We've begun quantifying extended mission scenarios to inform our longterm observing strategy (>2019).

Extended mission

Luke Bouma & Josh Winn TESS Science Team Meeting, May 19, 2016

Our approach is to simulate TESS's planet detections.

Our approach is to simulate TESS's planet detections.

$$MERIT = \frac{(1/R_{\star}^2)}{(\sigma_{1hr}(I_c)/\sqrt{N_{obs}})}$$

$$Merit = \frac{(1/R_{\star}^{2})}{(\sigma_{1hr}(I_c)/\sqrt{N_{obs}})}$$

$$\text{MERIT} = \frac{(1/R_{\star}^2)}{(\sigma_{1\text{hr}}(I_c)/\sqrt{N_{\text{obs}}})}$$
Exposure time

Compute MERIT for every star in our catalog; observe the "best" 100,000 stars per extended mission year.

Ecliptic

Number of pointings

Compute MERIT for every star in our catalog; observe

Ecliptic

Observe transits, calculate SNR for each.

Year 3 Scenario

Planets detected over all 3 years

New planets

New P>20d planets

New $0.2 < S/S_{\oplus} < 2$ planets

Systems with extra planets detected

New planets amenable to atmospheric study ($R < 4R_{\oplus}$)

Year 3 Scenario	
Planets detected over all 3 years	2280
New planets	730
New P>20d planets	200
New 0.2< S/S_{\oplus} <2 planets	130
Systems with extra planets detected	60
New planets amenable to atmospheric study (R <4 R_{\oplus})	80

Year 3 Scenario		
Planets detected over all 3 years	2280	2300
New planets	730	720
New P>20d planets	200	160
New 0.2< S/S_{\oplus} <2 planets	130	110
Systems with extra planets detected	60	10
New planets amenable to atmospheric study (R <4 R_{\oplus})	80	170

Year 3 Scenario			
Planets detected over all 3 years	2280	2300	2010
New planets	730	720	480
New P>20d planets	200	160	150
New $0.2 < S/S_{\oplus} < 2$ planets	130	110	120
Systems with extra planets detected	60	10	60
New planets amenable to atmospheric study (R <4 R_{\oplus})	80	170	60

Year 3 Scenario			
Planets detected over all 3 years	2280	2300	2010
New planets	730	720	480
New P>20d planets	200	160	150
New $0.2 < S/S_{\oplus} < 2$ planets	130	110	120
Systems with extra planets detected	60	10	60
New planets amenable to atmospheric study (R <4 R_{\oplus})	80	170	60

Year 3 Scenario			
Planets detected over all 3 years	2280	2300	2010
New planets	730	720	480
New P>20d planets	200	160	150
New $0.2 < S/S_{\oplus} < 2$ planets	130	110	120
Systems with extra planets detected	60	10	60
New planets amenable to atmospheric study $(R < 4R_{\oplus})$	80	170	60

Year 3 Scenario			
Planets detected over all 3 years	2280	2300	2010
New planets	730	720	480
New P>20d planets	200	160	150
New $0.2 < S/S_{\oplus} < 2$ planets	130	110	120
Systems with extra planets detected	60	10	60
New planets amenable to atmospheric study $(R < 4R_{\oplus})$	80	170	60

Year 3 Scenario			
Planets detected over all 3 years	2280	2300	2010
New planets	730	720	480
New P>20d planets	200	160	150
New $0.2 < S/S_{\oplus} < 2$ planets	130	110	120
Systems with extra planets detected	60	10	60
New planets amenable to atmospheric study $(R < 4R_{\oplus})$	80	170	60

New planets amenable to atmospheric study $(R < 4R_{\oplus})^*$	80	170	60
Systems with extra planets detected	60	10	60
New $0.2 < S/S_{\oplus} < 2$ planets	130	110	120
New P>20d planets	200	160	150
New planets	730	720	480
Planets detected over all 3 years	2280	2300	2010
Year 3 Scenario			

Reference: primary mission finds 355±15

^{*} Atmospheric SNR at least (that of GJ1214b)/4.

Year 3 Scenario			
Planets detected over all 3 years	2280	2300	2010
New planets	730	720	480
New P>20d planets	200	160	150
New $0.2 < S/S_{\oplus} < 2$ planets	130	110	120
Systems with extra planets detected	60	10	60
New planets amenable to atmospheric study (R <4 R_{\oplus})	80	170	60

The ecliptic pointing yields twice as many new planets with easily-characterizable atmospheres.

TODO:

- 1. Full frame images (30 minute cadence)
- 2. Uncertainty in ephemeris times

- Simulating 2-min postage stamps with a simple selection procedure we find:
 - Ecliptic pole maximizes the number of newly detected planets at *P*>20days (also most HZ planets; most multis).
 - Ecliptic plane detects a comparable number of new planets. Their host stars are the brightest, making their atmospheres easiest to characterize.
- Two-year simulations look like linear combinations of one-year runs

Reminder of what I mean by atmospheric SNR

$$Signal = \delta_{atm} = \frac{2\pi R_p H}{\pi R_{\star}^2}$$

Noise
$$\approx \frac{\sigma_{1-\text{hr}}(I_c)}{\sqrt{T_{\text{dur,hr}}}}$$

	shemi-nhemi-npole	shemi-nhemi-ecliptic	shemi-nhemi-nhemi
Planets detected over all 3 years	2280	2300	2010
New planets from extended mission	730	720	480
New P>20d planets from extended mission	200	160	150
New 0.2< S/S_{\oplus} <2 planets from extended mission	130	110	120
Multiple-planet systems detected over 3 years	210	190	200
New planets from extended mission amenable to atmospheric study $(R < 4R_{\oplus})$	80	170	60

The ecliptic pointing yields twice as many new planets with easily-characterizable atmospheres.

	Number of new planets comparable to GJ1214b	Number of unique planets from entire mission comparable to GJ1214b
shemi_nhemi_nhemi	62	406
shemi_nhemi_ecliptic	172	544
shemi_nhemi_npole	84	436

Ecliptic pole maximizes the number of newly detected...

...planets with "long" orbital periods

~200 vs ~160

...habitable zone planets

~130 vs ~110

...multiple-planet systems.

~190 vs ~175 2-planet systems

Ecliptic plane detects...

... the same number of new planets, ~700

orbiting brighter host stars,

1.5 mag median shift

making them more amenable to atmospheric study.

Twice as many with atmospheric SNR comparable to GJ1214b

Assumptions

- Postage stamp only (no FFI)
- Target selection: pick 200,000 best targets for detecting small planets transiting bright stars. We sort by

Stat =
$$\frac{\delta}{\sigma_{1-\text{hr}}(I_c)} \sqrt{N_{\text{ph}}} \propto \frac{(1/R_{\star}^2)}{\sigma_{1-\text{hr}}(I_c)} \sqrt{N_{\text{pntg}}}$$

- For extended missions means: same sky gets ~same stars selected.
 For 1yr extended missions, pick 100,000 best.
- Earth/Moon crossings for ecliptic pointings: throw out ~12.5% of camera fields
- Noise model; ideal stellar radii; Kepler planet distributions, ...

Compute STAT for every star in our catalog, then observe the "best" 100,000 stars per extended mission year.

Number of pointings

	N uniq planets total	N planets detected in ext	N new planets from ext
shemi_nhemi_nhemi-	2007.0	1220.6	481.9
shemi_nhemi_npole-	2276.5	1297.3	729.0
shemi_nhemi_ecliptic-	2302.7	793.5	720.8

	N new planets from new star	N new planets from SNR boost	N new planets with P>20d
shemi_nhemi_nhemi-	15.5	466.4	152.3
shemi_nhemi_npole-	296.9	432.1	200.4
shemi_nhemi_ecliptic-	593.0	127.8	163.1

	N new planets with 0.2 <s s_earth<2<="" th=""><th>3 4yr N pntgs of stars obsd in ext</th><th>3 4yr N photons from stars obsd in ext</th></s>	3 4yr N pntgs of stars obsd in ext	3 4yr N photons from stars obsd in ext
shemi_nhemi_nhemi-	118.8	8.00e+05	2.13e+16
shemi_nhemi_npole-	128.1	1.08e+06	2.51e+16
shemi_nhemi_ecliptic-	110.0	3.54e+05	1.02e+16

