1. Необходимое и достаточное условие выпуклости положительно однородного функционала.

2. Лемма о выпуклости ядра выпуклого множества.

3. Теорема Минковского (часть 1).

If 5

Togen rajorana
pyrkyworanou Minkowskiego wn ba A

pyrkyworan $\rho_A(x) = \inf\{ix > 0: x \in A\}, x \in L,$ ecus M-benykwoe meno $u \in \mathcal{I}(A)$.

Th

1. Ecus: ρ_A -pyrkyworan Minkowskiego,

Mo: ρ_A nowomenmeno ognopognosie

a bunykwowo.

4. Теорема Минковского (часть 2).

2. Ears: p - recomparisament or in , now - wearners to egreg regression, buryween in appreciation of $A = \{x \in L : p(x) \le a\}$ The: V = x = x = b and $A = \{x \in L : p(x) \le a\}$ The interpolation of $A = \{x \in L$

5. Теорема Хана-Банаха в линейных пространствах.

6. Общая теорема отделимости в линейных пространствах.

7. Лемма об эквивалентности норм в конечномерном пространстве.

8. Неравенство Коши-Буняковского и лемма о введении нормы в евклидовом пространстве.

2. Неравенство Коши-Буняковского

Лемма

Пусть $\mathbb L$ — евклидово пространство. Тогда для любых $x,y\in \mathbb L$

$$|(x,y)| \leqslant \sqrt{(x,x)(y,y)}.$$

Доказательство

Рассмотрим $g: \mathbb{R} \to \mathbb{R}$

$$g(\lambda) = (\lambda x + y, \lambda x + y) = \lambda^{2}(x, x) + 2\lambda(x, y) + (y, y).$$

Значение $g(\lambda) \geqslant 0$ для всех λ .

$$0 \leqslant g \left(-\frac{(x,y)}{(x,x)} \right) = \frac{(x,y)^2}{(x,x)} - 2 \frac{(x,y)^2}{(x,x)} + (y,y).$$

$$\frac{(x,y)^2}{(x,x)} \leqslant (y,y), \quad (x,y)^2 \leqslant (x,x)(y,y).$$

9. Лемма о размере ортогональной системы в сепарабельном евклидовом пространстве.

7. Лемма о размере ортогональной системы

Лемма

Пусть $\mathbb L$ – сепарабельное евклидово пространство. Тогда любая ортогональная система $\{ \varphi_{\alpha} \}$ не более, чем счётна.

Доказательсство.

Без ограничения общности будем полагать, что $\{\varphi_{\alpha}\}$ нормирована. Тогда для любых $\alpha \neq \beta$

$$\|\varphi_{\alpha} - \varphi_{\beta}\| = \sqrt{(\varphi_{\alpha} - \varphi_{\beta}, \varphi_{\alpha} - \varphi_{\beta})} = \sqrt{2}.$$

Рассмотрим совокупность шаров вида $B_{\frac{1}{2}}(x_{\alpha})$. Данные шары не пересекаются. Пусть $A\subset \mathbb{L}$ счётное и всюду плотное. Тогда в каждом шаре $B_{\frac{1}{2}}(x_{\alpha})$ содержится свой элемент $a\in A$. Таким образом число шаров не более размера множества A, т.е. не более, чем счётно.

10. Теорема об ортогонализации.

8. Теорема об ортогонализации

 $\mathit{\Pi ycmb}\ x_1,\ldots,x_n,\ldots\in\mathbb{L}$ – ЛНЗ векторы. Тогда существуют $arphi_1,\ldots,arphi_n,\ldots\in\mathbb{L}$ – ортонормированные векторы. Причём для любого $n \in \mathbb{N}$ верно, что $\varphi_n = \sum_{i=1}^n \alpha_{in} x_i, \ \alpha_{nn} \neq 0.$

Доказательство. Пусть $\psi_1=x_1$. Представим $\psi_2=\beta_{12}\psi_1+x_2$. Определим β_{12} из условия ортогональности:

$$0=(\psi_1,\psi_2)=(\psi_1,\beta_{12}\psi_1+x_2)=\beta_{12}(\psi_1,\psi_1)+(\psi_1,x_2),$$

$$\beta_{12}=-\frac{(\psi_1,x_2)}{(\psi_1,\psi_1)}.$$
 Аналогично для всех $i=\overline{1,n-1}$ из условия ортогональности

$$0 = (\psi_i, \psi_n) = (\psi_i, \sum_{j=1}^{n-1} \beta_{jn} \psi_j + x_n) = \beta_{in}(\psi_i, \psi_i) + (\psi_i, x_n),$$

$$\beta_{in} = -\frac{(\psi_i, x_n)}{(\psi_i, \psi_i)}, \qquad \varphi_n = \frac{\psi_n}{\sqrt{(\psi_n, \psi_n)}}.$$

11. Неравенство Бесселя.

Лемма (Неравенство Бесселя)

$$\sum_{k=1}^{\infty} c_k^2 \leqslant ||x||^2.$$

10. Доказательство неравенства Бесселя

Доказательство.

Пусть $\alpha_1, \ldots, \alpha_n, \ldots \in \mathbb{R}$.

$$\begin{split} \|x - \sum_{k=1}^{\infty} \alpha_k \varphi_k\|^2 &= (x - \sum_{k=1}^{\infty} \alpha_k \varphi_k, x - \sum_{k=1}^{\infty} \alpha_k \varphi_k) = \\ &= (x, x) - 2(x, \sum_{k=1}^{\infty} \alpha_k \varphi_k) + (\sum_{k=1}^{\infty} \alpha_k \varphi_k, \sum_{k=1}^{\infty} \alpha_k \varphi_k) = \\ &= \|x\|^2 - 2 \sum_{k=1}^{\infty} \alpha_k c_k + \sum_{k=1}^{\infty} \alpha_k^2 = \|x\|^2 - \sum_{k=1}^{\infty} c_k^2 + \sum_{k=1}^{\infty} (\alpha_k - c_k)^2. \end{split}$$

Выберем $\alpha_k = c_k, \, k \in \mathbb{N}$. Тогда

$$||x||^2 - \sum_{k=1}^{\infty} c_k^2 = ||x - \sum_{k=1}^{\infty} c_k \varphi_k||^2 \geqslant 0.$$

12. Связь полноты и замкнутости ортонормированной системы в сепарабельном евклидовом пространстве.

12. Равенство Парсеваля

Oртонормированная система $\varphi_1, \ldots, \varphi_n, \ldots$ называется замкнутой, если для всех $x \in \mathbb{L}$ выполнено равенство

$$||x||^2 = \sum_{k=1}^{\infty} c_k^2$$
.

 $\mathit{Ecлu}\ arphi_1,\ldots,arphi_n,\ldots$ – замкнутая система, то $x=\hat{x}.$

Теорема (НДУ замкнутости ортонормированной системы)

B сепарабельном евклидовом пространстве всякая полная ортонормированная система (т.е. базис) является также замкнутой и наоборот.

13. Доказательство теоремы

Доказательство. Пусть $\{\varphi_n\}_{n\in\mathbb{N}}$ замкнута. Тогда для любого $x\in\mathbb{L}$ частичная сумма ряда Фурье стремится к x в смысле нормы:

$$\|x - \sum_{i=1}^n c_k \varphi_k\|^2 = \|x\|^2 - \sum_{i=1}^n c_k^2 \overset{n \to \infty}{\longrightarrow} \|x\|^2 - \|x\|^2 = 0.$$

To есть $x\in \mathrm{Lin}\{\varphi_1,\varphi_2,\ldots\}.$ По определению система $\{\varphi_n\}_{n\in\mathbb{N}}$

полна. Пусть система $\{\varphi_n\}_{n\in\mathbb{N}}$ полна, то есть является базисом в \mathbb{L} . Тогда для всякого $x\in\mathbb{L}$ существуют числа $\alpha_1,\dots,\alpha_n,\dots\in\mathbb{R}$ такие, что

$$\|x - \sum_{i=1}^{n} \alpha_k \varphi_k\|^2 \overset{n \to \infty}{\longrightarrow} 0,$$

$$\|x\|^2 - \sum_{i=1}^n c_k^2 = \|x - \sum_{i=1}^n c_k \varphi_k\|^2 \leqslant \|x - \sum_{i=1}^n \alpha_k \varphi_k\|^2 \overset{n \to \infty}{\longrightarrow} 0,$$

что эквивалентно равенству Парсеваля. Тогда по определению система $\{\varphi_n\}_{n\in\mathbb{N}}$ замкнута.

13. Теорема Рисса-Фишера.

Полное евклидово пространство называется гильбертовым.

Теорема (Рисса-Фишера)

Пусть $\{\varphi_n\}_{n\in\mathbb{N}}$ — ортонормированная система в гильбертовом пространстве \mathbb{L} . Пусть последовательсть $c=(c_1,c_2,\ldots)\in l_2,$ т.е. $\sum\limits_{k=1}^{\infty}c_k^2<\infty.$ Тогда существует $x\in\mathbb{L}$ такой, что

$$c_k = (x, \varphi_k),$$

$$\sum_{k=1}^{\infty} c_k^2 = ||x||^2.$$

Доказательство теоремы Рисса-Фишера

Обозначим $\hat{x}_n = \sum\limits_{k=1}^n c_k \varphi_k$. Тогда

$$\|\hat{x}_{n+k} - \hat{x}_n\|^2 = \|\sum_{i=n+1}^{n+k} c_i \varphi_i\|^2 = \sum_{i=n+1}^{n+k} c_i^2 \xrightarrow{n \to \infty} 0.$$

То есть по определению последовательность $\{\hat{x}_n\}_{n\in\mathbb{N}}$ фундаментальная. Поскольку $\mathbb L$ полное, $\hat{x}_n\overset{n\to\infty}{\longrightarrow}x\in\mathbb L$. Тогда для

$$(x, \varphi_i) = (x - \hat{x}_n, \varphi_i) + \underbrace{(\hat{x}_n, \varphi_i)}_{c_i} \stackrel{n \to \infty}{\longrightarrow} c_i,$$

т.к. в силу неравенства Коши-Буняковского $|(x-\hat{x}_n,\varphi_i)| \leqslant \|x-\hat{x}_n\|\|\varphi_i\|.$ Поскольку по построению

$$||x - \hat{x}_n|| \stackrel{n \to \infty}{\longrightarrow} 0,$$

то в силу равенства Парсеваля

$$\sum_{k=1}^{\infty} c_k^2 = \|x\|^2.$$

14. Теорема об изоморфизме сепарабельных гильбертовых пространств.

16. Теорема об изоморфизме гильбертовых пространств

Определение

Два евклидовых пространства $\mathbb{L}_1, \mathbb{L}_2$ называются изоморфными, если существует биекция $f\colon \mathbb{L}_1 \to \mathbb{L}_2$ такая, что для всех $x,y \in \mathbb{L}_1, \ \alpha \in \mathbb{R}$

$$f(x + y) = f(x) + f(y),$$

 $f(\alpha x) = \alpha f(x),$
 $(x, y)_{\mathbb{L}_1} = (f(x), f(y))_{\mathbb{L}_2}.$

Теорема (Об изоморфизме)

Пусть $\mathbb{L}_1, \mathbb{L}_1$ – сепарабельные гильбертовы пространства. Тогда $\mathbb{L}_1\cong\mathbb{L}_2.$

101181121121 2 000

17. Доказательство теоремы об изоморфизме

Покажем, что произвольное сепарабельное гильбертово пространство $\mathbb L$ изоморфно l_2 . Пусть $\{\varphi_n\}_{n\in\mathbb N}$ – замкнутая ортонормированная система в $\mathbb L$. Сопоставим произвольному $x\in\mathbb L$ последовательность $\tilde x=(c_1,c_2,\ldots),$ где $c_k=(x,\varphi_k),\ k\in\mathbb N$. В силу неравенства Бесселя $\sum\limits_{k=1}^\infty c_k^2\leqslant \|x\|^2.$ Тогда $\tilde x\in l_2$. Определим отображение $f\colon\mathbb L\to l_2$ в виде $f(x)=\tilde x$. Так как для любых $x,y\in\mathbb L,\ \alpha\in\mathbb R,\ k\in\mathbb N$

$$(x + y, \varphi_k) = (x, \varphi_k) + (y, \varphi_k), \quad (\alpha x, \varphi_k) = \alpha(x, \varphi_k),$$

то f сохраняет линейные операции. В силу теоремы Рисса-Фишера f – биекция.

Обозначим через $d_k=(y,\varphi_k)$. Тогда с учётом равенства Парсеваля

$$\begin{aligned} &(x,x)+(y,y)+2(x,y)=(x+y,x+y)=\|x+y\|^2=\sum_{k=1}^{\infty}(c_k+d_k)^2=\\ &=\sum_{k=1}^{\infty}c_k^2+\sum_{k=1}^{\infty}d_k^2+2\sum_{k=1}^{\infty}c_kd_k. \qquad &(x,y)=\sum_{k=1}^{\infty}c_kd_k=(\bar{x},\bar{y})_{l_2}. \end{aligned}$$

15. Тождество параллелограмма.

Теорема (Тождество параллелограмма)

Нормированное пространство $\mathbb L$ является также u евклидовым тогда u только тогда, когда для всех $x,y\in\mathbb L$

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2,$$

Тогда скалярное произведение имеет вид:

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2).$$

16. Связь непрерывности и ограниченности линейных функционалов.

Линейный функционал $f\colon \mathbb{L} o \mathbb{R}$ непрерывен тогда и только тогда, когда fограничен на некотором $O_{\delta}(0)$.

Доказательство.

Пусть f ограничен на некотором $O_\delta(0)$. То есть найдётся C>0 такое, что $\sup_{x\in O_\delta(0)}|f(x)|< C.$ Пусть $\varepsilon>0,$ $x\in O_{\frac{\delta\varepsilon}{C}}(0)$

$$|f(x-0)| = |f(\frac{\varepsilon}{C} \cdot \frac{C}{\varepsilon}x)| = \frac{\varepsilon}{C}|f(\underbrace{\frac{C}{\varepsilon}x}_{y \in O_{\delta}(0)})| < \varepsilon.$$

Тогда по определению f непрерывен в 0, что эквивалентно непрерывности во всём Ц.

17. Теорема Хана-Банаха в нормированных пространствах.

 Π усть \mathbb{L} – нормированное пространство, $\mathbb{L}'\subset\mathbb{L}$ – линейное подпространство, $f_0\colon\mathbb{L}'\to\mathbb{R}$ – линейный и ограниченный на \mathbb{L}' функционал. Тогда f_0 может быть продолжен на \mathbb{L} с сохранением нормы.

Теорема Хана-Банаха утверждает, что любую гиперплоскотьс в \mathbb{L}' можно достроить до гиперплоскости в \mathbb{L} , не приблизив её при этом к θ .

Доказательство. Пусть $||f_0||_{L^r}=k.$ Тогда $p(x)=k\|x\|$ – выпуклый и положительнооднородный функционал по определению нормы. При этом для всех $x\in\mathbb{L}'$

$$|f_0(x)| \le ||x||k = p(x).$$
 (1)

В силу общей теоремы Хана-Банаха существует продолжение f функционала f_0 на $\mathbb L$, сохраняющее условие (1). То есть для всех $y\in\mathbb L$ верно, что

$$|f(y)|\leqslant \|y\|k,\quad \sup_{y\in\mathbb{L}\backslash\{0\}}\frac{|f(y)|}{\|y\|}\leqslant k.$$

C другой стороны, поскольку $\mathbb{L}'\subset\mathbb{L},$

$$\sup_{y\in\mathbb{L}\backslash\{0\}}\frac{|f(y)|}{\|y\|}\geqslant\sup_{x\in\mathbb{L}'\backslash\{0\}}\frac{|f(x)|}{\|x\|}=k,\quad \|f\|_{\mathbb{L}}=k=\|f_0\|_{\mathbb{L}'}.$$

Рассмотрим для некоторого линейн
йного и ограниченного функционала fв нормированном пространств
е $\mathbb L$ множество

$$H=\{x\in\mathbb{L}\colon f(x)=1\}.$$

Фактически H – некоторая гиперплоскость: если $x_0 \in H$, то $H = \operatorname{Ker} f + x_0$. Вычислим расстояние от 0 до H.

$$\rho(0,H) = \inf_{x \in H} \|x - 0\| = \inf_{f(x)=1} \|x\|,$$

$$|f(x)| \le ||f|| ||x||, \quad ||x|| \ge \frac{|f(x)|}{||f||}, \quad \rho(0, H) \ge \frac{1}{||f||}$$

 $|f(x)|\leqslant \|f\|\|x\|,\quad \|x\|\geqslant \frac{|f(x)|}{\|f\|},\quad \rho(0,H)\geqslant \frac{1}{\|f\|}.$ С другой стороны, по определению точной нижней грани для любого $\varepsilon>0$ найдётся такой $x_\varepsilon\in H,$ что

$$1 > (\|f\| - \varepsilon)\|x_{\varepsilon}\|, \quad \rho(0, H) \leqslant \|x_{\varepsilon}\| < \frac{1}{\|f\| - \varepsilon}.$$

Т.к. $\varepsilon>0$ произвольный, то

$$\rho(0,H)\leqslant \frac{1}{\|f\|},\quad \boxed{\rho(0,H)=\frac{1}{\|f\|}}\,.$$

18. Первая теорема отделимости.

Следствия из теоремы Хана-Банаха

Следствие (Первая теорема отделимости)

Пусть $A,B\subset \mathbb{L}$ – выпуклые, \mathbb{L} – нормированное пространство, причём $J(A)\neq\varnothing,\ J(A)\cap B=\varnothing.$

Тогда существует ненулевой непрерывный линейный функционал $f\colon \mathbb{L} \to \mathbb{R},$ разделяющий А и В.

Доказательство.

доказательство. Линейный функционал, разделяющий A и B существует в силу общей теоремы отделимости. Докажем, что он непрерывен. Пусть $\sup_{x\in A}f(x)\leqslant C\leqslant \inf_{x\in B}f(x).$ Тогда f ограничен сверху на A. Пусть $x\in A$ ($x\in B$) $x\in B$ ($x\in B$) от такое, что $x\in B$) такое, что $x\in B$ 0.

$$\sigma_0 \in J(A) = \mathrm{int}\ A$$
. Тогда существует $arepsilon > 0$ такое, что $O_{arepsilon}(x_0)$ (

$$\sup_{x \in O_{\varepsilon}(x_0)} f(x) \leqslant C < \infty,$$

Так как $x_0 - (x - x_0)$ – точка симметричная x относительно центра шара x_0 ,

$$\sup_{x\in O_\varepsilon(x_0)} f(x) = \sup_{x\in O_\varepsilon(x_0)} f(2x_0-x) = 2f(x_0) - \inf_{x\in O_\varepsilon(x_0)} f(x) \leqslant C,$$

$$\inf_{x \in O_{\varepsilon}(x_0)} f(x) \geqslant 2f(x_0) - C.$$

Тогда f ограничен на $O_{\varepsilon}(x_0),$ что в нормированном пространстве эквивалентно непрерывности.

19. Вторая теорема отделимости.

Следствия из теоремы Хана-Банаха

Следствие (Вторая теорема отделимости)

Пусть $A\subset \mathbb{L}$ – замкнутое выпуклое множество в нормированном

пространстве $\mathbb{L}, x_0 \not\in A.$ Тогда существует ненулевой непрерывный линейный функционал $f\colon \mathbb{L} \to \mathbb{R},$ строго разделяющий A и x_0 .

Доказательство.

Если A замкнутое, то его дополнение открытое. Тогда существует $\varepsilon>0$ такое, что $O_{\varepsilon}(x_0)\cap A=\varnothing$. int $O_{\varepsilon}(x_0)\neq\varnothing$. Тогда в силу первой теоремы отделимости существует линейный непрерывный функционал f, который разделяет $O_{\varepsilon}(x_0)$

$$\sup_{x \in O_{\varepsilon}(x_0)} f(x) \leqslant C \leqslant \inf_{x \in A} f(x).$$

Предположим, что $f(x_0) = C.$ Тогда для всех $y \in \mathbb{L} \setminus \{0\}$ верно включение $x_0 \pm \frac{y}{\|y\|} \cdot \frac{\varepsilon}{2} \in O_{\varepsilon}(x_0).$

$$f(x_0) = \sup_{x \in O_{\mathcal{E}}(x_0)} f(x) \geqslant f(x_0 \pm \frac{y}{\|y\|} \cdot \frac{\varepsilon}{2}) = f(x_0) \pm \frac{\varepsilon}{2\|y\|} f(y),$$

$$f(y) \geqslant 0, \quad -f(y) \geqslant 0, \quad f(y) \equiv 0.$$

Получаем противоречие. То есть $f(x_0) < C$.

20. Теорема о самосопряжённости гильбертовых пространств.

Теорема Рисса для гильбертовых пространств

Пусть $\mathbb L$ – гильбертово пространство. Тогда $\mathbb L^*\cong \mathbb L$, т.е. для любого $f\in \mathbb L^*$ существует $x_0\in \mathbb L$ такой, что $f(x)=(x_0,x), \, \|f\|_{\mathbb L^*}=\|x_0\|_{\mathbb L}.$

доказательство. В силу линейности скалярного произведения $f(x)=(x_0,x)$ — линейный функционал. Так как $|(x_0,x)|\leqslant \|x\|\|\|x_0\|$, f непрерывен и $\|f\|\leqslant \|x_0\|$. С другой стороны, $f(x_0)=(x_0,x_0)=\|x_0\|$, $\|x_0\|$, откуда $\|f\|\geqslant \|x_0\|$. Покажем, что всякий $f\in \mathbb{L}^*$ представим в виде $f(x)=(x_0,x)$. Если f=0, то $x_0=0$. Иначе Кег f — замкнутое линейное подпространство в \mathbb{L} , не совпадающее с \mathbb{L} . Тогда найдется $y_0\in \mathbb{L}$ такой, что $\|y_0\|=1$ и

$$\text{Ker } f^\perp = \{x \in \mathbb{L} \colon f(x) = 0\}^\perp = \{x \in \mathbb{L} \colon x = \alpha y_0, \alpha \in \mathbb{R}\}.$$

Тогда для любого $x\in\mathbb{L}$ найдутся $y\in\mathrm{Ker}\ f$ и $\alpha\in\mathbb{R}$ такие, что $x=y+\alpha y_0.$ Тогда $f(x) = \alpha f(y_0)$,

$$(x,\underbrace{f(y_0)y_0}_{x_0}) = \alpha(y_0,f(y_0)y_0) = \alpha f(y_0)(y_0,y_0) = \alpha f(y_0) = f(x).$$

21. Лемма о сохранении нормы при естественном отображении нормированного пространства во второе сопряжённое.

Лемма

 $\mathit{Ecлu} \ \mathbb{L} \ \mathit{u} \ \mathbb{L}^*$ нормированные, то естественное отображение π сохраняет норму: $\|\psi_{x_0}\| = \|x_0\|$.

Доказательство. Пусть $f \in \mathbb{L}^* \setminus \{0\}, \, x_0 \in \mathbb{L}$. Тогда

$$|(f,x_0)|\leqslant \|f\|\|x_0\|,\ \, \|x_0\|\geqslant \frac{|(f,x_0)|}{\|f\|},\ \, \|x_0\|\geqslant \sup_{f\neq 0}\frac{|(f,x_0)|}{\|f\|}=\|\psi_{x_0}\|.$$

В силу следствия из теоремы Хана-Банаха существует $f_0 \in \mathbb{L}^* \setminus \{0\}$ такой, что $f(x_0) = \|x_0\| \|f_0\|.$ Тогда

$$\|\psi_{x_0}\| = \sup_{f \neq 0} \frac{|(f, x_0)|}{\|f\|} \geqslant \|x_0\|.$$

22. Необходимое и достаточное условие слабой сходимости.

Необходимое и достаточное условие слабой сходимости

Теорема

Последовательность $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{L}$, где \mathbb{L} – нормированное пространство, сходится слабо κ $x\in\mathbb{L}$ тогда и только тогда, когда

- ullet существует C>0 такая, что для всех $n\in\mathbb{N}$ верно $\|x_n\|< C;$
- \bullet $f(x_n) \xrightarrow{n \to \infty} f(x)$ для любого $f \in \Delta$, где $\overline{\operatorname{Lin} \Delta} = \mathbb{L}^*$.

Доказательство.

Пусть $\varphi \in \mathbb{L}^*$. Тогда существует $\{\varphi_k\}_{k \in \mathbb{N}} \subset \operatorname{Lin} \Delta$ такая, что $\varphi_k \xrightarrow{n \to \infty} \varphi$. Причём в силу линейности всех $f \in \Delta$ и операции предельного перехода для всех $k \in \mathbb{N}$ верно $\varphi_k(x_n) \xrightarrow{n \to \infty} \varphi_k(x)$.

$$|\varphi(x_n) - \varphi(x)| \leq |\varphi(x_n) - \varphi_k(x_n)| + |\varphi_k(x_n) - \varphi_k(x)| + |\varphi_k(x) - \varphi(x)| \leq |\varphi(x_n) - \varphi_k(x_n)| + |\varphi_k(x_n) - |\varphi_k(x_n) - \varphi_k(x_n)| + |\varphi_k(x_n) - |\varphi_k(x_n)$$

$$\leq \|\varphi - \varphi_k\| \|x_n\| + |\varphi_k(x_n) - \varphi_k(x)| + \|\varphi - \varphi_k\| \|x\| \xrightarrow{k, n \to \infty} 0.$$

23. Необходимое и достаточное условие слабой сходимости в пространстве непрерывных функций.

3. Ограниченная последовательность $\{x_n\}_{n\in\mathbb{N}}\subset C([a;b])$ сходится слабо к $x\in C([a;b])$ тогда и только тогда, когда для всех $t\in [a;b]$

$$x_n(t) \xrightarrow{n \to \infty} x(t).$$

Поскольку для любой $t\in [a;b]$ верно включение $\delta_t\in C^*([a;b]),$ где $\delta_t(x)=x(t),$ то

$$x_n(t) = \delta_t(x_n) \xrightarrow{n \to \infty} \delta_t(x) = x(t).$$

 Также можно показать и обратное, продемонстрировав, что $\overline{\text{Lin}}\{\delta_t\colon t\in[a;b]\}=C^*([a;b]).$ Для любого $f\in C^*([a;b])$ существует $\tilde{f}\in V([a;b])$ такая, что

$$f(x) = \int_{a}^{b} x(t)d\tilde{f}(t).$$

С другой стороны по определению интеграла для любого $\varepsilon>0$ существует такое разбиение $a=t_0< t_1<\ldots< t_n=b,$ что для всякой непрерывной функции x, удовлетворяющей условию $\max_{t\in[a;b]}|x(t)|,$ верно неравенство

$$\varepsilon > \left| \int\limits_a^b x(t) d\tilde{f}(t) - \sum\limits_{k=1}^n x(t_k) \left(\tilde{f}(t_k) - \tilde{f}(t_{k-1}) \right) \right| = \left| f(x) - \sum\limits_{k=1}^n \delta_{t_k}(x) \left(\tilde{f}(t_k) - \tilde{f}(t_{k-1}) \right) \right|.$$

$$\|f-\sum_{k=1}^n \delta_{t_k} \left(\tilde{f}(t_k)-\tilde{f}(t_{k-1})\right)\|\leqslant \varepsilon.$$

24. Лемма о достаточности запаса основных функций.

Достаточность запаса основных функций

Лемма

Пусть $f,g\in C(\mathbb{R})$ порождают регулярные обобщённые функции $f,g\in D^*$ соответственно. При этом сущетсвует $t_0\in \mathbb{R}$ такое, что $f(t_0)\neq g(t_0)$. Тогда существует $\varphi\in D$ такая. что

$$f(\varphi) \neq g(\varphi)$$
.

Доказательство.

Пусть $h=f-g\in C(\mathbb{R})$. Без ограничения общности будем полагать, что $h(t_0)>0$. Тогда существует $\varepsilon>0$ такая, что $h(t)>0,\,t\in(t_0-\varepsilon;t_0+\varepsilon)$. Пусть

$$\varphi(t) = \begin{cases} 0, & t \notin (t_0 - \varepsilon; t_0 + \varepsilon), \\ e^{-\frac{1}{(t_0 + \varepsilon - t)(t - (t_0 - \varepsilon))}}, & t \in (t_0 - \varepsilon; t_0 + \varepsilon), \end{cases} \in D.$$

Тогда

$$(f-g,\varphi)=(h,\varphi)=\int\limits_{t_0-\varepsilon}^{t_0+\varepsilon}h(t)\mathrm{e}^{-\frac{1}{(t_0+\varepsilon-1)(t-(t_0-\varepsilon))}}dt>0.$$

25. Необходимое и достаточное условие непрерывности линейного оператора в нормированном пространстве.

Определение

Линейный оператор $A\colon \mathbb{L}_1 \to \mathbb{L}_2$, называется ограниченным, если $D_A = \mathbb{L}_1$ и для любого ограниченного множества $D \subset \mathbb{L}_1$ верно, что $\operatorname{diam} AD < \infty$.

Лемма

Если \mathbb{L}_1 и \mathbb{L}_2 — нормированные пространства, то линейный оператор $A\colon \mathbb{L}_1 \to \mathbb{L}_2$ непрерывен тогда и только тогда, когда ограничен.

Доказательство.

Пусть A ограничен. Тогда найдётся R>0 такое, что $AO_1(0)\subset O_R(0)$. Пусть $\|x-y\|<\delta$, т.е. $x-y\in O_\delta(0)=\delta\cdot O_1(0)$. Тогда $A(x-y)\in\delta\cdot O_R(0)$, откуда $\|Ax-Ay\|=\|A(x-y)\|< R\delta=\varepsilon$, то есть A непрерывен. Пусть A непрерывен. Тогда для любого $O_\delta(x)\subset \mathbb{L}_1$ верно, что $AO_\delta(x)\subset O_\varepsilon(Ax)$. То есть A ограничен.

26. Теорема об альтернативном представлении нормы линейного и ограниченного оператора.

Определение

 Π усть $\mathbb{L}_1, \mathbb{L}_2$ – нормированные пространства, $A \colon \mathbb{L}_1 \to \mathbb{L}_2$ линейный и ограниченный оператор. Тогда **нормой** оператора A называется величина

$$\|A\| = \inf\{C > 0 \colon \|Ax\| \leqslant C\|x\|, \ x \in \mathbb{L}_1\}.$$

Теорема

 $\mathit{Hycms}\ \mathbb{L}_1, \mathbb{L}_2$ – нормированные пространства, $A\colon \mathbb{L}_1 \to \mathbb{L}_2$ - линейный и ограниченный оператор. Тогда

$$||A|| = \sup_{\|x\| \leqslant 1} ||Ax|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}.$$

Доказательство теоремы

В силу линейности A и положительной однородности нормы справедливо равенство

$$\alpha=\sup_{\|x\|\leqslant 1}\|Ax\|=\sup_{x\neq 0}\frac{\|Ax\|}{\|x\|}.$$

Тогда для любого $x \in \mathbb{L}_1 \setminus \{0\}$

$$\frac{\|Ax\|}{\|x\|}\leqslant \alpha, \quad \|Ax\|\leqslant \alpha \|x\|, \quad \|A\|\leqslant \alpha.$$

Предположим, что $\|A\|<\alpha$. То есть существует $\tilde{\alpha}>0$ такая, что $\|A\|<\tilde{\alpha}<\alpha$. Тогда для всех $x\in\mathbb{L}_1\setminus\{0\}$ верно, что

$$\|Ax\|<\tilde{\alpha}\|x\|<\alpha\|x\|, \quad \frac{\|Ax\|}{\|x\|}<\tilde{\alpha}<\alpha, \quad \sup_{x\neq 0}\frac{\|Ax\|}{\|x\|}\leqslant \tilde{\alpha}<\alpha.$$

Пришли к противоречию. То есть $||A|| = \alpha$.

27. Теорема о линейности оператора обратного к линейному оператору.

28. Теорема об открытости класса обратимых линейных и ограниченных операторов.

Пусть $\mathfrak{GL}(\mathbb{L}_1,\mathbb{L}_2)=\{A\in\mathfrak{L}(\mathbb{L}_1,\mathbb{L}_2)\colon\operatorname{Im} A=\mathbb{L}_2,\ A$ – обратим}.

Теорема

Пусть $A_0\in\mathfrak{GL}(\mathbb{L}_1,\mathbb{L}_2),\ \Delta A\in\mathfrak{L}(\mathbb{L}_1,\mathbb{L}_2)$ такой, что $\|\Delta A\|<\frac{1}{\|A_0^{-1}\|}.$ Тогда $(A_0+\Delta A)^{-1}\in\mathfrak{L}(\mathbb{L}_1,\mathbb{L}_2).$

Доказательство.

Фиксируем $y\in\mathbb{L}_2$. Рассмотрим $B\colon\mathbb{L}_1\to\mathbb{L}_1\colon$ $Bx=A_0^{-1}y-A_0^{-1}\Delta Ax.$

Поскольку $\|\Delta A\| < \|A_0^{-1}\|^{-1}$, то $\|A_0^{-1}\Delta A\| \leqslant \alpha < 1$,

 $||Bx_1 - Bx_2|| = ||A_0^{-1} \Delta Ax_2 - A_0^{-1} \Delta Ax_1|| \le ||A_0^{-1} \Delta A|| \cdot ||x_2 - x_1|| < ||x_2 - x_1||.$

Т.е. отображение B сжимающее. Тогда в силу теоремы Банаха о неподвижной точки и полноты \mathbb{L}_1 существует единственная неподвижная точка $x \in \mathbb{L}_1$ отображения B:

 $x = Bx = A_0^{-1}y - A_0^{-1}\Delta Ax, \quad x + A_0^{-1}\Delta Ax = A_0^{-1}y, \quad (A_0 + \Delta A)x = y.$

Таким образом решением уравнения $(A_0+\Delta A)x=y$ может быть только неподвижная точка оператора B. Откуда следует, что $(A_0+\Delta A)$ обратим, а в силу теоремы Банаха об обратном операторе также и ограничен.

29. Теорема о представлении обратного оператора в виде ряда.

Теорема о представлении обратного оператора в виде ряда

 Hycm ь \mathbb{L} — банахово пространство, $A\in\mathfrak{L}(\mathbb{L},\mathbb{L})$, $\mathrm{Im}\,A=\mathbb{L},\;\|A\|<1$. Torda $(I-A)^{-1}=\sum_{k=0}^{\infty}A^k\in\mathfrak{L}(\mathbb{L},\mathbb{L}).$

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k \in \mathfrak{L}(\mathbb{L}, \mathbb{L})$$

Доказательство. В силу теоремы $(I-A)^{-1} \in \mathfrak{L}(\mathbb{L},\mathbb{L}).$

$$\left\| \sum_{k=0}^{n+i} A^k - \sum_{k=0}^n A^k \right\| = \left\| \sum_{k=n+1}^{n+i} A^k \right\| \leqslant \sum_{k=n+1}^{n+i} \|A\|^k \leqslant \sum_{k=n+1}^{\infty} \|A\|^k = \frac{\|A\|^{n+1}}{1 - \|A\|} \xrightarrow{n \to \infty} 0.$$

То есть последовательность $\sum\limits_{k=0}^{n}A^{k}$ фундаментальна. Поскольку $\mathbb L$ полное, то

 $\mathfrak{L}(\mathbb{L},\mathbb{L})$ также полное, а следовательно $\sum\limits_{k=0}^{\infty}A^{k}\in\mathfrak{L}(\mathbb{L},\mathbb{L}).$

Для любого $n \in \mathbb{N}$ верно

$$(I-A)\sum_{k=0}^n A^k = \sum_{k=0}^n A^k (I-A) = \sum_{k=0}^n A^k - \sum_{k=1}^{n+1} A^k = I-A^{n+1}.$$

С учётом того, что $\|A^{n+1}\| \leqslant \|A\|^{n+1} \xrightarrow{n \to \infty} 0$, перейдём к пределу по n:

$$(I-A)\sum_{k=0}^{\infty}A^k=\sum_{k=0}^{\infty}A^k(I-A)=I.$$

30. Теорема о норме сопряжённого оператора.

14. Норма сопряжённого оператора

Пусть $A \in \mathfrak{L}(\mathbb{L}_1, \mathbb{L}_2)$. Тогда $\|A\| = \|A^*\|$.

Доказательство.

Для всех $x\in\mathbb{L}_1$ и $f\in\mathbb{L}_2^*$ верно, что

$$|(A^*f, x)| = |(f, Ax)| \le ||f|| \cdot ||Ax|| \le ||f|| \cdot ||A|| \cdot ||x||.$$

Тогда в силу определения нормы функционала $\|A^*f\|\leqslant \|f\|\cdot \|A\|.$ Тогда в силу определения нормы оператора $||A^*|| \le ||A||$.

Пусть $x \in \mathbb{L}_1 \setminus \operatorname{Ker} A$. Обозначим $y_0 = \frac{Ax}{\|Ax\|} \in \mathbb{L}_2$. Тогда $||y_0|| = 1$. В силу следствия из теоремы Хана-Банаха существует такой $f\in\mathbb{L}_2^*$ такой, что $\|f\|=1,$ $(f, y_0) = ||y_0|| = 1.$

$$\begin{split} \|Ax\| &= \left\| y_0 \cdot \|Ax\| \right\| = (f, y_0) \cdot \|Ax\| = (f, Ax) = |(A^*f, x)| \leqslant \\ &\leqslant \|A^*f\| \cdot \|x\| \leqslant \|A^*\| \cdot \|f\| \cdot \|x\| = \|A^*\| \cdot \|x\|. \end{split}$$

Tryus no our reserving horms, our rations
$$\|A\| < \|A^*\|$$

Откуда по определению нормы оператора $\|A\| \leqslant \|A^*\|$

31. Свойства спектра линейного и ограниченного оператора.

19. Свойства спектра

Пусть $A \in \mathfrak{L}(\mathbb{L},\mathbb{L})$, где \mathbb{L} – банахово пространство. Тогда

- σ(A) замкнутое множество;
- $\sigma(A) \subset [-\|A\|; \|A\|].$

Доказательство. 1) Пусть $\lambda \in \mathbb{R}$ — регулярное значение, т.е. $(A - \lambda I)^{-1} \in \mathfrak{L}(\mathbb{L}, \mathbb{L})$. Тогда в силу свойств обратимого оператора существует достаточно малое $\delta < \frac{1}{\|(A - \lambda I)^{-1}\|}$ такое, что $(A - (\lambda \pm \delta)I)^{-1} \in \mathfrak{L}(\mathbb{L}, \mathbb{L})$. Тогда множество всех регулярных λ открыто. Тогда его дополнение $\sigma(A)$ замкнуто. 2) Пусть $|\lambda| > \|A\|$. Тогда в силу теоремы о представлении обратного оператора в виде ряда

$$-\frac{1}{\lambda}\sum_{k=0}^{\infty}\frac{A^k}{\lambda^k}\in\mathfrak{L}(\mathbb{L},\mathbb{L}),$$

$$-\frac{1}{\lambda}\sum_{k=0}^{\infty}\frac{A^k}{\lambda^k}=-\frac{1}{\lambda}\left(I-\frac{A}{\lambda}\right)^{-1}=(A-\lambda I)^{-1}=R_{\lambda}.$$

17. Понятие собственного значения, спектра и резольвенты

Определение

Число $\lambda \in \mathbb{R}$ называется собственным числом линейного и ограниченного оператора $A \colon \mathbb{L} \to \mathbb{L}$, соответствующим собственному вектору $h \in \mathbb{L} \setminus \{0\}$, если $Ah = \lambda h$. Множество всех собственных значений называют точечным спектром оператора A.

Фактически число λ является собственным, если оператор $(A-\lambda I)$ не обратим. Тем не менее в бесконечномерном пространстве оператор $(A-\lambda I)^{-1}$ может существовать, но быть неограниченным или определённым не на всём L.

Множество всех $\lambda \in \mathbb{R}$, при которых оператор $(A-\lambda I)^{-1}$ неограничен или определён не на всём \mathbb{L} , называется непрерывным спектром. Спектром оператора A называется $\sigma(A)$ совокупность точечного и непрерывного спектра.

Число $\lambda\in\mathbb{R}$ называется \mathbf{pery} лярным для оператора A, если $\lambda\not\in\sigma(A)$. Тогда линейный и ограниченный оператор $R_\lambda=(A-\lambda I)^{-1}$ называется

32. Лемма Рисса.

Лемма (Рисса)

Пусть \mathbb{L} – нормированное пространство, $\mathbb{L}_1\subset\mathbb{L}$ – подпространство, $\mathbb{L}_1\setminus\mathbb{L}_1\neq\emptyset$

Tогда для любого $\varepsilon\in(0;1)$ найдётся $z_{\varepsilon}\in\mathbb{L}$ такой, что $\|z_{\varepsilon}\|=1$, $ho(z_{\varepsilon},\mathbb{L}_{1})\geqslant 1-\varepsilon.$

Доказательство.

Выберем $x_0 \in \mathbb{L} \setminus \mathbb{L}_1$. Обозначим через

$$d = \rho(x_0, \mathbb{L}_1) = \inf_{x \in \mathbb{T}_+} \|x_0 - y\| > 0.$$

Выберем произвольное $\varepsilon\in(0;1).$ Заметим, что в этом случае $\frac{1}{1-\varepsilon}>1.$ Тогда по определению точной нижней грани найдётся $y_\varepsilon\in\mathbb{L}_1$ такой, что

$$||x_0 - y_{\varepsilon}|| < \frac{1}{1 - \varepsilon}d.$$

Обозначим через

$$z_arepsilon = rac{x_0 - y_arepsilon}{\|x_0 - y_arepsilon\|}.$$

Тогда $\|z_{\varepsilon}\|=1.$ Также для любого $y\in\mathbb{L}_1$ справедливы соотношения

$$\|z_{\varepsilon} - y\| = \left\| \frac{x_0 - y_{\varepsilon} - y \|x_0 - y_{\varepsilon}\|}{\|x_0 - y_{\varepsilon}\|} \right\| = \frac{\|x_0 - (y_{\varepsilon} + y \|x_0 - y_{\varepsilon}\|)\|}{\|x_0 - y_{\varepsilon}\|} > \frac{d}{\frac{1}{1 - \varepsilon} d} = 1 - \varepsilon.$$

33. Критерий бесконечной размерности нормированного пространства.

3. Критерий бесконечной размерности нормированного пространства

Теорема

 $\mathit{Пусть}\ \mathbb{L}$ — нормированное пространство, $\mathfrak{B}_1(0)\subset \mathbb{L}$ — замкнутый шар. Тогда \mathbb{L} конечномерное тогда и только тогда, когда $\mathfrak{B}_1(0)$ — компакт.

Доказательство

Пусть $\mathbb L$ — бесконечномерное пространство. Тогда для любого набора $x^1,\dots x^n\subset \mathbb L$ выполнено соотношение

$$\mathbb{L} \neq \operatorname{Lin}\{x^1, \dots, x^n\}. \tag{1}$$

Выберем произвольный $y^1\in\partial\mathcal{B}_1(0).$ В силу леммы Рисса найдётся $y^2\in\partial\mathcal{B}_1(0)\setminus\mathrm{Lin}\{y^1\}$ такой, что

$$\rho(y^2, \operatorname{Lin}\{y^1\}) \geqslant \frac{1}{2}.$$

Но также найдётся $y^3 \in \partial \mathcal{B}_1(0) \setminus \mathrm{Lin}\{y^1,y^2\}$ такой, что

$$\rho(y^3, \text{Lin}\{y^1, y^2\}) \geqslant \frac{1}{2}.$$

Продолжая данные рассуждения по индукции с учётом (1) получим, что для любого $n\in\mathbb{N}$ найдётся $y^{n+1}\in\partial\mathcal{B}_1(0)\setminus\mathrm{Lin}\{y^1,\ldots,y^n\}$ такой, что

$$\rho(y^{n+1}, \operatorname{Lin}\{y^1, \dots, y^n\}) \geqslant \frac{1}{2}.$$

То есть для любых $i,j\in\mathbb{N},\,i\neq j$

$$\|y^i - y^j\| \geqslant \frac{1}{2}.$$

Тогда любая ε -сеть при $\varepsilon<\frac{1}{2}$ не менее, чем счётна, откуда следует, что $\mathcal{B}_1(0)$ не компактен.

Пусть \mathbb{L} – конечномерное пространство размерности n.

Тогда $\mathbb L$ изоморфно $\mathbb R^n$. Тогда $\mathcal B_1(0)$ компактен, так как любое замкнутое и ограниченное множество в $\mathbb R^n$ компактно.

Замечание

Из теоремы следует, что в бесконечномерном пространстве оператор I, который переводит $B_1(0)$ в $B_1(0)$ не является компактным.

34. Теорема о пределе последовательности компактных операторов.

8. Теорема о пределе последовательности компактных операторов.

Теорема

 Π усть $\{A_n\}_{n\in\mathbb{N}}\subset \mathfrak{L}(\mathbb{L},\mathbb{L})$ — последовательность компактных операторов, \mathbb{L} — банахово пространство, $A_n\stackrel{u}{\longrightarrow} A$. Тогда A

Доказательство.

Пусть $\{x_n\}_{n\in\mathbb{N}}$ — ограниченная последовательность. Тогда в силу компактности A_1 в $\{x_n\}_{n\in\mathbb{N}}$ существует такая подпоследовательность $\{x_n^{(1)}\}_{n\in\mathbb{N}}$ что $\{A_1x_n^{(1)}\}_{n\in\mathbb{N}}$ сходится. Тогда в силу компактности A_2 в $\{x_n^{(1)}\}_{n\in\mathbb{N}}$ существует такая подпоследовательность $\{x_n^{(2)}\}_{n\in\mathbb{N}}$, что $\{A_2x_n^{(2)}\}_{n\in\mathbb{N}}$ сходится.

Продолжив по индукции, построим последовательность $\{y_n\}_{n\in\mathbb{N}}$, где $y_n=x_n^{(n)}$. Каждый оператор из операторов A_1,\dots,A_n,\dots переводит $\{y_n\}_{n\in\mathbb{N}}$ в сходящуюся последовательность.

$$\|Ay_n-Ay_m\|\leqslant \|Ay_n-A_ky_n\|+\|A_ky_n-A_ky_m\|+\|A_ky_m-Ay_m\|\leqslant$$

$$\leq ||A - A_k|| ||y_n|| + ||A_k y_n - A_k y_m|| + ||A_k - A|| ||y_m|| \xrightarrow{k,n,m \to \infty} 0.$$

Тогда $\{Ay_n\}_{n\in\mathbb{N}}$ фундаментальна. Поскольку $\mathbb L$ банахово, то $\{Ay_n\}_{n\in\mathbb{N}}$ схолится.

35. Теорема о собственных значениях компактного оператора.

. Собственные значения компактного оператора

Теорема

Пусть $A\colon \mathbb{L}\to \mathbb{L}$ компактен, \mathbb{L} – банахово пространство. Тогда для любого $\delta>0$ существует конечное число линейно независимых собственных векторов, соответствующих собстенным значениям $|\lambda|>\delta.$

Доказательство.

Предположим обратное. Пусть $\lambda_1,\ldots,\lambda_n,\ldots$ – какая-либо последовательность собственных значений оператора A (возможно, с повторениями), где $|\lambda_n| > \delta$. x_1,\ldots,x_n,\ldots – соответствующие линейно независимые собственные векторы.

В силу леммы Рисса существует последовательность $y_1,\dots,y_n,\dots\in\mathbb{L}$ такая, что

1)
$$y_n \in \mathbb{L}_n = \text{Lin}\{x_1, \dots, x_n\}, 2) ||y_n|| = 1,$$

$$3)\rho(y_n, \mathbb{L}_{n-1}) = \inf_{x \in \mathbb{L}_{n-1}} ||y_n - x|| > \frac{1}{2}.$$

В силу ограничения $|\lambda_n|>\delta,$ последовательность $\left\{\frac{y_n}{\lambda_n}\right\}_{n\in\mathbb{N}}$ ограничена.

Покажем, что у последовательности $\left\{A\left(\frac{y_n}{\lambda_n}\right)\right\}_{n\in\mathbb{N}}$ не существует ограниченной подпоследовательности.

Обозначим
$$y_n = \sum\limits_{k=1}^n \alpha_k x_k$$
. Тогда

$$\frac{Ay_n}{\lambda_n} = \sum_{k=1}^{n-1} \frac{\alpha_k \lambda_k}{\lambda_n} x_k + \alpha_n x_n = y_n + \underbrace{\sum_{k=1}^{n-1} \alpha_k \left(\frac{\lambda_k}{\lambda_n} - 1\right) x_k}_{z_n \in \mathbb{L}_{n-1}}.$$

$$\left\|A\left(\frac{y_p}{\lambda_p}\right)-A\left(\frac{y_q}{\lambda_q}\right)\right\|=\|y_p-(y_q+z_q-z_p)\|>\frac{1}{2},\quad p>q.$$

Что противоречит компактности оператора A.

36. Свойства собственных векторов и значений самосопряжённых компактных операторов. Теорема Гильберта-Шмидта (формулировка).

Самосопряжённые компактные операторы

Лемма

 $\mathit{Hycms}\ A\colon \mathbb{L} \to \mathbb{L}$ – компактный оператор, \mathbb{L} – гильбертово пространство, $A^*=A$. Тогда

- все собственные значения А действительны;
- собственные векторы, соответствующие различным собственным значениям, ортогональны.

Локазательство

Пусть $Ax = \lambda x, Ay = \mu y, \lambda \neq \mu$. Тогда

1)
$$\lambda(x,x)=(\lambda x,x)=(Ax,x)=(x,A^*x)=(x,Ax)=(x,\lambda x)=\overline{\lambda}(x,x),$$

$$\lambda=\overline{\lambda}.$$
 2) $\lambda(x,y)=(Ax,y)=(x,A^*y)=(x,Ay)=\mu(x,y),$
$$(x,y)=0.$$

14. Теорема о приведении компактного самосопряжённого оператора к диагональному виду

Теорема (Гильберта-Шмидта)

Пусть $\mathbb L$ – гильбертово пространство, $A\colon \mathbb L\to \mathbb L$ – самосопряжённый компактный оператор. Тогда существует такая ортонормированная система $\{\varphi_n\}_{n\in \mathbb I}$ собственных векторов, соответствующих ненулевым собственным значениям $\{\lambda_n\}_{n\in \mathbb I}$, что любой вектор $x\in \mathbb L$ единственным образом представим в виде

$$x = \sum_{k \in \mathbb{T}} x_k \varphi_k + x_0, \quad x_0 \in \operatorname{Ker} A.$$

 Πpu этом

$$Ax = \sum_{k \in \mathbb{I}} \lambda_k x_k \varphi_k.$$

Eсли \mathbb{I} бесконечно, то $\lim_{n\to\infty}\lambda_n=0$.