QUANG DUONG

CONTACT INFORMATION -

Office 5.408B
Gates Dell Complex
Department of Computer Science
The University of Texas at Austin
Austin, Texas 78712

E-Mail: duongquang1@gmail.com

Phone: (832) 335 - 4818 Website: selfdeprecated.dev GitHub: github.com/Quangmire

LinkedIn: linkedin.com/in/duongguang1

RESEARCH INTERESTS -

My research focuses on adapting machine learning approaches to improve performance over classical computer architecture predictors. Namely, I am interested in different techniques such as saliency, distillation, and compression to produce practical predictors from ML models for on-chip real-time inference.

EDUCATION ---

- · Ph.D. in Computer Science
- · Advisor: Calvin Lin
- · Current GPA: 4.0000

- · B.S./M.S. in Computer Science
- · B.S. in Mathematics (Specialization in Scientific Computing)
- · Summa Cum Laude
- · Cumulative GPA: 3.9482

EXPERIENCE ----

- Utilized saliency information to adapt statically trained neural branch prediction models to allow for on-chip training
- Examining saliency and distillation techniques to prune existing neural data prefetchers to improve their practicality

- · Analyzed performance issues across different analyst workloads
- Proposed and implemented data format restructuring that yielded a 4-10x speedup in processing time
- Migrated code base from Python 2 to 3 and wrapped legacy C++ code into Python libraries with SWIG and Cython to streamline data analysis

- Leveraged clustering and reinforcement learning techniques to iteratively refine estimations of ionospheric model parameters competitive with commercial software
- Optimized run-time by adaptively executing physical simulations at different granularities based on approximations of the objective surface for real-time execution

Honors Scholar
 Reduced noise of raw ionosonde output with clustering techniques and adaptive thresholding for downstream processing Generated interdependent feasible ranges for the ionospheric model parameters from
denoised ionosonde information via multi-layer perceptrons
Texas Institute for Discovery Education in Science Fellowship
 Analyzed different Pareto frontiers by weighting the objective function for the 3D model approximation genetic algorithm that traded off generated OpenSCAD code complexity with convergence and error rate to allow for downstream non-expert modification Implemented vectorized voxelization code to approximate expensive objective functions
Freshman Research Initiative Fellowship
 Adapted CPPN-NEAT algorithm to grow increasingly complex neural networks as functional approximations of 3D models
 Generated OpenSCAD's model descriptor language using the neural network output
TEACHING ————————————————————————————————————
CS 380P: Parallel Systems
 Redesigned labs to more accurately reflect real-world situations Implemented new automatic grading scripts for the labs
CS 380P: Parallel Systems
 Graded assignments and assisted students to develop intuition for parallel programming paradigms across several languages and standard libraries
CS 373: Software Engineering
 Lectured on web technologies and best practices, assisted students with course content, and graded assignments
CS 309: Computational Intelligence in Game Research FRI
 Instructed students on the principles of machine learning, optimization, and neuroevolution in fun simulated game environments
 Directed incoming undergraduates on how to develop, record, and present their ideas and findings for reproducible research
ACTIVITIES ————————————————————————————————————
Principles and Practice of Parallel Programming [PPoPP]
Machine Learning Data Prefetching Competition [ISCA / MLArchSys]

 Built framework on top of ChampSim trace-based simulator for evaluation of machine learning models for data prefetching
Association of Computing Machinery
algorithmic constraints
 Machine Learning and Data Science Student Organization Spring 2016 - Spring 2018 Attended walk-throughs and Kaggle-esque competitions to develop and gain experience with applying machine learning techniques effectively and to more real-world problems
Information and Systems Security Society Fall 2015 - Spring 2017 . Competed in Capture-The-Flag events and attended workshops on various security topics
AWARDS —
TIDES Advance Summer Research Fellowship
TIDES Advance Summer Research Fellowship

- Languages: Python, C/C++, Go, Rust, Java, Julia, MATLAB, Lua, HTML/CSS, JavaScript/JSX, x86 ASM, SQL, LaTeX
- Libraries: numpy, PyTorch, TensorFlow, sklearn, scipy, matplotlib/seaborn, React, Flask, OpenGL
- · Other Skills: Unix Systems (Ubuntu, Debian, Arch Linux), Vietnamese