Familienname:	1	2	3	4	5	6	7	\sum
Vorname:								
Matrikelnummer:								
Studienkennzahl(en):		Note:						

Reelle Analysis in mehreren und komplexe Analysis in einer Variable für LAK

Roland Steinbauer, Sommersemester 2013

2. Prüfungstermin (20.9.2013)

Gruppe A

- 1. Funktionenfolgen und -reihen.
 - (a) Für Funktionenfolgen $f_n : \mathbb{R} \supseteq A \to \mathbb{R}$ vergleiche die Begriffe punktweise und gleichmäßige Konvergenz. (2 Punkte)
 - (b) Formuliere und beweise den Satz von Weierstraß. Begründe deine Beweisschritte! (5 Punkte)
- 2. Potenzreihen
 - (a) Definiere den Begriff einer reellen Potenzreihe. (1 Punkt)
 - (b) Was kann man sich intuitiv unter einer Potenzreihe vorstellen? Handelt es sich dabei um "einfache" oder "komplizierte" Funktionen? (2 Punkte)
 - (c) Wie können hinreichend schöne \mathcal{C}^{∞} -Funktion $f: \mathbb{R} \to \mathbb{R}$ in eine Potenzreihe entwickelt werden? Funktioniert das für alle \mathcal{C}^{∞} -Funktionen? (3 Punkte)
- 3. Topologie des \mathbb{R}^n .
 - (a) Formuliere und Beweise das Prinzip der koordinatenweisen Konvergenz (PKK) auf dem \mathbb{R}^n . Begründe deine Beweisschritte! (3 Punkte)
 - (b) Definiere den Begriff einer kompakten Teilmenge der \mathbb{R}^n und formuliere den Satz von Heine-Borel. (2 Punkte)
- 4. Stetigkeit und Differenzierbarkeit.
 - (a) Für eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ definiere die Begriffe Stetigkeit und partielle/separate Stetigkeit im Punkt (0,0) und diskutiere ihre Beziehung zueinander. (3 Punkte)
 - (b) Für eine Funktion $f:\mathbb{R}^n\to\mathbb{R}$ definiere den Begriff der partiellen Ableitungen und der Richtungsableitung in einem Punkt. Was haben diese beiden Begriffe miteinander zu tun? (3 Punkte)

Bitte umblättern!

5. Differential- und Integralrechnung.

- (a) Formuliere den Satz über implizite Funktionen im \mathbb{R}^2 und diskutiere seine Bedeutung. (4 Punkte)
- (b) Definiere den Begriff des Wegintegrals. Wie kann das Wegintegral verwendet werden, um eine Stammfunktion für ein Vekorfeld mit wegunabhängigen Integralen zu berechnen? Was hat das mit dem Hauptsatz der Differential- und Integralrechnung zu tun? (3 Punkte)

6. Rechenaufgaben.

- (a) Gib ein beliebiges Gradientenfeld auf dem \mathbb{R}^2 an. (1 Punkt)
- (b) Berechne das Volumen der Einheitskugel, also den Inhalt |B| der Menge $B := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. (2 Punkte)
- (c) Berechne die Jacobi-Matrix der Funktion $f(x, y, z) := (\cos(yz), \sin(xz), e^{xy^2z})$. (2 Punkte)

7. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel an. (Je 2 Punkte)

- (a) Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ eine differenzierbare Funktion. Dann existiert ihre Jacobi-Matrix $Df(\xi)$ in jedem Punkt $\xi \in \mathbb{R}^n$ und ist eine $(n \times m)$ -Matrix.
- (b) Jedes stetig differenzierbare Gradientenfeld erfüllt die Integrabilitätsbedingungen.