Negative Binomial Quasi Poisson Combined

Xiaolin Cao

Both negative binomial regression and quasi Poisson regression are used when the equality of variance and mean cannot be met. The quasi Poisson assumes that the variance is a linear function of mean. The negative binomial regression assumes that the variance is a quadratic function of mean. The expectation is still $E(Y) = \mu$ and $\mu = \exp(x'\beta)$.

$$E[Y_i|x_i, \tau_i] = \mu_i \tau_i$$

$$= e^{x_i \beta + \epsilon_i}$$

$$E[Y_i|x_i, \tau_i] = e^{x_1 \beta_1 + x_2 \beta_2 + \epsilon_1 + \epsilon_2}$$

$$first \ diff = e^{\beta_1 + x_2 \beta_2 + \epsilon_1 + \epsilon_2} - e^{x_2 \beta_2 + \epsilon_1 + \epsilon_2}$$

The introduction of τ is to generalize the Poisson regression.