

Kollaps/Thunderstorm: Reproducible Evaluation of Distributed Systems

Miguel Matos
U. Lisbon & INESC-ID Portugal

Tutorial @ DISCOTEC/DAIS 2020

OUTLINE

- Overview of Kollaps & Thunderstorm
- Hands-on tutorial: basics

Hands-on tutorial: advanced features

MOTIVATION

Amazon Found Every 100ms of Latency Cost them 1% in Sales

Nov 10, 2016, 11:43am EST

Why Brands Are Fighting Over Milliseconds

Video news

Buffering reduces video watch time by ~40%, according to research

September 14, 2016 (4 years ago)

Post Mortem: What Yesterday's Network Outage Looked Like

Zalando saw a 0.7% increase in revenue when they shaved 100ms off their load time.

MOTIVATION

- Performance depends heavily on underlying network
- Variability and Failures are the norm
- Need for tools for systematic evaluation of distributed applications
- Ability to answer key questions:
 - What is the impact of halving the network latency in application throughput?
 - What is the effect of packet loss?
 - What if ...

RELATED WORK

				Concurrent Path Link-Level emulation capabilities Any Topology									
NT	V	M. J.	TTT47 : 1	01							Any	Topology	T T 14
Name		Mode	HW ind.	Orchestration	deploymen	s congestion		Delay	Packet loss	-	Language	dynamics	Unit
DelayLine [47]	1994	User	V .	Centralized	Х	X	X	V	V	X	V .	X	P
ModelNet [81]	2002	Kernel	/	Centralized	X	/	14	14	1 2	X		/	P
Nist NET [33]	2003	Kernel	/	Centralized	X	X	12	14	15	12	/	X	P
NetEm [45]	2005	Kernel	/	(N/A: single link emulation only)			/	/	/	/	X	P	
Trickle [39]	2005	User	/	(N/A: single link emulation only) ✓			/	X	X	/	X	P	
EmuSocket [23]	2006 ₪	User	/	(N/A: sing	gle lin			14	X	X	/	X	P
ACIM/FlexLab [71]	2007	Kernel	/	Centralized				1 1	√ <u>₹</u>	1 1	/	/	V
NCTUns [85]	2007	Kernel	/	Centralized				/	/	/	/	X	P
Emulab [46, 88]	2008	Kernel	X	Centralized Main limitations:			14	√ <u>₹</u>	X	✓	1	V	
IMUNES [70]	2008	Kernel	X	Centralized	Centralized Centralized			1	✓	X	/	X	P
MyP2P-World [75]	2008	User	1	Centralized	Centralized - scalability				1	X	X	X	P
P2PLab [61]	2008	Kernel	1	Centralized					✓	Х	X	X	P
Netkit [67]	2008	Kernel	1	Centralized - accuracy			14	12	X	1	X	V	
DFS [79]	2009	User	1	Centralized	ralized			14	1	/	X	1	P
Dummynet [32]	2010	Kernel	1	Centralized				14	√ <u>₹</u>	X	/	X	P
Mininet [53]	2010	Kernel	1	Centralized				14	√ <u>₹</u>	15	/	1	P
SliceTime [86]	2011	Kernel	X	Centralized				1	X	X	/	1	V
Mininet-HiFi [44]	2012	Kernel	1	Centralized				15	√ <u>₹</u>	15	/	/	С
SplayNet [76]	2013	User	1	Decentralized			_	1	1	X	X	1	P
MaxiNet [87]	2014	Kernel	1	Centralized	X	/	√ <u>₹</u>	15	√ <u>₹</u>	14	/	1	P
Dockemu [80]	2015	User	1	Centralized	X	X	1	1	1	1	/	X	С
EvalBox [77]	2015	Kernel	1	Centralized	X	X	15	15	√ <u>₹</u>	14	/	1	P
ContainerNet [65]	2016	Kernel	1	Centralized	X	/	15	15	√ <u>₹</u>	14	/	1	C,V
Kathará [30]	2018	Kernel	/	Centralized	X	/	15	15	√ <u>₹</u>	X	/	X	C
Kollaps	2020	Kernel	✓	Decentralized	✓	/	√ ₹	15	√ <u>₹</u>	15	/	✓	C,V

KOLLAPS IN A NUTSHELL

- Applications are concerned about the end-toend properties:
 - latency, jitter, bandwidth, packet loss
- Rather than the internal network state leading

to those properties

```
© PING ms © DOWNLOAD Mbps © UPLOAD Mbps 107.53 93.20
```

```
Total Packet Loss

Upload
Packet Loss

1 0.0%
(0 / 149)

Download
Packet Loss
Late Packets

0.0%
(0 / 149)

Average Latency: 218.94ms
Average Jitter: 78.68ms
```


KOLLAPS IN A NUTSHELL

- Applications are concerned about the end-toend properties:
 - latency, jitter, bandwidth, packet loss
- Rather than the internal network state leading to those properties

Total Packet Loss

Upload
Packet Loss

1 0.0%
(0 / 149)

Download
Packet Loss

1 0.0%
(0 / 149)

Late Packets
1 0.0%
(68 / 149)

Average Latency: 218.94ms
Average Jitter: 78.68ms

Emulate only end-to-end properties

 Allows decentralized highly scalable emulation

ARCHITECTURE

EMULATION MANAGER (EM)

- One instance per physical machine
- Enforces topology properties
 - static properties
 - dynamic properties

EM: DYNAMIC PROPERTIES

EM: DYNAMIC PROPERTIES

RTT-Aware Min-Max model:

$$Share(f) = \left(RTT(f) \sum_{i=1}^{n} \frac{1}{RTT(f_i)}\right)^{-1}$$

- Intuition
 - Available bandwidth is inversely proportional to the RTT

ARCHITECTURE

EMULATION CORE

- Spawned by the Emulation Manager
- One instance per container
- Collect's container's usage
- Exchanges metadata with EC through shared memory
 - no bandwidth overhead for local containers

ARCHITECTURE

LINUX TC ABSTRACTION LAYER

Destination X

DESCRIBE DYNAMIC EXPERIMENTS

Emulation of network dynamics

THUNDERSTORM DESCRIPTION LANGUAGE

```
experiment:
   services:
   name: c1
    image: "iperf"
    name: sv
    image: "nginx"
       replicas: 2
   bridges:
   name: s1
10
   name: s2
   links:
12
   orig: c1
13
   dest: s1
14
  latency: 10
15
   up: 10Mbps
16
      down: 10 Mbps
17
      jitter: 0.25
```

```
dynamic:
20 orig: c1
21 dest: s1
22
    jitter: 0.5
23
  time: 120
24 action: leave
25
    name: s1
26
  time: 200
27 action: join
    orig: c1
28
    dest: s2
29
    up: 100Mbps
30
    down: 100Mbps
31
32
    latency: 10
33 time: 210
34
    action: leave
35
    name: sv
```


EVALUATION

- Link-level emulation
- Scalability and metadata overhead
- Short- and long-lived connections
- Cubic and Reno congestion control algorithms
- Dynamic behavior
- Large-scale topologies
- Reproducing published results
- Geo-replicated Systems
- What-if use cases

EVALUATION

- Link-level emulation
- Scalability and metadata overhead
- Short- and long-lived connections
- Cubic and Reno congestion control algorithms
- Dynamic behavior
- Large-scale topologies
- Reproducing published results
- Geo-replicated Systems
- What-if use cases

LARGE-SCALE TOPOLOGIES

- Scale-free networks with random ping requests
- Mean-square error w.r.t. theoretical RTT:

Size (# nodes + # switches)	KOLLAPS	Mininet	Maxinet
1000	0.0261	0.0079	28.0779
2000	0.0384	N/A	347.5303
4000	0.0721	N/A	N/A

GEO-REPLICATED SYSTEM

- Cassandra on EC2 (replication factor: 2)
 - 4 replicas in Frankfurt
 - 4 replicas in Sydney
 - 4 YCSB clients in Frankfurt

WHAT-IF SCENARIO

- Cassandra on EC2 (replication factor: 2)
 - 4 replicas in Frankfurt
 - 4 replicas in Sydney (Seoul)
 - 4 YCSB clients in Frankfurt

CONCLUSION AND FUTURE WORK

- KOLLAPS: a decentralized topology emulator
 - Focuses on end-to-end properties
 - Relies on network collapsing techniques
 - Leverages Linux tc and Container Technologies
- Thunderstorm
 - Language to concisely write dynamic experiments
 - Precise description of experiments
 - Key to reproducibility
- Team
 - Miguel Matos, Valerio Schiavoni, Shady Issa, Paulo Gouveia, João Neves, Carlos Segarra, Luca Liechti

https://github.com/miguelammatos/Kollaps

PART II: HANDS-ON TUTORIAL

Overview of Kollaps & Thunderstorm

Hands-on tutorial: basics

Hands-on tutorial: advanced features

PART II: HANDS-ON TUTORIAL

Goal

- Install Kollaps/Thunderstorm
 - Assumptions
 - Linux
 - Docker and Docker Swarm
- Run a simple experiment
 - iPerf3 server
 - iPerf3 client
 - measure bandwidth
 - measure ping

ARCHITECTURE

IPERF3 TOPOLOGY

IPERF3 TOPOLOGY

PART II: HANDS-ON TUTORIAL

- Goal
 - Install Kollaps/Thunderstorm
 - Assumptions
 - Linux
 - Docker and Docker Swarm
 - Run a simple experiment
 - iPerf3 server
 - iPerf3 client

https://github.com/miguelammatos/Kollaps

https://github.com/miguelammatos/Kollaps/wiki

