

Juntando Todas as Partes

Gustavo Girão

Princípios de Funcionamento

O que existe em um computador?

O que existe em um computador?

O que existe em um computador?

O que um computador precisa para executar?

O que precisa ser definido em projeto?

Formato de Instrução

	Referência	Referência	Referência
opcode	Operando	Operando	Operando
-	Destino	Fonte 1	Fonte 2
x bits	y bits	z bits	k bits

- Modos de Ender.
 - Direto
 - Indireto
 - Imediato
 - Registrador
 - Indireto de registrador
 - Entre outros

Tipos de Processadores pelo Conjunto de Instr

SEQUÊNCIA DE FUNCIONAMENTO

Boot

- BIOS Basic Input/Output System
 - Conjunto de programas embutidos em um ou mais chips
 - Controla o hardware e faz a interface entre o SO e hardware
 - Está armazenado em um memória ROM (Read Only Mem)
 - ♦ Memória não voláti!!!!
- Ao ligar o computador, a (o) BIOS é executada (o):
 - POST (Power on Self Test), que realiza testes no sistema
 - SETUP, que habilita a configuração da placa-mãe e dos chipsets, como: data, hora, senha, drives, preferências de dispositivo de boot, sequência de boot, gerenciamento de energia, etc
 - 3. BOOTSTRAP LOADER, que lê o setor físico dos dispositivos (HD, CD, DVD, etc) em busca do MBR (master boot record).

Inicializando o SO

- 4. BOOTSTRAP LOADER (Bootloader) é carregado na memória principal
- 5. BIOS entrega controle de execução ao bootloader
- 6. Bootloader manda carregar SO na memória principal
- 7. Controle de execução passa para o SO

Observem que tudo que será executado precisa ser carregado na memória

Bootloader

É código!!!

Precisa estar na memória e ser executado pelo processador

```
.globl begtext, begdata, begbss, endtext, enddata, endbss
.text
begtext:
.data
begdata:
.bss
begbss:
.text
BOOTSEG = 0x07c0
INITSEG = 0x9000
SYSSEG = 0x1000
                         system loaded at 0x10000 (65536).
ENDSEG = SYSSEG + SYSSIZE
entry start
start:
   mov ax, #BOOTSEG
   mov ds,ax
   mov ax, #INITSEG
   mov es,ax
   mov cx, #256
    sub si,si
    sub di,di
    rep
    movw
   jmpigo, INITSEG
go: mov ax,cs
   mov ds,ax
   mov es,ax
   mov ss,ax
                         | arbitrary value >>512
   mov sp,#0x400
   mov ah, #0x03 | read cursor pos
    xor bh,bh
    int 0x10
   mov cx, #24
   mov bx,#0x0007 | page 0, attribute 7 (normal)
```

Executando Programas

 Após inicializado, programas de usuários, utilitários, sistema operacional são executados seguindo ordem de prioridade, justiça, políticas de substituição, etc.

Sequência de execução

CONCEITOS AVANÇADOS DE PROCESSADORES

Conceitos avançados

- Podemos obter CPI < 1?
 - Conceito de IPC Instruções por ciclo
 - Ocomo fazer isso?
 - ◆Executando mais de uma instrução (despacho)
- Despacho de instruções
 - Estático
 - **♦**Superescalar
 - Dinâmico
 - **♦VLIW**
- Ações
 - Definir quais instruções serão despachadas
 - Garantir corretude

Very Large Instruction Word (VLIV

Princípios da super-escalaridade

- Várias unidades de execução
- Várias instruções completadas simultaneamente em cada ciclo de relógio
- Hardware é responsável pela extração de paralelismo

IF	ID	EX	MEM	WB				
IF	ID	EX	MEM	WB				
į	IF	ID	EX	MEM	WB			
t	IF	ID	EX	MEM	WB			
		IF	ID	EX	MEM	WB		
		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB	
			IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB
				IF	ID	EX	MEM	WB

VLIW vs Superescalar

- Complexidade do hardware
 - VLIW é mais simples e mais fácil de escalar (decodificação)
 - Superescalares precisam encontrar paralelismo em tempo de execução
- Programação e complexidade do compilador
 - VLIW é mais complexo
 - Compiladores precisam encontrar todo o paralelismo
 - Lock step: conflitos podem fazer com que outras instruções fiquem paradas
 - Superescalares utilizam compilação comum

VLIW vs Superescalar

- Compatibilidade de software
 - VLIW precisa de recompilação
- Espaço em memória
 - VLIW precisa de maior largura de banda de instruções
 - Técnicas para evitar conflitos podem ser despendiosas
 - ♦ NOPs são um desperdício
 - Loop unrolling utiliza uma quantidade ainda maior de espaço em memória

Multithreading?

- Multiprogramação!!
 - Thread Level Parallelism

Problemas com ILP

- Mesmo processadores superescalares não conseguem obter desempenho máximo
 - Dependências de dados
 - Acesso a memória
 - Latência de E/S
- Desperdício horizontal e vertical

Multithreading

- Abordagem Multithreading
 - Duas ou mais threads podem executar virtualmente de forma simultânea no mesmo processador
 - Replicação do estado que mantém as threads, porém com compartilhamento da maior parte dos recursos de hardware
 - Hierarquia de memória compartilhada

Multithreading

- Objetivos
 - Melhor utilização de recursos (cache e unidades de execução são compartilhadas entre threads)
 - Baixo consumo de área (< 5% da área do chip)
 - Redução do tempo de execução da aplicação

Onde é utilizado?

- Praticamente todos os processadores modernos de propósito geral utilizam
 - Na descrição nominal do processador destaca-se o número de threads suportadas.
 - HyperThreading é um caso de Multithreading proposto pela Intel
 - Disponível em processadores como Xeon, Pentium 4, Atom
 - Benchmarks da Intel apontam ganho médio de 30% de desempenho

Multithreading

- Vantagens da abordagem
 - Quando uma thread interrompe muito (periférico, memória principal, HD), outras threads podem usar os recursos do processador. Reduzindo a ociosidade do processador.
 - Quando mais de uma thread executa sobre a mesma área de dados, elas podem compartilhar a cache, reduzindo o tempo de execução global do sistema.
- Desvantagens da abordagem
 - As threads podem interferir umas com as outras no compartilhamento de recursos de hardware como cache.
 - Complexidade de gerenciamento de execução

Multithreading

- Tipos de Multithreading
 - Granularidade grossa (coarse grained)
 - ♦ Block multithreading
 - Granularidade fina (fine grained)
 - ♦ Interleaved multithreading
 - Simultaneous multithreading (SMT)
 - → Multithreading simultâneo

Exemplo

4 threads executando
isoladamente em um
processador superescalar de
grau 4 sem multi-threading

4 threads executando conjuntamente em um processador superescalar de grau 4 com multi-threading utilizando diferentes estratégias de multi-threading

Multithreading

Processador com Simultaneous Multithreading

IMD0041

Tipos de Multithreading

Simultaneous Multithreading (SMT)

Intel – Hyper-Threading Technology
 Para saber mais:

http://www.intel.com.br/content/www/br/pt/architecture-and-technology/hyper-threading/hyper-threading-technology.html

Steppings

Intel® Core™ i7-6700K Processor (8M Cache, up to 4.20 GHz)

Recommended Customer Price

Specifications **Essentials** Performance Supplemental Information **Memory Specifications Graphics Specifications Expansion Options Package Specifications Advanced Technologies** Intel® Data Protection **Technology** Intel® Platform **Protection Technology Compatible Products Benchmarks** Ordering / sSpecs /

Specifications				
- Essentials				
Processor Number	i7-6700K			
Status	Launched			
Launch Date	Q3'15			
Lithography	14 nm			

\$339.00 - \$350.00

Performance				
# of Cores	4			
# of Threads	8			
Processor Base Frequency	4.00 GHz			
Max Turbo Frequency	4.20 GHz			
Cache	8 MB SmartCache			
Bus Speed	8 GT/s DMI3			
# of QPI Links	0			
TDP	91 W			

Compare

Related Products

6th Generation Intel® Core™ i7 Processors

Intel® Core™ i7-6700 Desktop Processor Series

Products formerly Skylake

Learn how Intel is pursuing conflict-free technology. >

Quick Links

Export Full Specifications >

Find Compatible Boards >

Optimized Game Settings >

Support Overview >

Search Distributors >

IMD0041

Anteriormente em IOAC

Introdução

- Limites de soluções de aumento de desempenho
 - o Parede de ILP
 - ♦ Dependências de dados verdadeiras
 - Superescalar -> em tempo de execução -> Consumo de área e potência
 - ♦ VLIW -> em tempo de compilação -> Compatibilidade de software

- Limites de soluções de aumento de desempenho
 - o Parede de Frequência
 - ♦ Aumento da profundidade do Pipeline é comprometido

- Limites de soluções de aumento de desempenho
 - o Parede de Potência
 - ♦ Leakage aumenta 7.5x a cada nova geração

Gargalo da memória

- Como utilizar os transistores adicionais que a lei de Moore nos dá a cada 18 meses?
- Uma das soluções: Multicores
 - Uso de paralelismo a nível de threads
 - Neste contexto, o gargalo da memória toma outra dimensão

- Multithreading: único core (CPU) que pode executar múltiplas threads simultaneamente.
- Multiprocessador: múltiplas CPUs fortemente acopladas para cooperarem na resolução de um único problema.
- Processador Multicore (MPSoC Multiprocessor System on Chip): multiprocessador onde os cores estão em um único chip

Taxonomia de Flynn

- Modelo de classificação, proposto em 1972 e mais aceito até hoje.
- Baseia-se em dois conceitos: sequência de instruções e sequência de dados.

Taxonomia de Flynn

- SI Single Instruction
 - SISD Single Instruction Single Data
 - ♦É o caso das máquinas clássicas de Von Neumann, com um único fluxo de instrução e um único fluxo de dados.
 - SIMD Single Instruction Multiple Data
 - ♦ Uma mesma instrução executa sobre muitos dados. Exemplo: arquiteturas vetoriais (Cray1) onde a mesma operação é executada sobre múltiplos operandos.

Taxonomia de Flynn

- MI Multiple Instruction
 - MISD Multiple Instruction Single Data
 - ♦É o caso de um conjunto de processadores no qual os dados vão sendo processados em um processador e passados para o processador seguinte. Exemplo: a proposta que mais se aproxima desse tipo é a máquina de fluxo de dados (dataflow machine).
 - MIMD Multiple Instruction Multiple Data
 - ♦ São os multiprocessados, com várias instruções sendo executadas sobre diferentes dados.

MIMD - Multicores

- CPU com um único processador que contém dois ou mais núcleos
- Compartilham recursos computacionais, como barramentos, cache
- Alcançam alto desempenho por dois motivos
 - Vários núcleos executando em paralelo
 - Tempo curto de comunicação, já que estão em uma mesma CPU

Sistemas Multiprocessados

- Cell Processor (IBM, Toshiba, Sony)
 - Atinge 204.8 Gflops por segundo com precisão simples e
 - 14.6 Gflop por segundo com precisão dupla
 - Suporte a virtualização
 - Largura de banda da memória chega a 25.6 GB/s

Sistemas Multiprocessados

- Cell Processor (IBM, Toshiba, Sony)
 - PowerXCell 8i
 - ♦ ICache e DCache 32KB 2-way
 - 8 Synergistic Processing Elements (SPE)
 - 256KB de memória local em cada SPE, 6 cycle load latency
 - Cache L2 de 512K interna ao chip

Sistemas Multiprocessados

- 80 Core TeraFlop Processor (Intel)
 - 80 Cores VLIW
 - Uso de uma rede-em-chip
 - Caches L1 integradas
 - Uso de Power Management
 - ♦ 62 Watts de consumo
 - ♦ Sleep Transistor
 - ♦ Clock Gating

Homogêneos vs. Heterogêneos

- Multicores homogêneos
 - Todos os processadores s\u00e3o iguais
 - Em algum aspecto seja ele organizacional (monociclo, multiciclo, pipeline) ou arquitetural (ISA)
 - ♦ São mais simples de desenvolver e testar
 - Arquitetura regular
- Multicores heterogêneos
 - o Pelo menos UM processador é diferente
 - Em algum aspecto seja ele organizacional (monociclo, multiciclo, pipeline) ou arquitetural (ISA)
 - ♦ Implementação complexa
 - Testes de comunicação são necessários
 - ♦ Dão mais opções de execução
 - Processadores mais rápidos porém maiores vs. Processadores mais menores porém mais lentos

Juntando Todas as Partes

Gustavo Girão