

AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Previously presented): A polarizing element comprising a reflective polarizing plate comprising a circularly-polarized light separation plate for separating incident natural light into reflected light and transmitted light both of which are composed of polarized light, and a light-diffusion pressure-sensitive adhesive layer provided to the reflective polarizing plate.
2. (Previously presented): The polarizing element according to claim 1, wherein the reflective polarizing plate is a combination of a circularly-polarized light separation plate and a retardation plate.
3. (Original): The polarizing element according to claim 2, wherein the circularly-polarized light separation plate comprises a cholesteric liquid crystal layer.
4. (Previously presented): The polarizing element according to claim 3, wherein the cholesteric liquid crystal layer is a liquid crystal polymer layer that is Grandjean-oriented on a transparent polymer substrate via an orientation film.
5. (Previously presented): The polarizing element according to claim 4, wherein the cholesteric liquid crystal layer has a superimposed structure of cholesteric liquid crystal layers different from each other in a helical pitch of the Grandjean orientation.
6. (Original): The polarizing element according to claim 2, wherein the retardation plate is a quarter wavelength plate.
7. (Original): The polarizing element according to claim 2, wherein the light-diffusion

pressure-sensitive adhesive layer is interposed between the circularly-polarized light separation plate and the retardation plate.

8. (Original): The polarizing element according to claim 1, wherein the light-diffusion pressure-sensitive adhesive layer is made of a polymer containing uncolored transparent particles.

9. (Original): The polarizing element according to claim 8, wherein the polymer is an acrylic polymer having a weight average molecular weight of at least 100,000.

10. (Original): The polarizing element according to claim 8, wherein the uncolored transparent particles having an average particle diameter ranging from 0.5 μm to 20 μm are selected from inorganic particles and organic particles.

11. (Original): The polarizing element according to claim 1, wherein the light-diffusion pressure-sensitive adhesive layer is provided adjacent to the reflective polarizing plate.

12. (Previously presented): A liquid crystal display having a polarizing element comprising a reflective polarizing plate comprising a circularly-polarized light separation plate for separating incident natural light into reflected light and transmitted light both of which are composed of polarized light, and a light-diffusion pressure-sensitive adhesive layer provided to the reflective polarizing plate.

13. (Previously presented): A method of manufacturing a polarizing element, wherein the polarizing element comprises a reflective polarizing plate comprising a circularly-polarized light separation plate for separating incident natural light into reflected light and transmitted light both of which are composed of polarized light, and a light-diffusion pressure-sensitive adhesive layer provided to the reflective polarizing plate.

14. (Original): The method according to claim 13, wherein the light-diffusion

pressure-sensitive adhesive layer is provided adjacent to the reflective polarizing plate.

15. (Previously presented): The method according to claim 13, wherein the reflective polarizing plate is a combination of a circularly-polarized light separation plate and a retardation plate.

16. (Original): The method according to claim 13, wherein the light-diffusion pressure-sensitive adhesive layer is made of a polymer containing uncolored transparent particles.

17. (Original): The method according to claim 16, wherein the polymer is an acrylic polymer having a weight average molecular weight of at least 100,000.

18. (Original): The method according to claim 16, wherein the uncolored transparent particles having an average particle diameter ranging from 0.5 μm to 20 μm are selected from inorganic particles and organic particles.

19. (Previously presented): The polarizing element according to claim 1, wherein the reflective polarizing plate comprises a linearly-polarized light separation plate.

20. (Previously presented): The polarizing element according to claim 1, wherein the reflective polarizing plate is a circularly-polarized light separation plate.

21. (Previously presented): The polarizing element according to claim 19, wherein the circularly-polarized light separation plate comprises a cholesteric liquid crystal layer.

22. (Previously presented): The polarizing element according to claim 20, wherein the cholesteric liquid crystal layer is a liquid crystal polymer layer that is Grandjean-oriented on a transparent polymer substrate via an orientation film.

23. (Previously presented): The polarizing element according to claim 21, wherein the cholesteric liquid crystal layer has a superimposed structure of cholesteric liquid crystal layers

different from each other in a helical pitch of the Grandjean orientation.

24. (Previously presented): The method according to claim 13, wherein the reflective polarizing plate comprises a linearly-polarized light separation plate.

25. (Previously presented): The method according to claim 13, wherein the reflective polarizing plate is a circularly-polarized light separation plate.

26. (Previously presented): The polarizing element according to claim 7, wherein the polarizing element includes at least one other adhesive layer and the at least one other adhesive layer is not a light diffusion pressure-sensitive adhesive layer.

27. (Previously presented): The polarizing element according to claim 13, wherein the light-diffusion pressure-sensitive adhesive layer is provided directly on the circularly-polarized light separation plate.

28. (Previously presented): The method according to claim 15, wherein the light-diffusion pressure-sensitive adhesive layer is interposed between the circularly-polarized light separation plate and the retardation plate.

29. (Previously presented): The method according to claim 28, wherein the polarizing element includes at least one other adhesive layer and the at least one other adhesive layer is not a light diffusion pressure-sensitive adhesive layer.

30. (Previously presented): The method according to claim 13, wherein the light-diffusion pressure-sensitive adhesive layer is provided directly on the circularly-polarized light separation plate.

31. (New): The polarizing element according to claim 2, wherein the polarizing element comprises two light-diffusion pressure-sensitive adhesive layers provided to the reflective

polarizing plate.

32. (New): The polarizing element according to claim 2, wherein the polarizing element comprises three light-diffusion pressure-sensitive adhesive layers provided to the reflective polarizing plate.

33. (New): The method according to claim 13, wherein the polarizing element comprises two light-diffusion pressure-sensitive adhesive layers provided to the reflective polarizing plate.

34. (New): The method according to claim 13, wherein the polarizing element comprises three light-diffusion pressure-sensitive adhesive layers provided to the reflective polarizing plate.