Gene Expression DataVisualization with R

Theory Session

Dr. Cihan Erkut Applied Functional Genomics (B290) Translational Medical Oncology (B340)

Main topics

- Principal component analysis (PCA)
 - Dimensionality reduction
 - Grouping by similarity
- Heatmaps
 - Hierarchical clustering
 - Sample correlation / difference
- Mean variance plots
 - Variance stabilization
- MA plots
 - Visualization of fold changes
 - Fold change shrinkage

https://blog.freepeople.com/2013/02/book-club-meeting-deepest/

- Orthogonal projection of
 - an N-dimensional object viewed from a random perspective
 - into an M-dimensional object viewed from from another perspective
- The projection has the following features
 - First axis (principal component) explains as much of total variation between data points as possible
 - Second PC explains as much of remaining variation as possible
 - ...
 - Mth (last) PC explains the last remaining variation
 - No axis depends on another
- Total variation is preserved
- No data is created or removed

- A gene expression dataset is a multidimensional object
 - n genes in m samples = $n \times m$ matrix
 - Every sample can be represented as a point in an n-dimensional space
 - Coordinates of a point are expression values of all genes

	S ₁	S ₂	S ₃	S ₄
G_1	E ₁₁	E ₁₂	E ₁₃	E ₁₄
G_2	E ₂₁	E ₂₂	E ₂₃	E ₂₄
G _n	E _{n1}	E _{n2}	E _{n3}	E _{n4}

$$S_1 = \langle E_{11}, E_{21}, ..., E_{n1} \rangle$$

- Can you imagine a point in a 5-dimensional space?
 - If yes, I want to talk to you after the seminar □
- Solution: Reduce dimensionality
- Based on which criteria?
 - Variation among genes!
 - A unique signature of the sample
- How many dimensions are enough?
 - Usually two, at most 3 (not recommended)

Questions?

Heatmaps

www.r-graph-gallery.com

Heatmaps

- A method to visualize 3-dimensional data on a 2-dimensional space
- Takes advantage of human color perception
 - Dimension 1: x-axis
 - Dimension 2: y-axis
 - Dimension 3: color
- Extra information can be encoded via grouping
- Grouping on which criteria?
 - Similarity / dissimilarity (hierarchical clustering)

Heatmaps

- What does hierarchical clustering do?
- First calculate a distance matrix
 - Remember, every sample / gene is a point in a multidimensional space
 - There always exists a line segment that connects two points!
 - The length of that segment is (an Euclidean) distance!
 - A distance matrix is half of a square matrix. Think why!
- Iterate over samples / genes and group them based on distances
 - The result is a tree-like structure called a dendrogram

Hierarchical clustering

Hierarchical clustering

Correlation

- Correlation matrix instead of distance matrix
 - Based on correlation coefficient
 - Easier to interpret

Questions?

Logarithmic transformation

- Hierarchical clustering and PCA are sensitive to data distribution
- It's best when the data is:
 - Normally distributed
 - Homoskedastic (variance is stable)
- Gene expression data is naturally skewed
 - A lot of low-expression genes, few high-expression genes
 - A logarithmic transformation helps to normalize the data

Variance stabilization

 Log transformation affects the variance of small numbers more than big numbers

• Set 1: 5, 6, 7

• Set 2: 5005, 5006, 5007

		Set 1	Set 2
Original	Mean	6	5006
Original	SD	1	1
log2	Mean	2.571	12.289
	SD	0.2430	0.0003

Mean-variance plots

Love et al. 2014

Questions?

MA Plots

- Why do we do differential gene expression analysis?
 - To ffind out up- or downregulated genes in a test sample compared to a control sample
- M represents log fold change (LFC)

• LFC_i =
$$\log_2 \frac{E_{i,test}}{E_{i,control}}$$

• LFC $\geqslant 0$ Upregulation

- : LF6 < 8 Downregulations
- : LEC = 8 No difference
- : Associated with an adjusted p-value
- A represents average gene expression across samples
 - An approximation of abundance level

LFC shrinkage

- Similar to variance stabilization, more complicated
- Aims to remove very high/low LFCs observed in low counts

Love et al. 2014

Questions?

