Part II: Real Analysis

1

Let f be an unbounded real valued function defined on the open interval (0,1). Is it possible that f is uniformly continuous on (0,1)?

Solution: No.

Proof. By way of contradiction, suppose $f:(0,1)\to\mathbb{R}$ is uniformly continuous yet unbounded. Let $\epsilon>0$. Then there exists $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $x,y\in(0,1)$ such that $|x-y|<\delta$. Now let 0< a< b<1 such that $a<\delta$ and $1-b<\delta$. Then there exists M>0 such that |f(x)|< M for all $x\in[a,b]$ and therefore $|f(y)|< M+\epsilon$ for all $y\in(0,1)-[a,b]$. So $|f(x)|< M+\epsilon$ for all $x\in(0,1)$. This is a contradiction.

3

Let p, q, r be positive real numbers with $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$, and let $f \in L^p, g \in L^q, h \in L^r$. Prove that $fgh \in L^1$ and

$$||fgh||_1 \le ||f||_p \cdot ||g||_q \cdot ||h||_r.$$

Solution:

Proof. Let s := qr/(q+r).

Claim 1: $gh \in L^s$ and $||gh||_s \leq ||g||_q \cdot ||h||_r$.

<u>Proof of claim 1:</u> Let q' := (q+r)/r and r' := (q+r)/q. Clearly q' and r' are conjugate and $|g|^s \in L^{q'}$ and $|h|^s \in L^{r'}$. Thus, by Hölder's Inequality,

$$||gh||_s^s = \int |g|^s \cdot |h|^s \ d\mu \le \left(\int |g|^q \ d\mu\right)^{\frac{r}{q+r}} \left(\int |h|^r \ d\mu\right)^{\frac{q}{q+r}} = ||g||_q^s \cdot ||h||_r^s.$$

■ Claim 1

Now note that p and s are conjugate. Thus, by claim 1 and Hölder's applied to f and gh,

$$||fgh||_1 \le ||f||_p \cdot ||gh||_s \le ||f||_p \cdot ||g||_q \cdot ||h||_r.$$