

DH key Exchange 9:5 mod 23 5,23 5 mod 23 19 mod 23 15 mod 23 8 mod 23 21 9

(1)

Eulers theorem

Modular Arithmetic ..

- *) a = bredo : a and b leave. some semainder when you divide them by o'.
- *) a = broadn : of n divides. a-b.
- *) of a=b man and c=d mod n then atc = (b+d) med n a-c = (b-d) med n arc = (bxd) med o
- a = (b *c) man then a = (b medn * c medn) medn. a = (b+c) made then a = (bridin + crossed) made

Euler's totient function:

Num of the ontegers which are less than 'n', Coprime to n.

- *) when n is prime num $\phi(n) = n-1$
- *) when mand n are coprime then $\phi(m*n) = \phi(m) * \phi(n)$ = (m-1)*(n-1)
- *) of the prime factorization of n is given by n=P1 * P2 * --- * Pn then $\phi(n) = n\left(1 - \frac{1}{P_1}\right)\left(1 - \frac{1}{P_2}\right) - - \left(1 - \frac{1}{P_n}\right)$

Multiplicative Inverse:

For Each a to mad p [P is a prime num] these is 'b' Such that ab = 1 mod p than b is multiplicative sorverse of a.

of p is not prime.

Of a and n have no Common factors then a has a multiplicative. Inverse med n.

Exi- 1 2 = 0 mod = Prime.

En: 23" mod 100

$$5 \times x = 1 \mod 9 \mod prime Let GCD (5,9) = 1$$

Coprime.

Eulers theorem:

n is a tre Integer and ain are Coprime then OF

Now,

$$\Rightarrow 165\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{11}\right)$$

Mulliplicative : svesse :

Modular Anthoratic.

Euler's tollent function.

97 77 87 46

ab = 1 mod n = 1 23.6 = 1 mod 100.

Fermat's theorem:

Special case of Eulen theosem

For any prime number n and a formed n then

$$a^b = a \mod n$$

Primitive root:

The number b in a = b mod n is called residue of a mod n.

lesidue

85 is sesidue of 7 mod 13

Residue class:

Residue classes of f(x) mod n are all possible values of f(x) mod n = Ex:- RC of x2 mod 6 are \$0,1,5,49

$$6^2 \mod 6 \Rightarrow 0$$

mulding brod get o

Continged Stories J

3

Lawline of a pairshas Augla b mod D

Primitive pool , wall many of men red to

Let p be a prime then b is a primitive root for p if paren of b. b', b', b^2 Includes all residue chance of mad p.

Extra Part

Note: Of p is a prime,

The power of b form a sepealing cycle and the cycle can't be larger than (p-1) then b is primitive soot of p.

$$3^{0} \equiv 1 \mod 7$$

$$3^{1} \equiv 3 \mod 7$$

$$3^{2} \equiv 0 \mod 7$$

$$3^{3} \equiv 6 \mod 7$$

$$3^{4} \equiv 4 \mod 7$$

: 3 le primitive voet jour svilimier

* Excluding 1,2,4 the numbers with primitive roots are of shape p^k , $2p^k$ where p is odd prime number

*) 'm' is primitive not machine of multiplicative order of m is $\phi(n) = 1 \mod n$.

Discrete legarithm:

The problem of finding or such that at = b mad p (p is prime, at b are non zero Integers) is called discrete logarithm problem

-> ot is a Mp hard problem

of f(x) is Easy to Compute, but y is computationally onfamille to find x such that $y \in f(x)$.

=> A Firewall may be designed to operate as a filter at the level of Ip packets or may operate at higher layer protocols.

-> & Fire contrating on single choice epict

Types of Firewalls:

1 packet filtering Firewall.

A packet filtering firewall applies a set of sules into Each Oncoming and cutgoing Ip packet and then forwards or discards the packet based on present in Top and Ip haders, Information (D)+(1-)11 + H - 1 A D - Car be applied 10 & from 1 The el onlina vilo Global N/W 15 part 15 born (4-)11 + 0 = 1

then _ Interface	Source Ip	Source	Destination Ip	<u>Destination</u>
(131.34.000	*	*	蛛
*	オ	咪	*	\$ 73
	*	*	194.78.20.8/	*
2	*	80	中	F

Black a Now Entering into Internal Now Blacks Telret Service from both sides blacks according particular Ipadar Blacks according particular Ipadar Blacks trop is accord within Internal New

2) proxy firewall:

-> Filters the message based on contents of the message

-> works at application layer

Access to secient the sequest

The server opens the packet at the application level and finds cut of the sequest is legitimate.

finding modulo swere (11 mod 26)

$$26 = 11(2) + 4$$
 $11 = 4(2) + 3$
 $4 = 3(1) + (1) - 1$
 $3 = 1(3) + 0$

$$1 = 4+3(-1)$$

$$1 = 4+(1+4(-2))(-1)$$

$$1 = 4+11(-1)+4(2)$$

$$1 = 4(3)+11(-1)$$

$$1 = (26+11(-2))3+11(-1)$$

$$1 = 26(3)+11(-1)$$

$$1 = 26(3)+11(-1)$$

$$1 = 26(3)+11(-1)$$

$$1 = 26(3)+11(-1)$$

1= 11(-7) mad 26

-7 mad 26 = 19 mad 26 = 19 mad 26 = 19 mad 26 = 19 mad 26