Question Number	Answer		Mark
17ai	Use of $P = VI$ P = 0.11 (W)	(1) (1)	2
	(MP1 - Allow methods where R is calculated and then either $P = I^2R$ or $P = V^2/R$ is used to calculate P)		
	Example of calculation $P = VI = 12.0 \text{ V} \times 9.2 \times 10^{-3} \text{ A} = 0.11 \text{ W}$		
17aii	Use of $E = Pt$ to calculate energy of LED Use of $v = f\lambda$ and $E = hf$ to calculate photon energy Divides total energy in one minute by energy of a photon Number of photons in one minute = 2.1×10^{19}	(1) (1) (1) (1)	4
	(candidates who do not convert minutes into seconds can score a maximum of 2 marks – MP2 and MP3) ("show that" value leads to 1.9×10^{19}) (allow full e.c.f. from (i))		
	Example of calculation $E = Pt = 0.11 \text{W} \times 60 \text{ s} = 6.6 \text{ J}$ $f = \frac{v}{\lambda} = \frac{3.00 \times 10^8 \text{ms}^{-1}}{627 \times 10^{-9} \text{m}} = 4.78 \times 10^{14} \text{ Hz}$ $E = hf = 6.63 \times 10^{-34} \text{ Js} \times 4.78 \times 10^{14} \text{ Hz} = 3.17 \times 10^{-19} \text{ J}$		
	Number of photons in one minute = $\frac{6.6 \text{ J}}{3.17 \times 10^{-19} \text{J}} = 2.1 \times 10^{19}$		
17b	(Lower wavelength leads to) greater (photon) energy	(1)	
	Therefore fewer photons (in one minute)	(1)	2
	$(MP1-accept\ hc/\lambda\ increases\ or\ hf\ increases)$ $(MP2\ dependent\ on\ awarding\ of\ MP1)$		
	Use of $A = 4\pi r^2$ Use of $I = P/A$	(1) (1)	
	$I = 2200 \text{ (W m}^{-2}$, which is greater than 1100 W m ⁻²) so student is correct	(1)	3
	(MP2 – allow if use $A = 0.69/1100$) Example of calculation $A = 4\pi (0.005)^2 = 3.14 \times 10^{-4} \text{ m}^2$ $I = \frac{0.69 \text{ W}}{3.14 \times 10^{-4} \text{m}^2} = 2196 \text{ W m}^{-2}$		
	Total for question 17		11