

may 28th, CIRM

Kami:

An annotated Knowledge representation model for biology

Adrien Basso-Blandin, Russell Harmer, Walter Fontana

Problematic in biology:

Large and complex systems

Problematic in biology:

- Large and complex systems
- Studied piecewise
- Literatures and data fragmented

- Large and complex systems
- Studied piecewise
- Literatures and data fragmented

Objectives:

Aggregate knowledge into big mechanistic models

Problematic in biology:

- Large and complex systems
- Studied piecewise
- Literatures and data fragmented

Objectives:

Aggregate knowledge into big mechanistic models

Problematic in biology:

- Large and complex systems
- Studied piecewise
- Literatures and data fragmented

Objectives:

- Aggregate knowledge into big mechanistic models
- Understand biological processes into there context

Problematic in biology:

- Large and complex systems
- Studied piecewise
- Literatures and data fragmented

Objectives:

- Aggregate knowledge into big mechanistic models
- Understand biological processes into there context
- Infer new knowledge from models and simulations

Big Mechanism

Biological tool-example

- 1. Protein A is an enzyme that catalyzes the phosphorylation of protein B on key residue Y445
- 2. Phosphorylation of B has a positive influence on its homodimerization
- 3. C is a known inhibitor of B homodimerization
- 4. C is often found in complex with A

Ph: Bind(A,B)

Knowledge representation

Problematics

- 1. Size of the data structures
- 2. Nuggets aggregation
- 3. Knowledge are 1 level up of KR (Assertions)
- 4. Simulation are 1 level down of KR (Kappa)
- 5. User friendly GUI (for biologists)

Ph : Bind(A,B)

Knowledge representation

Nuggets

- 1. Protein A is an enzyme that catalyzes the phosphorylation of protein B on key residue Y445
- 2. Phosphorylation of B has a positive influence on its homodimerization
- 3. C is a known inhibitor of B homodimerization
- 4. C is often found in complex with A

Nugget Graph

A bi(o)graph:

- Actions
- Agents
- Mechanistic edges
- Assertion edges

Agents

- Protein
- Key residues
- Sites
- Flags
- Attributes

Actions

- Triggers
- Attributes
- Arity

Generic rules

Example:

• Rule for complexes

• Rule for families

- Actions
- Agents
- Mechanistic edges

- Actions
- Agents
- Mechanistic edges
- Assertion edges

- Actions
- Agents
- Mechanistic edges
- Assertion edges
- No more useless key residues

- Actions
- Agents
- Mechanistic edges
- Assertion edges
- No more useless key residues
- Virtual key residues added

- Actions
- Agents
- Mechanistic edges
- Assertion edges
- No more useless key residues
- Virtual key residues added
- Applied generic rules

- Actions
- Agents
- Mechanistic edges
- Assertion edges
- No more useless key residues
- Virtual key residues added
- Applied generic rules
- Instanced nugget graph

Set abstraction:

Set abstraction:

Semantics


```
(\mathcal{N}, \mathcal{R}, \mathcal{E}) where \mathcal{N}, \mathcal{R}, \mathcal{E} are respectively sets of node, actions and edges
graph
                         (string, bool, \mathcal{T}, \mathcal{F}, S \subset \mathcal{S}, K \subset \mathcal{K}, bio_t, bio_d) \in \mathcal{A} \subset \mathcal{N}
node
                         |(\text{string}, \text{bool}, \mathcal{T}, \mathcal{F}, \emptyset, \emptyset, \text{bio\_t}, \text{bio\_d}) \in \mathcal{S} \subset \mathcal{N}
                         |(\text{string}, \text{bool}, \mathcal{T}, \mathcal{F}, \emptyset, \emptyset, \text{bio\_t}, \text{bio\_d}) \in \mathcal{K} \subset \mathcal{N}
                          where the string is the node name, the boolean define the abstract state
                         and \mathcal{T}, \mathcal{F}, \mathcal{S} and \mathcal{K} are respectively sets of
                         attributes, flags, sites and key residus.
                         Notice that S, K, A are independent subsets of N
attribute
                         (string, t : value)
                         Where the first string is the attribute name and value is of type "t" \in {bool, string, int, float}
flag
                         (string, formula, formula) Where the first string is the flag name
                         The first formula is the triggering formula and the last is the untriggering
action
                         (string, bool, formula, formula, bio_t, bio_d)
                         The first string is the action name, the boolean is the abstract type
                         The first formula is the triggering formula and the last is the untriggering
edge
                         (in, out) where in \in \mathcal{N} and out \in \mathcal{R}
                          (in, out) where in \in \mathcal{R} and out \in \mathcal{N}
                        e \in \{defined\ biological\ types\}
bio_t
bio_d
                        \mathcal{L} a set of biological informations in string format
                        true \mid false \mid string \mid att_1 \text{ comp } att_2 \mid \epsilon
formula
                          | formula ∧ formula | formula ∨ formula | ¬formula
                         Where att<sub>1</sub> and att<sub>2</sub> are attributes with values of the same type
                        o \in \{\leq, \geq, <, >, \neq, =\}
comp
```

Data structure

- SQL
- Triples?

2 kind of knowledge		
mechanistic rules	Assertions	
A bind B	C has an influence on B	

Problematic:

• How to automatically infer formal rules from assertions?

Problematic:

How to automatically infer formal rules from assertions?

Approach:

Looking for pathways into the annotated site-graph

Knowledge inference example

mechanistic rules 🛑	assertions
C binds A	AC_complex
B.Bind B ² : B.ph & B ² .ph B.Bind B ² : B.ph B.Bind B ² : B ² .ph	Ph ++> B.bind(B²)
	$C \longrightarrow B.bind(B^2)$

- 1. Phosphorylation of B has a positive influence on its homodimerization
- 2. C is a known inhibitor of B homodimerization
- 3. C is often found in complex with A

Knowledge inference example

mechanistic rules 🗧	assertions
C binds A	AC_complex
B.Bind B ² : B.ph & B ² .ph B.Bind B ² : B.ph B.Bind B ² : B ² .ph	Ph ++> B.bind(B²)
C binds A on the same site as B	C> B.bind(B ²)

Merci

Russ Harmer

Big Mechanism

Walter Fontana

