Instrukcja użytkowania programu

WellMatch

wtyczka do programu QGIS (v. 3.16+)

Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy

Sosnowiec/Kielce 2023

Opracowanie: dr Zbigniew Małolepszy, mgr inż. Dominik Szrek

Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Sosnowiec/Kielce 2023

Opracowano w ramach zadania państwowej służby geologicznej nr 22.5505.1901.01.1

Nadzorujący: Ministerstwo Środowiska

Finasowanie: Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej

Spis treści

Wtyczka WellMatch 1.0	3
Wymagania	4
Instalacja i aktualizacja	4
ładowanie plików	7
Kojarzenie otworów	10
Ustalanie prawidłowej lokalizacji otworów	13
Eksport wyników	14
Zasilanie algorytmu uczenia maszynowego	14
Zarządzanie wynikami integracji otworów	15
Rozwiązywanie problemów	15

Wtyczka WellMatch 1.0

Program wspomaga identyfikację i łączenie tych samych otworów z dwóch różnych baz danych. Często się zdarza, że informacje o tym samym otworze w dwóch bazach różnią się mniej lub więcej, co uniemożliwia ich proste sparowanie. WellMatch analizuje statystycznie zmienność parametrów otworów i proponuje najbardziej prawdopodobne dopasowania, i co najważniejsze, pokazuje je na mapie. Część otworów jest łączona automatycznie z wykorzystaniem algorytmów uczenia maszynowego, natomiast mniej pewne dopasowania należy przeanalizować i połączyć ręcznie lub w przypadku braku odpowiednika odrzucić otwór z dalszego procesu kojarzenia.

Do działania programu są wymagane dwie bazy zapisane do plików CSV w stronie kodowania Windows-1250 (CP-1250). Przykładowo w programie MS Office w typie pliku wybieramy opcję zapisz jako "CSV (rozdzielony przecinkami) (*.csv)".

Utworzony plik powinny zawierać następujące kolumny:

Unikalny identyfikator; Nazwa otworu; X; Y; Z; Głębokość; Rok

Kolumny mogą mieć inne nazwy, istotne jest tylko czego dotyczą ich dane. Pierwsza kolumna z unikalnym identyfikatorem jest wymagana, natomiast brak pozostałych nie dyskwalifikuje otworu z procesu dopasowania. Współrzędne XY muszą być w tym samym układzie – obecnie wtyczka obsługuje wyłącznie układ współrzędnych PL-1992 (EPSG 2180).

Proces kojarzenia otworów zapisuje wyniki analiz w roboczym folderze projektu, a po zakończeniu pracy eksportuje wyniki dopasowania otworów w formie plików .csv do podfolderu "eksport".

Wymagania

System operacyjny Windows. Wymagane oprogramowanie QGIS w minimalnej wersji 3.16.

Instalacja i aktualizacja

Do instalacji wtyczek w programie QGIS nie są wymagane uprawnienia administratora. Aby rozpocząć proces instalacji należy uruchomić QGIS 3.16 lub w wersji wyższej, a następnie wybrać z menu panel zarządzania wtyczkami:

W polu Name wpisujemy nazwę repozytorium: Repozytorium wtyczek by Dominik Szrek, a w polu URL: http://dszrek.github.io/plugins.xml

Po zatwierdzeniu nowododanego repozytorium wybieramy dostępną w nim wtyczkę WellMatch poprzez wybór z listy wszystkich wtyczek i kliknięcie przycisku Zainstaluj.

Po kliknięciu na ikonkę program zapyta, czy doinstalować brakujące biblioteki wymagane do jego działania. Tu również nie są potrzebne uprawnienia administratora. Instalacje zewnętrznych bibliotek czasami mogą być blokowane przez serwer proxy – pojawi się wtedy komunikat o problemach z instalacją. Prosimy o wykonanie kilku prób instalacji w kilkuminutowych odstępach czasowych, a w przypadku dalszych niepowodzeń – kontakt na adres e-mail dominik.szrek@pgi.gov.pl. Po poprawnym zainstalowaniu bibliotek należy zrestartować program QGIS.

Korzystanie z wtyczki proponujemy rozpocząć bez tworzenia nowego projektu QGIS lub w pustym projekcie (bez warstw w panelu "Warstwy"). Kliknięcie na ikonkę wtyczki spowoduje automatyczne utworzenie nowego projektu w układzie PL-1992 (EPSG:2180) i załadowanie do niego grupy warstw systemowych "WellMatch" oraz podkładu WMTS "Google Map" (2). Do tak przygotowanego projektu możemy dodać własne warstwy (np. ze skanami map dokumentacyjnych) i zapisać projekt jako plik .qgz, aby przy kolejnym uruchomieniu można było z niego skorzystać. Kiedy chcemy pracować na wtyczce z uprzednio zapisanym projektem QGIS, po uruchomieniu QGIS wczytujemy dany plik projektowy .qgz, a następnie uruchamiamy wtyczkę. Jeżeli nie ma potrzeby korzystania z dodatkowych warstw danych, możemy każdorazowo uruchamiać wtyczkę bezpośrednio po uruchomieniu programu QGIS.

Uruchomienie wtyczki spowoduje pojawienie się tzw. dockwidget'u z interfejsem wtyczki (3), a końcówka tytułu nazwy okna QGIS zamieni się w napis "WellMatch" (4)

Ładowanie plików

Pierwszym etapem jest wczytanie dwóch zbiorów baz A i B. Aby to wykonać musimy utworzyć nowy projekt (1). Pojawia się okno do wybrania/utworzenia folderu roboczego projektu. Po zatwierdzeniu folderu jego lokalizacja i nazwa pojawiają się w polu tekstowym.

Najpierw wczytujemy bazę otworów, dla których szukamy skojarzeń z drugiej bazy. Zaproponowaliśmy oznaczenia A i krzyżyk na mapie dla bazy głównej oraz B i kółko na mapie dla bazy z której szukamy dopasowań. Tu klikamy najpierw przycisk Importuj bazę A (2) i po wybraniu pliku rozdzielanego średnikami *.csv pojawia się sporych rozmiarów okno importu:

Po lewej, w górnej połowie (1) mamy informacje o danych w pliku po wczytaniu. Widzimy informacje o danych z brakiem ID, nieunikalnym ID i błędną lokalizacją (wykraczającą poza obszar Polski). Kliknięcie w każdy przycisk wyświetla odpowiedni zestaw otworów. Na zielonym tle zaznaczone są tu otwory akceptowane do dalszej obróbki, na czerwonym – otwory, które nie będą dalej analizowane z uwagi na błędy.

Podobna kolorystyka występuje w panelu przypisania wartości z kolumn Z, Głębokość i Rok. Na wstępie jest już wybrane Z. Należy ustalić z rozwijanej listy odpowiedni typ danych. Do wyboru mamy tekst, liczby całkowite i liczby ułamkowe. Dla Z i Głębokość wybieramy liczby ułamkowe, a dla roku liczby całkowite.

Jeśli po wybraniu odpowiedniego typu danych tło panelu się zazieleni, przechodzimy do kolejnego parametru. Jeśli pozostanie czerwone, przechodzimy do panelu 3, gdzie mamy możliwość odrzucenia wartości niespełniających kryteriów wybranego typu lub błędnych (proponujemy je przejrzeć nawet, jeśli "będzie zielono"). Po lewej jest przykład dla kolumny Rok. W zestawieniu danych widzimy że w 13 otworach w kolumnie WARTOŚĆ występuje myślnik. Te dane należy odrzucić (nie są wartością liczbową). Podobnie wartości -1 i 0, które z pewnością nie wskazują roku. Warto sprawdzić, czy na dole listy nie ma wartości tekstowych np. "brak danych". Po odrzuceniu wszystkich niepoprawnych danych, tło w panelu 2 powinno się zazielenić. Należy tu podkreślić, że otwory z odrzuconą wartością nie są wyłączone z analizy, jedynie dana wartość będzie ignorowana. Po uzyskaniu zielonych barw dla wszystkich parametrów w panelu 2 klikamy OK.

Następnie w oknie Wtyczki klikamy przycisk Importuj bazę B (3) i powtarzamy powyższe czynności dla drugiej bazy.

Kojarzenie otworów

Po wczytaniu obu zbiorów danych pojawi się kolejny etap do wykonania analizy wstępnej z informacją, ile otworów będzie analizowanych w bazie A.

Pomimo przetestowania poprawności działania analizy wstępnej na zróżnicowanych bazach danych, może dojść do wyjątkowej sytuacji zatrzymania się (zawieszenia) analizy w trakcie jej trwania. Aby usprawnić program, warto rejestrować każde takie "zacięcie". W tym celu prosimy otworzyć konsolę pythona, klikając na belce menu zaznaczony poniżej przycisk lub wciskając kombinację klawiszy Crtl+Alt+P. Jeśli coś pójdzie nie tak, w konsoli pojawi się czerwony tekst. Proszę o skopiowanie tego tekstu i przesłanie na adres dominik.szrek@pgi.gov.pl

W przypadku prawidłowego działania, zostaną wykonane 4 fazy analizy wstępnej, zilustrowane paskiem postępu. Wykonywanie analizy dopasowań może zająć nawet kilka godzin, w zależności od ilości otworów w obu bazach oraz od mocy obliczeniowej komputera. Testowe przebiegi warto zacząć od niewielkiego zbioru A.

Analiza wstępna dzieli otwory A na 3 kategorie:

- Połączone w bazie B istnieje wyłącznie 1 otwór z parametrami tożsamymi z otworem A, oba otwory są zlokalizowane w bardzo bliskiej odległości, a ich nazwy nie różnią się znacząco.
- Analizowane w bazie B istnieje jeden lub więcej otworów o bardzo zbliżonych danych do otworu z bazy A. Potrzebne jest ręczne sprawdzenie poprawności połączenia.

Wstrzymane – w bazie B nie znaleziono otworu, który ma zbliżone dane do otworu A.
 W tym zbiorze można ręcznie dopasować tożsame otwory, których dane są mocno odstające.

Poniżej widać, że na testowym zbiorze zostały połączone 67 otworów, 23 otwory połączono, ale zostały pozostawione do zweryfikowania, natomiast 422 otwory nie uzyskały dopasowania.

Po wykonaniu analizy wstępnej program domyślnie włączy kategorię Analizowane. Zanim przejdziemy do ręcznego dopasowywania, warto sprawdzić co program skojarzył automatycznie – w tym celu wciskamy przycisk Połączone. Otrzymujemy poniższy widok okna interfejsu integracji oraz lokalizację dopasowanych otworów na mapie.

Interfejs wtyczki podzielony jest na 3 części – górny panel zawiera tabelę z otworami ze zbioru A, dolny panel wyświetla tabelę z otworami z bazy B, które zostały wybrane jako najbardziej

pasujący kandydaci do dopasowania z aktualnie wybranym otworem A. W centralnej części znajduje się panel porównujący parametry aktualnie wybranego otworu A z wybranym otworem B.

W obu tabelkach mamy zaprezentowane pokolorowane współczynniki dopasowania:

M – odległość

N –nazwa

Z –rzędna Z

Gł. –głębokość

Rok

Dodatkowo w dwóch ostatnich kolumnach mamy średnią (Śr.) i medianę (Me.) obliczane z powyższych parametrów. Współczynniki dopasowania zmieniają się od 0.00 (brak danych) przez bardzo niskie wartości niedopasowania rzędu (0.1-0.5) do 1.00, gdy wartości w obu otworach są identyczne. Aby podkreślić zmienność wartości współczynnika dopasowania zostały one pokolorowane od czerwonego dla 0.00 przez żółty i pomarańczowy do zielonego dla 1.00. Pozwala to łatwo wizualnie zidentyfikować braki i problemy z dopasowaniem.

Wartości współczynników nie prezentują bezwzględnych wartości danych, a jego względne oceny. Dlatego pomiędzy zestawieniami otworów A i B umieszczony jest panel porównywania, gdzie mamy zidentyfikowaną/proponowaną parę otworów z odpowiednimi wartościami N, Z, Gł i Rok. Wartość M jest zaprezentowana na mapie jako odległość nad linią łączącą dwa otwory.

Warto przejrzeć kilka połączonych par otworów sortując zestawienie A po wartościach współczynników dopasowań (należy kliknąć nagłówek kolumny, po której chcemy sortować). Gdy posortujemy po średniej od najmniejszych do największych, otrzymujemy otwór o słabszym dopasowaniu pośród połączonych. Jak widać spora różnica w lokalizacji, brak numeru w nazwie i brak roku nie powstrzymały programu przed wykonaniem prawidłowego skojarzenia otworów GIERALTOWICE X i GERALTOWICE.

Jeżeli otwór A jest skojarzony z otworem B, w najniższej tabeli będzie on oznaczony fioletowym kolorem. Wyszarzałe wartości występują w otworach B, które są już skojarzone z innymi otworami A. Chcąc porównać otwór A z innym otworem B, wybieramy go z listy

za pomocą pojedynczego kliknięcia, albo wciskamy przycisk i klikamy na symbol interesującego nas otworu B w przestrzeni mapowej. W ten sposób jedynie wybierzemy otwór B do porównania (będzie zaznaczony na czerwono) – nie spowodujemy zmiany w sparowaniu.

Jeżeli uważamy, że otwór B został błędnie skojarzony, to po jego zaznaczeniu wciskamy przycisk skasuj połączenie, aby usunąć błędne połączenie. W takim przypadku otwór A

zostanie przeniesiony do kategorii Wstrzymane (w kategoriach Połączone i Analizowane występują otwory A, które mają połączenia z otworami B).

Jeśli na liście otworów B znajdziemy lepszego kandydata od obecnie skojarzonego, to po jego wybraniu wciskamy przycisk USTAL POŁĄCZENIE. W ten sposób rozłączymy poprzednio skojarzony otwór B i skojarzymy otwór A z aktualnie zaznaczonym otworem B, przy czym pozostawimy otwór A w bieżącej kategorii.

Może się okazać (zwłaszcza w kategorii Wstrzymane), że żaden z kandydatów z listy B nie będzie pasował do otworu A. Możemy wtedy rozszerzyć listę kandydatur, klikając na przycisk

PEŁNA ANALIZA [10]

Spowoduje to powtórne przeanalizowanie wszystkich otworów B względem otworu A i wybrania 10 najlepszych kandydatów. Jeśli i to nie poskutkuje, możemy rozszerzyć listę kandydatur do 100 poprzez kliknięcie na przycisk

PEŁNA ANALIZA [100]

.

Jeżeli nie udało się znaleźć pasującego otworu B należy przenieść otwór A do kategorii Odrzucone, klikając na przycisk Odrzucone.

Analiza wstępna przydziela dla każdego otworu A zestaw otworów B, które są najlepiej dopasowane. Tylko te otwory znajdują się w najniższej tabeli i są wyświetlane na mapie. Chcąc zobaczyć wszystkie otwory B, które zlokalizowane są w widzialnym fragmencie mapy, należy kliknąć na przycisk "który zamieni się na "Cznacza to przejście do trybu wyświetlania otworów B, które znajdują się w widzialnym zasięgu mapy. Przybliżanie,

oddalanie i przesuwanie widoku mapy będzie na bieżąco aktualizować listę otworów B.

Ustalanie prawidłowej lokalizacji otworów

Często zdarza się, że lokalizacja otworu w bazie danych podana jest błędnie lub w dużym przybliżeniu (np. centrum najbliższej miejscowości). Prawidłowa integracja danych powinna uwzględnić ustalenie faktycznej lokalizacji otworu. Wtyczka wyposażona jest narzędzie dedykowane temu zagadnieniu.

Lewy guzik z literą A wskazuje, że domyślna lokalizacja otworu to ta z bazy A. Jeśli uznamy, że otwór z bazy B ma właściwą lokalizację wciskamy tek guzik i pojawia się tu litera B. Jeśli po porównaniu z materiałami źródłowymi okaże się, że ani A ani B nie mają właściwej lokalizacji wtedy wciskamy prawy guzik, który pozwala nam wskazać na mapie właściwą lokalizację otworu dla analizowanej pary. Po kliknięciu pojawi się litera C. Jeżeli mamy pewność, że lokalizacje z obu otworów są błędne, a nie znamy prawidłowej – powtórne

wciśnięcie lewego guzika wyświetli symbol "?", co będzie oznaczało, że nie udało się ustalić lokalizacji otworu.

Eksport wyników

Po zakończeniu ręcznej analizy otworów A przechodzimy do kategorii Połączone i wciskamy przycisk EKSPORTUJ. Spowoduje to zapisanie pliku .csv w podkatalogu Export folderu roboczego. Po otwarciu w Excelu możemy przejrzeć tabelę z parą identyfikatorów dopasowanych otworów wraz z ich parametrami.

A	В	C	D	E	G	H	1	J	K	L	M	N	0	P	Q	R
ID_A	ID_B		•	0=A 1=B 2=C, 3=? DIST	[m] NAZWA_A	NAZWA_B		X_B				Z_B	GŁ_A	GŁ_B	ROK_A	
JG-1	3222542	517803,897	247707,041		0 G-1 JANINA	G-1 JANINA		517803,8572		247707,5171		235,97	163	163	2008	200
JG-11	3222783	519029,269	244308,434	0	0 G-11 JANINA	G-11 JANINA	519029,269	519029,1957	244308,434	244308,7404	227,47	227,47	290	290	2007	20
JG-131	3222791	519177,565	245807,985	0	0 G-131 JANINA	G-131 JANINA	519177,565	519177,4987	245807,985	245808,3386	231,59	231,59	265	265	2005	20
JG-132	3222821	520112,315	246185,352	0	0 G-132 JANINA	G-132 JANINA	520112,315	520112,2338	246185,352	246185,6985	236,6	236,6	220	220	2005	20
JG-133	3222834	519661,605	245324,331	0	0 G-133 JANINA	G-133 JANINA	519661,605	519661,5242	245324,331	245324,66	230,25	230,25	201,5	201,5	2005	20
JG-134	3222852	521093,744	249906,613	0	0 G-134 JANINA	G-134 JANINA	521093,744	521093,6884	249906,613	249907,0521	266,07	266,07	910	910	2006	20
JG-136	3222921	518948,905	246513,058	0	0 G-136 JANINA	G-136 JANINA	518948,905	518948,8388	246513,058	246513,4475	235,34	235,34	289,5	289,5	2005	20
JG-2	3222576	517559,347	247285,374	0	0 G-2 JANINA	G-2 JANINA	517559,347	517559,3008	247285,374	247285,8385	234,18	234,18	341	341	2009	20
JG-3	3222615	517241,964	245952,259	0	10 G-3 JANINA	G-3 JANINA	517241,964	517231,9366	245952,259	245952,011	230,99	230,99	310	310	2008	20
JG-4	3222641	518279,193	246422,803	0	0 G-4 JANINA	G-4 JANINA	518279,193	518279,1315	246422,803	246423,2164	232,47	232,47	313	313	2007	20
JG-6	3222675	518809,71	245701,226	0	0 G-6 JANINA	G-6 JANINA	518809,71	518809,6405	245701,226	245701,5936	230,73	230,73	263,5	263,5	2008	20
JG-7	3222699	518592,678	247001,012	0	0 G-7 JANINA	G-7 JANINA	518592,678	518592,6209	247001,012	247001,4327	235,25	235,25	325	325	2008	20
JG-8	3222707	518785,351	244719,316	0	0 G-8 JANINA	G-8 JANINA	518785,351	518785,2829	244719,316	244719,6484	227,26	227,26	200,2	200,2	2009	20
GZ-244/74	11791	511025,642	272599,586	0	1825 Generał Zawadzki 244	GENERAŁ ZAWADZKI 244	511025,642	509290,41	272599,586	273163,51	289,03	289,03	728	728	1974	19
Gi-X	122981	481653,066	260800,963	0	1311 GIERALTOWICE X	GIERAŁTOWICE	481653,066	480701,25	260800,963	261703,13	239,31	239,31	582,82	582,82		
GSL-1	3211916	522950	232676	0	0 GIERAŁTOWICE SL-1	GIERAŁTOWICE SL-1	522950	522950	232676	232676			1164	1164	2014	20:
GIL-1	3211642	506935,14	236025,51	0	0 GILOWICE-1	GILOWICE-1	506935,14	506935,14	236025,51	236025,51	246,95	246,95	1074,75	1074,75	2011	20:
GIL-2H	3211643	507537,13	236463,18	0	0 GILOWICE-2H	GILOWICE-2H	507537,13	507537,13	236463,18	236463,18	239,26	239,26	2294,9	2294,9	2012	20:
GIL-3K	3274213	507542	236443	0	0 GILOWICE-3K	GILOWICE-3K	507542	507542	236443	236443			1360	1360	2018	20:
GIL-4H	3280331	507528	236408	0	0 GILOWICE-4H	GILOWICE-4H	507528	507528	236408	236408			2200	2200	2018	20
GI-I	3211159	474785,95	277075,34	0	0 GLIWICE I	GLIWICE I	474785,95	474785,883	277075,34	277075,814	251,47	251,47	1000	1000	1998	19
GI-II	3211160	476667,139	277353,79	0	567 GLIWICE II	GLIWICE II	476667,139	476109,06	277353,79	277453,9	252,04	252,04	1000	1000	1998	19
GI-III	3211161	479018,595	277653,792	0	0 GLIWICE III	GLIWICE III	479018,595	479018,533	277653,792	277654,263	247.22	247,22	860	860	1997	19
GI-IV	3211280	478277,301	275619,746		0 GLIWICE IV	GLIWICE IV	478277,301	478277,238	275619,746	275620,216		245,78	1000	1000	1997	19
Bs-G101	114975	494897,988	255738,271		GNIOTEK 101	GNIOTEK 101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	494897,988		255738,271		303,99	146,6	146,6	1956	19
Bs-G104	114978	495988,761	255768,243		GNIOTEK 104	GNIOTEK 104		495988,761		255768,243		276,71	267	267	1956	19
Bs-G105	114979	494917,332	255213,352		GNIOTEK 105	GNIOTEK 106		494917,332		255213,352		320,89	282.1	282.1	1957	19
Bs-G106	114980	495294,333	255398,274		GNIOTEK 106	GNIOTEK 106		495294,333		255398,274		304,76	THE PERSON	140	1956	19
Bs-G109	114983	495687,994	255067,452		91 GNIOTEK 109	GNIOTEK 109	495687,994	495631,177	255067,452				257	257	1959	19
Go-1	110644	499139,731	230584,869		727 GOCZALKOWICE 1	GOCZAŁKOWICE 1	499139,731	498485,59	230584,869	230268,75		244,19	265	265	1943	19
Go-2	110645	500272,361	230464,821		1797 GOCZALKOWICE 2	GOCZAŁKOWICE 2	500272,361	498485,59	230464,821	230268,75		243,51	302,4	302,4	1944	19
Go-Geo2			230331,6198		259 GOCZALKOWICE GEO-2	GOCZAŁKOWICE GEO-2	497572,5909		230331,6198	230340,076	258	258	332,9	332,1	1953	19
Go-Geo3			231610,7265		490 GOCZALKOWICE GEO-3	GOCZAŁKOWICE GEO-3	497574,6894	497104,586		231749,764	264	264	218.9	218,9	1953	19
GolG-1		497411,2158	•		367 GOCZALKOWICE IG-1	GOCZAŁKOWICE IG-1	497411,2158		229635,3596	229924,634		246,17		3353,5	1972	19
Go-N1		497927,7752			350 GOCZALKOWICE NOWY 1		497927,7752		231375,3828	231684,266		259,92	581	581	1956	19
Go-N2		497004,9695			178 GOCZALKOWICE NOWY 2		497004,9695		230704,9574			258,21	600.3	600.3	1957	19
Gg-1	106760	470646,477	237526,354		462 GOGOLOWA 1	GOGOŁOWA 1	470646,477	470605,095	237526,354	237986,462		240,91	1002,4	1002,4	1959	19
Gg-10	110180	470652,928	236339,384		68 GOGOLOWA 10	GOGOŁOWA-10	470652,928	470700,442	236339,384	236290,208	285,3	285	1013.6	1013.6	1958	19
	110180	471641,196			213 GOGOLOWA 11	GOGOŁOWA-10		470700,442	236278,266	236065,94		283,12	992,6	992,6	1958	19
Gg-11	110181	473520,948	236278,266 236289,481	0	190 GOGOLOWA 13	GOGOŁOWA-11	471641,196 473520,948	473603,025	236289,481	236118,03		277,64	1001	1001	1958	19
Gg-13	110185	474191,947			1 GOGOLOWA 19	GOGOŁOWA-13		474192,91						1005,3	1958	19
Gg-19 Gg-2	106761	474191,947	235455,056 238018,195		126 GOGOLOWA 2	GOGOŁOWA 2	474191,947 472676,1	474192,91	235455,056 238018,195			277,49 290,16	883	883	1959	19
																19
Gg-3	106762	474662,37	238029,8		140 GOGOLOWA 3	GOGOŁOWA 3	474662,37	474553,53	238029,8	237942,216		276,38		1000,1	1959	19
Gg-4	106763	471291,995	237223,268		117 GOGOLOWA 4	GOGOŁOWA 4	471291,995	471175,156	237223,268	237222,262		276,87	1012,2	1012,2	1958 1958	
Gg-6	106765	471969,497	237086,923		209 GOGOLOWA 6	GOGOŁOWA 6	471969,497	472124,347	237086,923	237227,672		289,26		1000,1		19
Gg-7		473289,8304			168 GOGOLOWA 7	GOGOŁOWA 7	473289,8304	473123,737				284,53		1000,2	1958	19
Gg-8	106767	474099,116	237136,785		44 GOGOLOWA 8	GOGOŁOWA 8	474099,116	474104,228	237136,785			282,69	1000,6	1000,6	1958	19
Gg-9	110179	469476,436	236192,197		27 GOGOLOWA 9	GOGOŁOWA-9	469476,436	469453,553	236192,197	236206,887		242,01	1000,1	1000,1	1959	19
Gs	110137	477928,87	229028,355		516 GOLASOWICE	GOLASOWICE	477928,87	478033,78	229028,355	228522,69	260		768,2	768,2		18
Gk-10	3289671	466568,607	226394,502		1 GOLKOWICE 10	GOŁKOWICE 10	466568,607	466568,484		226394,9919		235,25	1500	1500	1982	19
Gk-14	126477	465304,091	227016,275		115 GOLKOWICE 14	GOŁKOWICE 14	465304,091	465381,533	227016,275	227101,47	241,1		1500	1501	1984	19
Gk-5	3205806	465620,646	228339,39		182 GOLKOWICE 5	GOŁKOWICE 5	465620,646	465767,459	228339,39		247,6		850	850	1968	19
Gk-8	3288768	466819,322	228393,948		1 GOLKOWICE 8	GOŁKOWICE 8	466819,322	466819,2008	228393,948			239,75		1501	1982	19
Gk-9	126479	463856,892	227099,92		166 GOLKOWICE 9	GOŁKOWICE 9	463856,892	463986,445	227099,92			215,49	1500	1500	1982	19
GG-IV		466803,8925	228411,194		0 GOŁKOWICE G-IV	GOŁKOWICE G-IV	466803,8925	466803,8925	228411,194	228411,194		248,17	1303	1303	2012	20
GG-V			227305,4866		0 GOŁKOWICE G-V	GOŁKOWICE G-V	466221,8516			227305,4866		240,04		1300,1	2011	20
GrIG-29	110392		232872,0124		112 GORA IG-29	GÓRA IG-29	506624,955	506576,249			251,3		1403,1	1403,1	1963	19
Gc-1	110186	461090,175	232118,36		532 GORZYCE 1	GORZYCE-1	461090,175	460729,773	232118,36	231726,65		222,73	1500	1500	1963	19
00 1			229692,1458	0	77 GORZYCE 10	GORZYCE-10	461791,4161		229692,1458	229757,581		209.84	1300.5	1300.5	1963	19

Zasilanie algorytmu uczenia maszynowego

W trakcie przeprowadzania analizy wstępnej wykorzystywany jest algorytm uczenia maszynowego, który dobiera kandydatury otworów B w oparciu o model wyuczony na testowym zestawie otworów dopasowanych przez geologów. Algorytm analizuje te dopasowania i stara się dokonywać podobnych wyborów na nowych danych.

Model można udoskonalać dodając kolejne dane zweryfikowane przez człowieka. Dlatego po zakończeniu ręcznej analizy prosimy o ewentualny kontakt na adres dominik.szrek@pgi.gov.pl, w celu przekazania danych znajdujących się w folderze roboczym.

Zarządzanie wynikami integracji otworów

Prezentowana tu treść być może wykracza poza instrukcję użytkowania ale prezentuje istotne zagadnienia, które dotyczą każdego integrowanego zbioru otworów.

Mnogość baz danych otworów, studni i szybów powoduje spore rozproszenie kompetencji związanych z ich utrzymaniem. Może to powodować trudności z właściwym wykorzystaniem wyników integracji. Wydaje się, że otwory sparowane z dwóch baz danych powinny być poddane obustronnej krytycznej ocenie aby uniknąć powieleń integracji tych samych danych.

Sparowane otwory z dwóch baz mogą się znajdować w innych, dlatego nie należ ich wykluczać z kolejnych kroków integracji ale konieczne jest właściwe zarządzanie skojarzoną już parą otworów i lokalizacją otworu zweryfikowaną na podstawie takiego sparowania. Dotychczasowe prace opierają się na kojarzeniu bazy otworowej Oddziału Górnośląskiego (otwory z obszaru GZW) z pozostałymi bazami w wyniku czego powstają skojarzenia OG-CBDG, OG-BDGI, OG-BH, OG-PITAKA oraz OG-baza szybów WUG. Wyniki z każdej z wymienionych integracji wpływają na poprawę jakości danych w bazie OG. Sparowane identyfikatory otworów/studni/szybów mogą oczywiście również posłużyć do uaktualnienia danych w CBDG, BDGI i BH.

Tu rysuje się scentralizowany system integracji jednej wybranej bazy dla określonego obszaru z pozostałymi zbiorami. Wydaje się, że na obszarze całej Polski (już bez GZW) skojarzenia powinny być wykonywane w ten sposób dla CBDG z pozostałymi bazami. Powstanie w ten sposób zestaw identyfikatorów tego samego otworu we wszystkich bazach. Może to stanowić podstawę do podejmowania dalszych decyzji o sposobach integracji danych jak na przykład kwestia ustanowienia jednolitej nazwy tego samego otworu, który w każdej bazie ma inną nazwę.

Rozwiązywanie problemów

Wtyczka została przetestowana jednak jak zawsze mogą się pojawić niespodziewane błędy. Najczęściej towarzyszy im pojawienie się na górze mapy żółtej belki z wiadomością "Zrzut stosu" zawierającą informacje o błędzie. Tekst komunikatu o błędzie wraz z opisem nietypowego zachowania programu należy przesłać na adres dominik.szrek@pgi.gov.pl

W pozostałych sprawach związanych z działaniem wtyczki proszę pisać na adres: <u>zbigniew.malolepszy@pgi.gov.pl</u>