代数系统习题课

解:

- ① 等幂元是 0 或-1;
- ② 零元为-1;
- ③ 幺元为 0:
- ④ 除了-1 之外的其他元素 x 的逆元为-1+1/(x+1);
- ⑤ 除了-1 之外其他元素 x 都是可消去元。
- 二、(15分)判断如下数学结构是否构成一个代数系统,如果不是代数系统请说明原因:
 - ① N₈,模5加法"⊕₅",模8乘法"⊗₈";
 - ② N₇, 模 4 加法 "⊕₄", 模 4 乘法 "⊗₄";
 - ③ N₆,模5加法"⊕₅",模5乘法"⊗₅";
 - ④ N₅,模8加法"⊕8",模8乘法"⊗8";
 - ⑤ N,模8加法"⊕8",模5乘法"⊗5"。

解:

- ① N₈,模5加法"⊕₅",模8乘法"⊗₈";(不是,⊕₅不满足封闭性)
- ② N₇,模4加法"⊕₄",模4乘法"⊗₄";(不是,⊕₄不满足封闭性)
- ③ N₆,模5加法"⊕₅",模5乘法"⊗₅";(是)
- ④ **N**₅,模 8 加法 "⊕₈",模 8 乘法 "⊗₈";(不是,⊕₈和⊗₈不满足封闭性)
- ⑤ N, 模 8 加法 "⊕₈", 模 5 乘法 "⊗₅"。(是)
- 三、(共 16 分)对于整数集 Z,判断以下哪些运算"*"构成的代数系统<Z,*>是独异点?
 - $1 x*y = x \cdot y + 1;$
 - ② x*y = y;
 - (3) x*y = xy+x+y;
 - (4) x*y = x+y-2.

解:

- ① $x*y = x \cdot y + 1$; 不是独异点,因为**运算"*"不满足结合律**;
- ② x*y=y; 不是独异点,因为**运算"*"虽然满足结合律,但无幺元**;
- ③ x*y = xy+x+y; 是独异点,因为**运算"*"满足结合律,存在幺元** e=0;
- ④ x*y = x+y-2。是独异点,因为**运算"*"满足结合律,存在幺元** e=2。

四、(14 分)设<G, \circ >为群, $u \in G$,G上的二元运算*定义为: $\forall a,b \in G$, $a*b=a \circ u^{-1} \circ b$,求证: < G, *>为群。证明: 由<G, \circ >为群以及*运算的定义,< G, *>是代数系统,而且:

(1) *满足结合律: 对于 $\forall a,b,c \in G$,

 $(a*b)*c=(a\circ u^{-1}\circ b)\ u^{-1}\circ c=a\circ (u^{-1}\circ b\ u^{-1})\circ c$, $a*(b*c)=a\circ u^{-1}\circ (b\circ\ u^{-1}\circ c)=a\circ (u^{-1}\circ b\circ\ u^{-1})\circ c$ 所以*满足结合律

(2) 幺元: 设 e 是群< G, $\circ>$ 的幺元, $e^{-1} \in G$,

若对任意 $x \in G$ 有: $e'*x=e'\circ u^{-1}\circ x=x$,左右两边同时右乘 x^{-1} 得: $e'\circ u^{-1}\circ x\circ x^{-1}=x\circ x^{-1}$,即 $e'\circ u^{-1}\circ e=e$,即 $e'\circ u^{-1}=e$ 。左右两边同时右乘 u 得: e'=u。因此 u 是代数系统< G,*>的左幺元;

若对任意 $x \in G$ 有: $x^*e'=x^\circ u^{-1}\circ e'=x$,左右两边同时左乘 x^{-1} 得: $x^{-1}\circ x^\circ u^{-1}\circ e'=x^{-1}\circ x$,即 $e^\circ u^{-1}\circ e'=e$,即 $u^{-1}\circ e'=e$ 。左右两边同时左乘 u 得: e'=u。因此 u 是代数系统<G、*>的右幺元;

所以 e'=u 是代数系统< G, *>的幺元。

(3) 逆元: 对于任意 $x,y \in G$, 令: $x*y=x\circ u^{-1}\circ y=e'=u$,左右两边同时左乘 x^{-1} 得: $x^{-1}\circ x\circ u^{-1}\circ y=x^{-1}\circ u$ 于是, $u^{-1}\circ y=x^{-1}\circ u$,左右两边同时左乘 u 得: $y=u\circ x^{-1}\circ u$ 。所以 x 的右逆元为 $u\circ x^{-1}\circ u$;

令: $y^*x=y^\circ u^{-1}\circ x=e'=u$,左右两边同时右乘 x^{-1} 得: $y^\circ u^{-1}\circ x^\circ x^{-1}=u^\circ x^{-1}$,于是, $y^\circ u^{-1}=u^\circ x^{-1}$,左右两边同时右乘 u 得: $y=u^\circ x^{-1}\circ u$ 。所以 x 的左逆元为 $u^\circ x^{-1}\circ u$;

所以, x 的左逆元为 $u^{\circ}x^{-1}\circ u$ 。

综上可知<G,*>为群。

五、(12 分)设<G,*>为群,a 是 G 中元素,定义 G 上的函数 f 为: $f(x) = a*x*a^1$ 。证明: f 是<G,*>到<G,*>的同构映射。

证明: (1) 函数 f 是 G 到 G 的双射函数:

首先,对任意 $x,y \in G$,若 f(x) = f(y),即 $a*x*a^{-1} = a*y*a^{-1}$ 。由于< G, *>为群,G 中的所有元素均为可消去元,所以 x = y。因此 $f \in G$ 到 G 的一一映射;

其次,对于任意 $u,v \in G$, 令 $u = f(x) = a^*x^*a^{-1}$; $v = f(y) = a^*y^*a^{-1}$,则:

$$a^{-1}*u*a = a^{-1}*a*x*a^{-1}*a; a^{-1}*v*a = a^{-1}*a*v*a^{-1}*a,$$

即: $a^{-1}*u*a = x$; $a^{-1}*v*a = y$, 即存在 $x = a^{-1}*u*a$; $y = a^{-1}*v*a$ 使 f(x) = u, f(y) = v。所以 f 是 G 到 G 的满射。由此可知函数 f 为双射函数。

(2) 对于任意 $x,y \in G$, $f(x^*y) = a^*x^*y^*a^{-1}$, $f(x)^*f(y) = (a^*x^*a^{-1})^*(a^*y^*a^{-1}) = a^*x^*(a^{-1}*a)^*y^*a^{-1} = a^*x^*y^*a^{-1}$ 所以 $f(x^*y) = f(x)^*f(y)$ 。

综上可知, $f \in \{G, *\}\}$ 到 $\{G, *\}\}$ 的同构映射。

六、(18分) 求群的子群:

(1)(8分)设G, *>是4阶群,其中 $G=\{a,b,c,e\}$,*运算定义如下,请写出G,*>的所有子群。

*	e	а	b	c
e	e	а	b	c
a	а	e	c	b
b	b	c	e	а
c	c	b	а	e

(2)(10分)设<G, *>是12阶循环群,请写出<G, *>的所有子群。

解:(1)根据拉格朗日定理有限群的子群的阶数是有限群阶数的因子,因此 4 阶群只有 1,2,4 阶子群,其中 1 阶和 4 阶群为平凡子群,非平凡子群为 2 阶群。故:

平凡子群为: $\langle G, * \rangle$ 和 $\langle e \rangle, * \rangle$

非平凡子群: $\langle \{a,e\}, * \rangle$, $\langle \{b,e\}, * \rangle$, $\langle \{c,e\}, * \rangle$

(2) <*G*, *>是 12 阶循环群,则其子群的阶数为: 1, 2, 3, 4, 6, 12, 且 k 阶子群是唯一的。由于循环群的子群都是循环群,故<*G*, *>的 k 阶子群即由 G 中的 k 阶元素为生成元得到的子群。假设<*G*, *>的生成元为 a, 则有:

平凡子群: $\{a^0\}$, G

2 阶子群: {a⁰, a⁶}

3 阶子群: {a⁰, a⁴, a⁸}

4 阶子群: {a⁰, a³, a⁶, a⁹}

6 阶子群: {a⁰, a², a⁴, a⁶, a⁸, a¹⁰}

或者,由于<G、*>与 $<N_{12}$, Θ_{12} >同构,故仅需给出 $<N_{12}$, Θ_{12} >的子群。下面仅给出各阶子群的载体。

1 阶子群: {0}

2 阶子群: {0,6}

3 阶子群: {0,4,8}

4 阶子群: {0, 3, 6, 9}

6 阶子群: {0, 2, 4, 6, 8, 10}

12 阶子群: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11}

七、(10 分)设<G,*>为群,C={a|a \in G 且对任意 x \in G 有 a*x=x*a},证明:<C,*>是<G,*>的子群。证明:

- (1) 设群< G, *>的幺元为 e,对任意 $x \in G$ 有 $e^*x = x^*e$,故 $e \in C$;所以 C 是 G 的非空子集;
- (2)证明*运算在 C 上是封闭的。对于任意 $a,b \in C$,根据 C 的定义: 对任意 $x \in G$ 有 a*x=x*a 及 b*x=x*b。 (a*b)*x=a*(b*x)=a*(x*b)=(a*x)*b=(x*a)*b=x*(a*b),

由此可知 a*b∈C。

- (3) 结合律: 由于 C 中元素均属于 G, < G,*>为群, 故*在 C 上满足结合律。
- (4) 幺元: 由(1) 知群< G, *>的幺元也属于 C;
- (5) 逆元:对 C 中的任意元素 a,其逆元为 a^{-1} ,对于任意 $x \in G$, $a^*x = x^*a$;

同时右乘*a⁻¹: a*x*a⁻¹=x*a*a⁻¹, 即 a*x*a⁻¹=x, 同时左乘 a⁻¹: a⁻¹*a*x*a⁻¹= a⁻¹*x, 即 x*a⁻¹= a⁻¹*x

于是 a⁻¹∈C。

综上可知, <C,*>是<G,*>的子群。