OF TECHNOLOGY AND THE OF TECHNOLOGY AND THE

NATIONAL INSTITUTE OF TECHNOLOGY HAMIRPUR (H.P.)

CANDIDATES' DECLARATION

We hereby certify that the work which is being presented in the project report titled "Energy Efficient Clustering In Wireless Sensor Networks" in partial fulfilment of the requirements for the award of the Degree of Bachelor of Technology and submitted to the Department of Computer Science & Engineering, National Institute of Technology Hamirpur, is an authentic record of our own work carried out during a period from January 2017 to May 2017, under the supervision of Er. Rajeev Kumar, Assistant Professor, Department of Computer Science & Engineering, National Institute of Technology Hamirpur.

The matter presented in this project report has not been submitted by us for the award of any other degree of this or any other Institute/University.

Akshay Sharma	Suleman	Vetta Chaudhary	Neelkamal
(13507)	(13521)	(13535)	(13556)

This is to certify that the above statements made by the candidates are correct to the best of my knowledge.

Date: Er. Rajeev Kumar (Project Supervisor)

The project Viva-Voce examination was held on 18, May 2017.

Signature of Supervisor

Signature of Project Coordinator

ACKNOWLEDGEMENT

We consider ourselves privileged to express gratitude and respect towards all those who guided us through this project. It is with our hearty gratitude that we acknowledge their contributions to this project.

We would like to express our sincere gratitude and heart full thanks to Mr. Rajeev Kumar for his unflinching support and guidance on this idea and for valuable suggestions and expert advice. His words of wisdom and expertise in subject matter were of immense help throughout the duration of this project.

We are very grateful to our parents for their love, prayers, care and sacrifices, which they have done for us. Their blessings are the reason due to which we have been able to reach here. Finally, our acknowledgements go to all the people who have supported us to complete this project directly or indirectly.

Akshay Sharma (13507)

Suleman (13521)

Vetta Chaudhary (13535)

Neelkamal (13556)

ABSTRACT

Wireless sensor networks were initially developed for the defence purpose but now they are applicable to many other fields like health, traffic analysis, etc. Energy is always the primary constraint on designing wirelesss sensor network. Wireless sensor nodes are small in size and have contraints on the battery size. Also, these nodes are deployed in the remote area, it become infeasible to replace the battery over the life time of the sensor nodes, hence the power consumption should be very efficient to improve the lifetime of the sensor node and hence the lifetime of the wireless sensor network.

Clustering is one of the most popular approaches used in wireless sensor network for the energy efficient data capturing and data sensing. Main concept behind clustering is to divide the nodes into different clusters and each cluster is having a cluster head. The idea is to reduce the data redundancy using spatial and temporal metrics. All the nodes in the cluster send their data to the cluster head which further transmit the data to the base station. Clustering improves the energy consumption, various algorithms have been proposed for the clustering. Sometimes the clustering involves message overhead in cluster formation and cluster head selection.

The main idea behind our approach is to reduce the message overhead required during cluster head selection and cluster formation by forming the static clusters. Grid based clustering concept is proposed for initially selecting the cluster head and cluster formation. Further using the concept is extended to make our approach dynamic based on entropy and distances from the adjacent cluster head.

TABLE OF CONTENTS

List of Figu	ıresvi
List of Abb	reviationsvii
CHAPTER	1: Introduction1
	1.1 Introduction To Wireless Sensor Networks (WSNs)
	1.2 Structure Of Sensor Nodes
	1.3 Communication In WSNs
	1.4 Issues And Challenges In The Field Of WSNs
	1.4.1 Energy Efficiency
	1.4.2 Security
	1.4.3 Cost Of The Hardware
	1.4.4 Real World Protocols
	1.4.5 Analytical And Practical Results
	1.5 Applications of WSNs
	1.5.1 Medical Applications
	1.5.2 Area Monitoring
	1.5.3 Military Applications
	1.5.4 Disaster Relief Operations
	1.5.5 Environmental Applications
	1.6 Clustering In WSNs
	1.6.1 Basic Mechanism Of Clustering
	1.6.2 Objectives Of Clustering
	1.7 Motivation
	1.8 Problem Statement
	1.9 Report Outline
CHAPTER	2: Literature Review10
	2.1 Clustering
	2.2 Related Works
	2.2.1 Tree Based Clustering Algorithm using (PCA)
	2.2.2 Correlation And Random Update Based On Data Change
	Rate For Wireless Sensor Networks
	2.2.3 Entropy-Based Correlation Clustering For Wireless Sensor
	Networks In Multi-Correlated Regional Environments
	2.2.4 E-BACH: Entropy-Based Clustering Hierarchy For Wireless

Sensor Networks	
2.2.5 LEACH (Low Energy Adaptive Clustering Hierarchy)	
2.2.6 PEGASIS (Power-Efficient Gathering In Sensor Inform	nation
Systems)	
2.2.7 TEEN	
2.2.8 EEHC	
2.2.9 HEED (Hybrid, Energy Efficient And Distributed)	
2.2.10 UCS (Unequal Clustering Size)	
2.2.11 PEACH (Power-Efficient And Adjustive Cluster Hier	archy)
2.2.12 TTCRP (Two Tier Cluster Primarily Based Routing P	rotocol)
2.2.13 DAIC (Distance Aware Intelligent Clustering)	
CHAPTER 3: Proposed Approach	21
3.1 Assumptions	
3.2 Parameter Used	
3.3 Implementation Details	
3.3.1 Grid Based Clustering	
3.3.2 Cluster Head Selection	
3.3.3 Dynamic Clustering	
3.4 Pseudo-code	
CHAPTER 4: Experiment And Result	29
4.1 Simulation Tools	
4.2 Results	
4.3 Comparison	
4.3.1 Varying The Number Of Nodes	
4.3.1.1 Field With Less Number Of Nodes (n=18)	
4.3.1.2 Field With Average Number Of Nodes (n=90)	
4.3.1.3 Field With High Number Of Nodes (n=900)	
4.3.2 Varying The Field Size	
4.3.2.1 For Less Number Of Nodes (n=18)	
4.3.2.2 For More Number Of Nodes (n=90)	
4.3.3 Variation In The Density Of Deployment	
CHAPTER 5: Conclusion	38
Future Scope	39
References	40

LIST OF FIGURES

Figure No.	Figure Description	Page No.
Figure 1.1	Communication In Wireless Sensor Networks	3
Figure 1.2	Clustering In Wireless Sensor Networks	8
Figure 3.1	Grid Formation Using Manhattan Walk (s $\leq r/\sqrt{5}$)	24
Figure 3.2	Grid Formation Using Diagonal-First ($s \le r/\sqrt{8}$)	24
Figure 3.3	Initially Deployed Sensor Nodes In The Area Of Interest	25
Figure 3.4	Clusters Formation Using Grid Method	25
Figure 3.5	Cluster Head Selection	26
Figure 4.1	Dynamic Clustering Using h Value	30
Figure 4.2	Energy Comparison For Less Number Of nodes	34
Figure 4.3	Energy Comparison With Average Number Of Nodes	35
Figure 4.4	Energy Comparison With Large Number Of Nodes	35
Figure 4.5	Energy Comparison Varying Field Size With nodes = 18	36
Figure 4.6	Energy Comparison Varying Field Size With nodes = 90	37
Figure 4.7	Energy Comparison Varying Density Of Deployment	37

LIST OF ABBREVIATIONS

Abbreviation	Expansion
WSN	Wireless Sensor Network
BS	Base Station
MEMS	Micro-Electro-Mechanical System
СН	Cluster Head
PCA	Principal Component Analysis
EECRU	Energy-efficient clustering method using random update
CHS	Cluster Head Selection
CF	Cluster Formation
E-BACH	Entropy-Based Clustering Hierarchy for Wireless Sensor Networks
LEACH	Low Energy Adaptive Clustering Hierarchy
PEGASIS	Power-Efficient Gathering In Sensor Information Systems
HT	Hard Threshold
ST	Soft Threshold
TEEN	Threshold sensitive Energy Efficient sensor Network
ЕЕНС	Energy Efficient Hierarchical Clustering
HEED	Hybrid, Energy Efficient and Distributed

UCS Unequal Clustering Size

PEACH Power-Efficient and adjustive cluster Hierarchy

TTCRP Two Tier Cluster primarily based Routing Protocol

DAIC Distance Aware Intelligent Clustering

GPS Global Positioning System

GAF Geographic Adaptive Fidelity

MATLAB Matrix Laboratory