

Warm-up for ESPnet Tutorial2 (How to add new tasks/models)

Presented by Jiatong Shi jiatongs@cs.cmu.edu

Agenda

- Why ESPnet can support different speech tasks? (5min)
- What components we need for a new task in ESPnet (3min)
- Today's task: ASVSpoof (3min)
- Colab going through (1h9min)

Attention!

- Since we follow almost the same installation procedure of ESPnet as Monday's tutorial, we will not go through that part today.
- Please start the Colab early and execute the installation procedures ahead of time (you can start to do the clicks during the first explanation period)
- Today, we will modify several lines of source code, which could potentially be lost when disconnected from colab.
- Therefore, please try to save your modification in a separate text file so as to avoid losing them.
- We also recommend you going with your own Github account and fork into your space if you have experience in that.

ESPnet in speech research

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

Unified form -> Unified software design

We design ESPnet by leveraging a unified mathematical form of sequence (X) to sequence (Y) transformation f

$$X = (x_1, x_2, \cdots, x_T) \xrightarrow{f} Y = (y_1, y_2, \cdots, y_N)$$

 $Y=(y_1,y_2,\cdots,y_N)$

ESPnet

ESPnet: End-to-end speech processing toolkit

Speech
Text
English Speech
Noisy Speech

 $f(\cdot)$

Text
Speech
German Text
Clean Speech

What components we need for a new task in ESPnet

• In short:

- Task library: the core procedure provided in the task (usually training and inference)
- Recipe: a recommend stages for the task (usually including data preparation, formatting, preprocess, training, inference, and evaluation as the major stages)

 You have already had experiences with the first tutorial

What components we need for a new task in ESPnet

- Task library (What we will focus today)
 - **bin** \rightarrow core entry of the library. All functions needs to use from here in ESPnet
 - fileio → I/O for different kinds of data (e.g., text, sound, rttm, music?)
 - tasks → the major step of executing a task
 - <task_name> (e.g., asr, tts, st, slu, diar, etc) → task-specific models and their corresponding loss calculation (computational graph construction)
- More in task library that won't be touched today
 - iterators, layers, main_funcs, optimizers, schedulers, samplers, text, torch_utils, train, utils

What components we need for a new task in ESPnet

Recipe

- Explicit recipe for a specific corpus
 - We touch that on Monday; will skip it for today (aka. you do not need to worry about this today :-))
- A template that includes all the recommend stages
 - We prepare 99%, but needs some of your inputs

Speaker Verification Anti-Spoofing

- What is the problem:
 - discern spoofing attacks from human natural speech

Wu, Z., Yamagishi, J., Kinnunen, T., Hanilçi, C., Sahidullah, M., Sizov, A., ... & Delgado, H. (2017). ASVspoof: the automatic speaker verification spoofing and countermeasures challenge. *IEEE Journal of Selected Topics in Signal Processing*, *11*(4), 588-604.

Speaker Verification Anti-Spoofing (Evaluation)

Equal-Error Rate (EER)

https://www.researchgate.net/figure/225180361_fig1_Fig-1-An-example-of-a-ROC-curve-its-AUC-and-its-EER

Time-for-Colab

