Clase nº33

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

22 de Noviembre 2021

Objetivo de la clase

- ► Comprender el concepto de sucesión.
- Determinar si una sucesión es acotada o monótona.
- ► Calcular el límite de algunas sucesiones.

Definición 1

Se llama sucesión de números reales a una función definida sobre $\mathbb N$ con valores en $\mathbb R$, es decir, una regla que pone en correspondencia de manera única los elementos de $\mathbb N$ con números reales. En otras palabras, una sucesión es una función $f:\mathbb N\to\mathbb R$ tal que a cada n le asigna $f(n)=a_n$.

Observación

Podemos denotar a la sucesión como $\{a_n\}$ y a a_n se le llama término general de la sucesión.

Ejemplo 1

Dados los números reales x, d, una **progresión aritmética** es la sucesión definida por recurrencia:

$$a_1 = x$$

$$a_{n+1} = a_n + d.$$

Si
$$x = 3$$
 | $d = 4$ entances
 $a_1 = 3$
 $a_2 = 3 + 4 = 7$
 $a_3 = 7 + 4 = 11$
 $a_4 = 11 + 4 = 15$
 \vdots
 $a_k = 3 + (n-1)4$

Ejemplo 2

Dados los números reales x, r, una **progresión geométrica** es la sucesión definida por recurrencia:

$$a_1 = x$$

$$a_{n+1} = ra_n.$$

5:
$$x=2$$
 | $v=\frac{1}{2}$ entonces

 $a_1=2$
 $a_2=\frac{1}{2}, 2=1$
 $a_3=\frac{1}{2}, 1=\frac{1}{2}$
 $a_4=\frac{1}{2}, \frac{1}{2}=\frac{1}{2^2}$
 $a_{n}=2\left(\frac{1}{2}\right)^{n-1}$

Definición 2

Diremos que una sucesión es:

- 1. **estrictamente creciente** si $a_n < a_{n+1}$, para todo n.
- 2. **creciente** si $a_n \le a_{n+1}$, para todo n.
- 3. **estrictamente decreciente** si $a_n > a_{n+1}$, para todo n.
- 4. **decreciente** si $a_n \ge a_{n+1}$, para todo n.
- monótona si satisface cualquiera de las condiciones anteriores.

Ejemplo 3

Sea $a_n = 4(n-1) + 3$ para $n \in \mathbb{N}$. En este caso a_n es estrictamente creciente.

Ejemplo 4

Sea $a_n = 2 \cdot \left(\frac{1}{2}\right)^n$, para $n \in \mathbb{N}$. En este caso a_n es estrictamente decreciente.

See
$$n \in \mathbb{N}$$
, let pre

 $a_{n+1} < a_n \iff 2\left(\frac{1}{2}\right)^{n+1} < 2\left(\frac{1}{2}\right)^n \qquad /.2^{n+1}$
 $\iff 2 < 2 \cdot 2$
 $\iff 2 < 4$

Definición 3

Diremos que una sucesión es **acotada** si existe un número positivo M tal que $|a_n| < M$, para todo $n \in \mathbb{N}$.

Ejemplo 5

La sucesión $a_n = \frac{1}{n}$, es acotada inferiormente por 0 y superiormente por 1.

Ejemplo 6

La sucesión $a_n = (-1)^n$, es acotada. En efecto, como tiene por recorrido $\{-1,1\}$, basta tomar algún M>1 para que $|(-1)|^n < M$, para todo $n \in \mathbb{N}$.

$$A_{1} = (-1)^{2} = -1$$

$$A_{2} = (-1)^{2} = 1$$

$$A_{3} = (-1)^{3} = -1$$

$$A_{4} = (-1)^{3} = 1$$

$$A_{4} = (-1)^{3} = 1$$

$$A_{5} = (-1)^{3} = 1$$

$$A_{6} = (-1)^{3} = 1$$

Ejemplo 7

La sucesión idéntica, $a_n=n$, para todo $n\in\mathbb{N},$ no es acotada superiormente.

Algunas consideraciones

Se define el conjunto $\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty,+\infty\}$ con las siguientes reglas aritméticas y de orden.

- 1. Para todo $x \in \mathbb{R}, -\infty < x < +\infty$. Se preservan las propiedades fundamentales de las desigualdades.
- 2. $(+\infty) + a = +\infty$, para todo $a \in \mathbb{R}$.
- 3. $(-\infty) + a = -\infty$, para todo $a \in \mathbb{R}$.
- 4. $(+\infty) \cdot a = +\infty$, si a > 0.
- 5. $(+\infty) \cdot a = -\infty$, si a < 0.
- 6. $(-\infty) \cdot a = -\infty$, si a > 0.
- 7. $(-\infty) \cdot a = +\infty$, si a < 0.
- 8. $(-\infty) \cdot (-\infty) = +\infty$.
- 9. $(-\infty) \cdot (+\infty) = (+\infty) \cdot (-\infty) = -\infty$.
- 10. $(+\infty) \cdot (+\infty) = +\infty$.

Observación

Llamaremos formas indeterminadas a:

$$(+\infty)+(-\infty), (+\infty)\cdot 0, (-\infty)\cdot 0, \frac{0}{0}, \frac{\pm\infty}{\pm\infty}.$$

Definición 4

 Diremos que una sucesión diverge a +∞, si para cada número M existe un número natural N tal que a_n > M para todo n ≥ N. Esto lo denotaremos simbólicamente por

$$\lim_{n\to+\infty}a_n=+\infty.$$

2. Diremos que una sucesión diverge a $-\infty$, si para cada número negativo \underline{m} existe un número natural N tal que $\widehat{a_n} < m$ para todo $n \ge N$. Esto lo denotaremos por

$$\lim_{n\to+\infty}a_n=-\infty.$$

```
Ejemplo 8
                  1, 2, 3, 4, ..., 15, ..., 144
 La sucesión a_n = n, diverge a +\infty.
Dedo ne Rt, por Principio de arquimeder tenans
are FNEIN tel que
                 MCN Sn=a,
 Luego, 4 n 2 N se tiene que
                  Mcn = an.
         In an=+00.
```

Ejemplo 9

Toda sucesión creciente no acotada superiormente diverge a $+\infty$.

Ejercicio propuesto

Toda sucesión decreciente no acotada inferiormente diverge a $-\infty$.

El siguiente teorema nos dá algunas propiedades de las sucesiones divergentes a $+\infty$ ó $-\infty$.

Teorema 5

1. Si $\lim_{n \to +\infty} a_n = +\infty$ y la sucesión $\{b_n\}$ es acotada inferiormente, entonces

$$\lim_{n\to+\infty}(a_n+b_n)=+\infty.$$

2. Si $\lim_{n \to +\infty} a_n = +\infty$ y si $b_n \ge c > 0$, para todo n, entonces

$$\lim_{n\to+\infty}(a_n\cdot b_n)=+\infty.$$

3. Si $\lim_{n\to+\infty} a_n = +\infty$ y $a_n \le b_n$, entonces

$$\lim_{n\to+\infty}b_n=+\infty.$$

Ejemplo 10 $\lim_{n\to+\infty} n^3 = +\infty.$ n > 1 , V ne IV See an= n, setiene que Luzys, 4-100 4-)0 T.S

Ejemplo 11

Si $b_n=2+n$, y $a_n=n$ para todo $n\in\mathbb{N}$, entonces $\lim_{n\to+\infty}n(2+n)=+\infty$.

Ejercicio propuesto

- 1. Mostrar que para cualquier constante real c, $\lim_{n\to+\infty}(n+c)=+\infty$.
- 2. Si c < 0, entonces

$$\lim_{n \to +\infty} nc =$$

Sucesiones convergentes no monótonas

Definición 6

Diremos que un número L, es el **límite de una sucesión** $\{a_n\}$ si dado un número positivo ϵ existe un número natural N tal que si $n \geq N$, se cumple que

$$|a_n - L| < \epsilon$$

es decir, $L - \epsilon < a_n < L + \epsilon$, para todo $n \ge N$.

Observación

En el caso de existir el número L, escribimos: $L = \lim_{n \to +\infty} a_n$ ó $a_n \to L$ cuando $n \to +\infty$ y también suele decirse que la sucesión $\{a_n\}$ **converge** hacia L.

Ejemplo 12

La convergencia de las sucesiones monótonas es un caso particular de esta definición.

Ejemplo 13

See E79, por propreded argumediane 3NEN tel que $\frac{1}{E} < N \iff \frac{1}{N} < E$.

Ast, bedu 870 17 N 7 & , tel que s: N >, N

Setiene que \[(-1)^n: \frac{1}{n} - 0 \] < \E

Bibliografía

		Autor	Título	Editorial	Año
	1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
			trascendentes tempranas	Learning	
ľ	2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
		Juan de	de una variable	Hill	
ľ	3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
			con Aplicaciones	THOMSON	
	4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.