Système d'attache mat réacteur A320 - Corrigé

Q.1.

Q.2. On est dans le cas de liaisons séries \rightarrow on privilégie la méthode cinématique.

$$\text{On a: } \{C_{4/0}\} = \begin{cases} \Omega_{x_{40}} \ 0 \\ \Omega_{y_{40}} \ 0 \\ \Omega_{z_{40}} \ 0 \end{cases} \text{ et } \{C_{1/4}\} = \begin{cases} \Omega_{x_{14}} \ 0 \\ \Omega_{y_{14}} \ 0 \\ \Omega_{z_{14}} \ 0 \end{cases} \text{ et on pose : } \{C_{eq}\} = \begin{cases} \Omega_{x_{eq}} \ v_{x_{eq}} \\ \Omega_{y_{eq}} \ v_{y_{eq}} \\ \Omega_{z_{eq}} \ v_{z_{eq}} \end{cases}$$

$$\overrightarrow{AM} = \overrightarrow{BN} = a.\vec{z} \rightarrow \overrightarrow{V_{N,1/4}} = \overrightarrow{V_{B,1/4}} + \overrightarrow{NB} \wedge \overrightarrow{\Omega_{1/4}} = -a.\vec{z} \wedge (\Omega_{x_{14}}.\vec{x} + \Omega_{y_{14}}.\vec{y} + \Omega_{z_{14}}.\vec{z}) = -a.\Omega_{x_{14}}.\vec{y} + a.\Omega_{y_{14}}.\vec{x}$$

$$\rightarrow \{C_{1/4}\} = \begin{cases} \Omega_{x_{14}} & 0 \\ \Omega_{y_{14}} & 0 \\ \Omega_{z_{14}} & 0 \end{cases} = \begin{cases} \Omega_{x_{14}} & a.\Omega_{y_{14}} \\ \Omega_{y_{14}} - a.\Omega_{x_{14}} \\ \Omega_{z_{14}} & 0 \end{cases}_{(\vec{x}, \vec{y}, \vec{z})}$$

$$\text{D'où } \left\{ C_{eq} \right\} = \left\{ C_{1/0} \right\} = \left\{ C_{1/4} \right\} + \left\{ C_{4/0} \right\} \text{ d'où } : \begin{cases} \Omega_{x_{eq}} = \Omega_{x_{14}} + \Omega_{x_{40}} \\ \Omega_{y_{eq}} = \Omega_{y_{14}} + \Omega_{y_{40}} \\ \Omega_{z_{eq}} = \Omega_{z_{14}} + \Omega_{z_{40}} \\ v_{x_{eq}} = a.\Omega_{y_{14}} \\ v_{y_{eq}} = -a.\Omega_{x_{14}} \\ v_{z_{eq}} = 0 \end{cases}$$

$$\left\{ \begin{array}{c} \Omega_{x_{eq}} = \Omega_{x_{14}} + \Omega_{x_{40}} \\ \Omega_{z_{eq}} = \Omega_{x_{14}} + \Omega_{x_{40}} \\ \Omega_{z_{eq}} = 0 \end{array} \right.$$

$$\rightarrow \left\{ C_{eq} \right\} = \begin{cases} \Omega_{x_{14}} + \Omega_{x_{40}} & a.\Omega_{y_{14}} \\ \Omega_{y_{14}} + \Omega_{y_{40}} & -a.\Omega_{x_{14}} \\ \Omega_{z_{14}} + \Omega_{z_{40}} & 0 \end{cases}$$
 soit une liaison ponctuelle en N de normale (N, \vec{z}).

Florestan MATHURIN

$$\text{On a: } \{C_{5/0}\} = \begin{cases} \Omega_{x_{50}} \ 0 \\ \Omega_{y_{50}} \ 0 \\ \Omega_{z_{50}} \ 0 \end{cases} \text{ et } \{C_{1/5}\} = \begin{cases} \Omega_{x_{15}} \ 0 \\ \Omega_{y_{15}} \ 0 \\ \Omega_{z_{15}} \ 0 \end{cases} \text{ et on pose : } \{C_{eq}\} = \begin{cases} \Omega_{x_{eq}} \ v_{x_{eq}} \\ \Omega_{y_{eq}} \ v_{y_{eq}} \\ \Omega_{z_{eq}} \ v_{z_{eq}} \end{cases}$$

$$\overrightarrow{AM} = \overrightarrow{BN} = a.\vec{z} \ \rightarrow \ \overrightarrow{V_{M,1/5}} = \overrightarrow{V_{A,1/5}} + \overrightarrow{MA} \wedge \overrightarrow{\Omega_{1/5}} = -a.\vec{z} \wedge (\Omega_{x_{15}}.\vec{x} + \Omega_{y_{15}}.\vec{y} + \Omega_{z_{15}}.\vec{z}) = -a.\Omega_{x_{15}}.\vec{y} + a.\Omega_{y_{15}}.\vec{x}$$

$$\rightarrow \left\{ C_{1/5} \right\} = \left\{ \begin{matrix} \Omega_{x_{15}} \ 0 \\ \Omega_{y_{15}} \ 0 \\ \Omega_{z_{15}} \ 0 \end{matrix} \right\}_{(\vec{x}, \vec{y}, \vec{z}) = M} = \left\{ \begin{matrix} \Omega_{x_{15}} \ a.\Omega_{y_{15}} \\ \Omega_{y_{15}} - a.\Omega_{x_{15}} \\ \Omega_{z_{15}} \ 0 \end{matrix} \right\}_{(\vec{x}, \vec{y}, \vec{z})}$$

$$\begin{aligned} \text{D'où } \left\{ C_{eq} \right\} &= \left\{ C_{1/0} \right\} = \left\{ C_{1/5} \right\} + \left\{ C_{5/0} \right\} \text{ d'où } : \begin{cases} \Omega_{x_{eq}} &= \Omega_{x_{15}} + \Omega_{x_{50}} \\ \Omega_{y_{eq}} &= \Omega_{y_{15}} + \Omega_{y_{50}} \\ \Omega_{z_{eq}} &= \Omega_{z_{15}} + \Omega_{z_{50}} \\ v_{x_{eq}} &= a.\Omega_{y_{15}} \\ v_{y_{eq}} &= -a.\Omega_{x_{15}} \\ v_{z_{eq}} &= 0 \end{cases} \end{aligned}$$

$$\rightarrow \left\{ C_{eq} \right\} = \begin{cases} \Omega_{x_{15}} + \Omega_{x_{50}} & a.\Omega_{y_{15}} \\ \Omega_{y_{15}} + \Omega_{y_{50}} & -a.\Omega_{x_{15}} \\ \Omega_{z_{15}} + \Omega_{z_{50}} & 0 \end{cases}$$
 soit une liaison ponctuelle en M de normale (M, \vec{z}).

Q.3. Pour déterminer la liaison équivalente réalisée entre (1) et (0) par le triangle (2), il faut d'abord déterminer la liaison équivalente entre (1) et (2) (liaisons parallèles \rightarrow utilisation de la méthode statique) puis déterminer la liaison équivalente entre (0) et (1) par (2) (liaisons séries \rightarrow utilisation de la méthode cinématique).

Florestan MATHURIN Page 2 sur 10

On a:
$$\{F_{2\to 1}^E\} = \begin{cases} X_{21}^E \ 0 \\ Y_{21}^E \ 0 \\ Z_{21}^E \ 0 \end{cases}_{(\vec{x}, \vec{y}, \vec{z})} \begin{cases} F_{2\to 1}^F\} = \begin{cases} X_{21}^F \ 0 \\ Y_{21}^F \ 0 \\ Z_{21}^F \ 0 \end{cases}_{(\vec{x}, \vec{y}, \vec{z})} \text{ et } \overrightarrow{EF} = e.\vec{y}$$

$$\left\{ F_{2 \to 1}^{F} \right\} = \left\{ \begin{matrix} X_{21}^{F} & 0 \\ Y_{21}^{F} & 0 \\ Z_{21}^{F} & 0 \end{matrix} \right\}_{(\vec{x}, \vec{y}, \vec{z})} = \left\{ \begin{matrix} X_{21}^{F} & e.Z_{21}^{F} \\ Y_{21}^{F} & 0 \\ Z_{21}^{F} & e.X_{21}^{F} \end{matrix} \right\}_{(\vec{x}, \vec{y}, \vec{z})}$$

On pose :
$$\{F_{2\to 1}^{eq}\}=\begin{cases} X_{21}^{eq} & L_{21}^{eq} \\ Y_{21}^{eq} & M_{21}^{eq} \\ Z_{21}^{eq} & N_{21}^{eq} \end{cases}$$
 et $\{F_{2\to 1}^{eq}\}=\{F_{2\to 1}^{E}\}+\{F_{2\to 1}^{F}\}$ d'où :
$$\begin{cases} X_{21}^{eq} = X_{21}^{E} + X_{21}^{e} \\ Y_{21}^{eq} = Y_{21}^{E} + Y_{21}^{F} \\ Z_{21}^{eq} = Z_{21}^{E} + Z_{21}^{F} \\ L_{21}^{eq} = e.Z_{1}^{F} \\ M_{21}^{eq} = 0 \\ N_{21}^{eq} = e.X_{21}^{F} \end{cases}$$

$$\rightarrow \left\{ F_{2 \to 1}^{eq} \right\} = \left\{ \begin{array}{l} X_{21}^{E} + X_{21}^{F} & e.Z_{21}^{F} \\ Y_{21}^{E} + Y_{21}^{F} & 0 \\ Z_{21}^{E} + Z_{21}^{F} & e.X_{21}^{F} \end{array} \right\}_{(\vec{x}, \vec{y}, \vec{z})} \text{ soit une liaison pivot d'axe } (E, \vec{y}).$$

$$\begin{aligned} &\text{On a}: \left\{ C_{2/0} \right\} = \left\{ \begin{matrix} \Omega_{x_{20}} \ 0 \\ \Omega_{y_{20}} \ 0 \\ \Omega_{z_{20}} \ 0 \end{matrix} \right\} &\text{et } \left\{ C_{1/2} \right\} = \left\{ \begin{matrix} 0 & 0 \\ \Omega_{y_{12}} \ 0 \\ 0 & 0 \end{matrix} \right\} &\text{et on pose}: \left\{ C_{eq} \right\} = \left\{ \begin{matrix} \Omega_{x_{eq}} \ v_{x_{eq}} \\ \Omega_{y_{eq}} \ v_{y_{eq}} \\ \Omega_{z_{eq}} \ v_{z_{eq}} \end{matrix} \right\} \\ &\overrightarrow{EH} = \frac{1}{2}.e.\overrightarrow{y} + h.\overrightarrow{z} \rightarrow \overrightarrow{V_{H,1/2}} = \overrightarrow{V_{E,1/2}} + \overrightarrow{HE} \wedge \overrightarrow{\Omega_{1/2}} = -(\frac{1}{2}.e.\overrightarrow{y} + h.\overrightarrow{z}) \wedge \Omega_{y_{12}}.\overrightarrow{y} = h.\Omega_{y_{12}}.\overrightarrow{x} \end{aligned}$$

$$\rightarrow \{C_{1/2}\} = \left\{\begin{matrix} 0 & 0 \\ \Omega_{y_{12}} & 0 \\ 0 & 0 \end{matrix}\right\}_{(\vec{x}, \vec{y}, \vec{z})} = \left\{\begin{matrix} 0 & h.\Omega_{y_{12}} \\ \Omega_{y_{12}} & 0 \\ 0 & 0 \end{matrix}\right\}_{(\vec{x}, \vec{y}, \vec{z})}$$

$$\text{D'où } \left\{ \! C_{eq} \! \right\} \! = \! \left\{ \! C_{1/0} \! \right\} \! = \! \left\{ \! C_{1/2} \! \right\} \! + \! \left\{ \! C_{2/0} \! \right\} \, \text{d'où } \left\{ \! C_{eq} \! \right\} \! = \! \left\{ \! \begin{array}{c} \Omega_{x_{20}} & h.\Omega_{y_{20}} \\ \Omega_{y_{12}} + \Omega_{y_{20}} & 0 \\ \Omega_{z_{12}} & 0 \end{array} \right\}_{(\vec{x}, \vec{y}, \vec{z})} \! \text{soit une liaison linéaire}$$

annulaire d'axe (H, \vec{x}) .

Florestan MATHURIN Page 3 sur 10

En conduisant le même raisonnement que dans le cas de la liaison équivalente 0-2-1 on montre que la liaison équivalente est une liaison linéaire annulaire d'axe (J, \vec{z}) .

Q.4.

Q.5.

Le système est isostatique, cela permet aux différentes pièces (mat-réacteur, aile ...) de se dilater sous l'effet des variations de températures, sans provoquer de contraintes qui seraient préjudiciables à la résistance de cet assemblage.

Florestan MATHURIN Page 4 sur 10

Système d'ouverture des portes de voitures tramway - Corrigé

Q.1.

Q.2.

Q.3.

Florestan MATHURIN Page 5 sur 10

Il faut que les 2 axes des 2 liaisons pivot glissant soient parfaitement parallèles et que la distance l₃ soit constante sur toute la longueur du guidage.

Q.4.

Pivot glissant d'axe (H,
$$\vec{y}$$
)
$$\{F_{0 \to 1}^H\} = \begin{cases} X_{01}^H \ L_{01}^H \\ 0 \ 0 \\ Z_{01}^H \ N_{01}^H \end{cases} \text{ et } \{F_{0 \to 1}^J\} = \begin{cases} X_{01}^J \ L_{01}^J \\ 0 \ 0 \\ Z_{01}^J \ N_{01}^J \end{cases}$$

$$\to \overrightarrow{HJ} = l_3.\vec{x} \ \to \{F_{0 \to 1}^J\} = \begin{cases} X_{01}^J \ L_{01}^J \\ 0 \ -l_3.Z_{01}^J \\ Z_{01}^J \ N_{01}^J \end{cases}$$

$$| (\vec{x}, \vec{y}, \vec{z})|$$

On pose :
$$\{F_{0\to 1}^{eq}\}=\begin{cases} X_{01}^{eq} & L_{01}^{eq} \\ Y_{01}^{eq} & M_{01}^{eq} \\ Z_{01}^{eq} & N_{01}^{eq} \end{cases}_{(\bar{x},\bar{y},\bar{z})}$$
 et $\{F_{0\to 1}^{eq}\}=\{F_{0\to 1}^{H}\}+\{F_{0\to 1}^{J}\}$ d'où :
$$\begin{cases} X_{01}^{eq} = X_{01}^{H} + X_{01}^{J} \\ Y_{01}^{eq} = 0 \\ Z_{01}^{eq} = Z_{01}^{H} + Z_{01}^{J} \\ L_{01}^{eq} = L_{01}^{H} + L_{01}^{J} \\ M_{01}^{eq} = -l_{3}.Z_{01}^{J} \\ N_{01}^{eq} = N_{01}^{H} + N_{01}^{J} \end{cases}$$

$$\rightarrow \left\{ F_{0 \to 1}^{eq} \right\} = \begin{cases} X_{01}^{H} + X_{01}^{J} & L_{01}^{H} + L_{01}^{J} \\ 0 & -l_{3}.Z_{01}^{J} \\ Z_{01}^{H} + Z_{01}^{J} & N_{01}^{H} + N_{01}^{J} \end{cases}$$
soit une liaison glissière d'axe (H, \vec{y}).

Q.5.

Pivot glissant d'axe (H,
$$\vec{y}$$
)

Ponctuelle en J de normale \vec{z}

$$\left\{ F_{0 \to 1}^{H} \right\} = \begin{cases} X_{01}^{H} & L_{01}^{H} \\ 0 & 0 \\ Z_{01}^{H} & N_{01}^{H} \end{cases}_{(\vec{x}, \vec{y}, \vec{z})} \text{ et } \left\{ F_{0 \to 1}^{J} \right\} = \begin{cases} 0 & 0 \\ 0 & 0 \\ Z_{01}^{J} & 0 \end{cases}_{(\vec{x}, \vec{y}, \vec{z})}$$

$$\rightarrow \overrightarrow{HJ} = l_3.\overrightarrow{x} \rightarrow \{F_{0\to 1}^J\} = \begin{cases} 0 & 0 \\ 0 & -l_3.Z_{01}^J \\ Z_{01}^J & 0 \end{cases}_{(\overline{x},\overline{y},\overline{z})}$$

On pose :
$$\{F_{0 \to 1}^{eq}\} = \begin{cases} X_{01}^{eq} & L_{01}^{eq} \\ Y_{01}^{eq} & M_{01}^{eq} \\ Z_{01}^{eq} & N_{01}^{eq} \end{cases}_{(\bar{x}, \bar{y}, \bar{z})} \text{ et } \{F_{0 \to 1}^{eq}\} = \{F_{0 \to 1}^{H}\} + \{F_{0 \to 1}^{J}\}$$

On pose : $\{F_{0\to 1}^{eq}\} = \begin{cases} X_{01}^{eq} & L_{01}^{eq} \\ Y_{01}^{eq} & M_{01}^{eq} \\ Z_{01}^{eq} & N_{01}^{eq} \end{cases}$ et $\{F_{0\to 1}^{eq}\} = \{F_{0\to 1}^{H}\} + \{F_{0\to 1}^{J}\}$ d'où $\{F_{0\to 1}^{eq}\} = \begin{cases} X_{01}^{H} & L_{01}^{H} \\ 0 & -l_{3}.Z_{01}^{J} \\ Z_{01}^{H} & N_{01}^{H} \end{cases}$ soit une liaison glissière d'axe (H, \vec{y}).

 $h = m_C - m = 0$ pour ce modèle $m_u + m_i \qquad E_S = 6.(2-1) = 6 \qquad 4+1=5$ $N_C - E_C = E_S - N_S = 1$ $E_C = 6.\gamma = 6$

Florestan MATHURIN Page 6 sur 10

Portail automatique - Corrigé

Q.1. 1/0 : liaison pivot d'axe
$$(A, \vec{z}_0)$$
 : $\{C_{1/0}\} = \begin{cases} \dot{\theta}_{10}.\vec{z}_0 \\ \vec{0} \end{cases}$

2/1 : liaison pivot d'axe (B,
$$\vec{z}_0$$
) : $\{C_{2/1}\} = \begin{cases} \dot{\theta}_{21}.\vec{z}_0\\ \vec{0} \end{cases}$

3/2 : liaison pivot d'axe (C,
$$\vec{z}_0$$
) : $\{C_{3/2}\} = \begin{cases} \dot{\theta}_{32}.\vec{z}_0\\ \vec{0} \end{cases}$

3/0: liaison pivot d'axe (O,
$$\vec{z}_0$$
): $\{C_{3/0}\} = \begin{cases} \dot{\theta}_{30}.\vec{z}_0\\ \vec{0} \end{cases}$

Q.2. Fermeture cinématique :
$$\{C_{0/0}\} = \{C_{0/3}\} + \{C_{3/2}\} + \{C_{2/1}\} + \{C_{1/0}\}$$

$$\begin{aligned}
\{C_{1/0}\} &= \begin{cases} \dot{\theta}_{10}.\vec{z}_{0} \\ \vec{0} \end{cases} = \begin{cases} \dot{\theta}_{10}.\vec{z}_{0} \\ -l.\dot{\theta}_{10}.\vec{y}_{2} - l.\dot{\theta}_{10}.\vec{x}_{1} \end{cases} \\
\{C_{2/1}\} &= \begin{cases} \dot{\theta}_{21}.\vec{z}_{0} \\ -l.\dot{\theta}_{21}.\vec{z}_{0} \end{cases} = \begin{cases} \dot{\theta}_{21}.\vec{z}_{0} \\ -l.\dot{\theta}_{21}.\vec{z}_{0} \end{cases} \end{aligned}$$

$$\{C_{2/1}\} = \begin{cases} \dot{\theta}_{21}.\vec{z}_{0} \\ \vec{0} \end{cases} = \begin{cases} \dot{\theta}_{21}.\vec{z}_{0} \\ -l.\dot{\theta}_{21}.\vec{y}_{2} \end{cases}$$

$$\left\{C_{0/3}\right\} = -\left\{\begin{array}{c} \dot{\theta}_{30}.\vec{z}_{0} \\ \vec{0} \end{array}\right\} = \left\{\begin{array}{c} -\dot{\theta}_{30}.\vec{z}_{0} \\ c.\dot{\theta}_{30}.\vec{y}_{3} - d.\dot{\theta}_{30}.\vec{x}_{3} \end{array}\right\}$$

Soit:
$$-\dot{\theta}_{30} + \dot{\theta}_{32} + \dot{\theta}_{21} + \dot{\theta}_{10} = 0$$
 et

 $c.\dot{\theta}_{30}.\vec{y}_3-d.\dot{\theta}_{30}.\vec{x}_3-l.\dot{\theta}_{21}.\vec{y}_2-l.\dot{\theta}_{10}.\vec{y}_2-l.\dot{\theta}_{10}.\vec{x}_1=\vec{0} \quad \text{ce qui donne 2 \'equations scalaires ind\'ependantes}$ après projection.

On a
$$N_C = 4$$
 et $r_C = 3 \rightarrow m_C = 4 - 3 = 1$

Q.3. On a
$$E_C = 6 \rightarrow h = m_C - m = m_C - N_C + E_C = 1 - 4 + 6 = 3$$
 pour ce modèle.

Q.4.
$$h = m_C - m = m_C - (E_S - I_S) = 1 - (6.(S - 1) - 20) = 1 - 18 + 20 = 3$$
 pour ce modèle.

Q.5. Il faut modifier les solutions constructives aux niveaux des liaisons aux points B et C. Pour obtenir une modélisation isostatique il faudrait 2 liaisons rotules :

Florestan MATHURIN Page 7 sur 10

E.P.A.S. de camion de pompier - Corrigé

Q.1.

Graphe de structure

- **Q.2.** On constate que 2 chaines parallèles permettent la mise en mouvement des solides 2 et $3 \rightarrow la$ redondance des liaisons est respectée vis-à-vis du C.d.C.F..
- Q.3. Il concevoir des liaisons telles quelles puissent être définies par le graphe des liaisons ci-dessous :

Graphe de structure

Ce qui permet d'obtenir un degré d'hyperstatisme h :

Florestan MATHURIN Page 8 sur 10

Système de freinage d'un TGV DUPLEX - Corrigé

Q.1. Graphe de structure (on ne précisera pas les axes des liaisons ici par soucis de clarté)

Méthode cinématique

S = 10 solides

L = 12 liaisons

Nombre de cycles : $\gamma = 12 - 10 + 1 = 3$

 $m_u = 2$ mobilités

Pas de mobilité interne.

Inconnues cinématiques :

5 pivots ($N_C = 5 \times 1 = 5$)

6 pivots glissants ($N_C = 6 \times 2 = 12$)

1 rotule à doigt ($N_C = 2$)

donc $N_C = 19$

Le degré d'hyperstatisme est donc de

$$h = m_C - N_C + E_C = 2 - 19 + 18 = 1$$

Florestan MATHURIN Page 9 sur 10

Q.2. $h > 0 \rightarrow C.d.C.F.$ respecté.

Q.5. Les biellettes 1 et 2 servent à s'opposer à l'effort disque / garniture suivant \vec{x} et soulagent ainsi les liaisons pivot en C_1 et C_2 . Elles servent aussi à encaisser le poids de la garniture.

Q.6. Frein rhéostatique qui consiste à faire fonctionner les moteurs en générateurs et à charger le générateur en lui faisant fournir de l'énergie à un récepteur (réseau ou résistances). Frein à courants de Foucault, en utilisant les courants induit sur un disque ou sur le rail.

Florestan MATHURIN Page 10 sur 10