Exercise Sheet 2

January 2023

1 Continuity

Recall that we say that given two topological spaces $f: X \to Y$, a function is *continuous* if for each open set $U \subseteq Y$, $f^{-1}[U]$ is open. We say that it is *open* if for each open set $U \subseteq X$, f[U] is open. We furthermore say that f is *closed* if for each closed set V, f[V] is closed.

Exercise 1.1. Let $f: X \to Y$ be two partially ordered sets equipped with the Alexandroff topology. Recall that in the lecture it was shown that f is continuous if and only if it is monotone; and it is open if and only if it satisfies the back condition. Give conditions, like those presented in class, for f to be a closed map.

Exercise 1.2. Show the following are equivalent for a map $f: X \to Y$:

- 1. f is continuous;
- 2. Inverse images of closed sets are closed;
- 3. For each set B, $f^{-1}[int(B)] \subseteq int(f^{-1}[B])$.

Definition 1.1. Given a space (X, τ) , an equivalence relation \sim on X and the quotient map $q: x \to [x] := \{y \in X \mid x \sim y\}$, we define the quotient topology τ/\sim on X/\sim as $U \in \tau/\sim$ if $q^{-1}[U] \in \tau$.

Exercise 1.3. Let $(X, \tau), (Y, \tau')$ be topological spaces and \sim an equivalence relation on X. Let $f: (X, \tau) \to (Y, \tau')$ be a continuous map such that for any $x, y \in X$ such that $x \sim y$, we have that f(x) = f(y). Show that there exists a unique continuous map $g: (X/\sim, \tau/\sim) \to (Y, \tau')$ such that gq = f.

Exercise 1.4. Consider the subspaces: the interval I = [0, 1] and the unit circle $S^1 = \{x \in \mathbb{R}^2 \mid |x| = 1\}$. Consider also the equivalence relation \sim on I defined as $x \sim y$ if x = y or $x, y \in \{0, 1\}$.

Show that $(I/\sim, \tau/sim) \cong S^1$. **Hint:** Show that the map $x \mapsto (\sin 2\pi x, \cos 2\pi x)$ is well defined and induces a homeomorphism.

2 Metric Spaces

Given \mathbb{R} with the standard topology, there is a different definition of continuity which is familiar if you have taken a calculus or analysis course:

Definition 2.1. Let $f: \mathbb{R} \to \mathbb{R}$ be a map. We say that f is analytically continuous at a point c if and only if for any $\varepsilon > 0$, there exists a $\delta > 0$ such that for any $x \in \mathbb{R}$, if $|c - x| < \delta$ then $|f(c) - f(x)| < \varepsilon$. A function is analytically continuous if and only if it is analytically continuous at every point c.

Denote: $B_r^c = \{x \in \mathbb{R} \mid |x - c| < r\}$. This is often called the *open ball* around c of radius r. Notice that analytic continuity amounts to for all B_{δ}^c there exists $B_{\varepsilon}^{f(c)}$ such that if $x \in B_{\delta}^c$ then $f(x) \in B_{\varepsilon}^{f(c)}$.

- **Exercise 2.1.** 1. Given an open set U in the standard topology on the reals, show that for any $x \in U$ there exists ε such that $B_{\varepsilon}^x \subseteq U$.
 - 2. Show that for a map $f: \mathbb{R} \to \mathbb{R}$ it is analytically continuous if and only if it is continuous with regards to the standard topology on \mathbb{R} .

One of the first reasons people have explored topology is to axiomatise the meaning of a metric space

Definition 2.2. A metric space is a pair (X, d) with a set X and a map $d: X \times X \to [0, \infty)$, such that for any $x, y, z \in X$, the following conditions hold:

- 1. d(x,x) = 0.
- 2. If $x \neq y$, then d(x, y) > 0 (separation).
- 3. d(x,y) = d(y,x) (symmetry).
- 4. $d(x,z) \leq d(x,y) + d(y,z)$ (triangle inequality).

Exercise 2.2. Verify that \mathbb{R} with the distance function |y-x| forms a metric space. **Hint:** Show that $|x-y|^2 \le (|x-z|+|z-y|)^2$ and use the fact that for any a,b>0 we have that $a^2 \le b^2$ if and only if a < b.

In fact, we also have that \mathbb{R}^2 with the Euclidean distance function $d((x_1, y_1), (x_2, y_2)) = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$ is a metric space.

Exercise 2.3. We define a ball in a metric space (X, d) as $B(x, r) = \{y \in X \mid d(x, y) < r\}$. Show that the balls are closed under binary intersections and that it covers X; hence show that every metric space induces a topology, called the *metric topology*. Also show that on the real line, the metric topology is the standard topology.

Definition 2.3. Given two metric spaces (X, d_1) and (Y, d_2) we define an isometry to be a bijective map $f: (X, d_1) \to (Y, d_2)$ such that for any $x, y \in X$ we have that d(f(x), f(y)) = d(x, y)

Exercise 2.4. Show that every isometry is a homeomorphism.

Exercise 2.5. Given a metric space (X, d), a topological space (Y, τ) and a homeomorphism $f: (Y, \tau) \to (X, d)$, show that f induces a metric space on (Y, τ) .

3 Filters and Filter Convergence

In class we saw the definition of a filter base and of filter convergence. We briefly recall these definitions here:

Definition 3.1. Let X be a set. We say that a collection of subsets $F \subseteq \mathcal{P}(X) - \{\emptyset\}$ is a *filter base* if it satisfies the following:

- $X \in F$;
- If $A, B \in F$ then $A \cap B \in F$.

We say that a given filter base is a *filter* if it is upwards closed: whenever $A \in F$ and $A \subseteq B$ then $B \in F$.

Solve the exercise from the previous exercise sheet, now with a newfound glee from understanding the definition of a filter:

Exercise 3.1. Show that neighbourhoods are a filter such that:

- 1. For every $U \in N(x)$, we have that $x \in U$.
- 2. N(x) is closed under finite intersections given a finite sequence $\{V_i\}_{i\in I}\subseteq N(x)$, we have that $\bigcap_{i\in I}V_i\in N(x)$.
- 3. N(x) is an up set if $U \in N(x)$ and $U \subseteq V$, then $V \in N(x)$.
- 4. For every $U \in N(x)$, there exists some $V \in N(x)$, such that $V \subseteq U$ and for every $y \in V$, $U \in N(y)$.

A collection of subsets satisfying conditions (1)-(4) is called a filter.

Given a set X with a map $N: X \to \mathcal{PP}X$ such that N(x) is a filter for every $x \in X$, show that N induces a topology on X. (**Hint:** set U to be open if and only if for every $x \in U$ we have that $U \in N(x)$).

Exercise 3.2. Let $\{a, b, c\}$ be a set with three elements. Describe all filters and filter bases on this set.

Exercise 3.3. Let (X, τ) be a topological space. Show the following:

1. If F is a filter base, then

$$\uparrow F = \{ A \subseteq X : \exists B \in F, B \subseteq A \},\$$

is a filter.

2. Let $F \subseteq \mathcal{P}(X)$. We say that F has the finite intersection property if for all $A_0, ..., A_n \in F$, $A_0 \cap ... \cap A_n \neq \emptyset$. Show that if F has the FIP then

$$F^{\cap} = \{A_0 \cap ... \cap A_n : A_0, ..., A_n \in F\}$$

is a filter base.

Definition 3.2. Given a topological space (X, τ) and a filter F on X, we say that F is a convergent filter to some point $x \in X$ if for any $U \in N(x)$ we have that $U \in F$.

Exercise 3.4. Consider the subspace [0,1] of \mathbb{R} . We call a sequence $\{a_n : n \in \omega\}$ a converging sequence to a limit x if for any $U \in \tau$, $x \in U$ implies that there exists a natural number N such that for any n > N we have that $a_n \in U$.

- Show that in [0, 1], the limit is unique. That is, if a sequence converges, it converges to a unique point x. **Hint:** assume the opposite and construct two open sets that contradict this assumption.
- Show that each converging sequence defines a converging filter, and each converging filter contains a converging sequence.

Exercise 3.5. Describe converging filters over the Cantor space.