Combining Recurrent, Convolutional, and Continuous-time Models with Linear State-Space Layers

Докладчик: Василевская Юлия

Рецензент-исследователь: Боревский Андрей

Хакер: Пирогов Вячеслав

Что хотим делать? Какие подходы?

<u>Хотим:</u> обрабатывать данные, зависящие от времени (последовательности).

Подходы: CNN, RNN, NDE (neural differential equation)

Проблемы:

- ★ CNN: вычислительная сложность зависит от размера входа
- ★ RNN: сложно обрабатывать длинные последовательности (затухание/ взрыв градиентов)
- ★ NDE: неэффективны на практике

Встречаем Linear State-Space Layer (LSSL)

$$\dot{x}(t) = Ax(t) + Bu(t) \quad (1)$$

$$y(t) = Cx(t) + Du(t) \quad (2)$$

 $u(t),y(t)\in\mathbb{R}$ - вход и выход модели, соответственно $x(t)\in\mathbb{R}^N$ - скрытое состояние $(\dot{x}(t)\in\mathbb{R}^N$ - производная) $A\in\mathbb{R}^{N\times N}, B\in\mathbb{R}^N, C\in\mathbb{R}^{1\times N}, D\in\mathbb{R}$ - обучаемые параметры модели

Разные взгляды на LSSL

LSSL: связь с непрерывными моделями

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 (1)
 $y(t) = Cx(t) + Du(t)$ (2)

(1) из определения LSSL - линейное дифференциальное уравнение

Немного о дифференциальных уравнениях

$$\dot{x}(t) = f(t,x(t)) \Leftrightarrow x(t) = x(t_0) + \int\limits_{t_0}^t f(s,x(s)) ds$$

Тогда для дискретных входов t_0 , t_1 , t_2 ... имеет место

$$f(x(t_k)) = f(t_{k-1}) + \int\limits_{t_{k-1}}^{t_k} f(s,x(s)) ds \Leftrightarrow f(t_k) - f(t_{k-1}) = \int\limits_{t_{k-1}}^{t_k} f(s,x(s)) ds$$

Generalized Bilinear Transform

Вспомним, что у нас имеет место быть: f(t, x(t)) = Ax(t) + Bu(t)

Возьмём:
$$u_k = \frac{1}{\Delta t_k} \int_{t_k}^{t_k} u(s) \, ds$$
 и получим:

$$egin{aligned} x_k - x_{k-1} &= \int\limits_{t_{k-1}}^{t_k} (Ax(s) + Bu(s)) ds = \int\limits_{t_{k-1}}^{t_k} Ax(s) ds + \int\limits_{t_{k-1}}^{t_k} Bu(s) ds = \int\limits_{t_{k-1}}^{t_k} Ax(s) ds + \Delta t_k Bu_k pprox & \Delta t_k ig[(1-lpha) Ax_{k-1} + lpha Ax_k ig] + \Delta t_k Bu_k \Leftrightarrow (I-\Delta t_k lpha A) x_k = (I+\Delta t_k (1-lpha) A) x_{k-1} + \Delta t_k Bu_k & \Delta t_k Bu_k \end{aligned}$$

LSSL: связь с рекуррентными моделями

$$x_k = (I - \alpha \Delta t_k \cdot A)^{-1} (I + (1 - \alpha) \Delta t_k \cdot A) x_{k-1} + (I - \alpha \Delta t_k \cdot A)^{-1} \Delta t_k \cdot B u_k$$

И вот теперь мы видим рекуррентную зависимость скрытых состояний x_{ι} . Осталось сделать замену и получить:

$$x_k = \overline{A}x_{k-1} + \overline{B}u_k$$
 (3)
 $y_k = Cx_k + Du_k$ (4)

LSSL: связь со свёрточными моделями

Из (3) и (4) при x_{-1} =0:

$$x_0 = \overline{A}x_{-1} + \overline{B}u_0 = \overline{B}u_0, \ \ x_1 = \overline{A}x_0 + \overline{B}u_1 = \overline{AB}u_0 + \overline{B}u_1, \dots x_k = \overline{A}^k \overline{B}u_0 + \dots + \overline{AB}u_{k-1} + \overline{B}u_k$$
 $y_k = C\overline{A}^k \overline{B}u_0 + \dots + C\overline{AB}u_{k-1} + C\overline{B}u_k + Du_k$

Вспомнив размерност $u_k\in\mathbb{R},A\in\mathbb{R}^{N imes N},B\in\mathbb{R}^N,C\in\mathbb{R}^{1 imes N},D\in\mathbb{R}$ осознаем, что перед нами 1-D свёрт $y=\mathcal{K}_L(\overline{A},\overline{B},C)*u+Du$ ос $\mathcal{K}_L(A,B,C)=\left(CA^iB\right)_{i\in[L]}\in\mathbb{R}^L=(CB,CAB,\ldots,CA^{L-1}B)$

Проблемы LSSL

- ★ Обработка длинных последовательностей (наследуется от RNN)
- ★ Большая вычислительная сложность
 - L матрично-векторных произведений при рекуррентном подходе
 - Вычисление функции Крылова К, при свёрточном подходе

Решение проблем: фиксированная матрица А

- ★ Случайная матрица А плохо работает (с длинными последовательностями).
- ★ НіРРО матрица работает хорошо.

HiPPO: High-Order Polynomial Projection Operator

$$A_{nk} = \begin{cases} (2n+1)^{1/2} (2k+1)^{1/2} & \text{if } n > k \\ n+1 & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$

Решение проблем: обучаемая матрица А

Берём квазисепарабельную матрицу А и все проблемы решены :)

- ★ Матрично-векторное произведение: O(N) по времени
- ★ Функция Крылова: O(N + L) по памяти + квази-линейное время

В экспериментах берутся 3-квазисепарабельные матрицы.

LSSL в нейронных сетях

Есть: u_{t} и y_{t} - одномерные. Хотим: u_{t} и y_{t} - H-мерные.

Решение: обучаем H разных LSSL для каждой координаты.

Apxитектура: LSSL + LayerNorm + SkipConnection + LSSL + LayerNorm + ...

★ Можно из 1-D u_t получать M-D y_t , изменив размерности параметров A, B, C, D и dt (M - кол-во каналов в модели).

LSSL

- ★ Обучение: свёрточный вид
- ★ Применение: рекуррентный вид

LSSL-f: фиксированные A и dt

LSSL: обучаемые A и dt

Table 1: (**Pixel-by-pixel image classification.**) (Top) our methods. (Middle) recurrent baselines. (Bottom) convolutional + other baselines.

Model	sMNIST	pMNIST	sCIFAR	
LSSL LSSL-fixed	99.53 99.50	98.76 98.60	$84.65 \\ 81.97$	
LipschitzRNN	99.4	96.3	64.2	
LMUFFT [12]	-	98.49	_	
UNIcoRNN [47]	1-	98.4	-	
HiPPO-RNN [24]	98.9	98.3	61.1	
URGRU [25]	99.27	96.51	74.4	
IndRNN [34]	99.0	96.0	-	
Dilated RNN [8]	98.0	96.1	-	
r-LSTM [56]	98.4	95.2	72.2	
CKConv [44]	99.32	98.54	63.74	
TrellisNet [4]	99.20	98.13	73.42	
TCN [3]	99.0	97.2	-	
Transformer [56]	98.9	97.9	62.2	

Table 2: (Vital signs prediction.) RMSE for predicting respiratory rate (RR), heart rate (HR), and blood oxygen (SpO2). * indicates our own runs to complete results for the strongest baselines.

Model	RR	HR	SpO2	
LSSL	0.350	0.432	0.141	
LSSL-fixed	0.378	0.561	0.221	
Unicornn [47]	1.06	1.39	0.869*	
coRNN [47]	1.45	1.81	-	
CKConv	1.214*	2.05*	1.051*	
NRDE [37]	1.49	2.97	1.29	
IndRNN [47]	1.47	2.1	-	
expRNN [47]	1.57	1.87	_	
LSTM	2.28	10.7	-	
Transformer	2.61*	12.2*	3.02*	
XGBoost [55]	1.67	4.72	1.52	
Random Forest [55]	1.85	5.69	1.74	
Ridge Regress. [55]	3.86	17.3	4.16	

Table 4: (Raw Speech Classification; Timescale Shift.) (Top): Raw signals (length 16000); $1 \to f$ indicates test-time change in sampling rate by a factor of f. (Bottom): Pre-processed MFCC features used in prior work (length 161). X denotes computationally infeasible.

a	LSSL	LSSL-f	CKConv	UnICORNN	N(C/R)DE	ODE-RNN [45]	GRU-ODE [16]
$1 \rightarrow 1$	95.87	90.64	71.66	11.02	16.49	X	X
$1 o \frac{1}{2}$	88.66	78.01	65.96	11.07	15.12	X	X
MFCC	93.58	92.55	95.3	90.64	89.8	65.9	47.9

Table 5: (Modeling and Computational Benefits of LSSLs.) In each benchmark category, we compare the number of epochs (ep.) it takes a LSSL-f to reach the previous SoTA (PSoTA) results as well as a near-SoTA target. We also report the wall clock time it took to reach PSoTA relative to the previous best model.

	Permuted MNIST		BDIMC Heart Rate		Speech Commands RAW				
	98% Acc.	PSoTA	Time	1.5 RMSE	PSoTA	Time	65% Acc.	PSoTA	Time
LSSL-fixed	16 ep.	104 ep.			10 ep.	0.07×	9 ep.	10 ep.	0.14×
CKConv UnICORNN	118 ep. 75 ep.	200 ep. X	1.0× X	x 116 ep.	467 ep.	1.0×	188 ep.	280 ep. X	1.0×

Table 3: (Sequential CelebA Classification.)

	LSSL-f	ResNet		
Att.	78.89	81.35		
MSO	92.36	93.92		
Smil.	90.95	92.89		
\mathbf{WL}	90.57	93.25		