

Éléments de Physique : Mécanique

CHAPITRE 2: MOUVEMENT À DEUX DIMENSIONS

Table des matières

- 1. Vecteurs
- 2. Mouvement à deux dimensions
- 3. Projectiles

Espace à 3 dimensions

La position d'un point M dans l'espace est définie par un $\mathbf{vecteur}(m)$ possédant

- > une **origine** (point 0)
- \triangleright une **grandeur** (norme ou module) (m ou |m|)
- > une direction et un sens

Les grandeurs physiques peuvent être

- \triangleright vectorielles : r, v, a, E...
- \triangleright scalaires : t, T, K, U...

Caractériser le mouvement ↔ déterminer l'évolution temporelle du vecteur position.

Addition de deux vecteurs

$$C = A + B$$

$$C = B - A = B + (-A)$$

Repère cartésien

Repère cartésien

Système composé de **3 vecteurs**

- de grandeur unitaire (symbole)
- > orthogonaux entre eux

Exemple : repère droitier

Composantes d'un vecteur

Cas à deux dimensions

$$\boldsymbol{A} = A \ \widehat{\boldsymbol{a}} = A_x \widehat{\boldsymbol{x}} + A_y \widehat{\boldsymbol{y}}$$

composantes :
$$A_x = A \cos \theta$$

 $A_y = A \sin \theta$

$$\frac{A_y}{A_x} = \tan \theta$$
$$A = \sqrt{A_x^2 + A_y^2}$$

Opérations sur les vecteurs

> Addition :

$$C = A + B = (A_x + B_x) \hat{x} + (A_y + B_y) \hat{y}$$

> Soustraction :

$$\mathbf{A} - \mathbf{B} = (A_x - B_x) \,\widehat{\mathbf{x}} + (A_y - B_y) \,\widehat{\mathbf{y}}$$

Multiplication par un scalaire :

$$\alpha \mathbf{A} = \alpha A_x \, \widehat{\mathbf{x}} + \alpha A_y \, \widehat{\mathbf{y}}$$

Le mouvement à deux dimensions

 \triangleright La position (s), la vitesse (v) et l'accélération (a) sont représentées par des **vecteurs**.

Les **composantes** de ces vecteurs **dans une direction donnée** satisfont entre elles aux mêmes relations que dans le cas du **mouvement rectiligne**.

Problème de mouvement à deux dimensions (x, y)

_

Deux problèmes de mouvement rectiligne (selon x et y) simultanés et couplés au travers de la variable temps (t)

Le vecteur vitesse

Vitesse moyenne:

$$\overline{\boldsymbol{v}} = \frac{\Delta \boldsymbol{s}}{\Delta t} = \frac{(s_{x2} - s_{x1}) \, \widehat{\boldsymbol{x}} + (s_{y2} - s_{y1}) \, \widehat{\boldsymbol{y}}}{\Delta t}$$

$$= \frac{\Delta s_x}{\Delta t} \, \widehat{\boldsymbol{x}} + \frac{\Delta s_y}{\Delta t} \, \widehat{\boldsymbol{y}}$$

$$= \overline{v}_x \, \widehat{\boldsymbol{x}} + \overline{v}_y \, \widehat{\boldsymbol{y}}$$

Vitesse instantanée :

$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{s}}{\Delta t}$$

$$= \frac{ds_x}{dt} \, \hat{\mathbf{x}} + \frac{ds_y}{dt} \, \hat{\mathbf{y}}$$

$$= v_x \, \hat{\mathbf{x}} + v_y \, \hat{\mathbf{y}}$$

Le vecteur vitesse est **tangent** à la trajectoire.

Le vecteur accélération

$$\overline{\boldsymbol{a}} = \frac{\Delta \boldsymbol{v}}{\Delta t} = \frac{(v_{x2} - v_{x1}) \, \widehat{\boldsymbol{x}} + (v_{y2} - v_{y1}) \, \widehat{\boldsymbol{y}}}{\Delta t}$$

$$= \frac{\Delta v_x}{\Delta t} \, \widehat{\boldsymbol{x}} + \frac{\Delta v_y}{\Delta t} \, \widehat{\boldsymbol{y}}$$

$$= \overline{a}_x \, \widehat{\boldsymbol{x}} + \overline{a}_y \, \widehat{\boldsymbol{y}}$$

Accélération instantanée :

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$$

$$= \frac{dv_x}{dt} \, \hat{x} + \frac{dv_y}{dt} \, \hat{y}$$

$$= a_x \, \hat{x} + a_y \, \hat{y}$$

Lois du mouvement

Les composantes (s_x, v_x, a_x) et (s_y, v_y, a_y) satisfont entre elles aux lois du MRUA.

→ Un mouvement plan est une combinaison de deux MRUA.

Vitesse ou accélération constante

≠ module du vecteur constant

= module et direction constants

= chacune des composantes constante

Lois du mouvement à 2 dimensions

Accélération

$$\boldsymbol{a} = a_x \, \widehat{\boldsymbol{x}} + a_y \, \widehat{\boldsymbol{y}}$$
 $a_x = \text{constante}$

$$a_x = \text{constante}$$

$$a_{\nu} = \text{constante}$$

Vitesse

$$\boldsymbol{v} = v_x \, \hat{\boldsymbol{x}} + v_y \, \hat{\boldsymbol{y}}$$
 $v_x = v_{x0} + a_x \Delta t$

$$v_x = v_{x0} + a_x \Delta t$$

$$v_y = v_{y0} + a_y \Delta t$$

$$v_{x} = \frac{ds_{x}}{dt} \quad v_{y} = \frac{ds_{y}}{dt}$$

 $a_x = \frac{dv_x}{dt}$ $a_y = \frac{dv_y}{dt}$

Position

$$\mathbf{s} = s_{x} \, \widehat{\mathbf{x}} + s_{y} \, \widehat{\mathbf{y}}$$

$$\Delta s_x = v_{x0} \Delta t + \frac{1}{2} a_x (\Delta t)^2$$

$$\Delta s_{x} = \frac{(v_{x}^2 - v_{x0}^2)}{2a_{x}}$$

$$\Delta s_x = v_{x0} \Delta t + \frac{1}{2} a_x (\Delta t)^2$$
 $\Delta s_y = v_{y0} \Delta t + \frac{1}{2} a_y (\Delta t)^2$

$$\Delta s_{y} = \frac{(v_{y}^{2} - v_{y0}^{2})}{2a_{y}}$$

Application : les projectiles

Repère : \widehat{x} horizontal et \widehat{y} vertical

Equations du mouvement

Direction horizontale

MRU

$$a_{x}=0$$

$$v_{x} = v_{x0}$$

$$\Delta x = v_{x0} \Delta t$$

Direction verticale

MRUA

$$a_y = -g$$

$$v_y = v_{y0} - g\Delta t$$

$$\Delta y = v_{y0} \Delta t - \frac{1}{2} g(\Delta t)^2$$

Projectiles – Trajectoire parabolique

Le trajectoire d'un **objet en chute libre** dans un graphe x-y est une **parabole**.

$$\Delta x = v_{x0} \Delta t \quad \rightarrow \Delta t = \frac{\Delta x}{v_{x0}}$$

$$\Delta y = v_{y0} \Delta t - \frac{1}{2} g(\Delta t)^2$$

$$\rightarrow \Delta y = \frac{v_{y0}}{v_{x0}} \Delta x - \frac{g}{2v_{x0}^2} (\Delta x)^2$$

Pour rappel, pour une parabole : $\Delta y = A(\Delta x)^2 + B \Delta x + C$

Exemple : vol zéro g

Durant la phase zéro g, l'avion est **en chute libre** et décrit une trajectoire **parabolique**.

Exemple: tir parabolique

Un canon tire un projectile en direction d'un ours en peluche. Que va-t-il se passer?

Combien de temps faut-il pour que le projectile parcoure une distance horizontale $\Delta x = d$?

$$\Delta x = v_0 \cos \theta \, \Delta t = d$$

$$\to \Delta t = \frac{d}{v_0 \cos \theta}$$

 \triangleright Quelle est la hauteur y_P du projectile en $\Delta x = d$?

$$\Delta y = y_P - 0 = v_0 \sin \theta \, \Delta t - \frac{g}{2} (\Delta t)^2 \quad \rightarrow y_P = h - \frac{g}{2} \left(\frac{d}{v_0 \cos \theta} \right)^2$$

Le projectile rate l'ours...

Exemple: tir parabolique

Et si on détache l'ours en peluche au moment où le canon tire, que va-t-il se passer?

Position verticale du projectile en $\Delta x = d$:

$$y_P = h - \frac{g}{2} \left(\frac{d}{v_0 \cos \theta} \right)^2$$

 \triangleright Quelle est la position y_0 de l'ours lorsque le projectile est en $\Delta x = d$?

$$\Delta y = y_O - h = -\frac{g}{2}(\Delta t)^2 \qquad \Rightarrow y_O = h - \frac{g}{2} \left(\frac{d}{v_0 \cos \theta}\right)^2 = y_P$$

Le projectile touche l'ours!

Exemple: service au tennis

Un joueur de tennis est au service dans un coin du terrain. La balle passera-t-elle au-dessus du filet?

Données :
$$v_0 = v_{x0} = 30$$
 m/s $h = 2.4$ m $h' = 0.9$ m $d = 12$ m

$$\Delta x = v_{x0} \Delta t = d$$
 $\rightarrow \Delta t = \frac{d}{v_{x0}} = 0.4 \text{ s}$

$$\Delta y = v_{y0}\Delta t - \frac{g}{2}(\Delta t)^2 = -0.78 \text{ m}$$

$$\rightarrow y_f = y_i + \Delta y = 2.4 - 0.78 = 1.62 \text{ m} > 0.9 \text{ m}$$
 La balle passe!

Exemple: service au tennis

Données :
$$v_0 = v_{x0} = 30$$
 m/s $h = 2.4$ m $h' = 0.9$ m $d = 12$ m

Où la balle atteindra-t-elle le sol?

$$\Delta y = v_{y0} \Delta t - \frac{g}{2} (\Delta t)^2 = h$$
 $\rightarrow \Delta t = \sqrt{\frac{2h}{g}} = 0.7 \text{ s}$
 $\Delta x = v_{x0} \Delta t = 21 \text{ m}$

Lors d'un service à l'horizontale :

- \triangleright le temps de vol est indépendant de v_0
- \triangleright la portée est proportionnelle à v_0
 - → Il est important d'adapter l'angle de service à la vitesse.

Portée et temps de vol

Lancer à partir du sol

$$v_{x0} = v_0 \cos \theta$$

$$v_{y0} = v_0 \sin \theta$$

Temps de vol $[\Delta y = 0]$

$$\Delta y = v_{y0} \Delta t - \frac{g}{2} (\Delta t)^2 = 0$$

$$\Leftrightarrow \left(v_{y0} - \frac{g}{2}\Delta t\right)\Delta t = 0$$

$$\Delta t = \frac{2v_{y0}}{g} = \frac{2v_0 \sin \theta}{g}$$

Portée $[\Delta x]$

$$P = v_{x0}\Delta t = v_0 \cos\theta \frac{2v_0 \sin\theta}{g}$$

$$P = \frac{v_0^2}{g}\sin(2\theta)$$

Angle optimum

Portée maximale : compromis entre vitesse horizontale et temps de vol

$$v_{x0} = v_0 \cos \theta$$

$$\max \operatorname{en} \theta = 0^{\circ}$$

$$\Delta t = \frac{2v_0 \sin \theta}{g}$$

$$ext{max en } heta = 90^\circ$$

$$\rightarrow P(\theta) = \frac{v_0^2}{g} \sin(2\theta)$$

$$\max \text{ en } \theta = 45^\circ$$

Angle optimum

La portée maximale n'est plus à $\theta=45^{\circ}$ si on tient compte des frottements.

Portée et temps de vol

Lancer à partir d'une hauteur H

Temps de vol $[\Delta y = -H]$

$$\Delta y = v_{y0} \Delta t - \frac{g}{2} (\Delta t)^2 = -H$$

$$\Delta t = \frac{v_0 \sin \theta + \sqrt{v_0^2 \sin^2 \theta + 2gH}}{g}$$

Portée $[\Delta x]$

$$P = v_{x0} \Delta t$$

$$P = \frac{v_0^2}{2g}\sin(2\theta) + \frac{v_0\cos\theta}{g}\sqrt{v_0^2\sin^2\theta + 2gH}$$

La portée maximale n'est plus à $\theta=45^{\circ}$.