FIN2010 Financial Management Lecture 8: Risk and Return

Review—Stock Valuation

 Dividend discount model: one example of cash flow based model

$$P_0 = \frac{Div_1}{1 + r_E} + \frac{Div_2}{(1 + r_E)^2} + \frac{Div_3}{(1 + r_E)^3} + \cdots = \sum_{n=1}^{\infty} \frac{Div_n}{(1 + r_E)^n}$$

- **Zero growth model**: dividends are constant over time level perpetuity 1)
- Constant growth model: dividends grow at a constant rate growth **2**) perpetuity
- Variable growth model: dividends change for a number of years and **3**) then stabilize to a sustainable growth rate irregular cash flows
- Which model to choose? It depends on the maturity stage of the firm!
- Implications:
 - Prices increases with firms' growth prospect, profitability.
 - Price decreases with firms' risk level.
 - When firms cut dividends, prices will increase (decrease) if firms use the retained earnings to invest in efficient (inefficient) projects.

Review—Stock Pricing

- Method of comparable
 - Estimate the value of the firm based on the value of other comparable firms
 - Stock's fair value = EPS * appropriate P/E ratio (from other firms)
- Discounted free cash flow model
 - Another cash flow based model
 - Will come back to it after we learn how to calculate free cash flows.
- All methods have their pros and cons. In reality, analysts tend to use a combination of different methods.

Agenda

- Motivation
- Definition and Measurement of Risk and Return
 - Return
 - Risk
- Empirical Facts on Historical Returns
 - US and Chinese Asset Returns
 - Sharpe Ratio
 - Ponzi Scheme

Agenda

- Motivation
- Definition and Measurement of Risk and Return
 - Return
 - Risk
- Empirical Facts on Historical Returns
 - US and Chinese Asset Returns
 - Sharpe Ratio
 - Ponzi Scheme

Motivation

(上波指数)

How would \$100 have grown from 1925 to 2015

- Lessons from the history:
 - 1. There is positive return on any broad-based index in the long run.
 - 2. There is a risk and return tradeoff, i.e. higher risks ↔ higher returns.

Agenda

- Motivation
- Definition and Measurement of Risk and Return
 - Return
 - Risk
- Empirical Facts on Historical Returns
 - US and Chinese Asset Returns
 - Sharpe Ratio
 - Ponzi Scheme

Return

- Holding period return (HPR): the rate of return over an investment period one is trying to evaluate (e.g. 4 months, 1 year, 3 years...). Backward looking.
- Average return: average return per year/month/... over an investment period. Backward looking.
- Expected return: the return an investor expects to earn on an investment in the future. Forward looking.

Holding Period Return (HPR)

- Definition: the percent change in wealth over an investment period (e.g. 4 months, 1 year, 3 years...).
 - How much you end up with vs. how much you put in over an investment period

$$R = \frac{Wealth_T}{Wealth_0} - 1$$

- Return on one asset: $R = \frac{P_T + CF}{P_0} 1$
 - Measures how much money generated per unit of initial investment in this period
 - P₀: price of the asset at the beginning of this period
 - P_T: price of the asset at the end of this period
 - CF: all cash flows generated by this asset in this period
 - For stocks, CF includes dividends
 - For bonds, CF includes coupon payments

Example: Holding Period Return

Return between 12/26/2017 and 12/21/2018:

$$R = \frac{P_T + CF}{P_0} - 1 = \frac{150.73 + 2.82}{170.57} - 1 = -9.98\%$$

Example: Holding Period Return with Dividend Reinvestment

Date	Close		
2018-2-28	178.12		

2018-2-12	162.71		
2018-2-9	156.41		
2018-2-9	0.63 Dividend		
2018-2-8	155.15		
2017-12-26	170.57		

Yahoo Finance: AAPL

What is your HPR between 12/26/2017 and 2/28/2018?

- Assume the dividend is reinvested at the close price of 2018-2-12
 - Initial investment: 1 share of AAPL, \$170.57
 - Final wealth:
 - 1 share of AAPL: \$178.12
 - \$0.63 dividend obtained on 2018-2-9, purchased 0.63/162.71 = 0.003872 shares of APPL on 2018-2-12, which is worth 0.003872 * \$178.12 = \$0.69
 - -R = (178.12 + 0.69)/170.57 1 = 4.830%
- What if you do not re-invest the dividend?

$$R' = (178.12 + 0.63)/170.57 - 1 = 4.796\%$$

Average Return

- When we look back into the <u>history</u>, returns vary from period to period. One may also be interested in knowing how much return he/she earns per period <u>on average</u>.
- Arithmetic average return

$$\overline{R} = \frac{R_1 + R_2 + \dots + R_T}{T} = \frac{1}{T} \sum_{i=1}^{T} R_i$$

- Simple to calculate; often reported by companies/financial institutions;
 yet can be misleading
- Geometric average return

$$G(R) = \sqrt[T]{(1+R_1)*(1+R_2)*\cdots*(1+R_T)} - 1$$

The return really matters – it takes into account the compounding

Example – Average Return

Year	S&P 500
2000	-9.03%
2001	-11.85%
2002	-21.97%
2003	28.36%
2004	10.74%
2005	4.83%
2006	15.61%
2007	5.48%
2008	-36.55%
2009	25.94%
2010	14.82%
2011	2.10%
2012	15.89%
2013	32.15%
2014	13.52%
2015	1.38%
2016	11.77%
2017	21.64%

What is the average return of the S&P 500 stocks between 2000 and 2017?

Arithmetic average

$$= \frac{-9.03\% + (-11.85\%) + (-21.97\%) + \dots + 21.64\%}{18}$$
$$= 6.94\%$$

Geometric average

$$= \sqrt[18]{(1 - 9.03\%) * (1 - 11.85\%) * \dots * (1 + 21.64\%)} - 1$$

= 5.34%

Why Arithmetic Average can be Misleading

- Assume that we have a 6-year sequence of investment returns as follows:
 - {40% -30% 40% -30% 40% -30%}
 - Suppose your initial investment is \$100. At the end you have \$94.12
- Arithmetic $\overline{R} = \frac{40\% + (-30\%) + 40\% 30\% + 40\% 30\%}{6} = 5\%$
- Geometric G(R)

$$= \sqrt[6]{(1+40\%)*(1-30\%)*\cdots*(1-30\%)} - 1 = -1\%$$

- Theorem: Arithmetic average ≥ geometric average Arithmetic average return is not equal to (always higher than) the expected compound return you get when investing
- Proof of the theorem: https://brilliant.org/wiki/arithmetic-mean- geometric-mean/

Expected Return

- When we look <u>forward</u>, we want to know that, <u>on expectation</u>, what the return on an risky investment is.
- We model the uncertainty of the future return with a probability distribution, which assigns a probability (Pr_i) for each possible return (R_i) that can occur.
- Expected return E(r) = weighted average of the possible returns, where the weights correspond to the probabilities.

$$E[R] = R_1 * Pr_1 + R_2 * Pr_2 + \dots + R_n * Pr_n = \sum_{i=1}^{n} R_i * Pr_i$$

- R_i is the return in possible outcome i.
- Pr_i is the probability of outcome i.

Example- Expected Return

• Example: Assume BFI stock currently trades for \$100 per share. In one year, there is a 25% chance the share price will be \$140, a 50% chance it will be \$110, and a 25% chance it will be \$80. What is the expected return in a year?

Solution:

The probability distribution

		Probability Distribution	
Current Stock Price (\$)	Stock Price in One Year (\$)	Return, R	Probability, P_R
	140	0.40	25%
100	110	0.10	50%
	80	-0.20	25%

- Expected return: E[R] = 25%(0.4) + 50%(0.1) + 25%(-0.2) = 0.1

Risk

- Uncertainty of the return
 - Risk a neutral word. A risky asset might have returns lower than your expectation, but might also have returns higher than your expectation
 - E.g. there are 2 investments. Which is risky?
 - A. 100% chance lose \$100
 - B. 50% chance gain \$5, 50% chance gain \$10

B is risky while A is not! Risk is the uncertainty of the return, NOT the possibility of losing money.

- Risks come from many different sources. For example, for bonds, there are
 - **Default risk**: borrower might not pay back
 - Interest rate risk: change in interest rate will cause change in bond price
 - Reinvestment risk: might need to reinvest coupon at a different rate
 - Inflation risk: money you get might not be worth as much
 - Call risk: principal might be returned earlier than expected

The Most Common Measure of Risks

• Typically measured as **standard deviation** (σ) of the return

$$- \sigma(R) = \sqrt{Var(R)} = \sqrt{E[(R - E[R])^2]} = \sqrt{\sum_{i=1}^{n} Pr_i(R_i - E[R])^2}$$

Interpretation: by how much does return typically differ from the mean

Example

		Probability Distribution	
Current Stock Price (\$)	Stock Price in One Year (\$)	Return, R	Probability, P_R
	140	0.40	25%
100	110	0.10	50%
	80	-0.20	25%

- Expected return: E(R) = 25%(0.4) + 50%(0.1) + 25%(-0.2) = 0.1
- Variance: $Var(R) = 25\%(0.4 0.1)^2 + 50\%(0.1 0.1)^2 + 25\%(-0.2 0.1)^2$ = 0.045
- Standard deviation: $\sigma(R) = \sqrt{Var(R)} = 0.212$

Use Historical Data to Estimate Expected Return and Risk

- Investor's goal: identify the probability distributions of future returns
- But this is almost impossible. In practice, we often rely on past experiences to forecast the future.
 - By counting the number of times a realized return falls within a particular range, we can estimate the underlying probability distribution.
- Assumption: the past realization has an equal chance of repeating itself in the future

Example – Empirical Distributions of Annual Returns of Different Assets

Figure: The Empirical Distribution of Annual Returns for U.S. Large Stocks (S&P 500), Small Stocks, Corporate Bonds, and Treasury Bills, 1926–2014

Use Historical Data to Estimate Expected Return and Risk

Expected return estimated using the historical returns:

$$E(R) = \frac{1}{T}(R_1 + R_2 + \dots + R_T) = \frac{1}{T} \sum_{t=1}^{T} R_t$$

Risks estimated using historical returns

$$\delta(R) = \sqrt{\frac{1}{T-1}} \sum_{t=1}^{T} (R_t - E(R))^2$$

2. Derivation of the s.d. of a sample

Theorem 5 (6.5). Suppose $X^n = (X_1, \dots, X_n)$ is an IID random sample from a population with (μ, σ^2) . Then for all n > 1,

$$E(S_n^2) = \sigma^2$$
.

Proof: Using the formula $(a - b)^2 = a^2 - 2ab + b^2$, we have

$$\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \sum_{i=1}^{n} [(X_i - \mu) - (\bar{X}_n - \mu)]^2$$

$$= \sum_{i=1}^{n} (X_i - \mu)^2 - 2 \sum_{i=1}^{n} (X_i - \mu)(\bar{X}_n - \mu) + \sum_{i=1}^{n} (\bar{X}_n - \mu)^2$$

$$= \sum_{i=1}^{n} (X_i - \mu)^2 - 2(\bar{X}_n - \mu) \sum_{i=1}^{n} (X_i - \mu) + n(\bar{X}_n - \mu)^2$$

$$= \sum_{i=1}^{n} (X_i - \mu)^2 - 2n(\bar{X}_n - \mu)^2 + n(\bar{X}_n - \mu)^2$$

$$= \sum_{i=1}^{n} (X_i - \mu)^2 - n(\bar{X}_n - \mu)^2,$$

where we have used the fact

$$\sum_{i=1}^{n} (X_i - \mu) = n(\bar{X}_n - \mu).$$

Taking the expectations for both sides, we have

$$E \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \sum_{i=1}^{n} E(X_i - \mu)^2 - nE[(\bar{X}_n - \mu)^2]$$
$$= n\sigma^2 - n \cdot \frac{\sigma^2}{n} = (n-1)\sigma^2,$$

where we have used the fact that $E(\bar{X}_n - \mu)^2 = \frac{\sigma^2}{n}$ from Section 6.2. It follows that

$$E(S_n^2) = E\left[\frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X}_n)^2\right] = \sigma^2.$$

Example

Year	S&P 500
2000	-9.03%
2001	-11.85%
2002	-21.97%
2003	28.36%
2004	10.74%
2005	4.83%
2006	15.61%
2007	5.48%
2008	-36.55%
2009	25.94%
2010	14.82%
2011	2.10%
2012	15.89%
2013	32.15%
2014	13.52%
2015	1.38%
2016	11.77%
2017	21.64%

What is the expected return and risk of S&P 500 in 2019?

Estimating expected returns from historical data:

$$E[R] = \frac{1}{T}(R_1 + R_2 + \dots + R_T) = 6.94\%$$

 Estimating risks from historical data (standard deviation of a sample):

$$\sigma = \sqrt{\frac{\sum (R_t - \bar{R})^2}{T - 1}} = 17.77\%$$

Other Measures of Risks (Not Required)

Value at risk (VAR)

X% of the time (e.g. 95%) return will be higher than this

Expected Shortfall

Expected loss if the most unfortunate X% event happens

Focus on extreme situations, often used in banks

VALUE AT RISK

Agenda

- Motivation
- Definition and Measurement of Risk and Return
 - Return
 - Risk
- Empirical Facts on Historical Returns
 - US and Chinese Asset Returns
 - Sharpe Ratio
 - Ponzi Scheme

Historical Return of US Assets

\$1,000,000.00

\$100,000.00

\$10,000.00

\$1,000.00

\$100.00

\$10.00

0.00

	S&P 500	T-Bill	T-Note
	1	L928-2017	
Total Ret (HPR)	3999.27	20.17	73.07
Arithmetic avg. of annual ret	11.53%	3.44%	5.15%
Geometric avg. of annual ret	9.65%	3.39%	4.88%
St. dev of annual ret (δ)	19.62%	3.05%	7.72%
	2	2000-2017	,
Total Ret(HPR)	2.55	1.34	2.51
Arith avg	6.94%	1.66%	5.56%
Geo avg	5.90%	1.33%	4.35%
St.dev (δ)	17.77%	1.88%	8.37%

1956 1960 1980 1964 1968 1972 976 1984 1992 300.00 250.00 200.00 Stocks 150.00 T. Bills T. Notes 100.00 50.00

> 2010 2011

2013

Risk premium: difference in returns between risky and risk-free assets (e.g. 11.53%-3.44%=8.09% is called equity risk

premium) 香港中文大學(深圳)

The Chinese University of Hong Kong, Shenzhen

经管学院

School of Management and Economics

2000 2001 2002 2003 2004 2005 2005 2006 2007 2008 Stocks
T.Bills

T.Notes

Long Run Performance

Small Stocks - S&P 500

- In the long run, stocks > long-term bonds > short-term bonds
 - There are many periods that stocks lose money, but...
 - Stocks outperform bonds in 92% of times in 10-yr periods
 - Stocks outperform bonds in any 20-yr period after 1929

Corporate Bonds

t for n years? E.g. Red line in figure (a) tells you how much you will have in one

Figure: How much will

you have if you invest

\$100 in asset x in year

year if you invest \$100 in a portfolio of small stocks in any year between 1925 and

2010.

Lessons from US Historical Returns

- There is positive return on any broad-based index in the long run
 - Do not let cash sit idly!
- Higher risk → higher return (Risk- return tradeoff)
 - If you investment horizon is long, you are better off holding risky assets
- The range of risk premium
 - 5-8% for stocks
 - 1-2% for long-term government bonds

Historical Return of Chinese Stocks

A Shares

	From 1991	From 2000
Total Ret	46.52	4.42
Arithmetic avg.	28.12%	20.30%
Geometric avg.	15.28%	8.64%
St.dev (δ)	63.38%	59.15%

S&P 500

_	From 1991	From 2000
Total Ret	13.84	2.55
Arithmetic avg.	11.71%	6.92%
Geometric avg.	9.15%	5.90%
St.dev (δ)	17.36%	17.77%

FIN2010 Lecture 8

Note: Stock Return ≠ Index Return

1000000

S&P 500	Stocks	Index
	1928-2017	
Total Ret	3999.27	151.39
Arithmetic avg. of annual ret	11.53%	7.60%
Geometric avg. of annual ret	9.65%	5.74%
St.dev of annual ret	19.62%	19.18%

100000 -		
10000 -		Stocks
1000 -		——Index
100 -		
10 -	1928 1932 1936 1940 1944 1952 1956 1964 1964 1972 1972 1972 1986 1986 1992 1996 2000 2004	

A shares	1990-2019	
Total Ret	45.25	33.06
Arith avg	26.33%	24.30%
Geo avg	14.05%	12.82%
St.dev	61.85%	54.35%

Lessons from Chinese Historical Returns

- Despite numerous complaints, the Chinese stock market is actually very profitable
 - A simple buy and hold strategy is very profitable.
 - If someone didn't earn as much as the broad index, he/she should really reflect on his/her trading behavior (more on lecture 23-24).
- Compared to the US market, the volatility in the Chinese stock market is extremely high
 - If you got in at the highest point in 2007, you wouldn't make much money in the past 13 years.
 - Timing is important!
 - Warren Buffet: (be) fearful when others are greedy and greedy when others are fearful

Relative Return Measure —Sharpe Ratio

• Sharpe ratio:
$$SR = \frac{E[R-R_f]}{\sigma(R-R_f)}$$

- R_f is the risk-free rate. In practice we usually use the <u>treasury bill rate</u> as a proxy for risk-free rate.
- It measures the return of an investment relative to its risk. Also called reward to risk ratio
 - Assets with higher Sharpe ratio is generally preferred
 - Can be used to compare different investments

	Avg	Avg(R _f)	$Avg - Avg(R_f)$	St.dev	Sharpe Ratio
		1928-2017			
S&P 500	11.53%	3.44%	8.09%	19.94%	0.4057
Treasury Notes	5.15%	3.44%	1.71%	7.74%	0.2313
	1991-2017				
S&P 500	11.71%	2.00%	9.71%	17.29%	0.5257
T. Notes	4.81%	2.00%	2.81%	8.65%	0.4604
A Shares	28.12%	4.76%	23.36%	63.04%	0.3688

Sharpe Ratio Matters!

	Avg	T Bill	Avg - T Bill	St.dev	Sharpe Ratio
	1997-2016				
Stock	9.27%	2.14%	7.13%	18.32%	0.3895
Hedge fund	9.17%	2.14%	7.03%	11.71%	0.6002

Given the same level of arithmetic average return, assets with higher Sharpe ratios are generally preferred

Lessons

- In general, higher risk → higher return
- Given the same level of average returns, a higher Sharpe ratio usually results in higher compounded return
- On the other hand, if you would like to pursue higher returns, you may have to tolerate lower Sharpe ratios
 - Usually fixed-income assets have very high Sharpe ratios
 - But if you plan to invest for a long term, stocks will outperform despite having a lower Sharpe ratio because they have much higher returns
- The typical range of (annualized) Sharpe ratio is 0.2 to 0.5
 - Only extremely talented money managers achieve Sharpe>1

Which Investment do You Prefer?

What Happened to Investment B?

- Ponzi Scheme
- Origin: In 1919, <u>Charles Ponzi</u> figured that international stamps are priced differently in different countries, so he could buy in one country and sell in another to profit
 - Failed to get a personal loan at banks
 - Promised to pay friends 50% return in 45 days
 - Paid the first group of investors with money obtained from later investors
 - 1920-01: 18 investors, \$1,800
 - 1920-03: \$25,000
 - 1920-05: \$420,000
 - 1920-06: \$2,500,000
 - 1920-07: \$7,000,000, being suspected by many
 - 1920-08: collapsed

Modern Ponzi Schemes

- Bernard Madoff: largest and longest Ponzi scheme in history
 - Ran a successful stock exchange and a market making business in the 70's and the 80's
 - Claimed he found a highly profitable trading strategy and started taking in investors in the late 80's. His fund yields ~10% every year
 - All the money was actually sitting in a bank
 - Couldn't make payments to investors in 2008 and collapsed

P2P

- Story 1
- Story 2

Lessons

- If something is too good to be true, it probably is a scam
- Typical range of returns
 - Government bonds: risk-free rate + [0%, 2%]
 - Good corporate bonds: risk-free rate + [1%, 4%]
 - Stocks: risk-free rate + [5%, 10%]
- High return → high risk
 - If someone promise you a return higher than the risk-free rate, there is a chance that he/she cannot keep the promise
- Understanding risk-return tradeoff can help you avoid scams!

Summary

- Return:
 - Holding period return
 - Average return: arithmetic and geometric average
 - Expected return
- Risk
 - Standard deviation (σ)
- History of risk and return:
 - There is positive return on any broad-based index in the long run
 - Return: stocks > long-term bonds > short-term bonds
 - Risk: stocks > long-term bonds > short-term bonds
 - The range of risk premium: 5-8% for stocks; 1-2% for long-term government bonds
- Risk and return tradeoff: return and risk is generally positively related. If someone promises you high returns without risks, it is most likely a scam!

Next Time—Risk and Return of a Portfolio

Portfolio

- Motivation
- Weights
- Portfolio returns
- Portfolio risks
 - Examples and intuitions
 - Math formulas
- Diversification
 - Idiosyncratic and systematic risks