

Reexamining Assumptions in Compartmental Models of Heterosexual HIV Transmission applied to Eswatini

Final PhD Defence

Jesse Knight

Institute of Medical Science University of Toronto

2023 August 30

Motivation

HIV Epidemic: Context

HIV Epidemic: Context

Eswatini:

- Highest national HIV prevalence: 28%
- Recently achieved 95-95-95 treatment cascade

HIV Epidemic: Context

Eswatini:

- Highest national HIV prevalence: 28%
- Recently achieved 95-95-95 treatment cascade

Key Populations, e.g. Female Sex Workers:

- Disproportionate risk: acquisition + transmission
- Unique barriers to care

Applications: *mechanistic* insights, prediction, uncertainty analysis, ...

Applications: mechanistic insights, prediction, uncertainty analysis, ...

Compartmental Models: memoryless homogeneous groups

Applications: mechanistic insights, prediction, uncertainty analysis, ...

Compartmental Models: memoryless homogeneous groups

Risk Heterogeneity: acquisition, transmission, + interventions

- prior work: influences model outputs
- defined by: structure, data, equations → assumptions

Applications: mechanistic insights, prediction, uncertainty analysis, ...

Compartmental Models: memoryless homogeneous groups

Risk Heterogeneity: acquisition, transmission, + interventions

- prior work: influences model outputs
- defined by: structure, data, equations → assumptions

Overall Research Question:

How do modelling assumptions influence outputs from HIV transmission models?

 $\textbf{Chapter Research Questions:} \ \ \text{In compartmental models of HIV transmission} \ \dots$

Chapter Research Questions: In compartmental models of HIV transmission ...

2. How might **model assumptions** influence prevention impacts of treatment?

Chapter Research Questions: In compartmental models of HIV transmission ...

- **2.** How might **model assumptions** influence prevention impacts of treatment?
- 5. How might **treatment coverage assumptions** influence prevention impacts?

Chapter Research Questions: In compartmental models of HIV transmission ...

- 2. How might model assumptions influence prevention impacts of treatment?
- **5.** How might **treatment coverage assumptions** influence prevention impacts?
- 3. How can we improve assumptions in model design & parameterization?

Chapter Research Questions: In compartmental models of HIV transmission ...

- 2. How might model assumptions influence prevention impacts of treatment?
- 5. How might **treatment coverage assumptions** influence prevention impacts?
- 3. How can we improve assumptions in model design & parameterization?
- **4.** How can we improve assumptions in **incidence equations**?

CHAPTER 2: Scoping Review: Heterogeneity in Models

How might model assumptions influence prevention impacts of treatment?

Total Studies, N = 94			
Any Heterogeneity, N = 64			
Any Key Pop N = 39	ulations		
Key Pops Cascade Differences N = 12			

Prevention impacts of treatment:

~ Risk heterogeneity

- ~ Risk heterogeneity
- ↓ Risk heterogeneity + turnover

- ~ Risk heterogeneity
- ↓ Risk heterogeneity + turnover
- ↑ KP cascade prioritized

- ~ Risk heterogeneity
- ↓ Risk heterogeneity + turnover
- ↑ KP cascade prioritized
- ?↓ KP cascade lagging

CHAPTER 5: Intersecting Risk & Treatment Gaps

How might treatment coverage assumptions influence treatment impacts?

Observed 95-95-95: base case *ν*s…

Observed 95-95-95: base case *vs...*

Hypothetical 80-80-90: groups left behind

Observed 95-95-95: base case *vs...* **Hypothetical** 80-80-90: groups left behind

CHAPTER 3: Model Design, Parameterization, & Calibration

How can we improve assumptions in model design & parameterization?

Usual Assumption

Usual Assumption

→ Data-Informed Assumption

Usual Assumption

→ Data-Informed Assumption

No main partnerships between KP

Usual Assumption

→ Data-Informed Assumption

1. No main partnerships between KP \rightarrow overlapping partnership types

Usual Assumption

- → Data-Informed Assumption
- 1. No main partnerships between KP \rightarrow overlapping partnership types
- 2. KP are homogeneous

Usual Assumption

- → Data-Informed Assumption
- 1. No main partnerships between KP \rightarrow overlapping partnership types
- 2. KP are homogeneous

→ higher vs lower risk FSW + clients

Usual Assumption

- → Data-Informed Assumption
- 1. No main partnerships between KP \rightarrow overlapping partnership types
- 2. KP are homogeneous

→ higher vs lower risk FSW + clients

3. Reported partners unbiased

Usual Assumption

- → Data-Informed Assumption
- 1. No main partnerships between KP
- ightarrow overlapping partnership types

2. KP are homogeneous

→ higher vs lower risk FSW + clients

3. Reported partners unbiased

→ adjust using polling-booth data

Usual Assumption

- → Data-Informed Assumption
- 1. No main partnerships between KP
- → overlapping partnership types

2. KP are homogeneous

→ higher vs lower risk FSW + clients

3. Reported partners unbiased

→ adjust using polling-booth data

4. Reported partners = rate

Usual Assumption

- → Data-Informed Assumption
- 1. No main partnerships between KP
- → overlapping partnership types

2. KP are homogeneous

→ higher vs lower risk FSW + clients

3. Reported partners unbiased

→ adjust using polling-booth data

4. Reported partners = rate

ightarrow adjust for partnership duration

Usual Assumption

- 1. No main partnerships between KP
- 2. KP are homogeneous
- 3. Reported partners unbiased
- 4. Reported partners = rate
- 5. 1 degree of freedom mixing

- → overlapping partnership types
- → higher vs lower risk FSW + clients
- → adjust using polling-booth data
- → adjust for partnership duration

Usual Assumption

- No main partnerships between KP
- 2. KP are homogeneous
- 3. Reported partners unbiased
- 4. Reported partners = rate
- 5. 1 degree of freedom mixing

- → overlapping partnership types
 - → higher vs lower risk FSW + clients
- → adjust using polling-booth data
- → adjust for partnership duration
- → flexible log-linear mixing

Usual Assumption

- 1. No main partnerships between KP
- 2. KP are homogeneous
- 3. Reported partners unbiased
- 4. Reported partners = rate
- 5. 1 degree of freedom mixing
- 6. No risk group turnover

- → overlapping partnership types
 - → higher vs lower risk FSW + clients
- → adjust using polling-booth data
- → adjust for partnership duration
- → flexible log-linear mixing

Usual Assumption

- 1. No main partnerships between KP
- 2. KP are homogeneous
- 3. Reported partners unbiased
- 4. Reported partners = rate
- 5. 1 degree of freedom mixing
- 6. No risk group turnover

- → overlapping partnership types
- → higher vs lower risk FSW + clients
- → adjust using polling-booth data
- → adjust for partnership duration
- → flexible log-linear mixing
- → turnover framework

Eswatini data sources:

Eswatini data sources:

Household surveys: '06, '11, '16

Eswatini data sources:

- Household surveys: '06, '11, '16
- FSW surveys: '11, '14, '21

CHAPTER 4: Effective Partnerships Adjustment

How can we improve assumptions in incidence equations?

Why: memoryless homogeneous compartments cannot track individual partnerships

Why: memoryless homogeneous compartments cannot track individual partnerships

How: model partnerships as a rate, with cumulative risk per-partnership

Why: memoryless homogeneous compartments cannot track individual partnerships

How: model partnerships as a rate, with cumulative risk per-partnership

But: adjusting for "wasted sex acts":

Why: memoryless homogeneous compartments cannot track individual partnerships

How: model partnerships as a rate, with cumulative risk per-partnership

But: adjusting for "wasted sex acts":

within partnerships

Why: memoryless homogeneous compartments cannot track individual partnerships

How: model partnerships as a rate, with cumulative risk per-partnership

But: adjusting for "wasted sex acts":

- within partnerships
- between partnerships

1. Instant risk of onward transmission

- 1. Instant risk of onward transmission
- 2. Wasted sex acts within partnerships→ trade off:

- 1. Instant risk of onward transmission
- 2. Wasted sex acts within partnerships→ trade off:
 - full duration → *frontload* wasted acts

- 1. Instant risk of onward transmission
- Wasted sex acts within partnerships
 → trade off:
 - full duration → *frontload* wasted acts
 - 1-year only → *ignore* wasted acts

- 1. Instant risk of onward transmission
- 2. Wasted sex acts within partnerships
 - \rightarrow trade off:
 - full duration → *frontload* wasted acts
 - 1-year only → *ignore* wasted acts
- 3. Wasted sex acts *between* partnerships
 - \rightarrow unnecessary

Core Idea: People who recently acquired or transmitted \rightarrow holding state (remove from incidence equation)

Core Idea: People who recently acquired or transmitted \rightarrow holding state (remove from incidence equation)

Details:

Core Idea: People who recently acquired or transmitted \rightarrow holding state (remove from incidence equation)

Details:

• Remove until: partnerships change δ^{-1}

Core Idea: People who recently acquired or transmitted \rightarrow holding state (remove from incidence equation)

Details:

- Remove until: partnerships change δ^{-1}
- If 2+ partnerships: decrease partners by 1

HIV Incidence (per person-year)

FOI Approach -- Duration-Within --- 1-Year-Within --- 1-Year-Between -- New Proposed

Lower Risk

FS

Year

Comparing Incidence Approaches: Equal Parameters

Lower Risk

_

Year

Comparing Incidence Approaches: Equal Parameters

Lower Risk

New Proposed

Comparing Incidence Approaches: Equal Parameters

Comparing Incidence Approaches: Re-Fit Parameters

Comparing Incidence Approaches: Re-Fit Parameters

Comparing Incidence Approaches: Re-Fit Parameters

Comparing Incidence Approaches: Re-Fit Parameters

Conclusion

1. KP Not Modelled

- 1. KP Not Modelled
- 2. **KP Simplified:** no turnover, no main partners, homogeneous

- 1. KP Not Modelled
- 2. **KP Simplified:** no turnover, no main partners, homogeneous
- 3. Incidence Equations:

- 1. KP Not Modelled
- 2. **KP Simplified:** no turnover, no main partners, homogeneous
- 3. Incidence Equations:
 - 1-Year: too few wasted acts in long partnerships

- 1. KP Not Modelled
- 2. **KP Simplified:** no turnover, no main partners, homogeneous
- 3. Incidence Equations:
 - 1-Year: too few wasted acts in long partnerships
 - Between-partnerships: too many wasted acts among higher risk

- 1. KP Not Modelled
- 2. **KP Simplified:** no turnover, no main partners, homogeneous
- 3. Incidence Equations:
 - 1-Year: too few wasted acts in long partnerships
 - Between-partnerships: too many wasted acts among higher risk
- 4. Assume Equal Interventions: who is being left behind?

- 1. KP Not Modelled
- 2. **KP Simplified:** no turnover, no main partners, homogeneous
- 3. Incidence Equations:
 - 1-Year: too few wasted acts in long partnerships
 - Between-partnerships: too many wasted acts among higher risk
- 4. Assume Equal Interventions: who is being left behind?
- → **Thesis:** + methods to improve these assumptions

Thanks

Supervisor

Sharmistha Mishra

Thesis Committee

Michael Escobar Rupert Kaul

Internal Team

Kristy Yiu Huiting Ma Linwei Wang Ekta Mishra Korryn Bodner Alex Whitlock

Siyi Wang

Oliver Gatalo

Suzanne Shoush Mackenzie Hamilton

Samantha Lo

Examiners

Leigh Johnson Ashleigh Tuite Nicole Mideo Marie Claude Boily

External Collaborators

Stefan Baral Sheree Schwartz Amrita Rao Rheki Sithole Sindy Matse Laura Muzart Zandile Mnisi

Survey Respondents

Service Providers

Funding & Support

Digital Research Alliance of Canada

Ali, Friends & Family

R, Python, LTFX, Linux, Communities