Distributed Systems Exercise 3 Design Document

Minqi Ma (JHED: mma17), Jerry Chen (JHED: gchen41)

Data Structures

- bool finished[num_processes]: for each machine i, if current machine has received the last packet from machine i
- int num_delivered: the number of messages that the current machine has successfully delivered
- int num_sent: the number of messages that the current machine gives to SPREAD

Message formats

- unsigned int process_index
- unsigned int message_index
- unsigned int random_number
- int payload[1300 / sizeof(int)]

Note: every regular message also has a mess_type

- mess_type = TAG_DATA: it is a normal message with data information
- mess type = TAG END: it is the last packet sent by the process

Design

- 1. Upon start of the program, send membership message to join the group.
- 2. Once received a membership message, check if num_groups equals num_processes. If so, all processes have joined and we can start sending messages. The current process first sends INIT_SEND_SIZE packets, so SPREAD has enough to work with.
- 3. When receiving a regular message
 - a. If mess_type is TAG_DATA

Deliver the information to output file.

Increment num delivered if the packet is from the current machine.

Every time when num_delivered is increased by SEND_SIZE, it means that SPREAD has successfully delivered this amount of current process's packets to all processes. So we send SEND_SIZE number of packets to SPREAD.

b. If mess type is TAG END

Mark the machine as finished in the *finished* array.

If all processes are finished, exit the program.

Tuning parameters:

- INIT SEND SIZE = 65
- SEND SIZE = 1

Performance

	1	2	3	4	5	AVERAGE
Performance(s)	28.1	28.41	26.13	27.86	38.02	29.704

Discussion

1. If we send too many packets initially, SPREAD will overflow, which makes the performance worse.

- 2. We would like to control two parameters so that it can give SPREAD enough work to do (depending on INIT_SEND_SIZE), and send more packets if SPREAD has less message "on the way" (depending on SEND_SIZE).
- 3. Sometimes we got inconsistent results even with the same parameter. We are not sure why it happens. It can vary from 25-50s.