Linear Algebra

- Orthogonality -

Jinsun Park

Visual Intelligence and Perception Lab., CSE, PNU

Orthogonality

Orthogonality

- Let l be a line passing through the origin, and let Q be a point not on l. Find the point P on l that is closest to Q
- Condition: *QP* is perpendicular to *OP*

 We can think of orthogonality as a generalization of the concept of perpendicularity to any vector space with an inner product

Orthogonality

The Scalar Product in \mathbb{R}^n

- Two vectors x and y in \mathbb{R}^n may be regarded as $n \times 1$ matrices
- The product $x^T y$ is called the *scalar product* of x and y

$$\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

• Given a vector x in either \mathbb{R}^2 or \mathbb{R}^3 , its *Euclidean length* can be defined in terms of the scalar product

$$\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{\frac{1}{2}} = \begin{cases} \sqrt{x_1^2 + x_2^2} & \text{if } \mathbf{x} \in \mathbb{R}^2 \\ \sqrt{x_1^2 + x_2^2 + x_3^2} & \text{if } \mathbf{x} \in \mathbb{R}^3 \end{cases}$$

- Given two nonzero vectors x and y as directed line segments starting at the same point, the angle between the two vectors is defined as the angle θ between the line segments
- The distance between the vectors can be measured by the length of the vector joining the terminal point of x to that of y
- Let x and y be vectors in either \mathbb{R}^2 or \mathbb{R}^3 . The distance between x and y is defined to be the number ||x-y||

• If x and y are two nonzero vectors in either \mathbb{R}^2 or \mathbb{R}^3 and θ is the angle between them, then

$$\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$$

Proof

The vectors \mathbf{x} , \mathbf{y} , and $\mathbf{y} - \mathbf{x}$ may be used to form a triangle as in Figure 5.1.1. By the law of cosines, we have

$$\|\mathbf{y} - \mathbf{x}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$$

and hence it follows that

$$\|\mathbf{x}\| \|\mathbf{y}\| \cos \theta = \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - \|\mathbf{y} - \mathbf{x}\|^2)$$

$$= \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - (\mathbf{y} - \mathbf{x})^T (\mathbf{y} - \mathbf{x}))$$

$$= \frac{1}{2} (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - (\mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{x} - \mathbf{x}^T \mathbf{y} + \mathbf{x}^T \mathbf{x}))$$

$$= \mathbf{x}^T \mathbf{y}$$

Law of cosines

https://en.wikipedia.org/wiki/Law_of_cosines

 $b^2 = a^2 + c^2 - 2ac\cos\beta.$

• If x and y are nonzero vectors, we can specify their directions by forming unit vectors

$$u = \frac{1}{\|x\|}x \qquad v = \frac{1}{\|y\|}y$$

• If θ is the angle between x and y, then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \mathbf{u}^T \mathbf{v}$$

$$\mathbf{y} - \mathbf{x}$$

$$\mathbf{y} - \mathbf{y}$$

$$\mathbf{y} - \mathbf{y}$$

Cauchy-Schwarz Inequality

• If x and y are vectors in either \mathbb{R}^2 or \mathbb{R}^3 , then

$$|x^Ty| \leq ||x|| ||y||$$

with equality holding if and only if one of the vectors is 0 or one vector is a multiple of the other

Proof

$$(1) \mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$$

The inequality follows from (1). If one of the vectors is $\mathbf{0}$, then both sides of (2) are 0. If both vectors are nonzero, it follows from (1) that equality can hold in (2) if and only if $\cos \theta = \pm 1$. But this would imply that the vectors are either in the same or opposite directions and hence that one vector must be a multiple of the other.

- If $x^Ty = 0$, either one of the vectors is the zero vector or $\cos \theta = 0$. If $\cos \theta = 0$, the angle between the vectors is a right angle
- The vectors x and y in either \mathbb{R}^2 or \mathbb{R}^3 are said to be *orthogonal* if $x^Ty = 0$
 - The vector **0** is orthogonal to every vector in the vector space

- Let x and y be nonzero vectors in either \mathbb{R}^2 or \mathbb{R}^3
- We would like to write x as a sum of the form p + z
 - p is in the direction of y (and the unit vector $u \parallel y$)
 - \blacksquare z is orthogonal to p
- We wish to find α such that $\boldsymbol{p} = \alpha \boldsymbol{u}$ is orthogonal to $\boldsymbol{z} = \boldsymbol{x} \alpha \boldsymbol{u}$.
- The scalar α must satisfy

$$\alpha = \|x\| \cos \theta = \frac{\|x\| \|y\| \cos \theta}{\|y\|} = \frac{x^T y}{\|y\|}$$

• The scalar α is called the *scalar projection* of x onto y, and the vector p is called the vector projection of x onto y

• Scalar projection of x onto y

$$\alpha = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$$

Vector projection of x onto y

$$p = \alpha u = \alpha \frac{1}{\|\mathbf{y}\|} \mathbf{y} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y}$$

11

Ex 5. Determine the coordinates of Q

Solution

The vector $\mathbf{w} = (3, 1)^T$ is a vector in the direction of the line $y = \frac{1}{3}x$. Let $\mathbf{v} = (1, 4)^T$. If Q is the desired point, then Q^T is the vector projection of \mathbf{v} onto \mathbf{w} .

$$Q^{T} = \left(\frac{\mathbf{v}^{T}\mathbf{w}}{\mathbf{w}^{T}\mathbf{w}}\right)\mathbf{w} = \frac{7}{10} \begin{bmatrix} 3\\1 \end{bmatrix} = \begin{bmatrix} 2.1\\0.7 \end{bmatrix}$$

Thus, Q = (2.1, 0.7) is the closest point.

- If N is a nonzero vector and P_0 is a fixed point, the set of points P such that $\overrightarrow{P_0P}$ is orthogonal to N forms a plane π in 3-space that passes through P_0
- The vector N and the plane π are said to be normal to each other
- A point P = (x, y, z) will lie on π if and only if

$$\left(\overrightarrow{P_0P}\right)^T N = 0$$

• If $N = (a, b, c)^T$ and $P_0 = (x_0, y_0, z_0)$, this equation can be written in the form

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Ex 6. Find the equation of the plane passing through the point (2, -1, 3) and normal to the vector $N = (2, 3, 4)^T$

Solution

$$\overrightarrow{P_0P} = (x-2, y+1, z-3)^T$$
. The equation is $(\overrightarrow{P_0P})^T \mathbf{N} = 0$, or

$$2(x-2) + 3(y+1) + 4(z-3) = 0$$

Ex 7. Find the equation of the plane that passes through the points

$$P_1 = (1, 1, 2)$$

$$P_2 = (2, 3, 3)$$

$$P_1 = (1, 1, 2)$$
 $P_2 = (2, 3, 3)$ $P_3 = (3, -3, 3)$

Solution

Let

$$\mathbf{x} = \overrightarrow{P_1 P_2} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{y} = \overrightarrow{P_1 P_3} = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}$

The normal vector \mathbf{N} must be orthogonal to both \mathbf{x} and \mathbf{y} . If we set

$$\mathbf{N} = \mathbf{x} \times \mathbf{y} = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$$

then N will be a normal vector to the plane that passes through the given points. We can then use any one of the points to determine the equation of the plane. Using the point P_1 , we see that the equation of the plane is

$$6(x-1) + (y-1) - 8(z-2) = 0$$

15

Ex 8. Find the distance from the point (2,0,0) to the plane x+2y+2z=0

Solution

The vector $\mathbf{N} = (1, 2, 2)^T$ is normal to the plane and the plane passes through the origin. Let $\mathbf{v} = (2, 0, 0)^T$. The distance d from (2, 0, 0) to the plane is simply the absolute value of the scalar projection of v onto N. Thus,

$$d = \frac{|\mathbf{v}^T \mathbf{N}|}{\|\mathbf{N}\|} = \frac{2}{3}$$

The Scalar Product in \mathbb{R}^n

Ex 8. Find the distance from the point (2,0,0) to the plane x+2y+2z=0

The Scalar Product in \mathbb{R}^n

• For any nonzero vectors x and y in \mathbb{R}^3

$$||x \times y|| = ||x|| ||y|| \sin \theta$$

Proof

$$\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{(x^T y)^2}{\|x\|^2 \|y\|^2}} = \frac{\sqrt{\|x\|^2 \|y\|^2 - (x^T y)^2}}{\|x\| \|y\|}$$

$$||\mathbf{x}|| ||\mathbf{y}|| \sin \theta = \sqrt{||\mathbf{x}||^2 ||\mathbf{y}||^2 - (\mathbf{x}^T \mathbf{y})^2} = \sqrt{(x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2) - (x_1 y_1 + x_2 y_2 + x_3 y_3)^2}$$

$$= \sqrt{(x_2 y_3 - x_3 y_2)^2 + (x_3 y_1 - x_1 y_3)^2 + (x_1 y_2 - x_2 y_1)^2} = ||\mathbf{x} \times \mathbf{y}||$$

• If either x or y is the zero vector, then $x \times y = 0$ and hence the norm of $x \times y$ will be 0

Orthogonality in \mathbb{R}^n

- The definitions that have been given for \mathbb{R}^2 and \mathbb{R}^3 can all be generalized to \mathbb{R}^n
- If $x \in \mathbb{R}^n$, then the Euclidean length of x is defined by

$$\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{\frac{1}{2}} = (x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}$$

- If x and y are two vectors in \mathbb{R}^n , then the distance between the vectors is ||x-y||
- The Cauchy-Schwarz inequality holds in \mathbb{R}^n . Consequently

$$-1 \le \frac{x^T y}{\|x\| \|y\|} \le 1$$

for any nonzero vectors \boldsymbol{x} and \boldsymbol{y} in \mathbb{R}^n

Orthogonality in \mathbb{R}^n

• The angle θ between two nonzero vectors x and y in \mathbb{R}^n is given by

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \qquad 0 \le \theta \le \pi$$

- The vectors x and y are said to be orthogonal if $x^Ty = 0$
 - The symbol ⊥ is used to indicate orthogonality
 - $x \perp y$
- If x and y are vectors in \mathbb{R}^n , then

$$||x + y||^2 = (x + y)^T (x + y) = ||x||^2 + 2x^T y + ||y||^2$$

• In the case that x and y are orthogonal, the equation becomes the *Pythagorean law*

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Exercises

11. Find the distance from the point (2, -3, 4) to the plane

$$8(x-2) + 6(y+2) - (z-4) = 0$$

• Let A be an $m \times n$ matrix and let $x \in N(A)$, the null space of A. Since Ax = 0,

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = 0$$
 for $i = 1, \dots, m$

- x is orthogonal to the i-th column vector of A^T for $i = 1, \dots, m$
- Each vector in N(A) is orthogonal to every vector in the column space of A^T
- Two subspaces X and Y of \mathbb{R}^n are said to be orthogonal if $x^Ty = 0$ for every $x \in X$ and every $y \in Y$.
- If X and Y are orthogonal, we write $X \perp Y$

• Are xy-plane and yz-plane orthogonal?

Orthogonal Subspaces

Ex 2. Let X be the subspace of \mathbb{R}^3 spanned by e_1 and e_2 , and let Y be the subspace spanned by e_3

Let Y be a subspace of \mathbb{R}^n . The set of all vectors in \mathbb{R}^n that are orthogonal to every vector in Y will be denoted Y^{\perp}

$$Y^{\perp} = \{ \boldsymbol{x} \in \mathbb{R}^n | \boldsymbol{x}^T \boldsymbol{y} = 0 \text{ for every } \boldsymbol{y} \in Y \}$$

- The set Y^{\perp} is called the *orthogonal complement* of Y (The symbol is sometimes read "Y perp")
- The subspaces $X = Span(e_1)$ and $Y = Span(e_2)$ of \mathbb{R}^3 are orthogonal, but they are not orthogonal complements

$$X^{\perp} = Span(\boldsymbol{e}_{2}, \boldsymbol{e}_{3})$$
 $Y^{\perp} = Span(\boldsymbol{e}_{1}, \boldsymbol{e}_{3})$

- If X and Y are orthogonal subspaces of \mathbb{R}^n , then $X \cap Y = \{0\}$
- If Y is a subspace of \mathbb{R}^n , then Y^{\perp} is also a subspace of \mathbb{R}^n
- Proof
- **Proof of (1)** If $\mathbf{x} \in X \cap Y$ and $X \perp Y$, then $\|\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{x} = 0$ and hence $\mathbf{x} = \mathbf{0}$.
- **Proof of (2)** If $\mathbf{x} \in Y^{\perp}$ and α is a scalar, then, for any $\mathbf{y} \in Y$,

$$(\alpha \mathbf{x})^T \mathbf{y} = \alpha (\mathbf{x}^T \mathbf{y}) = \alpha \cdot 0 = 0$$

Therefore, $\alpha \mathbf{x} \in Y^{\perp}$. If \mathbf{x}_1 and \mathbf{x}_2 are elements of Y^{\perp} , then

$$(\mathbf{x}_1 + \mathbf{x}_2)^T \mathbf{y} = \mathbf{x}_1^T \mathbf{y} + \mathbf{x}_2^T \mathbf{y} = 0 + 0 = 0$$

for each $y \in Y$. Hence, $x_1 + x_2 \in Y^{\perp}$. Therefore, Y^{\perp} is a subspace of \mathbb{R}^n .

- Let A be an $m \times n$ matrix. A vector $\mathbf{b} \in \mathbb{R}^m$ is in the column space of A if and only if $\mathbf{b} = A\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$
- If we think of A as a linear transformation mapping \mathbb{R}^n to \mathbb{R}^m , then the column space of A is the same as the range of A. Let us denote the range of A by R(A)

$$R(A) = \{ \boldsymbol{b} \in \mathbb{R}^m | \boldsymbol{b} = A\boldsymbol{x} \text{ for some } \boldsymbol{x} \in \mathbb{R}^n \} = \text{The column space of A}$$

The column space of A^T , $R(A^T)$, is a subspace of \mathbb{R}^n

$$R(A^T) = \{ \mathbf{y} \in \mathbb{R}^n | \mathbf{y} = A^T \mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^m \}$$

- $R(A^T)$ is essentially the same as the row space of A. Thus, $y \in R(A^T)$ if and only if y^T is in the row space of A
- For some $n \in N(A)$ and $y \in R(A^T)$, $n^T y = 0$, therefore, $N(A) \perp R(A^T)$

- If A is an $m \times n$ matrix, then $N(A) = R(A^T)^{\perp}$ and $N(A^T) = R(A)^{\perp}$
- Proof

On the one hand, we have already seen that $N(A) \perp R(A^T)$, and this implies that $N(A) \subset R(A^T)^{\perp}$. On the other hand, if **x** is any vector in $R(A^T)^{\perp}$, then **x** is orthogonal to each of the column vectors of A^T and, consequently, A**x** = **0**. Thus, **x** must be an element of N(A) and hence $N(A) = R(A^T)^{\perp}$. This proof does not depend on the dimensions of A. In particular, the result will also hold for the matrix $B = A^T$. Consequently,

$$N(A^{T}) = N(B) = R(B^{T})^{\perp} = R(A)^{\perp}$$

Orthogonal Subspaces

- If S is a subspace of \mathbb{R}^n , then dim S + dim $S^{\perp} = n$. Furthermore, if $\{x_1, \dots, x_r\}$ is a basis for S and $\{x_{r+1}, \dots, x_n\}$ is a basis for S^{\perp} , then $\{x_1, \dots, x_r, x_{r+1}, \dots, x_n\}$ is a basis for \mathbb{R}^n
- Proof

If
$$S = \{0\}$$
, then $S^{\perp} = \mathbb{R}^n$ and

$$\dim S + \dim S^{\perp} = 0 + n = n$$

If $S \neq \{0\}$, then let $\{\mathbf{x}_1, \dots, \mathbf{x}_r\}$ be a basis for S and define X to be an $r \times n$ matrix whose ith row is \mathbf{x}_i^T for each i. By construction, the matrix X has rank r and $R(X^T) = S$. By Theorem 5.2.1,

$$S^{\perp} = R(X^T)^{\perp} = N(X)$$

It follows from Theorem 3.6.5 that

$$\dim S^{\perp} = \dim N(X) = n - r$$

To show that $\{\mathbf{x}_1, \dots, \mathbf{x}_r, \mathbf{x}_{r+1}, \dots, \mathbf{x}_n\}$ is a basis for \mathbb{R}^n , it suffices to show that the n vectors are linearly independent. Suppose that

$$c_1\mathbf{x}_1 + \cdots + c_r\mathbf{x}_r + c_{r+1}\mathbf{x}_{r+1} + \cdots + c_n\mathbf{x}_n = \mathbf{0}$$

Let $\mathbf{v} = c_1 \mathbf{x}_1 + \dots + c_r \mathbf{x}_r$ and $\mathbf{z} = c_{r+1} \mathbf{x}_{r+1} + \dots + c_n \mathbf{x}_n$. We then have

$$y + z = 0$$
$$y = -z$$

Thus, y and z are both elements of $S \cap S^{\perp}$. But $S \cap S^{\perp} = \{0\}$. Therefore,

$$c_1\mathbf{x}_1 + \dots + c_r\mathbf{x}_r = \mathbf{0}$$
$$c_{r+1}\mathbf{x}_{r+1} + \dots + c_n\mathbf{x}_n = \mathbf{0}$$

Since $\mathbf{x}_1, \dots, \mathbf{x}_r$ are linearly independent,

$$c_1 = c_2 = \cdots = c_r = 0$$

Similarly, $\mathbf{x}_{r+1}, \dots, \mathbf{x}_n$ are linearly independent and hence

$$c_{r+1} = c_{r+2} = \dots = c_n = 0$$

So $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are linearly independent and form a basis for \mathbb{R}^n .

If U and V are subspaces of a vector space W and each $w \in W$ can be written uniquely as a sum u + v, where $u \in U$ and $v \in V$, then we say that W is a *direct sum* of U and V

$$W = U \oplus V$$

- If S is a subspace of \mathbb{R}^n , then $\mathbb{R}^n = S \oplus S^{\perp}$
- Proof

The result is trivial if either $S = \{0\}$ or $S = \mathbb{R}^n$. In the case where the dimension of S is r, 0 < r < n, it follows from Theorem 5.2.2 that each vector $\mathbf{x} \in \mathbb{R}^n$ can be represented in the form

$$\mathbf{x} = c_1 \mathbf{x}_1 + \dots + c_r \mathbf{x}_r + c_{r+1} \mathbf{x}_{r+1} + \dots + c_n \mathbf{x}_n$$

where $\{\mathbf{x}_1, \dots, \mathbf{x}_r\}$ is a basis for S and $\{\mathbf{x}_{r+1}, \dots, \mathbf{x}_n\}$ is a basis for S^{\perp} . If we let

$$\mathbf{u} = c_1 \mathbf{x}_1 + \dots + c_r \mathbf{x}_r$$
 and $\mathbf{v} = c_{r+1} \mathbf{x}_{r+1} + \dots + c_n \mathbf{x}_n$

then $\mathbf{u} \in S$, $\mathbf{v} \in S^{\perp}$, and $\mathbf{x} = \mathbf{u} + \mathbf{v}$. To show uniqueness, suppose that \mathbf{x} can also be written as a sum $\mathbf{y} + \mathbf{z}$, where $\mathbf{y} \in S$ and $\mathbf{z} \in S^{\perp}$. Thus,

$$\mathbf{u} + \mathbf{v} = \mathbf{x} = \mathbf{v} + \mathbf{z}$$

$$\mathbf{u} - \mathbf{y} = \mathbf{z} - \mathbf{v}$$

But $\mathbf{u} - \mathbf{y} \in S$ and $\mathbf{z} - \mathbf{v} \in S^{\perp}$, so each is in $S \cap S^{\perp}$. Since

$$S \cap S^{\perp} = \{\mathbf{0}\}$$

it follows that

$$\mathbf{u} = \mathbf{y}$$
 and $\mathbf{v} = \mathbf{z}$

- If S is a subspace of \mathbb{R}^n , then $(S^{\perp})^{\perp} = S$
- Proof

On the one hand, if $\mathbf{x} \in S$, then \mathbf{x} is orthogonal to each \mathbf{y} in S^{\perp} . Therefore, $\mathbf{x} \in (S^{\perp})^{\perp}$ and hence $S \subset (S^{\perp})^{\perp}$. On the other hand, suppose that \mathbf{z} is an arbitrary element of $(S^{\perp})^{\perp}$. By Theorem 5.2.3, we can write \mathbf{z} as a sum $\mathbf{u} + \mathbf{v}$, where $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$. Since $\mathbf{v} \in S^{\perp}$, it is orthogonal to both \mathbf{u} and \mathbf{z} . It then follows that

$$0 = \mathbf{v}^T \mathbf{z} = \mathbf{v}^T \mathbf{u} + \mathbf{v}^T \mathbf{v} = \mathbf{v}^T \mathbf{v}$$

and, consequently, $\mathbf{v} = \mathbf{0}$. Therefore, $\mathbf{z} = \mathbf{u} \in S$ and hence $S = (S^{\perp})^{\perp}$.

Orthogonal Subspaces

If A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$, then either there is a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$ or there is a vector $\mathbf{y} \in \mathbb{R}^m$ such that $A^T\mathbf{y} = \mathbf{0}$ and $\mathbf{y}^T\mathbf{b} \neq 0$

Proof

Corollary 5.2.5 is illustrated in Figure 5.2.2 for the case where R(A) is a two-dimensional subspace of \mathbb{R}^3 . The angle θ in the figure will be a right angle if and only if $\mathbf{b} \in R(A)$.

Ex 4. Let

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{bmatrix}$$

Orthogonal Subspaces

Find the bases for N(A), $R(A^T)$, $N(A^T)$, and R(A)

Solution

We can find bases for N(A) and $R(A^T)$ by transforming A into reduced row echelon form:

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Since (1, 0, 1) and (0, 1, 1) form a basis for the row space of A, it follows that $(1, 0, 1)^T$ and $(0, 1, 1)^T$ form a basis for $R(A^T)$. If $\mathbf{x} \in N(A)$, it follows from the reduced row echelon form of A that

$$x_1 + x_3 = 0$$

 $x_2 + x_3 = 0$

Thus,

$$x_1 = x_2 = -x_3$$

Setting $x_3 = \alpha$, we see that N(A) consists of all vectors of the form $\alpha(-1, -1, 1)^T$. Note that $(-1, -1, 1)^T$ is orthogonal to $(1, 0, 1)^T$ and $(0, 1, 1)^T$.

To find bases for R(A) and $N(A^T)$, transform A^T to reduced row echelon form:

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, $(1, 0, 1)^T$ and $(0, 1, 2)^T$ form a basis for R(A). If $\mathbf{x} \in N(A^T)$, then $x_1 = -x_3$, $x_2 = -2x_3$. Hence, $N(A^T)$ is the subspace of \mathbb{R}^3 spanned by $(-1, -2, 1)^T$. Note that $(-1, -2, 1)^T$ is orthogonal to $(1, 0, 1)^T$ and $(0, 1, 2)^T$.

Exercises

6. Is it possible for a matrix to have the vector (1,2,3) in its row space and $(2,1,-1)^T$ in its null space?

Orthogonal Subspaces