# Status Report: Face To BMI

Trung Pham • 29.05.2020

### Overview

#### **Expected delivery**

May 28, 2020

#### **Recent progress**

- Train setting
- Train model for BMI
- Train model for Height
- Train model for Weight
- Cross validation train for BMI
- Cross validation train for Height
- Cross validation train for Weight
- Fixing crop face function
- Analyze test result for western data
- Analyze test result for asian data
- Train pretrained model to train on asian data

#### Train Setting

- 1. Training, Validation, Testing ratio: 0.72, 0.08, 0.2
  - a. Training size 752 images/1026 images
  - b. Validation size 96 images/1026 images
  - c. Testing size 208 images/1026 images
- 2. Face detection algorithm
  - a. Using dlib library -> fhog\_object\_detector

#### Train model for BMI, Weight, Height

Sample training: epochs = 500

Cross Validation train: 20 times, each with 500 epochs

Final train: epochs = 5000

#### Cross validation train for BMI



#### Prediction for BMI - Sample

Predicted:18.11/ Actual: 19.72



Predicted:22.32/ Actual: 21.73



Predicted:21.62/ Actual: 19.49



Predicted:23.01/ Actual: 22.27



Predicted:22.30/ Actual: 24.49



Predicted:25.27/ Actual: 20.05



Predicted:19.71/ Actual: 21.21





Predicted: 20.66/ Actual: 20.57



Predicted:20.67/ Actual: 38.14



Predicted:20.05/ Actual: 18.04



Predicted:22.47/ Actual: 24.30



Predicted:22.55/ Actual: 18.83



Predicted:21.12/ Actual: 25.20



Predicted:28.35/ Actual: 26.00



Predicted:21.65/ Actual: 23.29



Testing result distribution for cross validation on BMI

Still training

### Cross validation train for Height



#### Prediction for Height - Sample

Predicted: 1.72/ Actual: 1.65



Predicted: 1.70/ Actual: 1.70



Predicted:1.52/ Actual: 1.79



Predicted: 1.76/ Actual: 1.55



Predicted: 1.68/ Actual: 1.77



Predicted: 1.63/ Actual: 1.59



Predicted:1.77/ Actual: 1.85



Predicted: 1.65/ Actual: 1.85



Predicted: 1.69/ Actual: 1.89



Predicted:1.70/ Actual: 1.73



Predicted:1.93/ Actual: 1.83



Predicted: 1.68/ Actual: 1.83



Predicted:1.90/ Actual: 1.80



Predicted:1.92/ Actual: 1.78



Predicted:1.63/ Actual: 1.70



Predicted:1.95/ Actual: 1.88



Testing result distribution for cross validation on Height

Still training

### Cross validation train Weight



#### Prediction for Weight - Sample



Predicted:61.58/ Actual: 66.00



Predicted:68.08/ Actual: 102.00



Predicted:61.44/ Actual: 56.00





Predicted:60.53/ Actual: 61.00



Predicted:60.02/ Actual: 60.00



Predicted:85.34/ Actual: 81.00



Predicted:67.26/ Actual: 54.00



Predicted:57.95/ Actual: 77.00



Predicted:67.69/ Actual: 155.00



Predicted:64.56/ Actual: 55.00



Predicted:65.32/ Actual: 150.00



Predicted:60.01/ Actual: 52.00



Predicted:80.64/ Actual: 61.00



Predicted:62.78/ Actual: 54.00



#### Testing error distribution for cross validation on Weight



#### Fixing crop face function

New crop no margin/ Average Error: 3.170



Old crop with 10% margin/ Average Error: 3.273



Analyze test result of original model

## BMI Analyze test result for western data

#### Analyze BMI test result for western data

Count: 206

Mean: 2.148342

Std: 2.702871

Min: 0.010359

25%: 0.622971

50%: 1.658

75%: 2.722138

Max: 31.54



#### Analyze test result for western data



#### **Error distribution**

Count : 206

Mean: 2.148342

Std: 2.702871

Min: 0.010359

25%: 0.622971

50%: 1.658

75%: 2.722138

Max: 31.54

#### Test result for western data - Biggest error (>=2.72)



#### Test result for western data - Biggest error (>=2.72)



#### Test result for western data - Biggest error (>=2.72)

























## BMI Analyze test result for Asian data

#### Analyze test result for asian data

Count: 208

Mean: 3.170377

Std: 2.212229

Min: 0.019562

25%: 1.492668

50%: 2.976602

75%: 4.336589

Max: 12.460855



#### Analyze test result for asian data



#### **Error distribution**

Count: 208

Mean: 3.170

Std: 2.212

Min: 0.019

25%: 1.492

50%: 2.976

75%: 4.336

Max: 12.46

#### BMI error distribution West vs Asia



#### Test result for asian data - Biggest error (>=4.33)



#### Test result for asian data - Biggest error (>=4.33)



#### Test result for asian data - Biggest error (>=4.33)



## Height Analyze test result for western data

#### Analyze Height test result for western data

Count: 206

Mean: 0.101752

Std: 0.084011

Min: 0.000150

25%: 0.037468

50%: 0.082075

75%: 0.145986

Max: 0.551839



#### Test result for western data - Biggest error (>=0.145)



#### Test result for western data - Biggest error (>=0.145)



#### Test result for western data - Biggest error (>=0.145)

























## Height Analyze test result for Asian data

#### Analyze test result for asian data

Count: 208

Mean: 0.109418

Std: 0.086420

Min: 0.000916

25%: 0.046195

50%: 0.083020

75%: 0.150958

Max: 0.452671



#### Height error distribution West vs Asia









# Weight Analyze test result for western data

#### Analyze Weight test result for western data

Count: 206
mean 12.714376
std 16.437334
min 0.018837
25% 3.136052
50% 8.266600
75% 15.654055
max 138.629791



#### Test result for western data - Biggest error (>=15.65)



#### Test result for western data - Biggest error (>=15.65)



#### Test result for western data - Biggest error (>=15.65)



# Weight Analyze test result for Asian data

#### Analyze test result for asian data

| 208.000000 |
|------------|
| 10.661611  |
| 6.928674   |
| 0.039642   |
| 5.282686   |
| 9.760532   |
| 14.908416  |
| 38.254318  |
|            |



#### Weight error distribution West vs Asia













#### Analyze test result for western data - Biggest error

#### Reasons for error:

- 1. Bad image: not complete face, losing some parts of face, wearing glasses
- Bad data:
  - a. Image and values are not taken as the same time
  - b. Incorrect data

Main reason: bad data

## Train pretrained model to train on asian data

### **BMI**

#### Analyze test result for asian data

| count | 208.000000 |
|-------|------------|
| mean  | 1.959250   |
| std   | 1.818866   |
| min   | 0.005199   |
| 25%   | 0.694865   |
| 50%   | 1.545342   |
| 75%   | 2.710669   |
| max   | 13.221609  |
|       |            |



#### Model after training on asian data

Testing loss with asia data is: 1.959 (Before training is 3.17)





























## Height

#### Analyze test result for asian data

| cou  | nt 208   |
|------|----------|
| mean | 0.073468 |
| std  | 0.058572 |
| min  | 0.000435 |
| 25%  | 0.029539 |
| 50%  | 0.061470 |
| 75%  | 0.100835 |
| max  | 0.304327 |



#### Model after training on asian data

Testing loss with asia data is: 0.073 (Before training is 0.109)











## Weight

#### Analyze test result for asian data

| count | 208.000000 |
|-------|------------|
| mean  | 7.205800   |
| std   | 6.457775   |
| min   | 0.040497   |
| 25%   | 2.868369   |
| 50%   | 5.244310   |
| 75%   | 9.708841   |
| max   | 38.003124  |



#### Model after training on asian data

Testing loss with asia data is: 7.205 (Before training is 10.661)





























#### Analyze test result for western data - Biggest error

#### Reasons for error:

- 1. Bad image: not complete face, losing some parts of face, wearing glasses
- Bad data:
  - a. Image and values are not taken as the same time
  - b. Incorrect data
  - c. Bad data distribution: artist data often have values in good range e.g BMI in [20,25]

Main reason: bad data

#### Improving Methods

#### Focus on 3 main methods to reduce error of model

- 1. Training data
  - a. More data at ~ 4000 or more
  - b. More accurate data: images, weight, height must be taken at the same time
  - c. More data for thin, fat people
- 2. Network
  - a. ResNext network
- 3. Optimizer
  - a. Adam
  - b. AdamW
- 4. Loss function