Simulation of ALU

The ALU has two data inputs A and B, and aa control input 'ALU_operation': data inputs are 64 bits wide, and the control is 4 bit wide. It will output the result as 'ALU_result' (also 64 bits wide) and a 1 bit output 'Zero' if the result of the operation is zero. Below are the steps involved in this lab assignment:

- 1. Design ALU using data inputs A and B which are 64 bit wide, control input which is 4 bit wide. It will generate result of ALU operation in ALU_result which is 64 bit wide and a Zero Flag.
- 2. Design combinational logic that generates ALU_operation input signal for ALU unit's control signal.
- 3. Combine above two design to simulate Arithmetic Logic Unit.
- Simulation of the ALU

ALU Operation parameters are as below:

- Input A and B 64 bit
- Input ALU operation 4 bit
- Output ALU result 64 bit
- Output Zero flag

Module Name: LEGv8ALU

Test Module Name: LEGv8ALU tb

Below screen shot show the waveform for input and output parameters of ALU

Refer below table for result of all operation.

ALU Operation	Function	ALU Result	Result	Zero Flag
0000	AND	A & B	0	1
0001	OR	A B	fffffffffffff	0
0010	ADD	A + B	fffffffffffff	0
0110	SUBTRACT	A – B	aaaaaaaaaaaaab	0
0111	PASS B	В	ааааааааааааааа	0
1100	NOR	~(A B)	0	1

Zero flag is set to 1 if the result of the operation is zero otherwise is reset.

If you see the subtraction operation the result's LSB is b, this is because LSB of A is 5 and LSB of B is a. 5 is less than a hence in hex value calculation we take borrow from next bit which becomes 5+16=21. Now if we do subtraction the result will be b, 21-a=b.

• Simulation of the ALU Control Logic

ALU Control Logic parameters are as below:

- Input opcode field 11 bit
- Input ALUOp 2 bit
- Output ALU operation 4 bit

Module Name: LEGv8ALU_control

Test Module Name: LEGv8ALU_control_tb

Below screen shot show the waveform for input and output parameters of ALU control Logic

Refer below table for ALU control logic result:

ALUOp		Opecode Field					ALU_opertaration						
ALUOp1	ALUOP2	I[31]	I[30]	I[29]	I[28]	I[27]	I[26]	I[25]	I[24]	I[23]	I[22]	I[21]	
0	0	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1100
Х	1	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Χ	Х	0111
1	Х	1	0	0	0	1	0	1	1	0	0	0	0010
1	Х	1	1	0	0	1	0	1	1	0	0	0	0110
1	Х	1	0	0	0	1	0	1	0	0	0	0	0000
1	Х	1	0	1	0	1	0	1	0	0	0	0	0001

• Simulation of the ALU with its Control Logic

ALU with its Control Logic are as below:

- Input Opecode fiels 11 bit
- Input ALUOp 2 bit
- Input A 64 bit
- Input B 64 bit
- Output ALU result 64 bit
- Output Zero flag

Module Name: LEGv8ALUwithControl

Test Module Name: LEGv8ALUwithControl_tb

Below screen shot show the waveform for input and output parameters of ALU with its Control Logic

Refer below table for ALU with its Control Logic:

Opecode	ALUOP	Function	ALU	Result	Zero
Field			Result		
1X	10001010000	AND	A & B	0	1
1X	10101010000	OR	A B	fffffffffffff	0
1X	10001011000	ADD	A + B	fffffffffffff	0
1X	11001011000	SUBTRACTION	A – B	aaaaaaaaaaaaab	0
X1	XXXXXXXXXX	PASS B	В	ааааааааааааааа	0
00	XXXXXXXXXX	NOR	~(A B)	0	1