We claim:

- 2. A receiver for processing an optical signal, comprising:
 - a photo-detector for converting said optical signal to an electrical signal;
- 5 and

25

an equalizer for removing intersymbol interference from said electrical signal, said equalizer having a plurality of coefficients configured to be updated based upon a least-mean 2Nth-order (LMN) algorithm, where N is greater than one.

- 10 3. The receiver of claim 1, further comprising a controller to update said coefficients based upon a least-mean 2Nth-order (LMN) algorithm, where N is greater than one.
- 4. The receiver of claim 2, wherein said equalizer is a finite impulse response filter configured to produce a first output signal responsive to said electrical signal, said first output signal being representative of a sum of the associated electrical signal plus a weighted sum of previous ones of the electrical signal, wherein the previous signals are weighted by said coefficients.
- 20 5. The receiver of claim 3, further comprising:
 - a slicer to produce a predicted signal for each first output signal received from the finite impulse response filter;
 - a subtractor to produce an error signal proportional to the difference between said first output signal and a corresponding predicted signal or training signal; and
 - a controller configured to update said coefficients responsive to the error signal.
- 6. The receiver of claim 4, wherein said slicer is configured to produce the predicted signal by adaptively determining a slicing threshold.

- 7. The receiver of claim 4, wherein said equalizer is a feed forward equalizer and said controller is configured to update a set of said coefficients $\vec{c}(k+1)$ at a time (k+1) as $\vec{c}(k) + \beta N[e(k)]^{2N-1}\vec{u}(k)$, wherein β is a preset step size, $\vec{c}(k)$ and e(k) are respective set of coefficients and error signals at a time k, and $\vec{u}(k)$ is an input signal at the time k.
- 8. The receiver of claim 1, wherein the equalizer is a digital filter.
- 9. The receiver of claim 2, wherein the equalizer is an analog filter.

10

5

- 10. The receiver of claim 3, further comprising:
- a first subtractor to produce a second output signal, said second output signal being a sum of one of the first output signals and a corresponding feedback signal;
- a slicer to produce a predicted signal in response to each second output signal;
 - a second subtractor to produce an error signal representing a difference between the second output signal and a corresponding training signal or predicted signal;
 - a feedback filter to produce the feedback signal in response to corresponding ones of the predicted or training signals, the feedback signal being a weighted sum of the predicted or training signal, wherein weights in the sum being characteristics of the filter; and
 - a controller to update the weights in response to the error signal, the controller configured to perform the updates based upon a least-mean $2N^{th}$ -order (LMN) algorithm where N is greater than one.

25

30

20

11. The receiver of claim 9, wherein said equalizer is a decision feedback equalizer and said controller is configured to update a set of the weights $\vec{w}(k+1)$ at a time (k+1) as $\vec{w}(k) + \beta N[e(k)]^{2^{N-1}}\vec{r}(k)$, wherein β is a preset step size, $\vec{w}(k)$ and e(k) are respective sets of weight and error signals at a time k, and $\vec{r}^T(k) = [\vec{u}(k), -\vec{a}(k)]$, where $\vec{u}(k)$ is an input signal at the time k, and $\vec{a}(k)$ is a predicted or training signal at the time k.

- 12. A receiver for processing an optical signal, comprising:

 a photo-detector for converting said optical signal to an electrical signal;

 an equalizer for removing intersymbol interference from said electrical signal; and
- a slicer to produce a predicted signal in response to each input signal based upon a slicing threshold, wherein said slicing threshold is varied based upon a signal distribution of said electrical signal.
- 13. The receiver of claim 11, further comprising a threshold control algorithm to track said signal distribution of said electrical signal and adjust said slicing threshold for a reduced bit error rate of said predicted signal.
 - 14. The receiver of claim 12, wherein said threshold control algorithm accumulates said signal distribution information within a window of finite duration to allow tracking of slowly varying non-stationary channels.

- 15. A method for processing an optical signal, comprising the steps of:

 converting said optical signal to an electrical signal;

 removing intersymbol interference from said electrical signal using an

 equalizer, wherein said equalizer has a plurality of coefficients; and

 updating said plurality of coefficients based upon a least-mean 2Nth-order

 (LMN) algorithm where N is greater than one.
- 16. The method of claim 14, wherein said equalizer is a finite impulse response filter that is further configured to produce a first output signal responsive to said electrical signal, said first output signal being representative of a sum of the associated electrical signal plus a weighted sum of previous ones of the electrical signal, wherein the previous signals are weighted by said coefficients.
- 30 17. The method of claim 15, further comprising the steps of:

 producing a predicted signal for each first output signal received from the finite impulse response filter;

producing an error signal proportional to the difference between said first output signal and a corresponding predicted signal or training signal; and updating said coefficients responsive to the error signal.

- The method of claim 16, further comprising the step of updating a set of the coefficients $\vec{c}(k+1)$ at a time (k+1) as $\vec{c}(k) + \beta N[e(k)]^{2N-1}\vec{u}(k)$, wherein β is a preset step size, $\vec{c}(k)$ and e(k) are respective set of coefficients and error signals at a time k, and $\vec{u}(k)$ is an input signal at the time k.
- 19. The method of claim 15, further comprising the steps of:

 producing a second output signal, said second output signal being a sum of one of the first output signals and a corresponding feedback signal;

producing a predicted signal in response to each second output signal;

producing an error signal representing a difference between the second output signal and a corresponding training signal or predicted signal;

producing the feedback signal in response to corresponding ones of the predicted or training signals, the feedback signal being a weighted sum of the predicted or training signal, wherein weights in the sum being characteristics of the filter; and

updating the weights in response to the error signal, the controller configured to perform the updates based upon a least-mean 2Nth-order (LMN) algorithm where N is greater than one.

20

- 20. The method of claim 18, further comprising the step of updating a set of the weights $\vec{w}(k+1)$ at a time (k+1) as $\vec{w}(k) + \beta N[e(k)]^{2N-1} \vec{r}(k)$, wherein β is a preset step size, $\vec{w}(k)$ and e(k) are respective sets of weight and error signals at a time k, and $\vec{r}^T(k) = [\vec{u}(k), -\vec{a}(k)]$, where $\vec{u}(k)$ is an input signal at the time k, and $\vec{a}(k)$ is a predicted or training signal at the time k.
- A method for processing an optical signal, comprising the steps of:
 converting said optical signal to an electrical signal;
 removing intersymbol interference from said electrical signal;

producing a predicted signal in response to each input signal based upon a slicing threshold; and

varying said slicing threshold based upon a signal distribution of said electrical signal.

- 22. The method of claim 20, further comprising the steps of tracking said signal distribution of said electrical signal and adjusting said slicing threshold for a reduced bit error rate of said predicted signal.
- 10 23. The method of claim 21, further comprising the steps of accumulating said signal distribution information within a window of finite duration to allow tracking of slowly varying non-stationary channels.