Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий"

Кафедра Высокопроизводительных вычислительных технологий и систем

Дисциплина: Математическое моделирование

Отчет по лабораторной работе № 1

Тема: «Компьютерное моделирование движения космических тел»

Группа ПМ-453	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Садыков Р.А.			
Принял	Лукащук С.Ю.			

Цель работы: получить навык численного расчета траекторий движения космических тел под действием гравитационных сил.

Задание на лабораторную работу

Задача I. Рассматривается динамика трех разновеликих небесных тел: звезды, планеты и ее спутника. В качестве примера рассматривается Солнечная система. Масса Солнца $M_1 = 2 \cdot 10^{30} \; \mathrm{kr}$. Параметры двух других тел выбираются в соответствии с индивидуальным номером варианта из таблицы.

- 1) Составить уравнения движения второго и третьего тела в системе отсчета, связанной с первым (самым массивным) телом. Предполагается, что движение всех тел происходит в одной плоскости.
- 2) Написать программу численного интегрирования составленных уравнений движения и построить траектории движения тел. В качестве начальных условий принять следующие: все тела находятся на одной прямой, вектора скоростей движения второго и третьего тела сонаправлены. Расстояния между первым и вторым, а также вторым и третьим телами приведены в таблице. Там же указаны значения начальных скоростей второго и третьего тела. Исследовать отклонение орбиты планеты и спутника от круговой с течением времени, а также характер изменения их модулей скорости

Задача II. На круговой орбите высотой Н второго тела находится космический корабль. В некоторый момент времени его двигатели включаются и работают в течение времени Т выводя корабль на новую орбиту, пересекающую орбиту третьего тела. Вектор тяги двигателя в любой момент времени направлен по касательной к траектории движения. Определить местоположение космического корабля на первоначальной орбите в момент включения двигателя из условия минимума массы топлива, необходимой для доставки на поверхность третьего тела полезного груза массой Мо. Местоположение определяется относительно прямой, соединяющей центры второго и третьего тел. Масса корабля складывается из массы топлива, полностью выгорающего за время Т, массы конструкции (0.025 стартовой массы) и массы полезной нагрузки Ма. В конце активного участка траектории (через время 7) происходит отделение полезного груза, который движется далее только под действием гравитационных сил. Скорость полезного груза при достижении поверхности третьего тела не ограничивается.

Практическая часть

Задача І.

	Параметры второго тела			Параметры третьего тела				
№ вар	М ₂ , км	R ₂ , км	R ₁₂ , млн. км	V ₂ , км/с	M_3 , кг	<i>R</i> ₃ , км	R ₂₃ , тыс. км	<i>V</i> ₃ , км/с
9	$1.9*10^{27}$	71500	780	13	$1.5*10^{23}$	2634	1070	10.9

В системе действует сила притяжения космических тел, которая подчиняется закону всемирного тяготения:

$$F_{ij} = \frac{GM_iM_j}{r_{ij}^2} * \frac{r_{ij}}{|r_{ij}|},$$

 $G=6.67*10^{-11} \frac{{
m M}^3}{{
m Kr*c}^2}$ — гравитационная постоянная, r=(x,y), M_{ij} — массы космических тел.

Уравнение движения:

$$M_i \frac{d\overrightarrow{v_i}}{dt} = \sum F_{ij}, \qquad \overrightarrow{v_i} = \frac{d\overrightarrow{r_i}}{dt}.$$

Для системы планета-спутник уравнения движения, относительно Солнца будут иметь вид:

$$M_2 a_2 = \bar{F}_{12} + \bar{F}_{23}, M_3 a_3 = \bar{F}_{13} + \bar{F}_{23},$$

$$r_{12} = \sqrt{x_2^2 + y_2^2}, r_{13} = \sqrt{x_3^2 + y_3^2}, r_{23} = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

Далее составим систему ОДУ:

$$\begin{split} M_2 \frac{dv_{2x}(t)}{dt} &= -\frac{GM_1M_2x_2(t)}{\left(x_2^2(t) + y_2^2(t)\right)^{\frac{3}{2}}} + \frac{GM_3M_2\left(x_3(t) - x_2(t)\right)}{\left(\left(x_3(t) - x_2(t)\right)^2 + \left(y_3(t) - y_2(t)\right)^2\right)^{\frac{3}{2}}}, \\ M_2 \frac{dv_{2y}(t)}{dt} &= -\frac{GM_1M_2y_2(t)}{\left(x_2^2(t) + y_2^2(t)\right)^{\frac{3}{2}}} + \frac{GM_3M_2\left(y_3(t) - y_2(t)\right)}{\left(\left(x_3(t) - x_2(t)\right)^2 + \left(y_3(t) - y_2(t)\right)^2\right)^{\frac{3}{2}}}, \\ M_3 \frac{dv_{3x}(t)}{dt} &= -\frac{GM_1M_2x_3(t)}{\left(x_3^2(t) + y_3^2(t)\right)^{\frac{3}{2}}} - \frac{GM_3M_2\left(x_3(t) - x_2(t)\right)}{\left(\left(x_3(t) - x_2(t)\right)^2 + \left(y_3(t) - y_2(t)\right)^2\right)^{\frac{3}{2}}}, \\ M_3 \frac{dv_{3y}(t)}{dt} &= -\frac{GM_1M_2y_3(t)}{\left(x_3^2(t) + y_3^2(t)\right)^{\frac{3}{2}}} - \frac{GM_3M_2\left(y_3(t) - y_2(t)\right)}{\left(\left(x_3(t) - x_2(t)\right)^2 + \left(y_3(t) - y_2(t)\right)^2\right)^{\frac{3}{2}}}, \\ \frac{dx_2(t)}{dt} &= v_{2x}(t), \\ \frac{dy_2(t)}{dt} &= v_{2x}(t), \\ \frac{dy_2(t)}{dt} &= v_{2y}(t), \\ \frac{dy_3(t)}{dt} &= v_{3y}(t), \\ x_2(0) &= R_{12}, \\ y_2(0) &= 0, \\ x_3(0) &= R_{12} + R_{23}, \\ y_3(0) &= 0, \\ v_{2y}(0) &= v_2, \\ v_{2x}(0) &= 0, \\ v_{3y}(0) &= v_3 + v_2, \\ v_{3x}(0) &= 0. \end{split}$$

Решив данную задачу Коши с помощью Python-библиотеки SciPy, получаем следующие траектории небесных тел:

Рисунок 1 – Траектория движения планеты вокруг Солнца

Рисунок 2 — Траектория движения планеты и спутника вокруг Солнца

Рисунок 3 Траектория движения спутника вокруг планеты

Рисунок 4 Орбита спутника после 1, 100, 500 и 1000 оборотов Максимальная скорость планеты 13,31 км/с, минимальная — 13 км/с

Задача II.

		<i>T</i> , c	M_0	Характеристики топлива			
$N_{\underline{0}}$	Н,					Скорость	
варианта	КМ			Горючее	Окислитель	истечения,	
						M/C	
6	900	1600	75	Аммиак(жидкий)	Кислород	3170	
6	900 1000	1000	13	А шшиак(жидкии)	(жидкий)		

Для описания движения точки переменной массы воспользуемся уравнением Мещерского:

$$m\frac{d\vec{v}}{dt} = -\vec{u}\frac{dm}{dt} + \sum \vec{F},$$

где \vec{v} – скорость ракеты, \vec{u} – скорость истечения.

 $M_{
m oбщая}=M_{
m K}+M_{
m T}+M_{
m 0}$ — общая масса ракеты, $M_{
m K}$ — масса конструкции ракеты, $M_{
m T}$ — масса топлива, $M_{
m 0}$ — масса полезной нагрузки. $\frac{M_{
m K}}{M_{
m oбшая}}=\lambda=0,001.$

Масса ракеты вычисляется по форму

$$m(t) = \begin{cases} \frac{M_0 + M_{\text{T}}}{1 - \lambda} - \frac{M_{\text{T}}t}{T}, & t < T, \\ M_0, & t \ge T. \end{cases}$$

Таким образом, в систему ОДУ добавляются уравнения:

Начальное положение и скорость ракеты на орбите заданной высоты:

$$\begin{cases} x|_{t=0} = R1 + (R_{12} + H) * \cos(\alpha), \\ y|_{t=0} = 0, \\ v_{x}|_{t=0} = 0, \\ v_{y}|_{t=0} = V_{2} + V_{1K}, \end{cases}$$

$$V_{1 ext{K}} = \sqrt{rac{G M_2}{R_2 + H}}$$
, $V_{1 ext{K}}$ — первая космическая скорость.

Для решения задачи была использована Руthon-библиотека SciPy, в которой реализована схема Рунге-Кутты 4 порядка. Так как интервал времени достаточно мал, планета считалась фиксированной точкой. В качестве начального времени берется момент t₀, когда спутник сделал 1000 оборотов вокруг планеты, а первое, второе и третье тело находятся на одной прямой. Для поиска оптимального угла использовался метод Нелдера-Мида. Наименьшее количество топлива для доставки полезного груза на спутник составило 12067 кг при угле 353,8°. Время полета составляет 370588 секунд.

Рисунок 5 — Траектория движения спутника и ракеты до момента попадания полезного груза на спутник

Вывод

В ходе данной лабораторной работы были получены навыки численного расчета траекторий движения небесных тел под действием гравитационных сил. Построены траектории движения планеты, спутника и ракеты, которые получены в результате решения системы дифференциальных уравнений.

Также для построения траектории движения ракеты были произведены расчеты необходимого количества топлива для доставки груза на спутник. В результате минимальное необходимое количество топлива — 12067 кг при угле 353,8°. Время полета составило 370588 секунд.

Приложение

```
from scipy import integrate
from scipy.integrate import solve ivp
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import animation
def event(x, y):
            event.lastvalue = y[3]-y[1]
    orbitsx[int(event.counter/2)].append(y[2]-y[0])
    orbitsy[int(event.counter / 2)].append(y[3] - y[1])
    if (y[3]-y[1]) *event.lastvalue<0:</pre>
        event.counter += 1
    if ((event.counter>=2000 and (abs(y[0]/math.sqrt(y[0]**2+y[1]**2)-(y[2]-
y[0])**2+(y[3]-y[1])**2))<0.001)) and
             (math.sqrt(y[0]**2+y[1]**2) < math.sqrt(y[2]**2+y[3]**2))):
        event.xstop=x
    return x-event.xstop
event.terminal = True
def F(t,y):
    r12x,r12y,r13x,r13y,v2x,v2y,v3x,v3y=y
    r2=math.sqrt(r12x**2+r12y**2)
    r3 = math.sqrt(r13x ** 2 + r13y ** 2)
    r=math.sqrt(r23x**2+r23y**2)
    return [v2x, v2y, v3x, v3y,
             G^*(-(m1/(r2**3)*r12x)+(m3/(r**3)*r23x)),
             G^*(-(m1/(r2**3)*r12y)+(m3/(r**3)*r23y)),
             G^*(-(m1/(r3**3)*r13x)-(m2/(r**3)*r23x)),
             G^*(-(m1/(r3**3)*r13y)-(m2/(r**3)*r23y))]
t span=(0, 1*3000000000)
solution=solve ivp(F,t span,y0, max step=tau, atol=1,
plt.plot(orbitsx[0], orbitsy[0],linestyle='--',label='1 office of oper')
plt.plot(orbitsx[99], orbitsy[99], linestyle='--', label='100 оборот') plt.plot(orbitsx[499], orbitsy[499], linestyle='--', label='500 оборот')
plt.plot(orbitsx[999], orbitsy[999], linestyle='--', label='1000 оборот')
plt.legend()
```

```
plt.show()
    z2 (solution.y[2][-1], solution.y[3][-1],
   solution.y[6][-1]-solution.y[4][-1], solution.y[7][-1]-solution.y[5][-1],
   10, solution.y[0][-1], solution.y[1][-1], 3.4,5300,1)
from scipy.integrate import solve ivp
import matplotlib.pyplot as plt
from matplotlib import animation
import numpy as np
m1, m2, m3=2*(10**30), 1.9*(10**27), 1.5*(10**23)
G=6.67*(10**-11)
m0 = 75
mt = 4950
Rpl = 71500 * (10 ** 3)
H = 900 * (10 ** 3)
Rsat=2634*(10**3)
        return m0
r12x=0
    if event2.stop == -1 and (math.sqrt((y[2] - y[0]) ** 2 + (y[3] - y[1]) **
def F2(t,y):
    rx, ry, r13x, r13y, vx, vy, v3x, v3y=y
    r=math.sqrt(rx**2+ry**2)
   v = math.sqrt(vx ** 2 + vy ** 2)
    r2=math.sqrt((rx-r12x)**2+(ry-r12y)**2)
    r3 = math.sqrt((rx - r13x) ** 2 + (ry - r13y) ** 2)
    r13=math.sqrt(r13x**2+r13y**2)
    r23x = (r13x - r12x)
    r23 = math.sqrt((r13x - r12x) ** 2 + (r13y - r12y) ** 2)
```

```
(-u *dm(t)/m(t) * vx / v+G*(-m1*rx/(r**3)-m2*(rx-r12x)/(r2**3)-
def z2(r13x0,r13y0,v3x0,v3y0,tau,r12x0,r12y0,fi,m):
                   global r12x, r12y
                  mt=m
                   r12x=r12x0
                   r12y=r12y0
                    r3x=r13x0-r12x
                    r3y=r13y0-r12y
                    r3=math.sqrt(r3x**2+r3y**2)
                   v0=1.0*math.sqrt(G*m2/(Rpl+H))
                    rx0=(Rpl+H)*(r3x*math.cos(fi)-r3y*math.sin(fi))/r3
                    ry0 = (Rp1+H) * (r3x*math.sin(fi)+r3y*math.cos(fi))/r3
                   r0=math.sqrt(rx0**2+ry0**2)
                  vx0=-v0*ry0/r0
                   vy0=v0*rx0/r0
                   rx0=r12x+rx0
                    ry0=r12y+ry0
                   s0=[rx0, ry0, r13x0, r13y0, vx0, vy0, v3x0, v3y0]
                    t span=(0,800000)
                    satel=solve ivp(F2,t span,s0, max step=tau, atol=1,
 def optimization(solution, m):
                    R = [math.sqrt((solution.y[2][i] - solution.y[0][i]) ** 2 +
 (solution.y[3][i] - solution.y[1][i]) ** 2) - Rsat for i in
                                             range(len(solution.y[0]))]
                    if Res < 0:
 def show animation(satel,r13x0,r13y0,tau):
                    r13 = math.sqrt(r13x0**2+r13y0**2)
                   alpha=math.acos(r13x0/r13)
                   sy = [(satel.y[0][s * i] - r12x)*math.sin(alpha)+(satel.y[1][s * i] - r12x)*math.sin(alpha)+(satel.y[i][s * i] - r12x)*math.sin(alpha)+(satel.y[i][s * i] - r12x)*math.sin(alpha)+(satel.y[i][s * i] - r12x)*math.sin(alpha)+(satel.y[i][s * i][s * i] - r12x)*math.sin(alpha)+(satel.y[i][s * i][s * i][
 r12y)*math.cos(alpha)    for i in range(int(len(satel.y[0]) / s))]
                    lx = [(satel.y[2][s * i] - r12x)*math.cos(alpha)-(satel.y[3][s * i] - r12x)*math.cos(alpha)-(satel.y[s *
r12y)*math.sin(alpha) for i in range(int(len(satel.y[0]) / s))]
                    ly = [(satel.y[2][s * i] - r12x)*math.sin(alpha)+(satel.y[3][s * i] - r12x)*math.sin(alpha)+(satel.y[s * i] - 
r12y) *math.cos(alpha) for i in range(int(len(satel.y[0]) / s))]
                  plt.legend()
                  moon = plt.Circle((r13x0 - r12x, r13y0 - r12y), Rsat, color='r')
                   rocket = plt.Circle((r13x0 - r12x, r13y0 - r12y), 5*Rsat, color='c')
                   p = ax.add patch(moon)
                   q = ax.add patch(rocket)
```

```
line.set xdata(sx[0:i])
    line.set_ydata(sy[0:i]) # update the data
    line2.set_xdata(lx[0:i]) # update the data
line2.set_ydata(ly[0:i]) # update the data
    moon.set_center((lx[i], ly[i]))
    rocket.set center((sx[i], sy[i]))
ani = animation.FuncAnimation(fig, animate, np.arange(1,
plt.show()
tau=0.1
res1 = optimization(z2(-166864782814.52066, -751687780697.0953,
res2 = optimization(z2(-166864782814.52066, -751687780697.0953,
           -166632056766.0584, -750639289651.4109, a2, mt2), mt2)
res3 = optimization(z2(-166864782814.52066, -751687780697.0953,
           -166632056766.0584, -750639289651.4109, a3, mt3), mt3)
    res=optimization(z2(-166864782814.52066, -751687780697.0953,
    if res<max(res2, res3):</pre>
```