Касательное расслоение

Определение

Касательным расслоением гладкого многообразия M^n называется множество

$$T(M) = \bigsqcup_{p \in M} T_p(M).$$

Касательные пространства вида $T_p M$ называются слоями касательного расслоения T(M).

Теорема

T(M) является гладким многообразием размерности 2n.

Док-во: Пусть (U,φ) – карта на M. Положим

$$T(U) = \bigsqcup_{p \in U} T_p(M). \subseteq \mathcal{T}(M)$$

Зададим отображение $\Phi_U \colon T(U) \to \mathbb{R}^{2n} \colon \underline{\mathcal{L}}$ ля $v \in T_pM$, где $\underline{p \in U}$, определяем

$$\Phi_U(v) = (\varphi(p), v_{\varphi}) \in \mathbb{R}^n \times \mathbb{R}^n.$$

 Φ_U биективно отображает T(U) на открытое множество $\varphi(U) \times \mathbb{R}^n$ в \mathbb{R}^{2n} .

1/15

Лекция 3 9 марта 2022 г.

Касательное расслоение

Зададим топологию на T(M):

 $X\subseteq T(M)$ открыто \iff для любой карты (V,ψ) на M множество $\Phi_V(X\cap T(V))$ открыто в \mathbb{R}^{2n} .

Это топология, так как Φ_V – биекция, то есть Φ_V сохраняет объединения и пересечения.

2/15

Касательное расслоение

Зададим топологию на T(M):

 $X\subseteq T(M)$ открыто \iff для любой карты (V,ψ) на M множество $\Phi_V(X\cap T(V))$ открыто в \mathbb{R}^{2n} .

Это топология, так как Φ_V – биекция, то есть Φ_V сохраняет объединения и пересечения.

Гладкий атлас на T(M) – это множество $\{(T(U), \Phi_U)\}$ по всем картам (U, φ) на M.

- ullet эти карты покрывают T(M).
- ullet Пусть $(T(U), \Phi_U)$ и $(T(V), \Phi_V)$ карты на T(M), порождаемые картами (U, φ) и (V, ψ) на M. Тогда функция перехода имет вид

$$\Phi_{V} \circ \Phi_{U}^{-1} = (\psi \circ \varphi^{-1}, d_{\varphi(p)}(\psi \circ \varphi^{-1})), \quad \bigvee$$

и согласованность карт в T(M) следует из согласованности карт в M.

• Φ_U – гомеоморфизм.

офизм. - Suery-проверини - Pu-операто по опр топологии? Завершить док-вы СЯМ-НО. Осганось д-пь кемр Ри.

T(M) - Ton. np-bo He nok, no 450 Ton. M4-e.

Дифференциал отображения в точке

Пусть M^m , N^n – гладкие многообразия, $f:M\to N$ — гладкое отображение, $p\in M$.

Определение

Дифференциал (касательное отображение) f в точке p — отображение

$$d_p f: T_p M \to T_{f(p)} N$$
,

определяемое следующим образом:

Для $v \in T_p M$, представленного кривой α , $d_p f(v)$ — вектор из $T_{f(p)} N$, представленный кривой $f \circ \alpha$.

V= [d]

N= [d]

N= [d]

N= [d]

3/15

Корректность и т.д.

Kopp => Me zabucur
of knubor en
kn. Akbub

Теорема

- $oldsymbol{0}$ $d_p f$ определено корректно;
- $lacksymbol{\circ}$ Для карт φ и ψ в окрестностях p и f(p)

$$(d_{p}f(v))_{\psi}=d_{\varphi(p)}f_{\varphi,\psi}(v_{\varphi}), \qquad \forall v \in T_{p}M$$

(координатное представление дифференциала — дифференциал координатного представления).

В правой части стоит обычный дифференциал в \mathbb{R}^n .

Корректность и т.д.

Теорема

- $oldsymbol{0}$ $d_p f$ определено корректно;
- Q $d_p f$ линейное отображение из $T_p M$ в $T_{f(p)} N$.
- ullet Для карт φ и ψ в окрестностях p и f(p)

$$(d_p f(v))_{\psi} = d_{\varphi(p)} f_{\varphi,\psi}(v_{\varphi}), \qquad \forall v \in T_p M$$

(координатное представление дифференциала — дифференциал координатного представления).

В правой части стоит обычный дифференциал в \mathbb{R}^n .

Замечание

В случае, когда M и N — открытые области в \mathbb{R}^m и \mathbb{R}^n , определение дифференциала согласовано с обычным, с учетом стандартных изоморфизмов $T_p\mathbb{R}^m\cong\mathbb{R}^m$ и $T_p\mathbb{R}^n\cong\mathbb{R}^n$.

Это следует из третьего утверждения теоремы для тождественных карт.

4 / 15

Доказательство теоремы

Пусть $v \in T_p M$ представлен кривой $\alpha \colon (-\varepsilon, \varepsilon) \to M$.

Переходя в карты φ и ψ ,

$$\psi \circ (f \circ \alpha) = f_{\varphi,\psi} \circ (\varphi \circ \alpha)$$

так как $v_{\varphi}=(\varphi\circ\alpha)'(0)$, получаем

$$(\psi \circ (f \circ \alpha))'(0) \models d_{\varphi(p)}f_{\varphi,\psi}(v_{\varphi}).$$

Правая часть не зависит от выбора α

- \implies вектор, представленный $f\circ lpha$, не зависит от lpha,
- \implies определение корректно.

Утверждение 3 следует из (*).

Утверждение 2 (линейность) следует из утверждения 3.

Лекция 3

9 марта 2022 г.

5 / 15

(*)

Глобальное касательное отображение

Так как касательные пространства в разных точках не пересекаются, определено отображение

$$df: TM \to TN$$

где

$$df|_{T_pM}=d_pf.$$

Оно позволяет «на законных основаниях» не писать p в обозначении $d_p f$.

Другое обозначение: Tf.

f: M-7 N- 2nagase M, N- MH-35 d, f: TpM-7 Tfpl

Замечание

df — гладкое отображение из TM в TN.

 $wok-60: \forall kaps q, y koops uperos df syses nagrum$ $<math>(df)_{e,y}(x_{1,-}, x_{1}, x_{1}, x_{1}, x_{2}, x_{2}) = (f_{e,y}(x_{1,2}, x_{1}), x_{2})$ $(df)_{e,y}(x_{1,-}, x_{1}, x_{2}, x_{2}, x_{2}) = (f_{e,y}(x_{1,2}, x_{1}), x_{2})$ $(df)_{e,y}(x_{1,-}, x_{1}, x_{2}, x_{2}) = (f_{e,y}(x_{1,2}, x_{2}))$ $(df)_{e,y}(x_{1,-}, x_{1}, x_{2}, x_{2}) = (f_{e,y}(x_{1,2}, x_{2}))$ $f_{ouku}(x_{1}, x_{2}, x_{2}) = (f_{e,y}(x_{1,2}, x_{2}))$

Производная композиции

Теорема

Пусть M,N,K — гладкие многообразия, $f:M\to N,g:N\to K$ — гладкие отображения. Тогда

$$d(g \circ f) = dg \circ df.$$

Или, для $p \in M$,

$$d_p(g\circ f)=d_{f(p)}g\circ d_pf$$

Доказательство.

$$(f \circ g) \circ \alpha = f \circ (g \circ \alpha).$$

Подмногообразия

Определение

Пусть N^n — гладкое многообразие, $0 \le k \le n$. Множество $M \subset N$ называется k-мерным гладким подмногообразием, если:

для любой точки $x\in M$ существует карта (U,φ) многообразия N такая, что $x\in U$ и $\varphi(M\cap U)=\mathbb{R}^k\cap \varphi(U).$

Здесь и далее считается, что $\mathbb{R}^k \subset \mathbb{R}^n$.

Такие карты будем называть выпрямляющими для M (это не общепринятый термин).

Для краткости слово «гладкое» может пропускаться.

екция 3 9 марта 2022 г.

Подмногообразия

Определение

Пусть N^n — гладкое многообразие, $0 \le k \le n$. Множество $M \subset N$ называется k-мерным гладким подмногообразием, если:

для любой точки $x\in M$ существует карта (U,φ) многообразия N такая, что $x\in U$ и

$$\varphi(M\cap U)=\mathbb{R}^k\cap\varphi(U).$$

Здесь и далее считается, что $\mathbb{R}^k \subset \mathbb{R}^n$.

Такие карты будем называть выпрямляющими для M (это не общепринятый термин).

Для краткости слово «гладкое» может пропускаться.

Лемма

Гладкое подмногообразие размерности k является гладким многообразием размерности k.

Доказательство.

Это очевидным образом следует из того, что если (V,ψ) — карта на N, то $(V\cap M,\psi|_{V\cap M})$ — карта на M.

ATRAC MA M MON-CI Cym. BCEX GUYPON, KAM. GA& M

Пример: графики

Пример

Пусть $V \subset \mathbb{R}^k$ открытое, $f \colon V \to \mathbb{R}^{n-k}$ гладкое. Тогда график f, то есть множество

$$\mathcal{M} > \Gamma_f := \{(x, f(x))\} \subset \mathbb{R}^k \times \mathbb{R}^{n-k} \cong \mathbb{R}^n$$

является гладким подмногообразием \mathbb{R}^n размерности k.

Будем называть такие множества к-мерными графиками.

Доказательство: Напомним, что гладкая структура на \mathbb{R}^n задается одной картой (\mathbb{R}^n , id).

Пусть
$$U = V \times \mathbb{R}^{n-k}$$
, $\varphi \colon U \to \mathbb{R}^n$,

$$\varphi(x,y)=(x,y-f(x)). - \mathcal{N}QSHQP$$

 (U,ψ) – карта на \mathbb{R}^n , согласованная с картой $(\mathbb{R}^n, \mathrm{id})$. Следовательно, она входит в максимальный атлас на \mathbb{R}^n .

Эта карта является выпрямляющей для любой точки из Γ_f .

очки из Γ_f .

 $(x,f(x)) \xrightarrow{q} (x, \infty)$

(U, id) corn c (Ph, id)

1 cora (U, 9/

9' = (x, y++(x))