机器学习天问

${\rm Fduzjrqlw}$

目录

1	机器学习理论				
	1.1	简述机器学习问题	2		
	1.2	误差分解公式	2		
	1.3	风险 (risk), 经验风险 (empirical risk) 的含义	2		
	1.4	过拟合, 欠拟合和误差的关系	2		
2	数据预处理				
	2.1	归一化 (normalization) 和标准化 (standardization), 以及它			
		们的相同点和不同点	2		
	2.2	为什么要使用归一化/标准化?	2		
	2.3	什么时候用归一化,什么时候用标准化?	2		
	2.4	一定要归一化吗? 举出一些不需要归一化的例子	2		
	特征工程				
3	特征	工程	2		
3	特征 3.1	工程 特征抽取的目的	2 2		
3					
3 4	3.1	特征抽取的目的	2		
	3.1 3.2	特征抽取的目的	2		
	3.1 3.2 正则	特征抽取的目的	2 2 2		
	3.1 3.2 正则 4.1	特征抽取的目的	2 2 2 2		
	3.1 3.2 正则 4.1 4.2	特征抽取的目的	2 2 2 2 2		
	3.1 3.2 正则 4.1 4.2 4.3	特征抽取的目的	2 2 2 2 2		
	3.1 3.2 正则 4.1 4.2 4.3	特征抽取的目的	2 2 2 2 3		

	4.7	为什么	要引入 Elastic Net 中的 L_1 和 L_2 的组合正则	4
5	优化	算法		4
	5.1	GD,SC	GD 与 mini_batch GD 之间的区别和联系	4
	5.2	什么时	候用 SGD?mini_batch GD 中 batch_size 的选择	4
	5.3	梯度下	降算法的收敛率 (convergence rate)	4
	5.4	SGD É	的使用技巧	5
	5.5	SGD É	的理论依据	5
	5.6	在线学	37的动机和方法	5
	5.7	次梯度	和次梯度下降算法	5
6	模型			5
	6.1	SVM.		5
		6.1.1	SVM 的损失函数是什么?	5
		6.1.2	SVM 的推导过程?	5
		6.1.3	为什么要引入对偶问题? 为什么要引入松弛变量 ξ ?	5
		6.1.4	Slater 条件是什么, 如何验证 SVM 问题满足 Slater	
			条件	5
		6.1.5	叙述 SVM 问题的 KKT 条件?	5
		6.1.6	什么叫核方法?	5
		6.1.7	核化 (kernelized) 的好处有哪些?	5
		6.1.8	表示定理以及其作用?	6
		6.1.9	如何验证核函数?	6
		6.1.10	为什么叫径向基函数?	6
		6.1.11	RBF 核对应特征空间的维数	6
		6.1.12	正则化 RBF 核	6
		6.1.13	参数 γ 以及 C 的作用	7
		6.1.14	叙述 SVM 问题的 KKT 条件?	7
		6.1.15	什么是 SVM 的退化?	7
		6.1.16	如何构造新的输入数据, 使得一个线形可分的 SVM	
			问题退化?	7