## **Student Information**

Name: Abdulkadir Pamukçu

ID: 2237774

## Answer 1

**a**)

Since the sample sizes are small (i.e., n1; 30 and n2; 30), the confidence interval formula with t is appropriate

Our variables are those:

1st Sample size  $\rightarrow n_1 = 19$  1st Sample mean  $\rightarrow \bar{x_2} = 3.375$  1s Standart deviation  $\rightarrow$  s<sub>1</sub> = 0.96

2nd Sample size  $\rightarrow n_2 = 15$  2nd Sample mean  $\rightarrow \bar{x_2} = 2.05$  2nd Standart deviation  $\rightarrow$  s<sub>2</sub> = 1.12

We need to compute  $S_p$ , the pooled estimate of the common standard deviation.  $S_p = \sqrt{((n_1 - 1)(s_1)^2 + (n_2 - 1)(s_2)^2)/(n_1 + n_2 - 2)}$ 

$$S_p = \sqrt{((n_1 - 1)(s_1)^2 + (n_2 - 1)(s_2)^2)/(n_1 + n_2 - 2)}$$

 $S_p = 1.0330$ 

Sp is falling in between the standard deviations in the two groups. The degrees of freedom (df) =  $n_1 + n_2 - 2 = 19 + 15 - 2 = 32$ . To %95 confidence interval  $\alpha = 0.05$  and t is 2.037 from the t-Table A5 at the book.

Then computation is follows like that:

$$\bar{x_1}$$
-  $\bar{x_2} \pm t S_p \sqrt{1/n_1 + 1/n_2}$ 

Put the values for both equation:

$$3.375 - 2.05 + 2.037 \times 1.0330 \times \sqrt{1/19 + 1/15} = 2.051$$

$$3.375 - 2.05 - 2.037 \times 1.0330 \times \sqrt{1/19 + 1/15} = 0.598$$

So the %95 confidence interval for the difference is [0.598, 2.051]

b)

Since we did all the calculations in subsection-a we are not gonna do it again. This time our t is 1.694 since  $\alpha = 0.1$  since to have confidence interval %90

Then computation is follows like that:

$$\bar{x_1}$$
-  $\bar{x_2} \pm t S_p \sqrt{1/n_1 + 1/n_2}$ 

Put the values for both equation:

$$3.375 - 2.05 + 1.679 \times 1.0330 \times \sqrt{1/19 + 1/15} = 1.924$$
  
 $3.375 - 2.05 - 1.679 \times 1.0330 \times \sqrt{1/19 + 1/15} = 0.725$ 

So the %95 confidence interval for the difference is [0.725, 1.924]

**c**)

We need to find the confidence interval of people with age 40 and above supports with confidence level %95

Confident interval for the mean is:

$$\bar{x} \pm t_{a/2} \times S \sqrt{n}$$

We already now the standart deviance of the elder group. S = 0.96

And mean of the sample is  $\bar{x} = 3.375$ 

We can find  $t_{a/2}$  from the table 5a at the book. df (degrees of freedom) is n-1 = 18 and  $\alpha = 0.05$  So  $t_{a/2} = 2.101$ 

So confident interval is: [2.912, 3.837].

The confidence interval with confidence level of %95 is not always over 3 we can not say that age 40 and above supports BREXIT with %95 confidence level.

## Answer 2

**a**)

As given in the question 20.00 kg olympic bars being produced.

From that we can state the null hypothesis:

$$H_0: \mu = 20.00$$

b)

If product have different weight than 20.00 kg it is not qualified. Also the alternative hypothesis is mathematical opposite of the null hypothesis.

So, we can state the alternative hypothesis:

 $H_a: \mu \neq 20.00$ 

 $\mathbf{c})$ 

We are going to find test statistic t by using t-test formula t-test formula to draw t- test diagram.

Our variables are those:

Sample average  $\to \bar{x} = 20.7$  Expected mean  $\to \mu_0 = 20$  Standart deviation  $\to s = 0.07$ . Also  $\alpha = 0.01$  is can be deriven from the question. (statistical significance)

The test formula is below:

$$t = (\bar{x} - \mu_0) / (s / \sqrt{n})$$
  
So,  $t = 3.317$ 

Then, we need to find the rejection region to draw the t-test diagram and find out the answer of question.

Degrees of freedom is n - 1 = 11 - 1 = 10 and  $\alpha = 0.01$ 

By using these we can find the  $t_{a/2}$  from the t-table 5a from the book.

$$t_{a/2} = 3.168$$

So the diagram is:



The painted areas indicates the rejection regions. It is  $(-\infty, -3.169] \cup [3.169, \infty)$ .

Now, we can clearly observe the fact that the test statistic t locates in rejection region. (3.316)

So, the null hypothesis got rejected. Hence, they should stop the production and check the line.

## Answer 3

**a**)

Lets call existing painkiller drugs in market A and the new claimed to-be superior drug B. Null hypothesis is stated as:

 $H_0: \mu_A = \mu_B$ 

**b**)

Lets call existing painkiller drugs in market A and the new claimed to-be superior drug B. Alternate hypothesis is stated as:

 $H_0: \mu_A \mid \mu_A$ 

c)

We are going to use z formula formula to draw z-test diagram.

Our variables are those:

Mean  $\rightarrow \mu_0 = 3$ . Standart deviation  $\rightarrow \sigma = 1.4$ . Also  $\rho = 0.05$  is can be deriven from the question. ( level of significance )

The test formula is below:

$$Z = (\mu - \mu_0) / (\sigma / \sqrt{n})$$

So 
$$Z = -1.18$$

Also we know the  $z_{0.05} = 1.644$  from the book. We are ready to draw the diagram.

So the diagram is:



The painted areas indicates the rejection regions.

Because of the the z value that observed does not reside in the rejection region, we can't state that new painkiller drug really produce better results.