实验三 进程调度

实验环境:

Windows 平台/Linux 平台

实验时间:

4 小时

实验目的:

了解进程的调度机制,掌握短作业优先算法、时间片轮转算法(RR)和优先数算法,并理解响应时间和周转时间的意义。

实验目标:

模拟短作业优先算法、时间片轮转算法(RR)和优先数算法的执行情况,并动态画出其进程执行的Gantt图,计算以上算法的每个进程的响应时间和周转时间。

实验步骤:

1、需要模拟执行的进程序列如下:

进程名	到达时间	运行时间	优先数
P1	0	7	5
P2	1	1	1
Р3	1	3	4
P4	2	5	3
P5	4	4	2

假设:优先数越小优先级越高;所有进程都是纯CPU型进程。请把上表的数据按照你自己设计的格式存为一个文本文件JOB1.TXT。

- 2、编写一个模拟程序,可以读入文本文件 JOB1. TXT 中描述的进程序列,然后模拟短作业优先算法、时间片轮转算法 (RR) 和优先数算法的执行情况,并动态画出其进程执行的 Gantt 图,计算以上算法的每个进程的响应时间和周转时间。
- 3、读入文本文件 JOB1. TXT 中描述的进程序列,按照短作业优先算法执行程序。
- 4、按照时间片轮转算法执行程序时间片大小分布为1、2和3。
- 5、按照优先数算法执行程序。

实验结果:

实验步骤 1: 文本文件的格式是:

实验步骤 3 的执行结果是:

实验步骤 4 的执行结果是:

实验步骤 5 的执行结果是: