King Saud University College of Computer and Information Sciences Department of Computer Science CSC453 – Parallel Processing – Tutorial No 5bis – Quarter 3 2023

Question 1

Let's consider 2 arrays of integers A and B of size *N*. Let's consider that we would like to write a C program that runs in parallel and that computes the sum of 2 arrays as following:

$$C[i] = A[i] + B[i]$$

Let's consider the following kernel:

1. We would like to run this kernel on **2-D grid of blocks** each of which is of **2-D matrix of threads**. Every thread evaluates a single cell as shown in the following figure:

Block	Block (0, 0)					
Cell 0	Cell 4	Cell 8	Cell 12	Cell 16		
Cell 20	Cell 24	Cell 28	Cell 32	Cell 36		
Cell 40	Cell 44	Cell 48	Cell 52	Cell 56		

E	Block	ck (1, 1)				
	Cell 3	Cell 7	Cell 11	Cell 15	Cell 19	
	Cell 23	Cell 27	Cell 31	Cell 35	Cell 39	
	Cell 43	Cell 47	Cell 51	Cell 55	Cell 59	

King Saud University College of Computer and Information Sciences Department of Computer Science CSC453 – Parallel Processing – Tutorial No 5bis – Quarter 3 2023

 Give the formula that allows every thread to compute the cell_id of the cell he is going to process.

Question 2

Let's consider 2 arrays of integers A and B of size *N*. Let's consider that we would like to write a kernel in C that computes the sum of 2 arrays:

$$C[i] = A[i] + B[i]$$

We would like to run this kernel on a grid composed of **1 block** where every thread evaluates W cells as shown in the following figure (where W = 4 as a sample):

Block	(0, 0)			
Cells	Cells	Cells	Cells	Cells 16-19
0-3	4-7	8-11	12-15	
Cells	Cells	Cells	Cells	Cells 36-39
20-23	24-27	28-31	32-35	
Cells	Cells	Cells	Cells	Cells 56-60
40-43	43-47	48-51	52-55	

Write the kernel

__global__ void add(int *a, int *b, int *c, int size, int N, int W) {

King Saud University College of Computer and Information Sciences Department of Computer Science

CSC453 – Parallel Processing – Tutorial No 5bis – Quarter 3 2023

```
__global__ void kernal(int N, int *arr){
int index = blockldx.x * blockDim.x + threadIdx.x
if (index < N) doSomthing(arr[index]);
}</pre>
```

Question 3

Let's consider an array of integers of size N, denoted Data. Let's consider the following sequential iteration:
 ___device____ void doSomthing(int a){...}

- a. Write the corresponding parallel code using CUDA C.
- b. Update your kernel such that every threads operates W cells.
- 2. We would like to write a kernel that (1) receives an integer A, two arrays of size N denoted X et Y respectively and (2) calculates and stores the A*X + Y in an array of size N denoted C. We consider that the elements of the array C are calculated as follows:

$$C[i] = A * X[i] + Y[i]$$

So, we would like to write a kernel that receives 5 parameters:
- An integer denoted **A** (**input**),
- An array of integers denoted **X** (**input**),
- An array of integers denoted **X** (**input**),
- $C[i] = A * X[i] + Y[i]$
- $C[i] = A * X[i] + Y[i]$;

- An array of integers, denoted **C** (**output**),

An array of integers denoted **Y** (**input**),

- An integer denoted **N** which represent the size of arrays X, Y and C (**input**),
- a. We would like to run this kernel within a grid of blocks (organized as 1-D array) each of which is a 1-D array of threads. We would like that <u>every thread</u> calculates a single cell of the result (**the array C**). Give the code of the kernel.
- b. We would like to run this kernel within a grid of blocks (organized as 1-D array) each of which is a 1-D array of threads. We would like that <u>every thread</u> <u>calculates the elements of a sub-array (of the array C) of size *width*. Give the code of the kernel.</u>