Week 3 Review Session

Focus: rules of matrix multiplication, orthogonal matrices, rotation matrices.

1. When you multiply an $n \times m$ matrix by an $m \times l$ matrix, what are the dimensions of the resulting matrix?

Solution:

2. Zero scalar vs zero vector vs zero matrix. Let A be an $n \times m$ matrix, B be an $m \times l$ matrix, v be a column m-vector and r be a row m-vector, for example:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & -2 \\ -1 & 1 \\ -1 & 1 \end{pmatrix}, v = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, r = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix}.$$

In this case, products AB, Av and rv are all zero, so we can write AB = 0, Av = 0, rv = 0. But would it make sense to write AB = Av = rv = 0? Why / why not? Do the results of those operations belong to the same vector space?

Solution:

- 3. Answer the following questions. Provide explanations.
 - a) Is the identity matrix always square? (By the way it can be stored with one parameter.)
 - b) Do rectangular matrices have inverses?
 - c) Do all square matrices have inverses?
 - d) What is the condition for a 2×2 matrix to have inverse?

Solution:

4	Parallel	nlanes
ⅎ.	1 aratici	puuncs.

- a) Consider the set of points $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ in \mathbb{R}^3 satisfying condition 2x + 3y + 4z = 0. Describe this geometric object. Find a normal vector to it.
- b) What if we consider the equation 2x + 3y + 4z = 1? Why is the normal the same?

Solution:			

5. Row and column operations as matrix multiplication. (Inspired by problem 2.4.8 from Strang.) Consider the following matrices:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \, B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}, \, C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \, D = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}.$$

How is each row of BA, CA, DA related to the rows of A? How is each column of AB, AC, AD related to the columns of A?

Solution:

6. (Problem 2.4.5 from Strang.) Compute A^2 and A^3 . Make a prediction for A^5 amd A^n :

a)
$$A = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$
;

b)
$$A = \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix}$$
.

Solution:

7.	Binomial formula for matrices.	Matrices do not commute.	(Problem 2.4.6 from Strang.)	Show
	that $(A+B)^2$ is different from	$A^2 + 2AB + B^2$ when		

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}.$$

Write down the correct rule: $(A+B)^2 = A^2 + \cdots + B^2$. Can you generalize the rule to $(A+B)^n$?

Solution:			

- Matrices A, B and C are such that all the operations are well-defined.
 - a) If columns 1 and 3 of B are the same, then so are columns 1 and 3 of AB.
 - b) If rows 1 and 3 of B are the same, then so are rows 1 and 3 of AB.
 - c) If rows 1 and 3 of A are the same, then so are rows 1 and 3 of ABC.
 - d) $(AB)^2 = A^2B^2$.

Solution:			

9. Orthogonal matrices. Find A^TA if the columns of A are unit vectors, all mutually perpendicular (in this situation, we say that the vectors are orthonormal). What if we ask that the rows of A are orthonormal?

Solution:		

- 10. Defining a matrix by its image. Rotation matrices. Work out these questions for 2×2 matrices.
 - a) If we want a matrix A to send vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to twice itself and vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to $\begin{pmatrix} a \\ b \end{pmatrix}$, then what are the matrix entries of A?
 - b) If we want a matrix B to send vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$ and vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ to twice itself, then what are the matrix entries of B?
 - c) What are the coordinates of vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ after we rotate them by the angle θ ?
 - d) How do you write a matrix that rotates every vector in the plane by the angle θ ?
 - e) Is the matrix in the previous part orthogonal?