a)
$$n \stackrel{\log n}{\longrightarrow} n \stackrel{\log n}{\longrightarrow} n \stackrel{\log n}{\longrightarrow} n$$

a) $n \stackrel{\log n}{\longrightarrow} \infty \stackrel{\log n}{\longrightarrow} n \stackrel{\log n}{\longrightarrow} n$

a) $n \stackrel{\log n}{\longrightarrow} \infty \stackrel{\log n}{\longrightarrow} n \stackrel{\log n}{$

lian -- vyntimi من المان المان المن المناس الم

بس رئس ((agn) بیشتراست ·

b)
$$\frac{n^2}{\log n}$$
, $n(\log n)^2$

$$\log_{\alpha} b = \frac{\ln b}{\ln \alpha} \implies \frac{\ln 2 \times n^2}{\ln n}$$

$$= \frac{\ln 2 \times n^2}{\ln n}$$

$$b = \frac{\ln b}{\ln \alpha} \implies \frac{\ln 2 \times n^2}{\ln 2}$$

$$\Rightarrow \lim_{n \to \infty} \frac{\ln 2 \times n^2}{\ln 2} = (\ln 2)^3 \times \frac{n}{(\ln n)^3} = \frac{\infty}{\infty}$$

$$HOP = \frac{1}{2} \left(\ln 2 \right)^3 \times \frac{7}{\frac{3}{2} \times (\ln n)^2} = \frac{\left(\ln 2 \right)^3}{3} \times \frac{n}{\left(\ln n \right)^2} = \frac{\infty}{\infty}$$

HOP
$$\Rightarrow \frac{(\ln 2)^3}{3} \times \frac{1}{\frac{2}{n} \ln n} = \frac{(\ln 2)^3}{6} \times \frac{n}{\ln n} = \frac{\infty}{\infty}$$

$$\frac{1}{\frac{2}{n} \ln n} = \frac{(\ln 2)^3}{6} \times \frac{1}{\frac{1}{n}} = \frac{(\ln 2)^3}{6} \times \frac{n}{\ln n} = \infty$$

$$\Rightarrow \frac{(\ln 2)^3}{6} \times \frac{1}{\frac{1}{n}} = \frac{(\ln 2)^3}{6} \times \frac{n}{\ln n} = \infty$$

$$\max(a,b) = \frac{a+b+1a-b1}{2}$$
Order

حون در عملیات های جمع و تفریق ، مرتبه ها نفسه منی لنش (توجه لید له توانع

هملّی مست هست بس مرتب موجود در سمه این معلا علیات ها همواره نابت است)

پس مرتبه ی ۱۱ در ست در و راست تساری سیان است پس داریم ،

finition = $\Omega(f(n)+g(n)) = \Omega(max(f,g))$ $f(n)+g(n) = \Omega(f(n+g(n))) = \Omega(max(f,g))$

=> f(n) + g(n) = 0 (max (f, g))

2. $f(n) = n^2$, $g(n) = n^3$, $h(n) = \frac{1}{n}$ $\Rightarrow f(n) = O(g(n))$, $h(f(n)) \neq O(h(g(n)))$

3. f(n) = O(f(n))

 $\Theta(f(n)) = 2 f(n) = 2 f(n) \rightarrow 0 \text{ order } -1 \text{ order}$

 \rightarrow f(n) + O(f(n)) = 2f(n) = O(f(n))

4. $f(n) = n^n \rightarrow f(\frac{n}{2}) = \frac{n^{\frac{n}{2}}}{2^{n-1}}$, f(n) > 0 $\rightarrow \lim_{n \to \infty} \frac{f(n)}{f(\frac{n}{2})} = 2^{n-\frac{n}{2}} = \infty$

 $\rightarrow f(\frac{n}{2}n) = \omega(f(\frac{n}{2}))$