Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей Кафедра информатики Дисциплина «Архитектура вычислительных систем»

ОТЧЕТ

к лабораторной работе №4

на тему:

«ПРОГРАММИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ РАСШИРЕНИЙ SSE/SSE2»

БГУИР 1-40-04-01

Выполнил студент группы 253504
Дмитрук Богдан Ярославович
(дата, подпись студента)
Проверил ассистент кафедры информатики
Калиновская Анастасия Александровна
(дата, подпись преподавателя)
• • • • • • • • • • • • • • • • • • • •

Теоретические сведения:

Расширение SSE

SSE (англ. Streaming SIMD Extensions, потоковое SIMD-расширение процессора) — это набор SIMD инструкций, разработанный Intel, и впервые представленный в процессорах серии Pentium III.

Технология SSE позволяет преодолеть основную проблему MMX — при использовании MMX невозможно одновременно использовать инструкции сопроцессора, так как его регистры используются и для MMX и для работы FPU.

Расширение позволяет выполнять векторные (пакетные) и скалярные инструкции.

Векторные инструкции реализуют операции сразу над четырьмя комплек тами операндов. Скалярные инструкции работают только с одним комплектом операндов — младшим 32-битным словом.

SSE включает в архитектуру процессора восемь 128-битных регистров хmm0...хmm7, каждый из которых трактуется как 4 последовательных значения с плавающей точкой одинарной точности. Расширение позволяет выполнять векторные (пакетные) и скал ярные инструкции. Векторные инструкции реализуют операции сразу над четырьмя комплектами операндов. Скалярные инструкции работают только с одним комплектом операндов — младшим 32-битным словом.

Реализация блоков SIMD осуществляется распараллеливанием вычислительного процесса между данными. То есть когда через один блок проходит поочередно множество потоков данных.

Расширение SSE2

SSE2 (англ. Streaming SIMD Extensions 2, потоковое SIMD-расширение процессора) — это

SIMD (англ. Single Instruction, Multiple Data, Одна инструкция – множе ство данных) набор инструкций, разработанный Intel, и впервые представленный в процессорах серии Pentium 4.

SSE2 использует те же восемь 128-битных регистров xmm0...xmm7 что и расширение SSE,

каждый из которых трактуется как 2 последовательных значения с плав ающей точкой двойной точности. SSE2 включает в себя набор инструкций, которые производят операции со скалярными

и упакованными типами данных. Также SSE2 содержит инструкции для потоковой обработки целочисленных данных в тех же 128-

битных хmm регистрах, что делает это расширение более предпочтительным для целочисленных вычислений, нежели использовани е набора инструкций MMX.

Программная модель SSE/SSE2

Регистры SSE/SSE2

Все три расширения работают с одним набором 128битных регистров, обозначаемых XMM0...XMM7, как показано на рисунке 1.

Рисунок 1 — Регистры SSE/SSE2

Tunы данных SSE/SSE2

Новые расширения микропроцессора дополняют уже имеющиеся ти пы данных новыми упакованными типами:

- 4 упакованных вещественных числа одинарной точности;
- 2 упакованных вещественных числа двойной точности;
- 16 упакованных целых байтов;
- 8 упакованных целых слов;
- 4 упакованных целых двойных слова;
- 2 упакованных целых учетверенных слова.

Цель работы: Вариант 7. Обработать массивы из 8 элементов по следующему выражению:

```
F[i]=A[i] -B[i] + C[i] *D[i], i=1...8.
```

Используются следующие массивы:

A, B и C - 8 разрядные целые знаковые числа (_int8);

D-16 разрядные целые знаковые числа (int16).

Полученный результат отобразить на форме с использованием соответствующих элементов. При распаковке знаковых чисел совместно с командами распаковки использовать команды сравнения (сравнивать с нулём перед распаковкой).

Ход работы: на рисунке 1 представлены регистры ММХ, на рисунке 2 представлены входные данные, на рисунке 3 представлены результаты программы.

Листинг 1 — Исходный код ассемблерной вставки реализующей вычисления в соответствии с поставленным условием

```
asm {
       xorpd xmm0, xmm0
       xorpd xmm1, xmm1
       xorpd xmm2, xmm2
       xorpd xmm3, xmm3
       xorpd xmm4, xmm4
       xorpd xmm5, xmm5
       xorpd xmm6, xmm6
       movupd xmm0, [A]
       movupd xmm1, [B]
       punpcklbw xmm0, xmm4
       punpcklbw xmm1, xmm4
       psubw xmm0, xmm1
       movupd xmm1, [C]
       movupd xmm2, [C]
       movupd xmm3, [C]
       movupd xmm4, [D]
       punpcklbw xmm1, xmm5
       punpcklbw xmm2, xmm5
       punpcklbw xmm3, xmm5
```

```
pmullw xmm1, xmm4
         pmullw xmm2, xmm4
         pmulhw xmm3, xmm4
         paddw xmm1, xmm0
         paddw xmm2, xmm0
         punpcklwd xmm1, xmm3
        punpckhwd xmm2, xmm3
         paddq xmm2, xmm3
         pmullw xmm0, xmm2
        movupd[F + 16], xmm2
         movupd[F], xmm1
}
                XMM0 = 0000000000000000-0000000000000000
                XMM1 = 0000006500780065-002E003400440057
                XMM2 = 006E0055005C0033-0065006D0075006C
                XMM3 = 004C0041005C0053-00430041005C0069
                XMM4 = 0075006200650044-005C003400440057
                XMM6 = 0000000000000000-00000000000000000
```

MXCSR = 00001F80

Рисунок 1 – Регистры SSE

```
__int8 A[8] = { 1, 2, 3, 4, 5, 6, 7, 8};

__int8 B[8] = { 1, 1, 1, 1, 1, 1, 1 };

__int8 C[8] = { 1, 2, 3, 4, 5, 6, 7, 8};

__int16 D[8] = { 1, 2, 3, 4, 5, 6, 7, 8};

__int32 F[8] = {};
```

Рисунок 2 – Входные данные

```
A:
1 2 3 4 5 6 7 8
B:
1 1 1 1 1 1 1 1
C:
1 2 3 4 5 6 7 8
D:
1 2 3 4 5 6 7 8
F:
1 5 11 19 29 41 55 71
```

Рисунок 3 – Результаты работы программы

Выводы: в результате лабораторной работы была выполнена одна задача, где с помощью программной модели SSE и системы команд SSE было посчитано выражение.