Prova di esame dei corsi di Fondamenti di Informatica e Informatica Teorica

04 luglio 2016

Problema 1. Sia Σ un alfabeto finito e siano $L_1, L_2 \subseteq \Sigma^*$ due linguaggi tali che L_1 è decidibile e L_2 è accettabile. Cosa si può dire circa le proprietà di accettabilità e decidibilità del linguaggio $L = L_1 \cap L_2^c$? Dimostrare la propria affermazione.

Problema 2. Dato un grafo G = (V, E), sia $\chi(G) = \langle M, P \rangle$ una sua codifica in cui M è la matrice di adiacenza di G e

$$P = \{ \langle V_1, V_2, V_3 \rangle : V_1, V_2, V_3 \subseteq V \land V_1 \cup V_2 \cup V_3 = V \land V_1 \cap V_2 = \emptyset \land V_1 \cap V_3 = \emptyset \land V_2 \cap V_3 = \emptyset \}.$$

Si consideri il seguente problema decisionale: dato un grafo (non orientato) G = (V, E), esiste una partizione $\langle V_1, V_2, V_3 \rangle$ di V tale che, per ogni i = 1, 2, 3 e per ogni $u, v \in V_i$, $(u, v) \notin E$?

Dopo aver formalizzato la definizione del suddetto problema mediante la tripla $\langle I, S, \pi \rangle$, descrivere un algoritmo che, prendendo in input $\chi(G)$, decide se $\langle G, k \rangle$ è una istanza sì del problema in tempo polinomiale in $|\chi(G)|$.

Rispondere, infine, alla seguente domanda: l'esistenza di tale algoritmo è sufficiente a dimostrare l'appartenenza alla classe $\bf P$ del problema?

Problema 3. Sia $k \in \mathbb{N}$ una costante positiva tale che k > 3.

Si consideri il problema seguente: dato un grafo non orientato G = (V, E), decidere se G è k-colorabile oppure ha un Vertex Cover di cardinalità k.

Dopo aver formalizzato la definizione del suddetto problema mediante la tripla $\langle I, S, \pi \rangle$, se ne dimostri l'appartenenza alla classe **P** o, in alternativa, la **NP**-completezza.

Soluzione

Problema 1. Poiché L_1 è decidibile, esiste una macchina di Turing T_1 (di tipo riconoscitore) tale che, per ogni $x \in \Sigma^*$, $T_1(x)$ termina ed inoltre

$$o_{T_1}(x) = \begin{cases} q_A^1 & \text{se } x \in L_1. \\ q_R^1 & \text{se } x \notin L_1, \end{cases}$$

dove q_A^1 e q_R^1 sono, rispettivamente, gli stati di accettazione e di rigetto di T_1 .

Analogamente, poiché L_2 è accettabile, esiste una macchina di Turing T_2 (di tipo riconoscitore) tale che, per ogni $x \in L_2$, $T_2(x)$ termina ed inoltre $o_{T_2}(x) = q_A^2$ dove q_A^2 è lo stato di accettazione di T_2 ; osserviamo che nulla si può affermare circa le computazioni $T_2(y)$ con $y \notin L_2$.

Osserviamo, ora, che per poter affermare " $x \in L$ " è necessario mostrare che $x \in L_1$ e $x \notin L_2$: poiché per affermare $x \notin L_2$ è necessario disporre di una macchina di Turing che accetti L_2^c . Dunque, la sola accettabilità di L_2 non è sufficiente ad assicurare la accettabilità di L.

Osserviamo, infine, che invece è accettabile il linguaggio $L^c = (L_1 \cap L_2^c)^c = L_1^c \cup L_2$: infatti, tale linguaggio è accettato dalla macchina che, con input $x \in \Sigma^*$, esegue i passi seguenti

- a) simula la computazione $T_1(x)$: se $o_{T_1}(x) = q_A^1$, allora accetta, altrimenti esegue il passo b);
- b) simula la computazione $T_2(x)$: se $o_{T_1}(x) = q_A^2$, allora accetta.

Problema 2. Il problema decisionale considerato, che chiameremo PARTIZIONE IN 3 INSIEMI INDIPEN-DENTI (in breve, *P3II*), può essere formalizzato come di seguito descritto:

- $I_{P3II} = \{G = (V, E) : G \text{ è un grafo non orientato } \};$
- $S_{P3II}(G) = \{ \langle V_1, V_2, V_3 \rangle : \subseteq V_1, V_2, V_3 \subseteq V \};$
- $\pi_{P3II}(G, S_{P3II}(G)) = \exists \langle V_1, V_2, V_3 \rangle \in S_{P3II}(G) : V_1 \cup V_2 \cup V_3 = V \land V_1 \cap V_2 = \emptyset \land V_1 \cap V_3 = \emptyset \land V_2 \cap V_3 = \emptyset \land \forall i = 1, 2, 3 \ \forall u, v \in V_i \ [\ (u, v) \notin E \].$

Osserviamo che l'insieme P nella codifica di un grafo G è un sottoinsieme di $S_{PII}(G)$. In particolare, il predicato π_{P3II} del problema può essere espresso nella maniera seguente:

$$\exists \langle V_1, V_2, V_3 \rangle \in P : \forall i = 1, 2, 3 \ \forall u, v \in V_i \ [\ (u, v) \notin E \],$$

Quindi, l'algoritmo richiesto nel testo, che riceve in input la matrice di adiacenza M di un grafo G = (V, E) e l'insieme P di tutte le partizioni di V in insiemi indipendenti in G, è descritto nel seguente frammento di codice, che restituisce vero se G è una istanza sì di P3II:

```
1 trovato \leftarrow falso;

2 while (P \neq \emptyset \land \text{trovato} = \text{falso}) do begin

3 estrai un elemento \langle V_1, V_2, V_3 \rangle da P:

4 trovato \leftarrow vero;

5 for (i \leftarrow 1; i \leq 3; i \leftarrow i + 1) do

6 for (u \in V_i) do

7 for (v \in V_i) do
```

```
8 if (M[u,v] = 1) then trovato \leftarrow falso; 9 end; 10 Output: trovato.
```

Analizziamo, ora, la complessità del frammento di codice appena descritto.

Poiché accedere ad un elemento della matrice M ha costo costante, l'istruzione **if** alla linea 8 ha costo costante; pertanto, poiché, per ogni $\langle V_1, V_2, V_3 \rangle \in P$, la cardinalità di V_1 , $|V_2|$ e $|V_3|$ è al più |V|, il doppio ciclo **for** alle linee 6 e 7 ha costo $\mathbf{O}(|V|^2)$.

Il numero di iterazioni del ciclo **for** alla linea 5 è costante, il numero di iterazioni del ciclo **while** alla linea 2 è |P|, e, quindi, il costo del frammento di codice è $\mathbf{O}(|P| \cdot |V|^2)$, ossia, è polinomiale *nella dimensione dell'input* o, in altri termini, è polinomiale in $|\chi(G)|$.

Osserviamo, infine, che la codifica $\chi(G)$ non è una codifica ragionevole di G: infatti, $|P|=3^{|V|}$ e, quindi, la codifica di G mediante la sola matrice di adiacenza (che codifica tutte le informazioni necessarie ad individuare un grafo e che ha dimensione $|V|^2$) è esponenzialmente più corta di $\chi(G)$. Poiché un problema è in \mathbf{P} se esiste un algoritmo deterministico che richiede tempo polinomiale nella dimensione di una *codifica ragionevole* delle sue istanze, il frammento di codice non permette di affermare che il problema A è in \mathbf{P} (e, in effetti, esso coincide con COLORABILITÀ ed è, quindi, \mathbf{NP} -completo).

Problema 3. Il problema in esame, che indicheremo, in breve, con l'acronimo $3COL \lor kVC$, può essere formalizzato come di seguito descritto:

```
• I_{3COL \lor kVC} = \{G = (V, E) : G \text{ è un grafo non orientato } \};
```

•
$$S_{3COL \lor kVC}(G) = \{\langle c, V' \rangle : c : V \to \{1, 2, 3\} \land V' \subseteq V \} \};$$

•
$$\pi_{3COL \lor kVC}(G, S_{3COL \lor kVC}(G)) = \exists \langle c, V' \rangle \in S_{3COL \lor kVC}(G) : \{ \forall (u, v) \in E \ [\ c(u) \neq c(v) \] \ \} \lor \{ \ |V'| \leq k \land \forall (u, v) \in E \ [u \in V' \lor v \in V' \] \ \}.$$

Un certificato per una istanza $\langle X, f, k \rangle$ di $3COL \lor kVC$ è una coppia $\langle c, V' \rangle \in S_{3COL \lor kVC}(G)$, e, dunque, poiché $|c| \in \mathbf{O}(|V|)$ e $|V'| \in \mathbf{O}(|V|)$, ha lunghezza $\mathbf{O}(|V|)$. Per verificare un certificato è necessario verificare che c sia una colorazione valida per G (ossia, che colori con colori diversi nodi adiacenti) o che V' sia un Vertex Cover di G di dimensione non superiore a k: poiché sia il problema COLORABILITÀ che il problema VERTEX COVER sono in \mathbf{NP} , sappiamo che tale verifica richiede tempo polinomiale in |V| e |E|). Questo prova che il problema è in \mathbf{NP} .

Dimostriamo, ora, la completezza del problema per la classe **NP** mediante una riduzione polinomiale dal problema 3COL.

Prima di procedere, cerchiamo di capire perché riduciamo da 3COL invece che da VC. A questo scopo, osserviamo che, poiché k è costante (e, infatti, non è dichiarata nella definizione dell'insieme $I_{3COL \lor kVC}$) la versione di VERTEX COVER di interesse in questo problema è in **P**. Infatti, dato un grafo G, per verificare se G ha un Vertex Cover di k nodi è sufficiente verificare se uno degli $O(|V|^k)$ sottoinsiemi di V contenenti k nodi sia un Vertex Cover per G: poiché la verifica richiede tempo polinomiale in |V| e poicé k è costante, questo prova che il problema è in **P**. Quindi, ridurre da un problema in **P** non sarebbe di alcuna utilità per mostrare la **NP**-completezza di $3COL \lor kVC$.

Sia, dunque, G una istanza di 3COL; l'istanza corrispondente di 3 $COL \lor kVC$ è il grafo $\overline{G} = (\overline{V}, \overline{E})$ ottenuto aggiungendo a G k+1 nuovi grafi, che non hanno nodi in comune con G, ciascuno dei quali costituito da un singolo arco. Più in dettaglio: $\overline{G} = G \cup G_1 \cup G_2 \cup \ldots \cup G_{k+1}$, dove, per ogni $i = 1, \ldots, k+1$, $G_i = (V_i, E_i)$ e

•
$$V_i = \{u_i, v_i\}$$
, e

•
$$E_i = \{(u_i, v_i)\}.$$

Dunque, $\overline{V} = V \cup V_1 \cup \ldots \cup V_{k+1}$ e $\overline{E} = V \cup E_1 \cup \ldots \cup E_{k+1}$.

Se G=(V,E) è una istanza sì di 3COL, allora esiste una colorazione $c:V\to V$ dei nodi di G che non assegna lo stesso colore a due nodi adiacenti (ossia, collegati da un arco); allora la colorazione \overline{c} tale che, per ogni $x\in \overline{V}$

$$\overline{c}(x) = \begin{cases} c(x) & \text{se } x \in V, \\ 1 & \text{se } x \in V_i \text{ e } x = u_i, \\ 2 & \text{se } x \in V_i \text{ e } x = v_i, \end{cases}$$

è una colorazione valida per \overline{G} , ossia assegna colori diversi a nodi adiacenti in \overline{G} .

Se, invece, G = (V, e) è una istanza no di 3COL, allora non esiste alcuna colorazione di V con 3 colori che non assegni lo stesso colore ad almeno una coppia di nodi adiacenti in G; allora, poiché \overline{G} contiene G, non esiste nemmeno alcuna colorazione di \overline{V} con 3 colori che non assegni lo stesso colore ad almeno una coppia di nodi adiacenti in \overline{G} . D'altra parte, poiché ogni Vertex Cover di \overline{G} deve almeno contenere un nodo in ciascun V_i , per $i=1,\ldots,k+1$, ogni Vertex Cover di \overline{G} ha cardinalità almeno k+1. Dunque, \overline{G} è una istanza no di $3COL \lor kVC$.

Poiché costruire \overline{G} a partire da G richiede tempo lineare in |V| e |E|, questo dimostra che il problema $3COL \lor kVC$ è **NP**-completo.