13. Представяне на афинитет между две равнини чрез подобност и ортогонално проектиране

Понякога за краткост вместо афинна трансформация ще казваме *афинитет*. Нека φ е афинитет в E_3^* и α – крайна равнина. Тогава $\varphi(\alpha) = \alpha$ също е крайна равнина, като $u_\alpha = \alpha \cap \Omega \xrightarrow{\varphi} \alpha' \cap \Omega = u_\alpha$.

Ще разглеждаме само породеното от φ съответствие между крайните точки на α и α – φ_{α} . Съответствието φ_{α} запазва простото отношение и трансформира успоредните прави в успоредни прави, т.е. φ_{α} е афинитет между α и α .

Т: Нека φ е афинитет в пространството и $\varphi(\alpha) = \alpha_0$ (α, α_0 – равнини), а φ_α е породеното от φ съответствие между точките на α и α_0 . Съществуват равнина α и афинна трансформация Ψ такива , че: $\Psi(\alpha) = \alpha$, а породеното съответствие Ψ_α между α и α е подобност, като $\varphi_\alpha = \pi_0 \Psi_\alpha$, където π_0 е ортогоналното проектиране на α върху α_0 . Доказателство: Тъй като φ е афинитет, то породено от φ съответствие между α и α_0 – φ_α е афинитет.

Нека точка $O \in \alpha$, $\varphi(O) = \varphi_{\alpha}(O) = O_0 \in \alpha_0$. Както при афинитет в равнината може да се докаже, че съществуват прави a и b, такива че:

 $a \cap b = O$, $a \perp b$ и $\varphi_{\alpha}(a) \perp \varphi_{\alpha}(b)$.

Нека $\varphi_{\alpha}(a) = a_0 \varphi_{\alpha}(b) = b_0$, т.е.

 $a_0 \cap b_0 = O_0$ и $a_0 \perp b_0$. Избираме точки

Нека например |OA|>|OB|. Съществува права l през $A_{\rm o},\,l\perp\alpha_{\rm o}$. Избираме точка $A`\in l$ така, че $\frac{|O_0A'|}{|O_0B_0|}=\frac{|OA|}{|OB|}>1$. Такава точка съществува, защото от

$$|O_0B_0|=|O_0A_0|$$
 следва, че $\frac{\left|O_0A'\right|}{\left|O_0A_0\right|}=\frac{\left|OA\right|}{\left|OB\right|}>1$, т.е. $|O_0A'|>|O_0A_0|$. Това означава, че

съществува правоъгълен триъгълник O_0A_0A с катет O_0A_0 и хипотенуза O_0A . Нека α е равнината определена от точките O_0 , B_0 , A . Нека $E \notin \alpha$, α . Тогава съществува афинна трансформация Ψ определена с:

$$O, A, B, E \xrightarrow{\psi} O_0, A', B_0, E$$
 и $\alpha = (O, A, B) \xrightarrow{\psi} (O_0, A', B_0) = \alpha'$.

Означаваме с Ψ_{α} породеното от Ψ съответствие между α и α . Следователно:

$$\psi_\alpha:O,A,B \xrightarrow{\quad \psi_\alpha \quad} O_0,A',B_0 \text{ и } \frac{\left|O_0A'\right|}{\left|O_0B_0\right|} = \frac{\left|OA\right|}{\left|OB\right|},\text{ т.е. } \frac{\left|O_0A'\right|}{\left|OA\right|} = \frac{\left|O_0B_0\right|}{\left|OB\right|}.$$

Така получихме, че отношението на съответните отсечки е постоянно и съгласно критерия за подобност, трансформацията Ψ_{α} е подобност.

Нека π_0 е ортогоналното проектиране на α ` върху α_0 . Тогава $A' \xrightarrow{\pi_0} A_0$, $O_0 \xrightarrow{\pi_0} O_0$ и $B_0 \xrightarrow{\pi_0} B_0$. Така имаме $O, A, B \xrightarrow{\psi_\alpha} O_0, A', B_0 \xrightarrow{\pi_0} O_0 A_0 B_0$.

Тъй като една афинна трансформация между две равнини, се определя чрез 3 двойки съответни неколинеарни точки и $O,A,B \xrightarrow{\varphi_{\alpha}} O_0,A_0,B_0$, то $\varphi_{\alpha}=\pi_0$. Ψ_{α} .

<u>Следствие:</u> Нека ABCD и $A_0B_0C_0D_0$ са два афинно еквивалентни четириъгълника съответно в равнините α и α_0 , a, b, c, d са правите, перпендикулярни на α_0 и минаващи съответно през точките A_0 , B_0 , C_0 , D_0 . Тогава съществува равнина α такава, че ако $A = a \cap \alpha$, $B = b \cap \alpha$, $C = c \cap \alpha$, $D = d \cap \alpha$, то четириъгълникът ABCD е подобен на четириъгълника ABCD.

Доказателство: Тъй като ABCD и $A_0B_0C_0D_0$ са афинно еквивалентни, то съществува афинна трансформация φ пораждаща афинитет φ_α между α и α_0 така, че

 $A,B,C,D \xrightarrow{\varphi_{\alpha}} A_0,B_0,C_0,D_0$. Съгласно теоремата съществуват равнина α' и афинна

трансформация Ψ , пораждаща подобност Ψ_{α} между α и α' такива, че: $\varphi_{\alpha} = \pi_0 \, \Psi_{\alpha}$, където π_0 е ортогоналното проектиране върху α_0 . Но $a \perp \alpha_0$, $A_0 \in a$. Следователно, ако $A' = a \cap \alpha$, то

$$A' \xrightarrow{\pi_0} A_0$$
 . Аналогично
$$B' \xrightarrow{\pi_0} B_0 \,, C' \xrightarrow{\pi_0} C_0 \,, D' \xrightarrow{\pi_0} D_0$$
 т.е.

 $A,B,C,D \xrightarrow{\psi_{\alpha}} A',B',C',D' \xrightarrow{\pi_0} A_0,B_0,C_0,D_0\,.$ Тъй като $\,\Psi_{\alpha}$ е подобност, то $\,ABCD\,\sim\,A'B'C'D'\,.$

