Math 591 Lec 4

Aayush Dutta

September 7, 2022

- 1. Sketch of a proof of 1: M is a 1D connected, compact manifold. For all $x \in M$ there exists some $U_x \ni x$ so that U_x is homeo to (a,b). WE have a finitely many U_i so that $\bigcup_{i \in \mathbb{N}_N} U_i = M$ with each $U_i \equiv (a_i,b_i)$. Suppose that this is minimal in number (so there are no subsets). Lemma: $U_i \cup U_i$ homeo to an open interval or S^1
- 2. We now have topological manifolds and differentiable manifold. For differentiable manifolds, we have for overlapping open sets U_{α} , U_{β} with charts ϕ_{α} , ϕ_{beta} , then we want the transition functions to be differentiable.
- 3. Theorem, there exist topological manifold which do not admit any differentiable structure.
- 4. Piecewise mamifolds: (loally combinations of affine maps) don't admit differentiable structure
- 5. All differentiable manifolds are topological manifolds. So there is a function from diff mfd to top mfd. But there is no inverse. Milnor constructred exotic 7 spheres $(M_1, \ldots, M_{28} \text{ such that } M_i \text{ homeo to } M_j \text{ but not diffeo unless } i = j)$. Can do this for infinitely. many hihger dimensions. These are the exotic spheres.
- 6. Let us say that M, Ω is a manifold with a differentiable structure. Ω is an open cover with a bunch of charts and transition maps. Suppose that we have an Ω_1 and Ω_2 on M. Are called equivalent (the same) if they are compatible if $\Omega_1 \cup \Omega_2$ is a differentiable structure. Ω_1 is also called an atlas.
- 7. We can look at the Maximal Atlas = ∪ compatible atlases. (Lemma union of compatible atlases is an atlas). Bourbakian Method: use the maximal atlas. The hands on approach find your atlas and work with it.
- 8. e.g. S^2 consider the atlas 1. $S^2 \{$ north pole $\}$ and $S^2 \{$ south pole $\}$ using stereographic projection. But, any open subset that isn't the whole thing is an apt cover and produces a maximal atlas.
- 9. Construction. Suppose that M is a manifold and N are both diffble manifolds. Consider $M \times N$ with the product topology. Note that the basis is $\{U \times V\}$ for U, V open in M, N resp. $M \times N$ has a differentiable structure. Say $(U_{\alpha}, \phi_{\alpha})_{\alpha}$ is an atlas for M and $(V_{\beta}, \psi_{\beta})_{\beta}$ an atlas for N. Then $(U_{\alpha} \times V_{\beta}, (\phi_{\alpha}, \psi_{\beta}))_{\alpha,\beta}$ is a diffble structure on the product manifold.

Must check,

- (a) $\{U_{\alpha}, U_{\beta}\}_{\alpha,\beta}$ is a cover
- (b) $(\phi_{\alpha}, \psi_{\beta}) \to \mathbb{R}^m \to \mathbb{R}^n$ and check that transition functions are differentiable.

- 10. Construction. We want to do quotients.
 - (a) S^1 as subset of $\mathbb C$ then $x \sim y$ if $xy^{-1} = e^{in\alpha 2\pi}$ for $\alpha \in \mathbb R$ and $n \in \mathbb Z$. If $\alpha = \frac{2\pi}{3}$ then points $2\pi/3$ are glued and we see $S^1/\sim \equiv S^1$.
 - (b) Consider $\alpha \notin \mathbb{Q}$ irrational so you don't have a cycle. [x] is dense in S^1 . Therefore, S^1/\sim is not hausdorff.
- 11. Consider M is a manifold with \sim and equiv reln. Suppose that \sim is open. That is, if $x \sim y$ and $y \in U$ which is open then there exists a notion that V open neighborhood of x such that $y' \in U$ is equiv to some $x' \in V$.
- 12. If X is second countable and \sim and open equiv reln then $\pi: X \to X/\sim$ where $x \mapsto [x]$. Right so \sim is open iff π is an open map. Therefore, we have that X/\sim is second countable.