Neural code generation: course overview

Instructors: Sean Welleck and Daniel Fried TAs: Nikitha Rao and Zhiruo (Zora) Wang

LTI 11891, Carnegie Mellon University, Spring 2024 https://cmu-codegen.github.io/s2024

Sequence-to-sequence generation

General-purpose sequence generation

- · Summarize documents
- · Have a conversation
- ٠ ..

Code generation

Code generation

- · Write software
- · Automatically fix bugs
- · Help prove that code is correct
- · Tool for reasoning
- · Interact with an environment

• ..

Code generation - applications

Figure 1: GitHub Copilot (12.2023)

Code generation - applications

Figure 2: FunSearch by Deepmind (12.2023)

Code generation - applications

```
def priority(el: tuple[int, ...],

→ n: int) -> float:

  score = n
  in_el = 0
  el_count = el.count(0)
  if el count == 0:
    score += n ** 2
    if el[1] == el[-1]:
      score *= 1.5
    if el[2] == el[-2]:
      score *= 1.5
    if el[3] == el[-3]:
      score *= 1.5
  else:
    if el[1] == el[-1]:
      score *= 0.5
    if el[2] == el[-2]:
      score *= 0.5
  for e in el:
    if e == 0:
      if in el == 0:
        score *= n * 0.5
      elif in el == el count - 1:
        score *= 0.5
      else:
        score *= n * 0.5 ** in_el
      in el += 1
    else:
      score += 1
  if el[1] == el[-1]:
    score *= 1.5
  if el[2] == el[-2]:
    score *= 1.5
  return score
```

Figure 3: The function discovered by FunSearch that results in the largest known cap set (size 512) in 8 dimensions.

Neural code generation

Code generation with deep learning methods, primarily neural language models.

Example: Codex.

Classical methods for program synthesis (specification \rightarrow program)

Classical methods for program synthesis (specification \rightarrow program)

• Sketch [Solar-Lezama 2008]:

```
int bar(int x){
    int t = x*??;
    assert t == x+x;
    return t;
}
int bar(int x){
    int t = x*2;
    assert t == x+x;
    return t;
}
```

Fig. 4. Simple illustration of the integer hole.

- · Specification: code with holes and test cases
- · Output: fills in holes
- · SAT-based search procedure

Classical methods for program synthesis (specification → program)

• FlashFill [Gulwani 2011]:

- · Specification: (input, output) examples
- · Output: Excel string transformation
- · Domain-specific language and exhaustive search

Classical methods for program synthesis (specification \rightarrow program)

- · Large search space over programs
- Difficult to model 'informal' specifications

Early language models for code

• N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Programming languages, in theory, are complex, flexible and powerful, but, "natural" programs, the ones that <u>real</u> people <u>actually</u> write, are mostly simple and rather repetitive; thus they have usefully predictable statistical properties that can be captured in <u>statistical language models</u> and leveraged for software engineering tasks.

Figure 4: Hindle et al 2012

Early language models for code

• N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

$$p(a_4|a_1a_2a_3) = \frac{count(a_1a_2a_3a_4)}{count(a_1a_2a_3*)}$$

Figure 5: Hindle et al 2012

Early language models for code

• N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Figure 6: Hindle et al 2012; language-model suggestions in Eclipse

Early language models for code

• N-gram language models [Hindle et al 2012, Allamanis & Sutton 2013]

Figure 6: Hindle et al 2012; language-model suggestions in Eclipse

Restrictive n-gram model; limited generation capability

Early neural models for code

 Latent predictor network [Ling et al 2016]: seq2seq architecture for code generation

Figure 7: Generate code from a description of a card

Early neural models for code

 Latent predictor network [Ling et al 2016]: seq2seq architecture for code generation

Figure 7: Generate code from a description of a card

Specialized architecture, trained for a specific dataset

Code generation with large language models (LLMs)

Evaluating Large Language Models Trained on Code

Mark Chen '1 Jerry Tworek '1 Heewoo Jun '1 Qiming Yuan '1 Henrique Ponde de Oliveira Pinto '1 Jaret Kaplan '2 Harri Edwards '1 Vuri Burda 'Nicholas Joseph 'Greg Brockman' Alex Ray 'Raul Purl' Gretchen Krueger 'Michael Petrov 'Heidy Khlanf' Girish Sastry 'Pamela Mishkin' Brooke Chan 'Scott Gray 'Nick Ryder' Mikhall Palvo' Alchea Power' Lukasz Kaiser' Mohammad Bavarian' Clemens Winter' Philippe Tillet' Felipe Petroski Such' Dave Cummings' Matthias Plappert' Fotios Chantis's Elizabeth Barnes' Ariel Herbert-Voss' William Helgen Guss' Alex Nichol 'Alex Paino' Nikolas Tezak' Jie Tang' Igor Babuschkin' Suchir Balaji' Shantanu Jain' William Saunders' Christopher Hesse' Andrew N. Carr' Jan Leike' Josh Achiami 'Vedant Misra' Eram Morida' Alex Radford' Matthew Knight' Miles Brundage' Mira Murati' Katie Mayer' Peter Welinder' Bob McGrew' Dario Amodei' Sam McCandlish' Tyg Sutskever' Wojchech Zaremba'

Abstract

1. Introduction

We introduce Codex, a GPT language model finetuned on publicly available code from GitHub, and study its Python code-writing capabilities. Scalable sequence prediction models (Graves, 2014; Vaswani et al., 2017; Child et al., 2019) have become a general-purpose method for generation and representation learning in many domains, including natural language processine Mikolov et al. 2013; Sutskever et al. 2014: Dai &

.G] 14 Jul 2021

Code generation with large language models (LLMs)

Code generation with large language models (LLMs)

- · Language models
- + general purpose architecture
- · + diverse data

Code generation with large language models (LLMs)

Write a function to find the smallest missing element in a sorted array. Your code should satisfy these tests: prompt **assert** smallest missing([0, 1, 2, 3, 4, 5, 6], 0, 6) == 7 assert smallest missing([0, 1, 2, 6, 9, 11, 15], 0, 6) == 3 assert smallest missing([1, 2, 3, 4, 6, 9, 11, 15], 0, 7) == 0 def smallest_missing(arr, n, m): smallest = min(n, m) model for i in range(n, m + 1): if arr[i] <= smallest: smallest += 1 return smallest

Figure 8: Allows for natural language specifications [Austin et al 2021]

Code generation with large language models (LLMs)

Figure 12: An overview of the "flow" of the human-model collaboration experiments. The human gives a description of the desired program and then guides the model toward the correct solution via dialog.

Figure 9: Key property: flexibility to perform many tasks [Austin et al 2021]

Code generation with large language models (LLMs)

Figure 10: Key property: improves by increasing scale [Chen et al 2021]

Neural code generation - after Codex

Figure 11: A lot of interest and development!

Why neural code generation?

- Many applications
- · Large amount of data
- · Structured, compositional
- · Combines informal (e.g., intent) and formal (e.g. testable code)
- · Rich tooling (e.g., static analysis, compilers, ...)
- · Often complementary to LLMs (e.g. calculator)

٠...

Neural code generation

- · Part I: Foundations
- · Part II: Frontiers

- Model: $p_{\theta}(\mathbf{y}|\mathbf{x}; \mathcal{D})$
 - · x, y: input, output sequences
 - θ : parameters (e.g., transformer)
 - $\cdot \ \mathcal{D}$: dataset

- Model: $p_{\theta}(\mathbf{y}|\mathbf{x}; \mathcal{D})$
 - · x, y : input, output sequences
 - θ : parameters (e.g., transformer)
 - \cdot \mathcal{D} : dataset
- · Learning:
 - · arg max $_{\theta} \sum_{y \in \mathcal{D}} \log p_{\theta}(y)$

- Model: $p_{\theta}(\mathbf{y}|\mathbf{x}; \mathcal{D})$
 - · x, y : input, output sequences
 - θ : parameters (e.g., transformer)
 - \cdot \mathcal{D} : dataset
- · Learning:
 - · arg max $_{\theta} \sum_{y \in \mathcal{D}} \log p_{\theta}(y)$

- Model: $p_{\theta}(\mathbf{y}|\mathbf{x}; \mathcal{D})$
 - · x, y: input, output sequences
 - θ : parameters (e.g., transformer)
 - $\cdot \mathcal{D}$: dataset
- · Learning:
 - · arg max $_{\theta} \sum_{y \in \mathcal{D}} \log p_{\theta}(y)$
- · Inference:
 - $\mathbf{y} = f(p_{\theta}(\cdot|\mathbf{x}))$
 - f: e.g., sampling

- Model: $p_{\theta}(\mathbf{y}|\mathbf{x}; \mathcal{D})$
 - · x, y: input, output sequences
 - θ : parameters (e.g., transformer)
 - $\cdot \ \mathcal{D}$: dataset
- Learning:
 - · arg max $_{\theta} \sum_{y \in \mathcal{D}} \log p_{\theta}(y)$
- · Inference:
 - $\mathbf{y} = f(p_{\theta}(\cdot|\mathbf{x}))$
 - f: e.g., sampling
- Evaluation

Part I: Foundations – Learning

Learning: how do we train language models for code generation?

• **Pretraining**: large-scale initial training based on *scaling laws* (1/18) and *code objectives* (1/23)

Part I: Foundations – *Learning*

Learning: how do we train language models for code generation?

- **Pretraining**: large-scale initial training based on *scaling laws* (1/18) and *code objectives* (1/23)
- Finetuning: specializing the model for specific tasks and languages (1/25)

Part I: Foundations – Learning

Learning: how do we train language models for code generation?

- **Pretraining**: large-scale initial training based on *scaling laws* (1/18) and *code objectives* (1/23)
- Finetuning: specializing the model for specific tasks and languages (1/25)
- Learning from feedback: improving the model with feedback on its outputs, such as execution results and language (1/30)

Part I: Foundations - Evaluation

Evaluation: how good is our neural code generator?

· Code metrics and benchmarks (2/01, 2/06)

Part I: Foundations - Data

Data: what data should we train with? (2/08, 2/13)

- · Data for pretraining and domain-adaptation
- · Synthetic data
- Impact of data quality

Part I: Foundations – Inference

Inference: how do we generate code with a trained language model?

• Algorithms that leverage execution, verification, and feedback (2/15, 2/20)

Neural code generation

- · Part I: Foundations
 - · Learning, Inference, Data, Evaluation
- · Part II: Frontiers

Neural code generation

· Part I: Foundations

· Part II: Frontiers

Part II: Frontiers – Human Interaction

Code is **communicative** and code generators are **used by real people**

- Pragmatic aspects of code generation (2/29)
- Programming with AI (3/12) and dealing with uncertainty (3/14)
- Guest lecture by Sherry Wu (3/21)

Part II: Frontiers – Adaptability

Real-world code is long, exists in repositories unseen during training, and evolves over time. How do we adapt to these conditions?

• Methods for **long-context** generation and **retrieval** in code (3/19, 3/26)

Part II: Frontiers - Reasoning

Code as a medium for reasoning and control (4/02)

Fig. 1: Given examples (via few-shot prompting), robots can use code-writing large language models (LLMs) to translate natural language commands into robot policy code which process perception outputs, parameterize control primitives, recursively generate code for undefined functions, and generalize to new tasks.

Figure 12: Code generation for robotics

Part II: Frontiers - Formal verification

Some programming languages allow for proving that code is correct¹

- Neural theorem proving (4/04)
 - Use LLMs to make it easier to verify things
 - · Use verifiable code for mathematical reasoning
- Formally verified code synthesis (4/09)
- Guest lecture by Zhangir Azerbayev (4/18)

¹E.g., Coq, Dafny, F*, Isabelle, Lean

Part II: Frontiers – AI for science

- · Programs are structured, testable, interpretable.
- These properties can be leveraged by large-scale neural program search to discover solutions to open problems (4/16)

Neural code generation

- · Part I: Foundations
 - · Learning, inference, data, evaluation
- · Part II: Frontiers
 - $\boldsymbol{\cdot}$ Interaction, adaptability, reasoning, formal methods, science

Course structure, projects, and

logistics

Course structure

- 6-unit version of the course
 - Attend lectures (with pre- and post-assignments)
 - Attend discussions (with pre- and post-assignments)
 - · Lead a discussion with a team (via a presentation)

Course structure

- 6-unit version of the course
 - Attend lectures (with pre- and post-assignments)
 - · Attend discussions (with pre- and post-assignments)
 - · Lead a discussion with a team (via a presentation)
- 12-unit version of the course: all the above, plus:
 - · A high-quality research project, in teams of 2–4.
 - · Two checkpoint reports
 - · Two structured project hours
 - · Final presentation
 - · Final report

6-Unit course structure: discussions

In a student-led discussion, 3 students present a (set of) papers on a theme. Choose how much to focus on each paper, but cover the following topics:

- Content: motivation, setting, methods, findings. What was surprising?
- **Reviewer:** role-play a conference reviewer. Score the paper, and justify.
- · Future: Brainstorm future work ideas for discussion.
- Reproducibility: What code and data would you use to dig deeper?

Use slides, but a main goal is to facilitate a discussion!

6-Unit course structure: discussions

For presenters:

- Submit your slides before the day you present.
- · We'll grade based on the presentation and slides.
- It's ok if you spark a long discussion and don't get through all slides.
- Present one time during the course, for 33% of the 6-unit grade, or 16% of the 12-unit grade.

6-Unit course structure: discussions

For presenters:

- Submit your slides before the day you present.
- · We'll grade based on the presentation and slides.
- It's ok if you spark a long discussion and don't get through all slides.
- Present one time during the course, for 33% of the 6-unit grade, or 16% of the 12-unit grade.

Sign-ups:

- Sign-up link coming after class.
- Please sign up by Thursday end-of-day. You can swap later if you find someone willing to.
- Extra credit (+2 out of 20 presentation points) for any team that presents on Thursday next week (1/25), on *finetuning for code*.

6-Unit course structure

On days you're not presenting (both lectures and discussions):

- Pre-assignment (33% of grade):
 - Short summary and \geq 1 discussion questions for a paper.
 - Submit by 11:59pm the day **before** class.
 - · 23 days, but we'll grade out of 20.

6-Unit course structure

On days you're not presenting (both lectures and discussions):

- · Pre-assignment (33% of grade):
 - Short summary and ≥ 1 discussion questions for a paper.
 - Submit by 11:59pm the day **before** class.
 - · 23 days, but we'll grade out of 20.
- · Post-assignment (33% of grade):
 - · 2-3 sentences on what you found interesting.
 - · Submit by 11:59pm the day of class.
 - · 23 days, but we'll grade out of 20.

12-Unit: Course project

- For students taking the class for 12 units, all of the 6 unit requirements, and also a course project.
- Simulates doing a research project on a topic related to the course.
- · Teams of 2-4 members
- · Propose your own topic or pick a topic from our list
- Ends in a report and presentation that should be in the style of a workshop paper or the first draft of a conference paper.

• Team formation: Jan 30th

- Team formation: Jan 30th
- Project hours 1 (5%): Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.

- Team formation: Jan 30th
- Project hours 1 (5%): Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- Report 1 (25%): Feb 30th

 Task proposal and data analysis; related work; baseline proposal.

- Team formation: Jan 30th
- Project hours 1 (5%): Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- Report 1 (25%): Feb 30th

 Task proposal and data analysis; related work; baseline proposal.
- Spring break: Mar 5th and 7th Take time off!

- Team formation: Jan 30th
- Project hours 1 (5%): Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- Report 1 (25%): Feb 30th

 Task proposal and data analysis; related work; baseline proposal.
- Spring break: Mar 5th and 7th Take time off!
- · Project hours 2 (5%): Mar 28th

- Team formation: Jan 30th
- Project hours 1 (5%): Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- Report 1 (25%): Feb 30th

 Task proposal and data analysis; related work; baseline proposal.
- · Spring break: Mar 5th and 7th Take time off!
- · Project hours 2 (5%): Mar 28th
- Report 2 (25%): Mar 30th

 Baseline results and analysis, and a technique proposal.

- Team formation: Jan 30th
- Project hours 1 (5%): Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- Report 1 (25%): Feb 30th

 Task proposal and data analysis; related work; baseline proposal.
- · Spring break: Mar 5th and 7th Take time off!
- · Project hours 2 (5%): Mar 28th
- Report 2 (25%): Mar 30th
 Baseline results and analysis, and a technique proposal.
- Final presentations (10%): Apr 23rd and 25th In-class 15-20 minute presentations.

- Team formation: Jan 30th
- Project hours 1 (5%): Feb 22nd
 Meet with an instructor for 15-20 minutes, with a few slides.
- Report 1 (25%): Feb 30th

 Task proposal and data analysis; related work; baseline proposal.
- · Spring break: Mar 5th and 7th Take time off!
- · Project hours 2 (5%): Mar 28th
- Report 2 (25%): Mar 30th

 Baseline results and analysis, and a technique proposal.
- Final presentations (10%): Apr 23rd and 25th In-class 15-20 minute presentations.
- Final report (30%): Apr 29th

 Results and analysis of your technique; future work proposal.

Discussion

- Introduce yourself! Name and program.
- · What brings you to this class?

Neural code generation

- Part I: Foundations
 - · Learning, inference, data, evaluation
- Part II: Frontiers
 - · Interaction, adaptability, reasoning, formal methods, science

Next meeting: lecture on pretraining and scaling laws for code

References i