Overheads: - Today's Outline

Recap Sigmatropic Reactions:

WH Rule: 4n / even = antara XΔ

hν = supra

 $4n+2 / odd \Delta$ = supra

> hν = antara X

> > ***identical rule as for cycloaddition!

Example: [1,3] rearrangement

More common examples are thermal/odd pairs. 6 e most common: [3,3] or [1,5]

CH₃ CH_3 CH_3 e.g. H[′] methylcyclopentadiene (aka Cp') - CH₃ "jumps" between all 5 carbons)

2 possible mechanisms:

Some Common [3,3] rearrangements:

(A) Cope Rearrangement

** always look for Cope with 1,5-diene:

(B) Oxy-Cope (with OH substituent)

- anionic Oxy-Cope: much faster (10¹² times!)
 - O^- helps "push" e^- on their way

(C) Claisen Rearrangement (O in chain)

Example: Propose a mechanism for:

$$\begin{array}{c} \text{OH} & \text{acid} \\ \hline \\ \text{K}_2\text{CO}_3 \\ \hline \\ \text{CO}_3^{2-} & \text{base} \\ \hline \\ \text{DO}_3 \\ \hline \\ \text{Product!!} \\ \hline \\ \text{Product!!} \\ \end{array}$$

Special case:

→ called valence tautomerism: rapid reorganization of bonding electrons.

Very Interesting Molecule:

C's get scrambled everywhere

- \rightarrow at 25°C ¹H NMR = 2 broad peaks (in 6:4 ratio)
- → at 100°C ¹H NMR & ¹³C NMR: one sharp peak only!
 - → reaction is so fast at 100°C that all C's/H's end up in all positions
 - \rightarrow 1.2 million forms (= 10!/3) all rapidly interconverting at 100°C

⇒ molecule is called Bullvalene

- After William "Bull" Doering (1917-2011)— who imagined/proposed the structure in 1961. Was actually made in 1963, proving Doering's theory