ギルバート乗算回路の設計手順 の確認とシミュレーション

B4 小島光

2023年4月17日

背景

- ・光リザーバの出力はそのままでは利用できない
- ・複数の出力の積和演算を行うことで特徴量を抽出
- ・光での積和演算は困難
- ・リアルタイム性が求められるためアナログ集積回路で演算
- ・まず1入力の積和演算(乗算器)を設計し今後それを多入力化

2

目的

1

- 使用するプロセスがまだ定まっていないため、今回は乗算器の 設計手順を確認することを目的とした。
 - 1. ギルバート乗算器について
 - 2. 設計の流れ
 - 3. 設計内容
 - 4. シミュレーション結果 参考ギルバート乗算回路の利得

1.ギルバート乗算器について

左図のように構成された乗算器。

入力をv、 V_{CTRL} とし、 $v \cdot V_{CTRL}$ に比 例した v_{out} を出力する

vが V_{CTRL} に比例していることが重要

2.設計の流れ

1回路を流れる電流の決定

3抵抗値を直流電位、バイアス電流から決定

4利得、トランスコンダクタンスの設計

5差動対のゲート電位の決定

6シミュレーション

5

3.1電流の決定

電流は数um程度だと周波数特性が悪い ⇒今回は20 uAを流すものとした ドレインソース間電圧を0.4 Vとした

MOSFETのドレイン電流は以下の式で表される

$$I_d = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{th} \right)^2 \cdot \left(1 + \lambda V_{DS} \right)$$

 $\frac{1}{2}\mu_n C_{ox} \frac{W}{L} = K$ とし、これをトランスコンダクタンスと呼ぶ w/Lはチャネルの幅と長さである。

6

3.1電流の決定

W/L = 180 nm/180 nm

この形状比だと、20 uAの電流を流すには大きなゲートソース間電圧が必要

⇒Wを大きくし、必要な電圧を小さく する

3.1電流の決定

W/L = 720 nm/180 nm

シミュレートした結果から、gnuplot に おいてNLSSを行い、飽和領域における ドレイン電流の回帰曲線を求めた

 $I_D = K \left(V_{GS} - V_{th} \right)^2 \cdot \left(1 + \lambda V_{DS} \right)$ その結果閾電圧は 0.42 Vであり、MCに 20 uAを流すにはゲートソース間電圧が 0.62 V必要

7

3.2直流電位の決定

出力としては小さいが、 今回は抵抗を小さく、か つ出力の振幅が±50 mVと なるためVoutの電位は VDDとの電位差が出力振 幅よりも大きくなるよう 1.7 Vとした。

MAとMBのソース・ドレイン間電圧を等しくなるようにした。

差動対なので直流電位 は左右で等しい

3.3抵抗値の決定

RL1とRL2には等しい電流が 流れるのでそれぞれ10 uA流 れることを想定する

10 uAで0.1 Vの電位降下 ⇒RL=10 kΩ

9

10

3.4トランスコンダクタンスの決定

ギルバート乗算回路の利得は

ここで K_A , K_B は MA , MB のトランスコンダクタンスである。

 $V_{CTRL} = \pm 0.1 \
m V$ であるとき、利得を5倍とすると

 $v_{out} = 32R_L K_A \cdot 0.1 \cdot v_{in}$

 $\frac{v_{out}}{v_{in}} = 5 = 32R_L K_A \cdot 0.1$

を満たせばよい。したがって

 $K_A = \frac{5}{32 \cdot 1.0.1} = 1.56 \times 10^{-4} \text{ S/V}$

を満たせばよい。

以下の条件でMCと同様に回帰を 行い、各値を求めた シミュレーション条件 チャネル幅: 180 nm

チャネル長: 180 nm ドレイン電位 0.65 V

F = 9.68e-5 S/V

闘電圧:0.29 V

チャネル長変調係数: 0.55 V⁻¹

4.1.op解析		設計値	シミュレーション
	$I_D(MC)$ [uA]	20	20.3
	V _{out} [V]	1.7	1.70
	V_{ul} [V]	1.05	1.03
	V_l [V]	0.4	0.45
おおよそ設計通りの値になっていた。			
	$V_{DS}(MA)$ [V]	0.65	0.66
	$V_{GS}(MA)$ [V]	0.55	0.57
	$I_D(MA)$ [uA]	5	5.07
	$V_{DS}(MB)$ [V]	0.65	0.58
	$V_{GS}(MB)$ [V]	0.62	0.57
	$I_D(MB)$ [uA]	10	10.1

まとめ・今後の課題

- 乗算器を設計する際の手順や手法、注意するべきことなどが確認することができ、プロセスが変わっても迅速に設計を行える ようになったと考えられる。
- ・出力が線形な領域を拡大する
- 入力部分の設計
- 多入力化

ギルバート乗算回路の出力: 差動対 $I_{d1} = K(V_{GS} - v_{th} + v_{2})^{2}$ $I_{d2} = K(V_{GS} - V_{th} + v_{2})^{2}$ $V_{G} + v_{1}$ $V_{G} + v_{2}$ $I_{d1} = \frac{I_{S}}{2} - I_{d2}$ $I_{d1} = \frac{I_{S}}{2} - I_{d2}$ $I_{d2} = \frac{I_{S}}{2} - I_{d2}$ $I_{d2} = \frac{I_{S}}{2} - \Delta I_{D}$ $I_{d2} = \frac{I_{S}}{2} - \Delta I_{D}$ $V_{G} + v_{2}$ $I_{d2} = \frac{I_{S}}{2} - \Delta I_{D}$ $V_{G} + v_{2}$ $V_{G} + v_{3}$ $V_{G} + v_{2}$ $V_{G} + v_{3}$ $V_{G} + v_{4}$ $V_{G} + v_{5}$ V_{G}

ギルバート乗算回路の出力: 差動対 $\begin{vmatrix}
\sqrt{\frac{l_{S}}{2} + \Delta l_{D}} - \sqrt{\frac{l_{S}}{2} - \Delta l_{D}} = \sqrt{K}(v_{1} - v_{2}) & I_{d1} \downarrow I_{d2} \\
I_{S} - 2\sqrt{\left(\frac{l_{S}}{2}\right)^{2} - \left(\Delta l_{D}\right)^{2}} = K(\Delta v)^{2} & V_{G} + \overline{v_{1}} \downarrow I_{G2} \\
2^{2} \cdot \left\{ \left(\frac{l_{S}}{2}\right)^{2} - \left(\Delta l_{D}\right)^{2} \right\} = (K\Delta v - l_{S})^{2}
\end{vmatrix} = I_{G} + I$ $(\Delta I_D)^2 = \frac{I_S K}{2} (\Delta v)^2 - \left\{\frac{K}{2} (\Delta v)^2\right\}^2$ $(\Delta I_D)^2 = \left\{\frac{I_S K}{2} (\Delta v)^2\right\} \cdot \left\{1 - \frac{K}{2I_S} (\Delta v)^2\right\}$ $\Delta I_D = \sqrt{\frac{I_S K}{2}} \cdot \Delta v \cdot \sqrt{1 - \frac{K}{2I_S} (\Delta v)^2}$

ギルバート乗算回路の出力:差動対
$$I_{d1} = \frac{I_S}{2} + \Delta I_D = \frac{I_S}{2} + \sqrt{\frac{I_SK}{2}} \cdot \Delta v \cdot \sqrt{1 - \frac{K}{2I_S}} (\Delta v)^2$$

$$I_{d2} = \frac{I_S}{2} - \Delta I_D = \frac{I_S}{2} - \sqrt{\frac{I_SK}{2}} \cdot \Delta v \cdot \sqrt{1 - \frac{K}{2I_S}} (\Delta v)^2$$

$$\frac{I_S}{2} + \sqrt{\frac{I_SK}{2}} \cdot \Delta v \cdot \sqrt{1 - \frac{K}{2I_S}} (\Delta v)^2$$

$$I_{d1} = f(\Delta v, I_S, K)$$

$$I_{d2} = f(\Delta v, I_S, K)$$

ギルバート乗算回路の出力:差動対 $f(\Delta v, I_S, K)$ の $\Delta v = 0$ 付近における 1 次近似

$$f(\Delta v, I_S, K) \otimes \Delta v = 0 + 2 \underbrace{\sum_{i=1}^{K} (\Delta v, I_S, K)}_{S} \otimes f(0, I_S, K) + \underbrace{\frac{\partial f}{\partial \Delta v}}_{S} (0, I_S, K) \cdot (\Delta v - 0)$$

$$\frac{\partial f}{\partial \Delta v} (\Delta v, I_S, K) = \frac{\partial}{\partial \Delta v} \left\{ \underbrace{\frac{I_S}{2} + \sqrt{\frac{I_S K}{2}} \cdot \Delta v \cdot \sqrt{1 - \frac{K}{2I_S}}_{S} (\Delta v)^{2}}_{1 - \underbrace{\frac{I_S K}{2}}_{S} \Delta v} \Delta v \cdot \sqrt{1 - \frac{K}{2I_S}}_{S} (\Delta v)^{2} \right\}$$

$$= \sqrt{\frac{I_S K}{2}} \left[1 \cdot \sqrt{1 - \frac{K}{2I_S}}_{S} (\Delta v)^{2} + \Delta v \cdot \frac{1}{2} \cdot \left\{ 1 - \frac{K}{2I_S}}_{S} (\Delta v)^{2} \right\}^{-\frac{1}{2}} \cdot \left(-\frac{K}{I_S} \right) \right]$$

27

25

ギルバート乗算回路の出力: 差動対

 $f(\Delta v, I_S, K)$ の $\Delta v = 0$ 付近における 1次近似

$$\frac{\partial f}{\partial \Delta v}(\Delta v, I_S, K) = \sqrt{\frac{I_S K}{2}} \left[1 \cdot \sqrt{1 - \frac{K}{2I_S}(\Delta v)^2} + \Delta v \cdot \frac{1}{2} \cdot \left\{ 1 - \frac{K}{2I_S}(\Delta v)^2 \right\}^{-\frac{1}{2}} \cdot \left(-\frac{K}{I_S} \right) \right]$$

$$\frac{\partial f}{\partial \Delta v}(0, I_S, K) = \sqrt{\frac{I_S K}{2}} \left[1 \cdot \sqrt{1 - \frac{K}{2I_S}(0)^2} + 0 \cdot \frac{1}{2} \cdot \left\{ 1 - \frac{K}{2I_S}(0)^2 \right\}^{-\frac{1}{2}} \cdot \left(-\frac{K}{I_S} \right) \right]$$

$$\frac{\partial f}{\partial \Delta v}(0, I_S, K) = \sqrt{\frac{I_S K}{2}}$$

ギルバート乗算回路の出力:差動対

$$f(\Delta v, I_S, K) = \frac{I_S}{2} + \sqrt{\frac{I_S K}{2}} \cdot \Delta v \cdot \sqrt{1 - \frac{K}{2I_S}} (\Delta v)^2$$

$$f(0, I_S, K) = \frac{I_S}{2} + \sqrt{\frac{I_S K}{2}} \cdot 0 \cdot \sqrt{1 - \frac{K}{2I_S}} (0)^2 = \frac{I_S}{2}$$

$$f(\Delta v, I_S, K) \approx f(0, I_S, K) + \frac{\partial f}{\partial \Delta v} (0, I_S, K) \cdot (\Delta v - 0)$$

$$= \frac{I_S}{2} + \sqrt{\frac{I_S K}{2}} \cdot \Delta v = \frac{I_S}{2} \left(1 + \Delta v \cdot \sqrt{\frac{2K}{I_S}} \right)$$

30

32

29

ギルバート乗算回路の出力:差動対 1.6x10⁻⁵ 1.2x10⁻⁵ 8x10⁻⁶ -4x10⁻⁶ -8x10⁻⁶

ギルバート乗算回路の出力:全体の利得

ギルバート乗算回路の出力:全体の利得

$$I_{A1} = f(2V_{CTRL}, I_{B1}, K_A) \approx \frac{I_{B1}}{2} \left(1 + 2V_{CTRL} \cdot \sqrt{\frac{2K_A}{I_{B1}}}\right)$$

$$\approx \frac{I_S}{4} \left(1 + 2v \cdot \sqrt{\frac{2K_B}{I_S}}\right) \cdot \left\{1 + 2V_{CTRL}\sqrt{2K_A} \left(I_{B1}\right)^{-\frac{1}{2}}\right\}$$

$$I_{B1} = f(2v, I_S, K_B) = \frac{I_S}{2} \left(1 + 2v \cdot \sqrt{\frac{2K_B}{I_S}}\right)$$

$$g(v) \approx g(0) + g'(0)v$$

$$g(0) = \left\{\frac{I_S}{2} \left(1 + 2v \cdot \sqrt{\frac{2K_B}{I_S}}\right)\right\}^{-\frac{1}{2}} = \sqrt{\frac{2}{I_S}}$$

ギルバート乗算回路の出力:全体の利得

$$g'(v) = \frac{d}{dv} \left\{ \frac{l_S}{2} \left(1 + 2v \cdot \sqrt{\frac{2K_B}{l_S}} \right) \right\}^{-\frac{1}{2}} = -\frac{1}{2} \left\{ \frac{l_S}{2} \left(1 + 2v \cdot \sqrt{\frac{2K_B}{l_S}} \right) \right\}^{-\frac{3}{2}} \cdot \frac{d}{dv} \left\{ \frac{l_S}{2} \left(1 + 2v \cdot \sqrt{\frac{2K_B}{l_S}} \right) \right\}$$

$$= -\frac{1}{2} \left\{ \frac{l_S}{2} \left(1 + 2v \cdot \sqrt{\frac{2K_B}{l_S}} \right) \right\}^{-\frac{3}{2}} \cdot \sqrt{2I_S K_B}$$

$$g'(0) = -\frac{1}{2} \cdot \left(\frac{l_S}{2} \right)^{-\frac{3}{2}} \cdot \sqrt{2I_S K_B} = -\frac{2\sqrt{K_B}}{l_S}$$

$$g(v) \approx \sqrt{\frac{2}{l_S}} - \frac{2\sqrt{K_B}}{l_S} \cdot v = \sqrt{\frac{2}{l_S}} \cdot \left(1 - \sqrt{\frac{2K_B}{l_S}} \cdot v \right)$$

33

34

ギルバート乗算回路の出力:全体の利得

$$\begin{split} I_{A1} &= \frac{I_{S}}{4} \left(1 + 2v \cdot \sqrt{\frac{2K_{B}}{I_{S}}} \right) \cdot \left\{ 1 + 2V_{CTRL} \sqrt{2K_{A}} \left(I_{B1} \right)^{-\frac{1}{2}} \right\} & \left(I_{B1} \right)^{-\frac{1}{2}} \approx \sqrt{\frac{2}{I_{S}}} \cdot \left(1 - \sqrt{\frac{K_{B}}{2I_{S}}} \cdot v \right) \\ &= \frac{I_{S}}{4} \left(1 + 2v \cdot \sqrt{\frac{2K_{B}}{I_{S}}} \right) \cdot \left\{ 1 + 2V_{CTRL} \sqrt{2K_{A}} \cdot \sqrt{\frac{2}{I_{S}}} \cdot \left(1 - \sqrt{\frac{2K_{B}}{I_{S}}} \cdot v \right) \right\} \\ &= \frac{I_{S}}{4} \left(1 + 2v \cdot \sqrt{\frac{2K_{B}}{I_{S}}} \right) \cdot \left(1 + 4\sqrt{\frac{K_{A}}{I_{S}}} \cdot V_{CTRL} - \frac{4\sqrt{2K_{A}K_{B}}}{I_{S}} \cdot V_{CTRL} v \right) \equiv h(V_{CTRL}, v, I_{S}, K_{A}, K_{B}) \end{split}$$

ギルバート乗算回路の出力:全体の利得 $h(V_{CTRL}, v, I_S, K_A, K_B) \approx h(V_{CTRL}, 0, I_S, K_A, K_B) + \left\{ \frac{\partial}{\partial v} h(V_{CTRL}, 0, I_S, K_A, K_B) \right\} v$ $h(V_{CTRL}, 0, I_S, K_A, K_B) = \frac{I_S}{4} \left(1 + 4 \sqrt{\frac{K_A}{I_S}} V_{CTRL} \right)$

$$\frac{\partial}{\partial v} h(V_{CTRL}, v, I_S, K_A, K_B)$$

$$= \frac{I_S}{4} \left\{ 2 \sqrt{\frac{2K_B}{I_S}} \left(1 + 4 \sqrt{\frac{K_A}{I_S}} V_{CTRL} - \frac{4\sqrt{2K_AK_B}}{I_S} V_{CTRL} v \right) - \left(1 + 2 \sqrt{\frac{2K_B}{I_S}} v \right) \cdot \frac{4\sqrt{2K_AK_B}}{I_S} V_{CTRL} \right\}$$

ギリレバート乗算回路の出力:全体の利得
$$\frac{\partial}{\partial v}h(V_{CTRL},v,I_S,K_A,K_B) = \frac{I_S}{4} \left\{ 2\sqrt{\frac{2K_B}{I_S}} \left(1+4\sqrt{\frac{K_A}{I_S}}V_{CTRL} - \frac{4\sqrt{2K_AK_B}}{I_S}}V_{CTRL}v\right) - \left(1+2\sqrt{\frac{2K_B}{I_S}}v\right) \cdot \frac{4\sqrt{2K_AK_B}}{I_S}V_{CTRL} \right\}$$

$$\frac{\partial}{\partial v}h(V_{CTRL},0,I_S,K_A,K_B) = \frac{I_S}{4} \left\{ 2\sqrt{\frac{2K_B}{I_S}} \left(1+4\sqrt{\frac{K_A}{I_S}}V_{CTRL}\right) - \frac{4\sqrt{2K_AK_B}}{I_S}}V_{CTRL} \right\}$$

$$= \frac{I_S}{4} \left(2\sqrt{\frac{2K_B}{I_S}} + \frac{4\sqrt{2K_AK_B}}{I_S}}V_{CTRL}\right)$$

$$h(V_{CTRL},v,I_S,K_A,K_B) \approx \frac{I_S}{4} \left\{ 1+4\sqrt{\frac{K_A}{I_S}}V_{CTRL} + \left(2\sqrt{\frac{2K_B}{I_S}} + \frac{4\sqrt{2K_AK_B}}{I_S}}V_{CTRL}\right)v \right\}$$

ギルバート乗算回路の出力:全体の利得

$$\begin{split} &h(V_{CTRL}, v, I_S, K_A, K_B) \approx \frac{I_S}{4} \left\{ 1 + 4 \sqrt{\frac{K_A}{I_S}} V_{CTRL} + \left(2 \sqrt{\frac{2K_B}{I_S}} + \frac{4\sqrt{2K_AK_B}}{I_S} V_{CTRL} \right) v \right\} \\ &I_{A1} = h(2V_{CTRL}, 2v, I_S, K_A, K_B) \approx \frac{I_S}{4} \left\{ 1 + 8 \sqrt{\frac{K_A}{I_S}} V_{CTRL} + \left(2 \sqrt{\frac{2K_B}{I_S}} + \frac{4\sqrt{2K_AK_B}}{I_S} 2V_{CTRL} \right) 2v \right\} \\ &I_{A2} = h(-V_{CTRL}, 2v, I_S, K_A, K_B) \approx \frac{I_S}{4} \left\{ 1 - 8 \sqrt{\frac{K_A}{I_S}} V_{CTRL} + \left(2 \sqrt{\frac{2K_B}{I_S}} - \frac{4\sqrt{2K_AK_B}}{I_S} 2V_{CTRL} \right) 2v \right\} \\ &I_{A3} = h(-2V_{CTRL}, -2v, I_S, K_A, K_B) \approx \frac{I_S}{4} \left\{ 1 - 8 \sqrt{\frac{K_A}{I_S}} V_{CTRL} - \left(2 \sqrt{\frac{2K_B}{I_S}} - \frac{4\sqrt{2K_AK_B}}{I_S} 2V_{CTRL} \right) 2v \right\} \\ &I_{A4} = h(2V_{CTRL}, -2v, I_S, K_A, K_B) \approx \frac{I_S}{4} \left\{ 1 + 8 \sqrt{\frac{K_A}{I_S}} V_{CTRL} - \left(2 \sqrt{\frac{2K_B}{I_S}} + \frac{4\sqrt{2K_AK_B}}{I_S} 2V_{CTRL} \right) 2v \right\} \end{split}$$

38

ギルバート乗算回路の出力:全体の利得

