Отчёт по лабораторной работе №6

Kseniia Mikhailovna Fogileva¹

23 March, 2021 Moscow, Russia

¹RUDN University, Moscow, Russian Federation

Простейшая модель эпидемии

Простейшая модель эпидемии

Цель работы: Построить простейшую модель эпидемии с помощью Python.

Модель

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы:

- $\cdot \ S(t)$ восприимчивые к болезни, но пока здоровые особи;
- $\cdot \ I(t)$ это число инфицированных особей, которые также при этом являются распространителями инфекции;
- $\cdot \ R(t)$ это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* считаем, что все больные изолированы и не заражают здоровых. Когда $I(t)>I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей. Скорость изменения числа S(t) меняется по закону:

$$\frac{\partial S}{\partial t} = \begin{cases} -\alpha S, I(t) > I^* \\ 0, I(t) \le I^* \end{cases}$$

Модель

Поскольку каждая восприимчивая к болезни особь, которая в конце концов заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{\partial I}{\partial t} = \begin{cases} -\alpha S - \beta I, I(t) > I^* \\ -\beta I, I(t) \le I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{\partial R}{\partial t} = \beta I$$

** Модель**

****** Модель******

Постоянные пропорциональности: - lpha — коэффициент заболеваемости

 $\cdot \beta$ — коэффициент выздоровления

Для того, чтобы решения соответствующих уравнений определялись однозначно, нужно задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$.

Графики

Выводы

Построили простейшую модель эпидемии с помощью Python.

В обоих случаях люди острова смогут победить болезнь.