# Lecture3: Diode

Sung-Min Hong (<a href="mailto:smhong@gist.ac.kr">smhong@gist.ac.kr</a>)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

### **Two-terminal element**

- Terminal quantities
  - Two terminal voltages
  - Two terminal currents



- Number of independent quantities
  - Note that  $I_1 + I_2 = 0$ .
  - Note that a common change in  $V_1$  and  $V_2$  does not make a difference.
  - Therefore,  $I_1$  and  $V_1 V_2$  can be regarded as independent variables.
- Each two-terminal elements has its own relation between  $I_1$  and  $V_1 V_2$ .

## Current vs. voltage

#### Sources

- Voltage source:  $V_1 V_2 = V_{source}$
- Current source:  $I_1 = -I_2 = I_{source}$

#### R, L, C

- Resistor:  $I_1 = \frac{V_1 V_2}{R}$
- Capacitor:  $I_1 = C \frac{d(V_1 V_2)}{dt}$
- Inductor:  $V_1 V_2 = L \frac{dI_1}{dt}$
- They are linear. (When you scale the voltage, the current is scaled with the same factor.)



# **Nonlinearity?**

- Consider a toggle light switch.
- Assume a circuit element.



- For a negative voltage, it's electrically open.
- For a positive voltage, it's resistive.
- Is there such a circuit element? Yes!

#### Diode

- In 1919, the term diode was coined from the Greek roots di (from δi), meaning 'two', and ode (from ὁδός), meaning 'path'. (Taken from Wikipedia)
  - Its symbol



– Current → : Allowed

Current ← : Not allowed

### Forward/reverse

#### Forward bias

The voltage at the cathode is higher than the adode voltage.



#### Reverse bias

The voltage at the anode is lower than the cathode voltage.



### **Fabrication**

- PN junction
  - Results of the process simulation are shown.
  - Red: Silicon region with Arsenic ions
  - Blue: Silicon region with Boron ions



### Vertical doping profile

Active dopant





# Equilibrium (1)

- When the applied voltage is zero, no current occurs.
  - Many electrons in the "red" region. (Doped with Arsenic ions. "ntype")
  - Many holes in the "blue" region. (Doped with Boron ions. "p-type")
  - Due to the diffusion mechanism, they tend to spread over.
  - Then, we will have the net current! (It's not possible.)



# Equilibrium (2)

- An electric field is built. (Built-in field)
  - It pushes the electrons back to the n-type region.
  - It pushes the holes back to the p-type region.
  - Direction of the electric field?
  - At equilibrium, drift (due to the electric field) and diffusion (due to the density difference) are exactly matched.



#### **Forward bias**

- We have a positive voltage at the anode.
  - Additional electric field from positive to 0 V
  - The external voltage opposes the built-in potential.
  - No sufficiently strong electric field to prevent the diffusion
  - It raises the diffusion currents substantially.



### Reverse bias

- We have a negative voltage at the anode.
  - Additional electric field from 0 V to negative
  - The applied voltage enhances the field.
  - Even stronger electric field to prevent the diffusion
  - It prohibits the current flow.
- Highly nonlinear operation!



## IV characteristics (1)

#### Review

- The diode current,  $I_D$ , is depedent on the diode voltage,  $V_D$ .
- Then, what is  $I_D(V_D)$ ?
- Compare  $V_D = 0.3 \text{ V}$ , 0.4 V, and 0.5 V.
  - We know that the electric field for 0.5 V is weakest.
  - Of course, for 0.3 V, it is strongest.
  - Anyway, they are different by a constant voltage, 0.1 V.
  - Then, what about  $I_D(0.3)$ ,  $I_D(0.4)$ , and  $I_D(0.5)$ ?
  - Do you expect a linear dependence?

# IV characteristics (2)

- Exponential dependence on V<sub>D</sub>
  - $V_D$  is normalized by the thermal voltage,  $V_T = \frac{k_B T}{q}$ .
  - At 300 K,  $V_T$  ≈ 0.002585 V = 25.85 mV.
  - Then, the diode current can be written as

$$I_D = I_S \left( \exp \frac{V_D}{V_T} - 1 \right)$$

– Here, the "reverse saturation current" ( $I_S$ ) is a given constant. It's a small current.

# IV characteristics (3)

#### Some limiting cases:

$$I_D = I_S \left( \exp \frac{V_D}{V_T} - 1 \right)$$

- When  $V_D$  is close to zero,  $\exp \frac{V_D}{V_T} \approx 1 + \frac{V_D}{V_T}$   $I_D = I_S \frac{V_D}{V_T}$
- When  $V_D$  is negative and  $V_D \ll -V_T$ ,  $\exp \frac{V_D}{V_T} \approx 0$   $I_D = -I_S$
- When  $V_D$  is positive and  $V_D \gg V_T$ ,  $I_D = I_S \exp \frac{V_D}{V_T}$