

~~N73-12449~~

DRA

ACS AVION SYSTEMS REVIEW

CASE FILE
COPY

LOCKHEED MISSILES & SPACE COMPANY
A GROUP DIVISION OF LOCKHEED AIRCRAFT CORPORATION
SUNNYVALE, CALIFORNIA

**ACS AVIONICS
SYSTEMS
REVIEW**

ACS-253-1

~~SECRET~~

Presentation To NASA-MSC 18 February 1972

NASA-26362 - PHASE B EXTENSION

LOCKHEED MISSILES & SPACE COMPANY, INC./SUNNYVALE, CALIFORNIA

STUDY OBJECTIVES

REFINE THE BASELINE AVIONICS SYSTEM DESIGN

CLARIFY KEY ISSUES FOR RFP

REFINE THE BASELINE AVIONICS SYSTEM COSTS

LOCKHEED

253101

AVIONICS TASKS & PRIORITIES

PRIORITY	TASK
1	DEVELOP DETAIL SYSTEM PER TD 3009 BASELINE REQUIREMENTS
2	EVALUATE MODE FOR ORBITER CONTROL BLENDING
3	TRADEOFF DIGITAL VS ANALOG AERO FLIGHT CONTROL SYSTEMS
4	ASSESS INTEGRATION OF A/C AND S/C FLIGHT CONTROL COMPUTERS
5	EVALUATE GIMBAL VS STRAPDOWN IMU
6	INVESTIGATE A BACKUP FOR A GENERIC SOFTWARE FAILURE
7	EVALUATE FEASIBILITY AND DESIRABILITY OF MONITORING AND/OR GROUND CONTROL OF ONBOARD SWITCHES AND CIRCUIT BREAKERS DURING CHECKOUT
8	PROVIDE AN AUTOMATIC LANDING SYSTEM DESIGN APPLICABLE TO UNMANNED FIRST VERTICAL FLIGHT AND DEFINE THE PHASED INSTALLATION AT THE MOST ECONOMICAL TIME DURING THE PROGRAM
9	DEVELOP COSTS FOR THE BASELINE SYSTEM
10	EVALUATE TECHNIQUES FOR OBTAINING AND DISPLAYING RENDEZVOUS RANGE RATE

LOCKHEED

253102

LOCKHEED'S APPROACH TO AVIONICS

- USE DEVELOPED SYSTEMS OR EQUIPMENT GROUPS
 - HARDWARE
 - SOFTWARE
- RETAIN FULL CAPABILITY WITHIN MINIMUM TECHNOLOGY CONSTRAINT
- TRADEOFF RELATED COST ELEMENTS PRIOR TO SYSTEM SELECTION
- SELECT AVIONICS CONFIGURATION CAPABLE OF PERFORMANCE GROWTH
 - WITH MINIMUM SYSTEM IMPACT

ORBITER AVIONICS SYSTEM CONCEPT

LOCKHEED

244412

ORBITER AVIONICS BASELINE

244413

LOCKHEED

DEVELOPMENT SCHEDULE

LOCKHEED

253108

ORBITER AVIONICS PEAK ANNUAL COSTS W / MILESTONES

LOCKHEED

253109

COST STRUCTURE AND BUILDUP

COST \$ MILLIONS

166.8 - DDT&E	90.3 - RECURRING	129.4 - OPERATIONS
114.1 - DESIGN & DEVELOP*	30.4 - REFURB FTVs	61.3 - SUSTAINING**
6.7 - AVIONICS MGMT	1.3 - AVIONICS MGMT	8.0 - AVIONICS MGMT
6.7 - SUBSYS MGMT & INTEG	11.0 - S/S MGMT & INTEG	45.3 - SUSTAINING ENGRG
67.4 - HDWE/ SOFTWARE DESIGN	12.6 - HDWE	8.0 - S/S MGMT & INTEG
0.3 - AVIDONIC SPECIAL FACIL	5.5 - FAB, ASSY, INSTL	
5.8 - SUBCONTRACTOR/VENDOR EFFORT		
22.5 - PRODUCTION (3)		
4.7 - DEVELOPMENT TEST		
25.3 - GROUND TEST		
15.2 - GROUND TEST HDWE (1.5 SETS)		
5.4 - GROUND TEST LABOR		
4.2 - QUAL TEST (CONTR)		
0.5 - GROUND HDLG EQUIP (AGE)		
24.1 - FLIGHT TEST HDWE		
7.0 - FTV-1 INCLDG FAB, ASSY, INSTL, DFI		
17.1 - FTV-2 INCLDG FAB, ASSY, INSTL, DFI		
3.3 - TOOLING		
2.8 - LABOR (DESIGN & FAB)		
0.5 - MATERIAL		

* INCLUDES 13.3M FOR IMPROVED CAPABILITY DESIGN AND DEVELOPMENT

** INCLUDES 8.7M FOR IMPROVED CAPABILITY SYSTEM

253110

LOCKHEED

ORBITER AVIONICS PROGRAM COSTS

\$ MILLIONS

<u>SUBSYSTEM</u>	D&D	GRD TEST	FTH (2)	TOOLING	DDT&E	TFU	PROD (3)	REFURB/RETROFIT	OPNS SPARES
AVIONICS SYS INTEG	6.7	-	-	-	6.7	-	-	-	8.0
GN&C	17.7	6.5	5.0	0.5	29.7	4.2	14.8	3.5	26.5
DISPLAYS & CONT	9.9	3.6	1.7	0.6	15.8	1.1	3.6	1.0	15.2
COMM AND TRACKING	8.1	4.7	5.7	0.4	18.9	3.5	12.0	1.7	12.2
ELECT PWR DIST & CONTROL	3.7	0.8	0.3	0.4	5.2	0.2	1.1	0.1	0.9
PERF MONITORING	16.6	6.4	4.1	0.8	27.9	4.1	13.4	9.9	39.9
INSTRUMENTATION									
OPERATIONAL DFI	11.4	2.0	-	0.2	13.6	4.5	15.0	12.9	11.7
SOFTWARE (VEHICLE)	9.0	1.3	7.3	0.4	18.0	-	-	-	-
AVIONICS SYST SUBTOTAL	31.0	-	-	-	31.0				15.0
<u>AVIONICS SYSTEM TOTAL</u>	<u>114.1</u>	<u>25.3</u>	<u>24.1</u>	<u>3.3</u>	<u>166.8</u>	<u>17.6</u>	<u>59.9</u>	<u>30.4</u>	<u>129.4</u>
<u>ELECT POWER GENERATION SYS</u>	<u>14.8</u>	<u>3.7</u>	<u>1.6</u>	<u>0.2</u>	<u>20.3</u>	<u>1.5</u>	<u>5.0</u>	<u>1.5</u>	<u>11.1</u>
<u>ELECTRICAL POWER GENERATION TOTAL</u>									<u>\$ 37.9M</u>
<u>LOCKHEED</u>									

25311

Electrical Power

ACS Avionics Review

ORBITER EPS BASELINE DESIGN REQUIREMENTS

- UTILIZE MINIMUM TECHNOLOGY AND PROVIDE LOW COST DESIGN
- 100-MISSION LIFE WITH 10-YEAR SERVICE LIFE
- 7-DAY SELF-SUSTAINING LIFE, GROWTH TO 30-DAYS
- REDUNDANCY - NOMINALLY FAIL OPERATIONAL/FAIL SAFE
- PROVIDE PHYSICAL SEPARATION OF REDUNDANT PATHS
- PROVIDE 28 VDC AND 115 VAC, 400 HZ NOMINALLY TO USERS
- POWER AT USER TERMINAL IN ACCORDANCE WITH MIL-STD-704A
- UTILIZE DEVELOPED AIRCRAFT EQUIPMENT VS NEW DEVELOPMENTS
- HARDWIRE CONTROL OF SAFETY CRITICAL FUNCTIONS

LOCKHEED

253261

ORBITER

253202

LOCKHEED

SPACE SHUTTLE POWER SYSTEM

ELECTRICAL POWER SYSTEM REQUIREMENTS

<u>POWER USERS</u>	<u>ORBITAL FLIGHT</u>			<u>ENERGY</u>
	<u>HORIZONTAL FLIGHT</u>	<u>LAUNCH AND ASCENT</u>	<u>ORBIT OPERATIONS</u>	
AIRCRAFT SUBSYSTEMS	14 KW			75 KW-HR
ABES FUEL BOOSTER PUMPS		8 KW		192 KW-HR
ROCKET ENGINE PROPELLANT CIRCULATION FOLLOWING LOADING			7.5 KW	2095 KW-HR
SPACECRAFT SUBSYSTEMS		11 KW		
<u>MISSION</u>				<u>LOCKHEED</u>
	3 HR	HORIZONTAL FLIGHT		KW-HR
12 HR	ORBITAL PAYLOAD LAUNCH			
7 DAY	LOGISTICS			

LOCKHEED

253203

EPS EQUIPMENT SELECTION CONSIDERATIONS

POWER GENERATION

EQUIP	CANDIDATES	SELECTION RATIONALE
H ₂ -O ₂ FUEL CELLS	APOLLO 1.4 KW NEW DESIGN 8 KW	APOLLO DESIGN HAS LIMITED LIFE (400 Hr) AND COST OF STARTUP SIMILAR TO NEW DESIGN. NEW INTERIM DESIGN TO HAVE 2000-HR LIFE
GENERATORS	<input checked="" type="checkbox"/> AC OR DC <input type="checkbox"/> SPRAY-OIL COOLED <input type="checkbox"/> DUCTED-OIL COOLED <input type="checkbox"/> <u>NON-PARALLEL</u> OR <input type="checkbox"/> PARALLEL OPS	AC POWER MEETS REQUIREMENTS OF AVAILABLE LIGHTWEIGHT PUMP MOTORS. SPRAY OIL COOLED PROVIDES LIGHTWEIGHT DESIGN, NO OIL LEAKAGE BUT SOME ZERO-G DEVELOPMENT. NON-PARALLEL OPERATION AVOIDS SYNCHRONOUS OPERATION OF APUS OR CONSTANT SPEED DRIVES
BATTERIES	Ni-CD OR AG-ZN	SEALED Ni-CD IS HEAVIER DESIGN BUT REQUIRES LESS FACILITY SUPPORT AND PROVIDES MORE OPERATIONAL CYCLES.

253205

LOCKHEED

EPS EQUIPMENT CONSIDERATIONS

POWER DISTRIBUTION CONDITIONING AND CONTROL

EQUIP	CANDIDATES	SELECTION RATIONALE
STATIC INVERTERS 400 HZ 115 VAC	3φ APOLLO - 1250 VA 1φ L-1011 - 750 VA 3φ PAX RIVER - 750 VA 3φ MOD L-1011-2250 VA	LARGE VA MODULE DESIRED, PARTICULARLY WITH NO PARALLEL OPERATION CAPABILITY. SIGNIFI- CANT 3φ POWER REQUIREMENTS. PHASE LOAD UNBALANCE NOT A PROBLEM.
TRANSFORMER RECTIFIERS 28V	LARGE NUMBER OF AIRCRAFT AIR- COOLED DESIGNS 200 AMP P-3C DESIGN	LOW WEIGHT (18 LBS) AND BUILT TO MILITARY SPECIFICATIONS
REMOTE CONTROL CIRCUIT BREAKERS	NONE SOLID STATE HYBRID ELECTROMECHANICAL	EXISTING DESIGN WILL SAVE WEIGHT FOR DISTRIBUTION UNITS LOCATED AFT

253206

LOCKHEED

ELECTRICAL POWER SYSTEM REDUNDANCY

<u>ITEM</u>	<u>NO. REQ'D FAIL SAFE</u>	<u>NO. SELECTED</u>	<u>RATIONALE</u>
FUEL CELLS (8 KW)	3	4	LOWEST RELIABILITY UNIT IN EPS AND HIGHEST RISK OF CURTAILED MISSION - LIMITED DATA
3Φ STATIC INVERTERS (CENTRAL) - 2250 VA	5	6	FO/F'S SOURCE OF INVERTER AC POWER DESIRABLE
AC GENERATORS AND GCUS - 40 KVA	2	3	3APUS AVAILABLE - COST FOR FO/F'S NOT SIGNIFICANT
TRANSFORMER RECTIFIERS (200 AMPS) (HORIZONTAL AND FERRY FLIGHT ONLY)	4	5	FO/F'S SOURCE OF DC POWER DESIRABLE
AC AND DC BUSES	2	2	TWO BUSES PROVIDE HIGH RELIABILITY

LOCKHEED

253207

BACKUP POWER SYSTEM FOR FCS

TIME PERIOD	ENERGY	CANDIDATE SOURCES/WT	
		NI-CD BATT	AG-ZN BATT
RETROGRADE THROUGH LANDING	2575 WATT-HR	260 LB	52 LB 31 LB N ₂ H ₄ 15 LB TANKAGE

BACKUP ELECTRICAL POWER SOURCE ONLY

- ALL NONESSENTIAL LOADS DROPPED
- EXISTING BUSING AND POWER CONDITIONING USED

BACKUP ELECTRICAL POWER SOURCE, BUSING AND AC INVERTER

MAXIMUM 1 PHASE AC: 1506 VA; INVERTER WT 36 LB

253208

LOCKHEED

17

PAYOUT BY ORBITER INTERIM PAYLOAD

<u>REFERENCE</u>	<u>MISSION TYPE</u>	<u>MISSION DURATION</u>	<u>Avg POWER</u>
NSO-1, 2, 3, 4	SORTIE	2 WKS	10 KW
NSO-5	PALLET TYPE MODULE	2 WKS	10 KW
<u>MISSION DURATION</u>	<u>PAYOUT AVG POWER</u>	<u>ENERGY</u>	<u>REACTANT WEIGHT</u>
30 DAYS	10 KW	7200 KW-HRS	6,110 LB

LOCKHEED

253209

GN&C BASELINE COMPLIANCE

<u>TD 3009 PARA NO.</u>	<u>REQUIREMENT</u>	<u>IN LMSC I NOV BASELINE</u>	<u>ACTION TAKEN OR REQUIRED</u>
6.3	FLY-BY-WIRE AERO FLIGHT CONTROL WITH DEDICATED COMPUTER	YES	COMPLETED - RECOMMEND ANALOG
6.4	FLY-BY-WIRE SPACECRAFT FLIGHT CONTROL WITH DEDICATED DIGITAL COMPUTER	YES	STUDY REDUNDANCY ASPECTS - IN PROCESS
6.5	PHASED INSTALLATION OF AUTO- LAND AT MOST ECONOMICAL TIME	YES	INCORPORATED ON EARLY HORIZONTAL FLIGHT
6.6	RENDEZVOUS NAVIGATION CAPABILITY WITH COOPERATIVE TARGET OUT TO 300 NM	200 NM MAX CAPABILITY	CHANGED RENDEZVOUS SENSOR FROM PRECISION RANGING SYSTEM TO APOLLO VHF RANGING AND ADD-ON RANGE RATE UNIT
6.16	DETERMINE REDUNDANCY LEVELS WITH CONSIDERATION OF CRITICALITY, EXPERIENCE, AND COST FACTORS	PARTIAL	REDUNDANCY CRITERIA ESTABLISHED; COST-EFFECTIVENESS COMPUTER PROGRAM NOW BEING IMPLEMENTED

253301

LOCKHEED

ORBITER SPACECRAFT GN & CSYSTEM

<u>REQUIREMENT</u>	<u>IMPLEMENTATION</u>
ALL AZIMUTH LAUNCH, VERTICAL AND HORIZONTAL	ALL ATTITUDE GN&C SYSTEM
ASCENT GUIDANCE AND CONTROL	INERTIAL GUIDANCE USING IMU, CONTROL USING TVC. MANUAL CONTROL PROVIDED.
IN-FLIGHT TARGETING FOR ALL ΔV MANEUVERS	DIGITAL COMPUTER TO COMPUTE REFERENCE TRAJECTORY FROM CREW AND GROUND NAVIGATION INPUTS
IN-FLIGHT IMU ALIGNMENT	STAR TRACKER
RENDEZVOUS WITH COOPERATIVE TARGET	VHF RANGING USED FOR NAVIGATION AND GUIDANCE
AUTOMATIC AND MANUAL ORBIT VEHICLE STABILIZATION, CONTROL, AND TRANSLATION	HAND CONTROLLERS FOR TRANSLATION AND STABILIZATION INTERFACE DIRECTLY TO ACPS LOGIC AND ELECTRONICS. OVERRIDES AUTOPILOT ACPS CONTROL WHEN USED.

253330

LOCKHEED

ORBITER GN & C (CONT)

KEY REQUIREMENTS IMPLEMENTATION

REQUIREMENT

GUIDANCE AND STEERING TO SHAPE
TRAJECTORY TO ENTRY VEHICLE
HEATING CONSTRAINTS, PRESCRIBED 9
LIMITS AND TERMINAL FOOTPRINTS

IMPLEMENTATION

UPDATE PRIOR TO DEORBIT, CLOSED LOOP CONTROL
FROM INERTIAL GUIDANCE DURING REENTRY,
VERTICAL CHANNEL UPDATE POST BLACKOUT

AUTOMATIC GUIDANCE AND NAV
CAPABILITY PRIOR TO FINAL APPROACH

TACAN, RADAR ALTIMETER, AUTOPILOT, AIR DATA,
AUTOTHROTTLE, INERTIAL NAV BACKUP

APPROACH AND LANDING NAVIGATION
THROUGH GROUND AIDS OR BY INERTIAL
UPDATING

SCANNING BEAM ILS, (MICROWAVE)
IMU AND RADAR ALTIMETER BACKUP

LANDING AND HANDLING TO REQUIRE
NO MORE SKILLS THAN OPERATIONAL
LAND-BASED AIRCRAFT

USE OF CONTROL STICKS, CONVENTIONAL AIRCRAFT-
TYPE PEDALS, STABILITY AUGMENTATION, CONTROL
LAW MANAGEMENT, APPROACH AND LANDING AIDS
AND INDICATORS

AUTOMATIC-CONTROLLED INSTRUMENT
LANDING WITH PILOT-CONTROLLED
INSTRUMENT LANDING AND PILOT-
CONTROLLED VISUAL LANDING AS BACKUP

DUAL L-1011 AUTOPILOT, AIR DATA, AUTOTHROTTLE,
AUTOSPEED-BRAKE CONTROL, MICROWAVE ILS.
MANUAL CONTROL ALSO PROVIDED.

253331

LOCKHEED

MAJOR CHANGES TO LMSC BASELINE GN&C

ORBIT NAVIGATION

DELETE AUTONOMOUS NAVIGATION CAPABILITY; DELETE HORIZON SENSOR
AND ORBIT ALTIMETER; REDUCE LOAD ON GN&C COMPUTER

PROVIDE FOR NAVIGATION UPDATE THROUGH S-BAND DATA LINK

RENDEZVOUS RANGE AND RANGE RATE

DELETE PRECISION RANGING SYSTEM (CUBIC-CR100)

ADD

- VHF TRANSMITTER/RECEIVER (APOLLO)
- DIGITAL RANGING GENERATOR (APOLLO)
- RANGING TONE TRANSFER ASSEMBLY (APOLLO)
- RANGE RATE UNIT

INERTIAL MEASUREMENT UNIT

CHANGE FROM 3 PLATFORMS (CAROUSEL IV) TO 3 TRIAD STRAPDOWN WITH
ROTATED SENSORS (HONEYWELL ISA)

ORBITER SPACECRAFT GN&C SYSTEM

253303

LOCKHEED

TYPICAL ACPS DRIVE ELECTRONICS

(X TRANSLATION AND YAW ROTATION)

ψ_{GN} - YAW ERROR FROM GN COMPUTER

ψ_{DMS} - YAW ERROR FROM DMS COMPUTER

LOCKHEED

233207

ORBITER TVC ELECTRONICS

- GN - GUIDANCE AND NAVIGATION COMPUTER
- DMS - DATA MANAGEMENT SYSTEM COMPUTER
- δIPA - ERROR (ϵ) SIGNAL (6) TO PITCH AXIS (P) ACTUATOR "A" (A)
ON ENGINE "1" (1)
- $\dot{\theta}_C$ - YAW AXIS
- $\dot{\psi}_C$ - FEEDBACK
- $\dot{\phi}_C$ - LATERAL, NORMAL ACCELERATION
- \dot{A}_Y , \dot{A}_N

LOCKHEED

253305

ORBITER AERO FLIGHT CONTROL SYSTEM

LOCKHEED

253351

ORBITER PRIMARY FLIGHT CONTROL SYSTEM

DO8420(1) * SPLIT RUDDER WITH 1 LEVEL REDUNDANCY ON EACH
233209 NOW UNDER INVESTIGATION

253332

LOCKHEED

ORBITER AUTOPILOT SYSTEM

253333

LOCKHEED

ORBITER AUTOMATIC SPEED CONTROL

[---] NOT PART OF SYSTEM

FLIGHT CONTROL SYSTEM

BRAKES AND ANTI SKID SYSTEM

LOCKHEED

253335

AUTOLAND IMPLEMENTATION

FLIGHT-PROVEN L-1011 CONCEPTS

CONTROL LAWS - BASIC FUNCTIONS SAME
REDUNDANCY AND MONITORING
FULL MODE ANNUNCIATION

FLIGHT-PROVEN L-1011 HARDWARE

PACKAGING DESIGN
CIRCUIT DESIGN
PARTS SELECTION
MATERIAL SELECTION
MANUFACTURING PROCESSES, TECHNIQUES
AUTOMATIC TEST EQUIPMENT AND PROCEDURES

FAIL-OPERATIONAL/FAIL-SAFE OPERATION

- UNDERGOING CERTIFICATION FOR CAT III LANDING
 - FLIGHT TEST
 - COMPUTER AND IRON BIRD SIMULATION
- DUAL-DUAL REDUNDANCY

LOCKHEED

253307

EQUIPMENT REQUIRED FOR AUTOLAND

ALL SOLID BLOCKS ARE L-1011 EQUIPMENT

*GYRO

三三八

LOCKHEED

ORBITER AUTOLAND SIMULATION REQUIREMENTS

253308

LOCKHEED

ORBITER AUTOLAND SIMULATION

<u>PARAMETER</u>	<u>2_σ (95.5%) PROBABILITY LEVEL (1)</u>	<u>PROBABILITY OF EXCEEDING LIMIT</u>
DESCENT RATE AT TOUCHDOWN	1.1-5.6 FPS	10×10^{-8}
TOUCHDOWN RANGE DISPERSION	200 FT BEFORE G.S. INTERCEPT TO 900 FT AFTER	10^{-7}
	940 FT BEFORE GLIDE SLOPE INTERCEPT (MIN) 2700 FT BEYOND G.S. INTERCEPT (MAX)	
PITCH ATTITUDE AT TOUCHDOWN	12-16.6 DEG	3×10^{-2}

(1) RESULT OF 1000 COMPUTER RUNS

LIMITING DISTURBANCES: (PROBABILITY OF EXCEEDING = 10^{-2})

6.35 FPS (RMS)	HORIZONTAL WIND GUSTS
3.2 FPS (RMS)	VERTICAL WIND GUSTS
10 μ a (RMS)	BEAM NOISE

LOCKHEED

OPERATIONAL AUTOLAND INSTALLATION TIMING

ALTERNATIVES

- FIRST (OR EARLY) HORIZONTAL FLIGHT
- FIRST OPERATIONAL VERTICAL FLIGHT
- LATER IN THE PROGRAM

ISSUES

PEAK FUNDING REDUCED FOR LATER INSTALLATION - INSTALLATION COST IS \$1M-\$3M
TOTAL PROGRAM COSTS REDUCED IF ALL GN&C SYSTEMS INCLUDING AUTOLAND INCORPORATED
AND TESTED AT SAME TIME

- SEPARATE FLIGHTS TO TEST AUTOLAND ALONE NOT NEEDED
 - NO SPECIAL AUTOLAND FLIGHT TEST VEHICLE REQUIRED
 - LATER INSTALLATION MAY CAUSE "SCAR" PROBLEMS
- L-1011 EXPERIENCE WILL MINIMIZE DEVELOPMENT TIME - COMPATIBLE WITH EARLY INSTALLATION
EVEN IF STARTED 1 YEAR AFTER SHUTTLE PROGRAM GO-AHEAD
- SAFETY ENHANCED THROUGH USE OF AUTOLAND
 - TOUCHDOWN DISPERSIONS REDUCED
 - PILOT WORKLOAD REDUCED
 - L-1011 TEST FLIGHTS DEMONSTRATE CONSISTENTLY LOW IMPACT LANDING WITH
AUTOLAND COMPARED TO MANUAL

AUTOLAND REQUIRED FOR UNMANNED OPERATION

RECOMMENDATION

INCORPORATE IN FIRST HORIZONTAL FLIGHT

- PEAK FUNDING IMPACT SMALL
- EARLY INCORPORATION REDUCES PROGRAM COST AND RISKS

LOCKHEED

253310

ORBITER GN&C EQUIPMENT

EQUIPMENT	PART NO.	WEIGHT PER EACH	PRESENT OR PLANNED USAGE			QUANTITY/EFFECTIVITY		
			FHF	FVFM	FVFUN	OPER		
INERTIAL REFERENCE UNIT	CAROUSEL IV CAROUSEL Vb OR HONEYWELL 448	53 LB 58 LB 38 LB	747 TIIIC AGENA	2	2	2	3	
DIGITAL COMPUTER*	UNIVAC 1832	126 LB	S-3A	1	1	1	1	
STAR TRACKER	BENDIX ATM OR ITT MMOS	77 LB	SKYLAB			2		
MAIN ENGINE GIMBAL SERVO (TVC) ACTUATOR PKG	MOOG	50 LB	SIVB	8	8	8		

*DMS COMPUTER BACKS UP GN&C COMPUTER

253311

LOCKHEED

ORBITER GN&C EQUIPMENT (CONT)

EQUIPMENT	PART NO.	WEIGHT PER EACH	PRESENT OR PLANNED USAGE	QUANTITY/EFFECTIVITY		
				FHF	FVFM	FVFUN
TVC ELECTRONICS	SIMILAR TO AGENA P110 TVC ELECTRONICS	30 LB	AGENA	3 (8 CHANNELS EACH)	3	3
ACPS ELECTRONICS	SIMILAR TO AF P467 ACPS ELECTRONICS	50 LB	AF P467	3 (EACH HAS DRIVERS FOR 12 ENGINES)	3	3
SUBSYSTEM INTERFACE UNITS	-	55 LB	NEW	3	3	3
S-BAND DATA LINK**			APOLLO	2	2	2
VHF RANGING**			APOLLO			2
TOTAL				2	22	22
						27

** PART OF COMMUNICATION SUBSYSTEM

ORBITER AERONAVIGATION AND FLIGHT CONTROL EQUIPMENT

EQUIPMENT	PART NO.	WEIGHT PER EACH (LB)	PRESENT OR PLANNED USAGE	QUANTITY/EFFECTIVITY				OPER
				FHF	FVFM	FVUM		
RATE GYRO	672300	2	L1011	12	12	12	12	
ACCELEROMETER	672301, 2	1	L1011	10	10	10	10	
AUTOPILOT COMPUTER	672314, 5	28	L1011	4	4	4	4	
SPEED BRAKE SERVO	NEW	10	NEW	4	4	4	4	
ENGINE SPEED CONTROLLER	C1033	15	AH56	-	4	4	4	
SPEED CONTROL COMPUTER	672294	27	L1011	2	2	2	2	
ANTISKID AND TOUCHDOWN SYSTEM	NEW	30	NEW	1	1	1	1	
* TACAN TRANSEIVER/ANTENNA	ARN84	37/6	S3A	2/4	2/4	2/4	2/4	
* ILS RECEIVER/ANTENNA	ILS-70	10/6	C5A	2/4	-	-	-	
* SCANNING BEAM ILS RECEIVER/ANTENNA	NEW	15/5	NEW	-	2/4	2/4	2/4	
* RADAR ALT/ANTENNA	APN-201	10/1	S3A	2/4	2/4	2/4	2/4	

* PART OF COMMUNICATION SUBSYSTEM

ORBITER AERO NAV & FLIGHT CONTROL EQUIP (CONT)

EQUIPMENT	PART NO.	WEIGHT PER EACH (LB)	PRESENT OR PLANNED USAGE	QUANTITY/EFFECTIVITY			OPER
				FHF	FVFM	FVUM	
COMPASS COUPLER	2591201	9	C5A	2	-	-	-
COMPASS CONTROLLER	2594911	1	C5A	2	-	-	-
FLUX VALVE	2575570	1	C5A	2	-	-	-
MAGNETIC COMPENSATOR	2591200	1	C5A	2	-	-	-
DIRECTIONAL GYRO	2594401	15	C5A	2	-	-	-
VERTICAL GYRO	2593742	15	C5A	2	-	-	-
RUDDER SERVO	4Y91577	48	C5A	2	2	2	2
ELEVON SERVO	4Y91013	48	C5A	8	8	8	8
PFGCS SERVO	697660	5	STOL	10	10	10	10
TRIM/BACKUP SERVO	544268	1	C141	10	10	10	10
PFGCS COMPUTER	672293	23	L1011	6	6	6	6
AIR DATA SENSOR			YF-12	2	2	2	2
AIR DATA COMPUTER	A/N-5		S-3A	2	2	2	2
				29			

253312A

LOCKHEED

REDUNDANCY SELECTION CRITERIA

**SELECT REDUNDANCY CONFIGURATION BASED ON SYSEFF* PROGRAM
USING AS CONSTRAINTS**

- POINT OF DIMINISHING RELIABILITY RETURN
- MINIMUM EFFECTIVE PROGRAM COST
- MAXIMUM ALLOWABLE WEIGHT
- MAXIMUM ALLOWABLE SUBSYSTEM COST

EACH CREW SAFETY FUNCTION OR EQUIPMENT MUST HAVE AT LEAST
FAIL-OP CAPABILITY; MATCH SYSEFF SELECTED CONFIGURATION
AGAINST FAIL-OP AND ADD REDUNDANCY, IF REQUIRED

*SYSTEM EFFECTIVENESS

CHARACTERISTICS OF SYSEFF PROGRAM OUTPUTS

253314

LOCKHEED

ORBITER CONTROL BLENDING STUDY

<u>TASK</u>	<u>ISSUE</u>	<u>CONSTRAINTS</u>
SELECT BEST CONTROL SYSTEM CONCEPT FOR BLENDING AND TRANSITION	SPACECRAFT/AIRCRAFT SYSTEM SIGNAL INTERFACES ACPS PROPELLANT REQUIREMENTS CONTROL AUTHORITY REQUIREMENTS REQUIRED SURFACE DEFLECTIONS FOR HIGH-ALTITUDE TRANSITION	MAXIMUM ALLOWABLE CONTROL SURFACE TEMPERATURE MAXIMUM AVAILABLE ACPS TORQUE MAXIMUM ALLOWABLE YAW AND ROLL CONTROL DEADBANDS RUDDER CONTROL EFFECTIVENESS AT HIGH α
SELECT BEST CONTROL SYSTEM LOGIC	COMPATIBILITY WITH MANUAL CONTROL CONCEPTS SUSCEPTIBILITY TO FALSE COMMANDS DUE TO FAILURE SENSOR REQUIREMENTS GN&C COMPUTATION REQUIREMENTS	NO PROVEN HYPERSONIC AIR DATA SYSTEMS AVAILABLE MAXIMUM EXPECTED ERRORS FROM IMU DUE TO SIDE WINDS

LOCKHEED

253315

ORBITER CONTROL BLENDING CONCEPTS

ALTERNATES	ADVANTAGES	DISADVANTAGES
CONCEPT 1: SUPERSONIC PITCH/ROLL BLENDING PRIOR TO PITCH HIGH-TO-LOW & TRANSITION	HIGH PITCH/ROLL CONTROL AUTHORITY DURING TRANSITION MAXIMUM ELEVON DEFLECTION NOT LIMITED BY AERODYNAMIC HEATING	SEPARATE YAW AXIS TRANSITION ACPS PROPELLANT CONSUMPTION NOT MINIMIZED AERO GAIN SCHEDULING REQUIRED FOR SUPERSONIC HIGH AND LOW & AND TRANSONIC/SUBSONIC LOW & FLIGHT
CONCEPT 2: HYPERSONIC PITCH/ROLL BLENDING	HIGH PITCH/ROLL CONTROL AUTHORITY DURING TRANSITION POTENTIAL OF MINIMIZING PROPELLANT CONSUMPTION WITHIN HEATING CONSTRAINT	SEPARATE YAW AXIS TRANSITION SURFACE DEFLECTION LIMITED BY HEATING CONSTRAINTS AERO GAIN SCHEDULING REQUIRED <ul style="list-style-type: none"> • SUPERSONIC HIGH AND LOW & • TRANSONIC/SUBSONIC LOW & FLIGHT
CONCEPT 3: SIMULTANEOUS PITCH/ROLL/YAW BLENDING AFTER PITCH HIGH-TO-LOW & TRANSITION	SIMULTANEOUS SWITCHOVER	HIGHEST ACPS PROPELLANT CONSUMPTION LIMITED CONTROL AUTHORITY DURING HIGH DYNAMIC PRESSURE

253329

LOCKHEED

ORBITER CONTROL BLENDING APPROACH

EVALUATION TECHNIQUE

SIX-DEGREE OF FREEDOM DIGITAL COMPUTER EVALUATION

INPUTS

TRAJECTORY	-	HIGH CROSS RANGE
COMMAND INPUT	-	BANK ANGLE AND ANGLE-OF-ATTACK PROFILES
DISTURBANCE	-	HIGH-ALTITUDE WIND SHEAR PROFILE
AERODYNAMIC CHARACTERISTICS	-	EXPECTED VARIATIONS OF $C_n\beta$, $C_l\beta$

OUTPUTS

DEFINITION OF COMPUTATION LOGIC
EVALUATION OF DYNAMIC PERFORMANCE OF CONTROL SYSTEM
COMPARISON OF ACPS PROPELLANT REQUIREMENTS
EARLIEST FEASIBLE TRANSITION TO AERO CONTROL FOR PITCH AND ROLL

ORBITER CONTROL BLENDING - ALTITUDE & DYNAMIC PRESSURE

253317

LOCKHEED

TRANSITION AND BLENDED CONTROL CONSTRAINTS

EFFECT OF BLENDING ALTITUDE ON PROPELLANT REQUIREMENTS O4OA

COMPUTER INTERFACE FOR BLENDING

253319

LOCKHEED

AEROFLIGHT CONTROL COMPARISON

ANALOG VS DIGITAL

PARAMETER	DIGITAL (4 UNITS)	ANALOG (12 DUAL UNITS)
DEVELOPMENT COSTS	\$900K (6K WORDS)	\$501K (50% REDesign SAS 15% REDesign A/P 7% REDesign SPEED CONTROL)
EQUIPMENT COSTS/VEHICLE	\$300K	\$130K
WEIGHT	100 LB	304 LB
POWER	480 WATTS	1840 WATTS
RELIABILITY (200 HR)	0.9962-0.9991	0.9922
FAILURE DETECTION	MAJORITY VOTING, LIMIT, LOOP, AND PARITY CHECKS	MAJORITY VOTING AND (WIDE) LIMIT CHECKS
FLEXIBILITY TO CHANGES	REPROGRAM	INCREMENTAL REDESIGN
DEVELOPMENT/PRODUCTION STATUS	IN DEVELOPMENT	IN PRODUCTION AND FLIGHT USE
CONFIDENCE FACTOR	LOW-LIMITED SIMULATION AND TEST	HIGH DUE TO L-1011 EXPERIENCE: <ul style="list-style-type: none"> • THOUSANDS OF SIMULATION HRS • THOUSANDS OF SYSTEM GROUND TEST HRS • HUNDREDS OF FLIGHT TEST HRS

253320

LOCKHEED

ANALOG vs DIGITAL AEROFLIGHT CONTROL

RECOMMENDATION AND RATIONALE

RECOMMENDATION - ANALOG FLIGHT CONTROL

RATIONALE

COST

- ANALOG DEVELOPMENT COST \approx 1/2 DIGITAL
- ANALOG SHIP SET COST \approx 1/2 DIGITAL
-

RISK - ANALOG SYSTEM IS MINIMUM RISK

- USES L-1011 CONTROL LAW
- USES L-1011 HARDWARE MODIFICATION \approx 7% ON SPEED CONTROL
15% ON AUTO PILOT
50% ON SAS
- CONCEPTS AND DESIGN WELL PROVEN THROUGH THOUSANDS OF HOURS OF SIMULATION, THOUSANDS OF HOURS OF GROUND TEST, AND HUNDREDS OF HOURS OF FLIGHT TEST
- SAME KEY DESIGN, ANALYSIS, AND PRODUCTION PERSONNEL ON L-1011
- FC PROGRAM WILL BE USED ON SHUTTLE

253321

LOCKHEED

IMU CANDIDATES

SYSTEM	ADVANTAGES	DISADVANTAGES
1 3 ORTHOGONAL TRIAD PLATFORMS	UNIT COST ONBOARD CALIBRATION SIMPLICITY	HIGHEST FAILURE RATE FAIL-OP ONLY - COULD USE DISSIMILAR SENSORS (E.G. STAR TRACKER TO GET FAIL-OP/FAIL-OP) NEEDS MAJOR MODIFICATIONS
2 2 ORTHOGONAL TRIAD PLATFORMS (1 SKEWED)	LOWEST SHIP SET COST ONBOARD CALIBRATION	DEGRADED ALIGNMENT OF SKEWED PLATFORM CROSS STRAP LOGIC TO INTERTORQUE PLATFORMS NEEDS MAJOR MODIFICATIONS
3 3 ORTHOGONAL TRIAD STRAPDOWN	SIMPLICITY OF PROCESSOR AND REDUNDANCY MANAGEMENT MINOR HARDWARE MODIFICATION	FAIL-OP ONLY - COULD USE DISSIMILAR SENSORS TO GET FAIL-OP/FAIL-OP NEEDS OPTICAL AZIMUTH ALIGNMENT (CLOSED LOOP SYSTEM) NEEDS AERO FLIGHT DEMONSTRATION

253322A

LOCKHEED

IMU CANDIDATES (CONT)

SYSTEM	ADVANTAGES	DISADVANTAGES
4 2 ORTHOGONAL TRIAD STRAPDOWN (1 SKewed)	LOWEST SHIP SET WEIGHT MINOR HARDWARE MODIFICATION	TWO REFERENCE SURFACES REQUIRED (1 SKewed) NEEDS OPTICAL AZIMUTH ALIGNMENT NEEDS AERO FLIGHT DEMONSTRATION
5 3 TRIAD STRAPDOWN (ROTATED SENSORS)	MINOR HARDWARE MODIFICATIONS INCREASED RELIABILITY CHOICE OF - INCREASED LAUNCH READINESS OR - REMOVE ONE GYRO AND ONE ACCEL FROM EACH TRIAD	THREE REFERENCE SURFACES REQUIRED (PERPENDICULAR) NEEDS OPTICAL AZIMUTH ALIGNMENT RISK ON SOFTWARE DEVELOPMENT NEEDS AERO FLIGHT DEMONSTRATION
6 1 - SIX GYRO STRAPDOWN (DODECAHEDRON)	INCREASED RELIABILITY MAINTAINABILITY - EACH SENSOR PACKAGED AND MOUNTED SEPARATELY	NOT IN PRODUCTION DEVELOPMENT RISK NEEDS AERO FLIGHT DEMONSTRATION

IMU CANDIDATE COMPARISON

	IMUs PER SYSTEM			PERFORMANCE			IMU CANDIDATE COMPARISON		
	1 - 3 ORTH TRIAD PLATFORM	2 - 2 ORTH TRIAD PLATFORM (1 SKewed)	3 - 3 ORTH TRIAD STRAPDOWN	4 - 2 ORTH TRIAD STRAPDOWN (1 SKewed)	5 - 3 ORTH STRAPDOWN (ROTATED SENSORS)	6 - HEXAD (DODECA-HEDRON)			
RELIABILITY (NORMALIZED TO CONFIG 3 MTBF 1700 HR)	0.65	1.4	1.0	2.2	>2.2	2.2			
WEIGHT (LB)	159	106	108	72	108	103			
POWER (WATTS)	450	300	420	280	420	306			
VOLUME (FT ³)	4.5	3.0	1.26	0.84	1.26	1.69			
DEVELOPMENT STATUS	CAROUSEL IV DEVELOPED 1000 BUILT AND FLOWN NEED FULL QUAL TO SPACE ENVIRONMENT	DEVELOPED, QUALIFIED TO SPACE ENVIRONMENT 6 BUILT, 2 FLOWN	DESIGN 95% CCMPL NEED FULL QUAL						

253340

LOCKHEED

IMU CANDIDATE COMPARISON (CONT)

	CONFIGURATION	1	2	3	4	5	6
VIBRATION ISOLATORS	• VIBRATION ISOLATORS	• CHANGE ACCEL OUTPUT FORMAT	• CHANGE ACCEL OUTPUT FORMAT	• CHANGE ACCEL OUTPUT FORMAT	• CHANGE ACCEL OUTPUT FORMAT	• CHANGE ACCEL OUTPUT FORMAT	• CHANGE ACCEL OUTPUT FORMAT
Z ACCEL	• Z ACCEL	• GIMBAL	• CROSS	• ROTATE	• ROTATE	• ROTATE	• ROTATE
OUTPUT	• OUTPUT	• OUTPUT	• STRAP POWER SUPPLIES	• STRAP POWER SUPPLIES	• STRAP POWER SUPPLIES	• STRAP POWER SUPPLIES	• STRAP POWER SUPPLIES
GIMBAL	• GIMBAL	• CROSS	• STRAP PLATFORMS 10–20%	• STRAP PLATFORMS 10–20%	• STRAP PLATFORMS 10–20%	• STRAP PLATFORMS 10–20%	• STRAP PLATFORMS 10–20%
OUTPUT	• OUTPUT	• STRAP PLATFORMS 10–20%	10	40	44	TBD	< 5%
PERCENT MOD	10–20%						
DEV OR MOD COST (\$1K)	700	730					
ON INSTRUMENT ONLY. FLIGHT TEST NOT INCLUDED							
SUPPORT EQUIPMENT	NONE						
IMPACT ON VEHICLE	MINIMUM	MINIMUM	OPTICAL ALIGNMENT (CLOSED LOCP)	COMPLEX MOUNTING SURFACE	MINIMUM	THREE MUTUAL PERPENDICULAR MOUNTING SURFACES	

253340A

LOCKHEED

ROTATION OF SENSORS IN TRIAD STRAPDOWN IMU

THREE IMU'S MOUNTED
ON THREE ORTHOGONAL
SURFACES

INPUT AXES ROTATED $31^\circ 43' 2.8'' (\alpha)$ ABOUT OUTPUT AXES
NEW IA DIRECTION SHOWN BY DOTTED LINES.

LOCKHEED

253324

THREE TRIAD STRAPDOWN ROTATED SENSORS

OUTPUT EQUATIONS

DODECAHEDRON AXES

GYRO

$$G_{X1} \text{ OR } G_{Z2}$$

$$G_{Y2}$$

$$G_{X2} \text{ OR } G_{Z3}$$

$$G_{Y3}$$

$$G_{X3} \text{ OR } G_{Z1}$$

$$G_{Y1}$$

ACCELEROMETER

$$A_{Z2} \text{ OR } A_{Y3}$$

$$A_{X3}$$

$$A_{Y1} \text{ OR } A_{Z3}$$

$$A_{X1}$$

$$A_{Y2} \text{ OR } A_{Z1}$$

$$A_{X2}$$

G_{X1} , ETC. = X AXIS GYRO FROM IMU NO. 1; A_{X1} , ETC. = X AXIS ACCELEROMETER FROM IMU NO. 1

BODY AXES

$$\begin{aligned} X_B &= 1/2 \left[(A-B) \text{ SINE } \alpha + (C+D) \text{ COSINE } \alpha \right] \\ Y_B &= 1/2 \left[(C-D) \text{ SINE } \alpha + (E+F) \text{ COSINE } \alpha \right] \\ Z_B &= 1/2 \left[(E-F) \text{ SINE } \alpha + (A+B) \text{ COSINE } \alpha \right] \end{aligned}$$

$\alpha = 31^\circ 43' 2.8''$

SOFTWARE SIMILAR TO MIT DODECAHEDRON

LOCKHEED

253325

IMU RECOMMENDATIONS AND RATIONALE

RECOMMENDED CONFIGURATION - 3 TRIAD STRAPDOWN WITH ROTATED SENSORS.
RECOMMENDED IMU - HONEYWELL INERTIAL SENSOR ASSEMBLY (ISA) DEVELOPED AND
FLOWN ON AF AGENA

RATIONALE

- COST
 - LIMITED CHANGES TO ISA WILL MINIMIZE MODIFICATION COST
 - MODIFICATIONS TO PLATFORM EXTENSIVE (GIMBAL READOUT,
Z-AXIS ACCELEROMETER LOOP, LOW FREQUENCY VIBRATION
RESONANCE).
 - DODECAHEDRON REQUIRES FULL QUALIFICATION TO SPACE
ENVIRONMENTS.

- RISK
 - ISA IS SPACE PROVEN AND QUALIFIED
 - A NUMBER OF ISA GYROS (G6334A) HAVE BEEN BUILT AND FLOWN
ON ANOTHER SPACE PROGRAM
 - EXTENSIVE LMSC EXPERIENCE IN STRAPDOWN SYSTEMS (IMU AND
ATTITUDE SENSORS) WILL BE EXCELLENT STARTING BASE FOR SHUTTLE.

LOCKHEED

253326

ORBITER ATTITUDE CONTROL FOR PAYLOAD SUPPORT (10σ VALUES)

ITEM	STATUS	REMAINING TASKS
ATTITUDE REF UNCERTAINTY (0.01 TO 0.1 DEG) (36 TO 360 SEC)	CAPABILITY LIMITED BY C-IV RESOLVERS AND ATM OPTICAL SENSOR (30 SEC) $(\sim 360 \text{ SEC})$ $(\sim 0.1^\circ)$	DUAL SPEED RESOLVERS (~20 SEC) STRAPPED DOWN IMU (~15 SEC) PRECISION OPTICAL SENSOR (~20 SEC)
ATTITUDE REF DRIFT RATE	CAROUSEL IV DRIFT: Z-AXIS $\sim 180 \frac{\text{SEC}}{\text{HR}}$ Y- AND X-AXES $\sim 10 \frac{\text{SEC}}{\text{HR}}$	REORIENT PLATFORMS X, Y, AND Z AXES ~10 SEC
NAVIGATION UNCERTAINTY	$\Delta a \sim 74 \frac{\text{SEC}}{\text{SUBPOINT}}$ FOR OPEN-LOOP POINTING AT EARTH & 0.1 NM POSITION UNCERTAINTY	PRECISE AUTONOMOUS NAVIGATION TO INCREASE NAVIGATION UPDATE FREQUENCY AND AUGMENT MSFN DATA.
LIMIT CYCLE ATTITUDE CONTROL MODE $\left[\begin{array}{l} \pm 0.01 \text{ TO } \pm 0.1 \text{ DEG} \\ \pm 0.01 \text{ TO } \pm 0.03 \frac{\text{DEG}}{\text{SEC}} \end{array} \right]$	BASELINE LIMIT CYCLE CHAR: LIMIT CYCLE RATES $\theta = \pm 0.005 \frac{\text{DEG}}{\text{SEC}}$ $\psi = \pm 0.002 \frac{\text{DEG}}{\text{SEC}}$ $\phi = \pm 0.02 \frac{\text{DEG}}{\text{SEC}}$ PROPELLANT CONSUMPT. RATES $7 \frac{\text{LB}}{\text{HR}}$ FOR $\pm 0.5 \text{ DEG}$ (ALL AXES) 35 $\frac{\text{LB}}{\text{HR}}$ FOR $\pm 0.1 \text{ DEG}$ 350 $\frac{\text{LB}}{\text{HR}}$ FOR $\pm 0.01 \text{ DEG}$	<ol style="list-style-type: none"> 1. REDUCE ROLL RATE CANCEL THRUST 2. DETERMINE EFFECTS OF DISTURBANCES 3. SIZE CMG FOR ROLL AXIS
RELIABILITY (30 DAY LIFE RQMT)	REDUNDANT CONFIG PRESENTLY BASED ON 7 DAY ORBITAL LIFE	30-DAY RELIABILITY ANALYSIS
		LOCKHEED

BASELINE REQUIREMENTS SUMMARY

COMMUNICATIONS AND TRACKING

AIRCRAFT OPERATIONS

TACAN FOR RANGE AND HEADING

UHF VOICE TRANSCEIVER

SPACECRAFT OPERATIONS

S-BAND TRANSCEIVER

VOICE

UPLINK - COMMAND AND NAVIGATION UPDATES

DOWNLINK - TELEMETRY

TELEVISION

UHF RANGING/VOICE - RENDEZVOUS RANGING

RADIO LINKS

VOICE - TM - COMMAND - TRACKING - TV

253402

COMMUNICATIONS/RF

COMMUNICATIONS/TRACKING

253404

COMMUNICATIONS/VOICE

253405

LOCKHEED

S-BAND UPLINK

COMMUNICATIONS

GROUND TRANSMITTING

VEHICLE RECEIVING

253406

LOCKHEED

S-BAND DOWNLINK

COMMUNICATIONS

* PART OF PREMODULATION PROCESSOR

253407

LOCKHEED

COMMUNICATIONS ANTENNA LOCATIONS

LOCKHEED

253408

COMMUNICATIONS SUBSYSTEM REDUNDANCY

<u>ITEM</u>	<u>REQUIRED SAFE RETURN</u>	<u>MISSION SUCCESS</u>	<u>SELECTED</u>	<u>RATIONALE</u>
TACAN	1	0	2	2 ACTIVE S-BAND BACKUP
UHF VOICE TRANSCEIVER	1	0	2	1 ACTIVE 1 STANDBY FAULT ISOLATION AUTOMATIC SWITCHOVER
S-BAND TRANSCEIVER	0	1	2	ELEMENTS ARE REDUNDANT AND SWITCHABLE SEPARATELY. FAULT ISOLATION/PANEL INDICATORS
VHF RANGING AND VOICE	0	1	2	1 ACTIVE, 1 STANDBY S-BAND BACKUP
ILS (HORIZONTAL FLIGHT) AILS	1	0	2	2 ACTIVE
RADAR ALTIMETER	1	0	2	2 ACTIVE
VHF RECOVERY BEACON	0	0	1	REQUIRED FOR D.F. IF "DOWN AT SEA"

253409

LOCKHEED

PAYOUTLOAD/ORBITER COMMUNICATIONS INTERFACE

LOCKHEED

253410

VHF COMMUNICATIONS RENDEZVOUS RANGE RATE

253411

LOCKHEED

Performance Monitoring and Instrumentation

ACS Avionics Review

PMS REQUIREMENTS SUMMARY

TD 3009 - UNIVAC 1832

	MINIMUM REQUIRED	MAXIMUM CAPABILITY	REQUIRED MARGIN (PERCENT)	ACTUAL MARGIN (PERCENT)
DUAL CPU SPEED (K OPS/SEC)	294	722	100	146
CORE MEMORY CAPACITY (K WORDS)	37	98	50	165
I/O CHANNELS	12	78	100	550
I/O RATE (K WORDS/SEC)	158	1300	100	823

LOCKHEED

253501

PMS UTILIZATION: CPU SPEED, K-OOPS/SEC

	<u>HFT</u>	<u>VFT</u>	<u>INITIAL OP'L</u>	<u>FINAL OP'L</u>
ONBOARD CHECKOUT	150	256	256	256
TELEMETRY FORMAT AND DISPLAY	11	11	11	11
EXECUTIVE AND ABORT WARNING	35	109	117	119
GN&C BACKUP		215	215	215
ONBOARD COFIRM		50	50	50
SYSTEM MANAGEMENT AIDS		1	1	1
AVIONICS CONFIGURATION CONTROL			10	10
CONSUMABLES MANAGEMENT			30	30
RENDEZVOUS COMPUTATION				INCL IN GN&C
PAYOUT MANAGEMENT				120 REPLACES GN&C
A/C AND S/C FLIGHT CONTROLS				INCL IN GN&C
NON-AVIONICS CONFIGURATION CONTROL				20
MISSION PLANNING				10
<u>TOTAL</u>	<u>196</u>	<u>642</u>	<u>690</u>	<u>722</u>

DUAL CPU CAPACITY AVAILABLE: 722

253502

LOCKHEED

PMS UTILIZATION: CORE MEMORY ALLOCATION, K-WORDS

	HFT	VFT	INITIAL OP'L	FINAL OP'L
ONBOARD CHECKOUT	12	19	19	19
TELEMETRY FORMAT AND DISPLAY	11	11	11	11
EXECUTIVE AND ABORT WARNING	2	4	6	8
GN&C BACKUP	11	11	11	11
ONBOARD COFIRM	6	6	6	8
SYSTEM MANAGEMENT AIDS	2	4	4	4
AVIONICS CONFIGURATION CONTROL			4	4
CONSUMABLES MANAGEMENT			4	4
RENDEZVOUS COMPUTATION			4	4
PAYOUT MANAGEMENT			4	4
A/C AND S/C FLIGHT CONTROLS			4	4
NON-AVIONICS CONFIGURATION			4	4
CONTROL			4	4
MISSION PLANNING			4	4
			10	REPLACES GN&C
TOTAL	25	53	65	87*
CORE MEMORY CAPACITY	32/65	65	65	98*

*ASSUMES THREE MEMORY BANKS

253503

LOCKHEED

PMS UTILIZATION: I/O RATE, K-Words/sec

	HFT	VFT	INITIAL OP'L	FINAL OP'L
ONBOARD CHECKOUT	10	19	19	19
TELEMETRY FORMAT AND DISPLAY	9	9	9	9
EXECUTIVE AND ABORT WARNING	0.1	0.1	0.1	0.1
GN&C BACKUP*		1.5	1.5	1.5
ONBOARD COFIRM		0.5	0.5	0.5
SYSTEM MANAGEMENT AIDS	0.1	0.1	0.1	0.1
AVIONICS CONFIGURATION CONTROL			0.2	0.2
CONSUMMABLES MANAGEMENT			0.1	0.1
RENDEZVOUS COMPUTATION			0.1	0.1
PAYOUT MANAGEMENT**			0.1	0.1
A/C AND S/C FLIGHT CONTROLS			1	1
NON-AVIONICS CONFIGURATION CONTROL			0.5	0.5
MISSION PLANNING				0.3
TAPE AND DRUM	48	106	130	178
<u>TOTAL</u>	67.1	136.2	160.6	220.4

I/O CAPACITY AVAILABLE: 1,300

*ASSUMES ACTIVE

**AVERAGE RATE ACTIVE

PERFORMANCE MONITORING SUBSYSTEM

253505

PMS INPUTS/OUTPUTS INTERFACE

LOCKHEED

253506

SUBSYSTEM INTERFACE UNIT FUNCTIONS

- BITE STATUS STORAGE (ALL SUBSYSTEMS)**
- DIGITAL COMMUNICATION INTERFACE (ALL EXCEPT EPS AND EC/LSS)**
- CONFIGURATION CONTROL (ELECTRICAL POWER, COMMUNICATIONS)**
- SUBSYSTEM CONTROL (INSTRUMENTATION, EC/LSS)**
- CABLING JUNCTION (ALL SUBSYSTEMS)**

LOCKHEED

253507

PMS/GSE INTERFACE

253508

LOCKHEED

PMS/BOOSTER INTERFACE

LOCKHEED

253509

PMS/ELECTRICAL POWER CONTROL INTERFACE

253510

PMS/COMMUNICATIONS INTERFACE

LOCKHEED

253511

PMS/GN & C INTERFACE

LOCKHEED

253512

PMS/INSTRUMENTATION INTERFACE

253513

PMS INTERFACE

253514

LOCKHEED

INSTRUMENTATION REQUIREMENTS SUMMARY

TD 3009 - LMSC BASELINE

<u>REQUIREMENT</u>	<u>BASELINE</u>	<u>COMPLIES</u>
DFI	DEDICATED OVERLAY	COMPLIES
RECORDERS	PCM FM VOICE LOOP DUMP	COMPLIES COMPLIES COMPLIES 1/2 HR FLIGHT RECORDER PCM, FM
PCM FORMAT	PROGRAMMABLE	COMPLIES

LOCKHEED

253515

INSTRUMENTATION SYSTEM

LOCKHEED

253516

DFI SUBSYSTEM

253517

LOCKHEED

INSTRUMENTATION REDUNDANCY RATIONALE

FLIGHT CRITICAL CHANNELS

HARDWIRED; MULTIPATH MULTIPLEX
BACKUP

PERFORMANCE MONITORING

REDUNDANCY FURNISHED BY MONITORING
RELATED SIGNALS

RECORDING

REDUNDANCY FURNISHED BY LOOP RECORDER
AND TELEMETRY LINK

253518

LOCKHEED

PMS REDUNDANCY RATIONALE

DUAL PROCESSOR PROVIDES:

- FULL GN&C BACKUP WITH NO DEGRADATION
OF PERFORMANCE MONITORING
- EXPANSION NECESSARY FOR FULL PAYLOAD
MONITORING CAPABILITY
- SINGLE FAILURE WITHOUT LOSS OF FUNCTION -
DEGRADATION IN SPEED ONLY

LOCKHEED

253519

ACS Avionics Review

Checkout and Ground Support

CHECKOUT BASELINE REQUIREMENTS

- ① FLIGHT TEST STATION → PAYLOAD MANAGEMENT
- ② MAINTENANCE/ANOMALY RECORDER
- ③ FLIGHT RECORDER
- ④ SERIAL DIGITAL U/D LINK FOR GROUND AND FLIGHT
CHECKOUT
- ⑤ CHECKOUT STATION INTERFACE
- ⑥ GSE COMMONALITY
- ⑦ MAXIMUM USE OF BUILT IN-TEST

LOCKHEED

53601

PAYOUT MANAGEMENT INTERFACE

REQUIREMENT: PROVIDE PAYLOAD MANAGEMENT CHECKOUT SUPPORT

<u>ISSUE</u>	<u>OBJECT</u>	<u>RECOMMENDATION</u>
PERMANENT STATION VS PROVISIONS	MINIMIZE RECURRING COSTS	PERMANENT ELEMENTS FOR 70-90 PERCENTILE

PROVISIONS TO
ACCEPT PL
PECULIAR
ELEMENTS

LOCKHEED

253602

PAYOUTLOAD MANAGEMENT INTERFACE

LOCKHEED

253603

PAYOUTLOAD/ORBITER INTERFACE IMPACT

<u>SERVICE</u>	<u>CAPABILITY</u>	<u>IMPACT</u>
DATA STORAGE		
CORE	10K WORDS	-
OFFLINE	10K WORDS	-
	1.5M WORDS	CASSETTE
DRUM	TBD (~10K WORDS)	-
COMPUTER OPERATIONS		PRIORITY
ASCENT	0-10K/SEC	-
ORBIT	10K/SEC	-
THRUPUT TO EARTH	10K B/SEC	-

253604

LOCKHEED

PAYOUTLOAD/ORBITER INTERFACE IMPACT (CONT)

<u>SERVICE</u>	<u>CAPABILITY</u>	<u>IMPACT</u>
----------------	-------------------	---------------

ELECT. PWR

ASCENT	15 KW AV 1.0 KW PK	1.3 LB/KWH
ORBIT	19 KW AV .6 KW PK	1.3 LB/KWH

CREW DISPLAY

C&W	30 ANNUNCIATORS	-
STATUS	76 CHARACTERS	-
INSTRUCTIONS	1570 CHARACTERS	-

LOCKHEED

253605

PAYOUTLOAD/ORBITER INTERFACE IMPACT (CONT)

<u>SERVICE</u>	<u>CAPABILITY</u>	<u>IMPACT</u>
VOLUME		
PERMANENT		
EQUIPMENT	5.6 FT ³	219 LB
CABLES SUPPORT		
AND ACCESS	11.0 FT ³	162 LB
GROWTH	4.2 FT ³	-
SUBTOTAL	20.8 FT ³	
PROVISIONS		
EQUIPMENT	14.6 FT ³	-
CABLING AND		
POWER SUPPLIES	11.0 FT ³	-
SUBTOTAL	25.6 FT ³	
TOTAL	46.4 FT ³	

253606

LOCKHEED

MAINTENANCE ANOMALY RECORDER

DATA STORED

QTY OF 48-BIT WORDS

FAILURE/MALFUNCTION

303

REALTIME ALARMS

758

POST-FLIGHT TREND DATA

300,000

TOTAL

301,061

13% OF PMS BASELINE CAPACITY

PARAMETER	VALUE	TIME	MODE	2	3	SPARE
12	8	12	4			

SOURCE

ENTRY TYPE

FLIGHT RECORDER

CAPACITY

7-TRACK, 1/2-INCH TAPE

AREA MICROPHONE

15 CHANNELS (5 AT 10 SPS)
10 AT 1 SPS

PILOT VOICE

CLOCK

COPILOT VOICE

PMS DATA*

PAYLOAD MONITOR VOICE

*64 WORDS/FRAME/SEC

253608

LOCKHEED

98

FLIGHT RECORDER (CONT)

INPUT DATA

5 CHANNELS AT 10 SAMPLES/SEC

70 CHANNELS AT 1 SAMPLE/SEC

STORAGE TIME

30 MINUTES - 150 FT LOOP

PLAYBACK

5-MINUTE DUMP AT 6:1 SPEED

RECOMMEND PLAYBACK BE LIMITED
TO GROUND OPERATION FOR 100%
FLIGHT COVERAGE

LOCKHEED

253609

GROUND SUPPORT / VEHICLE MISSION INTERFACE

FLOW DIAGRAM

LOCKHEED

253632

GROUND SUPPORT / VEHICLE CHECKOUT INTERFACE

FLOW DIAGRAM

253631

LOCKHEED

CHECKOUT STATION / GSE INTERFACE-MODE

C/O CONTROLLED BY GROUND CREW

- GSE PRIME
- ORBITER SLAVE
- NON-AVIONICS C/O AND VALIDATION
- AVIONICS C/O SUPPORT AND VALIDATION
- VERIFICATION

CHECKOUT STATION/GSE INTERFACE-MODE II

- ORBITER PRIME
- GSE SLAVE
- AVIONICS SYSTEM LEVEL C/O AND VALIDATION
- NON-AVIONICS SYSTEM C/O SUPPORT AND VALIDATION VERIFICATION

GSE INTERFACE - HORIZONTAL

253612

GSE INTERFACE - HORIZONTAL

253612

GSE INTERFACE – VERTICAL

115 VAC, 400~, 3 PHASE CONNECTOR
DATA LINK CONNECTORS
UNIFIED S-BAND CONNECTOR
INTERCOM STATION

- STATIC GROUND
- ▲ AIR CONDITIONING DUCT

LOCKHEED

253613

GROUND CHECKOUT U/D LINK

TLM HARD LINE U/D LINK ≡ FLIGHT (320 KB/S)

PMS HARDLINE U/D LINK

≡ 6 MHZ
200KHZ DESIGN POINT

CHECKOUT GSE

LOCKHEED

253611

FLIGHT CHECKOUT U/D LINK

40K DATA POINTS/SEC
(320 KB/S DOWN LINK)

30 WORDS/SEC
(1 KB/S UP LINK)

COMMANDS - 32 BIT WORDS
DATA POINTS - 8 BIT WORDS

LOCKHEED

253610

GSE COMMONALITY

<u>EQUIPMENT SOURCE</u>	<u>QTY</u>	<u>% (WT)</u>	<u>EXISTING GSE</u>	<u>NEW GSE</u>	<u>ATE & UNITS</u>	<u>(USE VAST)</u>
S-3A	43	40	VAST	N/A		
C-5A L-1011 C-141 747	118	33	UNITS	N/A		
AH-56 APOLLO P-3V						
AGENA	8	8				
NEW	71	19	N/A			
				MAKE VAST COMPATIBLE		

LOCKHEED

253616

GSE COMMONALITY (CONT)

GSE TYPE APPLICATION	AVAILABLE	NEW	GENERAL PURPOSE
	DEDICATED UNIT	DEDICATED UNIT	
DEVELOPMENT	N/A	N/A	N/A
MANUFACTURING	ALL	VAST FOR LARGE S/S	N/A
INTEGRATION FACILITY	ALL	VAST	N/A
VEHICLE SUPPORT			
LAUNCH			
Maintenance			
EQUIPMENT SUPPORT			
LAUNCH SITE			
OVERHAUL CENTER			

MOD
REQD

MOD
REQD

VAST
(S3A)

VAST
(S3A)

N/A
N/A

TRADE

TRADE

253617

LOCKHEED

169

SHUTTLE

BITE UTILIZATION SUMMARY

C/D ELEMENTS	QTY LRUs	BITE C/O		SOFTWARE C/O		MANUAL C/O		PERCENT BITE	
		4	0	92	19	0	9	-	4
UNITS (BCXES)	200	89							
UNITS (S/C AND XDCRS)	980	0		980	0	0	0		
PERCENT				7	84		9		

SWITCH/CB – CONTROL/MONITORING

ESTIMATED QUANTITIES

	MANUAL ACTUATE * <u>(MIN)</u>	
PUSHBUTTON (83% LIGHTED)	168	~9
ROTARY	21	~5
TOGGLE	34	~5
PRESS-TO-TEST (INCL C&W)	402	~2
KEYBOARDS (149 KEYS)	3	~8
PROPORTIONAL CONTROLS	12	~12
CIRCUIT BREAKERS (MANUAL)	300	~15
TOTAL		56

*MANUAL ACTUATION TO PMS CUE

253619

LOCKHEED

SWITCH/CB CONTROL/MONITORING

REMOTE CHECKOUT

NONRECURRING

DEVELOP 7 SWITCH TYPES (\$40K EA)	=	\$280K
MODIFY AND QUALIFY 14 PANELS (\$20K EA)	=	280K
INSTALLATION FIRST VEHICLE (150 MH/ITEM) (940 ITEMS - 2820 POINTS)	=	<u>2.4M</u>
SUBTOTAL		\$2.96M

RECURRING

4 VEHICLES AT 1/2 FIRST VEHICLE	=	\$4.8M
TOTAL		<u>\$7.76M</u>

LOCKHEED

253620

SWITCH/CB CONTROL/MONITORING

MANUAL CHECKOUT

MANUAL C/O LABOR

2 TEST/FLIGHT - 2 MEN AT 2 HR/TEST
FOR 445 FLIGHTS

\$60.5K

SOFTWARE

30K WORD PROGRAM AT \$100/WORD

\$ 3M

TOTAL

\$ 3.605M

LOCKHEED

253620A

SWITCH/CB CONTROL/MONITORING

OPERATIONAL ACTUATE

ESSENTIAL MANUAL FUNCTION NOT VERIFIED BY AUTOMATIC TEST

SAFETY NOT IMPROVED

COST EFFECTIVITY

- COMPUTER PROMPTED MANUAL TEST \$3.6M
- AUTOMATIC REMOTE TEST \$7.8M

RECOMMEND - MANUAL TEST UNDER COMPUTER CONTROL

LOCKHEED

253621

REDUNDANCY MANAGEMENT

KEY FACTOR AFFECTING REDUNDANCY MANAGEMENT
TECHNIQUE IS TIME CRITICALITY

TIME CRITICALITY IS CHARACTERIZED BY INERTIA
(LONG TIME CONSTANT)

EXAMPLES - APUS, SMOOTHING ALGORITHMS,
AND TRIM (ERROR INTEGRATION)

LOCKHEED

253622

REDUNDANCY MANAGEMENT (CONT)

TIME CRITICALITY

REDUNDANCY MANAGEMENT (CONT)

		<u>HARDWARE</u>	<u>SOFTWARE</u>
TIME NOT CRITICAL	• BIT WARNING • CREW AWARENESS	• BIT WARNING WITH SOFTWARE CORRECT AND CREW WARNING	• REALTIME TRENDING • LOOP TEST-TO-CHECK
	• CREW CORRECTIVE ACTION	• LOGIC EVALUATION OF MULTIPLE SIGNALS	• CPU MEMORY I/O
		• END-TO-END PERFORMANCE EVALUATION	• OFFLINE TEST UNDER CREW CONTROL
TIME CRITICAL	• MAJORITY VOTING • AVERAGING • MEDIAN SELECT	• ALTERNATE HARDWARE SELECT ON BASIS OF COMPUTER MODEL	• CREDIBILITY TEST PRIOR TO EXECUTE FOR FALSE OUTPUT INHIBIT
			• WATCHDOG TIMER TO INITIATE ALTERNATE SOLUTION
			• GHOSTING WITH ALTERNATE COMPUTATIONAL PATH

LOCKHEED

253624

REDUNDANCY SELECTION

REDUNDANCY DEVELOPED IN EACH SUBSYSTEM

**REDUNDANCY LEVEL DETERMINED WITH AEROSPACE
CORP. COMPUTER PROGRAM (SYSEFF)**

**FAIL-OPERATIONAL IS MINIMUM REDUNDANCY FOR
FLIGHT CRITICAL**

**SYSEFF IN USE AT LMSC SINCE 1968 ON OPERATIONAL
PROGRAMS**

LOCKHEED

253625

REDUNDANCY SELECTION

SYSEFF PROGRAM OVERVIEW

SUBSYSTEM INPUTS

- MAXIMUM COST
- MAXIMUM WEIGHT
- MAXIMUM VOLUME
- ELEMENT CONFIGURATION

ELEMENT INPUTS

- COST
- WEIGHT
- VOLUME
- FAILURE RATE

LIMITATIONS

- 30 SUBSYSTEMS
- 500 ELEMENTS

LOCKHEED

253626

REDUNDANCY SELECTION

SYSEFF CAPABILITY USED

REDUNDANCY CONFIGURATION OPTIMIZATION
TO COST, WEIGHT, VOLUME LIMITS

RELIABILITY AS A FUNCTION OF OPERATING
TIME

RELIABILITY VS CRITICAL FUNCTION
ALTERNATIVES

MACHINE PLOTS

S/S RELIABILITY VS CONFIGURATION (WT)

S/S RELIABILITY VS ELAPSED TIME

S/S EFFECTIVE COST VS CONFIGURATION (WT)

LOCKHEED

253627

REDUNDANCY SELECTION

253628

LOCKHEED

121

REDUNDANCY SELECTION (CONT)

253629

LOCKHEED

ACS Avionics Review

Software

SOFTWARE-RELATED BASELINE OVERVIEW

253701

SOFTWARE-RELATED BASELINE CONFIGURATION ORBITER VEHICLE AVIONICS

253702

LOCKHEED

BASELINE SOFTWARE FUNCTIONS VS EFFECTIVITY

<u>FUNCTION</u>	<u>HFT</u>	<u>VFT</u>	<u>INITIAL OPS</u>	<u>FINAL OPS</u>
ONBOARD CO/FI AND DATA EXTRACTION	●	0	0	0
INSTRUMENTATION PROCESSING AND CONTROL	●	0	0	0
ABORT AIDS	●	0	0	0
GN&C COMPUTATIONS	●	●	0	0
ONBOARD CO/FI/RM	●	●	0	0
SYSTEM MANAGEMENT AIDS	●	●	0	0
AVIONICS CONFIGURATION CONTROL	●	●	●	0
CONSUMABLES MANAGEMENT	●	●	●	0
RENDEZVOUS COMPUTATION	●	●	●	0
PAYOUT MANAGEMENT	●	●	●	●
A/C AND S/C FLIGHT CONTROL	●	●	●	●
NONAVIONICS CONFIGURATION CONTROL	●	●	●	●
MISSION PLANNING	●	●	●	●

253704

LOCKHEED

BASELINE SOFTWARE CONFIGURATION

253705

BASELINE SOFTWARE CONFIGURATION

253706

LOCKHEED

S-3A SOFTWARE HIERARCHY

(EXTENT OF APPLICATION TO SHUTTLE)

LOCKHEED

253719

SOFTWARE COST ESTIMATES

EST SIZE (KW)	COMPARATIVE BASIS	S-3A FACILITIES AND DEPARTURE*			OTHER GRD FACILITIES			NEW DEPARTURE		
		EFFECT- IVITY	\$ PER WORD	TOTAL \$ (M)	\$ PER WORD	TOTAL \$ (M)	\$ PER WORD	TOTAL \$ (M)	\$ PER WORD	TOTAL \$ (M)
ONBOARD MISSION SOFTWARE	32 S-3A EQUIV + APOLLO	HFT	66	2.1	91	2.9	125	4.0		
ONBOARD TEST SOFTWARE	125	FMOF	79	9.9	93	11.6	119	14.9		
GROUND SYSTEM SOFTWARE	127 S-3A EQUIV	ALL	34	4.3	50	6.4	72	9.1		
	524 S-3A EQUIV + APOLLO	ALL	20	10.6	31	16.4	37	19.5		
	683	HFT	24	17.0	38	25.7	48	32.6		
	776	FMOF	32	24.8	44	34.4	56	43.5		

NOTES:

- * 1. PER BASELINE; I.E., USE EXISTING S-3A GROUND/ONBOARD COMPUTER- SOFTWARE SYSTEMS AS RECOMMENDED
- 2. "OTHER FACILITIES" AND "NEW DEPARTURE" ASSUMES SUITABLE EXISTING LANGUAGES AND ASSOCIATED SUPPORT SOFTWARE
- 3. \$ PER WORD INCLUDES COMPUTER-HOUR COSTS.

$$\begin{aligned} HFT \Delta &= 15.6M \\ FMOF \Delta &= 18.7M \end{aligned}$$

LOCKHEED

GENERIC SOFTWARE FAILURES-DEFINITIONS

FAILURES WHICH EFFECTIVELY CANCEL REDUNDANCY, I.E., A FAILURE OF ONE OR MORE SOFT LOGIC PROCESSES UPON WHICH REDUNDANT SOFTWARE AND/OR HARDWARE FUNCTIONS ARE DEPENDENT

GENERIC SOFTWARE FAILURES CAN BE

- TRANSITORY ENVIRONMENT COUPLED
- PERSISTENT HARDWARE COUPLED
- DETECTED CREW (PROCEDURE) COUPLED
- UNDETECTED SYSTEM COUPLED
- RECOVERABLE SINGLE-EVENT DRIVEN
- NONRECOVERABLE MULTIPLE-EVENT DRIVEN

GENERIC FAILURE TYPE/SOURCES/AFFECTS

TYPE SOURCE	DESIGN/CODING ERROR OR DEFICIENCY	CONTAMINATED DATA AND/OR LOGIC
IDENTICAL REDUNDANT STRINGS	HIGH GENERIC FAILURE POTENTIAL LOWER COST UNIFORM CAPABILITY	IF COMMON DATA SOURCE, GENERIC FAILURE POTENTIAL IS HIGH; OTHERWISE, POTENTIAL IS LOW
DISJOINT REDUNDANT STRINGS	LOW GENERIC FAILURE POTENTIAL HIGHER COST POSSIBLE CAPABILITY VARIATION	
COMPLEX INTERDEPENDENCE	SYSTEM VULNERABLE TO UNANTI- CIPATED, UNTESTED SEQUENCES AND RESULTS	SYSTEM VULNERABLE REGARDLESS OF DATA SOURCES
COMPLEX CREW INTERACTION	GENERIC FAILURE POTENTIAL HIGH HIGHER COST HIGH FLEXIBILITY	GENERIC FAILURE POTENTIAL HIGH
PROBABLE GENERIC FAILURE ATTRIBUTES	PERSISTENT SINGLE EVENT DRIVEN DETECTABLE NONRECOVERABLE	ALL COMBINATIONS: ENVIRONMENT AND/OR CREW COUPLED

253710

LOCKHEED

SOFTWARE FAILURES-APPROACH CONSIDERATIONS

GENERIC FAILURE TYPE/SOURCE		APPROACH CONSIDERATIONS		REALTIME
FAILURE CAUSE	DESIGN/DEVELOPMENT	VERIFICATION		
IDENTICAL COPIES	DESIGN/CODING DEFICIENCY	DISJOINT IMPLEMENT.	EXTEN. "TEST CASE" STEP-THRU WITH PARAMETER VARIATIONS:	PMS BACKUP OF CRITICAL GNC FUNCTIONS GNC FAULT TOLERANCE FEATURES: <ul style="list-style-type: none">• TIME-OUT/RETRY• FREQ. CHKPTS• REDUNDANT STRINGS
	CONTAMINATED LOGIC/DATA		ACTUAL FLT HARDWARE <ul style="list-style-type: none">• DYNAMIC LAB (LCF) SIMULATION	
SHARED COMMON ELEMENT	COMMON ROUTINE FAILURE	FAULT-TOLERANT DESIGNS		
	ALTERABLE DATA SET CONTAM.		UNTESTED SEQ, BAD LOGIC	CONTROLLED FAULT INSERTION
COMPLEX INTER-DEPENDENCE	NOISE/BAD DATA PROPAGATION	MODULARITY, INTERFACE CONTROL		PMS MONITORED, GNC SOFTWARE SELF-CHECKS
			UNTESTED/ILLEGAL PROCEDURE	ACTUAL CREW SCENARIOS
COMPLEX CREW INTERACTION	INADVERTENT ACTIONS		PARTITIONED CREW INTERFACES	SPECIAL DATA EXTRACTION
			SIMULATION, REMOTE TERMINALS	BUILT-IN SOFTWARE DEBUG AIDS
ALL TYPES/SOURCES, AND CAUSES				ADVANCED ERROR RECOVERY METHODS

LOCKHEED

253712

GENERIC FAILURE PREVENTION - VERIFICATION TESTING

TYPICAL

A = ALL POSSIBLE
OPERATIONAL
ENVIRONMENTS
B = CONSIDERED IN
DESIGN
C = SELECTED FOR
TEST

$$C \leq 0.4B \leq 0.2A$$

CONSIDER FOR SHUTTLE

$$C \approx B \leq 0.6A$$

$$C = C_1 + C_2 + C_3 + C_4 \leq B$$

REASONS:

- BITE-BASEDIMS/SIU/LRU MONITOR AND CONTROL
- SOFTWARE DEVELOPMENT APPROACH
- PHASED DEVELOPMENT

253713

LOCKHEED

GN&C SOFTWARE RELIABILITY CONSIDERATIONS

*MAY NOT BE NECESSARY

SYNCHRONOUS OPERATION AND SWITCH OVER CONCEPTS

GN&C INTERNAL SOFTWARE REDUNDANCY

SYNCHRONIZATION

SWITCHOVER CONCEPT

LOCKHEED

253715

GN&C BACKUP CONSIDERATIONS

PMS OPERATION AND SWITCHOVER CONCEPTS

POSSIBLE BACKUP MODES

DYNAMIC PRIORITY (TIME, ALERT, OR CREW ESCALATED) TASK LEVEL SCHEDULING, TOTAL PMS RESOURCES/EXEC

SWITCHOVER CONCEPT

<u>OPERATION</u>	<u>PMS</u>	<u>YES</u>	<u>NO</u>	<u>GN&C</u>
GN&C ALERT?	X			
SYNC OK?	X			

VERIFY GENERIC?

XFER ENABLED?

SW TO PMS/MAN

SELF-TEST

SET STATUS TABLE

GOOD STATUS RTN

MISSION-PHASE-DEDICATED
CONFIGURATION; Cp +
MEMORY + +10 + SEPARATE
EXEC

SAME AS ABOVE (NUMBER OF STRINGS INCREASED TO 3 OR
4 WITH PMS PORTION DISJOINT)

REAL-TIME BACKUP SUMMARY

SOFTWARE FUNCTION	GNC COMPUTER	IMPLEMENTATION POSSIBILITIES PMS COMPUTER	DATA LINK	CREW	FAILURE-RECOVERY METHODS SINGLE STRG GENERIC
ENGINE ORDER COMMANDS					SWITCH TO PMS OR MANUAL
STEERING COMMANDS	DUAL STRING PRIME	SINGLE STRING BACKUP	AID*	ALTERNATE	REDUNDANT STRING- ADVISE PMS
POSITION KEEPING		ENABLE			
GNC MODE CONTROL				ALTERNATE	AID
TARGETING COMPUTATION					
VEHICLE STABILIZATION	PRIME (S/C) AUG (A/C)	PRIME (A/C)	-	ALTERNATE	
STATE VECTOR UPDATE	AUGMENT				
SYSTEM PERF MONITOR					DEGRADED MODE OR GO TO MANUAL AND/OR DATA LINK
SYSTEMS MANAGEMENT					NA
SYSTEMS COFIRM					
MAINTENANCE RECORDING					

*MAY BE ALTERNATE FOR EARLY MOF

253717

LOCKHEED

GENERIC FAILURE PREVENTION / BACKUP RECOMMENDATIONS

DISJOINT DESIGN OF GNC SOFTWARE BACKUP IN PMS

EXTENSIVE BITE + STANDARD DIGITAL-SERIAL INTERFACE (S-3A TYPE) FOR REMOTE
(PMS/SIU) ON/OFF/MODE CONTROL AS MEANS OF EFFECTIVE SIMULATION/VERIFICATION
TESTING IN SIL

ALTERNATE CONTROL PATH CAPABILITY FOR ALL MISSION-CRITICAL SUBSYSTEM
CONTROL FUNCTIONS, USING EXISTING HARDWIRE-INDEPENDENT PMS CAPABILITIES

EXTENSIVE OBCOFIRM

- CONTINUOUS, ULTRA-RESPONSIVE FAULT MONITORING
- INTER-MISSION-PHASE, CANNED-PROCEDURE CHECKOUT
- EXEC AND TASK PROGRAM DEGRADED MODES
- CREW INTERACTION CONCENTRATED IN PMS

ACS Avionics Review

Display and Controls and Crew Interface

PILOTAGE D&C APPROACH RATIONALE

A. D&C FOR CREW FLIGHT SAFETY

- HARDWIRE
- "SACRED SIX"
- C&W ANNUNCIATORS
- DUPLICATE PILOT/COP PILOT LAYOUT
- FLYABLE BY ONE CREWMAN
- NON-COMPUTER DEPENDENT (EXCEPT GN&C)

B. PILOTAGE FLEXIBILITY

- MULTI-PURPOSE VIDEO DISPLAY SYSTEM
- TRANSFER OF CONTROL
- MULTI-FUNCTION KEYBOARD
- CRT AND HARDWIRE DISPLAY MIX UTILIZATION POTENTIAL
- TOTAL A/N, GRAPHIC CRT PRESENTATION CAPABILITY
- SIMPLIFIED USE

LOCKHEED

253801

PILOTAGE D&C APPROACH RATIONALE (CONT)

C. PERIPHERAL D&C CAPABILITY

- COMPUTER INTERFACE
- CRT-KEYBOARD FLEXIBILITY
- MODULAR INTERFACE AND BUILDUP
- MULTI-FUNCTIONAL UTILIZATION FEATURES

D. INTEGRATION FEATURES

- MAJORITY OF OFF-SHELF EQUIP. (S-3A, L-1011, C-5A)
- MODULARITY
- BUILT-IN TEST CAPABILITY
- DEMONSTRABLE MAINTENANCE
- PROVEN USE HISTORIES

253801A

LOCKHEED

MAIN PILOT/COPILOT INSTRUMENT PANEL

LOCKHEED

253802

OVERHEAD INSTRUMENT PANEL

1. ENGINE FIRE CONTROL PANEL
2. AC GENERATOR PANEL
3. INVERTER CONTROL
4. INVERTER STATUS
5. TRANSFORMER/RECTIFIER PANEL
6. FUEL CELLS/BATTERIES PANEL
7. CRYOGENS PANEL
8. FUEL CELL TO DC BUS PANEL
9. FUEL CELL READY STATUS
10. PURGE CONTROL
11. WINDOW/CONDITIONING CONTROLS
12. EXTERIOR LIGHTS PANEL
13. INTERIOR LIGHTS PANEL
14. ANTI-SKID CONTROLS
15. ECS PANEL
16. APU PANEL
17. AIR DATA SENSOR HEAT GROWTH AREA
18. FCS COMPUTER STATUS
19. RUDDER/ELEVON LIMITERS
20. APU ENGINE START
21. MISSION TIME
22. EVENT TIME

C&W-CRT-KEYBOARD-COMPUTER INTERFACE

253804

PILOTAGE CREW KEYBOARD LAYOUT

PILOT KEYBOARD

GN&C	AVI- ONICS	POWER	TPS	PROP	STRUCT	PAY- LOAD	EC/LSS	CREW	INITIATE	PROG CHNG	ENTER	CLEAR
1	2	3	0	+	-		ADV.	REV.				
4	5	6	.			CNTR	RIGHT	ERROR				
7	8	9	SPACE	SPACE		DISPLAY	DISPLAY	DISPLAY				
						RELEASE	RECALL					

253805

LOCKHEED

TYPICAL GN&C MDU PRESENTATION

GN&C-R-8 RETROGRADE PRETHRUST

1-9

[10] SITE XXXXXX	[11] LAT XX.XX	[12] LON XX.XX
[13] RETROGRADE TIME	XX : XX : XX	MIN : XX SEC : XX
	DAY XX	HR XX
COUNTDOWN		
RETROGRADE SEARCH MODES		
[14] RETROGRADE OPPORTUNITY NO. X		RETROGRADE DELTA V XXX.X
[15] RETROGRADE IN XX MINUTES		RETROGRADE ANGLE XX.X
ENTRY DOWN RANGE XX XXX		
ENTRY CROSS RANGE X XXX		

253807

LOCKHEED

MULTIFUNCTION DISPLAY UNIT AND KEYBOARD CENTER POSITION

GN&C-R-9 RETROGRADE BURN SET-UP LATITUDE 1-16

LAT AREA	XXXX	DEG	9-1-1
LAT AREA	XXXX	DEG	9-1-2
LAT AREA	XXXX	DEG	9-1-3
LAT AREA	XXXX	DEG	9-1-4
LAT AREA	XXXX	DEG	9-1-5
LAT AREA	XXXX	DEG	9-1-6
LAT AREA	XXXX	DEG	9-1-7

CMND	STATUS	INIT	PRG CHNG	ENTR	CLR													
			TIME															
GN	AV- C & ION	EPS	TPS	PROF	STR- UCT	P/L	EC/ LS	CREW	SP	DIS	ADV	REV	ERROR	DIS	DIS	DIS	REL	REC
1	2	3	0	+														
4	5	6	.	-														
7	8	9	SPACE	SP														

253806

LOCKHEED

148

PROPELLION PANEL

253810

PROPELLION SYSTEM DISPLAY PARAMETERS

SYST	DISPLAY NO.	METERS	PARAMETER	PERFORMANCE	
				RPM – 0-100% OF CAPABILITY	TOT – TURBINE OUTPUT TEMPERATURE
ABES	4	1	ENGINES (4)	% FUEL REMAINING 0-100%	% FUEL REMAINING 0-100%
	4	1	ENGINES (4)		
	1	1	TANK(S) (1)		
	1		TANK(S) FERRY (1)		
APU	4	1	ENGINES (4)	% OF POWER OUTPUT	LIGHTS INDICATE OPERATING UNITS
	4	4	ENGINES (4)		
	1	1	TANK (1)		
	1		TANK (1)		FUEL TANK FEED PRESSURE
MAIN	3	1	ENGINES (3)	% OF POWER OUTPUT CAPABILITY	LIGHTS INDICATE ENGINE FAILURE
	3	3	ENGINES (3)		
	1	1	ENGINE (1)		ΔV REMAINING
	2	1	TANKS (2)		LH ₂ AND LO ₂ TEMPERATURE
	2	1	TANKS (2)		LH ₂ AND LO ₂ PRESSURE
	4	4	TANKS (4)		LH ₂ AND LO ₂ LIQUID LEVEL REMAINING

LOCKHEED

253830

PROPELLION SYSTEM DISPLAY PARAMETERS (CONT)

SYST	DISPLAY NO.	METERS	PARAMETERS	PERFORMANCE					
				% OF POWER OUTPUT CAPABILITY	N ₂ O ₄ - QUANTITY	PRESSURE			
OMS	2	1	ENGINES (2)	FUEL (A-50) - QUANTITY	TANKS (2)	TEMPERATURE			
	2	1	TANKS (2)						
	2	1	TANKS (2)						
	2	1	TANKS (2)						
	2	1	TANKS (2)						
	2	1	TANKS (2)						
	2	1	TANK (2)						
	2	1	TANK (2)						
	2	1	TANK (2)						
	3	3	TANKS (3)		PROPELLANT - QUANTITY				
RCS	3	3	TANKS (3)	OX - QUANTITY					
	3	3	TANKS (3)						
	3	3	TANKS (3)						
	3	3	TANKS (3)						
	3	3	TANKS (3)						
	3	3	TANKS (3)						
	3	3	TANKS (3)						
	3	3	TANKS (3)						
	34	34	ENGINES (34)	LIGHTS INDICATE NON-OPERATING ENGINES					
	66	17	METERS						
TOTAL			INDICATOR LIGHTS DIGITAL READOUTS	4					

253830A

LOCKHEED

SHUTTLE CREW COMPARTMENT AND AIRLOCK LAYOUT

CREW COMPARTMENT & AIRLOCK LAYOUT

PAYOUT CONTROL/DISPLAY INTERFACE

SHUTTLE

233404

PAYOUT LOAD CONSOLES - GENERAL PURPOSE AND MISSION PECULIAR

PAYOUT LOAD CONSOLE
- MISSION PECULIAR MODULES

PAYOUT MONITORING & C/O CONSOLE
- GENERAL PURPOSE

A. MODULE 5H x	8W x	20D	1. MISSION & EVENT TIMERS
B. MODULE 10H x	15W x	20D	2. GROWTH/MISSION PECULIAR
C. MODULE 10H x	25W x	20D	3. MALFUNCTION ANNUNCIATOR
D. MODULE 10H x	35W x	20D	& STATUS DESCRIPTORS
E. MODULE 10H x	45W x	20D	4. MULTI-FUNCTION DISPLAY
			UNIT (CRT) - 2
			5. REMOTE TV CAMERA CONTROLS
			& VIDEO TAPE CONTROLS
			6. MODE CONTROLLER
			7. KICK SPACE
			8. ABORT DISPLAY
			9. TAPE/FILM UNIT
			10. PAYLOAD SIU CONTROLS
			11. GROWTH/MISSION PECULIAR
			12. PRINTER
			13. MULTI-FUNCTION KEYBOARD
			14. NUMERIC INPUT CONTROL
			15. POWER CONTROLS
			16. GROWTH/MISSION PECULIAR

MANIPULATOR / PILOTAGE STATION - AFT

1. TELEOPERATOR C/D PANEL
2. TV MONITOR SCREEN
3. TV MONITOR SCREEN
4. TV MONITOR SCREEN
5. RANGE DISPLAY
6. RANGE RATE DISPLAY
7. VEHICLE ANGLES
8. AFT VIEWING MECHANISM
9. PAYLOAD DOCKING SENSOR PANEL
10. UMBILICAL INTERFACE PANEL
11. PAYLOAD/CRADLE CAPTIVE MECH PANEL
12. DEPLOY/RETRIEVE MECH BOOM PANEL
13. MANIPULATOR C/D PANEL
14. ATTITUDE CONTROLLER
15. WORK SHELF PANEL
16. MANIPULATOR CONTROL
17. MODE SELECT & TV SLEW CONTROL PANEL
18. MANIPULATOR CONTROL
19. TELEOPERATOR CONTROLLERS
20. TRANSLATION CONTROLLER

ATMOSPHERIC SCIENCE AND TECHNOLOGY

H-R IR RADIOMETER DETECTION MODULE (CLOUD COVER-TEMP)

UV SPECTROMETER }
NEAR IR SPECTROMETER }
 EARTH SPECTRAL RADIANCE

MICROWAVE SPECTROMETER - (EARTH/ATMOSPHERE SPECTRAL RADIANCE)

STAR TRACKER TELESCOPE - (ATMOSPHERE VERTICAL PRESSURE DISTRIBUTION)

MULTI-CHANNEL RADIOMETERS (HEAT BUDGET OF HURRICANES, TORNADOES, STORMS)

LOCKHEED

253815

156

ASTRONOMY / ASTROPHYSICS

- TELESCOPE OPERATIONS MODULE
- CORONAGRAPH MODULE
- RADIO ASTRONOMY 1 TO 5 MCPS RANGE MODULE
- RADIO ASTRONOMY 1 TO 5 MCPS USING "V" ANTENNA
- MICROWAVE SPECTROPHOTOMETER MODULE
- X-RAY DETECTOR
- EMISSION LINE RADIOMETRY
- ULTRAVIOLET AND X-RAY PHOTOMETRICS MODULE
- DIPOLE AND V-ANTENNA ARRAY DEPLOYMENT/RETRACT UNIT
- IR EMISSION LINE RADIOMETRY SYSTEM

LOCKHEED

253819

OCEANOGRAPHY / MARINE TECHNOLOGY

RADAR IMAGING (0.3 - 2.0 GC) UNIT
MICROWAVE RADIOMETRY (4, 8.5, 15, 33 MM) MODULE
PULSED VHF REFLECTIVITY (75 to 450 MC) UNIT

SEA ICE SPECTRAL SIGNATURES –
ICE MASSES/BERGS AND THICKNESS

OPTICAL (GLITTER OBSERVATION) TELESCOPE UNIT
RADAR (BACK SCATTER) UNIT
IR AND MICROWAVE RADIOMETRY (0.1U)

WAVES AND CURRENTS SPECTRAL
SIGNATURES – WIND, WAVE, SWELL
HEIGHT, AND CURRENT MEANDERINGS

MULTISPECTRAL SENSOR (1 - 30U)
HIGH RESOLUTION PHOTOGRAPHY

COASTAL AND MARINE GEOLOGY SPECTRAL
SIGNATURES – BEACH/COASTAL STRUCTURES,
SEDIMENTATION

RADAR (BACK SCATTER) UNIT
RADIOMETRIC (TEMPERATURE AND HEAT FLUX) UNIT

NARINE METEOROLOGY AND OCEAN-
OGRAPHIC FORECASTING SPECTRAL
SIGNATURES – AIR/SEA INTERACTION
AND ENERGY EXCHANGE

IR RADIOMETRY (2 - 15U)
MULTISPECTRAL PHOTOGRAPHY

MARINE BIOLOGY SPECTRAL
SIGNATURES – MIGRATION,
SCHOOLING, AND DISTRIBUTION

LOCKHEED

253817

GEOLOGY-HYDROLOGY

PASSIVE MULTISPECTRAL IMAGERY (0.3 - 30U)
HIGH RESOLUTION PHOTOGRAPHY (0.4 - 9U)
RADAR IMAGERY (35 KMC)

GEOLOGICAL FIELD MAPPING
KEY SPECTRAL SIGNATURES

VISUAL PHOTOGRAPHY (.4 - 9U)
HIGH RESOLUTION MICROWAVE EMISSION
IMAGING (9 KMC)
IR SPECTROMETERS (1.0 - 30U)

ECONOMIC GEOLOGY
KEY SPECTRAL SIGNATURES

HIGH RESOLUTION (VISUAL RANGE) PHOTOGRAPHY
INFRARED IMAGER (2 - 15U)
INFRARED SPECTROMETER (1.0 - 3U)
MICROWAVE IMAGER (9 KMC)
MICROWAVE RADIOMETER (4, 8.5, 15, 33 MM)
NONCOHERENT IMAGING RADAR (35 KMC)

HYDROLOGIC PHENOMENA
KEY SPECTRAL SIGNATURES

VISUAL PHOTOGRAPHY (0.4 - 9U)
MULTISPECTRAL PHOTOGRAPHY (0.2 - 1U)
RADAR IMAGERY (0.3 - 2 GC)
MAGNEMONOMETER

GEOMORPHOLOGY AND TECTONOPHYSICS
SENSOR FORMS - LAND FORMS, EROSION
AND ISOSTASY

ACTIVE VHF RADAR (75 - 450 MC)
HIGH RESOLUTION MICROWAVE RADAR (0.3 - 2 GC)
(SIDE LOOKING COHERENT POLARIZATION RADAR)
HIGH RESOLUTION MICROWAVE EMISSION IMAGING
(9 KMC)

PETROLOGY AND MINERALOGY
SPECTRAL SIGNATURES - ROCK
COMPOSITION/VARIATION

PHYSICAL SCIENCES

- RADIATION MONITOR UNIT
- AIRGLOW HORIZON PHOTOGRAPHY UNIT
- MAGNOMONOMETER (FIELD LINES)
- PARTICULATE ANALYZER
- ENVIRONMENT ANALYSIS UNIT
- THERMOANALYZER

LOCKHEED

253819A

GEOGRAPHY

VISUAL PHOTOGRAPHY-CARTOGRAPHIC CAMERA
(75 x 75 NM FIELD, 20-FT RESOLUTION) (0.7U)
MAPPING CAMERAS (300 x 300 NM FIELD,
200-FT RESOLUTION) (0.4 - 0.5 - 0.9U)

CARTOGRAPHIC AND GEODETIC
SURVEY SPECTRAL SIGNATURES -
TOPOGRAPHIC FEATURES

MULTISPECTRAL IMAGERY UNIT (0.2 - 1U)
MULTIFREQUENCY, MULTIPOLARIZATION,
COHERENT RADAR SYSTEM (8GC, 2GC, 5GC)
IR IMAGES (2 - 15U)

URBAN GEOGRAPHY
SPECTRAL SIGNATURES -
CULTURAL FEATURES

MULTISPECTRAL PHOTOGRAPHY (0.4 - 0.9U)
HIGH-FREQUENCY SIDE-LOOKING RADAR (35 KMC)
HIGH-RESOLUTION, COHERENT, SIDE-LOOKING
RADAR (8 KMC)

TRANSPORTATION GEOGRAPHY
SPECTRAL SIGNATURES

VISUAL PHOTOGRAPHY (0.7U),
MULTISPECTRAL PHOTOGRAPHY
IR IMAGES (2 - 15U)
MULTIFREQUENCY RADAR (8GC, 2GC, 0.5GC)

POPULATION DISTRIBUTION
SPECTRAL SIGNATURES -
SETTLEMENT, LAND USE,
AND DIFFUSION

LOCKHEED

253820

AGRICULTURE/FORESTRY

- PASSIVE MULTI-SPECTRAL IMAGER AND SENSOR - (VEGETATION SIGNATURES)
[VISUAL TO MICROWAVE]
 - IR IMAGER
 - MICROWAVE IMAGER
 - MICROWAVE RADIOMETER
 - VHF PULSE REFLECTIVITY UNIT
 - EARTH MAPPING CAMERA UNIT
 - NONCOHERENT IMAGING RADAR
 - COHERENT IMAGING RADAR
 - PANORAMIC CAMERA

(VEGETATION SIGNATURES)

LOCKHEED

253815A

COMMUNICATIONS AND NAVIGATION / TRAFFIC CONTROL AREA

WIDEBAND TUNABLE RECEIVERS (FREQUENCY,
RADIATION, AND INTERFERENCE)

RF DETECTORS AND RECORDERS

ANTENNA DEPLOYMENT/RETRACTION UNIT

TRANSMITTERS - WIDE BAND

INTERFEROMETER CONTROL UNIT

OPTICAL SPECTROMETER

LASER UNIT

PROPAGATION MEDIUM SIGNATURES –
ATMOSPHERE, SCATTER, SIGNAL
TRANSMISSIBILITY

LOCKHEED

253816

OPS/EXPER C/D MODULE REQS AND ALLOCATION

CONTROL/DISPLAY MODULE OR UNIT	INTERFACE	OPS/EXPER AREA	WORK STA ALLOCATION
			ASTRONOMY/PHYSICS
1. HIGH-RESOLUTION CAMERA (0.4-9U) UNIT	X		
2. MULTISPECTRAL PHOTO UNIT	X		
3. EARTH MAPPING CAMERA UNIT (0.4-0.5-0.9U)	X		
4. PANORAMIC CAMERA UNIT			
5. CARTOGRAPHIC CAMERA UNIT (0.7U)			
6. H-R IR RADIOMETER DETECTION UNIT			
7. MICROWAVE RADIOMETER			
8. MICROWAVE IMAGER UNIT			
9. IR SPECTROMETER			
10. MICROWAVE SPECTROMETER			
11. MULTICHANNEL RADIOMETER			
12. UV SPECTROMETER			
13. MULTISPECTRAL IMAGER UNIT			
14. VHF PULSE REFLECTIVITY UNIT			
15. NONCOHERENT IMAGING RADAR			
16. COHERENT IMAGING RADAR	X		

LOCKHEED

253821

OPS/EXPER C/D MODULE REQTS AND ALLOCATION (CONT)

CONTROL/DISPLAY MODULE OR UNIT	INTERFACE	GEOLOGY/HYDROLOGY	ATMOSPHERIC SCIENCE	AGRICULTURE/FORESTRY	GEOCRAPHY	PHYSICAL SCIENCES	COMM/NAV/ASTRONOMY	SPECTROGRAPHIC TRAFFIC	COMMS/ANTENNA	ASTRONOMY/RADIOMETRY	WORK STA ALLOCATION	OPS/EXPER AREA
												S
17. RADAR IMAGING UNIT												
18. RADAR BACK SCATTER UNIT												
19. HIGH-RESOLUTION MICROWAVE RADAR												
20. MULTIFREQUENCY POLARIZATION COHERENT RADAR												
21. HIGH-FREQUENCY SIDE-LOOKING RADAR (35 KMC)												
22. HIGH RES., COHERENT SIDE-LOOKING RADAR (8 KMC)												
23. ACTIVE VHF RADAR (75-450 MC)												
24. WIDEBAND TUNABLE RECEIVERS												
25. RF DETECTORS AND RECORDERS												
26. TRANSMITTERS - WIDEBAND LASER UNIT												
27. INTERFEROMETER UNIT												
28. ANTENNA DEPLOY/RETRACT UNIT												
29. OPTICAL SPECTROMETER												
30.												

25382

LOCKHEED

OPS/EXPER C/D MODULE REQTS AND ALLOCATION (CONT)

CONTROL/DISPLAY MODULE OR UNIT	INTERFACE	OPS/EXPER AREA	WORK STA ALLOCATION	SPECIAL SCIENCE									
				PHOTOGRAPHY	ATMOSPHERIC SCIENCE	AGRICULTURE/MARINE	GEOLGY/HYDROLOGY	ATMOSPHERIC HYDROLOGY	ASTROPHYSICS	PHOTOGRAPHIC	COMM/NAV/TRAFFIC	ASTRONOMY/ANTENNA	ASTRONOMY/PHYSCS
31. OPTICAL (GLITTER OBSERVATION) TELESCOPE UNIT			X										
32. MAGNOMONOMETER			X										
33. TELESCOPE OPS UNIT													
34. CORONAGRAPH													
35. RADIO ASTRONOMY UNIT													
36. X-RAY DETECTOR													
37. EMISSION LINE RADIOMETER													
38. UV AND X-RAY PHOTOMETRICS UNIT													
39. ANTENNA DEPLOY/RETRACT UNIT													
40. RADIATION MONITOR													
41. PARTICULATE ANALYZER													
42. ENVIRONMENT ANALYZER UNIT													
43. THERMOANALYZER													

253822A

LOCKHEED

PHOTOGRAPHIC WORK STATION*

*30% GROWTH POTENTIAL

253823

LOCKHEED

SPECTRO/RADIOMETRY WORK STATION

253826

LOCKHEED

ASTRONOMY / PHYSICS WORK STATION*

1 TIMERS/CONTROLS
 2 GROWTH
 3 GROWTH
 4 SENSOR AND REMOTE EQUIP. STATUS
 5 RADIATION MONITOR
 6 ENVIRONMENT ANALYZER
 7 TELESCOPE UNIT
 8 RADIO ASTRONOMY UNIT
 9 CRT OF MICROFILM DISPLAY
 10 EMISSION LINE RADIOMETER
 11 X-RAY DETECTOR
 12 OPTICAL TELESCOPE UNIT
 13 4-CHANNEL STRIP CHART RECORDER
 14 CORONOGRAPH UNIT
 15 MAGNOMONOMETER UNIT
 16 UV AND X-RAY PHOTOMETRICS UNIT
 17 ANTENNA DEPLOY-RETRACT
 18 CHART PULLOUT AND TAKEUP
 19 STRIP CHART ROUTING AND CONTROLS
 20 KEYBOARD
 21 POWER C/O AND INTERFACE CONTROLS

*30% GROWTH POTENTIAL

LOCKHEED

253825

COMMUNICATION / ANTENNA WORK STATION*

- ① TIMERS AND CONTROLS
- ② SENSOR AND REMOTE EQUIP. STATUS
- ③ CRT OR MICROFILM DISPLAY
- ④ INTERFEROMETER UNIT
- ⑤ R.F. DETECTORS AND RECORDERS
- ⑥ OPTICAL SPECTROMETER
- ⑦ WIDEBAND TUNABLE RECEIVERS
- ⑧ WIDEBAND TRANSMITTERS
- ⑨ ACTIVE VHF RADAR 75 - 450 MC
- ⑩ HIGH RESOLUTION MICROWAVE RADAR
- ⑪ NON-COHERENT IMAGING RADAR
- ⑫ RADAR IMAGING UNIT
- ⑬ HIGH FREQUENCY SIDE LOOKING RADAR - 35 KMC
- ⑭ COHERENT IMAGING RADAR
- ⑮ VHF PULSE REFLECTIVITY UNIT
- ⑯ HIGH RES COHERENT SIDE LOOKING RADAR - 8 KMC
- ⑰ MULTI-FREQUENCY POLARIZATION COHERENT RADAR
- ⑱ RADAR BACK SCATTER UNIT
- ⑲ ANTENNA DEPLOY-RETRACT
- ⑳ MIKE AND HEADSET
- ㉑ KEYBOARD
- ㉒ POWER, C/O AND INTERFACE CONTROLS

*33% GROWTH POTENTIAL

253824

LOCKHEED

**CREW CABIN PLAN LAYOUT -
THREE STATION CONCEPT**

CANDIDATE WORK STATION WEIGHT VS VOLUME COMPARISON

LOCKHEED

253828