ANALISIS KEANDALAN PADA PENYULANG BATU BELIG

Fahmi Ramadhan¹, Rukmi Sari Hartati², I Ketut Wijaya³

1,2,3 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana

Email: ftejoee@gmail.com¹, rshartati@gmail.com², wijaya@ee.unud.ac.id³

Abstrak

Penyulang Batu Belig jaringan memiliki cakupan wilayah yang cukup panjang dan padat sehingga mengakibatkan nilai keandalan jaringan relatif kurang baik, hal itu dapat dilihat dari nilai SAIDI penyulang Batu Belig yaitu 4,0194 h/customer/yr. Keandalan dapat ditingkatkan dengan merekonfigurasi jaringan. Rekonfigurasi jaringan menggunakan 2 alternatif skenario, skenario 1 upaya untuk menentukan dan menambahkan sectionalizer sehingga diperoleh keandalan yang lebih baik. Skenario 2 yaitu membangun penyulang baru di Jalan Peti Tenget yang bersumber dari Gardu Induk Padang Sambian Trafo 2, kemudian menentukan lokasi dibangunnya penyulang baru berdasarkan pembagian beban, setelah itu menentukan jenis kabel yang baik untuk meningkatkan keandalan. Hasil analisis menunjukkan bahwa penempatan sectionalizer yang tepat dan memperoleh indeks keandalan yang memenuhi syarat World Class Service. Skenario 1, didapat 2 titik terbaik berdasarkan perhitungan di lokasi 1 yaitu di Jalan Peti Tenget pada Gardu Distribusi nomor KA2276 dan lokasi 2 yaitu Jalan Peti Tenget pada Gardu Distribusi nomor KA2593. Skenario 2, setelah membangun penyulang baru keandalan penyulang Batu Belig membaik, nilai SAIDI menjadi 0,5501 jam/tahun/pelanggan dan SAIFI sebesar 1,2510 kali/tahun/pelanggan.

Kata kunci: Sectionalizer, Keandalan, Trial Error, Batu Belig

1. PENDAHULUAN

Pertumbuhan permintaan energi listrik harus diimbangi dengan keandalan sistem distribusi yang baik. Keandalan sistem distribusi dapat dinyatakan dalam berapa lama dan seberapa sering pemadaman terjadi dalam satu tahun. Beberapa variabel mempengaruhi indeks keandalan yang adalah panjang penyulang dan kerapatan beban, konfigurasi jaringan dan tegangan yang disalurkan. Solusi untuk meningkatkan keandalan jaringan distribusi berdasarkan indeks keandalan adalah dengan menambahkan fuse, sectionalizer atau recloser [1].

Nilai SAIDI dan SAIFI kondisi eksisting pada penyulang Batu Belig adalah 4,0194 jam/pelanggan/tahun dan 1,2904 kali/pelanggan/tahun. Nilai SAIDI tersebut belum memenuhi standar WCS yaitu 100 menit/pelanggan/tahun sedangkan untuk nilai SAIFI sudah memenuhi standar WCS yaitu 3 kali/pelanggan/tahun. Akibat dari nilai SAIDI yang belum memenuhi target WCS (*World*

Class Service) maka perlu dilakukan analisis untuk meningkatkan keandalan penyulang tersebut.

Penelitian ini membahas usaha untuk meningkatkan keandalan pada penyulang Batu Belig dengan 2 alternatif skenario. Skenario 1 yaitu menambahkan dan menentukan lokasi sectionalizer dengan metode *Trial and Error*, Skenario 2 yaitu merekonfigurasi jaringan dengan membangun penyulang baru.

2. KAJIAN PUSTAKA

2.1 Konsep Dasar Keandalan

Keandalan dalam sistem distribusi adalah suatu ukuran ketersediaan atau tingkat pelayanan penyediaan tenaga listrik dari sistem ke pelanggan. Ukuran keandalan dapat dinyatakan seberapa sering sistem mengalami pemadaman, berapa lama pemadaman terjadi, dan berapa cepat waktu yang dibutuhkan untuk pemulihan sistem [2].

Mengevaluasi keandalan jaringan distribusi digunakan teknik analisis

menggunakan rumus matematik, yaitu indeks keandalan dasar digunakan laju kegagalan λ (kegagalan/tahun), rata rata waktu keluar (outage) r (jam/kegagalan) dan rata rata ketidaktersediaan tahunan U (jam/tahun, sedangkan indeks berbasis sistem diantaranya adalah SAIFI dan SAIDI [3].

2.2 Indeks keandalan sistem

Penilitian ini menggunakan menggunakan 3 indeks keandalan yaitu SAIFI, SAIDI, dan AENS. SAIFI merupakan indeks yang memberikan informasi tentang pemadaman frekuensi rata-rata pelanggan. Indeks ini ditentukan dengan membagi jumlah semua gangguan pelanggan dalam satu tahun dengan jumlah pelanggan vang dilavani oleh sistem tersebut. SAIDI merupakan indeks yang menggambarkan durasi atau lama pemadaman rata-rata yang dialami pelanggan. Indeks ini didefinisikan sebagai nilai rata-rata dari lamanya gangguan untuk setiap konsumen selama satu tahun. AENS adalah rata-rata dari kWh yang tidak tersuplai kepada pelanggan selama periode satu tahun [4].

Persamaan untuk SAIFI (rata-rata jumlah gangguan per pelanggan) ini dapat dilihat pada persamaan dibawah ini :

$$SAIFI = \frac{\sum \lambda_i N_i}{\sum N_i} \dots (1)$$

Keterangan:

λ_i: Laju kegagalan saluran

 N_i : Jumlah pelanggan pada saluran

Persamaan untuk SAIDI (rata-rata durasi gangguan) ini dapat dilihat pada persamaan dibawah ini :

$$\mathsf{SAIDI} = \frac{\sum U_i N_i}{\sum N_i}....(2)$$

Keterangan:

U_i: Laju perbaikan saluran

 N_i : Jumlah pelanggan pada saluran k

 N_i : Total pelanggan pada system

Persamaan untuk AENS (rata-rata kWh yang tidak tersuplai) ini dapat dilihat pada persamaan dibawah ini :

AENS =
$$\frac{\sum ENS}{\sum N_i}$$
....(3)

Keterangan:

ENS : Jumlah energi yang tidak tersuplai

dalam kWh

 N_i : Jumlah pelanggan pada saluran

2.3 Metode Trial Error

Trial and error menggunakan pendekatan aplikatif dari sebuah algoritma yang akan digunakan untuk menyelesaikan suatu masalah. Metode trial and error ini merupakan metode sistematis yang tidak menggunakan wawasan dan metodologi terorganisir. Pemecahan masalah menggunakan metode ini harus dilakukan upaya uji coba berulang kali dan terus melakukan upaya bervariasi hingga percobaan memperoleh hasil yang diinginkan [5].

Metode *trial* and error dalam penelitian ini digunakan untuk menentukan calon lokasi sectionalizer, dengan mempertimbangkan cabang yang memiliki lebih dari 1 gardu distribusi pada jalur utama, dimana jalur tersebut menghubungkan penyulang Batu Belig dan penyulang Uma Alas.

3. METODOLOGI PENILITIAN

Analisis data pada penelitian ini disusun berdasarkan metode kepustakaan dengan menganilisis teori yang ada dari beberapa buku dan makalah maupun jurnal, sehingga alur analisis dapat dijabarkan dalam gambar 1 sebagai berikut:

Gambar 1. Alur Analisis

4. HASIL DAN PEMBAHASAN

4.1 Kondisi Existing Sistem Distribusi Penyulang batu Belig

Kondisi existing jaringan sistem distribusi penyulang Batu Belig menggunakan sistem radial yang diketahui sistem ini dikategorikan jaringan yang kurang andal [6]. Kondisi existing jaringan memungkinkan untuk dilakukan suatu rekonfigurasi agar memperoleh jaringan distribusi di penyulang Batu Belig yang memiliki keandalan lebih baik dari existing.

Perhitungan keandalan dengan menggunakan metode *reliability analysis* pada *software* ETAP. data yang digunakan adalah kapasitas transformator, beban transformator, panjang saluran, jumlah pelanggan, angka keluaran pada komponen sistem distribusi, dan waktu perbaikan komponen sistem distribusi

Nilai indeks keandalan (SAIFI dan SAIDI) penyulang Batu Belig kondisi eksisting dapat dilihat pada tabel 1.

Tabel 1. Indeks keandalan eksisting penyulang Batu Belig

9		
1	SAIFI	1,2904 f/customer.yr
2	SAIDI	4,0194 hr/customer.yr

4.2 Analisis Keandalan Penyulang Batu Belig Setelah Rekonfigurasi

4.2.1 Jaringan sistem distribusi penyulang Batu Belig setelah rekonfigurasi skenario 1

Rekonfigurasi skenario 1 yang adalah dilakukan menambahkan dan dengan menentukan titik sectionalizer mempertimbangkan lokasi tie switch (TS) yang berada di penyulang Batu Belig yang terhubung ke penyulang Uma Alas. Daerah dianalisis yang untuk penambahan sectionalizer dapat dilihat pada gambar 2.

Gambar 2. Rencana lokasi sectionalizer

Penempatan calon lokasi sectionalizer (load point) pada cabang yang memiliki lebih dari 1 gardu distribusi. Lokasi sectionalizer dapat dilihat pada gambar 3.

Gambar 3. Titik lokasi sectionalizer

Pengelompokkan data dengan mengasumsikan calon lokasi sebagai load point, di setiap load point terdapat beberapa trafo beban sehingga memiliki jumlah total daya yang berbeda beda sesuai dengan jumlah pelanggan. Data dapat dilihat pada tabel 2.

Tabel 2. Data Load Point

Load Point	Gardu KA 1913	Jml. Plgn 6	Daya (kVA) 107	Komponen (unit.km)	
LP 1				Line 1	4,59
	KA 1242	1	26	Line 2	0,28
	KA 0629	389	142	Line 3	0,031
	KA 0631	201	75	Line 4	0,231
	KA 2179	9	6	Line 5	0,349
	DB 0635	84	17,5	Line 6	0,078
		690	373,5		5,559
LP 2	KA 2276	1	5	Line 7	0,071
	KA 0948	2	6	Line 8	0,076
	KA 0115	237	99,2	Line 9	0,081
	KA 0926	180	71	Line 10	0,404
	KA 2773	1	128	Line 11	0,097
	KA 1272	83	45	Line 12	0,182
		504	354,2		0,911
LP 3	KA 2593	1	108	Line 13	0,063
	KA 0024	201	189	Line 14	0,025
	KA 2492	1	4,8	Line 15	0,246
	KA 0922	96	28	Line 16	0,195
	KA 1678	1	24	Line 17	0,101
	KA 7009	1	3	Line 18	0,162
	DB 9104	1	136	Line 19	0,084
	KA 0938	86	75,2	Line 20	0,26
	KA 0474	103	102	Line 21	0,509
	KA 0607	155	128	Line 22	0,152
	KA 2287	1	120	Line 23	0,048
	KA 2567	2	128	Line 24	0,032
	KA 1786	6	136	Line 25	0,035
		655	1182		1,912

Tabel 2. Data Load Point (lanjutan)

Load Point	Gardu	Jml. Plgn	Ign Daya (kVA)	Komponen (unit.km)	
LP 4	KA 9125	1		Line 26	0,171
	KA 9122	3	133	Line 27	0,015
		4	272		0,186
LP 5	KA 2689	5	125	Line 28	0,05
	KA 2516	1	44,8	Line 29	0,051
	KA 1415	2	95	Line 30	0,098
	KA 1309	1	49,6	Line 31	0,101
	KA 0439	217	85	Line 32	0,006
	KA 2496	1	118	Line 33	0,172
	KA 2353	13	56	Line 34	0,046
	KA 2123	6	29,7	Line 35	0,069
	KA 2431	4	3,2	Line 36	0,035
	KA 0637	34	37,5	Line 37	0,139
		284	643,8		0,767

Indeks keandalan untuk SAIFI, SAIDI dan AENS seluruh *load point* menggunakan rumus sebagai berikut :

SAIFI =
$$\frac{\sum \lambda_i N_i}{\sum N_i}$$
 = $\frac{3751,08}{2137}$

= 1,7553 kali/tahun/pelanggan

SAIDI =
$$\frac{\sum U_i N_i}{\sum N_i} = \frac{8170,88}{2137}$$

= 3,824 jam/tahun/pelanggan

AENS =
$$\frac{\sum ENS}{\sum N_i} = \frac{8821,57}{2137}$$

= 4,128 kWh/tahun/pelanggan

Perhitungan diatas diulangi untuk lokasilokasi sectionalizer yang lain yaitu lokasi 1 sampai lokasi 5.

Penentuan lokasi *sectionalizer* yang paling baik menurut perhitungan dapat dilihat pada tabel 2.

Tabel 3. Keandalan seluruh load point

Lokasi Recloser	Alamat	SAIFI	SAIDI	AENS
Lokasi 1	Jl. Peti Tenget KA2276	1,7553	3,823527	4,128016
Lokasi 2	Jl. Peti Tenget KA2593	1,7553	3,826999	3,63046
Lokasi 3	Jl. Peti Tenget KA1922	1,7553	5,567399	4,892279
Lokasi 4	Jl. Peti Tenget KA2689	1,7553	5,736553	5,524291
Lokasi 5	Jl. Peti Tenget KA0637	1,7553	7,4474	7,877446

Tabel 2 menunjukkan bahwa penempatan lokasi sectionalizer yang baik berdasarkan perhitungan ada pada lokasi 1 dan lokasi 2. Lokasi tersebut menunjukkan nilai durasi gangguan pertahun yang paling kecil diantara lokasi lainnya. Nilai durasi gangguan pertahun yang dihasilkan semakin kecil maka kerugian akibat hilangnya energi yang tidak dapat disuplai akan lebih kecil pula.

4.3.2 Jaringan sistem distribusi penyulang Batu Belig setelah rekonfigurasi skenario 2

Rekonfigurasi kedua yang dilakukan adalah dengan membuat penyulang baru yang bersumber dari Gardu Induk Padang Sambian Trafo 2 untuk menyuplai setengah dari beban penyulang Batu Belig.

Daerah suplai masing masing bagian ditentukan bedasarkan pembagian beban, Titik potong penyulang Batu Belig berdasarkan pembagian beban dapat dilihat pada gambar.

Gambar 4. Tititk Potong

Analisis ini menggunakan kabel tanam jenis XLPE, karena nilai angka keluar dari kabel tanam adalah 0,007/km/tahun [6]. Hasil analisa penambahan penyulang baru dapat dilihat pada tabel 4.

Tabel 4. Indeks keandalan penyulang Batu Belig
sebelum dan sesudah rekonfigurasi

No	Kondisi	SAIFI	SAIDI	CAIDI	ASAI	ASUI
1	Sebelum					
	dibangun	1,2904	4,0194	3,115	0,9995	0,00046
	penyulang	f/customer.yr	hr/customer.yr	hr/customer	pu	pu
	baru			interruption		
2	Setelah					
	dibangun	1,2510	0,5501	0,440	0,9999	0,00006
	penyulang	f/customer.yr	hr/customer.yr	hr/customer	pu	pu
	baru			interruption		

Tabel 4. menunjukkan tinakat keandalan penyulang Batu Belig meningkat setelah dibangun penyulang baru, terlihat pada baris ketiga kolom ketiga memiliki nilai SAIFI sebesar 1,2510 f/customer.yr, ini artinya sistem memiliki peluang terjadinya satu kali gangguan dalam kurun waktu 10 bulan. Baris ketiga kolom ke empat menampilkan nilai SAIDI sebesar 0.5501 hr/customer.yr, artinya dalam waktu satu tahun (8760 jam) rata - rata lamanya terjadi kegagalan adalah 0,5501 jam atau 33 menit. Sedangkan baris ketiga kolom ke lima menampilkan nilai CAIDI sebesar 0,440 (jam / gangguan) yang berarti rata – rata lamanya pemadaman yang dialami oleh pelanggan untuk satu kali gangguan adalah selama 0.440 iam. Baris ketiga kolom ke enam menampilkan nilai ASAI sebesar 0,9999, artinya total waktu yang dapat dilayani oleh sistem selama satu tahun adalah 99.99% dari total waktu permintaan pelanggan. Baris ketiga kolom ketujuh menampilkan nilai ASUI sebesar 0,00006, artinya total waktu yang tidak dapat dilayani oleh sistem selama satu tahun adalah 0.006% dari total waktu permintaan pelanggan.

4 KESIMPULAN

Hasil pembahasan dan analisa yang telah dilakukan, berikut ini dapat disimpulkan bahwa:

- Penempatan sectionalizer yang baik sesuai perhitungan menggunakan percobaan "trial error" di Penyulang Batu Belig adalah di lokasi 1 dan lokasi 2. Penentuan lokasi ini berdasarkan pada indeks keandalan yang lebih mendekati indeks WCS.
- 2. Tingkat keandalan penyulang Batu Belig mengalami peningkatan setelah

dibangun penyulang baru, terlihat dari besarnya nilai SAIFI, SAIDI, AENS, ASUI dan ASAI yang lebih kecil dibandingkan dengan kondisi eksisting. Adapun kondisi eksisting memiliki nilai 1,2912 kali/tahun/pelanggan, SAIDI 4,0220 jam/tahun/pelanggan, CAIDI 3,115 hr/customer interruption, ASAI 0,9995 pu, ASUI 0,00046 pu. Setelah dibangun penyulang baru memiliki nilai SAIFI 1.2510 kali/tahun/pelanggan, SAIDI 0,5501 jam/tahun/pelanggan, CAIDI 0.440 hr/customer interruption, ASAI 0,9999 pu, ASUI 0,00006 pu. Nilai-nilai indeks yang didapatkan tersebut sudah mendekati target WCS.

5 DAFTAR PUSTAKA

- [1] Short, T.A. Distribution Reliability and Power Quality. New York: CRC Prees, 1966.
- [2] Hartati Rukmi S, Wayan Sukerayasa, Nyoman Setiawan, Gede Ariastina. Penentuan Angka Keluar Peralatan Untuk Evaluasi Keandalan Sistem Distribusi Tenaga Listrik, 2007. Volume 6. hal 2.
- [3] Sukerayasa Wayan. Evaluasi Keandalan Jaringan Tegangan Menengah di Wilayah Area Pelayanan Jaringan (APJ) Surakarta, 2007. Volume 6, hal 3.
- [4] Billinton R., Allan R.N. Reliability Evaluation of Power System, 2nd ed. New York: Plenum Press, 1996.
- [5] Chandika Adi M, Jumiyati, Y Sastra Wijaya. Pendapat Siswa Sekolah Menengah Kejuruan Tentang Pelaksanaan Praktek Kerja Industri Dalam Rangka Menunjang Keterampilan Lulusan SMK, 2012. Pevote 7:13, hal 8.
- [6] SPLN 59 : 1985. Keandalan pada system distribusi 20 kV dan 6 kV. Departemen Pertambangan dan Energi Perusahaan Umum Listrik Negara, Jakarta. Indonesia.