

A Simple Introduction to Syndrome-Decoding-Based Cryptography

Paulo S. L. M. Barreto

Contents

- Motivation and basic concepts of error-correcting codes
- Cryptosystems based on syndrome decoding (McEliece and Niederreiter encryption, CFS signatures)
- Constructing and decoding Goppa codes
- Current challenges (reducing key sizes, safe codes, new functionality)

Motivation

Deployed Cryptosystems

- Conventional intractability assumptions:
 - Integer Factorization (IFP): RSA.
 - Discrete Logarithm (DLP), Diffie-Hellman (DHP), bilinear variants: ECC, PBC.

☐ These assumptions reduce to the *Hidden Subgroup Problem* – HSP.

Quantum Computing

Shor's quantum algorithm can solve particular cases of the AHSP (including IFP and DLP) in random polynomial time.

Proposed Post-Quantum Cryptosystems

- Quantum computers seem to be unable to solve NP-complete/NP-hard problems.
- Syndrome Decoding (this seminar)
- Lattice Reduction
- Merkle signatures, Multivariate Quadratic Systems, Non-Abelian (e.g. Braid) Groups, Permuted Kernels and Perceptrons, Constrained Linear Equations...

Basic Concepts of Error-Correcting Codes

□ The (Hamming) weight w(u) of $u \in (\mathbb{F}_q)^n$ is the number of nonzero components of u, and the (Hamming) distance between u, $v \in (\mathbb{F}_q)^n$ is $dist(u, v) \equiv w(u - v)$.

□ A linear [n, k]-code \mathcal{C} over \mathbb{F}_q is a k-dimensional vector subspace of $(\mathbb{F}_q)^n$.

- A code may be defined by a generator matrix $G \in (\mathbb{F}_q)^{k \times n}$ or by a parity-check matrix $H \in (\mathbb{F}_q)^{r \times n}$ with r = n k.

 - $\mathbb{C} = \{ v \in (\mathbb{F}_q)^n \mid Hv^{\mathsf{T}} = \mathsf{O}^r \}$
- \square N.B. The vector s such that $Hv^T = s^T$ is called the *syndrome* of v.
- \square N.B. $HG^{\mathsf{T}} = \mathsf{O}$.

- Generator and parity-check matrices are not unique: given an arbitrary nonsingular matrix $S \in (\mathbb{F}_q)^{k \times k}$ (resp. $S \in (\mathbb{F}_q)^{r \times r}$), the matrix G' = SG (resp. H' = SH) defines the same code as G (resp. H) in another basis.
- □ Consequence: systematic (echelon) form $G = [I_k \mid M]$, $H = [-M^T \mid I_r]$ where $M \in (\mathbb{F}_q)^{k \times r}$. N.B.: not always possible.

- □ Two codes are (permutation) equivalent if they differ essentially by a permutation on the coordinates of their elements.
- Formally, a code C' generated by G' is equivalent to a code C generated by G iff G' = SGP for some permutation matrix $P \in (\mathbb{F}_q)^{n \times n}$ and some nonsingular matrix $S \in (\mathbb{F}_q)^{k \times k}$. Notation: C' = CP.

General Decoding

- □ Input: positive integers n, k, t; a finite field \mathbb{F}_q ; a linear [n, k]-code $\mathcal{C} \in (\mathbb{F}_q)^n$ defined by a generator matrix $G \in (\mathbb{F}_q)^{k \times n}$; a vector $c \in (\mathbb{F}_q)^n$.
- Question: is there a vector $m \in (\mathbb{F}_q)^k$ s.t. e = c mG has weight $w(e) \le t$?
- NP-complete!
- Search: find such a vector e.

Syndrome Decoding

- □ Input: positive integers n, k, t; a finite field \mathbb{F}_{q} ; a linear [n, k]-code $\mathcal{C} \in (\mathbb{F}_{q})^{n}$ defined by a parity-check matrix $H \in (\mathbb{F}_{q})^{r \times n}$ with r = n k; a vector $s \in (\mathbb{F}_{q})^{r}$.
- □ Question: is there a vector $e \in (\mathbb{F}_q)^n$ of weight $w(e) \le t$ s.t. $He^T = s^T$?
- NP-complete!
- Search: find such a vector e.

Easily Decodable Codes

Some codes allow for efficient decoding, e.g. GRS/alternant codes with a paritycheck matrix of form H = VD with

$$V = \begin{bmatrix} 1 & 1 & \dots & 1 \\ L_0 & L_1 & \dots & L_{n-1} \\ L_0^2 & L_1^2 & \dots & L_{n-1}^2 \\ \vdots & \vdots & \ddots & \vdots \\ L_0^{r-1} & L_1^{r-1} & \dots & L_{n-1}^{r-1} \end{bmatrix}, D = \begin{bmatrix} D_0 & 0 & 0 & \dots & 0 \\ 0 & D_1 & 0 & \dots & 0 \\ 0 & 0 & D_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & D_{n-1} \end{bmatrix}.$$

Easily Decodable Codes

- N.B. The decoding algorithm may require a syndrome computed with such a special parity-check matrix H.
- □ Given a syndrome $c^{T} = Au^{T}$ computed with a different parity-check matrix A for the same code (hence H = SA for some S), a decodable syndrome is obtained as $s^{T} = Sc^{T} = Hu^{T}$ with $S = HA^{T}(AA^{T})^{-1}$.

Permuted Decoding

- **Problem:** Solve the GDP/SDP for a code C that is permutation equivalent to some efficiently decodable code C'.
- Obvious resolution strategy: find the permutation and basis change between the codes, and use the C' trapdoor to decode in C.
- Conjectured to be "hard enough" for certain codes.

Shortened Decoding

- Problem: Solve the GDP/SDP for a code \mathcal{C} that is permutation equivalent to some shortened (i.e. projection) subcode of some efficiently decodable code \mathcal{C}' .
- □ Obvious resolution strategy: find the permutation, basis change and shortening between the codes, and use the C' trapdoor to decode in C.
- Deciding whether a code is equivalent to a shortened code is NP-complete.

Cryptosystems Based on Syndrome Decoding

McEliece Cryptosystem

- Key generation:
 - Choose a uniformly random [n, k] t-error correcting, efficiently decodable code Γ and a uniformly random permutation matrix $P \in (\mathbb{F}_q)^{k \times k}$, and compute a systematic generator matrix $G \in (\mathbb{F}_q)^{k \times h}$ for the equivalent code ΓP .
 - Set $K_{priv} = (\Gamma, P), K_{pub} = (G, t).$
- \square Encryption of a plaintext $m \in (\mathbb{F}_q)^k$:
 - Choose a uniformly random t-error vector $e \in (\mathbb{F}_q)^n$ and compute $c = mG + e \in (\mathbb{F}_q)^n$.
- □ Decryption of a ciphertext $c \in (\mathbb{F}_q)^n$:
 - Correct the errors in $c' = cP^{-1}$, i.e. find the t-error vector $e' = eP^{-1}$ s.t. $c' e' \in \Gamma$, then recover m directly from $c e \in \Gamma P$.

A Toy Example

Let n = 8, t = 1, k = 4, and a code with the following systematic parity-check matrix H and generator matrix G:

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

- □ Encryption of the message $m = (1 \ 1 \ 0 \ 0)$ with error vector $e = (0 \ 0 \ 1 \ 0 \ 0 \ 0)$: $c = mG + e = (1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1)$.
- Syndrome computation $Hc^{T} = (1 \ 1 \ 1)^{T}$, error correction reveals e and yields $mG = c e = (1 \ 1 \ 0) \ 0 \ 1 \ 0 \ 1)$.

Niederreiter Cryptosystem

- Key generation:
 - Choose a uniformly random [n, k] t-error correcting, efficiently decodable code Γ and a uniformly random permutation matrix $P \in (\mathbb{F}_q)^{k \times k}$, and compute a systematic parity-check matrix $H \in (\mathbb{F}_q)^{r \times n}$ for the equivalent code ΓP .
 - Set $K_{priv} = (\Gamma, P), K_{pub} = (H, t).$
- \square Encryption of a plaintext $m \in (\mathbb{F}_q)^{\ell}$ with $\ell \leq (n \text{ choose } t)$:
 - Represent m as a t-error vector $e \in (\mathbb{F}_q)^n$, and compute the syndrome $c^T = He^T \in (\mathbb{F}_q)^r$.
- □ Decryption of a ciphertext $c \in (\mathbb{F}_q)^r$:
 - Decode the syndrome $c^{\mathsf{T}} = He^{\mathsf{T}} = (HP^{-1})(Pe^{\mathsf{T}}) = (HP^{-1})(eP^{-1})^{\mathsf{T}}$ to the error vector $e' = eP^{-1}$ using the decoding algorithm for Γ , and obtain the plaintext m from e = e'P.

CFS Signatures

- Key generation:
 - Choose a uniformly random [n, k] t-error correcting, efficiently decodable code Γ and a uniformly random permutation matrix $P \in (\mathbb{F}_2)^{k \times k}$, and compute a systematic parity-check matrix $H \in (\mathbb{F}_2)^{r \times n}$ for the equivalent code ΓP .
 - Choose a random oracle $h: \{0, 1\}^* \times \mathbb{N} \to (\mathbb{F}_2)^r$.
 - Set $K_{priv} = (\Gamma, P), K_{pub} = (H, t).$
- ☐ Signing a message *m*:
 - Find $i \in \mathbb{N}$ such that $s \leftarrow h(m, i)$ is a decodable syndrome of Γ , i.e. $s^{\mathsf{T}} = He^{\mathsf{T}} = (HP^{-1})(eP^{-1})^{\mathsf{T}}$ for some t-error vector $eP^{-1} \in (\mathbb{F}_q)^n$.
 - Decode s^T to the error vector $e' = eP^{-1}$ using the decoding algorithm for Γ, and obtain $e \leftarrow e'P$. The signature is $(e, i) \in (\mathbb{F}_2)^n \times \mathbb{N}$.
- □ Verifying a signature (*e*, *i*):
 - Check that $w(e) \le t$, and compute $c \leftarrow He^{T}$.
 - Accept the signature iff c = h(m, i).

IND-CCA2 Security

■ McEliece is not secure in the strong sense of indistinguishability under an adaptive chosen-ciphertext attack (e.g. c = mG + e reveals all bits of m but t, at most).

Solution: all-or-nothing transform (AONT), e.g. (McEliece-tailored) Fujisaki-Okamoto.

IND-CCA2 Security

- Random oracles
 - $\mathbb{R}: (\mathbb{F}_2)^k \to \{0, 1\}^*.$
 - \mathcal{H} : $(\mathbb{F}_2)^k \times \{0, 1\}^* \to \{0, ..., (n \text{ choose } t) 1\}$, with output encoded as a vector in $(\mathbb{F}_2)^n$.
- \square Encryption of $m \in \{0, 1\}^*$:
 - $u \leftarrow \text{random } (\mathbb{F}_2)^k$
 - $c \leftarrow \mathcal{R}(u) \oplus m$
 - $e \leftarrow \mathcal{H}(u, m)$
 - z ← uG + e
- □ The ciphertext is $(z, c) \in (\mathbb{F}_2)^n \times \{0, 1\}^*$.
- □ Decryption: find u and e from z, recover $m \leftarrow \mathcal{R}(u) \oplus c$, and accept iff $e = \mathcal{H}(u, m)$.

Summary

- Syndrome decoding based cryptosystems are simple and efficient.
- Security related to NP-complete and NP-hard problems (a suitable code may make this relation stronger).
- Strong notions of security are possible in the RO model using a suitable AONT.

- Let $g(x) = \sum_{i=0}^{t} g_i x^i$ be a monic $(g_t = 1)$ polynomial in $\mathbb{F}_q[x]$ where $q = p^m$.
- Let $L = (L_0, ..., L_{n-1}) \in (\mathbb{F}_q)^n$ (all distinct) such that $g(L_j) \neq 0$ for all j. L is called the code support.
- Properties:
 - Easy to generate and plentiful.
 - Usually g(x) is chosen to be irreducible; if so, $\mathbb{F}_{q^t} = \mathbb{F}[x]/g(x)$.

□ The *syndrome function* is the linear map $S: (\mathbb{F}_p)^n \to \mathbb{F}_q[x]:$

$$S(c) = \sum_{i=0}^{n-1} \frac{c_i}{x - L_i} = \sum_{c_i=1} \frac{1}{x - L_i} \pmod{g(x)}.$$

□ The Goppa code $\Gamma(L, g)$ is the kernel of the syndrome function, i.e. $\Gamma = \{c \in (\mathbb{F}_p)^n \mid S(c) = 0\}$.

□ The syndrome can be written in parity-check matrix form as $H^* \in (\mathbb{F}_q)^{t \times n}$ or even $H \in (\mathbb{F}_p)^{mt \times n}$.

□ Trace construction of the parity-check matrix H: write the \mathbb{F}_p components of each \mathbb{F}_q element (in a certain basis) from H^* on m successive rows of H.

Parity-Check Matrix

■ Easy to compute H^* from L and g, namely, $H^*_{t \times n} = T_{t \times t} V_{t \times n} D_{n \times n}$, where:

$$T = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ g_{t-1} & 1 & 0 & \dots & 0 \\ g_{t-2} & g_{t-1} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_1 & g_2 & g_3 & \dots & 1 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 1 & \dots & 1 \\ L_0 & L_1 & \dots & L_{n-1} \\ L_0^2 & L_1^2 & \dots & L_{n-1}^2 \\ \vdots & \vdots & \ddots & \vdots \\ L_0^{t-1} & L_1^{t-1} & \dots & L_{n-1}^{t-1} \end{bmatrix},$$

$$D = \begin{bmatrix} 1/g(L_0) & 0 & \dots & 0 \\ 0 & 1/g(L_1) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1/g(L_{n-1}) \end{bmatrix}.$$

A Toy Example

- □ The toy example sets m = 4, $\mathbb{F}_{2^m} = \mathbb{F}_2[u]/(u^4 + u + 1)$, n = 8, t = 1, k = n mt = 4, with generator polynomial g(x) = x and support $L = (u^7, u^2, u^3, u^{10}, u^{13}, u^1, u^{11}, u^0)$.
- □ The parity-check matrix H* (leading to the binary matrix H via the trace construction and systematic formatting) is

$$H^* = TVD = \begin{bmatrix} u^8 & u^{13} & u^{12} & u^5 & u^2 & u^{14} & u^4 & u^0 \end{bmatrix},$$
 $T = \begin{bmatrix} 1 \end{bmatrix},$
 $V = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix},$
 $D = \text{diag} \begin{bmatrix} 1/g(L_0) & 1/g(L_1) & \dots & 1/g(L_7) \end{bmatrix}.$

Error Locator Polynomial

Efficient decoding procedure for known g and L via the error locator polynomial.

$$\sigma(x) \equiv \prod_{e_i \neq 0} (x - L_i) \in \mathbb{F}_q[x]/g(x).$$

- \square Property: $\sigma(L_i) = 0 \Leftrightarrow e_i = 1$.
- For simplicity, assume binary fields (otherwise an error evaluator polynomial must be defined and computed as well).

Error Correction

- □ Let $m \in \Gamma$, let $e \in (\mathbb{F}_2)^n$ be an error vector of weight $w(e) \le t$, and c = m + e:
 - Compute the syndrome of e through the relation S(e) = S(c).
 - Compute the error locator polynomial σ from the syndrome.
 - Determine which L_i are zeroes of σ (Chien search) thus retrieving e and recovering m.

Error Correction

- Let $s(x) \leftarrow S(e)$. If s(x) = 0, nothing to do (no error), otherwise s(x) is invertible.
 - Property #1: $\sigma(x) = a(x)^2 + xb(x)^2$.
 - Property #2: $\frac{d}{dx}\sigma(x) = b(x)^2$. (N.B.: char 2)
 - Property #3: $\frac{d}{dx}\sigma(x) = \sigma(x)s(x)$.
- □ Thus $b(x)^2 = (a(x)^2 + xb(x)^2)s(x)$, hence a(x) = b(x)v(x) with $v(x) = \sqrt{x + 1/s(x)}$ mod g(x).

Extended Euclid!

Extended Euclid!

A Toy Example

- The toy example sets g(x) = x, $L = (u^7, u^2, u^3, u^{10}, u^{13}, u^1, u^{11}, u^0)$, $c = (1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1)$, and $Hc^T = (1 \ 1 \ 1 \ 1)^T$, so $s(x) = u^3 + u^2 + u + 1 = u^{12}$.
- □ Hence $v(x) = (x + 1/s(x))^{1/2} \mod g(x) = (x + u^3)^{1/2} \mod x$ = $(u^3)^{1/2} = u^9$.
- Extended Euclid starts with a(x) = g(x) = x and b(x) = 0, and proceeds until deg $(a) \le \lfloor t/2 \rfloor = 0$, deg $(b) \le \lfloor (t-1)/2 \rfloor = 0$, with $a(x) = u^9$ and b(x) = 1.
- Thus $\sigma(x) = x + u^3$, which is zero for $x = u^3 = L_2$, and hence $e_2 = 1$ (i.e. c_2 is in error).

Summary

- Goppa codes are simple to construct and to decode.
- Binary irreducible Goppa codes have distance 2t + 1. The best one gets for any other alternant code is distance t + 1.
- Cryptosystems on Goppa codes remain unbroken.

Problems and Challenges

Why Goppa?

- Most syndrome-based cryptosystems can be instantiated with general [n, k]-codes, but not all choices of code are secure.
 - Gabidulin, maximum rank distance (MRD), GRS, lowdensity parity-check (LDPC) and several other codes are all insecure.
- Goppa seems to be OK.
 - Complexity of distinguishing a permuted Goppa code from a random code of the same length and distance: $O(t \ n^{t-2} \log^2 n)$ [Sendrier 2000], or $O(2^n/t)$ in most cryptosystems, where $t = O(n/\log n)$.
 - Few known vulnerabilities (e.g. generator polynomial defined over a proper subfield of the base field).

Choosing Parameters

- Original McEliece setting:
 - m = 10, $n = 2^m = 1024$ (hence L spans \mathbb{F}_{2^m}), t = 50, k = n mt = 524, security ≈ 2^{54} , naïve key size = 65.5 KiB, key size = 32 KiB.
- Other choices [BLP 2008]:

security	n	t	k	m	naïve key size	key size
2 ⁸⁰	1632	33+1	1269	11	74–253 KiB	57 KiB
2 ¹²⁸	2960	56+1	2288	12	243–827 KiB	188 KiB
2 ¹⁹²	4624	95+2	3389	13	698–1913 KiB	511 KiB
2 ²⁵⁶	6624	115+2	5129	13	1209–4147 KiB	937 KiB

□ Let t be a power of 2. A matrix $H \in \mathcal{R}^{t \times t}$ over a ring \mathcal{R} is called *dyadic* iff $H_{ij} = h_{i \oplus j}$ for some vector $h \in \mathcal{R}^t$.

■ Dyadic matrices form a subring of $\mathcal{R}^{t \times t}$ (commutative if \mathcal{R} is commutative).

 \square Compact: O(t) rather than O(t²) space.

□ Efficient: multiplication in time O(t lg t) time via fast Walsh-Hadamard transform, inversion in time O(t) in characteristic 2.

- □ A Cauchy matrix is a matrix $C \in (\mathbb{F}_q)^{t \times n}$ where $C_{ij} = 1/(z_i - L_j)$ for vectors $z \in (\mathbb{F}_q)^t$ and $L \in (\mathbb{F}_q)^n$.
- □ Goppa codes admit a parity-check matrix in Cauchy form: just take z to be the roots of the generator polynomial, i.e. $g(x) = (x z_0)...(x z_{t-1})$.
- Idea: find a dyadic Cauchy matrix.

□ **Theorem:** a dyadic Cauchy matrix is only possible over fields of characteristic 2 (i.e. $q = 2^m$ for some m), and any suitable $h \in (\mathbb{F}_q)^n$ satisfies

$$\frac{1}{h_{i \oplus j}} = \frac{1}{h_i} + \frac{1}{h_j} + \frac{1}{h_0}$$

with $z_i = 1/h_i + \omega$, $L_j = 1/h_j - 1/h_0 + \omega$ for arbitrary ω , and $H_{ij} = h_{i \oplus j} = 1/(z_i - L_j)$.

□ Choose distinct h_0 and h_i with $i = 2^u$ for $0 \le u < \lceil \lg n \rceil$ uniformly at random from \mathbb{F}_{a^i} , then set

$$h_{i+j} \leftarrow \frac{1}{\frac{1}{h_i} + \frac{1}{h_j} + \frac{1}{h_0}}$$

for 0 < j < i (so that $i + j = \overline{i \oplus j}$).

 \square Complexity: O(n).

- Structure hiding:
 - choose a long dyadic code over $\mathbb{F}_{q'}$
 - blockwise shorten the code (Wieschebrink),
 - permute dyadic block columns,
 - dyadic-permute individual blocks,
 - take a binary subfield subcode.
- \square Quasi-dyadic matrices: $((\mathbb{F}_2)^{t \times t})^{m \times \ell}$.

Compact Keys

- □ Sample parameters for practical security levels (private codes over $\mathbb{F}_{2^{16}}$).
- Still larger than RSA keys... but faster, and quantum-immune ☺

security	n	t	k	MB key size	BLP/MB
2 ⁸⁰	2304	64	1280	20480 bits	23
2 ¹²⁸	4096	128	2048	32768 bits	47
2 ¹⁹²	7168	256	3072	49152 bits	85
2 ²⁵⁶	8192	256	4096	65536 bits	117

Further Issues

One can do encryption, signatures, even identity-based identification using ECC (error-correcting codes, not elliptic curve cryptosystems).

■ How do we get identity-based encryption? What about other protocols that are easy with pairings? N.B. Some functionality is possible with lattices – why not with ECC?

Appendix A

Hidden Subgroup Problem

- Let \mathbb{G} be a group, $\mathbb{H} \subset \mathbb{G}$, and f a function on \mathbb{G} . We say that f separates cosets of \mathbb{H} if f(u) = f(v) $\Leftrightarrow u\mathbb{H} = v\mathbb{H}$, $\forall u, v \in \mathbb{G}$.
- □ Hidden Subgroup Problem (HSP):
 - Let \mathcal{A} be an oracle to compute a function that separates cosets of some subgroup $\mathbb{H} \subset \mathbb{G}$. Find a generating set for \mathbb{H} using information gained from \mathcal{A} .
- Important special cases:
 - Abelian Hidden Subgroup Problem (AHSP)
 - Dihedral Hidden Subgroup Problem (DHSP)

Appendix B

Ranking and Unranking Permutations

- Let $\mathcal{B}(n, t) = \{u \in (\mathbb{F}_2)^n \mid w(u) = t\}$, with cardinality $r = \binom{n}{t} \approx \frac{n^t}{t!}$
- □ A ranking function is a mapping rank: $\mathcal{B}(n, t) \rightarrow \{1...r\}$ which associates a unique index in $\{1...r\}$ to each element in $\mathcal{B}(n, t)$. Its inverse is called the unranking function.
- □ Rank size: $\lg r \approx t (\lg n \lg t + 1)$ bits.

Ranking and Unranking Permutations

□ Ranking and unranking can be done in O(n) time (Ruskey 2003, algorithm 4.10).

Computationally simplest ordering: colex.

□ Definition: $a_1a_2...a_n < b_1b_2...b_m$ in colex order iff $a_n...a_2a_1 < b_m...b_2b_1$ in lex order.

Colex Ranking

Sum of binomial coefficients:

$$Rank(a_1a_2...a_k) = \sum_{j=1}^k {a_j - 1 \choose j}$$

Implementation strategy: precompute a table of binomial coefficients.

Colex Unranking

```
for j \leftarrow k downto 1 {
       p \leftarrow j while \binom{p}{i} \le r {

\begin{cases}
p \leftarrow p + 1 \\
r \leftarrow r - \binom{p-1}{j} \\
a_j \leftarrow p
\end{cases}

return a_1 a_2 \dots a_k
```


Appendix C

Decoding a syndrome s(x) for a binary Goppa code

```
v(x) \leftarrow (x + 1/s(x))^{1/2} \mod g(x) // extended Euclid!
F \leftarrow V, G \leftarrow g, B \leftarrow 1, C \leftarrow 0, t \leftarrow \deg(g)
while (\deg(G) > \lfloor t/2 \rfloor) {
    F \leftrightarrow G, B \leftrightarrow C
    while (\deg(F) \ge \deg(G)) {
        j \leftarrow \deg(F) - \deg(G), h \leftarrow F_{\deg(F)} / G_{\deg(G)}
        F \leftarrow F - h \times G, B \leftarrow B - h \times G
\sigma(x) \leftarrow G(x)^2 + xC(x)^2
return σ // error locator polynomial
```


Appendix D

Decoding Alternant Codes

- Similar to Patterson's algorithm for binary irreducible Goppa codes.
- Extended Euclid initialized with s(x) instead of v(x) and x^r instead of g(x).
- $\square \sigma(x) = b(x)/b(0) \text{ (so that } \sigma(0) = 1).$
- N.B.: Patterson's algorithm works for binary reducible Goppa codes as long as the syndrome is invertible mod g(x).