Introduction to IoT

PERSONALIZED CLIMATE CONTROL SYSTEM

Team Number 48

Presented By: Dhyey Thummar, Shivansh Santoki, Ayush Kanani

Institution: IIIT Hyderabad

WORKING PROTOTYPE

PROJECT OVERVIEW TYPE - IOT-BASED SMART HOME PROTOTYPE

- Goal: To create an automated system that intelligently manages indoor climate and air quality using real-time sensor data and smart controls
- Key Features:
 - Real-time monitoring (temp, humidity, CO₂, occupancy)
 - Smart automation of fan, AC (LED), vent, air purifier (LED)
 - Remote control through a web dashboard
 - Data logging into a MySQL database

Our Objective

- Automate indoor climate monitoring and control
- Enable real-time device adjustments based on sensor input
- System Behavior:
- Continuously track temperature, humidity, CO₂, occupancy
 - Automatically activate fan, vent, AC (LED), and air purifier (LED)

PROBLEMS WE AIM TO SOLVE

Manual Issues:

- Users have to constantly monitor and adjust devices
- Forgetting to switch off devices wastes energy

Environmental & Efficiency Concerns:

- Devices often run unnecessarily
- No optimization based on room occupancy or conditions

SYSTEM STRUCTURE OVERVIEW

Architecture Approach:

- Modular and scalable design
- Two ESP32 boards used for division of responsibilities

Why 2 ESP32s?

- One for occupancy calculations
- One for other sensors and actuators

Reason?

 The other sensors can be operated with delay of 5000 but we can not calculate occupancy with that much high delay

SENSORS USED:

DHT22 – Measures temperature & humidity

MQ-135 – Detects CO_2 and air quality

IR/Ultrasonic – Detects room occupancy

 $HI = -8.784 + 1.611 \times T + 2.339 \times RH$ Heat Index $-0.146 \times T \times RH - 0.0123 T^2$ represents

"feels-like" $-0.0164 \times RH^2 + 0.0022 \times T^2 \times RH$ temperature $+0.0007 \times T \times RH^2$

FEELS-LIKE TEMPERATURE

- We calculated the feels-like temperature by combining temperature and humidity values to control the operation of various devices.
- The variable RH stands for Relative Humidity, and T stands for temperature in degrees Fahrenheit.

ACTUATORS USED:

- Motor for Ventilation Opens/closes based on air quality
- Fan Turns on with heat/humidity
- LEDs Simulate AC and Air Purifier ON/OFF status

Protocol: MQTT (Message Queuing Telemetry Transport)

Broker: EMQX Cloud

Connection: Secure WebSockets (WSS) on port 8084

Enables low-latency, lightweight communication ideal for IoT

COMMUNICATION PROTOCOL — MQTT

MQTT — PUBLISH-SUBSCRIBE MODEL

- ESP32 #1 publishes to esp32/sensors
- Dashboard subscribes and updates charts in real time
- ESP32 #2 subscribes to esp32/control for device instructions
- Occupancy updates via esp32/occupancy
- Decoupled, real-time, flexible communication model

Node.js server subscribes to MQTT topics

Parses and processes the sensor payload

Enables future data analytics and logging

Inserts selected fields into MySQL database

DATA STORAGE NODE.JS + MYSQL

DATA STORED IN MYSQL-DATABASE

1846 32.5	52.4	480	37.7	2025-04-20 18:53:33
1847 32.5	52.5	479	37.8	2025-04-20 18:53:38
1848 32.5	52.8	475	37.8	2025-04-20 18:53:43
1849 32.5	52.8	496	37.8	2025-04-20 18:53:48
1850 32.5	52.9	494	37.8	2025-04-20 18:53:53
1851 32.5	52.5	490	37.8	2025-04-20 18:53:58
1852 32.5	52.3	490	37.7	2025-04-20 18:54:03
1853 32.5	52.3	477	37.7	2025-04-20 18:54:08
1854 32.5	52.3	480	37.7	2025-04-20 18:54:13
1855 32.5	52.3	486	37.7	2025-04-20 18:54:18
1856 32.5	52.3	483	37.7	2025-04-20 18:54:23
1857 32.5	52.3	473	37.7	2025-04-20 18:54:28
1858 32.5	52.2	511	37.7	2025-04-20 18:54:33
1859 32.5	52.2	487	37.7	2025-04-20 18:54:38
1860 32.5	52.2	487	37.7	2025-04-20 18:54:43
1861 32.5	52.2	475	37.7	2025-04-20 18:54:48
1862 32.4	52.2	487	37.6	2025-04-20 18:54:53
1863 32.5	52.2	477	37.7	2025-04-20 18:54:58

 We stored the values over a period of 3-4 days to enable better analysis.

Real-time dashboard (graphs + device control)

Auto/Manual mode toggle

Live occupancy detection

Historical data storage

Fully remote control over the web

FEATURES AT A GLANCE

Add machine learning for predictive automation

Integrate with smart home systems like Alexa/Google

Mobile app
version for
better
accessibility

Multi-room or building-level scalability

FUTURE SCOPE (OPTIONAL)

WORKING PROTOTYPE + SCHEWATIC + DATA GRAPHS

IN UPCOMING SLIDES

Distribution of Environmental Variables

THANK YOU

Link of dashboard: Click here

Link of video of working dashboard: Click here

Link of main GitHub repository: Click here

