Internal absoluteness

Philipp Schlicht, University of Bristol

23 September 2019

Partially funded by the EU's Horizon 2020 programme, grant No 794020

Overview

- ▶ We study internal absoluteness (IA) between M[g] and V, where $M \prec H_{\theta}$ and $g \in V$ is generic over M.
- ▶ Here we only consider projective absoluteness.
- ▶ The story is that these or similar principles were used in proofs of Steel and Woodin (see Steel 2008) for the tree production lemma
- ▶ Our motivation:

We re-discovered such principles for an application (2018) to selectors for ideals. and a connection with universally Baire sets.

▶ Our aims:

Fix a class of forcings.

- ▶ (How) can IA be characterized via descriptive set theory?
- ▶ How is IA related to other notions of absoluteness?
- What is the consistency strength of IA?
- ▶ This is recent work in progress with Sandra Müller.

Forcing \longleftrightarrow descriptive set theory

Zapletal (2008): TFAE for forcings of the form $\mathbb{P} = Borel/I$, where I is a σ -ideal

Forcing	Descriptive set theory
\mathbb{P} is proper	For every countable transitive $M \prec H_{\theta}$
	and every $A \in \mathbb{P} \cap M$, the set of
	\mathbb{P} -generic reals over M in A is I -positive
\mathbb{P} is ω^{ω} -bounding	Every Borel <i>I</i> -positive set contains
	a compact <i>I</i> -positive subset,
	and continuous reading of names

The second equivalence assumes that \mathbb{P} is proper. Zapletal proved a large number of such characterisations.

Forcing \longleftrightarrow descriptive set theory

Ikegami (2010): TFAE for proper tree forcings \mathbb{P}

Forcing	Descriptive set theory
1-step Σ_3^1 -P-absoluteness	\mathbb{P} -measurability of $\mathbf{\Delta}_2^1$ sets
1-step Σ_4^1 - \mathbb{P} -absoluteness	\mathbb{P} -measurability of Δ_3^1 sets

Restrictions:

- 1. The second equivalence assumes that every real has a sharp, but there's no inner model with a Woodin cardinal.
- 2. There's no full equivalence in ZFC: projective 1-step Cohen absoluteness doesn't imply that all projective sets have the Baire property.

Forcing classes

We consider the classes:

- 1. All forcings
- 2. Proper forcings
- 3. Simply definable proper forcings on the reals: forcings of the form Borel/I for σ -ideals I; tree forcings
- 4. Simply definable ccc forcings on the reals

1-step and 2-step absoluteness

Suppose that \mathcal{F} is a class of forcings and Λ a class of formulas $\varphi(.,x)$ (where x ranges over certain parameters).

Definition (1-step absoluteness)

1-step \mathcal{F} - Λ -absoluteness means: if $\mathbb{P} \in \mathcal{F}$ and G is \mathbb{P} -generic over V, then $V \prec_{\Lambda} V[G]$ holds.

Definition (2-step absoluteness)

2-step \mathcal{F} - Λ -absoluteness means: If $\mathbb{P} \in \mathcal{F}$ and G, H are \mathbb{P} -generic filters over V with $V[G] \subset V[H]$, then $V[G] \prec_{\Lambda} V[H]$ holds.

If $\mathcal F$ contains the trivial forcing, then 2-step implies 1-step absoluteness.

Why 2-step absoluteness?

Consider the class of all forcings.

Theorem (Martin, Solovay, Woodin)

2-step Σ_3^1 -absoluteness \iff " $\forall X X^\#$ exists", where X denotes sets of ordinals.

Theorem (Feng, Magidor, Woodin 1992)

1-step Σ_3^1 -absoluteness is equiconsistent with the existence of a regular cardinal κ with $H_{\kappa} \prec_{\Sigma_2} V$ (weaker than a Mahlo cardinal).

Here 2-step-absoluteness is strictly stronger.

This is not always the case:

Theorem (Steel, Woodin)

The first-order theory $\operatorname{Th}(L(\mathbb{R}))$ cannot be changed by forcing $\iff \operatorname{AD}^{L(\mathbb{R})}$ holds in all generic extensions, assuming Ord is measurable in an outer model.

The proof shows that 1-step and 2-step absoluteness are equivalent for formulas of the form $\varphi^{L(\mathbb{R})}$ with real parameters.

Internal absoluteness

Definition (Internal absoluteness)

Let $\mathcal F$ be a class of forcings, Λ a class of formulas and θ an uncountable regular cardinal.

1. For any countable $M \prec H_{\theta}$, $\mathsf{IA}^{M}_{\mathcal{F},\Lambda}$ denotes the statement:

$$M[g] \prec_{\Lambda} H_{\theta}$$

holds for all $\mathbb{P} \in \mathcal{F} \cap \mathrm{Def}(M)$ and all \mathbb{P} -generic filters $g \in V$ over M.

2. $\mathsf{IA}^{\theta}_{\mathcal{F},\Lambda} :\iff \mathsf{IA}^{M}_{\mathcal{F},\Lambda} \text{ holds for club many } M \in [H_{\theta}]^{\omega}.$

We write IA if Λ is the set of projective formulas with real parameters, \mathcal{F} is the class of all forcings, and $\mathsf{IA}^{\theta}_{\mathcal{F},\Lambda}$ holds for all regular θ with H_{θ} sufficiently elementary in V.

IA implies 1-step and 2-step absoluteness:

Separating internal from 1-step and 2-step absoluteness

Fact

 $\mathsf{IA}_\mathbb{C}$ implies the Baire property for all projective sets.

Proof.

Take a countable $M \prec H_{\theta}$. Note that the set of Cohen reals x over M is comeager.

Let $\varphi(x)$ define a projective set.

The set of Cohen conditions p with $p \Vdash^{M}_{\mathbb{C}} \varphi(\dot{x})$, where \dot{x} is a name for the Cohen real, defines an open set witnessing the Baire property.

Projective 1-step and 2-step absoluteness hold in $L^{Add(\omega,\omega_1)}$.

But not all projective sets have the Baire property in this model, so internal Cohen absoluteness $\mathsf{IA}_{\mathbb{C}}$ fails there.

Uniformization up to meager

We now consider Cohen forcing.

Proposition (Müller, S.)

TFAE:

- 1. $\mathsf{IA}_\mathbb{C}$
- 2. Every projective relation can be uniformized on a comeager set.

Shelah (1984) proved the consistency of 2. relative to ZFC.

Proof sketch.

 $1 \Rightarrow 2$: Assume $\mathsf{IA}_{\mathbb{C}}$. Let $R = \{(x,y) \mid \varphi(x,y,z)\}$.

Let $M \prec H_{\theta}$ with $z \in M$ and $\sigma \in M$ be a name for the Cohen real (all names are nice).

Let $\tau \in M$ with $1 \Vdash \exists y \ \varphi(\sigma, y, z) \Rightarrow \varphi(\sigma, \tau, z)$.

 $\mathsf{IA}_{\mathbb{C}} \text{ implies } M[x] \models \varphi(x,\tau^x,z) \Longleftrightarrow V \models \varphi(x,\tau^x,z) \text{ for Cohen reals } x \in V \text{ over } M.$

The continuous function $x \mapsto \tau^x$ uniformizes R on the set of Cohen reals over M. \square

Uniformization up to meager

Proposition (Müller, S.)

TFAE:

- 1. IA_ℂ
- 2. Every projective relation can be uniformized on a comeager set.

Proof sketch.

 $2 \Rightarrow 1$: Take a Σ_{n+1}^1 -formula $\exists y \ \varphi(x,y)$, where $n \geq 1$.

For a nice name σ and any $i \in \omega$, let $A_{\sigma} = \{(x, y) \mid \varphi(\sigma^x, y)\}.$

Let $M \prec H_{\theta}$.

Claim: For any Cohen real $x \in V$ over M, $\exists y \ \varphi(\sigma^x, y)$ is downwards absolute from V to M[x].

To see this, let f_{σ} be a uniformization of A_{σ} up to meager. Since the existence of f_{σ} is projective, we can take f_{σ} to be projectively defined in M.

Suppose that $\exists y \ \varphi(u, y)$ holds in V.

Recall that x is Cohen generic over M iff $x \in A$ for every comeager Borel set with a code in M. So $x \in \mathsf{dom}(f_\sigma)$ and $f_\sigma(x) \in M[x]$.

Forcings of the form Borel/I

Let I be a σ -ideal on a Polish space X. A binary relation R on X is called total if $\operatorname{proj}(R) = X$.

Definition (Uniformization and regularity)

- 1. $U_I :\iff$ If R is a projective total relation on X, then for any Borel set $A \notin I$, $R \upharpoonright A$ has a projective subfunction with domain $B \notin I$.
- 2. $R_I :\iff$ If A is a projective set and $B \notin I$ is a Borel set, then there is some Borel set $C \notin I$ with $C \subseteq B$ and either $C \cap A = \emptyset$ or $C \subseteq A$.

Clearly $U_I \Longrightarrow R_I$.

Why don't we uniformize everywhere except for a set in I? This would be much stronger.

Forcings of the form Borel/I

Theorem (Müller, S.)

The following statements are equivalent for proper forcings of the form $\mathbb{P} = Borel/I$:

- 1. $IA_{\mathbb{P}}$
- 2. 1-step \mathbb{P} -absoluteness holds and $R_{\it I}$ holds for all projective sets.
- 3. U_I

Forcing			Descriptive set theory
$IA_\mathbb{P}$			U_I for projective sets
1-step \mathbb{P} -absoluteness	$\not\Longrightarrow$	← ?	R_I for projective sets

We have seen 1. \Leftrightarrow 3. for Cohen forcing. 1. \Rightarrow 2. is clear.

Consequences of internal Cohen absoluteness

Fact (Müller, S.)

$IA_{\mathbb{C}}$ implies:

- 1. 1-step and 2-step Cohen absoluteness
- 2. The Baire property for projective sets
- 3. For every real x, the set of Cohen reals over L[x] is comeager
- 4. For every real x, there is a real dominating L[x]
- 5. Projective uniformization up to meager

Obtaining internal absoluteness

 $\mathsf{IA}_{\mathbb{C}}$ is consistent relative to ZFC, by the consistency of projective uniformization up to meager (Shelah 1984).

In many cases, $\mathsf{IA}_\mathbb{P}$ follows directly from large cardinals:

Proposition (Müller, S.)

PD implies that any sufficiently absolute Axiom A forcing of the form $\mathbb{P} = Borel/I$ satisfies $\mathsf{IA}_{\mathbb{P}}$.

This is based on work of Fabiana Castiblanco.

The connection with universally Baire sets

Let $A \subseteq \omega^{\omega}$.

Definition (Feng, Magidor, Woodin)

A is universally Baire if for every continuous $f: X \to \omega^{\omega}$, $f^{-1}(A)$ has the Baire property.

A is absolutely complemented if there are trees $S,\,T$ with A=p[S] such that

$$\omega^{\omega} = p[S] \cup p[T]$$

holds in all generic extensions.

Feng, Magidor and Woodin proved the equivalence of these notions:

Forcing	Descriptive set theory
A is absolutely complemented	A is universally Baire

The connection with universally Baire sets

Definition

We call a tree T on $\omega \times \lambda$ absolute if for all regular θ such that H_{θ} is sufficiently elementary in V, there is a club of $M \in [H_{\theta}]^{\omega}$ such that for all generic extensions $M[g] \subseteq V$:

$$p[T]^{M[g]} = p[T] \cap M[g].$$

Definition

We call a formula $\varphi(x)$ \mathbb{P} -treeable if there is an absolute tree T on $\omega \times \lambda$, for some λ , such that

$$p[T] = \{ x \in {}^{\omega}\omega \mid \varphi(x) \}$$

holds in every \mathbb{P} -generic extension.

Moreover, treeable means \mathbb{P} -treeable for all forcings \mathbb{P} .

Fact

Every treeable formula is internally absolute.

From internally absolute to treeable

Proposition (essentially Steel or Woodin)

If $\varphi(x)$ is internally absolute, then $\varphi(x)$ is treeable.

Proof sketch.

The tree for $\varphi(x)$ searches for

- 1. A countable transitive model M of ZFC⁻
- 2. An elementary $j: M \to H_{\theta}$
- 3. A generic filter g over M with $x \in M[g]$ and $M[g] \models \varphi(x)$

Internal projective absoluteness \iff Projective treeability

Internally absolute and universally Baire

The following are equivalent for a formula $\varphi(x)$:

- 1. φ is internally absolute
- 2. $\{x\mid \varphi(x)\}$ is universally Baire, with a tree projecting to $\{x\mid \varphi(x)\}$ in all generic extensions.

All projective sets are universally Baire

Absoluteness from absorption

How does one prove internal absoluteness?

Next is a well-known property that is used in several proofs of absoluteness.

Definition

Let M be an inner model and κ a cardinal. (M, V) has the $<\kappa$ -absorption property for a forcing $\mathbb P$ if:

For any \mathbb{P} -generic extension V[H] of V and any real $x \in V[H]$, there exist:

- 1. a forcing $\mathbb{Q} \in M$ with $|\mathbb{Q}|^M < \kappa$ and
- 2. a \mathbb{Q} -generic filter $I \in V[H]$ over M

with $x \in M[I]$.

For instance, Schindler (2001) used this property to obtain $L(\mathbb{R})$ -absoluteness for proper forcings from a remarkable cardinal.

Internal absoluteness from absorption

Lemma (Müller, S.)

Suppose that κ is inaccessible and G is $\operatorname{Col}(\omega, <\kappa)$ -generic for V. Suppose that (V, V[G]) has the $<\kappa$ -absorption property for \mathbb{P} .

Then every $L(\mathbb{R})$ -formula with real and ordinal parameters is \mathbb{P} -treeable.

The proof combines previous arguments for absoluteness with the construction of a tree projecting to $\{x \mid \varphi(x)\}$.

Thus one can, in many cases, prove internal absoluteness in a similar way as 1-step absoluteness.

Some open questions

For Cohen forcing, our next goals are:

Question

- ▶ Does IA_C fail in Shelah's "first" model of the Baire property for all projective sets?
- ► For Cohen forcing, does 2-step imply 1-step projective absoluteness?

Similar questions appear for forcings of the form Borel/I.

For the class of all forcings, the following are long-standing open questions:

Question (Feng, Magidor, Woodin, Wilson)

- ► If every projective set is universally Baire, does internal projective absoluteness hold?
- ▶ If every projective set is universally Baire, does 1-step projective absoluteness hold? Does the converse implication hold?

Literature

Saharon Shelah. "Can you take Solovay's inaccessible away?." Israel Journal of mathematics 48.1 (1984): 1-47.

John Steel. The derived model theorem, 2008

Jindrich Zapletal. Forcing idealized. Vol. 174. Cambridge: Cambridge University Press, 2008.

Daisuke Ikegami. "Forcing absoluteness and regularity properties." Annals of Pure and Applied Logic 161.7 (2010): 879-894.

Sandra Müller, Philipp Schlicht. Internal absoluteness, in preparation

Thank you for listening!