Context Free Languages

- Context Free Grammars
- Parsing Arithmetic Expression
- Removing λ-productions
- Normal forms

Context Free Grammar (CFG)

- Definition: A CFG, G, is a PSG G=(N, T, P, S) with productions of the form A → β, A ∈ N, β ∈ (NUT)*.
- CFGs are used in defining the syntax of programming languages and in parsing arithmetic expressions.
- A language generated from CFG is called Context Free Language (CFL).
- Ex.

a)
$$S \rightarrow aB$$
 b) $S \rightarrow aB|A$

B \rightarrow bA|b A \rightarrow aA|a|CBA

A \rightarrow a B \rightarrow λ

C \rightarrow c

CFG: cont'd

- Let G be a CFG, then x € L(G) iff S → x in zero or more steps over G.
- x E L(G) can as well be obtained from a derivation tree or parse tree. The root of the tree is S and x is the collection of leaves from left to right.
- Left most derivation: employs the reduction of the left most non-terminal
- Right most derivation: employs the reduction of the right most non-terminal

CFG: cont'd

- If a derivation of a string x has two different left most derivations, then the grammar is said to be ambiguous. Otherwise unambiguous.
 - (i.e. a grammar is ambiguous if it can produce more than one parse tree for a particular sentence.
- Ex.
 - 1. G1 = (N, T, P, S) with productions:
 - $S \rightarrow AB$
 - $A \rightarrow aA|a$
 - $B \rightarrow bB|b$
 - let x = aaabbb
 - a) find a left most and right most derivations for x
 - b) draw the parse tree for x

CFG: cont'd

- 2. G2 = (N, T, P, S) with productions:
 - S → SbS|ScS|a
 - let $x = abaca \in L(G2)$
- a) find a left most and right most derivations for x
 - b) draw the parse tree for x
- 3. Is G1 ambiguous? Is G2?

Parsing Arithmetic Expression

Consider the following grammar:

$$E \rightarrow T \mid E + T \mid E - T$$

 $T \rightarrow F \mid T * F \mid T/F$
 $F \rightarrow a \mid b \mid c \mid (E)$

Draw parse trees for

Removing λ-productions

- Let G be a CFG and A → α, A ∈ N
 - 1. If $\alpha = \lambda$, then A $\rightarrow \alpha$ is a λ -production
 - 2. If $\alpha \neq \lambda$ for all productions, then G is λ -free
 - If A => λ in zero or more steps, then A is called nullable or λ-generating non-terminal
- Ex. Let G=(N, T, P, S) be a CFG with productions:

 $S \rightarrow ABaC$

 $A \rightarrow B$

 $B \rightarrow b | \lambda$

 $C \rightarrow c | \lambda$

Find the non-terminals which are nullable.

Removing λ -productions: cont'd

- Let G=(N, T, P, S) be a CFG with λ-productions. Construct G'=(N, T, P', S), a λ-free CFG as follows:
 - 1. Put all non λ -productions of P in P'
 - 2. For all nullable non-terminals, put productions in P' by removing one or more nullable non-terminals on the right side productions.

```
Thus, L(G) \setminus \{\lambda\} = L(G')
```

Ex1: Construct G' for the previous example.

Ex2: Construct G' for a grammar G with productions:

 $S \rightarrow aS \mid AB$

 $A \rightarrow \lambda$

 $B \rightarrow \lambda$

 $D \rightarrow b$

Removing λ -productions: cont'd

- Theorem: For any CFG G, there exists a CFG G' with λ-free productions such that L(G) \{λ} = L(G').
- A production A → α is called relevant/useful iff there exists a derivation of some xEL(G) that uses the production. Otherwise, it's called irrelevant/useless.

Ex. S
$$\rightarrow$$
 aSb | A | λ A \rightarrow aA | λ

Normal Forms

- When the productions in a CFG G satisfy certain restrictions, G is said to be in a normal form.
- We'll see two normal forms: CNF and GNF
 - 1. Chomsky Normal Form (CNF)
- Let G=(N, T, P, S) be a CFG and A → α be a production of G.
 - 1. If $\alpha = B$, B in N, then A $\rightarrow \alpha$ is called a **Unit** production
 - 2. If $|\alpha|>1$ and there exists a terminal substring of α, then A \rightarrow α is called a **Secondary** production

10

If α contains more than two non-terminals, then $A \rightarrow \alpha$ is called a **Tertiary** production

Chomsky Normal Form (CNF)

Definition: Let G = (N, T, P, S) be a λ-free CFG, then G is said to be in CNF if all its productions are of the form:

 $A \rightarrow BC$ where A, B, C \in N

OR

 $A \rightarrow a, a \in T, A \in N$

Ex. G with productions

 $S \rightarrow AB$

 $A \rightarrow a$

 $B \rightarrow b$

 Theorem: Any λ-free CFL can be generated by a CFG in CNF.

proof:

Let G = (N, T, P, S) be a λ -free grammar such that L = L(G). Construct a grammar G which is in CNF.

Steps:

- 1. Replace all Unit productions as follows:
 - For any A ∈ N on the LHS of the Unit production, denote U(A) and non-Unit productions of A by N(A)
 - For each A ∈ N and U(A) ≠ Ø replace U(A) by
 {A → α | A=>B in one or more steps, and B→α ∈ N(B)}

- Replace all Secondary productions as follows: For any a ∈ T, a substring of a Secondary production, replace a by A_a where A_a is a new non-terminal and A_a→a.
- Replace all Tertiary productions as follows: If $A \rightarrow B_1B_2...B_m$, m>2, then replace the production by:

$$A \rightarrow B_1B_1'$$

$$B_1' \rightarrow B_2B_2'$$

$$B_2' \rightarrow B_3B_3'$$

. . .

 B_{m-2} \rightarrow $B_{m-1}B_m$, where B_1 , ..., B_{m-2} are all unique new non-terminals that do not appear in any other production.

- Ex. Convert the following grammars to CNF
 - 1. Let G be a CFG with productions:
 - $S \rightarrow A \mid ABA$
 - $A \rightarrow aA \mid a \mid B$
 - $B \rightarrow bB \mid b$
 - 2. Let G be a CFG with productions:
 - $S \rightarrow aAD$
 - $A \rightarrow aB \mid bAB$
 - $B \rightarrow b$
 - $D \rightarrow d$

Identification of non-CFLs

 Pumping lemma for CFLs (Reading assignment)

Greibach Normal Form (GNF)

Let G=(N, T, P, S) be a λ-free CFG, then if all the productions of G are of the form
 A → aα, A ∈ N, a ∈ T, α ∈ N*
 then G is said to be in GNF

■ Theorem G1: If A \rightarrow α₁Bα₂ is a production in a CFG G and B \rightarrow β₁|β₂|β₃|...|β_k are all productions with B on the LHS, then

 $A \rightarrow \alpha_1 B \alpha_2$ can be replaced by

A $\rightarrow \alpha_1 \beta_1 \alpha_2 |\alpha_1 \beta_2 \alpha_2| \dots |\alpha_1 \beta_k \alpha_2$ without affecting L(G)

without affecting L(G).

■ Theorem G2: If in a CFG there is a production A \rightarrow Aα₁ | Aα₂ | ... | Aα_n | β₁|β₂|...|β_m, such a production is called **left recursive**, and A \rightarrow β₁|β₂|β₃|...|β_m are the remaining productions with A on the LHS.

Then an equivalent grammar can be constructed by introducing a new non-terminal, A', and replacing all these productions by:

 $A \rightarrow \beta_1 |\beta_2|\beta_3|...|\beta_m| \beta_1 A'| \beta_2 A'|...| \beta_m A'$ $A' \rightarrow \alpha_1 |\alpha_2|...| \alpha_n |\alpha_1 A'| \alpha_2 A'|...| \alpha_n A'$

17

Theorem GNF: Any λ-free CFG G can be converted into a grammar in GNF.

Proof:

Let G be a λ-free CFG. To convert G into GNF use the steps below:

- 1. Convert G into CNF, G'
- Rename the non-terminals in G' as

$$A_1, A_2, ..., A_m (m>=1)$$

3. Convert all the productions into

$$A_i \rightarrow a\alpha \text{ or } A_i \rightarrow A_j\alpha \text{ with } j > i$$

To convert to the form $A_i \rightarrow A_i \alpha$ with j > i, do the following:

Substitute for A_i according to Theorem G1.

If there exist left recursive productions with A_i on the LHS, then introduce a new non-terminal A_i' and apply Theorem G2.

- 4. After the 3rd step, the productions will be of the form
 - i. $A_i \rightarrow A_j \alpha$, j > i, $\alpha \in (NUN')^*$ where N' stands for the new non-terminals A_i introduced.
 - ii. A_i → aα, a ∈ T, α∈(NUN')* or
 - iii. $A_i' \rightarrow x\alpha$, $x \in (NUT)$, $\alpha \in (NUN')^*$
 - Replace (i) by using Theorem G1
 - (iii) by using Theorem G2

Ex. Convert to GNF

1. Let G be with productions

$$S \rightarrow AB$$

$$A \rightarrow BS \mid b$$

$$B \rightarrow SA \mid a$$

2. Let G be with productions

$$A_1 \rightarrow A_2 A_2 \mid a$$

$$A_2 \rightarrow A_1 A_2 \mid b$$

Closure Properties of CFGs

- Theorem: CFGs are closed under:
 - a) Union
 - b) Concatenation
 - c) Kleen star(*)