Příklad

Vyšetřete průběh řešení diferenciální rovnice $x' = t^2(x+1)$.

Řešení

 Ω je zřejmě \mathbb{R}^2 .

Stacionární řešení, tj. $t^2(x+1) = 0$ je pouze x = -1.

x'>0 na $(-1,+\infty)\times(\mathbb{R}\setminus\{0\})$, jelikož $t^2\geq0$ a krom 0 je $t^2>0$, tudíž záleží především na x+1. Tedy zde je x rostoucí. x'<0 na $(-1,+\infty)\times(\mathbb{R}\setminus\{0\})$ a zde je x klesající. Nakonec x'=0 pro x=-1 (tedy stacionární řešení \Longrightarrow z hlediska extrému a monotonie nezajímavé) a pro t=0, kde je pouze inflexní bod, neboť z obou stran je řešení rostoucí nebo z obou klesající (krom x=-1, ale to je zas nezajímavé).

 $x''=2t(x+1)+x't^2\stackrel{t\neq 0}{=} x'(2/t+t^2)$, tedy x''=0 pro $x=-1,\ t=0$ a $t=-\sqrt[3]{2}$. x=-1 je zase nezajímavé, t=0 a $t=-\sqrt[3]{2}$ jsou množiny inflexních bodů. x''>0, a tedy řešení je konvexní na

$$(-1, +\infty) \times (0, +\infty) \cup (-1, +\infty) \times (-\infty, -\sqrt[3]{2}) \cup (-\infty, -1) \times (-\sqrt[3]{2}, 0).$$

Naopak x'' < 0, a tedy řešení je konkávní na:

$$(-\infty, -1) \times (0, +\infty) \cup (-\infty, -1) \times (-\infty, -\sqrt[3]{2}) \cup (-1, +\infty) \times (-\sqrt[3]{2}, 0)$$

Funkce je buď konstantní (x = -1), nebo klesá k $-\infty$ (x < 1) nebo stoupá k $+\infty$ (x > 1), tedy nás zajímá, jestli existuje vertikální asymptota. Jelikož $\int_{x_0}^{\infty} \frac{dx}{x+1} = +\infty$, tak neexistuje?

Na druhou stranu $(t \to -\infty)$ jde ve všech případech k x=-1 a $x' \stackrel{x \to -1}{\to} 0$, tedy se k x=-1 blíží "rovnoběžně".

Příklad

Vyšetřete průběh řešení diferenciální rovnice $x' = \sqrt[3]{1-x^2}$.

Řešení

 Ω je zřejmě \mathbb{R}^2 .

Stacionární řešení, tj. $\sqrt[3]{1-x^2}=0$ jsou $x=\pm 1$.

x' > 0 pro |x| < 1, a tedy pro |x| < 1 je x rostoucí. x' < 0 pro |x| > 1, a tedy pro |x| > 1 je x klesající. x' = 0 pro $x = \pm 1$. Extrémy kromě $x = \pm 1$ tedy nejsou.

Druhá derivace v bodech $x=\pm 1$ neexistuje. Jinak $x''=(1-x^2)^{-2/3}\cdot 2x\cdot x'=\frac{2x}{x'}$. x''=0 je pro x=0, tedy zde jsou inflexní body. x''>0, a řešení je tedy konvexní na $(-\infty,-1)\cup(0,1)$. Naopak x''<0, a řešení je tedy konkávní na $(-1,0)\cup(1,+\infty)$.

Řešení v x>-1 jdou k x=1. Naopak řešení v x<-1 jdou k $-\infty$ a jelikož $\int_{x_0}^{\infty} \frac{1}{\sqrt[3]{1-x^2}} dx = +\infty$, tak neexistuje vertikální asymptota.

V druhém směru jde řešení v x < 1 k -1 a v x > 1 k $+\infty$.

Příklad

K zastavení říčních lodí u mola se z nich háže lano, které se omotá kolem sloupku stojícího na molu. Jaká síla působí na loď, když lano udělá tři otočky kolem tyče, součinitel tření lana o tyč je 1/3 a pracovník na molu táhne za volný konec lana silou $10\,\mathrm{kg}$.

Poznámka

Uvažujme malou část lana odpovídající úhlu $\Delta \varphi$. Podívejme se, jaké síly na něj působí. Na tento malý úsek působí: napínací síly $T(\varphi)$ působící v krajních bodech a směřující ve směru lana, tedy tečně ke kružnici. Dále reakční síla sloupu $N(\varphi)$ působící ve středu segmentu a směřující kolmo k povrchu tyče ve směru od středu ven. Dále třecí síla $F_{tr}(\varphi)$ působící v místě kontaktu a směřující proti směru možného pohybu. Gravitační sílu můžeme ignorovat.

Řešení

Podle poznámky výše a geometrické představy nám vyjde

$$N = (T(\varphi) + T(\varphi + \Delta \varphi)) \cdot \sin\left(\frac{\Delta \varphi}{2}\right), \qquad F_{tr} = (T(\varphi + \Delta \varphi) - T(\varphi)) \cos\left(\frac{\Delta \varphi}{2}\right).$$

Z fyziky víme, že $N/3 = F_{tr}$, tedy že

$$\tan\left(\frac{\Delta\varphi}{2}\right) = \frac{\sin}{\cos}\left(\frac{\Delta\varphi}{2}\right) = 3\frac{T(\varphi + \Delta\varphi) - T(\varphi)}{T(\varphi + \Delta\varphi) + T(\varphi)}.$$

Vydělení $\Delta \varphi$ a limitní přechod $\Delta \varphi \to 0$ dává

$$\frac{1}{2} = 3 \frac{T'(\varphi)}{2T(\varphi)} \implies T'(\varphi) = \frac{T(\varphi)}{3}.$$

Řešení je $T(\varphi)=C\exp(\varphi/3)$. Víme, že T(0)=10, tedy C=10. Při třech otočkách je síla $T(6\pi)=10\exp(2\pi)\approx 5355\,\mathrm{kg}$.