electroussafi.ueuo.com 1/5

Redressement et filtrage

Rappel:

La figure suivante représente la tension ondulée aux bornes d'un condensateur de filtrage

Indice de ronflement : $\eta = \Delta V/\ U_{Rmax}$

Taux d'ondulation de la tension = η %

Pour calculer d'une façon simple la valeur du condensateur, on utilise l'approximation représentée par la figure suivante :

On voit qu'on a négligé le temps de chargement du condensateur.

Le courant demandé par la charge est considéré constant (ce qui est vrai dans les appareils pratiques).

$$C = \Delta Q / \Delta V$$

et
$$\Delta Q = I \times \Delta t$$

$$\Rightarrow$$
 $C = I \times \Delta t / \Delta V$

electroussafi.ueuo.com 2/5

 $I = I_{Rmoy}$ (courant de décharge du condensateur)

 $\Delta t = T = 1/f$ T: période du signal redressé f: fréquence du signal redressé.

 ΔV = La variation de tension aux bornes du condensateur = ondulation = ronflement

$$C = \frac{I_{Rmoy}T}{\Delta V} = \frac{I_{Rmoy}}{f\Delta V}$$

alectronissoft

alections soft

electroussafi.ueuo.com 3/5

Exercice 1

Soit le montage suivant :

Indice de ronflement : $\eta = 0,1$

Tension directe de la diode : $V_D = 0.6V$

- 1. es(t) est de la forme : es(t) = E sin ($\omega t + \varphi$). Exprimer es
- **2.** Que vaut la tension maximale aux bornes de la résistance R (U_{Rmax}) ?
- 3. Que vaut la tension de ronflement (ΔV) ?
- **4.** Que vaut la tension moyenne aux bornes de la résistance R (U_{Rmov}) ?
- 5. Quelle est la valeur de la capacité C?
- **6.** Quelle est la valeur de la résistance R?

electroussafi.ueuo.com 4/5

Exercice 2

Soit le montage suivant :

Transformateur: 220V/2 x12V 50Hz.

Le nombre de spires du primaire : $N_P = 440$.

La charge résistive $R = 100 \Omega$.

La tension directe de chaque diode est : $V_D = 0.6V$.

Taux d'ondulation de la tension de 10 %.

- 1. Calculer le nombre de spires des enroulements du secondaire pour que la valeur efficace des tensions $u_{s1}(t)$ et $u_{s2}(t)$ soit de 12V (le transformateur est supposé parfait).
- **2.** Que vaut la tension maximale aux bornes de la résistance $R(U_{Rmax})$?
- **3.** Que vaut la tension de ronflement (ΔV) ?
- **4.** Que vaut la tension moyenne aux bornes de la résistance R (U_{Rmoyen})?
- 5. Quelle est la valeur de la capacité C?

electroussafi.ueuo.com 5/5

Exercice 3

Soit le montage suivant :

On applique au transformateur une tension sinusoïdale de 220V et 50Hz. La charge résistive $R=100\Omega$. Le rapport de transformation $N_S/N_P=1/10$. La tension directe de chaque diode est : $V_D=0.6V$.

L'ondulation de la tension aux bornes de la charge est de 0,5 V.

- 1. Calculer la tension maximale aux bornes de la charge
- 2. Calculer la valeur moyenne de la tension (U_{Rmoy}) de la charge et celle du courant (I_{Rmoy}) qui la traverse.
- 3. Quelle est la fréquence du signal redressé aux bornes de la charge ?
- 4. Trouver la capacité du filtre C.
- 5. Déterminer la valeur minimale de la tension redressée (U_{Rmin}).
- **6.** Calculer l'indice de ronflement (η) .
- 7. On branche un condensateur $C = 2200 \mu F$ aux bornes de la charge et on obtient une tension de 28,6V aux bornes de la charge. Calculer l'ondulation de la tension aux bornes de la charge (ΔV).

