#### **APPENDICES**

to

# Baseline Evaluation of Fisher Habitat and Population Status & Effects of Fires and Fuels Management on Fishers In the Southern Sierra Nevada

June 2008



Produced by the **Conservation Biology Institute**. CBI is a 501(c)3 tax-exempt organization that works collaboratively to conserve biological diversity in its natural state through applied research, education, planning, and community service.

# List of Appendices

| APPENDIX A. SCIENCE ADVISORS                                                                                                           | 3 |
|----------------------------------------------------------------------------------------------------------------------------------------|---|
| APPENDIX B. DATA SOURCES                                                                                                               | 4 |
| APPENDIX C. DATA DICTIONARY FOR PREDICTOR VARIABLES                                                                                    | 7 |
| APPENDIX D. COMPARISON OF FOUR MODEL TYPES TESTED ON FISHER DATA                                                                       | 2 |
| APPENDIX E. INITIAL CANDIDATE MODELS EVALUATED USING GAM MODELS                                                                        | 3 |
| APPENDIX F. FINAL CANDIDATE MODELS SORTED FROM HIGHEST TO LOWEST AIC WEIGHTS 2                                                         | 9 |
| APPENDIX G. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING BASELINE FIRE REGIME AND NO FUELS TREATMENTS                            | 5 |
| APPENDIX H. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING BASELINE FIRE REGIME, 4% /5 YEAR TREATMENT RATE AND LIGHT TREATMENTS    | 0 |
| APPENDIX I. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING BASELINE FIRE REGIME, 4% /5 YEAR TREATMENT RATE AND MODERATE TREATMENTS | 5 |
| APPENDIX J. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING BASELINE FIRE REGIME, 8% /5 YEAR TREATMENT RATE AND LIGHT TREATMENTS    | 0 |
| APPENDIX K. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING BASELINE FIRE REGIME, 8% /5 YEAR TREATMENT RATE AND MODERATE TREATMENTS | 5 |
| APPENDIX L. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING HIGH FIRE REGIME AND NO FUELS TREATMENTS                                | 0 |
| APPENDIX M. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING HIGH FIRE REGIME, 4% /5 YEAR TREATMENT RATE AND LIGHT TREATMENTS        | 5 |
| APPENDIX N. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING HIGH FIRE REGIME, 4% /5 YEAR TREATMENT RATE AND MODERATE TREATMENTS     | 0 |
| APPENDIX O. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING HIGH FIRE REGIME, 8% /5 YEAR TREATMENT RATE AND LIGHT TREATMENTS        | 5 |
| APPENDIX P. SIMULATED LANDSCAPE EFFECTS OVER 50 YEARS ASSUMING HIGH FIRE REGIME, 8% /5 YEAR TREATMENT RATE AND MODERATE TREATMENTS     | 0 |
| APPENDIX Q. FOREST AGE DISTRIBUTIONS IN SIMULATION YEARS 0 AND 50 UNDER DIFFERENT TREATMENT SCENARIOS                                  | 5 |

#### **Appendix A -- Science Advisors**

The following scientists provided independent scientific input and review at various points throughout this project. Their wisdom added considerable value to this work. However, although the final selection of methods, interpretation of results, formulation of management recommendations, and any inaccuracies in this report are CBI's alone.

#### **Core Science Advisor Group**

**David Graber** – National Park Service – wildlife ecology and national park management

**Jan Van Wagtendonk** – U.S. Geological Survey – fire ecology and management

**Bob Heald** – UC Berkeley – silviculture

Frank Davis – UC Santa Barbara – landscape ecology/computer modeling

Bill Zielinski – US Forest Service – fisher biology

**Reg Barrett** – UC Berkeley – fisher biology

John Vankat – Miami University (Emeritus) and National Park Service – forest ecology

**Malcolm North** – UC Davis – forest and fire ecology and

#### **Extended Advisor Group**

**Keith Aubry** – US Forest Service – fisher biology

**Scott Stephens** – UC Berkeley – fire ecology

**Carl Skinner** – US Forest Service – fire ecology

**David Mladenoff** – University of Wisconsin – landscape dynamics modeling

#### **Appendix B -- Data Sources**

Title: National Land Cover Database Tree Canopy Layer 2001

Publisher: U.S. Geological Survey

Publication Year: 2004

Format: Raster Resolution: 30m Units: Percent

Title: United States Average Monthly or Annual Precipitation, 1971 - 2000

Publisher: The PRISM Group at Oregon State University

Publication Year: 2006

Format: Raster

Resolution: 30 arc- second (1km2)

Units: mm \* 100

Title: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS): Daily Snow Depth (modeled snow layer thickness), Jan, Feb, and March 2005

Publisher: National Snow and Ice Data Center

Publication Year: 2005

Format: Raster

Resolution: 30 arc- second (1km2)

Units: meters/1000

Title: Existing vegetation data (EVEG) for the Stanislaus, Sierra, and Sequoia National Forests

Publisher: US Forest Service, Region 5

Publication Year: 2005

Format: Vector (personal geodatabase tiles) Resolution: minimum mapping unit of 2.5 acres.

Attributes used:

Vegetation Cover Type COVERTYPE

Regional Dominance Type 2 REGIONAL\_DOMINANCE\_TYPE\_2

Conifer Cover From Above CON\_CFA Hardwood Cover From Above HDW CFA

WHR Type WHRTYPE WHR Size WHRSIZE

WHR Density WHRDENSITY Year Planted ORIGIN\_YEAR

Title: CWHR version 8.1

Publisher: California Department of Fish and Game. California Interagency Wildlife Task

Group.

Publication Year: 2005

Format: personal computer program

Title: CA\_R5\_FireHistory05\_1

Publisher: US Forest Service, Region 5

Publication Year: 2006

Format: Vector (personal geodatabase)

Resolution: 1:24,000 Attributes used:

Year the fire was contained FIRE\_YEAR

Title: National Hydrography Dataset Publisher: U.S. Geological Survey

Publication Year: 2006

Format: Vector (personal geodatabase)

Resolution: 1:12,000 – 1:24,000

Attributes Used:

FlowLine Feature Code FCode

Title: National Elevation Dataset Publisher: U.S. Geological Survey

Publication Year: 2006

Format: Raster

Resolution: 1 arc-second (30m)

Units: meters

Title: snvtran00\_1

Publisher: USDAFS/Remote Sensing Lab Region 5

Publication Year: 1999 Format: Vector (coverage) Resolution: 1: 24,000 Attributes used:

Road Type

Title: Roads of Sequoia and Kings Canyon National Parks

Publisher: National Park Service

Publication Year: 2003 Format: Vector (shape file) Resolution: 1: 12,000 Attributes used:

Type

Title: Roads of Yosemite National Park

Publisher: National Park Service

Publication Year: 2001 Format: Vector (shape file) Resolution: 1: 24,000 Attributes used:

Class

USGS\_ROAD100K Publication Year: 1995

Publisher: U.S. Geological Survey

Format: Vector (coverage) Resolution: 1:100,000

Title: Annual Inventory of Washington, Oregon, and California: Based on Version 2.0 of the

National Core Procedures Manual

Publisher: U.S.D.A. Forest Service, Pacific Northwest Research Station, Forest Inventory and

Analysis Program Publication Year: 2005 Format: Vector (points)

Resolution: Approximately one sample plot per 6,000 acres

Attributes Used: Multiple attributes from the Plot and Tree tables

# **Abiotic**

# **Appendix C – Data Dictionary for Predictor Variables**

| te              | PRISM       | Average annual precipitation (mm * 100), 1971 – 2000, within 5- km <sup>2</sup> moving window                                                                                                                                                                                                                                            |
|-----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Climate         | SNOWDPTH    | (PRISM, 30 arc-second (1km <sup>2</sup> ), resampled to 100m).  Maximum mean daily snowdepth (meters / 1000.00), Jan – March 2005, in 5-km <sup>2</sup> moving window (SNODAS, 30 arc-second (1km <sup>2</sup> ), resampled to 100m).                                                                                                    |
|                 | ADJELEV     | Mean latitude-adjusted elevation of 5-km <sup>2</sup> moving window based on 30m NED resampled to 100m. To adjust for the effect of increasing latitude, 0.625m was added to elevation for every                                                                                                                                         |
|                 | PCTSLOPE    | km north from the southernmost point in the buffered study area.  Mean% slope of 5-km² moving window derived from 30m NED (National Elevation Dataset) resampled to 100m.                                                                                                                                                                |
| raphy           | RELIEF      | Mean value of local relief over 5-km <sup>2</sup> moving window, calculated as the standard deviation of elevation in a local 5x5 moving window applied to the 30m NED data, resampled to 100m.                                                                                                                                          |
| Topography      | SOUTHWEST   | Mean value of transformed slope aspect (cos(aspect-255)) over 5-km <sup>2</sup> moving window, derived from 30m NED data (Franklin 2003) resampled to 100m.                                                                                                                                                                              |
|                 | INSOL_INDEX | Mean value of solar insolation index over 5-km $^2$ moving window derived from 30m NED data (slope and aspect) resampled to 100m (Gustafson et al. 2003).<br>$s = 2 - (\sin((slope/90)180))*(\cos(22 - aspect) + 1)$                                                                                                                     |
|                 | ASPECT_225  | Proportion of 1ha (100m) cells in 5-km <sup>2</sup> moving window with 225 aspect (180 to 270 degrees) based on aspect derived from 30m NED resampled to 100m.                                                                                                                                                                           |
| Linear Features | MJRRDDENS   | Major road density (km/km²) over 5-km² moving window (YOSE class 1 and 2 (primary and secondary roads), SEKI type = primary and secondary, snvtran00_1 road_type = primary highway, secondary highway, and improved light duty/paved, added major roads in buffer outside federal lands from mjrds (1:100000 CaSIL and usgs_roads100k)). |
|                 | ALLRDDENS   | Road density (km/km <sup>2</sup> ) over 5-km <sup>2</sup> moving window (all road classes in YOSE, SEKI, snvtran00_1, and added major roads in buffer outside federal lands from mjrds (1:100000 CaSIL and usgs_roads100k).                                                                                                              |
| $\Gamma$        | STRMDENS    | Perennial stream density (km/km <sup>2</sup> ) over 5-km <sup>2</sup> moving window derived from NHD High Resolution (1:12,000 – 1:24,000) Hydrography data.                                                                                                                                                                             |

Barren.

|                         | SMLFOR  | Proportion of 5-km <sup>2</sup> moving window with WHR Type = Montane Hardwood-Conifer,                                                                                                                                                                                |
|-------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (8;                     |         | Montane Hardwood, Ponderosa Pine, Douglas Fir, Sierran Mixed Conifer, Jeffrey Pine, White Fir, Aspen, or Eastside Pine <u>AND</u> WHR Size = 1 or 2.                                                                                                                   |
|                         | MLFOR   | Proportion of 5-km <sup>2</sup> moving window with WHR Type = Montane Hardwood-Conifer,                                                                                                                                                                                |
| (Eve                    |         | Montane Hardwood, Ponderosa Pine, Douglas Fir, Sierran Mixed Conifer, Jeffrey Pine, White Fir, Aspen, or Eastside Pine $\underline{AND}$ WHR Size = $3 - 6$ .                                                                                                          |
| Size (Eveg)             | LRGFOR  | Proportion of 5-km <sup>2</sup> moving window with WHR Type = Montane Hardwood-Conifer, Montane Hardwood, Ponderosa Pine, Douglas Fir, Sierran Mixed Conifer, Jeffrey Pine, White                                                                                      |
|                         | LRGHDWD | Fir, Aspen, Eastside Pine <u>AND</u> WHR Size = 4, 5, or 6.<br>Proportion of 5-km <sup>2</sup> moving window with WHR type = MHW OR MHC <u>AND</u> WHRSIZE = 3, 4, 5 or 6.                                                                                             |
|                         | DLFOR   | Proportion of 5-km <sup>2</sup> moving window with WHR type = Montane Hardwood-Conifer, Montane Hardwood, Ponderosa Pine, Douglas Fir, Sierran Mixed Conifer, Jeffrey Pine, White Fir,                                                                                 |
|                         | STRUCT  | Aspen, or Eastside Pine <u>AND</u> WHR Density = D <u>AND</u> WHR Size = 4, 5, or 6. Structure score averaged over 5-km <sup>2</sup> moving window. Product of the following:                                                                                          |
| (Eveg)                  |         | CWHR habitat indicator variable (1 = Montane Hardwood-Conifer, Montane Hardwood, Ponderosa Pine, Douglas Fir, Sierran Mixed Conifer, Jeffrey Pine, White Fir, Aspen, or Eastside Pine, Red Fir, Lodgepole Pine, Subalpine Conifer, and Montane Riparian; 0 otherwise); |
| Size and Density (Eveg) |         | Forest canopy closure (centroid of class interval: $S(10-25) = 17.5$ , $P(25-35) = 30$ , $M(40-60) = 50$ , and $D(>60) = 80$ );                                                                                                                                        |
| Size anc                | STRUCT2 | Tree size (centroid of class interval: $1 (0-1) = 0.5$ , $2 (1-6) = 3.5$ , $3 (6-11) = 8.5$ , $4 (11-24) = 17.5$ , $5 (> 24) = 24$ , and $6$ (multilayered trees) = 37). Structure score averaged over $5$ -km <sup>2</sup> moving window. Product of the following:   |
|                         |         | CWHR2 habitat indicator variable (1 = Montane Hardwood-Conifer, Montane Hardwood,                                                                                                                                                                                      |

Forest canopy closure (centroid of class interval: S(10-25) = 17.5, P(25-35) = 30, M(40-60)

Ponderosa Pine, Douglas Fir, Sierran Mixed Conifer, Jeffrey Pine, White Fir, Aspen, or

Eastside Pine; 0 otherwise);

= 50, and D (> 60) = 80);

Tree size (centroid of class interval: 1 (0 - 1) = 0.5, 2 (1 - 6) = 3.5, 3 (6 - 11) = 8.5, 4 (11 - 24) = 17.5, 5 (> 24) = 24, and 6 (multilayered trees) = 37).

CWHR\_VUL Proportion of 5-km<sup>2</sup> moving window with WHR type = Ponderosa Pine, Montane Hardwood

Conifer, or Sierran Mixed Conifer, AND WHR Density = D AND WHR Size = 3 or 4.

TYPE\_SHDI Shannon Diversity Index - all WHR types.

TSIZE\_SHDI Shannon Diversity Index for all WHR Tree Size classes.

AGGREG\_SHDI Shannon Diversity Index for aggregated WHR types/sizes/densities:

1. Low density shrubs: all Shrub habitats with density class S or P (all sizes)

ADS, ASC, BBR, CRC, CSC, DSC, DSW, LSG, MCH, MCP, SGB

2. High density shrubs: all shrub types with density class M or D (all sizes)

3. Small hardwood forests: MHW / MRI class 1, 2, 3 (all density classes)

4. Large hardwood forests: MHW / MRI class 4, 5 (all density classes)

5. Small, low density 'mixed conifer/ pine ' forests: SMC, PPN, WFR, JPN, DFR /MHC 1,2,3, density S and P

6. Small, high density mixed conifer / pine forests as above, but density M and D

7. Large, low density 'mixed conifer / pine' forests: types as above for sizes 4.5.6 and density S and P

8. Large, high density 'mixed conifer / pine' forests: types as above for sizes 4,5,6 and density M and D

9. Small high elevation forests: RFR, LPN, SCN 1, 2, 3

10. Large high elevation forests: RFR, LPN, SCN 4, 5, 6

11. Low elevation 'other' habitats: BOW, PGS, BOP, VRI, VOW, AGS, DRI, JST, CPC,

FEW, SEW

12. Non-vegetated habitat: BAR, URB, LAC

13. Unique types: WTM, ASP

14. Other 'forest' types: EPN, PJN, JUN

ALL\_SHDI Shannon Diversity Index: all Type/Size/Density.

| ape<br>nent<br>md<br>tts)                          | HREPRO_ENNMN<br>CWHR2_ENNMN   | Mean nearest neighbor distance of HREPRO patches within 5-km <sup>2</sup> moving window. Mean nearest neighbor distance of patches with CWHR2 > 0 over 5 km <sup>2</sup> moving window.                       |
|----------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Landscape<br>rrangement<br>(Eveg and<br>Fragstats) | HREPRO_AREAMN<br>CWHR2_AREAMN | HREPRO mean patch size over 5-km <sup>2</sup> moving window.<br>CWHR2 > 0 mean patch size over 5-km <sup>2</sup> moving window.                                                                               |
| Ar                                                 | HREPRO_PARAMN                 | Mean perimeter-area ratio of HREPRO patches over 5-km <sup>2</sup> moving window.                                                                                                                             |
|                                                    | CWHR2_PARAMN                  | Mean perimeter-area ratio of CWHR2 $> 0$ patches over 5 km <sup>2</sup> moving window.                                                                                                                        |
|                                                    | PLANT                         | Proportion of 5-km <sup>2</sup> moving window in plantations (USFS Eveg).                                                                                                                                     |
| Historic                                           | FIRE_OLD                      | Proportion of 5-km <sup>2</sup> moving window burned before 1990 (CA_R5_FireHistory_05_1, USFS Region 5)                                                                                                      |
| Hi                                                 | FIRE_NEW                      | Proportion of 5-km <sup>2</sup> moving window burned 1990 – 2005 (CA_R5_FireHistory_05_1, USFS Region 5)                                                                                                      |
| Age and Biomass (LANDIS<br>and Eveg)               | MAXAGE                        | Mean maximum tree age within 5-km <sup>2</sup> moving window, from LANDIS initial conditions at year 0.                                                                                                       |
|                                                    | BIOMASS_T                     | Mean total tree biomass ((kg/ha)/100) over 5-km <sup>2</sup> moving window, from LANDIS initial conditions at year 0.                                                                                         |
|                                                    | BIOM_NORF                     | Mean total tree biomass ((kg/ha)/100) excluding red fir ( <i>Abies magnifica</i> ) over 5-km <sup>2</sup> moving window, from LANDIS initial conditions at year 0.                                            |
|                                                    | BIOM_NORFBO                   | Mean total tree biomass ((kg/ha)/100) excluding red fir ( <i>Abies magnifica</i> ) and black oak ( <i>Quercus kelloggii</i> ) over 5-km <sup>2</sup> moving window, from LANDIS initial conditions at year 0. |
| Age                                                | BIOM_BLKOAK                   | Mean black oak ( <i>Quercus kelloggii</i> ) biomass ((kg/ha)/100) over 5-km <sup>2</sup> moving window, from LANDIS initial conditions at year 0.                                                             |

# **Appendix D -- Comparison of Four Model Types Tested on Fisher Data**

| Model<br>Type                                                  | Species<br>Data          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Interpret-<br>ability | Citations                                                                                                        |
|----------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|
| GAM<br>(Generalize<br>d Additive<br>Models)                    | Presence<br>/<br>Absence | A semi-parametric form of regression analysis which uses a link function to establish a relationship between the mean of the response variable and a smoothed function of the explanatory variables instead of coefficients (automatically identifies appropriate transformations of predictors). Assumes functions are additive and the components are smooth. Can model predictors non-parametrically but requires specification of the probability distribution of the response variable. Produces predicted probability of occurrence ranging from 0 to 1.                                                                                                                                                                                                                                                                                                                                                                                                                        | Easy                  | Hastie and<br>Tibshirani<br>(1990), Guisan<br>et al. (2002)                                                      |
| ENFA<br>(Ecological<br>niche factor<br>analysis,<br>Biomapper) | Presence                 | Computes suitability functions by comparing the species distribution in the ecogeographical variable space with that of entire set of cells. Factor analyses transform correlated variables into uncorrelated factors and can extracted linear combinations of variables on which the species shows most of its marginality (ecological distance between the species optimum and the mean habitat within the reference area) and specialization (ratio of ecological variance in mean habitat to that observed for the focal species). First axis is selected to account for all the marginality of the species, and the following axes selected to maximize specialization.                                                                                                                                                                                                                                                                                                          | Moderate              | Hirzel et al. (2001), Hirzel et al. (2002), Hirzel et al. (2006)                                                 |
| Maximum<br>Entropy<br>(MaxEnt)                                 | Presence                 | Utilizes statistical mechanics approach to make predictions from incomplete information. Estimates most uniform distribution of occurrence points under the constraint that the expected value of each environmental predictor variable under this estimated distribution is within the empirical error bounds of its average value using a smoothing procedure (regularization). Weights each environmental variable by a constant. Resulting probability distribution is the sum of each weighed variable divided by a scaling constant so that the probability values range from 0 to 1. Starts with uniform probability distribution and iteratively alters one weight at a time to maximize the likelihood to reach the optimum probability distribution. Predictions for each analysis cell are 'cumulative values' ranging from 0 to 100, representing the average probability value for the current analysis cell and all other cells with equal or lower probability values. | Moderate              | Phillips et al.<br>(2006),<br>Miller and<br>Knouft (2006)                                                        |
| GARP<br>(Genetic<br>Algorithm<br>for Rule-set<br>Prediction)   | Presence                 | Machine learning algorithm, taking an artificial intelligence based approach. Uses several predictive modeling algorithms (atomic, logistic regression, range rules, and negated range) to develop a set of 'rules' used to search iteratively for non-random correlations between species occurrences and environmental predictors. Outputs are stochastic, resulting in a unique prediction map each time. Therefore, multiple runs should be performed to produce large number of output prediction maps from which a 'best subset' based on accuracy measures can be selected. Predictions of these can be arithmetically combined to produce a final predicted distribution map.                                                                                                                                                                                                                                                                                                 | Difficult             | Stockwell and<br>Peters (1999),<br>Anderson et al.<br>(2003),<br>Anderson<br>(2003)<br>Stockman et<br>al. (2006) |

# Appendix E – Initial Candidate Models Evaluated Using GAM Models

| C                        | NT            | W                    | Wasiahla 2  | Wasiahia 2 | \$7        | Variable |                                                                                   |
|--------------------------|---------------|----------------------|-------------|------------|------------|----------|-----------------------------------------------------------------------------------|
| Group                    |               | Variable 1 PRISM     | Variable 2  | Variable 3 | Variable 4 | 5        | Bio-logic or Hypotheses Precip affects veg                                        |
|                          | 2             |                      |             |            |            |          |                                                                                   |
|                          | <u>2</u><br>3 | SNOWDPTH<br>PCTSLOPE |             |            |            |          | Deep snows limit fishers                                                          |
|                          | 3             |                      |             |            |            |          | Rest sites on steep slopes; slopes affect veg                                     |
| səle                     | 4             | ADJELEV              |             |            |            |          | elev affects veg & snow depth                                                     |
| Single Abiotic Variables | 5             | RELIEF               |             |            |            |          | Reflects slopes, ruggedness.                                                      |
|                          | 6             | ASPECT_225           |             |            |            |          | Affects potential veg & snow depth                                                |
|                          | 7             | SOUTHWEST            |             |            |            |          | Affects potential veg & snow depth                                                |
|                          | 8             | INSOL_INDEX          |             |            |            |          | Affects potential veg & snow depth                                                |
| ıgle Ak                  | 9             | MJRRDDENS            |             |            |            |          | Roads may affect mortality (roadkill) & correlate with degree/type of forest mgt. |
| Sin                      | 10            | ALLRDDENS            |             |            |            |          | Roads may affect mortality (roadkill) & correlate with degree/type of forest mgt. |
|                          | 11            | STRMDENS             |             |            |            |          | Streams affect veg, prey availability, & perhaps forest structure?                |
| ×                        | 12            | PRISM                | PCTSLOPE    |            |            |          | Precip affects veg + slope affects veg potential.                                 |
| Famil                    | 13            | PRISM                | RELIEF      |            |            |          | Precip affects veg + relief affects veg potential                                 |
| ation ]                  | 14            | PRISM                | ASPECT      |            |            |          | Precip affects veg + aspect affects veg potential                                 |
| Precipitation Family     | 15            | PRISM                | SOUTHWEST   |            |            |          | Precip affects veg + insolation affects veg potential                             |
| P <sub>I</sub>           | 16            | PRISM                | INSOL_INDEX |            |            |          | Precip affects veg + insolation affects veg potential                             |
|                          | 17            | SNOWDPTH             | ADJELEV     |            |            |          | elev affects veg, snow depth affects fishers                                      |
| c<br>Varia               | 18            | ADJELEV              | RELIEF      |            |            |          | Elev affects veg & snow, relief affects microhabitat?                             |

| 19 | ADJELEV     | SOUTHWEST   |           | elev affects veg & snow, southwestness effects veg.                                      |
|----|-------------|-------------|-----------|------------------------------------------------------------------------------------------|
| 20 | ADJELEV     | SOUTHWEST   | ALLRDDENS | Elev affects veg & snow, southwestness affects veg, roads affect management.             |
| 21 | ADJELEV     | SOUTHWEST   | MJRRDDENS | elev affects veg & snow, southwestness affects veg, roads affect management.             |
| 22 | ADJELEV     | SOUTHWEST   | STRMDENS  | elev affects veg & snow, southwestness affects veg, streams affect veg & prey.           |
| 23 | ADJELEV     | INSOL_INDEX |           | elev affects veg & snow, insolation affects potential veg.                               |
| 24 | ADJELEV     | INSOL_INDEX | ALLRDDENS | elev affects veg & snow, insolation affects potential veg, roads affect mgt & mortality. |
| 25 | ADJELEV     | INSOL_INDEX | MJRRDDENS | elev affects veg & snow, insolation affects potential veg, roads affect mgt & mortality. |
| 26 | ADJELEV     | INSOL_INDEX | STRMDENS  | elev affects veg & snow, insolation affects potential veg, streams affect veg & prey.    |
| 27 | INSOL_INDEX | ALLRDDENS   |           | Insolation affects potential veg & roads affect veg mgt & mortality.                     |
| 28 | INSOL_INDEX | MJRRDDENS   |           | insolation affects potential veg & roads affected veg mgt & mortality.                   |
| 29 | INSOL_INDEX | STRMDENS    |           | Insolation affects potential veg & streams affect veg & prey                             |
| 30 | SOUTHWEST   | ALLRDDENS   |           | Southwestness affects veg & microclimate, roads affect mortality & mgt                   |
| 31 | SOUTHWEST   | MJRRDDENS   |           | Southwestness affects veg & microclimate, roads affect mortality & mgt                   |
| 32 | SOUTHWEST   | STRMDENS    |           | Southwestness affects veg & microclimate, streams affect prey, etc.                      |
| 33 | INSOL_INDEX | ALLRDDENS   | STRMDENS  | Together reflect potential veg, veg mgt, prey                                            |
| 34 | INSOL_INDEX | MJRRDDENS   | STRMDENS  | Together reflect potential veg, veg mgt, prey                                            |

|                         | 35 | SOUTHWEST  | ALLRDDENS   | STRMDENS  |          | Together reflect potential veg, veg mgt, prey                  |
|-------------------------|----|------------|-------------|-----------|----------|----------------------------------------------------------------|
|                         | 36 | SOUTHWEST  | MJRRDDENS   | STRMDENS  |          | Together reflect potential veg, veg mgt, prey                  |
|                         | 37 | ADJELEV    | INSOL_INDEX | ALLRDDENS | STRMDENS | All of above.                                                  |
|                         | 38 | ADJELEV    | INSOL_INDEX | MJRRDDENS | STRMDENS | All of above.                                                  |
|                         | 39 | ADJELEV    | SOUTHWEST   | ALLRDDENS | STRMDENS | All of above.                                                  |
|                         | 40 | ADJELEV    | SOUTHWEST   | MJRRDDENS | STRMDENS | All of above.                                                  |
|                         | 41 | DFOR2      |             |           |          | Dense canopy associated with resting habitat                   |
|                         | 42 | CWHR       |             |           |          | Expert rating of fisher habitat value.                         |
|                         | 43 | CWHR2      |             |           |          | Improved expert rating of fisher habitat value.                |
|                         | 44 | STRUCT     |             |           |          | Associated with resting microhabitat                           |
|                         | 45 | STRUCT2    |             |           |          | Associated with resting microhabitat                           |
|                         | 46 | PHDWD      |             |           |          | Hardwoods provide resting structures & mast for prey.          |
|                         | 47 | CON        |             |           |          | General habitat assoc                                          |
| S                       | 48 | LRGHDWD    |             |           |          | Resting structures & mast for prey.                            |
| Single Biotic Variables | 49 | LRGFOR     |             |           |          | Provide resting & foraging habitat, & favorable microclimate?  |
| otic Va                 | 50 | HREPRO     |             |           |          | Associated with resting & reproductive habitat.                |
| Bic                     | 51 | BADHAB     |             |           |          | High contrast negative assoc.                                  |
|                         | 52 | SMALFOR    |             |           |          | Negative assoc?                                                |
| Sir                     | 53 | MLFOR      |             |           |          | Includes size 3 trees as potential habitat.                    |
|                         | 54 | DLFOR      |             |           |          | Provide resting & foraging habitat.                            |
|                         | 55 | CFA80_TREE |             |           |          | Densest canopies provide best resting habitat.                 |
|                         | 56 | CWHR_VUL   |             |           |          | Veg types used by fishers that are most affected by fuels mgt. |
|                         | 57 | FORTYPE    |             |           |          | Associated with fisher presence.                               |
|                         | 58 | SHRUB      |             |           |          | Potential prey source?                                         |
|                         | 59 | WTM        |             |           |          | Potential prey source?                                         |
|                         | 60 | TYPE_SHDI  |             |           |          | Provide diverse prey base?                                     |

|                       | 61 | TSIZE_SHDI    |         | Provide diverse prey base?                                                 |
|-----------------------|----|---------------|---------|----------------------------------------------------------------------------|
|                       | 62 | ALL_SHDI      |         | Provide diverse prey base?                                                 |
|                       | 63 | AGGREG_SHDI   |         | Provide diverse & abundant prey?                                           |
|                       | 64 | HC_RATIO      |         | A mix of hdwd & conifer provides diverse resting & foraging opportunities? |
|                       | 65 | TS_RATIO      |         | Provides for diverse prey base?                                            |
|                       | 66 | HREPRO_AREMN  |         | Large blocks of best repro habitat support breeding = source habitat.      |
|                       | 67 | HREPRO_ENNMN  |         | Dispersal among source habitats.                                           |
|                       | 68 | CWHR2_AREAMN  |         | Large blocks of best habitat = source habitat.                             |
|                       | 69 | CWHR2_ENNMN   |         | Dispersal among source habitats.                                           |
|                       | 70 | HREPRO_PARAMN |         | Contiguous source habitat.                                                 |
|                       | 71 | CWHR2_PARAMN  |         | Contiguous source habitat.                                                 |
|                       | 72 | PLANT         |         | Positive or negative association with plantations?                         |
|                       | 73 | FIRE_OLD      |         | Older fires affect forest structure?                                       |
|                       | 74 | FIRE_NEW      |         | Recent fires affect forest structure.                                      |
|                       | 75 | HC_RATIO      | LRGFOR  | Diverse foraging + resting habitat.                                        |
| e                     | 76 | PHDWD         | CWHR2   | Prey base + expert opinion fisher habitat                                  |
| Hardwood Predominance | 77 | PHDWD         | DFOR2   | Prey base, resting structures, & best resting habitat (dense).             |
| lom                   | 78 | PHDWD         | STRUCT2 | Prey base, & resting structures.                                           |
| red                   | 79 | PHDWD         | HREPRO  | Prey base, reproductive value                                              |
| d F                   | 80 | PHDWD         | BADHAB  | Prey base + high-contrast negative assoc?                                  |
| MOG                   | 81 | PHDWD         | FORTYPE | Prey base + general habitat assoc?                                         |
| ırd                   | 82 | PHDWD         | LRGFOR  | Prey base + potential resting habitat.                                     |
| H                     | 83 | PHDWD         | DLFOR   | Prey base + "best" forest conditions?                                      |
| Large<br>Hard         | 84 | LRGHDWD       | DFOR2   | Prey base, large woody structures, & best resting habitat (dense).         |

| 85  | LRGHDWD | CWHR2       |             | Prey base, large woody structures, & good general habitat.                       |
|-----|---------|-------------|-------------|----------------------------------------------------------------------------------|
| 86  | LRGHDWD | STRUCT2     |             | Prey base, large woody structures.                                               |
| 87  | LRGHDWD | HREPRO      |             | Prey base, large woody structures, & best reproductive habitat (source habitat). |
| 88  | LRGHDWD | BADHAB      |             | Prey base, large woody structures, & high-contrast negative assoc.               |
| 89  | LRGHDWD | FORTYPE     |             | Prey base, large woody structures, & general habitat assoc.                      |
| 90  | LRGHDWD | LRGFOR      |             | Prey base, large woody structures, & habitat assoc.                              |
| 91  | LRGHDWD | DLFOR       |             | Prey base, large woody structures, & "best" forest stand conditions.             |
| 92  | MLFOR   | DFOR2       | ALL_SHDI    | General habitat assoc, best resting microhabitat, + diversity of prey base.      |
| 93  | MLFOR   | DFOR2       | AGGREG_SHDI | General habitat assoc, best resting microhabitat, + diversity of prey base.      |
| 94  | HREPRO  | AGGREG_SHDI |             | Best reproductive habitat + prey diversity.                                      |
| 95  | HREPRO  | ALL_SHDI    |             | Best repro habitat + prey diversity.                                             |
| 96  | PHDWD   | CWHR2       | PRISM       | General habitat assoc, prey base, & veg growth potential.                        |
| 97  | PHDWD   | DFOR2       | PRISM       | Prey base, best resting microhabitat, & veg growth potential.                    |
| 98  | PHDWD   | STRUCT2     | PRISM       | Prey base, resting structures, & veg growth potential.                           |
| 99  | PHDWD   | HREPRO      | PRISM       | Prey base, best resting habitat, & veg growth potential.                         |
| 100 | PHDWD   | BADHAB      | PRISM       | Prey base, high-contrast negative assoc, & veg growth potential.                 |

|                        | 101 | PHDWD | FORTYPE | PRISM    | Prey base, general habitat assoc, & veg growth potential.      |
|------------------------|-----|-------|---------|----------|----------------------------------------------------------------|
|                        | 102 | PHDWD | LRGFOR  | PRISM    | Prey base, large woody structures, & veg growth potential.     |
|                        | 103 | PHDWD | DLFOR   | PRISM    | Prey base, "best" forest conditions, & veg growth potential.   |
|                        | 104 | PHDWD | CWHR2   | SNOWDPTH | Prey base, habitat assoc, microclimate, & slope assoc.         |
| Į,                     | 105 | PHDWD | DFOR2   | SNOWDPTH | Prey base, best resting microhabitat, & slope assoc.           |
| ami                    | 106 | PHDWD | STRUCT2 | SNOWDPTH | Prey base, resting structures, & slope assoc.                  |
| Hardwood-Slope Family  | 107 | PHDWD | HREPRO  | SNOWDPTH | Prey base, best reproduction habitat, & slope associations.    |
| S-pood                 | 108 | PHDWD | BADHAB  | SNOWDPTH | Prey base, high-contrast negative assoc, & slope associations. |
| Hardv                  | 109 | PHDWD | FORTYPE | SNOWDPTH | Prey base, general habitat assoc, & slope assoc.               |
|                        | 110 | PHDWD | LRGFOR  | SNOWDPTH | Prey base, large woody structures, & slope assoc.              |
|                        | 111 | PHDWD | DLFOR   | SNOWDPTH | Prey base, "best" forest conditions, & slope assoc.            |
| nily                   | 112 | PHDWD | CWHR2   | RELIEF   | Prey base, habitat assoc, microclimate, & slope assoc.         |
| ief Far                | 113 | PHDWD | DFOR2   | RELIEF   | Prey base, best resting microhabitat, & slope assoc.           |
| Rel                    | 114 | PHDWD | STRUCT2 | RELIEF   | Prey base, resting structures, & slope assoc.                  |
| Hardwood-Relief Family | 115 | PHDWD | HREPRO  | RELIEF   | Prey base, best reproduction habitat, & slope associations.    |
| Harc                   | 116 | PHDWD | ВАДНАВ  | RELIEF   | Prey base, high-contrast negative assoc, & slope associations. |

|                                  | 117 | PHDWD | FORTYPE | RELIEF      | Prey base, general habitat assoc, & slope assoc.                 |
|----------------------------------|-----|-------|---------|-------------|------------------------------------------------------------------|
|                                  | 118 | PHDWD | LRGFOR  | RELIEF      | Prey base, large woody structures, & slope assoc.                |
|                                  | 119 | PHDWD | DLFOR   | RELIEF      | Prey base, "best" forest conditions, & slope assoc.              |
|                                  | 120 | PHDWD | CWHR2   | INSOL_INDEX | Prey base, habitat assoc, microclimate, & veg growth potential.  |
| nily                             | 121 | PHDWD | DFOR2   | INSOL_INDEX | Prey base, best resting microhabitat, & veg growth potential.    |
| Hardwood-INSOL_INDEX Family      | 122 | PHDWD | STRUCT2 | INSOL_INDEX | Prey base, resting structures, & veg growth potential.           |
|                                  | 123 | PHDWD | HREPRO  | INSOL_INDEX | Prey base, best reproduction habitat, & veg growth potential.    |
| IOSNI                            | 124 | PHDWD | ВАДНАВ  | INSOL_INDEX | Prey base, high-contrast negative assoc, & veg growth potential. |
| -poom                            | 125 | PHDWD | FORTYPE | INSOL_INDEX | Prey base, general habitat assoc, & veg growth potential.        |
| Hard                             | 126 | PHDWD | LRGFOR  | INSOL_INDEX | Prey base, large woody structures, & veg growth potential.       |
|                                  | 127 | PHDWD | DLFOR   | INSOL_INDEX | Prey base, "best" forest conditions, & veg growth potential.     |
| stness                           | 128 | PHDWD | CWHR2   | SOUTHWEST   | Prey base, habitat assoc, microclimate, & veg growth potential.  |
| uthwes                           | 129 | PHDWD | DFOR2   | SOUTHWEST   | Prey base, best resting microhabitat, & veg growth potential.    |
| ood-South<br>Family              | 130 | PHDWD | STRUCT2 | SOUTHWEST   | Prey base, resting structures, & veg growth potential.           |
| Hardwood-Southwestness<br>Family | 131 | PHDWD | HREPRO  | SOUTHWEST   | Prey base, best reproduction habitat, & veg growth potential.    |

|                                     | 132 | PHDWD   | ВАДНАВ  | SOUTHWEST | Prey base, high-contrast negative assoc, & veg growth potential.                                |
|-------------------------------------|-----|---------|---------|-----------|-------------------------------------------------------------------------------------------------|
|                                     | 133 | PHDWD   | FORTYPE | SOUTHWEST | Prey base, general habitat assoc, & veg growth potential.                                       |
|                                     | 134 | PHDWD   | LRGFOR  | SOUTHWEST | Prey base, large woody structures, & veg growth potential.                                      |
|                                     | 135 | PHDWD   | DLFOR   | SOUTHWEST | Prey base, "best" forest conditions, & veg growth potential.                                    |
|                                     | 136 | LRGHDWD | CWHR2   | PRISM     | Prey base, large woody structures, & veg growth potential.                                      |
| ıily                                | 137 | LRGHDWD | DFOR2   | PRISM     | Prey base, best resting microhabitat, & veg growth potential.                                   |
| on Fam                              | 138 | LRGHDWD | STRUCT2 | PRISM     | Prey base, resting structures, & veg growth potential                                           |
| ipitatic                            | 139 | LRGHDWD | HREPRO  | PRISM     | Prey base, large woody structures, best repro habitat, & veg growth potential.                  |
| Large Hardwood-Precipitation Family | 140 | LRGHDWD | BADHAB  | PRISM     | Prey base, large woody structures, high-<br>contrast negative assoc, & veg growth<br>potential. |
| Hardw                               | 141 | LRGHDWD | FORTYPE | PRISM     | Prey base, large woody structures, general habitat assoc, & veg growth potential.               |
| Large                               | 142 | LRGHDWD | LRGFOR  | PRISM     | Prey base, large woody structures, & veg growth potential.                                      |
|                                     | 143 | LRGHDWD | DLFOR   | PRISM     | Prey base, large woody structures, & snow effects.                                              |
| vood-                               | 144 | LRGHDWD | CWHR2   | SNOWDPTH  | Prey base, large woody structures, general habitat assoc, & slope assoc.                        |
| Hardwood-<br>Slope                  | 145 | LRGHDWD | DFOR2   | SNOWDPTH  | Prey base, large woody structures, best resting microhabitat, & slope assoc.                    |

|                              | 146 | LRGHDWD | STRUCT2 | SNOWDPTH    | Prey base, large woody structures, & slope assoc.                               |
|------------------------------|-----|---------|---------|-------------|---------------------------------------------------------------------------------|
|                              | 147 | LRGHDWD | HREPRO  | SNOWDPTH    | Prey base, large woody structures, best reproduction habitat, & slope assoc.    |
|                              | 148 | LRGHDWD | BADHAB  | SNOWDPTH    | Prey base, large woody structures, high-contrast negative assoc, & slope assoc. |
|                              | 149 | LRGHDWD | FORTYPE | SNOWDPTH    | Prey base, large woody structures, general habitat assoc, & slope assoc.        |
|                              | 150 | LRGHDWD | LRGFOR  | SNOWDPTH    | Prey base, large woody structures, & slope assoc.                               |
|                              | 151 | LRGHDWD | DLFOR   | SNOWDPTH    | Prey base, best forest conditions, & snow effects.                              |
|                              | 152 | LRGHDWD | CWHR2   | RELIEF      | Prey base, habitat assoc, microclimate, & slope assoc.                          |
| amily                        | 153 | LRGHDWD | DFOR2   | RELIEF      | Prey base, best resting microhabitat, & slope assoc.                            |
| #<br>F                       | 154 | LRGHDWD | STRUCT2 | RELIEF      | Prey base, resting structures, & slope assoc.                                   |
| d-Relie                      | 155 | LRGHDWD | HREPRO  | RELIEF      | Prey base, best reproduction habitat, & slope associations.                     |
| Large Hardwood-Relief Family | 156 | LRGHDWD | BADHAB  | RELIEF      | Prey base, high-contrast negative assoc, & slope associations.                  |
| ge Ha                        | 157 | LRGHDWD | FORTYPE | RELIEF      | Prey base, general habitat assoc, & slope assoc.                                |
| Lar                          | 158 | LRGHDWD | LRGFOR  | RELIEF      | Prey base, large woody structures, & slope assoc.                               |
|                              | 159 | LRGHDWD | DLFOR   | RELIEF      | Prey base, best forest conditions, & relief effects.                            |
| wood-<br>ation               | 160 | LRGHDWD | CWHR2   | INSOL_INDEX | Prey base, habitat assoc, microclimate, & slope assoc.                          |
| Hardwood-<br>Insolation      | 161 | LRGHDWD | DFOR2   | INSOL_INDEX | Prey base, best resting microhabitat, & slope assoc.                            |

|                                     | 162 | LRGHDWD | STRUCT2 | INSOL_INDEX |          | Prey base, resting structures, & slope assoc.                                          |
|-------------------------------------|-----|---------|---------|-------------|----------|----------------------------------------------------------------------------------------|
|                                     | 163 | LRGHDWD | HREPRO  | INSOL_INDEX |          | Prey base, best reproduction habitat, & slope associations.                            |
|                                     | 164 | LRGHDWD | BADHAB  | INSOL_INDEX |          | Prey base, high-contrast negative assoc, & slope associations.                         |
|                                     | 165 | LRGHDWD | FORTYPE | INSOL_INDEX |          | Prey base, general habitat assoc, & slope assoc.                                       |
|                                     | 166 | LRGHDWD | LRGFOR  | INSOL_INDEX |          | Prey base, large woody structures, & slope assoc.                                      |
|                                     | 167 | LRGHDWD | DLFOR   | INSOL_INDEX |          | Prey base, best forest conditions, & potential veg, snow.                              |
| ily                                 | 168 | LRGHDWD | CWHR2   | SOUTHWEST   |          | Prey base, habitat assoc, microclimate, & slope assoc.                                 |
| Large Hardwood-Southwestness Family | 169 | LRGHDWD | DFOR2   | SOUTHWEST   |          | Prey base, best resting microhabitat, & slope assoc.                                   |
| tnes                                | 170 | LRGHDWD | STRUCT2 | SOUTHWEST   |          | Prey base, resting structures, & slope assoc.                                          |
| ıthwes                              | 171 | LRGHDWD | HREPRO  | SOUTHWEST   |          | Prey base, best reproduction habitat, & slope associations.                            |
| og-po                               | 172 | LRGHDWD | BADHAB  | SOUTHWEST   |          | Prey base, high-contrast negative assoc, & slope associations.                         |
| ardwo                               | 173 | LRGHDWD | FORTYPE | SOUTHWEST   |          | Prey base, general habitat assoc, & slope assoc.                                       |
| rge H                               | 174 | LRGHDWD | LRGFOR  | SOUTHWEST   |          | Prey base, large woody structures, & slope assoc.                                      |
| La                                  | 175 | LRGHDWD | DLFOR   | SOUTHWEST   |          | Prey base, best forest conditions, & potential veg, snow.                              |
| Dense,                              | 176 | MLFOR   | DFOR2   | ALL_SHDI    | SNOWDPTH | General habitat assoc, favorable resting microclimate, prey diversity, & snow effects. |
| large, Dense,<br>Diverse            | 177 | MLFOR   | DFOR2   | ALL_SHDI    | ADJELEV  | General habitat assoc, favorable resting microclimate, prey diversity, & elev assoc.   |

|                          | 178 | MLFOR | DFOR2     | ALL_SHDI    | INSOL_INDEX | General habitat assoc, favorable resting microclimate, prey diversity, & veg growth potential. |  |  |
|--------------------------|-----|-------|-----------|-------------|-------------|------------------------------------------------------------------------------------------------|--|--|
|                          | 179 | MLFOR | DFOR2     | ALL_SHDI    | SOUTHWEST   | General habitat assoc, favorable resting microclimate, prey diversity, & veg growth potential. |  |  |
|                          | 180 | MLFOR | DFOR2     | ALL_SHDI    | PRISM       | General habitat assoc, favorable resting microclimate, prey diversity, & veg growth potential. |  |  |
|                          | 181 | MLFOR | DFOR2     | ALL_SHDI    | RELIEF      | General habitat assoc, favorable resting microclimate, prey diversity, & relief effects.       |  |  |
|                          | 182 | MLFOR | DFOR2     | AGGREG_SHDI | SNOWDPTH    | General habitat assoc, favorable resting microclimate, prey diversity, & snow effects.         |  |  |
|                          | 183 | MLFOR | DFOR2     | AGGREG_SHDI | ADJELEV     | General habitat assoc, favorable resting microclimate, prey diversity, & elev assoc.           |  |  |
|                          | 184 | MLFOR | DFOR2 AGO |             | INSOL_INDEX | General habitat assoc, favorable resting microclimate, prey diversity, & veg growth potential. |  |  |
|                          | 185 | MLFOR | DFOR2     | AGGREG_SHDI | SOUTHWEST   | General habitat assoc, favorable resting microclimate, prey diversity, & veg growth potential. |  |  |
|                          | 186 | MLFOR | DFOR2     | AGGREG_SHDI | PRISM       | General habitat assoc, favorable resting microclimate, prey diversity, & veg growth potential. |  |  |
|                          | 187 | MLFOR | DFOR2     | AGGREG_SHDI | RELIEF      | General habitat assoc, favorable resting microclimate, prey diversity, & relief effects.       |  |  |
| l et al.                 | 188 | PRISM | STRUCT2   | DLFOR       |             | Precip affects veg effects veg; favorable resting/breeding habitat.                            |  |  |
| Carroll et al.<br>family | 189 | PRISM | STRUCT2   | DLFOR       | LRGHDWD     | Precip affects veg; favorable resting/breeding habitat, + mast for prey.                       |  |  |

|                      | 190 | PRISM        | STRUCT2   | DLFOR       | PHDWD   |       | Precip affects veg effects veg; favorable resting/breeding habitat, + mast for prey. |
|----------------------|-----|--------------|-----------|-------------|---------|-------|--------------------------------------------------------------------------------------|
|                      | 191 | PRISM        | STRUCT2   | DFOR2       | LGFOR   |       | Precip affects veg effects, favorable resting habitat.                               |
|                      | 192 | PRISM        | STRUCT2   | DFOR2       | LGFOR   | PHDWD | Precip affects veg effects, favorable resting habitat, mast for prey.                |
|                      | 193 | PRISM        | ADJELEV   | DFOR2       |         |       | Precip affects veg & elev effects on veg & snow, + dense canopy.                     |
| mily                 | 194 | PRISM        | ADJELEV   | DFOR2       | PHDWD   |       | Precip affects veg & elev effects on veg & snow, + dense canopy, + mast for prey.    |
| Davis et al. family  | 195 | PRISM        | ADJELEV   | DFOR2       | STRUCT2 |       | Precip affects veg & elev effects on veg & snow, + favorable resting structure.      |
| Davis 6              | 196 | PRISM        | ADJELEV   | DFOR2       | LGFOR   |       | Precip affects veg & elev effects on veg & snow, + large forest.                     |
|                      | 197 | PRISM        | ADJELEV   | DFOR2       | LRGHDWD |       | Precip affects veg & elev effects on veg & snow, + dense canopy, + mast for prey.    |
| itat                 | 198 | HREPRO_AREMN | MJRRDDENS | ALL_SHDI    |         |       | Contiguous source habitat, mgt effects, & prey diversity, potential roadkill.        |
| Reproductive Habitat | 199 | HREPRO_AREMN | ALLRDDENS | ALL_SHDI    |         |       | Contiguous source habitat, mgt effects, & prey diversity.                            |
| oducti               | 200 | HREPRO_AREMN | MJRRDDENS | AGGREG_SHDI |         |       | Contiguous source habitat, road effects, prey diversity                              |
| Repr                 | 201 | HREPRO_AREMN | ALLRDDENS | AGGREG_SHDI |         |       | Contiguous source habitat, road effects, prey diversity                              |
|                      | 202 | STRMDENS     | DFOR2     |             |         |       | Prey base & favorable resting microclimate.                                          |
|                      | 203 | STRMDENS     | DFOR2     | STRUCT2     |         |       | Prey base, favorable resting microclimate, & large woody structures.                 |

|                       | 204 | DFOR2     | RELIEF       |             |             | Favorable resting microclimate, & topographic relief assoc.                                |
|-----------------------|-----|-----------|--------------|-------------|-------------|--------------------------------------------------------------------------------------------|
|                       | 205 | LRGFOR    | RELIEF       |             |             | Large woody structures & topographic relief assoc.                                         |
|                       | 206 | STRMDENS  | LRGFOR       | DFOR2       |             | Prey base, large woody structures, & favorable resting microclimate.                       |
|                       | 207 | STRMDENS  | DFOR2        | PHDWD       |             | Prey base, favorable resting microclimate, mast-based prey base.                           |
|                       | 208 | STRMDENS  | HREPRO_AREMN |             |             | Prey base & best repro habitat.                                                            |
|                       | 209 | STRMDENS  | CWHR2        |             |             | Prey base & general habitat assoc.                                                         |
| nily                  | 210 | PHDWD     | DFOR2        | ALL_SHDI    | RELIEF      | Prey base, favorable resting microclimate, diversity of prey base, & topo relief assoc.    |
| est Fan               | 211 | PHDWD     | DFOR2        | ALL_SHDI    | ADJELEV     | Prey base, favorable resting microclimate, diversity of prey base, & elev assoc.           |
| - Dense Forest Family | 212 | PHDWD     | DFOR2        | ALL_SHDI    | INSOL_INDEX | Prey base, favorable resting microclimate, diversity of prey base, & veg growth potential. |
| ce - De               | 213 | PHDWD     | DFOR2        | ALL_SHDI    | SOUTHWEST   | Prey base, favorable resting microclimate, prey diversity, & veg & snow effects.           |
| minan                 | 214 | PHDWD     | DFOR2        | AGGREG_SHDI | RELIEF      | Prey base, favorable resting microclimate, prey diversity, & relief effects.               |
| Predo                 | 215 | PHDWD     | DFOR2        | AGGREG_SHDI | ADJELEV     | Prey base, favorable resting microclimate, prey diversity, & veg & snow effects.           |
| Hardwood Predominance | 216 | PHDWD     | DFOR2        | AGGREG_SHDI | INSOL_INDEX | Prey base, favorable resting microclimate, prey diversity, & veg & snow effects.           |
| Har                   | 217 | PHDWD     | DFOR2        | AGGREG_SHDI | SOUTHWEST   | Prey base, favorable resting microclimate, prey diversity, & veg & snow effects.           |
| Hard<br>wood<br>Famil | 218 | MJRRDDENS | PHDWD        | DFOR2       |             | Mgt effects, prey base, favorable resting microclimate, potential roadkill.                |

|                                             | 219 | MJRRDDENS | PHDWD       | MLFOR       |         | Mgt effects, prey base, general habitat assoc, woody structures, potential roadkill. |
|---------------------------------------------|-----|-----------|-------------|-------------|---------|--------------------------------------------------------------------------------------|
|                                             | 220 | ALLRDDENS | PHDWD       | DFOR2       |         | Mgt effects, prey base, & favorable resting microclimate.                            |
|                                             | 221 | ALLRDDENS | PHDWD       | MLFOR       |         | Mgt effects, prey base, general habitat assoc, & woody structures.                   |
|                                             | 222 | CWHR2     | INSOL_INDEX | ADJELEV     |         | Habitat assoc, & potential veg, snow.                                                |
| ×                                           | 223 | LRGHDWD   | INSOL_INDEX | ADJELEV     |         | Mast for prey, rest structures, & potential veg., snow.                              |
| Potential Veg/Snow Family                   | 224 | DFOR2     | INSOL_INDEX | ADJELEV     |         | Best resting microhabitat, & potential veg, snow.                                    |
| 10 W                                        | 225 | STRUCT2   | INSOL_INDEX | ADJELEV     |         | Resting structures, & potential veg, snow.                                           |
| 'eg/Sn                                      | 226 | HREPRO    | INSOL_INDEX | ADJELEV     |         | Best reproduction habitat, & potential veg, snow.                                    |
| ntial V                                     | 227 | BADHAB    | INSOL_INDEX | ADJELEV     |         | High-contrast negative assoc, & potential veg, snow.                                 |
| ote                                         | 228 | FORTYPE   | INSOL_INDEX | ADJELEV     |         | General habitat assoc, & potential veg, snow.                                        |
|                                             | 229 | LRGFOR    | INSOL_INDEX | ADJELEV     |         | Large woody structures, & potential veg, snow.                                       |
|                                             | 230 | DLFOR     | INSOL_INDEX | ADJELEV     |         | Best forest conditions, potential veg, snow.                                         |
| ntial                                       | 231 | LRGHDWD   | CWHR2       | INSOL_INDEX | ADJELEV | Prey base, habitat assoc, microclimate, potential veg, snow.                         |
| Large Hardwood-Potential<br>Veg/Snow Family | 232 | LRGHDWD   | DFOR2       | INSOL_INDEX | ADJELEV | Prey base, best resting microhabitat, & potential veg, snow.                         |
| Hardw<br>eg/Sno                             | 233 | LRGHDWD   | STRUCT2     | INSOL_INDEX | ADJELEV | Prey base, resting structures, & potential veg, snow.                                |
| Large<br>V                                  | 234 | LRGHDWD   | HREPRO      | INSOL_INDEX | ADJELEV | Prey base, best reproduction habitat, & potential veg, snow.                         |

|                                    | 235        | LRGHDWD     | BADHAB  | INSOL_INDEX | ADJELEV | Prey base, high-contrast negative assoc, & potential veg, snow.       |
|------------------------------------|------------|-------------|---------|-------------|---------|-----------------------------------------------------------------------|
|                                    | 236        | LRGHDWD     | FORTYPE | INSOL_INDEX | ADJELEV | Prey base, general habitat assoc, & potential veg, snow.              |
|                                    | 237        | LRGHDWD     | LRGFOR  | INSOL_INDEX | ADJELEV | Prey base, large woody structures, & potential veg, snow.             |
|                                    | 238        | LRGHDWD     | DLFOR   | INSOL_INDEX | ADJELEV | Prey base, best forest conditions, & potential veg, snow.             |
|                                    | 239        | PHDWD       | CWHR2   | INSOL_INDEX | ADJELEV | Prey base, habitat assoc, microclimate, & veg/snow potential.         |
| nily                               | 240        | PHDWD       | DFOR2   | INSOL_INDEX | ADJELEV | Prey base, best resting microhabitat, & veg/snow potential.           |
| ow Fa                              | 241        | PHDWD       | STRUCT2 | INSOL_INDEX | ADJELEV | Prey base, resting structures, & veg/snow potential.                  |
| Veg/Sn                             | 242        | PHDWD       | HREPRO  | INSOL_INDEX | ADJELEV | Prey base, best reproduction habitat, & veg/snow potential.           |
| ential V                           | 243        | PHDWD       | BADHAB  | INSOL_INDEX | ADJELEV | Prey base, high-contrast negative assoc, & veg/snow potential.        |
| od-Pot                             | 244        | PHDWD       | FORTYPE | INSOL_INDEX | ADJELEV | Prey base, general habitat assoc, & veg/snow potential.               |
| Hardwood-Potential Veg/Snow Family | 245        | PHDWD       | LRGFOR  | INSOL_INDEX | ADJELEV | Prey base, large woody structures, & veg/snow potential.              |
|                                    | 246        | PHDWD       | DLFOR   | INSOL_INDEX | ADJELEV | Prey base, "best" forest conditions, & veg/snow potential.            |
| est-<br>ntial                      | 249<br>250 | INSOL_INDEX | ADJELEV | DFOR2       | STRUCT2 | Insolation & elev affect veg & snow, + favorable resting structure.   |
| Forest-<br>Potential               | 250        | INSOL_INDEX | ADJELEV | DFOR2       | LGFOR   | Insolation & elev affect veg & snow, + resting habitat & large woody. |

| 251 | INSOL_INDEX | ADJELEV | DFOR2 | HREPRO | Insolation & elev affect veg & snow, + resting & repro habitat.                      |
|-----|-------------|---------|-------|--------|--------------------------------------------------------------------------------------|
| 252 | INSOL_INDEX | ADJELEV | DFOR2 | BADHAB | Insolation & elev affect veg & snow, + resting habitat & negative assoc with barren. |

### Appendix F – Final Candidate Models Sorted From Highest to Lowest AIC Weights

| Variable 1  | Variable 2  | Variable 3  | Variable 4  | Variable 5 | AIC <sub>c</sub><br>Weights | % dev  | AUC<br>MAPE2 | AUC<br>MAPE | AUC<br>TEST<br>SET | Mean<br>5-fold<br>c-v<br>AUC |
|-------------|-------------|-------------|-------------|------------|-----------------------------|--------|--------------|-------------|--------------------|------------------------------|
| ADJELEV     | PRISM       | BIOMASS     | , 4114676   | , 4114610  | 0.6897                      | 0.5326 | 0.9410       | 0.8314      | 0.6383             | 0.9050                       |
| ADJELEV     | INSOL_INDEX | BIOMASS     |             |            | 0.1577                      | 0.5177 | 0.9330       | 0.8226      | 0.6137             | 0.9033                       |
| ADJELEV     | INSOL_INDEX | MAXAGE      | BIOMASS     |            | 0.0579                      | 0.5183 | 0.9337       | 0.8209      | 0.6137             | 0.8989                       |
| ADJELEV     | INSOL_INDEX | MAXAGE      |             |            | 0.0492                      | 0.5059 | 0.9300       | 0.8276      | 0.5944             | 0.8787                       |
| ADJELEV     | INSOL_INDEX | MAXAGE      | BIOM_NORF   |            | 0.0342                      | 0.5130 | 0.9348       | 0.8268      | 0.5935             | 0.8707                       |
| ADJELEV     | PRISM       | MAXAGE      | _           |            | 0.0073                      | 0.4867 | 0.9229       | 0.8273      | 0.6251             | 0.8820                       |
| ADJELEV     | INSOL_INDEX | BIOM_NORFBO | BIOM_BLKOAK |            | 0.0021                      | 0.4845 | 0.9215       | 0.8138      | 0.5909             | 0.8912                       |
| ADJELEV     | INSOL_INDEX | BIOM_NORF   |             |            | 0.0009                      | 0.4656 | 0.9208       | 0.8201      | 0.6365             | 0.8796                       |
| ADJELEV     | INSOL_INDEX | BIOM_NORFBO | BIOM_BLKOAK | MAXAGE     | 0.0007                      | 0.4845 | 0.9215       | 0.8138      | 0.5909             | 0.8912                       |
| ADJELEV     | INSOL_INDEX | BIOM_BLKOAK |             |            | 0.0001                      | 0.4447 | 0.9060       | 0.8039      | 0.6190             | 0.8823                       |
| LRGHDWD     | CWHR2       | INSOL_INDEX | ADJELEV     |            | 0.0001                      | 0.4493 | 0.9153       | 0.8172      | 0.6594             | 0.8814                       |
| PHDWD       | CWHR2       | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4445 | 0.9162       | 0.8178      | 0.6743             | 0.8999                       |
| LRGHDWD     | LRGFOR      | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4427 | 0.9118       | 0.8113      | 0.6752             | 0.8751                       |
| PHDWD       | LRGFOR      | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4405 | 0.9118       | 0.8156      | 0.6918             | 0.8912                       |
| LRGHDWD     | STRUCT2     | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4363 | 0.9099       | 0.8142      | 0.6585             | 0.8769                       |
| PHDWD       | STRUCT2     | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4305 | 0.9093       | 0.8145      | 0.6778             | 0.8947                       |
| PRISM       | ADJELEV     | DFOR2       | LRGHDWD     |            | 0.0000                      | 0.4227 | 0.9054       | 0.7794      | 0.7032             | 0.8822                       |
| CWHR2       | INSOL_INDEX | ADJELEV     |             |            | 0.0000                      | 0.4117 | 0.9054       | 0.8208      | 0.6365             | 0.8450                       |
| LRGHDWD     | FORTYPE     | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4179 | 0.9030       | 0.8085      | 0.6892             | 0.8786                       |
| LRGHDWD     | CWHR2       | PCTSLOPE    |             |            | 0.0000                      | 0.4055 | 0.8971       | 0.7958      | 0.6813             | 0.8769                       |
| PHDWD       | FORTYPE     | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4162 | 0.9031       | 0.8122      | 0.7050             |                              |
| LRGHDWD     | CWHR2       | RELIEF      |             |            | 0.0000                      | 0.4042 | 0.8970       | 0.7950      | 0.6787             |                              |
| LRGHDWD     | DFOR2       | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4143 | 0.9030       | 0.8107      | 0.6576             |                              |
| LRGHDWD     | DLFOR       | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4125 | 0.9031       | 0.8061      | 0.6567             |                              |
| LRGFOR      | INSOL_INDEX | ADJELEV     |             |            | 0.0000                      | 0.4016 | 0.8982       | 0.8178      | 0.6550             |                              |
| PHDWD       | CWHR2       | PCTSLOPE    |             |            | 0.0000                      | 0.4007 | 0.8973       | 0.8239      | 0.6313             |                              |
| LRGHDWD     | LRGFOR      | PCTSLOPE    |             |            | 0.0000                      | 0.4000 | 0.8970       | 0.7996      | 0.7085             |                              |
| STRUCT2     | INSOL_INDEX | ADJELEV     |             |            | 0.0000                      | 0.3994 | 0.9001       | 0.8170      | 0.6356             |                              |
| PHDWD       | CWHR2       | RELIEF      |             |            | 0.0000                      | 0.3991 | 0.8961       | 0.8221      | 0.6304             |                              |
| LRGHDWD     | LRGFOR      | RELIEF      |             |            | 0.0000                      | 0.3989 | 0.8975       | 0.7993      | 0.7050             |                              |
| INSOL_INDEX | ADJELEV     | DFOR2       | LGFOR       |            | 0.0000                      | 0.4085 | 0.9035       | 0.8211      | 0.6479             |                              |
| PHDWD       | DFOR2       | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4072 | 0.8998       | 0.8084      | 0.6637             |                              |
| LRGHDWD     | HREPRO      | INSOL_INDEX | ADJELEV     |            | 0.0000                      | 0.4047 | 0.9010       | 0.8022      | 0.6506             |                              |
| MLFOR       | DFOR2       | AGGREG_SHDI | PCTSLOPE    |            | 0.0000                      | 0.4044 | 0.9001       | 0.8317      | 0.6734             |                              |
| MLFOR       | DFOR2       | AGGREG_SHDI | RELIEF      |            | 0.0000                      | 0.4042 | 0.9001       | 0.8307      | 0.6752             |                              |
| PHDWD       | LRGFOR      | PCTSLOPE    |             |            | 0.0000                      | 0.3929 |              |             |                    |                              |

| PHDWD       | DLFOR       | INSOL_INDEX | ADJELEV     | 0.0000 | 0.4027 |
|-------------|-------------|-------------|-------------|--------|--------|
| PHDWD       | LRGFOR      | RELIEF      |             | 0.0000 | 0.3917 |
| LRGHDWD     | BADHAB      | INSOL_INDEX | ADJELEV     | 0.0000 | 0.3997 |
| INSOL_INDEX | ADJELEV     | DFOR2       | STRUCT2     | 0.0000 | 0.3995 |
| LRGHDWD     | STRUCT2     | PCTSLOPE    |             | 0.0000 | 0.3878 |
| LRGHDWD     | STRUCT2     | RELIEF      |             | 0.0000 | 0.3869 |
| PHDWD       | HREPRO      | INSOL_INDEX | ADJELEV     | 0.0000 | 0.3967 |
| DFOR2       | INSOL_INDEX | ADJELEV     |             | 0.0000 | 0.3850 |
| PHDWD       | STRUCT2     | PCTSLOPE    |             | 0.0000 | 0.3795 |
| PHDWD       | BADHAB      | INSOL_INDEX | ADJELEV     | 0.0000 | 0.3894 |
| PHDWD       | STRUCT2     | RELIEF      |             | 0.0000 | 0.3780 |
| PRISM       | ADJELEV     | DFOR2       | PHDWD       | 0.0000 | 0.3882 |
| FORTYPE     | INSOL_INDEX | ADJELEV     |             | 0.0000 | 0.3774 |
| INSOL_INDEX | ADJELEV     | DFOR2       | BADHAB      | 0.0000 | 0.3878 |
| DLFOR       | INSOL_INDEX | ADJELEV     |             | 0.0000 | 0.3767 |
| PHDWD       | DFOR2       | AGGREG_SHDI | ADJELEV     | 0.0000 | 0.3863 |
| MLFOR       | DFOR2       | AGGREG_SHDI | INSOL_INDEX | 0.0000 | 0.3859 |
| INSOL_INDEX | ADJELEV     | DFOR2       | HREPRO      | 0.0000 | 0.3857 |
| LRGHDWD     | CWHR2       | INSOL_INDEX |             | 0.0000 | 0.3734 |
| LRGHDWD     | INSOL_INDEX | ADJELEV     |             | 0.0000 | 0.3733 |
| MLFOR       | DFOR2       | AGGREG_SHDI | SOUTHWEST   | 0.0000 | 0.3826 |
| LRGHDWD     | CWHR2       | SOUTHWEST   |             | 0.0000 | 0.3701 |
| LRGHDWD     | LRGFOR      | INSOL_INDEX |             | 0.0000 | 0.3689 |
| LRGHDWD     | FORTYPE     | PCTSLOPE    |             | 0.0000 | 0.3681 |
| PHDWD       | FORTYPE     | PCTSLOPE    |             | 0.0000 | 0.3681 |
| LRGHDWD     | FORTYPE     | RELIEF      |             | 0.0000 | 0.3677 |
| HREPRO      | INSOL_INDEX | ADJELEV     |             | 0.0000 | 0.3674 |
| PHDWD       | FORTYPE     | RELIEF      |             | 0.0000 | 0.3672 |
| PHDWD       | CWHR2       | INSOL_INDEX |             | 0.0000 | 0.3655 |
| LRGHDWD     | LRGFOR      | SOUTHWEST   |             | 0.0000 | 0.3642 |
| PHDWD       | LRGFOR      | INSOL_INDEX |             | 0.0000 | 0.3618 |
| PRISM       | ADJELEV     | DFOR2       | LGFOR       | 0.0000 | 0.3705 |
| LRGHDWD     | STRUCT2     | INSOL_INDEX |             | 0.0000 | 0.3588 |
| PRISM       | ADJELEV     | DFOR2       | STRUCT2     | 0.0000 | 0.3689 |
| PRISM       | ADJELEV     | DFOR2       |             | 0.0000 | 0.3582 |
| LRGHDWD     | STRUCT2     | SOUTHWEST   |             | 0.0000 | 0.3576 |
| BADHAB      | INSOL_INDEX | ADJELEV     |             | 0.0000 | 0.3558 |
| LRGHDWD     | CWHR2       |             |             | 0.0000 | 0.3445 |
| PHDWD       | CWHR2       | SOUTHWEST   |             | 0.0000 | 0.3540 |
| MLFOR       | DFOR2       | AGGREG_SHDI | ADJELEV     | 0.0000 | 0.3638 |
| ADJELEV     | INSOL_INDEX | MJRRDDENS   |             | 0.0000 | 0.3525 |
| LRGFOR      | RELIEF      |             |             | 0.0000 | 0.3407 |
| PHDWD       | HREPRO      | PRISM       |             | 0.0000 | 0.3489 |
|             |             |             |             |        |        |

| LRGHDWD  | LRGFOR      |             |           | 0.0000 | 0.3381 |
|----------|-------------|-------------|-----------|--------|--------|
| ADJELEV  | RELIEF      |             |           | 0.0000 | 0.3380 |
| PCTSLOPE | ADJELEV     |             |           | 0.0000 | 0.3379 |
| PHDWD    | STRUCT2     | INSOL_INDEX |           | 0.0000 | 0.3484 |
| PHDWD    | LRGFOR      | SOUTHWEST   |           | 0.0000 | 0.3479 |
| LRGHDWD  | CWHR2       | PRISM       |           | 0.0000 | 0.3460 |
| LRGHDWD  | STRUCT2     |             |           | 0.0000 | 0.3336 |
| ADJELEV  | SOUTHWEST   | MJRRDDENS   |           | 0.0000 | 0.3428 |
| ADJELEV  | INSOL_INDEX | MJRRDDENS   | STRMDENS  | 0.0000 | 0.3526 |
| LRGHDWD  | DLFOR       | PCTSLOPE    |           | 0.0000 | 0.3395 |
| LRGHDWD  | LRGFOR      | PRISM       |           | 0.0000 | 0.3387 |
| PHDWD    | STRUCT2     | SOUTHWEST   |           | 0.0000 | 0.3385 |
| LRGHDWD  | DFOR2       | PCTSLOPE    |           | 0.0000 | 0.3383 |
| LRGHDWD  | DLFOR       | RELIEF      |           | 0.0000 | 0.3383 |
| PHDWD    | DFOR2       | AGGREG_SHDI | RELIEF    | 0.0000 | 0.3483 |
| ADJELEV  | INSOL_INDEX |             |           | 0.0000 | 0.3270 |
| ADJELEV  | INSOL_INDEX | ALLRDDENS   |           | 0.0000 | 0.3372 |
| MJRDDENS | PHDWD       | MLFOR       |           | 0.0000 | 0.3372 |
| LRGHDWD  | DFOR2       | RELIEF      |           | 0.0000 | 0.3367 |
| ADJELEV  | SOUTHWEST   | ALLRDDENS   |           | 0.0000 | 0.3358 |
| PHDWD    | FORTYPE     | SOUTHWEST   |           | 0.0000 | 0.3358 |
| LRGHDWD  | FORTYPE     | SOUTHWEST   |           | 0.0000 | 0.3357 |
| LRGHDWD  | STRUCT2     | PRISM       |           | 0.0000 | 0.3357 |
| PHDWD    | DFOR2       | PCTSLOPE    |           | 0.0000 | 0.3344 |
| PHDWD    | CWHR2       |             |           | 0.0000 | 0.3226 |
| LRGHDWD  | FORTYPE     | INSOL_INDEX |           | 0.0000 | 0.3328 |
| PHDWD    | DFOR2       | RELIEF      |           | 0.0000 | 0.3325 |
| ADJELEV  | SOUTHWEST   | MJRRDDENS   | STRMDENS  | 0.0000 | 0.3429 |
| PHDWD    | DLFOR       | PCTSLOPE    |           | 0.0000 | 0.3321 |
| PHDWD    | FORTYPE     | INSOL_INDEX |           | 0.0000 | 0.3312 |
| ADJELEV  | SOUTHWEST   |             |           | 0.0000 | 0.3199 |
| PHDWD    | DLFOR       | RELIEF      |           | 0.0000 | 0.3301 |
| PHDWD    | LRGFOR      |             |           | 0.0000 | 0.3175 |
| PRISM    | STRUCT2     | DLFOR       | LRGHDWD   | 0.0000 | 0.3381 |
| ADJELEV  | INSOL_INDEX | STRMDENS    |           | 0.0000 | 0.3271 |
| ADJELEV  | INSOL_INDEX | ALLRDDENS   | STRMDENS  | 0.0000 | 0.3377 |
| PHDWD    | CWHR2       | PRISM       |           | 0.0000 | 0.3263 |
| MLFOR    | DFOR2       | AGGREG_SHDI |           | 0.0000 | 0.3257 |
| ADJELEV  | SOUTHWEST   | ALLRDDENS   | STRMDENS  | 0.0000 | 0.3363 |
| PHDWD    | DFOR2       | AGGREG_SHDI | SOUTHWEST | 0.0000 | 0.3347 |
| LRGHDWD  | FORTYPE     |             |           | 0.0000 | 0.3126 |
| ADJELEV  | SOUTHWEST   | STRMDENS    |           | 0.0000 | 0.3200 |
| PHDWD    | STRUCT2     |             |           | 0.0000 | 0.3093 |

| LRGHDWD      | BADHAB  | PCTSLOPE    |             |       | 0.0000 | 0.3191 |
|--------------|---------|-------------|-------------|-------|--------|--------|
| LRGHDWD      | BADHAB  | RELIEF      |             |       | 0.0000 | 0.3178 |
| PHDWD        | LRGFOR  | PRISM       |             |       | 0.0000 | 0.3177 |
| PHDWD        | BADHAB  | PCTSLOPE    |             |       | 0.0000 | 0.3177 |
| ADJELEV      |         |             |             |       | 0.0000 | 0.2939 |
| MLFOR        | DFOR2   | AGGREG_SHDI | PRISM       |       | 0.0000 | 0.3257 |
| LRGHDWD      | FORTYPE | PRISM       |             |       | 0.0000 | 0.3149 |
| PHDWD        | BADHAB  | RELIEF      |             |       | 0.0000 | 0.3134 |
| ALLRDDENS    | PHDWD   | MLFOR       |             |       | 0.0000 | 0.3132 |
| PHDWD        | DFOR2   | AGGREG_SHDI | INSOL_INDEX |       | 0.0000 | 0.3238 |
| LRGHDWD      | HREPRO  | PCTSLOPE    |             |       | 0.0000 | 0.3128 |
| PHDWD        | STRUCT2 | PRISM       |             |       | 0.0000 | 0.3126 |
| LRGHDWD      | HREPRO  | RELIEF      |             |       | 0.0000 | 0.3114 |
| PRISM        | STRUCT2 | DLFOR       | PHDWD       |       | 0.0000 | 0.3220 |
| LRGHDWD      | DLFOR   | INSOL_INDEX |             |       | 0.0000 | 0.3089 |
| LRGHDWD      | DFOR2   | INSOL_INDEX |             |       | 0.0000 | 0.3070 |
| HC_RATIO     | LRGFOR  |             |             |       | 0.0000 | 0.2840 |
| PHDWD        | HREPRO  | PCTSLOPE    |             |       | 0.0000 | 0.3048 |
| PHDWD        | HREPRO  | RELIEF      |             |       | 0.0000 | 0.3032 |
| LRGHDWD      | DLFOR   | SOUTHWEST   |             |       | 0.0000 | 0.3021 |
| PHDWD        | FORTYPE |             |             |       | 0.0000 | 0.2910 |
| PHDWD        | DFOR2   | INSOL_INDEX |             |       | 0.0000 | 0.3007 |
| PRISM        | STRUCT2 | DFOR2       | LGFOR       | PHDWD | 0.0000 | 0.3216 |
| LRGHDWD      | DFOR2   | SOUTHWEST   |             |       | 0.0000 | 0.2987 |
| PHDWD        | DLFOR   | INSOL_INDEX |             |       | 0.0000 | 0.2964 |
| CWHR2_PARAMN |         |             |             |       | 0.0000 | 0.2751 |
| LRGHDWD      | DLFOR   |             |             |       | 0.0000 | 0.2840 |
| MJRDDENS     | PHDWD   | DFOR2       |             |       | 0.0000 | 0.2941 |
| LRGHDWD      | DLFOR   | PRISM       |             |       | 0.0000 | 0.2938 |
| LRGHDWD      | DFOR2   | PRISM       |             |       | 0.0000 | 0.2935 |
| LRGHDWD      | DFOR2   |             |             |       | 0.0000 | 0.2825 |
| PHDWD        | FORTYPE | PRISM       |             |       | 0.0000 | 0.2924 |
| PHDWD        | DFOR2   | SOUTHWEST   |             |       | 0.0000 | 0.2918 |
| CWHR2_AREAMN |         |             |             |       | 0.0000 | 0.2685 |
| PHDWD        | DLFOR   | SOUTHWEST   |             |       | 0.0000 | 0.2888 |
| PHDWD        | BADHAB  | INSOL_INDEX |             |       | 0.0000 | 0.2856 |
| LRGHDWD      | HREPRO  | INSOL_INDEX |             |       | 0.0000 | 0.2848 |
| CWHR2        |         |             |             |       | 0.0000 | 0.2605 |
| LRGHDWD      | HREPRO  | PRISM       |             |       | 0.0000 | 0.2782 |
| PHDWD        | DFOR2   | PRISM       |             |       | 0.0000 | 0.2764 |
| LRGHDWD      | HREPRO  | SOUTHWEST   |             |       | 0.0000 | 0.2759 |
| PHDWD        | DFOR2   |             |             |       | 0.0000 | 0.2639 |
| PHDWD        | HREPRO  | INSOL_INDEX |             |       | 0.0000 | 0.2745 |

| DFOR2         | RELIEF      |             |       | 0.0000 | 0.2624 |
|---------------|-------------|-------------|-------|--------|--------|
| STRMDENS      | CWHR2       |             |       | 0.0000 | 0.2620 |
| LRGFOR        |             |             |       | 0.0000 | 0.2506 |
| LRGHDWD       | BADHAB      | SOUTHWEST   |       | 0.0000 | 0.2712 |
| PHDWD         | DLFOR       |             |       | 0.0000 | 0.2603 |
| PHDWD         | DLFOR       | PRISM       |       | 0.0000 | 0.2708 |
| STRUCT2       |             |             |       | 0.0000 | 0.2447 |
| LRGHDWD       | BADHAB      | INSOL_INDEX |       | 0.0000 | 0.2655 |
| STRMDENS      | DFOR2       | PHDWD       |       | 0.0000 | 0.2654 |
| ALLRDDENS     | PHDWD       | DFOR2       |       | 0.0000 | 0.2652 |
| LRGHDWD       | HREPRO      |             |       | 0.0000 | 0.2544 |
| PHDWD         | HREPRO      | SOUTHWEST   |       | 0.0000 | 0.2648 |
| LRGHDWD       | BADHAB      | PRISM       |       | 0.0000 | 0.2608 |
| STRMDENS      | LRGFOR      | DFOR2       |       | 0.0000 | 0.2577 |
| PRISM         | STRUCT2     | DLFOR       |       | 0.0000 | 0.2562 |
| PHDWD         | BADHAB      | SOUTHWEST   |       | 0.0000 | 0.2558 |
| LRGHDWD       | BADHAB      |             |       | 0.0000 | 0.2430 |
| PLANT         |             |             |       | 0.0000 | 0.2306 |
| STRMDENS      | DFOR2       | STRUCT2     |       | 0.0000 | 0.2484 |
| PRISM         | STRUCT2     | DFOR2       | LGFOR | 0.0000 | 0.2586 |
| PHDWD         | HREPRO      |             |       | 0.0000 | 0.2328 |
| CWHR_VUL      |             |             |       | 0.0000 | 0.2168 |
| FORTYPE       |             |             |       | 0.0000 | 0.2135 |
| PHDWD         | BADHAB      | PRISM       |       | 0.0000 | 0.2331 |
| LRGHDWD       |             |             |       | 0.0000 | 0.2106 |
| PHDWD         | BADHAB      |             |       | 0.0000 | 0.2182 |
| MLFOR         |             |             |       | 0.0000 | 0.1970 |
| CWHR          |             |             |       | 0.0000 | 0.1922 |
| PHDWD         |             |             |       | 0.0000 | 0.1851 |
| DLFOR         |             |             |       | 0.0000 | 0.1842 |
| DFOR2         |             |             |       | 0.0000 | 0.1817 |
| STRUCT        |             |             |       | 0.0000 | 0.1737 |
| STRMDENS      | DFOR2       |             |       | 0.0000 | 0.1818 |
| PRISM         | PCTSLOPE    |             |       | 0.0000 | 0.1604 |
| PRISM         | RELIEF      |             |       | 0.0000 | 0.1580 |
| PRISM         | INSOL_INDEX |             |       | 0.0000 | 0.1426 |
| SNOWDPTH      |             |             |       | 0.0000 | 0.0902 |
| PRISM         | SOUTHWEST   |             |       | 0.0000 | 0.1305 |
| PCTSLOPE      |             |             |       | 0.0000 | 0.1080 |
| HREPRO_PARAMN |             |             |       | 0.0000 | 0.1073 |
| RELIEF        |             |             |       | 0.0000 | 0.1045 |
| FIRE_OLD      |             |             |       | 0.0000 | 0.1008 |
| CFA80_TREE    |             |             |       | 0.0000 | 0.0950 |
|               |             |             |       |        |        |

| WTM           |               |             | 0.0000 | 0.0932 |
|---------------|---------------|-------------|--------|--------|
| HREPRO        |               |             | 0.0000 | 0.0932 |
| HREPRO_AREAMN | MJRDDENS      | AGGREG_SHDI | 0.0000 | 0.1126 |
| HREPRO        | AGGREG_SHDI   |             | 0.0000 | 0.0996 |
| BADHAB        |               |             | 0.0000 | 0.0855 |
| PRISM         | ASPECT        |             | 0.0000 | 0.0937 |
| HREPRO_AREAMN | ALLRDDENS     | AGGREG_SHDI | 0.0000 | 0.1011 |
| TS_RATIO      |               |             | 0.0000 | 0.0793 |
| PRISM         |               |             | 0.0000 | 0.0791 |
| INSOL_INDEX   | ALLRDDENS     |             | 0.0000 | 0.0888 |
| HREPRO_AREAMN |               |             | 0.0000 | 0.0762 |
| CON           |               |             | 0.0000 | 0.0706 |
| INSOL_INDEX   | ALLRDDENS     | STRMDENS    | 0.0000 | 0.0914 |
| INSOL_INDEX   | MJRRDDENS     |             | 0.0000 | 0.0805 |
| SOUTHWEST     | ALLRDDENS     |             | 0.0000 | 0.0795 |
| STRMDENS      | HREPRO_AREAMN |             | 0.0000 | 0.0764 |
| INSOL_INDEX   | MJRRDDENS     | STRMDENS    | 0.0000 | 0.0869 |
| INSOL_INDEX   |               |             | 0.0000 | 0.0614 |
| SHRUB         |               |             | 0.0000 | 0.0614 |
| SOUTHWEST     | ALLRDDENS     | STRMDENS    | 0.0000 | 0.0795 |
| INSOL_INDEX   | STRMDENS      |             | 0.0000 | 0.0688 |
| AGGREG_SHDI   |               |             | 0.0000 | 0.0555 |
| SOUTHWEST     | MJRRDDENS     |             | 0.0000 | 0.0635 |
| CWHR2_ENNMN   |               |             | 0.0000 | 0.0500 |
| SOUTHWEST     |               |             | 0.0000 | 0.0467 |
| SOUTHWEST     | MJRRDDENS     | STRMDENS    | 0.0000 | 0.0644 |
| SOUTHWEST     | STRMDENS      |             | 0.0000 | 0.0488 |
| HC_RATIO      |               |             | 0.0000 | 0.0311 |
| TYPE_SHDI     |               |             | 0.0000 | 0.0280 |
| ALLRDDENS     |               |             | 0.0000 | 0.0233 |
| TSIZE_SHDI    |               |             | 0.0000 | 0.0195 |
| MJRRDDENS     |               |             | 0.0000 | 0.0169 |
| FIRE_NEW      |               |             | 0.0000 | 0.0273 |
| ASPECT_225    |               |             | 0.0000 | 0.0076 |
| STRMDENS      |               |             | 0.0000 | 0.0041 |
| SMLFOR        |               |             | 0.0000 | 0.0034 |
| HREPRO_ENNMN  |               |             | 0.0000 | 0.0014 |
|               |               |             |        |        |

#### APPENDIX G

#### **Scenario Parameters:**

Baseline Fire Regime Fuel Treatment Rate: None Fuel Treatment Intensity: None

#### **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure 5, 6, 7, 8. Mean number of hectares for two age classes of four species (10 replicates): White fir, Ponderosa pine, Doug fir, Black oak.

Figure 1





### Mid Elevation Fire Region







## Low Fire - Ponderosa pine - Total Area By Ageclass



## Low Fire - Douglas fir - Total Area By Ageclass





### APPENDIX H

### **Scenario Parameters:**

Baseline Fire Regime

Fuel Treatment Rate: 4% every 5 years Fuel Treatment Intensity: Light Intensity

## **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure 1





### Mid Elevation Fire Region







## Low Fire - Ponderosa pine - Total Area By Ageclass



## Low Fire - Douglas fir - Total Area By Ageclass





### APPENDIX I

### **Scenario Parameters:**

Baseline Fire Regime

Fuel Treatment Rate: 4% every 5 years Fuel Treatment Intensity: Medium Intensity

## **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure 1





### Mid Elevation Fire Region







Low Fire - Ponderosa pine - Total Area By Ageclass



Low Fire - Douglas fir - Total Area By Ageclass





### APPENDIX J

### **Scenario Parameters:**

Baseline Fire Regime

Fuel Treatment Rate: 8% every 5 years Fuel Treatment Intensity: Light Intensity

## **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure 1.





### Mid Elevation Fire Region







## Low Fire - Ponderosa pine - Total Area By Ageclass



## Low Fire - Douglas fir - Total Area By Ageclass





### APPENDIX K

### **Scenario Parameters:**

Baseline Fire Regime

Fuel Treatment Rate: 8% every 5 years Fuel Treatment Intensity: Medium Intensity

## **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure 1.





### Mid Elevation Fire Region







## Low Fire - Ponderosa pine - Total Area By Ageclass



## Low Fire - Douglas fir - Total Area By Ageclass





### APPENDIX L

### **Scenario Parameters:**

High Fire Regime Fuel Treatment Rate: None Fuel Treatment Intensity: None

## **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure 1





### Mid Elevation Fire Region





High Fire - White fir - Total Area By Ageclass



High Fire - Ponderosa pine - Total Area By Ageclass



High Fire - Douglas fir - Total Area By Ageclass



High Fire – Black Oak – Total Area By Ageclass



### APPENDIX M

### **Scenario Parameters:**

High Fire Regime

Fuel Treatment Rate: 4% every 5 years Fuel Treatment Intensity: Light Intensity

## **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure1.





### Mid Elevation Fire Region





High Fire - White fir - Total Area By Ageclass



High Fire - Ponderosa pine - Total Area By Ageclass



High Fire - Douglas fir - Total Area By Ageclass



High Fire – Black Oak – Total Area By Ageclass



### APPENDIX N

### **Scenario Parameters:**

High Fire Regime

Fuel Treatment Rate: 4% every 5 years Fuel Treatment Intensity: Medium Intensity

## **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure 1.





### **Mid Elevation Fire Region**





High Fire - White fir - Total Area By Ageclass



High Fire - Ponderosa pine - Total Area By Ageclass



High Fire - Douglas fir - Total Area By Ageclass



High Fire – Black Oak – Total Area By Ageclass



## APPENDIX O

## **Scenario Parameters:**

High Fire Regime

Fuel Treatment Rate: 8% every 5 years Fuel Treatment Intensity: Light Intensity

# **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure 5, 6, 7, 8. Mean number of hectares for two age classes of four species (10 replicates): White fir, Ponderosa pine, Doug fir, Black oak.

Figure 1.



#### **High Elevation Fire Region**



#### **Mid Elevation Fire Region**



#### **Low Elevation Fire Region**



High Fire - White fir - Total Area By Ageclass



High Fire - Ponderosa pine - Total Area By Ageclass



High Fire - Douglas fir - Total Area By Ageclass



High Fire – Black Oak – Total Area By Ageclass



## APPENDIX P

## **Scenario Parameters:**

High Fire Regime

Fuel Treatment Rate: 8% every 5 years Fuel Treatment Intensity: Medium Intensity

# **Figures:**

Figure 1. Fire frequency map based on 50 years of simulated fire and 10 replicates. White areas within the study area indicate that the area was never burned.

Figures 2, 3, 4. Mean proportion of a fire region occupied by fuel type groups (10 replicates) for the three fire regions over 50 simulation years.

Figure 5, 6, 7, 8. Mean number of hectares for two age classes of four species (10 replicates): White fir, Ponderosa pine, Doug fir, Black oak.

Figure 1.



### **High Elevation Fire Region**



## Mid Elevation Fire Region



#### Low Elevation Fire Region



High Fire - White fir - Total Area By Ageclass



High Fire - Ponderosa pine - Total Area By Ageclass



High Fire - Douglas fir - Total Area By Ageclass



High Fire – Black Oak – Total Area By Ageclass



### APPENDIX Q

Age distributions at year 0 (initial conditions) and at year 50. All distributions represent the full landscape.

# Sub-figures:

- a) Initial conditions (year 0)
- b) No fuel treatment
- c) RMd\_ILt = medium fuel treatment rate (4%/5 year) with light intensity
  d) RMd\_IMd = medium fuel treatment rate (4%/5 year) with medium intensity
  e) RMx\_ILt = high fuel treatment rate (8%/5 year) with light intensity
- f)  $RMx_ILt = \frac{(8\%/5 \text{ year) with light intensity}}{\text{high fuel treatment rate } (8\%/5 \text{ year) with medium intensity}}$
- **Figure 1.** Distribution of maximum age for initial conditions and for 5 scenarios (codes above) under the **baseline** fire regime.
- **Figure 2.** Distribution of median ages for initial conditions and for 5 scenarios (codes above) under the **baseline** fire regime.
- **Figure 3.** Distribution of standard deviations (the standard deviation calculated from the age of each cohort at each site) for initial conditions and for 5 scenarios (codes above) under the **baseline** fire regime.
- **Figure 1.** Distribution of maximum age for initial conditions and for 5 scenarios (codes above) under the **high** fire regime.
- **Figure 2.** Distribution of median ages for initial conditions and for 5 scenarios (codes above) under the **high** fire regime.
- **Figure 3.** Distribution of standard deviations (the standard deviation calculated from the age of each cohort at each site) for initial conditions and for 5 scenarios (codes above) under the **high** fire regime.











