Лабораторная работа 3.4.1 Исследование диа- и парамагнетиков

Симанкович Александр Б01-104

30.09.2022

Аннотация

В работе изучены свойства диамагнетика (Cu) и парамагнетика (Al). Измерены значения магнитной восприимчивости меди и алюминия.

Ключевые слова: диамагнетики, парамагнетики.

Введение

Применение парамагнетиков и диамагнетиков весьма ограничены. При это изучение свойств парамагнетиков и диамагнетиков дает экспериментальные результаты для построения теорий квантовой физики, физики кристаллов и других связанных областей, что в свою очередь имеет множество приложений.

Данная работа была проведена в рамках учебного исследовательского курса в Московском физико-техническом институте. Целью работы ставится подтверждение теории, описывающей взаимодействия диа- и парамагнетиков с магнитным полем, а также определение их численных характеристик.

Теоретическая модель

Диамагнетизм

Диамагнитный эффект характерен всем веществам. Данный эффект определяется микроскопическими 'токами', создающимися при помещении вещества в магнитное поле из-за эффекта электромагнитной индукции.

Методика эксперимента

Оборудование и приборы

- электромагнит;
- аналитические весы;
- милливеберметр;
- регулируемый источник постоянного тока;
- образцы меди и алюминия;

В данной работе для определения свойств образцов используется метод Γiou . В нем в качестве образца выступает длинный тонкий стержень, один из концов которого помещается в зазор электромагнита (см. рис. 1). В зависимости от знака магнитной восприимчивости χ при включении электромагнита стержень будет втягиваться или выталкиваться из зазора.

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_{B_0} \approx \chi \frac{B_0^2}{2\mu_0} S.$$

Таким образом, мы получили, что парамагнетики ($\chi > 0$) втягиваются в зазор электромагнита, а диамагнетики ($\chi < 0$) выталкиваются.

Рис. 1: Схема взаимного расположения образца и магни-

Рис. 2: Схема установки.

Схема установки представлена на рис. 2. В зазоре электромагнита с сердечником, питаемого от источника постоянного тока, создается магнитное поле. Поскольку размер зазора меньше размеров полюсов $l << \sqrt{S}$, то поле можно считать однородным.

Для определения зависимости B(I) проводится калибровка электромагнита с помощью веберметра.

Для измерения магнитной восприимчивости будем находить силу, действующую на образец со стороны магнитного поля в электромагните. Для этого воспользуемся аналитическими весами. Изначальная масса образца измеряется при выключеном электромагните. После этого при включенном электромагните мы добиваемся равновесия весов. Перегрузка весов и будет являтся требуемой силой $\Delta P = F$.

Результаты

Калибровка электромагнита

Проведем градуировку электромагнита. Для этого измерим зависимость B(I), где B – модуль вектора индукции магнитного поле в зазоре, I_M – ток, протекающий через обмотки магнита. Измерения проведем милливеберметром М119 и миллитесламетром АКТАКОМ АТЕ-8702. Погрешности данных приборов:

$$\varsigma_{\text{B6}} = (0.015 \cdot \Phi + 0.05) \text{ мВб} \quad \varepsilon_{\text{Тл}} = (0.05 \cdot B + 10) \text{ мТл}$$

Точность измерения I_M определяется точностью амперметра A_1 , встроенного в лабораторный блок питания GPR-11H30D:

$$\varsigma_{A_1} = 0.005 \cdot I + 0.02 \text{ A}$$

Построим графики B(I) по результатам измерения магнитного поля милливеберметром и миллитесламетром.

Рис. 3: Зависимость поля в зазоре B от протекающего тока I

Как видно из графика, калибровка обоими приборами совпадает в пределах погрешности. Для вычисления значения поля в последующих пунктах используется калибровка с помощью тесламетра.

Измерение перегрузок

С помощью аналитических весов проведем измерения значения перегрузки ΔP при различных значениях поля B в зазоре электромагнита. Измерения будем проводить как в прямом (pocm), так и в обратном (nadenue) направлении.

Первые измерения проводим для меди и алюминия. Построим графики:

 Рис. 4: Зависимость перегрузки ΔP от поля в зазоре B для меди и алюминия На графиках наблюдаем линейную зависимость ΔP от B^2

Рис. 5: Зависимость перегрузки ΔP от поля в зазоре B для графита

Рис. 6: Зависимость перегрузки ΔP от поля в зазоре B для вольфрама

Заключение и выводы