

This invention pertains to an overdrive circuit which operates switching elements, such as a switching regulator, at a high rate of speed.

BACKGROUND OF THE INVENTION

Conventionally, when the collector voltage of pnp or npn transistors used as switching elements installed outside of the IC in switching regulators, etc., is changed (increased or decreased) at high speed, a high speed operation has been done by temporarily increasing the base current of the external transistor by adding an external capacitive element (capacitor) to the drive circuit.

Figure 5 is a circuit diagram which illustrates the first structural example of a conventional overdrive circuit.

In Figure 5, I_{e1} is the current source, Q_1 , Q_2 are npn transistors, D_1 is a diode, R_1 is a resistance element, C_1 is an external capacitor, QPT_1 is an external pnp transistor, SD_1 is a Schottky diode, L_1 is a coil, C_2 is a capacitor, V_{cc} is the power source voltage, T_1 , T_2 , and T_3 are the input/output terminals of the IC (IC terminals, hereafter).

In this circuit, the current source I_{e1} , npn transistors Q_1 , Q_2 , diode D_1 , and the resistance element R_1 are formed inside of the IC, and each element is connected as follows:

That is, the collector and the base of the transistor Q_1 are connected to the current source I_{e1} , and the emitter is connected to the anode of the diode D_1 . The cathode of the diode D_1 is grounded.

The connection midpoints of the collector and the base of the transistor Q_1 are connected to the base of the transistor Q_2 . The collector of the transistor Q_2 is connected to the IC terminal T_1 , the emitter is connected to one end of the resistance element R_1 and the IC terminal T_2 , and the other end of the resistance element R_1 is grounded.

The electrode at one side of the external capacitor C_1 is connected to the IC terminal T_2 , and the other electrode is connected to the IC terminal T_3 .

The emitter of the external transistor QPT $_1$ is connected to the supply line of the power source voltage V_{cc} , the base is connected to the IC terminal T_1 , and the collector is connected to the cathode of the Schottky diode SD_1 and one end of the coil L_1 . The anode of the Schottky diode SD_1 is grounded, the other end of the coil L_1 is connected to one electrode of the capacitor C_2 , the other electrode of the capacitor C_2 is grounded, and the connection midpoint of the other end of the coil L_1 and one electrode of the capacitor C_2 is connected to a load not illustrated in the figure.

In such a structure, the electric current from the current source I_{e1} is supplied to the collector and the base of the transistor Q_1 , and the base of the transistor Q_2 .

In this manner, both transistors Q_1 and Q_2 will be on, and the base emitter voltage V_{BE} portion of the diode D_1 will be impressed on both ends of the resistance terminal R_1 as the voltage V_1 .

At this time, in the initial state, while the charge flows into the transistor Q_2 , the overdrive current I_{OVR} such as illustrated in Figure 6 will flow into the external capacitor C_1 , and this current is supplied to the base of the external transistor QPT_1 .

Therefore, the collector voltage V_{Pl} of the external transistor QPT₁ will rapidly rise as illustrated in Figure 7.

In this manner, high-speed operation is realized and conversion efficiency will increase.

Figure 8 is a circuit diagram illustrating the second structural example of a conventional overdrive circuit.

In Figure 8, I_{e2} is a current source, P_1 is a pnp transistor, Q_3 and Q_4 are npn transistors, D_2 and D_3 are diodes, R_2 is a resistance element, C_3 is an external capacitor, QPT_1 is an external pnp transistor, SD_1 is a Schottky diode, L_1 is a coil, C_2

is a capacitor, V_{cc} is power source voltage, and T_1 , T_2 , and T_3 indicate input/output terminals of the IC.

In the structure of this circuit, the transistors Q_1 and Q_2 and the diode D_1 in the circuit in Figure 5 are replaced by the diode D_3 , transistor P_1 , and diode D_2 . The external capacitor C_3 and the resistance element R_2 play similar roles to those of the external capacitor C_1 and the resistance element R_1 in Figure 5. The connecting relationship between each element in the IC is different from that in the circuit in Figure 5.

That is, the anode of the diode D_2 is connected to the power source voltage V_{cc} , and the cathode is connected to the anode of the diode D_3 . The cathode of the diode D_3 is connected to both the current source I_{e2} and the base of the transistor P_1 .

The emitter of the transistor P_1 is connected to one end each of the resistance element R_2 and the IC terminal T_3 , and the collector is connected to both the collector and the base of the transistor Q_3 . The other end of the resistance element R_2 is connected to the power source voltage V_{CC} and the IC terminal T_2 .

One electrode of the external capacitor C_3 is connected to the IC terminal T_2 , and the other electrode is connected to the IC terminal T_3 .

The emitter of the transistor Q_3 is grounded, and the connection midpoint between the collector and the base is connected to the base of the transistor Q_4 . The collector of the transistor Q_4 is connected to the IC terminal T_1 , and the emitter is grounded.

In the circuit in Figure 8, when the electric current from the current source I_{e2} begins to flow, in the initial state, during the time while the charge of the external capacitor C_3 flows out via the transistor P_1 , the overdrive current I_{OVR} as illustrated in Figure 9 will flow into the collector of the transistor P_1 .

That is, with regard to the collector current I_{P1} of the transistor P_1 , as illustrated in Figure 9, the overdrive current I_{OVR} will flow temporarily. Such a collector current I_{P1} of the

transistor P_1 is amplified by the transistors Q_3 and Q_4 , which constitute a current mirror circuit, and is supplied to the base of the external transistor QPT_1 as the current I_{Q4} .

Therefore, the collector voltage V_{Pl} of the external transistor QPT₁ will rise quickly as illustrated in Figure 7, and consequently, high speed operation is realized, and the conversion efficiency will increase.

Recently, in the field of portable equipment such as video cameras, the trend is to make the mounting area smaller by reducing as many external parts of the IC as possible.

However, with regard to the aforementioned conventional circuits, several hundred to several thousand pF will be needed as the capacitance for the capacitor C_1 in the circuit in Figure 5, and several tens to several hundred pF will be needed as the capacitance for the capacitor C_3 in the circuit in Figure 8. While it is possible to form a capacitor of several tens of pF inside the IC, this will result in an increased chip area, and consequently an increase in the IC cost. Therefore, it is inevitable that the aforementioned capacitors are attached outside the IC, meaning that a structure which is not desirable for the actual situation will be adopted, and which is a reason why the equipment is made larger.

It is an object of the present invention to provide an overdrive circuit that can have the number of external parts decreased without increasing the chip area or the IC cost.

SUMMARY OF THE INVNETION

An overdrive circuit in accordance with the invention has a switching element, a first current source which supplies a first current, a second current source which supplies a second current which is smaller than the first current, a first circuit which operates the first current source for a predetermined time period from the time of the starting of the driving of the switching element, and supplies the first current as the driving current for the switching element, and a second circuit which stops the

operation of the first current source by means of the first circuit after the predetermined time period has expired, operates the second current source, and supplies the second current as the driving current for the switching element.

With the overdrive circuit in accordance with the invention, when the supply of driving current to the switching element is started, the first current source is initially driven by the first circuit.

Consequently, the first current, which is a large value, is supplied from the first current source to the external switching element as overdrive current.

After a predetermined time has passed from the start of supplying the first current, the operation of the first current source by the first circuit is stopped by the second circuit. At the same time, the second current source is driven by the second circuit.

Consequently, the second current, which has a smaller value than the first current, is supplied from the second current source to the external switching element as ordinary current.

BRIEF DESCRIPTION OF THE DRAWINGS

- Figure 1 is a circuit diagram of a first embodiment of an overdrive circuit in accordance with the invention.
- Figure 2 is a graph illustrating the result of simulation by the circuit in Figure 1 which does not use any external capacitor and by a conventional circuit.
- Figure 3 is a circuit diagram of a second embodiment of an overdrive circuit in accordance with the invention.
- Figure 4 is a circuit diagram of a third embodiment of an overdrive circuit in accordance with the invention.
- Figure 5 is a circuit diagram of a conventional overdrive circuit.
- Figure 6 is a waveform illustrating the base current of an external transistor in the circuit of Figure 5.

- Figure 7 is a waveform illustrating the collector voltage of the external transistor.
- Figure 8 is a circuit diagram of a second conventional overdrive circuit.
- Figure 9 is a waveform illustrating the collector current of the transistor P_1 in the circuit of Figure 8.

Symbols as shown in the drawings:

T70x

 I_{e11} Current source $Q_{11}-Q_{14}$ npn transistor

 PG_{11}, PG_{12} pnp transistor group $R_{11}R_{14}$ Resistance element

MR Current mirror circuit

 $\mathrm{QM}_{11}\text{-}\mathrm{QM}_{16}$ $\,$ npn transistor for current mirror circuit MR $\,$

QPT₁ External pnp transistor QNT₁ External npn transistor

 T_1 IC terminal

V_{cc} Power source voltage

DESCRIPTION OF PREFERRED EMBODIMENTS

Figure 1 is a circuit diagram of a first embodiment of an overdrive circuit in accordance with the invention.

In Figure 1, I_{e11} is a current source, $Q_{11}-Q_{13}$ are npn transistors, PG_{11} and PG_{12} are pnp transistor groups, $R_{11}-R_{14}$ are resistance elements, $Q_{M11}-Q_{M15}$ are npn transistors for the current mirror circuit MR, QPT_1 is an external pnp transistor, T_1 is an IC terminal, and V_{cc} is the power source voltage.

The pnp transistor group PG_{11} is configured by connecting the bases to bases, the emitters to emitters, and the collectors to collectors of the pnp transistors $P_{111}-P_{113}$, respectively.

Similarly, the pnp transistor group PG_{12} is configured by connecting the bases to bases, the emitters to emitters, and the collectors to collectors of the pnp transistors $P_{121}-P_{123}$, respectively.

The bases to bases, the emitters to emitters, and the collectors to collectors of the npn transistors $Q_{M13}-Q_{M15}$ of the current mirror circuit MR are also connected.

The collector of the npn transistor Q_{11} is connected to each of the connection midpoints between bases of the pnp transistor group PG_{11} , one end of the resistance element R_{13} , and the base of the npn transistor Q_{12} , the base is connected to both the emitter of the npn transistor Q_{13} and one end of the resistance element R_{11} , and the emitter is connected to each of the other end of the resistance element R_{11} and the emitter of the npn transistor Q_{12} , respectively.

The connection midpoint between the emitter of the transistor Q_{11} and the other end of the resistance element R_{11} constitutes the node ND_1 , and is connected to the constant current source I_{e11} .

The collector of the npn transistor Q_{12} is connected to the connection midpoint between the bases of the pnp transistor group PG_{12} .

The connection midpoint between the collectors of the pnp transistor group PG_{11} is connected to each of the connection midpoints between the collectors of the pnp transistor group PG_{12} , the base of the transistor Q_{M11} and the collector of the transistor Q_{M12} of the current mirror circuit MR. The connection midpoint between the emitters is connected to one end of the resistance element R_{12} .

The connection midpoint between the emitters of the $\,$ pnp transistor group PG12 is connected to one end of the resistance element R_{11} .

The other ends of the resistance elements R_{12} , R_{13} , and R_{14} are connected to the power source voltage V_{cc} . With regard to the resistance value of these resistance elements R_{12} , R_{13} , and R_{14} , for instance, the resistance value of the resistance element R_{12} is set at 2 k Ω , the resistance value of the resistance element R_{13} is set at 50 k Ω , and the resistance value of the resistance element R_{14} is set at 200 k Ω .

The collector of the transistor Q_{M11} of the current MR mirror circuit is connected to the power source voltage V_{cc} , and the emitter is connected to both the base of the transistor Q_{M12} and the connection midpoints between the bases of the transistors Q_{M13} - Q_{M15} . Both the emitter of the transistor Q_{M12} and the connection midpoints between the emitters of the transistors Q_{M13} - Q_{M15} are grounded, and the connection midpoint between the collectors of the transistors Q_{M13} - Q_{M15} is connected to the IC terminal T_1 .

The IC terminal T_1 is connected to the base of the external pnp transistor QPT₁. The emitter of the external pnp transistor QPT₁ is connected to the power source voltage $V_{\rm CC}$, and the collector is connected to both the Schottky diode SD₁ and the coil L_1 in the same way as in Figure 5.

The operation of the aforementioned structure will be explained next.

a

First, when the electric current starts flowing in the current source I_{e11} , and the voltage of the node ND_1 starts decreasing, since the resistance element R_{11} is connected between the base and the emitter of the transistor Q_{11} , and the resistance element R_{13} is connected to the base of the transistor Q_{12} from the power source voltage V_{cc} , between the transistors Q_{11} and Q_{12} , the transistor Q_{12} will be first.

Since the collector of the transistor Q_{12} is connected to the connection midpoint between the bases of the pnp transistor group PG_{12} , accompanying the fact that the transistor Q_{12} is on, the base current will flow into the pnp transistor group PG_{12} .

Here, if the current flowing in the resistance element R_{11} and the transistor Q_{13} is ignored, the current I_{e12} will flow in the emitter of the transistor Q_{12} until the electric potential of the node ND_1 reaches $(V_{cc}$ - $2V_{SE})$.

Suppose the saturation voltage V_{CESATQ12} of the transistor Q_{12} is 0.1 V, the voltage V_{14} applied to the resistance element R_{14} will be as in the following formula:

$$V_{14} = V_{BEQ13} + V_{BEQ11} - V_{CESATQ12} - V_{BEPG12}$$

$$= 0.7 + 0.7 - 0.1 - 0.7$$

$$= 0.6$$
...(1)

Thus, supposing the current amplification factor $h_{\rm fe}$ of the pnp transistor group PG_{12} is infinite, the current $I_{\rm PG12}$ of the value indicated by the following formula will flow in the collector of the pnp transistor group PG_{12} as overdrive current: $I_{\rm PG12} = 0.6 \ V/R_{14V},$...(2) where R_{14V} indicates the resistance value of the resistance element R_{14} .

However, in actuality, since the operation is transient, the value of the collector current I_{PG12} of the pnp transistor group PG_{12} will be smaller than the value given by formula (2).

This overdrive current will receive an amplification function in the current mirror circuit MR, and be supplied to the base of the external transistor QPT_1 via the IC terminal T_1 .

When the amplified overdrive current is supplied, the rise of the collector voltage V_{Pl} of the external transistor QPT_1 will suddenly change; thus, the high speed operation will be realized, and the conversion efficiency will increase.

When the electric potential of the node $ND_1 \; reaches \; (V_{cc} \; - \; 2V_{BE}) \, ,$ the transistor Q_{11} will be on.

Since the collector of the transistor Q_{11} is connected to the base of the transistor Q_{12} , when the transistor Q_{11} is on, consequently, the transistor Q_{12} will be switched from on to off.

As a result, the pnp transistor group PG_{12} will be off, and the supply of overdrive current by the pnp transistor group PG_{12} will be stopped.

Since the collector of the transistor Q_{11} is connected to the connection midpoint between the bases of the pnp transistor group PG_{11} , when the transistor Q_{11} is on, consequently, the pnp transistor group PG_{11} will be on.

As a result, the current $I_{\text{PG}11}$ will flow in the collector of the pnp transistor group PG_{11} as ordinary current.

Suppose the saturation voltage V_{CESATQ11} of the transistor Q_{11} is 0.1 V, the voltage V_{12} applied to the resistance element R_{12} will be as indicated by the following formula:

$$V_{12} = V_{\text{BEQ13}} + V_{\text{BEQ11}} - V_{\text{CESATQ11}} - V_{\text{BEPG11}}$$

$$= 0.7 + 0.7 - 0.1 - 0.7$$

$$= 0.6$$
...(3)

Thus, supposing the current amplification factor h_{fe} of the pnp transistor group PG_{11} is infinite, the value of the ordinary current I_{PG11} which flows in the collector of the pnp transistor group PG_{11} is given by the following formula:

$$I_{PG11} = 0.6 \text{ V/R}_{12V},$$
 ...(4)

where R_{12v} indicates the resistance value of the resistance element R_{12} .

This ordinary current receives an amplification function in the current mirror circuit MR, and is supplied to the base of the external transistor QPT_1 via the IC terminal T_1 .

As described above, in this circuit, the overdrive current is determined by the resistance element R_{14} , and the ordinary current is determined by the resistance element R_{12} .

Figure 2 is a graph illustrating the result of a simulation both by the circuit in Figure 1 which does not use an external capacitor and a conventional circuit which uses an external capacitor.

This simulation was made under the atmosphere of the ambient temperatures of $125\,^{\circ}\text{C}$ and $-25\,^{\circ}\text{C}$.

In Figure 2, the horizontal coordinate indicates the time (μsec) and the vertical coordinate indicates the base current (A) of the external transistor QPT₁, respectively.

In Figure 2, the curve of thick solid line labeled X_{125} is the result of simulation by the circuit in Figure 1 under an atmosphere of 125°C, the curve of thick solid line labeled X_{-25} is the result of simulation by the circuit in Figure 1 under an atmosphere of -25°C, the curve of thin solid line labeled Y_{125} is

the result of simulation by a conventional circuit under an atmosphere of $125\,^{\circ}\text{C}$, and the curve of thin solid line labeled Y_{-25} is the result of simulation by a conventional circuit under an atmosphere of $-25\,^{\circ}\text{C}$.

As can be observed in Figure 2, the circuit in Figure 1 can induce overdrive current in a good condition, and consequently it can realize a high-speed operation, and can improve the conversion efficiency.

As explained above, in this embodiment, since overdrive current can be induced in a good condition only with a logical circuit without using an external capacitance, the number of external parts can be reduced without increasing the chip area or the IC cost.

The overdrive current and the ordinary current can be set separately by the resistance elements R_{14} , and R_{12} , respectively; thus, for instance, setting can be made arbitrarily using an external resistance element, etc.

In this embodiment, the number of transistors which the pnp transistor groups PG_{11} and PG_{12} connect was three. However, the number of such transistor connecting is not limited to this embodiment.

That is, if it is possible for a large volume of current to flow to the base of the external transistor QPT_1 , one transistor will be enough. The number will be determined by the manufacturing process, etc.

Figure 3 is a circuit diagram of a second embodiment of an overdrive circuit in accordance with the invention.

This second embodiment of Figure 3 is different from the first embodiment of Figure 1 in terms of the following points. Instead of the transistor Q13, this circuit is configured by the Schottky diode SD_{11} . The current source I_{e11} is configured by the npn transistor Q_{14} where the external signal S_{11} is supplied to the base. The current mirror circuit MR is configured by one npn transistor QM_{16} .

In this configuration, the base of the npn transistor QM_{16} is connected to the connection midpoint between the collectors of the pnp transistor groups PG_{11} and PG_{12} , the collector is connected to the IC terminal T_1 , and the emitter is grounded.

The other configuration is the same as that of the first embodiment. The same effect as that of the first embodiment can be obtained.

Figure 4 is a circuit diagram of a third embodiment of an overdrive circuit in accordance with the invention.

The third embodiment of Figure 4 is different from the first embodiment of Figure 1 in terms of the following points: This circuit is configured by the npn transistor QNT₁ instead of the pnp transistor QPT₁ as the external transistor, and the connection midpoint between the emitters of the transistors Q_{M12} - Q_{M15} of the current mirror circuit MR is connected to the IC terminal T_1 .

While the first embodiment of Figure 1 is a decreasing pressure chopper circuit, the third embodiment of Figure 4 is an increasing pressure chopper circuit. The emitter of the transistor QNT_1 is grounded, and the collector is connected to one end of the coil L_1 and the anode of the diode SD_1 .

In this embodiment, the fall of the collector potential of the transistor QNT_1 will be fast; thus, the high speed operation of the circuit can be realized and the conversion efficiency can be improved in a similar fashion to the first embodiment.

As explained above, with this invention, the overdrive current can be induced in a good condition with only a logic circuit without using any external capacitor, and the number of external parts can be reduced without increasing the chip area or the IC cost.

Also, with this invention, the overdrive current can be supplied to the switching element by means of a circuit configured by transistors, resistance elements, etc., without using the charge-discharge current of the capacitor; thus, the effects that the manufacture of semiconductor integrated circuits