Kurzfassung Riemannsche Geometrie

© Tim Baumann, http://timbaumann.info/uni-spicker

Mannigfaltigkeiten

Konvention. U_p ist eine Umgebung von p.

Def. Eine topologische Mannigfaltigkeit (Mft) der Dim. m ist ein topologischer Raum M^m mit folgenden Eigenschaften:

• M^m ist hausdorffsch. d. h.

$$\forall x, y \in M^m : x \neq y \implies \exists U_x \otimes M^m : \exists U_y \otimes M^m : x \in U_x \land y \in U_y \land U_x \cap U_y = \emptyset.$$

• M^m erfüllt das zweite Abzählbarkeitsaxiom, d. h. es gibt eine abzählbare Menge $\{U_i \mid i \in \mathbb{N}\} \subset \mathcal{T}$, sodass

$$\forall A \otimes M^m : \exists K \subset \mathbb{N} : A = \bigcup_{k \in K} U_k.$$

• M^m ist lokal euklidisch, d. h. für alle $x \in M^m$ gibt es eine offene Umgebung U_x von x und einen Homöomorphismus $\phi: U_x \to \mathcal{O} \text{ mit } \mathcal{O} \subset \mathbb{R}^m \text{ offen.}$

Bem. lokal euklidisch \Rightarrow hausdorffsch

Lem. Sei M eine topologische Mannigfaltigkeit. Dann gilt

M zusammenhängend $\iff M$ wegzusammenhängend.

Def. • Sei M eine m-dim. topol. Mft. Ein **Atlas** ist eine Menge $\mathcal{A} = \{(U_j, \phi_j : U_j \to \mathcal{O}_j) \mid j \in J\} \text{ mit } U_j \otimes M \text{ und } \mathcal{O}_j \subset \mathbb{R}^n \text{ offen}$ und Homöomorphismen ϕ_i , für die gilt $\bigcup_{i \in I} U_i = M$.

- Die Paare (U_i, ϕ_i) werden **Karten** genannt.
- Für je zwei Karten (U_i, ϕ_i) und (U_k, ϕ_k) gibt es eine Kartenwechselabbildung

$$\phi_{kj} := \phi_k \circ \phi_i^{-1}|_{\phi_i(U_i \cap U_k)} : \phi_i(U_i \cap U_k) \to \phi_k(U_i \cap U_k).$$

- Ein Atlas heißt diff'bar, wenn alle Kartenwechselabb, \mathcal{C}^{∞} sind.
- Ein Atlas \mathcal{A} heißt differenzierbare Struktur von M, wenn gilt: Ist $(\tilde{U}, \tilde{\phi_i})$ eine Karte von M und $\tilde{\mathcal{A}} := \mathcal{A} \cup \{(\tilde{U}, \tilde{\phi_i})\}$ ein differenzierbarer Atlas, dann gilt $A = \tilde{A}$.
- Eine topol. Mft versehen mit einer differenzierbaren Struktur heißt differenzierbare Mannigfaltigkeit.

Differenzierbare Abbildungen

Notation. Seien ab jetzt M^m und N^n differenzierbare Mften der Dimensionen m und n.

Def. • Eine Abb. $f: M \to N$ heißt in $x \in M$ differenzierbar. wenn es eine Karte $(U_x, \phi: U_x \to \mathcal{O}) \in \mathcal{A}_M$ und eine Karte $(\tilde{U}_{f(x)}, \tilde{\phi}: \tilde{U}_{f(x)} \to \tilde{\mathcal{O}}) \in \mathcal{A}_N \text{ gibt, sodass}$

$$\tilde{\phi} \circ f|_{U_x} \circ \phi^{-1} : \mathcal{O} \to \tilde{\mathcal{O}}$$
 differenzierbar (\mathcal{C}^{∞}) ist.

• Die Abb. f heißt diff'bar, wenn sie in allen $x \in M$ diff'bar ist.

Notation. $C^{\infty}(M, N) := \{f : M \to N \mid f \text{ ist differenzierbar}\}\$

Bem. Die Definition ist unabh. von Wahl der Karten um x und f(x).

Def. Eine Abbildung $f: M \to N$ heißt **Diffeomorphismus**, wenn f ein Homöo ist und f und f^{-1} differenzierbar sind.

Def. Sei $p \in M$. Zwei Funktionen $f: U_p \to \mathbb{R}$ und $g: V_p \to \mathbb{R}$ mit $U_p, V_p \odot M$ heißen äquivalent, falls es eine offene Umgebung $W_p \subset U_p \cap V_p$ mit $f|_{W_p} = g|_{W_p}$ gibt. Die Äquivalenzklasse [f] bezüglich der so definierten Äg'relation heißt Funktionskeim in p.

Notation. $C^{\infty}(M, p) := \{ [f] \mid [f] \text{ Funktionskeim in } p \}$

Bem. Die Menge der Funktionskeime ist eine \mathbb{R} -Algebra.

Def. Eine lineare Abb. $\delta: \mathcal{C}^{\infty}(M,p) \to \mathbb{R}$ heißt **Derivation**, falls $\forall [f], [g] \in \mathcal{C}^{\infty}(M, p) : \delta[f \cdot g] = \delta[f] \cdot g(p) + f(p) \cdot \delta[g].$

Def. Der gewöhnliche Tangentialraum des \mathbb{R}^n im Punkt p ist $\tilde{T}_n \mathbb{R}^n := \{(p, v) \mid v \in \mathbb{R}^n\}$

mit (p, v) + (p, w) := (p, v + w) und $\lambda \cdot (p, v) := (p, \lambda \cdot v)$.

Def. Der Tangentialraum von M im Punkt $p \in M$ ist $T_pM := \{\partial : \mathcal{C}^{\infty}(\mathbb{R}^n, p) \to \mathbb{R} \mid \partial \text{ linear, derivativ} \}$

Ein Element $v \in T_pM$ heißt Tangentialvektor an M in p.

Bem. T_nM ist ein \mathbb{R} -Vektorraum. Wir erhalten eine bilin, Abb. $T_n M \times \mathcal{C}^{\infty}(M, p) \to \mathbb{R}, \quad (v, [f]) \mapsto v, f := v[f].$

Satz. Die Vektorräume $T_p\mathbb{R}^n$ und $\tilde{T}_p\mathbb{R}^n$ sind isomorph vermöge $\tilde{T}_p\mathbb{R}^n \to T_p\mathbb{R}^n, \ (p,v) \mapsto \frac{\partial}{\partial v}|_p.$ Insbesondere gilt $\dim(T_p\mathbb{R}^n) = n.$

Kor. Für eine m-dim. diff'bare Mft M gilt: $\dim(T_pM) = m$.

Bem. Sei $c:(-\epsilon,\epsilon)\to M$ eine differenzierbare Kurve. Dann kann man $\dot{c}(0)$ auffassen als Tangentialvektor an M in c(0) mittels

$$\dot{c}(0)[f] := \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} (f \circ c).$$

Bem. Sei (U,ϕ) eine Karte und $p \in U$. Wir def. $\frac{\partial^{\phi}}{\partial x^i}|_p \in T_pM$ durch

$$\frac{\partial^{\phi}}{\partial x_i}|_p[f] := (\phi^{-1} \circ \alpha_i) \cdot (0)[f] = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} (f \circ \phi^{-1} \circ \alpha_i)$$

mit $\alpha_i : (-\epsilon, \epsilon) \to U, \ t \mapsto \phi(p) + te_i.$

Def. Sei $f: M \to N$ diff'bar. Die **Ableitung** von f in $p \in M$ ist $T_p f = f_{*p} : T_p M \to T_{f(p)} N, \ v \mapsto f_{*p}(v), \ \text{wobei} \ f_{*p}(v).[g] := v.[g \circ f]$

Lem. Sei M eine diff'bare Mft, $p \in M$. Dann gilt

- f_{*n} ist linear • $(\mathrm{id}_M)_{*p} = \mathrm{id}_{T_nM}$
- Kettenregel: Seien N, P diff'bare Mften. Dann gilt $\forall p \in M : (f \circ g)_{*p} = f_{*q(p)} \circ g_{*p}.$

Kor. Wenn $f: M \to N$ ein Diffeomorphismus ist, dann ist $f_{*p}: T_pM \to T_{f(p)}N$ ein VR-Isomorphismus für alle $p \in M$.

Satz. Sei M eine m-dimensionale Mft, $p \in M$ und (U, ϕ) eine Karte.

- Es gilt $T_p M = \{\dot{c}(0) \mid c : (-\epsilon, \epsilon) \to M \text{ diff'bar, } c(0) = p\}$
- $\{\frac{\partial^{\phi}}{\partial x^i}|_p \mid i=1,\ldots,n\}$ ist eine Basis von T_pM .

Def. $TM := \bigsqcup_{p \in M} T_p M$ heißt **Tangentialbündel** von M.

Vektorfelder

Def. Ein Vektorfeld (VF) auf M ist eine Abbildung $X: M \to TM$. sodass $\pi \circ X = \mathrm{id}_M$. Dies ist äquivalent zu $\forall p \in M : X(p) \in T_p(M)$.

Lem. Sei $X: M \to TM$ ein Vektorfeld. (U, ϕ) eine Karte. Dann gibt es Funktionen $\xi^j: U \to \mathbb{R}, j = 1, \ldots, n$ mit

$$\forall p \in U : X(p) = \sum_{j=1}^{n} \xi^{j}(p) \frac{\partial^{\phi}}{\partial x^{j}}|_{p}.$$

Def. • Ein VF X auf M heißt in $p \in M$ diff'bar (bzw. \mathcal{C}^{∞}), wenn es eine Karte (U, ϕ) um p gibt, sodass die Funktionen ξ^1, \dots, ξ^n diff'bar (bzw. \mathcal{C}^{∞}) sind.

• X heißt differenzierbar, wenn X in allen $p \in M$ diff'bar ist.

Lem. Wenn die Koordinatenfunktionen ξ^1, \ldots, ξ^n für eine bestimmte Karte $(U, \phi: U \to \mathcal{O})$ differenzierbar sind, dann sind sie es für jede andere Karte $(\tilde{U}, \psi : \tilde{U} \to \tilde{\mathcal{O}})$ mit $\tilde{U} \subset U$.

 $\mathbf{Def.}$ Sei M eine m-dimensionale diff'bare Mft mit diff'barer Struktur $\mathcal{A} = \{(U_j, \phi_i) \mid j \in J\}$. Dann ist TM eine 2m-dimensionale Mft mit Atlas $\tilde{\mathcal{A}} := \{(\tilde{U}_i := \pi^{-1}(U_i), \tilde{\Phi}_i) \mid i \in J\}$, wobei

$$\tilde{\Phi}_j: \pi^{-1}(U_j) \to \phi_j(U_j) \times \mathbb{R}^m,
\sum_{k=1}^m \xi^k(p) \frac{\partial^{\phi_j}}{\partial x^k}|_p \mapsto (\phi_j(p), \xi^1(p), ..., \xi^n(p)).$$

Eine Menge $V \subseteq TM$ heißt offen, wenn $\tilde{\Phi}_i(V \cap \pi^{-1}(U_i)) \otimes \mathbb{R}^{2n}$ offen ist für alle $j \in J$.

Notation. $\mathcal{X}(M) := \{ \text{ differenzierbare Vektorfelder auf } M \}$

Bem. $\mathcal{X}(M)$ ist ein \mathbb{R} -VR und ein $\mathcal{C}^{\infty}(M)$ -Modul.

Lem. Jedes $X \in \mathcal{X}(M)$ induziert eine lineare, derivative Abb.

$$X:\mathcal{C}^{\infty}(M)\to\mathcal{C}^{\infty}(M),\quad \phi\mapsto X(\phi)\coloneqq (p\mapsto X(p).[\phi]).$$

Lem. $\forall X, Y \in \mathcal{X}(M) : (\forall f \in \mathcal{C}^{\infty}(M) : X(f) = Y(f)) \iff X \equiv Y$

Def. Der Kommutator (o. Lie-Klammer) von $X, Y \in \mathcal{X}(M)$ ist das Vektorfeld $[X,Y] \in \mathcal{X}(M)$, das definiert ist durch

$$[X,Y]: \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M), \ f \mapsto X(Y(f)) - Y(X(f)).$$

Satz. Für $X, Y_1, Y_2 \in \mathcal{X}(M)$ und $f \in \mathcal{C}^{\infty}(M)$ gilt

$$[X, Y_1 + fY_2] = [X, Y_1] + X(f) \cdot Y_2 + f \cdot [X, Y_2].$$

Def. Eine diff'bare Kurve $c:(a,b)\to M$ heißt Integralkurve von einem VF $X \in \mathcal{X}(M)$, falls $\forall t \in (a,b) : \dot{c}(t) = X_{c(t)}$.

Lem/Def. Sei $X \in \mathcal{X}(M)$, $p \in M$ und $v \in T_pM$. Dann hat das AWP

$$\dot{c}(t) = X_{c(t)}, \ c(0) = p$$

eine eindeutige lokale Lösung $c = c_n^X : (-\epsilon, \epsilon) \to M$.

Def. Die Fußpunktabb. ist die Proj. $\pi:TM\to M,\ v\in T_pM\mapsto p.$ **Def.** $\Phi_X:U\times (-\epsilon,\epsilon)\to M,\ (p,t)\mapsto c_n^X(t)$ heißt Fluss von X.

Lie-Algebren und Lie-Gruppen

Def. Ein \mathbb{K} -Vektorraum V mit einer \mathbb{K} -bilinearen Abbildung $[-,-]:V\times V\to V,\ (v,w)\mapsto [v,w]$ heißt **Lie-Algebra**, falls

- die Abb. antisymmetrisch ist, d. h. $\forall v, w \in V : [v, w] = -[w, v]$
- die Jacobi-Identität erfüllt ist, d.h.

$$\forall v, w, z \in V : [v, [w, z]] + [z, [v, w]] + [w, [z, v]] = 0.$$

Bspe. • $(\mathcal{X}(M), [-, -])$ ist eine Lie-Algebra.

• $\mathbb{K}^{n \times n}$ ist eine Lie-Algebra mit [A, B] := AB - BA.

Def. Eine Gruppe G, welche ebenfalls eine diff'bare Mft ist, heißt Lie-Gruppe, wenn folgende Abbildungen differenzierbar sind:

$$\mu: G \times G \to G, \ (g_1, g_2) \mapsto g_1 \cdot g_2, \qquad \iota: G \to G, \ g \mapsto g^{-1}.$$

Bsp. Die allg. lin. Gruppe $\mathrm{GL}(n,\mathbb{R}) \subset \mathbb{R}^{n \times n} \approx \mathbb{R}^{n^2}$ ist eine Lie-Gruppe. Die Diff'barkeit der Inv. folgt aus der Cramerschen Regel.

Def. Sei G eine Lie-Gruppe und $q \in G$. Dann sind

$$\ell g: G \to G, \quad x \mapsto g \cdot x = \mu(g, x)$$

 $rg: G \to G, \quad x \mapsto x \cdot g = \mu(x, g)$

Diffeomorphismen mit Umkehrabbildung $\ell(q^{-1})$ bzw. $r(q^{-1})$.

Bsp. Abgeschl. Untergruppen von $\mathrm{GL}(n,\mathbb{R})$ sind Lie-Gruppen, z. B

• $GL(n,\mathbb{C}) \subset GL(2n,\mathbb{R})$ • $O_n \subset GL(n,\mathbb{R})$ • $U_n \subset GL(2n,\mathbb{R})$

 $\mathbf{Def.}\;$ Sei $f:M\to N$ ein Diffeomor. und $X\in\mathcal{X}(M).$ Dann ist

$$f_*X: N \to TN, \ x \mapsto f_{*f^{-1}(x)}X(f^{-1}(x))$$

Def. Ein Vektorfeld $X \in \mathcal{X}(G)$ heißt **linksinvariant**, wenn gilt:

$$\forall g, h \in G : X(g \cdot h) = \ell g_{*h} X(h)$$
 (kürzer: $\forall g \in G : \ell g_* X = X$).

Notation. $\mathcal{L}(G) := \{X \in \mathcal{X}(G) \mid X \text{ ist linksinvariant}\} \subset \mathcal{X}(G)$

Bem. Ein linksinv. VF $X \in \mathcal{X}(G)$ ist eindeutig bestimmt durch X(e). Andererseits: Ist $x \in T_eG$, dann gibt es ein linksinv. VF $X \in \mathcal{X}(G)$ mit X(e) = x. Somit gibt es einen VR-Isomorphismus

$$i: \mathcal{L}(G) \to T_eG, X \mapsto X(e).$$

Lem. Seien $X, Y \in \mathcal{L}(G)$. Dann ist $[X, Y] \in \mathcal{L}(G)$.

Kor. $(\mathcal{L}(G), [-,-])$ ist eine $\dim(G)$ -dimensionale Unter-Lie-Algebra von $(\mathcal{X}(G), [-,-])$.

Notation. $\mathfrak{G} := \operatorname{Lie}(G) := \mathcal{L}(G) \cong T_eG$

Riemannsche Mannigfaltigkeiten

Def. Eine Riemannsche Metrik auf einer diff. Mft M ist eine Familie $g = (g_p)_{p \in M}$ von Skalarprodukten $g_p : T_pM \times T_pM \to \mathbb{R}$, die differenzierbar von p abhängt, d. h. für alle $X, Y \in \mathcal{X}(M)$ ist $g(X,Y): M \to \mathbb{R}, p \mapsto g_p(X(p),Y(p))$ differenzierbar (\mathcal{C}^{∞}) . Das Tupel (M,g) heißt Riemannsche Mannigfaltigkeit.

Bem. Sei (U, ϕ) eine Karte von M. Setze

$$g_{ij}^{\phi}: U \to \mathbb{R}, \ p \mapsto g(\frac{\partial^{\phi}}{\partial x^{i}}|_{p}, \frac{\partial^{\phi}}{\partial x^{j}}|_{p}).$$

Seien $X = \sum_{i=1}^{n} v^{i} \frac{\partial^{\phi}}{\partial x^{i}}$ und $Y = \sum_{j=1}^{n} w^{j} \frac{\partial^{\phi}}{\partial x^{j}}$ zwei VF in U. Dann:

$$g(X,Y)(p) = g_p(X(p),Y(p)) = \sum_{i,j=1}^n v^i(p)w^j(p)g_{ij}(p).$$

Def. Seien (M, g_M) , (N, g_N) Riemannsche Mannigfaltigkeiten. Eine Abbildung $f: M \to N$ heißt **Isometrie**, wenn gilt:

- \bullet f ist ein Diffeomorphismus
- f erhält Riemannsche Metriken, d. h. für alle $X, Y \in \mathcal{X}(M)$ gilt:

$$q_M(X,Y) = q_N(f_*X, f_*Y) \circ f,$$

also $\forall p \in M : \forall v, w \in T_p M : g_{M,p}(v,w) = g_{N,f(p)}(f_{*p}(v), f_{*p}(w)).$

Def. Iso $(M) := \{ \tau : M \to M \mid \tau \text{ Isometrie} \}$ heißt **Isometriegruppe**.

Bem. Iso(M) ist in kan. Weise eine Lie-Gruppe (Myers-Steenrod).

Satz. Jede diff'bare Mannigfaltigkeit hat eine Riemannsche Metrik.

Technik (**Teilung der Eins**). Sei M eine Mannigfaltigkeit. Es gibt eine Familie von stetigen Fktn $(\varphi_i : M \to [0,1])_{i\in I}$, sodass gilt:

- Für alle $x \in M$ gibt es eine Umgebung U_p , sodass alle bis auf endlich viele der Funktionen in U_p verschwinden.
- Für alle $x \in M$ gilt $\sum_{i \in I} \varphi_i(x) = 1$.
- Der Träger jeder Funktion ist in einer Karte enthalten.

Bsp. Das Oberer-Halbraum-Modell des huperbolischen Raums ist

$$H^n := \{x \in \mathbb{R}^n \mid \langle x, e_n \rangle_{\text{eukl}} > 0\} \otimes \mathbb{R}^n$$

mit dem offensichtlichen Atlas und der Riemannschen Metrik

$$g_p^{\mathrm{Hyp}}((p, \tilde{v}), (p, \tilde{w})) \coloneqq \frac{\langle \tilde{v}, \tilde{w} \rangle_{\mathrm{eukl}}}{\langle p, e_n \rangle_{\mathrm{eukl}}^2}.$$

Def. Eine diff'bare Abb. $f:M\to N$ zwischen diff'baren Mften heißt **Immersion**, falls $f_{*p}:T_pM\to T_{f(p)}N$ f. a. $p\in M$ injektiv ist.

Def. Angenommen, N ist sogar eine Riem. Mft mit Metrik g_N . Dann erhalten wir eine Riem. Metrik auf M, die mit f zurückgeholte Metrik, durch

$$(f^*g_N)_p(v,w) := g_{N,f(p)}(f_{*p}(v), f_{*p}(w)).$$

Def. Eine Immersion $f:(M,g^M)\to (N,g^N)$ heißt **isometrisch**, falls $g^M=f^*g^N$.

Prop. Sei M eine zshgde Mft. Dann gibt es für alle $p, q \in M$ einen stückweise diff'baren Weg $\gamma : [0, 1] \to M$ mit $\gamma(0) = p$ und $\gamma(1) = q$.

Def. Für $\gamma:[a,b]\to M$ stückweise \mathcal{C}^1 heißt

$$L(\gamma) \coloneqq \int_a^b \|\dot{\gamma}(\tau)\| d\tau$$
 Länge von γ .

Def. Der Riem. Abstand auf (M,g) ist geg. durch die Metrik $d_g: M \times M \to \mathbb{R}, \quad (p,q) \mapsto \inf\{L(\gamma) \mid \gamma : [a,b] \to M \text{ stückweise } \mathcal{C}^1 \text{ mit } \gamma(a) = p \text{ und } \gamma(b) = q\}.$

Bem. Nach dem Satz von Hopf-Rinow stimmt die von d_g induzierte Topologie mit der von Müberein.

Kovariante Ableitungen

Def. Ein Zusammenhang (kov. Ableitung) ist eine Abbildung

$$\nabla : \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M), \quad (X,Y) \mapsto \nabla_X Y$$

sodass für $X, X_1, X_2, Y, Y_1, Y_2 \in \mathcal{X}(M)$ und $f \in \mathcal{C}^{\infty}(M)$ gilt:

- $\bullet \quad \nabla_{X_1+fX_2}Y = \nabla_{X_1}Y + f\nabla_{X_2}Y$
- $\bullet \nabla_X (Y_1 + Y_2) = \nabla_X Y_1 + \nabla_X Y_2$
- $\nabla_X(fY) = f(\nabla_X Y) + (X(f)) \cdot Y$ (Leibniz-Regel)

Def. Sei ∇ ein Zusammenhang auf M. Dann heißt

$$T^{\nabla}(X,Y) := \nabla_X Y - \nabla_Y X - [X,Y]$$
 Torsion von ∇ .

Wenn $T^{\nabla} \equiv 0$, dann heißt ∇ torsionsfrei.

Def. Ein Zshg ∇ auf einer Riem. Mft. heißt metrisch, wenn

$$\forall X, Y, Z \in \mathcal{X}(M) : g(\nabla_X Y, Z) + g(Y, \nabla_X Z) = Xg(Y, Z).$$

Satz. Auf jeder Riem. Mft. (M, g) gibt es genau einen torsionsfreien, metrischen Zusammenhang. Für diesen gilt:

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) + g([X, Y], Z) + g([Z, X], Y) + g([Z, Y], X)$$

Def. Der eindeutige torsionsfreie und metrische Zusammenhang auf (M, g) heißt Levi-Civita-Zusammenhang auf (M, g).

Bem. Sei (M,g) eine Riemannsche Mft., (U,ϕ) eine Karte von M. Dann gibt es diff'bare Ftk. $\Gamma_{ij}^k:U\to\mathbb{R}$ für $i,j,k\in\{1,\ldots,n\}$, sodass

$$\nabla_{\left(\frac{\partial^{\phi}}{\partial x^{i}}\right)}\left(\frac{\partial^{\phi}}{\partial x^{j}}\right) = \sum_{k=1}^{n} \Gamma_{ij}^{k} \frac{\partial^{\phi}}{\partial x^{k}}.$$

Def. Die Funktionen Γ_{ij}^k heißen Christoffel-Symbole von ∇ .

Lem.
$$\left[\frac{\partial^{\phi}}{\partial x^{j}}, \frac{\partial^{\phi}}{\partial x^{k}}\right] = 0$$

Satz. Für die Christoffel-Symbole gilt

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{n} g^{kl} \left(\frac{\partial^{\phi}}{\partial x^{j}} g_{il} + \frac{\partial^{\phi}}{\partial x^{i}} g_{jl} - \frac{\partial^{\phi}}{\partial x^{l}} g_{ij} \right),$$

wobei
$$g_{ij}: U \to \mathbb{R}, \quad p \mapsto g_p\left(\frac{\partial^{\phi}}{\partial x^i}(p), \frac{\partial^{\phi}}{\partial x^j}(p)\right)$$

 $g^{kl}: U \to \mathbb{R} \quad \text{definiert ist durch } \sum_{r=1}^n g^{jr} g_{rk} = \delta_L^j.$

Def. Sei ∇ ein Zusammenhang auf M. Dann heißt $X \in \mathcal{X}(M)$ parallel, falls $\nabla X : \mathcal{X}(M) \to \mathcal{X}(M)$, $Y \mapsto \nabla_Y X$ verschwindet.

Tensorfelder

Def. Ein Tensorfeld vom Typ (j,k) mit $k \in \mathbb{N}$ und $j \in \{0,1\}$ ist eine $C^{\infty}(M)$ -multilineare Abb.

$$T: \mathcal{X}(M)^k = \mathcal{X}(M) \times \ldots \times \mathcal{X}(M) \to \begin{cases} \mathcal{C}^{\infty}(M), & \text{falls } j = 0, \\ \mathcal{X}(M), & \text{falls } j = 1. \end{cases}$$

Bspe. • $T^{\nabla}: \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$ ist Tensor vom Typ (1,2).

- $\nabla Y : \mathcal{X}(M) \to \mathcal{X}(M), \ X \mapsto \nabla_X Y \text{ ist Tensor vom Typ } (1,1).$
- Alternierende k-Formen auf \mathbb{R}^n sind Tensoren vom Typ (0, k).
- Riemannsche Metriken sind Tensorfelder vom Typ (0,2).

Gegenbsp. $X \mapsto \nabla_Y X$ ist kein Tensor

Satz. Sei T ein Tensorfeld auf M vom Typ (j,k). Sei $p \in M$. Seien $X_1, \ldots, X_k \in \mathcal{X}(M)$. Dann hängt $T(X_1, \ldots, X_k)(p)$ nur von $X_1(p), \ldots, X_k(p)$ ab.

Bem. Sei (U, ϕ) eine Karte von M und T ein Tensorfeld vom Typ (1, k) auf M. Dann gibt es Funktionen $T^l_{i_1, \dots, i_k}$, sodass

$$T(\frac{\partial^{\phi}}{\partial x^{i_1}}, \dots, \frac{\partial^{\phi}}{\partial x^{i_k}}) = \sum_{l=1}^n T_{i_1,\dots,i_k}^l \frac{\partial^{\phi}}{\partial x^l}.$$

Notation. $\nabla_v Y := (\nabla_X Y)(p)$ für $v \in T_p M$ und X ein VF mit $X_p = v$ (wohldefiniert).

Satz. Sei ∇ ein Zusammenhang auf M. Sei $p \in M$, $v \in T_pM$ und $Y, \tilde{Y} \in \mathcal{X}(M)$. Falls für eine \mathcal{C}^{∞} -Kurve $c : (-\epsilon, \epsilon) \to M$ gilt

$$c(0)=p,\ \dot{c}(0)=v\ \text{und}\ \forall\,t\in(-\epsilon,\epsilon)\,:\,Y(c(t))=\tilde{Y}(c(t)),$$
dann gilt $\nabla_vY=\nabla_v\tilde{Y}.$

Kovariante Ableitung längs Kurven

Def. Ein VF längs einer Kurve $c:I\to M$ ist eine Abbildung

$$X: I \to TM \quad \text{mit} \quad X(t) = X_t \in T_{c(t)}M,$$

welche diff'bar ist, d. h. für alle $t_0 \in I$ existiert eine Karte (U,ϕ) um $c(t_0)$, sodass man schreiben kann

$$X(t) = \sum\limits_{i=1}^n \xi^i(t) \frac{\partial^\phi}{\partial x^j}|_{c(t)} \quad \text{für alle } t \in c^{-1}(U)$$

mit diff'baren Funktionen $\xi^i: c^{-1}(U) \to \mathbb{R}$.

 $Bem. X_t$ muss nicht Einschränkung eines VF auf M sein.

Notation. $\mathcal{X}_c := \{ \text{ Vektorfelder längs } c \}$

Bem. \mathcal{X}_c ist ein Modul über $\mathcal{C}^{\infty}(I,\mathbb{R})$.

 ${\bf Satz.}\,$ Sei ∇ ein Zusammenhang auf M,sei $c:I\to M$ eine diff'bare Kurve. Dann gibt es eine eindeutige Abbildung

$$\frac{\nabla}{\mathrm{d}t} = \frac{D}{\mathrm{d}t} = \frac{D^{\nabla}}{\mathrm{d}t} : \mathcal{X}_c \to \mathcal{X}_c,$$

sodass für $X, \tilde{X} \in \mathcal{X}_c, Y \in \mathcal{X}(M)$ und $f \in \mathcal{C}^{\infty}(I, \mathbb{R})$ gilt:

- $\frac{D}{dt}(X + \tilde{X}) = \frac{D}{dt}X + \frac{D}{dt}\tilde{X}$, $\frac{D}{dt}(f \cdot X) = f \cdot \frac{D}{dt}X + f'X$,
- $\bullet \ \frac{D(Y \circ c)}{dt} = \nabla_{\dot{c}} Y.$

Def. $\frac{D}{dt}$ heißt $von \nabla induzierte$ kovariante Ableitung längs c.

Satz. Sei (M,g) eine Riem. Mft, ∇ der Levi-Civita-Zusammenhang und $c:I\to M$ diff'bar. Dann gilt für alle $X,Y\in\mathcal{X}_c$:

$$g(X,Y)' = g(\frac{DX}{dt},Y) + g(X,\frac{DY}{dt}).$$

Parallelverschiebung

Def. $X \in \mathcal{X}_c$ heißt parallel längs c (bzgl. ∇), wenn $\frac{DX}{\mathrm{d}t} = 0$.

Bem. Sei (U, ϕ) eine Karte, $\tilde{I} \subset I$ mit $c(\tilde{I}) \subset U$. In lokalen Koordinaten lässt sich Parallelität ausdrücken durch

$$(\xi^k)' + \sum_{i,j=1}^n \dot{c}^i(t)\xi^j(t)\Gamma^k_{ij}(c(t)) = 0$$
 für $k = 1, \dots, n$ und alle $t \in \tilde{I}$.

Für die Funktionen ξ^k ist das ein System linearer DGL mit nichtkonstanten Koeffizienten

$$\begin{pmatrix} \boldsymbol{\xi}^1 \\ \vdots \\ \boldsymbol{\xi}^n \end{pmatrix}' = A(t) \cdot \begin{pmatrix} \boldsymbol{\xi}^1 \\ \vdots \\ \boldsymbol{\xi}_n \end{pmatrix}$$

Dieses System ist linear beschränkt, es folgt daher die Existenz von parallelen Vektorfeldern in Kartenumgebungen mit vorg. AW $X(t_0)$.

Satz. Sei $t_0 \in I = (a, b)$ und $v \in T_{c(t_0)}M$ vorgegeben. Dann gibt es genau ein Vektorfeld $X \in \mathcal{X}_c$ mit

$$\frac{DX}{dt} \equiv 0$$
 und $X(t_0) = v$.

Def. Die Parallelverschiebung längs einer diff'baren Kurve $c:[a,b]\to M$ bzgl. eines Zshgs ∇ ist

$$P_c: T_{c(a)}M \to T_{c(b)}M, \ v \mapsto X^v(b), \text{ wobei } \frac{DX^v}{\mathrm{d}t} \equiv 0 \text{ und } X^v(a) = v.$$

 ${\bf Satz.}\ P_c$ ist linear. Ist (M,g) Riem. und ∇ der LC-Zshg, dann gilt

$$g_{c(b)}(P_c(v), P_c(w)) = g_{c(a)}(v, w).$$

Mit anderen Worten: P_c ist dann eine lineare Isometrie.

Bem. Wir können nun die Definition der Ableitung als Limes des Differenzenquotienten auf Mften übertragen: Sei $v \in T_xM$, $X \in \mathcal{X}(M)$ und $c: (-\epsilon, \epsilon) \to M$ mit c(0) = x und $\dot{c}(0) = v$. Dann ist

$$\nabla_v X = \lim_{t \to 0} \frac{P_{c(t)}^{-1}(X(c(t))) - X(c(0))}{t}$$

Bem. Parallelverschiebung ist auch möglich und sinnvoll entlang $st \ddot{u} ckweise$ glatter Kurven.

Def. Die **Holonomiegruppe** von M in $x \in M$ bzgl. ∇ ist $\operatorname{Hol}_x^{\nabla} := \{P_c : T_x M \to T_x M \,|\, c \text{ stückweise glatt mit } c(0) = c(1) = x\}.$ Dabei ist $P_c \circ P_{\tilde{c}} = P_{c \circ \tilde{c}}$ und $(P_c)^{-1} = P_{c^{-1}}$.

Bem. $\operatorname{Hol}_x^{\nabla}$ ist sogar eine Lie-Gruppe und Untergr. von $O(T_xM,g_x)$.

Geodäten

Def. Eine glatte Kurve $c: I \to M$ heißt Geodäte bzgl. ∇ , falls

$$\frac{D^{\nabla}\dot{c}}{\mathrm{d}t}\equiv0,\quad\text{d.\,h.\,das Tangential-VF}~\dot{c}~\text{ist parallel längs}~c.$$

Bem. Sei (U, ϕ) eine Karte, $\tilde{I} \subset I$ mit $c(\tilde{I}) \subset U$. In lokalen Koord. lässt sich diese Bed. ausdrücken durch die **Geodätengleichung**

$$(\ddot{c}^k)'(t) + \sum_{i,j=1}^n \dot{c}^i(t)\dot{c}^j(t)\Gamma^k_{ij}(c(t)) = 0 \quad \text{für } k = 1,...,n \text{ und alle } t \in \tilde{I}.$$

Satz. Zu jedem $p \in M$ und $v \in T_pM$ gibt es ein $\epsilon > 0$ und genau eine Geodäte $c: (-\epsilon, \epsilon) \to M$ mit c(0) = p und $\dot{c}(0) = v$.

Lem. Seien $c_{1,2}:I_{1,2}\to M$ zwei Geodäten bzgl ∇ mit $0\in I_1\cap I_2$. Falls $c_1(0)=c_2(0)$ und $\dot{c}_1(0)=\dot{c}_2(0)$, dann gilt $c_1|_{I_1\cap I_2}\equiv c_2|_{I_1\cap I_2}$.

Lem/Def. Gegeben $p \in M$ und $v \in T_pM$, dann gibt es genau ein Intervall $I_v \subset \mathbb{R}$ mit $0 \in I_v$ und eine Geodäte

$$c_v: I_v \to M \quad \text{mit} \quad c_v(0) = p, \ \dot{c}_v(0) = v,$$

die maximal im folgenden Sinn ist: Für jede Geodäte $c:I\to M$ mit $\dot{c}(0)=v$ gilt: $I\subseteq I_v$ und $c=c_v|_I.$

Notation. Für $v \in T_pM$ sei $c_v : I_v \to M$ die zugeh. max. Geodäte.

Def. Ein Zshg ∇ auf M heißt **geodätisch vollständig**, wenn jede Geodäte auf ganz \mathbb{R} definiert ist, d. h. $\forall v \in TM : I_v = \mathbb{R}$.

Die Exponentialabbildung

Lem (Spray-Eigenschaft). Ist $v \in T_pM$, $c_v : I_v \to M$ die maximale Geodäte mit $\dot{c_v}(0) = v$. Sei $\lambda \neq 0$, dann ist

$$c_{\lambda v}: I_{\lambda v} \to M, \ t \mapsto c_v(\lambda t)$$
 wobei $I_{\lambda v} := \frac{1}{\lambda} I_v$

die maximale Geodäte mit $c_{\lambda v}(0) = \lambda v$.

Def. Sei M eine Mft mit Zshg ∇ und $p \in M$. Dann heißt

$$\operatorname{Exp}_{p}: \widetilde{T_{p}M} \to M, \ v \mapsto c_{v}(1), \quad \widetilde{T_{p}M} := \{v \in T_{p}M \mid 1 \in I_{v}\}$$

Exponential abbildung von ∇ in p. Ist $\nabla = \nabla^{LC}$, so wird sie Riemannsche Exponential abb. genannt.

Lem. • $\widetilde{T_pM}$ ist sternförmig bzgl. 0.

• $\forall v \in \widetilde{T_pM} : \forall t \in [0,1] : \operatorname{Exp}_n(tv) = c_v(t)$

• Wir können \hat{U} so wählen, dass $\operatorname{Exp}_p|_{\hat{U}}:\hat{U}\to\operatorname{Exp}_p(\hat{U})$ ein Diffeomorphismus ist.

Bem. Man kann zeigen: • $\widetilde{T_pM} \odot T_pM$

- $\operatorname{Exp}_p: \widetilde{T_pM} \to M$ ist überall \mathcal{C}^{∞} , aber nicht überall ein lokaler Diffeomorphismus (Schnittpunkt-Phänomen)
- Ist (M, ∇) geodätisch vollständig, dann gilt $\widetilde{T_pM} = T_pM$.

Erste Variationsformel

Def. Eine Kurve $c: I \to M$ heißt nach / proportional zur BL parametrisiert, wenn gilt:

$$\|\dot{c}(t)\| \equiv 1$$
 / $\|\dot{c}(t)\| \equiv \text{konst.}$

Bem. • Jede Geodäte ist proportional zur BL parametrisiert.

• Eine Kurve $c: I \to M$ ist genau dann prop. zur BL parametrisiert, wenn es ein $\alpha \geq 0$ gibt mit $L(c|_{[a,b]}) = \alpha \cdot (b-a)$ für alle $[a,b] \subseteq I$.

Def. Eine Variation von $c:[a,b] \to M$ ist eine \mathcal{C}^{∞} -Abbildung $(-\epsilon,\epsilon) \times [a,b] \to M$, $(s,t) \mapsto \alpha(s,t)$ mit $\forall t \in [a,b]: \alpha(0,t) = c(t)$.

Sie heißt Variation mit festen Endpunkten, wenn zudem gilt:

$$\forall s \in (-\epsilon, \epsilon) : \alpha(s, a) = c(a) \land \alpha(s, b) = c(b)$$

Sprechweise. s heißt Variationsparameter

Def. Eine Variation einer stückweise glatten Kurve $c : [a, b] \to M$ (mit c glatt auf den Teilintervallen $[t_{i-1}, t_i]$) ist eine stetige Abb.

$$\alpha: (-\epsilon, \epsilon) \times [a, b] \to M, \ (s, t) \mapsto \alpha_s(t)$$

 $\text{mit } \alpha|_{(-\epsilon,\epsilon)\times[t_{i-1},t_i]} \text{ ist } \mathcal{C}^{\infty}. \text{ für alle } t \text{ und } \alpha_0=c.$

Notation. • $\frac{\partial \alpha}{\partial s}(s_0, t_0)$ ist der Tang.-Vektor an $s \mapsto \alpha(s, t_0)$ in s_0 .

• $\frac{\partial \alpha}{\partial t}(s_0, t_0)$ ist der Tangentialvektor an $s \mapsto \alpha(s_0, t)$ in t_0 .

Def. Eine Abb. $X: (-\epsilon, \epsilon) \times [a, b] \to TM$ mit $X(s, t) \in T_{\alpha(s, t)}M$ heißt **Vektorfeld längs** α , wenn X (stückweise) differenzierbar ist.

Notation. Für ein VF X längs $\alpha(s,t)$ setze

$$\frac{DX}{\partial s}(s_0, t_0) := \frac{D}{ds}|_{s=s_0}X(s, t_0), \quad \frac{DX}{\partial t}(s_0, t_0) := \frac{D}{dt}|_{t=t_0}X(s_0, t).$$

Lem.
$$\frac{D}{\partial s} \frac{\partial \alpha}{\partial t} = \frac{D}{\partial t} \frac{\partial \alpha}{\partial s}$$

Sprechweise. $X(t) := \frac{\partial \alpha}{\partial s}(0,t)$ heißt Variationsvektorfeld (VVF).

Satz (1. Variationsformel). Sei $\alpha: (-\epsilon, \epsilon) \times [a, b] \to M$ eine C^{∞} -Variation von einer C^{∞} -Kurve $c = \alpha_0: [a, b] \to M$. Sei $\|\dot{c}(t)\| = \operatorname{konst} \neq 0$. Dann gilt mit $X(t) := \frac{\partial \alpha}{\partial s}(0, t)$

$$\frac{\mathrm{d}}{\mathrm{d}s}|_{s=0}L(\alpha_s) = \frac{1}{\|\dot{c}\|} \left(g(X,\dot{c})|_a^b - \int_a^b g(X(\tau), \frac{D\dot{c}}{\mathrm{d}t}) \,\mathrm{d}\tau \right)$$

Satz (1. Variationsformel für stückweise glattes c). Sei $\alpha: (-\epsilon, \epsilon) \times [a, b] \to M$ eine stückweise glatte Variation, glatt auf $(-\epsilon, \epsilon) \times [t_{i-1}, t_i]$ mit $a = t_0 < \ldots < t_k = b$. Dann ist

$$\frac{\mathrm{d}}{\mathrm{d}s}|_{s=0}L(\alpha_s) = \frac{1}{\|\dot{c}\|} \left(g(X,\dot{c})|_a^b + \sum_{i=1}^{k-1} g(X(t_i), \nabla_i \dot{c}) - \int_a^b g(X, \frac{D\dot{c}}{\mathrm{d}t}) \,\mathrm{d}t \right)$$

$$\mathrm{mit} \ \nabla_i \dot{c} = \dot{c}(t_i^-) - \dot{c}(t_i^+)$$

Notation. $\dot{c}(t_i^+) = \lim_{t \downarrow t_i} \dot{c}(t), \quad \dot{c}(t_i^-) = \lim_{t \uparrow t_i} \dot{c}(t)$

Frage. Welche $X \in \mathcal{X}_c$ sind Variations-VF?

Satz. Zu jedem (stückw.) glatten $X \in \mathcal{X}_c$ gibt es eine (stückw.) glatte Variation α von c mit $X = \frac{\partial \alpha}{\partial s}(0,t)$. Wenn X(a) = X(b) = 0, so kann man α als Variation mit festen Endpunkten wählen.

Satz. Für $c:[a,b]\to M$ stückw. glatt mit $||\dot{c}||=$ konst sind äquiv.:

- \bullet c ist eine Geodäte
- $\frac{\mathrm{d}}{\mathrm{d}s}|_{s=0}L(\alpha_s)=0$ für jede stückweise glatte Variation α von c mit festen Endpunkten.

Kor. Sei $c:[a,b]\to M$ stückweise glatt und kürzeste stückweise Verbindung ihrer Endpunkte (d. h. für alle $\tilde{c}:[a,b]\to M$ stückweise glatt mit $c(a)=\tilde{c}(a)$ und $c(b)=\tilde{c}(b)$ ist $L(c)\leq L(\tilde{c})$). Dann ist c eine glatte Geodäte.

Achtung. Geodäten sind i. A. nicht global kürzeste Verbindungen, die Umkehrung gilt also nicht!

Notation.
$$\Omega_{p,q} := \{c : [0,1] \to M \mid c(0)=p, c(1)=q, c \text{ stückw. glatt } \}$$

Bem. Geodäten sind "kritische Punkte" von $L:\Omega_{p,q}\to\mathbb{R}$ unter der Nebenbedingung $\|\dot{c}\|=$ konst. Ersetzt man das Längenfunktional durch die Energie, so ist diese NB unnötig.

Geodäten sind lokal kürzeste

Notation. $S_{\rho}(0) = \{x \in T_pM \mid ||x|| = \rho\}$

Satz (Gaußlemma). Sei (M,g) eine zshgde Riem. Mft, $\nabla = \nabla^{\mathrm{LC}}$. Sei $p \in M$ und $\epsilon > 0$, sodass $\mathrm{Exp}_p \mid_{B_{\epsilon}(0)}$ ein Diffeo ist. Dann schneiden die radialen Geodäten

$$t \mapsto \operatorname{Exp}_p(tv) = c_v(t), \quad v \in T_pM \setminus \{0\}.$$

die Hyperflächen $\operatorname{Exp}_{p}(S_{\rho}(0)), \rho \in (0, \epsilon)$ orthogonal.

Satz. Seien $p \in M$, $\epsilon > 0$, $\rho \in [0, \epsilon)$ wie eben. Dann ist

$$c_v|_{[0,\rho]}:[0,\rho]\to M, \quad t\mapsto c_v(t)=\mathrm{Exp}_n(tv) \qquad (v\in T_pM,\|v\|=1)$$

die kürzeste Verbindung ihrer Endpunkte, genauer: Es gilt $\rho=L(c_v|_{[0,\rho]})\leq L(\gamma)$ für jedes $\gamma:[a,b]\to M$ stückweise glatt mit $\gamma(a)=p,\,\gamma(b)=c_v(\rho).$ Gleichheit gilt genau dann, wenn $\gamma(t)=c_v(r(t))$ mit $r:[a,b]\to[0,\rho]$ monoton wachsend.

 \mathbf{Satz} . Sei M eine zshgde Riemannsche Mannigfaltigkeit.

• Ist $p \in M$, $\epsilon \in (0, i(p))$, dann ist

$$\operatorname{Exp}_p(B_{\epsilon}(0)) = B_{\epsilon}(p) := \{ q \in M \mid d(p, q) < \epsilon \},$$

$$\operatorname{Exp}_p(S_{\epsilon}(0)) = S_{\epsilon}(p) := \{ q \in M \mid d(p, q) = \epsilon \}.$$

- $d: M \times M \to \mathbb{R}_{>0}$ ist eine Metrik.
- \bullet Die durch d ind. Topologie stimmt mit der gegebenen überein.

Sätze von Hopf-Rinow

Satz (Hopf-Rinow 1). Sei M eine zshgde Riem. Mft, $p \in M$. Angenommen, alle Geodäten γ auf M mit $\gamma(0) = p$ sind auf ganz $\mathbb R$ definiert (m.a.W: Exp_p ist auf ganz T_pM definiert). Dann gibt es für alle $q \in M$ eine kürzeste Geodäte von p nach q.

 ${\bf Satz}$ (Hopf-Rinow 2). Für eine zusammenhängende Riemannsche Mannigfaltigkeit M sind äquivalent:

- M ist geodätisch vollständig.
- $\forall p \in M$: Exp_p ist auf ganz T_pM definiert.
- \bullet Beschränkte und abgeschlossene Teilmengen von M sind kompakt.
- (M, d) ist ein vollständiger metrischer Raum.

Kor. Jede kompakte Riem. Mft ist geodätisch vollständig und zwei ihrer Punkte können durch eine kürzeste Geodäte verbunden werden.

Kor. Unter-Mften des \mathbb{R}^n sind geodätisch vollständig.

Krümmung

Def. Der Krümmungstensor von einem Zshg ∇ auf M ist

$$R^{\nabla} = R : \mathcal{X}(M) \times \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$$
$$(X, Y, Z) \mapsto R(X, Y)Z := \nabla_X(\nabla_Y Z) - \nabla_Y(\nabla_X Z) - \nabla_{[X, Y]}Z.$$

Bem. R^{∇} ist ein (1,3)-Tensor.

Notation. $R_p(u,v)w := (R(X,Y)Z)(p)$ für $u,v,w \in T_pM$, wobei $X,Y,Z \in \mathcal{X}(M)$ mit X(p)=u, Y(p)=v, Z(p)=w.

Satz. Es gilt für $X, Y, Z, W \in \mathcal{X}(M)$:

- \bullet -R(X,Y)Z = R(Y,X)Z
- Falls ∇ torsionsfrei: 1. Bianchi-Identität / Jacobi-Identität:

$$R(X,Y)Z + R(Z,X)Y + R(Y,Z)X = 0.$$

• Ist (M, g) Riemannsch und ∇ metrisch, dann gilt

$$q(R(X,Y)Z,W) = -q(R(X,Y)W,Z).$$

• Ist ∇ der LC-Zshg von (M,q) Riemannsch, dann ist

$$g(R(X,Y)Z,W) = g(R(Z,W)X,Y).$$

Def. Sei $p \in M$, $\sigma = \operatorname{span}(v, w) \in T_pM$ ein 2-dim UVR. Dann heißt

$$\sec(\sigma) = \kappa(\sigma) \coloneqq \frac{g(R(v, w)w, v)}{\|v\|^2 \cdot \|w\|^2 - g(v, w)^2}$$

Riemannsche Schnittkrümmung von σ .

Lem. $sec(\sigma)$ ist unabhängig von der Basiswahl.

Zweite Variation der Länge

Satz. Sei $\alpha: (-\epsilon, \epsilon) \times [a, b] \to M$ eine glatte Variation einer Kurve $\alpha_0: [a, b] \to M, t \mapsto \alpha(0, t)$. Sei $X: (-\epsilon, \epsilon) \times [a, b] \to TM$ ein VF längs α . Dann gilt:

$$\frac{D}{\partial s}\frac{DX}{\partial t} - \frac{D}{\partial t}\frac{DX}{\partial s} = R\left(\frac{\partial \alpha}{\partial s}, \frac{\partial \alpha}{\partial t}\right)X$$

Satz (2. Variationsformel für die Länge). Sei $c:[a,b] \to M$ eine Geodäte, $\alpha:(-\epsilon,\epsilon) \times [a,b] \to M$ eine glatte Variation von c mit festen Endpunkten, $X(t):=\frac{\partial \alpha}{\partial s}(0,t) \in \mathcal{X}_c$ das VVF mit $X^{\perp}:=X-g(X,\frac{\dot{c}}{\|\dot{c}\|})\frac{\dot{c}}{\|\dot{c}\|}$ senkrechtem Anteil zu \dot{c} . Dann gilt

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2}|_{s=0}L(\alpha_s) = \frac{1}{\|\dot{c}\|} \int_a^b \left\| \frac{DX^{\perp}}{\mathrm{d}t} \right\|^2 - g(R(X,\dot{c})\dot{c},X) \,\mathrm{d}t.$$

Satz von Myers

Def. Der **Durchmesser** einer Riemannschen Mft (M, g) ist

$$\operatorname{diam}(M) \coloneqq \sup \{ d(p,q) \, | \, p,q \in M \}.$$

Satz (Myers 1935). Jede vollständige zsh
gde Riem. Mft. mit sec $\geq \delta > 0$ ist kompakt mit Durchmesser diam
(M) $\leq \frac{\pi}{\sqrt{\delta}}$.

Bem. Das Bsp der Sphären zeigt: Die Schranke ist optimal.

Kor. Sei M eine vollständige zshgde Riem. Mft, $\dim(M) \geq 2$ mit sec $\geq \delta > 0$. Dann ist $\pi_1(M)$ endlich.

Def. Sei $p \in M$, $v \in T_pM$ mit ||v|| = 1, $v = e_1, e_2, \ldots, e_n$ eine ONB von T_pM . Die **Ricci-Krümmung** von M in Richtung v ist dann

$$\operatorname{Ric}(v) := \sum_{j=2}^{n} \operatorname{sec}(\operatorname{span}(v, e_j)).$$

 $Bem. \operatorname{Ric}(v)$ ist unabhängig von der Wahl der ONB:

$$\begin{array}{ll} \text{Ric}(v) \, = \, \sum_{j=2}^n \, \sec(v, e_j) & = \, \sum_{j=2}^n g(R(e_j, v)v, e_j) \\ & = \, \sum_{j=1}^n g(R(e_j, v)v, e_j) \, = \, \text{spur}(x \mapsto R(x, v)v) \end{array}$$

Def. $\operatorname{Ric}_p: T_pM \times T_pM \to \mathbb{R}, \ (v,w) \mapsto \operatorname{spur}(x \mapsto R(x,v)w)$ heißt **Ricci-Tensor**.

Bem. Der Ricci-Tensor ist ein (2,0)-Tensor und es gilt:
• Ric $_p(v,w) = \text{Ric}_p(w,v)$, • Ric(v) = Ric(v,v).

Def. (M,g) heißt **Einstein-Mft**, wenn die Ricci-Krümmung konstant ist, d. h. $\forall p \in M : \forall x, y \in T_pM : \text{Ric}(x,y) = c \cdot g(x,y)$.

Beob. • $\sec \geq \delta \implies \operatorname{Ric}(v) \geq (n-1)\delta$

• Mften mit konstanter Schnittkrümmung sind Einstein.

Satz (Myers). Jede vollständige zshgde Riem. Mft. mit Ric $\geq (n-1)\delta$ ist kompakt mit Durchmesser diam $(M) \leq \frac{\pi}{\sqrt{\lambda}}$

Jacobi-Felder

Def. Sei (M, g) eine Riem. Mft, $c: I \to M$ glatt, $Y \in \mathcal{X}_c$ heißt **Jacobi-Feld**, wenn die **Jacobi-Gleichung** gilt:

$$Y'' + R(Y, \dot{c})\dot{c} = 0 \quad (\text{mit } Y'' := \frac{D}{dt} \left(\frac{DY}{dt} \right)).$$

Bem. $\{X \in \mathcal{X}_c \mid X \text{ ist ein Jacobi-Feld}\}\$ ist ein UVR von \mathcal{X}_c .

Satz. Sei $c:[a,b] \to M$ eine Geodäte, $\alpha:(-\epsilon,\epsilon) \times [a,b] \to M$ eine glatte Variation von $c=\alpha_0$ durch Geodäten (d. h. α_s ist Geodäte für alle $s \in (-\epsilon,\epsilon)$). Dann ist das VVF $X=\frac{\partial \alpha}{\partial s}(0,t)$ ein Jacobi-Feld.

Satz. Sei $c:I\to M$ eine Kurve, $t_0\in I.$ Dann gibt es für alle $v,w\in T_{c(t_0)}M$ genau ein Jacobi-Feld $Y\in\mathcal{X}_c$ mit

$$Y(t_0) = v$$
 und $Y'(t_0) = w$.

Satz. Sei $v \in T_pM$, $w \in T_pM \cong T_v(T_pM)$. Dann gilt $(\operatorname{Exp}_p)_{*v}(w) = Y(1)$, wobei $Y \in \mathcal{X}_c$ ein Jacobi-Feld längs $c_v(t) = \operatorname{Exp}_n(tv)$ mit Y(0) = 0 und Y'(0) = w ist.

Satz von Hadamard-Cartan

Satz. Sei Y ein Jacobifeld längs einer Geodäten c in (M,g). Wenn $\sec \leq 0$, dann gilt

- $(t \mapsto ||Y(t)||^2)$ ist konvex.
- Wenn Y zwei verschiedene Nullstellen hat, dann $Y \equiv 0$.
- Es gibt keine konjugierten Punkte längs c.

Kor. Falls (M, g) vollständig mit $\sec \le 0$, dann ist \exp_p für alle p ein lokaler Diffeomorphismus, d. h.

$$\forall\,v\in T_pM\,:\,\exists\,U_v\,\odot\,T_pM\,:\,\mathrm{Exp}_p\,|_{U_v}:U_v\to\mathrm{Exp}_p(U_v)\ \ \mathrm{ist\ Diffeo}.$$

Wiederholung. Sei X wegzshgd, Y einfach zshgd, $\pi:X\to Y$ eine Überlagerung. Dann ist π ein Homöomorphismus.

Def. Eine Abb. $\pi: (M_1, g_1) \to (M_2, g_2)$ zwischen Riem. Mften heißt Riemannsche Überlagerung, wenn gilt:

- π ist eine topologische Überlagerung π ist diffbar
- $\pi_{*p}: T_pM_1 \to T_{\pi(p)}M_2$ ist eine orthogonale Abb f. a. $p \in M_1$.

Satz. Sei $\pi:(M_1,g_1)\to (M_2,g_2)$ eine surjektive lokale Isometrie zwischen Riem. Mften. Wenn M_1 vollständig ist, dann ist π eine Riemannsche Überlagerung.

Satz (Cartan-Hadamard). Sei (M,g) eine vollständige, zshgde Riemannsche Mft. mit Schnittkrümmung sec $\leq 0, p \in M$. Dann ist $\operatorname{Exp}_n: T_pM \to M$ eine Überlagerung.

Kor. Falls (M^n, g) zusätzlich einfach zshgd ist, dann gilt $M \cong \mathbb{R}^n$. Je zwei Punkte in M lassen sich durch genau eine nach BL param. Geodäte verbinden (bis auf Umkehrung, Parametershift).

Satz von Synge

Satz (Weinstein 1968, Synge 1936). Sei M^n kompakte, zshgde, orientierte Riem. Mft, sec > 0, n gerade. Sei $f: M^n \to M^n$ eine orientierungstreue Isometrie. Dann hat f einen Fixpunkt.

Satz (Synge 1936). Jede zshgde kompakte orientierte Riem. Mft gerader Dimension mit sec > 0 ist einfach zshgd.

Symmetrische Räume

Prop. Sei (M, g) eine vollständige Riem. Mft, $p \in M$. Seien $f, g \in \text{Iso}(M)$. Wenn f(p) = g(p) und $f_{*p} = g_{*p}$, dann gilt $f \equiv g$.

Def. Eine zshgde Riem. Mft P heißt Symmetrischer Raum, wenn

$$\forall p \in P : \exists s_p \in \operatorname{Iso}(P) : s_p(p) = p \land (s_p)_{*p} = -\operatorname{id}_{T_n P}.$$

Sprechweise. s_p heißt (geodätische) Spiegelung in p.

Lem. Sei P ein symmetrischer Raum, $\gamma: (-\epsilon, \epsilon) \to P$ eine Geodäte, $p = \gamma(0)$. Dann gilt $\forall t \in (-\epsilon, \epsilon): (s_p \circ \gamma)(t) = \gamma(-t)$.

Lem. Sei P ein sym. Raum, $\gamma: (-\epsilon, \epsilon) \to P$ eine Geodäte, $\gamma(0) = p$, $\tau \in (-\epsilon, \epsilon)$, $q := \gamma(\tau)$. Dann gilt $(s_q \circ s_p)(\gamma(t)) = \gamma(t + 2\tau)$, wenn $t + 2\tau \in (-\epsilon, \epsilon)$.

Kor. Symmetrische Räume sind geodätisch vollständig.

Def. Eine Riem. Mft M heißt homogen (homogener Raum), wenn

$$\forall p, q \in M : \exists f \in \text{Iso}(M, q) : f(p) = q.$$

Lem. Symmetrische Räume sind homogen.

Lem. Sei P ein symm. Raum, $p, q \in P$, $f \in \text{Iso}(P)$ mit f(p) = q. Dann gilt $s_q = f \circ s_p \circ f^{-1}$.

Kor. Ist (M, q) eine homogene zshgde Riem. Mft, sodass

$$\exists m \in M : \exists s_m \in \operatorname{Iso}(M) : s_m(m) = m \text{ und } (s_m)_{*m} = -\operatorname{id}_{T_m M}.$$

Dann ist M ein symmetrischer Raum.

Def. Sei Meine Mft mit Zsh
g $\nabla.$ Sei Tein Tensorfeld auf
 Mvom Typ(1,k). Dann ist ∇T das durch

$$(\nabla T)(X_1, ..., X_k, Y) := \nabla_Y(T(X_1, ..., X_k)) - \sum_{i=1}^k T(X_1, ..., \nabla_Y X_i, ..., X_k)$$

definierte Tensorfeld vom Typ (1, k + 1).

Bsp. Sei (M, g) Riem, $\nabla = \nabla^{LC}$. Dann gilt $\nabla g = 0$ (∇ metrisch).

Def. T heißt parallel, wenn $\nabla T = 0$.

Satz. P symmetrisch $\implies \nabla^{LC} R = 0$

Bem. Die Umkehrung gilt nur lokal.

Transvektionen und Holonomie

Notation. Sei P im Folgenden ein symmetrischer Raum.

Def. Eine Transvektion von P ist eine Isometrie der Form

$$t_{pq} = s_p \circ s_q \quad \text{mit } p, q \in P,$$

d. h. ein Produkt geodätischer Spiegelungen.

Bsp. Im \mathbb{R}^n sind die Transvektionen genau die Translationen.

 ${\bf Def.}\,$ Die von den Transvektionen erzeugte abgeschl. Untergruppe

$$\operatorname{Trans}(P) := \langle t_{pq} \mid p, q \in P \rangle_c \subset \operatorname{Iso}(P)$$

heißt Transvektionsgruppe von P.

Lem. Sei $\gamma: \mathbb{R} \to P$ eine Geodäte, $p = \gamma(0), X \in \mathcal{X}_{\gamma}$ parallel. Sei

$$Y := (s_p)_* X : \mathbb{R} \to TP, \quad t \mapsto (s_p)_{*\gamma(t)} X(t)$$

Dann gilt Y(t) = -X(-t).

Lem. Sei $\gamma: \mathbb{R} \to P$ eine Geodäte. Dann gilt für alle $\tau \in \mathbb{R}$:

- $(t_{\gamma(\tau)\gamma(0)} \circ \gamma)(t) = \gamma(t+2\tau)$ für alle $t \in \mathbb{R}$
- $(t_{\gamma(\tau)\gamma(0)*}X)(t) = X(t+2\tau)$ für $X \in \mathcal{X}_{\gamma}$ parallel.

Lem. Sei $\gamma: \mathbb{R} \to P$ eine Geodäte. Dann ist die Abbildung

$$t^{\gamma}: \mathbb{R} \to \mathrm{Iso}(P), \quad \tau \mapsto t_{\gamma(\tau/2)\gamma(0)}$$

eine Ein-Parameter-Untergruppe.

Def. $t^{\gamma}: \mathbb{R} \to \text{Iso}(P)$ heißt **Transvektion** längs γ .

Satz. Jede maximale Geodäte in P ist Bahn einer 1-Parameter-UG von Isometrien, nämlich von $\gamma(\tau) := (t^{\gamma}(\tau))(c(0))$.

Def. $\lambda \in \mathbb{R}_{\geq 0}$ heißt **Periode** einer Geodäten γ , wenn f. a. $t \in \mathbb{R}$ gilt: $\gamma(t) = \gamma(t + \lambda)$. Die Menge aller Perioden wird mit P_{γ} bezeichnet.

Lem. Sei b > a und c(a) = c(b). Dann ist $\lambda := b - a \in P_{\gamma}$.

Kor. Hat eine Geodäte γ in P einen Selbstschnitt, so ist γ periodisch. Sei λ_0 die minimale nichttriviale Periode einer nichttrivialen Geodäten γ in P. Dann ist $\gamma|_{[t,t+\lambda_0)}$ injektiv für alle t.

Satz (Sphärensatz). Sei M^n eine kompakte, einfach zsghde Riem. Mft. mit $\frac{1}{4} < \sec \le 1$. Dann ist M diffeomorph zur n-Sphäre.

Def. Sei M eine Riem. Mft, $p \in M$.

 $\operatorname{Iso}_p(M) := \{ f \in \operatorname{Iso}(M) \mid f(p) = p \}$ heißt **Isotropiegruppe** von p.

Lem. Seien $p, q \in M$, $f \in \text{Iso}(M)$ mit f(p) = q. Dann ist

$$\operatorname{Iso}_{q}(M) = \{ f \circ g \circ f^{-1} \mid g \in \operatorname{Iso}_{p}(M) \}.$$

Kor. Ist M homogen, so sind alle Isotropiegruppen isomorph.

Bem. Sei M zshgd, vollständig. Dann ist

$$\phi: \operatorname{Iso}_{\mathcal{D}}(M) \to O(T_{\mathcal{D}}M), \quad f \mapsto f_{*\mathcal{D}}$$

ein injektiver Gruppenhomomorphismus.

Satz. $\phi(\operatorname{Iso}_{\mathcal{D}}(M))$ ist abgeschlossen in $O(T_{\mathcal{D}}M)$, also kompakt.

Satz. Sei P ein sym. Raum. Dann ist $\operatorname{Hol}_p(P) \subseteq \phi(\operatorname{Iso}_p(P))$.

Bem. • Umkehrung: Sei M einfach zshgde, Riem. Mft. mit $\operatorname{Hol}_p(M) \subseteq \phi(\operatorname{Iso}_p(M))$. Dann ist P ein symmetrischer Raum.

- Für $P = \mathbb{R}^n$, p = 0 gilt $\operatorname{Hol}_p(P) \subseteq \phi(\operatorname{Iso}_p(P))$.
- \bullet Für eine zshgde, vollst. Riem. Mft. M gilt:

$$\begin{split} \phi(\mathrm{Iso}_p(M)) &= \mathrm{Normalisator} \ \mathrm{von} \ \mathrm{Hol}_p(M) \ \mathrm{in} \ O(T_pM) \\ &= \{g \in O(T_pM) \ | \ g \ \mathrm{Hol}_p(M)g^{-1} = \mathrm{Hol}_p(M) \}. \end{split}$$

Satz. Sei P ein kompakter sym. Raum. Dann ist $\pi_1(P)$ abelsch.

Def. Eine **Darstellung** einer Gruppe G ist ein Gruppenhomomorphismus $\rho: G \to \operatorname{GL}(V)$ mit V ein Vektorraum.

Def. Eine Darstellung $\rho: G \to \mathrm{GL}(V)$ heißt **irreduzibel**, wenn

$$\forall U \subset V \text{ UVR} : (\forall g \in G : \rho(g)(U) = U) \implies U \in \{\{0\}, V\}.$$

Satz (de Rham). Sei (M,g) eine einfach zshgde vollständige Riem. Mft. Dann ist M isometrisch zu einem Riemannschen Produkt

$$M \cong M_0 \times M_1 \times \ldots \times M_k$$
 mit

- M_0 ist ein euklidischer VR (evtl. $\{0\}$)
- M_1, \ldots, M_k sind vollständige, einfach zshgde, unzerlegbare (im Sinne dieses Satzes) Riem. Mft, für die gilt: $\operatorname{Hol}_{p_j}(M_j)$ wirkt irreduzibel auf $T_{p_j}M_j$.

Def. Eine Riem. Mft (M, g) heißt **Isotropie-irreduzibel**, wenn gilt: Für alle $p \in M$ wirkt $\operatorname{Iso}_p(M)$ irreduzibel auf T_pM .

 ${\bf Satz.}\,$ Sei Pein z
shgder, de-Rham-unzerlegbarer sym. Raum. Dann ist P Isotropie-ir
reduzibel.

Lem. Sei (M,g) ein Isotropie-irreduzibler homogener Raum und $B:TM\times TM\to \mathbb{R}$ ein symmetrischer (0,2)-Tensor. Angenommen, B ist Isometrie-invariant, d. h.

$$\forall f \in \text{Iso}(P) \, : \, \forall p \in M \, : \, \forall x, y \in T_pM \, : \, B_{f(p)}(f_{*p}x, f_{*p}y) = B_p(x, y).$$

Dann gilt $\exists \lambda \in \mathbb{R} : B = \lambda \cdot g$.

Satz. Zshgde Isotropie-irred. homogene Räume sind Einsteinsch.

Killing-Felder

Def. Eine Wirkung einer eine Lie-Gruppe G auf einer diff'baren Mft M ist ein Gruppenhomomorphismus $\phi: G \to \text{Diff}(M)$, sodass $G \times M \to M$, $(q,m) \mapsto \phi(q)(m)$ glatt ist.

Def. Das Wirkungsvektorfeld von ϕ zu $x \in \mathfrak{G} \cong T_eG$ ist

$$X^{\phi}: M \to TM, \quad p \mapsto \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} \phi_{q_x(t)}(p).$$

Dabei ist $g_x: (-\epsilon, \epsilon) \to G$ glatt mit $g_x(0) = e, \dot{g_x}(0) = x$.

Lem. Sei G eine Lie-Gruppe, $X \in \mathcal{X}(G)$ ein linksinvariantes VF. Dann ist die Integralkurve c_e eine 1-Parameter-Untergruppe von G.

Lem. Sei $X \in \mathcal{X}(G)$ linksinvariant. Dann ist $c_a = L_a \circ c_e$.

Lem. Jede 1-Param-UG $\phi : \mathbb{R} \to G$ definiert ein linksinv. VF $X \in \mathcal{X}(G)$, dessen Integralkurve durch e gerade ϕ ist: $c_e = \phi$.

Fazit. $\forall x \in T_eG : \exists ! 1 \text{-Param-UG } \phi_x : \mathbb{R} \to G : \dot{\phi_x}(0) = x$

Def. Die Exponentialabbildung der Lie-Gruppe G ist

$$\exp: T_e G \cong \mathfrak{G} \to G, \quad x \mapsto \phi_x(1).$$

Bem. Wenn G eine bi-inv. Metrik hat, dann ist $\exp = \operatorname{Exp}_e$.

Def. Ein VF $X \in \mathcal{X}(M)$ heißt **Killing-Feld**, wenn die lokalen Flüsse Φ_t von X aus lokalen Isometrien bestehen, d. h.

$$\forall x \in U : \forall v, w \in T_x M : g_{\Phi_t(x)}(\Phi_{t*}v, \Phi_{t*}w) = g_x(v, w).$$

Notation. $KF(M) := \{X \in \mathcal{X}(M) \mid X \text{ Killing}\}$

Lem. Ein Vektorfeld $X \in \mathcal{X}(M)$ ist genau dann ein Killing-VF, wenn ∇X schiefsymmetrisch ist, d. h.

$$\forall Y, Z \in \mathcal{X}(M) : q(\nabla_Y X, Z) = -q(\nabla_Z X, Y)$$

Facts. Sei $X \in KF(M)$.

- KF(M) ist eine Unter-Lie-Algebra von $\mathcal{X}(M)$.
- Für jede Geodäte γ ist $X \circ \gamma \in \mathcal{X}_{\gamma}$ ein Jacobi-Feld längs γ .
- $\forall A, B \in \mathcal{X}(M) : L_X(A, B) := \nabla_A \nabla_B X \nabla_{\nabla_A B} X + R(X, A)B = 0$
- Ist (M,g) vollständig, dann ist $\Phi_t: M \to M$ für alle $t \in \mathbb{R}$ definiert.

Satz. Sei P ein sym. Raum, G := Iso(P), $\mathfrak{G} := \mathcal{L}(G) \cong T_eG$ die Lie-Algebra von G. Dann ist die Abbildung

$$\iota: \mathfrak{G} \to KF(P), \quad x \mapsto (X: p \mapsto \frac{\mathrm{d}}{\mathrm{d}t}|_{0} \exp(tx).p)$$

ein \mathbb{R} -VR-Isomorphismus.

Achtung. Es gilt $\iota([x,y]_{\mathfrak{G}}) = -[\iota(x),\iota(y)]_{\mathcal{X}(P)}$, es ist ι also fast (bis auf Vorzeichen) ein Lie-Algebra-Isomorphismus.

Def. Sei P ein symmetrischer Raum, $p \in P$. Setze

$$k_p := \iota^{-1}(\{X \in KF(P) \mid X(p) = 0\}) \subset \mathfrak{G},$$

$$p_p := \iota^{-1}(\{X \in KF(P) \mid \nabla X(p) = 0\}) \subset \mathfrak{G}.$$

Lem. Sei P ein symmetrischer Raum, $p \in P$. Dann gilt

$$\forall v \in T_p P : \exists! \, \tilde{v} \in p_p : \forall s \in \mathbb{R} : \exp(s\tilde{v}) = t^{\gamma_v}(s).$$

Prop.
$$k_p = \mathfrak{G}_p := \mathcal{L}(\operatorname{Iso}_p(P)) \cong T_e \operatorname{Iso}_p(P)$$

Prop. $\mathfrak{G} = p_p \oplus k_p$ (direkte Summe von UVR)

Prop (Cartan-Relationen).

$$\bullet \ [k_p,k_p]_{\mathfrak{G}} \subseteq k_p \quad \bullet \ [k_p,p_p]_{\mathfrak{G}} \subseteq p_p \quad \bullet \ [p_p,p_p]_{\mathfrak{G}} \subseteq k_p$$

Prop. Sei $\mathfrak{G}=k\oplus p$ eine Zerlegung einer reellen Lie-Algebra. Es gelten die Cartan-Relationen genau dann, wenn es eine Involution $\nabla:\mathfrak{G}\to\mathfrak{G}$ (d. h. ein Lie-Algebra-Autom. mit $\nabla^2=$ id) gibt, sodass k der ER zum EW +1 und p der ER zum EW -1 von ∇ ist.

Prop. Sei P ein symmetrischer Raum, $p \in P$. Dann ist

$$R_p: p_p \to T_p P, \quad x \mapsto \iota(x)(p)$$

ein VR-Isomorphismus und es gilt

$$(R(\iota(v),\iota(w))\iota(u))(p) = \iota([u,[v,w]_{\mathfrak{G}}]_{\mathfrak{G}})(p).$$

 $\mathbf{Kor.}$ Sei P ein symmetrischer Raum. Dann ist

$$R_p(a,b): T_pP \to T_pP, \quad x \mapsto R_p(a,b)x$$

eine Derivation von R_p , d. h. für alle $A, B, X, Y, Z \in \mathcal{X}(P)$ gilt

$$R(A, B)(R(X, Y)Z) = R(R(A, B)X, Y)Z + R(X, R(A, B)Y)Z + R(X, Y)(R(A, B)Z).$$