FIT5186 Intelligent Systems

Tutorial 2 Solution

Design Classifier

Train Classifier

Inputs (x ₁ ,	1	1	0
	1	0	1
x_2x_{9}	1	0	1
	1	0	0
	1	1	0
	0	0	1
	0	0	0
	1	1	0
	1	1	1
	1	1	0
	-1	-1	-1
Outputs	1	0	0
(desired)	0	1	0
	0	0	1

Tutorial 2 Solution 1

 $w_1^1 = w_1^0$ (unchanged)

Present input 2
$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \text{ with } d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Calculate output vector
$$0 = f \begin{pmatrix} 0 \\ -6 \\ -6 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Adapt weights since $d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $o = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ (errors in neurons 1 and 2)

 $w_3^2 = w_3^1$ (unchanged)

Calculate output vector
$$o = f \begin{pmatrix} -2 \\ -1 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Adapt weights since
$$d = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 and $o = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ (error in neuron 3)

$$\mathbf{w}_{3}^{3} = \mathbf{w}_{3}^{2} + c(d_{3} - o_{3})\mathbf{x} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \end{pmatrix} + (1)(1-0) \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$

 $W_1^3 = W_1^2$ and $W_2^3 = W_2^2$ (unchanged)

So after adaptation:
$$w^3 = \begin{pmatrix} -1 & 0 & 0 & -1 & 0 & 0 & -1 & -1 & 1 \\ 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \end{pmatrix}$$

END OF 1ST EPOCH

Present input 1
$$x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \text{ with } d = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Calculate output vector
$$o = f \begin{pmatrix} -6 \\ -2 \\ -5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Adapt weights since
$$d = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $o = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ (error in neuron 1)

$$\mathbf{w}_{1}^{4} = \mathbf{w}_{1}^{3} + c(d_{1} - o_{1})\mathbf{x} = \begin{pmatrix} -1\\0\\0\\-1\\0\\0\\-1\\-1\\-1\\1 \end{pmatrix} + (1)(1-0) \begin{pmatrix} 1\\1\\1\\0\\0\\0\\1\\1\\-1 \end{pmatrix} = \begin{pmatrix} 0\\1\\1\\0\\0\\0\\0\\0\\0 \end{pmatrix}$$

$$\mathbf{w}_{2}^{4} = \mathbf{w}_{2}^{3} \text{ and } \mathbf{w}_{3}^{4} = \mathbf{w}_{3}^{3} \text{ (unchanged)}$$
So after adaptation:
$$\mathbf{w}^{4} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \end{pmatrix}$$

Present input 2
$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$$
 with $d = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix}$

Calculate output vector $0 = f \begin{pmatrix} 0 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

Adapt weights since
$$d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 and $o = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ (error in neuron 1)

 $_{W_2^5} = _{W_2^4}$ and $_{W_3^5} = _{W_3^4}$ (unchanged)

So after adaptation:
$$w^5 = \begin{pmatrix} -1 & 1 & 1 & -1 & 0 & 0 & -1 & -1 & 1 \\ 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \end{pmatrix}$$

 $\mathbf{o} = f \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ Calculate output vector

No need to adapt weights since $d = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ and $o = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ (no error)

 $w_1^6=w_1^5$, $w_2^6=w_2^5$ and $w_3^6=w_3^5$ (unchan

END OF 2ND EPOCH

7 Tutorial 2 Solution

Present input 1
$$x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$
 with $d = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

Calculate output vector
$$o = f \begin{pmatrix} -4 \\ -2 \\ -5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Adapt weights since $d = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $o = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ (error in neuron 1)

$$\mathbf{w}_{1}^{7} = \mathbf{w}_{1}^{6} + c(d_{1} - o_{1})\mathbf{x} = \begin{pmatrix} -1\\1\\1\\-1\\0\\0\\-1\\-1\\-1\\1 \end{pmatrix} + (1)(1-0) \begin{pmatrix} 1\\1\\1\\0\\0\\0\\1\\1\\0\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\2\\2\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0 \end{pmatrix}$$

$$\mathbf{w}_{2}^{7} = \mathbf{w}_{2}^{6} \text{ and } \mathbf{w}_{3}^{7} = \mathbf{w}_{3}^{6} \text{ (unchanged)}$$
So after adaptation:
$$\mathbf{w}^{7} = \begin{pmatrix} 0 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \end{pmatrix}$$

Present input 2
$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$
 with $d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

Calculate output vector
$$0 = f \begin{pmatrix} 0 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Adapt weights since $d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $o = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ (error in neuron 1)

 $\mathbf{W}_2^8 = \mathbf{W}_2^7$ and $\mathbf{W}_3^8 = \mathbf{W}_3^7$ (unchanged)

So after adaptation:
$$\mathbf{w}^8 = \begin{pmatrix} -1 & 2 & 2 & -1 & 0 & 0 & -1 & -1 & -1 & 1 \\ 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \end{pmatrix}$$

Present input 3
$$x = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 with $d = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

Calculate output vector $o = f \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

Adapt weights since $d = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $o = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ (error in neuron 1)

$$\begin{bmatrix} -1 \\ 2 \\ 2 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ 1 \end{bmatrix} + (1)(0-1) \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

END OF 3RD EPOCH

Tutorial 2 Solution 10

 $w_1^2 = w_1^1, \ w_2^2 = w_2^1 \ \text{and} \ w_3^2 = w_3^1 \ \text{(unchanged)}$ So after adaptation: $w^9 = \begin{pmatrix} -1 & 1 & 2 & -1 & -1 & 0 & -1 & -2 & -1 & 2 \\ 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \end{pmatrix}$

Classify Corrupted Characters

$$f(\begin{pmatrix} 0 & 2 & 3 & 0 & -1 & 0 & 0 & -1 & 0 & 1\\ 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\ -1 & 0 & -1 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \end{pmatrix} \begin{vmatrix} 1\\0\\0\\1\\1\\0\\-1 \end{vmatrix}) = f\begin{pmatrix} -1\\-1\\-1\\-1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix} \Rightarrow \text{Not classified}$$

Tutorial 2 Solution 11