IoT Project 2023 Distributed Drone Patrolling

Airborne Dynamics

University of Rome "La Sapienza"

May 31st, 2023

Algorithm

Clustering

- Divide et Impera.
 - Divide the point cloud in clusters.
- One cluster per drone.
 - Clearly defined work load.
- Clusters are disjoint.
 - Might implement *Fuzzy Clustering* in the future.
- We chose **K-Means**.
 - Tests showed that it is the

overall better method.

Priority Function

- Our distance metric D is made of two parts:
 - 1 d: euclidean distance between points.
 - 2 B: bonus decided by the current state of the destination target.

$$D = d\alpha - B\beta \tag{1}$$

• Given two points p_1 and p_2 we compute the euclidean distance d between them:

$$d = \sqrt{(p_{1,x} - p_{2,x})^2 + (p_{1,y} - p_{2,y})^2 + (p_{1,z} - p_{2,z})^2}$$
 (2)

Priority Function (2)

- p₂: destination
- a: current age of information of p_2
- t: threshold of p_2
- w_a: age of information weight
- w_v: violation weight

• The **Bonus** will be:

$$A = a^2 w_a \tag{3}$$

$$V = (a - t) w_{v} \tag{4}$$

$$B = \begin{cases} A \cdot V, & \text{if } V > 0. \\ \frac{A}{|V|}, & \text{if } V < 0. \end{cases}$$
 (5)

Ant-Colony

- This algorithm send out a number of ants to different paths on a computed graph, guided by the distance metric, and then returns the best one found.
- We use the *ant-colony* approach when:
 - The cluster has outliers far away from the center of mass.
 - The thresholds of the targets in the cluster are similar.
 - 3 The cluster is big.

Ant-Colony (2)

- The ants probabilistically choose the next step of the path
- Performs backward updates to said probability
 - Adding the inverse of the path's distance.
- 3 Repeat for a number of steps
- 4 the *best path* found has the **highest probability**.

6 Example:

Greedy

- The greedy solution at every step evaluates the targets' priorities in the cluster
- Points the drone towards the most urgent one based on our dynamic distance metric.
- We choose *greedy* when:
 - **1** The wind is too strong.
 - 2 The cluster is small.
 - 3 The thresholds of the targets in the cluster are very different.

Drones

Movement

- Removed the *stop and rotate* phase
 - Much faster overall movement
- We assign the clusters based on the starting position of the drones
 - To avoid collisions after takeoff while trying to reach the clusters

Wind

- Change in the distance precision
 - Smaller ϵ value
 - delay the *deceleration* phase
- Issues with angular vector in windy scenarios
 - Drones rotate and loose the orientation

Fin.

