Assignment problems: Chapter 7

7.4 The switch in the following circuit has been in position A for a long time. Assume the switch moves instantaneously from A to B at t=0. Find v for t>0.

7.7: Assume that the switch in the following circuit has been in position A for a long time and is moved to position B at t=0. Then at t = 1second, the switch moves from B to C. Find $v_C(t)$ for t ≥ 0 .

7.9: The switch in the following circuit opens at t=0. Find v_0 for t>0.

7.11: For the following circuit, find i_0 for t > 0.

7.15: Find the time constant for each of the circuits.

7.17: Consider the following circuit, Find $v_0(t)$ if i(0) = 6 A and v(t) = 0.

7.23: Consider the circuit below. Given that $v_o(0) = 10 \text{ V}$, find v_o and v_x for t > 0.

7.39: Calculate the capacitor voltage for t < 0 and t > 0 for each of the circuits shown below.

7.40: Find the capacitor voltage for t < 0 and t > 0 for each of the following circuits.

7.44: The switch in the circuit below has been in position a for a long time. At t = 0, it moves to position b. Calculate i(t) for all t > 0.

7.45: Find v_0 in the circuit below when $v_s = 30u(t)$ V. Assume that $v_0(0) = 5$ V.

7.49: If the waveform shown below in (a) is applied to the circuit (b), find v(t). Assume v(0) = 0.

7.53: Determine the inductor current i(t) for both t < 0 and t > 0 for each of the following circuits

7.54: Obtain the inductor current for both t < 0 and t > 0 in each of the following circuits

7.56: For the network shown below, find v(t) for t > 0.

7.59: Determine the step response $v_0(t)$ to $v_s = 18 \ u(t) \ V$ in the circuit shown below.

7.63: Obtain v(t) and i(t) in the circuit shown below.

7.77: The switch in the circuit below opens at t = 0. Determine v(t) for t > 0.

7.79: In the circuit shown below, the switch has been in position 1 for a long time but moves instantaneously to position 2 at t = 0. Determine $i_0(t)$.

