0.0.1 Independent Current Source

Ι

Figure 1: I — independent current source.

```
Form:
Iname N_+ N_- [ [DC] [DCvalue]
+ [AC [ACmagnitude [ACphase]]]
+ [\mathtt{DISTOF1} \ [F1Magnitude \ [F1Phase]\ ]\ ] + [\mathtt{DISTOF2} \ [F2Magnitude \ [F2Phase]\ ]\ ]
                          is the positive current source node.
                          (Current flow is out of the positive to the negative node.)
                    N_{-}
                          is the negative current source node.
                          is the optional keyword for the DC value of the source.
               DCvalue
                          is the DC current value of the source.
                          (Units: A; Optional; Default: 0; Symbol: I_{DC})
                          is the keyword for the AC value of the source.
                     AC
          AC magnitude
                          is the AC magnitude of the source used
                          during ACanalysis. That is, it is the peak AC current so
                          that the AC signal is ACmagnitude \sin(\omega t + ACphase).
          AC magnitude
                          is ignored for other types of analyses.
                          (Units: A; Optional; Default: 1; Symbol: I_{AC})
              ACphase
                          is the ac phase of the source. It is used only in AC analysis.
                          (Units: Degrees; Optional; Default: 0; Symbol: \phi_{AC})
               DISTOF1
                          is the distortion keyword for distortion component 1 which has frequency F1.
          F1 magnitude
                          is the magnitude of the distortion component at F1.
                          (Units: A; Optional; Default: 1; Symbol: I_{F1})
               F1phase
                          is the phase of the distortion component at F1.
                          (Units: Degrees; Optional; Default: 0; Symbol:\phi_{F1})
              DISTOF2
                          is the distortion keyword for distortion component 2 which has frequency F2.
          F2magnitude
                          is the magnitude of the distortion component at F2.
                          (Units: A; Optional; Default: 1; Symbol:I_{F2})
               F2phase
                          is the phase of the distortion component at F2.
                          (Units: Degrees; Optional; Default: 0; Symbol:\phi_{F2})
```

Transient Specification is the optional transient specification described more fully below. Note

- 1. The independent current source has three different sets of parameters to describe the source for DC analysis (see .DC on page ??), AC analysis (see .AC on page ??), and transient analysis (see .TRAN on page ??). The DC value of the source is used during bias point evaluation and DC analysis is DCValue. It is also the constant value of the current source if no TransientSpecification is supplied. It may also be used in conjunction with the PWL transient specification if a time zero value is not provided as part of the transient specification. The AC specification, indicated by the keyword AC is independent of the DC parameters and the Transient Specification.
- 2. The original documentation distributed with SPICE2G6 and SPICE3 incorrectly stated that if a *TransientSpecification* was supplied then the time-zero transient current was used in DC analysis and in determinion the operating point.

Transient Specification

Five transient specification forms are supported: pulse (PULSE), exponential (EXP), sinusoidal (SIN), piece-wise linear (PWL), and single-frequency FM (SFFM). The default values of some of the parameters of these transient specifications include TSTEP which is the printing increment and TSTOP which is the final time (see the .TRAN statement on page $\ref{thm:print}$? for further explanation of these quantities). In the following t is the transient analysis time.

Sinusoidal:

SIN(I_O I_A [F] $[T_D$] $[\theta$]) Parameters:

Name	Description	Units	Default
I_O	voltage offset	V	REQUIRED
I_A	voltage amplitude	V	REQUIRED
F	frequency	Hz	1/TSTOP
T_D	time delay	s	0
Θ	damping factor	1/s	0
ϕ	phase	degree	0

Example:

ISIGNAL 20 5 SIN(0.1 0.8 2 1 0.3)

Description:

The sinusoidal transient waveform is defined by

$$i = \begin{cases} I_0 & t \le T_D \\ I_0 + I_1 e^{-[(t - T_D)\Theta]} \sin 2\pi [F(t - T_D) + \phi/360] & t > T_D \end{cases}$$
 (1)

Figure 2: Current source transient sine (SIN) waveform for SIN(0.1 0.8 2 1 0.3).

Exponential:

Name	Description	Units	Default
I_1	initial voltage	V	REQUIRED
I_2	pulsed voltage	V	REQUIRED
T_{D1}	rise delay time	s	0.0
$ au_1$	rise time constant	s	TSTEP
T_{D2}	fall delay time	s	TSTEP
$ au_2$	fall time constant	s	TSTEP

Example:

ISIGNAL 2 0 EXP(0.1 0.8 1 0.35 2 1)

Description:

The exponential transient is a single-shot event specifying two exponentials. The current is I_1 for the first T_{D1} seconds at which it begins increasing exponentially towards I_2 with a time constant of τ_1 seconds. At time T_{D2} the current exponentially decays towards I_1 with a time constant of τ_2 . That is,

$$i = \begin{cases} I_{1} & t \leq T_{D1} \\ I_{1} + (I_{2} - I_{1})(1 - e^{(-(t - T_{D1})/\tau_{1})}) & T_{D1} < t \leq T_{D2} \\ I_{1} + (I_{2} - I_{1})(1 - e^{(-(t - T_{D1})/\tau_{1})}) + (I_{1} - I_{2})(1 - e^{(-(t - T_{D2})/\tau_{2})}) & t > T_{D2} \end{cases}$$
(2)

Notes:

The actual element in $f REEDA^{TM}$ is the iexp element. See iexp for full documentation.

Figure 3: Current source exponential (EXP) waveform for EXP(0.1 0.8 1 0.35 2 1)

Pulse:

PULSE($I_1 \ I_2 \ [T_D \] \ [T_R \] \ [T_F] \ [W \] \ [T \]$) Parameters:

Name	Description	Units	Default
I_1	initial voltage	V	REQUIRED
I_2	pulsed voltage	V	REQUIRED
T_D	delay time	s	0.0
T_R	rise time	s	TSTEP
T_F	fall time	s	TSTEP
W	pulse width	s	TSTOP
T	period	s	TSTOP

Example:

ISIGNAL 20 5 PULSE(0 5 1N 2N 1.5N 21.9N 5N 20N)

Description:

The pulse transient waveform is defined by

$$i = \begin{cases} I_1 & t \leq T_D \\ I_1 + \frac{t'}{T_R} (I_2 - I_1) & 0 < t' \leq T_R \\ I_2 & T_R < t' < (T_R + W) \\ I_2 - \frac{t' - W}{T_F} (I_1 - I_2) & (T_R + W) < t' < (T_R + W + T_F) \\ I_1 & (T_R + W + T_F) < t' < T \end{cases}$$

$$(3)$$

where

$$t' = t - T_D - (n-1)T (4)$$

and t is the current analysis time and n is the cycle index. The effect of this is that after an initial time delay T_D the transient waveform repeats itself every cycle.

Notes:

The actual element in $f REEDA^{TM}$ is the ipulse element. See ipulse for full documentation.

Figure 4: Current source transient pulse (PULSE) waveform for PULSE(0.3 1.8 1 2.5 0.3 1 0.7)

Piece-Wise Linear:

PWL(
$$T_1 \ I_1 \ [T_2 \ I_2 \ \dots \ T_i \ I_i \ \dots \ T_N \ I_N \]$$
)

Example:

ISIGNAL 20 5 PWL(1 0.25 1 1 2 0.5 ... 3 0.5 4 1 ... 4.5 1.25 ...)

Description:

Each pair of values (T_i, I_i) specifies that the value of the source is I_i at time $= T_i$. At times between T_i and T_{i+1} the values are linearly interpolated. If $T_1 > 0$ then the voltage is constant at DCValue (specified on the element line) until time T_1 .

$$i = \begin{cases} DCvalue & t < T_1 \\ I_i & t = T_i \\ I_{i+1} & t = T_{i+1} \\ I_i + \left(\frac{t - T_i}{T_{i+1} - T_i}\right) (I_{i+1} - I_i) & T_i < t \le T_{i+1} \\ I_N & t > T_N \end{cases}$$
(5)

Notes:

The actual element in $f\mathsf{REEDA}^\mathsf{TM}$ is the ipwl element. See ipwl for full documentation.

Figure 5: Current source transient piece-wise linear (PWL) waveform for PWL(1 0.25 1 1 2 0.5 ... 3 0.5 4 1 ... 4.5 1.25 ...) with DCValue = 0.25.

Single-Frequency FM:

 $SFFM(I_O I_A F_C \mu F_S)$

Parameters:

Name	Description	Units	Default
I_O	offset current	A	
I_A	peak amplitude of AC current	A	
F_C	carrier frequency	Hz	1/TSTOP
μ	modulation index	-	0
F_S	signal frequency	Hz	1/TSTOP

Example:

ISIGNAL 8 0 SFFM(0.2 0.7 4 0.9 1)

Description:

The single frequency frequency modulated transient response is described by

$$i = I_O + I_A \sin(2\pi F_C t + \mu \sin(2\pi F_S t))$$
 (6)

Notes:

The actual element in $f REEDA^{TM}$ is the isffm element. See isffm for full documentation.

Figure 6: Current source single frequency frequency modulation (SFFM) waveform for SFFM(0.2 0.7 4 0.9 1)

Amplitude Modulation:

AM (sa oc fm fc td)

Parameters:

Name	Description	Units	Default
sa	signal amplitude	V	0.0
fc	carrier frequency	Hz	0.0
fm	modulation frequency	Hz	1/TSTOP
oc	offset constant	dimensionless	0.0
td	delay time before start of signal	S	0.0

Example:

ISIGNAL 20 5 AM(10 1 100 1K 1M)

Description:

The waveform for this source is

$$i = sa(oc + \sin[2.\pi.fm.(t - td)])sin[2.\pi.fc.(t - td)]$$
 (7)

Notes:

The actual element in $f\mathsf{REEDA}^\mathsf{TM}$ is the iam element. See iam for full documentation.

Credits:

Name Affiliation Date Links

Satish Uppathil NC State University Sept 2000 **NC STATE UNIVERSITY** www.ncsu.edu

svuppath@eos.ncsu.edu