Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Направление подготовки 09.03.04 «Программная инженерия» Системное и прикладное программное обеспечение

Курсовая работа

Часть 1 По дисциплине «Дискретная математика» Вариант: 58

Выполнил: Ясаков Артем Андреевич

Группа: Р3113

Преподаватель: Поляков Владимир Иванович

Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $2 \le |x_2x_3-x_4x_5x_1| \le 3$ и неопределенное значение при $|x_2x_3-x_4x_5x_1|=4$

Таблица истинности

No	\mathbf{x}_1	\mathbf{X}_2	X 3	X ₄	X 5	X ₂ X ₃	$X_4X_5X_1$	$ X_2X_3-X_4X_5X_1 $	f
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	2	2	1
2	0	0	0	1	0	0	4	4	d
3	0	0	0	1	1	0	6	6	0
4	0	0	1	0	0	1	0	1	0
5	0	0	1	0	1	1	2	1	0
6	0	0	1	1	0	1	4	3	1
7	0	0	1	1	1	1	6	5	0
8	0	1	0	0	0	2	0	2	1
9	0	1	0	0	1	2	2	0	0
10	0	1	0	1	0	2	4	2	1
11	0	1	0	1	1	2	6	4	d
12	0	1	1	0	0	3	0	3	1
13	0	1	1	0	1	3	2	1	0
14	0	1	1	1	0	3	4	1	0
15	0	1	1	1	1	3	6	3	1
16	1	0	0	0	0	0	1	1	0
17	1	0	0	0	1	0	3	3	1
18	1	0	0	1	0	0	5	5	0
19	1	0	0	1	1	0	7	7	0
20	1	0	1	0	0	1	1	0	0
21	1	0	1	0	1	1	3	2	1
22	1	0	1	1	0	1	5	4	d
23	1	0	1	1	1	1	7	6	0
24	1	1	0	0	0	2	1	1	0
25	1	1	0	0	1	2	3	1	0
26	1	1	0	1	0	2	5	3	1
27	1	1	0	1	1	2	7	5	0
28	1	1	1	0	0	3	1	2	1
29	1	1	1	0	1	3	3	0	0
30	1	1	1	1	0	3	5	2	1
31	1	1	1	1	1	3	7	4	d

Аналитический вид

КДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \lor \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \lor \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \lor \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \lor \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x$

ККНФ:

$$f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5)$$

$$(x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})$$

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5)$$

$$(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5)$$

$$(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})$$

$$(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$$

= (0, 3, 4, 5, 7, 9, 13, 14, 16, 18, 19, 20, 23, 24, 25, 27, 29)

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	K ⁰ (f)			K¹(f)	Z(f)		
m ₁	00001	+	m ₁ -m ₁₇	X0001	X0001		
m ₂	00010	+	m ₂ -m ₆	00X10	00X10		
m ₆	00110	+	m ₂ -m ₁₀	0X010	0X010		
m ₈	01000	+	m6-m22	X0110	X0110		
m ₁₀	01010	+	m ₈ -m ₁₀	010X0	010X0		
m ₁₁	01011	+	m ₈ -m ₁₂	01X00	01X00		
m ₁₂	01100	+	m ₁₀ -m ₁₁	0101X	0101X		
m ₁₅	01111	+	m ₁₀ -m ₂₆	X1010	X1010		
m ₁₇	10001	+	m ₁₁ -m ₁₅	01X11	01X11		
m ₂₁	10101	+	m ₁₂ -m ₂₈	X1100	X1100		
m ₂₂	10110	+	m ₁₅ -m ₃₁	X1111	X1111		
m ₂₆	11010	+	m ₁₇ -m ₂₁	10X01	10X01		
m ₂₈	11100	+		1X110	1X110		
m ₃₀	11110	+	m ₂₂ -m ₃₀				
m ₃₁	11111	+	m ₂₆ -m ₃₀	11X10	11X10		
			m ₂₈ -m ₃₀	111X0	111X0		
			m ₃₀ -m ₃₁	1111X	1111X		

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают верши-ны, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Также вычеркнем столбцы — надмножества других столбцов. Затем вы-черкнем импликанты, не покрывающие ни одной вершины.

		0-кубы										
Простые импликанты		0	0	0	0	0	0	1	1	1	1	1
		0	0	1	1	1	1	0	0	1	1	1
		0	1	0	0	1	1	0	1	0	1	1
		0	1	0	1	0	1	0	0	1	0	1
		1	0	0	0	0	1	1	1	0	0	0
		1	6	8	10	12	15	17	21	26	28	30
A	X0001	X						X				
В	00X10		X									
C	0X010				X							
D	X0110		X									
Е	010X0			X	X							
F	01X00			X		X						
G	0101X				X							
Н	X1010				X					X		
I	01X11						X					
J	X1100					X					X	
K	X1111						X					
L	10X01							X	X			
M	1X110											X
N	11X10									X		X
О	111X0										X	X
P	1111X											X

Ядро покрытия: $T = \{X0001, 10X01\}$

Получим следующую упрощенную таблицу:

		0-кубы									
		0	0	0	0	0	1	1	1		
		0	1	1	1	1	1	1	1		
Простые		1	0	0	1	1	0	1	1		
импликанты		1	0	1	0	1	1	0	1		
		0	0	0	0	1	0	0	0		
			8	10	12	15	26	28	30		
A	00X10	X									
В	0X010			X							
C	X0110	X									
D	010X0		X	X							
Е	01X00		X		X						
F	0101X			X							
G	X1010			X			X				
Н	01X11					X					
I	X1100				X			X			
J	X1111					X					
K	1X110								X		
L	11X10						X		X		
M	111X0							X	X		
N	1111X								X		

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

 $Y = (A \lor C) (D \lor E) (B \lor D \lor F \lor G) (E \lor I) (H \lor J) (G \lor L) (I \lor M) (K \lor L \lor M \lor N)$

Приведем выражение в ДНФ:

Y = ADIJL v AEGHM v AEGJM v CDHIL v...

Возможны следующие покрытия:

$$C_{1} = \begin{pmatrix} T \\ A \\ D \\ H \\ I \\ L \end{pmatrix} = \begin{pmatrix} X\,0001 \\ 10\,X\,01 \\ 00\,X\,10 \\ 010\,X\,0 \\ 01\,X\,11 \\ X\,1100 \\ 11\,X\,10 \end{pmatrix} \qquad C_{2} = \begin{pmatrix} T \\ A \\ D \\ I \\ J \\ L \end{pmatrix} = \begin{pmatrix} X\,0001 \\ 10\,X\,01 \\ 00\,X\,10 \\ 010\,X\,0 \\ X\,1110 \\ X\,1111 \\ 11\,X\,10 \end{pmatrix} \qquad C_{3} = \begin{pmatrix} T \\ A \\ E \\ G \\ H \\ M \end{pmatrix} = \begin{pmatrix} X\,0001 \\ 10\,X\,01 \\ 00\,X\,10 \\ 01\,X\,00 \\ X\,1010 \\ 01\,X\,11 \\ 111\,X\,0 \end{pmatrix} \\ S_{1}^{a} = 28\,S_{1}^{b} = 35 \qquad S_{2}^{a} = 28\,S_{2}^{b} = 35 \qquad S_{3}^{a} = 28\,S_{3}^{b} = 35$$

$$C_{4} = \begin{pmatrix} T \\ A \\ E \\ G \\ J \\ M \end{pmatrix} = \begin{pmatrix} X 0001 \\ 10 X 01 \\ 00 X 10 \\ 01 X 00 \\ X 1010 \\ X 1111 \\ 111 X 0 \end{pmatrix} \qquad C_{5} = \begin{pmatrix} T \\ C \\ D \\ H \\ I \\ L \end{pmatrix} = \begin{pmatrix} X 0110 \\ 10 X 01 \\ 00 X 10 \\ 010 X 0 \\ 01 X 11 \\ X 1100 \\ 11 X 10 \end{pmatrix} \qquad \dots$$

$$S_{4}^{a} = 28 S_{4}^{b} = 35 \qquad S_{5}^{a} = 28 S_{5}^{b} = 35$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{pmatrix} T \\ A \\ D \\ H \\ I \\ L \end{pmatrix} = \begin{pmatrix} X 0001 \\ 10 X 01 \\ 00 X 10 \\ 010 X 0 \\ 01 X 11 \\ X 1100 \\ 11 X 10 \end{pmatrix}$$

$$S^{3} = 28 S^{b} = 35$$

Этому покрытию соответствует следующая МДНФ:

 $f = \ x_2 \, x_3 \, x_4 \, x_5 \vee x_1 \, x_2 \, x_4 \, x_5 \vee x_1 \, x_2 \, x_4 \, x_5 \vee x_1 \, x_2 \, x_3 \, x_5 \vee x_1 \, x_2 \, x_4 \, x_5 \vee x_2 \, x_3 \, x_4 \, x_5 \vee x_1 \, x_2 \, x_4 \, x_5$

Минимизация булевой функции на картах Карно

Определение МДНФ

Определение МКНФ

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_2}\overline{x_3}\overline{x_4}x_5 \lor x_1\overline{x_2}\overline{x_4}x_5 \lor \overline{x_1}\overline{x_2}x_4\overline{x_5} \lor \overline{x_1}x_2\overline{x_3}\overline{x_5} \lor \overline{x_1}x_2x_4x_5 \lor x_2x_3\overline{x_4}\overline{x_5} \lor x_1x_2x_4\overline{x_5}$$
 $S_Q = 35, \tau = 2$
 $f = \overline{x_2}\overline{x_4}x_5(x_1 \lor \overline{x_3}) \lor x_2\overline{x_5}(\overline{x_1}\overline{x_3} \lor x_3\overline{x_4} \lor x_1x_4) \lor \overline{x_1}x_4(\overline{x_2}\overline{x_5} \lor x_2x_5)$
 $S_Q = 30, \tau = 4$
 $f = \overline{x_2}\overline{x_4}x_5(x_1 \lor \overline{x_3}) \lor x_2\overline{x_5}(\overline{x_1}\overline{x_3} \lor x_3\overline{x_4} \lor x_1x_4) \lor \overline{x_1}x_4(\overline{x_2} \lor x_5) (x_2 \lor \overline{x_5})$
 $S_Q = 29, \tau = 4$
 $\phi = \overline{x_2}x_5$
 $\phi = x_2 \lor x_5$
 $\phi = x_2 \lor x_5$
 $f = \phi \overline{x_4}(x_1 \lor \overline{x_3}) \lor x_2\overline{x_5}(\overline{x_1}\overline{x_3} \lor x_3\overline{x_4} \lor x_1x_4) \lor \overline{x_1}x_4(\overline{x_2} \lor x_5) \phi$
 $S_Q = 29, \tau = 4$
 $\varphi = \overline{x_2}x_5$
 $\varphi = x_2 \lor \overline{x_5}$
 $\varphi = x_3 \lor \overline{x_5}$
 φ

Факторизация и декомпозиция МКНФ

$$f = (x_{1} \lor \overline{x_{2}} \lor \overline{x_{3}} \lor \overline{x_{4}} \lor x_{5})(x_{2} \lor x_{4} \lor x_{5})(\overline{x_{1}} \lor x_{2} \lor \overline{x_{4}})(\overline{x_{1}} \lor \overline{x_{2}} \lor \overline{x_{5}})(x_{2} \lor \overline{x_{4}} \lor \overline{x_{5}})$$

$$(\overline{x_{1}} \lor \overline{x_{2}} \lor x_{3} \lor x_{4})(\overline{x_{2}} \lor x_{4} \lor \overline{x_{5}})(x_{1} \lor \overline{x_{3}} \lor x_{4} \lor \overline{x_{5}})$$

$$S_{Q}=36, \tau=2$$

$$f = (\overline{x_{1}} \lor \overline{x_{2}} \lor (x_{3} \lor x_{4})\overline{x_{5}})(x_{2} \lor \overline{x_{4}} \lor \overline{x_{1}}\overline{x_{5}})(x_{1} \lor \overline{x_{3}} \lor (\overline{x_{2}} \lor \overline{x_{4}} \lor x_{5})(x_{4} \lor \overline{x_{5}}))$$

$$(x_{2} \lor (\overline{x_{4}} \lor \overline{x_{5}})(x_{4} \lor x_{5}))$$

$$S_{Q}=34, \tau=4$$

$$f = (\overline{x_{1}} \lor \overline{x_{2}} \lor (x_{3} \lor x_{4})\overline{x_{5}})(x_{2} \lor \overline{x_{4}} \lor \overline{x_{1}}\overline{x_{5}})(x_{1} \lor \overline{x_{3}} \lor (\overline{x_{2}} \lor \overline{x_{4}} \lor x_{5})(x_{4} \lor \overline{x_{5}}))$$

$$(x_{2} \lor \overline{x_{4}}x_{5} \lor x_{4}\overline{x_{5}})$$

$$S_{Q}=33, \tau=4$$

$$\phi = x_{4} \lor \overline{x_{5}}$$

$$\phi = \overline{x_{4}} \lor \overline{x_{5}}$$

$$\phi = \overline{x_{4}} \lor \overline{x_{5}}$$

$$f = (\overline{x}_1 \vee \overline{x}_2 \vee (x_3 \vee x_4) \overline{x}_5)(x_2 \vee \overline{x}_4 \vee \overline{x}_1 \overline{x}_5)(x_1 \vee \overline{x}_3 \vee (\overline{x}_2 \vee \overline{x}_4 \vee x_5) \phi)(x_2 \vee \overline{\phi} \vee x_4 \overline{x}_5)$$

So=32, \tau=4

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0]) = 0$$

 $f([x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 1]) = 0$
 $f([x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 1]) = 1$
 $f([x1 = 0, x2 = 0, x3 = 1, x4 = 1, x5 = 0]) = 1$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_2} \, \overline{x_4} \, x_5 (x_1 \vee \overline{x_3}) \, \vee x_2 \, \overline{x_5} (\overline{x_1} \, \overline{x_3} \, \vee x_3 \, \overline{x_4} \, \vee x_1 \, x_4) \vee \, \overline{x_1} \, x_4 (\overline{x_2} \, \vee x_5) \, (x_2 \vee \overline{x_5}) \quad (S_Q = 29, \, \tau = 4)$$

Схема по упрощенной МКНФ:

$$f = (\bar{x}_1 \vee \bar{x}_2 \vee (x_3 \vee x_4) \bar{x}_5)(x_2 \vee \bar{x}_4 \vee \bar{x}_1 \bar{x}_5)(x_1 \vee \bar{x}_3 \vee (\bar{x}_2 \vee \bar{x}_4 \vee x_5) \phi)(x_2 \vee \bar{\phi} \vee x_4 \bar{x}_5)$$

$$\phi = x_4 \vee \bar{x}_5 \qquad (S_Q = 32, \tau = 4)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

Схема по упрощенной МКНФ в базисе И, НЕ:

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДНФ в базисе И-НЕ с ограничением на число входов(2):

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов(2):

