Midterm II Solution

- 1. True / False 三分,解釋三分。
 - a. Ans: True

$$a, b, c \in X$$

if a(R∩S)b 且 b(R∩S)c

- \rightarrow aRb, aSb, bRc, bSc
- → ∵R, S is transitive
- → aRc, aSc
- \rightarrow a(R \cap S)c
- b. Ans: False

(the number of different set,代表a,b,c在集合中三者不論順序,EX:a,b,c=2,5,3和 a,b,c=5,2,3是一樣的.否則也不會有書上習題中的答案41,而是考慮順序的221,所以,當a,b>=1,c>1時,和a,b,c>=1答案是一樣的,因為必有一個數字>1)

$$S(5,1) + S(5,2) + S(5,3) = 1+15+25 = 41 \neq 35$$

c. Ans : False

(A*)+=A*(至少有一個A*還是A*)

d. Ans:True

Equivalence = reflexive + symmetric + transitive

設 a-b 為偶數

reflexive: a-a 為偶數

symmetric: b-a 為偶數

transitive:設 b-c 為偶數 → a-c 為偶數

e. Ans:True

$$\sum_{i=1}^{4} S(4, i) = 1 + 7 + 6 + 1 = 15$$

abcd

abc|d abd|c acd|b bcd|a

ab|cd ac|bd ad|bc

ab|c|d ac|b|d ad|b|c bc|a|d bd|a|c cd|a|b

a|b|c|d

- 2.
- 思路合理即得滿分,計算錯誤每處扣 1 分,
- 第一題 (4分)

令 S 中非空集合 A 的 element 和為 S_a ,在 subset 最多有 7 個 element 的情況下,選擇數有 147 個 (1 <= S_a <= 18+19+20+21+22+23+24=147), nonempty subset 有 2^7 -1 = 127 個。

因 pigeonholes 數過多,進一步假設 subset 最多只能有 6 個 element, pigeonholes=19 + ... + 24=129, pigeons=127 - 1=126。

因 pigeonholes 數仍大於 pigeons 數,再假設 subset 最多有 5 個 element, pigeonholes=20+ ... +24=110, pigeons =126 - 7=119, 可得 pigeons = 119 > pigeonholes = 110, 根據鴿籠原理可知必定會出現重複。

● 第二題 (4 分, 少寫一個情形扣兩分)

五個人中每人可有 0 至 4 名朋友,但 0 與 4 不能共存 (不可能同時有人沒朋友且有人跟所有人皆是朋友)。若大家都有朋友的情況下,選擇數為 {1}, {2}, {3}, {4}。若有人沒朋友的情況下,選擇數為 {0}, {1}, {2}, {3}。兩種情形下的選擇數(鴿籠)皆為 4 並小於 5 (鴿子數),根據鴿籠原理得證。

● 第三題 (送 4 分,根據完整度額外加分,至多加 4 分)

S 為 1 至 2n 的數組成的集合,則對於奇數 a=2m-1 (m=1, ...,n),令 C_a 由 $x_i=2^i\times a$ (for some i that makes x_i belong to S) 組成,則我們可將原集合 S 分成 C1, C3, ...,C2n-1 個子類。因為是從 S 中取出 N+1 個數且只有 N 個子類 C,根據鴿籠原理,我們必定會重複挑到某個 C 中的數,令其中較大者為 a ,較小者為 b ,則可滿足 $a/b=2^k$

- 3.
- (a) 4 pts, n=7
- \star (1 pt) reflexive : $2^{(n(n-1))} = 2^{42}$
- \star (1 pt) reflexive and symmetric : $2^{((n(n-1))/2)}$
- \star (1 pt) and transitive : Σ S(7,i)
- ★ (1 pt) 計算出 ∑ S = 877
- ★ Ans: 2^21 877
- (b) 4 pts, n=7
- \star (2 pts) antisymmetric : (2^n)*(3^((n(n-1))/2))
- \star (2 pts) antisymmetric but not reflexive : ((2^n)-1)*(3^((n(n-1))/2))
- \star Ans: $((2^7)-1)^*(3^21) = 127^*3^21$
- *如果只有寫3^21則代表所有(a,a)都沒取,這是asymmetric的情況,但這題其實只要一個(a,a)沒取到就不算是reflexive了! => 給你1分

	1	2	3	4	5	6	7
1							
2							
3							
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1	63	301	350	140	21	1

877

4.

(a)

- (b) maximun element p^2q , pq^2 , no greatest element
- (c) glb = p, $lub = p^2q$ (glb: greatest lower bound, lub: lowest upper bound)

評分標準:

(a)

- 1、不是 Hasse diagram (0分)
- 2、多畫 p^2q^2 (3分)
- 3、少畫 1 (4分)

(b)

(c)

- 1、對一個(2分)
- 1、對一個(1分)
- 2、對二個(3分)
- 2、對二個(2分)

5. (a) (3分) 6 * 7⁴⁸ 除了f(a,b)有6種可能外,其他皆有7種可能。

	а	b	С	d	е	f	g
а	7	6	7	7	7	7	7
b	7	7	7	7	7	7	7
С	7	7	7	7	7	7	7
d	7	7	7	7	7	7	7
е	7	7	7	7	7	7	7
f	7	7	7	7	7	7	7
g	7	7	7	7	7	7	7

(b) (4分) 5 * 7³⁵

a,b不可能為identity ,只有{c,d,e,f,g} 可能為identity ,因此有5種。若有存在一個identity,則其他非identity的項皆有7種可能。 假設g為identity:

	а	b	С	d	е	f	g
а	7	С	7	7	7	7	а
b	7	7	7	7	7	7	b
С	7	7	7	7	7	7	С
d	7	7	7	7	7	7	d
е	7	7	7	7	7	7	е
f	7	7	7	7	7	7	f
g	а	b	С	d	е	f	g

(c) (3分) 5 * 7²⁰

若有存在一個identity, 則其他非在identity的項皆有7種可能。

考慮交換性, a @ b = b @ a ,因此滿足對稱的性質, 但同時滿足前一題的 f(a,b) = c and exist an identity 。 假設g為identity : :

	а	b	С	d	е	f	g
а	7	С	7	7	7	7	а
b		7	7	7	7	7	b
С			7	7	7	7	С
d				7	7	7	d
е					7	7	е
f						7	f
g	а	b	С	d	е	f	g

6.

錯一小題扣3分,<mark>均要有解釋</mark>,解釋邏輯通順即可 假設R1 = {(1,1), (1,2), (2,1), (2,2), (3,3)}, R2 = {(1,1), (2,2), (2,3), (3,2), (3,3)}

- (a) $R1 \cup R2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (2,3), (3,2)\}$: no transitive
- (b) R1∩R2={(1,1), (2,2), (3,3)}: transitive, symmetric, reflexive
- (c) $(R1 \cup R2)$ - $(R1 \cap R2)$ = $\{(1,2), (2,1), (2,3), (3,2)\}$: no transitive, symmetric, no reflexive

7. 共8分, 錯一個 state 扣1分

- (3 分) 1-equivalent: {s1, s2, s3, s4, s5}, {s6}, {s7}
- (3 分) 2-equivalent: {s1}, {s2, s3}, {s4}, {s5}, {s6}, {s7}
- (2 分) 3~k-equivalent: {s1}, {s2}, {s3}, {s4}, {s5}, {s6}, {s7}

State	v		ı	v
	0	1	0	1
s_1	S ₆	S ₃	0	0
s_2	s_3	\mathbf{s}_1	0	0
S ₃	S ₂	S ₄	0	0
S ₄	S ₇	S ₄	0	0
S ₅	s ₆	S ₇	0	0
s ₆	S ₅	S ₂	1	0
S ₇	S ₄	s_1	1	1

		81	s2	s 3	84	s 5	s6	s7
W	0	0	0	0	0	0	1	1
	1	0	0	0	0	0	0	1
P	1	sl	s2	s 3	84	s 5	s6	87
٧	0	s6	s 3	s2	s7	s6		4
	1	s3	s1	s 4	s 4	s7		
P	2	sl	s 2	s 3	84	s 5	s6	87
٧	1		sl	s 4				
P	3	s1	s2	s 3	84	s 5	s6	s7

8.

a.
$$(n^2 + n) / 2$$

There are n ordered pairs of the form $(x, x), x \in A$. For each of the $(n^2 - n)/2$ sets $\{(x, y), (y, x)\}$ of ordered pairs where $x, y \in A, x \neq y$, one element is chosen. This results in a maximum value of $n + (n^2 - n)/2 = (n^2 + n)/2$.

	1	2	3	 n
1				
2				
3				
n				

b.
$$12^2 \times 3$$

$$|A1| = |A2| = |A3| = 36/3 = 12$$

Pick up any two elements for a relation in set A1 = 12×12

$$\rightarrow$$
 A1 A2 A3 = $12^2 \times 3$

c.
$$C_4^9 \times \left(\sum_{i=1}^5 S(5, i) - C_4^5\right)$$

Exactly one equivalent class of size 4 : C_4^9

Other elements are in 1~5 groups : $\sum_{i=1}^{5} S(5, i)$

Exception (another size 4): $C_4^5 C_1^1$