Frequently Asked Questions

Jari Oksanen

January 8, 2007

Abstract

The document answers some frequently asked questions and explains some design decisions I have made in vegan.

Contents

1	Scaling in redundancy analysis						
2	2 Why to use weighted averages scores instead of linear combinations in constrained ordination						
		3					
	2.1 LC Scores are Linear Combinations	4					
	2.2 Factor constraints	9					
	2.3 Conclusion	11					
3	t-values in constrained ordination	12					

1 Scaling in redundancy analysis

This chapter discusses the scaling of scores (results) in redundancy analysis and principal component analysis performed by function rda in the vegan library. Principal component analysis, and hence redundancy analysis, is a variant of singular value decomposition (SVD). Functions rda and prcomp (library mva) even use SVD internally in their algorithm. In SVD a centred data matrix is decomposed into orthogonal components so that $x_{ij} = \sum_k \sigma_k u_{ik} v_{jk}$, where u_{ik} and v_{jk} are orthonormal coefficient matrices and σ_k are singular values. Orthonormality means that sum of squared columns is one and their crossproduct is zero, or $\sum_i u_{ik}^2 = \sum_j v_{jk}^2 = 1$, and $\sum_i u_{ik} u_{il} = \sum_j v_{jk} v_{jl} = 0$ for $k \neq l$. This is a decomposition, and the original matrix is found exactly from the singular vectors and corresponding singular values, and first two singular components give the best rank = 2 least squares estimate of the original matrix.

Principal component analysis is often presented (and performed in legacy software) as an eigenanalysis of covariance matrices. Instead of data matrix, we analyse a matrix of covariances and variances \mathbf{S} . The result will be orthonormal coefficient matrix \mathbf{U} and eigenvalues $\mathbf{\Lambda}$. The coefficients u_{ik} are identical to SVD (except for possible sign changes), and eigenvalues λ_k are related to the corresponding singular values by $\lambda_k = \sigma_k^2/(n-1)$. With classical definitions, the sum of all eigenvalues equals the sum of variances of species, or $\sum_k \lambda_k = \sum_j s_j^2$, and it is often said that first axes explain a certain maximized proportion of total

Table 1: Alternative scalings for RDA used in the functions prcomp and princomp (package mva), and the one used in the vegan function rda and the proprietary software Canoco scores in terms of orthonormal species (u_{ik}) and site scores (v_{jk}) , eigenvalues (λ_k) , number of sites (n) and species standard deviations (s_j) . In rda, const = $\sqrt[4]{(n-1)\sum \lambda_k}$. Corresponding negative scaling in vegan and corresponding positive scaling in Canoco is derived dividing each species by its standard deviation s_j (possibly with some additional constant multiplier).

	Site scores u_{ik}^*	Species scores v_{jk}^*
prcomp, princomp	$u_{ik}\sqrt{n-1}\sqrt{\lambda_k}$	v_{jk}
rda, scaling=1	$u_{ik}\sqrt{\lambda_k/\sum \lambda_k} \times \text{const}$	$v_{jk} \times \text{const}$
rda, scaling=2	$u_{ik} \times \text{const}$	$v_{jk}\sqrt{\lambda_k/\sum \lambda_k} \times \text{const}$
rda, scaling=3	$u_{ik} \sqrt[4]{\lambda_k/\sum \lambda_k} \times \text{const}$	$v_{jk}\sqrt[4]{\lambda_k/\sum \lambda_k} \times \text{const}$
rda, scaling < 0	u_{ik}^*	$\sqrt{\sum \lambda_k/(n-1)}s_j^{-1}v_{jk}^*$
Canoco, scaling=-1	$u_{ik}\sqrt{n}\sqrt{\lambda_k/\sum \lambda_k}$	$v_{jk}\sqrt{n}$
Canoco, scaling=-2	$u_{ik}\sqrt{n}$	$v_{jk}\sqrt{n}\sqrt{\lambda_k/\sum\lambda_k}$
Canoco, scaling=-3	$u_{ik}\sqrt{n}\sqrt[4]{\lambda_k/\sum\lambda_k}$	$v_{jk}\sqrt{n}\sqrt[4]{\lambda_k/\sum \lambda_k}$

variance in the data. The other orthonormal matrix V can be found indirectly as well, so that we have the same components in both methods.

The coefficients u_{ik} and v_{jk} are of the same (unit) length for all axes k, but singular values σ_k or eigenvalues λ_k give the information of the importance of axes, or the 'axis lengths.' Instead of the orthonormal coefficients, or equal length axes, it is customary to use eigenvalues to scale at least one of the alternative scores to reflect the importance of axes or describe the true configuration of points. Table 1 shows some alternative scalings used in various software. These alternatives apply to principal components analysis in all cases, and in redundancy analysis, they apply to species scores and constraints or linear combination scores; weighted averaging scores have somewhat wider dispersion.

In community ecology, it is common to plot both species and sites in the same graph. If this graph is a graphical display of SVD, or a graphical, low-dimensional approximation of the data, the graph is called a biplot. The graph is a biplot if the transformed scores satisfy $x_{ij} = c \sum_k u_{ij}^* v_{jk}^*$ where c is a scaling constant. In functions princomp, prcomp and rda, c=1 or the plotting scores are the straight biplot scores so that the singular values (or eigenvalues) are expressed for sites, and species are left unscaled. For Canoco $c = n^{-1} \sqrt{n-1} \sqrt{\sum \lambda_k}$ with positive Canoco scaling values. All these c are constants for a matrix, so these are all biplots with different internal scaling of species and site scores with respect to each other. For Canoco with postive scaling values and vegan with negative scaling values, no constant c can be found, but the correction is dependent on species standard deviations s_j , so this alternative does not define a biplot.

There is no natural way of scaling species and site scores to each other, but all functions and programs above selected different strategies. The eigenvalues in redundancy and principal components analysis are scale dependent and change when the data are multiplied by a constant. If we have percent cover data, the eigenvalues are typically very high, and the scores scaled by eigenvalues will have much wider dispersion than the orthonormal set. If we express the

percentages as proportions, or divide the matrix by 100, the eigenvalues will be reduced by factor 100^2 , and the scores scaled by eigenvalues will have much narrower dispersion than the orthonormal set. For graphical biplots we should be able to fix the relation and make it invariant for scale changes. The solution adoption in the R standard function biplot.princomp is to scale site and species scores independently, and typically very differently, but plot each with separate scales so that both sets fill the graph area. The solution in Canoco and rda is to use proportional eigenvalues $\lambda_k/\sum \lambda_k$ instead of original eigenvalues. These proportions are invariant with scale changes, and typically they have a nice range for plotting two data sets in the same graph.

In this chapter, I used always centred data matrices. In principle SVD could be done with original, non-centred data, but there is no option for this in rda, because I think that non-centred analysis is dubious and I do not want to encourage its use (if you think you need it, you are certainly so good in programming that you can change that one line in rda.default). I do think that the arguments for non-centred analysis are often twisted, and the method is not very good for its intended purpose, but there are better methods for finding fuzzy classes. Normal, centred analysis moves the origin to the average of all species, and the dimensions describe differences from this average. Non-centred analysis leaves the origin in the empty site with no species, and the first axis usually runs from the empty site to the average site. Second and third non-centred components are often very similar to first and second (etc.) centred components, and the best way to use non-centred analysis is to discard the first component and use only the rest. This is better done with directly centred analysis.

2 Why to use weighted averages scores instead of linear combinations in constrained ordination

Constrained ordination methods such as Constrained Correspondence Analysis (CCA) and Redundancy Analysis (RDA) produce two kind of site scores [3, 4]:

- LC or Linear Combination Scores which are linear combinations of constraining variables.
- WA or Weighted Averages Scores which are such weighted averages of species scores that are as similar to LC scores as possible.

Many computer programs for constrained ordinations give only or primarily LC scores, following Mike Palmer's recommendation [3]. However, functions cca and rda in the vegan package use primarily WA scores. This chapter explains the reasons for this choice.

Briefly, the main reasons are that

• LC scores are linear combinations, so they give us only the (scaled) environmental variables. This means that they are independent of vegetation and cannot be found from the species composition. Moreover, identical combinations of environmental variables give identical LC scores irrespective of vegetation.

• Bruce McCune has demonstrated that noisy environmental variables result in deteriorated LC scores whereas WA scores tolerate some errors in environmental variables [2]. All environmental measurements contain some errors, and therefore it is safer to use WA scores.

This articles studies mainly the first point. The users of **vegan** have a choice of either LC or WA (default) scores, but after reading this article, I believe that most of them do not want to use LC scores, because they are not what they were looking for in ordination.

2.1 LC Scores are Linear Combinations

Let us perform a simple CCA analysis using only two environmental variables so that we can see the constrained solution completely in two dimensions:

- > library(vegan)
- > data(varespec)
- > data(varechem)
- > orig <- cca(varespec ~ Al + K, varechem)</pre>

Function cca in vegan uses WA scores as default. So we must specifically ask for LC scores (Fig. 1).

Figure 1 LC scores in CCA of the original data.

```
> plot(orig, dis = c("lc", "bp"))
```


What would happen to linear combinations of LC scores if we shuffle the ordering of sites in species data? Function sample() below shuffles the indices.

```
> i <- sample(nrow(varespec))
> shuff <- cca(varespec[i, ] ~ Al + K, varechem)</pre>
```

Figure 2 LC scores of shuffled species data.

```
> plot(shuff, dis = c("lc", "bp"))
```


It seems that site scores are fairly similar, but oriented differently (Fig. 2). We can use Procrustes rotation to see how similar the site scores indeed are (Fig. 3). There is a small difference, but this will disappear if we use Redundancy Analysis (RDA) instead of CCA (Fig. 4). Here we use a new shuffling as well.

```
> tmp1 <- rda(varespec ~ Al + K, varechem)
> i <- sample(nrow(varespec))
> tmp2 <- rda(varespec[i, ] ~ Al + K, varechem)</pre>
```

LC scores indeed are linear combinations of constraints (environmental variables) and *independent of species data*: You can shuffle your species data, or change the data completely, but the LC scores will be unchanged in RDA. In CCA the LC scores are *weighted* linear combinations with site totals of species data as weights. Shuffling species data in CCA changes the weights, and this can cause changes in LC scores. The magnitude of changes depends on the variability of site totals.

Figure 3 Procrustes rotation of LC scores from CCA of original and shuffled data.

> plot(procrustes(scores(orig, dis = "lc"), scores(shuff, dis = "lc")))

Procrustes errors

The original data and shuffled data differ in their goodness of fit¹.

> orig

Call:

cca(formula = varespec ~ Al + K, data = varechem)

Inertia Rank

Total 2.083

Constrained 0.476 2 Unconstrained 1.607 21

Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:

CCA1 CCA2

0.3608 0.1152

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

 $^{^1\}mathrm{Or}$ probably differ: The randomization is done while generating this article, and different versions may have different randomizations.

Figure 4 Procrustes rotation of LC scores in RDA of the original and shuffled data.

> plot(procrustes(scores(tmp1, dis = "lc"), scores(tmp2, dis = "lc")))

Procrustes errors

0.37476 0.24036 0.19696 0.17818 0.15209 0.11840 0.08364 0.07567 (Showed only 8 of all 21 unconstrained eigenvalues)

> shuff

Call:

cca(formula = varespec[i,] ~ Al + K, data = varechem)

Inertia Rank

Total 2.0832

Constrained 0.1742 2

Unconstrained 1.9090 21

Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:

CCA1 CCA2

0.12086 0.05339

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8
0.51940 0.31250 0.21739 0.18294 0.15801 0.11650 0.10338 0.07194

(Showed only 8 of all 21 unconstrained eigenvalues)

Similarly their WA scores will be (probably) very different (Fig. 5).

Figure 5 Procrustes rotation of WA scores of CCA with the original and shuffled data.

> plot(procrustes(orig, shuff))

Procrustes errors

The example used only two environmental variables so that we can easily plot all constrained axes. With a larger number of environmental variables the full configuration remains similarly unchanged, but its orientation may change, so that two-dimensional projections look different. In the full space, the differences should remain within numerical precision:

```
> tmp1 <- rda(varespec ~ ., varechem)
> tmp2 <- rda(varespec[i, ] ~ ., varechem)
> tmp1
```

Call:

 $\texttt{rda}(\texttt{formula = varespec ~ N + P + K + Ca + Mg + S + Al + Fe +} \qquad \texttt{Mn + Zn + Mo + Baresoil}$

Inertia Rank
Total 1825.7
Constrained 1459.9 14
Unconstrained 365.8 9
Inertia is variance

Eigenvalues for constrained axes:

```
RDA1
             RDA2
                      RDA3
                                RDA4
                                         RDA5
                                                   RDA6
                                                            RDA7
                                                                      RDA8
820.1042 399.2847 102.5617
                             47.6317
                                      26.8382
                                               24.0481
                                                         19.0644
                                                                  10.1670
   RDA9
            RDA10
                              RDA12
                                        RDA13
                                                 RDA14
                     RDA11
 4.4288
                              0.9255
           2.2720
                    1.5353
                                       0.7155
                                                 0.3119
```

Eigenvalues for unconstrained axes:

```
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 186.192 88.464 38.188 18.402 12.839 10.552 5.519 4.521 1.092
```

- > proc <- procrustes(scores(tmp1, dis = "lc", choi = 1:14), scores(tmp2,
- + dis = "lc", choi = 1:14))
- > max(residuals(proc))

[1] 1.722312e-14

In cca the difference would be somewhat larger than now observed 1.7223e-14 because site weights used for environmental variables are shuffled with the species data.

2.2 Factor constraints

It seems that users often get confused when they perform constrained analysis using only one factor (class variable) as constraint. The following example uses the classical dune meadow data [1]:

- > data(dune)
- > data(dune.env)
- > summary(dune.env)

A1	Moisture	Management	Use	Manure
Min. : 2.800	1:7	BF:3	Hayfield:7	0:6
1st Qu.: 3.500	2:4	HF:5	Haypastu:8	1:3
Median : 4.200	4:2	NM:6	Pasture :5	2:4
Mean : 4.850	5:7	SF:6		3:4
3rd Qu.: 5.725				4:3
May •11 500				

> orig <- cca(dune ~ Moisture, dune.env)</pre>

> orig

Call:

cca(formula = dune ~ Moisture, data = dune.env)

Inertia Rank

Total 2.1153 Constrained 0.6283 3 Unconstrained 1.4870 16

Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:

CCA1 CCA2 CCA3 0.4187 0.1330 0.0766

Eigenvalues for unconstrained axes:

CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8
0.409782	0.225913	0.176062	0.123389	0.108171	0.090751	0.085878	0.060894
CA9	CA10	CA11	CA12	CA13	CA14	CA15	CA16
0.056606	0.046688	0.041926	0.020103	0.014335	0.009917	0.008505	0.008033

When the results are plotted using LC scores, sample plots fall only in four alternative positions (Fig. 6). In the previous chapter we saw that this happens

Figure 6 LC scores of the dune meadow data using only one factor as a constraint.

> plot(orig, dis = "lc")

because LC scores are the environmental variables, and they can be distinct only if the environmental variables are distinct. However, normally the user would like to see how well the environmental variables separate the vegetation, or inversely, how we could use the vegetation to discriminate the environmental conditions. For this purpose we should plot WA scores, or LC scores and WA scores together: The LC scores show where the site should be, the WA scores shows where the site is.

Function ordispider adds line segments to connect each WA score with the corresponding LC (Fig. 7). This is the standard way of displaying results of

Figure 7 A "spider plot" connecting WA scores to corresponding LC scores. The shorter the web segments, the better the ordination.

- > plot(orig, display = "wa", type = "points")
- > ordispider(orig, col = "red")
- > text(orig, dis = "cn", col = "blue")

discriminant analysis, too. Moisture classes 1 and 2 seem to be overlapping, and cannot be completely separated by their vegetation. Other classes are more distinct, but there seems to be a clear arc effect or a "horseshoe" despite using CCA.

2.3 Conclusion

LC scores are only the (weighted and scaled) constraints and independent of vegetation. If you plot them, you plot only your environmental variables. WA scores are based on vegetation data but are constrained to be as similar to the LC scores as only possible. Therefore vegan calls LC scores as constraints and WA scores as site scores, and uses primarily WA scores in plotting. However, the user makes the ultimate choice, since both scores are available.

3 t-values in constrained ordination

Vegan does not report t-values for constrained ordination methods. The reason for this omission is that the suggested t-values are wrong and misleading. This section first explains the arguments against t-values and then shows how you can get them if you really want to do so.

The t-values are based on the multivariate regression model where the weighted averages (WA) scores are dependent variables and environmental variables (constraints) are independent variables. That is, we try to explain the ordination scores by constraints. The t-values are based on the standard errors of the coefficients of this regression model. The regression model only uses the constrained ordination and ignores the residual variation in the data, and gives much too narrow confidence intervals.

The easiest way of obtaining the t-values is to refit the constrained ordination model as a multivariate linear model (mlm) which automatically is fitted with the standard lm function when the response is multivariate. The following implements a similar model as in CANOCO² [5]:

Essentially, this is nothing but a multiple linear model weighted with row totals w_i . The weights appear to be different for WA scores and constraints, but the latter are extracted by $\operatorname{qr.X}$ function and already were weighted by $\sqrt{w_i}$, but WA scores are unweighted. The same function also works with rda and capscale, but these have constant weights $w_i = 1$ and the function can be simplified.

The t-values can be found in the summary of this model:

```
> mod <- cca(varespec ~ pH + Ca, varechem)
> mlmod <- as.mlm.cca(mod)</pre>
> summary(mlmod)
Response CCA1 :
lm(formula = CCA1 ~ ., data = as.data.frame(X))
Residuals:
      Min
                       Median
                                      3Q
                                                Max
-0.312972 -0.143757
                     0.004526
                                0.156529
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0007043 0.0372082 -0.019 0.985077
```

²It seems that in more correctly weighted model you should multiply WA scores with row weights w_i and constraints with $\sqrt{w_i}$.

```
pH 3.4344602 0.8582352 4.002 0.000647 ***

Ca -0.0031683 0.0007552 -4.195 0.000407 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1822 on 21 degrees of freedom

Multiple R-Squared: 0.5891, Adjusted R-squared: 0.55

F-statistic: 15.05 on 2 and 21 DF, p-value: 8.797e-05
```

Response CCA2:

Call:

lm(formula = CCA2 ~ ., data = as.data.frame(X))

Residuals:

```
Min 1Q Median 3Q Max -0.63461 -0.32304 -0.02968 0.26146 0.77031
```

Coefficients:

Residual standard error: 0.4323 on 21 degrees of freedom Multiple R-Squared: 0.2026, Adjusted R-squared: 0.1266 F-statistic: 2.668 on 2 and 21 DF, p-value: 0.09282

The weighted data are centred, and the intercept should be zero (and it would be with alternative weighting scheme) Would these t-values be correct, we also could use the standard anova of the refitted model to test the significance of the constraints:

> anova(mlmod)

Analysis of Variance Table

```
Pillai approx F num Df den Df
                                                Pr(>F)
            Df
(Intercept)
            1
               0.0019
                        0.0193
                                    2
                                          20 0.9808700
               0.4062
                         6.8420
                                    2
                                          20 0.0054459 **
рΗ
             1
               0.5065
Ca
             1
                       10.2649
                                    2
                                          20 0.0008562 ***
Residuals
            21
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

It is easy to see that P-values of the anova are much better (smaller) than from the permutation tests:

```
> anova(mod, by = "terms", permut = 200)
```

Permutation test for cca under direct model Terms added sequentially (first to last)

```
Model: cca(formula = varespec ~ pH + Ca, data = varechem)

Df Chisq F N.Perm Pr(>F)

pH 1 0.1458 1.7453 200 0.06 .

Ca 1 0.1827 2.1864 200 0.02 *

Residual 21 1.7547

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

This also means that the t-values have the same bias.

References

- [1] R. H. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren. *Data analysis in community and landscape ecology*. Pudoc, Wageningen, 1987.
- [2] B. McCune. Influence of noisy environmental data on canonical correspondence analysis. *Ecology*, 78:2617–2623, 1997.
- [3] M. W. Palmer. Putting things in even better order: The advantages of canonical correspondence analysis. *Ecology*, 74:2215–2230, 1993.
- [4] C. J. F. ter Braak. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. *Ecology*, 67:1167–1179, 1986.
- [5] C. J. F ter Braak and P. Šmilauer. CANOCO reference manual and user's guide to Canoco for Windows: Software for canonical community ordination (version 4). Microcomputer Power, Ithaca, NY, 1998.