華中科技大學

本科生毕业设计(论文)开题报告

题 目: SIP 和 RTP 协议数据报解析工具的开发

院	系_	电子信息与通信学院	-
姓	名	何承民	
^ _	Н	11/1/20	-
学	号_	U201813464	
指导教师		张江山	

2022年3月

开题报告填写要求

- 一、 开题报告主要内容:
 - 1. 课题来源、目的、意义。
 - 2. 国内外研究现况及发展趋势。
 - 3. 预计达到的目标、关键理论和技术、主要研究内容、完成课题的方案及主要措施。
 - 4. 课题研究进度安排。
 - 5. 主要参考文献。
- 二、 报告内容用小四号宋体字编辑,采用 A4 号纸双面打印,封面与 封底采用浅蓝色封面纸(卡纸)打印。要求内容明确,语句通 顺。
- 三、 指导教师评语、教研室(系、所)或开题报告答辩小组审核意见用蓝、黑钢笔手写或小四号宋体字编辑,签名必须手写。
- 四、 理、工、医类要求字数在 3000 字左右, 文、管类要求字数在 2000 字左右。
- 五、 开题报告应在第八学期第二周之前完成。

一、课题来源及意义

1. 课题的来源

随着现代软件的家喻户晓以及 IP 网络的蓬勃发展,基于公共交换电话网[1] 的传统电话通信[2]因为其较强的闭路本质,很难与现代软件应用,数据库和迅 猛发展的运行环境相集成。 传统电话通讯使用电路交换技术,来建立端到端的语 音信道。这种方式不能共享网络基础设施,因此无法融入更多的应用和服务。协 议层面,提供视听通信的会话协议不断的更新迭代,从过时的 H. 320[3]标准到 目前最常用的 H. 323[4]标准,协议的标准正受着硬件,软件层面的发展不断修 改。在新型的 IP 通信网络[5]的现在,需要更具连通性,便捷性的通信协议来适 应新的网络环境时代。sip 协议[6]作为 NGN 通信[7]的核心协议,在即时通信, 在线游戏,虚拟现实多种媒体元素在内的交互式用户会话。在 2000 年 11 月, sip 被正式批准为 3GPP 信号协议[8]之一,并成为 IMS 体系结构[9]的一个永久单元, sip 和 H. 323 一样是用于 VoIP[10]的最主要信令协议之一。另外,在实时通信板 块, RTP 协议[11]占据着举足轻重的地位,配合 RTSP 实现流媒体系统的通信。 它描述了互联网上传递音频和视频的标准数据包格式,可以称为实时通信领域的 "HTTP 协议",目前随着 IP 网络的成熟发展,VoIP 通信发展迅速,不再通过公 共交换电话网提供的通信服务,而是实用新型的 IP 网络传输语音通信和多媒体 会话。网络上捕获通信流量的 API 普遍是通过 PCAP 文件[12]格式承载,类 Unix 系统在 libpcap 库中实现 pcap;对于 Windows,有一个名为 WinPcap 的 libpcap 端口。但是 PCAP 文件需要在类似 wireshark 等抓包解析器上面解析呈现,但是 呈现方式也有一定的学习成本,这里自己就对 PCAP 文件进行研究解析并可视化 的展示对应的通信过程做相应的学习探索。

2. 课题的目的

本课题的目的是以 VoIP 通信捕获的数据包 pcap 文件为实验对象,运用 c++或者 python 语言开发出对该文件的解包并格式化输出的实用工具,使得网络捕获对应 sip/rtp 报文的 pcap 文件内容清晰展示。

3. 课题的意义

本课题通过实现对 VoIP 通信过程捕获的 PCAP 文件可视化的解析呈现,能让

很好地学习并掌握 python,对 sip 协议和 rtp 协议内容及其工作原理有更加清晰的了解,了解 pcap 文件格式内容,开发可视化的用户页面,也可以让学生更深刻地理解本科学习中的计算机网络相关知识。最后,在完成课题的过程中还可以学会 wireshark 等开源解析器的解析策略。

二、国内外研究现状及发展趋势

1. 研究现状

(1) 国外的研究

随着 IP 网络的快速发展,NGN 网络逐渐发展成熟,目前比较成熟的体系系统就是使用 IMS,也叫做 IP 多媒体系统。是一个基于互联网协议提供多媒体业务的体系架构。传统移动电话使用类电路交换网络提供语音通话服务,而非使用计算机分组交换通信方式的网络,IMS 的提出就是旨在形成行业标准。

IMS 最初的版本(3GPP Rel-5)主要是给出了一种基于 GPRS 来实现互联网协议多媒体业务的方法。在这个版本的基础上,3GPP、3GPP2 以及 TISPAN 进行了进一步的更新,以支持 GPRS 之外,诸如 WLAN、CDMA2000 和固定电话线等其他接入方式[13]。按照 3GPP 的说法,IMS 并非刻意将应用标准化,而是帮助无线和有线终端的多媒体和通话应用提供一个接入方法,借此辅助移动固网融合。

用户有多种方式访问 IMS,最普遍的就是使用互联网 IP 协议。IMS 终端(比如,移动电话,PDA 以及电脑),只需要使用 IP 协议并运用会话发起协议 SIP 协议用户代理,就可以直接访问 IMS,与使用者漫游在那个国家的网络无关。这里 sip 协议就在 IMS 架构中扮演着重要的一环。

在 SIP 模型中,为建立起一个会话,用户代理客户端向用户代理服务发起请求。请求通过代理服务器在网络中路由。此外,注册服务器因为要提供用户代理的位置信息,因而需要将 SIP 地址映射成为 IP 地址。3GPP 的 IMS 体系选择了这个模型。

思科就 sip 协议为基础的 IP 通信做的十分成熟,大量运用在企业通信中,可以既保证企业内部的内网会话,也可以在私有地址基础上连接互联网实现外域互联。

(2) 国内的研究

国内的运营商业较早的部署国内的 IMS 体系规范。目前,运营商致力于打造网络上构建的分层,开放,融合的通信网络,目前国内三大运营商已经完成了 IMS 的网络部署。

其实,早在 2019 年 2 月,工信部就在湖南、四川两省组织开展 IMS 网络互联互通试点工作,试点业务范围包括基本语言业务、补充业务、点对点视频通话、彩铃、电话会议。 2020 年 5 月,在两省试点取得成功的基础上,工信部决定在全国推广 IMS 网络互联互通。同时,在工信部组织下,中国电信、中国移动、中国联通及中国信息通信研究院研究制定技术方案、测试规范及 10 余项行业标准,开展网间测试 10 万余次,覆盖五个主流设备厂家十余种网元设备,分批次有序完成业务割接调整。

工信部表示,IMS 网络互联互通后,4G/5G 用户的网间通信体验将显著提升:一是有效降低网间话务呼叫时延,减少用户跨运营商通信等待时间;二是明显提升网间通话质量,音频还原度更高,用户听到的声音更加真实;三是支持更加丰富的多媒体应用,用户可以跨运营商使用视频通话、视频彩铃等业务。

2. 发展趋势

基于 SIP 协议的 IMS 体系将最先应用于移动互联网中,逐渐地融合各种固定网络的接入,最终实现与移动网络的融合。

IMS 是一个在分组域(PS)上的多媒体控制/呼叫控制平台, IMS 使得 PS 具有电路域(CS)的部分功能,支持会话类和非会话类的多媒体业务。发展为一个通用的业务平台提供给未来的多媒体应用[14]。

三、课题内容及实现方案

1. 预期目标

- (1) 搭建对应的 sip 服务器,模拟真实 VoIp 通信过程
- (2) 使用 wireshark 抓获 VoIP 通信过程中数据包并保存为 pcap 文件
- (3) 编写对应的 python 程序完成对 pcap 包的深度解析
- (4) 设计可视化 UI 对解析的 VoIP 通信过程结构化输出

2. 研究内容

(1) Sip 协议及其通信过程

Internet 中会话被视为参与者之间的数据交换。会话发起协议(SIP)使 Internet 端点(称为用户代理)能够发现彼此并就他们想要共享的会话的 特征达成一致。为了定位潜在的会话参与者和其他功能,SIP 支持创建网络 主机(称为代理服务器)的基础设施,用户代理可以向其发送注册、会话邀请和其他请求。SIP 是一种灵活的通用工具,用于创建、修改和终止会话,该工具独立于底层传输协议工作,并且不依赖于正在创建的会话类型已确立的。SIP 是一个应用层的控制协议,可以建立,修改和终止多媒体会话。

在 IP 网络中,通话两端不是电话机,而是运行在计算机上的软件电话。同传统电话,用 SIP 协议打一个电话,过程是一样的。两个软电话,也有电话号码,也需要传递信号。这个时候电话号码是 SIP 账号。这时的信号不是一种电磁波,而是一个 IP 数据包。

通信种类	通信流程	身份标识	媒介信号
软电话	类似	11 位电话号码	电磁波信号
电话机		SIP 账号	IP 数据包

sip 连接建立及会话过程:

1. 首先,通话双方都要有一个 SIP 账号

SIP 账号不同于全数字的传统电话号码, SIP 账号采用 URL 表示方法,例如: sip:minyue123456@iptel.org

- ① SIP: 表示采用 SIP 协议
- ② minyue123456: 是用户名
- ③ iptel.org: 是账号所属的服务器域名
- ④ 端口号: 默认为 5060

2. SIP 消息

在一个通话过程,两端都要传输很多信号,在 SIP 协议中,这些信号是一种约定格式的 IP 数据包,成为 SIP 消息。SIP 消息有好几种,下面用一个通话过程理解一下:

图 2-1 sip 通信过程

- 1. 软电话 A 向 B 发送一个 SIP 消息 INVITE, 邀请 B 通话
- 2. 软电话 B 振铃,向 A 回复一个 SIP 消息 RING, 通知 A 正在振铃中,请 A 等待
- 3. 软电话 B 提机,向 A 发一个 SIP 消息 OK, 通知 A 可以通话了
 - 4. 软电话 A 向 B 回复一个回应消息 ACK, 正式启动通话
 - 5. 接下来,双方通话
- 6. 软电话 B 挂机, 向 A 发一个 SIP 消息 BYE, 通知 A 通话结束
 - 7. 软电话 A 向 B 回复一个消息 OK, 通话结束

可以看到,这个过程和打电话机的过程是一模一样的,只不过使用 IP 数据包的形式传递信号而已。通话的过程中有多种 SIP 消息,每一种消息都是一个 IP 数据包。

3. SIP 消息的格式

SIP 消息的格式与 Http 协议结构相似,由三部分组成:

- 请求行 or 状态行
- 消息头
- 正文

(2) Rtp 协议

实时传输协议,一个用来为 IP 网上的语音图像,传真等多种需要实时传

输的多媒体数据提供端到端的实时传输服务。为 Internet 上端到端的实时传输提供时间信息和流同步,但不保证质量,服务质量由 RTCP 来提供。

RTP 既可以理解为传输层的子层,建立在 UDP 之上。也可以理解为应用层的一部分。其中包含两个子协议:

- 1. RTP 数据传输协议
- 2. RTCP 控制协议
- (3) 网络数据报捕捉和存取方法

使用 wireshark 进行数据包的捕获和并把捕获到的 sip 通话过程保存在 pcap 文件中。如下图所示:

图 3-2-3 wireshark 抓包--bye 数据包

(4) Pcap 数据包结构

每个 pcap 文件都是由 Global Header、Packet Header、Packet Data 三部分组成,文件的初始位置为 Global Header,,接着都是成对出现的 Packet Header 和 Packet Data。

Pcap 文件结构如下:

1. Global Header

Global Header 长度为 24 字节,下面的代码就是 wireshark 官网所给 出的 pcap 文件的 Global Header 的数据结构定义

```
typedef struct pcap hdr s {
         guint32 magic_number;
                                    /* magic number */
         guint16 version major;
                                  /* major version number */
         guint16 version_minor; /* minor version number */
                                   /* GMT to local correction */
         gint32 thiszone;
                                  /* accuracy of timestamps */
         guint32 sigfigs;
         guint32 snaplen;
                                   /* max length of captured packets, in octets
*/
                                   /* data link type */
         guint32 network;
} pcap_hdr_t;
```

2. Pcaket Header

Packet Header 的数据结构定义如下,总长度是 16 字节。

3. Packet Data

实际的数据包数据将作为 incl_len 字节的数据块紧跟在数据包标头之后,而无需特定的字节对齐。

3. 技术解决方案

(1) sip 服务器搭建

开发环境使用 ubuntu14.04,使用开源的 sip 服务器框架 opensips,使用 mysql 作为 sip 服务器数据库。

1. 修改 Makefile.conf

由于 opensips 默认没有打开对 mysql 数据库的支持,所以,需要 先修改 Makefile.conf,将对应 db mysql 设置为 include modules

```
🔊 🗇 🗊 root@ubuntu: /usr/local/opensips
exclude_modules?= aaa_radius b2b_logic cachedb_cassandra cachedb_couchbase cache
db_memcached cachedb_mongodb cachedb_redis carrierroute compression cpl_c db_ber
keley db_http db_mysql db_oracle db_perlvdb db_postgres db_sqlite db_unixodbc di
alplan emergency event_rabbitmq h350 regex identity jabber json ldap lua httpd m
i_xmlrpc_ng mmgeoip osp perl pi_http proto_sctp proto_tls proto_wss presence pre
sence_dialoginfo presence_mwi presence_xml pua pua_bla pua_dialoginfo pua_mi pua
 _usrloc pua_xmpp python rest_client rls sngtc snmpstats tls_mgm xcap xcap_client
 XMDD
include_modules?= db_mysql
DEFS+= -DPKG_MALLOC #Uses a faster malloc
DEFS+= -DSHM_MMAP #Use mmap instead of SYSV shared memory
DEFS+= -DUSE_MCAST #Compile in support for IP Multicast
DEFS+= -DDISABLE_NAGLE #Disabled the TCP NAgle Algorithm ( lower delay )
DEFS+= -DSTATISTICS #Enables the statistics manager
 EFS+= -DHAVE_RESOLV_RES #Support for changing some of the resolver parameters
 DEFS_GROUP_START
                                                                                                      72%
                                                                                   70.1
```

图 3-3-1-1makefile.conf

2. 编译

使用 make all & make install 编译 opensips 服务器。之后生成的 sbin 目录下的就是服务器的启动程序, etc 目录下就是一系列配置文件。

- 3. 配置 sip 服务器
 - (1) 找到对应 opensipsctlrc 文件修改对应内容

```
root@ubuntu: /usr/local/opensips/etc/opensips

# $Id$

# The OpenSIPS configuration file for the control tools.

# Here you can set variables used in the opensipsctl and opensipsdbctl setup

# scripts. Per default all variables here are commented out, the control tools

# will use their internal default values.

## your SIP comain

SIP_DOMAIN=11.19.186.188

## chrooted directory

# $CHROOT_DIR="/path/to/chrooted/directory"

## database type: MYSQL, PGSQL, ORACLE, DB_BERKELEY, DBTEXT, or SQLITE

## by default none is loaded

# If you want to setup a database with opensipsdbctl, you must at least specify

# this parameter.

DBENGINE=MYSQL

## database port (PostgreSQL=5432 default; MYSQL=3306 default)

DBPORT=3306

"opensipsctlrc" 147L, 3914C

9,13

Top
```

图 3-3-1-3opensips 配置文件修改

(2) 找到 opensips. cfg 文件就该监听 ip 指向服务器 ip

```
employed to the content of the conte
```

图 3-3-1-3cfg 配置文件修改

4. 创建数据库

在调用 sbin 目录下的启动程序 ./opensipsdbctl create

```
mysql> show tables;
| Tables_in_opensips
 acc
 active_watchers
 address
  aliases
  b2b_entities
  b2b_logic
  cachedb
  carrierfailureroute
  carrierroute
  cc_agents
 cc_calls
cc_cdrs
  cc_flows
  clusterer
  cpl
  dbaliases
  dialog
dialplan
```

图 3-3-1-4 数据表

5. 开启 sip 服务, 注册用户等

```
./opensipsctlstart#开启 opensips 服务./opensipsctlstop#关闭 opensips 服务./opensipsctlrestart#重启 opensips 服务
```

```
root@ubuntu:/usr/local/opensips/sbin# ./opensipsctl start

INFO: Starting OpenSIPS :
INFO: started (pid: 3025)
root@ubuntu:/usr/local/opensips/sbin#
```

图 3-3-1-5 服务开启图示

(2) wireshark 抓取对应数据包

在 wireshark 中可以选择菜单栏"电话"--"VOIP"进入 VOIP 模式, wireshark 会自动的捕获当前检测记录中,属于 VOIP 通话的部分,然后在将内容保存为 pcap 文件即可。

图 3-3-2 wireshark 捕获 voip 通信过程

(3) 使用 python 编写解析程序

使用 scapy 库,可以实现对 pcap 文件的解析,下面列举读取文件的操作:

```
>>> a=scapy.rdpcap("/Users/minyue/Downloads/sip/example/sip会话.pcap")
>>> a
<sip会话.pcap: TCP:0 UDP:5284 ICMP:0 Other:0>
```

图 3-3-3scapy 库函数使用

(4) 用户 UI 设计

类似 UI 解析之后呈现和 wireshark 呼叫流分析类似的 UI 设计

图 3-3-4UI 设计

四、课题研究进度安排

れ」 						
学期	周次	工作任务				
	1周-4周	查阅资料,学习 python,				
		完成对 sip 包的抓取,撰				
		写开题报告。				
2019-2020 第二学期	5周-9周	学习 python tkinter GUI,				
		设计合理的数据模型提				
		供 UI 展示,完成课题任				
		务。				
	10 周-13 周	完成毕业论文初稿。				
	14 周	修改论文,确定终稿后上				
		传查重。				

表 1 课题研究讲度安排表

五、主要参考文献

- [1] 尤克, 黄静华, 任力颖等编著. 第 1 章 公用电话交换网 通信网教程. 机械工业 出版社, 2009. 01.
- [2] 沈松, 祝陈. 论电话网的组成及编号方法[J]. 数字技术与应用. 2011, 2
- [3]ITU-T (2004-03) (PDF)H. 320: 窄带可视电话系统和终端设备
- [4] 戴维森, 乔纳森; 詹姆斯·彼得斯; 吉姆·彼得斯; 布莱恩·格雷斯利 (2000)。 "H. 323"。IP 语音基础知识。思科出版社。
- [5] "IP 通信—网络发展的新里程", 通信产业报 2003/04/30。
- [6] RFC 3261: Session Initiation Protocol
- [7] 杨放春. 下一代网络中的关键技术[J]. 北京邮电大学学报, 2003, 26(1):3-10.
- [8] 林德敬, 孙德献, 林德清等. 3GPP 与 3GPP2 全 IP 网络和软交换技术[J]. 华侨大学学报(自然科学版), 2003, 24(4):419-424.
- [9]张传福,卢辉斌,彭灿等编著.第三代移动通信.电子工业出版社,2009.06.
- [10] 龚双瑾, 刘多, 张雪丽等著. 下一代网关键技术及发展. 国防工业出版社, 2006
- [11] RFC 3550: A Transport Protocol for Real-Time Applications
- [12]tcpdump and libpcap latest release. tcpdump.org. [2019-10-11].
- [13]孙社文主编. 现代通信及其新业务. 煤炭工业出版社, 2004
- [14] IMS 网络管理系统特点及部署问题研究,知网

华中科技大学本科生毕业设计(论文)开题报告评审表

姓名	何承民	学号	U201813464	指导教师	张江山
院(系)专业		电子信息与通信学院电子信息工程			

指导教师评语

- 1. 学生前期表现情况。
- 2. 是否具备开始设计(论文)条件?是否同意开始设计(论文)?
- 3. 不足及建议。

前期调研深入,学习认真,工作积极。

研究方案详实, 计划目标明确。

具备开题条件,同意开题。

指导教师(签名): 34 いい

2022 年 3 月 15 日

教研室 (系、所) 或开题报告答辩小组审核意见

教研室(系、所)或开题报告答辩小组负责人(签名):

2022 年 3 月 17 日