Міністерство освіти та науки України Національний технічний університет України "КПІ" Факультет інформатики та обчислювальної техніки Кафедра автоматизованих систем обробки інформації і управління

3BIT

про виконання комп'ютерного практикуму №1 на тему:

«Дослідження основних принципі побудови імітаційних моделей мовою GPSS»

Завдання 11 Варіант (5) 2

Виконав: студент групи IC-32 Капорін Роман

Мета завдання:

Вивчити теоретичні засади моделювання і основи мови GPSS. Побудувати свою першу модель, дослідити отримані результати та закріпити основи роботи на практиці.

Навчитись аналізувати і досліджувати звіт про роботу моделі, розрізняти його параметри та оцінювати коректність роботи моделі. Здобути базові навички моделювання систем масового обслуговування.

1. Постановка задачі

Завдання. У системі передачі цифрової інформації розмови передаються у цифровому вигляді. Мовні пакети поступають через 6 ± 3 мс і передаються через два послідовно з'єднаних канали. У кожний момент часу кожний з каналів може передавати тільки один пакет. У разі зайнятості каналу пакети зберігаються у накопичувачах перед кожним каналом. Час передачі пакета по кожному з каналів має експоненціальний розподіл із середнім значенням 5 мс. Пакети, час передачі яких понад 10 мс (не враховуючи час чекання), на виході системи знищуються, оскільки довгий час передачі значно знижує якість розмови при передачі. Знищення понад 30 % пакетів не допустиме. При досягненні такого рівня система за рахунок ресурсів прискорює передачу в каналах до середнього значення часу 4 мс. При зниженні рівня до прийнятного відбувається відключення ресурсів.

Mema. Промоделюйте **10** с роботи системи. Визначити частість знищення пакетів і частість підключення ресурсів.

2. Лістинг GPSS-програми

```
INITIAL X$SUM,0
                                          ; Packet counter
         INITIAL X$DEL,0
                                          ; Deleted packets
         INITIAL X$DEL_FREQUENCY,0 ; Frequency of packet deletation
         INITIAL X$SPEED,5
                                          ; Initial speed
         INITIAL X$RES,0
                                          ; Counterofused resources
         GENERATE 6,3
                                          ; Generate data packets
         ASSIGN TRANSMITION TIME, 0
                                          ; Stopwatch for packets
         SAVEVALUE SUM+,1
                                           ; Add generated packet to summary
counter
         SAVEVALUE DEL FREQUENCY, (X$DEL/X$SUM) ; Recalculate frequence of
packet deletation
         TEST GE X$DEL_FREQUENCY,0.3,REG_SPEED ; If there is data jam - add
resources
UP SPEED SAVEVALUE SPEED, 4
                                          ; Boost system
         SAVEVALUE RES+,1
                                           ; Take additional resource
         TRANSFER , CH 1
                                           ; Add channel to transmit data
REG SPEED SAVEVALUE SPEED, 5
                                          ; Reset speed to regular value
CH 1
         QUEUE CHANNEL 1Q
                                          ; Statistic
         SEIZE CHANNEL 1
                                           ; Take first channel for data
transmition
```

```
DEPART CHANNEL_1Q
                                       ; Stop statistic
        MARK 1
                                      ; Start stopwatch for packet
transmion
        ADVANCE (Exponential(1,0,X$SPEED)); Transmition
        ASSIGN TRANSMITION_TIME+,MP1 ; First lap in stopwatch
        RELEASE CHANNEL 1
                                      ; Leave first channel
       QUEUE CHANNEL_2Q
CH 2
                                      ; Statistic
        SEIZE CHANNEL 2
                                      ; Take second channel for data
transmition
        DEPART CHANNEL 2Q
                                      ; Stop statistic
        MARK 2
                                       ; Start stopwatch for packet
transmion
        ADVANCE (Exponential(1,0,X$SPEED)); Transmition
        ASSIGN TRANSMITION_TIME+,MP2 ; Second lap in stopwatch
        RELEASE CHANNEL 2
                                      ; Leave first channel
TRACKER TEST GE P$TRANSMITION TIME, 10, SAVE; Check is packet dropped
        SAVEVALUE DEL+,1
                                      ; Kill counter
SAVE
        TERMINATE
;======= MODELLING
_____
        GENERATE (10#1000)
                                           ; Generate 10 seconds in
miliseconds
        SAVEVALUE RESOURCE FREQUENCY, (X$RES/X$SUM) ; Frequency of
requesting additional resources
        TERMINATE 1
        START 1
```

Рис. 1 – Лістинг

3. Аналіз результатів

FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL. OWNE	R PEND I	NTER RETRY	
DELAY							
CHANNEL_1	1680	0.674	4.011	1 1681	0	0 0	1
CHANNEL_2	1679	0.698	4.160	1 0	0	0 0	0
QUEUE	MAX CO	NT. ENTE	Y ENTRY (0)	AVE.CONT. A	VE.TIME	AVE. (-0)	
RETRY							
CHANNEL 1Q	7	1 168	1 921	0.581	3.454	7.640	0
CHANNEL 2Q	9	0 167	9 635	1.016	6.049	9.729	0
_							
SAVEVALUE	D	ETRY	VALUE				
SUM	11	0	1681.000				
DEL		0	501.000				
DEL FREQUENCY		0	0.297				
_ ~		=					
SPEED		0	5.000				
RES		0	1388.000				
RESOURCE_FREQUE	NCY	0	0.826				

Рис. 2 Фінальний результат моделювання

4. Висновок

Таким чином, частота видалення пакетів дорівнює 0.297, частота залучення додаткових ресурсів 0.826.