Lecture 20

Collisions: Impulse-momentum relations, elastic and inelastic collisions.

27 October - 2 November, 2021

Collisions

Impulse-momentum

Collision at t_0 : Find kinematics *just after* the collision, given kinematics *just before*.

1.
$$LMB: \sum \mathbf{F} = m\dot{\mathbf{v}}^G$$
; $AMB_{O}: \mathbf{M}^O = \dot{\mathbf{h}}^O$

- 2. Rigid body collisions are instantaneous.
- 3. *Integrate* these eqns. from $t_0 \delta t$ to $t_0 + \delta t$.
- 4. Assume system configuration remains unchanged during integration.

5. Force impulse at time
$$t_0$$
: $\mathbf{I}_f = \int_{t_0 - \delta t}^{t_0 + \delta t} \mathbf{F} dt$

6. Moment impulse at t_0 about O:

$$\mathbf{I}_{m}^{O} = \int_{t_{0} - \delta t}^{t_{0} + \delta t} \mathbf{M}^{O} dt = \int_{t_{0} - \delta t}^{t_{0} + \delta t} \left(\sum \mathbf{M}^{j} + \mathbf{r}^{i/O} \times \mathbf{F}^{i} \right) dt$$

Impulse-momentum relations

LMB:
$$\sum \mathbf{I}_f = m\mathbf{v}^G(t + \delta t) - m\mathbf{v}^G(t - \delta t)$$

$$AMB_{O}: \quad \mathbf{I}_{m}^{O} = \mathbf{h}^{O}(t + \delta t) - \mathbf{h}^{O}(t - \delta t)$$

Problem formulation

- I. **FBD** during collision with *only* impulses.
 - 1. *Instantaneous* collisions, so δt is small.
 - 2. Bounded forces impart no impulse.
- II. Relate <u>post</u>-collision and <u>pre</u>-collision kinematics by utilizing *impulse-momentum relations*
 - 1. in *directions* where force and moment impulses are known or are zero;
 - 2. about *points* where moment impulses are known or are zero.
- III. In *systems* with <u>many</u> bodies, internal impulses cancel out. Therefore,

Impulse-momentum relations for system

LMB:
$$\sum \mathbf{I}_{f}^{ext} = \mathbf{p}_{sys}(t + \delta t) - \mathbf{p}_{sys}(t - \delta t)$$

$$AMB_{O}: \quad \mathbf{I}_{m}^{O,ext} = \mathbf{h}_{sys}^{O}(t + \delta t) - \mathbf{h}_{sys}^{O}(t - \delta t)$$

Impact models

Impulse-momentum relations may **not** give enough equations. Need impact models.

- 1. Newton's restitution model. At each point of contact in a collision: $v_f = -ev_i$
 - i. $0 \le e \le 1$: restitution coefficient
 - ii. v_i : normal velocity of approach.
 - iii. v_f : normal velocity of separation.
 - iv. \Leftrightarrow balance of energy in single-point collisions: $e = 1 \implies$ collision conserves energy, else not.
 - v. *e* depends on impact velocity (*CV Raman*) and system geometry.
 - vi. Used mainly for <u>normal</u> impact.
 - vii. Can lead to **un**physical results.
- 2. Many other models. Open question still.

Best model so far: Rakshit & Chatterjee (2015)

Example 1

Find velocity of wheel's CM *just* after it hits the step. Wheel has mass *m* and radius of gyration *k*.

- 1. Post-collision: Wheel's CM velocity is \mathbf{v}^G and angular velocity $\boldsymbol{\omega}^f = \boldsymbol{\omega}_f \hat{\mathbf{E}}_3$.
- 2. **FBD** \Longrightarrow unknown force impulses in both horizontal and vertical directions at O.
- 3. So, write *Impulse-momentum* relation corresponding to $AMB_{/O}$:

$$\underbrace{m\mathbf{r}^{G/O} \times v\hat{\mathbf{E}}_{1} + \mathbf{I}^{G} \cdot \boldsymbol{\omega}^{i}}_{\mathbf{h}^{O}(t-\delta t)} = \underbrace{m\mathbf{r}^{G/O} \times \mathbf{v}^{G} + \mathbf{I}^{G} \cdot \boldsymbol{\omega}^{f}}_{\mathbf{h}^{O}(t+\delta t)}$$

- 4. 3 unknowns, 1 eqn. Need impact model:
 - $e = 0 \implies Wheel \text{ sticks to step} \implies$ $\mathbf{v}^G = \boldsymbol{\omega}^f \times \mathbf{r}^{G/O}$
- 5. Solve: $\omega = -(k^2 + r^2 rh)v/(k^2 + r^2)r$

Example 2

Particle *P* (mass *m*) hits the rod. Find the post-collision rotation rate of rod.

- 1. Post-collision: Rod's CM velocity is \mathbf{v}^G and angular velocity $\boldsymbol{\omega} = \boldsymbol{\omega} \hat{\mathbf{E}}_3$. P has vel. \mathbf{v}^P .
- 2. **FBD** \Longrightarrow NO external impules. So can write all *Impulse-momentum* relations:

LMB:
$$\underline{mv_0\hat{\mathbf{E}}_2 + MU_0\hat{\mathbf{E}}_1} = \underline{m\mathbf{v}^P + M\mathbf{v}^G}$$
$$\underline{\mathbf{p}_{sys}(t-\delta t)}$$

$$AMB_{/G}: \underline{m\mathbf{r}^{O/G} \times v_0 \hat{\mathbf{E}}_2} = \underline{m\mathbf{r}^{O/G} \times \mathbf{v}^P_{} + \mathbf{I}^G \cdot \boldsymbol{\omega}}_{\mathbf{h}_{sys}(t - \delta t)}$$

- 3. 5 unknowns, 3 eqns. Need impact model:
 - $e = 0 \implies P \text{ sticks to the rod} \implies \mathbf{v}^P = \mathbf{v}^G + \boldsymbol{\omega} \times \mathbf{r}^{O/G}$
- 4. Solve: $\omega = 12mv_0/(7m + 4M)L$

"Along with 'Antimatter,' and 'Dark Matter,' we've recently discovered the existence of 'Doesn't Matter,' which appears to have no effect on the universe whatsoever."

Dynamics matters!