

Likninger og ulikheter av tredje grad

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

Likninger og ulikheter av tredje grad

1 Doble andregradsulikheter

- 2 Likninger og ulikheter av tredje grad
 - Tredjegradslikninger
 - Tredjegradsulikheter

Det finnes en formel for å løse tredjegradslikninger.

- Det finnes en formel for å løse tredjegradslikninger.
- Men den har flere steg og er vanskelig å huske.

- Det finnes en formel for å løse tredjegradslikninger.
- Men den har flere steg og er vanskelig å huske.
- Om vi bruker formelen på

$$x^3 - x - 6$$

får vi

$$x = \sqrt[3]{3 + \sqrt{\frac{242}{27}} + \sqrt[3]{3 - \sqrt{\frac{242}{27}}}.$$

- Det finnes en formel for å løse tredjegradslikninger.
- Men den har flere steg og er vanskelig å huske.
- Om vi bruker formelen på

$$x^3 - x - 6$$

får vi

$$x = \sqrt[3]{3 + \sqrt{\frac{242}{27}} + \sqrt[3]{3 - \sqrt{\frac{242}{27}}}.$$

Dette viser seg å være x = 2.

- Det finnes en formel for å løse tredjegradslikninger.
- Men den har flere steg og er vanskelig å huske.
- Om vi bruker formelen på

$$x^3 - x - 6$$

får vi

$$x = \sqrt[3]{3 + \sqrt{\frac{242}{27}}} + \sqrt[3]{3 - \sqrt{\frac{242}{27}}}.$$

- Dette viser seg å være x = 2.
- Så formelen gir heller ikke veldig nyttige svar.

- Det finnes en formel for å løse tredjegradslikninger.
- Men den har flere steg og er vanskelig å huske.
- Om vi bruker formelen på

$$x^3 - x - 6$$

får vi

$$x = \sqrt[3]{3 + \sqrt{\frac{242}{27}}} + \sqrt[3]{3 - \sqrt{\frac{242}{27}}}.$$

- Dette viser seg å være x = 2.
- Så formelen gir heller ikke veldig nyttige svar.
- Vi skal derfor ikke bruke tid på å lære denne formelen.

Dersom et tredjegradspolynom ikke har konstantledd kan vi faktorisere x ut.

- Dersom et tredjegradspolynom ikke har konstantledd kan vi faktorisere x ut.
- Da sitter vi igjen med et andregradspolynom inni parentesen.

- Dersom et tredjegradspolynom ikke har konstantledd kan vi faktorisere x ut.
- Da sitter vi igjen med et andregradspolynom inni parentesen.

- Dersom et tredjegradspolynom ikke har konstantledd kan vi faktorisere x ut.
- Da sitter vi igjen med et andregradspolynom inni parentesen.

Eksempel

Vi skal løse $x^3 - 2x^2 - 3x = 0$.

- Dersom et tredjegradspolynom ikke har konstantledd kan vi faktorisere x ut.
- Da sitter vi igjen med et andregradspolynom inni parentesen.

- Vi skal løse $x^3 2x^2 3x = 0$.
- Vi faktoriserer ut x og får $x(x^2 2x 3) = 0$.

- Dersom et tredjegradspolynom ikke har konstantledd kan vi faktorisere x ut.
- Da sitter vi igjen med et andregradspolynom inni parentesen.

- Vi skal løse $x^3 2x^2 3x = 0$.
- Vi faktoriserer ut x og får $x(x^2 2x 3) = 0$.
- Det betyr at x = 0 eller at $x^2 2x 3 = 0$.

- Dersom et tredjegradspolynom ikke har konstantledd kan vi faktorisere x ut.
- Da sitter vi igjen med et andregradspolynom inni parentesen.

- Vi skal løse $x^3 2x^2 3x = 0$.
- Vi faktoriserer ut x og får $x(x^2 2x 3) = 0$.
- Det betyr at x = 0 eller at $x^2 2x 3 = 0$.
- Vi løser andregradspolynomet og får x = -1 og x = 3.

- Dersom et tredjegradspolynom ikke har konstantledd kan vi faktorisere x ut.
- Da sitter vi igjen med et andregradspolynom inni parentesen.

- Vi skal løse $x^3 2x^2 3x = 0$.
- Vi faktoriserer ut x og får $x(x^2 2x 3) = 0$.
- Det betyr at x = 0 eller at $x^2 2x 3 = 0$.
- Vi løser andregradspolynomet og får x = -1 og x = 3.
- Løsningen er derfor at x = -1, x = 0, eller x = 3.

Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.

- Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.
- Om P(x) har x_1 som nullpunkt, vil divisjonen P(x) : $(x x_1)$ gå opp.

- Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.
- Om P(x) har x_1 som nullpunkt, vil divisjonen P(x): $(x x_1)$ gå opp.
- Vi har $P(x) = (x x_1)Q(x)$, hvor Q(x) er et andregradspolynom.

- Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.
- Om P(x) har x_1 som nullpunkt, vil divisjonen P(x): $(x x_1)$ gå opp.
- Vi har $P(x) = (x x_1)Q(x)$, hvor Q(x) er et andregradspolynom.
- Vi kan løse dette andregradspolynomet for å finne resten av nullpunktene.

- Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.
- Om P(x) har x_1 som nullpunkt, vil divisjonen P(x): $(x x_1)$ gå opp.
- Vi har $P(x) = (x x_1)Q(x)$, hvor Q(x) er et andregradspolynom.
- Vi kan løse dette andregradspolynomet for å finne resten av nullpunktene.

- Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.
- Om P(x) har x_1 som nullpunkt, vil divisjonen P(x) : $(x x_1)$ gå opp.
- Vi har $P(x) = (x x_1)Q(x)$, hvor Q(x) er et andregradspolynom.
- Vi kan løse dette andregradspolynomet for å finne resten av nullpunktene.

Eksempel

Vi skal løse $3x^3 - 13x^2 + 16x - 4 = 0$.

- Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.
- Om P(x) har x_1 som nullpunkt, vil divisjonen P(x) : $(x x_1)$ gå opp.
- Vi har $P(x) = (x x_1)Q(x)$, hvor Q(x) er et andregradspolynom.
- Vi kan løse dette andregradspolynomet for å finne resten av nullpunktene.

- Vi skal løse $3x^3 13x^2 + 16x 4 = 0$.
- Vi har fått oppgitt at x = 2 er en løsning.

- Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.
- Om P(x) har x_1 som nullpunkt, vil divisjonen P(x) : $(x x_1)$ gå opp.
- Vi har $P(x) = (x x_1)Q(x)$, hvor Q(x) er et andregradspolynom.
- Vi kan løse dette andregradspolynomet for å finne resten av nullpunktene.

- Vi skal løse $3x^3 13x^2 + 16x 4 = 0$.
- Vi har fått oppgitt at x = 2 er en løsning.
- Vi regner ut $(3x^3 13x^2 + 16x 4)$: $(x 2) = 3x^2 7x + 2$.

- Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.
- Om P(x) har x_1 som nullpunkt, vil divisjonen P(x): $(x x_1)$ gå opp.
- Vi har $P(x) = (x x_1)Q(x)$, hvor Q(x) er et andregradspolynom.
- Vi kan løse dette andregradspolynomet for å finne resten av nullpunktene.

- Vi skal løse $3x^3 13x^2 + 16x 4 = 0$.
- Vi har fått oppgitt at x = 2 er en løsning.
- Vi regner ut $(3x^3 13x^2 + 16x 4)$: $(x 2) = 3x^2 7x + 2$.
- Vi løser $3x^2 7x + 2 = 0$ og får x = 2 og $x = \frac{1}{3}$.

- Dersom vi kan ett av nullpunktene til et tredjegradspolynom, kan vi finne resten.
- Om P(x) har x_1 som nullpunkt, vil divisjonen P(x) : $(x x_1)$ gå opp.
- Vi har $P(x) = (x x_1)Q(x)$, hvor Q(x) er et andregradspolynom.
- Vi kan løse dette andregradspolynomet for å finne resten av nullpunktene.

- Vi skal løse $3x^3 13x^2 + 16x 4 = 0$.
- Vi har fått oppgitt at x = 2 er en løsning.
- Vi regner ut $(3x^3 13x^2 + 16x 4)$: $(x 2) = 3x^2 7x + 2$.
- Vi løser $3x^2 7x + 2 = 0$ og får x = 2 og $x = \frac{1}{3}$.
- Løsningen er da x = 2 eller $x = \frac{1}{3}$.

■ Vi må vite om ett nullpunkt for å kunne polynomdividere.

- Vi må vite om ett nullpunkt for å kunne polynomdividere.
- Vi kan gjette oss frem til det første nullpunktet.

- Vi må vite om ett nullpunkt for å kunne polynomdividere.
- Vi kan gjette oss frem til det første nullpunktet.
- Hvis det finnes en heltallsløsning, må denne dele konstantleddet.

- Vi må vite om ett nullpunkt for å kunne polynomdividere.
- Vi kan gjette oss frem til det første nullpunktet.
- Hvis det finnes en heltallsløsning, må denne dele konstantleddet.

- Vi må vite om ett nullpunkt for å kunne polynomdividere.
- Vi kan gjette oss frem til det første nullpunktet.
- Hvis det finnes en heltallsløsning, må denne dele konstantleddet.

Eksempel

Vi skal løse $3x^3 - 4x^2 - 17x + 6 = 0$.

- Vi må vite om ett nullpunkt for å kunne polynomdividere.
- Vi kan gjette oss frem til det første nullpunktet.
- Hvis det finnes en heltallsløsning, må denne dele konstantleddet.

- Vi skal løse $3x^3 4x^2 17x + 6 = 0$.
- Vi gjetter på løsninger som deler 6: $\pm 1, \pm 2, \pm 3, \pm 6$.

- Vi må vite om ett nullpunkt for å kunne polynomdividere.
- Vi kan gjette oss frem til det første nullpunktet.
- Hvis det finnes en heltallsløsning, må denne dele konstantleddet.

- Vi skal løse $3x^3 4x^2 17x + 6 = 0$.
- Vi gjetter på løsninger som deler 6: ± 1 , ± 2 , ± 3 , ± 6 .
- ✓ Vi ser at x = -2 er et nullpunkt, og polynomdividerer med x + 2.

- Vi må vite om ett nullpunkt for å kunne polynomdividere.
- Vi kan gjette oss frem til det første nullpunktet.
- Hvis det finnes en heltallsløsning, må denne dele konstantleddet.

- Vi skal løse $3x^3 4x^2 17x + 6 = 0$.
- Vi gjetter på løsninger som deler 6: ± 1 , ± 2 , ± 3 , ± 6 .
- Vi ser at x = -2 er et nullpunkt, og polynomdividerer med x + 2.
- Vi får $(3x^3 4x^2 17x + 6)$: $(x + 2) = 3x^2 10x + 3$.

- Vi må vite om ett nullpunkt for å kunne polynomdividere.
- Vi kan gjette oss frem til det første nullpunktet.
- Hvis det finnes en heltallsløsning, må denne dele konstantleddet.

- Vi skal løse $3x^3 4x^2 17x + 6 = 0$.
- Vi gjetter på løsninger som deler 6: ± 1 , ± 2 , ± 3 , ± 6 .
- Vi ser at x = -2 er et nullpunkt, og polynomdividerer med x + 2.
- Vi får $(3x^3 4x^2 17x + 6)$: $(x + 2) = 3x^2 10x + 3$.
- Vi løser $3x^2 10x + 3 = 0$ og får x = 3 og $x = \frac{1}{3}$.

- Vi må vite om ett nullpunkt for å kunne polynomdividere.
- Vi kan gjette oss frem til det første nullpunktet.
- Hvis det finnes en heltallsløsning, må denne dele konstantleddet.

- Vi skal løse $3x^3 4x^2 17x + 6 = 0$.
- Vi gjetter på løsninger som deler 6: ± 1 , ± 2 , ± 3 , ± 6 .
- Vi ser at x = -2 er et nullpunkt, og polynomdividerer med x + 2.
- Vi får $(3x^3 4x^2 17x + 6)$: $(x + 2) = 3x^2 10x + 3$.
- Vi løser $3x^2 10x + 3 = 0$ og får x = 3 og $x = \frac{1}{3}$.
- Løsningen er derfor at x = -2, $x = \frac{1}{3}$ eller x = 3.

Likninger og ulikheter av tredje grad

1 Doble andregradsulikheter

- 2 Likninger og ulikheter av tredje grad
 - Tredjegradslikninger
 - Tredjegradsulikheter

Vi løser tredjegradsulikheter på samme måte som andregradsulikheter.

1 Vi flytter over så den ene siden blir 0.

Vi løser tredjegradsulikheter på samme måte som andregradsulikheter.

- 1 Vi flytter over så den ene siden blir 0.
- Vi faktoriserer tredjegradspolynomet.

Vi løser tredjegradsulikheter på samme måte som andregradsulikheter.

- 1 Vi flytter over så den ene siden blir 0.
- Vi faktoriserer tredjegradspolynomet.
- 3 Vi tegner opp en fortegnslinje.

Vi løser tredjegradsulikheter på samme måte som andregradsulikheter.

- 1 Vi flytter over så den ene siden blir 0.
- Vi faktoriserer tredjegradspolynomet.
- 3 Vi tegner opp en fortegnslinje.

Eksempel

Vi løser tredjegradsulikheter på samme måte som andregradsulikheter.

- 1 Vi flytter over så den ene siden blir 0.
- Vi faktoriserer tredjegradspolynomet.
- 3 Vi tegner opp en fortegnslinje.

Eksempel

■ Vi skal løse $3x^3 - x^2 - 10x \le 3x^2 + 7x - 6$.

Vi løser tredjegradsulikheter på samme måte som andregradsulikheter.

- 1 Vi flytter over så den ene siden blir 0.
- Vi faktoriserer tredjegradspolynomet.
- 3 Vi tegner opp en fortegnslinje.

Eksempel

- Vi skal løse $3x^3 x^2 10x \le 3x^2 + 7x 6$.
- Vi flytter over alt til venstresiden og får $3x^3 4x^2 17x + 6 \le 0$.

Vi løser tredjegradsulikheter på samme måte som andregradsulikheter.

- 1 Vi flytter over så den ene siden blir 0.
- Vi faktoriserer tredjegradspolynomet.
- 3 Vi tegner opp en fortegnslinje.

Eksempel

- Vi skal løse $3x^3 x^2 10x \le 3x^2 + 7x 6$.
- Vi flytter over alt til venstresiden og får $3x^3 4x^2 17x + 6 \le 0$.
- Dette polynomet kjenner vi igjen fra side 4. Det hadde faktoriseringen $3x^3 4x^2 17x + 6 = 3(x+2)(x-3)(x-1/3)$.

Vi løser tredjegradsulikheter på samme måte som andregradsulikheter.

- 1 Vi flytter over så den ene siden blir 0.
- Vi faktoriserer trediegradspolynomet.
- 3 Vi tegner opp en fortegnslinje.

Eksempel

- Vi skal løse $3x^3 x^2 10x < 3x^2 + 7x 6$.
- Vi flytter over alt til venstresiden og får $3x^3 4x^2 17x + 6 < 0$.
- Dette polynomet kjenner vi igjen fra side 4. Det hadde faktoriseringen $3x^3 - 4x^2 - 17x + 6 = 3(x+2)(x-3)(x-1/3)$.
- Vi tegner en fortegnslinje.

17. juli 2020

■ Vi skal løse $3(x+2)(x-3)(x-1/3) \le 0$. Vi tegner fortegnslinje:

3

■ Vi skal løse $3(x+2)(x-3)(x-1/3) \le 0$. Vi tegner fortegnslinje:

■ Vi ser at svaret blir $x \le -2$ eller $1/3 \le x \le 3$.

Oppgave

Løs
$$3x^3 - x^2 - 10x \le 3x^2 + 7x - 6$$
.

Oppgave

Løs
$$3x^3 - x^2 - 10x \le 3x^2 + 7x - 6$$
.

Vi kan også løse tredjegradsulikheter ved å tegne grafene.

Oppgave

Løs
$$3x^3 - x^2 - 10x \le 3x^2 + 7x - 6$$
.

- Vi kan også løse tredjegradsulikheter ved å tegne grafene.
- Vi vil at grafen til tredjegradsfunksjonen skal være lavere eller lik enn grafen til andregradsfunksjonen.

Oppgave

Løs
$$3x^3 - x^2 - 10x \le 3x^2 + 7x - 6$$
.

- Vi kan også løse tredjegradsulikheter ved å tegne grafene.
- Vi vil at grafen til tredjegradsfunksjonen skal være lavere eller lik enn grafen til andregradsfunksjonen.
- Det skjer når $x \le -2$ eller $1/3 \le x \le 3$.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET