

BVRIT HYDERABAD COLLEGE OF ENGINEERING FOR WOMEN

STOCK PRICE PREDICTOR

TeamNo:6

K.Sathvika Roll No: 20WH1A05E8 K.Akshava Roll No: 20WH1A05E9

V.Jahnavi Roll No: 20WH1A05F0

A.Varshitha Roll No:20WH1A05F2

T.Sujitha Roll No:20WH1A05F4

Problem Statement

- The rate of investment and business opportunities in the Stock Prices can increase if an efficient algorithm could be devised to predict the short term price of an individual stock
- predict stock prices using a long-short-term memory (LSTM), Random Forest Algorithm, and Gradient Boosting Regresssion.

Python packages used

- numpy
- pandas
- matplotlib.pyplot
- keras
- tensorflow

Types of Algorithms used

- Long Short Term Memory (LSTM)
- Random Forest
- Gradient Boosting Regression

Random Forest

- The random forest regression model is used for prediction. This will
 predict the low and high values of the next trading days, which
 includes the future prices for the next five days, one month, and one
 year of the S&P500.
- The objective of this project is data collection, data processing, and building the trading algorithm for prediction.

Gradient Boosting Regression

- Gradient boosting is a machine learning technique used in regression and classification tasks
- Gradient boosting is an approach where new models are created that predict the residuals or errors of prior models and then added together to make the final prediction.
- Gradient boosting is known for its prediction speed and accuracy, especially with large and complex data.

Long Short Term Memory

- LSTM (Long Short-Term Memory) is a type of neural network that is used for time series prediction, including stock price prediction.
- LSTM models are known for their ability to model time series data and identify patterns in the data that can be exploited for prediction.
- Steps to be followed in LSTM Model
 - 1. Collect and preprocessing the Data
 - 2. Creating stack LSTM Model
 - 3. Predict the Test Data
 - 4. Predict the Future N days and Plot the Output

Graph

Comparison Table

Metric: RMSE		
Algorithms	Training data	Testing data
LSTM	0.02	0.03
Random Forest	1.36	1.85
Gradient Boosting regression	0.50	0.58

Comparision Table

Output

EXECUTE THE CODE

COLAB LINK FOR THE CODE

THANK YOU