⑩日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

平4-180736

@Int. Cl. ⁵

識別記号

庁内整理番号

個公開 平成 4年(1992) 6月26日

A 61 B 5/07

8932-4C

審査請求 未請求 請求項の数 1 (全8頁)

6)発明の名称 医療用カプセル

②特 願 平2-310857

@出 願 平2(1990)11月16日

@発 明 者 五 反 田 正 一 東京都渋谷区幡ケ谷2丁目43番2号 オリンパス光学工業

株式会社内

@発 明 者 工 藤 正 宏 東京都渋谷区幡ケ谷2丁目43番2号 オリンパス光学工業

株式会社内

⑩発 明 者 田 畑 孝 夫 東京都渋谷区幡ケ谷2丁目43番2号 オリンパス光学工業

株式会社内

①出 願 人 オリンパス光学工業株 東京都渋谷区幡ケ谷2丁目43番2号

式会社

個代 理 人 弁理士 坪 井 淳 外 2名

最終頁に続く

明 和 也

1. 発明の名称

医療用カプセル

2. 特許請求の範囲

体腔内の路情報を検出するためのカプセル本体と、このカプセル本体内に設けられ指向性、送受信周波数が異なる複数のアンテナとを具備したことを特徴とする医療用カプセル。

3. 発明の詳細な説明

[産業上の利用分野]

この発明は体腔内にあるカプセルの位置を体 外で検出できる医療用カプセルに関する。

[従来の技術]

被検査者がカプセルを飲み込み、カプセルによって体腔内の消化液等を採取したり、体腔内へ 薬液等を放出する医療用カプセルは、例えば特公 昭63-21494号公報で知られている。ところで、被検査者が飲み込んだ医療用カプセルが体 腔内の目的の部位に到達したか否かは飲み込み後 の経過時間によって推測するか、または体外から X線によって透視する方法が一般的である。

[発明が解決しようとする課題]

しかしながら、被検査者が飲み込んだ医療用カプセルの位置を知るために飲み込み後の経過時間によって推測するのはカプセルの位置を正確に検出できない。また、体外からX線によって透視する方法は、カプセルの位置を正確に検出できるが、長時間または何回かのX線の照射により人体に悪影響を及ぼすという問題がある。

そこで、第13図に示すように、カガらなで、なりりもととではにいからなされた。 こで、がいっテリもととではいかの発された。 この内ではいったでのではできる。というではいいででではいいででででではいいででででいません。 にいているででででいません。 にいているででではいいでではいいでではいいでではいいでできる。というではいいでではいいではいいではいいではいいではいいででいません。 なが、カブセル本体ののた右方向ではでいいない。

- 2 -

検知が難しく、カブセルの位置を正確に検知できないという問題がある。

この発明は前記記事情に発目してなされたもので、その目的とするところは、カブセルの位置、向きに拘らず、その位置を正確に検知でき、しかも人体に安全な医療用カブセルを提供することにある。

[課題を解決するための手段および作用]

この発明は、前記課題を解決するために、体 腔内の諸情報を検出するためのカプセル本体と、 このカプセル本体内に設けられ指向性、送受信周 波数が異なる複数のアンテナとから構成する。

被検査者がカプセルを飲み込んで体腔内を移動中に体腔内の諸博報を検出して体外に送信するとともに、複数のアンテナから体外に発信された電波の方向、強度、周波数等によってカプセルの位置、向き等を体外で受信してカプセルの位置を正確に検知する。

[実施例]

以下、この発明の各実施例を図面に基づいて

- 3 -

置検8はカプセル本体1の軸方向と直角方向(横方向)に、さらに第3のアンテナ9はカプセル本体1の軸方向と直角方向(前方向)に、指向性が直交するXY2の3方向に電波を発信するようになっている。さらに、第1のアンテナ7は発振周波数f」に、第2のアンテナ8は発振周波数f」に、異なる発振周波数の電波を発信するようになっている。

第2図は位置検出回路のプロック図であ知信号により、日本体1の第1のセンサ6からの検知信息になるのアンテナ7~9から発信された受信となるのアンテナ11によって信号は、、後ろにはなる発展周波数 f 、、f 2 に 福田の応じて数立して設けた第1~第3の増高された第1~第1の正力を表示する。第1~第3の時にといて地によって地幅された信号は、

説明する。

第1図および第2図は第1の実施例を示す。第 1図に示す、カブセル本体1は、円筒部2と、この円筒部2の軸方向両端部に装着された半球状のキャップ3、4とから構成されている。カブセル本体1の内部における一端側、図において下側にはパッテリ5が設けられ、上側には例えば圧力測定用の第1のセンサ6が設けられている。

- 4 -

出回路18を介して第2の表示部19に入力され、第2の表示部19は第1~第3のアンテナ7~9から発信される電波の強さを比較することにより、カプセル本体1の位置、向き(姿勢)を検出して表示する。したがって、カプセル本体1の位置、向きを正確に検出でき、その時の体腔内の圧力を検出できる。

したがって、被検査者がカブセル本体1を飲みびした、カブセル本体1は人体の食道、胃、腸の順に移動する。この体管、カブセル本体1の発出のでは、カブモカを検出のでは、カガモカーのでは、カガーのでは、カブ

- 5 -

14~16を介して第1の表示部17に入力され、第1の表示部17は第1のセンサ6によって校知した体腔内の圧力を表示する。第1~第3の増幅器14~16によって増幅された信号は、さらに位置検出回路18を介して第2の表示部19に入力され、第2の表示部19は第1~第3のアンテナ7~9から発信される電波の強さを比較することにより、カブセル本体1の位置、向きを正確に検出し、その時の体腔内の圧力を検出する。

第3図および第4図は第2の実施例を示すもので、第1の実施例と共通する部分は同一番号を付して説明を省略する。

第3図に示すように、この実施例は、カプセル本体1の円筒部2にバッテリ5が設けられている。また、カプセル本体1の内部における一端側、図において下側には例えば温度測定用の第2のセンサ20および変製回路21が設けられている。すなわち、カプセル本体1には圧力測定用の第1の

リングするため、バッテリの消費が落しい。 そこで、体外からカブセルの内部のスイッチをオン・オフしている。しかし、スイッチのオン・オフ 制御が困難であり、仮に一定時間でオン・オフを綴り返した場合、オフ時に患者に異常が起こる場合もある。 そこで、バッテリの消費を仰えつつ、体腔内の情報の変化を確実に検出できる医療用カブセルを開発した。

第 5 図および第 6 図は、その実施例を示すもので、 2 5 は発信回路部で、 増幅器 2 6 、変調回路 2 7 および発信用のアンテナ 2 8 を備えている。 2 9 はスイッチ 制御回路部で、 ウインドコンパレータ 3 0 、タイマ 3 1 を確えている。 バッテリ 3 2 はスイッチ 3 3 は前記 タイン 2 5 の 法 は サーミスタ からなる 同せ ンサ 3 4 の入力 側に接続され、この出力側は前記 部 2 5 の 増 幅器 2 6 およびスイッチ 制御回路部 2 5 の 増 幅器 2 6 およびスイッチ 制御回路部 2 9 のウィンドコンパレータ 3 0 に接続されてい

センサ6と温度測定用の第2のセンサ20を備え ている。また、カプセル本体 1.の内部には第1の アンテナ7と第2のアンテナ8を備え、指向性が 直交する2方向に電波を発信するようになってお り、第3のアンテナ9を廃止している。したがっ て、第4図に示すように、第1のアンテナ7の発 振周波数 f , に対応する第1の増幅器14と第2 のアンテナ8の発振周波数 f 2 に対応する第2の 増幅器15が設けられている。そして、第1の増 幅器 1 4 は第 1 の表示部 1 7 に接続され、第 1 の センサ6によって検知した体腔内の圧力が第1の 表示部17に表示される。また、第2の増幅器 15は第3の表示部22に接続され、第3の表示 部22は節2のセンサ20によって換知した体腔 内の温度を第3の表示部22に表示する。したが って、第1の実施例と同様に、カプセル本体1の 位置、向き(姿勢)を正確に検出し、その時の体 腔内の圧力とともに温度を検出することができる。

前述したように、バッテリを内蔵した医療用カ プセルは、長時間に亘って体腔内の情報をモニタ

- 8 -

る。 さらに、 バッテリ 3 2 はスイッチ 制御回路部 2 9 に接続されているとともに、 ウインドコンパ レータ 3 0 に 基 単 電圧を印加している。

したがって、pHセンサ34の出力は、ウインドコンパレータ30で基準電圧と比較される。そして、第6図に示すように、ウインド幅を越えた場合はウインドコンパレータ30からタイマ31を駆動すると、スイッチ33がオン・オフを繰り返し、パッテリ32から発信回路部25に電圧を供給する。このため、発信回路部25に電圧を供給するの出力信号を増幅器26によって増幅した後、変調回路27によって変調し、アンテナ28から発信する。

このように、pHセンサ34の出力が基準電圧の範囲(異常なしと思われる範囲)内であれば、スイッチ33はオフ状態にあるため、発信回路部25へ電圧は供給されないことになり、発信回路部25ではバッテリ32の電力は消費されない。また、pHセンサ34の出力が範囲を越えた場合も、

- 10· -.

タイマ 3·1 によりスイッチ 3 3 をオン・オフするため、持統的データを得つつ、電力の節約が図れる。

第7図および第8図は、微分回路35によりpllセンサ34の出力の時間に対する変化を検出したものである。すなわち、pllセンサ34の出力例を数分回路35を介してスイッチ制御回路部29に接続し、この数分回路35によりpllセンサ34の出力の時間に対する変化を検出してスイッチ制御回路部29に入力する。

但しVin;入力電圧

別センサ34の出力は欲分回路35を介してスイッチ制御回路部29に入力され、 基準電圧と比較される。そして、第8図に示すように、 基準電圧を超えた場合 (急激な変化をした場合) スイッチ33がオン・オフを繰り返し、バッテリ32から発信回路部25に電圧を供給する。この場合、 欲分回路35の出力が基準値の範囲を下回った場

- 11 -

することにより、体腔内のカプセル本体38の位置を知ることができる。

第11図および第12図は、前記実施例と同様に、被検査者が飲み込んだ医療用カプセルの位置を知る手段として、生体地図と基準点とによって位置検出を行う実施例である。

生体地図として被検査者の生体ともに心臓の位置をCT、MRIまたは超音波等による診断装置によって検出し、これを生体マップとして心臓の位置とともにメモリ36に記憶する。一方、カフセル本体42の内部には心電図検出電磁43とともに信号処理回路44、メモリ45およびッテリ46が設けられている。さらに、カプセス用電極47が設けられている。

前記心型図校出電極43からの校出信号は被形解析回路48を介して演算器49に入力され、演算器49からの信号と前記メモリ45に記憶された生体マップとを位置校出回路50によって照合することにより、カプセル本体42が心臓からど

合にもモニタをし続けられるようにするため、スイッチ33がオン・オフを一定時間続ける。したがって、急激な生体情報の変化を迅速に知ることができる。

第9図および第10図は、被検査者が飲み込んだ医療用カプセルの位置を知る手段として、生体地図と基準点とによって位置検出を行う実施例である。

- 12 -

の方向にどれだけ離れているか知ることができ、 発振器が不要となる。

[発明の効果]

以上説明したように、この発明によれば、体腔内の緒情報を検出するためのカプセル本体内に指向性、送受信題被数がみななる複数のアンテナから体外に発信とれたでは、過去では、過去では、過去では、過去では、からなどでは、からなどでは、ないの位置を全な医療用カプセルを提供できるという効果がある。

4. 図面の簡単な説明

第1図および第2図はこの発明の第1の実施例を示し、第1図はカプセルの緑断側面図、第2図は電気回路のプロック図、第3図および第4図はこの発明の第2の実施例を示し、第3図はカプセルの縦断側面図、第4図は電気回路のプロック図、第5図はバッテリ内蔵型カプセルの電気回路

- 13 -

- 14 -

のプロック図、第6図は同じくタイミングチャート図、第7図はバッテリ内蔵型カブセルの電気回路のプロック図、第8図は同じくタイミングチャート図、第9図は被検査者が飲み込んだ医療用カブセルの位置を検出する他の実施例のプロック図、第12図はカブセルの経断側面図、第13図は従来の医療用カブセルの経断側面図である。

1 … カプセル本体、6 …センサ、7 。8 。9 … アンテナ。

出厕人代理人 弁理士 坪井 莎

- i5 -

第1頁	€の約	売き						
@発	明	者	大	島		豊	東京都渋谷区幡ケ谷 2丁目43番 2号	オリンパス光学工業
					•		株式会社内	
個発	明	者	岡	H		勉	東京都渋谷区幡ケ谷2丁目43番2号	オリンパス光学工業
							株式会社内	
個発	明	者	鈴	木		明	東京都渋谷区幡ケ谷2丁目43番2号	オリンパス光学工業
						-	株式会社内	
@発	明	者	布	施	栄	- .	東京都渋谷区幡ケ谷2丁目43番2号	オリンパス光学工業
•				•			株式会社内	
@発	明	者	林		Œ	明	東京都渋谷区幡ケ谷2丁目43番2号	オリンパス光学工業
							株式会社内	
@発	明	者	植	田	康	弘	東京都渋谷区幡ケ谷2丁目43番2号	オリンパス光学工業
	-						株式会社内	
個発	明	者	安	達	英 .	Ż	東京都渋谷区幡ケ谷2丁目43番2号	オリンパス光学工業
		-		-	2.4		株式会社内	
						•	• • • • • • • • • • • • • • • • • • • •	

特開平4-180736

[Title of Invention] Medical capsule

[Scope of Claims]

[1] A medical capsule comprising a capsule body for detecting various information in body cavities, and a plurality of antennas disposed in the capsule body and having different directivities and transmission/reception frequencies.

Detailed Description of the Invention

[Industrial Field]

The present invention relates to a medical capsule, whose position in body cavities may be detected from outside the body.

[Prior Arts]

The medical capsule, which is swallowed by a patient to sample digestive fluids in the body cavities or discharge medicament into the body cavities, is known as in Patent Gazette No. 63-21494. Whether the medical capsule swallowed by the subject has reached the target site in the body cavity is usually assumed by the time elapsing after the swallowing or radiographically checked from outside the body.

Problems to be Solved by Present Invention

However, the assumption of the position of the medical capsule swallowed by the subject based on the elapse of the time cannot achieve precise detection of the capsule position. In the radiographic method to monitor the position from outside the body, the capsule position may be precisely detected, while X-ray irradiation for an extended period time or for several times may have an adverse effect on the human body.

A medical capsule, which incorporates an antenna c comprising a battery b and transmission coil in the capsule main body a as shown in Fig. 13 has been developed. The medical capsule is swallowed by the subject, and radio waves are transmitted from the antenna c in the body cavity and received by a receiver installed outside the body, thus attaining positional detection for the medical capsule. Since only a single antenna c is provided in the capsule main body, however, radio waves are transmitted in the direction shown with the arrow. Therefore, radio waves may be detected in the vertical direction of the capsule main body a but is weak in the horizontal direction of the capsule main body a, thus making detection difficult and hindering precise detection of the capsule position. Under such circumstances, the present invention has been developed to provide a medical capsule, which can precisely detect the capsule position regardless of its position and orientation and is safe to human body.

[Means to Solve the Problems]

To solve the hereinbefore-mentioned problems, the present invention comprises a capsule main body for detecting various information in body cavities, and a plurality of antennas disposed in the capsule body and having different directivities and transmission/reception frequencies.

The capsule, swallowed by the subject, detects various information on body cavities while navigating them and transmits the information out of the body so that the position and orientation of the capsule is received from the plurality

of antennas outside the body and is detected based on the direction, intensity, and frequency of the received radio waves.

[Embodiments]

The preferred embodiments in accordance with the present invention are described below by referring to the attached drawings.

Figs. 1 and 2 shows the first embodiment. As shown in Fig. 1, the capsule main body 1 comprises a cylindrical part 2, and hemispherical caps 3 and 4 attached on the both axial ends of the cylindrical part 2. A battery 5 is provided on one end in the capsule main body 1 or the lower side of the figure, and a first sensor 6 for measuring pressure, for example, is provided on the upper side of the figure.

A first antenna 7 comprising a transmission coil coaxial with the cylindrical part 2 is provided in the cylindrical part 2 of the capsule main body 1. A second antenna 8 comprising a transmission coil perpendicular to the axial direction of the cylindrical part 2 and a third antenna 9 are provided below the first antenna 7, and the second and third antenna 8 and 9 are perpendicular to each other. In short, the first through third antennas 7 through 9 are housed in the capsule main body 1 and electrically connected via a modulation circuit 10 to said battery 5. The first antenna 7 transmits radio waves in the axial direction of the capsule main body 1 (upward), the second antenna 8 in the direction perpendicular to the axial direction of the capsule main body 1 (laterally), and the third antenna 9 in the perpendicular to the axial direction of the capsule main body 1 (forward), thus performing radio wave transmission in the three directions X, Y, and Z in orthogonal directivities. In addition, the first, second, and third antennas 7, 8, and 9 respectively transmit oscillation frequencies f1, f2, f3, thus transmitting radio waves at different oscillation frequencies.

Fig. 2 is a block diagram of the position detection circuit, in which detection signals from the first sensor 6 of the capsule main body 1 and radio waves transmitted by the antennas 7 through 9 are received by the reception antenna 11. The signals received by the reception antenna 11 are fed via the detector 12 to the station selection circuit 13. The station selection circuit 13 feeds the signals via first through third amplifiers 14 through 16 independently provided for the different oscillation frequencies f1, f2, and f3 to a first display 17 and displays the intra-cavity pressure detected by the first sensor 6. Signals amplified by the first through third amplifiers 14 through 16 are further fed via a position detection circuit 18 to a second display 19, which detects and displays the position and orientation (posture) of the capsule main body by comparing intensities of the radio waves transmitted by the first through third antennas 7 through 9. Thus, the position and orientation of the capsule main body 1 may be accurately detected, and the intra-cavity pressure may also be detected.

When the subject swallowed the capsule main body 1, thus the capsule main body 1 goes through the esophagus, stomach, and intestines. The capsule main body 1 detects the intra-cavity pressure with the first sensor 6 thereof and transmits the detection signal via the demodulation circuit 10 to the first antenna 7.

At the same time, radio waves with different oscillation frequencies f1, f2, and f3 are transmitted by the first through third antennas 7 through 9 and received by the reception antenna 11 along with the detection signal from the first sensor 6. The signals received by the reception antenna 11 are fed via the detector 12 to the station selection circuit 13. The station selection circuit 13 feeds the signals via first through third amplifiers 14 through 16 independently provided for the different oscillation frequencies f1, f2, and f3 to a first display 17 and displays the intra-cavity pressure detected by the first sensor 6. Signals amplified by the first through third amplifiers 14 through 16 are further fed via a position detection circuit 18 to a second display 19, which detects and displays the position and orientation (posture) of the capsule main body by comparing intensities of the radio waves transmitted by the first through third antennas 7 through 9. Thus, the position and orientation of the capsule main body 1 are accurately detected, and the intra-cavity pressure is also be detected.

Figs. 3 and 4 show the second embodiment, wherein the similar numbers to those in the first embodiment represent the similar elements and the descriptions will be omitted.

As shown in Fig. 3, the battery 5 is mounted in the cylindrical part 2 of the capsule main body 1. A second sensor 20 for measuring temperature, for example, and a demodulation circuit 21 are provided on one end in the capsule main body 1 or the lower side of the figure. The capsule main body 1 is equipped with the first sensor 6 for measuring pressure and the second sensor 20 for measuring temperature therein. The capsule main body 1 is also equipped with the first antenna 7 and the second antenna 8 to transmit radio waves with the respective directivities orthogonal in two directions, thus eliminating the third antenna 9. As shown in Fig. 4, therefore, first and second amplifiers 14 and 15 are provided corresponding to the oscillation frequencies f1 and f2 of the first and second antennas 7 and 8, respectively. The first amplifier 14 is then connected to the display 17, and the intra-cavity pressure detected by the first sensor 6 appears on the first display 17. The second amplifier 15 is connected to the third display 22, which shows the intra-cavity temperature detected by the second sensor 20. As in the first embodiment, the position and orientation (posture) of the capsule main body 1 may be accurately detected, and the temperature as well as the intra-cavity pressure may be simultaneously detected. As hereinbefore described, since the medial capsule with a built-in battery monitors intra-cavity information for an extended period of time, the battery quickly exhausted. Therefore, the switch in the capsule is turned on or off from outside the body. Control of turning on and off of the switch is difficult, however, and if the turning on and off is repeated at constant interval, the patient may fall into an abnormal state while the switch is turned off. Under such circumstances, the medial capsule which suppresses battery consumption and reliably detects a change in intra-cavity information has been developed. Figs. 5 and 6 shows an embodiment of the development, and the reference number 25 represents a transmission circuit equipped with an amplifier 26, modulator circuit 27 and antenna for transmission 28. The reference number 29 represents

a switch control circuit equipped with a wind comparator 30 and timer 31. The battery 32 is connected via a switch 33 to said transmission circuit 25, and the switch 33 only is turned on when an output signal is entered from said timer 31. The battery 32 is connected to the input side of the pH sensor 34 comprising a thermister, and its output side is connected to the amplifier 26 of said transmission circuit 25 and the wind comparator 30 of the control circuit 29. In addition, the battery 32 is connected to the switch control circuit 29 and applies reference voltage to the wind comparator 30.

Therefore, the output of the pH sensor 34 is compared with the reference voltage in the wind comparator 30. As shown in Fig. 6, a signal for driving the timer 31 is generated by the wind comparator 30 when the output exceeds the wind width. When the timer 31 is driven, the switch repeatedly turns on and off, the battery 32 supplies voltage to the transmission circuit 25. Therefore, the transmission circuit 25 amplifies the output from the pH sensor 34 with the amplifier 26, modulates it with the modulator circuit 27, and transmits it from the antenna 28.

When the output of the pH sensor 34 is within the range of the reference voltage (where the system is free of defects), the switch 33 remains OFF, no voltage is supplied to the transmission circuit 25, and no power of the battery 32 is consumed in the transmission circuit 25. When the output of the pH sensor 34 exceeds the reference voltage range, the timer 31 turns the switch 33 on or off, thus obtaining constant data and saving power.

Figs, 7 and 8 show that change in output from the pH sensor 34 is detected by a differentiation circuit 35 along time. More specifically, the output side of the pH sensor 34 is connected via the differentiation circuit 35 to the switch control circuit 29, and the differentiation circuit 35 detects a change in the pH sensor 34 along time and feeds it to the switch control circuit 29.

(Output from the differentiation circuit od/dt·Vin), where Vin: input voltage.

The output from the pH sensor 34 is fed via the differentiation circuit 35 to the switch control circuit 29 to be compared with the reference voltage. When it exceeds the reference voltage (or a rapid change occurs) as shown in Fig. 8, the switch is repeatedly turned on and off, and the batter 32 supplies voltage to the transmission circuit 25. In such a case, the switch 33 continues to be turned on and off for a particular period so as to enable monitoring even when the output from the differentiation circuit 35 comes below the range of the reference voltage. Thus a rapid change of in vivo information may be immediately detected.

Figs. 9 and 10 show an embodiment to detect the position based on the in vivo map and reference points used as a means to know the position of medical capsule swallowed by a subject.

The body of the subject A is detected with a diagnosis apparatus such as CT, MRI or ultrasonic waves to obtain an in vivo map, which is stored in the memory 36. An oscillator 37 comprising a reference signal oscillation source and serving as a reference point is fixed on a part of the outside of the body of the subject A, and transmits radio waves into body cavities. A receiver 39

and computing unit 40 are provided in the capsule main body 38 for receiving signals from the oscillator 37 to calculate orientation and distance from the reference point, or the oscillator 37. The signals from the computing unit 40 and the in vivo map stored in said memory 36 are correlated with each other by the position detection circuit 41 to know the position of the capsule main body 38 in the body cavities.

Figs. 11 and 12 show an embodiment which detects position of the medical capsule swallowed by the subject based on the in vivo map and reference points as in the hereinbefore mentioned embodiment.

The position of the heart of the subject along with the body is detected with a diagnosis apparatus such as CT, MRI or ultrasonic waves to obtain an in vivo map, which is stored with the position of the heart in the memory 36. A signal processing circuit 44, memory 45, and battery 46 as well as a detection electrode 43 of the electrocardiogram are provided in the capsule main body 42. A memory access electrode 47 for transmitting and receiving signals to and from the memory 45 is provided in the capsule main body 42.

Detection signals from said electrocardiogram detection electrode 43 are fed via a waveform analysis circuit 48 to a computing unit 49, and the signals from the computing unit 49 and the in vivo map stored in said memory 45 are correlated with each other by the position detection circuit 50 to know the orientation and distance of the capsule main body 42 from the heart, thus requiring no oscillator.

[Effects of Invention]

As in the foregoing description, since a plurality of antennas with different directivities and transmission/reception frequencies are provided in the capsule main body to detect various information in body cavities in accordance with the invention, there are effects that the position and orientation of the capsule are received outside the body based on the orientation, intensity, frequency of the radio waves transmitted from the plurality of antennas outside the body in order to detect the position of the capsule regardless of the position and orientation of the capsule and thus a medical capsule, whose position is accurately detected and which is safe to human body may be provided.

[Brief Description of Drawings]

Figs. 1 and 2 show the first embodiment of the present invention. Fig. 1 is a vertical sectional side view of the capsule. Fig. 2 is a block diagram of the electric circuit. Fig. 3 is a vertical sectional side view of the capsule. Fig. 4 is a block diagram of the electric circuit. Fig. 5 is a block diagram of the electric circuit of the capsule with a built-in battery. Fig. 6 is its timing chart. Fig. 7 is a block diagram of the electric circuit of the capsule with a built-in battery. Fig. 8 is its timing chart. Fig. 9 is a block diagram of an embodiment for detecting the position of the medical capsule swallowed by the subject. Fig. 10 is a schematic view of a human body. Fig. 11 a block diagram of another embodiment for detecting the position of the medical capsule swallowed by the subject. Fig. 12 is a vertical sectional side view of the capsule. Fig. 13 is a vertical sectional side view of the conventional medical capsule.

1: Capsule main body

6: Sensor

7, 8, 9: Antennas

のプロック図、第6 図は同じくタイミングチャート図、第7 図はは「内蔵型とクイミングが野路のプロック図、第8 図は同じく タイミングが用いた。第9 図は独立者が飲めのだだが用った。第10 図は出する。第10 図は大きの位は、第11 図は大きの位は、第11 図は大きの位は、第11 図はたけんののでは、第11 図はカブセルの検断側にある。

1 -- カプセル木体、6 -- センサ、7.8.9 --アンテナ。

的断人代理人 非理士 坪井 寧

第1頁の続き の発 明 者 フ			豊 .	東京都渋谷区幅ケ谷 2丁目43番 2号 株式会社内	
	3 E				
@発明者			勉	東京都渋谷区幅ケ谷2丁目43番2号 株式会社内	オリンパス光子工業
@発明者	* 木		明	東京都渋谷区幡ケ谷 2丁目43番 2号	オリンパス光学工業
@ 発明者 7	节 施	栄	_	株式会社内 東京都渋谷区幡ケ谷 2丁目43番 2号	オリンパス光学工業
70 発明者	* ★	Æ	明	株式会社内 東京都渋谷区幡ケ谷 2丁目43番 2号	オリンパス光学工業
	 田	康	弘	株式会社内 東京都渋谷区幡ケ谷 2丁目43番 2号	オリンパス光学工業
9,0 12 2	安達	英	Ż	株式会社内 東京都渋谷区橋ケ谷 2 丁目43番 2 号	オリンパス光学工業
@発明者	X		~_	株式会社内	