Some Topics in Elementary Mathematics/Grade 6

Nguyễn Quản Bá Hồng 1

Ngày 27 tháng 7 năm 2022

Mục lục

		Lời Giới Thiệu/Preface	(
		Nguyên Tắc/Principles	(
1	Số '	Γự Nhiên	7
-	1.1	Tập Hợp	-
	1.1	1.1.1 Ký hiệu \mathcal{E} cách viết tập hợp	7
		1.1.2 Phần tử thuộc tập hợp	7
		1.1.3 Cách cho 1 tập hợp	-
		1.1.4 Biểu đồ Ven (Venn diagram)	7
	1.2	Tập Hợp Các Số Tự Nhiên	8
	1.2	1.2.1 Tập hợp các số tự nhiên	8
		1.2.1.1 Tập hợp $\mathbb N$ $\mathscr E$ tập hợp $\mathbb N^\star$	8
		1.2.1.2 Cách đọc \mathcal{E} viết số tự nhiên	8
		1.2.2 Biểu diễn số tự nhiên	8
		1.2.2.1 Biểu diễn số tự nhiên trên tia số	8
		1.2.2.2 Cấu tạo thập phân của số tự nhiên	8
		1.2.2.3 Số La Mã	(
		1.2.3 So sánh các số tự nhiên	Ç
		1.2.4 Số La Mã	1(
		1.2.4.1 Hệ thống các chữ số $\mathcal E$ số đặc biệt.	10
		1.2.4.2 Cách ghi số La Mã	10
		1.2.4.3 Cách tính giá trị tương ứng trong hệ thập phân của số La Mã	11
	1.3	Phép Cộng, Phép Trừ Các Số Tự Nhiên	11
	1.0	1.3.1 Phép cộng +	11
		1.3.2 Phép trừ –	11
	1.4	Phép Nhân, Phép Chia Các Số Tự Nhiên	11
		1.4.1 Phép nhân ×/·	11
		1.4.1.1 Nhân 2 số có nhiều chữ số	12
		1.4.1.2 Tính chất của phép nhân	12
		1.4.2 Phép Chia :	12
		1.4.2.1 Phép chia hết	12
		1.4.2.2 Phép chia có dư	12
	1.5	Phép Tính Lũy Thừa với Số Mũ Tự Nhiên	12
		1.5.1 Phép nâng lên lũy thừa	13
		1.5.2 Nhân 2 lũy thừa cùng cơ số	13
		1.5.3 Chia 2 lũy thừa cùng cơ số	13
	1.6	Thứ Tự Thực Hiện Các Phép Tính	13
		1.6.1 Thứ tự thực hiện các phép tính trong biểu thức không chứa dấu ngoặc	13
		1.6.2 Thứ tự thực hiện các phép tính trong biểu thức chứa dấu ngoặc	14
	1.7	Quan Hê Chia Hết. Tính Chất Chia Hết	14
		1.7.1 Quan hệ chia hết	14
		1.7.1.1 Khái niêm về chia hết.	14
		1.7.1.2 Cách tìm bội $\operatorname{\mathscr{C}}$ ước của 1 số	14
		1.7.2 Tính chất chia hết	14
		1.7.2.1 Tính chất chia hết của 1 tổng	14
		1.7.2.2 Tính chất chia hết của 1 hiệu	14
		1.7.2.3 Tính chất chia hết của 1 tích	14
	1.8	Dấu hiệu chia hết cho 2, cho 5	15
		1.8.1 Dấu hiệu chia hết cho 2	15

		1.8.2 Dấu hiệu chia hết cho 5	15
		1.8.3 Giải thích dấu hiệu chia hết cho 2, cho 5	15
		1.8.4 Dấu hiệu chia hết cho 4	15
	1.9	Dấu Hiệu Chia Hết Cho 3, Cho 9	15
	2.0	1.9.1 Dấu hiệu chia hết cho 3	15
		1.9.2 Dấu hiệu chia hết cho 9	16
		1.9.3 Giải thích dấu hiệu chia hết cho 3, cho 9	16
	1 10	Số Nguyên Tố. Hợp Số	16
	1.10	1.10.1 Sàng Eratosthenes	16
	1 11		
	1.11	Phân Tích 1 Số Ra Thừa Số Nguyên Tố	16
		1.11.1 Cách tìm 1 ước nguyên tố của 1 số	16
		1.11.2 Phân tích 1 số ra thừa số nguyên tố	17
	1.12	Ước Chung & Ước Chung Lớn Nhất	17
		1.12.1 Ước chung & ước chung lớn nhất	17
		1.12.2 Tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố	17
		1.12.3 2 số nguyên tố cùng nhau	17
		1.12.4 Tìm ước chung lớn nhất bằng thuật toán Euclid	17
	1.13	Bội Chung & Bội Chung Nhỏ Nhất	18
		$1.13.1$ Bội chung ${\cal B}$ bội chung nhỏ nhất $\dots\dots\dots\dots\dots\dots$	18
		1.13.2 Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố	18
		1.13.3 Ứng dụng bội chung nhỏ nhất vào cộng, trừ các phân số không cùng mẫu	18
		1.13.4 Lịch Can Chi	18
		1.19.4 Dien Can Cin	10
2	Số ľ	guyên	19
	2.1	Số Nguyên Âm	19
	2.1	2.1.1 Dộ sâu lớn nhất của các đại dương dưới mực nước biển	19
		2.1.1 Bộ sau lới nhất của các dại dương dươi mực nước biến	19
	0.0		
	2.2	Tập Hợp Các Số Nguyên Z	19
		2.2.1 Tập hợp $\mathbb Z$ các số nguyên	19
		2.2.2 Biểu diễn số nguyên trên trục số	20
		2.2.3 Số đối của 1 số nguyên	20
		2.2.4 So sánh các số nguyên	20
		2.2.4.1 So sánh 2 số nguyên	20
		2.2.4.2 Cách so sánh 2 số nguyên	20
	2.3	Phép Cộng Các Số Nguyên	20
		2.3.1 Phép cộng 2 số nguyên cùng dấu	20
		2.3.1.1 Phép cộng 2 số nguyên dương.	20
		2.3.1.2 Phép cộng 2 số nguyên âm	21
		2.3.2 Phép cộng 2 số nguyên khác dấu	21
		2.3.3 Tính chất của phép cộng các số nguyên	21
	2.4	Phép Trừ Số Nguyên. Quy Tắc Dấu Ngoặc	21
		2.4.1 Phép trừ số nguyên	21
		2.4.2 Quy tắc dấu ngoặc	21
	2.5	Phép Nhân Các Số Nguyên	21
		$2.5.1$ Phép nhân $2 \stackrel{\circ}{ ext{so}}$ nguyên khác dấu	21
		2.5.2 Phép nhân 2 số nguyên cùng dấu	22
		2.5.2.1 Phép nhân 2 số nguyên dương	22
		2.5.2.2 Phép nhân 2 số nguyên âm	$\frac{-}{22}$
		2.5.3 Tính chất của phép nhân các số nguyên	22
	2.6	Phép Chia Hết 2 Số Nguyên. Quan Hệ Chia Hết Trong Tập Hợp Số Nguyên	22
	2.0	2.6.1 Phép chia hết 2 số nguyên khác dấu	22
		2.6.2 Phép chia hết 2 số nguyên cùng dấu	22
			$\frac{22}{22}$
		2.6.2.2 Phép chia hết 2 số nguyên âm	22
	0.7	2.6.3 Quan hệ chia hết	22
	2.7	Hoạt Động Thực Hành & Trải Nghiệm: Đầu Tư Kinh Doanh	23
		2.7.1 Một Số Kiến Thức về Tài Chính, Kinh Doanh	23
		2.7.1.1 Tài chính	23
		2.7.1.2 Kinh doanh	23

		2.7.1.3 Các cách để tăng lợi nhuận	
		2.7.3 Kỹ Năng Tìm Kiếm Thông Tin & Trình Bày	Sản Phẩm
3	Hìn	nh Học Trực Quan	24
	3.1	Tam Giác Đều. Hình Vuông. Lục Giác Đều	
		0	25
		· · · · · · · · · · · · · · · · · · ·	
	3.2		
			25
			ật
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3.3		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	3.4		
	9.5		26
	3.5		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3.6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3.7	Đối Xứng trong Thực Tiễn	
		3.7.1 Tính đối xứng trong thế giới tự nhiên	
			g công nghệ
	20		
	3.8		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			coán số học
			của các số nguyên dương
		3.8.3 Sử dụng phần mềm GeoGebra để vẽ hình tại	n giác đều, hình vuông, hình lục giác đều
1	7 \	ột Số Yếu Tố Thống kê & Xác Suất	00
4	4.1		29 ý Dữ Liệu
	4.1		1
	4.2		
	4.3		iệm Đơn Giản
		4.3.1 Mô hình xác suất trong trò chơi tung đồng x	u
			ong hộp
			30
	4.4		Nghiệm Đơn Giản
			ng xu/toss a coin
		4.4.2 Xác suất thực nghiệm trong trò chơi lấy vật	từ trong hộp 31

		4.4.3 4.4.4	Xác suất thực nghiệm trong trò chơi gieo xúc xắc	31 31
5	Phâ	n Số <i>l</i>	& Số Thập Phân	32
0	5.1		Số với Tử & Mẫu là Số Nguyên	32
		5.1.1	Khái niệm phân số	32
		5.1.2	Phân số bằng nhau	32
			5.1.2.1 Khái niệm 2 phân số bằng nhau	32
			5.1.2.2 Quy tắc bằng nhau của 2 phân số	32
		5.1.3	Tính chất cơ bản của phân số	32
			5.1.3.1 Tính chất cơ bản.	32
			5.1.3.2 Rút gọn về phân số tối giản	33
			5.1.3.3 Quy đồng mẫu nhiều phân số	33
	5.2		nh Các Phân Số. Hỗn Số Dương	33
		5.2.1	So sánh các phân số	33
			5.2.1.1 So sánh 2 phân số	33
			5.2.1.2 Cách so sánh 2 phân số	33
		5.2.2	Hỗn số dương	33
	5.3	-	Cộng, Phép Trừ Phân Số	34
		5.3.1	Phép cộng phân số	34
			5.3.1.1 Quy tắc cộng 2 phân số	34
			5.3.1.2 Tính chất của phép cộng phân số	34
		5.3.2	Phép trừ phân số	34
			5.3.2.1 Số đối của 1 phân số	34
		- 0.0	5.3.2.2 Quy tắc trừ 2 phân số	34
		5.3.3	Quy tắc dấu ngoặc	34
	F 4	5.3.4	Biểu diễn phân số trên trục số nằm ngang	34
	5.4		Nhân, Phép Chia Phân Số	34
		5.4.1	Phép nhân phân số	34
			5.4.1.1 Quy tắc nhân 2 phân số	$\frac{34}{35}$
		5.4.2	5.4.1.2 Tính chất của phép nhân phân số	35
	5.5		âp Phân	35
	5.5	5.5.1	Số thập phân	35
		5.5.1	So sánh các số thập phân	35
		0.0.2	5.5.2.1 So sánh 2 số thập phân	35
			5.5.2.2 Cách so sánh 2 số thập phân	35
	5.6	Phén	Cộng, Phép Trừ Số Thập Phân	35
	0.0	5.6.1	Số đối của số thập phân	35
		5.6.2	Phép cộng, phép trừ số thập phân	36
		3.0.2	5.6.2.1 Cộng 2 số thập phân	36
			5.6.2.2 Trừ 2 số thập phân	36
		5.6.3	Quy tắc dấu ngoặc	36
	5.7		Nhân, Phép Chia Số Thập Phân	36
		5.7.1	Phép nhân số thập phân	36
			5.7.1.1 Nhân 2 số thập phân	36
			5.7.1.2 Tính chất của phép nhân số thập phân	36
		5.7.2	Phép chia số thập phân	36
	5.8	Ước L	лифид & Làm Tròn Số	37
		5.8.1	Làm tròn số nguyên	37
		5.8.2	Làm tròn số thập phân	37
		5.8.3	Đôi nét về lịch sử số thập phân	37
	5.9	Tỷ số	. Tỷ Số Phần Trăm	37
		5.9.1	Tỷ số	37
			5.9.1.1 Tỷ số của 2 số	37
			5.9.1.2 Tỷ số của 2 đại lượng (cùng loại $\mathscr E$ cùng đơn vị đo)	37
		5.9.2	Tỷ số phần trăm	38
			5.9.2.1 Tỷ số phần trăm của 2 số	38
			5.9.2.2 Tỷ số phần trăm của 2 đại lượng (cùng loại & cùng đơn vị đo)	38

		5.9.3 Lịch sử ký hiệu phần trăm 33 2 Bài Toán về Phân Số 33 5.10.1 Tìm giá trị phân số của 1 số cho trước 35 5.10.2 Tìm 1 số biết giá trị 1 phân số của số đó 36 Hoạt Động Thực Hành & Trải Nghiệm: Chỉ Số Khối Cơ Thể (BMI) 36 5.11.1 Giới thiệu về chỉ số khối cơ thể 36 5.11.2 Ý nghĩa của BMI trong thực tiễn 36
_	TT\ :	
6		1 Học Phẳng 40 Điểm. Đường Thẳng 40 6.1.1 Điểm 40 6.1.2 Đường thẳng 40 6.1.3 Điểm thuộc đường thẳng. Điểm không thuộc đường thẳng 40 6.1.4 Đường thẳng đi qua 2 điểm 40
		6.1.4 Đường thắng đi qua 2 điểm
	6.2	2 Đường Thẳng Cắt Nhau. 2 Đường Thẳng Song Song
	6.3	6.2.2 2 Đường thẳng song song 4 Đoạn Thẳng 4 6.3.1 2 Đoạn thẳng bằng nhau 4 6.3.1.1 Khái niệm đoạn thẳng 4
		6.3.1.2 2 Đoạn thẳng bằng nhau. 4 6.3.2 Độ dài đoạn thẳng. 4 6.3.2.1 Đo đoạn thẳng. 4
		6.3.2.2 So sánh 2 đoạn thẳng. 4 6.3.3 Trung điểm của đoạn thẳng. 4
	6.4	$ 6.3.4 \text{Khi nào thì } AM + MB = AB? \qquad . \qquad $
	6.5	6.4.3 2 Tia trùng nhau 4: Góc 4: 6.5.1 Khái niệm góc 4: 6.5.2 Điểm nằm trong góc 4:
		6.5.3 Số đo của góc
	6.6	Hoạt Động Thực Hành & Trải Nghiệm: Sắp Xếp Thành Các Vị Trí Thẳng Hàng

 $\mathbf{45}$

Tài liệu tham khảo

Lời Giới Thiệu | Preface

Tóm tắt kiến thức Toán lớp 6 theo chương trình giáo dục của Việt Nam \mathscr{C} một số chủ đề nâng cao. Phiên bản mới nhất của tài liệu này được lưu trữ ở link sau: GitHub/NQBH/hobby/elementary mathematics/grade 6^1 .

Nguyên Tắc/Principles

Xem GitHub/NQBH/elementary mathematics/principle.

Question 0.0.1. Tại sao phải học?

& cụ thể hơn,

Question 0.0.2. Học Toán để làm gì? Tại sao phải học Toán?

Đây thực sự là 1 câu hỏi khó, rất khó.

"...được tiến thêm 1 bước trên con đường khám phá thế giới bí ẩn \mathcal{E} đẹp đẽ của Toán học, đặc biệt là được "làm giàu" về vốn văn hóa chung \mathcal{E} có cơ hội "Mang cuộc sống vào bài học – Đưa bài học vào cuộc sống". [...] sẽ ngày càng tiến bộ \mathcal{E} cảm thấy vui sướng khi nhận ra ý nghĩa: Học Toán rất có ích cho cuộc sống hằng ngày." – Thái et al., 2022a, p. 1

¹Explicitly, https://github.com/NQBH/hobby/blob/master/elementary_mathematics/grade_6/NQBH_elementary_mathematics_grade_6.pdf.

Chương 1

Số Tự Nhiên

Nội dung. Tập hợp; tập hợp các số tự nhiên; các phép tính trong tập hợp số tự nhiên; quan hệ chia hết, số nguyên tố; ước chung \mathcal{E} bôi chung.

1.1 Tập Hợp

Định nghĩa 1.1.1 (Tập hợp). "Trong toán học, 1 tập hợp là 1 bộ các phần tử. Các phần tử tạo nên 1 tập hợp có thể là bất kỳ loại đối tượng toán học nào: số, ký hiệu, điểm trong không gian, đường thẳng, các hình dạng hình học khác, các biến hoặc thậm chí các tập hợp khác. Tập hợp không có phần tử nào là tập hợp rỗng; 1 tập hợp với 1 phần tử duy nhất là 1 đơn điểm. 1 tập hợp có thể có 1 số phần tử hữu hạn hoặc là 1 tập hợp vô hạn. 2 tập hợp bằng nhau khi & chỉ khi chúng có chính xác các phần tử giống nhau." – Wikipedia/tập hợp (toán học)

Có thể xem thêm Wikipedia/tập hợp (toán học) & Wikipedia/set (mathematics).

1.1.1 Ký hiệu \mathcal{E} cách viết tập hợp

Khái niệm tập hợp (set) thường gặp trong toán học & trong đời sống. Người ta thường dùng các chữ cái in hoa để đặt tên cho 1 tập hợp. Các phần tử của 1 tập hợp được viết trong 2 dấu ngoặc nhọn { }, cách nhau bởi dấu chấm phẩy ";" hoặc dấu phẩy ",". Mỗi phần tử được liệt kê 1 lần, thứ tự liệt kê tùy ý.

1.1.2 Phần tử thuộc tập hợp

a là 1 phần tử của tập hợp A, viết $a \in A$, đọc là a thuộc A. b không là 1 phần tử của tập hợp B, viết $b \notin B$, đọc là b không thuộc B.

1.1.3 Cách cho 1 tập hợp

Có 2 cách cho 1 tập hợp:

- 1. Liệt kệ các phần tử của tập hợp;. Cách này thích hợp cho các tập hợp có kích thước nhỏ để có thể liệt kệ được.
- 2. Chỉ ra tính đặc trưng cho các phần tử của tập hợp. Cách này thích hợp cho các tập hợp có kích thước lớn khi mà việc liệt kê hết các phần tử của tập hợp đó gặp khó khăn hoặc không thể.

Nên sử dụng cách nào tiện hơn trong 2 cách trên để cho 1 tập hợp.

1.1.4 Biểu đồ Ven (Venn diagram)

Người ta còn minh họa tập hợp bằng 1 vòng kín, mỗi phần tử của tập hợp được biểu diễn bởi 1 chấm bên trong vòng kín, còn phần tử không thuộc tập hợp đó được biểu diễn bởi 1 chấm bên ngoài vòng kín. Cách minh họa tập hợp này gọi là $bi\acute{e}u$ đồ Venn, do nhà toán học người Anh John Venn (1834–1923) đưa ra.

Bài toán 1.1.1. Với a, b là 2 số tư nhiên cho trước, viết mỗi tâp hợp sau bằng cách liệt kê các phần tử của tâp hợp đó:

$$A_1 = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n, \text{ } a < x < b\},$$

$$A_2 = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n, \text{ } a \leq x < b\},$$

$$A_3 = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n, \text{ } a \leq x \leq b\},$$

$$A_4 = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n, \text{ } a \leq x \leq b\},$$

$$B_{1} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n \text{ } ch\~{a}n, \text{ } a < x < b\},$$

$$B_{3} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n \text{ } ch\~{a}n, \text{ } a \leq x < b\},$$

$$B_{4} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n \text{ } ch\~{a}n, \text{ } a \leq x \leq b\},$$

$$C_{1} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n \text{ } l\mathring{e}, \text{ } a < x < b\},$$

$$C_{2} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n \text{ } l\mathring{e}, \text{ } a \leq x \leq b\},$$

$$C_{3} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t\psi \text{ } nhi\hat{e}n \text{ } l\mathring{e}, \text{ } a \leq x \leq b\}.$$

 Hint . So sánh a,b. Nếu a>b thì các tập hợp trên đều là tập hợp rỗng \emptyset . Nếu $a\leq b$, xét tiếp tính chẵn lẻ của a,b cho các tập $B_i,\ i=1,2,3,4,\ \&\ C_i,\ j=1,2,3,4.$

Bài toán 1.1.2. Viết các tập hợp sau bằng cách liệt kê các phần tử của tập hợp đó:

$$A_{1} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t \psi \text{ } nhi\hat{e}n, \text{ } ax+b=c\},$$

$$A_{2} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t \psi \text{ } nhi\hat{e}n, \text{ } ax-b=c\},$$

$$A_{3} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t \psi \text{ } nhi\hat{e}n, \text{ } a-bx=c\},$$

$$A_{4} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t \psi \text{ } nhi\hat{e}n, \text{ } \frac{x}{a}+b=c\},$$

$$A_{5} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t \psi \text{ } nhi\hat{e}n, \text{ } \frac{ax+b}{c}=d\},$$

$$A_{6} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t \psi \text{ } nhi\hat{e}n, \text{ } \frac{ax+b}{c}=d\},$$

$$A_{7} = \{x | x \text{ } l\grave{a} \text{ } s\acute{o} \text{ } t \psi \text{ } nhi\hat{e}n, \text{ } f(x)=0\}.$$

Tổng quát của dạng toán này là viết tập hợp $A = \{x | x \text{ là số tự nhiên}, x \text{ thỏa mãn phương nào đại số } f(x) = 0 \text{ nào đó} \}$. Nếu phương trình đại số đó vô nghiệm trên tập hợp các số tự nhiên thì $A = \emptyset$. Nếu phương trình đại số đó có các nghiệm x_1, \ldots, x_n là các số tự nhiên, với n là số tự nhiên khác 0, thì $A = \{x_1, \ldots, x_n\}$. Điểm cốt lõi ở đây là giải phương trình đại số đó trên tập các số tự nhiên.

1.2 Tập Hợp Các Số Tự Nhiên

1.2.1 Tập hợp các số tư nhiên

1.2.1.1 Tập hợp \mathbb{N} \mathcal{E} tập hợp \mathbb{N}^* .

Định nghĩa 1.2.1. Tập hợp các số tự nhiên được ký hiệu là $\mathbb{N} \coloneqq \{0; 1; 2; 3; \ldots\}$. Tập hợp các số tự nhiên khác 0 được ký hiệu là $N^* \coloneqq \{1; 2; 3; 4; \ldots\}$.

Hiển nhiên $N^* \subset \mathbb{N}$, i.e., $x \in \mathbb{N}^* \Rightarrow x \in \mathbb{N}$ nhưng $x \in \mathbb{N} \not\Rightarrow x \in \mathbb{N}^*$ vì $0 \in \mathbb{N}$ nhưng $0 \notin \mathbb{N}^*$ (cũng là phản ví dụ duy nhất trong trường hợp này). Chú ý: $\mathbb{N} = \mathbb{N}^* \cup \{0\}$.

1.2.1.2 Cách đọc & viết số tự nhiên.

Khi viết các số tự nhiên có từ 4 chữ số trở lên, người ta thường viết tách riêng từng nhóm 3 chữ số kể từ phải sang trái cho dễ đọc.

1.2.2 Biểu diễn số tự nhiên

1.2.2.1 Biểu diễn số tư nhiên trên tia số.

Các số tự nhiên được biểu diễn trên tia số. Mỗi số tự nhiên ứng với 1 điểm trên tia số.

Question 1.2.1. Tại sao cần/phải biểu diễn số tự nhiên trên tia số?

Trå lời. Làm việc trên hình vẽ để trực quan, tiện trong nhiều mục đích khác, e.g., so sánh 2 số tự nhiên, so sánh 2 tập hợp con của \mathbb{N} , etc.

1.2.2.2 Cấu tạo thập phân của số tự nhiên.

Số tự nhiên được viết trong hệ thập phân bởi 1, 2, hay nhiều chữ số. Các chữ số được dùng là 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Khi 1 số gồm 2 chữ số trở lên thì chữ số đầu tiên (tính từ trái sang phải) khác 0, i.e.,

$$\overline{a_n a_{n-1} \dots a_1 a_0}|_{10}, \ n \in \mathbb{N}^*, \ a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \ \forall i = 0, \dots, n, \ a_n \neq 0.$$

$$(1.2.1)$$

Chú ý, trong công thức (1.2.1), giả thiết $n \in \mathbb{N}^*$ \mathcal{C} $a_n \neq 0$ khiến ta chỉ xét ở đây các số tự nhiên có ít nhất 2 chữ số. Với mọi $a \in \mathbb{N}$, biểu diễn chữ số trong hệ thập phân của a là:

$$a = \overline{a_n a_{n-1} \dots a_1 a_0}|_{10}, \ n \in \mathbb{N}, \ a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \text{ n\'eu } n \neq 0.$$
 (1.2.2)

Trong các viết 1 số tự nhiên có nhiều chữ số, mỗi chữ số ở những vị trí khác nhau có giá trị khác nhau.

Chỉ số chân (subscript) 10 ở đây ám chỉ hệ thập phân. Do hệ thập phân được sử dụng đa số, nên chỉ số chân 10 này thường được lược bỏ \mathcal{E} được hiểu ngầm là đang sử dụng hệ thập phân.

Chú ý, công thức (1.2.2) còn được viết cụ thể hơn dưới dạng tổng là:

$$\overline{a_n a_{n-1} \dots a_1 a_0}|_{10} = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_1 10 + a_0 = \sum_{i=0}^n a_i 10^i.$$
(1.2.3)

Remark 1.2.1 (Mở rộng cho hệ cơ số nguyên bất kỳ). *Cơ số* $b \in \mathbb{N}^*$, $b \geq 2$ bất kỳ:

$$\overline{a_n a_{n-1} \dots a_1 a_0}|_b, \quad v \circ i \ n \in \mathbb{N}, \ a_i \in \{0, 1, \dots, b-1\}, \ \forall i = 0, \dots, n, \ a_n \neq 0.$$
 (1.2.4)

Tương tự (1.2.3), biểu diễn (1.2.4) còn được viết cụ thể hơn dưới dạng tổng là:

$$\overline{a_n a_{n-1} \dots a_1 a_0}|_b = a_n b^n + a_{n-1} b^{n-1} + \dots + a_1 b + a_0 = \sum_{i=0}^n a_i b^i.$$
(1.2.5)

E.g., hệ nhị phân (b=2), & hệ thập lục phân (b=16) được xử dụng chủ yếu trong Tin học, hay chính xác hơn là Khoa học Máy tính (Computer Science). Hệ nhị phân được dùng để thiết kế ngôn ngữ máy tính. [insert more details]

1.2.2.3 Số La Mã.

Nguyên tắc. Chữ số I, II, III khi nằm bên trái V, X có nghĩa là "trừ ra", \mathcal{E} khi nằm bên phải V, X có nghĩa là "cộng thêm".

1.2.3 So sánh các số tư nhiên

Trong 2 số tự nhiên $a, b \in \mathbb{N}$ khác nhau, có 1 số nhỏ hơn số kia. Nếu số a nhỏ hơn số b thì viết a < b hay b > a. Tính chất bắc cầu. Nếu a < b & b < c thì a < c, biểu thức logic:

$$(a < b) \land (b < c) \Rightarrow (a < c).$$

Hiểu 1 cách trực quan, biểu diễn 3 số $a, b, c \in \mathbb{N}$ trên tia số, khi đó a < b có nghĩa là "a nằm bên trái b", b < c có nghĩa là "b nằm bên trái c". Nhìn vào tia số, ta thấy a nằm bên trái c, nghĩa là a < c.

Add partial ordering set. See, e.g., Halmos, 1960; Halmos, 1974; Kaplansky, 1972; Kaplansky, 1977.

Theorem 1.2.1. Trong 2 số tự nhiên có số chữ số khác nhau: Số nào có nhiều chữ số hơn thì lớn hơn, số nào có ít chữ số hơn thì nhỏ hơn, i.e.:

$$a = \overline{a_m a_{m-1} \dots a_1 a_0}, \ b = \overline{b_n b_{n-1} \dots b_1 b_0}, \ m, n \in \mathbb{N}^*, \ m > n$$

$$a_i, b_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \ \forall i = 1, \dots, m, \ j = 1, \dots, n, \ a_m \neq 0, \ b_n \neq 0,$$

$$(1.2.6)$$

Proof. Từ biểu diễn thập phân (1.2.6), xét a-b, nếu a-b>0 thì a>b. Thật vậy, vì m>n,

$$a - b = \overline{a_m a_{m-1} \dots a_1 a_0} - \overline{b_n b_{n-1} \dots b_1 b_0} = \sum_{i=0}^m a_i 10^i - \sum_{i=0}^n b_i 10^i = \sum_{i=0}^n a_i 10^i + \sum_{i=n+1}^m a_i 10^i - \sum_{i=0}^n b_i 10^i$$

$$= \sum_{i=0}^n (a_i - b_i) 10^i + \sum_{i=n+1}^m a_i 10^i \ge \sum_{i=0}^n -9 \cdot 10^i + 10^m = -9 \sum_{i=0}^n 10^i + 10^m = -9 \frac{10^{n+1} - 1}{10 - 1} + 10^m = 10^m - 10^{n+1} + 1 > 0,$$

trong đó giả thiết m>n, tức $m\geq n+1$ (do $m,n\in\mathbb{N}^1$) được sử dụng để tách tổng trong biểu diễn của a thành 2 tổng con $\mathscr E$ dùng trong phép so sánh $10^m\geq 10^{n+1}$, trong khi giả thiết thứ 2 $a_i,b_j\in\{0,1,2,3,4,5,6,7,8,9\}$, với mọi $i=1,\ldots,m$, $j=1,\ldots,n$ được dùng trong đánh giá hiển nhiên $a_i-b_i\geq -9$ vì trường hợp xấu nhất (the worst case) xảy ra khi $a_i=0$ $\mathscr E$ $b_i=9$, $\mathscr E$ đánh giá $a_i\geq 0$, với mọi $i=n+1,\ldots,m-1$ được dùng trong $a_i10^i\geq 0$, $\mathscr E$ đánh giá $a_m\geq 1$ được dùng trong $a^m10^m>10^m$.

 $^{^{1}}$ Đây chính là giả thiết được thêm, hay kỹ thuật $si\acute{e}t$ chặt bất đẳng thức khi làm việc với các bài toán trên tập số tự nhiên \mathbb{N} hay rộng hơn xíu là tập số nguyên \mathbb{Z} , đặc biệt là các bài giải phương trình hàm trên tập số nguyên. Điều này không có được khi làm việc trên các tập số thực \mathbb{R} hay tập số phức \mathbb{C} . Cf. Tao, 2006, Problem 3.1, p. 36–38.

Remark 1.2.2. Chú ý tổng $\sum_{i=0}^{n} 10^{i}$ được tính bằng công thức liên quan tới cấp số nhân hay đơn giản hơn là hằng đẳng thức:

$$\sum_{i=0}^{n} a^{i} = \begin{cases} \frac{a^{n+1}-1}{a-1}, & \forall a \in \mathbb{R} \setminus \{1\}, \\ n+1, & \text{if } a = 1. \end{cases}$$

Để so sánh 2 số tự nhiên có số chữ số bằng nhau, ta lần lượt so sánh từng cặp chữ số trên cùng 1 hàng (tính từ trái sang phải), cho đến khi xuất hiện cặp chữ số đầu tiên khác nhau. Ở cặp chữ số khác nhau đó, chữ số nào lớn hơn thì số tự nhiên chứa chữ số đó lớn hơn.

Viết dưới dang thuật toán (algorithm) như sau:

Giả sử $a, b \in \mathbb{N}$ là 2 số tự nhiên có số chữ số bằng nhau, i.e.,

$$a = \overline{a_n a_{n-1} \dots a_1 a_0}, \ b = \overline{b_n b_{n-1} \dots b_1 b_0}, \ n \in \mathbb{N}, \ a_i, b_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \ \forall i = 1, \dots, n, \ a_n \neq 0, \ b_n \neq 0.$$

Algorithm 1 So sánh 2 số tự nhiên có cùng chữ số

- 1: **for** i = n to 0 (từ trái sang phải) **do** So sánh $a_i \, \mathcal{E} \, b_i$.
 - Nếu $a_i > b_i$ thì dùng vòng lặp for \mathcal{E} kết luận a > b.
 - Nếu $a_i < b_i$ thì dùng vòng lặp for $\mathscr E$ kết luận a < b.
 - Nếu $a_i = b_i$ thì xét:
 - \circ Nếu i=0 (vòng lặp cuối của vòng lặp for) thì kết luận a=b (vì mỗi cặp chữ số tương ứng của $a \ \mathcal{E} \ b$ đều bằng nhau).
 - \circ Nếu i > 0 thì gán $i \leftarrow i 1$ \mathscr{C} so sánh cặp chữ số tiếp theo ở ngay bên phải cặp chữ số vừa được so sánh.

2: end for

Với số tự nhiên $a \in \mathbb{N}$ cho trước, viết $x \leq a$ để chỉ x < a hoặc x = a, viết $x \geq a$ để chỉ x > a hoặc x = a, i.e.,

$$(x \le a) \Leftrightarrow (x < a) \lor (x = a), (x \ge a) \Leftrightarrow (x > a) \lor (x = a),$$

Remark 1.2.3. Ký hiệu ngoặc nhọn { (hay }) dùng để biểu thị "và" (logical and) trong khi ký hiệu ngoặc vuông [(hay]) dùng để biểu thị "hoặc" (logical or), i.e.,

$$a \ \mathscr{C} \ b \Leftrightarrow a \ and \ b \Leftrightarrow a \wedge b \Leftrightarrow \begin{cases} a \\ b \end{cases},$$

$$a\ \ ho\check{a}c\ b \Leftrightarrow a\ \ or\ b \Leftrightarrow a\lor b \Leftrightarrow \begin{bmatrix} a \\ b \end{bmatrix}.$$

1.2.4 Số La Mã

"Đế quốc La Mã là 1 đế quốc hùng mạnh tồn tại từ thế kỷ III trước Công nguyên đến thế kỷ V sau Công nguyên, bao gồm những vùng lãnh thổ rộng lớn ở Địa Trung Hải, Bắc PHi & Tây Á." – Thái et al., 2022a, p. 14

1.2.4.1 Hệ thống các chữ số \mathcal{E} số đặc biệt.

Có 7 chữ số La Mã cơ bản là (ký hiệu \mathcal{E} giá trị tương ứng trong hệ thập phân): I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000. Có 6 số đặc biệt là (ký hiệu \mathcal{E} giá trị tương ứng trong hệ thập phân): IV = 4, IX = 9, XL = 40, XC = 90, CD = 400, CM = 900. I chỉ có thể đứng trước V hoặc X; X chỉ có thể đứng trước L hoặc C; C chỉ có thể đứng trước D hoặc M. Trong các chữ số La Mã, không có ký hiệu để chỉ số 0.

1.2.4.2 Cách ghi số La Mã.

- ullet Trong 1 số La Mã tính từ trái sang phải, giá trị của các chữ số cơ bản \mathcal{E} các số đặc biệt giảm dần.
- Mỗi chữ số I, X, C, M không viết liền nhau quá 3 lần.
- Mỗi chữ số V, L, D không viết liền nhau.

1.2.4.3 Cách tính giá trị tương ứng trong hệ thập phân của số La Mã.

"Giá trị tương ứng trong hệ thập phân của số La Mã bằng tổng giá trị của các chữ số cơ bản \mathscr{C} các số đặc biệt tính theo thứ tự từ trái sang phải." – Thái et al., 2022a, p. 14

Remark 1.2.4 (Úng dụng của số La Mã). "Chữ số La Mã được sử dụng rộng rãi cho đến thế kỷ XIV thì không còn được sử dụng nhiều nữa vì hệ thống chữ số Ả Rập (được tạo thành bởi các chữ số từ 0 đến 9) tiện dụng hơn. Tuy nhiên, chúng vẫn còn được sử dụng trong việc đánh số trên mặt đồng hồ, thế kỷ, âm nhạc hay các sự kiện chính trị – văn hóa – thể thao lớn như Thế vận hội Olympic, ..." ²

Problem 1.2.1 (Bình, 2012, Prob. 10, p. 8). Cho 4 chữ số a, b, c, d khác nhau & khác 0. Lập số tự nhiên lớn nhất & số tự nhiên nhỏ nhất có 4 chữ số gồm cả 4 chữ số ấy. Tổng của 2 số này bằng 11330. Tìm tổng các chữ số a + b + c + d.

Hint. Xem Bình, 2012, p. 106.

1.3 Phép Cộng, Phép Trừ Các Số Tự Nhiên

1.3.1 Phép cộng +

a+b=c, trong đó $a,b\in\mathbb{N}$ là các số hạng, \mathscr{C} c được gọi là tổng của $a\mathscr{C}$ b.

Theorem 1.3.1 (Tính chất của phép công các số tư nhiên). Phép công các số tư nhiên có các tính chất:

• (Giao hoán) Khi đổi chỗ các số hạng trong 1 tổng thì tổng không thay đổi, i.e.,

$$a+b=b+a, \ \forall a,b\in\mathbb{N}.$$

• (Kết hợp) Muốn cộng 1 tổng 2 số với số thứ 3, ta có thể cộng số thứ nhất với tổng của số thứ 2 & số thứ 3, i.e.,

$$(a+b)+c=a+(b+c), \ \forall a,b,c\in\mathbb{N}.$$

• (Công với số 0) Bất kỳ số tư nhiên nào công với số 0 cũng bằng chính nó, i.e.,

$$a+0=0+a=a, \ \forall a \in \mathbb{N}.$$

Do tính chất kết hợp nên giá trị của biểu thức a+b+c có thể được tính theo 1 trong 2 cách sau: a+b+c=(a+b)+c hoặc a+b+c=a+(b+c).

1.3.2 Phép trừ –

a-b=c $(a \ge b)$ trong đó a là số bi trừ, <math>b là số trừ, c là hiệu.

Tính chất. Nếu a-b=c thì a=b+c. Nếu a+b=c thì a=c-b & b=c-a.

1.4 Phép Nhân, Phép Chia Các Số Tự Nhiên

1.4.1 Phép nhân \times/\cdot

 $a \times b = c$, trong đó $a, b \in \mathbb{N}$ là các thừa số, & c là tích.

Quy ước.

• Trong 1 tích, có thể thay dấu nhân \times bằng dấu \cdot , i.e., $a \cdot b := a \times b$.

Remark 1.4.1 (Chuẩn quốc tế về dấu nhân). Trong SGK Thái et al., 2022a, p. 18, các tác giả dùng dấu chấm . thay dấu \times , nhưng điều này thực ra nguy hiểm, vì chuẩn quốc tế của dấu nhân là dấu \cdot (dấu chấm nằm giữa, không phải nằm dưới chân), thay vì dấu . dùng để ngăn cách phần nguyên $\mathcal E$ phần thập phân của số thực, e.g., $\pi = 3.1416\ldots$ chứ không phải $\pi = 3\cdot1416\ldots$ Vì vậy, cá nhân tôi sẽ dùng dấu \cdot thay cho dấu \times trong tài liệu này, chú ý ký hiệu này vẫn được sử dụng ở Toán Cao Cấp.

Trong 1 tích mà các thừa số đều bằng chữ hoặc chỉ có 1 thừa số bằng số, ta có thể không cần viết dấu nhân giữa các thừa số, i.e.,

$$a \times b = a \cdot b = ab.$$

 $^{^2}$ Nói tóm lại, sử dụng chữ số La Mã để thể hiện tính trang trọng \mathcal{E} đôi khi màu mè/fancy.

1.4.1.1 Nhân 2 số có nhiều chữ số.

Cho 2 số $a, b \in \mathbb{N}$. Nếu 1 trong chúng bằng 0 thì hiển nhiên tích ab = 0. Nếu cả 2 số a, b đều khác 0, tức $a, b \in \mathbb{N}^*$, thì để tính tích ab, trước tiên ta biểu diễn $a \notin b$ dưới dạng thập phân (1.2.2):

$$\begin{cases} a = \overline{a_m a_{m-1} \dots a_1 a_0}, \ b = \overline{b_n b_{n-1} \dots b_1 b_0}, \ \text{v\'oi} \ m, n \in \mathbb{N}, \\ a_i, b_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \ \forall i = 0, \dots, m, \ j = 1, \dots, n, \ a_m \neq 0, \ b_n \neq 0, \end{cases}$$

sau đó sử dụng công thức (1.2.3) để tính tích ab như sau:

$$ab = \overline{a_m a_{m-1} \dots a_1 a_0} \cdot \overline{b_n b_{n-1} \dots b_1 b_0} = \left(\sum_{i=0}^m a_i 10^i\right) \cdot \left(\sum_{j=0}^n b_j 10^j\right) = \sum_{j=0}^n \left(\sum_{i=0}^m a_i 10^i\right) b_j 10^j = \sum_{i=0}^m \sum_{j=0}^n a_i b_j 10^{i+j},$$

trong đó $\sum_{j=0}^{n} \left(\sum_{i=0}^{m} a_i 10^i\right) b_j 10^j$ chính là cách thường được sử dụng để tính tích 2 số nguyên dương: tính tích riêng thứ nhất, tính tích riêng thứ 2 \mathcal{E} viết tích này lùi sang bên trái 1 cột so với tích riêng thứ nhất, tính tích riêng thứ 3 \mathcal{E} viết tích này lùi sang bên trái 2 cột so với tích riêng thứ nhất, etc (xem ví dụ ở Thái et al., 2022a, p. 18).

1.4.1.2 Tính chất của phép nhân.

Theorem 1.4.1 (Các tính chất của phép nhân các số tự nhiên). Phép nhân các số tự nhiên có các tính chất sau: $\forall a, b, c \in \mathbb{N}$,

- $Giao\ ho\'an:\ ab=ba.$
- $K\hat{e}t\ hop:\ (ab)c=a(bc).$
- $Nh\hat{a}n \ v\acute{\sigma}i \ s\acute{o} \ 1: a1 = 1a = a.$
- Phân phối đối với phép cộng \mathfrak{C} phép trừ: a(b+c) = ab + ac, a(b-c) = ab ac.

Do tính chất kết hợp nên giá trị của biểu thức abc có thể được tính theo 1 trong 2 cách sau: abc = (ab)c hoặc abc = a(bc).

1.4.2 Phép Chia:

1.4.2.1 Phép chia hết.

Phép chia hết 1 số tự nhiên cho 1 số tự nhiên khác 0: a:b=q $(b\neq 0)$, trong đó a là số bi chia, b là số chia, q là thương. **Tính chất.** Nếu a:b=q thì a=bq. Nếu a:b=q thì a:q=b (trường hợp q=0 xảy ra khi $\mathscr E$ chỉ khi a=0, $b\neq 0$, i.e., $b\in \mathbb N^\star$, $\mathscr E$ khi đó biểu thức 0:b=0 đúng, nhưng $0:0=b\neq 0$ lại vô nghĩa!).

1.4.2.2 Phép chia có dư.

Theorem 1.4.2. Cho 2 số tự nhiên $a \in \mathbb{N}$, $b \in \mathbb{N}^*$. Khi đó luôn tìm được đúng 2 số tự nhiên q \mathcal{E} r sao cho a = bq + r, trong đó $0 \le r < b$.

Proof. Xem thuật toán chia Euclid (Euclide's division algorithm).

Remark 1.4.2. Khi r = 0 ta có phép chia hết. Khi $r \neq 0$ ta có phép chia có dư. Ta nói: a chia cho b được thương là $q \, \& \, s \, \hat{o} \,$ dư là r. Ký hiệu: $a : b = q \, (du \, r)$.

1.5 Phép Tính Lũy Thừa với Số Mũ Tự Nhiên

Question 1.5.1. Tại sao cần phép tính lũy thừa?

Trå lời. Phép nhân dùng để tiện viết gọn phép cộng/ của cùng 1 số hạng nhiều lần. Tương tự, phép lấy lũy thừa dùng để viết gọn phép nhân/tích của cùng 1 số hạng nhiều lần. Lưu ý, 1 trong những mục đích chính của Toán học là dùng công thức để biểu thị càng cô đọng/ngắn gọn ý toán/lập luận logic càng tốt.

1.5.1 Phép nâng lên lũy thừa

Định nghĩa 1.5.1 (Lũy thừa/Exponentiation). Lũy thừa bậc n của a, ký hiệu a^n , là tích của n thừa số a: $a^n = a \cdot a \cdots a$ (n thừa số a) với $n \in \mathbb{N}^*$. Số a được gọi là cơ số, n được gọi là số mũ.

Quy ước $a^1 = a$ với mọi $a \in \mathbb{N}$. Phép nhân nhiều thừa số bằng nhau gọi là phép nâng lũy thừa.

Question 1.5.2. Có phép toán nào cho phép viết gọn phép lũy thừa 1 cơ số với cùng số mũ nhiều lần, i.e., $(((a^n)^n)^{\dots})^n$ (m lần lấy số mũ) hay không?

Remark 1.5.1. • aⁿ đọc là "a mũ n" hoặc "a lũy thừa n" hoặc "lũy thừa bậc n của a".

- a^2 còn được gọi là "a bình phương" hay "bình phương của a".
- a^3 còn được gọi là "a lập phương" hay "lập phương của a".

Lưu ý: $10^n = 10...0$ với n chữ số 0, với mọi $n \in \mathbb{N}^*$.

1.5.2 Nhân 2 lũy thừa cùng cơ số

Quy tắc. Khi nhân 2 lũy thừa cùng cơ số, ta giữ nguyên cơ số \mathcal{E} cộng các số mũ:

$$a^m a^n = a^{m+n}, \ \forall a, m, n \in \mathbb{N}.$$
 (1.5.1)

Chú ý: $a^0 = 1$, $\forall a \in \mathbb{N}^*$. Why? Bởi vì khi cho m = n = 0 trong công thức (1.5.1), thu được: $a^0 a^0 = a^0$ hay $a^0 (a^0 - 1) = 0$ nên $a^0 = 0$ hoặc $a^0 = 1$. Giả sử $a^0 = 0$, thay m = 0, a = 1, n = 1 vào (1.5.1) thu được $1^0 1^1 = 1^{0+1}$, hay $0 \cdot 1 = 1$, vô lý. Vậy chỉ có thể xảy ra $a^0 = 1$ với mọi $a \in \mathbb{N}$.

1.5.3 Chia 2 lũy thừa cùng cơ số

Quy tắc. Khi chia 2 lũy thừa cùng cơ số (khác 0) (why?⁴), ta giữ nguyên cơ số & trừ các số mũ:

$$a^m: a^n = a^{m-n}, \ \forall a \in \mathbb{N}^*, \ m, n \in \mathbb{N}, m \ge n.$$
 (1.5.2)

Quy ước. $0^0 = 1$ hoặc vô nghĩa. Xem, e.g., Wikipedia/zero to the power of zero.

Chú ý, từ công thức (1.5.2), cho m=n, thu được $a^m:a^m=a^{m-m}$, $\forall a\in\mathbb{N}^\star$, hay tương đương, $1=a^0$, $\forall a\in\mathbb{N}^\star$. Vậy ta cũng thu được công thức này từ định nghĩa của phép chia, $\mathscr E$ trực tiếp/ngắn gọn hơn, thay vì suy ra từ phép nhân 2 lũy thừa cùng cơ số.

1.6 Thứ Tự Thực Hiện Các Phép Tính

"Khi tính giá trị của 1 biểu thức, ta không được làm tùy tiện mà phải tính theo đúng quy ước thứ tự thực hiện các phép tính." – Thái et al., 2022b, p. 26

1.6.1 Thứ tư thực hiện các phép tính trong biểu thức không chứa dấu ngoặc

- Khi biểu thức chỉ có các phép tính cộng \mathcal{E} trừ (hoặc chỉ có các phép tính nhân \mathcal{E} chia), ta thực hiện phép tính theo thứ tự từ trái sang phải.
- Khi biểu thức có các phép tính cộng, trừ, nhân, chia, ta thực hiện phép tính nhân $\mathscr E$ chia trước, rồi đến cộng $\mathscr E$ trừ.
- Khi biểu thức có các phép tính cộng, trừ, nhân, chia, nâng lên lũy thừa, ta thực hiện phép tính nâng lên lũy thừa trước, rồi đến phép nhân $\mathcal E$ chia, cuối cùng đến cộng $\mathcal E$ trừ.

 $^{^3\}mathring{\rm O}$ đây xảy ra 2 trường hợp, & 1 trong số chúng chính là kết quả ta cần chứng minh, vì vậy, bằng phương pháp phản chứng, ta sẽ giả sử các trường hợp còn lại là đúng (nhưng thực tế là sai) rồi tiếp tục suy luận để dẫn tới "1 điều vô lý". Từ đó ta kết luận được trường hợp duy nhất xảy ra. "Điều vô lý" thường xuất hiện trong phương pháp chứng minh bằng phản chứng/proof by method of contradiction thường là "0 = a" với $a\neq 0$. NQBH: sẽ bổ sung các điều vô lý khác ở đây.

⁴Nếu cơ số bằng 0 & số mũ của số chia khác 0, thì số chia sẽ bằng 0, & phép chia cho 0 (division by zero) vô nghĩa.

1.6.2 Thứ tự thực hiện các phép tính trong biểu thức chứa dấu ngoặc

- Khi biểu thức có chứa dấu ngoặc, ta thực hiện các phép tính trong dấu ngoặc trước.
- Nếu biểu thức chứa các dấu ngoặc (),[], { } thì thứ tự thực hiện các phép tính như sau: () \rightarrow [] \rightarrow { }.

1.7 Quan Hệ Chia Hết. Tính Chất Chia Hết

1.7.1 Quan hệ chia hết

1.7.1.1 Khái niệm về chia hết.

Định nghĩa 1.7.1 (Chia hết). Cho $a, b \in \mathbb{N}$, $b \neq 0$. Nếu có số tự nhiên q sao cho a = bq thì ta nói a chia hết cho b. Khi a chia hết cho b, ta nói a là bội của $b \not\in b$ là ước của a.

Nếu số dư trong phép chia a cho b bằng 0 thì a chia hết cho b, ký hiệu a \vdots b. Nếu số dư trong phép chia a cho b khác 0 thì a không chia hết cho b, ký hiệu $a \not | b$.

Với $a \in \mathbb{N}^*$, a là ước của a, a là bội của a, 0 là bội của a, 1 là ước của a.

1.7.1.2 Cách tìm bội \mathcal{E} ước của 1 số.

Để tìm các bội của $n \in \mathbb{N}^*$, ta có thể lần lượt nhân n với $0, 1, 2, 3, \ldots$ Khi đó, các kết quả nhận được đều là bội của n. Ngắn gọn, tập hợp tất cả các bội của $n \in \mathbb{N}^*$ là $\{kn; k \in \mathbb{N}\}$.

Để tìm các ước của $n \in \mathbb{N}$, n > 1 (tức $n \ge 2$) ta có thể lần lượt chia n cho các số tự nhiên từ 1 đến n. Khi đó, các phép chia hết cho ta số chia là ước của n. Ngắn gọn, tập hợp tất cả các ước của $n \in \mathbb{N}$, $n \ge 2$ là $\{a \in \mathbb{N}^*; a \le n, n : a\}$.

1.7.2 Tính chất chia hết

1.7.2.1 Tính chất chia hết của 1 tổng.

Theorem 1.7.1. Nếu tất cả các số hạng của tổng đều chia hết cho cùng 1 số thì tổng chia hết cho số đó.

I.e.,
$$(a : m) \land (b : m) \Rightarrow (a+b) : m$$
. Khi đó, $(a+b) : m = a : m+b : m$.

Proof. Cho $a, b, m \in \mathbb{N}$, $m \neq 0$. Nếu $a \stackrel{.}{:} m$, tồn tại $a_1 \in \mathbb{N}$ sao cho $a = ma_1$. Tương tự, nếu $b \stackrel{.}{:} m$, tồn tại $b_1 \in \mathbb{N}$ sao cho $b = mb_1$. Khi đó $a + b = ma_1 + mb_1 = m(a_1 + b_1)$, & hiển nhiên $a_1 + b_1 \in \mathbb{N}$, nên $(a + b) \stackrel{.}{:} m$.

1.7.2.2 Tính chất chia hết của 1 hiệu.

Theorem 1.7.2. Nếu số bị trừ & số trừ đều chia hết cho cùng 1 số thì hiệu của chúng chia hết cho số đó.

```
I.e., với a, b, m \in \mathbb{N}, a \ge b, nếu a : m \ & b : m thì (a - b) : m. Khi đó, ta có (a - b) : m = a : m - b : m.
```

Proof. Cho $a, b, m \in \mathbb{N}$, $a \ge b$, $m \ne 0$. Nếu a : m, tồn tại $a_1 \in \mathbb{N}$ sao cho $a = ma_1$. Tương tự, nếu b : m, tồn tại $b_1 \in \mathbb{N}$ sao cho $b = mb_1$. Giả thiết $a \ge b$ cho ta $a_1 \ge b_1$. Khi đó $a - b = ma_1 - mb_1 = m(a_1 - b_1)$, & hiển nhiên $a_1 - b_1 \in \mathbb{N}$, nên (a - b) : m.

1.7.2.3 Tính chất chia hết của 1 tích.

Theorem 1.7.3. Nếu 1 thừa số của tích chia hết cho 1 số thì tích chia hết cho số đó.

Nếu a : m thì (ab) : m với mọi $b \in \mathbb{N}$.

1.8 Dấu hiệu chia hết cho 2, cho 5

1.8.1 Dấu hiệu chia hết cho 2

Các số chẵn thì chia hết cho 2 còn các số lẻ thì không chia hết cho 2, i.e.,

Theorem 1.8.1 (Dấu hiệu chia hết cho 2). Các số có chữ số tận cùng là 0, 2, 4, 6, 8 thì chia hết chia 2 & chỉ những số đó mới chia hết cho 2.

I.e., $(a = \overline{a_n a_{n-1} \dots a_1 a_0}, n \in \mathbb{N}, a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 9\}, \forall i = 1, \dots, n, a_0 \in \{0, 2, 4, 6, 8\}) \Leftrightarrow a \stackrel{\cdot}{:} 2.$

1.8.2 Dấu hiệu chia hết cho 5

Theorem 1.8.2 (Dấu hiệu chia hết cho 5). Các số có chữ số tận cùng là 0 hoặc 5 thì chia hết chia 5 & chỉ những số đó mới chia hết cho 5.

I.e., $(a = \overline{a_n a_{n-1} \dots a_1 a_0}, n \in \mathbb{N}, a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 9\}, \forall i = 1, \dots, n, a_0 \in \{0, 5\}) \Leftrightarrow a : 5.$

Corollary 1.8.1 (Dấu hiệu chia hết cho cả 2 & 5). Các số có chữ số tận cùng là 0 thì chia hết cho cả 2 & 5 & chỉ những số đó mới chia hết cho cả 2 & 5.

1.8.3 Giải thích dấu hiệu chia hết cho 2, cho 5

Tham khảo Thái et al., 2022a, p. 37. Xét số tự nhiên A có chữ số tận cùng là a. Khi đó A có thể viết được dưới dạng: A = 10B + a, trong đó $B \in \mathbb{N}$ (trường hợp B = 0 thì A = a & là số có 1 chữ số). Do đó, A - 10B = a.

- Nếu $a \in \{0; 2; 4; 6; 8\}$ thì a : 2. Do 10B : 2 & a : 22 nên tổng (10B + a) : 2. Vậy A : 2. Ngược lại, nếu A : 2 thì hiệu (A 10B) : 2, tức là a : 2 nên $a \in \{0; 2; 4; 6; 8\}$.
- Nếu $a \in \{0; 5\}$ thì a : 5. Do 10B : 5 & a : 5 nên tổng (10B + a) : 5. Vậy A : 5. Ngược lại, nếu A : 5 thì hiệu (A 10B) : 5, tức là a : 5 nên $a \in \{0; 5\}$.

1.8.4 Dấu hiệu chia hết cho 4

Tham khảo Thái et al., 2022a, p. 37. Xét số tự nhiên A có 3 chữ số trở lên⁵. Gọi C là số tại bởi 2 chữ số tận cùng của A. Khi đó A có thể được viết dưới dạng: A = 100B + C, trong đó $B \in \mathbb{N}$ (trường hợp B = 0 thì A = C & là số có 2 chữ số).

Do đó, A-100B=C. Nếu C : 4 thì tổng (100B+C) : 4, tức là A : 4. Ngược lại, nếu A : 4 thì hiệu (A-100B) : 4, tức là C : 4. Vậy:

Theorem 1.8.3. Các số có 2 chữ số tận cùng tạo thành 1 số chia hết cho 4 thì chia hết cho 4 & chỉ những số đó mới chia hết cho 4.

I.e., $(a = \overline{a_n a_{n-1} \dots a_1 a_0}, n \in \mathbb{N}, a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 9\}, \forall i = 1, \dots, n, \overline{a_1 a_0} \stackrel{.}{:} 4) \Leftrightarrow a \stackrel{.}{:} 4$. Chú ý công thức này bao gồm cả những số có 1 hoặc 2 chữ số \mathscr{E} chia hết 4.

1.9 Dấu Hiệu Chia Hết Cho 3, Cho 9

1.9.1 Dấu hiệu chia hết cho 3

Theorem 1.9.1 (Dấu hiệu chia hết cho 3). Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 & chỉ những số đó mới chia hết cho 3.

Proof. Xét $a \in \mathbb{N}$ bất kỳ với biểu diễn các chữ số của a là $a = \overline{a_n a_{n-1} \dots a_1 a_0}, n \in \mathbb{N}, a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 9\}, \forall i = 0, \dots, n$. Sử dụng công thức (1.2.3), chú ý $10^i \equiv 1 \pmod{3}, \forall i = 0, \dots, n$,

$$a = \sum_{i=0}^{n} a_i 10^i \equiv \left(\sum_{i=0}^{n} a_i\right) \pmod{3}.$$

Vì vậy, a : 3 khi \mathscr{E} chỉ khi tổng các chữ số của a, i.e., $\sum_{i=0}^{n} a_i$, chia hết cho 3.

 $^{^5{\}rm Giả}$ thiết này sẽ làm thiếu những số có 1 hoặc 2 chữ số & chia hết cho 4.

1.9.2 Dấu hiệu chia hết cho 9

Hoàn toàn tương tư dấu hiệu chia hết cho 3:

Theorem 1.9.2 (Dấu hiệu chia hết cho 9). Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 & chỉ những số đó mới chia hết cho 9.

Proof. Xét $a \in \mathbb{N}$ bất kỳ với biểu diễn các chữ số của a là $a = \overline{a_n a_{n-1} \dots a_1 a_0}, n \in \mathbb{N}, a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 9\}, \forall i = 0, \dots, n$. Sử dụng công thức (1.2.3), chú ý $10^i \equiv 1 \pmod{9}, \forall i = 0, \dots, n$,

$$a = \sum_{i=0}^{n} a_i 10^i \equiv \left(\sum_{i=0}^{n} a_i\right) \pmod{9}.$$

Vì vậy, a : 9 khi $\mathscr E$ chỉ khi tổng các chữ số của a, i.e., $\sum_{i=0}^n a_i$, chia hết cho 9.

1.9.3 Giải thích dấu hiệu chia hết cho 3, cho 9

Tham khảo Thái et al., 2022a, p. 40. Xét số tự nhiên \overline{abc} , $a \neq 0$ có 3 chữ số, ta viết được $\overline{abc} = 100a + 10b + c = (99a + 9b) + (a + b + c) = 9(11a + b) + (a + b + c)$. Tổng quát, ta có mọi số tự nhiên A đều viết được dưới dạng tổng các chữ số của nó cộng với 1 số chia hết cho 9, i.e., A = 9M + S, trong đó S là tổng các chữ số của số A.

- Nếu $A \in \mathbb{N}$ có tổng các chữ số chia hết cho 3 thì S chia hết cho 3. Do $9M \stackrel{.}{:} 3 \not \in S \stackrel{.}{:} 3$ nên tổng $(9M + S) \stackrel{.}{:} 3$. Vậy $A \stackrel{.}{:} 3$. Ngược lại, nếu $A \stackrel{.}{:} 3$ thì hiệu $(A 9M) \stackrel{.}{:} 3$, i.e., $S \stackrel{.}{:} 3$. Vậy tổng các chữ số của A chia hết cho 3.
- Nếu $A \in \mathbb{N}$ có tổng các chữ số chia hết cho 9 thì S chia hết cho 9. Do $9M \stackrel{.}{:} 9 \ \mathcal{E} S \stackrel{.}{:} 9$ nên tổng $(9M + S) \stackrel{.}{:} 9$. Vậy $A \stackrel{.}{:} 9$. Ngược lại, nếu $A \stackrel{.}{:} 9$ thì hiệu $(A 9M) \stackrel{.}{:} 9$, i.e., $S \stackrel{.}{:} 9$. Vậy tổng các chữ số của A chia hết cho 9.

"Áp dụng dấu hiệu chia hết cho 9, ta có thể kiểm tra (sơ bộ) kết quả phép nhân 2 số có nhiều chữ số là sai." – Thái et al., 2022a, p. 40

1.10 Số Nguyên Tố. Hợp Số

Định nghĩa 1.10.1 (Số nguyên tố, hợp số). Số nguyên tố *là số tự nhiên lớn hơn 1, chỉ có 2 ước là 1 & chính nó.* Hợp số *là số tự nhiên lớn hơn 1, có nhiều hơn 2 ước.*

Số 0 (có vô hạn ước) $\mathscr E$ số 1 (có duy nhất 1 ước là chính nó) không là số nguyên tố $\mathscr E$ cũng không là hợp số. Để chứng tỏ $a \in \mathbb N$, $a \ge 2$ là hợp số, ta chỉ cần tìm 1 ước của a khác 1 $\mathscr E$ khác a (khi đó, a có ít nhất 3 ước, theo định nghĩa, suy ra a là hợp số).

Remark 1.10.1. Số nguyên tố (prime) là 1 chủ đề cực khó, với nhiều bài toán mở, giả thuyết chưa được chứng minh đúng hay sai, trong Lý thuyết Số học/Number Theory.

Định nghĩa 1.10.2. Nếu số nguyên tố p là ước của số tự nhiên a thì p được gọi là ước nguyên tố của a.

1.10.1 Sàng Eratosthenes

"Số nguyên tố nhỏ nhất là số 2 \mathcal{E} đó là số nguyên tố chẵn duy nhất." Bằng sàng Eratosthenes, ta có thể lọc ra tất cả các số nguyên tố nhỏ hơn 1 số tự nhiên n cho trước. "Eratosthenes là nhà toán học, địa lý học, thiên văn học người Hy Lạp. Ông là người đã nghĩ ra hệ thống kinh độ, vĩ độ \mathcal{E} cũng là người đầu tiên tính được kích thước của Trái Đất." – Thái et al., 2022a, p. 43

1.11 Phân Tích 1 Số Ra Thừa Số Nguyên Tố

1.11.1 Cách tìm 1 ước nguyên tố của 1 số

Để tìm 1 ước nguyên tố của số $a \in \mathbb{N}$, $a \ge 2$, ta có thể làm như sau: Lần lượt thực hiện phép chia a cho các số nguyên tố theo thứ tự tăng dần $2, 3, 5, 7, 11, 13, \ldots$ Khi đó, phép chia hết đầu tiên cho ta số chia là 1 ước nguyên tố của a.

1.11.2 Phân tích 1 số ra thừa số nguyên tố

Định nghĩa 1.11.1 (Phân tích 1 số ra thừa số nguyên tố/Factorization into prime factors). Phân tích 1 số tự nhiên lớn hơn 1 ra thừa số nguyên tố *là viết số đó dưới dạng 1 tích các thừa số nguyên tố*.

"Ta nên chia mỗi số cho ước nguyên tố nhỏ nhất của nó. Cứ tiếp tục chia như thế cho đến khi được thương là 1." – Thái et al., 2022a, p. 45

"Thông thường, khi phân tích 1 số tự nhiên ra thừa số nguyên tố, các ước nguyên tố được viết theo thứ tự tăng dần. Ngoài cách làm như trên, ta cũng có thể phân tích 1 số ra thừa số nguyên tố bằng cách viết số đó thành tích của 2 thừa số 1 cách linh hoạt." "Dù phân tích 1 số ra thừa số nguyên tố bằng cách nào thì cuối cùng ta cũng được cùng 1 kết quả." 6 – Thái et al., 2022 a, p. 4 6

1.12 Ước Chung & Ước Chung Lớn Nhất

1.12.1 Ước chung & ước chung lớn nhất

Định nghĩa 1.12.1 (Ước chung & ước chung lớn nhất). Số tự nhiên n được gọi là ước chung của 2 số tự nhiên a & b nếu n vừa là ước của a vừa là ước của b. Số lớn nhất trong các ước chung của a & b được gọi là ước chung lớn nhất của a & b.

Quy ước. Viết tắt ước chung là ƯC \mathcal{E} ước chung lớn nhất là ƯCLN. Ta ký hiệu: Tập hợp các ước chung của a \mathcal{E} b là ƯCLN(a,b); ước chung lớn nhất của a \mathcal{E} b là ƯCLN(a,b).

Ký hiệu chuẩn quốc tế của ước chung lớn nhất của $2 \text{ số } a, b \in \mathbb{N}$ là $\gcd(a, b)$, viết tắt của greatest common divisor.

Định nghĩa 1.12.2. Số tự nhiên $n \in \mathbb{N}^*$ được gọi là ước chung của n số a_1, \ldots, a_n nếu n là ước của tất cả n số đó.

Theorem 1.12.1. Ước chung của 2 số là ước của ước chung lớn nhất của chúng.

1.12.2 Tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố

Tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố.

- 1. Phân tích mỗi số ra thừa số nguyên tố.
- 2. Chọn ra các thừa số nguyên tố chung.
- 3. Với mỗi thừa số nguyên tố chung, ta chon lũy thừa với số mũ nhỏ nhất.
- 4. Lấy tích của các lũy thừa đã chọn, ta nhận được ước chung lớn nhất cần tìm.

Nếu 2 số đã cho không có thừa số nguyên tố chung thì UCLN của chúng bằng 1. Nếu a:b thì UCLN(a,b)=b.

1.12.3 2 số nguyên tố cùng nhau

Định nghĩa 1.12.3 (2 số nguyên tố cùng nhau). 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất bằng 1.

Định nghĩa 1.12.4 (Phân số tối giản). Phân số tối giản là phân số có tử & mẫu là 2 số nguyên tố cùng nhau.

1.12.4 Tìm ước chung lớn nhất bằng thuật toán Euclid

Tham khảo Thái et al., 2022a, p. 52: Để tìm ước chung lớn nhất bằng thuật toán Euclid, ta làm như sau:

- 1. Chia số lớn cho số nhỏ.
- 2. Nếu phép chia còn dư thì ta lấy số chia đem chia cho số dư. Ta cứ làm như vậy cho đến khi nhận được số dư bằng 0 thì dừng lại.
- 3. Số chia cuối cùng là ước chung lớn nhất phải tìm.

Remark 1.12.1. Người ta thường dùng thuật toán Euclid đề tìm UCLN của cặp số lớn.

⁶Điều này có nghĩa là dạng phân tích ra thừa số nguyên tố của 1 số tự nhiên là duy nhất, & điều này ứng với Định lý Phân tích số tự nhiên ra thừa số nguyên tố của Lý thuyết Số học. [insert later] Xem, e.g., sách Số Học của GS. Hà Huy Khoái.

1.13 Bội Chung & Bội Chung Nhỏ Nhất

1.13.1 Bội chung & bội chung nhỏ nhất

Định nghĩa 1.13.1 (Bội chung $\mathscr E$ bội chung nhỏ nhất của 2 só). Số tự nhiên $n \in \mathbb N$ được gọi là bội chung của $2 \text{ số a } \mathscr E$ b nếu n vừa là bội của a vừa là bội của b. Số nhỏ nhất khác 0 trong các bội chung của a $\mathscr E$ b được gọi là bội chung nhỏ nhất của a $\mathscr E$ b.

Quy ước. Viết tắt bội chung là BC \mathcal{E} bội chung nhỏ nhất là BCNN. Ta ký hiệu: Tập hợp các bội chung của a \mathcal{E} b là BC(a, b); bội chung nhỏ nhất của a \mathcal{E} b là BCNN(a, b).

Ký hiệu chuẩn quốc tế của bội chung nhỏ nhất của 2 số $a, b \in \mathbb{N}^*$ là lcm(a, b), trong đó lcm là viết tắt của least common multiple/lowest common multiple.

Định nghĩa 1.13.2 (Bội chung \mathscr{C} bội chung nhỏ nhất của nhiều số). Số tự nhiên n được gọi là bội chung của N số $a_1, \ldots, a_N \in \mathbb{N}^*$, $n \in \mathbb{N}^$

Ký hiệu. Tập hợp các bội chung của a_i , $i=1,\ldots,N$, là $\mathrm{BC}(a_1,\ldots,a_N)$; bội chung nhỏ nhất của N số a_i , $i=1,\ldots,N$, là $\mathrm{BCNN}(a_1,\ldots,a_N)$.

Theorem 1.13.1. Bội chung của nhiều số là bội của bội chung nhỏ nhất của chúng.

"Để tìm bội chung của nhiều số, ta có thể lấy bội chung nhỏ nhất của chúng lần lượt nhân với $0,1,2,\ldots$ " – Thái et al., 2022a, p. 55

1.13.2 Tìm bôi chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố

Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố.

- 1. Phân tích mỗi số ra thừa số nguyên tố.
- 2. Chọn ra các thừa số nguyên tố chung $\mathcal E$ các thừa số nguyên tố riêng.
- 3. Với mỗi thừa số nguyên tố chung \mathcal{E} riêng, ta chọn lũy thừa với số mũ lớn nhất.
- 4. Lấy tích của các lũy thừa đã chọn, ta nhận được bội chung nhỏ nhất cần tìm.

1.13.3 Úng dụng bội chung nhỏ nhất vào cộng, trừ các phân số không cùng mẫu

Để tính tổng 2 phân số $\frac{a}{b} + \frac{c}{d}$, $a, c \in \mathbb{N}$, $b, d \in \mathbb{N}^*$, ta có thể làm như sau:

- 1. Chon mẫu chung là BCNN của các mẫu.
- 2. Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu).
- 3. Sau khi nhân tử & mẫu của mỗi phân số với thừa số phu tương ứng, ta công 2 phân số có cùng mẫu.

Hiển nhiên:

Theorem 1.13.2. Bội chung nhỏ nhất của 2 số nguyên tố cùng nhau bằng tích của 2 số đó.

1.13.4 Lich Can Chi

"1 số nước phương Đông, trong đó có Việt Nam, gọi tên năm âm lịch bằng cách ghép tên của 1 trong 10 can (theo thứ tự là $Gi\acute{a}p$, $\acute{A}t$, Bính, Dinh, Mậu, $K\mathring{y}$, Canh, Tân, Nhâm, $Qu\mathring{y}$) với tên của 1 trong 12 chi (theo thứ tự là $T\mathring{y}$, $S\mathring{u}u$, Dần, Mão, Thìn, $T\mathring{y}$, Ngo, Mùi, Thân, Dậu, Tuất, Hợi). Đầu tiên, $Gi\acute{a}p$ được ghép với $T\mathring{y}$ thành năm $Gi\acute{a}p$ $T\mathring{y}$. Cứ 10 năm, Giáp được lặp lại." – Thái et al., 2022a, p. 58.

Vì BCNN(10, 12) = 60, cứ sau 60 năm thì năm có tên tương ứng được lặp lại.

Chương 2

Số Nguyên

Nội dung. Tập hợp các số nguyên \mathbb{Z} ; các phép tính trong tập hợp số nguyên; quan hệ chia hết.

2.1 Số Nguyên Âm

" $S\acute{o}$ nguyên âm được nhận biết bằng dấu "-" ở trước số tự nhiên khác 0." - Thái et al., 2022a, p. 61 **Úng dụng của số nguyên âm.** "Số nguyên âm được sử dụng trong nhiều tình huống thực tiễn cuộc sống:

- Số nguyên âm được dùng để chỉ nhiệt độ dưới 0°.
- Số nguyên âm được dùng để chỉ độ cao dưới mực nước biển.
- Số nguyên âm được dùng để chỉ số tiền nợ, cũng như để chỉ số tiền lỗ trong kinh doanh.
- Số nguyên âm được dùng để chỉ thời gian trước Công nguyên." Thái et al., 2022a, p. 62

2.1.1 Độ sâu lớn nhất của các đại dương dưới mực nước biển

- "Rãnh Mariana, thuộc Thái Bình Dương, sâu 10 925 m.
- Rãnh Puerto Rico, thuộc Đại Tây Dương, sâu 8408 m.
- Rãnh Java, thuộc Ấn Độ Dương, sâu 7290 m.
- Molloy Hole, nơi sâu nhất của Bắc Băng Dương, sâu 5669 m." (so với mực nước biển) Thái et al., 2022a, p. 63

2.1.2 Hà Lan – Đất nước của những vùng đất thấp hơn mực nước biển

"Hà Lan được biết đến là đất nước với khoảng 26% diện tích lãnh thổ thấp hơn mực nước biển. Bản thân tên gọi tiếng Anh của quốc gia này "The Netherlands" cũng có nghĩa là "Những vùng đất thấp". Để bảo vệ đất nước trước sự tấn công của nước biển, Hà Lan đã xây dựng hệ thống các công trình đê biển, kè biển, của cống & cửa chấn lụt. Tổng cộng có 65 đê chấn sóng đúc bê tông khổng lồ cùng 62 cửa van bằng thép di động treo giữa các đê chấn với tổng chiều dài 6.8 km. Cửa van lớn nhất nằm ở phần sâu nhất của châu thổ, nặng tới 480 tấn, phải mất cả tiếng đồng hồ mới mở hay đóng được. Cùng với đường hầm qua eo biển Manche, kênh đào Panama, ... hệ thống đê biển ở Hà Lan được các nhà kiến trúc trên thế giới bầu chọn là 1 trong số 10 công trình vĩ đại nhất trên hành tinh." – Thái et al., 2022a, p. 63

2.2 Tập Hợp Các Số Nguyên $\mathbb Z$

2.2.1 Tập hợp $\mathbb Z$ các số nguyên

Định nghĩa 2.2.1 (Số nguyên dương, tập hợp các số nguyên). Số tự nhiên khác 0 còn được gọi là số nguyên dương. Các số nguyên âm, số 0, \mathcal{E} các số nguyên dương tạo thành tập hợp các số nguyên. Tập hợp các số nguyên được ký hiệu là \mathbb{Z} .

Remark 2.2.1. Số 0 không phải là số nguyên âm, cũng không phải số nguyên dương. Các số nguyên dương $1, 2, 3, \ldots$ đều mang dấu "+" nên còn được viết là $+1, +2, +3, \ldots$

2.2.2 Biểu diễn số nguyên trên trục số

Tham khảo Thái et al., 2022a, pp. 65-66. Ta có thể biểu diễn số nguyên trên trực số. Có 2 loại trực số như sau:

- 1. Trục số nằm ngang có:
 - Chiều dương hướng từ trái sang phải (được đánh dấu bằng mũi tên);
 - Điểm gốc của trục số là điểm 0 (biểu diễn số 0);
 - Đơn vị đo độ dài trên trục số là độ dài đoạn thẳng nối điểm 0 với điểm 1 (biểu diễn số 1 & nằm bên phải điểm 0).

Trên trục số nằm ngang, điểm biểu diễn số nguyên âm nằm bên trái điểm 0, điểm biểu diễn số nguyên dương nằm bên phải điểm 0.

- 2. Trục số thẳng đứng có:
 - Chiều dương hướng từ dưới lên trên (được đánh dấu bằng mũi tên);
 - Điểm gốc của trục số là điểm 0 (biểu diễn số 0);
 - Đơn vị đo độ dài trên trục số là độ dài đoạn thẳng nối điểm 0 với điểm 1 (biểu diễn số 1 $\mathscr E$ nằm phía trên điểm 0).

Trên trục số thẳng đứng, điểm biểu diễn số nguyên âm nằm phía dưới điểm 0, điểm biểu diễn số nguyên dương nằm phía trên điểm 0.

Quy ước. Khi nói "trục số" mà không nói gì thêm, ta hiểu là nói về trục số nằm ngang.

2.2.3 Số đối của 1 số nguyên

Định nghĩa 2.2.2 (Số đối của 1 số nguyên). Trên trực số, 2 số nguyên (phân biệt) có điểm biểu diễn nằm về 2 phía của gốc 0 & cách đều gốc 0 được gọi là 2 số đối nhau. Số đối của 0 là 0.

2.2.4 So sánh các số nguyên

2.2.4.1 So sánh 2 số nguyên.

Trên trục số nằm ngang, nếu điểm a nằm bên trái điểm b thì số nguyên a nhỏ hơn số nguyên b. Trên trục số thẳng đứng, nếu điểm a nằm phía dưới điểm b thì số nguyên a nhỏ hơn số nguyên b. Nếu a nhỏ hơn b thì ta viết là a < b hoặc b > a.

"Số nguyên dương luôn lớn hơn 0. Số nguyên âm luôn nhỏ hơn 0." "Nếu $a < b \ \mathcal{E} \ b < c$ thì a < c." (tính chất bắc cầu) – Thái et al., 2022a, p. 67

2.2.4.2 Cách so sánh 2 số nguyên.

- So sánh 2 số nguyên khác dấu. "Số nguyên âm luôn nhỏ hơn số nguyên dương." Thái et al., 2022a, p. 68
- So sánh 2 số nguyên cùng dấu. "Để so sánh 2 số nguyên âm, ta làm như sau:
 - 1. Bỏ dấu "-" trước cả 2 số âm.
 - 2. Trong 2 số nguyên dương nhận được, số nào nhỏ hơn thì số nguyên âm ban đầu (tương ứng) sẽ lớn hơn." Thái et al., 2022a, p. 69

2.3 Phép Cộng Các Số Nguyên

2.3.1 Phép cộng 2 số nguyên cùng dấu

2.3.1.1 Phép công 2 số nguyên dương.

"Cộng 2 số nguyên dương chính là cộng 2 số tự nhiên khác 0." – Thái et al., 2022a, p. 70. Xem lại phần *Phép Cộng, Trừ Các Số Tự Nhiên*.

2.3.1.2 Phép cộng 2 số nguyên âm.

"Để cộng 2 số nguyên âm, ta làm như sau:

- 1. Bỏ dấu "-" trước mỗi số.
- 2. Tính tổng của 2 số nguyên dương nhận được ở Bước 1.
- 3. Thêm dấu "-" trước kết quả nhận được ở Bước 2, ta có tổng cần tìm." Thái et al., 2022a, p. 71

Hiển nhiên: "Tổng của 2 số nguyên dương là số nguyên dương. Tổng của 2 số nguyên âm là số nguyên âm." – Thái et al., 2022a, p. 71

2.3.2 Phép cộng 2 số nguyên khác dấu

"Để công 2 số nguyên khác dấu, ta làm như sau:

- 1. Bỏ dấu "-" trước số nguyên âm, giữ nguyên số còn lai.
- 2. Trong 2 số nguyên dương nhận được ở Bước 1, ta lấy số lớn hơn trừ đi số nhỏ hơn.
- 3. Cho hiệu vừa nhận được dấu ban đầu của số lớn hơn ở Bước 2, ta có tổng cần tìm.

Chú ý. 2 số nguyên đối nhau có tổng bằng 0, i.e., a + (-a) = 0, $\forall a \in \mathbb{Z}$.

2.3.3 Tính chất của phép cộng các số nguyên

Theorem 2.3.1 (Tính chất của phép cộng các số nguyên). Phép cộng các số nguyên có các tính chất sau:

- Giao hoán: a + b = b + a, $\forall a, b \in \mathbb{Z}$;
- $K\acute{e}t\ hop: (a+b)+c=a+(b+c), \ \forall a,b,c\in\mathbb{Z};$
- $\hat{Conq} \ v\acute{o}i \ s\acute{o} \ \theta$: a + 0 = 0 + a = a;
- $C\hat{\rho}ng \ v\acute{o}i \ s\acute{o} \ d\acute{o}i$: a + (-a) = (-a) + a = 0.

2.4 Phép Trừ Số Nguyên. Quy Tắc Dấu Ngoặc

2.4.1 Phép trừ số nguyên

"Muốn trừ số nguyên a cho số nguyên b, ta cộng a với số đối của b: a - b = a + (-b)." "Phép trừ trong \mathbb{N} không phải bao giờ cũng thực hiện được¹, còn phép trừ trong \mathbb{Z} luôn thực hiện được.²" – Thái et al., 2022a, p. 76

2.4.2 Quy tắc dấu ngoặc

Khi bỏ dấu ngoặc có dấu "+" đằng trước thì giữ nguyên dấu của các số hang trong ngoặc.

$$a + (b + c) = a + b + c, \ a + (b - c) = a + b - c. \ \forall a, b, c \in \mathbb{Z}.$$

Khi bỏ dấu ngoặc có dấu "-" đầng trước, ta phải đổi dấu của các số hạng trong ngoặc: dấu "+" thành dấu "-" \mathcal{E} dấu "-" thành dấu "+".

$$a - (b + c) = a - b - c, \ a - (b - c) = a - b + c, \ \forall a, b, c \in \mathbb{Z}.$$

2.5 Phép Nhân Các Số Nguyên

2.5.1 Phép nhân 2 số nguyên khác dấu

"Để nhân 2 số nguyên khác dấu, ta làm như sau:

- 1. Bỏ dấu "-" trước số nguyên âm, giữ nguyên số còn lại.
- 2. Tính tích của 2 số nguyên dương nhận được ở Bước 1.
- 3. Thêm dấu "-" trước kết quả nhận được ở Bước 2, ta có tích cần tìm.

Tích của 2 số nguyên khác dấu là số nguyên âm." – Thái et al., 2022a, p. 80

 $^{{}^{1}\}mathrm{NQBH}\text{: Vì nếu hiệu của 2 số tự nhiên là số nguyên âm, thì hiệu đó không còn thuộc }\mathbb{N}\text{ nữa, i.e., }(a,b\in\mathbb{N},\ a< b)\Rightarrow a-b\notin\mathbb{N}.$

²I.e., $a, b \in \mathbb{Z} \Rightarrow a - b \in \mathbb{Z}$.

2.5.2 Phép nhân 2 số nguyên cùng dấu

2.5.2.1 Phép nhân 2 số nguyên dương.

"Nhân 2 số nguyên dương chính là nhân 2 số tự nhiên khác 0." – Thái et al., 2022a, p. 81

2.5.2.2 Phép nhân 2 số nguyên âm.

"Để nhân 2 số nguyên âm, ta làm như sau:

- 1. Bỏ dấu "-" trước mỗi số.
- 2. Tính tích của 2 số nguyên dương nhận được ở Bước 1, ta có tích cần tìm.

Tích của 2 số nguyên cùng dấu là số nguyên dương." – Thái et al., 2022a, p. 81

2.5.3 Tính chất của phép nhân các số nguyên

"Giống như phép nhân các số tự nhiên, phép nhân các số nguyên cũng có các tính chất: giao hoán, kết hợp, nhân với số 1, phân phối của phép nhân đối với phép cộng, phép trừ." – Thái et al., 2022a, p. 82

Sự thừa hưởng tính chất này xuất phát từ sự kiện số nguyên chỉ thêm dấu \pm vào số tự nhiên, nên các tính chất được mở rộng từ $\mathbb N$ ra/lên $\mathbb Z$ theo 1 cách tự nhiên $\mathcal E$ dễ dàng.

Hiển nhiên, a0 = 0a = 0. $(ab = 0) \Rightarrow ((a = 0) \lor (b = 0))$.

2.6 Phép Chia Hết 2 Số Nguyên. Quan Hệ Chia Hết Trong Tập Hợp Số Nguyên

2.6.1 Phép chia hết 2 số nguyên khác dấu

"Để chia 2 số nguyên khác dấu, ta làm như sau:

- 1. Bỏ dấu "-" trước số nguyên âm, giữ nguyên số còn lai.
- 2. Tính thương của 2 số nguyên dương nhận được ở Bước 1.
- 3. Thêm dấu "-" trước kết quả nhận được ở Bước 2, ta có thương cần tìm.

2.6.2 Phép chia hết 2 số nguyên cùng dấu

2.6.2.1 Phép chia hết 2 số nguyên dương.

Xem lại phần Phép Nhân, Phép Chia Các Số Tự Nhiên.

2.6.2.2 Phép chia hết 2 số nguyên âm.

"Để chia 2 số nguyên âm, ta làm như sau:

- 1. Bỏ dấu "-" trước mỗi số.
- 2. Tính thương của 2 số nguyên dương nhận được ở Bước 1, ta có thương cần tìm." Thái et al., 2022a, p. 85

Remark 2.6.1. • Cách nhân biết đấu của thương: $(+): (+) \to (+), (-): (-) \to (+), (+): (-) \to (-), (-): (+) \to (-).$

• Thứ tự thực hiện các phép tính với số nguyên (trong biểu thức không chứa dấu ngoặc hoặc có chứa dấu ngoặc) cũng giống như thứ tự thực hiện các phép tính với các số tự nhiên.

2.6.3 Quan hệ chia hết

Định nghĩa 2.6.1 (Quan hệ chia hết, bội, ước). Cho $a,b \in \mathbb{Z}$, với $b \neq 0$. Nếu có số nguyên q sao cho a = bq thì ta nói: a chia hết cho b, b chia hết a, a là bội của b, b là ước của a.

Hiển nhiên: "Nếu a là bội của b thì -a cũng là bội của b. Nếu b là ước của a thì -b cũng là ước của a." – Thái et al., 2022a, p. 86

2.7 Hoạt Động Thực Hành & Trải Nghiệm: Đầu Tư Kinh Doanh

Tham khảo Thái et al., 2022a, pp. 89–92.

2.7.1 Một Số Kiến Thức về Tài Chính, Kinh Doanh

2.7.1.1 Tài chính.

Định nghĩa 2.7.1 (Tài chính). Tài chính là tổng số tiền có được của 1 cá nhân, 1 tổ chức, 1 doanh nghiệp, hoặc 1 quốc gia. Tài chính của 1 cá nhân được gọi là tài chính cá nhân.

2.7.1.2 Kinh doanh.

Định nghĩa 2.7.2 (Kinh doanh). Kinh doanh bao gồm những hoạt động mua & bán. Các yếu tố cơ bản trong kinh doanh là:

- Vốn: số tiền ban đầu bỏ ra;
- Giá cả của mỗi mặt hàng: mua vào với giá bao nhiều & bán ra với giá bao nhiều;
- Chi phí vân hành: số tiền bỏ ra để thực hiện việc kinh doanh;
- Doanh thu: tổng số tiền thu được sau khi kết thúc hoạt động kinh doanh;
- Lợi nhuận: doanh thu trừ đi vốn & chi phí vận hành;
- Lãi: nếu lơi nhuân của kinh doanh là dương;
- Lỗ: nếu lợi nhuận của kinh doanh là âm.

2.7.1.3 Các cách để tăng lợi nhuận.

- Tăng doanh thu. Có 2 cách để tăng doanh thu:
 - o Nâng giá mặt hàng;
 - Thu hút người mua để bán được nhiều hàng.

Tuy nhiên, khi nâng giá mặt hàng thì có thể số người mua giảm đi nên số sản phẩm bán được ít đi.

• Giảm chi phí vận hành & vốn.

2.7.2 Kiến Thức Toán Học

Công thức tính lợi nhuận. Lợi nhuận = A - (B + C). Trong đó A là doanh thu, B là vốn, C là chi phí vận hành.

2.7.3 Kỹ Năng Tìm Kiếm Thông Tin $\operatorname{\mathcal{C}}$ Trình Bày Sản Phẩm

- Tìm hiểu thêm 1 số thông tin về tài chính, kinh doanh qua cha mẹ, người thân trong gia đình & qua các phương tiện thông tin truyền thông.
- Tìm hiểu cách thức trình bày & giới thiệu sản phẩm.

Chương 3

Hình Học Trực Quan

Nội dung. Tam giác đều, hình vuông, lục giác đều; hình chữ nhật, hình thoi, hình bình hành, hình thang cân; hình có trục đối xứng, hình có tâm đối xứng, đối xứng trong thực tiễn.

3.1 Tam Giác Đều. Hình Vuông. Lục Giác Đều

3.1.1 Tam giác đều

3.1.1.1 Nhận biết tam giác đều.

Định nghĩa 3.1.1 (Tam giác đều). Tam giác đều là tam giác có 3 cạnh bằng nhau.

Tam giác đều ABC có 3 cạnh bằng nhau AB = BC = CA & 3 góc ở 3 đỉnh A, B, C bằng nhau.

Remark 3.1.1. Trong hình học nói chung, tam giác nói riêng, các cạnh bằng nhau (hay các góc bằng nhau) thường được chỉ rõ bằng cùng 1 ký hiệu.

3.1.1.2 Vẽ tam giác đều.

"Vẽ tam giác đều bằng thước \mathcal{E} compa khi biết đô dài canh bằng a cm:

- Dùng thước vẽ đoạn thẳng AB = a cm.
- Lấy A làm tâm, dùng compa vẽ 1 phần đường tròn có bán kính AB.
- \bullet Lấy B làm tâm, dùng compa vẽ 1 phần đường tròn có bán kính BA; gọi C là giao điểm của 2 phần đường tròn vừa vẽ.
- Dùng thước vẽ các đoạn thẳng AC & BC." Thái et al., 2022a, p. 94

3.1.2 Hình vuông

3.1.2.1 Nhận biết hình vuông.

Hình vuông ABCD có: 4 cạnh bằng nhau: AB = BC = CD = DA; 2 cạnh đối AB & CD; AD & BC song song với nhau; 2 đường chéo bằng nhau: AC = BD; 4 góc ở các đỉnh A, B, C, D là góc vuông.

3.1.2.2 Vẽ hình vuông.

"Vẽ bằng eke hình vuông ABCD, biết độ dài cạnh bằng a cm:

- 1. Vẽ theo 1 canh góc vuông của eke đoan thẳng AB có đô dài bằng 7 cm.
- 2. Đặt đỉnh góc vuông của eke trùng với điểm $A \mathcal{E} 1$ cạnh eke nằm trên AB, vẽ theo cạnh kia của eke đoạn thẳng AD có độ dài bằng a cm.
- 3. Xoay eke rồi thực hiện tương tư như ở Bước 2 để được canh BC có đô dài bằng a cm.
- 4. Vẽ đoạn thẳng CD." Thái et al., 2022a, p. 95

3.1.2.3 Chu vi \mathcal{E} diện tích của hình vuông.

Chu vi của hình vuông có độ dài cạnh bằng a là C=4a. Diện tích của hình vuông có độ dài cạnh bằng a là $S=aa=a^2$.

3.1.3 Lục giác đều

Ghép 6 miếng phẳng hình tam giác đều có cạnh bằng nhau để tạo thành hình lục giác thì hình lục giác đó được gọi là hình lục giác đều. Với hình lục giác đều ABCDEF với tâm O: Các gam giác OAB,OBC,OCD,ODE,OEF,OFA là tam giác đều nên các cạnh AB,BC,CD,DE,EF,FA có độ dài bằng nhau. Các đường chéo chính AD,BE,CF cắt nhau tại điểm O. Các đường chéo chính AD,BE,CG có độ dài gấp đôi độ dài cạnh tam giác đều nên chúng bằng nhau. Mỗi góc ở đỉnh A,B,C,D,E,F của lục giác đều ABCDEF đều gấp đôi góc của 1 tam giác đều nên chúng bằng nhau. Viết dưới dạng ký hiệu: Lục giác đều ABCDEF có: 6 cạnh bằng nhau: AB=BC=CD=DE=EF=FA; 3 đường chéo chính cắt nhau tại điểm O; 3 đường chéo chính bằng nhau: AD=BE=CF; 6 góc ở các đỉnh A,B,C,D,E,F bằng nhau.

3.2 Hình Chữ Nhật. Hình Thoi

3.2.1 Hình chữ nhật

3.2.1.1 Nhận biết hình chữ nhật.

Hình chữ nhật ABCD có: 2 cạnh đối nhau bằng nhau: AB = CD, AD = BC; 2 cạnh đối AB & CD; AD & BC song song với nhau; 2 đường chéo bằng nhau: AC = BD; 4 góc ở các đỉnh A, B, C, D đều là góc vuông.

3.2.1.2 Vẽ hình chữ nhất.

Vẽ hình chữ nhật bằng eke khi biết độ dài 2 cạnh là a cm \mathcal{E} b cm:

- 1. Vẽ theo 1 canh góc vuông của eke đoan thẳng AB có đô dài bằng a cm.
- 2. Đặt đỉnh góc vuông của eke trùng với điểm $A \mathcal{E} 1$ cạnh eke nằm trên AB, vẽ theo cạnh kia của eke đoạn thẳng AD có độ dài bằng b cm.
- 3. Xoay eke rồi thực hiện tương tự như ở Bước 2 để được cạnh b cm.
- 4. Vẽ đoạn thẳng CD.

3.2.1.3 Chu vi \mathcal{E} diện tích của hình chữ nhật.

Chu vi của hình chữ nhật có độ dài 2 cạnh là $a \, \mathcal{E} \, b$ là C = 2(a+b). Diện tích của hình chữ nhật có độ dài 2 cạnh là $a \, \mathcal{E} \, b$ là S = ab.

3.2.2 Hình thoi

3.2.2.1 Nhân biết hình thoi.

Hình thoi ABCD có: 4 cạnh bằng nhau: AB = BC = CD = DA; 2 cạnh đối $AB \ \& CD$, $AD \ \& BC$ song song với nhau; 2 đường chéo $AC \ \& BD$ vuông góc với nhau.

3.2.2.2 Vẽ hình thoi.

"Vẽ hình thoi bằng thước \mathcal{E} compa khi biết độ dài 1 cạnh bằng a cm \mathcal{E} độ dài 1 đường chéo bằng b cm:

- 1. Dùng thước vẽ đoạn thẳng AC = b cm.
- 2. Dùng compa vẽ 1 phần đường tròn tâm A bán kính a cm.
- 3. Dùng compa vẽ 1 phần đường tròn tâm C bán kính a cm; phần đường tròn này cắt phần đường tròn tâm A vẽ ở Bước 2 tại các điểm $B \ \mathcal{E} \ D$.
- 4. Dùng thước vẽ các đoạn thẳng AB, BC, CD, DA." Thái et al., 2022a, p. 100

3.2.2.3 Chu vi $\mathcal E$ diện tích của hình thoi.

Với hình thoi có độ dài cạnh là a \mathscr{C} độ dài 2 đường chéo là m \mathscr{C} n, ta có: Chu vi của hình thoi là C=4a; diện tích của hình thoi là $S=\frac{1}{2}mn$.

Sect. 3.6 Hình Có Tâm Đối Xứng

3.3 Hình Bình Hành

3.3.1 Nhân biết hình bình hành

"Hình bình hành ABCD có: 2 cạnh đối $AB \ \mathcal{E} \ CD, \ BC \ \mathcal{E} \ AD$ song song với nhau; 2 cạnh đối bằng nhau: $AB = CD, \ BC = AD$; 2 góc ở các đỉnh $A \ \mathcal{E} \ C$ bằng nhau, 2 góc ở các đỉnh $B \ \mathcal{E} \ D$ bằng nhau." – Thái et al., 2022a, p. 102

3.3.2 Vẽ hình bình hành

"Ta có thể vẽ hình bình hành ABCD bằng thước \mathcal{E} compa như sau:

- 1. Lấy B làm tâm, dùng compa vẽ 1 phần đường tròn có bán kính AD. Lấy D làm tâm, dùng compa vẽ 1 phần đường tròn có bánh kính AB. Gọi C là giao điểm của 2 phần đường tròn này.
- 2. Dùng thước vẽ các đoan thẳng BC & CD." Thái et al., 2022a, p. 103

3.3.3 Chu vi & diện tích của hình bình hành

"Với hình bình hành có độ dài 2 cạnh là $a \mathcal{E} b$, độ dài đường cao ứng với cạnh a là h, ta có: Chu vi của hình bình hành là C = 2(a+b); diện tích của hình bình hành là S = ah." – Thái et al., 2022a, p. 103

3.4 Hình Thang Cân

3.4.1 Nhân biết hình thang cân

"Hình thang cân ABCD có: 2 cạnh dáy AB & CD song song với nhau; 2 cạnh bên bằng nhau: AD = BC; 2 đường chéo bằng nhau: AC = BD; 2 góc kề với cạnh đáy CD bằng nhau, tức là 2 góc BCD & CDA bằng nhau; 2 góc kề với cạnh đáy AB bằng nhau, tức là 2 góc DAB & ABC bằng nhau." – Thái et al., 2022a, p. 105

3.4.2 Chu vi \mathcal{E} diện tích của hình thang cân

"Chu vi của hình thang bằng tổng độ dài các cạnh của hình thang đó. Diện tích của hình thang bằng tổng độ dài 2 đáy nhân với chiều cao rồi chia đôi." – Thái et al., 2022a, p. 106

3.5 Hình Có Trục Đối Xứng

3.5.1 Hình có trục đối xứng

Cho 1 hình \mathcal{E} 1 đường thẳng d, nếu gấp hình đã cho theo đường thẳng d thu được 2 nửa trùng khít vào nhau thì hình như vậy là hình có trực đối xứng \mathcal{E} đường thẳng d được gọi là trực đối xứng của hình. Hình có trực đối xứng còn được gọi là hình đối xứng trực.

3.5.2 Truc đối xứng của 1 số hình

Đoạn thẳng AB là hình có trực đối xứng $\mathcal E$ trực đối xứng là đường thẳng d đi qua trung điểm O của AB $\mathcal E$ vuông góc với AB. Đường tròn là hình có nhiều trực đối xứng (vô hạn không đếm được) $\mathcal E$ mỗi trực đối xứng là 1 đường thẳng đi qua tâm của nó. Hình thang cân có 1 trực đối xứng. Hình lực giác đều có 6 trực đối xứng.

"Trong tự nhiên, ta thường gặp các hình có trực đối xứng, e.g.: bông tuyết/bông hoa tuyêts, con bọ cánh cứng/cánh cam, con bướm, Trong nghệ thuật, đồ họa, . . . người ta cũng thường sử dụng bố cực có dạng đối xứng trực. Trong kiến trúc, xây dựng thì tính đối xứng luôn được coi trọng, chẳng hạn ở các công trình sau: Tháp Rùa (Hà Nội), Khuê Văn Các (Hà Nội), tháp Eiffel (Paris)." – Thái et al., 2022a, p. 110

3.6 Hình Có Tâm Đối Xứng

3.6.1 Hình có tâm đối xứng

"Đường tròn tâm O là hình có tâm đối xứng \mathcal{E} tâm đối xứng chính là tâm O của đường tròn." "Hình có tâm đối xứng còn được gọi là hình đối xứng tâm." – Thái et al., 2022a, p. 111

¹Tổng quát hơn, chu vi của 1 hình đa giác/polygonal bằng tổng độ dài các cạnh của đa giác đó.

3.6.2 Tâm đối xứng của 1 số hình

Đoạn thẳng AB là hình có tâm đối xứng $\mathscr E$ tâm đối xứng là trung điểm M của đoạn thẳng đó. Đường tròn là hình có tâm đối xứng $\mathscr E$ tâm đối xứng là tâm của nó. Hình lục giác đều có tâm đối xứng là tâm của nó.

"Trong tự nhiên, ta thường gặp các hình có tâm đối xứng, e.g.: bông tuyết/bông hoa tuyết, cây bạc hà, Trong nghệ thuật, trang trí, hay nhiếp ảnh, . . . người ta cũng thường sử dụng bố cục có dạng đối xứng tâm. Trong kiến trúc, xây dựng thì đối xứng tâm luôn được coi trọng, e.g., ở các công trình sau: cầu vượt, mái nhà thờ, . . ." – Thái et al., 2022a, p. 113

Advance: insert Topology Optimization, Shape Optimization.

3.7 Đối Xứng trong Thực Tiễn

3.7.1 Tính đối xứng trong thế giới tự nhiên

"Tính đối xứng là sự giống nhau của 1 hình qua đường trục hoặc qua tâm, tạo nên sự cân bằng. Trong tự nhiên, tính đối xứng được thể hiện rất đa dạng, phong phú, e.g.: Mặt Trăng, cầu vồng, con công, con bướm, chiếc lá. Tính đối xứng của 1 đối tượng là 1 trong những dấu hiệu quan trọng nhất giúp chúng ta nhanh chóng định hình đối tượng đó khi nhìn vào nó. Ngoài ra, với con người, đối xứng tạo ra sự cân bằng (cân xứng), hài hòa, trật tự, quen thuộc \mathcal{E} nhờ đó tạo ra thẩm mỹ (vẻ đẹp)." – Thái et al., 2022a, p. 114

3.7.2 Tính đối xứng trong nghệ thuật, kiến trúc, \mathcal{E} công nghệ

"1 trong các nguyên tắc quan trọng với nghệ thuật hay kiến trúc là nguyên tắc cân bằng. Hầu hết thiết kế về kiến trúc, đồ họa, hay 1 tác phẩm nghệ thuật nào đều phải thực hiện tốt yếu tố cân bằng. Vì thế, bố cục đối xứng thường được sử dụng trong các tác phẩm nghệ thuật hay kiến trúc, e.g.: Nhà hát lớn tại Hà Nội, cổng chính phía nam của Hoàng thành Huế, Dinh Độc Lập, cầu Nhật Tân, chợ Bến Thành. Trong thiết kế, công nghệ, chúng ta cũng dễ dàng nhận ra các bố cục có tính đối xứng. Các công trình hay máy móc muốn tồn tại, ổn định, bền vững & có được vẻ đẹp, bắt mắt thì phải chú trọng đến tính cân xứng. E.g.: thiết kế hoa văn trong xây dựng, thiết kế hoa văn trong trang trí (dệt vải), thiết kế nhà, thiết kế máy bay, thiết kế oto, . . . " Thái et al., 2022a, pp. 114–115

3.7.3 Đối xứng trong toán học

"Nhiều đối tượng trong toán học có tính đối xứng/symmetry, góp phần tạo nên vẻ đẹp của toán học. 1 số biểu thức $\mathscr E$ công thức toán học cũng có tính đối xứng. E.g.: a+b=b+a hay ab=ba, mỗi số nguyên: ..., $-3,-2,-1,0,1,2,3,\ldots$ đều có số đối của nó, hay tam giác Pascal, Đối xứng còn là công cụ chủ yếu để kết nối giữa toán học với khoa học $\mathscr E$ nghệ thuật." – Thái et al., 2022a, p. 115

3.8 Thực Hành Phần Mềm GeoGebra

3.8.1 Giới thiệu phần mềm Geogebra

"Hiện nay, trên thế giới có nhiều phần mềm toán học, trong đó phần mềm GeoGebra là phần mềm miễn phí, dễ sử dụng, thân thiện với người dùng $\mathscr E$ có các phiên bản cho khoảng 80 ngôn ngữ khác nhau. Sau khi đã cài đặt phần mềm, việc chuyển đổi ngôn ngữ (e.g., từ tiếng Anh sang tiếng Việt) hết sức đơn giản². Phần mềm GeoGebra có phạm vi sử dụng rất rộng (Hình học phẳng, Hình học không gian, Đại số, Giải tích, Xác suất, Thống kê, Bảng tính điện tử), sử dung được trên nhiều hệ điều hành khác nhau, có thể chạy trực tuyến (online) hoặc cài đặt vào máy tính, máy tính bảng, điện thoại thông minh $\mathscr E$ hỗ trợ rất tốt cho việc dạy học môn Toán cũng như giáo dực STEM. Vì thế, GeoGebra được hàng triệu người trên thế giới sử dụng.

Để sử dụng phần mềm GeoGebra, chúng ta có thể sử dụng online tại địa chỉ https://www.geogebra.org/hoặc tải từ địa chỉ https://www.geogebra.org/download & cài đặt vào máy tính hoặc máy tính bảng hoặc điện thoại thông minh." – Thái et al., 2022a, p. 119

3.8.2 Thực hành phần mềm GeoGebra trong tính toán số học

3.8.2.1 Sử dụng trực tiếp lệnh trong CAS.

1. Tìm ước của số nguyên dương. Cho $a \in \mathbb{N}^*$. Để tìm ước của a, nhập lệnh: DanhSachUocSo(a) rồi bấm Enter.

 $^{^2}$ NQBH: Nên sử dụng trực tiếp tiếng Anh để tăng vốn ngôn ngữ $\mathscr E$ khả năng xoay sở để giúp thích nghi nhanh với các phần mềm khác không có hỗ trợ tiếng Việt, $\mathscr E$ đương nhiên các phần mềm này chiếm đa số.

- 2. Tìm ước chung lớn nhất của 2 số nguyên dương. Cho $a,b\in\mathbb{N}^{\star}$. Để tìm ước chung lớn nhất của a \mathcal{E} b, nhập lệnh: USCLN(a,b) rồi bấm Enter.
- 3. Tìm bội chung nhỏ nhất của 2 số nguyên dương. Cho $a,b\in\mathbb{N}^{\star}$. Để tìm bội chung nhỏ nhất của a \mathcal{E} b, nhập lệnh: BSCNN(a,b rồi bấm Enter.
- 4. $Tim \ s\acute{o} \ du \ của \ phép \ chia$. Cho $a,b \in \mathbb{N}^{\star}$. Để tìm số du của phép chia a cho b, nhập lệnh: SoDu(a,b) rồi bấm Enter.

3.8.2.2 Tạo công cụ để tìm ƯCLN, BCNN của các số nguyên dương.

Cho $a, b, c \in \mathbb{N}^*$. Để tạo công cụ tìm UCLN(a, b, c) & BCNN(a, b, c), xem Thái et al., 2022a, pp. 120–121.

3.8.3 Sử dụng phần mềm GeoGebra để vẽ hình tam giác đều, hình vuông, hình lục giác đều Xem Thái et al., 2022a, pp. 122–124.

Chương 4

Một Số Yếu Tố Thống kê & Xác Suất

Nội dung. Thu thập, tổ chức, biểu diễn, phân tích, \mathcal{E} xử lý dữ liệu; bảng số liệu, biểu đồ tranh, biểu đồ cột, biểu đồ cột kép; mô hình xác suất \mathcal{E} xác suất thực nghiệm trong 1 số trò chơi \mathcal{E} thí nghiệm đơn giản.

4.1 Thu Thập, Tổ Chức, Biểu Diễn, Phân Tích, & Xử Lý Dữ Liệu

Những bước chính trong tiến trình thống kê: "thu thập, phân loại, kiểm đếm, ghi chép số liệu; đọc \mathcal{E} mô tả các số liệu ở dạng dãy số liệu, bảng số liệu hoặc ở dạng biểu đồ (biểu đồ tranh, biểu đồ cột hoặc biểu đồ hình quạt tròn); nêu được nhận xét đơn giản từ biểu đồ." – Thái et al., 2022b, p. 3.

4.1.1 Thu thập, tổ chức, phân tích, \mathcal{E} xử lý dữ liệu

"Sau khi thu thập, tổ chức, phân loại, biểu diễn dữ liệu bằng bảng hoặc biểu đồ, ta cần phân tích $\mathscr E$ xử lý các dữ liệu đó để tìm ra những thông tin hữu ích $\mathscr E$ rút ra kết luận." [...] "Ta có thể nhận biết được tính hợp lý của dữ liệu thống kê theo những tiêu chí đơn giản." [...] "Dựa theo đối tượng $\mathscr E$ tiêu chí thống kê, ta có thể tổ chức $\mathscr E$ phân loại dữ liệu." – Thái et al., 2022b, p. 4.

"Dựa vào thống kê, ta có thể nhận biết được tính hợp lý của kết luận đã nêu ra." – Thái et al., 2022b, p. 5.

4.1.2 Biểu diễn dữ liệu

"Sau khi thu thập \mathscr{E} tổ chức dữ liệu, ta cần biểu diễn dữ liệu đó ở dạng thích hợp. Nhờ việc biểu diễn dữ liệu, ta có thể phân tích \mathscr{E} xử lý được các dữ liệu đó." – Thái et al., 2022b, p. 6.

- 1. **Bảng số liệu.** Các đối tượng thống kê lần lượt được biểu diễn ở dòng đầu tiên. Ứng với mỗi đối tượng thống kê có 1 số liệu thống kê theo tiêu chí, lần lượt được biểu diễn ở dòng thứ 2 (theo cột tương ứng).
- 2. **Biểu đồ tranh.** Các đối tượng thống kê lần lượt được biểu diễn ở cột đầu tiên. Ứng với mỗi đối tượng thống kê có 1 số liệu thống kê theo tiêu chí, lần lượt được biểu diễn ở dòng tương ứng.
- 3. **Biểu đồ cột.** Các đối tượng thống kê lần lượt được biểu diễn ở trục nằm ngang. Ứng với mỗi đối tượng thống kê có 1 số liệu thống kê theo tiêu chí, lần lượt được biểu diễn ở trục thẳng đứng.

"Dựa vào thống kê, ta có thể bác bỏ kết luận đã nêu ra." – Thái et al., 2022b, p. 8

4.2 Biểu Đồ Cột Kép

Mục đích của biểu đồ cột kép: biểu diễn được đồng thời từng loại đối tượng thống kê trên cùng 1 biểu đồ cột (ưu điểm so với biểu đồ cột đơn thông thường). Các đối tượng thống kê lần lượt được biểu diễn ở trục nằm ngang. Ứng với mỗi đối tượng thống kê có 1 số liệu thống kê theo tiêu chí, lần lượt được biểu diễn ở trục thẳng đứng.

4.3 Mô Hình Xác Suất Trong 1 Số Trò Chơi & Thí Nghiệm Đơn Giản

4.3.1 Mô hình xác suất trong trò chơi tung đồng xu

2 mặt của đồng xu: mặt sấp /S¹ hay mặt ngửa/N. Khi tung đồng xu 1 lần, có 2 kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu, đó là: mặt N; mặt S. Có 2 điều cần chú ý trong mô hình xác suất của trò chơi tung đồng xu:

- Tung đồng xu 1 lần;
- Tập hợp các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu là {S; N}. Ở đây, S ký hiệu cho kết quả xuất hiện mặt sấp & N ký hiệu cho kết quả xuất hiện mặt ngửa.

4.3.2 Mô hình xác suất trong trò chơi lấy vật từ trong hộp

Dạng toán. Cho 1 hộp có n vật thể có kích thước \mathcal{E} khối lượng như nhau nhưng có n màu khác nhau. Khi lấy ngẫu nhiên 1 vật thể trong hộp, có n kết quả có thể xảy ra đối với màu của vật thể được lấy ra, đó là: màu thứ nhất, màu thứ $2, \ldots,$ màu thứ n.

Remark 4.3.1. Giả thiết "n vật thể có kích thước & khối lượng như nhau" giúp cho các đối tượng bình đẳng/công bằng (fairness) trong việc lấy ra ngẫu nhiên. Trường hợp ngược lại, chẳng hạn, 1 vật thể đầy gai nhọn trong khi các vật thể khác tron nhẵn hoặc 1 vật thể quá nặng so các vật thể còn lại sẽ khó để lấy ra được bằng tay không, nên xác suất xảy ra đối với vật thể đó sẽ là 0 (unfairness). Trường hợp bình đẳng ứng với xác suất của các vật thể có phân phối đều (uniform distribution), trong khi trường hợp bất bình đẳng của các vật thể ứng với các phân phối có trọng số (non-uniform/weighted distribution) sẽ được học ở Phổ thông hoặc Toán Cao Cấp.

4.3.3 Mô hình xác suất trong trò chơi gieo xúc xắc

Dạng toán. Mỗi xúc xắc có 6 mặt, số chấm ở mỗi mặt là 1 trong các số nguyên dương 1, 2, 3, 4, 5, 6. Gieo xúc xắc 1 lần. $Tài: \{4,5,6\}$. $Xiu: \{1,2,3\}$.

4.4 Xác Suất Thực Nghiệm Trong 1 Số Trò Chơi & Thí Nghiệm Đơn Giản

4.4.1 Xác suất thực nghiệm trong trò chơi tung đồng xu/toss a coin

Định nghĩa 4.4.1 (Xác suất thực nghiệm trong trò chơi tung đồng xu). Xác suất thực nghiệm xuất hiện mặt N khi tung đồng xu nhiều lần bằng:

$$\frac{S \acute{o} \ l \grave{a}n \ mặt \ N \ xuất \ hiện}{T \acute{o}ng \ s \acute{o} \ l \grave{a}n \ tung \ d \grave{o}ng \ xu} = \frac{S \acute{o} \ l \grave{a}n \ mặt \ N \ xuất \ hiện}{S \acute{o} \ l \grave{a}n \ mặt \ N \ xuất \ hiện} + S \acute{o} \ l \grave{a}n \ mặt \ S \ xuất \ hiện} \in \mathbb{Q} \cap [0,1].$$

Xác suất thực nghiệm xuất hiện mặt S khi tung đồng xu nhiều lần bằng:

$$\frac{S \acute{o} \ l \grave{a} n \ m \breve{a} t \ S \ x u \acute{a} t \ h i \acute{e} n}{T \acute{o} n q \ s \acute{o} \ l \grave{a} n \ t u n q \ d \grave{o} n q \ x u} = \frac{S \acute{o} \ l \grave{a} n \ m \breve{a} t \ S \ x u \acute{a} t \ h i \acute{e} n}{S \acute{o} \ l \grave{a} n \ m \breve{a} t \ N \ x u \acute{a} t \ h i \acute{e} n} + S \acute{o} \ l \grave{a} n \ m \breve{a} t \ S \ x u \acute{a} t \ h i \acute{e} n} \in \mathbb{Q} \cap [0, 1].$$

Từ định nghĩa: "Xác suất thực nghiệm xuất hiện mặt N (hoặc mặt S) phản ảnh số lần xuất hiện mặt đó so với tổng số lần tiến hành thực nghiêm." – Thái et al., 2022b, p. 18

Remark 4.4.1. • Xác suất thực nghiệm xuất hiện mặt N bằng 0 khi & chỉ khi không có mặt N nào trong tất cả lần tung đồng xu.

- Xác suất thực nghiệm xuất hiện mặt N bằng 1 khi & chỉ khi không có mặt S nào trong tất cả lần tung đồng xu.
- Xác suất thực nghiệm xuất hiện mặt s bằng 0 khi & chỉ khi không có mặt S nào trong tất cả lần tung đồng xu.
- Xác suất thực nghiệm xuất hiện mặt S bằng 1 khi & chỉ khi không có mặt N nào trong tất cả lần tung đồng xu.

Problem 4.4.1. Tung 2 đồng xu cân đối & đồng chất T lần (T viết tắt của "tổng số"), trong đó:

- 2 đồng xu sấp xuất hiện SS lần.
- 1 đồng xu sấp, 1 đồng xu ngửa xuất hiện SN lần.

 $^{^{1}\}mathrm{C}$ ần phân biệt "mặt sấp" (S) với "SML".

• 2 đồng xu ngửa xuất hiện NN lần.

 $Hi\hat{e}n \ nhi\hat{e}n$: T = SS + SN + NN. Khi đó:

- $\bullet \ \ \textit{X\'{a}c su\'{a}t thực nghiệm để có 1 đồng xu sấp, 1 đồng xu ngửa} = \frac{SN}{T} = \frac{SN}{SS + SN + NN} \in \mathbb{Q} \cap [0,1].$
- $\bullet \ \ \textit{X\'{a}c su\'{a}t thực nghiệm để có 2 đồng xu đều ngửa} = \frac{NN}{T} = \frac{NN}{SS + SN + NN} \in \mathbb{Q} \cap [0,1].$
- $\bullet \ \ \textit{X\'{a}c su\'{a}t thực nghiệm để có 2 đồng xu đều sấp} = \frac{SS}{T} = \frac{SS}{SS + SN + NN} \in \mathbb{Q} \cap [0,1].$
- $\bullet \ \ \textit{X\'{a}\'{c} su\'{a}\'{t} thực nghiệm để có ít nhất 1 đồng xu sấp} = \frac{SS + SN}{T} = \frac{SS + SN}{SS + SN + NN} \in \mathbb{Q} \cap [0,1].$
- $\bullet \ \ \textit{X\'{a}\'{c} su\'{a}\'{t} thực nghiệm để có ít nhất 1 đồng xu ngửa = \frac{SN + NN}{T} = \frac{SN + NN}{SS + SN + NN} \in \mathbb{Q} \cap [0,1].$

4.4.2 Xác suất thực nghiệm trong trò chơi lấy vật từ trong hộp

Định nghĩa 4.4.2 (Xác suất thực nghiệm trong trò chơi lấy vật từ trong hộp). Xác suất thực nghiệm xuất hiện màu *A khi* lấy bóng nhiều lần bằng:

$$\frac{S\acute{o}\ l\grave{a}n\ m\grave{a}u\ A\ xu\acute{a}t\ hiện}{T\acute{o}ng\ s\acute{o}\ l\grave{a}n\ l\acute{a}y\ b\acute{o}ng}\in\mathbb{Q}\cap[0,1].$$

4.4.3 Xác suất thực nghiệm trong trò chơi gieo xúc xắc

Định nghĩa 4.4.3 (Xác suất thực nghiệm trong trò chơi gieo xúc xắc). Xác suất thực nghiệm xuất hiện mặt k chấm $(k \in \mathbb{N}, 1 \le k \le 6)$ khi gieo xúc xắc nhiều lần bằng:

$$\frac{S \acute{o} \ l \grave{a} n \ xu \acute{a} t \ hi \`{e} n \ m \check{a} t \ k \ ch \acute{a} m}{T \acute{o} n g \ s \acute{o} \ l \grave{a} n \ gieo \ x \acute{u} c \ x \acute{a} c} \in \mathbb{Q} \cap [0,1].$$

4.4.4 Xác suất khi số lần thực nghiệm rất lớn

"Người ta chứng minh được rằng khi số lần tung càng lớn thì xác suất thực nghiệm xuất hiện mặt N càng gần với 0.5. Số 0.5 được gọi là xác suất xuất hiện mặt N (theo nghĩa thống kê)." – Thái et al., 2022b, p. 21. Phương pháp tung kim để tính số π của Bá tước Georges-Louis Leclerc de Buffon chính là tiền thân của phương pháp Monte-Carlo trong toán học.

Lý thuyết nằm sau những ví dụ này là $Lu\hat{a}t$ Số $L\acute{o}n/Law$ of Large Numbers – 1 trong những định lý quan trọng nhất của $L\acute{y}$ thuyết $x\acute{a}c$ $su\acute{a}t$ & $th\acute{o}ng$ $k\hat{e}$, được chứng minh bởi nhà Toán học huyền thoại người Nga Kolmogorov. ²

 $^{^2}$ NQBH: Kolmogorov còn có những cống hiến khác về nền tảng xác suất & thống kê trong việc nghiên cứu turbulence/sự nhiễu loạn. Turbulence vẫn còn là 1 vấn đề mở cực khó của cả Toán học & Vật lý. Đề tài PhD ở Đức của tôi là làm tối ưu hình dáng (shape optimization) & tối ưu topo (topology optimization) cho turbulence models. Và đương nhiên 3 năm chẳng thể nào đủ cho 1 đề tài khủng như vậy.

Chương 5

Phân Số & Số Thập Phân

Nội dung. phân số với tử \mathcal{E} mẫu là số nguyên; các phép tính với phân số; số thập phân; các phép tinh với số thập phân; tỷ số, tỷ số phần trăm, làm tròn số.

5.1 Phân Số với Tử & Mẫu là Số Nguyên

5.1.1 Khái niệm phân số

Định nghĩa 5.1.1 (Phân số/Fraction). Kết quả của phép chia $a \in \mathbb{Z}$ cho $b \in \mathbb{Z}^*$ có thể viết dưới dạng $\frac{a}{b}$, & được gọi là phân số.

"Phân số $\frac{a}{b}$ đọc là: a phần b, a là $t\mathring{u}$ số (numerator) (còn gọi tắt là $t\mathring{u}$), b là $m\tilde{a}u$ số (denominator) (còn gọi tắt là $m\tilde{a}u$)" – Thái et al., 2022b, p. 25. "Mọi $a \in \mathbb{Z}$ có thể viết ở dạng phân số là $\frac{a}{1}$." – Thái et al., 2022b, p. 26

5.1.2 Phân số bằng nhau

5.1.2.1 Khái niệm 2 phân số bằng nhau.

Định nghĩa 5.1.2 (2 phân số bằng nhau). 2 phân số được gọi là bằng nhau nếu chúng cùng biểu diễn một giá trị.

5.1.2.2 Quy tắc bằng nhau của 2 phân số.

Với mọi $a, b, c, d \in \mathbb{Z}, b \neq 0, d \neq 0$,

$$\boxed{\frac{a}{b} = \frac{c}{d} \Leftrightarrow b \neq 0, d \neq 0, \ ad = bc.}$$

Vế sau có nghĩa là nhân chéo chia ngang, hay được gọi là quy tắc bằng nhau của 2 phân số.

Remark 5.1.1. Luôn nhớ điều kiện mẫu số của các phân số phải khác 0 để phân số được xác định/có nghĩa.

Với
$$a,b\in\mathbb{Z},\,b\neq0,$$
 luôn có: $\frac{a}{-b}=\frac{-a}{b}=-\frac{a}{b},\,\frac{-a}{-b}=\frac{a}{b}.$

Example 5.1.1. Trong Sách Giáo Khoa Toán 6, Cánh Diều, của Đỗ Đức Thái chủ biên, có viết:

"Xét 2 phân số
$$\frac{a}{b}$$
 & $\frac{c}{d}$. Nếu $\frac{a}{b} = \frac{c}{d}$ thì $ad = bc$. Ngược lại, nếu $ad = bc$ thì $\frac{a}{b} = \frac{c}{d}$."

Phản ví dụ: $a=0,\ b=0$ thì $ad=bc=0,\ nhưng\ \frac{0}{0}\neq \frac{c}{d}$ & phân số $\frac{0}{0}$ không có nghĩa.

Mẹo nhanh. Xét dấu (sign) của tử số \mathcal{E} mẫu số khi so sánh 2 phân số $\frac{a}{b}$ \mathcal{E} $\frac{c}{d}$. Nếu trong 4 số a, b, c, d, có 1 hoặc 3 số âm, còn lại dương, thì 2 phân số không bằng nhau.

5.1.3 Tính chất cơ bản của phân số

5.1.3.1 Tính chất cơ bản.

Nếu ta nhân cả tử & mẫu của 1 phân số với cùng 1 số nguyên khác 0 thì ta được 1 phân số bằng phân số đã cho, i.e.,

$$\frac{a}{b} = \frac{am}{bm}, \ \forall a \in \mathbb{Z}, \ b, m \in \mathbb{Z}^{\star}.$$

Nếu ta chia cả tử & mẫu của 1 phân số cho cùng 1 ước chung của chúng thì ta được 1 phân số bằng phân số đã cho, i.e.,

$$\frac{a}{b} = \frac{a:n}{b:n}, \ \forall a, b \in \mathbb{Z}, \ b \neq 0, \ n \in UC(a,b).$$

trong đó giả thiết $n\in \mathrm{UC}(a,b)$ để phân số $\frac{a:n}{b:n}$ đều có tử & mẫu nguyên.

"Mỗi phân số đều đưa được về 1 phân số bằng nó \mathcal{E} có mẫu là số dương." – Thái et al., 2022b, p. 28

5.1.3.2 Rút gọn về phân số tối giản.

Đinh nghĩa 5.1.3. Phân số tối giản là phân số mà tử & mẫu chỉ có ước chung là 1 & -1.

I.e., phân số $\frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$, được gọi là phân số tối giản nếu UCLN(a, b) = 1.

Dựa vào tính chất cơ bản của phân số, để rút gọn phân số với tử & mẫu là số nguyên về phân số tối giản:

- 1. Tìm ƯCLN của tử \mathcal{E} mẫu sau khi đã bỏ dấu (nếu có).
- 2. Chia cả tử \mathcal{E} mẫu cho ƯCLN vừa tìm được, ta có phân số tối giản cần tìm.

5.1.3.3 Quy đồng mẫu nhiều phân số.

Question 5.1.1. Tại sao cần/phải quy đồng mẫu nhiều phân số?

Trả lời. Để tiện so sánh 2 phân số. Để tiện cho việc giải phương trình, etc.

Question 5.1.2. Cách để quy đồng mẫu nhiều phân số?

"Đựa vào tính chất cơ bản của phân số ta có thể quy đồng mẫu nhiều phân số có tử \mathcal{E} mẫu là số nguyên. Để quy đồng mẫu nhiều phân số:

1. Viết các phân số đã cho về phân số có mẫu dương. Tìm BCNN của các mẫu dương đó để làm mẫu chung.

Remark 5.1.2. Nếu các mẫu số nguyên tố cùng nhau, thì BCNN của chúng chính là tích của chúng.

- 2. Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu).
- 3. Nhân tử \mathcal{E} mẫu của mỗi phân số ở Bước 1 với thừa số phụ tương ứng." Thái et al., $\frac{2022}{5}$, p. 29

5.2 So Sánh Các Phân Số. Hỗn Số Dương

5.2.1 So sánh các phân số

5.2.1.1 So sánh 2 phân số.

Trong 2 số nguyên khác nhau luôn có 1 số nhỏ hơn số kia. Cũng như số nguyên, trong 2 phân số khác nhau luôn có 1 phân số nhỏ hơn phân số kia. Nếu phân số $\frac{a}{b}$ nhỏ hơn phân số $\frac{c}{d}$ thì ta viết $\frac{a}{b} < \frac{c}{d}$ hay $\frac{c}{d} > \frac{a}{b}$. Phân số lớn hơn 0 được gọi là phân số dwong. Phân nhỏ hơn 0 được gọi là phân số am. Tính chất bắc cầu: nếu $\frac{a}{b} < \frac{c}{d}$ & $\frac{c}{d} < \frac{e}{f}$ thì $\frac{a}{b} < \frac{e}{f}$.

5.2.1.2 Cách so sánh 2 phân số.

"Để so sánh 2 phân số không cùng mẫu, ta quy đồng mẫu 2 phân số đó (về cùng 1 mẫu dương) rồi so sánh các tử với nhau: Phân số nào có tử lớn hơn thì phân số đó lớn hơn." – Thái et al., 2022a, p. 31

5.2.2 Hỗn số dương

"Viết 1 phân số lớn hơn 1 thành tổng của 1 số nguyên dương & 1 phân số nhỏ hơn 1 (với tử & mẫu dương) rồi viết chúng liền nhau thì được 1 hổn số dương." – Thái et al., 2022b, p. 32. Lưu ý điều này cũng đồng nghĩa với việc phân tích 1 phân số $\frac{a}{b} > 1$, $a, b \in \mathbb{N}^*$, ra phần nguyên, ký hiệu là $\left\lfloor \frac{a}{b} \right\rfloor$ & phần lẻ, ký hiệu là $\left\{ \frac{a}{b} \right\}$, i.e., $\frac{a}{b} = \left\lfloor \frac{a}{b} \right\rfloor + \left\{ \frac{a}{b} \right\}$. Dễ thấy phần nguyên là thương của phép chia tử a cho mẫu b, còn phần lẻ là phân số với tử là phần dư của phép chia a cho b, & mẫu số vẫn là b. Cụ thể dưới dạng ký hiệu: a = bq + r, với $q \in \mathbb{N}^*$ là thương, $r \in \{0, \dots, b-1\}$ là số dư, thì phân số $\frac{a}{b}$ được viết dưới dạng hỗn số là:

$$\frac{a}{b} = \frac{bq+r}{b} = q + \frac{r}{b} = q\frac{r}{b}.$$

5.3 Phép Cộng, Phép Trừ Phân Số

5.3.1 Phép cộng phân số

5.3.1.1 Quy tắc cộng 2 phân số.

"Muốn cộng 2 phân số có cùng mẫu, ta cộng các tử \mathcal{E} giữ nguyên mẫu:

$$\frac{a}{m} + \frac{b}{m} = \frac{a+b}{m}, \ \forall a, b, m \in \mathbb{Z}, \ m \neq 0.$$

Muốn cộng 2 phân số không cùng mẫu, ta quy đồng mẫu những phân số đó rồi cộng các tử \mathcal{E} giữ nguyên mẫu chung." – Thái et al., 2022b, pp. 34–35

5.3.1.2 Tính chất của phép cộng phân số.

"Giống như phép cộng số tự nhiên, phép cộng phân số cũng có các tính chất: giao hoán, kết hợp, cộng với số 0." – Thái et al., 2022b, pp. 35

5.3.2 Phép trừ phân số

5.3.2.1 Số đối của 1 phân số.

"Giống như số nguyên, mỗi phân số đều có số đối sao cho tổng của 2 số đó bằng 0." – Thái et al., 2022b, pp. 36

Định nghĩa 5.3.1. Số đối *của phân số*
$$\frac{a}{b}$$
 ký hiệu là $-\frac{a}{b}$. Ta có: $\frac{a}{b} + \left(-\frac{a}{b}\right) = 0$.

Hiển nhiên:
$$-\frac{a}{b} = \frac{a}{-b} = \frac{-a}{b}$$
 với $a, b \in \mathbb{Z}$, $b \neq 0$. Số đối của $-\frac{a}{b}$ là $\frac{a}{b}$, i.e., $-\left(-\frac{a}{b}\right) = \frac{a}{b}$.

5.3.2.2 Quy tắc trừ 2 phân số.

"Muốn trừ 2 phân số có cùng mẫu, ta trừ tử của số bị trừ cho tử của số trừ \mathcal{E} giữ nguyên mẫu:

$$\frac{a}{m} - \frac{b}{m} = \frac{a-b}{m}, \ \forall a,b,m \in \mathbb{Z}, \ m \neq 0.$$

Muốn trừ 2 phân số không cùng mẫu, ta quy đồng mẫu những phân số đó rồi trừ tử của số bị trừ cho tử của số trừ \mathcal{E} giữ nguyên mẫu chung." "Muốn trừ 2 phân số, ta cộng số bị trừ với số đối của số trừ: $\frac{a}{b} - \frac{c}{d} = \frac{a}{b} + \left(-\frac{c}{d}\right)$." – Thái et al., 2022b, pp. 36–37.

5.3.3 Quy tắc dấu ngoặc

"Quy tắc dấu ngoặc đối với phân số giống như quy tắc dấu ngoặc đối với số nguyên." – Thái et al., 2022b, p. 37 I.e.,

$$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right), \ \forall a, b, c, d, e, f \in \mathbb{Z}, \ b \neq 0, \ d \neq 0, \ f \neq 0.$$

5.3.4 Biểu diễn phân số trên trục số nằm ngang

"Tương tự như đối với các số nguyên, ta có thể biểu diễn mọi phân số trên trục số." "Trên trục số, phân số $\mathcal E$ số đối của phân số đó có điểm biểu diễn nằm về 2 phía của gốc 0 $\mathcal E$ cách đều gốc 0." "Trên trục số nằm ngang, nếu điểm biểu diễn phân số $\frac{a}{b}$ nằm bên trái điểm biểu diễn phân số $\frac{a}{b}$ (hay điểm biểu diễn phân số $\frac{a}{b}$ nhỏ hơn phân số $\frac{a}{b}$ nhỏ hơn phân số $\frac{c}{d}$ (hay phân số $\frac{c}{d}$ lớn hơn phân số $\frac{a}{b}$)." Tính chất bắc cầu: "nếu $\frac{a}{b} < \frac{c}{d}$ $\mathcal E$ $\frac{c}{d} < \frac{e}{g}$ thì $\frac{a}{b} < \frac{e}{g}$." Thái et al., 2022b, p. 39

5.4 Phép Nhân, Phép Chia Phân Số

5.4.1 Phép nhân phân số

5.4.1.1 Quy tắc nhân 2 phân số.

"Muốn nhân 2 phân số, ta nhân các tử với nhau \mathcal{E} nhân các mẫu với nhau: $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ với $b \neq 0$, $d \neq 0$." – Thái et al., 2022b, p. 40. "Muốn nhân 1 số nguyên với 1 phân số (hoặc nhân 1 phân số với 1 số nguyên), ta nhân số nguyên tới tử của phân số \mathcal{E} giữ nguyên mẫu của phân số đó: $m \cdot \frac{a}{b} = \frac{ma}{b}$, $\frac{a}{b} \cdot n = \frac{an}{b}$ với $b \neq 0$." – Thái et al., 2022b, p. 41

5.4.1.2 Tính chất của phép nhân phân số.

"Giống như phép nhân số tự nhiên, phép nhân phân số cũng có các tính chất: giao hoán, kết hợp, nhân với 1, phân phối của phép nhân đối với phép cộng & phép trừ." – Thái et al., 2022b, p. 41

5.4.2 Phép chia phân số

Định nghĩa 5.4.1 (Phân số nghịch đảo). *Phân số* $\frac{b}{a}$ gọi là phân số nghịch đảo của phân số $\frac{a}{b}$ với $a, b \in \mathbb{Z}^*$.

"Tích của 1 phân số với phân số nghịch đảo của nó thì bằng 1." – Thái et al., 2022b, p. 42. I.e., $\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ba} = 1$, $\forall a, b \in \mathbb{Z}^*$. "Muốn chia 1 phân số cho 1 phân số khác 0, ta nhân số bị chia với phân số nghịch đảo của số chia: $\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$ với $a, b, c, d \in \mathbb{Z}$, $b \neq 0, c \neq 0, d \neq 0$." – Thái et al., 2022b, p. 42.

Remark 5.4.1. $a: \frac{c}{d} = \frac{ad}{c}, \ c \neq 0, d \neq 0. \ \frac{a}{b}: c = \frac{a}{bc}, \ b \neq 0, \ c \neq 0.$

"Thứ tự thực hiện các phép tính với phân số (trong biểu thức không chứa dấu ngoặc hoặc có chứa dấu ngoặc) cũng giống như thứ tự thực hiện các phép tính với số nguyên." – Thái et al., 2022b, p. 42

5.5 Số Thập Phân

5.5.1 Số thập phân

Định nghĩa 5.5.1 (Phân số thập phân, số thập phân). Phân số thập phân là phân số mà mẫu là lũy thừa của 10 \mathcal{E} tử là số nguyên, i.e., $\frac{a}{10^n}$, $a \in \mathbb{Z}$, $n \in \mathbb{N}^1$. Phân số thập phân có thể viết được dưới dạng số thập phân. Số thập phân gồm 2 phần: Phần số nguyên được viết bên trái dấu phẩy, phần thập phân được viết bên phải dấu phẩy.

Remark 5.5.1. Tập hợp các số thập phân $\left\{\frac{a}{10^n}; a \in \mathbb{Z}, n \in \mathbb{N}\right\}$ sẽ chứa tập số tự nhiên \mathbb{N} $(n = 0, a \in \mathbb{N})$, chứa tập số nguyên \mathbb{Z} $(n = 0, a \in \mathbb{Z})$, nhưng tập hợp các số thập phân này là tập con của tập hợp các phân số $\left\{\frac{a}{b}; a, b \in \mathbb{Z}, b \neq 0\right\} = \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

5.5.2 So sánh các số thập phân

5.5.2.1 So sánh 2 số thập phân.

"Cũng như số nguyên, trong 2 số thập phân khác nhau luôn có 1 số nhỏ hơn số kia. Nếu số thập phân a nhỏ hơn số thập phân b thì ta viết a < b hay b > a. Số thập phân lớn hơn 0 được gọi là số thập phân dương. Số thập phân nhỏ hơn 0 được gọi là số thập phân âm. Tính chất bắc cầu: nếu $a < b \ \mathcal{E} \ b < c$ thì a < c." Thái et al., 2022b, p. 45

5.5.2.2 Cách so sánh 2 số thập phân

- So sánh 2 số thập phân khác dấu. "Cũng tương tự như trong tập số nguyên, ta có: Số thập phân âm luôn nhỏ hơn số thập phân dương." Bởi vì: số thập phân âm < 0 < số thập phân dương.
- So sánh 2 số thập phân dương. "Để so sánh 2 số thập phân dương, ta làm như sau:
 - 1. So sánh phần số nguyên của 2 số thập phân dương đó. Số thập phân nào có phần số nguyên lớn hơn thì lớn hơn.
 - 2. Nếu 2 số thập phân dương đó có phần số nguyên bằng nhau thì ta tiếp tục so sánh từng cặp chữ số ở cùng 1 hàng (sau dấu thập phân: "," đối với SGK Việt Nam, "." đối với chuẩn ký hiệu Quốc tế) kể từ trái sang phải cho đến khi xuất hiện cặp chữ số đầu tiên khác nhau. Ở cặp chữ số khác nhau đó, chữ số nào lớn hơn thì số thập phân chứa chữ số đó lớn hơn."
- So sánh 2 số thập phân âm. "Cách so sánh 2 số thập phân âm được thực hiện như cách so sánh 2 số nguyên âm."

5.6 Phép Cộng, Phép Trừ Số Thập Phân

5.6.1 Số đối của số thập phân

"Giống như số nguyên, mỗi số thập phân đều có số đối, sao cho tổng của 2 số đó bằng 0." – Thái et al., 2022b, p. 48

Định nghĩa 5.6.1. Số đối của số thập phân a ký hiệu là -a. Ta có: a + (-a) = 0.

"Số đối của số thập phân -a là a, i.e., -(-a) = a.

 $^{^1 \}mathrm{N\acute{e}u}~n = 0$ thì $10^n = 10^0 = 1$ nên $\frac{a}{10^n} = a.$

5.6.2 Phép cộng, phép trừ số thập phân

Để cộng, trừ 2 số thập phân dương, ta làm như sau:

- 1. Viết số này ở dưới số kia sao cho các chữ số ở cùng hàng đặt thẳng cột với nhau, dấu thập phân đặt thẳng cột với nhau, i.e., cộng phần thập phân với phần thập phân trước, sau đó cộng phần số nguyên với phần số nguyên sau.
- 2. Thực hiện phép cộng, trừ như phép cộng, trừ các số tự nhiên.
- 3. Viết dấu thập phân ở kết quả thẳng cột với các dấu thập phân đã viết ở trên.

5.6.2.1 Cộng 2 số thập phân.

"Quy tắc cộng 2 số thập phân (cùng dấu hoặc khác dấu) được thực hiện giống quy tắc cộng 2 số nguyên." "Giống như phép cộng số nguyên, phép cộng số thập phân cũng có các tính chất: giao hoán, kết hợp, cộng với số 0, cộng với số đối." – Thái et al., 2022b, p. 49

Remark 5.6.1. Với dạng toán "Tính 1 cách hợp lý", nên tự hiểu ngầm là nên/ phải sử dụng các tính chất như giao hoán & tính kết hợp: nhóm lại các số có phần thập phân mà khi công hoặc trừ chúng lại ta sẽ được lũy thừa của 10, để dễ tính toán.

5.6.2.2 Trừ 2 số thập phân.

"Cũng như phép trừ số nguyên, để trừ 2 số thập phân ta cộng số bị trừ với số đối của số trừ." – Thái et al., 2022b, p. 50

5.6.3 Quy tắc dấu ngoặc

"Quy tắc dấu ngoặc đối với số thập phân giống như quy tắc dấu ngoặc đối với số nguyên." – Thái et al., 2022b, p. 50

5.7 Phép Nhân, Phép Chia Số Thập Phân

5.7.1 Phép nhân số thập phân

5.7.1.1 Nhân 2 số thập phân.

"Để nhân 2 số thập phân dương, ta làm như sau:

- 1. Viết thừa số này ở dưới thừa số kia như đối với phép nhân các số tự nhiên.
- 2. Thực hiện phép nhân như nhân các số tự nhiên.
- 3. Đếm xem trong phần thập phân của cả 2 thừa số có bao nhiêu chữ số rồi dùng dấu thập phân, tách ở tích ra bấy nhiêu chữ số kể từ phải sang trái, ta nhận được tích cần tìm." Thái et al., 2022b, p. 52

"Quy tắc nhân 2 số thập phân (cùng dấu hoặc khác dấu) được thực hiện giống như quy tắc nhân 2 số nguyên." – Thái et al., 2022b, p. 52

5.7.1.2 Tính chất của phép nhân số thập phân.

"Giống như phép nhân số nguyên, phép nhân số thập phân cũng có các tính chất: giao hoán, kết hợp, nhân với số 1, phân phối của phép nhân đối với phép cộng $\mathscr E$ phép trừ." – Thái et al., 2022b, p. 53

5.7.2 Phép chia số thập phân

Mẹo. Cho a,b là 2 số thập phân. Thì $\frac{a}{b}=\frac{a10^n}{b10^n},\,\forall n\in\mathbb{N}.$ Chọn $n\in\mathbb{N}$ sao cho mẫu b mất dấu thập phân.

"Để chia 2 số thập phân dương, ta làm như sau:

- 1. Số chia có bao nhiều chữ số sau dấu thập phân thì ta chuyển dấu thập phân ở số bị chia sang bên phải bấy nhiều chữ số (nếu số bị chia không đủ vị trí để chuyển dấu thập phân thì ta điền thêm những chữ số 0 vào bên phải của số đó).
- 2. Bỏ đi dấu thập phân ở số chia, ta nhân được số nguyên dương.
- 3. Đem số nhận được ở Bước 1 chia cho số nguyên dương nhận được ở Bước 2, ta có thương cần tìm." Thái et al., 2022b, p. 54

"Quy tắc chia 2 số thập phân (cùng dấu hoặc khác dấu) được thực hiện giống như quy tắc chia 2 số nguyên." – Thái et al., 2022b, p. 55

Sect. 5.9 Tỷ số. Tỷ Số Phần Trăm

5.8 Ước Lượng & Làm Tròn Số

5.8.1 Làm tròn số nguyên

"Ký hiệu " \approx " (approximation) đọc là: "gần bằng" hoặc "xấp xỉ". Để làm tròn 1 số nguyên (có nhiều chữ số) đến 1 hàng nào đó. Ta làm như sau:

- 1. Nếu chữ số đứng ngay bên phải hàng làm tròn nhỏ hơn 5 thì ta thay lần lượt các chữ số đứng bên phải hàng làm tròn bởi chữ số 0.
- 2. Nếu chữ số đứng ngay bên phải hàng làm tròn ≥ 5 thì ta thay lần lượt các chữ số đứng bên phải hàng làm tròn bởi chữ số 0 rồi cộng thêm 1 vào chữ số của hàng làm tròn." Thái et al., 2022b, p. 58

5.8.2 Làm tròn số thập phân

"Tương tự như làm tròn số nguyên, ta có thể làm tròn 1 số thập phân đến 1 hàng nào đó." – Thái et al., 2022b, p. 58 "Để làm tròn 1 số thập phân đến 1 hàng nào đó, ta thực hiện giống như cách làm tròn 1 số nguyên đến 1 hàng nào đó, sau đó bỏ đi những chữ số 0 ở tận cùng bên phải phần thập phân." – Thái et al., 2022b, p. 59

Remark 5.8.1. Các chữ số 0 ở phần số nguyên có nghĩa & không được phép bỏ, trong khi các chữ số 0 ở tận cùng bên phải phần thấp phân là vô nghĩa &/ có thể bỏ để viết qon số thấp phân đó qon hơn.

5.8.3 Đôi nét về lịch sử số thập phân

"Phân số thập phân xuất hiện khá sớm ở Trung Quốc & Å Rập. Vào thế kỷ XVI, ở châu Âu, người ta bắt đầu sử dụng số thập phân như 1 công cụ tính toán phân số. E.g., trong cuốn sách "Phần mười" vào năm 1585 của Simon Stevin (1548–1620), ông đã chỉ ra rằng cách viết phân số theo hệ thập phân cho phép các phép tính với phân số được thực hiện với thuật toán đơn giản hơn rất nhiều & tương tự với quy tắc tính toán trên số tự nhiên. Cách dùng phân số thập phân của các nhà toán học sau này như Johanne Kepler & John Napier (1550–1617) đã mở đường cho sự thừa nhận chung về số thập phân. Tuy nhiên, cách dùng 1 ký hiệu ngăn cách phần số nguyên & phần thập phân thì lại phức tạp hơn nhiều. Rất nhiều các ký hiệu khác nhau được sử dụng để ngăn cách phần số nguyên & phần thập phân của 1 số thập phân. Vào năm 1792, cuốn sách số học đầu tiên in tại Mỹ đã sử dụng dấu ",", cho mực đích này, nhưng những quyển sách sau đó có xu hướng thích cách sử dụng dấu chấm "." hơn. Ngày nay, hầu như các nước nói tiếng Anh đều dùng dấu chấm "." nhưng phần lớn các quốc gia khác ở châu Âu lại thích dùng dấu phẩy "," hơn. Các tổ chức & các nhà xuất bản quốc tế thường chấp nhận cả dấu chấm & dấu phẩy. Hệ thống máy tính hiện đại cho phép người sử dụng được lựa chọn sự ngăn cách phần số nguyên & phần thập phân của 1 số thập phân bởi dấu "," hay dấu "." (Nguồn: W. P. Berlinghoff and F. Q. Gouvea, Math Through the Ages: A Gentle History for Teachers & Others, Dover Publications 2019)" – Thái et al., 2022b, p. 60

5.9 Tỷ số. Tỷ Số Phần Trăm

"Số Pi được người Babylon cổ đại phát hiện gần 4000 năm trước \mathcal{E} được biểu diễn bằng chữ cái Hy Lạp π từ giữa thế kỷ XVIII. Số π thể hiện mối liên hệ đặc biệt giữa độ dài của 1 đường tròn với độ dài đường kính của đường tròn đó." – Thái et al., 2022b, p. 61

5.9.1 Tỷ số

5.9.1.1 Tỷ số của 2 số.

Định nghĩa 5.9.1. Tỷ số của $a \ \& b, b \neq 0$, là thương trong phép chia số a cho số b, ký hiệu là a : b hoặc $\frac{a}{b}$.

"Nếu tỷ số của $a \,\mathcal{E} \, b$ được viết ở dạng $\frac{a}{b}$ thì ta cũng gọi a là $t \dot{t} \, s \, \delta \, \mathcal{E} \, b$ là $m \, \tilde{a} \, u \, s \, \delta \, .$ " – Thái et al., $\frac{2022b}{b}$, p. 61. "Tỷ số của số $a \, \mathcal{E} \, s \, \delta \, b$ phải được viết theo đúng thứ tự là $\frac{a}{b}$ hoặc a : b.

5.9.1.2 Tỷ số của 2 đại lượng (cùng loại \mathcal{C} cùng đơn vị đo).

Định nghĩa 5.9.2 (Tỷ số của 2 đại lượng cùng loại \mathscr{E} cùng đơn vị đo). Tỷ số của 2 đại lượng (cùng loại \mathscr{E} cùng đơn vị đo) là $t\mathring{y}$ số giữa 2 số đo của 2 đại lượng đó.

"Tỷ số của 2 đại lượng thể hiện độ lớn của đại lượng này so với đại lượng kia." – Thái et al., 2022b, p. 62 "Trong không khí, ánh sáng chuyển động với vận tốc khoảng 300000 km/s, còn âm thanh lan truyền với vận tốc khoảng 343,2 m/s." – Thái et al., 2022b, p. 63

5.9.2 Tỷ số phần trăm

5.9.2.1 Tỷ số phần trăm của 2 số.

Định nghĩa 5.9.3. Tỷ số phần trăm *của a & b là* $\frac{a}{b} \cdot 100\%$.

"Để tính tỷ số phần trăm của $a \, \mathcal{E} \, b$, ta làm như sau:

- 1. Viết tỷ số $\frac{a}{b}$.
- 2. Tính số $\frac{a\cdot 100}{b}$ & viết thêm % vào bên phải số vừa nhận được." Thái et al., $\frac{2022b}{b}$, p. 63

"Có 2 cách tính $\frac{a \cdot 100}{b}$ là:

- Chia a cho b để tìm thương (ở dạng số thập phân) rồi lấy thương đó nhân với 100.
- Nhân a với 100 rồi chia cho b, viết thương nhận được ở dạng số nguyên hoặc số thập phân." Thái et al., 2022b, p. 63

"Khi tỷ số $\frac{a\cdot 100}{b}$ không là số nguyên thì ta thường viết tỷ số đó ở dạng số thập phân có hữu hạn chữ số sau dấu thập phân (hoặc xấp xỉ bằng số thập phân có hữu hạn chữ số sau dấu thập phân). Cách viết về số thập phân như vậy thuận tiện hơn trong thực tiễn." "Khi tính tỷ số phần trăm của $a \,\mathcal{E} b$ mà phải làm tròn số thập phân thì ta làm theo cách thứ 2 đã nêu ở trên: Nhân a với 100 rồi chia cho $b \,\mathcal{E}$ làm tròn số thập phân nhận được." – Thái et al., 2022b, p. 64

5.9.2.2 Tỷ số phần trăm của 2 đại lượng (cùng loại & cùng đơn vị đo).

Định nghĩa 5.9.4 (Tỷ số phần trăm của 2 đại lượng cùng loại \mathscr{C} cùng đơn vị đo). Tỷ số phần trăm của 2 đại lượng (cùng loại \mathscr{C} cùng đơn vị đo) là tỷ số phần trăm của 2 số đo của 2 đại lượng đó.

"Tỷ số phần trăm của đại lượng thứ nhất có số đo (đại lượng) a \mathscr{C} đại lượng thứ 2 có số đo (đại lượng) b là $\frac{a\cdot 100}{b}\%$.

5.9.3 Lịch sử ký hiệu phần trăm

"Trong tieengs Latin (là gốc của nhiều tiếng châu Âu), từ phần trăm viết là per cento. Những người viết tốc ký hay phải dùng từ này, nhưng vì nó dài nên người ta viết tắt cho nhanh. Đầu tiên người ta bỏ "per" đi, chỉ còn "cento". Rồi người ta viết tắt "cento" thành "cto". Rồi khi viết ngoáy thì chữ "t" ở giữa biến thành 1 cái gạch chéo, còn chữ "c" được viết xoáy thành tròn rồi nối vào gạch chéo của chữ "t" ở phía trên. Sau 1 quá trình biến đổi do viết tắt như vậy, per cento dần chuyển thành ký hiệu % mà chúng ta biết đến ngày nay! (Trích từ truyện "Thuyền trưởng đơn vị" của Vladimir Levshin, Tủ sách Sputnik, số 020)" – Thái et al., 2022b, p. 66

5.10 2 Bài Toán về Phân Số

5.10.1 Tìm giá trị phân số của 1 số cho trước

"Muốn tìm giá trị $\frac{m}{n}$ của số a cho trước, ta tính $a \cdot \frac{m}{n}$ $(m \in \mathbb{N}, n \in \mathbb{N}^{\star})$. Giá trị m% của số a là giá trị phân số $\frac{m}{100}$ của số a. Muốn tìm giá trị m% của số a cho trước, ta tính $a \cdot \frac{m}{100}$ $(m \in \mathbb{N}^{\star})$." – Thái et al., 2022b, p. 68

5.10.2 Tìm 1 số biết giá trị 1 phân số của số đó

"Muốn tìm 1 số biết $\frac{m}{n}$ của nó bằng a, ta tính $a:\frac{m}{n}$ $(m,n\in\mathbb{N}^{\star})$. Muốn tìm 1 số biết m% của nó bằng a, ta tính $a:\frac{m}{100}$ $(m\in\mathbb{N}^{\star})$." – Thái et al., 2022b, p. 68

5.11 Hoạt Động Thực Hành & Trải Nghiệm: Chỉ Số Khối Cơ Thể (BMI)

5.11.1 Giới thiêu về chỉ số khối cơ thể

"Chỉ số khối cơ thể thường được biết đến với tên viết tắt BMI theo tên tiếng Anh Body Mass Index, là 1 tỷ số cho phép đánh giá thể trạng của 1 người là gầy, bình thường hay béo. Chỉ số này do nhà khoa học Adolphe Quetelet, người Bĩ, đưa ra năm 1832. Chỉ số khối cơ thể của 1 người được tính theo công thức sau: $BMI = \frac{m}{h^2}$, trong đó m là khối lượng cơ thể tính theo kg, h là chiều cao tính theo m. Chỉ số này thường được làm tròn đến hàng phần mười." – Thái et al., 2022b, p. 73

Xem Thái et al., 2022b, Hình 1, p. 73: bảng đánh giá thể trạng ở trẻ em theo BMI & Thái et al., 2022b, p. 74: bảng đánh giá thể trang ở người lớn theo BMI đối với châu Á – Thái Bình Dương.

5.11.2 Ý nghĩa của BMI trong thực tiễn

"Thông qua chỉ số BMI, ta có thể biết chính xác 1 người đang mắc bệnh béo phì, thừa cân hay suy dinh dưỡng. Từ đó, có các biện pháp tập thể dục, thể thao, thay đổi chế độ dinh dưỡng để có được cơ thể khỏe mạnh." – Thái et al., 2022b, p. 74

Chương 6

Hình Học Phẳng

6.1 Điểm. Đường Thẳng

6.1.1 Điểm

Quy ước. Khi nói 2 điểm mà không nói gì thêm, ta hiểu đó là 2 điểm phân biệt.

Remark 6.1.1. Mỗi hình là tập hợp các điểm. Hình có thể chỉ gồm 1 điểm.

6.1.2 Đường thẳng

Remark 6.1.2 (Phân biệt đường thẳng vs. đoạn thẳng). Đường thẳng không bị giới hạn về 2 phía, trong khi đoạn thẳng bị giới hạn về 2 phía bởi 2 đầu mút của nó.

"Ta dùng vạch thẳng để biểu diễn 1 đường thảng $\mathcal E$ sử dụng những chữ cái in thường a,b,c,\ldots để đặt tên cho đường thẳng." – Thái et al., 2022b, p. 76

6.1.3 Điểm thuộc đường thẳng. Điểm không thuộc đường thẳng

Định nghĩa 6.1.1 (Điểm thuộc đường thẳng, điểm không thuộc đường thẳng). $Diểm\ A$ thuộc đường thwangr d & được ký hiệu là: $A \in d$. $Diểm\ B$ không thuộc đường thẳng d & được ký hiệu là: $B \notin d$.

Remark 6.1.3. Có vô số điểm thuộc 1 đoạn/đường thẳng.

Thật vậy, đoạn thẳng AB có vô số điểm bởi vì: lấy M_1 là trung điểm của AB, lấy M_2 là trung điểm của đoạn AM_1 , lấy M_3 là trung điểm của đoạn AM_2 , etc., tương tự như vậy, thì có vô số lần lấy trung điểm, tương ứng vô hạn điểm.

6.1.4 Đường thẳng đi qua 2 điểm

Theorem 6.1.1. Có 1 & chỉ 1 đường thẳng đi qua 2 điểm A & B (phân biệt).

"Đường thẳng đi qua 2 điểm A, B còn được gọi là đường thẳng AB, hay đường thẳng BA." – Thái et al., 2022b, p. 77

6.1.5 3 Điểm thẳng hàng

Định nghĩa 6.1.2 (3 điểm thẳng hàng, không thẳng hàng). Khi 3 điểm cùng thuộc 1 đường thẳng, chúng được gọi là thẳng hàng. Khi 3 điểm không cùng thuộc bất kỳ đường thẳng nào, chúng được gọi là không thẳng hàng.

Theorem 6.1.2. Trong 3 điểm thẳng hàng, có 1 & chỉ 1 điểm nằm giữa 2 điểm còn lai.

6.2 2 Đường Thẳng Cắt Nhau. 2 Đường Thẳng Song Song

6.2.1 2 Đường thẳng cắt nhau

Định nghĩa 6.2.1 (2 đường thẳng cắt nhau). 2 đường thẳng chỉ có 1 điểm chung gọi là 2 đường thẳng cắt nhau & điểm chung được gọi là giao điểm của 2 đường đó.

Sect. 6.4

6.2.2 2 Đường thẳng song song

Định nghĩa 6.2.2 (2 đường thẳng song song). 2 đường thẳng a \mathcal{E} b không có điểm chung nào được gọi là song song với nhau. Viết a//b hoặc b//a.

Remark 6.2.1. 2 đường thẳng song song thì không có điểm chung. 2 đường thẳng trùng nhau thì không thuộc vào 2 định nghĩa trên.

6.3 Đoạn Thẳng

6.3.1 2 Đoạn thẳng bằng nhau

6.3.1.1 Khái niêm đoan thẳng.

Định nghĩa 6.3.1 (Đoạn thẳng). Đoạn thẳng AB là hình gồm điểm A, điểm B, $\mathscr E$ tất cả các điểm nằm giữa A $\mathscr E$ B. "Đoạn thẳng AB cũng gọi là đoạn thẳng BA." – Thái et al., 2022b, p. 84

6.3.1.2 2 Đoạn thẳng bằng nhau.

"Khi đoan thẳng AB bằng đoan thẳng CD thì ta ký hiệu AB = CD." – Thái et al., 2022b, p. 85

Question 6.3.1. Khái niệm "2 đường thẳng bằng nhau" có nghĩa hay không?

6.3.2 Độ dài đoạn thẳng

6.3.2.1 Do đoan thẳng.

Theorem 6.3.1. Mỗi đoạn thẳng có độ dài là 1 số dương. 2 đoạn thẳng bằng nhau thì có độ dài bằng nhau.

"Độ dài của đoạn thẳng AB cũng được gọi là khoảng cách giữa 2 điểm $A \ \mathcal{E} \ B$." – Thái et al., 2022b, p. 85

6.3.2.2 So sánh 2 đoạn thẳng.

"Ta có thể so sánh 2 đoạn thẳng bằng cách so sánh độ dài của chúng: Nếu độ dài đoạn thẳng AB bằng độ dài đoạn thẳng CD thì ta có AB = CD. Nếu độ dài đoạn thẳng AB lớn hơn độ dài đoạn thẳng CD thì ta có đoạn thẳng AB lớn hơn đoạn thẳng CD \mathcal{E} ký hiệu AB > CD. Nếu độ dài đoạn thẳng AB nhỏ hơn độ dài đoạn thẳng CD thì ta có đoạn thẳng AB nhỏ hơn đọ dài đoạn thẳng AB nhỏ hơn đọan thẳng AB nhỏ hơn đọa thẳng AB nhỏ hơn đọan thẳng AB nhỏ hơn đọa nhỏ hơn đọan thẳng AB nhỏ hơn đọa nhỏ hơn đọa nhỏ hơn đ

6.3.3 Trung điểm của đoan thẳng

Định nghĩa 6.3.2 (Trung điểm của đoạn thẳng). Trung điểm M của đoạn thẳng AB là điểm nằm giữa 2 điểm A, B sao cho MA = MB.

"Trung điểm của đoạn thẳng còn được gọi là điểm chính giữa của đoạn thẳng đó." Cf. điểm chính giữa vs. điểm giữa. "Nếu M là trung điểm của đoạn thẳng AB thì độ dài mỗi đoạn thẳng MA, MB đều bằng 1 nửa độ dài đoạn thẳng AB, i.e., $MA = MB = \frac{1}{2}AB$.

6.3.4 Khi nào thì AM + MB = AB?

"Với 3 điểm phân biệt A, B, M, ta có 3 đoạn thẳng $MA, MB, AB \ \mathscr{E} \ MA + MB \ge AB$.

- Nếu M nằm giữa 2 điểm $A \, \mathcal{E} \, B$ (i.e., $M \in AB$) thì MA + MB = AB. Ngược lại, nếu MA + MB = AB thì điểm M nằm giữa 2 điểm $A \, \mathcal{E} \, B$.
- Nếu M không nằm giữa 2 điểm $A \ \mathcal{E} \ B$ (i.e., $M \notin AB$) thì MA + MB > AB. Ngược lại, nếu MA + MB > AB thì điểm M không nằm giữa 2 điểm $A \ \mathcal{E} \ B$.

6.4 Tia

6.4.1 Tia

Định nghĩa 6.4.1 (Tia). Hình gồm điểm O & 1 phần đường thẳng bị chia ra bởi điểm O được gọi là 1 tia gốc O.

"Tia Ox thường được biểu diễn bằng 1 vạch thẳng có ghi rõ điểm gốc O. Tia Ox không bị giới hạn về phía x." – Thái et al., 2022b, p. 89

Sect. 6.6 Góc

6.4.2 2 Tia đối nhau

Định nghĩa 6.4.2 (2 tia đối nhau). 2 tia chung gốc Ox & Oy tao thành đường thẳng xy được gọi là 2 tia đối nhau.

6.4.3 2 Tia trùng nhau

Đình nghĩa 6.4.3. Lấy điểm A khác O thuộc tia Ox. Tia Ox & tia OA là 2 tia trùng nhau.

"2 tia trùng nhau thì phải có chung điểm gốc." – Thái et al., 2022b, p. 91 "Tia số được dùng sử dụng để biểu diễn các số tự nhiên". "Trong thực tiễn có nhiều hình ảnh liên quan đến tia, e.g., chùm tia laze gợi nên hình ảnh những tia chung gốc." – Thái et al., 2022b, p. 93

6.5 Góc

6.5.1 Khái niệm góc

Định nghĩa 6.5.1 (Góc). Góc là hình gồm 2 tia chung gốc.

Góc xOy (hoặc góc yOx) được ký hiệu là \widehat{xOy} (hoặc \widehat{yOx}). 2 tia $Ox \ \& Oy$ được gọi là $\ 2 \ cạnh$ của góc. Gốc chung O của 2 tia được gọi là $\ dinh$ của góc." – Thái et al., 2022b, p. 94

6.5.2 Điểm nằm trong góc

Khái niệm điểm nằm trong góc xOy hay điểm trong của góc xOy.

6.5.3 Số đo của góc

6.5.3.1 Do góc.

"Thước đo góc có dạng nửa hình tròn \mathcal{E} được chia đều thành 180 phần bằng nhau, mỗi phần ứng với 1°. Dùng thước đo góc để xác định số đo góc xOy:

- 1. Đặt thước đo góc sao cho tâm của thước trùng với đỉnh của góc. Vach 0 của thước nằm trên canh Ox.
- 2. Xác định xem cạnh Oy đi qua vạch chia độ nào thì đó chính là số đo của góc." Thái et al., 2022b, p. 96

Theorem 6.5.1. $M\tilde{o}i \ g\acute{o}c \ c\acute{o} \ 1 \ s\acute{o} \ do.$

"Nếu số đo của góc xOy là n° thì ta ký hiệu $\widehat{xOy} = n^{\circ}$ hoặc $\widehat{yOx} = n^{\circ}$." "Chúng ta chỉ xét các góc có số đo $\leq 180^{\circ}$." – Thái et al., 2022b, p. 96

Remark 6.5.1. "Trong 1 hình có nhiều góc, người ta thường vẽ thêm 1 hay nhiều vòng cung nhỏ nối 2 cạnh của góc đó để dễ thấy góc mà ta đang xét tới. Khi cần phân biệt các góc có chung 1 đỉnh, e.g., chung đỉnh O, ta dùng ký hiệu \hat{O}_1, \hat{O}_2 ." – Thái et al., 2022b, p. 98

6.5.3.2 So sánh 2 góc.

"Ta có thể so sánh 2 góc dựa vào số đo của chúng: Nếu số đo của góc xOy bằng số đo của góc uPv thì góc xOy bằng góc uPv & được ký hiệu là xOy = uPv. Nếu số đo của góc xOy lớn hơn số đo của góc uPv thì góc xOy lớn hơn góc uPv & được ký hiệu là xOy > uPv. Nếu số đo của góc xOy nhỏ hơn số đo của góc uPv thì góc xOy nhỏ hơn góc uPv & được ký hiệu là xOy < uPv." – Thái et al., 2022b, p. 98

6.5.4 Góc vuông, góc nhọn, góc tù, góc bet

Định nghĩa 6.5.2 (Góc vuông, góc nhọn, góc tù, góc bẹt). Góc nhọn la góc có số $do \in (0^{\circ}, 90^{\circ})$. Góc vuông la góc có số do bằng 90° . Góc tù la góc có số $do \in (90^{\circ}, 180^{\circ})$. Góc bẹt la góc có số do bằng 180° .

6.6 Hoạt Động Thực Hành $\mathcal E$ Trải Nghiệm: Sắp Xếp Thành Các Vị Trí Thẳng Hàng

6.6.1 1 Số kiến thức toán học về 3 điểm thẳng hàng

"Khi 3 điểm cùng thuộc 1 đường thẳng ta nói chúng thẳng hàng. Trong 3 điểm thẳng hàng, có 1 \mathcal{E} chỉ 1 điểm nằm giữa 2 điểm còn lại." – Thái et al., 2022b, p. 104

"Những hiểu biết về việc sắp xếp thành các vị trí thẳng hàng góp phần giải thích 1 số hiện tượng trong khoa học.

Example 6.6.1 (Hiện tượng thiên văn Nhật thực & Nguyệt thực). Nhật thực là 1 hiện tượng thiên văn xảy ra khi Mặt Trời, Mặt Trăng, & Trái Đất thẳng hàng (hoặc gần như thẳng hàng với nhau), với Mặt Trăng ở giữa. Nhìn từ Trái Đất, lúc này Mặt Trời bị Mặt Trăng che khuất & bóng Mặt Trăng phủ lên Trái Đất.

Nguyệt thực là 1 hiện tượng thiên văn khi Mặt Trời, Trái Đất, & Mặt Trăng thẳng hàng (hoặc gần như thẳng hàng với nhau), với Trái Đất ở giữa. Nguyệt thực xảy ra khi Mặt Trăng đi vào vùng bóng tối của Trái Đất. Lúc này ánh trăng sẽ bị mờ đi & Mặt Trăng sẽ có màu đỏ đồng hoặc màu cam sẫm." – Thái et al., 2022b, p. 105

"Việc sắp xếp thành các vị trí thẳng hàng giữ vai trò quan trọng trong nghệ thuật, kiến trúc." – Thái et al., 2022b, p. 106

Tài liệu tham khảo

[NQBH/elementary math] Nguyễn Quản Bá Hồng. Some Topics in Elementary Mathematics: Problems, Theories, Applications, & Bridges to Advanced Mathematics. Mar 2022—now.

Tài liệu tham khảo

Bình, Vũ Hữu (2012). Nâng Cao & Phát Triển Toán 6, tập 1. Tái bản lần thứ 10. Nhà Xuất Bản Giáo Dục Việt Nam, p. 175. Halmos, Paul R. (1960). Naive set theory. The University Series in Undergraduate Mathematics. D. Van Nostrand Co., Princeton, N.J.-Toronto-London-New York, pp. vii+104.

- (1974). Naive set theory. Undergraduate Texts in Mathematics. Reprint of the 1960 edition. Springer-Verlag, New York-Heidelberg, pp. vii+104.
- Kaplansky, Irving (1972). Set theory and metric spaces. Allyn and Bacon Series in Advanced Mathematics. Allyn and Bacon, Inc., Boston, Mass., pp. xii+140.
- (1977). Set theory and metric spaces. Second. Chelsea Publishing Co., New York, xii+140 pp. ISBN 0-8284-0298-1.
- Tao, Terence (2006). Solving mathematical problems. A personal perspective. Oxford University Press, Oxford, pp. xii+103. ISBN: 978-0-19-920560-8; 0-19-920560-4.
- Thái, Đỗ Đức et al. (2022a). Toán 6, tập 1. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, p. 128.
- (2022b). Toán 6, tập 2. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, p. 108.