Übung Nr.: 6

Jahrgang: 4BHME.......

Gruppe: 3

Betreuer: SR

Protokollabgabe:

Solldatum: 01.02.2024....

Ist-Datum:

Note: Note Deutsch: 21P/w.24

PROTOKOLL

über die Füllstandsmessung der Pumpanlage

THEMA: SCHWINGUNGSMESSUNG MIKROFON

Tag: Donnerstag, 25.01.2024

Zeit: 10:45 bis 13:15

Ort: HTBLA Kaindorf, Messlabor

Anwesend: Traußnigg Jan, Uhl Alexander, Wack Christopher, Wang Bowen

Schriftführer: Jan Traußnigg

Aufgabenstellung

In dieser Einheit wird eine Schwingungsmessung durchgeführt. Mit einem bereits vorbereiteten Programm werden Schwingungen eines Mikrofons eingelesen und mittels einer FFT-Analyse analysiert.

Resümee

In dieser Übung erlangten wir ein tieferes Verständnis von Schwingungsmessungen und FFT-Analysen. Besonders Gefallen fanden wir an der selbständigen Arbeit.

Traußnigg Jan

Uhl Alexander

Christopher Wack

Wang Bowen

Datun

D:\school\HTL_4\Labor\SR\LaborSR2_28

Autor: UI

Datum: 01.02.24

Seite 1 von 8

HTBLA Kaindorf

Seite 2 von 8

INHALTSVERZEICHNIS

1.	Zeitlicher Ablauf	.3
2.	Genaue Aufgabenstellung	.3
2	2.1. Übung 1 – Temperatursignale simulieren	3
2	2.2. Übung 2 – Temperatursensoren testenFehler! Textmarke nic definiert.	ht
2	definiert. 2.3. Übung 3 – Mischaufgabe Fehler! Textmarke nicht definie Verwendete Geräte und Hilfsmittel	rţ.
3.	Verwendete Geräte und Hilfsmittel	8

HTBLA Kaindorf

Seite 3 von 8

1. ZEITLICHER ABLAUF

18.01.2024

- o 10:45-11:35 -> Besprechung der Aufgabe und Theorie der FFT-Analyse
- 11:35-12:20 -> Aufbau der Messkette, Durchführen der Messübung mit Stimmen & Musik
- o 12:20-13:15 -> Selbstständiges Arbeiten, Vorbereiten des Labor-Protokolls

2. GENAUE AUFGABENSTELLUNG

2.1. Übung 1 – Frequenzen der eigenen Stimmen gemessen

 Wir sollten unsere Stimme mittels FFT-Analyse analysieren und herausfinden, welches Frequenzspektrum unsere Stimmen haben.

3. DURCHFÜHRUNG DER ÜBUNG

3.1. Programmierung der Messkette

Abbildung 1: Verwendetes LabView-Programm

3.2. Messvorgang

Zuerst wurde ein Mikrofon an den PC angeschlossen, mit dem die Frequenzen gemessen werden sollten. Das Mikrofon wird in einem Signalbereich von 2V bis -2V betrieben. Diese Werte müssen als Nächstes im DAQ-Assistenten eingegeben werden. Daraufhin wurden Geräusche aufgenommen und kamen so in die FFT-Analyse.

Abbildung 2: Grafische Anzeige der Sensoren

HTBLA Kaindorf

Seite 4 von 8

Abbildung 3 Einstellung des DAQ-Assistenten

Da es im Hintergrund bei einer Schallmessung wie dieser sich Rauschgeräusche befinden und diese mit dem Mikrophon ebenfalls aufgenommen werden, wird softwaretechnisch ein Filter verwendet, sodass diese Störsignale nicht in der Messung sind.

Abbildung 4 Rauschfrequenz-Filter

HTBLA Kaindorf

Seite 5 von 8

Die Rauschfrequenz ist jedoch nicht die einzige Störfrequenz in einer derartigen Messung. Tiefe Töne, die eine sehr niedrige Frequenz besitzen, müssen nicht vom Messobjekt stammen und können das Messergebnis ebenfalls fälschen, weshalb ein Hochpassfilter in der Software verwendet werden muss.

Abbildung 5 Hochpassfilter

Da die gemessene Schallfrequenz aus mehreren überläppenden Sinusschwingungen besteht, wirkt diese für die Ablesung der Messung störend und ist auch nicht praktisch. Bei Messungen derartiger Signale werden in der Praxis nur die Spitze, oder auch der Betrag betrachtet. Aus diesem Grund muss das Signal geglättet werden.

Abbildung 6 Einstellung des Signalspektralmessung, Glättung des Eingangssignals

HTBLA Kaindorf

Seite 6 von 8

3.3. Messergebnisse

Nach dem Einstellen und Durchführung der Messungen an den Stimmen der Anwesenden kamen ergaben sich folgende Messsignale:

Abbildung 8 Frequenzspektrum von Alex

Abbildung 9 Frequenzspektrum von Christopher

HTBLA Kaindorf

Seite 7 von 8

Abbildung 10 Frequenzspektrum von Bowen

3.4. Technologisches Schema des Messungsaufbaus

Abbildung 11 Technologieschema der Messung

HTBLA Kaindorf

Seite 8 von 8

4. VERWENDETE GERÄTE UND HILFSMITTEL

- Rechner
 - Verwendete Software:
 - LabView
 - SR_Messlabor [C:\Users\Messlabor_Kustos\Desktop\ SR_Messlabor\Messkette_2017.docx]
- Multifunction I/O Modul NI MyDAQ von National Instruments
 - o Kann analoge und digitale Daten erfassen
 - enthält Multimeter, 3,3V digitale Eingänge, mehrere Analoge Ein und Ausgänge
- Messgeräte und Sensoren:
 - Mikrofon
 - Kann direkt über einen AUX-Anschluss an den ADC geschlossen werden.