

	Course Name:		Machine Learning			6	_ Exam Duration:			2 hours		
	Dept.: _	Depar	rtment of Computer Science and Engineering									
	Exam Pa	aper Se	tter(Sig	nature):	:							
					_				_			
	Question No.	1	2	3	4	5	6	7	8	9	10	
	Score	20	50	30	10							
	This exar	n paper	contains	_ <u>4</u> _que	estions a	nd the s	core is	<u>110</u> ir	total. (F	Please ha	and in	
	your exan	n paper,	answers	sheet, an	d your so	rap pape	er to the p	oroctor w	hen the e	exam end	ds.)	
	·				·						,	
	Problei	m I Mı	ıltiple	Choice	e (20 P	oints)						
	(only one		_	_								
В												
			. model, gradient descent, learning algorithm									
				n, model,	_	n						
			•	sitivity, s	•	•						
		D. mod	el, error	function,	cost fun	ction						
Δ	2. (2 pc	oints) Th	e objecti	ve of ma	chine lea	rning is t	o minim	ize	_•			
		A. the H	KL diver	gence bet	ween rea	ıl-world o	data and	the traine	ed probab	oilistic mo	odel	
		B. the KL divergence between training data and the trained probabilistic mo-								stic mode	el	
	C. the KL divergence between real-world data and training data											
		D. the I	KL diverg	gence bet	ween tra	ining data	a and pre	ediction d	lata			
В	3. (2 pc	oints) W	hat is the	loss fund	ction mos	st suited t	for linear	regressi	on?			
		A. the e	the entropy function									
		B. the s	quared e	rror func	tion							
		C. the c	ross-ent	ropy func	ction							
		D. the r	umber o	f mistake	es							
	4. (2 pc	oints) W	hat is the	loss fund	ction mos	st suited t	for proba	ıbilistic d	lensity m	ixture mo	odel	
J	4. (2 points) What is the loss function most suited for probabilistic density mixture model based clustering?											
		A. the e	_	unction								
				rror func	tion							

- **10.** (2 points) Which of the following statements is NOT true for Bellman equations?
 - A. it can be used to estimate state value functions
 - B. it is can be solved by using dynamic programing, Monti Carlo, and temporal difference approaches
 - C. solving Bellman equation requires environment models
 - D. its fixed point is the optimal policy

C

Problem II Numerical Calculation (50 Points)

Course Name: Machine Learning

- (1) **Linear Regression** (5 points). For three points $\{(1, 4), (2, 8), (3, 14)\}$, what is the linear regression function for the least squared errors (assuming $y = a_2x^2 + a_1x + a_0$)?
- (2) **Supervised Classification (5 points)**. For class A of two points $\{(1, 2) (2, 1)\}$ and class B of two points $\{(4, 1) (3, 4)\}$, what are the labels for points $\{(2,2) (3,3)\}$ using the K-NN algorithm (*where K*=3)?
- (3) **Maximum margin classifier (5 points)**. For one class of two points {(1, 2) (2, 2)} and another class of two points {(4, 4) (5, 6)}, what are the support vectors and what is the decision boundary's function (*plot your answer*)?
- (4) **Clustering** (**5 points**). For four points with two classes, {(1, 2) (2, 2) (4, 4) (5, 6)}, how to achieve two cluster centers using the K-means algorithm (*outline the algorithm and show the details of one iteration*)?
- (5) **Factor Graph (15 points)**. How to design a factor graph to solve the following linear Gaussian system: $[3\ 3]^T = [1\ 1\ 1;\ 0\ 2\ 1][x_1\ x_2\ x_3]^T$? Assuming the initial Gaussian distributions of X is $\{[m_1,\ \sigma_1],\ [m_2,\ \sigma_2],\ [m_3,\ \sigma_3]\}$, outline the whole computation procedure and show the details of one iteration.
- (6) **Hidden Markov Model (15 points)**. For a HMM, the states of latent variables are {bull, bear}, the states of observation variables are {rise, fall}, the initial state probability distribution π is $[0.5 \ 0.5]^T$, the transition probability distribution A is $[0.4 \ 0.7; \ 0.6 \ 0.3]$, and the observation probability distribution B is $[0.8 \ 0.1; 0.2 \ 0.9]$. If the observation sequence X is {fall fall rise}, please show the computation procedure for $p(z_1|X, \theta)$ and $p(z_1, z_2|X, \theta)$ using the forward-backward algorithm, where z_n is the latent variable at time n and $\theta = {\pi, A, B}$?

Problem III Theoretical Analysis (30 Points)

For a finite-state random sequence $\{Z_t\}$ with the model of $\{\pi, A\}$ and its observation sequence is $\{X_t\}$, the joint distribution of X and Z with the model θ is given by

$$p(X,Z|\theta) = \prod_{i=1}^{K} [p(z_i)p(X|\theta_i)]^{z_i}$$

- (1) Summarize the general forward-backward EM scheme for HMM (E-step and M-step).
- (2) Assuming each observation probability density is Bernoulli, *i.e.* $p(X|\theta_i) = \theta_i^x (1 \theta_i)^{1-x}$, please derive the corresponding model learning procedure under the EM scheme.
- (3) Use message passing to derive the forward-backward algorithms.

Problem IV Expectation-Maximization Learning (Bonus 10 Points)

Course Name: Machine Learning

- (1) What is the EM procedure? When do we need the EM procedure for machine learning? Please give a specific example.
- (2) What is the EM procedure in terms of the Q function? Please give the detailed equations assuming that X is the observed variable, Z is the latent variable and θ is the model parameter.
- (3) What is the EM procedure in terms of likelihood and KL divergence? Please give the detailed equations and plots to illustrate the procedure.
- (4) What is the EM procedure in terms of optimization of non-convex function? Please give a plot to illustrate the procedure.
- (5) What is the EM procedure for the factor graph network model? Please give an example.