La Transformada Z en sistemas LTI

Introducción

- La <u>transformada</u> Z es al análisis de señales y sistemas <u>discretos</u> LTI como la <u>transformada de Laplace</u> es al análisis de señales y sistemas <u>contínuos</u> LTI.
- La convolución de dos señales en el dominio del tiempo corresponde a una multiplicación de sus transformadas Z.
- La transformada z proporciona una manera de caracterizar sistemas LTI y sus respuestas a varias señales mediante la localización de sus polos y ceros.

♦ La Transformada Z directa

La transformada z de una señal discreta x(n) se define como la serie de potencias

$$X(z) \equiv Z\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

donde z es una variable compleja.

La relación entre x(n) y X(z) se indica mediante

$$x(n) \stackrel{z}{\longleftrightarrow} X(z)$$

Región de convergencia (ROC)

- Dado que la transformada z es una serie infinita de potencias, ésta existe sólo para aquellos valores de z para los que la serie converge.
- La ROC de X(z) es el conjunto de todos los valores de z para los que X(z) es finita.
- Siempre que se determine una trasformada z debe inidicarse su ROC.
- **Ejemplo:** encuentre la transformada z de las siguientes señales de duración finita.
 - $x_1(n) = \{\underline{1}, 2, 5, 7, 0, 1\}$
 - $x_2(n) = \{1, 2, 5, 7, 0, 1\}$
 - $x_3(n)=\delta(n)$

- ROC: plano z, excepto z=0
- ROC: plano z, excepto z=0 y $z=\infty$
- ROC: plano z complejo

Observación

- La ROC de señales de *duración finita* es todo el plano z, excepto quizás z=0 y/o $z = \infty$.
- Desde el punto de vista matemático, la transformada z es una forma alternativa de representar una señal discreta.

♦ Partes causales y anticausales de la ROC

El problema de encontrar la ROC de X(z) es equivalente a **determinar el rango de** valores de r para los que la secuencia x(n) r⁻ⁿ es **absolutamente sumable**.

$$z = re^{j\theta} \Rightarrow X(z)\Big|_{z=re^{j\theta}} = \sum_{n=-\infty}^{\infty} x(n)r^{-n}e^{-j\theta n}$$

La magnitud de X(z) está dada por,

$$|X(z)| = \left| \sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-j\theta n} \right| \le \sum_{n=-\infty}^{\infty} |x(n) r^{-n}|$$

Reorganizando la sumatoria,

$$|X(z)| \le \sum_{n=1}^{\infty} |x(-n)r^n| + \sum_{n=0}^{\infty} \left| \frac{x(n)}{r^n} \right|$$

Entonces, X(z) converge si,

▶ anticausal:
$$\sum x(-n)r^n \le \infty$$
, $1 \le n < \infty$ $\Rightarrow r < r_1 < \infty$

causal:
$$\sum \frac{x(n)}{r^n} \le \infty, \qquad 0 \le n < \infty \qquad \Rightarrow r > r_2$$

- En general la ROC de X(z) es una región anular del plano z, tal que $r_2 < r < r_1$
- Si $r_2 > r_1 \boxtimes ROC$ no existe $\boxtimes X(z)$ no existe

ROC de X(z) y sus correspondientes partes causales y anticausales

Ejemplo 1.

Determine la transformada Z de la señal $x(n)=\alpha^n u(n)$

Solución:

$$X(z) = \sum_{n=0}^{\infty} \alpha^{n} z^{-n} = \sum_{n=0}^{\infty} (\alpha z^{-1})^{n}$$

Si $|\alpha z^{-1}| < 1$ ó $|z| > |\alpha|$, esta serie converge a:

$$\frac{1}{(1-\alpha z^{-1})}$$

Por lo tanto,

$$x(n) = \alpha^n u(n) \stackrel{z}{\longleftrightarrow} X(z) = \frac{1}{1 - \alpha Z^{-1}}$$

y la ROC $|z| > |\alpha|$

Ejemplo 2.

Determine la transformada Z de la señal $x(n) = -\beta^n u(-n-1) = \begin{cases} 0 & n \ge 0 \\ -\beta^n & n \le -1 \end{cases}$

Solución:
$$X(z) = \sum_{n=-\infty}^{-1} (-\beta^n) z^{-n} = -\sum_{L=1}^{\infty} (\beta^{-1} z)^L$$

donde L = -n. Usando la serie,

$$A + A^{2} + A^{3} + ... = A(1 + A + A^{2} + ...) = \frac{A}{(1 - A)}$$

cuando |A|<1, se tiene:

$$X(z) = -\frac{\beta^{-1}z}{1-\beta^{-1}z} = \frac{1}{1-\beta z^{-1}}$$

siempre que $|\beta^{-1}z| < 1$ ó $|z| < |\beta|$

Por tanto, la ROC está dada por $|z| < |\beta|$

Señales típicas y sus respectivas ROC

Señales típicas y sus respectivas ROC

Propiedades de la transfromada Z

	_		
Propiedad	Domnio del tiempo	Dominio z	ROC
Notación	x(n)	X(z)	$ROC: r_2 \triangleleft z \rvert < r_1$
	$x_1(n)$	$X_1(z)$	ROC_1
	$x_2(n)$	$X_2(z)$	ROC_2
Linealidad	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$	Como mínimo la intersección de ROC ₁ y ROC ₂
Desplazamiento			
en el tiempo	x(n-k)	$z^{-k}X(z)$	La de $X(z)$, excepto $z=0$ si $k>0$ y $z=\infty$ si $k<0$
Escalado en el			
dominio z	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Inversión temporal	x(-n)	$X(z^{-1})$	$1/r_1 < z < 1/r_2$
Conjugación	$x^*(n)$	$X^*(z^*)$	ROC
Parte real	$Re\{x(n)\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Incluye a la ROC
Parte imaginaria	$Im\{x(n)\}$	$\frac{1}{2}[X(z)-X^*(z^*)]$	Incluye a la ROC
Diferenciación en		JV (_)	
el dominio z	nx(n)	$-z\frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolución	$x_1(n)*x_2(n)$	$X_1(z) X_2(z)$	Como mínimo la intersección de ROC ₁ y ROC ₂
Correlación	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x1x2}(z)=X_1(z)X_2(z^{-1})$	Como mínimo la intersección de las ROC de $X_1(z)X_2(z^{-1})$
Teorema del valor			
inicial	Si x(n) causal	$x(0) = \lim_{z \to \infty} X(z)$	
Multiplicación	$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	Como mínimo, $r_{1l}r_{2l} < z < r_{1u}r_{2u}$
Relación de Parseval	$\sum_{n=0}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi j} \oint_C X_1(n) dn$	$(v)X_{2}^{*}(1/v^{*})v^{-1}dv$	

Pares comunes de transformadas z

▶ Señal, x(n)

Transformada z, X(z)

ROC

Transformadas z racionales

Introducción

X(z) es una función racional si se puede expresar como el cociente de dos polinomios en z^{-1} (ó z).

$$X(z) = \frac{N(z)}{D(z)} = \frac{\sum_{k=0}^{\infty} b_k z^{-k}}{\sum_{k=0}^{\infty} a_k z - k}$$

Si $a_0 \neq 0$ y $b_0 \neq 0$ se tiene,

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 z^{-M}}{a_0 z^{-N}} \frac{z^M + (b_1 / b_0) z^{M-1} + \dots + (b_M / b_0)}{z^N + (a_1 / a_0) z^{N-1} + \dots + (a_M / a_0)}$$

Dado que N(z) y D(Z) son polnomios, X(z) se pueden expresar como un producto de factores,

$$X(z) = \frac{b_0}{a_0} z^{N-M} \frac{\prod_{k=1}^{M} (z - z_k)}{\prod_{k=1}^{N} (z - p_k)}$$

- \triangleright $z_k \cong$ Ceros de X(z): valores de z para los cuales X(z) = 0
- P_k \cong **Polos** de X(z): valores de z para los cuales X(z) = ∞
- Por definición, la ROC de X(z) no puede contener ningún polo.

Polos vs. Comportamiento Temporal

Existe una relación directa entre la localización de los polos (en relación con el círculo |z| = 1) y la forma de la señal discreta correspondiente en el dominio del tiempo.

Comportamiento de una señal causal con un solo polo.

ROC : |z| > |a|

 $x(n) = n a^n u(n)$

Comportamiento de una señal causal con un polo doble.

Señal causal correspondiente a un par de polos conjugado doble sobre la circunferencia unidad.

♦ Resumen

- ► Señal decreciente ⊠ polos dentro del círculo unitario
- ▶ Señal creciente ⊠ polos fuera del círculo unitario
- ► Señal constante o creciente ⊠ polos sobre el círculo

Observación

Todo lo dicho sobre las señales causales se aplica a sistemas LTI, dado que la h(n) es causal.

Función de transferencia de Sistemas LTI

- **Para un sistema LTI, se cumple que,** $y(n) = h(n) * x(n) \stackrel{z}{\longleftrightarrow} Y(z) = H(z)X(z)$
- Luego, la transformada z de h(n) puede determinarse como, $H(z) = \frac{Y(z)}{X(z)}$
- H(z) recibe el nombre de Función de Transferencia del sistema, y describe el sistema en el dominio z.
- Para un sistema descrito en ecuaciones de diferencia con coeficientes constantes,

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k) \longleftrightarrow Y(z) = -\sum_{k=1}^{N} a_k Y(z) z^{-k} + \sum_{k=0}^{M} b_k X(z) z^{-k}$$

luego,

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{K=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} \begin{cases} Sistema \ de \ todo \ ceros \rightarrow FIR \\ Si \ a_k = 0 \ para \ 1 \le k \le M \Rightarrow H(z) = \sum_{k=0}^{M} b_k z^{-k} = \frac{1}{z^M} \sum_{k=0}^{M} b_k z^{M-K} \\ Sistema \ de \ todo \ polos \rightarrow IR \\ Si \ b_k = 0, \ para \ 1 \le k \le M \Rightarrow H(z) = \frac{b_0 z^n}{\sum_{k=0}^{M} a_k z^{N-k}} \end{cases}, \quad a_0 \equiv 1$$

Transformada z inversa

- Procedimiento para pasar del dominio z al dominio temporal.
- Definición: está dada por la integral de contorno sobre el camino cerrado C que encierra el origen y se encuentra en la ROC de X(z) en el plano z.

$$x(n) = \frac{1}{2\pi i} \oint_C X(z) z^{n-1} dz$$

- Existen tres métodos para el cálculo de la transformada z inversa
 - Cálculo directo
 - » Resolver la integral del contorno usando el Teorema de Residuo de Cauchy

$$\frac{1}{2\pi j} \oint_C \frac{f(z)}{(z-z_0)^k} dz = \begin{cases} \frac{1}{(k-1)!} \frac{\partial^{k-1} f(z)}{\partial z^{z-1}} \bigg|_{z=z_0} & Si \quad z_0 \text{ est\'a dentro } de C \\ 0 & Si \quad z_0 \text{ est\'a fuera } de C \end{cases}$$

Expansión de X(z) en serie de potencias de la forma,

$$X(z) = \sum_{n=-\infty}^{\infty} c_n z^{-n} \quad \stackrel{z}{\longleftrightarrow} x(n) = c_n \quad para \quad todo \quad n$$

- » Cuando X(z) es racional, la expansión en serie se obtiene efectuando divisiones entre el numerador y el denominador de X(z).
- » No existe una solución cerrada.
- Expansión en fracciones parciales

Transformada z inversa por expansión en fracciones parciales

Método que expresa X(z) como una combinación lineal de transformadas z simples, tal que sus transformadas inversas sean conocidas:

$$X(z) = \alpha_1 X_1(z) + \alpha_2 X_2(z) + ... + \alpha_k X_k(z)$$

Por la propiedad de linealidad, la transformada inversa puede obtenerse como,

$$x(n) = \alpha_1 x_1(n) + \alpha_2 x_2(n) + ... + \alpha_k x_k(n)$$

Método bastante útil cuando X(z) es una función racional.

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

- ▶ F. Racional **Propia** si $a_N \neq 0$ y M < N \rightarrow **No. de ceros finitos** < **No. de polos finitos**
- F. Racional **Impropia** si $M \ge N$
 - » Una F. Racional Impropia siempre puede expresarse como la suma de un polinomio y una función racional propia → caso de estudio:F. Racional Propia.
- La expansión en fracciones parciales para X(z) con polos diferentes es de la forma,

$$X(z) = \sum_{k=0}^{M-N} c_k z^{-k} + \sum_{k=1}^{K_1} \frac{b_k}{1 + a_k z^{-1}} + \sum_{k=1}^{K_2} \frac{b_{0k} + b_{1k} z^{-1}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}}$$

En el caso de polos de orben *l*, la expansión ha de contener términos de la forma múltiples

$$\frac{A_{1k}}{z - p_k} + \frac{A_{2k}}{(z - p_k)^2} + \dots + \frac{A_{lk}}{(z - p_k)^l}$$

Transformada z unilateral

Introducción

- La transformada directa también recibe el nombre de transformada *bilateral*.
- La transforamada z *unilateral* es de gran utilidad en el análisis de <u>sistemas causales</u> especificados por ecuaciones de diferencias lineales con coeficientes constantes y con condiciones iniciales diferentes de cero.

Definición y propiedades

La transformada z unilateral $X^+(z)$ de una señal x(n) se define como,

$$X^{+}(z) = Z^{+}\{x(n)\} \equiv \sum_{n=0}^{\infty} x(n)z^{-n} \quad x(n) \longleftrightarrow X^{+}(z)$$

- Debido a que el límite inferior de la transformada unilateral es siempre cero, presenta las siguientes propiedades:
 - No contiene información sobre la señal x(n) para valores negativos del tiempo (n<0).
 - Es **única** sólo para señales causales, ya que x(n)=0 para n<0.
 - La transformada z unilateral $X^+(z)$ de x(n) es idéntica a la transformada z bilateral X(z) de la señal x(n) u(n). Puesto que x(n) u(n) es causal, *la ROC de X(z) y X^+ (z) es siempre exterior a un círculo*.
 - » De lo anterior se desprende que no es necesario especificar la ROC cuando se trabaja con transformadas z unilaterales.

Observación

- Casi todas las propiedades de la transformada z bilateral se extienden a la transformada z unilateral con la excepción de la propiedad de <u>desplazamiento temporal</u>.
- Esta propiedad facilita la solución de ecuaciones de diferencia con coeficientes constantes y condiciones iniciales distintas de cero para sistemas recursivos LTI.

♦ Propiedad de desplazamiento temporal

Retardo temporal

$$si \quad x(n) \stackrel{z^+}{\longleftrightarrow} X^+(z) \quad entonces$$

$$x(n-k) \stackrel{z^+}{\longleftrightarrow} z^{-k} \left[X^+(z) + \sum_{n=1}^k x(-n)z^n \right] \quad k > 0$$

$$En \quad caso \quad que \quad x(n) \quad sea \quad causal, \quad entonces$$

$$x(n-k) \stackrel{z^+}{\longleftrightarrow} z^{-k} X^+(z)$$

Avance temporal

$$si \quad x(n) \stackrel{z^+}{\longleftrightarrow} X^+(z) \quad entonces$$

$$x(n+k) \stackrel{z^+}{\longleftrightarrow} z^{+k} \left[X^+(z) - \sum_{n=0}^{k-1} x(n) z^{-n} \right] \quad k > 0$$

Solución de Ecuaciones en Diferencias vía Transformada z

- Introducción
 - Método indirecto efectivo para la solución de ecuaciones de diferencia con condiciones iniciales distintas de cero.
- **Procedimiento**
 - La solución se logra reduciendo la ecuación de diferencias a una ecuación algrebraica equivalente en el dominio z .
 - Esta ecuación algebraica se resuelve fácilmente para obtener la transformada z de la señal deseada.
 - La señal en el dominio del tiempo se obtiene invirtiendo la transformada z resultante.
- **Ejemplo:** determine la repuesta del sistema a la entrada escalón

$$y(n) = \alpha \ y(n-1) + x(n)$$
 $-1 < \alpha < 1$ $y(-1) = 1$ $Z^{+}\{u(n)\} = X^{+}(z) = \frac{1}{1-z^{-1}}$

- Solución. Calculando la transformada z unilateral a ambos lados de la ecuación, se obtiene, $Y^+(z) = \alpha \left[z^{-1} Y^+(z) + y(-1) \right] + X^+(z)$
- Reemplazado la condición inicial, se llega a

$$Y^{+}(z) = \frac{\alpha}{1 - \alpha z^{-1}} + \frac{1}{(1 - \alpha z^{-1})(1 - z^{-1})}$$

Luego,

$$y(n) = \frac{1}{1-\alpha} (1-\alpha^{n+2})u(n)$$