Университет ИТМО Физико-технический мегафакультет Физический факультет

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2.01

Изучение законов идеального газа на примере воздуха

Группа: N3151

Студент: Мочеков С.С

Преподаватель: Эйхвальд Т.А.

К работе допущен: Работа выполнена: Отчет принят:

I. Цели работы

- 1. Экспериментальная проверка уравнения состояния идеального газа.
- 2. Определение температуры абсолютного нуля по шкале Цельсия.

II. Задачи, решаемые при выполнении работы

- 1. Получить зависимости давления $p(V_{\mathbf{u}})$ при различных температурах t.
- 2. Получить графики завичимости $V_{\mathfrak{q}}(\frac{1}{p})$ при различных температурах и p(T) при разных значениях $V_{\mathfrak{q}}$.

III. Объект исследования

Воздух, находящийся в различных агрегатных состояниях.

IV. Метод эксперементального исследования

- Замер значений температуры и разности атмосферного давления и давления в цилиндре.
- Анализ полученных данных.

V. Рабочие формулы и исходные данные

1.
$$p = p_0 + \frac{\Delta p_1 + \Delta p_2}{2}$$

2.
$$V_{\text{II}} = \frac{\nu R(t-t_*)}{p}$$

3.
$$K = \nu R(t - t_*)$$

4.
$$\Delta_a = 2\sigma_a$$

5.
$$t_* = -\frac{C}{A}$$

6.
$$\Delta t_* = t_* \sqrt{(\frac{\Delta A}{A})^2 + (\frac{\Delta C}{C})^2}$$

7.
$$\tilde{t}_* = \frac{c}{a}$$

8.
$$A = \frac{1}{D} \sum_{i=1}^{N} (X_i - \overline{X}) Y_i$$

9.
$$C = \overline{Y} - A\overline{X}$$

$$10. \ \overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

11.
$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

12.
$$D = \sum_{i=1}^{N} (X_i - X)^2$$

13.
$$\Delta A = \sqrt{\frac{E}{D}}$$

14.
$$\Delta C = \sqrt{(\frac{1}{N} + \frac{\overline{x^2}}{D})E}$$

15.
$$E = \frac{1}{N-2} \sum_{i=1}^{N} (Y_i - AX_i - C)^2$$

VI. Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Термометр	Цифровой	до 300°С	2°C
2	Манометр	Цифровой	до 100 кПа	0.1 кПа
3	Цилиндр с поршнем	Аналоговый	до 150 мл	1 мл

VII. Фото экспериментальной установки

- 1. Цилиндр с поршнем
- 2. Опорная площадка цилиндра
- 3. Термостат
- 4. Щуп с датчиком температуры
- 5. Манометрический датчик
- 6. Стенд
- 7. Преобразователь сигналов
- 8. Измерительный прибор ПКЦ-3
- 9. Кружка
- 10. Поддон
- 11. Лопатка

VIII. Результаты измерений

В ходе выполнения эксперимента атмосферное давление $p_0=101,7$ к Π а

Таблица 1: Зависимость давления от объёма при температуре $t_1=20,6^{\circ}{
m C}$

№, п.п.	$V_{\rm ц}$, мл	Δp_1 , к Π а	Δp_2 , к Π а	р, кПа	$\frac{1}{p}, \frac{1}{\kappa \Pi a}$
1	50	13.9	12.9	115.1	0.008
2	60	-7.1	-7.7	94.3	0.01
3	70	-20.8	-20.4	81.1	0.012
4	80	-32.3	-31.4	69.85	0.014
5	90	-42	-41.4	60	0.016
6	100	-47.7	-48.2	53.75	0.018
7	110	-53.2	-53.9	48.15	0.02
8	120	-58.2	-58.1	43.55	0.02

Зависимость давления от объёма при температуре $t_1=32,1^{\circ}{
m C}$

7 1				<u> </u>	
№, п.п.	$V_{\rm II}$, мл	Δp_1 , к Π а	Δp_2 , к Π а	p , к Π а	$\frac{1}{p}, \frac{1}{\kappa \Pi a}$
1	50	13.1	12.9	114.7	0.009
2	60	-6.4	-6.8	95.1	0.011
3	70	-20.2	-19.7	81.75	0.012
4	80	-29.7	-30.6	71.55	0.014
5	90	-39.1	-38.6	62.85	0.016
6	100	-45.4	-46.9	55.55	0.018
7	110	-51.2	-51.8	50.2	0.020
8	120	-56.6	-56.8	45	0.022

Зависимость давления от объёма при температуре $t_1=42^{\circ}\mathrm{C}$

№, п.п.	$V_{\rm ц}$, мл	Δp_1 , к Π а	Δp_2 , к Π а	p , к Π а	$\frac{1}{p}, \frac{1}{\kappa \Pi a}$
1	50	17.4	17.3	119.05	0.008
2	60	-4.7	-4.5	97.1	0.010
3	70	-17.6	-17.3	84.25	0.012
4	80	-29.9	-30.3	73.6	0.014
5	90	-36.8	-36.2	65.2	0.015
6	100	-44.2	-43.9	57.65	0.017
7	110	-49.8	-50.1	51.75	0.019
8	120	-54.4	-54.1	47.45	0.021

Зависимость давления от объёма при температуре $t_1=49,9^{\circ}{
m C}$

№, п.п.	$V_{\rm ц}$, мл	Δp_1 , к Π а	Δp_2 , к Π а	p , к Π а	$\frac{1}{p}, \frac{1}{\kappa \Pi a}$
1	50	15.7	15.5	117.3	0.009
2	60	-2.2	-2.6	99.3	0.010
3	70	-16	-16.2	85.6	0.012
4	80	-27.3	-27.9	74.1	0.013
5	90	-35.9	-35.2	66.15	0.015
6	100	-42.5	-41.9	59.5	0.017
7	110	-48.7	-48.9	52.9	0.019
8	120	-53.8	-53.5	48.05	0.021

Зависимость давления от объёма при температуре $t_1=61^{\circ}{
m C}$

№, п.п.	$V_{\rm ц}$, мл	Δp_1 , к Π а	Δp_2 , к Π а	p , к Π а	$\frac{1}{p}, \frac{1}{\kappa \Pi a}$
1	50	15.7	15.5	117.3	0.009
2	60	-2.2	-2.6	99.3	0.010
3	70	-16	-16.2	85.6	0.012
4	80	-27.3	-27.9	74.1	0.013
5	90	-35.9	-35.2	66.15	0.015
6	100	-42.5	-41.9	59.5	0.017
7	110	-48.7	-48.9	52.9	0.019
8	120	-53.8	-53.5	48.05	0.021

Таблица 2: Зависимость углового коэффициента графика $V_{\mathbf{u}}(\frac{1}{p})$ от температуры газа.

	rasa.	
№, п.п.	$t,^{\circ}C$	К, Дж
1	20,6	4,88
2	32,1	5,21
3	42	5,52
4	49,9	5,7
5	61	5,99

V,	50	60	70	80	90	100	110	120
t, C				р, кПа				
20,6	115,10	94,30	81,10	69,85	60,00	53,75	48,15	43,55
32,1	114,70	95,10	81,75	71,55	62,85	55,55	50,20	45,35
42	119,05	97,10	84,25	73,60	65,20	57,65	51,75	47,45
49,9	117,30	99,30	85,60	74,10	66,15	59,50	52,90	48,05
61	122,90	102,20	88,55	77,40	69,20	61,15	55,50	50,30
$1/V_{,1}$	0,020	0,017	0,014	0,013	0,011	0,010	0,009	0,008
ť*, C	-592,20	-444,15	-404,28	-366,60	-251,31	-262,52	-251,25	-243,48

IX. Графики и расчет погрешностей измерений (прямые и косвенные измерения)

Зависимость объёма 1/p, V(1/p) при t=20.6°C

Рис. 1: Зависимость объёма от $\frac{1}{p}, V(\frac{1}{p})$ при $t=20, 6^{\circ}C$

По данному графику с помощью МНК определим коэффициент наклона прямой: $K_1=4,88$

Зависимость объёма 1/p, V(1/p) при t=32.1°C

Рис. 2: Зависимость объёма от $\frac{1}{p}, V(\frac{1}{p})$ при $t=32, 1^{\circ}C$

По данному графику с помощью МНК определим коэффициент наклона прямой: $K_2=5,26$

Зависимость объёма 1/p, V(1/p) при t=42°C

Рис. 3: Зависимость объёма от $\frac{1}{p}, V(\frac{1}{p})$ при $t=42^{\circ}C$

По данному графику с помощью МНК определим коэффициент наклона прямой:

 $K_3 = 5,52$

Зависимость объёма 1/p, V(1/p) при t=49.9°C

Рис. 4: Зависимость объёма от $\frac{1}{p}, V(\frac{1}{p})$ при $t=49, 9^{\circ}C$

По данному графику с помощью МНК определим коэффициент наклона прямой:

$$K_4 = 5, 7$$

Зависимость объёма 1/p, V(1/p) при t=61°C

Рис. 5: Зависимость объёма от $\frac{1}{p}, V(\frac{1}{p})$ при $t=61^{\circ}C$

По данному графику с помощью МНК определим коэффициент наклона прямой: $K_5=5,99$

Зависимость углового коэффициента K от температуры t, K(t)

Рис. 6: Зависимость K от t, K(t):

По данному графику найдём угловой коэффициент A и свободное слагаемое C для зависимости K(t):

$$A = 0,025$$

$$\Delta A = 0,003$$

$$C = 4,214$$

$$\Delta C = 0.04$$

 $\overline{\text{Тогда}}$ температура абсолютного нуля t_* :

$$t_* = -\frac{C}{A} = -163,6^{\circ}C$$

$$\Delta t_* = t_* \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta C}{C}\right)^2} = -71^{\circ}C$$

График зависимости p(t), для V = 50 мл

Рис. 7: Зависимость давления от температуры p(t), для объёма 50 мл:

Рис. 8: Зависимость давления от температуры p(t), для объёма 60 мл:

Рис. 9: Зависимость давления от температуры p(t), для объёма 70 мл:

График зависимости p(t), для V = 80 мл

Рис. 10: Зависимость давления от температуры p(t), для объёма 80 мл:

Рис. 11: Зависимость давления от температуры p(t), для объёма 90 мл:

График зависимости p(t), для V = 100 мл

Рис. 12: Зависимость давления от температуры p(t), для объёма 100 мл:

График зависимости p(t), для V = 110 мл

Рис. 13: Зависимость давления от температуры p(t), для объёма 110 мл:

График зависимости p(t), для V = 120 мл

Рис. 14: Зависимость давления от температуры p(t), для объёма 120 мл:

Рис. 15: Зависимость $\tilde{t}_*(\frac{1}{V})$

По данному графику найдём угловой коэффициент А' и свободное слагаемое С' = t_* для зависимости $\tilde{t}_*(\frac{1}{V})$: A' = -55031.83

$$\begin{array}{l} C^{\circ}=t_{*}=59,1^{\circ}C\\ \Delta t_{*}=\Delta C^{\circ}=62.52^{\circ}C \end{array}$$

Х. Вывод

В силу особенностей установки и увеличения погрешностей измерений, результаты имеют отклонения от ранее исполняемых опытов. Однако получено примерное поведение изменения состояния газа.

XI. Контрольные вопросы

- 1. Идеальный газ. Уравнение состояния.
- 2. Макроскопическое состояние. Термодинамический процесс.
- 3. Атомная масса химического элемента, молекулярная масса вещества. Атомная единица массы. Число Авогадро. Молярная масса вещества.
- 4. Как определяется молярная масса смеси газов, например, воздуха?
- 5. Изохорный процесс. Уравнения, его описывающие, и графики процесса в различных координатах (p-V, p-T, V-T).
- 6. Изотермический процесс. Уравнения, его описывающие, и графики процесса в различных координатах (p-V, p-T, V-T).
- 7. Изобарный процесс. Уравнения, его описывающие, и графики процесса в различных координатах (p-V, p-T, V-T).
- 8. Дайте определение температуры: идеальногазовой; газокинетической; термодинамической.
- 9. Дайте определение температуры с точки зрения статистической физики.
- 10. Как ведет себя макроскопическая система при приближении к абсолютному нулю температуры?

XII. Ответы на вопросы

- 1. Идеальный газ теоретическая физическая модель для описания свойств и поведения реальных газов, в которой не учитывается собственный размер молекул и энергия взаимодействия между молекулами, а столкновения молекул друг с другом и со стенками считаются абсолютно упругими. Уравнение состояния идеального газа (уравнение Менделеева-Клайперона): $pV = \frac{m}{M}RT$
- 2. Макроскопическое состояние состояние макроскопической системы, описываемое макроскопическими параметрами (p, V, T). Термодинамический процесс всякое изменение, происходящее в термодинамической системе и связанное с изменением хотя бы одного из её параметров

состояния.

3. Атомная масса химического элемента – отношение массы этого элемента к $\frac{1}{12}$ массы атома углерода.

Молекулярная масса вещества – сумма атомных масс, входящих в состав элемента.

Число Авогадро – количество структурных единиц (атомов, молекул или др.), в 1 моле вещества. Определяется как количество атомов в 12 граммах углерода $(N_A=6,02214179*10^{23} \mathrm{моль}^{-1})$ Молярная масса вещества – масса 1 моля вещества.

4. $M_r = \phi_1 M_{r\,1} + \phi_2 M_{r\,2} + ... \phi_n M_{r\,n}$, где ϕ – массовая доля содержания отдельного газа в смеси

 $M_r=0,75*M_{r\,N_2}+0,25*M_{r\,O_2}=0,75*(14*2)+0,25*(16*2)=29$ г/моль

5. V = constЗакон Шарля: $\frac{p}{T} = const$

6. T = constЗакон Бойля-Мариотта: pV = const

7. p = const

Закон Гей-Люссака: $\frac{V}{T}=const$

8. Идеальногазовая температура — температура, отсчитываемая по газовому термометру, наполненному сильно разреженным газом.

Газокинетическая температура — температура, отсчитываемая по шкале, в которой $\frac{1}{\beta} = \frac{2}{3} * \frac{mv^2}{2} = kT$

Термодинамическая температура – температура, отсчитываемая по термодинамической шкале температур от абсолютного нуля.

9. В статистической физике температура определяется производной от энергии системы по её энтропии:

$$T = \frac{\delta U}{\delta S}$$

10. При стремлении температуры любой равновесной термодинамической системы к абсолютному нулю ее энтропия стремится к нулю.