

E L E C I R O N I C D E S I G N

ELEVENTH ANNUAL
TRANSISTOR DATA CHART

FASTEST TRANSISTORS FOR ALL COMPUTER REQUIREMENTS

LOW I FVFI

LEVEL LOGIC

2N709

SWITCHING
TIME —

6 nsec max @ 5/5/5mA

• V_{sat} = 0.3V max @ I_c = 3mA I_B =.15mA

 h_{FE} - 20 min @ I_{C} = 10mA V_{CE} = 0.5V

 f_T 600 MC min @ I_C =5mA V_{CE} =4V

Package: TO-18

FASTEST LOGIC

2N2369

SWITCHING

13 nsec max @ 10/10/10mA

• V_{sat} = 0.25V max @ I_c = 10mA I_B = 1mA

• h_{FE} - 20 min @ I=100mA V_{CE}=2V

• f_T - 500 MC min @ I_c =10mA V_{CE} =10V

CORE DRIVER

TIME _

20 nsec @ 50/50/50mA

• V_{sat} - 1.0V max @ I_C = 500mA I_B = 50mA

• h_{FE} - 20 min @ I_C = 500mA V_{CE} = 10V

• f_T - 250 MC @ I_C = 50mA V_{CE} = 10V

2N2845 SERIES (NPN)

FAIRCHILD

A DIVISION OF FAIRCHILD CAMERA AND INSTRUMENT CORPORATION

ELECTRONIC DESIGN'S ELEVENTH ANNUAL

TRANSISTOR DATA CHART

1963

Donald Christiansen Technical Editor

ELECTRONIC DESIGN'S 11th Annual Transistor Data Chart includes more than 3,000 listings, of which about 375 appear for the first time.

Transistors are classified according to seven application categories: Audio and General Purpose (page T4), High-Frequency (page T16), Power (page T40), Low-Level Switching (page T62), High-Level Switching (page T77) and, for the first time, Field-Effect (page T85) and Unijunction (page T86).

Within each category, types are arranged in order of increasing value of a key design parameter. This also permits quick identification of close substitutes.

Alternate suppliers are listed in the "Remarks" column. The manufacturer whose data are listed is identified in the "Mfr." column. He is not necessarily the original registrant.

A cross index (page T88) identifies types in numerical sequence. Each type in the cross index carries a code that identifies its application category and specifies the block of 10 types in which it appears. A3, for example, means the type can be found in the third block of the Audio section.

Many manufacturers, upon request, provide detailed application notes and data sheets to the design engineer. Where this is true, it is noted next to the manufacturer's name in the list of manufacturers (page T1).

Update Your Transistor File

Step 1. Send for your personal copy of the 1963 Transistor Data Chart, Reader-Service No. 549. It has been tailored to meet your needs as a design engineer—to guide you in the rapid selection of transistors for a particular circuit need.

Step 2. Having narrowed the field to a number of similar types, your next step is to refer to manufacturers' specification sheets for exact test conditions, application details and other pertinent information.

But unless you have invested much time and effort on your transistor file, it is bound to contain obsolete types and overlook new ones.

So, to supplement the Data Chart, ELECTRONIC DESIGN has made special arrangements with semiconductor manufacturers to provide specification sheets and application notes to readers requesting this material. Merely circle the number alongside each manufacturer's name on the special Reader-Service card at the end of this section.

Transistor Manufacturers

		Further Information A	vailable
Code	Сотрапу	Туре	Circle Reader- Service No.
Al	Amelco, Inc. 341 Moffett Blvd. Mountain View, Calif.	FET application notes, 20- page data folder, and other brochures	400
AMF	American Machine and Foundry Co. Leland Airborne Products Div. AMF Semiconductor Dept. Vandalia, Ohio	Data sheets on 38 transistor types	401
АМР	Amperex Electronic Corp. 230 Duffy Ave. Hicksville, L.I., N.Y.	Several condensed catalogs and application notes	402
BE	Bendix Semiconductor Div. South St. Holmdel, N.J.	Two guides to silicon and germanium transistors	403
CS	Clark Semiconductor Corp. Div. of National Semiconductor Walnut Ave. Clark, N.J.	Data sheets on transistors	404
CL	Clevite Transistor 200 Smith St. Waltham 54, Mass.	Condensed catalog and application notes	405
СТ	Crystalonics, Inc. 249 Fifth St. Cambridge 42, Mass.	3-ring folder of data sheets and application notes	406
DE	Delco Radio Div. GM Corp. Kokomo, Ind.	Condensed catalog, data sheets, application notes and test data	407
FA	Fairchild Semiconductor 545 Whisman Road Mountain View, Calif.	Condensed catalog and data sheets	408
GE	General Electric Co. Semiconductor Products Dept. Electronics Park Syracuse 1, N.Y.	Condensed catalog, data sheets and application notes	409
GI	General Instrument Corp. 18 East 41st Street New York 17, N.Y.	Data sheets, tentative specifications and application notes	410
HW	Honeywell Semiconductor Products 2747 Fourth Ave. South Minneapolis 8, Minn.	Application notes, lab reports and data	411
HU	Hughes Semiconductor Div. 500 Superior Ave. Newport Beach, Calif.	Application selection guide, data sheets and brochures	412
IND -	Industro Transistor Corp. 35-10 36th Ave. Long Island City 6, N.Y.	Condensed catalog, data sheets and application notes	413
KF	Kearfott Semiconductor Corp. 437 Cherry St. West Newton 65, Mass.	Loose leaf binder of semi- conductor engineering data	414
МО	Motorola Semiconductor Products, Inc. 5005 E. McDowell Road Phoenix 8, Ariz.	Condensed catalog, data sheets and reliability brochure	415
NA	National Semiconductor Corp. 90 Rose Hill Ave. Danbury, Conn.	Condensed catalog, data sheets, engineering memos, application notes	416

_			
		Further Information A	vailable
Code	Company	Туре	Circle Reader- Service No.
PSI	Pacific Semiconductor, Inc. (TRW Electronics) 12955 Chadron Ave. Hawthome, Calif.	Condensed catalog and data sheets	417
PH	Philco Corp. Lansdale Div. 504 Church Road Lansdale, Pa.	Transistor reference chart and planar reliability report	418
RCA	Radio Corp. of America Semiconductor Div. Somerville, N.J.	Condensed catalog, data sheets and application notes on many devices	419
RRD	Radio Development & Research Corp. 100 Pennsylvania Ave. Paterson 3, N.J.	Will not manufacture after 1963	
RA	Raytheon Co. Semiconductor Div. 350 Ellis St. Mountain View, Calif.	Condensed catalog	421
STC	Silicon Transistor Corp. 150 Glen Cove Road Carle Place, L.I., N.Y.	Condensed catalog	422
SI	Siliconix, Inc. Sunnyvale, Calif.	Application notes, data sheets and articles on FET devices	423
SSE	Solid State Electronics Corp. 15321 Rayen St. Sepulveda, Calif.	Data sheet on SST610 transistor	424
SSP	Solid State Products, Inc. One Pingree St. Salem, Mass.	Folder of data sheets and comparison chart	425
SSD	Sperry Semiconductor Div. Norwalk, Conn.	Data sheets and tentative specifications	426
SPR	Sprague Electric Co. 347 Marshall St. North Adams, Mass.	Condensed catalog	427
SY	Sylvania Semiconductor Div. 100 Sylvan Road Woburn, Mass.	Full catalog, data sheets and Circuit Loops brochures	428
TI	Texas Instruments Inc. 13500 North Central Expressway Dallas 22, Texas	Data sheets, application notes and theory of FET devices brochure	429
TR	Transitron Electronic Corp. 168-182 Albion St. Wakefield, Mass.	Data sheets, application notes, condensed catalog and an article reprint	430
TS	Tung-Sol Electric, Inc. One Summer Ave. Newark 4, N.J.	Condensed catalog, FET. brochure and silicon double diffused brochure	431
WE	Westem Electric Co., Inc. Marion and Vine St. Laureldale, Pa.	Available only to agencies of the U.S. Govt. and their subcontractors	
WH	Westinghouse Electric Corp. 3 Gateway Center Pittsburgh 30, Pa.	Condensed catalog, data sheets, application and design notes	433

May 24, 1963 T1

HOW TO USE THE CHARTS

A color code pairs the transistor type with the value of its key parameter. Types are listed in order of increasing value of key parameter. Note, however, that since various manufacturers may characterize their types differently, some "jumps" may take place in the sequence. Consider, for example, a type in the high-frequency category. Its key characteristic will be $f_{\alpha e}$, f_T , or $f_{\alpha b}$ (values of f_T are preceded by a single asterisk; values of $f_{\alpha b}$, by a double asterisk). But $f_{\alpha e}$ is the frequency at which h_{fe} drops to 0.707 of its low frequency value, and f_T is the gain-bandwidth product, or the product of h_{fe} and frequency at a point where h_{fe} is dropping by 6 db per octave. Thus, f_T is about h_{fe} times greater than $f_{\alpha e}$ for a given transistor.

Under maximum ratings, manufacturers were asked to specify collector power dissipation at 25 C case temperature, this generally being the most meaningful single dissipation rating. The derating factor can then be used to estimate P_c for other operating temperatures.

Either V_{CEO} or V_{CEO} is listed as a maximum voltage rating. V_{CEO} is related to collector-emitter diode breakdown and V_{CEO} to collector-base diode breakdown. But bear in mind that many manufacturers' data sheets will list other important voltage ratings, such as V_{CES} or V_{CEC} .

Under characteristics, ELECTRONIC DESIGN asked manufacturers to supply typical values rather than maxs or mins. Where deviations from this occur they are noted.

Finally, it must be cautioned that the characteristics listed are primarily a guide and generally cannot be used for direct comparison of types. This is because it is impossible to list the wide variety of test conditions under which characteristics have been measured. V_{CEO} , for example, can differ considerably for comparable devices when measured at a collector current of 100 μ a in one case and 1 ma in another. The best bet is to consult the manufacturers' data sheets before making the final selection.

Key to Symbols

 f_{ae} = small-signal short-circuit forward current transfer ratio cutoff frequency (common-emitter)

 f_{ab} = small-signal short-circuit forward current transfer

ratio cutoff frequency (common-base)

f_T = gain-bandwidth product

f_T = gain-bandwidth product

P_c = collector power dissipation (average)

T_i = junction temperature deg C

mw/°C = derating factor

 V_{CEO} = max collector voltage, collector to emitter, base

open

V_{CBO} = max collector voltage, collector to base, emitter

open

I c = max collector current

In = max collector current (peak)

h_{fe} = small-signal short-circuit forward current transfer

ratio (common-emitter)

h FE = dc short-circuit forward current transfer ratio (com-

mon-emitter)

1 co = collector cutoff current (dc) emitter open

C_{oe} = output capacitance (common-emitter)

C_{ob} = output capacitance (common-base)

t_r = rise time

t = storage time

V_{CE(sat)} = collector-to-emitter saturation voltage

 g_m = transconductance

V_p = pinch-off voltage

I_{DSS} = zero-bias drain current

BV_{DGO} = drain-gate breakdown voltage with gate-source

open-circuited

BV_{DGS} = breakdown voltage from drain to gate with drain

shorted to source

C_{is} = common source short-circuit input capacitance

N.F. = noise figure

n = intrinsic standoff ratio

I_{EO} = max emitter reverse current

Ip = max peak point emitter current

 $V_{E(sat)}$ = max emitter saturation voltage

 V_{EB2} = min emitter reverse voltage

 V_{OB1} = min base one peak pulse voltage

Key to Transistor Types

1	Construction	1	GD	Grown diffused
AJ	Alloy junction		GJ	Grown junction
AD	Alloy diffused		GR	Rate grown
DD	Double diffused		MB	Meltback
DG	Grown diffused		MD	Micro-alloy diffused
DJ	Diffused junction			base
DM	Diffused mesa		MS	Mesa
DDM	Double-diffused mesa		PE	Planar epitaxial
DP	Diffused planar		PL	Planar
DR	Drift		SBT	Surface barrier
ED	Electro-chemical		SP	Surface precision alloy
	diffused - collector		TDP	Triple-diffused planar
EM	Epitaxial mesa			rispre announce prantar
EP	Epitaxial			Materials
FA	Fused alloy		ge	germanium
FJ	Fused junction		si	silicon

Manufacturers and their Lines

Manufacturer	Audio (A)	High- Frequency (HF)	Power (P)	Low-Level Switching (LL)	High-Level Switching (HL)	Field- Effect (FE)	Uni- junction (UNJ)
Amelco		•		•		•	
AMF			•				
Amperex	•	•	•	•	•		
Bendix	•		•	•	•		
Clark			•				
Clevite		•	•	•	•		
Crystalonics				•		•	
Delco			•		•		
Fairchild		•	•	•	•		
General Electric	•	•	•	•	•	0	•
General Instrument	•	•	•	•	•		
Honeywell		•	•				
Hughes	•	•		•	•		
Industro	•	•	•	•	•		
Kearfott	•	•	•	•	•		
Motorola	•	•	•	•	•	•	
National Semiconductor	•	•	•	•			
Philco	•	•		•	•		
PSI		•	•		•		
Radio Development	•						
Raytheon	•	•		•	•		
RCA	•	•	•		•	0	
Silicon Transistor			•		•		
Siliconix						•	
Solid State Electronics	•			•			
Solid State Products					•		
Sperry	•	•		•			
Sprague	•	•		•			
Sylvania	•	•		•			
Texas Instruments	•	•	•	•	•		
Transitron	•	•	•	•	•		
Tung-Sol	•	•	•	•	•	•	
Western Electric	•	•	•	•	•		
Westinghouse			•		0		

AUDIO AND GENERAL PURPOSE

Mostly audio and general-purpose types below one watt. In order of increasing forward-current transfer ratio.

						MAX.	RATINGS			СНА	RACTE	RISTIC	CS	
Cross Index Key	Type No.	Mfr.	Туре	hfe *hFE **G _m	P _c (mw)	T _i	mw/°C	V CEO *V CBO (v)	l C (ma)	l C0 (μα)	(db)	Coe *Cob (pf)	fae *fT **fab (mc)	Remarks
A 1	2N160 2N160A 2N349 2N161 2N161A	RRD RRD RRD RRD RRD	npn,GJ,si npn,GJ,si npn,GJ,si npn,GJ,si npn,GJ,si	0.93 0.93 0.95 0.96 0.96	150 150 750 150 150	175 175 175 175 175 175	11111	*40 *40 *125 *40 *40	25 25 40 25 25	0.2 0.2 10 0.2 0.2	25 25 - 25 25 25	7 7 7 7	4 4 3 5 5	
	2N348 2N1096 2N347 2N1095 2N163	RRD RRD RRD RRD RRD	npn,GJ,si npn,GJ,si npn,GJ,si npn,GJ,si npn,GJ,si	0.96 0.96 0.98 0.98 0.99	750 500 750 500 150	175 175 175 175 175 175	11111	*90 *90 *60 *60 *40	50 30 60 40 25	10 6 10 5 0.2	- 18 - 25	- 7 - 7	3 3 3 6	
A 2	2N163A 2N1566 2N2673 2N1154 2M1155	RRD TI GE NA NA	npn,GJ,si npn,MS,si npn,GD,si npn,DM,si npn,DM,si	0.99 1.2 *8-22 9	150 250 750 750	175 175 185 150 150	- 80 1.66 5 5	*40 60 *60 50 80	25 100 25 60 50	0.2 1 0.004 5 6	25 50 11 -	7 - 4 -	6 - 10 - -	TR, NA TI TI
	2N1156 2N117 2N332 2N332A 2N333A	NA TI TI NA NA	npn,DM,si npn,GR,si npn,GR,si npn,MS,si npn,MS,si	9 9-20 9-20 9-20 9-20	750 150 150 150 150 500	150 175 175 175 175 175	5 1 1 0.86 2.8	120 *30 45 45 45	40 25 25 - -	8 2 2 2 0.5	20 20 - -	- - 30 15	- 4 6 - -	TI TR,USN GE,TR,RRD,NA,RA,AMP GE, TI GE, TI
A 3	2N1149 2N243 2N470 2N471 2N472	TR TI TR TR TR	npn,DJ,si npn,GJ,si npn,GJ,si npn,GJ,si npn,GJ,si	9-20 9-32 10-25 10-25 10-25	150 750 200 200 200 200	150 150 200 20 0 20 0	- 6 - -	*45 60 15 30 45	25 60 25 25 25 25	0.1 1 0.02 0.02 0.02 0.02	25 - 22 22 22 22	7 - 7 7	7 7 8 8 8	NA, TI NA, SO NA, TI, AMP NA, TI, AMP NA, TI, AMP
	2N472A 2N102/13 2N144/13 2N1439 2N756		npn,DG,si npn,AJ,ge npn,AJ,ge pnp,AJ,si npn,DM,si	10-25 10.5 10.5 12 12-20	.200 1w 1w 400 500	200 75 75 200 200	20 20 2.28 2.5	45 *30 *60 50 45	25 1.5a 0.8a 100 -	0.02 5ma 5ma 0.01 9.2	22 - 12 -	7 - - 25 -	8 - 1 -	NA, TI audio/med.power
A 4	2N756A 2N2674 CK64B CK64C 2N935	NA GE RA RA SSD	npn,DM,si npn,GD,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,si	12-20 *12-40 13.5 13.5 14	500 250 75 75 385	200 185 85 85 160	2.5 1.66 1.25 1.25 2.85	60 *60 45 45 40	- 25 100 100 50	0.1 0.004 10 10 0.005	11 - - 18	4 - - 70	- 11 - - 2	Sub min Sub min NA
	2N284 2N284A 2N339A 2N340A 2N341A	AMP AMP TR TR TR	pnp,AJ,ge pnp,AJ,ge npn,DJ,si npn,DJ,si npn,DJ,si	15 15 15 15 15	125 125 1000 1000 1000	75 75 200 200 200	2.5 2.5 8 8 8	*32 *60 55 85 *125	125 125 1 0.1 0.1	4.5 4.5 - 1	11111		11111	
A 5	2N927 2N938 2N1247 2N1249 2N1440	NA SSD NA TR NA	pnp,AJ,si pnp,AJ,si npn,DM,si N-GJ pnp,AJ,si	15 15 15 15 15	150 250 30 30 400	200 175 150 - 200	2.5 1.7 0.2 - 2.28	70 35 6 6 50	100 5 5 100	.005 .001 1.5 0.002 0.01	- - - 12	12 7 12 8 25	.8 1 - 5 1	NA TR audio/med. power
	2N1623 2N1655 BCZ12 TR34 2N2391	RA RA AMP IND TI	pnp,AJ,si pnp,AJ,si si pnp,AJ,ge P,si	15 15 15 15 *15-*45	250 250 250 120 1000	160 160 150 85	0.54 0.54 2 3	20 *125 *60 40 20	50 50 50 150 30	.005 .005 0.01 10	18 18 8 15 -	70 70 50 15	1.1 .2 1 1.6	AMP -
A 6	TS601 TS603 2N925 2N529 2N756A	TS TS NA GI TR	pnp,AJ,ge pnp,AJ,ge pnp,AJ,si *	*15-*60		100 100 200 85	2.5 2 0.30	*12 *20 50 *15 60	400 400 - 100	20 20 .005 3 0.1	- - 14 -	12 14 5	- .8 - 100	matched pnp,npn
	2N1277 2N1584 2N1586 2N1587 2N1588	TR TR TR TR TR	N-GJ N-GJ npn,GJ,si N-GJ npn,GJ,si	18	150 150 150 150 150 150	150 150	1.00 1.00 1.33 1.00 1.33	*40 60 15 30 60	25 25 50 25 50	- 0.5 - 0.5	20 - 20 - 20	5 5 *2 5 *2	15 5 15 5 15	
A 7	2N334A 2N757 2N757A 2N118 2N333	NA	npn,MS,si npn,MS,si npn,MS,si npn,GR,s npn,GR,s	18-36 18-36 18-40	500 500 500 150 150	175 200 200 175 175	2.8 2.5 2.5 1 1	45 45 60 *30 45	- - 25 25	0.5 0.2 0.1 2 2	15 - 20 20		- - - 5 8	TR GE,TR,NA,RA,AMP

		T													
	Remarks	TI GE,TR,NA,RA,AMP TR,TI	US,MIL only NA Hi-volt switch		TI TI "Meg-A-Life", TI	*matched pnp,npn micromin micromin		TI MIL, GI	US,GI Bilateral, Ti audio/med. power	"Meg-A-Life" RCA Driver, TI Driver, TI	IND, RA, US, GI, TI NA *matched pnp, npn Sub min	Sub min NA NA	GE, MO , TI Bilateral , TI	1	KF, 11 KF, 11
S	fae **fT **fab (mc)	-2118	30 2 2 1	1.0	10 0.5 0.5 50	250 - 2.5 1.2 0.8	0.8 0.8 15	10 600 0.5	0.8	5 0.01 0.01 0.01	0.6	.3 8 100 0.15		2; 1,7 1,7	11118
CHARACTERISTICS	ر روم (pd)	r r	115 8 3	90 20 8 8 8 8 8 8	7 25 25 - -	20	44 440 7 7	18111	20 35 - - 25	9 1 1 1 1		15121	- 15 7 7	22 - 33 -	1 1 1 4 4
ARACT	R (db)	1 2 2 1 1	11111	ا ا ا ه ي	20 1 1 4	- 14 15 6-5 22	11 20 -	انعانعا	12 116 - - 12	15	1 1 1 1	181 101	16 6 6	18 18 20 -	2.8
5	_0_3	2 0.2 0.1 2.1	.005 0.1 0.002	0.1 0.001 0.002 0.102	0.02 25 25 .2 .2 0.010µa	14 3 10 2 2	0.004 16 16 0.5 .05	20 16 100 .005	3 5 .007 100 0.01	10 20 20 20 20	100 6 .005 3 10	10 .005 1 0.1 110	10 2 .001 5 .005	5005	100 100 - 0.05µa 75
	(mg)	25 25 - 25 25 25	انداات	200 50 50 50	25 200 200 - 50	35 200 100 100	25 200 50 50 100	200 300 50 400	300	000000	888 18	100 100 100	500 100 400		200 200 30 100 50
	VCEO *VCBO (v)	45 45 45 60 *45	*3 40 60 60 *100	.150 *25 30 6 6	45 *105 *105 45 40	*20 *15 45 20 .29	*60 25 25 45 100	*25 45 10 30 30 *45	30 *20 *10 50	*45 *20 *40 *40 *40	*20 *45 60 *15 45	45 35 60 60 *30	*45 *20 35 45 60	*80 *125 *32 *30 20	*25 *45 20 *18 *40
MAX. RATINGS	J _o /wm	0.86 1 2.5 2.5 0.86	2.5 0.25 7	3.0 2 0.50 - 0.66	2.67 2.67 2.5 1.0	m 2 m 1 1	1.66 4 2 1.33 1.7	3.3 3 0.3	2.5 0.2 0.9 2.28	3.66.83	3 2.5 1.7 2 1.25	1.25 2.85 6 0.30 2.5	3 1.67 1.7 3.33 1.7	0.54 0.54 0.3 1.2	2 2 - 2.67 0.80
MAX.	T _i (° _C)	175 175 200 200 200 175			200 100 100 200 175	75 85 2.5 85 85	185 85 85 150 175	85 100 85 2.85 100	85 100 175 85. 200	100 75 75 75 75 85	85 100 175 85 85	85 160 160 - 75	100 85 175 85 85 175	160 160 75 85	001 - 001 -
	P _c (mm)	150 150 500 500 150	30 150 30 120	400 250 300 30 100amb	200 200 200 500 150amb	150 100 150 80 80	250 200 75 150 250	200 240 180 385 200	150 150 180 50 400	225 180 180 150 180	180 200 250 100 75	75 385 750 500 125	225 150 250 250 250	250 250 165 75 1000	150 150 200 200 200
	h te * h F E * * G m	18-40 18-90 18-90 18-90 18-90	20 20 20 20 20 20 20 20 20 20 20 20 20 2	*20 20 *20 20 20 Si 20-45		20-80 22 22 22.5 22.5	*22-76 24 24 *24 24	24-45 25 25 25 25 25	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25-42 25-50 25-50 25-125 25-125	25-125 26 26 27 27	27 28 28-90 29 30	88888	30 30 30-70 *30-*90	30-90 30-90 *30-*90 *30-*90 30
	Туре	npn, DM, si npn, GR, si npn, MS, si npn, DM, si npn, DM, si	pnp, AJ, ge pnp, AJ, si npn, DD, si N-GJ pnp, DR, ge	pnp,A,si si N-M N-M npn,MESA,si	npn, DG, si pnp, AJ, ge pnp, AJ, ge npn, DM, si npn, PL, si	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	npn,GD,si pnp,AJ,ge pnp,AJ,ge npn,GJ,si pnp,AJ,si	pnp, AJ, ge pnp, AJ, ge npn, AJ, ge pnp, AJ, si pnp, AJ, ge	pnp, AJ, ge pnp, AJ, ge pnp, DM, si pnp, AJ, ge pnp, AJ, si	pnp, AJ, ge npn, AJ, ge npn, AJ, ge pnp, AJ, ge npn, AJ, ge	npn, AJ, ge pnp, AJ, ge pnp, AJ, si * pnp, AJ, ge	pnp, AJ, ge pnp, AJ, si npn, GJ, si N-M pnp, AJ, ge	pnp, AJ, ge npn, AJ, ge pnp, AJ, si pnp, AJ, ge pnp, AJ, se	pnp, AJ, si pnp, AJ, si pnp, ge pnp, AJ, ge pnp, PE, si	pnp, AJ.ge pnp, AJ.ge P.si npn, P.si N-GJ
	Mfr.	N T N N N N N N N N N N N N N N N N N N	SPR NA WE TR GI			₽₽ <mark>B</mark> G ₹	GE GE TR SSD		N S T C I N		SSD GI BRA		SSD pp	۵.	SY SY TR TR TR
	Type No.	2N1150 2N334 2N758 2N758A 2N758A 2N1151	2N129 2N923 2N1051 2N1248 2N1570	2N2551 BCZ10 ST1506 ST1543 TNT839	2N2042 2N2042 2N2042A 2N761 TMT2427	2N530 2N530 TR722 CK22A CK64A	2N2675 2N186A 2N189 2N1150 2N1476	2N381 2N44 2N229 2N330A 2N460	2N564 2N592 2N726 2N1265 2N1265 2N1441	2N524A 2N1101 2N1102 2N34 2N35	2N306 2N464 2N1474 2N531 CK65B		2N524 2N594 2N939 2N1446 2N1474A		2N1372 2N1373 2N2392 2N2711 ST1242
	Cross Index Key	α <		6 6	- 1	A 10		11 A		A 12		A 13		A 14	

Now 1~ to 14gc low-noise

Low-noise devices for your

SUBAUDIO CIRCUITS

Texas Instruments 2N2497-2500 series field-effect transistors give the design engineer extremely low-noise characteristics — as low as 5 db at 10 cycles. They are ideal for such low-frequency equipment as null-detection apparatus, medical research equipment, oscillographic and magnetic tape recorders, oscilloscopes and all types of low-level transducers. ■ The circuit below illustrates how Texas Instruments 2N2500 silicon field-effect transistors are used to achieve low-noise, low-frequency operation.

This circuit gives you a maximum voltage gain of 60 db ± 0.5 db from -55° C to 125° C with built-in gain adjustment. You also get good low-frequency response and stable circuit operation. \blacksquare Write for your technical information file on low-noise TI devices for your subaudio applications.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Low-noise devices for your

The units plotted here are representative of a broad range of over 100 low-noise devices TI offers for your low-noise applications.

AUDIO CIRCUITS

Now you can design the low-level, high-gain amplifier shown below with typical noise figure as low as 1 db. Advanced low-level planar technology of Texas Instruments 2N929 and 2N2586 transistors makes possible high gain at low current levels, plus the extremely low leakage currents necessary for true low-noise performance.

For high-impedance transducer applications, TI 2N930 and 2N2586 devices permit typical 1 db noise figure at emitter currents below 1 microampere, and generator resistances over 1 megohm. These special characteristics allow direct coupling of low-level, high-impedance sources... advantages previously available only with vacuum tubes and field-effect transistors. High gain at low levels plus very thin regions in these units combine to offer low power consumption and high radiation resistance to make the 2N930 and 2N2586 ideal for space applications. A technical information file on almost 50 TI low-noise devices for audio circuits is yours upon request.

SEMICONDUCTOR-COMPONENTS
DIVISION

solid-state amplification

Figures shown are not theoretical; all are achieved measurements from actual circuit operation.

Low-noise devices for your

LF-UHF CIRCUITS

For your low-noise, high-frequency receiver and preamplifier applications, Tl 2N2415 germanium mesa transistors give you a typical noise figure of 2.4 db at 200 mc, maximum available gain of 15.5 db at 500 mc with a fMAX of 3 gc. ■ In the following circuit, HRB-Singer, Inc. utilizes 2N2415 transistors and "multiple feedback" techniques to achieve a uniform low noise figure, nominally 6 db, over the entire frequency range of 300 to 1000 mc with an average gain of 35 db. Unique design provides stable operation over a temperature range of —30° to +70°C and eliminates the need for RF tuning capacitors.

Another line of TI low-noise communications devices is the Dalmesa 2N2188 and TI363 series of germanium alloy diffused mesa transistors. These advanced units offer you ultra-high performance from dc to 100 mc, typical mid-frequency noise figures of less than 2 db, and increased high-frequency stability through guaranteed maximum output capacitance of 2.8 pf at 9 volts. ■ Investigate TI's wide selection of low-noise transistors for LF-UHF circuits by writing for a free fact file on these devices.

TEXAS INSTRUMENTS

I N C O R P O R A T E D 13500 N. CENTRAL EXPRESSWAY P. O. BOX 5012 • DALLAS 22, TEXAS Low-noise devices for your

MICROWAVE CIRCUITS

Now you can design microwave circuits for highest frequencies at lowest noise with the new GaAs Pill Varactor Diode from Texas Instruments. These new subminiature devices offer you minimum cutoff frequency of 90 gc to 150 gc at −2 volts with low junction capacitance − CJ @ 0 bias from 0.15 to 0.75 pf. Your production-line requirements for identical plug-in units are met through tight control of junction and package characteristics. ■ These features offer you the lowest package capacitance and inductance in industry today — backed up with TI varactor manufacturing capacity to meet your tightest production schedules. ■ TI GaAs Pill Varactor Diodes are particularly applicable to low-noise parametric amplifiers, harmonic generators, microwave switches, sub-harmonic oscillators, phase shifters and parametric limiters.

FOR FULL INFORMATION ...

... write for a fact-filled file of technical data on low-noise TI devices designed for application in your frequency range. Please address your card or letter to Department 605 and specify which of these four information files you desire.

1. SUBAUDIO

2. AUDIO

3. LF-UHF

4. MICROWAVE

Ask your authorized TI distributor about "Transistor Circuit Design," an informative new hardbound book for circuit designers authored by 32 TI engineers and published by McGraw-Hill.

19605

_													F		
	Remarks	FF	* matched pnp, npn M0, Tl "Meg-A-Life"	T0-18, NA NA	TO-5 TR, NA	TS,KF, TP TR, USN	TR, GE, NA, RA, AMP GE, TI TR, TI	* matched pnp, npn, TI Switch	TI Trixie Driver	micromin RF switch 2N650	КF, TI TI	F	MO, SY, TI MO, TI Driver, MO, TI MO, RA, US, GI, SY, T Bilateral, TI		audio/med. power micromin
S	fae *fT ** fab (mc)	10 250 -	2 2 5.5	0.88	*2 50 3.0 3.0	11001	#	200	1.5	1.5 2 2 2 2	581188	20 11.3 11.2 50 *.7	2.5	0.8	1.0
CHARACTERISTICS	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	* 4 - 1 - 1	14 25 40 *35	*35 5 - 12 12	121121	1 1 6 6 1	11116	1 1 2 2 1 4	1 1 1 % m	90 20 20 20		*2 40 *.7	25 20 20 15	12 25 40 -	20 20 7
RACT	RA (db)	2.8	14 - 15	102111	20 1 20 9	1 12 10	111120	14	1 2 2 1	~~ 188	20 20 2	20 6 112 -	115	111//	12 9 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
СНА	1 C(pd)	75 0.05µa 15 14 100	3 16 10 14	14 1 .005 .005	10 1 0.001 0.001	1.5 20 16 16 2	2 0.5 0.2 0.1	3 0.1 10	10 2 2 1µa 3	0.02 0.02 2 1.0 1.0	20 0.1µa 0.02 0.01µa 0.01µa	0.8 10 10	10 4 16 6	33316	0.01 5 7.5 2 2
	L C (m a)	50 25 10 200 200	200 500 35	35	20 20 50 50 50	10 200 50 200 25 25	25	25 100 20 300	200 300	9000000	30 32 20 30 30 30 30 30 30 30 30 30 30 30 30 30	* * * 3000	1 200 200	20000	99999
	, CEO	*40 *18 *35 *15 *25	*15 20 *45 *20	*20 *80 *125 50 70	*10 *80 *125 *-25 *25	*7 *30 25 25 25 *30	445 60 45 45	*15 *40 60 *25 15	40 60 *40 60 60 *60	*60 *32 24 45 30	*25 45 45 45 45	20 45 *26 30 30	*45 40 18 *45 *20	40 16 25 45	. 50 45 100 24
MAX. RATINGS	O _o /wm	0.80 2.67 1.3 2	13 42	_ _ _ 2.5 2.5	2 2	3.3 2 4 1	2.8 2.5 2.5 0.86	2 • 1.00 1.00 1.71 2.5 6.6	6.6 6.6 2.7 8.0	2.5 2.5 2.5 2.5 2.5	3.3 0.66 4.0 8.0	1.33	4 4 2.5 1.67	2.5 4 4 3.3 3.3	2.28 3.3 3.3 1.7
MAX.	-i-(°)	100 85 100 100	85 85 100 71	71 175 175 200 200	- 175 175 150 150	55 85 85 85 175	175 175 200 200 200 175	85 200 85 85 85	85 85 100 175 85	150 150 85 85 85 85	85 175 200 175 175 175	150 100 75 -	100 85 85 85	200 85 85 100 100	200 85 85 175 88
	P c (m w)	200 200 80 150	100 225 240 225 150	150 150 150	20 11.2 11.2w 250 250	10 200 75 200 150	150 500 500 500 150	150 150 300	300 300 200 1200 120	312 312 80 80 150		200 240 550 150 150		150 140 140 250 250	200 200 80 80 80
	** P E	*30 *30-90 30-120 30-300	32 34 34-65 34-65 35	3333333	35 35 35 35	35-110 36-36 36-90	36-90 36-90 36-90 36-90	37 *37 40 40 40	54444	88888	40-76 si 40-90 40-100 *40-120 *40-120	*40-125 42 ge 42 44		45 45 45 45 45 45 45 45 45 45 45 45 45 4	244444 24444
	Туре	N-GJ npn, P, si pnp, DD, ge pnp, AJ, ge pnp, AJ, ge		pnp, AJ, ge npn, MS, si npn, DM, si pnp, AJ, si pnp, AJ, si	npn, AJ, ge npn, MS, si npn, DM, si pnp, si si	pnp, PADT, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge npp, AJ, ge	npn,GR,si npn,MS,si npn,DM,si npn,DM,si npn,DM,si	* N-GJ npn,MS,si pnp,AJ,ge	pnp, AJ.ge pnp, AJ.ge pnp, AJ.ge npn, DM, si pnp, DR, ge	si si pnp,AJ,ge pnp,AJ,ge	pnp, AJ, ge npn, MESA, s npn, DG, si npn, PL, si n pn, PL, si	npn, GJ, si pnp, AJ, ge pnp, PADT, pnp, AJ, ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge nnp, AJ, ge	pnp, AJ, si pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp, AJ, si- pnp, AJ, ge pnp, AJ, ge pnp, AJ, si- pnp, AJ, si-
	Mfr.	SYSSET	GE GE MO RCA		0	SY GE GE TI	FARARA	GI TR NA SY BE	BE MO TI GI	AMP RA IND IND	> R R E E E	TR GE AMP RCA RCA	8888°	ABBEE	NA IND SSD SSD RA
	Type No.	ST1243 2N2715 2N1432 2N1380 2N1381	2N532 7N319 2N44A 2N525A 2N525A 2N405	2N406 2N734 2N738 2N926 2N926	2N1010 2N1564 2N1572 2N2617 BCZ11	OC57 2N383 2N190 2N187A 2N119	2N335 2N335A 2N759 2N759A 2N1152	2N533 2N1278 2N742 2N1009 2N1176	2N1176A 2N1176B 2N1191 2N156 2N156	BCY11 BCY12 CK4A TR-650 TR-653	2N382 TNT840 2N480A 2N929 2N2387	ST1244 2N43 0C79 2N104 2N215	2N525 2N1924 2N322 2N465 2N465 2N595	2N924 2N1098 2N1145 2N1372 2N1373	2N1442 2N1447 2N1451 2N1477 CK65A
	Cross Index Key		A 15		A 16		A 17		A 18		A 19		A 20		. A 21

		1		1											
	Remarks		2N320 US, TI Mega life, TI SY, US	*MIL, GE, TI MO, TI IND, MO, GI RA, US	M0 T0-18		Х Т. Г.	2N320 Matched	E	TI, KF 11, KF	"Meg-A-Life" Driver Submin,	Submin. Submin. Submin. Submin. US, GI	Driver, Tl Driver micromin RF switch Bilateral, Tl		
S	f * * f * * f * (mc)	3 0.1 -	2.5 1.5 1.5 1.5	3.5 2.5 1.16 0.8	*800 *900 10	1.5	5 5 16 10 0.01	1.5 2.5 0.01 0.01	10 0.01 10 0.01	100 800	6.5 1.2 1.2 100	1111	111		1.6 - 2 2 *0.85
ERIST	္ကီ ⁽⁻⁾	1 * 4	25 20 20	40 25 	*1.0 *1.0 7 7 25	25	17755	100 20	11111	1111	1 5 4 4 4 4	11118	25 40 14 -	70 74.0 7	1111
CHARACTERISTICS	A S (9p)	51 11 00	5 10 10 5	18 9 6.5	3.0	3.0 6.5 7.0	1111	1211	1 1 1 1 1	1111	15 15 6.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 19	18111	ومااا
₹	_ (af	10 0.2 0.004 150	2003	10 16 10 6	0.0004 0.0004 .001 .001 150	100 3 3 100 14	- .001 .001	10 0.02 7.5 50 100	16 12 16 50 14	12 12 100 100 100	10 10 10 10	3 1 100	16 16 2 2 1.5	01.00.005	1.5 20 20 2.0 12
	L C (ma)	200 - 25 10 10	100 500 250 500 500	1000000	200211	200 150 150 200 25	25 25 50 50 500	200 200 100 100	200 75 200 100 70	75 75 100 200 200	200 200 100 100	300000	100001	10.00	10 400 400 5
	, CE0 *VCB0 (v)	30 45 *60 *20 *-30	25 *45 *45 *30 *60	*45 20 *30 30 10	15 15 8 8 8 *20	*20 *15 *25 *25 *25 *15	* 30 * 60 * 8 * 20	* 20 * 30 * 40 * 40	* * * * * * * * * * * * * * * * * * *	*25 *25 *16 *25 *45	*45 25 25 60 60	35 35 35 30 30 30 30 30 30 30 30 30 30 30 30 30	16 16 15 20	35 30 20 60 60	*7 *12 *20 *-15 *10
MAX. RATINGS	Э ₀ /мш	3 2.5 1.66 2.5 0.45	3 2.7 2.8 2.8 2.7	2 4 - 2.5	171 171 171 171 171 171 171 171 171 171	3.3 2.5 2.5 3.3 1.00	1.00 1.00 1.7 1.7 3.3	3.0	23.33	2.3	3 4 2 0.30 1.25	1.25 1.25 1.25 1.25 2.5	4 4 - 1,67	2.5 2.85 1.7 6.5 1.7	9.0
MAX	T _i (° _C)	2.5 200 185 75 75	85 100 100 100	100 85 85 85 85	200 200 175 175 100	100 85 85 85	- 175 175 100°C	85 150 85 85 85	85 85 75 85	85 85 100 100	100 85 85 85 65	888888	885 885 855 85	85 160 175 150 175	55 100 100 75
	P _c (mm)		150 200 200 200 200	150 225 200 150 150	300 300 250 250 -	150 150 200 200 150	150 150 250 250 250 250	180 312 150 180 180	200 200 200 180 150	50 - 140 150	225 200 75 500 75	75 75 75 75 150	140 140 80 10 150	150 385 250 800 250	10 200 200 80 20 20
	he ** G m	45 45-150 *45-290 47	8 6 6 6 6 6		*50 *50 50 50 50	22222	22222	50 50 50 50-100 50-100	50-100 50-100 50-100 50-100 50-135	50-150 50-150 50-150 50-150 50-150	53-90 54 54 54 54	55 54 54 54 55 55 55 55 55 55 55 55 55 5	52555	09 09 09 09	65 60 60 860 60 860
	Туре	pnp, AJ, ge npn, DM, si npn, GD, si pnp, AJ, ge pnp, ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, FA, ge	npn, DP, si npn, DP, si pnp, AJ, si pnp, AJ, si npn, A, ge	pnp, A, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge N-G-5	N-G-5 N-G-5 pnp,AJ,si pnp,AJ,si pnp,AJ,ge	npn, AJ, ge si pnp, AJ, ge npn, AJ, ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge npn, AJ, ge pnp, AJ, ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge N-M pnp,AJ,ge	pnp, AJ, ge pnp, AJ, ge npn, AJ, ge npn, AJ, ge pnp, AJ, ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, PADT, ge npn, AJ, ge	pnp,AJ,ge pnp,AJ,si pnp,AJ,si npn,DD,si pnp,AJ,si	pnp,PADT,ge pnp,AJ,ge pnp,AJ,ge pnp,gc pnp,gc
	Mfr.		MOOMM			A TITIE	SSD SSD SY SY	4.0	\$\$ \$\$ \$\$	\$\$\$\$\$\$	RAPP		GE P P P P P P P P P P P P P P P P P P P	SSD pp	AMP Dr TS Dr TS Dr AMP Dr RCA Dr
	Type No.	TR721 2N762 2N2676 2N280 0C71N	TR320 2N650 2N650A 2N653 2N653 2N1186	2N43A* 2N320 2N331 2N363 2N363	2N917 2N918 2N941 2N942 2N942 2N1173	2N1174 2N1273 2N1274 2N1383 2N1383	2N1590 2N1591 2N1917 2N1918 2N2271	2N2354 BCY10 TR-320 2N214 2N228	2N241A 2N270 2N321 2N1059 2N408	2N109 2N217 2N323 2N1374 2N1375	2N526A 2N188A 2N191 2N758A CK22B	CK66B CK66C CK261 CK262 2N566	2N1097 2N1144 CK27A 0C58 2N596	10	0C60 TS602 TS604 AC107 ZN220
	Cross Index Key	200	77.4	A 23	67.4	. 0	50	A 25	3	30	97 Y	A 27		86 V	

	1					MAX.	RATINGS			СНА	RACTE	RISTIC	S	
Cross Index Key	Type No.	Mfr.	Туре	h _{fe} *hFE **G _m	P _c (mw)	T _i (°C)	mw/°C	V CEO *V CBO (v)	I C	¹ C0 (μα)	NF (db)	C _{oe} *C _{ob} (pf)	fae *fT **fab (mc)	Remarks
	2N175 2N398A 2N407 2N408 2N649	RCA MO RCA RCA RCA	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,AJ,ge	65 65 65 65 65	20 150 150 150 100	- 100 71 71 -	2 - -	*10 105 *20 *20 *20	2 200 70 70 50	12 12 14 14 14	6	-	*0.85 1 - - -	GI, TI SY
A 29	2N759A 2N1448 2N1452 OC74 2N2043	TR IND IND AMP MO	N-M pnp,AJ,ge pnp,AJ,ge pnp,PADT, pnp,AJ,ge	65 65 65 ge 65 65-100	500 200 200 550 200	- 85 85 75 100	0.30 3.33 3.33 - 2.67	60 45 45 20 105	100 400 400 300 200	0.1 5 7.5 10 25	- 6 9 -	5 20 20 - 25	100 4 2.2 1.5 0.75	ті .
	2N2043A 2N323 2N281 2N282 2N361	MO GE AMP AMP IND	pnp,AJ,ge pnp,AJ,ge pnp,PADT, pnp,ge pnp,AJ,ge	65-100 68 9e 70 70 70	200 140 165 167 150	100 85 75 75 85	2.67 4 - 2.5	105 18 *32 *-32 45	200 100 250 250 200	25 16 4.5 4.5 10		25 25 - -	0.75 2.5 0.9 0.9	"Meg-A-Life", TI Driver, MO RA, US
A 30	2N591 2N647 2N735 2N739 2N1352	RCA RCA TI TI IND	pnp,AJ,ge npn,AJ,ge npn,MS,si npn,DM,si pnp,AJ,ge	70 70 70 70 70	100 100 1.0 1w 150	- 175 175 85	- - - 2.5	*32 *25 80 *125 30	40 50 50 70 200	7 14 1 1 2.5	- 20 - -	- 5 - 18	0.7 - 50 - 2.5	TO-18, TR, NA NA KF
	2N1565 2N1573 2N213 2N1251 TR-383	TI TI SY SY IND	npn,MS,si npn,DM,si npn,AJ,ge npn,AJ,ge pnp,AJ,ge	70 70 70-250 70-250 72	1.2 1.2w 150 150 200	175 175 85 85 85 85	2.3 2.5 3.33	*80 *125 *40 *20 25	50 50 100 100 200	1 1 50 50 7.5	20 - - - -	5 - - - 20	50 - 0.01 7.5 1.8	NA 2N383
A 31	2N527A 2N241 2N109 2N192 2N217	MO GE RCA GE RCA	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	72-121 73 75 75 75 75	225 100 150 75 150	100 85 - 85 -	3 3 - 2 -	*45 25 25 25 25 25	500 200 70 50 70	10 16 14 16 14	15 - 15 -	40 40 - 40 -	7.0 1.3 - 1.5 -	"Meg-A-Life" SO
	2N361 2N1192 2N1443 2N1672 C620	US MO NA GI CT	pnp,AJ,ge pnp,AJ,ge pnp,AJ,si npn,AJ,ge pnp,AJ,si	*75 75 75 75 **75	150 200 400 120 250	85 100 200 85 160	2.7 2.28 0.5 2	30 *40 50 *40 10	200 200 100 - 50	10 2 0.01 5	13 10 12 - 3.5	25 - 15	1.5 2 1 -	TI audio/med. power Trixie driver tg FE
A 32	C622 C624 GT-74 GT-81 TR-323	CT CT GI GI IND	pnp,AJ,si pnp,AJ,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	**75 **75 75 75 75	250 250 150 150 150	160 160 100 100 85	2 2 2 2 2.5	10 10 25 25 16	50 50 - - 200	- 5 5 7.5	1.5 0.4 6 16 -	15 15 35 35 20	- - - 2.5	tg FE tg FE 2N323
	2N1376 2N1431 2N2712 2N2716 2N1950	SY SY GE GE IND	pnp,AJ,ge npn,AJ,ge npn,P,si npn,P,si npn,DM,si	75-150 75-150 *75-225 75-225 75-250	150 180 200 200 600	100 75 100 100 175	2 3.6 2.67 2.67 4	*25 *25 *18 *18 20	200 100 100 25	100 50 0.05µ 0.05µ 0.01	2.8 2.8 2.8	- *9 5 -	10 - - -	ті
A 33	2N1951 2N1952 2N1279 2N120 2N336	IND IND TR TI TI	npn,DM,si npn,DM,si N-GJ npn,GR,si npn,GR,si	75-250 *76 76-333	600 600 150 150 150	175 175 - 175 175	4 4 1.00 1	30 40 *40 *30 45	- 25 25 25 25	0.01 0.01 - 2 2	- - 20 20	- 5 - -	- 15 7 13	TR TR, GE, NA, RA, AMP
	2N336A 2N760 2N760A 2N1153 2N321	NA NA NA NA GE	npn,MS,si npn,DM,si npn,DM,si npn,DM,si npn,AJ,ge	76-333 76-333 76-333	500 500 500 150 225	175 200 200 175 85	2.5	45 45 60 45 20	- - 25 200	0.5 0.2 0.1 2 16	-	- - 7 25	- 1 3	TI TI, TR TR, TI MO
A 34	2N527 2N651 2N651A 2N654 2N780	SY MO MO MO TI	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,DM,s	80 80 80 80	225 200 200 200 200 1w	85 100 100 100 175	2.8	*45 *45 *45 *30 45	500 500 500 250 50	10	5 15 10 -	-	3.3 2 2.0 2.0 -	TS, TI US, SY, TI TI US, TI
. 25	2N1187 2N1370 2N1371 2N1374 2N1375	MO TI TI TI TI	pnp,AJ,g pnp,AJ,g pnp,AJ,g pnp,AJ,g pnp,AJ,g	e 80 e 80 e 80	200 150 150 250 250	100 85 85 100 100	2.5 2.5 3.3	*60 25 25 25 25 45	500 150 150 200 200	3 3 3 3	5 6.5 6.5 6.5 6.5	=	2 2.0 2.0 2 2	GI, KF KF KF KF
A 35	2N1382 2N1449 2N1926 CK28A OC59	INE	pnp,AJ,g pnp,AJ,g	e 80 e 80 e 80	200 200 225 80 10	85 85 85 85 55	3,33	25 45 40 12 *7	200 400 500 400 10	5 4	6.5 6 - - -	20 - 14 -	2 5 - 17 2.2	MO micromin RF switch

SHOCKLEY SEMICONDUCTOR DEVICES

TYPE E 4-LAYER DIODES

1-N SERIES

Type 25° C -40° to 85° C 25° C -40° to 85° C 25° C -40° to 85° C 25° C 85° C 1N3831 20 ± 4 14-25 0.5-15 40 max 1N3839 20 ± 4 14-25 14-50 5 min 1N3832 25 ± 4 19-30 0.5-15 40 max 1N3840 25 ± 4 19-30 14-50 5 min 1N3834 35 ± 4 28-41 0.5-15 40 max 1N3841 30 ± 4 23-36 14-50 5 min 1N3835 40 ± 4 32-46 0.5-15 40 max 1N3842 35 ± 4 28-41 14-50 5 min 1N3836 45 ± 4 37-51 0.5-15 40 max 1N3843 40 ± 4 32-46 14-50 5 min 1N3837 50 ± 4 41-57 0.5-15 40 max 1N3844 45 ± 4 37-51 14-50 5 min 1N3838 100 ± 10 80-115 0.5-15 40 max 1N3845 50 ± 4 41-57 14-50 5 min <tr< th=""><th></th><th>in v</th><th>Voltage (V_s) olts</th><th></th><th>urrent (I_h) liamps</th><th></th><th></th><th>g Voltage (V_s) volts</th><th></th><th>Current (I_h) Iliamps</th></tr<>		in v	Voltage (V _s) olts		urrent (I _h) liamps			g Voltage (V _s) volts		Current (I _h) Iliamps
	1N3832 1N3833 1N3834 1N3835 1N3836 1N3837	25±4 30±4 35±4 40±4 45±4 50±4	19–30 23–36 28–41 32–46 37–51 41–57	0.5–15 0.5–15 0.5–15 0.5–15 0.5–15 0.5–15	40 max 40 max 40 max 40 max 40 max 40 max 40 max	1N3839 1N3840 1N3841 1N3842 1N3843 1N3844 1N3845	25°C 20±4 25±4 30±4 35±4 40±4 45±4 50±4	40° to 85° C 14-25 19-30 23-36 28-41 32-46 37-51 41-57	25°C 14-50 14-50 14-50 14-50 14-50 14-50 14-50	85°C 5 min 5 min 5 min 5 min 5 min 5 min 5 min 5 min

COMMER	CIAL SERIES		MIL-LINE	SERIES			SERIES	A (BROA	D SPEC)
Туре	Switching Voltage (V _s) in volts	Holding Current (I _h) in milliamps	Туре		ng Voltage (V _s) in volts —60° to 125°C	Holding Current (I _h)	Туре	Switching Voltage (V _s) in volts	Holding Current (I _h) in milliamps
4E20-8 4E30-28 4E30-28 4E40-8 4E40-28 4E50-8 4E50-28 4E100-8 4E100-28 4E200-8 4E200-28	$\begin{array}{c} 20 \pm 4 \\ 20 \pm 4 \\ 30 \pm 4 \\ 30 \pm 4 \\ 40 \pm 4 \\ 40 \pm 4 \\ 50 \pm 4 \\ 50 \pm 4 \\ 100 \pm 10 \\ 100 \pm 10 \\ 200 \pm 20 \\ 200 \pm 20 \\ \end{array}$	1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45	4E20M-8 4E20M-28 4E30M-8 4E30M-8 4E40M-8 4E40M-28 4E50M-8 4E50M-28 4E100M-8 4E100M-8 4E200M-8 4E200M-8	$\begin{array}{c} 20 \pm 4 \\ 20 \pm 4 \\ 30 \pm 4 \\ 30 \pm 4 \\ 40 \pm 4 \\ 40 \pm 4 \\ 50 \pm 4 \\ 100 \pm 10 \\ 200 \pm 20 \\ 200 \pm 20 \\ \end{array}$	14-25 14-25 23-36 23-36 32-46 32-46 41-57 41-57 80-115 80-115 160-230 160-230	1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45 1-15 14-45	4E20A 4E30A 4E40A 4E50A	20±6 30±6 40±6 50±6	0.5-60 0.5-60 0.5-60 0.5-60

TYPE J 4-LAYER DIODES

COMMERCIAL SERIES

MIL-LINE SERIES for extended temperature ranges

Type 4J50–5	Switching Voltage (Vs) in volts	Holding Current (I _h) in milliamps	Туре		g Voltage (V _s) I volts —60° to 105°C	Holding Current (I _b) in milliamps
4J50-25 4J100-5 4J100-25 4J200-5 4J200-25	50 ± 5 50 ± 5 100 ± 10 100 ± 10 200 ± 20 200 ± 20	1-10 9-45 1-10 9-45 1-10 9-45	4J50M-5 4J50M-25 4J100M-5 4J100M-25 4J200M-5 4J200M-25	50 ± 5 50 ± 5 100 ± 10 100 ± 10 200 ± 20 200 ± 20	41–57 41–57 80–115 80–115 160–230 160–230	1-10 9-45 1-10 9-45 1-10 9-45

TYPE G 4-LAYER DIODES

COMMERCIAL SERIES

MIL-LINE SERIES for extended temperature ranges

Type 4G50	Switching Voltage (V _s) in Volts	in milliamps	Туре		Voltage (V _s) Volts —60° to 105°C	Holding Current (I _b) in milliamps
4G100 4G200	50 ± 5 100 ± 10 200 ± 20	1–50 1–50 1–50	4G50M 4G100M 4G200M	50±5 100±10 200±20	41–57 80–115 160–230	1–50 1–50 1–50

New! NPN HIGH FREQUENCY SILICON POWER TRANSISTOR

MAXIMUM RATINGS	at 25°C base otherwise sta	e temperature ated	unless	CHARACTERISTICS at 25°	C unless	otherwise	stated
BVCBO	3TX002 100 V	3TX003	3TX004	Condition	3TX002	3TX003	3TX004

BVCBO	100 V	100 V	COM		Condition	3TX002	3TX003	3TX004
	5 A 60 W 2.5°C/W -65 to 200°C	5 A 45 W 3.3°C/W -65 to 200°C		F _T min Beta min VCE max ICBO max	10 V, 2.5 A 5 V, 5 A 5 A, 0.5 A 150°C 3TX002 - 80 V 3TX003 - 80 V 3TX004 - 50 V	150 MC 30 1V 10 MA 10 MA	150 MC 10 2V 10 MA 10 MA	150 MC 10 3V 10 MA 10 MA 10 MA

A MAJOR SOURCE FOR 4-LAYER DIODES AND HIGH FREQUENCY SILICON POWER TRANSISTORS. For further information on these and other Shockley solid-state devices, call or write your nearest Clevite distributor or contact:

CLEVITE TRANSISTOR, Palo Alto Plant, 1801 Page Mill Road, Palo Alto, California

	Remarks	2N321	MO Driver, MO, TI US, GI, RA, SY, TI	TI TI micromin	KF KF Output	IND, US RA, US	US, GI RA, US, GI	TO-18, TR, FA, NA TR, NA tg FE	tg FE tg FE TTR 2N383		Submin.	Submin. Driver T1 Driver , MO, T1	micromin RF switch	2N508	SY, US, TI US, TI
10	tαe *fπ **fα (mc)	3,1 2 15 - 50	*10 3.3 3 1 60	3 3 1.2 0.75	**7.5 2 2 2 *15 **2	**2	**2 **2 **2 1.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.8	28111	11181	1.5	25 11.7 10 60 60 25		2.5 2.5 2.5 60
SISTIC	- Pp e	20 7 *-8	*18 25 25 7	11111	*20 40 - - -	1111	1 1 2 1	5 	15 15 - 50 *12	1* 111	111*1	14 - 852	14 - 4 *6	11118	11117
CHARACTERISTICS	H (qp)	120	6 6 1 4	_ 22 _ 15	5.5	11155	10 5 0 12 12	20 5.5 5.5 5.5 3.5	1.5	12111	11121	15 16	1 1:5	14411	5 115 100 5 5 4
CHAR	O (pd)	7.5 0.02 - - 0.1µa	342 10 16 6 0.005µa	10 15 2 5 5 4.5	10 7 7 2 2 4	4 4 10 200 8	6 6 6 3 3	ee l	- 10 6µ3	$\begin{array}{c} 50 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	0.01 0.01 0.01	10 16 10 6 6	2 10 75 0.002µa	0,1118	3 10 5 5 0.010µa
	L C (mg)	200 7. 25 0. 100 – 100 – 50 0.	100 16 100 16 30 0	400 1 400 1 100 2 50 5 10 4		20 20 400 100 25		50 200 200 50 50	200 200 100	100	0.01	100 400 100 100	400 1150 30 30	200 200 200 200 200 200 200 200 200 200	500 500 500 30
	, VCE0	30 2 45 2 80 1 80 1 45 45	*35 *45 *18 *35 6	*25 *30 *30 *-30	*50 45 45 *35 *12	*12 *12 *12 20 20 *50 *50	*20 *20 *20 30 30	*80 *125 12 25 25 10	10 10 *125 25 *-20	*40 45 20 30 40	20 30 40 45 35	35 25 *18 *25 18	8 *32 20 20 45 *32	*20 *-32 *32 *32 *32	445 * * * 45 6 60
RATINGS	J ₀ /*	2.5 - - 0.66	3.3 4 4.0 4.0	0.45	6.7 25 3.3 3.3 1.25	1.25 1.25 2.5 2.5	2,5	23.3	2 2 3.0	2.5 4.0 4	4 4 8.0 1.25	1.25 2 2 - 2 4	3.3 0.80 4.0 3.3	2.2 0.37 0.37 3.3 2.5	2.7 2.8 2.8 2.7 4.0
MAX. RA	E	85 200 - - 175	100 100 85 100 175	100 100 85 75 75	100 100 100 65	65 65 65 65 65	855 855 855 855 855 855 855 855 855 855	175 175 100 100 160	160 160 175 85 75	85 175 175 175 175	175 175 175 175 85	85 85 100 100 85	85 75 - 175 90	100 90 90 85	100 100 100 175
- W	P (wm)	150 200 200 1000 1200 1200	250 1 225 1 140 8 200 1 600	200 200 80 80 1125 110	250 250 250 250 50		50 50 50 150 150	1.0 1.0 1.0 250 250 250 250	250 250 1,2w 150 150	180 600 600 600 600 600	600 600 600 1200 75	75 75 200 150 140		100 280 280 280 280 150	200 200 200 200 200 200 200 200 200 200
-	* h FE		80-500 81 85 85 85 85 86 85 86 85		*90-*250 95 95 95 100	000000	000000	100 100 100 100 **130	**100 **100 100 100 *100-*200	*1)0-250 *1)0-300 10'+300 10)-300 10)-300	103-300 103-300 103-300 *:00-300	1.0	120 120 120 *120-360		
	Type	Si.		- 90 - 90 pnp,AJ,ge 90 pnp,AJ,ge 90		+	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge				npn, DM, si npn, DM, si npn, DM, si n pr, PL, si nno. A 1. ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge			
	Vfr.	TT M, M, TR M, M, M, M	TWGE E	0.0.		PH RA IND PH			PPESS	S L S S S S S S S S S S S S S S S S S S	ON IND	G TSE A			
	Type No.	< -				2N207A 2N207B 2N360 2N362 2N362 2N362	2N535 2N535A 2N535B 2N568 2N568	2N736 2N740 2N1380 2N1381 C621	C623 C625 2N1574 TR383	2N213A 2N930 2N1944 2N1945 2N1945	2N1947 2N1948 2N1949 2N2388	CK67C 2N265 2N1705 GT-109 2N508	2N1018 2N2431 5T1290 2N2586	2N2614 2N2706 2N2707 AC127 TR-508	
	Cross Index Kev		A 36		A 37		A 38		A 39		. A 40	-	A 41		A 42

The First Complementary Silicon Planar Transistors for a broad range of applications are discussed in a new 32-page brochure.

The aim of this "printed seminar" is to familiarize potential users of advanced silicon planar transistors with the advantages and applications of Sperry's new

low-level, low-noise, high beta complementary NPN and PNP transistors. The brochure comprehensively reviews the advantages in reducing weight, volume and cost of equipment in circuit applications in addition to detailed parameter distribution and variation curves.

Requests for the Sperry Silicon Planar Transistor Brochure are to be made on company letterhead. Sales Offices: Chicago, Illinois; Los Angeles, California; Oakland, New Jersey; Medford, Massachusetts; Sykesville, Maryland; Bethpage, Long Island, New York.

SPERRY SEMICONDUCTOR, Norwalk, Connecticut.

SPFRRY

DIVISIONS OF SPERRY RAND CORPORATION

						MAX.	RATINGS			СНА	RACTI	RISTI	cs	
Cross Index Key	Type No.	Mfr.	Туре	hfe *hFE **Gm	P _c (mw)	т _і	mw/°C	V CEO *V CBO (v)	I _C	¹ C0 (μα)	NF (db)	C _{oe} *C _{ob} (pf)	(mc)	Remarks
	2N78 2N78A 2N1592 2N1593 2N1594	GE GE TR TR TR	npn,RG,ge npn,RG,ge N-G5 N-GJ N-GJ	*135 *135 140 140 140	65 65 150 150 150	85 85 - -	1.1 1.1 1.00 1.00 1.00	15v 20 *15 30 *60	20 20 25 25 25 25	0.7 0.7 - -	12 12 - -	*3 5 5 5	*9 9 5 5 5	
A 43	2N359 2N570 2N631 2N1008A 2N1471	RA IND IND SY IND	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	150 150 150 150 150 150	150 150 150 400 200	85 1T 85 85 85	2.5 2.5 2.5 6.6 3.33	45 30 25 *40 12	200 300 200 300 200	10 3 10 500 2.5	12 - - -	20 - 18	1 2 1.2 25 5	IND, US GI RA BE
	2N1193 2N2613 C632 C633 2N467	MO RCA CT CT MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,si pnp,AJ,si pnp,AJ,ge	160 160 **175 ** 175	200 100 250 250 200	100 100 160 160 100	2.7 2.2 2 2 2.5	*40 *13 250 350 *35	200 10 50 50 100	2 4 - - 6	10 5 - -	- 2 2 -	2.5 *10 - - 1.2	tg FE tg FE IND, SY, US, TI
A 44	CK67A 2N467 2N169A 2N572 2N1378	RA GI GE IND TI	pnp,AJ,ge pnp,AJ,ge npn,RG,ge pnp,AJ,ge pnp,AJ,ge	180 200 *200 200 200 200	80 120 75 150 250	85 85 85 85 100	- 2 1.25 2.5 3.3	15 *35 *25 30 12	100 - 25 300 200	2 10 0.9 3 3	22 16 6 12 4	- 40 *2.4 20 40	- 0.5 *9 3	micromin MO, RA, US GI
	2N1379 C631 2N2374 2N2429 2N1185	TI CT- PH AMP MO	pnp,AJ,ge pnp,AJ,si pnp,AJ,ge pnp,ge pnp,AJ,ge	200 ***200 210 220 260	250 250 250 165 200	100 160 100 75 100	3.3 2 3.3 3.3 2.7	25 150 *35 *32 *45	200 50 500 30 500	3 - 2 - 5	4 - 4 5	40 2 *14 -	3 - **15 2.3 3	tg FE Output, TI
A 45	2N1194 C640 C641 C642 C643	MO CT CT CT CT	pnp,AJ,ge pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si	280 **20 0 **40 0 **60 0 **90 0	200 675 675 675 675	100 160 160 160 160	2.7 5 5 5 5	*40 35 35 35 35 35	200 50 50 50 50 50	2	10 - - - -	8 8 8 8	3 20 30 40 50	TI tg FE tg FE tg FE tg FE
	C644 SST610 2N461 2N943 2N944 2N945	CT SSE MO SSD SSD SSD	pnp,AJ,si npn,DM,si pnp,AJ,ge pnp,AJ,si pnp,AJ,si pnp,AJ,si	-	675 500 200 250 250 250	160 150 100 175 175 175	5 4 2.8 1.7 1.7	35 *60 *45 18 18 50	50 500 100 50 50 50	0.3ma 10	- 8 20 - - -	8 20 - 7 7 7	60 *0.120 0.7 1 1	tg FE USAF, TI
A 46	2N946 2N1919 2N1920 2N1921 2N1922 2N2376	SSD SSD SSD SSD PH	pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,g		250 250 250 250 250 250 250	175 175 175 175 175 175 100	1.7 1.7 1.7 1.7 1.7 1.7 3.3	80 18 18 50 80 *35	50 50 50 50 50 50 50	- - - - - 2	111111	7 7 7 7 7 *14	1 1 1 1 1 **15	m. pair 2N2375, TI

New Darlington Amplifier Transistor In 4 Lead TO-18 Package features very high beta as high as 2,000 minimum at 100 μA . . . very low leakage — as low as 1nA maximum at 30 volts . . . low noise, typically 2 db. These microelectronic devices contain two interconnected NPN silicon planar transistors which provide extremely high current gain in a single TO-18 package.

The design economies and characteristics of these devices are particularly well-suited for high impedance amplifier inputs, low noise amplifiers and high gain stages. \Box Production quantities are presently available for new Sperry types; 2N2723, 2N2724 and 2N2725. Sales Offices: Chicago, Illinois; Los Angeles, California; Oakland, New Jersey; Medford, Massachusetts; Sykesville, Maryland; Bethpage, L. I., New York.

For complete details, DIVISIONS OF write for technical bulletin. SPERRY SEMICONDUCTOR, Norwalk, Connecticut. SPERRY RAND

CORPORATION

HIGH FREQUENCY

Includes types ranging up to and above the vhf range. In order of increasing $f_{\alpha e}$, $f_{\alpha b}$, or f_{τ} .

						МА	X. RATIN	GS		CHAI	RACTER	RISTIC	S	
Cross Index Key	Type No.	Mfr.	Туре	f _{αe} *f T **f _{αb} (mc)	P _c (mw)	T _i (°C)	mw/°C	VCEO *VCBO (v)	I C	h _{fe} *hFE	l CO (μα)	NF (db)	C _{oe} *C _{ob} (pf)	Remarks
HF 1	2N444A 2N707 2N988 2N989 2N1024	GI PSI PSI PSI SSD	npn,AJ,ge npn,TDP,si npn,TDP,si npn,TDP,si pnp,AJ,si	1 1 1 1 **1	150 .006 .006 .006 .006 250	100 175 175 175 175 175	2 56 20 20 1.7	*40 - - - 15	70 70 100	25 .005 .05 .05	2 300 250 250 0.025	12 6 8 11 -	.2 .32 .63 7	NA, KF
	2N 1025 2N 916 2N 2656 PT 720 PT 886	SSD PSI PSI PSI PSI	pnp,AJ,si npn,TDP,si npn,TDP,si npn,TDP,si npn,TDP,si	**1 1.2 1.2 1.2 1.6	250 .006 .006 .006 .01	175 200 200 200 200 175	1.7 45 25 25 22	35 - 200 200 -	100 120 50 80	9-22 .001 .01 5	0.025 300 250 250 250 180	- 10 15 -	7 - .05 .05 .150	NA, KF
HF 2	PT887 PT888 2N94 2N139 2N193	PSI PSI SY SY SY	npn,TDP,si npn,TDP,si npn,AJ,ge pnp,AJ,ge npn,AJ,ge	1.6 1.6 2 2(min.)	.01 .01 150 80 150	175 175 85 85 85	45 45 2.5 .75 2.5	*20 *20 *18	50 15 50	.3 .3 50 22-110	180 180 50 50 50	6	.750 1.000 - - -	
	2N 194 2N 194A 2N 211 2N 233A 2N 413A	SY SY SY SY SY	npn,AJ,ge npn,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge	2 2 2 2 2 2	150 150 50 150 150	85 85 70 85 85	2.5 2.5 1.1 2.5 2.5	*18 *18 *10 *18 *15	50 50 50 50 200	10 10 5-15 30	50 50 20 50 10	11111	11111	Mixer Converter GI
HF 3	2N515 2N516 2N517 2N519A 2N1026	SY SY SY GI SSD	npn,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,si	2 2 2 ·2 **2	50 50 50 150 250	75 75 75 100 175	1 1 1 2 1.7	*18 *18 *18 *25 35	10 10 10 - 100	25-50 5-15 10-60 25 18-44	50 50 50 1 0.025	- - 12 -	- - 14 7	IND, KF KF, NA
	2N1469 2N1840 2N413 2N1342 2N356	SSD PSI RA PSI RCA	pnp,AJ,si npn,TDP,si pnp,FA,ge npn,TDP,si pnp,AJ,ge	**2 2 2.5 2.8 3	150 .013 150 .018 100	150 175 85 175 85	1.2 25 - 150 1.67	35 500 18 300 20	100 15 200 12	36 .3 30 .01	25 180 2.0 190 5	- 7 8 -	7 - .7 12	KF IND, US, KF, GI GI, SY, TI
HF 4	2N 438 2N 438 A 2N 445A 2N 481 2N 1302	GI GI GI US TI	npn,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge npn,ge	3 3 3 3	100 150 150 200 150	85 85 100 85 100	1.67 2.5 2 3 2.0	*30 *30 *30 *30 *25	- - 20 300	70 50 20*	10 10 2 3 3	12 - 3.6	12 12 14 14 14	TI RA, TI TI
	2N1564 2N1565 2N1566 2N1889 2N1890	PSI PSI PSI PSI PSI	npn,TDP,si npn,TDP,si npn,TDP,si npn,TDP,si npn,TDP,si	3 3 3 3 3	.02 .02 .02 .017 .017	175 175 175 200 200	80 80 80 100 100	50 50 50 	30 60 130 80 200	.01 .01 .01 .001 .001	190 190 190 190 190	- - - -	-	"
HF 5	2N1893 2N1893A 2N1506A 2N482 TR-482	PSI PSI PSI IND IND	npn,TDP,si npn,TDP,si npn,TDP,si pnp,AJ,ge pnp,AJ,ge	3 3 3.5 3.5 3.5 3.5	.017 .017 .02 150 150	200 200 200 85 85	120 140 80 2.5 2.5	500 500 500 *14	80 90 60 200 200	.001 .001 .005 50 20	190 190 190 3 3	- 10 - -	1.3 12 12	us, Ti
	PT1558 2N212 2N385 2N414A 2N1027	PSI SY SY SY SSD	npn,TDP,si npn,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,si	4 4 4 **4	.023 15() 15(15(25()	200 85 100 85 175	80 2.5 2.0 2.5 1.7	*18 *25 *15	40 50 - 200 100	.005 20 - - 18	210 50 35 20 0.025	10	1 - 4 - 7	Converter GI, TI KF,GI,AMP KF
HF 6	2N 1058 2N94A 2N292 2N388A 2N395	SY SY GE RCA RA	npn,AJ,ge npn,AJ,ge npn,AJ,ge npn,ge pnp,AJ,ge	4 5 5 5 5	50 15) 65 15) 15(75 85 85 - 85	1 2.5 .9 -	*18 *20 15 *40 25	- 50 20 200 -	15 19 6-44 30* 40	50 50 5 - 2.0		- - - 12	TI TO-5 RF Switch, TI, RCA
	2N 439 2N 439 A 2N 448 2N 520 A 2N 634	GT RA GE GI GE	npn,AJ,ge npn,AJ,ge npn,RG,ge pnp,AJ,ge npn,AJ,ge	5 5 5 5	10(15(65 15(15(85 85 85 100 85	1.67 2.5 1.1 2 2.5	*30 *30 15 *25 *20	- 20 - -	25 100	10 10 5 1 5	- - 12 -	12 12 2.4 14 12	SY, TI TI IND, KF, TV TI
HF 7	2N 483 2N 357 2N 377 2N 446A 2N 483	IND RCA SY GI US	pnp,FA,ge npn,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge	5.5 6 6 6	15(10(15(15() 15)	85 85 100 100 85	1.67 2.0 2 2.5	*12 *20 *25 *30 12	20 20	60 - - 120 65	3.0 5 5 2 1.5	- - 12 10	12 12 14 *12	US, TI GI, SY, TI TI TI

9 New Differential Amplifier Transistors feature close matching of characteristics: \triangle VBE as low as 5 mV maximum. \square Other features include: temperature tracking of VBE $\longrightarrow \triangle$ (VBE₁ -VBE₂)/ \triangle T as low as 10μ V/° C.; extremely high beta — up to 50 min. at 1μ A matched to within 10%; and low noise typically 2db. Extremely low lookes — as 1

typically 2db. Extremely low leakage — as low as 1nA max. at 30 volts.

Because these devices eliminate common-mode signals and allow use of balanced inputs to minimize input drift, they find application in low drift DC amplifiers, operational amplifiers, telemetry, comparators and analog-digital converters. These new microelectronic devices have two closely matched low-level NPN silicon planar transistors, electrically isolated but thermally connected, in a single 6-lead TO-5 package. Production quantities are presently available.

Sales Offices: Chicago, Illinois; Los Angeles, California; Oakland, New Jersey; Medford, Massachusetts; Sykesville, Maryland; Bethpage, L. I., New York.

Write today for technical bulletin. SPERRY SEMICONDUCTOR, Norwalk, Connecticut.

SPERRY

DIVISIONS OF SPERRY RAND CORPORATION

HH continued

		Remarks	SY SY	IND US, TS, GE, RCA, AMP, TJ TO-5 RF Switch TO-5 RF Switch US	SV, T	TI TI TO-5 RF Switch, RCA		SY, П SY	SY IND, KF IND, US, GI, TS, KF,AMP SY, TI	RA, TI TI TI	TI TI JAN, TI	TI TI TII AMP	NA 2N332	TO-5, RF Switch, KF, TI, RCA RA, US	N,A,N T,IT	NA, TI TO-5 RF switch
-	,	ر پ روپو (وچ)	1 1 1 1 1	9 9 12	2.4 2.4 2.4 12 12	2.4	2.4 2.4 2.4 2.4 15	20 20 12 14	- 112 - 12	12 14 7 7		<u></u>		7 112 112 6 6 *20	*20 *20 *20 7	LL 2 6 L
RISTIC		N (db)	1 0 1 1 1	ر دا ا د	11111	22 22 22 -	1111	_ _ _ 112 8	114	- 12 25 20 20	20 20 - 10 27	19 20 20 61	19 22 22 23 23 23 23 23 23 23 23 23 23 23	81118	22222	20 25 25 10
CHARACTERISTICS		CO (pd)	0.5 6 6 10 10	2.0 3 2.0 3	2.0	5 .02 .02 3 3	un nu n	9 12 22	6 10 3 2,0 10	10 2 0.1 .02 .02	0.1	0.220.02	0.00001	0.1 2.0 3 0.01 2	2 2 2 0.2 0.2	
CHAB		h fe *h FE	100 48 48 48 75	60 50 50 50	40 72 25 - 60	72 10-25 10-25 30 .01	40 40 40 72 70	120 100 150 150 75	75 75 90 80	150 65 20-50 20-50	20-50 20-50 90 60 19-90	40-100 40-100 40-100 30-200	30-200 10-100 10-100 60 60	140 80 100 4 4	30 55 115 80-200 80-200	80-200 80-200 50 70 80
		(ma) C	15 15 15 15 15	200 100 200 20	20 50 -	20 25 25 25 100	20 20 20 20 100	30 10 - 15	15 15 200 200 -	25 25 25	25 20 20 50 50 25 25	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25 25 25 25 25	25820 1	25 25 25 25 25 25 25 25	25 25 50 100 50
٢	3	*CE0	*15 16 16 13 13	*15 *20 18 15 30	15 15 15 *25 20	15 30 45 15	9 9 15 *1	*0.5 *0.25 *20 *25 16	16 13 14 *12 *30	*30 *30 *30 *15 *30	30 *45 *12 50 *30	*15 30 30 30 45 *15	30 4 30 30 30 30 30 30 30 30 30 30 30 30 30	*30 33 20 *40	* * * 40 * * * 40 * * 15 * 30	30 *45 *30 15 40
NIT YOU	MAA. KATINGS	Do/wm	1,111	11118	1.1 1.1 1.1 2.0	1.1 30 45 - 40	2222	2 2 1.67		2.5	11111	11111	11110	1.0	11111	11211
411	W.	_i_(0)	75 85 85 85	85 85 85 85	85 85 85 100 85	85 200 200 200 85 150	85 85 85 85 85 100	100 100 85 100 85	88888	200000	200 200 85 200 175	200 200 200 150	150 200 200 200 150	150 85 85 85 175 175	125 125 200 200 200	200 85 200 85 200
	Ī	P c (mw)	88888	150 150 200 200	65 65 65 150 150	65 200 200 100 .006	65 65 65 65 150	150 150 100 150 80	80 80 200 150 100	. 150 150 200 200 200	200 200 150 375 150	200 200 200 200 150	200 200 200 200 150	150 150 150 150	150 150 200 200 200	200 200 120 150 37!
		fae * f T * * fab (mc)	6.8 6.8 6.8	7 7 7.5	∞∞∞∞∞	, w w w w	~~~~ <u>~</u>	8 8 6 6 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	22222	22222	20221	=====	=====	1222221	12 12 12 15 15	15 15 15 15 15
		Туре	pnp, PADT, ge, pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp, FA, ge npn, AJ, ge npn, AJ, ge pnp, FA, ge pnp, FA, ge	npn, RG, ge npn, RG, ge npn, RG, ge npn, AJ, ge pnp, AJ, ge	npn, RG, ge npn, GJ, si npn, GJ, si pnp, AJ, ge npn, TDP, si	npn, RG, ge npn, RG, ge npn, RG, ge npn, RG, ge pnp, fe	npn, ge npn, ge npn, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,FA,ge	npn,AJ,ge npn,GR,si npn,GR,si npn,GR,si	npn,GJ,si npn,GR,si pnp,FA,ge pnp,AJ,si npn,GR,si	npn,GR,si npn,GL,si npn,GL,si npn,GR,si npn,GR,si	npn,GR,si npn,GR,si npn,GR,si npn,GR,si npn,GR,si	npn,GR,si pnp,AJ,ge pnp,AJ,ge npn,DJ,si npn,GD,si	npn,GD,si npn,GD,si npn,GD,si npn,GR,si npn,GR,si	npn,GJ,si npn,GR,si pnp,DR,ft npn,AJ,ge pnp,AJ,si
		Mfr.	RCA RCA RCA RCA	RA RA IND	GE GE	GE TR TR PSI		GI GI GI RCA	RCA IND IND RA GI	S S R R R R R R R R R R R R R R R R R R	R S S Y X	RXKKK	RARAR	TRA IND	SE SE TA	RA RA
		Type No.	0C45 2N 139 2N 218 2N 409 2N 410	2N414 2N439 2N1090 CK14 2N485	2N 168A 2N 169 2N 293 2N 388 2N 388 2N 396	2N 449 2N 471A 2N 472A 2N 581 2N 581	2N1086 2N1086A 2N1087 2N1121 2N1121 2N1478	2N1624 2N2085 2N358 2N358 2N521A 2N140	2N219 2N411 2N414B 2N416 2N416	2N440A 2N447A ST905 2N473 2N474	2N474A 2N475 2N484 2N2425 2N118A	2N478 2N479 2N479A 2N480 2N1417	2N1418 ST15 ST35 ST35 ST45 ST45	ST910 2N397 2N486 2N751 4C28	4C29 4C30 4C31 2N541 2N542	2N542A 2N543 2N602A 2N1091 2N2424
		Cross Index Key		8 8		H 8		HF 10		HF 11		HF 12		HF 13		HF 14

HUGHES SEMICONDUCTOR BUYERS' GUIDE

HUGHES® DIODES

Silicon MICROSEAL* Diodes — Zener and Computer Types With or without welded leads, or in circuit arrays (0.062" dia .x 0.030" thick). Rated 150 mW free air (minimum), 500 mW mounted in circuit boards, to 1 watt infinite heat sink. Microminiature devices for high density circuit applications. Representative Types are E.I.A. equivalents: 1N46-59, 1N625-27, 1N903-08, 1N914, 1N916, 1N1934-37, 1N3064 and †N3067.

Silicon Zener Diodes Power Dissipation up to 500 mW. Hard backs with extremely low noise and dynamic impedance. Stable alloy process. Excellent voltage regulation as low as ±3% at low current level. Representative Types: 1N702-726A, 1N746-759A, 1N957-975B, 1N761-769, 1N1929-1937.

Silicon Capacitor Diodes Medium Q devices with good stability and low leakage. Capacitance ranges from 20 to 100 pf (tolerance as low as ±5%) with maximum bias voltage variations up to 150 volts. Representative Types: 1N950-956.

Silicon Computer Diodes Diffused planar passivated. Inversive working voltages to 100 volts. Recovery times as low as 2 nsec using a sampling scope circuit. Representative Types: 1N903-08, 1N914, 1N916, 1N3064 and 1N3067.

Germanium Point Contact Diodes The first industry standard subminiature glass general purpose and computer diode. Proven stability with inverse working voltages to 190 volts. Recovery times as low as 0.75 nsec using a sampling scope. Representative Types: 1N198B, 1N933, HPS, 1600 series.

Germanium Gold Bonded Diodes General purpose and computer applications. Recovery times as low as 3.5 nsec. Improved rugged mechanical stability withstands 30,000 G's centrifuge and 3,000 G's shock. Representative Types: 1N270, 1N276, 1N277 and HD1800 series.

Silicon General Purpose Alloy Diodes and Rectifiers Power Dissipation to 250 mW. Forward currents to 0.2 amps. Oxide-coated (surface passivated) units with working inverse voltages up to 1,000 volts. Representative Types: 1N456-459, 1N482B-488B, 1N846-889.

HUGHES TRANSISTORS

PNP Silicon Alloy Junction Transistors 2N1034, 2N1035, 2N1036, 2N1037. 2N1228 through 2N1234, 2N1238 through 2N1244, 2N327A, 2N328A, (also USA 2N328A), 2N329A, HA7597, HA7598, HA7599, HA7520 through HA7529, HA7530, through HA7539 . . . available in the standard TO-5 package or the Hughes coaxial package with up to 5 watts power dissipation. Manufactured by the evaporative-fusion technique which creates unusually low saturation resistance. Retain highly uniform characteristics from batch to batch, making possible much closer tolerances in the design of small-signal, high-temperature and amplifier circuits.

PNP Silicon Double Diffused Planar Transistors 2N1254, 2N1255, 2N1256, 2N1257, 2N1258, 2N1259, HA9048, HA9049, 2N1196, 2N1197, (also USA 2N1197), 2N869, 2N995 . . . most types available in any package configuration...TO-5, TO-18, TO-46, the Hughes MICROSEAL transistor...or any industry standard package. Offer many outstanding features: low collector capacitance, good low- and high-level gain characteristics, low leakage currents, low stored base charge, typical ft of 75 mc. High breakdown voltages in combination with gains, plus exceptionally fast-switching capabilities, make these superior general purpose units. 2N1131, 2N1131A, 2N1132, 2N1132A, 2N1132B, 2N1991 . . . available in any package configuration...TO-5, TO-18, TO-46, the Hughes MICROSEAL transistor . . . or any industry standard package. Used extensively in advanced missile, satellite and computer applications. Feature high breakdown voltages, exceptionally low leakage currents, typically 20 nanoamps, measured at stringent bias conditions. Most types offer guaranteed switching times of less than 50 nanoseconds.

NPN Silicon Double Diffused Planar Transistors 2N706, 2N706A, 2N706B, 2N707, 2N726, 2N753 Planar, 2N1613, 2N708 Planar, 2N743, 2N744 Epitaxial, 2N913, 2N914 Planar Epitaxial...available in any package configuration... TO-5, TO-18, TO-46, the Hughes MICROSEAL transistor...or any industry standard package.

ON READER-SERVICE CARD CIRCLE 445

HUGHES RECTIFIERS

Miniature High-Power Rectifiers These 1 amp devices are available from 50 to 3,000 volts PIV in the DO-7 package.

Standard Metal Package Rectifiers Available at ratings of 6, 12, 20 and 35 amps. PIV ratings are from 50 to 1,000 volts for the 6 and 12 amp packages. (DO-4 and DO-10), and from 50 to 600 volts in the 20 and 35 amp packages (DO-5 and DO-11).

Fast-Switch Rectifiers Hughes' new HF series (1 to 30 amp) "Golden Line" rectifiers have recovery times of less than 200 nanoseconds. Typical room temperature reverse leakage currents at rated PIV of 15 to 80 µamps for 1 to 30 amp devices, respectively. Maximum forward voltage drop of less than 1.4 volts at rated current.

Stacked Rectifiers and Assemblies Custom designed stacked rectifiers are available up to 60 kv with currents up to 20 amp. These designs make use of the R-C compensation to assure long life and high reliability.

Bridge assemblies for 3-phase and single-phase designs and potted configurations available—minimum deliveries and costs.

HUGHES PACKAGED ASSEMBLIES Packaged Assemblies Standard and custom assemblies encapsulated in epoxy. These offer impressive savings in time, money and space.

Typical assemblies include: singlephase and 3-phase bridges, voltage doublers and quadruplers, ring modulators, matched pairs, matched quads, phase detectors, computer modules, cartridge rectifiers or any custom units.

For more details on any of these products contact your nearest Hughes representative. Or write: Hughes Semiconductor Division Marketing Department, Newport Beach, California.

DIODES • TRANSISTORS • RECTIFIERS
PACKAGED ASSEMBLIES • CRYSTAL FILTERS

*Trademark Hughes Aircraft Company Creating a new world with electronics

HUGHES

HUGHES AIRCRAFT COMPANY SEMICONDUCTOR DIVISION

HF continued

						М	AX. RATII	1GS		CHA	RACTE	RISTIC	S	
Cross Index Key	Type No.	Mfr.	Туре	fae *fT **fab (mc)	P : (m v)	T _i (°C)	mw/°C	VCEO *VCBO (v)	I _C	h _{fe} *hFE	¹ CO (μα)	NF (db)	C _{oe} *C _{ob} (pf)	Remarks
	OC44 2N388A 2N476 2N477 2N522A	AMP TI TR TR GI	pnp,PADT,ge npn,AJ,ge npn,GJ,si npn,GJ,si pnp,AJ,ge	15 **16 17 17 17	83 150 200 200 150	75 - 200 200 100	- - - 2	*15 40 *15 *30 *25	10 200 25 25 -	100 *60 -180 30-60 30-60 200	0.5 5 .02 .02	- 19 19 12	20* 8 8	TI TI KF, TI
HF 15 .	2N582 2N1118 2N1118A 2N232 2N417	RA PH PH PH RA	pnp,AJ,ge pnp,SAT,si pnp,SAT,si pnp,SBT,ge pnp,FA,ge	18 18 18 20 20	100 150 150 9 150	85 140 140 55 85	1.3 1.3 0.9	*14 *25 *25 *4.5 *10	100 50 50 4.5 200	60 20 2 ⁵ 39 140	3 - 6 2.0	- - - 4	12 *6 *6 *6 -	TO-5 RF switch, TI SPR, KF, MIL SPR SPR IND, US, GI, TS, KF, TI
	2N602 2N1899 2N1902 2N1903 2N1904	GI PSI PSI PSI PSI	pnp,Dr,ge npn,DM,si npn,DM,si npn,DM,si npn,DM,si	20 20 20 20 20 20	120 125 N 125 125 125	85 150 150 150 150	2 1000 1 1 1	*20 140 140 140 140	10a 10a 10a 10a 10a	- 10 10 10 10	3 20ma 20 20 20 20	14 - - - -	4 600 - - -	TI hi freq., hi pwr
HF 16	2N1907 2N1908 2N2551 PT900 PT901	TI TI HU PSI PSI	pnp,AD,ge pnp,AD,ge pnp,A,si npn,DM,si npn,Ms,si	*20 *20 *20 20 20	150 # 150 # 400 125 # 125 #	160 150 150	3.0 1000 1000	100 130 ,150 80 140	20a 20a .1 10a 10a	*10 *10 *90 3	0.3ma 0.3ma 6 40 30	- *1.0 -	- 200 600 600	hi freq., hi powr. Hi frequency,
	2N495 2N523A 2N1428 2N1429 2N1677	PH GI PH PH PH	pnp,SA,si pnp,AJ,ge pnp,SAT,si pnp,SAT,si pnp,SAT,si	21 23 23 23 23 23	150 150 100 100 100	140 100 140 140 140	1.3 2 0.86 0.86 0.87	*25 *20 *6 *6 *4.5	50 50 50 50	30 300 45 45 50	.002 1 .001 .001 .001	12 - - -	*6 14 *7 *7 *7	MIL IND,KF SPR, chopper
HF 17	2N1065. 2N1900 2N1901 2N274 2N370	GI PSI PSI RCA RCA	pnp,Dr,ge npn,DM,si npn,DM,si pnp,Dr,ge pnp,Dr,ge	25 25 25 30 30	120 125 w 125 w 120 24	85 150 150 85 85	2 1000 1000 - -	*40 140 140 *40 *40	5a a 10 10	- 10 15 60 60	20ma 20ma 16 20	12	3 600 600 - -	hi freq., hi pwr. hi freq., hi pwr.
	2N371 2N372 2N373 2N374 2N1224	RCA RCA RCA RCA RCA	pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge	30 30 30 30 30 30	80 80 80 80 120	85 85 85 85 85		20 20 25 25 25 *40	10 10 10 10 10	- 60 60 60 60	20 20 8 8 12	-		SY Mixer, SY SY converter, SY GI, AMP, SY
HF 18	2N1226 2N1395 2N1709 2N1710 2N1750	RCA RCA PSI PSI PH	pnp,Dr,ge pnp,Dr,ge npn,DM,si npn,DM,si pnp,SBT,ge	30 30 30 30 30 30	120 120 130 130 15	85 85 175 175 75	86.7 86.7 0.5	*60 *40 75 60 *14	10 10 1,2a 1,2a 5	60 90 - - *18	16 16 50 2	- * -	- 40 40 *6	AMP AMP Hi freq., hi pwr. Hi freq., hi pwr.
	2N2225 2N2595 2N2598 MHT-6001 2N1425	KF SSD SSD MH RCA	pnp,AJ,ge pnp,DP,si pnp,DP,si npn,DP,si pnp,Dr,ge	30 *30 *30 30 33	22! 4.0 4.0 40/ 80	100 200 200 175 71	2.3 2.3 270	15 60 80 *100 24	500 - - 5a 10	300 15-60 15-60 10-120 50	25na 25na 1 1	3	10 *6 6 -	
HF 19	2N1426 2N1524 2N1525 2N1526 2N1527	RCA RCA RCA RCA RCA	pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge	33 33 33 33 33	80 80 80 80 80	71 71 71 71 71 71	- 0.4 0.4 0.4 0.4	24 24 24 24 24	10 10 10 10 10	130 60 60 130 130	12 16 16 16 16	- - - -	- 2 2 - -	GI GI GI
	2N934 2N603 2N603A 2N750 2N1633	RCA GI GI RA RCA	pnp,ge pnp,Dr,ge pnp,DR,ft npn,DJ,si pnp,Dr,ge	*35 40 40 40 40	15) 12) 12(15) 80	- 85 85 175 71	2 2 0.75 0.4	13 *30 *30 50 34	200 - 50 50 10	*60 - 60 7 75	3 5 10 16	14 25 -	3 5 6	T1 G1
HF 20	2N1634 2N1638 2N3746 2N640 2N641	RCA RCA RCA RCA RCA	pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge	40 40 40 42 42	80 80 80 80 80	71 71 71 85 85	0.4 0.4 - 0.75 0.75	34 34 34 34 34	10 10 20 10 10	75 75 .985 60 60	16 7 16 5 7	= = = = = = = = = = = = = = = = = = = =	2 3.8 -	GI GI GI
	2N642 2N754 2N755 2N839 2N840	RCA TR TR TR TR	pnp,Dr,ge npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si	42 44 44 44 44	80 300 300 300 300	85 175 175 175 175	0.75 - - - -	34 *60 *100 *45 *45	10 50 50 25 25	60 20-80 20-80 20-45 40-90	7 1 1 0.1 0.1	- - - 15 15	8 8 - 8	GI TMT839 (150mw) TMT840 (150mw)
HF 21	TMT842 2N1196 2N1631 2N1632 2N1635	TR HU RCA RCA RCA	npn,DJ,si pnp,MS,si pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge	44 45 45 45 45	150 365 80 80 80	175 200 71 71 71	2 0.4 0.4 0.4	*45 70 34 34 34 34	25 - 10 10 10	20 - 80 80 75	0.1 - 16 16 16		6 4 2 2 -	GI GI GI

TEKTRONIX TRANSISTOR-CURVE TRACER

INVALUABLE TOOL FOR EVALUATING SEMICONDUCTOR DEVICES

With a Type 575, you can plot and measure 7 different transistor characteristics. You can display 4 to 12 curves per family—with input current from 1 microampere/step to 200 milliamperes/step or input voltage from 10 millivolts/step to 200 millivolts/step—in repetitive or single-family presentations. You can select either common-emitter or common-base configurations.

The Type 575 provides 20-ampere collector displays (10-ampere average supply current), two ranges of collector supply (0 to 20 volts, 0 to 200 volts), and 2.4-ampere base supply (positive or negative base stepping).

Add a Type 175 Adapter and you extend the range of collector displays 10 times and the range of base supply 5 times.

You can also test diodes under a wide variety of conditions and observe waveform characteristics on the 5-inch crt with a high degree of accuracy.

Type 575 Calibrated Displays

Vertical Axis—Collector Current, 16 steps from 0.01 ma/div to 1000 ma/div. Pushbuttons are provided for multiplying each current step by 2 and dividing by 10, increasing the current range to 0.001 ma/div to 2000 ma/div.

Horizontal Axis — Collector Voltage, 11 steps from 0.01 v/div to 20 v/div.

Both Axes—Base Voltage, 6 steps from 0.01 v/div to 0.5 v/div. Base Current, 17 steps from 0.001 ma/div to 200 ma/div. Base Source Voltage, 5 steps from 0.01 v/div to 0.2 v/div.

Type 575 Transistor-Curve Tracer \$1075 U.S. Sales Prices f.o.b. Beaverton, Oregon

HIGH-CURRENT ADAPTER

For measuring high-powered semiconductor devices which exceed the current capabilities of a Type 575, ask your Tektronix Field Engineer about the Type 175 High-Current Adapter. Not intended for separate use, the Type 175 depends upon the circuitry and crt of a Type 575 to provide 200-ampere collector displays, three ranges of collector supply, and 12-ampere base supply—for calibrated displays with Collector Current on the Vertical Axis and either Collector Voltage or Base Voltage on the Horizontal Axis.

Type 175 Transistor-Curve Tracer High-Current Adapter \$1475

HIGH-VOLTAGE TYPE 575

Supplied on order from your Tektronix Field Engineer is a special model of the Type 575 Transistor-Curve Tracer. Although similar to the Type 575, the special model provides much higher diode breakdown test voltage (variable from zero to 1500 volts at a maximum current of 1 milliampere) and also much higher Collector Supply (up to 400 volts, at 0.5 ampere).

For complete specifications of this special model—call your Tektronix Field Engineer.

Type 575 Mod 122C \$1325

. . . for more information about evaluating semiconductor devices with a Type 575 or other Tektronix test equipment, please call your Tektronix Field Engineer. He will be glad to assist you.

Tektronix, Inc. / P. O. BOX 500 · BEAVERTON, OREGON / (Area Code 503) Mitchell 4-0161 · TWX: 503-291-6805 · Tektronix Field Offices are located in principal cities throughout the United States. Please consult your Telephone Directory. Tektronix Canada Ltd: Montreal, Quebec • Toronto (Willowdale) Ontario • Tektronix Ltd., Guernsey, Channel Islands

ON READER-SERVICE CARD CIRCLE 446

	Remarks	GG GG SPR SPR	SPR,GI TI	Planar Passivated Planar Passivated				-		-	tetrode			SPR, MIL TMT841 (150 πw)	RF, Mixer, Oscillator RF, Mixer, Oscillator RF, Mixer, Oscillator High freqt, high power High freqt, high power
S	ر پ (pq)	11488	*2 3. *8.0 *8.0 *8.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.8.8.8.8	8.8.0 0.8.8.0 0.8.8.0 0.8.8.0	8 8 8 8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9	** **.0 **.0 **.0 **.0	*8.0 *8.0 *8.0 *8.0 *8.0	0.00.00.00	*8.0 *5 2 *8.0 *8.0	8.8.0 8.0 8.0 8.0 8.0	4 5 10 15 25	*2.5 8 6 *8.0 *8.0	11144
RISTIC	. KF (db)	11111	14 1 1 1	1 1 1 1 1	1111	1111	11111	1111	1111	11111	1111	11111	25	10 15 - -	1111
CHARACTERISTICS	1 CO (pd)	16 5 7 0.7 0.7	5 4 .01 1.0	0.2 0.2 0.01 .01	2.05 2.05 2.05 0.01 .01	0.10.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.	1.0 0.01 0.01 2.5	2.5 2.05 5.0 5.0 5.0	5.0	1 22 29 29 29 29 29 29 29 29 29 29 29 29	.01 25na 3 .01	1 1 1 1 1	5 0.01 0.01 0.01	80 00 00 10 00 00	111000
CHA	h fe *h FE	75 80 75 22 35	155 - *15 *30 *60	36 76 *205 *200 *200	*75 *35 *15 *200 *5000	*15 *30 *60 *15 *30	*60 *200 *200 -75	*35 *15 2.0 2.0 *85	*130 *60 *85 *40 *20	*50 *150 *80	*30 30-80 2.2 *45	1111	70 *30 *30 *30	40 80-330 40 *200 *200	75 75 75 13 13
	I _C (ma)	10 10 5 5	50	11111	11111	1 1 1 1 1	1111	1 1 1 1 1	1 1 1 1 1	11111	20	11111	2000201	1 25 25	25,5000
GS	, CEO	34 34 *5 *5	*6 *30 *125 *125 *125	45 45 *60 *100 *100	*100 *100 *75 *100	*80 *80 *125 *125	*100	* * * * * * * * * * * * * * * * * * *	* * 50 * 100 * 100 * 100	*100 *100 *60 *60 *60	*60 6 6 *60 -	1 1 1 1 1	*30 *150 *180 *300	*10 45 45 *45 *45	20 *20 *20 120 120
MAX. RATINGS	Do/wm	0.4 0.4 0.4 1.33	0.63	1 1 1 1 1	1111	11111	11711	1111	11111	1111	2.3	1111	N N 4 4 4	0.82	1.33 1.33 1.33 24 24
MA	1, (°C)	25 E E E E E E E E E E E E E E E E E E E	100	200	1111	1111	1111	1111	11111	1 1 1 1 1	200	1111	300 300 300 300 300 300 300 300 300 300	85 175 175 -	75 75 75 150 150
	° (3 E)	20 20 20 20 20 20	25 120 1.0 0 1.0 0 1.00	500 500 1.50 <i>w</i> 1.8 <i>w</i>	1.8% 1.8% 1.8%	1.2v 1.2v 1.2v 1.2v 1.2v	3.0v	3.07 2.07 2.07 2.07	2.07	1.5)w 1.6 v 0.6)w 1.2 v	1.2 v 4.0 30 75v	1111	38; 12(1) 60(1-25C) 60(1-25C) 60(1-25C)	25 303 153 0.0 0.0	67 67 67 87 87 87 87 87 87 87 87 87 87 87 87 87
	fae **f T ***fab (mc)	5555	50 50 **50 **50	2005	2005	22222	* * * * * * * * * * * * * * * * * * *	88888	99999	888888	**50 **50 **50 **50	05.4.4.8.9	500000	60 64 64 **70 **70	22222
	Туре	pnp, Dr,ge pnp, Dr,ge pnp, Dr,ge pnp, SB,ge pnp, SA,ge	pnp,MA,ge pnp,Dr,ge npn,P,si npn,P,si	npn, si npn, si npn, P, si npn, P, si npn, P, si	s, d, ndn is, d, ndn is, d, ndn is, d, ndn is, d, ndn	is, 9, ndn is, 9, ndn is, 9, ndn is, 9, ndn is, 9, ndn	is, 9, ndn is, 9, ndn is, 9, ndn is, 9, ndn is, 9, ndn	is, 9, ndn is, 9, ndn is, 9, ndn is, 9, ndn is, 9, ndn	npn, P, si inpn, P, si is, P, ngn is, P, si is, P, ndn	npn, P, si npn, P, si npn, P, si npn, P, si npn, P, si	npn, P, si pnp, DP, si npn, MB, ge npn, P, si npn, P, si	npn, P, si npn, P, si npn, P, si npn, P, si npn, P, si	pnp,Ms,si pnp,DR,ft npn,DM,si npn,DM,si npn,DM,si	pnp,SB,ge npn,DJ,si npn,DJ,si npn,P,si npn,P,si	pnp,PADT.ge pnp,PADT.ge pnp,PADT.ge npn,MS,si npn,MS,si
	Mfr.	RCA PH PKCA	A A B B B B	GE GE AI AI	E E E E E E E E E E	FEFFE	ट ब्ब्ब्ब्ब	4444	बबबब ब	FEFEE	AI SSD GE AI AI	FEEEE	IND GHU	AR R A A	AMP AMP PSI PSI
	Type No.	2N1636 2N1637 2N1639 2N344 2N344	2N393 2N604 2N738 2N739 2N740	2N759 2N760 2N760A 2N870 2N871	2N910 2N911 2N912 2N912 2N956 2N998	2N1564 2N1565 2N1566 2N1572 2N1573	2N1574 2N1889 2N1890 2N1972 2N1973	2N1974 2N1975 2N1983 2N1984 2N1985	2N1986 2N1987 2N1988 2N1989 2N1990	2N2060 2N2223 2N2223A 2N2453 2N2453 2N2483		ASA-51 ASA-100 ASA-1000 ASA-1003 ASA-1004	2N1197 2N604A TRS100 TRS101 TRS301	2N128 2N841 TMT843 2N929 2N930	
	Cross Index Key		HF 22		HF 23		HF 24		HF 25		HF 26		HF 27		HF 28

AVNET MARKETS S.T.C. PRODUCTS

Your requirements of STC silicon power transistors can be met by Avnet. Your Local Avnet Headquarters offers quick and flexible service on the products of Silicon Transistor Corporation...over 150 2N Type Numbers in 12 package sizes from 5 to 300 watts; 21 MIL approvals. When you need silicon power transistors, take

advantage of Avnet's on-time delivery of STC products, featuring miniaturized power transistors without heat sink; isolated collector; PNP with NPN complements. Stocks in depth on either standard or hard-to-get items are part of Avnet's comprehensive marketing assistance. There are 10 Local Avnet Headquarters.

10 Local Avnet Headquarters

SAN DIEGO, CALIF., 714-224-3633; LOS ANGELES, CALIF., 213-UP 0-6141; SUNNY-VALE, CALIF., 408-RE 6-0300; SEATTLE, WASH., 206-GL 4-4911; PHOENIX, ARIZ., 602-273-1261; SALT LAKE CITY, UTAH, 801-486-7566; CHICAGO, ILL., 312-GL 5-8160; SYRA-CUSE, N. Y., 315-454-3238; WESTBURY, L. I., N. Y., 516-ED 3-5800; BURLINGTON, MASS., 617-BR 2-3060

THE AVNET SYSTEM Men/Methods/Materials/Management

AVNET ELECTRONICS CORP.

HH continued

	Remarks	High freq., high power High freq., high power High freq., high power High freq., high power high freq., high power	High freq., high power RF-IF	SPR RF, Mixer, Osc., IF AM rec.	RF, Mixer, Osc., IF AM rec. RF, Mixer, Osc., IF AM rec. RF, Mixer, Osc., IF AM rec. IF, Mixer FM rec. RF in FM rec.	RA,MO,PSI,TR,TI,IND,SY,GI,US RA, IND, TR, NA, GI, TI, PSI RA, NA, MH, GI, TI, US, PSI RA, NA, CL, GI, TI, TR, GE, MO RA, TR, TI			tetrode RA,PSI,TR,US,MO,SY,NA,GI,TI	ಪ ಪ	(CL, Epitaxial)	(CL, Epitaxial) (CL, Epitaxial)	RF, Mixer, Osc.	AMP RH, TI AMP GI, PSI	SPR RA, GI, TI, MO, GE, PSI
S	Coe (pd)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 - 1 - 8.0 - 8.0	** 1 1 1	1111	18 12 12 5 5 30	8.8.0 8.8.0 8.0 8.0 8.0 8.0	30 20 25 29 8	*2 1.5 1.5	1 1 4 4 4	\$\$\$\$0	4 4 *6 *6 *2.5	*1.5	3.5	18 *1.3 *1.3 *1.3
RIST	N (db)	11111	11111	_ _ _ _ 1.5	11111	1 1 1 1 1	11111	11111	1118		11111	11401	1111	1 1 1 1 1	
CHARACTERISTICS	-Со (да)	ထထထထ ၊	- - - - - - - - - - - - - - - - - - -	25na 0.7 1.2	11111	0.09.01.0	.005 25na 25na 25na 25na 25na	1 2 1	25na 3 16 16	0.05 0.5 5na 5na 5na	Sna Sna Sna Sna	.005 208 208 208 18	1 12 5 5	12 0.1 16 0.01 3	3.0004 11.5 11.5 11.5
CHA	* h fe FE	13	100 150 150	50-135 35 75 150 15	150 150 150 150	40 30 65 12 35	*80 40-100 80-200 40-100 80-200	20-120 20-120 20-120 20-120 40-120	40-120 100-200 1.1 60 0.01	40 70 40-100 80-200 40-100	80-200 18-90 36-90 76-333	4 4 60-350 150-600 50*	*70 100 80 60 60	60 45 90 130 25	50 80 45 70 45
	C (ma)	55 57 57 -	9 10 10	1000	22222	1 1 1 1 1	1 1 1 1 1	500 11 12 200 50 12 13 200	50 20 10 75	99 1		200 200 100		21212	40 - 50 10
IGS	VCE0 *VCB0 (v)	120 120 120 120 50	60 *20 *40 *125 *100	60 *5 *20 *32 *32	*32 *32 *32 *32 *25	40 *80 80 25 20	8 0 0 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0	*60 *120 *60 *120 *60	*100 60 6 6 40	\$ 20008	80 60 60 25 25	50 45 45 *20	*12 *40 30 *12 *12	*40 *40 30 *6	*20 75 75 *25 25 26 *40
MAX. RATINGS	mw/°C	24 24 24 24 24 0.2	.2 1.7 1.7 -	2.3 1.3 1.7 0.6 0.6	0.6 .75 1.7 0.6	13.3 13.3 13.3 6.7 13.3	2.3	23 23 57 57	2.3 0.5 - 13.3	2.4 2.3 2.3 2.3	2.3 2.3 6.7	6.7 6.7 2.3 2.3 0.8	0.8 1.33 2 2		0.8 17.2 .8 0.8
W	1, (°C)	150 150 150 175	175	200 55 75 75 85	85 75 85 85 85	175 175 175 175 175	200 200	200 200 200 200 175	175 200 85 85 85 175	175 175 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 100 100 100 100 100 100 100 100	100°C 90 71 85 85	85 175 85 175 100	100 100 100 100
	P c (mw)	2.8w 2.8w 2.8w 2.8w 3w	3w 83 100 1.20w 1.20w	4.0 100 100	100 67 83 100 100	2w 2w 1w 2w	1.20w 4.0 4.0 4.0	4w 10w 10w 300	300 4.0 30 2w	360 360 4.0 4.0	4.0 4.0 4.0 1.2w	1.2w 1.2w 4.0 4.0 60	60 86 80 120 120	120 2w 120 2 60	60 60 60 75
	fae *fT **fab (mc)	22222	70 *70 *70 *70 *70	*70 75 75 75 75	55 55 55 55 55	88888	08 * * * 80 * * * 80 * * * * * * * .	88888	86 89 100 100	100 100 100 100 100 100	* 100 * 100 100 100	001 * 100 100 * 100 100 * 100		88888	100 100 100 100
	Туре	npn,MS,si npn,MS,si npn,MS,si npn,MS,si	npn,MS,si pnp,PADT,ge pnp,PADT,ge npn,P,si npn,P,si	pnp,DP,si pnp,SB,ge pnp,PADT,ge pnp,AD,ge	pnp, PADT, ge pnp, PADT, ge pnp, PADT, ge pnp, PADT, ge pnp, PADT, ge	npn, DP, si npn, DP, si npn, DP, si npn, DP, si	npn, P, si pnp, DP, si pnp, DP, si pnp, DP, si pnp, DP, si	npn,EP,si npn,EP,si npn,EP,si npn,EP,si npn,DJ,si	npn,DJ,si pnp,DP,si npn,MB,ge pnp,Dr,ge npn,DP,si	npn,si npn, DP, si npn, DP, si npn, DP, si	npn, DP, si npn, DP, si npn, DP, si npn, DP, si	npn, DM, si npn, DP, si npn, DP, si npn, DP, si	pnp,MD,ge pnp,PADT,ge pnp,Dr,ge DR,ft	pnp, Dr, ge npn, DP, si pnp, Dr, ge npn, DP, si MAD T	MADT npn,DP,si pnp,MD,ge pnp,MD,ge pnp,MD,ge
	Mfr.	PSSISSISSISSISSISSISSISSISSISSISSISSISSI	PSI AMP AI AI	SSD PH AMP AMP AMP	AMP AMP AMP	F F F F F F F F F F F F F F F F F F F	SSD SSD SSD SSD SSD	H H H H H	TR SSD GE RCA FA	GE SSD SSD SSD SSD SSD SSD SSD SSD SSD SS	\$\$0 \$\$0 \$\$0 \$\$0 \$\$0 \$\$0 \$\$0 \$\$0 \$\$0 \$\$0	GI SSD SSD SPR	SPR AMP RCA GI	RCA FA FA GI	PPPF
	Type No.	2N1337 2N1339 2N1340 2N1341 2N1341	2N1506 2N1516 2N1517A 2N2509 2N2510	2N2591 2N346 2N346 2N993 2N2671 2N2672	2N2089 2N2090 2N2091 2N2092 2N2093	2N696 2N698 2N699 2N706 2N1252	2N2511 2N2596 2N2597 2N2599 2N2599 2N2600	MHT-4401 MHT-4402 MHT-4501 MHT-4502 2N844	2N845 2N2592 3N37 2N384 2N697	2N702 2N703 2N735A 2N736B 2N736B	2N740A 2N758B 2N759B 2N760B 2N920	2N921 2N922 2N929A 2N930A 2N930A	2N980 2N987 2N1180 2N1224 2N1224	2N1225 2N1253 2N1253 2N1396 2N1420 2N1427	2N1499A 2N1613 2N1748 2N1748 2N1748A
	Gross Index Key	,	HF 29		HF 30		HF 31		HF 32		HF 33		HF 34		HF 35

General Electric transistors exceed Minuteman 99.999% reliability objective

General Electric has completed a silicon transistor reliability improvement program for the MINUTEMAN airborne guidance and control system where data on a single product has been accumulated for over 100,000,000 life test hours . . . unsurpassed in the semiconductor industry. The result is reliability without parallel. For instance, final phase testing of 4,650 G.E. MINUTEMAN transistors to approximately 24,000,000 transistor hours at 288 mw resulted in ZERO failures. The

Transistor Minuteman Part No. 551B	Silicon Transistor Description Unijunction	Maximum Dissipation 600 mw	V _{B2} E 60	Nearest EIA Type No. 2N489	"Additional Minuteman Types"* MM/2N490/M MM/2N491/M MM/2N492/M MM/2N493/M
703B	Fixed-Bed Grown-diffused	500 mw	60	2N335A	MM/2N494/M MM/2N332/M MM/2N333/M
801B * Furnished	Grown-diffused to either A, B or	250 mw M MINUTEA	45 MAN 1	2N337 evel units.	MM/2N336/M MM/2N338

MINUTEMAN Part transistor made by General Electric substantially exceeds the MINUTEMAN objective of an average failure rate of 0.001%/1000 hours in continuous operation at 87 mw (25°C ambient) (see graph).

You can have this kind of reliability in *your* military and commercial applications. Just check the chart for MINUTE-MAN Part Numbers, similar EIA Types, and additional MINUTEMAN Types, all produced simultaneously on the same production lines and under the same exacting conditions.

For complete specifications see your G-E Semiconductor District Sales Manager, or write Section 11E151. Semiconductor Products Department, General Electric Company, Electronics Park, Syracuse, New York. In Canada: Canadian General Electric, 189 Dufferin St., Toronto, Ontario. Export: International General Electric, 159 Madison Ave., New York 16, N.Y.

SILICON POWER TRANSISTORS

7/8" HEX **200 WATT**

2N2820 2N1936 STC1728 2N1937 2N2821 2N2822 STC1731 2N2815 STC1733 2N2816 2N2823 STC1736 2N2824 2N2817 2N2825 STC1738 2N2818 2N2819 STC1726 STC1750

150 WATT

2N1015

2N1016

2N1016C 2N1015A USN2N1016C 2N1015B 2N1016D 2N1015C USN2N1016D 2N1015D 2N1015E 2N1016E STC1015 STC1015A 2N1016A STC1015B 2N1016B

USN2N1016B

STC1015C STC1015D STC1015E STC1016 STC1016A STC1016B STC1016C STC1016D

STC1016E

TO-36 75 WATT

2N1514 2N1511 2N2015 2N1512 2N2016 2N1513

10 - 5385 WATT

USN2N424 2N424A 2N1210 2N1211

2N1250 2N1620 2N1722 2N2383

11/16" HEX 85 WATT

2N1617 2N1208 2N1617A 2N1618 2N1209 2N1618A 2N1212 2N1724 2N1616 2N1616A 2N2384

T0 - 375 WATT

2N1069 2N1070 2N1487

USA2N1487 2N1488 **USA2N1488** 2N1489

USA2N1489 2N1490 USA2N1490 2N1702

40 WATT

2N1047 2N1047A USN2N1047A 2N1047B 2N1048 USN2N1048A 2N1048A 2N1048B 2N1049 2N1049A USN2N1049A 2N1049B

7/16" HEX 40 WATT

2N1647 2N1648 2N1649 2N1650

2N2150 2N2151 2N2828 2N2829

TO-8 25 WATT

2N1067 2N1068 2N1483 USA2N1483 2N1484 USA2N1484 2N1485 USA2N1485 2N1486 USA2N1486 2N1701 2N2035 2N2308

2N2036 STC1800 STC1810 STC1850

5 WATT

2N497 2N498 2N547 2N548

2N549 2N550 2N551 2N552 2N656 2N656A 2N657 2N657A

2N116 2N1117 2N1479 USA2N1479

STC5583

2N1480 USA2N1480 2N1481 USA2N1481 2N1482 USA2N1482 2N1700 2N2033 2N2034

PNP T0 - 375 WATT STC5080 STC5081 STC5082 STC5083 STC5084 STC5085

PNP-11/16" HEX 85 WATT

STC5580 STC5581

STC5584 \$TC5585 STC5582

PNP TO-53 2P389 2P389A 2P424 2P424A

CORPORATION SILICON TRANSISTOR

CARLE PLACE, L. I., N.Y.

(516) PIONEER 2-4100

TWX-516-248-9085

HH continued

Г										1					
	Remarks	RF, Mixer, Osc. on FM rec.				tetrode	NA, GE, TI, PSI NA, GE, TI, PSI NA, GE, TI, PSI	NA, GE, TI, PSI AMP AMP PSI	PSI,GI PSI, TR, GI, TI, MO	hi freq, hi pwr. hi freq, hi pwr. NA, MO NA, MO TI			Tetrode		
	ي ري (fa)	*14 *14 *12 *12	* * * * *	99999	9999	*6 *25 *25 	*1 *5 20 20 20 20	20 - 1 - 20 - 20 - 20 - 20 - 20 - 20 - 2	20 20 *5 *5 *4	20 33 40	1.5	1 1 2 2 1 1 3	ا ** ا	* 1.5 * 1.5 * 1.5	1 1 1:5
1	AN (ab)	1111	1111	11114	w 4	3 20	11111	11111	1111	1111	1111	1111	1 114	11111	1111
001401444014411	0) (at	0.2 0.2 -001 .001	Zna Zna Sna Sna Sna	5na 5na 5na 5na 2na	2na 25na 25na 25na 10na	10na 0.1 0.1 0.4 2	0.8 25na 0.1 0.1 0.1	0.1 12 12 16 0.1	0.1 .003 2na 2na 3	1 .001 .001 0.003	2 2 1.5 3	3 1.5 3na 3na 12	12 12 2na 2na 2na 0.4	2.5 2.5 1.5 1.5	33.55
5	h te	*20-60 *40-120 100 *40-*120 *40-*120	30-80 30-80 40-100 80-200 40-100	80-200 18-90 36-90 76-333 60-350	150-600 18-90 36-90 76-333 60-350	150-600 *30/90 *75/225 4	250 150-275 25 25 60	90000	50 200 50-130 50-130 *30	12 14 1 1 200	150 250 120 60 60	90 70 40-120 100-300	40 80 100-180 100-180	20 20 150 200 200 120	150 200 120 135 135
	C (ma)	1000 1000 1000 1000	11111	11111	1111	- 1 20 5	20000	200 100 200 200 200 200 200 200 200 200	100 1 001	1 1 1 200	32228	10 10	20 1 10	2222	3020
201	VCEO *VCBO (v)	* * * 60 * * * 40 * * 80 * 80	09000	80 60 60 60 45	45 60 65 65 65	45 *50 *50 30 . *20	*12 60 60 100 60	100 40 40 *40 30	30 *60 60 60 *25	60 850 * * 70 60	*10 *10 *20 *40	60 *25 45 45 30	80098	15 30 *20 *20 *20	*35 *35 *35 40 60
SOMETIC ATM	O /wm	- 1.93 16.0 16.0	2.3 2.3 2.3 2.3	2.33	22.33333	2.3 · 4.57 4.57 1	0.8 2.3 26.5 26.5 26.5	26.5	22.5 13.2 2.3 2.8 1.0	86.7 86.7 8 8 8 13.2	0.75 .75 0.75 .8	3.33	2.3	1 10 00	8.8.8.
	- (°)	175 175 90 200 200	200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 200 150 75	100 200 175 175 175	175 85 85 85 85 150	150 200 200 100	175 175 175 175 175	85 85 100	_ 100 175 175 71	71 71 200 200 150	175 100 100 100 100	88811
	Р с	600 600 125 2800 2800	4.0 4.0 4.0	0.4.4.4.0	0.444	4.0 800 800 125 60	60 4.0 4w 4w	4w 120 120 120 2.8w	2.8w 2w 4.0 1.8 75	13w 13w 1.2w 1.2w 2w	45 45 45 60 125	125 60 1.8w 1.8w 80	80 80 4.0 1.8 125	900000	60 60 60 125 125
	fae *fT **fab (mc)	*100 *100 *100 *100 *100	* * 100	* * * 100 * * * * * 100 * * 100	*100 *100 *100 *100 *100	* * 100 * 100 100 100	106 *110 120 120 120	120 120 120 120 120	120 120 *120 *120 *120 *120	120 120 125 125 125	125 125 125 125 125 **125	**125 *132 *140 *140	140 140 *140 *140 150	150 150 150 150 150	150 150 150 150 **150 **150
8	Type	npn, P, si npn, P, si pnp, PADT, ge npn, PE, si npn, PE, si	npn, DP, si npn, DP, si npn, DP, si npn, DP, si npn, DP, si	npn, DP, si npn, DP, si npn, DP, si npn, DP, si	npn, DP, si pnp, DP, si pnp, DP, si pnp, DP, si pnp, DP, si	pnp, DP, si npn, PE, si npn, PE, si npn, GD, si pnp, DJ, ge	pnp,MD,ge pnp,DP,si npn,MS,si npn,MS,si npn,MS,si	npn,MS,si pnp,Dr,ge pnp,Dr,ge pnp,Dr,Ge npn,MS,si	npn,MS,si npn,DD,si npn,DP,si npn,DP,si pnp,ED,ge	npn, DM, si npn, DM, si npn, MS, si npn, MS, si npn, DD, si	pnp,MD,ge pnp,MD,ge pnp,MD,ge pnp,MD,ge pnp,AD,ge	pnp, AD, ge pnp, MD, ge npn, PL, si npn, PL, si pnp, Dr, ge	pnp,Dr,ge pnp,Dr,ge npn,DP,si npn,DP,si npn,GD,si	npn, JD, si npn, DJ, si pnp, MD, ge pnp, MD, ge pnp, MD, ge	pnp,MD,ge pnp,MD,ge pnp,AD,ge pnp,AD,ge
	Mfr.	SYL SYL TI TI	SSD SSD SSD SSD SSD SSD	880 880 880 880 880	SSD SSD SSD SSD SSD SSD	SSD MO MO TI AMP	PH SSD RA RA RA	RA RCA RCA RA	RA RA SSD SSD SPR	PSI T T R	-BBBB	PH GI GI RCA	RCA RCA SSD SSD TI	X K H H H H	문문문==
	Type No.	2N1958A 2N1959A 2N2084 2N2243 2N2243A	ZN2459 ZN2463 ZN2515 ZN2516 ZN2516 ZN2518	2N2519 2N2520 2N2521 2N2521 2N2522 2N2523	2N2524 2N2601 2N2602 2N2603 2N2604	ZNZ605 ZNZ800 ZNZ801 3N34 0C171	2N1752 2N2593 2N497 2N498 2N656	2N1023 2N1023 2N1066 2N1397 2N1409	2N1410 2N1420 2N2460 2N2464 2N2798	PT600 PT601 2N715 2N716 2N1507	2N1785 2N1786 2N1787 2N1864 2N2188	2N2190 2N1748A 2N929 2N930 2N1177	2N1178 2N1179 2N2461 2N2465 3N35	2N728 2N729 2N1726 2N1727 2N1728	2N1788 2N1789 2N1790 2N2189 2N2189
	Cross Index Key	9° 11	00	10	HF 3/	r c	28	C L	66 	L L	10 40 10 40	Ę L	7 L L	, n	7

The high-voltage barrier to passivated PNP transistors has finally been broken

—but it took a new manufacturing process to overcome the obstacles.

Now from MOTOROLA Epitaxial, Passivated PNP SILICON TRANSISTORS Made by the Annular* Process

Some new words are being added to the dictionary of semiconductor terms—words like Annular* and Band-Guard†, words that relate to a new manufacturing process which will have a strong influence on transistor design and promises to open new areas for transistor applications. The Annular manufacturing process provides a new degree of freedom from surface effects for semiconductor products.

For years, the industry had been working to design high voltage silicon PNP transistors with the low leakage currents normally associated with NPN types, surface passivated by the planar process. For PNP devices, planar techniques proved inadequate since any attempt to increase voltage ratings beyond approximately 20 volts (through increasing collector material resistivity) induced a phenomenon, called channeling, which actually increased leakage current far beyond tolerable levels.

Channeling is a condition whereby the surface portion of a transistor collector region actually changes polarity and becomes an extension of the base region. The base-collector junction, therefore, rather than coming to the top surface where it is protected from the environment by a silicon oxide coating, extends to the unprotected edges of the transistor where it is subject to contamination and surface damage. This phenomenon circumvents the passivation advantages of planar designs and results in excessive leakage currents.

The formation of channels has been traced to effects of ionized or polarized particles on or within the passivating oxide coating which create an electrical environment that tends to alter the apparent polarity of the material directly

Cross Section of Annular Transistor

beneath the oxide—an effect which is particularly pronounced in lightly doped P-type material. The channels are random in nature and erratic in characteristics, and can be highly sensitive to radiation bombardment.

As a result of channeling, some manufacturers have reverted to earlier silicon mesa structures or have deliberately circumvented the oxide passivation in planar transistors in order to produce high voltage devices. These methods have yielded high voltage ratings but other characteristics of the resulting transistors do not compare favorably with those of surface passivated devices.

Cross Section of Planar Transistor

Now, Motorola has overcome these obstacles—but it has taken a new manufacturing process to do so. Rather than trying to eliminate the channel, Motorola, in a new series of "Band-Guard" transistors, has deliberately introduced a channel whose controlled characteristics completely overshadow the variable effects of any randomly induced channel, thus providing a high

degree of performance stability. Moreover the controlled channel is terminated close to the base region by a diffused annular band of the same polarity as the collector region but with a resistivity level impervious to channeling. The collector-base junction, therefore, is properly terminated underneath the oxide coating where it is protected against environmentally induced leakage currents. The resultant "Band-Guard" PNP silicon devices, for the first time, combine the low-leakage characteristics of passivated junctions with the high-voltage characteristics of non-passivated, or mesa structures.

And, if theoretical analysis of this process is confirmed by tests now in progress, they will prove to be more resistant to radiation, thus heralding improved performance and greater reliability of space equipment.

Though initially devised for the production of high voltage silicon PNP transistors, there are strong indications that the Annular process yields major benefits for NPN and field effect transistors and other semiconductor devices as well.

In view of these considerations, there is little doubt that the new, Motorola developed Annular process will take its place among the major milestones in the advancement of the semiconductor art.

*Patents Pending

†Trademark of Motorola Inc.

... made by the new ANNULAR PROCESS

Four new Motorola PNP silicon transistors made by the Annular process and featuring high speed . . . high voltage . . . low leakage . . . and surface passivation and stability, are now immediately available as types 2N2800, 2N2801, 2N2837, and 2N2838. Called "Band-Guard" transistors, the new devices reflect performance advantages inherent in an Annular, oxide-passivated, epitaxially fabricated transistor.

Annular Process — Provides a new degree of freedom from surface effects of adverse environments. Gives a new degree of performance stability by eliminating sub-surface leakage paths to the unprotected edges of the device. Makes possible combined high voltage and true silicon oxide passivation.

Oxide Surface Passivation — Prevents contamination of the junction by external agents. Makes possible the low collector leakage current (1/10th that of other PNP units) of Motorola's "Band-Guard" transistors.

Epitaxial Structure — Gives lower saturation voltage (% lower) and twice the frequency response (120 mc) of ordinary PNP devices.

Other types supplied as "Band-Guard" units include 2N1132, 2N1132A, 2N1132B, and 2N722.

Motorola passivated, epitaxial "Band-Guard" transistors are immediately available from your Motorola Seminconductor Distributor or District Office. For full electrical specifications write: Technical Information Center, Motorola Semiconductor Products, Inc., Box 955, Phoenix I, Arizona.

"Band-Guard" Transistor Performance Ratings

Characteristic	2N2800 (TO-5 pkg)	2N2801 (TO-5 pkg)	2N2837 (T0-18 pkg)	2N2838 (TO-18 pkg)	Unit	
Collector-Base Breakdown Voltage ($I_c=10~\mu Adc, I_E=0$)	50	50	50	50	Vdc	
Collector-Emitter Breakdown Voltage $(I_c = 100 \text{ mAdc}, I_n = 0)$	35	35	35	35	Vdc	
Collector Cutoff Current ($V_{CE} = 25 \text{ Vdc}, V_{RE} = 0.5 \text{ Vdc}$)	100	100	100	100	nAdc	
DC Forward Current Transfer Ratio ($I_c = 150 \text{ mAdc}, V_{cE} = 10 \text{ Vdc}$)*	30-90	75-225	30-90	75-225	_	
Current-Gain — Bandwidth Product ($I_c = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ mc}$)	120	120	120	120	mc	

*Pulse Test: Pulse Width $\leq 300~\mu sec$, duty cycle $\leq 2\%$

... also supplied as "Band-Guard" types:

Characteristic	2N1132 (TO-5 pkg)	2N1132A (TO-5 pkg)	2N1132B (TO-5 pkg)	2N722 (TO-18 pkg)	Unit
Collector-Base Breakdown Voltage ($I_c = 100 \mu\text{Adc}, I_E = 0$)	50	60	70	50	Vdc
Collector-Emitter Breakdown Voltage ($I_c = 100 \text{ mAdc pulsed}$)	35	40	45	35	Vdc
$ \begin{array}{l} \text{Collector Cutoff Current} \\ (V_{cn} = 30 \text{Vdc}, I_{E} = 0) \\ (V_{cn} = 50 \text{Vdc}, I_{E} = 0) \end{array} $	1.0	- .5	01	1.0	μAdc
DC Forward Current Transfer Ratio $(I_c = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	30-90	30-90	30-90	30-90	_
Current-Gain — Bandwidth Product $(I_c = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ mc})$	60	60	60	60	mc

"new leader in Total Silicon Technology"

MOTOROLA Semiconductor Products Inc.

BOX 955 . PHOENIX 1, ARIZONA . A SUBSIDIARY OF MOTOROLA INC.

ON READER-SERVICE CARD CIRCLE 450

A - 43-034

		Remarks								High freq., high power		RF amp SPR,GI TI	freq., hi	Hi freq., hi power Hi freq., hi power Hi freq., hi pwr.		SPR SPR
	1	Coe (pf)	* * * * * * * * 55.55	*3 *1.5	11111	11111	1111	1 *7.5 *7.5 5 .5	5 25 25 *14	* 1 1 1 8	1 1 1 1 1	11011	1111	1166**	8 8 1 * 1	*25 *25 *1.0 *1.0
TICS	-		8.81	1,111	ا وووا	11111	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1111	1 1 1 1 1	1 1 3.8	1 1 1 1 1	11111	11111	11101
CHARACTERISTICS	-	00 (pri	2 0.6 2na 2na		33.00		10:00:00: 10:00:00:	.001 0.0002 0.0002 0.05	0.05 0.05 1 1 0.25	0.25 0.5 0.5 0.5	ىنىنىنى مۇرىخىن	.005 2 1.8 .2	10. 10. 100. 100.	.001 0.1 500 500	500 500 3 3 3 1	500
CHAR	-		*50 *70 150-230 150-230	70 70 200 200 200	150000		80 80 80 80 80 80 80 80 80 80 80 80 80 8	90 *60 *75 60	60 60 20-60 40-120 *25	*25 *10 *10 *10 -	33333	40 120 - 40	*45 70 70 50 9	9 810 *10	*10 *10 50 *30 80	*10 *10 65 65 50
F	+	, C (BE)	1000		000001	118311	200 200 200 200 200 200 200 200 200 200	500	20 20 0.001 0.001 750	750	2a 2a 2a 2a 2a 2a	100000	1 1 1 20 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1a 1a 200 100 200	2a 2a - - 50
		CEO (€)	*25 *20 *20 60 60	*15 *0.5 *70 *70	25 *20 *20 *20	45 80 100 100	150 80 80 80 120	140 20 15 12 *1	*1 *1 60 60 *60	09 09* 09* 09*	75 100 100 75 75	80 *35 20 20 *15 *15	20 20 30 80 80	80 45 45 120 140	65 140 25 *15 25 25	65 140 *20 *30 60
STRIPE	MAX. KAIINGS	1* Jo/wi	0.50 1.0 0.8 2.3 2.8	0.8 0.8 0.25 0.25	.013 1.67 1.67 1.67 10.	.01 .01 .017 .017	.018 .02 .02 .02	.017 6.5 6.9 6.9	1.7 3.4 45.2 45.2	133 167 26.7 0.2	.087 .087 .087 .087	.023 1.7 0.8 0.75	.006 .006 .006 20 13.3	13.3 13.3 50 50	00000000000000000000000000000000000000	120 120 1.0 1.0 20.
> 1	MAX.	1, (°C)	75 100°c 100 200 200		175 85 85 85 85 175	175 175 175 200 200	175 200 175 175 200	200 200 200 200 200	200 200 200 200 250	250 175 175 175 175	175 175 175 175 175	200 100 85 100	150 175 175 175 175	175 175 175 200 200	200 200 200 100 200	175 175 175 85 100 175
	F	P C (NE	100 75 60 60 4.0	60 60 260 260 260	2 100 100 1,6	333333333333333333333333333333333333333	33.5	3 800 1200 1200 360	300 8000 8000 8000	400 20w 25w 4 w 3w	13 13 13 13 13	4 100 60 30 30	2 3 1 1 .8 5 % S	2.8w 2w 2w 8.7w 8.7w	8.7w 8.7w 11.2 75 11.2	
-		fae *fT **fab (mc)	150 *150 *160 *160 *160	*175 175 175 175 175 175	180 180 180 180 180	180 190 190 190	061 061 061 061 061	190 *2 00 *200 200	200 200 200 200 *200	*200 *200 *200 *300 210	210 210 210 210 210			250 250 250 *250 *250 *250		
		Type	φ φ, φ .= .=	pnp,MD,ge MADT pnp,MD,ge pnp,AD,ge pnp,AD,ge	npn, TDP, si pnp, AD, ge pnp, AD, ge pnp, AD, ge npn, TDP, si	npn, TDP, si npn, TDP, si npn, TDP, si npn, TDP, si npn, TDP, si	npn, TDP, si npn, TDP, si npn, TDP, si npn, TDP, si npn, TDP, si	npn, TDP, si npn, DD, si pnp, DP, si pnp, DP, si npn, si	npn,si npn,si npn,si npn,si npn,MESA,si	npn,MESA,si npn,PE,si npn,PE,si npn,PE,si npn,RS,si	npn,TDP,si npn,TDP,si npn,TDP,si npn,TDP,si npn,TDP,si	npn, TDP, si pnp, PADT, ge pnp, MD, ge npn, MD, ge npn, MS, ge	npn, TDP, si npn, TDP, si npn, TDP, si npn, MS, si	is,MO,nqn is,MO,nqn is,MO,nqn is,MS,si is,MS,nqn	+	
-		Mfr.	SSD SSD SSD SSD SSD				22222		2 N N S G G	_		PSI AMP PH MO	PSI PSI RCA			SS H H SS
		Type No.	2N2654 2N2797 2N1499A 2N2462 2N2462			PT887 PT888 2N1566 2N1889 2N1890	2N1342 2N1506A 2N1564 2N1565 2N1893	2N1893A 2N957 2N995 2N996 2N996	2N2319 2N2320 2N2403 2N2404 2N2404	2N2618/46 MM799 MM800 MM801 2N1506	2N2781 2N2782 2N2783 PT531 PT531		2N957 2N988 2N989 2N1491		2NZ649 2NZ650 2NZ656 2NZ656 2NZ799	
		Cross Index Key		HF 43		HF 44		HF 45		HF 46		HF 47		HF 48		HF 49

		1.						
	Remarks	GE CL	9	5 5	RR RR RA	RA CL CL Epitaxial Epitaxial Gl, SPR	CL, MO	Amp VHF
S	ي رې وول	* * * 4 4 * * 4 4 4 4 4 4 4 4 4 4 4 4 4	6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	1	***** ***** ***** ***** ****	* * * · * * * • • • • • • • • • • • • • • • •
ERIST	N (db)	11111111	1 1111 1111	11111 11111	11111111114			
CHARACTERISTICS	OS (m)	0.2 .005 0.5 0.5 0.5 3 3	3333 I	1 riving riving ri	333333333333333333333333333333333333333		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
8	म * क म	100 40 12 40 30 30 *20 *20	*40 *40 *60 50 80 *25 *25 *50 *50 *30	*40-100 *20-60 *20-60 *20-60 *20-60 *20-60 *20-60 *20-60	*20-60 **20-60 3*5 35 35 35 35 77 75	09		
	L C (ma)	100 50 10 10 150 150	150 150 200 50 500 100 100 100 50	200 200 200 200 200 200 200 200 200 200	000000000000000000000000000000000000000	100000000000000000000000000000000000000	1 2000 1 2	
NGS	*VCB0	*30 15 56 *40 *25 45 15 12	12 12 12 115 115 100 *40 *45 *15 *15 *15	*25 *25 *25 *25 *25 *25 *25 *25	*25 *25 *40 *15 *12 *12 *12 *12 *12 *13	*7 *7 *7 *7 *7 *7 *7 *20 *20 *20 *20 *20 *20 *20 *20 *20 *20	*20 **20 **40 *40 *15 50 50 10	*25 335 335 335 335 335 335 335 335 335 3
MAX. RATINGS	J _o /wm	4.0 1 .006 2.1 21 .006	20 20 2.1 2.1 10 1.0 1.0 0.5	11111 11111	।।।यस समसमस	6.67 6.67 4 4 4 9.75	6.9	
×	٦. (٥)	100 100 175 200 200 200 1		200 200 200 200 200 200 200 200 200 200	200 200 200 200 100 100 100 100 100 100	100 175 175 100 100 100 200 200 200 200		7,3,3,3,3,4,4,1
	P (mw)	300 75 1 360 360 360 11.2 150 150	150 150 150 3w 360 750 750 750 750 750 750 750 750 750 75	300 33 300 300 300 300 300 300 300 300	300 300 300 300 300 300 300 300 300 300	300 1000 300 300 300 300 300 300	300 300 300 400 300 1200 60 60	
	fae *fT **fab (mc)	*295 300 300 300 300 *300 *300 *300	300 *300 *300 *300 *300 *300 *300 320	**************************************	*320 *320 *320 *320 *320 *320 *320 *320	*320 *320 *320 *320 *320 *350 *350 *350 *350	*350 *350 *350 *350 *350 *350 *350 *350	
	Туре	pnp, EM, ge pnp, DM, ge npn, TDP, si npn, si npn, si npn, EM, ge pnp, EM, ge pnp, EM, ge	prop.EM.ge prop.EM.ge prop.EM.ge prop.EM.ge prop.EM.ge prop.EM.ge prop.EM.ge prop.EM.ge prop.EM.ge prop.EM.ge	is, 7, ndn is, 1, ndn	npn, P. si npn, P. si npn, P. si npn, DM, ge pnp, DM, ge pnp, DM, ge npn, DM, ge npn, DM, ge	npn, DM,ge npn,ME,si npn,ME,ge pnp,ME,ge pnp,ME,ge npn, P, si npn, P, si npn, P, si	npn, P, si npn, P, si npn, P, si npn, P, si npn, DP, si npn, DP, si npn, P, si	
	Mfr.	L8800 Rttt	RCA GI SPR SPR SPR	SYL SYL SYL SYL SYL SYL SYL SYL SYL SYL	SYL SYL SYL MO MO MO MO MO MO MO MO MO MO MO MO MO	MO MO MO MO SYL SYL SYL SYL	SYL SYL SYL SYL SYL FA FA FA SPR SPR	TWW G G G G G G G G G G G G G G G G G G
		2N2635 2N695 2N707 2N834 2N835 2N916 2N960 2N961 2N961 2N962	2N965 2N966 2N966 2N985 2N1493 2N2242 2N2381 2N2381 2N2382 2N2395 2N2796 2N2796 2N2796 2N2796 2N2796	2N703 2N706 2N706A 2N706B 2N706C 2N706A/46 2N706A/46 2N706A/46 2N706A/46 2N706A/46 2N706A/46 2N706A/46	2N706A/51 2N706B/51 2N706C/51 2N969 2N970 2N971 2N972 2N973 2N973 2N973	2N975 2N2256 2N2257 2N2268 2N2259 2N499 2N743 2N743,46 2N743,46 2N743,46	2N744/46 2N744/51 2N784A 2N784A/46 2N784A/51 2N914 2N915 2N915 2N915 2N916 2N1962 2N1962	2N2397 2N2787 2N2788 2N2789 2N2791 2N2791 2N741 2N741 2N741 2N741 2N7414
Cross Index Key		HF 50	HF 51	HF 52	HF 53	HF 54	HF 55	HF 56

	Remarks	-	PI. Epitaxial PI. Epitaxial	Pi, Epitaxial Pi, Epitaxial Pi, Epitaxial Pi, Epitaxial		כר	Epitaxial		Epitaxial Epitaxial, RA Epitaxial, RA	Epitaxial, RA Epitaxial, RA Epitaxial, RA Epitaxial, RA Epitaxial, RA	Epitaxial, RA PG=22db © 200mc, MO High freq., high power High freq., high power	UHF Amp. MIL	P.G=26db @ 200mc,MO	U.S. MIL only U.S., MIL only PG=30db @ 200mc, MO TI, MO	
5	္စီ (Ja) (ba)	* * 6 * * 8 * * 3.5 * 2.2	*2.2 *4.0 -	111100	∞ ∞ ∞ Ω I I	* * * * * * * * 4 * 4 * 4	** **	* * * * * * * * * * * * * * * * * * *	*2.5 *2.5 2.2 2.2 2.2	2:2	2.2 1.5 7 7 7 6.5	6.5 *4 *3 *3	*3 *3 1.5 *2.5 *2.5	2.8 4 1.5	*33 *3
ISTIC	보(원	11111	11111	1 1 1 1 1	11111	11111	1111	ص ما ا ا	1 1 1 1 1	1 1 1 1 1	11111	11001	1 1 1 1 1	1111	1111
CHARACTERISTICS	0 (a)	.025 .025 .025 .002	3 0.002 0.005 0.01 0.01	0.01 0.01 0.01 0.01	0.25 0.25 0.25 0.5	0.004	0.5 0.5 0.5 .025 .025	.025 3.0 3.0 2 2	3.0 3.0 0.4 0.4	5 0.4 0.4 0.4	5.7 1.5 1.5 0.2	0.4	.005 .005 0.7 0.1 0.1	1.5 2 1.2 0.7 1.2	0.005 .050 .050 .050 0.0005
CHAR	4 * 6 * 17 T			100-300 20-60 40-120 100-300 *50/150	*100/300 *50/150 *100/300 *40	*50 *40-*120 *25	*25 *25 40 *30-120 *30-120	*30-120 *70 *65 8	*70 *65 40 40	40 70 80 70 70	70 8 10db 10db	*50/150 10db 5db200mc *20-120	*20-120 *20-120 10 *40 *70	13 13 10 13 13 13 13 13 13 13 13 13 13 13 13 13	* 55 * 30-90 * 30-90 * 50-90
-	C (ma)		200	11111			200 500 500	- 100 50 50 50 50	00110001	999999	100 100 500 300	300	1 100	300 100 50 50	1111
SS	CBO * CBO	* * * 40 * * * 40 * * 25 * 15	*15 25 - *60 *60	09* 09* 09*	09* 09* 09* *	*25 *25 15 *25 *40	* 10 * 40 * 25 * 40 * 40	*40 15 15 30 30	15 15 *15 *12 *12	*12 *15 *15 *15 *12	*12 25 *25 *25 *30	*30 *40 *25 *25 *15	*15 *15 30 30 15 15	*35	6.0 *15 *15 *15 15
MAX. RATINGS	J ₀ /w _u	6.67	6.9 6.9 5.33 5.33	5.33 3.33 3.33 4.57	4.57 · 2.86 2.86 17.1	6.9	11211	0.8	0.8 4 4 4	प्रवा च्य	40 40 40 10	2.06	- 10 6:9 6:9	12.5 3.3 2.0 10 4.0	5.0
XAM	- L (0)	200 200 200 175 100	100 200 200 175 175	175 175 175 175 200	200 200 200 200 200 200 200 200 200 200	200 200 200 175 200	200 200 200 200 200	200 100 100 100 100	1000000	000000000000000000000000000000000000000	100	100 200 100 200 200	200 200 200 200 200	000000	200 200 200 200 200 200
	0 (3 E	300 300 300 300	300 1200 1200 3	3 1.8 1.8 800	800 3w 300 300	400 300 1200 300 300	400 400 400 400	300 60 60 75 75	300 300 300 300	300 300	300 3w 3w 1w	1w 360 75 75 300	400 300 750 1200 1200	250 150 750 250	300 300 300 300 300
	* * * * * * * * * * * * * * * * * * *	* * 400 * * 400 * 400 * 400	* * 400 * * * 400 * * 400	* * * 400 * * * 400 * * 400	*400 *400 *400 *400 *425	*425 *425 *450 *450 *450	*450 *450 *450 *450 *450	*450 *450 *450 450 450	* 450 * 450 * 460 * 460	*460 *460 *460 *460 *460	*460 480 500 500 *500	*500 *500 *500 *600 *600	*650 *650 *650 *650 *650	700 750 750 750 750	008 008 008 008 008 008 008 008 008 008
	Type	Si.	pnp,DJEM,ge npn,DP,si npn,DP,si npn,DD,si npn,DD,si	npn, DD, si npn, DD, si npn, DD, si npn, DD, si pnp, PE, si	npn, PE, si npn, PE, si npn, PE, si npn, PE, si npn, P, si	npn, P., si npn, P., si npn, DP, si npn, PE, si npn, P., si	npn, P, si npn, P, si npn, DDM, si npn, P, si npn, P, si	npn, P., si pnp, MD, ge pnp, MD, ge pnp, MS, ge	pnp,MD,ge pnp,DM,ge pnp,DM,ge pnp,DM,ge pnp,DM,ge	npn, DM,ge npn, DM,ge npn, DM,ge npn, DM,ge	npn, DM, ge pnp, DB, ge pnp, MS, ge pnp, MS, ge pnp, ED, ge	pnp, ED, ge pnp, PE, si pnp, DM, ge pnp, DM, ge nnp, P, si	npn, P, sı npn, P, si pnp, DB, ge npn, DP, si npn, DP, si	pnp,DJ,ge pnp,DG,ge pnp,DM,ge pnp,DB,ge pnp,DB,ge	
	X,			O O O O O	WO WO SYL	SYL SYL TI SYL	SYL SYL SYL SYL SYL	SYL SPR SPR	SPR MO MO MO	O O O O O O	MO TI WO SPR	SPR MO MO MO SYL	SYL SYL TI FA	W T K K K	
	Type No.	2N708/46 2N708/46 2N708/51 2N743	2N829 2N916 2N947 2N2217 2N2218	2N2219 2N2220 2N2221 2N2222 2N2222 2N2537	2N2538 2N2539 2N2540 MM719 2N835	2N835/46 2N835/51 2N708 2N744 2N834	2N834/46 2N834/51 2N835 2N914 2N914/46	ZN914/51 ZN982 ZN983 ZN1405 ZN1406	2N2168 2N2169 2N960 2N961 2N961 2N962	2N963 2N964 2N964A 2N965 2N965	ZN967 ZN1143 ZN1561 ZN1562 ZN2095	2N2098 2N2501 2N700 2N700 2N700A		2N1645 2N537 2N1094 2N1141 2N1141	
	Cross Index		HF 57		HF 58		HF 59	,	HF 60		HF 61		HF 62		HF 63

Bendix "Leaf" Silicon Transistor

*Patent applied for.

Magnified 265 times—actual size .025".

BENDIX SILICON PLANAR EPITAXIAL TRANSISTORS OFFER THESE ADVANTAGES:

MECHANICAL

"Leaf" Configuration Larger Emitter Area Larger Emitter Periphery Larger Bonding Area TO-5 and TO-18 Packages

ELECTRICAL

Lower Saturation Voltage Higher Gain Improved Beta Linearity Higher Reliability 81 Types

Write us in Holmdel, New Jersey, soon.

Bendix Semiconductor Division

Amperex is now ready to accept high volume as well as special production orders on high frequency and medium power Silicon Planar/Epitaxial **Transistors**

Authorized AMPEREX Semiconductor Distributors are geared to expedite your requirements for both Military and Industrial types of AMPEREX Silicon Planar/Epitaxial Transistors.

R. V. WEATHERFORD COMPANY Glendale 1, Calif.

KIERULFF ELECTRONICS Las Angeles 15, Calif.

BRILL SEMICONDUCTOR CORP.

Colorado

INTERSTATE RADIO & SUPPLY Denver 4, Calorado

Connecticut

CRAMER ELECTRONICS, INC. Hamden, Conn.

District of Columbia

ELECTRONIC WHOLESALERS, INC. Washington 1, D. C.

THUROW ELECTRONICS, INC. Cacoa, Fla. • Jacksonville, Fla. • Miami, Fla. Orlando, Fla. • Pensacolo, Fla. • Tampa, Fla.

Illinois

NEWARK ELECTRONICS CORP. Chicago, III.

Indiana

RADIO DISTRIBUTING COMPANY Indianapolis 6, Indiana

Massachusetts

RADIO SHACK CORP. Bastan, Mass.

Michigan

RADIO SPECIALTIES COMPANY Detrait, Michigan

The unique combination of co-ordinated engineering skills and automated production technology has earned for AMPEREX a position of leadership as originator and mass producer of high reliability, high yield PADT germanium transistors, as well as being the first mass producer of reliable, premium quality frame grid tubes. This breadth and depth of "team-thinking-approach" is manifest in the advanced facilities of the two AMPEREX semiconductor plants in Rhode Island. The Slatersville facility is renowned for its leadership in PADT transistors. The Cranston plant is devoted exclusively to development and manufacture of highest quality Silicon Planar/Epitaxial Transistors — to satisfy the most exacting requirements of the fields of Instrumentation, Guidance and Control, Computers and Data Processing and Communications. Available for prompt delivery in both volume and/or specialty production, you will find AMPEREX Silicon Planar/Epitaxials specifically designed for diverse applications:

itary

JAN-2N696M-MIL-S-19500/99B

JAN-2N497-MIL-S-19500/74C 1AN-2N498-MIL-S-19500/74C JAN-2N656-MIL-S-19500/74C

USA-2N697-MIL-S-19500/99A JAN-2N697M-MIL-S-19500/99B JAN-2N657-MIL-S-19500/74C USA-2N706-MIL-S-19500/120 JAN-2N706M-MIL-S-19500/120A USA-2N696-MIL-S-19500/99A USN-2N1613-MIL-S-19500/181

high voltage amplifiers

2N497 2N699 2N870 2N498 2N719 2N871 2N719A 2N1889 2N720 2N1890 2N656 2N657 2N698 2N720A 2N1893

small signal and low level amplifiers

2N910 2N930 2N911 2N1973 2N912 2N1974 2N929 2N1975

general purpose amplifiers and switches

2N696 2N718 2N1420 2N697 2N718A 2N1613 2N717 2N956 2N1711

high speed saturating switches

2N706 2N708 2N914

uhf and vhf amplifiers

2N915 2N916

industrial types

2N1983 2N1985 2N1987 2N1984 2N1986 2N1990

low level choppers

2N2569 2N2570

Available in TO-5 and TO-18 cases.

Write for further details and your copy of the new edition of the AMPEREX Silicon Planar/Epitaxial Semiconductor condensed catalog. Applications engineering assistance available.

Amperex Electronic Corporation, Semiconductor and Receiving Tube Division, Hicksville, Long Island, New York. IN CANADA: PHILIPS ELECTRON DEVICES, LTD., TORONTO 17, ONTARIO

Minnesota

ADMIRAL DISTRIBUTORS, INC. St. Louis Park 16, Minn.

Missouri

BURSTEIN-APPLEBEE COMPANY

INTERSTATE INDUSTRIAL ELECTRONICS St. Louis 32, Missauri

New York

MILO ELECTRONICS New Yark, N. Y. ROME ELECTRONICS

Ohio

UNITED RADIO, INC. Cincinnati, Ohio

Oklahoma

OIL CAPITAL INDUSTRIAL ELECTRONIC DISTRIBUTORS

Oregon

UNITED RADIO SUPPLY, INC. Portland 9, Oregon

Pennsylvania

RADIO ELECTRIC SERVICE CO CAMERADIO COMPANY Pittsburgh, Pa.

Texas

BUSACKER ELECTRONIC EQUIPMENT CO., INC. Houstan 19, Texas

Washington

ROBERT E. PRIEBE COMPANY Seattle 1, Washington

Now there is a new approach to micro-circuit packaging . . . 3IPCO® Diode Matrices and Transistor Strips. They provide the only approach combining:

Total function logic

Connection oriented packaging

Connection oriented batch

manufacturing

See how these unique features will benefit you.

Above is the logic diagram for a full adder and its equivalent BIPCO circuit. Note how "total function" logic is performed with matrices of diodes and strips of transistors and resistors. Since the interconnections are always the same, other functions (counting, decoding, accumulating, etc.) can be performed by simply changing the arrangement of the diodes within the matrix. You can specify parameters, logic levels.

BIPCO devices containing up to 100 silicon diodes and 10 silicon transistors are available as individual packages or as printed circuit assemblies for counting, decoding and code-converting applications. Because the diodes and transistors are manufactured and connected in batches, the cost of these units is competitive with that of conventional components and less than that of other micro-circuit devices.

Write today for our newest brochure . . . "BIPCO Logic | the Total Function Approach".

						Τ									
	a a	WO W		GI, TI	GI Planar, Epitaxial, RA C: RA	Planar Epitaxial CL, MO Planar Passivated, CL, PSI Planar Passivated, CL, PSI Planar Passivated, PSI Planar Passivated, PSI	Planar Passivated, PSI Planar Passivated, PSI Epianar Passivated, PSI Epitavial, CL, GI, NA, TI, MO Enitavial, CL, GI, NA, TI, MO	GI, NA, GE, CL PH PH PPH PPH ABARA GE Epitaxial, GE	Epitaxial, CL, GI, MO (CL, Epitaxial), GI Mesa Epitaxial, RCA Planar Epitaxial CL	Planar Epitaxial Planar Passivated	Mesa Epitaxial, RA	Mesa Epitaxial Mesa Epitaxial Mesa Epitaxial Mesa Epitaxial Mesa Epitaxial	PH, MO		GI PH, MO OC189
2	ن ^د ن ق		* * * * * * * * * * * * * * * * * * * *	12	1 1 1 5 1	6.0 35 35 25 20	15 20 15 -	w	1 4.0	6.0	11140	4.0 4.0 6.0 6.0	**3	1 1111	1111
ERIST	N (db)		7.5	1111	1111	12	1 1 1 1 1	11111	1111	11111	1 1 1 1 1	11111	1111	1 1 9 2 1 1	
CHARACTERISTICS	_8.g	1 0.0005 1.0 0.6	0.002	20202	100 4 30 0.5 0.5	0.5 1.0 10µa 2.0	10µa 2.0 1	333333333333333333333333333333333333333	.25 .25 3.0 0.5		1 1 1 8 3 3 0	3.0.000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
5	4 4	1	*5 *40-120 *40-120 *40-120 22-110	66 10 20-175 - 22-110	16 20-175 20 2.0 2.0 20-60	3.0 - 30 15	15 30 30 20-60 40-120		20-60 25 3.0 3.5 *20-*60	*40-*120 *20-*60 *40-*120 3.0		20 20 20 20 20 20 20 20 20 20 20 20 20 2			2.2 20 20 115 20 20
	- C C (mg)	20 150 150	1 1 1 1 1	1 1000	20 1 10	11111	1.0amp - 200 200	50 1100 1100 200 200	300000	200 200 -	- 100 150 150	150 150 150 150 150	100000	2222	
NGS	VCE0 *VCB0 (v)	* * *	* * * * * * * * * * * * * * * * * * *	*4.5 *10 *40 *15 *20	*35 *18 *20 *25 40	40 60 60 60 75 120	120 120 120 *20 *20	25 *12 *12 15 15	40 30 15 40 15	15 12 12 40 70			* * 20 * * 20 * * 20 * * 20		30 *30 *20 *20 *15
MAX. RATINGS) ₀ /wш	1.0	1.3	*0.9	1.3	1 1 1 1 1	11122	6.7	1 1 5	1111	1111	1 1 1 1 1	1.3	1111	1.6
_	۲. °()	100 100 100	\$20000 820000 82000000000000000000000000	55 75 100 85 75	85 85 100 175 200	200 175 175 200 175	200 175 200 175 175	175 100 100 100	175 175 100 175 -	200	200 200 100 100	100 100 150 150	100 100 100 75 85	8855 8855 8555 8555 8555 8555 8555 855	85 100 100 75 100
	P C C C C C C C C C C C C C C C C C C C	75 300 75 150 150	8 300 300 8 800 800	9 20 30 30 30	30 300 360 360	360 0.4 0.5 0.5	0.5 0.4 300 300	1w 35 35 35 150 150	300 300 150 1000	1000 1000 360 360	300 300 150 150	150 150 150 150 200	60 200 50 80	22222	50 120 400 83 150
	fae *fT **fab (mc)	*800 *900 *1000 *1000	*1000 *1200 *1200 *1200	11111		1111	11111	11111	Tilli	1 1-1 1	11111	1111	11111	riii	11111
	Туре	pip, DM, ge npn, DM, ge pnp, DM, ge npn, MS, ge npn, DM, ge	pnp,PE,si npn,P,si npn,P,si npn,P,si pnp,AJ,ge	pnp,SBT,ge npn,AJ,ge pnp,Dr,ge npn,AJ,ge pnp,AJ,ge	pnp,MD,ge pnp,DJ,ge pnp,DJ,ge npn,si npn,DM,si	npn,si npn,si npn,si npn,si npn,si	npn,si npn,si npn,si npn,MS,si npn,MS,si	npn,MS,si pnp,MD,ge pnp,MD,ge pnp,MS,ge pnp,MS,ge	npn,MS,si npn,MS,si pnp,ge npn,si npn, EP,si	npn, EP, si npn, EP, si npn, EP, si npn, si npn, si	npn,P,si npn,P,si npn,MS,ge pnp,ge pnp,ge	es'dud bub'se bub'se bub'se	pnp,MD,ge pnp,MD,ge pnp,MD,ge pnp,DD,ge	pnp,MS,ge pnp,MS,si pnp,MS,ge pnp,MS,ge pnp,MS,ge	pnp,MS,ge pnp,AJ,ge pnp,MD,ge pnp,PADT,ge pnp,RS,ge
	Mfr.	FA TI RCA	RA SYL SYL SYL SYL SY	SY SY SY SY	SPR SY SY GE SY	966	SY SY	SPR SPR SY SY	SY SY GE GE	1 TI 2 TI 6 GE 6 GE	SYL SYL RCA GE GE	9999	SY SPR		SY SPR AMP
	Type No.	2N2416 2N918 2N2415 2N2415 2N797 2N955	2N2808 2N2784 2N2784 46 2N2784, 51 2N218	2N231 2N233 2N247 2N312 2N410	2N504 2N544 2N624 2N706A 2N706C	2N708 2N717 2N718 2N718 2N718A	2N719A 2N720 2N720A 2N743 2N744	2N753 2N768 2N769 2N781 2N782	2N783 2N784 2N828 2N834 2N834 2N834	2N850/TI-431 2N851/TI-422 2N852/TI-423 2N914 G	2N929 2N930 2N955 2N960 2N961	2N962 2N964 2N965 2N966 2N966 2N994	2N1158 2N1158A 2N1204 2N1264 2N1266	2N1398 2N1399 2N1400 2N1401 2N1401A	2N1402 2N1450 2N1494 2N1515 2N1646
	Cross Index Key	<u> </u>	E C	·	3	39 H		73 - 21			00	НЕ 69		2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

HF continued

						MA	X. RATING	SS		CHAR	ACTER	ISTIC	S	
Cross Index Key	Type No.	Mfr.	Туре	f _{ae} *f _T **f _{ab} (mc)	P c (mw)	T _i (°C)	mw/°C	V _{CE0} *V _{CB0} (v)	l C (ma)	h _{fe} *hFE	¹ CO (μα)	NF (db)	C _{oe} *C _{ob} (pf)	Remarks
	2N1676 2N1677 2N1684 2N1711 2N1742	PH PH SY GE PH	pnp,SAT,si pnp,SAT,si pnp,AJ,ge npn,si pnp,MD,ge		100 100 100 0.8 60	140 140 100 200 125	1.3	*4.5 4.5 *25 75 *20	50 50 100 - 55	10.5 50 - 50 *33	.001 0.001 5 10 0.8	- - 8 4.9	- - 25 -	SPR, chopper Spr. Chopper Planar Passivated, RA
HF 71	2N1743 2N1744 2N1745 2N1747 2N1782	PH PH PH PH SY	pnp,MD,ge pnp,MD,ge pnp,MD,ge pnp,MD,ge pnp,AJ,ge	11111	60 60 60 60 100	125 125 100 100 100	- 0.8 0.8 1.3	*20 *20 *20 *20 *30	50 50 50 50 100	*33 *33 *33 70 30-150	0.8 0.8 1 1 6	10 - - - -		
	2N1783 2N1784 2N1841 2N1865 2N1866	SY SY WE PH PH	pnp,AJ,ge pnp,AJ,ge npn,DM,si pnp,MD,ge pnp,MD,ge		100 100 1250 60 60	100 100 150 100 100	1.3 1.3 100 0.8 0.8	*30 *30 75 *20 *35	100 100 2000 50 50	30-90 20 30 70 70	5 4 .1 2 1		11111	
HF 72	2N1867 2N1868 2N1893 2N1958 2N1959	PH PH GE SY SY	pnp,MD,ge pnp,MD,ge npn,si npn,MS,si npn,MS,si		60 60 0.8 600 600	100 100 200 175 175	0.8 0.8 - 4 4	*35 *20 120 *60 *60	50 50 - 500 500	50 *33 30 20-60 40-120	1 1.5 15 0.5 0.5	11111	- 15 18 18	Planar Passivated Epitaxial Epitaxial
400	2N1960 2N1961 2N1962 2N1963 2N1964	SY SY SY SY SY	pnp,MS,ge pnp,MS,ge npn,MS,si npn,MS,si npn,MS,si		150 150 400 400 400	100 100 175 175 175	2 2 2.6 2.6 2.6 2.6	*15 *12 *40 *30 *60	200 200 200 200 200 500	25 20 20-60 25 20-60	3 .25 .25 0.5	11111	- 3 3.5 18	Epitaxial Epitaxial Epitaxial Epitaxial Epitaxial
HF 73	2N1965 2N1969 2N2192 2N2192A 2N2193	SY SY GE GE GE	npn,MS,si pnp,AJ,ge npn,si npn,si npn,si		400 150 0.8 0.8 0.8	175 100 200 200 200 200	2.6 2 - - -	*60 *30 60 60 80	500 400 1.0a 1.0a 1.0a	40-120 50-200 2.5 2.5 2.5	0.5 5 10тµа 10тµа 10тµа	-	18 20 20 20 20 20	Epitaxial 71 Planar Epitaxial Planar Epitaxial Planar Epitaxial
	2N2193A 2N2194 2N2194A 2N2195A 2N2360	GE GE GE FH	npn,si npn,si npn,si npn,si pnp,MD,ge	11111	0.8 0.8 0.8 0.6 60	200 200 200 200 200 125	- - - 0.75	80 60 60 45 *20	1.0a 1.0a 1.0a 1.0a 50	2.5 2.5 2.5 2.5 2.5 2.5 33	10mµa 10mµa - 100mµ 0.8		20 20 - 20 -	Planar Epitaxial Planar Epitaxial Planar Epitaxial Planar Epitaxial, RA
HF 74	2N2361 2N2362 2N2363 2N2389 2N2395	PH PH TI TI	pnp,MD,ge pnp,MD,ge pnp,MS,ge npn,PL,si npn,PL,si		60 60 125 2000 2000	125 120 - - -	0.75 2 - -	*20 *20 60 35 40	50 50 30 600 300	*33 *33 135 *40-*120 *20-*60	0.8 0.8 3			
	2N2396 2N2398 2N2399 2N2410 2N2411	TI PH PH TI TI	npn,PL,si pnp,MD,ge pnp,MD,ge npn,PE,si pnp,PE,si	11111	2000 60 60 2500 1000	- 100 100 - -	2 2	40 *20 *20 30 20	300 50 50 800 100	*40-*120 *33 *33 *30-*120 *20-*60	0.8	1 1 1 1	1 - 1 - 1	
HF 75	2N2412 10B551 10B553 10B555 10B556	TI GE GE GE	pnp,PE,si npn,GP,si npn,PE,si npn,PE,si npn,PE,si		1000 100 100 100 100	125 125 125 125 125	1.0 1.0 1.0 1.0	20 *40 *40 *25 *25	100 - - - -	*40-*120 *30-120 *30-120 20 *20-60	50mμa .5 .5		6.0 6.0 6.0 6.0	
	10C573 10C574 11B551 11B552 11B554	GE GE GE GE	npn,P,si npn,P,si npn,P,si npn,P,si npn,P,si		100 100 100 100 100	125 125 125 125 125 125	1.0 1.0 1.0 1.0 1.0	*45 *45 *60 *60 *60		36-90 73-333 *20-60 *40-120 *40-120	0.2 0.2 .5 .5 25mµa	- - - 12	*8 *8 - - *25	
HF 76	11B555 11B556 11B560 GT1665 MA-1	GE GE GI SPR	npn,P,si npn,P,si npn,P,si pnp,AJ,ge pnp,MAT,ge		100 100 100 150 25	125 125 125 100 75	1.0 1.0 1.0 2	*60 *100 *100 *100 6	- - - - 50	*100-30 *40-120 *40-120 25 40	25mµa .5 4 10		*25 *15 - - -	Drift
HF 77	MA-2 PT850 PT850A SO-1 SO-2	SPR PSI PSI SPR SPR	pnp,MAT,ge npn,DM,si npn,DM,si pnp,SBT,ge pnp,SBT,ge		20 2w 2.8w 20 15	75 175 175 65 65	13.3 18.6 —	3 120 120 5 3	50 - - 5 5	40 2 2 10 10	10 2 2 10 10			hi freq., hi pwr. hi freq., hi pwr.
	SO-3 ST3031	SPR TR	pnp,SBT,ge npn,DJ,si	-	20 150	65 175	=	5 -	5 -	10 -	10	=	=	

WHY DO LOW PINCH-OFF UNIFETS* GIVE HIGHER VOLTAGE AMPLIFICATION?

BECAUSE AV IS INVERSELY PROPORTIONAL TO V_P WHEN $V_{DD1} = V_{DD2}$ AND $V_{DS1} = V_{DS2}$ YOU ALSO GET GREATER BIAS STABILITY AND WIDER DYNAMIC RANGE.

AVAILABLE NOW IN FOUR g_m VALUES AS SHOWN WRITE FOR FILE #841, THE DESCRIPTIVE PAPER ON LOW V_P UNIFET APPLICATIONS

Low Pinch-off UNIFETs *(Unipolar Field-Effect Transistors) now available:

Tunioni	0110044		1	1101010107 1101	available:						
Typical	2N2841	2N2842	2N2843	2N2844							
VP	0.8	0.8	0.8	0.8	V						
g _m	90	270	800	2000	μmho						
IDSS	—50	-150	-450	-1000	μа						
NF at 1kc		0.5	0.5	0.5	db						
Pinch-off:	Pinch-off: 1.7v max.—Gate-drain breakdown: 20v min. TO 18 pockers										

AMPLIFICATION CALCULATIONS FOR HIGH PINCH-OFF vs. LOW PINCH-OFF UNIFETS

For all UNIFETs, it can be shown that:

$$g_{mo} + \frac{2.5 \, I_{DSS} + +}{V_P}$$
 within about 20%

When $V_{DD1} = V_{DD2} = -15v$ and $V_{DS1} = V_{DS2} = -5v$

then I_{DSS1} $R_{L1} = 10v$ and I_{DSS2} $R_{L2} = 10v$

Available voltage amplification, $A_v = g_m R_L$

From these equations, it can be shown that $A_{v1} = \frac{25}{V_{P1}}$ and $A_{v2} = \frac{25}{V_{P2}}$

since $V_{P1} = 5v$ $V_{P2} = 0.8v$

 $A_{v1} = 5$ $A_{v2} = 31$

 $\dagger g_m$ when $V_{GS} = 0$. $\dagger \dagger$ Drain-source current when $V_{GS} = 0$.

Siliconix incorporated

1140 West Evelyn Ave. • Sunnyvale 11, California
Telephone 245-1000 • Area Code 408 • TWX 408-737-9948
ON READER-SERVICE CARD CIRCLE 454

POWER

Types rated at one watt and higher. In order of increasing power dissipation.

						MAX. RATINGS CHARACTERISTICS										
Cross Index Key	Type No.	Mfr.	Т	ype	P _c (w)	w/°C	T _i (°C)	V CEO *V CBO (v)	l _c (a)	hfe *h	e l	CO (ma) (*μα)	fae fT (kc)	Powr. Gain (db)	Powr. Out. (w)	Remarks
P 1	2N2038 2N2039 2N2040 2N2041 2N2198	TR TR TR TR TR	npn npn npn npn npn		0.6 0.6 0.6 0.6 0.6	0.03 0.03 0.03 0.03 0.025	200 200 200 200 200 200	45 75 45 75 80	0.5 0.5 0.5 0.5 -	12- 12- 30- 30- 20-	36 90 90	0.001 0.001 0.001 0.001 0.001 0.010	-			
	2N957 2N339 2N340 2N341 2N341A	PSI TI TI TI TR	npn, npn, npn,	TPD,si GR,si GR,si GR,si GR,si	0.8w 1.0 1.0 1.0	0.006 0.008 0.008 0.008 0.008	150 150 150 150 200	40 55 85 *125 *125	- .06 .06 .06	*4 9-9 9-9 9-9	90 90 90	0.01 .001 .001 .001	250 6 6 6 6	- 30 30 30 -	-	T r, PSI Tr Tr
P 2	2N342 2N342A 2N342B 2N343 2N343A	TI TI TI TI TR	npn npn npn	,GR,si ,GR,si ,GJ,si ,GR,si ,DJ,si	1.0 1.0 1.0 1.0	0.008 0.008 - 0.008 .008	150 150 - 150 150	60 85 85 60 *60	.06 .06 0.6 .06		32	.001 .001 - .001 .001	6 6 8 -	30 30 - 30 -	-	TR TR TR TR
	2N343B 2N497A 2N498A 2N656A 2N657A	TI BE BE BE BE	npn npn npn	n,GJ,si n,PL,si n,PL,si n,PL,si n,PL,si	1.0 1 1 1 1	-	200 200 200 200 200	65 60 60 60 100	0.6	*1	3-90 12-36 12-36 30-90 30-90			1 1 1 1		
P 3	2N706 2N707 2N709 2N988 2N989	FA PSI FA PSI PSI	npr npr	n,DD,si n,TDP,si n,DP,si n,TPD,si n,TPD,si	1.0 1 1.0 1	0.0067 .006 0.005 0.006 0.006	175 175 200 175 175	*25 56 6.0 20 20		* 12 * 5 70 70	2 55 0	*0.005 .005ma *0.005 0.05 0.05	*400 300 *800 250 250	- 6 - 8 11	0.2 - 0.32 0.63	МО
	2N1048A 2N1206 2N1207 2N2017 2N2106	BE TR TR GE GE	npi npi np	n,DM,si n,GR,si n,GR,si n,MS,si n,MS,si	1 1.0 1.0 1.0 1.0	- 10 10 - -	165 200 200 200 200 150	120 60 *125 60 60	0.5 - - - -	15 15 30	12-36 5-19 5-90 0 2-36	1 1 10 200*	- - - 15		11111	BE BE
P 4	2N2107 2N2108 2N2726 2N2727 7A30	GE GE GE GE	np np	on,MS,SI on,MS,si on,DM,si on,DM,si on,DM,si	1.0 1.0 1.0 1.0 1.0		150 150 200 200 200 150	60 60 *200 *200 *50		* *	0-90 0 30-90 75-150 12-36	200* 200* *1.0 *1.0 *10	15 15 - - 15mc			BE BE
	7A31 7A32 2N708 2N869 2N914	GE GE FA FA	ng ng pi	pn,DM,si pn,DM,si pn,DP,si np,DP,si pn,DP,si	1.0 1.0 1.2 1.2 1.2	- 0.006 0.006 0.006	9 200	*50 *50 15 18 *15	-	*	30-90 75-200 50 50 55	*10 *10 *0.004 0.0001 *0.004	15mc 15mc *450 150 *370			MO CL, MO
P 5	2N915 2N916 2N947 2N995 2N996	FA FA FA FA	n n p	pn,DP,si pn,DP,si pn,DP,si pnp,DP,si pnp,DP,si	1.2 1.2 1.2 1.2 1.2	0.000 0.000 0.000 0.000	9 200 9 200 9 200	50 25 - 15 12	-		*100 *80 *50 *60 *75	*0.005 *0.002 *0.005 0.0002 0.0002	*350 *400 *400 200 200			RA
	2N1566 2N2368 2N2369 2N2650 PT720	TI FA	n n	ipn,MS,si ipn,DP,si ipn,DP,si ipn,EM,si ipn,TPD,si	1,2 1,2 1,2 1,2 1,2	0.00	59 200 6 200	15 25		200	*40 *40 *70 50 80	1 *0.1 *0.1 0.01 5	50 *650 *650 250 250	- - 10 15	- - 0.05 0.05	TR,NA
P 6		T T T F	R R R	pnp,PL,si pnp,PL,si pnp,PL,si npn,DD,si npn,DD,si	1,2 - 1,2 1,2 1,5 1,5	.010 .010 0.01	200 200 175	*30			*20 *25 *15 *40 *80	*1 *1 *5 *0.01 *0.01	*50,0 *60,0 *40,0 *80 *100	00	-	RA, PSI RA, PSI
	2N719 2N720 2N721 2N722 2N727	F F F	AAAA	npn,DD,si npn,DD,si pnp,DD,si pnp,DD,si pnp,DD,si pnp,ge	1.1 1.1 1.1 1.1	5 0.00 5 0.00 5 0.00	10 175 10 175	35		150	*40 *65 *30 *60 *40	*0.01 *0.01 *0.01 *0.01 -	*90 *100 *70 *80	- 10	-	RA, PSI RA, PSI 0.5w @80mc
P		5 1 7 1 8 1		npn,TPD,s npn,TPD,s npn,TPD,s npn,DP,si npn,DP,si	i 1.	6 0.0 6 0.0 8 0.0	1 17	5 45 5 45 0 -		-	- - *80 *40	0.3 0.3 0.3 *0.00 *0.00			0 750 0 1000	PSI

New from Honeywell!

Four new silicon planar JEDEC transistors featuring 11/16-inch hex package

40-WATT DISSIPATION @ 100°C.

	вусво	BVCEO	BVEBO	GAIN
2N2811	80	60	8	20-60
2N2812	80	60	8	40-120
2N2813	120	80	8	20-60
2N2814	120	80	8	40-120
For price and	delivery de	mto ot		

For price and delivery contact your nearest sales office or distributor. Or write: Dept. ED-5-42, Minneapolis-Honeywell, 2747 Fourth Avenue S., Minneapolis 8, Minn.

Honeywell

SEMICONDUCTOR PRODUCTS

EMPLOYMENT OPPORTUNITIES exist for engineers, scientists, and physicists in Florida. WRITE—Personnel Dept., 1177 Blue Heron Blvd., Riviera Beach, Fla. An Equal Opportunity Employer.

HONEYWELL INTERNATIONAL: Sales and service offices in all principal cities of the world.

P continued

	Remarks	PSI RA RA, RA RA PSI RA, PSI	RA, PSI RA RA RA RA RA RA RA RA	KA RA RA RA RA Inigh freq., high pwr.	high freet, high pwr. high freet, high pwr. high freet, high pwr. RA, PSI high freet, high pwr., BE high freet, high pwr., BE high freet, high pwr., high freet, high pwr.	RA SI	A N	TR, FA, NA, BE, TR, FA, NA, BE, GE, TR, FA, NA, BE, GE, TR, TR, TR, TR, TR, TR, TR, TR, TR, TR
	Powr. Out. (w)	11111 1111	11111 11111	11111 11111	1 1 10 1 1 1 1 1 1	111 1 00.5	1.1.9.1.1.1.3.8	1111 1111
S	Powr. Gain (db)	11111 1111	1111 11111	11111 11111			11111 11112	11111 1111
FRIST	*f_T*f_(kc)	*100 *90 *80 *70 *70 *100 *100	**************************************	**50 **80 **80 **80 **80 **50 **50 70 70	70 70 70 190 3 *70 70 - 500 mc 450 mc			9 mc 8 mc 8 mc *60 1.5 mc 1.5 mc 1.5 mc *25,000
CHARACTERISTICS	CO (* (m a) (* / pa)	*0.0003 *0.0003 *0.0003 *0.0003 *0.0003 *0.0003 *0.0003	*0.01 *0.01 *0.01 *0.01 *0.01 *0.01 *0.01	*1.0 *1.0 *1.0 *1.0 *0.005 .008	*0.008 0.01 0.01 0.0015	0.01 0.01 10na 10na *0.0003 .0015 .0015 .0003 *0.0003 *0.0003		2000 - 00001
0	* # # # # # # # # # # # # # # # # # # #	*80 *80 *200 *135 *70 *42 *200 200 *40	*75 *65 *30 *60 *35 *150 15 4.0	4.0 *100 *50 *70 *40 *30 *120 13		30 60 1130 *20 *80 10 db 110 db *130 *130 *130	80 90 90 *135 *70 *42 3.0 *40-120 *40-120	12-36 30-90 30-90 30-90 *80 *80 50 50 50 50
		11111 1111	11111 118811		.075 .075 .075 .075 .300 	25 - 25	200 1 200	200
TINGS	* CEO (₹)	000000000000000000000000000000000000000	25521 13531	25 25 25 45 45 45 -20 -35 -35 120	120 120 120 150 60 60 60 80 82 82 82 82 82	80 80 80 80 87 875 875 875 875	120 140 60 60 60 60 60 80 80	60 100 60 100 60 100 60 100 100 100
MAX. RATINGS	T _i (°C)	200 200 200 200 200 200 175	175 175 175 175 175 175 175 175 175 175	150 150 150 150 150 150 175 150	150 150 150 175 200 175 175 175 100 100	175 175 175 200 200 200 200 200 200 200		200 200 200 200 175 175 200 200 175
-	J ₀ /m	0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0133	0.0133 0.0133 0.0133 0.0133 0.0133 0.0133 0.013 0.013	0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.024 0.024	0.024 0.024 0.024 0.018 0.0172 0.2 0.2 0.2 0.2	0.02 0.02 0.02 0.017 0.0172 0.0172 0.0172	0.0172 0.017 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172	.023 .023 .023 .023 .023 .023
F	و €	11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.8 2.8	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.0.0.0. 44444
	Туре	npn, DP, si npn, DP, si npn, DP, si npn, DP, si npn, DP, si npn, DP, si npn, TP D, si npn, TP D, si	npn, DD, si npn, DD, si	npn, DD, si npn, DD, si npn, DD, si npn, DD, si npn, DD, si npn, DD, si npn, MS, si npn, MS, si	npn,MS, si npn,MS, si npn,TPD, si npn,DP, si npn,MS, si npn,MS, si pnp,MS, si pnp,MS, si pnp,MS, si	npn, TPD, si npn, TPD, si npn, TPD, si npn, PL, si npn, DP, si npn, MS, ge npn, MS, ge npn, PL, si npn, PL, si npn, PP, si	npn,DP,si npn,TPD,si npn,DP,si npn,DP,si npn,DP,si npn,PP,si npn,PP,si npn,PP,si npn,PP,si	npn, DJ, si npn, DJ, si
	Mfr.	A A A A A A A A A A A A A A A A A A A	AAAAA AASAA	AAAAA AAAAA	PSSI PSSI PSSI MO MO MO	PSI PSI TR MO MO TR FA	FA PSI FA FA AMF FA MO MO	TELLITI A RCCA TRCCA TRC
	Type No.	2N720A 2N870 2N871 2N871 2N910 2N911 2N912 2N956 2N1890 2N696	2N697 2N699 2N1331 2N132 2N132 2N1252 2N1253 2N1250 2N1963 2N1964	2N1985 2N1986 2N1987 2N1989 2N1999 2N1991 2N1335 2N1335 2N1335 2N1335	ZN1339 ZN1340 ZN1341 ZN1341 ZN1342 ZN1342 ZN1505 ZN1506 ZN1506 ZN1506 ZN1506 ZN1506 ZN1506 ZN1506 ZN1506 ZN1506	2N1564 2N1565 2N1565 2N15613 2N1613 2N1632 2N1632 2N1632 2N1632 2N1633 2N1711 2N1711	2N1893 2N1893 2N1893A 2N1973 2N1974 2N1975 2N22049 2N2224 MM719 2N1506A	2N497 2N498 2N656 2N657 T AG200 2N1489 2N1481 2N1481 2N1481 2N1481 2N1482 2N1481 2N1481
	Cross Index Key		С	P 10	P 11	P 12	д 13	P 14

$\Gamma_{continued}$

		T -		1							0				
	Remarks	Vce (sat)=1v Vce (sat)=2 v	PSI RCA, AMF TR BE BE			driver				RCA, MO, BE MO, BE MO, SY, BE MO, BE BE, CL	STC, RCA, AMF, BE	RA RA RA			
	Powr. Out.		11111	1111	1111	1111	-1111	1.221	2 4.5	11440		11111	11111	1111	11111
TICS	Powr. Gain (db)		_	1111	11111	1 1 8 1 1	32	32 - - 12 12	7 5 5 6.5 28	35.5 32 33.5 35 40	1111	30-75	30-75 30-75 30-75 60-150 60-150	60-150 60-150 40-120 40-120 40-120	40-120 28-39 28-33 32-35 34-37
CHARACTERISTICS	*f de (kc)			7 - 1	150	- 17 500 500	500 500 15 15	15 200mc 200mc	*250 *250 *250 *250	מוומו	20 mc 20 mc 20 mc 20 mc	20 mc 20 mc 20 mc 20 mc 15		5556	42288
CHARA	CO (ma)*	* 0 *	*0.0004	*0.0004 3 3.001 .001	.001 .012 .3 *50 *50	*50 *50 0.100 .03		*20 *20 0.001 0.001	*500 *500 *500	0.3	0.5 .002 .002 .002	.002 .002 .002 .002	7.7.7	777115	33332
	* * * F F F F F F F F F F F F F F F F F	20-120 20-120 *10 40 *15	35. 35. 35.	*35 40-100 12-36 12-36 30-90	30-90 35 45 *12-36 *30-90	*12-36 *30-90 20 20	20 40 40 40 *30/75	*50/125 *35 *35 20-60 40-120	*10 *10 *10 3	4.5 65 78 90	8 1 1 1 1				
	_~©	0.5	1:0000	2 0.5 0.5	0.5	33.55		1.5 17 17 17 17	1 1 1 140	m m m m m		37111	mmmmm	N CH CH CH CH	11111
MAX. RATINGS	CB0	*60 *120 *60 80 *80	- 60 *60 120 60	*45 45 75 45	75 *32 *35 *80 *80	*120 *120 *40 . 45	80 60 60 60 60 60	09 09 09* 09*	120 140 65 140 120	*30 *40 *40 *0	60 60 100 60 100	60 100 60 100 *40	*60 *80 *100 *40	*80 *100 *40 *60	* * * * * * * * * * * * * * * * * * * *
MAX. R	T, (°C)	200 200 200 200 200	200 175	200 200 200 200	200 75 85 175 175	175 175 100 100 100	000000000000000000000000000000000000000	100 100 200 200 200	200 200 200 200 150	90 90 90 90	175 175 175 175 175	175 175 175 175 95	95 95 95 95	95 95 95 95	95 95 95 95
	O _/ /m	0.023 0.023 26.7 0.023 .023	0.035	0.0286	.03 75 0.11	11511	10.0	10.0 .1 .1 0.045 0.045	.05 .05 .05 .05	0.15 0.13 1 1 1 1.5	0.133 .134 .134 .134 .134	.134 .134 .134 .134 .134 2.5	2.5 2.5 2.5 2.5 2.5	2.5 2.5 1.5 1.5	2.5 2.5 2.5 2.5
	ق`م	4444		5.0 6 6	6.7	7.57.55	7.5 7.5 7.5 7.5	7.5 7.5 7.5 8	8.7 8.7 8.7 8.7 8.7 8.75	22222	22222	22222		99999	100000
	Туре	npn,EP,si npn,EF,si npn,PE,si npn,TPD,si npn,ME,si	is,0P,si npn,0J,si npn,si npn,TDP,si npn,TDP,si	npn,DP,si npn,AJ,ge npn,DJ,si npn,DJ,si npn,DJ,si	npn,DJ,si pnp,PADT,ge npn,AJ,ge npn,Um,si npn,MS,si	npn, DM, si npn, DM, si pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,A,ge pnp,AJ,ge pnp,AJ,ge npn,si	npn,MS,si npn,MS,si npn,MS,si npn,MS,si npn,GR,si	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	npn,AJ,si npn,MS,si npn,MS,si npn,MS,si npn,MS,si	npn,MS,si npn,MS,si npn,MS,si npn,MS,si npn,AJ,ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge
	Mfr.	T P M M H	FA STC RCA RCA RCA	TR TR	TR AMP SY GE GE	GE GE DE RCA RCA	RCA RCA RCA DE	NA F F F	ಜಜಜಜ⊨		SEFEE	ニニニニュ	29999		22222
	rype No.	MHT-4401 MHT-4402 MM801 PT1588 ST4341	2N699B 2N1067 2N1700 2N2102 2N2270	2N2297 2N121E 2N2038 2N2039 2N2040	2N2041 0C30 2N326 7F1 7F2	7F3 7F4 2N1172 2N1183 2N1183A	2N1183B 2N1184 2N1184B 2N1184B 2N1609		10.000		2N1068 2N1714 2N1715 2N1715 2N1717	2N1718 2N1719 2N1720 2N1721 2N1755	7		CDT1313 C CST1739 C CST1740 CC CST1741 CC CST1741 CC
	Cross Index Key	7 51		5	9	D 17		P 18		P 19		0 d		P 21	

Pcontinued

				MAX. RATINGS CHARACTERISTICS VCEO										
Cross Index Key	Гуре No.	Mfr.	Туре	P _c (w)	w/°c	т _і (°С)	VCEO *VCBO (v)	l _c (a)	h _{fe} *hFE	CO (ma) (*μa)	fae *fT (kc)	Powr. Gain (db)	Powr. Out. (w)	Remarks
P 22	CST1743 CST-1744 CST1745 CST1746 CTP1104	CL CL CL CL	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	10 10 10 10 10	2.5 2.5 2.5 2.5 2.5 2.0	95 95 95 95 95 85	*40 *80 *80 *80 40	3 3 3 3	-	3 3 3 2	7 7 7 7 4	36-39 28-37 28-33 32-37 28	- - - 1.2	
	CTP1105 CTP1108 CTP1109 CTP1111 MHT-4501	CL CL CL MH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,EP,si	10 10 10 10 10	2.0 2.0 2.0 2.0 0.057	85 85 90 90 200	40 20 20 80 *60	3 3 3 3 1	- - - 20-120	2 2 2 5 0.001	5 4 6 4 80m	30 27 35 29	1.2 0.6 0.6 1.2	Vce (sat)=I v
P 23	MHT-4502 2N301 2N1314 2N301A 2N1666	MH RCA AMP SY AMP	npn,EP,si pnp,AJ,ge _pnp,PADT,ge pnp,AJ,ge pnp,PADT,ge	10 11 11 12 13	0.057 - - 0.2 -	200 91 90 85 90	*120 40 *32 *60 *80	1 3 3.5 2 6	20-120 70 33 - 32	0.002 0.1 <0.1 5 <100	80m - 150 5 200	- - 35 -		Vce (sat)=2 v BE CL, RCA, BE
1 23	2N1709 2N1710 2N2781 2N2782 2N2783	PSI PSI PSI PSI PSI	npn,DM,si npn,DM,si npn,TDP,si npn,TDP,si npn,TDP,si	13 13 13 13 13	86.7 86.7 .087 .087	175 175 175 175 175 175	75 60 75 100 100	1.2a 1.2a 2 2 2	- 30 30 30 30	10max 10max .5 .5	240mc 30 210 210 210 210	10 db 8 db 5 5	3.2 3.2 3.5	hi freq., hi pwr. hi freq., hi pwr.
	PT531 PT612 2N307 2N1658 2N1659	PSI PSI BE MH MH	npn,TDP,si npn,TDP,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	13 13 15 15 15	.087 .087 2.0 0.2 0.2	175 175 75 100 100	75 75 35 *80 *60	2 2 1.0 1	30 30 - 30-90 30-90	.1 .5 .35 0.5 0.5	210 210 - 700 700	10 10 - -	3.0 5 - - -	2N234A
P 24	2N2196 2N2197 2N2201 2N2202 2N2203	GE GE GE GE GE	npn,MS,si npn,MS,si npn,DM,si npn,DM,si npn,DM,si npn,DM,si	15 15 15 15 15	=	175 175 175 175 175 175	80 80 *120 *120 *120	30 - - -	30 *75 *30-90 *30-90 *30-90	75µa 15 *50 *50 *50	15 - - - -		-	
P 25	2N2204 2N2611 7B1 7B2 7B3	GE GE GE GE	npn,DM,si npn,DM,si npn,DM,si npn,DM,si npn,MS,si	15 15 15 15 15	-	175 175 175 175 175 175	*120 *120 *80 *80 120		*30-90 *12-36 *12-36 *30-90 12	*50 *50 *50 *50 *50	- - - - 15	-	-	
F 23	7C1 7C2 7C3 7D1 7D2	GE GE GE GE	npn, DM, si npn, DM, si npn, DM, si npn, DM, si npn, DM, si	15 15 15 15 15		175 175 175 175 175 175	*80 *80 *120 *80 *80	11/11	*12-36 *30-90 *12-36 *12-36 *30-90	*50 *50 *50 *50 *50 *50				
D.O.	7D3 7E1 7E2 7E3 7G1	GE GE GE GE	npn,DM,si npn,DM,si npn,DM,si npn,DM,si npn,DM,si	15 15 15 15 15	_	175 175 175 175 175 175	*120 *80 *80 *120 *80		*12-36 *12-36 *12-36 *12-36	*50 *50 *50 *50 *50 *50			-	
P 26	7G2 7G3 7G4 2N307A SN230	GE GE GE SY CS	npn,DM,si npn,DM,si npn,DM,si pnp,AJ,ge npn,MS,si	15 15 15 17 18	- - 0.34 .12	175 175 175 175 75 175	*80 *120 *120 *35 65	- - 2 2	*30-90 *12-36 *30-90 25 *10	*50	- - - 5 *250	- - 33 5.7	7.5	BE
	SN231 SN232 SN234 2N155 2N156	CS CS CS CL RA	npn,MS,si npn,MS,si npn,MS,si pnp,AJ,ge pnp,AJ,ge	18 18 18 20 20	.12 .12 .12 .33 0.33	175 175 175 175 85 85	140 65 140 *30 30	2 2 2 3 3	*10 *10 *10 20 20	*500 *500 *500 2	*250 *250 *250 5	8.5 4 6 - -	14 5 8 2 2	BE KF
P 27	2N158 2N158A 2N255 2N255A 2N256	RA RA BE BE BE	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	20 20 20 20 20 20	0.33 0.33 2.0 0.5 2.0	85 85 85 85 85	60 80 15 15 30	3 3 3 3 3	20 20 - - -	1 1.0 1.0 1.0	5 5 - 5 -	- - - 25 -	2 2 19-26 2 22-29	KF KF 2N234A 2N234A
	2N256A 2N401 2N1042 2N1043 2N1044	BE BE TI TI	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	20 20 20 20 20 20	1.2 .27 .27	85 90 100 100 100	25 40 40 60 80	3 3 3 3 3	20-60 20-60 20-60	1 1.3 0.75 0.75 0.75	5	25 30 - - -	2 5 - -	BE, KF BE, KF BE, KF
P 28	2N1045 2N1294 2N1295 2N1326 2N1437	TI SY SY KF KF	pnp,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	20 20 20 20 20	0.33 0.33 0.33	100 85 85 85 85 85	100 *60 *80 100	3 3 3 3 3	20-60 30min 30min 30min 20min	0.5	- 5 5 5 5		2 2 2 2 2	T0-10 T0-13

$P_{continued}$

		T		T											
	Remarks	T0-10 T0-13 T0-10					ರ ರ ರ ರ	hFE 20 min., CL BE	BE BE Solder lugs, BE Solder lugs, BE	solder lugs, BE solder lugs, BE STC, AMF STC, AMF	STC, AMF		7) 10 10 10	13,	KF (MH, JAN2N 539), KF KF KF KF
	Powr.	1 2222	11111	1111	11111	1 1 1 1 1	12 138 36 35 35 35 35 35 35 35 35 35 35 35 35 35	1 6 1 1 3 3	1 1 1 1 1	1111	1111	1111	- 171 + 1	35.33	1111
TICS	Powr. Gain (db)	1111	11111	1 1 1 1 1	1111	1111	1111	35	1111	1 1 1 1 1	36 30-36 25-30	1111	337		
CHARACTERISTICS	fae *fT (kc)	102222	99999	99999	2222	N N N N N	*200	14 14	ব ব ব ব ব	4 1.25mc 1.25mc 1.25mc	1.25mc	l l l m m	3 3 *200 5	**,000 **,000 **,000	
CHARA	CO (ma) (**	0.5 0.5 *40	* * 40 * * 40 * * 40 * * 40	* 40	*40 15 15 15		*0.5 1.0 1.0	1.0 2.0 1.5 1.3 25	25 25 25 25 25	25 25 15 15 15	15 1.0 1.0 1.0 8	8 8 8 8 15 15 15 15 15 15 15 15 15 15 15 15 15	15 15 *0.5 1.0 3.0		2222
	h fe *h FE	20min 20min 20min 20min *33	* * * * * * * *	*33 *33 *25 *25 *25	*25 20-60 20-60 20-60 20-60	1111	*	20	1 1 1 1 1	1 45 45 45	45 30-75	30-75 30-75 30-75 25-75 25-75	25-75 25-75 *10	*20	20-50 30-75 45-113 40-120 25-75
	_°©				വവവവന	mmmmm	Immmm	333333	15 15 15 15	333312	33333	15 15 15 25 25	25 25 - 3 2.0	22233	33.0
MAX. RATINGS	v CEO *V CBO (₹)	100 120 120 80 80 *40	* 60 * * 100 * 40 * 40 * 60	*80 *100 *40 *60 *80	*100 *40 *60 *80 100	80 100 120 150 200	*60 30 40 40	40 *60 40 40 *40	*60 *80 *100 *40 *60	*80 *100 60 100 60	100 30 30 40 100	80 60 60 80 80	40 * 60 * 45	40 - 40 * 45 * 45	* 80 * 80 * 80 * 120
MAX. R	T, (°C)	85 85 100	00100000	0000000	100 100 100 *100	85 85 85 85 85 85 85 85 85	175 90 90 90 95	95 90 95 95	95 95 95 95	95 95 200 200 200	200 90 90 95	95 95 95 95	95 95 175 85 100	90 90 150 160 160	100
	0/w	0.33 0.33 0.33 .27	2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2	7. 7. 7. 7. 7. 7. 7. 7.	.27 1.5 1.5 1.5 1.5	0.33	133 12 12 12 12 12	1.2 0.33 1.2 1.2 0.7	0.7	1111	12220	0.00000	1.0 1.0 167 0.33	2.0	0.45 0.45 0.45 0.45 0.45
	€``€	20250	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20	22222	22222	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25 25 25 25 25	25 25 25 25 25 25	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25 25 25 25 25	25 25 25 25 25 25	25 25 30 30	30 30 30@100 30@100	32 32 32 32 32 32
	Туре	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	npn,PE,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge npn,DJ,si npn,DJ,si npn,DJ,si	npn, DJ, si pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp,AJ,ge pnp,AJ,ge npn,PE,si pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge npn,ME,si npn,ME,si npn,ME,si	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge
	Mfr.	****** ******	X X X X X X X X X X X X X X X X X X X	*****	주의의의	RA RA RA RA	MO BE BE BE BE	SY SY BE CL	ರವರವರ	CL CC RCA RCA	RCA BE BE BE CL	<u> </u>	SY BE		H H H H H H H H H H
	Type No.	2N1438 2N1465 2N1466 2N1504 2N2552	2N2553 2N2554 2N2555 2N2555 2N2556 2N2557	2N2558 2N2559 2N2560 2N2561 2N2562	2N2563 CDT1319 CDT1320 CDT1321 CDT1322	CK 31 CK-312 CK-313 CK-314 CK-315	MM799 2N234A 2N235A 2N235B 2N236A	2N285A 2N296 2N399 2N400 2N1146	ZN1146A ZN1146B ZN1146C ZN1147 ZN1147A	2N1147B 2N1147C 2N1483 2N1484 2N1485	2N1486 B-177 B-178 B-179 CTP1500	CTP1503 CTP1504 CTP1508 CTP1544 CTP1545	CTP1552 CTP1553 MM800 2N236B 2N242		2N538 2N539 2N540 2N1202 2N1203
	Cross Index Key	P 29		c c		5	-	33		В 33		P 34		P 35	

$P_{continued}$

	Remarks	A A A A A A A A A A	MO	BE BE TR, TI, BE	TR, BE BE TR, TI, BE TR, STC, BE	SIC, BE TR, TI, BE TR, SIC, BE BE	TR, TI, BE TR, STC, BE STC, BE	388 88 11	STC	Planar MO CL, BE BE, CL	BE JAN2N665 RCA, AMF, FT, BE RCA, AMF, FT, BE	2		555	30 00 00 00 00 00 00 00 00 00 00 00 00 0
	Powr. Out. (w)	1.1 1 1 1	11 111	1 1 1 1 1	11111	11111	11111	1 1 1 1 1	11111	1111	11811	1 1 1 1 1	1 09 1	اااام	11111
S	Powr. Gain (db)	11111	1 1 2 2 1	18881	1 1 1 1 1	1 1 1 1 1	11111	1 1 1 1 1	11111	11188	11811		1 22 1 .	11111	11111
CHARACTERISTICS	f de *f T (kc)	400 400 400 400 400	4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 0 0 0 12	8 I I 8 B B B B B B B B B B B B B B B B	1 mc	1111	10 mc 10 mc	8 mc 10 mc 10 mc	10 mc 30m	25 25 1	20 mc 20 mc - - 400	*10,000 *10,000 -10,000	1:5	11.5
1ARAC	(ma) (*µa)	22 22 22			.0015 .015 .0015		.015 7 mc	.025 .025 .025	, 85 0 0 0 0 C	.01 0.001 15 2 2 2	0.02 0.02 0.1	1 1 15 15 2	2 - - 0.1 10	222005	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ö	hfe *hFE	20-50 30-75 45-113 25-100 25-100	*20 60 30-75 	*25/75 50 50 50 12-36	12-36 12*-36* *12-36 12-36 12-36	30*-90* *12-36 30-90 30-90	*30-90 30-90 30-90 *30-90*	15-45 15-45 30-90 30-90	*20-*60 20-80 20-60 20-60 20-60 40-120	40-120 10-120 20-50 60 60	20275	- 90 125 25-75	25-75 *20 *20 100 50	15-30 15-30 15-30 20-6	506
H	_°©	mmmmm	w ra ca ca	4 6 6 6 6 6	0.5 0.75 8 2 2 0.5	0.75 8 2 0.5	8 2 5 0.75 8	ოოოო	1 1 2 2	12 2 2	4 4 10	7.5 7.5 10 10 5.0	5.0 7.5 7.5 45	102223	00999
PATINGS	, CEO ** CBO (<)	* * * * * * * * * * * * * * * * * * *	20 60 80 83 *30 *35	*40 *40 *15 *30 80	80 80 80 120 120	120 120 80 80 80	80 120 120 120 120	*80 *120 *80 *120	120 60 *150 *200 *150	*200 100 *80 30 60	*80 *80 100 60 60	80 80 60 100 *100	*120 80 80 3.3 60	45 70 80 40 40	80 70 80 80 80
LYG ATT		88888	100 100 100 100 100	100 90 90 200	200 200 200 200	165 200 200 -	200 200 200 200 200 200 200 200 200 200	175 175 175 175 -	_ 175 175 175 175	175 175 95 100 100	100 100 175 175	175 175 - 125	125 175 175 175 200	960000000000000000000000000000000000000	000000
	J _o /m	0.45 0.45 0.45 0.45	0.45 0.2 2.0 2.0	2.0 1.4 1.4 0.2	.228	0.2	0.2	12: 12: 12: 12: 12: 13: 14: 14: 14: 14: 14: 14: 14: 14: 14: 14	- 22 22 22 22	1.0 1.0 1.0	1.5	.67 .67 0.7 0.5 0.5	500	1.2 2.2 2.1 1.0 1.0	1.2 1.2 1.2 1.2 1.2
r	و م آ	322 32	32 35 35 37 37	37 40 40 40	40 40 40 40 40	40 40 40 40 40	40 40 40 40	40 40 40 40 40	40 40 40 40	40 45 50 50	22222	22222	50 50@100 50@100 50-200 55	99999	09000
	- du	9 9 9 9 9		pnp,A,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npp,AJ,si	npn,MS,si npn,DM,si npn,DM,si npn,DJ,si npn,MSI,si	npn, DM, si npn, DM, si npn, DJ, si npn, MS, si npn, D, si	npn, DM, si npn, DJ, si npn, MS, si npn, DM, si npn, DM, si	npn, DJ, si npn, DJ, si npn, DJ, si npn, DJ, si npn, DJ, si	npn,DM,si npn,DJ,si npn,DJ,si is,UG,nqn is,UG,nqn	npn,DJ,si npn,DP,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge npn, DJ, si npn, DJ, si	npn,MS,si npn,MS,si pnp,Dr,ge pnp,Dr,ge pnp,AJ,ge	pnp,AJ,ge npn,PL,si npn,PL,si npn,si npn,DB,si	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge
		HHHHH		STC	TI TI STC	TI STC TI STC	STC TI, TI	TR TR STC	TRATA	T B B I I	DE DE RCA STC STC	TI RCA RCA MH	MH T T N RA RA	######################################	BE BE
	Type	2N1261 2N1262 2N1263 2N1263 2N1501	CA2D2 2N463 2N1011 2N256 2N307	2N663 2N178 2N554 2N555 2N555 2N1047	2N1047A 2N1047B 2N1047C 2N1048 2N1048A	2N1048B 2N1048C 2N1049 2N1049A 2N1049B	ZN 1049C ZN 1050 ZN 1050A ZN 1050B ZN 1050C	2N1647 2N1648 2N1649 2N1650 2N1690	2N1691 2N1886 2N2018 2N2019 2N2020	2N2021 MHT-6001 2N1120 2N250 2N250	2N553 2N665 2N1014 2N1069 2N1070	2N1722 2N1724 2N1905 2N1906 2N2266	2N2267 2N1722 2N1724 2N1724 2N1704 2N1704	2N 419 2N 639 2N 639 A 2N 639 B 2N 1073	2N1073A 2N1073B 2N1136 2N1136A 2N1136B
	Cross	ney	P 36		P 37		Ь 38		Р 39		P 40		P 41		P 42

SILICON PLANAR POWER TRANSISTORS

Туре	DC Current Gain @ Ic= 500mA (I \beta)	Typical Collector Saturation Voltage @ Ic= 500mA (Volts)	Minimum Sustaining Voltage @ I c= 50mA (Volts)	Typical Cut-Off Frequency @ Ic= 100mA (Mc)	Power Dissipation Rating @ 100°C Case (Watts)
2N2875	20-60	1.0	50	. 30	15

IN A
7/16" STUDMOUNTED
PACKAGE

NDN 2N2866-7

Features extremely low RCS of 0.75 Ohms Max.

Dissipates up to 20 Watts of power at 100°C case. High beta linearity.

	Туре	DC Current Gain @ Ic= 500mA (β)	Typical Collector Saturation Voltage @ Ic= 1 Amp (Volts)	Minimum Sustaining Voltage @ Ic= 50mA (Volts)	Typical Cut-Off Frequency @ Ic= 100mA (Mc)	Power Dissipation Rating @ 100°C Case (Watts)
	2N2866	20-60	0.4	80	15	20
L	2N2867	40-120	0.4	80	15	20

TRANSITRON'S NEW STATE-OF-THE-ART SILICON PLANAR TRANSISTORS FEATURE GREATER RELIABILITY, LOWER RCS, AND PERMIT FURTHER CIRCUIT SIMPLIFICATION IN DEMANDING POWER CATEGORIES.

Drawing heavily upon its broad experience in silicon power transistor development and stud-mounted packaging, Transitron introduces its new PNP 2N2875 and NPN 2N2866-7 intermediate power silicon transistors. They combine all the recognized advantages of planar construction with the efficiency of $\frac{7}{16}$ hex base stud-mounted packaging, which solves a variety of annoying mounting problems. And, because they complement each other, extensive circuit simplification is now practical within power applications.

These highly reliable silicon planar power transistors are the product of the

same intensive Transitron Total Reliability Program that produced the popular γ_{16} " NPN 2N1647-50 and 2N2018-21 series for modern military ICBM systems. Continuous lot control from ingot stage, thorough product improvement documentation, and comprehensive failure analysis have enabled Transitron Product Engineering to develop units which will satisfy the strictest requirements.

The 2N2875 and the 2N2866-7, and other complementing PNP and NPN silicon power transistors, are available through your Transitron Distributor.

For complete information, write Transitron's Wakefield, Mass. installation.

Transitron 1

electronic corporation wakefield, melrose, boston, mass.

SALES OFFICES IN PRINCIPAL CITIES THROUGHOUT THE IL S. A. AND FUROPE ... CARLE ADDRESS TREE

P continued

	Remarks	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	FT, AMF, FT, AMF, FT, STC, FT, STC, FT, STC, FT, STC,	"Meg-A-Life" "Meg-A-Life" "Meg-A-Life" "Meg-A-Life" "Meg-A-Life" "Meg-A-Life" "Meg-A-Life" "Meg-A-Life"	MO, SO, DE STC STC STC STC STC	STC, TR, RA, FT, AMF, BE STC, TR, RA, AMF, FT, BE AMF, BE STC, TR, RA, FN, FT	5Q. Flange 1tex Stud	0E, BE, CL BE, CL BE, CL BE, CL
	Powr. Out. (w)	11111 1111	1 1111 1111	11111 1111	11111 11111	11111 11111	11111 11111	11111 11111
S	Powr. Gain (db)	11111 1111	1 1111 11111	11111 1111	11111 11111	P1 1 1 1 1 1 1 1 1 1	11111 1111	255 33 33 35 35
CHARACTERISTICS	f ae *f T (kc)		1 mc 1.25mc 15 mc 15 mc 15 mc 15 mc 15 mc	20 20 20 20 20 20 20 20 20 20 20 20 20 2	10 	450 6 mc 7 mc 6 mc 15 mc 40 mc 40 mc	*3.0mc *3.0mc	11 mc 1 mc 22 22 22 22 22 22 22 22 22 22 22 22 22
HARAC	CO (am' *)	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	25 25 50 50 50 50 50 50 50 50 50 50 50 50 50	222 22 222E	3.00	E 20 10 10000		.025 .025 .025 .3333 .333 .333
0	* h fe		30 30 30 15-75 15-75 15-75 10 10 30-60 30-60	30-60 30-60 30-60 50-100 50-100 50-100 50-100 *62.5 *62.5	*37 15* *15 *25 *25 *25 *25 *15 *15-60 30-120 20-80 30-120	20-80 12-60 12-60 12-60 12.60 30 90 90 30	30 90 90 90 *20-*60 *20-50 *20-50 *20-50	25-75 25-75 25-75 *25/90 - 40-100 30 45 60
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	നെവെവ വവവയ	8 m m m m m m m	15 6 6 6 6 6 12 12 12 12	22222	e 2022 22555	000rg run4r
TINGS	, CE0	40 70 70 70 80 80 80 80 60 80 60	100 60 70 70 80 80 80 80 80 80 80 80 80 80 80 80 80	60 75 30 30 45 60 60 75 840 * 60	*80 60 100 60 60 100 80 80 80 80 80	*60 88 60 60 88 80 80 100	80 80 100 80 80 80 80 80 80 1120 60	100 60 100 100 115 15 8.50 8.50 8.50 8.50 8.50
MAX. RATINGS	1. (°C)	100 100 100 100 100 175 175	175 175 175 175 175 176 180 190	000000000000000000000000000000000000000	200 500 1000 1000 1000 1000 1000 1000 10	100 200 200 200 200 200 200 200 200 200	200 200 200 200 180 180 110 110 200	200 200 200 100 100 100 100 100
	O /m	22222	27. 27. 27. 27. 27. 27. 27. 27. 27. 27.	0.83 0.83 0.83 0.83 0.83 1.0 1.0	11.0	1.0 .48 .48 .48 .72 .27 .27 .0.5 .0.5	0.55 0.55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.8 0.8 1.4 1.4 1.4
	€ €	99999999	60 60 60 60 60 60 60 60 60 60 60 60 60 6	62.5 62.5 62.5 62.5 62.5 62.5 62.5 75 75	75-95 75 75 75 75 75 75 75 75	85 85 85 85 85 85 85 85 85 85 85 85 85 8	**************************************	88 88 90 90 90 90 90 90
	Туре	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	npn,DJ, si npn,DJ, si npn,DJ, si npn,DJ, si npn,DJ, si npn,DJ, si npn,DJ, si	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	npn, AJ, ge npn, si npn, si npn, si npn, si npn, AJ, ge pnp, AJ, ge	ppp, AJ, ge npn, DJ, si npn, DJ, si npn, DJ, si npn, DJ, si npn, DB, si npn, DB, si npn, DB, si npn, DB, si	npn,DB,si npn,DB,si npn,DB,si npn,DJ,si npn,DJ,si npn,AD,ge pnip,AD,ge pnip,AD,ge npn,DJ,si	is, LO, ndn npn, DJ, si npn, A, se npn, A, se npn, A, se npn, A, se npn, A, se npn, A, se npn, A, se
	Mfr.	TRE BEE	RCA TR RCA MMO MMO	D D W W W W W W W W W W W W W W W W W W	TS RCA RCA RCA RCA RCA AMF MH MH	MH TI TI STC TI TR RA RA RA	RA RA RA STC MO MO MO STC	STC STC STC STC STC MWO MWO
	Type No.	2N1137 · 2N1137 A 2N1137 B 2N1137 B 2N1138 B 2N1138 B 2N1138 B 2N1210 2N1211	2N1489 2N1489 2N1490 2N1615 2N1617 2N1618 ST440 ST450 ST450 2N2137 2N2137	2N2139 2N2140 2N2141 2N2141 2N2142 2N2143 2N2144 2N2146 2N3014 2N3014	2N174A - 2N1511 2N1512 2N1513 2N1514 2N1514 2N1703 2N2101 3N45 3N46 3N46 3N46	3N48 2N424 2N389 2N389A 2N424 2N1619 2N1660 2N1661 2N1662 2N1662 2N1662	2N1895 2N1896 2N1897 2N1898 2N2383 2N2384 2N2362 2N2362 2N2528 2N2528 2N2528 2N2528 2N2528 2N2528 2N2528	STC1102 STC1103 STC1104 ZN176 ZN25A ZN256A ZN257A ZN350A ZN351A ZN351A ZN351A
	Cross Index Kov	P 43	P 44	P 45	P 46	P 47	P 48	P 49

Raytheon introduces new F7 series of 63 VHF-UHF varactor diodes

Now available for use in medium power frequency multipliers and converters, these new Raytheon varactor diodes offer outstanding series resistance characteristics, a wide variety of types, and parameters maintained to close tolerances. The new F7 series varactors are mounted in standard glass packages with axial leads and are usable in frequency multipliers from 2 Mc to 2 Gc at input power levels from 0.1 to 10 watts. For immediate delivery contact your nearest Raytheon Field Office or, Raytheon Company, Semiconductor Division, 350 Ellis Street, Mountain View, California.

Cutoff frequency:
Normalization power:
Reverse breakdown voltage:
Junction capacitance at BVR:
Series resistance:
Power dissipation:
Price:
Availability:

reakdown voltage: 45-120 v in 15 v steps apacitance at BVR: 1.8-8.2 pf in 10% EIA values istance: 0.33-2.2 ohm in 20% EIA values sipation: 1 watt \$15.00 (1-24) \$9.90 (25-99) standard values in stock, others 10-30 days

30-100 Gc 5-20 kw

Pcontinued

				7		MAX. RA	TINGS .		C	HARAC	TERISTI	cs		
Cross Index Key	Type No.	Mfr.	Туре	P _c (w)	w/°C	T _i (°C)	YCEO *VCBO (v)	1 _c (a)	h _{fe} *h _{FE}	 (ma) (*μa)	fae *fT (kc)	Powr. Gain (db)	Powr. Out. (w)	Remarks
	2N379 2N380 2N627 2N628 2N629	DE DE MO MO	pnp,A,ge pnp,A,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	.8 .8 1.2 1.2 1.2	100 100 100 100 100	*80 *60 *40 *60 *80	7 7 10 10 10	*20/90 *20/90 10-30 10-30 10-30	8 8 4 4 4	3 5 5 5	38 38 38 38	-	BE, CL BE, CL BE, CL
P 50	2N630 2N677 2N677A 2N677B 2N677C	MO BE BE BE BE	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*100 50 60 90 100	10 15 15 15 15	10-30 45 45 45 45 45	4 1 1 1	5 - - - -	38 - - - -		BE, CL CL CL CL CL
Del	2N678 2N678A 2N678B 2N678C 2N1031	BE BE BE BE BE	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 0.8	100 100 100 100 100	150 60 90 100 30	15 15 15 15 15	75 75 75 75 75 20-60	1 1 1 1- 1.0	-	-		CL CL CL CL
P 51	2N1031A 2N1031B 2N1031C 2N1032 2N1032A	BE BE BE BE BE	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	0.8 0.8 0.8 0.8 0.8	100 100 100 100 100	40 70 80 30 40	15 15 15 15 15	20-60 20-60 20-60 50-100 50-100	1.0 1.0 2.0 1.0 1.0				CL CL CL
	2N1032B 2N1032C 2N1073 2N1073A 2N1073B	BE BE DE DE DE	pnp,AJ,ge pnp,AJ,ge pnp,A,ge pnp,A,ge pnp,A,ge	90 90 90 90 90	0.8 0.8 0.8 0.8 0.8	100 100 110 110 110	70 80 *40 *80 *120	15 15 10 10 10	50-100 50-100 *20/60 *20/60 *20/60	2.0 2 10 10 10	- 30 30 30 30		-	CL CL
P 52	2N1162 2N1162A 2N1163 2N1163A 2N1164	MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	50 *50 *50 *50 *80	25 25 25 25 25 25	15-65 15-65 15-65 15-65 15-65	3 15 3 15 3	4 4 4 4 4		-	CL, BE BE, CL CL, BE BE CL, BE
	2N1164A 2N1165 2N1165A 2N1166 2N1166A	MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*80 *80 *80 *80 *100	25 25 25 25 25 25 25	15-65 15-65 15-65 15-65 15-65	15 3 15 3 15	4 4 4 4		-	BE CL, BE BE CL, BE BE
P 53	2N1167 2N1167A 2N1358M 2N1359 2N1360	MO MO DE MO MO	pnp,AJ,ge pnp,AJ,ge pnp,A,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 0.8 1.2 1.2	100 100 110 100 100	*100 *100 *80 *50 *50	25 25 15 3 3	15-65 15-65 25/50 35-90 60-140	3 15 4 3 3	4 4 5.0 7 5	-	-	CL, BE BE BE BE
	2N1362 2N1363 2N1364 2N1365 2N1529	MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*100 *100 *120 *120 *120 *40	3 3 3 5	35-90 60-140 35-90 60-140 20-40	3	7 5 7 5 10	-	-	BE BE BE CL, BE
P 54	2N1529A 2N1530 2N1530A 2N1531 2N1531A	MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2	100 100 100 100 100	*40 *40 *60 *80 *80	5 5 5 5 5	20-40 20-40 20-40 20-40 20-40	2 2 2 2 2 2	10 10 10 10 10		-	BE CL, BE BE CL, BE BE
	2N1532 2N1532 2N1533 2N1534 2N1534	MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2	100 100 100 100 100	*100 *100 *120 *40 *40	5 5 5 5 5	20-40 20-40 20-40 *35-7 35-70	0 2 2	10 10 10 8.5 8.5		-	CL, BE BE CL, BE CL, DE, BE BE
P 55	2N1535 2N1535 2N1536 2N1536 2N1536	MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90	1.2 1.2 1.2	100 100 100 100 100	*60 *60 *80 *80 100	5 5 5 5 5	35-70	2 2 2 2	8.5 8.5 8.5 8.5 8.5	=	-	CL, DE, BE BE CL, DE, BE BE CL, DE, BE
	2N1537 2N1538 2N1539 2N1539 2N1540	A MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90	1.2	100	*100 *120 *40 *40 *60	55555	35-70 50-10 50-10	2 00 2 00 2 00 2	8.5 8.5 4 4 4		-	BE CL, BE CL, BE BE CL, BE
P 5	2N1540 2N1541 2N1541 2N1542 2N1542	MO MO MO	pnp,AJ,ge	90	1.2 0 1.2 0 1.2	100 100 100	*60 *80 *80 *100 *100		50-10 50-10 50-10 50-10 50-10 50-10	00 2 00 2 00 2	4 4 4 4 4	-	_	BE CL, BE BE CL, BE BE

IF AVAILABILITY COUNTS, AMELCO SEMICONDUCTOR IS THE SOURCE!

A broad line of planar transistors plus these technological advances:

MICRO-CIRCUITS

Using advanced diffusion techniques in conjunction with precise process control and thin film technology, Amelco offers both digital and analog integrated circuits. Stock items consist of nor logic building blocks; a wide variety of package configurations is possible. Micro-circuits offer the advantages of low cost, design simplicity, size, weight and power reductions.

FIELD EFFECT TRANSISTORS

Amelco FET's are N-Channel silicon planar devices which offer very high input impedance, negative temperature coefficient, low leakage current, low capacitance, low noise figure and all proven mechanical advantages of silicon double diffused transistors. FET's provide circuit simplicity, tiny size. Standard package, TO-18; also available in TO-5, TO-46, and TO-51 outlines.

SPECIAL ASSEMBLIES

Amelco Special Assemblies (ASA's) consist of any combination of those devices which are a standard product, mounted in a single header. ASA's in general are any specially selected multiple transistor combination such as Differential Amplifiers and Darlington configurations.

MICRO-CHIP TRANSISTORS

All standard Amelco transistors are available in Micro-Chip form for ultra-small assemblies. The semiconductor chip is bonded to a molybdenum substrate; junctions and surfaces are protected by a passivated surface of silicon oxide. The chip is coated for mechanical protection and is individually packed with conductive strips connected to the Micro-Chip's leads for testing in the package.

SALES OFFICES:

Southwest: 1625 East 126th St., Hawthorne, Calif. Northwest: 1300 Terra Bella Avenue, Mountain View, California

Southeast: 1725 Eye Street, Washington, D.C.
Northeast: 873 Township Line Rd., Philadelphia, Pa.

REPRESENTATIVES:

CALIFORNIA

Los Angeles: Maggs Electronics • 685-6141 Mountain View: Electro-Tech Sales Co. • 968-7141 San Jose: Winco • CY 7-1068

COLORADO

Denver: Gossard & Associates • 935-5685

FLORIDA

Orlando: Gulf Electronic Sales • 424-3512

ILLINOIS

Chicago: Carlson Electronics Sales, Inc. • SP 4-0277

MARYI AND

Glenside, Pa.: Daniel and Company • 884-2130

MASSACHUSETTS

Wakefield: Dynamic Devices, Inc. • 245-9100

MINNESOTA

Minneapolis: R-J Sales & Engineering Co. 922-1425

NEW JERSEY

Morristown: Graydon Associates, Inc. • 538-9246

NEW YORK

Fayetteville: Graydon/Sherman, Inc. • 463-4533 Great Neck, L.I.: Gemini Electronics, Inc. HU 2-4446

NORTH CAROLINA

Winston-Salem: Southeastern Sales, Inc. • 725-0554

OHI

Dayton: Gibson Electronics Marketing Co. 298-7683 Lakewood: Electronic Sales • LA 1-5951

PENNSYLVANIA

Glenside: Daniel and Company • 884-2130

TEXAS

Dallas: Vista Engineering Associates • EM 3-6216

WASHINGTON

Seattle: N. R. Schultz Company • MA 4-8650

DATA SHEETS, TECHNICAL AND SALES INFORMATION AVAILABLE

AMELCO SEMICONDUCTOR

DIVISION OF TELEDYNE, INC./1300 TERRA BELLA AVE., MOUNTAIN VIEW, CALIFORNIA

MAIL ADDRESS: P. O. BOX 1030, MOUNTAIN VIEW, CALIFORNIA / PHONE: (415) 968-9241 / TWX: (415) 969-9112

Why depend on 'selected' transistors for your communications applications?

See now Amberex production-run P.A.D.T.

2-DOT SMALL GEOMETRY gives you

Stable High Gain Low, low Capacity · High fr

as in the P.A.D.T. 2N2654

AMPEREX production-run P.A.D.T. transistors are immediately available from these and other authorized Industrial Electronic Distributors and in volume quantities from our semiconductor plant at Slatersville, Rhode Island

CALIFORNIA

R. V. WEATHERFORD COMPANY

Glendale 1, Calif.

KIERULFF ELECTRONICS Los Angeles 15, Calif.

BRILL SEMICONDUCTOR CORP. Oakland 6, Calif.

COLORADO INTERSTATE RADIO & SUPPLY Denver 4, Colorada

CONNECTICUT

CRAMER ELECTRONICS, INC.
Hamden, Conn.

DISTRICT OF COLUMBIA ELECTRONIC WHOLESALERS, INC. Washington 1, D. C.

FLORIDA

THUROW ELECTRONICS, INC. Cocoa, Fla. • Jacksanville, Fla. • Miami, Fla. Orlando, Fla. • Pensacola, Fla. • Tampa, Fla.

NEWARK ELECTRONICS CORP. Chicaga, III.

INDIANA
RADIO DISTRIBUTING COMPANY
Indianapolis 6, Indiana

MASSACHUSETTS RADIO SHACK CORP. Boston, Mass.

RADIO SPECIALTIES COMPANY Detroit, Michigan

MINNESOTA

ADMIRAL DISTRIBUTORS, INC. St. Louis Park 16, Minn.

MISSOURI
BURSTEIN-APPLEBEE COMPANY
Kansas City, Missouri INTERSTATE INDUSTRIAL ELECTRONICS St. Louis 32, Missouri NEW YORK

MILO ELECTRONICS New York, N. Y. ROME ELECTRONICS

оню

UNITED RADIO, INC.

OIL CAPITAL INDUSTRIAL ELECTRONIC DISTRIBUTORS Tulsa, Oklahoma

UNITED RADIO SUPPLY, INC.
Partland 9, Oregon

PENNSYLVANIA

RADIO ELECTRIC SERVICE CO. Philadelphia, Pa. CAMERADIO COMPANY

BUSACKER ELECTRONIC EQUIPMENT CO., INC. Hauston 19, Texas

WASHINGTON
ROBERT E. PRIEBE COMPANY
Seattle 1, Washington

designs for specific requirements!

P.A.D.T. STRIPE GEOMETRY gives you Lower rbb' · High Dissipation High ft · High Beta 88 in the P.A.D.T. 2N2786

AMPEREX semiconductor specialists have been engaged in a continuing technological program that brings the superior performance and high-level production-benefits of PADT to ever expanding applications in the areas of communications, radar, instrumentation and AM-FM-TV receivers. From this program there have emerged the four distinctive P.A.D.T. transistor geometries illustrated above...each with "DESIGNED-IN" parameters and performance characteristics of significance to specific end-equipment needs — and reproducible, IN MASS PRODUCTION, without selection . . . at P.A.D.T. production-run prices! As you are undoubtedly aware, P.A.D.T. is the unique AMPEREX Post Alloy Diffusion Technique by which simultaneous diffusion and alloying take place under specified and controlled conditions. This exclusive process makes it possible to mass-produce superior communications type transistors with a base layer of only a few ten thousands of an inch and with extremely high cut-off frequencies . . . and P.A.D.T. does this with consistently high yields and with unequalled uniformity, stability and reliability. For detailed data and/or applications engineering assistance, write to: AMPEREX Electronic Corporation, Semiconductor and Receiving Tube Division, Hicksville, Long Island, New York.

$\mathbf{P}_{continued}$

						MAX. RA			C	HARAC	TERISTI	CS		
Cross Index Key	Type No.	Mfr.	Туре	P _c	w/°C	T _i (°C)	VCEO *VCBO (v)	l _c (a)	h _{fe} *h	l _{CO} (ma) (*μa)	fae *fT (kc)	Powr. Gain (db)	Powr. Out. (w)	Remarks
P 57	2N1543 2N1544 2N1544A 2N1545 2N1545A	MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*120 *40 *40 *60 *60	5 5 5 5	50-100 75-150 75-150 75-150 75-150	2 2 2 2 2	4 4 4 4 4	11111	11111	CL, BE CL, BE BE CL, BE BE
	2N1546 2N1546A 2N1547 2N1547A 2N1548	MO MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*80 *80 *100 *100 *120	5 5 5 5	75-150 75-150 75-150 75-100 75-150	2 2 2 2 2 2	4 4 4 4 4			CL, BE BE CL, BE BE CL, BE
P 58	2N1549 2N1549A 2N1550 2N1550A 2N1551	MO MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*40 *40 *60 *60 *80	15 15 15 15 15	10-30 10-30 10-30 10-30 10-30	3 3 3 2	10 10 10 10 10	11111		CL, BE BE CL, BE BE CL, BE
	2N1551A 2N1552 2N1552A 2N1553 2N1553A	MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*80 *100 *100 *40 *40	15 15 15 15 15	10-30 10-30 10-30 30-60 30-60	3 2 3 2 3	10 10 10 6 6	11111		BE CL, BE BE CL, BE BE
P 59	2N1554 2N1554A 2N1555 2N1555A 2N1556	MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*60 *60 *80 *80 *100	15 15 15 15 15	30-60 30-60 30-60 30-60 30-60	2 3 3 3 3	6 6 6	11111	11111	CL, BE BE CL, BE BE CL, BE
P 59	2N1556A 2N1557 2N1557A 2N1558 2N1558A	MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*100 *40 *40 *60 *60	15 15 15 15 15	30-60 50-100 50-100 50-100 50-100	3 3 3 3 3	6 6 5 5	11111	1 1 1 1	BE CL, BE BE CL, BE BE
P 60	2N1559 2N1559A 2N1560 2N1560A 2N392	MO MO MO MO DE	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 90 90 90 90	1.2 1.2 1.2 1.2 1.2	100 100 100 100 100	*80 *80 *100 *100 *60	15 15 15 15 5	50-100 50-100 50-100 50-100	3 3 3 0.065	5 5 5 5 6		11111	CL, BE BE CL, BE BE BE
F 60	2N669 2N1159 2N1160 2N1168 3N49	DE DE DE DE MH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	94 94 94 94 94	1.2 0.8 0.8 0.8 1.25	100 100 100 100 100	*40 *80 *80 *50 *60	3 5 7 5 15	- - - - 30-120	0.065 0.065 0.065 0.065 3	10 10 10 10 10 750	11111	1 1 1 1 1	BE BE BE, CL
	3N50 3N51 3N52 151-04 151-07	MH MH MH WH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,AJ,si npn,AJ,si	94 94 94 100 100	1.25 1.25 1.25 1.4 1.4	100 100 100 150 150	*80 *40 *60 *80 *140	15 15 15 6.0 6.0	20-80 30-120 20-80 *11 *11	3 3 10ma 10ma	450 750 450 25 25	1 1 1	-	
P 61	152-04 152-05 152-08 151-05 151-06	WH WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	100 100 100 100 100	1.4 1.4 1.4 1.4 1.4	150 150 150 150 150	*80 *100 *160 *100 *120	6.0 6.0 6.0 6.0 6.0	*18 *18 *18 *11 *11	10ma 10ma 10ma 10ma 10ma	25 25 25 25 25 25 25			
D.CO	151-08 151-09 151-10 152-06 152-07	WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	100 100 100 100 100	1.4 1.4 1.4 1.4 1.4	150 150 150 150 150	*160 *180 *200 *120 *140	6.0 6.0 6.0 6.0 6.0	*11 *11 *11 *18 *18	10ma 10ma 10ma 10ma 10ma	25 25 25 25 25 25 25			
P 62	152-09 152-10 2N1084 2N1085 2N1157A	WH WH TR TR MH	npn,AJ,si npn,AJ,si pnp,PL,si npn,ME,si pnp,AJ,ge	100 100 5@100 5@100 100	1.4 1.4 .050 .050 1.43	150 150 200 200 200 95	*180 *200 *60 60 *80	6.0 6.0	*18 18 *20 *40 50	10ma 10ma *10 *15 20	25 25 *25,000 *15,000 75	-	_	
D.CO	2N1206 2N1207 2N1651 2N1652 2N1653	TR TR BE BE BE	npn,ME,si npn,ME,si pnp,DJ,ge pnp,DJ,ge pnp,DJ,ge	3@100 3@100 100 100 100	.030 .030 1.2 1.2 1.2	200 200 110 110 110	60 125 60 100 120	25 25 25 25	15 15 30 30 30	*1 *1 2.0 2.0 2.0 2.0	*30,000 *30,000 - - -		-	Sat. volt=1.0v Sat. volt=0.5v Sat. volt=0.5v
P 63	2N1675 2N1936 2N1937 2N1899 2N1900	WE TI TI PSI PSI	npn,D, ge npn,MS,si npn,MS,si npn,DM,si npn,DM,si	100 100 100 125 125	1,34 1,34 1 1	150 175 175 150 150	100 60 80 140 140	10 15 15 10 5	12 - - 10 10	0.008 20 20 20 20 20	50mc 7 mc 7 mc 20 20	- - 10 -	100 - - 100 -	hi freq., hi power hi freq., hi power

ALLIED

sets the record for fast service

wherever you are

it's easier, faster to do business with

ALLIED

CHICAGO

100 N. Western Ave., Chicago 80 TAylor 9-9100 (AREA CODE 312) TWX: 312-431-1721

DETROIT

16047 West McNichols Road, Detroit 35 836-0007 (AREA CODE 313)

MILWAUKE

2461 W. Center St., Milwaukee 6 Hilltop 4-8320 (AREA CODE 414)

MINNEAPOLIS • ST. PAUL 730 E. 38th St., Minneapolis 7

730 E. 38th St., Minneapolis 7 TAylor 7-5401 (AREA CODE 612)

CLEVELAND

4824 Turney Road, Cleveland 25 883-5252 (AREA CODE 216)

LOS ANGELES AREA

2085 East Foothill Blvd., Pasadena MUrray 1-5291 • SYcamore 5-5901 (AREA CODE 213) TWX: 213-449-1455

SAN FRANCISCO AREA

2439 Birch Street, Palo Alto, Cal. 321-0240 (AREA CODE 415)

SEATTLE

1020 Fourth Ave., South, Seattle 4 MUtual 2-8026 (AREA CODE 206)

DAYTON

1823 Catalpa Drive, Dayton 6 278-5866 (AREA CODE 513)

DALLAS

5622 Dyer Street, Dallas 6 EMerson 3-6221 (AREA CODE 214)

DENVER

6767 East 39th Avenue, Denver 7 399-2250 (AREA CODE 303)

ROCHESTER

1622 Monroe Ave., Rochester 18, N. Y. CHapel 4-8750 (AREA CODE 716)

WASHINGTON D.C. . BALTIMORE

5509 Colorado Ave., N.W. Washington 11, D.C. TUckerman 2-6560 (AREA CODE 202) TUckerman 2-5100

use the services of the ALLIED facility nearest you

ALLIED ELECTRONICS

industrial subsidiary of

ALLIED RADIO

ASK FOR YOUR ALLIED 672-PAGE, 1963 INDUSTRIAL CATALOG

Pcontinued

				Ť		MAX. RA	TINGS		C	HARAC	TERIST	ICS		
Cross Index Key	Type No.	Mfr.	Туре	P _c (w)	w/°C	T _i (°C)	V CEO *V CBO (v)	l _c (a)	h _{fe}	CO (ma) (*μα)	fae *f _T (kc)	Powr. Gain (db)	Powr. Out. (w)	Remarks
	2N1901 2N1902 2N1903 2N1904	PSI PSI PSI PSI PSI	npn,DM,si npn,DM,si npn,DM,si npn,DM,si npn,DM,si	125 125 125 125 125 125	1 1 1 1	150 150 150 150 150	140 140 140 140 80	5 10 10 10	10 10 10 10 3	20 20 20 20 20	20 20 20 20 20 20	- 10 - 10	- 100 - 100	hi freq., hi pwr.
P 64	PT900 2N173 2N174 2N229 2N277	DE DE WH DE	pnp,AJ,ge pnp,AJ,ge npn,AJ,si pnp,AJ,ge	150 150 150 150 150	0.5 0.5 2.0 0.5 0.5	100 100 150 100 100	*60 *80 *200 *40 *50	0.5 15 10 15 15	- *100 - -	0.1 0.1 10ma 0.1 0.1	10 10 30 10	1111	20 40 20 20	MO, TS, TI, RCA, SO, BE TS, MO, TI, RCA, SO, BE MO, TS, TI, RCA, SO, BE MO, TS, TI, RCA, BE, SO
	2N278 2N441 2N442 2N443 2N456A	DE DE DE CL	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,A,ge	150 150 150 150	0.5 0.5 0.5 0.5	100 100 100 100 100	*40 *50 *60 *40 *60	15 15 15 7 7	- - *30-90 *30-90	0.1 0.1 0.1 *0.5 *0.5	10 10 10 *200 *200		20 20 20 -	MO, TS, TI, RCA, BE MO, TS, TI, RCA, BE MO, TS, TI, RCA, BE USA, MII USA, MII
P 65	2N457A 2N458A 2N511 2N511A 2N511B 2N512	CL CL TI TI TI	pnp,A,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	150 150 150 150 150 150	0.5 0.5 2 2 2 2	100 100 100 100 100	*80 40 60 80 40	7 25 25 25 25 25	*30-90 20-60 20-60 20-60 20-60	*0.5 5 5 5 5	*200 - - - -	11111		USA, Mil Sat. volt=0.2v, BE Sat. volt=0.2v, BE BE
	2N512A 2N512B 2N513 2N513A 2N513B	TI TI TI TI	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	150 150 150 150 150	2 2 2 2 2	100 100 100 100 100	60 80 40 60 80	25 25 25 25 25 25	20-60 20-60 20-60 20-60 20-60	5 5 5 5	1111		-	Sat. volt=0.4v Sat. volt=0.4v Sat. volt=0.4v
P 66	2N514 2N514A 2N514B 2N1015 2N1015A	TI TI TI WH WH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,AJ,si npn,AJ,si	150 150 150 150 150	2 2 2 1.43 1.43	100 100 100 150 150	40 60 80 *30 *60	25 25 25 7.5 7.5	20-60 20-60 20-60 *10 *10	5 5 5 10 10	- - - 25 25	-	11111	Sat. volt=0.5v, BE Sat. volt=0.5v, BE Sat. volt=0.5v, BE STC, AMF AMF
	2N1015B 2N1015C 2N1016 2N1016A 2N1016B	WH WH WH AMF AMF	npn,AJ,si npn,AJ,si npn,AJ,si npn,FJ,si npn,FJ,si	150 150 150 150 150	1.43 1.43 1.43 1.4 1.4	150 150 150 150 150 150	*100 *150 *30 60 100	7.5 7.5 7.5 7.5 7.5 7.5	*10 *10 *10 8 8	10 10 10 10 10	25 25 30 - -	1111	-	AMF AMF
P 67	2N1016 D 2N1021 - 2N1022 2N1099 2N1100	WH TI TI DE DE	npn,AJ, si pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	150 150 150 150 150 150	1.43 2 2 0.5 0.5	150 100 100 100 100	*200 *100 *120 *80 *100	7.5 10 10 15 15	*10 *30-90 *30-90 -	10 2 2 0.1 0.1	30 - - 10 10	-	- - 40 40	DE, BE DE, BE TS, MO, TI, RCA, SO, BE TS, MO, RCA, SO, BE
	2N1358A 2N1412USN 2N1907 2N1908 2N1980	DE DE TI TI	pnp,A,ge pnp,A,ge pnp,AD,ge pnp,AD,ge pnp,AJ,ge	150 150 150 150 150	0.5 0.5 2 2 2	110 110 100 100 100	*100 *100 100 130 *50	15 15 20 20 15	*25/50 *25/50 10 10 50		5.0 5.0 - -	11111	1111	TS
P 68	2N1981 2N1982 2N2015 2N2016 2N2233	TI TI RCA RCA WH	pnp,AJ,ge pnp,AJ,si npn,si npn,si npn,AJ,si	150 150 150 150 150	2 2 - - 2.0	100 100 - - 150	*70 *90 100 130 *200	15 15 10 10 10	50 50 10 *15 *400	6 6 *15 — 10ma	- - - 35			TS TS
	2N2226 2N2227 2N2228 2N2231 2N2230	WH WH WH WH	npn,F,si npn,F,si npn,F,si npn,F,si npn,F,si	150 150 150 150 150	2 2 2 2 2 2	150 150 150 150 150 150	*50 *100 *150 *100 *50	10 10 10 10 10	100 100 100 400 400	10 10 10 10 10	11 11 11 11 11			
P 69	2N2232 2N2330 2N2331 2N2580 2N2581	WH MO MO DE DE	npn,F,si npn,DDP,si npn,DDP,si npn,D,si npn,D,si	150 150 150 150 150	2 0.8 0.5 0.7 0.7	150 175 175 175 150 150	*150 5.33 3.33 400 400	10 *30 *30 10 10	400 - *10/4 *25/6	5 5	11 0.1 0.1 50 50		7 7	Epitaxial Epitaxial
	2N2582 2N2583 2N2075 2N2075A 2N2076	DE DE MO MO MO	npn,D,si npn,D,si pnp, AJ,ge pnp,AJ,ge pnp,AJ,ge	150 150 170 170 170	0.7 0.7 2 2 2	150 150 110 110 110	500 500 80 80 70	10 10 15 15 15	*10/4 *25/6 25-100 25-100 25-100	5 4.0 4.0	50 50 10 10 10	-	-	SO "Meg-A-Life" SO, "Meg-A-Life"
P 70	2N2077 2N2078 2N2079 2N2080 2N2081	MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	170 170 170 170 170 170	2 2 2 2 2 2	110 110 110 110 110	50 40 80 70 50	15 15 15 15 15 15	25-100 25-100 40-160 40-160 40-160	4.0 4.0 4.0	10 10 10 10 10		-	SO, "Meg-A-Life" SO, "Meg-A-Life" SO, "Meg-A-Life" SO, "Meg-A-Life" SO, "Meg-A-Life"

Merck makes 10 different solid-state materials. When you specify Merck you're almost never restricted by materials in the scope of your design. In fact, you can design 99 per cent of devices today with Merck materials. As added benefits you'll enjoy device uniformity, fewer rejects and simplified purchasing.

Newcomers to the industry ask why. Old-timers know Merck is a basic manufacturer of polycrystalline silicon, with the largest research budget in the industry during the past half decade. As a result Merck customers have been consistently first to exploit such discoveries as single crystal, float-zone refined silicon, epitaxial silicon, Z-Met

Thermoelectric Material and many III-V compounds. If you're interested in the profitable aspects of being <u>first</u>, write, wire or phone us today. Merck makes it awfully easy to be a customer.

Electronic Chemicals Division

MERCK & CO., Inc. • RAHWAY, NEW JERSEY

RESEARCH and PRODUCTION FOR BETTER SOLID-STATE MATERIALS

Pcontinued

	T						MAX. RA	TINGS		С	HARAC	TERIST	ics		
Cros Inde Key	×	Гуре No.	Mfr.	Туре	P _c	w/°c	т _і (°С)	YCEO *YCBO (v)	l _c (a)	h _{fe} *hFE	l _{C0} (ma) (*μa)	fae *f _T (kc)	Powr. Gain (db)	Powr. Out. (w)	Remarks
		2N2082 2N2082A 2N2152 2N2152A 2N2153	MO MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	170 170 170 170 170 170	2 2 2 2 2 2	110 110 110 110 110	*40 *40 45 45 60	15 15 30 30 30	*70 *70 50-100 50-100 50-100	4 4.0 4.0 4.0	10 10 2.7 2.7 2.7	11111	11111	SO, "Meg-A-Life" "Meg-A-Life" SO, "Meg-A-Life"
P	71	2N2154 2N2155 2N2156 2N2157 2N2158	MO MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	170 170 170 170 170 170	2 2 2 2 2 2	110 110 110 110 110	75 90 45 60 75	30 30 30 30 30 30	50-100 50-100 80-160 80-160 30-160	4.0 4.0 4.0 4.0 4.0	2.7 2.7 2.7 2.7 2.7 2.7		-	SO, "Meg-A-Life" SO SO, "Meg-A-Life" SO, "Meg-A-Life" SO, "Meg-A-Life"
		2N2490 2N2491 2N2492 2N2493 2N2728	MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	170 170 170 170 170	2 2 2 2 2 2	110 110 110 110 110	*70 *60 *80 *100 *15	15 15 15 15 50	*20-40 *25-50 *25-50 *25-50 *40-130	3 3 2 3 *30	10 10 10 10 10	11111	-	
P	72	MP500 MP500A MP501 MP502 MP504	MO MO MO MO MO	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	170 170 170 170 170	2 2 2 2 2 2	110 110 110 110 110	45 45 60 75 45	60 60 60 60	30-60 30-60 30-60 30-60 50-100	4.0 4.0 4.0 4.0 4.0	3.6 3.6 3.6 3.6 3.6	11111	11111	"Meg-A-Life" "Meg-A-Life" "Meg-A-Life" "Meg-A-Life"
		MP505 MP506 2N574 2N574A 2N575	MO MO MH MH MH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	170 170 187 187 187	2 2 2.5 2.5 2.5 2.5	110 110 100 100 100	60 75 *60 *80 *60	60 60 10 10 25	50-100 50-100 9-22 9-22 19-42	4.0 4.0 7 20 7	3.6 3.6 100 100 150		11111	"Meg-A-Life" "Meg-A-Life" USA
	? 73	2N575A 2N1157 DA3F3 2N2739 2N2740	MH MH MH WH WH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,AJ,si npn,AJ,si	187 187 187 200 200	2.5 2.5 2.5 2.0 2.0	100 100 100 175 175	*80 *60 *60 *50 *200	25 40 25 20 20	19-42 38-84 35 *10 *10	20 7 20 15ma 15ma	150 200 175 14 14	=	=	
		2N2741 2N2742 2N2745 2N2746 2N2747	WH WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si n pn,AJ,si npn,AJ,si	200 200 200 200 200 200	2.0 2.0 2.0 2.0 2.0 2.0	175 175 175 175 175 175	*150 *200 *50 *100 *150	20 20 20 20 20 20	*10 *10 *10 *10 *10	15ma 15ma 15ma 15ma 15ma	14 14 14.5 14.5 14.5			
	P 74	2N2748 2N2751 2N2752 2N2753 2N2754	WH WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	200 200 200 200 200 200	2.0 2.0 2.0 2.0 2.0 2.0	175 175 175 175 175 175	*200 *50 *100 *150 *200	20 20 20 20 20 20	*10 *10 *10 *10 *10	15ma 15ma 15ma 15ma 15ma	14.5 16 16 16 16			
		2N2757 2N2758 2N2759 2N2760 2N2761	WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	200 200 200 200 200 200	2.0 2.0 2.0 2.0 2.0 2.0	175 175 175 175 175 175	*50 *100 *150 *200 *250	30 30 30 30 30 30	*10 *10 *10 *10 *10	15ma 15ma 15ma 15ma 15ma	14 14 14 14 14			
	P 75	2N2763 2N2764 2N2765 2N2766 2N2769	WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	200 200 200 200 200 200	2.0 2:0 2.0 2.0 2.0 2.0	175 175 175 175 175 175	*50 *100 *150 *200 *50	30 30 30 30 30 30	*10 *10 *10 *10 *10	15ma 15ma 15ma 15ma 15ma	14.5 14.5 14.5 14.5 16			
		2N2771 2N2772 2N2776 2N1809 2N1810	WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	200 200 200 250 250	2.0 2.0 2.0 2.22 2.22	175 175 175 175 175 175	*150 *200 *100 *50 *100	30 30 30 30 30 30	*10 *10 *10 10	15ma 15ma 15ma 15 15	16 16 16 17 17		=	
	P 76	2N1811 2 N1812 2N1813 2N1814 2N1816	WH WH WH WH	npn,AJ,si npn,AJ,si npn,FJ,si npn,FJ,si npn,AJ,si	250 250 250 250 250 250	2.22 2.22 2.22 2.22 2.22 2.22	175 175 175 175 175 175	*150 *200 *250 *300 *50	30 30 30 30 30 30	10 10 10 10 10	15 15 15 15 15	17 17 - - 18	-	-	
		2N1817 2N1818 2N1819 2N1823 2N1824	WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	250 250 250 250 250 250	2.22 2.22 2.22 2.22 2.22 2.22	175 175 175 175 175 175	*100 *150 *200 *50 *100	30 30 30 30 30	10 10 10 10 10	15 15 15 15 15	18 18 18 19 19		-	
	P 77	2N1825 2N1826 2N1830 2N1831 2N1832	WH WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	250 250 250 250 250 250	2.22	175 175 175 175 175 175	*150 *200 *50 *100 *150	30 30 30 30 30 30	10 10 *10 *10 *10 *10	15 15 5ma 5ma 5ma	19 19 14 14 14	=	-	

performance

... our constant parameter

NATIONAL SEMICONDUCTOR CORPORATION OFFERS THE DESIGNER A COMPLETE SILICON LINE OF TRANSISTORS, INTEGRATED DEVICES, AND PACKAGED MODULES . . . NPN AND PNP SMALL SIGNAL: NPN PLANAR, NPN MESA, NPN ALLOY. NPN AND PNP SWITCHING: NPN MESA EPITAXIAL, NPN PLANAR EPITAXIAL, PNP ALLOY. NPN MEDIUM POWER: NPN MESA EPITAXIAL, NPN PLANAR EPITAXIAL, INCH* (INTEGRATED CHOPPER): NPN PLANAR EPITAXIAL INTEGRATED DEVICE. NPN VHF DRIVER AND POWER: NPN PLANAR EPITAXIAL, NPN MESA. NPN AVALANCHE. FOR FURTHER INFORMATION, WRITE OR PHONE NATIONAL SEMICONDUCTOR CORPORATION, PRODUCT MARKETING DEPARTMENT, DANBURY, CONNECTICUT.

*Pat. applied for

NATIONAL SEMICONDUCTOR

DANBURY, CONN. • PHONE: (AREA CODE 203) 743-7624 • TWX 203-744-1590
ON READER-SERVICE CARD CIRCLE 462

Pcontinued

						MAX. RA	TINGS		C	HARAC	TERISTI	CS		
Cross Index Key	Гуре No.	Mfr.	Туре	P _c (w)	w/°c	T _i (°C)	VCEO *VCBO (v)	l _c (a)	h _{fe} *hFE	l _{CO} (ma) (*μa)	fae *fT (kc)	Powr. Gain (db)	Powr. Out. (w)	Remarks
	2N1833 2N2109 2N2110 2N2111 2N2112	WH WH WH WH	npn,AJ,si npn,FJ,si npn,FJ,si, npn,FJ,si npn,FJ,si	250 250 2 50 2 50 250 250	2.22 2.22 2.22 2.22 2.22 2.22	175 175 175 175 175 175	*200 *50 *100 *150 *200	30 30 30 30 30 30	*10 10 10 10 10	5ma 15 15 15 15 15	14 14 14 14 14	1111	1111	
P 78	2N2113 2N2114 2N2116 2N2117 2N2118	WH WH WH WH	npn,FJ,si npn,FJ,si npn,FJ,si npn,FJ,si npn,FJ,si	250 250 250 250 250 250	2.22 2.22 2.22 2.22 2.22 2.22	175 175 175 175 175	*250 *300 *50 *100 *150	30 30 30 30 30	10 10 10 10 10	15 15 15 15 15	- 14.5 14.5 14.5	11111	11111	
	2N2119 2N2123 2N2124 2N2125 2N2126	WH WH WH WH	npn,FJ,si npn,FJ,si npn,FJ,si npn,FJ,si npn,FJ,si	250 250 250 250 250 2 50	2.22 2.22 2.22 2.22 2.22 2.22	175 175 175 175 175	*200 *50 *100 *150 *200	30 30 30 30 30 30	10 10 10 10 10	15 15 15 15 15	14.5 16 16 16 16	11111	11111	
P 79	2N2130 2N2131 2N2132 2N2133 2N1620	WH WH WH WH TR	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn	250 250 250 250 250	2.22 2.22 2.22 2.22 0.4	175 175 175 175 175 200°C	*50 *100 *150 *200 *100	30 30 30 30 5	*10 *10 *10 *10 *10	5ma 5ma 5ma 5ma 10	14 14 14 14 800	-	60	
	2N2032 SN-101 SN-102 ST5060 ST5061	TR CS CS TR TR	npn npn,MS,si npn,MS,si npn npn	-	0.9 8.7 8.7 0.025 0.025	200°C 200 200 200 200 200	*45 - - 40 70	5 140 120 - -	12 1 1 9-36 9-36	- 40 40 0.005 0.005	1200 0.5 0.5 - -		45 *3 *5 - -	*at 200mc *at 100mc
P 80	ST6510 ST6511 ST6512 2N914 2N916	TR TR TR GE GE	npn npn npn npn,si npn,si	11111	0.088 0.088 0.088 360 360	200 200 200 200 200 200	20 *40 *40 - -	- - 40 45	20min 20-60 40-120 -	0.005 0.005 0.005 3.0 3.0	10K 10K 10K 25mµ 10mµ		- - - 6.0 6.0	Planar Epitaxial, RA Planar Passivated, RA
	2N2192 2N2192A 2N2193 2N2193A 2N2194	GE GE GE GE	npn,si npn,si npn,si npn,si npn,si	1111	0.8 0.8 0.8 0.8 0.8	200 200 200 200 200 200	-	60 60 80 80 60	1.0amp 1.0amp 1.0amp 1.0amp 1.0amp	2.5 2.5 2.5 2.5 2.5 2.5	10πμ 10πμ 10πμ 10πμ 10πμ	-	20 20 20 20 20 20	Planar Epitaxial, RA Planar Epitaxial, RA Planar Epitaxial, RA Planar Epitaxial, RA Planar Epitaxial, RA
P 81	2N2194A 2N2195	GE GE	npn,si npn,si	-	0.8 0.6	200 200	-	60 45	1.0amp 1.0amp	2.5 2.5	10mμ 100mμ	-	20 20	Planar Epitaxial, RA Planar Epitaxial, RA

- MODEL PB-1 AUTOMATIC TRANSISTOR TEST SET A "go/no go" unit, ideal for quality control and incoming inspection. Completely transistorized and compact, it provides simple, high speed operation at low initial cost.
- MODEL OT-1 HI-FREQUENCY TRANSISTOR TEST SET Measures high over a range of 1-10. Individual plug-in units provide frequencies of 20 mc, 100 mc, and 200 mc. Other frequencies available upon request. Vc up to 30 v, IE up to 100 ma. Overall accuracy ±3%.
- MODEL OX-1 MULTIPLEXER A solid state unit utilizing a cold cathode GS10K Dekatron tube for the switching function. The instrument is a programmable 10-channel device with single pole switching; several units can be cascaded to obtain multiple channel input. Sampling rate: d.c. to 10,000/sec. Signal range: ±10 v.

Write today for full information . . . Baird-Atomic offers the most complete line of Transistor Test equipment.

Engineers and Scientists: Investigate challenging opportunities with B/A. Write Industrial Relations Director. An equal opportunity employer.

LOW LEVEL SWITCHING

Generally types rated under one watt. In order of $f_{\alpha e}$ ($f_{\alpha b}$ or f_{τ} where noted).

						MAX.	RATINGS	,		CHARA	CTERIST	ics	SW	ITCHING		
Cross Index Key	Type No.	Mfr.	Туре	fae *fT **fab (mc)	P c (mw)	T _i (°c)		V _{CEO} *V _{CBO} (v)	l C (ma)	hfe *hFE	l _{C0} (μα)	*Coe *Cob (pf)	t _r (μsec) *ton (nsec)	t _s (μsec) *toff (nsec)	V _{ce(sat)}	Řemarks
LL 1	2N1034 2N1275 2N1037 2N329A 2N1035	RA RA RA CT RA	pnp,FA,si pnp,FA,si pnp,FA,ge pnp,AJ,si pnp,FA,si	0.2 0.2 0.25 0.3 0.3	250 250 250 250 250 250	160 160 160 160 160	.54 _ 3 _	*40 80 *35 35 *35	50 100 50 50 50 50	15 15 30 28 30	5 .005 5 .005 5	70 60 70 70 70	-	11111	-	SSD, NA, KF KF SSD, NA, KF SSD, NA, KF, AMP
	2N1036 2N1640 C301 2N328A 2N329A	RA CT CT CT SSD	pnp,FA,si pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si	0.4 0.4 0.4 0.5 **0.5	250 250 250 250 250 385	160 160 160 160 160	- 2 2 3 2.85	*30 20 70 30 30	50 50 50 50 50	60 11 4 60 *88	5 .001 5 .005 0.1	70 50 50 70 70	11111	1111	-	SSD, NA, KF KF KF KF, RA
LL 2	2N1057 2N327A 2N670 2N2670 2N1234	GE WT PH PH HU	pnp,AJ,ge pnp,AJ,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,si	0.5 0.7 0.7 **0.7	240 300 -300 400	100 200 85 85 160	4 3 5.0 - 3	45 .3 40 *40 110	300 200 2a 2a 100	- 15 200 *100 21	300 100 20 20 0.1	40 70 - - 95	11111	11111	0.08 - 0.3 0.3 -	RA, KF, SD Pulse Amp. Pulse Amp TO-5 Package, KF
	2N1244 2N1641 C302 2N327A 2N328A	HU CT CT HU HU	pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si	0.8 0.8 0.8 1.0	1000 250 250 385 385	160 160 160 160 160	7.4 2 2 3 3	110 10 8 50 50	200 50 50 100 100	20 15 12 14 25	0.1 .001 .2 0.1 0.1	95 50 50 95 95	-	1111	-	Coaxial package RA, SSD, KF WT, RA, SSD, JA, KF
LL 3	2N329A 2N329A 2N331 2N1056 2N2370 2N2371	HU RCA GE NA NA	pnp,AJ,si pnp,AJ,ge pnp,AJ,ge pnp,si pnp,si	1.0 1.0 1.0 1.0	385 200 240 200 200	160 85 100 200 200	3 3 4 1.4 1.4	50 *30 50 15 15	100 200 300 50 50	50 - 25 15 20	10 16 25 0.005 0.005	95 40 15 15			0.09	WT, RA, SSD, NA, KF BE, US, MO Neon indicator 2.5db NF 2.5 db NF
	2N2372 2N2373 TS605 TS606 2N1228	NA NA TS TS HU	pnp,si pnp,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,si	1.0 1.0 **1.0 **1.0	150 150 150 150 400	200 200 100 100 160	0.86 0.86 - - 3	15 15 12 20 *15	50 50 400 400 100	15 20 *15 *15 20	0.005 0.005 10 10 0.1	15 15 - 95	1111	1111	-	2.5 db NF 2.5 db NF WT,KF, SSD
LL 4	2N1229 2N1230 2N1231 2N1232 2N1233	HU HU HU HU	pnp,AJ,si pnp,FJ,si pnp,FJ,si pnp,FJ,si pnp,FJ,si	1.2 1.2 1.2 1.2 1.2	400 400 400 400 400	160 200 200 200 200 200	3	15 *35 *35 65 65	100 500 500 500 500	36 14 24 14 24	0.1 0.1 0.1 0.1 0.1	95 100 100 100 100	1 1-1 -1	-	-	WT, NA, KF, AMP, SSD WT, NA, KF, SSD, AMP WT, NA, KF, SSD, AMP WT, NA, KF, SSD, AMP WT, NA, KF, SSD, AMP
	2N1234 2N1238 2N1239 2N1240 2N1241	HU HU HU	pnp,FJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si	1.2 1.2 1.2 1.2 1.2	400: 1000 1000 1000 1000	200 160 160 160 160	7.4 7.4 7.4 7.4	110 15 15 35 35	500 200 200 200 200 200	14 20 36 20 36	0.1 0.1 0.1 0.1 0.1	100 95 95 95 95			-	WT, NA, KF, SSD Coaxial package Coaxial package Coaxial package Coaxial package
LL 5	2N1242 2N1243 2N1642 C106 OC122	ни	pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,ge	1.2 1.2 1.2 1.2 1.2	1000 1000 250 250 300	160 160 160 160 90	7.4 7.4 2 2 4.5	60 60 6 10 *32	200 200 50 50 50	20 36 23 50 180	0.1 0.1 .005 50	95 95 50			-	Coaxial package Coaxial package Field effect
	2N312 2N519 2N519A B1154 B1154	SY IND IND BE	npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	1.5 1.5 1.5 1.5 1.5	100 150 150 400 400	85 85 85 100 100	1.66 2.5 2.5 2.5 .15	15 15 25 40 60	200 200 200 300 300	25 25 -	15 2 1 10 15	14 14 20 20	1.5 - 1.3 1.5 1.5	0.7	0.075 - - .25 .25	US, KF TI US, KF
LL 6	OC123 2N328/ 2N536 2N679 2N1220	A AMP SSD PH SY	pnp,AJ,ge pnp,FA,si pnp,AJ,ge npn,AJ,ge pnp,AJ,si	1.5 2 **2 2 **2	300 385 50 150 250	90 160 85 85 175	4.5 2.85 - 2.5 1.7	*50 40 *20 20 25	500 50 30 200 100	160 30 5 0 - *9	5 4.0 25 0.1	70 - - 18	5	- - - 5 -	0.07 0.3	KF
·	2N122 2N122 2N144 OC80 2N438	2 SSD 3 SSD 6 IND AMP	pnp,AJ,si pnp,AJ,si pnp,AJ,ge	**2 **2 2 2 2.5	250 250 200 550 100	175 175 85 75 85	1.7 1.7 3.33 - 1.6	25 40 45 *32 30	100 100 400 600	10 6 30 85 20	.005 0.1 5 10 10	*18 15 -	0.7	-		-
LL 7	2N817 2N818 2N356 2N356 2N520	A GI	npn,AJ,ge npn,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge	2.5 2.5 .3 3	75 75 100 150 150	85 85 85 100 100	1.25 1.25 1.6 2 2	30 30 20 30 20	400 400 500 500	-	10 10 25 3 25	20 20 - 14 -	1.0 1.5	0.3 0.3	0.6 0.18	Submin Submin GI SY, TI

LL continued

		T	5												
	Remarks	Submin Submin	KF, US GI, TI GI,IND, TS, KF, TI RA, IND, TS, US, KF, G		GI, RCA	TI, KF, PH US, KF US, KF, TI	RCA RCA TO-5, SY, GI, RCA GI, KF, AMP KF, US	KF, IND, US IND, US, KF TS,KF,GE,GI,RCA	KF, GI, US, TS TI IND.US.KF.GI	SY, Gl, TI KF Submin Submin Submin Submin	Submin Submin Submin Submin	КЕ, ТІ	上 'io '		Chopper 2N2181 Chonner
U)	Vce(sat)	1 1 1 0 1	0.07 0.1 - 0.2	1111	0.08	0.07	- ' ' ' ' ' '	0.2 0.12 0.12	0.25	0.1	11111	0.1	.20 0.18	-	11 11
SWITCHING	t _s t _s (μsec) *t _{off} (nsec)	11111	0.7	11111	8.1111	0.5	1 18.06.2	0.2 0.4 0.7	0.7	0.25	1111	0.1	1.5	0.7	11111
S	t _r (μsec) *ton (nsec)	11111	0.2	11111	0.18	0.2 0.55 0.9	1 1 5 4 5	1.0	0.5	0.35	1 1 1 1 1	31,11	11 - 12	2.5	1:0
STICS	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	20 20 7.0 *20	*13 12 20 20 14	20 20 7	*13 20 20 20	*13 30 *14 14	20 20 11 16 12	14 120 -	1 20 1 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	22222	10 15 15 *15 12	110 1 141	114 5	12 *12 *12 *12
CHARACTERISTICS	O (0 m)	0.1 6 5	4 2.5 40 5 2.0	5 5 .025 .025	201122		50 50 3 2.5	0.6 1 1 5 6	5 10 6 20 **3	3 2.5 4 4 10	10 10 6 6	5 0.1 .005 5	3 25 3 3	10 2 .002 .002 2.5	3 15 0.01 0.01 0.01
CHAR	* * * * * * * * * * * * * * * * * * *	30 30 *20 45	*120 70 30-110	30 20 20 18 9	*90 65 40 30-110 40	*120 *100 40 100	200 - 1 0	30-150 -70 *30 30-150	30-90	04 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38888	*18 20 95 80	1000 100	115 30	40 10 10 10
	C (mg)	100 100 400 400 400	300 200 200 150 400	150 150 100 100	300 400 200 100 100	300 750 200 200 200	400 300 200 200	125 500 500 200 200 200	200 - 125 400 400	200 1a 400 200	004400	100000	2000	200 400 25 25 400	
2	CEO CBO	45 45 45 45 45	*30 15 *40 40 20	25 25 25 *18 *10	*25 45 40 25 25	*25 50 *30 15 25	25 25 30 30 30	15 *20 *30 *40	*30 *20 20 20	25 30 30 25 25	33 33 33 33 33 33 33 33 33 33 33 33 33	*40 25 25 40 45	30 *30 *15 30	*20 *20 45 45 20	20 45 *25 *15
MAX. RATINGS	D _o /wm	1.25 1.25 4.0 - 3.33	4.0 3.33 2 2 2.5	1.25 1.25 1.25 1.7	4.0 3.33 2.6 1.3	5.0 4 6.67 2.5 2.5	2.5 2.5 2.5 3.33	1.66	2.5 1.66 2.5 2.6	_ 1.25 1.25 1.25	1.25 1.25 1.25 1.25 1.25	2 1.7 1.7 3.33 3.33	2.5 2.5 5.2 1.6 2	2.5 1.4 -	2.5 1.3 1.3
MAX	1, (°C)	85 150 185 85	100 85 100 100 85	85 85 85 176 176	100 85 100 100	85 100 100 85 85	88888	85 85 100 100	85 85 85 100 71	71 85 85 85 85 85	88888	100 175 175 85 85	85 100 85 85 100	100 85 - 71	85 100 140 140
	P c (mw)	75 75 250 150 200	300 200 150 150 150	75 75 75 250 250	300 200 200 100 100	300 300 500 150	2021120	100 100 150 150 150	150 100 150 200 120	120 150 75 75 75	75 75 75 75	150 250 250 250 200 200	150 200 100 150	150 150 - 120	150 250 150 150
	fae *fT **fab (mc)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	** 3,5 4 4 4	444**	* * * * * * * * * * * * * * * * * * *	** 4 4 ** 4.5 4.5	2.4.4.4. 2.5.5.5.	വഹവവവ	വവവവ	വവവവ	กรรรก	5 * * * 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	99222	9999	99 * * 9 *
	Туре	pnp,AJ,ge pnp,AJ,ge npn,D,si npn,AJ,ge pnp,AJ,ge	npn, A, ge pnp, AJ, ge npn, AJ, ge pnp, AJ, ge pnp, AJ, ge	pnp,AJ,ge pnp,AJ,ge npn,AJ,ge pnp,AJ,si pnp,AJ,si	pnp, A, ge pnp, AJ, ge npn, AJ, ge npn, AJ, ge npn, AJ, ge	npn, A, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	npn, AJ, ge npn, AJ, ge npn, AJ, ge pnp, AJ, ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,AJ,ge pnp,AJ,ge	hpp, AJ, ge npn, AJ, ge pnp, AJ, ge npn, AJ, ge	npn,AJ,ge pnp,FA,ge pnp,AJ,ge pnp,AJ,ge npn,AJ,ge	npn, AJ, ge npn, AJ, ge npn, AJ, ge pnp, AJ, ge	npn, AJ, ge pnp, AJ, si pnp, AJ, si pnp, AJ, ge pnp, AJ, ge	npn,AJ,ge npn,AJ,ge pnp,AJ,ge npn,AJ,ge	npn, AJ, ge pnp, AJ, ge npn, DB, si npn, DB, si pnp, AJ, ge	pnp,AJ,ge npn,AJ,ge pnp,SAT,si pnp,SAT,si pnp,SAT,si
	Mfr.	RA WE TI IND	TI IND SY RCA SY	RA RA SSD SSD	± S S S S S S S S S S S S S S S S S S S	LTE 30 UNI	S S I I I S S S	SY GI SY SY	SY SY SY RCA	RA RA RA RA	RA RA RA RA	SSD SSD IND IND	G SY KG I	SY SY RA RCA	SI H H H H
	Type No.	2N801 2N802 2N1051 2N1302 2N1302 2N1447	2N1993 2N1353 2N385A 2N404A 2N425	2N799 2N800 2N824 2N1027 2N1027	2N1404 2N1448 2N1605A 2N1780 2N1781	2N 1808 2N 2000 2N 395 2N 520 2N 520 2N 520 A	2N1169 2N1170 2N1302 2N1303 2N1303 2N1354	2N123 2N315 2N315A 2N388A 2N388A 2N396A	2N414 2N439 2N450 2N576 2N576 2N578	2N585 2N658 2N803 2N803 2N804 2N815	2N816 2N819 2N820 2N820 2N825 2N825 2N826		2N1994 GT1658 KGS1005 2N357 2N357A		2N1343 2N1997 2N2181 2N2182 2N2183
	Gross Index Key			-		. 9	2	=			71	2	3	11	

600 mc f_T Switches...
120V V_{CB} Core Drivers...
100 mc Amplifier...
All Available Now with...

PHILCO SILICON PLANAR RELIABILITY

Philco's versatile line of Epitaxial Silicon Planar NPN Transistors enables you to upgrade reliability in transistor applications.

ULTRA HIGH SPEED SWITCHES

TYPE*	Ma	ximum Rati	ngs				Charac	teristics			
	T _S °C.	V _{CB} volts	P _T @25°C.	l _{CBO} max. μa	h _{FE}	V _{CE} (SAT) max. volts	min.	C _{ob} max. pf	t _s max. nsec	t _{on} max. nsec	t _{off} max. nsec
2N709		15	300	0.05	20	0.30	600	3	6	15	15
T-2877	300	15	300	0.05	20	0.30	500	3	8	17	17
*TO-18 case-colle	ctor internally co	nnected to case.									

C	CORE DRIVERS/PULSE AMPLIFIERS V _{CB} max. volts f _T h _{FE} @ 50 ma mc h _{FE} @ 150 ma 2N1893 120 50 40											
TYPE*												
2N1893	120	50	40									
2N1613	75	60	40									

100 mc LOW-NOISE AMPLIFIER Industry's Newest Silicon Amplifier Standard

IIIG	astry's remest office	II THE PERSON NAMED IN COLUMN	
TYPE	Power Gain	Maximum Noise Figure	Minimum BV _{CEO}
T-2857*	15-22db@100 mc	5db@100 mc	20 volts

The new Philco T-2857 is industry's first silicon amplifier transistor to be functionally tested at 100 mc for fixed-matched, fixed neutralized, and fixed-bias performance. This insures interchangeability in practical communications circuits.

*TO-18 case with 4 leads—collector isolated from case.

*TO-5 case—collector internally connected to case.

Whatever your silicon transistor application, evaluate Philco Planar Transistors.

For complete data, and new Reliability report, write Dept. ED52463.

ON READER-SERVICE CARD CIRCLE 464

VERY HIGH SPEED SWITCHES

These Philco Types Feature Industry's Best Combination of Voltage, Switching Speed, and Beta.

TYPE†		М	aximum	Ratings					Char	acteristic	s		
	T _S °C.	V _{CBO} volts	V _{CEO} volts	P _T @ 25° C. mw	I _C ma	I _{CBO} max. μa	h _{FE} min.	V _{CE} (SAT) max. volts	f _T min. mc	C _{ob}	t _s	t _{on}	t _{off}
2N2710	300	40	20	360	500	0.03	40	0.25	500	4	15	20	max. nsec
2N2651	300	40	20	360	500	0.03	25	0.25	350	4	25	35	75
2N914	300	40	15	360	500	0.025	30	0.25	300	6	20	40 @ 200 ma	40 @ 200 ma
2N834	175	40	30**	300	200	0.50	25	0.25	350	4	25	35	75
2N784A	300	40	15	350	200	0.025	25	0.19	300	3.5	15	20	
2N708	300	40	15	360		0.025	30	0.40	300	6	25	20	40
2N706	175	25	20*	300	50	0.5	20	0.60	200	6	60		

YCER **VCES † TO-18 case—collector internally connected to case.

LANSDALE DIVISION, LANSDALE, PA.

LL continued

	1		MAX. RATINGS			c		CHARACTERISTICS			SWITCHING						
Cro Ind Ke	lex	Type No.	Mfr.	Туре	fae *fT **fab (mc)	P _c (mw)	т _і (°С)	mw/°C	V _{CEO}	l _C	hfe *hFE	l _{C0} (μα)	Coe *Cob (pf)	t _r (μsec) *ton (nsec)	t _s (μsec) *toff (nsec)	V _{ce(sat)}	Remarks
		2N2184 2N2274 2N2275 2N2276 2N2277	PH PH PH PH PH	pnp,SAT,si pnp,SP,si pnp,SP,si pnp,SP,si pnp,SP,si	*6 *6 *6 *6	150 150 150 150 150 150	140 140 140 140 140 140	1.3 1.3 1.3 1.3 1.3	*15 25 25 15 15	50 50 50 50 50	*15 10 10 10 10	0.0003 0.045 0.045 0.003 0.003	*12 9 9 9	11111	11111	-	Pair 2N2183 Chopper 2N2274 chopper 2N2276
LL 1	15	2N2185 2N2186 2N2187 2N100 2N1090	PH PH PH SY RCA	pnp,SP,si pnp,SP,si pnp,SP,si npn,AJ,ge npn,AJ,ge	*6.5 *6.5 *6.5 7	150 150 150 150 150 120	140 140 140 100 85	1.3 1.3 1.3 2	30 30 30 40 25	50 50 50 - 400	- - 25(min) 50	0.001 0.001 0.001 15 4	9 9 4 -	- - - 0,25	- - - - 0.20		chopper M. Pair 2N2185
		2N1114 2N1995 GT123 2N2278 2N2279	SY TI GI PH PH	npn,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,SAT,si pnp,SAT,si	7 7 7 *7.6 *7.6	150 150 150 150 150 150	100 85 150 140 140	2 2.5 2 1.3 1.3	*15 25 *25 *25 15 15	200 300 - 50 50	- 40 -	30 5 3 0.001 0.001	11 15 9 9	0,9	- 0.5 - -	- 0,1 -	TI Chopper 2N2278
LL	L 16	2N123 2N388 2N396 2N396A 2N576A	GE GI GE PH SY	pnp,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,AJ,ge	8 8 8 **8	150 150 200 500 200	85 100 100 100 100	2.5 2 3.3 6.67 2.6	15 *25 20 *30 40	125 500 200 200 400	0.987 - - *100 -	6 5 6 40	15 10 12 *14	0.45 0.6 0.4 .2 2	0.90 0.4 0.6 .25	0.15 	SY SY, GE, RA, TI TI, GI, SY, KF
		2N579 2N581 2N583 2N597 2N598	RCA RCA RCA PH PH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	8 8 8 **8	120 150 120 250 250	71 85 85 100 100	3.3	20 18 18 *45 *35	400 100 100 500 500	30 30 30 *70 125*	3 3 3.5 3.5	12 12 12 *15 *15	0,36 0,20 0,20 - -	0.33 0.20 0.20 - -	0.2 0.35 0.35 0.085 0.085	IND, US, KF, GI US, IND, GI, KF, TI KF-MIL
LL	L 17	2N600 2N662 2N714 2N790 2N792	PH RA RCA RA RA	pnp,AJ,ge pnp,FA,ge pnp,AJ,ge npn,DB,si npn,DB,si	*8 8 8 8	750 150 150 - -	100 85 85 -	10 - - 1.4 1.4	*35 11 30 45 45	500 1a 200 25 25	*125 - 80 30 60	3 2.5 2 .002 .002	*15 12 11 8 5			0.085 0.25 - - - -	MIL KF Submin Submin
		2N903 2N905 2N1280 2N1284 2N1304	RA RA IND IND TI	npn,DB,si npn,DB,si pnp,AJ,ge pnp,AJ,ge npn,AJ,ge	8 8 8 8	- 200 150 150	- 85 85 85	3.33 2.5 2.5	45 45 16 20 *25	25 25 400 400 300	30 80 60 90 110	.002 .002 5 2 5	20 20 10 15 16	- .10 .45 .45	- - .9 .50	- - - 15 .1v	Submin Submin TO-5,GI,SY,GE,AMP
LL	L 18	2N1305 2N1347 2N1350 2N1351 2N1355	TI IND IND IND IND	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	8 8 8 8	150 150 200 200 200 200	85 85 85 85 85	2.5 2.5 3.33 3.33 3.33	*30 20 50 40 30	300 200 400 400 200	100 80 95 65 80	3 2.5 10 5 2.5	11 12 12 12 12 12	.28 - - - .4	.80 - - - .6	.1v - - - 0.08	TO-5, KF, GI, AMP KF KF US
		2N1356 2N1478 2N1685 2N2001 2N2177	IND PH SY TI SSD	pnp,AJ,ge pnp,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,si	8 **8 8 8 **8	200 250 100 300 100	100 100 100 100 100 175	2.66 3.3 1.3 4 0.7	30 *30 25 30 6	200 500 200 750 50	80 *70 40 - *95	2.5 3.5 10 5 *0.5	12 *15 20 30 10	.4 - - -	.6 - - -	0.08 .085 - - -	US
LL	. 19	2N2178 2N167 2N358 2N358A 2N394	SSD GE GI SY GE	pnp,AJ,si npn,GJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge	**8 9 9 9	100 65 100 150 150	175 85 85 100 85	0.7 1.1 2 2 2.5	6 30 20 *30 10	50 75 500 500 200	*95 0.985 60 25-75 —	*0.5 1.5 3 5 6	10 2.5 14 14 12	0.4 0.4 -	- 0.7 0.5 - -	0.35 0.18 - 0.04	USAF2N167-MIL SY, TI GI KF
	LL 20	2N823 2N1198 2N2274 2N2275 2N2276	RA GE PH PH PH	npn,AJ,ge npn,RG,ge pnp,SP,si pnp,SP,si pnp,SP,si	9 9 *9 *9 *9	75 65 150 150 150	85 85 140 140 140	1.25 1.1 1.3 1.3 1.3	25 25 *25 *25 *25 *15	100 75 50 50 50	40 - *15 *15 *15	5 1.5 .003 .003 .003	20 2.5 *6 *6 *6	0.4 - -	- 0.7 - - -	0.35 - - -	Submin Chopper pair 2N2274 chopper
LL		2N2277 2N397 2N440 2N518 2N521	PH RCA SY GE IND	pnp,SP,si pnp,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,ge	*9 10 10 10 10	15 0 150 100 150 150	140 85 85 85 85 85	1.3 - 1.66 2.5 2.5	*15 30 *15 12 15	50 200 - 125 200		0.003 6 10 6 1	*9 *20 - 12 14	- 0.3 0.8 -	- 0.7 0.9 -	0.2 0.25 0.15	pair 2N2276 GI,TI US, KF
		2N521A 2N600 2N659 2N745 2N805	IND PH RA RA RA	pnp,AJ,ge pnp,AJ,ge pnp,FA,ge npn,MS,si pnp,AJ,ge	10 10 10 10 10	150 750 150 150 75	85 100 85 175 85	2.5 10 - 0.75 1.25	25 35 14 45 30	200 500 1a 50 400	22	1 10 2.5 10 4	14 15 12 3 20	0.2	0.5 - - - -	0.085 0.25 —	US, KF KF, GI Submin Submin
	_ 21	2N806 2N821 2N822 2N1281 2N1349	RA RA RA IND IND	pnp,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,ge	10 10 10 10 10	75 75 75 200 200	85 85 85 85 85	1.25 1.25 1.25 3.33 3.33	30 30 30 16 40	400 400 400 400 400	40 40 90	4 10 10 5 5	20 20 20 10 12	- - .9 -	=======================================	-	Submin Submin Submin

Obsoletes the Silicon Alloy Transistor

with a complete line of

Bed Mounted, Passivated

Epitaxial Junction PNP Silicon Transistors

Featuring

HIGH V_{eb} ULTRA LOW LEAKAGE

RELIABILITY

LOW OFFSET VOLTAGE
HIGH FREQUENCY

These transistors are available in TO-5, TO-18, TO-46 and Molytab packages.

Typical Specifications fo	r Low Level	Chopper Ci	rcuits
Characteristic	•	Type Designation	n
	C9001	C9002	C9003
V_{cb} and V_{eb} ($I_b = 10^{-10}$ a)	15v	25v	40v
V _{ce}	10v	20v	35v
I _{cbo} and I _{ebo} (100°C)	3nA	3nA	3nA
$V_0 (l_b = 200 \mu a; l_e = 0)$	0.3mV	0.5mV	0.8mV
Beta at 1mc ($I_c = 1$ ma; $V_{ce} = 6v$)	30	20	10
Dissipation (case temp. =25°C)	2 watts	2 watts	2 watts
Max. Operating Temperature	200°C	200°C	200°C
Package	TO-46	TO-46	TO-46

In addition, virtually all present PNP types can be supplied in this new construction in quantities and at competitive prices for direct replacement in existing circuits.

Write or call to discuss your requirements.

CTUSTALONICS 147 SHERMAN STREET, CAMBRIDGE 40, MASS., TELEPHONE: (617) 491-1670

ON READER-SERVICE CARD CIRCLE 465

LL continued

	T				MAX. RATINGS					CHARACTERISTICS			SWITCHING			
Cross Index Key		Mfr.	Туре	fae *fT **fab (mc)	P _c	т _і	mw/°C	V CEO *V CBO (v)	C (ma)	hfe *hFE ·	l _{C0} (μα)	C _{oe} *C _{ob} (pf)	† _r (μsec) *ton (nsec)	t _s (µsec) **toff (nsec)	V _{ce(sat)}	Remarks
	2N1996 2N1998 2N2185 2N2186 2N2187	TI TI PH PH PH	npn,AJ,ge pnp,AJ,ge pnp,SP,si pnp,SP,si pnp,SP,si	10 10 10 10 10	150 250 150 150 150	85 100 140 140 140	2.5 3.3 1.3 1.3 1.3	20 35 *30 *30 *30	300 400 50 50 50	-	5 4 0.001 0.001 0.001	11 15 *6 *9 *6	11111	11111		Chopper Chopper Pair 2 N2185
LL 22	2N2648 R212 2N427 2N791 2N904	GI TS GI RA RA	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,DB,si npn,DB,si	**10 **10. 11 11. 11.	250 0- 150 -	100 85 100 - -	3.3 - 2 1.4 -	*35 30 *30 45 45	1 a 400 - 25 25	*80-500 *20 - 60 60	3 - 2 .002 .002	*18 *200 14 5 20	.12 5 0.43 - -	.6 *20 0.3 - -	.2 0.105	KF, TS, TI, IND, RA, US Submin Submin
	2N316 2N316A 2N397 2N404 2N428A	GI GI GE RCA GI	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,ge	12 12 12 12 12 12	100 150 200 120 150	85 100 100 85 100	2 2 3.3 - 2	*20 *30 15 *25 *0.25	500 500 200 100 10	130 - 100	1 1 6 5 5	14 14 12 - 20	0.4 0.4 0.3 0.17 0.43	0.4 0.4 0.7 0.20 0.3	0.14 0.14 0.07 0.12 0.22	KF IND, US, KF TI, KF US,GE,RA,GI,SY,KF, PH, TI, AMP
LL 23	2N635 2N1306 2N1307 2N1313 2N1344	GE TI TI IND IND	npn,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	12 12 12 12 12 12	150 150 150 175 175	85 85 85 85 85	2.5 2.5 2.5 - 2.5	20 *25 *30 *30 15	300 300 300 400 400	- 110 110 80 90	5 5 3 - 5	16 11 14 12	- .22 .20 - 0.7	- .50 .80 - 0.3	.lv .lv -	TO-5,GI,SY,GE,AMP TO-5, GI, KF,AMP KF, TI KF
	2N1345 2N1346 2N1357 2N2278 2N2279	IND IND IND PH PH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,SAT,si pnp,SAT,si	12 12 12 *12 *12 *12	150 150 200 150 150	85 85 85 140 140	2.5 2.5 3.33 1.3 1.3	10 12 30 *15 *15	400 400 200 50 50	60 125 85 -	3 2.5 2.5 0.001 0.001	14 14 12 *6 *6	.3 .33	.4 .4 .7 -	- .10 0.07 - -	KF KF Chopper Pair 2 N2278
LL 24	2N269 2N793 2N906 2N1091 2N582	RCA RA RA RCA SY	pnp,AJ,ge npn,DB,si npn,DB,si npn,AJ,ge pnp,AJ,ge	13 13 13 13 14	120 - - 120 120	85 - 85 71	1.4 - - 2.6	25 45 45 25 *25	100 25 25 25 400 100	40 150 150 70 40(min)	2 .002 .002 4 5	5 20 -	0.17 - - 0.20 -	0.20 - - 0.17 -	0.12 - - - -	Submin Submin GI KF, RCA, TI
	2N584 2N807 2N808 2N858 2N859	RCA RA RA PH PH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,SP,si pnp,SP,si	**14 14 14 14 14	120 75 75 150 150	85 85 85 140 140	1.25 1.25 1.3 1.3	25 25 25 *40 *40	100 100 100 50 50	60 40 40 33 65	2 5 5 .1	12 20 20 5 5	0.15	0.17 - - - -	0.2 - - - -	US Submin Submin SPR SPR
LL 25	2N860 2N862 2N580 2N636A 2N660	PH PH RCA SY RA	pnp,SA,si pnp,SP,si pnp,AJ,ge npn,AJ,ge pnp,FA,ge	14 14 15 15	150 150 120 150 150	140 140 71 100 85	1.3 1.3 - 2	*25 *15 20 *25	50 50 400 300 1a	33 33 45 100-300	.1 .1 3 6 2.5	5 5 - 20 12	- 0.16 - -	0.29	0.2 - 0.25	SPR SPR GI,IND.US,TS,KF TI KF, TI
	2N1282 2N1316 2N1317 2N1318 2N1999	IND IND IND IND TI	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	15 15 15 15 15	200 200 200 200 200 250	85 85 85 85 100	3.33 3.33 3.33 3.33 3.33	16 30 20 10 30	400 400 400 400 400 400	100 100 95 85	5 2 3 4 4	10 14 14 14 14 15	.8 - - -		-	KF KF
LL 20	2N388A 2N599 2N601 2N2280 2N2281	TI PH PH PH PH	npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,SAT,si pnp,SAT,si	**16 *16 16 *16 *16	150 250 750 150 150	100 100 140 140	3.3 10.0 1.3 1.3	40 *30 *30 10 10	200 500 500 50 50 50	*60-*180 *175 *175 - -	5 3.5 3.5 0.003 0.003	*20 *15 *15 10	- - - - 10		- 0.07 *0.07 - -	MIL Chopper 2N2280
	2N428 2N636 2N522 2N522A 2N582	GI GE IND IND RCA	pnp,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	17 17 18 18 18	150 150 150 150 150 120	100 85 85 85 85 85	2 2.5 2.5 2.5 2.5	*30 *20 15 *25 25	300 200 200 200 100	- 120 200 60	2 5. 1 1 5	14 - 14 14 -	0.43 - - 0.2 0.15	0.3 - - 0.5 0.17	0.22 - - - 0.2	SY, RA, IND, US, PH, TS, TI, KF, GE TI US,KF US,KF,TI TS,GI,IND,SY,KF
LL 27		RCA TI TI SPR SPR	pnp,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,SP,si pnp,SP,si	18 18 18 *18 *18	120 150 150 150 150	85 85 85 -	2.5 2.5 1.3 1.3	25 *25 *30 *30 *15	100 300 300 - -	60 200 210 2.5-4.5 2.5-4.5	2 5 3 0.02 0.02	12 15 11 *10 *10	0.15 - - - -	0.17 - - - -	0.2	US TO-5,SY,GE,AMP TO-5, KF, GI, AMP
	2N2377 2N317 2N317A 2N337 2N417	SPR GI GI TI IND	pnp,SP,si pnp,AJ,ge pnp,AJ,ge npn,GD,si pnp,AJ,ge	18 20 20 20 20 20	150 100 150 125 200	140 85 100 150 85	1.3 2 2 .001 3	*25 *30 *30 *45 *30	50 500 500 20 20	20 - 180 19 140	.002 1 1 1 2	14 14 - 12	0.3 0.3 0.05	0.4 0.4 0.02	0.18 0.18 1.5	TO-18 US, IND, KF IND, US, KF, PH TR, RA, GE, AMP KF, US, TI
LL 2	8 2N496 2N661 2N746 2N1008 2N1008	PH RA RA BE BE	pnp,SAT,si pnp,FA,ge npn,MS,si pnp,AJ,ge pnp,AJ,ge	20 20 20 20 20 20	150 150 150 400 400	140 85 175 85 85	1.3 - 0.75 6.6 6.6	*10 9 45 20 40	50 1a 50 300 300	*25 - 45 100 100	.001 2.5 10 10 10	*6 12 3 -			.06 0.25 - 0.25 0.25	MIL KF, TI Submin

Transistor circuits and low power applications need this safety feature!

IRC PW Resistors are available with special resistance windings, designed to act as a standard resistor at normal operating wattages and fuse at some specific overload condition. They can also provide positive temperature compensation to offset transistor high temperature avalanching. Thus they offer a standard circuit resistor that can provide fusing or temperature compensating characteristics in one unit at a cost as low as 5 cents each.

These triple-duty resistors come in seven sizes—2, 3, 5, 7, 10, 15 and 20 watts. Write for Bulletin P-7: International Resistance Co., 401 N. Broad Street, Philadelphia 8, Pa.

	Remarks	KF SPR-MIL		Low noise, low level unit SPR SPR	SPR US, KF US, KF Chopper Pair 2 N2280	Submin TR, RA, NA, GE, AMP *gain-bandwidth, GI *gain bandwidth, GI	Submin	NA	Submin *gain bandwidth, Gl	SPR	TO-5 package TO-5 package TO-5 package		4db NF 4db NF 4db NF 4db NF	4db NF 4db NF For 100 ua Switching For 100 ua Switching	US, NA Gain band width, Gl
	V ce(sat)	0.25 0.25 .06	1 1 1	11111	- 1 1 20 50 50 50 50 50 50 50 50 50 50 50 50 50	1.5	*200	2 max 2 max	1.5	40 1.5 max 0.05 0.05	.1.	1 1 1 1 1	11111		2 max - 5
SWITCHING	t _s (μsec) (μsec) (nsec)	• • • • • • • • • • • • • • • • • • •	1 1 1	11311	0.4	- .02 0.006 0.002	1111	1111	0.004	.07 0.01 0.01	.015	11111	11111	1:00	0.002
SWI	t, (µsec) *ton (nsec)	0.25	111	1 1 1 1 1	1 1 1 1 1	06 .06 0.03		1.1.11.1		0.04	11111	11111			0.06
ICS	Coe *Cob (pf)	*10 *10 *10 *35	2020	20 50	14 17 7,	52116	20 5 - - *10	6 *10 6 15 max 15 max	20 ** 2 ** 4 ** 4	4 45max *6 *6 5	8 8 8 *3.5	∞∞∞∞∞	∞∞∞∞∞.		6 6 15max 2
CHARACTERISTICS	OD (0 m)	10 2 .001 0.01 0.01 0.01 .005	005	.005	333777	3310	.002 0.1 - 12 0.02	0.1 0.02 .1 .1 .1 max	.002 0.001 3 1.0	50 1 max 0.1 0.1	0.2 0.2 0.2 .5 10	0.00000	0.01 0.01 0.01 0.01	0.01 0.01 .001 .001 1 max	.1 1 max 0.1 3
CHARA	h _{fe} * h FE	100 3.5–35 3.5–35 3.5–35 3.5–35	30 22 00 00 00 00 00 00 00 00 00 00 00 00	65 65 65 65	65 200 300 -	30 10 39 45 45	35 20 9-22 120 4-9	20 6.0-40 20 40-90 20-45	75 *55 45 *250 120	*20 *20 *45 150	25 25 25 120 25	40-120 80-250 150-450 40-120 80-250	150-450 40-120 80-250 150-450 40-120	80-250 150-450 *60 *30 *30-90	40 40 80-330 20 45
T	Г _С (ma)	500000000000000000000000000000000000000	2222	88188	50 200 50 50 50	50 50 20 100 100	25 50 25 400	25 - 25 - -	25 20 25 25 25		1 1 100	919999	000000	1 30 000	
10	v CEO (×)	60 10 *10 *30 *15	35 46 33 3	30 30 6 6 *25 *15	*6 15 20 20 *10 *10	25 30 *45 30 30	45 40 40 10 *12	*45 *12 *45 *45 *45 *45	45 *45 30 *40 *45	15 *50 45 45 *10	25 * 30 4 30	20 50 50 45 45 45 45 45 45 45 45 45 45 45 45 45		45 30 20 20 *50	
RATING	J°/wm	6.6 1.3 1.3 1.3	- 1 61 1.9	1.3	1.3 2.5 1.3 1.3	0.75	2.0 2.0 1.3	11.3	3.33	0.8 - 0.66 0.66 1.3	1.8	2.85 2.85 2.85 2.85 2.85	2.85 2.85 2.85 2.85 2.85	2.85 2.85 4.0 4.0	1 1 4.0
MAX	1, (°C,	85 85 140 140 160	180 180 180	180 180 150 140 140	140 85 85 140 140	175 175 150 71 85	150 - 85	175 - 175 175 175	175 71 200 -	150 200 175 175 140	160 160 160 85 85	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 175 175 200 200	-
	P c (m m)	400 150 150 150 150 385	385 385 250 250	250 250 30 150 150	150 150 150 150	150 125 120 120	250 150 200 150	300 150 150 150	500 120 150 250	150 150 150 150	250 250 250 250 25 100	500 500 500 500	200000		300 150 150 500 120
	fαe **f **fαb (mc)	20 20 *20 *20 *20 *20	2222	22222	22 24 24 *24 *24	25 25 30* **30	30 30 **30 32 32 32 33 36	44 * 44 45 45	45 **50 *50 **50 **50		60 60 60 60 60 60 60 60 60 60 60 60 60 6	09 09	99999	09 09 09 09	64 64 65 70 70
	Туре	pnp, AJ, ge pnp, FA, ge pnp, SAT, si pnp, SP, si pnp, SP, si npn, FA, si	npn, FA, si npn, DB, si npn, DB, si npn, DB, si	npn, DB, si npn, DB, si npn, MS pnp, SP, si pnp, SP, si	pnp,SP,si pnp,AJ,ge pnp,AJ,ge pnp,SP,si pnp,SP,si	npn,MS,si npn,MS,si npn,GD,si pnp,DR,ge pnp,DR,ge	npn, DB, si npn, D, ge npn, MS, si pnp, AJ, ge pnp, SP, se	is,(G),ndn pnp,SP,isi npn,DJ,si npn,MS	npn,DB,si npn,GD,si pnp,DR,ge npn,GD,si npn,GD,si	npn, DJ, si pnp, MS npn, MESA, si npn, MESA, si pnp, SP, si	pnp,MS,si pnp,MS,si pnp,MS,si pnp,MA,ge	is,nqn is,nqn is,nqn is,nqn	is,nqn is,nqn is,nqn is,nqn is,nqn	npn,si npn,si npn,PE,si npn,PE,si pnp,MS	npn, DJ, si npn, DJ, si npn, MS npn, DD, si pnp, DR, ge
	Mfr.	BE US PH SPR SPR	RARA	RA TR PH	H S S H H	RA TI TI RCA RCA	RA TI KF SPR	SPR TR TR	RA GE: GE	-	공무무중	A A A A A A A		-	TR TR WE RCA
	Type No.	2N1008B 2N1017 2N1119 2N2162 2N2162 CK419	CK420 CK421 CK474 CK475	CK476 CK477 TMT1543 2N861 2N863	2N864 2N523 2N523A 2N523A 2N2280 2N2281	2N747 2N748 2N338 2N643 2N645	2N907 2N1060 2N1276 KGS1004 2N2167	2N842 2N2 164 TMT842 TMT840 TMT839	2N908 2N337A 2N644 2N2349 2N2349	ST3030 TMT1131 TNT842 TNT842 ZN865	2N1254 2N1256 2N1258 2N1258 2N1427 2N1427	2N2244 2N2245 2N2246 2N2247 2N2247 2N2248	2N2249 2N2250 2N2251 2N2251 2N2252 2N2253	2N2254 2N2255 2N2693 2N2694 TMT1132	
	Cross	LL 29			rr 30		LL 31		LL 32		LL 33		LL 34		TT 32

HITACHI TRANSISTORS

SPECIFY "MESA" TYPE TRANSISTORS FOR HIGH FREQUENCY USE

2SA233, 2SA234, 2SA235

Hitachi PNP germanium diffused "Mesa" type transistors provide outstanding high frequency characteristics compared with conventional alloy junction or drift transistors.

Exclusive "Mesa" type transistors are indispensable for FM receivers used in tuner circuits and intermediate frequency amplifiers and also in TV receivers in intermediate

frequency amplifiers. They can be used effectively in short-wave converters, medium wave converters and all high frequency applications.

For superior performance, specify Hitachi "Mesa" type transistors . . . another engineering achievement from one of the world leaders in electronics.

Maximum Ratings (Ta=25°C)

Ítems	Symbol	Unit	2SA233	2SA234	2SA235
Collector Voltage	Vсво	٧	- 20	- 20	-20
Emitter Voltage	VEBO	٧	- 0.5	- 0.5	- 0.5
Collector Current	Ic	mA	-10	-10	-10
Emitter Current	lE	mA	10	10	10
Junction Temperature	Ti	°C	85	85	85
Collector Dissipation	Pc	mW	80	80	80
Ambient Temperature	TA	°C	60	60	60

Characteristics (Ta=25°C)

ltems	Symbol	Conditions for measurement	Unit	2SA233	2SA234	2SA235
Max. Collector Cut-off-Current	ICBO	V _C =-20V I _E =0	μΑ	-30	-30	-30
Max. Emitter Cut-off-Current	IEBO	V _E =-0.5V I _C =0	μΑ	-50	- 50	-50
Current Amplification Factor	h _{fe}	Vc=-6V IE=1mA		50	60	80
Alpha Cut-off Frequency	fαb	Vc=-6V IE=1mA	Mc	90	110	125

Typical Operation (Ta=25°C)

Items	Conditions for	Measurement	Unit	2SA233	2SA234	2SA235
Power Gain at	Vc=-6V	IE=1mA				
FM Radio Frequency	fs = 100Mc/s		db	_	_	12
	$R_g = 75\Omega$	$R_L = 2k\Omega$				
Mixer Gain at	Vc=-6V	IE=1mA				
FM Radio Frequency	fs = 100Mc/s	f _{osc} =110.7Mc	db	_		13
	$R_g = 3k\Omega$	$R_L = 15k\Omega$				

10.7 Mc Intermediate Frequency Amplifier Circuit

Hitachi New York, Ltd.

666, 5th Avenue, New York 19, N.Y., U.S.A.,

Sole Agent:

International Importer Inc.

2242 South Western Avenue, Chicago 8, Illinois, U.S.A.

						MAX.	RATINGS	,		CHARA	CTERIST	rics	SW	ITCHING		
Cross Index Key	Type No.	Mfr.	Туре	fae *fT **fab (mc)	P _c (mw)	T i	mw/°C	VCEO *VCBO	I C (ma)	h _{fe} *hFE	l _{C0} (μα)	C _{oe} *C _{ob} (pf)	t _r (μsec) *ton (nsec)	t _s (μsec) *toff (nsec)	Y _{ce(sat)} (v)	Remarks
	2N1411 2N2180 2N1255 OC46 2N1257	PH PH HU AMP HU	pnp,MA,ge pnp,MA,ge pnp,MS,si pnp,PADT,ge pnp,MS,si	*70 *70 75 73 75	50 50 250 83 250	100 100 160 75 160	0.67 0.67 1.8 - 1.8	15 15 15 *20 30	50 50 - 125 -	100 100 30 80 40	1.0 1.0 0.2 3 0.2	3.0 3.0 8 - 8	75 75 - - -	11111	0.08 0.08 - -	TO-5 Package TO-5 Package
LL 36	OC139 OC140 2N1259 OC47 2N706	AMP AMP HU AMP FA	npn,PADT,ge npn,PADT,ge pnp,MS,si pnp,PADT,ge npn,DP,si	73.5 74.5 75 75.5 *80	100 100 250 83 1w	75 75 160 75 175	- 1.8 - 6.7	*20 *20 50 *20 20	250 250 - 125 -	45 75 50 <200 45	0.8 0.8 0.2 <3 0.005	- 8 - 5	- - - - 0.02	11111	- % -	TO-5 Package IND, TI, RCA, PH, CL, MO
	TMT696 2N702 2N2800 2N2801 TMT697	TR TI MO MO TR	npn,MS npn,DJ,si pnp, PE,si pnp, PE,si npn,MS	80 100 *100 *100 100	150 150 800 800 150	200 175 200 200 200	- .002 4.57 4.57	*60 20 *50 *50 60	- 50 - -	*20-60 15-45 *30/90 *75/225 *40-120	1max .5 0.01 0.1 1max	35max - *25 *25 35max	- 25 25 -	- 100 100 -	1.5max .6 0.4 0.4 1.5max	FA, NA, GI
LL 37	2N1507 2N2188 2N2190 2N703 2N1139	RA TI TI TI TR	npn,DD,si pnp,AD,ge pnp,AD,ge npn,MS,si npn,GR,si	120 **125 **125 *150 150	1w 125 125 600 500	175 - - 175	13.2	60 40 60 25 15	500 30 30 50 25	200 90 90 *40-*120 20	.003 3 3 - .25	20 - - - 8	80 - - 12	600 - - - 10	.07 - - 0.5 0.7	.TI
+	2N2189 2N2191 2N2330 2N2331 2N501	TI TI MO MO PH	pnp,AD,ge pnp,AD,ge npn,DDP,si npn,DDP,si pnp,MD,ge	**150 **150 150 150 175	125 125 800 500 60	- 175 175 100	5.33 3.33 0.8	40 60 *30 *30 *15	30 30 - - 50	135 135 50 50	3 3 0.1 0.1 1.0	7 7 7 1.75	- - - 0.013	- - - 0.007	- - - 0.08	SPR, GI
LL 38	2N501A 2N7 6 8 2N2411 2N2086 2N2087	PH PH TI PH PH	pnp,MD,ge pnp,MD,ge pnp,PE,si npn,MS,si npn,MS,si	175 *175 200 *225 *225	175 35 1000 600 600	60 100 200 175 175	0.8 0.46 5.71 4.0 4.0	*15 12 20 *120 *120	50 100 100 500 500	- 40 *20-60 *70 *65	1.0 1 .001 2.0 2.0	1.1 1.6 *4 *7.4 *7.4	0.013 - .008 0.06 0.055	0.007 - .050 0.085 0.065	1.0 0.09 0.1 0.43 0.39	SPR, GI
	2N 240C 2N 1495 2N 1495 2N 1496 2N 2048	PH PH PH PH PH	pnp,MD,ge pnp,MD,ge pnp,MD,ge pnp,MD,ge pnp,MD,ge	225* *240 *240 *240 250*	150 250 250 500 150	100 100 100 100 100	2.0 3.3 3.3 6.67 2.0	*12 *40 40 40 *20	100 500 500 500 500 100	*60 *60 60 60 125	3 7 4 4 1.0	*2.2 *4.0 4.0 4.0 *1.5	0.03 30 30 0.035	0.1	0.13 0.18 0.18 0.18 0.18	MO MO
LL 39	2N2380 2N2380A 2N2478 2N559 2N705	PH PH PH WE TI	npn,MS,si npn,MS,si npn,MS,si pnp,DG,ge pnp,AJ,ge	*270 *270 *275 300 300	600 600 2000 150 300	175 175 175 100 100	4.0 4.0 4 4.0 4	*80 *80 *120 *15 *15	500 500 500 50 50	70 70 *70 25 6	4 4 2 3 .3	*7.4 *7.4 *7.4 - 5	0.06 0.06 .055 0.002 0.03	0.06 0.06 .065 0.003 0.075	0.6 0.4 .45 .3 0.2	MO,SY,GE,RA,AMP
	2N708 2N710 2N711 2N711A 2N711B	PH TI TI TI	npn,PL,si pnp,MS,ge pnp,MS,ge pnp,MS,ge pnp,MS,ge	*300 300 300 *300 *300 *360	1200 100 300 150 150	200 300 100 -	2.1	*40 *15 *12 7 7	50 50 100 100	*120 6 6 *25-*150 *30-*150		*6 5 5 *6 *6	.06 .07 	.025 .075 0.1 -	.4 80 90 0.5 0.45	SY,MO,RCA,GE,RA, AMP MO,SY,RCA,GE,RA, AMP MO MO
LL 40	2N784A 2N960 2N961 2N962 2N964	PH TI TI TI	npn,PL,si pnp,EM,ge pnp,EM,ge pnp,EM,ge pnp,EM,ge	*300 *300 *300 *300 *300	1000 150 150 150 150	175 - - - -	6.85 - - - -	*40 15 12 12 12	200 150 150 150 150	*150 *20 *20 *20 *40	.025 3 3 3 3	*3.5 *4 *4 *4 *4		.015 - - - -	.19 0.5 0.5 0.5 0.5	
	2N965 2N966 2N985 2N1992 2N2401	TI TI TI WE PH	pnp,EM,ge pnp,EM,ge pnp,EM,ge npn,D,si pnp,MD,ge	*300 *300 *300 300 *300	150 150 150 350 150	- - 200 100	- - 2.0 2.0	12 12 15 15 *15	150 150 200 50 100	*40 *40 *60 30 *90	3 3 0.5 1.5	4 *4 *6 5 *2.2		20ns 0.09	0.5 0.5 0.6 0.25 0.12	
LL 41	2N2717 2N2381 2N2382 2N2256 2N2257	AMP MO MO MO MO	pnp, AD, ge pnp, EM, ge pnp, EM, ge npn, ME, si npn, ME, si	300 *300 *300 320 320	275 750 750 1000 1000	75 100 100 175 175	0.50 10 10 6.67 6.67	*-15 *30 *45 *7 *7	300 500 500 100 100	50 *25 *25 30 50	1 1 3 3	*3.5 *3.5 4 4	.020 8 8 3 3	.040 20 20 4 4	0.25 0.25 -	
	2N2258 2N2259 2N2402 2N707A 2N537	MO MO PH MO WE	pnp,ME,ge pnp,ME,ge pnp,MD,ge npn,DM,si pnp,D,ge	320 320 *325 350 400	300 300 150 1w 250	100 100 100 175 100	4 2.0 6.7 3.3	*7 *7 *18 *70 *30	100 100 100 -	30 50 170 30 9	3 3 1.5 .01 0.1	4 4 *2.2 4 -	4 4	3 3 0.075 -	0.11	Epitaxial Epitaxial Epitaxial, GI
LL 42	2N706A 2N706B 2N828 2N828A 2N829	MO	npn,DM,si npn,DM,si pnp,DM,si pnp, DJEM,ge pnp, DJEM,ge	400 400 400 *400 *400	1w 1w 500 300 300	175 175 175 100 100	6.7 6.7 4 4	*25 *25 *15 *15 *15	200 200 200 200	4 4 4 *40 *80	.005 .005 .4 3	4.5 4.5 3.5 *2.2 *2.2	.018 .018 - -	.016 .016 - 30 30	- - 0.11 0.11	MO,SY,TI,NA,HU,GI,TI,PH,CL,DP MO,SY,PSI,TI,HU,NA,GI,CL,DP Epitaxial, SY, RA

				T		1					-1					
	A			SPR	Epitaxial SPR SY, PH, CL, DP, GI	US, MIL only TO-5, non saturated	SPR MO	TO-18 SPR-MIL	GI, TI GI GI, KF, MO, TI	EEE	b≥3,5 ns max T1	FF	GI,TR,SY, NA, IND,TI,RCA,CL,PH (Epitaxial, MO), GI, CL Epitaxial, CL	GE Epitaxial		
ی	V _{ce(sat)}		0.5 0.6 0.5 0.25 0.45	0.45 0.45 0.2	0.09	2: - 2: 4	0.09 0.13 0.3 0.12 0.44	0.15	0.3	1 1 1 1 00	0.5 0.75 0.25	0.085	0.40	0.55 0.16 0.20 0.19	111	9.0
SWITCHING	t _s (μsec) * toff (πsec)		50 70 70 8 * 40 8 * 40	*40 *40 .009	1 10.1	.007 - 0.003 .015 .002	1 1 1 1	0.025	=2.5usGC (max)	1111	2.5	11118	255	120 20 35 15	0.035	1 1
5	t (μsec) *ton (πsec)	0.015 0.015 0.015 35	20 35 20 *40 *40	* 40 * 40 . 003	13 _ _ _ _ _ _ _	0.002	3.007	0.035		0.7	3.5	1111	20.02	0.1	0.02	1 1
TICS	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	2.5 *5.0 *5.0 *5.0 *20	*20 *20 *20 *8 *8	*8 *8 *3.5 1.9	1.4 - 1.9 2.8 *4	*2.85 2.5 - *2.85 1.3		1 1 1 4 1	'= <u>'</u> '	11116	11118	15	*5 5 6 *3.0 8.0	6.0	∞ ∞ ⁴	1 1
CHARACTERISTICS	00	24 4 4 4 12	12 12 12 0.25 0.25		0.5	.012 5.0 5 .012 .012	0.0003 0.0003 3 1.0	0.6	1 1 40 6 6	2 10 10 10 10	25 25 15 8 8	3.0	.005 0.025 .001 3.0	1.5 3.0 30 30 0.025	1 0.5	1 1
CHAR	* + + + + + + +	25 30 45 *45 *40	*50 *40 *50 *50/150 *100/300	*50/150 *100/300 80-200 *40-120	125 40 - 5 *50/150	*50 25 25 25 *65 30	*40 55 *50 *80 *40	1 - 1 - 2 - 3 - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	52 75 20-60 60-180	70 15(min) 30(min) 40 5.0	20 22 1 1	55 100 190 *40	20 12 15 *75 *34	*25-*150 20 *25 *25 *20 25		*20-*60
	ا م (ق	2000000	200 200	200	100 200 50 200 -	500 500 100	100	*20 *40 75 15 100	25 200 200 100	200 500 500 500 500 500 500 500 500 500	200 200 200 200 200 200	1000000	81118	200 200 200 200 200 200 200 200 200 200	100	30
SS	V CEO (₹)	*30 *20 *20 *20 25	40 25 40 *60 *60	*60 *60 30 12 *15	15 *25 *15 *40 *40	*40 30 15 *40 25	*12 *12 *12 15 15 *15	200 30 *6 *5	60 45 *40 25 *105	15 *25 *25 *25 *25 10	20 20 15 45 *40	45 20 20 15 15	*25 28 *40 *15	15 15 15 40	13 13 25	15
MAX. RATINGS	0 3	4.0 2.67 2.67 5.3	- - - 4.57 4.57	2.86 2.86 2.8 6.67 .8	2.0 2 .8 6.7 5.7 2.06	2.1 2.0 0.5 2.1 8	0.46 0.46 1.71 1.33	25 25 0.82	2 2 1	2.5 2.5 3.3 1.3	1.66 1.66 1.66 - 2.5	3.3	6.7	2 - 2.0	2.5	1 1
MAX	1 i (°)	0011001	100 100 200 200 200 200	200 200 175 175 100	100 175 100 175 200	200 100 200 200 100	100000	- 85 85 85 85	175 175 100 100 55	100 85 85 85 85 140	8 8 8 8 8	100 85 - 85 100	175 175 200 - 100	100 100 200 200 200 200 200 200 200 200	85 85 175	1 1
	P c (% E)	300 200 200 400 750	750 750 750 800 800	500 500 500 1000 60	150 300 60 1w 360	1200 150 150 1200 750	35 35 300 100 150	- 65 25 120	500 500 150 50 50	150 150 150 200 150	100 100 250 250 150	250 150 150 150	1200 1w 360 - 0.3w 150		150 150 1.2w	1000
	fae *fT **fab (mc)	400 *400 *400 *400	* 400 * 400 * 400 * 400 * 400	*400 *400 400 450 450	*450 450 450 500 *500	*600 750 *650 750 750	*900 *900 *900 *900	1000	11111	11111	11111	1111	1 1 1 1	1 1 1 1 1	1.1.	1 1
	Туре	pnp,D,ge pnp,MD,ge pnp,MD,ge pnp,MD,ge pnp,ED,ge	pnp, ED, ge pnp, ED, ge pnp, ED, ge npn, PE, si npn, PE, si	npn, PE, si npn, PE, si npn, DM, si npn, PE, si pnp, MD, ge	pnp,MD,ge npn,DDM,si pnp,MD,ge npn,DM,si pnp, PE,si	npn,PL,si pnp,D,ge pnp,DG,ge npn,PL,si pnp,MS,ge	pnp,MD,ge pnp,MD,ge npn,DP,si pnp,MD,ge npn,MS,ge	- npn,AJ,ge pnp,SBT,ge pnp,AJ,ge	npn,GJ,si npn,GJ,si npn,AJ,ge npn,AJ,ge pnp,AJ,ge	pnp, AJ, ge npn, AJ, ge npn; AJ, ge npn, AJ, ge pnp, SB, si	npn,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge npn,AJ,ge	pnp, AJ, ge npn, AJ, ge npn, AJ, ge npn, AJ, ge pnp, EM, ge	npn,PL,si npn,DP,si npn,DP,si npn,P,si pnp,EM,ge	pnp, EM, ge pnp, DM, ge pnp, EM, ge pnp, EM, ge npn, DP, si	pnp,DM,ge pnp,DM,ge npn,DP,si	npn,EP,si npn,EP,si
	Mfr.	PH PH R	SPR SPR SPR MO MO	MO WA IT	MO MO MO	WE WE	PH FA TI	RCA GE GE PH RCA	GE GE SY SY RCA	SY SY RE	SY SY SY SY	GE GE GE RA	FA SY AI RA		44 .	FF
	Type No.	2N1195 2N1204 2N1204A 2N1494A 2N2096	2N2097 2N2099 2N2100 2N2537 2N2538	2N2539 2N2540 NS345 2N744 2N779A	2N779B 2N835 2N846A 2N834 2N834 2N2501	2N2651 2N1094 2N559 2N2710 2N2710 2N1385	2N768 2N769 2N918 2N976 2N976 2N797	2N2205 2N2206 2N167A 2N240 2N269	2N335B 2N336A 2N377A 2N388A 2N398	2N399A 2N438A 2N439A 2N440A 2N496	2N556 2N557 2N558 2N558 2N586 2N586	2N597 2N634A 2N635A 2N636A 2N536A	2N706 2N707 2N708 2N708 2N709 2N710A	2N711A 2N725 2N781 2N781 2N782 2N782	2N794 2N795 2N835 2N849/	T1431 2N850/ T1431
	Cross Index Key		LL 43	-	1	94	, 1		LL 46		LL 47	9	4 48		43	

						MAX.	RATINGS	5		CHARA	CTE _{RIST}	ics	SW	ITCHING		
Cross Index Key	Type No.	Mfr.	Туре	f _{ae} *f _T **f _{ab} (mc)	P _c (mw)	T (°C)	mw/°C	V _{CEO} *V _{CBO}	I _C	h _{fe} *hFE	l _{CO} (μα)	Coe *Cob (pf)	t _r (μsec) *ton (nsec)	t _s (μsec) *toff (nsec)	Y _{ce(sat)}	Remarks
	2N914 2N917 2N1119 2N1122 2N1122A	SY AI PH PH PH	npn,DP,si npn,P,si pnp,SAT,si pnp,MA,ge pnp,MA,ge	- - - -	360 0, 3w 150 25 25	200 - 140 85 85	2.0 - 1.3 0.63 0.63	*40 *30 10 12 15	- 50 50 50	30 *35 5.0 8 8	0.025 .0001 .001 5.0 5.0	6 *1.7 6.0 6.0 6.0	40 - - - -	20 - - - -	0.7 - 0.1 0.1	Epitaxial, CL SPR SPR, GI SPR, GI
LL 50	2N1175 2N1175A 2N1213 2N1214 2N1215	GE GE RCA RCA RCA	pnp,AJ,ge pnp,AJ,ge pnp,MESA,ge pnp,MESA,ge pnp,MESA,ge	11111	200 200 75 75 75	85 85 85 85 85	11111	25 25 25 25 25 25	200 200 100 100 100	80 80 - - -	6 6 3 3 3		- .015 .015 .015	- .05 .05 .05	-	MO, TI TI
	2N1216 2N1217 2N1252 2N1253 2N1277	RCA GE AI AI GE	pnp,MESA,ge npn,AJ,ge npn,P,si npn,P,si npn,GJ,si	11111	75 75 2w 2w 150	85 85 - - 150	1111	25 20 *30 *30 *30	100 25 - - 25	- 40 *35 *45 20	3 .6 .10 .10	- *20 *20 -	.015 - - - -	.05 - - - -		ТІ
LL 51	2N1278 2N1279 2N1288 2N1289 2N1299	GE GE GE SY	npn,GJ,si npn,GJ,si npn,BG,ge npn,MB,ge npn,AJ,ge	11111	150 150 75 75 150	150 150 85 85 100	- - - - 2	*30 *30 10 15 40	25 25 50 100 200	33 80 50 50 35-110	.001 .001 2 2 0.1	1 1 1 1	- - - Rise + I	- - - all time =	- - - 1.5 usGC	TI TI
	2N1300 2N1301 2N1384 2N1404 2N1411	RCA RCA RCA TI PH	pnp,DM,ge pnp,DM,ge pnp,DR,ge pnp,AJ,ge pnp,MA,ge	1111	150 150 240 150 25	85 85 85 85 85	2.5 2.5 4 2.5	13 13 30 25 *5	100 100 500 300 50	50 50 50 - *75	1 1 4 3 0.3	8 8 - 16 *3.0			11111	TI TI MIL
LL 52	2N1413 2N1414 2N1450 2N1473 2N1499	GE GE RCA SY PH	pnp,AJ,ge pnp,AJ,ge pnp,DR,ge npn,AJ,ge pnp,MD,ge		200 200 120 200 30	85 85 85 75 85	- - - 4 .75	25 25 30 40 *30	200 200 100 400 50	36 52 20 25-80 8.5	8 8 10 100 1	*1.3	-		-	TI MO, TI GI MIL
	2N1614 2N1683 2N1694 2N1708 2N1754	GE RCA GE RCA PH	pnp,AJ,ge pnp,DM,ge npn,AJ,ge pnp,MD,ge	1111	240 150 75 1000 50	85 85 85 - 85	2.5 - - .83	40 13 20 25 *13	300 100 25 200 100	32 75 30 *20	25 1 0.6 - 1	8 - - 1.5	-	0.025		TI GI, SPR
LL 53	2N1808 2N1954 2N1955 2N1955 2N1957	TI RA RA RA RA	npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge		150 375 375 375 375 375	85 100 100 100 100	2.5 0.2 0.2 0.2 0.2 0.2	25 60 60 60 60	300 1a 1a 1a 1a 1a	90 100 90 90	5 10 10 - 10	11 - - - -	-	-		
	2N2002 2N2003 2N2004 2N2005 2N2006	NA NA NA NA	pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si	11111	250 250 250 250 250 250	175 175 175 175 175 175	1.67 1.67 1.67 1.67 1.67	30 30 50 50 60	100 100 100 100 100	-	.001 .001 .003 .0015	8 8 8 8	-	-	-	
LL 54	2N2007 2N2175 2N2176 2N2282 2N2283	NA SSD SSD BE BE	pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,DAP,ge pnp,DAP,ge		250 100 100 5 5	175 175 175 11 0 11 0	1.67 0.7 0.7 67 67	60 6 6 60 100	100 50 50 3a 3a	*80 *80 60 60	*0.2 *0.2 *0.2 50	8 10 10 75pf 75pf	- - 2.5 2.5	- - 1.5 1.5	- - 0.2 0.2	
	2N2284 2N2368 2N2369 2N2378 2N2713	BE AI AI SPR GE	pnp,DAP,ge npn,P,si npn,P,si pnp,SP,si npn,PE,si		5 1.2w 1.2w 150 200	110 - - 140 100	67 - - 1.3 2.67	200 *40 *40 *10 *18	3a - - 50 200	60 *40 *75 5.0 *30-90	50 .01 .01 0.001 0.5	75pf *2.5 *2.5 6.0	2.5 - - 85	1.5 - - 85	0.2 - - - 0.30	TO-18
LL 55	2N2714 4D20 4D21 4D22 4D24	GE GE GE GE	npn,PE,si npn,GD,si npn,GD,si npn,GD,si npn,GD,si	11111	200 - - - -	100 150 150 150 150 125	2.67 1.5 1.5 1.5 1.5	*18 *40 *40 *40 *40 *40	200 25 25 25 25 25	75-225 *15-50 *40-135 *120-250 *15-50	0.5 1 1 1 1	- *4 4 *4 *4	85 0.1 0.1 0.1 -	85 0.1 0.1 0.1 -	0.30 1.5 1.5 1.5 -	
	4D25 4D26 10B551 10B553 10B555	GE GE GE GE GE	npn,GD,si npn,GD,si npn,PE,si npn,PE,si npn,PE,si		- 100 100 100	125 125 125 125 125 125	1.25 1.25 1.0 1.0 1.0	*40 *40 *40 *40 *25	25 25 - - -	*40-135 *120-250 *30-120 *30-120 *20	1 50 0.5 0.5	*4 *4 *6 *6 *6	- 45 - -	- 25 60 25	0.25 0.4 0.6	
LL 56	10B556 SST610		npn,PE,si npn	-	100 500	125	1.0 0,25	*25 14v	500	*20-60 10,000	0.5	*6 35pf	-	25	0.6 1.5v	TO5 Package

These P-channel diffused silicon transistors embody all the desirable characteristics inherent in the field effect design—low input capacitance and high impedance. Use of an S-shaped gate configuration contributes to the exceptionally low capacitance Tung-Sol's wide application experience with injection transistors and vacuum tubes—features of which are combined in the field effect transistor—is an important consideration for anyone seeking a competent source of this advanced semiconductor device Write for complete technical information. Tung-Sol Electric Inc., Newark 4, N. J. TWX: 201-621-7977

	TYPIC	AL ELECTRI	CAL CHARACTERISTICS	(25°C)			
	TEST	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
2N2386	Drain Current Forward Trans- admittance	I _{DSS} Y _{FS}	$V_{DS} = -10V, V_{GS} = 0$ $V_{DS} = -10V, V_{GS} = 0$ f = 1Kc	1000	3.0	3000	mA μmho
2N2794	Drain Current Forward Trans- admittance	I _{DSS} Y _{FS}	V _{DS} =-10V, V _{GS} =0 V _{DS} =-10V, V _{GS} =0 f= 1Kc	1.5 1000		5 3000	mA μmho

O.5 AMP INTERDIGITATED PASSIVATED SILICON PLANAR EPITAXIAL TRANSISTORS

 2N2217
 2N2220

 2N2218
 2N2221

 2N2219
 2N2222

(TO-5)

(TO - 18)

In production quantities, General Instrument's new Interdigitated Silicon Passivated Planar Epitaxial Transistors feature high speed, high gain and excellent gain retention. For further details, call your nearest sales office, authorized distributor, or write to Applications Engineering, General Instrument, 600 West John Street, Hicksville, N.Y.

GENERAL INSTRUMENT SEMICONDUCTOR DIVISION

General Instrument Corporation, 65 Gouverneur Street, Newark 4, New Jersey

HIGH LEVEL SWITCHING

Generally types rated at one watt and above. In order of $f_{\alpha e}$ ($f_{\alpha b}$ or f_{τ} where noted).

						, M.	AX. RAT	INGS			CHARAC	CTERIST	ICS		SWITCH	IING	
Cross Index Key	Type No.	Mfr.	Туре	fae *fT **fab (kc)	P _c (w)	T _i (°C)	w/°C	VCEO *VCBO (v)	I _C	hfe *hFE	l CO (ma) (*μa)	Powr. Gain (db)	Powr. Out (w)	t _r (μsec)	t _s (μsec)	V _{ce(sat}) Remarks
HL 1	2N1830 2N1831 2N1832 2N1833 2N2109	WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	0.014 0.014 0.014 0.014 0.014	250 250 250 250 250 250	175 175 175 175 175 175	2.22 2.22 2.22 2.22 2.22 2.22	*50 *100 *150 *200 *50	30 30 30 30 30 30	*10 *10 *10 *10 *10	5 5 5 5 5		8 8 8 8	3.0 3.0 3.0 3.0 1.3	0.87 0.87 0.87 0.87 0.87	0.4	
	2N2110 2N2111 2N2112 2N2113 2N2114	WH WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	0.014 0.014 0.014 0.014 0.014	250 250 250 250 250 250	175 175 175 175 175 175	2.22 2.22 2.22 2.22 2.22 2.22	*100 *150 *200 *250 *300	30 30 30 30 30 30	*10 *10 *10 *10 *10 *10	5 5 5 5 5	-	4 4 4 4	1.3 1.3 1.3 1.3	0.4 0.4 0.4 0.4 0.4	0.4 0.4 0.4 0.4 0.4	
HL 2	2N2130 2N2131 2N2132 2N2133 2N2116	WH WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	0.014 0.014 0.014 0.014 0.014	250 250 250 250 250 250	175 175 175 175 175 175	2.22 2.22 2.22 2.22 2.22 2.22	*50 *1 00 *150 *200 *50	30 30 30 30 30 30	*10 *10 *10 *10 *10 *10	5 5 5 5		8 8 8 8 5.6	3.0 3.0 3.0 3.0 1.4	0.87 0.87 0.87 0.87 0.63	1,4	-
	2N2117 2N2118 2N2119 2N2123 2N2124	WH WH WH WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	0.0145 0.0145 0.0145 0.016 0.016	250 250 250 250 250 250	175 175 175 175 175 175	2.22 2.22 2.22 2.22 2.22 2.22	*100 *150 *200 *50 *100	30 30 30 30 30 30	*10 *10 *10 *10 *10 *10	5 5 5 5		5.6 5.6 5.6 6.4 6.4	1.4 1.4 1.4, 1.5	0.63 0.63 0.63 0.74 0.74	0.63 0.63 0.63 0.74 0.74	
HL 3	2N2125 2N2126 2N1238 2N1239 2N1240	WH WH HU HU HU	npn,AJ,si npn,AJ,si pnp,FJ,si pnp,FJ,si pnp,FJ,si	0.016 0.016 0.8 0.8 1.0	250 250 1.0 1.0 1.0	175 175 200 200 200	2.22 2.22 - - -	*150 *200 15 15 35	30 30 0.5 0.5 0.5	*10 *10 14 32 14	5 5 0.1 0.1 0.1	1 1 1 1 1	6.4 6.4 - -	1.5 1.5 —	0.74 0.74 - -	0.74 0.74 - - -	
	2N1241 2N1242 2N1243 2N1244 2N1073	HU HU HU HU BE	pnp,FJ,si pnp,FJ,si pnp,FJ,si pnp,FJ,si pnp,DJ,ge	1.0 1.0 1.0 1.2 1.5	1.0 1.0 1.0 1.0 1.0	200 200 200 200 200 100	- - - 1.5	35 65 65 110 *40	0.5 0.5 0.5 0.5 10	24 14 24 14 *20-6	0.1 0.1 0.1 0.1 2.0	11111	1111	11111	1 1 1 1	- - - 1.0	DE
HL 4	2N1073A 2N1073B B-1085 0C22 0C23	BE BE BE AMP AMP	pnp,DJ,ge pnp,DJ,ge pnp,DJ,ge pnp,PADT,ge pnp,PADT,ge	1.5 1.5 1.5 2.5 2.5	35 35 60 10	100 100 100 75 75	1.5 1.5 1.0 -	*80 *120 120 *32 *40	10 10 10 1	*20-6 *20-6 5a 150 150	2.0 2.0 2.0 30 30				11111	1.0 1.0 0.75 —	DE DE
HL 5	OC24 2N1518 2N1519 2N1520 2N1521	AMP DE DE DE DE	pnp,PADT,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	2.5 4 4 4 4	10 70 70 70 70 70	75 100 100 100 100	- 1.2 1.2 1.2 1.2	*32 *50 *80 *50 *80	1 25 25 35 35	150 15-60 15-60 17-18 25-100	30 100 100 100 100		40 40 40 40 40	20 20 20 20 20 20	- 7 7 7	- 0.3 0.3 0.3 0.3	\$0 \$0
IIL J	2N1522 2N1523 2N297 2N297 A 2N618	DE DE BE CL CL	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	4 4 5 5 5 5	70 70 35 12 14	100 100 90 95 90	1.2 1.2 1.5 2.0 1.5	*50 *80 50 *60 *80	50 50 5 5 3	25-100 25-100 - - -	100 100 3 3 3		40 40 - -	20 20 - -	7 7 - -	0.3 0.3 1.02 1.0 0.8	SO SO BE, DE, MO, SO MO, BE
HL 6	2N375 2N378 2N379 2N380 2N458	CL TS CL TS TI	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	7 7 7 7	50 5 50 50 50	95 100 85 100 95	- 1.2 0.3 0.8 0.72	*80 20 80 30 80	3 5 3 5 5	30 - - -	3 0.5 5 0.5 1		-	- - - 12	- - - 12.5	1.0 - 1 - 0.24	MO,BE BE TS, BE BE, CL CL, BE
112 0	2N459 2N1011 2N2230 2N2231 2N2232	TS DE WH WH WH	pnp,AJ,ge pnp,AJ,ge n pn,AJ,si npn,AJ,si npn,AJ,si	7 7 7 7 7	50 70 150 150 150	100 100 2.0 150 150	0.8 0.1 *50 2.0 2.0	60 *80 10 *100 *150	5 5 *400 10 10	- 10 *400 *400	0.5 100 - 10 10	-	- 12 -	5 3.5 12 12	- 2 2.2 3.5 3.5	0.3 2.2 2.2	BE, CL 2N1011 Sig. C., MO, BE, CL
HL 7	2N2233 2N456A 2N457A 2N458A 2N1038	WH DE DE DE TI	npn,AJ,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	7 10 10 10 10	150 94 94 94 20	150 100 100 100 100	2.0 1.2 1.2 1.2 0.27	*200 *40 *60 *80 40	10 7 0.065 7 3	*400 - - - 33	1 0 0.065 0.065 0.065 50			12 10 10 10	3.5 5 5 5	2.2 - - - -	TI, BE, CL TI, BE, CL TI, BE, CL BE, KF
	2N1039 2N1040 2N1358 2N1412 2N1970	TI TI DE DE DE	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	10 10 10 10 10	20 20 150 150 150	100 100 100 100 100	0.27 0.27 2 2	60 80 *80 *100 *100	3 15 15 15	33 33 - - -	50 50 0.1 100 0.1	1 1 1 1	- 40 40 -	- 15 15 10	- 5 5 5	0.3 0.3	BE, KF BE, KF TS, TI, RCA, MO, SO, BE TS, RCA, MO, SO, BE SO, MO

	Remarks										·	AMF	STC, AMF STC, AMF STC, AMF	AMF	
ıG	V ce(sat)	2.2 2.2 2.2 .5 .5	.5 .0.4 0.4	0.04	0.4 0.4 0.4 0.4	0.4 0.4 0.63 0.63	0.63 0.63 0.63 0.63	0.63 0.63 0.63 1.0	0.74	0.74 0.74 0.74 0.74 0.74	0.74 0.74 0.74 0.3	0.3 1.5 1.5 1.5	1.5 2.5 25 2.5 2.5	2.5 2.5 - 0.6	9.0 9.0 9.0 0.6 0.6
SWITCHING	† ξ (μsec)	ოოო	133333	2 2 11.3	2222	2 2 1.4 1.4	1.3	1 13333	11551	1.5	1.55			22 11	22222
01	t _r (μsec)	∞∞∞ I I	4 4 4	44400	თ თ თ თ თ	9 5.6 5.6	5.6 12 12 12 12	12222	6.4 6.4 6.4	6.4 16 16 16 16	16 16 3 3 3	വവവവ	N N N N	യവിവവ	∞∞∞∞∞
S	Powr. Out (w)	1111	1111	1111	1111	1111	1111	1111	1111	11111	0.4w	0.4w	1111	1 1 1 1	1111
CHARACTERISTICS	Powr. Gain (db)	01111	11111	1111	11111	1111	1111	1 1 1 1 1	1 1 1 1 1	11111	1111	1111	1111	1 1 1 1	11111
HARACI	Сод (ма) (*да)	10 10 10 * 40 * 40	*40 *40 5	5 5 15 15	15 15 15 15 15	15 15 5 5 5	5 15 15 15 15	15 15 10	10 10 5 5	5 15 15 15	15 15 15 10	010000	22222	10 10 10 10 10 10	22222
	* h fe	*100 *100 *25 *25	*25 *25 *10 *10 *10	* * * * * * * * * * * * * * * * * * * *	* * 10	110000	* 10 * 10 * 10 * 10	*10 *10 *10 *10 *40	20 10 *10 *10 *10	01001 11001 11001	1 * * * * * * * * * * * * * * * * * * *	1 ∞ ∞ ∞ ∞	∞∞∞∞∞	***************************************	
	_00	33100	888 ₃₃	20 30 30 30 30 30 30 30 30 30 30 30 30 30	30 30 30 30 30 30 30 30 30 30 30 30 30 3	88888	20 20 30 30 30 30	10 3 3 3 3 3	333310	20 20 30		7.5	7.5	7.5 7.5 7.5 4	
NGS	VCEO (V)	*50 *100 *150 *40 *60	*80 *100 *50 *100 *150	*200 *250 *300 *50 *100	*150 *200 *50 *100 *150	*250 *250 *50 *100 *150	*200 *50 *100 *150 *200	*50 *100 *150 *200 100	130 130 *50 *100 *150	*200 *50 *100 *150 *200	*50 *100 *150 *200 *60	*60 *30 *60 *100	*200 *250 30 60 100	150 *200 *80 *80 *80	* 100 * 120 * 140 * 160 * 180
MAX. RATINGS	J ₀ /*	2.0 2.0 2.0 2.7 .27	.27 .27 2.22 2.22 2.22	2.22 2.22 2.22 2.0 2.0	2.0 2.0 2.0 210 2.0	2.0 2.0 2.22 2.22 2.22 2.22	2.22 20 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	2 2.22 2.22 2.22 2.22	2.22 2.0 2.0 2.0 2.0 2.6	2.0 2.0 2.0 2.0 0.1	1.4	1.4 1.4 1.4 1.4		4.1.1.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1
W	T _i (0°)	150 150 100 100	100 100 175 175 175	175 175 175 175 175	175 175 175 175 175	175 175 175 175 175	175 175 175 175 175	175 175 175 175 100	100 100 175 175 175	175 175 175 175 175	175 175 175 175 175 100	150 150 150 150	150 150 150 150 150	150 150 150 150	
	€ ق		20 250 250 250 250	250 250 250 200 200	200 200 200 200 200 200 200 200 200 200	200 200 250 250 250	200 200 200 200 200		150 150 250 250 250	200 200 200 200 200 200 200 200 200 200	200 200 200 7.5	2.5 150 150 150 150	150 150 150 150 150	150 150 150 150	000000
	**f	22222	14 14 10	4 1 1 4 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	14 14 14 14	14.5 14.5 14.5 14.5	14.5 14.5 14.5 14.5	14.5 14.5 14.5 14.5 15	15 16 16 16		16 16 16 16 17		25 25 25 25 25 25 25 25 25 25 25 25 25 2	22 23 23 23 23 23 23 23 23 23 23 23 23 2	
15.	Type	npn,AJ,si npn,AJ,si npn,AJ,si pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge npn,AJ,si npn,AJ,si	npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si	n pn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si	npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si	npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si	npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si	pnp,AD,ge pnp,AD,ge npn,AJ,si npn,AJ,si	npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si	npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si pnp, AJ, se	pnp,AJ,ge npn,FJ,si npn,FJ,si npn,FJ,si npn,FJ,si	npn, FJ, si npn, FJ, si npn, FJ, si npn, FJ, si npn, FJ, si	npn, FJ, si npn, FJ, si npn, FJ, si pnp, AJ, ge npn, AJ, si	npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si npn, AJ, si
	Mfr.	H H H H H H H	T T H H H H H H	HAM HAM	****	HW HW HW HW	HHHHHH HHHHH	####	FEXXX	****	WH WHH	H H H H H			*****
	Type No.	2N2226 2N2227 2N2228 2N2564 2N2565	2N2566 2N2567 2N1809 2N1810 2N1811	ZN 1812 ZN 1813 ZN 1814 ZN 27 39 ZN 27 40	2N2741 2N2742 2N2757 2N2758 2N2758	2N2760 2N2761 2N1816 2N1817 2N1817	2N1819 2N2745 2N2746 2N2747 2N2747	2N2763 2N2764 2N2765 2N2766 2N1046	2N1046A 2N1046B 2N1823 2N1824 2N1824	2N1826 2N2751 2N2752 2N2753 2N2753	2N2769 2N2770 2N2771 2N2772 2N2772 2N1611	2N1612 2N1015 2N1015A 2N1015B 2N1015C	2N1015D 2N1015E 2N1016 2N1016A 2N1016B	ZN1016C ZN1016D ZN1016E ZN1971 151-04	151-05 151-06 151-07 151-08 151-08
	Cross Index Kev		HL 8		H 9		HL 10		HL 11		HL 12		HL 13		HL 14

Available ONLY from KEMET"

J-SERIES (POLAR TYPE) SOLID TANTALUM CAPACITORS

75 60 50 35 7

J-Series · Actual Size

Microfarads: .0047 to 330

Temperatures: -80 to +125°C.

4 cases conform to MIL-C-26655A. 100v units presently available only in military cases A and B.

LINDE/KEMET PRODUCTS for Electronics/Aerospace

LINDE Laser/Maser Crystals • Sapphire
• Rare Gases/Mixtures • Cryogenic
Materials • Single Crystal Refractory
Metals • Semiconductor Silicon • Silicon Monoxide • KEMET Barium
Getters and Solid Tantalum Capacitors
(Request Technical Data)

0.1 to 2.7 Microfarads Temperature Range: 100v at 85°C. • 67v at 125°C.

KEMET was first to bring you high-voltage solid tantalums -50, 60, and 75 volts - three big contributions in $2\frac{1}{2}$ years!

Now KEMET pioneers with true quantity production of 100-volt units—in hermetically sealed A and B case sizes conforming to Style CS12 and Style CS13 in MIL-C-26655A.

These new 100-volt capacitors show the same resistance to shock and vibration, the same stability of electrical parameters with temperature change, and the same low levels of leakage current as the lower-voltage J-Series units. Also, the maximum dissipation factor has been reduced to 3%—the lowest ever—or one-half the usual J-Series m.d.f.

Today's total J-Series provides microfarad values from .0047 to 330; working voltages of 6, 10, 15, 20, 35, 50, 60, 75, and 100 volts—offering standard E.I.A. values with ± 5 , 10, and 20% tolerances.

KEMET is your assurance of maximum reliability, since KEMET controls the characteristics of tantalum powder from mine to finished product! For technical data on any member of the J-Series, write to:

"THE SPECIALIST IN SOLID TANTALUM CAPACITORS"

Kemet Department, Linde Company, Division of Union Carbide Corporation, 11901 Madison Avenue, Cleveland 1, Ohio. Telephone: 216-221-0600.

KEMET DEPARTMENT

LINDE

"Kemet," "Linde," and "Union Carbide" are registered trade marks of Union Carbide Corporation.

HIGH RELIABILITY

WIDE RANGE PERFORMANCE

CIRCUIT MINIATURIZATION

SILICON NPN POWER TRANSISTORS

A NEW GENERATION OF MINIATURE SILICON POWER TRANSISTORS FROM SSPI OFFERING SIGNIFICANTLY IMPROVED PERFORMANCE, "DESIGNED IN" RELIABILITY, AND REDUCED SIZE . . . AT COMPETITIVE PRICES.

		Power	Volta Ratin	_	Operating						Typical		Switc	I Saturate hing Time oseconds	
		Dissipation		VCEO	Current		Minir	num h	FE	Maximum	ft	Ic=	1A IB	$=1_{B2}=100$	0mA
Туре	Package	(Case Temp.)	Vсво	(Sus)	Range	VcE(sat)@Ic	50mA	1A	5A	Ісво@Усв	Мс	Delay	Rise	Storage	Fall
2N2849		5W @ 125°C	100	80	Up to 5A	0.4V @ 1A	50	100	_	0.1μA @ 80V	80	20	40	350	50
2N2850		5W @ 125°C	100	80	"	0.25V @ 1A	25	40	-	0.1μA @ 80V	60	20	50	200	50
2N2851	ιĊ	5W @ 125°C	100	80	"	0.4V @ 1A	25	40	-	0.1μA @ 80V	60	20	50	200	50
2N2852	E TO-5	5W @ 125°C	100	80	"	0.4V @ 1A	15	20	_	0.1μA @ 80V	40	20	60	150	50
2N2853	PANCAKE	5W @ 125°C	60	40	"	1.5V @ 5A	-	40	20	0.1μA @ 40V	60	20	50	250	50
2N2854	PAN	5W @ 125°C	60	40	"	0.4V @ 1A	50	100	-	0.1μΑ @ 40V	80	20	40	350	50
2N2855		5W @ 125°C	60	40	"	0.4V @ 1A	25	40	-	0.1μΑ @ 40V	60	20	50	200	50
2N2856		5W @ 125°C	60	40	"	0.4V @ 1A	15	20	-	0.1μA @ 40V	40	20	60	150	50
2N2657	TO-5	4W @ 100°C	80	50	"	0.5V @ 1A	_	40	15	0.1μΑ @ 60V	40	20	50	600	90
2N2658	TO-5	4W @ 100°C	100	70	"	0.5V @ 1A	_	40	15	0.1μA @ 60V	40	20	50	600	90

All of the above types optionally available in any of the 4 packages shown.

In addition to the above Preferred Types, the following Types are also available from SSPI:

2N497, 2N498 • 2N545, 2N546, 2N547, 2N548, 2N549, 2N551 • 2N656, 2N657 • 2N1052, 2N1054, 2N1055 2N1116, 2N1117 • 2N1714, 2N1715, 2N1716, 2N1717, 2N1718 2N1719, 2N1720, 2N1721

617-745-2900

TWX: 617-744-5297

	Remarks		Microbloc TO-46 Microbloc	Microbloc Microbloc Microbloc	Microbloc Microbloc Microbloc Microbloc	AMP AMP	AMP	ಶಶಶಶಶ	CC CC CC CC CC CC CC CC CC CC CC CC CC	BE, e hea	
NG	V _{ce(sat)}	9.0 9.0 9.0 9.0 9.0	0.9	- - 0.2 0.2	1 1 1 1	t 1	11111	0.5 1.7 0.5 0.7	0.7		.1 .1 0.5 0.5
SWITCHING	† _s (μsec)	22222	1 1 2 2 2	1 1 100i.	1111	1 1	11111	11111	12.1	12.5	1.2 1.2 1.2 8
	t (μsec)	∞ ∞ ∞ ∞ ∞	∞∞∞ I I	040	1111	1 1	1 1 1	155	12 12	12	5.5
S	Powr.	1111	11111	1 1 1 1 1	1 11	1 1	11111	1111	11111	1 1 1 1	111111
CHARACTERISTICS	Powr. Gain (db)	1 1 1 1 1	1 1 1 1	11111	1111	11111	1111	1111	11111	1111	11111
CHARAC	(mα) (πα)	22222	00011	- 0.003 .001	0.003 0.01 0.001 0.003 25	00.11	200000	2222	00000	0.6 20 10mµa 10mµa *40	* 40
	h fe	* * * * * * * * * * * * * * * * * * *	*18 *18 *18 20 20	60 60 40 *40-120 *40-120	70 65 45 175 10ma	10ma 10ma 10ma 90 50	70 32 90 50 70	60 60 60 45 45	45 30 30-90	30-90 100 2.5 2.5 *45	*45 *45 *20/50 *20/50
	_0 🖲	0.	6.0 6.0 6.0 0.5 0.5	0.5	0.5 0.5 0.5 *10	*10 *10 *10 *10	9999	4 15 6 6	2000	5 2 1:0 1:0 3.5	5.5
INGS	CEO *VCBO	*200 *80 *100 *120 *140	*160 *180 *200 60 100	60 100 80 80 80	60 120 75 60 60	7.5	1 8 9 9 8	100 65 90 60 90	100 60 90 100 4	60 40 *60 *60 *60	*100 *200 *80 *120 *160 *15
MAX. RATINGS)°/*	1.1.4.1.4	1.4 1.4 1.4 0.02 0.02	0.02 0.02 0.02 16.0	0.02 0.02 0.02 *200	*60 *100 *150 -	11111	112	1.2 1.2 1.2 1.2 0.67	0.67 0.017 28.5 28.5 28.5 .07	.07
M	T _i (°C)	150 150 150 150 150	150 150 150 175 175	175 175 175 200 200	175 175 175 175 175	150 150 150 90 90	06 06 06 06 06 06 06 06 06 06 06 06 06 0	1000110000	000000	100 85 200 200 110	11111111
	ه°€	1000000	100	3 3 3 2800 2800	3 3 3 1.43	1.43 1.43 1.43 30 30	30 13 13 13	09	000000	2222	5 85 85 85 85 170
-	*f *f **f (kc)	25 25 25 25 25	22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	000000000000000000000000000000000000000	100 100 130 150	150 150 150 200 200	200 200 200 200 200	400 400 400 400 400 400 400	400 400 400 430	430	11111
	Туре	npn, AJ, si npn, AJ, si n pn, AJ, si n pn, AJ, si npn, AJ, si	npn, AJ, si npn, AJ, si npn, DJ, si npn, DD, si npn, DD, si	npn,DD,si npn,DD,si npn,DD,si npn,PE,si npn,PE,si	npn,DD,si npn,DD,si npn,DD,si npn,DD,si npn,AJ,si	npn,AJ,si npn,AJ,si npn,AJ,si pnp,PADT,ge pnp,PADT,ge	pnp,PADT,ge pnp,PADT,ge pnp,PADT,ge pnp,PADT,ge pnp,PADT,ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	pnp,AJ,ge pnp,AJ,ge npn, PE,si npn,PE,si pnp,AJ,ge	pnp, AJ, ge pnp, AJ, ge pnp, AD, ge pnp, AD, ge pnp, AD, ge
	Mfr.	WH WH	RA RAH	RARATIL	RA RA WH	WH WH WH AMP	AMP AMP AMP AMP	BEE.	BE BE	FEERPA	M W W W W W W W W W W W W W W W W W W W
	Type No.	151-10 152-04 152-05 152-06 152-07	152-08 152-09 152-10 2N2310 2N2311	2N2312 2N2313 2N2314 2N2243 2N2243	RT697M RT699M RT1613M RT1420M 2N1015D	2N1016A 2N1016B 2N1016C 2N1667 2N1668	2N1669 0C28 0C29 0C35 0C35	2N420 2N420 2N420A 2N637 2N637A	2N637B 2N638 2N638A 2N638B 2N638B 2N456	2N671 2N671 2N2350 2N2350A 2N2467	2N2468 2N2469 2N2526 2N2527 2N2527 2N2528 2N2728
	Cross Index Key	HL 15		HL 16		HI 17		E		H 19	

				f		МА	X. RATI	NGS			CHARACT	TERISTIC	:s		SWITCHI	NG	
Cross Index Key	Type No.	Mfr.	Туре	*f T **fab (mc)	P _c (w)	T _i (°C)	w/°C	VCEO *VCBO (v)	I _C	h _{fe} *hFE	1 _{C0} (ma) (*μa)	Powr. Gain (db)	Powr. Out (w)	t _r (μsec)	† _s (μsec)	V _{ce(sat)} (μą)	Remarks
	STC1103 STC1104 2N673 2N424A 2N1620	STC STC PH STC STC	npn,DJ,si npn,DJ,si pnp,AJ,ge npn,DM,si npn,DM,si	1.0 1.0 *1.1 2 2	85 85 1.0 85 85	200 200 85 200 200	0.425 0.425 - 0.4 0.425	60 100 *40 60 100	6 6 2 3 5	25-75 25-75 *100 12-60 15-75	0.025 0.025 *20 10		11,11	-	11111	- 0.3 - -	Infinite heat sink AMF AMF
HL 20	2N1701 2N1702 2N1768 2N1769 2N551	STC STC STC STC TR	npn,DM,si npn,DM,si npn,DM,si npn,DM,si npn,DJ,si	2 2 2 2 2 3	25 75 40 40 3	200 200 200 200 200 200	0.125 0.375 0.2 0.2 0.5	60 60 80 100 60	2.5 5 3 3	20-80 15-60 35-100 35-100 20-80	0.1 0.2 .015 .015	1 1 1 1	1 1 1 1	- - 1.2	- - - 0.3	- - - 0.9	AMF
	2N552 2N1055 2N547 2N548 2N549	TR TR TR TR TR	npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si	3 3 4 4 4	3 5 5 5	200 200 200 200 200 200	0.5 0.045 0.5 0.5 0.5	30 100 60 30 60	11111	20-80 20-80 20-80 20-80 20-80 20-80	1.2 0.001 1.2 0.5 0.5	-	11111	1.2 - 0.7 0.7 0.7	0.3 - 0.2 0.2 0.2	0.9 - 3.0 2.0 1.5	
HL 21	2N550 2N1117 2N1116 2N1173 ST402	TR TR TR WE TR	npn,DJ,si npn,DJ,si npn,DJ,si npn,AJ,ge npn,DJ,si	4 4 6 6 6	5 5 5 - 50	200 200 200 100 200	0.5 0.5 0.5 3.33 0.33	30 60 60 *35 *60	- - 0.2 3	20-80 40 40 80 30	0.5 0.04 1.2 0.004 20	- - - -	-	0.7 0.7 0.7 - 0.25	0.2 0.2 0.2 - 0.5	1.5 1.5 3.0 - 6	
	ST403 2N1174 2N545 2N546 2N1052	TR WE TR TR TR	npn,DJ,si pnp,AJ,ge npn,DJ,si npn,DJ,si npn,DJ,si	6 7 8 8	50 - 5 5 5	200 100 200 200 200 200	0.33 3.33 0.5 0.5 0.5	*45 *35 60 30 *60	3 0.2 - - -	30 85 15 15	20 0.005 1.2 0.5 0.001	-		0.25 - 0.3 0.3 -	0.5 - 0.15 0.15 -	5 - 3.0 2.0 -	
HL 22	2N1212 2N2229 2N1054 2N1208 2N1209	TR WH TR TR TR	npn,DJ,si npn,AJ,si npn,DJ,si npn,DJ,si npn,DJ,si	10 *10 12 12 12	85 150 5 85 85	200 150 200 200 200	0.27 2.0 .045 0.27 0.27	*60 *200 *125 *60 *45	3000 10 - 5 5	12-60 *100 20-80 15 20	1000 10 .0004 1.0 2.0	1,111		8 - 0.25 0.25	3	3.5 2.2 — 3 3	STC STC
	2N1250 ST401 2N1907 2N1908 2N1072	TR TR TI TI WE	npn,DJ,si npn,DJ,si pnp,AD,ge pnp,AD,ge npn,DD,si	12 12 *20 *20 30	85 85 150 150 12	200 200 - - 150	0.27 0.27 - - 65	60 *45 100 130 75	5 5 20 20 1	15 20 *10 *10 13	1.0 2.0 0.3 0.3	1111		0.25 0.25 - - 0.05	- - - - 0.05	3 3 1.7 1.7	STC US, MIL only
HL 23	2N1041 2N498 2N978 2N1893 2N1984	TI FA FA FA FA	npn,AJ,ge npn,DP,si pnp,DD,si npn,DP,si npn,DM,si	33 *50 *50 *50 *50	20 4.0 1.75 3 2	100 200 150 200 150	0.27 22.8 0.010 17.2 16.0	100 100 20 - 25	3	33 *27 *40 - 40	50 *0.0004 *0.1 .0003 1.0		-			-	BE, KF GI, TI RA
	2N1985 2N1986 2N1987 2N1988 2N1989	FA FA FA FA	npn,DM,si npn,DM,si npn,DD,si npn,DM,si npn,DM,si	*50 *50 *50 *50 *50 *50	2 2.0 2.0 2	150 150 150 150 150 150	16.0 16.0 16.0 16.0 16.0	25 25 25 45 60		4.0 100 50* 70 40	1.0 1.0 1.0 1.0 1.0	1 1 1 1			1 1 1 1		RA RA GI, RA
HL 24	2N1991 2N656 2N657 2N912 2N1975	FA FA FA FA	pnp,DM, si pnp,DP,si npn,DP,si npn,DP,si npn,DP,si	*50 *60 *60 *60 *60	2.0 4.0 4.0 1.8 3	150 200 200 200 200 200	16.0 0.0228 0.0228 10.3 17.2		100	40 *60 - 42 42	.005* *0.004 *60 .0003µa .003µa	*0.000 - - -	4		- - - -	- - - - .24	TR Microbloc
	2N1978 2N2102 2N2270 RT5202 RT5230	FA RCA RCA RA RA	npn,DP,si npn,PL,si npn,PL,si npn,DD,si npn,DD,si	*60 *60 *60 60	30 5 5 5 2	200 - - 175 175	0.17 - - 0.033 0.013	40 120 60 175 30	10 10 0.5 0.5	40 *20 *35 50 50	*0.001 - 0.001 -						
HL 25	TA6200 2N526 2N1925 2N698 2N721	FA SY GE FA FA	npn,DP,si pnp,AJ,ge pnp,AJ,ge npn,DP,si pnp,DP,si	*60 64 64 *70 *70	4.0 225 225 3.0 1.5	200 100 85 200 175	0.0228 3 - 22.8 10.0	*45 40 *60 35	500 500 - -	*80 10 4 40 30	- - .0003 *0.01		- 3 - -	0.08		-	GE, TS, MO, TI MO, TI TR, NA, GI, TI
III oc	2N870 2N911 2N1131 2N1409 2N1410	FA FA FA PSI PSI	npn,DP,si npn,DP,si pnp,DP,si npn,MS,si npn,MS,si	*70 *70 *70 70 70	1.8 1.8 2 2.8 2.8	200 2 00 175 150 150	10.3 10.3 13.3 0.024 0.024	60 60 *50 30 45	0.5		0.0003 *0.0003 *0.01 10	- - 7 7	- - 1 1	- 0.08 0.06 0.042	- - 0.1 0.17	0.8 0.8	TI HU, TI, TR Power gain F=70mc RA RA, GI
HL 26	2N1889 2N1974 2N1987 2N696 2N717	FA FA FA FA	npn,DP,si npn,DP,si npn,DM,si npn,DP, si npn,DP,si	*70 *70 *70 *80 *80	3 3 2 2 2 1.5	200 200 150 175 175	17.2 17.2 0.0016 13.3 10	60 60 40 *60 *60		*60 *70 50 *40 *40	*0.000 *0.0003 - 0.01 0.01		- - - -	- - 0.08 0.08	- - 0.03		GI, RA TR, SY, NA, TI, MH GI, PSI, NA, RA, MH, TI, TR

ELECTRONIC DESIGN

	Remarks	PSI, RA, GI, MH, TI, TR GI, TI TI HU, TI, TR TR, IND, PSI, TI, RA	RA, GI, TI, PSI Microbloc		NA, TR, PSI, RA, US NA, GI, PSI, RA, TI, TR TI, RA PSI, RA, NA, GI, TI, TR GI, RA	FA TI TR RA	TR, IND, PSi, RA, NA, GI, TI GI, TI, RA	TI, RA RA Microbloc, RA	Microbloc, RA Microbloc, RA CL, Epitaxia I, RA	Eptaxial Epitaxial Epitaxial Epitaxial	Epitaxial Epitaxial	GI, CL, MO CL, Epitaxial, MO		M0 BE, 2N639A T1 NA, T1 NA, T1	NA, TI
NG DK	V _{ce(sat)} (μα)	1 1 1 1 1	1111	1111	1111	0.0	1 1 1 1	1111	1111	1 1 1 1 1	1 1 444	12:2:1	1111		5.0 - 11.5 11.5
SWITCHING	†sec)	_ _ _ 0.05	1111	1111	1111	0.14	0.05	: 1 1 1 1	1111	1 1 1 1 1	- 40ns 40ns 40ns	40ns 40ns 40ns	11,11	1111	1111
	t (hsec)	0.08	0.08	1 1 1 1 1	0.08	0.11	0.08	1111	1111	1 1 1 1 1	20ns 20ns 20ns 20ns	20ns 20ns 20ns -	1111	1111	1.0
S	Powr. Out (w)	1 1 1 1	1111	1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 20 1 1	1 1 1 1	1111	11111	1 1 1 1	1111	11111	11111	11411
TERISTI	Powr Gain (db)	1 1 1 1	71	11111	1.1.1.1	1 1 1 1 1	111		1111	1 1 1 1 1	1111	1111	11,11	1111	1 1 2 1 1
CHARACTERISTICS	1 (mα) (*μα)	0.01 *0.0003 *0.01 0.01 *0.1	0.000 0.02 0.02 0.02 0.02	1 1 1 1 1	0.01 0.01 *0.0004 0.01 *0.0004	0.01 0.01 0.0004 *0.01 0.005	*0.001 0.01 0.1 *0.002 *0.0004	*0.000 *0.01 *0.005 -	0.01 *0.000 *0.0008 0.0003 0.002*	*0.005 0.01 0.01 0.01 0.01	0.01 0.01 2na 2na 2na	Ana 2na 2na 2na *0.004 0.0004	*0.1 *0.1 0.015 *.005 *0.003	*0.0003 2 10 10 10	10 5 115 115
	hfe *hFE	* 40 * 40 * 60 * 50 * 35	80 50 70 40 40	09 02 02	65 75 80 65 80	30 60 130 150	40 45 130 25 130	130 150 100 140 70	65 45 70 80*	*50 20-60 40-120 100 20-60	40-120 100-300 *20-60 *40-120 *100-300	*20-60 *40-120 *100-300 *50	*40 *70 20 *55 *50	*50 - 12 30	30 *40-*120 50 10 10
	_o(e)	1 1 1 1	0.5	0.5	1 1 1 1 1	1 1 1 1 1	0.05	1 1 0.5	0.5	1111	1 1 1 1		1 1 13:1 1	1 m 1 1 1	252 30 30
NGS	*VCB0	*60 85 *50 -	50 20 40 40 120	45 40 30 60	80 80 80 100	80000	20 30 50 50	80 30 32 60 80 80	120 75 25 60 25	09* 09* 09*	*60 *60 35 35 35	20 33 33 32 33 33 33 33 33 33 33 33 33 33	15 15 35 6.0 15	15 80 60 100 60 60	100 120 80 *250 *300
MAX. RATINGS	7°/w	10.3 10.3 10.3 13.3	17.2 0.0134 0.0134 0.0134	0.013 0.013 0.013 0.013	13.3 10 0.01 10 0.01	0.01	2- 13.3 13.3 4 0.017	0.017 0.013 0.017 0.0016 0.0016	0.02 0.007 0.007 0.007 6.9	0.0069 5.33 5.33mw 5.33mw 3.33mw	3.33mw 3.33mw 5.33 5.33 5.33	3.33 3.33 6.9 0.007	0.0069 0.0069 80.0 0.005 0.00171	0.00171	
MA	T _i (°C)	175 200 175 175 175	200 175 175 175 175	175 175 175 175 175	175 175 200 175 200	175 175 200 175 200	150 175 175 150 200	200 175 200 150 175	175 175 200 200 200	200 175 175 175 175	175 175 175 175 175	175 175 175 200 200	200 200 200 200 200 200 200	200 200 200 200 200	200 _ 110 175 175
	o (₹)	1.5 1.8 1.5 2	32223	22222	2 1.5 1.8 1.5 1.5	1.5 1.8 1.5 1.8	2 _W	2222 2222	3 1.2 1.2 1.2	1.2 3 3 3 1.8	33333	1.8 1.8 1.2 1.2	11.2 11.2 6.0 11.0 0.3	0.3 14 1	1.8 - 250 250
	*f	.08 * * * 8 .80 * * * * 8 .80 * * * * * 8	88888 *	28888	*100 *100 *100 *100	100 100 *100 *100	100 *100 100 100 *100	*100 *100 *100 *100	100 100 *150 *400 *400	*400 400 400 400 400	400 * * 400 * * 400 * 400	* * 400 * * 400 * 450 * 450	*650 *650 700 *800 *800	006*	10000
-	Туре	npn, DP, si npn, DP, si pnp, DP, si pnp, DP, si npn, DP, si	npn,DP,si npn,DD,si npn,DD,si npn,DD,si npn,DD,si	is,00,ndu npn,00,si is,00,ndu is,00,ndu is,00,ndu is,00,ndu	npn, DP, si npn, DP, si npn, DP, si npn, DP, si npn, DP, si	nh, MS, si npn, MS, si npn, DP, si npn, DM, si npn, DP, si	npn,MS,si npn,DP,si npn,DP,si npn,DM,si npn,DP,si	npn, DP, si npn, DM, si npn, DP, si npn, DM, si	npn, DD, si npn, DD, si pnp, DP, si npn, DP, si si , QD, np	npn,0P,si npn,0DPL,si npn,0DPL,si npn,0DPL,si npn,0DPL,si	npn, DDPL, si npn, DDPL, si npn, PE, si npn, PE, si npn, PE, si	npn, PE, si npn, PE, si npn, PE, si npn, DP, si npn, DP, si	npn,DP,si npn,DP,si pnp,D,ge npn,DP,si npn,DP,si	npn,DP,si pnp,AJ,ge npn,MS,si npn,DM,si npn,DM,si	npn,DM,si npn, PL,si pnp,DAP,ge npn,FJ,si npn,FJ,si
	Mfr.	F F F F F F F F F F F F F F F F F F F	FA RA RA RA	RARAR	FA FA FA FA	TT FA	WE FA FA FA	FA	FARAA	M W W W W W W W W W W W W W W W W W W W	OW WO	25995		SE S	WH WE BE
	Type No.	2N719 2N719A 2N722 2N1132 2N1132 2N1132	2N1613 RT482. RT483 RT484 RT698M	RT5151 RT5152 RT5203 RT5204 RT5212	2N699 2N718 2N718A 2N720 2N720	2N730 2N731 2N871 2N909 2N910	2N1060 2N1253 2N1420 2N1444 2N1711	2N1890 2N1972 2N1973 2N1983 2N1983	2N2316 2N2317 2N869 2N915 2N916	2N947 2N2217 2N2218 2N2218 2N2220	2N2221 2N2222 2N2787 2N2788 2N2788 2N2789	2N2790 2N2791 2N2792 2N708 2N708 2N914	2N2368 2N2369 2N1645 2N709 2N709 2N917	2N918 2N268A 2N497A 2N498A 2N656A	2N657A 2N720A 2N1751 2N1813 2N1814
	Cross Index Key		HL 27		HL 28		HL 29		HL 30		HL 31		11 97 11 97	3	

		I								
	Remarks	GI, RA					TO-51 co-planar ft = 600 mc	ft = 1000 mc	7/16 Hex 7/16 Hex Pancake	Pancake T0-5 T0-5
97	Ϋ́ ce(sat) (μα)	0.8 0.8 - 0.35	0.16	11111	11111	1.5 1.5 1.5 1.5	1.0 1.0 - 0.45	2.5 · 2.0 2.0 3.0	2.0 1.5 0.5 0.5	0.5
SWITCHING	ts (µsec)	1111	1111	1111	1111	11111	0.3	0.19	0.3	0.3
	t, (μsec)	11111	0.4 0.4 0.5	0.0000	0.5	0.5	20	65	0.08 	1 1 1
S	Powr.	11111	।यययय	ਹਰਵਾਹ	4444	4	25	15	1111	1 1 1
TERISTIC	Powr Gain (db)	1111				, , , , , , , , , , , , , , , , , , ,	2.5	3.0	11111	1 1 1
CHARACTERISTICS	CO (mα) (*μα)	0.0001	വയയയ	വവവവ	ນພູພູພູ	S	0.10	2.0 0.1 0.1 0.1	0.1 0.001 0.00002 0.00002 0.00002	0.00002
	* 1 4 4 FE	*120 *120 25 40 2.5	2.5 50 50 50 50 50	50 50 75 75 75	75 75 75 50 50	50 *;0-*120 *100-*300 *20-*45 *30-*90	*20-*60 *40-*120 25 *30-*120	40 6.0 6.0 5.5	5.5 85 45 80 45	80 80 80
	_00	2.0	25 25 25 10	22222	22222	50 0.6 0.8 0.3	0.3	200	11 222	222
165	, CEO	08 09 08 *	80 60 100 120 40	80 120 40 80 120	40 80 120 170 170	170 35 35 35 35	40 40 30 15	15 75 30 60	92999	09
MAX. RATINGS) ₀ / «	13.3 18.6 100 0,0016 16.0	16.0 1250 1250 1250 1250	1250 1250 1250 1250 1250	1250 1250 1250 2000 2000	2000	1.7	2.0	_ _ _ 0.004	0.004
MA	(°C)	175 175 150 150 200	200	22222	22222	8	200	100 75 200 200 200	200 200 200 200 200	200 200
	€.2	2 2.8 100 2 2.8	2.8	1111	1 1 1 1 1	2.0 2.0 1.2 2.0	2.0 2.0 300 2.5 150	150 16.5 0.7 0.7 0.7	0.7 0.6 5 5	വവവ
	* * * * * * * * * * * * * * * * * * *	11111	1111	11111	11111	81 1 1 1 1 I	1 1 1 1 1	1 1 1 1 1	11111	1 1 1
	Туре	npn, P, si npn, P, si npn, D, si npn, DM, si npn, PE, si	npn, PE, si pnp, DAP, ge pnp, DAP, ge pnp, DAP, ge pn p DAP, ge	pnp, DAP, ge pnp, DAP, ge pnp, DAP, ge pnp, DAP, ge pnp, DAP, ge	pnp, DAP, ge mp, DAP, ge pnp, DAP, ge pnp, DAP, ge pnp, DAP, ge	pnp, DAP, ge npn, PL, si npn, PL, si pnp, PL, si pn g, PL, si	npn, PL,si n pn, PL,si npn, EP,si npn, PE,si pnp, EP,ge	pnp,EP,ge pnp,PADT,ge npn,si npn,si	npn,si pnp,DM,si npn,PE,si npn,PE,si npn,PE,si	npn, PE, si npn, PE, si npn, PE, si
	Mfr.	SE ME	98888 88888	BE BE BE	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BEFFF	==%=%	SY AMP RA RA	RA SSP SSP SSP	SSP
	Type No.	2N1837 2N1837A 2N1841 2N1990 2N2243	2N2243A 2N2285 2N2286 2N2287 2N2287	2N2289 2N2290 2N2291 2N2292 2N2292	2N2294 2N2295 2N2296 2N2357 2N2358	2N2359 2N2389 2N2390 2N2393 2N2393	2N2395 2N2396 2N2397 2N2410 2N2410	2N2456 PADT50 RT5401 RT5402 RT5403	RT5404 ST8014 TN51 TN52 TN61	TN62 TN71 TN72
	Cross Index Key		HL 34		HL 35		HL 36		HL 37	HL 38

FIELD EFFECT

In order of transconductance.

Cross Index Key	Type No.	Mfr.	Channel & Construction	g _m (μmhos)	V p (v)	I DSS (ma)	C is or *C DG	BV DGO or *BV DGS (v)	NF (db)
FE 1	18A1 C620 C622 C624 2N2841	GE CT CT CT SI	p,GD,si n,A,si n,A,si n,A,si p,DP,si	30 min 75 75 75 75 90	1 10 10 10 0.8	0.05 0.1 0.1 0.1 -50	5 35 35 35 4	-10 10 10 10 *20	- - 1.5
	18A2 C621 C623 C625 2N2606	GE CT CT CT SI	p,GD,si n,A,si n,A,si n,A,si p,DP,si	100 min 100 100 100 100 175	1 10 10 10 2	0.25 0.35 0.35 0.35 -0.17	5 35 35 35 4	-10 10 10 10 10 *30	- - 1.5
FE 2	C632 C633 C631 U-110 C610	CT CT CT SI CT	n,A,si n,A,si n,A,si p,DP,si n,A,si	175 175 200 200 250	250 350 150 3 40	1.0 1.0 1.0 -0.31 0.6	23 23 23 4 35	250 350 150 *20 40	-
	C614 2N2842 C611 18A3 XF600	CT SI CT GE SIG	n,A,si p,DP,si n,A,si p,GD,si pn,DP,si	250 270 400 500 min 500	40 0.8 40 1 2-3	0.6 -150 3.0 0.75 0.5	35 7 35 5	40 *20 40 -10 30	1.5 -
FE 3	2N2607 FE200 C612 C615 2N2843	SI AI CT CT SI	p,DP,si n,D P,si n,A,si n,A,si p,DP,si	525 600 650 750 800	2 10 40 40 0.8	- 052 1.0 3.0 1.5 -450	7 *1.5 35 35 35 12	*30 50 40 40 *20	1.5 - 1.5
	2N2386 2N2497 2N2500 2N2794 18A4	TI, TS TI TI TS GE	p,DP,si p,DP,si p,DP,si p,DP,si p,GD,si	1000 min 1000 min 1000 min 1000 min 1000 min	8 5 6 - 2	-3 max -6 max 0.01 2.0	50 32 32 6 5	20 20 20 20 20 -10	-
FE 4	C613 FG34 FG35 FG36 FG37	CT AI AI AI AI	n,A,si n,DP,si n,DP,si n,DP,si n,DP,si	1000 1000 1000 1000 1000	40 20 20 20 20 20	3.0 10	35	40 50 100 150 200	-
	XF601 FE300 2N2498 18A5 2N2608	SIG AI TI GE SI	pn,DP,si n,DP,si p,DP,si p,GD,si p,DP,si	1000 1250 1500 min 1500 min 1600 ·	2-3 1 0 6 2 2	1.0 3.0 -6 max 5.0 -1.60	*1.5 32 5 12	30 50 20 -10 *30	1.5
FE 5	U-112 2N2844 18A6 C640 2N2499	SI SI GE CT TI	p,DP,si p,DP,si p,GD,si n,A,si p,DP,si	1900 2000 2000 min 2000 2500 min	3 0.8 2 35 8	-3.0 -1000 12.0 4.0 -15 max	12 25 5 35 32	*20 *20 -10 35 20	1.5
, , ,	MM763 MM764 MM765 2N2609 C641	MO MO MO SI CT	n,P,si n,P,si n,P,si p,DP,si n,A,si	3000 3200 3500 3600 4000	2 3 6.5 2 35	2 4 10 -3.60 8.0	50 50 50 25 35	25 25 25 *30 35	1.5
FE 6	C642 C643 C644 C650 C651	CT CT CT CT CT	n,A,si n,A,si n,A,si n,A;si n,A,si	6000 9000 12000 -	35 35 35 45 35	12.0 18.0 24.0	35 35 35 -	35 35 35 45 35	- - - -
120	C652 C653	CT CT	n,A,si n,A,si	-	25 15	_	-	25 15	-

HERE'S WHY . . .

COOLING EFFICIENCY — atlee clips, acting as heat sinks, approach within 10% of "infinity". PROVEN RESULTS — operation of transistor at maximum ratings without life shortage.

changed by heat or constant use.

ELECTRICAL INSULATION—atlee clips are available with Dalcoat B coating, an enamel combining twice the dielectric stength of Teflon with equal heat conductivity of mica. PROVEN RESULTS—proper electrical insulation from chassis and proper thermal behavior.

SEND FOR TRANSISTOR APPLICATION TABLE — A comprehensive listing of atlee clips for specific transistor application.

atlee corporation
2 LOWELL AVENUE · WINCHESTER, MASS.

PARKVIEW 9-580

ON READER-SERVICE CARD CIRCLE 472

AVAILABLE AT THESE DISTRIBUTORS

TZA3

Binghamton, N. Y.—Federal Electronics P. O. Box 208/PI 8-8211

Philadelphia 23, Penn.
Almo Industrial Electronics, Inc.
412 North 6th Street/WA 2-5918

Pittsburgh 6, Penn.—Radio Parts Company, Inc.
6401 Penn Avenue/EM 1-4600

Newton 88, Masss.—Greene-Shaw Co. 341 Watertown Street/JU 2-1500 New York 88, N. Y.—Harvey Radio Company, Inc.

Syracuse 11, N. Y.—Harvey Electronics-Syracuse, Inc. Pickard Drive, P. O. Box 185/GL 4-9282

Baltimore 1, Md.—Radio Electric Service Company 5 North Howard Street/LE 9-3835

HTUOS

Birmingham 5, Ala.—Forbes Distributing Company, Inc: 2610 Third Avenue, South/AL 1-4104 West Palm Beach, Fla.—Goddard, Inc. 1309 North Dixie/TE 3-5701

Richmond 20, Va.—Meridian Electronics, Inc. 1001 West Broad Street/EL 5-2834

MIDMEST

Detroit 3, Mich.—Glendale Electronic Supply Company 12530 Hamilton Avenue/TU 3-1500 Minneapolis 16, Minn.—Admiral Distributors, Inc. 5305 Gedar Lake Road, St. Louis Park/LI 5-8811 Indianapolis 29, Ind.—Graham Electronics Supply, Inc. 122 South Senate Avenue/ME 4-8486

Cleveland 1, Ohio Patitison Supply Company
Main Line Electronics Division

Chicago 30, III. — Merquip Electronics, Inc. 4939 North Elston Avenue/AV 2-5400

Cincinnati 10, Ohio—United Radio, Inc.
1308 Vine Street/CH I-6530

Kansas City 11, Mo.—Walters Radio Supply, Inc: 3635 Main Street/VA 1-8058

MEST

Dallas 1, Texas—Adleta Company 1907 McKinney Ave./RI 1-3151 Houston 1, Texas—Harrison Equipment Company, Inc. 1422 San Jacinto Street/CR 4-9131

Monrovia, Cal.—Lynch Electronics, Inc.
Monrovia, Cal.—Lynch Electronics, Inc.
1818 South Myttle Avenue/EL 9-8261/MU 1-2706
The South Myttle Avenue/EL 9-8261/MU 1-2706
The South Myttle Avenue/EL 9-8261/MU 1-2706
The South Myttle Avenue/EL 9-8261/MU 1-2706

San Diego 1, Cal.—Radio Parts Company 2060 India Street, Box 2710/232-8951 Los Angeles 15, Cal.—Radio Products Sales, Inc. 1501 South Hill Street/RI 8-1271

San Jose 13, Cal.—Schad Electronic Supply, Inc. 499 South Market Street/298-0511

Donver, Colo.—L. B. Walker Radio Company 300 Bryant Street/WE 5-2401 Seattle 1, Wash.—C & G Electronics Company 2221-3rd Avenue/Main 4-4355

Albuquerque, N.M.—Midland Specialty Co., Inc. Albuquerque, N.M.—Midland Specialty Co., Inc. 1712 Long Blvd., N.E./247-2486

Phoenix, Arix.—Midland Specialty Co., Inc. 1930 North 22nd Ave./258-4531 Tucson, Arix.—Midland Specialty Co., Inc. 951 South Park Ave./MA 4-2315

Ask for a complete catalog

EPENDABILITY

PADIO

EIRBILITY

Division of General Motors, Kokomo, Indiana

UNIJUNCTION

Listed by type number.

	-	-	- 0.8	52 9	2.0-	2874. 0874.	1.9-7.4 0.51-0.4	is,lə,nq is,lə,nq	IT IT	ZNZIE0 ZNZIE0	s LNU
	- 3	- 09 09 09	6.6 6.6 6.0 6.0 8.0	52 52 0 12 12 52	21 2.0 21- 21- 21-	27. 27. 2874.	I.e I.e I.e-7.4 I.e-7.4	is,n is,n is,n is,lD,nq is,lD,nq	30 30 30 17	2N2422 2N2422B 2N2422B 2N1671 2N1671A	3 1 1 1 1
	3 3 - 3 3	09 09 09 09	6.4 6.4 6.4 6.4	9 12 52 29 9 12	12 0.20 12 12 0.2	89. 87. 87. 87.	1.6 1.6 8.3 8.3	is,n is,n is,n is,n	30 30 30 30	2N2420A 2N2420B 2N2421A 2N2421B 2N2421B	₽ CNU
	3 3	09 09 09 09	4 6.3 6.4	52 0 12 52 52 9	0.20 12 0.20 12	23. 83. 83. 83. 83.	1.6 8.8 8.8 1.6	iz,n iz,n iz,n iz,n	35 35 35 35	2N2419B 2N2419B 2N2419B 2N2419B	
	3 3 -	09 09 09 09	\$ \$ \$ \$	12 52 9 12 12 50	12 0.20 12 12	29. 23. 23. 23. 23.	8.8 8.8 8.9 1.9	is,n is,n is,n is,n	30 30 30 30	2N2417 2N2417A 2N2418 2N2418 2N2418A	£ LNU
	9 9 9 1 B	90 30 30 30 30 90	9.4 2 - -	72 10 72 72 72	15 15 15 15 005	21. 21. 21. 08	1.6 1.9 1.9 1.9	iz,n iz,n iz,n iz,n iz,n	30 30 30 30	ZNZ160 ZNZ840 ZNZ642 ZNZ646 ZN464C	TIVITS
1T 1T 1T 1T		09 09 09 09	9°t 9°t 9°t 9°t	9 12 50 50 9 12	1 2 0.20 12 12 0.20	87. 87. 87. 87.	8.8 8.8 1.9 1.9	is,n is,n is,n is,n	30 30 30 30	A 493A 20 493B 20 494 20 494B 8484NS	z cnu
1T 1T 1T		09 09 09 09	5 4.3 4.3 4.3	20 2 9 12 12 50	21 21 20.0 20.0 21	89. 89. 89. 87.	1.6 1.6 1.9 1.9	is,n is,n is,n is,n is,n	30 30 30 30	2N 493 2N 492C 2N 492B 2N 492A 2N 492	o min
17 17 17	0 0 0 0 0 0	09 09 09 09 09	\$ 5 7 8.4	9 12 50 5 5	0.20 0.02 12 12 0.20	23. 23. 83. 83.	1.6 1.6 8.9 8.9	iz,n iz,n iz,n iz,n iz,n	30 30 30 30	2N 491B 2N 491 2N 490 2N 490B 2N 490B	I LNU
П П П		09 09 09 09 09	† S † \$ \$	12 50 9 12 12 50	120 120 120 12 13	28. 28. 28. 28. 28.	8.9 8.9 1.6 1.9	iz,n iz,n iz,n iz,n iz,n	30 30 30 30	984 NS A 984 NS 8 984 NS 0 90 NS A 9 9 0 NS	LIMI
Remarks	(^) \ 081	(^) AEBZ	V _{E (sat)}	(ha) d	(ha)	(xow)	(K)	Lype	Mfr.	Type No.	Cross Index Key

	Vcex	Vce	pE	E	Vo Sa		Vbe Sat	
No.	Icex=5ma	Sustaining	Ic=5A	Ic=10A	Ic=5A	Ic=10A	Ic=5A	lc=10A
2N2580	400	325v	10 min. 40 max.		0.7v		1.5v	
2N2581	400	325v	25 min. 65 max.	10 min.		1.0v		1.7v
2N2582	500	325v	10 min. 40 max.		0.7v		1.5v	
2N2583	500	325v	25 min. 65 max.	10 min.		1.0v		1.7v

Union, New Jersey 324 Chestnut Street MUrdock 7-3770 AREA CODE 201

Detroit, Michigan 57₄Harper Avenue TRinity 3-6560 AREA CODE 313 Paio Alto, California 201 Town & Country Village DAvenport 6-0365 AREA CODE 415

Santa Monica, California 726 Santa Monica Blvd. UPton 0-8807 AREA CODE 213

Syracuse, New York 1054 James Street GRanite 2-2668 AREA CODE 315

Right now.

Chicago, Illinois 5151 N. Harlem Ave. 775-5411 AREA CODE 312

New from Delco Radio! Silicon power transistors with Vceo, Vcbo and Vces of 400 and 500 volts in two gain ranges. This new line of high power transistors permits never-

Kokomo, Indiana 700 E. Firmin St. GLadstone 2-8211, Ext. 500 AREA CODE 317

HOW TO USE THE CROSS INDEX

Types are listed in numerical sequence. EIA-registered types come first, followed by house-numbered types. The code following each type identifies its application category and the block of 10 types in which it is located. A3, for example, means the type can be found in the third block of the Audio section. Key to the letter codes is: A = audio and general purpose, P = power, HF = high frequency, LL = low-level switching, HL = high-level switching, FE = field effect, UNJ = unijunction.

												2N661 LL 28
2N34	A12	2N241	A25,31	2N343A	P2	2N426	LL14	2N 498 A	P3,HL33	2N574	P73	2N662 LL17
2N35	A12	2N242	P34	2N343B	P3	2N427	LL22	2N 499	HF54	2N574A	P73	2N663 P37
2N43	A20	2N243	A3	2N344	HF22	2N 428	LL27	2N501	LL38	2N575	P73	2N665 P40
2N43A	A23	2N244	A13	2N345	HF22	2N428A	LL23	2N501A	LL38	2N575A	P73	2N669 P19,60
2N 44	A11	2N247	HF65	2N346	HF30	2N438	HF4, LL7	2N502	HF49	2N576	LLII	2N670 LL2
2N44A	A15	2N250	P40	2N347	A2	2N438A	HF4, LL47	2N502A	HF49	2N576A	LL16	2N671 HL19
2N78	A43	2N251	P40		A2	2N439	LL11, HF7, 8	2N503	HF51	2N578	LLII	2N673 HL20
2N78A	A43	2N255	P27	2N348		2N439A	HF7, LL47	2N504	HF65	2N579	LL17	2N677 P50
2N94	HF2		P27, 49	2N349	Al	2N439A 2N440	HF11, LL20	2N508	P41		LL25	2N677 P50
21194A	HF6	2N255A		2N350	P18		HF11, LL47	2N511	P65	2N580		
		2N256	P27, 36	2N350A	P49	2N440A	P65		P65	2N581	HF9, LL17	
2N 100	LL15	2N256A	P28, 49	2N351	P19	2N441		2N511A		2N582	HF15, LL24, 27	2N677C P50
2N102/13	A4	2N257	P35	2N351A	P49	2f1442	P65	2N511B	P65	2N583	LL17	2N678 P51
2N104	A20	2N 265	A41	2N356	HF4,LL7	2N443	P65	2N512	P65	2N584	LL25,27	2N678A P51
2N 109	A26,31	2N268	P35, HL33	2N356A	LL7	2N444A	HF1	2N512A	P66	2N585	LLII	2N678B P51
2N117	A3	2N268A	HL33			2N445A	HF4	2N512B	P66	211586	LL47	2N678C P51
2N118	A7	2N269	LL24,46	2N357	HF7, LL13	2N446A	HF7	2N513	P66	2N587	LL47	2N679 LL6
2N118A	HF12	2N270	A25	2N357A	LL13	2N447A	HF11	2N513A	P66			
				2N 358	LL19, HF10	2N448	HE7	2N513B	P66	2N588	HF47	2N695 HF50
2N119	A17	211274	HF17	2N358A	LL19		HF9			2N591	A30	2N696 HF31, P8, HL26
2N120	A33	2N277	P64	2N359	A43	2N 449		2N514	P66	2N592	All	2N697 HF32, P9
2N122	P18	2N 278	P64	2N 360	A38	2N450	LL11	2N514A	P66	2N594	A13	2N698 HF31,P11,HL25
2N123	LL11,16	2N279	A13	2N361	A30, 32	2N456	HL18	2N514B	P66	2N595	A20	2N699 HF31, P9, HL28
2N128	HF28	2N 280	A22	211362	A38	2N456A	P65, HL7	2N515	HF3	2N596	A27	2N699B P15
2N129	A8	2N281	A30	211362 2N363	A23	2N457	HL19	2N516	HF3	2N597	LL17,48	2N700 HF62
2N129	HF2.8	2N282	A30			2N457A	P65, HL7	2N517	HF3	2N598	LL17	2N700A HF62
2N140	HF10	2N284	A5	2N370	HF17	2N458	HL6	2N518	LL20	2N598 2N599	LL 26	2N700A HF33, LL37
2N144/13	A4	2N284A	A5	2N371	HF18	2N458A	P65, HL7	2N519	.LL6			Little cojumi
	P27		A5	2N372	HF18		HL6	2N519A	HF3, LL6	2N600	LL17, 21	2N703 HF33, 52, LL37
2N155		2N 285		2N373	HF18	2N459				2N601	LL26	2N705 LL39
2N156	P27	2N285A	P32	2N374	HF18	2N 460	All	2N520	LL7, 10	2N602	HF16	2N705A LL48
2N158	P27	2N292	HF6	2N 37 5	HL6	2N461	A46	2N520A	HF7, LL10	2N602A	HF14	2N706 HF31,52,P3,
2N158A	P27	2N293	HF9	2N376	P19	2N463	P36	2N521	LL20	2N603	HF20	LL36,48
5N160	A1	2N296	P32		P49	2N 464	A12	2N521A	HF10, LL21	2N603A	HF20	2N706A HF52,65,LL42
2N 160A	A1	2N297	HL5	2N376A	1 10	2N465	A20	2N522	LL27	2N604	HF22	2N706B HF52, LL42
2N161	Al	2N297A	· P49, HL5	2N377	HF7, LL14	2N466	A36	2N522A	HF15, LL27	2N604A	HF27	2N706C HF52,65
2N161A	Al	2N298	P49, HL5	2N377A	LL46	2N467	A44	2N523	11.30	2N609	A	
2N 163	A2	2N301	P23, 45	2N378	HL6		A3	2N523A	HF17, LL30	2N610	A	
				2N379	P50, HL6	2N470			A13	211010		2N706A/46 HF52
2N 163A	A2	2N301A	P23, 45	2N380	P50, HL6	2N471	A3	2N524		2N618	HL5	2N706B/46 HF52
2N 167 -	LL 19	2N 306	A12	2N381	All	2N471A	HF9	2N524A	A12	2N624	HF65	2N706C/46 HF52
2N 167A	LL46	2N307	P24, 36	2N382	A19	2N472	A3	2N525	A20	2N627	P50	2N706/51 HF52
2N168	HF9	2N307A	P26	2N383	A17	2N472A	HF9, A4	2N525A	A15	2N628	P50	2N706A/51 HF53
2N 168A	HF9	2N312	HF65, LL6	2N384	HF32	2N473	HFII	2N526	A26, HL25	2N629	P50	2N706B/51 HF53
2N169	HF9	2N315	LLII		HF6	2N474	HF11	2N527	A34, 36	2N630	P50	2N706C/51 HF53
2N169A	A44	2N315A	LLII	2N385	LL8	2N474A	HF12	2N527A	A31	2N631	A43	2N707 HF1, 50, P3, LL48
2N173	P64	2N316	LL23	2N385A		2N 475	HF12	2N529	A6	2N632	A38	
2N174	P64	2N316A	LL23	2N388	LL16,HF9		A9	2N530	A10	2N633	A28	
2N174 2N174A	P46			2N 38 8A	LL11, 26, 46,	2N475A	HF15		A12		HF7	2N708 HF57,59,66,P5,
		2N317	LL28		HF6,15	2N476		2N531		2N634		LL40, 48, HL32
2N 175	A29	2N317A	LL28	2N 389	P47	2N477	HF15	2N532	A15	2N634A	LL48	2N708 /46 HF57
2N 176	P19,49	2N319	A15	2N389A	P47	2N478	HF12	2N533	A18	2N635	LL23	2N708/51 HF57
2N178	P37	211320	A23	2N393	HF22	2N479	HF12	2N534	A38	2N635A	LL48	2N709 HF62, 63, P3,
2N186A	A10	2N321	A25, 34	2N394	LL19	2N479A	HF12	211535	A38	2N636	LL27	LL48, HL32
2N187A	A17	2N322	A20	2N395	LL10,HF6	2N480	HF12	2N535A	A38	2N636A	LL25, 48	2N709/46 HF62
2N188A	A26	2N 323	A26,30	2N396	LL16,HF9	2N480A	A19	2N535B	A38	2N637	HL18	2N709/51 HF62
2N189	A10	2N324	A36		11.11.16	211481	HF4	2N536	LL6	2N637A	HI 18	2N709A HF63
2N190	A17	2N326	P16	2N396A	2011	2N482	HFS	2N537	LL 42, HF63	2N637B	HL18	
	A26			2N397	LL20,23,HF13		HF7		P35		HL18	2N709A/46 HF63
2N191		2N327 A	LL2, 3	2N 398	LL46	2N483		2N538		2N638		2N709A/51 HF63
2N192	A31	2N328A	LL2, 3, 6	2N 398 A	A29,	2N484	HF12	2N539	P35	2N638A	HL18	2N710 HF47, LL40
2N193	HF2	2N329	LL1,23	2N399	P32	2N485	HF8	2N540	P35	2N638B	HL 18	2N710A LL48
2N194	HF3	2N 329 A	LL1,23	2N399A	LL47	2N486	HF13	2N541	HF14	2N639	P42	2N711 LL40
2N194A	HF3	2N330A	A11	2N400	P32	2N489	ונאט	2N542	HF14	2N639A	P42	2N711A LL40, 49
2N207	A37	2N331	A14, 23, LL3	2N401	P28	2N 489A	1 rinn	2N542A	HF14	2N639B	P42	2N711B LL40
2N207 A	A38	2N 332	A3	2N 404	LL23	2N489B	UNJ1	2N543	HF14	2N640	HF20	2N714 LL17
2N207B	A38	2N332A	A3	2N404A	LL8	2N490	UNJ1	2N543A	A36	2N641	HF20	
2N211	HF3	2N333	A7	2N405	A15	2N490A	UNJ	2N544	HF65	2N642	HF21	
2N212	HF6	2N333A	A3	2N405 2N406	A10, 16	2N490B	UNII	2N545	HL22	2N643	LL31	2N716 HF40
2N212 2N213	A31	2N333A 2N334	AS A8		A10,10		1 LND	2N545 2N546	HL22	2N644	LL37	2N717 HF66, P6, HL26
	A31 A46		A8 A7	2N407		2N490C	UNJI		HL22 HL21		LL31,35	2N718 HF66, P6, HL28
2N213A		2N334A		2N408	A25, 29	2N491		2N547		2N645		2N718A HF66, P7, HL28
2N214	A25	2N 335	A17	2N409	HF8	2N491A	ונאט	2N548	HL21	2N647	A30	2N719 HF66, P7; HL27
2N215	A20	2N335A	A17	2N410	HF8,65	2N491B	ונאט	2N549	HL21	2N649	A29	2N719A HF66,P7,HL27
2N217	A26, 31	2N335B	LL46	2N411	HF11	2N492	UNJ2	2N550	HL21	2N650	A22	2N720 HF66, P7, HL28
2N218	HF8,64	2N 336	A33	2N413	HF4	2N492A	UNJ2	2N551	HL20	2N650A	A22	2N720A HF66, P8, HL28, 33
2N219	HFII	2N336A	A34, LL46	2N413A	HF3	2N492B	UNJ2	2N552	HL21	2N651	A34	2N721 P6, HL25
2N220	A28	2N 337	LL28	2N414	LL11, HF8	2N492C	UNJ 2	2N553	P40	2N651A	A34	
2N228	A25	2N337A	LL32	2N414A	HF6	2N492C	UNJ2	2N554	P37	2N652	A42	
2N 229	A11, P64	2N337A 2N338	LL31	2N414B	HF11		UNJZ	2N555	P37	2N652A	A42	2N725 LL49
	HF65		P2		HF11	2N493A	UNJ2		LL47		A22	2N726 A11
2N231		2N339		2N416		2N493B		2N556		2N653		2N727 A14
2N232	HF15	2N339A	A5	2N417	LL28,HF15	2N494	UNJ2	2N557	LL47	2N654	A34	2N728 HF42
2N233	HF65	2N340	P2	2N418	HE18	2N494A	UNJ2	2N558	LL47	2N655	A42	2N729 HF42
2N233A	HF3	2N340A	A5	2N419	P42	2N494B	UNJ2	2N559	LL39, 45	2N656	HF38, P14, HL24	2N730 HL29
2N234A	P31	2N341	P2	2N420	HL18	2N494C	UNJ3	2N560	LL35	2N656A	P3,HL33	2N731 HL29
2N 235A	P31	2N341A	A5, P2	2N420A	HL18	2N495	HF17	2N564	All	2N657	HF39, P14, HL24	2N731 NL25
2N235B	P31	2N342	P2	2N422	A23	2N496	LL28,87	2N566	A27	2N657A	P3, HL33	2N735 A30
2N236A	P31	2N342A	P2	2N424	P47	2N497	HF38, P14	2N 568	A38	2N658	LL12	
2N236B	P34	2N342B	P2	2N424A	HL20	2N497A	P3, HL33	2N570	A43	2N659	LL21	
2N240	LL46	2N3420	P2	2N425	LL8	2N497A 2N498	HF38, P14, HL23	2N570 2N572	A44	2N660	LL25	2N736 A39
2270	20.0	211010		Elevel .	LLO	201430	001	III Z	711	211000		2N736A A36

2017368	20015	2010468	201183A	201357	2015/25/20	201671 201671 201671 201671 201677 201677 201677 201677 201678 201683 201684 201685 201686 201686 201686 201696 201700 20
---------	-------	---------	---------	--------	------------	--

201927 A46 201927 A26 201927 A26 201927 A26 201927 A26 201928 A26 201929 A26
2001313
Decame Hulls
202527 HF37 202528 HF37 202529 P48, H1, 15 202529 P48, H1, 15 202529 P48, H1, 15 202529 HF37 202529 P48, H1, 15 202529 HF38, L1, 14 202529 HF38, L1, 15 202529 HF38, L1, 14 202529 HF38, L
2007299 FF33 1007299
644 A45, FE5 642 A
001223 LL& 001232 LL& 001242 LL&

How Sylvania checked "purple plague" and boosted reliability

What you see above represents a victory over an insidious cause of semiconductor device failure - a problem faced by the whole industry—the "purple plague."

On the left, the blotches are a goldaluminum-silicon alloy formed by reaction between the gold wires and aluminum base areas of the chip. Accelerated by high temperatures, this reaction increases series resistance and weakens the leads bad news when reliability is essential.

Sylvania engineers departed from standard industry practice and developed a technique of bonding aluminum wires to aluminum, illustrated at the right. After long testing at worse-than-actual conditions, the clean Sylvania junctions confirm: no chemical reaction, no purple plague at

the chip—a big step forward that means greater system reliability.

All Sylvania epitaxial planar devices now benefit from this victory. The broad, integrated capabilities that made it possible are being applied constantly to the improvement of Sylvania semiconductors.

Semiconductor Division, Sylvania Electric Products Inc., Woburn, Massachusetts.

SYLVANIANY OF GENERAL TELEPHONE & ELECTRONICS GENERAL

NEW PHELPS DODGE ELECTRONIC ALLOY

PD-135 is Phelps Dodge's new copper base alloy with high conductivity, excellent ductility, and retention of high strength at elevated temperatures. Developed with an oxygen free copper base, PD-135 is controlled by Phelps Dodge throughout every step of casting, and fabrication into rod, bar, wire, and strip forms.

Heat-treatable PD-135 is particularly suited for applications requiring extensive cold working and upsetting.

PD-135 is completely free-flowing, and cold forms to truest tolerances. A heat-treatable alloy, PD-135 does not lose its high strength characteristics after exposure to high temperatures.

PD-135 is sold in minimum mill quantities of 500 lbs. per size. For complete information, including performance data, on this noteworthy new alloy, send for Brochure K. Just write Phelps Dodge at the address below.

COPPER PRODUCTS CORPORATION 300 Park Avenue, New York 22, N.Y. ON READER-SERVICE CARD CIRCLE 475

Transistors and allied products have been included for your convenience in the Transistor Data Chart section of the magazine. The Reader-Service numbers for the products can be circled on either the Reader-Service card in the main section or the special one in the back of this Data Chart.

Paired Transistors

Experimental products

Saturation voltage for model XT999, a monolithic NPN and PNP pair, is 0.3 v for $I_c\!=\!10$ ma and $I_b\!=\!1$ ma. An FET pair, model X-600, provides gms of approximately 1000 μ mhos and has a pinch-off voltage of 2-3 v.

P&A: \$84-\$95; 4 weeks. Mfr: Signetics Corp.

ON READER-SERVICE CARD CIRCLE 500

Transistors

Silicon planar

Eighty-one types are manufactured in the Leaf configuration. Collector saturation voltage is 0.2 v at $I_{\rm C}=150$ ma dc, $I_{\rm B}=15$ ma dc. Beta linearity is $h_{\rm FE}=65$ at $I_{\rm C}=0.5$ amp dc and 30 at 1 amp dc.

Price: \$1.05-\$25.50 (100-999).

Mfr: Bendix Corp., Semiconductor Div.

ON READER-SERVICE CARD CIRCLE 501

Silicon Transistors

Diffused mesa

High-collector voltages, low-saturation voltages, fast-switching speeds and relatively fast betas are claimed for types 2N389, 2N424, 2N1015, etc. Diffused-mesa construction is said to have improved a present line of 41 silicon power transistors.

Price: \$1.05-\$25.50 (100-999).

Mfr: Bendix Corp., Semiconductor Div.

ON READER-SERVICE CARD CIRCLE 502

Photo-Transistors

High sensitivity

Sensitivity radiation system range is 50-200 μ a/mw/cm² for type 2N2452. Sensitivity illumination system range is 2.6-10.3 μ a/ft-c. Unit is designed as a companion to type 2N986.

P&A: \$27 (1-99); 4 weeks.

Mfr: Fairchild Semiconductor.
ON READER-SERVICE CARD CIRCLE 503

Power Transistors

150-w dissipation

A tight two-to-one $h_{\rm FE}$ ratio (50-100 at 3 amps) makes types 2N1539 through 2N1543 useful for power amplifier applications with critical stability requirements. The 150-w dissipation rating is said to be the highest available in the TO-3 diamond package.

P&A: \$2.10-\$10.40 (1-99); stock.

Mfr: Texas Instruments Inc., Semiconductor-Components Div.

ON READER-SERVICE CARD CIRCLE 504

Silicon Transistors

Interdigitated "I" geometry

Collector breakdown voltages of 75 v min and typical total switching time of < 90 nsec are available in types 2N2787-2N2792. Noise levels as low as 0.5 db are offered in types 2N929 and 2N930, which are available singly, or as duals and matched duals.

Mfr: General Instruments Corp.
ON READER-SERVICE CARD CIRCLE 505

FETs

Planar-diffused silicon

P-channel UNIFETS have two different geometries with a 1.1 to 1 ratio of g_m to I_{DSS} and 6 v max pinch-off voltage. Storage temperature range is -65 to +200 C. Maximum gate-drain breakdown voltage of 20 v is guaranteed at $I_G=1~\mu a$.

Price: \$9.50-\$11.50 (over 100).

Mfr: Siliconix, Inc.

ON READER-SERVICE CARD CIRCLE 506

Silicon Transistor

Planar epitaxial

The 1.6 Gc type 2N2808 has an ac current gain of 5 at 200 Mc. It can be used as an rf amplifier to 500 Mc and as an oscillator to 1.6 Gc. Power gain is 20 db measured at 200 Mc; collector-to emitter voltage is 6 v, and collector current is 2 ma.

Mfr: Raytheon Co., Semiconductor Div.

ON READER-SERVICE CARD CIRCLE 507

Power Transistors

Breakdown, voltage to 100 v

Fall time of types MP721A/B/C is $0.7~\mu sec$ at 8 amps collector current for TV flyback circuits. The epitaxial-base germanium units have a saturation voltage of 0.3~v, max, at 10~amps.

Mfr: Motorola Semiconductor, Inc.

ON READER-SERVICE CARD CIRCLE 508

THE NEW CASE FOR RELIABILITY

The industry's standard for silicon power transistors— now in a double ended case!

In response to customer demand, Westinghouse nowmakes available its field-proven silicon power transistor in a new double-ended case. Performance, reliability and construction features are the same as have been successfully used in Westinghouse military type transistors for the last-three years. Over 5 megawatts of 30 ampere transistors are now serving in military and industrial applications.

The new double-ended transistor, 2N2757 series, comes in voltage ratings to 250 volts, current ratings to 30 amperes, and a variety of gain classes.

Rock top transistor for highest power ratings

The 250 watt, 300 volt 2N1809-2N2109 series in the rugged "rock top" case features the highest power dissipation ratings available in silicon transistors.

Conventional case for convenient mounting

The 2N2739-2N2754 series (formerly Type 109) offers the convenience of a low mounting profile. Dissipation ratings to 200 watts, currents to 20 amperes.

New procurement specifications

Procurement specifications on each of the above units are available in military format for designers and reliability engineers. These specifications outline electrical and environmental capabilities under standard Mil-spec conditions. Write for a free copy today on your company letterhead: Westinghouse Semiconductor Division, Youngwood, Pa. You can be sure...if it's Westinghouse.

We never forget how much you rely on

Westinghouse

ON READER-SERVICE CARD CIRCLE 476 May 24, 1963

Power Transistors

Meet MIL-S-19500/102

Ratings of 150 w and 7.5 amp are available for these silicon devices. Type USN 2N1016Bm is rated at 100 v, and type USN 2N1016CM is rated at 150 v.

Guide: Insert bold-italic line **P&A:** \$32.55-\$43.35 (100 or more).

Mfr: Westinghouse Electric Corp., Semiconductor Div.

ON READER-SERVICE CARD CIRCLE 509

Transistor Tester

Pulse testing

Test parameters up to 500 v and 25 amps are provided by the TACT unit. Pulse duration can be varied from 100-500 μ sec and 1-5 msec, and repetition rate from 2-100 pps. Test conditions are determined in a digital manner by prepunched cards.

Mfr: Texas Instruments Inc.
ON READER-SERVICE CARD CIRCLE 510

UHF Transistor

Low noise

Noise figure of the TA-2333 at 450 Mc is 4 db. Rf amplifier gain is 15 db, typical. Collector-to-base voltage is 30 v, min; collector-to-emitter, 20 v, min; total dissipation at 25 C free air, 200 mw.

P&A: \$35 (1-99); stock. **Mfr:** Radio Corp. of America.

ON READER-SERVICE CARD CIRCLE 511

Power Transistors

Vhf units

Power outputs up to 5 w at 200 Mc are provided by the 70 and 140 v series 100. In the 200 series, model SN230 features power outputs of 5 w at 130 Mc, and model SN231 features 10 w at 130 Mc.

Price: \$95-\$145 (1-49).

Mfr: National Semiconductor Corp.

ON READER-SERVICE CARD CIRCLE 512

Silicon Transistors

90-nsec switching

Interdigitated "I" geometry is featured in these diffused-silicoa devices. Types 2N2787-89 are available in the TO-5 case, and types 2N2790-92 are available in the TO-18 case. Collector breakdown voltages are specified at 75 v min; collector-to-emitter ratings exceed 35 v. Typical frequencies exceed 300 Mc.

Mfr: General Instruments Corp., Semiconductor Div.

ON READER-SERVICE CARD CIRCLE 513

Heat Sink

Printed-circuit board

Natural convection unit is said to provide the maximum ratio of heat dissipation to volume occupied. It is claimed that the model 2704 substantially increases transistor performance by optimizing the effect of heat transfer coefficient available in free convection. Both the TO-5 and TO-9 transistor ca cases can be accommodated.

Mfr: Astro Dynamics, Inc.
ON READER-SERVICE CARD CIRCLE 514

Switching Transistors

25-amp

Diffused alloy power types 2N2636-38 switch clamped inductive loads in microseconds at peak powers of 100, 1500 and 2000 w. Switching times range from 1-5 μ sec. Units can switch 25 amps at collector-emitter voltages of 40, 60 and 80 v.

P&A: \$26.25-\$38.25; stock.

Mfr: Bendix Corp., Semiconductor Div.

ON READER-SERVICE CARD CIRCLE 515

Silicon Transistors

Medium-power vhf

Power output is 3.2 w, min, at 125 Mc. Types 2N2781, 2N2782 and 2N2783 can be used as drivers to reactive multiplier chains to achieve up to 2-1/2 w power in the Kc range.

P&A: \$39.90-\$75; stock.

Mfr: TRW Electronics.

ON READER-SERVICE CARD CIRCLE 516

one does lit all!

ALgonquin 4-9000

(BOSTON)

SEMICONDUCTORS

- MICROCOMPONENTS
- TUNNEL DIODES
- SILICON RECTIFIERS
- TRANSISTORS

AUTHORIZED RCA DISTRIBUTOR

DeMambro

1095 COMMONWEALTH AVE., BOSTON WORCESTER • SPRINGFIELD • PROVIDENCE, R.I. • MANCHESTER, N.H.

ON READER-SERVICE CARD CIRCLE 477

Transistor Holder

Teflon insulated

The component is mounted on the shoulder of the Teflon bushing in model RTC-304T. It has a major diameter of 0.325 in. and a minor diameter of 0.290 in. Three through-hole lugs are provided on a 0.200 in. pitch circle for TO-5 type JETEC headers.

Mfr: Sealectro Corp.

ON READER-SERVICE CARD CIRCLE 517

Voltage Tester

3 µsec current duration

The time factor of the test, rather than the amount of current applied, is limited by model 1901A voltage breakdown tester. The duration of current avalanche through the test specimen is limited to 3 μ sec. Selector switches on the front panel determine the range (1 or 4 Kv) and the amount of ohmic current flow (10 μ a, 100 μ a or 1 ma).

Mfr: Microdot, Inc.

ON READER-SERVICE CARD CIRCLE 518

Transistor Heat Sink

TO-5 and TO-9 packages

Conduction-cooled 1103 series is available in three finishes: uninsulated, electrically insulated and black anodized. Threaded two-piece construction tightens to grip both sides of transistor weld flange.

Mfr: Thermalloy Co.

ON READER-SERVICE CARD CIRCLE 519

SPRAGUE LOGIC TRANSISTORS GIVE SUPERIOR LATCH-UP PROTECTION!

For Guaranteed High Voltage Operation at High Speeds, Investigate Sprague ECDC® and MADT® Transistors

a .	Type No.	fŢ (typical)	BV _{CES}	BVCEO (minimum)
	2N2795	450 mc	25 volts	15 volts
	2N2796	450 mc	20 volts	12 volts
	2N984	350 mc	15 volts	10 volts
411	2N979	150 mc	20 volts	15 volts
TO-18	2N980	150 mc	20 volts	12 volts
CASE	2N2048†	250 mc	20 volts	15 volts

(†TO-9 Case)

• For additional information on Sprague High Voltage Logic Transistors, write to the Technical Literature Service, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

[®] Trademark, Philco Corp.

SPRAGUE COMPONENTS

TRANSISTORS
CAPACITORS
MAGNETIC COMPONENTS
RESISTORS
MICROCIRCUITS

INTERFERENCE FILTERS
PULSE TRANSFORMERS
PIEZOELECTRIC CERAMICS
PULSE-FORMING NETWORKS
TOROIDAL INDUCTORS

HIGH TEMPERATURE MAGNET WIRE CERAMIC-BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES FUNCTIONAL DIGITAL CIRCUITS ELECTRIO WAVE FILTERS

'Sprague' and '@' are registered trademarks of the Sprague Electric Co.

4ST-106-63

This is the micropower transistor—a new silicon epitaxial planar device that offers higher efficiency at microwatts or milliwatts. As a switch, or as an amplifier, the type 2N2784 offers capabilities beyond any now available! Typical: 1 KMC bandwidth—higher beta level at

microamperes, with reduced falloff beyond 10 milliamperes.

This performance stems from advanced device design and refined photolithographic techniques plus Sylvania's exclusive skills in epitaxial technology. Unusually small

Fastest silicon switch available: new1 KMC

Epitaxial construction, new 3-stripe configuration, and small size, produce new high switching speed (T_{on} +T_{off} = 12 nanoseconds) with low saturation voltages (typically 0.2 volts).

junction sizes and spacings, low capacitances, result in improved frequency response for both switching and implifier applications.

The Sylvania 2N2784 and the 2N709 and 2N709A, which are members of the 2N2784 family, are all avail-

able in your choice of three packages—the TO-18, TO-46 "pancake," and the new TO-51 co-planar package.

For more information, see your Sylvania salesman or write to Semiconductor Division, Sylvania Electric Products Inc., Woburn, Mass.

Sylvania epitaxial planar transistor 2N2784

ON READER-SERVICE CARD CIRCLE 479

SYMBOL	CHARACTERISTICS	2N2784 Min Max	2N709	2N709A		
hFE	DC Current Gain		Min Max	Min Max	Tree	00110101
hre	DC Current Gain	40 120	20 120	30 90	1631	CONDITIONS
h _{FE} (-55°C)	DC Current Gain	20	15	15	Ic=10mA	V _{CE} =0.5V
V _{BE} (sat)	Base Saturation Voltage	10	10		Ic=30mA	V _{CE} =1.0V
V _{CE} (sat)	Collector Saturation	.70 .85 y	.70 .85 V	10	c=10mA	V _{CE} =0.5V
	Valle Saturation		.70 .03 V	.70 .85 V	Ic=3.0mA	I _B =0.15mA
Cob	Voltage	.26 V	22.11	1	0 0.0	18-0.15mA
CTE	Output Capacitance		.30 V	.30 V	Ic=3.0mA	
OIE	Emitter Transition	3,0 pf	3.0 pf	3.0 pf		$l_B=0.15mA$
1	Capacitance	20 4		0.0 pi	Ι _Ε =0	$V_{CB}=5.0V$
СВО	Collector Cutoff Current	2.0 pf	2.0 pf	2.0 pf		
сво (150°C)	Collector Cutoff Current	$5m_{\mu}A$	50m _μ A		lc=0	$V_{EB} = 0.5V$
BV _{CBO}	Collector to Base Break-	5.0 μA	5.0 μA	5mμA	l _E =0	V _{CB} =5.0V
	down Voltage		υ.ο μη	5.0 μA	IE=0	V _{CB} =5.0V
V _{CEO} (sust)	Collector to Emitter	15 y	15 y			
	Sustaining Mitter		15 4	15 V	I _C =10μA	IE=0
	Sustaining Voltage	6.0 y	6.0 v		0 10,000	15-0
BVEBO .	Forther a m	J.,	6.0 y	6.0 y	Ic=10mA	I _B =0
	Emitter to Base Break-				(pulsed)	18=0
Ts	down Voltage	4.0 v			(puiseu)	
'5	Charge Storage Time	4.0 y	4.0 y	4.0 V	1 -0	
	Constant			· ·	$l_c=0$	$I_E=10\mu A$
t _d + ,	Turn-on Time	5.0 ns	6.0 ns	6.0 ns	1-1	
	$(V_{BE(0)} = -1.0V)$			0.0 115	Ic= B1= B2=	5.0mA
s + f	Turn-off Time	9 ns	15 ns	15		
T	Gain-Bandwidth Product	9 ns	15 ns	15 ns	Ic=10mA	I _{B1} =2mA
	Bandwidth Product	1000 mc	COO	15 ns	Ic=10mA	IB1=IB2=1.0
		7110	ouu mc	800 mc	Ic=5.0mA	V _{CE} =4.0V

NEW CAPABILITIES IN: ELECTRONIC TUBES • SEMICONDUCTORS MICROWAVE DEVICES • SPECIAL COMPONENTS • DISPLAY DEVICES

How to design transistorized communications equipment

MEDIUM POWER VHF TRANSISTORS

2N1506A

• 1 watt • 70mc @ 28V • 10db gain

Ideal transistors for application in drivers and final amplifiers of telemetry transmitters to 2W, final amplifiers for mobile radio applications in the 140mc range, and as multipliers from 40 to 200mc.

1/2 Watt - 174mc Sonobuoy Circuit

This circuit employs PSI 2N2656 and 2N1506A transistors to achieve high power for Sonobuoy applications. Outputs to 2 watts can be obtained by adding additional stages; the oscillator circuit is at the designer's discretion. This circuit is indicative of the increased design flexibility offered by PSI 2N2656 and 2N1506A silicon RF transistors.

HIGH POWER VHF TRANSISTORS

2N2781

• 5 watts • 30mc @ 28V • 12db gain

Use this series as final amplifiers in communications equipment, 2 to 5W telemetry equipment and mobile radio designs.

2 Watt - 265mc Telemetry Circuit

Originally designed and engineered at PSI, this circuit applies a PSI PT720 as an oscillator, 2N2656 as a buffer, 2N1506A for the driver stage and a 2N2781 for the final, to deliver a conservative 2 watts at 265mc. This application is one of the first that the deliver a conservative 2 watts at 265mc. telemetry designs available using low cost, off-the-shelf units instead of state-of-theart devices.

New PSI RF transistor application notes and bulletins:

• Summary of the State of the Art in the practical use of Communications Transistors • Citizens Band Transmitter • VHF Transistor Oscillator • Radio Frequency Applications, Types PT900 and 2N1900 • 50W, 30mc Amplifier • Class C—100 Watt—20 Megacycle Power Amplifier • Class C—100 Watt—10 Megacycle Power Amplifier • Class C—100 Watt—3 Megacycle Power Amplifier • 1W, 1Kmc Transmitter • 240mc PCM Transmitter • 5W, 30mc Power Gain Test Circuit • Inverter Design • Switching Application, Types PT900, 2N1899, 2N1901 • Pulse Driver for Inductive Elements and Magnetic Memories, Types PT900, 2N1899, 2N1901 • 3W, 125mc Amplifier • ½W Citizens Band Transmitter • 100W, 100mc Amplifier • 5W, 70mc Amplifier • 10W, 100mc Oscillator

an

NEW RF TRANSISTOR APPLICATION LITERATURE

... Application ENGINEERING Assistance!

It is now possible to design all solid state communications equipment at costs comparable to, or below, vacuum designs . . . this new PSI application literature will help show you how! If you don't find literature listed on the back of this card covering your specific field of interest, contact your nearest PSI sales office and discuss your specific communications equipment design problem with one of our sales engineers. Let our experienced application engineering section show you the reliability, economy, equipment size reductions and ruggedness you can obtain when you SPECIFY PSI for all your RF transistor needs.

(If the postal return card has been removed from your copy of this publication, write on your company letterhead. The application literature listing has been repeated on the back of this card for your convenience. PSI SERVES THE COMPLETE COMMUNICATIONS SPECTRUM . . . From low-level, low-noise oscillators and amplifiers to advanced high-power, high-frequency devices, PSI has the communications transistor your designs require.

For the past five years, PSI has dedicated the major part of its transistor development and engineering efforts towards optimizing capabilities of silicon transistors in all communications equipment. Today PSI is a leading producer of RF transistors for high reliability space communications equipment in such projects as Mariner, OAO, Ranger, Relay, and Explorer. Realizing that component cost is a major factor in communications equipment design, PSI has had, as an early objective, the pricing of high performance RF devices at levels which will hasten the era of all-transistorized communications systems in many new fields.

Call PSI today to discuss your particular communications equipment design problems. Let PSI application engineering show you how you can design transistorized communications equipment on a vacuum tube budget through lower overall component costs due to lower voltage operation, lack of heater equipment, smaller power supplies, and greater efficiencies.

on a vacuum tube budget!

HIGH POWER
HF TRANSISTORS

2N1900

• 100 watts • 10mc @ 60V • 10db gain

The PSI 2N1900 series is ideal for commercial, marine, and military PRC and VRC designs from 2 to 12mc, as 10 amp switchers in power conversion applications, and amplifiers in VLF transmitters up to 5KW.

100 Watt-10mc Amplifier for PRC, VRC and Marine Radio

This economical design employs optimum heat sinking to provide a substantial reduction in size over 100 watt tube amplifiers. This design employs a PSI 2N1900 in a reliable, cold-welded package to deliver 100 watts out at 10mc with greater than 10db gain.

LOW POWER/LOW NOISE UHF TRANSISTORS

2N2656

• 50mW • 100mc @ 10V • 10db gain

Apply these low noise figure units to your oscillator designs up to 50mW. These transistors also provide optimum performance in low to medium-level class A and B buffer amplifiers by delivering up to 200mW RF power with over 50% efficiency.

14520 AVIATION BLVD., LAWNDALE, CALIF. • OS 9-4561, OR 8-0561 TWX: 213 647-5113 • Cable Address: PSISOCAL

ON READER-SERVICE CARD CIRCLE 480

Dickson is the first to offer 9 voit, 500 mw, sliteon diffused-junction temperature compensated zener reference diodes to meet the requirements of MIL-S-19500/156A (Navy). USN Types 1N935B, 1N937B 1N938B, and 1N939B offer temperature coefficients of .01, .002, .001, and .0005% °C. Modest quantities are immediately available for your critical military applications. applications.

Dickson also offers the industry's broadest line of standard temperature compen-sated zener reference diodes. The following types are presently available from stock, to JEDEC specifications:

1N1530-30A 1N2765-70A 1N821-27A 1N1735-42A 1N935-39B 1N2163-71A 1N3154-57A 1N3580-84B 1N941-45B 1N2620-24B 1N4057-85A

For complete information contact your authorized Dickson Representative, or write, wire or phone Mr. Jack Nancarrow, Dickson Electronics, P. O. Box 1387, Scottsdale, Arizona. Phone code 602, 946-5357.

Transistor Package

Integral beryllia base

Packages of 5/8 in. and 3/4 in. diam, for devices in the 12-20 amp range, with two, three or four leads are included in this line. Glass-to-metal seals are said to be eliminated by the package, whose lower beryllia surface provides a direct path from the semiconductor material to a chassis or heat sink.

Mfr: National Beryllia Corp.

ON READER-SERVICE CARD CIRCLE 520

Silicon Transistors

6000 w peak

NPN silicon power units have voltage ratings of 50-200 v. Typical saturation resistance of series 2N1830 and 2N2130 is 0.035 ohms. Minute gain is 10 at 25 amps collector current. Dissipation is 250 w; peak power capability is 6000 w. Operating temp range is -65 to +175 C.

Price: \$105-\$198 (100+).

Mfr: Westinghouse Electric Corp., Semiconductor Div.

ON READER-SERVICE CARD CIRCLE 521

Heat Dissipators

Horizontal or vertical

Designed for TO-8 or studmounted semiconductors, Series 9021 units dissipate heat at the rate of 6 C/w. They employ an extruded parallel fin design and may be used in either a vertical or horizontal position.

P&A: \$0.50-\$0.95; stock.

Mfr: Augat Inc.

ON READER-SERVICE CARD CIRCLE 522

Transistor Holder

Teflon-insulated

Providing 4 connections on a 0.200-in. diam pitch circle, the RTC-400T-L2 features lugs extending 0.070 in. below the Teflon body for circuitry connections. The major diameter is 0.325 in. and the minor diameter is 0.290 in. Over-all socket height is 0.225 in. and unit may be used on chassis thicknesses up to 0.093 in.

Mfr: Sealectro Corp.

ON READER-SERVICE CARD CIRCLE 523

Transistors

Power switching

Switching up to 1200 w in $\mu secs$ is afforded by these 10-amp, diffused alloy, power transistors. They feature a high cutoff frequency, $f_{ab}=1.5$ Mc; and low saturation voltage, $V_{ces}=-0.5$ v dc, max at $I_c=5$ amp, $I_B=-0.5$ amp. Series 2N2288-2290 are germanium pnp type units.

Mfr: Bendix Semiconductor.

ON READER-SERVICE CARD CIRCLE 524

Industrial Transistor

Mesa construction

Germanium epitaxial type TIX-316 has an h_{fe} of 35 min at 1 Kc, h_{fe} of 4.0 at 100 Mc; $R_{b}'C_{c}$ is 15 psec, max; C_{ob} is 3.0 pf, max; and NF is 4.5 db max at 200 Mc.

The device is packaged in a four-lead TO-18 case.

P&A: \$2.93; 3 weeks.

Mfr: Texas Instruments Inc., Semiconductor-Components Div.

ON READER-SERVICE CARD CIRCLE 525

Transistors

Silicon unijunction

Useful in oscillators and timing circuits, types 2N2646 and 2N2647 feature maximum peak point emitter current of 25 μa (inter-base voltage = 25 v) and maximum valley point current of 18 ma (interbase voltage = 20 v, R_{B2} = 100 ohms) at 25 C.

Mfr: General Electric Semiconductor Products Dept.

ON READER-SERVICE CARD CIRCLE 526

Germanium Transistors

Diffused-alloy

PNP types 2N2285 through 2N-2287 feature collector-emitter breakdown voltages of -30 to -80 v dc, min. Saturation voltage $(V_{\text{CE(S)}})$ is -0.65 v dc, max. Units are capable of switching up to 1600 w in 1-5 μ sec.

Mfr: Bendix Corp., Semiconductor Div.

ON READER-SERVICE CARD CIRCLE 527

12.4 to 200 volt temperature

compensated zeners immediately available from

DICKSON

TYPES 1N4057 THRU 1N4085A

Zener Voltages: 12.4 to 200 v

Temperature Coefficients:

.005%/°C standard .002%/°C standard .001%/°C to order

Voltage Tolerances: 5% standard 1% to order

Temperature Range: -55 to --100°C

Dickson also supplies IN1725-42A and IN2765-70A series for existing designs. This Dickson TC zener series, the broadest ever developed for high voltage circuits, represents an ideal combination of performance, size, stability, and reliability. The rugged DURAPAK* high temperature, vacuum-molded package, exclusive with Dickson, provides a hermetic seal of the highest quality. Units meet or exceed environmental requirements of MIL-S-19500 and have passed 1000 hour storage lifetests at temperatures of 150°C.

Economical, too! Lower voltage units cost about 40% less than conventional devices. Higher voltage units offer substantial savings over small devices used "in series".

They are available from your nearby Dickson distributor. Call him, today, for immediate delivery.

FOR COMPLETE TECHNICAL INFORMATION, write: Mr. Frank Malley, Dickson Electronics, P.O. Box 1387, Scottsdale, Arizona.

trademark of Dickson Electronics Corp.

DICKSON ELECTRONICS CORPORATION

248 Wells Fargo Avenue, Scottsdale, Ariz.

other state of the state of the

Digital Modules Operate to 120 C

Nine basic circuit cards are offered in 1 and 10 Mc versions. Power required is ±12 v dc. Logic levels are 0 and 6 v dc. Card dimensions are 4-1/4 x 5 x 1/16 in.

Mfr: Engineered Electronics.
ON READER-SERVICE CARD CIRCLE 531

Transistor Heat Sink

Beryllium copper

For use with the TO-8 transistor, models 211, 213 and 215 feature a featherweight cooler which is said to provide rigid contact of large areas. Special tapered installation tools are available.

Mfr: Wakefield Engineering, Inc.

ON READER-SERVICE CARD CIRCLE 528

Silicon Transistors

High-power vhf

Two 50-Mc power devices, types MM800 amd MM799, have a guaranteed power gain of 7 db at 15 w output. Model MM801 is a medium power amplifier/driver with a power gain of 10 db for a 3.5 w power output at 50 Mc.

Mfr: Motorola Semiconductor Products, Inc.

ON READER-SERVICE CARD CIRCLE 529

Transistor Heat Sink

Convection cooled

Model 2211 dissipates approx 1 w at 150 C. It fits all TO-5 and TO-9 cases, regardless of case diameter. Dimensions are 5/8 in. in diameter by 5/16 in. high; total weight is 0.056 oz.

Price: \$0.18 ea (+100), \$0.10 ea (+1000).

Mfr: Thermalloy Co.

ON READER-SERVICE CARD CIRCLE 530

Planar Transistors

15-pf collector capacitance

A minimum current transfer ratio of up to 3 is available with types 2N910-912 and 2N1973-74. The series is designed for use in high frequency amplifier circuits.

Mfr: General Electric Semiconductor Products Dept.

ON READER-SERVICE CARD CIRCLE 532

Silicon Transistors

Npn planar

Minimum current transfer ratio of types 2N1189 and 2N1890 is up to 3.0 at 25 C. Units are designed for high frequency amplifier and oscillator circuits.

Mfr: General Electric Semiconductor Products Dept.

ON READER-SERVICE CARD CIRCLE 533

Transistors

Planar passivated

TO-5 size differential amplifiers, types 2N2480/80A offer maximum voltage differentials of 5-10 mv. At 25 C, the collector-to-emitter voltage is 5 v and the collector currents are $100~\mu a$ and 1 ma.

Mfr: General Electric Semiconductor Products Dept.

ON READER-SERVICE CARD CIRCLE 534

Chopper Transistors

Double-emitter types

Breakdown voltage of types 3N74 through 3N79 is $BV_{\text{E1E2}} \pm 18 \text{ v}$ min at $I_{\text{E}} \pm 10 \mu \text{a}$). Emitter currents are as low as 2 na at $\pm 15 \text{ v}$ and offset voltages are $\pm 50 \mu \text{v}$ for specified conditions with temperatures from -25 to +100 C.

Mfr: Texas Instruments Inc., Semiconductor-Components Div.

ON READER-SERVICE CARD CIRCLE 535

Kovar Tab Transistor

Npn silicon planar

Maximum collector leakage current for types 11B554-556 is 25 μa at 25 C. Units are silicon planar versions of TO-5 types 2N1613, 2N1711 and 2N1893.

Mfr: General Electric Semiconductor Products Dept.

ON READER-SERVICE CARD CIRCLE 536

Silicon Transistor

High frequency

Interdigitated epitaxial planar device, type 2N2865, has a neutralized power gain of 18 db; oscillator output is 55 Mw at 500 Mc. Specifications include an NF of 4.5 db max at 200 Mc and an $R_{\rm b}'$ $C_{\rm c}$ of 15 psec max.

Mfr: Texas Instruments Inc., Semiconductor-Components Div.

ON READER-SERVICE CARD CIRCLE 537

Chopper Transistors

Five-terminal devices

Planar epitaxial passivated types 2N2356/56A feature a collector leakage and emitter leakage current of $10~\mu a$, max. At 25 C, either collector-to-base voltage is 25 v.

Mfr: General Electric Semiconductor Products Dept.

ON READER-SERVICE CARD CIRCLE 538

ELECTRONIC DESIGN'S TRANSISTOR READER-SERVICE CARD

Reprints Available

Electronic Design's Eleventh Annual Transistor Data Chart (1963)	549
"Designing A Bootstrap Emitter-Follower Amplifier"	546
"Generating Linear Waveforms With Field Effect Transistors"	547
"Four Ways to Pair Field-Effect With Conventional Transistors"	548

Manufacturers' Specification Sheets and Application Notes

Amelco	400	Fairchild	408	National	416	Solid State Products	425
AMF-Leland	401	General Electric	409	PSI	417	Sperry	426
Amperex	402	General Instrument	410	Philco	418	Sprague	427
Bendix	403	Honeywell	411	RCA	419	Sylvania	428
Clark	404	Hughes	412	Raytheon	421	Texas Instruments	429
Clevite	405	Industro	413	Silicon Transistor	422	Transitron	430
Crystalonics	406	Kearfott	414	Siliconix	423	Tung-Sol	431
Delco	407	Motorola	415	Solid State Electronics	424	Westinghouse	433

Transistor and Allied Product Information

434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451
452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469
470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487
488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505
506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523
524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541

Name	Title
Company	
Company Address	ZoneState

FIRST CLASS

Permit No. 725

New York, N. Y.

BUSINESS REPLY MAIL

No Postage Stamp Necessary If Mailed In U. S.

POSTAGE WILL BE PAID BY

ELECTRONIC DESIGN

850 THIRD AVENUE
NEW YORK 22, NEW YORK

SUPERIOR MICRODIODE PACKAGING:

WITH PLANAR* RELIABILITY

- SMALL—sandwich construction no whisker.
- STRONG true hermetic seal. No pressure contacts.
- MECHANICAL STRENGTH stud-to-cathode and stud-to-anode solder-down.
- VERSATILE replacement type for any of 276 silicon diodes.

FDA 101

 2 V 75 Volts Min. @ $I_R = 5.0 \,\mu$ A Max. @ $V_R = 50 \,\text{V}$

 $V_{\rm F}$ 1.0 V Max. @ $I_{\rm F}$ = 20 mA

Available directly from distributor stocks.

Data sheet sent on request.

FAIRCHILD

A DIVISION OF FAIRCHILD CAMERA AND INSTRUMENT CORPORATION
545 WHISMAN RD., MOUNTAIN VIEW, CALIF. YORKSHIRE 8-8161 - TWX-415-969-9165

ON READER-SERVICE CARD CIRCLE 483

A patented Fairchild process.

AUTONATIC TRANSISTOR TESTER/SORTER

- Pulse testing for high current tests
- Completely programmed with four plastic punched cards
- Tests 1500 transistors per hour 24 tests per device
- Tests may be programmed in any order

The high-speed, automatic classification and sorting capabilities of the Series 200 give this tester a wide variety of applications for both users and producers of transistors. It performs any combination of 24 standard tests—or a single test up to 24 times—on a go/no-go basis. The tests may be programmed in any order through an easy-to-use punch card system. Test rate: 1500 transistors per hour!

Pulse testing techniques eliminate junction heating effects to ensure accurate high current tests. Each tested transistor is automatically placed in the appropriate sort bin. The

Series 200 also features automatic detection of incorrect programming and performs an equipment self-check test during each test sequence. Write for data sheet and free demonstration. Fairchild offers the widest selection of equipment in the industry.

FAIRCHILD

SEMICONDUCTOR (INSTRUMENTATION)