

DataFrame abstraction

for distributed data processing

Pelle Jakovits

Outline

- DataFrame abstraction
- Spark DataFrame API
 - Importing and Exporting data
 - DataFrame and column transformations
 - Advanced DataFrame features
 - User Defined Functions
- Advantages & Disadvantages

DataFrame abstraction

- DataFrame is a tabular format of data
 - Data objects are divided into rows and labelled columns
 - Column data types are fixed
- Simplifies working with tabular datasets
 - Restructuring and manipulating tables
 - Applying user defined functions to a set of columns
- DataFrame implementations
 - Pandas DataFrame in Python
 - DataFrames in R

Spark DataFrames

- Spark DataFrame is a collection of data organized into labelled columns
 - Stored in Resilient Distributed Datasets (RDD)
- Equivalent to a table in a relational DB or DataFrame in R or Python
- Shares built-in & UDF functions with HiveQL and Spark SQL
- Ddifferent API from Spark RDD
 - DataFrame API is more column focused
 - Functions are applied on columns rather than row tuples
 - map(fun) -> select(cols), withColumn(col, fun(col))
 - reduceByKey(fun) -> agg(fun(col)), sum(col), count(col)

Spark DataFrames

- Operations on Spark DataFrames are inherently parallel
 - DataFrame is split by rows into RDD partitions
- Optimized under-the-hood
 - Logical execution plan optimizations
 - Physical code generation and deployment optimizations
- Can be constructed from a wide array of sources
 - Structured data files (json, csv, ...)
 - Tables in Hive
 - Existing Spark RDDs
 - Python Pandas or R DataFrames
 - External relational and non-relational databases

Using Spark DataFrame API

```
# Load in data as a DataFrame
bank accounts = spark.read.option("header", True) \
                          .option("inferSchema", True) \
                          .csv("bank folder")
#Execute DataFrame operations, result is a DataFrame
result = bank accounts.select("Balance", "City") \
                      .groupBy("City") \
                      .sum("Balance")
#Show results
result.show(5, False)
#Store results
result.write.format("json").save("output_folder")
```

Loading DataFrames from files

- DataFrame schema can be generated automatically
- Reading data From JSON file example:

```
df = spark.read.option("inferSchema", True) \
    .json("/data/people.json")
```

Reading data From CSV file:

Creating DataFrame from RDD

- When loading from an existing RDD, we must specify schema separately
- Example: RDD people, which contains tuples of (name, age)

From Pandas DataFrame

```
import numpy as np
import pandas as pd
matrix = np.random.rand(6, 6)
dataframe = pd.DataFrame(matrix)

sparkDF = spark.createDataFrame(dataframe)
```

+						+
1	0	1	2	3	4	5
+						+
	0.81	0.86	0.11	0.73	0.43	0.14
	0.5	0.27	0.72	0.22	0.64	0.91
	0.78	0.01	0.5	0.11	0.31	0.8
	0.42	0.13	0.66	0.45	0.72	0.36
	0.24	0.96	0.83	0.65	0.19	0.96
	0.08	0.53	0.44	0.62	0.45	0.92
+		+		+		+

Saving DataFrames

- Can save DF's in csv, json, text, binary, etc. format
- You can control how many files are created using:
 - df.coalesce(N)
 - It re-structures DF into N partitions
 - Be careful, each DF partition should fit into memory!

```
df.write
    .format("csv") \
    .option("header",True) \
    .option("compression","gzip") \
    .save("output_folder")
```

Save modes

- Save operations have multiple modes:
 - Error Default option: Throw error if output folder exist
 - Ignore Silent ignore if output folder exist
 - Append Add new files into output folder
 - Overwrite Replace output folder

```
df.write.mode("append") \
          .format("json") \
          .save("output_folder")
```

Spark DataFrame DB connectors

Load DataFrame from PostgreSQL table

```
jdbcDF = spark.read \
    .format("jdbc") \
    .option("url", "jdbc:postgresql:dbserver") \
    .option("dbtable", "schema.tablename") \
    .option("user", "username") \
    .option("password", "password") \
    .load()
```

Store Dataframe into PostgreSQL table

```
jdbcDF.write \
    .format("jdbc") \
    .option("url", "jdbc:postgresql:dbserver") \
    .option("dbtable", "schema.tablename") \
    .option("user", "username") \
    .option("password", "password") \
    .save()
```


Manipulating DataFrames

- DataFrame operations
 - Provide information about DataFrame content and structure
 - Transform DataFrame structure
 - Group, select, add, modify columns
- Column Functions
 - Generate or change the content of columns
 - Shares the same column functions with SQL
 - Can add UDF's as new Column functions

Structure of the DataFrame

```
bank_accounts.printSchema()

root
|-- Last_Name: string (nullable = true)
|-- First_Name: string (nullable = true)
|-- Balance: double (nullable = true)
|-- Address: string (nullable = true)
|-- City: string (nullable = true)
|-- Last_Trans: string (nullable = true)
|-- bank_name: string (nullable = true)
```

Show / Transform table contents

bank_accounts.show()

Last_Name	· –	++ Balance Address +		+ Last_Trans bank_name
KELLY	JUSTIN R 	74.5	•	02/26/1983 BANK OF NOVA SCOTIA 06/04/1993 TORONTO-DOMINION BANK
NEED NEWS BIANCHI	 BERNARD	787.51 12055 - 95 ST. 357.98	Edmonton UNKNOWN AB	04/02/1980 HSBC BANK CANADA
CHAN	 SUI PANG +	102.34	 +	04/17/1990 BANK OF MONTREAL

bank_accounts.select("Balance", "City")

City	++ Bank
CANMORE ALTA CHIPMAN EDMONTON, ALBERTA T5 Edmonton TOKYO JAPAN	++ ROYAL BANK OF CANADA CANADIAN IMPERIAL BANK OF COMMERCE HSBC BANK CANADA ING BANK OF CANADA BANK OF MONTREAL

DataFrame Example - WordCount

```
# Load the dataframe content from a text file, Lines DataFrame contains a single
column: value - a single line from the text file.
lines = spark.read.text(input folder)
#Split the value column into words and explode the resulting list into multiple
records, Explode and split are column functions
words = lines.select(explode(split( lines.value, " ")).alias("word"))
#group by Word and apply count function
wordCounts = words.groupBy("word").count()
                                                            word | count |
#print out the results
                                                          online|
wordCounts.show(10)
                                                               Byl
                                                      Text-Book
                                                            hope |
```


75 l

some

Working with columns

Addressing columns:

```
- df.column
  - df['column']
  - F.col("column")
  - "column"
accounts.select( "Balance",
                 accounts.Balance,
                 accounts['Balance'],
                 F.col("Balance") )
```

Modifying columns

- Rename column
 - df.col.alias("new_label")
- Cast column into another type
 - df.col.cast("string")
 - df.col("Balance").cast(StringType())

```
accounts.select(accounts.balance.cast("double")
    .alias("bal"))
```

Adding columns

- Add a new column
 - df2 = df.withColumn('age2', df.age + 2)
 - If new column label already exists, it is replaced/overwritten
- Rename a column:

```
- df2 = df.withColumnRenamed('age', 'age2')
```

Filtering rows

Grouping DataFrames

```
bank accounts.groupBy("City", "bank name").sum("Balance")
bank_accounts.groupBy("City", "bank_name").agg(F.sum("Balance"))
                   City | bank name | sum(Balance) |
          YELLOWKNIFE NT | BANK OF MONTREAL | 1790.68
             TOKYO JAPAN | BANK OF MONTREAL | 751.94
      |EDMONTON, ALBERTA T5| HSBC BANK CANADA |
                                                 528.28
                Edmonton | ING BANK OF CANADA |
                                                 636.42
            CANMORE ALTA ROYAL BANK OF CAN...
                                         51.37
                CHIPMAN | CANADIAN IMPERIAL... |
                                           20.59
                                                 83.57
            ST. ALBERT AB | HSBC BANK CANADA |
        ------
```

Joining DataFrames

- DataFrames can be joined by defining the join expression or join key
- Supports broadcast join
 - One DataFrame is fully read into memory and In-Memory join is performed
 - Wrap one of the tables with broadcast(df)
 - When both joined tables are marked, Spark broadcasts smaller table.

Window functions

- Allows to modify how aggregation functions are applied inside DataFrames
- Compute nested aggregations without changing the original DataFrame structure
- Process rows in groups while still returning a single value for every input row
- Supports sliding windows and cumulative aggregations

Over(Window)

```
bankWind = Window.partitionBy("bank name")
cityWind = Window.partitionBy("City")
bank a.select("City", "bank name", "Balance") \
     .withColumn("bank_sums", F.sum("Balance").over(bankWind))) \
     .withColumn("city sums", F.sum("Balance").over(cityWind))
    -----+
    |City
                  |bank name | Balance|bank sums|city sums|
    |ROYAL BANK OF CANADA | 1064.79 | 1341940.0 | 1147.0
    HONG KONG
    THORSBY ALTA
                  ROYAL BANK OF CANADA | 177.39 | 1341940.0 | 177.0
                  BANK OF MONTREAL | 2264.51 | 1476425.0 | 2265.0
    IRMA AB
    RADWAY AB
                  BANK OF MONTREAL | 182.04 | 1476425.0 | 182.0
                  BANK OF MONTREAL | 397.79 | 1476425.0 | 432.0
    AIRDRIE AB
                  TORONTO-DOMINION BANK | 34.35 | 1154282.0 | 432.0
    AIRDRIE AB
                  |TORONTO-DOMINION BANK | 45.11 | 1154282.0 | 45.0
    STAR CAN
        -----+
```


Cumulative aggregation

```
bankWind = Window.partitionBy("bank_name").orderBy("year")
bank a.select("bank name", "Balance", "year") \
      .withColumn("cumul_sum", F.sum("Balance").over(bankWin)))
     -----+
                                  |Balance|year|cumul sum
  bank_name
  +----+
  CANADIAN IMPERIAL BANK OF COMMERCE |821.07 | 1935 | 821.07
  CANADIAN IMPERIAL BANK OF COMMERCE |2572.61|1939|3393.68
  CANADIAN IMPERIAL BANK OF COMMERCE | 1974.39 | 1948 | 5368.07
  CANADIAN IMPERIAL BANK OF COMMERCE | 1732.65 | 1960 | 7100.72
  |CANADIAN IMPERIAL BANK OF COMMERCE | 1954.07 | 1961 | 11791.81
  CANADIAN IMPERIAL BANK OF COMMERCE | 1706.68 | 1961 | 11791.81
  | CANADIAN IMPERIAL BANK OF COMMERCE | 1030.34 | 1961 | 11791.81
  |CANADIAN IMPERIAL BANK OF COMMERCE | 1799.0 | 1965 | 13590.81
```

Sliding Window

RowsBetween – Window size based on fixed number of rows

RangeBetween - Window size based on column values

TF-IDF with DataFrames

```
#Extract document name and split lines into words
words = lines.select(
    F.explode(F.split("value", "[^a-zA-Z]+")).alias("word"),
    F.substring_index("file", '/', -1).alias("file")
                                           #First WordCount
counts = words.groupBy("word", "file") \
              .agg(F.count("*").alias("n"))
                                           #Compute N and m as new columns
fileWind = Window.partitionBy("file")
wordWind = Window.partitionBy("word")
withN
         = counts.withColumn("bigN", F.sum("n").over(fileWind)) \
                 .withColumn("m", F.count("*").over(wordWind))
                                       #Finally compute TF-IDF value
tfidf = withN.withColumn( "tfidf",
               withN['n']/withN['bigN'] * F.log2(D/withN['m'])
```


Load Input Documents

```
lines = spark.read.text("in").withColumn("file", F.input_file_name())
lines.show(10, False)
```

value	file
The Project Gutenberg EBook of Frank Merriwell at Yale, by Burt L. Standish	file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt
This eBook is for the use of anyone anywhere at no cost and with	file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt
almost no restrictions whatsoever. You may copy it, give it away or	file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt
re-use it under the terms of the Project Gutenberg License included	file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt
with this eBook or online at www.gutenberg.net	file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt
	<pre> file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt </pre>
	file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt
Title: Frank Merriwell at Yale	file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt
	file:///home/pelle/PycharmProjects/pellesparkone/in/11115.txt

Extract document name and split lines into words

```
words = lines.select(
    F.explode(F.split("value", "[^a-zA-Z]+")).alias("word"),
    F.substring_index("file", '/', -1).alias("file")
)
```

```
|file |word |
+-----+
|11115.txt|The |
|11115.txt|Project |
|11115.txt|Gutenberg|
|11115.txt|EBook |
|11115.txt|of |
|11115.txt|Frank |
|11115.txt|Merriwell|
|11115.txt|At |
|11115.txt|Yale |
|11115.txt|by |
```

First WordCount

```
counts = words.groupBy("word", "file")
       .agg(F.count("*").alias("n"))
           |file |word |n |
           +----+
           |11115.txt|accomplish|4
           |11115.txt|will |244|
           |11115.txt|midst | 3
           |11115.txt|Our
                     13
```


Compute **N** and **m** as new columns

```
fileWind = Window.partitionBy("file")
wordWind = Window.partitionBy("word")
      = counts.withColumn("bigN", F.sum("n").over(fileWind)) \
withN
             .withColumn("m", F.count("*").over(wordWind))
              +----+
              |file |word |n |bigN |m | |
              |11115.txt|By | 26 |90089|2 |
              |11102.txt|By | |12 |47979|2 |
              |11102.txt|Cannot |1 |47979|1 |
              |11102.txt|Easter |2 |47979|1
              |11102.txt|Heaven |1 |47979|1
              |11102.txt|July |25 |47979|1
```


Finally compute TF-IDF

```
tfidf = withN.withColumn(
                 "tfidf",
                 withN['n']/withN['bigN'] * F.log2(D/withN['m']))
           word| file| n| bigN| m|
                                                      tfidf
        +----+
               By | 11115.txt | 26 | 90089 | 2 |
                                                        0.01
                By | 11102.txt | 12 | 47979 | 2 |
                                                         0.0
            Cannot | 11102.txt | 1 | 47979 | 1 | 2.084245190604222... |
             Drink|11115.txt| 4|90089| 1|4.440053724650068E-5|
            Easter|11102.txt| 2|47979| 1|4.168490381208445...|
            Heaven | 11102.txt | 1 | 47979 | 1 | 2.084245190604222... |
              July | 11102.txt | 25 | 47979 | 1 | 5.210612976510557E-4 |
```

Crosstab

 Crosstab operation creates a frequency table between two DataFrame columns

```
bank_accounts.crosstab("City", "bank_name")
```

++ City_bank_name -	BANK OF MONTREAL	BANK OF NOVA	SCOTIA	CITIBANK CANADA	HSBC BANK (+ Canada
URANIUM CITY SASK	0		0	6) 	0
SUNDRE ALTA	1		0)	0
GRIMSHAW,AB	0		3)	0
NANAIMO BC	0		0)	0
ARLINGTON USA	1		0		9	0
MESA,USA	0		0		9	0
TOFIELD AB	2		0		9	0
TETTENHALL, WOLVE	0		0		9	0
++			. – – – – – +		+	+

Pivot

- **pivot**(col, [fields]) DF into a crosstable with a chosen aggregation function
- Takes an optional list of fields to transform into columns, otherwise all
 possible values of pivot column are transformed into columns

+			
City	BANK OF MONTREAL	BANK OF NOVA SCOTIA	CITIBANK CANADA
Edmonton	775441.37	10147.86	3825.5
St. Albert	36592.55	1065.36	6.75
Sherwood Park	29561.52	374.14	6.72
Stony Plain	20848.49	109.8	null
Leduc	9509.77	5.57	8.82
EDMONTON	8515.96	null	null
++		+	++

Other functions

- collect_list(col)
 - Aggregation function to collect all fields from a column into a list
- sort_array(col)
 - Sort array or list inside a column
- histogram(col, bins)
 - Computes a histogram of a column using b non-uniformly spaced bins.
- sentences(string str, string lang, string locale)
 - Tokenizes a string of natural language text into sentences
- ngrams(sentences, int N, int K, int pf)
 - Returns the top-k N-grams from a set of tokenized sentences
- corr(col1, col2)
 - Returns the Pearson coefficient of correlation of a pair of two numeric columns

User Defined Functions

- Java, Scala, Python, R functions can be used as UDF
- Python functions can be used directly, but must specify their output schema and data types
- Special Pandas DataFrame UDFs

- In SQL:
 - spark.udf.register("tfidf_udf", tfidf, DoubleType())
- In DataFrame API:
 - tfidf_udf = F.udf(tfidf, DoubleType())

Spark SQL UDF example

```
#Define Python function
def tfidf(n, bigN, m, D):
  return (float(n)/bigN * math.log(float(D)/m, 2))
                                   #Register function as UDF
tfidf_udf = F.udf(tfidf, DoubleType())
                                   #Call UDF from SQL
tfidf = withN.withColumn(
     "tfidf",
     tfidf_udf(withN['n'], withN['bigN'], withN['m'], D)
```

Spark UDF example II

```
def low3(balances):
                                     #Define Python function
   sorted(balances)
   low2 = balances[1] if len(balances) > 1 else None
   low3 = balances[2] if len(balances) > 2 else None
   return (balances[0],low2,low3)
                                     #Define function output data structure
schema = StructType([
  StructField("low1", DoubleType(), True),
  StructField("low2", DoubleType(), True),
  StructField("low3", DoubleType(), True),
])
                                     #Register function as UDF
low3 udf = F.udf(low3, schema)
```

Spark UDF example II

```
lows = bank_accounts.groupBy("City", "bank_name")
lows.agg(low3_udf(collect_list("Balance")).alias("balances"))
```

City	• -	balances
CANMORE ALTA		[51.37,,]
CHIPMAN	CANADIAN IMPERIAL BANK OF COMMERCE	[20.59,,]
EDMONTON, ALBERTA T5	HSBC BANK CANADA	[528.28,,]
Edmonton	ING BANK OF CANADA	[291.26, 155.53, 136.17]
TOKYO JAPAN	BANK OF MONTREAL	[751.94,,]
+	+	++

root

Selecting nested columns

```
lows.select("City", "bank_name", "balances.low1",
    "balances.low2", "balances.low3")
```

Performance considerations

- Spark can also cache DataFrames into memory using dataFrame.cache()
- Use broadcast(df) for smaller DataFrames
- Avoid nested structures with lots of small objects and pointers
- Instead of using strings for keys, use numeric values as keys

DataFrame vs SQL

- Complex transformations may require very large pure-SQL statements.
 - It is much more step-by-step process with DataFrames
- Internally, Spark uses the same data structures, functions and optimizations for both
- Both can be used interchangeably
- It is up to the user preference, which interface is more convenient

RDD vs DataFrames

RDD

- When dealing with Raw unstructured data
- When dealing with tuples of variable length and types
- Need to apply lower-level transformations
- Want to optimize on the lower-level

DataFrames

- When data is structured in a (nested) tabular format
- Fixed number of columns and fixed column types
- General data transformation operations (groupBy, withColumn, agg) are enough
- More information about the data structure/schema gives more opportunity for automatic optimization

Thats All

- Following practice session is
 - Processing data with Spark DataFrames
- Next week lecture is
 - Stream Data Processing
 - Real-time vs Batch streaming
 - Spark Streaming (Python)
 - Spark Structured Streaming (DataFrames)