Collapse Projection Framework: Symbolic Logic, Trace Collapse, and Dimensional Projection

TRSC13 / Kleinlab July 11, 2025

Abstract

This paper introduces a formal symbolic system for structural collapse modeling based on the Syn/GL 7D logic framework. The system encodes logical determinacy, entropy, interference, trace history, and curvature into a symbolic space of dimensional collapse operators. It supports structural reasoning, symbolic projection, and collapse-aware Taylor series expansion.

1 Symbolic Operator Set (7D Core)

Each symbolic state is modeled as:

$$\Psi = (\Theta, \lambda, \eta, \kappa, \phi, \chi, \psi)$$

- Θ (Logic Determinacy) collapse readiness or resolution status.
- λ (Symbolic Trace) memory of logical flow or causal path.
- η (Entropy Flow) coherence vs symbolic disorder in structure.
- κ (Collapse Curvature) topological tension or collapse difficulty.
- ϕ (Phase Relation) rhythm/synchronization between logic paths.
- χ (Interference Pattern) influence between interacting traces.
- ψ (Resolution State) final symbolic result of collapse.

2 Extensions (Toward 10D Frame)

- μ : Deformation Mass symbolic tension before collapse.
- ρ: Collapse Resistance inertia to resolution.
- ν : Collapse Velocity rate of symbolic state resolution.

3 Collapse-Aware Taylor Expansion

We define a symbolic Taylor series:

$$f(x) = \psi_0 + \frac{\kappa}{1!}\psi_1 + \frac{\kappa^2}{2!}\psi_2 + \dots + \frac{\kappa^n}{n!}\psi_n$$

Each ψ_i term represents collapse-modulated behavior under curvature influence.

4 Glossary Summary

- Ψ : Full symbolic state vector
- Collapse: Logical transition from $\Theta \to \psi$
- Projection: Observable state of trace-based collapse
- Symbolic Entropy: Structural redundancy within λ
- Interference: Non-commutative symbolic merging (via χ)

5 Future Directions

- Phase-aware logic flows across phi
- Collapse surface visualization (κ fields)
- Quantum interpretation cross-analysis (Syn/GL vs QM)