

CHỦ ĐỀ 10: PHƯƠNG PHÁP CHOLESKY

Nhóm 11:

 Nguyễn Duy Hảo
 20185347
 Đào Đức Huy
 20195886

 Nguyễn Trung Kiên
 20195894
 Lê Văn Nhiên
 20173567

 Nguyễn Quang Huy
 20195888
 Dương Quý Toàn
 20173593

ONE LOVE. ONE FUTURE.

Nội dung trình bày

- Bài toán
- Phương pháp phân tách LU
- Phương pháp Cholesky
- Thuật toán
- Úng dụng phương pháp

Bài toán

Bài toán

Hệ phương trình tuyến tính gồm n phương trình và n ẩn

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \end{cases}$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

• Trong đó x_i là các ẩn (i = 1, 2, 3, ..., n)

Bài toán

Bài toán

Hệ phương trình tuyến tính gồm n phương trình và n ấn có dạng:

AX = B

Hay còn viết dưới gọn dưới dạng phương trình AX = B với:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \qquad X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

$$B$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

$$B = egin{bmatrix} b_1 \ b_2 \ \cdots \ b_n \end{bmatrix}$$

Phương pháp phân tách LU

Phương pháp phân tách LU

A là ma trận vuông (với detA \neq 0) Phân tích A thành tích của một ma trận tam giác trên và một ma trận tam giác dưới

Phân tích ma trận A thành tích của 2 ma trận L và U: A=L.U
 U: ma trận tam giác dưới
 U: ma trận tam giác trên

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 & \dots & 0 \\ l_{21} & l_{22} & 0 & \dots & 0 \\ l_{31} & l_{32} & l_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ l_{n1} & l_{n2} & l_{n3} & \dots & l_{nn} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

- Ta cần giải ra các nghiệm $\mathbf{l_{ij}}$ và $\mathbf{u_{ij}}$. Ta có $\mathbf{n^2} + \mathbf{n}$ ẩn với $\mathbf{n^2}$ phương trình \Rightarrow Để tìm ma trận L và U ta cần biết trước \mathbf{n} ẩn.
- Thông thường, ta chọn $l_{ii}=1$ $\forall i$, thu được hệ n^2 phương trình với n^2 ẩn.

Phương pháp phân tách LU

Ma trận L và U

Các phần tử của ma trận L và ma trận U được xác định bởi:

$$\begin{cases} u_{1j} = a_{1j} & (1 \le j \le n) \\ l_{i1} = \frac{a_{i1}}{u_{11}} & (2 \le i \le n) \end{cases}$$

$$\begin{cases} u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} & (1 < i \le j) \end{cases}$$

$$l_{ij} = \frac{1}{u_{ij}} [a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}] & (1 < i < j)$$

Phương pháp phân tách LU

• Ví dụ: Phân tích ma trận $\mathbf{A} = \begin{bmatrix} 2 & 2 & -3 \\ -4 & -3 & 4 \\ 2 & 1 & 2 \end{bmatrix}$ bằng phương pháp phân tách LU

Giải: Ta có A=L.U và đặt $\mathbf{l_{ii}} = \mathbf{1} \ \forall i$, thu được:

$$\mathbf{A} = \begin{bmatrix} 2 & 2 & -3 \\ -4 & -3 & 4 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\text{Ap dung cong thức:} \begin{cases} u_{11}=2, u_{12}=2, u_{13}=-3 \\ l_{21}=-2, l_{31}=1 \\ l_{32}=\frac{1}{u_{22}}(a_{32}-l_{31}u_{12})=-1 \\ u_{22}=a_{22}-l_{21}u_{12}=1 \\ u_{23}=a_{23}-l_{21}u_{13}=-2 \end{cases} \Rightarrow \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$u_{23} = a_{23} - l_{21}u_{13} = -2$$

 $u_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23} = 3$

 Phương pháp Cholesky là phương pháp phân tách LU với A là ma trận đối xứng và xác định dương

Ma trận đối xứng

Ma trận vuông A = $[a_{ij}]$ trong đó 2 phần tử đối xứng đi qua đường chéo chính thì bằng nhau, hay $[a_{ij}]$ = $[a_{ji}]$

Ví dụ:

$$\mathbf{X} = \begin{bmatrix} 1 & 3 \\ 3 & 8 \end{bmatrix}$$
; $\mathbf{Y} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ là các ma trận đối xứng

Ma trận xác định dương

■ Ma trận vuông A = $[a_{ij}]$ (n hàng, n cột) xác định dương nếu:

$$\mathbf{x}^{T}\mathbf{A}\mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{a}_{ij} \mathbf{x}_{i} \mathbf{x}_{j} > \mathbf{0}, \forall \mathbf{x} = [x_{1}, x_{2}, ..., x_{n}]^{T} \in \mathbf{R}^{n}, \mathbf{x} \neq \mathbf{0}$$

■ Ma trận A xác định dương ⇔ tất cả các định thức con chính của A đều dương

Ví dụ: $\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{bmatrix}$ Các định thức con chính:

$$\Delta_1 = 1 > 0, \ \Delta_2 = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 > 0, \ \Delta_3 = \begin{vmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{vmatrix} = -1 \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} - 0 \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} + 4 \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2 > 0$$

Vậy ma trận A xác định dương.

Định lý 1

Nếu A là ma trận xác định dương, thì A là ma trận khả nghịch.

• Hệ quả: Nếu A là ma trận xác định dương ⇒ hệ AX = B có đúng một nghiệm.

Định lý 2

Cho M $\in \mathbb{R}^{n \times n}$ là ma trận khả nghịch và cho A = $M^T M \Rightarrow$ A là ma trận xác định dương.

 Định lý ở trên cho ta 1 cách xây dựng ma trận xác định dương: Chỉ cần nhân một ma trận khả nghịch với ma trận chuyển vị của nó.

Định lý phân tách Cholesky

Mọi ma trận đối xứng xác định dương đều có thể đưa về dạng $\mathbf{M}^{T}\mathbf{M}$ với ma trận \mathbf{M} nào đó

Phương pháp Cholesky

Là phương pháp phân tách LU có dạng: $A = U^{T}$. U

- Trong đó:
- A là ma trận đối xứng, xác định dương
- U là ma trận tam giác trên và có tất cả các phần tử đường chéo chính > 0. (U được gọi là thừa số Cholesky của ma trận A)
- Khái quát phương pháp:
 - Giải phương trình AX = B (1)
 - Phân tích $A = U^TU \Rightarrow U^T \cdot U \cdot X = B$
 - Đặt $U.X = Y(2) \Rightarrow U^T.Y = B(3)$
 - Giải (3) được Y. Sau đó giải tiếp (2) ta tìm được ma trận X là nghiệm của phương trình (1)

Mô tả cụ thể cách làm:

Bước 1: Tìm khai triển Cholesky **U** của ma trận **A**:

Ma trận U

$$\text{U}_{11} = \sqrt{a_{11}}; \; \text{U}_{1j} = \frac{a_{1j}}{\text{U}_{11}}; \; (j = \overline{2,n})$$

$$\text{U}_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} U_{ki}^2}; \; (i = \overline{2,n})$$

$$\text{U}_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} U_{ki} U_{kj}}{U_{ii}}; \; (i < j)$$

$$\text{U}_{ij} = 0; \; (i > j)$$

Bước 2: Giải hệ $\mathbf{U}^{\mathbf{T}} \cdot \mathbf{Y} = \mathbf{B}$ tìm \mathbf{Y} :

$$\begin{bmatrix} U_{11} & 0 & 0 & \dots & 0 \\ U_{21} & U_{22} & 0 & \dots & 0 \\ U_{31} & U_{32} & U_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ U_{n1} & U_{n2} & U_{n3} & \dots & U_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ b_n \end{bmatrix} (\mathbf{U_{ij}} = \mathbf{U_{ji}} \ \forall \mathbf{i}, \mathbf{j}) \Rightarrow \quad \mathbf{b_i} = \sum_{k=1}^{\mathbf{i}} \mathbf{U_{ki}} \mathbf{y_k}$$

Ma trận Y

$$\text{Y = } [y_i]_{n \times 1} \text{ được xác định bởi} \begin{cases} y_1 = \frac{b_1}{U_{11}} \\ \\ y_i = \frac{b_i - \sum_{k=1}^{i-1} U_{ki} y_k}{U_{ii}} \end{cases} \text{ (i > 1)}$$

Bước 3: Giải hệ U.X = Y tìm X:

$$\begin{bmatrix} U_{11} & U_{12} & U_{13} & \dots & U_{1n} \\ 0 & U_{22} & U_{23} & \dots & U_{2n} \\ 0 & 0 & U_{33} & \dots & U_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & U_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{bmatrix}$$

$$\Rightarrow y_i = \sum_{k=i}^n U_{ik} x_k$$

Ma trận X

$$\textbf{X} = [x_i]_{n \times 1} \text{ được xác định bởi} \begin{cases} x_n = \frac{y_n}{U_{nn}} \\ x_i = \frac{y_i - \sum_{k=i+1}^n U_{ik} x_k}{U_{ii}} \end{cases} \quad \text{(i < n)}$$

 \Rightarrow Ma trận **X** chính là nghiệm cần tìm của hệ phương trình $\mathbf{AX} = \mathbf{B}$

• Ví dụ: Giải hệ phương trình $\mathbf{AX} = \mathbf{B}$ với $\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{bmatrix}$ và $\mathbf{B} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Ta có A là ma trận đối xứng và xác định dương.

Bước 1: Khai triển
$$\mathbf{A} = \mathbf{U^T}.\mathbf{U}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{bmatrix} = \begin{bmatrix} U_{11} & 0 & 0 \\ U_{12} & U_{22} & 0 \\ U_{13} & U_{23} & U_{33} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}$$

$$\mathbf{U_{11}} = \sqrt{\mathbf{a_{11}}} = 1$$
, $\mathbf{U_{12}} = \frac{\mathbf{a_{12}}}{\mathbf{U_{11}}} = 1$, $\mathbf{U_{13}} = \frac{\mathbf{a_{13}}}{\mathbf{U_{11}}} = -1$

$$\mathbf{U_{22}} = \sqrt{\mathbf{a_{22}} - \mathbf{U_{12}^2}} = 1$$

$$\mathbf{U_{23}} = \frac{1}{\mathbf{U_{22}}} [\mathbf{a_{23}} - \mathbf{U_{12}} \mathbf{U_{13}}] = 1$$

$$\mathbf{U_{33}} = \sqrt{\mathbf{a_{33}} - \mathbf{U_{13}^2} - \mathbf{U_{23}^2}} = \sqrt{2}$$

Bước 2: Giải hệ U^T . Y = B tìm Y:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 1 & \sqrt{2} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \Rightarrow \begin{cases} y_1 = 1 \\ y_1 + y_2 = 2 \\ -y_1 + y_2 + \sqrt{2}y_3 = 3 \end{cases} \Rightarrow Y = \begin{bmatrix} 1 \\ 1 \\ 3/\sqrt{2} \end{bmatrix}$$

Bước 3: Giải hệ U.X = Y tìm X:

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3/\sqrt{2} \end{bmatrix} \Rightarrow \begin{cases} x_1 + x_2 - x_3 = 1 \\ x_2 + x_3 = 1 \\ \sqrt{2}x_3 = 3/\sqrt{2} \end{cases} \Rightarrow \mathbf{X} = \begin{bmatrix} 3 \\ -1/2 \\ 3/2 \end{bmatrix}$$

Nghiệm x_1 =3, $x_2 = -1/2$, $x_3 = 3/2$

Thuật toán tổng quát

INPUT: ma trận A, n

OUTPUT: ma trận U, hoặc thông báo A không đối xứng, hoặc thông báo A không xác định dương.

Bước 1: Kiểm tra tính đối xứng của A bằng hàm kiểm tra ma trận đối xứng.

Nếu flag = False => in ra màn hình A không đối xứng, dừng thuật toán.

Ngược lại thì chuyển sang bước 2.

Bước 2: Tính bình phương của phần tử đường chéo chính a_{ii} , $i=1,\ldots,n,\ k=1,\ldots,i-1$.

$$a_{ii} = a_{ii} - a_{ki}^2$$

Bước 3: Xét dấu của a_{ii} , i=1,...,n.

Nếu $a_{ii} \leq 0 \Rightarrow$ dừng thuật toán. Ngược lại thì lấy căn bậc hai của a_{ii} , chuyển sang bước 4.

Bước 4: Tính các phần tử a_{ij} , j= $\overline{i+1,n}$

$$a_{ij} = a_{ij} - a_{ki} * a_{kj}$$
, $k = \overline{0, i}$

$$a_{ij} = a_{ij}/a_{ii}$$

Bước 5: Trả về ma trận tam giác trên của A.

Thuật toán chi tiết

INPUT: ma trận A, n

OUTPUT: ma trận U, hoặc thông báo A không đối xứng, hoặc thông báo A không xác định dương.

Bước 1: kiểm tra tính đối xứng của A

flag = hàm kiểm tra ma trận đối xứng

if flag = False:

Thông báo A không đối xứng

Dừng thuật toán

Bước 2: tính phần tử đường chéo chính aii

for
$$i = 1$$
 to n:

for
$$k = 1$$
 to $i - 1$:

$$a_{ii} = a_{ii} - a_{ki}^2$$

Thuật toán chi tiết

```
Bước 3: Xét dấu của a_{ii}, nếu <= 0 thì dừng thuật toán, không thì ta lấy căn.
     if a_{ii} \leq 0:
                 Thông báo A không xác định dương
                 Dừng thuật toán
     a_{ii} = \sqrt{a_{ii}}
   Bước 4: Tính các phần tử a_{ij}, j = i + 1, ..., n
     for j = i + 1 to n:
                 for k = 0 to i:
                            a_{ij} = a_{ij} - a_{ki} * a_{kj}
                a_{ij} = a_{ij}/a_{ii} # chia cho phần tử đường chéo chính.
```

Bước 5: Return ma trận tam giác trên của A

Ứng dụng của phương pháp

- Giải hệ phương trình AX = B
- Bình phương tối thiểu (hồi quy tuyến tính)
- Tìm ma trận nghịch đảo
 - Ma trận nghịch đảo của ma trận đối xứng
 - Ma trận nghịch đảo của ma trận không đối xứng
- Tính định thức
- Quy hoạch phi tuyến
- Mô phỏng Monte Carlo

THANK YOU!

ONE LOVE. ONE FUTURE.