

Lógica para Programação

Solução do Exame de 1ª Época

15 de Junho de 2018

15:00-17:00

1.	(1.0) Para cada uma das seguintes afirmações, diga se é verdadeira (V) ou falsa (F).
	Cada resposta correcta vale 0.5 valores e cada resposta errada desconta 0.2 valores.

(a)	O conjunto das tautologias está contido no conjunto das <i>fbfs</i> satisfazíveis
	Resposta:
	Resposta:
	V
(b)	Todos os argumentos válidos têm uma conclusão verdadeira.
	Resposta:
	Resposta:
	<u>F</u>

2. (1.0) Considere as constantes Dustin e Dart e os seguintes predicados:

```
Amigo(x, y): se x é amigo de y Gosta\_de(x, y): se x gosta de y
```

Represente em Lógica de Primeira Ordem as seguintes proposições:

(a) Se o Dustin gosta do Dart então o Dart é seu amigo **Resposta:**

```
Gosta\_de(Dustin, Dart) \rightarrow Amigo(Dart, Dustin)
```

(b) Nem todos os amigos de Dustin gostam de Dart.

Resposta:

```
\exists x [Amigo(x, Dustin) \land \neg Gosta\_de(x, Dart)]
```

3. (1.5) Considere o seguinte conjunto de fbfs (em que x, y e z são variáveis, a é uma constante e f é uma função):

$$\{P(x, z, a), P(y, f(x), x)\}$$

Preencha as linhas necessárias da seguinte tabela, de forma a seguir o algoritmo de unificação para determinar se as *fbfs* são unificáveis. Em caso afirmativo, indique o unificador mais geral; caso contrário, indique que as *fbfs* não são unificáveis.

Conjunto de fbfs	Conjunto de desacordo	Substituição

Unificador mais geral (se existir):

Resposta:

Conjunto de fbfs	Conjunto de	Substituição
	desacordo	
$\{P(x,z,a),P(y,f(x),x)\}$	$\{x,y\}$	$\{x/y\}$
$\{P(x,z,a),P(x,f(x),x)\}$	$\{z, f(x)\}$	$\{f(x)/z\}$
P(x, f(x), a), P(x, f(x), x)	$\{a,x\}$	$\{a/x\}$
${P(a, f(a), a)}$	_	_

Unificador mais geral (se existir):

$$\{x/y\} \circ \{f(x)/z\} \circ \{a/x\} = \{x/y, f(x)/z\} \circ \{a/x\} = \{a/y, f(a)/z, a/x\}$$

4. (2.0) Demonstre que

$$\{\forall x[P(x) \to R(x)], \forall x[R(x) \to Q(x)], \exists x[P(x)]\} \vdash \exists x[Q(x) \land P(x)]$$

usando o sistema dedutivo da Lógica de Primeira Ordem (apenas pode usar as regras de premissa, hipótese, repetição, reiteração, e as regras de introdução e eliminação de cada um dos símbolos lógicos).

Resposta:

5. (2.0) Demonstre o seguinte argumento

$$\{ \forall x [P(x) \to \exists y [Q(y,x)]], P(a) \} \vdash \exists x [Q(x,a)]$$

Número: _____ Pág. 3 de 11

usando resolução unitária e linear, fazendo uma prova por refutação.

Resposta:

• Forma clausal das premissas e da negação da conclusão:

```
\begin{array}{l} - \ \forall x[P(x) \rightarrow \exists y[Q(y,x)]] \\ \forall x[\neg P(x) \vee \exists y[Q(y,x)]] \\ \forall x[\neg P(x) \vee Q(f(x),x)] \text{ (em que } f \text{ \'e uma função de Skolem)} \\ \neg P(x) \vee Q(f(x),x) \\ \{\neg P(x),Q(f(x),x)\} \\ - \ P(a) \\ \{P(a)\} \\ - \ \neg \exists x[Q(x,a)] \\ \forall x[\neg Q(x,a)] \\ \neg Q(x,a) \\ \{\neg Q(x,a)\} \end{array}
```

• Prova:

$$\begin{array}{lll} 1 & \{\neg P(x), Q(f(x), x)\} & \text{Prem} \\ 2 & \{P(a)\} & \text{Prem} \\ 3 & \{\neg Q(x, a)\} & \text{Prem} \\ 4 & \{Q(f(a), a)\} & \text{Res, (1,2), } {}_{\{a/x\}} \\ 5 & \{\} & \text{Res, (3,4),} {}_{\{f(a)/x\}} \end{array}$$

6. Seja
$$\alpha = ((P \land Q) \to R) \lor ((\neg P \lor \neg Q) \to R).$$

(a) (0.5) Complete a seguinte tabela de verdade:

P	Q	R	$P \wedge Q$	$(P \wedge Q) \to R$	$\neg P \lor \neg Q$	$(\neg P \vee \neg Q) \to R$	α
V	V	V			F	V	
V	V	F	V	F		V	
V	F	V		V	V	V	
V	F	F			V	F	
F	V	V	F	V		V	
F	V	F	F		V	F	
F	F	V	F	V	V	V	
F	F	F	F			F	

(b) (0.5) Qual o menor conjunto Δ tal que $\Delta \models \alpha$? Justifique a sua resposta.

Resposta:

(a)

P	Q	R	$P \wedge Q$	$(P \wedge Q) \to R$	$\neg P \lor \neg Q$	$(\neg P \vee \neg Q) \to R$	α
V	V	V	V	V	F	V	V
V	V	F	V	F	F	V	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	F	V
F	V	V	F	V	V	V	V
F	V	F	F	V	V	F	V
F	F	V	F	V	V	V	V
F	F	F	F	V	V	F	V

Número: _____ Pág. 4 de 11

(b) Uma vez que α é uma tautologia, α é consequência semântica de qualquer conjunto de *fbfs* . Logo, $\Delta = \{\}$.

7. (1.0) No contexto de BDDs, as ordenações $\Omega_1 = [A, B, D]$ e $\Omega_2 = [A, C, D, B]$ são compatíveis? Justifique a sua resposta.

Resposta:

As ordenações Ω_1 e Ω_2 são compatíveis se nunca se verifica que, dados dois símbolos proposicionais x e y, x ocorre antes de y em Ω_1 e y ocorre antes de x em Ω_2 . Assim, as ordenações Ω_1 e Ω_2 não são compatíveis porque para Ω_1 se verifica $B \prec D$ e para Ω_2 se verifica $D \prec B$.

8. (2.0) Considere os dois OBDDs reduzidos que representam as fbfs $\neg A$ e $A \rightarrow B$. Usando o algoritmo aplica, obtenha o OBDD reduzido para $\neg A \rightarrow (A \rightarrow B)$. O que pode concluir?

Resposta:

Após a compactação obtemos a folha \boxed{V} pelo que podemos concluir que a fbf $\neg A \to (A \to B)$ é uma tautologia.

9. (3.0) Usando o algoritmo de propagação de marcas, prove que a f
bf $(A \wedge (A \to B)) \to B$

Número: _____ Pág. 5 de 11

é uma tautologia. Sugestão: Prove que a negação da fbf não é satisfazível.

Resposta:

1. Negação da fbf

$$\neg((A \land (A \to B)) \to B)$$

2. Eliminação do símbolo \rightarrow ($(\alpha \rightarrow \beta) \equiv \neg(\alpha \land \neg\beta)$)

$$\neg\neg((A \land \neg(A \land \neg B)) \land \neg B)$$

3. Aplicação do algoritmo de propagação de marcas

A aplicação do algoritmo de propagação de marcas origina duas marcas com valores contraditórios para o nó com o rótulo B: uma proveniente da marca 7:F e outra proveniente da marca 4:F. Conclui-se assim que a negação da fbf original é contraditória e consequentemente a fbf original é uma tautologia.

10. (1.5) Considere o seguinte programa em Prolog:

```
criatura_fofinha_1(X) :- criatura(X), not(come_gatos(X)).
criatura_fofinha_2(X) :- criatura(X), !, not(come_gatos(X)).
criatura_fofinha_3(X) :- not(come_gatos(X)), criatura(X).
criatura(pikachu).
criatura(dart).
criatura(catzilla).
```

Número: _____ Pág. 6 de 11

```
come_gatos(dart).
```

Qual a resposta do Prolog aos seguintes objectivos (suponha que vai pedindo mais respostas, enquanto tal for possível):

(a) ?-criatura_fofinha_1(X).

Resposta:

```
X = pikachu;
X = catzilla.
```

(b) ?- criatura_fofinha_2(X).

Resposta:

```
X = pikachu.
```

(c) ?- criatura_fofinha_3(X).

Resposta:

false.

11. (a) (0.75) Complete a implementação do predicado nth(Pos, Lista, Elem) em que Elem é o elemento que ocupa a posição Pos da lista Lista.

```
/* Escreva aqui a condição de paragem em falta */
```

Resposta:

(b) (0.75) Considere agora o predicado xpto (Pos, Num, Lista), definido como se segue:

```
xpto(Pos, Num, Lista) :-
    nth(Pos, Lista, Elem),
    Elem < Num.</pre>
```

Escolha a única resposta correcta para as seguintes questões. Cada resposta certa vale 0.25 valores e cada resposta errada desconta 0.05 valores.

- i. A resposta ao objectivo ?- xpto(6, 11, [5, 4, 5, 8, 9, 10]). é:
 - A. false.
 - B. true.
 - C. X = 10.
 - D. Nenhuma das anteriores.

Resposta:

Número: Pág. 7 de 11

```
ii. A resposta ao objectivo ?- xpto(6, 5, [5, 4, 5, 8, 9, 10]). é:
           A. false.
           B. true.
           C. X = 11.
           D. Nenhuma das anteriores.
           Resposta:
        iii. A resposta ao objectivo ?- xpto(X, 11, [5, 4, 5, 8, 9, 10]).
           A. false.
           B. true.
           C. X = 1.
           D. Nenhuma das anteriores.
           Resposta:
       Resposta:
       B, A, C.
12. (a) (1.0) No contexto do projecto, implemente o predicado
       total_linha/3, tal que total_linha (Lin, Posicoes, Total), em que
       Lin é um número de linha e Posicoes é uma lista de posições, significa
       que Total é o número de posições de Posicoes pertencentes à linha Lin.
       Por exemplo, se Posicoes for a lista [(4,3), (2,2), (4,5), (2,3),
       (2,7), (1,3), (2,2), (1,5), (3,3)], temos
        ?- ..., total_linha(2, Posicoes, Total).
       Total = 4.
       ?- ..., total_linha(5, Posicoes, Total).
       Total = 0.
       Resposta:
       total_linha(_, [], 0) :- !.
       total_linha(Lin, [(Lin,_) | R], Total) :-
           total_linha(Lin, R, Total_R),
           Total is Total_R + 1,
           ! .
       total_linha(Lin, [_ | R], Total) :-
           total_linha(Lin, R, Total).
       total_linha(Lin, Posicoes, Total) :-
           findall((Lin,Col), member((Lin,Col),Posicoes),Posicoes_Lin),
           length(Posicoes_Lin, Total).
```

(b) (1.5) Usando o predicado definido na alínea anterior, implemente o predicado totais_linhas/3, tal que totais_linhas (Dim, Posicoes, Totais), em que Dim é a dimensão de um puzzle e Posicoes é uma lista de posições, significa que Totais é a lista de totais por linha da lista Posicoes. Por exemplo, sendo Posicoes a lista da alínea anterior, temos

Número: _____ Pág. 8 de 11

Número: _____ Pág. 9 de 11

Número: _____ Pág. 10 de 11

