9. Mi propia página

LATEX tiene un gran repertorio para controlar las dimensiones de una página. Así, en el caso de una página impar tenemos:

1	1 pulgada+\hoffset	2	1 pulgada+\voffset
3	\oddsidemargin	4	\topmargin
5	\headheight	6	\headsep
7	\textheight	8	\textwidth
9	\marginparsep	10	\marginparwidth
11	\footskip		
	\hoffset		\voffset

El tamaño del DINA4 son \paperwidth=597pt (21 cm) y \paperheight=845pt (29.7 cm). Algunas de ellas, como \hoffset, \voffset, \topmargin pueden tomar valores negativos.

Para el control de párrafos están además las siguientes sentencias:

\linewidth	longitud de la línea en el ambiente ac-	
	tual.	
\linespread{valor}	espacio entre líneas. Por defecto va-	
	lor=1	
\par	Comienza un párrafo	
\parindent=1cm	Indentación en los párrafos por 1cm	
\parskip=2cm	Separación entre párrafos de 2cm	
\parbox{9cm}{texto}	Genera un párrafo de anchura 9cm.	
\noindent	no indenta este párrafo.	
\raggedright	Justifica texto sólo a la izquierda	
\raggedleft	Justifica texto sólo a la derecha	
\flushbottom	Todas las páginas tienen la misma altu-	
	ra	
\raggedbottom	Permite variar un poco la altura de pá-	
	gina en página	

9.1. Numerando páginas

\pagestyle{plain}	Defecto. Número de página
	centrado en el pie y encabezado
	vacío.
\pagestyle{empty}	Sin números de página.
\pagestyle{headings}	Número de página y nombre de
	sección en la encabezado. Pie
	vacío. (Defecto en estilo book)
\pagenumbering{arabic}	Números árabes. (Defecto)
\pagenumbering{roman}	Números romanos
\thispagestyle{estilo}	Estilo de la página actual.
	Usualmente se usa empty
\setcounter{page}{numero}	Poner el contador de páginas al
	valor número
\pagebreak	Página nueva

6. Fórmulas Matemáticas

Para centrar fórmulas matemáticas escribirlas entre \[, \].

\[$x=\frac{a_2 x^2 + a_1 x + a_0}{1+2z^3}$, \quad $x+y^{2n+2}=\sqrt{b^2-4ac}$

$$x = \frac{a_2x^2 + a_1x + a_0}{1 + 2z^3}, \quad x + y^{2n+2} = \sqrt{b^2 - 4ac}$$

 $\[S_n=a_1+\cdots + a_n = \sum_{i=1}^n a_i \]$

$$S_n = a_1 + \dots + a_n = \sum_{i=1}^n a_i$$

 $\label{eq:line_problem} $$ \left(\frac{x=0}^{\int x^2} \right) \left(\frac{1}{2}, \frac{e}^{i\pi} +1=0 \right) $$$

$$\int_{x=0}^{\infty} x e^{-x^2} dx = \frac{1}{2}, \quad e^{i\pi} + 1 = 0$$

\[
\min_{1\le x\le 2}\left(x+\frac{1}{x}\right)=2,
\quad \lim_{x\to\infty}
\left(1+\frac{1}{x}\right)^x = \text{e}^x
\]

$$\min_{1 \le x \le 2} \left(x + \frac{1}{x} \right) = 2, \quad \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e^x$$

\[
\Vert x \Vert_2=1, \vert -7 \vert = 7,
m|n, m\mid n, <x,y>, \langle x, y\rangle
\]

$$||x||_2 = 1, |-7| = 7, m|n, m|n, \langle x, y \rangle, \langle x, y \rangle$$

 $$$ \left(\frac{\det\{d\}}{\det\{d\}t}\left(\frac{\pi c_{partial L}}{\operatorname{q_j}\right)-\frac{L}} \right) $$ \left(q_j \right) $$ \left(q_$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0$$

\[\sqrt 2 = 1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{\ddots}}}}\]

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}}}$$

Para usar \dfrac hay que cargar \usepackage{amsmath}

\[\sqrt 2 = 1+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{\ddots}}}}\]

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{\cdot \cdot \cdot}}}}$$

- $\$ \vec{x}, \hat{a}, \tilde{a}, \dot{a}, \dot{a}\$, \vec{x} , \hat{a} , \hat{a} , \hat{a} , \hat{a} , \hat{a}
- paréntesis \$\big(\Big(\bigg(\Bigg(\\$, (((
- corchetes \$\big[\Big[\bigg[\Bigg[\$, [[
- barras verticales \$\big|\Big|\bigg|\Bigg|\$, |
- $\ \$ \underbrace{a+b}_n \overbrace{a+b}^n\$, $\underbrace{a+b}_n$
- $\alpha+b$, $\overline{a+b}$
- \${ n \choose k}, {x \atop y+2}\$ $\binom{n}{k}, \frac{x}{y+2}$
- $\int dx$, $\int dx$, $\int dx$, $\int dx$,

$$\int \cos(x)dx, \quad \int \cos(x)\,\mathrm{d}x$$

• \$\int\int_D x\$, \$\int\!\!\!\int_D x\$, \$\iint_D x\$

$$\iint_D x, \quad \iint_D x, \quad \iint_D x$$

Para numerar ecuaciones y referenciarlas posteriormente, utilizar los ambientes

\begin{equation} ...\end{equation}
\begin{eqnarray} ...\end{eqnarray}

para fórmulas en una línea o que necesiten ser divididas en varias líneas respectivamente.

Si en el ambiente está el comando \label{ecuacion}, podremos referenciar la ecuación con \ref{ecuacion} o en función de la página que esté con \pageref{ecuacion}⁸. Estas etiquetas deben ser únicas. Si no se quiere numerar entonces debe ponerse \nonumber en cada fila o utilizar

```
\begin{equation*} ... \end{equation*}
\begin{eqnarray*} ... \end{eqnarray*}

\begin{eqnarray}

y &=& 1+x+x^2 +x^3 + \cdots \nonumber \\
    &=& 1+x\left(1+x+x^2+\cdots \right)
    \label{ecu1}

\end{eqnarray}

donde la ecuación (\ref{ecu1}) se encuentra en la página~\pageref{ecu1}.
```

$$y = 1 + x + x^{2} + x^{3} + \cdots$$

$$= 1 + x \left(1 + x + x^{2} + \cdots\right) \tag{1}$$
donde la ecuación (1) se encuentra en la página 19.

El número de fórmula aparece en donde no esté \nonumber, y las líneas se alinean con el carácter entre &.

Para usar paréntesis, corchetes o llaves de mayor tamaño también podemos emplear con \left los símbolos \{, [, |. Cada \left debe ser cerrado por un \right, aunque el tipo no tiene porque ser el mismo. Si sólo se quiere a un lado, entonces hay que emparejarlo con \left. o \right.

⁸Si utilizamos dvipdfm para pasar el documento a PDF, y cargamos el paquete \usepackage[dvipdfm]{hyperref}, las referencias nos aparecen como hipervínculos, como en este documento.

La escritura de matrices y vectores se hace con el ambiente array, análogo al tabular.

```
1/
\left| \begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^2 & y^2 & z^2
\left( x-y \right) = (x-y)(y-z)(z-x)
\]
          \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (x - y)(y - z)(z - x)
\ [
\left[ \begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} \& a_{22} \& a_{23} \
a_{31} & a_{32} & a_{33}
\end{array} \right]
\left\{ \begin{array}{c}
x_1 \\ x_2 \\ x_3
\end{array} \right\} =
\left( \begin{array}{c}
b_1 \\ b_2 \\ b_3
\end{array} \right)
\backslash
```

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

\delta_{ij} = \left\{
\begin{array}{ll}
1 & \text{si\} i=j \\
0 & \text{si\} i\ne j
\end{array}
\right.

$$c \mid A \over b^T$$

\begin{array}{c|c}
c & A \\ \hline & b^{T}
\end{array}

$$c \mid A$$
 b^T

\begin{array}{c|c}
c & A \\ \hline \\[-18pt]
 & b^{T} \end{array}

$$\begin{array}{c|c} c & A \\ \hline & b^T \end{array}$$

\begin{array}{c|c}
c & A \\ \hline
 & b^{T^{}}
\end{array}

la fórmula $\sum_{i=1}^{n} x_i = \frac{1}{2}$ en línea o $\sum_{i=1}^{n} x_i = \frac{1}{2}$ en la forma usual.

la fórmula \$\sum_{i=1}^n x_i =
\frac{1}{2}\$ en línea o
\$\sum\limits_{i=1}^n x_i =
\dfrac{1}{2}\$ en la
forma usual.

$$\frac{x+1}{x-1}$$

 ${\displaystyle \begin{array}{ll} \{\displaystyle x+1 \\ \above & 3pt x-1\} \end{array}}$

```
\[
\bordermatrix{& & & j & &\cr
    & 1\cr
    & & \ddots\cr
    & & & 1\cr
i\ & & & \alpha & \ddots\cr
    & & & & & &1}
\backslash
\[
\left[
\begin{array}{c|ccc}
1&d_1&\cdots &d_n\\
\hline
0\&a_{22} \& \cdots \& a_{2n} \
\vdots & &\ddots & \vdots \\
0% & & a_{nn}
\end{array} \right]
\]
```

Hay más tipos de letras en modo matemático:

\mathrm{abcdef}	abcdef
\mathnormal{abcdef}	abcdef
abcdef	abcdef
\mathit{abcdef}	abcdef
\mathbf{abcdef}	abcdef
\mathtt{abcdef}	abcdef
\mathcal{ABCDEF}	\mathcal{ABCDEF} (sólo mayúsculas)
\boldsymbol{simbolo}	Sólo símbolos, números y letras
	griegas en negrita $\boldsymbol{\beta}$
\mathbb{ABCDEF}	ABCDEF (sólo mayúsculas)

Para usar \boldsymbol{símbolo} y \mathbb{mayúscula} hay que cargar los paquetes amsmath y amsfonts respectivamente⁹.

Dentro de las fórmulas, pueden especificarse distintos tamaños de letra: \displaystyle,textstyle,\scriptstyle y \scriptscriptstyle

7. Símbolos

Podemos ver los símbolos de LATEX en la página web http://www.ctan.org/tex-archive/info/symbols/comprehensive/o, si tenemos mala memoria, dibujar el símbolo en la página http://detexify.kirelabs.org/classify.html

y que nos devuelva una lista de símbolos, donde seguramente estará el buscado.

⁹\usepackage{amsmath,amsfonts}. Hay todavía más símbolos en el paquete latexsym.

12. Elementos flotantes

Son tablas y figuras, que pueden estar *flotantes* en el documento. La forma usual es

```
\begin{figure}[posición]
  cuerpo de la figura
  \caption{Descripción de la figura} %opcional
\end{figure}
```

posición	
h	Aquí
t	Comienzo de una página de texto
b	Final de una página de texto
р	En una página sin texto

```
\begin{figure}[h]
\begin{center}
\includegraphics[scale=0.075]{tiger.pdf} \end{center}
\caption{Tigre}
\end{figure}
```


Figura 1: Tigre

De forma análoga ocurre con el entorno table 12

```
\begin{table}{posición}
  cuerpo de la tabla
  \caption{Descripción de la tabla} %opcional
\end{table}
```

¹²Para tablas muy grandes está el paquete longtable.

15. Bibliografía

Una referencia bibliográfica se realiza con \cite{referencia}, donde referencia debe ser única, y usualmente todas ellas se encuentran al final del trabajo en un entorno del tipo:

```
\begin{thebibliography}{11}
\bibitem{grifhig} Learning \LaTeX{}.
David~F.~Griffiths
\& Desmond~J.~Higham. SIAM. (1996).
.
.
.
.
\end{thebibliography}
```

Notar que {11} indica al entorno bibliográfico que debe guardar espacio en blanco para ajustar hasta 99 referencias. Si fuera {111} sería hasta 999...

```
En [2] se ha realizado un En \cite{grifhig} se ha magnífico trabajo de [...] realizado un magnífico trabajo de [...]
```