Analyse numérique avec python

Yehor Korotenko

April 7, 2025

Abstract Ce sont les notes prises aux CMs d'Analyse Numériques avec Python (UE MDD253DU) fait par le professeur Jean-Baptiste APOUNG KAMGA. Je n'ai rien ajouté dans ces notes. Ce qui est écrit dans ce ficher est ce que le professeur a écrit sur le tableau pendant les CMs.

CONTENTS

1	Équ	nations Différentielles
	1.1	Modèles discrètes
		1.1.1 Modèle de croissance géomètrique
	1.2	Modèles continues
		1.2.1 Modèle de Malthus
		1.2.2 Modèle Verhulst
	1.3	Modèle de croissance logistique
	1.4	Notion de champ de vecteurs associée à une EDO
		1.4.1 Généralités et définitions
		1.4.2 Dessins de champs de vecteurs
		1.4.3 Recherche de solution approchée de modèles sous python
	1.5	Modèle de prédateur prose (lotka-voltena (1931))
2	Inte	erpolation polynomiale 11
4	2.1	Rappels sur les nuts numériques
	2.1	Vitesse (ordre) de convergence
		valeur ajoutée par itérations
		2.1.1 Valeur ajoutée par l'itération
		2.1.2 Obtenir numériquement la vitesse de convergence
	2.2	•
	2.2	Interpolation: définition-motivation-exemples
		2.2.1 Définition
	0.2	
	2.3	Polynôme interpolateur de lagrange
		2.3.1 Définition et propriétés
		2.3.2 Estimation d'erreur
	0.4	2.3.3 Implémentation avec python
	2.4	Construction des polynôme d'intérpolation de lagrange
		2.4.1 Interpolation dans la base canonique (Vandermonde)
		2.4.2 Interpolation dans la base duale: Formule de lagrange et points barycentrique
	0.5	2.4.3 Méthode des différences divisées
	2.5	Comportement asymptotique "lorsque $N \to \infty$ "
		2.5.1 Observation
		2.5.2 Polynôme de Tchebychev
		2.5.3 Application
3		égration numérique 20
	3.1	Formule de quadrature
		3.1.1 Construction de formule de quadrature à points donnés
	3.2	Utilisation des formules de quadrature. Formule de quadrature élémentaires et composées 29
		3.2.1 Définition
		3.2.2 Méthode de quadrature clamique
		3.2.3 Méthode de trapèze
		3.2.4 Méthode de point-milieu
		3.2.5 Méthode de Simpson
		3.2.6 Méthode de Newton-Côte
	3.3	Construction de formule de quadrature (à points inconnus): Formules de Gauss Legedre 30

4	Rés	solution approchée d'équations différentielles ordinaires (EDOs)
	4.1	Motivations
		4.1.1 Définitions
		4.1.2 Exemple
		4.1.3 Nécessite de la solution approchée
	4.2	Problème d'évolution de population des lapins
	4.3	Exemple de Schémas numériques
		4.3.1 Formulation intégrale
		4.3.2 Construction de schema d'Euler explicite
		4.3.3 Autres schémas et forme géneral des schemas explicites à un pas
	4.4	Étude de schémas pokes EDOs
		4.4.1 Définition
		4.4.2 Ordre d'un shéma à un pas explicite
		4.4.3 Stabilité des schémas à un pas

| CHAPTER

ÉQUATIONS DIFFÉRENTIELLES

1.1 Modèles discrètes

On diésigne par N(t) la population d'individus à l'instant t. Équation du modèle discret:

$$\underbrace{N(t + \Delta t) - N(t)}_{\text{variation de la population}} = \underbrace{n}_{\text{nombre de naissances}} - \underbrace{m}_{\text{nombre de décès}} + \underbrace{i}_{\text{immigration}} - \underbrace{e}_{\text{sol de migration}}$$

1.1.1 Modèle de croissance géomètrique

- hypothèse:
 - solde migration nul: i.e i e = 0
 - nombre de croissance proportionnel à la taille de la population $\underbrace{n = \lambda \Delta t N(t)}_{\text{taux de natalité}}$
 - Idem pour le mobre de décès: $\underline{m = \mu \Delta t N(t)}_{\rm taux\ de\ mortalité}$
- Modèle: On pose $N_n = N(t_n)$ la taille de la population à l'instant t_n .

$$N_{n+1} - N_n = \lambda \Delta t N_n - \mu \delta t N_n$$

on pose $r = \lambda - \mu$

$$N_{n+1} = (1 + r\Delta t)N_n, \qquad n = 0$$
 (1.1)

- Solution: $N_n = (1 + r\Delta t)^n N_0, \quad n \in \mathbb{N}$
- Visualisation: Δt fixé

(a) Natalité supérieure à la mortalité

- (b) Natalité égale à la mortalité
- (c) Natalité inférieure à la mortalité

Property. .

• Lorsque $t \to 0$, la population semble tendre vers une courbe $N(t) = N_0 e^{rt}$, solution de $\begin{cases} N'(t) = rN(t) \\ N(0) = N_0 \end{cases}$

 \bullet Si r > 0, la population croît indéfiniment

• Si r < 0, il y a extinction de l'éspèce.

Inconvenients:

1. Une croissance infinie n'est pas réaliste

2. Pour être rigoureux, on devrait écrire $E(rN_n)$ i.e partie entière.

1.2 Modèles continues

Motivation: L'observation qui prend Δt proche de 0 aura beaucoup plus d'information.

Remark 1.1. Le modèle de croissance géomètrique

$$N(t + \Delta t) - N(t) = \lambda \Delta t N(t) - \mu \Delta t N(t)$$

$$\Rightarrow \frac{N(t + \Delta t) - N(t)}{\Delta t} = \lambda N(t) - \mu N(t)$$

en faisant $\Delta t \to 0$

$$N'(t) = \lambda N(t) - \mu N(t)$$

D'où l'équation des modèles continues:

$$\underbrace{N'(t)}_{\text{vitesse de variation}} = \underbrace{n(t)}_{\text{vitesse de naissance}} - \underbrace{m(t)}_{\text{vitesse de décès}} + \underbrace{i(t)}_{\text{vitesse d'immigration}} - \underbrace{e(t)}_{\text{vitesse d'émigration}}$$

1.2.1 Modèle de Malthus

• hypothèse:

- solde migration nul: i(t) - e(t) = 0

- vitesse de naissance proportionnel à la population à l'instant t: $n(t) = \lambda N(t)$

- vitesse de décès: $m(t) = \mu N(t)$

• Modèle:
$$\begin{cases} N'(t) = (\lambda - \mu)N(t) \\ N(0) = N_0 \end{cases}$$

• Solution: $N(t) = N_0 e^{(\lambda - \mu)t}$

Property. – Il peut être si comme limite du modèle de croissance géomètrique.

– Lorsque $r = \lambda - \mu > 0$ croissance est proportionnel.

– Lorsque $r = \lambda - \mu = 0$ la population n'évolue pas.

– Lorsque $r = \lambda - \mu < 0$ la population tend vers 0.

• <u>Inconvenients</u>:

- croissance exponentielle pas réaliste. Il faut prendre en compte:

* la limitation des ressources

* l'interaction avec l'environnement

1.2.2 Modèle Verhulst

Corrige le modèle de Malthus en prennant en compte la limitation de ressources.

 \bullet <u>Idée</u>: limiter la croissance à un seuil K appelé capacité biotique

Figure 1.2: Modèle de Malthus

Figure 1.3: Modèle de Verhulst

- hypothèse: Sole de migration nul
 - -taux de natalité fonction afiine décroissante de la population $\lambda \approx \lambda(1-\frac{N(t)}{K})$
 - taux de mortalité fonction affine croissante de la population $\mu \approx -\mu(1-\frac{N(t)}{K})$

• Modèle:
$$\begin{cases} N'(t) = rN(t)(1 - \frac{N(t)}{K}) \\ N(0) = N_0 \end{cases}$$

- Solutions: $N(t) = \frac{K}{1 + (\frac{K}{N_0} 1)e^{-rt}}$ t > 0
- <u>Visualisation</u>:

Figure 1.4: Verhulst solution

Property. Si r > 0, on a:

- si $N_0 = 0$ $N_0 = K$ on a: $N(t) = N_0 \,\forall t > 0$
- $\sin 0 < N_0 < K, N$ croissante
- si $N_0 > K$, N décroissante
- -N possède une limite si $N_0 > 0$

$$\lim_{t \to \infty} N(t) = K$$

1.3 Modèle de croissance logistique

C'est un modèle discrét

- <u>hypothèse</u>: i.e = 0 n-m est une fonction affine de la population, i.e $n-m=r\Delta t N(t)(1-\frac{N(t)}{K})$
- Modèle: On suppose $\Delta t = 1$: On pose $N_n = N(t_n)$

On a:
$$\begin{cases} N_{n+1} - N_n = r N_n (1 - \frac{N_n}{K}) \\ N_0 \text{ donné} \end{cases}$$

Property. (À vérifier numeriquement)

- si r < 2, la suite converge vers K
- $\sin 2 < r < 2.449$, la suite converge vers un cycle
- si 2.449 < r < 2.57, la suite est encore un cycle mais plus complèxe
- $-\sin r > 2.57$, la suite devient chaotique

1.4 Notion de champ de vecteurs associée à une EDO

1.4.1 Généralités et définitions

Les modèles continus de la dynamique de populations sont des problèmes de Cauchy pour les EDO.

(EDO)
$$\begin{cases} y'(x) = f(t, y(t)) & t \in]0, \pi[\\ y(0) = y_0 & \end{cases}$$

Оù

$$y:[0,\pi]\longrightarrow \mathbb{R}$$

 $t\longmapsto y(t)$

$$f:]0, \pi[\times \mathbb{R} \longrightarrow \mathbb{R}$$

 $(t, x) \longmapsto f(t, x).$

- Si l'on sait résoudre analytiquement l'EDO (i.e donner l'expression de $t \mapsto y(y)$) alors c'est terminé car il suffit d'étudier la fonction $t \mapsto y(t)$
- Si l'on ne sait pas détérminer la solution analytique, on peut:
 - 1. s'assurer de **l'éxistence** et **l'unicité** de la solution et de sa **stabilité** vis à vis des données du problème.
 - 2. Puis analyser les propriétés qualitatives de cette solution pour simple analyse de f(t,x)

C'est ici qu'intervient les champs de vecteurs.

Illustations.

1. Prenons le modèle de Malthus

$$\begin{cases} N'(t) = rN(t), & t \in]0, \pi[\\ N(0) = N_0 \end{cases}$$

On sait que $N(t) = N_0 e^{rt}$

2. Voici ce que fait python pour traiter N.

Figure 1.5: Ce que fait python

- 3. Traitons les vecteurs tangents à la courbe $t \mapsto N(t)$ aux points t_n , n = 0
- 4. Si l'on connaît les valeurs minimals et maximales de la solutions on peut avoir l'allure de la solution.

Figure 1.6: Une courbe sur des champs de vecteurs

Analysons ce que represente le vecteurs tangent:

- pour une courbe y = g(x)
- python et tout autre logiciel procède ainsi

Figure 1.7: Ce que represente vecteur

Le vecteur tangent à la courbe:

$$\vec{v} = (1, g'(x)) = (1, \frac{dy}{dx}) = (1, \frac{\frac{dy}{dt}}{\frac{dy}{dt}})$$

$$= \frac{1}{\frac{dy}{dt}} (\frac{dx}{dt}, \frac{dy}{dt}) = \frac{1}{\dot{x}(t)} \underbrace{(\dot{x}(t), \dot{y}(t))}_{\text{vecteur tangent}}$$

$$\vec{v} = (\dot{x}(t), \dot{y}(t))$$

Càd \vec{v} est le vecteur vitesse au points M(x(t),y(t)) a la courbe parametrée $t\mapsto \begin{cases} x(t)=t\\ y(t)=g(t) \end{cases}$. On a le résultat.

Proposition 1.2.

```
(y obtient solution de l'EDO y'(t) = f(t, y(t)))

$\psi$ (vecteur vitesse de la courbe parametrée t \mapsto (x(t), y(t)) au point M(t_0) = (t_0, y(t_0)) si le vecteur (1, f(t_0, y(t_0))))
```

Proposition 1.3.

$$V:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$

$$(t,y)\longmapsto V((t,y)).$$
 (si le champ de vecteur associé à l'EDO $y'(t)=f(t,y(t)))\Leftrightarrow V(t,y)=(1,f(t,y))$

1.4.2 Dessins de champs de vecteurs

Principe:

À chaque points $P = (p_x, p_y)$ on trace le vecteur $\varepsilon V(P)$ où ε est une constance positive choisi pour écrire les vecteurs trop longs.

Avec python on écrit $quiver(P_x, P_y, V_x, V_y, angles='xy')$ RQ 1: Cette fonction est vectorielle, i.e P_x, P_y, V_x, V_y , sont des numpy array de taille n. RQ 2: On peut ajouter un paramètre pour controles la longeur des vecteurs:

plt.quiver
$$(P_x, P_y, V_x, V_y, angles='xy', sacle=1)$$

Par conséquent, il faut normaliser les vecteurs (i.e le champ de vecteur)

```
Example 1.4. Champ de vecteur du modèle de Verhulst:
```

```
def f(t, y):
   return r * y * (1 - y/k)
```

la grille:

```
lt = np.linspace(tmin, tmax, N+1)
ly = np.linspace(ymin, ymax, M+1)
T, Y = np.meshgrid(lx, ly)
```

Construire les vecteurs:

```
Y = 1 + 0 * T
V = f(T, Y)
norm = np.sqrt(U*U + V*V)
U = U/norm
V = V/norm
```

On place les points:

```
plt.scatter(T, Y, marker='+', alpha = 0.5)
```

On place les vecteurs

```
plt.quiver(T, Y, U, V, angles='xy', scale=N)
```

1.4.3 Recherche de solution approchée de modèles sous python

On cherche une solution approchée de

$$\begin{cases} y'(t) = f(t, y(t)) & t \in]t_0, t_0 + T[\\ y(t_0) = y_0 \end{cases}$$

avec python. Pour cela il suffit de dire en quels points on veut cette solution. On se donne:

- une liste des instants $[t_0, t_1, \ldots, t_N]$
- t_0, y_0
- Puis, on appelle la fonction <u>odeint</u> du module scipy.integrate de python.
- On obtient une liste $[y_0, y_1, \ldots, y_N]$

Example 1.5. Cas du modèle du Verhulst

• EDO:

```
def f(t, y):
    return \ldots
```

• Instants

```
t0, tf = a, b
N = 100
t = np.linspace(t0, tf, N)
```

• On appelle odeint

```
from scipy.integrate import odeint
                 yapp = odeint(f, t, y), rtol=None, atol=None, tfloat=False)
2
                 plt.plot(t, yapp, \ldots)
```

Modèle de prédateur prose (lotka-voltena (1931)) 1.5

H(t): population de sardins P(t): pupulation de reguins

$$\frac{H'(t)}{H(t)} = \text{taux de variation de sardins} = \underbrace{a}_{\text{taux de croissance}} - \underbrace{bP(t)}_{\text{taux de mortalit\'e}}$$

$$\frac{P'(t)}{P(t)} = \text{taux d'arriv\'e des requetes} = \underbrace{-c}_{\text{taux de d\'ec\`es}} + \underbrace{dH(t)}_{\text{taux de croissance}}$$

$$\frac{P'(t)}{P(t)}$$
 = taux d'arrivé des requetes = $\underbrace{-c}_{\text{taux de décès}}$ + $\underbrace{dH(t)}_{\text{taux de croissance}}$

D'où le modèle:

$$\begin{cases} H'(t) = H(t)(a - bP(t)) & t > 0 \\ P'(t) = P(t)(-c + dH(t)) \\ H(0) = H_0, & P(0) = P_0 \end{cases}$$

Si l'on désigne par $p \ge 0$ la proportion des requêtes en sardines pêchés

$$\begin{cases} H'(t) = H(t)(a - p - bP(t)) & t > 0 \\ P'(t) = P(t)(-c - p - dH(t)) \\ H(0) = H_0 \\ P(0) = P_0 \end{cases}$$

$_{ ext{CHAPTER}} 2$

INTERPOLATION POLYNOMIALE

On va essayer de construire des polynômes qui passent par un ensemble (nuages) de points donnés. Si ces points sont les valeurs d'une fonction, on amerait:

- savoir si le polynôme construit est d'autant plus proche de la fonction que le nombre de point est grand. C'est-à-dre, est-ce que nute des "erreurs" tend vers zero lorsque le nombre de points tend vers l'infini.
- Si oui, comment quantifier cette convergence? C'est-à-dire, quelle est la vitesse (ordre) de cette convergence.

Figure 2.1: evolution-de-population-en-annee

- 1. Approche 1: approximation linéaire.
 - $\bullet\,$ Polynôme de degré 1
- 2. Approche 2:
 - $\bullet\,$ polynôme de degré $2\,$
 - ullet approximation quadratique
- 3. Approche 3: prise en compre d'Historique

2.1 Rappels sur les nuts numériques Vitesse (ordre) de convergence valeur ajoutée par itérations

Definition 2.1. Soit $(x_n)_n \subset \mathbb{R}^n$ une suite qui converge vers $x^* \in \mathbb{R}^n$, pour une norme $\| \|$ de \mathbb{R}^n

- Si $k_1 = \lim_{x \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|}$ existe et $k_1 \in]-1,1[\setminus \{0\}]$. On dit que la suite convere <u>linéairement</u> vers x^* ou que la convergence est d'ordre 1.
- Si $k_1 = 0$, $k_2 = \lim_{n \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|^2}$ existe et non nul. On dit que la suite coverge <u>quadratiquement</u> vers x^* , ou que la convergence est <u>d'ordre 2</u>.
- Si $k_q = \lim_{n \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|^q}$ existe et $\neq 0$ la convergence est <u>d'ordre q</u>. La constante K_q est appelée constante asymptotique d'erreur.

Example 2.2. 1. $x_n = (0.2)^n$

- On a $\lim_{n\to\infty} x_n = 0$. La convergence vers $x^* = 0$.
- $\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = \lim_{n\to\infty} \frac{(0.2)^{n+1}}{(0.2)^n} = 0.2 \in]-1, 1[\setminus \{0\}]$

D'où

- x_n converge à <u>l'ordre 1</u>
- Sa constante asymptotique est $k_1 = 0.2$
- 2. $I_n = (0.2)^{2^n}$. On a $\lim_{n\to\infty} I_n = 0$ On a:

$$I_{n+1} = (0.2)^{2^{n+1}} = (0.2)^{2^{n} \cdot 2}$$
$$= ((0.2)^{2^{n}})^{2}$$
$$= (I_n)^{2}$$

D'où
$$\lim_{n\to\infty}\frac{I_{n+1}}{(I_n)^2}=\lim_{n\to\infty}\frac{(I_n)^2}{(I_n)^2}=1$$
 D'où

- convergence d'ordre 2
- de constante $k_2 = 1$

En pratique, on ne dispose pas de K_q

Definition 2.3.

La convergence est au moins d'ordre q si et seulement si on a (deuxieme partie d'équation)

2.1.1 Valeur ajoutée par l'itération

Il est question de comparer 2 suites qui ont la même vitesse de convergence.

Remark 2.4. Si $|x_n - x^*| = 4 \cdot 10^{-8} = 0.\underbrace{0000000}_{\text{7 chiffres}} 4$. On dira que x_n et x^* ont 7 chiffres exactes apres la virgule.

$$\log_{10} |x_n - x^*| = \log_{10} 4 - 8 \log_{10} (10)$$
$$\frac{\log |x_n - x^*|}{\log 10} = \frac{\log 4}{\log 10} - 8$$

i.e $d_n = -\log_{10}|x_n - x^*|$ mesure de nombre de chiffres décimales entre x_n et x^* qui coincident.

Remark 2.5.

$$\lim_{n \to \infty} \frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q} = K_q \Rightarrow K_q \approx \frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q}$$

D'où $d_{n+1} - qd_n \approx -\log_{10} K_q$, i.e

$$d_{n+1} + \frac{\log_{10} K_q}{1-q} \approx q(d_n + \frac{\log_{10} K_q}{1-q})$$

Donc, le nombre de chiffres significatives est multiplié par q.

Proposition 2.6. Si x_n converge à l'ordre 1 vers x^* de constante asymptotique K_1 , alors le nombre d'itérations nécessaires pour gagner un chiffre exacte est la partié enitère de $-\frac{1}{\log_{10} K_1}$

Proof. Soit m le nombre d'itérations pour gegner un chiffre. Comme $d_{n+1} - d_n = -\log_{10} K_1$, en partant de d_n , après m itérations on aura

$$d_{n+m} - d_n = -m\log_{10} K_1$$

D'où on aura gagné 1 chiffre si $d_{n+m} - d_n = 1$, i.e

$$1 = -m \log_{10} K_1 \Rightarrow m = \left(-\frac{1}{\log_{10} K_1}\right)$$

2.1.2 Obtenir numériquement la vitesse de convergence

On cherche qtq: $\lim_{n\to\infty}\frac{\|x_{n+1}-x^*\|}{\|x_n-x^*\|^q}=K_q\in\mathbb{R}^*$

Remark 2.7.

$$\frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q} \approx K_q \Rightarrow \underbrace{\log \|x_{n+1} - x^*\|}_{Y} - \underbrace{q \log \|x_n - x^*\|}_{X} = \log K_q$$

i.e Y = aX + b.

Conclusion: pour détérminer q:

- Traiter la courbe $\log ||x_n x^*|| \mapsto \log ||x_{n+1} x^*||$
- \bullet Détérminer q comme la parte de la droite passant par le maximum de points.

$$x_n = x_0, x_1, \dots, x_N$$

 $x_n - x^* = x_0 - x^*, x_1 - x^*, \dots, x_N - x^*$
 $x_{n+1} - x^* = x_1 - x^*, x_2 - x^*, \dots, x_{N+1} - x^*$

En python:

2.2 Interpolation: définition-motivation-exemples

2.2.1 Définition

Definition 2.8. Soient $(x_i, y_i)_{i=\{1,...,N\}}$ un nuage de points (exemple un ensemble discret de point du graphe d'une fonction). Interpoler ce nuage de points correspond à chercher un polynôme de degré N-1, qui passe par chacun de ces points.

Figure 2.2: L'exemple visuel de la définition

Questions:

- 1. Comment le construire?
- 2. $P_{N-1} \in \mathbb{R}_{N-1}[X]$
- 3. $P_{N-1}(x_i) = y_i$

2.2.2 Motivations

- La solution d'un problème est fournie par une formule représentative: Noyau de la chaleur (i.e convolution) est un cherche la solution en un nombre de points.
 - On approche alors la fonction par un polynôme: i.e chercher le polynôme de degré "bas" proche de la fonction
- La solution d'un problème n'est connue qu'à table des valeurs en un nombre fini de points et on souhaite l'évaluer partout.
 - l'intérpolation
- On peut utiliser l'intérpolation dans
 - l'intégration numérique
 - la résolution numérique des EDO
 - la visualisation scientifique

Definition 2.9. Un tel polynôme est appelé **polynôme intérpolateur de lagrange** de degré N-1 de ces points.

2.2.3 exemples d'intérpolation

Theorem 2.10. Polynôme intérpolateur de degré 1. Soient (x_1, y_1) , (x_2, y_2) 2 points distincts de \mathbb{R}^2

• Il existe une unique droite passant par les 2 points.

$$(x,y) \in \mathcal{D} \Leftrightarrow (x-x_1)(y_2-y_1) - (y-y_1)(x_2-x_1) = 0$$

• Si de plus, $x_1 \neq x_2$, il existe un unique polynôme de degré 1 (i.e $P_1 \in \mathbb{R}_1[X]$) tq:

$$(x,y) \in \mathcal{D} \Leftrightarrow y = P(x) \text{ avec } P_1 = \frac{(x-x_1)y_1 - (x-x_2)y_2}{x_2 - x_1}$$

Proof.

$$\begin{split} M \begin{pmatrix} x \\ y \end{pmatrix} &\in \mathcal{D} \Leftrightarrow M \vec{M}_1 / M_1 \vec{M}_2 \\ &\Leftrightarrow \det(M \vec{M}_1, M_1 \vec{M}_2) = 0 \\ &\Leftrightarrow \begin{vmatrix} x - x_1 & x_2 - x_1 \\ y - y_1 & y_2 - y_1 \end{vmatrix} = 0 \\ &\Leftrightarrow (x - x_1)(y_2 - y_1) - (y - y_1)(x_2 - x_1) = 0 \end{split}$$

• Si $x_1 \neq x_2$

$$M \in \mathcal{D} \Leftrightarrow y - y_1 = \frac{(x - x_1)(y_2 - y_1)}{x_2 - x_1}$$

 $\Leftrightarrow y = P_1(X)$

Remark 2.11. On a l'écriture équivalente de P_1 :

•

$$P_1 \frac{x_0 y_1 - x_1 y_2}{x_2 - x_1} + X \frac{y_2 - y_1}{x_2 - x_1} \equiv a_0 + a_1 X$$

C'est l'écriture dans la base (1, X) de $\mathbb{R}_1[X]$

•

$$P_1 = \underbrace{\frac{x - x_2}{x_1 - x_2}}_{l_1} y_1 + \underbrace{\frac{x - x_1}{x_2 - x_1}}_{l_2} y_2$$

C'est l'écriture dans la base (l_1,l_2) de $\mathbb{R}_1[X]$

RQ:

$$l_1(x_1) = 1$$
 $l_1(x_2) = 0$ $l_2(x_1) = 0$ $l_2(x_2) = 1$

(base de lagrange)

 $P_1 = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$

C'est l'écriture dans la base $(1,x-x_1)$ de $\mathbb{R}_1[X]$ (base de newton)

Example 2.12. Méthode de calcul employle

Chercher le polynôme interpolateur de lagrange aux points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$

• Méthode 1: $x_1 \neq x_2 \neq x_3$

 P_2 est un polynôme de degré 2

$$P_2 = a_0 + a_1 x + a_2 x^2$$

Lemma 2.13.

$$P_2(x_1) = y_1$$
, $P_2(x_2) = y_2$ i.e $a_0 + a_1x_1 + a_2x_1^2 = y_1$

$$\underbrace{\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}}_{=\underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}}_{=\underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}_{=\underbrace{\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}}_{???} = \underbrace{M^{-1}}_{???} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Remark 2.14. Par 2 points

$$M = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \end{bmatrix}$$
 et $M^{-1} = \frac{1}{x_2 - x_1} \begin{bmatrix} x_2 & -x_1 \\ -1 & 1 \end{bmatrix}$

• Méthode 2:

$$P_2 = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$$

$$P_{2}(x_{i}) = y_{i} \Rightarrow \begin{cases} a_{0} & = y_{1} \\ a_{0} + a_{1}(x_{2} - x_{1}) & = y_{2} \\ a_{0} + a_{1}(x_{3} - x_{1}) + a_{2}(x_{3} - x_{1})(x_{3} - x_{2}) & = y_{3} \end{cases}$$

$$\Rightarrow \begin{cases} a_{0} & = y_{1} \\ a_{1} & = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} \\ a_{2} & = \frac{y_{3} - y_{1} - \frac{y_{2} - y_{1}}{x_{2} - x_{1}}(x_{3} - x_{1})}{(x_{3} - x_{1})(x_{3} - x_{2})} \end{cases}$$

Remark 2.15. On a:

$$a_2 = \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_1}$$

càd

$$P_3 = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_2}(x - x_1)(x - x_2)$$

x_1	$y_1 =: a_3$		
x_2	y_2	$\frac{y_2-y_1}{x_2-x_1} =: a_1$	
x_3	y_3	$\frac{y_3 - y_2}{x_3 - x_2}$	$\frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_1} =: a_2$

• Méthode 3:

$$P_3 = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)}y_1 + \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)}y_2 + \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}y_3 = \sum_{i=1}^{3} \underbrace{\left(\prod_{j=1}^{3} \frac{x - x_j}{x_i - x_j}\right)}_{l_i(x)} y_i$$

Remark 2.16. $(x_1, y_1), (x_2, y_2)$

$$y = \frac{x - x_2}{x_1 - x_2} y_1 + \frac{x - x_1}{x_2 - x_1} y_2$$

2.3 Polynôme interpolateur de lagrange

2.3.1 Définition et propriétés

Theorem 2.17. (existence et utilité)

Soit x_1, \ldots, x_n des réels 2 à 2 distincts et y_1, \ldots, y_n des rééls quelconques: Il existe <u>un unique</u> polynôme $P \in \mathbb{R}_{n-1}[X]$ (i.e de degré n-1) tel que $p(x_i) = y_i, \ i=1,\ldots,n$

On dit que P est le polynôme interpolateur de lagrange aux points $(x_1, y_1), \ldots, (x_n, y_n)$

Proof. Soit

$$\Phi: \mathbb{R}_{n-1}[X] \longrightarrow \mathbb{R}^{n-1}$$

$$P \longmapsto \Phi(P) = (P(x_1), \dots, P(x_n)).$$

on a:

- Φ linéaire
- Φ injective

En effet, $\Phi(P) = 0 \Leftrightarrow P(x_i) = 0 \Leftrightarrow P \equiv 0$ car $deg(P) \leq n-1$. D'où Φ isomorphisme d'espace vectoriel et la surjection assure le résultat.

Definition 2.18. Si f est continue sur $[a,b] \to \mathbb{R}$, $x_1,\ldots,x_n \in [a,b]$ 2 à 2 distincts, alors, l'unique $P \in \mathbb{R}_{n-1}[X]$ tq $P(x_i) = f(x_i)$ $i = 1,\ldots,n$ est appelé <u>polynôme d'interpolation de lagrange</u> de f aux points x_1,\ldots,x_n

2.3.2 Estimation d'erreur

Theorem 2.19. l'erreur

Soient

- $a < b \ f : [a, b] \to \mathbb{R}$ continue
- x_1, \ldots, x_n 2 à 2 distincts de [a, b]
- $\bullet \ P$ polyôme d'interpolation de lagrange de f aux points x_i

Si f est n fois dérivable sur]a, b[, alors, pour tout $a \in [a, b]$, il existe $t \in]a, b[$ tq

$$f(x) - P(x) = \omega_n(x) \frac{f^{(n)}(t)}{n!}$$

où $\omega_n(x) = (x - x_1) \dots (x - x_n)$

Corollary 2.20. Si $f^{(n)}$ est bornée par M sur]a,b[, alors $\forall x \in [a,b]$

$$|f(x) - P(x)| \le \frac{M}{n!} |\omega_n(x)| \le \frac{M}{n!} (b - a)^n$$

Proof. à faire

2.3.3 Implémentation avec python

```
from scipy.interpolite import lagrange
x = np.array([x.1, x.2, x.3])
y = np.array([y.1, y.2, y.3])
p = lagrange(x, y)
print(p) # affiche le polynome
print(p(3)) # collable
```

2.4 Construction des polynôme d'intérpolation de lagrange

 x_0, \ldots, x_{n-1} 2 à 2 distincts

2.4.1 Interpolation dans la base canonique (Vandermonde)

Construction

$$P = \sum_{i=1}^{n-1} a_i x^i$$

$$P(x_i) = y_i, \ i = 0, \dots, n-1$$

$$\begin{bmatrix} 1 & x_0 & \dots & x_0^{n-1} \\ 1 & x_1 & \dots & x_1^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n-1} & \dots & x_{n-1}^{n-1} \end{bmatrix} \underbrace{\begin{bmatrix} a_0 \\ \dots \\ a_{n-1} \end{bmatrix}}_{a} = \underbrace{\begin{bmatrix} y_1 \\ \dots \\ y_{n-1} \end{bmatrix}}_{b}$$

Matrice de Vandermonde

- elle pleine
- malconditionnée

```
def VDM_Mat(x):
    x_n = np.reshape(x, (x.size, 1))
    return x_n ** np.arange(x.size)

def VDM_Poly(x, y):
    M = VDM_Mat(x)
    a = np.linalg.solve(M, y)
    return a
```

Evaluation efficace de P algorithme de Horner

Proposition 2.21. Si X est un réel et Q est le polynôme défini par

$$Q(X) = a_0 X^n + a_1 X^{n-1} + \ldots + a_{n-1} X + a_n$$

alors la suite

$$\begin{cases} q_0 = a_0 \\ q_k = q_{k-1}x + a_k, \ k = 1, \dots, n \end{cases}$$

vérfiie $q_n = Q(x)$

Proof. (laissé exo)

```
Q(X) = X^2 + 2X + 1 \equiv (X+2)X + 1
```

```
def Horner(P, xx):
    y = 0
    for a in P:
        y = y * xx + a
    return y
```

```
def IntuP_VDM(x, y, xx):
    a = VDM_Poly(x, y)
    yy = Horner(a[::-1], xx)
    return yy
```

2.4.2 Interpolation dans la base duale: Formule de lagrange et points barycentrique

Construction

Idée prendre pour base de $\mathbb{R}_{n-1}[X]$ l'image réciproque de la base canonique de \mathbb{R}^{n-1} pour Φ

$$L_{i}(x_{j}) = \begin{cases} 1 \text{ si } i \neq j \\ 0 \text{ sinon} \end{cases}$$

$$L_{i}(x) = \frac{\prod_{j \neq i}^{n-1} \sum_{j=0}^{n-1} (x - x_{j})}{\prod_{j=0}^{n-1} \sum_{j \neq i}^{n-1} (x_{i} - x_{j})} = \prod_{j=1}^{n-1} \frac{x - x_{j}}{x_{i} - x_{j}}$$

$$P(X) = \sum_{j=0}^{n-1} y_{j} L_{i}(X)$$

Theorem 2.22.

$$f:[a,b]\to\mathbb{R}$$
 x_1,\ldots,x_n
 P

Si f n fois dérivable,

$$\forall x \in [a, b], \ \exists t \in]a, b[, f(x) - P(x)] = \omega_n(x) \frac{f^{(n)}(t)}{n!}$$

Proof. du théorème (erreur)

Soit x fixé des $[a,b] \setminus \{x_1,\ldots,x_n\}$

On pose

$$F(t) = f(t) - P(t) - \frac{f(x) - P(x)}{\omega_n(t)} \omega_n(t)$$

F est n fois dérivable et P annule aux n+1 points x_1,\ldots,x_n,x . D'apres le théorème Rolle (généralisé)

$$\exists t \in]a, b[\text{ tq } f^{(n)}(t) = 0$$

Or

$$\underbrace{F^{(n)}(t)}_{=0 \text{ par hyp}} = f^{(n)}(t) - \underbrace{P^{(n)}(t)}_{=0 \text{ car } deg(P) < n} - \frac{f(x) - P(x)}{\omega_n(x)} n!$$

D'où

$$f(x) - P(x) = \omega_N(x) \frac{f^{(n)}(t)}{n!}$$

Par ailleurs, si $x \in \{x_1, \dots, x_n\}, f(x) - P(x) = 0$

$$\omega_n(x) = (x - x_1) \dots (x - x_n)$$

Proof. corollaire

$$|f(x) - P(x)| = |\omega_n(x)| \frac{|f^{(n)}(t)|}{n!}$$

comme $x, x_i \in [a, b]$, on a $|x - x_i| \le b - a$ et $|f^{(n)}(t)| \le M$, on a:

$$|f(x) - P(x)| \le \frac{M}{n!} (b-a)^n$$

Evaluation efficace: formule barycentrique

Proposition 2.23. On a

$$P(x) = \sum_{i=1}^{n} y_i \frac{\omega_n(x)}{(x - x_i)\omega'_n(x_i)}$$
$$= \frac{\sum_{i=1}^{n} \frac{1}{(x - x_i)\omega'_n(x_i)} y_i}{\sum_{i=1}^{n} \frac{1}{(x - x_i)\omega'_n(x_i)}}$$

Proof. Comme

$$\omega_n(x) = \prod_{i=1}^n (x - x_i) \Rightarrow \omega'_n(x) = \sum_{i=1}^n \prod_{j=1}^n (x - x_j)$$

D'où

$$\omega'_n(x_i) = \prod_{j=1}^n \sum_{j \neq i}^n (x_i - x_j) \quad i = 1, \dots, n$$

D'où

$$L_i(x) = \frac{\omega_n(x)}{x - x_i} \frac{1}{\omega'_n(x_i)}$$

Et

$$\sum_{i=1}^{n} y_i L_i(x) = \sum_{i=1}^{n} \frac{y_i}{(x - x_i)\omega_n'(x)} \omega_n(x)$$
$$= \omega_n(x) \sum_{i=1}^{n} \frac{y_i}{(x - x_i)\omega_n'(x_i)}$$

Or pour $P \equiv 1$ on a $y_i = 1, i = 1, \dots, n$, on a

$$1 = \omega_n(x) \sum_{i=1}^n \frac{1}{(x - x_i)\omega_n'(x)}$$

D'où

$$\omega_n(x) = \left(\sum_{i=1}^n \frac{1}{(x - x_i)\omega'_n(x)}\right)^{-1}$$

Enfin,

$$P(x) = \frac{\sum_{i=1}^{n} \frac{y_i}{(x - x_i)\omega'_n(x)}}{\sum_{i=1}^{n} \frac{1}{(x - x_i)\omega'_n(x)}}$$

Remark 2.24. 1. Attention: si $x = x_i$, i = 1, ..., n

- 2. Exercice: calculer la complexité de cette formule et comparer à la première.
- 3. Ajouter un nouveau point d'interpolation ablige à refaire tous les calculs.

2.4.3 Méthode des différences divisées

Préliminaires: Interpolation de Neville

Lemma 2.25. Considérons n points 2 à 2 distincts x_1, \ldots, x_n et n réels y_1, \ldots, y_n . Pour $1 \le k \le l \le n$, posons P_{x_k, \ldots, x_l} le polynôme d'interpolation aux points

$$(x_k, y_k) \dots (x_l, y_l)$$

Nous avons

$$P_{x_k,...,x_l}(x) = \frac{(x - x_l)P_{x_l,...x_{l-1}}(x) - (x - x_k)P_{x_{k+1},...x_l}(x)}{x_k - x_l}$$

Schématiquement

$$P(x) = \underbrace{x_{k}, \underbrace{x_{k+1}, \dots, x_{l-1}, x_{l}}_{P_{1}}}_{x_{k} - x_{l}} P_{1} + \underbrace{\frac{x - x_{k}}{x_{l} - x_{k}}}_{P_{2}} P_{2}$$

Construction de l'intérpolation de Newton

Definition 2.26. (Polynôme de Newton) Soit $n \ge 1$ entier, x_1, \ldots, x_n n rééls 2 à 2 distincts. Les polynômes de Newton $\omega_0, \ldots, \omega_n$ associés à ces points sont définis par

$$\begin{cases} \omega_0 = 1 \\ \omega_j = (x - x_1) \dots (x - x_j), \quad (1 \le j \le n) \end{cases}$$

Remark 2.27. $\{\omega_j\}_{j=1,\dots,k}$ est une base de $\mathbb{R}_k[x]$

• Ainsi le polynôme d'intérpolation de Lagrange associé aux points $(x_1, y_1) \dots (x_n, y_n)$ s'écrit

$$P = \sum_{k=0}^{n-1} \alpha_k \omega_k$$

où α_k sont solutions de

$$y_i = \sum_{k=0}^{n-1} \alpha_k \omega_k(x_i), \quad i = 1, \dots, n$$

On parle de développement de Newton du polyôme de Lagrange

Definition 2.28. On appelle differences divisées d'ordre j-1 $(1 \le j \le n)$ associées aux points $(x_1, y_1), \ldots, (x_i, y_i)$ les nombres $d_{i,j}$ $(i = j \ a \ n)$ définis par

- $d_{i,1} = y_i$ i = 1, ..., n
- $d_{i,j} = \frac{d_{i,j-1} d_{i-1,j-1}}{x_i x_{i-j+1}}$ j=2 à $n,\ i=j$ à n

Lorsque $y_i = f(x_i)$ $i = 1, \ldots, n, d_{i,j}$ est généralement noté $f[x_{j-i+1}, \ldots, x_{j-1}, x_j]$ et est appelé difference divisé d'ordre j-1 aux i points x_{j-i+1}, \ldots, x_j

Python:

```
def MatriceDifferencesDivisee(x, y):
    n = len(y)
    d = np.zeros((n, n))
    d[:, 0] = 1.0 * y
    for j in range(1, n):
        d[j:n, j] = (d[j:n, j-1] - d[j-1:n, j-1]) / (x[j:n] - x[0:n-j])
    return d
```

Remark 2.29. • Le "stencil" (squelette) est

$$i-1,j-1\\ /\\ i,j-1----i,j$$

- ullet La hauteur de stencil est j
- Le support du stencil est $[x_{i-j}, \ldots, x_i]$

Proposition 2.30. On a $d_{j,j} = \alpha_{j-1}$ pour $j \in [1, ..., n]$, càd:

$$P = \sum_{j=1}^{n} d_{j,j} \omega_{j-1}$$

Ainsi, pour calculer P il suffit de connaître $d_{j,j}$ $j=1,\ldots,n$

Calcul efficace du polynôme

Proposition 2.31. Soit donné x_0, \ldots, x_n dés rééls 2 à 2 distincts. Soit Q le polyôme défini par

$$Q(x) = a_0 + \sum_{i=1}^{n} a_i \prod_{j=1}^{i-1} (x - x_j) \equiv \sum_{i=0}^{n} a_i \omega_i(x)$$

La suite des polynômes Q_0, \ldots, Q_n définies par

$$\begin{cases} Q_n = a_n \\ Q_k = a_k + (x - x_k)Q_k \quad k = n - 1, \dots, 0 \end{cases}$$

vérifie $Q_0 = Q$

```
def HornerNewton(d, x, xx):
    n = len(d)
    yy = 0 * xx + d[n-1]
    for i in range(n-2, -1, -1):
        yy = d[i] + (xx - x[i]) * yy
```

return yy

```
def DifferencesDivisees(x, y):
    d = MatriceDifferencesDivisee(x, y)
    a = np.diag(d)
    return a
```

2.5 Comportement asymptotique "lorsque $N \to \infty$ "

2.5.1 Observation

On n'a pas toujours une convergence uniforme de l'interpolation

Example 2.32. $f(x) = \sqrt{x}$ avec $[a, b] = [0, 1], x_1, \dots, x_n$ équirépartis sur [a, b]

$$\max_{a \le t \le b} |f(t) - P(t)| \xrightarrow[n \to \infty]{} +\infty$$

ce phénomène est appelé phénoème de Runge.

Il en reste une solution:

 \bullet si f est lipschitziènne sur [a,b] ou Hölderienne

$$\exists a \in]0,1[,|f(x)-f(y)| \le C|x-y|$$

• Si x_1, \ldots, x_n sont les racines du n-ème polynôme de Tchebychev.

$$|f(x) - P(x)| \le \frac{|f^{(n)}(x)|}{n!} \prod_{i=1}^{n} (x - x_i)$$

2.5.2 Polynôme de Tchebychev

Definition 2.33. Les polynômes de Tchebychev sont définis par la recurrence:

$$\begin{cases} T_0 = 1 \\ T_1 = x \\ T_n = 2xT_{n-1} - T_{n-2} & n \ge 2 \end{cases}$$

Proposition 2.34. Le n-ième polynôme de Tchebychev vérifie:

- 1. T_n est de degré exactement n et son coefficient de plus haut degré est 2^{n-1} , $n \ge 1$
- 2. T_n a n racines distinctes simples

$$T_n(x) = 0 \Leftrightarrow x \in \{x_1, \dots, x_n\}, x_j = \cos(\frac{2j-1}{2n}\pi) \quad (1 \le j \le n)$$

3. $|T_n(x)| \le 1$, $\forall x \in [-1, 1], |T_n(x)| = 1 \Leftrightarrow x \in \{x_0, \dots, x_n\} x_k = \cos(k\frac{\pi}{n})$

$$|T_n(x)| = 1 \text{ si } x \in \{x_k\} \quad x_k = \cos(k\frac{\pi}{n}) \quad (0 \le k \le n)$$

Proof. 1. Par récurrence:

Soit (P_n) la propriété " T_n est de degré n et son coef. de plus haut degré est 2^{n-1} ", $n \ge 1$. P_0 et P_1 vraies $(k \le n)$.

Supposons P_k vrai et montrons que P_{n+1} vrai.

En effet, nous avons $T_{n+1} = 2xT_n - T_{n-1}$, on en déduit que P_{n+1} est vraie.

Maintenant,

$$\forall x \in [-1, 1], T_n(x) = \cos(n \cdot \arccos(x))$$

En effet, pour
$$\begin{cases} n=0, T_0(x)=1=\cos(0) \\ n=1, T_n(x)=\cos(\arccos(x)) \end{cases} \text{ et } n>1$$

$$\cos((n+1)\arccos(x)) = \cos(n\arccos(x))\cos(\arccos(x)) - \sin(n\arccos(x))\sin(\arccos(x))$$

$$\cos((n-1)\arccos(x)) = \cos(n\arccos(x))\cos(\arccos(x)) + \sin(n\arccos(x))\sin(\arccos(x))$$

On a:

$$\cos((n+1)\arccos(x)) = 2x\cos(n\arccos(x)) - \cos((n-1)\arccos(x))$$

D'où $x \mapsto \cos(n \arccos(x))$ vérifie la même récurrence sur [-1,1] que T_n . Par conséquent les 2 coïncident sur [-1,1]. On en déduit $\forall x \in [-1,1]$

2.

$$T_n(x) = 0 \Leftrightarrow \cos(n\arccos(x)) = 0$$

$$\Leftrightarrow n\arccos(x) = \frac{\pi}{2} \mod \pi$$

$$\Leftrightarrow \arccos(x) = \frac{\pi}{2n} \mod \frac{\pi}{n} \qquad \Leftrightarrow x = \cos(\frac{\pi}{2n} + k\frac{\pi}{n}) \quad 0 \le k \le n - 1$$

3. $|\cos(x)| \le 1$ D'où $|T_n(x)| \le 1, \forall x \in [-1, 1]$

$$|T_n(x)| = 1 \Leftrightarrow n \arccos(x) = 0 \mod \pi$$

 $\arccos(x) = 0 \mod \frac{\pi}{n}$

$$\in x \in \{\cos(k\frac{\pi}{n}), k \in [0, n]\}$$

Proposition 2.35. Si Q_n est un polyôme de degré n de même coeff. de plus haut degré que T_n , alors:

$$\max_{x \in [-1,1]} |Q_n(x)| \ge \max_{x \in [-1,1]} |T_n(x)| = 1$$

Corollary 2.36. Si ξ_1, \ldots, ξ_n sont n points 2 à 2 distincts de [-1, 1], on a:

$$\max_{x \in [-1,1]} \left| \prod_{j=1}^{n} (x - \xi_j) \right| \ge \max_{x \in [-1,1]} \left| \prod_{j=1}^{n} (x - x_j) \right| = \max_{x \in [-1,1]} \frac{1}{2^{n-1}} |T_n(x)| = \frac{1}{2^{n-1}}$$

où x_j sont les racines de T_n

2.5.3 Application

Soit ξ_1, \dots, ξ_n , 2 à 2 distincts, P le polynôme de lagrange de f (suffisament régulière), alors:

$$|f(x) - P(x)| \le \frac{\|f^{(n)}\|_{\infty}}{n!} |\omega_n(x)|$$
$$\le \frac{\|f^{(n)}\|_{\infty}}{n!} \|\omega_n(x)\|_{\infty}$$

où $\omega_i = \prod_{j=1}^n (x - \xi_j)$ et $\|.\|_{\infty}$ et loi norme inf sur [-1,1]. Ainsi, le choix de ξ_i qui possede la plus petite valeur de $\|\omega_n\|_{\infty}$ est celui des racines du n-ìeme polynôme de Tchebychev.

24

CHAPTER 2. INTERPOLATION POLYNOMIALE

Remark 2.37. On se ramène à un intervalle quelconque [a,b] par

$$x_j = \frac{a+b}{2} + \frac{b-a}{2}\cos(\frac{2j-1}{2n}\pi) \quad (1 \le j \le n)$$

sont les racines des polynômes de Tchebychev sur $\left[a,b\right]$

CHAPTER 3

INTÉGRATION NUMÉRIQUE

But: On souhaite calculer au mieux

$$I(f) = \int_{a}^{b} f(x) \, dx$$

où $f:[a,b] \to \mathbb{R}$ donné Contraintes

- \bullet f n'a pas de primitive connue (ou évidente)
- $\bullet\,\,f$ n'est connue ou ne peut être évaluée qu'en un certain nombre fini de points

$$(x_i, 0 \le i \le n \text{ sur } [a, b])$$

Figure 3.1: Exemple d'une intégration

$$I(f) = \int_{a}^{b} f(x) dx$$
$$S(f, \sum_{N} = \sum_{i=0}^{N} f(\xi_{i}) \underbrace{(x_{i+1} - x_{i})}_{\omega_{i}}$$

somme de Rieman associée à $\sum_N.$ Théorème: $\lim_{N\to\infty}S(f,\sum_N)=\int_a^bf(x)\;dx$

3.1 Formule de quadrature

Definition 3.1. Étant donnée N points x_1, \ldots, x_N de l'intervalle [a, b] et N poids $\omega_1, \ldots, \omega_N \in \mathbb{R}$ associées à chaque points.

On appelle formule de quadrature associé aux (x_i) , (ω_i) l'application linéaire sur $\mathcal{C}^0([a,b])$

$$\tilde{I}(f) = \sum_{i=1}^{N} \omega_i f(x_i)$$

On dit que la formule de quadrature est d'ordre p si elle est exacte pour les polynôme de degré p_1 . i.e

$$\tilde{I}(Q) = \int_a^b Q \, dx \forall Q \in \mathbb{R}_{p-1}[X]$$

et s'il existe $Q \in \mathbb{R}_{p-1}[X]$ tq $I(Q) \neq \int_a^b Q \, dx$, autrement dit si elle exacte pour le polyôme de degré <u>au plus</u> p-1.

Remark 3.2. On note:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} \omega_{i} f(x_{i})$$

Points	x_1	x_2	
Poids	ω_1	ω_2	

Example 3.3. Soit la formulle de quadrature

$$\int_{a}^{b} f(x) dx \approx (b - a)f(a)$$

• si f=1, on a

$$\int_{a}^{b} f(x) \, dx = b - a = (b - a)f(a)$$

elle exacte pour les polynômes de degré 0.

• $\operatorname{si} f(x) = x \text{ on a}$

$$\int_{a}^{b} f(x) \, dx = \left[\frac{x^2}{2} \right]_{a}^{b} = \frac{(b-a)(a+b)}{2} \neq (b-a)a$$

elle n'est pas exacte pour les polynômes de degré 1.

Conclusion: elle est exacte pour les polynômes de degré au plus 0. Elle est donné d'ordre 1.

3.1.1 Construction de formule de quadrature à points donnés

Proposition 3.4. Soit x_1, \ldots, x_N, N points 2 à 2 distincts de [a, b].

1. Il existe un unique $(\omega_1, \ldots, \omega_N) \in \mathbb{R}^N$ tels que

$$\tilde{I}(Q) \stackrel{def}{=} \sum_{i=1}^{N} \omega_i Q(x_i) = \int_a^b Q(x) dx \quad \forall Q \in \mathbb{R}_{N-1}[X]$$

2. Pour toute function $f:[a,b]\to\mathbb{R}$ de calsse \mathcal{C}^N

$$\left| \int_{a}^{b} f(x) \, dx - \tilde{I}(f) \right| \le \frac{(b-a)^{N+1}}{N!} \|f^{(N)}\|_{\infty}$$

Proof. Soit l_i , i = 1, ..., N la base de Lagrange associé aux x_i , i.e

$$l_i(x) = \prod_{j=1, j \neq i}^{N} \frac{X - x_j}{x_i - x_j}$$

on a $l_i \in \mathbb{R}_{N-1}[X]$.

Soit $Q \in \mathbb{R}_{N-1}[X]$, Q coïncide avec le polynôme d'interpolation de lagrange aux points x_1, \dots, x_N

$$Q(X) = \sum_{i=1}^{N} Q(x_i)l_i(X)$$

d'où

$$\int_a^b Q(x) dx = \sum_{i=1}^N Q(x_i) \int_a^b l_i(x) dx$$
$$= \sum_{i=1}^n Q(x_i)\omega_i$$

où $\omega_i = \int_a^b l_i(x) \, dx$. D'où l'existence. Unicité: Soit $\tilde{\omega_i} \, i = 1, \dots, N$,

$$k: \int_{a}^{b} Q(x) dx = \sum_{i=1}^{N} \tilde{\omega_{i}} Q(x_{i}) \quad \forall Q \in \mathbb{R}_{N-1}[X]$$

alors, puisque $l_i \in \mathbb{R}_{N-1}[X]$, on a

$$\int_{a}^{b} l_{i}(x) dx = \tilde{\omega_{i}} \quad i = 1, \dots, N$$

D'où $(\tilde{\omega}_i = \omega_i)$ et on a l'unicité

Estimation d'erreur:

Soit f de classe \mathbb{C}^N sur [a,b] et R_f un poly d'interpolation aux points x_i $i=1,\ldots,N$. On a:

$$\tilde{I}(f) = \sum_{i=1}^{N} f(x_i)\omega_i = \sum_{i=1}^{N} P_f(x_i)\omega_i$$
$$= \int_a^b P_f(x) dx$$

D'où

$$\left| \int_a^b f(x) \, dx - \tilde{I}(f) \right| = \left| \int_a^b f(x) \, dx - \int_a^b P_f(x) \, dx \right|$$

$$\leq \int_a^b |f(x) - P_f(x)| \, dx$$

$$\leq \frac{\|f^{(N)}\|_{\infty} (b - a)^N}{N!} (b - a)$$

$$\left| \int_{a}^{b} f(x) \, dx - \tilde{I}(f) \right| \le \frac{\|f^{(N)}\|_{\infty}}{N!} (b - a)^{N} (b - a)$$

python:

from scipy.Integrate import quad quad(f, a, b) =

3.2 Utilisation des formules de quadrature. Formule de quadrature élémentaires et composées

3.2.1 Définition

On appelle formule de quadrature élémentaire I_e sur [-1,1] associée aux poits $\xi_i \in [-1,1]$ et de poids ω_i , $i=1,\ldots,N$, la formule

$$I_e(f) = \sum_{i=1}^{N} \omega_i f(\xi_i) \quad \text{pour } f \in \mathcal{C}^0([-1,1])$$

Une subdivision d'un intervalle [a,b] en n points $a=x_1 < x_2 < \ldots < x_n = b$ étant donnée, elle induit une formule de quadrature composite I_c pour [a,b]

$$I_c = \sum_{i=1}^{n-1} I_e(f; x_i, x_{i+1}) \equiv \sum_{i=1}^{n-1} \frac{x_{j+1} - x_j}{2} \sum_{i=1}^{N} \omega_i f(x_{i,j}) \text{ où } x_{i,j} = \frac{(x_j + x_{j+1}) + \xi_i (x_{j+1} - x_j)}{2}$$

Illustation:

Figure 3.2:
$$I_e(f) = \sum_{i=1}^{N} \omega_i f(\xi_i) \approx \int_{\alpha}^{\beta} f(t) dt$$

$$\int_{\alpha}^{\beta} f(t) dt \approx \frac{s+1}{2} = \frac{t-\alpha}{\beta-\alpha} \Rightarrow \eta = \alpha + \frac{s+1}{2}(\beta-\alpha)$$
$$dt = \frac{\beta-\alpha}{2} ds$$

$$\int_{\alpha}^{\beta} f(t) dt = \frac{\beta - \alpha}{2} \int_{-1}^{1} f(\alpha + \frac{s+1}{2}(\beta - 1)) ds \approx \frac{\beta - \alpha}{2} \sum_{i=1}^{N} \omega_{i} f(\underline{\alpha + \frac{\xi_{i} + 1}{2}(\beta - 1)})$$

$$\approx \sum_{i=1}^{N} \left(\frac{\beta - \alpha}{2}\omega_{i}\right) f(x_{i})$$

$$\approx I_{e}(f, \alpha, \beta)$$

3.2.2 Méthode de quadrature clamique

Méthode de rectangles

Definition 3.5.

$$\int_{\alpha}^{\beta} f(t) dt \approx f(\alpha)(\beta - \alpha)$$

Figure 3.3: methode-rectangle

Proposition 3.6. • Si f est \mathcal{C}^1 sur $[\alpha, \beta]$ l'erreur de la méthode de quadrature élémentaires :

$$E_e(f) = I(f) - I_e(f) = \frac{f'(c)}{2}(\beta - \alpha)^2$$
 où $c \in]\alpha, \beta[$

• Si f est de classe C^1 sur [a,b], l'erreur de quadrature de la méthode composite associée à une subdivision uniforme de pas h est majorée par

$$|E_c(f)| = |I(f) - I_c(f)| \le h \underbrace{\|f'\|_{\mathcal{C}^0([a,b])}}_{\max_{a \le x \le b} |f'(x)|} \frac{b-a}{2}$$

Proof. Posons $F(x) = \int_a^x f(t) dt$, F est de \mathcal{C}^2 car f est \mathcal{C}^1 . Par Taylor lagrange à l'ordre 2 en α donne

$$F(\beta) = F(\alpha) + F'(\alpha)(\beta - \alpha) + F''(c)\frac{(\beta - \alpha)^2}{2} \text{ où } c \in]\alpha, \beta[$$

D'où

$$\int_{\alpha}^{\beta} f(t) dt - f(\alpha)(\beta - \alpha) = \frac{f'(c)}{2}(\beta - \alpha)^{2}$$

On en déduit

$$|I(f) - I_c(f)| = \left| \int_a^b f(t) dt - I_c(f) \right|$$

$$= \left| \sum_{j=0}^{n-1} \int_{x_j}^{x_{j+1}} f(t) dt - \sum_{j=0}^{n-1} f(x_j)(x_{j+1} - x_j) \right|$$

$$\leq \sum_{j=0}^{n-1} \left| \int_{x_j}^{x_{j+1}} f(t) dt - f(x_j)(x_{j+1} - x_j) \right|$$

$$\leq \sum_{j=0}^{n-1} \frac{\|f'\|_{\infty}}{2} (x_{j+1} - x_j)^2$$

$$\leq h \frac{\|f'\|_{\infty}}{2} \sum_{j=0}^{n-1} (x_{j+1} - x_j)$$

$$\leq h \frac{\|f'\|_{\infty}}{2} (b - a)$$

3.2.3 Méthode de trapèze

Definition 3.7.

$$\int_{a}^{b} f(x) dx \approx \frac{f(a)f(b)}{2}(b-a)$$

Figure 3.4: Méthode de trapeze

Proposition 3.8. Si f est C? sur [a, b]

$$|E_c(f)| = |I(f) - I_c(f)| \le h^2 ||f''||_{\infty} \frac{(b-a)}{12}$$

Proof. La formule était exacte pour les poly de degré 1, elle est du type interpolation:

$$I_c(f) = \int_a^b P_f(t) \, dt$$
où P_f est le poly d'ext aux points a,b

D'où

$$|E_c(f)| = |I(f) - I_c(f)| = \left| \int_a^b (f(t) - P_f(t)) dt \right|$$

$$\leq \frac{\|f''\|_{\infty}}{2!} \int_a^b (x - a)(b - x) dx$$

On en déduit que:

$$|I(f) - I_c(f)| = \left| \sum_{j=0}^{n-1} \left(\int_{x_j}^{x_{j+1}} f(t) dt \right) - \frac{f(x_j) + f(x_{j+1})}{2} (x_{j+1} - x_j) \right|$$

$$\leq \sum_{j=0}^{n-1} |E_c(f)|$$

$$\leq \frac{\|f''\|_{\infty}}{12} \sum_{j=0}^{n-1} h^b = \frac{h^2}{12} \|f''\|_{\infty} \sum_{j=0}^{n-1} h$$

$$\leq \frac{1}{12} h^2 \|f''\|_{\infty} (b - a)$$

3.2.4 Méthode de point-milieu

Definition 3.9.

$$\int_{\alpha}^{\beta} f(t) dt \approx f(\frac{\alpha + \beta}{2})(\beta - \alpha)$$

Figure 3.5: methode-de-point-milieu

Example 3.10. degré d'exactitude sur [-1,1] elle devient

$$\int_{-1}^{1} f(s) \, ds \approx 2f(0)$$

- Pour f = 1, on a $I(f) = \int_{-1}^{1} ds 2 = 2 \cdot 1 = I_c(f)$. D'où I_c est excte pour poly de degré <u>au moins 0</u>.
- Pour f = s on a $I(f) = \int_{-1}^{1} s \, ds = 0 = 2 \cdot 0 = I_c(f)$. D'où I_c est exacte pour poly de degré au moins 1.
- Pour $f = s^2$ on a $I(f) = \int_{-1}^1 s^2 ds = \frac{2}{3} \neq 2 \cdot 0^2 = I_c(f)$. La formule élémentaire n'est pas exacte pour poly de degré 2. Donc, la formule de point-milieuest exacte pour les polynômes de degré 1.

Proposition 3.11. • Si f est $C^2([a,b])$ on a:

$$E_c(f) = I(f) - I_c(f) = \frac{f''(c)}{24}(b-a)^3$$

• Si f est C^2 sur [a, b], l'erreur de quadrature de la méthode composite associée à une subdivision uniforme de [a, b] de pas h est majorée par

$$|E_c(f)| = |I(f) - I_c(f)| \le h^2 \frac{||f''||_{\infty}}{24} (b - a)$$

Proof. exo

3.2.5 Méthode de Simpson

Definition 3.12.

$$\int_{\alpha}^{\beta} f(t) dt \approx \frac{\beta - \alpha}{6} \left(f(\alpha) + 4f(\frac{\alpha + \beta}{2}) + f(\beta) \right)$$

Figure 3.6: methode-de-simpson

Proposition 3.13. • Si f est C^{3+1} sur $[\alpha, \beta]$ on a:

$$E_c(f) = \int_{\alpha}^{\beta} f(x) dx - I_e(f) = -\frac{f^{(4)}}{2880} (\beta - \alpha)^5 \text{ où } c \in]\alpha, \beta[$$
$$|E_c(f)| \le h^4 ||f^{(4)}||_{\infty} \frac{(b-a)}{2880}$$

3.2.6 Méthode de Newton-Côte

C'est une généralisation des methodes élémentairs.

Definition 3.14. On appelle méthode de Newton-Côte d'ordre k la méthode élémentaire construite en utilisant le polynôme d'intérpolation d'ordre k, associé aux k+1 points équidistants

$$x_i = \alpha + i \frac{\beta - \rho}{k}, \quad i = 0, \dots, k$$

$$\int_{\alpha}^{\beta} f(x) dx \approx \sum_{i=0}^{k} \omega_i f(x_i)$$

où
$$x_i = \alpha + i \frac{\beta - \rho}{k}, \quad i = 0, \dots, k$$
 et

$$\omega_i = \int_{\alpha}^{\beta} \prod_{\substack{j=0\\j\neq i}}^{k} \frac{x - x_j}{x_i - x_j} \, dx$$

Remark 3.15. • Cette formule est $\begin{cases} d' \text{ordre } k \text{ si } k \text{ impair} \\ d' \text{ordre } k+1 \text{ si } k \text{ pair} \end{cases}$

- \bullet On n'utilise les méthodes que pour k pair sauf le cas k=1
- $\bullet\,$ Si k=1 on a la formule des trapèzes

- $\bullet\,$ Si k=2 on a la formule de Simpson
- $\bullet\,$ Si k=4 on a la formule de Boole-Villarceau

$$\int_{-1}^{1} f(x) dx \approx \frac{7}{90} f(-1) + \frac{16}{49} f(-\frac{1}{2}) + \frac{2}{15} f(0) + \frac{16}{45} f(\frac{1}{2}) + \frac{7}{90} f(1)$$

- Pour k = 6, on a la formule de Hordy
- Pour $k \geq 8$ on a des points ω_i , négatifs, ce qui rendent les formules sembles aux erreurs d'arronde.

Theorem 3.16. Soient $I(f) = \int_{\alpha}^{\beta} f(x) dx$, $I_e(f) = \sum_{i=0}^{k} \omega_i f(x_i)$, $E(f) = I(f) - I_e(f)$. Supposons que la méthode d'intégration soit d'ordre $p \ge k$. Posons

$$K(t) = E(x \mapsto (x - t)_{+}^{p}) = \int_{\alpha}^{\beta} (x - t)_{+}^{p} dx - \sum_{i=0}^{k} \omega_{i} (x_{i} - t)_{+}^{p}$$

avec $x_+ = \begin{cases} x \text{ si } x \geq 0 \\ 0 \text{ sinon} \end{cases}$. On a:

$$E(t) = \int_{\alpha}^{\beta} \frac{K(t)}{p!} f^{(p+1)}(t) dt \quad \forall f \in \mathcal{C}^{p+1}([\alpha, \beta])$$

Si de plus K est de signe constante sur $[\alpha, \beta]$, il existe $c \in [\alpha, \beta]$ telle que

$$E(f) = f^{(p+1)}(c) \int_{\alpha}^{\beta} \frac{K(t)}{p!} dt$$

On appelle Noyay de Peano associée à la méthode, la fonction

$$t\mapsto \frac{K(t)}{p!}$$

Proof. Formule de Taylor avec reste intégrale:

$$f(x) = \sum_{i=0}^{l} \frac{(x-\alpha)^{l}}{l!} + \int_{\alpha}^{x} \frac{(x-t)^{p}}{p!} f^{l+1}(t) dt$$

$$E(f) = E\left(\sum_{i=0}^{l} \frac{(x-\alpha)^{l}}{l!}\right) + E\left(\int_{\alpha}^{x} \frac{(x-t)^{p}}{p!} f^{l+1}(t) dt\right)$$

Remark 3.17. Lorsque K est de signe constante,

$$E(t \mapsto u^{p+1}) = (p+1)! \int_{\alpha}^{\beta} \frac{K(t)}{p!} dt$$

D'où

$$E(f) = \frac{f^{(p+1)}(c)}{(p+1)!} E(x \mapsto x^{p+1})$$

Dans les méthodes et Newton-Côte le noyau de Peano a une signe constante.

3.3 Construction de formule de quadrature (à points inconnus): Formules de Gauss Legedre

On cherche s'il existe un meilleur choix des points x_1, \ldots, x_n de $[\alpha, \beta]$ tel que la formule de quadrature associéé soit exacte sur $\mathbb{R}_{n'}[X]$ pour n' > n.

Example 3.18. Cherchons une table fomrule à 2 ponts

$$\int_{-1}^{1} f(x) dx \approx \omega_1 f(x_1) + \omega_2 f(x_2)$$

En effet, on a 4 inconnus, il faut donc 4 équations. On pose comme condition l'éxactitude de cette formule pour les polynômes $1, x, x^2, x^3$, d'où

$$\begin{cases} 2 = \omega_1 + \omega_2 \\ 0 = \omega_1 x_1 + \omega_2 x_2 \\ \frac{2}{3} = \omega_1 x_1^3 + \omega_2 x_2^3 \\ 0 = \omega_1 x_1^3 + \omega_2 x_2^3 \end{cases}$$

Remark 3.19. x_1 et x_2 sont racines du polynôme $\frac{1}{2}(3x^2-1)$ i.e $x_1=-\frac{1}{\sqrt{3}}$ $x_2=\frac{1}{\sqrt{3}}$. D'où $\omega_1=\omega_2=1$.

D'où

$$\int_{-1}^{1} f(x) \, dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

est exacte sur $\mathbb{R}_3[X]$ $(3=2\cdot 2-1)$

Example 3.20. Formule à 3 points

$$\int_{-1}^{1} f(x) dx \approx \omega_1 f(x_1) + \omega_2 f(x) + \omega_3 f(x_3)$$

On impose l'exactitude $1, x, x^2, x^3, x^4, x^5$

$$\left| \int_{\alpha}^{\beta} f(x) \, dx - I_e[f, \alpha, \beta] \right| \le c(\beta - \alpha)^{5+2}$$
$$\left| \int_{\alpha}^{\beta} f(x) \, dx - I_c[f, \alpha, \beta] \right| \le ch^6$$

On obtient x_i sont racines du polynôme $\frac{1}{3}(5x^3-3x)$. D'où, $x_1=-\sqrt{\frac{3}{5}},\ x_2=0,\ x_3=\sqrt{\frac{3}{5}}$ et $\omega_1=\frac{5}{9},\ \omega_2=\frac{8}{9},\ \omega_3=\frac{5}{9}$. D'où

$$\int_{-1}^{1} f(x) \, dx \approx \frac{5}{9} f(-\sqrt{\frac{3}{5}}) + \frac{8}{9} f(0) + \frac{5}{9} f(\sqrt{\frac{3}{5}})$$

Proposition 3.21. Considérons la formule à n points

$$\int_{-1}^{1} f(x) dx \approx \omega_1 f(x_1) + \ldots + \omega_n f(x_n)$$

exacte pour les polynômes de degré $\leq 2n-1$. Alors les abscisses x_1, \ldots, x_n sont les n racines du polynôme

de legendre de degré n définie par la recurrence.

$$L_0(x) = 1$$

$$L_1(x) = x$$

$$L_{n+1}(x) = \frac{1}{n+1} \left[(2n+1)x L_n(x) - nL_{n-1}(x) \right]$$

$$\omega_i = \int_{-1}^1 \prod_{\substack{j=1 \ i \neq i}}^n \frac{x - x_j}{x_i - x_j} dx \quad i = 1, 2, \dots, n$$

La formule de quadrature ainsi construite est appellé formule de Gauss-Legendre.

$$\int_{-1}^{1} f(x) dx \approx \omega_1 f(x_1) + \omega_2 f(x_2)$$

exacte pour $1, x, x^2, x^3$ pour $(x - x_1)(x - x_2)$

$$\int_{-1}^{1} (x - x_1)(x - x_2) dx = 0$$

$$\int_{-1}^{1} x(x - x_1)(x - x_2) dx = 0$$

$$\int_{-1}^{1} x^2 - (x_1 + x_2)x + x_1x_2 dx = 0$$

$$\begin{cases} \frac{2}{3} + (x_1 x_2)2 = 0\\ -\frac{2}{3}(x_1 x_2) = 0 \end{cases}$$

$$\int_{-1}^{1} f(x) \, dx \approx \omega_1 f(-\frac{1}{\sqrt{3}}) + \omega_2 f(\frac{1}{\sqrt{3}})$$

•
$$f \equiv (x - \frac{1}{\sqrt{3}}) \equiv (x - x_1) \Rightarrow -x_1 = \omega_1 2x_1$$

•
$$f \equiv (x + \frac{1}{\sqrt{3}}) \equiv (x - x_2)$$

CHAPTER 4

RÉSOLUTION APPROCHÉE D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES (EDOS)

4.1 Motivations

4.1.1 Définitions

Definition 4.1. Soit

$$f: [a, b] \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$$

 $(t, x) \longmapsto f((t, x))$

avec $a, b \in \mathbb{R}$ et $d \in \mathbb{N}^*$ donnée par des d composantes

$$f_i : [a, b] \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$$

 $(t, x) \longmapsto f_i(t, x)$

On note $g^{(p)}$ la dérivée d'ordre p d'une fonction $g: \mathbb{R} \to \mathbb{R}$ et g' sa dérivée d'ordre 1.

Si $g:[a,b]\to\mathbb{R}^d$ est continue ainsi que toutes ses dérivées jusqu'à l'ordre p, on notera $g\in\mathcal{C}^p([a,b],\mathbb{R}^d)$ ou simplement $g\in\mathcal{C}^p([a,b])$ s'il n'ya pas ambiguité. On a:

$$\left(g \in \mathcal{C}^1([a,b],\mathbb{R}), i = 1,\ldots,d\right) \Leftrightarrow \left(g \in \mathcal{C}^1([a,b],\mathbb{R}^d)\right)$$

Definition 4.2. On appelle équation différentielle d'ordre 1 une équation de la forme

$$y'(t) = f(t, y(t)), \quad t \in]t_0, t_0 + \tau[$$

On appelle EDO d'ordre p une équation de la forme

$$y^{(p)}(t) = f(t, y(t), y'(t), \dots, y^{(p-1)}(t))$$

où $f:[a,b]\times(\mathbb{R}^d)^p\to\mathbb{R}^d$ est continue.

Definition 4.3. -

- Une fonction y de classe C^1 vérifiant une EDO est dite solution de l'EDO.
- Résoudre une EDO c'est détérminer toutes les solutions de cette EDO.
- Lorsque $d \neq 1$, on parle de système d'EDOs.

Remark 4.4. Toute EDO d'ordre p > 1 peut ce ramener à un système d'EDOs d'ordre 1.

Definition 4.5. On appelle condition de Cauchy de l'EDO, la donnée de la valeur de la solution en un point

$$t_0 \in [a, b]: \quad y(t_0) = y^0$$

Le couple (t_0, y^0) est appelé **condition initiale** et le problème de Cauchy consiste à la recherche d'une fonction de classe \mathcal{C}^1 vérifiant:

$$\begin{cases} y'(t) = f(t, y(t)) & t \in]t_0, t_0 + \tau[\\ y(t_0) = y^0, & t_0 \text{ donné des } \mathbb{R}^d \end{cases}$$

4.1.2 Exemple

Example 4.6. Pendule

Figure 4.1: pendule-exemple-edo

$$\begin{cases} m = 1 \\ \phi(t) = ? \\ \phi' + \frac{g}{L}\sin(\phi) = 0 \end{cases}$$

c'est une EDO d'ordre 2.

$$\begin{cases} x_1 = \phi \Rightarrow x_1' = \phi' = x_2 \\ x_2 = \phi' \Rightarrow x_2' = \phi'' = -\frac{g}{L}\sin(\phi) = -\frac{g}{L}\sin(x_1) \end{cases}$$
 D'où $X(t) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ on a $X'(t) = \begin{pmatrix} x_2 \\ -\frac{g}{L}\sin(x_1) \end{pmatrix} = f(t, X(t))$ où
$$f: \mathbb{R} \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(t, X \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) \longmapsto f((t, X \begin{pmatrix} x_1 \\ x_2 \end{pmatrix})) = \begin{pmatrix} x_2 \\ -\frac{g}{L}\sin(x_1) \end{pmatrix}.$$

Example 4.7. Objet en chasse libre.

Figure 4.2: asteroid-edo

$$\begin{cases} \text{vitesse: } v \\ \text{altituted: } z \end{cases}$$

k a coef. de frottement.

$$z'' = -g + k(z')^2 e^{-az}$$
 càd EDO d'ordre 2

ou encore

$$\begin{cases} z' = v \\ v' = -g + kv^2e^{-az} \end{cases}$$
 càd système d'EDOs d'ordre 1

Pososn
$$Y = \begin{pmatrix} z \\ z' \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} Y = f(t, Y)???$$

$$f(t, Y \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}) = \begin{pmatrix} y_2 \\ -g + ky_2^2 e^{-ay_1} \end{pmatrix}$$

```
def f(t, Y):
    x, y = Y
    return np.array([y, -g + (k*y**2)*np.exp(-a*x)])
```

Example 4.8. Taux d'inféction

Figure 4.3: taux-d-infection-edo

y: inféctés, x: soins, α : taux d'inféction

$$\begin{cases} \dot{y} = \alpha xy \\ x + y = n \end{cases} \Rightarrow y' = \alpha y(n - y)$$

4.1.3 Nécessite de la solution approchée

On considère le problème de Cauchy

$$\begin{cases} x'(t) = f(t, x(t)) & t \in]t_0, t_0 + \tau[\\ x(t_0) = x^0 \in \mathbb{R}^d \end{cases}$$
 (4.1)

On ne sait résourdre 4.1 dans des cas particulièrs.

 $d=1,\,f$ est à variables séparées.

Example 4.9.

$$\begin{cases} \dot{L} = \tau_L L \quad]0, T[\\ L(0) = L_0 \end{cases} \Rightarrow L(t) = L_0 l^{t\tau_L}$$

Illustation graphique

Figure 4.4: illustation-graphique-sol-approche

• On se donne $t_n = n\Delta t$

$$n=0,\ldots,N,$$
 où $\Delta t=\frac{T}{N},N\in\mathbb{N}^*$

- On calcule $L_n = L_0 e^{t_n \tau_L}$, $n = 0, \dots, N$
- On place (t_n, L_n) sur un figure et on les relie pour obtenir un graphe de $t \mapsto L(t)$

4.2 Problème d'évolution de population des lapins

L: population des lapins, R: population renards.

On a le problème de Cauchy

$$\begin{cases} \dot{L} = L(\tau_L - pR) \\ \dot{R} = R\tau_R(\alpha L - 1) \\ L(0) = L_0, \quad R(0) = R_0 \end{cases}$$

Ce système n'est pas résoulable analytiquement.

On peut cependant le résoudre numériquement à condition de s'assurer que le problème est bien posé.

- Existence et l'unicité de la solution
- Régularité de la solution
- Dépendance continue de la solution vis à vis des données du problème (où Stabilité)

$$\Phi: (t_0, f) \mapsto y$$

$$\|\Phi(y_1 - y_2)\|_* \le C_1 \|L - L_0^2\| + C_2 \|f_1 - f_2\|_{**}$$

Definition 4.10. On dit que $f:[a,b]\times\mathbb{R}^d\to\mathbb{R}^d$ est lipschizienne par rapport à sa seconde variable s'il existe une constante positive L (appellée constante de lipschitz) telle que

$$||f(t, y_2) - f(t, y_1)|| \le L||y_2 - y_1|| \quad \forall t \in [a, b] \forall y_1, y_2 \in \mathbb{R}^d$$

Theorem 4.11. de Cauchy lipshitz.

$$\begin{cases} x'(t) = f(t, x(t)), & t \in]t_0, t_0 + \tau[\\ x(t_0) = x^0 \end{cases}$$
(4.2)

- Si $f: [t_0, t_0 + \tau] \times \mathbb{R}^d \to \mathbb{R}^d$ vérifie

 1. f continue

 2. $||f(t, y) f(t, z)|| \ll ||y z||$

Alors 4.2 admet une unique solution (globale) de classe $C^1([t_0, t_0 + \tau], \mathbb{R}^d)$

4.3 Exemple de Schémas numériques

4.3.1 Formulation intégrale

Proposition 4.12. x solution de 4.2 ssi $x(t) = x^0 + \int_{t_0}^t f(s, x(s)) ds \forall t \in [t_0, t_0 + \tau]$

Proof. -

$$\begin{cases} x(t_0) = x^0 \\ x'(t) = f(t, x(t)) \end{cases}$$

$$\int_{t_0}^t x'(s) \, ds \int_{t_0}^t f(s, x(s)) \, ds$$

4.3.2 Construction de schema d'Euler explicite

Étape 1 maillage du domaine

$$N$$
donné, pose $\Delta t = \frac{T}{N}, t_n = n \Delta t, n = 0, \dots, N$

Étape 2 : Formulation intégrale:

Suite $[t_n, t_{n+1}]$ problème discrèt ("continue")

$$\begin{cases} x(t_{n+1}) = x(t_n) + \int_{t_n}^{t_{n+1}} f(s, x(s)) \, ds, n = 0, \dots, N - 1 \\ x(t_0) = x^0 \end{cases}$$
(4.3)

Étape 3 Approximation des intégrales (Formules de quadratures)

Figure 4.5: etape-3-rectangles-a-gauche

Récrangles à gauche

$$\int_{t_n}^{t_{n+1}} g(s) \, ds \Delta t g(t_n) + o(\Delta t^2) \approx \Delta t g(t_n)$$

On a

$$\begin{cases} x(t_{n+1}) = x(t_n) + \Delta t f(t_n, x(t_n)) + o(\Delta t^2) \\ x(t_0) = x^0 \end{cases}$$
 (4.4)

$$\begin{cases} x(t_{n+1}) \approx x(t_n) + \Delta t f(t_n, x(t_n)) \\ x(t_0) = x^0 \end{cases}$$

$$(4.5)$$

On pose $x_n \approx x(t_n), n = 0, \dots, N$ lorsque des dans (PDC) on se sépare des restes

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_n, x_n), & n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$
 (4.6)

On a le schéma d'Euler explicite

Remark 4.13. Schéma du point-millieu

$$\int_{t_n}^{t_{n+1}} g(s) \, ds \Delta t g(\frac{t_{n+1} + t_n}{2} + o(\Delta t^3))$$

On aurait

$$x(t_{n+1}) = x(t_n) + \Delta 3f(t_{n+\frac{1}{2}}, x(t_{n+\frac{1}{2}})) + o(\Delta t^3)$$

Soit

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_{n+\frac{1}{2}}, x_{n+\frac{1}{2}}), & n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$

Comme $x_{n+\frac{1}{2}}$ est inconnu, on l'approche par le schema d'Euler explicite.

i.e
$$x_{n+\frac{1}{2}} = x_n + \frac{\Delta t}{2} f(t_n, x_n)$$

D'où

$$\begin{cases} x_{n+\frac{1}{2}} = x_n + \frac{\Delta t}{2} f(t_n, x_n) \\ x_{n+1} = x_n + \Delta t f(t_n + \frac{\Delta t}{2}, x_{n+\frac{1}{2}}) \end{cases}$$
(4.7)

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_n + \frac{\Delta t}{2}, x_n + \frac{\Delta t}{2} f(t_n, x_n)), n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$
(4.8)

4.3.3 Autres schémas et forme géneral des schemas explicites à un pas

Remark 4.14. Si Rectangles à droits, on aurait eu

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_{n+1}, x_{n+1}), n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$
(4.9)

Il est implicite c'est le schema d'Euler implicite

Remark 4.15. Formule des trapeze - on aurait

$$\begin{cases} x_{n+1} = x_n + \frac{\Delta t}{2} (f(t_n, x_n) + f(t_{n+1}, x_{n+1})), n = 0, \dots, N - 1 \\ x_0 \text{ donn\'e} \end{cases}$$
(4.10)

C'est le schema de CLANK-NICOLAS il est implicite. On peut expliciter le schema de C-N.

$$x_{n+1} = x_n + \Delta t f(t_n, x_n)$$

On aura

$$\begin{cases} x_{n+1} = x_n + \frac{\Delta t}{2} \left[f(t_n, x_n) + f(t_{n+1}, x_n + \Delta t f(t_n, x_n)) \right] \\ x_0 \text{ donn\'e} \end{cases}$$
(4.11)

$$\begin{cases} x_{n+1}^* = x_n + \Delta t f(t_n, x_n) & n = 0, \dots, N - 1 \\ x_{n+1} = x_n + \frac{\Delta t}{2} \left[f(t_n, x_n) + f(t_{n+1}, x_{n+1}^*) \right] \end{cases}$$
(4.12)

C'est un schema explicite appelé schema de Heun. Généralisation des schema à un pas.

$$\begin{cases} x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t), & n = 0, \dots, N - 1 \\ x_0 \text{ donn\'e} \end{cases}$$
 (4.13)

où $\Phi: \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$

Example 4.16. • Euler explicite : $\Phi(t, y, \Delta t) = f(t, y)$

- Point Millieu : $\Phi(t, y, \Delta t) = f(t + \frac{\Delta t}{2}, y + \frac{\Delta t}{2} f(t, y))$
- HEUN: $\Phi(t, y, \Delta t) = \frac{1}{2} \left[f(t, y) + f(t + \Delta t, y + \Delta t f(t, y)) \right]$

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_n + \frac{\Delta t}{2}, x_n + \frac{\Delta t}{2} f(t_n, x_n)) \\ x_0 = x^0 \end{cases}$$
 (4.14)

4.4 Étude de schémas pokes EDOs

On aimerait savoir si la suite $(x_n)_n$ générée par S converge. Si oui, "vers" la solution de P.

4.4.1 Définition

Definition 4.17. le schéma S est dit convergent ssi pour toute solution x de P et toute suite de $(x_n)_n$ construite par S courbe $x^0 = x(t_0)$ on a

$$\lim_{N \to +\infty} \left(\max_{0 \le n \le N} \|x(t_n) - x_n\| \right) = 0$$

Où $x(t_n) - x_n =: e_n$ erreur globale à l'itération n

• S'il existe C > 0, ne dépendant que de f, t_0, T tq

$$\max_{0 \le n \le N} \|e_n\| \le C\Delta t^p \quad \forall t \in [0, \Delta t_0]$$

Le schéma est dit convergent d'ordre p.

Remark 4.18. Pour étudier un schéma pour EDO, on procède en 2 étaps:

- On cherche l'ordre de consistance
- Puis, on regarde sa stabilité

4.4.2 Ordre d'un shéma à un pas explicite

Definition 4.19. (erreur de consistance)

Soit x la solution de P. On appelle erreur locale de troncature du schéma S à l'instant t_n la quantité

$$\xi_n = x(t_{n+1}) - x(t_n) - \Delta t \Phi(t_n, x(t_n), \Delta t)$$

$$P \begin{cases} x'(t) = f(t, x(t)) & t \in]t_0, t_0 + T[\\ x^0 = x(t_0) \end{cases}$$

Definition 4.20. S et dit consistant d'ordre au moins q si pour toute solution exacte x de P, il existe une constante C > 0 telle que

$$\xi(t, \Delta t) = x(t + \Delta t) - x(t) - \Delta t + \Phi(t, x(t), \Delta t)$$

vérifie

$$\|\xi(t,\Delta t)\| \le C\Delta t^{q+1}$$

• Si S est d'ordre au moins q mais pas d'ordre au moins q+1, alors il est dit consistant d'ordre exactement q.

Example 4.21. Étude de consistance du Schéma d'Euler explicite

$$S \begin{cases} x_{n+1} = x_n + \Delta f(t_n, x_n), & n = 0, \dots, N \\ x_0 = x^0 \end{cases}$$

 \bullet L'erreur de consistance à l'instant t est

$$\xi(t, \Delta t) = x(t + \Delta t) - x(t) - \Delta t f(t, x(t))$$

où x est solution suffisamment régulière de P (i.e x'(t) = f(t, x(t)))

• On cherche le petit o de Δt dans $\xi(t, \Delta t)$.

Comme x est solution exacte, on a:

$$\xi(t, \Delta t) = x(t + \Delta t) - x(t) - \Delta t x'(t)$$

Effections les Δt

$$x(t + \Delta t) = x(t) + \Delta x'(t) + \frac{\Delta t^2}{2}x''(t) + o(\Delta t^2)$$

D'où

$$\xi(t, \Delta t) = \Delta t^2 \frac{x''(t)}{2} + o(\Delta t^2)$$

càd $\xi(t, \Delta t) = o(\Delta t^2)$ d'où le schema est consistant d'ordre au moins 1. Or pour le problème $\left\{x^0(t) = f(t, x(t))\right\}$ avec f(t, y) = 2t, on a la solution exacte $x(t) = x_0 + \frac{t^2}{2}$. Et on a:

$$\xi(t, \Delta t) = \Delta t^2$$

D'où le schema ne peut pas être consistant d'ordre au moins 2. <u>Il est donc consistant d'ordre exactement 1.</u>

Proposition 4.22. Soit $\Phi: I \times \mathbb{R}^d \times [0, \Delta t_0] \to \mathbb{R}^d$ telle que $\frac{\partial \Phi}{\partial \Delta t}, \frac{\partial^2 \Phi}{\partial \Delta t^2}, \dots, \frac{\partial^q \Phi}{\partial \Delta t^q}$ existant et sont continues sur $I \times \mathbb{R}^d \times [0, \Delta t_0], f$ étant de classe C^q . Alors le schema

$$S \begin{cases} x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t) & n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$

est consistant d'ordre au moins q ssi,

$$\Phi(t, y, 0) = f(t, y)$$
$$\frac{\partial \Phi}{\partial \Delta t}(t, y, 0) = \frac{1}{2} f^{[1]}(t, y)$$

:

$$\frac{\partial^{q-1}\Phi}{\partial\Delta t^{q-1}}(t,y,0)=\frac{1}{q}f^{[q-1]}(t,y)$$

où $f^{[0]}(t,y) = f(t,y), f^{[j]}(t,y) = \frac{\partial f^{[j-1]}}{\partial t}(t,y) + f(t,y) \frac{\partial f^{[j-1]}}{\partial y}(t,y)$ et $j = 1, \dots, q-1$

Example 4.23. Étude du schema du PM

$$\begin{cases} x_{n+\frac{1}{2}} = x_n + \frac{\Delta t}{2} f(t_n, x_n) \\ x_{n+1} = x_n + \Delta t f(t_{n+\frac{1}{2}}, x_{n+\frac{1}{2}}) \\ x_0 = x^0 \end{cases}$$

ce schéma est explicite à un pas avec

$$\Phi(t, y, \Delta t) = f(t + \frac{\Delta t}{2}, y + \frac{\Delta t}{2} f(t, y))$$

Comme

- $\Phi(t, y, 0) = f(t, y)$ ce schema est consistant d'ordre au moins 1.
- $\bullet \ \ \tfrac{\partial \Phi}{\partial \Delta t}(t,y,\Delta t) = \tfrac{1}{2} \tfrac{\partial f}{\partial t}(t+\tfrac{\Delta t}{2},y+\tfrac{\Delta t}{2}f(t,y)) + \tfrac{1}{2}f(t,y) \tfrac{\partial f}{\partial y}(y+\tfrac{\Delta t}{2},y+\tfrac{\Delta t}{2}f(t,y))$

$$\frac{\partial \Phi}{\partial \Delta t}(t,y,0) = \frac{1}{2} \left[\frac{\partial f}{\partial t}(t,y) + f(t,y) \frac{\partial f}{\partial y}(t,y) \right] = \frac{1}{2} f^{[1]}(t,y)$$

D'où le schema des (PM) est consistant d'ordre au moins 2.

Exercise. Mq qu'il ne peut pas être consistant d'ordre. Choisissez f(t,y) = g(t) et revenez à la définition de $\xi(t, \Delta t)$

4.4.3 Stabilité des schémas à un pas

Definition 4.24. (S) est di stable pour une classe de fonction f, s'il existe une constante $S \ge 0$ indépendante de Δt tq:

Pour toute suite $(x_n)_{0 \le n \le N}$, $(\tilde{x_n})_{0 \le n \le N}$, $(r_n)_{0 \le n \le N-1}$:

$$x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t)$$
$$\tilde{x}_{n+1} = \tilde{x}_n + \Delta t \Phi(t_n, \tilde{x}_n, \Delta t) + r_n$$

on a la majoration

$$\underbrace{\max_{\substack{0 \leq n \leq N}} \{\|\tilde{x}_n - x_n\|\}}_{\text{erreur maximale pour toutes les itérations}} \leq S\{\underbrace{\|\tilde{x}_0 - x_0\|}_{\text{erreur initiale}} + \sum_{j=0}^{N-1} \underbrace{\|\eta_n\|}_{\text{erreur ajoutée}}\}$$

Proposition 4.25. (Stabilité du schéma d'Euler explicite)

Si f est lipschitzienne en espace, alors le schema d'Euler explicite est stable.

Proof.

$$||x_{n+1} - \tilde{x}_{n+1}|| \le (1 + L\Delta t)||x_n - \tilde{x}_n|| + ||\eta_n||$$

Et on conclut pas le lemme de Gramwall discret.

Lemma 4.26. de Graomwall discret:

 $(a_n)_{0\leq n\leq N},\,(b_n)_{0\leq n\leq N-1}$ termes positifs et h>0, L>0tq

$$a_{n+1} \le (1+Lh)a_n + b_n \quad n = 0, \dots, N-1$$

alors

$$a_n \le e^{Lnh} a_0 + \sum_{j=0}^{n-1} e^{L(n-j-1)h} b_j$$

D'où

$$a_n \le e^{nhL} \left(a_0 + n \max_{0 \le j \le n-1} |b_j| \right)$$