Mechanics

Average normal/axial stress

$$\sigma_{avg} = \frac{F}{A}$$

Average Shear Stress

$$\tau_{avg} = \frac{V}{A_s}$$

Average Normal/Axial Strain

$$\epsilon_{avg} = \frac{\Delta L}{L_0}$$

Thermal Strain

$$\epsilon_T = \alpha \Delta T$$

Shear Strain

$$\gamma = \frac{\pi}{2} - \theta$$
$$\gamma = \tan^{-1} \left(\frac{\delta}{I}\right)$$

Poisson's Ratio

$$v = -\frac{\epsilon_L}{\epsilon_{Ax}} = -\frac{\epsilon_{trans}}{\epsilon_{long}}$$

Shear Modulus

$$G = \frac{E}{2(1+v)}$$

Factor of Safety

$$F_s = \frac{\sigma_{failure}}{\sigma_{allow}}$$

Hooke's Law (1D)

$$\sigma_{x} = E\epsilon_{x}$$

Hooke's Law (plane stress)

$$\epsilon_{x} = \frac{1}{E}(\sigma_{x} - v\sigma_{y}) + \alpha \Delta T$$

$$\epsilon_{y} = \frac{1}{E}(\sigma_{y} - v\sigma_{x}) + \alpha \Delta T$$

$$\epsilon_{z} = \frac{1}{E}(-v\sigma_{x} - v\sigma_{y}) + \alpha \Delta T$$

$$\gamma_{xy} = \frac{1}{G}\tau_{xy}$$

$$\frac{dM}{dx} = V(x)$$

Elongation in Axial Members

$$e = \int_{0}^{L} \frac{F(x) \cdot dx}{A(x) \cdot E(x)}$$

$$e = \frac{FL}{EA}$$

$$e = \frac{FL}{EA} + \alpha \Delta TL$$

Angle of Twist

$$\phi = \int_0^L \frac{T(x) dx}{I_p(x) G(x)}$$

$$\phi = \frac{TL}{I_p G}$$

Maximum Shear Stress

$$\tau_{max} = \frac{Tr}{I_n}$$

Polar Moment of Inertia

$$I_p = \int_A \rho^2 dA \text{ (General)}$$

$$I_p = \frac{\pi d^4}{32} \text{ (Circular Shaft)}$$

$$I_P = \frac{\pi}{32} (d_o^4 - d_i^4) \text{ (Tubular Shaft)}$$

Equilibrium Beam Relationships

$$\Delta V = P$$

$$\Delta V = V_2 - V_1 = \int_{x_1}^{x_2} p(x) \ dx$$

$$\frac{dV}{dx} = p(x)$$

$$\Delta M = -M$$

$$\Delta M = M_2 - M_1 = \int_{x_1}^{x_2} V(x) \ dx$$

$$\frac{dM}{dx} = V(x)$$

Flexure Stress in Bending Beams

$$\sigma_{x} = \frac{-My}{I_{z}}$$

$$S = \frac{I_z}{c}$$

$$S_{design} \ge \frac{M_{max}}{\sigma_{allow}}$$

Centroids

$$\bar{y} = \frac{\sum_{i} \bar{y}_{i} A_{i}}{\sum_{i} A_{i}}$$

Moment of Inertia

$$I_z = \int_A y^2 dA$$

Rectangle:

$$I_z = \frac{bh^3}{12}$$

Solid Circular Section:

$$I_z = \frac{\pi d^4}{64}$$

Hollow Circular Section:

$$I_z = \frac{\pi}{64} (d_0^4 - d_i^4)$$

Parallel Axis Theorem

$$I_{axis,any} = I_c + d^2 A$$

$$I = \sum_i (I_{c,i} + d_i^2 A_i)$$

Mechanics

Shear Stress in Bending Beams

$$\tau = \frac{VQ}{It}$$

$$Q = \sum_{i} \bar{y_i}' A_i'$$

Solid Circular Section:

$$Q_{max} = \frac{1}{12}d^3$$

Hollow Circular Section:

$$Q_{max} = \frac{1}{12} [d_o^3 - d_i^3]$$

Shear Flow

$$q = \frac{VQ}{I}$$

$$n_f \tau_f A_f \ge q \Delta s$$

Stress Transformations

$$\begin{split} & \sigma_n = \left(\frac{\sigma_x + \sigma_y}{2}\right) + \left(\frac{\sigma_x - \sigma_y}{2}\right) \cos(2\theta) + \tau_{xy} \sin(2\theta) \\ & \sigma_n = \left(\frac{\sigma_x + \sigma_y}{2}\right) - \left(\frac{\sigma_x - \sigma_y}{2}\right) \cos(2\theta) - \tau_{xy} \sin(2\theta) \\ & \sigma_x + \sigma_y = \sigma_n + \sigma_t \\ & \tau_{nt} = -\left(\frac{\sigma_x - \sigma_y}{2}\right) \sin(2\theta) + \tau_{xy} \cos(2\theta) \end{split}$$

Principal (max/min) Stresses

$$\sigma_{avg} = \left(\frac{\sigma_x + \sigma_y}{2}\right)$$

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\sigma_1 = \sigma_{avg} + R$$

$$\sigma_2 = \sigma_{avg} - R$$

$$\tau_{max} = \pm R$$

$$\tan(2\theta_p) = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$
If $(\sigma_x - \sigma_y) > 0$, $\theta_P = \theta_{p,1}$
If $(\sigma_x - \sigma_y) < 0$, $\theta_P = \theta_{p,2}$

$$\tan(2\theta_s) = -\frac{(\sigma_x - \sigma_y)}{2\tau_{xy}}$$

$$\theta_s = \theta_p \pm 45$$

If $\theta_p > 0$, $\theta_s = \theta_p - 45$
If $\theta_n < 0$, $\theta_s = \theta_p + 45$

Pressure Vessels

$$\begin{split} \sigma_{sphere} &= \frac{pr}{2t} \\ \sigma_{axial} &= \frac{pr}{2t} \\ \sigma_{hoop} &= \frac{pr}{t} \\ \tau_{abs,max} &= \frac{\sigma_{max} - \sigma_{min}}{2} \end{split}$$

Differential Equations of the

Deflection Curve

Deflection =
$$v(x)$$

Slope =
$$\frac{dv}{dx} = \theta(x)$$

Moment,
$$M(x) = EI \frac{d^2v}{dx^2}$$

Shear,
$$V(x) = \frac{dM}{dx} = EI \frac{d^3v}{dx^3}$$

Load,
$$w(x) = \frac{dV}{dx} = EI \frac{d^4}{dx^4}$$