Une étude comparative de logiciels de prévision automatique de séries chronologiques

Valentina STAN

Conservatoire National des Arts et Métiers, 292 Rue Saint Martin, F 75141 Paris Cedex 03, France valentina_titu@yahoo.fr

<u>Résumé</u>: L'objectif de cette étude est de comparer 6 logiciels de prévision automatique de séries chronologiques. On analyse leurs performances sur 50 séries, selon 6 critères à l'aide de plusieurs analyses en composantes principales. Les séries utilisées proviennent de domaines différents : macroéconomie, industrie, finance, démographie, environnement.

<u>Mots clés</u>: prévision automatique, séries chronologiques, logiciels.

<u>Abstract</u>: The objective of this study is to compare 6 software, amongst the most used, which automatically estimate time series. For this software are analyzed the performances by using 50 time series, according to 6 criteria, with several principal components analyses. The used series result from different domains: macroeconomic, industry, finance, demography and environment. **Keywords**: automatic forecasting, time series, software.

1. Brève présentation des logiciels testés

Cette étude, réalisée dans le cadre du CNAM-Paris sous la direction de G. Saporta, a pour objectif de comparer 6 logiciels de prévision automatique de séries chronologiques :

- quatre sont parmi les plus connus du marché : Forecast Pro 4.2, SAS 8.2, SPSS Decision Time 1.1, Statgraphics 5.1; les méthodes intégrées dans ces logiciels sont les méthodes classiques de prévision.
- le logiciel ForeScope+ 1.0, qui est encore en développement;
- le nouveau logiciel KTS 3.04, qui utilise des techniques proches des réseaux de neurones.

1.1. Forecast Pro 4.2

Forecast Pro est un «outil» conçu pour réaliser des prévisions dans le domaine commercial, marketing ou des études économiques.

Le système expert du logiciel ajuste automatiquement les paramètres de chacun des modèles en compétition. Il choisit ensuite le modèle le mieux ajusté aux données. Les méthodes intégrées sont:

Remarques:

a. L'utilisateur doit spécifier si les données sont ou non saisonnières. «Nombre de périodes» indique le nombre de périodes par an : pour des données mensuelles par exemple, ce sera 12. Le nombre de périodes par cycle indique les périodes qu'il convient de comparer : pour des données mensuelles, le logiciel va comparer les mois de janvier, les mois de février, les mois de mars....

- b. Le logiciel réalise automatiquement la transformation de la série, lorsque cela est nécessaire.
- c. Le temps d'apprentissage est très court.
- d. On peut aussi obtenir des prévisions pour des séries très courtes.
- e. Le critère utilisé par défaut pour choisir la meilleure méthode de prévision est MAD (Mean Absolute Deviation).

1.2. ForeScope+ 1.0

C'est un logiciel encore en cours de développement. Les méthodes de prévision proposées sont les suivantes :

- Prévision naïve:
- Marche aléatoire avec dérive;
- Moyenne mobile, de forme : X(n+1) = A*MA(k) +B;
- Méthodes de lissage exponentiel : Holt, Brown;
- Lissage exponentiel avec tendance et saisonnalité (Theil-Wage si additif et Winters si multiplicatif;
- Décomposition selon la tendance et saisonnalité, en modélisant la tendance par lissage exponentiel et par autorégression;
- Méthode de Box-Jenkins.

Remarques:

A l'aide du module «Expert», l'utilisateur peut obtenir des prévisions réalisées automatiquement par le logiciel.

a. Dans la boîte de dialogue suivante, si «Test mode» est sélectionné, les dernières N observations de la série ne sont pas utilisées dans le processus de prévision, mais pour évaluer la qualité des prévisions :

b. L'utilisateur a la possibilité d'introduire des informations sur la série, comme par exemple, la saisonnalité et les différents événements qui ont influencé cette série :

- c. Si nécessaire, Fore Scope applique automatiquement des transformations aux séries.
- d. Il réalise des prévisions pour les séries très courtes.
- e. Le temps d'apprentissage est très court.
- f. La procédure pour choisir la meilleure méthode est la suivante :
 - Le logiciel réalise une analyse préliminaire de la série pour détecter les périodicités (les cycles et les saisonnalités) et la tendance, en utilisant l'analyse spectrale et la fonction d'autocorrélation;

chaque méthode est appliquée aux séries; pour les modèles saisonniers, toutes les périodicités trouvées sont utilisées comme facteur potentiel saisonnier. Dans la même catégorie de méthodes, la sélection du meilleur «prédicteur» est fondée sur la maximisation du coefficient de détermination ajusté. Pour choisir la meilleure méthode de prévision on utilise la formule suivante :

$$R = (RMSE + LAST _RMSE(k)) \times \sqrt{\binom{N}{(N-P)}}, \text{ où}$$

LAST_RMSE(k) est le RMSE (erreur quadratique moyenne) calculé pour les k dernières observations des séries,

N = longueur de la série;

P = nombre de paramètres du modèle.

Fore Scope choisit le modèle pour lequel la valeur de R est minimale.

1.3. KTS - 304

KXEN Time Series (KTS) est un des composants analytiques de la suite KXEN Analytic Framework. KTS construit ses modèles en extrayant les quatre composantes suivantes :

- La tendance celle-ci est une fonction du temps ou une simple différentiation du signal.
- Les périodicités décrivent les parties récurrentes dans le signal et peuvent être de 2 types : les cycles (parties récurrentes indépendantes de la date) ou les saisonnalités (parties récurrentes dépendant de la date).
- Les fluctuations représentent les perturbations qui affectent une série chronologique et qui dépendent de son état passé : c'est le "phénomène de mémoire". Ces fluctuations sont expliquées par un modèle de type autorégressif.
- Le résidu la partie non-expliquée de l'information contenue dans le signal.

La prévision donnée par KTS est donc la somme des trois premières composantes : la tendance, les périodicités et les fluctuations. Les modèles comparés par KTS sont une combinaison d'une ou plusieurs de ces composantes.

Remarques:

a. KTS cherche automatiquement la ou les périodicités (cycles et/ou saisonnalités) contenues dans le signal. Cependant, une variable «Date» doit être spécifiée pour chacune des séries :

b. La rubrique composante du modèle décrit les différentes parties extraites du signal :

Exemples:

K2R est le moteur de «Robust Regression» de KXEN; le chiffre entre parenthèses pour l'AR est son ordre (le nombre de données passées utilisées). Par exemple:

- AR(3) correspond à $X_t = a_1X_{t-1} + a_2X_{t-2} + a_3X_{t-3}$; (X_t est le signal auquel on a extrait les composantes tendances et périodes si cela était possible);
- L1 correspond à une marche aléatoire; il correspond également au modèle dit «naïf» d'une série chronologique;
- c. KTS permet d'introduire des variables événements prédictibles qui ont pu et qui pourraient affecter la série chronologique.
- d. Le temps d'apprentissage pour les séries très longues (comme la série testée S34 : 3333 observations ; S35 : 1302 observations ; S37 : 5113 observations) est très grand par rapport aux autres logiciels.
- e. Pour les séries très courtes (12 observations, dont 10 ont été utilisées pour prévoir) le logiciel ne peut pas réaliser des prévisions c'est une limite "technique". En effet, KTS utilise un ensemble d'apprentissage et un ensemble de validation (les autres logiciels utilisent généralement par défaut toutes les données en apprentissage). L'ensemble de validation permettra à KTS de déterminer quel est le meilleur modèle. Le problème est que

les séries courtes parmi les séries utilisées ne présentent plus que 2 ou 3 données dans l'ensemble de validation, ce qui est trop peu pour valider le choix d'un modèle.

f. Notons que pour la série S38, KTS n'a pas pu trouver de modèle :

- g. Pour choisir le meilleur modèle les critères utilisés par le logicel sont des critères spécifiques :
 - « la confiance sur l'horizon le plus grand possible par rapport à l'horizon de prévision choisi »;
 - « l'erreur minimum cumulée sur l'horizon maximum de confiance trouvé précédemment ».

1.4. SAS 8.2

L'option «Application de prévision de séries temporelles» a été introduite à partir de la version 8.0, les méthodes disponibles étant les suivantes :

Remarques:

a. Pour démarrer, l'utilisateur doit spécifier le type des données utilisées; le logiciel va créer automatiquement une variable «ID» :

- b. Lorsque cela est nécessaire, SAS transforme la série initiale et précise le type de transformation utilisée.
- c. Le temps d'apprentissage est très court.
- d. Il réalise aussi des prévisions pour les séries très courtes.
- e. Pour choisir le meilleur modèle de prévision, le critère par défaut est le RMSE (Root Mean Squre Error). Cependant, l'utilisateur a la possibilité de choisir lui-même un autre critère (dans cette étude nous avons considéré le critère par défaut) parmi la liste:

1.5. SPSS Decision Time 1.1

SPSS Decision Time 1.1 est le logiciel de prévision réalisé par SPSS Inc. Il est destiné plus spécifiquement à prévoir des séries microéconomiques. Les méthodes de prévision disponibles vont des classiques lissages exponentiels aux modèles ARIMA.

A l'aide de «Forecast Wizard», l'utilisateur est guidé dans les étapes du processus de prévision :

Remarques:

a. L'utilisateur doit indiquer le type de données utilisées :

b. SPSS Decision Time offre la possibilité d'introduire dans le processus de prévision des évènements qui ont affecté la série et qui sont considérés importants par l'utilisateur :

- c. Si nécessaire, SPSS applique automatiquement des transformations aux séries.
- d. Les séries très courtes sont acceptées.
- e. Le temps d'apprentissage est très court.
- f. Pour choisir la meilleure méthode, le critère par défaut est le MAPE (écart absolu moyen en pourcentage), mais l'utilisateur a la possibilité de choisir un autre critère (dans cette étude nous avons utilisé le critère proposé par défaut):

1.6. Statgraphics 5.1

Avec l'option «Prévision automatique» du menu «Analyse de séries temporelles» le logiciel sélectionne automatiquement le meilleur modèle pour la série chronologique à prévoir. Les méthodes disponibles pour réaliser cette opération sont les suivantes :

Remarques:

a. L'utilisateur doit indiquer si la série est ou non saisonnière :

b. Parmi les logiciels utilisés, Statgraphics est le seul qui présente une comparaison des modèles existants :

Exemple pour la série S14:

```
Modèles
(A) Cheminement aléatoire
(B) Moyenne constante = 151,203
(C) Tendance linéaire = 158,965 + -0,344997 t
(D) Tendance quadratique = 160,97 + -0,606533 t + 0,00581191 t^2
(E) Tendance exponentielle = exp(5,06792 + -0,0022725 t)
(F) Courbe en S = \exp(5,00207 + 0,148122 /t)
(G) Moyenne mobile simple de 3 termes
(H) Lissage exponentiel simple avec alpha = 0,1185
(I) Lissage exponentiel de Brown avec alpha = 0,066
(J) Lissage exponentiel de Holt avec alpha = 0,1369 et bêta = 0,1541
(K) Lissage exp. quadratique de Brown avec alpha = 0,0487
(L) Lissage exponentiel de Winter avec alpha = 0,1115, bêta = 0,9904, gamma = 0,2708
(M) ARMA(0,0) SARMA(0,0)
(N) ARMA(1,0) SARMA(1,0)
(O) ARMA(2,1) SARMA(2,1)
(P) ARMA(3,2) SARMA(3,2)
(O) ARMA(4,3) SARMA(4,3)
Période d'estimation
Modèle RMSE MAE
                                                 MAPE ME
                                                                                                                   AIC
                                                                                    MPE
(A) 12,7677 10,1497 6,92642 -0,424332 -0,6068 5,09384 (B) 9,14034 6,66621 4,49649 -0,0135941 -0,368958 4,47085 (C) 8,06273 6,1717 4,20827 -0,0133376 -0,285197 4,26541 (D) 8,12847 6,06037 4,13947 0,0049368 -0,283499 4,32711 (E) 8,06092 6,17055 4,20201 0,199932 -0,143246 4,26496 (F) 8,4939 6,11346 4,12108 0,248932 -0,155617 4,36961
(F) 8,4939 6,11346 4,12108 0,248932 -0,155617 4,36961 (G) 9,10787 6,83894 4,70417 -0,53257 -0,629646 4,41828 (H) 8,73201 6,78757 4,67177 -1,92211 -1,58701 4,37945 (I) 8,81841 6,89174 4,75603 -2,11021 -1,69528 4,39914 (J) 8,81992 6,61529 4,51483 0,00194716 -0,295216 4,44493 (K) 8,93648 7,0335 4,85039 -2,1815 -1,73102 4,42574 (L) 10,1517 7,63795 5,23003 0,968574 0,314189 4,77165 (M) 19,3721 15,1198 9,93289 1,2919E-14 -1,5274 5,97312 (N) 10,0758 7,31007 5,02042 -2,18181 -1,70985 4,75664
```

- c. Statgraphics ne réalise pas automatiquement la transformation des séries ; c'est l'utilisateur qui doit indiquer le type de transformation.
- d. Le logiciel réalise des prévisions même pour les séries très courtes.

 (M)
 19,3/21
 15,1198
 9,93289
 1,2919E-14
 -1,5274
 5,97312

 (N)
 10,0758
 7,31007
 5,02042
 -2,18181
 -1,70985
 4,75664

 (O)
 8,79284
 6,04064
 4,11601
 0,17432
 -0,0794479
 4,66606

 (P)
 4,14392
 1,74728
 1,22185
 -0,00165055
 -0,0769192
 3,34329

 (Q)
 2,64037
 0,960803
 0,690077
 0,00248515
 -0,0333923
 2,62366

- e. Le temps d'apprentissage est très court.
- f. Le critère de choix de la meilleure méthode est le minimum du critère d'information d'Akaike (c'est ce critère que nous avons utilisé dans cette étude).

Les principales différences entre les logiciels :

- Statgraphics est le seul qui ne réalise pas automatiquement la transformation de la série, c'est l'utilisateur qui doit l'indiquer. Les autres logiciels cherchent automatiquement la transformation à appliquer à la série parmi les transformations usuelles (logarithme, racine carrée).
- Pour Forecast Pro et Statgraphics l'utilisateur doit spécifier si la série est ou non saisonnière ; les autres déterminent automatiquement la saisonnalité.
- Parmi les 6 logiciels, Statgraphics est le seul qui présente une comparaison des modèles.

 ForeScope, KTS et SPSS Decision Time offrent la possibilité d'introduire dans le processus de prévision des évènements qui ont affecté la série et qui sont considérés importants par l'utilisateur.

2. Séries utilisées

Pour réaliser cette étude nous avons utilisé 50 séries chronologiques de plusieurs types :

Périodicité	Type de séries									
des données	Macro	Macro Industrie Finance Démographie Environnement								
Annuelle	1	7	0	3	2	0	13			
Trimestrielle	2	4	1	0	0	0	7			
Mensuelle	4	11	2	2	1	0	20			
Journalière	0	0	3	1	1	1	6			
Autres	0	0	0	0	0	4	4			
Total	7	22	6	6	4	5	50			

Il y a des séries très courtes et aussi des séries qui dépassent 1000 observations, dont la plus longue a 5083 observations. La description complète des séries est faite dans l'**Annexe 1**.

La principale source pour sélectionner ces séries est la M3-Competition, étude coordonnée par Makridakis et Hibon (2000) qui compare des méthodes de prévision pour 3003 séries.

Figure n°1 : 6 exemples parmi les 50 séries utilisées

Pour comparer les résultats obtenus en utilisant chaque logiciel, on a procédé de la manière suivante:

- on supprime les dernières observations :
 - 6 pour les séries annuelles longues et 2 pour les séries courtes;
 - 8 pour les séries trimestrielles;

- 12 en général pour les séries mensuelles, mais 2 pour les séries très courtes;
- 30 pour les séries journalières;
- 18 pour les autres types de séries, sauf la série 50 pour laquelle 10 observations sont supprimées.
- chaque logiciel doit prévoir, pour chaque série, les observations supprimées;
- les valeurs prévues sont comparées avec les valeurs réelles observées.

Figure n°2 : Deux exemples de prévisions

3. Critères et normalisations

En notant e_i les erreurs de prévision, les critères suivants ont été utilisés pour évaluer les performances de chaque logiciel :

1) l'écart type :
$$SD = \sqrt{\frac{1}{n} (e_i - e_j)^2}$$
 ;;

2) l'écart absolu moyen :
$$MAD = \frac{1}{n} \sum_{i=1}^{n} |e_i - \overline{e}|$$

3) l'erreur absolue moyenne :
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |e_i|$$
;

4) l'écart absolu moyen en pourcentage :
$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{e_i}{y_i} \right|$$
;

5) l'erreur quadratique moyenne :
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} e_i^2}$$
;

6) l'erreur maximale = $\max |e_i|$.

Les résultats obtenus pour tous les critères sont dans l'Annexe 2.

Sauf MAPE, dont on verra plus loin qu'il se comporte différemment des autres, ces critères sont sensibles à l'échelle de mesure au niveau des séries et ne peuvent donc être comparés d'une série à l'autre.

Deux normalisations ont été utilisées : soit en divisant par la moyenne de la série, soit en divisant par la moyenne des valeurs du critère obtenues par les différents logiciels pour la même série. Dans cet article on présente seulement les résultats pour le premier type de normalisation.

Exemple: normalisation en fonction de la moyenne de la série

Série	Logiciel	SD	SD normalisé
S1	Forecast Pro 4.2	952,6863	0,3719 (=952,6863/2561,7805)
S1	ForeScope+ 1.0	536,4608	
S1	KTS - 304	481,1381	0,1878
S1	SAS 8.2	712,2782	0,2780
S1	SPSS - Decision Time 1.1	712,2256	0,2780
S1	Statgraphics 5.1	797,0265	0,3111
Moyenne de la série		2561,7805	

Ensuite, en utilisant les valeurs normalisées, on a considéré pour chaque normalisation deux types d'analyses en composantes principales.

4. Les deux types d'analyses en composantes principales

Comme KTS ne réalise pas de prévisions pour les séries très courtes ni pour la série qui contient beaucoup de valeurs nulles (au total 7 séries), nous avons considéré 2 cas :

- on utilise les 6 logiciels avec les 43 séries qui peuvent être prévues par tous les logiciels;
- on utilise 5 logiciels (en excluant KTS) et les 50 séries.

Nous ne présentons ici que les résultats correspondant au premier cas.

Pour chaque logiciel, on dispose donc d'un tableau de dimension : (43 x 6) contenant les valeurs des 6 critères statistiques normalisés. Les 6 logiciels étudiés conduisent donc à 6 tableaux analogues. Pour analyser simultanément ces tableaux on peut les assembler de deux manières différentes :

4.1 Juxtaposition horizontale

Objectif : étudier, dans le cadre de chaque logiciel, les corrélations entre critères. Les 43 séries sont les individus et les 6 critères croisés avec les logiciels sont les variables continues actives.

X ₁		X2		Х3		X4		X5		X6	
----------------	--	----	--	----	--	----	--	----	--	----	--

4.2 Empilement vertical:

X1

Objectif : étudier les corrélations entre les 6 critères. Il y a donc 6 colonnes et 258 individus (43 séries x 6 logiciels).

A chaque série correspond donc 6 points.

Les logiciels sont alors les modalités d'une variable nominale illustrative supplémentaire, ce qui permettra de réaliser un classement pour les logiciels.

5. Résultats

5.1 Juxtaposition horizontale

Les deux premiers axes factoriels extraient 95,41% de l'inertie du nuage de points :

NUMERO	VALEUR PROPRE	POURCENTAGE	POURCENTAGE CUMULE		
1	29.2824	81.34	81.34		
2	5.0669	14.07	95.41	*******	
3	0.6682	1.86	97.27	**	
4	0.4295	1.19	98.46	**	
5	0.1910	0.53	98.99	*	

Le cercle de corrélation montre que le critère MAPE a un comportement indépendant des autres et que tous les autres critères sont très semblables entre eux quel que soit le logiciel.

Figure n°3 : Cercle de corrélation

On peut observer qu'il existe des corrélations très fortes entre :

- le premier axe et tous les critères de tous les logiciels, sauf MAPE (les valeurs sont entre 0,9127 et 0,9934);
- le deuxième axe et MAPE (avec des valeurs entre 0,8338 et 0,9183).

Plan principal:

Figure n°4 : Graphique des 43 séries (points individus)

Figure n°5 : Graphique des séries (individus) – zoom au centre

En général, les séries sont proches du centre du graphique; donc les valeurs des critères sont globalement proches des valeurs moyennes.

On constate (fig. 4) que les séries 4 et 45 ont un comportement très différent des autres et contribuent fortement à l'inertie portée par chaque axe. La série qui contribue le plus au premier axe est S4 (59,3% de l'inertie de cet axe est due à cette série); S45 contribue le plus au deuxième axe

(avec 54,5%). Donc, ces deux séries ont une grande influence pour la détermination de ces axes. Cependant, si dans une nouvelle analyse, on considère les deux séries comme individus illustratifs, le cercle de corrélation est le même.

La série 4 («La valeur de marché du stock total de vente sur les échanges enregistrés entre 1947-1987») est une série annuelle sans saisonnalité et qui a une évolution constante jusqu'à une croissance brusque.

La série 45 («Le PIB réel aux Etats Unis - exprimé en \$ 1982 - entre le premier trimestre 1947 et le troisième trimestre 1991») est une série trimestrielle, sans saisonnalité mais qui présente de grandes fluctuations.

Figure n°6 : Les 2 séries atypiques

5.2 Empilement vertical

MATRI	CE DES COI	RRELATIO MAD	ONS MAE	MAPE	RMSE	EMAX
SD MAD MAE MAPE RMSE EMAX	1.00 1.00 0.92 0.33 0.95 0.98	1.00 0.92 0.31 0.95 0.98	1.00 0.36 1.00 0.97	1.00 0.36 0.37	1.00 0.99	1.00

HISTOGRAMME DES 6 PREMIERES VALEURS PROPRES

NUMERO	VALEUR PROPRE	POURCENTAGE	POURCENTAGE CUMULE	
1	5.0111	83.52	83.52	*******************************
2	0.8531	14.22	97.74	*******
3	0.1256	2.09	99.83	***
4	0.0094	0.16	99.99	*
5	0.0005	0.01	100.00	*
6	0.0002	0.00	100.00	*
			+	++

La première composante principale extrait 83,52% de l'inertie totale.

On constate à nouveau que MAPE a un comportement différent des autres critères.

Figure n°7 : Cercle de corrélation

COORDONNEES DES VARIABLES SUR LES AXES $\ 1\ A\ 5\ VARIABLES\ ACTIVES$

VARIABLES	+ !	CO	ORDONNE	COORDONNEES				CORRELATIONS VARIABLE-FACTEUR				ANCIENS AXES UNITAIRES			
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
SD	0.98	-0.10	0.18	-0.01	-0.02	0.98	-0.10	0.18	-0.01	-0.02	0.44	-0.11	0.51	-0.10	-0.73
MAD	0.98	-0.12	0.17	-0.03	0.01	0.98	-0.12	0.17	-0.03	0.01	0.44	-0.13	0.48	-0.35	0.65
MAE	0.97	-0.05	-0.22	-0.03	0.00	0.97	-0.05	-0.22	-0.03	0.00	0.44	-0.05	-0.61	-0.33	-0.14
MAPE	0.42	0.91	0.02	0.00	0.00	0.42	0.91	0.02	0.00	0.00	0.19	0.98	0.06	-0.02	0.01
RMSE	0.99	-0.07	-0.13	-0.01	0.00	0.99	-0.07	-0.13	-0.01	0.00	0.44	-0.07	-0.38	-0.09	0.08
EMAX	0.99	-0.06	0.00	0.08	0.00	0.99	-0.06	0.00	0.08	0.00	0.44	-0.06	-0.01	0.87	0.13

Figure n° 8 : Graphique des 43 séries (points individus)

On peut constater que:

- les séries différentes S4 et S45 sont atypiques pour tous les logiciels;
- les sous-nuages associés aux 5 logiciels sont, en général, concentrés.

En représentant pour chaque logiciel le centre de gravité des 43 séries (fig. 9), le classement sur le premier axe donnerait de gauche à droite l'ordre des logiciels par performance moyenne : SPSS, Statgraphics, SAS, Fore Scope, KTS, Forecast Pro.

Figure n°9 : Graphique des logiciels analysés - zoom

Mais ce classement est illusoire car les zones de confiance se recouvrent largement (comme le montre la figure 10): on peut donc difficilement conclure à la supériorité d'un logiciel sur les autres.

Figure n°10 : Zones de confiance

Remarques en guise de conclusion

- La principale conclusion (qui tient compte des 8 analyses en composantes principales réalisées pour les 2 normalisations) est qu'on ne peut pas fournir un classement global des 6 logiciels testés. En effet leurs performances ne sont pas significativement différentes du point de vue des 6 critères considérés, quelle que soit la normalisation utilisée. Cette remarque pourra aussi rassurer l'utilisateur embarrassé pour faire le choix d'un logiciel.
- Le problème de la confiance dans les prévisions réalisées automatiquement reste entier.
- Les situations sont fréquentes dans lesquelles des modèles complexes ne donnent pas de meilleurs résultats que des modèles simples. Par exemple, pour la série 37, les méthodes simples de lissage exponentiel utilisées par SPSS et SAS donnent des résultats meilleurs que les modèles ARIMA utilisés par Forecast Pro et Statgraphics.

Naturellement ces conclusions ne sont valables, en toute rigueur, que pour l'ensemble des 50 séries utilisées et pour les critères de performance considérés ici.

Bibliographie

Gourieroux, C., Monfort, A., Séries temporelles et modèles dynamiques, Economica, Paris, 1995

Makridakis, S., Wheelwright, S. C., Hydman, R. J., Forecasting: methods and applications, Wiley, New York, 1998

Makridakis, S. et Hibon, M. (2000) *The M3-Competition: results, conclusion and implication,* International Journal of Forecasting, vol. 16

Mélard, G., Méthodes des prévision à court terme, Ellipses, Bruxelles, 1990

On trouvera des précisions sur les logiciels testés à l'adresse des sites suivant :

http://www.forecastpro.com

http://www.kxen.com

http://www.sas.com

http://www.spss.com.fr

http://www.statgraphics.com

Les analyses ont été effectuées à l'aide du logiciel SPAD 5.5.

Valentina STAN : Une étude comparative de logiciels de prévision automatique de séries chronologiques

ANNEXE 1: RESULTATS «BRUTS» DE L'ETUDE

Le tableau suivant donne, pour chaque série, les performances de chaque logiciel selon les 6 critères.

					Cr	itère		
Série		Logiciel	SD	MAD	MAE	MAPE	RMSE	Erreur max
	10000 _	Forecast Pro 4.2	952,6863	739,0000	1272,3333	0,1859	1569,8036	2966,0000
	8000	ForeScope+ 1.0	536,4608	424,3091	515,9090	0,0835	586,1120	839,4663
G1	6000	KTS - 304	481,1381	383,0267	383,0267	0,0594	485,6013	997,7800
S1	4000	SAS 8.2	712,2782	527,6583	792,0181	0,1155	1010,4086	2056,0722
	2000	SPSS - Decision Time 1.1	712,2256	527,6244	792,2483	0,1156	1010,6480	2056,3800
	1 4 7 10 13 16 19 2 2 2 31 3 3 4	Statgraphics 5.1	797,0265	703,6544	642,7067	0,1017	942,8886	1944,8100
	14000	Forecast Pro 4.2	2041,0657	1788,3937	4447,1043	0,4049	4893,1264	6843,9380
	12000	ForeScope+ 1.0	2279,5223	2000,4979	4470,3620	0,4014	5018,0034	7220,3602
S2	8000	KTS - 304	1998,4955	1750,0517	5110,6383	0,4742	5487,4956	7439,4900
52	4000	SAS 8.2	2062,1778	1807,2010	4491,4457	0,4090	4942,2325	6919,6251
	2000	SPSS - Decision Time 1.1	2018,4626	1768,2517	4400,0083	0,4007	4840,8950	6763,2700
	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41	Statgraphics 5.1	1900,9260	1671,4217	4147,4083	0,3777	4562,2928	6327,1100
	1800 —	Forecast Pro 4.2	178,2947	154,0893	299,7983	0,2031	348,8094	563,2210
	1800 1600 1400 1200 1000 800 600 400	ForeScope+ 1.0	213,0502	195,1229	290,2011	0,1938	360,0098	571,1382
		KTS - 304	169,7928	147,7550	208,2283	0,1383	264,1792	449,6200
S3		SAS 8.2	126,5181	111,5047	195,7568	0,1314	233,0827	397,5364
	1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81	SPSS - Decision Time 1.1	136,5777	120,7778	219,8333	0,1480	258,8053	439,0000
		Statgraphics 5.1	210,3599	183,6868	305,3702	0,2046	370,8129	632,6610
		Forecast Pro 4.2	4934,0614	4209,9666	6565,1797	0,4385	8212,5846	15579,0290
	25000	ForeScope+ 1.0	5640,1663	4784,1117	7220,3644	0,4715	9162,1579	17321,8006
S4	15000	KTS - 304	5238,2030	4464,7978	8585,0733	0,6142	10056,9506	18008,1700
54	10000	SAS 8.2	3670,7085	3131,0225	4581,2406	0,3005	5870,4230	11423,3420
	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41	SPSS - Decision Time 1.1	3670,7154	3131,0278	4581,2433	0,3005	5870,4295	11423,3600
	1 3 3 7 9 11 13 13 17 1921 23 23 27 29 31 33 33 39 39 41	Statgraphics 5.1	4201,2603	3586,6078	5427,6733	0,3596	6863,6890	13188,7500
		Forecast Pro 4.2	902,6230	834,3124	1132,3215	0,1641	1270,4380	1772,9800
	8000	ForeScope+ 1.0	808,9987	734,1667	734,1667	0,0984	830,4428	1502,0000
S5	6000	KTS - 304	808,9987	734,1667	734,1667	0,0984	830,4428	1502,0000
33	4000	SAS 8.2	889,4605	822,8305	1100,8885	0,1592	1219,4205	1687,2927
	1 3 5 7 9 11 13 15 17 19 21 23 25	SPSS - Decision Time 1.1	911,8793	842,0156	1153,4633	0,1673	1305,5732	1830,6300
	1 3 3 1 5 11 13 13 17 18 21 23 25	Statgraphics 5.1	808,9987	734,1667	734,1667	0,0984	830,4428	1502,0000

					Cr	itère		
Série		Logiciel	SD	MAD	MAE	MAPE	RMSE	Erreur max
		Forecast Pro 4.2	0,8000	0,8000	2,3000	1,0000	2,4352	3,1000
	1 1 2 3 4 5 6 7 8 9 10 11 12	ForeScope+ 1.0	0,8000	0,8000	0,9000	0,3075	1,2042	1,7000
9.6	2 3	KTS - 304						
S6	4-5	SAS 8.2	0,9609	0,9609	1,4760	0,5648	1,7612	2,4369
	-6	SPSS - Decision Time 1.1	0,8000	0,8000	0,9000	0,3075	1,2042	1,7000
		Statgraphics 5.1	0,9549	0,9549	1,6154	0,6348	1,8766	2,5703
		Forecast Pro 4.2	1,8000	1,8000	1,8000	0,4575	1,8493	2,2240
	7 6	ForeScope+ 1.0	1,8000	1,8000	2,1000	0,8046	2,7659	3,9000
	5	KTS - 304						
S7	3 2	SAS 8.2	2,0355	2,0355	2,0355	0,7317	2,4349	3,3717
	1 2 3 4 5 6 7 8 9 10 11 12	SPSS - Decision Time 1.1	1,8000	1,8000	2,0999	0,8046	2,7658	3,8999
		Statgraphics 5.1	1,8000	1,8000	2,1000	0,8046	2,7659	3,9000
		Forecast Pro 4.2	1321,1947	1188,8889	1066,6667	0,1252	1424,6225	2366,2440
	12000	ForeScope+ 1.0	969,0079	870,6567	1511,2716	0,1774	1795,2488	2966,2070
S8	8000	KTS - 304	1421,5404	1255,9356	1180,4633	0,1413	1504,6858	2421,7700
	4000	SAS 8.2	1450,4025	1295,0235	1205,0995	0,1477	1475,2777	2302,1080
	2000	SPSS - Decision Time 1.1	1321,1947	1188,8889	1066,6667	0,1251	1426,1635	2370,3500
	1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52	Statgraphics 5.1	904,5415	809,1833	1773,1700	0,2130	1990,5595	3177,7600
		Forecast Pro 4.2	1038,7009	913,6742	1981,8655	0,3647	2237,5635	3454,6560
	8000	ForeScope+ 1.0	315,4582	275,0000	508,3333	0,0938	584,1661	900,0000
	6000	KTS - 304	1304,4560	1151,8417	2296,7717	0,4235	2641,3567	4370,6400
S9	4000	SAS 8.2	762,4929	667,2943	1556,1530	0,2858	1732,9188	2573,1815
	2000	SPSS - Decision Time 1.1	1108,3202	974,9150	2118,5317	0,3898	2390,9308	3693,3900
	1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52	Statgraphics 5.1	910,6498	801,1600	1786,7400	0,3285	2005,4234	3024,7100
		Forecast Pro 4.2	29120,5000	29120,5000	84108,5000	0,0051	89006,9845	113229,0000
	1740000	ForeScope+ 1.0	22217,0000	22217,0000	69904,0000	0,0043	73349,6033	92121,0000
	17000000	KTS - 304						
S10	16600000	SAS 8.2	25582,3973	25582,3973	76996,6999	0,0047	81135,3859	102579,0972
	1620000	SPSS - Decision Time 1.1	29120,5000	29120,5000	84108,5000	0,0051	89006,9845	113229,0000
	1 2 3 4 5 6 7 8 9 10 11 12 13	Statgraphics 5.1	38833,0000	38833,0000	132727,0000	0,0081	138291,2088	171560,0000
		Forecast Pro 4.2	0,5000	0,5000	0,5000	0,0051	0,5711	0,7760
	101	ForeScope+ 1.0	0,5000	0,5000	0,8000	0,0082	0,9434	1,3000
	99 98	KTS - 304						
S11	97 96	SAS 8.2	0,6022	0,6022	0,7844	0,0080	0,9889	1,3866
	95	SPSS - Decision Time 1.1	0,5000	0,5000	0,8000	0,0082	0,9434	1,3000
	1 2 3 4 5 6 7 8 9 10 11 12	Statgraphics 5.1	0,5000	0,5000	0,8000	0,0082	0,9434	1,3000

					Cr	itère		
Série		Logiciel	SD	MAD	MAE	MAPE	RMSE	Erreur max
	20000 —	Forecast Pro 4.2	918,7783	766,5000	1543,7510	0,4506	1796,4745	2981,2510
	16000	ForeScope+ 1.0	916,3111	817,8032	866,9217	0,2979	928,0838	1453,8423
a12	12000	KTS - 304	656,9977	539,9017	539,9017	0,2095	657,9704	1159,3600
S12	4000	SAS 8.2	942,9464	793,9490	1493,4435	0,4287	1764,6162	2905,5351
	0	SPSS - Decision Time 1.1	918,7783	766,5000	1176,0067	0,3399	1418,8998	2518,7600
	1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61	Statgraphics 5.1	908,4438	748,2722	725,4500	0,2584	911,6246	1573,7300
		Forecast Pro 4.2	3,1000	3,1000	12,3280	0,1081	12,7118	15,4280
	140	ForeScope+ 1.0	3,1000	3,1000	11,6000	0,1017	12,0071	14,7000
010	100	KTS - 304						
S13	60 40	SAS 8.2	2,6509	2,6509	12,3800	0,1087	12,6606	15,0309
	20	SPSS - Decision Time 1.1	2,6509	2,6509	12,1781	0,1069	12,4633	14,8290
	1 2 3 4 5 6 7 8 9 10 11 12 13	Statgraphics 5.1	3,1000	3,1000	12,8670	0,1129	13,2352	15,9670
	250	Forecast Pro 4.2	9,6130	7,7639	7,9167	0,0529	9,8362	20,0000
	200	ForeScope+ 1.0	9,6701	7,8227	9,6051	0,0626	11,5202	22,1166
C14	150	KTS - 304	11,5332	9,5423	13,1059	0,0887	14,9046	26,9350
S14	50	SAS 8.2	10,1099	8,5725	8,3922	0,0584	10,2092	17,0039
	٥ ــــــــــــــــــــــــــــــــــــ	SPSS - Decision Time 1.1	10,1527	8,6764	10,0372	0,0680	12,4692	23,7245
	1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55	Statgraphics 5.1	10,4253	8,3429	8,1801	0,0589	11,0180	24,1230
	6000	Forecast Pro 4.2	238,5933	213,0472	249,0269	0,0992	305,4268	530,5210
	5000	ForeScope+ 1.0	245,1669	218,5392	260,6529	0,1065	315,3185	544,0891
C15	3000	KTS - 304	286,9109	251,1092	280,1108	0,1111	354,3895	705,1400
313	1000	SAS 8.2	224,8254	189,8545	195,2947	0,0811	232,7384	389,1634
	1 14 27 40 53 66 79 92 105 118 131 144 157 170 183	SPSS - Decision Time 1.1	246,4991	217,6024	258,1242	0,0997	328,4258	596,4700
S15		Statgraphics 5.1	283,8730	233,0775	313,2592	0,1244	374,3731	676,8800
	45000	Forecast Pro 4.2	2332,7459	1802,9280	1919,1257	0,0885	2476,4753	5226,9470
	35000	ForeScope+ 1.0	2576,7366	2100,8464	2014,5007	0,0933	2628,3022	5959,5273
S16	25000	KTS - 304	2884,3310	2339,5292	2370,3417	0,1158	3551,2547	8500,6000
310	15000	SAS 8.2	2620,1164	2068,8556	1988,8021	0,0932	2699,3014	6344,2929
	1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181	SPSS - Decision Time 1.1	2710,1163	2183,8736	2153,9417	0,1040	3109,4212	7502,7000
		Statgraphics 5.1	2676,1159	2076,9236	2176,2417	0,1024	3044,8379	7657,9000
	16000	ForeScope+ 1.0	1649,5875	1284,3554	1362,2374	1,9939	1880,8007	4767,4492
	14000	KTS - 304	2014,2271	1594,2142	2123,4808	2,8634	2655,1884	5274,1400
S17	8000	SAS 8.2	1716,1322	1360,0268	1675,1068	2,3801	2204,1044	4785,6079
	4000	SPSS - Decision Time 1.1	1371,4188	1053,5414	1615,7233	2,2228	2070,4786	4734,7200
	0	Statgraphics 5.1	1533,7649	1209,9778	1441,4050	2,2200	2001,4522	4709,3600

					Cr	itère		
Série		Logiciel	SD	MAD	MAE	MAPE	RMSE	Erreur max
	12000	Forecast Pro 4.2	797,6552	615,0716	648,4912	0,0758	812,8748	1856,9010
	10000	ForeScope+ 1.0	733,3532	572,2704	630,7676	0,0730	754,0585	1691,7168
010	6000	KTS - 304	566,7363	471,7444	733,4500	0,0785	811,7326	1234,9900
S18	2000	SAS 8.2	742,7003	575,2204	687,9535	0,0765	816,0775	1576,6083
	0	SPSS - Decision Time 1.1	755,8183	573,8822	618,7392	0,0722	767,7047	1803,8100
	1 29 57 85 113 141 169 197 225 253 281 309 337 365 393 421 449	Statgraphics 5.1	880,2066	634,1450	631,8525	0,0807	924,2501	2539,6100
	12000	Forecast Pro 4.2	658,2547	509,7527	1148,1157	0,1202	1323,4307	2379,4620
	10000	ForeScope+ 1.0	805,3677	632,1302	2316,4900	0,2427	2452,4973	3396,2207
S19	6000	KTS - 304	737,3748	556,7658	698,5308	0,0751	866,4830	1739,5000
51)	4000 1 1 1 Man 1 1 1 Man	SAS 8.2	686,8671	574,3401	1295,8707	0,1367	1466,6517	2454,1354
	0	SPSS - Decision Time 1.1	607,8243	486,7800	1563,7433	0,1648	1677,7198	2640,3400
	1 10 19 28 37 46 55 64 73 82 91 100 109 118	Statgraphics 5.1	885,1196	703,1292	969,8008	0,1018	1176,2425	2532,8400
	350	Forecast Pro 4.2	3,6396	2,8029	3,9574	0,0156	5,1334	11,0910
	300 250	ForeScope+ 1.0	3,6445	3,0386	4,3175	0,0169	5,4984	10,8921
S20	200 150	KTS - 304	4,2829	3,9753	4,1533	0,0163	4,4142	5,9850
	100 -	SAS 8.2	3,8709	3,2876	3,0491	0,0119	4,1269	9,2369
	0	SPSS - Decision Time 1.1	3,6022	3,2102	3,2412	0,0129	3,8945	8,0823
	1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136	Statgraphics 5.1	4,0003	3,2863	3,1677	0,0125	4,1338	8,9720
	250	Forecast Pro 4.2	6,9874	5,1027	5,8268	0,1018	8,2040	23,2790
	200	ForeScope+ 1.0	7,6677	5,8974	6,7691	0,1143	8,7725	23,8329
S21	150	KTS - 304	7,7188	6,7552	7,1856	0,1160	8,8103	19,5434
	50	SAS 8.2	7,5627	5,9399	8,1240	0,1370	10,8404	26,2447
	1 30 59 88 117 146 175 204 233 262 291 320 349 378 407 436	SPSS - Decision Time 1.1	8,3569	6,9207	7,7070	0,1247	9,8204	18,7313
	1 30 39 66 117 146 173 204 233 202 291 320 349 376 407 430	Statgraphics 5.1	7,7059	5,8959	6,7655	0,1144	8,7849	23,9480
	6000	Forecast Pro 4.2	667,1769	580,6782	2091,3567	0,7739	2195,1988	3437,7680
	5000	ForeScope+ 1.0	656,4512	556,1054	1486,0513	0,5774	1624,5851	2695,4793
S22	3000	KTS - 304	818,7549	686,5623	2292,2458	0,8940	2434,0810	3620,1960
	1000	SAS 8.2	817,2462	719,7303	2253,0445	0,8418	2396,6853	3585,0464
	0 1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136	SPSS - Decision Time 1.1	635,4432	541,2046	1496,7116	0,5690	1626,0177	2691,5160
	1 10 19 28 37 40 33 04 73 62 31 100 109 110 127 130	Statgraphics 5.1	573,5648	526,3536	1877,6033	0,7043	1963,2551	2660,6660
	120	ForeScope+ 1.0	1,2425	1,0032	1,1220	0,0114	1,4024	3,1175
	80	KTS - 304	1,8534	1,5180	1,6480	0,0167	2,1676	5,6094
S23	60	SAS 8.2	1,3833	1,1005	1,1106	0,0113	1,3903	3,0734
	20	SPSS - Decision Time 1.1	1,3947	1,1254	1,4150	0,0144	1,7412	4,0095
	1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166	Statgraphics 5.1	1,2794	1,1344	1,3234	0,0133	1,6891	3,3043
				<u> </u>				

Série		Logiciel	SD	MAD	MAE	MAPE	RMSE	Erreur max
	4000	Forecast Pro 4.2	473,5723	391,5980	306,9946	0,1255	516,3517	1321,4900
	3500	ForeScope+ 1.0	707,7746	567,7494	1171,2746	0,4804	1368,5134	2638,5969
	2500	KTS - 304	329,1678	237,8833	445,8533	0,1890	531,5614	1026,3300
S24	1500	SAS 8.2	355,6616	260,2414	321,5650	0,1313	435,0390	996,7983
	500	SPSS - Decision Time 1.1	576,9066	465,7838	889,1675	0,3736	1059,9246	1966,0100
	1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58	Statgraphics 5.1	399,3903	322,7051	360,8258	0,1334	420,0101	669,2600
	18	Forecast Pro 4.2	0,5603	0,4208	0,5275	0,0348	0,6383	1,0350
	16	ForeScope+ 1.0	0,5603	0,4208	0,6042	0,0397	0,7007	1,1500
S25	12 10 8	KTS - 304	0,4931	0,3886	0,4730	0,0311	0,5729	0,9454
	6 4	SAS 8.2	0,5943	0,4572	0,4869	0,0324	0,6149	1,2360
	1 22 43 64 85 106 127 148 169 190 211 232 253	SPSS - Decision Time 1.1	0,5603	0,4208	0,6042	0,0397	0,7008	1,1500
	1 22 43 64 63 100 127 146 163 186 211 232 238	Statgraphics 5.1	0,5806	0,4397	0,5502	0,0363	0,6578	1,0472
	40000	Forecast Pro 4.2	523,8908	445,1376	438,2899	0,0132	525,9311	1098,2060
	35000	ForeScope+ 1.0	1262,9105	952,6573	1970,2161	0,0596	2340,2339	4633,2172
S26	20000	KTS - 304	535,4331	470,6508	727,7158	0,0222	880,3763	1644,2000
	1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151	SAS 8.2	2892,9258	2318,1149	5454,3733	0,1648	6174,0754	10943,6321
		SPSS - Decision Time 1.1	563,2103	484,9625	484,9625	0,0145	615,1776	1396,7000
		Statgraphics 5.1	1658,7116	1270,3485	2613,1958	0,0790	3095,1763	5958,5000
	7000 6000 5000 4000 3000	Forecast Pro 4.2	192,5371	172,1238	196,5028	0,0585	249,3412	479,0470
		ForeScope+ 1.0	239,0914	179,9185	323,4847	0,0854	388,0637	760,9102
S27		KTS - 304	311,2455	242,2406	373,6400	0,0895	478,3989	1036,0000
	2000	SAS 8.2	188,7856	137,5719	163,6411	0,0431	204,3439	465,0668
	1 9 17 25 33 41 49 57 65 73 81 89 97 105 113	SPSS - Decision Time 1.1	255,2390	185,9500	223,5233	0,0565	285,1778	648,6400
		Statgraphics 5.1	189,5667	144,7525	208,3992	0,0534	241,1137	458,2700
	9000	Forecast Pro 4.2	149,4335	128,2427	128,2427	0,0166	150,0836	252,9550
	7000	ForeScope+ 1.0	150,5294	129,1657	150,7184	0,0196	191,8783	370,2412
S28	5000	KTS - 304	154,0950	133,7222	172,6533	0,0224	217,4347	397,3900
	2000	SAS 8.2	150,8300	126,5862	165,4443	0,0215	209,2736	424,4882
	1 9 17 25 33 41 49 57 65 73 81 89 97 105 113	SPSS - Decision Time 1.1	152,5877	127,4317	142,2067	0,0184	183,1502	373,0700
		Statgraphics 5.1	172,3702	155,1117	157,0000	0,0204	182,6859	313,8600
	9 1	Forecast Pro 4.2	0,5631	0,4912	0,6097	0,2133	0,7147	1,1860
	8	ForeScope+ 1.0	0,4860	0,4356	0,7057	0,2421	0,8265	1,3185
S29	5 4 4 4 4 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KTS - 304	0,4865	0,4129	0,5271	0,1940	0,6106	1,0970
	3 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAS 8.2	0,6591	0,5266	0,7415	0,2987	0,8415	1,5260
	1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209	SPSS - Decision Time 1.1	0,6583	0,5257	0,7217	0,2909	0,8174	1,4864
		Statgraphics 5.1	0,6385	0,5596	0,7122	0,2524	0,8255	1,3801

			Critère					
Série		Logiciel	SD	MAD	MAE	MAPE	RMSE	Erreur max
	120	Forecast Pro 4.2	0,7870	0,6261	2,6131	0,0224	2,7290	3,6350
	115	ForeScope+ 1.0	0,4205	0,3435	1,9287	0,0166	1,9740	2,4416
920	110	KTS - 304	0,4351	0,3926	0,8723	0,0075	0,9748	1,5500
S30	100	SAS 8.2	0,8531	0,7725	1,0251	0,0088	1,3049	2,2339
	1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58	SPSS - Decision Time 1.1	0,7645	0,6899	0,9114	0,0078	1,1590	1,9961
		Statgraphics 5.1	0,2896	0,2477	1,6637	0,0143	1,6887	1,9870
	12400	Forecast Pro 4.2	17,1660	17,1660	36,0980	0,0029	39,9717	53,2640
	12350	ForeScope+ 1.0	6,5737	6,5737	6,5737	0,0005	6,9354	8,7842
	12250	KTS - 304						
S31	12150	SAS 8.2	14,5770	14,5770	30,0406	0,0024	33,3905	44,6176
	12000 1 2 3 4 5 6 7 8 9 10 11 12	SPSS - Decision Time 1.1	8,0000	8,0000	8,6000	0,0007	11,7456	16,6000
	1 2 3 4 5 6 7 8 9 10 11 12	Statgraphics 5.1	11,1500	11,1500	24,7500	0,0020	27,1456	35,9000
	600	Forecast Pro 4.2	2,1413	1,9047	4,4798	0,0426	4,9653	6,8590
	500	ForeScope+ 1.0	0,7569	0,6603	1,1600	0,0108	1,3851	2,6559
	300	KTS - 304	0,8612	0,6647	0,6758	0,0065	0,8672	1,5950
S32	200	SAS 8.2	0,9760	0,8289	1,5791	0,0147	1,8492	3,2112
	0	SPSS - Decision Time 1.1	12,1285	10,3929	13,2244	0,1281	17,9439	37,5414
	1 6 11 16 21 26 31 36 41 46 51 56 61 66 71	Statgraphics 5.1	7,0808	6,1731	10,2272	0,0983	12,4391	22,7881
		Forecast Pro 4.2	4,7935	3,7431	4,2782	0,0424	5,1080	9,2730
	140	ForeScope+ 1.0	4,2291	3,5548	3,5555	0,0349	4,3423	8,1284
	80	KTS - 304	3,5993	2,1897	2,5462	0,0254	4,0071	12,1353
S33	60 40	SAS 8.2	3,5763	2,0154	2,2230	0,0224	3,6105	9,6663
	20	SPSS - Decision Time 1.1	3,6363	2,0203	2,0573	0,0207	3,7126	11,0570
	1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69	Statgraphics 5.1	3,9387	3,2300	3,5772	0,0356	4,3922	10,0000
	450 T	Forecast Pro 4.2	4,7022	3,4362	4,7480	0,0114	5,4319	11,7400
	350	ForeScope+ 1.0	4,2252	3,3746	5,7904	0,0138	6,6606	13,6339
~~.	300	KTS - 304	5,5341	4,0844	5,1955	0,0125	6,1411	13,5835
S34	200	SAS 8.2	4,7022	3,4362	4,7472	0,0114	5,4313	11,7389
	50	SPSS - Decision Time 1.1	4,7022	3,4362	4,7480	0,0114	5,4319	11,7400
	1 252 503 754 1005 1256 1507 1758 2009 2260 2511 2762 3013 3264	Statgraphics 5.1	5,2908	3,8360	4,1500	0,0100	5,3614	12,7690
	40000	Forecast Pro 4.2	273,8072	226,2418	221,9260	0,0068	286,5642	706,0410
	35000	ForeScope+ 1.0	351,9152	282,6818	357,7215	0,0111	455,5113	1061,0547
925	25000	KTS - 304	315,0363	252,9511	264,1333	0,0082	347,2791	817,0000
S35	15000	SAS 8.2	321,6377	258,4521	275,7503	0,0085	363,4149	861,1891
	5000	SPSS - Decision Time 1.1	407,0193	326,2933	456,3833	0,0142	572,7186	1314,0000
	1 102 203 304 405 506 607 708 809 910 1011 1112 1213	Statgraphics 5.1	355,1558	284,4058	345,8000	0,0107	446,9180	1057,6000

					Cr	itère		
Série		Logiciel	SD	MAD	MAE	MAPE	RMSE	Erreur max
		Forecast Pro 4.2	9,6977	7,7511	24,7667	0,0711	26,5976	47,0000
	700	ForeScope+ 1.0	13,0705	10,8588	37,9052	0,1086	40,0954	64,7367
	400	KTS - 304	9,2101	7,4979	22,4883	0,0646	24,3012	43,7660
S36	200	SAS 8.2	9,2018	7,5036	21,9307	0,0630	23,7830	43,1036
	1 9 17 25 33 41 49 57 65 73 81 89 97 105 113	SPSS - Decision Time 1.1	9,5151	7,5995	23,5250	0,0676	25,3764	45,5159
		Statgraphics 5.1	9,6977	7,7511	24,7667	0,0711	26,5976	47,0000
	400	Forecast Pro 4.2	46,9673	40,9289	40,9138	0,1761	46,9675	86,0060
	350	ForeScope+ 1.0	26,3332	21,8944	22,2585	0,0907	26,8936	53,3535
	250 -	KTS - 304	26,3447	21,3147	23,0132	0,0926	28,3876	60,7540
S37	150	SAS 8.2	32,4176	24,7359	26,0065	0,1072	33,3841	76,5973
	0	SPSS - Decision Time 1.1	32,4013	25,0284	26,3228	0,1089	33,2331	75,3563
	1 559 1117 1675 2233 2791 3349 3907 4465 5023 5581 6139 6697	Statgraphics 5.1	47,2456	35,4566	36,8502	0,1761	54,1096	160,1890
	800 —	Forecast Pro 4.2	123,7068	46,5244	40,0547	0,4370	124,0449	671,6180
	700 600 500 400 300 1 418 835 1252 1669 2086 2503 2920 3337 3754 4171 4588 5005	ForeScope+ 1.0	123,6794	46,4275	41,3001	0,4444	123,9079	669,7625
S38		KTS - 304						
		SAS 8.2	123,7068	46,5244	37,7509	0,3706	124,3597	675,1929
		SPSS - Decision Time 1.1	123,7033	46,4950	37,8606	0,3752	124,3677	675,1944
		Statgraphics 5.1	123,7015	46,5025	37,8096	0,3728	124,3628	675,1929
	20	Forecast Pro 4.2	2,8097	2,6024	13,3537	1,0000	13,6461	18,0660
		ForeScope+ 1.0	2,8097	2,6024	2,8151	0,2577	3,6014	6,3951
g20	5	KTS - 304	2,9501	2,4639	4,2041	0,2936	4,9966	8,6605
S39	-5 33 657 97 22 161 181/255 257 281/321 353 355 417 449 481 -10 -15 -20 -25	SAS 8.2	2,8097	2,6024	2,8148	0,2577	3,6010	6,3945
		SPSS - Decision Time 1.1	2,8170	2,5918	2,8388	0,2599	3,6359	6,7315
		Statgraphics 5.1	2,8097	2,6024	2,8144	0,2576	3,6003	6,3934
		Forecast Pro 4.2	692,6518	607,9300	748,1948	0,0183	899,1857	1500,3750
	45000 40000 35000	ForeScope+ 1.0	658,4173	578,8545	651,8379	0,0160	724,1752	1208,1445
	30000	KTS - 304	672,6458	633,2875	767,9375	0,0189	919,0523	1487,1000
S40	20000	SAS 8.2	772,3792	682,3485	898,4131	0,0221	1148,0149	2096,4819
	10000	SPSS - Decision Time 1.1	694,2437	608,2875	752,2375	0,0184	904,8408	1517,3000
	1 12 23 34 45 56 67 78 89 100 111 122 133 144 155	Statgraphics 5.1	681,3545	597,9844	732,4875	0,0180	868,1598	1436,6000
	200000	Forecast Pro 4.2	5403,8910	4505,2299	12290,7275	0,0892	13426,2437	21796,1480
	180000	ForeScope+ 1.0	7846,7252	6729,1631	9357,8662	0,0710	11947,2663	23135,1797
\$41	120000	KTS - 304	8037,2269	5711,7500	12478,5000	0,0924	13482,2932	22611,0000
S41	80000 60000 40000	SAS 8.2	4780,2118	3966,8250	14024,8041	0,1009	14817,0697	22328,5886
	0 -	SPSS - Decision Time 1.1	6434,7180	5383,1875	9578,7500	0,0720	11539,4128	21891,0000
	1 12 23 34 45 56 67 78 89 100 111 122 133 144 155	Statgraphics 5.1	6447,6951	5376,9375	9609,7500	0,0723	11572,3838	21993,0000

		Critère						
Série		Logiciel	SD	MAD	MAE	MAPE	RMSE	Erreur max
	9000	Forecast Pro 4.2	681,5861	639,1369	741,6035	0,1333	1007,2414	1793,2210
	7000	ForeScope+ 1.0	626,5617	565,0202	524,8334	0,0921	761,2064	1453,2090
	5000 4000	KTS - 304	616,6526	541,1266	592,0263	0,1058	802,9093	1482,2100
S42	2000	SAS 8.2	650,5855	609,9947	668,4138	0,1194	932,7585	1678,9187
	0 *************************************	SPSS - Decision Time 1.1	614,6742	578,4950	621,4000	0,1112	874,0494	1599,4300
	1 9 17 25 33 41 49 57 65 73 81 89 97 105 113	Statgraphics 5.1	616,4761	568,6550	525,7950	0,0911	800,1020	1520,8900
	2000	Forecast Pro 4.2	25,3888	21,3786	19,0198	0,0309	27,8515	59,2090
	1800	ForeScope+ 1.0	27,4639	23,6535	21,8062	0,0354	29,0230	59,8862
	1400	KTS - 304	22,7455	17,4950	83,4750	0,1349	86,5184	123,4710
S43	1000	SAS 8.2	49,6556	41,7979	56,8064	0,0894	67,9152	122,8267
	400	SPSS - Decision Time 1.1	33,4409	28,7693	26,3929	0,0430	35,5309	73,7979
	1 11 21 31 41 51 61 71 81 91 101 111 121 131 141	Statgraphics 5.1	22,3807	16,3724	23,8215	0,0390	29,9591	64,6610
	20000 —	Forecast Pro 4.2	140,4473	121,0886	124,5760	0,0082	146,7111	246,4040
	18000	ForeScope+ 1.0	137,8712	119,7500	124,4733	0,0082	154,0744	272,7596
644	12000	KTS - 304	226,8890	180,4438	383,1750	0,0251	441,5733	763,0000
S44 8000 6000 4000 2000 0	6000	SAS 8.2	149,5421	129,7427	128,0179	0,0084	153,7586	251,1589
		SPSS - Decision Time 1.1	205,6578	161,8906	410,9875	0,0269	459,5714	768,8000
		Statgraphics 5.1	148,0098	131,1000	126,2500	0,0083	152,9856	248,0000
	0,05 0,04 0,03 0,02 0,01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Forecast Pro 4.2	0,0038	0,0031	0,0071	3,0083	0,0080	0,0145
		ForeScope+ 1.0	0,0038	0,0031	0,0076	3,2149	0,0084	0,0149
S45		KTS - 304	0,0026	0,0021	0,0045	2,0810	0,0051	0,0083
343		SAS 8.2	0,0038	0,0031	0,0071	3,0370	0,0081	0,0146
	-0,02	SPSS - Decision Time 1.1	0,0038	0,0031	0,0072	3,0563	0,0081	0,0146
	-0,03 1	Statgraphics 5.1	0,0038	0,0031	0,0072	3,0571	0,0081	0,0146
		Forecast Pro 4.2	69,3301	57,4881	122,5709	0,0490	140,8200	249,5590
	2500	ForeScope+ 1.0	30,7121	22,5605	33,6661	0,0134	44,8004	102,0015
	2000	KTS - 304	38,8753	27,7709	54,5888	0,0218	67,0166	143,7700
S46	1500	SAS 8.2	52,7887	42,0809	88,8736	0,0355	103,3690	197,9447
500		SPSS - Decision Time 1.1	47,1305	35,9813	76,5813	0,0306	89,9220	177,9000
	1 8 15 22 29 36 43 50 57 64 71 78 85 92 99	Statgraphics 5.1	53,0224	42,2513	94,8213	0,0379	108,6390	203,9800
		Forecast Pro 4.2	0,3602	0,2911	0,4122	0,0233	0,5218	1,1530
	18,5	ForeScope+ 1.0	0,3567	0,2930	0,3677	0,0208	0,4759	1,1140
S47	17,5	KTS - 304	0,3387	0,2818	0,2833	0,0162	0,3390	0,6829
JT/	16	SAS 8.2	0,3531	0,2877	0,3431	0,0194	0,4397	1,0175
	1 15 29 43 57 71 85 99 113 127 141 155 169 183 197	SPSS - Decision Time 1.1	0,3531	0,2877	0,3430	0,0194	0,4397	1,0175
		Statgraphics 5.1	0,3531	0,2877	0,3433	0,0194	0,4399	1,0179

			Critère					
Série		Logiciel	SD	MAD	MAE	MAPE	RMSE	Erreur max
	30 T	Forecast Pro 4.2	1,5562	1,4111	1,5349	0,0774	2,1274	4,0020
	25	ForeScope+ 1.0	1,3978	1,2693	1,3109	0,0662	1,8405	3,4798
0.40	20	KTS - 304	1,3793	1,2534	1,2361	0,0626	1,7587	3,3937
S48	10 -	SAS 8.2	1,5554	1,4104	1,5333	0,0774	2,1256	3,9991
	0	SPSS - Decision Time 1.1	1,5571	1,4119	1,5368	0,0775	2,1295	4,0053
	1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226	Statgraphics 5.1	1,2138	1,1053	1,0540	0,0532	1,4801	2,8580
S49		Forecast Pro 4.2	0,4126	0,3098	0,3625	0,0421	0,4781	1,2200
	10 a Marin M	ForeScope+ 1.0	0,4126	0,3098	0,3651	0,0424	0,4799	1,2237
		KTS - 304	0,5489	0,4767	0,9093	0,1047	1,0462	1,9900
		SAS 8.2	0,4003	0,3049	0,3125	0,0361	0,4267	1,1032
	1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301	SPSS - Decision Time 1.1	0,4003	0,3049	0,3125	0,0361	0,4267	1,1032
		Statgraphics 5.1	0,4127	0,3098	0,3646	0,0423	0,4796	1,2231
	90	Forecast Pro 4.2	12,8437	11,0400	10,8000	0,2837	12,9720	27,6200
S50	70	ForeScope+ 1.0	13,0549	11,8123	11,8123	0,3117	14,2481	23,6289
	70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40	KTS - 304	12,4676	11,4933	11,4933	0,2799	12,4678	22,7968
		SAS 8.2	12,8437	11,0400	10,8000	0,2888	13,1278	28,5167
	0	SPSS - Decision Time 1.1	12,4265	10,7182	10,5138	0,2840	12,7715	28,5673
	1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69	Statgraphics 5.1	12,4217	10,7130	10,5113	0,2839	12,7634	28,5511

ANNEXE 2: PRESENTATION DES SERIES

S1

Description de la série

- Représente «Le volume de transport international aérien de passagers (milles revenus)» entre 1947 1987.
- Série annuelle avec tendance mais sans saisonnalité.
- Nombre total d'observations: 41.
- Minimum181.
- Maximum: 7983.
- Moyenne: 2561,780.

Présentation de la série et des prévisions :

Zoom pour les valeurs prévues:

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 1)
ForeScope 1.0	Modèle autorégressif (AR[1]=0,9877; AR[3]=-0,4974; AR[5]=0,5999)
KTS - 304	K2R(Time, Time ² , sqrt(Time))
SAS 8.2	Lissage exponentiel de Holt (niveau = 0,999, tendance = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel de Holt (niveau =0,9999; tendance = 0,000955)
Statgraphics 5.1	ARMA (3,2)

S2

Description de la série

- Représente «Ventes (net), recettes ou bon de trésor du gouvernement américain» entre 1948 et 1986.
- > Série annuelle avec tendance mais sans saisonnalité.
- Nombre total d'observations: 39.
- Minimum: 176,800.Maximum: 13065,200.Moyenne: 3587,969.

Présentation de la série et des prévisions :

Zoom pour les valeurs prévues:

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel de Holt (niveau = 0,99983, tendance = 0,032)
ForeScope 1.0	ARIMA (1,0,0) (const=19,9709; AR[1]=0,9915)

KTS - 304	K2R(Time, Time ² , sqrt(Time))
SAS 8.2	Lissage exponentiel de Holt (niveau = 0,999, tendance = 0,001)
SPSS - Decision Time 1.1	ARIMA(0,1,0) (const = 161,2)
Statgraphics 5.1	ARMA (3,2)

S3

Description de la série

- Représente «le prix de la viande de porc aux Etats Unis» entre 1867 et 1948.
- Série annuelle avec tendance mais sans saisonnalité.
- Nombre total d'observations: 82.
- Minimum: 498.Maximum: 1632.Moyenne: 891,280.

Présentation de la série et des prévisions :

Zoom pour les valeurs prévues :

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(0,1,3) (MA[1]=-0,1780; MA[2]=0,3451; MA[3]=0,3740)
ForeScope 1.0	Modèle autorégressif (AR[1] = 1,1476; AR[2] = -0,4293; AR[5] = 0,1996)
KTS - 304	L1 + AR(8)
SAS 8.2	Lissage exponentiel de Holt (niveau = 0,999, tendance = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 1)
Statgraphics 5.1	ARMA(2,1);

S4

Description de la série

- > Représente "la valeur de marché du stock total de vante sur touts les échanges enregistrés" entre 1947-1987.
- > Série annuelle avec tendance mais sans saisonnalité.
- Nombre total d'observations: 41.
- > Minimum: 107,140. Maximum: 22841,660.
- Moyenne: 2917,243.

Présentation de la série et des prévisions :

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel de Holt (niveau = 0,99993; tendance = 0,1524)
ForeScope 1.0	ARIMA (2,0,1) avec transformation log (const = 0,2428; AR[2] = 0,9632; MA[1]
Polescope 1.0	=-1,1166)
KTS - 304	K2R(Time, Time ² , sqrt(Time)) + Cyclic(13-NotSmoothed)
SAS 8.2	Marche aléatoire avec dérive (intercepte = 0,11032)
SPSS - Decision Time 1.1	ARIMA $(0,1,0)$ avec transformation log (const = 0,1103)
Statgraphics 5.1	ARMA (1,0)

S5

Description de la série

- ➤ Représente «le profit net après taxes équipement électrique et électronique» entre 1961-1986.
- > Est une série annuelle avec tendance mais sans saisonnalité
- Nombre total d'observations: 26;
- Minimum: 1024;Maximum: 8616;Moyenne: 4166,577.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel de Holt (niveau = 0,99978, tendance = 0,05719)
ForeScope 1.0	Marche aléatoire
KTS - 304	L1
SAS 8.2	Lissage exponentiel de Holt (niveau = 0,999, tendance = 0,001)
SPSS - Decision Time 1.1	ARIMA $(0,1,0)$ (const = 320,5)
Statgraphics 5.1	Marche aléatoire

S6

Description de la série

- Représente «le déficit (-) ou excèdent (+) en pourcentage du PIB français» entre 1990-2001.
- Est une série annuelle stationnaire et sans saisonnalité.
- Nombre total d'observations: 12.
- ➤ Minimum: –6;
- ➤ Maximum: −1,400;
- ➤ Moyenne: -3,433.

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 1)
ForeScope 1.0	Marche aléatoire
KTS - 304	Ne réalise pas de prévisions
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,84559, tendance =
	0,999, coefficient d'amortissement = 0,8132)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 1)
Statgraphics 5.1	ARMA(2,1)

S7

Description de la série

- Représente «le déficit (-) ou excèdent (+) en pourcentage du PIB du Luxembourg» en 1990-2001.
- Est une série annuelle non stationnaire et sans saisonnalité.
- Nombre total d'observations: 12.
- ➤ Minimum: 1,300.
- Maximum: 6,4.
- Moyenne: 3,583.

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 0,20312)
ForeScope 1.0	Marche aléatoire
KTS - 304	Ne réalise pas de prévisions
SAS 8.2	Tendance linaire avec transformation log (intercepte = 0,69052, tendance linaire = 0,08361)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 1)
Statgraphics 5.1	Marche aléatoire

S8

Description de la série

- Représente «le taux de chômage par rapport à la population active» entre 1947-1987.
- Est une série annuelle avec tendance et sans saisonnalité.
- Nombre total d'observations: 41.
- ➤ Minimum: 2900.
- ➤ Maximum: 9700.
- Moyenne: 5621,951.

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 0,68437)
ForeScope 1.0	Modèle autorégressif (AR[1] = $0,7001$)
KTS - 304	L1 + AR(3)
SAS 8.2	Lissage exponentiel de Holt (niveau = 0,62735, tendance = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 0,6806)
Statgraphics 5.1	ARMA(1,0)

Description de la série

- Représente «le taux de pauvreté des ménages» entre 1959-1988.
- Est une série annuelle avec tendance et sans saisonnalité.
- Nombre total d'observations: 30.
- Minimum: 4400.Maximum: 9250.
- Moyenne: 5905.

Présentation de la série et des prévisions :

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel de Holt (niveau = 0,99972; tendance = 0,48739)
ForeScope 1.0	Marche aléatoire
KTS - 304	$K2R(Time, Time^2, sqrt(Time)) + Cyclic(6) + AR(1)$
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,999, tendance = 0,491, coefficient d'amortissement = 0,89614)
SPSS - Decision Time 1.1	Lissage exponentiel de Brown (niveau = tendance = 0,7512)
Statgraphics 5.1	ARMA(2,1)

S10

Description de la série

- Représente «estimation de population, classe d'âge 20 à 39 ans, hommes + femmes, France métropolitaine» 1er janvier 1990 1er janvier 2002.
- Est une série annuelle avec tendance et sans saisonnalité.
- Nombre total d'observations: 13.
- Minimum: 16370560.
- Maximum: 17190600.
- Moyenne: 16863371,3077.

Présentation de la série et des prévisions :

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel de Holt (niveau = 1; tendance = 1)
ForeScope 1.0	Marche aléatoire
KTS - 304	Ne réalise pas de prévisions
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,999, tendance = 0,999, coefficient d'amortissement = 0,96480)
SPSS - Decision Time 1.1	Lissage exponentiel de Brown (niveau = 1; tendance = 1)
Statgraphics 5.1	Lissage exponentiel de Brown (niveau = 0,9999)

S11

Description de la série

- Représente «les émissions de gaz à effet de serre UE15» entre 1990-2001.
- Nombre total d'observations: 12.
- Minimum: 96,100.Maximum: 100,200.Moyenne: 97,875.

Wioyemic. 77,073.

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 0,13125)
	Marche aléatoire
KTS - 304	Ne réalise pas de prévisions
SAS 8.2	Tendance linaire avec transformation log (intercepte = 4,59598; tendance = -0,00211)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 1)
Statgraphics 5.1	Marche aléatoire

S12

Description de la série

- Représente «Vente de fourrures, H. B. Co.," entre 1850-1911.
- La série est non stationnaire et sans saisonnalité.
- Nombre total d'observations: 62.
- ➤ Minimum: 1180.
- Maximum: 15419.
- Moyenne: 4752,984.

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(0,1,1) avec transformation log (MA[1] = $0,4666$)
ForeScope 1.0	Modèle autorégressif (const = 424,5779; AR[1] = 0, 3910; AR[9] = 0, 3768)
KTS - 304	K2R(Time, Time ² , sqrt(Time)) + Cyclic(10)
SAS 8.2	Tendance linaire avec transf log (intercepte = 9,19672; tendance = -0,03263)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 0,3091)
Statgraphics 5.1	Tendance quadratique = $11611,1 - 388,435 t + 4,09159 t^2$

S13

Description de la série

- Représente «l'indice de prix à la consommation (en base 100 en 1998) en France -produits frais» entre 1990-2002.
- Nombre total d'observations: 13.

Minimum: 88,900.Maximum: 116,400.Moyenne: 97.885.

Présentation de la série et des prévisions :

Méthode choisie :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau =0,69687)
ForeScope 1.0	Marche aléatoire
KTS - 304	Ne réalise pas de prévisions
SAS 8.2	Tendance linaire (intercepte = 89,69273; tendance = 0,89818)
SPSS - Decision Time 1.1	Lissage exponentiel de Holt (niveau = 0,09986; tendance = 1.85e-005)
Statgraphics 5.1	Moyenne mobile simple d'ordre 3

Description de la série

- Représente «la production de bière en Australie (méga litres)» entre janvier 1991 août 1995
- Est une série mensuelle non stationnaire, avec saisonnalité.
- Nombre total d'observations: 56.

Minimum: 119.Maximum: 192.Moyenne: 149,304.

Présentation de la série et des prévisions :

Zoom pour les valeurs prévues :

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	ARIMA (0,0,0) (0,1,0) avec transformation log
ForeScope 1.0	Modèle autorégressif (const = 15,4946; AR[12] = 0,86550)
KTS - 304	K2R(Time) + Cyclic(12-NotSmoothed)
SAS 8.2	Lissage exponentiel avec transf log (niveau = 0,12637; saisonnalité = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, model aditif (niveau = 0,0009975; tendance = 0,9009; saisonnalité = 0,0004507)
Statgraphics 5.1	ARMA(4,3) SARMA(4,3)

Description de la série

- Représente «les ventes australiennes de vin fortifié (milliers de litres)» entre janvier 1980 juillet 1995.
- Série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 187.
- Minimum: 1153.Maximum: 5618.Moyenne: 2969,043.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(1,0,1) (1,1,0) avec transformation racine carrée (AR[1] = 0,9990;
	MA[1]=0,9876; AR[12] = -0,4613)
ForeScope 1.0	ARIMA
KTS - 304	K2R(Time) + AR(20)
SAS 8.2	Lissage exponentiel avec transformation log (niveau = 0,14621; saisonnalité =
	0,27624)
SPSS - Decision Time 1.1	Lissage exponentiel de Winter, model multiplicatif (niveau = 0,0009017;
	tendance = 0,3887; saisonnalité = 0,2829)
Statgraphics 5.1	Tendance linéaire = 3952,79 - 10,5044 t

S16

Description de la série

- Représente «les ventes totales de vin / marché (en bouteilles <= 1 litre)» entre janvier 1980 août 1994.
- Est une série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 176.
- Minimum: 13652.
- Maximum: 40226.
- Moyenne: 25392,148.

Méthode choisie

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel, saisonnalité multiplicative (niveau = 0,12308; saisonnalité = 0,2418)
ForeScope 1.0	Décomposition saisonnière, modèle multiplicatif
KTS - 304	K2R(Time) + Cyclic(12-NotSmoothed)
SAS 8.2	Lissage exponentiel avec transformation log (niveau = 0,14416; saisonnalité = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel de Winter, model aditif (niveau = 0,03784; tendance = 0,3179; saisonnalité = 0,001)
Statgraphics 5.1	Lissage exponentiel de Holt (niveau = 0,0493 et tendance = 0,2494)

Description de la série

- Représente «Les ventes de champagne en France (milliers de bouteilles)» entre janvier 1962 décembre 1968.
- Série mensuelles, avec tendance et saisonnalité; il y a une demande importante en fin d'année et un creux au mois d'août à cause de vacances.
- Nombré total des observations: 84.
- Minimum: 323.Maximum: 13916.Moyenne: 4441,333.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel de Winters, modèle multiplicatif (niveau = 0,01380,
	tendance = 0.02499 , saisonnalité = 0.35061)
ForeScope 1.0	Décomposition saisonnière, modèle multiplicatif
KTS - 304	K2R(Time) + Cyclic(12-NotSmoothed)
SAS 8.2	Lissage exponentiel (niveau = 0,14904; saisonnalité = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, model multiplicatif (niveau = 0,02212; tendance
	= 0.006564; saisonnalité = 0.2575)
Statgraphics 5.1	Tendance linéaire = 3199,32 + 32,1692 t

S18

Description de la série

- Représente: «La production de chocolat en Australie» entre juillet 1957 août 1995.
- > Série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 458.
- Minimum: 1066.Maximum: 11095.Moyenne: 5150,642.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(1,0,1) (0,1,1) (AR[1] = 0,9813; MA[1] = 0,7368; MA[12] = 0,6886)
ForeScope 1.0	Décomposition saisonnière, modèle aditif
KTS - 304	AR(54)
SAS 8.2	Lissage exponentiel (niveau = 0,19889; saisonnalité = 0,37391)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, model aditif (niveau = 0,1677; tendance = 0,001; saisonnalité = 0,3612)
Statgraphics 5.1	ARMA(4,3) SARMA(4,3)

S19

Description de la série

Représente: «Exportation de cigarettes» entre janvier 1978 – juin 1988.

Série mensuelle avec tendance et saisonnalité.

Nombre total d'observations: 126.

Minimum: 2766.Maximum: 10928.Moyenne: 6258,810.

Méthode choisie :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel; saisonnalité multiplicative (niveau = 0,32613; saisonnalité =
	0,13931)
ForeScope 1.0	Modèle autorégressif (AR[1] = 0, 3524; AR[3] = 0, 1866; AR[7] = 0, 1654;
	AR[9] = 0, 1794
KTS - 304	L1 + Cyclic(19) + AR(13)
SAS 8.2	Lissage exponentiel de Winters, modèle additif avec transformation log (niveau
	= 0,30923, tendance $= 0,00425$, saisonnalité $= 0,00100$)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 0,3001; saisonnalité = 3,336e-005
Statgraphics 5.1	Lissage exponentiel simple (niveau = 0,4022)

Description de la série

- Représente: «L'électricité produite par l'industrie électrique américaine (en milliards kilowatts/heure)» entre janvier 1988 octobre 1996.
- > Série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 142.
- Minimum: 184,880.Maximum: 304,710.Moyenne: 231,089.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel; saisonnalité multiplicative (niveau = 0,28108; saisonnalité = 0,28634)
ForeScope 1.0	Décomposition saisonnière, modèle multiplicatif
KTS - 304	K2R(Time) + Cyclic(12-NotSmoothed)
SAS 8.2	Lissage exponentiel de Winters, modèle additif avec transformation log (niveau = 0,25198, tendance = 0,001, saisonnalité = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel de Winter, model aditif (niveau = 0,2048; tendance = 6.373e-007; saisonnalité = 3.822e-005)
Statgraphics 5.1	Lissage exponentiel de Holt (niveau = 0,2591, tendance = 0,0001)

S21

Description de la série

- Représente: «La production d'acide sulfurique en Australie (mille tonnes)» entre janvier 1956 juillet 1994.
- Série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 462.
- Minimum: 42.Maximum: 228.Moyenne: 131,342.

Méthode choisie :

Michigae choisie.	
Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel, saisonnalité multiplicative (niveau = 0,60608; saisonnalité = 0,11789)
ForeScope 1.0	Décomposition saisonnière, modèle multiplicatif
KTS - 304	$K2R(Time, Time^2, sqrt(Time)) + AR(55)$
SAS 8.2	Lissage exponentiel avec trans log (niveau = 0,72095; saisonnalité = 0.001)
SPSS - Decision Time 1.1	Lissage exponentiel (niveau = 0,6998; saisonnalité = 0,0001078)
Statgraphics 5.1	Lissage exponentiel simple (niveau = 0,6376)

Description de la série

- Représente: «La production d'équipent contre la pollution (mille francs)» entre janvier 1986 octobre 1996.
- Série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 130.
- Minimum: 120,888.Maximum: 5566,103.Moyenne: 1439,261.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(0,1,1) (1,0,2) avec transformation log $(MA[1] = 0,6406; AR[12] =$
	0,9972; MA[12] = 0,7176; MA[24] = 0,2005)
ForeScope 1.0	Décomposition saisonnière, modèle multiplicatif
KTS - 304	L1 + AR(13)
SAS 8.2	Lissage exponentiel de Winters, modèle additif avec transf log (niveau =
	0,35011, tendance = $0,001$, saisonnalité = $0,001$)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, model multiplicatif (niveau = 0,2857; tendance =
	0,05752; saisonnalité = $0,1177$)
Statgraphics 5.1	Lissage exponentiel de Brown (niveau = 0,1837)

S23

Description de la série

- Représente le nombre de véhicules franchissant le «golden gate bridge» de San Francisco entre janvier 1980 et décembre 1993.
- Série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 168.
- Minimum: 73,637.Maximum: 111,475.Moyenne: 93,978.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel; saisonnalité additive (niveau = 0,42568; saisonnalité =0,42966
ForeScope 1.0	Décomposition saisonnière, modèle aditif
KTS - 304	K2R(Time) + Cyclic(12-NotSmoothed) + Cyclic(32-NotSmoothed)
SAS 8.2	Lissage exponentiel (niveau = 0,73684; saisonnalité = 0,03693)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, model aditif (niveau=0,7024; tendance = 2,431e-007; saisonnalité = 1,397e-005)
Statgraphics 5.1	Lissage exponentiel simple (niveau = 0,7802)

S24

- Représente: «Les ventes pour le produit SKU_010, compagnie ABC Inc.» entre janvier 1986 et décembre 1990.
- Série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 60.
- Minimum: 1314,43.Maximum: 3561,26Moyenne: 2598,4702.

Méthode choisie:

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(1,0,0) (0,1,0) (AR[1] = 0,6026)
ForeScope 1.0	ARIMA
KTS - 304	L1 + Cyclic(12-NotSmoothed)
SAS 8.2	Log Linear Tendance with Seasonal Terms (Intercept = 7,78586; Linear Tendance = 0,00499; Seasonal Dummy 1 = -0,02399; Seasonal Dummy 2 = 0,00719; Seasonal Dummy 3 = 0,06723; Seasonal Dummy 4 = -0,00624; Seasonal Dummy 5 = -0,03969; Seasonal Dummy 6 = 0,03579; Seasonal Dummy 7 = -0,14075; Seasonal Dummy 8 = -0,68495; Seasonal Dummy 9 = -0,10595; Seasonal Dummy 10 = 0,00179.
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, modèle additif (niveau = 0,08803, tendance = 0,8102, saisonnalité = 0,001)
Statgraphics 5.1	ARMA(4,3) SARMA(4,3)

Description de la série

- Représente: « Interest rates, government bond yield, two year securities» entre 1969 -1990.
- Série mensuelle avec tendance, sans saisonnalité.
- Nombre total d'observations: 253.
- Minimum: 4,6.Maximum: 16,5.Moyenne: 10,366.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(0,1,1) avec transformation log (MA[1] = $-0,1559$)
ForeScope 1.0	Marche aléatoire
KTS - 304	L1 + Cyclic(29)
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie; transformation log (niveau = 0,999; tendance = 0,999)
SPSS - Decision Time 1.1	Lisage exponentiel simple (niveau = 1)
Statgraphics 5.1	ARMA(3,2)

S26

Description de la série

- Représente: «Le taux de change LEU/USD» entre janvier 1991 janvier 2004.
- > Série mensuelle non stationnaire, sans saisonnalité.
- Nombre total d'observations: 157.
- Minimum: 34108,801.
- Moyenne 12154,037.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(1,1,0) avec transformation racine carrée (AR[1]=0,6861)
ForeScope 1.0	Modèle autorégressif (AR[1] = 1, 6690; AR[2] = -0, 6666)
KTS - 304	L1 + AR(17)
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie; transformation log (niveau = 0,92215; tendance = 0,03393)
SPSS - Decision Time 1.1	Tendance amortie (niveau=1; tendance=1; coefficient d'amortissement =0,8003)
Statgraphics 5.1	ARMA(2,1)

S27

Description de la série

- ➤ Représente: «L'assurance chômage, programme d'Etat demandes initiales» entre janvier 1983 août 1992.
- Série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 116.
- Minimum: 2032.Maximum: 6222.Moyenne: 3253,034.

Méthode choisie :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(0,1,1) (0,1,2) avec transformation log (MA[1] = 0,4149; MA[12] =
	[0,3255; MA[24] = 0,4968)
ForeScope 1.0	Décomposition saisonnière, modèle multiplicatif
KTS - 304	L1 + Cyclic(12) + Cyclic(36-NotSmoothed)
SAS 8.2	Lissage exponentiel avec transf log (niveau = 0,54245; saisonnalité = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 0,5994; saisonnalité = 2.295e-005)
Statgraphics 5.1	Moyenne mobile simple d'ordre 3

Description de la série

- Représente: «La production de cigarettes, la moyenne d'heures / semaine» entre janvier 1983 septembre 1992.
- Série mensuelle stationnaire avec saisonnalité.
- Nombre total d'observations: 117.
- Minimum: 6780.Maximum: 8280.Moyenne: 7695,726.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA (1,0,0) (2,0,1) (AR[1] = 0,6448; AR[12] = 1,0626; AR[24] = -0,0630;
	B[12]= 0,8947; const=0,9718)
ForeScope 1.0	Décomposition saisonnière, modèle aditif
KTS - 304	K2R(Time) + Cyclic(12-NotSmoothed)
SAS 8.2	Lissage exponentiel de Winters, modèle additif (niveau = 0,40127; tendance =
	0,001; saisonnalité = $0,001$)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 0,4; saisonnalité = 3.142e-005)
Statgraphics 5.1	ARMA(4,3) SARMA (4,3)

S29

Description de la série

- Représente: «La moyenne des mesures horaires d'ozone en centre ville de Los Angeles» entre 1955-1972.
- Série mensuelle stationnaire avec saisonnalité.
- Nombre total d'observations: 216.
- Minimum: 1,17.Maximum: 8,13.Moyenne: 3,666

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel; saisonnalité multiplicative (niveau = 0,17916; saisonnalité = 0,139)
ForeScope 1.0	Décomposition saisonnière, modèle aditif
KTS - 304	K2R(Time) + AR(24)
SAS 8.2	Lissage exponentiel simple (niveau = 0,23146; saisonnalité=0,001)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 0,2005; saisonnalité = 5.597e-006)
Statgraphics 5.1	Lissage exponentiel simple (niveau = 0,217)

S30

Description de la série

- Représente: « Le prix de consomme, HICP aliments, alcool et tabac Index, UE 15 (1996=100) » entre 1999-2003.
- Série mensuelle avec tendance et saisonnalité.
- Nombre total d'observations: 60.
- Minimum: 103,6.
- Maximum: 117,2.
- Moyenne: 109,93.

Méthode choisie :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA (1,1,0) (AR[1] = 0,4519)
ForeScope 1.0	Décomposition saisonnière, modèle multiplicatif
KTS - 304	L2 + Cyclic(12-NotSmoothed)
SAS 8.2	Lissage exponentiel de Winters, modèle additif (niveau = 0,92263; tendance = 0,17863; saisonnalité = 0,999)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, modèle additif (niveau = 0,9449; tendance = 0,1404; saisonnalité = 0,999)
Statgraphics 5.1	ARMA(2,1)

Description de la série

Représente: «Harmonised unemployment - Total - 1000 persons - SA -Euro-zone» en 2003

> série mensuelle.

Nombre total d'observations: 12.

Minimum: 12122,600.
 Maximum: 12336,100.
 Moyenne: 12284,067.

Présentation de la série et des prévisions :

Méthode choisie :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel de Holt (niveau = 1; tendance=0,12159)
ForeScope 1.0	Modèle autorégressif (AR[1] = 1, 3049; AR[2] = -0, 3203)
KTS - 304	Ne réalise pas de prévisions
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,999, tendance = 0,999)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 1)
Statgraphics 5.1	ARMA (3,2)

Description de la série

- Représente: «L'indice des prix à la consommation par rapport aux années précédentes en Roumanie» janvier 1998 décembre 2003.
- Série mensuelle avec tendance et sans saisonnalité.
- Nombre total d'observations: 72.
- Minimum: 100.Maximum: 511,7.Moyenne: 219,943.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(0,2,1) avec transformation log (MA[1]=0,4508)
ForeScope 1.0	Modèle autorégressif (AR[1] = 1, 2306; AR[2] = -0, 2629)
KTS - 304	AR(6)
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie, transformation log (niveau = 0,999; tendance = 0,56803; coefficient d'amortissement = 0,95177)
SPSS - Decision Time 1.1	ARIMA(0,2,0); (Const = 0,5621)
Statgraphics 5.1	ARMA(2,1)

S33

Description de la série

- Représente: «L'indice du salaire moyen net en Roumanie (mois précédent = 100» entre 1997 2002.
- Série mensuelle avec tendance et sans saisonnalité.
- Nombre total d'observations: 72.
- Minimum: 86,7.Maximum: 116,7.Moyenne: 103,532.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 0,03438)
ForeScope 1.0	ARIMA
KTS - 304	K2R(Time) + Cyclic(12-NotSmoothed)
SAS 8.2	Lissage exponentiel avec transformation log (niveau = 0,12844; saisonnalité = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, modèle additif (niveau = 0,09636; tendance = 1,328e-009; saisonnalité = 3,066e-007)
Statgraphics 5.1	ARMA(3,2)

S34

Description de la série

- Représente: «L'indice des stocks S&P 500 journalier» entre 1 janvier 1980 14 février 1989.
- Série journalière avec tendance et sans saisonnalité.
- Nombre total d'observations: 3333.
- ➤ Minimum: 98,22.
- Maximum: 425,27.
- Moyenne: 236,122.

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 1)
ForeScope 1.0	Modèle autorégressif (AR[1] = 1, 2306; AR[2] = -0, 2629)
KTS - 304	L2 + Cyclic(387)
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,999; tendance = 0,999; coefficient d'amortissement = 0,04633)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 1)
Statgraphics 5.1	ARMA(2,1)

Description de la série

Représente: «Le taux de change LEU/USD» janvier 1998 – janvier 2004.

Série journalière stationnaire et sans saisonnalité.

Nombre total d'observations: 1302.

Minimum: 8043.Maximum: 34788.Moyenne: 25321,972.

Présentation de la série :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA $(1,0,0)$ avec transformation log $(AR[1] = 0,9987; const = 0,0112)$
ForeScope 1.0	Modèle autorégressif ($AR[1] = -0, 2601$; $AR[2] = -0,4579$; $AR[6] = 0,2110$;
	AR[8] = 0.3719
KTS - 304	L1
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,999; tendance =
	0,00298; coefficient d'amortissement = 0,999)
SPSS - Decision Time 1.1	Lissage exponentiel de Holt (niveau =0,9999; tendance = 0,001021)
Statgraphics 5.1	ARMA(1,0)

S36

Description de la série

- Représente: «La valeur de l'action IBM» entre le 17 mai et le 2 novembre 1962.
- Série journalière avec tendance et sans saisonnalité.
- Nombre total d'observations: 369.
- Minimum: 306.
- Maximum: 603.
- Moyenne: 478,469.

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 1)
ForeScope 1.0	ARIMA $(1,0,0)$ (const = 0, 5289; AR[1] = 0, 9983)
KTS - 304	L1 + AR(41)
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,999; tendance =
	0,02712; coefficient d'amortissement = 0,96696)
SPSS - Decision Time 1.1	ARIMA(0,1,6) (MA [1]=-0,1158; MA [6] = 0,1303)
Statgraphics 5.1	Marche aléatoire

Description de la série

- Représente: «Le nombre de naissance journalier au Québec» entre 1 janvier 1977 31 décembre 1990.
- Série journalière avec tendance et saisonnalité.
- Nombre total d'observations: 5113.
- Minimum: 136.Maximum: 366.Moyenne: 250,802.

Présentation de la série :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA (2,0,3) (2,0,4) avec transformation racine carrée
ForeScope 1.0	ARIMA (1,0,0) (const = 918,4357; AR[1] = 0, 9721)
KTS - 304	AR(634)
SAS 8.2	Lissage exponentiel (niveau = 0,1119; saisonnalité = 0,01641)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, modèle multiplicatif (niveau = 0,1155; tendance = 0,001; saisonnalité = 3,066e-007)
Statgraphics 5.1	ARMA(4,3) SARMA(4,3)

S38

Description de la série

- Représente: «Les averses journalières à Melbourne» entre 1 janvier 1981 et 31 décembre 1990.
- Série journalière stationnaire et sans saisonnalité.
- Nombre total d'observations: 3653.
- Minimum: 0.
- Maximum: 692.
- Moyenne: 16,912.

Présentation de la série :

Logiciel	Méthode
Forecast Pro 4.2	Modèle de données intermittentes de Croston
ForeScope 1.0	Modèle autorégressif
KTS - 304	Ne réalise pas de prévisions
SAS 8.2	Moyenne (intercepte = 16,80707)
SPSS - Decision Time 1.1	ARIMA(0,0,1) (const = 16,81; MA [1] = -0,1401)
Statgraphics 5.1	ARMA(1,0)

Description de la série

- Est une série artificielle qui est la somme des trois composantes suivantes: un Lag1 qui peut être créé en intégrant 1 fois n'importe quelle série de nombres aléatoires, un cycle de période 118, un «white noise».
- Série journalière non stationnaire et sans saisonnalité.
- Nombre total d'observations: 499.
- ➤ Minimum: –21,678.
- Maximum: 13,955.
- Moyenne: -3,221.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 0,76562)
ForeScope 1.0	ARIMA (1,0,0) (1,0,0) (const = 17,9782; AR[1] = 0, 101; AR[8] = 0, 100)
KTS - 304	$K2R(Time, Time^2, sqrt(Time)) + AR(61)$
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,77791; tendance = 0,999; coefficient d'amortissement = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel simple avec saisonnalité (niveau = 0,7994; saisonnalité = 8,687e-008)
Statgraphics 5.1	Lissage exponentiel simple (niveau = 0,7659)

S40

Description de la série

- Représente: «La production d'électricité en Australie (million kilowatt/heure), entre mars 1959 et septembre 1994;
- Série trimestrielle avec tendance et saisonnalité.
- Nombre total d'observations: 155.
- Minimum: 3923.Maximum: 42855.Moyenne: 20218,51.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel de Winters (niveau=0,57503; tendance=0,04929; saisonnalité = 0,99995)
ForeScope 1.0	Lissage exponentiel double (niveau = 0,2210)
KTS - 304	L1 + AR(17)
SAS 8.2	ARIMA (2,1,2) (0,1,1) s NOINT avec transformation log (MA[1] = 0,99995; MA[2] = -0,83664; MA[4]=0,75039; AR [1] = 0,08852; AR[2] = -0,93733)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, modèle multiplicatif (niveau = 0,5973; tendance = 0,0425; saisonnalité = 0,999)
Statgraphics 5.1	Lissage exponentiel de Winters (niveau = 0,5791; tendance = 0,0618; saisonnalité = 0,9999)

S41

Description de la série

- Représente: «La production de gaz en Australie, le gaz naturel inclus (million méga-joules)» entre mars 1956 et septembre 1994;
- Série trimestrielle avec tendance et saisonnalité.
- Nombre total d'observations: 155.
- Minimum: 5149.
- Maximum: 184202.
- Moyenne: 61728,161.

Logiciel	Méthode
Forecast Pro 4.2	ARIMA $(0,1,0)$ $(0,1,1)$ avec transformation log $(MA[4] = 0,5690)$
ForeScope 1.0	Décomposition saisonnière, modèle aditif
KTS - 304	L1 + AR(17)
SAS 8.2	Lissage exponentiel de Winters, modèle additif; transformation log (niveau = 0,96262; tendance = 0,11318; saisonnalité = 0,999)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, modèle multiplicatif (niveau = 0,707; tendance = 0,03707; saisonnalité = 0,6265)
Statgraphics 5.1	Lissage exponentiel de Winters (niveau = 0,7123, tendance = 0,034, saisonnalité = 0,6089)

Description de la série

- Représente: «La production de fil de laine en Australie (tonnes)» entre mars 1965 et septembre 1994;
- > Série trimestrielle avec tendance et saisonnalité.
- Nombre total d'observations: 119.
- Minimum: 3324.Maximum: 7819.Moyenne: 5658,227.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA (1,1,1) (0,1,1) (AR[1] = 0,6055; MA[1] = 0,8311; MA[4] = 0,7220)
ForeScope 1.0	Décomposition saisonnière, modèle multiplicatif
KTS - 304	L1 + Cyclic(4)
SAS 8.2	ARIMA (2,1,2) (0,1,1)s NOINT (MA [1] = 1,76126; MA[2] = -0,87524;
	MA[4]=0,70201; AR[1]=1,55733; AR[2]=-0,72442)
SPSS - Decision Time 1.1	Lissage exponentiel simple avec saisonnalité (niveau = 0,6116; saisonnalité =
	0,5163)
Statgraphics 5.1	ARMA(2,1) SARMA (2,1)

S43

Description de la série

- Représente: «La production de dalles en Australie (milier dele tonnes)» entre mars 1956 et mars 1992.
- Série trimestrielle avec tendance et saisonnalité.
- Nombre total d'observations: 147.
- Minimum: 524.Maximum: 1814.Moyenne: 1119,735.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel; saisonnalité additive (niveau = 0,72218; saisonnalité = 0,09253)
ForeScope 1.0	Modèle autorégressif (AR[1] = 0, 6839; AR[4] = 0, 4627; AR[5] = -0, 0.2910; AR[8] = 0, 3849; AR[9] = -0,3058)
KTS - 304	L1 + AR(16)
SAS 8.2	Lissage exponentiel de Winters, model aditif (niveau = 0,70898; tendance = 0,02845; saisonnalité = 0,00418)
SPSS - Decision Time 1.1	Lissage exponentiel simple avec saisonnalité (niveau = 0,7412; saisonnalité = 0,004481)
Statgraphics 5.1	Lissage exponentiel simple (niveau =0,7461)

S44

Description de la série

- Représente: «Le chiffre d'affaire du commerce de détail (\$ m au prix courant)» entre juin 1982 et décembre 1991
- Série trimestrielle avec tendance et saisonnalité.
- Nombre total d'observations: 39.
- Minimum: 12964,2.
- Maximum: 17361,6.
- Moyenne 14623,169.

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel; saisonnalité multiplicative (niveau = 0,69541; saisonnalité = 0,99965)
ForeScope 1.0	Décomposition saisonnière, modèle aditif
KTS - 304	K2R(Time) + Cyclic(4) + Cyclic(7)
SAS 8.2	Lissage exponentiel avec transformation log (niveau = 0,92565; saisonnalité = 0,999)
SPSS - Decision Time 1.1	Lissage exponentiel de Winters, modèle aditif (niveau = 0,8025; tendance = 0,0001811; saisonnalité = 1,375e-005)
Statgraphics 5.1	Marche aléatoire

Description de la série

- Représente: «Le PIB réel aux Etats Unis (exprimé en \$ 1982)» entre le premier trimestre 1947 et le troisième trimestre.
- Série trimestrielle stationnaire et sans saisonnalité.
- Nombre total d'observations: 176.
- Minimum: -0,024.Maximum: 0,040.Moyenne: 0,008.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(1,0,0) ($AR[1] = 0,3691$; const = 0,0051)
ForeScope 1.0	Décomposition saisonnière, modèle multiplicatif
KTS - 304	K2R(Time) + Cyclic(45)
SAS 8.2	Moyenne (intercepte = 0,00807)
SPSS - Decision Time 1.1	ARIMA(1,0,0) (const = 0,008062; AR[1]= 0,367)
Statgraphics 5.1	ARMA(1,0)

S46

Description de la série

- Représente: «les dépenses dans les services financiers en Australie (\$ m)» entre septembre 1969 et mars 1994.
- Série trimestrielle avec tendance et sans saisonnalité.
- Nombre total d'observations: 100.
- Minimum: 464.
- Maximum: 2588.
- Moyenne 1207,750.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(0,1,4) avec transformation log (MA[1]= 0,0275; MA[2]= -0,0137; MA[3]= -0,2307; MA[4]=-0,4237)
ForeScope 1.0	Modèle autorégressif (AR[1] = 1,2283; AR[4] = -0,2269)
KTS - 304	L1 + AR(10)
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,85582; tendance = 0,35188; coefficient d'amortissement = 0,95553)
SPSS - Decision Time 1.1	Lissage exponentiel de Holt (niveau =0,8794; tendance = 0,3261)
Statgraphics 5.1	Lissage exponentiel de Brown (niveau = 0,5641)

S47

Description de la série

Représente: «la concentration d'un processus chimique observée à différents moments».

Nombre total d'observations: 197.

Minimum: 16,1.Maximum: 18,2.Moyenne: 17,062.

Logiciel	Méthode
Forecast Pro 4.2	ARIMA(1,0,1) avec transformation log (AR[1] = 0,8978, MA[1] = 0,5639; const
	= 0,2896)
ForeScope 1.0	ARIMA
KTS - 304	K2R(KxIndex, KxIndex ² , sqrt(KxIndex))
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,30085; tendance =
	0,001; coefficient d'amortissement = 0,001)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 0, 3006)
Statgraphics 5.1	Lissage exponentiel simple (niveau = 0,302)

Description de la série

- Représente «la concentration de la température dans un processus chimique».
- Nombre total d'observations: 226.
- Minimum: 18.Maximum: 27,1.Moyenne: 22,974.

Présentation de la série et des prévisions :

Logiciel	Méthode	
Forecast Pro 4.2	ARIMA $(1,1,0)$ (AR[1] = 0,8023)	
ForeScope 1.0	Modèle autorégressif (const = 0,0848; AR[1] = 1,8048; AR[4] = -0,8089)	Modèle a
KTS - 304	AR(24)	
SAS 8.2	Lissage exponentiel de Holt avec tendance amortie (niveau = 0,999; tendance = 0,999; coefficient d'amortissement = 0,8034)	
SPSS - Decision Time 1.1	ARIMA(1,1,0) (AR[1] = 0,8008)	
Statgraphics 5.1	ARMA(2,1)	

S49

Description de la série

Représente: «la viscosité d'un processus chimique observé à différents instants».

Nombre total d'observations: 310.

Minimum: 7,4.Maximum: 10,4.Moyenne: 9,133.

Présentation de la série et des prévisions :

Logiciel	Méthode
Forecast Pro 4.2	ARIMA $(1,0,0)$ (AR[1] = 0,8737; const = 1,1559)
ForeScope 1.0	ARIMA $(1,0,0)$ (AR[1] = 0,8641; const = 1,2428)
KTS - 304	K2R(KxIndex) + AR(35)
SAS 8.2	Lissage exponentiel simple (niveau = 0,92875)
SPSS - Decision Time 1.1	Lissage exponentiel simple (niveau = 0,929)
Statgraphics 5.1	ARMA (1,0)

S50

Description de la série

- Représente: «le rendement pour un groupe de processus chimiques observé à moments différents».
- Nombre total d'observations: 70.
- Minimum: 23.
- Maximum: 80.
- Moyenne: 51,129.

Logiciel	Méthode
Forecast Pro 4.2	Lissage exponentiel simple (niveau = 0,02813)
	Modèle autorégressif (AR[1] = 1,8048; AR[4] = -0,8089)
KTS - 304	K2R(KxIndex) + AR(6)
SAS 8.2	Moyenne (intercepte = 51,51667)
SPSS - Decision Time 1.1	ARIMA(1,0,0) (const = 51,57; AR[1] = -0,3793)
Statgraphics 5.1	ARMA(1,0)

Note : dans les graphiques réalisés, KXEN représente ça composante analytique KTS 304.	

ANNEXE D - NOTATIONS UTILISEES

Les notations qui ont été utilisées dans cette étude sont les suivantes:

SDFP, MADFP, MAPEFP, RMSEFP, EMAXFP = les critères de performance qui sont obtenus en utilisant le logiciel Forecast Pro;

SDK, MADK, MAEK, MAPEK, RMSEK, EMAXK = les critères de performance qui sont obtenus en utilisant le logiciel KTS;

SDS MADS MAES MAPES RMSES EMAXS = les critères de performance qui sont obtenus en utilisant le logiciel SAS;

SDSP MADSP MAESP MAPESP RMSESP EMAXSP = les critères de performance qui sont obtenus en utilisant le logiciel SPSS Decision Time;

SDST MADST MAEST MAPEST RMSEST EMAXST = les critères de performance qui sont obtenus en utilisant le logiciel Statgraphics;

S1_1, S2_1.....S50_1 = les séries qui sont prévues en utilisant le logiciel Forecast Pro;

S1_2, S2_2.....S50_2 = les séries qui sont prévues en utilisant le logiciel KTS;

S1_3, S2_3......S50_3 = les séries qui sont prévues en utilisant le logiciel SAS;

S1_4, S2_4.....S50_4 = les séries qui sont prévues en utilisant le logiciel SPSS Decision Time:

S1_5, S2_5.....S50_5 = les séries qui sont prévues en utilisant le logiciel Statgraphics;