

NATIONAL BURFAU OF S MICROGOPY RESOLU! TEST

AD-A168 315

FILE COPY

3HD

AD

TECHNICAL REPORT BRL-TR-2727

ASYMPTOTIC ANALYSIS OF THE ROOTS OF A CERTAIN TRANSCENDENTAL EQUATION

Raymond Sedney Nathan Gerber

April 1986

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER
Technical Report BRL-TR-2727		
4 TITLE (and Subtitle)		TYPE OF REPORT & PERIOD COVERED
ASYMPTOTIC ANALYSIS OF THE ROOTS OF	A CEDTAIN	Final
TRANSCENDENTAL EQUATION	A CERTAIN	6. PERFORMING ORG. REPORT NUMBER
		8. CONTRACT OR GRANT NUMBER(A)
7. AUTHOR(a)		S. CONTRACT ON GRANT NUMBERIES
Raymond Sedney, Nathan Gerber		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGEAM ELEMENT, PROJECT, TASK
US Army Ballistic Research Laborato	ory	
ATTN: SLCBR-LF	21005 5066	1L161102AF43
Aberdeen Proving Ground, Maryland _	Z1005-5000	12. REPORT DATE
US Army Ballistic Research Laborato	ory	April 1986
ATTN: SLCBR-DD-T	01005 5066	13. NUMBER OF PAGES
Aberdeen Proxing Ground Mary and	Trom Controlling Office)	5 SECURITY CLASS! (st this report)
		ı
		150. DECLASSIFICATION DOWNGRADING
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release, distri	bution unlimited	1.
17. DISTRIBUTION STATEMENT (of the abetract entered	in Block 20, if different fro	m Report)
18. SUPPLEMENTARY NOTES		
Supersedes IMR No. 843 (March 1985)	
	d	
19. KEY WORDS (Continue on reverse side if necessary an		
Asymptotic Analysis Eigenvalues		dental Equation illed Projectiles
	•	·
10	rt 24 1. 30	the good of
20 ABSTRACT (Continue en reverse side if necessary and		
The spatial eigenvalues that occurred first in the Stewartson-Wedemeyer theory and then in later theories consist of a denumerable basic set which are $0(1)$ for Re $\rightarrow \infty$. In this report the existence of an additional single,		
isolated eigenvalue that is $O(Re^{1/2})$ is demonstrated. The former were used is several reports on liquid-filled projectiles; the latter was undetected in previous work. Asymptotic analysis for Re + ∞ is used to give accurate		atter was undetected in

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)
20. ABSTRACT (Continued)
estimates for the new eigenvalue. Numerically it is shown that for $10 < \text{Re} < 1000$ and $0.1 < \tau$ 1.0 the formulas from asymptotic analysis must be used rather than those in the original CDC program. The limiting case of nutational frequency approaching spin frequency is also discussed. The effect of the new eigenvalue on previous results, for Re > 1000, is negligible but for Re < 1000 the effect is significant.

TABLE OF CONTENTS

	<u>i</u>	'age
	LIST OF ILLUSTRATIONS	5
I.	INTRODUCTION	7
II.	PRECIS OF REFERENCE 1	8
III.	ASYMPTOTIC ANALYSIS OF THE ROOTS	9
	A. Limit $\varepsilon \neq 0$	9
	B. Limit ε → ∞	12
IV.	SOME EFFECTS OF INCLUDING z_s IN THE THEORY OF REFERENCE 1	14
	ACKNOWLEDGMENT	
	REFERENCES	21
	LIST OF SYMBOLS	23
	DISTRIBUTION LIST	25

Acces	ion For	7	
NTIS CRA&I DTIC TAB Unannounced Justification			
By			
Availability Codes			
Dist	Avail and Specia	lor	
A-1			

LIST OF ILLUSTRATIONS

<u>Figure</u>	<u>P</u> :	age
1	The Roots of (2.1) for Two Values of Re with τ = 0.1 and A = 3.148; the O(Re ^{1/2}) Roots are Designated by z_s	17
2	The Roots of (2.1) for Two Values of τ with Re = 10 and A = 3.148; the $O(Re^{1/2})$ Roots are Designated by z_s	18
3	C_p vs r for Re = 100, A = 3.148 and τ = 0.1 Including and not Including z_s ; Results for the Spatial Eigenvalue Method are Also Shown	19

I. INTRODUCTION

The study of the 3-D perturbed motion of a rotating fluid which fills a spinning and coning cylinder shows that the solution depends on the cylinder aspect ratio A = c/a and the Reynolds number Re = $a^2\phi/\nu$, where c = half height, a = radius, ϕ = spin of the cylinder and ν = kinematic viscosity of the fluid. The forced oscillation problem was solved for the pressure in Reference 1 and for the moment exerted by the fluid on the cylinder in Reference 2 assuming linear, viscous perturbations of the steady state, i.e., solid body rotation. A modal analysis, matched asymptotic expansions for the flow near the endwalls and an expansion in outer flow spatial eigenfunctions were employed.

The ranges of interest of the parameters are $0.5 \le A \le 5$ and $1 \le Re \le 10^6$, determined by the values for which experimental data, of various sorts, are available. The theory of References 1 and 2 is asymptotic for $Re \to \infty$ and requires the solution of an eigenvalue (e.v.) problem. The complex e.v. are denoted by λ and the eigenfunctions are $\sin \lambda x$, $\cos \lambda x$. The "basic set," λ_k , satisfies $\lambda_k \to k\pi/2A$ for $Re \to \infty$, where k = 1,3,5... Only this set was considered in References 1-4.

The existence of another eigenvalue, λ_s , where $\lambda_s = 0(\text{Re}^{1/2})$ and therefore is not in the basic set, is shown here; in this limit the coning frequency, τ , is fixed and $\tau \neq \pm 1,3$. The limits of all the e.v.'s as coning frequency approaches spin frequency, $\tau + 1$, with Re fixed, are also considered.

^{1.} Gerber, N., Sedney, R., and Bartos, J. M., "Pressure Moment on a Liquid-Filled Projectile: Solid Body Rotation," U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02422, October 1982. (AD A120567)

^{2.} Gerber, N., and Sedney, R., "Moment on a Liquid-Filled Spinning and Nutating Projectile: Solid Body Rotation," U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02470, February 1983. (AD A125332)

^{3.} Wedemeyer, E.H., "Viscous Corrections to Stewartson's Stability Criterion," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, Report No. 1325, June 1966. (AD 489687) (See Also AGARD Conference Proceedings, No. 10, Mulhouse, France, pp. 103-120, September 1966)

^{4.} Murphy, C.H., "Angular Motion of a Spinning Projectile with a Viscous Liquid Payload," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-MR-03194, August 1982. (AD A118676) (See Also Journal of Guidance, Control and Dynamics, Vol. 6, July-August 1983, pp. 280-286)

The eigenvalue λ_S exists for all Re. It is definitely an outlier with respect to the basic set. The $|\text{Im}(\lambda_S)|$ is always larger than that for any λ_K and its inclusion has a definite effect on the solution. As an example, pressure coefficient at the intersection of the endwall and sidewall is 41% less than that obtained without λ_S at $\tau=0.5$ for Re = 10 and A = 3.148.

The determination of λ_S and some implications of its inclusion in the theory of Reference 1 are discussed in this report. The simple asymptotic methods used to determine λ_S show their efficacy not only in analysis but also in the successful computation of the pressure; straightforward calculation would have required more than the 14 significant figures available in the CDC 7600.

II. PRECIS OF REFERENCE 1

Certain parts of the theory of Reference 1 are needed here; the major points are:

- a) The motion of the cylinder (projectile) is given by K_0 exp (if ϕ t) where t is time, $f=(1-i\delta)\tau$, τ is nutational frequency/ ϕ and ϕ is the yaw growth rate. K_0 is the magnitude of the yaw, assumed small, and is the parameter used to linearize the Navier-Stokes equations in the perturbation analysis. Lengths, time, velocity and perturbation pressure are made non-dimensional by a, ϕ^{-1} , a ϕ and K_0 pa $^2\phi^2$, respectively, where ρ is the liquid density.
- b) The flow variables are assumed to vary as $\exp\left[i(f\delta t \theta)\right]$ where θ is the azimuthal angle coordinate; the variations with x and r, the longitudinal and radial coordinates, respectively, are governed by linear partial differential equations and the no-slip conditions on the sidewall and endwalls.
- c) These equations are solved using a modal analysis. The x-variation is determined by a second-order, non-self-adjoint system for spatial eigenvalues, λ , and eigenfunctions $\sin \lambda x$ and $\cos \lambda x$.
- d) The solution satisfies the boundary conditions on the sidewall but not on the endwalls. In the neighborhood of the latter, it must be taken as the outer solution and then matched to an inner (boundary layer type) solution. The matching is asymptotic for $Re + \infty$.
- e) First term matching provides a solution to 0 (Re^{-1}) and corrected endwall boundary conditions that determine the λ .
 - f) The λ are the roots of

$$F(z,\varepsilon) \equiv \cos z + \varepsilon z \sin z = 0$$
 (2.1)

where $z = A\lambda$, $\varepsilon = \delta c/A$ and δc is the complex displacement thickness given by

$$\delta c = -(1+\tau)/2\alpha(1-\tau) + (3-\tau)/2\beta(1-\tau)$$

$$\alpha = [Re (3-\tau)/2]^{1/2} (1-i)$$
(2.2)

$$\beta = [Re(1+\tau)/2]^{1/2}$$
 (1+i), where $\delta = 0$, $f = \tau$, for

convenience.

The range of τ is limited to -1 $< \tau < 3$ in order that inertial waves exist in the rotating fluid; this is the range in the inertial coordinate system employed here compared to the frequency range (-2,2) in a rotating coordinate system.

Since (2.1) is solved by iteration, first guesses for the roots are required; for Re >> 1

$$z \simeq (k\pi/2)(1-\epsilon)^{-1}$$
, k odd, (2.3)

was used. This approximation can be derived in several ways; see, e.g. (3.2).

By definition τ is real. In principle there is no restriction on τ , except $\tau \neq \pm 1$, 3. In practice $0 < \tau < 0.2$ for most projectiles and $-0.5 < \tau < 0.5$ for most experimental simulations of a spinning projectile. Here for definiteness, the range of τ will be taken to be $-1 < \tau < 1$. From (2.2) it follows that

$$-\pi/2 < arg \epsilon < -\pi/4$$
 (2.4)

for -1 $< \tau < 1$.

The question of how small Re can be and still obtain reasonably accurate solutions, using References 1 and 2, will not be discussed because it is not relevant to solving (2.1).

III. ASYMPTOTIC ANALYSIS OF THE ROOTS

A. Limit $\varepsilon + 0$

The roots of (2.1) depend on the single parameter ε which is proportional to $[(1-\tau)\mathrm{Re}^{1/2}]^{-1}$. The limit of primary interest is $\varepsilon + 0$, which could correspond to $\mathrm{Re} + \infty$, τ fixed. The limit $\varepsilon + \infty$, corresponding to $\tau + 1$ and Re fixed, will also be considered; the limit $\tau + -1$ (or even $\tau + 3$) can be treated by the same techniques but will not be considered here.

If z is a root of (2.1), -z is also. Since the eigenfunctions are $\sin \lambda x$ and $\cos \lambda x$, and because of the symmetry properties of the solution¹, only the roots of one sign are required. The results obtained below show that only roots with

$$-\pi/2 < \text{arg } z < 0 \tag{3.1}$$

are appropriate. First let z=0(1) for $\varepsilon \neq 0$ so that cos z is the dominant term in (2.1). Thus $F \neq \cos z$ and $z \neq \pm k\pi/2$, $k=1,3,\ldots$, but only the positive sign need be considered. This gives the zeroth approximation to the basic set of roots, z_k , defined by $z_k \approx 0(1)$ or $z_k = k\pi/2$ for $\varepsilon \neq 0$. The basic set was used in References 1-4. The zeroth approximation can be improved by a regular perturbation. Assuming a power series in ε yields

$$z_k = (k\pi/2)(1 + \varepsilon + \dots) \tag{3.2}$$

so that $-\pi/2 < \arg z_k < 0$.

It is not possible to have $\varepsilon z \sin z$ the dominant term in (2.1). The possibility that neither term dominates requires $\varepsilon z = 0(1)$. Since $z = 0(1/\varepsilon)$, the asymptotic forms for sin z and cos z are required. Using

$$\sin z = (-i/2)(e^{iz} - e^{-iz}) \qquad \cos z = (1/2)(e^{iz} + e^{-iz})$$

$$= (-i/2)e^{iz}(1 - e^{-2iz}) \qquad = (1/2)e^{iz}(1 + e^{-2iz})$$
(3.3)

the asymptotic forms are, for $-\pi < \arg z < 0$, $|z| + \infty$,

$$\sin z \sim (-i/2)e^{iz}$$
 $\cos z \sim (1/2)e^{iz}$. (3.4)

Substituting (3.4) into (2.1) yields z_0 , the zeroth approximation to the asymptotic solution of (2.1):

$$z_0 = -i/\epsilon$$
. (3.5)

(For 0 < arg z < π , z_0 = +i/ ϵ is obtained, which need not be considered.) Note that because of (2.4), $-\pi/2$ < arg z_0 < 0. Therefore z_0 = 0(Re^{1/2}) for Re $\rightarrow \infty$ and is distinct from any member of the basic set. Only z = 0(1) and z = 0(1/ ϵ) roots are possible; all other orders give contradictory or inconsistent results.

The eigenvalue, which is $O(\text{Re}^{1/2})$ for $\text{Re} + \infty$, is denoted by $z_\text{S} \approx z_0$. With respect to the basic set z_S is a singular perturbation. Depending on the iterative method used to solve (2.1) z_S can be determined for small Re (say $\text{Re} \approx 10$) and $\tau > .5$ using certain O(1) first guesses. However, using z_0 as the first guess and Newton's method to solve (2.1) will yield z_S for all τ and Re unless Re is so large that $|e^{iz_0}|$ exceeds the capacity of the computer so that the Newton method fails. But for such Re, z_0 is a very close approximation to z_S . Furthermore the approximation $z_\text{S} \approx z_0$ can be easily improved so that the iterative solution of (2.1) for z_S is, in fact, no longer necessary for $|\varepsilon|$ small enough.

Let the method of undetermined coefficients assume a series expansion

$$z_s = z_0(1 + c_1 Y + ...)$$
 (3.6)

in a small parameter γ . With (3.3), (2.1) can be written as

$$q(z) = 1 + e^{-2iz} - i\varepsilon z(1 - e^{-2iz}) = 0.$$
 (3.7)

Since g (z_0) = $2e^{-2/\epsilon}$, the small parameter $\underline{\gamma} = e^{-2/\epsilon}$ is suggested. If (3.6) contains only powers of γ , substitution into (3.7) leads to a contradiction so that the c_i , i > 1, cannot be determined. The reason for this is that $\ln \gamma$ terms are required in the expansion. This can be shown if iteration is used to solve (3.7), after rewriting it as

$$\zeta = (1 + \gamma^{\zeta})/(1 - \gamma^{\zeta})$$

$$\zeta = z/z_{0}.$$

The iteration is defined by

$$\zeta_0 = 1$$

$$\zeta_{n+1} = (1 + \gamma^{\zeta_n})/(1 - \gamma^{\zeta_n})$$
(3.8)

and the result for n = 1 is

$$z_s/z_0 \approx \zeta_2 = 1 + 2\gamma + 2\gamma^2 + 4\gamma^2 \ln \gamma + 0(\gamma^3 \ln \gamma).$$
 (3.9)

The method of undetermined coefficients works with these functions of γ . Equation (3.9) gives the first four terms in an asymptotic series which appears to diverge for $|\gamma| > 10^{-3}$. By a theorem in Reference 5 the iteration (3.8) converges to a unique root if $|\gamma| < 10^{-2}$, approximately.

Since z_S and the basic set, z_K , are unique and since only roots of O(1) and O(1/ ϵ) are permissible, all roots of (2.1) have been determined for ϵ + O.

B. Limit $\varepsilon + \infty$

Next the limit $\varepsilon \to \infty$ is considered, i.e., $\tau \to 1$, Re $\to 0$ or both. Because the present work is based on the Re $\to \infty$ theory of Reference 1, it would be inappropriate to allow Re $\to 0$. From (2.2), if $\tau = 1$ -s where s > 0 and s << 1, then

$$\varepsilon = (-i/A Re^{1/2}s)[1 + (3is/4) + 0(s^2)].$$
 (3.10)

In this section all limits are taken with respect to $\varepsilon \to \infty$. Again there are only two kinds of roots of (2.1).

(i) z = 0(1) for which εz sin z is the dominant term and the zeroth approximation to the roots is

$$z_{\rm H} = N\pi$$
, $N = 1, 2, ...$ (3.11)

^{5.} Isaacson, E., and Keller, H. B., Analysis of Numerical Methods, John Wiley & Sons, New York, 1966, p. 86.

the root z = 0 being discarded since it is not O(1). The next approximation gives

$$z_{N} = N\pi - (1/N\pi\epsilon). \tag{3.12}$$

This expression can be obtained by substituting $z = N\pi + \Phi$ into (2.1), expanding $\sin \Phi$ and $\cos \Phi$ in power series, and retaining only terms through first order in Φ .

(ii) $z = 0(\varepsilon^{-1/2})$ for which neither term in (2.1) is dominant. There is a single root, z_s' ; its zeroth approximation is

$$z'_{so} = -i/\varepsilon^{1/2} \tag{3.13}$$

with $-\pi/2$ < arg $\varepsilon^{1/2}$ < 0. Although it has not been proved it seems clear that $z_s' = z_s$. The next approximation gives

$$z'_{s} \simeq (-i/\epsilon^{1/2}) - (i/3\epsilon^{3/2}).$$
 (3.14)

The approximations (3.11) and (3.13) or (3.12) and (3.14) can be used as first guesses in an iterative scheme to get the roots of (2.1); for the largest ϵ tried, $|\epsilon|$ = 1.08, they approximated the roots to only one significant figure. Another way to obtain a reliable first guess for moderate ϵ is to rewrite (2.1) in terms of cot z (take z = N π + ϕ) and use the first two terms in the expansion of cot ϕ . The result is

$$z = [-N\pi\epsilon + {(N\pi\epsilon)^2 - 4(\epsilon - 1/3)}^{1/2}]/[2(\epsilon - 1/3)] + N\pi.$$
 (3.15)

Some representative results are shown in Figures 1 and 2. The roots of (2.1) are plotted in the $(z_R,\,z_I)$ plane for Re = 10 and 100, τ = 0.1 and A = 3.148 in Figure 1. All the z_k , k = 1, 3, ... lie close to the real axis; the z_S for the two values of Re are noted. As Re increases, the z_k do not change much but z_S = 0(Re $^{1/2}$). For Re = 10, ε = 0.0836 - 0.1346 i and γ = (-0.348 + 1.23i)10 $^{-3}$ and for Re = 100, ε = 0.0264 - 0.0462 i and γ = (-5.65 - 4.35i)10 $^{-10}$. In Figure 2, the roots are plotted for Re = 10 and A = 3.148 for τ = 0.1 and 0.9. For the latter either (3.5) or (3.13) can be used as first guess in Newton's method to obtain z_S although (3.13) is a better guess, as expected. Also for this case Real (z_S) < Real (z_k) for all odd k.

IV. SOME EFFECTS OF INCLUDING $z_{\rm S}$ IN THE THEORY OF REFERENCE 1

The existence of z_s has a number of consequences in the theory of Reference 1, some of which are mentioned here. The effect on the non-dimensional endwall pressure, C_p at r=1, of including z_s is shown in Table 1 for $\tau=.5$, A=3.148, and four values of Re. Ten terms were used in the series to calculate C_p , i.e., ten values of z_k or nine plus z_s . For Re $< 10^3$ inclusion of z_s makes a significant difference. Since the theory of Reference 1 is asymptotic for Re $+\infty$, there is a separate question of how accurate that theory is for Re $< 10^3$; this question is not discussed in detail here.

		Table 1. C _p at r	= 1	
τ =	. •5	A = 3.148		
Re	10	102	10 ³	104
With z _s	.0819	•836	.668	•470
Without z _s	.1398	•793	•662	.4 70

Figure 3 shows C_p vs r for Re = 100, A = 3.148 and τ = .1, including z_s and not. The effects are negligible for 0 < r < .45; for r = 1 the C_p that includes z_s is 16% larger than that if z_s is not included. The results for C_p from the spatial e.v. method (not discussed here) are also shown; it can be shown that these are accurate to the number of significant figures plotted and therefore show the error in the results of Reference 1, even including z_s .

In Reference 1, the satisfaction of the sidewall boundary conditions, at r=1, requires the expansion of x, $-A \le x \le A$, in terms of the eigenfunctions $\sin z_k x/A$ and $\sin z_s x/A$. Two methods of determining the coefficients were given: a least squares fit of the partial sum to x and the eigenfunction expansion obtained from the boundary value problem satisfied by the e.v. and eigenfunctions. This is not a self-adjoint problem so the eigenfunctions are not orthogonal but they are biorthogonal with respect to the solutions of the adjoint problem. This fact enables b_k and b_s , the coefficients in the expansion

$$x = \sum b_k \sin z_k x/A + b_s \sin z_s x/A$$
 (4.1)

to be determined analytically, using

$$b_{s} = b(z_{s})$$

$$b_{s} = b(z_{s})$$

$$b(z) = (2A/z^{2}) (1 + \varepsilon^{2}z^{2}) \sin z/(1 + \varepsilon^{2}z^{2} - \varepsilon).$$
(4.2)

The calculation of b_k is straightforward because z_k is 0(1) but the evaluation of b_s is tedious, time consuming and could require more than the 14 significant figures available in the CDC 7600 for Re > 100. The reason for this is that the numerator of b_s goes to zero exponentially, which can be seen from (3.5), (5.9) and the fact that $1+\epsilon^2z_s^2\sim -4\gamma=-4e^{-2/\epsilon}$. If b_s is evaluated from (4.2), without using asymptotic formulas, a large number of significant figures is required in z_s ; this is illustrated in Table 2 for the quantity called $\hat{u}_s(1)=-i\left[2\tau\;(1-\tau)/(1+\tau)\right]$ b_s in Reference 1.

Table 2. Effect of Significant Figures in $z_{\rm S}$

Re	e = 100		A = 3.148	}	r = •1
MSIG(z _s)	5	7	9	11	13
Real($\hat{u}_{s}(1)$)	1.55 × 10 ⁻³	1.63 × 10 ⁻⁵	-2.85 × 10 ⁻⁶	-2.12 × 10 ⁻⁶	-2.132 × 10 ⁻⁶

NSIG (z_s) is the number of significant figures in z_s used in (4.2); similar behavior is found for Imag $(\hat{u}_s(1))$. In contrast, if (3.5) and only the first two terms of (3.9) are used to derive the asymptotic form of b_s ,

$$b_s^{\sim}$$
 i 4A ϵ e $^{-1/\epsilon}$,

then Real $(\hat{u}_S(1)) = -2.131 \times 10^{-6}$ is obtained from this simple calculation using four significant figures for ε (i.e., z_S); this differs by 1 out of 2000 from the results given in Table 2 for NSIG $(z_S) = 13$. The power of asymptotic methods is shown by this example. In addition, for Re > 100, NSIG > 14 would be necessary, at which point it would be impractical to use the CDC 7600. The way to proceed is to make use of asymptotic methods.

A check on the relative contribution of z_s can be made by computing the sum and the z_s terms in (4.1). For x=A these should add to A. With the sum denoted by Σ_k , the following results are obtained for Re = 100, A = 3.148, $\tau=.1$:

The exact results are 3.148 and 0; 49 terms were used in $\boldsymbol{\Sigma}_{k}$. Clearly it is essential to include the \boldsymbol{z}_s terms.

Since $b_s \sin z_s = 0$ (ϵ), the contribution of the z_s term to the series expansion and, ultimately, the pressure, approaches zero as Re $^{-1/2}$. Since the calculation in References 1 and 2 were made for Re > 1,000, inclusion of the z_s term would have a negligible effect on those calculations.

ACKNOWLEDGMENT

The authors wish to thank Miss Joan M. Bartos for programming and performing the calculations presented here.

Figure 1. The Roots of (2.1) for Two Values of Re with $\tau=0.1$ and A = 3.148; the 0(Re $^{1/2}$) Roots are Designated by z_{S}

Figure 2. The Roots of (2.1) for Two Values of τ with Re = 10 and A = 3.148; the 0(Re^{1/2}) Roots are Designated by z_{S}

not Including $\mathbf{z}_{\mathbf{S}}$; Results for the Spatial Eigenvalue Method are also Shown C_p vs r for Re = 100, A = 3.148 and τ = 0.1 Including and Figure 3.

REFERENCES

- 1. Gerber, N., Sedney, R. and Bartos, J.M., "Pressure Moment on a Liquid-Filled Projectile: Solid Body Rotation," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02422, October 1982. (AD A120567)
- 2. Gerber, N. and Sedney, R., "Moment on a Liquid-Filled Spinning and Nutating Projectile: Solid Body Rotation," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02470, February 1983. (AD A125332)
- 3. Wedemeyer, E.H., "Viscous Corrections to Stewartson's Stability Criterion," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, Report No. 1325, June 1966. (AD 489687) (See Also AGARD Conference Proceedings, No. 10, Mulhouse, France, pp. 103-120, September 1966)
- 4. Murphy, C.H., "Angular Motion of a Spinning Projectile with a Viscous Liquid Payload," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-MR-03194, August 1982. (AD Al18676) (See Also Journal of Guidance, Control and Dynamics, Vol. 6, pp. 280-286, July-August 1983)
- 5. Isaacson, E. and Keller, H.B., <u>Analysis of Numerical Methods</u>, John Wiley & Sons, New York, 1966, p. 86.

REFERENCES

- 1. Gerber, N., Sedney, R. and Bartos, J.M., "Pressure Moment on a Liquid-Filled Projectile: Solid Body Rotation," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02422, October 1982. (AD A120567)
- 2. Gerber, N. and Sedney, R., "Moment on a Liquid-Filled Spinning and Nutating Projectile: Solid Body Rotation," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-TR-02470, February 1983. (AD A125332)
- 3. Wedemeyer, E.H., "Viscous Corrections to Stewartson's Stability Criterion," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, Report No. 1325, June 1966. (AD 489687) (See Also AGARD Conference Proceedings, No. 10, Mulhouse, France, pp. 103-120, September 1966)
- 4. Murphy, C.H., "Angular Motion of a Spinning Projectile with a Viscous Liquid Payload," US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, ARBRL-MR-03194, August 1982. (AD A118676) (See Also Journal of Guidance, Control and Dynamics, Vol. 6, pp. 280-286, July-August 1983)
- 5. Isaacson, E. and Keller, H.B., <u>Analysis of Numerical Methods</u>, John Wiley & Sons, New York, 1966, p. 86.

LIST OF SYMBOLS

a	radius of cylinder [cm]
Α	c/a = aspect ratio of cylinder
b _k , b _s	coefficients in biorthogonal eigenfunction expansion of $f(x) = x$ (See (4.1) and (4.2))
С	half-height of cylinder [cm]
$C_{\mathbf{p}}$	pressure coefficient
e.v.	abbreviation for eigenvalue
f	(1-i δ) τ
F	cos z + ez sin z
k	odd integer
Кo	amplitude of projectile angular motion [non-dimensional]
r	radial coordinate /a
Re	Reynolds number = $a^2 \phi/v$
s	1 - τ
t	time [sec]
û _s (1)	$-i [2\tau(1-\tau)/(1+\tau)]b_{S}$
x	longitudinal coordinate/a
Z	Αλ
z _k	root in basic set of roots of (2.1)
z _N	root in basic set of roots of (2.1) for ε + ∞

LIST OF SYMBOLS (Continued)

```
O(\varepsilon) root of (2.1)
zs
                 0(\epsilon^{-1/2}) root of (2.1)
z_s
                  -i/\epsilon^{1/2},
                                (see (3.13))
z'so
                  -i/\epsilon, (see (3.5))
z_0
                 e^{-2/\epsilon}
                  (1/\tau) × yaw growth per radian of nutation
                  complex displacement thickness
δс
                  δc/A
                  azimuthal coordinate
                  spatial eigenvalue
                  kinematic viscosity of liquid [cm²/s]
                  density of liquid [g/cm<sup>3</sup>]
                  nutational frequency of cylinder/$\dot$
                  spin rate of cylinder [radians/s]
```

No. of Copies		No. of Copies	<u>Organization</u>
12	Administrator Defense Technical Information Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314	1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299
1	Commander US Army Engineer Waterways Experiment Station ATTN: R.H. Malter Vicksburg, MS 39180	1	Director Benet Weapons Laboratory Armament R&D Center US Army AMCCOM ATTN: SMCAR-LCB-TL Watervliet, NY 12189
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001 Commander	1	Commander US Army Aviation Research and Development Command ATTN: AMSAV-E 4300 Goodfellow Blvd St. Louis, MO 63120
1	Armament R&D Center US Army AMCCOM ATTN: SMCAR-TDC Dover, NJ 07801-5001	2	Director US Army Air Mobility Research and Development Laboratory ATTN: SAVDL-D, W.J. McCroskey Technical Library
3	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-TSS Dover, NJ 07801-5001	1	Ames Research Center Moffett Field, CA 94035 Commander US Army Communications -
6	Commander Armament R&D Center US Army AMCCOM		Electronics Command ATTN: AMSEL-ED Fort Monmouth, NJ 07703-5301
	ATTN: SMCAR-LCA-F Mr. D. Mertz Mr. E. Falkowski Mr. A. Loeb Mr. R. Kline Mr. S. Kahn	1	Commander U.S. Army Missile Command Research, Development & Engineering Center Attn: AMSMI-RD Redstone Arsenal, AL 35898
_	Mr. S. Wasserman Dover, NJ 07801-5001	1	U.S. Army Missile & Space Intelligence Center
1	HQDA DAMA-ART-M Washington, DC 20310		ATTN: AIAMS-YDL Redstone Arsenal, AL 35898-5500

gana processo sessessimentente de pentente de constanta de constanta de pententa de pententa de la constanta del la constanta de la constanta del la constanta d

No. of Copies	Organization	No. o		Organization
_	Commander ERADCOM Technical Library ATTN: DELSD-L (Reports Section Fort Monmouth, NJ 07703-5301 Commander		0	Central Intelligence Agency Office of Central Reference Dissemination Branch Room GE-47 HQS Washington, DC 20502
1	US Army Missile Command ATTN: AMSMI-RDK, Mr. R. Deep Redstone Arsenal, AL 35898	1		Commander US Army Development and Employment Agency ATTN: MODE-TED-SAB
	Commander US Army Tank Automotive Command ATTN: AMSTA-TSL	3	ł	Fort Lewis, WA 98433 Commander
1	Warren, MI 48397-5000 Director	J		Naval Air Systems Command ATTN: AIR-604 Washington, DC 20360
	US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL White Sands Missile Range, NM 88002	2		Commander David W. Taylor Naval Ship Research & Development Cmd ATTN: H.J. Lugt, Code 1802
1	Commander US Army Jefferson Proving GD ATTN: STEJP-TD-D Madison, IN 47250	1		Naval Surface Weapons Center
1	Commander US Army Research Office			ATTN: DX-21, Lib Br Dahlgren, VA 22448
! !	ATTN: Dr. R.E. Singleton Dr. Jagdish Chandra P.O. Box 12211 Research Triangle Park, NC 27709-2211	4		Commander Naval Surface Weapons Center Applied Aerodynamics Division ATTN: J.T. Frasier M. Ciment
	AGARD-NATO ATTN: R.H. Korkegi APO New York 09777			A.E. Winklemann W.C. Ragsdale Silver Spring, MD 20910
Į	AFWL/SUL Kirtland AFB, NM 87117	1		Director Office of Naval Research ATTN: Richard Whiting Code 123
	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR			800 Quincy Street Arlington, VA 22217
1	Fort Benning, GA 31905	1		Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000

No. of Copies			No. of Copies	Organization
1	AFWAL ATTN: J.S. Shang Wright-Patterson AFB, OH	45433	2	National Aeronautics and Space Administration
1	AFWAL ATTN: W. L. Hankey Wright-Patterson AFB, OH	45433		Marshall Space Flight Center ATTN: A.R. Felix, Chief S&E-AERO-AE Dr. W.W. Fowlis Huntsville, AL 35812
1	Aerospace Corporation Aero-Engineering Subdivision ATTN: Walter F. Reddall El Segundo, CA 90245		4	Aerospace Corporation ATTN: H. Mirels R.L. Varwig Walter F. Reddall
5	Director National Aeronautics and Administration	Space		Aerophysics Lab. P.O. Box 92957 Los Angeles, CA 90009
	Ames Research Center ATTN: D.R. Chapman W.C. Rose B. Wick P. Kutler Tech Library Moffett Field, CA 94035		2	Director Jet Propulsion Laboratory ATTN: L.M. Mach Tech Library 4800 Oak Grove Drive Pasadena, CA 91103
4	Director National Aeronautics and Space Administration Langley Research Center ATTN: E. Price		3	Arnold Research Org., Inc. ATTN: J.D. Whitfield R.K. Matthews J.C. Adams Arnold AFB, TN 37389
	J. South J.R. Sterrett Tech Library Langley Station Hampton, VA 23365		3	Boeing Commercial Airplane Company ATTN: R.A. Day, MS 1W-82 P.E. Rubbert, MS 3N-19 J.D. McLean, MS-3N-19 Seattle, WA 98124
1	Director National Aeronautics and Administration Lewis Research Center ATTN: MS 60-3, Tech Lib 21000 Brookpark Road	Space	1	•
1	Cleveland, OH 44135-3127 AVCO Systems Division ATTN: B. Reeves 201 Lowell Street Wilmington, MA 01887		2	Lockheed-Georgia Company ATTN: B.H. Little, Jr. G.A. Pounds Dept 72074, Zone 403 86 South Cobb Drive Marietta, GA 30062

No. of Copies		No. of Copies	
	General Dynamics ATTN: Research Lib 2246 P.O. Box 748 Fort Worth, TX 76101	5	Sandia National Laboratory ATTN: H.W. Vaughn G. Wolfe W.L. Oberkampf
	General Electric Company, RESD ATTN: W.J. East 3198 Chestnut Street Philadelphia, PA 19101	2	
	Grumman Aerospace Corporation ATTN: R.E. Melnik L.G. Kaufman Bethpage, NY 11714		Research Laboratory ATTN: M.J. Werle Library East Hartford, CT 06108
	Lockheed Missiles and Space Company ATTN: Tech Info Center 3251 Hanover Street Palo Alto, CA 94304	1	LTV Aerospace and Defense Co. Vought Missiles and Advanced Programs Division P.O. Box 650003 Dallas, TX 75265-0003
	Martin-Marietta Corporation ATTN: S.H. Maslen S.C. Traugott H. Obremski 1450 S. Rolling Road Baltimore, MD 21227	2	Arizona State University Department of Mechanical and Energy Systems Engineering ATTN: G.P. Neitzel W. S. Saric Tempe, AZ 85287
	McDonnell Douglas Astronautics Corporation ATTN: J. Xerikos H. Tang 5301 Bolsa Avenue Huntington Beach, CA 92647	1	Cornell University Graduate School of Aero Engr ATTN: Library Ithaca, NY 14853
	Douglas Aircraft Company ATTN: T. Cebeci 3855 Lakewood Boulevard Long Beach, CA 90808	3	California Institute of Technology ATTN: Tech Library H.B. Keller, Math Dept D. Coles, Aero Dept Pasadena, CA 91109
	Rockwell International Science Center ATTN: Dr. V. Shankar Dr. S. Chakravarthy Dr. N. Malmuth 1049 Camino Dos Rios Thousand Oaks, CA 91360	1	Director Johns Hopkins University Applied Physics Laboratory Johns Hopkins Road Laurel, MD 20707

No. of Copies	· · · · · · · · · · · · · · · · · · ·	No. of Copies	Organization
	Illinois Institute of Technology ATTN: S. Rosenblat H.M. Nagib 3300 South Federal Chicago, IL 60616	1	Northwestern University Department of Engineering Science and Applied Mathematics ATTN: Dr. S.H. Davis Evanston, IL 60201
	Lockheed-Georgia Co. ATTN: B.H. Little, Jr. G. A. Pounds Dept. 72074, Zone 403 86 South Cobb Drive Marietta, GA 30063	2	Ohio State University Dept of Aeronautical and Astronautical Engineering ATTN: S.L. Petrie O.R. Burggraf Columbus, OH 43210
	Vought Corporation ATTN: J.M. Cooksey, Chief Gas Dynamics Lab, 2-53700 P.O. Box 5907 Dallas, TX 75222	2	Polytechnic Institute of New York ATTN: G. Moretti Tech. Library Route 110
	The Johns Hopkins University Dept of Mech and Materials Sci. ATTN: S. Corrsin Baltimore, MD 21218	3	Farmingdale, NY 11735 Princeton University James Forrestal Research Ctr
	Louisiana State University Dept. of Physics and Astronomy ATTN: Dr. R.G. Hussey Baton Rouge, LA 70803		Gas Dynamics Laboratory ATTN: S.M. Bogdonoff S.I. Cheng Tech Library Princeton, NJ 08540
3	Massachusetts Institute of Technology ATTN: E. Covert H. Greenspan Tech Lib	1	Purdue University Thermal Science & Prop Ctr ATTN: Tech Library W. Lafayette, IN 47906
	77 Massachusetts Avenue Cambridge, MA 02139	1	Rensselaer Polytechnic Institute
2	North Carolina State Univ Mechanical and Aerospace Engineering Department ATTN: F.F. DeJarnette J.C. Williams Raleigh, NC 27607	1	Department of Math Sciences ATTN: Tech Library Troy, NY 12181 Rutgers University Department of Mechanical, Industrial, and Aerospace
1	Notre Dame University Department of Aero Engr ATTN: T.J. Mueller South Bend, IN 46556		Engineering ATTN: R.H. Page New Brunswick, NJ 08903

addin archaec, marcaec - archaece - archaecea decreasia archaech bareachth addinaid Heilesbach Bedevoor Ionnes

No. of Copies		No. of Copies	Organization
1	Southern Methodist University Department of Civil and Mechanical Engineering ATTN: R.L. Simpson Dallas, TX 75272	2	University of California - San Diego Department of Aerospace Engineering and Mechanical Engineering Sciences ATTN: P. Libby
1	Southwest Research Institute Applied Mechanics Reviews 8500 Culebra Road	1	Tech Library La Jolla, CA 92037 University of Santa Clara
1	San Antonio, TX 78228 San Diego State University	1	Department of Physics ATTN: R. Greeley Santa Clara, CA 95053
	Department of Aerospace Engrand Engineering Mechanics College of Engineering ATTN: K.C. Wang San Diego, CA 92115	2	University of Cincinnati Department of Aerospace Engineering ATTN: R.T. Davis S.G. Rubin
1	Harvard University Division of Engineering and Applied Physics ATTN: G. J. Carrier Cambridge, MA 01238	1	Cincinnati, OH 45221 University of Colorado Department of Astro-Geophysics ATTN: E.R. Benton Boulder, CO 80302
1	Stanford University Dept of Aeronautics/Astronautics ATTN: M. VanDyke Stanford, CA 94305	2	•
1	Texas A&M University College of Engineering ATTN: R.H. Page College Station, TX 77843	1	University of Maryland - Baltimore County Department of Mathematics
1	University of California - Davis ATTN: H.A. Dwyer Davis, CA 95616	2 (ATTN: Dr. Y.M. Lynn 5401 Wilkens Avenue Baltimore, MD 21228 University of Southern
1	University of California - Berkeley Department of Aerospace Engineering ATTN: M. Holt Berkeley, CA 94720		California Department of Aerospace Engineering ATTN: T. Maxworthy P. Weidman Los Angeles, CA 90007

No. of Copies	Organization	No. of Copies	
C A E	University of Michigan Department of Aeronautical Engineering ATTN: W.W. Wilmarth Tech Library East Engineering Building	1	University of Washington Department of Mechanical Engineering ATTN: Tech Library Seattle, WA 98105
2 L	Ann Arbor, MI 48104 University of Rochester Department of Mechanical and Aerospace Sciences ATTN: R. Gans		University of Wyoming ATTN: D.L. Boyer University Station Laramie, WY 82071
	A. Clark, Jr. Rochester, NY 14627	1	University of Wisconsin - Madison Mathematic Research Center ATTN: John C. Strikwerda
	University of Virginia Department of Aerospace Engineering & Engineering Physics		610 Walnut Street Madison, WI 53706
C	ATTN: I.D. Jacobson Charlottesville, VA 22904	1	Woods Hole Oceanographic Institute ATTN: J.A. Whitehead Woods Hole, MA 02543
D A	University of California - Santa Barbara Department of Mechanical and Environmental Engineering NTTN: J.P. Vanyo Santa Barbara, CA 93106		Virginia Polytechnic Institute and State University Department of Aerospace Engineering ATTN: Tech Library
D	University of Texas Department of Aerospace _Engineering		Dr. T. Herbert Blacksburg, VA 24061
	NTTN: J.C. Westkaemper Nustin, TX 78712		en Proving Ground
D A	University of Virginia Department of Mechanical Aerospace Engineering NTTN: W. G. Wood R. J. Ribando R. Krauss W. E. Scott	Comman ATTN	AMXSY-MP, H. Cohen der, USATECOM H: AMSTE-TO-F der, CRDC, AMCCOM
1 U D A	Charlottesville, VA 22904 Iniversity of Tennessee Repartment of Physics ITTN: Technical Library Inoxville, TN 37916	ATTN	SMCCR-RSP-A SMCCR-MU SMCCR-SPS-IL

(FOREIGN)

Exeter, England

No. of **Organization** Copies Korea Advanced Inst. of Science and Technology Department of Mechanical Engineering ATTN: J.M. Hyun 150 Cheongryang Seoul, Korea York University 1 Department of Earth and Atmospheric Science ATTN: K.D. Aldridge 4700 Keele Street North York, Ontario M3J 1P3 Canada University of Exeter Mathematics Department ATTN: P. Hall North Park Road

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BKL Ke	port Number	Date of Report
2. Date R	eport Received	
3. Does to	his report satisfy a need? (Com of interest for which the repor	nment on purpose, related project, or rt will be used.)
4. How spedata, proc	ecifically, is the report being edure, source of ideas, etc.)	used? (Information source, design
as man-hou:	e information in this report led rs or dollars saved, operating c o, please elaborate.	l to any quantitative savings as far costs avoided or efficiencies achieved,
		should be changed to improve future on, technical content, format, etc.)
	Name	
CURRENT	Organization	
ADDRESS	Address	
	City, State, Zip	
'. If indi lew or Corr	cating a Change of Address or Ac ect Address in Block 6 above and	ddress Correction, please provide the dthe Old or Incorrect address below.
	Name	
OLD ADDRESS	Organization	
	Address	
	City, State, Zip	

Director U.S. Army Ballistic Research ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD		iere		NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300	BUSINESS FIRST CLASS PERMIT POSTAGE WILL BE PAID E	NO 12062 W	ASHINGTON, DC	
Director U.S. Army Ballistic Rese ATTN: SLCBR-DD-T Aberdeen Proving Ground,				
	POLD WEE	r.		

alter, success, madeless, readypas, eccessioners

AD-R168 315

ASYMPTOTIC ANALYSIS OF THE ROOTS OF A CERTAIN
TRANSCENDENTAL EQUATION(U) ARMY BALLISTIC RESEARCH LAB
ABERDEEN PROVING GROUND ND R SEDNEY ET AL APR 86
UNCLASSIFIED BRL-TR-2727

NL

TRANSCENDENTAL EQUATION(U) ARMY BALLISTIC RESEARCH LAB
ABERDEEN PROVING GROUND ND R SEDNEY ET AL APR 86
F/G 19/19
NL

SUPPLEMENTARY

INFORMATION

Errata for BRL-TR-2727

- 1. The enclosed sheet contains corrected versions of Figures 1 and 2 for pages 17 and 18 of the following BRL technical report: R. Sedney and N. Gerber, 'Asymptotic Analysis of the Roots of a Certain Transcendental Equation,' BRL-TR-2727, April 1986, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.
- 2. P.10, 6th line from bottom -- the value of ϵ should be $\epsilon = 0.0264 0.0426 \ i.$

NATHAN GERBER

Figure 1. The Roots of (2.1) for Two Values of Re with $\tau=0.1$ and A = 3.148; the 0(Re $^{1/2}$) Roots are Designated by $z_{\rm S}$

The Roots of (2.1) for Two Values of τ with Re = 10 and A = 3.148; the O(Re^{1/2}) Roots are Designated by $z_{\rm S}$ Figure 2.