- 1. Prove that the intersection of two intervals is again an interval. Is the same true for unions?
 - Assuming a non-empty intersection. A set S is an interval if $(\forall a,b \in S)(\forall y \in \mathbb{R})(a \leq y \leq b) \to y \in S$. Let S and T be intervals, where $a,b \in S \cap T$ and $a \leq y \leq b$. $y \in S$ and $y \in T$, so $S \cap T$ is an interval. The same is not true for unions. Consider $S = (a,b) \cup (b,c)$. This cannot be an interval since b cannot be in S.
- 2. Taking \mathbb{R} as the universal set, express the following as simply as possible in terms of intervals and unions of intervals.
 - (a) $[1,3]'(-\infty,1) \cup (3,\infty)$
 - (b) (1,7]' $(-\infty,1] \cup (7,\infty)$
 - (c) $(5,8]'(-\infty,5] \cup (8,\infty)$
 - (d) $(3,7) \cup [6,8]$ (3,8]
 - (e) $(-\infty, 3)' \cup (6, \infty)$ [3, ∞)
 - (f) $\{\pi\}'$ $(-\infty,\pi) \cup (\pi,\infty)$
 - (g) $(1,4] \cap [4,10] \{4\}$
 - (h) $(1,2) \cap [2,3]$ {}
 - (i) A', where $A = (-\infty, 5] \cup (7, \infty)$ (5, 7]
- 3. Prove that if a set A of integers/rationals/reals has an upper bound, then it has infinitely many different upper bounds.

An upper bound of A is an element m such that $\forall n \in A, m \geq n$. Let U be the set consisting of the upper bounds of A. Assume U is finite. Then there is a largest element $u \in U$. But there is a $v \in \mathbb{R}$ such that v > u, making v an upper bound not in U. This is a contradiction. Therefore, A has infinitely many different upper bounds.

- 4. Prove that if a set A of integers/rationals/reals has a least upper bound, then it is unique.
 - Assume x is the lub and assume a non-unique lub. This means $\exists y \neq x$ such that y is a lub. If y > x then y is not a lub. If y < x then x is not a lub. This is a contradiction. Therefore, the lub is unique.
- 5. Let A be a set of integers, rationals, or reals. Prove that b is the least upper bound of A iff:
 - (a) $(\forall a \in A)(a \leq b)$; and
 - (b) whenever c < b there is an a such that a > c.

For the first part of the bi-conditional: Assume b is the lub of A and $\exists a \in A$ such that a > b. Then b is not the least upper bound. This is a contradiction. Now, assume c < b and there is not an $a \in A$ such that a > c. Then c is an upper bound and is less than the lub. This is a contradiction.

For the second part of the bi-conditional: Assume $(\forall a \in A)(a \leq b)$. So b is in A. If b is not the lub, then $\exists c, a \leq c < b$. If b is in A then it is not the case that $a \leq b$. If b is not in A then there is a contradiction. Now, assume whenever c < b there is an $a \in A$ such that a > c. If b is not the lub, there is a c < b such that c is the lub. If a > c then a cannot be in a. This is a contradiction Therefore, both conditionals are proven.

- 6. The following variant of the above characterization is often found. Show that b is the lub of A iff:
 - (a) $(\forall a \in A)(a < b)$; and
 - (b) $(\forall \epsilon > 0)(\exists a \in A)(a > b \epsilon)$

(a) is the same as the previous question. For (b): Assume b is the lub of A and $(\exists \epsilon > 0)$ ($\not\exists a \in A$) $(a > b - \epsilon)$. This would imply $b - \epsilon$ is the lub of A, which is a contradiction. Now, assume $(\forall \epsilon > 0)(\exists a \in A)(a > b - \epsilon)$ and b is not the lub. This implies $\exists \epsilon$ such that $b - \epsilon$) is the lub, so $(\forall a \in A)(a \le b - \epsilon)$. This is a contradiction, thus completing proof of the biconditional for (b).

- 7. Give an example of a set of integers that has no upper bound. The set of integers defined by the natural numbers has no upper bound.
- 8. Show that any finite set of integers/rationals/reals has a least upper bound. Since A is finite, A has a maximum element, say b. So $(\forall a \in A)(a \leq b)$. This is the definition of least upper bound.
- 9. Intervals: What is lub (a,b)? What is lub [a,b]? What is max (a,b)? What is max [a,b]? b, b, none, b.
- 10. Let $A = \{|x y|, x, y \in (a, b)\}$. Prove that A has an upper bound. What is lub A? $|x y| \le |a| + |b|$, so |a| + |b| is an upper bound.
- 11. Define the notion of a lower bound of a set of integers/rationals/reals. b is a lower bound of A if and only if $(\forall a \in A)(a \ge b)$.
- 12. Define the notion of a *greatest lower bound* (glb) of a set of integers/rationals/reals by analogy with our original definition of lub.
 - Let B be the set of all lower bounds of A. b is the greatest lower bound of A if and only if $(\forall x \in B)(b \ge x)$.
- 13. State and prove the analog of question 5 for greatest lower bounds.

 Question skipped: this would follow the same proof methodology as 5, but for greatest lower bound.
- 14. State and prove the analog of question 6 for greatest lower bounds.

 Question skipped: this would follow the same proof methodology as 6, but for greatest lower bound.
- 15. Show that the Completeness Property for the real number system could equally well have been defined by the statement, "Any nonempty set of reals that has a lower bound has a greatest lower bound" Let A be a non-empty set $\in \mathbb{R}$ that is bounded above. The lub defined on the complement of A (A') is now the greatest lower bound of A.
- 16. The integers satisfy the Completeness Property, but for a trivial reason. What is that reason? Subsets of integers are always closed intervals.