TD n°3: Echantillonnage

Exercice 1 : échantillonnage

- a) Que peut on dire de la transformée de Fourier d'un signal périodique ? En utilisant la dualité temps-fréquence pour la transformée de Fourier, que signifie le fait que la transformée de Fourier d'un signal *y*(*t*) soit périodique ?
- b) Soit $S_{xx}(f)$ la densité spectrale de puissance du signal x(t). Le spectre $S_{xe}(f)$ obtenu après échantillonnage est représenté sur la figure suivante :

- 1. Déterminer la fréquence d'échantillonnage F_e utilisée.
- 2. Le signal a-t-il été correctement échantillonné?

Exercice 2 : échantillonnage parfait et réel

On appelle échantillonnage d'un signal à temps continu x(t) l'opération qui délivre un signal à temps discret x_n ou encore une suite numérique $\{x_n\}$ telle que :

$$x_n = x(t_n)$$

où les instants t_n sont appelés instants d'échantillonnage. L'échantillonneur est dit périodique de période T_e si $t_n = n$ T_e . La question qui se pose est de savoir dans quelle mesure la suite $\{x_n\}$ peut correctement représenter le signal x(t). Cette question est l'objet du théorème d'échantillonnage (ou théorème de Shannon) que l'on se propose d'établir pour un signal de spectre X(f) à bande limitée : |X(f)| = 0 si |f| > B.

A - Échantillonnage Parfait

a) On considère le cas où le signal x(t) a un spectre X(f) à bande limitée. On appelle $x^*(t)$ le signal qui est tel que son spectre $X^*(f)$ soit la répétition de X(f) avec la période $1/T_e \ge 2B$. Donner l'expression analytique du signal $X^*(f)$. Ce signal résulte de l'échantillonnage idéal de x(t). Exprimer $x^*(t)$ en fonction des échantillons $x(t_n)$.

b) On appelle $x_E(t)$ le signal échantillonné idéal du signal x(t) ainsi défini :

$$x_E(t) = x(t) \coprod_{T_e} (t)$$

où $\coprod_{t=0}^{\infty} T_{e}(t) = \sum_{t=-\infty}^{\infty} \delta(t-nT_{e})$ est un peigne de Dirac. Quelle condition doit-on imposer au couple $(1/T_{e}, B)$ pour que l'on puisse retrouver x(t) à partir de $x_{E}(t)$ par un simple filtrage linéaire ?

B - Échantillonnage réel

Dans la pratique, on ne peut prélever x(t) idéalement aux instants t_n (les dispositifs d'échantillonnage n'ayant pas un temps de réponse nul) mais on peut prélever le signal x(t) sur l'intervalle $[t_n - \tau/2, t_n + \tau/2]$. L'échantillon obtenu est égal à la moyenne du signal durant l'intervalle de temps considéré. Soit $x_{\tau}^*(t)$ le signal échantillonné réel ainsi obtenu. Dans toute la suite, on considère que l'échantillonnage est périodique de période T_e ($t_n = n$ T_e).

- a) Montrer que le signal $x_{\tau}^{*}(t)$ peut s'écrire sous la forme $x_{\tau}^{*}(t) = p(t) \coprod_{t \in T} T_{e}(t)$. Déterminer p(t) ainsi que ses propriétés.
- b) Calculer la transformée de Fourier du signal $x_{\tau}^{*}(t)$.
- c) Vérifier que lorsque τ tend vers 0, on retrouve bien le spectre du signal échantillonné idéalement.