Module 4: Metric Spaces II Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 14, 2025

July 14, 2025

If
$$p=2$$
 $||x||_{2} = \left(\frac{2}{c^{2}} |x_{0}|^{2}\right)^{1/2}$ usual norm

$$p=1$$

$$||x||_{1} = \frac{1}{c^{2}} |x_{0}|^{2}$$

$$||x||_{1} = \frac{1}{c^{2}} |x_{0}|^{2}$$

$$||x||_{1} = \frac{1}{c^{2}} |x_{0}|^{2}$$

$$||x||_{1} = \frac{1}{c^{2}} |x_{0}|^{2}$$

$$||x_{0}||_{1} = ||x_{0}||_{1} = ||x_{0}||$$

Outline

- Open and closed sets
- Sequences
 - Cauchy sequences
 - subsequences

Definition (Open and closed sets)

Let (X, d) be a metric space.

- A set $U \subseteq X$ is open if for every $x \in U$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$.
- A set $F \subseteq X$ is *closed* if $F^c := X \setminus F$ is open.

Note:

a ball in (x,d).

Proposition

Let (X, d) be a metric space.

- **1** Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open.
- **2** If $A_i \subseteq X$, $i \in \mathcal{N}$ are open, then $\bigcup_{i \in I} A_i$ is open.

generally (c South puter sectors

can be intimite.

Proof. (1) Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open.

Let
$$x \in A_1 \cap A_2$$
.
Some $A_1 \rightarrow A_2$ and open. $g \in (1/22) \cap g \cap g \in (1/22) \cap g \cap$

(2) If $A_i \subseteq X$, $i \in I$ are open, then $\bigcup_{i \in I} A_i$ is open.

Let
$$x \in UAc$$
. Fig. 12. $x \in Ai$.

Since $Ai = rs \circ pm$, $2c > 0$ Set. $B_{E}(x) \subset Ai \subset UAc$.

Using DeMorgan, we immediately have the following corollary:

Corollary

Let (X, d) be a metric space.

- Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are closed, then $A_1 \cup A_2$ is closed. \longrightarrow fully union is also closed.
- **2** If $A_i \subseteq X$, $i \in I$ are closed, then $\bigcap_{i \in I} A_i$ is closed.

July 14, 2025

Definition (Interior and closure)

Let $A \subseteq X$ where (X, d) is a metric space.

- The closure of A is $\overline{A} := \left\{ x \in X : \ \ \xi_{70}, \ \beta_{\xi}(\pi) \land A \neq \emptyset \right\}$
- The interior of A is $\mathring{A} := \left\{ \begin{array}{ccc} \chi \in \chi & \stackrel{2}{\longrightarrow} & \sum \delta & \text{ s.t. } & \beta_{\epsilon}(\Lambda) \subset A \end{array} \right\}$

Example

Let $X = (a, b] \subseteq \mathbb{R}$ with the ordinary (Euclidean) metric. Then

$$\mathring{X} = (a, b)$$
, $\overline{X} = \{a, b\}$, $\partial X = \{a, b\}$ check

July 14, 2025

Closure $A = \emptyset_{\mathcal{E}^{(K)}} \text{ must instruct with } A \text{ if } x \in \overline{A}$

Tutoriur $A = A \times B_{\Sigma}(x)$ $A \times B_{\Sigma}(x)$

Brigg rutusets
hith A and Ac

Proposition

Let $A \subseteq X$ where (X, d) is a metric space. Then $\mathring{A} = A \setminus \partial A$.

Proof.

"C" part

Let $X \in \mathring{A}$. Thus $\overset{\mathcal{D}}{\mathcal{E}}_{70}$ S.t. $\mathcal{B}_{\mathcal{E}}(\mathcal{H}) \subset A$.

Suppose $X \in \partial A$. Then by deduction of ∂A , $B_{\epsilon}(x) \cap A^{\epsilon} \neq g$ This is a contradiction. In $A \subset A \cup A$.

Lut $x \in A \cup A$. By definition ∂A , $\partial \xi > 0$ s.t. Be($\pi \cap A = \emptyset$ or $\theta \neq 0$) Some $x \in A$, we cannot have $B \in G \times A = \emptyset$. .'. $B \in G \cap A = \emptyset$.

UNIVERSITY OF TORONTO

The $\beta_2(x) \in A$ $\beta_2(x) \in A$ $\beta_2(x) \in A$ July 14, 2025 7/22

we can suy much stronger

Proposition

Let (X, d) be a metric space and $A \subseteq X$. \overline{A} is closed and $\overset{\circ}{A}$ is open.

Proof. We'll prove the stronger result below.

Remark

In fact, $\mathring{A} = \bigcup \{U : U \text{ is open and } U \subseteq A\}$ and $\overline{A} = \bigcap \{F : F \text{ is closed and } A \subseteq F\}$.

the larguet open cut in A.

the smallest clased set containing

" c" pout: Lit x & A. Then, \$ 200 site BECK) CA. SNOW BECX) is itself open, we can let $V = B_E(x)$ to see $x \in U \{v: v \cdot pan and v \in A \}$ " " pout Lat $x \in U\{v: v \text{ is open and } v \in X\}$ They I : open St. YEV al UCA. Since Vir open, 2 EDO (it, Be Ca) C V. CA $= 1 \propto \in A$. 2) A = A {F: Fis closed ACF} "C" part. It suffrom to show A it self is closed. Let X & AC. Than by defaither of A, 2800 s.t. BECANA=4. That meas BE(x) CAC. We need to further show BE(X) CAC. Lit y & BE(N) and define $\widehat{\xi} = \xi - d(x, 2)$.

(Pf). 1) A = U {V: V open and VCA}

Then BE(3) CBE(x) CAC. B, (x) by toragle mequality i. ye Ā This BE (2) CAC, which implies A is a closed set. ")" part. From " C" organit, we know get A is closed. LAF be a closet F) A. We mist show A C.F which is equivaled to FCCAC Lt x = F (CAC). Since F is open, 2 Ero St. BE(x) CFCCAC. : BE(x) NA=4. By definition of A, X & A (X & A) FCACF.

Sequences

Definition (Sequence)

Let (X, d) be a metric space. A *sequence* is an ordered list of points x_n , $n \in \mathbb{N}$, in X, denoted $(x_n)_{n \in \mathbb{N}}$. We say that a sequence $(x_n)_{n \in \mathbb{N}}$ converges to a point $x \in X$ if

Recall:
$$\overline{A} = \left\{ \chi \in \chi : \ \xi > 0 , \ \beta_{\epsilon}(\pi) \wedge A \neq \emptyset \right\}$$

al Sciences restry of toronto the $\chi_{\alpha}\in A$ and $\chi_{\alpha}(\chi_{\alpha},\chi_{\alpha})$

Proposition

Let (X,d) be a metric space, and let $A \subseteq X$. Then \overline{A} is equal to the set of points in X which are limits of a sequence in A.

Proof.
$$\overline{A} = \{x \in X : {}^{2}\{x_{n}\} \in A \text{ s.t. } x_{n} \rightarrow x \}$$

"C" port.

Let $x \in \overline{A}$. By defeating, $^{4}\xi > 0$, $B_{\xi}(x) \wedge A \neq \emptyset$.

Let $\xi = \frac{1}{n}$. Then $B_{\xi}(x) \wedge A \neq \emptyset$.

Pick on $x_{\eta} \in B_{\xi}(x) \wedge A$.

10 / 22

For \$20, by taky Ing (E = ME) ET they Sor & MZME d(xn, x) < \frac{1}{4} \leftarrow \frac{1}{4} < \xeta

" o" part.

Let x he the limit of Exm3 CA + EDO, 3 ME Lit. MZ ME implies althora) (E.

⟨ Xu ∈ B_s (K)

Smer the EA, we have The BECOI NA.

BE(7) 1 A + 4

Thurson X E A.

Corollary

A set $F \subseteq X$, where (X, d) is a metric space, is closed if and only if every sequence in F which converges in X converges to a point in F.

Remark:

Cluster points of a set

Definition

Let (X, d) be a metric space and $A \subseteq X$. A point $x \in X$ is a *cluster point* of A (also called accumulation point) if for every $\epsilon > 0$, $B_{\epsilon}(x)$ contains infinitely many points in $A \setminus \{\Upsilon\}$.

July 14, 2025

Proposition

 $x \in X$ is a cluster point of $A \subseteq X$ where (X, d) is a metric space if and only if there exists a sequence of points $x_n \in A$, $n \in \mathbb{N}$, such that $x_n \to x$.

Proof.

ANEM

" => " put

but
$$x$$
 be a cluster point.

 $\forall m$, (i.e. t_1 : t_2 : t_3 : t_4 : t_4 : t_4 : t_5 : t_6 : t_6 : t_7 : t_7 : t_8 : $t_$

*\ \text{E70, } \(\frac{1}{2} \mathbb{M}_{\tilde{

Combining the previous result with the limit characterization of closure gives the following:

Corollary

For $A \subseteq X$, (X, d) a metric space, we have

$$\overline{A} = A \cup \{x \in X : x \text{ is a cluster point of } A\}.$$

July 14, 2025 14 / 22

Cauchy sequences

Definition (Cauchy sequence)

Let (X, d) be a metric space. A sequence denoted $(x_n)_{n \in \mathbb{N}} \in X$ is called a *Cauchy* sequence if

$$\forall \varepsilon \tau 0$$
, $\exists M_{\varepsilon}$ set. $M, M \ni M_{\varepsilon}$ explose $\mathcal{L}(\chi_{H}, \chi_{M}) < \varepsilon$.

Convergen of Mn is not quaranteed.

Proposition

Let (X, d) be a metric space, and let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence in X. Then $(x_n)_{n \in \mathbb{N}}$ is Cauchy.

Proof. Lt x of the limit of frag V €>0, 3 Mg 121, M3 Mg replaces down, x) < €, Then, m 3 ME, by the triagle in = { well by, $d(x_n, x_m) \leq d(x_n, x) + d(x, x_m) < \xi + \xi = 2\xi$

Definition

A metric space where every Cauchy sequence converges (to a point in the space) is called *complete*.

Example: IP, IP with usual encledion metric are complete.

Q. is not amplete.

Proposition

Let (X, d) be a metric space, and let $Y \subseteq X$.

- (i) If X is complete and if Y is closed in X, then Y is complete.
- (ii) If Y is complete, then it is closed in X.

July 14, 2025 17 / 22

Proof. (i) Lot Sty CY be Cauchy. Since (704) CX and X is complete FX EX Sit, My TI, Since of is closed every conveying sequence in ? must converge to a point in T, i.e. $x \in Y$.

(ii) Since 7 is captite, every conveyet segment in 7 (unct be Carchy).

conveyed to a point in ?.

This equivalent to ray that I is closed.

Subsequences

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a metric space (X,d). Let $(n_k)_{k\in\mathbb{N}}$ be a sequence of natural numbers with $n_1 < n_2 < \cdots$. The sequence $(x_{n_k})_{k \in \mathbb{N}}$ is called a *subsequence* of $(x_n)_{n\in\mathbb{N}}$. If $(x_{n_k})_{k\in\mathbb{N}}$ converges to $x\in X$, we call x a subsequential limit.

$$((-1)^n)_{n\in\mathbb{N}}$$

$$M = 2m$$

Proposition

A sequence $(x_n)_{n\in\mathbb{N}}$ in a metric space (X,d) converges to $x\in X$ if and only if every subsequence of $(x_n)_{n\in\mathbb{N}}$ also converges to x.

Suppore My does not conveye to X. Contradiction 2 EDO, 2 M2 (d (Xm, x) 2 E By assuption Than - X there exists be sit, bod he d(xmix)< E

20 / 22

Proof continued

References

Charles C. Pugh (2015). Real Mathematical Analysis. Undergraduate Texts in Mathematics. https://link-springercom.myaccess.library.utoronto.ca/book/10.1007/978-3-319-17771-7

Runde , Volker (2005). A Taste of Topology. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/piotr/docs/RealAnalysisNotes.pdf

