Diantao Yu: 33035089

Zengzhan Chen: 87965417

HW 1

P1.

- a. 3*10^6/1.5*19^5=20
- b.(i). Let N denote the number of users using packet-switching

P(a given user is transmitting)= 0.1*0.9^N

- (ii) P(n users transmit simultaneously) = C(n, 120) * 0.1^{n} * $0.9^{(120-n)}$
- (iii) P(more than 21)= $\sum_{i=29}^{120} C(i, 120) * 0.1^{i} * 0.9^{(120-i)} = 0.0075$

P2.

1. T =
$$\frac{L}{L+H} * W$$

D1= $K * (\frac{L+H}{W} + \tau)$

2.
$$T = \frac{P}{P+H} * W$$

D2=
$$K * (\frac{P+H}{W} + \tau) + (\frac{L}{P} - 1) * \frac{P+H}{W}$$

3. If $\tau = 0$

D1 =
$$K * (\frac{L+H}{W}) = \frac{P+H*P/L}{W} * (K*L/P)$$

D2 = $(\frac{L}{P} - 1 + K) * \frac{P+H}{W}$

since L \geq P, L/P \geq 1, therefore, $(K*L/P) >> (\frac{L}{P} - 1 + K)$

Thus, D1 > D2

4.

D2'(P) =
$$\frac{k-1}{w} - \frac{LH}{WP^2}$$

D2'(P)=0 when P=
$$\sqrt{\frac{LH}{K-1}}$$

So in conclusion, when we set packet size to $\sqrt{\frac{LH}{K-1}}$, we get minimum delay.