VERSUCH NUMMER

TITEL

TU Dortmund – Fakultät Physik

Maximilian Sackel
Maximilian.sackel@gmx.de

Philip Schäfers phil.schaefers@gmail.com

Abgabe: DATUM

Durchführung: DATUM

Inhaltsverzeichnis

1	Theoretische Grundlage								
	1.1	1.1 Güteziffer							
	1.2	Massendurchsatz	4						
	 1.3 Mechanische Kompressorleistung 1.4 Aufbau einer Wärmepumpe 1.5 Fehlerrechnung 1								
		1.5.1 Mittelwert	4						
		1.5.2 Gauß'sche Fehlerfortpflanzung	4						
		1.5.3 Lineare Regression	5						
2	Dur	Durchführung und Aufbau							
3	Auswertung								
	3.1	Messgrößen und Fehler	5						
	3.2	Näherungsfunktion							
4	Diskussion								
Lit	teratı	ur	8						

1 Theoretische Grundlage

Der zweite Hauptsatz der Thermodynamik sagt, dass Wärme von einem wärmeren zu einem kälteren Reservoir fließt. Mithilfe einer Wärmepumpe lässt sich dieser Prozess umkehren, dazu wird weitere Energie benötigt, zum Beispiel mechanische Arbeit. Ziel des Veruches ist es eine Aussage über die Qualität der Wärmepumpe zu treffen, um dies zu realisieren werden die Güteziffer und der Massendurchsatz untersucht.

1.1 Güteziffer

Der erste Hauptsatz der Wärmelehre verlangt, dass die vom Transportmedium an das wärmere Reservoire abgegebene Wärmemenge Q_1 gleich der Summe der aus dem kälteren Reservoire entnommenen Wärmemenge Q_2 und der aufgewendeten Arbeit A ist, also

$$Q_1 = Q_2 + A (1)$$

Die Güteziffer ν ist im idealisierten Fall, das Verhältniss zwischen der transportierten Wärmemenge Q_1 und der verrichteten mechanischen Arbeit A:

$$\nu_{Ideal} = \frac{Q_1}{A} \ . \tag{2}$$

Aus dem zweiten Hauptsatz der Thermodynamik lässt sich eine Beziehung zwischen den Wärmemengen Q_1 und Q_2 sowie den Temperaturen T_1 und T_2 der Reservoire herstellen

$$\frac{Q_1}{T_1} - \frac{Q_2}{T_2} = 0 \ . \tag{3}$$

Allerdings ist die Gültigkeit der Formel 3 an eine wichtige Forderung geknüpft: Die Wärmeübertragung muss reversibel verlaufen. Das bedeutet, dass der Prozess jederzeit umgekehrt ablaufen kann, wodurch die investierte mechanische Arbeit zurück gewonnen werden kann. Für den realistischen, irreversiblen Fall gilt eine andere Beziehung

$$\frac{Q_1}{T_1} - \frac{Q_2}{T_2} > 0 \ . \tag{4}$$

Mit den Gleichungen 1 und 3 folgt nun

$$Q_1 = A + \frac{T_2}{T_1} * Q_1 \tag{5}$$

und für die Güteziffer einer idealen Wärmepumpe

$$\nu_{Ideal} = \frac{Q_1}{A} = \frac{T_1}{T_1 - T_2} \ . \tag{6}$$

Die Güteziffer für eine reale Wärmepumpe folgt mit 1 und 4

$$\nu_{real} < \frac{T_1}{T_1 - T_2} \ . \tag{7}$$

Die reale Güteziffer wird im folgenden über

$$\nu_{real} = \frac{\Delta Q_1}{\Delta t N} = (m_1 c_w + m_k c_k) \frac{\Delta T_1}{\Delta t N} \tag{8}$$

berechnet, wobei N := gemittelte Leistungsaufnahme des Kompressors.

1.2 Massendurchsatz

Der Massendurchsatz für die Wärmepumpe berechnet sich nach [1,S.5] über den Differentialquotienten:

$$\frac{dQ_2}{dt} = (m_2 c_w + m_k c_k) \frac{\Delta T_2}{\Delta t N} \tag{9}$$

und

$$\frac{dQ_2}{dt} = L\frac{dm}{dt} \tag{10}$$

nach einsetzen von 9 in 10 folgt:

$$\frac{dm}{dt} = (m_2 c_w + m_k c_k) \frac{\Delta T_2}{\Delta t L} \tag{11}$$

wobei L := bekannte Verdampfungswärme.

1.3 Mechanische Kompressorleistung

1.4 Aufbau einer Wärmepumpe

1.5 Fehlerrechnung

Sämtliche Fehlerrechnungen werden mit Hilfe von Python 3.4.3 durchgeführt.

1.5.1 Mittelwert

Der Mittelwert einer Messreihe $x_1,...,x_{\rm n}$ lässt sich durch die Formel

$$\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k \tag{12}$$

berechnen. Die Standardabweichung des Mittelwertes beträgt

$$\Delta \overline{x} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (x_k - \overline{x})^2}$$
(13)

1.5.2 Gauß'sche Fehlerfortpflanzung

Wenn $x_1,...,x_n$ fehlerbehaftete Messgrößen im weiteren Verlauf benutzt werden, wird der neue Fehler Δf mit Hilfe der Gaußschen Fehlerfortpflanzung angegeben.

$$\Delta f = \sqrt{\sum_{k=1}^{N} \left(\frac{\partial f}{\partial x_{k}}\right)^{2} \cdot (\Delta x_{k})^{2}}$$
 (14)

1.5.3 Lineare Regression

Die Steigung und y-Achsenabschnitt einer Ausgleichsgeraden werden gegebenfalls mittels Linearen Regression berechnet.

$$y = m \cdot x + b \tag{15}$$

$$m = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{16}$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\,\overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{17}$$

[1]

2 Durchführung und Aufbau

3 Auswertung

3.1 Messgrößen und Fehler

Die Reserviore werden jeweils mit

$$V_{\text{Reservior}} = 4Liter$$
 (18)

Wasser befüllt. Desweiteren werden die Temperatur T1 und T2, der Druck $p_{\rm b}$ und $p_{\rm a}$ sowie die Leistung des Kompressors jede Minute von dem Messinstrumenten abgelesen. Die Messdaten werden in Tabelle 1 aufgelistet. Die Wärmekapazität der Reservoire beträgt

$$C_{\text{Reservoire}} = 750 \frac{J}{K} \tag{19}$$

Zu beachten ist das alle Messgrößen einen Messunsicherheit besitzen, einerseits eine Ablesefehler bei analogen Messinstrumenten als auch einen Technischen.

$$\Delta p = \pm 10 \text{kp}$$

$$\Delta C = \pm 10 \frac{\text{J}}{\text{K}}$$

$$\Delta V = \pm 1.6 \text{mL}$$

$$\Delta \rho = \pm 13 \frac{\text{kg}}{\text{m}^2}$$

Die Messunsicherheit der Dichte für Wasser kommt daraus zu stande, dass Wasser bei verschiedenen Temperatruren seine Dichte ändert.

t / s	T_1 / K	$p_{\rm b}$ / kPa	T_2 / K	$P_{\rm a}$ / kbar	Leistung / kW
0	294.1	466	294.3	496	0
1	294.7	608	294.3	425	1.18
2	295.9	618	293.2	446	1.2
3	296.9	638	292.5	466	1.25
4	298.2	628	291.3	466	1.25
5	299.4	709	290.2	466	1.25
6	300.7	730	289.3	466	1.25
7	302.0	760	288.5	455	1.25
8	303.2	790	287.7	445	1.25
9	304.4	812	287.0	425	1.24
10	305.5	820	286.3	425	1.24
11	306.6	840	285.6	415	1.23
12	307.6	861	284.9	405	1.23
13	308.7	891	284.1	405	1.23
14	309.7	911	283.5	395	1.23
15	310.7	922	282.8	395	1.24
16	311.6	963	282.2	385	1.25
17	312.5	993	281.5	385	1.25
18	313.5	1003	281.0	375	1.25
19	314.3	1023	280.5	365	1.25
20	315.2	1044	280.0	365	1.25
21	316.0	1064	279.5	365	1.25
22	316.8	1094	279.0	365	1.25
23	317.5	1104	278.6	355	1.25
24	318.3	1115	278.3	355	1.25
25	319.0	1135	277.9	355	1.25
26	319.8	1155	277.5	345	1.25
27	320.5	1175	277.2	345	1.25
28	321.2	1196	276.9	345	1.25
29	321.8	1216	276.6	345	1.25
30	322.5	1226	276.3	345	1.25
31	323.3	1236	276.1	354	1.25

 ${\bf Tabelle~1:}$ Dem Versuchsaufbau entommene Messgrößen

Abbildung 1: Temperaturverläufe T1 und T2

3.2 Näherungsfunktion

Mit einer nicht-linearen Ausgleichsgraden soll der Temperaturverlauf mit Hilfe der Gleichung approximiert werden. Eine Approximation soll mittels eines Polynoms 2-Grades erfolgen.

$$T(t) = At^2 + Bt + C (20)$$

Die Ermittelung der Ausgleichsgraden erfolgtmit hilfe von Python 3.4.3.

4 Diskussion

Literatur

 $[1] \quad {\rm TU~Dortmund}.~\textit{Versuch~zum~Literaturverzeichnis}.~2014.$