POLYNOMIALS

By the end of this discussion, you should have acquired knowledge about the following concepts:

✓ Long division

✓ The factor theorem

✓ The remainder theorem

Background:

Recall the concept of long division of numbers in early algebra; say one wishes to divide 8 by 3. Note that 3 is referred to as the <u>divisor</u>, and the result of the operation is the <u>quotient</u>. In many cases, we also have a <u>remainder</u>, as illustrated below;

Note that $8 = 3 \times 2 + 2$, which we can translate to;

$$Dividend = (Quotient) \times (Divisor) + Remainder$$

Note also, that the Remainder is strictly less than the Divisor.

Long Division of Polynomials

Number concepts like long division can also be transformed to expressions or polynomials. Suppose we have a polynomial P(x) that we need to divide by another (divisor), D(x). This can be done, but we require that $\operatorname{deg}[D(x)] \leq \operatorname{deg}[P(x)]$. With this we have that

$$D(x) P(x)$$
.....
$$R(x)$$

Hence we can now write that;

$$P(x) = D(x) \times Q(x) + R(x)$$
; This is the remainder theorem.

Where Q(x) is the quotient. The remainder is denoted R(x) because in many instances, (generally when the divisor is non-linear) the remainder is another function, whose nature depends on D(x).

Case 1: Linear divisor

Suppose our divisor is D(x) = (x-a), then

$$p(x) = (x-a) \times Q(x) + R$$

substituting $x = a$ gives
 $p(a) = R$

Example 1: Find the remainder when the polynomial $27x^3 + 9x^2 - 6x + 10$ is divided by;

- (i) x-2
- (ii) 3x-1

Solutions:

(i) Using long division, we have

$$\begin{array}{r}
27x^{2} + 63x + 120 \\
x - 2) \overline{)27x^{3} + 9x^{2} - 6x + 10} \\
\underline{-(27x^{3} - 54x^{2}) \downarrow} \\
63x^{2} - 6x. \\
\underline{-(63x^{2} - 126x)} \downarrow \\
120x + 10 \\
\underline{-120x - 240} \\
250
\end{array}$$

Hence we have the remainder as R = 250 and the $Q(x) = 27x^2 + 63x + 120$

Or we could just substitute into the theorem statement above, and we'd have;

$$p(x) = D(x) \times Q(x) + R$$
$$27x^{3} + 9x^{2} - 6x + 10 = (x - 2) \times Q(x) + R$$

Substituting x = 2 gives;

$$27(2)^3 + 9(2)^2 - 6(2) + 10 = (2-2) \times Q(2) + R$$

 $\Rightarrow R = 250 \text{ as obtained before.}$

(ii) The same can be done by taking $x = \frac{1}{3}$

Case 2: Non-linear divisors

The remainder in the above example turned out to be a constant. This is the case for linear divisors. However, the situation is different when the divisor is non–linear, and we can summarise the expected results in a table.

Nature of divisor	Nature of remainder	
	General	Other
1. Linear	Constant	None
2. Quadratic	Linear	Constant
3. Cubic	Quadratic	Linear, Constant
4. Quartic	Cubic	Quadratic, Linear, Constant

In brief, the degree of the remainder is 1 less than that of the divisor.

Example 2: Find the quotient and remainder when $3x^3 + 5x^2 + 4x + 3$ is divided by $x^2 + 2x - 1$.

Solution:

This requires long division, and we have;

$$\begin{array}{r}
3x-1 \\
x^2 + 2x - 1 \overline{\smash)3x^3 + 5x^2 + 4x + 3} \\
-(3x^3 + 6x^2 - 3x) \downarrow \\
-x^2 + 7x + 3 \\
-(x^2 - 2x + 1) \\
\hline
9x + 2
\end{array}$$

Thus we have Q(x) = 3x - 1 as the quotient, and remainder is R(x) = 9x + 2

N.B: The remainder theorem can only work for non-linear divisors iff the divisor is factorable into linear factors.

Example 3: Find the remainder when $3x^4 + x^3 - 11x^2 - 4x + 4$ is divided by $x^2 - x - 2$.

Solution:

Suppose we have the remainder as R(x) = mx + c, then we have;

$$3x^{4} + x^{3} - 11x^{2} - 4x + 4 = (x^{2} - x - 2) \times Q(x) + (mx + c)$$
$$= (x - 2)(x + 1) \times Q(x) + mx + c$$

Substituting x = 2 and x = -1 in turn gives us

$$2m + c = 8 \quad \cdots (i)$$
$$-m + c = -1 \quad \cdots (ii)$$

Solving equations (i) and (ii) simultaneously gives us m = 3; c = 2.

Thus the remainder is R(x) = 3x + 2.

Example 4: A polynomial f(x) is such that f(4) = 7 and f(-3) = -14. Find the remainder when f(x) is divided by $x^2 - x - 12$.

Solution:

From the remainder theorem, $f(x) = D(x) \times Q(x) + R(x)$.

$$\therefore f(x) = (x^2 - x - 12) \times Q(x) + ax + b \qquad ; R(x) = ax + b$$
$$f(x) = (x - 4)(x + 3) \times Q(x) + ax + b$$

Substituting x = 4 and x = -3 in turn gives us;

$$f(4) = 4a + b$$
 $(=7)$ ·····(i)

$$f(-3) = -3a + b \quad (=-14) \quad \cdots (ii)$$

Solving (i) and (ii) simultaneously gives a = 3 and b = -5, thus the remainder can be stated as R(x) = 3x - 5.

The Factor Theorem

Note that a number is only a factor of another if upon division the remainder is $\mathbf{0}(zero)$, otherwise it is not a factor.

Similarly, an expression is considered to be a factor of another iff the remainder after division is **0**. The remainder theorem was earlier stated as;

$$f(x) = D(x) \times Q(x) + R(x)$$

Now that R(x) = 0, the theorem takes new shape;

$$f(x) = D(x) \times Q(x)$$

This is the **factor theorem**, and as we can see, the divisor and quotient in this case are all factors of f(x).

(For linear divisors, x-a is a factor of f(x) if f(a) = 0)

Example 5: x-3 and 2x+1 are both factors of the expression $f(x) = 2x^4 - 5x^3 + px^2 + 25x + q$. Determine the values of a and b and hence solve the equation f(x) = 0.

Example 6: The expression $3x^3 + 2x^2 - bx + a$ is divisible by x-1 but has a remainder 10 when divided by x+1. Find the values of a and b.