Supplementary Material – Scalable Gaussian Process Separation for Kernels with a Non-Stationary Phase

Jan Graßhoff ¹ Alexandra Jankowski ¹ Philipp Rostalski ¹

Overview of Kronecker and Toeplitz Methods

Table 1: Structure exploiting inference and learning methods. All kernels are assumed to be stationary and $\hat{K} = K + \sigma^2 I$.

Kernel and Inputs	Matrix	Linear Solve	Log Determinant
Kernel is separable: $k(\mathbf{x}, \mathbf{z}') = \prod_{d=1}^{D} k_d(\mathbf{x}^{(d)}, \mathbf{z}^{(d)})$	$ \mid K = \bigotimes_{d=1}^{D} K_d $ and	noise-free: $K^{-1}\mathbf{y} = \bigotimes_{d=1}^D K_d^{-1}\mathbf{y}$	$ \begin{array}{ c c } \text{noise-free:} \\ \log K = \sum_i V_{i,i} \end{array} $
Inputs on a rectilinear grid: $X = \mathcal{X}_1 \times \cdots \times \mathcal{X}_D$	$\begin{tabular}{ c c c c c c c }\hline & K = QVQ^\top \\ \hline \end{tabular}$		noisy: $\log \hat{K} = \sum_i \left(V_{i,i} + \sigma^2\right)$
Kernel: $k(x, x')$ Inputs: $x \in \mathbb{R}$ and equispaced	K is Toeplitz	LCG with fast MVMs	(1) circulant approx. (Wilson et al., 2015) (2) stoch. trace estim. (Dong et al., 2017)
Kernel is separable Inputs unstructured		LCG with fast MVMs	(1) scaled eigenvalues (Wilson et al., 2015) (2) stoch. trace estim. (Dong et al., 2017)

Structure Exploitation for Kernels with a Non-Stationary Phase

Table 2: Comparison of the standard SKI (Wilson & Nickisch, 2015) approach using equidistant inducing points U and warpSKI. Inputs may be unstructured (or have partial grid structure). The kernels k (and k_i) are assumed to be stationary and separable. The functions $\phi_i : \mathcal{D} \to \mathcal{D}_i$ and $\phi : \mathcal{D} \to \mathcal{D}_1$ with $\mathcal{D}_{in} \subseteq \mathbb{R}^D$, $\mathcal{D}_i \subseteq \mathbb{R}^D$ are invertible functions. The linear solve $\hat{K}^{-1}\mathbf{y}$ is done by conjugate gradients and the log determinant is approximated using stochastic trace estimation.

Kernel	equidistant U recovers	warpSKI recovers
$k(\phi(x), \phi(x'))$ with $x \in \mathbb{R}$	_	Toeplitz structure
$\sum_{i} k_i(\phi_i(x), \phi_i(x'))$ with $x \in \mathbb{R}$	_	sum over Toeplitz structures
$k(\phi(\mathbf{x}), \phi(\mathbf{x}')),$ $\mathbf{x} \in \mathbb{R}^D$ and ϕ is not an elementwise fnc.	_	Kronecker and Toeplitz structure
$\frac{k(\phi(\mathbf{x}), \phi(\mathbf{x}'))}{\mathbf{x} \in \mathbb{R}^D \text{ and } \phi \text{ is an elementwise fnc.}}$	Kronecker structure	Kronecker and Toeplitz structure
$\sum_{i} k_i(\phi_i(\mathbf{x}), \phi_i(\mathbf{x}'))$ $\mathbf{x} \in \mathbb{R}^D$ and ϕ_i are elementwise fnc.	sum over Kronecker structures	sum over Kronecker and Toeplitz structures

¹Institute for Electrical Engineering in Medicine, Universität zu Lübeck, Germany. Correspondence to: Jan Graßhoff <j.grasshoff@uni-luebeck.de>.

Proceedings of the 37th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

Experimental Data - Numerical Results

Table 3: Inference runtime (s) for the numerical experiment with n data points and m inducing points. The results are averages over five samples \pm one standard deviation.

	Inducing Points		
Points	m = 9933	m = 48824	m = 74836
$n = 10^{2.75}$	0.11±0.02	0.28 ± 0.05	0.47 ± 0.07
$n = 10^{3}$	0.14 ± 0.03	0.43 ± 0.05	0.64 ± 0.08
$n = 10^3.5$	0.34 ± 0.06	1.10 ± 0.10	1.61 ± 0.17
$n = 10^4$	1.95±0.48	3.80 ± 0.68	4.76 ± 0.89
$n = 10^4.5$	19.9±4.4	25.8 ± 3.7	26.3 ± 4.7
$n = 10^{5}$	214±44	228 ± 37	241 ± 49

Table 5: Learning runtime (s) for the numerical experiment with n data points and m inducing points. The results are averages over five samples \pm one standard deviation.

	Inducing Points		
Points	m = 9933	m = 48824	m = 74836
$n = 10^{2.75}$	28.3±9.3	84.6±40.5	166±53
$n = 10^{3}$	29.0±5.3	94.3 ± 34.2	159 ± 40
$n = 10^3.5$	26.6±16.0	92.0 ± 20.8	177 ± 37
$n = 10^4$	55.1±7.8	117 ± 35	214 ± 33
$n = 10^4.5$	130±49	163 ± 23	252 ± 88
$n = 10^{5}$	309±110	458 ± 79	398 ± 153

Table 4: Likelihood evaluation time (s) for the numerical experiment with n data points and m inducing points. The results are averages over five samples \pm one standard deviation.

	Inducing Points		
Points	m = 9933	m = 48824	m=74836
$n = 10^{2.75}$	1.81±0.37	4.41±1.34	8.17±2.10
$n = 10^{3}$	1.81 ± 0.37	5.74 ± 1.06	10.0 ± 1.7
$n = 10^3.5$	1.92 ± 0.39	6.15 ± 1.16	10.9 ± 1.9
$n = 10^4$	2.35±0.48	6.67 ± 0.68	12.0 ± 2.1
$n = 10^4.5$	6.19±1.45	10.1 ± 1.7	14.4 ± 2.8
$n = 10^{5}$	17.0±3.7	19.8 ± 3.6	26.0 ± 5.2

Table 6: RMSE for the numerical experiment with n data points and m inducing points. The results are averages over five samples \pm one standard deviation.

	Inducing Points		
Points	m = 9933	m = 48824	m = 74836
$n = 10^{2.75}$	0.29 ± 0.02	$0.30 {\pm} 0.03$	0.29 ± 0.03
$n = 10^{3}$	0.28 ± 0.02	0.25 ± 0.03	0.26 ± 0.01
$n = 10^3.5$	0.20 ± 0.02	0.19 ± 0.01	0.19 ± 0.01
$n = 10^4$	0.17 ± 0.01	0.16 ± 0.02	0.16 ± 0.02
$n = 10^4.5$	0.16 ± 0.03	0.15 ± 0.02	0.16 ± 0.02
$n = 10^5$	0.15 ± 0.01	0.15 ± 0.02	0.15 ± 0.02

References

Dong, K., Eriksson, D., Nickisch, H., Bindel, D., and Wilson, A. Scalable log determinants for gaussian process kernel learning. In *Proceedings of the 32Nd International Conference on Neural Information Processing Systems (NeurIPS)*, pp. 6327–6337, 2017.

Wilson, A. G. and Nickisch, H. Kernel interpolation for scalable structured gaussian processes (kiss-gp). In *Proceedings of the 32Nd International Conference on International Conference on Machine Learning (ICML)*, pp. 1775–1784, 2015.

Wilson, A. G., Dann, C., and Nickisch, H. Thoughts on massively scalable gaussian processes. *CoRR*, abs/1511.01870, 2015. URL http://arxiv.org/abs/1511.01870.