

4강: 의사결정트리의 이해

인공지능 일반강좌: 기계학습의 이해(L2-1)

Contents

의사결정나무 소개
결정트리 분류(예제)
결정트리 회귀(예제)
결정트리 분류(타이타닉 예제)
실습
숙제

결정트리 소개 (1)

결정 트리?**

- 결정 트리는 분류 문제를 해결하기 위하여 가장 많이 사용된 지도(supervised) 기계학습 알고리즘의 한 종류
- 물론 회귀(Regression)에도 사용 가능함
- 결정 트리의 결과는 나무 같은 간단한 그래프으로 설명이 되어짐
- 그래서 블랙박스가 아닌 실제로 일어난 일들을 볼수 있음.

결정 트리 용어

루트 노드 - 부모 노드로 알려짐. 데이터셋의 길이와 모든 가지가 여기서 출발 함.

브랜치 - 가지는 루트 노드의 서브 노드로 나눈다. 물론 데이터도 나눔

결정 노드 - 결정노드들은 서브노드를 더 깊게 나눔. 더 이상 나눌 것이 없으며 리프노느임.

리프노드: 더이상 나눌수 없는 노드.

알고리즘 - '지니'(Gini)는 경제학에서 불평등 지수를 나타냄. 0이 가장 평등하며, 1이 불평등하다.

- 즉, 데이터가 다양한 값을 가질 경우 평등(0)하며
- 특정 값으로 쏠릴경우 불평등(1에 가까움)
- 엔트로피는 무질서도를 나타내며, 무질서도(혼잡도)는 서로 다른 값이 섞여 있으면 높다. 혼잡도가 높으면 1, 적으면 0

지니 지수:
$$G=1-\sum_{i}^{c}p_{i}^{2}$$
 , $0\leq G\leq 1/2$

엔트로피 지수:
$$E=-\sum_{i}^{c}p_{i}\log_{2}p_{i}$$
 , $0\leq E\leq 1$

결정트리 소개 (2)

루트노드, 리프노드, 가지노드, gini를 이해해보자

(예) 결정트리 : 타이타닉 생존자 예측

결정트리 분류에 적용 (1)

학생 60명에서 방과후에 축구하는 사람을 예측하기

사용 데이터 설명 및 문제 설명

• 데이터는 60명이 학생이 있고.

import numby as no

- 성별 (M/F), 반 (IX/X), 키 (5/6 피트) 즉 150과 180cm, 몸무게 (50/58)
- 이중 30명은 방과후에 축구를 한다.
- 풀어햐 할 문제는 방과후에 누가 축구를 하는지 예측하라!

결정트리 분류에 적용 (2)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 60 entries, 0 to 59
Data columns (total 5 columns):
Weight 60 non-null int64
Height 60 non-null int64
Class 60 non-null object
Sex 60 non-null object
label 60 non-null object
dtypes: int64(2), object(3)
memory usage: 2.4+ KB

df.head()

	Weight	Height	Class	Sex	label
0	50	5	IX	М	Р
1	58	6	IX	М	NP
2	50	5	IX	М	Р
3	58	6	IX	М	NP
4	50	5	IX	М	NP

- 카테로리컬한 데이터를 숫자로 바꾸어라.
- 축구하면 (P=1), 안하면(NP)를 0
- new_label 변수로 1이면 방과후에 축구를 한 것

```
code = {'P': 1, 'NP': 0}
df['new_label'] = df['label'].map(code)

new_s = pd.get_dummies(df.Sex)
new_c = pd.get_dummies(df.Class)
```

new_c = pd.get_dummies(df.Class)

df[new_s.columns] = new_s

df[new_c.columns] = new_c

판다스 df.get_dummies는 카타로그 데이터를 0과 1의 값는 갖는 별도의 데이터를 만듬

df.head()

	Weight	Height	Class	Sex	label	new_label	F	M	IX	X
0	50	5	IX	М	Р	1	0	1	1	0
1	58	6	IX	М	NP	0	0	1	1	0
2	50	5	IX	М	Р	1	0	1	1	0
3	58	6	IX	М	NP	0	0	1	1	0
4	50	5	IX	М	NP	0	0	1	1	0

결정트리 분류에 적용 (3)

사이킷런의 의사결정분류 라이브러리를 이용하여 적용해보자 ¶

결정트리 분류에 적용 (4)

About Download Gallery Documentation Theory and Publications License

Resources Credits FAQ Contact Twitter Issues/Bugs

import graphviz
graph = tree.export_graphviz(model, out_file=None, filled=True)
graphviz.Source(graph)

결정트리 분류에 적용 (5)

model.fit(feature, label)

DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=23, splitter='best')

결정트리 분류에 적용 (6)

중요 변수의 이해

criterion: 지니 혹은 엔트로피 알고리즘 선택 'Gini' 혹은 'Entropy'.

max_depth: 위의 예제의 경우 4이다. 이 숫자가 크면 오퍼피팅 될 수 있다.

max_features: 최적의 분할을 고려할때 초대 피처 개수, 디폰트는 None으로 테이터 셋트를 사용하여 분할 수행

max_lead_nodes: 말단 리프 노드의 최대 갯수

min_samples_leaf: 말단 노드인 리프노드가 되기 위한 최소한의 샘플 데이터 수

min_samples_split: 노드를 분할 하기 위한 최소한의 샘플 데이터의 수. 과적합을 제어에 도움이 됨

- 디폴트는 2이고, 작게 설정할 수록 분할 노드가 많아져서 과적함 증가

결정트리 분류에 적용 (7)

from sklearn import tree

연습문제 min_samples_leaf 개수를 5로 했을때 차이점을 논의하시오

model1 = tree.DecisionTreeClassifier(min samples leaf = 5, random state = 23)

결정트리 분류에 적용 (8)

결정트리 분류에 적용 (9)

min_samples_split

```
(실습 해보기)
min_samples_split를 4~20 사이를 변화시키면서,
그래프의 변화를 이해하라
```

결정트리 분류에 적용 (10)

트리의 변화를 확인하여라.

결정트리 분류에 적용 (11)

Grid Search CV

from sklearn.model_selection import GridSearchCV

```
param1 = {'min\_samples\_leaf': [2,3,4,5],}
         'min_samples_split': [2,3,5,10,12,14],
         'max_depth': [2,3,4,5,6],
         'criterion': ['gini', 'entropy'],
         'max features':[2,3,4]}
CV = GridSearchCV(model, param1)
CV.fit(feature, label)
GridSearchCV(cv=None, error_score=nan,
             estimator=DecisionTreeClassifier(ccp alpha=0.0, class weight=None.
                                               criterion='gini', max_depth=None,
                                               max_features=None,
                                               max_leaf_nodes=None,
                                               min_impurity_decrease=0.0,
                                               min_impurity_split=None.
                                               min_samples_leaf=1.
                                               min_samples_split=2.
                                               min_weight_fraction_leaf=0.0,
                                               presort='deprecated'.
                                               random state=23.
                                               splitter='best'),
             iid='deprecated', n_jobs=None,
             param_grid={'criterion': ['gini', 'entropy'],
                          'max_depth': [2, 3, 4, 5, 6],
                          'max_features': [2, 3, 4],
                          'min_samples_leaf': [2, 3, 4, 5].
                          'min_samples_split': [2, 3, 5, 10, 12, 14]},
             pre dispatch='2*n jobs', refit=True, return train score=False.
             scoring=None, verbose=0)
```

중요:

- 1) Grid Search는 무엇인가?
- 2) 파라미터 공간을 조정해보자
- 3) 관심이 더 있으면 Random Seach
- 4) Bayesian Optimization Search
- 5) NAS (Neural architecture search)
- 6) Hyperparamenter search(HPO)쪽으로 주제는 현제 AI에서 핫 이슈임.

결정트리 분류에 적용 (12)

from sklearn.model_selection import cross_val_score from sklearn.metrics import accuracy_score accuracy_score(best.predict(feature), label)

0.85

```
cross_val_score(best, feature, label, cv=5)
array([0.83333333, 0.91666667, 0.91666667, 0.66666667, 0.91666667])
```

소결) 정확도 85%는 꾀 좋은 성적이고 교차 검증 성적도 좋다

중요:

- 1) Grid Search에서 얻은 각각 파라미터 최적의 값은 무엇인가?
- 2) 결정 트리 정확도 85%를 얻었다.
- 3) 정확도 85%의 의미와 데이터 양과의 관계를 생각해보아라
- 4) 교차검증은 83.3%을 얻었다. 의미는?

결정트리 회귀에 적용 (01)

1차원 선형 곡선을 결정트리로 회귀(Regression) 예측하기

```
import numpy as np
import pandas as pd

from sklearn import tree
import graphviz

import matplotlib.pyplot as plt
import seaborn as sns
```

예제로 1차 함수 형태의 데이터셋에서 회귀 트리 만들어 보기

```
# 1차 활수 항태는 y = x + random

nPoints = 100

xPlot = [(float(i)/float(nPoints) - 0.5) for i in range(nPoints + 1)]

x = [[s] for s in xPlot]

np.random.seed(1)

y = [s + np.random.normal(scale=0.2) for s in xPlot]

# plt.rcParams.update({'font.size': 14})

plt.rcParams['figure.figsize'] = (10.0, 6.0)

plt.plot(xPlot,y)

#plt.axis('tight')

plt.xlabel('x')

plt.ylabel('y')

plt.title('Simple dataset')

plt.show()
```


결정트리 회귀에 적용 (2)

max_depth=1

X[0] <= -0.075 mse = 0.126 samples = 101 value = 0.011 True False

mse = 0.049 samples = 43 value = -0.315

mse = 0.046 samples = 58 value = 0.253

- 아래 블럭 다이아그램에서 루트 노드는 -0.075을로 기준 (split 점)
- 이 split 값을 기준으로 2개의 그룹으로 분류
- 아래 2개의 박스 중에서 왼쪽으로는 43개의 샘플, 오른쪽에는 58개의 샘풀로 분류
- 만일 테스트 값이 x=0.2이라면, 예측 값은 y=0.253 임

```
#draw the decision tree result with graphviz
graph = tree.export_graphviz(model, out_file = None, rounded = True, filled = True)
graphviz.Source(graph)
```

결정트리 회귀에 적용 (3)

```
#compare prediction from tree with true values
yHat = model.predict(x)

plt.figure()
plt.plot(xPlot, y, label='True y')
plt.plot(xPlot, yHat, label='Tree Prediction', linestyle='--');

plt.legend(bbox_to_anchor=(1,0.2))
plt.axis('tight')
plt.xlabel('x')
plt.ylabel('x')
plt.ylabel('y')
plt.grid()
plt.title('Decision Tree Split (Depth=1, x_split=0.075)')
plt.show()
```


결정트리 회귀에 적용 (4)

연습문제: 의사결정 나무 depth=2로 증가 시켜라

```
# 결정나무 다시 설정 max_depth=2
model2 = tree.DecisionTreeRegressor(max_depth=2)
model2.fit(x, y)
DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=2,
                   max_features=None, max_leaf_nodes=None,
                   min_impurity_decrease=0.0, min_impurity_split=None,
                   min_samples_leaf=1, min_samples_split=2,
                   min_weight_fraction_leaf=0.0, presort='deprecated',
                   random_state=None, splitter='best')
graph = tree.export_graphviz(model2, out_file = None, rounded = True, filled = True)
graphviz.Source(graph)
                                 X[0] <= -0.075
                                  mse = 0.126
                                 samples = 101
                                  value = 0.011
                              True
                                              False
                       X[0] <= -0.295
                                            X[0] \le 0.265
                        mse = 0.049
                                             mse = 0.046
                       samples = 43
                                            samples = 58
                                            value = 0.253
                       value = -0.315
   mse = 0.049
                        mse = 0.022
                                                                 mse = 0.012
                                             mse = 0.039
  samples = 21
                       samples = 22
                                            samples = 34
                                                                 samples = 24
  value = -0.436
                        value = -0.2
                                            value = 0.139
                                                                 value = 0.414
```

결정트리 회귀에 적용 (5)

```
#compare prediction from tree with true values
yHat = model2.predict(x)

plt.figure()
plt.plot(xPlot, y, label='True y')
plt.plot(xPlot, yHat, label='Tree Prediction ', linestyle='--')
plt.legend(bbox_to_anchor=(1,0.2))
plt.axis('tight')
plt.xlabel('x')
plt.ylabel('x')
plt.ylabel('y')
plt.grid()
plt.title('Decision Tree Split (Depth=2)')
plt.show()
```


split 포인트는 2개가 더 생김

- x=-0.295
- x=0.264

결정트리 회귀에 적용 (6)

Split Points 찾기는 어떻게하나?

- 트리는 예측값의 제곱 오차를 최소화(MSE)한다.
- 생각해보면, 임의의 split 값이 주어지면 2개의 그룹 중에 1개로 선택된다. 각각의 그룹의 평균은 MSE를 최소화하는 값이 된다.
- 아래 예제를 보자

결정트리 회귀에 적용 (7)

```
#SSE is sum of squared error
plt.plot(range(1, len(xPlot)), sse)

plt.xlabel('Split Point Index')
plt.ylabel('Sum Squared Error')

plt.title('Split Square Error resulting from every possible split point location')
plt.show()
```


SSE 함수에서 최소값을 찾고, 최소값의 위치를 찾은 다음, 그 값에 해당하는 최소값

결과는 잘 알려진 포물선 모양

• 최소값은

minSse = min(sse)
idxMin = sse.index(minSse)
print(xMin[idxMin])

-0.010000000000000000

결정트리 회귀에 적용 (8)

멀티 변수 트리 학습은 어떻게?

• 알고리듬은 MSE의 최소값에 기여하는 모든 가능한 split point을 찾는다.

결정트리의 과적합 (Overfitting) 문제

- 데이터는 적은데 너무 많은 split point를 고려해보면
- 학습은 잘 되는데, 예측할때 틀릴 수가 많다.
- depth를 높여서 실습해보자

중요:

- 1) 과적합(Overfitting)이란 무엇인가
- 2) 과적합은 언제 일어나는가?
- 3) 과적합을 피하기 위한 방법은 무엇인가?

결정트리 회귀에 적용 (9)

연습문제2: max_depth를 3로 높여서 예측해보기

```
model3 = tree.DecisionTreeRegressor(max_depth=3)
model3.fit(x, y);

#compare prediction from tree with true values
yHat = model3.predict(x)

plt.figure()
plt.plot(xPlot, y, label='True y')
plt.plot(xPlot, yHat, label='Tree Prediction ', linestyle='--')
plt.legend(bbox_to_anchor=(1,0.2))

plt.axis('tight')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Decision Tree Split Depth=8')
plt.show()
```


결정트리 회귀에 적용 (10)

결정트리 회귀에 적용 (11)

• 데이터 숫자를 늘려서 확인해보기

- 데이터 개수를 nPoints = 200로 2개 증가 시킴
- max_depth=1
- max_depth=2
- max_depth=4 일때 결정트리의 예측정확도를 구해라?

타이타닉 침몰과 생존자 데이터

- 타이타닉 승객의 정보를 사용하여 생존할 확률을 예측하는 문제
- Kaggle Competition에서 다뤘던 주제로,
- TFlearn의 기본 신경망 튜토리얼로 활용 중 <u>http://tflearn.org/tutorials/quickstart.html</u>

타이나닉 생존자 예측해보자

1. 라이브러리 와 데이터 로딩

```
import pandas as pd
import numpy as np # linear algebra

import re # 이름을 이용하여 피치 엔지니러링 할때 사용할

from sklearn import tree
import graphviz

# 가시화
import seaborn as sns # visualization
import matplotlib.pyplot as plt # visualization
```

pandas로 타이타닉 데이터 읽어오기

데이터의 70%는 훈련에 활용하고

나머지 30%는 시험에 사용한다.

```
df_train = pd.read_csv('./input/train.csv',sep=',') # importing train dataset
df_test = pd.read_csv('./input/test.csv',sep=',') # importing test dataset
```

데이터 정보 확인해보자

판다스의 df.head()

df.describe()

타이타닉 원본 train.csv 파일 읽기

df_train.head(9) # seeing the first 6 rows from train dataset

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S

타이타닉 데이터 형식 및 의미

컬럼명	의미
pclass	1, 2, 3등석 정보를 각각 1, 2, 3으로 저장
survived	생존 여부. survived(생존), dead(사망)
name	이름
sex	성별. female(여성), male(남성)
age	나이
sibsp	함께 탑승한 형제 또는 배우자의 수
parch	함께 탑승한 부모 또는 자녀의 수
ticket	티켓 번호
fare	티켓 요금
cabin	선실 번호
embarked	탑승한 곳. C(Cherbourg), Q(Queenstown), S(Southampton)

titanic.describe() # Seeing a summary of numeric columns

	Passengerld	Pclass	Age	SibSp	Parch	Fare			
count	1309.000000	1309.000000	1046.000000	1309.000000	1309.000000	1308.000000			
mean	655.000000	2.294882	29.881138	0.498854	0.385027	33.295479			
std	378.020061	0.837836	14.413493	1.041658	0.865560	51.758668			
min	1.000000	1.000000	0.170000	0.000000	0.000000	0.000000			
25%	328.000000	2.000000	21.000000	0.000000	0.000000	7.895800			
50%	655.000000	3.000000	28.000000	0.000000	0.000000	14.454200			
75%	982.000000	3.000000	39.000000	1.000000	0.000000	31.275000			
max	1309.000000	3.000000	80.000000	8.000000	9.000000	512.329200			

Train.csv 파일 확인

테이터의 특성 'Survived'는 labeling(라벨)이다.

- 데이터는 numerical
- categorical
- · text features
- 결손데이터 missing values ('NaN')

데이터의 형태(shape)을 보자

```
# Seeing shape of each dataset
print('train shape:',df_train.shape)

train shape: (891, 12)

print('test shape:',df_test.shape)

test shape: (418, 11)
```

라벨, 즉 'Survived' 컬럼은 train data로 부터 별도로 다룬다.(다중에 쓸것)

• 결손 데이터도 처리해주자

```
survived = df_train['Survived'] # saving 'Survived' column from train dataset to be used latter

df_train2 = df_train.drop('Survived',axis=1) # dropping 'Survived' column from train dataset to join datasets
```

주의

** df_train2 = df_train.drop()로 오버라이트 하였음. 데이터 개수가 다름

학습데이터 전처리 (1)

titanic.head()

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

전처리 1. 팃켓을 없애자. 왜?

titanic = titanic.drop('Ticket',axis=1) # dropping Ticket column from titanic dataset

titanic.head()

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	7.2500	NaN	s
1	2	1	$\label{eq:cumings} \textbf{Cumings}, \textbf{Mrs. John Bradley (Florence Briggs Th}$	female	38.0	1	0	71.2833	C85	С
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	7.9250	NaN	S
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	53.1000	C123	S
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	8.0500	NaN	S

학습데이터 전처리 (2)

결손 데이터 파악하기 및 전체 갯수는

```
titanic.isnull().sum()
                  0
Passenger I d
Polass
                  0
Name
                  0
Sex
                  0
                263
Age
SibSp
                  0
                  0
Parch
Fare
Cabin
               1014
Embarked
dtype: int64
Ten(titanic)
1309
(titanic.isnull().sum()/len(titanic)).sort_values(ascending = True)
Passenger I d
              0.000000
              0.000000
Polass
              0.000000
Name
              0.000000
Sex
SibSp
              0.000000
              0.000000
Parch
              0.000764
Fare
Embarked
              0.001528
              0.200917
Age
Cabin
              0.774637
dtype: float64
```

학습데이터 전처리 (3)

```
plt.subplots(0,0, figsize = (18,5)) # difyning figure size
ax = (titanic.isnull().sum()/len(titanic)).sort_values(ascending = True).plot.bar(color = 'blue')
plt.axhline(y=0.1, color='r', linestyle='-')
plt.title('Missing values percent per columns', fontsize = 20) # plotting a title
```

Text(0.5, 1.0, 'Missing values percent per columns')

학습데이터 전처리 (4)

titanic의 특성

- 2 개 숫자 데이터 age 와 Fare
- 2 개의 카타고리컬 데이터 Cabin, Embarked

```
# replacing na's of Age using linear regression method
titanic['Age'] = titanic['Age'].interpolate(method="linear",limit_direction="forward")

# replacing na's of Age using linear regression method
titanic['Fare'] = titanic['Fare'].interpolate(method="linear",limit_direction="forward")
```

NaN을 'U'로 unKnown Port로

Now let's replace na's from Embarked variables by 'U' to indicate an unknown Port of Embarkation

```
# replacing na's of Embarked from U
titanic['Embarked'] = titanic['Embarked'].fillna('U')
titanic['Embarked'] = titanic['Embarked'].astype('category') # Converting into categorys
titanic.isna().sum() # verifying na's
Passenger I d
                 0
Polass
                 0
                 0
Name
Sex
Age
                 0
SibSp
Parch
                 0
Fare
                 0
Cabin
              1014
Embarked
                 0
dtype: int64
```

학습데이터 상관관계 (1)

데이터 상관관계

num_vars = titanic[['Pclass','Age','SibSp','Parch','Fare']][1:891] # taking numerical variables to correlation plot

num_vars.head(3)

	Pclass	Age	SibSp	Parch	Fare
1	1	38.0	1	0	71.2833
2	3	26.0	0	0	7.9250
3	1	35.0	1	0	53.1000

타겟과 합치기

cor_df = pd.concat([num_vars,survived],axis=1) # join numerical variables and our target

cor_df.head(5)

	Pclass	Age	SibSp	Parch	Fare	Survived
0	NaN	NaN	NaN	NaN	NaN	0
1	1.0	38.0	1.0	0.0	71.2833	1
2	3.0	26.0	0.0	0.0	7.9250	1
3	1.0	35.0	1.0	0.0	53.1000	1
4	3.0	35.0	0.0	0.0	8.0500	0

학습데이터 상관관계 (2)

seaborn으로 상관관계를 시각화 하자

변수들 사이에 높은 상관관계는 없다.

let's take a look into Age, Fare, Parch and Pclass with boxplots

학습데이터 상관관계 (3)

타켓 라벨 생존과 관계는

많은 outliers 가 있으며, 가격 100 이하에 집중된 승객임.

• 나이도 고려해보자

학습데이터 상관관계 (4)

분석

• 나이에 대해서는 정규분포를 보여주고 있지만, 완벽하지는 않다.

분석

- 대다수 승객은 20에서 40대임을 알 수 있다.
- 60살 이상에서 아웃레이어가 보이며,

학습데이터 상관관계 (5)

• 파취가 1 이하에서 생존 확율이 높다.

분석

- 모든 클라스에서 생존하였다.
- 하지만 2등석, 3등석 객실에서 사망을 하였다.

학습데이터 상관관계 (6)

```
plt.figure(figsize=(6,4))
survived.value_counts().plot(kind='bar',color=['darkred','blue']) # counting category values and plotting
plt.title('Our class categorys frequency'); # difyning a title
```


생존 분석

- 사망자가 더 많았다.
- 생존자 예측이 더 어렵다. 사망자 예측은 잘 된다.

피처엔지니어링 분석(1)

• outlier가 없다. 3-6 그룹에 집중된 데이터.

가격은 5개로 구분하면,

• 생존자의 가격대가 잘 보인다.

피처엔지니어링 분석(2)

```
gender = {'male':0, 'female':1} # creating a dictionary to storage numeric representation of male and female
data = [titanic] # passing as a list

for dataset in data: # loop
    dataset['Sex'] = dataset['Sex'].map(gender) # mapping by genger
```

이름 변수에 대한 작업

titanic.head() # Verifying result

	Passengerld	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked	Title
0	1	3	0	6	1	0	10.0	NaN	S	Mr
1	2	1	1	3	1	0	5.0	C85	С	Mrs
2	3	3	1	5	0	0	10.0	NaN	S	Miss
3	4	1	1	3	1	0	5.0	C123	S	Mrs
4	5	3	0	3	0	0	10.0	NaN	S	Mr

피처엔지니어링 분석(3)

```
# creating a variables for passengers that have a family aboard
titanic['family_aboard'] = np.where((titanic['Parch']>=1) & (titanic['SibSp']>=1),1,0)

# creating a variable to represent couples with no childrens
titanic['no_child_couple'] = np.where((titanic['Parch']==0) & (titanic['SibSp']==1),1,0)

# creating a variables to discribe the family size
titanic['family_small'] = np.where((titanic['Parch']<=1) & (titanic['SibSp']<=1),1,0)
titanic['family_median'] = np.where((titanic['Parch']>1) & (titanic['SibSp']>1) & (titanic['Parch']<=2) & (titanic['SibSp']>2) & (titanic['Parch']>2) & (titanic['SibSp']>2),1,0)
```

Now let's drop the ogirinal 'Parch' and 'SibSp' variables

```
titanic = titanic.drop(['Parch','SibSp'],axis=1) # drooping the 'Parch' and 'SibSp' columns

titanic.head()
```

	Passengerld	Pclass	Sex	Age	Fare	Embarked	Title	Deck	family_aboard	no_child_couple	family_small	family_median	family_large
0	1	3	0	6	10.0	S	Mr	Н	0	1	1	0	0
1	2	1	1	3	5.0	С	Mrs	С	0	1	1	0	0
2	3	3	1	5	10.0	S	Miss	Н	0	0	1	0	0
3	4	1	1	3	5.0	S	Mrs	С	0	1	1	0	0
4	5	3	0	3	10.0	S	Mr	Н	0	0	1	0	0

len(titanic)

1309

피처엔지니어링 분석(4)

One-Hot-Encoding

원핫인코딩은 숫자에 대당하것을 주어진 영역에 표시

OneHot Encoding

workclass		State-gov	Self-emp-not-inc	Private
State-gov		1	0	0
Self-emp-not-inc		0	1	0
Private	7	0	0	1
Private		0	0	1
Private		0	0	1

피처엔지니어링 분석(5)

titanic.head() # seeing the first 6 rows

	Passengerld	Pclass	Sex	Age	Fare	family_aboard	no_child_couple	family_small	family_median	family_large	 Rare	Α	В	С	D	Ε	F	G	Н	Т
0	1	3	0	6	10.0	0	1	1	0	0	 0	0	0	0	0	0	0	0	1	0
1	2	1	1	3	5.0	0	1	1	0	0	 0	0	0	1	0	0	0	0	0	0
2	3	3	1	5	10.0	0	0	1	0	0	 0	0	0	0	0	0	0	0	1	0
3	4	1	1	3	5.0	0	1	1	0	0	 0	0	0	1	0	0	0	0	0	0
4	5	3	0	3	10.0	0	0	1	0	0	 0	0	0	0	0	0	0	0	1	0

5 rows × 28 columns

When we use get.dummies function maybe some of the new columns are created with the same name, let's verify and solve this

사이킷런 모델링을 위한 전처리(1)

모델링을 위한 데이터 전처리

```
train = titanic[0:891] # taking the first 891 rows to train
test = titanic[891:1310]
Let's see if works well
print('train shape:'.train.shape)
print('test shape:'.test.shape)
train shape: (891, 28)
test shape: (418, 28)
# Saving PassengerId of test dataset to create submission dataset latt
passengerId = test['PassengerId']
# Drooping Passengerld column from train and test
train = train.drop('Passengerld',axis=1)
test = test.drop('PassengerId'.axis=1)
x_train = train # defyning train dataset
y_train = survived # defyning target to train
x_test = test # defyning test dataset
```

사이킷런 모델링을 위한 전처리(2)

x_train.head()

	Pclass	Sex	Age	Fare	family_aboard	no_child_couple	family_small	family_median	family_large	C_1	 Rare	Α	В	C_2	D	Ε	F	G	Н	T
0	3	0	6	10.0	0	1	1	0	0	0	 0	0	0	0	0	0	0	0	1	0
1	1	1	3	5.0	0	1	1	0	0	1	 0	0	0	1	0	0	0	0	0	0
2	3	1	5	10.0	0	0	1	0	0	0	 0	0	0	0	0	0	0	0	1	0
3	1	1	3	5.0	0	1	1	0	0	0	 0	0	0	1	0	0	0	0	0	0
4	3	0	3	10.0	0	0	1	0	0	0	 0	0	0	0	0	0	0	0	1	0

5 rows x 27 columns

y_train.head()

J 1

Name: Survived, dtype: int64

사이킷런 모델 및 Score(학습)

사이킷런으로 모데링하자. 85% 정확도를 목표로 ¶

model.score(x_train,y_train) # seeing accuracy

0.9068462401795735

헉! 90.68% 정확도라니. 미첬다.

숙제: 타이타닉의 예측 정확도는?

```
y_pred = pd.DataFrame(model.predict(x_test)) # predicting on test dataset

# creating the submission file
y_pred['Survived'] = y_pred[0]
y_pred.drop(0,axis=1,inplace=True)
y_pred['PassengerId'] = passengerId
y_pred_Dtrees = y_pred

y_pred_Dtrees.to_csv('Decision_tree_model.csv',index=False) # exporting submission file
```

숙제 1: 타이타닉 데이터를 max_depth=1일때, 앞의 90.68% 정확도를 활용하여, 테스트(test) 테이터에 대한 y_pred 정확도를 예측하시오.

타이타닉 결정 트리: 뭔가 이상해?

graph = tree.export_graphviz(model, out_file = None, rounded = True, filled = True)
graphviz.Source(graph)

문제: 위의 그래프에서 max_depth는 얼마인가?

파라미터 max_depth=3 적용(1)

model3.score(x_train,y_train) # seeing accuracy

0.8249158249158249

82.49% pruning을 한것은 과적합을 방지한 것인가?

```
graph = tree.export_graphviz(model3, out_file = None, rounded = True, filled = True)
graphviz.Source(graph)
```

파라미터 max_depth=3 적용(2)

소결: 꾀 좋아졌군요. 82.49% 정확도!

ROC 곡선 (1)

생존자 예측 결과

```
y_pred = pd.DataFrame(model3.predict(x_test))

# creating the submission file
y_pred['Survived'] = y_pred[0]
y_pred.drop(0,axis=1,inplace=True)
y_pred['PassengerId'] = passengerId
y_pred_Dtrees2 = y_pred

y_pred_Dtrees2.to_csv('Decision_tree_pruned.csv',index=False)
```


승객의 생존 예측

Prediction for Passengers

```
passengers_set_1 = titanic_df[titanic_df.pclass == 1].iloc[:4,:].copy()
passengers_set_2 = titanic_df[titanic_df.pclass == 2].iloc[:4,:].copy()
passengers_set_3 = titanic_df[titanic_df.pclass == 3].iloc[:2,:].copy()
passenger_set = pd.concat([passengers_set_1,passengers_set_2,passengers_set_3])
passenger_set
```

	pclass		name	sex	age	sibsp	parch	ticket	fare
0	1		Allen, Miss. Elisabeth Walton	female	29.0000	0	0	24160	211.3375
1	1		Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500
2	1		Allison, Miss. Helen Loraine	female	2.0000	1	2	113781	151.5500
3-		, J	Allison Mr. Hudson Joshua Creighton	male	30.000		2	115/61	ToT.5500
323	2	•	Abelson, Mr. Samuel	male	30.0000	1	0	P/PP 3381	24.0000
324	2		Abelson, Mrs. Samuel (Hannah Wizosky)	female	28.0000	1	0	P/PP 3381	24.0000
325	2		Aldworth, Mr. Charles Augustus	male	30.0000	0	0	248744	13.0000
J2 U	,		Andrew, Mr. Edgardo Santuel	male	18.0000	511	5 1 1	231945	1.5000
600	3		Abbing, Mr. Anthony	male	42.0000	0	0	C.A. 5547	7.5500
U 0	3	0	Abbott, Master, Eugene Joseph	male	15.0000	b •	2	C.A. 2673	20.2500

1등석 (25백만원)

2등석

(4백만원)

3등석 (1백만원)

머신러닝이란?

- 머신러닝
 - ✓ 데이터로 부터 학습하도록 컴퓨터를 프로그래밍하는 과학
 - ✓ 어떤 작업 T에 대한 컴퓨터 프로그램의 성능을 P로 측정했을 때 경험 E로 인해 성능이 향상됐다면, 이 컴퓨터 프로그램은 작업 T와 성능 측정 P에 대한 경험 E 로 학습한 것

Thank You!

www.ust.ac.kr