Set C Part 1 Design Marks: Total = 7

```
read(A,B, n)
```

1. read the value of *n*

```
2. for i \in 1 to n

do read ISBN

read price

A[i] \in ISBN
```

Evaluation criteria: [1 mark]

 $B[i] \leftarrow price$

Reading the values *ISBN* and *price* and storing it into arrays A and B respectively.

Locate_ISBN(A,B,n,i)

// using two extra arrays

1. **for**
$$j \leftarrow 0$$
 to n-1
do if $A[j] = i$
then $p \leftarrow B[j]$
 $loc \leftarrow j$

- 2. Create two arrays D and E of size n
- 3. Initialize $k \leftarrow 0$
- 4. **for** $j \leftarrow 0$ to n-1 **do if** B[j] < p **then** $D[k] \leftarrow A[j]$ $E[k] \leftarrow B[j]$ $k \leftarrow k+1$
- 5. $D[k] \leftarrow i$
- 6. $E[k] \leftarrow p$
- 7. $k \leftarrow k+1$
- 8. final_loc \leftarrow k
- 9. **for** $j \leftarrow 0$ to n-1

do if
$$B[j] > p$$

then $D[k] \leftarrow A[j]$
 $E[k] \leftarrow B[j]$
 $k \leftarrow k+1$

10. **for**
$$j \leftarrow 0$$
 to n-1
do $A[j] \leftarrow D[j]$
 $B[j] \leftarrow E[j]$

11. Print final_loc and the two arrays A and B

Evaluation criteria: [6 marks]

Division: Finding the *price* of i - 1 mark

Finding the final location of i - 2 marks

Preserving the relative positions of books - 3 marks

Design Marks: Total = 3

Set C Part 2

read(A,B, n)

// read book details to arrays A and B

- 1. read the value of *n*
- 2. **for** $i \in 0$ to n-1

do read *ISBN* read *price* $A[i] \leftarrow ISBN$ $B[i] \leftarrow price$

Find_Median(A, B, l, r, k) // initially l=0, r=n-1

// k is initialized to ceil(n/2) which is the position of the median.

// Slightly modify $Locate_ISBN(A, B, n, i)$ to $Locate_ISBN(A, B, l, r, i)$ that locates i between l and r (inclusive) and returns the value $final_loc$ (1 <= $final_loc$ <= r-l+1) of the book with ISBN i.

1. $i \in A[l]$ // Choose an arbitrary book b in array A.

// Here we take the leftmost book

- 2. $loc \leftarrow Locate_ISBN(A, B, l, r, i)$
- 3. index = loc 1
- 4. **if** index = k

then return A[index]

5. **else if** index > k

then return Find_Median(A, B, l, index - 1, k)

6. **else return** $Find_Median(A, B, index + 1, r, k+l-index))$

Evaluation criteria: [3 marks]

Division: Modification of Locate_ISBN() - 1 mark

Proper recursion calls of Find Median()- 2 marks