Masaryková univerzita Fakulta informatiky

Teoretické základy informatiky a matematika

Vypracované otázky pre bakalárske SZZ

Obsah

L	$\mathbf{M}\mathbf{n}$	ožiny, relácie, zobrazenia, čísla.	2
	1.1	Množiny	2
		1.1.1 Základné pojmy	2
	1.2	Základné množinové operácie	2
	1.3	Potenčná množina	2
	1.4	Usporiadanie	2

1 Množiny, relácie, zobrazenia, čísla.

Základné množinové operácie, množinový kalkul, potenčná množina, kartézsky súčin. Relácie a ich vlastnosti - ekvivalencia a rozklady, usporiadanie a usporiadané množiny. Skladanie relácií, zobrazenia (injekcia, surjekcia, bijekcia). Elementárna teória čísiel (delitelnosť, Euklidov algoritmus, modulárne operácie).

1.1 Množiny

Množina je súbor prvkov a je svojimi prvkami plne určená. Množina môže byť prvkom inej množiny. Množina nemusí mať konečný počet prvkov.

Majme $M=\{a,b\}=\{b,a\}=\{a,b,a\}$ a $N=\{\{a\},\{b,c,d,e\}\}$. Pre prvky množín M a N potom platí: $a\in M,\,a\not\in N,$ $\{a\}\in N.$

Pokiaľ je množina prázdna (t.j. neobsahuje žiadne prvky - takúto množinu značíme \emptyset), potom platí $\emptyset \in \{\emptyset\}$ ale $\emptyset \notin \emptyset$.

1.1.1 Základné pojmy

Mohutnosť množiny je určená počtom jej prvkov. Mohutnosť množiny A zapisujeme ako |A|.

$$|\emptyset| = 0$$

 $|\{\emptyset\}| = 1$
 $|\{a, b, c\}| = 3$
 $|\{\{a, b\}, c\}| = 2$

Množina je A **podmnožinou** množiny B práve vtedy, keď každý prvok A je prvkom B. Píšeme $A \subseteq B$. Tento vzťah nazývame tiež **inklúzia**¹. Zároveň vtedy platí, že B je **nadmnožinou** množiny A (píšeme $B \supseteq A$).

$$A \subseteq B \Leftrightarrow \forall x (x \in A \Rightarrow x \in B)$$

Množiny si sú **rovné** práve vtedy, keď $A \subseteq B$ a $B \subseteq A$.

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Množina A je vlastnou podmnožinou množiny B práve vtedy, keď A je podmnožinou B a $A \neq B$.

$$A \subset B \Leftrightarrow A \subseteq B \land \exists x \in B(x \not\in A)$$

1.2 Základné množinové operácie

Základnými množinovými operáciami nad množinami A a B sú:

- zjednotenie $A \cup B = \{x \mid x \in A \lor x \in B\}$
- prienik $A \cap B = \{x \mid x \in A \land x \in B\}$
- rozdiel $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- symetrický rozdiel $A \triangle B = (A \setminus B) \cup (B \setminus A)$
- doplnok (komplement) nech $A \subseteq M$. Doplnok množiny A vzhľadom k množine M je množina $\overline{A} = M \setminus A$

1.3 Potenčná množina

1.4 Usporiadanie

 $^{^1}$ Pre ľubovolnú množinu S je relácia inklúzie čiastočným usporiadaním na množine 2^A (viď. 1.4 a 1.3)