Cómputo Evolutivo **Tarea 2**PCIC - UNAM

4 de marzo de 2020

Diego de Jesús Isla López (dislalopez@gmail.com) (diego.isla@comunidad.unam.mx)

1. Definición del problema

Utilizar el algoritmo genético con codificaciones binaria, real y entera para resolver los problemas de N-reinas y agente viajero (TSP). Se mantienen los siguientes parámetros

■ Selección: Torneo binario

• Cruza: aleatoria en un punto con tasa de 0,9

■ Mutación: aleatoria con tasa de $\frac{0,1}{L}$ donde L es la longitud del individuo

Elitismo

Población: 100 individuosNúmero de generaciones: 500

La instancia de TSP a resolver es $GR17^1$, por lo que la dimensión es de 17 variables. Por su parte, las pruebas para N-reinas se harán con n = 8.

2. Función de aptitud

En el caso de N-reinas, el problema se centra en reducir el número de ataques. Para el caso de TSP, se busca el ciclo más corto para el recorrido de todas las ciudades regresando al punto de inicio. Como se describe en la documentación del problema, para la instancia GR17 la distancia óptima es 2085.

3. Resultados

Las gráficas muestran el desempeño de 10 ejecuciones para cada instancia, siendo la evolución de la mejor solución a lo largo de las generaciones.

¹Disponible en https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html

3.1. Codificación entera

En el caso de N-reinas, el desempeño de algoritmo es contundente pues logra encontrar una solución factible en las primeras generaciones, la cual guía el resto de los resultados hasta el fin de la ejecución (figura 1). Como es posible ver en la tabla 1, el promedio de todas las ejecuciones es 0,012, lo que nos habla de un desempeño uniforme y encontrando soluciones factibles desde etapas tempranas de la ejecución del algoritmo.

Figura 1: Resultados para N-reinas con codificación entera

En el caso del problema TSP, se puede observar que en promedio el desempeño es bueno y con tendencia a acercarse a la solución óptima (figura 2). En la tabla 2 podemos constatar que el promedio de las soluciones es muy cercano al óptimo, con una desviación estándar relativamente pequeña, lo que concuerda con lo visto en la gráfica.

Muestra	$\Sigma f(x)$	σ	σ^2
E1	0	0	0
E2	4	0.1262384	0.01593613
E3	2	0.08935341	0.007984032
E4	6	0.1544548	0.02385629
E5	6	0.1544548	0.02385629
E6	6	0.1544548	0.02385629
E7	4	0.1262384	0.01593613
E8	8	0.1781699	0.03174451
E9	6	0.1544548	0.02385629
E10	20	0.2800057	0.07840319
μ	0.012	0.1566618	0.02454291

Tabla 1: Análisis estadístico de las ejecuciones de N-reinas en codificación entera

Muestra	$\Sigma f(x)$	σ	σ^2
E1	1066757	149.9581	22487.44
E2	1061105	137.9094	19019
E3	1089541	148.3441	22005.97
E4	1067960	119.5627	14295.24
E5	1065858	126.6666	16044.42
E6	1065931	120.611	14547.02
E7	1092353	139.7941	19542.38
E8	1073028	155.7204	24248.85
E9	1063132	158.0054	24965.7
E10	1090362	146.0115	21319.37
μ	2138.65	140.8813	19847.54

Tabla 2: Análisis estadístico de las ejecuciones de TSP en codificación entera

Figura 2: Resultados para TSP con codificación entera

3.2. Codificación real

En el caso de N-reinas, podemos observar en la figura 3 que el comportamiento tiene una tendencia clara a minimizar, sin embargo la mayoría de las ejecuciones no pudieron mejorar más allá de 2 colisiones, siendo solo una ejecución en la que se llegó al óptimo de 0 colisiones. En la tabla 3 podemos constatar esto, viendo que el promedio es 1.94 con una desviación estándar mínima.

Muestra	$\Sigma f(x)$	σ	σ^2
E1	1018	0.2509543	0.0629780
E2	1026	0.4355463	0.1897006
E3	1098	0.7233323	0.5232096
E4	1062	0.6585049	0.4336287
E5	1114	0.9197414	0.8459242
E6	1028	0.4441862	0.19730149
E7	1102	0.8989326	0.8080798
E8	1062	0.6939948	0.4816287
E9	80	0.9156698	0.8384511
E10	1170	1.193034	1.423329
μ	1.94	0.7618551	0.5804232

Tabla 3: Análisis estadístico de las ejecuciones de N-reinas en codificación real

Figura 3: Resultados para N-reinas con codificación real

Muestra	$\Sigma f(x)$	σ	σ^2
E1	275240	290.7977	84563.31
E2	279838	278.9088	77790.09
E3	152446	275.7725	76050.46
E4	120820	264.9394	70192.89
E5	233835	296.5924	87967.05
E6	158908	311.4078	96974.79
E7	277379	218.9546	47941.11
E8	171000	270.4682	73153.03
E9	335679	227.414	51717.15
E10	152217	285.1013	81282.74
μ	429.75	258.8132	74763.26

Tabla 4: Análisis estadístico de las ejecuciones de TSP en codificación real

El caso de TSP es interesante, ya que la codificación real no dio buenos resultados. A pesar de que en la gráfica podemos observar un comportamiento estable (figura 4), las soluciones generadas presentan valores repetidos y esto se refleja en el valor de la función objetivo, el cual se minimiza más allá del valor óptimo conocido (tabla 4).

Figura 4: Resultados para TSP con codificación real

3.3. Codificación binaria

Para estas ejecuciones se usó el método de codificación propuesto en [1] en la que se mapea cada combinación válida a una cadena binaria.

En el caso de N-reinas observamos un desempeño en el que rápidamente se encuentran soluciones factibles y se mantienen durante el resto de la ejecución (figura 5), incluso habiendo una ejecución donde desde el inicio se encontraron solo soluciones factibles. Podemos corroborar en la tabla 5 que el promedio de las soluciones es 0 con una desviación estándar casi nula.

Muestra	$\Sigma f(x)$	σ	σ^2
E1	8	0.1781698936	0.03174451098
E2	2	0.08935341032	0.007984031936
E3	0	0	0
E4	0	0	0
E5	2	0.08935341032	0.007984031936
E6	0	0	0
E7	0	0	0
E8	4	0.1262383767	0.01593612774
E9	0	0	0
E10	0	0	0
μ	0.003	0.07978014	0.00636487

Tabla 5: Análisis estadístico de las ejecuciones de N-reinas en codificación binaria

Figura 5: Resultados para N-reinas con codificación binaria

Muestra	$\Sigma f(x)$	σ	σ^2
E1	1478086	29.73762	884.3262
E2	1307335	56.70072	3214.972
E3	1351190	33.31777	1110.074
E4	1331309	33.90026	1149.228
E5	1263318	48.51773	2353.97
E6	1236899	107.0594	11461.72
E7	1512827	6.85954	47.0533
E8	1220855	78.90086	6225.345
E9	1329707	77.87225	6064.087
E10	1341517	56.4382	3185.271
μ	2663.95	59.74617	3569.605

Tabla 6: Análisis estadístico de las ejecuciones de TSP en codificación binaria

En el caso de TSP, tenemos un desempeño regular, con tendencia a optimizar el valor de las soluciones (figura 6), sin embargo solo en dos ejecuciones se llega al valor óptimo. En la tabla 6 podemos observar que el promedio está en 2663.95 con una desviación estándar de 59.74, lo que nos hace corroborar el comportamiento estable ya mencionado.

Figura 6: Resultados para TSP con codificación binaria

4. Conclusiones

Los mejores resultados para ambos casos de los problemas se obtuvieron utilizando la codificación entera, donde se encontraron valores óptimos en los dos problemas. Es posible apreciar cómo al utilizar la codificación binaria, es posible encontrar buenos resultados para ambos problemas; sin embargo, en el caso de TSP es notoria la dificultad que tiene el algoritmo para encontrar la solución óptima. Es de hacer notar el desempeño presentado con TSP en la codificación real; este comportamiento puede estar relacionado con la precisión usada para representar cada valor del conjunto.

Referencias

[1] Amin Mohebifar. New binary representation in genetic algorithms for solving tsp by mapping permutations to a list of ordered numbers. In *Proceedings of the 5th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics*, CIMMACS'06, page 363–367, Stevens Point, Wisconsin, USA, 2006. World Scientific and Engineering Academy and Society (WSEAS).