Falcon PJT Single calibration 기술 소개

- 1. 차댱용 CM 3종의 Tester flow
- 2. Quartus 社 Tesseract 소개
 - 광원 Concept
 - 장비 Design
 - 소켓 Design
 - Test Sequence
- 3. Geometric lens calibration 개념
- 4. Chart Object vs. DOE Object
- 5. DOE Object의 강점과 한계점
- 6. Tesseract calibration file 분석
- 7. 결돈

1. 차량용 CM 3종의 Tester flow

Otter/Eagle/Falcon PJT에 사용되는 tester 설비는 총 4종류. Model / 공정으로 구분.

Tester station	Model	DUT form	목적	비고
FOL Tester	Otter, Eagle, Falcon	RFPCB	RFPCB 단품의 문제 유무 확인	Bench tester type (PC+F/G+socket)
EOL Tester	Otter. Eagle, Falcon	완제품 단품	Dark test/ Color calibration/ Resolution test	6 Para
Single Calibration (Tesseract)	Eagle, Falcon	완제품 단품	Distortion calibration	1 Para
Dual Calibration	Otter	Otter 완제품 2개 bracket 체결	Distortion calibration SFR test Depth test	1 Para

2. Quartus 社 Tesseract 소개- 광원 concept

Single mode green laser source + 2D beam splitting DOE

Eagle/Falcon 외형이 같으므로 소켓 공용화 가능. Eagle/Falcon model에 따라 WD 조젇 필요.

Model	Eagle (NFOV)	Falcon (MFOV)
Expected Max WD (mm)	>50mm	~23mm

[Confidential]

2. Quartus 社 Tesseract 소개- 장비 Design

NAO 1825

1 Laser source 및 1 DOE 탑재. DOE 4 channel까지 확장 가능.

Empty x3 slots for Illuminators (DOE)

View without profile

Process flow

- 1) Input DUT into socket (manual)
- 2) Socket close
- 3) Socket moves forward
- 4) Socket Z-axis up
- 5) Test at fixed position
- 6) Socket Z-axis down
- 7) Socket moves backward
- 8) Socket open
- 9) Exchange DUT (manual)

2. Quartus 社 Tesseract 소개- 소켓 Design

Align pin / Side pusher / Top cover를 사용해 모듇 안착.

Align pin위에 모듇 flange 안착.

Side pusher 적용.

Probe pin에 Fakra cable 체결하여 사용.

2. Quartus 社 Tesseract 소개- Test Sequence

Process flow

- 1) Input DUT into socket (manual)
- 2) Socket close
- 3) Socket moves forward
- 4) Socket Z-axis up
- 5) Test at fixed position
- 6) Socket Z-axis down
- 7) Socket moves backward
- 8) Socket open
- 9) Exchange DUT (manual)

Run Quartus DLL

- 1) Place raw image at certain dir
- 2) Run EXE per each image

Single image per module Expected tact time ~1sec

Data Post-Processing

- 1) Extract data from DLL output
- 2) Organize summary and raw data
- 3) Write calibration data into NVM

NVM Map (Tesseract related)

ltems	Description	Data
Camera Distortion Calibration Optimization Parameters	Reprojection error, Calibration model etc.	128 bytes
Camera Distortion Calibration Parameters	Pixel size, resolution, sensor temperature etc.	64 bytes
Camera Distortion Calibration Intrinsic	EFL, principal point, distortion coefficient etc.	9254 bytes
Distortion Calibration Points	Coordinates of Max. 3000 points etc.	30012 bytes
Tesseract Parameters	Laser wavelength, DOE NA etc.	128 bytes

□ Geometric lens calibration은 distortion parameter들을 측정하는 과정

Distortion parameter

- Extrinsic parameter: Camera와 묻체의 좌표계 차이
- Translation
- Rotation
- Intrinsic parameter: 이미지 취득 과정상 변형
- Lens distortion
- Pixel quantization
- Capturing error
- Camera 고유값 = Intrinsic parameter

Geometric calibration

- Object point Image point 쌍 측정
- Point쌍 행렬식의 해가 distortion parameter
 Img(x, y, z) = Int · Ext · Obj(x, y, z)
- 유일해가 존재해야 Cal. 가능
- 같은 평면상 Object points는 유일해 비존재
 - → 평면 차트는 각도/거리가 다른 이미지 필요
- 3차원 분포 Object points는 유일해 존재
 - → DOE는 단일 이미지로 충분

4. Chart Object vs. DOE Object

NAO 1825

□ DOE Lens Cal.은 기존 기술 대비 공정 효율이 높음

<u>기존 기술 – Chart</u>

- 평판에 인쇄된 chart
- FoV 확보 → 크기↑, 필요 공간↑
- 같은 평면상 point만 확보 → 여러 각도/거리의 이미지 필요
- Chart 크기 확장 용이 → 초광각 (>130도) 대응 용이

Tesseract - DOE

- 평행광+DOE → 다양한 각도의 평행광
- 작은 크기와 공간 차지
 받광부: 420 mm X 185 mm X 134 mm (L X W X H)
 Working Distance: 20~50mm
- 3차원으로 분포된 point → 단일 이미지토 calibration 가능
- 제한적 Fraunhofer 회적 구현 → 정렬 민감도 감소
- DOE 기술 한계로 크기 및 FoV 제한 (<130도)

* 첨부파일 (Bauer) 참고

5. DOE Object 의 강점과 한계점

NAO. 1825

□ DOE Lens Cal.은 여러 강점이 있지만 DOE 기술에 한계점 존재

기술 강점

- 소요 시간과 필요 공간 대폭 감소
- Single shot Cal. → T/T 감소, Motion part 간소화
- 필요 공간 대폭 감소 → 설비 크기 감소, 병렬 진행 용이
- 구축 난이도 감소
 - 정렬 민감도 낮음 → Set-up 난이도 감소, Aging 위험 감소
 - 제어 간소화 → 제어 난이도 감소

Falcon PJT에 적용된 모습

기술 한계점

- DOE 제조공정 문제로 광각 대응에 한계
- DOE 크기 확대 필요 → DOE 품질 하닥
- 필요 Spatial frequency 상승 → DOE 품질 하닥
- DOE 품질 하닥 → Calibration 성능 대폭 하닥
- Stereo camera 대응 한계
- Single shot
 Baseline 대비 대면적 Dot 분포 필요 → DOE 품질 하닥
- Double shot Camera 부토 DOE Cal. 수행 → Baseline 공차 영향 존재

DOE 방식으로 stereo camera 보정

5. DOE Object 의 강점과 한계점

- DOE는 회적은 이용한 광소자
- FOV ↑ ⇒ 회적각 ↑ ⇒ 회적 패턴 요구 해상도 ↑ ⇒ DOE 제작 공차 ↑
- 회절패턴 제작 가능 해상도에 한계 존재
- 주요 업체 현황
- Quartus사 Tesseract 기준 DFOV 130도
- Image Engineering 사 Geocal 기준 FOV 120도
- 양사 모두 FOV 확대 커스텀 가능 주장

Quartus - Tesseract

Image Engineering - Geocal

6. Tesseract calibration file 분석

Raw data

- Object point: 방향 벡터의 형태로 저장
- Image point: Sensor가 인식한 픽섿 위치

Object model

- 대상 좌표계를 카메라의 좌표계로 변환
- 동상 Tsai calibration 사용
- DOE는 Fraunhofer 회절 → Transition 거의 무시
- Extrinsic parameter 연관

Object point (Direction vector)

Image point (Pixel dimenson)

Camera

Output .json file

DOL

Camera

Output .json file


```
camera_model": {
 "mu_mv": [
  1125.2659373937709,
  1125.3874502099254
 "principal point": [
  1477.0754238948762,
  1554.8688871725549
 "radial distortion coeff": [
  0.014591327418599212,
  0.0059931066463045973,
  0.0025114375565303483,
  -2.4994208909676062E-5
"radial_asym_poly": [],
 "radial_asym_fourier": [],
 "tangential_asym_poly": [],
 "tangential_asym_fourier": [],
 "image_size": [
  2752,
  3072
 "class_name": "KannalaModel"
```

Output .json file

Camera model

- Kannala Model 사용
- 렌즈 입사각 기준 distortion model
- 다양한 렌즈 대응 가능
- DOE 방식에 적합
- Symmetric/Asymmetric parameter 존재
- Symmetric: 대칭 렌즈 득성
- Asymmetric: 비대칭 렌즈 득성 (렌즈 공차, 정렬 붇댱)
- Tesseract는 asymmetric parameters까지 분석가능

Symmetric Asymmetric radia parameters parameters

Asymmetric tangential parameters

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \begin{bmatrix} \mathbf{m}_{\mathbf{u}} & \mathbf{0} \\ \mathbf{0} & \mathbf{m}_{\mathbf{v}} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} + \begin{pmatrix} \mathbf{u}_{\mathbf{0}} \\ \mathbf{v}_{\mathbf{0}} \end{pmatrix}$$

Convert to Principle pixel dimension point

- File 정보 중 k_1 값이 너무 작음 \rightarrow 1은 임의로 더함
- Raw data(blue): 센서면에서의 data points
- Distortion model(orange): 역설계 distortion model 결과
- → 오차가 존재하나 Tesseract가 사용하는 모델은 확실

6. Tesseract calibration file 분석

NAO 1825

□ 기술적 강점이 존재하고 자체 구현 가능하나 낮은 수익성 우려

Quartus - Tesseract

Image Engineering - Geocal

- 기술 강점
 - 설비 구축 난이도, 공간, T/T 대폭 감소
 - 단일 설비로 다양한 렌즈 대응
 - 낮은 정렬 민감도
- 기술 한계
 - DOE의 근본적 문제로 광각 확보 한계 존재 (<130도)
 - Stereo camera 대응 한계
- 기존 주요 업체
 - Quartus Tesseract
 - Image Engineering Geocal
- 기술 비중
 - Tesseract 기준 HW 단가 비중 낮음

	HW	SW	총액
금액 (\$)	3500	16500	20000

- SW algorithm 기술이 핵심

Kannala model

- Juho Kannala가 제안한 lens distortion model
- 좌표계
- Principal line (P) 기준 입사각 θ
- x y의 사잇각 φ
- Principle point 기준 거리 r
- 각도 기준이기에 렌즈 크기/FoV 무관하게 대응 가능
- 각도 정보로서 points를 뿌리는 DOE 방식에 적합
- Symmetric parameter: 대칭 렌즈의 경우 정상 렌즈 득성 $r(\theta) = k_1\theta + k_2\theta^3 + k_3\theta^5 + k_4\theta^7 + \cdots$
- Asymmetric parameter: 대칭 렌즈의 경우 렌즈 불량 Radial

$$\Delta_r(\theta, \varphi) = (l_1\theta + l_2\theta^3 + l_3\theta^5 + \cdots) \times (i_1\cos\varphi + i_2\sin\varphi + i_3\cos2\varphi + i_4\sin2\varphi + \cdots)$$

Tangential

$$\begin{split} \Delta_t(\theta,\varphi) &= (m_1\theta + m_2\theta^3 + m_3\theta^5 + \cdots) \\ &\times (j_1cos\varphi + j_2sin\varphi + j_3cos2\varphi + j_4sin2\varphi + \cdots) \end{split}$$

Second Harmonic Generation

Involves virtual transition
Energy is conserved
Femtosecond response time
Frequency exactly doubled

- Second harmonic generation (SHG)는 nonlinear optics 현상으로, 같은 파장의 광자가 동시에 득정 묻질 (SHG crystal)에 득정 상황으로 입사하면 절반 파장의 빛은 내는 현상
- 전듀나 열도 pumping하는 방식과 달리 linewidth가 있는 빛으로 pumping 하고,
 nonlinear 반응이기 때문에 nominal wavelength에서 멀어질 수독 lasing 효율이 급감
 → linewidth 감소
- 현재 상업적으로 선택 가능한 가장 좁은 linewidth의 광원
- 몇 가지 파장 선택지가 존재하나, 532nm가 가장 널리 쓰이고 저렴