Homework: Context-Free Grammar

Learning Objectives:

In this homework, we are going to exercise the following key knowledge points on the topic of context-free grammar (CFG)

- 1. understanding grammars and CFGs
- 2. relations of strings and grammar
- 3. performing derivations and constructing parse trees
- 4. determining and resolving ambiguity
- 5. designing a grammar to describe given string patterns

Instructions:

- 1. Total points: 40 pt
- 2. Early deadline: Sept 11 (Wed) 11:59 pm, Regular deadline Sept 13 (Fri) 11:59 pm
- 3. How to submit:
 - Submit your document to Canvas under Assignments, Homework 1
 - Please provide the complete solutions in one pdf file
 - You can write your solutions in latex or word and then convert it to pdf; or you can submit a scanned document with legible handwritten solutions

Questions:

1. (10 pt) Given a string a0b10c and the context free grammar G:

 $S \to SA|A|SD$

 $A \rightarrow a|b|c$

 $D \to 0|1$

- (a) (2 pt) What are the terminals and non-terminals of the grammar?
- (b) (2 pt) Give a leftmost derivation for the string
- (c) (2 pt) Give a rightmost derivation for the string
- (d) (2 pt) Give a parse tree for the string
- (e) (2 pt) Write 3 strings using the terminals that do not belong to the language of the grammar L(G)

Sol:

(a) terminals: a, b, c, 0, 1, non-terminals: S, A, D

Fall 2019 page 1 of 3

- (b) $S \Rightarrow SA \Rightarrow SDA \Rightarrow SDDA \Rightarrow SADDA \Rightarrow SDADDA \Rightarrow ADADDA \Rightarrow aDADDA \Rightarrow a0bDDA \Rightarrow a0bDDA \Rightarrow a0b1DA \Rightarrow a0b10c$
- (c) $S \Rightarrow SA \Rightarrow Sc \Rightarrow SDc \Rightarrow S0c \Rightarrow SD0c \Rightarrow S10c \Rightarrow SA10c \Rightarrow Sb10c \Rightarrow SDb10c \Rightarrow S0b10c \Rightarrow A0b10c \Rightarrow a0b10c$

(d)

- (e) 11, 1a, 010bac
- 2. (10 pt) Consider the following grammar with:
 - terminals: x, y, z, >, <, 0, 1, (,), if, then, else
 - non-terminals: S, F, B, T, E, N
 - \bullet start symbol: S
 - production rules:

$$S \to F|T N T$$

 $F \to \text{if } B \text{ then } S | \text{if } B \text{ then } S \text{ else } S$

$$B \to (TET)$$

$$T \rightarrow x|y|z|1|0$$

$$E \rightarrow > | <$$

$$N \rightarrow + |-| =$$

(a) (4 pt) Draw two different parse trees for the string

if
$$(x > y)$$
 then

if
$$(x < z)$$
 then $x = 1$

else
$$x = 0$$
.

- (b) (2 pt) Modify the grammar to remove ambiguity.
- (c) (2 pt) Draw the parse tree for the string using new grammar
- (d) (2 pt) Explain how your new grammar modifies the parse trees you drew in the first step to remove ambiguity

Sol:

Fall 2019

(b) We should change the production rule $F \to \text{if } B \text{ then } S| \text{ if } B \text{ then } S \text{ else } S \text{ to } F \to \text{if } B \text{ then begin } S \text{ end } | \text{ if } B \text{ then begin } S \text{ else } S \text{ end } | \text{ then begin } S \text{ else } S \text{ end } | \text{ then begin } S \text{ else } S \text{ end } | \text{ then begin } S \text{ else } S \text{ end } | \text{ then begin } S \text{ else } S \text{ end } | \text{ then begin } S \text{ else } S \text{ end } | \text{ then begin } S \text{ else } S$

Fall 2019 page 3 of 3

- (d) By adding delimiters, we removed ambiguity. It is easy to find the two parser tree will generate two different strings. The first one will generate "if (x>y) then begin if (x<z) then begin x=1 else x=0 end end", and the second one will generate "if (x>y) then begin if (x<z) then begin x=1 end else x=0 end". In this way, we know which "if" the "else" follows.
- 3. (10 pt) Consider the following grammar:
 - terminals: x, y, z, +, -, *, /
 - non-terminals: E, T, F, V
 - \bullet start symbol: E
 - production rules:

$$E \to E + T|E - T|T$$

$$T \to F * T|F/T|F$$

$$F \to x|y|z$$

- (a) (4 pt) What is the associativity of the operators +, -, * and /; explain why.
- (b) (3 pt) What is the precedence of +,-,* and /; explain why.
- (c) (3 pt) Given a parse tree

Explain how the value of the string is generated.

Fall 2019

Sol

- (a) The operators + and are left-associative because the head E appears at the left side of the operator, and the operators * and / are right-associative because the head T appears at the right side of the operator.
- (b) The operators * and / have the same precedence and a higher precedence over + and because they are further down in the grammar rules, which mean they are evaluated before.
- (c) 1)x / z
 - 2)y * x/z
 - 3)z / y
 - 4)z/y + z
 - 5)y*x/z z/y+z
- 4. (10 pt) Design CFGs for the given languages:
 - (a) (2 pt) Write a grammar that describes the strings $0*1^+2*$.
 - (b) (3 pt) Write a grammar that describes the strings $0^n 1^m$, where n > m.
 - (c) (5 pt) Given a graph below, where 1 is an entry and 7 is an exit, we can generate paths like 127, 1234627, 1235627, 12356234627 ... Write a grammar that describes these paths.

Sol:

- (a) $S \to B|AB|BC|ABC$
 - $A \to 0|0A$
 - $B \rightarrow 1|1B$
 - $C \rightarrow 2|2C$
- (b) $S \to 0|0S|0S1$
- (c) $S \to 1A$
 - $A \rightarrow 2F|2B$
 - $B \rightarrow 3C|3D$
 - $C \to 4E$
 - $D \to 5E$
 - $E \to 6A$
 - $F \rightarrow 7$

Fall 2019