INTERPOLASI

BAB 5

INTERPOLASI

- Interpolasi adalah teknik mencari harga suatu fungsi pada suatu titik diantara 2 titik yang nilai fungsi pada ke-2 titik tersebut sudah diketahui
- Cara menentukan harga fungsi f dititik x^* ϵ $[x_0, x_n]$ dengan menggunakan informasi dari seluruh atau sebagian titik-titik yang diketahui $(x_0, x_1,, x_n)$

X	X ₀	X ₁	X ₂	 X _n
f(x)	f(x ₀)	f(x ₁)	f(x ₂)	 f(x _n)

TEKNIK UMUM YANG DIGUNAKAN

- (i) Membentuk polinomial berderajat ≤ n yg mempunyai harga fungsi di titik-titik yang diketahui → Polinomial Interpolasi
- (ii) Masukkan titik yang ingin dicari harga fungsinya ke dalam polinomial interpolasi

INTERPOLASI LINIER

ide dasar : pada saat data dalam bentuk tabel tidak begitu bervariasi, sehingga memungkinkan untuk dilakukan pendekatar dengan menggunakan sebuah garis lurus di antara dua titik yang berdekatan.

INTERPOLASI LINIER

$$\begin{split} &\frac{BC}{AB} = \frac{DE}{AD} \\ &\text{atau} \\ &\frac{f(\textbf{x}) \cdot f(\textbf{x}_0)}{(\textbf{x} \cdot \textbf{x}_0)} = \frac{f(\textbf{x}_1) \cdot f(\textbf{x}_0)}{(\textbf{x}_1 \cdot \textbf{x}_0)} \\ &\text{sehingga} \\ &f_1(\textbf{x}) = f(\textbf{x}_0) + \frac{f(\textbf{x}_1) \cdot f(\textbf{x}_0)}{(\textbf{x}_1 \cdot \textbf{x}_0)}.(\textbf{x} \cdot \textbf{x}_0) \end{split}$$

CONTOH:

 Jarak yang dibutuhkan sebuah kendaraan untuk berhenti adalah fungsi kecepatan. Data percobaan berikut ini menunjukkan hubungan antara kecepatan dan jarak yang dibutuhkan untuk menghentikan kendaraan.

Kecepatan (mil/jam)	10		30	40	50	60	70
Jarak henti (feet)	12	21	46	65	90	111	148

 Perkirakan jarak henti yang dibutuhkan bagi sebuah kenderaan yang melaju dengan kecepatan 45 mil/jam.

CONTOH:

maka untuk mencari nilai x=45 maka,

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

$$f_1(45) = 65 + \frac{90 - 65}{50 - 40}(45 - 40)$$

$$f_1(45) = 65 + \frac{25}{10}(5) = 65 + 12.5 = 77.5 \text{ feet}$$

EXAMPLE

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using linear splines.

t	v(t)
S	m/s
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Table: Velocity as a function of time

Figure: Velocity vs. time data for the rocket example

LINEAR INTERPOLATION

20

22

24

 $x_{s_1} + 10$

INTERPOLASI KUADRAT

$$F(x) = ax^2 + bx + c$$

INTERPOLASI KUADRAT

• Titik-titik data (x_1,y_1) (x_2,y_2) (x_3,y_3)

$$ax_1^2 + bx_1 + c = y_1$$

 $ax_2^2 + bx_2 + c = y_2$
 $ax_3^2 + bx_3 + c = y_3$

 Hitung a, b dan c dari sistem persamaan tersebut dengan Metode Eliminasi Gauss

CONTOH:

- Diberikan titik In(8) = 2.0794, In(9) = 2.1972, In(9.5) = 2.2513. Tentukan nilai In(9.2) dengan interpolasi kuadrat
- Sistem Pers Linier yang terbentuk.
 - 64 a + 8 b + c = 2.0794
 - 81 a + 9 b + c = 2.1972
 - 90.25 a + 9.5 b + c = 2.2513
- Penyelesaian a= -0.0064 b = 0.2266
 c = 0.6762
- Sehingga p2(9.2) = 2.2192

Persamaan Polinom Linier

$$p_1(x) = y_0 + \frac{(y_1 - y_0)}{(x_1 - x_0)}(x - x_0)$$

Bentuk pers ini dapat ditulis :

$$p_1(x) = a_0 + a_1(x - x_0)$$

• Yang dalam halini $a_0 = y_0 = f(x_0)$ (1)

• Dan
$$a_1 = \frac{(y_1 - y_0)}{(x_1 - x_0)} = \frac{f(x_1) - f(x_0)}{(x_1 - x_0)}$$
(2)

• Pers ini mrpk bentuk selish terbagi (divideddifference) $a_1 = f[x_1, x_0]$

Polinom kuadratik

$$p_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

Atau

$$p_2(x) = p_1(x) + a_2(x - x_0)(x - x_1)$$

• Dari pers ini menunjukkan bahwa $p_2(x)$ dapat dibentuk dari pers sebelumnya $p_1(x)$. Nilai a_2 dapat ditemukan dengan mengganti $x=x_2$ untuk mendapatkan (3)

$$a_2 = \frac{f(x_2) - a_0 - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

Nilai a₀ dan a₁ pada pers 1 dan 2 dimasukkan pada pers 3

$$a_2 = \frac{\frac{f(x_2) - f(x_0)}{x_2 - x_0} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_1}$$

 Dengan melakukan utak-atik aljabar, pers ini lebih disukai

$$a_2 = \frac{\frac{f(x_2) - f(x_0)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0}$$

 Jadi tahapan pembentukan polinom Newton :

New ION:

$$p_1(x) = p_0(x) + a_1(x - x_0)$$

$$p_1(x) = a_0 + a_1(x - x_0)$$

$$p_2(x) = p_1(x) + a_2(x - x_0)(x - x_1)$$

$$p_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

$$p_3(x) = p_2(x) + a_3(x - x_0)(x - x_1)(x - x_2)$$

$$p_3(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2)$$

• Nilai konstanta a_0 , a_1 , a_2 ,..., a_n , merupakan nilai selisih terbagi , dg nilai $a_0 = f(x_0)$

$$a_{0} = f(x_{0})$$

$$a_{1} = f[x_{1}, x_{0}]$$

$$a_{2} = f[x_{2}, x_{1}, x_{0}]$$

$$a_{n} = f[x_{n}, x_{n-1}, ..., x_{1}, x_{0}]$$

Yang dalam hal ini

$$f[x_{i}, x_{j}] = \frac{f(x_{i}) - f(x_{j})}{x_{i} - x_{j}}$$

$$f[x_{i}, x_{j}, x_{k}] = \frac{f[x_{i}, x_{j}] - f[x_{j}, x_{k}]}{x_{i} - x_{k}}$$

$$f[x_{n}, x_{n-1}, ..., x_{1}, x_{0}] = \frac{f[x_{n}, x_{n-1}, ..., x_{1}] - f[x_{n-1}, x_{n-2}, ..., x_{1}, x_{0})}{x_{n} - x_{0}}$$

- Dengan demikian polinom Newton dapat ditulis dalam hub rekursif sebagai :
 - Rekurens

$$p_n(x) = p_{n-1}(x) + (x - x_0)(x - x_1)...(x - x_{n-1})f[x_n, x_{n-1}, ..., x_1, x_0]$$

- basis $p_0(x) = f(x_0)$
- Atau dalam bentuk polinom yang lengkap sbb: $p_n(x) = f(x_0) + (x x_0)f[x_1, x_0] + (x x_0)(x x_1)f[x_2, x_1, x_0]$

$$+(x-x_0)(x-x_1)...(x-x_{n-1})f[x_n,x_{n-1},...,x_1,x_0]$$

CONTOH SOAL:

 Bentuklah polinom Newton derajat satu, dua, tiga dan empat yang menghampiri f(x)=cos(x) dalam range[0.0, 4] dan jarak antar titik adalah 1.0. Lalu taksirlah f(x) dengan x=2.5 dengan Polinom Newton derajat 3.

Xi	y _i	ST-1	ST-2	ST-3	ST-4
0.0	1	-0.4597	-0.2484	0.1466	-0.0147
1.0	0.5403	-0.9564	0.1913	0.0880	
2.0	-0.4161	-0.5739	0.4551		
3.0	-0.99	0.3363			
4.0	-0.6536				

CONTOH SOAL:

 Contoh cara menghitung nilai selisih terbagi pada tabel :

$$f[x_1, x_0] = \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} = \frac{0.5403 - 1}{1 - 0} = -0.4597$$

$$f[x_2, x_1] = \frac{f(x_2) - f(x_1)}{(x_2 - x_1)} = \frac{-0.4161 - 0.5403}{2 - 1} = -0.9564$$

$$f[x_2, x_1, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{(x_2 - x_0)} = \frac{-0.9564 + 0.4597}{2 - 0} = -0.2484$$

CONTOH SOAL:

• Maka polinom Newton derajat 1,2 dan 3 dengan x_0 = 0 sebagai titik pertama :

$$\begin{split} \cos(x) &\approx p_1(x) = 1.0 - 0.4597(x - 0.0) \\ \cos(x) &\approx p_2(x) = 1.0 - 0.4597(x - 0.0) - 0.2484(x - 0.0)(x - 1.0) \\ \cos(x) &\approx p_3(x) = 1.0 - 0.4597(x - 0.0) - 0.2484(x - 0.0)(x - 1.0) + \\ 0.1466(x - 0.0)(x - 1.0)(x - 2.0) \\ \cos(x) &\approx p_4(x) = 1.0 - 0.4597(x - 0.0) - 0.2484(x - 0.0)(x - 1.0) + \\ 0.1466(x - 0.0)(x - 1.0)(x - 2.0) - 0.0147(x - 0.0)(x - 1.0)(x - 2.0)(x - 3.0) \end{split}$$

- Nilai sejati f(2.5) adalah
 - F(2.5) = cos(2.5) = -0.8011