Quiz 4: Mathematical Statistics (MATH-UA 234)

In-class 10/25 (15min). Print your name and NetID, write in the box, and circle your final answer.

Name:	NetII	D:				
Problem 1. For some fixed but unknown paramete	$r p \in (0, 1/2), a$	define the	e cumula	tive distr	ibution fur	action
$F_p(x) = \begin{cases} 0 \\ p \\ 1 \\ 1 \end{cases}$	$ \begin{array}{lll} 0 & x < -1 \\ v & -1 \le x \\ 1 - p & 0 \le x < \\ 1 & x \ge 2. \end{array} $	< 0 < 2				
Suppose $X_1,\ldots,X_n \sim F_p$ are all independent and defin	$ne\bar{X}_n=\tfrac{1}{n}(X_1+$	$+\cdots+X_n$).			
(a) Suppose $X \sim F_p$. What is $\mathbb{E}[X] = \int x dF_p(x) dx$	and $\mathbb{V}[X] = \int ($	$(x - \mathbb{E}[X$	$(2)^2 \mathrm{d}F_p(z)$	c)?		(5pts)
(b) What is $\mathbb{E}[\bar{X}_n]$ and $\mathbb{V}[\bar{X}_n]$?						(2 pts)
(c) Find an interval (a_n, b_n) depending on X_1, \ldots, X_n	X_n and $\alpha \in (0, 1]$	1) such tl	hat			
$\mathbb{P}[p]$	$\in (a_n, b_n)] \geq 1$	$-\alpha$.				
Your interval should not depend on p and shou	ild get smaller as	s n gets l	arger.			(8 pts)
Hint: it may help to use Chebyshev's inequality:						
$\mathbb{P}[Z - \mathbb{E}[Z] \geq$	$\geq \epsilon] \leq \frac{\mathbb{V}[Z]}{\epsilon^2},$	∀ <i>Z</i> .				

