packet routing for mobile hosts.

When the encapsulated packet arrives at the care of address, the mobile host unwraps it and retrieves the packet from the sender. The mobile host then sends its reply packet directly to the sender (step 4). The overall route is called **triangle routing** because it may be circuitous if the remote location is far from the home location. As part of step 4, the sender may learn the current care of address. Subsequent packets can be routed directly to the mobile host by tunneling them to the care of address (step 5), bypassing the home location entirely. If connectivity is lost for any reason as the mobile moves, the home address can always be used to reach the mobile.

An important aspect that we have omitted from this description is security. In general, when a host or router gets a message of the form "Starting right now, please send all of Stephany's mail to me," it might have a couple of questions about whom it is talking to and whether this is a good idea. Security information is included in the messages so that their validity can be checked with cryptographic protocols that we will study in Chap. 8.

There are many variations on mobile routing. The scheme above is modeled on IPv6 mobility, the form of mobility used in the Internet (Johnson et al., 2004) and as part of IP-based cellular networks such as UMTS. We showed the sender to be a stationary node for simplicity, but the designs let both nodes be mobile hosts. Alternatively, the host may be part of a mobile network, for example a computer in a plane. Extensions of the basic scheme support mobile networks with no work on the part of the hosts (Devarapalli et al., 2005).

Some schemes make use of a foreign (i.e., remote) agent, similar to the home agent but at the foreign location, or analogous to the VLR (Visitor Location Register) in cellular networks. However, in more recent schemes, the foreign agent is not needed; mobile hosts act as their own foreign agents. In either case, knowledge of the temporary location of the mobile host is limited to a small number of

hosts (e.g., the mobile, home agent, and senders) so that the many routers in a large network do not need to recompute routes.

For more information about mobile routing, see also Perkins (1998, 2002) and Snoeren and Balakrishnan (2000).

5.2.11 Routing in Ad Hoc Networks

We have now seen how to do routing when the hosts are mobile but the routers are fixed. An even more extreme case is one in which the routers themselves are mobile. Among the possibilities are emergency workers at an earthquake site, military vehicles on a battlefield, a fleet of ships at sea, or a gathering of people with laptop computers in an area lacking 802.11.

In all these cases, and others, each node communicates wirelessly and acts as both a host and a router. Networks of nodes that just happen to be near each other are called **ad hoc networks** or **MANETs** (**Mobile Ad hoc NETworks**). Let us now examine them briefly. More information can be found in Perkins (2001).

What makes ad hoc networks different from wired networks is that the topology is suddenly tossed out the window. Nodes can come and go or appear in new places at the drop of a bit. With a wired network, if a router has a valid path to some destination, that path continues to be valid barring failures, which are hopefully rare. With an ad hoc network, the topology may be changing all the time, so the desirability and even the validity of paths can change spontaneously without warning. Needless to say, these circumstances make routing in ad hoc networks more challenging than routing in their fixed counterparts.

Many, many routing algorithms for ad hoc networks have been proposed. However, since ad hoc networks have been little used in practice compared to mobile networks, it is unclear which of these protocols are most useful. As an example, we will look at one of the most popular routing algorithms, **AODV** (**Ad hoc On-demand Distance Vector**) (Perkins and Royer, 1999). It is a relative of the distance vector algorithm that has been adapted to work in a mobile environment, in which nodes often have limited bandwidth and battery lifetimes. Let us now see how it discovers and maintains routes.

Route Discovery

In AODV, routes to a destination are discovered on demand, that is, only when a somebody wants to send a packet to that destination. This saves much work that would otherwise be wasted when the topology changes before the route is used. At any instant, the topology of an ad hoc network can be described by a graph of connected nodes. Two nodes are connected (i.e., have an arc between them in the graph) if they can communicate directly using their radios. A basic but adequate model that is sufficient for our purposes is that each node can communicate with all other nodes that lie within its coverage circle. Real networks are

more complicated, with buildings, hills, and other obstacles that block communication, and nodes for which A is connected to B but B is not connected to A because A has a more powerful transmitter than B. However, for simplicity, we will assume all connections are symmetric.

To describe the algorithm, consider the newly formed ad hoc network of Fig. 5-20. Suppose that a process at node *A* wants to send a packet to node *I*. The AODV algorithm maintains a distance vector table at each node, keyed by destination, giving information about that destination, including the neighbor to which to send packets to reach the destination. First, *A* looks in its table and does not find an entry for *I*. It now has to discover a route to *I*. This property of discovering routes only when they are needed is what makes this algorithm "on demand."

Figure 5-20. (a) Range of A's broadcast. (b) After B and D receive it. (c) After C, F, and G receive it. (d) After E, H, and I receive it. The shaded nodes are new recipients. The dashed lines show possible reverse routes. The solid lines show the discovered route.

To locate I, A constructs a ROUTE REQUEST packet and broadcasts it using flooding, as described in Sec. 5.2.3. The transmission from A reaches B and D, as illustrated in Fig. 5-20(a). Each node rebroadcasts the request, which continues to reach nodes F, G, and G in Fig. 5-20(c) and nodes G, and G in Fig. 5-20(d). A sequence number set at the source is used to weed out duplicates during the flood. For example, G discards the transmission from G in Fig. 5-20(c) because it has already forwarded the request.

Eventually, the request reaches node I, which constructs a ROUTE REPLY packet. This packet is unicast to the sender along the reverse of the path followed by the request. For this to work, each intermediate node must remember the node that sent it the request. The arrows in Fig. 5-20(b)–(d) show the reverse route information that is stored. Each intermediate node also increments a hop count as it forwards the reply. This tells the nodes how far they are from the destination. The replies tell each intermediate node which neighbor to use to reach the destination: it is the node that sent them the reply. Intermediate nodes G and D put the

best route they hear into their routing tables as they process the reply. When the reply reaches A, a new route, ADGI, has been created.

In a large network, the algorithm generates many broadcasts, even for destinations that are close by. To reduce overhead, the scope of the broadcasts is limited using the IP packet's *Time to live* field. This field is initialized by the sender and decremented on each hop. If it hits 0, the packet is discarded instead of being broadcast. The route discovery process is then modified as follows. To locate a destination, the sender broadcasts a ROUTE REQUEST packet with *Time to live* set to 1. If no response comes back within a reasonable time, another one is sent, this time with *Time to live* set to 2. Subsequent attempts use 3, 4, 5, etc. In this way, the search is first attempted locally, then in increasingly wider rings.

Route Maintenance

Because nodes can move or be switched off, the topology can change spontaneously. For example, in Fig. 5-20, if G is switched off, A will not realize that the route it was using to I (ADGI) is no longer valid. The algorithm needs to be able to deal with this. Periodically, each node broadcasts a Hello message. Each of its neighbors is expected to respond to it. If no response is forthcoming, the broadcaster knows that that neighbor has moved out of range or failed and is no longer connected to it. Similarly, if it tries to send a packet to a neighbor that does not respond, it learns that the neighbor is no longer available.

This information is used to purge routes that no longer work. For each possible destination, each node, N, keeps track of its active neighbors that have fed it a packet for that destination during the last ΔT seconds. When any of N's neighbors becomes unreachable, it checks its routing table to see which destinations have routes using the now-gone neighbor. For each of these routes, the active neighbors are informed that their route via N is now invalid and must be purged from their routing tables. In our example, D purges its entries for G and I from its routing table and notifies A, which purges its entry for I. In the general case, the active neighbors tell their active neighbors, and so on, recursively, until all routes depending on the now-gone node are purged from all routing tables.

At this stage, the invalid routes have been purged from the network, and senders can find new, valid routes by using the discovery mechanism that we described. However, there is a complication. Recall that distance vector protocols can suffer from slow convergence or count-to-infinity problems after a topology change in which they confuse old, invalid routes with new, valid routes.

To ensure rapid convergence, routes include a sequence number that is controlled by the destination. The destination sequence number is like a logical clock. The destination increments it every time that it sends a fresh ROUTE REPLY. Senders ask for a fresh route by including in the ROUTE REQUEST the destination sequence number of the last route they used, which will either be the sequence number of the route that was just purged, or 0 as an initial value. The

request will be broadcast until a route with a higher sequence number is found. Intermediate nodes store the routes that have a higher sequence number, or the fewest hops for the current sequence number.

In the spirit of an on demand protocol, intermediate nodes only store the routes that are in use. Other route information learned during broadcasts is timed out after a short delay. Discovering and storing only the routes that are used helps to save bandwidth and battery life compared to a standard distance vector protocol that periodically broadcasts updates.

So far, we have considered only a single route, from A to I. To further save resources, route discovery and maintenance are shared when routes overlap. For instance, if B also wants to send packets to I, it will perform route discovery. However, in this case the request will first reach D, which already has a route to I. Node D can then generate a reply to tell B the route without any additional work being required.

There are many other ad hoc routing schemes. Another well-known on demand scheme is DSR (Dynamic Source Routing) (Johnson et al., 2001). A different strategy based on geography is explored by GPSR (Greedy Perimeter Stateless Routing) (Karp and Kung, 2000). If all nodes know their geographic positions, forwarding to a destination can proceed without route computation by simply heading in the right direction and circling back to escape any dead ends. Which protocols win out will depend on the kinds of ad hoc networks that prove useful in practice.

5.3 CONGESTION CONTROL ALGORITHMS

Too many packets present in (a part of) the network causes packet delay and loss that degrades performance. This situation is called **congestion**. The network and transport layers share the responsibility for handling congestion. Since congestion occurs within the network, it is the network layer that directly experiences it and must ultimately determine what to do with the excess packets. However, the most effective way to control congestion is to reduce the load that the transport layer is placing on the network. This requires the network and transport layers to work together. In this chapter we will look at the network aspects of congestion. In Chap. 6, we will complete the topic by covering the transport aspects of congestion.

Figure 5-21 depicts the onset of congestion. When the number of packets hosts send into the network is well within its carrying capacity, the number delivered is proportional to the number sent. If twice as many are sent, twice as many are delivered. However, as the offered load approaches the carrying capacity, bursts of traffic occasionally fill up the buffers inside routers and some packets are lost. These lost packets consume some of the capacity, so the number of delivered packets falls below the ideal curve. The network is now congested.

Figure 5-21. With too much traffic, performance drops sharply.

Unless the network is well designed, it may experience a **congestion collapse**, in which performance plummets as the offered load increases beyond the capacity. This can happen because packets can be sufficiently delayed inside the network that they are no longer useful when they leave the network. For example, in the early Internet, the time a packet spent waiting for a backlog of packets ahead of it to be sent over a slow 56-kbps link could reach the maximum time it was allowed to remain in the network. It then had to be thrown away. A different failure mode occurs when senders retransmit packets that are greatly delayed, thinking that they have been lost. In this case, copies of the same packet will be delivered by the network, again wasting its capacity. To capture these factors, the y-axis of Fig. 5-21 is given as **goodput**, which is the rate at which *useful* packets are delivered by the network.

We would like to design networks that avoid congestion where possible and do not suffer from congestion collapse if they do become congested. Unfortunately, congestion cannot wholly be avoided. If all of a sudden, streams of packets begin arriving on three or four input lines and all need the same output line, a queue will build up. If there is insufficient memory to hold all of them, packets will be lost. Adding more memory may help up to a point, but Nagle (1987) realized that if routers have an infinite amount of memory, congestion gets worse, not better. This is because by the time packets get to the front of the queue, they have already timed out (repeatedly) and duplicates have been sent. This makes matters worse, not better—it leads to congestion collapse.

Low-bandwidth links or routers that process packets more slowly than the line rate can also become congested. In this case, the situation can be improved by directing some of the traffic away from the bottleneck to other parts of the network. Eventually, however, all regions of the network will be congested. In this situation, there is no alternative but to shed load or build a faster network.

It is worth pointing out the difference between congestion control and flow control, as the relationship is a very subtle one. Congestion control has to do with making sure the network is able to carry the offered traffic. It is a global issue, involving the behavior of all the hosts and routers. Flow control, in contrast, relates to the traffic between a particular sender and a particular receiver. Its job is to make sure that a fast sender cannot continually transmit data faster than the receiver is able to absorb it.

To see the difference between these two concepts, consider a network made up of 100-Gbps fiber optic links on which a supercomputer is trying to force feed a large file to a personal computer that is capable of handling only 1 Gbps. Although there is no congestion (the network itself is not in trouble), flow control is needed to force the supercomputer to stop frequently to give the personal computer a chance to breathe.

At the other extreme, consider a network with 1-Mbps lines and 1000 large computers, half of which are trying to transfer files at 100 kbps to the other half. Here, the problem is not that of fast senders overpowering slow receivers, but that the total offered traffic exceeds what the network can handle.

The reason congestion control and flow control are often confused is that the best way to handle both problems is to get the host to slow down. Thus, a host can get a "slow down" message either because the receiver cannot handle the load or because the network cannot handle it. We will come back to this point in Chap. 6.

We will start our study of congestion control by looking at the approaches that can be used at different time scales. Then we will look at approaches to preventing congestion from occurring in the first place, followed by approaches for coping with it once it has set in.

5.3.1 Approaches to Congestion Control

The presence of congestion means that the load is (temporarily) greater than the resources (in a part of the network) can handle. Two solutions come to mind: increase the resources or decrease the load. As shown in Fig. 5-22, these solutions are usually applied on different time scales to either prevent congestion or react to it once it has occurred.

Figure 5-22. Timescales of approaches to congestion control.

The most basic way to avoid congestion is to build a network that is well matched to the traffic that it carries. If there is a low-bandwidth link on the path along which most traffic is directed, congestion is likely. Sometimes resources

can be added dynamically when there is serious congestion, for example, turning on spare routers or enabling lines that are normally used only as backups (to make the system fault tolerant) or purchasing bandwidth on the open market. More often, links and routers that are regularly heavily utilized are upgraded at the earliest opportunity. This is called **provisioning** and happens on a time scale of months, driven by long-term traffic trends.

To make the most of the existing network capacity, routes can be tailored to traffic patterns that change during the day as network users wake and sleep in different time zones. For example, routes may be changed to shift traffic away from heavily used paths by changing the shortest path weights. Some local radio stations have helicopters flying around their cities to report on road congestion to make it possible for their mobile listeners to route their packets (cars) around hotspots. This is called **traffic-aware routing**. Splitting traffic across multiple paths is also helpful.

However, sometimes it is not possible to increase capacity. The only way then to beat back the congestion is to decrease the load. In a virtual-circuit network, new connections can be refused if they would cause the network to become congested. This is called **admission control**.

At a finer granularity, when congestion is imminent the network can deliver feedback to the sources whose traffic flows are responsible for the problem. The network can request these sources to throttle their traffic, or it can slow down the traffic itself.

Two difficulties with this approach are how to identify the onset of congestion, and how to inform the source that needs to slow down. To tackle the first issue, routers can monitor the average load, queueing delay, or packet loss. In all cases, rising numbers indicate growing congestion.

To tackle the second issue, routers must participate in a feedback loop with the sources. For a scheme to work correctly, the time scale must be adjusted carefully. If every time two packets arrive in a row, a router yells STOP and every time a router is idle for 20 μ sec, it yells GO, the system will oscillate wildly and never converge. On the other hand, if it waits 30 minutes to make sure before saying anything, the congestion-control mechanism will react too sluggishly to be of any use. Delivering timely feedback is a nontrivial matter. An added concern is having routers send more messages when the network is already congested.

Finally, when all else fails, the network is forced to discard packets that it cannot deliver. The general name for this is **load shedding**. A good policy for choosing which packets to discard can help to prevent congestion collapse.

5.3.2 Traffic-Aware Routing

The first approach we will examine is traffic-aware routing. The routing schemes we looked at in Sec 5.2 used fixed link weights. These schemes adapted to changes in topology, but not to changes in load. The goal in taking load into

account when computing routes is to shift traffic away from hotspots that will be the first places in the network to experience congestion.

The most direct way to do this is to set the link weight to be a function of the (fixed) link bandwidth and propagation delay plus the (variable) measured load or average queuing delay. Least-weight paths will then favor paths that are more lightly loaded, all else being equal.

Traffic-aware routing was used in the early Internet according to this model (Khanna and Zinky, 1989). However, there is a peril. Consider the network of Fig. 5-23, which is divided into two parts, East and West, connected by two links, *CF* and *EI*. Suppose that most of the traffic between East and West is using link *CF*, and, as a result, this link is heavily loaded with long delays. Including queueing delay in the weight used for the shortest path calculation will make *EI* more attractive. After the new routing tables have been installed, most of the East-West traffic will now go over *EI*, loading this link. Consequently, in the next update, *CF* will appear to be the shortest path. As a result, the routing tables may oscillate wildly, leading to erratic routing and many potential problems.

Figure 5-23. A network in which the East and West parts are connected by two links.

If load is ignored and only bandwidth and propagation delay are considered, this problem does not occur. Attempts to include load but change weights within a narrow range only slow down routing oscillations. Two techniques can contribute to a successful solution. The first is multipath routing, in which there can be multiple paths from a source to a destination. In our example this means that the traffic can be spread across both of the East to West links. The second one is for the routing scheme to shift traffic across routes slowly enough that it is able to converge, as in the scheme of Gallagher (1977).

Given these difficulties, in the Internet routing protocols do not generally adjust their routes depending on the load. Instead, adjustments are made outside the routing protocol by slowly changing its inputs. This is called **traffic engineering**.

5.3.3 Admission Control

One technique that is widely used in virtual-circuit networks to keep congestion at bay is **admission control**. The idea is simple: do not set up a new virtual circuit unless the network can carry the added traffic without becoming congested. Thus, attempts to set up a virtual circuit may fail. This is better than the alternative, as letting more people in when the network is busy just makes matters worse. By analogy, in the telephone system, when a switch gets overloaded it practices admission control by not giving dial tones.

The trick with this approach is working out when a new virtual circuit will lead to congestion. The task is straightforward in the telephone network because of the fixed bandwidth of calls (64 kbps for uncompressed audio). However, virtual circuits in computer networks come in all shapes and sizes. Thus, the circuit must come with some characterization of its traffic if we are to apply admission control.

Traffic is often described in terms of its rate and shape. The problem of how to describe it in a simple yet meaningful way is difficult because traffic is typically bursty—the average rate is only half the story. For example, traffic that varies while browsing the Web is more difficult to handle than a streaming movie with the same long-term throughput because the bursts of Web traffic are more likely to congest routers in the network. A commonly used descriptor that captures this effect is the **leaky bucket** or **token bucket**. A leaky bucket has two parameters that bound the average rate and the instantaneous burst size of traffic. Since leaky buckets are widely used for quality of service, we will go over them in detail in Sec. 5.4.

Armed with traffic descriptions, the network can decide whether to admit the new virtual circuit. One possibility is for the network to reserve enough capacity along the paths of each of its virtual circuits that congestion will not occur. In this case, the traffic description is a service agreement for what the network will guarantee its users. We have prevented congestion but veered into the related topic of quality of service a little too early; we will return to it in the next section.

Even without making guarantees, the network can use traffic descriptions for admission control. The task is then to estimate how many circuits will fit within the carrying capacity of the network without congestion. Suppose that virtual circuits that may blast traffic at rates up to 10 Mbps all pass through the same 100-Mbps physical link. How many circuits should be admitted? Clearly, 10 circuits can be admitted without risking congestion, but this is wasteful in the normal case since it may rarely happen that all 10 are transmitting full blast at the same time. In real networks, measurements of past behavior that capture the statistics of transmissions can be used to estimate the number of circuits to admit, to trade better performance for acceptable risk.

Admission control can also be combined with traffic-aware routing by considering routes around traffic hotspots as part of the setup procedure. For example,

consider the network illustrated in Fig. 5-24(a), in which two routers are congested, as indicated.

Figure 5-24. (a) A congested network. (b) The portion of the network that is not congested. A virtual circuit from *A* to *B* is also shown.

Suppose that a host attached to router A wants to set up a connection to a host attached to router B. Normally, this connection would pass through one of the congested routers. To avoid this situation, we can redraw the network as shown in Fig. 5-24(b), omitting the congested routers and all of their lines. The dashed line shows a possible route for the virtual circuit that avoids the congested routers. Shaikh et al. (1999) give a design for this kind of load-sensitive routing.

5.3.4 Traffic Throttling

In the Internet and many other computer networks, senders adjust their transmissions to send as much traffic as the network can readily deliver. In this setting, the network aims to operate just before the onset of congestion. When congestion is imminent, it must tell the senders to throttle back their transmissions and slow down. This feedback is business as usual rather than an exceptional situation. The term **congestion avoidance** is sometimes used to contrast this operating point with the one in which the network has become (overly) congested.

Let us now look at some approaches to throttling traffic that can be used in both datagram networks and virtual-circuit networks. Each approach must solve two problems. First, routers must determine when congestion is approaching, ideally before it has arrived. To do so, each router can continuously monitor the resources it is using. Three possibilities are the utilization of the output links, the buffering of queued packets inside the router, and the number of packets that are lost due to insufficient buffering. Of these possibilities, the second one is the most useful. Averages of utilization do not directly account for the burstiness of

most traffic—a utilization of 50% may be low for smooth traffic and too high for highly variable traffic. Counts of packet losses come too late. Congestion has already set in by the time that packets are lost.

The queueing delay inside routers directly captures any congestion experienced by packets. It should be low most of time, but will jump when there is a burst of traffic that generates a backlog. To maintain a good estimate of the queueing delay, d, a sample of the instantaneous queue length, s, can be made periodically and d updated according to

$$d_{\text{new}} = \alpha d_{\text{old}} + (1 - \alpha)s$$

where the constant α determines how fast the router forgets recent history. This is called an **EWMA** (**Exponentially Weighted Moving Average**). It smoothes out fluctuations and is equivalent to a low-pass filter. Whenever d moves above the threshold, the router notes the onset of congestion.

The second problem is that routers must deliver timely feedback to the senders that are causing the congestion. Congestion is experienced in the network, but relieving congestion requires action on behalf of the senders that are using the network. To deliver feedback, the router must identify the appropriate senders. It must then warn them carefully, without sending many more packets into the already congested network. Different schemes use different feedback mechanisms, as we will now describe.

Choke Packets

The most direct way to notify a sender of congestion is to tell it directly. In this approach, the router selects a congested packet and sends a **choke packet** back to the source host, giving it the destination found in the packet. The original packet may be tagged (a header bit is turned on) so that it will not generate any more choke packets farther along the path and then forwarded in the usual way. To avoid increasing load on the network during a time of congestion, the router may only send choke packets at a low rate.

When the source host gets the choke packet, it is required to reduce the traffic sent to the specified destination, for example, by 50%. In a datagram network, simply picking packets at random when there is congestion is likely to cause choke packets to be sent to fast senders, because they will have the most packets in the queue. The feedback implicit in this protocol can help prevent congestion yet not throttle any sender unless it causes trouble. For the same reason, it is likely that multiple choke packets will be sent to a given host and destination. The host should ignore these additional chokes for the fixed time interval until its reduction in traffic takes effect. After that period, further choke packets indicate that the network is still congested.

An example of a choke packet used in the early Internet is the SOURCE-QUENCH message (Postel, 1981). It never caught on, though, partly because the

circumstances in which it was generated and the effect it had were not clearly specified. The modern Internet uses an alternative notification design that we will describe next

Explicit Congestion Notification

Instead of generating additional packets to warn of congestion, a router can tag any packet it forwards (by setting a bit in the packet's header) to signal that it is experiencing congestion. When the network delivers the packet, the destination can note that there is congestion and inform the sender when it sends a reply packet. The sender can then throttle its transmissions as before.

This design is called **ECN** (**Explicit Congestion Notification**) and is used in the Internet (Ramakrishnan et al., 2001). It is a refinement of early congestion signaling protocols, notably the binary feedback scheme of Ramakrishnan and Jain (1988) that was used in the DECNET architecture. Two bits in the IP packet header are used to record whether the packet has experienced congestion. Packets are unmarked when they are sent, as illustrated in Fig. 5-25. If any of the routers they pass through is congested, that router will then mark the packet as having experienced congestion as it is forwarded. The destination will then echo any marks back to the sender as an explicit congestion signal in its next reply packet. This is shown with a dashed line in the figure to indicate that it happens above the IP level (e.g., in TCP). The sender must then throttle its transmissions, as in the case of choke packets.

Figure 5-25. Explicit congestion notification

Hop-by-Hop Backpressure

At high speeds or over long distances, many new packets may be transmitted after congestion has been signaled because of the delay before the signal takes effect. Consider, for example, a host in San Francisco (router A in Fig. 5-26) that is sending traffic to a host in New York (router D in Fig. 5-26) at the OC-3 speed of 155 Mbps. If the New York host begins to run out of buffers, it will take about 40 msec for a choke packet to get back to San Francisco to tell it to slow down. An ECN indication will take even longer because it is delivered via the destination. Choke packet propagation is illustrated as the second, third, and fourth steps in

Fig. 5-26(a). In those 40 msec, another 6.2 megabits will have been sent. Even if the host in San Francisco completely shuts down immediately, the 6.2 megabits in the pipe will continue to pour in and have to be dealt with. Only in the seventh diagram in Fig. 5-26(a) will the New York router notice a slower flow.

An alternative approach is to have the choke packet take effect at every hop it passes through, as shown in the sequence of Fig. 5-26(b). Here, as soon as the choke packet reaches F, F is required to reduce the flow to D. Doing so will require F to devote more buffers to the connection, since the source is still sending away at full blast, but it gives D immediate relief, like a headache remedy in a television commercial. In the next step, the choke packet reaches E, which tells E to reduce the flow to F. This action puts a greater demand on E's buffers but gives F immediate relief. Finally, the choke packet reaches A and the flow genuinely slows down.

The net effect of this hop-by-hop scheme is to provide quick relief at the point of congestion, at the price of using up more buffers upstream. In this way, congestion can be nipped in the bud without losing any packets. The idea is discussed in detail by Mishra et al. (1996).

5.3.5 Load Shedding

When none of the above methods make the congestion disappear, routers can bring out the heavy artillery: load shedding. **Load shedding** is a fancy way of saying that when routers are being inundated by packets that they cannot handle, they just throw them away. The term comes from the world of electrical power generation, where it refers to the practice of utilities intentionally blacking out certain areas to save the entire grid from collapsing on hot summer days when the demand for electricity greatly exceeds the supply.

The key question for a router drowning in packets is which packets to drop. The preferred choice may depend on the type of applications that use the network. For a file transfer, an old packet is worth more than a new one. This is because dropping packet 6 and keeping packets 7 through 10, for example, will only force the receiver to do more work to buffer data that it cannot yet use. In contrast, for real-time media, a new packet is worth more than an old one. This is because packets become useless if they are delayed and miss the time at which they must be played out to the user.

The former policy (old is better than new) is often called **wine** and the latter (new is better than old) is often called **milk** because most people would rather drink new milk and old wine than the alternative.

More intelligent load shedding requires cooperation from the senders. An example is packets that carry routing information. These packets are more important than regular data packets because they establish routes; if they are lost, the network may lose connectivity. Another example is that algorithms for compressing video, like MPEG, periodically transmit an entire frame and then send subsequent

Figure 5-26. (a) A choke packet that affects only the source. (b) A choke packet that affects each hop it passes through.

frames as differences from the last full frame. In this case, dropping a packet that is part of a difference is preferable to dropping one that is part of a full frame because future packets depend on the full frame.

To implement an intelligent discard policy, applications must mark their packets to indicate to the network how important they are. Then, when packets have to be discarded, routers can first drop packets from the least important class, then the next most important class, and so on.

Of course, unless there is some significant incentive to avoid marking every packet as VERY IMPORTANT—NEVER, EVER DISCARD, nobody will do it. Often accounting and money are used to discourage frivolous marking. For example, the network might let senders send faster than the service they purchased allows if they mark excess packets as low priority. Such a strategy is actually not a bad idea because it makes more efficient use of idle resources, allowing hosts to use them as long as nobody else is interested, but without establishing a right to them when times get tough.

Random Early Detection

Dealing with congestion when it first starts is more effective than letting it gum up the works and then trying to deal with it. This observation leads to an interesting twist on load shedding, which is to discard packets before all the buffer space is really exhausted.

The motivation for this idea is that most Internet hosts do not yet get congestion signals from routers in the form of ECN. Instead, the only reliable indication of congestion that hosts get from the network is packet loss. After all, it is difficult to build a router that does not drop packets when it is overloaded. Transport protocols such as TCP are thus hardwired to react to loss as congestion, slowing down the source in response. The reasoning behind this logic is that TCP was designed for wired networks and wired networks are very reliable, so lost packets are mostly due to buffer overruns rather than transmission errors. Wireless links must recover transmission errors at the link layer (so they are not seen at the network layer) to work well with TCP.

This situation can be exploited to help reduce congestion. By having routers drop packets early, before the situation has become hopeless, there is time for the source to take action before it is too late. A popular algorithm for doing this is called **RED** (**Random Early Detection**) (Floyd and Jacobson, 1993). To determine when to start discarding, routers maintain a running average of their queue lengths. When the average queue length on some link exceeds a threshold, the link is said to be congested and a small fraction of the packets are dropped at random. Picking packets at random makes it more likely that the fastest senders will see a packet drop; this is the best option since the router cannot tell which source is causing the most trouble in a datagram network. The affected sender will notice the loss when there is no acknowledgement, and then the transport protocol

will slow down. The lost packet is thus delivering the same message as a choke packet, but implicitly, without the router sending any explicit signal.

RED routers improve performance compared to routers that drop packets only when their buffers are full, though they may require tuning to work well. For example, the ideal number of packets to drop depends on how many senders need to be notified of congestion. However, ECN is the preferred option if it is available. It works in exactly the same manner, but delivers a congestion signal explicitly rather than as a loss; RED is used when hosts cannot receive explicit signals.

5.4 QUALITY OF SERVICE

The techniques we looked at in the previous sections are designed to reduce congestion and improve network performance. However, there are applications (and customers) that demand stronger performance guarantees from the network than "the best that could be done under the circumstances." Multimedia applications in particular, often need a minimum throughput and maximum latency to work. In this section, we will continue our study of network performance, but now with a sharper focus on ways to provide quality of service that is matched to application needs. This is an area in which the Internet is undergoing a long-term upgrade.

An easy solution to provide good quality of service is to build a network with enough capacity for whatever traffic will be thrown at it. The name for this solution is **overprovisioning**. The resulting network will carry application traffic without significant loss and, assuming a decent routing scheme, will deliver packets with low latency. Performance doesn't get any better than this. To some extent, the telephone system is overprovisioned because it is rare to pick up a telephone and not get a dial tone instantly. There is simply so much capacity available that demand can almost always be met.

The trouble with this solution is that it is expensive. It is basically solving a problem by throwing money at it. Quality of service mechanisms let a network with less capacity meet application requirements just as well at a lower cost. Moreover, overprovisioning is based on expected traffic. All bets are off if the traffic pattern changes too much. With quality of service mechanisms, the network can honor the performance guarantees that it makes even when traffic spikes, at the cost of turning down some requests.

Four issues must be addressed to ensure quality of service:

- 1. What applications need from the network.
- 2. How to regulate the traffic that enters the network.
- 3. How to reserve resources at routers to guarantee performance.
- 4. Whether the network can safely accept more traffic.

No single technique deals efficiently with all these issues. Instead, a variety of techniques have been developed for use at the network (and transport) layer. Practical quality-of-service solutions combine multiple techniques. To this end, we will describe two versions of quality of service for the Internet called Integrated Services and Differentiated Services.

5.4.1 Application Requirements

A stream of packets from a source to a destination is called a **flow** (Clark, 1988). A flow might be all the packets of a connection in a connection-oriented network, or all the packets sent from one process to another process in a connectionless network. The needs of each flow can be characterized by four primary parameters: bandwidth, delay, jitter, and loss. Together, these determine the **QoS** (**Quality of Service**) the flow requires.

Several common applications and the stringency of their network requirements are listed in Fig. 5-27. Note that network requirements are less demanding than application requirements in those cases that the application can improve on the service provided by the network. In particular, networks do not need to be lossless for reliable file transfer, and they do not need to deliver packets with identical delays for audio and video playout. Some amount of loss can be repaired with retransmissions, and some amount of jitter can be smoothed by buffering packets at the receiver. However, there is nothing applications can do to remedy the situation if the network provides too little bandwidth or too much delay.

Application	Bandwidth	Delay	Jitter	Loss
Email	Low	Low	Low	Medium
File sharing	High	Low	Low	Medium
Web access	Medium	Medium	Low	Medium
Remote login	Low	Medium	Medium	Medium
Audio on demand	Low	Low	High	Low
Video on demand	High	Low	High	Low
Telephony	Low	High	High	Low
Videoconferencing	High	High	High	Low

Figure 5-27. Stringency of applications' quality-of-service requirements.

The applications differ in their bandwidth needs, with email, audio in all forms, and remote login not needing much, but file sharing and video in all forms needing a great deal.

More interesting are the delay requirements. File transfer applications, including email and video, are not delay sensitive. If all packets are delayed uniformly by a few seconds, no harm is done. Interactive applications, such as Web

surfing and remote login, are more delay sensitive. Real-time applications, such as telephony and videoconferencing, have strict delay requirements. If all the words in a telephone call are each delayed by too long, the users will find the connection unacceptable. On the other hand, playing audio or video files from a server does not require low delay.

The variation (i.e., standard deviation) in the delay or packet arrival times is called **jitter**. The first three applications in Fig. 5-27 are not sensitive to the packets arriving with irregular time intervals between them. Remote login is somewhat sensitive to that, since updates on the screen will appear in little bursts if the connection suffers much jitter. Video and especially audio are extremely sensitive to jitter. If a user is watching a video over the network and the frames are all delayed by exactly 2.000 seconds, no harm is done. But if the transmission time varies randomly between 1 and 2 seconds, the result will be terrible unless the application hides the jitter. For audio, a jitter of even a few milliseconds is clearly audible.

The first four applications have more stringent requirements on loss than audio and video because all bits must be delivered correctly. This goal is usually achieved with retransmissions of packets that are lost in the network by the transport layer. This is wasted work; it would be better if the network refused packets it was likely to lose in the first place. Audio and video applications can tolerate some lost packets without retransmission because people do not notice short pauses or occasional skipped frames.

To accommodate a variety of applications, networks may support different categories of QoS. An influential example comes from ATM networks, which were once part of a grand vision for networking but have since become a niche technology. They support:

- 1. Constant bit rate (e.g., telephony).
- 2. Real-time variable bit rate (e.g., compressed videoconferencing).
- 3. Non-real-time variable bit rate (e.g., watching a movie on demand).
- 4. Available bit rate (e.g., file transfer).

These categories are also useful for other purposes and other networks. Constant bit rate is an attempt to simulate a wire by providing a uniform bandwidth and a uniform delay. Variable bit rate occurs when video is compressed, with some frames compressing more than others. Sending a frame with a lot of detail in it may require sending many bits, whereas a shot of a white wall may compress extremely well. Movies on demand are not actually real time because a few seconds of video can easily be buffered at the receiver before playback starts, so jitter on the network merely causes the amount of stored-but-not-played video to vary. Available bit rate is for applications such as email that are not sensitive to delay or jitter and will take what bandwidth they can get.

5.4.2 Traffic Shaping

Before the network can make QoS guarantees, it must know what traffic is being guaranteed. In the telephone network, this characterization is simple. For example, a voice call (in uncompressed format) needs 64 kbps and consists of one 8-bit sample every 125 μ sec. However, traffic in data networks is **bursty**. It typically arrives at nonuniform rates as the traffic rate varies (e.g., videoconferencing with compression), users interact with applications (e.g., browsing a new Web page), and computers switch between tasks. Bursts of traffic are more difficult to handle than constant-rate traffic because they can fill buffers and cause packets to be lost.

Traffic shaping is a technique for regulating the average rate and burstiness of a flow of data that enters the network. The goal is to allow applications to transmit a wide variety of traffic that suits their needs, including some bursts, yet have a simple and useful way to describe the possible traffic patterns to the network. When a flow is set up, the user and the network (i.e., the customer and the provider) agree on a certain traffic pattern (i.e., shape) for that flow. In effect, the customer says to the provider "My transmission pattern will look like this; can you handle it?"

Sometimes this agreement is called an **SLA** (**Service Level Agreement**), especially when it is made over aggregate flows and long periods of time, such as all of the traffic for a given customer. As long as the customer fulfills her part of the bargain and only sends packets according to the agreed-on contract, the provider promises to deliver them all in a timely fashion.

Traffic shaping reduces congestion and thus helps the network live up to its promise. However, to make it work, there is also the issue of how the provider can tell if the customer is following the agreement and what to do if the customer is not. Packets in excess of the agreed pattern might be dropped by the network, or they might be marked as having lower priority. Monitoring a traffic flow is called **traffic policing**.

Shaping and policing are not so important for peer-to-peer and other transfers that will consume any and all available bandwidth, but they are of great importance for real-time data, such as audio and video connections, which have stringent quality-of-service requirements.

Leaky and Token Buckets

We have already seen one way to limit the amount of data an application sends: the sliding window, which uses one parameter to limit how much data is in transit at any given time, which indirectly limits the rate. Now we will look at a more general way to characterize traffic, with the leaky bucket and token bucket algorithms. The formulations are slightly different but give an equivalent result.

Try to imagine a bucket with a small hole in the bottom, as illustrated in Fig. 5-28(b). No matter the rate at which water enters the bucket, the outflow is at a constant rate, R, when there is any water in the bucket and zero when the bucket is empty. Also, once the bucket is full to capacity B, any additional water entering it spills over the sides and is lost.

Figure 5-28. (a) Shaping packets. (b) A leaky bucket. (c) A token bucket.

This bucket can be used to shape or police packets entering the network, as shown in Fig. 5-28(a). Conceptually, each host is connected to the network by an interface containing a leaky bucket. To send a packet into the network, it must be possible to put more water into the bucket. If a packet arrives when the bucket is full, the packet must either be queued until enough water leaks out to hold it or be discarded. The former might happen at a host shaping its traffic for the network as part of the operating system. The latter might happen in hardware at a provider network interface that is policing traffic entering the network. This technique was proposed by Turner (1986) and is called the **leaky bucket algorithm**.

A different but equivalent formulation is to imagine the network interface as a bucket that is being filled, as shown in Fig. 5-28(c). The tap is running at rate R and the bucket has a capacity of B, as before. Now, to send a packet we must be able to take water, or tokens, as the contents are commonly called, out of the bucket (rather than putting water into the bucket). No more than a fixed number of tokens, B, can accumulate in the bucket, and if the bucket is empty, we must wait until more tokens arrive before we can send another packet. This algorithm is called the **token bucket algorithm**.

Leaky and token buckets limit the long-term rate of a flow but allow short-term bursts up to a maximum regulated length to pass through unaltered and without suffering any artificial delays. Large bursts will be smoothed by a leaky bucket traffic shaper to reduce congestion in the network. As an example, imagine that a computer can produce data at up to 1000 Mbps (125 million bytes/sec) and that the first link of the network also runs at this speed. The pattern of traffic the host generates is shown in Fig. 5-29(a). This pattern is bursty. The average

rate over one second is 200 Mbps, even though the host sends a burst of 16,000 KB at the top speed of 1000 Mbps (for 1/8 of the second).

Figure 5-29. (a) Traffic from a host. Output shaped by a token bucket of rate 200 Mbps and capacity (b) 9600 KB and (c) 0 KB. Token bucket level for shaping with rate 200 Mbps and capacity (d) 16,000 KB, (e) 9600 KB, and (f) 0 KB.

Now suppose that the routers can accept data at the top speed only for short intervals, until their buffers fill up. The buffer size is 9600 KB, smaller than the traffic burst. For long intervals, the routers work best at rates not exceeding 200 Mbps (say, because this is all the bandwidth given to the customer). The implication is that if traffic is sent in this pattern, some of it will be dropped in the network because it does not fit into the buffers at routers.

To avoid this packet loss, we can shape the traffic at the host with a token bucket. If we use a rate, R, of 200 Mbps and a capacity, B, of 9600 KB, the traffic will fall within what the network can handle. The output of this token bucket is shown in Fig. 5-29(b). The host can send full throttle at 1000 Mbps for a short while until it has drained the bucket. Then it has to cut back to 200 Mbps until the burst has been sent. The effect is to spread out the burst over time because it was too large to handle all at once. The level of the token bucket is shown in Fig. 5-29(e). It starts off full and is depleted by the initial burst. When it reaches zero, new packets can be sent only at the rate at which the buffer is filling; there can be no more bursts until the bucket has recovered. The bucket fills when no traffic is being sent and stays flat when traffic is being sent at the fill rate.

We can also shape the traffic to be less bursty. Fig. 5-29(c) shows the output of a token bucket with R = 200 Mbps and a capacity of 0. This is the extreme case

in which the traffic has been completely smoothed. No bursts are allowed, and the traffic enters the network at a steady rate. The corresponding bucket level, shown in Fig. 5-29(f), is always empty. Traffic is being queued on the host for release into the network and there is always a packet waiting to be sent when it is allowed.

Finally, Fig. 5-29(d) shows the bucket level for a token bucket with R = 200 Mbps and a capacity of B = 16,000 KB. This is the smallest token bucket through which the traffic passes unaltered. It might be used at a router in the network to police the traffic that the host sends. If the host is sending traffic that conforms to the token bucket on which it has agreed with the network, the traffic will fit through that same token bucket run at the router at the edge of the network. If the host sends at a faster or burstier rate, the token bucket will run out of water. If this happens, a traffic policer will know that the traffic is not as described. It will then either drop the excess packets or lower their priority, depending on the design of the network. In our example, the bucket empties only momentarily, at the end of the initial burst, then recovers enough for the next burst.

Leaky and token buckets are easy to implement. We will now describe the operation of a token bucket. Even though we have described water flowing continuously into and out of the bucket, real implementations must work with discrete quantities. A token bucket is implemented with a counter for the level of the bucket. The counter is advanced by $R/\Delta T$ units at every clock tick of ΔT seconds. This would be 200 Kbit every 1 msec in our example above. Every time a unit of traffic is sent into the network, the counter is decremented, and traffic may be sent until the counter reaches zero.

When the packets are all the same size, the bucket level can just be counted in packets (e.g., 200 Mbit is 20 packets of 1250 bytes). However, often variable-sized packets are being used. In this case, the bucket level is counted in bytes. If the residual byte count is too low to send a large packet, the packet must wait until the next tick (or even longer, if the fill rate is small).

Calculating the length of the maximum burst (until the bucket empties) is slightly tricky. It is longer than just 9600 KB divided by 125 MB/sec because while the burst is being output, more tokens arrive. If we call the burst length S sec., the maximum output rate M bytes/sec, the token bucket capacity B bytes, and the token arrival rate R bytes/sec, we can see that an output burst contains a maximum of B + RS bytes. We also know that the number of bytes in a maximum-speed burst of length S seconds is MS. Hence, we have

$$B + RS = MS$$

We can solve this equation to get S = B/(M - R). For our parameters of B = 9600 KB, M = 125 MB/sec, and R = 25 MB/sec, we get a burst time of about 94 msec.

A potential problem with the token bucket algorithm is that it reduces large bursts down to the long-term rate R. It is frequently desirable to reduce the peak rate, but without going down to the long-term rate (and also without raising the

long-term rate to allow more traffic into the network). One way to get smoother traffic is to insert a second token bucket after the first one. The rate of the second bucket should be much higher than the first one. Basically, the first bucket characterizes the traffic, fixing its average rate but allowing some bursts. The second bucket reduces the peak rate at which the bursts are sent into the network. For example, if the rate of the second token bucket is set to be 500 Mbps and the capacity is set to 0, the initial burst will enter the network at a peak rate of 500 Mbps, which is lower than the 1000 Mbps rate we had previously.

Using all of these buckets can be a bit tricky. When token buckets are used for traffic shaping at hosts, packets are queued and delayed until the buckets permit them to be sent. When token buckets are used for traffic policing at routers in the network, the algorithm is simulated to make sure that no more packets are sent than permitted. Nevertheless, these tools provide ways to shape the network traffic into more manageable forms to assist in meeting quality-of-service requirements.

5.4.3 Packet Scheduling

Being able to regulate the shape of the offered traffic is a good start. However, to provide a performance guarantee, we must reserve sufficient resources along the route that the packets take through the network. To do this, we are assuming that the packets of a flow follow the same route. Spraying them over routers at random makes it hard to guarantee anything. As a consequence, something similar to a virtual circuit has to be set up from the source to the destination, and all the packets that belong to the flow must follow this route.

Algorithms that allocate router resources among the packets of a flow and between competing flows are called **packet scheduling algorithms**. Three different kinds of resources can potentially be reserved for different flows:

- 1. Bandwidth.
- 2. Buffer space.
- 3. CPU cycles.

The first one, bandwidth, is the most obvious. If a flow requires 1 Mbps and the outgoing line has a capacity of 2 Mbps, trying to direct three flows through that line is not going to work. Thus, reserving bandwidth means not oversubscribing any output line.

A second resource that is often in short supply is buffer space. When a packet arrives, it is buffered inside the router until it can be transmitted on the chosen outgoing line. The purpose of the buffer is to absorb small bursts of traffic as the flows contend with each other. If no buffer is available, the packet has to be discarded since there is no place to put it. For good quality of service, some buffers might be reserved for a specific flow so that flow does not have to compete for

buffers with other flows. Up to some maximum value, there will always be a buffer available when the flow needs one.

Finally, CPU cycles may also be a scarce resource. It takes router CPU time to process a packet, so a router can process only a certain number of packets per second. While modern routers are able to process most packets quickly, some kinds of packets require greater CPU processing, such as the ICMP packets we will describe in Sec. 5.6. Making sure that the CPU is not overloaded is needed to ensure timely processing of these packets.

Packet scheduling algorithms allocate bandwidth and other router resources by determining which of the buffered packets to send on the output line next. We already described the most straightforward scheduler when explaining how routers work. Each router buffers packets in a queue for each output line until they can be sent, and they are sent in the same order that they arrived. This algorithm is known as **FIFO** (**First-In First-Out**), or equivalently **FCFS** (**First-Come First-Serve**).

FIFO routers usually drop newly arriving packets when the queue is full. Since the newly arrived packet would have been placed at the end of the queue, this behavior is called **tail drop**. It is intuitive, and you may be wondering what alternatives exist. In fact, the RED algorithm we described in Sec. 5.3.5 chose a newly arriving packet to drop at random when the average queue length grew large. The other scheduling algorithms that we will describe also create other opportunities for deciding which packet to drop when the buffers are full.

FIFO scheduling is simple to implement, but it is not suited to providing good quality of service because when there are multiple flows, one flow can easily affect the performance of the other flows. If the first flow is aggressive and sends large bursts of packets, they will lodge in the queue. Processing packets in the order of their arrival means that the aggressive sender can hog most of the capacity of the routers its packets traverse, starving the other flows and reducing their quality of service. To add insult to injury, the packets of the other flows that do get through are likely to be delayed because they had to sit in the queue behind many packets from the aggressive sender.

Many packet scheduling algorithms have been devised that provide stronger isolation between flows and thwart attempts at interference (Bhatti and Crowcroft, 2000). One of the first ones was the **fair queueing** algorithm devised by Nagle (1987). The essence of this algorithm is that routers have separate queues, one for each flow for a given output line. When the line becomes idle, the router scans the queues round-robin, as shown in Fig. 5-30. It then takes the first packet on the next queue. In this way, with *n* hosts competing for the output line, each host gets to send one out of every *n* packets. It is fair in the sense that all flows get to send packets at the same rate. Sending more packets will not improve this rate.

Although a start, the algorithm has a flaw: it gives more bandwidth to hosts that use large packets than to hosts that use small packets. Demers et al. (1990) suggested an improvement in which the round-robin is done in such a way as to

Figure 5-30. Round-robin fair queueing.

simulate a byte-by-byte round-robin, instead of a packet-by-packet round-robin. The trick is to compute a virtual time that is the number of the round at which each packet would finish being sent. Each round drains a byte from all of the queues that have data to send. The packets are then sorted in order of their finishing times and sent in that order.

This algorithm and an example of finish times for packets arriving in three flows are illustrated in Fig. 5-31. If a packet has length L, the round at which it will finish is simply L rounds after the start time. The start time is either the finish time of the previous packet, or the arrival time of the packet, if the queue is empty when it arrives.

Figure 5-31. (a) Weighted Fair Queueing. (b) Finishing times for the packets.

From the table in Fig. 5-32(b), and looking only at the first two packets in the top two queues, packets arrive in the order A, B, D, and F. Packet A arrives at round 0 and is 8 bytes long, so its finish time is round 8. Similarly the finish time for packet B is 11. Packet D arrives while B is being sent. Its finish time is 9 byte-rounds after it starts when B finishes, or 20. Similarly, the finish time for F is 16. In the absence of new arrivals, the relative sending order is A, B, F, D, even though F arrived after D. It is possible that another small packet will arrive on the top flow and obtain a finish time before D. It will only jump ahead of D if the

transmission of that packet has not started. Fair queueing does not preempt packets that are currently being transmitted. Because packets are sent in their entirety, fair queueing is only an approximation of the ideal byte-by-byte scheme. But it is a very good approximation, staying within one packet transmission of the ideal scheme at all times.

One shortcoming of this algorithm in practice is that it gives all hosts the same priority. In many situations, it is desirable to give, for example, video servers more bandwidth than, say, file servers. This is easily possible by giving the video server two or more bytes per round. This modified algorithm is called **WFQ** (**Weighted Fair Queueing**). Letting the number of bytes per round be the weight of a flow, *W*, we can now give the formula for computing the finish time:

$$F_i = \max(A_i, F_{i-1}) + L_i / W$$

where A_i is the arrival time, F_i is the finish time, and L_i is the length of packet i. The bottom queue of Fig. 5-31(a) has a weight of 2, so its packets are sent more quickly as you can see in the finish times given in Fig. 5-31(b).

Another practical consideration is implementation complexity. WFQ requires that packets be inserted by their finish time into a sorted queue. With N flows, this is at best an $O(\log N)$ operation per packet, which is difficult to achieve for many flows in high-speed routers. Shreedhar and Varghese (1995) describe an approximation called **deficit round robin** that can be implemented very efficiently, with only O(1) operations per packet. WFQ is widely used given this approximation.

Other kinds of scheduling algorithms exist, too. A simple example is priority scheduling, in which each packet is marked with a priority. High-priority packets are always sent before any low-priority packets that are buffered. Within a priority, packets are sent in FIFO order. However, priority scheduling has the disadvantage that a burst of high-priority packets can starve low-priority packets, which may have to wait indefinitely. WFQ often provides a better alternative. By giving the high-priority queue a large weight, say 3, high-priority packets will often go through a short line (as relatively few packets should be high priority) yet some fraction of low priority packets will continue to be sent even when there is high priority traffic. A high and low priority system is essentially a two-queue WFQ system in which the high priority has infinite weight.

As a final example of a scheduler, packets might carry timestamps and be sent in timestamp order. Clark et al. (1992) describe a design in which the timestamp records how far the packet is behind or ahead of schedule as it is sent through a sequence of routers on the path. Packets that have been queued behind other packets at a router will tend to be behind schedule, and the packets that have been serviced first will tend to be ahead of schedule. Sending packets in order of their timestamps has the beneficial effect of speeding up slow packets while at the same time slowing down fast packets. The result is that all packets are delivered by the network with a more consistent delay.

5.4.4 Admission Control

We have now seen all the necessary elements for QoS and it is time to put them together to actually provide it. QoS guarantees are established through the process of admission control. We first saw admission control used to control congestion, which is a performance guarantee, albeit a weak one. The guarantees we are considering now are stronger, but the model is the same. The user offers a flow with an accompanying QoS requirement to the network. The network then decides whether to accept or reject the flow based on its capacity and the commitments it has made to other flows. If it accepts, the network reserves capacity in advance at routers to guarantee QoS when traffic is sent on the new flow.

The reservations must be made at all of the routers along the route that the packets take through the network. Any routers on the path without reservations might become congested, and a single congested router can break the QoS guarantee. Many routing algorithms find the single best path between each source and each destination and send all traffic over the best path. This may cause some flows to be rejected if there is not enough spare capacity along the best path. QoS guarantees for new flows may still be accommodated by choosing a different route for the flow that has excess capacity. This is called **QoS routing**. Chen and Nahrstedt (1998) give an overview of these techniques. It is also possible to split the traffic for each destination over multiple paths to more easily find excess capacity. A simple method is for routers to choose equal-cost paths and to divide the traffic equally or in proportion to the capacity of the outgoing links. However, more sophisticated algorithms are also available (Nelakuditi and Zhang, 2002).

Given a path, the decision to accept or reject a flow is not a simple matter of comparing the resources (bandwidth, buffers, cycles) requested by the flow with the router's excess capacity in those three dimensions. It is a little more complicated than that. To start with, although some applications may know about their bandwidth requirements, few know about buffers or CPU cycles, so at the minimum, a different way is needed to describe flows and translate this description to router resources. We will get to this shortly.

Next, some applications are far more tolerant of an occasional missed deadline than others. The applications must choose from the type of guarantees that the network can make, whether hard guarantees or behavior that will hold most of the time. All else being equal, everyone would like hard guarantees, but the difficulty is that they are expensive because they constrain worst case behavior. Guarantees for most of the packets are often sufficient for applications, and more flows with this guarantee can be supported for a fixed capacity.

Finally, some applications may be willing to haggle about the flow parameters and others may not. For example, a movie viewer that normally runs at 30 frames/sec may be willing to drop back to 25 frames/sec if there is not enough free bandwidth to support 30 frames/sec. Similarly, the number of pixels per frame, audio bandwidth, and other properties may be adjustable.

Because many parties may be involved in the flow negotiation (the sender, the receiver, and all the routers along the path between them), flows must be described accurately in terms of specific parameters that can be negotiated. A set of such parameters is called a **flow specification**. Typically, the sender (e.g., the video server) produces a flow specification proposing the parameters it would like to use. As the specification propagates along the route, each router examines it and modifies the parameters as need be. The modifications can only reduce the flow, not increase it (e.g., a lower data rate, not a higher one). When it gets to the other end, the parameters can be established.

As an example of what can be in a flow specification, consider the example of Fig. 5-32. This is based on RFCs 2210 and 2211 for Integrated Services, a QoS design we will cover in the next section. It has five parameters. The first two parameters, the *token bucket rate* and *token bucket size*, use a token bucket to give the maximum sustained rate the sender may transmit, averaged over a long time interval, and the largest burst it can send over a short time interval.

Parameter	Unit	
Token bucket rate	Bytes/sec	
Token bucket size	Bytes	
Peak data rate	Bytes/sec	
Minimum packet size	Bytes	
Maximum packet size	Bytes	

Figure 5-32. An example flow specification.

The third parameter, the *peak data rate*, is the maximum transmission rate tolerated, even for brief time intervals. The sender must never exceed this rate even for short bursts.

The last two parameters specify the minimum and maximum packet sizes, including the transport and network layer headers (e.g., TCP and IP). The minimum size is useful because processing each packet takes some fixed time, no matter how short. A router may be prepared to handle 10,000 packets/sec of 1 KB each, but not be prepared to handle 100,000 packets/sec of 50 bytes each, even though this represents a lower data rate. The maximum packet size is important due to internal network limitations that may not be exceeded. For example, if part of the path goes over an Ethernet, the maximum packet size will be restricted to no more than 1500 bytes no matter what the rest of the network can handle.

An interesting question is how a router turns a flow specification into a set of specific resource reservations. At first glance, it might appear that if a router has a link that runs at, say, 1 Gbps and the average packet is 1000 bits, it can process 1 million packets/sec. This observation is not the case, though, because there will always be idle periods on the link due to statistical fluctuations in the load. If the

link needs every bit of capacity to get its work done, idling for even a few bits creates a backlog it can never get rid of.

Even with a load slightly below the theoretical capacity, queues can build up and delays can occur. Consider a situation in which packets arrive at random with a mean arrival rate of λ packets/sec. The packets have random lengths and can be sent on the link with a mean service rate of μ packets/sec. Under the assumption that both the arrival and service distributions are Poisson distributions (what is called an M/M/1 queueing system, where "M" stands for Markov, i.e., Poisson), it can be proven using queueing theory that the mean delay experienced by a packet, T, is

$$T = \frac{1}{\mu} \times \frac{1}{1 - \lambda/\mu} = \frac{1}{\mu} \times \frac{1}{1 - \rho}$$

where $\rho = \lambda/\mu$ is the CPU utilization. The first factor, $1/\mu$, is what the service time would be in the absence of competition. The second factor is the slowdown due to competition with other flows. For example, if $\lambda = 950,000$ packets/sec and $\mu = 1,000,000$ packets/sec, then $\rho = 0.95$ and the mean delay experienced by each packet will be 20 µsec instead of 1 µsec. This time accounts for both the queueing time and the service time, as can be seen when the load is very low $(\lambda/\mu \approx 0)$. If there are, say, 30 routers along the flow's route, queueing delay alone will account for 600 µsec of delay.

One method of relating flow specifications to router resources that correspond to bandwidth and delay performance guarantees is given by Parekh and Gallagher (1993, 1994). It is based on traffic sources shaped by (R, B) token buckets and WFQ at routers. Each flow is given a WFQ weight W large enough to drain its token bucket rate R as shown in Fig. 5-33. For example, if the flow has a rate of 1 Mbps and the router and output link have a capacity of 1 Gbps, the weight for the flow must be greater than 1/1000th of the total of the weights for all of the flows at that router for the output link. This guarantees the flow a minimum bandwidth. If it cannot be given a large enough rate, the flow cannot be admitted.

Figure 5-33. Bandwidth and delay guarantees with token buckets and WFQ.

The largest queueing delay the flow will see is a function of the burst size of the token bucket. Consider the two extreme cases. If the traffic is smooth, without any bursts, packets will be drained from the router just as quickly as they arrive. There will be no queueing delay (ignoring packetization effects). On the other hand, if the traffic is saved up in bursts, then a maximum-size burst, B, may arrive at the router all at once. In this case the maximum queueing delay, D, will be the time taken to drain this burst at the guaranteed bandwidth, or B/R (again, ignoring packetization effects). If this delay is too large, the flow must request more bandwidth from the network.

These guarantees are hard. The token buckets bound the burstiness of the source, and fair queueing isolates the bandwidth given to different flows. This means that the flow will meet its bandwidth and delay guarantees regardless of how the other competing flows behave at the router. Those other flows cannot break the guarantee even by saving up traffic and all sending at once.

Moreover, the result holds for a path through multiple routers in any network topology. Each flow gets a minimum bandwidth because that bandwidth is guaranteed at each router. The reason each flow gets a maximum delay is more subtle. In the worst case that a burst of traffic hits the first router and competes with the traffic of other flows, it will be delayed up to the maximum delay of D. However, this delay will also smooth the burst. In turn, this means that the burst will incur no further queueing delays at later routers. The overall queueing delay will be at most D.

5.4.5 Integrated Services

Between 1995 and 1997, IETF put a lot of effort into devising an architecture for streaming multimedia. This work resulted in over two dozen RFCs, starting with RFCs 2205–2212. The generic name for this work is **integrated services**. It was aimed at both unicast and multicast applications. An example of the former is a single user streaming a video clip from a news site. An example of the latter is a collection of digital television stations broadcasting their programs as streams of IP packets to many receivers at various locations. Below we will concentrate on multicast, since unicast is a special case of multicast.

In many multicast applications, groups can change membership dynamically, for example, as people enter a video conference and then get bored and switch to a soap opera or the croquet channel. Under these conditions, the approach of having the senders reserve bandwidth in advance does not work well, since it would require each sender to track all entries and exits of its audience. For a system designed to transmit television with millions of subscribers, it would not work at all.

RSVP—The Resource reSerVation Protocol

The main part of the integrated services architecture that is visible to the users of the network is **RSVP**. It is described in RFCs 2205–2210. This protocol is used for making the reservations; other protocols are used for sending the data.

RSVP allows multiple senders to transmit to multiple groups of receivers, permits individual receivers to switch channels freely, and optimizes bandwidth use while at the same time eliminating congestion.

In its simplest form, the protocol uses multicast routing using spanning trees, as discussed earlier. Each group is assigned a group address. To send to a group, a sender puts the group's address in its packets. The standard multicast routing algorithm then builds a spanning tree covering all group members. The routing algorithm is not part of RSVP. The only difference from normal multicasting is a little extra information that is multicast to the group periodically to tell the routers along the tree to maintain certain data structures in their memories.

As an example, consider the network of Fig. 5-34(a). Hosts 1 and 2 are multicast senders, and hosts 3, 4, and 5 are multicast receivers. In this example, the senders and receivers are disjoint, but in general, the two sets may overlap. The multicast trees for hosts 1 and 2 are shown in Fig. 5-34(b) and Fig. 5-34(c), respectively.

Figure 5-34. (a) A network. (b) The multicast spanning tree for host 1. (c) The multicast spanning tree for host 2.

To get better reception and eliminate congestion, any of the receivers in a group can send a reservation message up the tree to the sender. The message is propagated using the reverse path forwarding algorithm discussed earlier. At each

hop, the router notes the reservation and reserves the necessary bandwidth. We saw in the previous section how a weighted fair queueing scheduler can be used to make this reservation. If insufficient bandwidth is available, it reports back failure. By the time the message gets back to the source, bandwidth has been reserved all the way from the sender to the receiver making the reservation request along the spanning tree.

An example of such a reservation is shown in Fig. 5-35(a). Here host 3 has requested a channel to host 1. Once it has been established, packets can flow from 1 to 3 without congestion. Now consider what happens if host 3 next reserves a channel to the other sender, host 2, so the user can watch two television programs at once. A second path is reserved, as illustrated in Fig. 5-35(b). Note that two separate channels are needed from host 3 to router E because two independent streams are being transmitted.

Figure 5-35. (a) Host 3 requests a channel to host 1. (b) Host 3 then requests a second channel, to host 2. (c) Host 5 requests a channel to host 1.

Finally, in Fig. 5-35(c), host 5 decides to watch the program being transmitted by host 1 and also makes a reservation. First, dedicated bandwidth is reserved as far as router *H*. However, this router sees that it already has a feed from host 1, so if the necessary bandwidth has already been reserved, it does not have to reserve any more. Note that hosts 3 and 5 might have asked for different amounts of bandwidth (e.g., if host 3 is playing on a small screen and only wants the low-resolution information), so the capacity reserved must be large enough to satisfy the greediest receiver.

When making a reservation, a receiver can (optionally) specify one or more sources that it wants to receive from. It can also specify whether these choices

are fixed for the duration of the reservation or whether the receiver wants to keep open the option of changing sources later. The routers use this information to optimize bandwidth planning. In particular, two receivers are only set up to share a path if they both agree not to change sources later on.

The reason for this strategy in the fully dynamic case is that reserved bandwidth is decoupled from the choice of source. Once a receiver has reserved bandwidth, it can switch to another source and keep that portion of the existing path that is valid for the new source. If host 2 is transmitting several video streams in real time, for example a TV broadcaster with multiple channels, host 3 may switch between them at will without changing its reservation: the routers do not care what program the receiver is watching.

5.4.6 Differentiated Services

Flow-based algorithms have the potential to offer good quality of service to one or more flows because they reserve whatever resources are needed along the route. However, they also have a downside. They require an advance setup to establish each flow, something that does not scale well when there are thousands or millions of flows. Also, they maintain internal per-flow state in the routers, making them vulnerable to router crashes. Finally, the changes required to the router code are substantial and involve complex router-to-router exchanges for setting up the flows. As a consequence, while work continues to advance integrated services, few deployments of it or anything like it exist yet.

For these reasons, IETF has also devised a simpler approach to quality of service, one that can be largely implemented locally in each router without advance setup and without having the whole path involved. This approach is known as **class-based** (as opposed to flow-based) quality of service. IETF has standardized an architecture for it, called **differentiated services**, which is described in RFCs 2474, 2475, and numerous others. We will now describe it.

Differentiated services can be offered by a set of routers forming an administrative domain (e.g., an ISP or a telco). The administration defines a set of service classes with corresponding forwarding rules. If a customer subscribes to differentiated services, customer packets entering the domain are marked with the class to which they belong. This information is carried in the *Differentiated services* field of IPv4 and IPv6 packets (described in Sec. 5.6). The classes are defined as **per hop behaviors** because they correspond to the treatment the packet will receive at each router, not a guarantee across the network. Better service is provided to packets with some per-hop behaviors (e.g., premium service) than to others (e.g., regular service). Traffic within a class may be required to conform to some specific shape, such as a leaky bucket with some specified drain rate. An operator with a nose for business might charge extra for each premium packet transported or might allow up to *N* premium packets per month for a fixed additional monthly fee. Note that this scheme requires no advance setup, no resource

reservation, and no time-consuming end-to-end negotiation for each flow, as with integrated services. This makes differentiated services relatively easy to implement

Class-based service also occurs in other industries. For example, package delivery companies often offer overnight, two-day, and three-day service. Airlines offer first class, business class, and cattle-class service. Long-distance trains often have multiple service classes. Even the Paris subway has two different service classes. For packets, the classes may differ in terms of delay, jitter, and probability of being discarded in the event of congestion, among other possibilities (but probably not roomier Ethernet frames).

To make the difference between flow-based quality of service and class-based quality of service clearer, consider an example: Internet telephony. With a flow-based scheme, each telephone call gets its own resources and guarantees. With a class-based scheme, all the telephone calls together get the resources reserved for the class telephony. These resources cannot be taken away by packets from the Web browsing class or other classes, but no telephone call gets any private resources reserved for it alone.

Expedited Forwarding

The choice of service classes is up to each operator, but since packets are often forwarded between networks run by different operators, IETF has defined some network-independent service classes. The simplest class is **expedited forwarding**, so let us start with that one. It is described in RFC 3246.

The idea behind expedited forwarding is very simple. Two classes of service are available: regular and expedited. The vast majority of the traffic is expected to be regular, but a limited fraction of the packets are expedited. The expedited packets should be able to transit the network as though no other packets were present. In this way they will get low loss, low delay and low jitter service—just what is needed for VoIP. A symbolic representation of this "two-tube" system is given in Fig. 5-36. Note that there is still just one physical line. The two logical pipes shown in the figure represent a way to reserve bandwidth for different classes of service, not a second physical line.

One way to implement this strategy is as follows. Packets are classified as expedited or regular and marked accordingly. This step might be done on the sending host or in the ingress (first) router. The advantage of doing classification on the sending host is that more information is available about which packets belong to which flows. This task may be performed by networking software or even the operating system, to avoid having to change existing applications. For example, it is becoming common for VoIP packets to be marked for expedited service by hosts. If the packets pass through a corporate network or ISP that supports expedited service, they will receive preferential treatment. If the network does not support expedited service, no harm is done.

Figure 5-36. Expedited packets experience a traffic-free network.

Of course, if the marking is done by the host, the ingress router is likely to police the traffic to make sure that customers are not sending more expedited traffic than they have paid for. Within the network, the routers may have two output queues for each outgoing line, one for expedited packets and one for regular packets. When a packet arrives, it is queued accordingly. The expedited queue is given priority over the regular one, for example, by using a priority scheduler. In this way, expedited packets see an unloaded network, even when there is, in fact, a heavy load of regular traffic.

Assured Forwarding

A somewhat more elaborate scheme for managing the service classes is called **assured forwarding**. It is described in RFC 2597. Assured forwarding specifies that there shall be four priority classes, each class having its own resources. The top three classes might be called gold, silver, and bronze. In addition, it defines three discard classes for packets that are experiencing congestion: low, medium, and high. Taken together, these two factors define 12 service classes.

Figure 5-37 shows one way packets might be processed under assured forwarding. The first step is to classify the packets into one of the four priority classes. As before, this step might be done on the sending host (as shown in the figure) or in the ingress router, and the rate of higher-priority packets may be limited by the operator as part of the service offering.

The next step is to determine the discard class for each packet. This is done by passing the packets of each priority class through a traffic policer such as a token bucket. The policer lets all of the traffic through, but it identifies packets that fit within small bursts as low discard, packets that exceed small bursts as medium discard, and packets that exceed large bursts as high discard. The combination of priority and discard class is then encoded in each packet.

Finally, the packets are processed by routers in the network with a packet scheduler that distinguishes the different classes. A common choice is to use

Figure 5-37. A possible implementation of assured forwarding.

weighted fair queueing for the four priority classes, with higher classes given higher weights. In this way, the higher classes will get most of the bandwidth, but the lower classes will not be starved of bandwidth entirely. For example, if the weights double from one class to the next higher class, the higher class will get twice the bandwidth. Within a priority class, packets with a higher discard class can be preferentially dropped by running an algorithm such as RED (Random Early Detection), which we saw in Sec. 5.3.5. RED will start to drop packets as congestion builds but before the router has run out of buffer space. At this stage, there is still buffer space with which to accept low discard packets while dropping high discard packets.

5.5 INTERNETWORKING

Until now, we have implicitly assumed that there is a single homogeneous network, with each machine using the same protocol in each layer. Unfortunately, this assumption is wildly optimistic. Many different networks exist, including PANs, LANs, MANs, and WANs. We have described Ethernet, Internet over cable, the fixed and mobile telephone networks, 802.11, 802.16, and more. Numerous protocols are in widespread use across these networks in every layer. In the following sections, we will take a careful look at the issues that arise when two or more networks are connected to form an **internetwork**, or more simply an **internet.**

It would be much simpler to join networks together if everyone used a single networking technology, and it is often the case that there is a dominant kind of network, such as Ethernet. Some pundits speculate that the multiplicity of technologies will go away as soon as everyone realizes how wonderful [fill in your favorite network] is. Do not count on it. History shows this to be wishful thinking. Different kinds of networks grapple with different problems, so, for example, Ethernet and satellite networks are always likely to differ. Reusing existing systems, such as running data networks on top of cable, the telephone network, and power

lines, adds constraints that cause the features of the networks to diverge. Heterogeneity is here to stay.

If there will always be different networks, it would be simpler if we did not need to interconnect them. This also is unlikely. Bob Metcalfe postulated that the value of a network with N nodes is the number of connections that may be made between the nodes, or N^2 (Gilder, 1993). This means that large networks are much more valuable than small networks because they allow many more connections, so there always will be an incentive to combine smaller networks.

The Internet is the prime example of this interconnection. (We will write Internet with a capital "I" to distinguish it from other internets, or connected networks.) The purpose of joining all these networks is to allow users on any of them to communicate with users on all the other ones. When you pay an ISP for Internet service, you may be charged depending on the bandwidth of your line, but what you are really paying for is the ability to exchange packets with any other host that is also connected to the Internet. After all, the Internet would not be very popular if you could only send packets to other hosts in the same city.

Since networks often differ in important ways, getting packets from one network to another is not always so easy. We must address problems of heterogeneity, and also problems of scale as the resulting internet grows very large. We will begin by looking at how networks can differ to see what we are up against. Then we shall see the approach used so successfully by IP (Internet Protocol), the network layer protocol of the Internet, including techniques for tunneling through networks, routing in internetworks, and packet fragmentation.

5.5.1 How Networks Differ

Networks can differ in many ways. Some of the differences, such as different modulation techniques or frame formats, are internal to the physical and data link layers. These differences will not concern us here. Instead, in Fig. 5-38 we list some of the differences that can be exposed to the network layer. It is papering over these differences that makes internetworking more difficult than operating within a single network.

When packets sent by a source on one network must transit one or more foreign networks before reaching the destination network, many problems can occur at the interfaces between networks. To start with, the source needs to be able to address the destination. What do we do if the source is on an Ethernet network and the destination is on a WiMAX network? Assuming we can even specify a WiMAX destination from an Ethernet network, packets would cross from a connectionless network to a connection-oriented one. This may require that a new connection be set up on short notice, which injects a delay, and much overhead if the connection is not used for many more packets.

Many specific differences may have to be accommodated as well. How do we multicast a packet to a group with some members on a network that does not

Item	Some Possibilities	
Service offered	Connectionless versus connection oriented	
Addressing	Different sizes, flat or hierarchical	
Broadcasting	Present or absent (also multicast)	
Packet size	Every network has its own maximum	
Ordering	Ordered and unordered delivery	
Quality of service	Present or absent; many different kinds	
Reliability	Different levels of loss	
Security	Privacy rules, encryption, etc.	
Parameters	Different timeouts, flow specifications, etc.	
Accounting	By connect time, packet, byte, or not at all	

Figure 5-38. Some of the many ways networks can differ.

support multicast? The differing max packet sizes used by different networks can be a major nuisance, too. How do you pass an 8000-byte packet through a network whose maximum size is 1500 bytes? If packets on a connection-oriented network transit a connectionless network, they may arrive in a different order than they were sent. That is something the sender likely did not expect, and it might come as an (unpleasant) surprise to the receiver as well.

These kinds of differences can be papered over, with some effort. For example, a gateway joining two networks might generate separate packets for each destination in lieu of better network support for multicasting. A large packet might be broken up, sent in pieces, and then joined back together. Receivers might buffer packets and deliver them in order.

Networks also can differ in large respects that are more difficult to reconcile. The clearest example is quality of service. If one network has strong QoS and the other offers best effort service, it will be impossible to make bandwidth and delay guarantees for real-time traffic end to end. In fact, they can likely only be made while the best-effort network is operated at a low utilization, or hardly used, which is unlikely to be the goal of most ISPs. Security mechanisms are problematic, but at least encryption for confidentiality and data integrity can be layered on top of networks that do not already include it. Finally, differences in accounting can lead to unwelcome bills when normal usage suddenly becomes expensive, as roaming mobile phone users with data plans have discovered.

5.5.2 How Networks Can Be Connected

There are two basic choices for connecting different networks: we can build devices that translate or convert packets from each kind of network into packets for each other network, or, like good computer scientists, we can try to solve the

problem by adding a layer of indirection and building a common layer on top of the different networks. In either case, the devices are placed at the boundaries between networks.

Early on, Cerf and Kahn (1974) argued for a common layer to hide the differences of existing networks. This approach has been tremendously successful, and the layer they proposed was eventually separated into the TCP and IP protocols. Almost four decades later, IP is the foundation of the modern Internet. For this accomplishment, Cerf and Kahn were awarded the 2004 Turing Award, informally known as the Nobel Prize of computer science. IP provides a universal packet format that all routers recognize and that can be passed through almost every network. IP has extended its reach from computer networks to take over the telephone network. It also runs on sensor networks and other tiny devices that were once presumed too resource-constrained to support it.

We have discussed several different devices that connect networks, including repeaters, hubs, switches, bridges, routers, and gateways. Repeaters and hubs just move bits from one wire to another. They are mostly analog devices and do not understand anything about higher layer protocols. Bridges and switches operate at the link layer. They can be used to build networks, but only with minor protocol translation in the process, for example, between 10, 100 and 1000 Mbps Ethernet switches. Our focus in this section is interconnection devices that operate at the network layer, namely the routers. We will leave gateways, which are higher-layer interconnection devices, until later.

Let us first explore at a high level how interconnection with a common network layer can be used to interconnect dissimilar networks. An internet comprised of 802.11, MPLS, and Ethernet networks is shown in Fig. 5-39(a). Suppose that the source machine on the 802.11 network wants to send a packet to the destination machine on the Ethernet network. Since these technologies are different, and they are further separated by another kind of network (MPLS), some added processing is needed at the boundaries between the networks.

Because different networks may, in general, have different forms of addressing, the packet carries a network layer address that can identify any host across the three networks. The first boundary the packet reaches is when it transitions from an 802.11 network to an MPLS network. 802.11 provides a connectionless service, but MPLS provides a connection-oriented service. This means that a virtual circuit must be set up to cross that network. Once the packet has traveled along the virtual circuit, it will reach the Ethernet network. At this boundary, the packet may be too large to be carried, since 802.11 can work with larger frames than Ethernet. To handle this problem, the packet is divided into fragments, and each fragment is sent separately. When the fragments reach the destination, they are reassembled. Then the packet has completed its journey.

The protocol processing for this journey is shown in Fig. 5-39(b). The source accepts data from the transport layer and generates a packet with the common network layer header, which is IP in this example. The network header contains the

Figure 5-39. (a) A packet crossing different networks. (b) Network and link layer protocol processing.

ultimate destination address, which is used to determine that the packet should be sent via the first router. So the packet is encapsulated in an 802.11 frame whose destination is the first router and transmitted. At the router, the packet is removed from the frame's data field and the 802.11 frame header is discarded. The router now examines the IP address in the packet and looks up this address in its routing table. Based on this address, it decides to send the packet to the second router next. For this part of the path, an MPLS virtual circuit must be established to the second router and the packet must be encapsulated with MPLS headers that travel this circuit. At the far end, the MPLS header is discarded and the network address is again consulted to find the next network layer hop. It is the destination itself. Since the packet is too long to be sent over Ethernet, it is split into two portions. Each of these portions is put into the data field of an Ethernet frame and sent to the Ethernet address of the destination. At the destination, the Ethernet header is stripped from each of the frames, and the contents are reassembled. The packet has finally reached its destination.

Observe that there is an essential difference between the routed case and the switched (or bridged) case. With a router, the packet is extracted from the frame and the network address in the packet is used for deciding where to send it. With a switch (or bridge), the entire frame is transported on the basis of its MAC address. Switches do not have to understand the network layer protocol being used to switch packets. Routers do.

Unfortunately, internetworking is not as easy as we have made it sound. In fact, when bridges were introduced, it was intended that they would join different types of networks, or at least different types of LANs. They were to do this by translating frames from one LAN into frames from another LAN. However, this

did not work well, for the same reason that internetworking is difficult: the differences in the features of LANs, such as different maximum packet sizes and LANs with and without priority classes, are hard to mask. Today, bridges are predominantly used to connect the same kind of network at the link layer, and routers connect different networks at the network layer.

Internetworking has been very successful at building large networks, but it only works when there is a common network layer. There have, in fact, been many network protocols over time. Getting everybody to agree on a single format is difficult when companies perceive it to their commercial advantage to have a proprietary format that they control. Examples besides IP, which is now the near-universal network protocol, were IPX, SNA, and AppleTalk. None of these protocols are still in widespread use, but there will always be other protocols. The most relevant example now is probably IPv4 and IPv6. While these are both versions of IP, they are not compatible (or it would not have been necessary to create IPv6).

A router that can handle multiple network protocols is called a **multiprotocol router**. It must either translate the protocols, or leave connection for a higher protocol layer. Neither approach is entirely satisfactory. Connection at a higher layer, say, by using TCP, requires that all the networks implement TCP (which may not be the case). Then, it limits usage across the networks to applications that use TCP (which does not include many real-time applications).

The alternative is to translate packets between the networks. However, unless the packet formats are close relatives with the same information fields, such conversions will always be incomplete and often doomed to failure. For example, IPv6 addresses are 128 bits long. They will not fit in a 32-bit IPv4 address field, no matter how hard the router tries. Getting IPv4 and IPv6 to run in the same network has proven to be a major obstacle to the deployment of IPv6. (To be fair, so has getting customers to understand why they should want IPv6 in the first place.) Greater problems can be expected when translating between fundamentally different protocols, such as connectionless and connection-oriented network protocols. Given these difficulties, conversion is only rarely attempted. Arguably, even IP has only worked so well by serving as a kind of lowest common denominator. It requires little of the networks on which it runs, but offers only best-effort service as a result.

5.5.3 Tunneling

Handling the general case of making two different networks interwork is exceedingly difficult. However, there is a common special case that is manageable even for different network protocols. This case is where the source and destination hosts are on the same type of network, but there is a different network in between. As an example, think of an international bank with an IPv6 network

in Paris, an IPv6 network in London and connectivity between the offices via the IPv4 Internet. This situation is shown in Fig. 5-40.

Figure 5-40. Tunneling a packet from Paris to London.

The solution to this problem is a technique called **tunneling**. To send an IP packet to a host in the London office, a host in the Paris office constructs the packet containing an IPv6 address in London, and sends it to the multiprotocol router that connects the Paris IPv6 network to the IPv4 Internet. When this router gets the IPv6 packet, it encapsulates the packet with an IPv4 header addressed to the IPv4 side of the multiprotocol router that connects to the London IPv6 network. That is, the router puts a (IPv6) packet inside a (IPv4) packet. When this wrapped packet arrives, the London router removes the original IPv6 packet and sends it onward to the destination host.

The path through the IPv4 Internet can be seen as a big tunnel extending from one multiprotocol router to the other. The IPv6 packet just travels from one end of the tunnel to the other, snug in its nice box. It does not have to worry about dealing with IPv4 at all. Neither do the hosts in Paris or London. Only the multiprotocol routers have to understand both IPv4 and IPv6 packets. In effect, the entire trip from one multiprotocol router to the other is like a hop over a single link.

An analogy may make tunneling clearer. Consider a person driving her car from Paris to London. Within France, the car moves under its own power, but when it hits the English Channel, it is loaded onto a high-speed train and transported to England through the Chunnel (cars are not permitted to drive through the Chunnel). Effectively, the car is being carried as freight, as depicted in Fig. 5-41. At the far end, the car is let loose on the English roads and once again continues to move under its own power. Tunneling of packets through a foreign network works the same way.

Tunneling is widely used to connect isolated hosts and networks using other networks. The network that results is called an **overlay** since it has effectively been overlaid on the base network. Deployment of a network protocol with a new feature is a common reason, as our "IPv6 over IPv4" example shows. The disadvantage of tunneling is that none of the hosts on the network that is tunneled over can be reached because the packets cannot escape in the middle of the tunnel.

Figure 5-41. Tunneling a car from France to England.

However, this limitation of tunnels is turned into an advantage with VPNs (Virtual Private Networks). A VPN is simply an overlay that is used to provide a measure of security. We will explore VPNs when we get to Chap. 8.

5.5.4 Internetwork Routing

Routing through an internet poses the same basic problem as routing within a single network, but with some added complications. To start, the networks may internally use different routing algorithms. For example, one network may use link state routing and another distance vector routing. Since link state algorithms need to know the topology but distance vector algorithms do not, this difference alone would make it unclear how to find the shortest paths across the internet.

Networks run by different operators lead to bigger problems. First, the operators may have different ideas about what is a good path through the network. One operator may want the route with the least delay, while another may want the most inexpensive route. This will lead the operators to use different quantities to set the shortest-path costs (e.g., milliseconds of delay vs. monetary cost). The weights will not be comparable across networks, so shortest paths on the internet will not be well defined.

Worse yet, one operator may not want another operator to even know the details of the paths in its network, perhaps because the weights and paths may reflect sensitive information (such as the monetary cost) that represents a competitive business advantage.

Finally, the internet may be much larger than any of the networks that comprise it. It may therefore require routing algorithms that scale well by using a hierarchy, even if none of the individual networks need to use a hierarchy.

All of these considerations lead to a two-level routing algorithm. Within each network, an intradomain or interior gateway protocol is used for routing. ("Gateway" is an older term for "router.") It might be a link state protocol of the kind we have already described. Across the networks that make up the internet, an interdomain or exterior gateway protocol is used. The networks may all use different intradomain protocols, but they must use the same interdomain protocol.

In the Internet, the interdomain routing protocol is called **BGP** (**Border Gateway Protocol**). We will describe it in the next section.

There is one more important term to introduce. Since each network is operated independently of all the others, it is often referred to as an **AS** (**Autonomous System**). A good mental model for an AS is an ISP network. In fact, an ISP network may be comprised of more than one AS, if it is managed, or, has been acquired, as multiple networks. But the difference is usually not significant.

The two levels are usually not strictly hierarchical, as highly suboptimal paths might result if a large international network and a small regional network were both abstracted to be a single network. However, relatively little information about routes within the networks is exposed to find routes across the internetwork. This helps to address all of the complications. It improves scaling and lets operators freely select routes within their own networks using a protocol of their choosing. It also does not require weights to be compared across networks or expose sensitive information outside of networks.

However, we have said little so far about how the routes across the networks of the internet are determined. In the Internet, a large determining factor is the business arrangements between ISPs. Each ISP may charge or receive money from the other ISPs for carrying traffic. Another factor is that if internetwork routing requires crossing international boundaries, various laws may suddenly come into play, such as Sweden's strict privacy laws about exporting personal data about Swedish citizens from Sweden. All of these nontechnical factors are wrapped up in the concept of a **routing policy** that governs the way autonomous networks select the routes that they use. We will return to routing policies when we describe BGP.

5.5.5 Packet Fragmentation

Each network or link imposes some maximum size on its packets. These limits have various causes, among them

- 1. Hardware (e.g., the size of an Ethernet frame).
- 2. Operating system (e.g., all buffers are 512 bytes).
- 3. Protocols (e.g., the number of bits in the packet length field).
- 4. Compliance with some (inter)national standard.
- 5. Desire to reduce error-induced retransmissions to some level.
- 6. Desire to prevent one packet from occupying the channel too long.

The result of all these factors is that the network designers are not free to choose any old maximum packet size they wish. Maximum payloads for some common technologies are 1500 bytes for Ethernet and 2272 bytes for 802.11. IP is more generous, allows for packets as big as 65,515 bytes.

Hosts usually prefer to transmit large packets because this reduces packet overheads such as bandwidth wasted on header bytes. An obvious internetworking problem appears when a large packet wants to travel through a network whose maximum packet size is too small. This nuisance has been a persistent issue, and solutions to it have evolved along with much experience gained on the Internet.

One solution is to make sure the problem does not occur in the first place. However, this is easier said than done. A source does not usually know the path a packet will take through the network to a destination, so it certainly does not know how small packets must be to get there. This packet size is called the **Path MTU** (**Path Maximum Transmission Unit**). Even if the source did know the path MTU, packets are routed independently in a connectionless network such as the Internet. This routing means that paths may suddenly change, which can unexpectedly change the path MTU.

The alternative solution to the problem is to allow routers to break up packets into **fragments**, sending each fragment as a separate network layer packet. However, as every parent of a small child knows, converting a large object into small fragments is considerably easier than the reverse process. (Physicists have even given this effect a name: the second law of thermodynamics.) Packet-switching networks, too, have trouble putting the fragments back together again.

Two opposing strategies exist for recombining the fragments back into the original packet. The first strategy is to make fragmentation caused by a "small-packet" network transparent to any subsequent networks through which the packet must pass on its way to the ultimate destination. This option is shown in Fig. 5-42(a). In this approach, when an oversized packet arrives at GI, the router breaks it up into fragments. Each fragment is addressed to the same exit router, G2, where the pieces are recombined. In this way, passage through the small-packet network is made transparent. Subsequent networks are not even aware that fragmentation has occurred.

Transparent fragmentation is straightforward but has some problems. For one thing, the exit router must know when it has received all the pieces, so either a count field or an "end of packet" bit must be provided. Also, because all packets must exit via the same router so that they can be reassembled, the routes are constrained. By not allowing some fragments to follow one route to the ultimate destination and other fragments a disjoint route, some performance may be lost. More significant is the amount of work that the router may have to do. It may need to buffer the fragments as they arrive, and decide when to throw them away if not all of the fragments arrive. Some of this work may be wasteful, too, as the packet may pass through a series of small packet networks and need to be repeatedly fragmented and reassembled.

The other fragmentation strategy is to refrain from recombining fragments at any intermediate routers. Once a packet has been fragmented, each fragment is

Figure 5-42. (a) Transparent fragmentation. (b) Nontransparent fragmentation.

treated as though it were an original packet. The routers pass the fragments, as shown in Fig. 5-42(b), and reassembly is performed only at the destination host.

The main advantage of nontransparent fragmentation is that it requires routers to do less work. IP works this way. A complete design requires that the fragments be numbered in such a way that the original data stream can be reconstructed. The design used by IP is to give every fragment a packet number (carried on all packets), an absolute byte offset within the packet, and a flag indicating whether it is the end of the packet. An example is shown in Fig. 5-43. While simple, this design has some attractive properties. Fragments can be placed in a buffer at the destination in the right place for reassembly, even if they arrive out of order. Fragments can also be fragmented if they pass over a network with a yet smaller MTU. This is shown in Fig. 5-43(c). Retransmissions of the packet (if all fragments were not received) can be fragmented into different pieces. Finally, fragments can be of arbitrary size, down to a single byte plus the packet header. In all cases, the destination simply uses the packet number and fragment offset to place the data in the right position, and the end-of-packet flag to determine when it has the complete packet.

Unfortunately, this design still has problems. The overhead can be higher than with transparent fragmentation because fragment headers are now carried over some links where they may not be needed. But the real problem is the existence of fragments in the first place. Kent and Mogul (1987) argued that fragmentation is detrimental to performance because, as well as the header overheads, a whole packet is lost if any of its fragments are lost, and because fragmentation is more of a burden for hosts than was originally realized.

Figure 5-43. Fragmentation when the elementary data size is 1 byte. (a) Original packet, containing 10 data bytes. (b) Fragments after passing through a network with maximum packet size of 8 payload bytes plus header. (c) Fragments after passing through a size 5 gateway.

This leads us back to the original solution of getting rid of fragmentation in the network, the strategy used in the modern Internet. The process is called **path MTU discovery** (Mogul and Deering, 1990). It works as follows. Each IP packet is sent with its header bits set to indicate that no fragmentation is allowed to be performed. If a router receives a packet that is too large, it generates an error packet, returns it to the source, and drops the packet. This is shown in Fig. 5-44. When the source receives the error packet, it uses the information inside to refragment the packet into pieces that are small enough for the router to handle. If a router further down the path has an even smaller MTU, the process is repeated.

Figure 5-44. Path MTU discovery.

The advantage of path MTU discovery is that the source now knows what length packet to send. If the routes and path MTU change, new error packets will be triggered and the source will adapt to the new path. However, fragmentation is still needed between the source and the destination unless the higher layers learn the path MTU and pass the right amount of data to IP. TCP and IP are typically implemented together (as "TCP/IP") to be able to pass this sort of information. Even if this is not done for other protocols, fragmentation has still been moved out of the network and into the hosts.

The disadvantage of path MTU discovery is that there may be added startup delays simply to send a packet. More than one round-trip delay may be needed to probe the path and find the MTU before any data is delivered to the destination. This begs the question of whether there are better designs. The answer is probably "Yes." Consider the design in which each router simply truncates packets that exceed its MTU. This would ensure that the destination learns the MTU as rapidly as possible (from the amount of data that was delivered) and receives some of the data.

5.6 THE NETWORK LAYER IN THE INTERNET

It is now time to discuss the network layer of the Internet in detail. But before getting into specifics, it is worth taking a look at the principles that drove its design in the past and made it the success that it is today. All too often, nowadays, people seem to have forgotten them. These principles are enumerated and discussed in RFC 1958, which is well worth reading (and should be mandatory for all protocol designers—with a final exam at the end). This RFC draws heavily on ideas put forth by Clark (1988) and Saltzer et al. (1984). We will now summarize what we consider to be the top 10 principles (from most important to least important).

- 1. **Make sure it works.** Do not finalize the design or standard until multiple prototypes have successfully communicated with each other. All too often, designers first write a 1000-page standard, get it approved, then discover it is deeply flawed and does not work. Then they write version 1.1 of the standard. This is not the way to go.
- 2. **Keep it simple.** When in doubt, use the simplest solution. William of Occam stated this principle (Occam's razor) in the 14th century. Put in modern terms: fight features. If a feature is not absolutely essential, leave it out, especially if the same effect can be achieved by combining other features.
- 3. **Make clear choices.** If there are several ways of doing the same thing, choose one. Having two or more ways to do the same thing is looking for trouble. Standards often have multiple options or modes

- or parameters because several powerful parties insist that their way is best. Designers should strongly resist this tendency. Just say no.
- 4. **Exploit modularity.** This principle leads directly to the idea of having protocol stacks, each of whose layers is independent of all the other ones. In this way, if circumstances require one module or layer to be changed, the other ones will not be affected.
- 5. **Expect heterogeneity.** Different types of hardware, transmission facilities, and applications will occur on any large network. To handle them, the network design must be simple, general, and flexible.
- 6. **Avoid static options and parameters.** If parameters are unavoidable (e.g., maximum packet size), it is best to have the sender and receiver negotiate a value rather than defining fixed choices.
- 7. Look for a good design; it need not be perfect. Often, the designers have a good design but it cannot handle some weird special case. Rather than messing up the design, the designers should go with the good design and put the burden of working around it on the people with the strange requirements.
- 8. **Be strict when sending and tolerant when receiving.** In other words, send only packets that rigorously comply with the standards, but expect incoming packets that may not be fully conformant and try to deal with them.
- 9. **Think about scalability.** If the system is to handle millions of hosts and billions of users effectively, no centralized databases of any kind are tolerable and load must be spread as evenly as possible over the available resources.
- 10. **Consider performance and cost.** If a network has poor performance or outrageous costs, nobody will use it.

Let us now leave the general principles and start looking at the details of the Internet's network layer. In the network layer, the Internet can be viewed as a collection of networks or **ASes** (**Autonomous Systems**) that are interconnected. There is no real structure, but several major backbones exist. These are constructed from high-bandwidth lines and fast routers. The biggest of these backbones, to which everyone else connects to reach the rest of the Internet, are called **Tier 1 networks**. Attached to the backbones are ISPs (Internet Service Providers) that provide Internet access to homes and businesses, data centers and colocation facilities full of server machines, and regional (mid-level) networks. The data centers serve much of the content that is sent over the Internet. Attached

to the regional networks are more ISPs, LANs at many universities and companies, and other edge networks. A sketch of this quasihierarchical organization is given in Fig. 5-45.

Figure 5-45. The Internet is an interconnected collection of many networks.

The glue that holds the whole Internet together is the network layer protocol, **IP** (**Internet Protocol**). Unlike most older network layer protocols, IP was designed from the beginning with internetworking in mind. A good way to think of the network layer is this: its job is to provide a best-effort (i.e., not guaranteed) way to transport packets from source to destination, without regard to whether these machines are on the same network or whether there are other networks in between them.

Communication in the Internet works as follows. The transport layer takes data streams and breaks them up so that they may be sent as IP packets. In theory, packets can be up to 64 KB each, but in practice they are usually not more than 1500 bytes (so they fit in one Ethernet frame). IP routers forward each packet through the Internet, along a path from one router to the next, until the destination is reached. At the destination, the network layer hands the data to the transport layer, which gives it to the receiving process. When all the pieces finally get to the destination machine, they are reassembled by the network layer into the original datagram. This datagram is then handed to the transport layer.

In the example of Fig. 5-45, a packet originating at a host on the home network has to traverse four networks and a large number of IP routers before even getting to the company network on which the destination host is located. This is

not unusual in practice, and there are many longer paths. There is also much redundant connectivity in the Internet, with backbones and ISPs connecting to each other in multiple locations. This means that there are many possible paths between two hosts. It is the job of the IP routing protocols to decide which paths to use.

5.6.1 The IP Version 4 Protocol

An appropriate place to start our study of the network layer in the Internet is with the format of the IP datagrams themselves. An IPv4 datagram consists of a header part and a body or payload part. The header has a 20-byte fixed part and a variable-length optional part. The header format is shown in Fig. 5-46. The bits are transmitted from left to right and top to bottom, with the high-order bit of the *Version* field going first. (This is a "big-endian" network byte order. On little-endian machines, such as Intel x86 computers, a software conversion is required on both transmission and reception.) In retrospect, little endian would have been a better choice, but at the time IP was designed, no one knew it would come to dominate computing.

Figure 5-46. The IPv4 (Internet Protocol) header.

The *Version* field keeps track of which version of the protocol the datagram belongs to. Version 4 dominates the Internet today, and that is where we have started our discussion. By including the version at the start of each datagram, it becomes possible to have a transition between versions over a long period of time. In fact, IPv6, the next version of IP, was defined more than a decade ago, yet is only just beginning to be deployed. We will describe it later in this section. Its use will eventually be forced when each of China's almost 2³¹ people has a desktop PC, a laptop, and an IP phone. As an aside on numbering, IPv5 was an experimental real-time stream protocol that was never widely used.

Since the header length is not constant, a field in the header, *IHL*, is provided to tell how long the header is, in 32-bit words. The minimum value is 5, which applies when no options are present. The maximum value of this 4-bit field is 15, which limits the header to 60 bytes, and thus the *Options* field to 40 bytes. For some options, such as one that records the route a packet has taken, 40 bytes is far too small, making those options useless.

The Differentiated services field is one of the few fields that has changed its meaning (slightly) over the years. Originally, it was called the Type of service field. It was and still is intended to distinguish between different classes of service. Various combinations of reliability and speed are possible. For digitized voice, fast delivery beats accurate delivery. For file transfer, error-free transmission is more important than fast transmission. The Type of service field provided 3 bits to signal priority and 3 bits to signal whether a host cared more about delay, throughput, or reliability. However, no one really knew what to do with these bits at routers, so they were left unused for many years. When differentiated services were designed, IETF threw in the towel and reused this field. Now, the top 6 bits are used to mark the packet with its service class; we described the expedited and assured services earlier in this chapter. The bottom 2 bits are used to carry explicit congestion notification information, such as whether the packet has experienced congestion; we described explicit congestion notification as part of congestion control earlier in this chapter.

The *Total length* includes everything in the datagram—both header and data. The maximum length is 65,535 bytes. At present, this upper limit is tolerable, but with future networks, larger datagrams may be needed.

The *Identification* field is needed to allow the destination host to determine which packet a newly arrived fragment belongs to. All the fragments of a packet contain the same *Identification* value.

Next comes an unused bit, which is surprising, as available real estate in the IP header is extremely scarce. As an April Fool's joke, Bellovin (2003) proposed using this bit to detect malicious traffic. This would greatly simplify security, as packets with the "evil" bit set would be known to have been sent by attackers and could just be discarded. Unfortunately, network security is not this simple.

Then come two 1-bit fields related to fragmentation. *DF* stands for Don't Fragment. It is an order to the routers not to fragment the packet. Originally, it was intended to support hosts incapable of putting the pieces back together again. Now it is used as part of the process to discover the path MTU, which is the largest packet that can travel along a path without being fragmented. By marking the datagram with the *DF* bit, the sender knows it will either arrive in one piece, or an error message will be returned to the sender.

MF stands for More Fragments. All fragments except the last one have this bit set. It is needed to know when all fragments of a datagram have arrived.

The *Fragment offset* tells where in the current packet this fragment belongs. All fragments except the last one in a datagram must be a multiple of 8 bytes, the

elementary fragment unit. Since 13 bits are provided, there is a maximum of 8192 fragments per datagram, supporting a maximum packet length up to the limit of the *Total length* field. Working together, the *Identification*, *MF*, and *Fragment offset* fields are used to implement fragmentation as described in Sec. 5.5.5.

The *TtL* (*Time to live*) field is a counter used to limit packet lifetimes. It was originally supposed to count time in seconds, allowing a maximum lifetime of 255 sec. It must be decremented on each hop and is supposed to be decremented multiple times when a packet is queued for a long time in a router. In practice, it just counts hops. When it hits zero, the packet is discarded and a warning packet is sent back to the source host. This feature prevents packets from wandering around forever, something that otherwise might happen if the routing tables ever become corrupted.

When the network layer has assembled a complete packet, it needs to know what to do with it. The *Protocol* field tells it which transport process to give the packet to. TCP is one possibility, but so are UDP and some others. The numbering of protocols is global across the entire Internet. Protocols and other assigned numbers were formerly listed in RFC 1700, but nowadays they are contained in an online database located at *www.iana.org*.

Since the header carries vital information such as addresses, it rates its own checksum for protection, the *Header checksum*. The algorithm is to add up all the 16-bit halfwords of the header as they arrive, using one's complement arithmetic, and then take the one's complement of the result. For purposes of this algorithm, the *Header checksum* is assumed to be zero upon arrival. Such a checksum is useful for detecting errors while the packet travels through the network. Note that it must be recomputed at each hop because at least one field always changes (the *Time to live* field), but tricks can be used to speed up the computation.

The Source address and Destination address indicate the IP address of the source and destination network interfaces. We will discuss Internet addresses in the next section.

The *Options* field was designed to provide an escape to allow subsequent versions of the protocol to include information not present in the original design, to permit experimenters to try out new ideas, and to avoid allocating header bits to information that is rarely needed. The options are of variable length. Each begins with a 1-byte code identifying the option. Some options are followed by a 1-byte option length field, and then one or more data bytes. The *Options* field is padded out to a multiple of 4 bytes. Originally, the five options listed in Fig. 5-47 were defined.

The *Security* option tells how secret the information is. In theory, a military router might use this field to specify not to route packets through certain countries the military considers to be "bad guys." In practice, all routers ignore it, so its only practical function is to help spies find the good stuff more easily.

The Strict source routing option gives the complete path from source to destination as a sequence of IP addresses. The datagram is required to follow that

Option	Description		
Security	Specifies how secret the datagram is		
Strict source routing	Gives the complete path to be followed		
Loose source routing	Gives a list of routers not to be missed		
Record route	Makes each router append its IP address		
Timestamp	Makes each router append its address and timestamp		

Figure 5-47. Some of the IP options.

exact route. It is most useful for system managers who need to send emergency packets when the routing tables have been corrupted, or for making timing measurements.

The Loose source routing option requires the packet to traverse the list of routers specified, in the order specified, but it is allowed to pass through other routers on the way. Normally, this option will provide only a few routers, to force a particular path. For example, to force a packet from London to Sydney to go west instead of east, this option might specify routers in New York, Los Angeles, and Honolulu. This option is most useful when political or economic considerations dictate passing through or avoiding certain countries.

The *Record route* option tells each router along the path to append its IP address to the *Options* field. This allows system managers to track down bugs in the routing algorithms ("Why are packets from Houston to Dallas visiting Tokyo first?"). When the ARPANET was first set up, no packet ever passed through more than nine routers, so 40 bytes of options was plenty. As mentioned above, now it is too small.

Finally, the *Timestamp* option is like the *Record route* option, except that in addition to recording its 32-bit IP address, each router also records a 32-bit timestamp. This option, too, is mostly useful for network measurement.

Today, IP options have fallen out of favor. Many routers ignore them or do not process them efficiently, shunting them to the side as an uncommon case. That is, they are only partly supported and they are rarely used.

5.6.2 IP Addresses

A defining feature of IPv4 is its 32-bit addresses. Every host and router on the Internet has an IP address that can be used in the *Source address* and *Destination address* fields of IP packets. It is important to note that an IP address does not actually refer to a host. It really refers to a network interface, so if a host is on two networks, it must have two IP addresses. However, in practice, most hosts are on one network and thus have one IP address. In contrast, routers have multiple interfaces and thus multiple IP addresses.

Prefixes

IP addresses are hierarchical, unlike Ethernet addresses. Each 32-bit address is comprised of a variable-length network portion in the top bits and a host portion in the bottom bits. The network portion has the same value for all hosts on a single network, such as an Ethernet LAN. This means that a network corresponds to a contiguous block of IP address space. This block is called a **prefix**.

IP addresses are written in **dotted decimal notation**. In this format, each of the 4 bytes is written in decimal, from 0 to 255. For example, the 32-bit hexadecimal address 80D00297 is written as 128.208.2.151. Prefixes are written by giving the lowest IP address in the block and the size of the block. The size is determined by the number of bits in the network portion; the remaining bits in the host portion can vary. This means that the size must be a power of two. By convention, it is written after the prefix IP address as a slash followed by the length in bits of the network portion. In our example, if the prefix contains 2⁸ addresses and so leaves 24 bits for the network portion, it is written as 128.208.0.0/24.

Since the prefix length cannot be inferred from the IP address alone, routing protocols must carry the prefixes to routers. Sometimes prefixes are simply described by their length, as in a "/16" which is pronounced "slash 16." The length of the prefix corresponds to a binary mask of 1s in the network portion. When written out this way, it is called a **subnet mask**. It can be ANDed with the IP address to extract only the network portion. For our example, the subnet mask is 255.255.255.0. Fig. 5-48 shows a prefix and a subnet mask.

Figure 5-48. An IP prefix and a subnet mask.

Hierarchical addresses have significant advantages and disadvantages. The key advantage of prefixes is that routers can forward packets based on only the network portion of the address, as long as each of the networks has a unique address block. The host portion does not matter to the routers because all hosts on the same network will be sent in the same direction. It is only when the packets reach the network for which they are destined that they are forwarded to the correct host. This makes the routing tables much smaller than they would otherwise be. Consider that the number of hosts on the Internet is approaching one billion. That would be a very large table for every router to keep. However, by using a hierarchy, routers need to keep routes for only around 300,000 prefixes.

While using a hierarchy lets Internet routing scale, it has two disadvantages. First, the IP address of a host depends on where it is located in the network. An Ethernet address can be used anywhere in the world, but every IP address belongs to a specific network, and routers will only be able to deliver packets destined to that address to the network. Designs such as mobile IP are needed to support hosts that move between networks but want to keep the same IP addresses.

The second disadvantage is that the hierarchy is wasteful of addresses unless it is carefully managed. If addresses are assigned to networks in (too) large blocks, there will be (many) addresses that are allocated but not in use. This allocation would not matter much if there were plenty of addresses to go around. However, it was realized more than two decades ago that the tremendous growth of the Internet was rapidly depleting the free address space. IPv6 is the solution to this shortage, but until it is widely deployed there will be great pressure to allocate IP addresses so that they are used very efficiently.

Subnets

Network numbers are managed by a nonprofit corporation called **ICANN** (**Internet Corporation for Assigned Names and Numbers**), to avoid conflicts. In turn, ICANN has delegated parts of the address space to various regional authorities, which dole out IP addresses to ISPs and other companies. This is the process by which a company is allocated a block of IP addresses.

However, this process is only the start of the story, as IP address assignment is ongoing as companies grow. We have said that routing by prefix requires all the hosts in a network to have the same network number. This property can cause problems as networks grow. For example, consider a university that started out with our example /16 prefix for use by the Computer Science Dept. for the computers on its Ethernet. A year later, the Electrical Engineering Dept. wants to get on the Internet. The Art Dept. soon follows suit. What IP addresses should these departments use? Getting further blocks requires going outside the university and may be expensive or inconvenient. Moreover, the /16 already allocated has enough addresses for over 60,000 hosts. It might be intended to allow for significant growth, but until that happens, it is wasteful to allocate further blocks of IP addresses to the same university. A different organization is required.

The solution is to allow the block of addresses to be split into several parts for internal use as multiple networks, while still acting like a single network to the outside world. This is called **subnetting** and the networks (such as Ethernet LANs) that result from dividing up a larger network are called **subnets**. As we mentioned in Chap. 1, you should be aware that this new usage of the term conflicts with older usage of "subnet" to mean the set of all routers and communication lines in a network.

Fig. 5-49 shows how subnets can help with our example. The single /16 has been split into pieces. This split does not need to be even, but each piece must be

aligned so that any bits can be used in the lower host portion. In this case, half of the block (a /17) is allocated to the Computer Science Dept, a quarter is allocated to the Electrical Engineering Dept. (a /18), and one eighth (a /19) to the Art Dept. The remaining eighth is unallocated. A different way to see how the block was divided is to look at the resulting prefixes when written in binary notation:

Here, the vertical bar (I) shows the boundary between the subnet number and the host portion.

Figure 5-49. Splitting an IP prefix into separate networks with subnetting.

When a packet comes into the main router, how does the router know which subnet to give it to? This is where the details of our prefixes come in. One way would be for each router to have a table with 65,536 entries telling it which outgoing line to use for each host on campus. But this would undermine the main scaling benefit we get from using a hierarchy. Instead, the routers simply need to know the subnet masks for the networks on campus.

When a packet arrives, the router looks at the destination address of the packet and checks which subnet it belongs to. The router can do this by ANDing the destination address with the mask for each subnet and checking to see if the result is the corresponding prefix. For example, consider a packet destined for IP address 128.208.2.151. To see if it is for the Computer Science Dept., we AND with 255.255.128.0 to take the first 17 bits (which is 128.208.0.0) and see if they match the prefix address (which is 128.208.128.0). They do not match. Checking the first 18 bits for the Electrical Engineering Dept., we get 128.208.0.0 when ANDing with the subnet mask. This does match the prefix address, so the packet is forwarded onto the interface which leads to the Electrical Engineering network.

The subnet divisions can be changed later if necessary, by updating all subnet masks at routers inside the university. Outside the network, the subnetting is not visible, so allocating a new subnet does not require contacting ICANN or changing any external databases.

CIDR—Classless InterDomain Routing

Even if blocks of IP addresses are allocated so that the addresses are used efficiently, there is still a problem that remains: routing table explosion.

Routers in organizations at the edge of a network, such as a university, need to have an entry for each of their subnets, telling the router which line to use to get to that network. For routes to destinations outside of the organization, they can use the simple default rule of sending the packets on the line toward the ISP that connects the organization to the rest of the Internet. The other destination addresses must all be out there somewhere.

Routers in ISPs and backbones in the middle of the Internet have no such luxury. They must know which way to go to get to every network and no simple default will work. These core routers are said to be in the **default-free zone** of the Internet. No one really knows how many networks are connected to the Internet any more, but it is a large number, probably at least a million. This can make for a very large table. It may not sound large by computer standards, but realize that routers must perform a lookup in this table to forward every packet, and routers at large ISPs may forward up to millions of packets per second. Specialized hardware and fast memory are needed to process packets at these rates, not a generalpurpose computer.

In addition, routing algorithms require each router to exchange information about the addresses it can reach with other routers. The larger the tables, the more information needs to be communicated and processed. The processing grows at least linearly with the table size. Greater communication increases the likelihood that some parts will get lost, at least temporarily, possibly leading to routing instabilities.

The routing table problem could have been solved by going to a deeper hierarchy, like the telephone network. For example, having each IP address contain a country, state/province, city, network, and host field might work. Then, each router would only need to know how to get to each country, the states or provinces in its own country, the cities in its state or province, and the networks in its city. Unfortunately, this solution would require considerably more than 32 bits for IP addresses and would use addresses inefficiently (and Liechtenstein would have as many bits in its addresses as the United States).

Fortunately, there is something we can do to reduce routing table sizes. We can apply the same insight as subnetting: routers at different locations can know about a given IP address as belonging to prefixes of different sizes. However, instead of splitting an address block into subnets, here we combine multiple small

prefixes into a single larger prefix. This process is called **route aggregation**. The resulting larger prefix is sometimes called a **supernet**, to contrast with subnets as the division of blocks of addresses.

With aggregation, IP addresses are contained in prefixes of varying sizes. The same IP address that one router treats as part of a /22 (a block containing 2¹⁰ addresses) may be treated by another router as part of a larger /20 (which contains 2¹² addresses). It is up to each router to have the corresponding prefix information. This design works with subnetting and is called **CIDR** (**Classless Inter-Domain Routing**), which is pronounced "cider," as in the drink. The most recent version of it is specified in RFC 4632 (Fuller and Li, 2006). The name highlights the contrast with addresses that encode hierarchy with classes, which we will describe shortly.

To make CIDR easier to understand, let us consider an example in which a block of 8192 IP addresses is available starting at 194.24.0.0. Suppose that Cambridge University needs 2048 addresses and is assigned the addresses 194.24.0.0 through 194.24.7.255, along with mask 255.255.248.0. This is a /21 prefix. Next, Oxford University asks for 4096 addresses. Since a block of 4096 addresses must lie on a 4096-byte boundary, Oxford cannot be given addresses starting at 194.24.8.0. Instead, it gets 194.24.16.0 through 194.24.31.255, along with subnet mask 255.255.240.0. Finally, the University of Edinburgh asks for 1024 addresses and is assigned addresses 194.24.8.0 through 194.24.11.255 and mask 255.255.252.0. These assignments are summarized in Fig. 5-50.

University	First address	Last address	How many	Prefix
Cambridge	194.24.0.0	194.24.7.255	2048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1024	194.24.8.0/22
(Available)	194.24.12.0	194.24.15.255	1024	194.24.12.0/22
Oxford	194.24.16.0	194.24.31.255	4096	194.24.16.0/20

Figure 5-50. A set of IP address assignments.

All of the routers in the default-free zone are now told about the IP addresses in the three networks. Routers close to the universities may need to send on a different outgoing line for each of the prefixes, so they need an entry for each of the prefixes in their routing tables. An example is the router in London in Fig. 5-51.

Now let us look at these three universities from the point of view of a distant router in New York. All of the IP addresses in the three prefixes should be sent from New York (or the U.S. in general) to London. The routing process in London notices this and combines the three prefixes into a single aggregate entry for the prefix 194.24.0.0/19 that it passes to the New York router. This prefix contains 8K addresses and covers the three universities and the otherwise unallocated 1024 addresses. By using aggregation, three prefixes have been reduced to one, reducing

Figure 5-51. Aggregation of IP prefixes.

the prefixes that the New York router must be told about and the routing table entries in the New York router.

When aggregation is turned on, it is an automatic process. It depends on which prefixes are located where in the Internet not on the actions of an administrator assigning addresses to networks. Aggregation is heavily used throughout the Internet and can reduce the size of router tables to around 200,000 prefixes.

As a further twist, prefixes are allowed to overlap. The rule is that packets are sent in the direction of the most specific route, or the **longest matching prefix** that has the fewest IP addresses. Longest matching prefix routing provides a useful degree of flexibility, as seen in the behavior of the router at New York in Fig. 5-52. This router still uses a single aggregate prefix to send traffic for the three universities to London. However, the previously available block of addresses within this prefix has now been allocated to a network in San Francisco. One possibility is for the New York router to keep four prefixes, sending packets for three of them to London and packets for the fourth to San Francisco. Instead, longest matching prefix routing can handle this forwarding with the two prefixes that are shown. One overall prefix is used to direct traffic for the entire block to London. One more specific prefix is also used to direct a portion of the larger prefix to San Francisco. With the longest matching prefix rule, IP addresses within the San Francisco network will be sent on the outgoing line to San Francisco, and all other IP addresses in the larger prefix will be sent to London.

Conceptually, CIDR works as follows. When a packet comes in, the routing table is scanned to determine if the destination lies within the prefix. It is possible that multiple entries with different prefix lengths will match, in which case the entry with the longest prefix is used. Thus, if there is a match for a /20 mask and a /24 mask, the /24 entry is used to look up the outgoing line for the packet. However, this process would be tedious if the table were really scanned entry by entry.

Figure 5-52. Longest matching prefix routing at the New York router.

Instead, complex algorithms have been devised to speed up the address matching process (Ruiz-Sanchez et al., 2001). Commercial routers use custom VLSI chips with these algorithms embedded in hardware.

Classful and Special Addressing

To help you better appreciate why CIDR is so useful, we will briefly relate the design that predated it. Before 1993, IP addresses were divided into the five categories listed in Fig. 5-53. This allocation has come to be called **classful addressing**.

Figure 5-53. IP address formats.

The class A, B, and C formats allow for up to 128 networks with 16 million hosts each, 16,384 networks with up to 65,536 hosts each, and 2 million networks (e.g., LANs) with up to 256 hosts each (although a few of these are special). Also supported is multicast (the class D format), in which a datagram is directed to multiple hosts. Addresses beginning with 1111 are reserved for use in the future. They would be valuable to use now given the depletion of the IPv4 address space.

Unfortunately, many hosts will not accept these addresses as valid because they have been off-limits for so long and it is hard to teach old hosts new tricks.

This is a hierarchical design, but unlike CIDR the sizes of the address blocks are fixed. Over 2 billion addresses exist, but organizing the address space by classes wastes millions of them. In particular, the real villain is the class B network. For most organizations, a class A network, with 16 million addresses, is too big, and a class C network, with 256 addresses is too small. A class B network, with 65,536, is just right. In Internet folklore, this situation is known as the **three bears problem** [as in *Goldilocks and the Three Bears* (Southey, 1848)].

In reality, though, a class B address is far too large for most organizations. Studies have shown that more than half of all class B networks have fewer than 50 hosts. A class C network would have done the job, but no doubt every organization that asked for a class B address thought that one day it would outgrow the 8-bit host field. In retrospect, it might have been better to have had class C networks use 10 bits instead of 8 for the host number, allowing 1022 hosts per network. Had this been the case, most organizations would probably have settled for a class C network, and there would have been half a million of them (versus only 16,384 class B networks).

It is hard to fault the Internet's designers for not having provided more (and smaller) class B addresses. At the time the decision was made to create the three classes, the Internet was a research network connecting the major research universities in the U.S. (plus a very small number of companies and military sites doing networking research). No one then perceived the Internet becoming a massmarket communication system rivaling the telephone network. At the time, someone no doubt said: "The U.S. has about 2000 colleges and universities. Even if all of them connect to the Internet and many universities in other countries join, too, we are never going to hit 16,000, since there are not that many universities in the whole world. Furthermore, having the host number be an integral number of bytes speeds up packet processing" (which was then done entirely in software). Perhaps some day people will look back and fault the folks who designed the telephone number scheme and say: "What idiots. Why didn't they include the planet number in the phone number?" But at the time, it did not seem necessary.

To handle these problems, subnets were introduced to flexibly assign blocks of addresses within an organization. Later, CIDR was added to reduce the size of the global routing table. Today, the bits that indicate whether an IP address belongs to class A, B, or C network are no longer used, though references to these classes in the literature are still common.

To see how dropping the classes made forwarding more complicated, consider how simple it was in the old classful system. When a packet arrived at a router, a copy of the IP address was shifted right 28 bits to yield a 4-bit class number. A 16-way branch then sorted packets into A, B, C (and D and E) classes, with eight of the cases for class A, four of the cases for class B, and two of the cases for class C. The code for each class then masked off the 8-, 16-, or 24-bit network

number and right aligned it in a 32-bit word. The network number was then looked up in the A, B, or C table, usually by indexing for A and B networks and hashing for C networks. Once the entry was found, the outgoing line could be looked up and the packet forwarded. This is much simpler than the longest matching prefix operation, which can no longer use a simple table lookup because an IP address may have any length prefix.

Class D addresses continue to be used in the Internet for multicast. Actually, it might be more accurate to say that they are starting to be used for multicast, since Internet multicast has not been widely deployed in the past.

There are also several other addresses that have special meanings, as shown in Fig. 5-54. The IP address 0.0.0.0, the lowest address, is used by hosts when they are being booted. It means "this network" or "this host." IP addresses with 0 as the network number refer to the current network. These addresses allow machines to refer to their own network without knowing its number (but they have to know the network mask to know how many 0s to include). The address consisting of all 1s, or 255.255.255.255—the highest address—is used to mean all hosts on the indicated network. It allows broadcasting on the local network, typically a LAN. The addresses with a proper network number and all 1s in the host field allow machines to send broadcast packets to distant LANs anywhere in the Internet. However, many network administrators disable this feature as it is mostly a security hazard. Finally, all addresses of the form 127.xx.yy.zz are reserved for loopback testing. Packets sent to that address are not put out onto the wire; they are processed locally and treated as incoming packets. This allows packets to be sent to the host without the sender knowing its number, which is useful for testing.

Figure 5-54. Special IP addresses.

NAT—Network Address Translation

IP addresses are scarce. An ISP might have a /16 address, giving it 65,534 usable host numbers. If it has more customers than that, it has a problem.

This scarcity has led to techniques to use IP addresses sparingly. One approach is to dynamically assign an IP address to a computer when it is on and using the network, and to take the IP address back when the host becomes inactive. The IP address can then be assigned to another computer that becomes active. In this way, a single /16 address can handle up to 65,534 active users.

This strategy works well in some cases, for example, for dialup networking and mobile and other computers that may be temporarily absent or powered off. However, it does not work very well for business customers. Many PCs in businesses are expected to be on continuously. Some are employee machines, backed up at night, and some are servers that may have to serve a remote request at a moment's notice. These businesses have an access line that always provides connectivity to the rest of the Internet.

Increasingly, this situation also applies to home users subscribing to ADSL or Internet over cable, since there is no connection charge (just a monthly flat rate charge). Many of these users have two or more computers at home, often one for each family member, and they all want to be online all the time. The solution is to connect all the computers into a home network via a LAN and put a (wireless) router on it. The router then connects to the ISP. From the ISP's point of view, the family is now the same as a small business with a handful of computers. Welcome to Jones, Inc. With the techniques we have seen so far, each computer must have its own IP address all day long. For an ISP with many thousands of customers, particularly business customers and families that are just like small businesses, the demand for IP addresses can quickly exceed the block that is available.

The problem of running out of IP addresses is not a theoretical one that might occur at some point in the distant future. It is happening right here and right now. The long-term solution is for the whole Internet to migrate to IPv6, which has 128-bit addresses. This transition is slowly occurring, but it will be years before the process is complete. To get by in the meantime, a quick fix was needed. The quick fix that is widely used today came in the form of **NAT** (**Network Address Translation**), which is described in RFC 3022 and which we will summarize below. For additional information, see Dutcher (2001).

The basic idea behind NAT is for the ISP to assign each home or business a single IP address (or at most, a small number of them) for Internet traffic. Within the customer network, every computer gets a unique IP address, which is used for routing intramural traffic. However, just before a packet exits the customer network and goes to the ISP, an address translation from the unique internal IP address to the shared public IP address takes place. This translation makes use of three ranges of IP addresses that have been declared as private. Networks may use them internally as they wish. The only rule is that no packets containing these addresses may appear on the Internet itself. The three reserved ranges are:

```
10.0.0.0 - 10.255.255.255/8 (16,777,216 hosts)
172.16.0.0 - 172.31.255.255/12 (1,048,576 hosts)
192.168.0.0 - 192.168.255.255/16 (65,536 hosts)
```

The first range provides for 16,777,216 addresses (except for all 0s and all 1s, as usual) and is the usual choice, even if the network is not large.

The operation of NAT is shown in Fig. 5-55. Within the customer premises, every machine has a unique address of the form 10.x.y.z. However, before a packet leaves the customer premises, it passes through a **NAT box** that converts the internal IP source address, 10.0.0.1 in the figure, to the customer's true IP address, 198.60.42.12 in this example. The NAT box is often combined in a single device with a firewall, which provides security by carefully controlling what goes into the customer network and what comes out of it. We will study firewalls in Chap. 8. It is also possible to integrate the NAT box into a router or ADSL modem.

Figure 5-55. Placement and operation of a NAT box.

So far, we have glossed over one tiny but crucial detail: when the reply comes back (e.g., from a Web server), it is naturally addressed to 198.60.42.12, so how does the NAT box know which internal address to replace it with? Herein lies the problem with NAT. If there were a spare field in the IP header, that field could be used to keep track of who the real sender was, but only 1 bit is still unused. In principle, a new option could be created to hold the true source address, but doing so would require changing the IP code on all the machines on the entire Internet to handle the new option. This is not a promising alternative for a quick fix.

What actually happens is as follows. The NAT designers observed that most IP packets carry either TCP or UDP payloads. When we study TCP and UDP in Chap. 6, we will see that both of these have headers containing a source port and a destination port. Below we will just discuss TCP ports, but exactly the same story holds for UDP ports. The ports are 16-bit integers that indicate where the TCP connection begins and ends. These ports provide the field needed to make NAT work.

When a process wants to establish a TCP connection with a remote process, it attaches itself to an unused TCP port on its own machine. This is called the **source port** and tells the TCP code where to send incoming packets belonging to this connection. The process also supplies a **destination port** to tell who to give

the packets to on the remote side. Ports 0–1023 are reserved for well-known services. For example, port 80 is the port used by Web servers, so remote clients can locate them. Each outgoing TCP message contains both a source port and a destination port. Together, these ports serve to identify the processes using the connection on both ends.

An analogy may make the use of ports clearer. Imagine a company with a single main telephone number. When people call the main number, they reach an operator who asks which extension they want and then puts them through to that extension. The main number is analogous to the customer's IP address and the extensions on both ends are analogous to the ports. Ports are effectively an extra 16 bits of addressing that identify which process gets which incoming packet.

Using the *Source port* field, we can solve our mapping problem. Whenever an outgoing packet enters the NAT box, the 10.x.y.z source address is replaced by the customer's true IP address. In addition, the TCP *Source port* field is replaced by an index into the NAT box's 65,536-entry translation table. This table entry contains the original IP address and the original source port. Finally, both the IP and TCP header checksums are recomputed and inserted into the packet. It is necessary to replace the *Source port* because connections from machines 10.0.0.1 and 10.0.0.2 may both happen to use port 5000, for example, so the *Source port* alone is not enough to identify the sending process.

When a packet arrives at the NAT box from the ISP, the *Source port* in the TCP header is extracted and used as an index into the NAT box's mapping table. From the entry located, the internal IP address and original TCP *Source port* are extracted and inserted into the packet. Then, both the IP and TCP checksums are recomputed and inserted into the packet. The packet is then passed to the customer router for normal delivery using the 10.x.y.z address.

Although this scheme sort of solves the problem, networking purists in the IP community have a tendency to regard it as an abomination-on-the-face-of-the-earth. Briefly summarized, here are some of the objections. First, NAT violates the architectural model of IP, which states that every IP address uniquely identifies a single machine worldwide. The whole software structure of the Internet is built on this fact. With NAT, thousands of machines may (and do) use address 10.0.0.1.

Second, NAT breaks the end-to-end connectivity model of the Internet, which says that any host can send a packet to any other host at any time. Since the mapping in the NAT box is set up by outgoing packets, incoming packets cannot be accepted until after outgoing ones. In practice, this means that a home user with NAT can make TCP/IP connections to a remote Web server, but a remote user cannot make connections to a game server on the home network. Special configuration or NAT traversal techniques are needed to support this kind of situation.

Third, NAT changes the Internet from a connectionless network to a peculiar kind of connection-oriented network. The problem is that the NAT box must maintain information (i.e., the mapping) for each connection passing through it.

Having the network maintain connection state is a property of connection-oriented networks, not connectionless ones. If the NAT box crashes and its mapping table is lost, all its TCP connections are destroyed. In the absence of NAT, a router can crash and restart with no long-term effect on TCP connections. The sending process just times out within a few seconds and retransmits all unacknowledged packets. With NAT, the Internet becomes as vulnerable as a circuit-switched network.

Fourth, NAT violates the most fundamental rule of protocol layering: layer k may not make any assumptions about what layer k+1 has put into the payload field. This basic principle is there to keep the layers independent. If TCP is later upgraded to TCP-2, with a different header layout (e.g., 32-bit ports), NAT will fail. The whole idea of layered protocols is to ensure that changes in one layer do not require changes in other layers. NAT destroys this independence.

Fifth, processes on the Internet are not required to use TCP or UDP. If a user on machine A decides to use some new transport protocol to talk to a user on machine B (for example, for a multimedia application), introduction of a NAT box will cause the application to fail because the NAT box will not be able to locate the TCP Source port correctly.

A sixth and related problem is that some applications use multiple TCP/IP connections or UDP ports in prescribed ways. For example, FTP, the standard File Transfer Protocol, inserts IP addresses in the body of packet for the receiver to extract and use. Since NAT knows nothing about these arrangements, it cannot rewrite the IP addresses or otherwise account for them. This lack of understanding means that FTP and other applications such as the H.323 Internet telephony protocol (which we will study in Chap. 7) will fail in the presence of NAT unless special precautions are taken. It is often possible to patch NAT for these cases, but having to patch the code in the NAT box every time a new application comes along is not a good idea.

Finally, since the TCP *Source port* field is 16 bits, at most 65,536 machines can be mapped onto an IP address. Actually, the number is slightly less because the first 4096 ports are reserved for special uses. However, if multiple IP addresses are available, each one can handle up to 61,440 machines.

A view of these and other problems with NAT is given in RFC 2993. Despite the issues, NAT is widely used in practice, especially for home and small business networks, as the only expedient technique to deal with the IP address shortage. It has become wrapped up with firewalls and privacy because it blocks unsolicited incoming packets by default. For this reason, it is unlikely to go away even when IPv6 is widely deployed.

5.6.3 IP Version 6

IP has been in heavy use for decades. It has worked extremely well, as demonstrated by the exponential growth of the Internet. Unfortunately, IP has become a victim of its own popularity: it is close to running out of addresses. Even

with CIDR and NAT using addresses more sparingly, the last IPv4 addresses are expected to be assigned by ICANN before the end of 2012. This looming disaster was recognized almost two decades ago, and it sparked a great deal of discussion and controversy within the Internet community about what to do about it.

In this section, we will describe both the problem and several proposed solutions. The only long-term solution is to move to larger addresses. **IPv6** (**IP version 6**) is a replacement design that does just that. It uses 128-bit addresses; a shortage of these addresses is not likely any time in the foreseeable future. However, IPv6 has proved very difficult to deploy. It is a different network layer protocol that does not really interwork with IPv4, despite many similarities. Also, companies and users are not really sure why they should want IPv6 in any case. The result is that IPv6 is deployed and used on only a tiny fraction of the Internet (estimates are 1%) despite having been an Internet Standard since 1998. The next several years will be an interesting time, as the few remaining IPv4 addresses are allocated. Will people start to auction off their IPv4 addresses on eBay? Will a black market in them spring up? Who knows.

In addition to the address problems, other issues loom in the background. In its early years, the Internet was largely used by universities, high-tech industries, and the U.S. Government (especially the Dept. of Defense). With the explosion of interest in the Internet starting in the mid-1990s, it began to be used by a different group of people, often with different requirements. For one thing, numerous people with smart phones use it to keep in contact with their home bases. For another, with the impending convergence of the computer, communication, and entertainment industries, it may not be that long before every telephone and television set in the world is an Internet node, resulting in a billion machines being used for audio and video on demand. Under these circumstances, it became apparent that IP had to evolve and become more flexible.

Seeing these problems on the horizon, in 1990 IETF started work on a new version of IP, one that would never run out of addresses, would solve a variety of other problems, and be more flexible and efficient as well. Its major goals were:

- 1. Support billions of hosts, even with inefficient address allocation.
- 2. Reduce the size of the routing tables.
- 3. Simplify the protocol, to allow routers to process packets faster.
- 4. Provide better security (authentication and privacy).
- 5. Pay more attention to the type of service, particularly for real-time data.
- 6. Aid multicasting by allowing scopes to be specified.
- 7. Make it possible for a host to roam without changing its address.
- 8. Allow the protocol to evolve in the future.
- 9. Permit the old and new protocols to coexist for years.