Positive tweets

I am happy because I am Learning NLP I am happy, not sad.

Negative tweets

Iam sad, Iam not Learning NLP Iam sad, not happy.

Frequency table

9					
word	Pos	Neg	word	Pos	Non
1	3	3	I =	$\frac{3}{3} = 0.23$	Neg
am	3	3		= 0,23	0,25
happy	2	1	am	0,23	0.25
4	2	7	happy	0,15	0.08
pecanse	1	0	be cause	0.08	O.
Learning	1	1	Learning	6.08	0.08
NLP	1	1.	NLP	0.08	0.08
Sad	1	2	Sad	0.08	0.17
not	1	2	not	0.08	0.17
Nolass	13	12			,

I am happy today; I am learning

$$\frac{m}{TT} \frac{P(W; | Pos)}{P(W; | neg)} = \frac{0.23}{0.25} \frac{0.23}{0.25} \frac{0.15}{0.08} \pm \frac{0.23}{0.25} \frac{0.23}{0.25} \frac{0.08}{0.08}$$

= 1.34 >1 positive!

Laplacian Smoothing.

usually we compute

However, if a word does not appear in the traing, it get a probability of o. to fix this we all smoothing

V: number of unique words in vocabulary

N: number of total frequency in each class

Likelihood ratio

For a word
$$Wi$$
, ratio $o(Wi) = \frac{P(Wi|Pos)}{P(Wi|Neg)}$

$$= \frac{freq(Wi, 1) + 1}{freq(Wi, 0) + 1}$$
For Npositive $\approx N \text{ negative}$.

To infer sentiment of a tweet, we can compute

Log likelihood