#### **Descriptive Statistics and Stylized Facts**

Herbert (Yuming) Liu & Eric Zivot

4/12/2021

### R Set-up for Examples

```
options(digits=3, width=70)
# Load packages
library(car)
library(corrplot)
library(dygraphs)
library(IntroCompFinR)
library(PerformanceAnalytics)
library(sn)
library(tseries)
library(zoo)
Sys.setenv(TZ="UTC")
```

#### **Data for Examples**

Daily prices on Microsoft and S&P500 Index from 1993-01-04 to 2014-12-31 taken from Yahoo!

```
data(msftDailyPrices, sp500DailyPrices)
smpl = "1993-01::2014-12"
msftDailyPrices = msftDailyPrices[smpl]
sp500DailyPrices = sp500DailyPrices[smpl]
msftMonthlyPrices = to.monthly(msftDailyPrices, OHLC=FALSE)
sp500MonthlyPrices = to.monthly(sp500DailyPrices, OHLC=FALSE)
msftSp500DailyPrices = merge(msftDailyPrices, sp500DailyPrices, sp500DailyPrices, sp500MonthlyPrices = merge(msftMonthlyPrices, sp500MonthlyPrices, sp500MonthlyPrices
```

• xts function to.monthly() extracts end-of-month value from daily data

#### **Price data**

```
head(msftSp500DailyPrices, n=3)
##
              MSFT SP500
## 1993-01-04 1.89
                     435
## 1993-01-05 1.92 434
## 1993-01-06 1.98 435
head(msftSp500MonthlyPrices, n=3)
##
            MSFT SP500
  Jan 1993 1.92
                   439
```

## Feb 1993 1.85 443 ## Mar 1993 2.06 452

#### **Compute Returns**

Use **PerformanceAnalytics** function Return.calculate() to compute simple returns:

```
msftMonthlyRetS = Return.calculate(msftMonthlyPrices,
                                   method="simple")
msftDailyRetS = Return.calculate(msftDailyPrices,
                                 method="simple")
sp500MonthlyRetS = Return.calculate(sp500MonthlyPrices,
                                    method="simple")
sp500DailyRetS = Return.calculate(sp500DailyPrices,
                                  method="simple")
msftSp500MonthlyRetS = Return.calculate(msftSp500MonthlyPrice:
                                         method="simple")
msftSp500DailyRetS = Return.calculate(msftSp500DailyPrices,
                                       method="simple")
```

#### **Compute CC Returns**

#### Return data

```
head(msftSp500DailyRetS, n=3)
##
                MSFT
                         SP500
  1993-01-05 0.0159 -0.002389
  1993-01-06 0.0312 0.000414
## 1993-01-07 -0.0202 -0.008722
head(msftSp500MonthlyRetS, n=3)
##
              MSFT
                     SP500
## Feb 1993 -0.0365 0.0105
## Mar 1993 0.1135 0.0187
```

## Apr 1993 -0.0777 -0.0254

#### **Covariance Stationarity**

$$\{\ldots,X_1,\ldots,X_T,\ldots\}=\{X_t\}$$

is a covariance stationary stochastic process, and each  $X_t$  is identically distributed with unknown pdf f(x).

Recall,

$$E[X_t] = \mu$$
 indep of  $t$ 
 $\operatorname{var}(X_t) = \sigma^2$  indep of  $t$ 
 $\operatorname{cov}(X_t, X_{t-j}) = \gamma_j$  indep of  $t$ 
 $\operatorname{cor}(X_t, X_{t-j}) = \rho_j$  indep of  $t$ 

# **Observed Sample and Descriptive Statistics**

$${X_1 = x_1, \dots, X_T = x_T} = {x_t}_{t=1}^T$$

are observations generated by the stochastic process  $\{X_t\}$ .

Descriptive Statistics:

Data summaries (statistics) to describe certain features of the data  $\{x_t\}_{t=1}^T$ , to learn about the unknown pdf, f(x), and to capture the observed dependencies in the data.

• Can be graphical or numerical

#### **Time Plots**

Line plot of time series data with time/dates on horizontal axis

- Visualization of data uncover trends, assess stationarity and time dependence
- Spot unusual behavior
- Plotting multiple time series can reveal commonality across series

#### **R** Functions

| Function | Package  | Description              |
|----------|----------|--------------------------|
| plot.ts  | stats    | basic line plot          |
| plot.zoo | Z00      | plot xts/zoo time series |
| plot.xts | xts      | plot xts time series     |
| autoplot | forecast | ggplot for time series   |

#### **Line Plot of Monthly Prices**

#### Monthly Prices



### **Line Plot of Monthly Returns**

#### Monthly Simple Return



#### Line Plot of Monthly Returns - Same Plot





### **Plotting Daily Returns**

```
plot.zoo(msftSp500DailyRetS, main="",
    panel=my.panel, col=c("black", "blue"))
```



### **Equity Curves for MSFT and SP500**



#### **Histograms**

Goal: Describe the shape of the distribution of the data  $\{x_t\}_{t=1}^T$ Hisogram Construction:

- Order data from smallest to largest values
- Divide range into N equally spaced bins

$$[-|-|-|\cdots|-|-|$$

- Count number of observations in each bin
- Create bar chart (optionally normalize area to equal 1)

#### **R** Functions

| Function  | Description                |
|-----------|----------------------------|
| hist()    | compute histogram          |
| density() | compute smoothed histogram |

# Histograms of Daily and Monthly Returns









#### **Histograms: Same Bins**









#### MSFT Monthly Returns vs. Normal Distribution









#### MSFT Daily Returns vs. Normal Distribution



returns

returns

#### **Smoothed Histogram**

The density() function computes a smoothed (kernel density) estimate of the unknown pdf at the point x using the formula

$$\hat{f}(x) = \frac{1}{Tb} \sum_{t=1}^{T} k \left( \frac{x - x_t}{b} \right)$$

 $k(\cdot) = \text{kernel function}$ 

b = bandwidth (smoothing) parameter

where  $k(\cdot)$  is a pdf symmetric about zero (typically the standard normal distribution). See Ruppert Chapter 4 for details.

# **Smoothed Histogram for MSFT Monthly returns**



# **Empirical Quantiles/Percentiles**

For  $\alpha \in [0,1]$ , the  $100 \times \alpha^{th}$  percentile (empirical quantile) of a sample of data is the data value  $\hat{q}_{\alpha}$  such that  $\alpha \cdot 100\%$  of the data are less than  $\hat{q}_{\alpha}$ .

Quartiles:

```
\hat{q}_{.25}=\, first quartile \hat{q}_{.50}= second quartile (median) \hat{q}_{.75}= third quartile \hat{q}_{.75}-\hat{q}_{.25}= interquartile range (IQR)
```

#### R functions

- sort(): sort elements of data vector
- min(): compute minimum value of data vector
- max(): compute maximum value of data vector
- range(): compute min and max of a data vector
- quantile(): compute empirical quantiles
- median(): compute median
- IQR(): compute inter-quartile range
- summary(): compute summary statistics

# **Empirical Quantiles for Monthly Returns**

```
apply(msftSp500MonthlyRetS, 2, quantile)
##
          MSFT SP500
## 0% -0.3434 -0.1694
## 25% -0.0379 -0.0174
## 50% 0.0146 0.0121
## 75% 0.0629 0.0345
## 100% 0.4076 0.1077
apply(msftSp500MonthlyRetS, 2, quantile,
     probs = c(0.01, 0.025, 0.05)
```

```
## MSFT SP500
## 1% -0.165 -0.1100
## 2.5% -0.154 -0.0858
## 5% -0.127 -0.0724
```

### **Empirical Quantiles for Daily Returns**

```
apply(msftSp500DailyRetS, 2, quantile)
##
           MSFT SP500
## 0% -0.15598 -0.090350
## 25% -0.00956 -0.004704
## 50% 0.00000 0.000617
## 75% 0.01067 0.005739
## 100% 0.19555 0.115800
apply(msftSp500DailyRetS, 2, quantile,
     probs = c(0.01, 0.025, 0.05)
```

```
## MSFT SP500
## 1% -0.0541 -0.0318
## 2.5% -0.0383 -0.0238
## 5% -0.0297 -0.0180
```

# Historical Value-at-Risk (VaR)

Let  $\{R_t\}_{t=1}^T$  denote a sample of T simple monthly returns on an investment, and let  $W_0$  be the initial value of an investment. For  $\alpha \in (0,1)$ , the historical  $VaR_{\alpha}$  is

$$W_0 \times \hat{q}^R_{\alpha}$$
  $\hat{q}^R_{\alpha} = \text{empirical } \alpha \cdot 100\% \text{ quantile of} \{R_t\}_{t=1}^T$ 

For continuously compounded returns  $\{r_t\}_{t=1}^T$  use

$$\begin{split} \$W_0 \times (\exp(\hat{q}_\alpha^r) - 1) \\ \hat{q}_\alpha^r &= \text{empirical } \alpha \cdot 100\% \text{ quantile of} \{r_t\}_{t=1}^T \end{split}$$

#### **Historical VaR**

#### Pros:

• By using the empirical quantiles  $\hat{q}_{\alpha}^{R}$  Historical VaR does not assume any particular probability distribution for simples returns (i.e., does not assume returns are normally distributed)

#### Cons:

• You need a lot of data for  $\hat{q}_{\alpha}^{R}$  to be a good estimate of  $q_{\alpha}^{R}$ , especially for  $\alpha$  close to 0 (e.g. 0.05, 0.025, 0.01)

#### Example: Historical 1% and 5% Monthly VaR

Consider a \$100,000 investment for 1-Month in MSFT and SP500:

```
W = 100000
msftQuantiles = quantile(msftMonthlyRetS, probs=c(0.01, 0.05))
sp500Quantiles = quantile(sp500MonthlyRetS, probs=c(0.01, 0.05))
msftVaR = W*msftQuantiles
sp500VaR = W*sp500Quantiles
cbind(msftVaR, sp500VaR)
```

```
## msftVaR sp500VaR
## 1% -16462 -10997
## 5% -12729 -7239
```

#### **Sample Statistics**

Plug-In Principle: Estimate population quantities using sample statistics Sample Average (Mean)

$$\frac{1}{T} \sum_{t=1}^{T} x_t = \bar{x} = \hat{\mu}_x$$

Sample Variance

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})^2 = s_x^2 = \hat{\sigma}_x^2$$

Sample Standard Deviation

$$\sqrt{s_x^2} = s_x = \hat{\sigma}_x$$

### **Sample Statistics**

Sample Skewness

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})^3 / s_x^3 = \widehat{skew}$$

Sample Kurtosis

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})^4 / s_x^4 = \widehat{kurt}$$

Sample Excess Kurtosis

$$\widehat{kurt} - 3$$

#### **R** Functions

| Function              | Package                     | Description                       |
|-----------------------|-----------------------------|-----------------------------------|
| mean()                | base                        | compute sample mean               |
| <pre>colMeans()</pre> | base                        | compute column means of matrix    |
| <pre>var()</pre>      | stats                       | compute sample variance           |
| sd()                  | stats                       | compute sample standard deviation |
| skewness()            | <b>PerformanceAnalytics</b> | compute sample skewness           |
| <pre>kurtosis()</pre> | <b>PerformanceAnalytics</b> | compute sample excess kurtosis    |

• Use the R function apply(), to apply functions over rows or columns of a matrix or data frame

### Sample Shape Statistics for Monthly Returns

# Sample Shape Statistics for Monthly returns

#### round(statsMonthly, digits=4)

```
## MSFT SP500
## Mean 0.0164 0.0068
## Variance 0.0087 0.0018
## Std Dev 0.0933 0.0424
## Skewness 0.4553 -0.7169
## Excess Kurtosis 2.1962 1.2910
```

## Sample Shape Statistics for Daily Returns

```
## MSFT SP500
## Mean 0.0008 0.0003
## Variance 0.0004 0.0001
## Std Dev 0.0205 0.0118
## Skewness 0.2158 -0.0609
## Excess Kurtosis 6.6294 8.8279
```

#### **Empirical Cumulative Distribution Function**

Recall, the CDF of a random variable X is

$$F_X(x) = \Pr(X \le x)$$

The empirical CDF of a random sample is

$$\hat{F}_X(x) = \frac{1}{n} (\#x_i \le x)$$
= 
$$\frac{\text{number of } x_i \text{ values } \le x}{\text{sample size}}$$

## **Empirical Cumulative Distribution Function**

How to compute and plot  $\hat{F}_X(x)$  for a sample  $\{x_1, \ldots, x_n\}$ :

- Sort data from smallest to largest values:  $\{x_{(1)}, \dots, x_{(n)}\}$
- Compute  $\hat{F}_X(x)$  at these points
- Plot  $\hat{F}_X(x)$  against sorted data  $\{x_{(1)}, \dots, x_{(n)}\}$
- Alternatively, use the R function ecdf()

Note:  $x_{(1)}, \ldots, x_{(n)}$  are called the *order statistics*. In particular,  $x_{(1)} = \min(x_1, \ldots, x_n)$  and  $x_{(n)} = \max(x_1, \ldots, x_n)$ .

# Compare Empirical CDF with Normal CDF for MSFT Monthly Returns

```
# standardize returns to have mean zero and sd 1
z1 = scale(coredata(msftMonthlyRetS))
n1 = length(msftMonthlyRetS)
# compute empirical CDF
F.hat = 1:n1/n1
# sort from smallest to largest
x1 = sort(z1)
# compute standard normal cdf at x1
y1 = pnorm(x1)
```

## Compare Empirical CDF with Normal CDF for MSFT





## Quantile-Quantile (QQ) Plots

A QQ plot is useful for comparing your data with the quantiles of a distribution (usually the normal distribution) that you think is appropriate for your data. You interpret the QQ plot in the following way:

- If the points fall close to a straight line, your conjectured distribution is appropriate
- If the points do not fall close to a straight line, your conjectured distribution is not appropriate and you should consider a different distribution

#### **R** functions

| Function                   | Package | Description                                                                                             |
|----------------------------|---------|---------------------------------------------------------------------------------------------------------|
| qqnorm() qqline() qqPlot() |         | QQ-plotagainst normal distribution draw straight line on QQ-plot QQ-plot against specified distribution |

## Normal QQ-plots for GWN, Microsoft and S&P 500 returns



#### **QQ-Plot for Fat-Tailed Data**





### **QQ-Plot for Right Skewed Data**





#### **QQ-Plot for Left Skewed Data**



#### **Outliers**

Can you spot the outlier?



#### **Outliers**

- Extremely large, small or unusual values are called outliers
- Outliers can greatly influence the values of common descriptive statistics. In particular, the sample mean, variance, standard deviation, skewness and kurtosis
- Percentile measures are more robust to outliers: outliers do not greatly influence these measures (e.g. median instead of mean; IQR instead of SD)
- Bad rule-of-thumb: outlier =  $\hat{\mu} \pm 3 \times \hat{\sigma}$ . Why?

#### Effect of outliers on sample statistics





### Effect of outliers on sample statistics

| ## |                  | GWN     | GWN.Outlier | pctchange |
|----|------------------|---------|-------------|-----------|
| ## | Mean             | 0.0203  | 0.0186      | -0.0854   |
| ## | Var              | 0.0089  | 0.0101      | 0.1398    |
| ## | SD               | 0.0943  | 0.1006      | 0.0676    |
| ## | ${\tt skewness}$ | -0.3097 | -0.9489     | 2.0640    |
| ## | ${\tt kurtosis}$ | 2.8895  | 6.5464      | 1.2656    |
| ## | median           | 0.0276  | 0.0276      | 0.0000    |
| ## | IQR              | 0.1292  | 0.1292      | 0.0000    |

#### **Defining Outliers**

Recall, the IQR is a robust measure of spread:

$$IQR = \hat{q}_{.75} - \hat{q}_{.25}$$

Moderate Outlier

$$\hat{q}_{.75} + 1.5 \cdot IQR < x < \hat{q}_{.75} + 3 \cdot IQR$$
  
 $\hat{q}_{.25} - 3 \cdot IQR < x < \hat{q}_{.25} - 1.5 \cdot IQR$ 

Extreme Outlier

$$x > \hat{q}_{.75} + 3 \cdot IQR$$
$$x < \hat{q}_{.25} - 3 \cdot IQR$$

#### **Boxplots**

A box plot displays the locations of the basic features of the distribution of one-dimensional data

- The box shows the median, the upper and lower quartiles,
- The outer fences that indicate the extent of your data beyond the quartiles, and outliers, if any.
- Gives a graphical summary of a data distribution using outlier robust statistics

#### **R** functions

| Function                             | Package                          | Description                                               |
|--------------------------------------|----------------------------------|-----------------------------------------------------------|
| <pre>boxplot() chart.Boxplot()</pre> | graphics<br>PerformanceAnalytics | box plots for multiple series box plots for asset returns |

## **Example Boxplot for MSFT Monthly Returns**



#### **Boxplots: Comparing Return Distributions**





#### **Boxplots: Comparing Return Distributions**





#### **Bivariate Descriptive Statistics**

$$\{\ldots,(X_1,Y_1),(X_2,Y_2),\ldots(X_T,Y_T),\ldots\}=\{(X_t,Y_t)\}$$

covariance stationary bivariate stochastic process with realized values

$$\{(x_1, y_1), (x_2, y_2), \dots (x_T, y_T)\} = \{(x_t, y_t)\}_{t=1}^T$$

#### **Scatterplot**

- XY plot of bivariate data
- R functions: plot(), pairs()

### **Scatterplots of Returns**



## **Sample Covariance and Correlation**

Sample Covariance

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})(y_t - \bar{y}) = s_{xy} = \hat{\sigma}_{xy}$$

Sample Correlation

$$\frac{\hat{\sigma}_{xy}}{\hat{\sigma}_x\hat{\sigma}_y} = \hat{\rho}_{xy} = \frac{s_{xy}}{s_x s_y} = r_{xy}$$

### Sample Covariance and Correlation Matrices

For a data set of T observations on N asset returns

$$\hat{\Sigma} = \begin{bmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} & \cdots & \hat{\sigma}_{1N} \\ \hat{\sigma}_{12} & \hat{\sigma}_2^2 & \cdots & \hat{\sigma}_{2N} \\ \vdots & \vdots & \cdots & \vdots \\ \hat{\sigma}_{1N} & \hat{\sigma}_{2N} & \cdots & \hat{\sigma}_N^2 \end{bmatrix}, \hat{R} = \begin{bmatrix} 1 & \hat{\rho}_{12} & \cdots & \hat{\rho}_{1N} \\ \hat{\rho}_{12} & 1 & \cdots & \hat{\rho}_{2N} \\ \vdots & \vdots & \cdots & \vdots \\ \hat{\rho}_{1N} & \hat{\rho}_{2N} & \cdots & 1 \end{bmatrix}$$

#### **R** functions

| Function                     | Package                             | Description                                                                                                        |
|------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| var() cov() cor() corrplot() | stats<br>stats<br>stats<br>corrplot | compute sample cov matrix<br>compute sample cov matrix<br>compute sample cor matrix<br>visualize sample cor matrix |

## Sample Covariance and Correlation Matrices of Returns

Covariance matrix of monthly returns:

```
cov(msftSp500MonthlyRetS)
```

```
## MSFT SP500
## MSFT 0.00870 0.00228
## SP500 0.00228 0.00179
```

Correlation matrix of monthly returns

```
cor(msftSp500MonthlyRetS)
```

```
## MSFT SP500
## MSFT 1.000 0.577
## SP500 0.577 1.000
```

## Sample Covariance and Correlation Matrices of Returns

Covariance matrix of Daily returns:

```
cov(msftSp500DailyRetS)
```

```
## MSFT SP500
## MSFT 0.000420 0.000152
## SP500 0.000152 0.000138
```

Correlation matrix of Daily returns

```
cor(msftSp500DailyRetS)
```

```
## MSFT SP500
## MSFT 1.00 0.63
## SP500 0.63 1.00
```

### **Visualize Sample Correlation Matrix**

corrplot.mixed(cor.mat, lower="number", upper="ellipse")



#### **Time Series Descriptive Statistics**

Sample Autocovariance

$$\hat{\gamma}_j = \frac{1}{T-1} \sum_{t=j+1}^T (x_t - \bar{x})(x_{t-j} - \bar{x}), j = 1, 2, \dots$$

Sample Autocorrelation

$$\hat{\rho}_j = \frac{\hat{\gamma}_j}{\hat{\sigma}^2}, \ j = 1, 2, \dots$$

#### **R** functions

| Function                                     | Package                                         | Description                                                    |
|----------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|
| <pre>acf() chart.ACF() chart.ACFplus()</pre> | stats PerformanceAnalytics PerformanceAnalytics | plot $\hat{ ho}_j$<br>plot $\hat{ ho}_j$<br>plot $\hat{ ho}_j$ |

## Sample Autocorrelation Function (SACF) of Returns



#### **Rolling Means**

Idea: compute estimate of  $\mu_i$  over rolling windows of length n < T:

$$\hat{\mu}_{it}(n) = \frac{1}{n} \sum_{j=0}^{n-1} R_{it-j}$$

$$= \frac{1}{n} (R_{it} + R_{it-1} + \dots + R_{it-n+1})$$

for  $t = n, \dots, T$ .

 $\hat{\mu}_{in}(n)$  is the sample mean of the returns  $\{R_{it}\}_{t=1}^n$  over the first sub-sample window of size n.

Similarly,  $\hat{\mu}_{in+1}(n)$  is the sample mean of the returns  $\{R_{it}\}_{t=2}^{n+1}$ .

Rolling estimates:  $\{\hat{\mu}_{in}(n), \hat{\mu}_{in+1}(n), \cdots, \hat{\mu}_{iT}(n)\}$ 

#### **Rolling Means Example**

```
roll.data = merge(msftMonthlyRetS,sp500MonthlyRetS,gwnMonthly)
colnames(roll.data) = c("MSFT", "SP500", "GWN")
roll.muhat = rollapply(roll.data, width=24, by=1,
                       by.column=TRUE, FUN=mean, align="right"
class(roll.muhat)
## [1] "xts" "zoo"
head(roll.muhat, n=1)
##
           MSFT SP500 GWN
## Feb 1993 NA NA NA
head(na.omit(roll.muhat), n=1)
##
              MSFT SP500
                             GWN
```

## Jan 1995 0.0161 0.0032 0.0284

### Rolling Means Example Cont.



#### **Rolling Volatility**

Idea: Compute estimates of  $\sigma_i^2$  and  $\sigma_i$  over rolling windows of length n < T

$$\hat{\sigma}_{it}^{2}(n) = \frac{1}{n-1} \sum_{j=0}^{n-1} (R_{it-j} - \hat{\mu}_{it}(n))^{2}$$
$$\hat{\sigma}_{it}(n) = \sqrt{\hat{\sigma}_{it}^{2}(n)}$$

for  $t = n, \dots, T$ .

Rolling estimates:  $\{\hat{\sigma}_{in}^2(n), \hat{\sigma}_{in+1}^2(n), \cdots, \hat{\sigma}_{iT}^2(n)\}$ 

#### Rolling Volatility Example



## **Rolling Covariances and Correlations**

Idea: Compute estimates of  $\sigma_{jk}$  and  $\rho_{jk}$  over rolling windows of length n < T

$$\hat{\sigma}_{jk,t}(n) = \frac{1}{n-1} \sum_{i=0}^{n-1} (r_{jt-i} - \hat{\mu}_j(n)) (r_{kt-i} - \hat{\mu}_k(n))$$

$$\hat{\rho}_{jk,t}(n) = \frac{\hat{\sigma}_{jk,t}(n)}{\hat{\sigma}_{jt}(n)\hat{\sigma}_{kt}(n)}$$

## Rolling Covariances and Correlations Example

```
rhohat = function(x)  {
   corhat = cor(x)
   corhat.vals = corhat[lower.tri(corhat)]
  names(corhat.vals) = c("MSFT.SP500", "MSFT.GWN", "SP500.GW]
   corhat.vals
roll.rhohat = rollapply(roll.data, width=24, FUN=rhohat,
  by=1, by.column=FALSE, align="right")
head(na.omit(roll.rhohat).n=3)
           MSFT.SP500 MSFT.GWN SP500.GWN
##
                0.384 0.354 0.239
## Jan 1995
## Feb 1995
               0.411 0.363 0.318
```

## Mar 1995

0.428 0.352 0.318

#### Rolling Covariances and Correlations Example Cont.



#### **Four Panel Plot**

The IntroCompFinR package has the function fourPanelPlot() which can be used to graphically summarize the stylized facts of a single time series of returns:

- Histogram with fitted normal curve overlaid
- Boxplot
- SACF
- Normal QQ-Plot

#### Four Panel Plot - Example

#### fourPanelPlot(msftMonthlyRetS)

#### MSFT monthly returns









### **Stylized Facts of Monthly Returns**

- Returns appear to be approximately normally distributed
- Individual asset returns have higher volatility than diversified portfolios (diversification effect)
- Many assets are contemporaneously positively correlated (unusual to find negatively correlated assets)
- Asset returns are approximately uncorrelated over time (no serial correlation)

#### Stylized Facts of Daily Returns

- Returns are not normally distributed distributions have fatter tails than normal
- Returns are approximately uncorrelated over time
- Returns are not independent over time
  - Squared and absolute returns are positively autocorrelated
  - Volatility appears to be serially correlated