A referred boungles in possinges

# Algebraic Abstract Data Types: Introduction and Syntax

**Didier Buchs** 

Université de Genève

23 septembre 2021

## Algebraic Abstract Data Types

- Informal introduction
- AADT Signature
   Terms with variables
- Equations and axioms
- Examples
- Graceful presentations
- Examples

## Formal and Mathematical basis

- Algebraic view
  - heterogeneous algebra (Birkhoff) = sets + operations
  - Logical view of their properties (Horn clauses)
- Computer science
  - Type = set of data + operations
  - Some code for describing the behavior of these types
- Support of an Abstraction point of view
  - Information hiding (realization hiding)
  - Functional approach (<u>data hiding</u>)

## Informal example: Manipulation of strings

· Mandatory operations:

- An empty string (new) V
   Concatenation of two strings (append) V
   Concatenation of one character to the string (add to ) V
   Computation of the length (size) V
   Test of emptiness (isEmpty?) V
   Equality of two strings (=) V
   Selection of the first element (first) V

  - Necessary types for defining the string abstract data type :
    - character: the character AADT
    - natural: the type of the natural numbers
    - boolean: the type of the boolean values

## Signature

Definition of set of values and operations = signatures

```
signatures

    sorts names (or types)

      • operations names with profile (arity) nameofoperation :
        domain => co-domain
Adt StringSpec:
   Interface
      sorts string, //character, natural, boolean;
   Operations
               -> string;
       append _ _: string, string -> string;
       add _ to _: character, string -> string;
       size _ : string -> natural;
       isEmpty? _ : string -> boolean;
       _ = _: string, string -> boolean;
```

## Remarks on the syntax : generalized prefix, infix and postfix notations

```
append ___ string, string _> string;

woun constructible terms types be donné

append x y
append (x y)

(append x y)
```

## Remarks on the syntax(2)

(x = y)

```
Infix:
 _ = _: string, string -> boolean;
constructible terms
x = y
```

## Remarks on the syntax(3)

#### Mixfix:

```
add _ to _: character, string -> string;
constructible terms
add append(xy) to c
add c to append(x y)
add first(x) to y
```

## Remarks on the signature

#### Terminology:

- string is the sort of interest primarial
- character, natural et boolean are <u>auxiliary sorts</u> 4

```
Observation operations:
```

```
(Dou observe les opérations qui retournent := _: string, string -> boolean; des types auxiliairs
size _ : string -> natural;
isEmpty? _ : string -> boolean;
```

```
first _ : string -> character;
```

#### Definition (Observer)

An observer is an operation with the profile: interest sort and ev. auxiliary sorts → auxiliary sort

40 utilizes

## Remarks on the signature(2)

#### Modifier operations:

```
add _ to _: character, string-> string; general euro
new: () -> string;
append _ _: string, string -> string;
```

#### Definition (Modifier)

```
A modifier is an operation with the profile:
interest sort and ev. auxiliary sorts → interest sort
```

A subclass of modifier is the operations generating all values of the domain.

#### Definition (Generator)

A generator is an operation with the profile: interest sort and ev. auxiliary sorts  $\rightarrow$  interest sort

## Definition of basic set concepts

We recall here some usual definitions.

- S be universe of all sort names (type names).
- Universe are used to provide disjoint domains for sets
- two different universe are disjoint

#### Definition (Disjoint Union)

a disjoint union is a union where elements of the union are always considered different i.e.  $\forall A, B$  sets,

$$A' = A \times \{0\}, A' \cong A$$
  
 $B' = B \times \{1\}, B' \cong B$   
 $A \coprod B \Leftrightarrow A' \cup B'$ 

#### Example:

#### Definition of S-sorted set

We give here some basic definitions for typing objects.

## Definition (S-Sorted Set)

Let  $S \subseteq \mathbf{S}$  be a finite set. A *S-sorted set A* is a disjoint union of a family of sets indexed by S ( $A = \prod_{s \in S} A_s$ ), noted as  $A = (A_s)_{s \in S}$ .

Remark: In our theory this is a disjoint partition, for non-disjoint partition there is theory of ordered sorts.

Example:

## Definition of signature

Based on S-sets we have :

#### Definition (Signature)

A signature is a couple  $\Sigma = \langle S, F \rangle$ , where  $S \subseteq \mathbf{S}$  is a finite set of sorts and  $F = (F_{w,s})_{w \in S^*, s \in S}$  is a  $(S^* \times S)$ -sorted set of function names of  $\mathbf{F}$ . Each  $f \in F_{\epsilon,s}$  is called a *constant*.

Example (Give the signature for stack of naturals) :

## Definition of terms

## Definition (Terms of a Signature)

Let  $\Sigma = \langle S, F \rangle$  be a signature and X be a S-sorted set of variables. The set of terms of  $\Sigma$  over X is a S-sorted set  $T_{\Sigma,X}$ , where each set  $(T_{\Sigma,X})_s$  is inductively defined as follows:

- each variable  $x \in X_s$  is a term of sort s, i.e.,  $x \in (T_{\Sigma,X})_s$
- each constant  $f \in F_{\epsilon,s}$  is a term of sort s, i.e.,  $f \in (T_{\Sigma,X})_s$
- for all operations that are not a constant  $f \in F_{w,s}$ , with  $w = s_1 \dots s_n$ , and for all n-tuple of terms  $(t_1 \dots t_n)$  such that all  $t_i \in (T_{\Sigma,X})_{s_i}$   $(1 \leq i \leq n)$ ,  $f(t_1 \dots t_n) \in (T_{\Sigma,X})_{s_i}$

What means this term?

```
add c to x = append(x y)
append (IsEmpty(new), add x to c)
```

#### Definition of axioms

## Definition (Axioms on variables)

Let  $\Sigma = \langle S, F \rangle$  be a signature and X be a S-sorted set of variables. The axioms on variables X are equational terms t = t'such that  $t, t' \in (T_{\Sigma,X})_s$ ,

Example : x+0 = x

Remark: Variables are universally quantified

## String Axioms

```
Axioms
isEmpty?(new) = true;
isEmpty?(add c to x) = false;
#(new) = 0;
\#(add \ c \ to \ x) = \#(x) + 1;
append(new, x) = x;
append(add c to x, y) = add c to (append(x,y));
(new = new) = true;
(add c to x = new) = false;
(new = add c to x) = false:
(add c to x = add d to y) = (c = d) and (x = y);
+ axioms of first
Where
x,y:string; c,d:character;
End StringSpec;
```

## String Axioms(2)

. . . .

meta-operator of the basic logic of the specification language. Signature of auxiliary sorts: true: -> boolean: false: -> boolean: not \_ : boolean -> boolean; \_ and\_ ,\_ or\_ : boolean, boolean -> boolean ; 0: -> natural; 1: -> natural; succ: natural -> natural;

 $_+$  +  $_-$  ,  $_-$  - $_-$  ,  $_-$  \* $_-$  ,  $_-$  / $_-$  : natural, natural -> natural ;

Be carefull!! : The symbol = is either a signature operator and a

= : natural, natural -> boolean; a: () -> character; b: () -> character;

= = : character, character -> boolean;

#### Boolean Axioms

```
Adt Booleans;
Interface
Sorts boolean;
Operations
true , false : -> boolean;
not _ : boolean -> boolean;
_ and _ ,_ or _ , _ xor _ ,_ = _: boolean boolean -> boolea
Body
Axioms
not(true) = false; not(false) = true;
(true and b) = b; (false and b) = false;
(true or b) = true; (false or b) = b;
(false xor b) = b; (true xor b) = not(b);
(true = true) = true; (true = false) = false;
(false = true) = false; (false = false) = true;
                                                          18/26
Where b : boolean:
                                     ◆□▶ ◆□▶ ◆■▶ ◆■ めぬべ
```

#### Exercise

Write the axioms of a sort Stack with the signature;

```
Adt Stack;
Interface
Use Naturals, Booleans;
Sorts stack:
Operations
empty : -> stack;
push _ _: natural stack -> stack;
pop _ : stack -> stack;
top _ : stack -> natural;
= _ : stack stack -> boolean;
```

## Exercise

Axioms of a sort Stack:

#### Conditional Axioms

Positive conditional axioms (Horn clause with equality) :

## Definition (Axioms on variables)

Let  $\Sigma = \langle S, F \rangle$  be a signature and X be a S-sorted set of variables. The conditional axioms on variables X are  $t_1 = t'_1 \wedge ... \wedge t_n = t'_n \Rightarrow t = t'$  such that  $t, t' \in (T_{\Sigma,X})_s, t_1, t'_1 \in (T_{\Sigma,X})_{s_1}, ..., t_n, t'_n \in (T_{\Sigma,X})_{s_n}, ...$ 

```
isEmpty(x)= false =>
first(add c to x) = first x:
isEmpty(x)= true =>
first(add c to x) = c;
Is it necessary?
```

## Graceful presentations

Graceful presentations It is a method for writing axioms without:

- the possibility of writing contradictory axioms
- forgetting cases.

Principle for each operation of the signature :

- Write on the left of the equation a term starting with the name of this operation.
- Iterate on all parameter of the operation the following principle from left to right:
  - Use a variable for this parameter
  - If it is not possible to write a valid axiom for this variable decompose using the generators
  - If a generator is not sufficient for the decomposition in sub case use conditions

General Property: sufficient completeness and hierarchical consistence are guaranteed

## Example of axiomatisation

$$x + y = ?$$

decomposition of the second parameter with both constructors!

$$x + 0 = x;$$
  
 $x + succ(y) = succ(x+y);$ 

Exercise: Application to

$$x > y = ?$$

## Example of axiomatisation: Sets of naturals

## Example of axiomatisation: Tables of naturals

## Summary

- Sorts and functions
- Axioms
- Graceful Presentation
- Subtilities when algebras are not free