1	CLAIM (Listing):
2	Claim1 (currently amended). A plasma reformer for dissociating water and
3	hydrocarbon fuel in a preheated gaseous form comprising:
4	a turbulent heating zone containing micro-porous articulated material with a first
5	impervious ceramic wall laterally bounding it;
6	a reaction chamber downstream from the turbulent heating zone, the reaction
7	chamber having emitter electrode means attached to the first impervious ceramic wall
8	laterally bounding it, an inner lateral wall containing collector electrode means, and an
9	electric circuit maintained between the emitter electrode means and the collector electrode
10	means;
11	an energy retaining zone containing micro-porous articulated material arrayed
12	downstream from the reaction chamber;
13	low thermal conductivity materials surrounding the energy retaining zone;
14	compression-expansion cushion mat material surrounding the low thermal
15	conductivity material;
16	an ion-neutralization filter surrounding the collector electrode means in the reaction
17	<u>chamber</u> ;
18	a casing; and
19	Ingress means for introducing gaseous material in a flow into the turbulent heating
20	zone and egress means for removing a reformate stream from the energy retaining zone.
21	Claim 2 (currently amended). A plasma reformer as set forth in Claim [[1]] 18
22	wherein the emitter electrode means have a multiplicity of thin needle-like extrusions.
23	Claim 3 (original). A plasma reformer as set forth in Claim 2 wherein the needle-
24	like extrusions have diameters between 1 nanometer and 100 micrometers.
25	Claim 4 (currently amended). A plasma reformer as set forth in Claim 3 wherein
26	the emitter and collector electrode means are a metal selected from [[a]] the group
27	consisting of tungsten, zirconium, titanium, molybdenum, and alloys thereof.
28	Claim 5 (canceled). A plasma reformer as set forth in Claim 4 further comprising
29	an ion neutralizing filter surrounding the collector electrode in the reaction chamber.

1	Claim 6. (currently amended) A plasma reformer as set forth in Claim [[5]] 4
2	further comprising a second ceramic wall laterally surrounding the energy retaining zone
3	and inside of the low thermal conductivity material.
4	Claim 7. (currently amended) A plasma reformer as set forth in Claim 6 wherein
5	the material in the turbulent heating zone and the energy retaining zone have micro-porous
6	structure layers selected from [[a]] the group consisting of alumina, silica, mullite, titanate,
7	spinel, zirconia, or some combination thereof.
8	Claim 8. (original) A plasma reformer as set forth in Claim 7 wherein the low
9	conductivity materials are vacuum form fibers arrayed interior to fiber blankets, the vacuum
10	form fibers having a greater density and a higher percentage of higher melting point material
11	than the fiber blankets.
12	Claim 9. (currently amended) A plasma reformer as set forth in Claim 8 wherein the
13	compression-expansion cushion mat material is low thermal conductive material having a
14	great capacity of absorbing thermal compression-expansion, shocks and vibrations and
15	having the ability of sealing and protecting reformer material.
16	Claim 10. (currently amended) A plasma reformer as set forth in Claim [[5]] $\underline{1}$
17	wherein the ion neutralizing ion-neutralization filter material is a semiconductor.
18	Claim 11. (currently amended) A plasma reformer as set forth in Claim [[5]] $\underline{1}$
19	wherein the ion neutralizing ion-neutralization filter material is a ceramic alloy.
20	Claim 12. (currently amended) A plasma reformer as set forth in Claim 1 wherein
21	each there are plural electric [[circuits]] circuit is connected to a different electricity source
22	Claim 13. (currently amended) A plasma reformer as set forth in Claim 1 wherein
23	the ingress means for introducing gaseous material in a flow into the turbulent heating zone
24	and the egress means for removing a reformate stream from the energy retaining zone are
25	double-walled tubes have an inner wall of a ceramic material and an outer wall of stainless
26	steel.
27	Claim 14. (withdrawn) A process for reforming a preheated gaseous mixture of H ₂ C
28	and hydrocarbon fuels to produce hydrogen comprising:
29	further heating and mixing the mixture in a turbulent heating zone;

1	dissociating the H ₂ O through ionizing and dissociating the hydrocarbon fuel through
2	ionization and heat in a reaction chamber having emitter electrodes means in an outer wall,
3	central collector electrode means, electric circuits maintained between the emitter electrode
4	means and the collector electrode means causing copious numbers of high energy electron to
5	be emitted from the emitter electrode to interact with the hydrocarbon fuel thereby
6	dissociating the hydrocarbon fuel and forming low energy electrons that dissociate H ₂ O; and
7	further dissociating products leaving the reaction chamber in an energy retaining
8	zone.
9	Claim 15. (withdrawn) A process as set forth in Claim 14 wherein the emitter
10	electrodes have a multiplicity of thin needle-like extrusions.
11	Claim 16. (withdrawn) A process as set forth in Claim 15 wherein the needle-like
12	extrusions have diameters between 1 nanometer and 100 micrometers.
13	Claim 17. (withdrawn) A process as set forth in Claim 16 wherein the material in the
14	turbulent heating zone and the energy retaining zone have micro-porous structure layers
15	selected from a group consisting of alumina, silica, mullite, titanate, spinel, zirconia, or some
16	combination thereof.
17	Claim 18 (new). A plasma reformer as set forth in Claim 1 wherein the reaction
18	chamber is maintained in a temperature range of 400°C to 1900°C.