Earth and Planetary Sciences (ES1101)

(Minerals: Building Blocks of Rocks) (Autumn 2021 by Gaurav Shukla)

- **Book: 1) Understanding Earth by Grotzinger & Jordan (Text Book)**
 - 2) Earth: An introduction to Physical Geology by Tarbuck & Lutgens
 - 3) The Solid Earth: An introduction to global geophysics by Fowler

- More than 4000 minerals have been identified, and several new ones are identified each year.
- Common minerals that make up most of the Earth's crust are only a few dozens and known as rock-forming minerals.

Most abundant elements in the crust

Figure 3.30
The eight most abundant elements in the continen-

Radii of the most relevant cations and anions

These radii shown here are averaged out rough estimates. You may follow the link for the expected values of radii: http://abulafia.mt.ic.ac.uk/shannon/ptable.php

Radii of the most relevant cations and anions

Table 4.2 Cation Sizes Appropriate for Regular Coordination Polyhedra When Coordinating with O²⁻ (~1.26 Å)

Coordination	Radius Ratio		~Maximum Radius (Å)	Common Cations
12	~1.00	1.26	N/A	K+, Ca2+, Na+
8	0.732-1.00	0.92	1.26	Fe ²⁺ , Ca ²⁺ , Na ⁺ , Mg ²⁺
6	0.414-0.732	0.52	0.92	Al^{3+} , Fe^{2+} , Fe^{3+} , Mg^{2+}
4	0.225-0.414	0.28	0.52	Si ⁴⁺ , Al ³⁺ , S ⁶⁺ , P ⁵⁺
3	0.155-0.225	0.20	0.28	C ^{4+ a}
2	< 0.155	N/A	0.20	None

Radius ratio and coordination number (contd)

Radius ratio and coordination number (contd)

Radius ratio and coordination number

Figure 4.4 Coordination polyhedra. Anions with radius R_a are shown with light shading, cations with radius R_c with dark. Left view shows cation and anions drawn to scale. Center view shows the coordination polyhedra. Right view shows the plane through the polyhedron (shaded in center view) from which the radius ratio is calculated. See text for additional discussion. (a) 12-fold coordination (based on cubic closest packing). The coordination polyhedron is not a regular shape. (b) 8-fold, or cubic, coordination. (c) 6-fold, or octahedral, coordination. (d) 4-fold, or tetrahedral, coordination. (e) 3-fold, or triangular, coordination. (f) 2-fold, or linear, coordination.

Silicon-Oxygen Tetrahedra

Figure 2.10 The 14 Bravais lattices define six different three-dimensional volumes (a-f) that correspond to the unit cells of the six crystal systems. The lengths of the three unit cell axes are a, b, and c, and the angles between them are α , β , and γ . In the notations, the \neq sign indicates that equality of the axis lengths or angles is not required, although occasionally equality may occur by chance. The hexagonal (R) lattice shown in (e) is based on the rhombohedral axes shown in Figure 2.8c. A unit cell with the same geometry as the hexagonal (P) lattice shown in Figure 2.8a is far more commonly used.

- More than 4000 minerals have been identified, and several new ones are identified each year.
- Common minerals that make up most of the Earth's crust are only a few dozens and known as rock-forming minerals.
- As we have seen that the oxygen and silicon are the most common elements in the Earth's crust, so the silicate minerals account for more than 90% of the crust.

TABLE 3-1	Some Chemical Classes of Minerals	
Class	Defining Anions	Example
Native elements	None: no charged ions	Copper metal (Cu)
Oxides	Oxygen ion (O ²⁻)	Hematite (Fe ₂ O ₃)
Halides	Chloride (Cl $^-$), fluoride (F $^-$), bromide (Br $^-$), iodide (I $^-$)	Halite (NaCl)
Carbonates	Carbonate ion (CO ₃ ²⁻)	Calcite (CaCO ₃)
Sulfates	Sulfate ion (SO ₄ ²⁻)	Anhydrite (CaSO ₄)
Silicates	Silicate ion (SiO ₄ ⁴⁻)	Olivine (Mg,Fe) ₂ SiO ₄
Sulfides	Sulfide ion (S ²⁻)	Pyrite (FeS ²)

Nonsilicate Minerals

	Common Nonsilicate Mineral Groups						
Mineral Group (key ion(s) or element(s))	Mineral Name	Chemical Formula	Economic Use	Examples			
Carbonates (CO ²⁻ ₃)	Calcite Dolomite	CaCO ₃ CaMg(CO ₃) ₂	Portland cement, lime Portland cement, lime	B. Dolomite A. Calcite			
Halides (Cl ¹⁻ , F ¹⁻ , Br ¹⁻)	Halite Fluorite Sylvite	NaCI CaF ₂ KCI	Common salt Used in steelmaking Used as fertilizer	C. Halite D. Fluorite			
Oxides (O²-)	Hematite Magnetite Corundum Ice	Fe ₂ O ₃ Fe ₃ O ₄ Al ₂ O ₃ H ₂ O	Ore of iron, pigment Ore of iron Gemstone, abrasive Solid form of water	E. Hematite F. Magnetite			
Sulfides (S²-)	Galena Sphalerite Pyrite Chalcopyrite Cinnabar	PbS ZnS FeS ₂ CuFeS ₂ HgS	Ore of lead Ore of zinc Sulfuric acid production Ore of copper Ore of mercury	H. Chalcopyrite G. Galena			
Sulfates (SO ² ₄ -)	Gypsum Anhydrite Barite	CaSO ₄ •2H ₂ O CaSO ₄ BaSO ₄	Plaster Plaster Drilling mud	J. Anhydrite I. Gypsum			
Native elements (single elements)	Gold Copper Diamond Graphite Sulfur Silver	Au Cu C C S Ag	Trade, jewelry Electrical conductor Gemstone, abrasive Pencil lead Sulfadrugs,chemicals Jewelry, photography	K. Copper L. Sulfur			

Nonsilicate Minerals: Calcite

FIGURE 3.12 Carbonate minerals, such as calcite (calcium carbonate, CaCO₃), have a layered structure. (a) Top view of the carbonate ion, composed of a carbon ion surrounded by three oxygen ions in a triangle. (b) View of the alternating layers of calcium and carbonate ions in calcite. (c) Calcite. [Photo by John Grotzinger/Ramón Rivera-Moret/Harvard Mineralogical Museum.]

Nonsilicate Minerals: Pyrite

FIGURE 3.14 Pyrite, a sulfide mineral, is also known as "fool's gold." [John Grotzinger/Ramón Rivera-Moret/Harvard Mineralogical Museum.]