Lebesgue 引理*

梅加强 南京大学数学系

http://math.nju.edu.cn/~meijq

设 (X, ρ) 为度量空间, $A \subset X$, 定义 A 的直径为

$$d(A) = \sup \{ \rho(a_1, a_2) | a_1, a_2 \in A \}.$$

X 中的子集 S 称为序列紧的, 如果 S 中任何点列均有收敛子列, 且该子列极限仍在 S 中. 例如, R^n 中有界闭集是序列紧的.

定理(Lebesgue 引理). 设 S 为 (X,ρ) 中的序列紧集, $\{G_{\alpha}\}_{\alpha\in\Gamma}$ 为 S 的一个开覆盖, 则存在 $\lambda>0$,使得当 S 中子集 A 的直径 d(A) 小于 λ 时, A 一定包含于某个 G_{α} 内.

证明: (用反证法). 假设结论不成立, 则对 $\forall n \geq 1$, $\exists A_n \subset S$, 使得 $d(A) < \frac{1}{n}$, 而 A_n 不完全包含于某个 G_α 内. 在 A_n 中取点 a_n , 则 $\{a_n\}$ 为 S 中点列, 由于 S 是序列紧致的, 它有收敛子列 $\{a_{n_k}\}$, 使得 $\lim_{n \to +\infty} a_{n_k} = a_0 \in S$. 由于 $\{G_\alpha\}_{\alpha \in \Gamma}$ 为 S 的一个开覆盖, 故存在 $\alpha_0 \in \Gamma$, 使得 $a_0 \in G_{\alpha_0}$. 因此, $\exists \delta > 0$, s.t $B_{a_0}(\delta) \subset G_{\alpha_0}$.

由于 $\lim_{n\to+\infty} a_{n_k} = a_0$, 故可取充分大的 $n_{k_0} > \frac{2}{\delta}$, 且

$$\rho(a_{n_{k_0}}, a_0) < \frac{\delta}{2}.$$

此时, 对 $\forall x \in A_{n_{k_0}}$, 有

^{*《}数学分析》补充材料, 2006.3

$$\rho(x, a_0) \leq \rho(x, a_{n_{k_0}}) + \rho(a_{n_{k_0}}, a_0)
\leq d(A_{n_{k_0}}) + \rho(a_{n_{k_0}}, a_0)
< \frac{1}{n_{k_0}} + \frac{\delta}{2}
< \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

从而 $A_{n_{k_0}} \subset B_{a_0}(\delta) \subset G_{\alpha}$. 这是一个矛盾! 证毕.