Les transports routier, ferroviaire, aéronautique

Séance 2 : Véhicules et infrastructures

Cours Magistral *12/03/2024*

yeltsin.valero@transamo.com

Planning de la séance

Cours Magistral

- 1. Les véhicules
- 2. Les infrastructures
- 3. Analyse applicative

Travaux dirigés

- 1. Estimation de capacité de voie urbaine
- 2. Estimation du volume de trafic sur tronçon routier
- 3. Choix d'investissement ?

1. Les véhicules

Définition

Véhicule :

Un **engin mobile**, **qui permet de déplacer** des personnes ou des charges d'un point à un autre.

- Il permet d'améliorer les performances humaines (vitesse, distance, terrains difficiles, poids, ...) pour franchir l'espace
- Il protège contre de conditions adverses comme les intempéries
- Il ne présuppose pas l'infrastructure
- Son objectif peut être autre que le transport (ex : chantier, guerre)

Evolution historique

Taxonomie

- ☐ Selon le type de **motorisation** : animale, moteur,...
- Selon le type de traction : électrique, vapeur, ...
- Selon le mode de transport : aérien, routier, ...
- ☐ Selon ses caractéristiques **physiques** : 2 ou 4-roues, ...
- ☐ Selon sa **finalité** : ambulance, tracteur agricole, ...
- Selon la règlementation en vigueur :
 - Exemple: poids lourd = >3,5 tonnes (France)

Quelques fonctions

- ☐Être le support physique des personnes ou des marchandises en mouvement
- ☐ Être opérationnel dans son milieu (naturel ou technique) de fonctionnement
- ☐ Offrir une interface « lisible » et bien contrôlable au conducteur
- ☐ Offrir les caractéristiques du déplacement souhaité (vitesse, ...)
- Assurer la sécurité lors du déplacement

L'industrie automobile

- ☐ Impact très fort sur le modèle de production mondial (cf. consommation massive)
- Très liée aux cycles de l'économie mondiale
- Impact très fort sur l'économie locale

2010 Car Production Statistics - Top 10 Countries

Très liée au marché d'énergie et très sensible aux évènements politiques

2. Les infrastructures

Définition (1/2)

L'infrastructure de transport :

Le **support matériel** de circulation, d'accès et de stationnement, ainsi que des fournitures diverses (énergie, ...)

- Elle rend possible le franchissement des lieux
- Elle interagit en continue avec la mobilité et ses caractéristiques
- Elle permet la circulation des véhicules et la matérialisation des flux
- Elle joue un rôle décisive à l'offre dans un système de transport (quantité, qualité)

Définition (2/2)

L'ensemble d'infrastructures :

Des installations fixes:

- ayant des composantesphysiques qui sont stables dansl'espace
- visant à satisfaire un désir précis de déplacement entre A et B
- constituant le réseau (arcs et nœuds) de transport

Typologie (1/2)

- **■** Selon le mode :
 - Autoroutes et rues
 - Aéroports et voies aériennes
 - Rail et gares
 - Ports, voies navigables et maritimes
 - Pipelines

Selon l'usage, le droit d'accès, ...

Typologie (2/2)

Selon la fonction :

- Connexion linéaire
- Interconnexion
 - entrées/sorties
 - échangeurs
 - carrefours
- Gares, parking,
- Equipment

Quelques caractéristiques (1/2)

- Peu flexible, limites à son évolution (contraintes physiques, techniques, financières)
 - tunnel RER B dans Paris, durée de vie supérieure de celle des automobiles, ...
- Cher tant pour construire que pour entretenir
 - 0.27 % du PIB mondial utilisé pour les investissements routiers et ferroviaires (OCDE, 2000)
- Consommateur en espace foncier
 - Routes et lots de stationnement : 30-60% de l'espace urbaine

Quelques caractéristiques (2/2)

- **☐** Gestion centrale vs. choix individuels
 - maximiser l'utilité du système vs. celle de l'usager
- Interaction avec :
 - l'économie (locale, nationale, internationale)
 - l'espace et les territoires
 - l'environnement bâti et naturel
- □ Forte dépendance de la politique appliquée
 - (type de croissance, années 60-70,...)

Fonctions d'usage (1/5)

Un service pour : > franchir l'espace géographique

- à une diversité de clients : passagers, fret, piétons, véhicules, ...
- par une pluralité de serveurs : concessionnaires, villes, ...
- par une diversité des usages : circulation, accès, stationnement, ...

Fonctions d'usage (2/5)

Un service pour : > assurer les flux

- Fournir le support physique, les équipements
- Garantir la continuité des flux (par accès direct ou ruptures de charge)
- Séparer les flux conflictuels dans le temps et/ou dans l'espace :

Fonctions d'usage (3/5)

- Franchir l'espace par :
 - Franchissement direct
 - Accès par maille
 - Accès fin : desserte micro-locale

Comme le système sanguin, la mécanique des fluides, ...

Fonctions d'usage (4/5)

- ☐ Franchir l'espace de manière :
 - Adaptée aux besoins du client
 - Conforme aux avancements technologiques
 - Rapide et fiable
 - Econome et efficace
 - Lisible et prévisible (info)
 - Sûre
 - Confortable
 - Favorable à l'environnement

Fonctions d'usage (5/5)

☐ Fonctions inter-opérationnelles :

- L'énergie (alimentation, ...)
- Signalisation directionnelle
- Equipements de drainage
- Diffusion d'information (panneaux, radio,...)
- Auto-connaissance (recueil de données en temps réel)

Concepts - clés (1/6)

✓ Capacité géométrique

- En plan : le rayon min
- En long : la déclivité max (%)
- En travers : le gabarit

✓ Capacité mécanique

- Statique : le poids max
- Dynamique : les passages max

✓ Capacité physique

en flux d'entités (passagers,...)

Concepts - clés (2/6)

✓ Capacité – autoroute : (S. Cohen)

 Le nombre maximal de véhicules ayant une chance raisonnable d'être écoulé pendant un intervalle de temps de référence sur une portion de route, avec ses caractéristiques d'infrastructure et de trafic existantes

✓ Volume :

 Le nombre de véhicules (ou passagers ou trains ou ...) qui sont desservis dans l'unité de temps.

✓ Volume de service :

- Le nombre de véhicules qui peuvent être desservis dans l'unité de temps, sous de conditions données et à un niveau de service donné.
- Indicateur de fonctionnement : Volume / Capacité (sl.26)

22

Concepts - clés (3/6)

Tous les véhicules sont-ils pareils?

- ✓ Unités de voitures particulières (Association Mondiale de la Route) :
 - Unité de comptage ou valeur numérique spécifique permettant de déterminer un débit de véhicules légers.

Type de véhicule	UVP
Deux-roues	0,3
Véhicule léger	1,0
Poids lourd (>3,5t)	2,0
Bus	2,0
Bus articulé	3,0

Vehicle Type	PCU Value
Pedal Cycle	0.2
Motor Cycle	0.4
Passenger Car	1.0
Light Goods Vehicle (LGV)	1.0
Medium Goods Vehicle (MGV)	1.5
Buses & Coaches	2.0
Heavy Goods Vehicle (HGV)	2.3
Articulated Buses	3.2*

^{*} Recent research conducted for TfL has suggested this to be an appropriate PCU value for articulated buses³⁶.

CEREMA, 2009

Concepts - clés (4/6)

- **✓ Capacité ferroviaire :** (Barter, 2008)
 - Le nombre de trains qui peuvent être intégrés dans un horaire sans conflit, commercialement attractif, conforme aux exigences réglementaires, et qui peuvent Infrastructure être exploités face aux niveaux anticipés de retard primaire tout en respectant les Railway objectifs de performance convenus. capacity Operating plan Quality

Figure 2.4: Definition of railway capacity. Based on (UIC 1996)

Concepts - clés (5/6)

✓ Niveau de service :

des concepts qualitatives qui caractérisent le service

rendu et aperçu

Desserte temporelle

De	Porte d'Orléans	Gare du Nord
Lundi à Samedi	06h00 / 0h30	06h30 / 0h30
Dimanche & Fêtes	06h30 / 0h30	07h00 / 0h30

Intervalles Moyens entre deux passages

	Septembre	Lundi à Vendredi		Samedi		Dimanche & Fêtes	
	à Juin	Châtelet	Gare du Nord	Châtelet	Garre du Nord	Châtelet	Gara du Nord
a	vant 7h00	9 r	nin	10	min	15	min
de	7h00 à 9h30	4 min	6 min	6 min	11 min	13	min
de	9h30 à 12h30	5 r	nin	6 r	nin	13	min
de 1	2h30 à 15h30	5 r	nin	6 r	nin	6 min	12 min
de 1	5h30 à 19h30	4 min	6 min	5 min	9 min	6 min	12 min
de 1	9h30 à 21h00	10	min	10	min	15	min
de 2	1h00 à 23h20	15	min	15	min	15	min
de :	23h20 à 0h30	15 à 1	.8 min	15 à 1	l8 min	15 à 1	8 min

Desserte spatiale

Utilisation des **indicateurs** pour

« quantifier » les seuils du niveau de service

Concepts - clés (6/6)

✓ L' usure :

- La détérioration par un usage prolongé, par le frottement, ...
- Types d'usure : adhésive, abrasive, érosive, corrosive, ...

✓ La maintenance :

Préventive ou corrective

✓ Type et fréquence de maintenance :

 Contraintes budgétaires, protocoles de sécurité, qualité des matériaux, disruption du service

Le fonctionnement (1/6)

1. Exemple autoroutier : Vitesse – capacité - LOS

LOS	Criteria	Expected Delay to Minor Street Traffic
A	Free flow, where motorists are virtually unaffected by the presence of others in the traffic stream. Freedom to select desired speed and manoeuvrability are high.	Little or no delay
В	In the range of stable flow. Presence of other users in the traffic stream is more noticeable. Speed is unaffected, but there is a slight decline in manoeuvrability.	Short traffic delays
С	In the range of stable flow but beginning of the range of flow in which motorists are affected by others in the traffic stream. Both speed and manoeuvrability are affected.	Average traffic delays
D	High density but stable flow. Speed and freedom to manoeuvre are severely restricted.	Long traffic delays
E	Operating conditions at or near capacity or saturation level. All speeds are low and flow is unstable. Freedom to manoeuver is extremely difficult.	Very long traffic delays
F	Breakdown or forced flow.	i a

Le fonctionnement (2/6)

2. Exemple piétons: Vitesse – capacité - LOS

Alhajyaseen and Nakamura, 2010

Cf. TD 2

Le fonctionnement (3/6)

Y. vaiti u

3. Exemple TC : Niveau de service

Le fonctionnement (4/6)

■ Variations dynamiques du flux

- Oscillations récurrentes : Heure de pointe heures creuses
- Oscillations non-récurrentes : météo, évènements planifiés (exemple : maintenance)
- Catastrophes naturelles, terrorisme

Variations spatiales

- Réseau principal et secondaire
- Usage du sol et géomorphologie

•

Le fonctionnement (5/6)

☐ Recouvrements et interactions entre les échelles

- Exemple 1 : « Hiérarchisation du réseau routier »
 - Autoroute
 - Route rurale
 - Route urbaine
 - Zone 30
 - •

Restrictions d'accès (véhicule), de vitesse (protocole), de géométrie...

Le fonctionnement (6/6)

☐ Recouvrements et interactions entre les échelles

Exemple 2 : « Transport Public »

Analyse de performances (1/6)

Performance

- Résultat obtenu quantifié *par* indicateurs de mesure *pour* un individu ou une entité
 - Efficacité : degré de réalisation des objectifs
 - Efficience : rapport entre les ressources employées et les résultats atteints

☐ Utilité / intérêt de mesurer la performance

- Comparer parmi choix
- Evaluer le choix effectué
- Suivre l'évolution temporelle
- Améliorer le service rendu

33

Analyse de performances (2/6)

Performance Technique

- 1. Performance structurelle
 - ✓ Gabarit ferroviaire, pente max, courbure min
 - ✓ Vitesse de référence, V85
 - Capacité aéroportuaire
- 2. Performance opérationnelle
 - Headways et fréquence
 - ✓ Capacité d'autoroute, de ligne, ...
 - ✓ Vitesse moyenne, commerciale
 - ✓ Capacité en décollages / atterrissages

Person Capacity per Lane-Equivalent

Number of people crossing a 3.5-meter-wide space in an urban environment during a one-hour period.

Source: Ticket to the future: 3 Stops to Sustainable Mobility. UITP, International Association of Public Transport, Brussels, 2003, based on Botma & Pependrecht, Traffic operation of bicycle traffic, TU Delft, 1991.

34

Analyse de performances (3/6)

☐ Comment mesurer la performance technique ?

Exemples d'indicateurs par objectif

Mobilité	Qualité de service	Sécurité et Sûreté
Nb de déplacements	Temps de parcours	Nombre d'accidents, tués,
Nombre de voyageurs	Entretien -propreté	Lisibilité et visibilité
Volume de trafic (véh)	Niveau d'accessibilité	« forgiving infrastructure »
Véhicules * km	LOS, v/c	Temps de détection d'incident
Tonnes * kilomètres	Fenêtre temporelle	Taux de résilience
Part modal (%)	Fiabilité	Surveillance

Analyse de performances (4/6)

Performance Economique

- 1. Productivité technique
 - ✓ Quantité de résultats / quantité de moyens (exemple : 15/20)
 - Ex : Nombre de conteneurs traités dans un port à deux grus
- 2. Productivité économique
 - ✓ Recettes / coût de moyens

$$VAN = \sum_{\substack{i=1\\1}}^{n} \frac{R_i - D_i}{(1+r)^n}$$

- 3. Productivité socio-économique
 - √ valeur de temps économisé / investissement

36

Analyse de performances (5/6)

Performance Ecologique

- 1. Performance structurelle
 - ✓ Matériaux de construction
 - Flexibilité des usages
 - Emprises foncières
 - ✓ Coupures du paysage, de la continuité urbaine
- 2. Performance opérationnelle
 - ✓ Matériaux de maintenance
 - ✓ Qualité de l'air, émissions par la circulation
 - ✓ Bruit et vibrations
 - Empreint énergétique

37

Analyse de performances (6/6)

☐ Performance Ecologique : **Analyse de Cycle de Vie**

Objectif:

Quantifier l'empreint environnemental d'un produit dans une fenêtre temporelle qui s' étale en amont et en aval de l' utilisation (cycle de vie)

Méthode:

Isoler une unité fonctionnelle et énumérer les entrants et les sortants sur l'ensemble de son cycle de vie pour :

- 1. quantifier l'impact environnemental
- 2. faire un choix parmi projets ou
- 3. améliorer la performance d'un projet

38

3. Analyse applicative

Le cas routier (1/8)

- **Anatomie**: Composition interne d'une section courante
- Choix de matériaux et d'épaisseur des couches
 - béton bitumineux
 - bitume pour des trafics faibles
 - pavé pour les piétons

selon:

- l'usage (trafic total, durée de vie)
- le % des PL (>3,5t) \rightarrow TC
- la nature géologique des sols

Le cas routier (2/8)

☐ **Géométrie :** tracé en plan - a

la clothoïde

41

Le cas routier (3/8)

☐ **Géométrie :** tracé en plan - b

Le cas routier (4/8)

☐ **Géométrie** : profil en long

Le cas routier (5/8)

☐ **Géométrie :** profil en travers

Liaison A89-A6 Profil en travers type de la section courante à 2x2 voies

BAU : Bande d'Arrêt d'Urgence

TPC: Terre-Plein Central

Le cas routier (6/8)

- Aménagements : rendre l'infrastructure opérationnelle
 - Applications :
 - Equipements de protection (mûrs anti-bruits,...)
 - Ajustements géométriques
 - Equipment d'organisation (feux,...)
 - Equipements de sécurité (glissières,...)
 - Ralentisseurs (cf. gare des péages)
 - Bande d'arrêt d'urgence
 - Diffusion d'information

Le cas routier (7/8)

- **Exploitation**: fournir le service, maintenir la viabilité
 - > Applications :
 - Tarification
 - Gestion dynamique des voies (rampes, ...)
 - Dégager la chaussée et nettoyer les alentours
 - Salage et déneigement, drainage
 - Surveillance continue

Le cas routier (8/8)

- ☐ Maintenance : maintenir le niveau de service
 - Applications :
 - Entretien de la chaussée
 - Entretien des équipements (signalisation horizontale, ...)
 - Elargissement?
 - Réponse aux incidents diverses (temps, ...)
 - Fonctionnement en mode dégradé :
 - Incidents et accidents
 - Travaux de maintenance
 - Conditions météorologiques dégradées

Le cas ferroviaire (1/2)

Différences :

- Anatomie plus diversifiée : Ballaste ou dalle
- Sous-systèmes plus complexes : Electrification, contact roue-rail, ...
- Géométrie plus exigeante : Poids et vitesse, surélévation et déraillement
- Aménagements plus uniformisés : Passage à niveau, largeur, feux, ...
- Exploitation moins flexible : Automatisation, difficulté d'accès alternatif à la ligne
- Maintenance plus difficile : Difficulté de dépassement et de surveillance du réseau

Le cas ferroviaire (2/2)

□ Profil en travers :

EXHIBIT 20-7. GRADE ADJUSTMENT FACTOR (f_G) TO DETERMINE SPEEDS ON TWO-WAY AND DIRECTIONAL SEGMENTS

		Type of Terrain	
Range of Two-Way Flow Rates (pc/h)	Range of Directional Flow Rates (pc/h)	Level	Rolling
0-600	0-300	1.00	0.71
> 600-1200	> 300-600	1.00	0.93
> 1200	> 600	1.00	0.99

Merci