INTRODUÇÃO AOS SISTEMAS DE COMUNICAÇÃO

Ruído e Taxa de Erro

MODELO DE SISTEMAS DE COMUNICAÇÃO DIGITAL

MODELO SIMPLIFICADO

EXEMPLO

CANAL BINÁRIO

$$BER = P_e = P_{e0} \cdot P[IN=0] + P_{e1} \cdot P[IN=1]$$

EXEMPLO: PROBABILIDADES

$$P[IN=1] = 9/20$$

$$P_{e0} = 1/11$$

$$P_{e1} = 2/9$$

BER =
$$P_e = P_{e0} \cdot P[IN=0] + P_{e1} \cdot P[IN=1] = 3/20$$

RELAÇÃO SINAL-RUÍDO

(desvio padrão)

20dB = A potência do sinal é 100x a potência do ruído

RUÍDO GAUSSIANO

RUÍDO GAUSSIANO

DISTRUIÇÃO NORMAL

PDF DO SINAL RECEBIDO

LIMIAR DE DECISÃO

• Assumindo que 0 e 1 são equiprováveis

BER vs POTÊNCIA DO SINAL

BER vs POTÊNCIA DO RUÍDO

INTRODUÇÃO AOS SISTEMAS DE COMUNICAÇÃO

Ruído e Taxa de Erro