

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

Style Transfer by Relaxed Optimal Transport and Self-Similarity

Group 5: Houda GHALLAB Renzo MORALES Carlos ARGUILAR

SUMMARY

- 1. Method recap
- 2. Hyperparameters
- 3. User control
- 4. Examples and results
- 5. Conclusion

METHOD RECAP

Style

Combination

CHAPITRE 1: METHOD RECAP

Optimal Transport

The optimal transport is the problem that tries to find the transport map

$$\ell_r = \max\left(\frac{1}{n}\sum_{i}\min_{j}C_{ij}, \frac{1}{m}\sum_{i}\min_{i}C_{ij}\right)$$

Feature map

Iterative process: Gradient descent

Icomb Ic Is Convolutional Layers Fc Soft max

Pre-Trained VGG

$$L(X, I_C, I_S) = \frac{\alpha \ell_C + \ell_m + \ell_r + \frac{1}{\alpha} \ell_p}{2 + \alpha + \frac{1}{\alpha}}$$

3 Backpropagate, reconstruct

Alpha pondered content

$$L(X, I_C, I_S) = \frac{\alpha \ell_C + \ell_m + \ell_r + \frac{1}{\alpha} \ell_p}{2 + \alpha + \frac{1}{\alpha}}$$

Palette loss

Content loss

Moment loss

Style Loss

REMD Loss

HYPERPARAMETERS

CHAPITRE 2 : HYPERPARAMETERSCONTENT WEIGHT (α)

CHAPITRE 2: HYPERPARAMETERS

CONTENT WEIGHT (α)

The iterative process described previously is made for 4 different scales using the (upscaled) output of the previous scale as input, halving the content weight (α) for the next scale:

Optimization followed by upscaling

CHAPITRE 2: HYPERPARAMETERS LEARNING RATE (Ir)

Learning rate influences the **CONVERGENCE SPEED** and **STABILITY OF THE OPTIMIZATION PROCESS**

The algorithm strikes a balance between **rapid convergence** and **fine-tuning**. By a higher Ir, the algorithm can explore solution space more extensively.

USER CONTROL

CHAPITRE 3: USER CONTROL

Mask specific areas to have the same style:

Control is enforced by making the pairs of points in the same region have higher weight in the loss calculation

Content mask

Style mask

EXAMPLES AND RESULTS

Unguided Style Transfer

Varying content weight

 $\alpha = 0.2$ $\alpha = 0.5$

 $\alpha = 1$

 $\alpha = 2$

 $\alpha = 4$

Varying learning rate

 $\alpha = 1$

Ir = 0.2 76.451s

 $Ir = 0.02 \quad 77.522s$

Ir = 2e-3 76.912s

Ir = 2e-4 76.556s

Ir = 2e-5 76.691s

Ir = 2e-6 79.937s

Varying learning rate

Ir = 0.2 76.451s

Ir = 2e-3 76.912s

Ir = 2e-6 79.937s

Losses

 $\alpha = 1$ Ir = 2e-3

No REMD

No moment loss

Guided Style Transfer (masks)

Guided ST (runtime: ~273s)

Guided ST (runtime: ~273s)

- Algorithm implementation give good aesthetic results but takes a fairly big amount of time to run.
- User control with guided style can increase the control of the output by the user, but may not always generate better results for all applications.
- Runtime running with masks increases too much, making a excessive long runtime even in fairly powerful GPU's.

CHAPITRE 5: RESULTS AND TIME TO RUN

Impact of content weight alpha:

average running time on Colab's gpu: 74s

alpha = 0.01

THANK YOU FOR YOUR ATTENTION. ANY QUESTIONS?

