Contents

1	\mathbf{Des}	scomposición estructural de una serie temporal	2
	1.1	Tendencia determinista lineal	3
	1.2	Tendencia determinista cuadrática	5
	1.3	Tendencia cuadrática más estacionalidad determinista mediante dummies	7
		1.3.1 Ajuste y componente irregular $e = y - t - s$	8
		1.3.2 Valoración de modelos con componentes deterministas	9
2	Aut	cocorrelación 1	L1
	2.1	Test de Breusch y Godfrey	12
	2.2	Errores estándar robustos	13
	2.3	Modelo del error	15

Econometría Aplicada. Lección 2

Marcos Bujosa

August 16, 2024

Carga de algunos módulos de python

```
# Importamos algunos módulos de python
import numpy as np # linear algebra
import pandas as pd # dataframe processing
import statsmodels.api as sm # modelos estadísticos
import matplotlib as mpl
import matplotlib.pyplot as plt # data visualization
# definimos parámetros para mejorar los gráficos
mpl.rc('text', usetex=True)
mpl.rc('text', preamble=r'\usepackage{amsmath}')
from matplotlib import rcParams
rcParams['figure.figsize'] = 15,5

# Usaré la siguiente función para transformar salidas en \LaTeX{} de statsmodels a ficheros png (que usaré en las transparencias)
from sympy.printing.preview import preview
def repr_png(tex, ImgFile):
    preamble = "\documentclass[10pt,preview]{standalone}\n" \
```

• Lectura datos: Internat. airline passengers. Monthly totals in thousands. Jan 49 Dec 60

preview(tex, filename=ImgFile, viewer='file', preamble=preamble, dvioptions=['-D','250'])

```
# Leemos los datos de un fichero csv y generamos un dataframe de pandas cuyo indice es el tiempo
OrigData = pd.read_csv('./database/Datasets-master/airline-passengers.csv')
OrigData['Month'] = pd.to_datetime(OrigData['Month'])
OrigData = OrigData.set_index(['Month'])
print(OrigData.head())

# Creamos un dataframe con el mismo indice temporal de los datos originales pero con los datos en logaritmos
TransformedData = pd.DataFrame(index=OrigData.index)
TransformedData['dataLog'] = np.log(OrigData['Passengers'])
print(TransformedData.head())
```

1 Descomposición estructural de una serie temporal

"\\usepackage{booktabs,amsmath,amsfonts}\\begin{document}"

En la lección anterior vimos que una estrategia para analizar series temporales es transformar los datos para

- 1. primero lograr que sean "estacionarios" y
- 2. después, mediante más transformaciones, lograr una secuencia de "datos i.i.d" (este segundo paso aún no lo hemos abordado)

(recuerde que las expresiones "datos estacionarios" o "datos i.i.d." son un abuso del lenguaje).

Pero existe otro enfoque que pretende descomponer la serie temporal en los siguientes componentes "no observables" (o en un subconjunto de ellos):

$$y = t + c + s + e$$

donde:

La tendencia "t" recoge la lenta evolución de la media a largo plazo.

- El componente estacional "s" recoge las oscilaciones periódicas que se repiten regularmente en ciclos estacionales (de año en año, o de semana en semana, etc.).
- El componente cíclico "c" Cuando aparece explícitamente en el modelo, c recoge las oscilaciones a medio plazo. Es decir, aquellas de un plazo más largo que las oscilaciones estacionales, pero más corto que la tendencia de largo plazo. Si está ausente, dichas oscilaciones suelen aparecer en el componente de la tendencia, que entonces también podemos denominar tendencia-ciclo.
- El componente irregular "e" recoge las oscilaciones no captadas por el resto de componentes, ya que debe cumplir la siguiente identidad: e = y t c s.

Ajuste aceptable si (como poco) el componente irregular e parece "estacionario".

1.1 Tendencia determinista lineal

```
# Ajustamos por MCO una tendencia linea. Para ello, primero creamos un DataFrame con el regresando y los regresores del modelo
datosModelo1 = TransformedData[['dataLog']].copy()
nsample = len(datosModelo1)
datosModelo1['cte'] = [1]*nsample
datosModelo1['time'] = np.linspace(1, nsample, nsample)
model1 = sm.OLS(datosModelo1['dataLog'], datosModelo1[['cte', 'time']])
results1 = model1.fit()
#Añadimos al DataFrame =datosModelo1= la tendencia ajustada, los residuos y la diferencia estacional de los residuos.
datosModelo1['yhat'] = datosModelo1['cte']*results1.params['cte']+datosModelo1['time']*results1.params['time']
datosModelo1['ehat'] = results1.resid
datosModelo1['ehatDiff12'] = datosModelo1['ehat'].diff(12)
# Dibujamos los datos junto a la tendencia estimada
plt.plot(datosModelo1['dataLog'])
plt.plot(results1.fittedvalues)
plt.grid()
plt.ylabel(r"Log-Passengers, ($\ln\boldsymbol{x}$) ")
```

El modelo de tendencia más simple es la recta de regresión donde el regresor no constante es el propio índice t de cada dato:

$$\ln y_t = \underbrace{\beta_1 + \beta_2 \cdot t}_{\text{tendencia}} + e_t; \quad t = 1:114$$

$$\widehat{\ln y_t} = 4.8137 + 0.01 \cdot (t), \qquad t = 1:114$$

print(results1.summary())

Dep. Variable:	dataLog	R-squared:	0.902
Model:	OLS	Adj. R-squared:	0.901
Method:	Least Squares	F-statistic:	1300.
Date:	Fri, 16 Aug 2024	Prob (F-statistic):	2.41e-73
Time:	16:48:05	Log-Likelihood:	80.794
No. Observations:	144	AIC:	-157.6
Df Residuals:	142	BIC:	-151.6
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	$P > \mathbf{t} $	[0.025]	0.975]
cte	4.8137	0.023	206.648	0.000	4.768	4.860
$_{ m time}$	0.0100	0.000	36.050	0.000	0.009	0.011
Om	aibus:	3.7	50 Du i	bin-Wat	son:	0.587
\mathbf{Prob}	o(Omnib)	ous): 0.1	53 Jar	que-Bera	(JB):	2.722
\mathbf{Skev}	v:	0.1	84 Pro	b(JB):		0.256
Kur	tosis:	2.4	36 Cor	id. No.		168.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Componente irregular

Gráfico de los residuos del ajuste. plt.grid() plt.plot(results1.resid)

En este caso, el modelo

$$y = t + e$$

donde t es una tendencia lineal no es un ajuste satisfactorio, pues el componente irregular

$$e = y - t$$

no tiene la apariencia de realización de un proceso estacionario.

```
# Gráfico de la diferencia estacional de los residuos del ajuste.
plt.grid()
plt.plot(datosModelo1['ehatDiff12'])
```

Adicionalmente podemos ver que diferencia de orden 12 del componente irregular parece mostrar un componente cíclico con un periodo de unos 4 años.

En el siguiente ejercicio probaremos con una tendencia cuadrática...

1.2 Tendencia determinista cuadrática

```
# creamos un DataFrame con el regresando y los regresores del modelo.
datosModelo2 = TransformedData[['dataLog']].copy()
nsample = len(datosModelo1)
datosModelo2['cte'] = [1]*nsample
datosModelo2['time'] = np.linspace(1, nsample, nsample)
datosModelo2['sq_time'] = [t**2 for t in datosModelo2['time']]
# Ajustamos por MCO una tendencia cuadrática a los datos.
model2 = sm.OLS(datosModelo1['dataLog'], datosModelo2[['cte', 'time', 'sq_time']])
results2 = model2.fit()
# Añadimos al DataFrame 'datosModelo2' la tendencia ajustada, los residuos y la diferencia estacional de los residuos.
datosModelo2['yhat'] = results2.fittedvalues
datosModelo2['ehat'] = results2.resid
datosModelo2['ehatDiff12'] = datosModelo2['ehat'].diff(12)
# Dibujamos los datos junto a la tendencia estimada.
plt.plot(datosModelo1['dataLog'])
plt.plot(results2.fittedvalues)
plt.grid()
plt.ylabel(r"Log-Passengers, ($\ln\boldsymbol{x}$) ")
```

$$\ln y_t = \underbrace{\beta_1 + \beta_2 \cdot t + \beta_3 \cdot t^2}_{\text{tendencia}} + e_t; \quad t = 1:114$$

$$\widehat{\ln y_t} = 4.7364 + (0.0132) \cdot t + (-2.191e - 05) \cdot t^2, \qquad t = 1:114$$

print(results2.summary())

Dep. Va	riable:	dataL	og	R-squared:		0.907
Model:		OLS		Adj. R-squared:		0.906
Method	:	Least Sq	uares	F-statist	ic:	691.0
Date:		Fri, 16 Au	g 2024	Prob (F	-statistic):	1.37e-73
Time:		16:48:	06	Log-Like	elihood:	85.260
No. Obs	servations:	144		AIC:		-164.5
Df Resid	duals:	141		BIC:		-155.6
$\operatorname{Df} \operatorname{Mod}$	el:	2				
Covaria	nce Type:	nonrobust				
	coef	std err	t	P> t	[0.025]	0.975]
cte	4.7364	0.034	138.117	0.000	4.669	4.804
$_{ m time}$	0.0132	0.001	12.112	0.000	0.011	0.015
$\mathbf{sq_time}$	-2.191e-05	7.29e-06	-3.004	0.003	-3.63e-05	-7.49e-06
On	mibus:	4.978	Durbi	n-Watson	ı: 0.6	624
Prob(Omnibus): 0.083			Jarque	e-Bera (J	B): 3.3	817
\mathbf{Ske}	Skew: 0.205			Prob(JB): 0.190		
Ku	rtosis:	2.380	Cond.	No.	2.85e	e+04

[1] Standard Errors assume that the covariance matrix of the errors is correctly

[2] The condition number is large, 2.85e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Componente irregular

plt.grid()
plt.plot(results2.resid)

De manera análoga al caso anterior, el modelo

$$y = t + e$$

donde t ahora es una $tendencia\ cuadrática\ tampoco$ es un ajuste satisfactorio, pues el componente irregular e sigue sin parecerse a la realización de un proceso estacionario.

```
plt.grid()
plt.plot(datosModelo2['ehatDiff12'])
```

También en este modelo la diferencia de orden 12 del componente irregular muestra un componente cíclico con un periodo de unos 4 años.

Para obtener una tendencia-ciclo que capte este ciclo, son necesarios procedimientos más sofisticados (por ejemplo TRAMO-SEATS, o X13-ARIMA, o STAMP, o LDHR, o E4, etc.) que estiman tendencias y componentes estacionales estocásticos.

En el siguiente ejercicio estimaremos un **componente estacional determinista** (junto a una tendencia cuadrática determinista).

1.3 Tendencia cuadrática más estacionalidad determinista mediante dummies

```
# Creamos un dataframe con los datos y los regresores 'cte', 't' y 't'2'

df = TransformedData[['dataLog']].copy()

nsample = len(df)

df['cte'] = [1]*nsample

df['time'] = np.linspace(1, nsample, nsample)

df['sq_time'] = [t**2 for t in df['time']]
```

```
# Creamos las /dummies/ estacionales

from statsmodels.tsa.deterministic import Seasonality

seas_gen = Seasonality(12, initial_period=1)

seasonalDummies = seas_gen.in_sample(df.index)

# Creamos un dataframe con el regresando y todos los regresores del modelo
```

```
datosModelo3 = pd.concat([df, seasonalDummies],axis=1)
# realizamos la regresión de la primera columna ('dataLog') sobre el resto de columnas del dataframe.
model3 = sm.OLS(datosModelo3['dataLog'], datosModelo3.iloc[:,1:-1])
results3 = model3.fit()
```

```
# La combinación lineal de los regresores 'cte', 'time' y 'sq_time' usando los correspondientes
# parámetros estimados nos da el componente de tendencia (determinista) estimado.
TrendComp = datosModelo3[['cte','time','sq_time']].dot(results3.params[['cte','time','sq_time']])
```

```
rcParams['figure.figsize'] = 15,4
plt.plot(datosModelo1['dataLog'])
plt.plot(TrendComp)
plt.grid()
plt.ylabel(r"Log-Passengers, ($\ln\boldsymbol{x}$) ")
```



```
SeasonalComp = (seasonalDummies.iloc[:,:-1]).dot(results3.params[3:])
plt.grid()
plt.plot(SeasonalComp)
```


1.3.1 Ajuste y componente irregular e = y - t - s

```
plt.grid()
plt.plot(datosModelo3['dataLog'])
plt.plot(TrendComp + SeasonalComp)
```


plt.grid()
plt.plot(results3.resid)

1.3.2 Valoración de modelos con componentes deterministas

- Estos modelos resultan útiles para realizar un análisis descriptivo.
- Pero suelen funcionar bastante mal como herramienta de predicción:
 - no tienen en cuenta la dependencia inter-temporal de los datos (se han estimado mediante una regresión como si los datos hubieran sido de sección cruzada)
 - Por ejemplo, a la hora de prever el dato de enero de 1961, en este modelo pesa tanto el dato de enero de 1949 como el dato de enero de 1960.

En general, para que los modelos funcionen bien en predicción deben dar un mayor peso a los datos recientes frente a los datos alejados en el tiempo.

Pero sigamos explorando este modelo...

Hay parámetros no significativos... (p-valores para dummies enero, febrero y octubre).

repr_png(results3.summary().as_latex(), "./img/lecc02/resultsModel3.png")

Dep. Variable:		dataLo	og R-squared:			0.989
Model:	and to t	0		Adj. R-squared:		0.988
Method:		Least Squ		F-statist		912.7
Date:		Fri, 16 Au			statistic):	7.45e-121
Time:		16:48:0	_	Log-Like	,	239.70
No. Obse	rvations:	144		AIC:		-451.4
Df Residu	ıals:	130		BIC:		-409.8
Df Model	:	13				
Covariano	e Type:	nonrob	ust			
	coef	std err	t	P> $ t $	[0.025]	0.975]
cte	4.6301	0.018	253.331	0.000	4.594	4.666
$_{ m time}$	0.0132	0.000	33.877	0.000	0.012	0.014
sq_time	-2.148e-05	2.6e-06	-8.265	0.000	-2.66e-05	-1.63e-05
$_{ m s(1,12)}$	0.0213	0.020	1.082	0.281	-0.018	0.060
s(2,12)	-0.0009	0.020	-0.048	0.962	-0.040	0.038
s(3,12)	0.1291	0.020	6.555	0.000	0.090	0.168
$_{ m s(4,12)}$	0.0977	0.020	4.962	0.000	0.059	0.137
$_{ m s(5,12)}$	0.0953	0.020	4.838	0.000	0.056	0.134
$_{ m s(6,12)}$	0.2174	0.020	11.041	0.000	0.178	0.256
$_{ m s(7,12)}$	0.3213	0.020	16.323	0.000	0.282	0.360
$_{ m s(8,12)}$	0.3120	0.020	15.855	0.000	0.273	0.351
$_{ m s(9,12)}$	0.1675	0.020	8.511	0.000	0.129	0.206
$_{ m s(10,12)}$	0.0295	0.020	1.497	0.137	-0.009	0.068
$_{ m s(11,12)}$	-0.1141	0.020	-5.797	0.000	-0.153	-0.075
Omn	ibus:	0.334	Durb	in-Watson	n: 0.0	648
\mathbf{Prob}	(Omnibus)	: 0.846	Jarqu	e-Bera (J	(B): 0.4	430
\mathbf{Skew}	-	-0.108	$\operatorname{Prob}($			806
Kurt	osis:	2.843	Cond	. No.	1.17	e + 05
-						

<div> </div>

podemos eliminarlos secuencialmente (quitando cada vez la variable de mayor p-valor)

```
import operator
def remove_most_insignificant(df, results):
    # use operator to find the key which belongs to the maximum value in the dictionary:
    max_p_value = max(results.pvalues.iteritems(), key=operator.itemgetter(1))[0]
# this is the feature you want to drop:
    df.drop(columns = max_p_value, inplace = True)
    return df
```

```
y = datosModelo3['dataLog']
X = datosModelo3.iloc[:,1:-1]
significacion = 0.05
insignificant_feature = True
while insignificant_feature:
        model4 = sm.OLS(y, X)
        results4 = model4.fit()
        significant = [p_value < significacion for p_value in results4.pvalues]</pre>
        if all(significant):
            insignificant_feature = False
        else:
            if X.shape[1] == 1: # if there's only one insignificant variable left
                print('No significant features found')
                results4 = None
                insignificant_feature = False
            else:
                X = remove_most_insignificant(X, results4)
print(results4.summary())
```

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 1.17e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Dep. Variable:		dataLo	og R-squared:		ed:	0.989
Model:		OLS		Adj. R-squared:		0.988
Method:		Least Squ	iares	F-statisti	ic:	1181.
Date:		Fri, 16 Aug		Prob (F-	statistic):	1.19e-124
Time:		16:48:0	07	Log-Like		237.72
No. Obse	ervations:	144		AIC:		-453.4
Df Resid	uals:	133		BIC:		-420.8
Df Mode	l:	10				
Covarian	ce Type:	nonrob	ıst			
	coef	std err	t	P> $ t $	[0.025]	0.975]
cte	4.6425	0.013	344.431	0.000	4.616	4.669
$_{ m time}$	0.0132	0.000	33.805	0.000	0.012	0.014
$_{ m sq_time}$	-2.149e-05	2.61e-06	-8.248	0.000	-2.66e-05	-1.63e-05
$_{ m s(3,12)}$	0.1166	0.016	7.479	0.000	0.086	0.147
$_{ m s(4,12)}$	0.0852	0.016	5.467	0.000	0.054	0.116
$_{ m s(5,12)}$	0.0828	0.016	5.309	0.000	0.052	0.114
$_{ m s(6,12)}$	0.2049	0.016	13.140	0.000	0.174	0.236
$_{ m s(7,12)}$	0.3088	0.016	19.805	0.000	0.278	0.340
$_{ m s(8,12)}$	0.2996	0.016	19.211	0.000	0.269	0.330
$_{ m s(9,12)}$	0.1550	0.016	9.941	0.000	0.124	0.186
$_{ m s(11,12)}$	-0.1265	0.016	-8.111	0.000	-0.157	-0.096
Omi	nibus:	1.502	Durbi	n-Watson	n: 0.0	591
Prol	o(Omnibus)): 0.472	Jarqu	e-Bera (J	B): 1.	504
\mathbf{Skev}	v:	-0.241	$\operatorname{Prob}($		0.4	471
Kur	tosis:	2.867	Cond.	No.	5.81	e+04

 $<\!\!\mathrm{div}\!\!><\!\!\mathrm{img\ src}\!\!="./\mathrm{img/lecc02/resultsModel4.png}"\ \mathrm{width}\!\!=\!"400"\ \mathrm{class}\!\!=\!"\mathrm{center"}/\!\!></\mathrm{div}\!\!>$

Pero esta inferencia es incorrecta. Con auto-correlación la varianza del estimador MCO es diferente (la estimación por defecto de las desviaciones típicas es incorrecta)

2 Autocorrelación

Considere el modelo $Y = X\beta + U$. Bajo los supuestos habituales

$$E(U \mid \mathbf{X}) = \mathbf{0}, \quad Var(U \mid \mathbf{X}) = \sigma^2 \mathbf{I} \quad \text{y} \quad E(\mathbf{X}'\mathbf{X}) \text{ es invertible}$$

el estimador $\,\widehat{\boldsymbol{\beta}} = (\mathbf{X'X})^{-1}\mathbf{X'Y}\,$ es insesgado y eficiente, con varianza

$$Var(\widehat{\boldsymbol{\beta}} \mid \mathbf{X}) = \sigma^2(\mathbf{X'X})^{-1}$$

Pero si las perturbaciones U del modelo son heterocedásticas y/o autocorreladas

$$Var(\boldsymbol{U}\mid \mathbf{X}) = \boldsymbol{\Sigma} \neq \sigma^2 \mathbf{I}$$

entonces el estimador $\widehat{\pmb{\beta}},$ aunque insesgado, ya no es eficiente; y su varianza es

$$Var(\widehat{\boldsymbol{\beta}} \mid \mathbf{X}) = Var(\widehat{\boldsymbol{\beta}} - \mathbf{I}\boldsymbol{\beta} \mid \mathbf{X}) = (\mathbf{X'X})^{-1}\mathbf{X'}\boldsymbol{\Sigma}\mathbf{X}(\mathbf{X'X})^{-1}.$$

El test de Durbin-Watson o el test de Breusch y Godfrey sirven para contrastar la H_0 de no autocorrelación...

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 5.81e+04. This might indicate that there are strong multicollinearity or other numerical problems.

El test de Durbin-Watson contrasta la autocorrelación de orden uno. Para muestras grandes, el test es aproximadamente igual a $2(1-\hat{\rho})$, donde $\hat{\rho}$ es la autocorrelación de orden uno de los residuos. Por tanto, valores del test próximos a 2 indican no autocorrelación, valores próximos a 0 indican fuerte autocorrelación positiva y valores próximos a 4 indican fuerte autocorrelación negativa.

2.1 Test de Breusch y Godfrey

Considere el modelo de regresión lineal

$$Y_t = \beta_1 + \beta_2 X_{t,1} + \dots + \beta_k X_{t,k+1} + U_t$$

donde las perturbaciones U quizá siguen un esquema auto-regresivo AR(p):

$$U_t = \rho_1 U_{t-1} + \rho_2 U_{t-2} + \dots + \rho_n U_{t-n} + \varepsilon_t$$

- Paso 1. Se obtienen los residuos del ajuste por MCO con una muestra de tamaño T del modelo de regresión lineal.
- Paso 2. Se realiza un ajuste MCO de los residuos sobre los regresores del modelo original y sobre los p primeros retardos de los residuos.

$$\hat{E}_{t} = \alpha_{0} + \alpha_{1} X_{t,1} + \dots + \alpha_{k} X_{t,k} + \rho_{1} \hat{E}_{t-1} + \rho_{2} \hat{E}_{t-2} + \dots + \rho_{p} \hat{E}_{t-p} + \varepsilon_{t}$$

asintóticamente y bajo la H_0 de no autocorrelación: $\{\rho_i = 0 \text{ para todo } i\}$

$$nR^2 \sim \chi_p^2$$

donde R^2 es el coeficiente de determinación de la regresión auxiliar y n = T - p.

```
import statsmodels.stats.diagnostic as dg
#perform Breusch-Godfrey test of order p = 3
arbg = dg.acorr_breusch_godfrey(results4, nlags=3, store=True)
arbg[:1]
repr_png(arbg[-1].resols.summary().as_latex(), "./img/lecc02/resultsBreusch-Godfrey.png")
```

Dep. Variable:		у	R-squar		red:	0.435
Model:		OLS	S	Adj. R-squared:		0.379
Method:		Least Squares		F-statis	stic:	7.715
Date:		Fri, 16 Au	g 2024	Prob (F-statistic)	: 3.54e-11
Time:	Time:		07	Log-Lil	kelihood:	278.89
No. Obs	ervations:	144		AIC:		-529.8
Df Resid	uals:	130		BIC:		-488.2
Df Mode	el:	13				
Covarian	ce Type:	nonrob	ust			
	coef	std err	t	P> t	[0.025]	0.975]
const	-0.0001	0.005	-0.027	0.979	-0.010	0.010
x1	3.05e-05	0.000	0.103	0.918	-0.001	0.001
$\mathbf{x2}$	-2.318e-07	1.98e-06	-0.117	0.907	-4.15e-06	3.69e-06
x3	0.0058	0.012	0.477	0.634	-0.018	0.030
x4	0.0024	0.012	0.199	0.843	-0.021	0.026
x5	-0.0017	0.012	-0.144	0.886	-0.025	0.022
x6	-0.0003	0.012	-0.027	0.978	-0.024	0.023
x7	-0.0003	0.012	-0.027	0.979	-0.024	0.023
x8	-0.0003	0.012	-0.026	0.979	-0.024	0.023
x9	-0.0003	0.012	-0.026	0.979	-0.024	0.023
x10	-0.0109	0.012	-0.908	0.366	-0.035	0.013
x11	-0.0001	0.005	-0.027	0.979	-0.010	0.010
x12	0.6214	0.089	6.973	0.000	0.445	0.798
x13	0.1333	0.105	1.274	0.205	-0.074	0.340
x14	-0.1042	0.090	-1.160	0.248	-0.282	0.074
Om	nibus:	4.932	Durb	in-Wats	on: 2	.013
\mathbf{Prol}	b(Omnibus)	: 0.085	Jarqı	ıe-Bera	(JB): 4	.703
Skev	v:	-0.442	Prob	(JB):	0.	0952
Kur	tosis:	3.062	Cond	l. No.	4.8	2e+19

- Valor del estadístico: 62.7119 (p-valor: 1.55e 13)
- x₁₂ corresponde al primer retardo en la regresión auxiliar y es muy significativo

 $<\!\!\mathrm{div}\!\!><\!\!\mathrm{img\,src}\!="./\mathrm{img/lecc02/resultsBreusch}\text{-}Godfrey.png"\;\mathrm{width}\!="450"\;\mathrm{class}\!="\mathrm{center"}/\!\!><\!/\mathrm{div}\!\!>$

2.2 Errores estándar robustos

Un procedimiento adecuado en presencia de autocorrelación y muestras grandes consiste en usar errores estándar "robustos" al realizar inferencia con la estimación de los parámetros.

- 1. las estimaciones serán insesgadas, consistentes pero ineficientes,
- 2. los residuos son los mismos y, por tanto, estarán autocorrelados, aunque
- 3. la inferencia a partir de errores estándar robustos será válida

```
y = datosModelo3['dataLog']
X = datosModelo3.iloc[:,1:-1]
model5 = sm.OLS(y, X)
results5 = model5.fit()
print(results5.get_robustcov_results(cov_type='HAC', maxlags=3, use_correction=True).summary())
```

repr_png(results5.get_robustcov_results(cov_type='HAC', maxlags=3, use_correction=True).summary().as_latex(), "./img/lecc02/results(), "./img/lecc

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The smallest eigenvalue is 5.41e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Dep. Var	iable:	dataLc	og R-square		d:	0.989
Model:		0		Adj. R-squared:		0.988
Method:				F-statisti		388.9
Date:		Fri, 16 Aug		Prob (F-	statistic):	3.26e-97
Time:		16:48:0	•	Log-Like		239.70
No. Obse	rvations:	144		AIC:		-451.4
$\operatorname{Df}\operatorname{Resid}\iota$	ıals:	130		BIC:		-409.8
Df Model	:	13				
Covariand	e Type:	HAC				
	coef	std err	t	P> t	[0.025]	0.975]
cte	4.6301	0.023	200.015	0.000	4.584	4.676
$_{ m time}$	0.0132	0.001	19.130	0.000	0.012	0.015
$_{ m sq_time}$	-2.148e-05	4.32e-06	-4.970	0.000	-3e-05	-1.29e-05
$_{ m s(1,12)}$	0.0213	0.011	1.982	0.050	3.75 e - 05	0.043
$_{ m s(2,12)}$	-0.0009	0.020	-0.046	0.963	-0.041	0.040
$_{ m s(3,12)}$	0.1291	0.021	6.264	0.000	0.088	0.170
$_{ m s(4,12)}$	0.0977	0.019	5.025	0.000	0.059	0.136
$_{ m s(5,12)}$	0.0953	0.019	5.134	0.000	0.059	0.132
$_{ m s(6,12)}$	0.2174	0.017	12.734	0.000	0.184	0.251
$_{ m s(7,12)}$	0.3213	0.018	18.110	0.000	0.286	0.356
$_{ m s(8,12)}$	0.3120	0.018	17.772	0.000	0.277	0.347
$_{ m s(9,12)}$	0.1675	0.013	12.821	0.000	0.142	0.193
$_{ m s(10,12)}$	0.0295	0.012	2.413	0.017	0.005	0.054
$_{ m s(11,12)}$	-0.1141	0.011	-10.272	0.000	-0.136	-0.092
Omn	Omnibus:		Durbi	n-Watson	: 0.0	348
\mathbf{Prob}	Prob(Omnibus):		Jarque	e-Bera (J	B): 0.4	430
\mathbf{Skew}	7:	-0.108	Prob(JB):	0.8	806
Kurt	osis:	2.843	Cond.	No.	1.17	e + 05
-						

 <iny src="./img/lecc02/resultsModel5.png" width="400" class="center"/> </div> Ahora, y empleando errores estándar robustos, podemos reducir el modelo de manera más cuidadosa usando desviaciones típicas robustas. El modelo reducido es...

```
y = datosModelo3['dataLog']
X = datosModelo3.iloc[:,1:-1]
significacion = 0.05
insignificant_feature = True
while insignificant_feature:
       results6
                     = sm.OLS(y, X).fit()
       robustResults = results6.get_robustcov_results(cov_type='HAC', maxlags=3, use_correction=True)
       robustPvalues = pd.Series(index=results6.pvalues.index, data=robustResults.pvalues)
        significant = [p_value < significacion for p_value in robustPvalues]</pre>
        if all(significant):
            insignificant_feature = False
        else:
            if X.shape[1] == 1: # if there's only one insignificant variable left
                print('No significant features found')
                results6 = None
                insignificant_feature = False
            else:
                X = remove_most_insignificant(X, results6)
print(robustResults.summary())
repr_png(robustResults.summary().as_latex(), "./img/lecc02/resultsModel6.png")
```

^[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 3 lags and with small sample correction

^[2] The condition number is large, 1.17e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Dep. Varia	able:	dataLog		R-squared:		0.989
Model:		OLS		Adj. R-squared:		0.988
Method:		Least Squ	ares	F-statisti	c:	418.9
Date:		Fri, 16 Aug	2024	Prob (F-s	statistic):	3.59e-98
Time:		16:48:0	8	Log-Likel	ihood:	239.70
No. Obser	vations:	144		AIC:		-453.4
Df Residu	als:	131		BIC:		-414.8
Df Model:		12				
Covariance	e Type:	HAC				
	coef	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
cte	4.6296	0.026	179.310	0.000	4.578	4.681
$_{ m time}$	0.0132	0.001	19.195	0.000	0.012	0.015
$_{ m sq_time}$	-2.148e-05	4.3e-06	-4.992	0.000	-3e-05	-1.3e-05
$_{ m s(1,12)}$	0.0218	0.011	1.983	0.049	5.42e-05	0.044
$_{ m s(3,12)}$	0.1296	0.016	7.867	0.000	0.097	0.162
s(4,12)	0.0982	0.018	5.496	0.000	0.063	0.134
$_{ m s(5,12)}$	0.0957	0.019	4.917	0.000	0.057	0.134
$_{ m s(6,12)}$	0.2178	0.018	11.837	0.000	0.181	0.254
$_{ m s(7,12)}$	0.3218	0.019	16.955	0.000	0.284	0.359
s(8,12)	0.3125	0.019	16.603	0.000	0.275	0.350
$_{ m s(9,12)}$	0.1680	0.015	11.071	0.000	0.138	0.198
$_{ m s(10,12)}$	0.0299	0.015	2.014	0.046	0.001	0.059
$_{ m s(11,12)}$	-0.1136	0.015	-7.616	0.000	-0.143	-0.084
Omni	bus:	0.357	Durbi	n-Watson	: 0.6	648
Prob($(\mathbf{Omnibus})$: 0.837		e-Bera (J	B): 0.4	451
Skew		-0.112	$\operatorname{Prob}(\cdot$		0.7	798
Kurto	osis:	2.843	Cond.	No.	8.24	e+04
-						

<div> </div>

- Nótese que ahora se aprecia que enero y octubre son significativos al 5%
- Pero la estimación MCO no es eficiente en presencia de heterocedasticidad y/o auto-correlación

2.3 Modelo del error

En el modelo $Y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{U}$, si las perturbaciones presentan heterocedasticidad y/o auto-correlación, y por tanto

$$Var(\boldsymbol{U} \mid \mathbf{X}) = \boldsymbol{\Sigma} \neq \sigma^2 \mathbf{I},$$

el Teorema de Gauss-Markov ya no es válido, ya que es posible explotar la estructura de la matriz Σ para minimizar la varianza del estimador.

En particular, el estimador lineal de mínima varianza es el estimador MCG (mínimos cuadrados generalizados)

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{\Sigma}^{-1}\boldsymbol{Y}$$

El problema es que, en general, la matriz Σ es desconocida.

Una solución es aplicar un procedimiento iterativo en el que se estima la matriz Σ empleando los errores del ajuste de una primera regresión. Con dicha matriz $\hat{\Sigma}$ se re-estima el modelo por MCG... con los nuevos errores se re-estima Σ ... y vuelta a empezar...

El algoritmo se detiene cuando las estimaciones convergen a valores estables.

Cuando realizamos el Test de Breusch-Godfrey vimos que en la regresión auxiliar el primer retardo de los errores era significativo. Por tanto, vamos a indicar que las perturbaciones siguen un proceso AR(1). El decir, vamos a estimar el modelo

^[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 3 lags and with small sample correction

^[2] The condition number is large, 8.24e+04. This might indicate that there are strong multicollinearity or other numerical problems.

$$\ln y_t = \underbrace{\beta_1 + \beta_2 \cdot t + \beta_3 \cdot t^2}_{\text{tendencia}} + \underbrace{\alpha_1 S_{t1} + \alpha_3 S_{t3} + \dots + \alpha_1 1 S_{t11}}_{\text{comp. estacional}} + \epsilon_t$$

donde las perturbaciones $\boldsymbol{\epsilon} = \{\epsilon_t\}$ siguen el modelo

$$\epsilon_t = \rho_1 \epsilon_{t-1} + e_t$$

(en este caso la estimación converge en 7 iteraciones)

print(results.summary())

Dep. Variable:		dataLog :		R-squared:		0.958
Model:		GLSA	R	Adj. R-s	quared:	0.954
Method:		Least Squ	ıares	F-statist	ic:	246.4
Date:		Fri, 16 Aug	g 2024	Prob (F-	statistic):	3.79e-83
Time:		16:48:0	08	Log-Like	lihood:	281.79
No. Obs	ervations:	143		AIC:		-537.6
Df Resid	uals:	130		BIC:		-499.1
Df Mode	el:	12				
Covarian	ce Type:	nonrob	ust			
	coef	std err	t	P> t	[0.025]	0.975]
cte	4.6157	0.031	146.687	0.000	4.553	4.678
$_{ m time}$	0.0136	0.001	14.633	0.000	0.012	0.015
$_{ m sq_time}$	-2.366e-05	5.99e-06	-3.951	0.000	-3.55e-05	-1.18e-05
$_{ m s(1,12)}$	0.0179	0.009	2.044	0.043	0.001	0.035
$_{ m s(3,12)}$	0.1306	0.011	12.014	0.000	0.109	0.152
s(4,12)	0.0995	0.014	7.228	0.000	0.072	0.127
$_{ m s(5,12)}$	0.0973	0.015	6.389	0.000	0.067	0.127
$_{ m s(6,12)}$	0.2194	0.016	13.773	0.000	0.188	0.251
$_{ m s(7,12)}$	0.3233	0.016	20.029	0.000	0.291	0.355
$_{ m s(8,12)}$	0.3140	0.016	19.716	0.000	0.282	0.345
$_{ m s(9,12)}$	0.1692	0.015	11.123	0.000	0.139	0.199
s(10,12)	0.0308	0.014	2.238	0.027	0.004	0.058
$_{ m s(11,12)}$	-0.1133	0.011	-10.427	0.000	-0.135	-0.092
Om	nibus:	1.864	Durbi	n-Watson	ı: 2.1	102
Prol	$\mathbf{b}(\mathbf{Omnibus})$: 0.394	•	e-Bera (J	B): 1.4	120
Skev		-0.213	$\operatorname{Prob}($		0.4	192
Kur	tosis:	3.238	Cond.	No.	3.85	e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified

[2] The condition number is large, 3.85e+04. This might indicate that there are strong multicollinearity or other numerical problems.

<div> </div>

```
# este código realiza las mismas iteraciones que bloque de código de más arriba
model2 = sm.GLSAR(y, X, rho=1)
res = model2.iterative_fit(maxiter=7)
model2.rho
print(model2.fit().summary())
```