Задачи для занятия

1. Расставить пределы интегрирования двумя способами в двойном интеграле

$$\iint_D f(x,y) dx dy, где$$

1.1.
$$D$$
 – область, ограниченная линиями $y = 2\sqrt{x+1}$, $x + y = 2$, $y = 0$.

1.2.
$$D$$
 – область, ограниченная линиями $y = x^2/2$, $y = 4 - x$.

1.3. D:
$$y^2 \le 8x$$
, $y \le 2x$, $y + 4x \le 24$

1.4. *D*:
$$x^2 + y^2 \le 9$$
, $y^2 - x^2 \le 1$

2. Вычислить интеграл по области, ограниченной указанными линиями:

2.1.
$$\iint_{D_1} e^y dx dy, \quad D_1: y = \ln x, \ x = 3, \ y = 0;$$

2.2.
$$\iint_{D_2} \cos(x+y) dx dy, \quad D_2: x+y=\frac{\pi}{2}, y=x, y=0;$$

2.3.
$$\iint (xy+3)dxdy, D: y = \sqrt{x+2}, x = 2, y = 0.$$

2.4.
$$\iint_D (x-y)dxdy$$
, если G – четырехугольник с вершинами в точках A(0,0), B(0,2), C(2,3), D(2,1).

2.5.
$$\iint_G \frac{x}{y+1} dx dy, \quad G: y = x^2 + 3, y = 4x, x = 0$$

2.6.
$$\iint_{D} \frac{5x^4}{1+y^2} dx dy, \quad D: x = 0, \ x = 1, \ y = -\frac{\pi}{4}, \ y = \frac{\pi}{4};$$

2.7.
$$\iint_{D} \frac{x^2}{y^2} dx dy, D: y = \frac{1}{x}, y = x, y = 3.$$

2.8.
$$\iint_D y e^{xy} dx dy, \quad D: x = -1, x = 0, y = 0, y = 1;$$

2.9.
$$\iint_D (x^3 + 3y) dx dy, \quad D: x + y = 1, \ y = x^2 - 1, \ x \ge 0;$$

2.10.
$$\iint_D y^2 (2x+1) dx dy, \quad D: x = 2 - y^2, x = 0;$$

2.11.
$$\iint_D xydxdy, \quad D: x^2 + y^2 = 9, x + y = 3.$$

2.12.
$$\iint_D x dx dy, D: \quad y^2 - x^2 \le 1, \quad y^2 + x^2 \le 9, \quad x \ge 0.$$

3. Измените порядок интегрирования в двойных интегралах:

3.1.
$$\int_{-2}^{0} dy \int_{-2-y}^{2+y} f(x;y) dx;$$
 3.2.
$$\int_{-1}^{0} dx \int_{(x+1)^{2}}^{\sqrt{x+1}} f(x;y) dy;$$
 3.3.
$$\int_{-1}^{2} dx \int_{x^{2}-2x}^{4-x^{2}} f(x;y) dy;$$

3.4.
$$\int_{-1}^{1} dx \int_{-\sqrt{2-x^2}}^{-x^2} f(x;y) dy.$$
 3.5.
$$\int_{0}^{1} dy \int_{-\sqrt{1-y^2}}^{2-y} f(x;y) dx;$$
 3.6.
$$\int_{2}^{4} dy \int_{\ln \frac{y}{4}}^{\frac{2}{y}} f(x;y) dx.$$

3.7.
$$\int_{-2}^{-1} dy \int_{0}^{\sqrt{2+y}} f(x,y) dx + \int_{-1}^{0} dy \int_{0}^{\sqrt{-y}} f(x,y) dx$$
3.8.
$$\int_{0}^{1} dy \int_{y^{2}/9}^{y} f(x,y) dx + \int_{1}^{3} dy \int_{y^{2}/9}^{1} f(x,y) dx.$$

4. Вычислить двойной интеграл по области D, ограниченной указанными линиями, используя полярные координаты:

4.1.
$$\iint_{D_{1}} e^{-(x^{2}+y^{2})} dxdy, \quad D_{1}: x^{2}+y^{2}=2, \quad x \leq 0, \quad y \geq 0;$$

4.2.
$$\iint_{D_2} \sqrt{x^2 + y^2} dx dy, \quad D_2: x^2 - 2x + y^2 = 0;$$

4.3.
$$\iint_{D_3} y dx dy, \quad D_3: \ x^2 + y^2 - 4y = 0, \ y = \frac{x}{\sqrt{3}}, \ x^2 + y^2 - 8y = 0, \ x = 0.$$

4.4.
$$\iint_{D} \arcsin(x^2 + y^2) dx dy, \quad D: x^2 + y^2 = 1, y \le 0, x \ge 0;$$

4.5.
$$\iint_{D} \ln(1+x^2+y^2) dx dy$$
, D: $x^2+y^2 \ge 1$, $x^2+y^2 \le 16$, $y \ge x/\sqrt{3}$, $y \le \sqrt{3}x$.

4.6.
$$\iint_{D} \sin\left(\frac{\pi}{2}\left(\frac{x^2}{4} + \frac{y^2}{9}\right)\right) dxdy, \quad D: \frac{x^2}{4} + \frac{y^2}{9} = 1, \quad \frac{x^2}{16} + \frac{y^2}{36} = 1.$$

4.7.
$$\iint_{D} \frac{y^2}{\sqrt{x^2 + y^2}} dx dy, D: y = x, x^2 + y^2 - 2y = 0, x^2 + y^2 - y = 0;$$

4.8.
$$\iint_D \ln(1+x^2+y^2)dxdy, \quad D: y = \sqrt{16-x^2}, \quad x \ge 0;$$

4.9.
$$\iint_{D} \operatorname{arctg} \frac{y}{x} dx dy, \quad D: x^{2} + y^{2} = 4, \quad x^{2} + y^{2} = 16, \quad y = \frac{x}{\sqrt{3}}, \quad y = x\sqrt{3}, \quad x \ge 0, \quad y \ge 0.$$

4.10.
$$\iint_{D} \sqrt{\frac{4 - x^2 - y^2}{4 + x^2 + y^2}} dx dy, D: 1 \le x^2 + y^2 \le 4, \ x \ge 0, \ y \ge 0.$$

5. Найти массу пластинки

5.1. D:
$$1 \le x^2 + y^2 \le e^2$$
, $\sqrt{3}x \le y \le 0$, если плотность распределения массы $\gamma(x,y) = \frac{\ln(x^2 + y^2)}{x^2 + y^2}$.

5.2. D:
$$x^2 + y^2 = 2x$$
, $y = -x$, $y = x$, если плотность распределения массы $\gamma(x, y) = x$.

5.3.
$$D: x^2 + y^2 \le 9$$
, $y \ge x$, $y \ge -\sqrt{3}x$, если плотность распределения массы $\gamma(x, y) = y$.

6. Вычислить площадь фигуры, ограниченной линиями

6.1. D:
$$y = x^2$$
, $y + x = 2$.

6.2. D:
$$x^2 + y^2 = 2$$
, $x = y^2 (x \le y^2)$.

6.3. D:
$$x^2 + y^2 = 8y$$
, $y^2 + x^2 = 10y$, $y = x$, $y = \sqrt{3}x$.

6.4. D:
$$y = 6 - \sqrt{36 - x^2}$$
, $y = \sqrt{36 - x^2}$, $x = 0$ ($x \ge 0$).

7. Перейти к полярным координатам

7.1.
$$\int_{0}^{1} dx \int_{x^{2}}^{\sqrt{x}} \sqrt{x^{2} + y^{2}} dy$$
.

7.2.
$$\iint_{S} 1/\sqrt{x^2 + y^2} dxdy$$
, где S: $y = 2x$, $y = -x$, $y = 4$.

7.3.
$$\iint_{S} \ln \sqrt{x^2 + y^2} dx dy$$
, где S: $y = x^3$, $y = x^2$

8. Вычислить тройной интеграл по области, ограниченной указанными поверхностями:

8.1.
$$\iiint_{U} (x+2z) dx dy dz, \quad V: y=0, \quad x=1, \quad y=x, \quad z=x^2+3y^2, \quad z=0;$$

8.2.
$$\iiint_V y dx dy dz, \quad V: y = x, \quad y = 2, \quad x = 0, \quad z = 0, \quad z = 8 - x^2 - y^2;$$

8.3.
$$\iiint_{V} (x - y) dx dy dz, \quad V: y + x = 2, \quad z = 4 - x^2 - y^2, \ x = 0, \ y = 0, \ z = 0, (x \ge 0, \ y \ge 0).$$

9. Вычислить объем тела, заданного ограничивающими его поверхностями:

9.1. V:
$$x^2 + y^2 = z$$
, $y = x + 1$, $y = 1 - x$, $z = 0$.

9.2. V:
$$z = x + y$$
, $z = 0$, $x + y = 1$, $x = 0$, $y = 0$.

10. Используя цилиндрические координаты, вычислить тройной интеграл по области, ограниченной указанными поверхностями:

10.1.
$$\iiint_V xyzdxdydz, \quad V: \ z=0, \ z=4, \ x \ge 0, \ y \ge 0, \ x^2+y^2=4;$$

10.2
$$\iiint_{V}^{V} (\sqrt{x^2 + y^2})^3 dx dy dz, \quad V: \ 3z = \sqrt{x^2 + y^2}, \ 9z = x^2 + y^2.$$

11. Вычислить с помощью тройного интеграла в цилиндрической системе координат объем тела V, ограниченного указанными поверхностями:

11.1.
$$V: z = x, x = \sqrt{25 - y^2}, y \ge 0, z \ge 0;$$

11. 2.
$$V: x^2 + y^2 + z^2 = 2z$$
, $x^2 + y^2 = z$.

11.3. V:
$$x^2 + y^2 = 5y$$
, $x^2 + y^2 = 8y$, $z = \sqrt{x^2 + y^2}$, $z = 0$

11.4. V:
$$x^2 + y^2 = 4x$$
, $x^2 + y^2 + z^2 = 16$, $z = 0$, $(z \ge 0)$

11.5. *V*:
$$x^2 + y^2 = 2x$$
, $x^2 + y^2 = 2y$, $z = x + 2y$, $z = 0$

12. Используя сферические координаты, вычислить тройной интеграл по области, ограниченной указанными поверхностями:

12.1.
$$\iiint_{V} (x^2 + y^2 + z^2)^2 dx dy dz, \quad V : x \ge 0, \ y \ge 0, \ z \ge 0, \ x^2 + y^2 + z^2 = 4;$$
12.2.
$$\iiint_{V} (2z - x^2 - y^2) dx dy dz, \quad V : x^2 + y^2 + z^2 = 2Rz.$$

12.2.
$$\iiint_V (2z - x^2 - y^2) dx dy dz, \quad V: x^2 + y^2 + z^2 = 2Rz.$$

13. Вычислить с помощью тройного интеграла в сферической системе координат объем тела V, ограниченного указанными поверхностями:

13.1,
$$V: 1 \le x^2 + y^2 + z^2 \le 9, y \le x, y \ge 0, z \ge 0;$$

13.2.
$$V: 2 \le x^2 + y^2 + z^2 \le 8, x \ge 0, y \ge 0, z \ge 0, z^2 = x^2 + y^2.$$

14. Найти массу тела, заданного ограничивающими его поверхностями:

14.1. V:
$$x^2 + y^2 + z^2 = 4z$$
, $x = 0$ ($x \ge 0$), если объемная плотность $\gamma(x, y, z) = z$.

14.2. V:
$$4(x^2 + y^2) = z^2$$
, $z = 6$, $y = 0$ ($y \ge 0$), если плотность распределения массы равна $\gamma = z$.

14.3. V:
$$x^2 + y^2 - z^2 = -1$$
, $x^2 + y^2 = 4$, $z = 0$ ($z \ge 0$)., если объемная плотность равна $\mu(x, y, z) = z$.

142

14.4. V:
$$x^2 + y^2 + z^2 = 2z$$
, $y = 0$ $(y \ge 0)$ если объемная плотность $\gamma(x,y,z) = \sqrt{x^2 + y^2 + z^2}$.