MATLAB 5:

Analytical Calculations:

Analytical Calculations.
MATLAR 5%
2 regions to consider &
() $R < r \rightarrow 0$ conclused $= 0$, $\therefore D = 0$
2) & Dr.ds = 47 r2ps
Dr 47R2 = 47r2ps
$Dr = PSI^2$ R^2
$Dr = P_{s} \underline{a}_{r}$
$WE = \frac{1}{2} \int \int \int \frac{101^2}{80} dv$
$= \frac{1}{280} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{2}^{3} \left(\frac{p_{s}^{2}}{R^{4}} \right) \cdot R^{2} r \sin \theta dr d\theta d\theta$
$= \frac{2\pi \rho_s^2}{\epsilon_0} \int_{2}^{3} \frac{1}{R^2} dv$
$=\frac{2\pi\rho_{s}^{2}}{\varepsilon_{0}}-\frac{1}{R}\bigg]_{2}^{3}$
$\frac{=2\pi (2\times10^{-6})^2}{20}\left(\frac{1}{6}\right)$
WE = 0.473 J/m²

MatLab Code:

```
%Jenisha Thevarajah
%400473218
e = 1e-9/(36*pi);
Ps = 2e-6;
r_upper = 3.0;
theta_upper = pi;
phi\_upper = (2*pi);
r_{lower} = 2.0;
theta_lower = 0;
phi_lower = 0;
num_of_r_steps = 50;
dr = (r_upper-r_lower)/num_of_r_steps; %r increment
num_of_phi_steps = 50;
dphi = (phi_upper-phi_lower)/num_of_phi_steps; %phi increment
num_of_theta_steps = 50;
dtheta = (theta_upper-theta_lower)/num_of_theta_steps; %theta increment
WE = 0;
for k=1:num_of_phi_steps
    for j=1:num_of_theta_steps
        for i=1:num_of_r_steps
            r = r_{lower+0.5*dr+(i-1)*dr}
            theta = theta_lower+0.5*dtheta+(j-1)*dtheta;
            phi = phi_lower+0.5*dphi+(k-1)*dphi;
            eMag = (Ps)/(e*r^2);
            dV = r^2*sin(theta)*dr*dtheta*dphi;
            dWE = 0.5*e*eMag*eMag*dV;
            WE = WE + dWE;
        end
    end
end
disp("Electric Energy: ");
disp(WE);
```

Output:

>> assignment5
Electric Energy:
 0.4738