

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 26

Slides adapted from Jordan Boyd-Graber, Chris Ketelsen

Logistics

- Project mid-point check-in
- HW5
- Prelim 3

Learning objectives

- Learn about basics of learning theory.
- Prove some simple bounds on errors and sample sizes.
- Gain some intuition about complexity and overfitting.

Outline

PAC learnability

Bounds for the simple example

Bounds for general cases

Bonus proo

A motivating example

- Alien moves to Colorado
- Want to talk to locals about weather
- Specifically about when weather is nice
- Alien has a perfect alien thermometer
- Asks a bunch of locals if it's nice out
- Gets labeled observations $S_{\text{train}} = \{(x_i, y_i)\}_{i=1}^m$
- Coloradans have concept c(x) of nice
- Alien wants to learn hypothesis h(x)

What does it mean that Alien has learned?

A motivating example

- Alien moves to Colorado
- Want to talk to locals about weather
- Specifically about when weather is nice
- Alien has a perfect alien thermometer
- Asks a bunch of locals if it's nice out
- Gets labeled observations $S_{\text{train}} = \{(x_i, y_i)\}_{i=1}^m$
- Coloradans have concept c(x) of *nice*
- Alien wants to learn hypothesis h(x)

How many locals does he need to ask to get h(x) that is 99% accurate?

A motivating example

- Alien moves to Colorado
- Want to talk to locals about weather
- Specifically about when weather is nice
- Alien has a perfect alien thermometer
- Asks a bunch of locals if it's nice out
- Gets labeled observations $S_{\text{train}} = \{(x_i, y_i)\}_{i=1}^m$
- Coloradans have concept c(x) of nice
- Alien wants to learn hypothesis h(x)

How many locals does he need to ask to get h(x) that is 99% accurate about 99% of the time?

Assumptions:

- Data comes from distribution \mathcal{D}
- Concept c: X → Y comes from concept class C
- Hypothesis $h: X \to Y$ comes from hypothesis class H

Generalization Error

$$R(h) = Pr_{x \sim D} [h(x) \neq c(x)] = E_{x \sim D} [I[h(x) \neq c(x)]]$$

Goal: Given a set of data S of size m, can we learn a hypothesis h that we can say is **accurate** with high **confidence**?

We say that a concept is PAC-Learnable if we can find a hypothesis that is **P**robably **A**pproximately **C**orrect using a training set S of size m where m isn't too large

$$R(h_S) \leq \epsilon$$

• Approximately correct: Accuracy is $1-\epsilon$

We say that a concept is PAC-Learnable if we can find a hypothesis that is **P**robably **A**pproximately **C**orrect using a training set S of size m where m isn't too large

$$Pr_{S \sim \mathcal{D}^m}[R(h_S) \leq \epsilon] \geq 1 - \delta$$

- Approximately correct: Accuracy is $1-\epsilon$
- Probably: Confidence in hypothesis is $1-\delta$

PAC = Probably Approximately Correct

PAC Learnability

A concept from class C is PAC-Learnable if there exists an algorithm $\mathcal A$ and a polynomial function f such that for any $\epsilon>0$ and any $\delta>0$

$$Pr_{S \sim \mathcal{D}^m} [R(h_S) \leq \epsilon] \geq 1 - \delta$$

for any $c \in C$ and any distribution \mathcal{D} for any sample size $m \ge f(1/\epsilon, 1/\delta, n, |C|)$.

PAC Learnability

A concept from class C is PAC-Learnable if there exists an algorithm $\mathcal A$ and a polynomial function f such that for any $\epsilon>0$ and any $\delta>0$

$$Pr_{S \sim \mathcal{D}^m} [R(h_S) \leq \epsilon] \geq 1 - \delta$$

for any $c \in C$ and any distribution \mathcal{D} for any sample size $m \ge f(1/\epsilon, 1/\delta, n, |C|)$.

- S: The training set we learn from
- D: The distribution the data comes from
- h_S: The hypothesis we learn from training set

PAC Learnability

A concept from class C is PAC-Learnable if there exists an algorithm $\mathcal A$ and a polynomial function f such that for any $\epsilon>0$ and any $\delta>0$

$$Pr_{S \sim \mathcal{D}^m} [R(h_S) \leq \epsilon] \geq 1 - \delta$$

for any $c \in C$ and any distribution \mathcal{D} for any sample size $m \ge f(1/\epsilon, 1/\delta, n, |C|)$.

- $R(h_S)$: The generalization error of h_S
- 1ϵ : The accuracy of h_s
- 1δ : The confidence the accuracy 1ϵ is realized

Outline

PAC learnability

Bounds for the simple example

Bounds for general cases

Bonus proof

- Concept class C =Intervals on Real Line
- Hypothesis class H = Intervals on Real Line

Want to obtain bound on training examples needed to satisfy PAC.

Machine Learning: Chenhao Tan | Boulder | 11 of

What is Algorithm \mathcal{A} ?

What is Algorithm \mathcal{A} ? Set hypothesis to smallest interval containing S: $h_s = [a, b]$.

What is Algorithm \mathcal{A} ? Set hypothesis to smallest interval containing S: $h_s = [a, b]$. Errors happen if a positive point falls outside of $h_s = [a, b]$.

What is Algorithm A?

Set hypothesis to smallest interval containing S: $h_s = [a, b]$.

Errors happen if a positive point falls outside of $h_s = [a, b]$.

Suppose true concept is c = [c, d].

Want to define relationship between ϵ , δ , and m such that

$$Pr_{S \sim \mathcal{D}^m} [R(h_S) \leq \epsilon] \geq 1 - \delta.$$

Want to define relationship between ϵ , δ , and m such that

$$Pr_{S \sim \mathcal{D}^m} [R(h_S) \leq \epsilon] \geq 1 - \delta.$$

Easier to prove things about the contrapositive statement.

Want to define relationship between ϵ , δ , and m such that

$$Pr_{S \sim \mathcal{D}^m} [R(h_S) \leq \epsilon] \geq 1 - \delta.$$

Easier to prove things about the contrapositive statement.

$$Pr_{S \sim \mathcal{D}^{m}} [R(h_{S}) \leq \epsilon] \geq 1 - \delta$$

$$\Leftrightarrow 1 - Pr_{S \sim \mathcal{D}^{m}} [R(h_{S}) > \epsilon] \geq 1 - \delta$$

$$\Leftrightarrow -Pr_{S \sim \mathcal{D}^{m}} [R(h_{S}) > \epsilon] \geq -\delta$$

$$\Leftrightarrow Pr_{S \sim \mathcal{D}^{m}} [R(h_{S}) > \epsilon] \leq \delta$$

So instead we'll try to prove something about

$$Pr_{S \sim \mathcal{D}^m} [R(h_S) > \epsilon] \leq \delta.$$

We want to bound the probability that the generalization error h_S is greater than ϵ . This is the probability that despite the fact that the true concept was c = [c, d], we didn't observe any points in [c, a] or [b, d].

$$C \xrightarrow{c} C + \frac{\epsilon}{2}(d-c) \xrightarrow{d - \frac{\epsilon}{2}(d-c)} \underbrace{d}$$

$$L = [c, c + \frac{\epsilon}{2}(d-c)], R = [d - \frac{\epsilon}{2}(d-c), d]$$

$$\{S|R(h_S) \le \epsilon\} \supseteq \{\exists x_i \text{ in } L \text{ and } \exists x_i \text{ in } R\}$$

$$\{S|R(h_S) > \epsilon\} \subseteq \{\text{no } x_i \text{ in } L \text{ or no } x_i \text{ in } R\}$$

Useful Fact 1: Union Bound

$$Pr[A \cup B] \leq Pr[A] + Pr[B]$$

$$Pr[R(h_S) > \epsilon] \le Pr[\text{no } x_i \text{ in } L \text{ or } R]$$

 $\le Pr[\text{no } x_i \text{ in } L] + Pr[\text{no } x_i \text{ in } R]$

$$Pr[\text{ no } x_i \text{ in } L] = Pr[\text{all } x_i \text{ not in } L]$$
$$= \prod_{i=1}^m \left(1 - \frac{\epsilon}{2}\right) = \left(1 - \frac{\epsilon}{2}\right)^m$$

$$Pr[R(h_S) > \epsilon] \le \left(1 - \frac{\epsilon}{2}\right)^m + \left(1 - \frac{\epsilon}{2}\right)^m$$

= $2\left(1 - \frac{\epsilon}{2}\right)^m$

$$Pr[R(h_S) > \epsilon] \le \left(1 - \frac{\epsilon}{2}\right)^m + \left(1 - \frac{\epsilon}{2}\right)^m$$

= $2\left(1 - \frac{\epsilon}{2}\right)^m$

Useful Fact 2: For any $z \in \mathbb{R}$, $1 + z \le e^z$

$$Pr[h_s \text{ is bad}] \le \left(1 - \frac{\epsilon}{2}\right)^m + \left(1 - \frac{\epsilon}{2}\right)^m$$

$$= 2\left(1 - \frac{\epsilon}{2}\right)^m$$

$$\le 2e^{-\epsilon m/2}$$

OK, we've bounded the probability that the generalization error for h_S is greater than ϵ . Then, for a fixed δ , we have

$$2e^{-\epsilon m/2} < \delta \iff \frac{-\epsilon m}{2} < \ln \frac{\delta}{2} \iff m > \frac{2}{\epsilon} \ln \frac{2}{\delta}$$

Punchline: For any choice of $\epsilon > 0$ and $\delta > 0$, hypothesis h_S is probably approximately correct if

$$m > \frac{2}{\epsilon} \ln \frac{2}{\delta}$$

OK, we've bounded the probability that the generalization error for h_S is greater than ϵ . Then, for a fixed δ , we have

$$2e^{-\epsilon m/2} < \delta \iff \frac{-\epsilon m}{2} < \ln \frac{\delta}{2} \iff m > \frac{2}{\epsilon} \ln \frac{2}{\delta}$$

Example: Want 99% accuracy ($\epsilon=0.01$) with 99% confidence ($\delta=0.01$) then need

$$m > \frac{2}{.01} \ln \frac{2}{.01} \approx 1060$$
 training examples

Important: The lower bound on m is bounded above by a polynomial in $1/\epsilon$ and $1/\delta$, thus this problem is PAC Learnable.

Machine Learning: Chenhao Tan | Boulder | 18 o

Outline

PAC learnability

Bounds for the simple example

Bounds for general cases

Bonus proof

OK, so we saw an example proving PAC learnability for a specific problem with specific hypothesis and specific algorithm.

Can we be more general than this?

Machine Learning: Chenhao Tan | Boulder | 20

OK, so we saw an example proving PAC learnability for a specific problem with specific hypothesis and specific algorithm.

Can we be more general than this? Yes!

- Today, H is finite
- Next time, H is infinite

Further distinction

- H is finite and c is in H
- H is finite and c is not in H

We say that **Hypothesis Class** H is consistent if $c \in H$, that is, the concept that we're trying to learn is actually a valid hypothesis.

Example: c is the interval [3,7] and H is the consistent class of all intervals between 0 and 100 with integer endpoints.

Machine Learning: Chenhao Tan | Boulder | 21 of

We say that **Hypothesis Class** H is consistent if $c \in H$, that is, the concept that we're trying to learn is actually a valid hypothesis.

Example: c is the interval [3,7] and H is the consistent class of all intervals between 0 and 100 with integer endpoints.

Example: c is the interval [3.5, 7.5] and H is the inconsistent class of all intervals between 0 and 100 with integer endpoints.

Question: What can you say about the training error $\hat{R}(h)$ if $h \in H$ is a consistent hypothesis?

Machine Learning: Chenhao Tan | Boulder | 21 of

We say that **a hypothesis** h is consistent if it admits no error on the training sample S_{train} , or in other words, $\hat{R}(h) = 0$

Example: Suppose c is the interior of an axis-aligned rectangle with integer vertices, and H is the set of all axis-aligned rectangles with integer vertices.

Machine Learning: Chenhao Tan | Boulder | 22 of

Finite consistent hypothesis class

Suppose our algorithm A can find a consistent hypothesis.

Theorem: Let H be a finite set of functions mapping $\mathcal X$ to $\mathcal Y$. Let $\mathcal A$ be an algorithm that for an i.i.d. sample S returns a consistent hypothesis, then for any $\epsilon,\ \delta>0$, the concept c is PAC Learnable with

$$m \geq \frac{1}{\epsilon} \left(\ln |H| + \ln \frac{1}{\delta} \right).$$

Machine Learning: Chenhao Tan | Boulder | 23 of

Finite consistent hypothesis class

Example: Consider learning the concept class C_n of conjunctions of at most n Boolean literals x_1, \ldots, x_n .

A Boolean literal is either a variable x_i ($i \in [1, n]$) or it's negation \bar{x}_i .

For n = 4, an example of a conjunction we might try to learn is

$$x_1 \wedge \bar{x}_2 \wedge x_4$$

Positive Example: (1,0,0,1)Negative Example: (1,0,0,0)

Finite consistent hypothesis class

We can now use our general error bound to find a bound on m. Note that $|H| = 3^n$ because for the i^{th} literal either x_i is present, \bar{x}_i is present, or it's missing entirely. We then have for a given $\delta > 0$,

$$m \ge \frac{1}{\epsilon} \left(n \ln 3 + \ln \frac{1}{\delta} \right)$$

Example: If we want 90% accuracy ($\epsilon=0.1$) with 98% confidence ($\delta=0.02$) a length at most 10 conjunction would require $m\geq 156$ samples to learn.

The more common case occurs when the true concept c does not occur in our hypothesis class H.

The more common case occurs when the true concept $\it c$ does not occur in our hypothesis class $\it H$.

Example: Hypothesis class H is axis aligned rectangles, but true concept is a circle.

Theorem: Let H be a finite hypothesis set. Then, for any $\delta > 0$, with probability at least $1 - \delta$, we have

$$orall h \in H, \ \ R(h) \leq \hat{R}(h) + \sqrt{\frac{\ln|H| + \ln(2/\delta)}{2m}}$$

$$\forall h \in H, \quad R(h) \le \hat{R}(h) + \sqrt{\frac{\ln|H| + \ln(2/\delta)}{2m}}$$

Larger m is, better training error predicts generalization error

Machine Learning: Chenhao Tan

$$\forall h \in H, \quad R(h) \le \hat{R}(h) + \sqrt{\frac{\ln|H| + \ln(2/\delta)}{2m}}$$

- Larger m is, better training error predicts generalization error
 What about the case that we consider making H more complex?
 - Training error would go down
 - Bound term would go up ...
 - Bias-variance trade-off

$$\forall h \in H, \quad R(h) \le \hat{R}(h) + \sqrt{\frac{\ln|H| + \ln(2/\delta)}{2m}}$$

Larger m is, better training error predicts generalization error

Machine Learning: Chenhao Tan

Outline

PAC learnability

Bounds for the simple example

Bounds for general cases

Bonus proof

Suppose our algorithm A can find a consistent hypothesis

Theorem: Let H be a finite set of functions mapping $\mathcal X$ to $\mathcal Y$. Let $\mathcal A$ be an algorithm that for an i.i.d. sample S returns a consistent hypothesis, then for any $\epsilon,\ \delta>0$, the concept c is PAC Learnable with

$$m \geq \frac{1}{\epsilon} \left(\ln |H| + \ln \frac{1}{\delta} \right)$$

Proof: We want to bound the probability that some $h \in H$ is consistent and has generalization error more than ϵ .

Machine Learning: Chenhao Tan | Boulder | 30 of

Proof: We want to bound the probability that some $h \in H$ is consistent and has generalization error more than ϵ

$$Pr[\exists h \in H \text{ s.t. } \hat{R}(h) = 0 \text{ and } R(h) > \epsilon] =$$
 $Pr[(h_1 \in H \text{ and } \hat{R}(h_1) = 0 \text{ and } R(h_1) > \epsilon) \text{ or } ...$
 $... \text{ or } (h_k \in H \text{ and } \hat{R}(h_1) = 0 \text{ and } R(h_1) > \epsilon)]$

Probability of at least one of all consistent $h \in H$ having generalization error greater than ϵ

Proof: We want to bound the probability that some $h \in H$ is consistent and has generalization error more than ϵ

$$Pr[\exists h \in H \text{ s.t. } \hat{R}(h) = 0 \text{ and } R(h) > \epsilon] =$$

$$Pr[(h_1 \in H \text{ and } \hat{R}(h_1) = 0 \text{ and } R(h_1) > \epsilon) \text{ or } \dots$$

$$\dots \text{ or } (h_k \in H \text{ and } \hat{R}(h_1) = 0 \text{ and } R(h_1) > \epsilon)] \leq$$

$$\sum_{h} Pr[\hat{R}(h) = 0 \text{ and } R(h) > \epsilon]$$

Using the Union Bound

Proof: We want to bound the probability that some $h \in H$ is consistent and has generalization error more than ϵ

$$Pr[\exists h \in H \text{ s.t. } \hat{R}(h) = 0 \text{ and } R(h) > \epsilon] =$$

$$Pr[(h_1 \in H \text{ and } \hat{R}(h_1) = 0 \text{ and } R(h_1) > \epsilon) \text{ or } \dots$$

$$\dots \text{ or } (h_k \in H \text{ and } \hat{R}(h_1) = 0 \text{ and } R(h_1) > \epsilon)] \leq$$

$$\sum_{h} Pr[\hat{R}(h) = 0 \text{ and } R(h) > \epsilon] \leq$$

$$\sum_{h} Pr[\hat{R}(h) = 0 \mid R(h) > \epsilon]$$

Using the product rule and fact that $Pr[R(h) > \epsilon] \le 1$

The generalization error is greater than ϵ , so we bound the probability that **no** inconsistent points in training set for a single hypothesis h as

$$Pr[\hat{R}(h) = 0 \mid R(h) > \epsilon] \le (1 - \epsilon)^m$$

The generalization error is greater than ϵ , so we bound the probability that **no** inconsistent points in training set for a single hypothesis h as

$$Pr[\hat{R}(h) = 0 \mid R(h) > \epsilon] \le (1 - \epsilon)^m$$

But this must be true for all of the hypotheses in H, so

$$Pr[\exists h \in H \text{ s.t. } \hat{R}(h) = 0 \text{ and } R(h) > \epsilon] \leq |H|(1 - \epsilon)^m$$

The generalization error is greater than ϵ , so we bound the probability that **no** inconsistent points in training set for a single hypothesis h as

$$Pr[\hat{R}(h) = 0 \mid \text{ and } R(h) > \epsilon] \le (1 - \epsilon)^m$$

But this must be true for all of the hypotheses in H, so

$$Pr[\exists h \in H \text{ s.t. } \hat{R}(h) = 0 \text{ and } R(h) > \epsilon] \leq |H|(1 - \epsilon)^m$$

Using our exponential trick again

$$Pr[\exists h \in H \text{ s.t. } \hat{R}(h) = 0 \text{ and } R(h) > \epsilon] \leq |H|e^{-m\epsilon}$$

Have our bound on $Pr_{S \sim \mathcal{D}^m}[R(h_S) > \epsilon]$. Now for any $\delta > 0$

$$|H|e^{-m\epsilon} \le \delta \iff \ln|H| - m\epsilon \le \ln \delta$$

$$\Leftrightarrow \ln |H| - \ln \delta \le m\epsilon$$

$$\Leftrightarrow \ln |H| + \ln \frac{1}{\delta} \le m\epsilon$$

$$\Leftrightarrow m \geq rac{1}{\epsilon} \left(\ln |H| + \ln rac{1}{\delta}
ight)$$

The more common case occurs when the true concept c does not occur in our hypothesis class H.

Example: Hypothesis class H is axis aligned rectangles, but true concept is a circle.

To handle this case we have to borrow a theorem of analysis

Theorem: Hoeffding's Inequality: Fix $\epsilon > 0$ and let S denote i.i.d. same of size m.

Then, for any hypothesis $h: \mathcal{X} \to \{0,1\}$, the following holds

$$Pr_{S \sim \mathcal{D}^m}[|\hat{R}(h) - R(h)| > \epsilon] \le 2 \exp[-2m\epsilon^2]$$

Setting $\delta=2\exp[-2m\epsilon^2]$, solving for $\epsilon=\epsilon(\delta)$ and plugging back in yields, for a single hypothesis h

$$R(h) \le \hat{R}(h) + \sqrt{\frac{\ln(2/\delta)}{2m}}$$

But this is just for a single h. We have

Theorem: Let H be a finite hypothesis set. Then, for any $\delta > 0$, with probability at least $1 - \delta$, we have

$$\forall h \in H, \ R(h) \le \hat{R}(h) + \sqrt{\frac{\ln|H| + \ln(2/\delta)}{2m}}$$

Proof: (Very similar to before). Let $h_1, \ldots, h_{|H|}$ be the elements of H. Then

$$Pr[\exists h \in H \text{ s.t. } |\hat{R}(h) - R(h)| > \epsilon] =$$

$$Pr\left[\bigvee_{h \in H} |\hat{R}(h_i) - R(h_i)| > \epsilon\right] \leq$$

$$\sum_{h \in H} Pr\left[|\hat{R}(h) - R(h)| > \epsilon\right] \leq$$

$$2|H|\exp[-2m\epsilon^2]$$

40 of 41

Boulder

Proof:

If we fix $\epsilon > 0$ and set $\delta = 2|H|\exp[-2m\epsilon^2]$, we can choose m large enough such that with confidence $1 - \delta$

$$\forall h \in H \ |\hat{R}(h) - R(h)| \le \epsilon \le \sqrt{\frac{\ln|H| + \ln(2/\delta)}{2m}}$$

which implies that

$$\forall h \in H \ \ R(h) \leq \hat{R}(h) + \sqrt{\frac{\ln|H| + \ln(2/\delta)}{2m}}$$