Fondamenti dell'informatica

Modulo 1

Raccolta di prove d'esame

Prof. Giorgio Gambosi

Quesito: Sia dato il linguaggio $L=\{\sigma\in\{a,b,c\}^*\mid \#a(\sigma)=\#b(\sigma)=\#c(\sigma)\}$, dove $\#x(\sigma)$ indica il numero di occorrenze del carattere x nella stringa σ . Il linguaggio L è context free? Dimostrare la risposta data.

Soluzione: Il linguaggio non è context free. Per dimostrarlo, utilizziamo il pumping lemma nel modo seguente. Fissato n>0, consideriamo la stringa $\sigma=a^nb^nc^n$. Qualsiasi decomposizione $\sigma=uvwxy$ con $|vwx|\leq n$ e $|vx|\geq 1$ avrà necessariamente che o che vwx è una stringa con tutti simboli uguali (tutti a, tutti b o tutti c), o che vwx è una stringa comprendente due soli tipi di caratteri (del tipo a^pb^q o b^rc^s). In entrambi i casi c'è almeno un carattere dell'alfabeto $\{a,b,b\}$ che non compare in vwx, e quindi in v e x. Ne deriva che, considerando la stringa uv^2wx^2y il numero di occorrenze aumentano per almeno uno e al più due caratteri dell'alfabeto, per cui uv^2wx^2y non presenta lo stesso numero di occorrenze di a,b,c.

Quesito: Definire un ASFD minimo che riconosca il linguaggio $L \subset \{a,b\}^*$ comprendente tutte le stringhe che non contengono sequenze di più di tre a al loro interno.

Soluzione: Definiamo un ASFND che accetta \overline{L} .

e da questo un ASFD che riconosce lo stesso linguaggio

L'ASFD che riconosce L deriva immediatamente

La minimizzazione dell'automa ci fornisce le classi di equivalenza $\{0\},\{01\},\{012\},\{0123\},\{04,014,0124,01234\}$, da cui deriva l'automa minimo

Quesito: Si definisca una grammatica context free che generi il linguaggio $L = \{a^r b^s c^t a^n c^n | s = r + t, r, t, n \ge 0\}.$

Soluzione: Una possibile soluzione è la grammatica

$$\begin{array}{ccc} S & \rightarrow & ABC \\ A & \rightarrow & aAb \mid \varepsilon \\ B & \rightarrow & bBc \mid \varepsilon \\ C & \rightarrow & aCc \mid \varepsilon \end{array}$$

Quesito: Si definisca un automa a pila (eventualmente non deterministico) che accetti il linguaggio $L = \{a^rb^sc^ta^nc^n|s=r+t, r, t, n \geq 0\}.$

Soluzione: L'automa si puà² derivare dalla grammatica dell'esercizio precedente, portandola prima in forma ridotta

$$\begin{array}{lll} S & \rightarrow & ABC \mid BC \mid AB \mid AC \mid \varepsilon \\ A & \rightarrow & aAb \mid ab \\ B & \rightarrow & bBc \mid bc \\ C & \rightarrow & aCc \mid ac \end{array}$$

quindi in CNF

e in GNF (i non terminali T,U,V,W risultano inutili nella grammatica in GNF in quanto non raggiungibili)

$$\begin{array}{lll} S & \to & aAYBC \mid aYBC \mid bBZC \mid bZC \mid aAYB \mid aYB \mid aAYC \mid aYC \mid \varepsilon \\ A & \to & aAY \mid aY \\ B & \to & bBZ \mid bZ \\ X & \to & a \\ Y & \to & b \\ Z & \to & c \end{array}$$

La funzione dei transizione del PDA non deterministico risulta allora:

$$\begin{split} &\delta(q_0,\varepsilon,S)\{(q_0,\varepsilon)\}\\ &\delta(q_0,a,S) = \{(q_0,AYBC),(q_0,YBC),(q_0,AYB),(q_0,YB),(q_0,AYC),(q_0,YC)\}\\ &\delta(q_0,b,S) = \{(q_0,BZC),(q_0,ZC)\}\\ &\delta(q_0,a,A) = \{(q_0,AY),(q_0,Y)\}\\ &\delta(q_0,b,B) = \{(q_0,BZ),(q_0,Z)\}\\ &\delta(q_0,a,C) = \{(q_0,CZ),(q_0,Z)\}\\ &\delta(q_0,a,X) = \{(q_0,\varepsilon)\}\\ &\delta(q_0,b,Y) = \{(q_0,\varepsilon)\}\\ &\delta(q_0,c,Z) = \{(q_0,\varepsilon)\} \end{split}$$

Quesito: Si definisca una grammatica di tipo 3 che generi il seguente linguaggio

$$L = \{a^n b^m c^k | n + m + k \text{ divisibile per } 3\}$$

Soluzione: Definiamo un ASFD che riconosce il linguaggio

da cui deriva immediatamente la grammatica di tipo $3\,$

Quesito:Definire un automa a stati finiti deterministico che riconosce il linguaggio $L \subset \{0,1\}^*$ composto da tutte le stringhe che non contengono la sequenza 111.

Soluzione:

Quesito: Si consideri il linguaggio

$$L = \{a^i b^j c^k | i + j \ge 3, k \text{mod } 3 = 0\}$$

Il linguaggio è regolare o context free? Dimostrare quale delle due affermazioni è vera. Si definisca inoltre una grammatica (di tipo 3 o di tipo 2, rispettivamente) che generi tutte e sole le stringhe del linguaggio.

Soluzione: Il linguaggio è regolare. Per dimostrare ciò, mostriamo un ASFD che lo riconosce.

La grammatica corrispondente sarà

Quesito: Sia dato l'ASFD seguente

Si mostri come sia possibile ricavare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

Soluzione:

Quesito: Si definisca una automa a pila che accetta il linguaggio

$$L = \{ \heartsuit^n \diamondsuit^{2n} | n > 0 \}$$

Soluzione:

Quesito: Sia dato l'ASFD definito come $\mathcal{A} = \langle \Sigma, Q, \delta, q_0, F \rangle$, con

1.
$$\Sigma = \{a, b\}$$

2.
$$Q = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

3.
$$q_0 = 1$$

4.
$$F = \{2, 4\}$$

e funzione di transizione δ :

	а	b
1	3	8
2	3	1
2 3	8	2
4	5	6
5	6	2
6	7	8
7	6 5	4
8	5	8

Derivare la grammatica più semplice (con meno simboli) che genera $L(\mathcal{A})$.

Soluzione: Applicando l'algoritmo di derivazione dell'automa minimo risulta $1\equiv 6\equiv 8,\,2\equiv 4$ e $3\equiv 5\equiv 7.$

Mantenendo gli stati 1,2,3 come rappresentanti delle classi di equivalenza, risulta l'automa minimo con stato finale 2 e funzione di transizione:

	а	b
1	3	1
2	3	1
3	1	2

Da cui la grammatica, con $S = A_1$,

$$\begin{array}{ccc} A_1 & \rightarrow & aA_3|bA_1 \\ A_2 & \rightarrow & aA_3|bA_1 \\ A_3 & \rightarrow & aA_1|bA_2|b \end{array}$$

5

Quesito: Sia L il linguaggio riconosciuto dal seguente ASFD,

derivare una espressione regolare che descriva L.

Soluzione: Una possibile soluzione prevede la derivazione della grammatica regolare equivalente

$$\begin{array}{ccc} A_0 & \rightarrow & 0A_0|1A_1 \\ A_1 & \rightarrow & 0A_1|1A_2|1 \\ A_2 & \rightarrow & 0A_0|1A_1 \end{array}$$

E da questa, manipolando il sistema di espressioni corrispondente, l'espressione regolare cercata.

$$\begin{cases} A_0 = 0A_0 + 1A_1 \\ A_1 = 0A_1 + 1A_2 + 1 \\ A_2 = 0A_0 + 1A_1 \end{cases}$$

$$\begin{cases} A_0 = 0A_0 + 1A_1 \\ A_1 = 0A_1 + 1A_0 + 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0*1A_1 \\ A_1 = 0A_1 + 10*1A_1 + 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0*1A_1 \\ A_1 = (0 + 10*1)A_1 + 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^* 1 A_1 \\ A_1 = (0 + 10^* 1)^* 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^* 1(0 + 10^* 1)^* 1 \\ A_1 = (0 + 10^* 1)^* 1 \\ A_2 = A_0 \end{cases}$$

L è descritto dall'espressione associata all'assioma, e quindi da 0*1(0+10*1)*1.

Quesito: Si consideri il linguaggio $L = \{a^h b^k | k > h > 0\}$. Dimostrare se L è regolare o meno.

Soluzione: Il linguaggio non è regolare. Per dimostrarlo, utilizziamo il pumping lemma nel modo seguente. Fissato n>0, consideriamo la stringa $\sigma=a^nb^{n+1}$. Qualsiasi decomposizione $\sigma=uvw$ con $|uv|\leq n$ e $|v|\geq 1$ avrà necessariamente $uv=a^r$ e $w=a^{n-r}b^{n+1}$ con $r\leq n$, e quindi $v=a^s$, $u=a^{r-s}$ per un qualche valore $0< s\leq r$. Scegliendo ad esempio i=2 abbiamo allora che $uv^2w=a^{r-s}v^sv^su^{n-r}b^{n+1}=a^{n+s}b^{n+1}\not\in L$.

Quesito: Si consideri l'espressione regolare $r = a(bb^* + a)^*ab$. Derivare un ASFD che riconosce L(r).

Soluzione: Deriviamo da r un ASFND con ε -transizioni che riconosca L(r). Possiamo osservare che la sotto-espressione regolare $(bb^*+a)^*$ è accettata per costruzione dall'ASFND con ε -transizioni

Eliminando le ε -transizioni, si ottiene l'ASFND

Da cui immediatamente l'ASFND per L(r)

e da questo l'ASFD

In alternativa, si potrebbe osservare che $(bb^*+a)^*$ comprende tutte le stringhe sull'alfabeto $\{a,b\}$, che sono riconosciute da

e da questo l'ASFD

Quesito: Definire una grammatica CF che generi il linguaggio $L = \{w \in \{a,b\} | w \text{ contiene almeno } 4b\}$

Soluzione: Osserviamo che possiamo risolvere il problema derivando una grammatica regolare che generi L. A tal fine, definiamo un ASFD che riconosca L.

	a	b
q_0	q_0	q_1
q_1	q_1	q_2
q_2	q_2	q_3
q_3	q_3	q_4
q_4	q_4	q_4
con	F =	$\{q_4\}$

La grammatica deriva immediatamente come

Quesito: Ridurre la grammatica seguente in GNF

$$\begin{array}{cccc} S & \rightarrow & aEb \mid aaC \mid AA \\ A & \rightarrow & BC \mid bS \mid b \\ B & \rightarrow & aB \mid \varepsilon \\ C & \rightarrow & Ca \mid Cb \\ D & \rightarrow & a \mid c \end{array}$$

Soluzione: Per portare la grammatica in forma ridotta eliminiamo l' ε -produzione, ottenendo

$$\begin{array}{cccc} S & \rightarrow & aEb \mid aaC \mid AA \\ A & \rightarrow & BC \mid C \mid bS \mid b \\ B & \rightarrow & aB \mid a \\ C & \rightarrow & Ca \mid Cb \\ D & \rightarrow & a \mid c \end{array}$$

Eliminiamo quindi la produzione unitaria

$$\begin{array}{lll} S & \rightarrow & aEb \mid aaC \mid AA \\ A & \rightarrow & BC \mid Ca \mid Cb \mid bS \mid b \\ B & \rightarrow & aB \mid a \\ C & \rightarrow & Ca \mid Cb \\ D & \rightarrow & a \mid c \end{array}$$

Osserviamo ora che C e E sono simboli non fecondi, per cui eliminandoli otteniamo

$$\begin{array}{ccc} S & \rightarrow & AA \\ A & \rightarrow & bS \mid b \\ B & \rightarrow & aB \mid a \\ D & \rightarrow & a \mid c \end{array}$$

a questo punto, eliminando i simboli non raggiungibili B e D, otteniamo la grammatica equivalente in forma ridotta

$$\begin{array}{ccc} S & \rightarrow & AA \\ A & \rightarrow & bS \mid b \end{array}$$

La corrispondente grammatica in CNF è

$$\begin{array}{ccc} S & \rightarrow & AA \\ A & \rightarrow & BS \mid b \\ B & \rightarrow & b \end{array}$$

e da questa la grammatica in GNF

$$\begin{array}{ccc} S & \rightarrow & bSA \mid bA \\ A & \rightarrow & bS \mid b \\ B & \rightarrow & b \end{array}$$

Quesito: Si consideri il linguaggio

$$L = \{w \in \{a, b\}^* | w = a^n b^m, n + m \text{ multiplo di } 4, m \ge 1\}$$

Si definiscano un ASFD che riconosce ${\cal L}$ e una grammatica regolare che lo genera.

Soluzione: Possibile soluzione

La grammatica regolare deriva applicando la trasformazione nota, risultando:

Quesito: Dato l'ASFD seguente

si derivi una ASFD minimo equivalente.

Soluzione: L'applicazione del metodo studiato indica che i soli stati indistinguibili sono q_0 e q_4 . Ne deriva l'automa minimo seguente

Quesito: Si dimostri che il linguaggio

$$L = \{a^*b^kc^*a^kb^* | k \ge 4\}$$

non è regolare

Soluzione: Utilizziamo il pumping lemma per i linguaggi regolari. Dato l'intero n, consideriamo la stringa $b^{n+4}a^{n+4} \in L$: per ogni decomposizione uvw di $a^{n+4}b^{n+4}$ tale che $|uv| \leq n$, |v| > 0 si ha che $uv = b^m$, $m \leq n$, e quindi $v = b^r$, r > 0. Ne deriva che la stringa $uv^2w = b^{n+r+4}a^{n+4} \notin L$.

Quesito:Definire un automa a stati finiti deterministico che riconosce il linguaggio $L \subset \{0,1\}^*$ composto da tutte le stringhe che non contengono la sequenza 111.

Soluzione:

Quesito: Si consideri il linguaggio

$$L = \{a^i b^j c^k | i + j \ge 3, k \text{mod } 3 = 0\}$$

Il linguaggio è regolare o context free? Dimostrare quale delle due affermazioni è vera. Si definisca inoltre una grammatica (di tipo 3 o di tipo 2, rispettivamente) che generi tutte e sole le stringhe del linguaggio.

Soluzione: Il linguaggio è regolare. Per dimostrare ciò, mostriamo un ASFD che lo riconosce.

La grammatica corrispondente sarà

Quesito: Sia dato l'ASFD seguente

Si mostri come sia possibile ricavare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

Soluzione:

Quesito: Sia dato l'ASFD definito come $\mathcal{A} = \langle \Sigma, Q, \delta, q_0, F \rangle$, con

1.
$$\Sigma = \{a, b\}$$

2.
$$Q = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

3.
$$q_0 = 1$$

4.
$$F = \{2, 4\}$$

e funzione di transizione δ :

	а	b
1	3	8
2	3	1
3	8	2
4	5	6
5	6	2
6	7	8
7	6	4
8	5	8

Derivare la grammatica più semplice (con meno simboli) che genera L(A).

Soluzione: Applicando l'algoritmo di derivazione dell'automa minimo risulta $1 \equiv 6 \equiv 8$, $2 \equiv 4$ e $3 \equiv 5 \equiv 7$.

Mantenendo gli stati 1,2,3 come rappresentanti delle classi di equivalenza, risulta l'automa minimo con stato finale 2 e funzione di transizione:

Da cui la grammatica, con $S = A_1$,

$$\begin{array}{ccc} A_1 & \rightarrow & aA_3|bA_1 \\ A_2 & \rightarrow & aA_3|bA_1 \\ A_3 & \rightarrow & aA_1|bA_2|b \end{array}$$

Quesito: Sia dato il linguaggio

$$L = \{w \in \{a, b\}^*\}$$

tale che:

1. w non contiene la stringa aa

2. nessun carattere b in w compare "isolato", vale a dire senza almeno un altro b adiacente (che lo precede o lo segua)

3. |w| è pari

Dimostrare che L è regolare.

Soluzione: Possiamo considerare i tre linguaggi:

• $L_1 = \{w \text{ contiene } aa\}$

• $L_2 = \{w \text{ non compaiono } b \text{ isolati}\}$

• $L_3 = \{w : |w| \text{ pari}\}$

I tre linguaggi sono regolari, in quanto, ad esempio, accettati rispettivamente dagli ASF seguenti

L risulta regolare, per le proprietà di chiusura dei linguaggi regolari, in quanto

$$L = \overline{L}_1 \cap L_2 \cap L_3$$

Quesito: Si consideri il linguaggio

$$L = \{w \in \{0, 1, 2\}^* | w \text{ contiene una sottostringa } 0x0, \text{ con } x \in \{1, 2\}^2\}$$

Si definisca un ASFD minimo che riconosce ${\cal L}$

Soluzione: ASFND che accetta L:

da cui l'ASFD

L'automa minimo deriva osservando che i soli stati indistinguibili sono 014 e 04, che possono quindi essere unificati.

Quesito: Si costruisca un automa (deterministico o non deterministico) che riconosca il linguaggio $L \subseteq \{a,b,c\}^*$ definito come segue

 $L = \{w|w \text{ contiene un numero dispari di } c \text{ oppure non contiene occorrenze della sottostringa } aba\}$

Soluzione: Si osservi che possiamo scrivere $L=L_1\cup \overline{L}_2$, con

 $L_1 = \{w|w \text{ contiene un numero dispari di }c\}$

 $L_2 = \{w|w \text{ contiene la sottostringa } aba\}$

 L_1 è riconosciuto dall'automa

mentre L_2 è riconosciuto da

di conseguenza, \overline{L}_2 è riconosciuto da

e infine L è riconosciuto da

Quesito: Definire un automa deterministico minimo (nel numero di stati) che riconosca il linguaggio 11(0+1)*11

Soluzione: Automa non deterministico che accetta il linguaggio

Automa deterministico totale equivalente

L'automa risulta già minimo, fornendo la matrice di equivalenza seguente (per ogni locazione il carattere che rende i due stati non equivalenti).

	0	1	2	23	234	5
0						
1	1					
2	1	1				
23 234	1	1	1			
234	ε	ε	ε	ε		
5	1	1	1	1	ε	

Quesito: Si costruisca un automa a stati finiti non deterministico che accetti il linguaggio L generato dall'espressione regolare 0(1+0)*1+0(11+00)*1

Soluzione: L è riconosciuto dall'automa non deterministico

Quesito: Come noto, un numero intero espresso in base 10 è divisibile per 3 se lo è la somma delle sue cifre. Si consideri il linguaggio L comprendente tutte e sole le sequenze di cifre decimali corrispondenti a interi non negativi multipli di 3. Determinare, dimostrandolo, se L è regolare o meno.

Soluzione: L è regolare e riconosciuto, ad esempio, dall'ASFD seguente, che tiene traccia del resto della divisione per 3 della somma delle cifre decimali lette.

 ${\bf Quesito}$: Dato il seguente ASFND A

si derivi un grammatica regolare $\mathcal G$ tale che $L(\mathcal G)=L(A)$

Soluzione: Applicando la costruzione nota, si ottiene la grammatica

$$\begin{array}{ccc} S_0 & \rightarrow & 1S_1 \\ S_1 & \rightarrow & 0S_1|1S_1|1 \end{array}$$

Quesito: Si consideri una estensione dei DFA in cui le transizioni sono associate ad espressioni regolari arbitrarie su Σ . Ad esempio:

Mostrare che l'insieme dei linguaggi riconoscibili dal modello esteso corrisponde ai linguaggi di tipo 3, mostrando l'equivalenza tra il modello esteso e i DFA.

Quesito: Si definisca una grammatica regolare che generi il linguaggio L composto da tutte le stringhe su $\Sigma = \{a,b\}$ non contenenti la sequenza aba

Soluzione: Si definisca una automa che accetta il linguaggio complemento \overline{L}

Il corrispondente automa deterministico che riconosce \overline{L}

Quesito: Definire una grammatica regolare che generi il seguente linguaggio

$$L = \{w \in \{0,1\}^* : w \text{ non contiene la sottostringa } 101\}$$

descrivendo e giustificando le scelte effettuate.

Soluzione: Definiamo un ASFD $\mathcal A$ che riconosca L, derivando poi da esso la grammatica richiesta. A tal fine, definiamo inizialmente un ASFD $\mathcal A'$ che riconosca $\overline L=\{w\in\{0,1\}^*:w\text{ contiene la sottostringa }101\}$ a partire dal seguente ASFND $\mathcal A'_{\mathcal N}$ che riconosce lo stesso linguaggio.

L'ASFD equivalente risulta allora

Gli stati q_{03},q_{013},q_{023} risultano immediatamente equivalenti, per cui possiamo assumere \mathcal{A}' come

A deriva scambiando stati finali e non:

Da cui la grammatica:

$$\begin{array}{cccc} S & \to & 0S|1A_1|0|1 \\ A_1 & \to & 1S|0A_2|0|1 \\ A_2 & \to & 0S|1A_3|0 \\ A_3 & \to & 0A_3|1A_3 \end{array}$$

Il simbolo A_3 è chiaramente inutile, in quanto non fecondo, per cui la grammatica può essere immediatamente semplificata

$$\begin{array}{ccc} S & \rightarrow & 0S|1A_1|0|1 \\ A_1 & \rightarrow & 1S|0A_2|0|1 \\ A_2 & \rightarrow & 0S|0 \end{array}$$

Quesito: Si determini se i linguaggi

$$L = \{a^i b^j c^i | i, j \ge 1\}$$

е

$$L = \{a^i b^j c^k | i, j, k \ge 0\}$$

sono regolari.

Soluzione: Il primo linguaggio non è regolare: per dimostrare ciò possiamo utilizzare il pumping lemma. Dato n>0, consideriamo la stringa $\sigma=a^nbc^n$: qualunque decomposizione $\sigma=uvw$ con $|uv|\leq n$ e |v|>1 fa sÃ \neg che $v=a^k$ per un qualche 0< k< n. Ne deriva che la stringa $\sigma'=uv^2w=a^{n+k}bc^n\not\in L$, da cui la non regolarità di L.

Il secondo linguaggio è invece regolare: infatti può essere descritto dall'espressione regolare $a^*b^*c^*$.

Quesito: Costruire un ASFD che riconosca il linguaggio descritto dall'espressione regolare $a((ab+aba)^*a)^*$

Soluzione: Deriviamo un ASFND che riconosce il linguaggio in modo graduale. L'ASFND che riconosce ab+aba è

$$\mathsf{start} \to \overbrace{q_0} \quad \xrightarrow{a} \quad \overbrace{q_1} \quad \xrightarrow{b} \quad \overbrace{q_2} \quad \xrightarrow{a} \quad \overbrace{q_3}$$

Da cui l'automa che riconosce $(ab + aba)^*$

e quello che riconosce $(ab + aba)^*a$

Il linguaggio descritto da $((ab+aba)^*a)^*$ è allora accettato da

ed eliminando la ε -transizione considerando la ε chiusura,

Ne deriva che l'ASFND che riconosce il linguaggio è

Da cui l'ASFD equivalente

Quesito: Sia data l'espressione regolare $r=x(y|yz^+)^*z$. Derivare un automa deterministico minimo che accetti L(r), il linguaggio descritto da r.

Soluzione: Dalla espressione regolare possiamo derivare un ASFND con ε -transizioni che accetta L(r)

e da questo un ASFND senza ε -transizioni equivalente

Possiamo quindi derivare un AFSD che riconosce L(r)

L'automa risulta minimo, in quanto tutti gli stati risultano distinguibili. Infatti q_{345} e q_5 sono distinguibili da q_0 , q_{14} e q_{24} in quanto stati finali. Le uniche coppie di stati che potrebbero risultare indistinguibili sono quindi:

- 1. q_0 e q_{14} : sono distinguibili in quanto $\delta(q_0,z)$ è indefinita mentre $\delta(q_{14},z)=q_5\in F$
- 2. q_0 e q_{24} : sono distinguibili in quanto $\delta(q_0,z)$ è indefinita mentre $\delta(q_{24},z)=q_{345}\in F$
- 3. q_{14} e q_{24} : sono indistinguibili rispetto a x e y, mentre lo sono rispetto a z se q_5 e q_{345} risultano indistinguibili anch'essi
- 4. q_5 e q_{345} : sono distinguibili in quanto $\delta(q_5,z)$ è indefinita mentre $\delta(q_{345},z)=q_{345}\in F$. Da questo consegue che q_{14} e q_{24} sono distinguibili.

Quesito: Si consideri il seguente linguaggio

$$L = \{0^i 1^j 0^i | i, j > 0\}$$

Il linguaggio è regolare? Si dimostri l'affermazione fatta.

Soluzione: Il linguaggio non è regolare. Ciò si può dimostrare applicando il pumping lemma nel modo seguente: fissato n, consideriamo la stringa $\sigma=0^n10^n\in L$: una qualunque decomposizione $\sigma=uvw$ che soddisfi le ipotesi del pumping lemma prevede che $|uv|\leq n$, per cui uv è una sequenza di caratteri 0, per cui anche v è una sequenza di 0, diciamo $v=0^k$ per qualche k>0. Se consideriamo la stringa $\sigma'=uv^2w$ ne consegue che $\sigma'=0^{n+k}10^n\notin L$, per cui L non è regolare.

Quesito: Si considerino un alfabeto $\Sigma = \{a_1, a_2, \dots, a_5\}$ e il linguaggio L comprendente tutte e sole stringhe $\sigma \in \Sigma^*$ tali che il numero di caratteri diversi che occorrono in σ è maggiore di 3. Definire la struttura di un ASFD che riconosce tale linguaggio.

Soluzione:

Quesito:Definire un automa a stati finiti deterministico che riconosca tutte e sole le stringhe che rappresentano numeri secondo il seguente formato: un segno - opzionale seguito da una sequenza di almeno una cifra decimale, non iniziante per 0, o un segno - opzionale seguito da una sequenza di almeno una cifra decimale, non iniziante per 0, un punto e una sequenza di almeno una cifra decimale, non terminante per 0.

Soluzione: Il linguaggio è riconosciuto dall'automa deterministico

Quesito: Si consideri il linguaggio

$$L = \{0^i 1^j | i \text{ pari o } 0, \text{ oppure } j \geq 2\}$$

Il linguaggio è regolare o context free? Dimostrare quale delle due affermazioni è vera. Si definisca inoltre una grammatica (di tipo 3 o di tipo 2, rispettivamente) che generi tutte e sole le stringhe del linguaggio.

Soluzione: Il linguaggio è regolare, unione di $L_1 = \{0^i 1^j | i \text{ pari o } 0\}$ e $L_2 = \{0^i 1^j | j \geq 2\}$, regolari in quanto L_1 è riconoscibile da

e L_2 è riconoscibile da

La composizione dei due automi permette di ottenere l'ASF che riconosce L

da cui la grammatica che genera L

$$\begin{array}{cccc} S & \to & 0A_{2a}|1A_{3b}|1|\varepsilon \\ A_{2a} & \to & 0A_{1a}|1A_{b}|0 \\ A_{3b} & \to & 1A_{3c}|1 \\ A_{1a} & \to & 0A_{2a}|1A_{3b}|0|1 \\ A_{b} & \to & 1A_{c}|1 \\ A_{c} & \to & 1A_{c}|1 \\ A_{3c} & \to & 1A_{3c}|1 \end{array}$$

Quesito: Si consideri il linguaggio $L \subset \{0,1\}^*$ tale che $\sigma \in L$ se e solo se $\#_0(\sigma) = \#_1(\sigma)$, dove $\#_a(s)$ indica il numero di occorrenze del carattere a nella stringa s. Si definisca una grammatica CF in GNF che generi L.

Soluzione: Una possibile grammatica è la seguente:

$$S \rightarrow 0S1S|1S0S|\varepsilon$$

L'eliminazione della ε -produzione porta alla grammatica equivalente

$$S \ \, \to \ \, 0S1S|1S0S|0S1|01S|1S0|10S|01|10$$

che non presenta produzioni unitarie o simboli inutili. La grammatica in CNF che ne deriva è

$$\begin{array}{ccc} S & \rightarrow & XY|YX|XU|ZY|YZ|UX|ZU|UZ \\ X & \rightarrow & ZS \end{array}$$

$$Y \rightarrow US$$

$$Z \rightarrow 0$$

$$U \rightarrow 1$$

$$U \rightarrow 1$$

da cui deriva immediatamente la grammatica in GNF

$$S \rightarrow 0SY|1SX|0SU|0Y|1SZ|1X|0U|1Z$$

$$X \rightarrow 0S$$

$$Y \rightarrow 1S$$

$$Z \rightarrow 0$$

$$U \rightarrow 1$$

Quesito: Sia data l'espressione regolare $r=x(y|yz^+)^*z$. Derivare un automa deterministico minimo che accetti L(r), il linguaggio descritto da r.

Soluzione: Dalla espressione regolare possiamo derivare un ASFND con ε -transizioni che accetta L(r)

e da questo un ASFND senza ε -transizioni equivalente

Possiamo quindi derivare un AFSD che riconosce L(r)

L'automa risulta minimo, in quanto tutti gli stati risultano distinguibili. Infatti q_{345} e q_5 sono distinguibili da q_0 , q_{14} e q_{24} in quanto stati finali. Le uniche coppie di stati che potrebbero risultare indistinguibili sono quindi:

1. q_0 e q_{14} : sono distinguibili in quanto $\delta(q_0,z)$ è indefinita mentre $\delta(q_{14},z)=q_5\in F$

- 2. $q_0 = q_{24}$: sono distinguibili in quanto $\delta(q_0, z)$ è indefinita mentre $\delta(q_{24}, z) = q_{345} \in F$
- 3. q_{14} e q_{24} : sono indistinguibili rispetto a x e y, mentre lo sono rispetto a z se q_5 e q_{345} risultano indistinguibili anch'essi
- 4. q_5 e q_{345} : sono distinguibili in quanto $\delta(q_5,z)$ è indefinita mentre $\delta(q_{345},z)=q_{345}\in F$. Da questo consegue che q_{14} e q_{24} sono distinguibili.

Quesito: Si consideri il seguente linguaggio

$$L = \{0^i 1^j 0^i | i, j > 0\}$$

Il linguaggio è regolare? Si dimostri l'affermazione fatta.

Soluzione: Il linguaggio non è regolare. Ciò si può dimostrare applicando il pumping lemma nel modo seguente: fissato n, consideriamo la stringa $\sigma=0^n10^n\in L$: una qualunque decomposizione $\sigma=uvw$ che soddisfi le ipotesi del pumping lemma prevede che $|uv|\leq n$, per cui uv è una sequenza di caratteri 0, per cui anche v è una sequenza di 0, diciamo $v=0^k$ per qualche k>0. Se consideriamo la stringa $\sigma'=uv^2w$ ne consegue che $\sigma'=0^{n+k}10^n\not\in L$, per cui L non è regolare.

Quesito: Si considerino un alfabeto $\Sigma = \{a_1, a_2, \dots, a_5\}$ e il linguaggio L comprendente tutte e sole stringhe $\sigma \in \Sigma^*$ tali che il numero di caratteri diversi che occorrono in σ è maggiore di 3. Definire la struttura di un ASFD che riconosce tale linguaggio.

Soluzione:

Quesito: Si definisca una grammatica CF che generi il linguaggio $L = \{a^r b^s c^t | s = r + t; r, s, t > 0\}$

Soluzione: Una possibile grammatica che generi L è ad esempio:

$$S \rightarrow S_1 S_2$$

 $S_1 \rightarrow aS_1 b|ab$
 $S_2 \rightarrow bS_2 c|bc$

Quesito:Definire un automa a stati finiti deterministico che riconosca tutte e sole le stringhe che rappresentano numeri secondo il seguente formato: un segno - opzionale seguito da una sequenza di almeno una cifra decimale, non iniziante per 0, o un segno - opzionale seguito da una sequenza di almeno una cifra decimale, non iniziante per 0, un punto e una sequenza di almeno una cifra decimale, non terminante per 0.

Soluzione: Il linguaggio è riconosciuto dall'automa deterministico

Quesito:Si consideri il linguaggio

$$L = \{0^i 1^j | i \text{ pari o } 0, \text{ oppure } j \geq 2\}$$

Il linguaggio è regolare o context free? Dimostrare quale delle due affermazioni è vera. Si definisca inoltre una grammatica (di tipo 3 o di tipo 2, rispettivamente) che generi tutte e sole le stringhe del linguaggio.

Soluzione: Il linguaggio è regolare, unione di $L_1=\{0^i1^j|i\ \text{pari o}\ 0\}$ e $L_2=\{0^i1^j|j\ge 2\}$, regolari in quanto L_1 è riconoscibile da

e L_2 è riconoscibile da

La composizione dei due automi permette di ottenere l'ASF che riconosce ${\it L}$

da cui la grammatica che genera ${\cal L}$

$$\begin{array}{cccc} S & \to & 0A_{2a}|1A_{3b}|1|\varepsilon \\ A_{2a} & \to & 0A_{1a}|1A_{b}|0 \\ A_{3b} & \to & 1A_{3c}|1 \\ A_{1a} & \to & 0A_{2a}|1A_{3b}|0|1 \\ A_{b} & \to & 1A_{c}|1 \\ A_{c} & \to & 1A_{c}|1 \\ A_{3c} & \to & 1A_{3c}|1 \end{array}$$

Quesito: Si consideri la seguente operazione $\mathcal{I}()$ definita come:

$$\mathcal{I}(L) = \{x_1 x_2 \cdots x_k | k \ge 1, x_i \in L \text{ per } i = 1, \dots, k\}$$

Mostrare che la classe dei linguaggi regolari è chiusa rispetto a $\mathcal{I}()$.

Soluzione: Si considerino i linguaggi, per $k \ge 1$

$$L_k = \{x_1 x_2 \cdots x_k | x_i \in L \text{ per } i = 1, \dots, k\}$$

Se L è regolare allora ogni L_k è regolare in quanto $L_k = L^k$, potenza k-esima di L, e i linguaggi regolari sono chiusi rispetto alla concatenazione (e quindi alla potenza).

Ma $\mathcal{I}(L) = \bigcup_{k \geq 1} L_k$, per cui se L è regolare $\mathcal{I}(L)$ è l'unione di linguaggi regolari: per la chiusura dei linguaggi regolari rispetto all'unione, ne deriva che $\mathcal{I}(L)$ è regolare se lo è L.

Quesito:Si consideri il linguaggio

$$L = \{0^i 1^j | i \ge j\}$$

Il linguaggio è regolare o context free? Dimostrare quale delle due affermazioni è vera. Si definisca inoltre una grammatica (di tipo 3 o di tipo 2, rispettivamente) che generi tutte e sole le stringhe del linguaggio.

Soluzione: Il linguaggio non è regolare, ma è context free. Per verificare che non è regolare si può utilizzare il pumping lemma applicato (fissato n)alla stringa $0^n1^n \in L$. Dato che per ogni $uvx = 0^n1^n$ con $|uv| \le n$ e $|v| \ge 1$ si deve avere necessariamente che $v = 0^k$ per un qualche k > 0, si che $uv^0w = uv = 0^{n-k}1^k \notin L$, per cui L non è regolare.

Una grammatica CF che genera L è ad esempio

$$\begin{array}{ccc} S & \rightarrow & 0S1|0T1|\varepsilon \\ T & \rightarrow & 0T|0 \end{array}$$

Quesito: Si definiscano una grammatica in CNF e una grammatica in GNF che generino il linguaggio L composto da tutte le stringhe su $\Sigma = \{0, 1\}$ che iniziano e terminano per lo stesso carattere.

Soluzione: Una grammatica CF che genera L è ad esempio

$$\begin{array}{ccc} S & \rightarrow & 0T0|1T1|00|11 \\ T & \rightarrow & 0T|1T|0|1 \end{array}$$

La grammatica è già in forma ridotta. Una grammatica in CNF risultante è allora

$$\begin{array}{cccc} S & \rightarrow & XZ|YU|ZZ|UU \\ T & \rightarrow & ZT|UT|0|1 \\ X & \rightarrow & ZT \\ Y & \rightarrow & UT \\ Z & \rightarrow & 0 \\ U & \rightarrow & 1 \end{array}$$

e una grammatica in GNF è

$$\begin{array}{cccc} S & \rightarrow & 0TZ|1TU|0Z|1U \\ T & \rightarrow & 0T|1T|0|1 \\ X & \rightarrow & 0T \\ Y & \rightarrow & 1T \\ Z & \rightarrow & 0 \\ U & \rightarrow & 1 \end{array}$$

Quesito: Definire una grammatica di tipo 3, priva di simboli inutili, che generi il linguaggio descritto dall'espressione regolare $a^*bc^* + a(ab + c^*b)$

Soluzione: Il linguaggio è riconosciuto dall'automa

Da cui deriva la grammatica:

$$\begin{array}{cccc} S & \to & aS|aA_1|bA_2|aA_3|b \\ A_1 & \to & aA_1|cbA_2|b \\ A_2 & \to & cA_2|c \\ A_3 & \to & aA_4|bA_7|cA_6|b|c \\ A_4 & \to & bA_5|b \\ A_6 & \to & cA_6|bA_7|c|b \end{array}$$

ed eliminando i simboli inutili (non fecondi) ${\cal A}_5, {\cal A}_7$

$$\begin{array}{rcl} S & \to & aS|aA_1|bA_2|aA_3|b \\ A_1 & \to & aA_1|cbA_2|b \\ A_2 & \to & cA_2|c \\ A_3 & \to & aA_4|cA_6|b|c \\ A_4 & \to & b \\ A_6 & \to & cA_6|c|b \end{array}$$

Quesito: Si consideri una estensione dei DFA in cui le transizioni sono associate ad espressioni regolari arbitrarie su Σ . Ad esempio:

Mostrare che l'insieme dei linguaggi riconoscibili dal modello esteso corrisponde ai linguaggi di tipo 3, mostrando l'equivalenza tra il modello esteso e i DFA.

Soluzione:

Quesito: Definire un automa a pila che accetta per stato finale il linguaggio composto dalle stringhe $w \in \{0,1\}^+$ contenenti uno stesso numero di 0 e di 1.

Soluzione: Un possibile automa ha 2 soli stati q_0, q_F e un alfabeto di pila Z_0, Z, U . Ad ogni istante la pila contiene, al di sopra di Z_0 , una sequenza di Z di dimensione pari a #(0)-#(1) se #(0)-#(1)>0 o una sequenza di U di dimensione pari a #(1)-#(0) se #(0)-#(1)<0.

	$(q_0, 0)$	$(q_0, 1)$	(q_0, ε)
$\overline{Z_0}$	(q_0, ZZ_0)	(q_0,UZ_0)	(q_F, ε)
Z	(q_0,ZZ)	(q_0, ε)	-
U	(q_0, ε)	(q_0,UU)	-

Quesito: Verificare se il linguaggio

$$L = \{a^i b^j c^k | i < j \land i < k\}$$

è context free o meno.

Soluzione: Applicando il pumping lemma per i CFL, abbiamo che se L è regolare esiste un n tale che per i+j+k>n possiamo scrivere z=uvwxy con |vx|>1 e $|vwx|<\leq n$, e che $uv^iwx^iy\in L$ per ogni $i\geq 0$.

Consideriamo la stringa $a^mb^[m+1]c^[m+1]$, con n=3m+2, e osserviamo che per qualunque decomposizione z=uvwxy:

- se v o x corrispondono a sequenze non omogenee (a^r , b^s , c^t), allora $uv^2wx^2y \notin L$
- altrimenti, se $v=a^r$ e $x=b^s$, se r>0 la stringa $uv^2wx^2y\not\in L$ in quanto il numero di a è maggiore del numero di c; se r=0 la stringa $uwy\not\in L$ in quanto il numero di b è minore o uguale del numero di a. Le stesse considerazioni valgono se $v=a^r$ e $x=c^s$.
- infine, se $v = b^r$ e $x = c^s$, la stringa $uvwxy \notin L$ in quanto il numero di a è maggiore o uguale di almeno uno tra il numero di b e il numero di c;

Quesito: Si definisca una grammatica regolare che generi il linguaggio L composto da tutte le stringhe su $\Sigma = \{a,b\}$ non contenenti la seguenza aba

Soluzione: Si definisca una automa che accetta il linguaggio complemento \overline{L}

Il corrispondente automa deterministico che riconosce \overline{L}

Quesito: Definire un automa a pila che accetti il seguente linguaggio

$$L = \{a^p b^{p+2q} a^q; p, q > 0\}$$

descrivendo e giustificando le scelte effettuate.

Soluzione: Un possibile NPDA che accetta il linguaggio è il seguente.

	(q_0, Z_0)	(q_0,A)	(q_1, Z_0)	(q_1,A)	(q_2,B)	(q_3,B)	(q_4, Z_0)	(q_4,B)
a	(q_0, AZ_0)	(q_0, AA)	-	-	(q_3, ε)	-	-	(q_3, ε)
b	-	(q_1, ε)	(q_2, BZ_0)	(q_1, ε)	(q_2, BB)	-	-	-
ε	-	-	-	-	-	(q_4, ε)	(q_4, ε)	-

Nello stato q_0 vengono posti nella pila tanti simboli A quanti simboli a sono letti. Lo stato diventa q_1 al primo simbolo b letto: in tale stato, un simbolo A viene tolto dalla pila per ogni b letto, fino a giungere al fondo della pila e passare in q_2 . In questo stato, per ogni simbolo b letto viene posto sulla pila un simbolo b. L'automa passa in b0 quando legge un nuovo simbolo b0 e questo punto, per ogni simbolo b1 letto dovrà togliere due simboli b2: per far ciò, passerà ciclicamente in b1, in cui toglierà la prima b2 dalla pila avendo letto b3, e in b4, in cui toglierà la seconda b5 con una b6-transizione. Infine, se l'automa si trova in b4, ed ha quindi tolto b8 dalla pila avendo letto b7, può eliminare b7, dalla pila con una b8. La stringa è accettata per pila vuota.

Un approccio alternativo è basato sulla definizione di una CFG per il linguaggio e sulla derivazione da essa di un NPDA, secondo il metodo visto a lezione.

Grammatica:

$$\begin{array}{ccc} S & \rightarrow & XY \\ X & \rightarrow & aXb|ab \\ Y & \rightarrow & bbYa|bba \end{array}$$

La grammatica non ha ε -produzioni, produzioni unitarie o simboli inutili, per cui è già in forma ridotta.

In CNF:

$$\begin{array}{cccc} S & \rightarrow & XY \\ X & \rightarrow & AZ|AB \\ Y & \rightarrow & VW|VA \\ Z & \rightarrow & XB \\ V & \rightarrow & BB \\ W & \rightarrow & YA \\ A & \rightarrow & a \\ B & \rightarrow & b \end{array}$$

In GNF:

NPDA: L'automa ha un solo stato, che per brevità non viene riportato.

	S	X	Y	Z	V	W	A	$\mid B \mid$
\overline{a}	ZY, BY	Z, B	-	ZB,BB	-	-	ε	-
b	-	-	BW, BA	-	B	BWA, BAA	-	ε

Quesito: Si consideri il linguaggio

$$L = \{w \in \{a, b, c\}^+, \#_a(w) = \#_b(w) = \#_c(w)\}\$$

dove con $\#_c(x)$ indichiamo il numero di occorrenze del carattere c nella stringa x. Si mostri che L non è context free.

Soluzione: Possiamo applicare il pumping lemma, considerando ad esempio, dato n>0, la stringa $\sigma=a^nb^nc^n$.

Per qualunque decomposizione $\sigma=uvwxy$ con $|vwx|\leq n$ si deve necessariamente avere che vwx (e quindi vx) non può contenere sia caratteri a che caratteri b che caratteri c. Inoltre, per costruzione, $|vx|\geq 1$.

Consideriamo ad esempio il caso in cui $\#_a(vx)=0$: allora avremo, relativamente a $\sigma'=uv^2wx^2y$, che $\#_a(\sigma')=\#_a(\sigma)$, $\#_b(\sigma')=\#_b(\sigma)+\#_b(vx)$ e $\#_c(\sigma')=\#_c(\sigma)+\#_c(vx)$, in cui $\#_b(vx)+\#_c(vx)>0$. Ne deriva che $\sigma'\not\in L$, e quindi che L non è context free. Lo stesso chiaramente vale se assumiamo $\#_b(vx)=0$ o $\#_c(vx)=0$.

Quesito: Sia dato il linguaggio

$$L = \{w \in \{a,b\}^*\}$$

tale che:

1. w non contiene la stringa aa

- 2. nessun carattere b in w compare "isolato", vale a dire senza almeno un altro b adiacente (che lo precede o lo segua)
- 3. |w| è pari

Dimostrare che L è regolare.

Soluzione: Possiamo considerare i tre linguaggi:

- $L_1 = \{w \text{ contiene } aa\}$
- $L_2 = \{w \text{ non compaiono } b \text{ isolati}\}$
- $L_3 = \{w : |w| \text{ pari}\}$

I tre linguaggi sono regolari, in quanto, ad esempio, accettati rispettivamente dagli ASF seguenti

L risulta regolare, per le proprietà di chiusura dei linguaggi regolari, in quanto

$$L = \overline{L}_1 \cap L_2 \cap L_3$$

Quesito: Si consideri il linguaggio

$$L = \{w \in \{0,1,2\}^* | w \text{ contiene una sottostringa } 0x0, \text{ con } x \in \{1,2\}^2\}$$

Si definisca un ASFD minimo che riconosce ${\it L}$

Soluzione: ASFND che accetta L:

da cui l'ASFD

L'automa minimo deriva osservando che i soli stati indistinguibili sono 014 e 04, che possono quindi essere unificati.

Quesito: Definire una CFG in CNF che generi il linguaggio

$$L = \{a^n b^m c^k : k = 2(n+m)\}\$$

Soluzione:

$$\begin{array}{ccc} S & \to & aScc|X|\varepsilon \\ X & \to & bXcc|\varepsilon \end{array}$$

Eliminazione delle ε -produzioni (tenendo conto che $\varepsilon \in L$)

$$S' \rightarrow S|\varepsilon$$

$$S \rightarrow aScc|X|acc$$

$$X \rightarrow bXcc|bcc$$

Eliminazione delle produzioni unitarie

$$S' \rightarrow aScc|bXcc|bcc|acc|\varepsilon$$

$$S \rightarrow aScc|bXcc|bcc|acc$$

$$X \rightarrow bXcc|bcc$$

Non ci sono simboli inutili. CNF

$$S' \rightarrow ASY|BXY|BY|AY|\varepsilon$$

$$S \rightarrow CSY|BXY|BY|AY$$

$$X \rightarrow BXY|BY$$

$$Y \rightarrow CC$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

Quesito: Definire una grammatica regolare che generi il seguente linguaggio

$$L = \{w \in \{0,1\}^* : w \text{ non contiene la sottostringa } 101\}$$

descrivendo e giustificando le scelte effettuate.

Soluzione: Definiamo un ASFD $\mathcal A$ che riconosca L, derivando poi da esso la grammatica richiesta. A tal fine, definiamo inizialmente un ASFD $\mathcal A'$ che riconosca $\overline L=\{w\in\{0,1\}^*:w\text{ contiene la sottostringa }101\}$ a partire dal seguente ASFND $\mathcal A'_{\mathcal N}$ che riconosce lo stesso linguaggio.

L'ASFD equivalente risulta allora

Gli stati q_{03},q_{013},q_{023} risultano immediatamente equivalenti, per cui possiamo assumere \mathcal{A}' come

 ${\cal A}$ deriva scambiando stati finali e non:

Da cui la grammatica:

$$\begin{array}{cccc} S & \to & 0S|1A_1|0|1 \\ A_1 & \to & 1S|0A_2|0|1 \\ A_2 & \to & 0S|1A_3|0 \\ A_3 & \to & 0A_3|1A_3 \end{array}$$

Il simbolo A_3 è chiaramente inutile, in quanto non fecondo, per cui la grammatica può essere immediatamente semplificata

$$\begin{array}{ccc} S & \rightarrow & 0S|1A_1|0|1 \\ A_1 & \rightarrow & 1S|0A_2|0|1 \\ A_2 & \rightarrow & 0S|0 \end{array}$$

Quesito: Si consideri il linguaggio

$$L = \{w \# x | w, x \in \{0,1\}^+, w^R \text{ è suffisso di } x\}$$

Si verifichi che L è context free definendo un automa a pila che lo accetta.

Soluzione: Un possibile NPDA che accetta il linguaggio è il seguente.

	(q_0, Z_0)	(q_0, Z)	(q_0, U)	(q_1,Z)	(q_1, U)	(q_2,Z)	(q_2,U)	(q_2,Z_0)
0	(q_0, ZZ_0)	(q_0, ZZ)	(q_0, UZ)	$\{(q_1,Z),(q_2,\varepsilon)\}$	(q_1, U)	(q_2, ε)	-	-
1	(q_0, UZ_0)	(q_0, UZ)	(q_0, UU)	(q_1, Z)	$\{(q_1,U),(q_2,\varepsilon)\}$	-	(q_2, ε)	-
#	-	(q_1, Z)	(q_1,U)	-	-	-	-	-
ε	-	-	-	-	-	-	-	(q_2, ε)

L'automa dapprima (nello stato q_0) legge w e la trascrive sulla pila in ordine inverso. Alla lettura del carattere # l'automa passa nello stato q_1 di lettura di x: in qualunque passo in cui il carattere letto corrisponde a quello in cima alla pila l'automa effettua una scelta non deterministica tra due opzioni:

- 1. assumere che w^R compaia in x a partire da questo carattere, in tal caso passa nello stato q_2 ed elimina il primo carattere dalla pila
- 2. assumere che w^R non compaia in x a partire da questo carattere, e continuare a leggere caratteri, nello stato q_1

Nello stato q_2 , l'automa procede nella computazione fin tanto che i caratteri letti corrispondono a quelli via via estratti dalla pila. Nel caso positivo, la stringa termina con Z_0 sulla pila: questo carattere viene quindi estratto con una ε -transizione.

Quesito: Sia dato il linguaggio

$$L = \{a^n b^m c^k | k = |n - m|\}$$

Definire una grammatica context free che generi il linguaggio. Discutere se la grammatica risultante è ambigua.

Soluzione: Una possibile grammatica è la seguente:

$$\begin{array}{cccc} S & \rightarrow & S_1|S_3 \\ S_1 & \rightarrow & aS_1b|S_2 \\ S_2 & \rightarrow & aS_2c|\varepsilon \\ S_3 & \rightarrow & S_4S_5 \\ S_4 & \rightarrow & aS_4b|\varepsilon \\ S_5 & \rightarrow & bS_5c|\varepsilon \end{array}$$

 S_1 corrisponde al caso $n \geq m$, mentre S_3 al caso $m \geq n$. La grammatica in questo caso risulta ambigua, in quanto ad esempio la stringa aabb può essere generata sia come $S \Rightarrow S_1 \Rightarrow aS_1b \Rightarrow aaS_1bb \Rightarrow aabb$ che come $S \Rightarrow S_3 \Rightarrow S_4S_5 \Rightarrow aaS_4bS_5 \Rightarrow aabbS_5 \Rightarrow aabbS_5 \Rightarrow aabb$

Quesito: Si determini se i linguaggi

$$L = \{a^i b^j c^i | i, j \ge 1\}$$

е

$$L = \{a^i b^j c^k | i, j, k \ge 0\}$$

sono regolari.

Soluzione: Il primo linguaggio non è regolare: per dimostrare ciò possiamo utilizzare il pumping lemma. Dato n>0, consideriamo la stringa $\sigma=a^nbc^n$: qualunque decomposizione $\sigma=uvw$

con $|uv| \le n$ e |v| > 1 fa sì che $v = a^k$ per un qualche 0 < k < n. Ne deriva che la stringa $\sigma' = uv^2w = a^{n+k}bc^n \notin L$, da cui la non regolarità di L.

Il secondo linguaggio è invece regolare: infatti può essere descritto dall'espressione regolare $a^*b^*c^*$.

Quesito: Costruire un ASFD che riconosca il linguaggio descritto dall'espressione regolare $a((ab+aba)^*a)^*$

Soluzione: Deriviamo un ASFND che riconosce il linguaggio in modo graduale. L'ASFND che riconosce ab + aba è

$$\mathsf{start} \to \boxed{q_0} \qquad \stackrel{a}{\longrightarrow} \boxed{q_1} \qquad \stackrel{b}{\longrightarrow} \boxed{q_2} \qquad \stackrel{a}{\longrightarrow} \boxed{q_3}$$

Da cui l'automa che riconosce $(ab+aba)^*$

e quello che riconosce $(ab + aba)^*a$

Il linguaggio descritto da $((ab + aba)^*a)^*$ è allora accettato da

ed eliminando la ε -transizione considerando la ε chiusura,

Ne deriva che l'ASFND che riconosce il linguaggio è

Da cui l'ASFD equivalente

Quesito: Dimostrare che il seguente linguaggio.

$$L = \{ w \in \{a, b\}^+ : \#_w(a) = 2 \#_w(b) \}$$

è context free, dove $\#_w(x)$ indica il numero di occorrenze del carattere x nella stringa w **Soluzione**: Una possibile soluzione è quella di definire un PDA che accetta il linguaggio.

	(q_0, Z_0)	(q_0, X)	(q_0,Y)	(q_1, Z_0)	(q_1,Y)
\overline{a}	(q_0, XXZ_0)	(q_0, XXX)	(q_1, ε)	-	-
\overline{b}	(q_0, YZ_0)	(q_0, ε)	(q_0, YY)	-	-
ε	(q_0, ε)	-	-	(q_0, X)	(q_0, ε)

Quesito: Si consideri il linguaggio

$$L=\{w\in\{a,b\}^*|w=a^nb^m,n+m \text{ multiplo di } \mathbf{4},m\geq 1\}$$

Si definiscano un ASFD che riconosce ${\cal L}$ e una grammatica regolare che lo genera.

Soluzione: Possibile soluzione

La grammatica regolare deriva applicando la trasformazione nota, risultando:

$$S \rightarrow aA_1|bA_4$$

$$A_1 \rightarrow aA_2|bA_5$$

$$A_2 \rightarrow aA_3|bA_6$$

$$A_3 \rightarrow bA_7|aS|b$$

$$A_4 \rightarrow bA_5$$

$$A_5 \rightarrow bA_6$$

$$A_6 \rightarrow bA_7|b$$

$$A_7 \rightarrow bA_4$$

Quesito: Dato l'ASFD seguente

si derivi una ASFD minimo equivalente.

Soluzione: L'applicazione del metodo studiato indica che i soli stati indistinguibili sono q_0 e q_4 . Ne deriva l'automa minimo seguente

Quesito: Si dimostri che il linguaggio

$$L = \{a^*b^kc^*a^kb^* | k \ge 4\}$$

non è regolare

Soluzione: Utilizziamo il pumping lemma per i linguaggi regolari. Dato l'intero n, consideriamo la stringa $b^{n+4}a^{n+4} \in L$: per ogni decomposizione uvw di $a^{n+4}b^{n+4}$ tale che $|uv| \leq n$, |v| > 0 si ha che $uv = b^m$, $m \leq n$, e quindi $v = b^r$, r > 0. Ne deriva che la stringa $uv^2w = b^{n+r+4}a^{n+4} \notin L$.

Quesito: Si definisca una grammatica in CNF equivalente alla seguente

$$\begin{array}{ccc} S & \to & ABa \\ A & \to & aAbb|\varepsilon \\ B & \to & bB|A|b \end{array}$$

Soluzione: A e B sono simboli annullabili, per cui l'eliminazione delle ε -produzioni fornisce

$$\begin{array}{ccc} S & \rightarrow & ABa|Aa|Ba|a \\ A & \rightarrow & aAbb|abb \\ B & \rightarrow & bB|A|b \end{array}$$

L'eliminazione della produzione unitaria $B \to A$ fornisce

$$\begin{array}{ccc} S & \rightarrow & ABa|Aa|Ba|a \\ A & \rightarrow & aAbb|abb \\ B & \rightarrow & bB|aAbb|abb|b \end{array}$$

Tutti i simboli sono fecondi e raggiungibili, per cui non ci sono simboli inutili.

Una grammatica CNF equivalente è allora ottenuta dapprima eliminando i simboli terminali nelle parti destre delle produzioni non unitarie, ottenenendo

$$\begin{array}{cccc} S & \to & ABX|AX|BX|a \\ A & \to & XAYY|XYY \\ B & \to & YB|AXAYY|XYY|b \\ X & \to & a \\ Y & \to & b \end{array}$$

ed eliminando poi le produzioni con parti destre di lunghezza maggiore di 2, da cui

Quesito: Si costruisca un automa a stati finiti non deterministico che accetti il linguaggio L generato dall'espressione regolare $0(1+0)^*1+0(11+00)^*1$

Soluzione: L è riconosciuto dall'automa non deterministico

Quesito: Si definisca una macchina di Turing deterministica che accetti il linguaggio $L = \{0^i 1^j | i > j\}$

Soluzione: Possibile soluzione

La MdT elimina alternativamente un carattere 0 dall'inizio e un carattere 1 dalla fine della stringa: se rimane con soli 0 la stringa è accettata, altrimenti no.

La MdT inizia in q_0 sul primo carattere della stringa. Cancella il carattere se è 0 passando in q_1 e poi scorre la stringa fino a superare l'ultimo carattere, leggendo prima i caratteri 0 (in q_1) e poi i caratteri 1 (in q_2). Se legge soltanto caratteri 0, seguiti da una cella vuota, allora il numero di 0 era maggiore del numero di 1 e la stringa è accettata (stato q_5). Altrimenti, superato l'ultimo carattere 1, torna indietro per posizionarci la testina (stato q_3) ed eliminarlo passando in q_4 e scorrendo poi la stringa da destra verso sinistra. Quando viene superato il primo carattere, la testina viene spostata a destra per posizionarsi sul primo carattere (stato q_0).

Quesito: Si consideri la grammatica $\mathcal G$ con assioma S e produzioni

$$S \rightarrow aAB|F$$

$$A \rightarrow aA|C$$

$$B \rightarrow bB|D$$

$$C \rightarrow cC|\varepsilon$$

$$D \rightarrow dD|\varepsilon$$

$$E \rightarrow eE|\varepsilon$$

$$F \rightarrow eF$$

Costruire una grammatica in CNF equivalente a ${\cal G}$

Soluzione: Eliminazione ε -produzioni: A, B, C, D, E sono simboli annullabili.

$$S \rightarrow aAB|aA|aB|a|F$$

$$A \rightarrow aA|a|C$$

$$B \rightarrow bB|b|D$$

$$C \rightarrow cC|c$$

$$D \rightarrow dD|d$$

$$E \rightarrow eE|e$$

$$F \rightarrow eF$$

Eliminazione produzioni unitarie.

$$S \rightarrow aAB|aA|aB|a|eF$$

$$A \rightarrow aA|a|cC|c$$

$$B \rightarrow bB|b|dD|d$$

$$C \rightarrow cC|c$$

$$D \rightarrow dD|d$$

$$E \ \rightarrow \ eE|e$$

$$F \rightarrow eF$$

Eliminazione simboli inutili. Il simbolo F risulta raggiungibile ma non fecondo, il simbolo E è non raggiungibile.

$$S \rightarrow aAB|aA|aB|a$$

$$A \rightarrow aA|a|cC|c$$

$$B \rightarrow bB|b|dD|d$$

$$C \rightarrow cC|c$$

$$D \rightarrow dD|d$$

Forma normale di Chomsky.

$$S \rightarrow VU|VA|VB|a$$

$$A \rightarrow VA|a|YC|c$$

$$B \rightarrow XB|b|ZD|d$$

$$C \rightarrow YC|c$$

$$D \rightarrow ZD|d$$

$$U \rightarrow AB$$

$$V \rightarrow a$$

$$X \rightarrow b$$

$$Y \rightarrow c$$

$$Z \rightarrow d$$

Quesito: Si definisca una grammatica CF che generi il linguaggio $L=\{a^nb^mc^k|k=|n-m|\}$. (Suggerimento: si considerino separatamente i casi $n\geq m$ e m>n.)

Soluzione:

$$\begin{array}{cccc} S_1 & \rightarrow & S_1|S_2 \\ S_1 & \rightarrow & aS_1c|ac|X \\ X & \rightarrow & aXb|ab \\ S_2 & \rightarrow & YZ \\ Y & \rightarrow & aYb|ab \\ Z & \rightarrow & bZc|bc \end{array}$$

Quesito: Si costruisca un automa (deterministico o non deterministico) che riconosca il linguaggio $L\subseteq\{a,b,c\}^*$ definito come segue

 $L = \{w|w \text{ contiene un numero dispari di } c \text{ oppure non contiene occorrenze della sottostringa } aba\}$

Soluzione: Si osservi che possiamo scrivere $L=L_1\cup\overline{L}_2$, con

 $L_1 = \{w|w \text{ contiene un numero dispari di }c\}$ $L_2 = \{w|w \text{ contiene la sottostringa }aba\}$

 L_1 è riconosciuto dall'automa

mentre L_2 è riconosciuto da

di conseguenza, \overline{L}_2 è riconosciuto da

e infine L è riconosciuto da

Quesito: Sia dato il linguaggio $L\subseteq\{a,b,c\}^*$ tale che $w\in L$ se e solo se $\#_w(a)=\#_w(c)$, dove $\#_w(x)$ indica il numero di occorrenze di $x\in\{a,b,c\}$ in w. Tale linguaggio è context free? Motivare la propria risposta o mediante applicazione del pumping lemma o fornendo una grammatica CF che lo generi .

Soluzione: Il linguaggio è context-free: per motivare tale risposta definiamo una grammatica CF che lo generi

$$S \rightarrow \varepsilon |bS|Sb|aScS|cSaS$$

Quesito: Definire un automa deterministico minimo (nel numero di stati) che riconosca il linguaggio 11(0+1)*11

Soluzione: Automa non deterministico che accetta il linguaggio

Automa deterministico totale equivalente

L'automa risulta già minimo, fornendo la matrice di equivalenza seguente (per ogni locazione il carattere che rende i due stati non equivalenti).

Quesito: Si definisca una grammatica context free che generi il linguaggio

$$L = \{a^m b^n + a^r b^s a^t | 1 \le m \le n \le 3m; s \ge 1, 1 \le r \le t \le 2r\}$$

Soluzione:

$$S \rightarrow S_1|S_2$$

$$S_1 \rightarrow ab|abb|abb|aS_1b|aS_1bb|aS_1bbb$$

$$S_2 \rightarrow aBa|aBaa|aS_2a|aS_2aa$$

$$B \rightarrow bB|b$$

Quesito: Come noto, un numero intero espresso in base 10 è divisibile per 3 se lo è la somma delle sue cifre. Si consideri il linguaggio L comprendente tutte e sole le sequenze di cifre decimali corrispondenti a interi non negativi multipli di 3. Determinare, dimostrandolo, se L è regolare o meno.

Soluzione: L è regolare e riconosciuto, ad esempio, dall'ASFD seguente, che tiene traccia del resto della divisione per 3 della somma delle cifre decimali lette.

Quesito: Si consideri il seguente linguaggio su $\Sigma = \{0, 1, \sharp, \varepsilon, +, \cdot, *, (,)\}$

 $L = \{r\sharp s | r, s \text{ sono espressioni regolari su } \{0, 1\}, L(r) \subseteq L(s)\}$

Dimostrare che L è decidibile, definendo (in modo informale) un metodo per il suo riconoscimento.

Soluzione: Si noti che $L(r)\subseteq L(s)$ è equivalente a $L(r)\cap \overline{L}(s)=\emptyset$ e quindi a $\overline{\overline{L}(r)\cup L(s)}=\emptyset$: date r e s è allora possibile derivare due ASFD A_r,A_s che riconoscono, rispettivamente, L(r) e

L(s). Per le proprietà di chiusura dei linguaggi regolari, da A_r è quindi possibile derivare l'automa \overline{A}_r che riconosce $\overline{L}(r)$. Infine, è possibile comporre \overline{A}_r e A_s costruendo l'automa A che riconosce $\overline{L}(r) \cup L(s)$ e da questo l'automa \overline{A} che riconosce $\overline{L}(r) \cup L(s)$: evidentemente, $r\sharp s \in L$ se e solo se $L(\overline{A}) = \emptyset$, condizione decidibile.

Quesito: Si definisca una grammatica in CNF che generi il linguaggio $L=\{a^nb^m|n+m>0, n\neq m\}.$

Soluzione: Una grammatica che genera L è ad esempio

$$\begin{array}{ccc} S & \to & aSb|aA|aB \\ A & \to & aA|\varepsilon \\ B & \to & bB|\varepsilon \end{array}$$

Eliminazione ε -produzioni.

$$\begin{array}{ccc} S & \rightarrow & aSb|aA|aB|a|b \\ A & \rightarrow & aA|a \\ B & \rightarrow & bB|b \end{array}$$

Come si può osservare, non ci sono produzioni unitarie né simboli inutili.

Forma normale di Chomsky.

$$\begin{array}{cccc} S & \rightarrow & XV|UA|VB|a|b \\ X & \rightarrow & US \\ A & \rightarrow & UA|a \\ B & \rightarrow & VB|b \\ U & \rightarrow & a \\ V & \rightarrow & b \end{array}$$

 $\bf Quesito$: Dato il seguente ASFND A

si derivi un grammatica regolare \mathcal{G} tale che $L(\mathcal{G}) = L(A)$

Soluzione: Applicando la costruzione nota, si ottiene la grammatica

$$\begin{array}{ccc} S_0 & \rightarrow & 1S_1 \\ S_1 & \rightarrow & 0S_1|1S_1|1 \end{array}$$

Quesito: Si consideri il linguaggio $L = \{a^rb^sc^t|t=r-s\}$. Dimostrare che questo linguaggio non è regolare.

Soluzione: Si ricorda che, per il pumping lemma sui linguaggi regolari, se L fosse regolare allora esisterebbe una costante n tale che ogni una stringa $\sigma \in L$ con $|\sigma| > n$ può essere decomposta nella forma $\sigma = uvw$ (con $|uv| \le n$, $|v| \ge 1$) in modo tale che $uv^iw \in L$ per ogni $i \ge 0$.

È sufficiente quindi, per mostrare che L non è regolare, individuare, dato n, una stringa $\sigma \in L$ con $|\sigma| > n$ per la quale mostrare che $uv^iw \notin L$ per qualche $i \geq 0$, per ogni decomposizione $\sigma = uvw$

Si consideri allora una qualunque stringa $\sigma=a^nb^mc^{n-m}\in L$ (con $0\leq m\leq n$). Evidentemente ogni decomposizione $a^nb^mc^{n-m}=uvw$ con $|uv|\leq n$ e $|v|\geq 1$ sarà tale che $uv=a^h$ per qualche h e quindi $v=a^k$ con $k\geq 1$. Ma allora la stringa $uv^2w=a^{n+k}b^mc^{n-m}\not\in L$, in quanto r=n+k, s=m, t=n-m e $t\neq r-s$.

Quesito: Si definisca una grammatica context free che generi il linguaggio $L = \{a^rb^sc^t|t=r-s\}$.

Soluzione: Osservando che r = s + t, una possibile grammatica che generi L è ad esempio:

$$\begin{array}{ccc} S & \to & aSc|U \\ U & \to & aUb|\varepsilon \end{array}$$

Quesito: Si definisca un automa a pila (eventualmente non deterministico) che accetti il linguaggio $L = \{a^r b^s c^t | t = r - s\}.$

Soluzione: L'automa può essere derivato portando dapprima la grammatica precedente in forma normale di Greibach, applicando poi la costruzione standard di un NPDA che riconosca lo stesso linguaggio. La presenza di ε in L può essere non considerata nella costruzione dell'automa, introducendo poi la possibilità per l'automa stesso di riconoscere la stringa vuota.

La grammatica precedente può essere portata in forma ridotta come

$$\begin{array}{ccc} S & \to & aSc|aUb|ab|\varepsilon \\ U & \to & aUb|ab \end{array}$$

e quindi in CNF per generare $L - \{\varepsilon\}$ come

$$\begin{array}{cccc} S & \rightarrow & XC|YB|AB \\ U & \rightarrow & YB|AB \\ X & \rightarrow & AS \\ Y & \rightarrow & AU \\ A & \rightarrow & a \\ B & \rightarrow & b \\ C & \rightarrow & c \end{array}$$

e da questa la grammatica in GNF per $L - \{\varepsilon\}$,

Da questa deriva il seguente NPDA che riconosce $L-\{\varepsilon\}$ per pila vuota:

$$\Sigma = \{a, b, c\}$$

$$\Gamma = \{S, U, X, Y, A, B, C\}$$

$$Q = \{q_0\}$$

$$Z_0 = S$$

con la funzione di transizione (lo stato q_0 è sottinteso)

	S	$\mid U \mid$	X	Y	$\mid A \mid$	B	$\mid C \mid$
	SC	UB	S	U	ε		
a	UB	B					
	B						
b						ε	
\overline{c}							ε

Per tener conto di $\varepsilon\in L$ si può applicare la procedura standard, introducendo uno stato iniziale q_0' e una coppia di transizioni $\delta(q_0',\varepsilon,S)=\{(q_0',\varepsilon),(q_0,S)\}.$

Quesito: Data l'espressione regolare $a^*b^* + b^*a^*$, costruire una automa a stati finiti deterministico che riconosca il linguaggio descritto da essa.

Soluzione: Possiamo definire un ASFND che riconosce il linguaggio.

a da questo, mediante la procedura standard, l'ASFD equivalente

Quesito: Sia dato il linguaggio

$$L = \{w \in \{a, b\}^* | w \text{ non è della forma } vv\}$$

Mostrare se L è regolare o meno.

Soluzione: Possiamo utilizzare il Pumping lemma per mostrare facilmente che

$$\overline{L} = \{w \in \{a, b\}^* | w \text{ è della forma } vv\}$$

non è regolare.

Per la chiusura dei linguaggi regolari rispetto al complemento, neanche L è regolare.

Quesito: Definire un automa a pila che accetti il linguaggio

$$L = \{a^n b^m | 1 \le n \le m\}$$

per pila vuota.

Soluzione: Un possibile PDA legge la sequenza iniziale di a e ponendo sulla pila un simbolo A per ogni simbolo letto. L'automa cambia stato per leggere la sequenza di b, eliminando i caratteri A dalla pila. Se si raggiunge il fondo della pila (il simbolo Z_0) la stringa va accettata, completando la lettura degli eventuali b mancanti ed eliminando poi Z_0 .

	(q_0, Z_0)	(q_0,A)	(q_1, Z_0)	(q_1,A)
a	(q_0, AZ_0)	(q_0, AA)	-	-
\overline{b}	-	(q_1, ε)	(q_1, Z_0)	(q_1, ε)
ε	-	-	(q_1, ε)	-

Quesito: Si definisca una grammatica in CNF equivalente alla seguente

$$S ~\to~ 0A0|1B1|BB$$

$$A \rightarrow C$$

$$B \rightarrow S|A$$

$$C \rightarrow S|\varepsilon$$

Soluzione: Eliminazione ε -produzioni.

- Simboli annullabili: S, A, B, C
- Grammatica risultante

$$S \rightarrow 0A0|1B1|BB|00|11|B$$

$$A \rightarrow C$$

$$B \rightarrow S|A$$

$$C \rightarrow S$$

Eliminazione produzioni unitarie.

- Risulta: $U(S) = \{A, B, C\}, U(A) = \{S, B, C\}, U(B) = \{S, A, C\}, U(C) = \{S, A, B\}$
- Grammatica risultante

$$S \hspace{.1in} \rightarrow \hspace{.1in} 0A0|1B1|BB|00|11$$

$$A \rightarrow 0A0|1B1|BB|00|11$$

$$B \rightarrow 0A0|1B1|BB|00|11$$

$$C \rightarrow 0A0|1B1|BB|00|11$$

Eliminazione simboli inutili.

- Tutti in non terminali sono fecondi. C risulta non raggiungibile.
- Grammatica risultante

•

 $\begin{array}{cccc} S & \to & 0A0|1B1|BB|00|11 \\ A & \to & 0A0|1B1|BB|00|11 \\ B & \to & 0A0|1B1|BB|00|11 \end{array}$

Trasformazione in CNF:

Quesito: Sia dato il linguaggio

 $L = \{w \in \{a, b, c\}^+ | \text{ I'ultimo carattere in } w \text{ non è comparso prima} \}$

Si definisca un automa a stati finiti che accetti ${\cal L}.$

Soluzione:

Quesito: Si definisca una grammatica di tipo 3 che generi il seguente linguaggio

$$L = \{a^n b^m c^k | n + m + k \text{ dispari}\}\$$

Soluzione: Definiamo un ASF che riconosce L

da cui deriva la grammatica seguente, con assioma ${\cal A}_0$

 $A_0 \rightarrow aA_1|bA_2|cA_5|a|b|c$

 $A_1 \rightarrow aA_0|bA_3|cA_4$

 $A_2 \rightarrow bA_3|cA_4$

 $A_3 \rightarrow bA_2|cA_5|b|c$

 $A_4 \rightarrow cA_5|c$

 $A_5 \rightarrow cA_4$

Quesito: Definire un ASFD che riconosca il linguaggio

 $L = \{w \in \{0,1\}^+ | \text{ I'ultimo carattere di } w \text{ è già apparso nella stringa}\}$

 $\textbf{\textit{Soluzione}}\text{: } \dot{\textbf{\textit{E}}} \text{ utile definire inizialmente un ASFND che accetti } L\text{, come ad esempio}$

L'AFD cercato può essere derivato dal precedente, ottenendo

Quesito: Definire una espressione regolare che descriva il linguaggio riconosciuto dal seguente ASFD

Soluzione: Una possibile soluzione prevede la derivazione della grammatica regolare equivalente

$$\begin{array}{cccc} A_0 & \to & 1A_0|0A_3|1 \\ A_1 & \to & 0A_0|1A_3|0 \\ A_2 & \to & 0A_2|1A_1 \\ A_3 & \to & 0A_1|1A_2 \end{array}$$

E da questa, manipolando il sistema di epressioni corrispondente, l'espressione regolare cercata.

$$\begin{cases} A_0 = 1A_0 + 0A_3 + 1 \\ A_1 = 0A_0 + 1A_3 + 0 \\ A_2 = 0A_2 + 1A_1 \\ A_3 = 1A_1 + 1A_2 \end{cases}$$

$$\begin{cases} A_0 = 1A_0 + 0(1A_1 + 1A_2) + 1 \\ A_1 = 0A_0 + 1(1A_1 + 1A_2) + 0 \\ A_2 = 0A_2 + 1A_1 \\ A_3 = 1A_1 + 1A_2 \end{cases}$$

$$\begin{cases} A_0 = 1A_0 + 0(1+10^*1)A_1 + 1 \\ A_1 = 0A_0 + 1(1+10^*1)A_1 + 0 \\ A_2 = 0^*1A_1 \\ A_3 = 1A_1 + 1A_2 \end{cases}$$

$$\begin{cases} A_0 = 1A_0 + 0(1+10^*1)(1(1+10^*1))^*(0A_0 + 0) + 1 \\ A_1 = (1(1+10^*1))^*(0A_0 + 0) \\ A_2 = 0^*1A_1 \\ A_3 = 1A_1 + 1A_2 \end{cases}$$

$$\begin{cases} A_0 = (1+0(1+10^*1)(1(1+10^*1))^*0)A_0 + 0(1+10^*1)(1(1+10^*1))^*0 + 1 \\ A_1 = (1(1+10^*1))^*(0A_0 + 0) \\ A_2 = 0^*1A_1 \\ A_3 = 1A_1 + 1A_2 \end{cases}$$

$$\begin{cases} A_0 = (1+0(1+10^*1)(1(1+10^*1))^*0)^*(0(1+10^*1)(1(1+10^*1))^*0 + 1) \\ A_1 = (1(1+10^*1))^*(0A_0 + 0) \\ A_2 = 0^*1A_1 \\ A_3 = 1A_1 + 1A_2 \end{cases}$$

Quindi il linguaggio è descritto dall'espressione regolare

$$(1+0(1+10*1)(1(1+10*1))*0)*(0(1+10*1)(1(1+10*1))*0+1)$$

Quesito: Mostrare che il linguaggio

$$L = \{ww | w \in \{a, b\}^*\}$$

non è regolare.

Soluzione: È sufficiente utilizzare il pumping lemma per i linguaggi regolari.

Dato n, scegliamo ad esempio la stringa $\sigma=a^nb^na^nb^n$. Qualunque decomposizione $\sigma=uvw$ che soddisfi i vincoli posti dal pumping lemma ($|uv|\leq n, |v|>0$) dovrà essere tale che $uv=a^k$ per qualche $k\leq n$. Di conseguenza, $v=a^h$ per $1\leq h\leq k$ e, considerando la stringa $\sigma'=uv^2w$, si può osservare che $\sigma'=a^{n+h}b^na^nb^n\not\in L$.

Quesito: Definire un automa a pila che accetti il linguaggio

$$L = \{w \in \{a, b\}^+ | \#_a(w) \ge \#_b(w)\}$$

Dove $\#_c(x)$ indica il numero di occorrenze del carattere c nella stringa x.

Soluzione: L'automa non deve fare altro che mantenere traccia, sulla pila, della differenza tra il numero di caratteri a e il numero di caratteri b letti fino a ora (o vice versa, a seconda che siano stati letti più a o più b). La stringa è accettata se al termine della sua lettura la pila è vuota o contiene tutti simboli A. Per accettare per pila vuota l'automa prevede che in qualunque istante in cui il numero di a lette è almeno pari al numero di b possa entrare in uno stato a1 di svuotamento della pila.

	(q_0, Z_0)	(q_0, A)	(q_0, B)	(q_1, Z_0)	(q_1,A)
\overline{a}	(q_0, AZ_0)	(q_0, AA)	(q_0, ε)	-	-
b	(q_0, BZ_0)	(q_0, ε)	(q_0, BB)	-	-
ε	(q_1, ε)	(q_1, ε)	-	(q_1, ε)	(q_1, ε)

Quesito: Sia L il linguaggio generato dalla seguente grammatica context free

$$S \rightarrow \varepsilon |0S1S|1S0S$$

derivare una grammatica in Forma Normale di Greibach che generi $L - \{\varepsilon\}$.

Soluzione: Il primo passo prevede la derivazione della grammatica in forma ridotta equivalente. Eliminazione delle ε produzioni:

$$S \rightarrow 0S1S|1S0S|01S|0S1|01|1S0|10S|10$$

Non ci sono produzioni unitarie o simboli inutili. Forma normale di Chomsky:

Forma normale di Greibach:

• dopo la prima fase

• dopo la seconda fase

Quesito: Definire un ASFND che accetti il seguente linguaggio

$$L = \{w \in \{0, 1, 2\}^+\}$$

dove:

- 0110 compare in w e inoltre:
 - |w| è un multiplo di 3 oppure
 - 22 non compare in w

Soluzione: Automa A_1 , riconosce le stringhe che includono 0110 come sottostringa

Automa A_2 , riconosce le stringhe di lunghezza pari a un multiplo di 3

start
$$\longrightarrow$$
 02 $0,1,2$ 12 $0,1,2$ 0

Automa A_3 , riconosce le stringhe che non contengono 22 come sottostringa

L'ASFND richiesto può essere ottenuto a partire da questi nel modo seguente, tenendo conto che

$$L = \overline{L(\mathcal{A}_1)} \cup \overline{(L(\mathcal{A}_2) \cup L(\mathcal{A}_3))}$$

1. $L(A_2) \cup L(A_3)$ viene accettato dall'ASFND A_4 ottenuto applicando la nota composizione per l'unione di due linguaggi

- 2. $L(A_2) \cup L(A_3)$ viene riconosciuto dall'automa A_5 ottenuto a partire dall'ASFD equivalente a A_4 , invertendo stati finali e non finali
- 3. $\overline{L(\mathcal{A}_1)}$ viene riconosciuto dall'automa \mathcal{A}_6 ottenuto invertendo stati finali e non finali di \mathcal{A}_1
- 4. $\overline{L(\mathcal{A}_1) \cup (L(\mathcal{A}_2) \cup L(\mathcal{A}_3)})$ viene accettato dall'ASFND \mathcal{A}_7 ottenuto applicando la stessa composizione precedente a \mathcal{A}_5 e \mathcal{A}_6
- 5. L'ASFND voluto può essere ottenuto da A_7 derivandone l'ASFD equivalente e scambiando stati finali e non.

Quesito: Mostrare se il seguente linguaggio è o meno context free:

$$L = \{w_1 w_2 w_3 : w_1 \in \{a, b\}^+, w_2 \in \{c, d\}^+, w_3 \in \{e, f\}^+, |w_1| = |w_2| = |w_3|\}$$

Soluzione: Il linguaggio non è context-free. Per dimostrare cioò utilizziamo il pumping lemma per i linguaggi di tipo 2.

Dato n, consideriamo la stringa $\sigma = a^n c^n e^n$. Se consideriamo le decomposizioni $\sigma = uvwxy$ con |vwx| < n e |vx| > 1 si hanno due casi possibili:

- sia v che x sono sequenze di stessi caratteri (ad esempio $v=a^k$ e $x=c^h$): si osservi che in tal caso uno dei tre caratteri che compaiono in σ non compare in vx. Di conseguenza la stringa $\sigma'=uv^2wx^2y$ non presenta lo stesso numero di a, c ed e, e quindi non appartiene al linguaggio. Si osservi che come caso particolare si ha $v=\varepsilon$ o $x=\varepsilon$: la conclusione deriva anche in questo caso.
- almeno una tra v e x non è una sequenza di stessi caratteri (ad esempio, $v=a^hc^k$): in tal caso, $v^2=a^hc^ka^hc^k$ e $\sigma'=uv^2wx^2y$ non appartiene al linguaggio.

In conclusione, dato che per ogni decomposizione possibile di σ , che soddisfi le condizioni del pumping lemma, si ha $\sigma \notin L$, concludiamo che L non è context free.

Quesito: Sia dato un automa a stati finiti deterministico $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ con

- 1. $\Sigma = \{a, b\}$
- **2.** $Q = \{0, 1, 2, 3, 4, 5, 6\}$
- 3. $q_0 = 0$
- **4.** $F = \{2, 3, 5, 6\}$

e δ descritta dalla seguente tabella di transizione

		0	1	2	3	4	5	6
	a	1	1	2	6	4	5	3
Ī	b	5	6	4	5	3	4	2

Derivare un automa \mathcal{A}' equivalente ad \mathcal{A} con minimo numero di stati

Soluzione: Applicando la procedura nota per l'individuazione di coppie di stati equivalenti, derivano le seguenti classi di equivalenza: $\{0\}$, $\{1,4\}$, $\{2,5\}$, $\{3,6\}$.

L'automa minimo sarà:

Quesito: Definire una grammatica in forma normale di Greibach che generi il linguaggio

$$L = \{a^m b^n | m \neq n\}$$

Soluzione: Il linguaggio può essere generato dalla grammatica

$$\begin{array}{ccc} S & \rightarrow & aSb|A|B \\ A & \rightarrow & aA|a \\ B & \rightarrow & bB|b \end{array}$$

La grammatica non ha ε -produzioni. L'eliminazione delle produzione unitarie fornisce:

$$\begin{array}{ccc} S & \rightarrow & aSb|aA|bB|a|b \\ A & \rightarrow & aA|a \\ B & \rightarrow & bB|b \end{array}$$

Dato non ci sono simboli inutili, la grammatica è in forma ridotta. In forma normale di Chomsky,

$$\begin{array}{cccc} S & \rightarrow & WY|XA|YB|a|b \\ A & \rightarrow & XA|a \\ B & \rightarrow & YB|b \\ W & \rightarrow & XS \\ X & \rightarrow & a \\ Y & \rightarrow & b \end{array}$$

La grammatica in forma normale di Greibach deriva immediatamente se consideriamo l'ordinamento S,A,B,W,X,Y dei non terminali, e risulta essere:

$$S \rightarrow aSY|aA|bB|a|b$$

$$A \rightarrow aA|a$$

$$B \rightarrow bB|b$$

$$W \rightarrow aS$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

Quesito: Derivare un ASFD che riconosca il linguaggio descritto dall'espressione regolare

$$(ab^*a + b^*)^*$$

Soluzione: Per composizione, possiamo derivare l'ASFND con ε -transizioni che accetta il linguaggio

Eliminando le ε -transizioni, otteniamo il seguente ASFND, che risulta in effetti deterministico

Quesito: Sia dato il linguaggio $L = \{(ab)^i(cb)^j(ab)^k|i,j,k>0; k=2i\}$. L è regolare? Dimostrare la risposta data.

Soluzione: Il linguaggio non è regolare. Si può dimostrare ciò utilizzando il pumping lemma.

Bob: sceglie n

Alice: sceglie la stringa $\sigma = (ab)^n cb(ab)^{2n}$

Bob: sceglie uv, prefisso di σ di lunghezza al più n. Necessariamente, quindi, uv è sottostringa di $(ab)^n$. Due casi sono possibili:

- 1. |v| è dispari, per cui inizia e termina per lo stesso carattere, ad es. $v=bz_1b$, con $z_1=(ab)^ra$, r>0
- 2. |v| è pari, per cui inizia e termina con caratteri diversi, ad es. $v=az_2b$, con $z_2=(ba)^r, r\geq 0$

Alice: pone i=2 e:

- 1. se |v| è dispari, ottiene una stringa in cui compaiono, nella prima parte, due caratteri successivi uguali, ad es. $uvvw = ubz_1bbz_1bw \notin L$,
- 2. se |v| è pari, ottiene una stringa $(ab)^{n+|v|/2}cb(ab)^{2n} \notin L$

Quesito: Dimostrare che il seguente linguaggio è regolare $L = \{a^k b^j c^i | i, j, k > 0\}$ dove k è dispari e i > 2, oppure j è dispari e $i \le 3$.

Soluzione: Si considerino i linguaggi sequenti:

• $L_1 = \{a^k b^j c^i | i, j, k > 0, k \text{ dispari}\}$

- $L_2 = \{a^k b^j c^i | j, k > 0, i > 2\}$
- $L_3 = \{a^k b^j c^i | i, j, k > 0, j \text{ dispari} \}$
- $L_4 = \{a^k b^j c^i | i, j, k > 0, i \le 3\}$

Chiaramente, $L=(L_1\cap L_2)\cup (L_3\cap L_4)$. Inoltre L_1 , L_2 , L_3 , L_4 possono essere mostrati regolari derivando in modo immediato ASF che li riconoscono:

L risulta regolare per le proprietà di chiusura della classe dei linguaggi regolari.

Quesito: Si definisca una grammatica context free che generi il linguaggio $L=\{a^rb^sc^ta^mc^n|s=r+t;n\geq 2m;r,t,m,n\geq 0\}$. **Soluzione**: Una possibile soluzione è la grammatica

$$\begin{array}{ccc} S & \rightarrow & ABCD \\ A & \rightarrow & aAb \mid \varepsilon \\ B & \rightarrow & bBc \mid \varepsilon \\ C & \rightarrow & aCcc \mid \varepsilon \\ D & \rightarrow & cD \mid \varepsilon \end{array}$$

Quesito: Si definisca una grammatica in Forma Normale di Greibach che generi il seguente linguaggio.

 $L = \{w \in \{a, b, c\}^+ | |w| \text{ pari e } w \text{ inizia e termina con lo stesso carattere}\}$

Soluzione: Una possibile grammatica context free che genera L è:

$$\begin{array}{ccc} S & \to & aAa|bAb|cAc \\ A & \to & aB|bB|cB|\varepsilon \\ B & \to & aA|bA|cA \end{array}$$

Per portarla in CNF, eliminano l' ε -produzione, ottendendo

$$S \quad \rightarrow \quad aAa|bAb|cAc|aa|bb|cc$$

$$A \rightarrow aB|bB|cB$$

$$B \rightarrow aA|bA|cA|a|b|c$$

La grammatica ottenuta non ha produzioni unitarie né simboli inutili, per cui è in forma ridotta. Può essere quindi derivata da essa la grammatica in CNF seguente:

$$S \ \, \rightarrow \ \, XU|YV|ZW|XX|YY|ZZ$$

$$A \ \rightarrow \ XB|YB|ZB$$

$$B \quad \rightarrow \quad XA|YA|ZA|a|b|c$$

$$U \rightarrow AX$$

$$V \rightarrow AY$$

$$W \rightarrow AZ$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

$$Z \rightarrow c$$

E da essa, nel modo seguente, la grammatica in GNF:

$$S \rightarrow aU|bV|cW|aX|bY|cZ$$

$$A \rightarrow aB|bB|cB$$

$$B \quad \to \quad aA|bA|cA|a|b|c$$

$$U \rightarrow aBX|bBX|cBX$$

$$V \rightarrow aBY|bBY|cBY$$

$$W \rightarrow aBZ|bBZ|cBZ$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

$$Z \rightarrow c$$