

UNITED INTERNATIONAL UNIVERSITY

Topic: Problem Solving
Course Name: Data Mining
Course Code: CSE 4891
Section: B

Submitted By:

Name: Redwan Ahmed Utsab ID: 011222063 Department of Computer Science and Engineering United International University

Submitted To:

Teacher Name: Mrs. Humaira Anzum Neha Designation: Lecturer Department of Computer Science and Engineering United International University

DATE OF SUBMISSION: 17-09-2024

Answer to the question -01(A)

Applying the Apriori algorithm to the transaction data to find all frequent itemsets with a minimum relative support threshold of 50%.

To find the frequent itemsets, we first calculate the support for each item and then the combinations of items.

Minimum support threshold = $50\% \rightarrow 0.50 * 5$ (total transactions) = $2.5 \sim 3$ transactions.

Step 1: Count individual items:

- Book A: 4/5 = 80% (frequent)
- Book B: 3/5 = 60% (frequent)
- Book C: 3/5 = 60% (frequent)
- Book D: 4/5 = 80% (frequent)
- Book E: 3/5 = 60% (frequent)

Step 2: Generate 2-itemsets and calculate support:

- $\{Book A, Book B\}$: 2/5 = 40% (not frequent)
- $\{Book A, Book C\}: 2/5 = 40\% \text{ (not frequent)}$
- {Book A, Book D}: 3/5 = 60% (frequent)
- {Book A, Book E}: 2/5 = 40% (not frequent)
- {Book B, Book C}: 2/5 = 40% (not frequent)
- {Book B, Book D}: 2/5 = 40% (not frequent)
- {Book B, Book E}: 1/5 = 20% (not frequent)
- {Book C, Book D}: 2/5 = 40% (not frequent)
- {Book C, Book E}: 2/5 = 40% (not frequent)
- {Book D, Book E}: 3/5 = 60% (frequent)

Step 3: Generate 3-itemsets and calculate support:

- {Book A, Book B, Book C}: 1/5 = 20% (not frequent).
- {Book A, Book B, Book D}: 1/5 = 20% (not frequent).
- {Book A, Book B, Book E}: 0/5 = 0% (not frequent).
- {Book A, Book C, Book D}: 1/5 = 20% (not frequent).
- {Book A, Book C, Book E}: 1/5 = 20% (not frequent).
- {Book A, Book D, Book E}: 2/5 = 40% (not frequent).
- {Book B, Book C, Book D}: 1/5 = 20% (not frequent).
- {Book B, Book C, Book E}: 1/5 = 20% (not frequent).
- {Book B, Book D, Book E}: 1/5 = 20% (not frequent).
- {Book C, Book D, Book E}: 2/5 = 40% (not frequent).

Answer to the question -01(B)

Calculating the confidence for the following association rules derived from the frequent itemsets:

- 1. Confidence for $\{Book A\} \rightarrow \{Book B\} = Support(\{Book A, Book B\}) / Support(\{Book A\}) = 2/4 = 50\%.$
- 2. Confidence for $\{Book A\} \rightarrow \{Book D\} = Support(\{Book A, Book D\}) / Support(\{Book A\}) = 3/4 = 75\%.$

Answer to the question -01(C)

Support Calculation for {Book A, Book C, Book D}:

- Transactions containing {Book A, Book C, Book D}: Only Transaction 5 contains all three books together.
- Support of {Book A, Book C, Book D}: 1/5 = 20%
 - 1. Closed Pattern: To be considered closed, the itemset must first be frequent, and then none of its supersets should have the same support. However, since {Book A, Book C, Book D} is not frequent (support of only 20%), it cannot be considered a closed pattern.
 - 2. Max Pattern: Similarly, to be considered maximal, the itemset must be frequent, and none of its supersets should be frequent. Again, because {Book A, Book C, Book D} is not frequent, it cannot be considered a maximal pattern either.

Answer to the question -02(A)

Step 1:

Calculate Gini Impurity for the full dataset

There are 5 records:

- 2 "Yes" (Loan Approved)
- 3 "No" (Loan Not Approved)

Gini impurity for the dataset is calculated as follows:

```
Gini_total = 1 - (P(Yes)^2 + P(No)^2)
Gini_total = 1 - ((2/5)^2 + (3/5)^2)
```

Gini total = 1 -
$$(0.16 + 0.36)$$
 = 1 - 0.52 = 0.48

Step 2:

Calculate Gini Impurity for each feature

We will calculate the Gini impurity for each feature and determine the best split. 1. Split by Credit Score:

- High (2 records): 1 Yes, 1 No
- Gini_High = $1 ((1/2)^2 + (1/2)^2) = 1 0.5 = 0.5$
- Medium (2 records): 1 Yes, 1 No
- Gini_Medium = $1 ((1/2)^2 + (1/2)^2) = 1 0.5 = 0.5$
- Low (1 record): 0 Yes, 1 No
- Gini Low = $1 ((0/1)^2 + (1/1)^2) = 1 0.5 = 0$
- Weighted Gini for Credit Score:
- Gini CreditScore = (2/5)*0.5 + (2/5)*0.5 + (1/5)*0 = 0.4
- 2. Split by Annual Income:
 - High (2 records): 1 Yes, 1 No
 - Gini High = $1 ((1/2)^2 + (1/2)^2) = 1 0.5 = 0.5$
 - Medium (1 records): 1 Yes, 0 No
 - Gini_Medium = $1 ((1/1)^2 + (0/1)^2) = 1 1 = 0$
 - Low (2 record): 0 Yes, 2 No
 - Gini Low = $1 ((0/2)^2 + (2/2)^2) = 1 1 = 0$
 - Weighted Gini for Annual Income:
 - Gini AnnualIncome = (2/5)*0.5 + (2/5)*0 + (1/5)*0 = 0.2

- 3. Split by Employment Status:
 - Employed (3 records): 2 Yes, 1 No
 - Gini Employed = $1 ((2/3)^2 + (1/3)^2) = 1 0.44 0.11 = 0.44$
 - Unemployed (2 records): 0 Yes, 2 No
 - Gini Unemployed = $1 ((0/2)^2 + (2/2)^2) = 0$
 - Weighted Gini for Employment Status:
 - Gini EmploymentStatus = (3/5)*0.44 + (2/5)*0 = 0.264
- 4. Split by Existing Debt:
 - Low (1 record): 1 Yes, 0 No
 - Gini Low = 0
 - Medium (2 records): 1 Yes, 1 No
 - Gini Medium = 0.5
 - High (2 records): 0 Yes, 2 No
 - Gini High = 0
 - Weighted Gini for Existing Debt:
 - Gini ExistingDebt = (1/5)*0 + (2/5)*0.5 + (2/5)*0 = 0.2

Step 3:

Choose the best feature for the first split

Here are the Gini values:

- Credit Score Gini: 0.4
- Annual Income Gini: 0.2
- Employment Status Gini: 0.264
- Existing Debt Gini: 0.2

<u>Step 4:</u>

"Annual Income" and "Existing Debt" both have the same Gini impurity (0.2). Further split on "Annual Income".

We split the data into three groups based on "Annual Income":

- High Income: 2 records (1 Yes, 1 No)
- Medium Income: 1 record (Yes)
- Low Income: 2 records (No)

Gini Impurity for Each Group:

• High Income: 1 Yes, 1 No

• Gini_High = $1 - ((1/2)^2 + (1/2)^2) = 0.5$

• Medium Income: 1 Yes, 0 No

• Gini Medium = $1 - ((1/1)^2 + (0/1))^2 = 0$

• Low Income: 0 Yes, 2 No

• Gini Low = $1 - ((0/2)^2 + (2/2)^2) = 0$

• Weighted Gini Impurity for Annual Income:

• Gini Annual Income = (2/5)*0.5 + (1/5)*0 + (2/5)*0 = 0.2

Further Split the "High Income" Group

The "High Income" group is impure, so we need to split it further. The group looks like this:

Application	Credit	Annual	Employment	Existing	Loan
ID	Score	Income	Status	Debt	Approval
1	High	High	Employed	Low	Yes
5	Medium	High	Unemployed	Medium	No

We can split this based on another feature, such as "Employment Status".

Split Based on "Employment Status":

• Employed: 1 record (Yes)

• Unemployed: 1 record (No)

Both groups are pure, so this split is effective.

• Gini Employed = $1 - ((1/1)^2 + (1/0)^2) = 0$

• Gini Unemployed = $1 - ((0/1)^2 + (1/1)^2) = 0$

Step 5: Final Decision Tree

Here's how the final decision tree looks with "Annual Income" as the root split:

- If "Annual Income" is "Medium", the loan is approved (Yes).
- If "Annual Income" is "Low", the loan is not approved (No).
- If "Annual Income" is "High", we further split by "Employment Status":
 - o If "Employed", the loan is approved (Yes).
 - o If "Unemployed", the loan is not approved (No).

Answer to the question -02(B)

Confusion Matrix

	Predicted Positive	Predicted Negative
Actual Positive	3	2
Actual Negative	1	4

- Accuracy = (TP + TN) / Total = (3 + 4) / 10 = 0.70 or 70%.
- Precision = TP / (TP + FP) = 3 / (3 + 1) = 0.75 or 75%.
- Recall = TP / (TP + FN) = 3 / (3 + 2) = 0.60 or 60%.
- F1-Score = 2 * (Precision * Recall) / (Precision + Recall) = 2 * (0.75 * 0.60) / (0.75 + 0.60) = 0.67 or 67%.

• Accuracy: 70%

• Precision: 75%

• Recall: 60%

• F1-Score: 67%