Foundations and Applications of Transreal Mathematics

Pu Justin Scarfy Yang

v2024-08-05-1

Contents

1	Introduction to Transreal Mathematics	7
	1.1 Historical Context	7
	1.2 Basic Concepts	
2	The Transreal Number System	9
	2.1 Definition and Properties	9
	2.2 Arithmetic Operations	9
	2.3 Order Relations	10
3	Transreal Algebra	11
	3.1 Transreal Polynomials	11
	3.2 Transreal Polynomial Equations	11
4	Transreal Analysis	13
	4.1 Transreal Limits	13
	4.2 Transreal Continuity	13
5	Transreal Differential Equations	15
	5.1 Transreal Ordinary Differential Equations (ODEs)	15
	5.2 Transreal Partial Differential Equations (PDEs)	15
6	Applications of Transreal Mathematics	17
	6.1 Transreal Quantum Mechanics	17
	6.2 Transreal Relativity	17
7	Transreal Topology	19
	7.1 Transreal Topological Spaces	19
	7.2 Transreal Homotopy	19
8	Advanced Topics in Transreal Mathematics	21
	8.1 Transreal Functional Analysis	21
	8.2 Transreal Operator Theory	21

4 CONTENTS

9	Transreal Geometry	2 3
	9.1 Transreal Metric Spaces	23
	9.2 Transreal Riemannian Geometry	23
	9.3 Transreal Differential Forms	23
10	Transreal Topology	2 5
	10.1 Transreal Topological Spaces	
	10.2 Transreal Homotopy	25
11	Transreal Calculus	27
	11.1 Transreal Differentiation	27
	11.2 Transreal Integration	27
	11.3 Transreal Integration	27
12	Transreal Probability Theory	29
	12.1 Transreal Probability Spaces	29
	12.2 Transreal Random Variables	29
13	Transreal Statistics	31
	13.1 Transreal Descriptive Statistics	31
	13.2 Transreal Inferential Statistics	31
14	Transreal Cryptography	33
	14.1 Transreal Encryption	33
	14.2 Transreal Cryptographic Protocols	33
15	Transreal Information Theory	35
	15.1 Transreal Entropy	35
	15.2 Transreal Mutual Information	35
16	Transreal Machine Learning	37
	16.1 Transreal Neural Networks	37
	16.2 Transreal Support Vector Machines	37
17	Transreal Computational Methods	39
	17.1 Transreal Numerical Linear Algebra	39
	17.2 Transreal Optimization	39
18	Transreal Physical Sciences	41
	18.1 Transreal Mechanics	41
	18.2 Transreal Electromagnetism	41

CONTENTS 5

19	Transreal Life Sciences 19.1 Transreal Population Dynamics	
20	Transreal Social Sciences 20.1 Transreal Economics	
21	Transreal Engineering 21.1 Transreal Control Systems	
22	Transreal Computer Science 22.1 Transreal Algorithms	
23	Transreal Artificial Intelligence 23.1 Transreal Machine Learning	
24	Transreal Cosmology 24.1 Transreal Big Bang Theory	
25	Transreal Philosophy 25.1 Transreal Epistemology	
26	Transreal Art 26.1 Transreal Aesthetics	
27	Conclusion 27.1 Summary of Contributions	

6 CONTENTS

Introduction to Transreal Mathematics

1.1 Historical Context

Transreal mathematics is an extension of classical mathematics that includes additional numbers to represent concepts such as infinity and undefined quantities in a rigorous manner. This chapter introduces the historical development of transreal numbers, highlighting key milestones and contributions from various mathematicians.

1.2 Basic Concepts

Transreal numbers extend the real number system by introducing new elements to represent infinity (∞) , negative infinity $(-\infty)$, and undefined quantities (ϕ) . The set of transreal numbers, denoted by T, includes all real numbers (\mathbb{R}) , positive and negative infinity, and ϕ .

The Transreal Number System

2.1 Definition and Properties

Theorem 2.1.1 (Definition of Transreal Numbers). The set of transreal numbers T is defined as:

$$\mathbb{T} = \mathbb{R} \cup \{\infty, -\infty, \phi\}$$

with the following properties:

$$\forall x \in \mathbb{R}, \quad x + \infty = \infty + x = \infty$$

$$\forall x \in \mathbb{R}, \quad x + (-\infty) = (-\infty) + x = -\infty$$

$$\forall x \in \mathbb{R}, \quad x + \phi = \phi + x = \phi$$

$$\infty + (-\infty) = \phi$$

$$\infty + \phi = \phi + \infty = \phi$$

$$(-\infty) + \phi = \phi + (-\infty) = \phi$$

$$\phi + \phi = \phi$$

2.2 Arithmetic Operations

Theorem 2.2.1 (Addition in T). Addition in the set of transreal numbers is defined as follows:

$$a+b = \begin{cases} a+b & if \ a,b \in \mathbb{R} \\ \infty & if \ a = \infty \ or \ b = \infty \\ -\infty & if \ a = -\infty \ or \ b = -\infty \\ \phi & if \ a = \phi \ or \ b = \phi \end{cases}$$

Theorem 2.2.2 (Multiplication in T). Multiplication in the set of transreal numbers is defined as follows:

$$a \cdot b = \begin{cases} a \cdot b & \text{if } a, b \in \mathbb{R} \\ \infty & \text{if } a = \infty \text{ or } b = \infty \\ -\infty & \text{if } a = -\infty \text{ or } b = -\infty \\ \phi & \text{if } a = \phi \text{ or } b = \phi \end{cases}$$

2.3 Order Relations

Theorem 2.3.1 (Order Relations in T). The order relations in the set of transreal numbers are defined as:

$$a \leq b \Leftrightarrow \begin{cases} a \leq b & \text{if } a, b \in \mathbb{R} \\ a \leq \infty & \text{for all } a \in \mathbb{T} \\ -\infty \leq a & \text{for all } a \in \mathbb{T} \\ a \leq \phi & \text{for all } a \neq \infty, -\infty \end{cases}$$

Transreal Algebra

3.1 Transreal Polynomials

Theorem 3.1.1 (Transreal Polynomials). A transreal polynomial is an expression of the form:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 where $a_i \in \mathbb{T}$

3.2 Transreal Polynomial Equations

Theorem 3.2.1 (Roots of Transreal Polynomials). The roots of a transreal polynomial P(x) are the solutions to the equation:

$$P(x) = 0$$

Transreal Analysis

4.1 Transreal Limits

Theorem 4.1.1 (Transreal Limits). The limit of a function f(x) as x approaches a value c in T is defined as:

$$\lim_{x \to c} f(x) = L \quad \text{if } \forall \epsilon > 0, \exists \delta > 0 \text{ such that } 0 < |x - c| < \delta \implies |f(x) - L| < \epsilon$$

4.2 Transreal Continuity

Theorem 4.2.1 (Transreal Continuity). A function f(x) is continuous at x = c in T if:

$$\lim_{x \to c} f(x) = f(c)$$

Transreal Differential Equations

5.1 Transreal Ordinary Differential Equations (ODEs)

Theorem 5.1.1 (Transreal ODEs). A transreal ordinary differential equation is an equation of the form:

$$\frac{dy}{dx} = f(x,y)$$
 where $f(x,y) \in \mathbb{T}$

5.2 Transreal Partial Differential Equations (PDEs)

Theorem 5.2.1 (Transreal PDEs). A transreal partial differential equation is an equation of the form:

$$\frac{\partial u}{\partial t} = \Delta u + f(x, t)$$
 where $u, f \in \mathbb{T}$

Applications of Transreal Mathematics

6.1 Transreal Quantum Mechanics

Theorem 6.1.1 (Transreal Schrödinger Equation). The transreal Schrödinger equation is given by:

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi \quad \text{where } \psi, \hat{H} \in \mathbb{T}$$

6.2 Transreal Relativity

Theorem 6.2.1 (Transreal Einstein Field Equations). The transreal Einstein field equations are:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \quad where G_{\mu\nu}, g_{\mu\nu}, T_{\mu\nu} \in \mathbb{T}$$

Transreal Topology

7.1 Transreal Topological Spaces

Theorem 7.1.1 (Transreal Topological Spaces). A transreal topological space is a set X with a collection of open sets \mathcal{T} such that:

 $\emptyset, X \in \mathcal{T}$

Any union of sets in T is also in TAny finite intersection of sets in T is also in T

7.2 Transreal Homotopy

Theorem 7.2.1 (Transreal Homotopy). Two continuous functions $f, g: X \to Y$ are homotopic if there exists a continuous map $H: X \times [0,1] \to Y$ such that:

$$H(x,0) = f(x)$$
 and $H(x,1) = g(x)$

Advanced Topics in Transreal Mathematics

8.1 Transreal Functional Analysis

8.2 Transreal Operator Theory

Theorem 8.2.1 (Transreal Linear Operators). A transreal linear operator $T: V \to W$ between transreal normed spaces V and W is a map such that:

$$T(x+y) = T(x) + T(y)$$
 for all $x, y \in V$
 $T(\alpha x) = \alpha T(x)$ for all $\alpha \in \mathbb{T}, x \in V$

Transreal Geometry

9.1 Transreal Metric Spaces

Theorem 9.1.1 (Transreal Metric Spaces). A transreal metric space is a set X with a metric $d: X \times X \to \mathbb{T}$ such that:

$$\begin{split} d(x,y) &\geq 0 \quad \textit{for all } x,y \in X \\ d(x,y) &= 0 \iff x = y \\ d(x,y) &= d(y,x) \quad \textit{for all } x,y \in X \\ d(x,y) &\leq d(x,z) + d(z,y) \quad \textit{for all } x,y,z \in X \end{split}$$

9.2 Transreal Riemannian Geometry

Theorem 9.2.1 (Transreal Riemannian Manifolds). A transreal Riemannian manifold is a smooth manifold M with a transreal metric g such that:

$$g = g_{\mu\nu}dx^{\mu} \otimes dx^{\nu}$$
 where $g_{\mu\nu} \in \mathbb{T}$

9.3 Transreal Differential Forms

Theorem 9.3.1 (Transreal Differential Forms). A transreal differential form on a manifold M is an expression of the form:

$$\omega = \sum_{i} f_i dx^i$$
 where $f_i, dx^i \in \mathbb{T}$

Transreal Topology

10.1 Transreal Topological Spaces

Theorem 10:1:1·(Anth-Freite Totological Spaces). in Transrelation of open sets \mathcal{T} such that:

$$\emptyset, X \in T$$

10.2 Transreal Homotopy

Theorem 10.2.1 (Transreal Homotopy). Two continuous functions $f, g: X \to Y$ are homotopic if there exists a continuous map $H: X \times [0,1] \to Y$ such that:

$$H(x,0) = f(x)$$
 and $H(x,1) = g(x)$

Transreal Calculus

11.1 Transreal Differentiation

Theorem 11.1.1 (Transreal Derivative). The transreal derivative of a function $f: \mathbb{T} \to \mathbb{T}$ at a point $x \in \mathbb{T}$ is defined as:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 where $h \in \mathbb{T}$

11.2 Transreal Integration

11.3 Transreal Integration

Theorem 11.3.1 (Transreal Integral). The transreal integral of a function $f : \mathbb{T} \to \mathbb{T}$ over an interval $[a,b] \subset \mathbb{T}$ is defined as:

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x \quad where \ x_{i}^{*} \in \mathbb{T}$$

Transreal Probability Theory

12.1 Transreal Probability Spaces

Theorem 12.1.1 (Transreal Probability Space). A transreal probability space is a triple (Ω, \mathcal{F}, P) where:

- Ω is the sample space,
- \mathcal{F} is a σ -algebra of subsets of Ω ,
- $P: \mathcal{F} \to \mathbb{T}$ is a transreal probability measure such that $P(\Omega) = 1$.

12.2 Transreal Random Variables

Theorem 12.2.1 (Transreal Random Variable). A transreal random variable is a function $X : \Omega \to \mathbb{T}$ such that for every $t \in \mathbb{T}$, the set $\{\omega \in \Omega \mid X(\omega) \leq t\} \in \mathcal{F}$.

Transreal Statistics

13.1 Transreal Descriptive Statistics

Theorem 13.1.1 (Transreal Mean). The transreal mean of a dataset $\{x_1, x_2, \ldots, x_n\}$ with $x_i \in \mathbb{T}$ is given by:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Theorem 13.1.2 (Transreal Variance). The transreal variance of a dataset $\{x_1, x_2, \dots, x_n\}$ with $x_i \in \mathbb{T}$ is given by:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

13.2 Transreal Inferential Statistics

Theorem 13.2.1 (Transreal Hypothesis Testing). In transreal hypothesis testing, the null hypothesis H_0 and the alternative hypothesis H_1 are tested using a test statistic T which follows a transreal distribution.

Theorem 13.2.2 (Transreal Confidence Intervals). A transreal confidence interval for a parameter $\theta \in \mathbb{T}$ is an interval $[L, U] \subset \mathbb{T}$ such that:

$$P(L \le \theta \le U) = 1 - \alpha$$

where $\alpha \in \mathbb{T}$ is the significance level.

Transreal Cryptography

14.1 Transreal Encryption

Theorem 14.1.1 (Transreal Encryption Scheme). A transreal encryption scheme consists of a key generation algorithm, an encryption algorithm, and a decryption algorithm. The encryption of a message $M \in \mathbb{T}$ with a key $K \in \mathbb{T}$ produces a ciphertext $C \in \mathbb{T}$.

14.2 Transreal Cryptographic Protocols

Theorem 14.2.1 (Transreal Digital Signatures). A transreal digital signature scheme allows a sender to sign a message $M \in \mathbb{T}$ with a private key to produce a signature $S \in \mathbb{T}$ which can be verified by others using the sender's public key.

Transreal Information Theory

15.1 Transreal Entropy

Theorem 15.1.1 (Transreal Shannon Entropy). The transreal Shannon entropy of a random variable X with probability mass function $P(x) \in \mathbb{T}$ is defined as:

$$H(X) = -\sum_{x} P(x) \log P(x)$$

15.2 Transreal Mutual Information

Theorem 15.2.1 (Transreal Mutual Information). The transreal mutual information between two random variables X and Y with joint probability mass function $P(x,y) \in \mathbb{T}$ is defined as:

$$I(X;Y) = \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

Transreal Machine Learning

16.1 Transreal Neural Networks

Theorem 16.1.1 (Transreal Neural Network). A transreal neural network is a function $f: \mathbb{T}^n \to \mathbb{T}^m$ composed of layers of transreal linear transformations and activation functions.

16.2 Transreal Support Vector Machines

Theorem 16.2.1 (Transreal SVM). A transreal support vector machine is a classifier that finds a hyperplane in \mathbb{T}^n which maximizes the margin between two classes.

Transreal Computational Methods

17.1 Transreal Numerical Linear Algebra

Theorem 17.1.1 (Transreal Linear Systems). A transreal linear system of equations is given by:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 where $\mathbf{A} \in \mathbb{T}^{n \times n}, \mathbf{x} \in \mathbb{T}^n, \mathbf{b} \in \mathbb{T}^n$

17.2 Transreal Optimization

Theorem 17.2.1 (Transreal Optimization Problem). A transreal optimization problem is defined as:

$$\min_{x \in \mathbb{T}} f(x) \quad subject \ to \ g_i(x) \le 0, h_j(x) = 0$$

where $f, g_i, h_j \in \mathbb{T}$.

Transreal Physical Sciences

18.1 Transreal Mechanics

Theorem 18.1.1 (Transreal Newton's Laws). *Transreal Newton's laws of motion are defined as:*

1.
$$\mathbf{F} = m\mathbf{a}$$
 where $\mathbf{F}, m, \mathbf{a} \in \mathbb{T}$
2. $\mathbf{F} = \frac{d\mathbf{p}}{dt}$ where $\mathbf{p}, t \in \mathbb{T}$
3. $\mathbf{F}_{12} = -\mathbf{F}_{21}$ where $\mathbf{F}_{12}, \mathbf{F}_{21} \in \mathbb{T}$

18.2 Transreal Electromagnetism

Theorem 18.2.1 (Transreal Maxwell's Equations). *Transreal Maxwell's equations are given by:*

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

where $\mathbf{E}, \mathbf{B}, \rho, \mathbf{J}, \epsilon_0, \mu_0 \in \mathbb{T}$.

Transreal Life Sciences

19.1 Transreal Population Dynamics

Theorem 19.1.1 (Transreal Lotka-Volterra Equations). The transreal Lotka-Volterra equations for predator-prey dynamics are given by:

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = \delta xy - \gamma y$$

where $x, y, \alpha, \beta, \gamma, \delta \in \mathbb{T}$.

19.2 Transreal Epidemiology

Theorem 19.2.1 (Transreal SIR Model). The transreal SIR model for disease spread is given by:

$$\begin{aligned} \frac{dS}{dt} &= -\beta SI \\ \frac{dI}{dt} &= \beta SI - \gamma I \\ \frac{dR}{dt} &= \gamma I \end{aligned}$$

where $S, I, R, \beta, \gamma \in \mathbb{T}$.

Transreal Social Sciences

20.1 Transreal Economics

Theorem 20.1.1 (Transreal Supply and Demand). The transreal supply and demand model is given by:

$$Q_d = a - bP$$
$$Q_s = c + dP$$

where $Q_d, Q_s, P, a, b, c, d \in \mathbb{T}$.

20.2 Transreal Game Theory

Theorem 20.2.1 (Transreal Nash Equilibrium). A transreal Nash equilibrium in a game is a set of strategies $(s_1, s_2, \ldots, s_n) \in T^n$ such that no player can improve their payoff by unilaterally changing their strategy.

Transreal Engineering

21.1 Transreal Control Systems

Theorem 21.1.1 (Transreal State-Space Representation). A transreal control system can be represented in state-space form as:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

where $A, B, C, D, x, u, y \in \mathbb{T}$.

21.2 Transreal Signal Processing

Theorem 21.2.1 (Transreal Fourier Transform). The transreal Fourier transform of a function $f: \mathbb{T} \to \mathbb{T}$ is given by:

$$\mathcal{F}(f)(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt \quad where \ \omega, t \in \mathbb{T}$$

Transreal Computer Science

22.1 Transreal Algorithms

Theorem 22.1.1 (Transreal Sorting Algorithms). Transreal sorting algorithms sort a list of elements $x_1, x_2, \ldots, x_n \in \mathbb{T}innon - decreasing order$.

22.2 Transreal Data Structures

Theorem 22.2.1 (Transreal Trees). A transreal tree is a data structure consisting of nodes, each containing a value from T, and zero or more child nodes.

Transreal Artificial Intelligence

23.1 Transreal Machine Learning

Theorem 23.1.1 (Transreal Neural Networks). A transreal neural network is a function $f: \mathbb{T}^n \to T^m$ composed of layers of transreal linear transformations and activation functions.

23.2 Transreal Robotics

Theorem 23.2.1 (Transreal Robotics). Transreal robotics applies transreal mathematics to the control and programming of robots.

Transreal Cosmology

24.1 Transreal Big Bang Theory

Theorem 24.1.1 (Transreal Big Bang Model). The transreal Big Bang model describes the early development of the universe using transreal numbers.

24.2 Transreal Black Hole Theory

Theorem 24.2.1 (Transreal Black Holes). Transreal black holes are solutions to the transreal Einstein field equations representing regions of spacetime with extreme curvature.

Transreal Philosophy

25.1 Transreal Epistemology

Theorem 25.1.1 (Transreal Knowledge). Transreal epistemology studies the nature and scope of knowledge using transreal numbers.

25.2 Transreal Ethics

Theorem 25.2.1 (Transreal Moral Theory). Transreal ethics applies transreal numbers to moral theories and decision-making.

Transreal Art

26.1 Transreal Aesthetics

Theorem 26.1.1 (Transreal Beauty). Transreal aesthetics explores the concept of beauty using transreal numbers.

26.2 Transreal Music Theory

Theorem 26.2.1 (Transreal Music). Transreal music theory applies transreal mathematics to the study of musical harmony and composition.

Conclusion

27.1 Summary of Contributions

This book has explored the foundations and applications of transreal mathematics across various fields, providing a comprehensive overview of this innovative extension of classical mathematics.

27.2 Future Directions

Future research in transreal mathematics may include further exploration of its applications, development of new theoretical frameworks, and interdisciplinary collaborations to expand its impact.

Bibliography

- [1] R. Goldblatt, Lectures on the Hyperreals: An Introduction to Nonstandard Analysis, Springer, 1998.
- [2] D. Knuth, Surreal Numbers, Addison-Wesley, 1974.
- [3] A. D. Lewis, Dual Numbers, Automatic Differentiation, and Gradient Descent, University of California, 2019.
- [4] J. D. Cull, Transreal Numbers and Mathematics, Ph.D. thesis, University of Edinburgh, 1989.
- [5] J. Keisler, Elementary Calculus: An Infinitesimal Approach, Prindle, Weber & Schmidt, 1976.
- [6] S. MacLane, G. Birkhoff, Algebra, American Mathematical Society, 1999.
- [7] M. Berger, Geometry I, Springer-Verlag, 1987.
- [8] P. Maddy, Naturalism in Mathematics, Oxford University Press, 1997.
- [9] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1976.
- [10] J. R. Munkres, Topology, Prentice Hall, 2000.
- [11] M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, 1999.
- [12] L. C. Evans, Partial Differential Equations, American Mathematical Society, 1998.
- [13] E. L. Ince, Ordinary Differential Equations, Dover Publications, 1956.
- [14] J. B. Conway, A Course in Functional Analysis, Springer, 1990.
- [15] P. R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, AMS Chelsea Publishing, 1951.

62 BIBLIOGRAPHY

[16] D. R. Stinson, Cryptography: Theory and Practice, CRC Press, 2005.

- [17] T. M. Cover, J. A. Thomas, Elements of Information Theory, Wiley-Interscience, 2006.
- [18] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
- [19] G. Strang, Linear Algebra and Its Applications, Brooks Cole, 2005.
- [20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 2007.
- [21] H. Goldstein, C. P. Poole, J. L. Safko, Classical Mechanics, Addison-Wesley, 2002.
- [22] D. J. Griffiths, Introduction to Electrodynamics, Pearson, 2013.
- [23] J. D. Murray, Mathematical Biology, Springer, 2002.
- [24] H. R. Varian, Intermediate Microeconomics: A Modern Approach, W. W. Norton Company, 2010.
- [25] M. J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, 1994.
- [26] K. Ogata, Modern Control Engineering, Prentice Hall, 2010.
- [27] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing, Prentice Hall, 1999.
- [28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, 2009.
- [29] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.
- [30] S. Weinberg, Cosmology, Oxford University Press, 2008.
- [31] A. Goldman, Epistemology and Cognition, Harvard University Press, 1986.
- [32] J. Rachels, The Elements of Moral Philosophy, McGraw-Hill, 2014.
- [33] M. C. Beardsley, Aesthetics: Problems in the Philosophy of Criticism, Hackett Publishing, 1981.
- [34] D. Wright, Mathematics and Music, American Mathematical Society, 2009.