Sistemas de Comunicación Analógicos

Fundamentos de Sistemas de Comunicación

Facultad de Ingeniería y Tecnología

29 de abril de 2021

Multiplexación

Definición

La multiplexación o acceso múltiple a un medio es una forma de compartir el mismo medio o canal de comunicación para su uso por varios transmisores o sistemas de comunicación sin interferir mutuamente.

Multiplexación

Definición

La multiplexación o acceso múltiple a un medio es una forma de compartir el mismo medio o canal de comunicación para su uso por varios transmisores o sistemas de comunicación sin interferir mutuamente.

Ejemplos:

- Medios de comunicación: radios, TV, cable
- Telefonía celular
- Redes inalámbricas
- Redes de datos cableadas

Estrategias de multiplexación

- 1. Espectral o en frecuencia
- 2. Temporal
- 3. Espacial
- 4. Cuadratura
- 5. Por código

Frequency-division multiplexing (FDM) o frequency-division multiple-access (FDMA)

Concepto: separar transmisiones/sistemas en distintas bandas en frecuencia.

- múltiples transmisores operando en paralelo (ej. emisores de FM)
- un emisor transmitiendo múltiples señales (ej. TV que transmite imagen y sonido)

Ejemplo: separación del espectro en bandas FM

Emisión simultánea de múltiples señales

Ejemplo de arquitectura transmisor y receptor para múltiples señales en una única emisión:

Emisión simultánea de múltiples señales

Ejemplo de arquitectura transmisor y receptor para múltiples señales en una única emisión:

Ejemplo: FM esterofónica

Ejemplo: FM esterofónica

Ejercicio

Realizar el diagrama de bloques de un receptor FM estéreo.

Ejemplo: FM esterofónica, recepción

FDM: aspectos prácticos

Cross-talk: interferencia entre las distintas bandas por no-linealidades o filtrado insuficiente.

FDM: aspectos prácticos

Cross-talk: interferencia entre las distintas bandas por no-linealidades o filtrado insuficiente.

Se puede minimizar su impacto mediante el uso de **bandas de guarda**, que son espacios del espectro que quedan sin uso y separan a las distintas señales.

FDM: aspectos prácticos

Cross-talk: interferencia entre las distintas bandas por no-linealidades o filtrado insuficiente.

Se puede minimizar su impacto mediante el uso de **bandas de guarda**, que son espacios del espectro que quedan sin uso y separan a las distintas señales.

Compromiso: el uso de bandas de guarda implica un uso menos eficiente del espectro.

Time-division multiplexing (TDM) o time-division multiple-access (TDMA)

Concepto: separar transmisiones/sistemas permitiendo el uso del canal en distintos intervalos temporales.

Muy usado en comunicaciones digitales, pero también puede usarse en sistemas analógicos:

• Requiere poder enviar "muestras" (pulsos) al menos a una tasa de $M \cdot 2W$

• Requiere poder enviar "muestras" (pulsos) al menos a una tasa de $M \cdot 2W$

Esto además implica: $B_T \ge MW$ (y usualmente mucho mayor)

• Requiere poder enviar "muestras" (pulsos) al menos a una tasa de $M \cdot 2W$

Esto además implica: $B_T \ge MW$ (y usualmente mucho mayor)

 Problema principal: sincronización para poder distinguir señales apropiadamente en Rx.

 Requiere poder enviar "muestras" (pulsos) al menos a una tasa de M · 2W
Esto además implica: B_T ≥ MW (y usualmente mucho mayor)

7 – (3

- Problema principal: sincronización para poder distinguir señales apropiadamente en Rx.
- Otro problema: cross-talk (inter-symbol interference).

• Requiere poder enviar "muestras" (pulsos) al menos a una tasa de $M \cdot 2W$

Esto además implica: $B_T \ge MW$ (y usualmente mucho mayor)

- Problema principal: sincronización para poder distinguir señales apropiadamente en Rx.
- Otro problema: cross-talk (inter-symbol interference).

Se puede ameliorar utilizando tiempos/intervalos de guarda.

Concepto: separar transmisiones/sistemas en el espacio.

Ejemplos:

- Usar distintos cables para distintas señales (ej. canal izq./der en los parlantes)
- Focalización de emisiones inalámbricas mediante antenas direccionales.
- Utilización de múltiples antenas en simultáneo para Tx (una antena distinta para c/señal) y Rx (al menos tantas como señales transmitidas), explotando las diferencias de fase en recepción para su separación (ej. sistemas MIMO, radar, wi-fi).

Multiplexación por división de código (CDM/CDMA)

Lo veremos junto con comunicaciones digitales.

Intuición: 'codificar' los bits a enviar (1 o 0) como secuencias distintas para cada transmisor. Si los códigos son ortogonales, será sencillo separarlos en recepción.

Mutiplexación por cuadratura (QAM)

Intuición: señal pasabanda con $B_T = 2W$ admite la representación:

$$x_{bp}(t) = x_i(t)\cos(2\pi f_c t) + x_q(t)\sin(2\pi f_c t)$$

Donde $x_i(t)$ y $x_q(t)$ son señales bandabase con $B_T = W$.

Mutiplexación por cuadratura (QAM)

Intuición: señal pasabanda con $B_T = 2W$ admite la representación:

$$x_{bp}(t) = x_i(t)\cos(2\pi f_c t) + x_q(t)\sin(2\pi f_c t)$$

Donde $x_i(t)$ y $x_q(t)$ son señales bandabase con $B_T = W$.

Es posible modular dos señales mediante DSB/AM si las portadoras se desfasan

Mutiplexación por cuadratura (QAM)

Intuición: señal pasabanda con $B_T = 2W$ admite la representación:

$$x_{bp}(t) = x_i(t)\cos(2\pi f_c t) + x_q(t)\sin(2\pi f_c t)$$

Donde $x_i(t)$ y $x_q(t)$ son señales bandabase con $B_T = W$.

Es posible modular dos señales mediante DSB/AM si las portadoras se desfasan

Demodulación QAM

Ejercicio

Demostrar que la demodulación puede hacerse mediante el filtrado pasabajo de las siguientes señales:

$$\hat{x}_i(t) = x_{bp}(t)\cos(2\pi f_c t)$$

$$\hat{x}_q(t) = x_{bp}(t)\sin(2\pi f_c t)$$

¿Cuál debe ser la frecuencia de corte del filtro? Realizar un diagrama de bloques del conjunto Tx+Rx.

Sincronismo en QAM

Principal problema de QAM: sincronismo.

Ejercicio

Hallar las señales demoduladas en función de las señales transmitidas si el oscilador del Rx tiene un desfasaje Φ_0 respecto de la portadora. Interprete el resultado.

¿Qué pasa si la frecuencia del oscilador en Rx es ligeramente distinta a la del transmisor?

Multiplexación: resumen

Cada una de las técnicas de multiplexación tiene sus ventajas y desventajas (hardware necesario/complejidad del sistema, ancho de banda, sincronismo). La decisión de usar uno u otro sistema dependerá de la aplicación.

Multiplexación: resumen

Cada una de las técnicas de multiplexación tiene sus ventajas y desventajas (hardware necesario/complejidad del sistema, ancho de banda, sincronismo). La decisión de usar uno u otro sistema dependerá de la aplicación.

Es posible combinar sistemas, usualmente de forma jerárquica.

Ejemplo: wi-fi usa FDM para asignar canales entre distintos routers, TDM para el flujo de datos en un enlace, y en caso de tener routers con múltiples antenas se puede utilizar multiplexación espacial.

El receptor debe:

Demodular

El receptor debe:

- Demodular
- Filtrar

El receptor debe:

- Demodular
- Filtrar
- Sintonizar

El receptor debe:

- Demodular
- Filtrar
- Sintonizar
- Amplificar

Arquitecturas de receptores

- Receptor sincrónico/producto (homodino o conversión directa)
- Receptor de envolvente
- Receptor super-heterodino

Receptor super-heterodino

Diagrama de bloques receptor superheterodino.

Figura 7.1-1, Communication Systems, 4th ed.

Receptor superheterodino: funcionamiento

Espectros de señales intermedias en receptor superheterodino.

Figura 7.1-2, Communication Systems, 4th ed.

Receptor superheterodino: ¿por qué?

La ventaja del receptor superheterodino radica en la disociación entre sintonización y filtrado:

- La porción sintonizable tiene requisitos laxos de filtrado, lo que hace sencillo su diseño.
- La porción de la frecuencia intermedia tiene requisitos estrictos de filtrado PERO con características no variables, lo que también simplifica su diseño.

Receptor superheterodino: ¿por qué?

La ventaja del receptor superheterodino radica en la disociación entre sintonización y filtrado:

- La porción sintonizable tiene requisitos laxos de filtrado, lo que hace sencillo su diseño.
- La porción de la frecuencia intermedia tiene requisitos estrictos de filtrado PERO con características no variables, lo que también simplifica su diseño.

Etapas intermedias múltiples

Es posible diseñar receptores superheterodinos con múltiples etapas intermedias, para mejorar aún más el desempeño del receptor.

Superheterodino: ejemplo (1/2)

Se desea diseñar un receptor superheterodino con frecuencia intermedia 500kHz, que se usa para recibir señales contenidas en la banda de 3 a 3.5MHz.

- Determine el rango de frecuencias debe poder cubrir el oscilador local
- Determine la región de frecuencias imagen relevantes en este diseño.
- Establezca las características necesarias para el filtro pasabanda en la etapa de RF.

Superheterodino: ejemplo (1/2)

Se desea diseñar un receptor superheterodino con frecuencia intermedia 500*kHz*, que se usa para recibir señales contenidas en la banda de 3 a 3,5*MHz*.

- Determine el rango de frecuencias debe poder cubrir el oscilador local
- Determine la región de frecuencias imagen relevantes en este diseño.
- Establezca las características necesarias para el filtro pasabanda en la etapa de RF.

Opción 1: $f_{LO} \in [2,5;3]MHz$, $f_{Im} \in [2;2,5]MHz$ y por lo tanto es necesario que en la banda de RF se rechace al menos lo que está por debajo de 2,5MHz.

Opción 2: $f_{LO} \in [3,5;4]MHz$, $f_{Im} \in [4;4,5]MHz$ y por lo tanto es necesario que en la banda de RF se rechace al menos lo que está por encima de 4MHz.

Superheterodino: ejemplo (2/2)

Ejercicio

¿Qué pasa si el oscilador local no es bueno y tiene una forma de onda que contiene terceros armónicos?

Concepto

Es un dispositivo/bloque que implementa un lazo de control realimentado (loop) para sincronizar la fase de una señal con otra (phase lock).

Es un dispositivo todo-terreno. Algunos ejemplos de usos:

- Resolución del problema del sincronismo (con y sin portadora).
- Demodulación de señales FM.
- Determinación de si un sintonizador está captando una señal o no (sintonzación por barrido).
- Sintetizado de señales (multiplicadores de frecuencia).

Comparador de fases (PD)

Circuito comparador de fases:

Figura 7.3-2, Communication Systems, 4th ed.

Comparador de fases (PD)

Circuito comparador de fases:

Figura 7.3-2, Communication Systems, 4th ed.

Donde:

$$\epsilon(t) = \theta_c(t) - \theta_v(t) - \frac{\pi}{2}$$

$$y(t) = \frac{K_a}{2} \sin(\epsilon(t))$$

PLL: diagrama de bloques

Figura 7.3-2, Communication Systems, 4th ed.

Donde el comportamiento del VCO está dado por:

$$\frac{\theta_{v}(t)}{2\pi} = f_{c} - \Delta f + K_{v} y(t)$$

Mostrar que si $x_c(t)$ es banda pasante: $\theta_c(t) = 2\pi f_c + \phi(t)$

Entonces se satisface la ecuación diferencial:

$$\dot{\epsilon}(t) + 2\pi K_{\nu} y(t) = 2\pi \Delta f + \dot{\Phi}(t)$$

PLL: análisis en régimen

De lo anterior surge:

$$\dot{\epsilon}(t) + 2\pi K_v \frac{K_a}{2} \sin(\epsilon(t)) = 2\pi \Delta f + \dot{\phi}(t)$$

Que es una relación entre la señal de entrada $\phi(t)$ y la salida del lazo $\epsilon(t)$.

De lo anterior surge:

$$\dot{\epsilon}(t) + 2\pi K_{\nu} \frac{K_{\mathsf{a}}}{2} \sin(\epsilon(t)) = 2\pi \Delta f + \dot{\phi}(t)$$

Que es una relación entre la señal de entrada $\phi(t)$ y la salida del lazo $\epsilon(t)$.

Para el caso $\phi(t)=\phi_0$ (entrada es sinusoidal pura), asumiendo solución estacionaria (ϵ constante), y definiendo $K=\frac{K_VK_a}{2}$:

$$\epsilon_{ss} = \arcsin\left(\frac{\Delta f}{K}\right)$$

De lo anterior surge:

$$\dot{\epsilon}(t) + 2\pi K_{\nu} \frac{K_{a}}{2} \sin(\epsilon(t)) = 2\pi \Delta f + \dot{\phi}(t)$$

Que es una relación entre la señal de entrada $\phi(t)$ y la salida del lazo $\epsilon(t)$.

Para el caso $\phi(t) = \phi_0$ (entrada es sinusoidal pura), asumiendo solución estacionaria (ϵ constante), y definiendo $K = \frac{K_V K_a}{2}$:

$$\epsilon_{ss} = \arcsin\left(\frac{\Delta f}{K}\right)$$

Error en regimen

El PLL tiene un error de seguimiento ϵ_{ss} para entradas sinusoidales.

Naturalmente, se desea ϵ_{ss} pequeño.

PLL: análisis de pequeña señal

Asumiendo $\epsilon(t) << 1$:

PLL: análisis de pequeña señal

Asumiendo $\epsilon(t) << 1$:

$$\dot{\epsilon}(t) + 2\pi \frac{K_{\nu}K_{a}}{2} [\epsilon(t) - \epsilon_{ss}] \approx \dot{\phi}(t)$$

Si Φ es la entrada y ϵ es la salida, tenemos un sistema dinámico de primer orden.

Aplicaciones de PLL: filtro piloto

Figura 7.3-3, Communication Systems, 4th ed.

Aplicaciones de PLL: detector sincrónico (sin portadora)

Figura 7.3-4, Communication Systems, 4th ed.

Aplicaciones de PLL: sintentización de frecuencia

Figura 7.3-6, Communication Systems, 4th ed.

En pequeña señal $(\epsilon(t) << 1)$ tenemos:

$$\dot{\epsilon}(t) + 2\pi K[\epsilon(t) - \epsilon_{ss}] pprox \dot{\phi}(t)$$

En pequeña señal ($\epsilon(t) << 1$) tenemos:

$$\dot{\epsilon}(t) + 2\pi K[\epsilon(t) - \epsilon_{ss}] pprox \dot{\phi}(t)$$

Pasando a espacio de Fourier:

$$j2\pi f \cdot E(f) + 2\pi K[E(f) - \epsilon_{ss}\delta(f)] \approx j2\pi f \Phi(f)$$

En pequeña señal ($\epsilon(t) << 1$) tenemos:

$$\dot{\epsilon}(t) + 2\pi K[\epsilon(t) - \epsilon_{ss}] pprox \dot{\phi}(t)$$

Pasando a espacio de Fourier:

$$j2\pi f \cdot E(f) + 2\pi K[E(f) - \epsilon_{ss}\delta(f)] \approx j2\pi f \Phi(f)$$

En la región f < W << K tenemos:

$$2\pi K[E(f) - \epsilon_{ss}\delta(f)] \approx j2\pi f\Phi(f)$$

$$2\pi K[\epsilon(t) - \epsilon_{ss}] \approx \dot{\phi}(t)$$

En pequeña señal ($\epsilon(t) << 1$) tenemos:

$$\dot{\epsilon}(t) + 2\pi K[\epsilon(t) - \epsilon_{ss}] pprox \dot{\phi}(t)$$

Pasando a espacio de Fourier:

$$j2\pi f \cdot E(f) + 2\pi K[E(f) - \epsilon_{ss}\delta(f)] \approx j2\pi f \Phi(f)$$

En la región f < W << K tenemos:

$$2\pi K[E(f) - \epsilon_{ss}\delta(f)] \approx j2\pi f\Phi(f)$$

$$2\pi K[\epsilon(t) - \epsilon_{ss}] \approx \dot{\phi}(t)$$

En el caso de FM la entrada satisface $\dot{\phi}(t) = 2\pi f_{\Delta}x(t)$, por lo que:

$$y(t) \approx \epsilon(t) \approx c + \frac{f_{\Delta}}{\kappa} x(t)$$

Notar que...

K (ganancia del lazo) debe ser mayor al ancho de banda de x(t).