

Circuit Modelling

Felix Dreßler

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Example: Charging of a capacitor:

2025-05-03 2/42

Formulating a Mathematical Model

Network Topology

2025-05-03 3/42

For a circuit with l nodes and k edges, define the incidence matrix $\tilde{A} = (\tilde{a}_{ij}) \in \mathbb{R}^{k \times l}$:

$$\tilde{\alpha}_{ij} = \begin{cases} 1 & \text{edge } j \text{ starts at node } i, \\ -1 & \text{edge } j \text{ ends at node } i, \\ 0 & \text{else.} \end{cases}$$

By grounding node 0, i.e. $u_0 = 0$ we obtain the reduced incidence matrix $\rightarrow A$.

Formulating a Mathematical Model

Energy Conservation Laws

2025-05-03 5/42

• Kirchhoff's voltage law (KVL):

The sum of voltages along each loop of the network must equal to zero.

$$\to \mathsf{A}^\top \mathsf{u} = \mathsf{v}. \tag{1}$$

Kirchhoff's current law (KCL):

For any node, the sum of currents flowing into the node is equal to the sum of currents flowing out of the node.

$$\rightarrow Ai = 0. (2)$$

Formulating a Mathematical Model

Electrical Components and their Relations

2025-05-03 7/42

Name	Symbol	Component Law				
Resistor	R	u = R i or i = G u				
Capacitor	#	$Q=C u$ and by derivation in t $\ I=C rac{d}{dt} u=C u'$				
Inductor	→	$\Phi = L \mathfrak{i} \text{and by derivation in } \mathfrak{t} \nu = L \mathfrak{i}'$				
Voltage Source	— v	$v = v_{ m src}$				
Current Source	——————————————————————————————————————	$\mathfrak{i}=\mathfrak{i}_{\mathtt{src}}$				

Formulating a Mathematical Model

Modified Nodal Analysis - MNA

2025-05-03 9/42

Rearrange the columns of the reduced incidence matrix A into

$$A = (A_R A_C A_L A_V A_I)$$

 A_R , A_C , A_L , A_V and A_I ... columns related to components Represent voltages:

$$v = A^{\mathsf{T}} u$$

 \rightarrow rearrange ν into $\nu = (\nu_R, \nu_C, \nu_L, \nu_{src}, \nu_I)$ and i into $i = (i_R, i_C, i_L, i_V, i_src)$. Rewrite component relations:

$$i_R = G \ v_R = G \ A_R^\top u,$$

 $i_C = C \ v_C' = C \ A_C^\top u'.$

Kirchhoffs current law:

$$A_C i_C + A_R i_R + A_L i_L + A_V i_V = -A_I i_{src}.$$

Combining the component relations with the reduced incidence matrix and the Kirchhoff's laws we get:

$$\begin{split} A_C C A_C^\top u' + A_R G A_R^\top u + A_L i_L + A_V i_V &= -A_I i_{src}, \\ L i_L' - A_L^\top u &= 0, \\ -A_V^\top u &= -\nu_{src}. \end{split}$$

In matrix form:

$$\begin{pmatrix}
A_{C}CA_{C}^{\top} & 0 & 0 \\
0 & L & 0 \\
0 & 0 & 0
\end{pmatrix} * \begin{pmatrix} u' \\ i'_{L} \\ i'_{V} \end{pmatrix} + \begin{pmatrix}
A_{R}GA_{R}^{\top} & A_{L} & A_{V} \\
-A_{L}^{\top} & 0 & 0 \\
-A_{V}^{\top} & 0 & 0
\end{pmatrix} * \begin{pmatrix} u \\ i_{L} \\ i_{V} \end{pmatrix} = \begin{pmatrix}
-A_{I}i_{src} \\
0 \\
-\nu_{src}
\end{pmatrix}.$$
(3)

ightarrow differential and algebraic variables

Differential Algebraic Equations

Types of DAEs

2025-05-03 12/42

In the most general form a DAE can be written as: Find $y : \mathbb{R} \to \mathbb{R}^n$ such that

$$F(t, y(t), y'(t)) = 0, \qquad \forall t \in I$$
 (4)

with $F: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ sufficiently smooth and I the time-interval.

Linear systems with constant coefficients

find y such that

$$Ay'(t) + By(t) = f(t),$$
(5)

with $A, B \in \mathbb{R}^{n \times n}$, A singular, B regular and $f : \mathbb{R} \to \mathbb{R}^n$ a function in time. \to differential and algebraic variables

Differential Algebraic Equations

Weierstrass-Kronecker normalform

2025-05-03 14/42

Definition

The matrix pencil $\{A, B\}$ is called *regular* if there exists some $c \in \mathbb{R}$, such that (cA + B) is regular (i.e. $det(cA + B) \neq 0$), otherwise it is called singular.

By applying equivalence transformations on the system matrices, we can transform the initial system into a system of the form

$$u'(t) + Ru(t) = s(t),$$

 $Nv'(t) + v(t) = q(t),$
(6)

where N is a nilpotent matrix and the matrix R is regular.

We call this system the Weierstraß-Kronecker normal form of the DAE. The first equation of (6) is a first order ordinary differential equation and posesses a unique solution u(t) in $[t_0, t_1]$ for any initial values $u_0 \in \mathbb{R}^d$. Now let $q(t) \in C^{k-1}([t_0, t_1])$, where $C^{k-1}(I)$ denotes the space of all functions with domain I that are k-1 times continuously differentiable. We differentiate the second equation in (6) and obtain

$$\begin{split} \nu(t) &= q(t) - N\nu'(t) = q(t) - N(\underbrace{q(t) - N\nu'(t)})' = q - Nq' + N^2\nu'' \\ &= q - Nq' + N^2(q - N\nu')'' = q - Nq' + N^2q'' - N^3\nu''' \\ &\vdots \\ &= q - Nq' + ... + (-1)^{k-1}N^{k-1}\underbrace{\frac{d^k}{dt^k}q}_{:=q^{(k-1)}} + (-1)\underbrace{N^k\nu^{(k)}}_{=0} \\ &- \sum_{i=0}^{k-1} (-1)^i N^i q^{(i)}(t) \end{split}$$

(7)

Differential Algebraic Equations

Index of a Differential Algebraic Equation

2025-05-03 17/42

Definition

Consider the differential algebraic equation (4) to be uniquely locally solvable and F sufficiently smooth. For a given $m \in \mathbb{N}$ consider the equations

$$F(t, y, y') = 0,$$

$$\frac{dF(t, y, y')}{dt} = 0,$$

$$\vdots$$

$$\frac{d^{m}F(t, y, y')}{dt^{m}} = 0.$$

The smallest natural number $\mathfrak m$ for which the above system results in an explicit system of ordinary differential equations (ODEs), i.e. it has the form

$$y' = \phi(t, y),$$

Index Analysis of the Modified Nodal Analysis

Topological Conditions

2025-05-03 19/42

- The resulting equations have index v < 2, if the circuit neither contains loops of voltage sources nor cutsets of current sources.
- They have index $\gamma < 1$, if the circuit contains neither loops of capacitors and/or voltage sources nor cutsets of inductors and/or current sources.
- They have index y = 0, if every node in the circuit is connected to the reference node (ground) through a path containing only capacitors.

Figure: Illustration of a cutset and a loop.

Theorem (Index conditions)

Let the matrices of the capacitances, inductances and resistances be positive definite.

 $\ker([A_R, A_C, A_V]^\top) = \{0\} \text{ and } \ker([A_C, A_V]) = \{0\}$

If

$$ker([A_R, A_C, A_V, A_L]^\top) = \{0\} \text{ and } ker(A_V) = \{0\}$$
 (8)

holds, then the MNA (3) leads to a system with index $v \le 2$.

If additionally

holds, then the system is of index $v \le 1$

If further

$$ker(A_C^\top) = \{0\}$$
 and $dim(v_{src}) = 0$ (10)

holds, then the system has index v = 0.

(9)

Numerical Solutions

Multistep Methods

2025-05-03 23/42

Definition (Multistep method)

For given $\alpha_0, ..., \alpha_k$ and $\beta_0, ..., \beta_k$ the iteration rule

$$\sum_{l=0}^{k} \alpha_{l} y_{m+l} = h \sum_{l=0}^{k} \beta_{l} f(t_{m+l}, y_{m+l}), \quad m = 0, 1, ..., N - k$$
 (11)

is called a *linear multistep method* (linear k-step method). It is always assumed that $\alpha_k \neq 0$ and $|\alpha_0| + |\beta_k| > 0$. If $\beta_k = 0$ holds, then the method is called explicit, otherwise implicit.

Definition (Convergence order)

We say that a linear multi-step method is convergent of order $p \in \mathbb{N}$, if for a solution y of the problem and a vector $(y_j)_{j=0}^k$ created by an LMSM, we have that

$$\max_{0 \le j \le k} \|y(t_j) - y_j\| \le Ch^p.$$

Where *C* is a constant not dependent on the step size h.

Numerical Solutions

Multistep Methods Stability properties

2025-05-03 26/42

Definition

1. The set

$$S := \{ z \in \mathbb{C} : \rho(\xi) - z\sigma(\xi) = 0 \implies \xi \in \mathbb{C} \text{ and } |\xi| \le 1.$$
If ξ has multiplicity greater than 1, then $|\xi| < 1 \}$ (12)

is called the region of stability of the method.

- 2. A linear multistep method is called
 - \circ *0-stable*, if $0 \in S$.
 - \circ stable in the point $z \in \mathbb{C}$, if $z \in S$.
 - \circ A(α)-stable, if it is stable in all z that lie within the set $\{z \in \mathbb{C}^- : |\arg(z) \pi| < \alpha\}$ for $\alpha \in (0, \frac{\pi}{2}).$

Theorem

Let f(t,y) be sufficiently smooth and the linear multi-step method be zero-stable and consistent of order p, then it is also convergent of order p.

Numerical Solutions

Consistent Initial Values

2025-05-03 29/42

Index v = 0: no additional restrictions (ODE case).

Index v = 1:

By rewriting our system into the form

$$y'(t) = f(t, y(t), z(t)),$$

 $0 = g(t, y(t), z(t)).$

we are able to give conditions for consistent initial values. Namely y_0 and z_0 are consistent initial values for this system, if $g(t_0, y_0, z_0) = 0$ holds.

Index v = 2:

For index-2 systems we rewrite our system into

$$y' = f(t, y(t), z(t)),$$

$$0 = g(t, y(t)).$$

Consistent initial values y_0 , z_0 for this case not only have to fulfill $g(t_0, y_0) = 0$ but also the *hidden constraint* $g_t(t_0, y_0) + g_y(t_0, y_0) f(t_0, y_0, z_0)$. By g_t and g_y we denote the derivative of g with respect to t or y, respectively.

Numerical Solutions

Implicit Linear Multistep Formulas BDF-k Methods

2025-05-03 32/42

The backward differentiation formula (BDF) is a family of implicit linear multistep methods. They have the general form

$$\sum_{k=0}^{s} \alpha_k y_{n+k} = h\beta f(t_{n+s}, y_{n+s})$$
 (13)

The BDF or BDF-k formulas for k = 1, ..., 3 have the following form

$$\begin{aligned} k &= 1: hf_{m+1} = y_{m+1} - y_m \\ k &= 2: hf_{m+2} = \frac{1}{2} (3y_{m+2} - 4y_{m+1} + y_m) \end{aligned} \tag{implicit euler)}$$

$$k = 3 : hf_{m+3} = \frac{1}{6}(11y_{m+3} - 18y_{m+2} + 9y_{m+1} - 2y_m)$$

Figure: stability regions of BDF-schemes

Theorem

The BDF-k methods have consistency order p = k.

Corollary (Convergence rate)

The BDF-k methods with $k \le 6$ are convergent with orderk

34/42

Numerical Solutions

Implicit Linear Multistep Formulas Trapezoidal rule

2025-05-03 35/42

This procedure is repeated for small subsections of the interval [a, b]. Thus we obtain the iteration formula

$$u_h(t+h) = u_h(t) + \frac{h}{2}[f(t,u_h(t)) + f(t+h,u_h(t+h))].$$

The trapezoidal rule, considered as a Lobatto III A method, has convergence order p=2.

Numerical Solutions

Numerical Examples Example1

2025-05-03 37/42

Figure: charging capacitor with series resistor and voltage source

Figure: Exact solution for example 1.

h	k = 1		k = 2		k = 3		trapezoidal	
	err(u ₂)	$err(i_V)$	$err(u_2)$	$err(i_V)$	err(u ₂)	$err(i_V)$	$err(u_2)$	$err(i_V)$
0.1	4.620×10^{-2}	4.620×10^{-2}	9.567×10^{-3}	9.567×10^{-3}	2.852×10^{-3}	2.852×10^{-3}	3.344×10^{-3}	3.344×10^{-3}
0.05	2.339×10^{-2}							8.367×10^{-4}
0.025	1.178×10^{-2}	1.178×10^{-2}	6.264×10^{-4}	6.264×10^{-4}	4.928×10^{-5}	4.928×10^{-5}	2.092×10^{-4}	2.092×10^{-4}

Table: Resulting errors for the BDF-k methods and the trapezoidal rule.

Numerical Solutions

Numerical Examples
Gauss

2025-05-03 40/42

$$y_{n+1} = y_n + hf(t_n + \frac{h}{2}, \frac{y_n + y_{n+1}}{2})$$

number of stages a	index ⁻		index $\nu = 2$		
number of stages s	differential	algebraic	differential	algebraic	
even	20	s + 1	s + 1	s — 1	
odd	2s	S	s	s-2	

Table: Convergence order for Gauss method.

h	example 1			example 2		example 3	
	$err(u_1)$ (alg)	$err(u_2)$ (diff)	$err(i_0)$ (alg)	$err(u_1)$ (diff)	$err(i_L)$ (diff)	$err(u_1)$ (diff)	$err(i_V)$ (alg)
0.1	6.257×10^{-1}	1.041×10^{-1}	6.154×10^{-1}	6.589×10^{-3}	7.885×10^{-3}	6.257×10^{-1}	1.251×10^{3}
0.05	3.138×10^{-1}	5.181×10^{-2}	3.081×10^{-1}	1.649×10^{-3}	1.974×10^{-3}	3.138×10^{-1}	2.511×10^{3}
0.025	1.570×10^{-1}	2.578×10^{-2}	1.547×10^{-1}	4.123×10^{-4}	4.936×10^{-4}	1.570×10^{-1}	5.025×10^3

Table: Resulting errors for the Gauss method with one stage.

Definition

Let y(t) be the exact solution of (4) and $\tilde{y}(t)$ be the solution of the perturbed system $F(t, \tilde{y}, \tilde{y}') = \delta(t)$. The smallest number $k \in \mathbb{N}$ such that

$$\|y(t) - \tilde{y}(t)\| \leq C \left(\|y(t_0) - \tilde{y}(t_0)\| + \sum_{j=0}^k \max_{t_0 \leq \xi \leq T} \left\| \int_{t_0}^{\xi} \frac{\mathrm{d}^j \delta}{\mathrm{d} \tau^j}(\tau) d\tau \right\| \right)$$

for all $\tilde{y}(t)$, is called the **perturbation index** of this system.

Dahlquist test problem as a model problem, find y such that

$$y' = \lambda y, \quad t > 0 \tag{14}$$

$$y(0) = y_0$$
 (15)

with $\lambda \in \mathbb{C}$ and y_0 fixed.

Thus the resulting linear multistep method is of the form

$$\sum_{l=0}^{k} \alpha_l y_{n+l} = h \sum_{l=0}^{k} \beta_l \lambda y_{n+l}$$

$$\iff \sum_{l=0}^{k} [\alpha_l - h\beta_l \lambda] y_{n+l} = 0$$