# Statistic Theory Final

# Presenting: Inbar Fabian, Emily Bederov & Shira Lavi

#### **Abstract:**

Our research question: How does the characteristics of the cell nuclei of a breast mass affects its diagnosis (Malignant\Benign)?

In this paper, we used several statistical tools to explore our dataset and to reach an answer to our question. In addition, we expanded our research to another datasets and created a function which determines for us the diagnosis based on our characteristics.

Our main dataset was taken from Kaggle:

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data

We used an additional datasets:

https://www.kaggle.com/datasets/zgrcemta/world-gdpgdp-gdp-per-capita-and-annual-growths (gdp dataset)

https://www.kaggle.com/datasets/antimoni/cancer-deaths-by-country-and-type-1990-2016 (breast cancer 2nd dataset)

Results: we can determine the diagnosis based mostly on the features:

- Radius mean
- symmetry\_worst
- fractal dimantion worst

In conclusion, the most important feature to determine the diagnosis is "radius\_mean".

# Introduction:

Let's start by reviewing the data, we have a table with 31 columns (if we remove the "id"). The columns include the diagnosis(M\B), and 10 more different characteristics of the mass, when each is divided into 3 subcategories: mean, se (standard error), worst.



Our relatively large number of features comes with a problem, because the measurements are highly corelated, we noticed there are a lot of dependencies. Those dependencies can cause problems when picking the features which affect the diagnosis the most. This is because two highly correlated features will split their effect on the diagnosis in the measurement therefore reduce its significance.

To deal with this issue we will use two methods:

First, divide the features by correlation. We will make groups of features which are correlated to one another higher than 0.8. these are the groups:

['diagnosis'], ['radius\_mean', 'perimeter\_mean', 'area\_mean', 'concave points\_mean', 'radius\_worst', 'perimeter\_worst', 'area\_worst'], ['texture\_mean', 'texture\_worst'], ['smoothness\_mean', 'smoothness\_worst'], ['compactness\_mean', 'concavity\_mean', 'compactness\_worst', 'concavity\_worst', 'concave points\_worst'], ['symmetry\_mean'], ['fractal\_dimension\_mean'], ['radius\_se', 'perimeter\_se', 'area\_se'], ['texture\_se'], ['smoothness\_se'], ['compactness\_se', 'concavity\_se', 'fractal\_dimension\_se'], ['concave points\_se'], ['symmetry\_se'], ['symmetry\_worst'], ['fractal\_dimension\_worst']

To find the best feature to represent each group we will use 'VIF,' for each group we choose the feature with the highest VIF score. meaning, the feature who correlates best to the other features in the group.

Next, we changed our dataset to include only the heads of each group and now we will try to find the affect they have on the diagnosis.

old VS new correlation matrix:



To make sure we are getting the best results, we chose another way to split the data into groups using **Hierarchical Clustering**.

# Meaning, the groups:

['smoothness\_se'], ['symmetry\_se'], ['texture\_mean',
'texture\_worst'], ['texture\_se'], ['compactness\_worst',
'compactness\_mean', 'concavity\_mean', 'concave points\_mean',
'concave points\_se', 'concave points\_worst', 'compactness\_se',
'concavity\_se', 'concavity\_worst'],
['radius\_se', 'perimeter\_se', 'area\_se'], ['diagnosis', 'area\_worst',
'radius\_worst', 'perimeter\_worst', 'area\_mean', 'perimeter\_mean',
'radius\_mean'],
['symmetry\_worst', 'symmetry\_mean'], ['smoothness\_mean',
'smoothness\_worst'], ['fractal\_dimension\_mean',
'fractal\_dimension\_worst'],

In this method diagnosis is part of a cluster, meaning the features in this cluster are highly correlated to it, thus they are valuable for its prediction, we will not choose only one representative, we will use them all.

# This method gave us those results:



To test which of those methods is better, we Performed cross-validation for VIF-selected features and for Hierarchical Clustering-selected features, then we checked the scores of the cross validation and used Sign Test (which is a statistical test for consistent differences between pairs of observations), and with p value = 0.3 which is very high, then we rejected the null hypothesis.

### **Results:**

We can choose a method to our liking. Therefore, from now on we will use the first feature selection method. Then we will use statistic tests to understand what features can contribute mostly, then we will perform regression.

### **Statistical Analysis**

We performed statistic tests such as Kolmogorov-Smirnov & Shapiro-Wilk to determine whether a feature distribute normally.

- texture\_mean
- smoothness\_mean
- symmetry\_mean

those are the normally distributed features, thus we checked using two-sample T-test, if there is a significant difference between the cancer group (diagnosis == 'M') and the non-cancer group (diagnosis == 'B') for individuals that for them, those features are above the mean.

#### We conclude that:

- 1. texture\_mean There is no significant difference in texture values between the cancer and non-cancer groups.
- 2. smoothness\_mean here is a significant difference in smoothness values between the cancer and non-cancer groups.
- 3. symmetry\_mean There is a significant difference in symmetry values between the cancer and non-cancer groups.

Which helps learn that smoothness\_mean & symmetry\_mean are valuable features to help determine type of cancer.

As for the non-normally distributed we firstly used the Goodness-of-fit method, we tried to fit features to distributions – normal, exponential, gamma, lognormal & beta.

Then, to decide if the fit is actually good, for normal fits, we performed Kolmogorov-Smirnov test, to check the credibility of the fit, and as for non-normal distributions we performed Anderson-Darling test (The Anderson-Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution).

# Results:

- concave points\_se (Beta distribution): The relatively high p-value indicates that the beta distribution is a good fit for this data.
- symmetry\_se (Lognormal distribution): The high p-value indicates that the lognormal distribution is a good fit for this data.

we couldn't fit any feature to normal distribution; hence we will now use non-parametric tests.

Using Mann-Whitney U Test Statistic, for the parameters:

- Radius mean
- symmetry\_se
- symmetry\_worst
- fractal\_dimantion\_worst

#### We conclude that:

- 1. Radius\_mean significant difference
- 2. symmetry\_se not significant difference
- 3. symmetry\_worst significant difference
- 4. fractal dimention worst significant difference

# **Regression analysis:**

To find out how the different representatives interact with each other, we will plot the histograms of the new data-frame when in the X-axis there is one feature, the Y-axis another, and each sample is represented by a dot colored: blue-benign, pink-malignant.

### For example:

We can see from these few samples that some pairs mix the dots, but some pairs divide the data to pink and blue very good, up until the point we can almost divide them completely

using a line. Based on the plotting, we used Mann-Whitney U Test on each pair to determine if the mean values of the blue and pink points are far away from each other enough so it will be optimal to separate them by a line.

The results to this test are:



Now we will make for every one of them a SVM linear model, the visual results are:



To make sure we only take the best models we will check for accuracy and keep the ones with over 0.85 accuracy. These are the ones that we are left with:

- SVM model for texture\_mean and radius\_mean Accuracy: 0.9064
- SVM model for smoothness\_mean and radius\_mean Accuracy: 0.9181
- SVM model for concavity\_mean and radius\_mean Accuracy: 0.9240
- SVM model for concavity\_mean and texture\_mean Accuracy: 0.8713

- SVM model for concavity\_mean and smoothness\_mean Accuracy: 0.8538
- SVM model for symmetry\_mean and radius\_mean Accuracy: 0.9181
- SVM model for symmetry\_mean and concavity\_mean Accuracy: 0.8538
- SVM model for radius\_se and radius\_mean Accuracy: 0.9064
- SVM model for radius\_se and concavity\_mean Accuracy: 0.8596
- SVM model for concavity\_se and radius\_mean Accuracy: 0.9181
- SVM model for concave points\_se and radius\_mean Accuracy: 0.9181
- SVM model for concave points\_se and concavity\_mean Accuracy: 0.8538
- SVM model for symmetry\_worst and radius\_mean Accuracy: 0.9357
- SVM model for fractal\_dimension\_worst and radius\_mean Accuracy: 0.9181

Next we will make a model which takes the mean value of all the models above and returns 1 if the prediction is greater than 0.5 and 0 if the prediction is less than 0.5

The final model accuracy came out as 0.918.

# **Combining Datasets:**

Our goal was to find out what is the relationship of the economic status of a country to the number of deaths from breast cancer in relation to the population, in order to check whether the fact that Wisconsin is a small state and not in a dire economic situation increases or decreases the mortality rate from breast cancer in 1992.

The dataset we started with, is a dataset of 27 types of cancer around the world.

|         | Country       | Code | Year | Liver cancer | Kidney<br>cancer | Larynx<br>cancer | Breast<br>cancer | Thyroid<br>cancer | Stomach<br>cancer | Bladder<br>cancer | <br>Non-<br>melanoma<br>skin<br>cancer | Lip and<br>oral cavity<br>cancer | Brain and<br>nervous<br>system<br>cancer |   |
|---------|---------------|------|------|--------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|----------------------------------------|----------------------------------|------------------------------------------|---|
| 0       | Afghanistan   | AFG  | 1990 | 243.663716   | 39.470495        | 109.334207       | 766.535431       | 79.820167         | 923.495208        | 148.139204        | <br>26.446156                          | 53.599636                        | 163.869062                               |   |
| 1       | Afghanistan   | AFG  | 1991 | 261.241824   | 41.376024        | 117.311719       | 823.233932       | 85.111020         | 989.709648        | 156.977412        | <br>28.275271                          | 57.148890                        | 174.183219                               |   |
| 2       | Afghanistan   | AFG  | 1992 | 284.443630   | 44.106315        | 128.071634       | 901.022100       | 92.240603         | 1078.459037       | 168.990462        | <br>30.718152                          | 61.876100                        | 188.382296                               |   |
| 3       | Afghanistan   | AFG  | 1993 | 313.136816   | 47.424854        | 141.429604       | 996.432762       | 101.206726        | 1192.064525       | 184.347737        | <br>33.835442                          | 67.504857                        | 205.250430                               | 1 |
| 4       | Afghanistan   | AFG  | 1994 | 343.229715   | 50.710951        | 155.754606       | 1097.895223      | 110.679923        | 1316.505674       | 200.246949        | <br>37.103370                          | 73.175879                        | 222.383572                               | 1 |
|         |               |      |      |              |                  |                  |                  |                   |                   |                   | <br>                                   |                                  |                                          |   |
| 5989    | Zimbabwe      | ZWE  | 2012 | 1218.763107  | 56.966136        | 162.131298       | 783.959361       | 115.203608        | 936.013607        | 420.658042        | <br>212.201798                         | 95.507275                        | 222.048414                               |   |
| 5990    | Zimbabwe      | ZWE  | 2013 | 1252.747896  | 58.735014        | 161.039807       | 790.077464       | 115.846418        | 928.096553        | 423.397684        | <br>213.262823                         | 97.058488                        | 229.271375                               |   |
| 5991    | Zimbabwe      | ZWE  | 2014 | 1308.483454  | 61.575167        | 161.512234       | 839.938132       | 121.251540        | 949.321368        | 434.314706        | <br>215.100202                         | 99.866860                        | 240.975514                               |   |
| 5992    | Zimbabwe      | ZWE  | 2015 | 1357.611713  | 63.757395        | 162.909299       | 862.707637       | 123.638675        | 956.138239        | 442.122976        | <br>218.011570                         | 102.734862                       | 250.586202                               |   |
| 5993    | Zimbabwe      | ZWE  | 2016 | 1411.242274  | 66.764985        | 164.929997       | 891.630167       | 126.800977        | 969.794783        | 453.711001        | <br>222.509943                         | 106.303546                       | 263.215193                               |   |
| 5994 re | ows × 30 colu | ımns |      |              |                  |                  |                  |                   |                   |                   |                                        |                                  |                                          |   |

from this dataset we only took the cases that are relevant to our main dataset, we filtered the dataset so that it only has a few states in the United States (Canada, Chile, Colombia, Costa Rica, Guatemala, Bahamas, Ecuador, El Salvador, Mexico, Honduras) breast cancer data, and finally we filtered our data to only be from 1992 like the original data from Wisconsin, we checked the number of deaths from breast cancer in Wisconsin in 1992 and added a row of Wisconsin to the data.

|   |         | Country       | Code | Year | Breast cancer |        | Country     | Code | Year | Breast cancer |    | Country     | Code | Year | Breast cancer |
|---|---------|---------------|------|------|---------------|--------|-------------|------|------|---------------|----|-------------|------|------|---------------|
|   | 0       | Afghanistan   | AFG  | 1990 | 766.535431    | 378    | Bahamas     | BHS  | 1990 | 26.962018     | (  | Bahamas     | BHS  | 1992 | 28.811027     |
|   | 1       | Afghanistan   | AFG  | 1991 | 823.233932    | 379    | Bahamas     | BHS  | 1991 | 27.808558     | 1  | Canada      | CAN  | 1992 | 4952.458943   |
|   | 2       | Afghanistan   | AFG  | 1992 | 901.022100    | 380    | Bahamas     | BHS  | 1992 | 28.811027     | 2  | Chile       | CHL  | 1992 | 841.069976    |
|   | 3       | Afghanistan   | AFG  | 1993 | 996.432762    | 381    | Bahamas     | BHS  | 1993 | 30.021995     |    | Colombia    | COL  | 1992 | 1615.615711   |
|   | 4       | Afghanistan   | AFG  | 1994 | 1097.895223   | 382    | Bahamas     | BHS  | 1994 | 30.787088     |    |             | CRI  | 1992 | 161.836578    |
|   |         |               |      |      |               |        |             |      |      |               |    | COSIA NICA  | CKI  | 1992 | 101.030370    |
|   | 5989    | Zimbabwe      | ZWE  | 2012 | 783.959361    | 3370   | Mexico      | MEX  | 2012 | 5998.797400   | 5  | Ecuador     | ECU  | 1992 | 295.522830    |
|   | 5990    | Zimbabwe      | ZWE  | 2013 | 790.077464    | 3371   | Mexico      | MEX  | 2013 | 6335.127044   | 6  | El Salvador | SLV  | 1992 | 164.064214    |
|   | 5991    | Zimbabwe      | ZWE  | 2014 | 839.938132    | 3372   | Mexico      | MEX  | 2014 | 6610.387303   | 7  | Guatemala   | GTM  | 1992 | 197.725307    |
|   | 5992    | Zimbabwe      | ZWE  | 2015 | 862.707637    | 3373   | Mexico      | MEX  | 2015 | 6695.789585   | 8  | Honduras    | HND  | 1992 | 125.483079    |
|   | 5993    | Zimbabwe      | ZWE  | 2016 | 891.630167    | 3374   | Mexico      | MEX  | 2016 | 6848.454072   | 9  | Mexico      | MEX  | 1992 | 2962.225256   |
| 5 | 5994 re | ows × 4 colun | nns  |      |               | 270 ro | ws × 4 colu | ımns |      |               | 10 | Wisconsin   | WIS  | 1992 | 4455.000000   |

In addition, we crossed another dataset of GDP of countries from the years 1960-2020 to get the GDP of each of the countries in 1992, and we also added the GDP of Wisconsin in 1992

|     | Country<br>Name                      | Country<br>Code | 1960         | 1961         | 1962         | 1963         | 1964         | 1965         | 1966         | 1967         | <br>2011         |         |
|-----|--------------------------------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|---------|
| 0   | Africa<br>Eastern<br>and<br>Southern | AFE             | 1.931311e+10 | 1.972349e+10 | 2.149392e+10 | 2.573321e+10 | 2.352744e+10 | 2.681057e+10 | 2.915216e+10 | 3.017317e+10 | <br>9.430000e+11 | 9.51000 |
| 1   | Africa<br>Western<br>and<br>Central  | AFW             | 1.040428e+10 | 1.112805e+10 | 1.194335e+10 | 1.267652e+10 | 1.383858e+10 | 1.486247e+10 | 1.583285e+10 | 1.442643e+10 | <br>6.710000e+11 | 7.28000 |
| 2   | Australia                            | AUS             | 1.860679e+10 | 1.968306e+10 | 1.992272e+10 | 2.153993e+10 | 2.380110e+10 | 2.597715e+10 | 2.730989e+10 | 3.044462e+10 | <br>1.400000e+12 | 1.55000 |
| 3   | Austria                              | AUT             | 6.592694e+09 | 7.311750e+09 | 7.756110e+09 | 8.374175e+09 | 9.169984e+09 | 9.994071e+09 | 1.088768e+10 | 1.157943e+10 | <br>4.310000e+11 | 4.09000 |
| 4   | Burundi                              | BDI             | 1.960000e+08 | 2.030000e+08 | 2.135000e+08 | 2.327500e+08 | 2.607500e+08 | 1.589950e+08 | 1.654446e+08 | 1.782971e+08 | <br>2.235821e+09 | 2.33330 |
|     |                                      |                 |              |              |              |              |              |              |              |              | <br>             |         |
| 115 | St. Vincent<br>and the<br>Grenadines | VCT             | 1.306656e+07 | 1.399988e+07 | 1.452488e+07 | 1.370822e+07 | 1.475821e+07 | 1.510821e+07 | 1.609987e+07 | 1.583518e+07 | <br>6.761296e+08 | 6.92933 |
| 116 | World                                | WLD             | 1.390000e+12 | 1.440000e+12 | 1.550000e+12 | 1.670000e+12 | 1.820000e+12 | 1.990000e+12 | 2.160000e+12 | 2.290000e+12 | <br>7.370000e+13 | 7.53000 |

In addition, we created a column with the amount of population that was in each of the countries in 1992, To check the percentage of deaths from breast cancer in the population. We also added a column of the relationship between them.

|    | Country Name | Code | 1992         |    | Country Name | Code | 1992         | Population | proportion |
|----|--------------|------|--------------|----|--------------|------|--------------|------------|------------|
| 0  | Bahamas, The | BHS  | 3.109000e+09 | 0  | Bahamas, The | BHS  | 3.109000e+09 | 281973     | 0.000102   |
| 1  | Canada       | CAN  | 5.923877e+11 | 1  | Canada       | CAN  | 5.923877e+11 | 28370000   | 0.000175   |
| 2  | Chile        | CHL  | 4.596433e+10 | 2  | Chile        | CHL  | 4.596433e+10 | 13782297   | 0.000061   |
| 3  | Colombia     | COL  | 5.841899e+10 | 3  | Colombia     | COL  | 5.841899e+10 | 33940000   | 0.000048   |
| 4  | Costa Rica   | CRI  | 8.564044e+09 | 4  | Costa Rica   | CRI  | 8.564044e+09 | 3321939    | 0.000049   |
| 5  | Ecuador      | ECU  | 1.809424e+10 | 5  | Ecuador      | ECU  | 1.809424e+10 | 10910000   | 0.000027   |
| 6  | Guatemala    | GTM  | 1.044084e+10 | 6  | Guatemala    | GTM  | 1.044084e+10 | 9544000    | 0.000017   |
| 7  | Honduras     | HND  | 4.943700e+09 | 7  | Honduras     | HND  | 4.943700e+09 | 5345000    | 0.000037   |
| 8  | Mexico       | MEX  | 3.631576e+11 | 8  | Mexico       | MEX  | 3.631576e+11 | 85990000   | 0.000001   |
| 9  | El Salvador  | SLV  | 5.813399e+09 | 9  | El Salvador  | SLV  | 5.813399e+09 | 5552000    | 0.000534   |
| 10 | Wisconsin    | WIS  | 1.260000e+11 | 10 | Wisconsin    | WIS  | 1.260000e+11 | 5005000    | 0.000890   |

We performed normality tests and discovered that our data is not normally distributed, then, we sorted the GDP into categories (GDP< e^10 - small, e^10<GDP< e^11 - medium, e^11<GDP - large) to create data with a nominal variable and use the chi test.

The results of the test showed that there is no relationship between the GDP index of a state and the percentage of deaths from breast cancer, which shows us that even though Wisconsin was a small and economically undeveloped state in 1992, it did not affect the percentage of deaths from breast cancer.

```
(Proportion Category Low Medium GDP Category Small 2 2 2 Medium 4 0 Large 1 2, 3.797619047619048, 0.14974678313156617, 2, array([[2.54545455, 1.45454545], [2.54545455, 1.45454545], [1.90909091, 1.090909099]]))
```

#### Methods:

The methods we used throughout our project in order are:

Feature selection using VIF, Group selection using hierarchical clustering, Sign Test for cross validation the feature selection methods, Kolmogorov-Smirnov & Shapiro-Wilk to determine whether a feature distribute normally, T-test to see if there is a significant difference in the features between the cancer group (diagnosis == 'M') and the non-cancer group (diagnosis == 'B'), Goodness-of-fit method to try and relate each feature to some distribution, Anderson-Darling test on the non-normally distributed features, Mann-Whitney U Test for every pair of features to determine if we are able to use SVM, Mann-Whitney U Test for the features most related to diagnosis, SVM models on the pairs of features, using the mean value of the best models to determine for a new sample the diagnosis, Chi test to see that there is no relationship between the GDP index of a state and the percentage of deaths from breast cancer.

# Discussion:

To sum up the paper, we concluded that the most important features to determine the diagnosis are 'radius\_mean', 'symmetry\_worst', 'fractal\_dimension\_worst'. We also made a model that determines the diagnosis based of the features. We want to emphasize that those features are just the representation of their group, so it's the three group which have the most effect over the diagnosis.