

## <u>Q-learning in Games:</u> <u>Collusion in Prisoner's Dilemma</u>



Mentored By: Prof. Srinivas Arigapudi, Department of Economic Sciences, IIT Kanpur

Aayush Singh (220024)

**Objective**: When AI agents employ reinforcement learning algorithms to play classical games, do they converge to a Nash equilibrium? In this project, we attempt to answer the above question.

## Approach:

- We study the pricing models as 2-player classical games where each of the players choose their strategy according to Q-learning (a reinforcement learning algorithm). We take the prisoner's dilemma, Hawk-Dove game, Coordination game and Bilingual Coordination game.
- Defined key parameters G and L and used an epsilon-greedy approach for strategy exploration.
- Conducted simulations for different values of the parameters to understand strategic dynamics.

## **Results:**

- 1. Prisoner's Dilemma: If we take the values of discount factor to be zero they both are ending up in the D state while if we take into consideration the future payoffs, they are going towards collusion
- 2. Hawk-Dove Game: for the smaller values of g they both are playing safe and are playing safe and choosing to go towards dove strategy ,for larger values of g(g>=0.3) one of them is ending up into hawk stage and other into dove stage respectively(for g belonging to 0 to 1)
- 3. Coordination game when the values of g is less than 1,both the players are playing safe and going towards state d and for the values of g greater than 1,depending on the initial states, they in some states are showing collusive behavior and going towards state c.
- 4. Bilingual Coordination: As g increases, the payoff for mutual cooperation increases (i.e., both players choosing 'A'). This often results in both players showing a preference for action 'A' when the cost c is relatively low. As c increases, the cost of miscommunication or cooperation decreases the attractiveness of these actions. Higher c values often result in players avoiding actions that involve cooperation with a cost, leading to a higher preference for the 'AB' action.

|           | Cooperate | Defect |
|-----------|-----------|--------|
| Cooperate | 1,1       | -L,1+G |
| efect     | 1+G,-L    | 0,0    |

| G>0  |         |         |  |
|------|---------|---------|--|
|      | Hawk    | Dove    |  |
| Hawk | 0, 0    | 1+G,1-G |  |
| Dove | 1-G,1+G | 1,1     |  |
|      |         |         |  |

| 0 <g<1< th=""></g<1<> |          |          |  |  |
|-----------------------|----------|----------|--|--|
|                       | Option A | Option B |  |  |
| Option A              | 1+G,1+G  | 0, 0     |  |  |
| Option B              | 0, 0     | 1,1      |  |  |
| Option B              | 0, 0     | 1,1      |  |  |

\*Here G>0 assures (A,A) is payoff dominant Nash equilibrium, G<1 assures (B,B) is risk dominant Nash equilibrium

## 0<G<1,C>0

|    | Α         | В     | AB          |
|----|-----------|-------|-------------|
| А  | 1+G,1+G   | 0,1   | 1+G,1+G-C   |
| В  | 1,0       | 1,1   | 1,1-C       |
| АВ | 1+G-C,1+G | 1-C,1 | 1+G-C,1+G-C |

C>O implies that (AB,AB) is not a nash equilibrium)

**Conclusion:** Depending on the payoffs, and initial states, Q-learning algorithms may tend to converge towards collusive practices in different game scenarios, reflecting the potential collusion threats when implemented for AI-based pricing models.