Transport optimal entropique

Armand LEY

Existence et unicité pour le problème de Monge-Kantorovitch :

Proposition:

L'ensemble U(a, b) est un convexe compact, qui contient $a \otimes b := (a_i b_i)_{i,j}$

Existence:

Le problème de Monge-Kantorovitch admet toujours une solution.

Unicité:

Pas d'unicité en général.

Entropie et entropie relative

Définitions :

$$\operatorname{Ent}(p) = -\sum_{x \in F} p_x \log(p_x).$$

$$\begin{aligned} & \mathsf{Ent}(p) = -\sum_{x \in E} p_x \log(p_x). \\ & \mathsf{Ent}(p|q) = \sum_{x \in E} p_x \log\left(\frac{p_x}{q_x}\right). \end{aligned}$$

Propriétés de l'entropie

Propriétés :

 $oldsymbol{0}$ Si u est la probabilité uniforme sur E, alors

$$\operatorname{Ent}(p|u) = \log(|E|) - \operatorname{Ent}(p).$$

② Pour tout couple $(p, q) \in \mathcal{P}(E)^2$,

$$\operatorname{Ent}(p|q) \geq 0$$
,

avec égalité si et seulement si p = q.

3 Pour tout $q \in \mathcal{P}(E)$, l'application

$$\operatorname{Ent}(\cdot|q)$$

est strictement convexe.

Proposition

L'entropie n'est pas une distance sur $\mathcal{P}(E)$.

Contre-exemples

- **1** Si |E| = 2, p = (1/2, 1/2) et $q = \delta_1$, alors $\text{Ent}(p|q) = +\infty$.
- ② Si |E| = 3, p = (1/2, 1/4, 1/4) et q = (1/3, 1/3, 1/3), on a

$$6(\operatorname{Ent}(p|q) - \operatorname{Ent}(q|p)) = \log(3/2) + \log(4/3) > 0.$$

③ Si on prend $p_1 = p$, $p_3 = q$ et $p_2 = (p_1 + p_3)/2$, on obtient $\operatorname{Ent}(p_1|p_3) \approx 0.06$ et $\operatorname{Ent}(p_1|p_2) + \operatorname{Ent}(p_2|p_3) \approx 0.03$

Proposition

L'entropie n'est pas une distance sur $\mathcal{P}(E)$.

Contre-exemples:

- **1** Si |E| = 2, p = (1/2, 1/2) et $q = \delta_1$, alors $\text{Ent}(p|q) = +\infty$.
- ② Si |E|=3, p=(1/2,1/4,1/4) et q=(1/3,1/3,1/3), on a

$$6(\operatorname{Ent}(p|q) - \operatorname{Ent}(q|p)) = \log(3/2) + \log(4/3) > 0.$$

3 Si on prend $p_1 = p$, $p_3 = q$ et $p_2 = (p_1 + p_3)/2$, on obtient $\operatorname{Ent}(p_1|p_3) \approx 0.06$ et $\operatorname{Ent}(p_1|p_2) + \operatorname{Ent}(p_2|p_3) \approx 0.03$

Problème de transport pénalisé

But:

Minimiser $J_{\varepsilon}: P \in U(a,b) \mapsto J(P) + \varepsilon \text{Ent}(P|a \otimes b)$.

Existence et unicité pour le problème pénalisé

Proposition:

Pour tout $P \in U(a, b)$, $Ent(P|a \otimes b) = Ent(a) + Ent(b) - Ent(P)$.

Théorème :

L'application J_{ε} admet un unique minimiseur, qu'on note P_{ε} .

Comportement quand $\varepsilon \to 0$

Notation

- $\mathcal{O}(a,b)$ désigne l'ensemble des plans de transport optimaux.
- On note $W_{\varepsilon}(a,b) := \min_{P \in U(a,b)} J_{\varepsilon}(P)$ et $W(a,b) := W_0(a,b)$.

Théorème

- La suite $(P_{\varepsilon})_{\varepsilon>0}$ converge vers l'unique minimiseur de $\operatorname{Ent}(\cdot|a\otimes b)$ sur $\mathcal{O}(a,b)$.
- On a

$$W_{\varepsilon}(a,b) \xrightarrow[\varepsilon \to 0]{} W(a,b).$$

Comportement quand $\varepsilon \to +\infty$

Proposition:

- $\bullet P_{\varepsilon} \xrightarrow[\varepsilon \to +\infty]{} a \otimes b$

Simulations numériques

Simulations numériques (2)

Figure: Solutions du problème pénalisé

L'algorithme de Sinkhorn:

Définition du processus :

- On normalise la matrice suivant les lignes de manière à obtenir a comme somme de ligne.
- ② On normalise la matrice suivant les colonnes de manière à obtenir *b* comme somme de colonne.

Le théorème de Sinkhorn:

Énoncé :

Supposons que K soit à coefficients strictement positifs.

- ① If existe un couple $(u, v) \in \mathbb{R}_+^{*m} \times \mathbb{R}_+^{*n}$ tel que $\mathsf{Diag}(u) \mathsf{K} \mathsf{Diag}(v) \in U(a, b)$.
- 2 Ce couple (u, v) est unique à une constante multiplicative près.
- **3** La suite $(K_l)_{l>0}$ converge vers Diag(u)KDiag(v).

Sinkhorn et problème de transport entropique

Notations

- $K^{\varepsilon} := (e^{-\frac{1}{\varepsilon}C_{i,j}})_{i,j}$.
- $(K_I^{\varepsilon})_{I \geq 0}$ la suite de matrices fournie par l'algorithme de Sinkhorn

Théorème

- Une vitesse de convergence est donnée par :

$$\|\log(P_{\varepsilon}) - \log(K_I^{\varepsilon})\|_{\infty} = O(\lambda(K^{\varepsilon})^I)$$

Merci pour votre attention !