编译原理课后题

2021级计算机科学与技术

第2章 文法

1、下图是生成标识符的右线性文法,请同学们写出用来生成标识符的左线性文法。

例(右线性文法)

- ② $S \rightarrow aT \mid bT \mid cT \mid dT$
- ③ $T \rightarrow a \mid b \mid c \mid d \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5$
- (4) $T \rightarrow aT \mid bT \mid cT \mid dT \mid 0T \mid 1T \mid 2T \mid 3T \mid 4T \mid 5T$
- (1) S->a|b|c|d
- (2) T->a|b|c|d
- (3) T->Ta|Tb|Tc|Td|T0|T1|T2|T3|T4|T5
- (4) S->Ta|Tb|Tc|Td|T0|T1|T2|T3|T4|T5

第2章 文法

- 2、课后题第 11 题
- 一个上下文无关文法生成句子 abbaa 的推导树如右:
- (1) 给出串 abbaa 的最左推导、最右推导。
- (2) 该文法的产生式集合 P 可能有哪些元素?
- (3) 找出该句子的所有短语、直接短语、句柄。

答案:

(1) 串 abbaa 的

最左推导:S=>ABS=>aBBS=>aBBS=>abBS=>abbS=>abbAa=>abbaa

最右推导: S=>ABS=>ABAa=>ABaa=>ASBBaa=>ASBbaa=>ASbbaa=>Abbaa=>abbaa

- (2) 可能的产生式有: $S \rightarrow ABS \mid Aa \mid \epsilon \quad A \rightarrow a \quad B \rightarrow SBB \mid b \mid$
- (3) 该句子的短语有:

a 是相对 A 的短语 ε 是相对 S 的短语

b 是相对 B 的短语 εbb 是相对 B 的短语

aa 是相对 S 的短语 aebbaa 是相对 S 的短语

直接短语有: aεb 句柄是: a

1、将下面的NFA确定化:

已知 NFA=($\{x,y,z\}$, $\{0,1\}$,M, $\{x\}$, $\{z\}$), 其中: $M(x,0)=\{z\}$, $M(y,0)=\{x,y\}$, , $M(z,0)=\{x,z\}$,

 $M(x,1)=\{x\}$, $M(y,1)=\Phi$, $M(z,1)=\{y\}$, 构造相应的 DFA。

答案: 先构造其矩阵

	0	1
X	Z	X
y	x,y	
Z	x,z	y

用子集法将 NFA 确定化:

	0	1				
X	Z	X				
Z	XZ	y				
XZ	XZ	xy				
y	xy					
xy	xyz	X				
xyz	xyz	xy				

将 x、z、xz、y、xy、xyz 重新命名, 分别用 A、B、C、D、E、F 表示。 因为 B、C、F 中含有 z, 所以它为终态。

	0	1
A	В	A
В	C	D
С	C	Е
D	Е	
Е	F	A
F	F	Е

已知 NFA= ($\{x,y,z\}$, $\{0,1\}$,M, $\{x\}$, $\{z\}$),其中: $M(x,0)=\{z\}$, $M(y,0)=\{x,y\}$, , $M(z,0)=\{x,z\}$,

 $M(x,1)=\{x\}$, $M(y,1)=\phi$, $M(z,1)=\{y\}$, 构造相应的 DFA。

DFA 的状态图:

将下图的(a)和(b)分别确定化和最小化:

初始分划得

П0: 终态组{0}, 非终态组{1,2,3,4,5}
 对非终态组进行审查:
 {1,2,3,4,5}a ⊂{0,1,3,5}
 而{0,1,3,5}既不属于{0}, 也不属于{1,2,3,4,5}
 ∵{4}a ⊂{0}, 所以得到新分划

 $\Pi1: \{0\}, \{4\}, \{1,2,3,5\}$

对{1,2,3,5}进行审查:

: {1,5} b ⊂{4}

{2,3} b ⊂{1,2,3,5}, 故得到新分划

 $\Pi 2: \{0\}, \{4\}, \{1, 5\}, \{2, 3\}$

 $\{1, 5\}$ a $\subset \{1, 5\}$

 $\{2,3\}$ a \subset $\{1,3\}$,故状态 2 和状态 3 不等价,得到新分划

П3: {0}, {2}, {3}, {4}, {1,5} 这是最后分划了

第4章自顶向下语法分析

```
语法分析课后题-LL(1)文法判断和分析表构造
已知文法G[S]:
S->MH | a
H->LSo | ε
K->dML | ε
L->eHf
M->K | bLM
判断 G是否是LL(1)文法,如果是,构造LL(1)分析表。
```

答案:

Н

L	Z	:Н	をナ	十为	:	

- S→M H
- 1) S→a
- H→L S o
 H→ε
- K→d M L
- 5) K→ε
- 6) L→e H f
- 7) M→K
- 8) M→b L M

非终结符	FIRST 集	FOLLOW 集
S	{a,d,b,e,e}	{#,o}
M	{d,ε,b}	{e,#,o}
Н	{ε,e}	{#,f,o}
L	{e}	{a,d,b,e,o,#}
K	{d,ε}	{e,#,o}

对相同左部的产生式可知:

SELECT(S
$$\rightarrow$$
M H) \cap SELECT(S \rightarrow a) = { d,b,e, #,o } \cap { a }= \emptyset
SELECT(H \rightarrow L S o) \cap SELECT(H \rightarrow e) = { e } \cap { #,f,o }= \emptyset

$$SELECT(K {\rightarrow} d \ M \ L) \cap SELECT(K {\rightarrow} \epsilon) = \{\ d\ \} \cap \ \{\ e,\#,o\ \} = \text{\ref{along}}$$

SELECT(M \rightarrow K) \cap SELECT(M \rightarrow b L M) ={ d, e,#,o} \cap { b}= \bigcirc

所以文法是 LL(1)的。

第4章自顶向下语法分析

预测分析表:

	a	o	d	e	f	b	#
S	→a	→МН	→МН	→МН		\rightarrow MH	→MH
M		\rightarrow K	\rightarrow K	→K		→bLM	→K
Н		→ε		→LSo	→ε		→ε
L				→eHf			
K		→ε	→dML	→ε			→ε

由预测分析表中无多重入口也可判定文法是 LL(1)的。

第4章自顶向下语法分析

已知文法G[S]:判断其是否为LL(1)文法,并对输入串(a,a)进行分析。

已知文法G[S]:

 $S \rightarrow (L)|a,$

 $L\rightarrow L,S|S$

- (1) 消除文法G[S]中包含的左递归,并为每个非终结符构造不带回溯的递归子程序。
- (2) 经改写后的文法是否是LL(1)文法?给出它的预测分析表。
- (3)给出输入串(a,a)\$的分析过程,并说明该符号串是否为文法G[S]的句子。

```
因为LL(1)
分析表不含多重定义
入口,所以文法G'
是LL(1)文法。预
测分析器对.....
```

```
case lookahead of
        ( ;begin
              match ('('):
              Li
              match (')');
              end:
          a' :match('a')
         other error():
 end:
 procedure L:
 begin
     S:L':
 end:
procedure L':
begin
    if(lookahead=",")then
    begin
        match(',');
        S:L:
    end:
end:
(2) 根据文法 G'有:
FIRST(S) = \{(, a); FOLLOW(S) = \{', ', \$\};
FIRST(L) = \{(, a), FOLLOW(L) = \{\}\}
FIRST(L') = \{', ', \epsilon\}_{\sharp} FOLLOW(L') = \{\}_{\ast}
按以上结果,构造预测分析表,如表 4-6 所示
```

非终结符	输入符号					
	(s	
S	S-+(L)			S-+a		
L	L-+SL'			L-+SL'		
E'		L'-ve	L' SL'			

为 LL(1)分析表不含多重定义人口, 所以文法 G'是 LL(1) 文法。

则分价格对制入甲	(a, a) D	似山的牙切	幼作如衣	4-1 101 11

3 22 (-,) 4 01	K I H > ±/C > · · · · · ·		
则分析器对输	入串(a, a)\$ 做出的分	析动作如表 4-7 所示。	
57 C. C.	表 4-7 对输入串	(a, a)的分析过程	
分析步骤	STACK 栈	剩余输入符号串	动作/使用的产生式
1	\$ S	(a, a) \$	推导/ S→(L)
2	\$)L((a, a) \$	匹配
3	\$)L	a, a) \$	推导/ L→S L'
4	\$)L'S	a, a) \$	推导/S→a

11

12

\$)

\$

析成功,说明输入串(a, a)是该文法的一个句子。

a, a) \$

, a) \$

, a) \$

) \$

) \$

\$

匹配

推导/L'→,SL'

匹配

匹配

分析成功

1.文法G[S]为:

 $S \rightarrow AB$

A→aBa | ε

B→bAb | ε

该文法是SLR(1)文法吗?若 是,构造其分析表并给出输 入串baab\$的分析过程。 2. 若有文法G[S]:

 $S \rightarrow S;M \mid M$

M→MbD | D

 $D \rightarrow D(S) \mid \varepsilon$

给出G[S]的LR(1)项目集 规范族中的 I_0 。 3. 给定文法G[S]:

 $S \rightarrow AdD \mid \epsilon$

A→aAd | ε

 $D \rightarrow DdA \mid b \mid \epsilon$

(1)证明G[S]不是LR(0)和 SLR(1)文法。

(2)判断G[S]是LR(1)和 LALR(1)文法,并构造相应 的分析表。

已知文法 A→aAd |aAb | ε

判断该文法是否是SLR(1)文法,若是构造相应分析表,并对输入串ab#给出分析过程。

1.文法G[S]为:

 $S \rightarrow AB$

A→aBa | ε

B→bAb | ε

该文法是SLR(1)文法吗?若 是,构造其分析表并给出输 入串baab\$的分析过程。 构造榜广文环

- 10) 5'75
- U) 5-7 AB
- (2) A > aBa
- (3) A7 2
- (4) B-> bAb
- (5) B72

х	FIRST (X)	FOLLOW (X)
51	abr	\$
S	a.b.2	串
A	0.2	6,\$
В	6,8	a,\$

1.文法G[S]为:

 $S \rightarrow AB$

A→aBa | ε

B→bAb | ε

该文法是SLR(1)文法吗?若是,构造其分析表并给出输入串baab\$的分析过程。

ا څلا ند ا۔		ACTION			GOTO		
状态	a	Ь	\$	S	A	B	
0	53	YЭ	YЭ	1	2		
1			acu				
2	V5	55	r5			4	
3	rF	53	rt	1		Ь	
4			γ1				
5	63	V3	YЪ		7		
Ь	58						
7		59					
8		rz	rz				
9	r4		Y4				

没有冲突, 是5儿儿又玩

0257

02579

024

01

SABA

\$ AbAb

\$ AB

\$5

1. 文法G[S]为:

 $S \rightarrow AB$

A→aBa | ε

 $B \rightarrow bAb \mid \epsilon$

该文法是SLR(1)文法吗? 若 是,构造其分析表并给出输

入串baab\$的分析过程。

	状た核	特易核	输入	aution	90
	0 >	\$ \$A	6aa6\$	rð. A→2 55	golo.A)=2
若	025	\$ Ab	aab\$	43	
俞	0253	\$Aba	aro\$	15 B>8	go(3, B)=b
	02536	\$AbaB	ab\$	58	
	025368	\$ Ababa	6\$	V2 A-) aB	a 90 (5,A)=7

6\$

\$

\$

\$

59

acu

Y4 B → bAb gol, B)= 4

r1 5-AB 90(0,5)=1

```
桐造幅下文弦:
(a) 5'→5
(l) 5→5;M
(x) 5→M
(x) M→MbD
(y) M→D
```

15) D -> D(4)

石杆话:

```
70:

6' → · 6,$

S → · S;M ,$/;

S → · MbD,$/b/;

M → · MbD,$/b/;

M → · D,$/b/;

D → · D(5),$/b/();

D → · D(5),$/b/();
```

```
10:
 S'→·5,$
6 -> S; M, $
S - · M, $
5 → · S; M, ;
 5->·M,;
M→·MbD,$
M →·D,$
M > · MbD.;
M > · D .;
M > · MbD, b
M>·D, b
D -> · D(5),$
D → · ,$
D -> · D(5),;
D > · D(6), b
\triangleright \rightarrow \cdot , \flat
 D → · D(5), (
 ワラ・、し
```

```
2. 若有文法G[S]:
```

 $S \rightarrow S;M \mid M$

 $M \rightarrow MbD \mid D$

 $D \rightarrow D(S) \mid \varepsilon$

给出G[S]的LR(1)项目集 规范族中的 I_0 。

净河 桐选塘广文法

- (D) 575
- 11) S>AdD
- W 572
- 13) A > aAd
- (W) A78
- 15) D > DaA
- (b) D → b
- (7) D > E

3. 给定文法G[S]:

 $S \rightarrow AdD \mid \epsilon$

A→aAd | ε

 $D \rightarrow DdA \mid b \mid \epsilon$

- (1)证明G[S]不是LR(0)和 SLR(1)文法。
- (2)判断G[S]是LR(1)和 LALR(1)文法,并构造相应 的分析表。

LR10) 分析表

	P	ACTION			GOT		0
	a	b	d	\$	S	M	ID
0	53/12/14	Y2/14	r2/14	12/14	1	2	
1				acu			
2			54				
3	53/14	r4	Y 4	Y4		ち	
4	rı	57/r7	m	Y٦			b
5			58				
Ь	rı	rı	59/11	rı			
1	ro	rb	Y 6	rb			
8	13	٧ъ	13	V 3			
9	53/14	Y4	Y4	Y4		10	
10	1/5	1/5	15	18			

3. 给定文法G[S]:

 $S \rightarrow AdD \mid \epsilon$

A→aAd | ε

 $D \rightarrow DdA \mid b \mid \epsilon$

(1)证明G[S]不是LR(0)和 SLR(1)文法。

(2)判断G[S]是LR(1)和 LALR(1)文法,并构造相应 的分析表。

在诸话的析表中有彩进归约冲兵,所以不是此的文法,

SLR(1)/分析表:

	P	ACTION			GOTO		
	a	l b	d	\$	S	[/h	D
0	- 63		r4	12/14	1	2	
- 1				acu			
2			54				
3	53		Y4	Y4		ち	
4		57	۲٦	Ϋ́			b
5			58				
ь			59	۲۱			
			Υb	Yb			
8			13	YЭ			
9	55		14	Y4		10	
10			r5	15			

存在旧约归约冲象 所以及SURII文法

3. 给定文法G[S]:

 $S \rightarrow AdD \mid \epsilon$

A→aAd | ε

 $D \rightarrow DdA \mid b \mid \epsilon$

(1)证明G[S]不是LR(0)和 SLR(1)文法。

(2)判断G[S]是LR(1)和 LALR(1)文法,并构造相应 始公址表。

X	FIRST (X)	FOLLOW (X)
51	a. d. 2	\$
5	a.d.4	\$,
A	0v, &	\$.0
D	6.8	\$,d

3.给定文法G[S]:

 $S \rightarrow AdD \mid \epsilon$

A→aAd | ε

 $D \rightarrow DdA \mid b \mid \epsilon$

- (1)证明G[S]不是LR(0)和 SLR(1)文法。
- (2)判断G[S]是LR(1)和 LALR(1)文法,并构造相应 的分析表。

历析表:

	ACTION			- (GOTO		
	a	b	d	\$	S	M	D
0	43		r4	12	1	2	
1				acu			
2			54				
3	53		Y4			5	
4		57	٧٦	Y7			b
5			58				
Ь			59	rı			
7_			Υb	44			
8			13				
9	SII		14	Y4		10	
10			r5	75			
11	811		γ4				
12			513			12	
13			13	13			

3. 给定文法G[S]:

 $S \rightarrow AdD \mid \epsilon$

A→aAd | ε

 $D \rightarrow DdA \mid b \mid \epsilon$

(1)证明G[S]不是LR(0)和 SLR(1)文法。

(2)判断G[S]是LR(1)和 LALR(1)文法,并构造相应 的分析表。

3.给定文法G[S]:

 $S \rightarrow AdD \mid \epsilon$

A→aAd | ε

 $D \rightarrow DdA \mid b \mid \epsilon$

(1)证明G[S]不是LR(0)和 SLR(1)文法。

(2)判断G[S]是LR(1)和 LALR(1)文法,并构造相应 的分析表。

LAUR与折花:

	ACTION			GOTO			
	a	b	d	\$	S	M	
0	63		r 4	Y2	1	2	
- 1				acu			
2			54				
3	53		Y4			5	
4		57	٧٦	Ϋ́			b
5			58				
ь			59	۲۱			
			γb	Yb			
8			13	43			
9	63		14	Y4		10	
10			r5	15			

没有话法场析冲突 是LALR(1)文法

3. 给定文法G[S]:

 $S \rightarrow AdD \mid \epsilon$

A→aAd | ε

 $D \rightarrow DdA \mid b \mid \epsilon$

(1)证明G[S]不是LR(0)和 SLR(1)文法。

(2)判断G[S]是LR(1)和 LALR(1)文法,并构造相应 的分析表。

```
文法G的产生式如下:
S-->a | (L)
L-->L,S | S
试写出各个产生式的语法制导的翻译规则,它输出配对的括号数。
```

```
答: 为S, L引入属性h, 用来记录配对的括号的个数: S'--> S { printf(S.h) }
S-->a { S.h: =0 }
S-->(L) { S.h: =L.h+1 }
L-->L<sup>1</sup>,S { L.h: =L<sup>1</sup>.h+S.h }
L-->S { L.h: =S.h }
```

文法G的产生式如下:
P-->D
D-->D; D|id: T|proc id; D;
试写出各个产生式的语法制导的翻译规则,打印该程序一共声明了多少个id。

```
答: 为D引入一个综合属性h, 用来记录D中含id的个数:
P-->D {printf(D.h)}
D-->D¹; D² {D.h: =D¹.h+D².h}
D-->id: T {D.h: =1}
D-->proc id: D¹: S {D.h: =D¹.h+1}
```

以下是简单表达式(只含加、减运算)计算的一个属性文法G(E):

```
 \begin{array}{lll} {\sf E} \; -> {\sf TR} & & \{R.\,in = T.\,val \; ; E.\,val := R.\,val \} \\ {\sf R} \; -> + TR_1 & & \{R_1.\,in := R.\,in + T.\,val \; ; R.\,val := R_1.\,val \} \\ {\sf R} \; -> - TR_1 & & \{R_1.\,in := R.\,in - T.\,val \; ; R.\,val := R_1.\,val \} \end{array}
```

 $R \rightarrow \epsilon$ $\{R. val := R. in\}$

T -> num $\{T. val := lexval(num)\}$

试给出表达式3+4-5的语法分析树和相应的带标注语法分析树。

给定文法G[S]:

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

如下是相应于G[S]的一个属性文法:

```
(1) S \rightarrow (L) { S. num := L. num +1; }

(2) S \rightarrow a { S. num := 0; }

(3) L \rightarrow L_1, S { L. num := L_1. num + S. num; }

(4) <math>L \rightarrow S { L. num := S. num; }
```

文法G[S]的属性文法是一个S-属性文法,故可以在自底向上分析过程中增加语义 栈来计算属性值。下图1是G[S]的一个LR分析表,图2描述了输入串(a,(a))的 分析和求值过程(语义栈中的值对应S.num或L.num),其中,第14、15行没有 给出,试补全。

Jb			ACTION	· V		GO	<u>TO</u>
状态			101101				<u> </u>
念	а	,	()	#	S	L
0	s3		s2			1	
1		•			acc		
2	s3		s2			5	4
3		r2		r2	r2		
4		s7		s6			
5		r4		r4			
6		r1		r1	r1		
7	s3		s2			8	:
8		r3		r3			· · · · · · · · · · · · · · · · · · ·

步骤	状态线	语义故	符号技	余留符号率
D	0	_	#	(a,(a)) #
2)	02		#(a,(a))#
3)	023		#(a	.(a))#
4)	025	0	#(S	,(a))#
5)	024	0	#(L	.(a))#
6)	0247	0-	#(L.	(a))#
7)	02472	0	#(L.(a))#
8)	024723	0	#(L,(a))#
9)	024725	00	#(L,(S))#
10)	024724	00	#(L,(L))#
H)	0247246	00-	#(L,(L))#
12)	02478	0 - L	#(L,S)#
13)	024	1	#(L)#
14)			-	,-
15)				
16)	接要			

状态栈	符号栈	剩余输入串	综合属性值	A G
0	#	(a,(a))#	-	s2
02	#(a,(a))#		s3
023	#(a	,(a))#		r2 5
025	#(S	,(a))#	0	r4 4
024	#(L	,(a))#	0	s7
0247	#(L,	(a))#	0-	s2
02472	#(L,(`a))#	0	s3
024723	#(L,(a))#	0	r2 5
024725	#(L,(S))#	00	r4 4
024724	#(L,(L))#	00	s6
0247246	#(L,(L))#	00-	r1 8
02478	#(L,S)#	0-1	r3 4
024	#(L)#	1	s6
0246	#(L)	<i>,</i> #	1-	r1 1
01	#S	#	-2	
acc	# G	π	_	
acc				

```
状态状
                               符号栈
                                             余留符号串
步骤
               语义权
                                            (a,(a))#
13
       0
                                #(
                                            a,(a))#
2)
       02
                                            .(a))#
                                #(a
3)
       023
                                            ,(a))#
4)
                                #(S
       025
               --0
5)
       024
                                #(L
                                            .(a))#
               - - 0
                                            (a))#
                                #(L.
6)
       0247
                                #(L.(
                                            a))#
7)
       02472
                                #(L,(a
                                            ))≢
8)
       024723
9)
       024725
                                #(L,(S
                                            ))≢
10)
       024724
               - - 0 - - 0
                                是(し,(し
                                            ))#
H)
       0247246
                                #(L,(L)
                                            )#
                                            )#
12)
       02478
               - - 0 - L
                                #(L,S
13)
                                #(L
       024
               - - 1
                                            )#
14)
15)
16)
      接受
```

1. if x>0 and y>0 then z=x+y else begin x=x+2; y=y+3 end

- 2, if (A<C) and (B<D) then if A=1 then c=c+1 else if A≤D then A=A+2
- 3, while a < c and b < d do if a=1 then c=c+1 else if a < d then a=a+2

1, if x>0 and y>0 then z=x+y else begin x=x+2; y=y+3 end

```
1. if x>0 ,90 to 3
2 goto 8
3 if 470 goto 5
4. goto 8
5 ti=x+4
 6 Z=t,
7 9000 12
 8 t2 = x+2
   x = t_2
10: t3=4+3
11: y=t3
12:
```

2. if (A<C) and (B<D) then if A=1 then c=c+1 else if A \leq D

then A=A+2

1. If ALC goto 3 2: 9000 14 3: if B < D goto 5 4: 90to 14 5: if A=1 goto 7 b: goto 10 7: t.= CTI 8:0 = ti 9: goto 14 10: if A & D go to 12 11: 90to 14 12: T2 = A+2 13: A= t2 14:

3, while a < c and b < d do if a=1 then c=c+1 else if a < d then

$$a=a+2$$

1: if $a < c$ goto 3

2: goto 15

3: if $b < d$ goto 5

4: goto 15

5: if $a = 1$ goto 7

5: if $a = 1$ goto 7

6: goto 10

7: $t_1 = C + 1$

8: $c = t_1$

9: goto 1

pascla1 控制链 第九章-控制栈中含有访问链的活动记录构建 program pascal1; 访问链 procedurep; 使用访问链分别画出下面Pascal程序执行到 var x: integer; 控制链 procedure q; (1) 第1次调用r之后的控制栈(运行栈)的内容; 访问链 procedure r: (2) 第2次调用r之后的控制栈(运行栈)的内容。 begin 控制链 x:=2;访问链 第一次过程调用的顺序为: if ... then p; main→p→q→r,运行栈的 end;{r} 访问链 begin 内容如最右侧图所示,栈的 **end**; {**q**} 控制链 左边是控制链,右边是访问 访问链 begin 链,本题只要求给出访问链 end; $\{p\}$ 控制链 访问链 begin ,控制链也要掌握。 p; end. { pascal1 } 控制链 访问链

第九章-控制栈中含有访问链的活动记录构建

- 使用访问链分别画出下面Pascal程序执行到
 - (1) 第1次调用r之后的控制栈(运行栈)的内容;
 - (2) 第2次调用r之后的控制栈(运行栈)的内容。

第二次过程调用的顺序为:

 $main \rightarrow p \rightarrow q \rightarrow r \rightarrow p \rightarrow q \rightarrow r$,

运行栈的内容如右图所示

代码生成

》假设p和q都存放在内存位置中,为下面的三地址语句序

列生成代码: LD R1,9 LD R2, O(R1) y = *qADD RI, RI, #4 q = q + 4ST 9, RI *p = yID RI, P p = p + 4ST OCRI), RZ ADD R1, R1, #4 ST P, RI