Az informatika logikai alapjai 4. előadás

Vaszil György

vaszil.gyorgy@inf.unideb.hu

I. emelet 110-es szoba

Állításlogika (más néven kijelentéslogika vagy nulladrendű logika)

A múlt órán:

- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - Érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor
 - Formulahalmazok és az "és" művelet

Kielégíthető és kielégíthetetlen formulahalmazokról

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, $\Gamma \subseteq Form$ egy formulahalmaz.

Ha Γ kielégíthető formulahalmaz és $\Delta \subseteq \Gamma$, akkor Δ kielégíthető formulahalmaz.

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, és Γ , $\Delta \subseteq Form$ két formulahalmaz.

Ha Γ kielégíthetetlen formulahalmaz, és $\Gamma \subseteq \Delta$, akkor Δ kielégíthetetelen formulahalmaz.

Forrás: Mihálydeák Tamás, https://arato.inf.unideb.hu/mihalydeak.tamas/Logika_my_twt-treeview.html

A múlt órán:

- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - Érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor
 - Formulahalmazok és az "és" művelet

(AdeH: L(0)=(L(, Can, Form), A & Form, I'E Form)

(AdeH: L(0)=(L(, Can, Form), A & Form)

o A € Forn famla not Gørethezeneige a B formela, A ⊨ B, ha A miden modellje modellje B-net is

· C ∈ Form formlahalmaserar tie nettermeje B ∈ Form [= B, la Cuinder modellje modellje B-neris.

$$\Gamma = \{p, \eta \}$$
 $A = (pvr) \wedge (\eta v \tau r)$

(Sp. 793 i gar, ha:

arran .

A múlt órán:

- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - Érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor
 - Formulahalmazok és az "és" művelet

Logitai etuivalencia - remartitai etuivalencia (Adolf. L⁽⁰⁾= {L(1, (an; Fem), A, B & Form)

| Ket formen 1 A 2' B <u>logitarilar</u> etnivalens ha

Donitarilar etnivalens ha

esta media interpreta i i ban urganaz a logitari
esta meginal

(A | g = | B | g minder

main g: (an -> £913)

A | B 2' B | A

eretein

jdiles: A => B

A múlt órán:

- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - Érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor
 - Formulahalmazok és az "és" művelet

A következményreláció tulajdonságai - 1

Adett L(0)= (L(, (an, Form), r = FORM, A & Form.

Titel:

The A arlean is soon array, lon r of Az hielegither

texton.

Ewe yorse's (Adet 10) = (LC, Con, Form), A E Form) Em A Jenula évégs, la viegtigt o minden insterporteta'a' o ban igan jana meis 1 1A/g=1 miden 3: Can -> \{6,17}-re

p = A (Az ürorhalmar vonlettezmerze.) 2. megfogalman

A következményreláció tulajdonságai - 2

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle \setminus \text{egy nulladrendű nyelv}, A \in Form.$ Ha A érvényes formula $(\models A)$, akkor minden $\Gamma \subseteq Form$ formulahalmaz esetén $\Gamma \models A$.

Megjegyzés

A tétel szemléletesen úgy is megfogalmazható, hogy egy érvényes formula minden formulahalmaznak következménye.

A következményreláció tulajdonságai - 3

Tétel

Legyen $L^{(0)} = \langle LC, Con, Form \rangle \setminus \text{egy nulladrendű nyelv \'es } \Gamma \subseteq Form$ egy formulahalmaz..

Ha a Γ formulahalmaz kielégíthetetlen, akkor minden A formula esetén $\Gamma \models A$.

Megjegyzés

A tétel szemléletesen úgy is megfogalmazható, hogy egy kielégíthetetlen formulahalmaznak minden formula következménye.

A múlt órán:

- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - Érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor
 - Formulahalmazok és az "és" művelet

Az implikáció és a következményreláció kapcsolata

- Különböző nyelvi "szintek":
 - Az implikáció logikai operátor, logikai formulákban jelenik meg, a logikai formulák nyelvének része
 - A következményreláció logikai formulák
 (formulahalmazok) közötti viszonyt ír le, nem a
 logikai formulák nyelvének, ha nem a logikai
 formulákról beszélő "metanyelvnek" a része

Az implikáció és a következményreláció kapcsolata

Tétel (Dedukció tétel)

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, $\Gamma \subseteq Form$ egy formulahalmaz és $A, B \in Form$ két formula.

Ha $\Gamma \cup \{A\} \vDash B$, akkor $\Gamma \vDash (A \supset B)$.

Speciális eset: Ha $A \models B$, akkor $\models (A \supset B)$.

Tétel (Dedukció tétel megfordítása)

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, $\Gamma \subseteq Form$ egy formulahalmaz és $A, B \in Form$ két formula.

Ha $\Gamma \models (A \supset B)$, akkor $\Gamma \cup \{A\} \models B$.

Speciális eset: Ha $\models (A \supset B)$, akkor $[A] \models B$.

Az implikáció és a következményreláció kapcsolata

A dedukciótétel és megfordításának következménye:

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv**, és $A, B \in Form$ két formula.

 $A \models B$ akkor és csak akkor, ha $\models (A \supset B)$

Az (materiális) ekvivalencia és a logikai ekvivalencia kapcsolata

A dedukciótétel és megfordításának következménye:

Legyen $L^{(0)} = \langle LC, Con, Form \rangle$ egy **nulladrendű nyelv** és $A, B \in Form$ két formula.

 $A \Leftrightarrow B$ akkor és csak akkor, ha $\models (A \equiv B)$

A múlt/mai órán

- Kielégíthető és kielégíthetetlen formulahalmazok tulajdonságai
- Logikai (szemantikai) következmény reláció
 - logikai ekvivalencia
- A logikai következményreláció tulajdonságai
 - Érvényesség még egyszer
- Nyelvi "szintek"
 - A logikai következményreláció és az implikáció
 - A logikai ekvivalencia és az ekvivalencia operátor
 - Formulahalmazok és az "és" művelet

Formulahalmazok és az "és" művelet

Kielégíthetőség, kielégíthetetlenség

Legyen $A_1, A_2, ..., A_n \in Form!$

- Az {A₁, A₂, ..., A_n} formulahalmaz akkor és csak akkor kielégíthető, ha az A₁ ∧ A₂ ∧ ... ∧ A_n formula kielégíthető.
- Az {A₁, A₂, ..., A_n} formulahalmaz akkor és csak akkor kielégíthetetlen, ha az A₁ ∧ A₂ ∧ ... ∧ A_n formula kielégíthetetlen.
- Az {A₁, A₂, ..., Aₙ} ∤ A akkor és csak akkor, ha A₁ ∧ A₂ ∧ ... ∧ Aₙ ∤ A.
- Az {A₁,A₂, ..., A_n} ∤ A akkor és csak akkor, ha az (A₁ ∧ A₂ ∧ ... ∧ A_n) ∧ ¬A formula kielégíthetetlen.
- Az {A₁, A₂, ..., A_n} ∤ A akkor és csak akkor, ha az (A₁ ∧ A₂ ∧ ... ∧ A_n) ⊃ A formula érvényes.

A mai órán

- Az logikai műveletek tulajdonságai
 - nevezetes logikailag ekvivalens formulák
 - logikai műveletek kifejezhetősége egymással
 - nevezetes logikai következmények
 - nevezetes logikai törvények (érvényes formulák)
- Logikai műveletek egymással való kifejezhetősége
- Formulák kielégíthetőségének vizsgálata: A szemantikus táblák módszere
 - A módszer helyessége, teljessége

Logikailag ekvivalens formulák

- Kettős tagadás törvénye:
- Kommutativitás:
 - Asszociatívitás:
- Idempotencia:
- Disztibutivitás:

- Elnyelés:
- De Morgan:

- ¬¬A⇔A
- $A \land B \Leftrightarrow B \land A, A \lor B \Leftrightarrow B \lor A \text{ és } A \equiv B \Leftrightarrow B \equiv A$
 - $A \land (B \land C) \Leftrightarrow (A \land B) \land C, A \lor (B \lor C) \Leftrightarrow (A \lor B)$
 - VC és A≡(B≡C)⇔(A≡B)≡C
- A∧A⇔AésA∨A⇔A
- AV(B∧C)⇔(AVB)∧(AVC)
- \circ A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)
 - $A \land (B \lor A) \Leftrightarrow A \text{ \'es } A \lor (B \land A) \Leftrightarrow A$
 - $\neg(A \land B) \Leftrightarrow \neg A \lor \neg B \text{ és } \neg(A \lor B) \Leftrightarrow \neg A \land \neg B$

Logikailag ekvivalens formulák

 Áthelyezési törvény: (A / 	∖B)⊃C⇔A⊃(B⊃C)
---	----------------------

- Kontrapozíció: A⊃B⇔¬B⊃¬A
- Öndisztributivitás: A⊃(B⊃C)⇔(A⊃B)⊃(A⊃C)
- Esetszétválasztás: (A ∨ B) ⊃ C⇔(A ⊃ C) ∧ (B ⊃ C)

Logikai műveletek egymással való kifejezhetősége

- A⊃B⇔¬(A∧¬B)
- A⊃B⇔(¬A∨B)
- A ∧ B ⇔¬(A ⊃¬B)
- A ∨ B ⇔ (¬A⊃B)
- A ∨ B ⇔¬(¬A ∧ ¬B)
- A∧B⇔¬(¬A∨¬B)
- $A \equiv B \Leftrightarrow (A \supset B) \land (B \supset A)$

Logikai következmények

- A⊃¬A⊧¬A
- ¬A⊃A⊧A
- A∧B⊧AésA∧B⊧B
- A⊧AVB
- {A ∨B,¬A} *B
- {A⊃B,A}*B
- {A⊃B,¬B}⊧¬A
- {A⊃B,B⊃C}⊧A⊃C
- {A⊃B,A⊃¬B}⊧¬A
- ¬A♭A⊃B
- B ⊧ A ⊃ B

modus ponens: leválasztási szabály modus tollens: indirekt cáfolás sémája láncszabály redukcio ad abszurdum

Logikai következmények

- A⊃¬A⊧¬A
- ¬A⊃A⊧A
- A∧B⊧AésA∧B⊧B
- A⊧AVB
- {A ∨B,¬A} *B
- {A⊃B,A}*B
- {A⊃B,¬B}⊧¬A
- {A⊃B,B⊃C}+A⊃C
- {A⊃B,A⊃¬B}+¬A

modus tollens: indirekt cáfolás sémája láncszabály

modus ponens: leválasztási szabály

redukcio ad abszurdum

- ¬A♭A⊃B
- B ⊧ A ⊃ B

Kontrapozíció:

A⊃B⇔¬B⊃¬A

Érvényes formulák

- ▶¬(A ∧ ¬A)
- *AV¬A
- ⊧A⊃A
- FA⊃(¬A⊃B)
- ⊧A≡A
- ⊧¬(A≡¬A)

az ellentmondás törvénye a kizárt harmadik törvénye

A mai órán

- Az igazságfunktorok (logikai műveletek) tulajdonságai
 - nevezetes logikailag ekvivalens formulák
 - logikai műveletek kifejezhetősége egymással
 - nevezetes logikai következmények
 - nevezetes logikai törvények (érvényes formulák)
- Logikai műveletek egymással való kifejezhetősége
- Formulák kielégíthetőségének vizsgálata: A szemantikus táblák módszere
 - A módszer helyessége, teljessége

Keider

Logikai műveletek egymással való kifejezhetősége

- A⊃B⇔¬(A∧¬B)
- A⊃B⇔(¬A∨B)
- A ∧ B ⇔¬(A ⊃¬B)
- A ∨ B ⇔ (¬A ⊃ B)
- A ∨ B ⇔¬(¬A ∧ ¬B)
- A∧B⇔¬(¬A∨¬B)
- $A \equiv B \Leftrightarrow (A \supset B) \land (B \supset A)$

Mit Indend an egymással hi þjórhebö veg té maj a'han meg Elmandari?

Peildaul: A Just de nomit > si v Eilejestelo 7- nell si 1-sel

Milger beginne univelekter vannati (egg argunasm?)

x	°1	°2	03	°4
\overline{T}	T	T	F	F
\boldsymbol{F}	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$

ni misda erer Gril?

hilyan leap "cai uni ulth crannon (E'et organientermal?)

x_1	x_2	°1	°2	°3	°4	°5	°6	° 7	08
T	T	T	T	T	T	T	T	T	T
T	$\boldsymbol{\mathit{F}}$	T	T	T	T	\boldsymbol{F}	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	T	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$
x_1	x_2	09	°10	°11	°12	°13	°14	°15	°16
\overline{T}	T	F	F	F	F	F	F	F	F
T	$\boldsymbol{\mathit{F}}$	T	T	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
\boldsymbol{F}	T	T	T	\boldsymbol{F}	$\boldsymbol{\mathit{F}}$	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
F	$\boldsymbol{\mathit{F}}$	T	\boldsymbol{F}	T	$\boldsymbol{\mathit{F}}$	T	\boldsymbol{F}	T	$\boldsymbol{\mathit{F}}$

hilyan leap "can uni neleter cannon (ret organisational?)

x_1	x_2	°1	°2	°3	°4	°5	°6	° 7	08
\overline{T}	T	T	T	T	T	T	T	T	T
T	$\boldsymbol{\mathit{F}}$	T	T	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	T	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	F	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$
x_1	x_2	09	°10	°11	°12	°13	°14	°15	°16
\overline{T}	T	F	F	F	F	F	\boldsymbol{F}	$\boldsymbol{\mathit{F}}$	F
T	$\boldsymbol{\mathit{F}}$	T	T	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	T	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
F	\boldsymbol{F}	T	\boldsymbol{F}	T	F	T	$\boldsymbol{\mathit{F}}$	T	F

O2: Liszym rio (V)

05. implitailió (2)

07 : etninalencia (E)

08: Lanjon Luid (1) 010: Livaro wan

(papír 59: 2, 5, 7, 8, 10)

Ket inder un'welet

x_1	x_2	°1	°2	03	°4	°5	°6	07	08
T	T	T	T	T	T	T	T	T	T
T	$\boldsymbol{\mathit{F}}$	T	T	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	T	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$
x_1	x_2	09	°10	°11	°12	°13	°14	°15	°16
T	T	F	F	F	\boldsymbol{F}	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	\boldsymbol{F}	F
T	$\boldsymbol{\mathit{F}}$	T	T	T	T	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	T	T	T	$\boldsymbol{\mathit{F}}$	\boldsymbol{F}	T	T	$\boldsymbol{\mathit{F}}$	\boldsymbol{F}
$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$	T	\boldsymbol{F}	T	$\boldsymbol{\mathit{F}}$	T	$\boldsymbol{\mathit{F}}$

og: nand (a hanjn Crió (angadoja) 0 15: "hor"
(a dicopur ei o'
(hagadia)

hi feyr help seg

- $A \supset B \Leftrightarrow \neg (A \land \neg B)$
- $A \supset B \Leftrightarrow (\neg A \lor B)$
- $A \land B \Leftrightarrow \neg (A \supset \neg B)$
- $A \lor B \Leftrightarrow (\neg A \supset B)$
- $A \lor B \Leftrightarrow \neg (\neg A \land \neg B)$
- $A \land B \Leftrightarrow \neg (\neg A \lor \neg B)$
- $A\equiv B\Leftrightarrow (A\supset B)\land (B\supset A)$

```
tetel
          bårmelje højelde all linil herhel.
VIA,つ,=
```

- 87, U
- 0711
- •717

or ray das

- tomas, = 4ilgrheto">,1-sel · 1,v: 1 in près hete,
- · 7, x1: V rijejerheté, 3 rijejerhető / = hijejerhető), 1 sel · 7, >: 1 rijejerhető, v rijejerhető / = hijejerhető >, 1 sel 1= lipgi reto Din-sel

A többi lehetséges művelet is kifejezhető mindegyik párossal.

hi ldret jegen endret egnetler viivelettel?

Igen: A hand veen nor omægåhen is degudt. Példaul:

tejepsiih hi 1-4 mand sgitsetgivel:

· [A1B] (=> 77 (AAB) (=> 7 (A nand B)

(=) 7((A wand B) ∧ (A wand B)) (=)

(A rand B) hand (A rand B)

· 7A (=> 7 (A 1A) (=>) A wand A

Melyit lepon unient jeges?

A∧B⇔B∧A, A∨B⇔B∨A és A≡B⇔B≡A $A \land (B \land C) \Leftrightarrow (A \land B) \land C, A \lor (B \lor C) \Leftrightarrow (A \lor B)$ VC és A≡(B≡C)⇔(A≡B)≡C

A∧A⇔AésA∀A⇔A

 $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

 $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

 $A \land (B \lor A) \Leftrightarrow A \text{ és } A \lor (B \land A) \Leftrightarrow A$

¬(A∧B)⇔¬A∨¬B és ¬(A∨B)⇔¬A∧¬B

A mai órán

- Az igazságfunktorok (logikai műveletek) tulajdonságai
 - nevezetes logikailag ekvivalens formulák
 - logikai műveletek kifejezhetősége egymással
 - nevezetes logikai következmények
 - nevezetes logikai törvények (érvényes formulák)
- Logikai műveletek egymással való kifejezhetősége
- Formulák kielégíthetőségének vizsgálata: A szemantikus táblák módszere
 - A módszer helyessége, teljessége

Litera locue

litera locue

Loni hir uneurlogi hai

karstouror

atemi pula regaltia atom fomlar

Kauplemen

litera lpar i p,7p, alrel pe Con

Formlair felbanteia literailorne (0) (L(, Gou, Form) memlegi rai · diteral: atomi jamle Gegältja horstonor atom: famla's regative liberil · Kauplemen literalpain: PITP, alrel pt Con Literal pair weget v literer literal

<u>Állítás</u>: Literálok halmaza akkor és csak akkor kielégíthető, ha nem tartalmaz komplemens párt. Bizonyítás: Legyen L literálok valamilyen halmaza.

- 1. Világos: ha L kielégíthető, nem tartalmaz komplemens párt.
- 2. Ha L nem tartalmaz komplemens párt, akkor kielégithető, hiszen

megfelelő;

$$S(p) = 1$$
 la $p \in L$
 $S(p) = 0$ la $1p \in L$

Miers en derer er an legiz? (Formulair felfontaina literaleksa)

> Kieligi theti'-e: pr(~qv~p)

$$p \wedge (\neg q \vee \neg p)$$
 \downarrow
 $p, \neg q \vee \neg p$
 \swarrow
 $p, \neg q$
 $p, \neg p$

nvitott zárt

Kieligithetó, har {p,79} wan {p,7p} hielegithetó.

Mixit pelda

Inclégi Heltő?

$$(p \vee q) \wedge (\neg p \wedge \neg q)$$
 $(p \vee q) \wedge (\neg p \wedge \neg q)$
 $p \vee q, \neg p \wedge \neg q$
 $p \vee q, \neg p, \neg q$
 $p \vee q, \neg p, \neg q$
 $p \vee q, \neg p, \neg q$

Zárt

Lu $\{p \mid \neg p, \neg q\}$

Ven $\{q \mid \neg p, \neg q\}$

Kiligishető, la {p,7p,7g} ven {q,7p,7g} hille gibleto".

Sementi lun taillei entor

Ar eléző peilleithen snementium taibléitet Voiritetting.

Nem kletéllen egger tekeni ung lon formlater wilgen taibleirer tasterik.

Például:

Milgen nalrailfor remint handmealther a failulai rout?

α	α_1	α_2	β	β_1	β_2
$\neg \neg A_1$ $A_1 \land A_2$ $\neg (A_1 \lor A_2)$ $\neg (A_1 \supset A_2)$	A_1 A_1 A_1 A_1	$\begin{matrix} A_2 \\ \neg A_2 \\ \neg A_2 \end{matrix}$	$ \begin{array}{c} \neg (B_1 \wedge B_2) \\ B_1 \vee B_2 \\ B_1 \supset B_2 \end{array} $	$\neg B_1$ B_1 $\neg B_1$	$ abla B_2 \\ B_2 \\ B_2 $

· [2] hipani semleit ereten bo'm' le Hii ha

Januahalment

· [2] hipani semleite ereten bleigartour. D'

alternati vai Wal ho'm' te Hii ha semle halvet

· A leveleret neloje li lhi Mangakasasaskiote (yi 6H/20it)

A ta'ble 'construcció ja peci relibe (algoritms)

bement: Ofamla, Kimenet: I nemarkin (unida levele · Kerdelle J-wer son grøter megeli lue comisa na, cimreje & y · Valamur eg lung neur jele et levelet U(l) a ciure pomber halmer ·Ha U(1) literailereniel all har, jeliliging hung. e', u(e)-βA Ju {α1,α2} · Ha A & U(l) uen literal: - He A & tipumi femla α₁, α₂ - es re Wel - He A B hipuri fulla, Tie, 4(2) $(4) - \{\beta\}_{0}$ $(4) - \{\beta\}_{0}$ $(4) - \{\beta\}_{0}$ β_1, β_2 - rejervel ...

Veggik eine :...

- (1). A formula rielegi thetesten, la a faille unide levele reist () A (Laille zaint")
- (2). A taible housinderioje wegs sor nam lejer uter veget er.
- (3). En femula Mar Killer alapjan to let Gui loulie ré taible is Gorstma lheté A'lbelá hen kirebb fa'bla't Gapour, ha elémin a a hipesi femula hat longin E let.

A mai órán

- Az igazságfunktorok (logikai műveletek) tulajdonságai
 - nevezetes logikailag ekvivalens formulák
 - logikai műveletek kifejezhetősége egymással
 - nevezetes logikai következmények
 - nevezetes logikai törvények (érvényes formulák)
- Logikai műveletek egymással való kifejezhetősége
- Formulák kielégíthetőségének vizsgálata: A szemantikus táblák módszere
 - A módszer helyessége, teljessége

Vizsgåfjur meg zeirleterlible an (1) sirsene telt: Helsreg ei teljere'g

A nemantitus tailla Construidje en midsrer a formelair Crielégi thetetelessègéner el déutire.

- · A médrer [helyen]: Ha a taible alopjan a formedinelegithetellen (minder lenélzárt) alle a semele midlégitheteller.
- · A mødser [telji]: Ha egs famela hilligithetetla,

 aller a table i ert an eredmein + adja,

 aran mider lurele zeist.

A nemantitus tailla Consolvraidje ez midsrer a formelair Crielégi thetetlességéner el déutire.

· A médrer [helyen]:

Ha a módszerrel kapott eredmény szerint a formula kielégíthetetlen, akkor a formula valóban kielégíthetetlen.

· A mådser [lelør]:

Bármilyen kielégíthetetlen formulára alkalmazom is a módszert, a módszerrel kapott eredmény az, hogy a formula kielégíthetetlen.

· A médrer [helyen]:

Ha a módszerrel kapott eredmény szerint a formula kielégíthetetlen, akkor a formula valóban kielégíthetetlen.

· A midser / lelji

Bármilyen kielégíthetetlen formulára alkalmazom is a módszert, a módszerrel kapott eredmény az, hogy a formula kielégíthetetlen.

A nemantitus tailla Construicióje ez médszer a fermelair Crielégi thetetelességéner eldéntése.

· A médrer [helyen]:

Ha a kapott tábla zárt, akkor a formula valóban kielégíthetetlen.

· A midser [leli]:

Bármilyen kielégíthetetlen formulára alkalmazom is a módszert, minden kapott tábla zárt.

A nematitur taible in midnere a formleit heiligithetelleurse glier elde utsjere help ei telg, arar:

Télel: Jege A & Form e' Jag læssa ferse'
Keille. When.

A alther en Gal alter hiele ji thetetle, La
Trait. Rar:

1) Ha ReForm ager (Tzaist)

B Ha (Troit) ager (Helder Griffeld)

(Melzir fegni (i a helsneiget, telysveget?)

(Melzir fegni (i a helsneiget, telysveget?)

A nematitur taible in midnere a femula 'n nielézi thetelleursé glier el dé utéjere help ei telèz, arar:

Tétel: Jege A & Form e' Jag læssa ferfré Kähla. When. A alther on Gar alter hiele ji thretetlen, La Trant.

De Ha | Ac Form ager (Traint) ← teljesség

B Ha (Traint) ager (Ac Form Giller Hellether ← helyesség

(Mely'r feyni (i a helpneiget, tely's réget?) M

Ki usherene get

- · A & Form alver en sær alver hielegishett, da Typitett (onen reit).
- · At Fon ir neige (legitaité meis) alla si Juli alle, la a TA Mor tenteré taille l'int.
- · A namation tailler hamburnio joi near rægi he'gé ul eldi nthetré, han en fermer eine yr-e.

" eldëntësi esjaris"

Helyesség és teljesség együtt érdekes, a helyesség önmagában kevés

Bizarr példa

Eljárás, annak eldöntésére, hogy egy formula logikai törvény-e:

- Bemenet: tetszőleges F formula
- Kimenet/válasz: F nem logikai törvény

Ez az eljárás helyes (de nem teljes):

 Ha az eljárás válasza az, hogy F logikai törvény, akkor F valóban logikai törvény

A nementituer teithlå? mødszere net lælje neiget ei teljsreiget Gimende' fe'tel isme't:

En femula aller si sat aller Cielégit hetetlen, les a homá tasteré nemach les táblát midegire zart.

A bizonyítás alapgondolata

1. Helpeneig: Ha a taille zait, ælle a famla willig thetelle.

- . Adett lags råst fålder, meg till mutatni, han a gjörrerenel le vå famla riell pithetetter.
- · Indulgin r el a levelertéil a gró hei felé. A leveleken leinő formla halmozór (hiterail halmozó) hille'zi Hullether (orest rast a tabla).

A leveler ni lé'inel {A1 \ A2} \U U0 leib' femla hal war i $\{B_1 \vee B_2\} \cup U_0$ villegi Hetetle her. · Exign Levalle a gjókérig $\{A_1,A_2\}\cup U_0$

 $\{B_1\} \cup U_0$

 $\{B_2\} \cup U_0$

A bizonyítás alapgondolata

2. Teljone's: Ha a femla hiele'gi Hueletlen, arrea unider hona fartaré taible zaist.

"funden" faillard brene In: helier, erest weggit a <u>Yarbaponi h'r</u> fenait:

Van hemigan, han unider harraitenteré teibla veist, aller a femla hem rielezi Heteller.

A bizonyítás alapgondolata

2. Teljones: Ha a femla hielegi Hieletten, arrea unider hona fartaré taible zairt.

Miden "faillard hene hi helier, erest wegging a <u>Yanbaponi h'v</u> fensi t:

Na nemigar, han unider horraitenteré teither veist, aller a femla nem riellezi Heteller.

Habla'r 45 20 H gitatt.

Chiele'gi theb'

Réldar gitet taillaitre

$$p \wedge (\neg q \vee \neg p)$$
 \downarrow
 $p, \neg q \vee \neg p$
 \downarrow
 $p, \neg q \qquad p, \neg p$
 \circlearrowleft
 $p, \neg q \qquad p, \neg p$
 \circlearrowleft
 \Leftrightarrow
nyitott

$$p \lor (q \land \neg q)$$
 $p \lor q \land \neg q$
 $p \lor q \land \neg q$
 $p \lor q \land \neg q$
 $q \land \neg q$

A tétel még egyszer

	Télel: Legge A & Form en Jaglussa fersoi Kähla. When.
	Lähla. When. A alkar is sah alla hiele pithetetle, La
	Prait. Raz:
()	Ha ReForm Lielegi Krehdle ager (Tzaist)
2	Ha (Troit) arear (hiele'y Heltethe) (Mely'r feyni (i a heleneiget, tely's riget!)
	(Meljir Jegori La hersneiget, telys reget!)

A tétel még egyszer

A mai órán

- Az igazságfunktorok (logikai műveletek) tulajdonságai
 - nevezetes logikailag ekvivalens formulák
 - logikai műveletek kifejezhetősége egymással
 - nevezetes logikai következmények
 - nevezetes logikai törvények (érvényes formulák)
- Logikai műveletek egymással való kifejezhetősége
- Formulák kielégíthetőségének vizsgálata: A szemantikus táblák módszere
 - A módszer helyessége, teljessége