APS Topic Presentation

TRAVELING SALESPERSON PROBLEM

Problem Statement

Find the least cost tour starting at A, traveling through the other three cities exactly once and

returning to A.

B

	A	R	\overline{C}	
• A	• D-	• 3	• 4	• 6
• B	• 2	• -	• 5	• 2
• C	• 7	• 4	• -	• 3
• D	• 5	• 6	• 7	• -

Applications

□ School Bus routing.
□ Robotic welding in the car industry.
□ Printed circuit board drilling and laser cutting of integrated circuits.
□ □ Job processing: Chemical plants – cost of setup to produce chemicals.

Given: Set of cities $\{c_1, c_2, ..., c_N\}$.

For each pair of cities $\{c_i, c_j\}$, a distance $d(c_i, c_j)$.

Find: Permutation that minimizes the overall cost of the travel(brute force approach).

Number of possible tours by generating all permutations:

$$N! = 1 \times 2 \times 3 \times \cdots \times (N-1) \times N = \Theta(2^{N\log N})$$

$$10! = 3,628,200$$

$$20! \sim 2.43 \times 10^{18} (2.43 \text{ quadrillion})$$

Dynamic Programming Solution:

$$O(N^2 2^N) = o(2^{N \log N})$$

Dynamic Programming Algorithm

For each subset C' of the cities containing c_1 , and each city $c \in C'$, let f(C',c) = Length of shortest path that is a permutation of C', starting at c_1 and ending at c.

$$f(\{c_1\}, c_1) = 0$$

For $x \notin C'$, $f(C' \cup \{x\},x) = Min_{c \in C'}f(C',c) + d(c,x)$.

Optimal tour length = $Min_{c \in C}f(C,c) + d(c, c_1)$.

Running time: \sim (N-1)2^{N-1 items} to be computed, at time N for each = $O(N^22^N)$

How hard is the problem

Number of possible tours generating all permutations:

$$N! = 1 \times 2 \times 3 \times \dots \times (N-1) \times N = \Theta(2^{N\log N})$$

 $10! = 3,628,200$
 $20! \sim 2.43 \times 10^{18} (2.43 \text{ quadrillion})$

Dynamic Programming Solution:

$$O(N^22^N)$$

 $10^22^{10} = 102,400$
 $20^22^{20} = 419,430,400$

References

- https://www.geeksforgeeks.org/travellingsalesman-problem-set-1/
- https://en.wikipedia.org/wiki/Travelling_salesma n_problem
- https://www.tutorialspoint.com/design_and_anal_ ysis_of_algorithms/design_and_analysis_of_algorithms_travelling_salesman_problem.htm

Thank You