Diskrete Mathematik - Übungen SW03

David Jäggli

18. März 2023

Inhaltsverzeichnis

1	$\mathbf{Big}\text{-}\mathcal{O} \ \mathbf{Notation}$	2
2	Zahlen und Divisionen	2
3	Matrizen	3

1 Big- \mathcal{O} Notation

a.)
$$n \log(n^2 + 1) + n^2 \log n \le n^2 \log(n^2 + 1) + n^2 \log(n^2 + 1)$$
 $\forall n \ge 1$ $\le 2n^2 \log(n^2 + 1)$ $\forall n \ge 1$ $\le 2n^2 \log(n^3)$ $\forall n \ge 1$ $\le 6n^2 \log(n)$ $\forall n \ge 1$

$$\leq 2n \log(n)$$
 $\forall n \geq 1$
 $\leq 6n^2 \log(n)$ $\forall n > 1$

Also $n \log(n^2 + 1) + n^2 \log n \in \mathcal{O}(n^2 \log(n))$ mit den Zeugen C = 6 und k = 1.

Korrektur:

$$k = 2$$
, wegen $x^2 + 1 \le n^3$, nur wenn $n \ge 2$.

b.)

Ganz ehrlich: keine Ahnung, bin auch mit dem Tip auszumultiplizieren nicht aufs richtige Ergebniss gekommen.

c.)

$$n^{2^n} + n^{n^2} \le n^{2^n} + n^{2^n} \qquad \forall n \ge 4$$

 $< 2n^{2^n}$

Heisst:
$$n^{2^n} + n^{n^2} \in \mathcal{O}(n^{2^n})$$
 mit $C = 2$ und $k = 4$

2 Zahlen und Divisionen

II.)

$$ggT(12345, 54321) =$$

$$54321 = 12345 \cdot 5 + 4941$$

$$12345 = 4941 \cdot 2 + 2463$$

$$4941 = 2463 \cdot 215$$

$$2463 = 15 \cdot 145 + 3$$

$$15 = 3 \cdot 5 + 0$$

$$ggT(12345, 54321) = 3$$

3 Matrizen

III.)

$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}$$

$$2 \cdot a_{1,1} + 3 \cdot a_{1,2} = 3$$

$$1 \cdot a_{1,1} + 4 \cdot a_{1,2} = 1$$

$$2 \cdot a_{1,2} + 3 \cdot a_{2,2} = 0$$

$$1 \cdot a_{2,1} + 4 \cdot a_{2,2} = 2$$

4 Unbekannte & 4 Gleichungen \rightarrow Gleichung auflösen, daraus ergibt sich:

$$a_{1,1} = \frac{9}{5}$$

$$a_{1,2} = -\frac{1}{5}$$

$$a_{2,1} = -\frac{6}{5}$$

$$a_{2,1} = -\frac{1}{2}$$

$$a_{2,2} = \frac{4}{5}$$

IV.)

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{und} \quad \mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} \vee \mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{A} \wedge \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{A} \odot \mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Korrektur:

$$\mathbf{A} \odot \mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$