

Bac Blanc n°2 le 25 mai 2019

❖ La qualité de la rédaction, la clarté des raisonnements interviendront pour une

Part importante dans l'appréciation des copies

- ❖ Le sujet comporte trois exercices et un problème
 - > Un exercice sur les structures algébriques
 - > Un exercice sur les complexes
 - > Un exercice d'arithmétique
 - > Et un problème d'analyse

Les calculatrices ne sont pas autorisées

Prof: yassine mghazli

Exercice n°1 (4,5pts)

Partie I On définit sur \mathbb{R} la loi * par $x * y = \frac{1}{2}(1-2x)(2y-1) + \frac{1}{2}$

0.25pt

0.25pt

1pt

1) a- Montrer que * est une loi de composition interne dans $G = \mathbb{R} - \left\{ \frac{1}{2} \right\}$

b- vérifier que $\forall (x, y) \in G^2$; x * y = x + y - 2xy

c- Montrer que (G,*) est un groupe commutatif

2) 2Soit $x \in G$; On pose $x^{(0)} = 0$; $x^{(1)} = x$; $x^{(2)} = x * x$ et $\forall n \in (\mathbb{N}^* - \{1\})$; $x^{(n)} = \underbrace{x * x * ... x}_{nfois}$

0.5pt

0.25pt

0.75pt

0.5pt

0.5pt

a- 2Soit $x \in G$; Montrer par récurrence que $(\forall n \in \mathbb{N}); x^{(n)} = \frac{1}{2} (1 - (1 - 2x)^n)$

b- Résoudre dans G l'équation $2x^{(2019)} + e^{2019} - 1 = 0$

Partie II On pose $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ et M(x) = xA + I avec $x \in G$

On considère l'ensemble $E = \{M(x) \mid x \in G\}$

0.5pt 1) Vérifier que $A^2 = -2A$ puis montrer que E est stable dans $(M_2(\mathbb{R}),\times)$

2) Soit φ l'application de G vers E tel que $(\forall x \in G); \varphi(x) = M(x)$

Montrer que φ est un isomorphisme de (G,*) vers (E,\times) puis en déduire la structure de (E,\times)

3) On pose $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

a- Vérifier que B = M(1) puis déterminer B^{-1}

b- Montrer que $(\forall n \in \mathbb{N}^*), B^n = M\left(\frac{1-\left(-1\right)^n}{2}\right)$ et que $(B^n)^{-1} = B^n$

Exercice n°2 (3pts)

On considère dans \mathbb{C} l'équation $(E): z^2 - (2+m+im)z + im(2+m) = 0 \quad (m \in \mathbb{R})$

0.5pt

1) Vérifier que le discriminant de (E) est : $\Delta = (2 + m - im)^2$

0.5pt

2) Résoudre l'équation (E) ,on notera $z_{\scriptscriptstyle 1}$ la solution réelle et $\ z_{\scriptscriptstyle 2}$ l'autre solution.

1pt

3) Soit A l'image de z_1 et B l'image de z_2 . C et D les points tel que ACBD soit un carré direct

a- Montrer que d=1-i et c=(1+i)(1+m)

0.5pt

b- Déterminer (Δ) l'ensemble des points C lorsque m varie dans ${\mathbb R}$

0.5pt

4) Tracer (Δ) et les 4 carrés correspondants aux valeurs de m:0,2,-1 et -4

Page 2

http://www.bac-mazraa.com

Prof: yassine mghazli

Exercice n°3 (2.5pt)

On considère dans \mathbb{N} l'équation $(E): x^{103} + x - 1 \equiv 0[103]$

1pt

1) Résoudre dans \mathbb{N}^2 l'équation 2x-103y=1

0.75pt

2) a- Montrer que $(E) \Leftrightarrow 2x \equiv 1[103]$

0.75pt

b-Résoudre l'équation (E)

Problème

Partie I

- 0.25pt
- 1) a- Montrer que $(\forall x \in \mathbb{R}); \int_0^x (t-x)^2 dt = \frac{x^3}{3}$
- 0.5pt
- b- Montrer que $(\forall x \in \mathbb{R}); \int_{0}^{x} (t-x)^{2} e^{t} dt = 2e^{x} x^{2} 2x 2$
- 0.25pt
- c- Montrer que $(\forall x \in \mathbb{R}^+)$; $\int_0^x (t-x)^2 e^t dt \le e^x \int_0^x (t-x)^2 dt$
- 0.5pt
- 2) a- En déduire de ce qui précède que $(\forall x \in \mathbb{R}^+); \frac{x^2}{2} \le e^x x 1 \le \frac{x^2}{2} + \frac{x^3 e^x}{6}$
- 0.25pt
- b- Montrer que $\lim_{x \to 0^+} \frac{e^x x 1}{x^2} = \frac{1}{2}$
- 0.5pt
- 3) Soit φ la fonction définie sur \mathbb{R} par $\varphi(x) = e^{2x} (x^2 + 2)e^x + 1$
- 0.561
- a- Montrer que $\, arphi \,$ est strictement croissante sur $\, \mathbb{R}^{+} \,$
- 0.25pt
- b- En déduire que $(\forall x > 0); \varphi(x) > 0$

Partie II

Soit g la fonction définie sur \mathbb{R} par $\begin{cases} g(x) = \frac{xe^x}{e^x - 1} + \ln \frac{x}{e^x - 1}; x \neq 0 \\ g(0) = 1 \end{cases}$

- 0.5pt
- 1) a- Montrer que g est une fonction paire
- 0.25pt
- b- Montrer que $\,g\,$ est continue en $\,0\,$
- 0.5pt
- c Montrer que $(\forall x \in \mathbb{R}^*); g'(x) = \frac{\varphi(x)}{x(e^x 1)^2}$
- 0.25pt
- 2) a- Montrer que g est strictement croissante sur $[0,+\infty[$
- 0.25pt
- b-En déduire que $(\forall x \in \mathbb{R}); g(x) \ge 1$
- 0.25pt
- c- montrer que $\,C_{\!\scriptscriptstyle g}\,$ admet une Branche parabolique de direction $\,(O\!x)\,$ au voisinage de $\,-\infty\,$

Partie III

Soit
$$f$$
 la fonction définie sur \mathbb{R} par
$$\begin{cases} f(x) = \frac{2}{x} \ln \frac{e^x - 1}{x}; x \neq 0 \\ f(0) = 1 \end{cases}$$

0.5pt

1) Montrer que $(\forall x \in \mathbb{R})$: f(x) + f(-x) = 2 puis interpréter géométriquement ce résultat.

0.25pt

2) a- Montrer que $(\forall x \in \mathbb{R}^*)$: $f(x) = 2 \frac{\ln(1 + u(x))}{u(x)} \times \frac{e^x - x - 1}{x^2}$ avec $u(x) = \frac{e^x - x - 1}{x}$

0.25pt

b- En déduire que $\,f\,$ est continue à droite en $\,0\,$

0.25pt

3) a-vérifier que $(\forall x \in \mathbb{R}^*); f'(x) = \frac{2}{x^2} (g(x) - 1)$

0.25pt

b- Montrer que $(\forall x > 0)$; $f(x) = 2\left(1 + \frac{1}{x}\ln\left(1 - e^{-x}\right) - \frac{\ln x}{x}\right)$

0.5pt

c-En déduire les branches infinie de $\,C_{f}\,$

0.25pt

4) Dresser le tableau de variations de la fonction f

partie IV Soit F la fonction définie sur \mathbb{R}^+ par $\begin{cases} F(x) = \int_{1+x}^{e^x} \frac{1}{\ln t} dt; x > 0 \\ F(0) = 0 \end{cases}$

0.5pt

1) a- Montrer que $(\forall x > 0)$; $\frac{e^x - x - 1}{x} \le F(x) \le \frac{e^x - x - 1}{\ln(x + 1)}$

0.5pt

b-Montrer que F est continue et dérivable à droite en 0 (on rappelle que $\lim_{x\to 0^+}\frac{e^x-x-1}{x^2}=\frac{1}{2}$)

0.5pt

c- Déterminer la branche infinie de $\,C_{\scriptscriptstyle F}\,$.

0.25pt

2) a-Montrer que $(\forall x > 0)$; $F'(x) = \frac{e^x \ln(x+1) - x}{x \ln(x+1)}$

0.75pt

 $\text{b-Montrer que } \big(\forall x>0\big); \exists c\in \left]0,x\right[/F'\big(x\big)\ln\big(1+x\big)=e^c\ln\big(1+c\big)+\frac{e^c-c-1}{c+1}\right]$

0.25pt

c-En déduire que F est strictement croissante sur \mathbb{R}^+

Fin