- (a) Let E be a measurable subset of \mathbb{R}^2 such that for almost every $x \in \mathbb{R}^1$, $\{y : (x,y) \in E\}$ has \mathbb{R}^1 -measure zero. Show that E has measure zero and that for almost every $y \in \mathbb{R}^1$, $\{x : (x,y) \in E\}$ has measure zero.
- (b) Let f(x, y) be nonnegative and measurable in \mathbb{R}^2 . Suppose that for almost every $x \in \mathbb{R}^1$, f(x, y) is finite for almost every y. Show that for almost every $y \in \mathbb{R}^1$, f(x, y) is finite for almost every x.

- (a) Let E be a measurable subset of \mathbb{R}^2 such that for almost every $x \in \mathbb{R}^1$, $\{y : (x,y) \in E\}$ has \mathbb{R}^1 -measure zero. Show that E has measure zero and that for almost every $y \in \mathbb{R}^1$, $\{x : (x,y) \in E\}$ has measure zero.
- (b) Let f(x, y) be nonnegative and measurable in \mathbb{R}^2 . Suppose that for almost every $x \in \mathbb{R}^1$, f(x, y) is finite for almost every y. Show that for almost every $y \in \mathbb{R}^1$, f(x, y) is finite for almost every x.

Proof. (a) First, for almost every $x \in E$, define $E_x := \{y : (x,y) \in E\}$, Then we have $|E_x| = 0$.

Let

$$\chi_{E}(x,y) = \begin{cases} 1, & (x,y) \in E \\ 0, & (x,y) \notin E \end{cases}$$

be E's characteristic function. It follows from Tonelli's theorem that:

$$|E| = \iint_{\mathbb{R}^2} \chi_E(x,y) \, dx \, dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \chi_E(x,y) \, dy \right) dx = \int_{\mathbb{R}} |E_x| \, dx = 0.$$

Also, we have

$$0 = |E| = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \chi_E(x, y) \, dx \right) dy = \int_{\mathbb{R}} |E_y| \, dx,$$

in which $E_y = \{x : (x, y) \in E\}$, therefore $|E_y| = 0$ for almost every $y \in \mathbb{R}$.

Also, we have

$$0 = |E| = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \chi_E(x, y) \, dx \right) dy = \int_{\mathbb{R}} |E_y| \, dx,$$

in which $E_y = \{x : (x, y) \in E\}$, therefore $|E_y| = 0$ for almost every $y \in \mathbb{R}$.

For (b), let $E = \{(x,y) : f(x,y) = +\infty\}$. It follows from the fact f(x,y) is measurable in \mathbb{R}^2 that, E is measurable.

Because for almost every $x \in \mathbb{R}$, f(x,y) is finite for almost every $y \in \mathbb{R}$, then we have $\{y : (x,y) \in E\}$ has measure zero.

Therefore, by (a) above, for a.e. $y \in \mathbb{R}$, $\{x : (x,y) \in E\}$ has measure zero.

If f and g are measurable in \mathbb{R}^n , show that the function h(x,y) = f(x)g(y) is measurable in $\mathbb{R}^n \times \mathbb{R}^n$. Deduce that if E_1 and E_2 are measurable subsets of \mathbb{R}^n then their Cartesian product $E_1 \times E_2$ is measurable in $\mathbb{R}^n \times \mathbb{R}^n$, and $|E_1 \times E_2| = |E_1||E_2|$.

If f and g are measurable in \mathbb{R}^n , show that the function h(x,y)=f(x)g(y) is measurable in $\mathbb{R}^n \times \mathbb{R}^n$. Deduce that if E_1 and E_2 are measurable subsets of \mathbb{R}^n then their Cartesian product $E_1 \times E_2$ is measurable in $\mathbb{R}^n \times \mathbb{R}^n$, and $|E_1 \times E_2| = |E_1||E_2|$.

Proof. (1) Since f is measurable in \mathbb{R}^n , let F(x,y) = f(x), in which $y \in \mathbb{R}^n$, it follows as in Lemma 6.15 that F(x,y) is measurable in $\mathbb{R}^n \times \mathbb{R}^n$. In fact,

$$\{(x,y): F(x,y) > a\} = \{(x,y): f(x) > a, y \in \mathbb{R}^n\},\$$

and it is a cylinder type set with measurable base $\{x: f(x) > a\}$ in \mathbb{R}^n . So is g(y) = G(x, y).

It follows from Theorem 4.10 that h(x,y) = f(x)g(y) = F(x,y)G(x,y) is measurable in \mathbb{R}^{2n} .

(2) Let $\chi_{E_1}(x)$ and $\chi_{E_2}(y)$ be the characteristic function of E_1 and E_2 , so $\chi_{E_1}(x)$ and $\chi_{E_2}(y)$ are measurable functions in \mathbb{R}^n .

It follows from the above result that $\chi_{E_1 \times E_2}(x, y) = \chi_{E_1}(x)\chi_{E_2}(y)$ is measurable in $\mathbb{R}^n \times \mathbb{R}^n$.

Because $\chi_{E_1 \times E_2}(x, y)$ is characteristic function of $E_1 \times E_2$, then we have $E_1 \times E_2$ is measurable in $\mathbb{R}^n \times \mathbb{R}^n$. Apply Tonelli's theorem, we have

$$|E_1 \times E_2| = \iint_{\mathbb{R}^n \times \mathbb{R}^n} \chi_{E_1 \times E_2}(x, y) \, dx \, dy$$
$$= \int_{\mathbb{R}^n} \chi_{E_1}(x) \, dx \int_{\mathbb{R}^n} \chi_{E_2}(y) \, dy = |E_1| |E_2|.$$

Let f be measurable and finite a.e. on [0,1]. If f(x) - f(y) is integrable over the square $0 \le x \le 1, 0 \le y \le 1$, show that $f \in L[0,1]$.

Let f be measurable and finite a.e. on [0,1]. If f(x) - f(y) is integrable over the square $0 \le x \le 1, 0 \le y \le 1$, show that $f \in L[0,1]$.

Proof. Since f(x) - f(y) is integrable over $[0, 1] \times [0, 1]$, it follows by Fubini's theorem that,

$$\forall$$
 a.e. $y \in [0, 1], f(x) - f(y)$ is integrable with respect to x on $[0, 1]$.

Also, we know that f is finite a.e. on [0, 1], then we can find $y_0 \in [0, 1]$, s.t.

- (1) $f(x) f(y_0)$ is integrable on [0, 1],
- (2) $f(y_0)$ is finite.

Now, we rewrite $f(x) = f(x) - f(y_0) + f(y_0)$, due to $f(x) - f(y_0)$ is integrable on [0, 1] and $f(y_0)$ is finite, we deduce that f is integrable on [0, 1].

- (a) If f is nonnegative and measurable on E and $\omega(y) = |\{x \in E : f(x) > y\}|, \ y > 0$, use Tonelli's theorem to prove that $\int_E f = \int_0^\infty \omega(y) \, dy$. (By definition of the integral, $\int_E f = |R(f,E)| = \int_{\mathbb{R}^2} \chi_{R(f,E)}(x,y) \, dx \, dy$. Use the observation in the proof of Theorem 6.11 that $\{x \in E : f(x) \geq y\} = \{x : (x,y) \in R(f,E)\}$, and recall that $\omega(y) = |\{x \in E : f(x) \geq y\}|$ unless y is a point of discontinuity of ω .)
- (b) Deduce from this special case the general formula

$$\int_{E} f^{p} = p \int_{0}^{\infty} y^{p-1} \omega(y) dy \quad (f \ge 0, 0$$

- (a) If f is nonnegative and measurable on E and $\omega(y) = |\{x \in E : f(x) > y\}|, \ y > 0$, use Tonelli's theorem to prove that $\int_E f = \int_0^\infty \omega(y) \, dy$. (By definition of the integral, $\int_E f = |R(f,E)| = \int_{\mathbb{R}^2} \chi_{R(f,E)}(x,y) \, dx \, dy$. Use the observation in the proof of Theorem 6.11 that $\{x \in E : f(x) \geq y\} = \{x : (x,y) \in R(f,E)\}$, and recall that $\omega(y) = |\{x \in E : f(x) \geq y\}|$ unless y is a point of discontinuity of ω .)
- (b) Deduce from this special case the general formula

$$\int_E f^p = p \int_0^\infty y^{p-1} \omega(y) \, dy \quad (f \ge 0, \, 0$$

Proof for (a) By the definition of integral,

$$\int_{E} f = |R(f, E)| = \iint_{R(f, E)} dxdy.$$

It follows from Tonelli's theorem that,

$$\int_{E} f = \int_{0}^{\infty} |\{x \in E : f(x) \ge y\}| dy.$$

Because $w(y) = |\{x \in E : f(x) > y\}|$ is monotonous, then we know the set of discontinuous points of w(y) has measure 0.

Since at the continuous points y of w, $w(y) = |\{x \in E : f(x) \ge y\}|$, it follows that,

for a.e.
$$y \in [0, \infty)$$
, $w(y) = |\{x \in E : f(x) \ge y\}|$.

Therefore, $\int_E f = \int_0^\infty w(y) dy$.

Proof for (b)

Since $f \ge 0$, 0 , it follows from (a) that:

$$\int_{E} f^{p} = \int_{0}^{\infty} |\{x \in E : f(x)^{p} \ge y\}| dy$$
$$= \int_{0}^{\infty} |\{x \in E : f(x) \ge y^{\frac{1}{p}}\}| dy = p \int_{0}^{\infty} t^{p-1} w(t) dt.$$

Page126 第6题

For $f \in L(\mathbb{R}^1)$, define the Fourier transform \hat{f} of f by

$$\hat{f}(x) = rac{1}{2\pi} \int_{-\infty}^{+\infty} f(t) e^{-ixt} dt \quad (x \in \mathbb{R}^1).$$

(For a complex-valued function $F=F_0+iF_1$ whose real and imaginary parts F_0 and F_1 are integrable, we define $\int F=\int F_0+i\int F_1$.) Show that if f and g belong to $L(\mathbb{R}^1)$, then

$$\widehat{(f*g)}(x) = 2\pi \widehat{f}(x)\widehat{g}(x).$$

Page126 第6题

For $f \in L(\mathbb{R}^1)$, define the Fourier transform \hat{f} of f by

$$\hat{f}(x) = rac{1}{2\pi} \int_{-\infty}^{+\infty} f(t) e^{-ixt} dt \quad (x \in \mathbb{R}^1).$$

(For a complex-valued function $F=F_0+iF_1$ whose real and imaginary parts F_0 and F_1 are integrable, we define $\int F=\int F_0+i\int F_1$.) Show that if f and g belong to $L(\mathbb{R}^1)$, then

$$\widehat{(f*g)}(x) = 2\pi \widehat{f}(x)\widehat{g}(x).$$

Proof. Because $f, g \in L(\mathbb{R})$, it follows from Tonelli's theorem that $f(t-y)g(y) \in L(\mathbb{R}^2)$.

Recall that $f * g(t) = \int_{\mathbb{R}} f(t - y)g(y)dy$,

Page126 第6题

Applying Fubini's theorem, we have

$$\widehat{(f * g)}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(t - y) g(y) dy \right) e^{-ixt} dt$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(t - y) e^{-ixt} dt \right) g(y) dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} f(s) e^{-ix(s+y)} ds g(y) dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} f(s) e^{-ixs} ds \cdot g(y) e^{-ixy} dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} f(s) e^{-ixs} ds \int_{\mathbb{R}} g(y) e^{-ixy} dy$$

$$= 2\pi \hat{f}(x) \hat{g}(x).$$

Page126 第10题

Let v_n be the volume of the unit ball in \mathbb{R}^n . Show by using Fubini's theorem that

$$v_n = 2v_{n-1} \int_0^1 (1-t^2)^{(n-1)/2} dt.$$

(We also observe that by setting $w=t^2$, the integral is a multiple of a classical β -function and so can be expressed in terms of the Γ -function: $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$, s > 0.)

Page126 第10题

Let v_n be the volume of the unit ball in \mathbb{R}^n . Show by using Fubini's theorem that

$$v_n = 2v_{n-1} \int_0^1 (1-t^2)^{(n-1)/2} dt.$$

(We also observe that by setting $w=t^2$, the integral is a multiple of a classical β -function and so can be expressed in terms of the Γ -function: $\Gamma(s)=\int_0^\infty e^{-t}t^{s-1}\,dt,\,s>0.$)

Proof. Recall that the volume of the ball with radius r in \mathbb{R}^n is $r^n V_n$.

$$V_n = \int_{x_1^2 + \dots + x_n^2 \le 1} dx_1 \cdots dx_n = \int_{-1}^1 \left(\int_{x_1^2 + \dots + x_{n-1}^2 \le 1 - x_n^2} dx_1 \cdots dx_{n-1} \right) dx_n$$

$$= \int_{-1}^1 (1 - x_n^2)^{\frac{n-1}{2}} V_{n-1} dx_n = 2V_{n-1} \int_0^1 (1 - t^2)^{\frac{n-1}{2}} dt.$$

◆□▶◆□▶◆□▶◆□▶ □ り<00</p>

Page127 第11题

Use Fubini's theorem to prove that

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \pi^{n/2}.$$

(For n=1, write $\left(\int_{-\infty}^{+\infty} e^{-x^2} \, dx\right)^2 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-x^2-y^2} \, dx \, dy$ and use polar coordinates. For n>1, use the formula $e^{-|x|^2}=e^{-x_1^2}\cdots e^{-x_n^2}$ and Fubini's theorem to reduce to the case n=1.)

Page127 第11题

Use Fubini's theorem to prove that

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \pi^{n/2}.$$

(For n=1, write $\left(\int_{-\infty}^{+\infty} e^{-x^2} \, dx\right)^2 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-x^2-y^2} \, dx$ dy and use polar coordinates. For n>1, use the formula $e^{-|x|^2}=e^{-x_1^2}\cdots e^{-x_n^2}$ and Fubini's theorem to reduce to the case n=1.)

Proof. For n = 1,

$$\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} r e^{-r^2} dr = \pi.$$

So, we have

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

4□ → 4□ → 4 = → 4 = → 9 < 0</p>

Page127 第11题

For n > 1, use Fubini's theorem,

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \left(\int_{-\infty}^{\infty} e^{-x^2} dx \right)^n = \pi^{n/2}.$$

Assume that $E \subset \mathbb{R}^n$ and $f: E \to \mathbb{R}$ is nonnegative and measurable, show $|\Gamma(f,E)|=0$, where

$$\Gamma(f,E) \triangleq \{(x,f(x)) : x \in E\}.$$

Assume that $E \subset \mathbb{R}^n$ and $f: E \to \mathbb{R}$ is nonnegative and measurable, show $|\Gamma(f,E)|=0$, where

$$\Gamma(f,E) \triangleq \{(x,f(x)) : x \in E\}.$$

Proof. See Lemma 5.3 on page 83.

Assume that $E \subset \mathbb{R}^n$ and $f: E \to \mathbb{R}$ is nonnegative and measurable, show $|\Gamma(f,E)|=0$, where

$$\Gamma(f,E) \triangleq \{(x,f(x)) : x \in E\}.$$

Proof. See Lemma 5.3 on page 83.

For any $\varepsilon > 0$, define $E_k := \{x \in E : (k-1)\varepsilon \le f(x) < k\varepsilon\}$, where

$$k \in \mathbb{N}^+$$
 . So $E = \bigcup_{k=1}^{\infty} E_k$ and $E_i \cap E_j = \emptyset$, if $i \neq j$. Therefore,

$$\Gamma(f,E) = \bigcup_{k=1}^{\infty} \Gamma(f,E_k)$$
. It follows that,

$$|\Gamma(f,E)| \leq \sum_{k=1}^{\infty} |\Gamma(f,E_k)| \leq \sum_{k=1}^{\infty} |E_k \times |[(k-1)\varepsilon, k\varepsilon)| = \sum_{k=1}^{\infty} |E_k| \cdot \varepsilon$$
$$= \varepsilon |E|.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

• In the case of $|E|<\infty$, we have, $\forall \ \varepsilon>0,$

$$|\Gamma(f,E)|<\varepsilon|E|.$$

Therefore, $|\Gamma(f, E)| = 0$.

• In the case of $|E|=\infty$. We set $E=\bigcup_{k=1}^{\infty}(E\cap B(0\,,k))\triangleq\bigcup_{k=1}^{\infty}E_k$, in which $E\cap B(0\,,k)=E_k$. Hence,

$$\Gamma(f,E)\subseteq \bigcup_{k=1}^{\infty}\Gamma(f,E_k),\ |\Gamma(f,E)|\leq \Sigma_{k=1}^{\infty}|\Gamma(f,E_k)|.$$

Due to $|E_k| < \infty$, from (i), we have $|\Gamma(f, E_k)| = 0$, for all $k \in \mathbb{N}^+$. Therefore , $\Gamma(f, E) = 0$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

State Theorem 6.11 on page 120 and give the detailed proof of it .

State Theorem 6.11 on page 120 and give the detailed proof of it .

Theorem 6.11: Let f be a nonnegative function defined on a measurable set $E \subset \mathbb{R}^n$. If R(f, E), the region under f over E, is a measurable subset of \mathbb{R}^{n+1} , then f is measurable.

Proof. For $0 \le y < \infty$, we have

$${x \in E : f(x) \ge y} = {x : (x, y) \in R(f, E)} \triangleq R_y(f, E).$$

Since R(f, E) is measurable, we can write $R(f, E) = H \bigcup Z$, in which H is of type F_{σ} in \mathbb{R}^{n+1} , and $|Z|_{n+1} = 0$. Then $R_y(f, E) = H_y \bigcup Z_y$, in which H_y is of type F_{σ} in \mathbb{R}^n , and $|Z_y|_n = 0$ for almost every $y \geq 0$. Hence, $R_y(f, E)$ is measurable for almost every $y \geq 0$. If y < 0, $R_y(f, E) = E$ is measurable. Now, for any $y \geq 0$, choose a sequence $\{y_k\}$ such that:

Then $R_y(f, E) = \bigcup_{k=1}^{\infty} R_{y_k}(f, E)$, therfore $R_y(f, E)$ is measurable.

State Theorem 6.14 on page 120-123 and give the detailed proof of it .

State Theorem 6.14 on page 120-123 and give the detailed proof of it .

Theorem 6.14: If $f \in L(\mathbb{R}^n)$ and $g \in L(\mathbb{R}^n)$, then (f * g)(x) exists for almost every $x \in \mathbb{R}^n$ and is measurable. Moreover, $f * g \in L(\mathbb{R}^n)$ and

$$\int_{\mathbb{R}^n} |f * g| \, dx \le \left(\int_{\mathbb{R}^n} |f| \, dx \right) \left(\int_{\mathbb{R}^n} |g| \, dx \right),$$
$$\int_{\mathbb{R}^n} (f * g) \, dx = \left(\int_{\mathbb{R}^n} f \, dx \right) \left(\int_{\mathbb{R}^n} g \, dx \right).$$

Proof. First, we show that f(x-t)g(t) is measurable in $\mathbb{R}^n \times \mathbb{R}^n$. Since $f \in L(\mathbb{R}^n)$, by Exercises 2, we know f is measurable in $\mathbb{R}^n \times \mathbb{R}^n$. Set F(x, t) = f(x), consider $x = \xi - \eta$, $t = \xi + \eta$, which is a nonsigular linear transform of $\mathbb{R}^n \times \mathbb{R}^n$, therefore by Theorem 3.33, it follows that $F(\xi - \eta, \xi + \eta) = f(\xi - \eta)$ is measurable in $\mathbb{R}^n \times \mathbb{R}^n$. Then, we know f(x - t)g(t) is measurable in $\mathbb{R}^n \times \mathbb{R}^n$.

10-12周实变作业答案 18 / 31

Define $I=\iint_{\mathbb{R}^n imes\mathbb{R}^n}|f(x-t)g(t)|dtdx$, then by Tonelli's theorem,

$$I = \int_{\mathbb{R}^n} |g(t)| \left(\int_{\mathbb{R}^n} |f(x-t)| dx \right) dt = \left(\int_{\mathbb{R}^n} |f(x)| dx \right) \left(\int_{\mathbb{R}^n} |g(t)| dt \right) < \infty$$

Therefore , by Fubini's theorem, $\int_{\mathbb{R}^n} f(x-t)g(t)dt$ exists for a.e. x; and

$$\iint_{\mathbb{R}^n \times \mathbb{R}^n} f(x-t)g(t)dtdx = \int_{\mathbb{R}^n} g(t) \left(\int_{\mathbb{R}^n} f(x-t)dx \right) dt$$
$$= \left(\int_{\mathbb{R}^n} f(x)dx \right) \left(\int_{\mathbb{R}^n} g(t)dt \right).$$

< ロ ト < 回 ト < 巨 ト < 巨 ト 三 の へ ○

若 $E \subset \mathbb{R}^n$, $f \in L(E)$, 则对任给 $\varepsilon > 0$, 存在 \mathbb{R}^n 上具有紧支集的可测简 单函数 h, 使得

$$\int_{E} |f(x) - h(x)| dx < \varepsilon.$$

若 $E \subset \mathbb{R}^n$, $f \in L(E)$, 则对任给 $\varepsilon > 0$, 存在 \mathbb{R}^n 上具有紧支集的可测简 单函数 h, 使得

$$\int_{E} |f(x) - h(x)| dx < \varepsilon.$$

Proof. Suppose that f is nonnegative in E, then there exists a sequence of simple and increasing functions f_k such that

$$f_k \nearrow f$$
 with $f_k \in L(E)$.

Now we set $h_k = f_k \chi_{B(0, k)}$ where $\chi_{B(0, k)}$ is the characteristic function of $B(0, k) \subset \mathbb{R}^n$, $h_k \leq f_k$. By Levi's theorem,

$$\int_{E} h_{k} \to \int_{E} f \ (k \to \infty).$$

Therefore , for any $\varepsilon>0$, there exists $K\in\mathbb{N}^+$ s.t. ,

$$|\int_{E} f - \int_{E} h_{k}| = \int_{E} |f - h_{k}| < \varepsilon, \quad \text{for any } k > K.$$

若 $f \in E \subset \mathbb{R}^n$ 上几乎处处有限的可测函数,则对任给的 $\delta > 0$, 存在 $g \in C(\mathbb{R}^n)$,使得

$$|\{x \in E : f(x) \neq g(x)\}| < \delta.$$

进一步,

- (i) 若 E 是有界集,则可使上述 g 具有紧支集.
- (ii) 若 f 具有紧支集,则可使上述 g 具有紧支集.

提示: 此题可借助于Lusin定理和 \mathbb{R}^n 中的闭集上的连续函数的延拓定理来证明.

若 $f \in E \subset \mathbb{R}^n$ 上几乎处处有限的可测函数,则对任给的 $\delta > 0$, 存在 $g \in C(\mathbb{R}^n)$,使得

$$|\{x \in E : f(x) \neq g(x)\}| < \delta.$$

进一步,

- (i) 若 E 是有界集,则可使上述 g 具有紧支集.
- (ii) 若 f 具有紧支集,则可使上述 g 具有紧支集.

提示:此题可借助于Lusin定理和 \mathbb{R}^n 中的闭集上的连续函数的延拓定理来证明.

Proof. By Lusin's theorem, for any $\delta > 0$, there exists a closed set $F \subset E$ such that:

$$|E - F| < \delta$$
 and $f \in C(F)$.

Then by Tietze extension theorem, there exists $g \in C(\mathbb{R}^n)$, s.t., f = g for any $x \in F$. Then the function g is what we need and $|\{x \in E : f(x) \neq g(x)\}| \leq |E - F| < \delta$.

• If E is bounded, then there exists k>0, s.t. $E\subset B(0,\ k)$. Now we construct a cut-off function h(x) in \mathbb{R}^n , such $hg\in C_c(\mathbb{R}^n)$ and hg satisfies the same property as g. We construct h as follows:

$$h(x) = \begin{cases} 1, & x \in B(0, k), \\ 1 - dist(x, B(0, k)), & x \in B(0, k+1) - B(0, k), \\ 0, & else \end{cases}$$

It follows that:

$$|\{x \in E : f(x) \neq h(x)g(x)\}| = |\{x \in E : f(x) \neq g(x)\}| < \delta.$$

• If f has compact support,let $K \triangleq supp\ f$, K is compact in \mathbb{R}^n and there exists a constant k>0, s.t. $K\subset B(0,\ k)$. By the above statement, we know there exists $g\in C(\mathbb{R}^n)$ s.t.

$$|\{x \in E : f(x) \neq g(x)\}| < \delta.$$

We also construct the cut-off function h as before.

第12题(10-12 weeks)

Then we claim that:

$$\{x \in E : f(x) \neq h(x)g(x)\} \subseteq \{x \in E : f(x) \neq g(x)\}.$$

For any $x_0 \in \{x \in E : f(x) \neq h(x)g(x)\}$, if $x_0 \in B(0, k)$, then $f(x_0) \neq g(x_0)$. If $x_0 \notin B(0, k)$, we know that $: f(x_0) = 0$, $f(x_0) \neq h(x_0) g(x_0)$. Therefore we have $h(x_0) \neq 0$, $g(x_0) \neq 0$, it follows that $f(x_0) \neq g(x_0)$, i.e. $x_0 \in \{x \in E : f(x) \neq g(x)\}$. Hence, $|\{x \in E : f(x) \neq g(x)\}| < \delta$, and gh is the function we need.

第13题(10-12 weeks)

若 $f \in L(E)$,则对任给 $\varepsilon > 0$,存在 \mathbb{R}^n 上具有紧支集的连续函数 g,使得

$$\int_{F} |f(x) - g(x)| dx < \varepsilon.$$

第13题(10-12 weeks)

若 $f \in L(E)$,则对任给 $\varepsilon > 0$,存在 \mathbb{R}^n 上具有紧支集的连续函数 g,使得

$$\int_{E} |f(x) - g(x)| dx < \varepsilon.$$

Proof.

(1)It follows from Exercise 11 that, for any $\varepsilon > 0$, there exists a simple function h(x) with compact support such that:

$$\int_{F} |f(x) - h(x)| dx < \frac{\varepsilon}{2}.$$

We assume that there exist R > 0 and M > 0 such that,

$$supp(h) \subset B(0,R) \qquad ||h||_{\infty} = M.$$

Then applying Exercise 12 for h on E, we have, for $\delta > 0$ (determined later), there exists $g \in C_c(\mathbb{R}^n)$ such that

$$|\{x\in E, h(x)
eq g(x)\}|<\delta, \quad ext{and } \|g\|_{\infty}=M.$$

第13题(10-12 weeks)

Thus, we have,

$$\begin{split} \int_{E} |f - g| dx &\leq \int_{E} |f - h| dx + \int_{E} |h - g| dx \\ &\leq \frac{\varepsilon}{2} + \int_{E} |h - g| dx, \end{split}$$

$$\int_{E} |h-g| dx = \int_{E \cap \{h \neq g\}} |h-g| dx + \int_{E \cap \{h=g\}} |h-g| dx \le 2M\delta,$$

where we can take $\delta = \frac{\varepsilon}{4M}$, then it follows that,

$$\int_{E} |f - g| dx \le \frac{\varepsilon}{2} + 2M\delta = \varepsilon.$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

25/31

第14题(10-12 weeks)

设 $f \in L(E)$, 则存在 \mathbb{R}^n 上具有紧支集的连续函数列 $\{g_k\}$, 使得

- (i) $\lim_{k\to\infty}\int_E |f(x)-g_k(x)|dx=0$;
- (ii) $\lim_{k\to\infty} g_k(x) = f(x)$, a.e. $x \in E$.

第14题(10-12 weeks)

设 $f \in L(E)$, 则存在 \mathbb{R}^n 上具有紧支集的连续函数列 $\{g_k\}$, 使得

- (i) $\lim_{k\to\infty}\int_E |f(x)-g_k(x)|dx=0$;
- (ii) $\lim_{k\to\infty} g_k(x) = f(x)$, a.e. $x \in E$.

Proof. Take $\varepsilon=rac{1}{k^2}$ in Exercises 13, then there exists $g_k\in \mathcal{C}_c(\mathbb{R}^n)$, s.t.

$$\int_E |f(x)-g_k(x)|dx<\frac{1}{k^2}, \text{ for any } k\in\mathbb{N}^+.$$

So, we have

$$\sum_{k=1}^{\infty} \int_{E} |f(x) - g_k(x)| dx \leq \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.$$

It follows from Theorem 5.16 that:

$$\int_{E}\sum_{k=1}^{\infty}|f(x)-g_{k}(x)|dx=\sum_{k=1}^{\infty}\int_{E}|f(x)-g_{k}(x)|dx<\infty.$$

第14题(10-12 weeks)

Therefore, $\sum_{k=1}^{\infty} |f(x) - g_k(x)| < \infty$ for almost every $x \in E$, and we have $\lim_{k \to \infty} g_k(x) = f(x)$, a.e. $x \in E$.

复习第1题(10-12 weeks)

试证明函数列 $\{\cos kx\}$ 在 $[-\pi,\pi)$ 不是依测度收敛于0的.

复习第1题(10-12 weeks)

试证明函数列 $\{\cos kx\}$ 在 $[-\pi,\pi)$ 不是依测度收敛于0的.

Proof. Consider that $\{\cos kx\}$ are periodic functions, and $T_k=\frac{2\pi}{k}$ is the period. If $\{\cos kx\}$ converges to 0 in measure, we have

$$\lim_{k\to\infty} m(\{x\in [-\pi,\ \pi): |\cos kx - 0| > \varepsilon\} = 0, \ \text{ for any } \varepsilon > 0.$$

Now we take $\varepsilon = \frac{1}{2}$, then

$$|\{x \in [-\pi, \ \pi) : |\cos kx - 0| > \frac{1}{2}\}| = \frac{2}{3}T_k \cdot k = \frac{4}{3}\pi,$$

in which we use the facts that $\cos kx$ has k periods in $[-\pi, \pi)$ and the length of points which satisfies $|\cos kx| > \frac{1}{2}$ in every period is $\frac{2}{3}T_k$. It's a contradiction!

复习第2题(10-12 weeks)

设
$$f \in L(\mathbb{R}^n)$$
, $f_k \in L(\mathbb{R}^n)$ $(k = 1, 2, \cdots)$, 且有

$$\int_{\mathbb{R}^n} |f_k(x) - f(x)| dx \le \frac{1}{k^2} \quad (k = 1, 2, \cdots),$$

则

$$f_k(x) \to f(x)$$
, a.e. $x \in \mathbb{R}^n$.

复习第2题(10-12 weeks)

设
$$f \in L(\mathbb{R}^n)$$
, $f_k \in L(\mathbb{R}^n)$ $(k = 1, 2, \cdots)$, 且有

$$\int_{\mathbb{R}^n} |f_k(x) - f(x)| dx \leq \frac{1}{k^2} \quad (k = 1, 2, \cdots),$$

则

$$f_k(x) \to f(x)$$
, a.e. $x \in \mathbb{R}^n$.

Proof. See the proof in Exercise 14.

第15题(10-12 weeks)

(平均连续性)若 $f \in L(\mathbb{R}^n)$,则有

$$\lim_{h\to 0}\int_{\mathbb{R}^n}|f(x+h)-f(x)|dx=0.$$

第15题(10-12 weeks)

(平均连续性)若 $f \in L(\mathbb{R}^n)$,则有

$$\lim_{h\to 0}\int_{\mathbb{R}^n}|f(x+h)-f(x)|dx=0.$$

Proof. It follws from Exercise 13 that: for any $\varepsilon > 0$, there exists $g \in C_c(\mathbb{R}^n)$. s.t.

$$\int_{\mathbb{R}^n} |f(x) - g(x)| dx < \frac{\varepsilon}{3}.$$

So we know that:

第15题 (10-12 weeks)

Consider that $g \in C_c(\mathbb{R}^n)$ and then g is uniform continuous on its support. Hence, for the above $\varepsilon > 0$, there exists $\delta > 0$, if $|h| < \delta$, we have

$$\int_{\mathbb{R}^n} |g(x+h) - g(x)| dx < \frac{\varepsilon}{3}.$$

So we can get: for any $\varepsilon > 0$, there exists $\delta > 0$, such that

$$\int_{\mathbb{R}^n} |f(x+h) - f(x)| dx < \varepsilon, \text{ for } |h| < \delta.$$

31/31