6-1 [after LaTeX notes]. Cyclic groups. Show pictures from book. What are the symmetries of a pinuheel? The cyclic group Cu is this symmetry group. [Draw Cayley diagram] or e, g, g, 1 .. g, .. [Show Fig 4.4 and 4.5.]. This is isomorphic to Zn. You can find cyclic groups inside other groups. Ex. S3 with generators L, AT 3-cycle. TO TO THE TOTAL TO The middle is the cyclic group C3. Can you find another cyclic group? <L>. Another? <LT> Another? <LT2>.

The orbits: {e, T, T}?

{e, L}

{e, LT}

{e, LT}

You can make an orbit diagram:

These one called cycle graphs. [-2]



Abelian groups.

Def. 6 is akelian if gh = hg for all g, h & G.



Notice that RB = BR.

Since the group be consiste of composites of Bord R this means weighting countes.

This is Cy x C2.

-XEEX

How to tell if a group is obelian? Every poir of arrows leaving a node has to close to a diamond shape. Multiplication tables must here symmetry.

7.7.





This is (3 × (2.

But add one for RB. It's Contract

too

See this in NT.

Look at 76 × 763. (will formally define DP later.)

|          |   | 0  | IN | Lu oe | (5) | 4  |
|----------|---|----|----|-------|-----|----|
| n (wod3) | 6 | 0  | 6  | 12    | 3   | 9  |
|          | 1 | 10 | 1  | 7     | 13  | 4  |
|          | 2 | 5  | 11 | 2     | 8   | 14 |
|          |   |    | 1  |       |     |    |

Adding 1 gets
-for everything.
This group is eyedle.

| 7.5                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------|
| Look at $\mathbb{Z}_4 \times \mathbb{Z}_2$ (do same) — is not.  — say 7: ended here.  Show the cycle gaphs from the book. |
| Show the cycle graphs from the book.                                                                                      |
| Dikedrol groups:                                                                                                          |
| Do the squere now. R and K.                                                                                               |
| Drow the CD.                                                                                                              |
| Suppose you had a hexagon.  In general                                                                                    |
| $D^{N} = \langle L' +   L_{n} = t_{5} = 6'   L_{+} = t_{L-1} \rangle$                                                     |
| - Multiplication tables.                                                                                                  |
| Now, do the clustering.                                                                                                   |
| Non-flip × non-flip tlip.<br>etc.                                                                                         |
| C5 as a subgroup, Cz os a quotient.                                                                                       |
| , , ,                                                                                                                     |