Option Pricing in the Black Scholes Model: A Fair Price of a European Call

Article · January 2021				
CITATIONS		READS		
0		506		
2 authors, including:				
	Calvine Otieno Odiwuor			
	Tom Mboya University College			
	2 PUBLICATIONS 0 CITATIONS			
	SEE PROFILE			

Applied Mathematical Sciences, Vol. 15, 2021, no. 12, 595 - 604 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2021.914221

Option Pricing in the Black Scholes Model: A Fair Price of a European Call

Calvine Odiwuor

Department of Statistics and Actuarial Science Tom Mboya University College P.O. Box 199-40300, Homa Bay, Kenya

Apaka Rangita

School of Mathematics, Statistics and Actuarial Science Maseno University, Kenya P.O. Box 333, Maseno, Kenya

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2021 Hikari Ltd.

Abstract

In this paper, we review the Black-Scholes formula for the fair price the European call option using a risk-neutral pricing methodology. To achieve this, we use the Girsanovs theorem, Feynman-Kac theorem, and the principles of equivalent martingale measure (EMM) to formulate the said fair price.

Keywords: European call, Option, risk-neutral valuation.

1 Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space i.e., Ω is the sample space of a random experiment, \mathcal{F} a σ -algebra of events in Ω and \mathbb{P} is a probability measure on \mathcal{F} . If we assume that B is a fixed event in a probability measurable space (Ω, \mathcal{F}) , then the indicator function on B defined by $\mathbf{1}_B$ is defined for all variables $\omega \in \Omega$ by $\mathbf{1}_B(\omega) = 1$ if $\omega \in B$ and 0 otherwise as highlighted in [4], [1], and [7].

Definition 1.1 (Gaussian/Normal distribution). Let $\beta, \alpha \in \mathbb{R}$ such that $\alpha > 0$. An absolutely continuous random variable X on a probability space

 $(\Omega, \mathcal{F}, \mathbb{P})$ has a Gaussian or Normal distribution with parameters β and α denoted $X \sim N(\beta, \alpha^2)$. X has a range $X(\Omega) = \mathbb{R}$ and its probability density function $f_{\beta,\alpha}$ given by

$$f_{\beta,\alpha}(x) = \frac{1}{\sqrt{2\pi}\alpha} e^{-\frac{(x-\beta)}{2\alpha^2}}, \ x \in \mathbb{R}$$
 (1)

as outlined in [4]

Also it is important to note that $\Phi(-x) = 1 - \Phi(x)$ is true for all $x \in [0, \infty)$.

Proposition 1.2 Let X be any random variable. We say that X follows a normal distribution with mean β and standard deviation α i.e. $X \sim N(\beta, \alpha)$, then we have

$$\mathbb{E}[e^X f_X(X)] = e^{\left(\beta + \frac{\alpha^2}{2}\right)} \mathbb{E}[f_X(X + \alpha^2)]$$

for any non-negative random function f_X .

Definition 1.3 (Standard Brownian Motion). Let $W = (W_t)_{t\geq 0}$ be a continuous time stochastic process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. $W = (W_t)_{t\geq 0}$ is called a one - dimensional standard Brownian motion or a standard Weiner process if it holds:

- (i) $W_0 = 0$ a.s
- (ii) For all times $0 \le s < t$, the increment is normally distributed with mean 0 and variance t s i.e $W_t W_s \sim \mathcal{N}(0, t s)$,
- (iii) For times $0 < t_1 < t_2 <, ..., < t_n$, the increment $W_n W_{n-1}$, n = 1, 2, 3, ... of the process are independent of each other meaning that for any time $0 \le s < t$, the corresponding increment $W_t W_s$ is independent of the σ -algebra, $\sigma(W_k : k \le s)$,
- (iv) All the sample paths $X(\cdot,\omega):\mathbb{R}^+\to\mathbb{R},\ \omega\in\Omega$ are continuous.

as indicated in [1], [3], and [5].

1.1 Change of Measure and Girsanovs Theorem

Girsanovs theorem permits the change of probability measure from physical to risk adjusted measure as outlined in [3], and [1].

Definition 1.4 Let \mathbb{P} and \mathbb{Q} be two probability measures on (Ω, \mathcal{F}) . The measures are said to be equivalent denoted by $\mathbb{P} \sim \mathbb{Q}$ i.e. $\mathbb{P}(A) = 0$ if and only if $\mathbb{Q}(A) = 0$ on the same σ -algebra of $A \in \mathcal{F}$.

If $\mathbb{P} \sim \mathbb{Q}$, we say that \mathbb{Q} is absolutely continuous with respect to \mathbb{P} also denoted by $\mathbb{Q} \ll \mathbb{P}$. In fact there exists a random variable $\gamma : \Omega \to \mathbb{R}$ on (Ω, \mathcal{F}) for which $\mathbb{Q}(A) = \mathbb{E}^{\mathbb{P}}[\gamma \mathbf{1}_A]$ for all events $A \in \mathcal{F}$. This random variable γ is called the Radon-Nikodym derivative of \mathbb{Q} with respect to \mathbb{P} that is

$$\gamma = \frac{d\mathbb{Q}}{d\mathbb{P}}.\tag{2}$$

Theorem 1.5 (Girsanov's Theorem as outlined in [2] Let $(W_t)_{0 \le t \le T}$ be a standard Brownian motion with respect to physical measure \mathbb{P} and a filtration $\mathbb{F} = \{\mathcal{F}_t\}_{0 < t < T}$. We say the process $(\gamma_t)_{0 < t < T}$ is adapted to \mathbb{F} for a given T > 0.

Defining

$$\rho_t := \exp\left(\int_0^t -\gamma_s dW_s - \frac{1}{2} \int_0^t |\gamma_s|^2 ds\right) \text{ for } 0 \le t \le T$$
 (3)

and by Radon-Nikodym derivative we define \mathbb{Q} by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} := \left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)_T = \rho_T. \tag{4}$$

Assume the square integrability condition given by

$$\mathbb{E}\left[\int_0^T |\gamma_s \rho_s|^2 ds\right] < \infty,\tag{5}$$

the process $(\widetilde{W}_t)_{0 \le t \le T}$ defined by

$$\widetilde{W}_t := W_t + \int_0^t \gamma_s ds \tag{6}$$

is a Brownian motion under the probability measure \mathbb{Q}

Definition 1.6 (Stochastic differential equation (SDE) according to [8] and [4]). A stochastic differential equation of a one-dimensional real-valued continuous stochastic process X_t is an equation of the form

$$dX_t = a(t, X_t)dt + b(t, X_t)dW_t (7)$$

where $X_0 = 0$, $a(t, X_t)$ and $b(t, X_t)$ are initial condition, drift and diffusion coefficients respectively.

Theorem 1.7 (Discounted Feynman-Kac in [1]). Consider a SDE in equation (7). Let g(y) be a Borel measurable function with r, a constant. If we fix T > 0 and let $t \in [0, T]$ we can define

$$f(t,x) = \mathbb{E}^{t,x}[e^{-r(T-t)}g(X_T)].$$
 (8)

Assuming that $\mathbb{E}^{t,x}[|g(X_T)] < \infty \ \forall x, t$, then equation (8) is the solution to the PDE;

$$f_t(t,x) + a(t,x)f_x(t,x) + \frac{1}{2}b^2(t,x)f_{xx}(t,x) = rf(t,x),$$
(9)

with the terminal condition

$$f(T,x) = g(x)\forall x \tag{10}$$

Definition 1.8 (Equivalent Martingale Measure (EMM) as outlined in [1], [6], and [8]). Recall the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ modeling the evolution of the stock prices process S_t . Another probability \mathbb{Q} on the measurable space (Ω, \mathcal{F}) is said to be an equivalent martingale probability measure (or a risk-neutral probability measure) if

- (i) \mathbb{Q} is equivalent to \mathbb{P} written $(\mathbb{Q} \sim \mathbb{P})$ i.e. for every $A \in \mathcal{F}$, $\mathbb{P}(A) = 0$ if and only if $\mathbb{Q}(A) = 0$,
- (ii) Under \mathbb{Q} , the discounted stock price process $\widetilde{S}(t) := [e^{-rt}S(t)]_{0 \le t \le T}$ is a martingale i.e., for $t \le s$

$$\mathbb{E}^{\mathbb{Q}}\left[\widetilde{S}(s)|\mathcal{F}_t\right] = \widetilde{S}(t) \tag{11}$$

The first fundamental theorem of asset pricing states that the market model does not admit arbitrage opportunities if and only if there exist an equivalent martingale measure [1].

1.2 The Black-Scholes Model for Stock Prices

A risky asset, for example an underlying share of stock with price process S_t which is square integrable in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and is governed by a stochastic differential equation, $dS_t = \alpha S_t dt + \sigma S_t dW_t$ and $S_0 = s_0$, where, W_t is the standard Brownian motion. The stock price is modeled as a geometric Brownian motion with drift α and volatility σ .

The solution to this stochastic differential equation can be obtained by the application of Itô formula on a function $f(x) = \ln(x)$ on $C^{1,2}([0,T] \times \mathbb{R})$ so as to obtain

$$S_t = s_0 \exp\left[\left(\alpha - \frac{1}{2}\sigma^2\right)t + \sigma W_t\right] \tag{12}$$

A risk-less asset for example a cash bond with price process B_t following an initial value problem of an ordinary differential equation given by dB(t) = rB(t)dt and $B_0 = 1$., with r as the continuously compounded rate of interest and the solution to this initial value problem is given by $B_t = e^{rt}$ as outlined in [5], [8], and [1].

2 Existence of Equivalent Martingale Measure

Consider the discounted stock price $\widetilde{S}_t = e^{-rt}S_t$. By applying the Itô formula in [1] we obtain

$$\frac{d\widetilde{S}_t}{\widetilde{S}_t} = \sigma \left(\left(\frac{\mu - r}{\sigma} \right) dt + dW_t \right). \tag{13}$$

Therefore,

Lemma 2.1 There is a probability measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} such that the process $\widetilde{W}_t := W_t + \left(\frac{\mu - r}{\sigma}\right)t, t\in [0, T]$ is a Brownian motion under $\widetilde{\mathbb{P}}$

Consider the constant process $\gamma_t := \frac{\mu - r}{\sigma}$ for all time t, hence by applying Girsanovs Theorem, there exists a probability measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} such that \widetilde{W}_t defined by $\widetilde{W}_t := W_t + \int_0^t \gamma_s ds = W_t + \left(\frac{\mu - r}{\sigma}\right) t$, $t \in [0, T]$ is a Brownian motion. As required.

Lemma 2.2 The probability measure $\widetilde{\mathbb{P}}$ above is an equivalent martingale measure.

we have $d\widetilde{S}_t = \sigma \widetilde{S}_t d\widetilde{W}_t$, which is an Itô process with zero drift, hence \widetilde{S}_t is a martingale under the measure $\widetilde{\mathbb{P}}$.

The Black-Scholes model is arbitrage free [8], a condition which is further guaranteed by the existence of the equivalent martingale measure. The payoff of a European call option at time zero is given by $c(T, S_T) := \max(S_T - K, 0)$ as outlined in [3], and the fair price of a European call option at any earlier time is $c(t, S_t)$. This latter price does not generate arbitrage opportunities in the model.

2.1 Risk Neutral Valuation Principle

A fundamental property of martingale in consideration to the discounted portfolio value is given by

$$e^{-rt}V_t = \mathbb{E}^{\mathbb{Q}}\left[e^{-rT}V_T|\mathcal{F}_t\right]$$

where V_t is the portfolio value.

Therefore the discounted portfolio price process is given by $\widetilde{V}_t = \{e^{-rt}V_t\}_{0 \le t \le T}$ which is a \mathbb{Q} -martingale.

Examining and combining the discount factors to obtain

$$\frac{e^{-rT}}{e^{-rt}} = \frac{B(t)}{B(T)} = e^{-r(T-t)},$$

giving the equivalent martingale measure pricing formula

$$V_t = B(t)\mathbb{E}^{\mathbb{Q}}\left[\frac{V_T}{B(T)} \mid \mathcal{F}_t\right] = e^{-r(T-t)}\mathbb{E}^{\mathbb{Q}}[V_T | \mathcal{F}] \quad t \in [0, T]$$
(14)

with r as the constant rate of interest and (T-t) as the total time to maturity for any equivalent martingale measure as outlined in [1] and [3] with B(T) as the numeraire.

If a European call option admits a replicating/hedging portfolio and has a value process V_t then value of this option at any time t equals the value process at that particular time i.e. $c(t, S_t) = V_t \quad \forall \quad t \leq T$

Lemma 2.3 The discounted fair price of a European call option which is a martingale with respect to canonical filtration \mathbb{F}^W is given by $C(0, S_0) := e^{-rt}c(t, S_t)$ for any time t = T under the equivalent martingale measure \mathbb{Q} .

The expectation of the discounted European call option is given by $\mathbb{E}^{Q}[e^{-rt}c(t,S_{t})]$ under the equivalent martingale measure \mathbb{Q} . We can write

$$\mathbb{E}^{\mathbb{Q}}[e^{-rt}c(t, S_t)] = \mathbb{E}^{\mathbb{Q}}[e^{-rt}V_t] = V_0.$$

Recall that $V_0 = c(0, S_0)$ P-a.s, hence we can write that

$$\mathbb{E}^{\mathbb{Q}}[e^{-rt}c(t,S_t)] = c(0,S_0)$$

2.2 The Fair Price of A European Call Option

Next, we assume that the underlying fair-price given by c(t, x) is $c^{1,2}([0, T]\mathbb{R}_+)$, the we can state without proof the Black-Scholes PDE by the theorem which follows.

Theorem 2.4 (Black-Scholes PDE [1] and [3]). The fair price of a hedgeable European call option with a price function $c(t, x), x > 0 \in Rat$ any time $t \in [0, T]$ is usually the solution to the PDE.

$$\frac{\partial c(t,x)}{\partial t} + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 c(t,x)}{\partial x} + rx \frac{\partial^2 c(t,x)}{\partial x} = rc(tx) \text{ and } c(T,x) = \max(x-K,0)$$

With c(T, x) as the terminal condition, r is the continuously compounding risk-free rate of interest, K is the strike price and σ is the volatility.

The proof of this theorem is omitted and can be obtained in [3].

2.3 An Alternative Proof for A European Call Option

The fair price at time t = 0 for a replicable European Call option is given by

$$c(0, S_0) = S_0 \Phi(d_1) - K e^{-rt} \Phi(d_2)$$
(15)

where

$$d_1 = \frac{\ln\left(\frac{S_0}{K}\right) + \left(r + \frac{\alpha^2}{2}\right)T}{\alpha\sqrt{T}} \tag{16}$$

$$d_2 = \frac{\ln\left(\frac{S_0}{K}\right) + \left(r - \frac{\alpha^2}{2}\right)T}{\alpha\sqrt{T}} = d_1 - \alpha\sqrt{T}$$
(17)

with $\Phi(x)$ as the cumulative density of a standard normal distribution as discussed in the previous functions. Also $c(t,0) = 0 \quad \forall t \text{ and } c(t,S) \longrightarrow S$ as $S \longrightarrow \infty$ as outlined in [5].

The following lemma is necessary before outlining the proof.

Lemma 2.5 Let X $N(\beta, \alpha)$. If m and n are two positive constants. Then we have

$$\mathbb{E}\left(\max\left(me^{X}-n,0\right)\right) = me^{\left(\beta + \frac{\alpha^{2}}{2}\right)}\Phi\left(\frac{\ln\left(\frac{m}{n}\right) + \beta}{\alpha} + \alpha\right) - n\Phi\left(\frac{\ln\left(\frac{m}{n}\right) + \beta}{\alpha}\right) \tag{18}$$

Applying proposition 1.2 poof

$$\mathbb{E}\left(\max\left(me^{X}-n,0\right)\right) = m\mathbb{E}\left(e^{X}\mathbf{1}_{[x>\ln(\frac{n}{m})]}\right) - n\mathbb{E}\left(e^{X}\mathbf{1}_{[x>\ln(\frac{n}{m})]}\right)$$
(19)

from the fact that

$$\mathbb{E}\left[\mathbf{1}_{[X>\ln(\frac{n}{m})]}\right] = \mathbb{P}\left[X>\ln\left(\frac{n}{m}\right)\right]$$
 (20)

And using equation (20) we obtain,

$$\mathbb{E}\left(\max(me^x - n, 0)\right) = m\mathbb{E}\left[e^X \mathbf{1}_{\left[X > \ln\left(\frac{n}{m}\right)\right]}\right] - n\mathbb{P}\left[X > \ln\left(\frac{n}{m}\right)\right]$$
(21)

$$\mathbb{E}(\max(me^x - n, 0)) = me^{\left(\beta + \frac{\alpha^2}{2}\right)} \mathbb{E}\left[\mathbf{1}_{\left[X + \alpha^2 > \ln\left(\frac{n}{m}\right)\right]}\right] - n\mathbb{P}\left[X > \ln\left(\frac{n}{m}\right)\right], \quad (22)$$

Again using equation (20) the first part of the right hand side we have

$$\mathbb{E}\left(\max(me^{X}-n,0)\right) = me^{(\beta + \frac{\alpha^{2}}{2})}\mathbb{P}\left[X + \alpha^{2} > \ln\left(\frac{n}{m}\right)\right] - n\mathbb{P}\left[X > \ln\left(\frac{n}{m}\right)\right] \tag{23}$$

$$\mathbb{E}\left(\max(me^{X}-n,0)\right) = me^{\left(\beta + \frac{\alpha^{2}}{2}\right)} \mathbb{P}\left[X > \ln\left(\frac{n}{m}\right) - \alpha^{2}\right] - n\mathbb{P}\left[X > \ln\left(\frac{n}{m}\right)\right]$$

$$(24)$$

$$\mathbb{E}(\max(me^{x}-n,0)) = me^{\left(\beta + \frac{\alpha^{2}}{2}\right)} \left(1 - \mathbb{P}\left[X \le \ln\left(\frac{n}{m}\right) - \alpha^{2}\right]\right) - n\left(1 - \mathbb{P}\left[X \le \ln\left(\frac{n}{m}\right)\right]\right)$$
we recall that $\mathcal{Z} := \frac{X - \beta}{\alpha}$

$$= me^{\beta + \frac{\alpha^2}{2}} \left(1 - \Phi\left(\frac{\ln(\frac{n}{m}) - \alpha^2 - \beta}{\alpha}\right) \right) - n\left(1 - \Phi\left(\frac{\ln(\frac{n}{m}) - \beta}{\alpha}\right) \right)$$

$$= me^{\beta + \frac{\alpha^2}{2}} \left(1 - \Phi\left(\frac{\ln(\frac{n}{m}) - \beta}{\alpha} - \alpha\right) \right) - n\left(1 - \Phi\left(\frac{\ln(\frac{n}{m}) - \beta}{\alpha}\right) \right)$$

from Proposition 1.2 $\Phi(-x) = 1 - \Phi(x)$

$$= me^{\left(\beta + \frac{\alpha^2}{2}\right)} \left[\Phi\left(\alpha - \frac{\ln(\frac{n}{m}) - \beta}{\alpha}\right) \right] - n \left[\Phi\left(\frac{\beta - \ln(\frac{n}{m})}{\alpha}\right) \right]$$

$$= me^{\left(\beta + \frac{\alpha^2}{2}\right)} \left[\phi\left(\frac{\beta + \ln(\frac{m}{n})}{\alpha} + \alpha\right) \right] - n \left[\phi\left(\frac{\beta + \ln(\frac{m}{n})}{\alpha}\right) \right]$$

Feynmann-Kac stated that the solution to the Black-Scholes PDE for a fair price of a European Call option at any given time tlegT is given by

$$c(t,x) = \mathbb{E}^{Q} \left(e^{-r(T-t)} \max(S(T) - x, 0) \mid S(t) = x \right)$$
 (25)

Next we let $\frac{n}{m} = K$ therefore we have $\mathbb{E}^{\mathbb{Q}}\left(\max\left(e^{X} - K, 0\right)\right)$

From Faymann-kac Theorem we have

$$c(t,x) = \mathbb{E}^{\mathbb{Q}}\left(e^{-r(T-t)}max\left(e^{X} - K, 0\right) \mid X_{t} = x\right)$$

$$=e^{(\beta+\frac{\alpha^2}{2})}\phi\left(\frac{-\ln(K)+\beta+\alpha^2}{\alpha}\right)-K\phi\left(\frac{-\ln(K)+\beta}{\alpha}\right).$$

At time t = 0, $S_t = s_0$ hence $c(0, S_0)$. The expected market price at time $t \leq T$ is the share price at time T. It is given by $S_0 e^{rT} = e^{\left(\beta + \frac{1}{2}\alpha^2 T\right)}$ for a Geometric Brownian motion.

Thus we have $\beta = \ln S_0 + (r - \frac{1}{2}\alpha^2)T$, also $\alpha^2 T$ is the variance of the normal distribution.

$$\mathbb{E}\left(\max(e^{X} - K, 0)\right) = e^{\ln S_0 + rT} \Phi\left(\frac{\ln\left(\frac{S_0}{K} + rT + \frac{1}{2}\alpha^2 T\right)}{\alpha\sqrt{T}}\right) - K\Phi\left(\frac{\ln\left(\frac{S_0}{K} + rT - \frac{1}{2}\alpha^2 T\right)}{\alpha\sqrt{T}}\right)$$
(26)

Thus

$$\mathbb{E}(\mathbf{m}(e^X - K, 0)) = C(0, S_0)e^{rT}$$

is the expectation of the market at time t=0 according to the principle of arbitrage.

$$C(0, S_0)e^{rT} = S_0e^{rT}\Phi\left(\frac{\ln\left(\frac{S_0}{K} + rT + \frac{1}{2}\alpha^2T\right)}{\alpha\sqrt{T}}\right) - K\Phi\left(\frac{\ln\left(\frac{S_0}{K} + rT - \frac{1}{2}\alpha^2T\right)}{\alpha\sqrt{T}}\right)$$
(27)

Hence,

$$C(0, S_0) = S_0 \Phi(d_1) - K e^{-rT} \Phi(d_2).$$
(28)

In conclusion the final equation is the discounted value of a positive surplus between established stock prices and their corresponding strike in the presence of a risk free rate of interest which conforms to the Black-Scholes formula for a fair price of a European call option.

Acknowledgments. I, (Calvine Odiwuor), is particularly indebted to God. Finally I would like to thank my co-author Dr. Apaka Rangitta for his strong cooperation and guidance.

References

- [1] Bjork, T., Arbitrage theory in continuous time, Oxford University Press, 2019. https://doi.org/10.1093/oso/9780198851615.001.0001
- [2] Campolieti, G., Makarov, R. N., Financial mathematics: a comprehensive treatment, CRC Press, 2018. https://doi.org/10.1201/9781315373768
- [3] Etheridge, A., & Baxter, M., A course in financial calculus, Cambridge University Press, 2002. https://doi.org/10.1017/cbo9780511810107
- [4] Seed Ghahraman, Fundamentals of Probability with Stochastic Processes, Third edition, Pearson-Prantice Hall, 2015. https://doi.org/10.1201/b19602
- [5] Hull J.C. Options, Futures and Other Derivatives, 8th edition, Pearson Education, 2010.
- [6] Alexei Krouglov, Intuitive proof of Black-Scholes formula based on arbitrage and properties of lognormal distribution, arXiv preprint physics/0612022, 2006.
- [7] Antoon Pelsser and Ton Vorst, Option pricing, arbitrage and martingales, CWI Quarterly, 10 (1) (1997), 35-53.
- [8] Shreve, S. E., Stochastic calculus for finance II: Continuous-time models, Vol. 11, Springer Science & Business Media, 2004. https://doi.org/10.1007/978-1-4757-4296-1

Received: June 10, 2020; Published: September 6, 2021