House sale price predictions

Using tree-based algorithms and recursive feature elimination (RFE)

Julian Cabezas Pena

a1785086

August 26, 2020

Introduction

- Regression problem: Continuous target variable
- Bagging and Boosting algorithms: combine various learners (decision trees) to accomplish improved predictions
- Kaggle competition to predict house prices using the Ames, Iowa dataset

Tested methods

- Random Forest: Uncorrelated trees in parallel
- Gradient Boosting: Trees in sequence
- Extreme Gradient Boosting (XGBoost): Popular on competitions
- Categorical Boosting (CatBoost): Developed by Yandex, new (2018)

Data preprocessing

- Missing values: Handing according to documentation
- Missing values: According to neighbourhood median or mode

Data preprocessing

- One hot encoding of categorical variables
- Log Transformation of target variable

Recursive Feature Elimination

• Allows to drop redundant or unimportant features (5 fold CV)

Parameter Tuning

5-fold cross validation, 3 sets of 3 parameters tested

Algorithm	Tuned parameters	RMSLE (CV)
		(CV)
RF	$n_{\rm trees} = 1500$, $max_{\rm features} = 22$ &	0.1356
	$max_{\mathrm{depth}} = none$	
GB	$n_{\rm trees} = 1000$, learningrate = 0.1 &	0.1184
	depth = 4	
XGBoost	$n_{\rm trees} = 500$, learningrate = 0.05 &	0.1242
	$max_{\text{depth}} = 3$	
CatBoost	$n_{\text{trees}} = 2000$, learningrate = 0.1 &	0.1189
	$max_{\text{depth}} = 6$	

Testing

Algorithm	RMSLE (Test set)	
Random forest	0.1389	
Gradient Boosting	0.1372	
Extreme Gradient Boosting	0.1369	
Categorical Boosting	0.1269	

1 Active Competition

House Prices: Advanced Regression Techniques

Predict sales prices and practice feature engineering, RFs, and gradient boosting Getting Started · Ongoing

1350/5163 Top 27%

Kaggle user: JulianCabezas

Conclusion

- The RFE-Gridsearch workflow, although time consuming, provided good results.
- The new CatBoost algorithm looks promising and can be fine-tuned to obtain even better results