MA 211 ABCD - Cálculo II

Primeiro Semestre de 2014

Prof. Rafael Leão (turmas AB) e Prof. Marcos Jardim (turmas CD) 04/04/2014

Nome:	RA:

Questões	Pontos
Q 1	
Q 2	
Q 3	
Q 4	
Q 5	
$T \circ t \circ l$	

Justifique cuidadosamente todas as suas respostas.

Questão 1. (2 pontos)

Mostre que a função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} \frac{x^3y^2}{x^4+y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

é contínua no ponto (0,0). Determine as derivadas parciais $f_x(0,0)$ e $f_y(0,0)$.

Questão 2. (2 pontos)

Encontre equações paramétricas para a reta tangente à curva definida pela interseção das superfícies $x^2+y^2=4$ e $x^2+y^2-z=0$ no ponto de coordenadas $(\sqrt{2},\sqrt{2},4)$.

Questão 3. (2 pontos)

Encontre todos os pontos de máximo e mínimo locais e pontos de sela da função $f(x,y)=x^4+y^4-4xy+1.$

Questão 4. (2 pontos)

Encontre os valores extremos da função $f(x,y)=y^2-y^4-x^2$ na região definida pela desigualdade $x^2+4y^2\leq 10$.

Questão 5. (2 pontos)

Determine o volume do maior paralelepípedo no primeiro octante com três faces nos planos coordenados xy, xz e yz e um vértice no plano x/a + y/b + z/c = 1, onde a,b,c>0.