Math 111B HW3

Zih-Yu Hsieh

January 26, 2025

1

Question 1 Let R be a finite commutative ring. Show that every element of R is either a zero-divisor or a unit.

Pf:

Suppose R is a finite commutative ring, then for each element $a \in R$ there are two cases to consider:

First, suppose there exists nonzero element $b \in R$ with ab = ba = 0, then a is a zero-divisor.

Else, if for all nonzero element $b \in R$ satisfies $ab = ba \neq 0$, which also implies $a \neq 0$ (since $0 \cdot b = 0$ for all $b \in R$). Then, for all $n \in \mathbb{N}$, $a^n \neq 0$: For base case n = 1, $a^1 = a \neq 0$, and suppose for given $n \in \mathbb{N}$, it satisfies $a^n \neq 0$, then by assumption, $a \cdot a^n = a^{n+1} \neq 0$, which by the principle of mathematical induction, $a^n \neq 0$ for all positive integer n.

Now, consider $S = \{a^n \mid n \in \mathbb{N}\} \subseteq R$, since R is finite, the set S is also finite. Thus, there must exists $m, n \in \mathbb{N}$ (assume m > n) with $a^m = a^n$. Which, $a^{n+(m-n)} - a^n = 0$, or $a^n(a^{(m-n)} - 1) = 0$.

Notice that since a is not a zero-divisor, then $(a^{(m-n)}-1)=0$ (if it's nonzero, then $a^n(a^{(m-n)}-1)\neq 0$). Thus, $a^{(m-n)}=1$, which $a\cdot a^{(m-n-1)}=1$, showing that $a^{(m-n-1)}=a^{-1}$, thus a is a unit.

So for finite commutative ring R, if an element is not a zero-divisor, it is a unit.

Question 2 Let R be a ring. Prove or disprove that Z(R[X]) = Z(R)[X].

Pf:

We'll prove that Z(R)[X] = Z(R[X]). Notice that if R is commutative (Z(R) = R), then the polynomial ring R[X] is also commutative (Z(R[X]) = R[X]). So, for commutative ring, R[X] = Z(R)[X] = Z(R[X]). So, the following proof is based on a non-commutative ring R.

 \subseteq : For all polynomial $p \in Z(R)[X]$, there exists $p_0, p_1, ..., p_n \in Z(R)$, with $p = p_0 + p_1X + ... + p_nX^n$. Which, for all $q \in R[X]$, there exists $q_0, q_1, ..., q_m$, with $q = q_0 + q_1X + ... + q_mX^m$. Then, the multiplication is as follow:

$$pq = c_0 + c_1 X + \dots + c_{m+n} X^{m+n}, \quad c_k = \sum_{i,j,\ i+j=k} p_i q_j$$

$$qp = c'_0 + c'_1 X + \dots + c'_{m+n} X^{m+n}, \quad c'_k = \sum_{j,i,\ j+i=k} q_j p_i$$

Since all $p_i \in Z(R)$, they commute with all elements in R, thus $c_k = c'_k$ for all index k, hence pq = qp. So, $p \in Z(R[X])$, indicating that $Z(R)[X] \subseteq Z(R[X])$.

 \supseteq : We'll prove by contradiction. Suppose $Z(R[X]) \not\subseteq Z(R)[X]$, then there exists $p \in Z(R[X])$, such that some coefficient is not from Z(R). Let $m \in \mathbb{N}$ be the largest index with $p_m \notin Z(R)$, which there exists $q \in R$, with $p_m q \neq q p_m$.

Also, let $n \in \mathbb{N}$ be the largest power of p (which $n \geq m$), then p can be expressed as follow:

$$p = p_0 + p_1 X + \dots + p_m X^m + p_{m+1} X^{m+1} + \dots + p_n X^n$$

Then, by the assumption that m is the largest index with $p_m \notin Z(R)$, which $p_{m+1},...,p_n \in Z(R)$. Thus, the polynomial $p_{m+1}X^{m+1} + ... + p_nX^n \in Z(R)[X] \subseteq Z(R[X])$. Because Z(R[X]) itself is a ring, then:

$$p - (p_{m+1}X^{m+1} + \dots + p_nX^n) = (p_0 + p_1X + \dots + p_mX^m) \in Z(R[X])$$

So, WLOG, we can assume m is the largest power of p (since we can subtract out all the powers larger than m).

However, consider the following two expressions, pq and qp:

$$pq = (p_0 + p_1X + \dots + p_mX^m)q = p_0q + p_1qX + \dots + p_mqX^m$$

$$qp = q(p_0 + p_1X + \dots + p_mX^m) = qp_0 + qp_1X + \dots + qp_mX^m$$

For pq, the degree m coefficient is p_mq , while for qp, the degree m coefficient is qp_m . Since $p_mq \neq qp_m$, then $pq \neq qp$. However, since $q \in R[X]$ while $p \in Z(R[X])$, pq = qp, so this is a contradiction.

Thus, the assumption is false, $Z(R[X]) \subseteq Z(R)[X]$.

With the above two statements, Z(R)[X] = Z(R[X]).

Question 3 Let R be an integral domain. Prove that $(R[X])^{\times} = R^{\times}$.

Pf:

Since $R \subseteq R[X]$, then for all $a \in R^{\times}$, $a^{-1} \in R^{\times}$, which $a, a^{-1} \in R[X]$ satisfy $aa^{-1} = a^{-1}a = 1$, indicating that $a \in (R[X])^{\times}$. So, $(R)^{\times} \subseteq (R[X])^{\times}$.

Now, we'll use contradiction to prove that if $p \in R[X]$ has an inverse, then $p \in R$: Suppose there exists a non-constant polynomial $p \in R[X]$ with an inverse, then there exists $q \in R[X]$, with pq = qp = 1.

Let $p = p_0 + p_1 X + ... + p_n X^n$ (which n > 0, and $p_n \neq 0$), and $q = q_0 + q_1 X + ... + q_m X^m$.

Then, we can use induction to prove that for all $k \in \{0, ..., m\}$, $q_{m-k} = 0$:

For base case k = 0, since pq has the coefficient of (n+m) degree being p_nq_m , because (n+m) > 0, while 1 is a constant polynomial, then (n+m) degree should have coefficient 0, or $p_nq_m = 0$; yet, since $p_n \neq 0$ by assumption, and R is an integral domain, then $q_m = q_{m-0} = 0$.

Now, suppose for given $k \in \{0, ..., m-1\}$, every integer $0 \le n \le k$ satisfies $q_{m-n} = 0$, then, q can be expressed as follow:

$$\begin{split} q &= q_0 + q_1 X + \ldots + q_{m-(k+1)} X^{m-(k+1)} + q_{m-k} X^{m-k} + \ldots + q_m X^m \\ &= q_0 + q_1 X + \ldots + q_{m-(k+1)} X^{m-(k+1)} \end{split}$$

Which, pq has the coefficient of (n + (m - (k+1))) being $p_n q_{m-(k+1)}$, since $k \le (m-1)$, the $(k+1) \le m$, thus $(m-(k+1)) \ge 0$. So, since n > 0, (n+(m-(k+1))) > 0; however, since pq = 1 a constant polynomial, so the coefficient of degree (n + (m - (k+1))) > 0 is in fact 0, showing that $p_n q_{m-(k+1)} = 0$. Again, since $p_n \ne 0$ by assumption, then $q_{m-(k+1)} = 0$.

So, by the Principle of Mathematical Induction, every $k \in \{0, ..., m\}$ satisfies $q_{m-k} = 0$, showing that all index $i \in \{0, ..., m\}$ has $q_i = 0$.

However, this implies $q = q_0 + q_1 X + ... + q_m X^m = 0$, or pq = 0, which is a contradiction (since pq = 1 by assumption).

So, the assumption is false, there doesn't exist a non-constant polynomial $p \in R[X]$ with an inverse.

Thus, for all $p \in (R[X])^{\times}$, p is a constant polynomial, or $p \in R$.

Then, suppose $q \in R[X]$ is an inverse of p, based on the same logic, q has an inverse implies $q \in R$, thus $p, q \in R^{\times}$, showing that $(R[X])^{\times} \subseteq R^{\times}$.

With both statements above, $(R[X])^{\times} = R^{\times}$.

Question 4 Let R be a commutative ring. Prove or disprove that $(R[X])^{\times} = R^{\times}$.

Pf:

Consider $R = \mathbb{Z}_4$, then consider $(3 + 2X) \in \mathbb{Z}_4[X]$:

$$(3+2X)^2 = (3+2X)(3+2X) = 3 \cdot 3 + (3 \cdot 2 + 2 \cdot 3)X + 2 \cdot 2X^2$$

$$= (9 \mod 4) + (12 \mod 4)X + (4 \mod 4)X^2 = 1 + 0X + 0X^2 = 1$$

Which, since $(3+2X) \notin R$, then $(3+2X) \notin R^{\times}$; however, (3+2X) has an inverse, namely itself, so $(3+2X) \in (R[X])^{\times}$.

Hence, $(R[X])^{\times} \neq R^{\times}$ in this case.

5 (Not done)

Question 5 Prove or disprove that only ideals of $M_2(\mathbb{R})$ are (0) and $M_2(\mathbb{R})$.

Pf:

6 (Not done)

Question 6 Does there exist a field of order 6? Justify your answer.

Pf:

There does not exist a field of order 6.

Question 7 Determine the smallest subring of \mathbb{Q} that contains 1/2. That is, describe the subring of \mathbb{Q} which contains 1/2 and every subring of \mathbb{Q} containing 1/2 also contains S.

Pf:

Consider the set $S = \{ \frac{m}{2^n} \in \mathbb{Q} \mid n \in \mathbb{N} \cup \{0\}, m \in \mathbb{Z} \}.$

S is a Subring:

(1) For all $\frac{m_1}{2^{n_1}}, \frac{m_2}{2^{n_2}} \in S$, the following are true:

$$\frac{m_1}{2^{n_1}} + \frac{m_2}{2^{n_2}} = \frac{m_1 2^{n_2} + m_2 2^{n_1}}{2^{n_1 + n_2}}, \quad \frac{m_1}{2^{n_1}} \frac{m_2}{2^{n_2}} = \frac{m_1 m_2}{w^{n_1 + n_2}}$$

Which, since m_1, m_2 are all integers while n_1, n_2 are natural numbers, then the numerators above are all integers, while the denominators are positive integer powers of 2, thus the two elements belong to S, S is closed under associative addition and multiplication (which, both are commutative and distributive, inherited from \mathbb{Q}).

- (2) Since $0 = \frac{0}{2^1}$ abd $1 = \frac{2}{2^1}$, then $0, 1 \in S$, so both the zero and unity element of \mathbb{Q} are in S.
- (3) Given any $\frac{m}{2^n} \in S$, the inverse $\frac{-m}{2^n} \in S$, thus the additive inverse also exists.

With the properties above, S is a subring of \mathbb{Q} : It is closed under commutative addition, has zero element and additive inverse for all element, thus S is an abelian group under addition. On the other hand, it's closed under multiplication and has unity element, thus S is a monoid under multiplication. With the distributive property, S is a subring that contains $\frac{1}{2}$.

Every Subring $R \subseteq \mathbb{Q}$ containing $\frac{1}{2}$ contains S:

Now, assume that $R \subseteq \mathbb{Q}$ is a subring containing $\frac{1}{2}$.

For all element $\frac{m}{2^n} \in S$ (with $m \in \mathbb{Z}$ and $n \in \mathbb{N}$), since $\frac{1}{2} \in R$, then its power $(\frac{1}{2})^n = \frac{1}{2^n} \in R$; furthermore, because $\frac{1}{2^n} \in R$, then its integer multiple (sum of multiple $\frac{1}{2^n}$) is also contained in R, thus $\frac{m}{2^n} \in R$.

Hence, we can conclude that $S \subseteq \hat{R}$, showing that S is the smallest subring of \mathbb{Q} containing $\frac{1}{2}$.

Question 8

Question 9

Question 10 Let R be an integral domain of characteristic p > 0. Let $A = \{x^p \mid x \in R\}$. Prove or disprove that A is a subring of R.

Pf:

We'll prove that A is a subring of R. First, since R is an integral domain, the its characteristic p > 0 must be prime.

Before starting, let's prove a lemma:

Lemma 1 For all prime p, the binomial coefficient $\binom{p}{k}$ is divisible by p for all integer k satisfying 0 < k < p.

Given that $\binom{p}{k}$ is an integer for all k satisfying 0 < k < p, which it is written in the following form:

$$\binom{p}{k} = \frac{p(p-1)...(p-k)}{k!}, \quad k! \, \binom{p}{k} = p(p-1)...(p-k)$$

The above equation indicates that $k! \binom{p}{k}$ is divisible by p. Yet, since k < p, then $k! = 1 \cdot 2...(k-1)k$ is not divisible by p (since it is a product of numbers coprime to p). Then, in case for the numbe to be divisible by p, $\binom{p}{k}$ must be a multiple of p (or else if $\binom{p}{k}$) is also coprime to p, the product $k! \binom{p}{k}$ is also coprime to p, which is a contradiction). So, the lemma is true.

A is a Submonoid under Multiplication:

Given that R is an integral domain (which is commutative), for all $x, y \in R$, $x^p, y^p \in A$, which $x^py^p = (xy)^p$ while $xy \in R$. Thus, $x^py^p = (xy)^p \in A$, showing that A is closed under multiplication.

Furthermore, since $1^p = 1 \in A$, then the unity element is also in A, showing that A is a submonoid of R under multiplication.

A is a Subroup under Addition:

Given that $0^p = 0 \in A$, A contains the zero element.

For all $x \in R$, there are two cases for the inverse:

- If p=2, then $x^2 \in R$ implies $x^2+x^2=0$ (by the definition of characteristic), thus $x^2=-x^2$, so $x^2 \in A$ has an inverse in A.
- Else if $p \neq 2$, then p is odd $(p = 2k + 1 \text{ for some } k \in \mathbb{Z})$. Thus:

$$(-x)^p = (-x)^{2k+1} = ((-x)^2)^k (-x) = (x^2)^k (-x) = -x^{2k} x = -x^{2k+1} = -x^p$$

So, $x^p \in A$ while $-x^p \in A$, hence x^p has an inverse in A.

Now, the only problem remain is addition: To prove that A is closed under addition, consider arbitrary $x, y \in R$, and the expression $(x + y)^p$:

$$(x+y)^p = \sum_{k=0}^p \binom{p}{k} x^k y^{p-k} = y^p + \sum_{k=1}^{p-1} \binom{p}{k} x^k y^{p-k} + x^p$$

Notice that the binomial expansion is true because R is an integral domain, which is commutative.

Then, by **Lemma 1**, for $k \in \{1, ..., p-1\}$, since $\binom{p}{k}$ is a multiple of p, hence the expression $\binom{p}{k} x^k y^{p-k} = 0$ (since the integer multiple of $x^k y^{p-k}$ is some multiple of the characteristic of R, namely p).

So, $(x+y)^p = y^p + x^p$. For all $x, y \in R$, $x^p, y^p \in A$ satisfies $x^p + y^p = (x+y)^p \in A$, thus A is closed under multiplication.

A is a Subring of R:

From the above proof, given that A is an abelian subgroup of R under addition, and it is also a submonoid of R under multiplication, with the distributive property inherited from R, we can conclude that A is in fact a subring of R.