

Linear and Discrete Optimization

The geometry of linear programming

Vertices and basic solutions

Alternative characterization of vertices: Intuition

$$x^{x}$$
 is the unique solution $\bar{A} \times = \bar{b}$

rank $(\bar{A}) = VL$ \in column of \bar{A} are brienly independent

Quiz: Linear algebra

Let $A \in \mathbb{R}^{m \times n}$. Which of the following statements are not equivalent to the statement

$$ker(A) = \{0\}$$
?

- The columns of A are linearly independent
- The rows of *A* are linearly independent
- A has n linearly independent rows
- ► A has n linearly independent columns
- ightharpoonup The image of A is \mathbb{R}^m
- ► The column-rank of *A* is *n*
- ▶ The row-rank of *A* is *n*
- ► The rank of *A* is *n*

(1,1)

Sub-system of active inequalities

$$P = \{x \in \mathbb{R}^n : Ax \leq b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

$$A \approx b \approx b$$

$$a \mathbb{I}_{x} \approx \beta m$$

For $x^* \in \mathbb{R}^n$, $I = \{i : 1 \le i \le m, a_i^T x^* = b_i\}$ are indices of inequalities active at x^* .

Example:
$$P = \{x \in \mathbb{R}^3 : Ax \le b\}, A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 1 \\ 4 \\ 2 \end{pmatrix}, x^* = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Sub-system of active inequalities

Write
$$I = \{i_1, \dots, i_k\}$$
 with $i_1 < i_2 < \dots < i_k$ and let $A_I = \begin{pmatrix} a_{i_1}^t \\ \vdots \\ a_{i_k}^T \end{pmatrix}$, $b_I = \begin{pmatrix} b_{i_1} \\ \vdots \\ b_{i_k} \end{pmatrix}$

 $A_I x \leq b_I$ is *sub-system* of inequalities active at x^* .

Example:
$$P = \{x \in \mathbb{R}^3 : Ax \le b\}, A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 1 \\ 4 \\ 2 \end{pmatrix}, x^* = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 1 \\ 4 \\ 2 \end{pmatrix}, x^* = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Basic solutions

Consider polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$. A point $x^* \in \mathbb{R}^n$ is a basic solution if $\operatorname{rank}(A_I) = n$.

If $x^* \in P$, then x^* is basic feasible solution.

Example:
$$P = \{x \in \mathbb{R}^3 : Ax \le b\}, A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 1 \\ 4 \\ 2 \end{pmatrix}, x_1^* = \begin{pmatrix} -1/2 \\ 3/2 \\ 5/2 \end{pmatrix}, x_2^* = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

$$A_1 \times \{A_1\} = 3$$
 $Y_{ANK} = \{A_1\} = 3$
 $X_1 = \{A_1\} = 3$
 $X_2 = \{A_1\} = 3$
 $X_3 = \{A_1\} = 3$
 $X_4 = \{A_1\} = 3$
 $X_3 = \{A_1\} = 3$
 $X_4 = \{$

$$A_2 \times b_2$$

$$A_2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad rank(A_2) = 3$$

$$X_2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad rank(A_2) = 3$$

$$X_2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad rank(A_2) = 3$$

not mussorily feosible

Quiz

Vertices and basic feasible solutions

Theorem

if and only if

Let $P = \{x \in \mathbb{R}^n : Ax \le b\}$ and $x^* \in P$. Then x^* is vertex of P iff x^* is basic feasible solution.

$$= \sum_{k=0}^{\infty} \frac{x^{k} \in P \text{ vertex}}{A_{1} \times E \text{ ba}} \text{ assume } \frac{\text{not a basic fies}}{A_{2} \times E \text{ ba}} . \text{ some } \frac{A_{1} \times E \text{ ba}}{A_{2} \times E \text{ ba}} . \text{ some } \frac{A_{2} \times E \text{ basic field}}{A_{3} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ basic field}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{4} \times E \text{ ba}}{A_{4} \times E \text{ ba}} . \text{ some } \frac{A_{$$

Vertices and basic feasible solutions

Theorem

Let $P = \{x \in \mathbb{R}^n : Ax \le b\}$ and $x^* \in P$. Then x^* is vertex of P iff x^* is basic feasible solution.

Let
$$P = \{x \in \mathbb{R}^n : Ax \leqslant b\}$$
 and $x^* \in P$. Then x^* is vertex of P iff x^* is basic feasible solution.

And $x \in b$ are derive at x^* replicable and of $A_2 \times b = b$.

And $A_2 \times b = b$ are derive at $A_3 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$ are derive at $A_4 \times b = b$.

And $A_4 \times b = b$ are derive at $A_4 \times b = b$ are derive at