微积分(一)期中考试试卷答案

一、基本计算(要有过程,每小题6分,共60分)

1. 求极限 $\lim_{n\to\infty} \sqrt[n]{2\sin^2 n + 3\cos^2 n}$.

解 显然
$$\sqrt[n]{2} \le \sqrt[n]{2\sin^2 n + 3\cos^2 n} \le \sqrt[n]{3}$$
 , [其他上界比如 $\sqrt[n]{5}$ 不影响极限计算] (3分)

由
$$\lim_{n \to \infty} \sqrt[n]{a} = 1 (a > 0)$$
 及夹逼定理知,原式 = 1. (6分)

2. 当 $x \to 1$ 时, 求 $u = \sqrt[3]{x^2} - 1$ 关于基本无穷小x - 1的阶数与主部.

解
$$\sqrt[3]{x^2} - 1 = (1 + x^2 - 1)^{1/3} - 1 \sim \frac{x^2 - 1}{3} = \frac{(x+1)(x-1)}{3} \sim \frac{2}{3}(x-1)$$
, (5分)

或
$$\sqrt[3]{x^2} - 1 = (1 + (x - 1))^{2/3} - 1 \sim \frac{2}{3}(x - 1)$$
,或 $\sqrt[3]{x^2} - 1 = e^{\frac{2}{3}\ln x} - 1 \sim \frac{2}{3}\ln x \sim \frac{2}{3}(x - 1)$,

故阶数为 1, 主部为
$$\frac{2(x-1)}{3}$$
. (6分)

3. 计算极限 $l = \lim_{x \to 0} \frac{\sin x - x \cos x}{x \ln \cos x}$.

解

$$l = \lim_{x \to 0} \frac{\sin x - x \cos x}{-\frac{1}{2}x^3} = -2\lim_{x \to 0} \frac{x \sin x}{3x^2} = -\frac{2}{3} . \tag{6 \%}$$

$$\vec{x} = -2\lim_{x \to 0} \frac{\sin x - x \cos x}{x^3} = -2\{\lim_{x \to 0} \frac{\sin x - x}{x^3} + \lim_{x \to 0} \frac{1 - \cos x}{x^2}\} = -\frac{2}{3},$$

或用泰勒公式.

4. 计算极限 $l = \lim_{x \to 0} (e^x - \sin x)^{\frac{1}{x^2}}$.

$$\mathbf{R} \lim_{x \to 0} \frac{\ln(e^x - \sin x)}{x^2} = \lim_{x \to 0} \frac{e^x - \sin x - 1}{x^2} = \lim_{x \to 0} \frac{e^x - \cos x}{2x} = \lim_{x \to 0} \frac{e^x + \sin x}{2} = \frac{1}{2}, \tag{4}$$

所以
$$l = \sqrt{e}$$
. (6分)

5. 设
$$f(x) = x^{\tan x}$$
. 求 $f'(\frac{\pi}{4})$.

解 利用对数求导法得
$$f'(x) = x^{\tan x} (\sec^2 x \ln x + \frac{\tan x}{x}).$$
 (4分)

代入
$$x = \frac{\pi}{4}$$
 得 $f'(\frac{\pi}{4}) = 1 + \frac{\pi}{2} \ln \frac{\pi}{4}$. (6 分)

6. 求曲线 $\cos x + \ln(y - x) = y^2$ 在点 (0,1) 处的切线方程.

解 方程两边对x求导得到

$$-\sin x + \frac{1}{y - x}(y' - 1) = 2yy'. \tag{4}$$

代入
$$x = 0, y = 1$$
解得 $y'(0) = -1$. 切线方程为 $x + y = 1$. (6分)

7. 设函数 f(x) 二阶可导, 求 $y = f(\sin x)$ 的二阶导数.

$$\mathbf{M} \quad y' = f'(\sin x)\cos x. \tag{2分}$$

$$y'' = f''(\sin x)\cos^2 x - f'(\sin x)\sin x. \tag{6 \%}$$

8. 设 $y = x \ln x$, 求 $y^{(6)}$.

解法一 根据 Leibniz 法则得到

$$y^{(6)} = x(\ln x)^{(6)} + 6(\ln x)^{(5)} \tag{3 \%}$$

$$=x\left(\frac{1}{x}\right)^{(5)} + 6\left(\frac{1}{x}\right)^{(4)} = \frac{24}{x^5} \tag{6 \%}$$

解法二
$$y^{(6)} = (1 + \ln x)^{(5)} = (\frac{1}{x})^{(4)} = \frac{24}{x^5}$$
. [每一步得 2 分]

9. 求
$$a,b$$
 的值使得函数 $f(x) = \begin{cases} e^{ax}, & x < 0 \\ b - \sin 2x, & x \ge 0 \end{cases}$ 在点 $x = 0$ 连续并且可导.

解 直接得到
$$f(0^+) = b$$
, $f(0^-) = 1$. 所以 $b = 1$. (3 分)

求导得到
$$f'_{+}(0) = -2, f'_{-}(0) = a$$
.所以 $a = -2$. (6 分)

10. 设函数
$$y = y(x)$$
 由方程
$$\begin{cases} x = t^2 + 2t, \\ y = t + \ln t \end{cases}$$
 确定,求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$.

解
$$\frac{dy}{dx} = \frac{t+1}{t(2t+2)} = \frac{1}{2t}$$
. (2分)

$$\frac{d^2y}{dx^2} = \frac{(1/2t)'}{2t+2} = \frac{-1}{4t^2(t+1)}.$$
 (6 \(\frac{\psi}{2}\))

二、综合题(每小题6分,共30分)

11. 设函数 $f(x) = e^{\frac{1}{x^2}} \arctan \frac{x-1}{x+1}$. 指出 f(x) 的间断点,并判断其类型.

解 函数 f(x) 的间断点为 0,-1.

$$\lim_{x \to 0} f(x) = -\infty, \ f((-1)^+) = -\frac{\pi e}{2}, \ f((-1)^-) = \frac{\pi e}{2}. \tag{3 }$$

所以x = 0是第二类间断点. x = -1是第一类间断点,是跳跃间断点. (6分)

12. 设 $f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ 为 n 次实系数多项式. 证明当 n 为奇数时,方程 f(x) = 0 至少有一个实根.

证 当
$$n$$
 为奇数时, 显然 $f(+\infty) = +\infty$, $f(-\infty) = -\infty$. (2 分)

于是存在
$$x_1, x_2$$
 使得 $f(x_1) > 0, f(x_2) < 0$. (4 分)

函数
$$f(x)$$
 显然连续. 根据介值定理方程 $f(x) = 0$ 至少有一个实根. (6分)

13. 设
$$f(x)$$
 在 $x = 2$ 处可导, $f(2) \neq 0$, 求 $\lim_{n \to \infty} \left[\frac{f(2 + \frac{1}{n})}{f(2)} \right]^n$.

$$\Re \lim_{n\to\infty} n \ln \frac{f\left(2+\frac{1}{n}\right)}{f(2)} = \lim_{n\to\infty} n \left[\frac{f(2+\frac{1}{n})}{f(2)} - 1 \right] = \frac{1}{f(2)} \lim_{n\to\infty} \frac{f(2+\frac{1}{n}) - f(2)}{\frac{1}{n}} = \frac{f'(2)}{f(2)} , (5 \%)$$

或
$$\lim_{n\to\infty} n \ln \frac{f\left(2+\frac{1}{n}\right)}{f(2)} = \lim_{n\to\infty} \frac{\ln |f\left(2+\frac{1}{n}\right)| - \ln |f(2)|}{1/n} = \left\{\ln |f(x)|\right\}_{x=2}^{\prime} = \frac{f'(2)}{f(2)},$$

所以原式=
$$e^{\frac{f'(2)}{f(2)}}$$
. (6分)

14. 设一个雪球以 2 cm³ / min 的速度融化. 设雪球在融化过程中始终保持球形. 求当雪球半径为 10cm 的时候半径变化的速率.

$$\mathbf{M}$$
根据几何关系得到 $V = \frac{4\pi r^3}{3}$. (2分)

两边对
$$t$$
求导得到 $\frac{\mathrm{d}V}{\mathrm{d}t} = 4\pi r^2 \frac{\mathrm{d}r}{\mathrm{d}t}$. (4分)

代入
$$dV/dt = -2$$
 以及 $r = 10$ 得到
$$\frac{dr}{dt} = -\frac{1}{200\pi} \text{ cm/min.}$$
 (6 分)

即半径以 $\frac{1}{200\pi}$ cm/min 的速度减小.

15. 写出函数 $f(x) = x \cos x$ 带皮亚诺余项的五阶麦克劳林公式...

解 先写出

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^5) \quad , \tag{3 \%}$$

进一步得到

$$x\cos x = x - \frac{1}{2}x^3 + \frac{1}{24}x^5 + o(x^6). \tag{6 \%}$$

[系数变化写法;直接法由高阶导计算出所有系数;以及余项变化为 $o(x^5)$ 都算正确]

三、分析证明(每小题5分,共10分)

16. 设数列 $\{x_n\}$ 由递推公式 $x_1 = \sqrt{6}, x_{n+1} = \sqrt{6+x_n}$ 给出. 证明 $\lim_{n \to \infty} x_n$ 存在并求极限值.

证明 显然有 $x_2 > x_1$, 再根据 $x_{n+2}^2 - x_{n+1}^2 = x_{n+1} - x_n$, 利用数学归纳法知 $\{x_n\}$ 严格单调增加. 另外显

然
$$x_1 < 3$$
. 设 $x_n < 3$, 可推出 $x_{n+1} = \sqrt{6 + x_n} < \sqrt{6 + 3} = 3$, 再根据数学归纳法知 $\{x_n\}$ 有上界. (4 分)

根据单调有界收敛准则知数列极限存在. 设 $\lim_{n\to\infty} x_n = l$, 对 $x_{n+1} = \sqrt{6+x_n}$ 两边取极限得到

$$l = \sqrt{6+l} , 解得 l = 3. \tag{5分}$$

17. 设0 < a < b. 设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,证明存在 $\xi \in (a,b)$ 使

得
$$\xi f'(\xi) - f(\xi) = \frac{af(b) - bf(a)}{b - a}$$
.

证
$$F(x) = \frac{f(x)}{x}$$
 和 $G(x) = \frac{1}{x}$ 在 $[a,b]$ 上连续, 在 (a,b) 上可导, 且 $G'(x) \neq 0$. (2分)

由柯西中值定理, 存在 ξ ∈ (a,b) 使得

$$\frac{af(b) - bf(a)}{a - b} = \frac{F(b) - F(a)}{G(b) - G(a)} = \frac{F'(\xi)}{G'(\xi)} = -\xi f'(\xi) + f(\xi). \tag{5 \%}$$

两边变号即得所证.