Laurea Magistrale in Ingegneria Meccatronica A.A. 2020/2021 Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.)

Esame Scritto di Teoria dei Sistemi (Modulo A) del ??/??/2021

Istruzioni. Non è ammessa la consultazione di libri, quaderni o qualsiasi tipo di materiale in formato digitale, né l'uso di calcolatrici programmabili, ricerche web e software di calcolo. È inoltre vietato allontanarsi dalla propria postazione o oscurare il video. Scrivere in modo chiaro e ordinato, motivare ogni risposta e fornire traccia dei calcoli. Per la consegna dell'elaborato, scansionare i fogli di bella copia (controllando la leggibilità del risultato della scansione) e caricare i file nell'apposita sezione della pagina di Moodle esami. Tempo a disposizione: 2 h.

Esercizio 1 [4 pti]. Si consideri il seguente sistema lineare tempo invariante a tempo discreto:

$$x(t+1) = Fx(t) + Gu(t), F = \begin{bmatrix} 0 & \alpha & 0 \\ \alpha & 0 & 0 \\ 1 & 1 & -1 \end{bmatrix}, G = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \alpha \in \mathbb{R}.$$

- 1. Determinare la forma di Jordan di F, i modi elementari del sistema e il loro carattere al variare di $\alpha \in \mathbb{R}$.
- 2. **Fissato** $\alpha = \mathbf{0}$, determinare, se possibile, una sequenza di ingresso $\{u(0), u(1)\}$ tale da portare il sistema dallo stato $x(0) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\top}$ allo stato $x(2) = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^{\top}$.
- 3. Indicare, se possibile, una condizione iniziale x(0) dello stato del sistema tale per cui l'evoluzione libera dello stato del sistema sia puramente oscillatoria per ogni $\alpha \in \mathbb{R}$.

Esercizio 2 [4 pti]. Si consideri il seguente sistema non lineare a tempo continuo:

$$\dot{x}_1(t) = x_1^2(t) + x_2(t)$$
$$\dot{x}_2(t) = -x_1^2(t) + x_2(t) + u(t)$$

- 1. Assumendo l'ingresso costante, determinare i punti di equilibrio del sistema al variare di $u(t) = \bar{u}, \bar{u} \in \mathbb{R}$.
- 2. Fissato $\bar{u}=0$, studiare la stabilità degli equilibri trovati al punto 1. utilizzando il teorema di linearizzazione.
- 3. Assumendo che l'ingresso sia dato dalla legge di controllo $u(t) = k_1 x_1(t) + k_2 x_2(t)$, si determinino, se possibile, dei valori di $k_1, k_2 \in \mathbb{R}$ in modo che l'origine del sistema sia asintoticamente stabile.

Esercizio 3 [4 pti]. Si consideri il seguente sistema lineare tempo invariante a tempo discreto:

$$x(t+1) = Fx(t) + Gu(t)$$

$$F = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, G = \begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

- 1. Determinare lo spazio raggiungibile X_R e lo spazio non osservabile X_{NO} del sistema.
- 2. Dire se il sistema è: (i) stabilizzabile e (ii) rivelabile. Indicare inoltre (i) il numero **minimo** di ingressi tale da rendere il sistema stabilizzabile e (ii) il numero **minimo** di uscite tale da rendere il sistema rivelabile.
- 3. Determinare, se possibile, uno stimatore ad anello chiuso dello stato tale per cui la dinamica dell'errore di stima converga a zero asintoticamente e contenga tra i modi elementari $\left(\frac{1}{4}\right)^t$ e $t\left(\frac{1}{4}\right)^t$.