Introdução ao Cálculo Numérico

- Métodos para cálculo de raízes de polinômios
 - Como visto anteriormente (vide *localização de raízes de polinômios*), existem procedimentos (regras de *Descartes*, de *Du Gua* e da *lacuna*) que nos permitem enumerar e determinar se há raízes complexas.
 - Pode-se ainda determinar o raio de um disco, centrado na origem, na qual todas as raízes se encontram (cotas de *Fujiwara*, *Kojima*, *Cauchy*).

- Métodos para cálculo de raízes de polinômios
 - O cálculo das raízes reais é relativamente fácil de ser feito, bastando usar um método de inclusão (como o da bissecção) juntamente com um método de convergência mais rápida (Newton-Raphson, Halley, secante, dentre outros) para se determinar com segurança tais raízes.

- Métodos para cálculo de raízes de polinômios
 - Já para raízes complexas, a situação não é tão simples, já que a determinação de uma estimativa inicial para o cálculo de tais raízes não é óbvia
 - Uma maneira de se localizar no plano complexo essas raízes é utilizar uma função auxiliar, que calcule a distância do valor do polinômio ao plano complexo:

- Métodos para cálculo de raízes de polinômios
 - Então, seja a função polinômio p(z), z = x + yi

$$p \colon \mathbb{C} \to \mathbb{R}$$
$$z \mapsto p(z)$$

e considere a função D(p(z)), definida como

$$D: \mathbb{C} \to \mathbb{R}$$
$$p(z) \mapsto |p(z)|$$

- Métodos para cálculo de raízes de polinômios
 - Note que, quando z é um zero do polinômio, p(z) = 0 por definição. Logo, D(p(z)) = 0.
 - Além disso, D(p(z)) é uma função positiva, pois $|z| = \sqrt{x^2 + y^2} \ge 0$.
 - Dessa forma, se fizermos um gráfico da função D, teremos uma superfície tridimensional que apresenta "lóbulos" que encostam no plano Z=0; justamente nos pontos de coordenadas (x,y) no plano complexo onde p(x+yi)=0!

- Métodos para cálculo de raízes de polinômios
 - Pode-se calcular um gráfico tridimensional de D usando-se a região do plano complexo delimitada no quadrado

$$X \times Y = [-c, +c] \times [-c, +c]$$

onde c é o raio do disco contendo todas as raízes (obtido, por exemplo, pela cota de *Kojima*):

• Métodos para cálculo de raízes de polinômios

Gráfico de $|z^4 + z - 2|$:

- A cota de Kojima retorna como resultado /z/<2.1892, mas podese reduzir a região para destacar mais onde as raízes se encontram.
- As raízes são:
- 1,0;
- -1,353209965;
- 0,1766049821±1.202820820i

- Métodos para cálculo de raízes de polinômios
 - Outra alternativa é exibir um gráfico do tipo "mapa de calor", o que facilita a localização das regiões nas quais se encontram as raízes.
 - A função **num_mapa_distancia** da biblioteca NUMÉRICO, permite fazer esse gráfico, bastando para isso fornecer os coeficientes do polinômio.
 - O exemplo a seguir mostra o resultado obtido para o polinômio $p(z) = z^4 + z 2$.

• Métodos para cálculo de raízes de polinômios

- Métodos para cálculo de raízes de polinômios
 - Tendo obtido uma estimativa inicial para uma raiz complexa, podemos usar o *método de Newton-Raphson* ou de *Bairstow*.
 - Vejamos esses dois métodos:

- Método de Newton-Raphson para polinômios
 - A equação governante do método é dada por

$$z_{k+1} = z_k - \frac{p(z_k)}{p'(z_k)}, k = 0,1,...; z \in \mathbb{C}$$

• Observe que, para corrigir z_k , é necessário calcular tanto $p(z_k)$ como $p'(z_k)$.

- Método de Newton-Raphson para polinômios
 - É sabido que o *método de Horner* (também conhecido como *método das multiplicações aninhadas*) deve ser usado para se avaliar um polinômio, pois
 - Evita-se o cálculo de potências de z;
 - O processo torna-se estável numericamente.

- Método de Newton-Raphson para polinômios
 - Avaliar um polinômio na forma canônica

$$p(z)=a_nz^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0$$
 requer, no mínimo, n adições e $2n-1$ multiplicações (calculando as potências de z de forma cumulativa).

 Reescrevendo o polinômio na forma de Horner, obtemos

$$p(z) = a_0 + z \left(a_1 + z \left(... + z (a_{n-1} + z a_n) \right) \right)$$

a qual requer apenas n adições e n multiplicações.

- O método de Horner pode ser usado também para:
 - Calcular o quociente e o resto da divisão de p(z) por um fator z-c;
 - Deflacionar um polinômio;
 - Calcular a expansão de Taylor de um polinômio em torno de um ponto.

- É baseado no Teorema do Resto:
 - Se um polinômio p(z), de grau $n \ge 1$, é dividido por um fator z c, então p(z) = (z c)q(z) + r, onde q(z) é o quociente (de grau n 1) e r é um número complexo. Se z = c, então p(c) = r.
- Vejamos como o método de Horner usa tal resultado para permitir calcular q(z) e r e, ao mesmo tempo, avaliar p(z) num ponto:

- Seja $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, e z_0 um número.
- Pelo Teorema do Resto, se escrevermos

$$p(z_0) = (z - z_0)q(z) + r,$$

q(z) tem grau n-1 e pode ser escrito como

$$q(z) = b_0 + b_1 z + b_2 z^2 + \dots + b_{n-1} z^{n-1}.$$

• Isolando na equação para $p(z_0)$, e substituindo as expressões para p(z) e q(z), podemos igualar os coeficientes das potências de mesma ordem, obtendo:

$$b_{n-1} = a_n$$

$$b_{n-2} = a_{n-1} + z_0 b_{n-1}$$

$$\vdots$$

$$b_0 = a_1 + z_0 b_1$$

$$r = a_0 + z_0 b_0$$

- Método de Horner
 - De forma compacta, podemos escrever a seguinte forma de recorrência:

$$b_{k-1} = a_k + z_0 b_k$$
, $k = n - 1$, $n - 2$, ..., 0

• Observe que $r = b_{-1} = p(z_0)$ (verifique!)

 Note, também, que isso é equivalente a escrevermos o polinômio na forma de Horner,

$$p(z) = a_0 + z \left(a_1 + z \left(... + z (a_{n-1} + z a_n) \right) \right)$$

• Porém, em conexão com o método de Newton-Raphson, precisamos também avaliar a derivada $p'(z_0)$.

• Observe que ao dividirmos p(z) por um fator $z-z_0$, obtemos um polinômio $q_1(z)$ e um resto r_1 complexo:

$$q_1(z) = a_n z^{n-1} + (a_{n-1} + z_0 a_n) z^{n-2} + (a_{n-2} + z_0 (a_{n-1} + z_0 a_n)) z^{n-3} + \dots r_1 = a_0 + z_0 \left(a_1 + z_0 \left(a_2 + z_0 \left(\dots + z_0 (a_{n-1} + z_0 a_n) \right) \right) \right)$$

Por definição, $r_1=p(z_0)$. Mas, quem é $q_1(z)$? Nada mais, nada menos, do que $p'(z_0)$!

• Igualando os termos de mesma ordem de $p^{\prime}(z)$ e $q_1(z)$,

$$[z_0^{n-1}]: na_n \equiv \sum_{i=1}^n a_i = na_n$$

$$[z_0^{n-2}]: (n-1)a_n \equiv \sum_{i=1}^{n-1} a_{n-1} = (n-1)a_n$$

$$\vdots \vdots$$

$$[z_0^2]: 3a_3 \equiv \sum_{i=1}^3 a_3 = 3a_3$$

$$[z_0^1]: 2a_2 \equiv \sum_{i=1}^2 a_2 = 2a_2$$

$$[z_0^0]: a_1 \equiv \sum_{i=1}^1 a_1 = a_1$$

(cont.) uma vez que existem n termos envolvendo a_n , n-1 termos envolvendo a_{n-1} , e assim sucessivamente; além disso, no i-ésimo termo de $q_1(z)$, existem i produtos envolvendo z_0 , o que é igual a z_0^i .

- Por analogia, se aplicarmos o método de Horner sobre o polinômio $q_1(z)$, obteremos $q_2(z)$ e $r_2=p^\prime(z_0)$.
- Com isso, é possível escrever uma versão do método de Newton-Raphson, específico para calcular raízes de polinômios.

- Raízes complexas de equações polinomiais
 - Retomemos agora o problema de se extrair raízes complexas de equações polinomiais:
 - A cada par de raízes complexas (conjugadas) de um polinômio com coeficientes reais $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ está associado um fator *quadrático* de p(z), na forma $z^2 \alpha z \beta$, onde α e β são números reais.
 - Se $r=a\pm bi$ é uma raiz de p(z), então $\alpha=2a$ e $\beta=-(a^2+b^2)$.

- Raízes complexas de equações polinomiais
 - Dessa forma, o polinômio p(z) pode ser escrito como

$$p(z) = (z^2 - \alpha z - \beta)q(z) + b_1(z - \alpha) + b_0$$

onde os termos $b_1(z-\alpha)+b_0$ são o resto da divisão de p(z) por $z^2-\alpha z-\beta$ e q(z) é um polinômio de grau n-2,

$$q(z) = b_n z^{n-2} + \dots + b_4 z^2 + b_3 z + b_2.$$

- Raízes complexas de equações polinomiais
 - Substituindo essa expressão em p(z) e expandindo os termos, obtemos:

$$p(z) = b_n z^n + (b_{n-1} - \alpha b_n) z^{n-1} + (b_{n-2} - \alpha b_{n-1} - \beta b_n) z^{n-2} + \dots + (b_k - \alpha b_{k+1} - \beta b_{k+2}) z^k + \dots + (b_1 - \alpha b_2 - \beta b_3) z + b_0 - \alpha b_1 - \beta b_2$$

- Raízes complexas de equações polinomiais
 - Comparando a equação anterior com o polinômio

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$
, podemos obter as seguintes fórmulas de recorrência, para calcular os coeficientes b_k de $q(z)$:

$$\begin{aligned} b_n &= a_n \\ b_{n-1} &= a_{n-1} + \alpha b_n \\ b_k &= a_k + \alpha b_{k+1} + \beta b_{k+2}, k = n-2, n-3, \dots, 0 \end{aligned}$$

• Observe a semelhança com o método de Horner!

- Raízes complexas de equações polinomiais
 - Observe, agora, que se α e β são tais que z^2 $\alpha z \beta$ é um divisor exato de p(z), então o resto $b_1(z-\alpha)+b_0$ deve ser nulo, i.e., $b_1=b_0=0$.
 - O *método de Bairstow*, apresentado a seguir, explora essa característica, buscando encontrar α e β para os quais o resto seja nulo; daí, um par conjugado de raízes complexas será obtido, extraindo-se as raízes de $z^2 \alpha z \beta$.

• A partir das estimativas iniciais α_0 e β_0 , p(z) pode ser expresso como

$$p(z) = (z^2 - \alpha_0 z - \beta_0)q(z) + b_1(z - \alpha_0) + b_0$$

• Se, de alguma forma, corrigirmos α_0 e β_0 , produzindo α_1 e β_1 , ..., α_i e β_i e, após i iterações, obtivermos $|b_0| \cong |b_1| \cong 0$, então teremos encontrado um fator (aproximado) de p(z).

• Observe que b_0 e b_1 podem ser considerados, nesse caso, como funções de α e β , b_0 = $b_0(\alpha,\beta)$ e $b_1=b_1(\alpha,\beta)$ e, como desejamos que eles sejam (numericamente) nulos simultaneamente, podemos escrever

$$\begin{cases} b_0(\alpha, \beta) = 0 \\ b_1(\alpha, \beta) = 0 \end{cases}$$

- Método de Bairstow
 - Esse sistema pode ser resolvido através do **método de Newton**: fazendo uma expansão de Taylor em torno de $\Delta \alpha$ e $\Delta \beta$, vem

$$0 = b_0(\alpha + \Delta \alpha, \beta + \Delta \beta)$$

= $b_0(\alpha, \beta) + \Delta \alpha \frac{\partial b_0}{\partial \alpha} + \Delta \beta \frac{\partial b_0}{\partial \beta} + O(\Delta \alpha^2) + O(\Delta \beta^2)$

$$0 = b_1(\alpha + \Delta \alpha, \beta + \Delta \beta)$$

= $b_1(\alpha, \beta) + \Delta \alpha \frac{\partial b_1}{\partial \alpha} + \Delta \beta \frac{\partial b_1}{\partial \beta} + O(\Delta \alpha^2) + O(\Delta \beta^2)$

- Método de Bairstow
 - Desprezando os termos de ordem igual ou superior a 2, vem:

$$0 \cong b_0(\alpha, \beta) + \Delta \alpha \frac{\partial b_0}{\partial \alpha} + \Delta \beta \frac{\partial b_0}{\partial \beta}$$

$$0 \cong b_1(\alpha, \beta) + \Delta \alpha \frac{\partial b_1}{\partial \alpha} + \Delta \beta \frac{\partial b_1}{\partial \beta}$$

- Método de Bairstow
 - Essas duas equações podem ser escritas em forma matricial como

$$\begin{bmatrix} b_0(\alpha, \beta) \\ b_1(\alpha, \beta) \end{bmatrix} + \begin{bmatrix} \frac{\partial b_0}{\partial \alpha} & \frac{\partial b_0}{\partial \beta} \\ \frac{\partial b_1}{\partial \alpha} & \frac{\partial b_1}{\partial \beta} \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

De onde $\Delta \alpha$ e $\Delta \beta$ podem ser calculados resolvendo-se o sistema

$$\begin{bmatrix} \frac{\partial b_0}{\partial \alpha} & \frac{\partial b_0}{\partial \beta} \\ \frac{\partial b_1}{\partial \alpha} & \frac{\partial b_1}{\partial \beta} \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix} = -\begin{bmatrix} b_0(\alpha, \beta) \\ b_1(\alpha, \beta) \end{bmatrix}$$

• Como não há fórmula explícita para os termos b_0 e b_1 , deve-se derivar as fórmulas recursivas para os coeficientes b_k de q(z), considerando que os a_k são constantes e que os b_k são funções de α e β (exceto b_n):

$$\frac{\partial b_{n-1}}{\partial \alpha} = b_{n-1}$$

$$\frac{\partial b_{n-2}}{\partial \alpha} = b_{n-1} + \alpha \frac{\partial b_{n-1}}{\partial \alpha}$$

$$\frac{\partial b_{n-3}}{\partial \alpha} = b_{n-2} + \alpha \frac{\partial b_{n-2}}{\partial \alpha} + \beta \frac{\partial b_{n-1}}{\partial \alpha}$$

$$\vdots$$

$$\frac{\partial b_1}{\partial \alpha} = b_2 + \alpha \frac{\partial b_2}{\partial \alpha} + \beta \frac{\partial b_3}{\partial \alpha}$$

$$\frac{\partial b_0}{\partial \alpha} = b_1 + \alpha \frac{\partial b_1}{\partial \alpha} + \beta \frac{\partial b_2}{\partial \alpha}$$

- Método de Bairstow
 - Repetindo o procedimento acima para calcular as derivadas parciais em relação a β , obtemos a seguinte relação:

$$\frac{\partial b_k}{\partial \alpha} = \frac{\partial b_{k-1}}{\partial \beta}, k = n, n-1, ..., 1.$$

- Método de Bairstow
 - Introduzindo a notação

$$c_{k+1} = \frac{\partial b_k}{\partial \alpha}, k = 0, 1, \dots, n-1,$$

podemos obter as seguintes fórmulas de recorrência para c_k :

$$\begin{split} c_n &= a_n \\ c_{n-1} &= b_{n-1} + \alpha c_n \\ c_k &= b_k + \alpha c_{k+1} + \beta c_{k+2}, k = n-2, n-3, \dots, 1 \end{split}$$

- Método de Bairstow
 - E, uma vez calculados os valores

$$c_1 = \frac{\partial b_0}{\partial \alpha}$$
, $c_2 = \frac{\partial b_1}{\partial \alpha} = \frac{\partial b_0}{\partial \beta}$, $c_3 = \frac{\partial b_1}{\partial \beta}$,

o sistema de equações lineares a ser resolvido em cada passo do método de Newton é

$$\begin{bmatrix} c_1 & c_2 \\ c_2 & c_3 \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix} = \begin{bmatrix} -b_0 \\ -b_1 \end{bmatrix}$$

Instituto de MATEMÁTICA E ESTATÍSTICA UFRGS

- Método de Bairstow
 - Dada uma estimativa inicial para a raiz, $r=a\pm bi$, uma tolerância $\delta\ll 1$ e um número máximo de iterações i_{max} , o método pode então ser expresso através do algoritmo mostrado a seguir:

- 1. Calcula $\alpha_0 = 2a \, \mathrm{e} \, \beta_0 = -(a^2 + b^2)$
- 2. Para $i = 0,1,...,i_{max}$, faça:
- 3. Calcula os coeficientes b_k e c_k , através das fórmulas de recorrência
- 4. Se $|b_0| < \delta$ e $|b_1| < \delta$ Então
- 5. Calcula as raízes da equação $z^2 \alpha_i z \beta_i = 0$
- 6. Termina as iterações
- 7. Senão

8. Resolve
$$\begin{bmatrix} c_1 & c_2 \\ c_2 & c_3 \end{bmatrix} \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix} = \begin{bmatrix} -b_0 \\ -b_1 \end{bmatrix}$$
, obtendo $\Delta \alpha$ e $\Delta \beta$

9. Calcula
$$\alpha_{i+1} = \alpha_i + \Delta \alpha$$
 e $\beta_{i+1} = \beta_i + \Delta \beta$

- 10. Fim
- 11. Fim

- Evidentemente, o cálculo das raízes da equação quadrática $z^2 \alpha_i z \beta_i = 0$ deve ser feito com cuidado, de forma a evitar erros de pontoflutuante.
- É possível que essa equação não tenha raízes complexas; nesse caso, o método de Bairstow terá calculado duas das raízes reais de p(z).

- Método de Bairstow
 - Exemplo: para $p(z) = z^4 + z 2$, cujas raízes são:

$$1,0; -1,353209965;$$

 $0,1766049821 \pm 1,202820820i$

usaremos o método de Bairstow, com uma tolerância $\delta = 10^{-6}$, para as estimativas iniciais mostradas no mapa de contornos da função D(p(z)):

• Métodos para cálculo de raízes de polinômios

• O método de Bairstow calcula as seguintes raízes:

		raízes calculadas	
r	k*	r_	r ₊
1+i	14	-1,353210	1,000000
0,5+0,5i	10	-1,353210	1,000000
0,25+1,25i	4	0,1766050-1,202821i	0,1766050+1,202821i
0,5i	10	-1,353210	1,000000

• Observe que para duas das estimativas iniciais, foram obtidas as duas raízes reais do polinômio.

Instituto de MATEMÁTICA E ESTATÍSTICA UFRGS