Отчёт по лабораторной работе №7. Дискретное логарифмирование в конечном поле

Студент: Ильин Никита Евгеньевич

Группа: НФИмд-01-23

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Contents

1	Цель работы	5
2	Задание	6
3	Теоретическое введение 3.1 Ро-метод Полларда 3.2 Постановка задачи дискретного логарифмирования 3.3 Алгоритм Ро-метода Полларда 3.4 Сложность алгоритма	7 7 7 8 9
4	Выполнение лабораторной работы 4.1 Ро-метод Полларда	10 10
5	Выводы	14
Сп	исок литературы	15

List of Figures

3.1	Постановка задачи дискретного логарифмирования	7
3.2	Алгоритм Ро-метода Полларда. 1	8
3.3	Алгоритм Ро-метода Полларда. 2	8
4.1	Вспомогательная функция, зависящая от с,и,	10
4.2	Вспомогательная функция. Расширенный алгоритм Евклида	11
4.3	Реализация алгоритма Ро-метода Полларда для логарифмирования	12
4.4	Реализация алгоритма Ро-метода Полларда для логарифмирования	13
4.5	Результат реализации Ро-метода Полларда на примере	13

List of Tables

1 Цель работы

Целью данной лабораторной работы является ознакомление с алгоритмом, реализующим Ро-метод Полларда для дискретного логарифмирования, а также программное воплощение данного алгоритма.

2 Задание

- 1. Реализовать рассмотренный в инструкции к лабораторной работе алгоритм программно.
- 2. Подставить численное значение из примера в программный код, проверить правильность полученного ответа.

3 Теоретическое введение

В данной лабораторной работе предметом нашего изучения стал Ро-метод Полларда для задач дискретного логарифмирования.

3.1 Ро-метод Полларда

Ро-метод Полларда для дискретного логарифмирования (*ρ* -метод) — алгоритм дискретного логарифмирования в кольце вычетов по простому модулю, имеющий экспоненциальную сложность. Предложен британским математиком Джоном Поллардом в 1978 году, основные идеи алгоритма очень похожи на идеи ро-алгоритма Полларда для факторизации чисел. Данный метод рассматривается для группы ненулевых вычетов по модулю р, где р — простое число, большее 3 [1].

3.2 Постановка задачи дискретного логарифмирования

Постановка задачи дискретного логарифмирования представлена следующим образом:

Для заданного простого числа p и двух целых чисел a и b требуется найти целое число x, удовлетворяющее сравнению: $a^x \equiv b \pmod p,$ где b является элементом циклической группы G, порожденной элементом a.

Figure 3.1: Постановка задачи дискретного логарифмирования

3.3 Алгоритм Ро-метода Полларда

Исходя из теоретических сведений, алгоритм Ро-метода Полларда представлен ниже [2].

Рассматриваются последовательность пар $\{u_i,\ v_i\}$ целых чисел по модулю p-1 и последовательность $\{z_i\}$ целых чисел по модулю p, определенные следующим образом :

$$\{u_i\}, \{v_i\}, \{z_i\}, \ i \in N,$$

$$u_0 = v_0 = 0, \ z_0 = 1;$$

$$u_{i+1} = \begin{cases} u_i + 1 \bmod (p-1), & 0 < z_i < \frac{p}{3}; \\ 2u_i \bmod (p-1), & \frac{p}{3} < z_i < \frac{2}{3}p; \\ u_i \bmod (p-1), & \frac{2}{3}p < z_i < p; \end{cases}$$

$$v_{i+1} = \begin{cases} v_i \bmod (p-1), & 0 < z_i < \frac{p}{3}; \\ 2v_i \bmod (p-1), & \frac{p}{3} < z_i < \frac{2}{3}p; \\ v_i + 1 \bmod (p-1), & \frac{2}{3}p < z_i < \frac{2}{3}p; \end{cases}$$

$$v_{i+1} \equiv b^{u_{i+1}}a^{v_{i+1}} \pmod{p} = \begin{cases} bz_i \bmod p, & 0 < z_i < \frac{p}{3}; \\ z_i^2 \bmod p, & \frac{p}{3} < z_i < \frac{2}{3}p; \\ az_i \bmod p, & \frac{p}{3} < z_i < \frac{2}{3}p; \\ az_i \bmod p, & \frac{2}{3}p < z_i < p; \end{cases}$$

Figure 3.2: Алгоритм Ро-метода Полларда. 1.

При этом, важно учесть следующие замечания [3]:

```
Замечание: везде рассматривается наименьшие неотрицательные вычеты.
```

Далее рассматриваются наборы $(z_i,\ u_i,\ v_i,\ z_{2i},\ u_{2i},\ v_{2i})$ и ищется номер i, для которого $z_i=z_{2i}$. Для такого i выполнено

$$b^{u_{2i}-u_i}\equiv a^{v_i-v_{2i}}\mod p.$$
 Если при этом $(u_{2i}-u_i,\ p-1)=1$, то $x\equiv \log_a b\equiv (u_{2i}-u_i)^{-1}(v_i-v_{2i})\mod p-1.$

Figure 3.3: Алгоритм Ро-метода Полларда. 2.

3.4 Сложность алгоритма

Эвристическая оценка сложности составляет $O(p^{1/2})$.

4 Выполнение лабораторной работы

Примечание: комментарии по коду представлены на скриншотах к каждому из проделанных заданий.

В соответствии с заданием, была написана программа по воплощению алгоритма Ро-метода Полларда для задач дискретного логарифмирования.

Программный код и результаты выполнения программ представлен ниже.

4.1 Ро-метод Полларда

Figure 4.1: Вспомогательная функция, зависящая от c,u,v

```
def rasshir_algorithm_Evklida(a,b):
 расширенный алгоритм Евклида
  1.1.1
 r=[]
 x=[]
 y=[]
 r.append(a)
 r.append(b)
 x.append(1)
 x.append(0)
 y.append(0)
 y.append(1)
  i=1
 while r[i]!=0:
    i+=1
    r.append(r[i-2]%r[i-1])
   if r[i]==0:
      d=r[i-1]
      x=x[i-1]
      y=y[i-1]
    else:
      x.append(x[i-2]-((r[i-2]//r[i-1])*x[i-1]))
      y.append(y[i-2]-((r[i-2]//r[i-1])*y[i-1]))
  return d,x,y
```

Figure 4.2: Вспомогательная функция. Расширенный алгоритм Евклида

Figure 4.3: Реализация алгоритма Ро-метода Полларда для логарифмирования

```
while c%p!=d%p:

условие работы цикла

с,uc,vc=f(c,uc,vc)

с%=p

d,ud,vd=f(*f(d,ud,vd))

d%=p

v=vc-vd

u=ud-uc

d,x,y=rasshir_algorithm_Evklida(v,r)

while d!=1:

v/=d

u/=d

u/=d

c/=d

d,x,y=rasshir_algorithm_Evklida(v,r)

return x*u%r
```

Figure 4.4: Реализация алгоритма Ро-метода Полларда для логарифмирования

Были взяты данные из пояснения к лабораторной работе. Они были подставлены в программу. Получен следующий результат (см. рис. [-4.5).

```
Pollard(107,10,53,64,2,2)
```

Figure 4.5: Результат реализации Ро-метода Полларда на примере

5 Выводы

Таким образом, была достигнута цель, поставленная в начале лабораторной работы: в результате выполнения данной лабораторной работы нам удалось изучить алгоритм Ро-Полларда осуществить программно алгоритм, рассмотренный в описании к лабораторной работе на языке Python 3. А также получить ответ, совпадающий с ответом из инструкции.

Список литературы

- 1. Википедия. Ро-метод полларда для дискретного логарифмирования [Electronic resource]. Википедия, свободная энциклопедия, 2021. URL: https://ru.wikipedia.org/wiki/%D0%A0%D0%BE-%D0%BC%D0%B5%D1%82%D0%BE%D0%B4_%D0%B4_%D0%BE%D0%BB%D0%BB%D0%B0%D1%80%D0%B4%D0%B0_%D0%B4%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%BD%D0%BE%D0%B3%D0%BE_%D0%BB%D0%BE%D0%BE%D0%B8%D1%80%D0%BE%D0%B8%D1%80%D0%BE%D0%B8%D1%80%D0%BE%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%B0%D0%B8%D1%8F (accessed: 25.12.2021).
- 2. Wikiznanie. Ро-метод полларда для дискретного логарифмирования [Electronic resource]. Википедия, 2021. URL: https://www.wikiznanie.ru/wp/index .php/%D0%A0%D0%BE-%D0%BC%D0%B5%D1%82%D0%BE%D0%B4_%D0%9 F%D0%BE%D0%BB%D0%BB%D0%B0%D1%80%D0%B4%D0%B0_%D0%B4%D 0%BB%D1%8F_%D0%B4%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%8 2%D0%BD%D0%B5%D0%B3%D0%BE_%D0%BB%D0%BE%D0%B3%D0%B0%D 1%80%D0%B8%D1%84%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0 %D0%BD%D0%B8%D1%8F (accessed: 25.12.2021).

3. Wikiznanie. №-метод полларда дискретного логарифмирования [Electronic resource]. Википедия, 2021. URL: https://mind-control.fandom.com/wiki/%C E%A1-%D0%BC%D0%B5%D1%82%D0%BE%D0%B4_%D0%9F%D0%BE%D0%B B%D0%BB%D0%B0%D1%80%D0%B4%D0%B0_%D0%B4%D0%B8%D1%81%D 0%BA%D1%80%D0%B5%D1%82%D0%BD%D0%BE%D0%B3%D0%BE_%D0 %BB%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC%D0%B 8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F (accessed: 25.12.2021).