WASTE SENSOR DATA ANALYSIS

Overview

Introduction to the Dataset

- •The dataset contains waste sensor readings collected over time.
- •Each record includes sensor ID, timestamp, and properties of detected waste.

Purpose

- •To analyze waste characteristics and predict waste types.
- •To identify patterns and trends in waste sensor data.

Dataset Details

Dataset Overview

•Rows: 20,000 Columns: 7

Key Features

- •sensor_id: Unique identifier for each sensor.
- •timestamp: Date and time of each sensor reading.
- •waste_type: Type of waste detected (recyclable, organic, non-recyclable).
- •inductive_property: Numerical measurement of the inductive property.
- •capacitive_property: Numerical measurement of the capacitive property.
- •moisture_property: Numerical measurement of moisture content.
- **_infrared_property:** Numerical measurement of the infrared property.

Data Visualizations

Advanced Visualizations

Feature Engineering

New Features Created

- •inductive_capacitive:
 - •Product of inductive_property and capacitive_property.
 - •Represents a combined measure of these properties.
- •moisture_infrared:
 - •Product of moisture_property and infrared_property.
 - •Captures the interaction between these two properties.

Purpose of Feature Engineering

- •Enhance the dataset with meaningful interactions.
- •Provide additional insights for machine learning models.
- •Improve model performance by capturing complex relationships.

Outlier Handling

Purpose

- •Identify and reduce the influence of extreme values.
- •Ensure robustness in analysis and modeling.
- •Maintain meaningful data distributions.

Method Used: IQR (Interquartile Range)

- •Steps:
 - Calculate the Q1 (25th percentile) and Q3 (75th percentile) for each numerical feature.
 - Compute the IQR: IQR=Q3-Q1IQR=Q3-Q1
 - Define lower and upper bounds: Lower Bound=Q1-1.5×IQR\text{Lower Bound} = Q1 - 1.5 \times IQRLower Bound=Q1-1.5×IQR Upper Bound=Q3+1.5×IQR\text{Upper Bound} = Q3 + 1.5 \times IQRUpper Bound=Q3+1.5×IQR
 - Clip values outside the bounds to the nearest bound.

Dimensionality Reduction

PCA (Principal Component Analysis) Implementation •Steps:

- Applied PCA to reduce the number of features while retaining 95% of the variance in the dataset.
- Fit the data to extract principal components.

Purpose

- •Reduce feature redundancy and complexity.
- •Improve model performance and interpretability.
- •Mitigate overfitting by focusing on essential data structures.

Model Preparation Train-Test Split

•Process:

- Split the dataset into training (80%) and testing (20%) subsets.
- Stratified splitting to maintain class distribution balance.

•Sizes:

- Training Set: 21,411 rows.
- Testing Set: 5,353 rows.

Feature Scaling

- •Technique: StandardScaler
 - Scaled numerical features to have a mean of 0 and standard deviation of 1.

•Purpose:

- Normalize feature values for consistency.
- Improve algorithm performance, especially for distancebased and gradient descent methods.

Classification Models

Algorithms Used

1.Random Forest

- •Ensemble method combining multiple decision trees.
- •Key Parameters:
 - •n_estimators: 50
 - •min_samples_split: 5
 - •class_weight: balanced

- •XGBoost
- •Gradient boosting algorithm known for high performance.
- •Key Parameters:
 - •objective: binary:logistic
 - •eval_metric: logloss
- Other Models Evaluated
- Logistic Regression
- •Support Vector Machine (SVM)
- •K-Nearest Neighbors (KNN)
- •Decision Tree

Model Evaluation

Metrics Used

- 1.Accuracy:
 - 1. Measures overall correctness of predictions.
 - 2. Example: Random Forest achieved 85% accuracy.
- 2. Classification Report:
 - 1. Precision, Recall, and F1-Score for each class.
 - 2. Helps evaluate model performance on imbalanced data.
- 3. Confusion Matrix:
 - 1. Visualizes correct and incorrect predictions.
 - 2. Identifies common misclassification patterns.

Feature Importance

Insights from Random Forest

- •Top Features:
 - Capacitive Property
 - Inductive Property
 - Moisture-Infrared Interaction

•Significance:

- Capacitive and inductive properties were the most influential in classifying waste types.
- Engineered features contributed significantly to model performance.

Comparison of Models

Bar Chart of Classifier Accuracies

- •Models Evaluated:
 - Random Forest, XGBoost, Logistic Regression, SVM, etc.
- •Performance:
 - Random Forest and XGBoost showed the highest accuracy.
 - Example:
 - Random Forest: 85%
 - XGBoost: 83%

Purpose of Comparison

- •Identify the best-performing model.
- •Visualize model effectiveness for informed decision-making.

Comparison of Models

Conclusion

- •The dataset was effectively analyzed to extract meaningful insights using advanced techniques like PCA and feature engineering.
- •Random Forest and XGBoost emerged as the bestperforming models for waste classification.
- •Key properties like capacitive, inductive, and engineered interactions were significant for accurate predictions.

