- * Announcement
- 1) Hw = due today 11:59 pm PT OH~ 7pm.
- @ Quiz 1 tomorrow ~ Chapter 182.
- 1) HW3 due next Tuesday (9/15)

STAT 88: Lecture 6

Contents

Section 3.1: Success and Failure

Section 3.2: Random Variables

Section 3.3: The Binomial Distribution

Last time

Sec 2.5 A and B are independent iff

$$P(B|A) = P(B).$$

Then $P(A \cap B) = P(A)P(B)$. P(B|A)P(A) If A and B are independent, non-empty sets, then they must overlap, i.e.

$$P(A \cap B) = P(A)P(B) > 0.$$

ANB # Ø

In other words, A and B are not mutually exclusive.

Warm up:

- (a) You flip a coin 8 times. What is the chance that you get all heads?
- (b) Everyone in a class of 100 people flip a coin 8 times. What is the chance that at least one person gets all heads?

(a)
$$P(\text{all heads}) = P(2\text{st head } \cap 2\text{nd head}) \cap 8\text{th head})$$

Indep = $P(2\text{st head}) \cdot P(2\text{nd head}) \rightarrow P(8\text{th head})$

= $(\frac{1}{2})^8$

= $\frac{1}{256}$

g flips.

(b) "at least" -> complement rule.

$$P(A+ | east one all | heads) = 1 - P(no one jets all | heads)$$

everyone jets at | least one to

too people. = 1 - P(everyone Jets at least one tord) $= 1 - (1 - \frac{1}{266})^{100}$

3.1. Success and Failure

Read Section 3.1 of textbook, Paul the Octopus.

3.2. Random Variables

Random Variables (RV) help reduce the amount of writing involved in phrases like "the chance that there are no more than 1 head in three tosses of a coin".

You can instead write:

Let X be the number of heads in three coin tosses. Find $P(X \leq 1)$.

Formally a random variable X is a <u>function</u> from the outcome space to the real numbers, i.e. $X: \Omega \to \mathbb{R}$.

∴	outcome	X(outcome)	Probability
	ннн	3	1/8
	ННТ	2	1/8
	нтн	2	1/8
	THH	2	1/8
	HTT	1	1/8
	THT	1	1/8
	TTH	1	1/8
	TTT	0	1/8

$$P(x \le 1) = P(x = 0) + P(x = 1) = \frac{2}{2}$$

$$p(x=3) = \frac{1}{8}$$

$$p(x=2) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

$$= \frac{3}{8}.$$

$$p(x=1) = \frac{3}{8}$$

$$p(x=0) = \frac{1}{8}.$$

Probability distribution table for X, known for short as a distribution table.

Possible value x	0	1	2	3
P(X = x)	1/8	3/8	3/8	1/8

Distribution (pmf) The probability distribution of a random variable, or distribution for short, is the set of all possible values of the random variables along with all of the corresponding probabilities.

The probabilities in a distribution must add up to 1. The distribution of a random variable is sometimes called a probability mass function, abbreviated to pmf.

Probability Histogram The distribution or probability mass function (Pmf) allows us to visualize the probability for each value of X.

Equality Two RVs can have the same distribution but not be equal. Let X_1 be the number of heads and X_2 be the number of tails in three tosses. If the outcome of three tosses is HTH, then $X_1(HTH) = 2$ and $X_2(HTH) = 1$ so as functions on the outcome space, $X_1 \neq X_2$. But both RVs have the same distribution.

3.3. The Binomial Distribution

A binomial distribution Binomial (n, p) has n independent trials, each with probability p for success.

Example: X = # heads out of 5 coin tosses of a p = 1/4 coin (chance of landing head is 1/4). Let's find P(X=2).

Here n=5 independent coin tosses, p=1/4 is chance for heads, and k=2.

First what is the chance that you get HHTTT? HTHTT?

(4) (4)

How many permutations of 5 letters abcde? In case of HHTTT we must divide by 2!3!, giving

Notation.
$$\binom{5}{2} = \frac{5!}{2!3!}. > \frac{\text{total}}{\text{for 2Hs. 3Ts}}$$

This shows that

$$P(X=2) = {5 \choose 2} \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^3.$$
 "Browing forwards"

What values does X take?

K represents possible values for
$$X$$

$$k = 0, 1, 2, -... 5$$

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

More generally,
$$X \sim Binomial(n,p)$$
 (HH - HTT.- T)

$$P(X=K) = {n \choose K} \frac{p^{K}(1-p)^{n-K}}{k}, \quad k=0,1,...,n$$

Roll a die. 10 times. # 1 out of 10 mils.

that
$$N=10$$
.

 $p=\frac{1}{6}$

Binomial(10, $\frac{1}{6}$)

Example: (Exercise 3.6.3) Yi likes to bet on "red" at roulette. Each time she bets, her chance of winning is 18/38 independently of all other times. Suppose she bets repeatedly on red. Find the chance that:

$$\sim B7ncmal(n, \frac{18}{38})$$

(c) the third time she wins is on the 10th bet

(d) she needs more than 10 bets to win five times = up to lotels, she has at most 4 wings

(a)
$$n = 10$$

 $p = 18/38$. $p(x=4) = {10 \choose 4} \cdot {19 \choose 38}^4 (\frac{20}{38})^{10-4}$
 $k = 4$

$$p(x \le 4) = p(x = 6) + p(x = 1) + p(x = 2) + p(x = 3) + p(x = 4)$$

$$= \sum_{k=0}^{4} {\binom{10}{k}} {\binom{18}{35}}^{k} {(\frac{20}{35})}^{10-k}$$

$$\Rightarrow \text{ Answer: } \left(\frac{9}{2}\right)\left(\frac{19}{38}\right)^{2}\left(\frac{20}{38}\right)^{7} * \frac{18}{38}$$

$$= \left(\frac{9}{2}\right)\left(\frac{19}{38}\right)^{3}\left(\frac{20}{38}\right)^{7}$$
Win an 10th Let

wins
$$\leq 4$$
 in 10 Lets.

$$P(\chi \leq 4) = \sum_{k=0}^{4} {\binom{10}{3k}} {\binom{18}{3k}} {\binom{20}{3k}}^{10-k}$$

Binomial Probabilities in Python SciPy is a compendium of Python software that is enormously useful in data science. In particular, its stats module contains numerous functions and methods used by data scientists.

<u>Example</u>: Ten cards are dealt off the top of a well shuffled deck. The binominal formula doesn't apply to find the chance of getting exactly three diamonds because:

- 1. The probability of a trial being successful changes
- (2.) The trials aren't independent
- 3. There isn't a fixed number of trials
- 4. More than one of the above

The ith that is whether the ith cord is a diamond. By symmetry, this always has probability $\frac{13}{52} = \frac{1}{4}$. Hence the probability of a thial being successful abosit change (i.e. Choose a diamond)

However, the thinks are "dependent" by the cords are dealt w/o replacement. For example, the chance the second (and is diamond depends on what the first (and is-

This is an example where we have 10 dependent trials all prob 1/4.