Stellenbosch Camp December 2017 Senior Test 4 Solutions

- 1. Since we want $2^{m^2}-4$ to be a multiple of 7, we must have $2^{m^2}\equiv 4\pmod{7}$. To this end, let's look at powers of $2\pmod{7}$. Noticing that $2^3=8\equiv 1\pmod{7}$, we have that: $2^{3k}=(2^3)^k\equiv (1)^k=1\pmod{7}$, $2^{3k+1}=2(2^{3k})\equiv 2(1)=2\pmod{7}$, and $2^{3k+2}=2^2(2^{3k})\equiv 4(1)=4\pmod{7}$. We must therefore have that $m^2=3k+2$ for some $k\in\mathbb{N}_0$. However, $(3k)^2\equiv 0\pmod{3}$, $(3k+1)^2\equiv 1\pmod{3}$ and $(3k+2)^2\equiv 2^2\equiv 1\pmod{3}$ and so squares can only ever be congruent to 0 or 1 (and not 2) modulo 3. Therefore, there does not exist an $m\in\mathbb{N}_0$ such that $7|(2^{m^2}-4)$.
- 2. Consider colouring the board in a checkerboard pattern, with colours black and white. Since 2017 is odd, there cannot be same number of black squares as white squares. As such a described permutation moves every desk on a black square to that of a white square and vice versa, this implies no such permutation is possible.
- 3. Let O be the centre of the circle Γ , and let the angle bisector of $\angle AXC$ meet Γ at the points S on the arc AC, and the point T on the arc BD. Since M and N are the midpoints of the chords AB and CD respectively, we have that $OM \perp AB$ and $ON \perp CD$. Thus MXNO is a cyclic quadrilateral. We then have that $\angle MOX = \angle MNX$ (subtended by MX) = $\angle TXD$ (since $TX \parallel MN$) = $\angle MXT$ (angle bisector) = $\angle XMN$ (since $TX \parallel MN$) = $\angle XON$ (subtended by XN). Thus in triangles $\triangle MOX$ and $\triangle NOX$, we have that $\angle MOX = \angle XON$, $\angle XMO = \angle ONX = 90^\circ$, and OX is common, and so $\triangle MOX \equiv \triangle NOX$, giving us that OM = ON. Thus in triangles $\triangle OBM$ and $\triangle OCN$, we have $\angle OMB = \angle ONC = 90^\circ$, OM = ON, and OB = OC (radii). Thus $\triangle OBM \equiv \triangle OCM$, and so BM = CN, giving us that AB = 2MB = 2NC = CD.
- 4. To find all interesting numbers, note that, if f(x) = -x for all $x \in \mathbb{R}$, we have:

$$f(x) - f(x+y) = y = y^1$$

Hence n = 1 is interesting. Conversely, if n is interesting, we set x = 0 which yields $f(0) - f(y) = y^n$. Letting x = y, we obtain $f(y) - f(2y) = y^n$. Summing these two equations gives us $f(0) - f(2y) = 2y^n$. We therefore have:

$$(2y)^n = f(0) - f(2y) = 2y^n$$

If y=1, this implies $2^n=2$, hence n=1. Therefore the only interesting number is n=1.

To find all *beautiful* numbers, note that letting f(x) = 0 for $x \in \mathbb{R}$ satisfies the inequality for all even n. We now assume n is odd. Hence:

$$f(x+y) - f(x) = f(x+y) - f(x+y+(-y)) \le (-y)^n = -y^n$$

$$\implies f(x) - f(x+y) \ge y^n$$

$$\implies f(x) - f(x+y) = y^n$$

Hence, if n beautiful and odd, then n must be interesting and so n = 1. Thus, all beautiful numbers are n = 1 and even n.

5. Let us consider the general case where there are S scientists altogether, and we want any subset of M scientist not to be able to open the lock, but any subset of M+1 scientists to be able to open the lock.

Given a set of M scientists out of the S scientists (we call it an M-subset), they are missing a key for some lock.

Moreover two such distinct subsets have a scientist not common to both and thus their union has more then M scientists. If two such M-subsets are missing the same key then they're union is missing that key, the union has more then M scientists and thus we have a contradiction.

We define a multimap as follows, for each lock we define its preimage to be the M-subset which is missing a key for that lock, as described above there cannot be more then one M-subset missing that key (A priori we may have locks which no M-subset is missing a key for, so nothing will map to them). Now if some M-subset maps to more then one lock then we can throw away all but one lock, the M-subset will still not be able to open the safe because he is missing a lock. So we end up with an injection from the collection of M-subsets to the set of locks. Thus we have at least $N = \binom{S}{M}$ locks.

Now we ask if we need more locks then this. Suppose there are more then N locks. WLOG assume our injection from above maps to the first N locks labeled 1 to N. So each M-subset is missing a key for one of the first N locks. Now consider the (N+1)-th lock which we call L, consider the collection C of M-subsets not having the key for L.

Imagine we throw away lock L and all its keys. Any subset of the scientists which could open the safe before can still open it as we just removed a lock. The M-subsets still cannot open the safe because they are missing some key from the first N keys. Thus the (N+1)-th key is redundant, By a similar argument any lock labeled with a number i, N is redundant.

Thus $\binom{S}{M}$ is the minimum sufficient number of locks. For our case, we have S=11 and M=5. Thus, the number of locks we need is $\binom{11}{5}=462$.