CLAIMS

1. A pharmaceutical composition exhibiting thrombopoietin agonism which contains as an active ingredient a compound of the formula (I):

$$X^1-Y^1-Z^1$$
 (I)

5

HOOFGOOG OHESOE

20

wherein X¹ is optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, or optionally substituted non-aromatic heterocyclic group;

Y¹ is -NRACO-(CH2)0-2-, -NRACO-(CH2)0-2-W-, -NRACO-CH=CH-, -W-(CH2)1-5-NRACO-(CH2)0-2-, -W-(CH2)1-5-CONRA-(CH2)0-2-, -CONRA-(CH2)0-2-, -(CH2)0-5-NRA-SO2-(CH2)0-5-, -(CH2)0-5-SO2-NRA-(CH2)0-5-, -NRA-(CH2)0-2-, -NRA-CO-NRA-, -NRA-CS-NRA-, -N=C(-SRA) NRA-, -NRACSNRACO-, -N=C(-SRA)-NRACO-, -NRA-(CH2)1-2-NRA-CO-, -NRACONRANRFCO-, or -N=C(-NRARA)-NRA-CO-, wherein RA is each independently a hydrogen atom, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl, RF is a hydrogen atom or optionally substituted aryl, W is an oxygen atom or

Z¹ is optionally substituted arylene, optionally substituted heteroarylene, optionally substituted non-aromatic heterocycle-diyl, or optionally substituted cycloalkyl-diyl;

A¹ is a ring represented by the formula:

a sulfur atom;

$$R^1$$
 R^2
 $Q \rightarrow R^3$
 R^4
or
 CH_2)m

wherein $R^{\scriptscriptstyle 1}$ and $R^{\scriptscriptstyle 2}$ are both hydrogen atoms or taken together may form an

10

20

oxygen atom or a sulfur atom; R3 and R4 are both hydrogen atoms or taken together may form an oxygen atom or a sulfur atom; R5 is a hydrogen atom or lower alkyl; Q and V are each independently -O-, -S-, -NRB- (wherein RB is a hydrogen atom or lower alkyl), or {CH2-; m is 1, 2, or 3;

- a broken line (---) represents the presence or absence of a bond, 5 its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.
 - A pharmaceutical composition exhibiting thrombopoietin agonism 2. which contains a compound of claim 1, wherein X1 is optionally substituted 5-member heteroaryl or a group represented by the formula:

is -(CH₂)₁₋₃-,/-O- φ H₂-, or -S₇CH₂-; R⁶ and R⁷ are each E wherein independently a hydrogen atom, optionally substituted lower alkyl, carboxy, lower alkyloxycarbonyl, optionally substituted aminocarbonyl, optionally substituted thienyl, or optionally substituted phenyl.

A pharmaceutical composition exhibiting thrombopoietin agonism which contains a compound of claim 1, wherein X1 is a group represented by the formula:

is -(CH₂)₁₋₃-, -O-CH₂-, or -S-CH₂-; R^6 and R^7 are each wherein E independently a hydrogen atom, optionally substituted lower alkyl, carboxy, lower alkyloxycarbonyl, optionally substituted aminocarbonyl, optionally substituted thienyl, or optionally substituted phenyl; Rs is a hydrogen atom or lower alkyl.

TJ 15

10

- 4. A pharmaceutical composition of any one of claims 1 to 3, wherein Y¹ is -NHCO-, -CONH-, -NHCH₂-, or NHSO₂-.
- 5. A pharmaceutical composition of any one of claims 1 to 4, wherein Z^1 is 1,4-phenylene.
- 5 6. A pharmaceutical composition of any one of claims 1 to 6, wherein A¹ is a ring represented by the formula:

$$\begin{array}{c|c}
 & O \\
 & N - R^8 \\
 & T & or
\end{array}$$

wherein R^8 is a hydrogen atom or lower alkyl; M is -S-, -O-, -N(R^c)-, or -CH₂-(wherein R^c is a hydrogen atom or lower alkyl); T is an oxygen atom or a sulfur atom.

- 7. A pharmaceutical composition of any one of claims 1 to 6, wherein the broken line represents the presence of a bond.
- 8. A pharmaceutical composition of any one of claims 1 to 7, which is for treating or preventing hemopathy.
- 9. A pharmaceutical composition of any one of claims 1 to 7, which is a platelet production modifier.
- 10. Use of a compound of any one of claims 1 to 7 for preparation of a pharmaceutical composition for treating hemopathy.
- 11. A method for treating hemopathy of a mammal, including a human,
 which comprises administration to said mammal of a compound of any one of
 claims 1 to 7 in a pharmaceutically effective amount.
 - 12. A compound represented by the formula (II)

wherein X2 is optionally substituted 5-member heteroaryl or a group

wherein E is $-(CH_2)_{1-3-}$, $-O-CH_2$, or $-S-CH_2-$; R^6 and R^7 are each

independently a hydrogen atom, optionally substituted lower alkyl, carboxy,

lower alkyloxycarbonyl, optionally substituted aminocarbonyl, optionally

substituted thienyl, or optionally substituted phenyl;

 Y^2 is $-NR^GCO-(CH_2)_{0-2-}$, $-NR^GCO-(CH_2)_{0-2}-W-$, $-NR^GCO-CH=CH-$, $-W-(CH_2)_{1-5-}$

 $NR^{G}CO\text{-}(CH_{2})_{0\text{-}2\text{-}}, \text{-W-}(CH_{2})_{1\text{-}5\text{-}}CONR^{G}\text{-}(CH_{2})_{0\text{-}2\text{-}}, \text{-CONR}^{G}\text{-}(CH_{2})_{0\text{-}2\text{-}}, \text{-(CH_{2})_{0\text{-}5\text{-}}}$

 $NR^{G}-SO_{2}-(CH_{2})_{0-5-}$, $-(CH_{2})_{0-5}-SO_{2}-NR^{G}-(CH_{2})_{0-5-}$, $-NR^{G}-(CH_{2})_{0-2-}$, $-NR^{G}-CO-(CH_{2})_{0-5-}$

 NR^{G} -, $-NR^{G}$ -CS- NR^{G} -, $-N=C(-SR^{G})$ - NR^{G} -, $-NR^{G}$ CS NR^{G} CO-, $-N=C(-SR^{G})$ -

NRGCO-, -NRG-(CH2)1-2-NRG-CO-, -NRGCONRGNRFCO-, or -N=C(-NRGRG)-

NRG-CO-,

5

ROCKSCO .CRES

N 15

10

wherein RG is each independently a hydrogen atom or optionally substituted

lower alkyl, RF is a hydrogen atom or optionally substituted aryl, W is an

oxygen atom or a sulfur atom;

Z2 is optionally substituted phenylene, optionally substituted 2,5-pyridine-

diyl, optionally substituted 2,5-thip hene-diyl, or optionally substituted 2,5-

furan-diyl;

A2 is a ring represented by the formula:

$$R^1$$
 Q
 R^3
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4

20

wherein R¹ and R² are both hydrogen atoms or taken together may form an oxygen atom or a sulfur atom; R³ and R⁴ are both hydrogen atoms or taken together may form an oxygen atom or a sulfur atom; R⁵ is a hydrogen atom or

lower alkyl; Q and V are each independently -O-, -S-, -NR^B- (wherein R^B is a hydrogen atom or lower alkyl), or -CH₂-; m is 1, 2, or 3; a broken line (---) represents the presence or absence of a bond, provided that X² is not oxazole,

- 5 its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.
 - 13. A compound of claim 12, wherein X² is a group represented by the formula:

wherein E is -(CH₂)₁₋₃-, -O-CH₂-, or -S-CH₂-; R⁶ and R⁷ are each independently a hydrogen atom, optionally substituted lower alkyl, carboxy, lower alkyloxycarbonyl, optionally substituted aminocarbonyl, optionally substituted thienyl, or optionally substituted phenyl; R⁸ is a hydrogen atom or lower alkyl,

its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.

14. A compound of claim 1 wherein X2 is a group represented by the formula:

$$R^{10}$$
 R^{10}
 R

wherein E is as defined in claim 12;

R9 is a hydrogen atom, optionally substituted lower alkyl, carboxy, lower

10

15

alkyloxycarbonyl, or optionally substituted aminocarbonyl;

R¹⁰ and R¹¹ are each independently a hydrogen atom, halogen, carboxy, lower alkyloxycarbonyl, optionally substituted amino, or optionally substituted amino,

- 5 its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.
 - 15. A compound of any one of claims 12 to 14, wherein Y² is -NHCO-, -CONH-, -NHCH₂-, or -NHSO₂-,

its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.

- 16. A compound of any one of claims 12 to 15, wherein Z² is 1,4-phenylene, its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.
- 17. A compound of any one of claims 12 to 16, wherein A² is a ring represented by the formula:

$$N-R^8$$
 $N-R^8$
 $N-R^8$

wherein R⁸ is a hydrogen atom or lower alkyl; M is -S-, -O-, -N(R^c)-, or -CH₂-(wherein R^c is a hydrogen atom or lower alkyl); T is an oxygen atom or a sulfur atom,

its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.

- 18. A compound of any one of claims 12 to 17, wherein the broken line represents the presence of a bond,
- 20 its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.
 - 19. A compound represented by the formula III-A:

wherein, R^9 is a hydrogen atom, optionally substituted lower alkyl, carboxy,

10

20

lower alkyloxycarbonyl, or optionally substituted aminocarbonyl;

R¹⁰ and R¹¹ are each independently a hydrogen atom, halogen, carboxy, lower alkyloxycarbonyl, optionally substituted amino;

5 Y³ is -NHCO- or -CONH-;

A³ is a ring represented by the formula:

wherein R^s is a hydrogen atom or lower alkyl; M is -S-, -O-, -N(R^c)-, or -CH₂-(wherein R^c is a hydrogen atom or lower alkyl); T is an oxygen atom or a sulfur atom,

its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.

20. A compound represented by the formula III-B:

$$R^{10}$$
 R^{11}
 S
 V^3
 A^3
(III-B)

wherein R9, R10, R11, Y3, and A3 ring are as defined in claim 19,

- its prodrug, or their pharmaceutically acceptable salt, or solvate thereof.
 - 21. A pharmaceutical composition containing a compound of any one of claims 12 to 20 as an active ingredient.
 - 22. A pharmaceutical composition which contains as an active ingredient a compound of any one of claims 12 to 20 for exhibiting thrombopoietin agonism.
 - 23. An agent for treating or preventing hemopathy which contains as the active ingredient a compound of any one of claims 12 to 20.
 - 24. A pharmaceutical composition containing as the active ingredient a

compound of any one of claims 12 to 20, which is a platelet production modifier.

- 25. Use of a compound of any one of claims 12 to 20 for preparation of a pharmaceutical composition for treating hemopathy.
- 5 26. A method for treating hemopathy of a mammal, including a human, which comprises administration to said mammal of a compound of any one of claims 12 to 20 in a pharmaceutically effective amount.