SITUATION

L'étude d'une fonction f est une composante incontournable d'un problème. Selon l'énoncé, le nombre de questions intermédiaires peut varier, c'est pourquoi il faut être capable de dérouler par soi-même toutes les étapes de l'étude. L'objectif est de dresser le tableau de variations complet d'une fonction.

ÉNONCÉ

Etudier les variations de la fonction f définie par :

$$orall x \in \mathbb{R}$$
 , $f\left(x
ight) = rac{x-1}{e^x}$

Etape 1

Rappeler le domaine de définition de f

L'étude d'une fonction est restreinte à son domaine de définition, il est donc important de déterminer celui-ci.

APPLICATION

La fonction f est définie sur \mathbb{R} .

Etape 2

Calculer les limites aux bornes

On calcule les limites de faux bornes ouvertes de son ensemble de définition.

APPLICATION

On doit déterminer les limites de f en $-\infty$ et $+\infty$.

On a:

- $\lim_{x \to -\infty} x 1 = -\infty$
- $ullet \lim_{x o -\infty} e^x = 0^+$

On en déduit, par quotient :

$$\lim_{x o -\infty}f\left(x
ight) =-\infty$$

En $+\infty$, il s'agit d'une forme indéterminée. On transforme l'expression :

$$orall x \in \mathbb{R}$$
 , $f\left(x
ight) = rac{x}{e^x} - rac{1}{e^x}$

On a:

- $\lim_{x o +\infty} rac{x}{e^x} = 0^+$ (croissances comparées)
- $\lim_{x \to +\infty} \frac{1}{e^x} = 0^+$

On en déduit, par somme :

$$\lim_{x o +\infty} f\left(x
ight) = 0$$

Dériver f

On calcule la dérivée de f et on simplifie l'expression.

APPLICATION

La fonction est dérivable sur $\mathbb R$ en tant que quotient de fonctions dérivables sur $\mathbb R$ dont le dénominateur ne s'annule pas.

On remarque que $f=\displaystyle rac{u}{v}$ avec,

$$ullet$$
 $orall x \in \mathbb{R}$, $u\left(x
ight) = x-1$

•
$$orall x \in \mathbb{R}$$
 , $v\left(x
ight) = e^{x}$

On en déduit que :

$$f'=rac{u'v-uv'}{v^2}$$

Avec:

•
$$orall x \in \mathbb{R}$$
 , $u'\left(x
ight) = 1$

•
$$orall x \in \mathbb{R}$$
 , $v'\left(x
ight) = e^{x}$

On obtient:

$$orall x \in \mathbb{R}$$
 , $f'\left(x
ight) = rac{e^x - \left(x - 1
ight)e^x}{\left(e^x
ight)^2}$

$$orall x \in \mathbb{R}$$
 , $f'\left(x
ight) = rac{e^{x}\left(1-x+1
ight)}{\left(e^{x}
ight)^{2}}$

Finalement:

$$orall x \in \mathbb{R}$$
 , $f'\left(x
ight) = rac{2-x}{e^x}$

Etape 4

Etudier le signe de f'

On étudie le signe de $f'\left(x
ight)$, en utilisant éventuellement un tableau de signes.

APPLICATION

On étudie le signe de la dérivée, en étudiant séparément le signe du numérateur et le signe du dénominateur :

$$ullet$$
 $orall x \in \mathbb{R}$, $e^x > 0$

$$ullet$$
 Soit $x\in\mathbb{R}$, $2-x>0\Leftrightarrow x<2$

On en déduit le signe de $f'\left(x
ight)$:

X	- ∞	2	+ ∞
f'(x)	+	0	_

Etape 5

Enoncer le lien entre signe de la dérivée et variations de la fonction

On rappelle que:

- Si $f'\left(x
 ight)>0$ sur un intervalle \emph{I} , alors \emph{f} est strictement croissante sur \emph{I} .
- Si f'(x) < 0 sur un intervalle \emph{I} , alors \emph{f} est strictement décroissante sur \emph{I} .

APPLICATION

D'après le cours, on sait que :

- Si $f'\left(x
 ight)>0$ sur un intervalle \emph{I} , alors \emph{f} est strictement croissante sur \emph{I} .
- ullet Si $f'\left(x
 ight)<0$ sur un intervalle \emph{I} , alors \emph{f} est strictement décroissante sur \emph{I} .

On en déduit que :

- f est strictement croissante sur $]-\infty;2[$.
- f est strictement décroissante sur $]2;+\infty[$.

Etape 6

Calculer les extremums locaux éventuels

On calcule la valeur de faux points où sa dérivée s'annule et change de signe.

APPLICATION

On calcule f(2):

$$f\left(2
ight)=rac{2-1}{e^2}$$
 $f\left(2
ight)=e^{-2}$

$$f\left(2
ight) =e^{-2}$$

Etape 7

Dresser le tableau de variations

On synthétise ces informations dans le tableau de variations de f:

- Le domaine de définition de f, les valeurs où sa dérivée change de signe et les éventuelles valeurs interdites
- Le signe de f'(x)
- Les variations de f
- Les limites et les extremums locaux

APPLICATION

On dresse enfin le tableau de variations de *f* :

Même si l'on connaît les étapes de l'étude de fonction par cœur, il est indispensable de lire soigneusement l'énoncé. Il faut répondre à chaque question rigoureusement, et ne pas se laisser entraîner à répondre à plusieurs questions en même temps par automatisme.

Une étude de fonction peut s'avérer longue et très calculatoire. Il est donc fortement conseillé de hiérarchiser les étapes et les calculs.

Kartable.fr 4/4 Chapitre 7: La dérivation