STAT636 - Homework 2

Daniel Osorio - dcosorioh@tamu.edu
Department of Veterinary Integrative Biosciences
Texas A&M University

1. Find the maximum likelihood estimates of the 2 \times 1 mean vector μ and the 2 \times 2 covariance matrix Σ based on the random sample

$$X = \begin{bmatrix} 3 & 6 \\ 4 & 4 \\ 5 & 7 \\ 4 & 7 \end{bmatrix}$$

- $> X \leftarrow matrix(data = c(3,6,4,4,5,7,4,7), ncol = 2, byrow = TRUE)$
- > n <- nrow(X)
- > X_hat <- 1/n * rep(1,n) %*% X</pre>
- > X_hat

$$>$$
 S_hat <- 1/n * (t(X) - drop(X_hat)) %*% t(t(X) - drop(X_hat)) $>$ S_hat

- [1,] 0.50 0.25
- [2,] 0.25 1.50
- 2. Let X_1, X_2, \ldots, X_{60} be a random sample of size n = 60 from a $N_6(\mu, \Sigma)$ population. Specify each of the following.
 - (a) The distribution of $(X_1 \mu)'\Sigma^{-1}(X_1 \mu)$.

$$(X_1 - \mu)' \Sigma^{-1} (X_1 - \mu) \sim \mathcal{X}_6^2$$

(b) The distributions of \bar{X} and $\sqrt{n}(\bar{X} - \mu)$.

$$\bar{X} \sim \mathcal{N}_6 \left(\mu, \frac{1}{60} \Sigma \right)$$

$$\sqrt{n}(\bar{X}-\mu) \stackrel{.}{\sim} \mathcal{N}_6(0,\Sigma)$$

(c) The distribution of $n(\bar{X} - \mu)'\Sigma^{-1}(\bar{X} - \mu)$

$$n(\bar{X} - \mu)'\Sigma^{-1}(\bar{X} - \mu) \sim \mathcal{X}_6^2$$

(d) The approximate distribution of $n(\bar{X} - \mu)'S^{-1}(\bar{X} - \mu)$

$$n(\bar{X}-\mu)'S^{-1}(\bar{X}-\mu) \sim \mathcal{X}_6^2$$

1

- 3. Consider the used_car data. For each of 10 used cars, we have the numeric variables Age (age of the car) and Price (sale price of car, in \$1,000s)
 - > used_car <- read.csv("used_cars.csv")</pre>
 - (a) Determine the power transformation $\hat{\lambda}_1$ that makes the x_1 values approximately normal. Construct a Q-Q plot for the transformed data.
 - (b) Determine the power transformation $\hat{\lambda}_2$ that makes the x_2 values approximately normal. Construct a Q-Q plot for the transformed data.
 - (c) Determine the power transformations $\hat{\lambda}' = \left[\hat{\lambda}_1, \hat{\lambda}_2\right]$ that make the $[x_1, x_2]$ values approximately multivariate normal. Compare the results with those from above.
- 4. Consider the advertising data. For each of 200 strategies, we have three numeric variables that influence the sales: TV, radio, and Newspaper.
 - > advertising <- read.csv("advertising.csv", row.names = 1)</pre>
 - (a) Construct univariate Q-Q plots for each of the three variables. Also make the three pairwise scatterplots. Does the multivariate normal assumption seem reasonable?
 - (b) Determine the 95% confidence ellipsoid for μ . Where is it centered? What are its axes and corresponding half-lengths?
 - (c) Compute 95% T2 simultaneous confidence intervals for the three mean components.
 - (d) Compute 95% Bonferroni simultaneous confidence intervals for the three mean components.
 - (e) Carry out a Hotelling's T^2 test of the null hypothesis H0 : $\mu' = [150.0, 20.0, 30.0]$ at $\alpha = 0.05$. What is the test statistic, critical value, and the p-value? What is your conclusion regarding H0?
 - (f) Is $\mu' = [150.0, 20.0, 30.0]$ inside the 95% confidence ellipse you computed in part (b)? Is this consistent with your findings in part (e)? Hint: It should be.
 - (g) Use the bootstrap to test the same null hypothesis as in part (e), now using this as your test statistic

$$\Lambda = \left(\frac{|S|}{|S_0|}\right)^{n/2},\,$$

where

$$S = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})(x_j - \bar{x})'$$

is the sample covariance matrix, and

$$S_0 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})(x_j - \bar{x})'$$

is the sample covariance matrix under the assumption that H_0 is true. So that all our answers match, first do set.seed(2), and use B = 500 bootstrap iterations. What is the p-value?