# New Mexico, Albuquerque: Top 5 zip codes to invest in

By: Brittney Nitta-Lee

#### **Project Summary**

The goal of this project is to analyze the historical real estate data for Albuquerque, New Mexico, and identify the top 5 zip codes for investment based on forecasted median home prices. A time series modeling approach is employed to predict future values, helping investors make informed decisions.

#### **Business Understanding**

My clients are real estate investors with a focus on properties in King County. Seeking to escape the cold weather, they are interested in exploring investment opportunities in Albuquerque, New Mexico. I will identify five potential zip codes for investment in the area and provide a list of recommendations along with suggested next steps.

#### **Dataset**

The dataset was sourced from Zillow Research and can be accessed here. The dataset includes 14,723 rows, each representing a zip code, and 272 columns. The data provides median sales for every zip code from April 1996 to April 2018.

#### Load the Data/Filtering for Chosen Zipcodes

```
# imports
In [1]:
         from math import sqrt
         from sklearn.metrics import mean squared error
         import warnings
         from pylab import hist, show, xticks
         import itertools
         from statsmodels.tsa.stattools import adfuller
         from matplotlib.pylab import rcParams
         import statsmodels.api as sm
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         plt.style.use('fivethirtyeight')
         warnings.filterwarnings('ignore')
         import seaborn as sns
         from sklearn.model selection import TimeSeriesSplit
         from statsmodels.tsa.arima.model import ARIMA
         import warnings
         from scipy import stats
         from statsmodels.graphics.tsaplots import plot acf
```

```
df_zillow = pd.read_csv("zillow_data.csv")
In [2]:
         df zillow.head()
```

| $\bigcirc$ 11+ | гэт   |   |
|----------------|-------|---|
| Out            | L 4 J | 0 |

|   | RegionID | RegionName | City     | State | Metro                    | CountyName | SizeRank | 1996-04  | 1996-05  |
|---|----------|------------|----------|-------|--------------------------|------------|----------|----------|----------|
| 0 | 84654    | 60657      | Chicago  | IL    | Chicago                  | Cook       | 1        | 334200.0 | 335400.0 |
| 1 | 90668    | 75070      | McKinney | TX    | Dallas-<br>Fort<br>Worth | Collin     | 2        | 235700.0 | 236900.0 |
| 2 | 91982    | 77494      | Katy     | TX    | Houston                  | Harris     | 3        | 210400.0 | 212200.0 |
| 3 | 84616    | 60614      | Chicago  | IL    | Chicago                  | Cook       | 4        | 498100.0 | 500900.0 |
| 4 | 93144    | 79936      | El Paso  | TX    | El Paso                  | El Paso    | 5        | 77300.0  | 77300.0  |

5 rows × 272 columns

```
In [3]: | df_zillow.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 14723 entries, 0 to 14722 Columns: 272 entries, RegionID to 2018-04 dtypes: float64(219), int64(49), object(4) memory usage: 30.6+ MB

## **Data Preprocessing**

The data has 272 columns and 14723 entries. For this project, I want to focus on Albuquerque, so I'll create a new dataframe called abq\_data to include all data from Albuquerque from Metro column.

```
abq_data = df_zillow.loc[df_zillow["Metro"] == "Albuquerque"]
In [4]:
         abq data
```

Out[4]:

|      | RegionID | RegionName | City         | State | Metro       | CountyName | SizeRank | 1996-04  |
|------|----------|------------|--------------|-------|-------------|------------|----------|----------|
| 110  | 95306    | 87111      | Albuquerque  | NM    | Albuquerque | Bernalillo | 111      | 156900.0 |
| 114  | 95309    | 87114      | Albuquerque  | NM    | Albuquerque | Bernalillo | 115      | 139000.0 |
| 196  | 95314    | 87120      | Albuquerque  | NM    | Albuquerque | Bernalillo | 197      | 130900.0 |
| 268  | 95315    | 87121      | Albuquerque  | NM    | Albuquerque | Bernalillo | 269      | 99900.0  |
| 430  | 95318    | 87124      | Rio Rancho   | NM    | Albuquerque | Sandoval   | 431      | 113200.0 |
| 734  | 95304    | 87109      | Albuquerque  | NM    | Albuquerque | Bernalillo | 735      | 136100.0 |
| 772  | 95307    | 87112      | Albuquerque  | NM    | Albuquerque | Bernalillo | 773      | 112200.0 |
| 893  | 95300    | 87105      | South Valley | NM    | Albuquerque | Bernalillo | 894      | 96700.0  |
| 994  | 95317    | 87123      | Albuquerque  | NM    | Albuquerque | Bernalillo | 995      | 114400.0 |
| 1006 | 95305    | 87110      | Albuquerque  | NM    | Albuquerque | Bernalillo | 1007     | 110500.0 |

|       | RegionID | RegionName | City            | State | Metro       | CountyName | SizeRank | 1996-04  |
|-------|----------|------------|-----------------|-------|-------------|------------|----------|----------|
| 1027  | 95303    | 87108      | Albuquerque     | NM    | Albuquerque | Bernalillo | 1028     | 96300.0  |
| 1628  | 95265    | 87031      | Los Lunas       | NM    | Albuquerque | Valencia   | 1629     | 107300.0 |
| 1958  | 95321    | 87144      | Rio Rancho      | NM    | Albuquerque | Sandoval   | 1959     | 135600.0 |
| 2698  | 95302    | 87107      | Albuquerque     | NM    | Albuquerque | Bernalillo | 2699     | 114700.0 |
| 3005  | 95301    | 87106      | Albuquerque     | NM    | Albuquerque | Bernalillo | 3006     | 112300.0 |
| 4333  | 95297    | 87102      | Albuquerque     | NM    | Albuquerque | Bernalillo | 4334     | 88200.0  |
| 5337  | 95239    | 87002      | Belen           | NM    | Albuquerque | Valencia   | 5338     | 101200.0 |
| 6420  | 95316    | 87122      | Albuquerque     | NM    | Albuquerque | Bernalillo | 6421     | 232000.0 |
| 6840  | 95308    | 87113      | Albuquerque     | NM    | Albuquerque | Bernalillo | 6841     | 183600.0 |
| 7089  | 95299    | 87104      | Albuquerque     | NM    | Albuquerque | Bernalillo | 7090     | 113200.0 |
| 8082  | 95240    | 87004      | Bernalillo      | NM    | Albuquerque | Sandoval   | 8083     | 138400.0 |
| 8163  | 95280    | 87048      | Corrales        | NM    | Albuquerque | Sandoval   | 8164     | 193500.0 |
| 8314  | 95286    | 87059      | Tijeras         | NM    | Albuquerque | Bernalillo | 8315     | 142000.0 |
| 10088 | 95275    | 87043      | Placitas        | NM    | Albuquerque | Sandoval   | 10089    | 222200.0 |
| 10207 | 95279    | 87047      | Sandia Park     | NM    | Albuquerque | Bernalillo | 10208    | 188700.0 |
| 11468 | 95274    | 87042      | Peralta         | NM    | Albuquerque | Valencia   | 11469    | 111700.0 |
| 11474 | 95292    | 87068      | Bosque<br>Farms | NM    | Albuquerque | Valencia   | 11475    | 122200.0 |
| 12222 | 95244    | 87008      | Cedar Crest     | NM    | Albuquerque | Bernalillo | 12223    | 186000.0 |

28 rows × 272 columns

The data contains 28 different zipcodes in Albuquerque. I will drop RegionID and SizeRank as I don't need those columns for this project. I will also look for any missing data.

```
abq_data.drop(['RegionID', 'SizeRank'], axis=1, inplace=True)
In [5]:
         # checking for null values
In [6]:
         abq_data[pd.isna(abq_data).any(axis=1)]
                                                   1996-
                                                         1996- 1996-
                                                                      1996- 1996-
                                                                                      2017-
Out[6]:
          RegionName City State Metro CountyName
                                                                               80
                                                     04
                                                                  06
                                                                                         07
                                                            05
                                                                         07
        0 rows × 270 columns
         abq_data['CountyName'].unique()
Out[7]: array(['Bernalillo', 'Sandoval', 'Valencia'], dtype=object)
```

There's three different counties listed in abq\_data . Next, I'll explore the data and narrow down the zipcodes I want to use for my time series model.

```
In [8]: abq_data2 = abq_data.copy()
```

## **Exploratory Data Analysis**

To provide more insightful information to our stakeholders, I will create a new column ROI in the abq\_data. This column will represent the total Return on Investment (ROI) for each zip code, which is a more comprehensive measure of profitability. I'll also include the cumulative percent change as these are features to evaluate the performance of my model.

| Out[9]: |     | RegionName | City        | State | Metro       | CountyName | Total_ROI | Cumulative_Percent_0 |
|---------|-----|------------|-------------|-------|-------------|------------|-----------|----------------------|
|         | 110 | 87111      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.695347  | 169.                 |
|         | 114 | 87114      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.565468  | 156.                 |
|         | 196 | 87120      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.486631  | 148.                 |
|         | 268 | 87121      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.434434  | 143.4                |
|         | 430 | 87124      | Rio Rancho  | NM    | Albuquerque | Sandoval   | 0.595406  | 159.                 |

```
In [10]: # Find the top 10 zipcodes in Albuquerque
abq_roi.sort_values('Total_ROI', ascending=False).head(10)
```

| Out[10]: |       | RegionName | City        | State | Metro       | CountyName | Total_ROI | Cumulative_Percen |
|----------|-------|------------|-------------|-------|-------------|------------|-----------|-------------------|
|          | 8163  | 87048      | Corrales    | NM    | Albuquerque | Sandoval   | 1.204651  | 2                 |
|          | 6420  | 87122      | Albuquerque | NM    | Albuquerque | Bernalillo | 1.180603  | 2′                |
|          | 3005  | 87106      | Albuquerque | NM    | Albuquerque | Bernalillo | 1.102404  | 2.                |
|          | 10088 | 87043      | Placitas    | NM    | Albuquerque | Sandoval   | 0.903690  | 19                |
|          | 7089  | 87104      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.750883  | 17                |
|          | 734   | 87109      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.713446  | 17                |
|          | 8314  | 87059      | Tijeras     | NM    | Albuquerque | Bernalillo | 0.702817  | 1:                |
|          | 110   | 87111      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.695347  | 16                |

|      | RegionName | City        | State | Metro       | CountyName | Total_ROI | Cumulative_Percen |
|------|------------|-------------|-------|-------------|------------|-----------|-------------------|
| 2698 | 87107      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.684394  | 16                |
| 1027 | 87108      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.666667  | 16                |

New Mexico's largest county is Bernalillo, which contains 47 zipcodes. In comparison, Sandoval county only contains 18 zipcodes. Interestingly, despite its smaller size, the median household income in Sandoval county is \$10,000 higher than that of Bernalillo county.

|          |                                                                                                                                                  |             |          |        | •     |         |       | ,          |         |         |   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|--------|-------|---------|-------|------------|---------|---------|---|
| In [11]: | abq_da                                                                                                                                           | ata.sort_va | lues     |        |       |         |       |            |         |         |   |
| Out[11]: | <box< th=""><th>method Dat</th><th></th><th></th><th>es of</th><th></th><th>Regio</th><th>nName</th><th>Cit</th><th>y State</th><th></th></box<> | method Dat  |          |        | es of |         | Regio | nName      | Cit     | y State |   |
|          | 110                                                                                                                                              | 87111       |          |        | NM    | Albuque | rane  | Bernalille | 5 15690 | 0.0     |   |
|          | 114                                                                                                                                              | 87114       |          | _      | NM    | Albuque | _     | Bernalille |         |         |   |
|          | 196                                                                                                                                              | 87120       | _        |        | NM    | Albuque |       | Bernalille |         |         |   |
|          | 268                                                                                                                                              | 87121       | _        |        | NM    | Albuque |       | Bernalille |         |         |   |
|          | 430                                                                                                                                              | 87124       | _        | Rancho | NM    | Albuque | _     | Sandova    |         |         |   |
|          | 734                                                                                                                                              | 87109       |          |        | NM    | Albuque |       | Bernalille |         |         |   |
|          | 772                                                                                                                                              | 87112       | _        | _      | NM    | Albuque | _     | Bernalille |         |         |   |
|          | 893                                                                                                                                              | 87105       |          |        | NM    | Albuque |       | Bernalille |         |         |   |
|          | 994                                                                                                                                              | 87123       |          | _      | NM    | Albuque |       | Bernalille |         |         |   |
|          | 1006                                                                                                                                             | 87110       | _        |        | NM    | Albuque | _     | Bernalille |         |         |   |
|          | 1027                                                                                                                                             | 87108       | _        | _      | NM    | Albuque | _     | Bernalille |         |         |   |
|          | 1628                                                                                                                                             | 87031       | _        | Lunas  | NM    | Albuque | _     | Valencia   |         |         |   |
|          | 1958                                                                                                                                             | 87144       |          | Rancho | NM    | Albuque | _     | Sandova    |         |         |   |
|          | 2698                                                                                                                                             | 87107       |          | ierque | NM    | Albuque |       | Bernalille |         |         |   |
|          | 3005                                                                                                                                             | 87106       | _        |        | NM    | Albuque |       | Bernalille |         |         |   |
|          | 4333                                                                                                                                             | 87102       | _        | _      | NM    | Albuque | _     | Bernalille |         |         |   |
|          | 5337                                                                                                                                             | 87002       | _        | Belen  | NM    | Albuque |       | Valencia   |         |         |   |
|          | 6420                                                                                                                                             | 87122       | Albuqu   | lerque | NM    | Albuque |       | Bernalille | 23200   | 0.0     |   |
|          | 6840                                                                                                                                             | 87113       |          |        | NM    | Albuque | _     | Bernalille | 18360   | 0.0     |   |
|          | 7089                                                                                                                                             | 87104       | Albuqu   | erque  | NM    | Albuque | erque | Bernalille | 11320   | 0.0     |   |
|          | 8082                                                                                                                                             | 87004       | Berna    | alillo | NM    | Albuque | erque | Sandova    | 13840   | 0.0     |   |
|          | 8163                                                                                                                                             | 87048       | Cor      | rales  | NM    | Albuque | erque | Sandova    | 19350   | 0.0     |   |
|          | 8314                                                                                                                                             | 87059       | Ti       | jeras  | NM    | Albuque | erque | Bernalille | 14200   | 0.0     |   |
|          | 10088                                                                                                                                            | 87043       | Pla      | acitas | NM    | Albuque | erque | Sandova    | 1 22220 | 0.0     |   |
|          | 10207                                                                                                                                            | 87047       | Sandia   | a Park | NM    | Albuque | erque | Bernalille | 18870   | 0.0     |   |
|          | 11468                                                                                                                                            | 87042       | P€       | eralta | NM    | Albuque | erque | Valencia   |         |         |   |
|          | 11474                                                                                                                                            | 87068       | Bosque   | Farms  | NM    | Albuque | erque | Valencia   | a 12220 | 0.0     |   |
|          | 12222                                                                                                                                            | 87008       | Cedar    | Crest  | NM    | Albuque | erque | Bernalille | 18600   | 0.00    |   |
|          |                                                                                                                                                  | 1996-05     | 1996-06  | 1996-  | 07    | 1996-08 |       | 2017-09    | 2017-10 | 2017-11 | \ |
|          | 110                                                                                                                                              | 155600.0    | 154200.0 | 152800 | .0 1  | 51400.0 |       | 253700     | 254200  | 256000  |   |
|          | 114                                                                                                                                              | 139200.0    | 139300.0 | 139400 | .0 1  | 39500.0 |       | 209600     | 210700  | 211800  |   |
|          | 196                                                                                                                                              | 130500.0    | 130000.0 | 129500 | .0 1  | 29000.0 |       | 191400     | 192300  | 193000  |   |
|          | 268                                                                                                                                              | 99600.0     | 99600.0  | 99600  | . 0   | 99700.0 |       | 139800     | 140100  | 140600  |   |
|          | 430                                                                                                                                              | 113400.0    | 113600.0 | 113600 | .0 1  | 13700.0 |       | 175300     | 176700  | 178800  |   |
|          | 734                                                                                                                                              | 135800.0    | 135500.0 | 135300 | .0 1  | 35200.0 |       | 229100     | 228700  | 229000  |   |
|          | 772                                                                                                                                              | 112400.0    | 112600.0 | 112800 | .0 1  | 13100.0 |       | 170900     | 171000  | 172100  |   |
|          | 893                                                                                                                                              | 95800.0     | 95100.0  | 94600  | . 0   | 94300.0 |       | 136200     | 136900  | 137600  |   |
|          | 994                                                                                                                                              |             | 115000.0 | 115200 |       | 15500.0 |       | 181000     | 181700  | 181800  |   |
|          | 1006                                                                                                                                             |             | 110700.0 | 110900 |       | 11100.0 |       | 180400     | 180300  | 180500  |   |
|          | 1027                                                                                                                                             | 96600.0     | 97000.0  | 97500  |       | 97900.0 |       | 155500     | 155400  | 156200  |   |
|          | 1628                                                                                                                                             |             | 107100.0 | 106900 |       | 06800.0 |       | 135900     | 137000  | 138100  |   |
|          | 1958                                                                                                                                             |             | 135000.0 | 134700 |       | 34500.0 |       | 183700     | 184000  | 185400  |   |
|          | 2698                                                                                                                                             |             | 115400.0 | 115800 |       | 16300.0 |       | 189300     | 190000  | 190100  |   |
|          | 3005                                                                                                                                             |             | 112400.0 | 112400 |       | 12400.0 | • • • | 221000     | 221400  | 223700  |   |
|          | 4333                                                                                                                                             | 88000.0     | 87900.0  | 87900  |       | 87900.0 | • • • | 126200     | 128700  | 129500  |   |
|          | 5337                                                                                                                                             | 101300.0    | 101200.0 | 101200 | .0 1  | 01200.0 | • • • | 107100     | 107900  | 109500  |   |

```
6420
       232000.0
                  232000.0
                             232200.0
                                        232400.0
                                                          497500
                                                                    499600
                                                                              503100
                                                    . . .
6840
       183900.0
                  184200.0
                             184500.0
                                        184800.0
                                                          269200
                                                                    269400
                                                                              270300
                                                   . . .
7089
       113300.0
                  113400.0
                             113500.0
                                        113600.0
                                                          181600
                                                                    184100
                                                                              186500
                                                   . . .
8082
       138400.0
                  138400.0
                             138400.0
                                        138400.0
                                                          203500
                                                                    203800
                                                                              205600
                                                   . . .
8163
       193700.0
                  193800.0
                             194000.0
                                        194200.0
                                                          408900
                                                                    408300
                                                                              411400
                                                   . . .
8314
       141900.0
                  141700.0
                             141500.0
                                        141300.0
                                                          232300
                                                                    231900
                                                                              232900
                                                   . . .
10088
       222400.0
                  222700.0
                             223100.0
                                        223600.0
                                                          392600
                                                                    395000
                                                   . . .
                                                                              402400
10207
       188800.0
                  188800.0
                             188800.0
                                        188700.0
                                                   . . .
                                                          275000
                                                                    274800
                                                                              277200
11468
       112000.0
                  112100.0
                             112200.0
                                        112300.0
                                                   . . .
                                                          166400
                                                                    167000
                                                                              167200
11474
       122600.0
                  123000.0
                             123400.0
                                        123800.0
                                                          193800
                                                                    195900
                                                                              196100
                                                   . . .
12222
       185600.0
                  185100.0
                             184700.0
                                                          277300
                                                                    279000
                                        184200.0
                                                   . . .
                                                                              278800
       2017-12
                 2018-01
                           2018-02
                                     2018-03
                                               2018-04
                                                         Total ROI
110
                  260500
        258600
                            262300
                                      264500
                                                266000
                                                          0.695347
114
        213100
                  214100
                            215200
                                      216600
                                                217600
                                                          0.565468
196
        193400
                  193300
                            193600
                                      194300
                                                194600
                                                          0.486631
268
        141100
                  141200
                            141900
                                      142800
                                                143300
                                                          0.434434
430
        180700
                  181400
                                                          0.595406
                            181000
                                      180500
                                                180600
734
        230100
                  231100
                            231800
                                      232700
                                                233200
                                                          0.713446
772
        173500
                  174400
                            176000
                                      178500
                                                          0.605169
                                                180100
893
        138200
                  138400
                            138500
                                      138600
                                                138400
                                                          0.431231
994
                  181200
        181600
                            182200
                                      184300
                                                185300
                                                          0.619755
1006
        180500
                  179900
                            180400
                                      182400
                                                184000
                                                          0.665158
1027
        157300
                  158000
                                                160500
                            158600
                                      159700
                                                          0.666667
1628
        139200
                  139900
                                      142400
                                                143200
                            141100
                                                          0.334576
1958
        186700
                  187100
                            187100
                                      187600
                                                188100
                                                          0.387168
2698
        189700
                  189600
                            190000
                                      191600
                                                193200
                                                          0.684394
3005
        227500
                  230500
                            232700
                                      234700
                                                236100
                                                          1.102404
        129300
4333
                  129400
                            129600
                                      130700
                                                132200
                                                          0.498866
5337
        111100
                  111800
                            112900
                                      114300
                                                115100
                                                          0.137352
6420
        505700
                  508200
                            509300
                                      508200
                                                505900
                                                          1.180603
6840
        271300
                  271500
                            272900
                                      274600
                                                274600
                                                          0.495643
7089
        188800
                  190300
                            192100
                                      195300
                                                198200
                                                          0.750883
8082
        207500
                  207600
                            207100
                                      209500
                                                212800
                                                          0.537572
8163
        414400
                  415000
                            418200
                                      423200
                                                426600
                                                          1.204651
8314
        234200
                  234900
                            237200
                                      240300
                                                241800
                                                          0.702817
10088
        410900
                  416700
                            419400
                                      421000
                                                423000
                                                          0.903690
10207
        282200
                  286300
                            290500
                                      295100
                                                298200
                                                          0.580286
11468
        167700
                  168600
                            170200
                                      171500
                                                172000
                                                          0.539839
        195700
11474
                                                200400
                  196900
                            198600
                                      199700
                                                          0.639935
12222
        278200
                  279200
                            280800
                                      281900
                                                282000
                                                          0.516129
       Cumulative Percent Change
110
                        169.534736
114
                        156.546763
196
                        148.663102
268
                        143.443443
430
                        159.540636
734
                        171.344600
772
                        160.516934
893
                        143.123061
994
                        161.975524
1006
                        166.515837
1027
                        166.666667
1628
                        133.457596
1958
                        138.716814
2698
                        168.439407
3005
                        210.240427
4333
                        149.886621
5337
                        113.735178
6420
                        218.060345
6840
                        149.564270
7089
                        175.088339
```

153.757225

220.465116

```
8314 170.281690

10088 190.369037

10207 158.028617

11468 153.983885

11474 163.993453

12222 151.612903
```

#### Visualization

Now that I have selected the top 10 zipcodes in Albuquerque, I'll create a bar graph to see the growth percentage.

```
In [12]:
          # formatting for the rest of our visualizations
          font = {'family': 'DejaVu Sans',
                  'weight': 'bold',
                  'size': 22}
          plt.rc('font', **font)
          # Sort values by Total ROI
In [13]:
          abq_roi_sorted = abq_roi.sort_values(by='Total_ROI', ascending=False)
          ax = abq_roi_sorted.head(10).plot.bar(x='RegionName', y='Total_ROI', figsize=(
              16, 8), alpha=0.5, edgecolor="black", linewidth=2)
          plt.title('Top 10 Zip Codes in Albuquerque', fontsize=25)
          plt.legend('')
          ax.set yticklabels(["0%", "20%", "40%", "60%", "80%", "100%"])
          plt.xlabel('Zip Codes', fontsize=20)
          plt.ylabel('Growth Percentage', fontsize=20)
```

Out[13]: Text(0, 0.5, 'Growth Percentage')



```
In [14]: # Create new dataframe for top 10 zipcodes in Albuquerque
    abq_10 = abq_roi.sort_values(by='Total_ROI', ascending=False).head(10)
    abq_10
```

| Out[14]: |       | RegionName | City        | State | Metro       | CountyName | Total_ROI | Cumulative_Percen |
|----------|-------|------------|-------------|-------|-------------|------------|-----------|-------------------|
|          | 8163  | 87048      | Corrales    | NM    | Albuquerque | Sandoval   | 1.204651  | 2                 |
|          | 6420  | 87122      | Albuquerque | NM    | Albuquerque | Bernalillo | 1.180603  | 2′                |
|          | 3005  | 87106      | Albuquerque | NM    | Albuquerque | Bernalillo | 1.102404  | 2.                |
|          | 10088 | 87043      | Placitas    | NM    | Albuquerque | Sandoval   | 0.903690  | 19                |
|          | 7089  | 87104      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.750883  | 17                |
|          | 734   | 87109      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.713446  | 17                |
|          | 8314  | 87059      | Tijeras     | NM    | Albuquerque | Bernalillo | 0.702817  | 1.                |
|          | 110   | 87111      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.695347  | 16                |
|          | 2698  | 87107      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.684394  | 16                |
|          | 1027  | 87108      | Albuquerque | NM    | Albuquerque | Bernalillo | 0.666667  | 16                |
|          |       |            |             |       |             |            |           |                   |

```
In [15]: abq_10['RegionName'] = abq_10['RegionName'].astype(str)

# Plotting the historical data
fig, ax = plt.subplots(figsize=(30,10))
plt.bar(abq_10.RegionName, abq_10['Cumulative_Percent_Change'])
plt.title('ROI by Zipcode 1996 - 2018')
plt.xlabel('Zipcode')
plt.ylabel('ROI percent')
plt.show()
```



This graph shows the top 10 zipcodes with the highest ROI over the period of 1996 to 2018. There's subtle changes between 87101 and 87108.

```
In [16]: # list of top 5 zipcodes
    region_list = ['87048', '87122', '87106', '87043', '87104']

# filter rows with desired RegionNames
    abq_top_5 = abq_data[abq_data['RegionName'].isin(region_list)]

abq_top_5 = abq_top_5.drop(columns=['Total_ROI', 'Cumulative_Percent_Change'])

# display new dataframe
abq_top_5.head()
```

| Out[16]: |                      | RegionName | City        | State | Metro       | CountyName | 1996-04  | 1996-05  | 1996-06  |
|----------|----------------------|------------|-------------|-------|-------------|------------|----------|----------|----------|
|          | 3005                 | 87106      | Albuquerque | NM    | Albuquerque | Bernalillo | 112300.0 | 112300.0 | 112400.0 |
|          | 6420                 | 87122      | Albuquerque | NM    | Albuquerque | Bernalillo | 232000.0 | 232000.0 | 232000.0 |
|          | 7089                 | 87104      | Albuquerque | NM    | Albuquerque | Bernalillo | 113200.0 | 113300.0 | 113400.0 |
|          | 8163                 | 87048      | Corrales    | NM    | Albuquerque | Sandoval   | 193500.0 | 193700.0 | 193800.0 |
|          | 10088                | 87043      | Placitas    | NM    | Albuquerque | Sandoval   | 222200.0 | 222400.0 | 222700.0 |
|          | 5 rows × 270 columns |            | 5           |       |             |            |          |          |          |

```
In [17]: abq_top_5
```

|   |      | RegionName | City        | State | Metro       | CountyName | 1996-04  | 1996-05  | 1996-06  |
|---|------|------------|-------------|-------|-------------|------------|----------|----------|----------|
|   | 3005 | 87106      | Albuquerque | NM    | Albuquerque | Bernalillo | 112300.0 | 112300.0 | 112400.0 |
|   | 6420 | 87122      | Albuquerque | NM    | Albuquerque | Bernalillo | 232000.0 | 232000.0 | 232000.0 |
|   | 7089 | 87104      | Albuquerque | NM    | Albuquerque | Bernalillo | 113200.0 | 113300.0 | 113400.0 |
|   | 8163 | 87048      | Corrales    | NM    | Albuquerque | Sandoval   | 193500.0 | 193700.0 | 193800.0 |
| 1 | 8800 | 87043      | Placitas    | NM    | Albuquerque | Sandoval   | 222200.0 | 222400.0 | 222700.0 |

5 rows x 270 columns

Out[17]:

#### Reshape from Wide to Long Format

Now that I have the data that I want to use, I'll reshape the data from a wideformat to a long format. The abq\_data contains the wide format dataset.

```
In [18]:
          def melt data(df):
             # Melt data into wide version
              melted = pd.melt(df, id_vars=['RegionName', 'City', 'State', 'Metro', 'Count
              # Create new column as datetime variable
              melted['time'] = pd.to datetime(melted['time'], infer datetime format=True)
              # Remove rows with missing values
              melted = melted.dropna(subset=['value'])
              # set `time` as index
              melted.set index('time', inplace=True)
              return melted.groupby('time').aggregate({'value':'mean'})
In [19]:
          # Create new data frame for zipcodes
          abq_zip = [zip_code for zip_code in abq_10['RegionName']]
In [20]:
          abq zip
```

```
Out[20]: ['87048',
            '87122',
            '87106',
            '87043',
            '87104'
            '87109',
            '87059',
            '87111',
            '87107',
            '87108']
```

#### Final top 10 zipcodes

```
In [21]:
          abq_df = pd.DataFrame()
           for i in abq_top_5['RegionName']:
               x = melt_data(abq_top_5[abq_top_5['RegionName'] == i])
               abq_df = pd.concat([abq_df, x], axis=1)
               abq_df .rename(columns = {'value':i}, inplace = True)
           # Display results
           abq_df.head(10)
                                         87104
                       87106
                                87122
                                                  87048
                                                           87043
Out[21]:
                time
          1996-04-01 112300.0 232000.0 113200.0 193500.0 222200.0
          1996-05-01 112300.0 232000.0 113300.0
                                                193700.0 222400.0
          1996-06-01 112400.0 232000.0 113400.0 193800.0 222700.0
          1996-07-01 112400.0 232200.0 113500.0 194000.0
                                                         223100.0
          1996-08-01 112400.0 232400.0 113600.0 194200.0 223600.0
          1996-09-01 112400.0 232800.0 113700.0 194400.0 224100.0
          1996-10-01 112500.0 233200.0 113800.0 194700.0 224700.0
          1996-11-01 112600.0 233800.0 114000.0 194700.0 225000.0
          1996-12-01 112800.0 234500.0 114100.0 194600.0 224900.0
          1997-01-01 113100.0 235300.0 114300.0 194700.0 225100.0
In [22]:
          abq df = abq df.asfreq('MS')
          abq df.plot(figsize=(15, 7))
In [23]:
           plt.xlabel('Year')
           plt.ylabel('Value')
           plt.title('Median Home Value: 1996-2018')
           plt.show();
```



Now we can see our training data and the testing data. 80% of our data is in the train and 20% of the data is in test. It looks like the split point is in 2014. The trend line has an upward pattern up until 2008 where you can see a downward trend. This is due to the Great Recession. The "Subprime Mortgage Crisis" was a period of time (2007 to 2010) when there was an increase in the number of high-risk mortgages that went into default and caused a ripple effect on the housing market and broader economy. This is important to highlight as I am not inlouding this data into my modeling.

[More information about the Subprime Mortgage Crisis] (https://www.history.com/topics/21st-century/recession)

#### Train Validation Split and Naive Model

I'll create a naive model by shifting the train data by one day to create a simple baseline model for comparison with my SARIMAX model. The naive model predicts that the current value is the same as the value from the previous day and does not take into account any patterns or trends in the data. The purpose of this model is to establish a baseline performance metric, which is the root mean squared error (RMSE).

```
In [24]: # Create new dataframe with datapoints beginning in 2011
    abq_df_new = abq_df['2011-01-01':]

In [25]: # Get a list of unique zipcodes (column names)
    unique_zipcodes = abq_df_new.columns

# Initialize an empty dictionary to store the RMSE values for each zipcode
    rmse_dict = {}

# Define the train-test split ratio
    split_ratio = 0.8

# Loop through the unique zipcodes
    for zipcode in unique_zipcodes:
        # Get the data for the current zipcode
        data = abq_df_new[zipcode]
```

```
# Calculate the index for the train-test split
    cutoff = int(len(data) * split_ratio)
    # Split the data into train and test sets
    train = data[:cutoff]
    test = data[cutoff:]
    # Shift the train data by 1 time step to create the naive model predictions
    naive_predictions = train.shift(1)
    # Calculate the RMSE between the actual values and the naive model prediction
    rmse_naive_train = np.sqrt(np.mean((train[1:] - naive_predictions[1:])**2))
    # Shift the test data by 1 time step to create the naive model predictions
    naive_predictions_test = test.shift(1)
    # Calculate the RMSE between the actual values and the naive model predictio
    rmse_naive_test = np.sqrt(np.mean((test[1:] - naive_predictions_test[1:])**2
    # Add the RMSE values to the dictionary with the zipcode as the key
    rmse_dict[zipcode] = {'train': rmse_naive_train, 'test': rmse_naive_test}
# Print the baseline RMSE values for each zipcode
print('Baseline RMSE values for each zipcode:')
for zipcode, rmse_values in rmse_dict.items():
    print(f'Zipcode {zipcode}: Train RMSE = {rmse_values["train"]:.2f}, Test RMS
Baseline RMSE values for each zipcode:
Zipcode 87106: Train RMSE = 1992.74, Test RMSE = 1763.69
```

```
Zipcode 87106: Train RMSE = 1992.74, Test RMSE = 1763.69
Zipcode 87122: Train RMSE = 2483.10, Test RMSE = 2151.74
Zipcode 87104: Train RMSE = 1084.01, Test RMSE = 1848.21
Zipcode 87048: Train RMSE = 3602.07, Test RMSE = 2825.51
Zipcode 87043: Train RMSE = 2222.06, Test RMSE = 3517.35
```

Now that I have my baseline RMSE for each zipode, I'll use the RMSE as a baseline to evaluate my models.

## **SARIMAX Modeling**

Now that I have my baseline model, I will use a SARIMA model to forecast the median value of the top 5 zipcodes in Albuquerque. The top five zipcodes will have individual predictions and forecast results. I will evaluate each model by calculate the Root Mean Squared Error (RMSE). I will also include the 95% confidence interval, which will give a range of values within the true future value is likely to fall, with of course, 95% confidence.

I chose a SARIMAX model for forecasting the top 5 zipcodes for multiple reasons:

- 1. Seasonality Real Estate prices exhibit seasonal patterns.
- 2. Autoregressive and Moving Average Components SARIMAX is an extension of the ARIMA model, which combines AR and moving average components.
- 3. Flexibility Specifiy different orders for AR, MA, Seasonal, which allows for fine-tuning the model to better fit the data for each zipcode.
- 4. Interpretability Interpretable results.

#### Albuquerque, New Mexico 87106

```
# Define train and validation datasets based 20% and 80%
In [26]:
          training_data = abq_df_new[87106][:cutoff]
          validation_data = abq_df_new[87106][cutoff:]
          # Define the range of parameters for p, d, q, P, D, Q, and s
          p = d = q = range(0, 2)
          P = D = Q = range(0, 2)
          s = 12 # monthly data
          # Generate a list of all possible combinations of parameters
          pdq = list(itertools.product(p, d, q))
          seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
          # Initialize variables to store the best parameters and the lowest RMSE
          best params = (0, 0, 0, 0, 0, 0, 0)
          lowest_rmse = float('inf')
          # Loop through all possible combinations of parameters
          for param in pdq:
              for param_seasonal in seasonal_pdq:
                  try:
                      # Fit a SARIMAX model with the current combination of parameters
                      model = sm.tsa.statespace.SARIMAX(training_data,
                                                         order=param,
                                                         seasonal order=param seasonal,
                                                         enforce stationarity=False,
                                                         enforce invertibility=False).fit()
                      # Make predictions on the validation data
                      predictions = model.predict(start=validation data.index[0], end=vali
                      # Calculate the RMSE of the predictions
                      rmse = np.sqrt(np.mean((predictions - validation data)**2))
                      # Update the best parameters and lowest RMSE if the current RMSE is
                      if rmse < lowest rmse:</pre>
                          best params = (param, param seasonal)
                          lowest rmse = rmse
                  except ValueError: # skip combinations that fail to converge or produce
                      continue
          print(f'Best parameters: {best params}')
          print(f'Lowest RMSE: {lowest rmse:.2f}')
```

```
Best parameters: ((1, 0, 0), (0, 0, 0, 12))
Lowest RMSE: 4536.00
```

The root mean squared error(RMSE) is \$4,536, which represents the average difference between the actual data points and the predictions made by the SARIMAX model. This is higher than our baseline model and it indicates that the model may not be adequately capturing the data's structure.

```
seasonal order=(0, 0, 0, 12),
                                        enforce stationarity=False,
                                        enforce invertibility=False).fit()
# Forecast 52 weeks into the future (1 year)
forecast1 = sarima_mod1.get_forecast(steps=52).summary_frame()
# Calculate the mean of the last week of the forecast as the predicted value
forecast1_mean = round(forecast1['mean'][51])
#Calculate the difference between lower and upper 95% confidence intervals of th
low int1 = round(forecast1['mean ci lower'][51])
high_int1 = round(forecast1['mean_ci_upper'][51])
#Calculate the difference between the upper and lower confidence intervals
ci delta1 = round(high int1 - low int1)
# Print predicted value and confidence intervals
print(f'Albuquerque, NM, 87106:')
print(f'95% confidence: ${low int1} and ${high int1}')
print(f'Confidence range: ${ci delta1}')
# Plot the original data and predicted values with confidence intervals
fig, ax = plt.subplots(figsize=(15, 7))
plt.plot(abq df new[87106])
plt.plot(forecast1['mean'])
ax.fill_between(forecast1.index, forecast1['mean_ci_lower'],
                    forecast1['mean_ci_upper'], color='k', alpha=0.1)
plt.title('Albuquerque, NM, 87106')
plt.legend(['Original','Predicted'], loc='lower right')
plt.xlabel('Year')
plt.ylabel('Median Home Price')
plt.show()
```

Albuquerque, NM, 87106: 95% confidence: \$236629.0 and \$293381.0 Confidence range: \$56752.0



The result shows the forecast for the median home price in zipcode 87106. The 95% confidence interval is a measure of uncertainty around the predicted value. The 95% confidence interval is between 236,629 and 293,381. This means that based on the model's predictions, there is a 95% probability that the true median home price will fall within this range. The confidence range

is \$56,752 which is the difference between the upper and lower bounds of the confidence interval.

#### Albuquerque, New Mexico 87122

```
# Define train and validation datasets based 20% and 80%
In [28]:
          training_data2 = abq_df_new[87122][:cutoff]
          validation_data2 = abq_df_new[87122][cutoff:]
          # Define the range of parameters for p, d, q, P, D, Q, and s
          p = d = q = range(0, 2)
          P = D = Q = range(0, 2)
          s = 12 # monthly data
          # Generate a list of all possible combinations of parameters
          pdg = list(itertools.product(p, d, q))
          seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
          # Initialize variables to store the best parameters and the lowest RMSE
          best_params = (0, 0, 0, 0, 0, 0, 0)
          lowest_rmse = float('inf')
          # Loop through all possible combinations of parameters
          for param in pdq:
              for param_seasonal in seasonal_pdq:
                      # Fit a SARIMAX model with the current combination of parameters
                      model2 = sm.tsa.statespace.SARIMAX(training data2,
                                                         order=param,
                                                         seasonal order=param seasonal,
                                                         enforce stationarity=False,
                                                         enforce invertibility=False).fit()
                      # Make predictions on the validation data
                      predictions2 = model2.predict(start=validation data2.index[0], end=v
                      # Calculate the RMSE of the predictions
                      rmse2 = np.sqrt(np.mean((predictions2 - validation data2)**2))
                      # Update the best parameters and lowest RMSE if the current RMSE is
                      if rmse2 < lowest_rmse:</pre>
                          best params = (param, param seasonal)
                          lowest rmse = rmse2
                  except ValueError: # skip combinations that fail to converge or produce
                      continue
          print(f'Best parameters: {best params}')
          print(f'Lowest RMSE: {lowest rmse:.2f}')
```

```
Best parameters: ((0, 1, 1), (0, 0, 1, 12))
Lowest RMSE: 3155.22
```

The RMSE is a little closer to our baseline model. Due to the computational time, I'll leave the parameters to 0,2.

```
In [29]: #Define SARIMAX model and fit data save as sarima_mod1
    sarima_mod2 = sm.tsa.statespace.SARIMAX(abq_df_new[87122],
```

```
order=(0, 1, 1),
                                        seasonal\_order=(0, 0, 1, 12),
                                        enforce stationarity=False,
                                        enforce invertibility=False).fit()
# Forecast 52 weeks into the future (1 year)
forecast2 = sarima mod2.get forecast(steps=52).summary frame()
# Calculate the mean of the last week of the forecast as the predicted value
forecast2_mean = round(forecast2['mean'][51])
#Calculate the difference between lower and upper 95% confidence intervals of th
low int2 = round(forecast2['mean ci lower'][51])
high_int2 = round(forecast2['mean_ci_upper'][51])
#Calculate the difference between the upper and lower confidence intervals
ci_delta2 = round(high_int2 - low_int2)
# Print predicted value and confidence intervals
print(f'Albuquerque, NM, 87122:')
print(f'95% confidence: ${low int1} and ${high int1}')
print(f'Confidence range: ${ci_delta1}')
# Plot the original data and predicted values with confidence intervals
fig, ax = plt.subplots(figsize=(15, 7))
plt.plot(abq df new[87122])
plt.plot(forecast2['mean'])
ax.fill_between(forecast2.index, forecast2['mean_ci_lower'],
                    forecast2['mean_ci_upper'], color='k', alpha=0.1)
plt.title('Albuquerque, NM, 87122')
plt.legend(['Original','Predicted'], loc='lower right')
plt.xlabel('Year')
plt.ylabel('Median Home Price')
plt.show()
```

Albuquerque, NM, 87122: 95% confidence: \$236629.0 and \$293381.0 Confidence range: \$56752.0



Zipcode 87122 has the same results as 87106. Let's move on and see the results of our other zipcodes.

#### Albuquerque, NM, 87104

```
# Define train and validation datasets based 20% and 80%
In [30]:
          training_data3 = abq_df_new[87104][:cutoff]
          validation data3 = abq df new[87104][cutoff:]
          # Define the range of parameters for p, d, q, P, D, Q, and s
          p = d = q = range(0, 2)
          P = D = Q = range(0, 2)
          s = 12 # monthly data
          # Generate a list of all possible combinations of parameters
          pdq = list(itertools.product(p, d, q))
          seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
          # Initialize variables to store the best parameters and the lowest RMSE
          best_params = (0, 0, 0, 0, 0, 0, 0)
          lowest_rmse = float('inf')
          # Loop through all possible combinations of parameters
          for param in pdq:
              for param_seasonal in seasonal_pdq:
                      # Fit a SARIMAX model with the current combination of parameters
                      model3 = sm.tsa.statespace.SARIMAX(training data3,
                                                         order=param,
                                                         seasonal order=param seasonal,
                                                         enforce stationarity=False,
                                                         enforce invertibility=False).fit()
                      # Make predictions on the validation data
                      predictions3 = model3.predict(start=validation data3.index[0], end=v
                      # Calculate the RMSE of the predictions
                      rmse3 = np.sqrt(np.mean((predictions3 - validation data3)**2))
                      # Update the best parameters and lowest RMSE if the current RMSE is
                      if rmse3 < lowest_rmse:</pre>
                          best params = (param, param seasonal)
                          lowest_rmse = rmse3
                  except ValueError: # skip combinations that fail to converge or produce
                      continue
          print(f'Best parameters: {best params}')
          print(f'Lowest RMSE: {lowest rmse:.2f}')
         Best parameters: ((1, 0, 1), (1, 0, 1, 12))
         Lowest RMSE: 5235.02
```

The RMSE is a lot higher than our baseline model.

```
# Forecast 52 weeks into the future (1 year)
forecast3 = sarima mod3.get forecast(steps=52).summary frame()
# Calculate the mean of the last week of the forecast as the predicted value
forecast3_mean = round(forecast3['mean'][51])
#Calculate the difference between lower and upper 95% confidence intervals of th
low_int3 = round(forecast3['mean_ci_lower'][51])
high_int3 = round(forecast3['mean_ci_upper'][51])
#Calculate the difference between the upper and lower confidence intervals
ci_delta3 = round(high_int3 - low_int3)
# Print predicted value and confidence intervals
print(f'Albuquerque, NM, 87104:')
print(f'95% confidence: ${low_int1} and ${high_int1}')
print(f'Confidence range: ${ci_delta1}')
# Plot the original data and predicted values with confidence intervals
fig, ax = plt.subplots(figsize=(15, 7))
plt.plot(abq_df_new[87104])
plt.plot(forecast3['mean'])
ax.fill_between(forecast3.index, forecast3['mean_ci_lower'],
                    forecast3['mean_ci_upper'], color='k', alpha=0.1)
plt.title('Albuquerque, NM, 87104')
plt.legend(['Original','Predicted'], loc='lower right')
plt.xlabel('Year')
plt.ylabel('Median Home Price')
plt.show()
```

Albuquerque, NM, 87104: 95% confidence: \$236629.0 and \$293381.0 Confidence range: \$56752.0



This also gave the same results as the previous zipcodes.

#### Albuquerque, NM, 87048

```
In [32]: # Define train and validation datasets based 20% and 80%
training_data4 = abq_df_new[87048][:cutoff]
```

```
validation data4 = abq df new[87048][cutoff:]
# Define the range of parameters for p, d, q, P, D, Q, and s
p = d = q = range(0, 2)
P = D = Q = range(0, 2)
s = 12 # monthly data
# Generate a list of all possible combinations of parameters
pdq = list(itertools.product(p, d, q))
seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
# Initialize variables to store the best parameters and the lowest RMSE
best_params = (0, 0, 0, 0, 0, 0, 0)
lowest_rmse = float('inf')
# Loop through all possible combinations of parameters
for param in pdq:
    for param_seasonal in seasonal_pdq:
        try:
            # Fit a SARIMAX model with the current combination of parameters
            model4 = sm.tsa.statespace.SARIMAX(training_data4,
                                               order=param,
                                               seasonal_order=param_seasonal,
                                               enforce stationarity=False,
                                               enforce invertibility=False).fit()
            # Make predictions on the validation data
            predictions4 = model4.predict(start=validation_data4.index[0], end=v
            # Calculate the RMSE of the predictions
            rmse4 = np.sqrt(np.mean((predictions4 - validation data4)**2))
            # Update the best parameters and lowest RMSE if the current RMSE is
            if rmse4 < lowest rmse:</pre>
                best_params = (param, param_seasonal)
                lowest rmse = rmse4
        except ValueError: # skip combinations that fail to converge or produce
            continue
print(f'Best parameters: {best params}')
print(f'Lowest RMSE: {lowest rmse:.2f}')
```

```
Best parameters: ((1, 0, 1), (1, 0, 0, 12))
Lowest RMSE: 4128.81
```

The RMSE is \$1,000 higher than our baseline. Again, there are different approaches such as grid search that I could use.

```
#Calculate the difference between lower and upper 95% confidence intervals of th
low_int4 = round(forecast4['mean_ci_lower'][51])
high_int4 = round(forecast4['mean_ci_upper'][51])
#Calculate the difference between the upper and lower confidence intervals
ci delta4 = round(high int4 - low int4)
# Print predicted value and confidence intervals
print(f'Albuquerque, NM, 87048:')
print(f'95% confidence: ${low_int1} and ${high_int1}')
print(f'Confidence range: ${ci delta1}')
# Plot the original data and predicted values with confidence intervals
fig, ax = plt.subplots(figsize=(15, 7))
plt.plot(abq_df_new[87048])
plt.plot(forecast4['mean'])
ax.fill_between(forecast4.index, forecast4['mean_ci_lower'],
                    forecast1['mean_ci_upper'], color='k', alpha=0.1)
plt.title('Albuquerque, NM, 87048')
plt.legend(['Original','Predicted'], loc='lower right')
plt.xlabel('Year')
plt.ylabel('Median Home Price')
plt.show()
```

Albuquerque, NM, 87048: 95% confidence: \$236629.0 and \$293381.0



## Albuquerque, NM, 87043

```
In [34]: # Define train and validation datasets based 20% and 80%
    training_data5 = abq_df_new[87043][:cutoff]
    validation_data5 = abq_df_new[87043][cutoff:]

# Define the range of parameters for p, d, q, P, D, Q, and s
    p = d = q = range(0, 2)
    P = D = Q = range(0, 2)
    s = 12 # monthly data
```

```
# Generate a list of all possible combinations of parameters
pdq = list(itertools.product(p, d, q))
seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
# Initialize variables to store the best parameters and the lowest RMSE
best params = (0, 0, 0, 0, 0, 0, 0)
lowest rmse = float('inf')
# Loop through all possible combinations of parameters
for param in pdq:
    for param_seasonal in seasonal_pdq:
        try:
            # Fit a SARIMAX model with the current combination of parameters
            model5 = sm.tsa.statespace.SARIMAX(training_data5,
                                               order=param,
                                               seasonal order=param seasonal,
                                               enforce stationarity=False,
                                               enforce_invertibility=False).fit()
            # Make predictions on the validation data
            predictions5 = model5.predict(start=validation_data5.index[0], end=v
            # Calculate the RMSE of the predictions
            rmse5 = np.sqrt(np.mean((predictions5 - validation_data5)**2))
            # Update the best parameters and lowest RMSE if the current RMSE is
            if rmse5 < lowest rmse:</pre>
                best_params = (param, param_seasonal)
                lowest rmse = rmse5
        except ValueError: # skip combinations that fail to converge or produce
            continue
print(f'Best parameters: {best params}')
print(f'Lowest RMSE: {lowest_rmse:.2f}')
```

Best parameters: ((1, 0, 0), (1, 1, 0, 12))Lowest RMSE: 8373.23

The RMSE is higher than our baseline model.

```
In [35]:
          #Define SARIMAX model and fit data save as sarima mod5
          sarima mod5 = sm.tsa.statespace.SARIMAX(abq df new[87043],
                                                  order=(1, 0, 0),
                                                  seasonal order=(1, 1, 0, 12),
                                                  enforce stationarity=False,
                                                  enforce invertibility=False).fit()
          # Forecast 52 weeks into the future (1 year)
          forecast5 = sarima mod5.get_forecast(steps=52).summary_frame()
          # Calculate the mean of the last week of the forecast as the predicted value
          forecast5 mean = round(forecast5['mean'][51])
          #Calculate the difference between lower and upper 95% confidence intervals of th
          low_int5 = round(forecast5['mean_ci_lower'][51])
          high int5 = round(forecast5['mean ci upper'][51])
          #Calculate the difference between the upper and lower confidence intervals
          ci_delta5 = round(high_int5 - low_int5)
          # Plot the original data and predicted values with confidence intervals
          fig, ax = plt.subplots(figsize=(15, 7))
          plt.plot(abq df new[87043])
          plt.plot(forecast5['mean'])
```



Albuquerque, NM, 87043: 95% confidence between: \$375097.0 and \$441879.0 Confidence range: \$66782.0

These results are a lot different compared to the above zipcodes. The 95% confidence level is between 375,097 and 441,879. The confidence range is \$66,782. The SARIMAX model seems to perform better for this particular zipcode as well and seems more realistic. Let's examine the residuals.

```
# Residuals
In [36]:
          residuals = model5.resid
          # Histogram of residuals
          plt.figure(figsize=(12, 6))
          sns.histplot(residuals, kde=True)
          plt.title('Histogram of Residuals')
          plt.xlabel('Residuals')
          plt.show()
          # Q-Q plot of residuals
          plt.figure(figsize=(12, 6))
          stats.probplot(residuals, plot=plt)
          plt.title('Q-Q Plot of Residuals')
          plt.xlabel('Theoretical Quantiles')
          plt.ylabel('Sample Quantiles')
          plt.show()
```



The histogram of residuals looks normally distributed but with some outliers. So it doesn't completely deviate significantly from a normal distribution. The QQ plot curves off and could mean the data has extreme values.

#### **Evaluation**

Now that I have my models for the top five zipcodes to invest in Albuquerque, I want to see the RMSE, low confidence, high confidence, forecast range and ROI for each of the zipcodes.

```
In [37]: # Define a list of zipcodes to include
  zipcodes = [87106, 87122, 87104, 87048, 87043]

# Subset the DataFrame to only include rows where the year is 2018 and the zipco
  abq_df_2018 = abq_df_new.loc[(abq_df_new.index.year == 2018) & (abq_df_new.index
  # Calculate the median of the values for each zipcode in 2018
```

```
medians 2018 = abq df 2018.median()
          # Print the results
          for zipcode, median in medians 2018.items():
              print(f"The median home value for zipcode {zipcode} in 2018 was ${median:,.2
         The median home value for zipcode 87106 in 2018 was $230,500.00
         The median home value for zipcode 87122 in 2018 was $508,200.00
         The median home value for zipcode 87104 in 2018 was $190,300.00
         The median home value for zipcode 87048 in 2018 was $415,000.00
         The median home value for zipcode 87043 in 2018 was $416,700.00
In [38]:
         # Define lists for the zipcode, city, median value, RMSE, low confidence, high c
          zipcodes = ['87106', '87122', '87104', '87048', '87043']
cities = ['Albuquerque, NM', 'Albuquerque, NM', 'Corrales, NM'
          med values = [230500, 508200, 190300, 415000, 416700]
          rmse = [rmse, rmse2, rmse3, rmse4, rmse5]
          low_confs = [low_int1, low_int2, low_int3, low_int4, low_int5]
          high confs = [high int1, high int2, high int3, high int4, high int5]
          forecast_ranges = [ci_delta1, ci_delta2, ci_delta3, ci_delta4, ci_delta5]
          # Create a dictionary 'abq' that contains the zipcode, city, median value, RMSE,
          abq = {'Zipcode': zipcodes,
                   'City': cities,
                  '2018 median value': med_values,
                  'rmse': rmse,
                   'low conf': low confs,
                  'high_conf': high_confs,
                  'forecast range': forecast ranges}
          # Create a DataFrame 'df results' using the dictionary 'abq'.
          df results = pd.DataFrame(data=abg)
          # Calculate the low and high ends of the confidence interval for each row, and s
          df results['low end'] = df results['2018 median value'] + df results['low conf']
          df results['high end'] = df results['2018 median value'] + df results['high conf
          # Calculate the ROI percentage for each row, and store the results in a new colu
          df results['ROI%'] = round(((df results['high end'] - df results['2018 median va
                                                 df results['2018 median value']) * 100, 2)
```

In [39]: df results

Out[39]:

|   | Zipcode | City               | 2018<br>median<br>value | rmse         | low_conf | high_conf | forecast<br>range | low_end  | high_€ |
|---|---------|--------------------|-------------------------|--------------|----------|-----------|-------------------|----------|--------|
| 0 | 87106   | Albuquerque,<br>NM | 230500                  | 28566.613682 | 236629.0 | 293381.0  | 56752.0           | 467129.0 | 52388  |
| 1 | 87122   | Albuquerque,<br>NM | 508200                  | 4276.872528  | 465108.0 | 543586.0  | 78478.0           | 973308.0 | 105178 |
| 2 | 87104   | Albuquerque,<br>NM | 190300                  | 6118.499377  | 202629.0 | 239505.0  | 36876.0           | 392929.0 | 42980  |
| 3 | 87048   | Corrales, NM       | 415000                  | 16113.137999 | 447569.0 | 581744.0  | 134175.0          | 862569.0 | 99674  |

2018

 Zipcode
 City
 median value
 rmse
 low\_conf
 high\_conf
 low\_end
 high\_€

 4
 87043
 Santa Ana Pueblo, NM
 416700
 16992.337405
 375097.0
 441879.0
 66782.0
 791797.0
 85857

forecast

```
# create a DataFrame from the given data
In [40]:
          data = {'zipcode': ['87106', '87122', '87104', '87048', '87043'],
                  'city': ['Albuquerque, NM', 'Albuquerque, NM', 'Albuquerque, NM', 'Corra
                  '2018 median value': [230500, 508200, 190300, 415000, 416700],
                  'rmse': [31455.188774, 81866.138297, 25140.743922, 56009.750599, 71678.3
                  'low_conf': [43008, 52707, 134725, -68970, 200748],
                  'high conf': [612761, 833727, 405455, 1173814, 930335],
                  'forecast range': [569753, 781020, 270730, 1242784, 729587],
                  'low end': [273508, 560907, 325025, 346030, 617448],
                  'high end': [843261, 1341927, 595755, 1588814, 1347035],
                  'ROI%': [265.84, 164.05, 213.06, 282.85, 223.26]}
          df = pd.DataFrame(data)
          # sort the DataFrame by the ROI% column
          df = df.sort_values('ROI%', ascending=False)
          # plot the ROI values as a bar chart
          ax = df.plot(x='zipcode', y='ROI%', kind='bar', figsize=(10, 8))
          ax.set_xticklabels(df['zipcode'])
          ax.set xlabel('Zipcode')
          ax.set ylabel('ROI%')
          plt.show()
```



#### Recommendations

For those who are intersted investing in properties in New Mexico, there are the following zipcodes that has a high return on investment.

- 1. Corrales, NM (87048)
- 2. Albuquerque, NM (87106)
- 3. Santa Ana Pueblo, NM (87043) Santa Ana Pubelo's median value in 2018 was  $416,700 and forecasted a confidence range between 375,097 \ {\rm and}\ \$441,8790.$
- 4. Albuquerque, NM (87104)
- 5. Albuquerque, NM (87122)

The model's inability to generate realistic forecasts resulted in identical forecast ranges for zipcodes 87048, 87106, 87104, and 87122. However, analyzing the ROI paints a different picture. Investors seeking property in New Mexico would be better off considering Corrales or Santa Ana Pueblo. A 2023 Zillow search revealed that Santa Ana Pueblo's home prices range from 200,000to1,795,950, while Corrales' prices range from 205,000to3,800,000. These wide ranges suggest that further investigation of these zipcodes could reveal intriguing insights.

## **Next Steps**

- 1. Further investigation into Santa Ana Pueblo and Corrales.
- 2. Include external factors that may influence real estate prices, such as population growth or unemployment rates.

3. Investigate rapidly growing neighborhoods in New Mexico.