Induction, continued

Induction

In Section 10.1, the book proves the following propositions by applying the axiom of induction.

- 1. If $n \in \mathbb{N}$, then $1 + 3 + 5 + \cdots + (2n 1) = n^2$
- 2. If n is a non-negative integer, then $5|(n^5 n)$.
- 3. If $n \in \mathbb{Z}$, and $n \ge 0$, then $\sum_{i=0}^{n} i \cdot i! = (n+1)! 1$.
- 4. If $n \in \mathbb{N}$, then $2^n \le 2^{n+1} 2^{n-1} 1$.
- 5. If $n \in \mathbb{N}$, then $(1+x)^n \ge 1 + nx$ for all $x \in \mathbb{R}$ with x > -1.

YOU SHOULD CAREFULLY STUDY ALL OF THESE PROOFS

Two notes: Problem 3 has $n \ge 0$ and Problem 5 has an additional variable.