Лаба C - advanced условие

Виды аннотирования

- [n. Ax. sch. k], где n номер выражения, а k номер схемы аксиом: либо число от 1 до 12 (предикатные), либо A9 (из формальной арифметике (см ниже)).
- \bullet [n. Ax. k] ,где k значение от A1 до A8 (формальной африметике).
- [n. M.P. k, l] , [n. ?-intro k] , [n. @-intro k] для правил вывода. Смысл индексов для M.P.: если доказательство представлено формулами δ_i , то запись слева означает $\delta_l \equiv \delta_k \to \delta_n$.

Тонкости

- Аннотации перечислены в порядке предпочтения: если выражение может быть обосновано, допустим, как аксиома A8 или как М.Р., в ответе должно быть указано Ax. A8.
- В случае пересечения аксиом/схем указывайте аксиому/схему с минимальным номером; арифметические аксиомы/схемы идут после логических.
- Если выражение может быть получено при помощи одного правила вывода несколькими способами, предпочтение должно отдаваться наиболее ранним ссылкам в лексикографическом порядке: М.Р. 1,10 предпочтительнее М.Р. 10,1.
- Modus Ponens предпочтительнее правил с кванторами, правило с квантором существования предпочтительнее правила с квантором всеобщности (даже если номер исходной формулы для правила с квантором существования меньше) (т.е.
 [n. M.P. k, l] > [n. ?-intro k] > [n. @-intro k])
- Аксиомы предпочтительнее правил вывода

- В выражениях должны быть расставлены все скобки в точности по одному разу (т.е. скобки вокруг всех унарных и бинарных выражений кроме апострофов).
- Если доказательство некорректно, выведите одну из следующих строк, в зависимости от типа ошибки. Ваша программа должна находить первое некорректное выражение в доказательстве, и для него указывать тип ошибки с минимальным номером (в соответствии со списком ниже):
- 1. Expression n: variable v occurs free in ?-rule. для правила вывода \exists ставим когда x начинает входить свободно в ϕ
- 2. Expression n: variable v occurs free in @-rule. для правила вывода \forall ставим когда x начинает входить свободно в ϕ
- 3. Expression n: variable v is not free for term t in ?-axiom. схема аксиом 12 тут проблема в том, что хотя бы одна свободная переменная, которая была в θ , стала связанной в $\exists x.\phi$
- 4. Expression n: variable v is not free for term t in @-axiom. схема аксиом 11 тут проблема в том, что хотя бы одна свободная переменная, которая была в θ , стали связанной в $\phi[x:=\theta]$
- 5. Expression n is not proved. это если у нас не получилось строку заматчить со всем, то есть написана какая-то дичь
- 6. The proof proves different expression. это надо выводить в n+1 строке. То есть, если тебе дали на вход полностью корректное доказательство размера n, то ты все строки правильно аннотируешь, а затем в самом конце пишешь The proof proves different expression.
- Все строки доказательства, предшествующие некорректной, должны быть проаннотированы.

Пример

Смотри $T\Gamma$ - кинул переписку с Машей

```
Стандартный ввод

|-a+0=a
(((a)+0))=a
(@y.y+0*0'=y)->(?x.@y.x=y)

Стандартный вывод

|-((a+0)=a)
[1. Ax. A5] ((a+0)=a)

Expression 2: variable x is not free for term (y+(0*0')) in ?-axiom.
```

Аксиомы (с учетом порядка)

Предикатные

2)
$$(\lambda \rightarrow \beta) \rightarrow (\lambda \rightarrow \beta \rightarrow \gamma) \rightarrow (\lambda \rightarrow \gamma)$$

8)
$$(\mathcal{A} \rightarrow \mathcal{X}) \rightarrow (\mathcal{B} \rightarrow \mathcal{X}) \rightarrow (\mathcal{A} \vee \mathcal{B} \rightarrow \mathcal{X})$$

$$9) \quad (\lambda \rightarrow \beta) \rightarrow (\lambda \rightarrow \neg \beta) \rightarrow \neg \lambda$$

$$(cx.11) (\forall x.\varphi) \rightarrow \varphi[x:=\Theta]$$

$$(cx.12) \varphi[x:=\Theta] \rightarrow \exists x.\varphi$$

Формальной арифметики

(A1)	$a = 6 \rightarrow \alpha' = 6'$
(A_2)	$a=6 \rightarrow a=c \rightarrow 6=c$
(A3)	$\alpha' = \beta' \rightarrow \alpha = \beta$
(A4)	$\neg \alpha' = \emptyset$
(As)	$\alpha + \beta' = (\alpha + \beta)'$ поменять местами
(A6)	a + 0 = 01
(A7)	$a \cdot o = 0$
	$a \cdot 6' = a \cdot 6 - 0$
	Creur arcuae unggryuu
(4[x	$= o) \& (\forall x. \psi \rightarrow (\psi [x:=x])) \rightarrow \psi$
X b	xogun chodogreo by

Правила вывода

GL BUDDY