Expectation-Maximization (EM) Algorithm

BIOSTAT 802: Advanced Inference II

Winter, 2018

References

- 1. Dempster, Laird and Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm. JRSSB 39, 1-38.
- 2. Tanner (1991). *Tools for Statistical Inference*. Lecture Notes in Statistics 67, Springer-Verlag.
- Wu, CJF (1983). On the convergence properties of the EM algorithm. AOS 11, 95-103.

WARNING: Watch out notations, which are not completely consistent throughout the slides!

Outline

Introduction

Convergence Theory

An Example

Standard Error in EM-algorithm

Missing Data in Linear Model

EM Algorithm in the Mixture Model

- A general approach to iterative computation of maximum-likelihood estimate when the observations can be viewed as incomplete data.
- Since each iteration of the algorithm consists of an expectation step followed by a maximization step, it is called EM algorithm.
- It is easier to present this method using some Bayesian vocabularies. Suppose observed data Y ~ f(y|θ),
 Q: Find the posterior mode θ̂, namely, a statistic θ̂(y₁,...,y_n) maximizes f(θ|Y).
- ▶ Technique: Augment the observed data Y with latent data Z so that the augmented posterior distribution $p(\theta|Y,Z)$ is "simple" in the sense that for instance, it is easy to carry out sampling/calculating/maximizing.

- ▶ Algorithm: Let $\theta^{(i)}$ be the current estimate of the mode of $p(\theta|Y)$.
 - * E-step: Compute

$$Q(\theta, \theta^{(i)}) = E\{\log p(\theta|Z, Y)\}$$
with respect to $p(Z|\theta^{(i)}, Y)$

$$= \int_{\mathcal{Z}} \log\{p(\theta|Z, Y)\}p(Z|\theta^{(i)}, Y)dZ.$$

* M-step: Maximize the Q function with respect to θ to obtain $\theta^{(i+1)}$. The algorithm is iterated until

$$||\theta^{(i+1)} - \theta^{(i)}|| \text{ and/or } ||\textit{Q}(\theta^{(i+1)}, \theta^{(i)}) - \textit{Q}(\theta^{(i)}, \theta^{(i)})||$$

is sufficiently small.

Explanation:

$$1 = \frac{p(\theta, Z, Y)}{p(\theta, Z, Y)} = \frac{p(\theta|Z, Y)p(Z, Y)}{p(Z|\theta, Y)p(\theta|Y)p(Y)}$$
$$= \frac{p(\theta|Z, Y)}{p(Z|\theta, Y)} \frac{1}{p(\theta|Y)} p(Z|Y)$$

Take log on both sides,

$$0 = \log p(\theta|Z, Y) - \log p(Z|\theta, Y) - \log p(\theta|Y) + \underbrace{\log p(Z|Y)}_{\text{constant with respect to } \theta}.$$

Therefore.

$$\log p(\theta|Y) = \log p(\theta|Z,Y) - \log p(Z|\theta,Y) + \text{constant}$$
 Integrate both sides with respect to $p(Z|Y,\theta)$

$$\log p(\theta|Y) = \int_{\mathcal{Z}} \log p(\theta|Z, Y) p(Z|Y, \theta) dZ - \int_{\mathcal{Z}} \log p(Z|\theta, Y) p(Z|\theta, Y) dZ + \int_{\mathcal{Z}} \log p(Z|Y) p(Z|\theta, Y) dZ$$

where the last term is always a constant when $\theta=\theta^*$.

Define Q function

$$Q(\theta, \theta^*) = \int_{\mathcal{Z}} \log p(\theta|Z, Y) p(Z|\theta^*, Y) dZ$$

and H function

$$H(\theta, \theta^*) = \int_{\mathcal{Z}} \log p(Z|\theta, Y) p(Z|\theta^*, Y) dZ$$

$$= \int_{\mathcal{Z}} \log \frac{p(Z|\theta, Y)}{p(Z|\theta^*, Y)} p(Z|\theta^*, Y) dZ + \int_{\mathcal{Z}} \log p(Z|\theta^*, Y) p(Z|\theta^*, Y) dZ$$

$$= -KL(\theta^*, \theta) + \int_{\mathcal{Z}} \log p(Z|\theta^*, Y) p(Z|\theta^*, Y) dZ$$

where $\mathit{KL}(\psi,\phi) = \mathit{E}_{\psi} \log\{\mathit{p}(\mathit{Z},\psi)/\mathit{p}(\mathit{Z},\phi)\}$ is the Kullback-Leibler information function (or divergence function).

The Ascent Property

• Consider likelihood gain (from $\theta = \theta^{(i)}$)

$$\log \{p(\theta^{(i+1)}|Y)\} - \log \{p(\theta^{(i)}|Y)\} = \underbrace{Q(\theta^{(i+1)}, \theta^{(i)}) - Q(\theta^{(i)}, \theta^{(i)}) - \underbrace{(H(\theta^{(i+1)}, \theta^{(i)}) - H(\theta^{(i)}, \theta^{(i)}))}_{\text{always} \le 0, \text{ due to Rao(1973) 1e6.6}}$$

In fact,

$$H(\theta^{(i+1)}, \theta^{(i)}) - H(\theta^{(i)}, \theta^{(i)}) = KL(\theta^{(i)}, \theta^{(i)}) - KL(\theta^{(i)}, \theta^{(i+1)})$$

$$= 0 - KL(\theta^{(i)}, \theta^{(i+1)})$$

$$< 0.$$

The last inequality is due to Jensen's Inequality for a strictly convex function.

► Therefore, if select $\theta^{(i+1)}$ such that $Q(\theta^{(i+1)}, \theta^{(i)}) > Q(\theta^{(i)}, \theta^{(i)})$ (exactly M-step does), then

$$p(\theta^{(i+1)}|Y) \geq p(\theta^{(i)}|Y)$$

unless

$$Q(\theta^{(i+1)}, \theta^{(i)}) = Q(\theta^{(i)}, \theta^{(i)}).$$

- ▶ It appears to be a fixed point algorithm that compresses the search closer to the maximum at every step.
- Where does the updating ultimately go? When will the updating stop? Under which conditions the algorithm will stop at the MLE?

Outline

Introduction

Convergence Theory

An Example

Standard Error in EM-algorithm

Missing Data in Linear Model

EM Algorithm in the Mixture Model

Notations

Consider two sample spaces $\mathcal X$ and $\mathcal Y$ and a many-to-one mapping from $\mathcal X$ to $\mathcal Y$. Instead of observing the "complete data" $\mathbf x \in \mathcal X$, we observe the "incomplete data" $\mathbf y = \mathbf y(\mathbf x)$. Let the density function of $\mathbf x$ be $f(\mathbf x|\theta)$ with parameter $\theta \in \Theta$, and let the density of $\mathbf y$ given by

$$g(\mathbf{y}|\theta) = \int_{\mathcal{X}(\mathbf{y})} f(\mathbf{x}|\theta) d\mathbf{x},$$

where $\mathcal{X}(\mathbf{y}) = \{\mathbf{x} : \mathbf{y}(\mathbf{x}) = \mathbf{y}\}.$

The goal is to derive the MLE of θ as $\hat{\theta} = \arg\max_{\theta \in \Theta} g(\mathbf{y}|\theta)$. As discussed above, in many problems, it is much simpler to maximize the complete-data specification $f(\mathbf{x}|\theta)$ (i.e. the M step) than the incomplete-data specification $g(\mathbf{y}|\theta)$ with respect to θ . And the EM algorithm provides an approach to doing so.

Since part of ${\bf x}$ is unobserved, we replace the complete-data log likelihood $\log f({\bf x}|\theta)$ by its conditional expectation given the observed ${\bf y}$ and the current update $\theta^{(p)}$ (i.e. the E step).

The Algorithm

Let $k(\mathbf{x}|\mathbf{y},\theta) = f(\mathbf{x}|\theta)/g(\mathbf{y}|\theta)$ be conditional density of \mathbf{x} given \mathbf{y} and θ . Then the log-likelihood is

$$\ell(\theta') = \log g(\mathbf{y}|\theta') = Q(\theta'|\theta) - H(\theta'|\theta),$$

where $Q(\theta'|\theta) = E\{\log f(\mathbf{x}|\theta')|\mathbf{y},\theta\}$ and $H(\theta'|\theta) = E\{\log k(\mathbf{x}|\mathbf{y},\theta')|\mathbf{y},\theta\}$ are assumed to be exist for all pairs (θ,θ') .

The EM algorithm proceeds $\theta^{(p)} \to \theta^{(p+1)} \in M(\theta^{(p)})$:

- ► E-step: Determine $Q(\theta|\theta^{(p)})$.
- ▶ M-step: Choose $\theta^{(p+1)}$ to be any value of $\theta \in \Theta$ which maximizes $Q(\theta|\theta^{(p)})$,

where $M(\theta^{(p)})$ is the set of θ values which maximizes $Q(\theta|\theta^{(p)})$ over $\theta \in \Theta$.

In other words, each iteration of the EM algorithm defines a point-to-set mapping: $\theta \to M(\theta)$ such that

$$Q(\theta'|\theta) \ge Q(\theta|\theta)$$
, for all $\theta' \in M(\theta)$

It follows from the ascent property that

$$\ell(\theta^{(p+1)}) \ge \ell(\theta^{(p)}),\tag{1}$$

because of the inequality $H(\theta|\theta) \ge H(\theta'|\theta)$.

Where does the EM go?

According to the monotone convergence theorem, for a bounded sequence $\{\ell(\theta^{(p)})\}$, the ascent property (1) implies that $\ell(\theta^{(p)})$ converges monotonically to some ℓ^* .

Question: whether ℓ^* is the global maximum of $\ell(\theta)$ over Θ ? Or, under which conditions, it may be?

First, here are assumptions required by the monotone convergence theorem:

- 1) Θ is a subset of the *r*-dimensional Euclidean space R^r ;
- 2) $\Theta_{\theta_0}=\{\theta\in\Theta:\ell(\theta)\geq\ell(\theta_0)\}$ is compact for any $\ell(\theta_0)>-\infty;$
- 3) $\ell(\cdot)$ is continuous in Θ and differentiable in the interior of Θ .

Assumptions 1)-3) above imply that

 $\{\ell(\theta^{(p)})\}_{p\geq 0}$ is bounded above for any $\theta_0\in\Theta$

What makes ℓ^* ?

Let $\theta^* \in \Theta$ be a value at which $\ell(\theta^*) = \ell^*$.

Question: what is the θ^* ? Global maximum, local maximum or stationary point?

- There is no guarantee that θ^* is even a local maximum (thus nor the global maximum). This is because $-\nabla^2\ell(\theta^*) = -\nabla^{20}Q(\theta^*|\theta^*) + \nabla^{20}H(\theta^*|\theta^*), \text{ and even both } -\nabla^{20}Q \text{ and } -\nabla^{20}H \text{ are non-negative definite (n.n.d), their difference } \nabla^2\ell(\theta^*) \text{ is not necessarily n.n.d.}$
- ▶ Under some suitable conditions, θ^* may be a stationary point.

Global Convergence Theorem

Definition: A map A from points of X to subsets of X is called a point-to-set map on X.

Definition: A point-to-set map A is said to be *closed at x* if $x_k \to x, x_k \in X$ and $y_k \to y, y_k \in A(x_k)$ implies $y \in A(x)$.

Essentially, closeness means that either two-step updating or one-step updating ends up in the same solution set (the relay is under controlled).

Theorem (Global Convergence Theorem, (Zangwill, 1969)) Let the sequence $\{x_k\}_{k=0}^{\infty}$ be generated by $x_{k+1} \in M(x_k)$, where M is a point-to-set map on X. Let a solution set $\Gamma \subset X$ be given, and suppose that (i) all points x_k are contained in a compact set $S \subset X$; (ii) *M* is closed over the complement of Γ ; (iii) there is a continuous function α on X such that (a) if $x \notin \Gamma$, $\alpha(y) > \alpha(x)$ for all $y \in M(x)$, and (b) if $x \in \Gamma$, $\alpha(y) \ge \alpha(x)$ for all $y \in M(x)$. Then all the limit points of $\{x_k\}$ are in the solution set Γ and $\alpha(x_k)$ converges monotonically to $\alpha(x)$ for some $x \in \Gamma$.

Convergence of EM Algorithm

Let M be the point-to-set map in an iteration, and let $\alpha(x)$ be the log-likelihood function ℓ . The solution set Γ is

 $\mathcal{M} = \text{set of local maxima in the interior of } \Theta$; or

S = set of stationary points in the interior of Θ

Theorem 1: Let $\{\theta^{(p)}\}$ be an algorithm sequence generated by $\theta^{(p+1)} \in M(\theta^{(p)})$, and suppose that (i) M is closed point-to-set map over the complement of \mathcal{S} (or \mathcal{M}), (ii) $\ell(\theta^{(p+1)}) > \ell(\theta^{(p)})$ for all $\theta^{(p)} \notin \mathcal{S}$ (or \mathcal{M}).

Then all the limit points of $\{\theta^{(p)}\}$ are stationary points (or local maxima) of ℓ , and $\ell(\theta^{(p)})$ converges monotonically to $\ell^* = \ell(\theta^*)$ for some $\theta^* \in \mathcal{S}$ (or in \mathcal{M}).

Remark: (i) A simple sufficient condition for the closedness of M w.r.t. \mathcal{S} is that $Q(\phi|\theta)$ is continuous in both ϕ and θ . This is a very weak condition that can be satisfied in most practical situations. (ii) To establhish the closeness of M w.r.t. \mathcal{M} , an additional condition (eqn (11) in Wu's paper) is required.

Theorem 2 (Convergence of EM algorithm): Suppose Q satisfies the continuity condition above. Then all the limit points of $\{\theta^{(p)}\}$ are stationary points of ℓ , and $\ell(\theta^{(p)})$ converges monotonically to $\ell^* = \ell(\theta^*)$ for some θ^* .

Theorem 2 cannot be generalized to the case of local maxima because in the solution set the ascent property may hold with equality. Thus, to guarantee convergence to a local maximum, we need to impose additional conditions. Unfortunately, some strong conditions are required (Wu, 1983). One of the most popular assumptions is that the set of θ values at which ℓ^* is attained is a singleton $\{\theta^*\}$. Then $\theta^{(p)} \to \theta^*$.

Theorem 3: Suppose that $\ell(\theta)$ is unimodal in Θ with θ^* being the only stationary point and that $\nabla^{10}(\theta'|\theta)$ is continuous in θ and θ' . Then for any EM sequence $\{\theta^{(p)}\}$, $\theta^{(p)}$ converges to the unique maximizer θ^* of $\ell(\theta)$.

Remark: The singleton condition may be relaxed, to some extent, by $||\theta^{(p+1)} - \theta^{(p)}|| \to 0$ as $p \to \infty$. But this condition cannot guarantee surely $\theta^{(p)}$ converges to a local maximum, unless the solution set $\mathcal M$ is discrete. Thus, in the literature when using the EM algoirthm, users are recommended to monitor not only $||\ell(\theta^{(p+1)}) - \ell(\theta^{(p)})|| \to 0$ but also $||\theta^{(p+1)} - \theta^{(p)}|| \to 0$.

Outline

Introduction

Convergence Theory

An Example

Standard Error in EM-algorithm

Missing Data in Linear Model

EM Algorithm in the Mixture Model

Genetic Linkage Model (Rao, 1973)

Suppose 197 animals' genotypes are distributed into four categories as

$$Y = (y_1, y_2, y_3, y_4) = (125, 18, 20, 34)$$

For example, AA, AB, BA, BB, with cell probabilities

$$\left(\frac{1}{2}+\frac{\theta}{4},\frac{1}{4}(1-\theta),\frac{1}{4}(1-\theta),\frac{\theta}{4}\right)$$

implicitly $\theta \in (0,1)$ is confined in (0,1).

▶ Direct approach: using a flat prior $\theta \sim U(0,1)$. The posterior is

$$\rho(\theta|y_1, y_2, y_3, y_4) = \frac{p(y_1, y_2, y_3, y_4|\theta)p(\theta)}{\int p(y_1, y_2, y_3, y_4|\theta)p(\theta)d\theta}
\propto p(y_1, y_2, y_3, y_4|\theta)p(\theta)
\propto (2 + \theta)^{y_1}(1 - \theta)^{y_2 + y_3}\theta^{y_4}.$$

Finding the posterior mode of $p(\theta|y_1, y_2, y_3, y_4)$ is equivalent to finding maximizer of the polynomial $(2 + \theta)^{y_1} (1 - \theta)^{y_2 + y_3} \theta^{y_4}$.

Latent Data approach: Augment the observed data by splitting the first cell into two cells with probablities $\frac{1}{2}$ and $\frac{\theta}{4}$ respectively. The augmented data are then given by $X = (x_1, x_2, x_3, x_4, x_5)$ such that

$$x_1 + x_2 = y_1 = 125$$

 $x_{i+1} = y_i, i = 2, 3, 4.$

Also using a flat prior $\theta \sim U(0, 1)$, the posterior conditional on the augmented data is given by, through a similar augment as above,

$$\begin{array}{ll} \rho(\theta|x_{1},x_{2},x_{3},x_{4},x_{5}) & \propto & \\ & (\frac{1}{2})^{x_{1}}\theta^{x_{2}} \times \\ & (1-\theta)^{x_{3}}(1-\theta)^{x_{4}}\theta^{x_{5}} \\ & \propto & \theta^{x_{2}+x_{5}}(1-\theta)^{x_{3}+x_{4}}. \end{array}$$

By working with the augmented posterior we realize a simplification in functional form.

- EM-algorithm for this model is given as follows:
- E-step: Compute

$$Q(\theta, \theta^{(i)}) = E \log p(\theta|Z, Y)$$

$$= E\{(x_2 + x_5) \log \theta + (x_3 + x_4) \log(1 - \theta) | X_2, Y\}$$

where

$$\sim \quad \mathsf{Binomial}\left(125, \frac{\theta^{(i)}}{\theta^{(i)} + 2}\right)$$

$$Q(\theta, \theta^{(i)}) \quad = \quad \{E(x_2|\theta^{(i)}, Y) + x_5\} \log \theta$$

 $p(x_2|\theta^{(i)}, Y) = p(x_2|\theta^{(i)}, x_1 + x_2)$

is linear in the latent (missing) data, where

$$E(x_2|\theta^{(i)},Y) = 125 \frac{\theta^{(i)}}{\theta^{(i)}+2}$$
.

 $+(x_3 + x_4) \log(1 - \theta)$

▶ M–step: Find $\theta^{(i+1)}$ as the solution to the following equation

$$\frac{\partial Q(\theta, \theta^{(i)})}{\partial \theta} \bigg|_{\theta^{(i+1)}} = 0$$

$$\frac{E(X_2 | \theta^{(i)}, Y) + x_5}{\theta^{(i+1)}} - \frac{x_3 + x_4}{1 - \theta^{(i+1)}} = 0$$

$$\theta^{(i+1)} = \frac{E(X_2 | \theta^{(i)}, Y) + x_5}{E(X_2 | \theta^{(i)}, Y) + x_3 + x_4 + x_5},$$

where $E(X_2|\theta(i), Y)$ is given by (2). Starting at $\theta^0 = 0.5$, that EM algorithm converges to $\theta^* = 0.6268$ (the observed posterior mode) after 4 iterations.

Outline

Introduction

Convergence Theory

An Example

Standard Error in EM-algorithm

Missing Data in Linear Mode

EM Algorithm in the Mixture Model

Direct Evaluation

Having arrived at the observed posterior mode, θ^* , one wants to evaluate the observed Fisher information given by

$$-\frac{\partial^2 \log p(\theta|Y)}{\partial \theta^2}\bigg|_{\theta=\theta^*}$$

In practice, however, this may be tedious to code or difficult to evaluate for a given data set.

Louis' Method

Due to Louis(1982)

$$-\frac{\partial^{2} \log p(\theta|Y)}{\partial \theta^{2}} = -\int_{\mathcal{Z}} \frac{\partial^{2} \log p(\theta|Y,Z)}{\partial \theta^{2}} p(Z|Y,\theta) dZ$$
$$-Var \left\{ \frac{\partial \log p(\theta|Y,Z)}{\partial \theta} \right\}$$

where the variance is with respect to $p(Z|Y, \theta)$.

Monte Carlo Method

In some situation it may be difficult to analytically compute

$$\int_{\mathcal{Z}} \frac{\partial^2 \log p(\theta|Y,Z)}{\partial \theta^2} p(Z|Y,\theta) dZ$$

$$\approx \frac{1}{m} \sum_{j=1}^{m} \frac{\partial^2 \log p(\theta|Y, z_j)}{\partial \theta^2}$$

where $z_1, \ldots, z_m \stackrel{iid}{\sim} \rho(Z|\theta^*, Y)$.

Similarly, one can approximate the variance by

$$\frac{1}{m}\sum_{j=1}^{m}\left(\frac{\partial\log p(\theta|Y,z_j)}{\partial\theta}\right)^2-\left\{\frac{1}{m}\sum_{j=1}^{m}\left(\frac{\partial\log p(\theta|Y,z_j)}{\partial\theta}\right)^2\right\}.$$

For the example of Genetic Linkage Model,

$$\theta^* = 0.6268, \ m = 10,000, \ n = 125, \ p = \frac{\theta^*}{\theta^* + 2}.$$

The estimate variance

$$\widehat{Var}\left(\frac{\partial \log p(\theta|Y,Z)}{\partial \theta}\right) = 57.8.$$

Outline

Introduction

Convergence Theory

An Example

Standard Error in EM-algorithm

Missing Data in Linear Model

EM Algorithm in the Mixture Model

Derivations

Consider a linear regression model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

where $\epsilon \sim N(0, \sigma^2)$.

Data observed are pairs:

$$(y_i, \mathbf{x}_i), i = 1, \ldots, n.$$

Missing data can arise from either the response or covariates. Let us consider the case of missing in response. So, write

$$\mathbf{y} = (\mathbf{y}_{obs}, \mathbf{y}_{mis}) \sim N_0(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I}),$$

where
$$\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T$$
. Let $\boldsymbol{X} = (\boldsymbol{x}_1^T, \dots, \boldsymbol{x}_n^T)^T$.

▶ Parameters to be estimated are $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ and σ^2 .

For the ease of exposition, re-arrange the responses as

$$\mathbf{y} = (\underbrace{y_1, \dots, y_{m_0}}_{\text{missing}}, \underbrace{y_{m_0+1}, \dots, y_n}_{\text{observed}})^T.$$

Clearly, for the normal distribution,

$$S(y) = (y_i, i = 1, ..., n; y_i^2, i = 1, ..., n)$$

gives a set of sufficient statistics.

► E-Step: Calculate conditional expectations of sufficient statistics:

$$y_i^{(r)} = E(y_i | \mathbf{y}_{obs}, \mathbf{X}, \boldsymbol{\beta}^{(r)}, \sigma^{2(r)})$$

$$\begin{cases} y_i, & \text{if } y_i, i = m_0 + 1, \dots, n \text{ observed} \\ \mathbf{x}_i^T \boldsymbol{\beta}^{(r)}, & \text{if } y_i, i = 1, \dots, m_0 \text{ missing} \end{cases}$$

And

$$y_i^{2(r)} = E(y_i^2 | \mathbf{y}_{obs}, \mathbf{X}, \boldsymbol{\beta}^{(r)}, \sigma^{2(r)})$$

$$\begin{cases} y_i^2 & \text{if } y_i \text{ observed} \\ \sigma^{2(r)} + \{\mathbf{x}_i^T \boldsymbol{\beta}^{(r)}\}^2 & \text{if } y_i \text{ missing} \end{cases}$$

▶ M-step: Find the MLE based on the full data $y^{(r)}$ and $y^{2(r)}$.

$$\boldsymbol{\beta}^{(r+1)} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}^{(r)}$$

- Note that this update for $\beta^{(r+1)}$ doesn't involve $\sigma^{2(r+1)}$, so one can update $\sigma^{2(r+1)}$ at the very end when the update of $\beta^{(r+1)}$ is complete.
- ▶ Update $\sigma^{2(r+1)}$ by

$$\sigma^{2(r+1)} = \frac{1}{n} \left\{ m_0 \sigma^{2(r)} + \sum_{i=m_0+1}^{n} (y_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{(r)})^2 \right\}$$

• At convergence, $\beta^{(*)}$ is obtained, and then plugged in

$$\sigma^{2(*)} = \frac{1}{n} \left\{ m_0 \sigma^{2(*)} + \sum_{i=m_0+1}^{n} (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta}^{(*)})^2 \right\}$$

Solving for $\sigma^{2(*)}$ leads to

$$\sigma^{2(*)} = \frac{1}{n - m_0} \sum_{i=m_0+1}^{n} (y_i - \mathbf{x}_i^T \boldsymbol{\beta}^{(*)})^2.$$

Outline

Introduction

Convergence Theory

An Example

Standard Error in EM-algorithm

Missing Data in Linear Model

EM Algorithm in the Mixture Model

Framework

The density function of the normal-normal mixture takes the following form:

$$f(x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \left[p_1 \exp\left\{ -\frac{(x_i - \mu_1)^2}{2\sigma^2} \right\} + p_2 \exp\left\{ -\frac{(x_i - \mu_2)^2}{2\sigma^2} \right\} \right],$$

where p_k is the probability that model $N(\mu_k, \sigma^2)$ is observed, k = 1, 2, so $p_1 + p_2 = 1$.

We want to derive the maximum likelihood estimation for parameters, $p_1, p_2 = 1 - p_1, \mu_1, \mu_2, \sigma^2$, which will be denoted by θ .

Likelihood Augmentation by Latent Variable

Define a latent variable that indicates the choice of a normal model as follows:

$$Z_i = \begin{cases} 1, & \text{if } X_i \sim N(\mu_1, \sigma^2); \\ 0, & \text{if } X_i \sim N(\mu_2, \sigma^2) \end{cases}$$

which is obviously a Bernoulli random variable with $p_1 = P(Z_i = 1), p_2 = P(Z_i = 0)$. Consequently we can write the conditional density as

$$p(x_i|z_i) = \{\phi(x_i; \mu_1, \sigma)\}^{z_i} \{\phi(x_i; \mu_2, \sigma)\}^{1-z_i}, \ z_i = 0, 1.$$

Then the augmented likelihood is given by

$$p(\theta|x_i, z_i, i = 1, ... n) = \prod_{i=1}^n f(x_i|z_i)f(z_i)$$

$$= \prod_{i=1}^n \{p_1\phi(x_i; \mu_1, \sigma)\}^{z_i} \{p_2\phi(x_i; \mu_2, \sigma)\}^{1-z_i}.$$

The posterior of the latent variable on the observed data and parameters are:

$$P(Z_{i} = 1 | \theta, x_{i}) = \frac{P(Z_{i} = 1)f(x_{i} | y_{i} = 1, \theta)}{P(Z_{i} = 0)f(x_{i} | z_{i} = 0, \theta) + P(Z_{i} = 1)f(x_{i} | z_{i} = 1, \theta)}$$

$$= \frac{p_{1}\phi(x_{i}; \mu_{1}, \sigma)}{p_{1}\phi(x_{i}; \mu_{1}, \sigma) + p_{2}\phi(x_{i}; \mu_{2}, \sigma)}$$

$$\stackrel{\text{def}}{=} \pi_{1}(x_{i}; \theta)$$

$$P(Z_{i} = 0 | \theta, x_{i}) = \frac{p_{2}\phi(x_{i}; \mu_{2}, \sigma)}{p_{1}\phi(x_{i}; \mu_{1}, \sigma) + p_{2}\phi(x_{i}; \mu_{2}, \sigma)}$$

$$\stackrel{\text{def}}{=} \pi_{2}(x_{i}; \theta) = 1 - \pi_{1}(x_{i}; \theta).$$

We can rewrite this as

$$f(z_i|x_i,\theta) = \pi_1(x_i;\theta)^{z_i}\pi_2(x_i;\theta)^{1-z_i}.$$

Then given the updated value at iteration j available, we have $\theta^{(j)} = (p_1^{(j)}, p_2^{(j)}, \mu_1^{(j)}, \mu_2^{(j)}, \sigma^{(j)})$ and $\pi(x_i, \theta^{(j)})$.

Derivation: E-Step

Then the Q-function is given by

$$Q(\theta, \theta^{(j)}) = \sum_{i=1}^{n} \sum_{z_{i} \in \{0,1\}} \log p(x_{i}, z_{i}; \theta) p(z_{i}|x_{i}, \theta^{(j)})$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{2} \frac{p_{k}^{(j)} \phi(x_{i}; \mu_{k}^{(j)}, \sigma^{(j)})}{p_{1}^{(j)} \phi(x_{i}; \mu_{1}^{(j)}, \sigma^{(j)}) + p_{2}^{(j)} \phi(x_{i}; \mu_{2}^{(j)}, \sigma^{(j)})} \log (p_{k} \phi(x_{i}; \mu_{k}, \sigma))$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{2} \pi_{k}(x_{i}, \theta^{(j)}) \log (p_{k} \phi(x_{i}; \mu_{k}, \sigma))$$

In the E step, we evaluate both $\pi_k(x_i, \theta^{(j)})$ and $Q(\theta, \theta^{(j)})$.

Derivation: M-Step

In the M step, we find $\theta^{(j+1)} = \arg \max_{\theta} Q(\theta, \theta^{(j)})$ by taking the derivative with respect to p_1, μ_1, μ_2 and σ and setting to 0:

$$\frac{\partial}{\partial p_1} Q(\theta, \theta^{(j)}) = \sum_{i=1}^n \pi_1(x_i, \theta^{(j)}) \frac{1}{p_1} - \sum_{i=1}^n \pi_2(x_i, \theta^{(j)}) \frac{1}{1 - p_1} = 0,$$

$$\frac{\partial}{\partial \mu_k} Q(\theta, \theta^{(j)}) = \sum_{i=1}^n \pi_k(x_i, \theta^{(j)}) \frac{\frac{\partial}{\partial \mu_k} \phi(x_i; \mu_k, \sigma)}{\phi(x_i; \mu_k, \sigma)} = 0$$

$$\frac{\partial}{\partial \sigma} Q(\theta, \theta^{(j)}) = \sum_{i=1}^n \sum_{k=1}^2 \pi_k(x_i, \theta^{(j)}) \frac{\frac{\partial}{\partial \sigma} \phi(x_i; \mu_k, \sigma)}{\phi(x_i; \mu_k, \sigma)} = 0$$

The closed form expressions of the solution to the above equations are

$$p_k^{(j+1)} = \frac{\sum_{i=1}^n \pi_k(x_i, \theta^{(j)})}{n}, k = 1, 2;$$

$$\mu_k^{(j+1)} = \frac{\sum_{i=1}^n \pi_k(x_i, \theta^{(j)}) x_i}{\sum_{i=1}^n \pi_k(x_i, \theta^{(j)})}, k = 1, 2;$$

$$\sigma^{2(j+1)} = \frac{\sum_{i=1}^n \sum_{k=1}^2 \pi_k(x_i, \theta^{(j)}) (x_i - \mu_k^{(j+1)})^2}{n}$$

Initial Values

To specify the initial values, we may first run a two-class clustering analysis, from which we can estimate $\rho_k^{(0)} =$ the proportion of data points classified into class k, and $\mu_k^{(0)} =$ the class-specific sample mean, k = 1, 2, and $\sigma^{(0)} =$ the sample variance of the overall data.