Lecture 12: Friction

- What is friction?
- Why is it important to know about friction for a control engineer?
- Static friction models
- Dynamic friction models

Book: Ch. 5

What is friction?

Apparent contact area = —

True contact area = —

- "The evil of all motion":
 - No matter which direction something is pushed, friction pulls it the other way
- But not all bad: Without friction we cannot move
 - Walking, cycling, driving, flying, ...

Control systems with friction, I

Friction is a problem for

- Control systems for positioning
 - Electrical and hydraulic actuators
 - Translational or rotational

- In process systems: Valves with friction
 - Often "stiction"

Control systems with friction, II

Friction can be used to control motion

Electronic stability control (ESC), "anti-skidding"

Without ESC:

Also ABS systems exploits friction characteristics

Static friction models

Figure 5.3: Static friction models: a) Colomb friction b) Coulomb+stiction c) Coulomb+stiction+viscous d) Stribeck effect e) Hess and Soom; Armstrong f) Karnopp model

Dry friction is

- Independent of area
 - Da Vinci
- Proportional to normal force
 - Amonton, Euler
- Independent of velocity
 - Coloumb

$$F = \mu F_N$$

Generalized Stribeck curve

Figure 5.2: The generalized Stribeck curve, showing friction as a function of velocity for low velocities, (Armstrong-Hélouvry et al. 1994).

Dynamic friction models

The Dahl model

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \sigma \left(v - |v| \frac{F}{F_c} \right)$$

Why dynamic friction models?

- Easier to simulate
- Easier to analyze
- They reproduce (to some extent) dynamic friction phenomena
 - Presliding displacement
 - friction force act as a spring in sticking region
 - Frictional lag
 - Dynamic friction force depends on direction of velocity
 - Varying break-away force
 - Break-away force depends on rate-of-change of applied force

The LuGre model

$$F = \sigma_0 z + \sigma_1 \frac{\mathrm{d}z}{\mathrm{d}t} + \sigma_2 v$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = v - \sigma_0 \frac{|v|}{g(v)} z$$

$$g(v) = F_c + (F_s - F_c) e^{-\left(\frac{v}{v_s}\right)^2}$$

ABS-system – blokkeringsfrie bremser

 Hva er det som gjør at bremsing, gass, styring får bilen til å endre hastighet?

Friksjon mellom hjul og vei

- Hva bestemmer friksjon?
 - Tyngde
 - Underlag og egenskaper ved dekk
 - tørr asfalt, våt asfalt, snø, is
 - Relativ hastighetsforskjell mellom bil og hjul
 - langsgående (longitudinal) slipp, side- (lateral) slipp

Slipp – relativ hastighetsforskjell

I langsretning:

$$\lambda_x := \frac{v_x - R\omega}{v_x}$$

I sideretning:

$$\lambda_y := \sin \alpha$$

$$\alpha := \delta + \arctan \frac{v_y}{v_x}$$

Friksjonskrefter

Coloumbs lov:

- Friksjonskrefter gitt av vertikale krefter og friksjonskoeffisient
- Friksjonskoeffisient gitt av slipp og underlag

$$\mu_x \approx \mu_x(\lambda_x, \lambda_y, \mu_H)$$
 $\mu_y \approx \mu_y(\lambda_y, \lambda_x, \mu_H)$

Friksjonskoeffisienter under bremsing

 Bremsing reduserer hjulhastighet i forhold til bilhastighet

$$\lambda_x := \frac{v_x - R\omega}{v_x}$$

Blokkeringsfrie bremser – ABS

- Ønsker konstant lav slipp under bremsing fordi
 - Det gjør bremsing mest effektivt
 - Kan styre bilen under bremsing

ABS i praksis

Bremselengde:

Unnamanøver:

