CS 222 Homework 2 [125 Points Total]

Write your name on this sheet, and turn it in as a cover sheet with your completed homework. You can turn this assignment in during class or submit a e-copy via Canvas before the deadline. Do not place under the door of the instructor's office.

Write clearly, show all work, and write formulas and assumptions used to solve a problem. Do not staple, dog ear, or otherwise attach your papers together.

 $1.~(25~\mathrm{pts})$ Show whether the following two arguments are valid or not. You need to justify your answer.

$$\begin{array}{c}
r \to s \\
p \land q \\
\hline
\therefore p \lor s
\end{array}$$

p	q	r	s	$r \rightarrow s$	$p \wedge q$	$(r \to s) \land (p \land q)$	$p \vee s$	$(r \to s) \land (p \land q) \to (p \lor s)$
F	F	F	F	Т	F	F	F	T
F	\mathbf{F}	\mathbf{F}	${\rm T}$	Γ	\mathbf{F}	F	${ m T}$	${ m T}$
F	\mathbf{F}	T	\mathbf{F}	F	\mathbf{F}	F	\mathbf{F}	${ m T}$
F	\mathbf{F}	${\rm T}$	${\rm T}$	Γ	\mathbf{F}	F	${ m T}$	${ m T}$
F	${\rm T}$	\mathbf{F}	\mathbf{F}	Γ	\mathbf{F}	F	\mathbf{F}	m T
F	${\rm T}$	\mathbf{F}	${ m T}$	Γ	\mathbf{F}	F	${ m T}$	m T
F	${ m T}$	${ m T}$	\mathbf{F}	F	\mathbf{F}	F	\mathbf{F}	${ m T}$
F	${\rm T}$	${ m T}$	${ m T}$	Γ	\mathbf{F}	F	${ m T}$	m T
T	\mathbf{F}	\mathbf{F}	\mathbf{F}	Γ	\mathbf{F}	F	${ m T}$	m T
T	\mathbf{F}	\mathbf{F}	${ m T}$	Γ	\mathbf{F}	F	${ m T}$	m T
T	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	F	${ m T}$	${ m T}$
T	\mathbf{F}	${ m T}$	${ m T}$	Γ	\mathbf{F}	F	${ m T}$	Γ
T	${ m T}$	\mathbf{F}	\mathbf{F}	Γ	${ m T}$	${ m T}$	${ m T}$	Γ
T	${ m T}$	\mathbf{F}	${ m T}$	Γ	${ m T}$	${ m T}$	${ m T}$	Γ
T	${ m T}$	Τ	\mathbf{F}	F	${ m T}$	F	${ m T}$	$_{ m T}$
$\mid T \mid$	Τ	Τ	Τ	T	${\rm T}$	${f T}$	T	T

Valid Argument

	p	q	r	$p \rightarrow q$	$q \vee r$	$(p \to q) \land (q \lor r)$	$p \lor r$	$(r \to s) \land (p \land q) \to (p \lor s)$
	F	F	F	Τ	\mathbf{F}	F	F	T
	F	\mathbf{F}	Τ	${ m T}$	${ m T}$	${ m T}$	T	${ m T}$
$p \to q$	F	T	F	T	${ m T}$	${ m T}$	F	F
$q \wedge r$	F	${ m T}$	${ m T}$	Τ	${ m T}$	T	Т	${ m T}$
$\therefore p \vee r$	$\mid T \mid$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	T	${ m T}$
	$\mid T \mid$	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	T	${ m T}$
	$\mid T \mid$	\mathbf{T}	\mathbf{F}	Τ	${ m T}$	T	Т	${ m T}$
37	Т	Τ	Τ	T	${ m T}$	T	T	T

Not a valid argument

- 2. (20 pts) Prove by **existence** proof:
 - (a) **P**: $\exists x, y \in Z, x^4 = y^2$. Proof: Set x=2 and y=4
 - (b) **P**: $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}$ such that, $x^4 = y^2$. (Hint, get y in the format of x). Proof: $y^2 = x^4 \implies y = x^2$ which is a valid function.
- 3. (20 pts) Using **direct proof** to show the statement: An integer number n plus its square n^2 is always even. $n + n^2 = 2k$

$$n = 2k : n^2 = (2k)^2 = 4k^2$$

 $2k + 4k^2 = 2k \implies 2(k + 2k^2)$ which is an even number because anything multiplied by 2 is an even number.

4. (20 pts) Using proof by **contraposition** to show that $x + y \ge 2 \to x \ge 1$ or $y \ge 1$, where x and y are real numbers.

Original Statement: $(x+y \ge 2) \to [x \ge 1 \lor y \ge 1]$ Contrapositive: $[x < 1 \land y < 1] \to (x+y < 2)$ If x and y were both 1, then x+y = 2. However, based upon the contrapositive statement, neither x nor y can be equal to or greater than 1, therefore the contrapositive is true.

5. (20 pts) Prove by **contradiction**: The sum of a rational number and an irrational number is irrational.

Original Statement: rational + irrational = irrational

Contradiction: rational + irrational = rational

rational = r; irrational = i

$$r = \frac{m}{n} \implies \frac{m}{n} + i = \frac{m}{n}$$

$$i = \frac{m}{n} - \frac{m}{n}$$

 $i=0 \implies 0$ is not an irrational number, therefore the original claim is true.

6. (20 pts) Prove that at least one of the real numbers a_1, a_2, \dots, a_n is greater than or equal to the average of these numbers.

2

the average of these numbers. Claim:
$$\left[\frac{a_1 + a_2 + a_3 + \dots + a_n}{n}\right] \ge a_x$$

Claim v2:
$$\forall A \in A = \{a_1, a_2, \dots, a_n\}, a \in \mathbb{R}, \exists a_x, x \in \mathbb{R}; a_x \ge \frac{\sum_{1}^{n} A}{n}$$

$$A = 1, 2, 3, 4, 5 \rightarrow a_x \ge \frac{1 + 2 + 3 + 4 + 5}{5}$$

$$a_x \ge 3$$

The values 3, 4, and 5 of A all satisfy this claim.