OPTIMIZING OCEAN DEBRIS COLLECTION

Paulina Heine, University of Vienna

Motivation

Problem Modelling

t = 0

t = T

General Question: How to collect moving debris effectively?

Problem 1: **Currents shift** locations

We simulate movement using real ocean current data

Problem 2: Debris is **not a** solid island Cluster debris into hotspots, valued by plastic amount

How can we compute an optimal time-constrained collection path that maximizes the cumulative value of collected plastic?

At each time step: **Evaluate current** environment and determine next step

- t = 0: Evaluate environment→ select patch V3 as target
- t = 1: Move toward target V3
- t = 2: Collect V3, re-evaluate environment → select V5 as next target

Reactive Algorithmic Solution Approach

Procedure:

- 1. Evaluate Environment with all active hotspots.
- 2. **Assign** a target hotspot based on **selection rule**.
- 3. Navigate towards target until within collection range.
- 4. **Reassign** based on current environment.
- 5. Repeat until time runs out.

Which selection Rule?

Target the hotspot:

• that is closest to the current_ position (dynamic)

<u>OR</u>

with the highest Value (static)

Focus only on **Distance**

Focus only on Value

Extreme strategies lead to suboptimal results:

Distance-only:

- misses valuable patches → total collected value: 42 Value-only
 - long detours → total collected value: 46

Evaluate current environment, assign a Score to each hotspot based on **Value AND Distance**: Score = $\alpha \times proximity + (1-\alpha) \times$

- $\alpha \in (0,1) \rightarrow Balanced trade$ off
- → Select hotspot with highest score (dynamic)

Smart retargeting: Divert to V1 en route to avoid missing reachable value.

Results & Conclusion

Important Findings

value

- Dynamic hotspot allocation boosts collection by up to 35% vs. static strategies.
- Real-time retargeting increases the score furthermore.
- Best performance at α weighting ~0.8, balancing value and travel cost.
- Distance-only performs almost equal to static plan.

Value only 46 Distance only 42 Optimal Alpha 54 Retargeting 56 Static plan, dynamic env. 20 40 60

Technical View

This poster requires no technical knowledge, but the actual work was mostly **coding and** mathematical optimization.

This link leads to more detailed and technical information.