A Hierarchical Spatial Finlay-Wilkinson Model for Analysis of Multi-Environment Field Trials

Xingche Guo, Somak Dutta, Dan Nettleton

Dept. of Statistics, Iowa State University

Joint Statistical Meetings, 2019

The Genomes to Fields (G2F) Initiative

copyright: https://www.genomes2fields.org

Multi-Environment Field Trial Analysis for G2F Data

- Initially, we focus on a subset of 24 **environments**.
- We have yield recorded for 10,971 field plots with known spatial locations.
- A total of 1,105 hybrids are planted in approximately 10 plots on average.
- Hybrid **genotypes at** \sim **1M genomic locations** are available.
- To characterize environments, weather stations provide time-indexed measurements for 10 weather variables, and several soil variables are available.

Finlay-Wilkinson (FW) Model

• Finlay-Wilkinson (FW) model (Finlay and Wilkinson, 1963):

$$y_{ijk} = \mu + g_i + h_j + b_i h_j + e_{ijk},$$

• For genotype i, FW model becomes a **linear model** with intercept $\mu + g_i$ and slope $b_i + 1$.

Residuals of FW Model for Two Fields

Problem: the residuals are **highly spatially correlated**.

Hierarchical Spatial Finlay-Wilkinson (SFW) Model

• Data model:

$$[y_{ijk}|\mu, \mathbf{g}, \mathbf{b}, \mathbf{h}, \overset{\bullet}{\phi}] \stackrel{indep}{\sim} \mathcal{N}(\mu + g_i + h_j + b_i h_j + \overset{\bullet}{\phi_{ijk}}, \sigma_e^2),$$

Prior distributions for genotype, slope, and field effects:

$$[\mathbf{g}] \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\sigma_g^2); \quad [\mathbf{b}] \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\sigma_b^2);$$
 $[\mathbf{h}|\gamma] \sim \mathrm{N}(\gamma_1 \mathbf{Z}_1 + \dots + \gamma_l \mathbf{Z}_l + \dots + \gamma_L \mathbf{Z}_L, \mathbf{I}\sigma_h^2).$

- **A** is the kinship matrix describing the correlation structure of **g** and **b** (R package/software: rrBLUP, Tassel 5).
- **Z**_I is the Ith standardized environmental covariate.

◆ロト ◆問 > ◆意 > ◆意 > ・ 意 ・ の Q (*)

- A popular model for fertility adjustment in agricultural field trials is the first order intrinsic autoregression (Besag and Higdon, 1999; Dutta and Mondal, 2015).
- First order Intrinsic Autoregressive prior:

$$[\boldsymbol{\psi}_j|\theta_j,\sigma_j^2] \propto |\sigma_j^{-2}\mathbf{W}_j|_+^{1/2} \exp\left(-\frac{1}{2}\sigma_j^{-2}\boldsymbol{\psi}_j^{\mathrm{T}}\mathbf{W}_j\boldsymbol{\psi}_j\right)$$

where

$$\boldsymbol{\psi}_{j}^{\mathrm{T}}\mathbf{W}_{j}\boldsymbol{\psi}_{j} = \theta_{j} \sum \sum (\psi_{u,v} - \psi_{u-1,v})^{2} + \bar{\theta}_{j} \sum \sum (\psi_{u,v} - \psi_{u,v-1})^{2}$$

• The distribution of ψ_j is **invariant** to the addition of $c\mathbf{1}$.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Recall:

•
$$[y_{ijk}|\mu, \mathbf{g}, \mathbf{b}, \mathbf{h}, \phi] \stackrel{indep}{\sim} \mathcal{N}(\mu + g_i + h_j + b_i h_j + \phi_{ijk}, \sigma_e^2),$$

Recall:

• $[y_{ijk}|\mu, \mathbf{g}, \mathbf{b}, \mathbf{h}, \phi] \stackrel{indep}{\sim} \mathcal{N}(\mu + g_i + h_j + b_i h_j + \phi_{ijk}, \sigma_e^2),$

Problem:

- The intrinsic spatial prior has an indeterminate overall level.
- The overall levels of spatial effects are confounded with the location effects.
- Estimation of b is biased.
- Hierarchical structure of h is not applicable.

Recall:

• $[y_{ijk}|\mu, \mathbf{g}, \mathbf{b}, \mathbf{h}, \phi] \stackrel{indep}{\sim} \mathcal{N}(\mu + g_i + h_j + b_i h_j + \phi_{ijk}, \sigma_e^2),$

Problem:

- The intrinsic spatial prior has an indeterminate overall level.
- The overall levels of spatial effects are confounded with the location effects.
- Estimation of b is biased.
- Hierarchical structure of h is not applicable.

Solution:

• A hard constraint: set the average of the spatial effects to zero.

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 釣 Q (C)

Projected Intrinsic Autoregression (PIAR) Prior

• The Gaussian projected intrinsic autoregression (PIAR) on the $r_j \times c_j$ regular array is then defined as:

$$\phi_j = \mathsf{B}_j arphi_j, \qquad arphi_j \sim \mathcal{N}(\mathbf{0}, \mathsf{D}_j^{-1}),$$

- \mathbf{B}_j is an $r_j c_j \times (r_j c_j 1)$ matrix.
- \mathbf{D}_j is an $(r_jc_j-1)\times(r_jc_j-1)$ diagonal matrix.
- ullet We can show: $oldsymbol{arphi}_j = \mathbf{B}_j^{\mathrm{T}} \phi_j$.

Matrix Free Computation

- The covariance matrix of the Gaussian PIAR is a dense singular matrix.
- The computation load for generating ϕ_j from PIAR using knowledge of multivariate statistics is $\mathcal{O}((r_jc_j)^3/3)$.
- Assume small number of missing plots (denote $r_j c_j N_j$ as the number of missing plots).
- Thus matrix-vector multiplications with \mathbf{B}_j and $\mathbf{B}_j^{\mathrm{T}}$ can also be performed using these discrete cosine transformations (DCT).
- The computation load of our proposed algorithm is $\mathcal{O}(r_jc_j + (r_jc_j N_j)r_jc_j \log r_jc_j + (r_jc_j N_j)^3/3)$.

Prediction

- Implement posterior predictive distributions.
- Easy to obtain predictive credible intervals.

Prediction

- Implement posterior predictive distributions.
- Easy to obtain predictive credible intervals.

Within-field prediction:

- Important to account for the spatial correlation between plots.
- Kinship information plays a decisive role for an accurate prediction.
- Mainly used for model evaluation.

Prediction

- Implement posterior predictive distributions.
- Easy to obtain predictive credible intervals.

Within-field prediction:

- Important to account for the spatial correlation between plots.
- Kinship information plays a decisive role for an accurate prediction.
- Mainly used for model evaluation.

Predict in new environments:

 By learning how environment effects depend on the weather and soil variables.

Model Evaluation via Within-Field Prediction

Reduced error for yield prediction.

Model Evaluation via Within-Field Prediction

Level of spatial correlation vs performance of SFW model.

Prediction Intervals

50 plot yield prediction intervals (95% credible level).

Predict in New Environments

Location-wise RMSPEs computed using temperature and rainfall data (x-axis), versus the location-wise RMSPEs computed not using any environment information (y-axis).

Summary

Our contribution:

- Proposed a unified framework for high-dimensional GxE analysis by integrating genomic, environmental, and within-field spatial information.
- Proposed PIAR prior and its fast computation algorithm in MCMC for multi-environment trials analysis.
- Allow us to predict the yield of a (possibly novel) corn variety in a (possibly new) environment.

What's next:

- More complex model for environmental covariates.
- Extend to generalized HSFW model.

Selected References

- Besag, J. and Higdon, D. (1999). Bayesian analysis of agricultural field experiments. <u>Journal of the Royal Statistical Society: Series B</u> (Statistical Methodology), 61(4):691–746.
- Dutta, S. and Mondal, D. (2015). An h-likelihood method for spatial mixed linear models based on intrinsic auto-regressions. <u>Journal of the Royal Statistical Society: Series B (Statistical Methodology)</u>, 77(3):699–726.
- Finlay, K. and Wilkinson, G. (1963). The analysis of adaptation in a plant-breeding programme. <u>Australian Journal of Agricultural Research</u>, 14(6):742–754.

Acknowledgements

The authors acknowledge financial support of Iowa State University Plant Sciences Institute Scholars Program, the Baker Center for Bioinformatics and Biological Statistics, and the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. IOW03617, which is supported by USDA/NIFA and State of Iowa funds.

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the U.S. Department of Agriculture.

Thank You!

Construction of \mathbf{B}_j and \mathbf{D}_j

• Then the spectral decomposition of W_j is given by:

$$(\mathbf{N}_{r_j} \otimes \mathbf{N}_{c_j}) \mathbf{W}_j (\mathbf{N}_{r_j}^{\mathrm{T}} \otimes \mathbf{N}_{c_j}^{\mathrm{T}}) = \theta_j \mathbf{\Lambda}_{r_j} \otimes \mathbf{I}_{c_j} + \bar{\theta}_j \mathbf{I}_{r_j} \otimes \mathbf{\Lambda}_{c_j}.$$

- Λ_k denote the $k \times k$ diagonal matrix whose uth diagonal entry is $4\sin^2\{\pi(u-1)/(2k)\}$.
- \mathbf{N}_k denotes the $k \times k$ orthogonal matrix whose (u, v)th entry is $1/\sqrt{k}$ if u = 1, $\forall v$, and $(2/k)^{1/2} \cos\{\pi(u-1)(v-1/2)/k\}$ otherwise.
- $\mathbf{B}_{j}^{\mathrm{T}}$ denotes the $(r_{j}c_{j}-1)\times r_{j}c_{j}$ matrix consisting of last $r_{j}c_{j}-1$ rows of $\mathbf{N}_{r_{j}}\otimes\mathbf{N}_{c_{j}}$.
- \mathbf{D}_j denotes the diagonal matrix consisting of the nonzero elements of $\theta_j \mathbf{\Lambda}_{r_j} \otimes \mathbf{I}_{c_j} + \bar{\theta}_j \mathbf{I}_{r_j} \otimes \mathbf{\Lambda}_{c_j}$.

Assessing Uncertainty about FW Regression Lines

Figure: Estimated Yield vs Location Effect for pairs of genotypes