Parallel Computing Platforms -> Explicit Para Velism needed. Why? 1. Increasing gap in peak & Sustainable Performance (due to memory system performance) 2. Distributed nature of many problems Existing feelingues to find automatic parallelism are limited in scope. [Hand to find at runtime, Meed resources, Compile time techniques do not scale very large] Parallel platforms Logical 7 Programmer's View Physical - Adnal Hardware Organization Architechne Interconnection Communication Control [PRAM + [Network Model Standine Variations Topologies [ways to Specifying Cyress Interaction Parallel tasks between tasks

SIMD Vs MIMD

One CU

Synchronous execution of
the Same instruction on

different data

MM X Units in Intel CPU'S

Image Processing (Graphics
[Structured Computation on anays]

Conditional execution detrimental

to performance

Except to

Except independent

programs

SPMD is a Variant

of MIMD (not SIMD)

Any parallel application

can be run

No issue about conditional

execution

Lesser hardware Lesser Memory

Specialized hardware leading to design Constraints, economic factors, product life-cycle time

Irregular nature of many applications makes it unpopular More hardware

More memory for

Program & OS at each

CPU

Creneral purpose hardware

leading to cheap, quick

to build using off-the
Shelf Components

Any application can

be run as SPMD

SIMD

MIMD

Logical - Communication Model: Data enchange Shared address Message Space Passing I. Shared Address Space Platforms: - Common address space accessible to all processors -> Processors interact by modifying data objects in Shared address space - I Shared Address space + SPMD = Multiprocessors -> Memory in Shared address space can be local or global

Uniform Memory Access (UMA) Mon of Time taken to access any Time memory word is identical m

Mon-Uniform Memory Acees (NUMA) Time taken to acess certain memory words is longer tran others

- Algorithms to take advantage of locality and thereby Structure data & Computation accordingly (NUMA) - Easy to Program model - Read-only interactions are invisible to programmer as they are exactly same as a serial program - But Read | Write interactions are harder and need mutual exclusion > Cache Coherence issue -Multiple Copies of a bringle memory word being manipulated by two or more processors at the same time. Address Concurrency with representation well-defined semantics

- shared address sprie Vs Shared Memory Computers

Distributed memory platform (~ NUMA) Can present logical view of a shared-address Spare platform

Shared Memory Computers (≈ UMA) Can present logical View of a disjointaddress space platform

I. Message Parking Platforms:
Logical view:
- p processing nodes, each with its
exclusive address space.
- Interaction between processes running on
different nodes by passing messages
- Message passing for data, work & Synchroning
- Each node Can Irun a different Program
- Cluster of Workstations or non-shared-address-spi
- Can be emulated on a Shared - address - space Computer
Basic Operations:
- Get number of processes (numprocs)
- Get Self id (Whoami)
- Bend a message (send)
- receive a message (receive)
Shared address space > OpenMP

ce

-) Can take advantage of multi-core processons