Lec 6: X-ray tube, attenuation photoelectric effect

How does the x-ray spectrum change when the tube parameters are changed?

Think about what will happen to

- 1. Intensity
- 2. Average energy
- 3. Characteristic peaks

Increase in tube voltage

Increase in tube voltage

Increase in tube current

Increase in tube current

Increase in target (anode) material Z

Increase in target (anode) material Z

Relative Intensity

8

Increase in filter thickness

Increase in filter thickness

Interaction of X-rays with tissues

Interaction with tissues leads to x-ray attenuation

Hendee, chapter 7
Smith and Webb, chapter 2

Attenuation mechanisms: absorption and scattering

Absorption: removal of x-ray photons from the beam

Scattering: change in direction of the photon, usually with reduced energy

Attenuation and contrast?

High contrast needs sufficiently high differential attenuation of x-rays in various tissues.

X-ray attenuation

How would you compare attenuation in two tissues?

$$\overline{I_{o}}$$

Linear and mass attenuation coefficients

Linear (
$$\mu$$
) μ : 1/cm
Mass ($\mu_m = \mu/\rho$) μ_m : cm²/gm

$$I(x) = I_o \exp(-\mu x)$$

$$I(x) = I_o \exp(-\mu x)$$

Watch out when solving problems!

Value of μ depends on x-ray energy

X-ray photon energy (keV)	Mass attenuation coefficient (cm ² /g)		
	Compact bone	Muscle	
10	19.0	4.96	
15	5.89	1.36	
20	2.51	0.544	
30	0.743	0.154	
40	0.305	0.0677	
50	0.158	0.0409	
60	0.0979	0.0312	
80	0.0520	0.0255	
100	0.0386	0.0252	
150	0.0304	0.0276	
200	0.0302	0.0297	
300	0.0311	0.0317	

Which energy range should we choose for better contrast?

Let's take a look at the y-axis scales...

Plot x-ray intensity in bone and muscle as it progresses in x direction. Assume a tissue depth of 5cm.

Tissue	Density	Effective atomic	0.8-
	(g/cc)	number	0.6
Muscle	1.06	7.4	≤° 0.4
Fat	0.91	6.9	_ 0.4-
Bone	1.85	13.8	0.2-
	•		1

Recap: Value of μ depends on x-ray energy

X-ray photon energy (keV)	Mass attenuation coefficient (cm ² /g)		
	Compact bone	Muscle	
10	19.0	4.96	
15	5.89	1.36	
20	2.51	0.544	
30	0.743	0.154	
40	0.305	0.0677	
50	0.158	0.0409	
60	0.0979	0.0312	
80	0.0520	0.0255	
100	0.0386	0.0252	
150	0.0304	0.0276	
200	0.0302	0.0297	
300	0.0311	0.0317	

Which energy range should we choose for better contrast?

Photoelectric effect

- Photon loses <u>all</u> its energy in one interaction with the tissue
- Watch out- the schematic diagram looks very similar to generation of characteristic x-rays.
- Inner shells

Auger electrons in photoelectric effect

X-ray photon ejects electron

Transition of electron from higher to lower level emits another photon

Auger transition ejects another electron instead of photon

- Transition from higher (say, L) to lower energy shell (say, K) ejects another electron (usually from the same higher energy shell).
- Causes ionization of tissue.

K.E.
$$_{Auger} = E_{Bi} - 2E_{Bo}$$