#### IN THE CLAIMS

This listing of claims replaces all prior versions, and listings, in this application.

1. (Currently Amended) A process for the manufacture of compounds represented by the following formula III

wherein R<sup>3</sup> is C<sub>2-5</sub>-alkanoyloxy,

by the reaction of

a) a compound represented by the following formula I

$$R^3$$
 $O$ 
 $R^1$ 
 $E/Z$ 

wherein R' and R<sup>2</sup> are independently from each other H or  $C_{1-5}$ -alkyl, with the proviso that at least one of R<sup>1</sup> and R<sup>2</sup> is not H, and

wherein R<sup>3</sup> is as defined above, with

b) a compound represented by the following formula II

wherein R4 is H or CH2-R5,

wherein  $R^5$  is formyloxy,  $C_{2-5}$ -alkanoyloxy, benzoyloxy,  $C_{1-5}$ -alkoxy or OSi $R^6R^7R^8$ , wherein  $R^6$ ,  $R^7$  and  $R^8$  are independently from each other  $C_{1-6}$ -alkyl or phenyl,

in the presence of a cross-metathesis catalyst[[.]],wherein the cross-metathesis catalyst is a ruthenium compound used in homogeneous catalysis, and wherein the ruthenium compound is one of the complexes represented by the following formulae VIIa, VIIb:

CI
$$Ru = A$$

$$CI$$

$$CI$$

$$Ru = A$$

$$CI$$

$$VIIa$$

$$VIIIb$$

$$VIIIb$$

wherein R<sup>9</sup> is an optionally single or multiple C<sub>1-5</sub>-alkylated and/or C<sub>1-5</sub>-alkoxylated phenyl,

G is ethane-1,2-diyl, ethylene-1,2-diyl, cyclohexane-1,2-diyl or 1,2-diphenylethane-1,2-diyl,

L<sup>1</sup> is PR<sup>10</sup>R<sup>11</sup>R<sup>12</sup>,

wherein  $R^{10}$ ,  $R^{11}$  and  $R^{12}$  are independently from each other  $C_{1-8}$ -alkyl, phenyl or tolyl,

<u>A is CH<sub>2</sub>, C(H)aryl, C(H)R<sup>13</sup>, C=C(R<sup>13</sup>)<sub>2</sub>, C=C(H)Si(R<sup>14</sup>)<sub>3</sub>, C(H)-C(H)=C(R<sup>13</sup>)<sub>2</sub>, C=C(H)(phenyl), C(H)-C(H)=C(phenyl)<sub>2</sub> or C=C:=C(phenyl)<sub>2</sub>,</u>

wherein "aryl" is an optionally single or multiple  $C_{1-5}$ -alkylated and/or halogenated phenyl,  $R^{13}$  is  $C_{1-4}$ -alkyl,  $R^{14}$  is  $C_{1-6}$ -alkyl or phenyl,

L<sup>2</sup> is L or L<sup>1</sup>, and

L³ and L⁴ are independently from each other pyridyl or 3-halopyridyl, wherein halo is Br or Cl.

2. (Currently Amended) The process as claimed in claim 1, wherein the erossmetathesis catalyst is a ruthenium compound used in homogeneous catalysis. is represented by the following formula VIII

$$H_3C$$
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $CH_3$ 

#### 3-5. Canceled.

- 6. (Previously Presented) The process as claimed in claim 1, wherein the reaction is carried out in an aprotic organic solvent.
- 7. (Original) The process as claimed in claim 6, wherein the aprotic organic solvent is a dialkyl ether R<sup>18</sup>-O-R<sup>19</sup>, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, methylene chloride, chloroform, cumene, an optionally once, twice or thrice methylated arylene, or a mixture thereof,

wherein  $R^{18}$  and  $R^{19}$  are independently from each other linear  $C_{1\text{--}4}$ -alkyl or branched  $C_{3\text{--}8}$ -alkyl.

8. (Original) The process as claimed in claim 7, wherein the aprotic organic solvent is tetrahydrofaran, methylene chloride, chloroform, toluene or a. mixture thereof, preferably toluene.

- 9. (Previously Presented) The process as claimed in claim 6, wherein from about 3 ml to about 15 ml, preferably from about 4 ml to about 10 ml, more preferably from about 4.5 ml to about 8 ml of the aprotic organic solvent are used per mmol of compound a) or b), whichever is used in the lesser amount.
- 10. (Previously Presented) The process as claimed in claim 1, wherein the reaction is carried out essentially in the absence of an additional solvent.
- 11. (Original) The process as claimed in claim 10, wherein the reaction is carried out in vacuo, preferably at a pressure below 100 mbar.
- 12. (Previously Presented) The process as claimed in claim 1, wherein the relative amount of the cross-metathesis catalyst to the amount of compound a) or b), whichever is used in the lesser amount, is from about 0.0001 mol% to about 20 mol%, preferably from about 1.0 mol% to about 10 mol%, more preferably from about 2 to about 5 mol%.
- 13. (Previously Presented) The process according to claim 1, wherein the molar ratio of compound a) to compound b) present in the reaction mixture is from about 1:10 to about 10:1, preferably from about 1:5 to about 5:1, more preferably from about 1:3 to about 1:2.5.
- 14. (Previously Presented) The process as claimed in claim 1 wherein the reaction is carried out at temperatures from about 10°C to about 120°C, preferably from about 30°C to about 100°C, especially from about 40°C to about 85°C.
- 15. (Original) A process for the manufacture of  $\alpha$ -tocopheryl alkanoates represented by the following formula V

#### BONRATH et al. - Appln. No. 10/571,261

$$\mathbb{R}^3$$

comprising the following steps:

i) reacting of a compound represented by the following formula I

$$R^3$$
 $O$ 
 $R^1$ 
 $E/Z$ 
 $I$ 

with a compound represented by the following formula II

to a compound represented by the following formula III

in the presence of a cross-metathesis catalyst,

ii) subjecting the compound represented by the formula III and obtained in step i) to a rearrangement to the compound represented by the following formula IV, and

iii) subjecting the compound represented by the formula IV and obtained in step ii) to a cyclization to the compound represented by the formula V,

wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> and R<sup>4</sup> are as defined in claim 1.

#### 16. (Original) Compounds of the formula III

wherein  $R^3$  is  $C_{2-5}$ -alkanoyloxy.

### 17. (Original) Compounds of the formula IX

wherein  $R^{20}$  is  $C_{3-5}$ -alkanovloxy.

# BONRATH et al. - Appln. No. 10/571,261

# 18. (Original) Compounds of the formula IV

wherein  $R^3$  is  $C_{2-5}$ -alkanoyloxy.

# 19. (Original) Compounds of the formula X

wherein  $R^{20}$  is  $C_{3-5}$ -alkanoyloxy.