# The Qudit ZH-Calculus: Generalised Toffoli+Hadamard and Universality<sup>1</sup>

Patrick Roy<sup>1</sup> Lia Yeh<sup>2</sup> John van de Wetering<sup>3</sup>

<sup>1</sup>University of Oxford

<sup>2</sup>Quantinuum, 17 Beaumont Street Oxford OX1 2NA, United Kingdom

<sup>3</sup>University of Amsterdam

July 20, 2023

<sup>&</sup>lt;sup>1</sup>arXiv:2307.10095

### Motivation

### Previous Work

- In qubits, there are three possible graphical calculi (ZX, ZW and ZH) $^2$
- ZX and ZW have proposal for generalizing to qudit, ZH does not
- Phase-free ZH-Calculus is equivalent to Toffoli+H circuits<sup>3</sup>

<sup>&</sup>lt;sup>2</sup>Titouan Carette and Emmanuel Jeandel. "On a recipe for quantum graphical languages".

 $<sup>^3</sup>$ Miriam Backens et al. "Completeness of the ZH-calculus".

### Motivation

### Previous Work

- In qubits, there are three possible graphical calculi (ZX, ZW and ZH)<sup>2</sup>
- ZX and ZW have proposal for generalizing to qudit, ZH does not
- Phase-free ZH-Calculus is equivalent to Toffoli+H circuits<sup>3</sup>

### This Paper

- First generalization of ZH to qudits and universality for linear maps
- A generalization of the Toffoli+H gateset to qudits and computational universality

<sup>&</sup>lt;sup>2</sup>Titouan Carette and Emmanuel Jeandel. "On a recipe for quantum graphical languages".

 $<sup>^3</sup>$ Miriam Backens et al. "Completeness of the ZH-calculus".

### Overview

- 1 Introducing the Qudit ZH-Calculus
- 2 Universality for Linear Maps of Qudit ZH
- 3 Computational Universality and Generalized Toffoli
- 4 Conclusion

### Overview

- 1 Introducing the Qudit ZH-Calculus
- 2 Universality for Linear Maps of Qudit ZH
- 3 Computational Universality and Generalized Toffol
- 4 Conclusion

### The H-box

We want an H-box that...

- 1 ...generalizes the Discrete Fourier Transform  $H|k\rangle=\frac{1}{\sqrt{d}}\sum_{i=0}^{d-1}\omega^{ik}|i\rangle$  for  $\omega=\mathrm{e}^{2\pi i/d}$
- 2 ...generalizes the qubit AND-gate construction AND =



3 ...is flexsymmetric

### The H-box

We want an H-box that...

- 1 ...generalizes the Discrete Fourier Transform  $H|k\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} \omega^{ik} |i\rangle$  for  $\omega = e^{2\pi i/d}$
- 2 ...generalizes the qubit AND-gate construction AND =

3 ...is flexsymmetric

$$\underbrace{\frac{1}{\sqrt{d}}}_{\substack{i_1,\ldots,i_m\in\{0,1\}\\j_1,\ldots,j_n\in\{0,1\}}} \omega^{i_1\cdot\ldots\cdot i_m\cdot j_1\cdot\ldots\cdot j_n} |j_1\ldots j_n\rangle\langle i_1\ldots i_m|$$

# The Generators 1/2

### H-Box

$$\underbrace{\frac{\overset{n}{\overbrace{\cdots}}}{\overset{\dots}{\overbrace{\cdots}}}}_{\overset{\dots}{m}} := \frac{1}{\sqrt{d}} \sum_{\substack{i_1, \dots, i_m \in \{0,1\}\\j_1, \dots, j_n \in \{0,1\}}} \omega^{i_1 \cdot \dots \cdot i_m \cdot j_1 \cdot \dots \cdot j_n} |j_1 \dots j_n\rangle \langle i_1 \dots i_m|$$

Can replace  $\omega$  with some r to get the "r-labelled" H-box H(r).

### Z-Spider

$$= \sum_{i=0}^{n} |i\rangle^{\otimes n} \langle i|^{\otimes m}$$

# The Generators 2/2

# $\sqrt{d}$ and $1/\sqrt{d}$

### X-Spider

### Pauli-X

Qudit Pauli-X: 
$$|i\rangle \mapsto |i+_d 1\rangle$$

# An appeal to arithmetic modulo d

### Spider Math



Generalizes qubit relationship of H-box and AND-gate - AND is multiplication modulo 2!

# The Rules 1/2

# Z-Fusion (zs)



# The Rules 1/2

### Z-Fusion (zs)



### Z/X-Bialgebra (ba1)



# The Rules 1/2

# Z-Fusion (zs)



### Z/X-Bialgebra (ba1)



### Identity (id)

# The Rules 2/2



# The Rules 2/2

# H-Contraction (hs)



# The Rules 2/2

# H-Contraction (hs)



### Z/H-Bialgebra (ba2)



# Cyclic (c)



### Bonus Rule

# Ortho (o)



$$\forall x_0, ..., x_{d-1}, y : x_0 y = ... = x_{d-1} (y + d - 1)$$
 $\iff$ 
 $\forall i \in \{0, ..., d - 1\} : x_i (y + i) = 0$ 

Because 
$$\{y, y + 1, ..., y + d - 1\} = \mathbb{Z}/d\mathbb{Z} \ni 0$$

### Overview

- 1 Introducing the Qudit ZH-Calculus
- 2 Universality for Linear Maps of Qudit ZH
- 3 Computational Universality and Generalized Toffol
- 4 Conclusion

Mapping of basis states:

$$|i\rangle \mapsto |i\rangle + |i+_d 1\rangle$$

Computes rows of Pascal's triangle as column vectors:

$$|0\rangle = \begin{pmatrix} 1\\0\\\vdots \end{pmatrix} \stackrel{R}{\leadsto} \begin{pmatrix} 1\\1\\0\\\vdots \end{pmatrix} \stackrel{R}{\leadsto} \begin{pmatrix} 1\\2\\1\\0\\\vdots \end{pmatrix} \stackrel{R}{\leadsto} \begin{pmatrix} 1\\3\\3\\1\\0\\\vdots \end{pmatrix} \stackrel{R}{\leadsto} \dots$$

Mapping of basis states:

$$|i\rangle \mapsto |i\rangle + |i+_d 1\rangle$$

2 Matrix:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 1 & 1 \end{pmatrix}$$

Mapping of basis states:

$$|i\rangle \mapsto |i\rangle + |i +_d 1\rangle$$

Matrix:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 1 & 1 \end{pmatrix}$$

3 Logical formula whose model are the indices of 1-entries of matrix:

$$\varphi(x,y) = (x = y) \lor (y = x + 1)$$

Mapping of basis states:

$$|i\rangle \mapsto |i\rangle + |i +_d 1\rangle$$

2 Matrix:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 1 & 1 \end{pmatrix}$$

3 Logical formula whose model are the indices of 1-entries of matrix:

$$\varphi(x,y) = (x = y) \lor (y = x + 1)$$

4 Polynomial whose roots are the indices of 1-entries of matrix:

$$p(x,y) = (y-x) \cdot (x+1-y) \in \mathbb{Z}_d[X,Y]$$

4 Polynomial whose roots are the indices of 1-entries of matrix:

$$p(x,y) = (y-x) \cdot (x+1-y) \in \mathbb{Z}_d[X,Y]$$

5 ... ZH-Diagram!



Post-select with 0-labelled *H*-box and bend *y*-wire to get  $|i\rangle \mapsto |i\rangle + |i+_d 1\rangle$ .

# Universality with labeled H-boxes

Generalizes to matrices that are r, 1-valued instead of 0, 1-valued

# Universality with labeled *H*-boxes

Generalizes to matrices that are r, 1-valued instead of 0, 1-valued

Can decompose any matrix as entry-wise product of such matrices, e.g.

$$\begin{pmatrix} a & b \\ c & a \end{pmatrix} = \begin{pmatrix} a & 1 \\ 1 & a \end{pmatrix} \star \begin{pmatrix} 1 & b \\ 1 & 1 \end{pmatrix} \star \begin{pmatrix} 1 & 1 \\ c & 1 \end{pmatrix}$$

$$\begin{array}{ccc} & & & & & \\ \hline \phi \star \psi & & & & \\ \hline \end{array} := \begin{array}{cccc} & & & & \\ \hline \phi & & & \\ \hline \end{array}$$

# Universality with labeled *H*-boxes

Generalizes to matrices that are r, 1-valued instead of 0, 1-valued

Can decompose any matrix as entry-wise product of such matrices, e.g.

$$\begin{pmatrix} a & b \\ c & a \end{pmatrix} = \begin{pmatrix} a & 1 \\ 1 & a \end{pmatrix} \star \begin{pmatrix} 1 & b \\ 1 & 1 \end{pmatrix} \star \begin{pmatrix} 1 & 1 \\ c & 1 \end{pmatrix}$$

$$\begin{array}{ccc} & & & & & \\ \hline \phi \star \psi & & & & \\ \end{array} := \begin{array}{cccc} & & & & & \\ \hline \phi & & & & \\ \hline \end{array}$$

Technically, suffices to construct diagrams for matrices that only have single non-1 entry, but ideas from previous slides leads to significantly smaller diagrams

# Universality for $\mathbb{Z}[\omega]$

Want universality without adjoining labelled H-boxes as new generators

# Universality for $\mathbb{Z}[\omega]$

Want universality without adjoining labelled H-boxes as new generators

### Idea

■ We know how to construct H(0):

$$\frac{1}{0} = \frac{1}{0}$$

■ Find diagram for map *S* which increments *H*-box label:

$$H(n+1) = SH(n)$$

■ Find diagram for H(-1) and use  $H(-1) \star H(n) = H(-n)$ 

# Successor Map

### Needs to satisfy

# Successor Map

### Needs to satisfy

### Binomial Theorem

$$(a+1)^j = \sum_{i=0}^j \binom{j}{i} a^i.$$

 $\Rightarrow$  S encodes Pascal's triangle, e.g.  $S^T|c\rangle = R^c|0\rangle$ 

# Multiplexer

### Insight

$$S^T|c\rangle = R^c|0\rangle$$
 $\iff$ 

 $S^T$  is multiplexer for  $R^0|0\rangle,...,R^{d-1}|0\rangle$  with control  $|c\rangle$ 

# Multiplexer

### Insight

$$S^{T}|c\rangle = R^{c}|0\rangle$$

$$\iff$$

 $S^T$  is multiplexer for  $R^0|0\rangle,...,R^{d-1}|0\rangle$  with control  $|c\rangle$ 

$$M: |x_0...x_{d-1}\rangle \otimes |c\rangle \mapsto \begin{cases} |x_c\rangle & x_j = 0 \text{ for all } j \neq c \\ 0 & \text{otherwise.} \end{cases}$$

# Successor



### Successor



So far: All non-negative integers through successive application of S to  $H(\mathbf{0})$ 

# Negative Integers

Unlabeled 
$$H$$
-box =  $\omega$ -labeled  $H$ -box



# Negative Integers

Unlabeled H-box =  $\omega$ -labeled H-box

$$\frac{1}{n\omega + m} = \frac{S^m}{S^n}$$

Elements  $f \in \mathbb{Z}[\omega]$  have the form

$$f = \sum_{i=0}^{d-1} n_i \omega^i = n_0 + \omega (n_1 + \omega (... + \omega n_{d-1})...)$$

for  $n_0,...,n_{d-1} \in \mathbb{Z}$ 

-1

#### Theorem

$$\omega + \omega^2 + \dots + \omega^{d-1} = -1$$

#### Theorem

$$\omega + \omega^2 + \dots + \omega^{d-1} = -1$$

#### Final pieces:

- $H(-1) = H(\omega + ... + \omega^{d-1})$
- $H(-n) = H(n) \star H(-1)$
- $\Rightarrow$  Diagrams for all matrices over  $\mathbb{Z}[\omega]$

## Overview

- 1 Introducing the Qudit ZH-Calculus
- 2 Universality for Linear Maps of Qudit ZH
- 3 Computational Universality and Generalized Toffoli
- 4 Conclusion

# Toffolis and phase-free qubit ZH

#### Qubits

Toffoli + H approximately universal for quantum computation, and ZH allows simple reasoning about these gates:



# Toffolis and phase-free qubit ZH

#### Qubits

Toffoli + H approximately universal for quantum computation, and ZH allows simple reasoning about these gates:



#### Question

What approximately universal gateset does phase-free qudit ZH easily allow us to reason about?

# Toffoli generalizes to $|0\rangle$ -controlled X

In odd qudit dimension d, the  $|0\rangle$ -controlled X suffices to realize all d-ary classical reversible function  $f: \mathbb{Z}_d^n \to \mathbb{Z}_d^n$  (with ancillae)

 $\rightarrow$  We derive this by explicitly constructing all possible f in  $\mathcal{O}(d^n n)$  many  $|0\rangle$ -controlled X gates (optimal up to log-factor)

# Toffoli + H generalizes to $|0\rangle$ -controlled X + H

- $|0\rangle$ -controlled X and H are approximately universal for qudit quantum computation
  - $\rightarrow$  Construct Cliffords + single-qudit non-Clifford gate to get universality

# Toffoli + H generalizes to $|0\rangle$ -controlled X + H

- $|0\rangle$ -controlled X and H are approximately universal for qudit quantum computation
  - ightarrow Construct Cliffords + single-qudit non-Clifford gate to get universality
    - For d = 3: Construct R = diag(1, 1, -1) gate
      - $\rightarrow \ \ \text{Complicated construction, see paper...}$
    - For d > 3: Construct  $Q[0] = \operatorname{diag}(\omega, 1, ..., 1)$  gate

# Qudit ZH is equivalent to post-selected circuits

#### H-Box

Is just a CCZ acting on  $|+++\rangle$ :

RHS is classical reversible (Toffoli-like) + H, and thus expressible via  $|0\rangle$ -controlled X

# 

## Qudit ZH can be translated to Qudit ZX

## $|0\rangle$ -controlled X



repeat d times

where 
$$\vec{p} = \left(\omega^{\frac{-(d-1)}{2}}, \omega^{\frac{-(d-1)}{2}}, ..., \omega^{\frac{-(d-1)}{2}}\right)$$
 and  $\vec{r} = \left(\omega^{\frac{1}{d}}, \omega^{\frac{2}{d}}, ..., \omega^{\frac{d-1}{d}}\right)$ 

Result is circuit with post-selections over Clifford  $+ \sqrt[d]{Z}$  gateset<sup>4</sup>.

<sup>&</sup>lt;sup>4</sup>Lia Yeh (2023): Scaling W states in the qudit Clifford hierarchy. In: Proceedings of the 1st International Workshop on the Art, Science, and Engineering of Quantum Programming, arXiv.2304.12504

## Overview

- 1 Introducing the Qudit ZH-Calculus
- 2 Universality for Linear Maps of Qudit ZH
- 3 Computational Universality and Generalized Toffol
- 4 Conclusion

## **Thanks**



(AirBnB cat that fell asleep next to me while working on slides)

# **Qudit Gates**

#### "Toffoli"



## $|0\rangle$ -controlled X

$$\begin{array}{c} -0 \\ \hline \\ -X^{\dagger} \cdot X - \end{array} = \begin{array}{c} -0 \\ \hline \\ -X - \end{array} \leftrightarrow \begin{array}{c} -0 \\ \hline \end{array}$$

## A Proof

Proof.

$$\begin{vmatrix} (id) & (zs) & (ba1) & (ba1) & (zs) & (id) & (??) & (id) & (i$$

## A Proof

#### Proof.

For qubit ZH, this means that Hadamard self-inverseness follows from H-fusion, as



Write a given matrix as entry-wise product of simpler matrices, e.g.

$$\begin{pmatrix} a & b \\ c & a \end{pmatrix} = \begin{pmatrix} a & 1 \\ 1 & a \end{pmatrix} \star \begin{pmatrix} 1 & b \\ 1 & 1 \end{pmatrix} \star \begin{pmatrix} 1 & 1 \\ c & 1 \end{pmatrix}$$

Write a given matrix as entry-wise product of simpler matrices, e.g.

$$\begin{pmatrix} a & b \\ c & a \end{pmatrix} = \begin{pmatrix} a & 1 \\ 1 & a \end{pmatrix} \star \begin{pmatrix} 1 & b \\ 1 & 1 \end{pmatrix} \star \begin{pmatrix} 1 & 1 \\ c & 1 \end{pmatrix}$$



For a matrix  $L = \sum_{\vec{x},\vec{y}} \lambda_{\vec{x},\vec{y}} |\vec{y}\rangle \langle \vec{x}|$  containing only 1s and rs, describe the location of the 1s as a logical formula

$$\varphi_{L}(x_{1},...,x_{n},y_{1},...,y_{m}) = \bigvee_{\substack{i_{1},...i_{n} \\ j_{1},....j_{m} \\ \in \{0,...,d-1\} \\ \lambda_{i_{1}...i_{n}j_{1}...j_{m}} = 1}} \bigwedge_{k=1}^{n} (x_{k} = i_{k}) \wedge \bigwedge_{\ell=1}^{m} (y_{\ell} = j_{\ell})$$

Inductively construct polynomial  $p_L$  such that

$$p_L(x_1,...,x_n,y_1,...,y_m) = 0 \iff \varphi_L(x_1,...,x_n,y_1,...,y_m)$$

Needs that  $\mathbb{Z}_d$  has no zero-divisors if d prime

- In the case of  $\varphi = (p_1(x_1, ..., x_n) = p_2(x_1, ..., x_n))$  for  $p_1, p_2 \in (\mathbb{Z}_d)[X_1, ..., X_n]$ , set  $p_{\varphi} = p_1 p_2$
- 2 In the case of  $\varphi = \neg \varphi'$ , set  $p_{\varphi} = 1 (p_{\varphi'})^{d-1}$
- **3** In the case of  $\varphi = \varphi_1 \vee \varphi_2$ , set  $p_{\varphi} = p_{\varphi_1} \cdot p_{\varphi_2}$

# Turning Polynomial into ZH-diagram

Diagram of  $|x,y\rangle\mapsto |p(x,y)\rangle$  for p(x,y)=(x-y)(x+1-y):

# Turning Polynomial into ZH-diagram

Diagram of  $|x,y\rangle \mapsto |p(x,y)\rangle$  for p(x,y) = (x-y)(x+1-y):



Apply  $x \mapsto x^{d-1}$ , post-select with  $H(r) = (1, r, r^2, ..., r^{d-1}) \Rightarrow \text{get}$  state evaluating to 1 if p(x, y) = 0 and r otherwise