

Object Design

Tracking Performance Drivers

- Number of visible sensors required to constrain the object's pose
- Sufficient baseline to overcome translation error
- Baseline in three axes to overcome rotation error

Number of Visible Sensors

- One sensor defines an object with no dimensions
- Two sensors define a 1 dimensional object
- Three sensors define a 2 dimensional object
 - As long as one is out of the line defined by the other two
- Four sensors define a 3 dimensional object
 - As long as one is out of the plane defined by the other three
- Four sensors are required for an object to begin tracking
 - Initiating tracking is called "booting" or "bootstrapping"
 - Once tracking the IMU in the object can assist during occlusion

Sufficient Baseline

- Baseline increases the time between laser hits
- Sources of error are angular
- The limit of the system is a minimum detectable angle
- More baseline accommodates the same angle at a greater distance
- Need baseline to overcome translation error

Baseline in Three Axes

- Baseline amplifies the effect of rotation
- Pose tracking detects
 - Roll
 - Pitch
 - Yaw
- Detecting all three means amplifying all three
- Need baseline in X, Y and Z axes to overcome rotation error

Sensor Placement Criteria

- 1. Four visible sensors (minimum)
 - One must be 8mm out of the plane
 - Sensors have a ±60° viewing angle
- Maximize the distance between sensors
- 3. Create baseline in three axes

 Objects that track well have geometries designed for optimal sensor placement!

Industrial Design Challenges

- Consumer products need to look and feel great
- Products also need to perform, especially VR products
- Appealing design features:
 - Miniaturization: What about translation error?
 - Flat surfaces: What about rotation error?
 - Right angles: What about sensor viewing angle?
 - Low profile: What about translation and rotation error?
 - Curved surfaces: What about sensor covering?

Mechanical Design Challenges

- Facets on shapes improve performance
 - How many slides in the mold?
- Sensors facing in all directions
 - Multiple parts to facilitate ejection
- Sensor covering
 - IR transmissive materials
 - IR diffusive materials
 - Optical crosstalk

Electrical Design Challenges

- Sensor interconnect
 - 20 32 sensors
 - Distributed over the surface of an object
 - Four wires to each sensor
 - All sensors at different angles
- FPC design challenge
 - Circuit size
 - Panel efficiency
 - Interconnect density

Recommendations

- Collaborate between engineering and industrial design early in the process
- Teach industrial designers and product visionaries about sensor placement
- Use the constraints of sensor placement as a seed for creating unique, compelling designs
- Reduce risk early
 - Use the simulation tools in the HDK to validate design choices
 - Prototype shapes using rapid prototyping techniques and evaluation hardware
 - See your object track in SteamVR before investing in tooling