# ANOVA Weeks1-3

Chris Ives

#### Contents

- Foundations
  - Importing Data
  - Descriptives
  - Plots
- - One-way ANOVA
  - Pairwise Comparisons
  - Planned Contrasts
  - Power Analysis
- Appendix
  - Custom Contrast Sets

## Installing the needs Package

- Can install packages and load them
- No longer need install.packages() and library()
- It will ask if you would like to load it every time RStudio opens. Select yes.

install.packages("needs")

#### Importing the Data

Normally we would use the import() function to import our data. However, with the SPSS .sav files we don't get factor labels.

```
data_import <- import(here("data/Lab2_Vocab.sav"))
head(data_import)</pre>
```

Notice how we have 1s down the instruct column

#### The Fix

For now, when working with .sav files we will use the read.sav function from the misty package.

use.value.labels = TRUE tells it to use the labels as the cell values.

# Checking The Assumptions of ANOVA

- Independence of observations
- Normality
- Homogeneity of variance

#### Descriptive Statistics

Make sure the psych package is installed and loaded:

#### needs(psych)

describe from the psych package is one of the more popular functions for descriptive statistics.

#### describe(l2\_data)

|      | n me        |              | Su          | median                                                                  | trimmed                                                                                   | mad                                                                                                                               |
|------|-------------|--------------|-------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| int> | <dbl></dbl> | <dbl></dbl>  | <dbl></dbl> | <dbl></dbl>                                                             | <dbl></dbl>                                                                               | <dbl></dbl>                                                                                                                       |
| 1    | 36          | 18.5         | 10.5356538  | 18.5                                                                    | 18.5                                                                                      | 13.3434                                                                                                                           |
| 2    | 36          | 33.5         | 12.8652355  | 35.5                                                                    | 34.2                                                                                      | 12.6021                                                                                                                           |
| 3    | 36          | 2.0          | 0.8280787   | 2.0                                                                     | 2.0                                                                                       | 1.4826                                                                                                                            |
|      | 1 2         | 1 36<br>2 36 | 2 36 33.5   | 1     36     18.5     10.5356538       2     36     33.5     12.8652355 | 1     36     18.5     10.5356538     18.5       2     36     33.5     12.8652355     35.5 | 1       36       18.5       10.5356538       18.5       18.5         2       36       33.5       12.8652355       35.5       34.2 |

3 rows | 1-8 of 14 columns

#### Independence of Observations

- Do participants cross groups?
- We know this if we know the study design
- In this study, each student experienced one and only one lecture

## Normality

- We can check the skew and kurtosis values from our describe() output.
- $0 \pm 2$  is a good rule of thumb for a tenable assumption of normality.

| <dbl></dbl>  |
|--------------|
| 101017       |
| 0 -1.3003629 |
| 2 -0.8726857 |
| 0 -1.5821759 |
| 0            |

• Instruct is a categorical variable, so we can ignore the skew and kurtosis on that.

#### Visual Inspection for Normality

• For the most part, plots will be wrapped using the ggplot() function.

#### Histogram

```
ggplot(data = l2_data, aes(x = vocab)) +
  geom_histogram()
```

• aes() refers to aesthetics. What are the variables we want represented in our plots? Since we just want counts of a single continuous variable, we just need to specify our x (i.e., x = vocab).

# Histograms

```
ggplot(data = l2_data, aes(x = vocab)) +
  geom_histogram()
```



#### Boxplot

• To get boxplots, we just substitute **geom\_histogram()** for **geom\_boxplot()** and modify our aesthetics.

```
ggplot(data = l2_data, aes(x = instruct, y = vocab)) +
  geom_boxplot()
```



#### Homogeneity of Variance

Homogeneity test is a separate analysis. We'll just use the **leveneTest** function for the **car** package. Formula is the same as for the ANOVA we want to run. Specify **center** = "mean" (function's default is median) to match SPSS results.

```
needs(car)
car::leveneTest(vocab ~ instruct, data = l2_data, center = "mean")
## Levene's Test for Homogeneity of Variance (center = "mean")
## proup 2 7.5054 0.002058 **
## 33
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Our significant result shows error variance around the *mean* is not equal across groups.

# Running ANOVAS

Example here is from Lab 1 data.

ANOVAs will be run using the anova\_test() function. Formula is specified as DV ~ IV. My convention is to number my model objects (e.g., m1, m2, etc.)

```
needs(rstatix)
m1 <- anova_test(data = l1_data, formula = vocab ~ instruct, deta
## Coefficient covariances computed by hccm()

m1

## ANOVA Table (type II tests)
##
## Effect SSn SSd DFn DFd F p p<.05 ges
## 1 instruct 1176 3824 1 22 6.766 0.016 * 0.235</pre>
```

#### Effect Sizes

Effect sizes can be specified using effect.size = \_\_\_\_ in the anova.test() function. Use effect.size = "ges" for generalized eta squared or effect.size = "pes" for partial eta squared. Default is "ges".

```
anova_test(data = l1_data, formula = vocab ~ instruct,
          effect.size = "ges")
## Coefficient covariances computed by hccm()
## ANOVA Table (type II tests)
##
## Effect DFn DFd F pp<.05 ges
## 1 instruct 1 22 6.766 0.016 * 0.235
anova_test(data = l1_data, formula = vocab ~ instruct,
           effect.size = "pes")
## Coefficient covariances computed by hccm()
## ANOVA Table (type II tests)
##
## Effect DFn DFd F pp<.05 pes
## 1 instruct 1 22 6.766 0.016 * 0.235
Notice they are the same for a one-way between subjects
ANOVA
```

# Posthoc Comparisons | Tukey

If you write out "data = l2data" the function will produce an error since it designed for multiple types of objects. Here we just type "l2data".

rstatix::tukey\_hsd(l2\_data, formula = vocab ~ instruct)

| term<br><chr></chr> | group1<br><chr></chr> | group2<br><chr></chr> | null.value > |
|---------------------|-----------------------|-----------------------|--------------|
| 1 instruct          | physical science      | social science        | 0            |
| 2 instruct          | physical science      | history               | 0            |
| 3 instruct          | social science        | history               | 0            |
| 3 rows   1-         | -5 of 10 columns      |                       |              |

# Posthoc Comparisons | Games-Howell

Remember, Games-Howell is used if the assumption of variance homogeneity is violated.

| . <b>y.</b><br><chr></chr> | group1<br><chr></chr> | group2<br><chr></chr> | estimate <dbl></dbl> |
|----------------------------|-----------------------|-----------------------|----------------------|
| 1 vocab                    | physical science      | social science        | -14.0                |
| 2 vocab                    | physical science      | history               | -5.5                 |
| 3 vocab                    | social science        | history               | 8.5                  |
| 3 rows                     | 1-5 of 9 columns      |                       |                      |

# Posthoc Comparisons | Bonferroni

| .y.                        | group1           | group2         | n1          | n2          | p ,         |  |  |
|----------------------------|------------------|----------------|-------------|-------------|-------------|--|--|
| <chr></chr>                | <chr></chr>      | <chr></chr>    | <int></int> | <int></int> | <dbl></dbl> |  |  |
| 1 vocab                    | physical science | social science | 12          | 12          | 0.00651     |  |  |
| 2 vocab                    | physical science | history        | 12          | 12          | 0.26200     |  |  |
| 3 vocab                    | social science   | history        | 12          | 12          | 0.08700     |  |  |
| 3 rows   1-7 of 10 columns |                  |                |             |             |             |  |  |

# Specified Contrasts

## (Lab 3)

 They are not automatic in R and are a bit difficult. It is not important that you understand the reasoning behind all of the following steps.

## Specified Contrasts

Check the order of your levels.

```
levels(l3_data$instruct)
```

```
## [1] "physical science" "social science" "history"
```

Make sure they are in the order that you would like and code your contrasts accordingly. As an example, If they need to be reordered use:

```
l3_data$instruct <- factor(l3_data$instruct, levels = c("social s</pre>
```

Note: We will be using the original order in the following contrasts.

Step 1: Set your contrasts. We'll do Helmert here.

## contrast2 0.0000000 1.0000000 -1.0000000

```
contrast1 <- c(1, -.5, -.5) # physical science vs others contrast2 <- c(0, 1, -1) #social science vs history
```

**Step 2**: Bind the vectors into a temporary matrix. Constant should be equal to 1/(length of your vectors).

**Step 3**: Take the inverse of the matrix using the **solve()** function. Then we are dropping the first column with the constants.

```
mat <- solve(mat.temp)</pre>
mat
## constant contrast1 contrast2
## [1,] 1 0.6666667 0.0
## [2,] 1 -0.3333333 0.5
## [3,] 1 -0.3333333 -0.5
mat < - mat[, -1]
mat
## contrast1 contrast2
## [1,] 0.6666667 0.0
## [2,] -0.3333333 0.5
## [3,] -0.3333333 -0.5
```

**Step 4**: Run your model formula using **lm()** and set contrasts. Here we are linking our "instruct" variable with our contrast matrix. Remember:

- contrast1 = physical science vs others
- contrast2 = social science vs history

```
m_contrasts <- lm(vocab ~ instruct, data=l3_data, contrasts = lis
summary(m_contrasts)
```

```
##
## Call:
## lm(formula = vocab ~ instruct, data = 13 data, contrasts = list(instruct
##
## Residuals:
##
     Min 1Q Median 3Q
                                  Max
## -22.000 -10.000 1.750 9.375 21.000
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.500 1.968 17.026 <2e-16 ***
## instructcontrast1 9.750 4.174 2.336 0.0257 *
## instructcontrast2 -8.500 4.819 -1.764 0.0870 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

# How do I get the SDs for calculating effect sizes?

We will use the mutate function to code new groupings.

Then, we will run descriptives on this variable. My

case\_when function reads: If instruct = social

science or instruct = history, code contrast1 as

humanities. If instruct = physical science code as

physical science.

```
l3_data <- l3_data %>%
  mutate(contrast1 = case_when(instruct == "social science" | instruct == "physical science" ~ '
contrast1_desc <- describe(l3_data ~ contrast1)</pre>
```

#### rmarkdown::paged\_table(contrast1\_desc\$humanities)

|                            | vars             | n           | mean        | sd          | median      | trimmed     |  |  |
|----------------------------|------------------|-------------|-------------|-------------|-------------|-------------|--|--|
|                            | <int> &lt;</int> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |  |  |
| idnum                      | 1                | 24          | 24.50       | 7.0710678   | 24.5        | 24.50       |  |  |
| vocab                      | 2                | 24          | 30.25       | 12.7696992  | 34.0        | 30.85       |  |  |
| instruct*                  | 3                | 24          | 2.50        | 0.5107539   | 2.5         | 2.50        |  |  |
| contrast1*                 | 4                | 24          | 1.00        | 0.0000000   | 1.0         | 1.00        |  |  |
| 4 rows   1-7 of 14 columns |                  |             |             |             |             |             |  |  |

#### rmarkdown::paged\_table(contrast1\_desc\$`physical science`)

|            | vars        | n me        |       | sd          | median      | trimmed     | mad         |  |
|------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|--|
|            | <int></int> | <dbl></dbl> | ×dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |  |
| idnum      | 1           | 12          | 6.5   | 3.605551    | 6.5         | 6.5         | 4.4478      |  |
| vocab      | 2           | 12          | 40.0  | 10.795622   | 43.0        | 40.9        | 11.8608     |  |
| instruct*  | 3           | 12          | 1.0   | 0.000000    | 1.0         | 1.0         | 0.0000      |  |
| contrast1* | 4           | 12          | 1.0   | 0.000000    | 1.0         | 1.0         | 0.0000      |  |

4 rows | 1-8 of 14 columns

## Pooling SDs

## [1] 12.16613

sd1 <- contrast1\_desc\$humanities\$sd[2]</pre>

Here I am saving the second element of each descriptive table (since vocab is the second row in the data frame) to calculate pooled SDs.

```
sd2 <- contrast1_desc$`physical science`$sd[2]

cohens_sd <- sqrt((sd1^2 + sd2^2)/2)
    cohens_sd

## [1] 11.82393

n1 <- contrast1_desc$humanities$n[2]
    n2 <- contrast1_desc$`physical science`$n[2]

hedges_sd <- sqrt(((n1-1)*sd1^2 + (n2-1)*sd2^2)/(n1+n2-2))
    hedges_sd</pre>
```

## Calculate Hedges' g

Now that we have our pooled SD and coefficient, we just need to run the calculation for contrast1.

```
coefficients(m_contrasts)

## (Intercept) instructcontrast1 instructcontrast2
## 33.50 9.75 -8.50

hedges_g <- 9.75/hedges_sd
hedges_g

## [1] 0.8014052</pre>
```

#### Calculate Effect Size

For an unbalanced dataset, we will use pwr.2p2n.test from the pwr package to run a power analysis on our contrast. h will be equal to our effect size. We already saved our n's earlier, so n1 will just be equal to n1 (same for n2).

```
needs(pwr)
pwr.2p2n.test(h = hedges_g, n1 = n1, n2 = n2, power = NULL, sig.
##
##
        difference of proportion power calculation for binomial distribution
##
##
                 h = 0.8014052
##
                n1 = 24
##
                n2 = 12
##
         sig.level = 0.05
##
             power = 0.6204959
       alternative = two.sided
##
##
## NOTE: different sample sizes
```

#### What about my ANOVA results?

To get the anova output, just run

```
rstatix::anova_test() on your m_contrasts object.
SPSS uses Type III SS by default, so I am matching it here.
```

## Coefficient covariances computed by hccm()

#### contrast\_anova

```
## ANOVA Table (type tests)
##

## Effect SSn SSd DFn DFd F p p<.05 ges
## 1 (Intercept) 40401 4599 1 33 289.896 6.57e-18 * 0.898
## 2 instruct 1194 4599 2 33 4.284 2.20e-02 * 0.206</pre>
```

# Appendix

#### Contrasts

**Isolated vs. Orthogonal Sets**. If you are conducting an isolated contrast, or non-orthagonal set, you will need to use a different process for specifying contrasts. Here I demonstrate doing a single contrast. The primary difference is using ginv() from the MASS package rather than solve().

## [1] 0.6666667 -0.3333333 -0.3333333

Essentially, R fills in the rest of the matrix. This means that there will be "extra" contrasts in the output that you will need to ignore. Here **instruct1** corresponds to my first and only contrast. **instruct2** can be ignored.

```
m_contrasts <- lm(vocab ~ instruct, data=l3_data, contrasts = lis
m_contrasts
```

```
##
## Call:
## lm(formula = vocab ~ instruct, data = 13_data, contrasts = list(instruct)
##
## Coefficients:
## (Intercept) instruct1 instruct2
## 33.50 9.75 6.01
```

If you want to make it easier to refer back to your contrasts, you can rename them in your output using the following code. Here I chose to keep the name of the intercept, name my contrast, and make everything else unnamed.

attr(m contrasts\$coefficients, "names") <- c("Intercept", "Phys \$

```
##
## Call:
## Im(formula = vocab ~ instruct, data = 13_data, contrasts = list(instruct)
##
## Coefficients:
## Intercept Phys Sci vs. Others
## 33.50 9.75 6.01
```