BTS - Équations Différentielles - TD4et

1. Révisions du 1er ordre, circuit RC

Exercice 1 : On a $R=10\Omega$; $C=40\mu {
m F}$ et $u_G(t)=24{
m V}$ DC ; le condensateur est déchargé à t=0.

- 1. En utilisant vos connaissances sur les équations différentielles, calculer q(t) et en déduire i(t) dans ce circuit.
- 2. En déduire la durée du régime transitoire (5τ) et l'intensité dans le circuit une fois le régime permanent atteint.
- 3. Déterminer l'intensité moyenne durant le régime transitoire.
- 4. Déterminer le temps au bout duquel le condensateur est à moitié chargé.
- 5. **Reprendre l'exercice avec $u_G(t)=240\sqrt{2}\sin(100\pi t)$ V (secteur).

2. 2nd ordre: circuit RLC série

Exercice 2 : En utilisant vos connaissances sur les équations différentielles, calculer les solutions générales q(t) et en déduire i(t) dans ce circuit ; comparer la situation par rapport à l'exercice précédent.

Les 3 premières séries de valeurs sont théoriques, pour faciliter les calculs.

1.
$$L=1$$
H ; $R=2\Omega$; $C=1$ F et $u_G(t)=24$ V DC

2.
$$L=1$$
H ; $R=8\Omega$; $C=rac{1}{15}$ F et $u_G(t)=24$ V

3.
$$L=1$$
H ; $R=4\Omega$; $C=rac{1}{8}$ F et $u_G(t)=24$ V

4.
$$L=1$$
mH ; $R=10\Omega$; $C=40\mu$ F et $u_G(t)=24$ V DC

3. 2nd ordre : circuit RLC série avec décharge d'un condensateur

Exercice 3 : On se place dans la situation où le condensateur est chargé à 50% (comme pour l'expérience 1). On le place dans le circuit ci-contre qui est fermé à t=0.

- 1. Écrire une équation différentielle vérifiée par ce circuit.
- 2. Est-il possible de produire des oscillations, et quelle est la méthode à suivre ?

Circuit RLC

R

С

Rappels

Formules d'électricité

On utilisera : $u_L(t)=Li'(t)$; $u_R(t)=Ri(t)$; $u_C(t)=\frac{q(t)}{C}$; q'(t)=i(t). On a aussi : $\underline{Z}_L=L\omega j$ et $\underline{Z}_C=\frac{1}{C\omega j}$ Et aussi : $\tau=\frac{1}{r}$ avec r solution de l'équation caractéristique.

Formules de résolution des équations différentielles homogènes

Propriété 1 : Solutions générales d'une équation homogène :

- 1er ordre : (E^c) : une solution r, solution générale de (E_1^*) : $K\mathrm{e}^{\mathrm{rt}}$. 2nd ordre : (E^c) : $ar^2+br+c=0$; 3 cas selon $\Delta=b^2-4ac$:
- - $1. \ \Delta > 0 : (E^c) \ \text{a deux solutions} \ r_1 = \frac{-b \sqrt{\Delta}}{2a} \ \text{et} \ r_2 = \frac{-b + \sqrt{\Delta}}{2a} \ ;$ solution générale de (E_2^*) : $K \mathrm{e}^{\mathrm{r}_1 \mathrm{t}} + \mathrm{L} \mathrm{e}^{\mathrm{r}_2 \mathrm{t}}$. $2. \ \Delta = 0 : (E^c) \ \text{a une solution} \ r_0 = \frac{-b}{2a} \ ;$ solution générale de (E_2^*) : $K \mathrm{e}^{\mathrm{r}_0 \mathrm{t}} + \mathrm{L} \mathrm{t} \mathrm{e}^{\mathrm{r}_0 \mathrm{t}}$. $3. \ \Delta < 0 : (E^c) \ \text{a deux solutions} \ r_1 = \frac{-b i\sqrt{\Delta}}{2a} \ \text{et} \ r_2 = \frac{-b + i\sqrt{\Delta}}{2a} ,$ complexes conjuguées de la forme $\alpha \pm i\omega$ (on choisit $\omega > 0$) ; solution générale de (E_2^*) : $K \mathrm{e}^{\alpha \mathrm{t}} \cos(\omega \mathrm{t}) + \mathrm{L} \mathrm{e}^{\alpha \mathrm{t}} \sin(\omega \mathrm{t})$.