Modelling of COVID-19 epidemic and INTERVENTIONS WITHIN IDP CAMPS

Dr. Eduard Campillo-Funollet, PhD, Univ. of Sussex (UK) JORDAN KLEIN, MPH, PRINCETON UNIV. (USA) Dr. Alberto Pascual-García, PhD, ETH-Zürich (Switzerland) Dr. Jennifer Villers, PhD, Princeton Univ. (USA) CHAMSY SARKIS, PAX SYRIANA FOUNDATION

July 16^{th} , 2020

MODEL PRELIMINARIES

Between December 2019 and March 2020, 1M new IDP → Informal settlements HIGH DENSITY and no management

~700 camps with 600 person per camp on average (log-normal)

80% family-sized tents (~7 people)

Most of the informal camps have no management.

Source: UN- REACH REPORT, JANUARY-MARCH 2020

Between December 2019 and March 2020, 1M new IDP → Informal settlements

HIGH DENSITY and no management

~700 camps with 600 person per camp on average (log-normal)

80% family-sized tents (~7 people)

Most of the informal camps have no management.

NO POSSIBLE lockdown

50% no access to electricity

External water, with 25% not have enough drinking water

External letrines, and 10% households have 1 member disable/elderly.

360% drop of Syrian pound (no access to goods) → high motility to work

Source: UN- REACH REPORT, JANUARY-MARCH 2020

Between December 2019 and March 2020, 1M new IDP → Informal settlements

HIGH DENSITY and no management

~700 camps with 600 person per camp on average (log-normal)

80% family-sized tents (~7 people)

Most of the informal camps have no management.

NO POSSIBLE lockdown

50% no access to electricity

External water, with 25% not have enough drinking water

External letrines, and 10% households have 1 member disable/elderly.

360% drop of Syrian pound (no access to goods) → high motility to work

HIGH comorbidity

10% population has chronic diseases, 17% of them have no access to medicines.

Source: UN- REACH REPORT, JANUARY-MARCH 2020

AIM

IDENTIFY FEASIBLE INTERVENTIONS:

- Immediate applicability
- No need of complex technical infrastructure (e.g. testing, protection)
 - Cost: as low as possible

Outlook

Modelling

- Compartment models.
- Age-structured.
- Deterministic and stochastic simulations.
- Parameters estimated for IDPCs.
- Different camp sizes.
- ~50 different interventions modelled
- ~100K different simulations.

Strategies

- Self-distancing
- Shielding, lockdown
- Isolation
- Combined strategies

THE MODEL

Hospitalization capacity

Hospitalization capacity

Figure 6 Scenario One predicted severe cases

The health system in NW Syria would be unable to cope by the beginning of week 8; as such, severe cases could become critical and mortality could increase

Population Pyramid in NW of Syria

Population Pyramid in NW of Syria

Population Pyramid in NW of Syria

Parameter	Description	Value	Distribution	Reference
$1/\delta_E + 1/\delta_P$	Duration of incubation period	5.2 (95% CI:	Lognormal	[1]
	in days	4.1-7.0)		
$1/\delta_E$	Duration of latency in days	$1/\delta_E + 1/\delta_P - 1/\delta_P$		[2]
$1/\delta_P$	Duration of preclinical	2.3 (95% CI:	Gompertz	[2]
	infectiousness in days	0.8 - 3.0)		
$1/\gamma_A = 1/\gamma_I$	Duration of clinical $(1/\gamma_I)$ and	7		[2, 3]
	subclinical $(1/\gamma_A)$ infectiousness			
	in days			
$1/\eta$	Delay from symptoms onset to	7 (IQR: 4-8)	Gamma	[4]
	hospitalization in days			
$1/\alpha$	Delay from symptoms onset to	10 (IQR: 6-12)	Gamma	[4]
	ICU (here death) in days			
$1/\gamma_H$	Delay from hospitalization to	10 (IQR: 7-14)	Gamma	[4]
	recovery in days			
f	Fraction of infected people who	0.84 (95% CI:	Binomial	[5]
	develop symptoms	0.8 - 0.88)		
h_i	Fraction of symptomatic	Age- and		[6, 7]
	people requiring hospitalization	comorbidity-		
	but not ICU	dependent		
g_i	Fraction of symptomatic	Age- and		[6, 7]
	people requiring ICU	comorbidity-		
		dependent		

Parameter	Description	Value	Distribution	Reference
$1/\delta_E + 1/\delta_P$	Duration of incubation period	5.2 (95% CI:	Lognormal	[1]
	in days	4.1-7.0)		
$1/\delta_E$	Duration of latency in days	$1/\delta_E + 1/\delta_P - 1/\delta_P$		[2]
$1/\delta_P$	Duration of preclinical	2.3 (95% CI:	Gompertz	[2]
	infectiousness in days	0.8 - 3.0)		
$1/\gamma_A = 1/\gamma_I$	Duration of clinical $(1/\gamma_I)$ and	7		[2, 3]
	subclinical $(1/\gamma_A)$ infectiousness			
	in days			
$1/\eta$	Delay from symptoms onset to	7 (IQR: 4-8)	Gamma	[4]
	hospitalization in days			
$1/\alpha$	Delay from symptoms onset to	10 (IQR: 6-12)	Gamma	[4]
	ICU (here death) in days			
$1/\gamma_H$	Delay from hospitalization to	10 (IQR: 7-14)	Gamma	[4]
	recovery in days			
f	Fraction of infected people who	0.84 (95% CI:	Binomial	[5]
	develop symptoms	0.8 - 0.88)		
h_i	Fraction of symptomatic	Age- and		[6, 7]
	people requiring hospitalization	comorbidity-		
	but not ICU	dependent		
g_i	Fraction of symptomatic	Age- and		[6, 7]
	people requiring ICU	comorbidity-		
		dependent		

Parameter	Description	Value	Distribution	Reference
$1/\delta_E + 1/\delta_P$	Duration of incubation period	5.2 (95% CI:	Lognormal	[1]
	in days	4.1-7.0)		
$1/\delta_E$	Duration of latency in days	$1/\delta_E + 1/\delta_P - 1/\delta_P$		[2]
$1/\delta_P$	Duration of preclinical	2.3 (95% CI:	Gompertz	[2]
	infectiousness in days	0.8 - 3.0)		
$1/\gamma_A = 1/\gamma_I$	Duration of clinical $(1/\gamma_I)$ and	7		[2, 3]
	subclinical $(1/\gamma_A)$ infectiousness			
	in days			
$1/\eta$	Delay from symptoms onset to	7 (IQR: 4-8)	Gamma	[4]
	hospitalization in days			
$1/\alpha$	Delay from symptoms onset to	10 (IQR: 6-12)	Gamma	[4]
	ICU (here death) in days			
$1/\gamma_H$	Delay from hospitalization to	10 (IQR: 7-14)	Gamma	[4]
	recovery in days			
f	Fraction of infected people who	0.84 (95% CI:	Binomial	[5]
	develop symptoms	0.8 - 0.88)		
h_i	Fraction of symptomatic	Age- and	Values mapped	[6, 7]
	people requiring hospitalization	comorbidity-	to individuals	
	but not ICU	dependent	10 years older	
g_i	Fraction of symptomatic	Age- and	Values mapped	[6, 7]
	people requiring ICU	comorbidity-	to individuals	
		dependent	10 years older	

$$\lambda_i = \sum_{j=1}^n \beta_{ij} \frac{P_j + A_j + I_j + H_j}{N_j}$$

With:
$$eta_{ij} = au C_{ij}$$

T is the probability of infection if there is a contact C is the number of contacts between population classes i and j

$$\lambda_i = \sum_{j=1}^n \beta_{ij} \frac{P_j + A_j + I_j + H_j}{N_j}$$

With: $\beta_{ij} = \tau C_{ij}$

T is the probability of infection if there is a contact
C is the number of contacts between population classes i and j

THE RESULTS

Description

 Reduction of contacts between individuals.

Key-points

- Simple and rapid implementation.
- Educational-based, long-term benefit
- Starting investment then mouth-to-word

Description

 Reduction of contacts between individuals.

Population class	Null model	Reduction 20%	Reduction 50%
Kids	25	20	12.5
Adults	15	11	7.5
Elderly	10	8	5

Key-points

- Simple and rapid implementation.
- Educational-based, long-term benefit
- Starting investment then mouth-to-word

Description

 Reduction of contacts between individuals.

Population class	Null model	Reduction 20%	Reduction 50%
Kids	25	20	12.5
Adults	15	11	7.5
Elderly	10	8	5

Key-points

- Simple and rapid implementation.
- Educational-based, long-term benefit
- Starting investment then mouth-to-word

Up to 40% reduction in the the death tolls

Up to 40% delay in the peak of infected population

Strategy 2: Shielding and Lockdown

Description

- Shield of <u>vulnerable</u> population.
- Similar conditions in terms of tents occupancy and distance between tents were considered.
- Vulnerable:
 - Elderly.
 - People with co-morbidities.
 - · Carers/family.
- Lockdown when <u>first symptom</u> is detected.

80% of the population

Neutral zone

20% of the population

- 45 kids (0-18 yo)
- 35 adults
- Meetings between orange and green in « neutral zone »
 (open tent), no more than 4 people at a time (mixed orange/green). No physical contact (mask and gloves, 1.5 meter distance).

For a total population of 100 persons

- 5 elderly (60+)
- 10 middle-aged NCD affected (mainly people 40-60 years old)
- 5 kids (<13 yrs)
- Intra-green zone carers are among the 10 non-elderly NCD
- No unprotected contact with orange zone or external world
- In average, meeting in neutral zone once per week (2 to 10 contacts per week with orange zone)

Strategy 2: Shielding only

Strategy 2: Shielding only

Strategy 2: Shielding only

Lockdown of the "green" zone after first symptomatic case

Lockdown of the "green" zone after first symptomatic case

Strategy 2: Shielding and Lockdown

Strategy 3: Isolation

Strategy 3: Isolation

Assumptions:

 Symptomatic people are <u>isolated "instantly"</u>, what can only be achieved anticipating symptoms (testing and information)

Isolation

- The fate of the patients is not better nor worse than if staying in the camp → <u>Discards isolating</u> people together without testing.
- We haven't modelled the <u>fate of "carers"</u> which cannot be neglected, even less without an adequate protection.

Model

Model

Strategy 3: Isolation

Strategy 3: Isolation

Conclusions

- Simple interventions can reduce the probability of outbreak and death tolls.
- Shielding under appropriate conditions has an overall positive effect. An increase in the probability of outbreak can be mitigated by self-distancing.
- **Isolation** brings the stronger reduction in death tolls. However, it may accelerate the spread of the virus among the vulnerable population. Several technical caveats should be considered in its implementation.
- The combination of interventions are very effective against the spread of the virus and its potential impact in the population.

Future work

- Determine the optimal population fraction that should be shielded (simulations done, analysis required).
- What can we expect in terms of herd immunity depending on the intervention, and estimate accurate times for e.g. lockdown.
- More accurate extrapolation of the spread of the infection at a regional scale.
- More realistic modelling of some interventions, e.g. introduction of carers if isolation.

Acknowledgements

Contributors:

- Jordan Klein (Princeton University)
- Jennifer Villers (Princeton University)
- Eduard Campillo-Funollet, University of Sussex
- Judith Bouman (ETH-Zürich)
- Chamsy Sarkis (Pax Syriana Foundation)

Thanks for useful discussions:

- Burcu Tepekule (ETH-Zürich)
- Juan Poyatos (Spanish Research Council)