Context-dependent selection as the keystone in somatic evolution of cancer

Vibishan B and Milind G. Watve

Department of Biology, Indian Institute of Science Education and Research (IISER), Pune

Corresponding author: milind@iiserpune.ac.in

Abstract

A prevalent question in somatic evolution of cancer concerns the causal importance of random mutagenesis, with a number of experiments showing that an intermediate pre-cancer mutant has only a conditional selective advantage. Given that tissue micro-environmental conditions differ across individuals, the mutant selective advantage should be widely distributed in the population. We evaluate three models, namely "bad luck", context-independent, and -dependent selection, in a comparative framework, on their ability to predict patterns in total incidence, age-specific incidence, and their ability to explain Peto's paradox. Results show that context dependence is necessary and sufficient to explain observed epidemiological patterns, and that cancer incidence is largely selection-limited, and not mutation-limited. A wide range of physiological, genetic and behavioural factors influence the tissue micro-environment, and could therefore be the source of this context dependence in somatic evolution of cancer. The identification and targeting of these micro-environmental factors that influence the dynamics of selection offer new possibilities for cancer prevention.

1 Epidemiological observations

- Late-life decline with age
- Cancer risk saturates with n
- Non-mutagenic carcinogens

2 "Bad luck" model-analytical

k = number of oncogenic mutations

Peto's paradox

Equations used:

for cancer

• $p_{can} = 1 - (1 - p^k)^n$

• $p_A = 1 - (1 - p_{can})^A$

Figure 1: Cancer incidence vs age, from SEER9 (1)

k=5

k=2

Figure 3: Incidence vs $\log(n)$ for different p and k

3 Selection models-simulations

- Linear evolution process, leading to mutation accumulation
- Discrere logistic equation for cell growth and competition, with one step growth making one day of lifespan
- Non-mutant growth rate, $g_0 = 0.007$, and a linear progression up to g_k for the kth oncogenic mutation, at which cancer occurs
- $\Delta_g = \frac{g_k g_0}{k}$ is randomized in the population for context-dependent selection, as $N(\mu, \sigma)$
- $n \in [1.203 * 10^6, 2.649 * 10^{10}]$
- $p \in [3.775 * 10^{-11}, 3.059 * 10^{-7}]$

Figure 4: Context-independent model; randomized p vs fixed p. Mean randomized $p \approx$ fixed p.

Figure 5: Context-independent selection; crude and cumulative incidence rates vs age, age at half maximum cumulative incidence, and maximum cumulative incidence, over the range of n and p.

Figure 6: Same incidence parameters as above, for the context-dependent selection case.

3.1 Effect of k

Figure 7: Context-independent selection case; association of time to cancer with n and p is modulated by k.

Figure 8: Context-dependent selection case; association of time to cancer with Δ_g is modulated by k.

4 Conclusions

Epidemiological observation	"Bad luck"	Context-independent	Context-dependent se-
		selection	lection
Total incidence < 30%	100%	100%	<100% possible
Late-life decline	No	No	Yes
Incidence vs n	Threshold	Threshold	Progressive
Non-mutagenic carcinogens	Incompatible	Incompatible	g distribution
Peto's paradox	Extrinsic ¹	Extrinsic ¹	Intrinsic
	I		

Context-dependent selection is necessary to explain known epidemiological patterns.

References

Acknowledgements

(1) American Cancer Society. "Cancer Facts & Figures 2016". In: Cancer Facts & Figures 2016

The authors acknowledge support from IISER Pune, and valuable feedback from faculty members of the Department of Biology as well as the Watve Lab.