APPLN. FILING DATE: OCTOBER 31, 2003 TITLE: METHODS FOR DESIGNING A CHAMBER TO REDUCE NOISE IN A DUCT

INVENTOR(S): LIXI HUANG ET AL

ATTORNEY'S DOCKET NO: 007198-552 SHEET 1 of 5

Figure 1

ATTORNEY'S DOCKET NO: 007198-552 SHEET 2 of 5 Given h Determine he, L from the practical considerations Use the minimum m for the membrane Find the fluid loading p_{-rad} , p_{-rad} , p_{-ref} as well as the modal impedance Z_{jj} for a unit vibration velocity which are given below, by Eqs. (13), (14), (16) and (17). $P_{-rad} = \frac{L}{2} \sum_{n=0}^{\infty} c_n \psi_n(y) \int_0^1 \psi_n(y') V(x') \Big[H(x-x') e^{-ik_n(x-x')} + H(x'-x) e^{-ik_n(x-x')} \Big] d\xi'.$ $P_{-red} = \frac{L_c}{2} \sum_{n=0}^{\infty} c_{nc} \psi_n(y_c) \int_0^1 \psi_n(y_c) [-V(x_c)] [H(x_c - x_c) e^{-ik_m(x_c - x_c)} + H(x_c) e^{-ik_m(x_c - x_c)}] d\xi^{-1}.$ $P_{-ref} = \frac{L_c}{2} \sum_{n=0}^{\infty} c_{ne} \psi_n(y_e) \int_0^4 \psi_n(y_e) \left[-V(x_e) \right] \left[\frac{2}{e^{ik_-(2L_+)} - 1} \left[\cos k_{ne} (x_e - x_e) + e^{ik_-L_-} \cos k_{ne} (x_e + x_e) \right] \right] d\xi^{-1}.$ $Z_{jj} = \int_{0}^{1} 2\sin\left(l\pi\xi\right) (p_{-rad} - p_{-ref} - p_{-ref})^{1}_{j} d\xi, \text{ where unit amplitude } V(x') = \sin(j\pi\xi').$ $\begin{bmatrix} Z_{11} + L_1 & Z_{12} & \cdots & Z_{1N} \\ Z_{21} & Z_{22} + L_2 & \cdots & Z_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{N1} & Z_{N2} & \cdots & Z_{NN} + L_N \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{bmatrix} = - \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_N \end{bmatrix}$ where $L_j = mi\omega + \frac{T}{i\omega} \left(\frac{j\pi}{L}\right)^2$, $I_j = \int_0^1 p_i \sin(j\pi\xi) d\xi$ and $p_i = e^{-i\omega_i t}$, to obtain V_j , j = 1, 2, 3, ...Find the reflection wave from V_1 according to Eqs. (27) and (28), shown below. $p_r = \frac{p_{-rud}|_{a=0,j\to-\infty}}{e^{ik_0x}} = \frac{1}{2} \int_{-L/2}^{-L/2} V(x') e^{-ik_0x} dx' = \frac{1}{2} \sum_{i=1}^{n} V_i \int_{-L/2}^{L/2} \sin(j\pi\xi') e^{-ik_0x'} dx'.$ and the transmitted wave from Eq. (24), $p_{i} = p_{*md}\Big|_{\alpha=0,x,\gamma=\infty} + p_{i} = \frac{1}{2} \int_{-L/2}^{L/2} V(x') e^{ik_{p}x'} dx' + 1 = \frac{1}{2} \sum_{i=1}^{\infty} V_{i} \int_{-L/2}^{L/2} \sin(j\pi\xi') e^{ik_{p}x'} dx' + 1.$ Hence the transmission loss from Eq. (25) is calculated as $TL=-20\log_{10}|p_i|$ Determine f_1 and f_2 from the transmission loss spectrum so that TL>TL, in the frequency range of $f \in [f_1, f_2]$. recommended TL_{er} = $10 \log_{10} \left[1 + \frac{1}{4} \left(\left(1 + \sqrt{6h_c L} \right) - \left(1 + \sqrt{6h_c L} \right)^{-1} \right)^2 \right]$ Find optimal tension T_{ent} for maximum f_1/f_1 Optimize h_c , L with given cavity volume h_cL if desired

APPLN. FILING DATE: OCTOBER 31, 2003

REDUCE NOISE IN A DUCT INVENTOR(S): LIXI HUANG ET AL

TITLE: METHODS FOR DESIGNING A CHAMBER TO

Figure 2

APPLN. FILING DATE: OCTOBER 31, 2003

TITLE: METHODS FOR DESIGNING A CHAMBER TO

REDUCE NOISE IN A DUCT

INVENTOR(S): LIXI HUANG ET AL ATTORNEY'S DOCKET NO: 007198-552 SHEET 3 of 5

Figure 3

Figure 4

APPLN. FILING DATE: OCTOBER 31, 2003

TITLE: METHODS FOR DESIGNING A CHAMBER TO

REDUCE NOISE IN A DUCT

INVENTOR(S): LIXI HUANG ET AL ATTORNEY'S DOCKET NO: 007198-552 SHEET 4 of 5

Figure 5

Figure 6

Figure 7

APPLN. FILING DATE: OCTOBER 31, 2003

TITLE: METHODS FOR DESIGNING A CHAMBER TO

REDUCE NOISE IN A DUCT INVENTOR(S): LIXI HUANG ET AL

ATTORNEY'S DOCKET NO: 007198-552 SHEET 5 of 5

Figure 8

Figure 9