C241 HW11

Zac Monroe

November 2018

- 1. (a) i. No. $\neg L(0,0)$.
 - ii. No. $L(\frac{5}{2}, \frac{5}{2})$.
 - iii. No. L(0, -5) but $\neg L(-5, 0)$.
 - iv. Yes. Consider some $x, y \in \mathbb{R}$ such that L(x, y) and L(y, x). Thus y + 5 = 3x and x + 5 = 3y. Solving this out gives one solution pair $(x, y) = (\frac{5}{2}, \frac{5}{2})$, so x = y.
 - v. No. L(0, -5) and L(-5, -20), but $\neg L(0, -20)$.
 - (b) i. No. $\neg C("hello","hello")$.
 - ii. Yes. The definition of a proper substring is a substring that is not equal to the entire string, so no string is a proper substring of itself, so for any string s, $\neg C(s, s)$.
 - iii. No. C("hi","high") but $\neg C("high","hi")$.
 - iv. Yes. For some string s to be a proper substring of a string t, s must appear inside t, and $s \neq t$. If C(s,t), then the length of s is less than the length of t. Assuming (towards a contradiction) that C(t,s) implies that the length of t is greater than the length of s, which contradicts our earlier statement, so C is anti-symmetric.
 - v. Yes. Consider strings r, s, t with C(r, s) and C(s, t). Since C(s, t), s is contained inside t. Since C(r, s), r is contained inside s. Since r is contained inside s which is contained inside t, t is contained inside t, and thus C(r, t).
 - (c) i. No. $D(\{1,2,3\},\{1,2,3\}) = \{1,2,3\} \neq \emptyset$.
 - ii. No. $D(\emptyset, \emptyset) = \emptyset$.
 - iii. Yes. This is because for any sets A and B, $A \cap B = B \cap A$.
 - iv. No. $D(\{1,2\},\{3,4\})$ and $D(\{3,4\},\{1,2\})$.
 - v. No. $D(\{1,2\},\{3,4\})$ and $D(\{3,4\},\{2,5\})$ but $\neg D(\{1,2\},\{2,5\})$.
- 2. (a) $\{(a,d),(b,c),(c,b),(d,a)\}$
 - (b) $\{(1,1),(2,1),(2,2),(3,3)\}$
 - (c) $\{(2,4),(2,-6),(4,-6)\}$
 - (d) Here's my relation:

- (e) $\{(w_1, w_2) : w_1 \text{ is spelled the same as } w_2\}$
- (f) $\{(m,n): m=n^2\}$

- (g) $\{(p_1, p_2) : p_1 \text{ and } p_2 \text{ have the same social security number (not illegally or accidentally)} \}$
- (h) $\{(A,B),(B,C),(A,C)\}$
- (i) $\{(s,t): \text{the student ID } \# \text{ of } s \text{ is greater than or equal to the student ID } \# \text{ of } t\}$
- (j) Here's my relation:

3. (a) Claim: D is reflexive.

Proof. Choose some $n \in \mathbb{N}$. $\frac{n}{n} = 1$, and $1 \in \mathbb{N}$, so $n \mid n$. Thus D(n, n).

(b) Claim: D is anti-symmetric.

Proof. Choose some $m, n \in \mathbb{N}$ with D(m, n) and D(n, m).

So $m \mid n$ and $n \mid m$.

Since $m \mid n$, there exists some $k \in \mathbb{N}$ with $n = k \cdot m$.

Similarly, since $n \mid m$, there exists some $l \in \mathbb{N}$ with $m = l \cdot n$.

Since $n = k \cdot m$ and $m = l \cdot n$, $n = k \cdot (l \cdot n) = k \cdot l \cdot n$.

Thus $\frac{n}{n} = \frac{k \cdot l \cdot n}{n} \to 1 = k \cdot l$. (Ignoring the case where n = 0; since for any $p \in \mathbb{N}$, $p \mid 0$, the case where n = 0 isn't as interesting or relevant.)

Since $k \cdot l = 1$, k = 1 and l = 1.

Since $n = k \cdot m$ and k = 1, n = m.

(c) Claim: D is transitive.

Proof. Choose some $j, k, l \in \mathbb{N}$ with D(j, k) and D(k, l).

Thus $j \mid k$ and $k \mid l$.

Thus there exists some $m, n \in \mathbb{N}$ with $k = m \cdot j$ and $l = n \cdot k$.

Since $k = m \cdot j$ and $l = n \cdot k$, $l = n \cdot (m \cdot j) = n \cdot m \cdot j$.

Since $n, m \in \mathbb{N}, \ m \cdot m \in \mathbb{N}$.

Since $l = n \cdot m \cdot j$ and $n \cdot m \in \mathbb{N}, j \mid l$.

Thus D(j,l).

Since D is reflexive, anti-symmetric, and transitive, D is a partial order.

4. (a) Claim: \equiv_5 is reflexive.

Proof. Choose some $n \in \mathbb{Z}$.

n-n=0, and 0=5*0, and $0,5\in\mathbb{Z}$, so $5\mid 0$, or, stated differently, $5\mid (n-n)$. Thus $n\equiv_5 n$.

(b) Claim: \equiv_5 is symmetric.

Proof. Choose some $m, n \in \mathbb{Z}$ with $m \equiv_5 n$.

So
$$5 | (m-n)$$
.

Thus there exists some $k \in \mathbb{Z}$ with $m - n = k \cdot 5$.

Multiplying both sides of $m-n=k\cdot 5$ by -1, we get $-1\cdot (m-n)=-1\cdot (k\cdot 5)\to n-m=-k\cdot 5$.

Since
$$-1, k \in \mathbb{Z}, -k \in \mathbb{Z}$$
.

Since
$$n - m = -k \cdot 5$$
 and $-k \in \mathbb{Z}$, $5 \mid (n - m)$.

Thus
$$n \equiv_5 m$$
.

(c) Claim: \equiv_5 is transitive.

Proof. Choose some $j, k, l \in \mathbb{Z}$ with $j \equiv_5 k$ and $k \equiv_5 l$.

Thus
$$5 | (j - k)$$
 and $5 | (k - l)$.

So there exist some $m, n \in \mathbb{Z}$ with $j - k = m \cdot 5$ and $k - l = n \cdot 5$.

Thus $k = j - m \cdot 5$ and $k = n \cdot 5 + l$.

So
$$j - m \cdot 5 = n \cdot 5 + l$$
.

So
$$j - l = m \cdot 5 + n \cdot 5 = 5 \cdot (m + n)$$
.

Since $m, n \in \mathbb{Z}, m + n \in \mathbb{Z}$.

Since
$$m + n \in \mathbb{Z}$$
 and $j - l = 5 \cdot (m + n)$, $5 \mid (j - l)$.

Thus
$$j \equiv_5 l$$
.

Since \equiv_5 is reflexive, symmetric, and transitive, \equiv_5 is an equivalence relation.

- 5. (a) R_1 is a function.
 - (b) R_2 is not a function; it is not well-defined. $R_2(1,1)$ and $R_2(1,2)$, 1=1.
 - (c) S is a function.
 - (d) T_1 is not a function because there is no value $\in T_1$ that relates $0 \in \{0, 2, 4, 6\}$ to any member of $\{1, 2, 3\}$, thus T_1 is not total.
- 6. (a) L is a function.

Proof. (well-defined)

Choose some $x, y_1, y_2 \in \mathbb{R}$ with $L(x, y_1)$ and $L(x, y_2)$.

Thus $y_1 + 5 = 3x$ and $y_2 + 5 = 3x$.

So
$$y_1 + 5 = y_2 + 5 \rightarrow y_1 = y_2$$
.

Thus L is well-defined.

(total)

Let $y_3 = 3x - 5$.

Since $3, 5, x \in \mathbb{R}, y_3 \in \mathbb{R}$.

So $y_3 + 5 = 3x - 5 + 5 = 3x$.

So $L(x, y_3)$.

Therefore L is total.

- (b) P_1 is not a function because there is no value $\in \mathbb{Z}$ to which 0 is related via P_1 (so P_1 is not total).
- (c) U is not a function. $U(\{1,2\},\mathbb{Z})$ and $U(\{1,2\},(\mathbb{Z}\setminus\{1\}))$, and $\mathbb{Z}\neq(\mathbb{Z}\setminus\{1\})$, so U is not well-defined.
- (d) I is a function.

Proof. (well-defined)

Choose some sets of integers X, Y_1, Y_2 with $I(X, Y_1)$ and $I(X, Y_2)$.

So
$$Y_1 = \mathbb{N} \cap X$$
 and $Y_2 = \mathbb{N} \cap X$.

Therefore $Y_1 = Y_2$.

Thus I is well-defined.

(total)

Let $Y_3 = \mathbb{N} \cap X$.

Choose some $n \in \mathbb{N} \cap X$. So $n \in \mathbb{N}$ and $n \in X$.

Since $X \subseteq \mathbb{Z}$ and $n \in X$, $n \in \mathbb{Z}$.

Thus $Y_3 \subseteq \mathbb{Z}$.

Therefore $I(X, Y_3)$.

Thus I is total.

(b) Here's my function:

- (c) $\{(1,c),(2,a),(3,b),(4,a)\}$
- (d) f(x) = -4x + 9
- (e) $g(x) = x^4$
- (f) $l = \{(s, n) : s \text{ has length } n\}$