

Construindo o modelo ER

Demóstenes Sena

(demostenes.sena@ifrn.edu.br)

Construindo um modelo ER

Propriedades dos modelos ER

Critérios de escolha dos elementos

Verificação do modelo

Estratégias de modelagem

Propriedades dos modelos ER

Propriedades dos modelos ER

Um modelo ER é um modelo formal

existem ferramentas CASE (computer aided software engineering) que geram os modelos relacionais a partir dos modelos ER

os modelos devem ser compreendidos por todos os envolvidos

O modelo ER é limitado

O modelo ER contém somente informações necessárias ao nível de modelo conceitual

Existem restrições de integridade que não são possíveis de representar com um modelo ER

Exemplo, restrição de integridade recursiva - "Em um diagrama ER com entidade empregado e auto-relacionamento supervisão, um empregado pode ser supervisionado por outro que é supervisionado".

Propriedades dos modelos ER

Modelos ER diferentes podem ser equivalentes

Dois ou mais modelos ER são ditos equivalentes se geram o mesmo modelo relacional, seguindo algumas regras de conversão entre um modelo ER para um modelo relacional

Exemplo de equivalência entre modelos ER

Critérios de escolha dos elementos

Identificando os elementos

Responder algumas questões, por exemplo "Quando utilizar uma entidade e não um atributo?"

Este tipo de pergunta é resolvida analisando o contexto e não o objeto isoladamente

O conhecimento a respeito da lógica do negócio é necessário, mas existem um conjunto de critérios relacionados a uma situação que podem ajudar

Exemplo de Atributo versus Entidade

A informação **cor de um automóvel** deve ser uma <u>entidade</u> ou um <u>atributo</u> da entidade **automóvel**?

Recomendações sobre Atributo *versus* Entidade

A informação deve ser modelada como **entidade** quando esta pode ser **relacionada** a **outros elementos** ou possuir **propriedades**

Análise sugerida: quais seriam as vantagens e/ou as desvantagens de assumir **cor** como atributo da entidade **automóvel**?

Exemplo de Atributo *versus* Generalização/Especialização

A informação categorial funcional de um empregado deve ser um <u>atributo</u> ou um conjunto de entidades devido a <u>herança</u> da entidade **empregado**?

Recomendações sobre

do Norte

A **generalização/especialização** é necessária quando as **entidades especializadas** possuem **propriedades** (atributos, relacionamentos e/ou generalização/especialização) particulares

Alguns atributos opcionais podem esconder propriedades particulares, que são modeladas mais adequadamente usando generalização/especialização.

Análise sugerida: A categoria funcional de um empregado deve ser uma generalização/especialização caso existam propriedades para categoria funcionais específicas

Exemplo de Atributos Opcionais *versus*Generalização/Especialização

Os atributos multivalorados não são representados nos SGBDs relacionais, ou seja, não possuem uma implementação direta. Logo, nessas situações, usar entidades com relacionamentos torna-se necessária.

Após a construção do modelo ER, este deve ser validado e verificado

Para um modelo ser considerado bom, este deve preencher uma série de requisitos

- ser correto
- ser completo
- ser livre de redundâncias
- refletir o aspecto temporal
- possuir entidades isolados e sem atributos somente quando imprescindível

O modelo é **correto** quando não contém erros de sintaxe ou erros de semântica

O modelo é **completo** quando todas as propriedades dos requisitos do clientes estão presentes no modelo

O modelo é **livre de redundâncias** quando é mínimo, ou seja, não contém informações repetidas

O modelo reflete o **aspecto temporal** quando os valores das propriedades (atributos e relacionamentos) se modificam ao longo do tempo

As **entidades isoladas ou sem atributos** devem ser verificadas cuidadosamente

Estratégias de modelagem

Estratégias de modelagem

O processo de construção de um modelo é incremental

Existem algumas estratégias para a construção de um modelo que foram definidas empiricamente

A estratégia inicial depende da fonte dos dados

Descrições dos dados existentes (implementações prévias)

Conhecimento dos especialistas do contexto do sistema

. . .

Na prática, a estratégia pode ser uma combinação das estratégias existentes

Tipos de Estratégias de Modelagem

A partir das implementações existentes

Engenharia reversa

Estratégia **Bottom-up** - iniciando do nível lógico e abstrair gradativamente até o nível conceitual

A partir do conhecimento dos especialistas

Estratégia top-down

Estratégia inside-out

Estratégia top-down

Procedimento

Procedimento da Estratégia top-down

1. Modelagem Superficial

- a. enumeração e construção das entidades
- b. construção dos relacionamentos
- c. identificar as generalizações/especializações
- d. identificar as cardinalidades máximas
- e. inserir os atributos (comuns, identificadores e temporais)

2. Modelagem Detalhada

- a. identificar as cardinalidades mínimas
- b. identificar as outras restrições possíveis

3. Validação do modelo

- a. verificar a ausência de construções redundantes ou deriváveis
- b. validação com o usuário

Estratégia inside-out

Essa estratégia consiste em iniciar a modelagem a partir dos conceitos mais importantes (ou centrais) e, gradativamente, adicionar os conceitos relacionados a estes

Procedimento da Estratégia inside-out

- Identificação e construção das entidades particularmente importantes
- 2. Adicionar as propriedades da entidade alvo, na seguinte ordem
 - a. identificar os atributos
 - b. identificar os relacionamentos
 - c. identificar as generalizações/especializações
- 3. Repetir as etapas anteriores até obter o modelo completo

Exercícios

Utilize a estratégia top-down para definir o modelo ER de um sistema de pagamento dos servidores de uma cidade. O sistema deve manter as informações sobre os cargos concursados, indicados (cargos de confiança), e os terceirizados.

Exercícios

Utilize a estratégia inside-out para definir o modelo ER de um sistema de pagamento dos servidores de uma cidade. O sistema deve manter as informações sobre os cargos concursados, indicados (cargos de confiança), e os terceirizados.

Construindo o modelo ER

Demóstenes Sena (demostenes.sena@ifrn.edu.br)