8-3 The Converse of the Pythagorean Theorem

We have seen that the converse of a theorem is not necessarily true. However, the converse of the Pythagorean Theorem is true. It is stated below as Theorem 8-3.

Theorem 8-3

If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.

Given: $\triangle ABC$ with $c^2 = a^2 + b^2$ Prove: $\triangle ABC$ is a right triangle.

Key steps of proof:

- 1. Draw rt. $\triangle EFG$ with legs a and b.
- 2. $d^2 = a^2 + b^2$ (Pythagorean Theorem)
- 3. $c^2 = a^2 + b^2$ (Given)
- 4. c = d (Substitution)
- 5. $\triangle ABC \cong \triangle EFG$ (SSS Postulate)
- 6. $\angle C$ is a rt. \angle . (Corr. parts of $\cong \triangle$ are \cong .)
- 7. $\triangle ABC$ is a rt. \triangle . (Def. of a rt. \triangle)

A triangle with sides 3 units, 4 units, and 5 units long is called a 3-4-5 triangle. The numbers 3, 4, and 5 satisfy the equation $a^2 + b^2 = c^2$, so we can apply Theorem 8-3 to conclude that a 3-4-5 triangle is a right triangle. The side lengths shown in the table all satisfy the equation $a^2 + b^2 = c^2$, so the triangles formed are right triangles.

Some Common Right Triangle Lengths

3, 4, 5

5, 12, 13

8, 15, 17

7, 24, 25

6, 8, 10

10, 24, 26

9, 12, 15

12, 16, 20

15, 20, 25

Theorem 8-3 is restated on the next page, along with Theorems 8-4 and 8-5. If you know the lengths of the sides of a triangle, you can use these theorems to determine whether the triangle is right, acute, or obtuse. In each theorem, c is the length of the longest side of $\triangle ABC$. Exercises 20 and 19 ask you to state Theorems 8-4 and 8-5 more formally and then prove them.