Problem 6: Battleship

Input File: shipin.txt
Output File: shipout.txt

Time limit	Memory limit				
1 second	256 MB				

Statement

Sheeta and Pazu are playing a game of air-battleship on an grid board with N rows and M columns. Pazu has 2 airships left. Each airship occupies a unit-width or unit-length contiguous block of K cells within the grid, and airships do not overlap (even though air-battleship involves airships, it is still a very 2 dimensional game).

The coordinates (i, j) denote the square in the *i*th row and *j*th column, both of which are numbered from one. Based on Pazu's previous moves Sheeta has determined a strategic value for each square (i, j), denoted $A_{i,j}$, which is an non-negative integer.

Sheeta knows Pazu is very predictable, and will position his ships such that the sum of the strategic values of the squares occupied by a ship are maximised. In this case, help Sheeta determine the maximum sum of strategic values of a valid ship placement. It is guaranteed that a valid placement exists.

Input

The first line of input contains 3 integers N M K. The next N lines each contain M integers, the jth integer on the ith row is $A_{i,j}$.

Output

Output 1 integer, the maximum strategic value sum.

Sample Input 1

Sample Output 1

4 4 2

6 1 2 1

5 1 4 3

0 5 1 6

9 0 6 6

23

Sample Input 2

Sample Output 2

1

34

Sample Input 3

3	3 3	Sample Output 3
5	1 0	
5	1 0	22
5	5 5	

Explanation

Refer to below diagram for optimal placements. Red and green squares denote the two ship positions respectively. Note for Sample Input 3 that ships cannot overlap and must be contained within the grid.

6	1	2	1				
5	1	4	3				
0	5	1	6				
9	0	6	6	3	2	5	

Sample Input 1

Sample Input 2

1

Sample Input 3

Constraints

- $1 \le N, M \le 1000$ and $NM \ge 2$
- $1 \le K \le 1000$ and K is such that a valid battleship placement exists
- $0 \le A_{i,j} \le 10^6$ for all (i,j)

Subtasks

- For Subtask 1 (15 points), N = 1.
- For Subtask 2 (15 points), N = M = K.
- For Subtask 3 (15 points), $N, M \leq 30$.
- For Subtask 4 (15 points), $N, M \leq 80$.
- For Subtask 5 (15 points), $N, M \leq 200$.
- For Subtask 6 (25 points), No further constraints.