Preempting Fermion Sign Problem: Unveiling Quantum Criticality through Nonequilibrium Dynamics

Yin-Kai Yu (余荫铠)

■ yuyinkai@iphy.ac.cn | 😭 www.yykspace.com | 🏛 中国科学院物理研究所

「趁着 sign problem 还没反应过来,"抢先"把基态相图/量子临界性搞清楚」

Yin-Kai Yu, Zhi-Xuan Li, Shuai Yin, Zi-Xiang Li, arXiv:2410.18854 (2024)

2024年11月23日 杭州

合作者

Zhi-Xuan Li (黎智轩) 中山大学

Shuai Yin (阴帅) 中山大学

Zi-Xiang Li (李自翔) 中科院物理所

Yin-Kai Yu (余荫铠) 2024 年 11 月 23 日 2 / 15

费米子蒙卡与符号问题

● 行列式蒙特卡罗算法 (Determinant Quantum Monte-Carlo, DQMC) ——用于求解强关联费米子系统

$$Z = \sum_{\mathbf{c}} w(\mathbf{c})$$

符号问题 (sign promblem): 采样概率 w(c) 非正定

• 强行采样 $w(\mathbf{c}) = |w(\mathbf{c})|\operatorname{sign}(\mathbf{c})$, $\langle \ \square \ \rangle_{|w|} = \frac{\sum_{\mathbf{c}} \ \square \ |w(\mathbf{c})|}{\sum_{\mathbf{c}} |w(\mathbf{c})|}$, 得

$$\langle O \rangle = \frac{\sum_{\mathbf{c}} w(\mathbf{c}) O(\mathbf{c})}{\sum_{\mathbf{c}} w(\mathbf{c})} = \frac{\sum_{\mathbf{c}} |w(\mathbf{c})| \mathrm{sign}(\mathbf{c}) O(\mathbf{c}) / \sum_{\mathbf{c}} |w(\mathbf{c})|}{\sum_{\mathbf{c}} |w(\mathbf{c})| \mathrm{sign}(\mathbf{c}) / \sum_{\mathbf{c}} |w(\mathbf{c})|} = \frac{\langle O \rangle_{|w|}}{\langle \mathrm{sign} \rangle_{|w|}}.$$

指数级时间复杂度,NP-hard¹

$$\Delta \left< O \right> \sim \frac{1}{\left< \mathrm{sign}_c \right>} \sim \mathrm{e}^{\tau N \Delta f}$$

Yin-Kai Yu (余荫铠)

¹Troyer and Wiese, PRL, (2005).

费米子符号问题

传统求基态方法,将试探波函数演化足够长的虚时 ⊤,得到基态波函数,然后求可观测量:

$$\langle O \rangle_{\mathrm{GS}} = \lim_{\tau \to \infty} \frac{\langle \psi_{\mathrm{T}} | \, \mathrm{e}^{-\frac{\tau}{2}H} \, \, O \, \, \mathrm{e}^{-\frac{\tau}{2}H} \, |\psi_{\mathrm{T}} \rangle}{\langle \psi_{\mathrm{T}} | \, \mathrm{e}^{-\tau H} \, |\psi_{\mathrm{T}} \rangle}$$

- 困难 1: \mathcal{P} 有符号问题,计算时间 $e^{\tau \to \infty}$
- 困难 2: 9量子临界点附近,临界慢化
- 放弃求解基态波函数,考虑非平衡态

$$\langle O(\tau) \rangle = \frac{\langle \psi_0 | e^{-\frac{\tau}{2}H} O e^{-\frac{\tau}{2}H} | \psi_0 \rangle}{\langle \psi_0 | e^{-\tau H} | \psi_0 \rangle} = ??$$

• 困难 3: 學基态量子临界点如何影响非平衡过程?

临界标度与非平衡动力学

- 1976, M. E. Fisher, 有限尺寸标度²
- 1989, H. K. Janssen et al., 临界弛豫过程, 非平衡标度³ (经典)
- 2014, S. Yin et al., 虚时弛豫动力学, 非平衡标度⁴ (自旋)
- 2023, **Y.-K. Yu** et al., 推广到费米子系统⁵ (sign-free system)

$$\langle O(\tau) \rangle = L^{-\kappa} f_O \left((U - U_c) L^{\frac{1}{\nu}}, \tau L^{-z} \right)$$

²Fisher, Reports on progress in physics, (1967).

⁵Yin-Kai Yu, Zhi Zeng, Yu-Rong Shu, Zi-Xiang Li, and Shuai Yin, arXiv: 2310.10601, (2023).

³Janssen, Schaub, and Schmittmann, Z. Phys. B, (1989).

⁴Yin, Mai, and Zhong, PRL, (2014).

Preempting the sign problem

人们难以精确研究强关联费米子系统的量子临界性质与动力学,是因为:

- ullet 困难 1: 计算时间 $\mathrm{e}^{ au N\Delta f}$
- 困难 2: 发散的涨落模式
- 困难 3: 非平衡

- (意味着缩短虚时可以指数级加速)
- 🥯 (非平衡标度行为)
- 🤔 (非平衡也可以体现基态临界性)

难 + 难 + 难 = 易:

可以在符号问题比较弱的时候,就把基态临界性质算清楚!

Yin-Kai Yu (余荫铠) 2024 年 11 月 23 日 6 / 15

of Phy

Preempting the sign problem

- 传统 PQMC 求基态,虚时 $au = 2L^z \sim 3L^z$,符号问题严重
- 非平衡 PQMC 方法,比如取 $\tau = 0.3L^z$,符号问题不严重

Yin-Kai Yu (余荫铠) 2024 年 11 月 23 日 7 / 15

应用实例一: single-Dirac-fermion Hubbard model

- ullet $au=0.3L^z$, FM correlation length ratio: $R_{
 m FM}=f_R\left((U-U_c)L^{1/
 u}
 ight)$
- $U=U_c$, FM structure factor: $S_{\rm FM}=L^{-(1+\eta_\phi)}f_S\left(\tau L^{-z}\right)$
- $U = U_c$, fermion correlation: $G_f = L^{-\eta_{\psi}} f_G (\tau L^{-z})$

Yin-Kai Yu (余荫铠) 2024

应用实例一: single-Dirac-fermion Hubbard model

- 本工作使用非平衡短时 PQMC 方法
- 不同方法计算结果对比

Method	$\boldsymbol{U_c}$	$ u^{-1}$	η_ϕ	$oldsymbol{\eta_{\psi}}$
This work (from DSM, $ au=0.3L^z$)	7.220(37)	1.18(3)	0.33(2)	0.135(2)
This work (from FM, $\tau = 0.5L^z$)	7.214(44)	1.05(10)	0.34(5)	0.131(20)
Gutzwiller-PQMC (equilibrium) ⁶	7.275(25)	1.19(3)	0.31(1)	0.136(5)
FRG ⁷	- ` ′	1.229	0.372	0.131

9 / 15

⁶Tabatabaei, Negari, Maciejko, and Vaezi, Phys. Rev. Lett., (2022).

 $^{^7\}mbox{Vacca}$ and Zambelli, Phys. Rev. D, (2015).

应用实例二: spinless t- V model

Method	V_c	ν	η_ϕ	$\eta_{m{\psi}_5}$
This work (from CDW, $\tau = 0.3L^z$)	1.35(1)	0.77(12)	0.49(5)	0.073(4)
This work (from DSM, $\tau = 0.3L^z$)	1.37(2)	0.79(5)	0.44(2)	0.072(4)
Majorana QMC (equilibrium)	1.355(1)	0.77(2)	0.45(2)	-
Continuous-time QMC (equilibrium)	1.356(1)	0.80(3)	0.302(7)	0.069
FRG	-	0.929	0.602	

对比:MQMC(Li, Jiang, Yao, NJP 2015), CTQMC(Wang, Corboz, Troyer, NJP 2014), FRG (Vacca, Zambelli, PRD 2015)

10 / 15

应用实例三: SU(3) Hubbard model

$$H=-\sum_{\langle ij
angle lpha}t_{ij}c_{ilpha}^{\dagger}c_{jlpha}+rac{U}{2}\sum_{i}\left(\sum_{lpha}n_{ilpha}-rac{3}{2}
ight)^{2}$$
,具有 SU(3) $imes$ Z₂ 对称性

Yin-Kai Yu (余荫铠)

应用实例三: SU(3) Hubbard model

$$H = -\sum_{\langle ij \rangle \alpha} t_{ij} c_{i\alpha}^\dagger c_{j\alpha} + \frac{U}{2} \sum_i \left(\sum_{\alpha} n_{i\alpha} - \frac{3}{2} \right)^2$$
,基态简并流形 $\frac{\mathsf{SU}(3) \times \mathsf{Z}_2}{\mathsf{SU}(2) \times \mathsf{U}(1)}$

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda_6 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \lambda_8 = \begin{pmatrix} 1/\sqrt{3} & 0 & 0 \\ 0 & 1/\sqrt{3} & 0 \\ 0 & 0 & -2/\sqrt{3} \end{pmatrix}.$$

$$SU(2) \times U(1) \text{ gauged out}$$

$$SU(2) \times U(1) \text{ gauged out}$$

$$SU(2) \times U(1) \text{ gauged out}$$

$$SO(3) \times U(2) \times U(1) \text{ gauged out}$$

$$SU(2) \times U(1) \text{ gauged out}$$

$$SO(3) \times U(2) \times U(1) \text{ gauged out}$$

$$SU(2) \times U(1) \text{ gauged out}$$

$$SU(2) \times U(1) \text{ gauged out}$$

Universality class	$ u^{-1}$	η_ϕ	η_{ψ}
chiral $\frac{SU(3)\times Z_2}{SU(2)\times U(1)}$ (this work)	0.68(5)	0.55(5)	0.15(3)
chiral Heisenberg $(4 - \epsilon, 2 \text{nd order})^8$	1.478	1.023	0.058
chiral XY $(4 - \epsilon, 2nd order)^9$	1.809	0.698	0.082
chiral Ising $(4 - \epsilon, 2$ nd order) ⁹	0.750	0.865	0.011
chiral Ising (FRG) ⁹	0.993	0.912	0.013

⁸Rosenstein, Hoi-Lai Yu, and Kovner, Phys. Lett. B, (1993).

Yin-Kai Yu (余荫铠) 2024 年 11 月 23 日 12 / 15

⁹Janssen and Herbut, PRL, (2014).

应用实例三: SU(3) Hubbard model

Efficiency acceleration factor $= \frac{1/\langle {
m sign}
angle_{
m eq.}}{1/\langle {
m sign}
angle_{
m neq.}} imes \frac{ au_{
m eq.}}{ au_{
m neq.}}$

"Faster is different"

Yin-Kai Yu (余荫铠) 2024 年 11 月 23 日 13 / 15

总结

● 新的计算方法和理论框架——非平衡短时 PQMC:

在符号问题出现或者变得严重之前,就可以把量子临界性质 算清楚。

② 新的序和相变—— λ_8 -AFM:

在具有交错磁通的 SU(3) Hubbard 模型中,发现并研究了新奇的 chiral $\frac{SU(3)\times Z_2}{SU(2)\times U(1)}$ 普适类。

Yin-Kai Yu (余荫铠) 2024 年 11 月 23 日 14 / 15

THANKS!

Preempting Fermion Sign Problem: Unveiling Quantum Criticality through Nonequilibrium Dynamics

Yin-Kai Yu (余荫铠)

■ yuyinkai@iphy.ac.cn | 裔 www.yykspace.com | 🏛 中国科学院物理研究所

「趁着 sign problem 还没反应过来,"抢先"把基态相图/量子临界性搞清楚」

Yin-Kai Yu, Zhi-Xuan Li, Shuai Yin, Zi-Xiang Li, arXiv:2410.18854 (2024)

2024年11月23日 杭州

Yin-Kai Yu (余荫铠) 2024 年 11 月 23 日 15 / 15