Cálculo Avanzado

Primer Cuatrimestre 2017

Primer Parcial - 16/05/2017

Nombre y apellido:

LU:

1. Ana está intentando estudiar pero su hermano Beto quiere jugar con ella a toda costa. Para que no moleste, Ana va a elegir una función $f:\mathbb{N}\to\mathbb{N}$ y un $n\in\mathbb{N}$ y pedirle que escriba en un cuaderno los números naturales $f(n), f^{(2)}(n) = f(f(n)), \ldots, f^{(k)}(n), \ldots$ hasta que vuelva a aparecer n. Como no es infinitamente malvada, quiere darle una función y un número de manera que este proceso termine en finitos (al menos 2) pasos. ¿Cuántas funciones puede usar?

Resolución. Debemos calcular el cardinal del conjunto A de las funciones $f: \mathbb{N} \to \mathbb{N}$ tales que existen $n, k \in \mathbb{N}$ con $f^{(k)}(n) = n$. Formalmente, si ponemos

$$A_{n,k} := \{ f : \mathbb{N} \to \mathbb{N} : f^{(k)}(n) = n \} \text{ para } n, k \in \mathbb{N},$$

lo que buscamos es el cardinal de $A=\cup_{n,k\in\mathbb{N}}A_{n,k}$. Analicemos $A_{n,k}$ para $n,k\in\mathbb{N}$ fijos. Para que una función $f:\mathbb{N}\to\mathbb{N}$ pertenezca a $A_{n,k}$ es necesario y suficiente que existan naturales n_1,\ldots,n_k tales que

$$f(n) = n_1, f^2(n) = f(n_1) = n_2, \dots, f^{(k)}(n) = f(n_{k-1}) = n.$$

Esto muestra que hay sólo finitas restricciones que una función debe satisfacer para pertenecer a $A_{n,k}$. Concretamente, para cada (k-1)-upla de números naturales distintos (n_1,\ldots,n_{k-1}) , hay $\#\mathbb{N}^{\mathbb{N}\setminus\{n_1,\ldots,n_{k-1}\}}$ funciones $f\in A_{n,k}$ tales que $f(n)=n_1,f(n_1)=n_2,\ldots,f(n_{k-1})=n$. Luego $\#A\geq \#A_{n,k}\geq c$ y como A está contenido en $\mathbb{N}^{\mathbb{N}}$, se sigue de Cantor-Berstein que #A=c.

2. Sea $f:\mathbb{R}\to\mathbb{R}$ una función. Para $I\subseteq\mathbb{R}$ un intervalo definimos la oscilación $\omega_f(I)$ de f en I por:

$$\omega_f(I) := \sup\{|f(x) - f(y)| : x, y \in I\}.$$

Para cada $x \in \mathbb{R}$, la oscilación $\omega_f(x)$ de f en x se define por:

$$\omega_f(x) := \inf\{w_f((x - \delta, x + \delta)) : \delta > 0\}.$$

- a) Probar que f es continua en $x \in \mathbb{R}$ si y sólo si $\omega_f(x) = 0$.
- b) Para $\lambda>0$ consideramos en conjunto $A_\lambda:=\{x\in\mathbb{R}:w_f(x)<\lambda\}$. Probar que A_λ es abierto cualquiera sea $\lambda>0$. Deducir que el conjunto de puntos de continuidad de f es un G_δ .

Resolución. a) Sean $x_0 \in \mathbb{R}$ y $\varepsilon > 0$.

 \Longrightarrow) Dado que f es continua en x_0 , existe $\delta > 0$ de manera que si $x \in \mathbb{R}$ verifica $|x - x_0| < \delta$, entonces $|f(x) - f(x_0)| < \varepsilon$. Luego, si $x, y \in (x_0 - \delta, x_0 + \delta)$ por designaldad triangular tenemos

$$|f(x) - f(y)| \le |f(x) - f(x_0)| + |f(x_0 - f(y))| < 2\varepsilon.$$

Esto implica $\omega_f((x_0 - \delta, x_0 - \delta)) = \sup\{|f(x) - f(y)| : x, y \in (x_0 - \delta, x_0 + \delta)\} \le 2\varepsilon$ y en particular $\omega_f(x_0) \le 2\varepsilon$. Como $\varepsilon > 0$ era arbitrario se sigue $\omega_f(x_0) = 0$. \iff Tenemos $\omega_f(x_0) = 0$. Se sigue de su definición que existe $\delta > 0$ tal que $\omega_f((x_0 - \delta, x_0 + \delta)) < \varepsilon$. Luego, para $x \in (x_0 - \delta, x_0 + \delta)$ es:

$$|f(x) - f(x_0)| \le \sup\{|f(x) - f(y)| : x, y \in (x_0 - \delta, x_0 + \delta)\} = \omega_f((x_0 - \delta, x_0 + \delta)) < \varepsilon,$$

lo que muestra que f es continua en x_0 .

b) Sea $\lambda > 0$ y tomemos $x \in A_{\lambda}$, De la definición de A_{λ} tenemos que existe $\delta > 0$ tal que $\omega_f((x-\delta,x+\delta)) < \lambda$. Para probar que A_{λ} es abierto es suficiente ver que $(x-\delta,x+\delta) \subseteq A_{\lambda}$. Sea $y \in (x-\delta,x+\delta)$. Como el intervalo $(x-\delta,x+\delta)$ es un abierto de \mathbb{R} , existe r > 0 tal que $(y-r,+r) \subseteq (x-\delta,x+\delta)$. Evidentemente esto implica $\omega_f((y-r,y+r)) \le \omega_f((x-\delta,x+\delta)) < \lambda$, de donde $\omega_f(y) < \lambda$. Finalmente, sea C_f el conjunto de puntos de continuidad de f. Por el ítem anterior, sabemos que $C_f = \{x \in \mathbb{R} : \omega_f(x) = 0\}$. Como un número real no negativo es 0 si y sólo si es menor que $\frac{1}{n}$ para cada $n \in \mathbb{N}$, deducimos:

$$C_f = \bigcap_{n \in \mathbb{N}} \left\{ x \in \mathbb{R} : \omega_f(x) < \frac{1}{n} \right\} = \bigcap_{n \in \mathbb{N}} A_{\frac{1}{n}}.$$

Concluimos que C_f es un G_δ porque es la intersección de los numerables abiertos $A_{\frac{1}{n}}, n \in \mathbb{N}$.

3. Sea $C^1[0,1]$ el \mathbb{R} -espacio vectorial de las funciones derivables en [0,1] con derivada continua, junto con la norma $[f]:=\sup_{x\in[0,1]}|f(x)|+\sup_{x\in[0,1]}|f'(x)|$. Probar que el espacio métrico $(C^1[0,1],[\cdot])$ es completo.

Sugerencia: Tener presente el teorema fundamental del cálculo.

Resolución. Sea $(f_n)_{n\in\mathbb{N}}\subseteq (C^1[0,1],[\cdot])$ una sucesión de Cauchy. Notemos que las sucesiones $(f_n)_{n\in\mathbb{N}}, (f'_n)_{n\in\mathbb{N}}\subseteq (C[0,1],\|\cdot\|_{\infty})$ son de Cauchy pues

$$||f_n - f_m||_{\infty} \le |f_n - f_m|, ||f'_n - f'_m||_{\infty} \le |f_n - f_m|$$

cualesquiera sean $n,m\in\mathbb{N}$. Como el espacio métrico $(C[0,1],\|\cdot\|_{\infty})$ es completo, existen $f,g\in C[0,1]$ tales que $f_n\xrightarrow{\|\cdot\|_{\infty}}f$, $f'_n\xrightarrow{\|\cdot\|_{\infty}}g$. Asumamos por un momento que f es derivable y su derivada es g. Entonces, $f\in C^1[0,1]$ y además

$$[f_n - f] = ||f_n - f||_{\infty} + ||f'_n - f'||_{\infty} \xrightarrow[n \to \infty]{} 0,$$

con lo cual f resulta el límite de la sucesión $(f_n)_{n\in\mathbb{N}}$ en $(C^1[0,1],[\cdot])$. Por lo tanto, para concluir el ejercicio sólo resta probar que f es derivable y f'=g. Por el teorema fundamental del cálculo, para cada $n\in\mathbb{N}, x\in[0,1]$ tenemos

$$f_n(x) = \int_0^x f'_n(t) dt + f_n(0).$$

Haciendo tender n a infinito obtenemos

$$f(x) = \int_0^x g(t) \, dt + f(0),$$

pues las sucesiones $(f_n)_{n\in\mathbb{N}}$, $(f'_n)_{n\in\mathbb{N}}$ convergen uniformemente a f y g respectivamente. Nuevamente por el teorema fundamental del cálculo, de la última igualdad deducimos que f es derivable y su derivada es g.

4. a) Probar que un espacio métrico X totalmente acotado 1 es separable. Mostrar que la recíproca no es cierta, incluso para X acotado.

Desafío: encontrar un contraejemplo en que X no tenga puntos aislados.

b) Sea $A = \{0,1\}^{\mathbb{N}}$ el espacio de sucesiones de 0's y 1's dotado de la métrica

$$d(x,y) = \sum_{n \geq 1} \frac{|x_n - y_n|}{2^n}, \text{ para } x, y \in A.$$

Probar que A es separable.

Resolución. a) Sea X un espacio totalmente acotado. Fijemos para cada $n \in \mathbb{N}$ un cubrimiento \mathcal{U}_n de X por finitas bolas $B_1^n, B_2^n, \ldots, B_{j_n}^n$ de radio menor a $\frac{1}{n}$. Sea D el subconjunto de X formado por los centros de las bolas de estos cubrimientos. Puesto que D es una unión numerable de conjuntos finitos, es numerable. Veamos que es denso en X. Sean $x \in X$ y $\varepsilon > 0$. Si $n_0 \in \mathbb{N}$ es tal que $\frac{1}{n_0} < \varepsilon$, como \mathcal{U}_{n_0} es un cubrimiento de X existe una bola $B_i^{n_0}$ en \mathcal{U}_n de forma que $x \in B_i^{n_0}$. El centro x_i de esta bola es un elemento de D y además

$$d(x, x_i) < \frac{1}{n} < \varepsilon,$$

lo que concluye el ejercicio.

Veamos que un espacio X acotado y separable no es necesariamente totalmente acotado. Para eso, notemos que el espacio métrico (\mathbb{N}, δ) (donde δ es la distancia cero-uno) es acotado porque la distancia lo es y es separable. Sin embargo, no es totalmente acotado porque no es finito y cada bola de radio menor a 1 es unipuntual.

Desafío. En el ejemplo anterior, todos los puntos son aislados. Un ejemplo natural de un espacio separable, acotado y sin puntos aislados pero no totalmente acotado es (\mathbb{R}, d') donde $d'(x, y) = \min\{1, |x - y|\}$. Es acotado porque la métrica d' lo es, es separable porque la métrica d' es topológicamente equivalente a d pero no es totalmente acotado porque no se cubre por finitas bolas de radio menor a 1.

Alternativamente, se podía modificar ligeramente el ejemplo original para resolver el desafío. Consideremos el espacio X formado por una unión numerable disjunta de intervalos de $\mathbb R$ de longitud 1 (no los pensamos metidos en $\mathbb R$) junto con la métrica d que definimos a continuación. Dentro de cada intervalo I_n, d es la distancia usual de $\mathbb R$. Si I_n, I_m son dos intervalos distintos ponemos d(x,y)=1 para $x\in I_n, y\in I_m$. El espacio X con esa métrica es separable por ser una unión numerable de espacios separables y es acotado porque d lo es. Sin embargo, no es totalmente acotado porque ninguna cantidad finita de bolas de radio menor a 1 lo cubre.

b) Por lo hecho en el ítem anterior, alcanza con probar que A es totalmente acotado. Sea $\varepsilon > 0$. Como $\sum_{n \geq 1} \frac{1}{2^n} = 1 < \infty$, sabemos que existe $n_0 \in \mathbb{N}$ tal que $\sum_{n > n_0} \frac{1}{2^n} < \varepsilon$. Consideremos la colección de las bolas de radio $\varepsilon > 0$ centradas en algún punto del conjunto finito:

$$A_{n_0} := \{ a \in A : a_n = 0 \text{ si } n > n_0 \}.$$

 $^{^1}$ Recordar que Xes totalmente acotado si dado $\varepsilon>0$ existe un cubrimiento de X por finitas bolas abiertas de radio menor a ε

Sea $b \in A$. Por definición, la sucesión a que coincide con los primeros n_0 términos de b y es 0 a partir de ese momento está en A_{n_0} . Además,

$$d(a,b) = \sum_{n>1} \frac{|a_n - b_n|}{2^n} = \sum_{n>n_0} \frac{|a_n - b_n|}{2^n} \le \sum_{n>n_0} \frac{1}{2^n} < \varepsilon.$$

Luego, las bolas de radio ε centradas en elementos de A_{n_0} forman un cubrimiento de A. De la arbitrariedad de $\varepsilon > 0$ deducimos que A es totalmente acotado y en consecuencia es separable.

- 5. Sea $f:\mathbb{R}\to\mathbb{R}$ una función. Decimos que f es *quasi continua* en $x\in\mathbb{R}$ si dados $\varepsilon>0,\delta>0$, existen $z\in\mathbb{R}$, r>0 tales que:
 - I) $|f(y) f(x)| < \varepsilon$ siempre que |z y| < r.
 - II) $B_r(z) \subseteq B_{\delta}(x)$. (Notar que no necesariamente es $x \in B_r(z)$).

Probar que si f es quasi continua en todo $x\in\mathbb{R}$, entonces es continua en un denso de \mathbb{R} . Sugerencia: Considerar los conjuntos $A_n:=\{x\in\mathbb{R}:\omega_f(x)<\frac{1}{n}\}$.

Resolución. Supongamos que $f: \mathbb{R} \to \mathbb{R}$ es quasi continua en cada $x \in \mathbb{R}$. Analicemos qué relación tiene la sucesión de conjuntos sugeridos $\{A_n\}_{n \in \mathbb{N}}$ con lo pedido en el enunciado. Vemos por el ejercicio 2 que si C_f es el conjunto de puntos de continuidad de f, entonces

$$C_f = \bigcap_{n \in \mathbb{N}} A_n.$$

Como C_f es un subconjunto del espacio métrico completo \mathbb{R} , el teorema de Baire garantiza que si cada A_n es abierto y denso en \mathbb{R} , entonces C_f es denso. Como ya sabemos que A_n es abierto para cada $n \in \mathbb{N}$, alcanza con probar que A_n es denso. Sean $n \in \mathbb{N}$, $x \in \mathbb{R}$ y $\delta > 0$. Como f es quasi continua en x, dado un $0 < \varepsilon < \frac{1}{2n}$ existen $z \in \mathbb{R}$, r > 0 tales que:

- I) $|f(y) f(x)| < \varepsilon$ siempre que |z y| < r y
- II) $B_r(z) \subseteq B_{\delta}(x)$.

Por lo tanto, para $y, w \in (z - r, z + r)$ tenemos

$$|f(y) - f(w)| \le |f(y) - f(x)| + |f(x) - f(w)| < 2\varepsilon,$$

de donde $\omega_f((z-r,z+r)) \leq 2\varepsilon < \frac{1}{n}$. Esto implica $z \in A_n$. Como además $|z-x| < \delta$ y $\delta > 0$ era arbitrario, concluimos que A_n es denso en \mathbb{R} .