Семинар №10 ФАКИ 2016

Бирюков В. А.

November 17, 2016

Алгоритмы

Алгоритм

• Алгоритм – это формально описанная вычислительная процедура, получающая исходные данные, и выдающая результат вычислений на выход (Кормен и др. "Алгоритмы: построение и анализ")

Задача сортировки

- Задана последовательность чисел
- Нужно найти такую перестановку исходной последовательности, чтобы элементы были расположены по возрастанию
- \bullet 5 2 4 6 1 3 2 9 \rightarrow 1 2 2 3 4 5 6 9

Простейшие сортировки

- Сортировка вставками
- Сортировка выбором
- Сортировка пузырьком

Анализ алгоритмов

Анализ алгоритмов

- Обычно изучают зависимость времени работы от размера входа
- Размер входа зависит от конкретной задачи
- Для сортировки, размер входа это количество элементов, которые нужно отсортировать
- Время работы число элементарных шагов, которые выполняет алгоритм

Пример анализа

Сортировка пузырьком

```
\begin{array}{lll} \text{for } (\texttt{int} \ \ j = 0; \ \ j < \texttt{length-1}; \ \ j++) \\ & \text{for } (\texttt{int} \ \ i = 0; \ \ i < \texttt{length-1}; \ \ i++) \\ & \text{if } (\texttt{a[i]} > \texttt{a[i+1]}) \\ & \text{swap}(\texttt{a[i]}, \ \ \texttt{a[i+1]}); \end{array}
```

- Число операций, требуемых на один проход: a * n
- Число проходов: п
- \bullet Значит, время работы $\sim n^2$

Принцип "разделяй и влавствуй"

Принцип "разделяй и влавствуй"

- Задача разбивается на несколько подзадач меньшего размера
- Эти задачи решаются (обычно с помощью рекурсивного вызова)
- Решения этих задач комбинируются и получается решение исходной задачи

Сортировка слиянием

- Разбиваем массив на 2 половины
- Сортируем каждую половину
- Соединяем 2 упорядоченных массива в один

Бирюков В. А. Семинар №10 November 17, 2016 11 / 24

Сортировка слиянием

Бирюков В. А.

Сортировка слиянием

```
void MergeSort(int * A, int p, int r)
   if (p < r)
      int q = (p + r) / 2;
     MergeSort(A, p, q);
     MergeSort(A, q + 1, r);
     Merge(A, p, q, r);
```

Быстрая сортировка

Быстрая сортировка (quicksort)

- Выбираем в массиве некоторый элемент, который будем называть опорным
- Переставляем элементы массива таким образом, чтобы все элементы со значением меньшим или равным опорному элементу, оказались слева от него, а все элементы, превышающие по значению опорный справа от него
- Рекурсивно сортируем подмассивы, лежащие слева и справа от опорного элемента

Быстрая сортировка (quicksort)

Быстрая сортировка (quicksort)

Время работы сортировок

Время работы сортировок

- Время работы сортировки пузырьком, выбором и вставками $\sim n^2$
- Время работы сортировки слиянием и быстрой сортировки в среднем $\sim nlog(n)$

Время работы сортировок

- Пусть мы хотим отсортировать массив из 1 млн. чисел
- Сортировка пузырьком написана аккуратно и требует $2n^2$ операций и выполняется на суперкомпьютере(x100)
- Сортировка слиянием написана неэффективно и требует 50nlog(n) операций и выполняется на пк(x1)
- Сортировка пузырьком выполнится за 5.5 часов
- Сортировка слиянием выполнится за 17 минут

Стандартная сортировка qsort()

Стандартная сортировка qsort()

```
#include <stdlib.h>
int values [] = \{ 88, 56, 100, 2, 25 \};
int cmp(const void * a, const void * b)
   return ( *(int*)a - *(int*)b );
qsort (values, 5, size of (int), cmp);
```

Задание

 $23\ /\ 24$

Задание

- bubble sort
- quick sort
- Задачи на qsort: Станция Новодачная-сортировочная