1. 设有 n 个市场,第 j 个市场的位置为 (a_j,b_j) ,对某种货物的需要量为 $q_j(j=1,\ldots,n)$ 。现计划建立 m 个货栈,第 i 个货栈的容量为 $c_i(i=1,\ldots,m)$ 。试确定货栈的位置,使各货栈到各市场的运输量与路程乘积之和最小。

解. 第 i 个货栈的位置为 (u_i,v_i) ,假设使用欧几里得距离,那么第 i 个货栈到第 j 个市场的距离为 $\sqrt{(u_i-a_j)^2+(v_i-b_j)^2}$ 。

第 i 个货栈向第 j 个市场运输 $x_{i,j}$ 的货物,那么各货栈到各市场的运输量与路程乘积之和为 $\sum_{1 \leq i \leq m, 1 \leq j \leq n} x_{i,j} \sqrt{(u_i - a_j)^2 + (v_i - b_j)^2}$,记为 $\sum_{1 \leq i \leq m, 1 \leq j \leq n} x_{i,j} d_{i,j}$ 。

$$\text{minimize } \sum_{1 \leq i \leq m, 1 \leq j \leq n} x_{i,j} d_{i,j}$$

$$\text{subject to } \begin{cases} d_{i,j} = \sqrt{(u_i - a_j)^2 + (v_i - b_j)^2} \\ \sum_{i=1}^m x_{i,j} = q_j, \forall j \\ \sum_{j=1}^n x_{i,j} \leq c_i, \forall i \\ x_{i,j} \geq 0, \forall i, j \end{cases}$$