CS4402: Constraint Programming

Week 4, Lecture 1: Symmetry

Symmetry in Constraint Models

Symmetry

A familiar everyday concept:

• A structure-preserving transformation.

Symmetry in Constraint Models

- A symmetry can be characterised as a bijection on assignments.
 - i.e. a one-to-one mapping.
- Partitions complete assignments into equivalence classes.
 - In every class, all members are solutions, or no member is.
- That is, symmetry preserves solutionhood.

Symmetry in Constraint Models

- Why do we care?
- Frequently present in the structure of a CSP.
- If we don't deal with it, can lead to a lot of wasted effort for systematic search.

Two Common Special Cases

- Variable symmetry.
 - Bijection can be characterised in terms of variables alone.
- Value symmetry.
 - Bijection can be characterised in terms of values alone.

Variable Symmetry

Variable Symmetry Example

	Α	Sol	utio	n		A	Sol	lutio	n
q1		Q			q4		Q		
q2				Q	Flip Horizontal				Q
q3	Q				q2	Q			
q4			Q		q1			Q	

- We can express this symmetry in terms of a bijection on the variables:
 - $qI \rightarrow q4$,
 - $q2 \rightarrow q3$,
 - q3 \rightarrow q2,
 - q4 → q1
- A bijection on the values would capture the transformation of this particular solution – but not the general horizontal flip.

Equivalently:

	A Solution					
q1			Q			
q2	Q					
q3				Q		
q4		Q				

Variable Symmetry Example

	No	n-s	oluti	on			No	n-se	oluti	on
q1		Q				q4		Q		
q2				Q	Flip Horizontal	q3				Q
q3	Q					q2	Q			
q4		Q				q1		Q		

- We can express this symmetry in terms of a bijection on the variables:
 - $qI \rightarrow q4$,
 - $q2 \rightarrow q3$,
 - q3 \rightarrow q2,
 - q4 → q1

Equivalently

	No	Non-solution					
q1		Q					
q2	Q						
q3				Q			
q4		Q					

Value Symmetry

A Graph Colouring Problem

 We want to colour this map with the colours red green and blue such that adjacent regions are not coloured the same.

A Solution

- Highland = green
- Moray = blue
- Aberdeenshire = red
- Angus = green
- Fife = red
- Perth and Kinross = blue

Can you see the symmetry?

Symmetric Solutions

- Highland = green
- Moray = blue
- Aberdeenshire = red
- Angus = green
- Fife = red
- Perth and Kinross = blue

Red \rightarrow green green \rightarrow blue blue \rightarrow red

- We've permuted the values.
- Highland = blue
- Moray = red
- Aberdeenshire = green
- Angus = blue
- Fife = green
- Perth and Kinross = red

Symmetry: Consequences

What are The Consequences of a Model Containing Symmetry?

 Assume we have explored a sub-tree in which there are no solutions:

What are The Consequences of a Model Containing Symmetry?

• Symmetries in the model can map this fruitless subtree into another:

What are The Consequences of a Model Containing Symmetry?

• If we don't deal with the symmetry, a systematic search will explore all symmetric variants of this sub-tree:

Symmetry: Origins

How Does Symmetry Arise?

- Symmetry enters a model from 2 sources:
 - I. It is inherent in the problem:

	A	A Solution					
q1		Q					
q2				Q			
q3	Q						
q4			Q				

By its nature, the *n*-queens problem has the symmetries of the square

How Does Symmetry Arise?

- Symmetry enters a model from 2 sources:
 - 2. It is introduced during the modelling process.
- Remember the explicit model of sets:

1	2	3	4	 n-1	n
0m	0m	0m	0m	0m	0m

AllDifferent

 Now there is a Ist element, a 2nd element, etc...

How Does Symmetry Arise?

Given any (non-)solution:

1	2	3	4
а	b	С	d

 Can permute the elements to obtain a (non-)solution:

1	2	3	4
b	d	С	а

NB This is again a variable symmetry: we have given arbitrarily named indices to the elements of the set.

NB Knowing how symmetry is introduced during modelling can make some symmetry detection easy.

Symmetry-breaking Constraints

How Can Adding Constraints Affect Symmetry?

 By disallowing some of the elements of an equivalence class of assignments.

N/A	1	2	3	4		n-1	n	
IVI	0m	0m	0m	0m		0m	0m	
AllDi	AllDifferent(M)							

Consider ordering the elements of M:

$$M[1] \le M[2] \le M[3] \le ... \le M[n-1] \le M[n]$$

How Can Adding Constraints Affect Symmetry?

 Ordering the elements distinguishes one element in each equivalence class of assignments:

 If we can propagate symmetry-breaking constraints effectively, they can prune the search tree drastically.

Valid Symmetry-breaking Constraints: Properties

- Leave at least one element in each equivalence class of assignments.
- So they throw away solutions to the original problem?
 - Yes: but we can recover those solutions by applying the symmetry to the solutions allowed.
- If we add enough symmetry-breaking constraints we can break all symmetry.

How do we Formulate Symmetry-breaking Constraints?

- Define a canonical solution and add constraints to choose it.
- Need:
 - An ordering on variables.
 - An ordering on solutions.

Orderings on Variables

Simple: we just choose one.

N/I	1	2	3	4	 n-1	n
IVI	0m	0m	0m	0m	0m	0m

Here, the natural thing to do is choose an ordering along the indices

Orderings on the Solutions

Use a lexicographic ordering:

v1	1	2	3	4
VI	а	b	С	d

$$\mathbf{v_1} \leq_{\mathsf{lex}} \mathbf{v_2}$$

	1	2	3	4
v2	b	d	С	а

The Lex-leader Method

- Choose an ordering on the variables.
- Add one lexicographic ordering constraint per symmetry.
- Good news: this breaks all symmetry.
- Bad news: you might need a huge number of such constraints
 - But sometimes the lex constraints collapse into a simpler form (e.g. the explicit set representation).
- Compromise: use a subset of the lex-leader constraints.

Lex Leader Example

Α	В	С
D	Е	F

- Assume that this matrix has row and column symmetry.
- Choose ordering on variables ABCDEF

Lex Leader Example

Α	В	С
D	Е	F

- ABCDEF <=lex DEFABC (swap rows).
- ABCDEF <=lex ACBDFE (swap last two cols).
- ABCDEF <=lex DFEACB (swap rows & last 2 cols).
- •
- We are preventing it from being possible to obtain a "smaller" assignment than the one we currently have by applying a symmetry.

The BIBD has Row and Column Symmetry

• This is very common in matrix models.

0	0	0	0	1	1	1
0	0	1	1	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	1

0	0	1	0	1	0	1
0	0	0	1	0	1	1
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	1

Lex-leader for BIBD

• Requires **b!v!** lex constraints.

		Blocks				
	1	2				
Objects						
						 49

Lex² ordering for Row/Column Symmetry

• A significant fraction of lex-leader for row/column symmetry can be represented by lex ordering the rows and columns.

0	0	0	0	1	1	1
0	0	1	1	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	1

0	0	1	0	1	0	
0	ø	0	1	0		1
0	1	Ø	0		1	0
0	1	1	X	0	0	0
1	0	0	1	A	0	0
1	0	1	0	0	A	0
1	1	0	0	0	0	4

Simple example of Lex²

Α	В	С
D	Е	F

Lex Leader Method: On the same example

Α	В	С
D	Е	F

- I. $ABCDEF \leq ACBDFE$
- 2. $ABCDEF \leq BCAEFD$
- 3. $ABCDEF \leq BACEDF$
- 4. ABCDEF ≤ CABFDE
- 5. $ABCDEF \leq CBAFED$
- 6. ABCDEF \leq DFEACB

- 7. ABCDEF \leq EFDBCA
- 8. ABCDEF \leq EDFBAC
- 9. ABCDEF ≤ FDECAB
- 10. ABCDEF ≤ FEDCBA
- II. ABCDEF ≤ DEFABC

Lex Leader vs Lex²

Α	В	С
D	Е	F

- i. BE ≤ CF
- ii. AD≤ BE
- iii. ABC≤ DEF
- I. $ABCDEF \leq ACBDFE$
- 2. $ABCDEF \leq BCAEFD$
- 3. $ABCDEF \leq BACEDF$
- 4. $ABCDEF \leq CABFDE$
- 5. $ABCDEF \leq CBAFED$
- 6. ABCDEF \leq DFEACB

- 7. ABCDEF \leq EFDBCA
- 8. ABCDEF \leq EDFBAC
- 9. $ABCDEF \leq FDECAB$
- 10. ABCDEF ≤ FEDCBA
- II. ABCDEF ≤ DEFABC

Lex Leader Method:

Connection to Lex²

ΛΠ	D	
$\boldsymbol{\mu}$		

- I. ABCDEF ≤ ACBDFE
- 2. $ABCDEF \leq BCAEFD$
- 3. ABCDEF ≤ BACEDF
- 4. $ABCDEF \leq CABFDE$
- 5. $ABCDEF \leq CBAFED$
- 6. ABCDEF \leq DFEACB

- 7. $ABCDEF \leq EFDBCA$
- 8. ABCDEF \leq EDFBAC
- 9. ABCDEF ≤ FDECAB
- I0. ABCDEF ≤ FEDCBA
- II. ABCDEF ≤ DEFABC

Lex Leader Method: Connection to Lex² i. BE < CF

Α	В	С
D	Е	F

I. ABCDEF ≤ ACBDFE

- Assume ABCDEF ≤ ACBDFE
 - A always equals A and D always equals D
- So BCEF ≤ CBFE
 - If B = C then obviously C=B
- So **BEF** ≤ **CFE**
 - If E = F then obviously F=E
- So BE ≤ CF

Lex Leader Method: Connection to Lex² i. BE < CF

Α	В	C
D	Е	F

I. ABCDEF ≤ ACBDFE

- These two constraints are actually equivalent.
- Similarly for the other constraints in Lex²
- But Lex Leader has additional constraints
- So Lex Leader sometimes breaks more symmetry than Lex²
- While the extra constraints means it can be much more expensive to reason with than Lex²