NGRAMS – PART 2 NATURAL LANGUAGE PROCESSING - CS 322.00

Blake Howald September 25, 2017

AGENDA

- Presentation Charlie Anderson, Ammar Babar
- Questions
- Ngrams Part 2
 - Smoothing
 - Evaluation
 - Training/Testing
 - Perplexity

TRAIN/TEST CONSIDERATIONS

- Also attempt to get the largest sample of data possible:
 - Largest portion is for Training Set
 - Next portion (no more than 1/3, typically) is for Test Set
 - Smallest proportion for **Development (Dev)** and **Holdout** sets
 - Dev set (can be pulled from Test Set) used for the development of features
 - Holdout set used for additional information
 - Never train on Test, Dev or Holdout sets artificially high results/ improper bias

NGRAMS - CALCULATION

Bigram	MLE	Bigram	MLE
have a	0.707	don't have	0.117
a box	0.589	l don't	0.117
box	0.471	<2>	0.589
l can't	0.471	can't be	0.471
to be	0.117	dumb	0.117
so dumb	0.117	be so	0.333

- I don't have a box
- $P(I|\leq s>) \times P(don't|I) \times P(have|don't) \times P(a|have) \times P(box|a) \times P(\leq s>|box)$
- $0.589 \times 0.117 \times 0.117 \times 0.707 \times 0.589 \times 0.471 = 0.001581$
- We don't have a box

UNKNOWN WORDS

- There will be (should be) words in the test data that did not appear in the training data
 - Unless it is a *closed vocabulary* task, then there won't be any unknown words, but there still may be probabilities not estimated (we'll talk *smoothing* next).
 - In an open vocabulary task, you
 - 1. Decide on a vocabulary in advance (existing dictionary of English, e.g.)
 - Any word(s) in the training set not in the preset vocabulary gets replaced with (<UNK> or <OOV>, e.g.)
 - 3. Estimate the probabilities for <UNK> or <OOV> like any other word
 - Good to track the rate of out of vocabulary (OOV) words in the test set generally.

SMOOTHING

- Multiple methods to address data sparsity (also known as discounting).
- · Redistributing probability mass to unseen data
 - · Laplace (add one) smoothing
 - Also add k smoothing
 - Good-Turing discounting
 - Kneser-Nay and other "absolute" discounting methods

LAPLACE (ADD ONE) SMOOTHING																
The cat in the hat																
	The	Cat	In	Hat									The	Cat	ln	Hat
The	0	ı	0	I		The 0 .2						.2	0	.2		
Cat	0	0	I	0		Cat 0 0						0	.2	0		
ln	ı	0	0	0		ln .2 0						0	0	0		
Hat	0	0	0	0		Hat 0 0					0	0	0			
				The	Cat	ln	Hat			The	Cat	In	Hat			
			The	I	2	- 1	2		The	0.05	.1	0.05	.l			
			Cat	ı	ı	I 2 I Cat 0.05 0.05 .I 0.05										
			ln	2	ı											
			Hat	ı	ı	ı	- 1		Hat	0.05	0.05	0.05	0.05			

					The cat in the hat					
	The	Cat	In	Hat			The	Cat	ln	Hat
The	0	I	0	I	4 bigrams with 0 counts 7 bigrams with 1 counts	The	0	.05	0	.05
Cat	2	1	3	2	I bigram with 3 counts I bigram with 4 counts	Cat	.1	.05	.15	.I
ln	4	1	0	0		ln	.2	.05	0	0
Hat	I	1	2	I		Hat	.05	. 05	.1	.05
					P* (zero counts) = I Counts/Total Counts					
	The	Cat	In	Hat	• P* (zero counts) = 7/20 = .35		The	Cat	In	Hat
The	.017	.85	.017	.85	 UPDATE COUNTS 2 x 2 Counts / I Counts 	The	.35	.042	.35	.042
Cat	.99	.85	•••	.99		Cat	.049	.042		.049
ln	•••	.85	.017	.017	 3 x 3 Counts / 2 Counts 			.042	.35	.35
Hat	.85	.85	.99	.85	• (c+1)Nc+1/Nc	Hat	.042	.042	.049	.042

INTERPOLATION & BACKOFF

• Interpolation (sum of $\lambda s = 1$) - learned from the Holdout Set

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1})
+ \lambda_2 P(w_n|w_{n-1})
+ \lambda_3 P(w_n)$$

- Katz (Good Turing) Backoff
 - Back off to increasingly shorter histories until you have an estimation based on observation.
 - Good Turing discounting applied for the lower order Ngram

KATZ (GOOD TURING) BACKOFF

The cat in the hat

	The	Cat	In	Hat
The	0	-1	0	- 1
Cat	0	0	- 1	0
In	- 1	0	0	0
Hat	0	0	0	0

"in cat"
P* (zero counts) = I Counts/Total Counts
P* (zero counts) = I/20 = .0625

UPDATE COUNTS

• 2 x 2 Counts / I Counts

_		The	Cat	In	Hat
S	The	0	.2	0	.2
	Cat	0	0	.2	0
	In	.2	0	0	0
	Hat	0	0	0	0

	The	Cat	In	Hat
The	0	- 1	0	- 1
Cat	0	0	ı	0
ln	.5	.003	0	0
Hat	0	0	0	0

	The	Cat	In	Hat
The	0	.2	0	.2
Cat	0	0	.2	.2
ln	.025	.062	0	0
Hat	0	0	0	0

EVALUATION - PERPLEXITY

- Perplexity
 - Intrinsic evaluation
 - $^{\circ}$ Sum all probabilities of test sentences raised to the I / N (where N is the total number of word tokens encountered in the test set)
 - Lower the perplexity (good!) the higher the conditional probability the better the model is at capturing sequence patterns
 - Perplexity typically lowers for higher order N-gram models

	Unigram	Bigram	Trigram
Perplexity	962	170	109

- MUST exclude test data from the training data (values artificially high)
- If (truly) random patterns Perplexity will be (approach) $N((I/N)^{-1})$