GNSS Introduction

Fabio Dovis

Politecnico di Torino - Electronics Department

Part IV

Link Budget

The link budget concept

- All the positioning procedures are based on the measurement performed by a user receiver of a signal transmitted by a reference source
- In the GPS system the reference source is a satellite at about 20200 Km from a user on the ground
- The estimation of the received power is usually performed through a link budget calculation

The link budget concept

- The "budget" takes into account all the phenomena affecting the power of the signal as it travels from the satellite towards the ground
 - power propagation laws
 - attenuation phenomena due to the atmosphere
 - capability of the receiver to capture the signal power

Power propagation laws

 Considering a uniform transmission of the signal power P_T by the satellite (isotropic antenna) at a distance R the power density is

$$PD_S = \frac{P_T}{4\pi R^2} watts / m^2$$

$$\frac{1}{4\pi R^2}$$
 path loss (spreading loss)

The user elevation

 The distance from the satellite to the user depends on the user location on the Earth

The user elevation

$$R = -R_E \sin \theta_{EL} + \sqrt{R_E^2 \left(\sin^2 \theta_{EL} - 1\right)} + R_{SV}$$

- The actual distance depends on
- R_E =6371 10³ m (*Earth radius*)
- R_{SV} =26560 10³ m
- \Box θ_{FI} = satellite elevation angle at the user

The user distance

The antenna gain

- Transmission of power towards outer space is a waste of resources
- Some antenna gain is obtained giving it some directivity
- Power is focused towards the Earth in a solid angle 2α

$$G_T(\alpha) = \frac{2}{1 - \cos(\alpha)}$$

Antenna footprint

Antenna footprint

- The Earth subtends an angle of ± 13.9° as seen from the GPS satellite
- The satellite antenna beam is somewhat wider ± 21.3°, giving a gain

$$G_T(\alpha)|_{dB} = 10Log_{10}[G_T(21.3^\circ)] = 14.7dB$$

Antenna footprint

- The actual gain is smaller
- additional loss in the antenna
- the gain is tailored to compensate for greater distances (about 2 dB more at the edge of the footprint)

Link budget calculation (1)

 Combining all the factors, the power density received by the user is given by

$$PD_S = \frac{P_T G_T}{4\pi R^2 L_A} watts / m^2$$

$$PD_S|_{dB} = P_T|_{dB} + G_T|_{dB} - 20\log_{10}R - 11$$
 $-L_A|_{dB}$ W/m²

path loss atmosphere power loss

Link budget calculation (1)

	SV at low elevation	SV at moderate elevation	SV at Zenith
	$\theta_{EL} = 5^{\circ}$ $\alpha = \pm 13.9^{\circ}$	θ_{EL} = 40° α = ±10.6°	θ_{EL} = 90° α = ±0°
Power TX	14.3 dBW	14.3 dBW	14.3 dBW
SV antenna gain	12.1 dB	12.9 dB	10.2 dB
Path loss	-159 dB	-157.8 dB	-157.1 dB
Atmospheric loss	-2 dB	-2 dB	-2 dB
RX PD _S	-134.6 dBW/m ²	-132.6 dBW/m ²	-134.6 dBW/m ²

The antenna

 The ability of the antenna of capturing the incident signal field is measured by its gain G_R or by its effective area

$$A_E = G_R \frac{\lambda^2}{4\pi}$$

- Typical GPS antennas are isotropic in azimuth and gain varies in elevation
- Directional antennas are not suitable (DOP issues)
- Several solutions for harsh environments (multipath, interference,...)

The antenna

Elevation pattern for a typical commercial L1 antenna

Link budget calculation (2)

	SV at low elevation	SV at moderate elevation	SV at Zenith
	$\theta_{EL} = 5^{\circ}$ $\alpha = \pm 13.9^{\circ}$	θ_{EL} = 40° α = ±10.6°	θ_{EL} = 90° α = ±0°
RX PD _s	-134.6 dBW/m ²	-132.6 dBW/m ²	-134.6 dBW/m ²
Effective area of an isotropic antenna	-25.4 dBm ²	-25.4 dBm ²	-25.4 dBm ²
Gain of a <i>typical</i> patch antenna	-4 dBic	+2 dBic	+4 dBic
CA code received power	-164 dBW	-156 dBW	-156 dBW

Typical C/A code RX power

- Typically the power level is up to 8 dB higher
 - more power transmitted
 - atmospheric losses are smaller
 - depend on the RX antenna gain

End of Part IV

