The group G is isomorphic to the projective special linear group PSL(3,2). Ordinary character table of $G \cong PSL(3,2)$:

	1a	2a	3a	4a	7a	7 <i>b</i>
χ_1	1	1	1	1	1	1
χ_2	3	-1	0	1	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$
χ_3	3	-1	0	1	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$
χ_4	6	2	0	0	-1	-1
χ_5	7	-1	1	-1	0	0
χ_6	8	0	-1	0	1	1

Trivial source character table of $G \cong PSL(3,2)$ at n=2.

Third source character table of $G = \operatorname{FSL}(5,2)$ at $p = 2$.												
Normalisers N_i		N_1				N_3		N_4		N_5	N_6	
p-subgroups of G up to conjugacy in G		P_1				P	3	P_4		P_5	P_6	
Representatives $n_j \in N_i$	1 <i>a</i>	3a	7a	7b	1a	1a	3a	1a	3a	1a	1a	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	8	2	1	1	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	16	1		$E(7) + E(7)^2 + 2 * E(7)^3 + E(7)^4 + 2 * E(7)^5 + 2 * E(7)^6$		0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	16	1	$E(7) + E(7)^2 + 2 * E(7)^3 + E(7)^4 + 2 * E(7)^5 + 2 * E(7)^6$	$2 * E(7) + 2 * E(7)^{2} + E(7)^{3} + 2 * E(7)^{4} + E(7)^{5} + E(7)^{6}$	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	8	-1	1	1	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 2 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	20	2	-1	-1	4	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	14	2	0	0	2	2	2	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	6	0	-1	-1	2	2	-1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	14	2	0	0	2	0	0	2	2	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	6	0	-1	-1	2	0	0	2	-1	0	0	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 2 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	26	2	-2	-2	2	0	0	0	0	2	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1	1	1	1	1	1	

```
P_1 = Group([()]) \cong 1
```

$$P_3 = Group([(4,5)(6,7),(2,3)(6,7)]) \cong C2 \times C2$$

$$P_4 = Group([(4,6)(5,7),(4,5)(6,7)]) \cong C2 \times C$$

$$P_4 = Group([(4,6)(5,7),(4,5)(6,7)]) \cong C2 \times C2$$

 $P_5 = Group([(2,3)(4,7,5,6),(4,5)(6,7)]) \cong C4$

$$P_6 = Group([(4,5)(6,7),(2,3)(6,7),(4,6)(5,7)]) \cong D8$$

$$N_1 = Group([(2,4)(3,5),(1,2,3)(5,6,7)]) \cong PSL(3,2)$$

$$N_2 = Group([(2,3)(6,7),(4,5)(6,7),(2,3)(4,5),(2,6)(3,7)]) \cong D8$$

$$\begin{split} N_1 &= Group([(2,4)(3,5),(1,2,3)(5,6,7)]) \cong PSL(3,2) \\ N_2 &= Group([(2,3)(6,7),(4,5)(6,7),(2,3)(4,5),(2,6)(3,7)]) \cong D8 \\ N_3 &= Group([(2,3)(6,7),(4,5)(6,7),(4,7)(5,6),(2,4,7)(3,5,6)]) \cong S4 \end{split}$$

$$N_4 = Group([(4,5)(6,7), (4,6)(5,7), (1,3)(5,7), (1,2)(5,6)]) \cong S4$$

$$N_5 = Group([(2,3)(4,7,5,6),(4,5)(6,7),(2,3)(6,7)]) \cong D8$$

$$N_6 = Group([(4,6)(5,7),(2,3)(6,7),(4,5)(6,7)]) \cong D8$$

 $P_2 = Group([(2,3)(6,7)]) \cong C2$