УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>М32101</u>	_К работе допущен
Студент <u>Косовец Роман</u>	Работа выполнена
Преподаватель	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 4.03

Определение радиуса кривизны линзы по интерференционной картине колец Ньютона

1. Цель работы.

Изучение интерференционной картины Колец Ньютона. Определение радиуса кривизны плоско-выпуклой линзы с помощью интерференционной картины колец Ньютона. Оценка спектральной полосы пропуская оптических фильтров.

2. Задачи, решаемые при выполнении работы.

Оценка изображения, получаемого при попадании лучей света на линзу с плоскопараллельной пластиной. Построение функций и графиков зависимости величин, измерение радиуса кривизны линзы.

3. Объект исследования.

Кольца Ньютона

4. Метод экспериментального исследования.

Эксперимент, анализ данных.

5. Рабочие формулы и исходные данные.

$$R = rac{r_m^2 - r_n^2}{(m-n)\lambda}$$
 — радиус кривизны

$$r^2 = \frac{m\lambda R}{n_2}$$

6. Схема установки.

Рис. 8. Общий вид лабораторной устанока

- 1. Ручки вертикального смещения тубуса (фокусировка).
- 2. Источник света.
- 3. Видеоокуляр.
- 4. Плоско-выпуклая линза.
- 5. Светофильтр с заданной длиной волны.
- 6. Переключатель линз.
- 7. Регулятор интенсивности света.

7. Результаты прямых измерений и их обработки

Фильтр $\lambda = 435,8 \, \text{нм} - \text{синий}$

	Номер кольца			
	1	2	3	4
r_1	1230	1576	1843	2082
r_2	1225	1575	1843	2079
r_3	1231	1565	1844	2080
$r_{ m cp}$	1229	1572	1843	2080

Фильтр $\lambda = 546,1$ нм — зеленый

	Номер кольца			
	1	2	3	4
r_1	1377	1763	2075	2324
r_2	1390	1757	2066	2337
r_3	1385	1756	2065	2335
$r_{ m cp}$	1384	1759	2069	2332

Фильтр $\lambda=578$,4 нм — оранжевый

	Номер кольца			
	1	2	3	4
r_1	1402	1796	2065	2287
r_2	1391	1783	2084	2355
r_3	1372	1775	2095	2360
$r_{ m cp}$	1388	1785	2081	2334

Фильтр $\lambda = 630$ нм — красный

	Номер кольца			
	1	2	3	4
r_1	1435	1864	2203	2500
r_2	1443	1878	2207	2475
r_3	1426	1869	2185	2490
$r_{\rm cn}$	1435	1870	2198	2488

8. Графики

9. Вывод

Изучена интерференционная картина колец Ньютона. Построен график зависимости $r^2(n)$, где r - радиус темного кольца, а n - его номер. Убедились, что полученная зависимость линейная. Также удостоверились, что чем больше длина волны, тем больше радиус темного пятна. И был найден радиус кривизны $R=2,122\,\mathrm{M}$