# Introducción al aprendizaje automático

#1. Introducción al aprendizaje automático.

## Programación tradicional



#### Aprendizaje automático



#### Aprendizaje automático: entrenamiento vs. evaluación



#### Tipos de aprendizaje

- Aprendizaje supervisado (inductivo)
   Datos de entrenamiento + salida esperada
- Aprendizaje no supervisado
   Datos de entrenamiento (sin salida esperada)
- Aprendizaje semi-supervisado
   Datos de entrenamiento + pocas salida esperadas
- Aprendizaje por refuerzo
   "Recompensas" por secuencias de acciones

### Aprendizaje supervisado: regresión

- Dados  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
  - $\circ$  Si y está en  $\mathbb{R}^n$   $\to$  regresión



#### Aprendizaje supervisado: clasificación

- Dados  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
  - $\circ$  Si y es categórica  $\rightarrow$  clasificación



#### Aprendizaje supervisado: clasificación

- Dados  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Aprender una f(x) que permita predecir y a partir de x
  - $\circ$  Si y es categórica  $\rightarrow$  clasificación



#### Aprendizaje no supervisado

- Dados  $x_1, x_2, ..., x_n$
- Aprender la estructura interna de los datos
  - o p.ej. clustering



## Aprendizaje no supervisado



Organize computing clusters



Market segmentation



Social network analysis



Astronomical data analysis

#### Aprendizaje por refuerzo

- Dada una secuencia de estados y acciones con recompensa (reward), generar una política (policy)
  - política = mapeo estados → acciones que nos dicen que hacer en un determinado estado
- Ejemplos:
  - Juegos
  - Navegación en robótica
  - Control
  - o ..

#### Sobre "aprendizaje"

- Se puede ver como la utilización directa o indirecta de la experiencia para aproximar una determinada función.
- La aproximación de dicha función corresponde a una búsqueda en un espacio de hipótesis (espacio de funciones) por aquella que mejor ajusta el conjunto de datos de entrenamiento.
- Distintos métodos de aprendizaje automático asumen distintos espacios de hipótesis o utilizan distintas estrategias de búsqueda.

#### Aprendizaje supervisado



# Regresión

#### Regresión

Disponemos de N pares de entrenamiento (observaciones)

$$\{(x_i, y_i)\}_{i=1}^N = \{(x_1, y_1), \cdots, (x_N, y_N)\}$$

 El problema de regresión consiste en estimar f(x) a partir de estos datos



## Regresión polinomial

- En verde se ilustra la función "verdadera" (inaccesible)
- Las muestras son uniformes en x y poseen ruido en y

Utilizaremos una <u>función de costo</u> (error cuadrático)
 que mida el error en la predicción de y mediante f(x)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$







#### Sobreajuste (overfitting)

- Datos de test: otra muestra de los misma función subyacente
- El error de entrenamiento se hace cero, pero el de test crece con *M*





Root-Mean-Square (RMS) Error:  $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^\star)/N}$ 

#### Bondad de ajuste vs. complejidad de modelo

- Si el modelo tiene tantos grados de libertad como los presentes en los datos de entrenamiento, puede ajustarlos perfectamente
- El objetivo en aprendizaje automático no es el ajuste perfecto, sino la generalización a conjuntos nuevos (no vistos en entrenamiento)
- Podemos decir que un modelo generaliza, si puede explicar los datos empleando una complejidad acotada

• Agregar más datos (más que la "complejidad" del modelo)





|               | M=0  | M = 1 | M = 3  | M = 9       |
|---------------|------|-------|--------|-------------|
| $w_0^{\star}$ | 0.19 | 0.82  | 0.31   | 0.35        |
| $w_1^{\star}$ |      | -1.27 | 7.99   | 232.37      |
| $w_2^{\star}$ |      |       | -25.43 | -5321.83    |
| $w_3^{\star}$ |      |       | 17.37  | 48568.31    |
| $w_4^{\star}$ |      |       |        | -231639.30  |
| $w_5^{\star}$ |      |       |        | 640042.26   |
| $w_6^{\star}$ |      |       |        | -1061800.52 |
| $w_7^{\star}$ |      |       |        | 1042400.18  |
| $w_8^{\star}$ |      |       |        | -557682.99  |
| $w_9^{\star}$ |      |       |        | 125201.43   |

Regularización: penalizar valores grandes de los coeficientes

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$





Regularización: penalizar valores grandes de los coeficientes



|               | $\ln \lambda = -\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|---------------|-------------------------|---------------------|-------------------|
| $w_0^{\star}$ | 0.35                    | 0.35                | 0.13              |
| $w_1^{\star}$ | 232.37                  | 4.74                | -0.05             |
| $w_2^{\star}$ | -5321.83                | -0.77               | -0.06             |
| $w_3^\star$   | 48568.31                | -31.97              | -0.05             |
| $w_4^{\star}$ | -231639.30              | -3.89               | -0.03             |
| $w_5^{\star}$ | 640042.26               | 55.28               | -0.02             |
| $w_6^{\star}$ | -1061800.52             | 41.32               | -0.01             |
| $w_7^\star$   | 1042400.18              | -45.95              | -0.00             |
| $w_8^\star$   | -557682.99              | -91.53              | 0.00              |
| $w_9^{\star}$ | 125201.43               | 72.68               | 0.01              |

## Regresión polinomial como regresión lineal

$$x \mapsto \mathbf{z} = \begin{pmatrix} x \\ x^2 \\ \vdots \\ x^M \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_M \end{pmatrix}$$

$$y(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$
  
=  $w_0 + \sum_{j=1}^M w_j x^j = w_0 + \sum_{j=1}^M w_j z_j$   
=  $w_0 + \mathbf{w}^T \mathbf{z}$ 

## Regresión polinomial como regresión lineal

$$x \mapsto \mathbf{z} = \begin{pmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_M \end{pmatrix}$$

$$y(x; \mathbf{w}) = \underbrace{w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M}_{M}$$
$$= \sum_{\underline{j=0}}^{M} w_j x^j$$
$$= \mathbf{w}^T \mathbf{z}$$

#### Regresión lineal: solución de mínimos cuadrados

- Dataset:  $\{(x_1, t_1), \cdots, (x_N, t_N)\} \mapsto \{(\mathbf{z}_1, t_1), \cdots, (\mathbf{z}_N, t_N)\}$
- Función de costo:  $E(\mathbf{W}) = \frac{1}{2} \sum_{i=1}^{N} (y(x_i; \mathbf{w}) t_i)^2 = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{z}_i t_i)^2$

$$\mathbf{Z} = \begin{pmatrix} \mathbf{-} & \mathbf{z}_1^T & \mathbf{-} \\ & \vdots & \\ \mathbf{-} & \mathbf{z}_N^T & \mathbf{-} \end{pmatrix} \in \mathbb{R}^{N \times M} \qquad \mathbf{y} = \begin{pmatrix} t_1 \\ \vdots \\ t_N \end{pmatrix} \in \mathbb{R}^{N \times 1} \qquad \|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w}$$

$$E(\mathbf{w}) = (\mathbf{Z}\mathbf{w} - \mathbf{y})^T (\mathbf{Z}\mathbf{w} - \mathbf{y}) \qquad \rightarrow \qquad \mathbf{w}^* = (\mathbf{Z}^T \mathbf{Z})^{-1} \mathbf{Z}^T \mathbf{y}$$

$$E(\mathbf{w}) = (\mathbf{Z}\mathbf{w} - \mathbf{y})^T (\mathbf{Z}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \qquad \rightarrow \qquad \mathbf{w}^* = (\mathbf{Z}^T \mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z}^T \mathbf{y}$$

#### Elección de hiperparámetros

Dividir el conjunto total de ejemplos en tres subconjuntos

- Entrenamiento: aprendizaje de variables del modelo
- Validación: ajuste/elección de hiperparámetros
- Test: estimación <u>final</u> de la performance del modelo entrenado (y con hiperparámetros elegidos adecuadamente



# Clasificación

#### Clasificación binaria

Disponemos de N pares de entrenamiento (observaciones)

$$\{(x_i,y_i)\}_{i=1}^N=\{(x_1,y_1),\cdots,(x_N,y_N)\}$$
 con  $x_i\in\mathbb{R}^n,y_i\in\{-1,+1\}.$ 

• Aprender una f(x) tal que

$$f(\mathbf{x}_i) \begin{cases} \geq 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

es decir:  $y_i f(x_i) > 0$  para una clasificación correcta.

## **Separabilidad lineal**

linealmente separable





no linealmente separable





#### Clasificadores lineales

- La entrada es un vector x, de dimensionalidad n
- La salida es una etiqueta y, ∈ {-1, +1}
- Clasificador = función de predicción + función de decisión

$$g(f(x)) \to \{-1, +1\}$$

Función de predicción lineal

$$f(x) = w^{\mathrm{T}} x + w_0$$

Función de decisión

$$g(z) = sign(z)$$
$$g(f(x)) = sign(w^{T}x + w_{0})$$



Propuesto por Rosemblatt en 1958

- El objetivo es encontrar un hiperplano de separación
  - Si los datos son linealmente separables, lo encuentra

Es un algoritmo online (procesa un ejemplo a la vez)

Muchas variantes ...

#### Entrada:

- una secuencia de pares de entrenamiento  $(x_1,y_1), (x_2,y_2)$  ...
- Una tasa de aprendizaje r (número pequeño y menor a 1)

#### Algoritmo:

- Inicializar  $w^{(0)} \in \mathbb{R}^n$
- Para cada ejemplo (x,y,)
  - $\circ \quad \text{Predecir } y_i' = sign(w^T x_i + w_0)$
  - $\circ \quad \text{Si } y_i' \neq y_i:$   $w^{(t+1)} \leftarrow w^{(t)} + r (y_i x_i)$

#### Entrada:

- una secuencia de pares de entrenamiento  $(x_1,y_1), (x_2,y_2)$  ...
- Una tasa de aprendizaje r (número pequeño y menor a 1)

#### Algoritmo:

- Inicializar  $w^{(0)} \epsilon \mathbb{R}^n$
- Para cada ejemplo  $(x_i,y_i)$ 
  - $\circ \quad \text{Predecir } y_i' = sign(w^T x_i + w_0)$
  - $\circ$  Si  $y_i' \neq y_i$ :  $w^{(t+1)} \leftarrow w^{(t)} + r(y, x)$

Nota: el término de bias se puede contemplar definiendo las entrada como  $(x_i^{\mathrm{T}} 1)^{\mathrm{T}} \epsilon \mathbb{R}^{\mathrm{n+1}}$ . Pregunta: ¿qué implica que  $w_0$ =0?

#### Entrada:

- una secuencia de pares de entrenamiento  $(x_1,y_1), (x_2,y_2)$  ...
- Una tasa de aprendizaje *r* (número pequeño y menor a 1)

#### Algoritmo:

- Inicializar  $w^{(0)} \in \mathbb{R}^n$
- Para cada ejemplo  $(x_i, y_i)$ 
  - $\circ$  Predecir  $y_i' = sign(w^T x_i)$
  - $\circ \quad \text{Si } y_i' \neq y_i:$   $w^{(t+1)} \leftarrow w^{(t)} + r (y_i x_i)$

Actualiza solo cuando comete un error

Error en positivos:

$$w^{(t+1)} \leftarrow w^{(t)} + r x_i$$

Error en negativos:

$$w^{(t+1)} \leftarrow w^{(t)} - r x_i$$

Si  $y_i w^T x_i \le 0 \rightarrow \text{error}$ 

### Dinámica de actualización

Error en ejemplo **positivo**:



### Dinámica de actualización

Error en ejemplo **negativo**:



### El algoritmo "estándar"

Given a training set D = {( $\mathbf{x}_i$ ,  $y_i$ )},  $\mathbf{x}_i \in \Re^n$ ,  $y_i \in \{-1,1\}$ 

- 1. Initialize  $\mathbf{w} = \mathbf{0} \in \Re^{\mathsf{n}}$
- 2. For epoch = 1 ... T:
  - Shuffle the data
  - 2. For each training example  $(\mathbf{x}_i, y_i) \in D$ :
    - If  $y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i \leq 0$ , update  $\mathbf{w} \leftarrow \mathbf{w} + r y_i \mathbf{x}_i$
- 3. Return w

Another way of writing that there is an error

T is a hyper-parameter to the algorithm

**Prediction:** sgn(w<sup>T</sup>x)

# ¿Cuál es el mejor w?



Solución de **margen máximo**: el hiperplano más estable ante perturbaciones de la entrada

#### Generalización en clasificación

Complejidad del modelo ⇔ complejidad de la frontera de decisión



# Problemas multiclase

# **Multi-Class Classification**

Binary classification:

Multi-class classification:



# What is multiclass classification?

- · An input can belong to one of K classes
- Training data: Input associated with class label (a number from 1 to K)
- Prediction: Given a new input, predict the class label

#### Each input belongs to exactly one class. Not more, not less.

- Otherwise, the problem is not multiclass classification
- If an input can be assigned multiple labels (think tags for emails rather than folders), it is called multi-label classification

# Binary to multiclass

- Can we use a binary classifier to construct a multiclass classifier?
  - Decompose the prediction into multiple binary decisions

- How to decompose?
  - One-vs-all
  - All-vs-all
  - Error correcting codes

# 1. One-vs-all classification

Assumption: Each class individually separable from all the others

- Learning: Given a dataset  $D = \{(x_i, y_i)\}$   $x \in \mathbb{R}^n$   $y \in \{1, 2, \dots, K\}$ 
  - Decompose into K binary classification tasks
  - For class k, construct a binary classification task as:
    - Positive examples: Elements of D with label k
    - Negative examples: All other elements of D
  - Train K binary classifiers  $\mathbf{w}_1$ ,  $\mathbf{w}_2$ ,  $\cdots$   $\mathbf{w}_K$  using any learning algorithm we have seen

# 1. One-vs-all classification

Assumption: Each class individually separable from all the others

• Learning: Given a dataset 
$$D = \{(x_i, y_i)\}$$

$$x \in \mathbb{R}^n$$

$$y \in \{1, 2, \dots, K\}$$

- Train K binary classifiers  $\mathbf{w}_1$ ,  $\mathbf{w}_2$ ,  $\cdots$   $\mathbf{w}_K$  using any learning algorithm we have seen
- Prediction: "Winner Takes All" argmax<sub>i</sub> w<sub>i</sub><sup>T</sup>x

# Visualizing One-vs-all



### 2. All-vs-all classification

Sometimes called one-vs-one

- Assumption: Every pair of classes is separable
- Learning: Given a dataset  $D = \{(x_i, y_i)\}, \quad y \in \{1, 2, \dots, K\}$ 
  - For every pair of labels (j, k), create a binary classifier with:
    - Positive examples: All examples with label j
    - Negative examples: All examples with label k
  - Train  $\binom{K}{2} = \frac{K(K-1)}{2}$  classifiers to separate every pair of labels from each other

### 2. All-vs-all classification

Sometimes called one-vs-one

- Assumption: Every pair of classes is separable
- Learning: Given a dataset  $D = \{(x_i, y_i)\}, \quad \substack{x \in \Re^n \\ y \in \{1, 2, \dots, K\}}$ 
  - Train  $\binom{K}{2} = \frac{K(K-1)}{2}$  classifiers to separate every pair of labels from each other
- Prediction: More complex, each label get K-1 votes
  - How to combine the votes? Many methods
    - Majority: Pick the label with maximum votes
    - Organize a tournament between the labels

## All-vs-all classification



- Every pair of labels is linearly separable here
  - When a pair of labels is considered, all others are ignored

#### Problems

- 1. O(K<sup>2</sup>) weight vectors to train and store
- 2. Size of training set for a pair of labels could be very small, leading to overfitting of the binary classifiers
- 3. Prediction is often ad-hoc and might be unstable

  Eg: What if two classes get the same number of votes? For a tournament, what is the sequence in which the labels compete?