AULA 3: Delineamentos experimentais

- 1) Escreva as principais características dos delineamentos inteiramente casualizado (DIC) e blocos casualizados (DBC). Por que normalmente em experimentos instalados no campo utilizam-se o DBC?
- 2) Explique ou comente: Conceito de bloco, Parcela. Por que é necessário repetições?

3) Sejam os tratamentos=doses em DIC. Em cada parcela é tomada a média de n=9 plantas

TRAT=DOSE	REP1	REP2	REP3	REP4	REP5
A=0	15	16	17	19	18
B=1	20	18	21	19	22
C=2	20	21	24	22	23
D=3	24	22	23	25	21
E=4	25	26	27	28	29
F=5	26	25	27	28	24
G=7	22	25	26	23	27

- a) Faça análise de variância, supondo um modelo com uma média por dose.
- b) Calcule o HSD (Tukey 5%) e compare as médias.
- c) Calcule o LSD (T 5%) e compare as médias.
- d) Usar EXCEL ou outro software, para estimar a parábola em função das doses.
- e) Teste se o modelo parábola é adequado (separar ERRO PURO e FALTA DE AJUSTE) Oriente-se pela seqüência vista na apostila.
- f) Ache o ponto de maior ganho de peso, usando modelo parábola.
- g) Dê o valor predito para dose=6.
- h) Suponha que foi perdida a REP4 da DOSE 5, refazer os passos (a) a (e).
- i) Se em lugar de 9 plantas, tivermos só uma, qual o CV (INDIVIDUAL) esperado ? LEMBRE-SE:(variância da média= variância dos dados individuais/ número de plantas na parcela). Ou seja: CV (MEDIA de n)= CV (INDIVIDUAL)/ n^{1/2}
- 4) Em um experimento em vasos uniformes se pretende avaliar a produção de 4 variedades de couve flor. Pretende-se avaliar a produção média por planta. Discuta vantagens e desvantagens de usar 1 ou 2 plantas por vaso. Se com uma planta por vaso o QM Res₁ = 40 g², qual seria o QM Res₂ esperado para a média nos vasos com 2 plantas (admitir boa convivência conjunta, com uma planta não interferindo no desempenho da outra).