

ÉPREUVE SPÉCIFIQUE - FILIÈRE MPI

MATHÉMATIQUES

Durée : 4 heures

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

RAPPEL DES CONSIGNES

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition ; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites.

Le sujet est composé de quatre exercices indépendants.

EXERCICE 1

Soit *n* un entier naturel non nul. On note $E_n = \mathbb{R}_n[X]$ et pour tout $k \in [0, n]$, $P_k = X^k$.

Questions de cours

Soit α un réel.

- **1.** Justifier que la famille $\mathcal{E} = (1, X \alpha, ..., (X \alpha)^n)$ est une base de E_n .
- **2.** Soit P un polynôme de E_n .

Donner sans démonstration la décomposition de P dans la base \mathcal{E} à l'aide des dérivées successives du polynôme P.

3. On suppose que α est une racine d'ordre $r \in [1, n]$ de P. Déterminer le quotient et le reste de la division euclidienne de P par $(X - \alpha)^r$.

À tout polynôme P de E_n , on associe le polynôme Q défini par :

$$Q(X) = X P(X) - \frac{1}{n} (X^2 - 1) P'(X)$$

et on note T l'application qui à P associe Q.

- **4.** Soit $k \in [0, n]$. Déterminer $T(P_k)$.
- **5.** Montrer que T est un endomorphisme de E_n .
- **6.** Écrire la matrice M de T dans la base $\mathscr{B} = (P_0, P_1, ..., P_n)$ de E_n .
- 7. On suppose que λ est une valeur propre réelle de l'endomorphisme T et soit P un polynôme unitaire, vecteur propre associé à la valeur propre λ .
 - **7.1.** Montrer que P est de degré n.
 - **7.2.** Soit z_0 une racine complexe de P d'ordre de multiplicité $r \in \mathbb{N}^*$. Prouver que $z_0^2 1 = 0$.
 - **7.3.** En déduire une expression de *P*.
- **8.** Déterminer les éléments propres de l'endomorphisme T. L'endomorphisme T est-il diagonalisable ?

EXERCICE 2

Questions de cours

1. Soit a et b deux réels avec a > 0. Choisir sans justification l'expression correcte de a^b :

$$(A): e^{b \ln(a)}$$
 $(B): e^{a \ln(b)}$ $(C): e^{\ln(a) \ln(b)}$.

- **2.** Soit x et y deux réels tels que x < y et t un réel de]0, 1[. Comparer t^x et t^y .
- **3.** Donner, sans démonstration, le développement en série entière de la fonction exponentielle réelle et donner son domaine de validité.

4. On considère la fonction Γ définie par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

On admet que cette fonction est définie sur $]0, +\infty[$ et que, pour tout réel x strictement positif :

$$\Gamma(x+1) = x \Gamma(x).$$

Calculer $\Gamma(1)$ et en déduire, en effectuant un raisonnement par récurrence, la valeur de $\Gamma(n+1)$ pour $n \in \mathbb{N}$.

5. Pour $x \in \mathbb{R}$, on note, lorsque cela a un sens :

$$F(x) = \int_0^1 t^{t^x} \mathrm{d}t$$

où, comme il est d'usage, $t^{t^x} = t^{(t^x)}$.

- **5.1.** Déterminer l'ensemble de définition de *F*.
- **5.2.** Déterminer le sens de variation de F.
- **5.3.** Démontrer que pour tout x réel positif, on a : $F(x) \ge \frac{1}{2}$.
- **5.4.** Démontrer que F est continue sur son ensemble de définition.
- **5.5.** Déterminer $\lim_{x \to +\infty} F(x)$ et $\lim_{x \to -\infty} F(x)$. Les théorèmes utilisés seront cités avec précision et on s'assurera que leurs hypothèses sont bien vérifiées.
- **5.6.** Dresser alors avec soin le tableau de variations de F et donner une allure générale de sa courbe représentative dans un repère orthonormal. On admettra que $F'(0) = \frac{1}{4}$ et on tracera la tangente au point d'abscisse x = 0.
- **6.** Soit *x* un réel strictement positif.

Pour tout entier naturel n, on note g_n la fonction définie sur]0,1] par $g_n(t) = \frac{t^{nx} \ln^n(t)}{n!}$.

- **6.1.** Démontrer que la série de fonctions $\sum_{n\in\mathbb{N}} g_n$ converge simplement sur]0,1] et donner sa somme.
- **6.2.** Démontrer que, pour tout entier naturel n, $\int_0^1 |g_n(t)| dt = \frac{1}{n!} \frac{\Gamma(n+1)}{(nx+1)^{n+1}}$.
- **6.3.** Établir enfin que l'on a :

$$F(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(1+nx)^{n+1}}.$$

EXERCICE 3

On note E l'espace vectoriel des fonctions à valeurs réelles continues sur \mathbb{R}_+ .

Pour tout élément f de E et tout $x \in \mathbb{R}_+$ on pose $F(x) = \int_0^x f(u) du$.

1. Justifier que F est de classe C^1 sur \mathbb{R}_+ et donner pour tout $x \in \mathbb{R}_+$ l'expression de F'(x).

Soit $\Psi : f \in E \mapsto \Psi(f)$ définie par : $\forall x \in \mathbb{R}_+, \ \Psi(f)(x) = \int_0^1 f(xt) dt$.

- **2.** Exprimer, pour tout réel x strictement positif, $\Psi(f)(x)$ à l'aide de F(x).
- **3.** Justifier que la fonction $\Psi(f)$ est continue sur \mathbb{R}_+ et donner la valeur de $\Psi(f)(0)$.
- **4.** Montrer que Ψ est un endomorphisme de E.
- 5. Surjectivité de Ψ

Soit $h: x \in \mathbb{R}_+ \longmapsto h(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{pour } x > 0 \\ 0 & \text{pour } x = 0 \end{cases}$.

- **5.1.** Montrer que la fonction h est continue sur \mathbb{R}_+ .
- **5.2.** La fonction h est-elle de classe C^1 sur \mathbb{R}_+ ?
- **5.3.** Soit $g \in \text{Im}(\Psi)$. Montrer que la fonction $x \mapsto x g(x)$ est de classe C^1 sur \mathbb{R}_+ .
- **5.4.** A-t-on *h* ∈ Im (Ψ) ?
- 5.5. Conclure.
- **6.** Montrer que Ψ est injective.
- 7. Recherche des éléments propres de $\boldsymbol{\Psi}$
 - **7.1.** Justifier que 0 n'est pas valeur propre de Ψ .

Soit $\mu \in \mathbb{R}$. On considère l'équation différentielle (L) sur \mathbb{R}_+^* :

$$y' + \frac{\mu}{x}y = 0.$$

- **7.2.** Résoudre (*L*) sur \mathbb{R}_+^* .
- **7.3.** Déterminer les solutions de (L) prolongeables par continuité sur \mathbb{R}_+ .
- 7.4. Déterminer alors les valeurs propres de Ψ et les sous-espaces propres associés.
- **8.** Soit $n \in \mathbb{N}$, n > 1. Pour $i \in [1, n]$, on pose :

$$f_i: x \in \mathbb{R}_+ \longmapsto f_i(x) = x^i \text{ et } g_i: x \in \mathbb{R}_+ \longmapsto g_i(x) = \begin{cases} x^i \ln(x) & \text{pour } x > 0 \\ 0 & \text{pour } x = 0 \end{cases}$$

On note $\mathcal{B} = (f_1, ..., f_n, g_1, ..., g_n)$ et F_n le sous-espace vectoriel de E engendré par \mathcal{B} .

8.1. On veut montrer que la famille $\mathcal{B} = (f_1, ..., f_n, g_1, ..., g_n)$ est une base de F_n

Soit $(\alpha_i)_{i \in [\![1,n]\!]}$ et $(\beta_j)_{j \in [\![1,n]\!]}$ des scalaires tels que $\sum_{i=1}^n \alpha_i f_i + \sum_{j=1}^n \beta_j g_j = 0$. (*)

4/6

- **8.1.1.** Montrer que $\alpha_1 = \beta_1 = 0$.

 On pourra simplifier l'expression (*) par x lorsque x est non nul.
- **8.1.2.** Soit $p \in [1, n-1]$. On suppose que $\alpha_1 = \cdots = \alpha_p = \beta_1 = \cdots = \beta_p = 0$. Démontrer que $\alpha_{p+1} = \beta_{p+1} = 0$.
- **8.1.3.** Conclure et déterminer la dimension de l'espace vectoriel F_n .
- 8.2. Où l'on démontre que Ψ induit un endomorphisme sur F_n
 - **8.2.1.** Soit x > 0 et $p \in \mathbb{N}^*$. Montrer que l'intégrale $\int_0^x t^p \ln(t) dt$ est convergente et la calculer.
 - **8.2.2.** En déduire que Ψ induit un endomorphisme Ψ_n sur F_n .
- **8.3.** Donner la matrice de l'application Ψ_n dans la base \mathcal{B} .
- **8.4.** Démontrer que Ψ_n est un automorphisme de F_n .
- **8.5.** Soit $z: x \in \mathbb{R}_+ \longmapsto z(x) = \begin{cases} \left(x + x^2\right) \ln(x) & \text{pour } x > 0 \\ 0 & \text{pour } x = 0 \end{cases}$.

Après avoir vérifié que $z \in F_n$, déterminer $\Psi_n^{-1}(z)$.

EXERCICE 4

Question de cours

1. Rappeler la définition d'un évènement négligeable et d'un évènement presque sûr.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels telle que $u_0 = 1$ et pour tout $n \ge 1$, $u_n \in]0, 1[$.

Pour tout $n \in \mathbb{N}$, on pose $p_n = \prod_{k=0}^n u_k$.

- **2.** Étude de la suite $(p_n)_{n\in\mathbb{N}}$
 - **2.1.** Montrer que la suite $(p_n)_{n\in\mathbb{N}}$ est convergente. On note ℓ sa limite.
 - **2.2.** Démontrer que $\ell \in [0, 1[$.
 - **2.3.** Soit $q \in [0, 1[$. Montrer que si à partir d'un certain rang n_0 , on a $u_n \le q$, alors $\ell = 0$.
 - **2.4.** Que peut-on dire de ℓ si la suite (u_n) est décroissante?
 - **2.5.** Déterminer la valeur de ℓ dans le cas où $u_0 = 1$ et pour tout $n \ge 1$, $u_n = 1 \frac{1}{(n+1)^2}$.
- **3.** On considère une famille $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ avec :
 - X_0 est constante et égale à 1,
 - X_1 suit la loi de Bernoulli de paramètre u_1 ,
 - pour tout $n \ge 1$, X_n suit une loi de Bernoulli de telle sorte que :

$$\mathbb{P}_{[X_n=0]}([X_{n+1}=1])=0 \text{ et } \mathbb{P}_{[X_n=1]}([X_{n+1}=1])=u_{n+1}.$$

3.1. Démontrer par récurrence sur l'entier naturel *n* que l'on a :

$$\forall n \in \mathbb{N}, \ \mathbb{P}([X_n = 1]) = p_n.$$

- **3.2.** En déduire l'espérance $\mathbb{E}(X_n)$ de la variable aléatoire X_n .
- **3.3.** Déterminer les valeurs de l'entier naturel n pour lesquelles les deux variables aléatoires X_n et X_{n+1} sont indépendantes.
- 4. On suppose que $\ell = 0$
 - **4.1.** Soit deux entiers naturels non nuls m et n tels que m < n. Montrer que la probabilité de l'évènement $[X_m = 0] \cap [X_{m+1} = 1] \cap ... \cap [X_n = 1]$ est nulle.
 - **4.2.** Quelle est la probabilité de l'évènement $\bigcap_{k=0}^{n} [X_k = 1]$?
 - **4.3.** En déduire que la probabilité de l'évènement $A = \bigcap_{n \in \mathbb{N}} [X_n = 1]$ est nulle.
 - **4.4.** On définit les variables aléatoires *Y* et *Z* par :

$$\forall \, \omega \in \Omega, \, Y(\omega) = \begin{cases} \operatorname{Max} \left\{ n \in \mathbb{N} \, / \, X_n(\omega) = 1 \right\} \text{ s'il existe} \\ -1 \text{ sinon} \end{cases}$$

et

$$\forall \, \omega \in \Omega, \ \, Z(\omega) = \left\{ \begin{array}{l} \displaystyle \sum_{k=1}^{+\infty} X_k(\omega) \quad \text{si la série converge} \\ +\infty \quad \text{sinon} \end{array} \right. .$$

Démontrer que $\mathbb{P}([Y \neq Z]) = 0$.

Que peut-on en conclure pour l'évènement [Y = Z]?

FIN