WHAT IS CLAIMED IS:

2	1. An eye construction for a toy doll, the eye construction comprising:
3	a housing (10) with a mouth to which a hollow frame (13) is attached;
4	an eyelid body (20) pivotally arranged inside the housing (10) and
5	behind the hollow frame (13);
6	an eyeball body (30) pivotally arranged inside the housing (10) and
7	behind the eyelid body (20);
8	an eyelid moving control plate (40) securely mounted inside the housing
9	(10), wherein a first pushing rod (42) and a second pushing rod (43) are movably
10	attached on the eyelid moving control plate (40) via two memory alloy wires
11	(60), wherein the first and the second pushing rods (42)(43) alternately push the
12	eyelid body (20) thus allowing the eyelid body (20) to generate a blinking action;
13	an eyeball moving control plate (50) securely mounted inside the
14	housing (10), wherein a third pushing rod (52) and a fourth pushing rod (53) are
15	movably attached on the eyeball moving control plate (50) via two memory alloy
16	wires (60'), wherein the third and the fourth pushing rods (52)(53) alternately
17	push the eyeball body (30) thus allowing the eyeball body (30) to generate a
18	rotation; and
19	a control circuit board (70) arranged inside the housing (10) and
20	electrically connected to the memory alloy wires (60)(60') on the eyelid moving
21	control plate (40) and eyeball moving control plate (50), wherein the control
22	circuit board (70) provides a current to the memory alloy wires (60)(60').
23	2. The eye construction as claimed in claim 1, wherein the housing is
24	formed by an upper case (11) and a lower case (12) both correspondingly

- 1 combined together, where the mouth is thus defined at one side of the housing
- 2 (10), wherein the frame body (13) has a hemispherical shell on which a through
- 3 hole is defined.
- 3. The eye construction as claimed in claim 1, wherein the eyelid body
- 5 (20) is formed by a hemispherical shell on which an opening (21) is defined,
- 6 where an upper portion above the opening (21) is wider than a lower portion of
- 7 the eyelid body (20);
- a pair of first stubs (22) extending from an outer surface of opposite
- 9 sides of the eyelid body (20), wherein the eyelid body (20) is pivotally attached
- inside the housing (10) via the two first stubs (22); and
- a lengthwise block (23) extending from an edge of the eyelid body (20)
- near one of the two stubs (22).
- 4. The eye construction as claimed in claim 1, wherein the eyeball body
- 14 (30) is formed by a hemispherical ball, and a front arcuate surface of the
- 15 hemispherical ball is used for forming a pupil pattern;
- two second stubs (31) respectively formed at a top side and a bottom side
- of an outer surface of the eyeball body (30), whereby the eyeball body (30) is
- pivotally attached inside the housing (10) via the two second stubs (31); and
- a lateral block (33) formed at a center of an inner surface of the eyeball
- 20 body (30).
- 5. The eye construction as claimed in claim 3, wherein the eyeball body
- 22 (30) is formed by a hemispherical ball, and a front arcuate surface of the
- 23 hemispherical ball is used for forming a pupil pattern;
- 24 two second stubs (31) respectively formed at a top side and a bottom side

- of an outer surface of the eyeball body (30), whereby the eyeball body (30) is
- 2 pivotally attached inside the housing (10) via the two second stubs (31); and
- a lateral block (33) formed at a center of an inner surface of the eyeball
- 4 body (30).
- 6. The eye construction as claimed in claim 4, wherein the eyelid
- 6 moving control plate (40) and the eyeball moving control plate (50) both have
- 7 two buckling protrusions (41)(51) formed at an upper edge and a lower edge of
- 8 the eyelid moving control board (40) and the eyeball moving control plate (50) to
- 9 correspondingly insert through apertures (14)(15) defined in the upper and lower
- 10 cases (11)(12).
- 7. The eye construction as claimed in claim 5, wherein the eyelid
- moving control plate (40) and the eyeball moving control plate (50) both have
- two buckling protrusions (41)(51) formed at an upper edge and a lower edge of
- 14 the eyelid moving control board (40) and the eyeball moving control plate (50) to
- correspondingly insert through apertures (14)(15) defined on the upper and
- 16 lower cases (11)(12).
- 8. The eye construction as claimed in claim 6, wherein the eyelid
- moving control plate (40) has an outer surface in which two concavities are
- defined to respectively retain the first pushing rod (42) and the second pushing
- 20 rod (43), and each concavity is communicated with a hole defined through the
- 21 eyelid moving control plate (40);
- wherein one distal end of each of the first and the second pushing rods
- 23 (42)(43) is formed as a stepping block (421)(431) from which a column
- 24 (422)(432) extends, after the first and the second pushing rods (42)(43) are

- retained in said concavities, the two columns (422)(432) respectively protrude
- 2 through the two holes.
- 9. The eye construction as claimed in claim 7, wherein the eyelid
- 4 moving control plate (40) has an outer surface in which two concavities are
- 5 defined to respectively retain the first pushing rod (42) and the second pushing
- 6 rod (43), and each concavity is communicated with a hole defined through the
- 7 eyelid moving control plate (40);
- wherein one distal end of each of the first and the second pushing rods
- 9 (42)(43) is formed as a stepping block (421)(431) from which a column
- 10 (422)(432) extends, after the first and the second pushing rods (42)(43) are
- 11 respectively retained in said concavities, the two columns (422)(432) protrude
- through the two holes.
- 13 10. The eye construction as claimed in claim 8, wherein multiple wire
- protrusions (44) are formed on an inner surface of the eyelid moving control
- plate (40) so that the two memory alloy wires (60) are securable to the wire
- 16 protrusions (44);
- wherein each memory alloy wire (60) has two ends that respectively
- connect to a first conductive member (61) and a second conductive member (62),
- wherein each first conductive member (61) is securely mounted on the
- 20 inner surface of the eyelid moving control plate (40) and each second conductive
- 21 member (62) is moveable relative to the eyelid moving control plate (40) and
- 22 further buckles to a spring (63);
- 23 the two columns (422)(432) on the stepping block (421)(431)
- individually linked to a respective one of the second conductive members (62).

1	11. The eye construction as claimed in claim 9, wherein multiple wire
2	protrusions (44) are formed on an inner surface of the eyelid moving control
. 3	plate (40) so that the two memory alloy wires (60) are securable to the wire
4	protrusions (44);
5	wherein each memory alloy wire (60) has two ends that respectively
6	connect to a first conductive member (61) and a second conductive member (62)
7	wherein each first conductive member (61) is securely mounted on the
8	inner surface of the eyelid moving control plate (40) and each second conductive
9	member (62) is moveable relative to the eyelid moving control plate (40) and
10	further buckles to a spring (63);
11	the two columns (422)(432) on the stepping block (421)(431)
12	individually linked to a respective one of the second conductive members (62).
13	12. The eye construction as claimed in claim 6, wherein the eyeball
14	moving control plate (50) has an outer surface on which two concavities are
15	defined to retain the third pushing rod (52) and the fourth pushing rod (53), and
16	each concavity is communicated with a respective hole defined through the
17	eyeball moving control plate (50);
18	wherein one distal end of each of the third and the fourth pushing rods
19	(52)(53) is formed as a stepping block (521)(531) from which a column (522)
20	extends, after the third and the fourth pushing rods (42)(43) are retained in said
21	concavities, whereby the two columns (522) respectively protrude through the
22	two holes.
23	13. The eye construction as claimed in claim 7, wherein the eyeball
24	moving control plate (50) has an outer surface on which two concavities are

- defined to respectively retain the third pushing rod (52) and the fourth pushing
- 2 rod (53), and each concavity is communicated with a hole defined through the
- 3 eyeball moving control plate (50);
- 4 wherein one distal end of each of the third and the fourth pushing rods
- 5 (52)(53) is formed as a stepping block (521)(531) from which a column (522)
- 6 extends, after the third and the fourth pushing rods (42)(43) are respectively
- 7 retained in said concavities, whereby the two columns (522) respectively
- 8 protrude through the two holes.
- 9 14. The eye construction as claimed in claim 10, wherein the eyeball
- moving control plate (50) has an outer surface in which two concavities are
- defined to retain the third pushing rod (52) and the fourth pushing rod (53), and
- each concavity is communicated with a respective hole defined through the
- 13 eyeball moving control plate (50);
- wherein one distal end of each of the third and the fourth pushing rods
- (52)(53) is formed as a stepping block (521)(531) from which a column (522)
- extends, after the third and the fourth pushing rods (42)(43) are respectively
- 17 retained in said concavities, whereby the two columns (522) respectively
- 18 protrude through the two holes.
- 15. The eye construction as claimed in claim 11, wherein the eyeball
- 20 moving control plate (50) has an outer surface on which two concavities are
- 21 defined to retain the third pushing rod (52) and the fourth pushing rod (53), and
- 22 each concavity is communicated with a respective hole defined through the
- 23 eyeball moving control plate (50);
- 24 wherein one distal end of each of the third and the fourth pushing rods

- 1 (52)(53) is formed as a stepping block (521)(531) from which a column (522)
- 2 extends, after the third and the fourth pushing rods (42)(43) are respectively
- 3 retained in said concavities, the two columns (522) respectively protrude
- 4 through the two holes.
- 5 16. The eye construction as claimed in claim 12, wherein multiple wire
- 6 protrusions (54) are formed on an inner surface of the eyeball moving control
- 7 plate (50) so that the two memory alloy wires (60') are twisted around the wire
- 8 protrusions (54);
- 9 wherein each memory alloy wire (60') has two ends that respectively
- connect to a first conductive member (61') and a second conductive member
- 11 (62'),
- wherein each first conductive member (61') is securely mounted on the
- inner surface of the eyeball moving control plate (50) and each second
- 14 conductive member (62') is moveable relative to the eyeball moving control
- plate (50) and further buckles to a spring (63');
- wherein the two columns (522) on the stepping block (521)(531) of the
- third and the fourth pushing rods (52)(53) are individually linked to a respective
- one of the second conductive members (62').
- 17. The eye construction as claimed in claim 13, wherein multiple wire
- 20 protrusions (54) are formed on an inner surface of the eyeball moving control
- 21 plate (50) so that the two memory alloy wires (60') are twisted around the wire
- 22 protrusions (54);
- wherein each memory alloy wire (60') has two ends that respectively
- connect to a first conductive member (61') and a second conductive member

- 1 (62'),
- wherein each first conductive member (61') is securely mounted on the
- 3 inner surface of the eyeball moving control plate (50) and each second
- 4 conductive member (62') is moveable relative to the eyeball moving control
- 5 plate (50) and further buckles to a spring (63');
- 6 wherein the two columns (522) on the stepping block (521)(531) of the
- 7 third and the fourth pushing rods (52)(53) are individually linked to a respective
- 8 one of the second conductive members (62').
- 9 18. The eye construction as claimed in claim 14, wherein multiple wire
- protrusions (54) are formed on an inner surface of the eyeball moving control
- plate (50) so that the two memory alloy wires (60') are twisted around the wire
- 12 protrusions (54);
- wherein each memory alloy wire (60') has two ends that respectively
- connect to a first conductive member (61') and a second conductive member
- 15 (62'),
- wherein each first conductive member (61') is securely mounted on the
- inner surface of the eyeball moving control plate (50) and each second
- conductive member (62') is moveable relative to the eyeball moving control
- 19 plate (50) and further buckles to a spring (63');
- wherein the two columns (522) on the stepping block (521)(531) of the
- 21 third and the fourth pushing rods (52)(53) are individually linked to a respective
- one of the second conductive members (62').
- 23 19. The eye construction as claimed in claim 15, wherein multiple wire
- protrusions (54) are formed on an inner surface of the eyeball moving control

- plate (50) so that the two memory alloy wires (60') are twisted around the wire
- 2 protrusions (54);
- wherein each memory alloy wire (60') has two ends that respectively
- 4 connect to a first conductive member (61') and a second conductive member
- 5 (62'),
- 6 wherein each first conductive member (61") is securely mounted on the
- 7 inner surface of the eyeball moving control plate (50) and each second
- 8 conductive member (62') is moveable relative to the eyeball moving control
- 9 plate (50) and further buckles to a spring (63');
- wherein the two columns (522) on the stepping block (521)(531) of the
- third and the fourth pushing rods (52)(53) are individually linked to a respective
- one of the second conductive members (62').