IN THE CLAIM

1	1. (Previously Presented) A method for allocating computer resources, comprising the
2	steps of:
3	allocating a first resource of a first-resource type; and
4	allocating a second resource of a second-resource type different from the
5	first-resource type;
6	wherein
7	a distance from the second resource to the first resource is the
8	shortest distance among distances between the first resource
9	to resources of the second-resource type;
10	the first resource and the second resource are allocated to be
11	assigned to a program;
12	the distance between the computer resources is stored as firmware,
13	and,
14	upon power-up, an operating system is provided, from the
15	firmware, with the distances between the computer
16	resources for use in allocating the first resource and the
17	second resource.
1	2. (Previously Presented) The method of claim 1 wherein the distance between the
2	computer resources is selected from a group consisting of:
3	a distance measured from one resource to another resource and
4	a distance measured relative to a distance used as a reference.
1	3. (Previously Presented) The method of claim 2 wherein the distance between the
2	computer resources is measured in time units.

1	4. (Canceled)
1	5. (Previously Presented) The method of claim 1 wherein the distance between the
2	computer resources is measured by the distance between nodes containing the
3	resources.
1	6. (Previously Presented) The method of claim 1 wherein the distance between the
2	computer resources is provided by the time taken to communicate from one
3	resource to another resource or the time taken to transfer data from one resource to
4 .	another resource.
1	7. (Previously Presented) The method of claim 1 wherein the computer resources reside in
2	a plurality of nodes each of which includes at least one resource being either an
3	I/O device, a memory device, or a processor.
1	8. (Original) The method of claim 7 wherein resources in a node are on a same bus or
2	share a point-to-point link.
1	9. (Original) The method of claim 1 wherein the first resource is an input device
2	associated with a storage device storing the program or storing data associated
3	with the program.
1	10. (Previously Presented) The method of claim 1 further comprising the step of
2	allocating a third resource of a third-resource type based on
3	the shortest distance between the first resource to resources of the third-
4	resource type; or

5	the shortest distance between the second resource and the resources of the
6	third-resource type.
1.	11. (Previously Presented) A system, comprising:
2	a first resource of a first resource type; and
3	a second resource of a second resource type;
4	wherein
5	the first resource and second resource are selected based on a
6	plurality of distances including distances between a
7	plurality of first-type resources to a plurality of second-type
8	resources; and
9	the plurality of distances are stored as firmware and provided to ar
10	operating system at power-up for use in selecting the first
11	resource and the second resource.
1	12. (Previously Presented) The system of claim 11 wherein the plurality of distances are
2	selected from a group consisting of:
3	a distance measured from one resource to another resource, and
4	a distance measured relative to a distance used as a reference.
1	13. (Previously Presented) The system of claim 11 wherein the plurality of distances are
2	measured by the distance between nodes containing the resources.
1	14. (Previously Presented) The system of claim 11 wherein the plurality of distances are
2	measured in time units.

1	15. (Previously Presented) The system of claim 14 wherein the measured time units are
2	provided by the time taken to communicate from one resource to another resource
3	or the time taken to transfer data from one resource to another resource.
1	16. (Previously Presented) The system of claim 11 wherein resources including the first-
2	type resources and the second-type resources reside in a plurality of nodes each of
3	which includes at least one resource being either an I/O device, a memory device,
4	or a processor.
1	17. (Original) The system of claim 16 wherein resources in a node are on a same bus or
2	share a point-to-point link.
1	18. (Previously Presented) The system of claim 11 wherein the distance between the first
2	resource and the second resource is the shortest distance among the distances
3	between a plurality of first-type resources to a plurality of second-type resources.
1	19. (Previously Presented) The system of claim 11 further comprising a third resource of
2	a third-resource type wherein the third resource is selected based on
3	the shortest distance between the first resource to a plurality of third-type
4	resources; or
5	the shortest distance between the second resource to the plurality of third-
6	type resources.
1	20. (Previously Presented) A computer-readable medium embodying instructions that
2	perform a method for allocating computer resources, the method comprising the
3	steps of:

HP PDNO 10010480-1 USPTO serial number 09/842969

4	allocating a first resource of a first-resource type; and
5	allocating a second resource of a second-resource type different from the
6	first-resource type;
7	wherein
8	a distance from the second resource to the first resource is the
9	shortest distance among distances between the first resource
10	to resources of the second-resource type;
11	the first resource and the second resource are allocated to be
12	assigned to a program;
13	the distance between the computer resources is stored as firmware;
14	and,
15	upon power-up of a system running an operating system, the
16	operating system is provided, from the firmware, with the
17	distances between the computer resources to be used in
18	allocating the first resource and the second resource.
1	21. (Previously Presented) A method for allocating computer resources, comprising the
2	steps of:
3	providing a plurality of first resources of a first-resource type;
4	providing a plurality of second resources of a second-resource type
5	different from the first-resource type;
6	allocating a first resource of the first resource type and a second resource
7	of the second-resource type;

HP PDNO 10010480-1 USPTO serial number 09/842969

8	wherein
9	a distance between the first resource and the second resource is the
10	shortest distance among the distances between the plurality
11	of first resources to the plurality of second resources;
12	the first resource and the second resource are allocated to be used
13	by a program;
14	distances between the computer resources is stored as firmware;
15	and
16	upon power-up of a system running an operating system, the
17	operating system is provided, from the firmware, with the
18	distances between the computer resources to be used in
19	allocating the first resource and the second resource.
1	22. (Previously Presented) A system comprising:
2	firmware embodying distances between resources including a plurality of I/O
3	devices, a plurality of memory, and a plurality of processors; the resources
4	residing in a plurality of resource nodes;
5	an operating system;
6	wherein
7	upon power-up of the system, the operating system uses the distances in
8	the firmware to allocate an I/O device, a memory device, and a
9	processor for use by a program;

HP PDNO 10010480-1 USPTO serial number 09/842969

10	a distance between the I/O device to the memory device is the shortest
11	distance among distances between the plurality of I/O devices to
12	the plurality of memory devices;
13	a distance between the I/O device to the processor is the shortest distance
14	among distances between the plurality of I/O devices to the
15	plurality of processors;
16	a distance between the memory device to the processor is the shortest
17	distance among distances between the plurality of memory devices
18	to the plurality of processors.
1	23. (Previously Presented) A system comprising:
2	a plurality of nodes having resources;
3	an operating system running on a processor in a node of the plurality of nodes;
4	firmware embodying relative distances between the plurality of nodes;
5	wherein, upon power-up, the operating system uses the relative distances between
6	the plurality of nodes in the firmware to allocate resources to be used by a
7	program.
1	24. (Previously Presented) The system of claim 23 further comprising an interconnect
2	fabric connecting the plurality of nodes; the interconnect fabric includes node-
3	controller chips and cross-bar chips wherein

HP PDNO 10010480-1

USPTO serial	number 0	9/	842969
--------------	----------	----	--------

4	a node-controller chip connects at least one I/O controller, one memory
5	controller, a plurality of processors and a plurality of crossbar
6	chips; and
7	a crossbar chip, on a first side, connects to at least a node controller chip,
8	and, on a second side, connects to at least either a crossbar chip or
9	another interconnect chip.
1	25. (Previously Presented) The system of claim 23 wherein a node of the plurality of
2	nodes includes a node-controller chip connecting at least an I/O controller, a
3	memory controller, a processor, and another node.
1	26. (Previously Presented) The system of claim 23 wherein a node of the plurality of
2	nodes includes one or a combination of one or more of an I/O controller connected
3	to I/O devices, a memory controller connected to memory arrays, and one or more
1	processors.
1	27. (Previously Presented) The system of claim 23 wherein a node of the plurality of
2	nodes includes a bus connecting an I/O controller connected to I/O devices, a
3	memory controller connected to memory arrays, a plurality of processors, and a
1	bridge connecting to another node of the plurality of nodes.
1	28. (Previously Presented) The system of claim 23 wherein an I/O device is first allocated,
2	then a memory array is allocated; a distance between the memory array to the I/O

HP PDNO 10010480-1

USPTO serial number 09/842969

3	device is the shortest distance among a plurality of distances between a plurality of
4	memory arrays to the I/O device.

- 29. (Previously Presented) The system of claim 28 wherein a processor is allocated; a
 distance between the processor to the I/O device is the shortest distance among a
 plurality of distances between a plurality of processors to the I/O device.
- 30. (Previously Presented) The system of claim 28 wherein a processor is allocated; a
 distance between the processor to the memory array is the shortest distance among
 a plurality of distances between a plurality of processors to the memory array.
- 31. (Previously Presented) The method of claim 1 wherein the first resource is an I/O
 device connected to a storage device storing the program or storing data
 associated with the program.