TEST PAPER OF JEE(MAIN) EXAMINATION – 2019

(Held On Thursday 10th JANUARY, 2019) TIME: 02: 30 PM To 05: 30 PM **PHYSICS**

- 1. Two forces P and Q of magnitude 2F and 3F, respectively, are at an angle θ with each other. If the force Q is doubled, then their resultant also gets doubled. Then, the angle is:
 - $(1) 30^{\circ}$
- $(2) 60^{\circ}$
- $(3) 90^{\circ}$
- (4) 120°

Ans. (4)

Sol.
$$4F^2 + 9F^2 + 12F^2 \cos \theta = R^2$$

 $4F^2 + 36 F^2 + 24 F^2 \cos \theta = 4R^2$
 $4F^2 + 36 F^2 + 24 F^2 \cos \theta$
 $= 4(13F^2 + 12F^2\cos\theta) = 52 F^2 + 48F^2\cos\theta$

$$\cos \theta = -\frac{12F^2}{24F^2} = -\frac{1}{2}$$

2. The actual value of resistance R, shown in the figure is 30Ω . This is measured in an experiment as shown using the standard

formula $R = \frac{V}{I}$, where V and I are the readings

of the voltmeter and ammeter, respectively. If the measured value of R is 5% less, then the internal resistance of the voltmeter is:

- (1) 350Ω (2) 570Ω (3) 35Ω (4) 600Ω

Ans. (2)

Sol.
$$0.95 \text{ R} = \frac{\text{R R}_{\text{b}}}{\text{R} + \text{R}_{\text{b}}}$$

 $0.95 \times 30 = 0.05 \text{ R}_{\text{b}}$
 $R_{\text{b}} = 19 \times 30 = 570 \Omega$

- **3.** An unknown metal of mass 192 g heated to a temperature of 100°C was immersed into a brass calorimeter of mass 128 g containing 240 g of water a temperature of 8.4°C Calculate the specific heat of the unknown metal if water temperature stabilizes at 21.5°C (Specific heat of brass is 394 J kg⁻¹ K⁻¹)

 - (1) $1232 \text{ J kg}^{-1} \text{ K}^{-1}$ (2) $458 \text{ J kg}^{-1} \text{ K}^{-1}$
 - (3) $654 \text{ J kg}^{-1} \text{ K}^{-1}$ (4) $916 \text{ J kg}^{-1} \text{ K}^{-1}$

Ans. (4)

Sol.
$$192 \times S \times (100 - 21.5)$$

= $128 \times 394 \times (21.5 - 8.4)$
+ $240 \times 4200 \times (21.5 - 8.4)$
 $\Rightarrow S = 916$

4. A particle starts from the origin at time t = 0 and moves along the positive x-axis. The graph of velocity with respect to time is shown in figure. What is the position of the particle at time t = 5s?

- (1) 6 m
- (2) 9 m
- (3) 3 m
- (4) 10 m

Ans. (2)

S = Area under graph

$$\frac{1}{2}$$
 × 2 × 2 + 2 × 2 + 3 × 1 = 9 m

- **5.** The self induced emf of a coil is 25 volts. When the current in it is changed at uniform rate from 10 A to 25 A in 1s, the change in the energy of the inductance is:
 - (1) 437.5 J
- (2) 637.5 J
- (3) 740 J
- (4) 540 J

Ans. (1)

$$L\frac{di}{dt} = 25$$

$$L \times \frac{15}{1} = 25$$

$$L = \frac{5}{3}H$$

$$\Delta E = \frac{1}{2} \times \frac{5}{3} \times (25^2 - 10^2) = \frac{5}{6} \times 525 = 437.5 \text{ J}$$

- A current of 2 mA was passed through an unknown resistor which dissipated a power of 4.4 W. Dissipated power when an ideal power supply of 11V is connected across it is:
 - (1) $11 \times 10^{-5} \text{ W}$
- (2) $11 \times 10^{-4} \text{ W}$
- $(3) 11 \times 10^5 \text{ W}$
- $(4) 11 \times 10^{-3} \text{ W}$

Ans. (1)

 $P = I^2R$

 $4.4 = 4 \times 10^{-6} \text{ R}$

 $R = 1.1 \times 10^6 \,\Omega$

$$P' = \frac{11^2}{R} = \frac{11^2}{1.1} \times 10^{-6} = 11 \times 10^{-5} W$$

- 7. The diameter and height of a cylinder are measured by a meter scale to be 12.6 ± 0.1 cm and 34.2 ± 0.1 cm, respectively. What will be the value of its volume in appropriate significant figures?
 - $(1) 4260 \pm 80 \text{ cm}^3$
- $(2) 4300 \pm 80 \text{ cm}^3$
- (3) $4264.4 \pm 81.0 \text{ cm}^3$ (4) $4264 \pm 81 \text{ cm}^3$

Ans. (1)

$$\frac{\Delta V}{V} = 2\frac{\Delta d}{d} + \frac{\Delta h}{h} = 2\left(\frac{0.1}{12.6}\right) + \frac{0.1}{34.2}$$

$$V = 12.6 \times \frac{\pi}{4} \times 314.2$$

- 8. At some location on earth the horizontal component of earth's magnetic field is 18×10^{-6} T. At this location, magnetic needle of length 0.12 m and pole strength 1.8 Am is suspended from its mid-point using a thread, it makes 45° angle with horizontal in equilibrium. To keep this needle horizontal, the vertical force that should be applied at one of its ends is:
 - $(1) 3.6 \times 10^{-5} \text{ N}$
- $(2) 6.5 \times 10^{-5} \text{ N}$
- $(3) 1.3 \times 10^{-5} \text{ N}$
- $(4) 1.8 \times 10^{-5} \text{ N}$

Ans. (2)

 $\mu B \sin 45^{\circ} = F \frac{\ell}{2} \sin 45^{\circ}$

$$F = 2\mu B$$

- 9. The modulation frequency of an AM radio station is 250 kHz, which is 10% of the carrier wave. If another AM station approaches you for license what broadcast frequency will you allot?
 - (1) 2750 kHz
- (2) 2000 kHz
- (3) 2250 kHz
- (4) 2900 kHz

Ans. (2)

$$f_{carrier} = \frac{250}{0.1} = 2500 \, \text{KHZ}$$

 \therefore Range of signal = 2250 Hz to 2750 Hz Now check all options : for 2000 KHZ f_{mod} = 200 Hz

- ∴ Range = 1800 KHZ to 2200 KHZ
- 10. A hoop and a solid cylinder of same mass and radius are made of a permanent magnetic material with their magnetic moment parallel to their respective axes. But the magnetic moment of hoop is twice of solid cylinder. They are placed in a uniform magnetic field in such a manner that their magnetic moments make a small angle with the field. If the oscillation periods of hoop and cylinder are T_h and T_c respectively, then:
 - (1) $T_h = 0.5 T_c$
- (2) $T_h = 2 T_c$
- (3) $T_h = 1.5 T_c$
- (4) $T_{h} = T_{c}$

Ans. (4)

$$T = 2\pi \sqrt{\frac{I}{\mu B}}$$

$$T_{h} = 2\pi \sqrt{\frac{mR^{2}}{(2\mu)B}}$$

$$T_{\rm C} = 2\pi \sqrt{\frac{1/2mR^2}{\mu B}}$$

11. The electric field of a plane polarized electromagnetic wave in free space at time t= 0 is given by an expression

$$\vec{E}(x,y) = 10\hat{i} \cos [(6x + 8z)]$$

The magnetic field \vec{B} (x, z, t) is given by : (c is the velocity of light)

$$(1) \frac{1}{c} \left(6\hat{k} + 8\hat{i} \right) \cos \left[\left(6x - 8z + 10ct \right) \right]$$

(2)
$$\frac{1}{c} \left(6\hat{k} - 8\hat{i} \right) \cos \left[\left(6x + 8z - 10ct \right) \right]$$

(3)
$$\frac{1}{c} (6\hat{k} + 8\hat{i}) \cos[(6x + 8z - 10ct)]$$

$$(4) \frac{1}{c} \left(6\hat{k} - 8\hat{i} \right) \cos \left[\left(6x + 8z + 10ct \right) \right]$$

Ans. (2)

$$\vec{E} = 10\hat{j} cos \left[\left(6\hat{i} + 8\hat{k} \right) \cdot \left(x\hat{i} + z\hat{k} \right) \right]$$

$$= 10\,\hat{j}\,\cos[\vec{K}\cdot\vec{r}]$$

 $\vec{K} = 6\hat{i} + 8\hat{k}$; direction of waves travel. i.e. direction of 'c'.

$$\vec{B} = \hat{c}$$

$$\vec{B} = \hat{c}$$

 \therefore Direction of \hat{B} will be along

$$\hat{C} \times \hat{E} = \frac{-4\hat{i} + 3\hat{k}}{5}$$

Mag. of \vec{B} will be along $\hat{C} \times \hat{E} = \frac{-4\hat{i} + 3\hat{k}}{5}$

Mag. of
$$\vec{B} = \frac{E}{C} = \frac{10}{C}$$

$$\vec{B} = \frac{10}{C} \left(\frac{-4\hat{i} + 3\hat{k}}{5} \right) = \frac{\left(-8\hat{i} + 6\hat{k} \right)}{C}$$

12. Condiser the nuclear fission

$$Ne^{20} \rightarrow 2He^4 + C^{12}$$

Given that the binding energy/nucleon of Ne^{20} , He^4 and C^{12} are, respectively, 8.03 MeV, 7.07 MeV and 7.86 MeV, identify the correct statement :

- (1) 8.3 MeV energy will be released
- (2) energy of 12.4 MeV will be supplied
- (3) energy of 11.9 MeV has to be supplied
- (4) energy of 3.6 MeV will be released

Ans. (3)

13. Two vectors \vec{A} and \vec{B} have equal magnitudes. The magnitude of $(\vec{A} + \vec{B})$ is 'n' times the magnitude of $(\vec{A} - \vec{B})$. The angle between \vec{A} and \vec{B} is:

(1)
$$\sin^{-1}\left[\frac{n^2-1}{n^2+1}\right]$$
 (2) $\cos^{-1}\left[\frac{n-1}{n+1}\right]$

(3)
$$\cos^{-1} \left[\frac{n^2 - 1}{n^2 + 1} \right]$$
 (4) $\sin^{-1} \left[\frac{n - 1}{n + 1} \right]$

Ans. (3)

$$|\vec{A} + \vec{B}| = 2a\cos\theta/2 \qquad \qquad (1)$$

$$|\vec{A} - \vec{B}| = 2a\cos\frac{(\pi - \theta)}{2} = 2a\sin\theta/2$$
 ____(2)

$$\Rightarrow n\left(2a\cos\frac{\theta}{2}\right) = 2a\frac{\sin\theta}{2}$$

$$\Rightarrow \tan \frac{\theta}{2} = n$$

14. A particle executes simple harmonic motion with an amplitude of 5 cm. When the particle is at 4 cm from the mean position, the magnitude of its velocity in SI units is equal to that of its acceleration. Then, its periodic time in seconds is:

(1)
$$\frac{7}{3}\pi$$

(2)
$$\frac{3}{8}\pi$$

(3)
$$\frac{4\pi}{3}$$

(4)
$$\frac{8\pi}{3}$$

Ans. (4)

$$v = \omega \sqrt{A^2 - x^2} \qquad \qquad ---(1)$$

$$a = -\omega^2 x \qquad \qquad \underline{\qquad} (2)$$

$$|\mathbf{v}| = |\mathbf{a}| \qquad \qquad \underline{\qquad} (3)$$

$$\omega\sqrt{A^2 - x^2} = \omega^2 x$$

$$A^2 - x^2 = \omega^2 x^2$$

$$5^2 - 4^2 = \omega^2(4^2)$$

$$\Rightarrow$$
 3 = $\omega \times 4$

$$T = 2\pi/\omega$$

15. Consider a Young's double slit experiment as shown in figure. What should be the slit separation d in terms of wavelength λ such that the first minima occurs directly in front of the slit (S_1) ?

Ans. (4)

$$\sqrt{5}d - 2d = \frac{\lambda}{2}$$

- The eye can be regarded as a single refracting **16.** surface. The radius of curvature of this surface is equal to that of cornea (7.8 mm). This surface separates two media of refractive indices 1 and 1.34. Calculate the distance from the refracting surface at which a parallel beam of light will come to focus.
 - (1) 2 cm
- (2) 1 cm
- (3) 3.1 cm
- (4) 4.0 cm

Ans. (3)

$$R = 7.8 \text{ mm}$$

$$\mu = 1 \quad \mu = 1.34$$

$$\frac{1.34}{V} - \frac{1}{\infty} = \frac{1.34 - 1}{7.8}$$

 \therefore V = 30.7 mm

- 17. Half mole of an ideal monoatomic gas is heated at constant pressure of 1atm from 20 °C to 90°C. Work done by gas is close to: (Gas constant R = 8.31 J/mol.K
- (1) 73 J
- (2) 291 J (3) 581 J (4) 146 J

Ans. (2)

$$WD = P\Delta V = nR\Delta T = \frac{1}{2} \times 8.31 \times 70$$

- A metal plate of area 1×10^{-4} m² is illuminated by a radiation of intensity 16 mW/m². The work function of the metal is 5eV. The energy of the incident photons is 10 eV and only 10% of it produces photo electrons. The number of emitted photo electrons per second and their maximum energy, respectively, will be: $[1 \text{ eV} = 1.6 \times 10^{-19}\text{J}]$

 - (1) 10^{10} and 5 eV (2) 10^{14} and 10 eV
 - (3) 10¹² and 5 eV (4) 10¹¹ and 5 eV

Ans. (4)

$$I = \frac{nE}{At}$$

$$16 \times 10^{-3} = \left(\frac{n}{t}\right)_{\text{Photon}} \frac{10 \times 1.6 \times 10^{-19}}{10^{-4}} = 10^{12}$$

- Charges -q and +q located at A and B, respectively, constitute an electric dipole. Distance AB = 2a, O is the mid point of the dipole and OP is perpendicular to AB. A charge Q is placed at P where OP = y and y >> 2a. The charge Q experiences and electrostatic force F. If Q is now moved along the equatorial line
 - to P' such that OP'= $\left(\frac{y}{3}\right)$, the force on Q will be

close to
$$:\left(\frac{y}{3}>>2a\right)$$

- (2) 3F (3) 9F
- (4) 27F

Ans. (4)

Sol. Electric field of equitorial plane of dipole

$$=-\frac{\vec{KP}}{r^3}$$

$$\therefore \text{ At P, F} = -\frac{K\vec{P}}{r^3}Q.$$

At P¹, F¹ =
$$-\frac{\vec{KPQ}}{(r/3)^3}$$
 = 27 F.

- Two stars of masses 3×10^{31} kg each, and at 20. distance 2×10^{11} m rotate in a plane about their common centre of mass O. A meteorite passes through O moving perpendicular to the star's rotation plane. In order to escape from the gravitational field of this double star, the minimum speed that meteorite should have at O is: (Take Gravitational constant $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$
 - $(1) 1.4 \times 10^5 \text{ m/s}$
- $(2) 24 \times 10^4 \text{ m/s}$
- $(3) 3.8 \times 10^4 \text{ m/s}$
- $(4) 2.8 \times 10^5 \text{ m/s}$

Ans. (4)

By energy convervation between $0 \& \infty$.

$$-\frac{GMm}{r} + \frac{-GMm}{r} + \frac{1}{2}mV^{2} = 0 + 0$$

[M is mass of star m is mass of meteroite)

$$\Rightarrow v = \sqrt{\frac{4GM}{r}} = 2.8 \times 10^5 \,\text{m/s}$$

- A closed organ pipe has a fundamental 21. frequency of 1.5 kHz. The number of overtones that can be distinctly heard by a person with this organ pipe will be: (Assume that the highest frequency a person can hear is 20,000 Hz)
 - (1) 7
- (2) 5
- (3) 6
- (4) 4

Ans. (1)

- For closed organ pipe, resonate frequency is Sol. odd multiple of fundamental frequency.
 - \therefore (2n + 1) $f_0 \le 20,000$

 $(f_0 \text{ is fundamental frequency} = 1.5 \text{ KHz})$

- .. Total number of overtone that can be heared is 7. (0 to 6).

A rigid massless rod of length 3l has two 22. masses attached at each end as shown in the figure. The rod is pivoted at point P on the horizontal axis (see figure). When released from initial horizontal position, its instantaneous angular acceleration will be:

- (1) $\frac{g}{2l}$ (2) $\frac{7g}{3l}$ (3) $\frac{g}{13l}$ (4) $\frac{g}{3l}$

Ans. (3)

Applying torque equation about point P.

$$2M_0 (2l) - 5 M_0 gl = I\alpha$$

 $I = 2M_0 (2l)^2 + 5M_0 l^2 = 13 M_0 l^2 d$

$$\therefore \quad \alpha = -\frac{M_0 g \ell}{13 M_0 \ell^2} \quad \Rightarrow \quad \alpha = -\frac{g}{13 \ell}$$

- $\alpha = \frac{g}{13\ell}$ anticlockwise
- 23. For the circuit shown below, the current through the Zener diode is:

(1) 5 mA (2) Zero

(3) 14 mA (4) 9 mA

Ans. (4)

Assuming zener diode doesnot undergo breakdown, current in circuit = $\frac{120}{15000}$ = 8 mA \therefore Voltage drop across diode = 80 V > 50 V. The diode undergo breakdown.

Current is $R_1 = \frac{70}{5000} = 14 \text{mA}$

Current is $R_2 = \frac{50}{10000} = 5 \,\text{mA}$

:. Current through diode = 9mA

- 24. Four equal point charges Q each are placed in the xy plane at (0, 2), (4, 2), (4, -2) and (0, -2). The work required to put a fifth charge Q at the origin of the coordinate system will be:

 - $(1) \ \frac{Q^2}{2\sqrt{2}\pi\epsilon_0} \qquad \qquad (2) \ \frac{Q^2}{4\pi\epsilon_0} \bigg(1 + \frac{1}{\sqrt{5}}\bigg)$
 - (3) $\frac{Q^2}{4\pi\epsilon_0} \left(1 + \frac{1}{\sqrt{3}} \right)$ (4) $\frac{Q^2}{4\pi\epsilon_0}$

Ans. (2)

Potential at origin = $\frac{KQ}{2} + \frac{KQ}{2} + \frac{KQ}{\sqrt{20}} + \frac{KQ}{\sqrt{20}}$ (Potential at $\infty = 0$)

$$= KQ \left(1 + \frac{1}{\sqrt{5}} \right)$$

... Work required to put a fifth charge Q at origin

is equal to
$$\frac{Q^2}{4\pi\epsilon_0}\left(1+\frac{1}{\sqrt{5}}\right)$$

- A cylindrical plastic bottle of negligible mass 25. is filled with 310 ml of water and left floating in a pond with still water. If pressed downward slightly and released, it starts performing simple harmonic motion at angular frequency ω. If the radius of the bottle is 2.5 cm then ω close to : (density of water = $10^3 \text{ kg} / \text{m}^3$)
 - (1) 5.00 rad s^{-1}
- (2) 1.25 rad s⁻¹
- (3) 3.75 rad s⁻¹
- (4) 2.50 rad s⁻¹

Ans. (Bonus)

Extra Boyant force = δAxg

$$B_0 + B \times mg = ma$$

$$B = ma$$

$$a = \left(\frac{\delta Ag}{m}\right)^{x}$$

$$w^2 = \frac{\delta Ag}{m}$$

$$w = \sqrt{\frac{10^3 \times \pi (2.5)^2 \times 10^{-4} \times 10}{310 \times 10^{-6} \times 10^3}}$$

$$=\sqrt{63.30} = 7.95$$

- **26.** A parallel plate capacitor having capacitance 12 pF is charged by a battery to a potential difference of 10 V between its plates. The charging battery is now disconnected and a porcelain slab of dielectric constant 6.5 is slipped between the plates the work done by the capacitor on the slab is:
 - (1) 692 pJ
- (2) 60 pJ
- (3) 508 pJ
- (4) 560 pJ

Ans. (3)

Intial energy of capacitor

$$U_{i} = \frac{1}{2} \frac{v^2}{c}$$

$$=\frac{1}{2} \times \frac{120 \times 120}{12} = 600 \text{ J}$$

Since battery is disconnected so charge remain same.

Final energy of capacitor

$$U_{f} = \frac{1}{2} \frac{v^{2}}{c}$$

$$= \frac{1}{2} \times \frac{120 \times 120}{12 \times 6.5} = 92$$

$$W + U_{f} = U_{i}$$

$$W = 508 \text{ J}$$

- 27. Two kg of a monoatomic gas is at a pressure of 4×10^4 N/m². The density of the gas is 8 kg/m³. What is the order of energy of the gas due to its thermal motion?
 - $(1) 10^3 J$
- $(2)\ 10^5\ J$
- $(3) 10^6 J$
- $(4) 10^4 J$

Ans. (4)

Thermal energy of N molecule

$$= N\left(\frac{3}{2}kT\right)$$

$$=\frac{N}{N_{_{A}}}\frac{3}{2}RT$$

$$=\frac{3}{2}(nRT)$$

$$=\frac{3}{2}PV$$

$$=\frac{3}{2}P\left(\frac{m}{8}\right)$$

$$=\frac{3}{2}\times4\times10^4\times\frac{2}{8}$$

$$= 1.5 \times 10^4$$

order will 104

- 28. A particle which is experiencing a force, given by $\vec{F} = 3\vec{i} 12\vec{j}$, undergoes a displacement of $\vec{d} = 4\vec{i}$. If the particle had a kinetic energy of 3 J at the beginning of the displacement, what is its kinetic energy at the end of the displacement?
 - (1) 15 J
- (2) 10 J
- (3) 12 J
- (4) 9 J

Ans. (1)

Work done = $\vec{F} \cdot \vec{d}$

$$= 12J$$

work energy theorem

$$W_{net} = \Delta K.E.$$

$$12 = K_f - 3$$

$$K_f = 15J$$

29. The Wheatstone bridge shown in Fig. here, gets balanced when the carbon resistor used as R_1 has the colour code (Orange, Red, Brown). The resistors R_2 and R_4 are 80Ω and 40Ω , respectively.

Assuming that the colour code for the carbon resistors gives their accurate values, the colour code for the carbon resistor, used as R₃, would be:

- (1) Red, Green, Brown
- (2) Brown, Blue, Brown
- (3) Grey, Black, Brown
- (4) Brown, Blue, Black

Ans. (2)

$$R_1 = 32 \times 10 = 320$$

for wheat stone bridge

$$\Rightarrow \frac{R_1}{R_3} = \frac{R_2}{R_4}$$

$$\frac{320}{R_3} = \frac{80}{40}$$

Brown

30. Two identical spherical balls of mass M and radius R each are stuck on two ends of a rod of length 2R and mass M (see figure). The moment of inertia of the system about the axis passing perpendicularly through the centre of the rod is:

- (1) $\frac{152}{15}$ MR²
- (2) $\frac{17}{15}$ MR²
- (3) $\frac{137}{15}$ MR²
- (4) $\frac{209}{15}$ MR²

Ans. (3)

For Ball

using parallel axis theorem.

$$I_{ball} = \frac{2}{5}MR^2 + M(2R)^2$$

$$= \frac{22}{5} MR^2$$

2 Balls so
$$\frac{44}{5}$$
 MR²

Irod = for rod
$$\frac{M(2R)^2}{R} = \frac{MR^2}{3}$$

$$I_{\text{system}} = I_{\text{Ball}} + I_{\text{rod}}$$
$$= \frac{44}{5} MR^2 + \frac{MR^2}{3}$$

$$=\frac{137}{15} MR^2$$

TEST PAPER OF JEE(MAIN) EXAMINATION – 2019

(Held On Thrusday 10th JANUARY, 2019) TIME: 02: 30 PM To 05: 30 PM **CHEMISTRY**

- 1. An ideal gas undergoes isothermal compression from 5 m³ against a constant external pressure of 4 Nm⁻². Heat released in this process is used to increase the temperature of 1 mole of Al. If molar heat capacity of Al is 24 J mol⁻¹ K⁻¹, the temperature of Al increases by:

 - (1) $\frac{3}{2}$ K (2) $\frac{2}{3}$ K
- (3) 1 K

Ans. (2)

- Sol. Work done on isothermal irreversible for ideal
 - $= -P_{\text{ext}} (V_2 V_1)$ = -4 N/m² (1m³ 5m³)
 - = 16 Nm

Isothermal process for ideal gas

- $\Delta U = 0$
- q = -w
- = -16 Nm
- = -16 J

Heat used to increase temperature of $A\ell$ $q = n C_m \Delta T$

 $16 \text{ J} = 1 \times 24 \text{ } \frac{\text{J}}{\text{mol } K} \times \Delta \text{T}$

$$\Delta T = \frac{2}{3}K$$

2. The 71st electron of an element X with an atomic number of 71 enters into the orbital: (1) 4f(2) 6p(4) 5d (3) 6s

Ans. (1)

- The number of 2-centre-2-electron and 3-**3.** centre-2-electron bonds in B₂H₆, respectively, are:
 - (1) 2 and 4
- (2) 2 and 1
- (3) 2 and 2
- (4) 4 and 2

Ans. (4)

The amount of sugar (C₁₂H₂₂O₁₁) required to prepare 2 L of its 0.1 M aqueous solution is: (1) 68.4 g (2) 17.1 g (3) 34.2 g (4)136.8 g

Ans. (1)

E

Sol. Molarity = $\frac{(n)_{\text{solute}}}{V_{\text{solution}} (\text{in lit})}$

$$0.1 = \frac{\text{wt.}/342}{2}$$

wt
$$(C_{12}H_{22}O_{11}) = 68.4$$
 gram

- 5. Among the following reactions of hydrogen with halogens, the one that requires a catalyst

 - (1) $H_2 + I_2 \rightarrow 2HI$ (2) $H_2 + F_2 \rightarrow 2HF$
 - (3) $H_2 + Cl_2 \rightarrow 2HCI$ (4) $H_2 + Br_2 \rightarrow 2HBr$

Ans. (1)

- 6. Sodium metal on dissolution in liquid ammonia gives a deep blue solution due to the formation of:
 - (1) sodium ion-ammonia complex
 - (2) sodamide
 - (3) sodium-ammonia complex
 - (4) ammoniated electrons

Ans. (4)

7. What will be the major product in the following mononitation reaction?

$$\begin{array}{c|c} O \\ H \end{array} \begin{array}{c} HNO_3 \\ \hline Conc. \ H_2SO_4 \end{array}$$

$$(1) \begin{array}{c} O & NO_2 \\ H & & \end{array}$$

$$(3) \qquad \qquad \begin{matrix} O_2N \\ N \\ H \end{matrix}$$

$$(4) \begin{array}{c} O \\ N \\ H \end{array} \begin{array}{c} O \\ O, N \end{array}$$

Ans. (3)

In the cell $Pt(s)|H_2(g, 1bar|HCl(aq)|Ag(s)|Pt(s)$ 8. the cell potential is 0.92 when a 10⁻⁶ molal HCl solution is used. THe standard electrode potential of (AgCl/Ag,Cl-) electrode is :

$$\left\{given, \frac{2.303RT}{F} = 0.06Vat298K\right\}$$

(1) 0.20 V (2) 0.76 V (3) 0.40 V (4) 0.94 V

Ans. (1)

 $Pt(s)|H_2(g, 1bar)|HCl(aq)|AgCl(s)|Ag(s)|Pt(s)$ Sol. $10^{-6} \, \text{m}$

Anode: $H_2 \longrightarrow 2H^+ + 2e \times 1$ Cathode: $e^- + AgCl(s) \longrightarrow Ag(s) + Cl^-(aq)$

 $H_2(g)l + AgCl(s) \longrightarrow 2H^+ +$ $2Ag(s) + 2Cl^{-}(aq)$

 $E_{cell} = E_{cell}^0 - \frac{0.06}{2} \log_{10} ((H^+)^2 \cdot (Cl^-)^2)$

 $.925 = \left(E_{\text{H}_2/\text{H}^+}^0 + E_{\text{AgCI/Ag,CI}^-}^0\right) - \frac{0.06}{2}\log_{10}$ $((10^{-6})^2 (10^{-6})^2)$

 $.92 = 0 + E_{AgCl/Ag,Cl^{-}}^{0} - 0.03 \log_{10}(10^{-6})^{4}$

 $E_{A_9Cl}^0 / Ag$, $Cl^- = .92 + .03 \times -24 = 0.2 \text{ V}$

9. The major product of the following recation is:

Ans. (3)

- **10.** The pair that contains two P-H bonds in each of the oxoacids is:
 - (1) H_3PO_2 nad $H_4P_2O_5$
 - (2) $H_4P_2O_5$ and $H_4P_2O_6$
 - (3) H₃PO₃ and H₃PO₂
 - (4) H₄P₂O₅ nad H₃PO₃

Ans. (1)

The major product of the following reaction is: 11.

Ans. (4)

- 12. The difference in the number of unpaired electrons of a metal ion in its high-spin and low-spin octahedral complexes is two. The metal ion is:
 - (1) Fe^{2+}
- $(2) \text{ Co}^{2+}$
- $(3) \text{ Mn}^{2+}$
- $(4) Ni^{2+}$

Ans. (2)

- 13. A compound of formula A₂B₃ has the hcp lattice. Which atom forms the hcp lattice and what fraction of tetrahedral voids is occupied by the other atoms:
 - (1) hcp lattice-A, $\frac{2}{3}$ Tetrachedral voids-B
 - (2) hcp lattice-B, $\frac{1}{3}$ Tetrachedral voids-A
 - (3) hcp lattice-B, $\frac{2}{3}$ Tetrachedral voids-A
 - (4) hcp lattice-A $\frac{1}{3}$ Tetrachedral voids-B

Ans. (2)

Sol. A₂B₃ has HCP lattice

If A form HCP, then $\frac{3}{4}^{th}$ of THV must occupied by B to form A_2B_3

If B form HCP, then $\frac{1}{3}^{th}$ of THV must occupied by A to form A_2B_3

- **14.** The reaction that is NOT involved in the ozone layer depletion mechanism is the stratosphere is:
 - (1) $HOCl(g) \xrightarrow{h\upsilon} OH(g) + Cl(g)$

(2)
$$CF_2Cl_2(g) \xrightarrow{uv} Cl(g) + \overset{\bullet}{C}F_2Cl(g)$$

(3)
$$CH_4 + 2O_3 \rightarrow 3CH_2 = O + 3H_2OP$$

(4)
$$\operatorname{ClO}(g) + \operatorname{O}(g) \rightarrow \operatorname{Cl}(g) + \operatorname{O}_2(g)$$

Ans. (3)

- 15. The process with negative entropy change is:
 - (1) Dissolution of iodine in water
 - (2) Synthesis of ammonia from N_2 and H_2
 - (3) Dissolution of $CaSO_4(s)$ to CaO(s) and $SO_3(g)$
 - (4) Subimation of dry ice

Ans. (2)

Sol.
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
; $\Delta n_g \le 0$

16. The major product of the following reaction is:

$$\begin{array}{c|c} CH_3 \\ \hline CH_3O \end{array} \xrightarrow[OH]{} \begin{array}{c} CH_3 \\ \hline (i) \ dil. \ HCl/\Delta \\ \hline (ii) \ (COOH)_2/ \\ \hline Polymerisation \end{array}$$

$$(3) \qquad OH \qquad O$$

Ans. (3)

- 17. A reaction of cobalt(III) chloride and ethylenediamine in a 1 : 2 mole ratio generates two isomeric products A (violet coloured) B (green coloured). A can show optial actively, B is optically inactive. What type of isomers does A and B represent?
 - (1) Geometrical isomers
 - (2) Ionisation isomers]
 - (3) Coordination isomers
 - (4) Linkage isomers

Ans. (1)

18. The major product obtained in the following reaction is:

$$CO_2Et$$
 NaOEt/ Δ

$$(1) \qquad \qquad CO_2Et$$

$$(2) \underbrace{ \begin{array}{c} \\ \\ \\ \\ \end{array}}_{CO,Et}$$

$$(3)$$
 CO_2Et

Ans. (4)

- **19.** Which of the following tests cannot be used for identifying amino acids?
 - (1) Biuret test
- (2) Xanthoproteic test
- (3) Barfoed test
- (4) Ninhydrin test

Ans. (3)

20. What is the IUPAC name of the following compound ?

- (1) 3-Bromo-1, 2-dimethylbut-1-ene]
- (2) 4-Bromo-3-methylpent-2-ene
- (3) 2-Bromo-3-methylpent-3-ene
- (4) 3-Bromo-3-methyl-1, 2-dimethylprop-1-ene

Ans. (2)

21. Which is the most suitable reagent for the following transformation?

$$\begin{matrix} \text{OH} \\ \textbf{I} \\ \text{CH}_3\text{-CH=CH-CH}_2\text{-CH-CH}_3 & \longrightarrow \end{matrix}$$

CH₃-CH=CH-CH₂CO₂H

- (1) alkaline KMnO₄
- (2) I₂/NaOH
- (3) Tollen's reagent
- (4) CrO₂/CS₂

Ans. (2)

22. The correct match between item T and item 'II' is:

Item 'I'

Item 'II' (reagent)

- (compound)
- (P) 1-naphthol
- (A) Lysine(B) Furfural
- (Q) ninhydrin
- (C) Benzyl alcohol
- (R) KMnO₄
- (D) Styrene
- (S) Ceric ammonium

nitrate

- (1) $(A)\rightarrow(Q)$, $(B)\rightarrow(P)$, $(C)\rightarrow(S)$, $(D)\rightarrow(R)$
- $(2) (A) \rightarrow (Q), (B) \rightarrow (R), (C) \rightarrow (S), (D) \rightarrow (P)$
- (3) $(A)\rightarrow(Q)$, $(B)\rightarrow(P)$, $(C)\rightarrow(R)$, $(D)\rightarrow(S)$
- (4) $(A)\rightarrow(R)$, $(B)\rightarrow(P)$, $(C)\rightarrow(Q)$, $(D)\rightarrow(S)$

Ans. (1)

- 23. In the reaction of oxalate with permaganate in acidic medium, the number of electrons involved in producing one molecule of CO₂ is:
 - (1) 10
- (2) 2
- (3) 1
- (4) 5

Ans. (3)

$$2 \stackrel{+7}{M} \text{nO}_4 + 5 \text{C}_2 \text{O}_4^{2-} + 16 \text{H}^+ \longrightarrow 2 \stackrel{+2}{M} \text{n}^{2+}$$
Sol.

 $+10\mathrm{CO_2} + 8\mathrm{H_2O}$ $10~\mathrm{e^-}$ trans for 10 molecules of $\mathrm{CO_2}$ so per

- molecule of CO₂ transfer of e⁻ is '1' **24.** 5.1g NH₄SH is introduced in 3.0 L evacuated flask at 327°C. 30% of the solid NH₄SH decomposed to NH₃ and H₂S as gases. The K_p of the reaction at 327°C is (R = 0.082 L atm mol⁻¹K⁻¹, Molar mass of S = 32 g mol^{/01}, molar mass of N = 14g mol⁻¹)
 - (1) 1×10^{-4} atm²
- $(2) 4.9 \times 10^{-3} \text{ atm}^2$
- (3) 0.242 atm²
- (4) 0.242×10^{-4} atm²

Ans. (3)

$$NH_4SH(s) \Longrightarrow NH_3(g) + H_2S(g)$$

Sol.
$$n = \frac{5.1}{51} = .1 \text{ mole } 0$$

$$.1(-1-\alpha)$$

$$\alpha = 30\% = .3$$

so number of moles at equilibrium

Now use PV = nRT at equilibrium

$$P_{\text{total}} \times 3 \text{ lit} = (.03 + .03) \times .082 \times 600$$

 $P_{total} = .984 \text{ atm}$

At equilibrium

$$P_{NH_3} = P_{H_2S} = \frac{P_{total}}{2} = .492$$

So $k_p = P_{NH_3} \cdot P_{H_2S} = (.492) (.492)$
 $k_p = .242 \text{ atm}^2$

- 25. The electrolytes usually used in the electroplating of gold and silver, respectively, are:
 - (1) $[Au(OH)_4]^-$ and $[Ag(OH)_2]^-$
 - (2) $[Au(CN)_2]^-$ and $[Ag CI_2]^-$
 - (3) $[Au(NH_3)_2]^+$ and $[Ag(CN)_2]^-$
 - (4) $[Au(CN)_2]^-$ and $[Ag(CN)_2]^-$

Ans. (4)

- **26.** Elevation in the boiling point for 1 molal solution of glucose is 2 K. The depression in the freezing point of 2 molal solutions of glucose in the same solvent is 2 K. The relation between K_b and K_f is:
- (1) $K_b = 0.5 K_f$ (2) $K_b = 2 K_f$ (3) $K_b = 1.5 K_f$ (4) $K_b = K_f$

Ans. (2)

Sol. Ans.(2)

$$\frac{\Delta T_b}{\Delta T_f} = \frac{i.m \times k_b}{i \times m \times k_f}$$

$$\frac{2}{2} = \frac{1 \times 1 \times k_b}{1 \times 2 \times k_f}$$

$$k_b = 2k_f$$

27. An aromatic compound 'A' having molecular formula $C_7H_6O_2$ on treating with aqueous ammonia and heating forms compound 'B'. The compound 'B' on reaction with molecular bromine and potassium hydroxide provides compound 'C' having molecular formula C₆H₇N. The structure of 'A' is:

Ans. (3)

E

- 28. The ground state energy of hydrogen atom is -13.6 eV. The energy of second excited state He+ ion in eV is:
 - (1) -6.04 (2) -27.2 (3) -54.4 (4) -3.4

Ans. (1)

Sol.
$$(E)_n^{th} = (E_{GND})_H \cdot \frac{Z^2}{n^2}$$

$$E_{3^{rd}}(He^+) = (-13.6 \text{ eV}) \cdot \frac{2^2}{3^2} = -6.04 \text{ eV}$$

For an elementary chemical reaction,

$$A_2 \xleftarrow{k_1} 2A$$
, the expression for $\frac{d[A]}{dt}$ is :

- (1) $2k_1[A_2]-k_{-1}[A]^2$
- (2) $k_1[A_2]-k_{-1}[A]^2$
- (3) $2k_1[A_2]-2k_1[A]^2$ (4) $k_1[A_2]+k_1[A]^2$

Ans. (3)

Sol. Ans.(3)

$$A_2 \xrightarrow[K_{-1}]{K_1} 2A$$

$$\frac{d[A]}{dt} = 2k_1[A_2] - 2k_{-1}[A]^2$$

- **30.** Haemoglobin and gold sol are examples of:
 - (1) negatively charged sols
 - (2) positively charged sols]
 - (3) negatively and positively charged sols, respectively
 - (4) positively and negatively charged sols, respectively

Ans. (4)

Sol. Ans.(4)

Haemoglobin → positive sol

 $Ag - sol \longrightarrow negative sol$

TEST PAPER OF JEE(MAIN) EXAMINATION - 2019

(Held On Thursday 10th JANUARY, 2019) TIME: 2:30 PM To 5:30 PM MATHEMATICS

1. Let $z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^5$. If R(z) and I[z]

respectively denote the real and imaginary parts of z, then :

- (1) R(z) > 0 and I(z) > 0
- (2) R(z) < 0 and I(z) > 0
- (3) R(z) = -3
- (4) I(z) = 0

Ans. (4)

Sol. $z = \left(\frac{\sqrt{3} + i}{2}\right)^5 + \left(\frac{\sqrt{3} - i}{2}\right)^5$

$$z = (e^{i\pi/6})^5 + (e^{-i\pi/6})^5$$

$$= e^{i5\pi/6} + e^{-i5\pi/6}$$

$$= \cos\frac{5\pi}{6} + i\frac{\sin 5\pi}{6} + \cos\left(\frac{-5\pi}{6}\right) + i\sin\left(\frac{-5\pi}{6}\right)$$

$$=2\,\cos\frac{5\pi}{6}<0$$

I(z) = 0 and Re(z) < 0

Option (4)

2. Let $a_1, a_2, a_3, \dots, a_{10}$ be in G.P. with $a_i > 0$ for $i = 1, 2, \dots, 10$ and S be the set of pairs (r,k), $r \in \mathbb{N}$ (the set of natural numbers) for which

$$\begin{vmatrix} \log_e a_1^r a_2^k & \log_e a_2^r a_3^k & \log_e a_3^r a_4^k \\ \log_e a_4^r a_5^k & \log_e a_5^r a_6^k & \log_e a_6^r a_7^k \\ \log_e a_7^r a_8^k & \log_e a_8^r a_9^k & \log_e a_9^r a_{10}^k \end{vmatrix} = 0$$

Then the number of elements in S, is:

- (1) Infinitely many
- (2) 4
- (3) 10
- (4) 2

Ans. (1)

Sol. Apply

$$C_3 \rightarrow C_3 - C_2$$

$$C_2 \rightarrow C_2 - C_1$$

We get D = 0

Option (1)

3. The positive value of λ for which the co-efficient of x^2 in the expression

$$x^{2}\left(\sqrt{x} + \frac{\lambda}{x^{2}}\right)^{10}$$
 is 720, is :

- (1) $\sqrt{5}$
- (2) 4
- (3) $2\sqrt{2}$
- (4) 3

Ans. (2)

Sol. $x^2 \left({}^{10}C_r \left(\sqrt{x} \right)^{10-r} \left(\frac{\lambda}{x^2} \right)^r \right)$

$$x^{2} \left[{}^{10}C_{r}(x)^{\frac{10-r}{2}}(\lambda)^{r}(x)^{-2r} \right]$$

$$\mathbf{x}^2 \begin{bmatrix} {}^{10}\mathbf{C}_{\mathrm{r}} \ \boldsymbol{\lambda}^{\mathrm{r}} \ \mathbf{x}^{\frac{10-5\mathrm{r}}{2}} \end{bmatrix}$$

r=2

Hence, ${}^{10}C_2 \lambda^2 = 720$

$$\lambda^2 = 16$$

$$\lambda = \pm 4$$

Option (2)

4. The value of $\cos \frac{\pi}{2^2} \cdot \cos \frac{\pi}{2^3} \cdot \dots \cdot \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$

is:

- (1) $\frac{1}{256}$
- (2) $\frac{1}{2}$
- $(3) \frac{1}{512}$
- $(4) \frac{1}{1024}$

- Ans. (3)
- **Sol.** $2\sin\frac{\pi}{2^{10}}\cos\frac{\pi}{2^{10}}....\cos\frac{\pi}{2^2}$

$$\frac{1}{2^9}\sin\frac{\pi}{2} = \frac{1}{512}$$

Option (3)

The value of $\int_{-\pi}^{\pi/2} \frac{dx}{[x] + [\sin x] + 4}$, where [t] 5.

> denotes the greatest integer less than or equal to t, is:

- (1) $\frac{1}{12}(7\pi+5)$ (2) $\frac{3}{10}(4\pi-3)$
- (3) $\frac{1}{12}(7\pi-5)$ (4) $\frac{3}{20}(4\pi-3)$

Ans. (4)

Sol.
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{[x] + [\sin x] + 4}$$

$$=\int\limits_{-\pi}^{-1}\frac{dx}{-2-1+4}+\int\limits_{-1}^{0}\frac{dx}{-1-1+4}$$

$$+\int_{0}^{1} \frac{dx}{0+0+4} + \int_{1}^{\frac{\pi}{2}} \frac{dx}{1+0+4}$$

$$\int_{-\frac{\pi}{2}}^{-1} \frac{dx}{1} + \int_{-1}^{0} \frac{dx}{2} + \int_{0}^{1} \frac{dx}{4} + \int_{1}^{\frac{\pi}{2}} \frac{dx}{5}$$

$$\left(-1 + \frac{\pi}{2}\right) + \frac{1}{2}(0+1) + \frac{1}{4} + \frac{1}{5}\left(\frac{\pi}{2} - 1\right)$$

$$-1+\frac{1}{2}+\frac{1}{4}-\frac{1}{5}+\frac{\pi}{2}+\frac{\pi}{10}$$

$$\frac{-20+10+5-4}{20}+\frac{6\pi}{10}$$

$$\frac{-9}{20} + \frac{3\pi}{5}$$

Option (4)

If the probability of hitting a target by a shooter, in any shot, is 1/3, then the minimum number of independent shots at the target required by him so that the probability of hitting the target

at least once is greater than $\frac{5}{6}$, is:

(1) 6

(2) 5

(3) 4

(4) 3

Ans. (2)

Sol.
$$1 - {}^{n}C_{0} \left(\frac{1}{3}\right)^{0} \left(\frac{2}{3}\right)^{n} > \frac{5}{6}$$

$$\frac{1}{6} > \left(\frac{2}{3}\right)^{n} \implies 0.1666 > \left(\frac{2}{3}\right)^{n}$$

- $n_{min} = 5 \Rightarrow Option (2)$ If mean and standard deviation of 5 observations x_1 , x_2 , x_3 , x_4 , x_5 are 10 and 3, respectively, then the variance of 6 observations x_1, x_2, \dots, x_5 and -50 is equal to :
 - (1) 582.5
- (2) 507.5
- (3) 586.5
- (4) 509.5

Ans. (2)

Sol.
$$\overline{x} = 10 \implies \sum_{i=1}^{5} x_i = 50$$

S.D. =
$$\sqrt{\frac{\sum_{i=1}^{5} x_i^2}{5} - (\overline{x})^2} = 8$$

$$\Rightarrow \sum_{i=1}^{5} (x_i)^2 = 109$$

variance =
$$\frac{\sum_{i=1}^{5} (x_i)^2 + (-50)^2}{6} - \left(\sum_{i=1}^{5} \frac{x_i - 50}{6}\right)$$

$$= 507.5$$

Option (2)

- The length of the chord of the parabola $x^2 = 4y$ having equation $x - \sqrt{2}y + 4\sqrt{2} = 0$ is :
 - (1) $2\sqrt{11}$
- (2) $3\sqrt{2}$
- (3) $6\sqrt{3}$
- $(4) 8\sqrt{2}$

Ans. (3)

Sol.
$$x^2 = 4y$$

$$x - \sqrt{2}y + 4\sqrt{2} = 0$$

Solving together we get

$$x^2 = 4\left(\frac{x + 4\sqrt{2}}{\sqrt{2}}\right)$$

$$\sqrt{2}x^2 + 4x + 16\sqrt{2}$$

$$\sqrt{2}x^2 - 4x - 16\sqrt{2} = 0$$

$$x_1 + x_2 = 2\sqrt{2}$$
; $x_1x_2 = \frac{-16\sqrt{2}}{\sqrt{2}} = -16$

Similarly,

$$\left(\sqrt{2}y - 4\sqrt{2}\right)^2 = 4y$$

$$2y^2 + 32 - 16y = 4y$$

$$2y^2 - 20y + 32 = 0$$
 $y_1 + y_2 = 10$
 $y_1 y_2 = 16$

$$\ell_{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(2\sqrt{2})^2 + 64 + (10)^2 - 4(16)}$$

$$= \sqrt{8 + 64 + 100 - 64}$$

$$= \sqrt{108} = 6\sqrt{3}$$

Option (3)

9. Let
$$A = \begin{bmatrix} 2 & b & 1 \\ b & b^2 + 1 & b \\ 1 & b & 2 \end{bmatrix}$$
 where $b > 0$. Then the

minimum value of $\frac{det(A)}{b}$ is :

$$(1)\sqrt{3}$$

$$(2) -\sqrt{3}$$

$$(3) - 2\sqrt{3}$$

$$(4) 2\sqrt{3}$$

Ans. (4)

Sol.
$$A = \begin{bmatrix} 2 & b & 1 \\ b & b^2 + 1 & b \\ 1 & b & 2 \end{bmatrix}$$
 $(b > 0)$

$$|A| = 2(2b^2 + 2 - b^2) - b(2b - b) + 1 (b^2 - b^2 - 1)$$

$$|A| = 2(b^2 + 2) - b^2 - 1$$

$$|A| = b^2 + 3$$

$$\frac{|A|}{b} = b + \frac{3}{b} \implies \frac{b + \frac{3}{b}}{2} \ge \sqrt{3}$$

$$b + \frac{3}{b} \ge 2\sqrt{3}$$

Option (4)

10. The tangent to the curve, $y = xe^{x^2}$ passing through the point (1,e) also passes through the point :

$$(1)$$
 $\left(\frac{4}{3}, 2e\right)$

$$(3) \left(\frac{5}{3}, 2e\right)$$

Ans. (1)

Sol.
$$y = x e^{x^2}$$

$$\frac{dy}{dx}\bigg|_{(1, e)} = \left(e \cdot e^{x^2} \cdot 2x + e^{x^2}\right)\bigg|_{(1, e)} = 2 \cdot e + e = 3e$$

T:
$$y - e = 3e (x - 1)$$

 $y = 3ex - 3e + e$

$$y = 3ex - 3e + 4$$
$$y = (3e)x - 2e$$

$$\left(\frac{4}{3}, 2e\right)$$
 lies on it

Option (1)

11. The number of values of $\theta \in (0,\pi)$ for which the system of linear equations

$$x + 3y + 7z = 0$$

$$-x + 4y + 7z = 0$$

$$(\sin 3\theta)x + (\cos 2\theta) y + 2z = 0$$

has a non-trivial solution, is:

- (1) One
- (2) Three
- (3) Four
- (4) Two

Ans. (4)

Sol.
$$\begin{vmatrix} 1 & 3 & 7 \\ -1 & 4 & 7 \\ \sin 3\theta & \cos 2\theta & 2 \end{vmatrix} = 0$$

$$(8 - 7\cos 2\theta) - 3(-2 - 7\sin 3\theta) + 7(-\cos 2\theta - 4\sin 3\theta) = 0$$

$$14 - 7\cos 2\theta + 21\sin 3\theta - 7\cos 2\theta - 28\sin 3\theta = 0$$

$$14 - 7\sin 3\theta - 14\cos 2\theta = 0$$

$$14 - 7(3\sin \theta - 4\sin^3 \theta) - 14(1 - 2\sin^2 \theta) = 0$$

$$14 - 7 (3 \sin \theta - 4 \sin^3 \theta) - 14 (1 - 2 \sin^2 \theta) = 0$$

$$-21 \sin \theta + 28 \sin^3 \theta + 28 \sin^2 \theta = 0$$

$$7 \sin \theta [-3 + 4 \sin^2 \theta + 4 \sin \theta] = 0$$

sin θ,

$$4 \sin^2 \theta + 6 \sin \theta - 2 \sin \theta - 3 = 0$$

 $2 \sin \theta(2 \sin \theta + 3) - 1 (2 \sin \theta + 3) = 0$

$$\sin \theta = \frac{-3}{2}; \sin \theta = \frac{1}{2}$$

Hence, 2 solutions in $(0, \pi)$ Option (4)

12. If
$$\int_{0}^{x} f(t)dt = x^{2} + \int_{x}^{1} t^{2} f(t)dt$$
, then $f'(1/2)$ is :

(1)
$$\frac{6}{25}$$

(2)
$$\frac{24}{25}$$

(3)
$$\frac{18}{25}$$

$$(4) \frac{4}{5}$$

Ans. (2)

Sol.
$$\int_{0}^{x} f(t) dt = x^{2} + \int_{x}^{1} t^{2} f(t) dt$$

$$f'\left(\frac{1}{2}\right) = ?$$

Differentiate w.r.t. 'x' $f(x) = 2x + 0 - x^2 f(x)$

$$f(x) = \frac{2x}{1+x^2} \implies f'(x) = \frac{(1+x^2)2 - 2x(2x)}{(1+x^2)^2}$$

$$f'(x) = \frac{2x^2 - 4x^2 + 2}{(1 + x^2)^2}$$

$$f'\left(\frac{1}{2}\right) = \frac{2 - 2\left(\frac{1}{4}\right)}{\left(1 + \frac{1}{4}\right)^2} = \frac{\left(\frac{3}{2}\right)}{\frac{25}{16}} = \frac{48}{50} = \frac{24}{25}$$

Option (2)

13. Let $f: (-1,1) \rightarrow R$ be a function defined by $f(x) = \max \left\{ -|x|, -\sqrt{1-x^2} \right\}$. If K be the set of all points at which f is not differentiable, then K has exactly:

(1) Three elements

(2) One element

(3) Five elements

(4) Two elements

Ans. (1)

Sol.
$$f: (-1, 1) \to R$$

$$f(x) = \max \left\{ -|x|, -\sqrt{1-x^2} \right\}$$

Non-derivable at 3 points in (-1, 1)Option (1)

14. Let
$$S = \left\{ (x,y) \in \mathbb{R}^2 : \frac{y^2}{1+r} - \frac{x^2}{1-r} = 1 \right\}$$
, where $r \neq \pm 1$. Then S represents:

(1) A hyperbola whose eccentricity is $\frac{2}{\sqrt{r+1}}$, where 0 < r < 1.

(2) An ellipse whose eccentricity is $\frac{1}{\sqrt{r+1}}$, where r > 1

(3) A hyperbola whose eccentricity is $\frac{2}{\sqrt{1-r}}$, when 0 < r < 1.

(4) An ellipse whose eccentricity is $\sqrt{\frac{2}{r+1}}$, when r > 1

Sol.
$$\frac{y^2}{1+r} - \frac{x^2}{1-r} = 1$$

for
$$r > 1$$
, $\frac{y^2}{1+r} + \frac{x^2}{r-1} = 1$

$$e = \sqrt{1 - \left(\frac{r - 1}{r + 1}\right)}$$

$$= \sqrt{\frac{(r+1) - (r-1)}{(r+1)}}$$

$$=\sqrt{\frac{2}{r+1}}=\sqrt{\frac{2}{r+1}}$$

Option (4)

15. If
$$\sum_{r=0}^{25} \{ {}^{50}C_r \cdot {}^{50-r}C_{25-r} \} = K({}^{50}C_{25})$$
, then K is

(1)
$$2^{25} - 1$$
 (2) $(25)^2$ (3) 2^{25}

$$(3) 2^{25}$$

Ans. (3)

Sol.
$$\sum_{r=0}^{25} {}^{50}C_r \cdot {}^{50-r}C_{25-r}$$

$$= \sum_{r=0}^{25} \frac{50!}{r! (50-r)!} \times \frac{(50-r)!}{(25)! (25-r)!}$$

$$= \sum_{r=0}^{25} \frac{50!}{25! \cdot 25!} \times \frac{25!}{(25-r)! \cdot (r!)}$$

=
$${}^{50}C_{25}\sum_{r=0}^{25}{}^{25}C_r = (2^{25}){}^{50}C_{25}$$

$$\therefore K = 2^{25}$$

Option (3)

16. Let N be the set of natural numbers and two functions f and g be defined as f,g: $N \rightarrow N$

such that : $f(n) = \begin{cases} \frac{n+1}{2} & \text{if n is odd} \\ \frac{n}{2} & \text{if n is even} \end{cases}$

and $g(n) = n-(-1)^n$. The fog is:

- (1) Both one-one and onto
- (2) One-one but not onto
- (3) Neither one-one nor onto
- (4) onto but not one-one

Ans. (4)

Sol.
$$f(x) = \begin{cases} \frac{n+1}{2} & \text{n is odd} \\ n/2 & \text{n is even} \end{cases}$$

$$g(x) = n - (-1)^n \begin{cases} n+1 ; & n \text{ is odd} \\ n-1 ; & n \text{ is even} \end{cases}$$

$$f(g(n)) = \begin{cases} \frac{n}{2}; & \text{n is even} \\ \frac{n+1}{2}; & \text{n is odd} \end{cases}$$

:. many one but onto

Option (4)

The values of λ such that sum of the squares of the roots of the quadratic equation,

 $x^2 + (3 - \lambda) x + 2 = \lambda$ has the least value is :

(2)
$$\frac{4}{9}$$

(3)
$$\frac{15}{8}$$

Ans. (1)

Sol.
$$\alpha + \beta = \lambda - 3$$

$$\alpha\beta = 2 - \lambda$$

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = (\lambda - 3)^{2} - 2(2 - \lambda)$$

$$= \lambda^{2} + 9 - 6\lambda - 4 + 2\lambda$$

$$= \lambda^{2} - 4\lambda + 5$$

$$= (\lambda - 2)^{2} + 1$$

$$\lambda = 2$$

Option (1)

18. Two vertices of a triangle are (0,2) and (4,3). If its orthocentre is at the origin, then its third vertex lies in which quadrant?

- (1) Fourth
- (2) Second
- (3) Third
- (4) First

Ans. (2)

Sol.
$$m_{BD} \times m_{AD} = -1 \implies \left(\frac{3-2}{4-0}\right) \times \left(\frac{b-0}{a-0}\right) = -1$$

 $\implies b + 4a = 0 \dots (i)$

$$m_{AB} \times m_{CF} = -1 \implies \left(\frac{(b-2)}{a-0}\right) \times \left(\frac{3}{4}\right) = -1$$

$$\Rightarrow 3b - 6 = -4a \Rightarrow 4a + 3b = 6 \dots(ii)$$

From (i) and (ii)

$$a = \frac{-3}{4}, b = 3$$

∴ IInd quadrant.

Option (2)

- **19.** Two sides of a parallelogram are along the lines, x + y = 3 and x - y + 3 = 0. If its diagonals intersect at (2,4), then one of its vertex is:
 - (1)(2,6)
- (2)(2,1)
- (3)(3,5)
- (4)(3,6)

Ans. (4)

Sol.
$$x + y = -3$$

$$A = A = A$$

$$X + y = 3$$

$$B(x_2, x_2)$$

x + y = 3 A(0, 3)x - y = -3Solving

 $\frac{x_1 + 0}{2} = 2$; $x_i = 4$ similarly $y_1 = 5$

 $C \Rightarrow (4, 5)$

Now equation of BC is x - y = -1and equation of CD is x + y = 9Solving x + y = 9 and x - y = -3Point D is (3, 6) Option (4)

- **20.** Let $\vec{\alpha} = (\lambda 2)\vec{a} + \vec{b}$ and $\vec{\beta} = (4\lambda 2)\vec{a} + 3\vec{b}$ two given vectors where vectors \vec{a} and \vec{b} are non-collinear. The value of λ for which vectors $\vec{\alpha}$ and $\vec{\beta}$ are collinear, is:
 - (1) -3

(3) 3

(4) -4

Ans. (4)

Sol. $\vec{\alpha} = (\lambda - 2)\vec{\alpha} + \vec{b}$

$$\vec{\beta} = (4\lambda - 2)\vec{\alpha} + 3\vec{b}$$

$$\frac{\lambda - 2}{4\lambda - 2} = \frac{1}{3}$$

$$3\lambda - 6 = 4\lambda - 2$$

$$\lambda = -4$$

∴ Option (4)

- 21. The value of $\cot \left(\sum_{p=1}^{19} \cot^{-1} \left(1 + \sum_{p=1}^{n} 2p \right) \right)$ is :
 - (1) $\frac{22}{23}$ (2) $\frac{23}{22}$ (3) $\frac{21}{19}$ (4) $\frac{19}{21}$

Ans. (3)

Sol. $\cot \left(\sum_{n=1}^{19} \cot^{-1} (1 + n(n+1)) \right)$

$$cot\left(\sum_{n=1}^{19}cot^{-1}(n^2+n+1)\right) = cot\left(\sum_{n=1}^{19}tan^{-1}\frac{1}{1+n(n+1)}\right)$$

$$\sum_{n=1}^{19} (\tan^{-1}(n+1) - \tan^{-1}n)$$

$$\cot (\tan^{-1}20 - \tan^{-1}1) = \frac{\cot A \cot \beta + 1}{\cot \beta - \cot A}$$

 $\frac{1\left(\frac{1}{20}\right)+1}{1-\frac{1}{1-\frac{1}{1-1}}} = \frac{21}{19}$ (Where tanA=20, tanB=1)

∴ Option (3)

- 22. With the usual notation, in $\triangle ABC$, if $\angle A + \angle B = 120^{\circ}$, $a = \sqrt{3} + 1$ and $b = \sqrt{3} - 1$, then the ratio $\angle A : \angle B$, is :
 - (1) 7 : 1
- (2) 5 : 3
- (3) 9:7
- $(4) \ 3 : 1$

Sol.
$$A + B = 120^{\circ}$$

$$\tan\frac{A-B}{2} = \frac{a-b}{a+b}\cot\left(\frac{C}{2}\right)$$

$$= \frac{\sqrt{3} + 1 - \sqrt{3} + 1}{2(\sqrt{3})} \cot(30^{\circ}) = \frac{1}{\sqrt{3}} \cdot \sqrt{3} = 1$$

$$\frac{A-B}{2} = 45^{\circ} \qquad \Rightarrow A-B = 90^{\circ}$$

$$A+B=120^{\circ}$$

$$2A = 210^{\circ}$$

$$A = 105^{\circ}$$

$$B = 15^{\circ}$$

∴ Option (1)

- 23. The plane which bisects the line segment joining the points (-3,-3,4) and (3,7,6) at right angles, passes through which one of the following points?
 - (1) (4, -1,7)
- (2) (4,1,-2)
- (3) (-2,3,5)
- (4) (2,1,3)

Ans. (2)

p:
$$3(x - 0) + 5 (y - 2) + 1 (z - 5) = 0$$

 $3x + 5y + z = 15$
∴ Option (2)

24. Consider the following three statements :

P: 5 is a prime number.

Q: 7 is a factor of 192.

R: L.C.M. of 5 and 7 is 35.

Then the truth value of which one of the following statements is true?

(1)
$$(P \land Q) \lor (\sim R)$$

(4)
$$P \lor (\sim Q \land R)$$

Sol. It is obvious

∴ Option (4)

25. On which of the following lines lies the point

of intersection of the line, $\frac{x-4}{2} = \frac{y-5}{2} = \frac{z-3}{1}$

and the plane, x + y + z = 2?

(1)
$$\frac{x-2}{2} = \frac{y-3}{2} = \frac{z+3}{3}$$

(2)
$$\frac{x-4}{1} = \frac{y-5}{1} = \frac{z-5}{-1}$$

(3)
$$\frac{x-1}{1} = \frac{y-3}{2} = \frac{z+4}{-5}$$

(4)
$$\frac{x+3}{3} = \frac{4-y}{3} = \frac{z+1}{-2}$$

Ans. (3)

Sol. General point on the given line is

$$x = 2\lambda + 4$$

$$y = 2\lambda + 5$$

$$z = \lambda + 3$$

Solving with plane,

$$2\lambda + 4 + 2\lambda + 5 + \lambda + 3 = 2$$

$$5\lambda + 12 = 2$$

$$5\lambda = -10$$

$$\lambda = -2$$

∴ Option (3)

Let f be a differentiable function such that

$$f'(x) = 7 - \frac{3}{4} \frac{f(x)}{x}, (x > 0)$$
 and $f(1) \neq 4$.

Then $\lim_{x\to 0^+} x f\left(\frac{1}{x}\right)$:

- (1) Exists and equals 4
- (2) Does not exist
- (3) Exist and equals 0
- (4) Exists and equals $\frac{4}{7}$

Ans. (1)

Sol.
$$f'(x) = 7 - \frac{3}{4} \frac{f(x)}{x}$$
 $(x > 0)$

Given
$$f(1) \neq 4$$
 $\lim_{x \to 0^+} xf\left(\frac{1}{x}\right) = ?$

$$\frac{dy}{dx} + \frac{3y}{4x} = 7$$
 (This is LDE)

IF =
$$e^{\int \frac{3}{4x} dx} = e^{\frac{3}{4} \ln|x|} = x^{\frac{3}{4}}$$

$$y.x^{\frac{3}{4}} = \int 7.x^{\frac{3}{4}} \, dx$$

$$y.x^{\frac{3}{4}} = 7.\frac{x^{\frac{7}{4}}}{\frac{7}{4}} + C$$

$$f(x) = 4x + C.x^{-\frac{3}{4}}$$

$$f\left(\frac{1}{x}\right) = \frac{4}{x} + C.x^{\frac{3}{4}}$$

$$\lim_{x \to 0^+} xf\left(\frac{1}{x}\right) = \lim_{x \to 0^+} \left(4 + C.x^{\frac{7}{4}}\right) = 4$$

∴ Option (1)

27. A helicopter is flying along the curve given by $y - x^{3/2} = 7$, $(x \ge 0)$. A soldier positioned at the

point $\left(\frac{1}{2}, 7\right)$ wants to shoot down the helicopter

when it is nearest to him. Then this nearest

$$(1) \frac{1}{2}$$

(2)
$$\frac{1}{3}\sqrt{\frac{7}{3}}$$

(3)
$$\frac{1}{6}\sqrt{\frac{7}{3}}$$
 (4) $\frac{\sqrt{5}}{6}$

(4)
$$\frac{\sqrt{5}}{6}$$

Ans. (3) **Sol.**
$$y - x^{3/2} = 7 (x \ge 0)$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{3}{2} x^{1/2}$$

$$\left(\frac{3}{2}\sqrt{x}\right)\left(\frac{7-y}{\frac{1}{2}-x}\right) = -1$$

$$\left(\frac{3}{2}\sqrt{x}\right)\left(\frac{-x^{3/2}}{\frac{1}{2}-x}\right) = -1$$

$$\frac{3}{2} \cdot \mathbf{x}^2 = \frac{1}{2} - \mathbf{x}$$

$$3x^2 = 1 - 2x$$

$$3x^2 + 2x - 1 = 0$$

$$3x^2 + 3x - x - 1 = 0$$

$$(x + 1) (3x - 1) = 0$$

$$\therefore$$
 x = -1 (rejected)

$$x = \frac{1}{3}$$

$$y = 7 + x^{3/2} = 7 + \left(\frac{1}{3}\right)^{3/2}$$

$$\ell_{AB} = \sqrt{\left(\frac{1}{2} - \frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^3} = \sqrt{\frac{1}{36} + \frac{1}{27}}$$

$$=\sqrt{\frac{3+4}{9\times12}}$$

$$=\sqrt{\frac{7}{108}}=\frac{1}{6}\sqrt{\frac{7}{3}}$$

Option (3)

If $\int x^5 e^{-4x^3} dx = \frac{1}{48} e^{-4x^3} f(x) + C$, where C is a

constant of integration, then f(x) is equal to:

- $(1) -4x^3 1$
- (2) $4x^3 + 1$
- $(3) -2x^3 1$ $(4) -2x^3 + 1$

Ans. (1)

Sol. $\int x^5 \cdot e^{-4x^3} dx = \frac{1}{48} e^{-4x^3} f(x) + c$

Put $x^3 = t$

$$3x^2 dx = dt$$

$$\int x^3 \cdot e^{-4x^3} \cdot x^2 dx$$

$$\frac{1}{3} \int t \cdot e^{-4t} dt$$

$$\frac{1}{3} \left[t \cdot \frac{e^{-4t}}{-4} - \int \frac{e^{-4t}}{-4} dt \right]$$

$$-\frac{e^{-4t}}{48}[4t+1]+c$$

$$\frac{-e^{-4x^3}}{48}[4x^3+1]+c$$

$$f(x) = -1 - 4x^3$$

Option (1)

(From the given options (1) is most suitable)

- 29. The curve amongst the family of curves, represented by the differential equation, $(x^2 - y^2)dx + 2xy dy = 0$ which passes through (1,1) is:
 - (1) A circle with centre on the y-axis
 - (2) A circle with centre on the x-axis
 - (3) An ellipse with major axis along the y-axis
 - (4) A hyperbola with transverse axis along the x-axis

Ans. (2)

Sol.
$$(x^2 - y^2) dx + 2xy dy = 0$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{y}^2 - \mathrm{x}^2}{2\mathrm{x}\mathrm{y}}$$

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

Solving we get,

$$\int \frac{2v}{v^2 + 1} dv = \int -\frac{dx}{x}$$

$$ln(v^2 + 1) = -ln x + C$$

$$(y^2 + x^2) = Cx$$

$$1 + 1 = C \Rightarrow C = 2$$

$$y^2 + x^2 = 2x$$

∴ Option (2)

- If the area of an equilateral triangle inscribed **30.** in the circle, $x^2 + y^2 + 10x + 12y + c = 0$ is $27\sqrt{3}$ sq. units then c is equal to :
 - (1) 20
- (2) 25
- (3) 13
- (4) -25

Ans. (2)

Sol.
$$3\left(\frac{1}{2}r^2.\sin 120^\circ\right) = 27\sqrt{3}$$

$$\frac{r^2}{2} \frac{\sqrt{3}}{2} = \frac{27\sqrt{3}}{3}$$

Radius =
$$\sqrt{25 + 36 - C} = \sqrt{36}$$

$$C = 25$$