

Optimizing Breeding Programs

Effect of Reproductive Technologies and Measurement

Armidale Animal Breeding Summer Course 2014

Decisions in breeding programs

Where to go?

breeding objective (which traits)

Who and what to measure?

performance, DNA test

genetic evaluation

Who to select and mate?

reproductive technol.

gains vs inbreeding

Animal Breeding in a nutshell

Making genetic progress is about

Reproductive rates affect all of the above!

Aspects that need to be balanced:

$$\frac{i_m r_{IAm} + i_f r_{IAf}}{L_m + L_f} \sigma_A$$

- Selection accuracy versus generation interval
 - Short generation intervals are good for fast progress, but young breeding animals have lower EBV accuracy
- Selection accuracy versus selection intensity
 - Money available for testing (either performance or DNA) can be used to test a few animals accurately, or to test more animals with lower accuracy. For example, testing fewer young bulls but giving them more test progeny.
- Selection intensity versus generation interval
 - Selecting fewer animals for breeding each year and keeping those longer
- Selection intensity versus inbreeding
- The relative emphasis in selection for multiple traits
- Cost versus benefits

Aspects that need to be balanced

Accuracy = 45%

the more accuracy, the more response

Accuracy of predicting a breeding value

increases as an animal gets older

Assumed heritability = 25%

Need to balance accuracy and generation interval!

BLUP helps selecting between old and young bulls

- EBVs can be compared directly over age classes
- Selection on BLUP EBVs optimizes generation interval

Optimizing age structure

Accuracy changes with age class!

Without genomic selection

				Nr
ageclass	N in group	mean	SD	Selected
1	50	10.20	0.4	2.7
2	50	10.00	0.8	7.3

10

				Nr
ageclass	N in group	mean	SD	Selected
1	50	10.20	0.7	5.4
2	50	10.00	0.8	4.6

Open nucleus systems

- Select the best animals from lower tiers to compete for being nucleus parents
- degree of 'openness depends on
 - difference between nucleus and commercial
 - spread of their breeding values
- Open to nuclei

Design Examples

Two-tier breeding program

(pigs, poultry, some dairy)

Commercial producers

or Dispersed

(sheep, cattle)

Commercial producers

Dispersed Nucleus

Nucleus: could be defined as

"the mothers and fathers of the future bulls"

Open Nucleus

Open Nucleus

Best to select on EBV, irrespective of accuracy /genotyped or not / age

	birth year	genotyped	progeny	EBV	асс
Kevin	2009	Υ	0	+124	71
Tony	2005	N	345	+119	97
Bob	2009	N	0	+117	63
John	2008	N	45	+113	85
Paul	2006	N	1087	+112	99
Geoff	2009	Υ	0	+106	40
Malcolm	2007	N	67	+105	89

Example of BLUP selection

Terminals - Top	150		Analy	sis I	ate 1	Friday	, 15 June	2001				TAMRPLAN T	
Sires									Inbreedir	ng & Aci	curacies	Residence in Bong Renating and Sentential	
ID	Stud of breeding	Wwt	Pwwt	Ywt	Pfat	Pemd	Carcase +	Progeny	Coeff (/	leight (Carcase	Sire Sire of Dam	
161972 <mark>-1999-1</mark> 90196	HILLCROFT FARMS	5.46	14.95	14.94	-1.19	1.62	226,64	38	0.133	83	70	1619721998980093 163000199393012	
162368 <mark>-1998-9</mark> 80211	KURRALEA			12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260 8600401992920	
162204 <mark>-1999-9</mark> 90453	BETHELREI			15.87	-1.18	1.11	211.75	224		93	89	8601221993930205 1619721995950	
161972 <mark>-1998-9</mark> 80093	HILLCROFT FARMS			16.00	-1.08	0.25	207.51	12		80	74	1630001993930134 1603361992920 inbreeding	
161972 <mark>-1998-9</mark> 80527	HILLCROFT FARMS	8.46		10.97	-1.66	-0.47	204.10	25		85	76	1619721996960091 1630001993930	
860122 <mark>-1993-9</mark> 30205	OHIO	6.95	11.94	13.72	-1.60	0.49	203.76	1522		98	97	8601221992920200 8601221987870	
161143 <mark>-1999-1</mark> 90204	DERRYNOCK	8.39	12.10	12.19	-0.49	2.19	203.60	38		82	78	1623681998980211 6400019939304	
160060 <mark>-1996-9</mark> 60004	ANNA VILLA				-0.48	0.24	200.47	151		93	87	1632801992920016 1623541990900584	
161143 <mark>-1999-9</mark> 90201	DERRYNOCK			11.14	-1.19	0.83	199.83	39		83	7	1623681998980211 613151995950042	
230034 <mark>-1997-9</mark> 70904	BURWOOD		11.01	8.82	-2.27	-0.55	198.82	380	0.003	96	92	2300091994940171 2300341994940314 These a	are sibs so
163677 <mark>-2000-0</mark> 00140	FELIX		13.56		-0.59	0.61	197.98	56		70	63	1619721995950289 1600341994940020	ot select
160060 <mark>-1997-9</mark> 70115	Anna Villa	6.30		11.69	-0.42	0.24	196.90	118		90	83	1600601996960004 1600601992920057 all of the	
162204 <mark>-1999-9</mark> 90394	BETHELREI			14.27	-1.03	0.14	196.85	24		82	74	I 8601221993930205	
161143 <mark>-1999-9</mark> 90064	DERRYNOCK	5.10	11.20	10.10	-0.72	1.60	196.01	18		80	74	1623681998980211 340001994940317 flock sir	е
161972 <mark>-1996-9</mark> 60020	HILLCROFT FARMS				-0.80	0.36	195.20	83		88	75	1630001993930134	
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63	194.57	101		90	83	1630001993930134 1613151991910870	
161235-1997-970830	POLLAMBI			10.35	-0.88	1.50	194.54	34		87	79	1700991993930002 1612351991910691	
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205 1636771994940008	
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59	192.11	68		69	62	1623681998980211 1630001993930160	
860074-1995-950044	ADELONG	7.17		13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189	
163000-1998-980575			12.01	13.06	-0.50	0.99	190.92	12		71	60	1623681994940260 8600371992920165	
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08	190.69	178		88	83	1640001993930411 8600401992920175	
160034-1999-991208	MOSSLEY			10.27	-0.53	0.04	190.41	17	0.003	78	70	1621001998980130 1600341994940171	
161437-1999-990006	WARRURN	5 41	10.97	10.93	-1 21	0.37	190 26	14		73	65	1604621994940012 1640001993930411	

Balancing inbreeding and merit

This graph will look different for each population

Selection for milk Yield and Fertility

Multiple traits

	economic	weights	progeny	measured	response	(4 yrs)
	milk	fertility	milk	fertility	milk	fertility
left	0.2	3	50	10	391	-1.61
right	0.2	3	50	50	387	-1.09

Effect of Reproductive Technologies

Making genetic progress is about

Reproductive rates affect all of the above!

Reproductive technologies

- Reproductive boosting
 - Artificial insemination, Al
 - Multiple Ovulation and Embryo Transfer, MOET
 - Oocyte Pickup
 - Juvenile In Vitro Embryo Transfer, JIVET
- Sexing of semen and embryos
- Cloning
- Whizzy Genetics breeding in a test-tube

Reproductive (boosting) technologies

Increases selection intensities

Increases accuracy of EBVs

Decreases generation intervals

Increases inbreeding

Artificial Insemination

- More intensive use of best sires
- Use of overseas bulls
- Establish links between herds
- Progeny testing
- More rapid dissemination of superior genes

Multiple Ovulation and Embryo Transfer - MOET

- More intensive use of best cows
 - "turns a cow into a sow"
- Use of overseas cows

Adult dairy MOET scheme

More offspring of top cow after testing it

Juvenile dairy MOET scheme

More offspring of top cow *before* testing it Select base on parent average

Genetic gain versus genetic diversity

Early selection can only be based on family information

- Sustainable breeding programs require optimal selection balancing genetic gain and genetic diversity
- Potential short term benefits from reproductive technologies are inhibited by the need to maintain diversity

Genetic Gain vs Inbreeding After 20 Years

Tom Granleese et al., AAABG 2013

Between versus within family selection

Own information (performance or genotype):

More variation within families

More within-family selection – *less inbreeding*

Advantage of genomic selection

Reprod technol. In a breeding design context

Effect of Measurement

Some important points about MT selection

1 The ultimate response of a trait will depend on:

Selection for milk Yield and Feed Intake

economic	weights	progeny	measured	response	(4 yrs)
milk	feed	milk	feed	milk	feed
0.2	0	50	-	1.23	0.56
0.2	0	50	50	1.23	0.59
0.2	-0.2	50	_	1.23	0.56
0.2	-0.2	50	50	0.97	0.16
0.2	-0.3	50		1.23	0.56
0.2	-0.3	50	50	0.52	-0.20
0.2	-0.3	50	10	0.79	0.14

To achieve response for a trait, we need to give it some weight but we also need some data!

Decision Support

<u>Tools</u>

Where to go?

BreedObject, Indexes

Who and what to measure?

Not much

Who to select and mate?

EBVs, Indexes, TGRM

Tactical Decisions

VS

Strategic Decisions -> Prediction and Simulation models

Optimizing Phenotyping

Cécile Massault, Brian Kinghorn and Julius van der Werf

Maximize the accuracy of selection candidates (offspring) We have \$\$ for 15 phenotypes, who?

	Structure	# GP	# sires	# dams	# offspring	Far	nily si	ize
PED1	HS	66	3	30	30	10	10	10
PED2	FS	12	3	3	30	10	10	10
PED3	HS	66	3	30	30	2	10	18
PED4	FS	12	3	3	30	2	10	18

Pedigree structure	Heritability	TACT	RAND	OFFS	SIRE
	0.1	63	33	51	63
PED1	0.5	69	38	60	69
	0.8	72	40	62	69
	0.1	73	63	71	69
PED2	0.5	84	75	84	80
	0.8	84	76	84	80
	0.1	66	32	61	64
PED3	0.5	71	40	69	69
	0.8	73	42	70	71
	0.1	77	67	75	73
PED4	0.5	85	77	84	82
	0.8	85	77	82	81

Need to consider

Added value to a family
Merit of the family
Size of the family
Relatedness to other candidates

Predict future potential gain:

→ Merit versus diversity

Evaluating Breeding programs

• Deterministic vs Stochastic Simulation

Optimization strategies