

计算机组成原理

第二章 数据表示

2.6 海明校验及其实现

海明校验的基本原理

•增加冗余码(校验位)

有效信息(k位) 校验信息(r位)

 $N = k + r \le 2^r - 1$

- 1) 设k+r位海明码从左到右依次为第1,2,3,.....,k+r位,r位校验位记 为P_i(i=1,2,...,r),分别位于k+r位海明编码的第2ⁱ⁻¹(i=1,2,...,r) 位上,其余位依次放置被校验的数据位;
- 2) (7,4)海明校验码中校验位和被校验信息位的排列如下:

海明码位号 H_i

1 2 3 4 5 6 7 8 9 10 11

P和b的分布:

 P_1 P_2 b_1 P_3 b_2 b_3 b_4 P_4 b_5 b_6 b_7

3) Hi位的数据被编号小于j的若干个海明位号之和等于j的校验位所校验,如:

Hi	1	2	3	4	5	6	7	8	9	10	11
	1	2	1,2	4	1,4	2,4	1,2,4 /b4	8	1,8	2,8	1,2,8
	721	772	וֹמ/	/P3	/62	/03	/04	/P4	/05	/06	/0/

由此可采用偶校验计算出P₁~P₄ 四个校验位的值(!)

P3=b2 ⊕ b3 ⊕ b4

P4=b5 ⊕ b6 ⊕ b7

4)设置指错字G₄G₃G₂G₁

 G_4 = P4 \oplus b5 \oplus b6 \oplus b7

 $G_3 = P3 \oplus b2 \oplus b3 \oplus b4$

 $G_2 = P2 \oplus b1 \oplus b3 \oplus b4 \oplus b6 \oplus b7$ $G_1 = P1 \oplus b1 \oplus b2 \oplus b4 \oplus b5 \oplus b7$

 $G_{4}G_{5}G_{5}G_{1}$ 为0则表明无错误,反之指出出错位的海明码位号。

2 海明校验编码举例

Hi	1	2	3	4	5	6	7	8	9	10	11
	1	2	1,2	4	1,4	2,4	1,2,4	8	1,8	2,8	1,2,8
	/P1	/P2	/b1	/P3	/b2	/b3	/b4	/P4	/b5	/b6	/b7

设被传送的信息b₁b₂b₃b₄b₅b₆b₇ = 1011000, 采用偶校验;

则:P1=b1 \oplus b2 \oplus b4 \oplus b5 \oplus b7 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0

 $P2=b1 \oplus b3 \oplus b4 \oplus b6 \oplus b7 = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0=1$

 $P3=b2 \oplus b3 \oplus b4 = 0 \oplus 1 \oplus 1 = 0$

 $P4=b5 \oplus b6 \oplus b7 = 0 \oplus 0 \oplus 0 = 0$

得到的海明编码为H = 01100110000

3 海明校验检错与纠错举例

当传输无错时,即H=01100110000

G₄G₃G₂G₁= 0 0 0 0 , 表明无错!

3 海明校验检错与纠错举例

当传输出错时,即H = 01100110001

 $G_2=P_2\oplus b_1\oplus b_3\oplus b_4\oplus b_6\oplus b_7=1\oplus 1\oplus 1\oplus 1\oplus 1\oplus 0\oplus 1=1$

 $G_1 = P_1 \oplus b_1 \oplus b_2 \oplus b_4 \oplus b_5 \oplus b_7 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1$

 $G_4G_3G_2G_1 = 1011$, 表明 H_{11} 位出错!

当只有一位出错时,由于指错字 $G_4G_3G_2G_1$ 能定位错误,故可利用指错字配合适当电路和异或门,修正出错位!

4 海明校验特点分析

以H = 0 1 1 0 0 1 1 0 0 0 0的无错传输为例

$$G_4 = P_4 \oplus b_5 \oplus b_6 \oplus b_7 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$$

$$G_3 = P_3 \oplus b_2 \oplus b_3 \oplus b_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$G_2=P_2\oplus b_1\oplus b_3\oplus b_4\oplus b_6\oplus b_7=1\oplus 1\oplus 1\oplus 1\oplus 0\oplus 0=0$$

$$G_1 = P_1 \oplus b_1 \oplus b_2 \oplus b_4 \oplus b_5 \oplus b_7 = \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{0} \oplus \mathbf{0} = \mathbf{0}$$

此时无错,对应的指错字 $G_4G_3G_2G_1=0000$

1)指错字 $G_4G_3G_2G_1 = 0000$ 不一定无错(利用偶校验的特点去判断)

如 P_1 、 b_1 、 P_2 三位同时出错,则G2和G1依然为0。

4 海明校验特点分析

以H = 0 1 1 0 0 1 1 0 0 0 0的无错传输为例

$$G_4 = P_4 \oplus b_5 \oplus b_6 \oplus b_7 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$$

$$G_3 = P_3 \oplus b_2 \oplus b_3 \oplus b_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$G_2=P_2\oplus b_1\oplus b_3\oplus b_4\oplus b_6\oplus b_7=1\oplus 1\oplus 1\oplus 1\oplus 0\oplus 0=0$$

$$G_1=P_1\oplus b_1\oplus b_2\oplus b_4\oplus b_5\oplus b_7=0\oplus 1\oplus 0\oplus 1\oplus 0\oplus 0=0$$

2)指错字能区别一位错和两位错吗

如 b_1 、 b_2 同时出错,与仅 b_3 出错时的指错字均为 $G_4G_3G_2G_1=0110$ 。

因此:不一定能区别一位错与两位错!

4

海明校验特点分析

只有b3错

以H = 01100110000为例

b1、b2 两位错

4

海明校验特点分析

以H = 01100110000为例

b1、b2 两位错 在海明校验的基础上增加一位奇偶校验位