

In the claims:

1 1. (Amended) A drive device with an electric drive motor, a
2 housing, at least one shaft driven by the drive motor, and with a compensating means
3 to compensate for axial play of the shaft, characterized in that a tapered thrust bearing
4 is positioned on the shaft as compensating means, which can be radially expanded
5 against spring force, the thrust bearing having two contact surfaces tapering radially
6 toward the shaft axis, the shaft having an annular projection corresponding to one of
7 the contact surfaces and the housing has an annular collar corresponding to the other
8 contact surface, the tapered thrust bearing positioned under pre-load between the
9 projection and the annular collar.

X

1 2. (Amended) The drive device in accordance with claim 1,
2 wherein the contact surfaces run symmetrically at an angle of about 15° to a plane
3 formed by the tapered thrust bearing, where the surfaces of the annular collar and of
4 the projection which correspond to the contact surfaces have a matching taper.

1 3. (Amended) The drive device in accordance with claim 1,
2 wherein the tapered thrust bearing is slotted.

1 4. (Amended) The drive device in accordance with claim 1,
2 wherein the tapered thrust bearing has slot-like recesses in the area of its inner
3 circumference.

1 5. (Amended) The drive device in accordance with claim 1,
2 wherein the tapered thrust bearing has a slotted spring clamping wire.

1 6. (Amended) The drive device in accordance with claim 5,
2 wherein the spring clamping wire is located in a groove running around a
3 circumference of the tapered thrust bearing.

-3-

1 7. (Amended) The drive device in accordance with claim 6,
2 wherein the groove has a transverse rib in an area facing away from a slot in the
3 tapered thrust bearing to locate a slot in the spring clamping wire.

1 8. (Amended) The drive device in accordance with claim 1,
2 wherein the shaft has an annular recess in which the tapered thrust bearing is retained
3 by positive engagement.

1 9. (Amended) The drive device in accordance with claim 1,
2 wherein the tapered thrust bearing is made of plastic, and the plastic has one of an
3 anti-friction coating of one of graphite and molybdenum disulfide, and contains one
4 of graphite, and molybdenum disulfide.

1 10. (Amended) The drive device in accordance with claim 1,
2 wherein the projection is located on a gear wheel.

1 11. (Amended) The drive device in accordance with claim 1,
2 wherein the projection is made of a plastic.

1 12. (Amended) The drive device in accordance with claim 1,
2 wherein the annular collar is located on a housing cover of the housing.

Add the following new claims:

1 13. (New) The drive device of claim 11 wherein the plastic is
2 polyethylene oxide.

1 14. (New) The drive device of claim 12 wherein the housing cover
2 is a zinc die-cast cover.