MATH1034OL1 Pre-Calculus Mathematics Notes from Sections 4.5, 1.6, 2.3 (Monday)

Elijah Renner

July 11, 2024

Contents

	Review Problems 1.1 Problem: Evaluate $\cot\left(\frac{2\pi}{3}\right)$	1
	1.2 Graph $y = 2\sin(4x - 20^{\circ}) - 3$	2
2	Trigonometric Functions on the Unit Circle	3
3	Domain and Range	3
4	Limit Definition of the Derivative	4

1 Review Problems

1.1 Problem: Evaluate $\cot\left(\frac{2\pi}{3}\right)$

First, we determine the reference angle. Since $\frac{2\pi}{3} = \frac{2\pi}{3} \cdot \frac{180^{\circ}}{\pi} = 120^{\circ}$, the angle is in the second quadrant. Recall from July 5th's notes that to find the reference angle of an angle in the second quadrant, we subtract it from 180° or π . Since we're working toward being comfortable with radian measures, we'll perform this operation in radians:

reference angle =
$$\pi - \frac{2\pi}{3} = \frac{3\pi}{3} - \frac{2\pi}{3} = \frac{\pi}{3}$$

This tells us we're dealing with a 30-60-90 triangle. Now, let's recall that $\cot = \frac{\text{adj}}{\text{opp}}$. Let's look for those.

Figure 1: Credit: https://www.cuemath.com/geometry/30-60-90-triangle/

Here,
$$y = \frac{1}{2}$$
. So, opp $= \frac{\sqrt{3}}{2}$ and adj $= \frac{1}{2}$. Thus, $\cot\left(\frac{2\pi}{3}\right) = \frac{\text{adj}}{\text{opp}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{2} \cdot \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
Don't forget that $\cot\left(\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{3}$ because cot is negative in quadrant two.

1.2 Graph $y = 2\sin(4x - 20^{\circ}) - 3$

When graphing sinosodal functions, we must determine amplitude, period, sub-period, phase (horizontal) shift, vertical shift, and shape:

Figure 2: Credit: https://youtu.be/AS7THLj-OhI

We first factor the
$$4x - 20^\circ$$
: $y = 2\sin(4x - 20^\circ) - 3 = 2\sin(4(x - 5^\circ)) - 3$.
Now, $a = 2, k = 4, c = -5$, and $d = -3$.

Thus, amplitude = |a|=|2|=2, period = $\frac{2\pi}{|k|}=\frac{2\pi}{4}=\frac{\pi}{2}$, sub-period = $\frac{\text{period}}{4}=\frac{\pi}{8}$, phase shift = -c=5, vertical shift = d=-3.

Since a > 0, the graph opens up. With these properties, the function can be graphed.

2 Trigonometric Functions on the Unit Circle

On the unit circle with angle θ , $x = \cos \theta$ and $y = \sin \theta$:

 $\label{lem:figure 3: Credit: https://courses.lumenlearning.com/precalculus/chapter/unit-circle-sine-and-cosine-functions/$

Hence,

$$\tan \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta} \quad (x \neq 0)$$

$$\csc \theta = \frac{1}{y} \quad (y \neq 0)$$

$$\sec \theta = \frac{1}{x} \quad (x \neq 0)$$

$$\cot \theta = \frac{x}{y} = \frac{\cos \theta}{\sin \theta} \quad (y \neq 0)$$

3 Domain and Range

Polynomials all have domain \mathbb{R} .

For even degree polynomials, the range is restricted.

For odd degree polynomials, the range is \mathbb{R} .

Rational functions have a domain of \mathbb{R} excluding the values that make the denominator equal to zero. Example:

for
$$g(x) = \frac{x-2}{5x+15}$$
, $5x + 15 \neq 0$.

$$\implies 5x \neq -15$$

$$\implies x \neq -3$$

Hence, the domain of g can be written as $\{x \in \mathbb{R} \mid x \neq -3\}$.

Even root functions, such as $h(x) = \sqrt{4x+1}$, have domains of all values x such that the contents of the root aren't negative. For h, $4x + 1 \ge 0$.

$$\implies 4x \ge -1$$

$$\implies x \ge -\frac{1}{4}$$

So the domain of h is $\left[-\frac{1}{4}, \infty\right)$.

Conversely, odd root functions have domains \mathbb{R} .

4 Limit Definition of the Derivative

The derivative of a function f(x) at a point x = a is defined by the limit:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Let's apply this definition to the function $f(x) = x^2 - x + 2$. First, we need to compute f(a + h):

$$f(a+h) = (a+h)^2 - (a+h) + 2$$

Expanding this, we get:

$$f(a+h) = a^2 + 2ah + h^2 - a - h + 2$$

Next, we compute f(a):

$$f(a) = a^2 - a + 2$$

Now, we find the difference f(a+h) - f(a):

$$f(a+h) - f(a) = (a^2 + 2ah + h^2 - a - h + 2) - (a^2 - a + 2)$$

Simplifying, we get:

$$f(a+h) - f(a) = 2ah + h^2 - h$$

We then divide by h:

$$\frac{f(a+h) - f(a)}{h} = \frac{2ah + h^2 - h}{h} = 2a + h - 1$$

Finally, we take the limit as h approaches 0:

$$f'(a) = \lim_{h \to 0} (2a + h - 1) = 2a - 1$$

Therefore, the derivative of the function $f(x) = x^2 - x + 2$ is:

$$f'(x) = 2x - 1$$

To find the slope of the function at x = 5, we substitute x = 5 into the derivative:

$$f'(5) = 2(5) - 1$$

Simplifying, we get:

$$f'(5) = 10 - 1 = 9$$

Therefore, the slope of the function $f(x) = x^2 - x + 2$ at the point x = 5 is:

$$f'(5) = 9$$

Now, let's use the point-slope form to find the equation of the tangent line at x = 5. The point-slope form of the equation of a line is given by:

$$y - y_1 = m(x - x_1)$$

where m is the slope of the line and (x_1, y_1) is a point on the line. In our case, the slope m is 9, and the point (x_1, y_1) is (5, f(5)). First, we need to find f(5):

$$f(5) = 5^2 - 5 + 2 = 25 - 5 + 2 = 22$$

So the point is (5, 22).

Now, we can substitute m = 9, $x_1 = 5$, and $y_1 = 22$ into the point-slope form:

$$y - 22 = 9(x - 5)$$

Simplifying, we get:

$$y - 22 = 9x - 45$$

$$y = 9x - 45 + 22$$

$$y = 9x - 23$$

Therefore, the equation of the tangent line to the function $f(x) = x^2 - x + 2$ at the point x = 5 is:

$$y = 9x - 23$$