Projet6 Classifiez automatiquement des biens de consommation

Analyse des données textes et images

AL SAMMAN Wassim Data Scientist Apprenti

PAPOUTSIS Panayotis Data Scientist - Mentor

Introduction et problématique

En tant que Data Scientist à l'entreprise Place du marché

- Automatiser la mission recherche des produits pour trouver sa catégorie
- Etudier la faisabilité d'un moteur de classification :
 - Réaliser un prétraitement des descriptions des produits et des images
 - Réduire la dimension
 - Réaliser un clustering

Présentation du jeu des données

Exemples des données textes

```
data['product_name'][94]

'BeYOUtiful Copper Repouss�� - Man With Dhol Showpiece - 36 cm'
```

data['description'][94]

'Buy BeYOUtiful Copper Repouss�� - Man With Dhol Showpiece - 36 cm for Rs.999 online. BeYOUtiful Copper Repouss�� - Man With Dhol Showpiece - 36 cm at best prices with FREE shipping & cash on delivery. Only Genuine Products. 30 Day Replacement Guarantee.'

```
data['product_category_tree'][94]
```

'["Home Decor & Festive Needs >> Showpieces >> BeYOUtiful Showpieces"]'

Nettoyer le texte

- Supprimer les ponctuations et stop_words
- Transformer la phrase vers des mots avec word_tokenize
- Vérifier le longueur du mot et appliquer le cas lower
- Prendre la base des mots avec lemmatizer

```
Exemple

M sentence = data['description'][500]
sentence

2]: 'Nexus NX_7668 Analog Watch - For Men - Buy Nexus NX_7668 And t Flipkart.com. - Great Discounts, Only Genuine Products, 30 M

Clean_text(sentence)

3]: ['7668',
    'analog',
    'watch',
    'for',
    'men',
    ''men',
    ''men',
    ''men',
    ''men',
    '''men',
    '''men',
    '''''
```

Bag-of-words et créer les features

Modèle countvectorizer

	corpus = data['product_name'] get_feature_countvectorizer(corpus)						
	001	005	006	800	011	01433cmgy	01
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
_	^	^	^	^	^		_

Modèle tfidvectorizer

	<pre>corpus = data['product_name'] + data['description'] get_feature_countvectorizer(corpus)</pre>										
		000	001	0021	004	005	006	800	0083	011	01433cmgy
	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0
L	2	0	0	0	0	0	0	0	0	0	0

Réduire les composantes avec ACP

La variance expliquée est plus de 80%

```
features = get_feature_tfidvectorizer(corpus=data['product_name']+data['description'])
features.shape
(1050, 5814)
```

```
features_pca = transform_features_pca(features)
features_pca.shape
(1050, 510)
```

Réduire les composantes à 2 avec TSNE et présenter par catégorie réelle

- Préparer les catégories réelles
- Représenter les catégories par chiffres

Réduire les composantes à 2 avec TSNE et présenter par cluster

Ajouter un modèle KMeans

Traitement du texte plus avancé

Comparer les modèles par catégorie réelle								
Modèle	èle Regroupement des données		Paramètres					
			w2v_window = 5	w2v_min_count = 1				
Word2Vec	Très dispersées	-	w2v_epochs = 100	w2v_size = len(sentences)				
BERT HuggingFace	Pareil	Pareil	max_length = 64	batch_size = 10				
(Uncased)	Palell	Paleii	model_type = 'bert-base-uncased'					
BERT HuggingFace	Mauvais		max_length = 64	batch_size = 10				
(Cardiffnlp)	regroupement	Pareil	model_type = 'cardiffnlp/twitter-roberta-base- sentiment'					
BERT	Pareil	Pareil	max_length = 64	batch_size = 10				
hub Tensorflow	raieii	raieii	model_type = 'bert-base-uncased'					
USE-Universal Sentence Encoder	Parell		batch_size = 10					

Traitement du texte plus avancé

	Comparer les modèles par cluster								
	Modèle	odèle Regroupement des données		ARI Score	Paramètres				
					w2v_window = 5	w2v_min_count = 1			
	Word2Vec	Mieux regroupées	Très bien diminuée	Faible valeur 0.001	w2v_epochs = 100	w2v_size = len(sentences)			
BI	BERT HuggingFace (Uncased)	Pareil	Pareil	Pareil	max_length = 64	batch_size = 10			
		raieii		raieii	model_type = 'bert-base-uncased'				
	BERT HuggingFace		Pareil		max_length = 64	batch_size = 10			
	(Cardiffnlp)	Pareil		Valeur moyenne 0.19	model_type = 'cardiffnlp/twitter-roberta-base- sentiment'				
	BERT	Doroil	Doroil	Doroil	max_length = 64	batch_size = 10			
	hub Tensorflow	Pareil	Pareil	Pareil	model_type = 'bert-base-uncased'				
	USE-Universal Sentence Encoder Pareil		Pareil	Pareil batch_size = 10		iize = 10			

Traitement des images _ SIFT

Préparer les features images

```
df_features_images = get_feature_sift()
df_features_images
```

Réduire les features avec ACP

```
features = transform_features_pca(df_features_images.drop(columns=['real_categories']))
```

features.shape
(1049, 10)

```
df features images[[0, 'real categories']]
              0 real_categories
   0 31.991209 Home Furnishing
   1 31.096561
                      Baby Care
   2 28.577772
                      Baby Care
   3 28.321424 Home Furnishing
   4 23.492832 Home Furnishing
                      Baby Care
1044 22.710911
                      Baby Care
1045 19.600000
                      Baby Care
1046 18.276722
                      Baby Care
1047 15.890792
                      Baby Care
1048 18.669973
1049 rows × 2 columns
```

Traitement des images _ SIFT

Traitement des images _ SIFT

Traitement des images _ Transfer learning

Préparer les features images

```
df_features_images = get_feature_vgg16()
```

Réduire les features avec ACP

```
features = transform_features_pca(df_features_images.drop(columns=['real_categories']))
```

```
features.shape (1050, 10)
```

```
df_features_images[[0, 'real_categories']]
          0 real_categories
 0 3.398615 Home Furnishing
   0.000000
                  Baby Care
                  Baby Care
 0.000000
    0.000000 Home Furnishing
   3.417152 Home Furnishing
 0 2.312268
                  Baby Care
 0 1.217184
                  Baby Care
                  Baby Care
 0 2.196130
                  Baby Care
    0.000000
 0.000000
                  Baby Care
1050 rows × 2 columns
```

Traitement des images _ Transfer learning

Traitement des images _ Transfer learning

Traitement des images _ Comparaison

Comparer les modèles SIFT et VGG16						
Modèle	Regroupement des données	La distance entre les groupes	ARI Score			
SIFT	Très dispersées	Petite distance	Faible score 0.028			
Transfer learning VGG16	Bien regroupées	Distance moyenne	Très bon score 0.506			

Conclusion générale

- Des nouvelles compétences acquises
- L'idée de réduire les composantes ACP ou TSNE
- Le modèle Word2Vec est non validé
- Le modèle VGG16 est meilleur que le SIFT
- Mon sentiment après le projet 6

Merci pour votre attention