

计算机组成原理

第三章 运算方法与运算器

3.3 原码一位乘法

3.3 原码一位乘法 和龙鹅, 龙科棋

搬租间,

数据整体左移一位,最高 \dot{Q}_{15} 被移出至 \dot{Q}_{F} ,最低位 \dot{Q}_{1} 补0

移位前 01101110

逻辑左移后 0 11011100

算术左移: D₁₅ D₁ D₁ 0

数据整体左移一位,最高位 D_{15} 被移至 C_F ,最低位 D_1 补0

移位前 01101110

逻辑左移后 0 11011100

相当于乘2

3.3 原码一位乘法

数据整体右移一位,最高位D₁₅补O,最低位D₁被移出移位前 11101110

逻辑右移后 01110111

算术右移:

数据整体右移一位,最高位D₁₅被复制填补D₁₅,最低位D₁被移出

移位前

11111111

11101110

相当于除2

逻辑左移后

手工性激略了幾位

2 〈二进制乘法的手工计算过程

- a. 说明乘法可由加法实现
- b. 存在的问题<<

对力化数

- 需要多输入的全加器 (最多为n+1);
- 需要长度为2n的积寄存器; 偏大为2n /旅》卷稿?
- 对应乘数的不同位,部分积左移次数不同,

且乘法过程中总移位次数多。

3.3 原码一位乘法

二进制乘法的手工计算过程

如何解决上述问题(改进的方法)

• 需要多输入的全加器(最多为n+1)

• 针对乘数不同位部分积左移次数不同的问题

需要长度为2n的积寄存器

3 原码一位乘法算法

原码答点 众

• 符号位单独参加运算,数据位取绝对值参加运算。

运算法则:

设: $[X]_{\mathbb{R}} = X_0 \cdot X_1 X_2 ... X_n$ $[Y]_{\mathbb{R}} = Y_0 \cdot Y_1 Y_2 ... Y_n$

则: P0 = X₀ ⊕ Y₀ |P| = |X|· |Y|

幣包

•运算过程采用改进的乘法运算方法。

原码一位乘法算法

例1 已知 X = 0.110 $\underline{Y} = -0.101$ 用原码一位乘法求X_{*}Y 解: [X] = 0.110 >[Y]_@ = 1.101 0.010**先设为0** 部分积 |乘数| / 判断位 0.101> 00.000 Y₀.101 -0010 用双线中 00.110 佛位 0010 00.110 🕱 + 000000010 $\rightarrow 00.011$ $> 0 Y_0.10$ 00010 + 00.000 + 001000.011 001010 $10 Y_0.1$ $\rightarrow 00.001$ 001010 + 00.110 + 000000.111 0001010 \rightarrow 00.011 110 Y₀

 $X*Y = (0 \oplus 1).011110 = 1.011110$

说明 00110 → Y₃ = 1 部分积 + |X| 每次运算结果右移1位 Y₃ = 0 部分积 + 0 Y₃ =1 部分积 + |X|