MATH7320 Functional Analysis Homework 3

Joel Sleeba

October 3, 2024

- 1. **Solution:** We easily see that if $f: X \to \mathbb{C}$ is a bounded linear functional, then since $\{0\}$ is closed in \mathbb{C} , then $\operatorname{Ker}(f) = f^{-1}(0)$ is closed. Conversely, if $K = \operatorname{Ker}(f)$, then the canonical map $q: X \to X/K$ and the map $\tilde{f}: X/K \to \mathbb{C}$ defined as $\tilde{f}([x]) = f(x)$ is continuous since X/K is finite dimensional and all linear maps between finite dimensional spaces are continuous. Now $f = \tilde{f} \circ q$ gives that f is continuous.
- 2. **Solution:** Let x_n be a Cauchy sequence in X. Then $[x_n]$ is Cauchy in X/Y since $||[x_n] [x_m]|| = ||[x_n x_m]|| \le ||x_n x_m||$. Therefore $[x_n] \to [x]$ in X/Y. Let x_{n_k} be a subsequence of x_n such that $||x_{n_k} x_{n_{k+1}}|| < \frac{1}{2^{k+1}}$. Then $||[x_{n_k} x_{n_{k+1}}]|| < \frac{1}{2^{k+1}}$ and for all k, there exists $y_k \in Y$ such that $||x_{n_k} x y_k|| < \frac{1}{2^k}$. We claim that y_k is a Cauchy in Y. Let $0 < n \le m$, then

$$||y_m - y_n|| = ||(x_{n_n} - x - y_n) - (x_{n_m} - x - y_m) - (x_{n_n} - x_{n_m})||$$

$$\leq ||(x_{n_n} - x - y_n)|| + ||(x_{n_m} - x - y_m)|| + ||x_{n_n} - x_{n_m}||$$

$$< \frac{1}{2^n} + \frac{1}{2^m} + \frac{1}{2^n}$$

$$\leq \frac{3}{2^n}$$

Therefore y_n is Cauchy and converges to $y \in Y$. Hence $x_{n_k} \to x + y$. Since the space is Hausdorff we get that $x_n \to x + y$.

3. **Solution:** Let $S = \{y_n \in Y\}$ be dense in Y and $T = \{[x_n] \in X/Y\}$ be dense in X/Y. Construct a new collection U of elements of X using the axiom of choice by selecting an element $x \in [x_n]$ for each $[x_n] \in T$. Now we claim that the set $Z = S + U = \{y + x : y \in S, x \in U\}$ is dense in X. Clearly we see that Z is countable since the cardinality of Z is the cardinality of $S \times U$.

Let $x \in X$ and $\epsilon > 0$. Then by density of T in X/Y, there exist an $[x_n]$ such that $\|[x] - [x_n]\| = \|[x - x_n]\| < \frac{\epsilon}{3}$. Then there is a $y \in Y$ such that $\|x - x_n - y\| < \frac{2\epsilon}{3}$. Now again by the density of S in Y, there is a $y_n \in S$ such that $\|y - y_n\| < \frac{\epsilon}{3}$. Then

$$||x - (x_n + y_n)|| = ||x - x_n - y_n + (y_n - y)|| \le ||x - x_n - y|| + ||y - y_n|| < \frac{2\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Hence we see that Z is dense in X.