

SCHWEIZERISCHE EIDGENOSSENSCHAFT

EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

(51) Int. Cl.²: C 09 B 33/02 5/34 C 08 K C 09 D 11/02

C 09 B 33/14

CH **PATENTSCHRIFT** (19)

585 247

21) 12191/73 Gesuchsnummer:

60 Zusatz zu:

62) Teilgesuch von:

24.8.1973, 19 h 22 Anmeldungsdatum:

33(32)(31) Priorität:

Patent erteilt:

15.1.1977

45) Patentschrift veröffentlicht: 28.2.1977

64) Titel: Verfahren zur Herstellung schwer löslicher

Disazoverbindungen

(3) Inhaber: Sandoz AG, Basel

74) Vertreter:

12 Erfinder: Max Aeberli, Riehen, Willy Forter, Allschwil, und

Jürgen Goldmann, Münchenstein

2

Es wurde gefunden, dass sich Disazoverbindungen der Formel I

worin

R₁, R₂ und R₃ unabhängig voneinander Wasserstoff, 10 Halogen, Nitro, Cyan, Trifluormethyl, Alkyl, Alkoxy, Alkoxycarbonyl, Phenoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl oder Phenylaminocarbonyl,

A einen gegebenenfalls durch Heteroatome unterbrochenen Alkylenrest, einen Cycloalkylen-, Phenylen- oder Naphthylen-15 rest oder einen Rest der Formel

und

R₄ ein Atom, bzw. eine Atomgruppe der Formel -O-, -S-, -CH₂-, -NH-, -CO-, -NHCO-, -NHCONH- oder -SO₂bedeuten, wobei die aromatischen Kerne der Reste A Chlor. Brom, Methyl, Methoxy oder Aethoxy als Substituenten tragen $_{30}$ können,

hervorragend als Pigmente, insbesondere zum Färben von Kunststoffmassen eignen.

Reste mit 1 bis 8, vorzugsweise 1, 2, 3 oder 4 Kohlenstoffatome bezeichnet, die geradkettig, verzweigt oder cyclisch aufgebaut sind. Bevorzugte cyclische Alkylreste sind Cyclohexyl und Methylcyclohexyl.

Bedeutet A einen durch ein Heteroatom unterbrochenen Alkylenrest, so ist als Heteroatom z.B. ein Sauerstoff- oder Schwefelatom oder eine Iminogruppe zu verstehen.

Vorzugsweise bedeuten höchstens zwei der Substituenten R₁ bis R₃ nicht Wasserstoff.

In bevorzugten Verbindungen der Formel I bedeuten R1, R2 und R3 unabhängig voneinander Wasserstoff, Chlor, Brom, Nitro, Cyan, Trifluormethyl, Alkyl, Alkoxy, Alkoxy-Als Alkyl, Alkylen (und Alkoxy) werden hier insbesondere 35 carbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl oder Phenylaminocarbonyl, wobei alle Alkyl- und Alkoxygruppen 1 oder 2 Kohlenstoffatome enthalten,

A einen Alkylen- oder Cycloalkylenrest mit bis zu 8 Kohlenstoffatomen, oder einen Rest der Formel

R₄ ein Atom, bzw. eine Atomgruppe der Formel -O-, -S-, -CH2-, -NH-, -CO- oder -SO2- und

R₅-SO₂-,-NH-,-O-oder-S-, wobei die aromatischen Kerne der Reste A Chlor, Brom, Methyl oder Methoxy als Substituenten tragen können.

Das Verfahren zur Herstellung der neuen Verbindungen der Formel I ist dadurch gekennzeichnet, dass man zwei Mol eines Amins der Formel II

$$\begin{array}{c} \text{HO} \\ \text{N} \\ \text{CH}_3 \\ \text{R}_1 \end{array}$$

diazotiert und die erhaltene Diazoniumverbindung mit 1 Mol einer Verbindung der Formel III

kuppelt.

55

Diazotieren und Kuppeln wird gemäss allgemein bekannten Verfahren durchgeführt; z.B. erfolgt die Kupplung bei Temperaturen zwischen -5° und +40° C, insbesondere zwischen 0° und 5° C, in schwach saurem Medium, vorzugsweise zwischen

Die so hergestellten Verbindungen sind, insbesondere nach 65 der bei Pigmentfarbstoffen üblichen Konditionierung, z.B. zum Färben von Kunststoffmassen, worunter lösungsmittelfreie und lösungsmittelhaltige Massen aus Kunststoffen oder Kunstharzen verstanden werden (in Anstrichfarben auf öliger oder

wässriger Grundlage, in Lacken verschiedener Art, zum Spinnfärben von Viscose oder Celluloseacetat, zum Pigmentieren von Polyäthylen, Polystyrol, Polyvinylchlorid, Kautschuk und Kunstleder) geeignet. Sie können auch in Druckfarben für das graphische Gewerbe, für die Papiermassefärbung, für die Beschichtung von Textilien oder für den Pigmentdruck Verwendung finden.

Die erhaltenen Färbungen zeichnen sich durch ihre hervorragende Hitze-, Licht- und Wetterechtheit, Chemikalienbeständigkeit, insbesondere SO₂- und Alkalibeständigkeit, ihre 10 Migrier-, Ausblüh-, Überlackier- und Lösungsmittelechtheit, ihre Farbstärke und die sehr guten applikatorischen Eigenschaften, z. B. Flockulationsechtheit, Kristallisierechtheit, Dispergierbarkeit und Deckkraft aus.

Durch eine Nachbehandlung der Rohpigmente in organischen Lösungsmitteln bei erhöhten Temperaturen, z.B. 110°-200° C können die Pigmenteigenschaften oft weiter verbessert werden. Als organische Lösungsmittel (in denen die Pigmente selbst aber nicht gelöst werden) kommen z.B. Chlorbenzol (Gemisch), Nitrobenzol, Dimethylformamid, Eisessig, Aethylenglykol oder Chinolin in Betracht.

Im folgenden Beispiel bedeuten die Teile, falls nichts anderes erwähnt, Gewichtsteile und die Prozente Gewichtsprozente. Die Temperaturen sind in Celsiusgraden angegeben.

Beispiel 1

19,45 Teile 6-Amino-7-chlor-2-hydroxy-4-methylchinolin werden eine Stunde in 80 Teilen 5n Salzsäure gerührt, dann werden dem Gemisch 100 Teile Eis und 26 Volumteile 4n wässriger Natriumnitritlösung zugefügt. Man rührt eine weitere Stunde, versetzt mit einer geringen Menge Amidosulfonsäure, filtriert, stellt die Lösung mit Eiswasser auf 400 Volumteile und versetzt sie mit 100 Volumteilen 50-prozentiger, wässriger Natriumacetatlösung, wodurch sich ein pH von 4,5 einstellt. Zur Kupplung löst man 13,8 Teile 1,4-Bis-(acetoacetylamino)-

benzol in 100 Teilen Wasser und 20 Volumteilen 30-prozentiger Natronlauge und lässt diese Lösung langsam, unter gutem Rühren, unter Niveau in die Diazoniumsalzlösung einfliessen, wobei eine grünstichig-gelbe Farbstoffsuspension entsteht. Man rührt eine Stunde bei Raumtemperatur, zwei Stunden bei 40°-50° und eine Stunde bei 80°, filtriert ab, wäscht mit Wasser salzfrei und trocknet den Rückstand bei ca. 65° im Vakuum. Man erhält so das Pigment der Formel

das Kunststoffe in grünstichig-gelben Tönen färbt.

Zur Verbesserung der Echtheiten und der applikatorischen Eigenschaften, insbesondere des rheologischen Verhaltens und der Dispergierbarkeit werden 20 Teile des obigen Pigments 1 Stunde bei 140° in 100 Teilen Dimethylformamid gerührt, anschliessend abfiltriert, mit 50 Teilen Dimethylformamid, dann mit 50 Teilen Aethanol und schliesslich mit 50 Teilen Wasser gewaschen, getrocknet und auf übliche Weise gemahlen.

In der folgenden Tabelle sind weitere diazotierbare Amine und Kupplungskomponenten angegeben, die gemäss dem 35 vorhergehenden Beispiel zu wertvollen Pigmenten umgesetzt werden können.

Nr.	Diazokomponente	Kupplungskomponente	Nuance
2	6-Amino-7-chlor-2-hydroxy- 4-methylchinolin	1,4-Bis-(acetoacetylamino)-2,5-dichlorbenzol	gelb
3	do.	1,4-Bis-(acetoacetylamino)-2,5-dimethylbenzol	gelb
4	do.	1,4-Bis-(acetoacetylamino)-2,5-dimethoxybenzol	orange
5	do.	1,4-Bis-(acetoacetylamino)-2,5-diäthoxybenzol	orange
6	do.	1,4-Bis-(acetoacetylamino)-2-methyl-5-chlorbenzol	gelb
7	do.	1,5-Bis-(acetoacetylamino)-naphthalin	gelb
8	6-Amino-5-chlor-2-hydroxy- 4-methylchinolin	1,4-Bis-(acetoacetylamino)-benzol	gelb
9	do.	1,4-Bis-(acetoacetylamino)-2,5-dichlorbenzol	gelb
10	do.	1,4-Bis-(acetoacetylamino)-2,5-diäthoxybenzol	огапде
11	7-Amino-8-chlor-2-hydroxy- 4-methylchinolin	1,4-Bis-(acetoacetylamino)-benzol	gelb
12	do.	1,4-Bis-(acetoacetylamino)-2,5-dichlorbenzol	gelb
13	7-Amino-6-chlor-2- hydroxy-4-methylchinolin	1,4-Bis-(aceto acetylamino)-benzol	gelb
14	do.	1,4-Bis-(acetoacetylamino)-2,5-dichlorbenzol	gelb

Anwendungsbeispiel

Zu einer Basismischung aus

63 Teilen Polyvinylchlorid-Emulsion.

32 Teilen Dioctylphthalat,

3 Teilen handelsüblichem Epoxyweichmacher,

1,5 Teilen Stabilisator (Barium-Cadmium-Komplex, ebenfalls handelsüblich) und

0,5 Teilen eines Chelators (handelsüblich)

werden 0,5 Teile des Pigments gemäss Beispiel 1 und 5 Teile Titandioxidpigment gegeben und innig miteinander vermischt. Die Mischung wird in einem auf 160° geheizten Mischwalzwerk mit Friktionsrollen (die eine Walze mit 20, die andere mit 25 Umdrehungen in der Minute) zur besseren Pigmentverteilung während 8 Minuten gewalzt und hierauf die erhaltene Folie von 0,3 mm, die eine grünstichig-gelbe Nuance aufweist, abgezogen. Die Färbung ist sehr gut licht- und migrationsrecht,

sowie hitzebeständig.

mixt. of 100 mL 2-ethylhexanoic acid (I) [149-57-5], 16.8 g p-nitro-o-anisidine [97-52-9], 22.0 gacetoacet-o-anisidide [92-15-9], and 400 g glass beads was stirred at 600 rpm, 7.08 g dry NaNO2 added during 5 min. with continuous stirring, 50 mL I added to reduce the viscosity, and the mixt. stirred and then added to 90 g concd. NH40H in 1L H20. The suspension was stirred and adjusted to pH 8.5-9 with NH40H to give C.I. Pigment Yellow 74 [6358-31-2] in 91.7-98.4% yield. I was recovered (96.5%) from the aq. phase obtained during isolation of the pigment.

L2 ANSWER 13 OF 29 HCAPLUS COPYRIGHT 1998 ACS

AN 1982:70431 HCAPLUS

DN 96:70431

TI Yellow disazo pigments

IN Pribil, Vlastimil; Chlost, Milan; Jakl, Jaroslav; Lustig, Jiri;
Sakar, Lubomir; Kasal, Jaroslav

PA Czech.

SO Czech., 3 pp. CODEN: CZXXA9

PI CS 188727 B 810715 - 10 Cog

AI CS 77-3368-770706

DT Patent

LA Czech

GI

AB I (R = 4-H2NCONH, R1 = R2 = R3 = C1) [80604-98-4] and I(R = 3-H2NCONH, R1 = Me, R2 = SO2NHMe, R3 = MeO) [80604-97-3], prepd. by coupling 1,4-bis(acetoacetamido)benzene [24731-73-5] with the appropriate diazotized anilines, are yellow pigments resistant to org. solvents, heat, and migration in plastics.

```
ANSWER 14 OF 29 HCAPLUS COPYRIGHT 1998 ACS
L2
     1982:53805 HCAPLUS
AN
DN
     96:53805
     Yellow disazo pigments
TI
     Pribil, Vlastimil; Chlost, Milan; Jakl, Jaroslav; Lustig, Jiri;
IN
     Sakar, Lubomir; Kasal, Jaroslav
     Czech.
PA
SO
     Czech., 2 pp.
     CODEN: CZXXA9
     CS 185798 B 781031 - Ms Erg
ΡI
     CS 77-3254 770518
AI
     Patent
DT
     Czech
LA
GI
```

$$N = NCH (COMe) CONH$$
 R^{2}
 $N = NCH (COMe) CONH$
 R^{2}
 $N = NCH (COMe) CONH$

AB Yellow diazo pigments (I; R1, R2 = H, Me, or Cl), useful in plastics, are manuf. by coupling diazotized 3-(4)-aminophenylurea with 1,4-bis(acetoacetamido)benzene (II) or its ring-substituted derivs. at pH 11. Thus, 15.1 g 4-aminophenylurea was diazotized and coupled with 14.4 g II in the presence of a nonionic ethylene oxide-based surfactant at pH 11 .+-. 0.5 and 20-25.degree. to give a product, which was acidified to pH 4.5 and heated at 90-95.degree. to give 27.5 g yellow pigment.

I

- (

.... _____enanthingin_orioonseatbau=waiuJ

PATENTANSPRÜCHE

I. Verfahren zur Herstellung schwer löslicher Disazoverbindungen der Formel I

worin

R₁, R₂ und R₃ unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyan, Trifluormethyl, Alkyl, Alkoxy, Alkoxycarbonyl, Phenoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl oder Phenylaminocarbonyl,

A einen gegebenenfalls durch Heteroatome unterbrochenen

15 Alkylenrest, einen Cycloalkylen-, Phenylen- oder Naphthylenrest oder einen Rest der Formel

und

R₄ ein Atom, bzw. eine Atomgruppe der Formel -O-, -S-, -CH₂-, -NH-, -CO-, -NHCO-, -NHCONH- oder -SO₂- bedeuten, wobei die aromatischen Kerne der Reste A Chlor, Brom, Methyl, Methoxy oder Aethoxy als Substituenten tragen können, dadurch gekennzeichnet, dass man zwei Mol eines Amins der Formel II

$$\begin{array}{c} \text{HO} \\ \text{NH}_{3} \\ \text{CH}_{3} \\ \text{R}_{1} \end{array}$$

diazotiert und die erhaltene Diazoniumverbindung mit 1 Mol einer Verbindung der Formel III

H₃C-CO-CH₂-CO-NH-A-NH-CO-CH₂-CO-CH₃
(III)

30 kuppelt.

II. Verwendung der Verbindungen der Formel I, hergestellt nach dem Verfahren gemäss Patentanspruch I, zum Färben von Kunststoffmassen und als färbender Bestandteil in Drucktinten.

III. Die Verbindungen der Formel I, hergestellt nach dem $_{35}$ Verfahren gemäss Patentanspruch I.

UNTERANSPRUCH

Verfahren gemäss Patentanspruch I, dadurch gekennzeichnet, dass man Verbindungen der Formeln II und III einsetzt, in $_{40}$ denen

R₁, R₂ und R₃ unabhängig voneinander Wasserstoff, Chlor, Brom, Nitro, Cyan, Trifluormethyl, Alkyl, Alkoxy, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl oder Phenylaminocarbonyl, wobei alle Alkyl- und Alkoxygruppen 1 oder 2 Kohlenstoffatome enthalten,

A einen Alkylen- oder Cycloalkylenrest mit bi zu 8 Kohlenstoffatomen, oder einen Rest der Formel

$$R_{4}$$
 oder R_{5}

 R_4 ein Atom, bzw. eine Atomgruppe der Formel –O-, –S-, –CH₂-, –NH-, –CO- oder –SO₂- und

R₅-SO₂-, -NH-, -O- oder S bedeuten, wobei die aromatischen Kerne der Reste A Chlor, Brom, Methyl, oder Methoxy als Substituenten tragen können.