Deep Learning at PlusAl

Xiaoshi Wang

Deep Learning at PlusAl

History

Modeling Procedure at PlusAl

- Problem/ Motivation
- Task Formation
- Data/Label Generation
- Modeling
- Evaluation
- Deployment

Challenges & Future Plans

A Little Bit of History

2017:

- 2D obstacle detection
- 2D lane detection

2020:

- 2D obstacle detection
- 2D lane detection
- Mono depth estimation
- 3D obstacle detection
- Prediction
- Control (vehicle model)
- ...

A Little Bit of History

2D obstacle and lane detection

Obstacle: Yolov2 + Multiscale -> Yolov3 + Multiscale -> CenterNet

Yolov3: Anchor based

CenterNet: Anchor free

Lane: ERFNet + techniques

A Little Bit of History

Lidar 3D obstacle detection

Prediction

. . .

WIP tasks

- Object Orientation Detection
- Image Scenario Detection
- Keypoint Detection
- Image Object Tracking
- ...

Motivation & Task Formation (For new tasks)

Motivation:

 Things we can improve in current pipeline

Task Formation:

- Learning/Non learning based.
- Classification

Data Generation : Data gathering

- Data Download (from data1)
- Data Extraction
 - /front_left_camera/image_color/compressed
 - /unified/velodyne_points
 - /navsat/odom
 - 0 ..

Data Generation : Data gathering

Data Download & Extraction By Events

- More Automatic in Future:
 - Advanced Event Processing and Offline Data Mining

Data Generation:

- Manual Annotation
 - Taxonomy
- Event Processing
 - Automatically detect and process events in Bags.

https://github.com/PlusAl/event_processing

Data Generation: Labeling

Procedure

- Data Uploading
- Task Generation
 - Data position
 - Guideline
 - Deadline
- Task Tracking
- Data Verification
 - Labeling team
 - Engineer

aws s3 cp data.tar s3://labeling/hour/ --endpoint-url=http://172.16.0.3 --profile suzhou regular task labeling 🚓 task submission pre-labeling labeling internal checking 2020-01-10-to-2020-01-21-selected5 Image Selection and 2D bounding box lane detection amazon run/LOL relabel using v2 guideline 2d object 2d_object urgent 2020-01-10-to-2020-01-21-selected6 Image Selection and 2D bounding box 2d object 2d object urgent 2d object urgent 2020-01-10-to-2020-01-21-selected8 2020-01-pacaar-k001-undistorted4 Image Selection and 2D bounding box 2d_object 2d object urgent 2d object urgent 2020-01-10-to-2020-01-21-selected7 2020-01-10-to-2020-01-21-selected4 2d object 2d object Image Selection and 2D bounding box Labeling (20190814) 2d_object 2d_object 4 2020-02-lewis-selected4

Data Generation: Data Verification (QA)

Data Generation: Dataset Split, Benchmark Dataset

- Training, Validation, Test (Benchmark)
- Test set is annotated with scenarios

Data Generation: Existing Datasets

Large Datasets:

- 2D obstacle detection: 100000 frames
- 2D lane detection: 60000 frames
- 3D lidar&image tracking: 50000 frames
- 2D ground touching points (side view): 30000 frames

Small Datasets:

- 2D Key point data (2000-4000 frames in May)
- Semantic & instance segmentation data (200-500 in May)

Modeling -- Coding

- Data pipeline
- Model Architecture
- Evaluation Metrics
- Training Script

Modeling -- Training

Hardware: Suzhou Gpu Clusters, AWS

Training Procedure

- Structure & capacity
- Loss
- Scale
- Tricks (hard negative sampling etc.)
- Hyperparameter tuning

Model

Name	Status	Performance	Note
Anchor regeneration	Finished for small scale model; In progress for large scale	Positive	The improved small scale model has been merged.
RefineNet	Finished	Negative	
RetinaNet	Implemented		Planned for detailed examination in future
Yolo v3 (Darknet43) + multiscale output	Implemented	Positive for faraway objects Testing in progress	
Yolo v3 (Darknet26) + multiscale output	Implemented	Positive for faraway objects Testing in progress	
Network random search	Implemented v1		Planned for detailed examination in future
Focal loss	Finished	Positive	

Modeling -- Training ML Platform (in recent future)

Evaluation Metrics:

- Thorough understanding of model
- Product orientated

Obstacle Detection:

- Goal: Large objects, nearby objects, ego lane objects, pedestrian, robustness
- Metrics Design:
 - o metrics based on obstacle size,
 - truncated obstacles,
 - occluded obstacles
 - front obstacle,
 - ego lane obstacles,
 - Robustness of objects in continuous frames

Evaluation: PlusAl vs KITTI

	PlusAl	KITTI
Metrics	mAP, Precision, Recall, F scores, Confusion Matrix	mAP
Scenarios	Large object (bucketized); Truncated; Occluded; Ego Lane Object (fp); Front Vehicle (recall); Robustness;	Truncated + Occluded
Deployment	Class & size weighted F1 score with precision & recall restrictions	

```
"box size": "0.003-0.004",
"result": {
                                            "F scores": {
  "num images": 4757.
                                              "0.5": 0.9185991387898435,
  "prob threshold": 0.5,
                                              "1.0": 0.8420824245937985
  "eval threshold": 0.5,
                                             "precision": {
  "mAPs": {
                                              "car": 0.9858916478499669,
    "car": 0.9567511980608188,
                                              "bus": 0.999999995,
    "bus": 0.28188229696109174.
                                              "truck": 0.8989361701649502,
    "truck": 0.762556853647838.
                                              "pedestrian": 0.9999999993333333,
    "moto": 0.004201659663970588,
                                              "traffic_cone": 0.9999999985714286,
    "pedestrian": 0.9473679224379354,
                                              "barricade": 0.9999999900000002,
                                              "all": 0.9778337531436886
    "bike": 0.8333291666874998,
    "traffic cone": 0.8461531952667729,
                                            "recall": {
    "barricade": 0.368865533361575
                                              "car": 0.8917815211797255.
                                              "bus": 0.05882352939446367,
                                              "truck": 0.640151515127267,
   "num_vehicles": {
     "car": 1959,
                                              "traffic_cone": 0.5384615380473372,
     "bus": 34.
                                              "barricade": 0.0030120481926803598,
                                              "all": 0.7394285714257546
     "truck": 264,
     "moto": 2.
                                            "ego_lane_fp/total_fp": 0.6454116572810145,
     "pedestrian": 19.
                                            "ego_lane_fp/total_images": 0.891528274122346,
     "bike": 2,
                                            "confusion matrices on size-matched detection
     "traffic_cone": 13,
                                            for gt, col for det)": [
     "barricade": 332
   "num_front_vehicles": 180,
   "front car recalls": {
     "0.8": 0.8944444439475309.
     "0.85": 0.8944444439475309.
     "0.9": 0.8944444439475309,
     "0.95": 0.8944444439475309
   "all recalls": {
     "0.8": 0.8205714285401687,
     "0.85": 0.814095238064225,
     "0.9": 0.8076190475882812,
     "0.95": 0.7912380952079529
```

Evaluation -- Analysis

Why the new network/technique performs better

Why is CenterNet better than Yolov3?

Hypotheses	Possible effects	How to validate?
CenterNet has a better backbone.	++ small objects ++ large objects	Replace the darknet backbone of Yolov1 with DLA
CenterNet uses soft labels for the locations while Yolov3 uses hard labels.	+ small objects + large objects	Hard to validate
The regression loss function of CenterNet cares more for large objects.	small objects ++ large objects	Use a similar loss function for Yolov3
Small bounding boxes are not filtered out during training of CenterNet.	++ small objects - large objects	Train Yolov3 without filtering out small objects. Validated

Deployment

Runtime API

Model Speedup

PR Submission

```
class RTObjectDetector : public ObjectDetector {
   typedef std::shared_ptr<RTObjectDetector> Ptr;
   // async function. will submit jobs to GPU and return immediately.
   void DetectAsync(const cv::cuda::GpuMat& img) override;
   // this function will block until GPU job finished.
   void GetDetection(std::vector<models::GenericDetection>& detections) override;
   // this function will block until GPU job finished.
   void GetDetection(std::vector<GenericDetection3D>& detections_3d) override;
   // this function will block until GPU job finished.
   void GetFeatures(cv::Mat& features) override;
   bool IsDetectionFinished() override;
   RTObjectDetector(const StereoDetectorParam& conf,
                    const boost::filesystem::path& file_root_path,
                    bool get_image_features = false);
  private:
   std::unique_ptr<TensorrtDetector> _detector;
   const StereoDetectorParam _conf;
   int _gpu_id;
};
```

Metric	Equation	Overall	close_front_ego_ego_lane x: (2, 50) , y : (0, 2)	close_front_neighbor_lane x: (2, 50) , y : (2, 6)	medium_front_ego_lane x: (50, 100) , y : (0, 2)	medium_front_neighbor_lane x: (50, 100) , y : (2, 6)	far_front_ego_lane x: (100, 150) , y : (0, 2)
Recall	TP / (TP + FN)	0.591 -> 0.586	1.000 -> 1.000	0.996 -> 0.995	0.988 -> 0.981	0.961 -> 0.956	0.956 -> 0.959
Precision	TP / (TP + FP)	0.750 -> 0.741	1.000 -> 1.000	0.976 -> 0.974	0.932 -> 0.949	0.964 -> 0.968	0.885 -> 0.888
Matching Rate	1 - MM / TP	1.000 -> 1.000	1.000 -> 1.000	1.000 -> 1.000	1.000 -> 1.000	1.000 -> 1.000	1.000 -> 1.000
Multi Object Tracking Accuracy	1 - (MM + FP + FN) / (TP + FN)	0.394 -> 0.381	1.000 -> 1.000	0.971 -> 0.969	0.915 -> 0.928	0.925 -> 0.925	0.832 -> 0.838
3d cuboid iou	mean(iou3d(tp_has_lidar, gt_has_lidar))	0.193 -> 0.194	0.395 -> 0.391	0.492 -> 0.492	0.193 -> 0.193	0.161 -> 0.162	0.024 -> 0.026
2d box iou	mean(iou2d(tp_has_camera, gt_has_camera))	0.692 -> 0.691	0.866 -> 0.865	0.828 -> 0.828	0.787 -> 0.780	0.782 -> 0.777	0.655 -> 0.656

Deployment

Model Speedup: TensorRT, Cuda post processing

TensorRT

- Layer / Tensor Fusion
- Auto-Tuning
- Precision Calibration
- Multi-Stream Execution
- Dynamic Tensor Memory

Offline: TensorFlow -> UFF, PyTorch -> ONNX

Online: UFF / ONNX -> TensorRT Engine

Cuda post processing

Run lots of tasks in parallel

Challenges & Future Plans

Data Filtering

-- event processing, online & offline

Model Latency

-- multitask learning

Model Tuning

-- distributed training, AutoML