PROPOSAL KONTES ROBOT TEMATIK INDONESIA (KRTMI)

PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 2024

LEMBAR PENGESAHAN

KONTES ROBOT TEMATIK INDONESIA 2024

1. Divisi Lomba : Kontes Robot Tematik Indonesia

2. Nama Tim : RR EL GANADOR

3. Ketua Tim

Nama : Ilham Aziz Saputra

NIM : D400210107 Program Studi : Teknik Elektro

Fakultas : Teknik

Perguruan Tinggi : Universitas Muhammadiyah Surakarta

No. HP : 085232732526

Email : <u>d400210107@student.ums.ac.id</u>

4. Anggota Tim

Anggota 1 : Bayu Muchlis Kurniawan

NIM : D400220012

Anggota 2 : Alvian Trio Saputro

NIM : D400220134

Anggota 3 : Enggie Faturrahman Ilham

NIM : D400229136

5. Dosen Pendamping

Nama Lengkap : Umi Fadlilah, S.T., M.Eng.

NIDN : 0022037801 No. HP : 081393334484

Surakarta, 29 Januari 2024

Dosen Pendamping

Ketua Tim

(Umi Fadlilah, S.T., M.Eng.) NJDN, 0022037801

(Ilham Aziz Saputra) NIM. D400210107

Mengetahui,

Wakii Dekan 3 Bid. Kemahasiswaan Fakultas Teknik

Wakii Rektor 3 Bid. Kemahasiswaan Universitas Muhammadiyah Surakarta

(Dr. Indah Pratiwi, S. T., M. T.)

NIDN. 0630097102

(MARTA Susila, S. E., M. Si., Ph. D.) NIDN. 0620107201

SURAT PENGANTAR

Universitas Muhammadiyah Surakarta Jl. A. Yani No.157, Pabelan, Kartasura, Sukoharjo, Jawa Tengah, 57162 Telp. 0271717417 psw. 1103. Website: kemahasiswaan.ums.ac.id | Email: kemahasiswaan@ums.ac.id.

Nomor: 098/C.2-I/MAWA/I/2024 Surakarta, 29 Januari 2024

Perihal: Pengiriman Delegasi KRI

Yth. Kepala Balai Pengembangan Talenta Indonesia (BPTI)

Pusat Prestasi Nasional

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi

Jalan Jenderal Sudirman, Senayan Jakarta 10270

Dengan hormat,

Sehubungan dengan pelaksanaan KRI Tahun 2024, kami dari Universitas Muhammadiyah Surakarta mengirimkan delegasi untuk KRI sebagai berikut:

a. KRSTI

No	Nama	NIM	Jurusan	Semester	Email
1			Pendidikan	6	
	correct with the start of		Teknik		
	Vio Arvendha	A710210019	Informatika		A710210019@student.ums.ac.id
2	MUHAMMAD		Teknik	6	
	FAKHRI CHOLIS	D400210069	Elektro		d400210069@student.ums.ac.id
3	FAWWAS ADI		Teknik	4	
	KUNCORO	D400220046	Elektro		d400220046@student.ums.ac.id
4	CATUR PUTRA		Teknik	6	
	APRILIANTO	D400210076	Elektro		d400210076@student.ums.ac.id
5	Ir. Bana Handaga,	0601026701	1		bana.handaga@ums.ac.id
	M.T., Ph.D.				

b. KRSRI

No	Nama	NIM	Jurusan	Semester	Email
1	MUHAMMAD SATRIA ANANTA	D400210051	Teknik Elektro	6	d400210051@student.ums.ac.id
2	Syarif Hidayat	D400220086	Teknik Elektro	4	d400220086@student.ums.ac.id
3	MOHAMMAD DWIKI AJI NUGROHO	D400210054	Teknik Elektro	6	d400210054@student.ums.ac.id
4	Heru Supriyono, S.T.,M.Sc.,Ph.D.	0619047704			heru.supriyono@ums.ac.id

c. KRTMI

No	Nama	NIM	Jurusan	Semester	Email
1	Enggie		Teknik	4	
	Faturrahman ilham	D400229136	Elektro		d400229136@student.ums.ac.id

Universitas Muhammadiyah Surakarta
Jl. A. Yani No.157, Pabelan, Kartasura, Sukoharjo, Jawa Tengah, 57162
Telp. 0271717417 psw. 1103.
Website: kemahasiswaan.ums.ac.id | Email: kemahasiswaan@ums.ac.id.

2	ALVIAN TRIO SAPUTRO	D400220134	Teknik Elektro	4	alviantriosaputro@gmail.com
3	Bayu muchlis kurniawan	D400220012	Teknik Elektro	4	d400220012@student.ums.ac.id
4	ILHAM AZIZ SAPUTRA	D400210107	Teknik Elektro	6	d400210107@student.ums.ac.id
5	Umi Fadlilah, S.T., M.Eng.	0022037801			umi.fadlilah@ums.ac.id

d. KRAI

No	Nama	NIM	Jurusan	Semester	Email
1	Ganjar Mukti Wibowo	D400230064	Teknik Elektro	2	ganjarwibowo272@gmail.com
2	DHIMAS NUR BIMANTORO	d400220139	Teknik Elektro	4	d400220139@student.ums.ac.id
3	MUHAMMAD RASYID ANNAFI	D400210048	Teknik Elektro	6	d400210048@student.ums.ac.id
4	Harry Budi Saputra	D400210035	Teknik Elektro	6	d400210035@student.ums.ac.id
5	GESING JATI MAHENDRA	D400210090	Teknik Elektro	6	d400210090@student.ums.ac.id
6	MUHAMAD IDHAN ARKHAN	D400220135	Teknik Elektro	4	d400220135@student.ums.ac.id
7	Dedi Ary Prasetya, S.T., M.Eng.	0615117504			dediary@ums.ac.id

Demikian yang dapat kami sampaikan, atas perhatian dan kerja sama yang baik kami ucapkan terima kasih.

Wakil Rektor Bidang Kemahasiswaan Universitas Muhammadiyah Surakarta

Ihwan Susila, Ph.D

NIK. 711

DAFTAR ISI

HALAMAN COVER	i
LEMBAR PENGESAHAN	ii
SURAT PENGANTAR	iv
DAFTAR ISI	vi
BAB I INFORMASI RINCI TIM	
1.1 TIM PESERTA	1
1.2 INSTITUSI	1
1.3 ALAMAT LENGKAP, NO.HP, DAN E-MAIL	2
BAB II INFORMASI DETAIL ROBOT	
2.1 NAMA TIM	3
2.2 INFORMASI UMUM ROBOT	3
2.3 DESAIN ROBOT	
2.4 SISTEM KENDALI DAN PENGGERAK	7
2.5 SISTEM SENSOR	9
2.6 ALGORITMA	10
2.7 SKETSA GAMBAR	12

BABI

INFORMASI RINCI TIM

1.1 TIM PESERTA

Divisi KRI: KRTMI (Kontes Robot Tematik Indonesia)

Nama Tim: RR EL GANADOR

Nama Ketua Tim: Ilham Aziz Saputra Nama Pembimbing:

NIM: D400210107 Umi Fadlilah, S.T., M.Eng. No. HP: 085232732526

Email: No. HP: 081393334484

d400210107@student.ums.ac.id

Nama Anggota Tim:

1. Bayu Muchlis Kurniawan

NIM: D400220012 2. Alvian Trio Saputro NIM: D400220134

3. Enggie Faturrahman Ilham

NIM: D400229136

NIDN: 0022037801

Email: umi.fadlilah@ums.ac.id

Tabel 1.1 Tim Peserta KRTMI 2024

1.2 INSTITUSI

Nama Lengkap Perguruan Tinggi: Universitas Muhammadiyah Surakarta Alamat Lengkap: Jl. Ahmad Yani, Tromol Pos 1, Pabelan Kartasura, Surakarta, Jawa Tengah.

Nomor Telepon: (0271) 717417 Nomor Fax.: (0271) 715448

Alamat e-mail: ums@ums.ac.id

Tabel 1.2 Instistusi Calon Peserta KRTMI 2024

1.3 ALAMAT LENGKAP, NO. HP, DAN E-MAIL

NAMA	NO. HP	ALAMAT	E-MAIL
Ilham Aziz Saputra	085232732526	Krasak, RT 01/RW 01, Krasak, Teras, Boyolali, Jawa Tengah.	d400210107@student. ums.ac.id
Bayu Muchlis Kurniawan Desa Bumin RT 7/RW 2 Kecamatan Batangan, Kabupaten		Desa Bumimulyo RT 7/RW 2, Kecamatan	d400220012@student. ums.ac.id
Alvian Trio Saputro	085713892813	Dk Blere, RT 01/RW 02, Adisana, Bumiayu, Brebes, Jawa Tengah.	d400220134@student. ums.ac.id
Enggie Faturrahman Ilham	082133851382	RT 10/RW 01, Dusun Kampung Baru, Desa Simpur, Kec. Belik, Kab. Pemalang, Jawa Tengah.	d400229136@student. ums.ac.id

Tabel 1.3 Data Ketua dan Anggota Tim KRTMI 2024

BAB II

INFORMASI DETAIL ROBOT

2.1 NAMA TIM: RR EL GANADOR

2.2 INFORMASI UMUM ROBOT

Terdapat dua (2) robot untuk Kontes Robot Tematik Indonesia 2024, yaitu Robot Pengumpan dan Robot Pemilah. Robot Pengumpan adalah robot yang bergerak secara otomatis yang dikendalikan dengan kendali jarak jauh nirkabel. Robot ini bergerak mengambil kotak sampah kemudian bergerak membawa kotak sampah untuk ditumpahkan isinya pada konveyor pengumpan yang berupa konveyor getar. Konveyor getar berfungsi untuk membantu pemisahan awal sampah agar bisa terpisah antara satu dengan lainnya yang selanjutnya sampah ditumpahkan ke konveyor datar. Sedangkan Robot Pemilah adalah robot yang bergerak secara otomatis yang berfungsi untuk memilah sampah dan mengumpulkan pada kotak pemilahan sesuai jenis sampah. Robot Pemilah selanjutnya akan mengambil sampah pada konveyor dan memindahkan ke kotak pemilahan sesuai dengan jenis sampah. Sampah terdiri atas beberapa jenis material, yaitu daun (basah dan kering), kertas (warna putih dan warna), lembaran plastik (putih dan warna), logam (ferro dan non ferro), dan botol plastik air (dipres).

2.3 DESAIN ROBOT

Desain robot adalah membuat rencana atau konvensi untuk membangun robot atau sistem robot. Pertimbangan desain robot mencakup segala hal yang memengaruhi desain robot, seperti lingkungan yang dilintasi, daya yang diperlukan untuk bergerak, indra yang diperlukan untuk melakukan tugas yang diinginkan, bahan yang digunakan untuk membuat sasis, dan estetika yang diinginkan.

a. Robot Pengumpan

Gambar 2.1 Desain 3D Robot Pengumpan

Desain 3D isometri Robot Pengumpan dapat dilihat pada Gambar 2.1. Desain dibuat menggunakan aplikasi *SOLIDWORK visualize*. Robot manual (robot pengumpan) memiliki ukuran 300 mm × 300 mm dengan ketinggian kurang lebih 670 mm. Bahan kerangka robot manual menggunakan alumunium dengan berat keseluruhan kurang lebih 10,3 kg.

Gambar 2.2 Robot Pengumpan Tampak Depan

Gambar 2.3 Robot Pengumpan Tampak Samping

Gambar 2.4 Tampak Atas Robot Pengumpan

b. Robot Pemilah

Gambar 2.5 Desain 3D Robot Pemilah (a) Sebelum Merenggang, (b) Setelah Merenggang

Desain 3D isometri Robot Pemilah dapat dilihat pada Gambar 2.5. Desain dibuat menggunakan aplikasi *SOLIDWORK visualize*. Robot otomatis (Robot Pemilah) memiliki ukuran 400 mm \times 800 mm dengan ketinggian kurang lebih 700 mm. Robot merenggang hingga memiliki ukuran panjang 800 mm \times 1000 mm. Bahan kerangka robot otomatis menggunakan alumunium dengan berat keseluruhan kurang lebih 12,7 kg.

Gambar 2.6 Tampak Depan Robot Pemilah Sebelum Merenggang

Gambar 2.7 Tampak Samping Robot Pemilah Sebelum Merenggang

Gambar 2.8 Tampak Atas Robot Pemilah Sebelum Merenggang

Gambar 2.9 Tampak Depan Robot Pemilah Setelah Merenggang

Gambar 2.10 Tampak Samping Robot Pemilah Setelah Merenggang

Gambar 2.11 Tampak Atas Robot Pemilah Setelah Merenggang

2.4 SISTEM KENDALI DAN PENGGERAK

Robot yaitu suatu mesin hasil rakitan manusia yang dapat diprogram. Robot memiliki pusat sistem kendali yaitu mikrokontroler. Mikrokontroler merupakan *chip* yang berisi berbagai unit penting untuk melakukan pemrosesan data sehingga dapat berlaku sebagai pengendali dan komputer sederhana. Dengan menggunakan *IC* mikrokontroler, maka kita dapat membuat pengendali robot dengan cara memprogram *IC* mikrokontroler untuk dapat mengendalikan pergerakan dan interaksi robot dengan lingkungan.

Sistem pengendalian pada Robot Pengumpan adalah joystick sebagai *transmitter* dan sistem mikrokontroler sebagai *receiver* dan pengolah data, sedangkan pada Robot Pemilah menggunakan sistem mikrokontroler. Mikrokontroler yang dipakai pada Robot Pengumpan adalah *Arduino Mega 2560 R3* dan *ESP 32* yang merupakan keluarga mikrokontroler dengan pemrograman bahasa C. Sedangkan, mikrokontroler yang dipakai pada Robot Pemilah adalah *Arduino Mega 2560 R3* dengan pemrograman bahasa C. Berikut adalah penjelasan tiap-tiap komponen utama yang digunakan :

a. Arduino Mega 2560 R3

Mikroprosesor yang digunakan adalah *Arduino Mega 2560*. *Arduino Mega 2560* adalah sebuah papan mikrokontroler versi tertinggi dari pabrikan Arduino dengan chip mikrokontroler *Atmega2560*. *Arduino Mega 2560* ini mempunyai pin Input / Output yang banyak dan kapasitas memori yang paling besar diantara versi Arduino lainnya (Kurniawan, 2021).

Gambar 2.12 Arduino Mega 2560 R3

b. ESP32

Mikrokontroler *ESP32* merupakan mikrokontroler SoC (*System on Chip*) terpadu dengan dilengkapi *WiFi* 802.11, *Bluetooth* versi 4.2, dan berbagai peripheral. *ESP32* adalah chip yang cukup lengkap, terdapat prosesor, penyimpanan, dan akses pada GPIO (*General Purpose Input Output*) (Nizam, dkk., 2022).

Gambar 2.13 ESP32

c. Motor Stepper NEMA17

Motor stepper nema 17 merupakan jenis motor stepper 2 fasa yang paling umum digunakan dalam mesin CNC. Ukurannya standar 1.7 inci persegi yang memiliki 1.8 derajat per step dengan membutuhkan 200 step untuk putaran penuh 360 derajat. Kecepatan putarannya tergantung pada suplai tegangan dan frekuensi pulsa step. Torsi motor Nema 17 relatif tinggi, sekitar 30-80 oz-in tergantung spesifikasinya (OurPCB, 2022).

Gambar 2.14 Motor Stepper NEMA17

d. Motor DC PG28 dan Motor DC 25GA370

Motor yang digunakan sebagai penggerak roda robot adalah motor DC PG28 dan motor DC 25GA370. Robot pemilah menggunakan motor PG28 sebagai penggerak roda dan motor DC 25GA370 sebagai penggerak roda robot pengumpan dengan masing-masing menggunakan 4 buah motor DC dan 4 buah Roda.

Gambar 2.15 Motor DC PG28 dan Motor DC 25GA370

e. Motor Servo MG955R

Servo Motor adalah perangkat listrik yang digunakan pada mesinmesin industri pintar yang berfungsi untuk mendorong atau memutar objek dengan control yang dengan presisi tinggi dalam hal posisi sudut, akselerasi dan kecepatan, sebuah kemampuan yang tidak dimiliki oleh motor biasa (Schneider, 2022).

Gambar 2.16 Motor Servo MG995R

f. Joystick

Joystick berfungsi sebagai alat kendali pada robot agar dapat bergerak dan melakukan perintah dari pengendali.

Gambar 2.17 Joystick

2.5 SISTEM SENSOR

Robot manual (Robot Pengumpan) dikontrol secara nirkabel. Dikontrol menggunakan joystick dengan receivernya sehingga robot dapat bergerak sesuai dengan arahan dari pemain/joki. Robot otomatis (Robot Pemilah) bergerak secara otomatis melalui mekanisme motor stepper dan motor DC yang dilengkapi sensor untuk mendeteksi lingkungan sekitar. Sensor yang digunakan adalah sensor photodioda yang digunakan untuk mendeteksi jalur garis dan kamera *pixy* yang berfungsi untuk mendeteksi sampah.

2.6 ALGORITMA

a. Algoritma Robot Pengumpan

Gambar 2.18 Strategi Robot Pengumpan

Pada awal *start*, robot pengumpan dalam posisi *stand by* dan dapat dihubungkan dengan joystick melalui koneksi Bluetooth. Setelah terhubung dengan joystick, robot pengumpan dapat bergerak sepenuhnya sesuai dengan perintah dari joystick karena dikendalikan secara jarak jauh melalui koneksi Bluetooth yang dioperasikan oleh user atau pemain. Pemain mengoperasikan robot pengumpan untuk bergerak mengambil kotak sampah, kemudian bergerak membawa kotak sampah untuk menumpahkan isinya pada konveyor getar. Jika terdapat sampah yang terjatuh di lapangan maka robot pengumpan dapat mengambilnya untuk diletakkan pada konveyor getar. Setelah berhasil menempatkan sampah pada konveyor getar dan masih memiliki waktu, robot pengumpan dapat kembali untuk mengambil kotak sampah lalu membawa dan menumpahkannya pada konveyor getar hingga waktu berakhir.

b. Algoritma Robot Pemilah

Gambar 2.19 Strategi Robot Pemilah

Pada awal *start*, robot dalam posisi *standby*. Memasuki pembacaan garis, jika robot berhasil membaca garis maka robot akan bergerak mengikuti garis, jika robot tidak berhasil membaca garis maka robot harus kembali ke posisi *standby*. Selanjutnya, robot melakukan deteksi pada sampah, ketika berhasil mendeteksi sampah robot akan mengambil sampah tersebut dan membawanya ke kotak sampah, jika sampah tidak berhasil dideteksi maka robot harus kembali mendeteksi sampah. Setelah berhasil membawa sampah ke kotak pemilah dan masih ada waktu, robot dapat kembali melakukan deteksi pada sampah hingga waktu berakhir.

2.7 SKETSA GAMBAR

a. Robot Pengumpan

Gambar 2.20 Sketsa Robot Pengumpan Tampak Depan

Gambar 2.21 Sketsa Robot Pengumpan Tampak Samping

Gambar 2.22 Sketsa Robot Pengumpan Tampak Atas

b. Robot Pemilah

Gambar 2.23 Sketsa Robot Pemilah Sebelum Merenggang

Gambar 2.24 Sketsa Robot Pemilah Setelah Merenggang