Tutorial 7

keywords: level log interpretation, dummy variables, hypothesis test, F-test, t-test, p-value, overall significance, individual significance, multiple linear restrictions, reparameterisation

estimated reading time: 35 minutes

Quang Bui

April 16, 2018

Question 1

EViews workfile: vote1.wf1

vote1.wf1 contains data on election outcomes and campaign expenditures for 173 two-party competitive races (Democrats and Republicans) for the House of Representatives in 1988. Information about each two-party competitive race is held in the following variables:

```
votea – %vote received by Candidate A

expenda – Candidate A's campaign expenditure ($'000)

expendb – Candidate B's campaign expenditure ($'000)

democa – 1 if Candidate A was a democrat, 0 otherwise (dummy variable)
```

Candidate A is chosen to be the candidate whose last name is alphabetically highest.

EXPENDA	EXPENDB	DEMOCA
328.296	8.737	1
626.377	402.477	0
99.607	3.065	1
319.69	26.281	0
159.221	60.054	0
570.155	21.393	1
696.748	193.915	0
638.688	7.695	1
616.936	19.245	1
351.687	50.532	1
269.887	14.71	1
269.51	95.575	1
1440.639	1089.57	0
252.336	69.563	1
1470.674	1548.193	0
140.486	100.956	1
191.334	15.449	1
398.597	15.239	1
460.622	382.111	1
457.41	20.608	1
	328.296 626.377 99.607 319.69 159.221 570.155 696.748 638.688 616.936 351.687 269.887 269.51 1440.639 252.336 1470.674 140.486 191.334 398.597 460.622	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1: Sample of the first 20 two-party competitive race.

Run a regression of votea on a constant, log(expenda), log(expendb) and democa

$$votea = \beta_0 + \beta_1 log(expenda) + \beta_2 log(expendb) + \beta_3 democa + u$$

To estimate this model from the Command window,

 $ls\ votea\ c\ log(expenda)\ log(expendb)\ democa$

(Press Enter to execute code)

To name (save) the estimated equation,

 $Name \rightarrow Name \ to \ identify \ object : eq01$

(This names the equation eq01)

Dependent Variable: VOTEA

Method: Least Squares

Date: 08/19/17 Time: 09:07

Sample: 1 173

Included observations: 173

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPENDA) LOG(EXPENDB) DEMOCA	51.13410 6.299279 -6.666045 1.208824	2.903327 0.375274 0.391187 1.241612	17.61224 16.78582 -17.04054 0.973593	0.0000 0.0000 0.0000 0.3317
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.786385 0.782593 7.826209 10351.17 -599.3966	1.241612 0.973593 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		50.50289 16.78476 6.975683 7.048592 7.005262
F-statistic Prob(F-statistic)	207.3816 0.000000	Durbin-Wat	son stat	1.652138

Table 2: Regression output of votea on a constant, log(expenda), log(expendb) and democa.

$$\widehat{votea} = 51.1341 + 6.2993 log(expenda) - 6.6660 log(expendb) + 1.2088 democa$$

$$R^2 = 0.7864$$

(a) Interpreting the regression results when explanatory variables are logarithms of the original variables and also interpreting the coefficient of dummy variables.

Explain what each parameter estimate shows.

Background

Logarithms for approximating percentage change

Since,

$$\frac{dlog(x)}{dx} = \frac{1}{x}$$

replacing infinitesimally small change d with finite change Δ gives the approximation of $\frac{1}{x}$,

$$\frac{\Delta log(x)}{\Delta x} \approx \frac{1}{x}$$

and by multiplying Δx on both sides, we have the approximate proportional change in x,

$$\Delta log(x) \approx \frac{\Delta x}{r}$$

Multiplying 100 on both sides gives us the approximate percentage change in x,

$$100\Delta log(x) \approx 100 \frac{\Delta x}{x}$$
$$= \% \Delta x$$

Since the approximation comes from replacing infinitesimally small change d with finite change Δ , this means that when the finite change Δ is large, the approximation will be less precise.

Level-log interpretation

For the following estimated model, which is level in the dependent variable and log in x_1 ,

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \log(x_1) + \hat{\beta}_2 x_2$$

the change in \hat{y} depends on change in $log(x_1)$ and x_2 ,

$$\Delta \hat{y} = \hat{\beta}_1 \Delta log(x_1) + \hat{\beta}_2 \Delta x_2$$

Multiplying $\Delta log(x_1)$ with $\frac{100}{100}$ gives us,

$$\Delta \hat{y} = \hat{\beta}_1 \frac{100}{100} \Delta log(x_1) + \hat{\beta}_2 \Delta x_2$$

$$\Delta \hat{y} = \hat{\beta}_1 \frac{100}{100} \Delta log(x_1) + \hat{\beta}_2 \Delta x_2$$

$$= \frac{\hat{\beta}_1}{100} 100 \Delta log(x_1) + \hat{\beta}_2 \Delta x_2$$

$$= \frac{\hat{\beta}_1}{100} \% \Delta x_1 + \hat{\beta}_2 \Delta x_2$$

 \therefore the model estimates that if x_2 is held constant and x_1 increases by 1%,

$$\Delta x_2 = 0$$

$$\%\Delta x_1 = 1$$

on average, y is estimated to change by $\frac{\hat{\beta}_1}{100}$,

$$\Delta \hat{y} = \frac{\hat{\beta}_1}{100} \% \Delta x_1 + \hat{\beta}_2 \Delta x_2$$
$$= \frac{\hat{\beta}_1}{100} \times 1 + \hat{\beta}_2 \times 0$$
$$= \frac{\hat{\beta}_1}{100}$$

(When x_1 increases by 1%, holding x_2 constant, \hat{y} is expected to change by $\frac{\hat{\beta}_1}{100}$ i.e. $\Delta \hat{y} = \frac{\hat{\beta}_1}{100}$.)

Model	Dependent Variable	Independent Variable	Interpretation (population model)	Interpretation (estimated model)
level — level	у	x	$\Delta y = \beta_1 \Delta x$	$\Delta \hat{y} = \hat{\beta}_1 \Delta x$
level — log	у	log(x)	$\Delta y = \left(\frac{\beta_1}{100}\right) \% \Delta x$	$\Delta \hat{y} = \left(\frac{\hat{\beta}_1}{100}\right) \% \Delta x$
log — level	log(y)	x	$\%\Delta y = (100\beta_1)\Delta x$	$\%\Delta\hat{y} = (100\hat{\beta}_1)\Delta x$
log – log	log(y)	log(x)	$\%\Delta y = \beta_1\%\Delta x$	$\%\Delta\hat{y} = \hat{\beta}_1\%\Delta x$

$$\widehat{votea} = \underbrace{51.1341}_{(2.9033)} + \underbrace{6.2993log(expenda)}_{(0.3753)} - \underbrace{6.6660log(expendb)}_{(0.3912)} + \underbrace{1.2088democa}_{(1.2416)}$$

$$\hat{\beta}_1 = 6.2993$$

The model estimates that regardless of Candidate A's political affiliation (holding democa constant) and when there is no change in Candidate B's expenditure (holding expendb constant),

$$\Delta log(expendb) = 0$$
$$\Delta democa = 0$$

a 1% increase in Candidate A's expenditure,

$$\%\Delta expenda = 1\%$$

is expected to increase the share of votes received by Candidate A by 0.063 percentage points,

$$\Delta \widehat{votea} = \hat{\beta}_1 \Delta log(expenda) + \hat{\beta}_2 \Delta log(expendb) + \hat{\beta}_3 \Delta democa$$

$$= \hat{\beta}_1 \Delta log(expenda) + \hat{\beta}_2 \times 0 + \hat{\beta}_3 \times 0$$

$$= \hat{\beta}_1 \Delta log(expenda)$$

$$= \frac{\hat{\beta}_1}{100} \% \Delta expenda$$

$$= \frac{6.2993}{100} \times 1 = 0.063$$

$$\hat{\beta}_2 = -6.6660$$

$$\Delta \widehat{votea} = \frac{\hat{\beta}_2}{100} \% \Delta expendb$$

(holding expends and democa constant)

The model estimates that for a 1% increase in Candidate B's expenditure,

$$\%\Delta expendb = 1\%$$

the share of votes received by Candidate A is expected to decrease by 0.0667 percentage points,

$$\Delta \widehat{votea} = \frac{-6.6660}{100} \times 1 = -0.0667$$

regardless of Candidate A's political affiliation (holding democa constant) and when there is no change in Candidate A's expenditure (holding expenda constant).

Background

Dummy variable interpretation

For the following estimated model,

$$\widehat{votea} = \hat{\beta}_0 + \hat{\beta}_1 log(expenda) + \hat{\beta}_2 log(expendb) + \hat{\beta}_3 democa$$

where democa is a dummy variable,

$$democa = \begin{cases} 1 & if \ Candidate \ A \ was \ a \ democrat \\ 0 & otherwise \end{cases}$$

The change in \widehat{votea} depends on the change in log(expenda), log(expendb), and democa,

$$\Delta \widehat{votea} = \hat{\beta}_1 \Delta log(expenda) + \hat{\beta}_2 \Delta log(expendb) + \hat{\beta}_3 \Delta democa$$

... the model estimates that when Candidate A and B's campaign expenditure are held constant,

$$\Delta log(expenda) = 0$$

$$\Delta log(expenda) = 0$$

the share of votes received by Candidate A if Candidate A is from the Democratic party,

$$\Delta democa = 1$$

is expected to be $\hat{\beta}_3$ percentage points higher than Candidate B,

$$\widehat{\Delta votea} = \hat{\beta}_1 \times 0 + \hat{\beta}_2 \times 0 + \hat{\beta}_3 \times 1$$

$$= \hat{\beta}_3$$

(The model estimates that when Candidate A and B's campaign expenditure are held constant, the share of votes received by Candidate A if Candidate A is from the Democratic party is expected to be $\hat{\beta}_3$ percentage points higher than Candidate B.)

$$\hat{\beta}_3 = 1.2088$$

Controlling for both candidate's campaign expenditure,

(b) Test the overall significance of a regression.

Test the overall significance of the model at the 1% significance level (ignore the fact that EViews produces the F statistic, compute it using R^2). Explain in words the hypothesis that you are testing.

$$votea = \beta_0 + \beta_1 log(expenda) + \beta_2 log(expendb) + \beta_3 democa + u$$

A test of overall significance is a test of whether the regressors in our model jointly help explain the dependent variable. If none of the regressors jointly help to explain votea then,

$$\beta_1 = \beta_2 = \beta_3 = 0$$

but if at least one of the regresors helps to explain votea then,

at least one of
$$\beta_1, \beta_2, \beta_3$$
 is not 0

State the null and alternative hypothesis

The test statistic and its distribution under H_0

Calculate the test statistic

Dependent Variable: VOTEA

Method: Least Squares

Date: 08/19/17 Time: 09:07

Sample: 1 173

Included observations: 173

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPENDA) LOG(EXPENDB) DEMOCA	51.13410 6.299279 -6.666045 1.208824	2.903327 0.375274 0.391187 1.241612	17.61224 16.78582 -17.04054 0.973593	0.0000 0.0000 0.0000 0.3317
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	$\begin{array}{c} 0.786385 \\ 0.782593 \\ 7.826209 \\ 10351.17 \\ -599.3966 \\ \hline 207.3816 \\ 0.000000 \end{array}$	Mean deper S.D. depend Akaike info Schwarz crit Hannan-Qu Durbin-Wat	lent var criterion terion inn criter.	50.50289 16.78476 6.975683 7.048592 7.005262 1.652138

Critical value and rejection region

 $1\% \ significance \ level \rightarrow \alpha = 0.01$

To obtain the critical value using the Stats Table, locate the F distribution table at the 1% significance level,

 $Numerator\ d.o.f = 3$

 $Denominator\ d.o.f = 169$

Since 169 is not in the table, we take a conservative approach and choose the closest available degrees of freedom less than 169 i.e. d.o.f = 120.

				000	Numer	ator Deg	rees of F	reedom			
		1	2	3	4	5	6	7	8	9	10
	10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85
D	11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54
е	12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30
n o	13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10
m	14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94
i	15	8.68	6.36	5.12	4.89	4.56	4.32	4.14	4.00	3.89	3.80
n	16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69
a	17	8.40	6.11	5. 8	4.67	4.34	4.10	3.93	3.79	3.68	3.59
0	18	8.29	6.01	5. 19	4.58	4.25	4.01	3.84	3.71	3.60	3.5
r	19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43
	20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37
D	21	8.02	5.78	4.37	4.37	4.04	3.81	3.64	3.51	3.40	3.3
e g	22	7.95	5.72	4.32	4.31	3.99	3.76	3.59	3.45	3.35	3.26
r	23	7.88	5.66	4. 6	4.26	3.94	3.71	3.54	3.41	3.30	3.2
е	24	7.82	5.61	4. 2	4.22	3.90	3.67	3.50	3.36	3.26	3.17
e	25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13
S	26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09
0	27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06
f	28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03
F	29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00
r	30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98
e	40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80
е	60	7.08	4.98	4. 3	3.65	3.34	3.12	2.95	2.82	2.72	2.63
d	90	6.93	4.85	4. 1	3.54	3.23	3.01	2.84	2.72	2.61	2.52
o m	120	0.05	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47
	00	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32

Example: The 1% critical value for numerator df = 3 and denominator df = 60 is 4.13. Source: This table was generated using the Stata® function invFtail.

To obtain the critical value using EViews,

 $Command\ window:\ scalar\ cvf3_169_1 = @qfdist(0.99, 3, 169)$

$$F_{crit}$$
 (from Stat Table) = 3.95
 F_{crit} (from EViews) = 3.8996

Rejection rule:

Comparing the calculated test statistic with the critical value, we reject H_0 if,

$$F_{calc} > F_{crit}$$

Conclusion

(c) Test of significance of an explanatory variable.

Test the hypothesis that controlling for campaign expenditure, being a democratic candidate is not significant in predicting the % of vote received in competitive races at the 5% level of significance. Perform that test by two methods: (i) comparing the t statistic with an appropriate critical value, and (ii) using the p-value.

If after controlling for campaign expenditure, being a democratic candidate is not significant in predicting the % of vote received then,

$$votea = \beta_0 + \beta_1 log(expenda) + \beta_2 log(expendb) + \beta_3 democa + u$$

that is,

$$\beta_3 = 0$$

but if it does then,

$$\beta_3 \neq 0$$

State the null and alternative hypothesis

$$H_0: \beta_3 = 0$$

$$H_1: \beta_3 \neq 0$$

The test statistic and its distribution under H_0

$$t = \frac{\hat{\beta}_3 - \beta_3}{se(\hat{\beta}_3)} = \frac{\hat{\beta}_3}{se(\hat{\beta}_3)} \sim t_{n-k-1} \quad under \ H_0$$

$$n = sample \ size = 173$$

 $k = number\ of\ regressors\ in\ the\ model = 3$

Calculate the test statistic

$$t_{calc} = \frac{1.208824}{1.241612} = 0.9736$$

Dependent Variable: VOTEA

Method: Least Squares Date: 08/19/17 Time: 09:07

Sample: 1 173

Included observations: 173

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPENDA) LOG(EXPENDB) DEMOCA	$51.13410 \\ 6.299279 \\ -6.666045 \\ 1.208824$	2.903327 0.375274 0.391187 1.241612	17.61224 16.78582 -17.04054 0.973593	0.0000 0.0000 0.0000 0.3317
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	$\begin{array}{c} 0.786385 \\ 0.782593 \\ 7.826209 \\ 10351.17 \\ -599.3966 \\ 207.3816 \\ 0.000000 \end{array}$	Mean depend S.D. depend Akaike info Schwarz crit Hannan-Qui Durbin-Wat	lent var criterion serion inn criter.	50.50289 16.78476 6.975683 7.048592 7.005262 1.652138

Note: The t-Statistics from the EV iews regression output are t_{calc} values for a two-sided t-test to test if a regressor has a statistically significant on the dependent variable, holding the other regressors constant.

p-value from regression output

Dependent Variable: VOTEA

Method: Least Squares Date: 08/19/17 Time: 09:07

Sample: 1 173

Included observations: 173

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPENDA) LOG(EXPENDB) DEMOCA	51.13410 6.299279 -6.666045 1.208824	2.903327 0.375274 0.391187 1.241612	17.61224 16.78582 -17.04054 0.973593	0.0000 0.0000 0.0000 0.3317
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.786385 0.782593 7.826209 10351.17 -599.3966 207.3816 0.000000	Mean deper S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wat	lent var criterion terion inn criter.	50.50289 16.78476 6.975683 7.048592 7.005262 1.652138

$$p-value = 0.3317$$

Note: The *Prob.* values from the EViews regression output are p-values for a two-sided t-test to test if a regressor has a statistically significant on the dependent variable, holding the other regressors constant.

Critical value and rejection region

 $5\% \ significance \ level \rightarrow \alpha = 0.05$

To obtain the critical value using the Stats Table, locate the t distribution table,

$$degrees \ of \ freedom = 169$$

Since 169 is not in the table, we take a conservative approach and choose the closest available degrees of freedom less than 169 i.e. d.o.f = 120.

	The state of the s	diamount i		Significance Lev	el	
1-Tailed:		.10	.05	.025	.01	.005
2-Tailed:		.20	.10	.05	.02	.01
	1	3.078	6.314	12,706	31.821	63.657
	2	1.886	2.920	4.: 03	6.965	9.925
	3	1.638	2.353	3. 82	4.541	5.841
	4	1.533	2.132	2.76	3.747	4.604
	5	1.476	2.015	2.571	3.365	4.032
	6	1.440	1.943	2.447	3.143	3.707
	7	1.415	1.895	2.365	2.998	3.499
	8	1.397	1.860	2.306	2.896	3.355
	9	1.383	1.833	2.262	2.821	3.250
	10	1.372	1.812	2.228	2.764	3.169
1	11	1.363	1.796	2.201	2.718	3.106
D e	12	1.356	1.782	2.179	2.681	3.055
g	13	1.350	1.771	2.160	2.650	3.012
r	14	1.345	1.761	2.145	2.624	2.977
e e	15	1.341	1.753	2.131	2.602	2.947
s	16	1.337	1.746	2.120	2.583	2.921
	17	1.333	1.740	2.110	2.567	2.898
0	18	1.330	1.734	2.101	2.552	2.878
1	19	1.328	1.729	2.093	2.539	2.861
F	20	1.325	1.725	2.036	2.528	2.845
r	21	1.323	1.721	2.030	2.518	2.831
e e	22	1.321	1.717	2.074	2.508	2.819
d	23	1.319	1.714	2.069	2.500	2.807
0	24	1.318	1.711	2.064	2.492	2.797
m	25	1.316	1.708	2.060	2.485	2.787
	26	1.315	1.706	2.066	2.479	2.779
	27	1.314	1.703	2.052	2.473	2.771
	28	1.313	1.701	2.018	2.467	2.763
	29	1.311	1.699	2.015	2.462	2.756
	30	1.310	1.697	2.0 2	2.457	2.750
	40	1.303	1.684	2.0 1	2.423	2.704
	60	1.296	1.671	2.0 0	2.390	2.660
	90	1.291	1.662	1.9 7	2.368	2.632
	120	1.209	1.038	1.980	2.358	2.617
	00	1.282	1.645	1.960	2.326	2.576

To obtain the critical value using EViews,

 $Command\ window:\ scalar\ cvt169_5_twotail = @qtdist(0.975,169)$

From Stat Table:

$$+t_{crit} = 1.980$$
$$-t_{crit} = -1.980$$

From EViews:

$$+t_{crit} = 1.9751$$

 $-t_{crit} = -1.9751$

Rejection rule:

Comparing the calculated test statistic with the critical value, we reject H_0 if,

$$t_{calc} > +t_{crit}$$
 or $t_{calc} < -t_{crit}$

Comparing the p-value with the significance level, we reject H_0 if,

$$p-value < \alpha = 0.05$$

Conclusion

Since $p-value=0.3317>\alpha=0.05$, we do not reject the null at the 5% significance level and conclude that there is insufficient evidence from our sample to suggest that Candidate A's political affiliation is statistically significant in explaining the share of votes received by Candidate A, holding campaign expenditure constant.

(d) Joint test of multiple linear restrictions.

Test the joint hypothesis that controlling for campaign expenditure, being a democratic candidate does not contribute to the % vote received and that the effect (on votea) of every percentage increase in campaign expenditure by Candidate A can be offset exactly by the same percentage increase in the opponent's campaign expenditure. Perform this test at the 5% level of significance.

From the statement,

"..controlling for campaign expenditure, being a democratic candidate does not contribute to the % of vote received.."

we have our first linear restriction,

$$\beta_3 = 0$$

From the statement,

"..the effect (on *votea*) of every percentage increase in campaign expenditure by Candidate A can be offset exactly by the same percentage increase in the opponent's campaign expenditure.."

we have our second linear restriction,

$$\beta_1 + \beta_2 = 0$$

$$\beta_2 = -\beta_1$$

It tells us that the effect on votea when both Candidate's campaign expenditure increases by the same percentage equals to 0.

Unrestricted model (the model before imposing restrictions):

$$votea = \beta_0 + \beta_1 log(expenda) + \beta_2 log(expendb) + \beta_3 democa + u$$

Restricted model (the model after imposing restrictions):

$$votea = \beta_0 + \beta_1 log(expenda) - \beta_1 log(expendb) + 0 \times democa + u$$
$$votea = \beta_0 + \beta_1 (log(expenda) - log(expendb)) + u$$

State the null and alternative hypothesis

The test statistic and its distribution under H_0

```
n = sample \ size = 173

k = number \ of \ regressors \ in \ the \ unrestricted \ model = 3

q = number \ of \ restrictions = 2

SSR_r = sum \ of \ squared \ residuals \ from \ estimated \ restricted \ model

SSR_{ur} = sum \ of \ squared \ residuals \ from \ estimated \ unrestricted \ model
```

Calculate the test statistic

From the regression output of the estimated unrestricted model,

$$SSR_{ur} = 10351.17$$

Dependent Variable: VOTEA

Method: Least Squares Date: 08/19/17 Time: 09:07

Sample: 1 173

Included observations: 173

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPENDA) LOG(EXPENDB) DEMOCA	51.13410 6.299279 -6.666045 1.208824	2.903327 0.375274 0.391187 1.241612	17.61224 16.78582 -17.04054 0.973593	0.0000 0.0000 0.0000 0.3317
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	$\begin{array}{c} 0.786385 \\ 0.782593 \\ 7.826209 \\ \hline 10351.17 \\ -599.3966 \\ 207.3816 \\ 0.000000 \end{array}$	Mean deper S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wat	lent var criterion terion inn criter.	50.50289 16.78476 6.975683 7.048592 7.005262 1.652138

To obtain SSR_r , we need to estimate the restricted model,

$$votea = \beta_0 + \beta_1(log(expenda) - log(expendb)) + u$$

To estimate this model from the Command window,

 $ls\ votea\ c\ (log(expenda) - log(expendb))$

(Press Enter to execute code)

To name (save) the estimated equation,

 $Name \rightarrow Name \ to \ identify \ object: eq02$

(This names the equation eq02)

Dependent Variable: VOTEA

Method: Least Squares Date: 08/19/17 Time: 17:18

Sample: 1 173

Included observations: 173

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	49.97148	0.594598	84.04253	0.0000
LOG(EXPENDA)-LOG(EXPENDB)	6.545465	0.262391	24.94545	0.0000
R-squared	0.784438	Mean deper	ndent var	50.50289
Adjusted R-squared	0.783178	S.D. depend	dent var	16.78476
S.E. of regression	7.815690	Akaike info	criterion	6.961637
Sum squared resid	10445.54	Schwarz cri	terion	6.998091
Log likelihood	-600.1816	Hannan-Quinn criter.		6.976426
F-statistic	622.2757	Durbin-Wa	tson stat	1.657779
Prob(F-statistic)	0.000000			

Table 3: Regression output of votea on a constant and log(expenda) - log(expendb).

$$SSR_r = 10445.54$$

$$F_{calc} =$$

Critical value and rejection region

 $5\% \ significance \ level \rightarrow \alpha = 0.05$

To obtain the critical value using the Stats Table, locate the F distribution table at the 5% significance level,

$$Numerator\ d.o.f = 2$$

$$Denominator\ d.o.f = 169$$

Since 169 is not in the table, we take a conservative approach and choose the closest available degrees of freedom less than 169 i.e. d.o.f = 120.

		mile			Numer	ator Deg	rees of F	reedom			
		1	2	3	4	5	6	7	8	9	10
D	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
e	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85
n	12	4.75	3.39	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
0	13	4.67	3.31	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
m	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
	15	4.54	3.58	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
n a	16	4.49	3.53	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
t	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45
0	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41
r	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38
_	20	4.35	3.19	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
D	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32
e g	22	4.30	3.14	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30
r	23	4.28	3.12	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27
е	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25
е	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24
S	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22
0	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
f	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19
	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
F	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16
r	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08
е	60	4.00	3. 5	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99
e d	90	3.95	3. 0	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94
0	120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91
m	00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83

Example: The 5% critical value for numerator df = 4 and large denominator $df(\infty)$ is 2.37.

Source: This table was generated using the Stata® function invFtail.

To obtain the critical value using EViews,

 $Command\ window:\ scalar\ cvf2_169_5 = @qfdist(0.95, 2, 169)$

$$F_{crit}$$
 (from Stat Table) = 3.07
 F_{crit} (from EViews) = 3.049

Rejection rule:

Comparing the calculated test statistic with the critical value, we reject H_0 if,

$$F_{calc} > F_{crit}$$

Conclusion

Since $F_{calc} = 0.77 < F_{crit} = 3.95$, we do not reject the null at the 5% significance level and conclude that there is insufficient evidence to reject the assumption that being a democratic candidate has no impact on share of votes holding campaign expenditure constant **and** that the effect on share of votes received by Candidate A from a percentage increase in Candidate A's campaign expenditure can be offset exactly by the same percentage increase in Candidate B's campaign expenditure.

(e) Testing a single hypothesis about a linear combination of parameters.

Drop democa from the model.

$$votea = \beta_0 + \beta_1 log(expenda) + \beta_2 log(expendb) + u$$

In close races each candidate believes that he or she needs to increase their campaign expenditure by more than 1% to offset the effect of a 1% increase in their opponent's expenditure. The null hypothesis is,

$$H_0: \beta_1 + \beta_2 = 0$$

and although it involves two parameters, it tests only one restriction. The alternative is,

$$H_0: \beta_1 + \beta_2 < 0$$

That is, the impact on the share of votes received by Candidate A for a 1% increase in Candidate A's campaign expenditure is not enough to offset the impact from a 1% increase in Candidate B's campaign expenditure on the share of votes received by Candidate A. Candidate A needs to increase their campaign expenditure by more than 1% increase to offset the effect of a 1% increase in Candidate B's campaign expenditure.

so we cannot use the F test because F test provides inference against $\beta_1 + \beta_2 \neq 0$. In such cases that we have only one restriction about a linear combination, we use a reparameterisation trick:

Define
$$\delta = \beta_1 + \beta_2 \implies \beta_2 = \delta - \beta_1$$

Substitute for β_2 in the population model and re-arrange, you will see that δ becomes the coefficient of one of the explanatory variables in the reparameterised model. You can see that testing $\delta = 0$ against $\delta < 0$ can be performed with a simple t test in this reparameterised model.

Reparameterised model

$$votea = \beta_0 + \beta_1 log(expenda) + \beta_2 log(expendb) + u$$

$$= \beta_0 + \beta_1 log(expenda) + (\delta - \beta_1) log(expendb) + u$$

$$= \beta_0 + \beta_1 log(expenda) + \delta log(expendb) - \beta_1 log(expendb) + u$$

$$= \beta_0 + \beta_1 (log(expenda) - log(expendb)) + \delta log(expendb) + u$$

To estimate the reparameterised model from the Command window in EViews,

 $ls\ votea\ c\ (log(expenda) - log(expendb))\ log(expendb)$

(Press Enter to execute code)

Dependent Variable: VOTEA

Method: Least Squares Date: 08/19/17 Time: 18:42

Sample: 1 173

Included observations: 173

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	52.03893	2.750137	18.92231	0.0000
LOG(EXPENDA)-LOG(EXPENDB)	6.341950	0.372649	17.01858	0.0000
LOG(EXPENDB)	-0.414801	0.538688	-0.770019	0.4424
R-squared	0.785187	Mean depen	dent var	50.50289
Adjusted R-squared	0.782660	S.D. depend	lent var	16.78476
S.E. of regression	7.825009	Akaike info	criterion	6.969716
Sum squared resid	10409.23	Schwarz criterion		7.024397
Log likelihood	-599.8804	Hannan-Quinn criter.		6.991900
F-statistic	310.6936	Durbin-Wat	son stat	1.662940
Prob(F-statistic)	0.000000			

Table 4: Regression output of *votea* on a constant, log(expenda) - log(expendb) and log(expendb).

$$\widehat{votea} = \hat{\beta}_0 + \hat{\beta}_1 (log(expenda) - log(expendb)) + \hat{\delta}_{(se(\hat{\delta}))} log(expendb)$$

$$\widehat{votea} = 52.0389 + 6.3420 (log(expenda) - log(expendb)) - 0.4148 log(expendb)$$

$$(0.5387)$$

State the null and alternative hypothesis

$$H_0: \delta = 0$$
 (same as $\beta_1 + \beta_2 = 0$)
 $H_1: \delta < 0$ (same as $\beta_1 + \beta_2 < 0$)
(one – sided t test)

The test statistic and its distribution under H_0

$$t = \frac{\hat{\delta} - \delta}{se(\hat{\delta})} = \frac{\hat{\delta}}{se(\hat{\delta})} \sim t_{n-k-1} \quad under \ H_0$$

 $n = sample \ size = 173$ $k = number \ of \ regressors \ in \ the \ model = 2$

Calculate the test statistic

$$t_{calc} = \frac{-0.414801}{0.538688} = -0.77$$

p-value

$$p - value = \frac{0.4424}{2} = 0.2212$$

Note: The *Prob*. values from the EViews regression output are p-values for a two-sided t-tests of individual significance so to calculate the p-value for our one-sided t-test, we divided the two-sided p-value by 2.

Dependent Variable: VOTEA

Method: Least Squares Date: 08/19/17 Time: 18:42

Sample: 1 173

Included observations: 173

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(EXPENDA)-LOG(EXPENDB) LOG(EXPENDB)	52.03893 6.341950 -0.414801	2.750137 0.372649 0.538688	$18.92231 \\ 17.01858 \\ -0.770019$	0.0000 0.0000 0.4424
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.785187 0.782660 7.825009 10409.23 -599.8804 310.6936 0.000000	Mean deper S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wat	lent var criterion terion inn criter.	50.50289 16.78476 6.969716 7.024397 6.991900 1.662940

Critical value and rejection region

 $5\% \ significance \ level \rightarrow \alpha = 0.05$

To obtain the critical value using the Stats Table, locate the t distribution table,

$$degrees\ of\ freedom=170$$

Since 170 is not in the table, we take a conservative approach and choose the closest available degrees of freedom less than 170 i.e. d.o.f = 120.

	- Official V	alues of the <i>t</i> Di		Significance Lev	ol.	
1-Tailed:		.10	.05	.025	.01	.005
2-Tailed:		.20	. 0	.05	.02	.01
	1	3.078	6.: 14	12.706	31,821	63.657
	2	1.886	2.920	4.303	6.965	9.925
	3	1.638	2.353	3.182	4.541	5.841
	4	1.533	2.132	2.776	3.747	4.604
	5	1.476	2.015	2.571	3.365	4.032
	6	1.440	1.943	2.447	3.143	3.707
	7	1.415	1.895	2.365	2.998	3.499
	8	1.397	1.860	2.306	2.896	3.355
	9	1.383	1.833	2.262	2.821	3.250
	10	1.372	1.812	2.228	2.764	3.169
1 000	11	1.363	1.796	2.201	2.718	3.106
D e	12	1.356	1.782	2.179	2.681	3.055
g	13	1.350	1.771	2.160	2.650	3.012
r	14	1.345	1.761	2.145	2.624	2.977
e	15	1.341	1.753	2.131	2.602	2.947
e s	16	1.337	1.746	2.120	2.583	2.921
Political	17	1.333	1.740	2.110	2.567	2.898
0	18	1.330	1.734	2.101	2.552	2.878
1	19	1.328	1.729	2.093	2.539	2.861
F	20	1.325	1.725	2.086	2.528	2.845
r	21	1.323	1.721	2.080	2.518	2.831
e e	22	1.321	1.717	2.074	2.508	2.819
d	23	1.319	1.7 4	2.069	2.500	2.807
0	24	1.318	1.7 1	2.064	2.492	2.797
m	25	1.316	1.718	2.060	2.485	2.787
	26	1.315	1.716	2.056	2.479	2.779
	27	1.314	1.7 3	2.052	2.473	2.771
	28	1.313	1.7 1	2.048	2.467	2.763
	29	1.311	1.6 9	2.045	2.462	2.756
	30	1.310	1.6	2.042	2.457	2.750
	40	1.303	1.64	2.021	2.423	2.704
	60	1.296	1.6 1	2.000	2.390	2.660
	90	1.291	1.6 2	1.987	2.368	2.632
	120	1.209	1.658	1.980	2.358	2.617
	00	1.282	1.645	1.960	2.326	2.576

 $Note: This\ gives\ us\ + t_{crit}\ but\ we\ need\ - t_{crit}\ for\ this\ test$ To obtain the critical value using EViews,

 $Command\ window:\ scalar\ cvt170_5_onetail = @qtdist(0.05,170)$

From Stat Table:

$$-t_{crit} = -1.658$$

From EViews:

$$-t_{crit} = -1.6539$$

Rejection rule:

Comparing the calculated test statistic with the critical value, we reject H_0 if,

$$t_{calc} < -t_{crit}$$

Comparing the p-value with the significance level, we reject H_0 if,

$$p-value < \alpha = 0.05$$

Conclusion

Since $t_{calc} = -0.77 > -t_{crit} = -1.658$, we do not reject the null at the 5% significance level and conclude that there is insufficient evidence from our sample to suggest that Candidate A needs a larger than 1% increase in campaign expenditure to offset the effect of a 1% increase in Candidate B's campaign expenditure on share of votes received by Candidate A.