2020 정보처리기사 필기 - 4.3 응용 SW 기초 기술 활용(4)

2020. 3. 26. 22:41

인터넷

인터넷의 개요

TCP/IP 프로토콜을 기반으로 전 세계 수많은 컴퓨터와 네트워크들이 연결된 광범위한 컴퓨터 통신망

- 미 국방성의 ARPANET에서 시작
- 유닉스 운영체제를 기반으로 함
- 인터넷에 연결된 컴퓨터는 고유한 IP 주소를 가짐
- 인터넷을 구성하기 위해서는 브리지, 라우터, 게이트웨이가 사용됨
- 백본: 네트워크를 연결하여 중추적 역할을 하는 네트워크로 인터넷의 주가 되는 기간망을 일컫는 용어

IP주소(Internet Protocol Address)

- 인터넷에 연결된 컴퓨터를 구분하기 위한 고유한 주소
- 8비트 씩 4부분으로 구성됨(IPv4)

Cla	SS	Prefixes	First byte
A	A	n = 8 bits	0 to 127
I	3	n = 16 bits	128 to 191
(C	n = 24 bits	192 to 223
I)	Not applicable	224 to 239
I	Ξ	Not applicable	240 to 255

데이터 통신과 네트워킹 5판, 18강 강의자료

서브네팅

- 할당된 네트워크 주소를 다시 여러 개의 작은 네트워크로 나누어 사용

1D1C 구독하기

- IPv4의 주소 부족 문제를 해결하기 위한 방법
- 서브넷 마스크 : 네트워크 주소와 호스트 주소를 구분하기 위한 비트

IPv6

- IPv4의 주소 부족 문제를 해결하기 위해 개발됨
- 128비트의 긴 주소를 사용하여 주소 부족 문제를 해결할 수 있고, 자료 전송 속도가 빠름
- 인증성, 기밀성, 데이터 무결성의 지원으로 보안 문제 해결 가능
 - -> 인증성: 사용자의 식별과 접근 권한 검증
 - -> 기밀성: 시스템 내의 정보와 자료는 인가된 사용자에게만 접근 허용
 - -> 무결성 : 시스템 내의 정보는 인가된 사용자만 수정 가능
- Traffic Class, Flow Label을 이용하여 등급별, 서비스별로 패킷을 구분할 수 있어 품질 보장이 용이
 - -> Traffic Class: IPv6 패킷의 클래스나 우선순위를 나타내는 필드
 - -> Flow Label: 네트워크 상에서 패킷들의 흐름에 대한 특성을 나타내는 필드
- 주소 체계
 - -> 유니캐스트 : 1:1 통신 -> 멀티캐스트 : 1:N 통신
 - -> 애니캐스트: 1:1 통신, 유니캐스트와 다르게 송신자와 가장 가까이 있는 수신자 간의 통신

참고용) IPv6 데이터그램

도메인 네임

- IP 주소 사람이 이해하기 쉬운 문자 형태로 표현한 것
- ex) http://210.89.164.90/(IP주소) -> www.naver.com (도메인 네임)
- □인 네임의 구성

- 도메인 네임을 IP 주소로 변환하는 역할을 하는 시스템을 DNS라고 하며 이런 역할을 하는 서버를 DNS 서버라고 함

OSI 참조 모델

OSI(Open System Interconnetion) 참조 모델의 개요

- 다른 시스템 간의 원활한 통신을 위해 ISO(국제표준화기구)에서 제안한 통신 규약(프로토콜)

출처: http://www.a24s.com/data/jeongbotongsinhakseub/jbts/contents/ch2-4.htm

- Application / Presentation / Session / Transport / Network / Datalink / Physical => 아파서티난다 피

OSI 모델의 계층

- 물리 계층
 - -> 전송에 필요한 두 장치 간의 실제 접속과 절단 등 기계적, 전기적, 기능적, 절차적 특성에 대한 규칙을 정의
 - -> 물리적 전송 매체와 신호 방식을 정의
 - -> RS-232C, X.21 등의 표준
 - -> 관련 장비 : 리피터, 허브
- ■> 데이터 단위 : 비트

- 데이터 링크 계층

-> 두 개의 인접 개방 시스템들 간의 신뢰성 있고 효율적인 정보 전송을 할 수 있도록 함

1D1C 구독하기

- -> 주요 기능 : 흐름 제어, 프레임 동기화, 오류 제어, 순서 제어
- -> HDLC, LAPB, LLC, MAC, LAPD, PPP 등의 표준
- -> 관련 장비 : 브리지
- -> 데이터 단위 : 프레임
- 네트워크 계층
 - -> 개방 시스템들 간의 네트워크 연결을 관리하고 데이터의 교환 및 중계 기능
 - -> 네트워크 연결 설정, 유지, 해제
 - -> 경로 설정, 데이터 교환 및 중계, 트래픽 제어, 패킷 정보 전송 수행
 - -> X.25, IP 등의 표준
 - -> 관련 장비 : 라우터
 - -> 데이터 단위 : 패킷
- 전송 계층
 - -> 논리적 안정과 균일한 데이터 전송 서비스를 제공
 - -> 종단 시스템 간의 투명한 데이터 전송을 가능하게 함
 - -> 종단 시스템 간의 전송 연결 설정, 데이터 전송, 연결 해제 기능
 - -> 주소 설정, 다중화, 오류 제어, 흐름 제어
 - -> TCP, UDP 등의 표준
 - -> 관련 장비 : 게이트웨이
 - -> 데이터 단위 : 세그먼트
- 세션 계층
 - -> 송수신 측 간의 관련성을 유지하고 대화 제어를 담당
 - -> 동기점 : 송수신 측간의 대화 동기를 위해 전송하는 정보를 일정한 부분에 두어 정보의 수신 상태를 체크하

는 포인트

- -> 데이터 단위 : 메시지
- 표현 계층
 - -> 데이터를 응용 계층, 세션 계층에 보내기 전에 계층에 맞게 변환
 - -> 서로 다른 데이터 표현 형태를 갖는 시스템 간 상호 접속을 위해 필요한 계층
 - -> 코드 변환, 데이터 암호화, 데이터 압축, 구문 검색, 정보 형식 변환, 문맥 관리 기능
 - -> 데이터 단위 : 메시지
- 응용 계층
 - -> 사용자가 OSI 환경에 접속할 수 있도록 서비스 제공
 - -> 프로세스 간의 정보 교환, 전자 사서함, 가상 터미널 등의 서비스 제공

네트워크 관련 장비

Ϫ트워크 인터페이스 카드(Network Interface Card)

- 컴퓨터를 연결하는 장치로 정보 전송 시 정보가 케이블을 통해 전송될 수 있도록 정보 형태를 변경
- 이더넷 카드 혹은 네트워크 어댑터라고도 함

허브(hub)

- 가까운 거리의 컴퓨터를 연결하는 장치
- 각 회선을 통합적으로 관리하며 신호 증폭 기능을 하는 리피터의 역할도 포함
- 더미 허브
 - -> 네트워크에 흐르는 모든 데이터를 단순히 연결만 함
 - -> LAN이 보유한 대역폭을 나누어 제공
- 스위칭 허브
- -> 네트워크상에 흐르는 데이터의 유무 및 흐름을 제어하여 각각의 노드가 허브의 최대 대역폭을 사용할 수 있는 지능형 허브

리피터(Repeater)

- 전송되는 신호가 원래의 형태와 다르게 왜곡되거나 약해질 경우 원래의 신호 형태로 재생하여 다시 전송하는 역할
- 근접한 네트워크 사이에 신호를 전송
- 전송 거리의 연장 또는 배선의 자유도를 높이는 용도

브리지(Bridge)

- LAN과 LAN을 연결하거나 LAN안에서 컴퓨터 그룹을 연결
- 데이터 링크 계층 중 MAC 계층에서 사용되므로 MAC 브리지라고도 함

스위치(Switch)

- LAN과 LAN을 연결하여 훨씬 더 큰 LAN을 만드는 장치
- 포트마다 각기 다른 전송속도를 지원하도록 제어할 수 있음
- 수십 ~ 수백 개의 포트를 지원

라우터(Router)

- LAN과 LAN의 연결 기능에 데이터 전송의 최적 경로를 선택할 수 있는 기능을 추가
- 서로 다른 LAN이나 LAN과 WAN의 연결도 수행
- 접속 가능한 경로에 대한 정보를 Routing Table에 저장하여 보관

게이트웨이(Gateway)

- 전 계층의 프로토콜 구조가 다른 네트워크의 연결을 수행
- LAN에서 다른 네트워크에 데이터를 송수신하는 출입구 역할을 함

≡_{프 로토콜의} 개념

프로토콜의 정의

- 서로 다른 기기들 간의 데이터 교환을 원활하게 수행할 수 있도록 표준화시켜 놓은 통신 규약

1D1C 구독하기

프로토콜의 기본 요소

- 구문: 전송하고자 하는 데이터의 형식, 부호화, 신호 레벨 등을 규정
- 의미 : 두 기기 간의 효율적이고 정확한 정보 전송을 위한 협조 사항과 오류 관리를 위한 제어 정보를 규정
- 시간: 두 기기 간의 통신 속도. 메시지의 순서 제어 등을 규정

프로토콜의 기능

- 단편화와 재결합
 - -> 단편화: 송신 측에서 전송할 데이터를 전송에 알맞은 작은 크기의 블록으로 자르는 작업
 - -> 재결합: 수신 측에서 수신한 단편화된 데이터를 다시 모으는 작업
- 캡슐화
 - -> 단편화 된 데이터에 주소, 오류 검출 코드, 프로토콜 제어 정보를 부가하는 것
- 흐름 제어
 - -> 수신 측에서 송신 측의 데이터 전송 속도나 전송 량을 제어할 수 있는 기능
 - -> 정지-대기 방식이나 슬라이딩 윈도우 방식을 이용
- 오류 제어
 - -> 전송 중에 발생하는 오류를 검출하고 정정하여 데이터나 제어 정보의 파손에 대비하는 기능
- 동기화
 - -> 송수신 측이 같은 상태를 유지하도록 타이밍을 맞추는 기능
- 순서 제어
 - -> 전송되는 데이터 블록에 전송 순서를 부여하여 연결 위주의 데이터 전송 방식에 사용
 - -> 흐름 제어 및 오류 제어를 용이하게 함
- 주소 지정
 - -> 데이터가 목적지까지 정확하게 전송될 수 있도록 목적지 이름, 주소, 경로를 부여하는 기능
- 다중화
 - -> 한 개의 통신 회선을 여러 가입자들이 동시에 사용하도록 하는 기능
- 경로 제어
 - -> 송수신 측간의 송신 경로 중에서 최적의 패킷 교환 경로를 설정하는 기능
- 전송 서비스
 - -> 전송하려는 데이터가 사용하도록 하는 별도의 부가 서비스

TCP/IP

TCP/IP의 개요

- 인터넷에 연결된 서로 다른 기종의 컴퓨터들이 데이터를 주고받을 수 있도록 하는 표준 프로토콜

→ 60 년대 말 ARPA에서 개발하여 ARPANET에서 사용하기 시작

- UNIX의 기본 프로토콜로 사용되었다가 현재는 인터넷 범용 프로토콜로 사용
- TCP(Transmission Control Protocol)과 IP(Internet Protocol)이 결합

TCP/IP의 구조

OSI	TCP/IP	기능
응용 계층 표현 계층 세션 계층	음용 계층	응용 프로그램 간의 데이터 송 수신 제공
전송 계층	전송 계층	호스트들 간의 신뢰성 있는 통신 제공
네트워크 계층	인터넷 계층	데이터 전송을 위한 주소, 경로 지정
데이터 링크 계층 물리 계층	네트워크 액세스 계층	실제 데이터를 송수신

응용 계층의 주요 프로토콜

- FTP: 원격 파일 전송 프로토콜

- SMTP: 전자 우편 교환 서비스

- TELNET:

- -> 원격 접속 서비스
- -> 가상 터미널 기능 수행

-SNMP:

- -> TCP/IP의 관리 프로토콜
- -> 네트워크 기기의 네트워크 정보를 네트워크 관리 시스템에 보내는 데 사용되는 프로토콜
- DNS: 도메인 네임을 IP주소로 매핑하는 시스템
- HTTP: WWW에서 HTML을 송수신하기 위한 표준 프로토콜

전송 계층의 주요 프로토콜

- TCP
 - -> 양방향 연결형 서비스 제공
 - -> 가상 회선 연결 형태의 서비스 제공
 - -> 순서 제어, 오류 제어, 흐름 제어 기능을 함
 - -> 스트림 위주의 패킷 단위 전달
- UDP
 - -> 비연결형 서비스 제공
 - -> 실시간 전송에 유리하며, 신뢰성보다는 속도가 중요시되는 네트워크에서 사용

RTCP

➡> 퍼킷의 전송 품질을 제어하기 위한 제어 프로토콜

- -> 세션에 참여한 각 참여자들에게 주기적으로 제어 정보를 전송
- -> 데이터 전송을 모니터링하고 최소한의 제어와 인증 기능만을 제공

-> 패킷은 항상 32비트의 경계로 끝남

1D1C 구독하기

인터넷 계층의 주요 프로토콜

- IP: 전송할 데이터에 주소를 지정하고 경로를 설정
- ICMP
 - -> IP와 조합하여 통신 중에 발생하는 오류의 처리와 전송 경로 변경 등을 위한 제어 메시지를 관리
 - -> 헤더는 8Byte로 구성
- IGMP: 멀티캐스트를 지원하는 호스트나 라우터 사이에서 멀티캐스트 그룹 유지를 위해 사용
- ARP : IP 주소를 MAC Address로 변환 (논리 주소 → 물리 주소)
- RARP : ARP의 반대로 MAC Address를 IP 주소로 변환 (물리 주소 → 논리 주소)

네트워크 액세스 계층의 주요 프로토콜

- IEEE 802 : LAN을 위한 표준 프로토콜
 - -> IEEE 802.3(Ethernet): CSMA/CD 방식의 LAN
 - -> IEEE 802.4 : 토큰 박스
 - -> IEEE 802.5 : 토큰링
 - -> IEEE 802.11 : 무선 LAN
- HDLC: 비트 위주의 데이터 링크 제어 프로토콜
- X.25: 패킷 교환망을 통한 DTE와 DCE 간의 인터페이스를 제공하는 프로토콜
 - -> DTE(신호 단말 장치), DCE(신호 통신 장비)
- RS-232C: 공중전화 교환망을 통한 DTE와 DCE 간의 인터페이스를 제공하는 프로토콜

필기 정리

2020 정보처리기사 필기 정리

1d1cblog.tistory.com

1 구독하기

'2020 정보처리기사 > 4과목 : 프로그래밍 언어 활용' 카테고리의 다른 글	1D1C 구독하기
2020 정보처리기사 필기 - 4.1 서버 프로그램 구현 (0)	2020.03.28
2020 정보처리기사 필기 - 4.3 응용 SW 기초 기술 활용(4) (0)	2020.03.26
2020 정보처리기사 필기 - 4.3 응용 SW 기초 기술 활용(3) (0)	2020.03.26
2020 정보처리기사 필기 - 4.3 응용 SW 기초 기술 활용(2) (0)	2020.03.25
2020 정보처리기사 필기 - 4.3 응용 SW 기초 기술 활용(1) (0)	2020.03.06
NAME	
PASSWORD	
HOMEPAGE	
http://	
	SECRET WRITE

PREV 1 ... 99 100 101 102 103 104 105 106 107 ... 225 NEXT

- Recent posts

윈도우즈 시스템 프로그래밍…

Powered by <u>Tistory</u>, Designed by <u>wallel</u>

Rss Feed and Twitter, Facebook, Youtube, Google+