Atenção: Nas questões a seguir, quando for pedido para que você descreva uma linguagem, você deve fazer isto indicando características das strings pertencentes à linguagem em termos dos seus símbolos. Exemplos de descrições deste tipo são $\{w \in \{0,1\}^* \mid w \text{ termina em } 0 \}$ e $\{w \mid w \text{ é uma string de 0's e 1's onde todo 1 é seguido por um 0 }\}.$

- 1. (2,2 pontos) Faça o que é pedido a seguir:
 - (a) Através de um diagrama de estados, descreva um autômato com pilha que aceita a linguagem $\{0^n1^{3n}\mid n\geq 0\}.$
 - (b) Foram vistos em aula exemplos de linguagens que não são aceitas por autômatos com pilha. Cite um destes exemplos.
- 2. (2,1 pontos) A seguir, é dada uma árvore de derivação construída a partir de uma gramática livre de contexto cuja variável inicial é A:

Faça o que é pedido a seguir:

- (a) Indique a string w derivada pela árvore de derivação acima.
- (b) Apresente uma derivação mais à esquerda da string w do item (a).
- (c) Considere a gramática livre de contexto a partir da qual foi construída a árvore de derivação acima. É possível determinar produções que esta gramática deve conter. Indique todas estas produções.
- (d) Apresente uma derivação que é diferente da derivação do item (b) e que também é uma derivação mais à esquerda da string w do item (a).

3. (2,0 pontos) Considere a gramática livre de contexto G = (V, T, P, S), onde $V = \{A, B, C\}$, $T = \{0, 1\}$, S = A e P consiste nas produções dadas na Figura 1 abaixo. Considere também o autômato com pilha M dado pelo diagrama de estados da Figura 2 abaixo.

P: 1.
$$A \to B$$

2. $A \to C$
3. $B \to 0B$
4. $B \to \varepsilon$
5. $C \to C01$
6. $C \to 01$

Figura 1: Produções da gramática G

Figura 2: Autômato com pilha M

Faça o que é pedido a seguir:

- (a) Apresente uma string que é aceita pelo autômato M e que ${\bf n\tilde{a}o}$ é gerada pela gramática G.
- (b) Modifique G para torná-la uma gramática livre de contexto que gera a mesma linguagem aceita pelo autômato M.
- (c) Apresente uma string que é gerada pela gramática G e que $\mathbf{n}\mathbf{\tilde{a}o}$ é aceita pelo autômato M.
- (d) Modifique M para torná-lo um autômato com pilha que aceita a mesma linguagem gerada pela gramática G.
- 4. (2,0 pontos) Considere a gramática livre de contexto G = (V, T, P, S), onde $V = \{A\}$, $T = \{0, 1\}$, S = A e P consiste nas seguintes produções:

1.
$$A \rightarrow 0A$$
 2. $A \rightarrow A1$

3. $A \rightarrow 01$

Faça o que é pedido a seguir:

- (a) Descreva a linguagem gerada por G.
- (b) A gramática G é ambígua. Justifique, de forma precisa e clara, por que esta afirmação é verdadeira.
- (c) Remova a ambiguidade de G, ou seja, modifique G para torná-la uma gramática livre de contexto que não é ambígua e que gera a mesma linguagem.
- 5. (1,7 ponto) Lembre do lema do bombeamento para linguagens regulares:

Teorema (Lema do bombeamento para linguagens regulares): Se L é uma linguagem regular, então existe um número n tal que, para toda string w em L com $|w| \ge n$, é possível escrever w = xyz, ou seja, dividir w em três partes, de forma que

- $y \neq \varepsilon$,
- $|xy| \leq n$ e,
- para todo $k \ge 0$, a string xy^kz também está em L.

A linguagem $L = \{0^p1^q \mid p < q\}$ não é regular. Para mostrar que esta afirmação é verdadeira, elabore uma prova por contradição usando o lema do bombeamento acima. Descreva, de forma precisa e clara, os **passos principais** da sua prova.