Fair Division of a Graph

CS656: Algorithmic Game Theory

Instructor: Sunil Easaw Simon

Problem: Fair allocation of indivisible goods where each allocated bundle is connected in an underlying graph.

Definition: An instance of the connected fair division problem (CFD) is a triple I = (G, N, U) where

- G = (V, E) is an undirected graph,
- $N = \{1, ..., n\}$ is a set of players, or agents,
- U is an n-tuple of utility functions $u_i: V \to R_{\geq 0}$, where $\Sigma_{v \in V} u_i(v) = 1$ for each $i \in N$.

Elements of V are referred as items and number of items are denoted by m.

For each $X \subseteq V$, we set $u_i(X) = \sum_{v \in X} u_i(v)$, i.e. utility functions are additive.

Two players i, $j \in N$ are of the same type if $u_i(v) = u_j(v)$ for all $v \in V$. Number of player types in a given instance I is denoted by p.

Definition: An allocation is a function $\pi: \mathbb{N} \to 2^{\mathbb{V}}$ assigning each player a bundle of items. An allocation π is valid if for each player $i \in \mathbb{N}$ the bundle $\pi(i)$ is connected in G and no item is allocated twice, so that $\pi(i) \cap \pi(j) = \emptyset$ for each pair of distinct players $i, j \in \mathbb{N}$. We say that a valid allocation π is

- proportional if $u_i(\pi(i)) > 1/n$ for all $i \in N$,
- envy-free if $u_i(\pi(i)) > u_i(\pi(j))$ for all $i, j \in \mathbb{N}$, and
- complete if $\bigcup_{i \in \mathbb{N}} \pi(i) = V$.

We also consider maximin share (MMS) allocations, adapting the usual definition to our setting as follows. Given an instance I = (G, N, U) of CFD with G = (V, E), let Π_n denote the space of all partitions of V into n connected pieces. The maximin share guarantee of a player $i \in N$ is

mms_i(I) = max min
$$u_i(P_j)$$
.
 $(P_1,...,P_n) \in \Pi_n$ $j \in \{1,...,n\}$

A valid allocation π is a maximin share (MMS) allocation if we have $u_i(\pi(i)) > \text{mms}_i(I)$ for each player $i \in N$.

We consider the following computational problems that all take an instance I = (G, N, U) of the connected fair division problem as input. For computational purposes, we assume utilities take values in rational numbers.

- PROP-CFD: Does I admit a proportional valid allocation?
- COMPLETE-EF-CFD: Does I admit a complete envy-free valid allocation?
- MMS-CFD: Does I admit an MMS allocation?

We assume that the number of items m is at least as large as the number of players n, so that no player is left behind. Also, given a positive integer k, we write [k] to denote the set $\{1, \ldots, k\}$.

Consider an instance J = (X, T) of X3C; for each $T \in T$, we denote the elements of T by x_{τ}^{1} , x_{τ}^{2} , x_{τ}^{3} . Now let us construct an instance I of PROP-CFD with vertices:

- Three vertices v_T^1 , v_T^2 , v_T^3 for each set $T \in T$
- A set of vertices B = $\{b_1, b_2, \dots, b_s\}$
- A dummy vertex w.

Graph looks like

The Players are:

- One player i_T for each $T \subseteq T$
- One player i_x for each $x \in X$
- One dummy player d

Total number of players are n = 3s + r + 1

The utilities are:

•
$$u_{iT}(v) = 1/(3n)$$
, if $v = v_T^k$

•
$$u_{iT}(v) = 1/n$$
, if $v \in B$

•
$$u_{iT}(v) = (n-s-1)/n$$
, if $v = w$

•
$$u_{iT}(v) = 0$$
, otherwise

•
$$u_{ix}(v) = 1/n$$
, if $v = v_T^k$ and $x \in T$

•
$$u_{ix}(v) = (n-3p_x)/n$$
, if $v = w$

•
$$u_{ix}(v) = 0$$
, otherwise

• $u_d(v) = 1$ if v = w, otherwise 0.

Now
$$u_{iT}(V) = 3/(3n) + s/n + (n-s-1)/n = 1$$
.

$$u_{ix}(V) = 3p_x/n + (n-3p_x)/n = 1$$
 and $u_d(V) = 1$.

For proportional allocation:

- d must receive vertex w.
- i_x must receive v_T^k such that $x \in T$.
- i_T must receive either v_T^1, v_T^2, v_T^3 (a triple interval) or a vertex from B

Theorem 3.1: PROP-CFD is NP-complete even if G is a path.

Proof: We describe a polynomial-time reduction from the NP-complete problem EXACT-3-COVER (X3C) to PROP-CFD.

An instance of X3C is given by a set of elements $X = \{x_1, x_2, \dots, x_{3s}\}$ and a family $T = \{T_1, T_2, \dots, T_r\}$ of three-element subsets of X.

It is an 'yes'-instance if and only if X can be covered by s sets from \mathcal{T} .

This problem remains NP-complete if for each element $x \in X$, its frequency $p_x = |\{T \in \mathcal{T}: x \in T\}|$ is at most 3.

If J has a cover $T^{\#}$ of size s we can get a proportional allocation as follows:

- Let f be a bijective mapping from $T^{\#}$ to B
- For each $T \in T^*$ player i_T gets f(T)
- For each $T \notin T^{\#}$ player i_T gets a triple interval $v_T^{-1}, v_T^{-2}, v_T^{-3}$
- Player i_x gets v_T^k such that $x = x_T^k$ and $T \in T^*$.

Now each player is assigned one connected piece with value at least 1/n.

Conversely, if I has a valid proportional allocation then the number of T-players assigned to triple intervals is r - s as |B| = s. So, the number of triple intervals left for players of type i_x are s. Respective sets constitute an exact cover.

Finding proportional allocation for a star graph is easy.

Theorem: PROP-CFD is solvable in polynomial time if G is a star.

Proof: let c denote the center of the star. now we will search for a valid allocation assigning c to each player $i \in N$.

For each assignment of c we will do as follows:

Construct a bipartite graph $H = (Z, Z_0, L)$ with $Z = N \setminus \{i\}, Z_0 = V \setminus \{c\}$. $\{j, v\} \in L$ if and only if $u_i(v) \ge 1/n$. The weight of this edge is $u_i(v)$.

Let us say matching in H is perfect if all the vertices in Z are mapped and is one to one.

Now if I has a proportional valid allocation that assigns c to i if and only if H admits a perfect matching M with $w(M) \le (n-1)/n$.

This is because player i gets c along with remaining vertices of Z_0 , say set y.

For $u_i(y) \ge 1/n$, w(M) should be $\le (n-1)/n$ as $u_i(V) = 1$.

A minimum-weight perfect matching can be computed in polynomial time

If underlying graph is a path and all the players are of same type, then we can find the allocation greedily, if possible in linear time.

Definition: A problem is slice-wise polynomial (XP) with respect to a parameter k if each instance I of this problem can be solved in time $|I|^{f(k)}$ where f is a computable function.

Theorem: PROP-CFD is in XP with respect to the number of player types p if G is a path.

```
Proof: Let G = (V, E), where V = \{v_1, \dots, v_m\}, E = \{\{v_i, v_{i+1}\} : i \in [m-1]\} Suppose there are n_t players of type t, for t \in [p] Let V_0 = \emptyset and V_i = \{v_1, \dots, v_i\}, i > 1 For i = 0, \dots, m, and a collection of indices j_1, \dots, j_p such that 0 \le k \le n for each k \in [p] Let Ai [j_1, \dots, j_p] = 1 if there exists a valid partial allocation \pi of V_i with j_k happy agents of type k, k \in [p], 0 otherwise. For i = 1, \dots, m, we have A_i [j_1, \dots, j_p] = 1 if and only if there exists a value s < i and t \in [p] such that A_s[j_1, \dots, j_{t-1}, \dots, j_p] = 1 and a player of type t values the set of items \{v_{s+1}, \dots, v_i\} at 1/n or higher
```

A proportional allocation exists if $A_m[j_1, ..., j_p] = 1$ for some collection of indices $j_1, ..., j_p$ such that $j_t > n_t$ for all $t \in [p]$. There are at most $(m + 1)(n + 1)^p$ values to compute.

Each value can be found in O(mt) time. Thus, PROP-CFD is in XP with respect to p

If the number of agents n is bounded by a constant and graph is a tree, then We can make n partitions of tree by cutting off n-1 edges which mean a total of $^{m-1}c_{n-1}$ possible partitions. We can check a proportional valid allocation among these in polynomial time. So, PROP-CFD on trees is in XP wrt n.

Definition: A problem is fixed parameter tractable (FPT) with respect to a parameter k if each instance I of this problem can be solved in time f(k)poly(|I|) where f is a function that depends only on k.

Proposition: When utilities are encoded in binary, PROP-CFD is NP-complete even for n = 2, p = 1, and even if the underlying graph G is bipartite

Proof: An instance of PARTITION is given by a set of integers $J = \{a_i : i \in H\}$ such that $i \in H$ $a_i = 2k$. It is a 'yes'-instance if and only if there exists a subset of indices H' $\subset H$ such that $i \in H$ ' $a_i = i \in H \setminus H$ ' $a_i = k$

Let an instance I derived from above PARTITION with G = (V, E) where $V = \{v_i : i \in H\} \cup \{w1, w2\}$ and $E = \{\{v_i, w_1\}, \{v_i, w_2\} : i \in H\}$. Let the two players have utility $u(v_i) = a_i/(2k)$ for $i \in H$ and $u(w_1) = u(w_2) = 0$. Therefore, I has a proportional valid allocation iff J is a yes instance of partition.

Theorem 4.1: COMPLETE-EF-CFD is NP-complete even if G is a star

Proof: We describe a reduction from INDEPENDENT SET.

An instance of INDEPENDENT SET is given by an undirected graph (W, L) and an integer k.

It is a 'yes'-instance if and only if (W, L) contains an independent set of size k

Given an instance (W, L) of INDEPENDENT SET, we construct an instance of COMPLETE-EF-CFD as follows.

- 1. For each vertex $w \in W$, we create an item w and a player i_w
- 2. For each edge $I \subseteq L$ we create an item I and a player i_I
- 3. Create a set of dummy items D with |D| = k, as well as an item c and a player i_c

The graph G is a star with center c and set of leaves W U L U D

Utilities

- 1. For each $w \in W$, $u_{iw}(w) = 1/(k+1)$ and $u_{iw}(d) = 1/(k+1)$ for each $d \in D$.
- 2. For each $I \in L$ with $I = \{x, y\}$, we set $u_{ij}(I) = 3/7$, $u_{ij}(x) = u_{ij}(y) = 2/7$
- 3. $u_{ic}(c)=1$

All other utilities are 0.

If there exists an independent set $X \subseteq W$ of size k,

An allocation π can be constructed as:

- 1. Player i receives X ∪ {c}
- 2. For $w \in W \setminus X$, player i_w receives w
- 3. For $w \in X$, player i_w receives one item in D
- 4. For I ∈ L, player i, receives item I

 π is a complete valid allocation

Player i does not envy any other player

Vertex players i_w don't envy any other player

Edge players i₁ don't envy any other player

Hence π is a complete envy-free valid allocation.

Conversely let there be a complete envy-free allocation π .

Then player i_c would receive the item c and every other player receives atmost one item.

Since π is complete, i gets at least k leaf items and since π is envy-free, $\pi(i_l) = \{l\}$

The bundle of player i_c can't contain more than one dummy item, hence it has atleast one item $w \in W$

 $\pi(i_c)$ cannot contain any dummy item

 $\pi(i_c)$ consists of c and k vertex items

No two vertices with their vertex items in $\pi(i_c)$ can have an edge between them

Hence, $\pi(i_c) \setminus \{c\}$ forms an independent set of size k in (W, L)

Theorem 4.2 The problem COMPLETE-EF-CFD is NP-complete even if G is a path

Proof: We describe a reduction from the NP-complete problem EXACT-3-COVER (X3C)

An instance of X3C is given by a set of elements $X = \{x_1, x_2, ..., x_{3s}\}$ and a family $T = \{T_1, T_2, ..., T_r\}$ of three-element subsets of X

It is a 'yes'-instance if and only if X can be covered by s sets from \mathcal{T}

This problem remains NP-complete if for each element $x \in X$, its frequency $p_x = |\{T_i \in \mathcal{T}: x \in T_i\}|$ is at most 3.

Consider an instance J = (X, T) of X3C; for each $T_i \subseteq T$, we denote the elements of T, by x_1^1 , x_2^2 , x_3^3 .

We construct an instance I of COMPLETE-EF-CFD with vertices:

- 1. Three vertices T_i^1 , T_i^2 , T_i^3 for each set $T_i \subseteq \mathcal{T}$ 2. A set of vertices $S = \{S_1, S_2, \dots, S_s\}$ 3. A set of dummy vertices $Z = \{Z_1, Z_2, \dots, Z_{s+1}\}$

The edges between the vertices are as follows

Players:

- 1. One player t_i for each $T_i \subseteq T$
- 2. One player y_i for each $x \in X$
- 3. One dummy player z_k for each $Z_i \subseteq Z$

For each y_j , let H_j be an arbitrary set of s+1-p $_j$ vertices among the dummy vertices Z

•
$$u_{yj}(v)$$
=3s if $v = T_i^k$ and $y_j = x_i^k$

•
$$u_{yj}(v)=3s$$
 if $v \in H_j$

$$\bullet u_{vi}(v)=0$$
 otherwise

$$\bullet u_{ti}(v) = s \text{ if } v = T_i^k \text{ for } k = 1,2,3$$

•
$$u_{ti}(v)=3s \text{ if } v=S_{i} \text{ for } k=1,2,...,s$$

$$\bullet u_{ti}(v)=0$$
 otherwise

$$\bullet u_{zk}(v) = 3s \text{ if } v = Z_1, Z_2, ..., Z_{s+1}$$

$$\bullet u_{7k}(v)=0$$
 otherwise

If J has a cover \mathcal{T} of size s we can get a complete envy-free allocation as follows:

- Player y_j gets T_i^k if $y_j = x_i^k$ and $T_i \in T'$
- Let f be a bijective mapping from \mathcal{T}' to S
- For each $T_i \in T'$ player t_i gets $f(T_i)$
- For each $T \notin T'$ player t_i gets a triple interval T_i^1, T_i^2, T_i^3
- Players z_k get Z_1, Z_2, \dots, Z_{s+1} in any order

Each player is assigned one connected piece of value 3s

None can envy y_j and t_i receiving S_k

Players t; cannot envy each other

Player y_i cannot envy t_i receiving T_i^1 , T_i^2 , T_i^3

Hence this allocation is envy-free

Conversely, if there exists a valid complete envy-free allocation π in I

Each player should receive atleast 3s

Player t_i either receives one S-vertex or T_i^1 , T_i^2 , T_i^3

As the number of S-vertices is only s, the number of t-players assigned to triple intervals is r - s. So the number of T-vertices available for y-players is 3s and they constitute an exact cover

Theorem 4.3: COMPLETE-EF-CFD is in XP with respect to the number of player types p if G is a path

Proof : For an allocation to be envy-free, all pieces assigned to players of a given type should have the same value to players of that type

There are at most m² many possibilities for the utility of a player.

In the algorithm, for each player type, it guesses the utility that players of that type assign to their pieces (there are at most (m²)^p possibilities) and proceeds similar to dynamic programming algorithm

Proposition: Let I = (G, N, U) be an instance of CFD where G is a tree and let $(q_i)i \in N$ be an n-tuple of rational numbers. If $mms_i(I) > q_i$ for all $i \in N$, then there exists a valid allocation π such that each player $i \in N$ receives the bundle of value at least q_i , i.e., $u_i(\pi(i)) > q_i$. Moreover, one can compute such an allocation in polynomial time.

Notation: For each $X \subseteq V$, we let $G \setminus X$ denote the subgraph induced by $V \setminus X$; also, we denote the restriction of u_i to X by $u_i|_{X}$.

 π can be computed by a recursive algorithm.

Algorithm A: first check whether input graph G' has a value of at least q_i for each player $i \in N'$; if this is not the case, A fails. Then, if there is only one player, return the allocation that assigns all items to that player.

When there are at least two players, turn the graph into a rooted tree by choosing an arbitrary node as its root;

Let D(v) be the set of descendants of a vertex v in this rooted tree. Then each player if finds a vertex v_i such that his value for $D(v_i)$ is at least q_i , but for each child w of v his value for D(w) is less than q_i .

Now allocate $D(v_i)$ to the last-diminisher i whose vertex v_i has minimal height (such a pair (i, v_i) can be found by starting at the root of the tree and moving downwards). The player i exits with the bundle D(vi), and call same algorithm A on the remaining instance.

It is obvious that A runs in polynomial time.

Let $I_n, ..., I_1$ be the sequence of instances constructed by A when called on I and $(q_i)i \in N$, where $I_k = (G_k, N_k, U_k)$ and $|N_k| = k$ (i.e., $I = I_n$).

If A does not fail on any of these instances, then $A(I,(q_i)) \in \mathbb{N}$) returns a desired allocation: each agent is allocated a bundle that she values at least as highly as her given value q_i .

We need to show that none of the recursive calls fails. To this end, we will prove the following lemma.

Lemma: . mms_i(I_k) $\ge q_i$ for all $k \in [n]$ and all $j \in N_k$.

Let us try to prove this by backward induction.Let this is true for n. Suppose that lemma is true for k, we will try to prove it for k-1. Let $i \in N_k$ - N_{k-1} , then for each $j \in N_{k-1}$ we have,

 $\operatorname{mms}_{j}(I_{k}) \ge q_{j}$. Let this partition be $P = (P_{1}, \dots, P_{k})$. So, $u_{j}(P_{l}) \ge q_{j}$ for all $l \in [k]$.

Let $v_i \in P_1$, let us remove this P_1 and get the new graph G_{k-1} with k-1 connected components. Let this partition be $P^\#$. By construction itself, we have $u_j(P^\#) \ge q_j$ for each $P^\# \in P^\#$ i.e., $mms_i(I_{k-1}) \ge q_j$.

Now when A is called on I_k , we have $u_i(V_k) \ge mms_i(I_k) \ge q_i \cdot V_k$ is set of vertices in G_{k-1} . So, this algorithm never fails.

Lemma: For an instance I = (G, N, U) of CFD where G is a tree, and a player $i \in N$, we can compute mms_i(I) in polynomial time.

Proof: Fix a player $i \in N$. If $u_i(v)$ is represented as x_i/y_v , where x_v and y_v are integers, set $u_i'(v) = u_i(v) \prod_{v \in V} y_v$. Let mms; (I) be the maximin share of player i with respect to these new utilities. Then mms; (I) is an integer between 0 and mL^{m+1}, where i = maxi = maxi = maxi = maxi and

$$mms_i(I) = mms_i'(I) / (\prod_{v \in V} y_v)$$

Calculating mms_i(I) is the same as maximizing the worst payoff for the instance I" where all players are copies of player i.

So, I" = (G, N", u") where N" is set of n copies of i, u"_j = u'_i for all $j \in N$ ". Let this has a valid allocation π with u"_j(π (j)) $\geq \frac{1}{4}$ for each $j \in N$ ". If such allocation exists, then by recursive algorithm we can get the partition, we can get the value of q by doing the binary search in its range found before. This can be found in O((m+1) log L) calls to function where each function call may take O(mt). So, overall running time is in polynomial of m and log L.

Our next example shows that an MMS allocation may not exist on a cycle of 8 vertices.

Example: Consider an instance I = (G, N, U) of CFD where G = (V, E) with $V = \{v_i \mid i = 1, 2, ..., 8\}, E = \{\{v_i, v_{i+1}\} \mid i = 1, 2, ..., 7\} \cup \{\{v_1, v_8\}\}, N = \{1, 2, 3, 4\}, and the utilities are given as follows$

	V_1	V_2	V_3	V_4	V ₅	V ₆	V ₇	V ₈
Players 1 & 2	1	4	4	1	3	2	2	3
Players 3 & 4	4	4	1	3	2	2	3	1

To normalize to 1, each utility is divided by 20.

With partition P1 =
$$\{\{v_1, v_2\}, \{v_3, v_4\}, \{v_5, v_6\}, \{v_7, v_8\}\},$$

$$mms_1(I) = mms_2(I) \ge \frac{1}{4}$$
With partition P2 = $\{\{v_2, v_3\}, \{v_4, v_5\}, \{v_6, v_7\}, \{v_8, v_1\}\},$

$$mms_3(I) = mms_4(I) \ge \frac{1}{4}$$

Now suppose I has an MMS allocation π , then each player should get atleast two vertices because no one vertex has a value $\geq \frac{1}{4}$ for any player. So, the partitions possible are only P1 and P2

Suppose π cuts graph into P1, then Players 3 & 4 has value $\geq \frac{1}{4}$ for (v_1, v_2) , So one has to get the value less than $\frac{1}{4}$. Same goes with P2. So, at least one player is getting less than maxmin share in all allocations. So, there exist no MMS allocation.

Thank You