Towards wall-crossing for categorified quasimap CohFTs

David Kern | LAREMA, Université d'Angers

kern@math.univ-angers.fr

The usual notion of a tree-level CohFT is captured by that of an algebra over the operad $(A_{\bullet}\overline{\mathcal{M}}_{0,n+1})_{n\geq 0}$. Gromov–Witten classes furnish such a structure on the cyclotomic inertia stack $\mathcal{I}_{\mu}X$ of any Deligne–Mumford stack X by pullback–virtual pushforward along the correspondence

$$\begin{array}{c}
\coprod_{0 \text{ } n+1} \times (\mathcal{I}X)^{n}
\end{array} \xrightarrow{\beta \in A_{1}X} \overline{\mathcal{M}}_{0,n+1}(X,\beta) \\
\underbrace{\mathcal{I}}_{0 \text{ } n+1} \times (\mathcal{I}X)^{n}$$

$$(1)$$

A similar structure can be obtained in G-theory, replacing the twisting by the virtual fundamental class $\bigcap \left[\overline{\mathcal{M}}_{0,n+1}(X,\beta)\right]^{\text{vir}}$ by a virtual structure sheaf $\otimes \left[\mathcal{O}_{\overline{\mathcal{M}}_{0,n+1}(X,\beta)}\right]^{\text{vir}}$. For the natural question of the categorification of the GW classes from operators on $G_0(X) = K_0(\mathfrak{Perf}_{\mathcal{O}_X})$ to dg-functors on $\mathfrak{Perf}_{\mathcal{O}_X}$, one needs a natural lift of the G-theoretic virtual sheaf. This virtual sheaf can be realised as the "shadow" of the structure sheaf of a derived moduli stack enhancing $\overline{\mathcal{M}}_{0,n+1}(X,\beta)$. Furthermore, at the geometric level, all the motivic operations originate from the $(\infty$ -)bicategory of correspondences in (derived) algebraic stacks. We will thus study Motivic Field Theories (MotFTs), defined as lax algebras in correspondences over the ∞ -operad $\overline{\mathcal{M}}_0 \coloneqq (\overline{\mathcal{M}}_{0,n+1})_n$.

Operadic structure of moduli of twisted curves

For any $\mathbf{r}=(r_i)\in\mathbb{N}^n$, there is a moduli stack $\mathfrak{M}_{g,n,r}$ parameterising stacky curves of genus g with n marked gerbes s_i banded respectively by μ_{r_i} .

Proposition. The genus 0 moduli assemble into a coloured (cyclic) operad \mathfrak{M}_0 with set of colours \mathbb{N} , stacks of n-ary multimorphisms $\mathfrak{M}_{0,n+1,r} \eqqcolon \hom_{\mathfrak{M}_0}((r_1,\ldots,r_n);r_{n+1})$, and the operadic composition given by the gluing maps

The stabilisation maps $\mathfrak{M}_{0,n,r} \to \overline{\mathcal{M}}_{0,n}$ provide a morphism of operads $\mathfrak{M}_0 \to \overline{\mathcal{M}}_0$.

Brane actions for coloured ∞ -operads

Correspondences and categorical ∞ -operads

To any ∞ -category $\mathfrak C$ with pullbacks, one associates an $(\infty,2)$ -category $\mathfrak C\mathfrak o\mathfrak r\mathfrak r(\mathfrak C)$ whose 1-morphisms are correspondences (or spans) between objects of $\mathfrak C$. A cartesian monoidal structure $\mathfrak C^\times$ induces a symmetric monoidal structure $\mathfrak C\mathfrak o\mathfrak r\mathfrak r^\times(\mathfrak C)$, which should make it a special case of $(\infty,2)$ -operad. In the dendroidal model for ∞ -operads, we model such **categorical** ∞ -**operads** as presheaves of ∞ -categories on the category of trees Ω which satisfy the Segal conditions.

If $\mathfrak{T} = \mathfrak{HSh}_{\tau}(\mathfrak{S})$ is a hypercomplete ∞ -topos, a (categorical) ∞ -operad enriched in \mathfrak{T} corresponds to a hypersheaf of (categorical) ∞ -operads on the ∞ -site (\mathfrak{S}, τ) .

Example. There is a categorical ∞ -operad $\mathfrak{Corr}^{\times}(\mathfrak{T}_{/-}), S \mapsto \mathfrak{Corr}^{\times}(\mathfrak{T}_{/S}).$

Viewing a categorical ∞ -operad as its Grothendieck construction (over $\mathfrak{T} \times \Omega^{op}$), we can use the cartesian lifts to define the notion of **lax morphism**, preserving the operadic compatibilities only up to non-invertible natural transformation.

Coloured brane action

Let $\mathfrak D$ be an ∞ -operad in $\mathfrak T=\mathfrak{HSh}_{\tau}(\mathfrak S)$. For any multimorphism α of arity $\mathfrak n$ (over an object $S\in\mathfrak S$), the space of **extensions** $\operatorname{Ext}(\alpha)$ contains the choices of an $(\mathfrak n+1)$ -ary multimorphism extending α along an additional colour.

Theorem. There is a lax morphism of categorical ∞ -operads $\mathfrak{O} \to \mathfrak{Corr}^{\coprod}(\mathfrak{T}_{/-}^{op})$, which sends any colour C of $\mathfrak{O}(S)$ to the space $\operatorname{Ext}(\operatorname{id}_C)$. For any hypersheaf $\mathcal{X} \in \mathfrak{T}$, composition with the "internal hom" ∞ -functor $\mathbb{R}\operatorname{Map}(-,\mathcal{X})$ induces $\mathfrak{O} \to \mathfrak{Corr}^{\times}(\mathfrak{T}_{/-})$.

Example of twisted curves: For \mathfrak{M}_0 , we have $\operatorname{Ext}(\operatorname{id}_n) = \coprod_{r \in \mathbb{N}} \mathfrak{M}_{0,3,(n,r,n)}$.

We set $\mathcal{L}_{\mu}X = \coprod_{n>0} \mathbb{R} \mathcal{M}$ ap (Ext(id_n), X) the **cyclotomic loop stack** of a target stack X.

Note also that $\mathfrak{M}_{0,n+1} \to \mathfrak{M}_{0,n}$ is the universal curve $\mathfrak{C}_{0,n} \to \mathfrak{M}_{0,n}$, so the brane action for \mathfrak{M}_0 is given by analogues of the GW correspondence (1) with the derived mapping stack (2).

Derived enhancements and virtual pullbacks

Obstruction theories and derived thickenings

Let $f: Y \to X$ be a quasi-smooth morphism of derived algebraic stacks, that is $\mathbb{L}_{f: Y/X}$ is of perfect amplitude in [-1,0]. The closed immersions of the truncations $j_X\colon t_0X \hookrightarrow X, j_Y\colon t_0Y \hookrightarrow Y$ into their derived thickenings induce isomorphisms in G-theory, and we define the virtual pullback

$$(\mathsf{t}_0\mathsf{f})^! = (\mathsf{j}_{\mathsf{Y},*})^{-1}\mathsf{f}^*\mathsf{j}_{\mathsf{X},*}\colon \mathsf{G}_0(\mathsf{t}_0\mathsf{X}) \xrightarrow{\simeq} \mathsf{G}_0(\mathsf{X}) \to \mathsf{G}_0(\mathsf{Y}) \xrightarrow{\simeq} \mathsf{G}_0(\mathsf{t}_0\mathsf{Y}).$$

The virtual structure sheaf of t_0X is the virtual pullback of k along the structure map $X\to \operatorname{Spec} k$, and $(t_0f)^!$ preserves virtual sheaves. It also coincides with Manolache's virtual pullback built from the perfect obstruction theory (POT) $j_Y^*\mathbb{L}_f\to\mathbb{L}_{t_0f}$.

Derived mapping stacks and prestable curves

Definition. Let $\mathfrak{C}_{g,n,r} o \mathfrak{M}_{g,n,r}$ denote the universal curve, and let X be a target algebraic stack. We define the derived mapping stack

$$\mathbb{R} \mathfrak{M} \operatorname{ap}_{\mathfrak{M}_{g,n,r}}(\mathfrak{C}_{g,n,r}, X \times \mathfrak{M}_{g,n,r}), \tag{2}$$

which is a derived thickening of the classical mapping stack.

The POT coming from its cotangent complex coincides from the usual POT obtained by pulling back \mathbb{T}_X along the universal evaluation map $\mathfrak{C}_{g,n,r} \times \mathfrak{M}_{ap/\mathfrak{M}_{g,n,r}}(\mathfrak{C}_{g,n,r},X \times \mathfrak{M}_{g,n,r}) \to X$.

By imposing open stability conditions, we will define open derived substacks which are thickenings of the moduli stacks of stable maps and more generally quasi-stable maps.

Stability conditions and quasimaps

Stable points of algebraic stacks

Let \mathbb{G}_m be the multiplicative group k-scheme, and let $\mathbf{B}\mathbb{G}_m = [*/\mathbb{G}_m]$ and $\Theta = [\mathbb{A}^1/\mathbb{G}_m]$ be the moduli stacks for line bundles and line bundles with a section. For any algebraic stack X, a close degeneration of a point x: Spec $k \to X$ is a morphism $\tilde{x} : \Theta \to X$ such that $\tilde{x}(1) = x$ and $\tilde{x}(0) \neq x$.

If X is endowed with a line bundle \mathcal{L}_0 , we can define a point x to be \mathcal{L}_0 -stable if its automorphisms are finite over k and the pullback of \mathcal{L}_0 along any close degeneration of x has negative weight. This condition naturally extends to rational line bundles $\mathcal{L} = \varepsilon \mathcal{L}_0 \in \operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$. For any choice of such stability parameter $\mathcal{L} = \varepsilon \mathcal{L}_0$, we denote X^{st} the locus of stable points in X.

Quasi-stable maps

A representable morphism $f\colon C\to X$ from a stacky curve (C,s_1,\ldots,s_r) to X is pre- $\mathcal L$ -stable if it maps generically to X^{st} : only isolated basepoints are mapped to the unstable locus.

A quasi- \mathcal{L} -stable map into X is a pre- \mathcal{L} -stable map $f\colon C\to X$ such that the order of vanishing of f along \mathcal{L} at any point c of C is ≤ 1 , and $\omega_{C,\log}\otimes f^*\mathcal{L}$ is ample. Note that the stable locus only depends on \mathcal{L}_0 . If $\varepsilon>2$, a quasi- \mathcal{L} -stable map to X is a stable map to X^{st} .

There is an open sub-derived stack $\mathbb{R}\mathcal{Q}_{g,n,r}^{\mathcal{L}}(X,\beta) \subset \mathbb{R}\mathfrak{M}\mathsf{ap}_{/\mathfrak{M}_{g,n,r}}(\mathfrak{C}_{g,n,r},X \times \mathfrak{M}_{g,n,r})$, which is a derived thickening of the moduli stack of quasi- \mathcal{L} -stable maps.

Quasimap MotFTs

By left extending the brane action $\mathfrak{M}_0 \to \mathfrak{Corr}^{\times}(\mathfrak{dStk}_{/-})$ along $\mathfrak{M}_0 \to \overline{\mathcal{M}}_0$, one obtains a lax morphism $\overline{\mathcal{M}}_0 \to \mathfrak{Corr}^{\times}(\mathfrak{dStk}_{/-})$, sending the unique colour to the cyclotomic loop stack $\mathcal{L}_{\mu}X$. For any stability bundle $\mathcal{L} \in \text{Pic}(X) \otimes \mathbb{Q}$, restricting the mapping stacks appearing in the correspondences to $\coprod_{r,\beta} \mathbb{R} \mathcal{Q}_{0,n,r}^{\mathcal{L}}(X,\beta)$ gives rise to a new MotFT on $\mathcal{L}_{\mu}X$.

References

References

[CFK] *Orbifold quasimap theory*, I. Ciocan–Fontanine and B. Kim

[Hei] Hilbert-Mumford stability on algebraic stacks and applications to \mathcal{G} -bundles on curves, J. Heinloth

[MR] Brane actions, categorification of Gromov–Witten invariants and quantum K-theory, E. Mann and M. Robalo

[STV] Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, T. Schürg, B. Toën and G. Vezzosi

Future directions

Wall-crossing in categorified Givental group

Our main goal is to categorify the wall-crossing formulæ for the virtual classes of quasimap moduli stacks and lift them to the non-linear (derived) geometric setting. Rather than comparing individual derived enhancements, we compare the MotFTs $(\coprod_{r,\beta} \mathbb{R} \mathcal{Q}_{0,n,r}^{\varepsilon \mathcal{L}_0}(X,\beta))_n$ induced by the families of derived moduli stacks associated to each stability parameters.

Classically, CohFT structures on $A_{\bullet}X$ are classified by a dg-Lie algebra which integrates to the Givental group. The difference between MotFTs should then lie in a formal group derived stack (in correspondences), obtained from an \mathcal{L}_{∞} -algebra (in correspondences) classifying lax $\overline{\mathcal{M}}_{0}$ -algebras.

Higher genus and quantisation

Although we have considered the moduli stacks of genus 0 twisted curves as an operad, they actually possess the further structure of a cyclic operad, which is the genus 0 part of a modular operad formed by higher genus moduli stacks. As of yet there is no theory of modular ∞ -operads, but once appropriately defined they ought to admit brane actions allowing the construction of higher genus MotFTs.

In the classical theory, a full CohFT is determined by its genus 0 part, and is obtained from the latter by a process of quantisation. We expect that this quantisation should come from a relationship between (the Feynman categories for) modular operads and topological recursion operads.