

Proof of Correctness and Equivalence of Combinational Circuits Using ROBDD and

Logical Operations

Presented by: Rashed Hassan Siam

Class Roll: FH-2343

Registration No: 2022-518-433

Department of Computer Science and Engineering

University of Dhaka

Presented to: Professor Dr. Hafiz Md. Hasan Babu Department of Computer Science and Engineering University of Dhaka

Content Outline

- Revisiting ROBDD
- Reduction Rules of ROBDD
- Canonicity of ROBDD
 - Using Boolean Functions
 - Using Combinational Circuits
- Logical Operations on ROBDD: Apply Algorithm

Revisiting ROBDD

- An OBDD is ROBDD when these rules are applied:
 - Merge isomorphic sub-graphs
 - Eliminate node whose both children are isomorphic

- Advantage of ROBDD is that it is canonical for a given function
 - There is exactly one ROBDD for a given variable ordering
 - This property makes it useful in functional equivalence checking

Merging Isomorphic Sub-graphs

For any two nodes u and v, If $var(\mathbf{u}) = var(\mathbf{v})$, low(u) = low(v)and, high(u) = high(v) That means, u = vWe can remove connect all parents of u to

V.

Isomorphic Children of Same Node

If there is a node u such that,

low(u) = high(u),

then remove **u** and connect all parent of u to low(**u**).

Properties of ROBDD

Uniqueness:

No two distinct nodes u and v are labeled with the same variable name and have the same low and high successor.

Non-redundant:

No variable node u has identical low and high successor.

Canonicity of ROBDD

Two Boolean Functions are equivalent iff their reduced OBDDs (ROBDD) are identical with respect to a specific variable ordering.

- For any boolean function f, there is a unique ROBDD with the respect to a specific variable ordering.
- We can transform it into a canonical form by repeatedly applying reduction rules.

Canonicity of ROBDD (Continued)

Due to the canonicity some possible applications can be:

- Checking equivalence: Verify isomorphism between ROBDDs.
- Non satisfiability: Verify if ROBDD has only one terminal node, labeled by 0.
- Tautology: Verify if ROBDD has only one terminal node, labeled by 1.

When Are Two Boolean Functions Logically Equivalent?

- Two Boolean functions are logically equivalent
 - Iff their ROBDDs are isomorphic.
- Two ROBDDs are isomorphic if there exists a bijection b between their graphs such that -
 - Terminals are mapped to terminals.
 - Non-terminals are mapped to non-terminals.
 - For every terminal vertex v,
 - value(v) = value(b(v))
 - For every non-terminal vertex v,
 - var(v) = var(b(v))
 - low(v) = low(b(v)), and
 - high(v) = high(b(v))

Equivalence of ROBDD

P = (x xor y) x y P 0 0 1 0 1 0 1 0 0

Q = (x or y) and (x or y) x y x or y x or y Q 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0

Combinational Circuits

Properties

- Current output depend on current inputs only
- Consists of combinational gates

Figure: Combinational Circuits

Equivalence of Combinational Circuits

Canonicity of ROBDD From Combinational Circuits

$$f = ac + ad + bc + bd$$

 $f = a (c + d) + b (c + d)$
 $f = (c + d) (a + b)$
 $f = g$

$$f = ac + ad + bc + bd$$

 $g = (c + d) (a + b)$

f and g are logically equivalent

Traditional Logical Operations

Apply Algorithm

Preconditions:

- Let's say we have two ROBDDs B_f and B_g
 - Must have compatible ordering (should follow same variable ordering)
 - Apply (op, B_f , B_g) \Rightarrow OBDD \Rightarrow ROBDD
- Shannon's expansion is used for apply algorithm

$$F = \overline{x}.f[0/x] + x.f[1/x]$$

$$G = \overline{x}.g[0/x] + x.g[1/x]$$

- So Shannon's expansion of f and g,
 - $\overline{x}(f[0/x]opg[0/x])+\overline{x}(f[1/x]opg[1/x])$ here op can be any operator

Shannon's Expansion

- 1. B represents f[0/x] and B' represents f[1/x]; and
- 2. The BDD is effectively a compressed representation of f in Shannon normal form.

So, we implement apply recursively on the structure of the BDDs.

Apply Algortihm (Case 1)

Algorithm apply(op, B_f, B_g)

Let r_f be the root node of B_f and r_g be the root node of B_g .

If both r_f and r_g are terminal nodes with labels l_f and l_g , respectively compute the value l_f op l_g and the resulting OBDD is B_0 if the value is 0 and B_1 otherwise.

Apply Algortihm (Case 2)

In the remaining cases, at least one of the root nodes is a non-terminal.

If both nodes are x_i – nodes (i.e., non-terminal of some variables), create an x_i – node n (r_f , r_g) with a dashed line to apply(op, $lo(r_f)$, $lo(r_g)$) and a solid line to apply(op, $hi(r_f)$, $hi(r_g)$).

Apply Algortihm (Cases 3 and 4)

If r_f is an x_i -node, but r_g is a terminal node or an x_j -node with j > i, create an x_i -node n (called r_f , r_g) with a dashed line to apply(op, $lo(r_f)$, r_g) and a solid line to apply(op, $hi(r_f)$, r_g).

If r_g is an x_i -node, but r_f is a terminal node or an x_j -node with j > i, create an x_i -node n (called r_f , r_g) with a dashed line to apply(op, $lo(r_g)$, r_f) and a solid line to apply(op, $hi(r_g)$, r_f).

Apply Algorithm

Apply Example

Two ROBDDs in the figure below:

Conjunction operation

Apply: Recursive Call

Apply Algorithm

Apply Algorithm

Reduced OBDD

References

- Formal Verification, Lecture 8: Operations on Binary
 Decision Diagrams (BDDs); Jacques Fleuriot, jdf@inf.ac.uk,
 Diagrams from Huth & Ryan, LiCS, 2nd Ed.
- Module 6 Lecture 3: Operation on Ordered Binary
 Decision Diagram; IIT Guwahati Lectures,
 https://archive.nptel.ac.in/courses/106/103/106103116/

Thank you!
Any questions??