Statistical Mechanics

List of results and definitions

	Function of state	Statistical mechanical expression
$egin{array}{c} U \ F \end{array}$		$-rac{\mathrm{d} \ln Z}{\mathrm{d} eta} \ -k_{\mathrm{B}} T \ln Z$
\overline{S}	$= -\left(\frac{\partial F}{\partial T}\right)_V = \frac{U - F}{T}$	$k_{\mathrm{B}} \ln Z + k_{\mathrm{B}} T \left(\frac{\partial \ln Z}{\partial T} \right)_{\mathrm{V}}$
p	$= -\left(\frac{\partial F}{\partial V}\right)_T$	$k_{ m B} \ln Z + k_{ m B} T \left(rac{\partial \ln Z}{\partial T} ight)_{V} \ k_{ m B} T \left(rac{\partial \ln Z}{\partial V} ight)_{T} $
H	=U+pV	$k_{\mathrm{B}}T\left[T\left(\frac{\partial \ln Z}{\partial T}\right)_{V}+V\left(\frac{\partial \ln Z}{\partial V}\right)_{T}\right]$
G	= F + pV = H - TS	$k_{ m B}T\left[-\ln Z + V\left(rac{\partial \ln Z}{\partial V} ight)_{T} ight]$
C_V	$= \left(\frac{\partial U}{\partial T}\right)_V$	$k_{ m B}T \left(rac{\partial V}{\partial V} ight)_{T}$ $k_{ m B}T \left[T \left(rac{\partial \ln Z}{\partial T} ight)_{V} + V \left(rac{\partial \ln Z}{\partial V} ight)_{T} ight]$ $k_{ m B}T \left[-\ln Z + V \left(rac{\partial \ln Z}{\partial V} ight)_{T} ight]$ $k_{ m B}T \left[2 \left(rac{\partial \ln Z}{\partial T} ight)_{V} + T \left(rac{\partial^{2} \ln Z}{\partial T^{2}} ight)_{V} ight]$

$$\beta = \frac{1}{k_B T}$$

Fig. 20.3 Given Z, it takes only a turn of the handle on our 'sausage machine' to produce other functions of state.

Table 20.1 Thermodynamic quantities derived from the partition function Z.

Figures taken from Blundell

What about the Ising Model?

What is good/used for?

- Ferromagnetism.
- Widely used in the theory of phase transitions.

Why is so "famous"?

• Because it's very simple!

What are the "important" things?

$$E = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - h \sum_i \sigma_i$$

Total Energy

Neighbors interaction

Strength of the **B** field

Let's define an order parameter...

$$M = \left\langle \frac{N_{\uparrow} - N_{\downarrow}}{N} \right\rangle$$

Compute M as function of: the **interaction strength**, the **magnetic field**, and the **temperature**

First Case: Non-Interacting Spins

Non-Interacting Spins: Entropy

First Case: Interacting Spins

Mean Field Theory Approximation

- We neglect the correlations between neighboring spins.
- Assume that they are each **fluctuating independently** with the same statistical distribution.