Introducción a las Finanzas

Ayudantía Solidaria asanhuezac

29 de Septiembre 2020

Contenido de Ayudantía

Matemática Financiera

2 Bonos

3 Criterios de Evaluación de Proyectos

$$VF_n^m = V_0(1 + \frac{r}{m})^{mn}$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF_n^m = V_0 * e^{rn}$$

$$VF_n^m = V_0(1 + \frac{r}{m})^{mn}$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF = 1000(1+0.1)^5$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF = 1000(1+0.1)^5$$

$$VF = 1610.51$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF = 1000(1+0.1)^5$$

$$VF = 1610.51$$

$$VF = 1000(1+0.1)^7$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF = 1000(1+0.1)^5$$

$$VF = 1610.51$$

$$VF = 1000(1+0.1)^7$$

$$VF = 1948.7171$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF = 2000(1 + \frac{0.15}{4})^{4*5}$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF = 2000(1 + \frac{0.15}{4})^{4*5}$$

$$VF = 2000(1 + 0.0375)^{20}$$

$$VF_n^m = V_0(1+\frac{r}{m})^{mn}$$

$$VF = 2000(1 + \frac{0.15}{4})^{4*5}$$

$$VF = 2000(1 + 0.0375)^{20}$$

$$VF = 4176.3$$

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

$$(1+r_A)=(1+\frac{0.12}{12})^{12}$$

$$(1+r_A) = (1+\frac{r}{m})^{m1}$$

$$(1+r_A)=(1+\frac{0.12}{12})^{12}$$

$$(1+r_A)=(1+0.01)^{12}$$

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

$$(1+r_A)=(1+\frac{0.12}{12})^{12}$$

$$(1+r_A)=(1+0.01)^{12}$$

$$(1 + r_A) = 1.1268$$

$$(1+r_A) = (1+\frac{r}{m})^{m1}$$

$$(1+r_A)=(1+\frac{0.12}{12})^{12}$$

$$(1+r_A)=(1+0.01)^{12}$$

$$(1 + r_A) = 1.1268$$

$$r_A = 0.1268$$

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

$$(1+r_A)=(1+\frac{0.12}{12})^{12}$$

$$(1+r_A)=(1+0.01)^{12}$$

$$(1 + r_A) = 1.1268$$

$$r_A = 0.1268$$

$$r_A = 12.68\%$$

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

Si la inversión fuese de 1000

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

Si la inversión fuese de 1000

$$1000(1+0.01)^{12}$$

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

Si la inversión fuese de 1000

$$1000(1+0.01)^{12}$$

1126.8

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

Si la inversión fuese de 1000

$$1000(1+0.01)^{12}$$

1126.8

$$1000(1+0.1268)^1$$

$$(1+r_A)=(1+\frac{r}{m})^{m1}$$

Si la inversión fuese de 1000

$$1000(1+0.01)^{12}$$

1126.8

$$1000(1+0.1268)^1$$

1126.8

$$VP = \sum_{i=1}^{n} \frac{C_i}{(1+r_i)^i}$$

$$VP = \sum_{i=1}^{n} \frac{C_i}{(1+r_i)^i}$$

Con una tasa de descuento del 10% traiga a valor presente los siguientes flujos. [200;10000;-3000]

$$VP = \sum_{i=1}^{n} \frac{C_i}{(1+r_i)^i}$$

Con una tasa de descuento del 10% traiga a valor presente los siguientes flujos. [200;10000;-3000]

$$VP = \frac{200}{1.1} + \frac{10000}{(1.1^2)} - \frac{3000}{1.1^3}$$

$$VP = \sum_{i=1}^{n} \frac{C_i}{(1+r_i)^i}$$

Con una tasa de descuento del 10% traiga a valor presente los siguientes flujos. [200;10000;-3000]

$$VP = \frac{200}{1.1} + \frac{10000}{(1.1^2)} - \frac{3000}{1.1^3}$$

$$VP = 6192.33$$

Usted está feliz porque recibirá 5000 de dividendos el próximo año, y este crecerá a una tasa del 5% hasta el infinito. Si la tasa de descuento es de un 20%, ¿Cuál es el valor presente de estos excelentes dividendos?

Usted está feliz porque recibirá 5000 de dividendos el próximo año, y este crecerá a una tasa del 5% hasta el infinito. Si la tasa de descuento es de un 20%, ¿Cuál es el valor presente de estos excelentes dividendos?

$$VP = \frac{5000}{(0.2 - 0.05)}$$

Usted está feliz porque recibirá 5000 de dividendos el próximo año, y este crecerá a una tasa del 5% hasta el infinito. Si la tasa de descuento es de un 20%, ¿Cuál es el valor presente de estos excelentes dividendos?

$$VP = \frac{5000}{(0.2 - 0.05)}$$

$$VP = 33333.33$$

Perpetuidad

Usted está feliz porque recibirá 5000 de dividendos el próximo año, y este crecerá a una tasa del 5% hasta el infinito. Si la tasa de descuento es de un 20%, ¿Cuál es el valor presente de estos excelentes dividendos?

$$VP = \frac{5000}{(0.2 - 0.05)}$$

$$VP = 33333.33$$

¿Qué pasa si r < g ?

$$(1+0.2)=(1+\frac{r}{12})^{12}$$

$$(1+0.2) = (1+\frac{r}{12})^{12}$$

$$\sqrt[12]{1.2} - 1 = \frac{r}{12}$$

Una inversión paga cuotas mensuales de 1000 hasta 4 años. Si la tasa anual efectiva es de 20%, ¿Cuánto es el valor presente de esta inversión?

$$(1+0.2) = (1+\frac{r}{12})^{12}$$

$$\sqrt[12]{1.2} - 1 = \frac{r}{12}$$

Tasa = 0.0153

$$VP = \frac{C}{r} [1 - \frac{1}{(1+r)^T}]$$

$$VP = \frac{C}{r} [1 - \frac{1}{(1+r)^T}]$$

$$VP = \frac{1000}{0.0153} \left[1 - \frac{1}{(1 + 0.0153)^{48}}\right]$$

$$VP = \frac{C}{r} [1 - \frac{1}{(1+r)^T}]$$

$$VP = \frac{1000}{0.0153} \left[1 - \frac{1}{(1 + 0.0153)^{48}} \right]$$

$$VP = 33825.55$$

Anualidad Creciente

Mezclando lo aprendido

Usted quiere evaluar el valor presente de una inversión que entrega 1000 entre los años 2 y 5 (inclusive) a una tasa de 10%, luego entre los años 7 y 11 (inclusive) los flujos serán de 7.000 a una tasa de 3%. Finalmente hay una perpetuidad de 10000 desde el año 15 en adelante, a una tasa de 2%. Las tasas de descuento en los periodos que no tienen flujos es de un 7%

Mezclando lo aprendido

Usted quiere evaluar el valor presente de una inversión que entrega 1000 entre los años 2 y 5 (inclusive) a una tasa de 10%, luego entre los años 7 y 11 (inclusive) los flujos serán de 7.000 a una tasa de 3%. Finalmente hay una perpetuidad de 10000 desde el año 15 en adelante, a una tasa de 2%. Las tasas de descuento en los periodos que no tienen flujos es de un 7%

$$VP = \frac{1000}{0.1} \left[1 - \frac{1}{(1.1)^4}\right] \frac{1}{(1.07)} + \frac{7000}{0.03} \left[1 - \frac{1}{(1.03)^5}\right] \frac{1}{(1.07)^2} \frac{1}{(1.1)^4} + \frac{10000}{0.02} \frac{1}{(1.07)^5} \frac{1}{(1.03)^5} \frac{1}{(1.1^4)}$$

Valorización Bonos

$$Precio = \sum_{i=1}^{n} \frac{Cup\acute{o}n}{(1+r_{i})^{i}} + \frac{Principal}{(1+r_{n})^{n}}$$

Valorización Bonos

$$Precio = \sum_{i=1}^{n} \frac{Cup\acute{o}n}{(1+r_i)^i} + \frac{Principal}{(1+r_n)^n}$$

Conceptos fundamentales:

- Principal/Valor Nominal/Valor a la Par
- Cupón
- Tasa cupón
- Tasas spot
- Tasa TIR (Yield to Madurity)
- Tabla de amortización

$$Precio = \frac{Principal}{(1+r_n)^n}$$

$$Precio = \frac{Principal}{(1+r_n)^n}$$

Un bono cupón 0 tiene un precio de 1000, un valor nominal de 3000, una composición semestral y un vencimiento a 5 años. ¿Cuál seria el rendimiento al vencimiento del bono?

$$Precio = \frac{Principal}{(1+r_n)^n}$$

Un bono cupón 0 tiene un precio de 1000, un valor nominal de 3000, una composición semestral y un vencimiento a 5 años. ¿Cuál seria el rendimiento al vencimiento del bono?

$$1000 = \frac{3000}{(1+r)^{10}}$$

$$Precio = \frac{Principal}{(1+r_n)^n}$$

Un bono cupón 0 tiene un precio de 1000, un valor nominal de 3000, una composición semestral y un vencimiento a 5 años. ¿Cuál seria el rendimiento al vencimiento del bono?

$$1000 = \frac{3000}{(1+r)^{10}}$$

$$(1+r) = \sqrt[10]{\frac{3000}{1000}}$$

$$Precio = \frac{Principal}{(1+r_n)^n}$$

Un bono cupón 0 tiene un precio de 1000, un valor nominal de 3000, una composición semestral y un vencimiento a 5 años. ¿Cuál seria el rendimiento al vencimiento del bono?

$$1000 = \frac{3000}{(1+r)^{10}}$$

$$(1+r) = \sqrt[10]{\frac{3000}{1000}}$$

r = 0.1161 expresada semestralmente r = 0.2322 expresada anualmente

Estructura de Tasas

Relación tasa spot y forward

Invertir en un bono a 2 años al 20%, es igual a invertir en un bono a 18% el primer año y luego invertir a una tasa hipotética (esperada) de 22%

Relación tasa spot y forward

Invertir en un bono a 2 años al 20%, es igual a invertir en un bono a 18% el primer año y luego invertir a una tasa hipotética (esperada) de 22%

$$(1+_{0}r_{T}) = \left[(1+_{0}r_{1})(1+_{1}f_{2})\cdots(1+_{T-1}f_{T}) \right]^{\frac{1}{T}}$$

Valor Nominal=1000000

Valor Nominal=1000000

Valor Nominal=1000000 Tasa cupón=15% ¿Precio del Bono a 2 años? ¿Rendimiento del Bono a 2 años?

Valor Nominal=1000000 Tasa cupón=15% ¿Precio del Bono a 2 años? ¿Rendimiento del Bono a 2 años?

Valor Nominal=1000000 Tasa cupón=15% ¿Precio del Bono a 2 años? ¿Rendimiento del Bono a 2 años?

Bono Bullet/Americano

$$Precio = \sum_{i=1}^{n} \frac{Cup\acute{o}n}{(1+r_{i})^{i}} + \frac{Principal}{(1+r_{n})^{n}}$$

Bono Francés

$$Precio = \sum_{i=1}^{n} \frac{Cup\acute{o}n}{(1+r_{i})^{i}}$$

Con una tasa $_1f_2=4\%$ saque la estructura de tasas spot y forwards con la siguiente información.

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

Con una tasa $_1f_2=4\%$ saque la estructura de tasas spot y forwards con la siguiente información.

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

$$1100 = \frac{1250}{(1 +_0 r_3)^3}$$

Con una tasa $_1f_2=4\%$ saque la estructura de tasas spot y forwards con la siguiente información.

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

$$1100 = \frac{1250}{(1 +_0 r_3)^3}$$
$$_0 r_3 = 4.35\%$$

$$_{1}f_{2}=4\% _{0}r_{3}=4.35\%$$

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

$$_{1}f_{2}=4\% _{0}r_{3}=4.35\%$$

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

Periodo	T = 1	T=2	Precio
$3 \cdot Bono \ 2$ - $Bono \ 3$	$\begin{array}{c} 6\% \\ \text{-}6\% \end{array}$	306 -106	300 -108
	0	200	192

$$_{1}f_{2}=4\% _{0}r_{3}=4.35\%$$

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

Periodo	T = 1	T=2	Precio
3 · Bono 2 - Bono 3	6 % -6 %	306 -106	300 -108
	0	200	192

$$192 = \frac{200}{(1 + _0 r_2)^2}$$
$$_0 r_2 = 2.06\%$$

$$_{1}f_{2}=4\% _{0}r_{2}=2.06\% _{0}r_{3}=4.35\%$$

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

$$_{1}f_{2} = 4\% _{0}r_{2} = 2.06\% _{0}r_{3} = 4.35\%$$

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2,\!25\%$
Precio	1.100	100	108	88	91

$$(1.0206)^2 = (1 +_0 f_1)(1.04)$$

 $_0 f_1 = 0.16\%$
 $(1.0435)^3 = (1.0016)(1.04)(1 +_2 f_3)$
 $_2 f_3 = 9.09\%$

$$_{0}f_{1} = 0.16\%$$
 $_{1}f_{2} = 4\%$ $_{2}f_{3} = 9.09\%$ $_{0}r_{2} = 2.06\%$ $_{0}r_{3} = 4.35\%$

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

$$_{0}f_{1} = 0.16\%$$
 $_{1}f_{2} = 4\%$ $_{2}f_{3} = 9.09\%$ $_{0}r_{2} = 2.06\%$ $_{0}r_{3} = 4.35\%$

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

	T = 1	T=2	T = 3	T=4	Precio
$1,125 \cdot Bono \ 4$ $Bono \ 5$,	, , , , , ,	$^{2,25\%}_{-2,25\%}$,	99 -91
	0	0	0	10,205	8

$$_{0}f_{1} = 0.16\%$$
 $_{1}f_{2} = 4\%$ $_{2}f_{3} = 9.09\%$ $_{0}r_{2} = 2.06\%$ $_{0}r_{3} = 4.35\%$

	Bono 1	Bono 2	Bono 3	Bono 4	Bono 5
Madurez (años)	3	2	2	4	4
Valor Nominal	1.250	100	100	98	100
Tasa Cupón (anual)	0%	2%	6%	2%	$2{,}25\%$
Precio	1.100	100	108	88	91

	T = 1	T=2	T = 3	T=4	Precio
$1,125 \cdot Bono \ 4$ $Bono \ 5$	/	, , , , , ,	2,25% -2,25\%	,	99 -91
	0	0		10,205	8

$$8 = \frac{10250}{(1+o_{4})^{4}}$$

$$o_{4} = 6.27\%$$

$$(1.0627)^{4} = (1.0016)(1.04)(1.0909)(1+o_{4})$$

$$o_{4} = 12.25\%$$

Bono	Valor Nominal	Tasa cupón (anual)	pón Tasa de colocación Pago de Intereses Pontal (anual)		Pago de Amortización	Años al Vencimiento	
A	10000	4%	5%	Semestral	Al Vencimiento	5 Años	
В	15000	6%	3%	Semestral	Semestral	3 Años	

- 1) ¿Qué tipo de Bonos son los bonos A y B?
- 2) Calcule el Precio de los bonos al momento de su colocación
- 3) Presente la tabla de amortización del bono A y B.

Bono	Valor Nominal	Tasa cupón (anual)	Tasa cupón (anual) Tasa de colocación Pago de Intereses (anual)		Pago de Amortización	Años al Vencimiento	
A	10000	4%	5%	Semestral	Al Vencimiento	5 Años	
В	15000	6%	3%	Semestral	Semestral	3 Años	

$$Bono_{A} = \frac{10000 * 0.02}{0.025} [1 - \frac{1}{(1 + 0.025)^{10}}] + \frac{10000}{(1 + 0.025)^{10}}$$

$$Bono_{A} = 9562.39$$

Bono	Valor	Nominal		a cupón nual)	Tasa	de colocación (anual)	Pago de Inter	Pago de Intereses		Pago de Amortización		encimiento	
A	1	0000	4%		5%		Semestral		Al V	encimiento	5 A	ños	
В	15000			6%	3%		Semestral		Semestral Semestral		emestral	3 A	ños
Seme	estre	Saldo Inic	ial	Cuota		Intereses	Amortización	Sal	do Final				
C)								10000				
1	L	10000	0 200			200	0		10000				
2	2	10000)]	200		200	0		10000				
3	3	10000		200		200	0		10000				
4	1	10000)]	200		200	0		10000				
5	5	10000)	200		200	0		10000				
ϵ	5	10000)	200		200	0		10000				
7	7	10000)	200		200	0		10000				
8	3	10000)	200		200	0		10000				
g	9	10000)	200		200	0		10000				
1	0	10000)	10200)	200	10000		0				
		Total		12000	0 2000		10000						
		VP		\$9.562,40									

Bono	Valor Nominal	Tasa cupón (anual)	Tasa de colocación (anual)	Pago de Intereses	Pago de Amortización	Años al Vencimiento
A	10000	4%	5%	Semestral	Al Vencimiento	5 Años
В	15000	6%	3%	Semestral	Semestral	3 Años

$$15000 = \sum_{i=1}^{n} \frac{cup\acute{o}n}{(1+0.03)^{i}}$$

$$15000 = \frac{cup\acute{o}n}{0.03} [1 - \frac{1}{(1+0.03)^{6}}]$$

$$cup\acute{o}n = 2768.96$$

$$Bono_{B} = \frac{2768.96}{0.015} [1 - \frac{1}{(1+0.015)^{6}}]$$

$$Bono_{B} = 15775.28$$

Bono	Valor N	Vominal	Tasa c	•		colocación ual)	Pago	de Intereses	Pago de Amortizacio	Años al Vencimiento
A	100	000	4%	6	5	%	Semestral		Al Vencimiento	5 Años
В	150	000	6%	6	3	%		Semestral	Semestral	3 Años
_	nestre 0	Saldo Ir	nicial	Cı	uota	Interes	es	Amortizació	n Saldo Final 15000	

nal
5000
1,04
2,51
2,32
8,33
8,31
0
3:

Tipos de proyectos

- Proyectos Independientes
 El aceptar o rechazar un proyecto, no repercute en la desición de aceptar o rechazar otro proyecto.
 Debemos aceptar proyectos que aprueben un criterio mínimo.
- Proyectos Mutuamente excluyentes
 El aceptar o rechazar un proyecto repercute en la desición de aceptar o rechazar otro proyecto. ¿Razones?
 Naturaleza del proyecto o falta de dinero para realizarlos todos.
 Debemos rankear y elegir el mejor proyecto.

VAN

$$VAN = -I_0 + \sum_{i=1}^{n} \frac{Flujo_i}{(1+r_i)^i}$$

Periodo de Recuperación (Descontado)

Problemas:

- Valor del dinero en el tiempo
- Flujos luego del corte
- Criterio Arbitrario r=10%

TABLE 6.1 Expected Cash Flows for Projects A through C (\$)

A	В	С
-100	-100	-100
20	50	50
30	30	30
50	20	20
60	60	60,000
3	3	3
	20 30 50 60	20 50 30 30 50 20 60 60

$$0 = -I_0 + \sum_{i=1}^n \frac{Flujo_i}{(1+TIR)^i}$$

Tasa(s) de descuento que hace(n) al VAN=0

Tasa que nos dice el rendimiento del proyecto

Proyecto A:Inversión/Prestar

Proyecto B:Financiamiento/Pedir Prestado

Proyecto C:TIR Multiples

Problemas de escala

	Flujo de efectivo en la fecha 0	Flujo de efectivo en la fecha l	VPN @ 25%	TIR
Presupuesto pequeño	-\$10 millones	\$40 millones	\$22 millones	300%
Presupuesto grande	-25 millones	65 millones	27 millones	160

Problemas de escala

	Flujo de efectivo en la fecha 0	Flujo de efectivo en la fecha l	VPN @ 25%	TIR
Presupuesto pequeño	-\$10 millones	\$40 millones	\$22 millones	300%
Presupuesto grande	-25 millones	65 millones	27 millones	160

Solución con análisis Incremental

	Flujo de efectivo en la fecha 0 (en millones)	Flujo de efectivo en la fecha I (en millones)
Flujos de efectivo incrementales que resultan de elegir el presupuesto grande en lugar del presupuesto pequeño	-\$25 - (-I0) = -\$I5	\$65 - 40 = \$25

Problemas de escala

	Flujo de efectivo en la fecha 0	Flujo de efectivo en la fecha l	VPN @ 25%	TIR
Presupuesto pequeño	-\$10 millones	\$40 millones	\$22 millones	300%
Presupuesto grande	-25 millones	65 millones	27 millones	160

Solución con análisis Incremental

	Flujo de efectivo en la fecha 0 (en millones)	Flujo de efectivo en la fecha I (en millones)
Flujos de efectivo incrementales que resultan de elegir el presupuesto grande en lugar del presupuesto pequeño	-\$25 - (-I0) = -\$I5	\$65 - 40 = \$25

Fórmula para calcular la TIR incremental:

$$0 = -\$15 \text{ millones} + \frac{\$25 \text{ millones}}{I + TIR}$$

Problemas de timing

	Fluj	os de efecti	vo en el añ	ío		VPN		
Año:					@0%	@10%	@15%	TIR
Inversión A Inversión B	-\$10 000 -10 000	\$10 000 I 000	\$1 000 1 000	\$ 1 000 12 000	\$2 000 4 000	\$669 751	\$109 -484	16.04% 12.94

Problemas de timing

	Flujos de efectivo en el año				VPN			
Año:					@0%	@10%	@15%	TIR
Inversión A Inversión B	-\$10 000 -10 000	\$10 000 I 000	\$1 000 1 000	\$ 1 000 12 000	\$2 000 4 000	\$669 751	\$109 -484	16.04% 12.94

Indice de Rentabilidad

$$IR = \frac{VP}{Inversión}$$

- Si IR > 1 Acepto el proyecto
- Si IR = 1 Indiferente
- Si IR < 1 Rechazo el proyecto

Cuidado:

Si los proyectos sufren de problemas de escala o timing, entonces hay que hacer el análisis incremental. "IR Incremental"

Con una tasa de descuento del 25%, usted cuenta con la siguiente información de dos proyectos mutuamente excluyentes:

Año	Α	В
0	-1.000	-2.500
1	4.000	9.000
2	5.000	4.000

Con una tasa de descuento del 25%, usted cuenta con la siguiente información de dos proyectos mutuamente excluyentes:

Año	Α	В
0	-1.000	-2.500
1	4.000	9.000
2	5.000	4.000

- 1) Calcule el VAN de ambos proyectos.
- 2) Analice lo que hace con cada proyecto usando el periodo de recuperación, y el periodo de recuperación descontado, con un periodo de corte de 2 años
- 3) Calcule la TIR de ambos proyectos.
- 4) Calcule el Indice de Rentabilidad de ambos proyectos
- 5) Calcule la TIR Incremental.
- 6) Calcule el VAN Incremental

Con una tasa de descuento del 25%, usted cuenta con la siguiente información de dos proyectos mutuamente excluyentes:

Año	Α	В
0	-1.000	-2.500
1	4.000	9.000
2	5.000	4.000

$$VAN_A = -1000 + \frac{4000}{1,25} + \frac{5000}{(1,25)^2}$$

 $VAN_A = 5400$

$$VAN_B = -2500 + \frac{9000}{1,25} + \frac{4000}{1,25^2}$$

 $VAN_B = 7260$

$$r = 0.25$$

Año	Α	В
0	-1.000	-2.500
1	4.000	9.000
2	5.000	4.000

¿Recupero la inversión al primer año?

$$VP_A = -1000 + \frac{4000}{1.25}$$
$$VP_A = 2200$$

$$VP_B = -2500 + \frac{9000}{1.25}$$
$$VP_B = 4700$$

$$r = 0.25$$

Año	Α	В
0	-1.000	-2.500
1	4.000	9.000
2	5.000	4.000

$$0 = -1000 + \frac{4000}{(1 + TIR_A)} + \frac{5000}{(1 + TIR_A)^2}$$

$$1000 + 2000 TIR_A + 1000 TIR_A^2 = 4000 + 4000 TIR_A + 5000$$
$$1000 TIR_A^2 - 2000 TIR_A - 8000 = 0$$
$$TIR_A^2 - 2TIR - 8 = 0$$
$$(TIR_A - 4)(TIR_A + 2) = 0$$
$$TIR_A = 4 = 400\%$$

$$r = 0.25$$

Año	Α	В
0	-1.000	-2.500
1	4.000	9.000
2	5.000	4.000

$$0 = -2500 + \frac{9000}{(1 + TIR_B)} + \frac{4000}{(1 + TIR_B)^2}$$

$$2500 + 5000TIR_B + 2500TIR_B^2 = 9000 + 9000TIR_B + 4000$$

$$2500TI_BR^2 - 4000TIR_B - 10500 = 0$$

$$5TIR_B^2 - 8TIR_B - 21 = 0$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Llegamos al resultado (descartando la TIR negativa)

$$TIR_B = 3 = 300\%$$

$$r = 0.25$$

Año	Α	В
0	-1.000	-2.500
1	4.000	9.000
2	5.000	4.000

$$Inversi\,\acute{o}\,n_A=1000$$
 $VP_A=rac{4000}{1,25}+rac{5000}{1,25^2}$ $VP_A=6400$ $IR_A=rac{6400}{1000}$ $IR_A=6,4$

$$r = 0.25$$

Año	Α	В
0	-1.000	-2.500
1	4.000	9.000
2	5.000	4.000

Inversión_B = 2500

$$VP_B = \frac{9000}{1,25} + \frac{4000}{1,25^2}$$

 $VP_B = 9760$
 $IR_B = \frac{9760}{2500}$
 $IR_B = 3,904$

Aplicando lo aprendido

Operando los Proyectos B-A tendríamos los siguientes flujos

$$[-2500 - (-1000); 9000 - 4000; 4000 - 5000]$$

 $[-1500; 5000; -1000]$

Calculamos la TIR Incremental a partir de estos nuevos flujos incrementales

$$0 = -1500 + \frac{5000}{1 + TIR} - \frac{5000}{(1 + TIR)^2}$$
$$1500 + 3000TIR + 1500TIR^2 = 5000 + 5000TIR - 1000$$
$$1500TIR^2 - 2000TIR - 2500 = 0$$
$$3TIR^2 - 4TIR - 5 = 0$$

Llegamos al resultado (descartando la TIR negativa)

TIR Incremental=212%

Aplicando lo aprendido

Operando los Proyectos B-A tendríamos los siguientes flujos

$$[-2500 - (-1000); 9000 - 4000; 4000 - 5000]$$

 $[-1500; 5000; -1000]$

Calculamos el VAN incremental:

$$VAN = -1500 + \frac{5000}{1,25} - \frac{1000}{1,25^2}$$
 $VAN = -1500 + 3360$
 $VAN | Incremental = 1860$

Aplicando lo aprendido

Operando los Proyectos B-A tendríamos los siguientes flujos

$$[-2500 - (-1000); 9000 - 4000; 4000 - 5000]$$

$$[-1500; 5000; -1000]$$

$$Inversión = 1500$$

$$VP = \frac{5000}{1,25} - \frac{1000}{1,25^2}$$

$$VP = 3360$$

$$IR = \frac{3360}{1500}$$

IR Incremental=2,24