Departamento de Matemática

Ayudantía 6 Matemática IV (MAT-024) Jueves 28 de Octubre de 2021

Problema 1. Encuentre la divergencia y el rotacional de los siguientes campos vectoriales:

a)
$$\vec{F}(x, y, z) = (\cos(yz) - x, \cos(xz) - y, \cos(xy) - z)$$

b)
$$\vec{F}(x, y, z) = (y^2 z, e^{xyz}, x^2 z)$$

c)
$$\vec{F}(x, y, z) = (xz - e^{2x}\cos(z), -yz, e^{2x}(\sin(y) + 2\sin(z)))$$

Solución:

Problema 2. Sea $\vec{F}(x,y) = (u(x,y), -v(x,y))$ un campo vectorial incompresible e irrotacional de clase C^2 .

(a) Muestre que las funciones u, v satisfacen las ecuaciones de Cauchy-Riemann.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

(b) Muestre que u, v son funciones harmónicas, es decir

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

Solución:

Problema 3. Muestre las siguientes identidades

a) Si
$$f, g$$
 son funciones de clase C^2 , entonces $\nabla^2(fg) = f\nabla^2 g + g\nabla^2 f + 2(\nabla f \cdot \nabla g)$.

b)
$$\nabla \cdot (f\nabla g - g\nabla f) = f\nabla^2 g - g\nabla^2 f$$
.

c)
$$\nabla \cdot (f\nabla f) = ||\nabla f||^2 + f\nabla^2 f$$
.

donde $\nabla^2 = \nabla \cdot \nabla$

Solución:

Problema 4. Sea $\vec{r} = (x, y, z)$ y supongamos que r denota $||\vec{r}||$. Verifique las siguientes identidades.

a)
$$\nabla \cdot (r^n \vec{r}) = (n+3)r^n$$

b)
$$\nabla \times (r^n \vec{r}) = \vec{0}$$

Solución: