

Text Clustering

- Similarity based Methods

(CPEG 657: Search and Data Mining)

Hui Fang
Department of Electrical and Computer Engineering
University of Delaware

Similarity-based Clustering

- Given a similarity function that can be used to measure similarity between two documents,
- Find a partition to
 - Maximize intra-cluster similarity
 - Minimize inter-cluster similarity
- How to find the partition?
 - Hierarchically group similar documents
 - Search by starting at a random partition

Method 1 (Similarity-based):

Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering

• Given a similarity function to measure similarity between two documents

• Gradually group similar documents together in a bottom-up fashion

• Stop when some stopping criterion is met

Agglomerative Hierarchical Clustering

How to Compute Group Similarity?

Given two groups g1 and g2,

Single-link algorithm: s(g1,g2)= similarity of the closest pair

complete-link algorithm: s(g1,g2)= similarity of the farthest pair

average-link algorithm: s(g1,g2)= average of similarity of all pairs

Three Methods Illustrated

Single Link Example

Complete Link Example

Comparison of the Three Methods

- Single-link
 - Loose clusters
 - Individual decision, sensitive to outliers
- Complete-link
 - Tight clusters
 - Individual decision, sensitive to outliers
- Average-link
 - Group decision, insensitive to outliers

Method 2 (similarity-based):

K-Means

K-Means Clustering

- Start with k randomly selected documents, and assume they are the centroids of k clusters
- Assign every document to a cluster whose centroid is the closest to the document
- Re-compute the centroid for each cluster
- Repeat this process until the centroids converge

Results can vary based on random seed selection.

