math108B hw4

Jonas Chen

October 10, 1000

Problem 1

On textbook, we actually never define the dimension for a subset which is not a subspace. In addition, the isomorphism to identify two subspaces is an invertible linear map. Now, we relax these definitions.

We say the dimension of ausbset S is the dimension of a subspace U if there is a subspace $U \subset V$ and an injective and surjective map between S and U.

Use this definition, to prove that the dimension of the subet $S = \{(x, y, 2) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$ is two.

Solution

Let $V=\mathbb{R}^3$ and $U\subset V=\mathbb{R}^2$. Let $s=(x,y,2)\in S$ and define the consider map $M:S\to U$ by $M(s)\to (x,y)$

Injective: let $s,s'\in S$ and $s=(x_1,y_1,2),s'=(x_2,y_2,2)$ then if $M(s)=M(s')\Rightarrow (x_1,y_1)=(x_2,y_2)\Rightarrow x_1=x_2,y_1=y_2\Rightarrow s=s'$

Surjective: let s be an element in the range of M and $(x,y,2) \in S$. Then s=(x,y)=M((x,y,2))

Since we have an injective and surjective map between S and U then the dimensions of S is the dimension of U i.e. 2

Construct an example of a subset S to conject that whether $S \subset (S^{\perp})^{\perp}$ is true or $(S^{\perp})^{\perp} \subset S$ is true. And prove your findings for arbitrary subset S in a vector space V.

 $\begin{array}{l} \textbf{Solution} \\ \text{consider } S, S^{\perp}, \left(S^{\perp}\right)^{\perp} \text{ where } S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\} \text{ and } S^{\perp} = \left\{ \begin{pmatrix} 0 \\ x \\ y \end{pmatrix} : x, y \in \mathbb{R} \right\} \text{ and } \left(S^{\perp}\right)^{\perp} = \left\{ \begin{pmatrix} z \\ 0 \\ 0 \end{pmatrix} : z \in \mathbb{R} \right\} \\ \text{then clearly, } S \subset \left(S^{\perp}\right)^{\perp} \wedge \left(S^{\perp}\right)^{\perp} \not\subset S \text{ (Note that } S, S^{\perp}, \left(S^{\perp}\right)^{\perp} \text{ is a subset of } \mathbb{R}^{3} \text{)} \\ \end{array}$

In general:

- a) let $u \in S$ then for all $w \in S^{\perp}$ we have $\langle u, w \rangle = 0$. Since each u is orthogonal to any element in S^{\perp} , it follows that $u \in (S^{\perp})^{\perp}$ and therefore $S \subset (S^{\perp})^{\perp}$
- b) Second, let $v \in (S^{\perp})^{\perp}$

Since S is a subset and not a subspace, we do not know if $S+S^\perp$ form a direct sum of V and it is also not guaranteed that $S\cup S^\perp=V$. Although it is clear that $v\notin S^\perp$ it is possible that $v\notin S$ since V may be a union of $S\cup S^\perp\cup S_0$ for some $S_0\subset V$

We can conclude that in general, $\left(S^{\perp}\right)^{\perp}\not\subset S$

Definition: Orthogonal projection of V onto a subspace U

Define the orthogonal projection of V onto a subspace U by $P_U:V\to V$ which maps $v\in V\to u\in U$ where v=u+w such that $u\in U,w\in U^\perp$

Problem 3

Let P_U be the orthogonal projection operator onto the subspace U in a vector space V. Prove that $P_U(u)=u$ for any $u\in U$ and $P_U(w)=0$ for any $w\in U^\perp$

Solution

If $u \in U$ then u = u + 0 where $0 \in U^{\perp}$. Then by definition $P_U(u) = u$

If $w \in U^{\perp}$ then w = 0 + w where $0 \in U$. Then by definition $P_U(w) = 0$

Definition: Projection

Consider $P:V\to V$, then P is a projection if P(P(v))=P(v) i.e. $P^2=P$ ("two consecutive operations equivalent to one operation")

Problem 4

Define a new projection operator from \mathbb{R}^2 onto the subspace $U=\{(x,y)\in\mathbb{R}^2:y=x\}$ that is different from the ones in class. In class, we define the horizontal projection as $P_U^h((x,y))=(x,x)$ and (also define) the orthogonal projection. You need to express it in an explicit formula $P_U((x,y))$ and prove it is a projection by definition.

Solution

Note that U can be thought of as $\operatorname{span}\left\{\begin{pmatrix}1\\1\end{pmatrix}\right\}$

The projection of one vector onto another is defined in \mathbb{R}^2 with standard dot product as $\frac{a \cdot b}{b \cdot b}b$ where a is projected onto b. Here we are trying to project a = (x,y) onto b = (1,1) so $(x,y) \cdot (1,1) = x+y$ and $(1,1) \cdot (1,1) = 2$. Therefore,

we can define
$$P_U((x,y))=\left(\frac{x+y}{2},\frac{x+y}{2}\right)$$
 since $P_U(P_U(x,y))=P_U\left(\frac{x+y}{2},\frac{x+y}{2}\right)=\left(\frac{2(x+y)}{4},\frac{2(x+y)}{4}\right)=\left(\frac{x+y}{2},\frac{x+y}{2}\right)=P_U(x,y)$

Construct an example of a vector $u,v\in\mathbb{R}^2$ such that $\langle v,P_U^h(u)\rangle\neq\langle P_U^h(v),u\rangle$, where $P_U^h(v)$ is the horizontal projection defined in class and in (4).

Solution

Let the inner product be the dot product (standard for \mathbb{R}^n)

Let
$$v = (1,0), u = (0,1)$$
 Then $P_U^h(v) = (1,1)$ and $P_U^h(u) = (0,0)$ however $(1,1) \cdot (0,0) \neq (1,1) \cdot (0,1)$

Suppose that V_1,V_2,V_3 are subspaces of V. Define a linear map $T:V_1\times V_2\times V_3\to V_1+V_2+V_3$ (recall $V_1+V_2+V_3$) is still a subspace of V by

$$T(v_1,v_2,v_3) = v_1 + v_2 + v_3 \\$$

for $v_i \in V_i$

- (i) prove T is surjective
- (ii) Prove that if $V_1 + V_2 + V_3$ is indeed a direct sum, then T is injective.

Solution

- (i) Let x be an element in the range of T i.e. $x \in V_1 + V_2 + V_3$. By the definition of sums of subspaces (LADR 1.36) we know that $x = v_1 + v_2 + v_3$ where $v_i \in V_i$. Take $z = (v_1, v_2, v_3)$ then T(z) = x for all x. Therefore any x can be generated by $z = (v_1, v_2, v_3)$ through T
- (ii) Suppose that $V_1+V_2+V_3$ is a direct sum. Then $V_1\cap V_2\cap V_3=\{0\}$ (LADR 1.46). Although we could use this fact, it may be more concise to argue that since each element of $V_1+V_2+V_3$ can be written in exactly one way as $v_1+v_2+v_3$. Therefore each $(v_1,v_2,v_3)\in V_1\times V_2\times V_3$ will map to a unique $v_1+v_2+v_3\in V_1+V_2+V_3$, hence T is injective. \square

Alternatively, assume $x \neq 0 \in V_1 \times V_2 \times V_3$ and try to show that $T(x) = 0 = v_1 + v_2 + v_3$. Therefore at least one $v_i \neq 0$, and it follows that the other v_i must add to its additive inverse. However, the additive inverse of $v_i \neq 0$ is also in V_i which contradicts $V_1 \cap V_2 \cap V_3 = \{0\}$. Therefore x = 0 in order for T(x) = 0 \therefore null $T(x) = \{0\}$ and $T(x) = \{0\}$ are $T(x) = \{0\}$ and $T(x) = \{0\}$ and $T(x) = \{0\}$ and $T(x) = \{0\}$ are $T(x) = \{0\}$.

Note

In class, given a closed convex set C in a vector space V equipped with an induced norm $\|\cdot\|$, we define the orthogonal projection $P_C:V\to V$ that maps a vector $x\in V$ to a vector $y^*\in C$ by

$$P_C(x) = y^* = \mathop{\arg\min}_{y \in C} \, \|x - y\|$$

Theorem: orthogonal projection characterization

Given a closed convex subset C of V, for every $x \in V$ we have

$$z = P_C(x) \Leftrightarrow \langle y - z, x - z \rangle \le 0 \forall y \in C$$

Problem 7

Use the characterization theorem for the orthogonal projection to show that for a given cloased convex set C, for any $x, y \in V$ we have

$$\|P_C(x) - P_C(y)\| \le \|x - y\|$$

Solution

By the projection characterization theorem we have that

$$\langle x - P_C(x), P_C(y) - P_C(x) \rangle \leq 0$$
 since $P_C(y) \in C$ and additionally,

$$\langle y - P_C(y), P_C(x) - P_C(y) \rangle \leq 0 \text{ since } P_C(x) \in C$$

Factoring -1 from the second inequality gives

 $\langle P_C(y)-y,P_C(y)-P_C(x)\rangle \leq 0$ and then we can use linearity (first slot) of inner products to obtain from the first equation:

$$\langle x-y-P_C(x)+P_C(y),P_C(y)-P_C(x)\rangle \leq 0$$
 and apply linearity again to obtain

$$\langle x - y, P_C(y) - P_C(x) \rangle + ||P_C(y) - P_C(x)||^2 \le 0$$

$$\|P_C(y)-P_C(x)\|^2 \leq -\langle x-y, P_C(y)-P_C(x)\rangle$$

$$\|P_C(y) - P_C(x)\|^2 \leq \langle -x + y, P_C(y) - P_C(x) \rangle$$
 and by Cauchy-Schwarz

$$\|P_C(y) - P_C(x)\|^2 \leq \langle -x + y, P_C(y) - P_C(x) \rangle \leq \|-x + y\| \ \|P_C(y) - P_C(x)\|$$

Then dividing both sides by $\|P_C(y) - P_C(x)\|$ and multiplying by -1 proves the desired result.

If one interprets the norm $\|x-y\|$ as the distance between x and y, interpret the meaning of the above inequality.

Solution

The orthogonal projection map is a contraction. (of the vector connecting \boldsymbol{x} and \boldsymbol{y})