

	NSM	
	Gaurang Ahinave	
	UNIT - III	
		1
*	Gauss-Jordan Method	
	·Row transformation	
•	Gauss - Seidal Method	
	·Increasing order ·get eqt for x, y and Z · Keep Solving ·	
4	Numerical differentiation Integration Trapezoidal Rule	
6	h=b-a assume $n=c$ when not given	
	h (yo + yn + 2 (remaining term addition)	
•	Simpson's 1/3 Rule.	
	h = b - q	
	h (yo + yn + 2 (even terms) + 4 (odd terms))	
	· Repetation is not allowed.	
		-

Benantietten	1	PATE		
	7	7	7 3%	1
			9	

•	Simp	Sons	3/8th	Rule
1	7, 100			

· Without repetation.

◆ Eyler's Method.

$$\chi_{n+1} = \chi_n + h$$

$$y_{n+1} = y_n + h f(x_n, y_n)$$

where, h = Step Size (dor't Change once assumed)

◆ Modified Euler's Method.

$$\frac{y^{\circ}}{(n+1)} = \frac{y_n + hf(x_n, y_n)}{(n+1)}$$

$$\frac{y'}{(n+1)} = \frac{y_n + b}{2} \left[f(x_n, y_n) + f(x_{n+1}), y' \right]$$

www.controls		DATE	-		_]
-	7			10	-
	1	1		7	
-	_			Mr.	

	-I-I DATE I-I	
*	Range- Kulta Method	
	2nd order	
	$K_1 = hf(x_n, y_n)$	
	K2 = hf(2n+h, yn+k1)	
	$y_{n+1} = y_n + 1 (k_1 + k_2)$	
	4th Order	
	$k_1 = hf(x_n, y_n)$	
	$K2 = hf(3n + h/2, y_n + K_1/2)$	
	$k_3 = hf(x_n + h/2, y_n + k^2/2)$	
	$K_4 = hf(2n + h, y_n + k_3)$	
	$y_{n+1} = y_n + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$	