Lecture 23

Recall, the Lebesgulintagral of a simple funtion $\varphi = \sum_{k=1}^{n} a_k \chi_{E_k}$, which is in the canonomical representation, is defined as $S\varphi = \sum_{k=1}^{n} a_k m(E_k)$.

If $E \leq \mathbb{R}^d$ is a measurable set is $m(E) < \infty$, then $\int \beta = \int_{\mathbb{R}^d} \beta \times E$.

Example: (1) $\beta = \chi_{[1,2]} - 2 \chi_{[1,2]} + 3 \chi_{[3,4]}$ $\therefore \int \beta = m \{ \{1,0\} \} - 2 m \{ \{1,1\} \} + 3 m \{ \{3,4\} \}$ = 1 - 2 (1) + 3 (1) = 2

Properties of the Lebesgue integral of sample funtions.

Proposition:

(Independence of the representation)

If $\varphi = \sum_{k=1}^{N} a_k x_{E_k}$ is any representation

of φ , then $\int \varphi = \sum_{k=1}^{N} a_k m(E_k)$

(2) (linearity) If P, Ψ are simple functions R a, $b \in R$. Then $\int (ap+b\Psi) = a \int p+b \int \Psi$.

(3) (Additive) If E. F are disjoint measurable sets of Rd with finite measure, then

(4) [Monotonicity] If $\varphi \leq \Psi$, one simple formations, then $\int \varphi \leq \int \Psi$.

(Triangular inequality) If p is a simple function, then 191 is also a simple function Q $|Sp| \leq S191.$

Prof. (1) Suppose $\beta = \sum_{k=1}^{N} \alpha_k x_{E_k}$

core[i]: Suppose Ex are disjoint & ais are not distint. & non-zero.

For each distinct non-zero volve a,

among the $\{a_k\}_{k=1,\cdots,N}$ we define Ea = () Ek, where union is taken over those indices k such that note that E are disjoint $P = m(E_k) = \sum_{k} m(E_k)$ where the sum is over those k, Such that $a_k = a$. , : $\varphi = \sum_{a} \sum_{a}$ Conononial repr Thus $\int \varphi = \int am (E_a)$ = $\sum_{k}^{n} a \left(\sum_{k} m(E_{k})\right)$ $= \sum_{k=1}^{n} \alpha_k \operatorname{im}(E_k).$ Care (ii): Suppose Exame not disjoint.

Then we can refine the decomposition

NE by finding the sets $E_{j}^{*},...,E_{n}^{*}$ With the property that $\bigcup_{k=1}^{n}E_{k}=\bigcup_{j=1}^{n}E_{j}^{*}$ & the sets E_{j}^{*} one disjoint.

And for each k, E = U E; , where the union is taken over

There Ether Contained in Ex. EUEz=E*UEz

There E

There E

There E

There E

There I

The For each i, let aj = [ak, where the sun y fates one Il le such that Ek 2 Ej*. Then $\varphi = \sum_{k=1}^{j} a_k x_{E_k} \sim \sum_{j=1}^{j} a_j^* x_{E_j^*}$ intis representation got need not be distincts but Ex me dissoint. : By the case(i) $\int \varphi = \int_{-\infty}^{\infty} a_{j}^{*} m(E_{j}^{*}).$

is By the case(i), $f = \int_{j=1}^{\infty} a_j x^{*} m(E_j x^{*})$, $f = \int_{j=1}^{\infty} a_k m(E_j x^{*})$. $= \int_{j=1}^{\infty} a_k m(E_j x^{*})$ $= \int_{k=1}^{\infty} a_k m(E_k)$.

Thus Jq is independent of the representations

$$= \int_{\mathbb{R}^{3}} \left(\sum_{k=1}^{N} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} a_{k} x_{E_{k}} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} a_{k} x_{E_{k}} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} a_{k} x_{E_{k}} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} a_{k} x_{E_{k}} x_{EUF} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} a_{k} x_{E_{k}} x_{EUF} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} a_{k} x_{E_{k}} x_{EUF} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} a_{k} x_{E_{k}} x_{EUF} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} a_{k} x_{E_{k}} x_{EUF} x_{EUF} \left(\sum_{k=1}^{N} a_{k} x_{E_{k}} x_{EUF} \right)$$

$$= \int_{\mathbb{R}^{3}} a_{k} x_{E_{k}} x_{EUF} x_$$

E Let
$$\varphi = \sum_{k=1}^{N} \alpha_k x_{E_k}$$
. Canonical form.

Then $|\varphi| = \sum_{k=1}^{N} |\alpha_k| x_{E_k}$.

$$\leq \sum_{k=1}^{N} |q_k|^{n} |f_k|^{n} = \sum_{k=1}^{N} |q_k|^{n} |f_k|^{n}$$

Thus
$$\left|\int\varphi\right|\leq\int |\varphi|$$
.

Bounded functions supported on a set of finite meanne.

Def: The support of a function $f: E \rightarrow \mathbb{R}$ is defined as $\sup (f) := \begin{cases} a \in E | f(a) \neq 0 \end{cases}$

· We say that fix supported on a set $A \subseteq \mathbb{R}^q$, if f(a) = 0 whenever $2 \notin A$.

(ic, $A \supseteq Supp(G)$.)

Remark:- If fix measurable, then supp(G)

is a measurable set.