

SEQUENCE LISTING

<110> BIER, ETHAN
YU, KWEON

<120> PEPTIDE INHIBITOR OF TGF-BETA GROWTH FACTORS

<130> 041673/2007

<140> US 09/215,569
<141> 1998-12-16

<150> US 60/069,701
<151> 1997-12-16

<160> 12

<170> PatentIn Ver. 2.1

<210> 1
<211> 879
<212> DNA
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 1
atggccaaaca agctgaggaa atcgaaacgccc atcgaaatggg ccagccgcac cggcacagta
60
ccgtcttgg aaaggagctg ctgccacacg gaggacgcgg cactggagcc ccaaggcggc
120
aaaaccagcc atagagaaca agccccccatc ctgcgcgcacc tgagccaaact gagccacctg
180
ctcatcatacg ccccaactgtc gategttgc ttgcgcgcgg tgacggaggg ccgcggcat
240
ggccgcgtca tttaggagga gtccgcacacg ggccaggccgtt ccaacccgacc agccgttcacc
300
aatgcgcagt ttggccaaagt tttgcgcgaa ttggggtcac cttggatgc ggattttgggt
360
ccacccttcg gagttatgtc ctgcataaag tttgcgcgcgc cttggatacc caagaaggcc
420
ccatcgatgg caccgttcac gtgtgcgaat ataaaaaaacg agtgcgcgcgc ggccaaatgc
480
gtatgttcac ttcgtttgcc cggaaaaatgc tgcacagacat gtcgcgcgcgc tccaaacgt
540
aaaggatgtatgtt cttggatgtt gccgtgcgc aatgcacagg aagagccaa catgaaacat
600
tacgtatgtt tgcataacggg cccgcaccc tattttcac aggggtgggaa aatgcacat
660
atgtacacca ctttacatcc gcaaaatgtt gtggccaccc cccgtttatc gttccacaaag
720

aagaatctat actactccctt ctacacctca tcgcgaatcg gtcgtccgct tgccattcaa
780
ttcgttgatg atgcgggtgt aatcctggag gagcatcaac tggagaccac cttgcgcggc
840
actctcagtg tctatcagaa tgccacgggc aagatctga
879

<210> 2
<211> 292
<212> PRT
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 2
Met Ala Asn Lys Leu Arg Lys Ser Asn Ala Ile Glu Trp Ala Thr Ala
1 5 10 15

Thr Gly Thr Val Pro Leu Leu Glu Arg Ser Cys Cys His Ser Glu Asp
20 25 30

Ala Ala Leu Glu Pro Gln Ala Ser Lys Thr Ser His Arg Glu Gln Ala
35 40 45

Pro Ile Leu Arg His Leu Ser Gln Leu Ser His Leu Leu Ile Ile Ala
50 55 60

Gly Leu Leu Ile Val Cys Leu Ala Gly Val Thr Glu Gly Arg Arg His
65 70 75 80

Ala Pro Leu Met Phe Glu Glu Ser Asp Thr Gly Arg Arg Ser Asn Arg
85 90 95

Pro Ala Val Thr Glu Cys Gln Phe Gly Lys Val Leu Arg Glu Leu Gly
100 105 110

Ser Thr Trp Tyr Ala Asp Leu Gly Pro Pro Phe Gly Val Met Tyr Cys
115 120 125

Ile Lys Cys Glu Cys Val Ala Ile Pro Lys Lys Arg Arg Ile Val Ala
130 135 140

Arg Val Gln Cys Arg Asn Ile Lys Asn Glu Cys Pro Pro Ala Lys Cys
145 150 155 160

Asp Asp Pro Ile Ser Leu Pro Gly Lys Cys Cys Lys Thr Cys Pro Gly
165 170 175

Asp Arg Asn Asp Thr Asp Val Ala Leu Asp Val Pro Val Pro Asn Glu
180 185 190

Glu Glu Glu Arg Asn Met Lys His Tyr Ala Ala Leu Leu Thr Gly Arg
195 200 205

Thr Ser Tyr Phe Leu Lys Gly Glu Glu Met Lys Ser Met Tyr Thr Thr
210 215 220

Tyr Asn Pro Gln Asn Val Val Ala Thr Ala Arg Phe Leu Phe His Lys

225 230 235 240
Lys Asn Leu Tyr Tyr Ser Phe Tyr Thr Ser Ser Arg Ile Gly Arg Pro
 245 250 255
Arg Ala Ile Gln Phe Val Asp Asp Ala Gly Val Ile Leu Glu Glu His
 260 265 270
Gln Leu Glu Thr Thr Leu Ala Gly Thr Leu Ser Val Tyr Gln Asn Ala
 275 280 285
Thr Gly Lys Ile
 290

<210> 3
<211> 978
<212> DNA
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 3
atggccaaca agctgagggaa atcgaacgcc atcgaatggg ccacggccac cggcacagta
60
ccgctctgc aaaggagctg ctgccacagc gaggacgccc cactggagcc ccaagcgagc
120
aaaaccagcc atagagaaca agccccatc ctgcgccacc tgagccaact gagccacctg
180
ctcatcatcg ccggactgtc gatgtctgc ttggggggcg tgacggaggg ccgcggcat
240
cccccgctca tttcgagga gtccgacacg ggcaggcggt ccaaccgacc agcggtcacc
300
aatgccagt ttggcaaagt tttgcgcgaa ttgggttcca cctggtatgc ggatttgggt
360
ccacccttcg gagttatgta ctgcataaag tgtaatgtg tggcgatacc caagaagcgg
420
cgatcggttg caegcgatcca gtgtgcgaat ataaaaaagg agtgcggggcc ggccaaatgc
480
gtatgatcca tctcggttcc cggaaaatgc tgcaagacat gtccggcgat tcgaaacgt
540
acggatgttag cttggatgt gcccggtcccc aatgaagagg aagagcgcaa catgaaacat
600
tacgctgcgt tgctaaccggg cccacccatc tatttcctca agggtgagga aatgaagtcc
660
atgtacacca cctacaatcc gcagaatgtg gtggccaccc cccgtttctt gttccacaag
720
aaataatatat actacttcatt ctacacccatca tccgcataatcg gtccgtcccgat tgccattca
780
ttcggttgcgt atgcgggtgt aatccctggag ggcataac tggagaccac cttggggggc
840
actctcgttg tctatcagaatcc tccacccggcc aagatcgccg cccggctcgat ggtacccatca
900
ggggatcttt gggaaaggaaatccatccatcg tgggtgtgaca taattggaca aactacatca
960
agagatttaa agctctaa
978

<210> 4
<211> 325
<212> PRT
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 4
Met Ala Asn Lys Leu Arg Lys Ser Asn Ala Ile Glu Trp Ala Thr Ala
1 5 10 15

Thr Gly Thr Val Pro Leu Leu Glu Arg Ser Cys Cys His Ser Glu Asp
20 25 30

Ala Ala Leu Glu Pro Gln Ala Ser Lys Thr Ser His Arg Glu Gln Ala
35 40 45

Pro Ile Leu Arg His Leu Ser Gln Leu Ser His Leu Leu Ile Ile Ala
50 55 60

Gly Leu Leu Ile Val Cys Leu Ala Gly Val Thr Glu Gly Arg Arg His
65 70 75 80

Ala Pro Leu Met Phe Glu Glu Ser Asp Thr Gly Arg Arg Ser Asn Arg
85 90 95

Pro Ala Val Thr Glu Cys Gln Phe Gly Lys Val Leu Arg Glu Leu Gly
100 105 110

Ser Thr Trp Tyr Ala Asp Leu Gly Pro Pro Phe Gly Val Met Tyr Cys
115 120 125

Ile Lys Cys Glu Cys Val Ala Ile Pro Lys Lys Arg Arg Ile Val Ala
130 135 140

Arg Val Gln Cys Arg Asn Ile Lys Asn Glu Cys Pro Pro Ala Lys Cys
145 150 155 160

Asp Asp Pro Ile Ser Leu Pro Gly Lys Cys Cys Lys Thr Cys Pro Gly
165 170 175

Asp Arg Asn Asp Thr Asp Val Ala Leu Asp Val Pro Val Pro Asn Glu
180 185 190

Glu Glu Glu Arg Asn Met Lys His Tyr Ala Ala Leu Leu Thr Gly Arg
195 200 205

Thr Ser Tyr Phe Leu Lys Gly Glu Glu Met Lys Ser Met Tyr Thr Thr
210 215 220

Tyr Asn Pro Gln Asn Val Val Ala Thr Ala Arg Phe Leu Phe His Lys
225 230 235 240

Lys Asn Leu Tyr Tyr Ser Phe Tyr Thr Ser Ser Arg Ile Gly Arg Pro
245 250 255

Arg Ala Ile Gln Phe Val Asp Asp Ala Gly Val Ile Leu Glu Glu His
260 265 270

Gln Leu Glu Thr Thr Leu Ala Gly Thr Leu Ser Val Tyr Gln Asn Ala
275 280 285

Thr Gly Lys Ile Gly Arg Gly Ser Arg Val Pro Leu Glu Asp Leu Cys
290 295 300

Glu Gly Thr Leu Leu Leu Trp Cys Asp Ile Ile Gly Asn Thr Thr Tyr
305 310 315 320

Arg Asp Leu Lys Leu
325

<210> 5
<211> 978
<212> DNA
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 5
atggccaaca agctgagggaa atcgaacgcc atcgaatggg ccacggccac cggcacagta
60
ccgctcctgg aaaggagctg ctgccacagc gaggacgccc cactggagcc ccaagcgagc
120
aaaaccagcc atagagaaca agccccatc ctgcgccacc tgagccaact gagccacctg
180
ctcatcatacg ccggactgtc gategtctgc ttggcggcg tgacggaggg ccgcccggcat
240
gcgcgcgtca tttcgagga gtccgacacg ggcaaggcggt ccaaccgacc agcggtcacc
300
aatgcagt ttggcaaagt tttgogogaa ttggggtcca cgcagtatgc ggattttgggt
360
ccacccttcg gagttatgtt ctgcataaag tgtgaatgtg tggcgataacc caagaagcgg
420
cgcatcggttgc aacgggttca gtgtcgcaat ataaaaaacc agtgcccgcc ggccaaatgc
480
gatgatccca tctcggttgc cggaaaatgc tgcaagaccc gtcccgccgat tcgaaaacgt
540
acggatgttag cttggatgt gcccggtccc aatgaagagg aagagcgcaa catgaaacat
600
tacgctgcgt tgctaacggg cccgcacccccc tatttcctca agggtgagga aatgaagtc
660
atgtacacca cccacaatcc gcagaatgtg gtggccaccc cccgtttccgtt gttccacaag
720
aaaaatatat actacttcatt ctacacccca tccgcataatcg gtccgtcccgat tgccattcaa
780
ttcggttgcgt atgggggtgt aatccgttgcg gaggatccaa tggagaccac cttggccgggc
840
acttcgttgcgt tctatcagaa tggccacgggc aagatccggcc ggggttgcgat ggtacccctca
900
gggatcttt gtgaagggaa cttactttgt tggtgtgaca taattggaca aactacccatc
960
agagatttaa agctctaa
978

<210> 6
<211> 325
<212> PRT
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 6
Met Ala Asn Lys Leu Arg Lys Ser Asn Ala Ile Glu Trp Ala Thr Ala
1 5 10 15

Thr Gly Thr Val Pro Leu Leu Glu Arg Ser Cys Cys His Ser Glu Asp
20 25 30

Ala Ala Leu Glu Pro Gln Ala Ser Lys Thr Ser His Arg Glu Gln Ala
35 40 45

Pro Ile Leu Arg His Leu Ser Gln Leu Ser His Leu Leu Ile Ile Ala
50 55 60

Gly Leu Leu Ile Val Cys Leu Ala Gly Val Thr Glu Gly Arg Arg His
65 70 75 80

Ala Pro Leu Met Phe Glu Glu Ser Asp Thr Gly Arg Arg Ser Asn Arg
85 90 95

Pro Ala Val Thr Glu Cys Gln Phe Gly Lys Val Leu Arg Glu Leu Gly
100 105 110

Ser Thr Ala Tyr Ala Asp Leu Gly Pro Pro Phe Gly Val Met Tyr Cys
115 120 125

Ile Lys Cys Glu Cys Val Ala Ile Pro Lys Lys Arg Arg Ile Val Ala
130 135 140

Arg Val Gln Cys Arg Asn Ile Lys Asn Glu Cys Pro Pro Ala Lys Cys
145 150 155 160

Asp Asp Pro Ile Ser Leu Pro Gly Lys Cys Cys Lys Thr Cys Pro Gly
165 170 175

Asp Arg Asn Asp Thr Asp Val Ala Leu Asp Val Pro Asp Pro Asn Glu
180 185 190

Glu Glu Glu Arg Asn Met Lys His Tyr Ala Ala Leu Leu Thr Gly Arg
195 200 205

Thr Ser Tyr Phe Leu Lys Gly Glu Glu Met Lys Ser Met Tyr Thr Thr
210 215 220

Tyr Asn Pro Gln Asn Val Val Ala Thr Ala Arg Phe Leu Phe His Lys

225 230 235 240
Lys Asn Leu Tyr Tyr Ser Phe Tyr Thr Ser Ser Arg Ile Gly Arg Pro
245 250 255
Arg Ala Ile Gln Phe Val Asp Asp Ala Gly Val Ile Leu Glu Glu His
260 265 270
Lys Leu Glu Thr Thr Leu Ala Gly Thr Leu Ser Val Tyr Gln Asn Ala
275 280 285
Thr Gly Lys Ile Gly Arg Gly Ser Arg Val Pro Leu Glu Asp Leu Cys
290 295 300
Glu Gly Thr Leu Leu Leu Trp Cys Asp Ile Ile Gly Asn Thr Thr Tyr
305 310 315 320
Arg Asp Leu Lys Leu
325

<210> 7
<211> 1041
<212> DNA
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 7
atggccaaca agctgagggaa atcgaacgcc atcgaatggg ccacggccac cggcacagta
60
ccgctcctgg aaaggagctg ctgccacagc gaggacgccc cactggagcc ccaagcgagc
120
aaaaccagcc atagagaaca agccccatc ctgcgccacc tgagccaact gagccacctg
180
ctcatcatcg ccggactgtc gategtctgc ttggcgggcg tgacggaggg cgcggccat
240
gcgcgcgtca tgttcgagga gtccgcacacg ggccaggcggt ccaaccgacc agcggtcacc
300
gaatgcagt ttggcaaagt tttgcgcgaa ttgggtcca cctggtatgc ggatttgggt
360
ccaccccttcg gagttatgtc ctgcatacg tgtaatgtg tggcgatacc caagaagcgg
420
cgcatcggttgc acgcgttca gtgtcgcaat ataaaaaactc agtgcccgcc ggccaaatgc
480
gatgatccca tctcggttgc cggaaaatgc tgcaagaccc gtcccgccgat tcgaaacgt
540
acggatgttag cttggatgt gcccgtgcgc aatgaagagg aagagcgcaa catgaaacat
600
tacgctcggt tgctaacggg cgccgcctcc tatttcgtca agggtgagga aatgaagtc
660
atgtacacca cccacaatcc gcagaatgtg gtggccaccc cccgtttcc tttccacaag
720
aagaatctat accactcctt ctacacccca tgcgcatacg gtgcgtcccgat tgccattcaa
780
tcggatgtc atgggggtgt aatccctggag gaggatcaac tggagaccac cttggcgcc
840
actctcagtgc tccatcagaa tgcacggggc aagatcgcc gccggatcgat gcagcgccgc
900
ccatctttt accatacga tgttcgtca tatgggggt atccctatgc cgtcccgac
960
tatgcaggat cccatccata tgcgttcca gattacgtgc ctgcgtgcgg ccgcgattat
1020
aggacgacgc acgacaaatc a
1041

<210> 8
<211> 346
<212> PRT
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 8
Met Ala Asn Lys Leu Arg Lys Ser Asn Ala Ile Glu Trp Ala Thr Ala
1 5 10 15

Thr Gly Thr Val Pro Leu Leu Glu Arg Ser Cys Cys His Ser Glu Asp
20 25 30

Ala Ala Leu Glu Pro Gln Ala Ser Lys Thr Ser His Arg Glu Gln Ala
35 40 45

Pro Ile Leu Arg His Leu Ser Gln Leu Ser His Leu Leu Ile Ile Ala
50 55 60

Gly Leu Leu Ile Val Cys Leu Ala Gly Val Thr Glu Gly Arg Arg His
65 70 75 80

Ala Pro Leu Met Phe Glu Glu Ser Asp Thr Gly Arg Arg Ser Met Arg
85 90 95

Pro Ala Val Thr Glu Cys Gln Phe Gly Lys Val Leu Arg Glu Leu Gly
100 105 110

Ser Thr Trp Tyr Ala Asp Leu Gly Pro Pro Phe Gly Val Met Tyr Cys
115 120 125

Ile Lys Cys Glu Cys Val Ala Ile Pro Lys Lys Arg Arg Ile Val Ala
130 135 140

Arg Val Gln Cys Arg Asn Ile Lys Asn Glu Cys Pro Pro Ala Lys Cys
145 150 155 160

Asp Asp Pro Ile Ser Leu Pro Gly Lys Cys Cys Lys Thr Cys Pro Gly
165 170 175

Asp Arg Asn Asp Thr Asp Val Ala Leu Asp Val Pro Val Pro Asn Glu
180 185 190

Glu Glu Glu Arg Asn Met Lys His Tyr Ala Ala Leu Thr Gly Arg
195 200 205

Thr Ser Tyr Phe Leu Lys Gly Glu Glu Met Lys Ser Met Tyr Thr Thr
210 215 220

Tyr Asn Pro Gln Asn Val Val Ala Thr Ala Arg Phe Leu Phe His Lys

225	230	235	240
Lys Asn Leu Tyr Tyr Ser Phe Tyr Thr Ser Ser Arg Ile Gly Arg Pro			
245		250	255
Arg Ala Ile Gln Phe Val Asp Asp Ala Gly Val Ile Leu Glu Glu His			
260		265	270
Gln Leu Glu Thr Thr Leu Ala Gly Thr Leu Ser Val Tyr Gln Met Ala			
275		280	285
Thr Gly Lys Ile Gly Arg Gly Ser Arg Asn Arg Gly Arg Ile Phe Tyr			
290		295	300
Pro Tyr Asp Val Pro Asp Tyr Ala Gly Tyr Pro Tyr Asp Val Pro Asp			
305		310	315
Tyr Ala Gly Ser Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ala Asn Cys			
325		330	335
Gly Arg Asp Tyr Lys Asp Asp Asp Asp LYS			
340		345	

<210> 9

<211> 213

<212> PRT

<213> Drosophila Short Gastrulation Gene (SOG)

<400> 9

Met	Asp	His	Ser	Gln	Cys	Leu	Val	Thr	Ile	Tyr	Ala	Leu	Met	Val	Phe
1				5				10				15			

Leu	Gly	Leu	Arg	Ile	Asp	Gln	Gly	Gly	Cys	Gln	His	Tyr	Leu	His	Ile
20					25							30			

Arg	Pro	Ala	Pro	Ser	Glu	Asn	Leu	Pro	Leu	Val	Asp	Leu	Ile	Glu	His
35					40							45			

Pro	Asp	Pro	Ile	Tyr	Asp	Pro	Lys	Glu	Lys	Asp	Glu	Leu	Asn	Glu	Thr
50					55					60					

Leu	Leu	Arg	Thr	Leu	Met	Val	Gly	His	Phe	Asp	Pro	Ile	Leu	Pro	Glu
65					70				75			80			

Glu	Arg	Leu	Gly	Val	Glu	Asp	Leu	Gly	Glu	Leu	Asp	Leu	Leu	Leu	Arg
85					90							95			

Gln	Lys	Pro	Ser	Gly	Ala	Met	Pro	Ala	Glu	Ile	Lys	Gly	Leu	Glu	Phe
100					105							110			

Tyr Glu Gly Leu Gln Ser Lys Lys His Arg Leu Ser Lys Lys Leu Arg
115 120 125

Arg Lys Leu Gln Met Trp Leu Trp Ser Gln Thr Phe Cys Pro Val Leu
130 135 140

Tyr Thr Trp Asn Asp Leu Gly Arg Tyr Val Lys Val Gly Ser Cys Tyr
145 150 155 160

Ser Lys Arg Ser Cys Ser Val Pro Glu Gly Met Val Cys Lys Ala Ala
165 170 175

Lys Ser Met His Leu Thr Ile Leu Arg Trp Arg Cys Gln Arg Arg Val
180 185 190

Gln Gln Lys Cys Ala Trp Ile Thr Ile Gln Tyr Pro Val Ile Ser Glu
195 200 205

Cys Lys Cys Ser Cys
210

<210> 10
<211> 53
<212> PRT
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 10
Val Asp Leu Ile Glu His Pro Asp Pro Ile Tyr Asp Pro Lys Glu Lys
1 5 10 15

Asp Leu Asn Glu Thr Leu Leu Arg Thr Leu Met Val Gly His Phe Asp
20 25 30

Pro Ile Leu Pro Glu Glu Arg Leu Gly Val Glu Asp Leu Gly Glu Leu
35 40 45

Asp Leu Leu Leu Arg
50

<210> 11
<211> 4892
<212> DNA
<213> Short Gastrulation Gene (SOG)

<400> 11
atattagatg gacatgcata ataattattc atgtaactat gtgatttca ttttacacga
60
gtgttcagtc agaatttaaa attcttaaaa attgcaatca cggcttattt tacatattta
120
tgtatgcgtat ctcattatta ttattattat tatttgataa tatatttagca gctgttcaaa
180
tcatcaacaa gtataaaatt gaaaatgtta aaaattgaag cagtcttggg tttgcctgca
240
acatgttgcgtt gcccgtatgtt agatgttgcgtt gctgcgtatgtt gccgctgcgtt gttgccgtt
300
catgttgcgtt ccgtttggca actttataaa caoggagcggg attcagtcgt tcagggttcag
360
tctcttttga attgcgttggg attgcacatc ggtcggttggg ctttttgggt tcggcattta
420
gagagatacg atacgatccg atacgatccg atccagtcaca aaaatcaaataat tcaaaccgca
480
ctccccatcc ggtcgccatc atatacacgg cggatcgac cgcagctatc tagtagataa
540
aaagtcgcgg agaacgcagt acgcataatag cgaaacgcga aaaaaataaa aaaaaaaagtc
600
gcgttgcgtt aatccctctt catacgagat cgacttattt ttccagagca agctaaacac
660
actagtgcata aaccataact atatatctaa ctaaggaaaa caaagtctcg aaactgaaaa
720
cgaaaaagcgc aaatttatgc agccgttaaa taaaaacaga aaccaaaaca taaaacacac
780
tatacaaatac atacaaaaca aaaacagcga atcaaatagt ataaaaaaaaa aataaataaa
840
tqaggaataa aaaaacagcgc aaatagaata aatccaataa atcggcgcgc gaaactccgc
900
tgtgttatct aatctgcaga agaagtacaa gaatcggtt tagaateggc tctatactat
960
atctatacac ctgatatacc tatatccatt gtgtgtgcga gtgtgtgcgt ggcgcaccc
1020
gtttttatatttatttgcgtt gttgttcata ctgtgaaacg tgcttttac aagccggcgt
1080
ttccaaaaatac aaaatactac aaatccaaatc aaatcatata cacatacata tcagtaaaaa
1140
aaaaacaaaaa aacacataaa catggccaaac aagctgagga aatcgaacgc ctcgaatgg
1200
gcacacggcgc cccgcacagt acgcgttcgt gaaaggaggt gctgcacacag cggggacgc
1260

gcactggagg cccaaggcag caaaaccagc catagagaac aagccccat cctgcgccac
1320
ctgagccaac tgagccacct gctcatcatc gccggactgc ttagtgcgtctg cttggcgccc
1380
gtgacggagg gccggccggca tcgccccgtc atgttcgagg agtccgacac gggcaggcgg
1440
tccaaaccgac cagcggtcac cgaatgccag tttggcaaag ttttgccgca attggggtcc
1500
acctggatcg cgattttggg tccacccttc ggagttatgt actgcataa gtgtgaatgt
1560
gtggcgatac ccaagaagcg ggcgcattgtt gcacgcgtcc agtgcgtcaa tatcaaaaac
1620
gagtgcccgcc cggccaaatg cgatgatccc atctcggtgc ccggaaaatg ctgcaagacc
1680
tgtcccgccg atcgaaacga tacggatgta gctttggatg tgcccggtgcc caatgaagag
1740
gaagagcgc acatgaaaca ttacgtcg tggtaacgg ggcgcacccctc stattcctc
1800
aagggtgagg aaatgaagt catgtacacc acctacaatc cgcaaatgt ggtggccacc
1860
gcccgtttcc tttccacaa gaagaatcta tactactct tctacacccat atcgcaatc
1920
gtgtcgccgc gtgcattca atcggttatg gatgggggtg taatcggttgc ggagcatcaa
1980
ctggagacca cttgggggg cacttcgtt gtctatcaga atgcacccggg caagatctgc
2040
gtgtcttggc gacgagttcc acgtgattac aacgcatacc tggggacgca tgcttcctccat
2100
tttgcctcc tttggggcaa caaacagcag ggaggttgg ctctggccgg aaagggtggcc
2160
aaatacacgg ccctgcagac ggagttttc agtgcgtac tggaggcacc acttccegt
2220
qcaaaaacgg atccccatg ggccggagcc ggtggcacag cgatcggtc caccagcagc
2280
gtgtccgcgtt catcgatgca ttccatctg gtcttcaatg gtgtctttgg tgcggaggag
2340
tacgccatgt cagcaatgag tgtaaaaatt gagctggcag aacggaaagga ggtgatcttc
2400
gatgagatcc cacgtgtggc caaaccctct ggagagatca atgtccgttgc gctgtcg
2460
ccatccca tacagaatct tcgactgttg tgggtggca aactccgtgt gacggtggag
2520
ccaaagaagt accccatctt gggatccag ggacacatcg tgacccggcc cgatcg
2580
atccatccaga ccctgtgtggc ggccacatgt ggaaatctt cgaccaagag cggggtttg
2640
gggtgggtt acttggaaatc cgatggatct ctggccatca acatcgaaac ggaccaagtg
2700
aacaccggg ataggccaa catcgatgg attgaggacg aggccaaagcg jaaggccaaag
2760

ctggaggatc tgacgccgag cttcaacttc aaccaggcca ttggtagtgt ggagaagttg
2820
ggtcccaagg tcctcgagtc gctgtatgcc ggccaactgg gcgttaatgt ggccaccgag
2880
catgagacga gcccgtatccg tggccgccta gtgcggcgtc cagtggccga tgctcggac
2940
tcggcggAAC ccattctgct gaagcgacag gagcacacgg atgcacagaa tccacatgcc
3000
gtcggcatgg cctggatgtc cattgacaac gagtgcaatc tgcaactacga ggtgacgctc
3060
aacggtgtgc ccgcggcaggaa tctgcagctg tatctggagg agaagccat cgaggcgatt
3120
ggagcgcacAG tgacgagggaa attgtcgag gaattcaacg gctccatct ggaaggctc
3180
ttcctcagca tgccatccgc cgaactgate aagctggaga tgagcgtctg ctatctggag
3240
gtccattcca agcactccaa acagcttctg ctgcgcggca aactgaagag caccaaggcg
3300
ccgggtcaact gcttccccgt ctatacgac aacaatgttc ccgtgcctgg cgaccacaat
3360
gataaccatt tggtaaacgg agagaccaag tgcttcaact cggaaegtt ctacaacgaa
3420
tcggagcatt ggcgcagtgc ccaggattcc tgcagatgt ggcgtgttt ggcgtggccaa
3480
cacagtttgcg aggtcatcaa gtgtccgcgtt ctcaagtgcg agtccacggc gcaactgttt
3540
cagagtgtatg gtgaatgtcg tccagctgt gtgcggcaaga aggaggccgc cgactattca
3600
gcccacatcc ctgcgcggccac caatgccacc gatttgctgc aacagcgacg cggctgcgcg
3660
ctggggcgago agttccatcc cgcgggtgcg agttggcato cattctgtcc gcccaatggc
3720
ttcgataacct gcaccacctg cagctgcgtat ccctgaccc tccagatgg ctgtccccgg
3780
ctcgatctgcg cgcgttgcg gtgcgcggcgt aagtggcgt atcgccaga caagaaggca
3840
tgcgtcaaga tctgtccggc gggcaagcg agcgttccaa atggacacaa gacgacggcg
3900
aacaatccaa atgtgttgcg ggcgttggcc atgcgcgtat cgcgggtca cagtgcggcg
3960
gagggttctgg ccaacggggg atgcacgggtg gtcaacaagg tgcgtcgagaa cggccaggag
4020
tggcatccga tcctgtatgtc ccacggcgag cagaagtgcg tcaagtgcg ctgcacaggac
4080
tccaaagggtga actggatgtc caaggatgtc tccgttccaa cgtgcgcggca gcagacacgc
4140
ggacccggca aacggcgatgtt gttcgagaaa cggacggcg cttgtccggc cttgtatgtac
4200
ttctgtccaa ccactgcgcg gagatcgagg cgcacccaca agaggcggc gcatcatca
4260

cagcgatcct ccagctgagc ggctccacgt gacggatggg atcccaatcc agtatacgat
4320
ccttggcggc aggggagcga accaatcact cactcactca ccaccactca gtgtactcag
4380
tgtgcaccac ccaaacacac acacacacac acacacacaa ccacacaaca ctcacaccca
4440
catctacaca gacacacaga cagccacaaa agcgaacgcf cacacagact tgtgcaagga
4500
gttgcataaga tcgttgttgc tatcttatca tgtggcagca atgagaactt gtattatata
4560
tatgaatcac ggaggagaaa acgttaggaga gaaatctcac aaaaaatata tatatcttat
4620
ggaggaaaaac ggtagtaata gagagagaga gagagggaaag gagagagtct aatgagatcc
4680
ttggaaaagg acattaaac cagtgcagtt tgctttaaat tctccagcgc agaattttct
4740
attgaaagca ttttctgaat ttctttcgc agttacccca cccgtgtaac ccaatcccct
4800
ccccctccca accaacaaac accaaaaaaa aaaaactaaa aacattaaaa tacaatttta
4860
atttattaca aaacaaaaac aaaaaaaaaa aa
4892

<210> 12
<211> 1038
<212> PRT
<213> Drosophila Short Gastrulation Gene (SOG)

<400> 12
Met Ala Asn Lys Leu Arg Lys Ser Asn Ala Ile Glu Trp Ala Thr Ala
1 5 10 15

Thr Gly Thr Val Pro Leu Leu Glu Arg Ser Cys Cys His Ser Glu Asp
20 25 30

Ala Ala Leu Glu Pro Gln Ala Ser Lys Thr Ser His Arg Glu Gln Ala
35 40 45

Pro Ile Leu Arg His Leu Ser Gln Leu Ser His Leu Leu Ile Ile Ala
50 55 60

Gly Leu Leu Ile Val Cys Leu Ala Gly Val Thr Glu Gly Arg Arg His
65 70 75 80

Aia Pro Leu Met Phe Glu Glu Ser Asp Thr Gly Arg Arg Ser Asn Arg
85 90 95

Pro Ala Val Thr Glu Cys Gln Phe Gly Lys Val Leu Arg Glu Leu Gly
100 105 110

Ser Thr Trp Tyr Ala Asp Leu Gly Pro Pro Phe Gly Val Met Tyr Cys
115 120 125

Ile Lys Cys Glu Cys Val Ala Ile Pro Lys Lys Arg Arg Ile Val Ala
130 135 140

Arg Val Gln Cys Arg Asn Ile Lys Asn Glu Cys Pro Pro Ala Lys Cys
145 150 155 160

Asp Asp Pro Ile Ser Leu Pro Gly Lys Cys Cys Lys Thr Cys Pro Gly
165 170 175

Asp Arg Asn Asp Thr Asp Val Ala Leu Asp Val Pro Val Pro Asn Glu
180 185 190

Glu Glu Glu Arg Asn Met Lys His Tyr Ala Ala Leu Leu Thr Gly Arg
195 200 205

Thr Ser Tyr Phe Leu Lys Gly Glu Glu Met Lys Ser Met Tyr Thr Thr
210 215 220

Tyr Asn Pro Gln Asn Val Val Ala Thr Ala Arg Phe Leu Phe His Lys

225	230	235	240
Lys Asn Leu Tyr Tyr Ser Phe Tyr Thr Ser Ser Arg Ile Gly Arg Pro			
245		250	255
Arg Ala Ile Gln Phe Val Asp Asp Ala Gly Asx Ile Leu Glu Glu His			
260		265	270
Gln Leu Glu Thr Thr Leu Ala Gly Thr Leu Ser Val Tyr Gln Asn Ala			
275	280		285
Thr Gly Lys Ile Cys Gly Val Trp Arg Arg Val Pro Arg Asp Tyr Lys			
290	295		300
Arg Ile Leu Arg Asp Asp Arg Leu His Val Val Leu Leu Trp Gly Asn			
305	310	315	320
Lys Gln Gln Ala Glu Leu Ala Leu Ala Gly Lys Val Ala Lys Tyr Thr			
325		330	335
Ala Leu Gln Thr Glu Leu Phe Ser Ser Leu Leu Glu Ala Pro Leu Pro			
340		345	350
Asp Gly Lys Thr Asp Pro Gln Leu Ala Gly Ala Gly Gly Thr Ala Ile			
355	360		365
Val Ser Thr Ser Ser Gly Ala Ala Ser Ser Met His Leu Thr Leu Val			
370		375	380
Phe Asn Gly Val Phe Gly Ala Glu Glu Tyr Ala Asp Ala Ala Leu Ser			
385	390	395	400
Val Lys Ile Glu Leu Ala Glu Arg Lys Glu Val Ile Phe Asp Glu Ile			
405		410	415
Pro Arg Val Arg Lys Pro Ser Ala Glu Ile Asn Val Leu Glu Leu Ser			
420		425	430
Ser Pro Ile Ser Ile Gln Asn Leu Arg Leu Met Ser Arg Gly Lys Leu			
435	440		445
Leu Leu Thr Val Glu Ser Lys Lys Tyr Pro His Leu Arg Ile Gln Gly			
450	455		460
His Ile Val Thr Arg Ala Ser Cys Glu Ile Phe Gln Thr Leu Leu Ala			
465	470	475	480
Pro His Ser Ala Glu Ser Ser Thr Lys Ser Ser Gly Leu Ala Trp Val			
485		490	495

Tyr Leu Asn Thr Asp Gly Ser Leu Ala Tyr Asn Ile Glu Thr Glu His
500 505 510

Val Asn Thr Arg Asp Arg Pro Asn Ile Ser Leu Ile Glu Glu Gln Gly
515 520 525

Lys Arg Lys Ala Lys Leu Glu Asp Leu Thr Pro Ser Phe Asn Phe Asn
530 535 540

Gln Ala Ile Gly Ser Val Glu Lys Leu Gly Pro Lys Val Leu Glu Ser
545 550 555 560

Leu Tyr Ala Gly Glu Leu Gly Val Asn Val Ala Thr Glu His Glu Thr
565 570 575

Ser Leu Ile Arg Gly Arg Leu Val Pro Arg Pro Val Ala Asp Ala Arg
580 585 590

Asp Ser Ala Glu Pro Ile Leu Leu Lys Arg Gln Glu His Thr Asp Ala
595 600 605

Gln Asn Pro His Ala Val Gly Met Ala Trp Met Ser Ile Asp Asn Glu
610 615 620

Cys Asn Leu His Tyr Glu Val Thr Leu Asn Gly Val Pro Ala Gln Asp
625 630 635 640

Leu Gln Leu Tyr Leu Glu Glu Lys Pro Ile Glu Ala Ile Gly Ala Pro
645 650 655

Val Thr Arg Lys Leu Leu Glu Glu Phe Asn Gly Ser Tyr Leu Glu Gly
660 665 670

Phe Phe Leu Ser Met Pro Ser Ala Glu Leu Ile Lys Leu Glu Met Ser
675 680 685

Val Cys Tyr Leu Glu Val His Ser Lys Met Ser Lys Cys Leu Leu Leu
690 695 700

Arg Gly Lys Leu Lys Ser Thr Lys Val Pro Gly His Cys Phe Pro Val
705 710 715 720

Tyr Thr Asp Asn Asn Val Pro Val Pro Gly Asp His Asn Asp Asn His
725 730 735

Leu Val Asn Gly Glu Thr Lys Cys Phe His Ser Gly Arg Phe Tyr Asn
740 745 750

Glu Ser Glu Gln Trp Arg Ser Ala Gln Asp Ser Cys Gln Met Cys Ala
755 760 765

Cys Leu Arg Gly Gln Ser Ser Cys Glu Val Ile Lys Cys Pro Ala Leu
770 775 780

Lys Cys Lys Ser Thr Glu Gln Leu Leu Gln Arg Asp Gly Glu Cys Cys
785 790 795 800

Pro Ser Cys Val Pro Lys Lys Glu Ala Ala Asp Tyr Ser Ala Gln Ser
805 810 815

Ser Pro Ala Thr Asn Ala Thr Asp Leu Leu Gln Gln Arg Arg Gly Cys
820 825 830

Arg Leu Gly Glu Gln Phe His Pro Ala Gly Ala Ser Trp His Pro Phe
835 840 845

Leu Pro Pro Asn Gly Phe Asp Thr Cys Thr Cys Ser Cys Asp Pro
850 855 860

Leu Thr Leu Glu Ile Arg Cys Pro Arg Leu Val Cys Pro Pro Leu Gln
865 870 875 880

Cys Ser Glu Lys Leu Ala Tyr Pro Pro Asp Lys Lys Ala Cys Cys Lys
885 890 895

Ile Cys Pro Glu Gly Tyr Gln Ser Ser Asn Gly His Lys Thr Thr
900 905 910

Pro Asn Asn Pro Asn Val Leu Gln Asp Gln Ala Met Gln Arg Ser Pro
915 920 925

Ser His Ser Ala Glu Glu Val Leu Ala Asn Gly Gly Cys Lys Val Val
930 935 940

Asn Lys Val Tyr Glu Asn Gly Gln Glu Trp His Pro Ile Leu Met Ser
945 950 955 960

His Gly Glu Gln Lys Cys Ile Lys Cys Arg Cys Lys Asp Ser Lys Val
965 970 975

Asn Cys Asp Ala Lys Arg Cys Ser Arg Ser Thr Cys Gln Gln Gln Thr
980 985 990

Arg Val Thr Ser Lys Arg Arg Leu Phe Glu Lys Pro Asp Ala Ala Ala
995 1000 1005

Pro Ala Ile Asp Glu Phe Cys Ser Thr Gln Cys Arg Arg Ser Arg Arg
1010 1015 1020

His His Lys Arg Gln Pro His His Gln Gln Arg Ser Ser Ser
1025 1030 1035