

Lipschitz inverse mapping theorem

 ${\bf Canonical\ name} \quad {\bf Lipschitz Inverse Mapping Theorem}$

Date of creation 2013-03-22 14:25:13 Last modified on 2013-03-22 14:25:13

Owner Koro (127) Last modified by Koro (127)

Numerical id 7

Author Koro (127)
Entry type Theorem
Classification msc 46B07
Classification msc 47J07

Let $(E, \|\cdot\|)$ be a Banach space and let $A: E \to E$ be a bounded linear isomorphism with bounded inverse (i.e. a topological linear automorphism); let B(r) be the ball with center 0 and radius r (we allow $r = \infty$). Then for any Lipschitz map $\phi: B(r) \to E$ such that $\operatorname{Lip} \phi < \|A^{-1}\|^{-1}$ and $\phi(0) = 0$, there are open sets $U \subset E$ and $V \subset B(r)$ and a map $T: U \to V$ such that $T(A + \phi) = I|_V$ and $(A + \phi)T = I|_U$. In other words, there is a local inverse of $A + \phi$ near zero. Furthermore, the inverse T is Lipschitz with $\operatorname{Lip} T \leq (\|A\| + \operatorname{Lip} \phi)^{-1}$ and

$$B(r(||A^{-1}||^{-1} - \text{Lip }\phi)) \subset U.$$

Remark. The inclusion above implies that $A + \phi \colon E \to E$ is invertible if $r = \infty$.

Remark. Lip ϕ denotes the smallest Lipschitz constant of ϕ .