Notatki na kolokwium z Matematyki dyskretnej – część 2 Michał Puchyr

1 Relacje równoważności

Objaśnienia

Operacja rozbicia - rozdzielanie klas równoważności np. $\{a,b,c\} \stackrel{op2}{\rightarrow} \{a,b\}\{c\}$ Operacja sklejenia - sklejanie klas równoważności np. $\{a,b\}\{c\} \stackrel{op1}{\rightarrow} \{a,b,c\}$

Operacja odłączania - op3 przekształca podział w taki sposób, że usuwa część lub wszystkie obiekty z wybranej klasy podziału i lokuje je w specjalnym buforze pomocniczym. Jeśli bufor pomocniczy jest niepusty, obiekty są do niego dodawane.

Operacja dołączania - op4 przekształca podział w taki sposób, że usuwa część lub wszystkie obiekty z bufora pomocniczego i dołącza je do istniejącej klasy podziału albo tworzy z nich nową klasę podziału.

Przykład

Niech dany będzie zbiór $U=u_1,u_2,...,u_{10}$ oraz relacje równoważności $P,Q\in\mathbb{E}(U)$ reprezentowane podziałami:

$$\mathbb{K}_{P} = \{\{u_{1}, u_{2}, u_{3}\}, \{u_{4}\}, \{u_{5}, u_{6}\}, \{u_{7}, u_{8}, u_{9}, u_{10}\}\}$$

$$\mathbb{K}_Q = \{\{u_1\}, \{u_2, u_3, u_4, u_5\}, \{u_6\}, \{u_7, u_8\}, \{u_9, u_{10}\}\}$$

Oblicz $\delta^{1,2}$ (P, Q) oraz $\delta^{3,4}$ (P, Q). Rozwiązanie

1.
$$\delta^{1,2} = 4lub6$$

2.
$$\delta^{3,4} = 4$$

2 Aproksymacje

Przybliżenie zbioru

Mówimy, że dla zadanego uniwersum U, określona została przestrzeń aproksymacyjna $\mathbb{K} = K_1, K_2, ..., K_M$, wtedy i tylko wtedy gdy $\bigcup_{i=1}^M K_i = U$ oraz $K_i \cap K_j = \emptyset$ dla $i \neq j$. Przybliżeniem zbioru $D \subseteq U$ w przestrzeni aproksymacyjnej \mathbb{K} (określonym także terminem zbiór przybliżony) nazywamy parę:

$$\operatorname{apr}(D) = (\operatorname{apr}_{\mathbb{K}}, \operatorname{apr}^{\mathbb{K}}(D))$$

gdzie

$$\operatorname{apr}^{\mathbb{K}}(D) = \bigcup_{K \in \mathbb{K}, \ K \cap D \neq \emptyset} K \qquad \operatorname{apr}_{\mathbb{K}}(D) = \bigcup_{K \in \mathbb{K}, \ K \subseteq D} K$$

 $\operatorname{apr}^{\mathbb{K}}(D)$ – przybliżenie zbioru D z góry $\operatorname{apr}_{\mathbb{K}}(D)$ – przybliżenie zbioru D z dołu

Miary jakości przybliżenia

$$\operatorname{completness}(\operatorname{apr}(Z)) = \frac{|\operatorname{apr}_{\mathbb{K}}(Z)|}{|Z|}$$

$$\operatorname{precision}(\operatorname{apr}(Z)) = \frac{|\operatorname{apr}^{\mathbb{K}}(Z)|}{|Z|}$$

Przykład

Niech $U = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7\}$ oraz niech $\mathbb{K} = \{\{u_1, u_2\}, \{u_3, u_4, u_5\}, \{u_6, u_7\}\}$ Wyznaczyć dolną i górną aproksymację dla $Z_2 = \{u_1, u_2, u_3, u_4\}$.

$$\begin{array}{c|cccc} K_i & K_i \cap Z_2 & K_i \subseteq Z_2 \\ \hline \{u_1, u_2\} & \{u_1, u_2\} & \{u_1, u_2\} \\ \{u_3, u_4, u_5\} & \{u_3, u_4\} & \varnothing \\ \{u_6, u_7\} & \varnothing & \varnothing \end{array}$$

$$\operatorname{apr}_{\mathbb{K}}(Z_2) = \{u_1, u_2\}$$
$$\operatorname{apr}^{\mathbb{K}}(Z_2) = \{u_1, u_2, u_3, u_4\}$$

Obliczyć kompletność i miarę jakości przybliżenia dla \mathbb{Z}_2 .

completness(apr(
$$Z_2$$
)) = $\frac{|\text{apr}_{\mathbb{K}}(Z_2)|}{|Z_2|} = \frac{2}{4} = 0.5$

$$\operatorname{precision}(\operatorname{apr}(Z_2)) = \frac{|\operatorname{apr}^{\mathbb{K}}(Z_2)|}{|Z_2|} = \frac{4}{4} = 1$$

Aproksymacje - Na chłopski rozum

Przybliżenie dolne - jest to zbiór elementów, które w całości zawierają się w zbiorze przybliżanym.

Przybliżenie górne - zbiór wszystkich elementów, które mają chociaż jeden element wspólny z przybliżanym zbiorem.

Przybliżenie odgórnie równe jest wtedy kiedy przybliżenia górne zbiorów są takie same. Zapis $X=^{\mathbb{K}}Y$

Przybliżenie oddolnie równe jest wtedy kiedy przybliżenia dolne zbiorów są takie same. Zapis $X =_{\mathbb{K}} Y$

Zbiory równe w przestrzeni aproksymacyjnej $\mathbb K$ wtedy i tylko wtedy gdy $X=^{\mathbb K}Y$ oraz $X=_{\mathbb K}Y$. Piszemy $X=\frac{\mathbb K}{\mathbb K}Y$

3 Wyznaczanie reprezentanta

Różnica symetryczna zbiorów A i B to zbiór elementów należących do A lub B, ale nie należących do $A \cap B$.

Do wyznaczania podobieństwa można użyć wzór

$$\sigma = \frac{1}{1+\delta}$$

Przykład

Niech dane będzie uniwersum $U=\{a,b,c,d,e,f\}$ z funkcją odległości $\delta:U\times U\to R+$ jako makrostrukturą:

δ	a	b	С	d	е	f
a	0	2	3	1	8	6
b	2	0	2	1	10	9
С	3	2	0	2	11	8
d	1	1	2	0	10	6
е	8	10	11	10	0	1
f	6	9	8	6	1	0

a) Wyznacz medoid (medoidy) dla profilu $P = \{2a, b, 3d, e, 2f\}.$

		25	35	40	25	58	40
f	2	12	18	16	12	2	0
е	1	8	10	10	10	0	1
d	3	3	3	6	0	30	18
С	0	0	0	0	0	0	0
b	1	2	0	2	1	10	9
а	2	0	4	6	2	16	12
		а	b	С	d	е	f

Jest to a lub d.

b) Wyznacz centroid (centroidy) dla profilu $P = \{2a, d\}.$

Jest to a.

c) Wyznacz reprezentanta profilu $P=\{2a,b,e\}$ w zbiorze $B=\{e,f\}.$

		а	b	С	d	е	f
а	2	0	4	6	2	16	12
b	1	2	0	2	1	10	9
С	0	0	0	0	0	0	0
d	0	0	0	0	0	0	0
e	1	8	10	10	10	0	1
f	0	0	0	0	0	0	0
		10	14	18	13	26	22

Jest to f.

Przykład

Stosując miarę 2Dice wyznaczyć reprezentację zdefiniowanego poniżej profilu zbiorów

Zbiór obiektów: $U - \{a, b, c\}$

Zbiory profilu: $P_1 - \{a\}, P_2 - \{b, c\}, P_3 - \{a, b\}$

Profil: $P = \{2P_1, 3P_2, P_3\}$

$$P_{2Dic} = \frac{2|X \cap Y|}{|X| + |Y|}$$

$$\begin{array}{c|cccc} & P_1 & P_2 & P_3 \\ \hline P_1 & 1 & 0 & 2/3 \\ P_2 & 0 & 1 & 1/2 \\ P_3 & 2/3 & 1/2 & 1 \\ \end{array}$$

$$\Sigma \text{ dla } P_1 = \frac{2}{2} \cdot 2 + 0 + \frac{2}{3} = 2\frac{2}{3}$$

$$\Sigma \text{ dla } P_2 = \frac{2 \cdot 0}{2} \cdot 2 + 3 \cdot \frac{2 \cdot 2}{2} + \frac{1}{2} = 6\frac{1}{2} \quad \text{MAX}$$

$$\Sigma$$
 dla $P_3 = \frac{2}{3} \cdot 2 + 3 \cdot \frac{1}{2} + 1 = \frac{4}{3} + \frac{3}{2} + 1 = \frac{23}{6}$

Najlepszym reprezentantem jest P_2 , bo dla niego uzyskano najwyższe podobieństwo dla całego profilu.

4 Przydatne

Operator min - iloczyn Operator max - suma

