## TIGHT GEODESICS

Problems with C(S): @ not locally finite ~ hard to do algorithms

@ MCG action not prop disc ~ hard to glean into about MCG.

Will remedy this somewhat.

## Tight geodesics

A tight geodesic from v to w is a seq. of simplices  $v = T_0, ..., T_n = W$ 5.t. ①  $\forall i = \partial F(T_{i-1}, T_{i+1})$   $F = \text{span of } T_{i-1}, T_{i+1} = \text{smallest subsurface}$ ②  $d(v_i, v_j) = |i-j| \forall v_i \in T_i, v_j \in T_j \ i \neq j$ . containing both

example.



v is the canonical choice to get from u to w.

## Tightening

Given a geodesic  $V_0, ..., V_n$  can tighten at  $V_i$ : replace  $V_i$  by  $\partial F(V_{i-1}, V_{i+1})$ 

Prop. If we tighten at vi then tighten at vi-1, result is still & tight at vi. In particular, tight geodesics exist.

Pf. Say To, TI, Tz, T3 already tight at T2 and we tighten at Ti:



New path is still geodesic (it has same length as a geodesic).  $\Rightarrow$  all components of  $\nabla_1$ ' &  $\nabla_3$  intersect  $\Rightarrow F(\nabla_1', \nabla_3)$  connected.

 $i(\nabla_1', \nabla_2) = 0 \implies \nabla_1' \subseteq F(\nabla_1, \nabla_3)$  since  $\nabla_2 = \partial F(\nabla_1, \nabla_3)$  $\implies F(\nabla_1', \nabla_3) \subseteq F(\nabla_1, \nabla_3)$  (use connectedness).

Need: T', T3 fill F(T1, T3).

So let  $\alpha \subseteq F(\tau_1, \tau_3)$  and say  $i(\alpha, \tau_3) = 0$ .

~ need i(x, v,') \$0.

 $i(\alpha, \nabla_3) = 0 \implies i(\alpha, \nabla_1) \neq 0$  Since these pairs fill  $i(\alpha, \nabla_0) \neq 0$   $F(\nabla_1, \nabla_3)$  and S resp.

But J, \$ F(J0, J2)

~ of must cross of (To, T2) to get from ♥ T, to To
T,'.

Prop. There are finitely many tight geodesics between two vertices v, w.

IF. Say d(V,W)=n.

Suffices to show  $\exists$  finitely many choices for  $\forall \tau$  on a light  $V = \tau_0, \tau_1, \ldots, \tau_n = W$ 

Cut S along v.

In = w ~ filling simplex of arc complex In

Vn-1 also gives Filling simplex In-1

Note: i(In, In-1) = 0.

Fact: Given a filling simplex T in arc complex T only finitely many simplices T' with i(T,T')=0.

By induction, finitely many choices for Tz.

By tightness, one choice of T, for each choice of T2.

In the above argument, we can algorithmically list all the Ti & J, 's.

Cor. I algorithm to compute distance in C(S).

IF. Assume have algorithm to distinguish distances 1,...,n-1 and > n-1.

Want on alg to dist. • distances 1,...,n and > n.

Let  $v, w \in C(S)$ . By induction we can tell if d(v,w) is 1,...,n-1 or > n-1.

If it is 1,...,n-1 we are done so assume d(v,w) > n.

Need to tell if d(v,w) is n or > n.

List all cardidate  $T_1$ 's on a tight path of length n as above.

If any such  $T_1$  has  $d(T_1,w)=n-1$  (using induction), d(v,w)=n.

Otherwise d(v,w) > n.

## Applications of tight geodesics

Thm. Any pA in MCG(S) has , an honest geodesic oxis. bight!

Pf Sketch. Say f is pA with limit pts  $a,b \in \partial C(S)$ .  $L_T = \text{ set of all tight geodesics from } a \text{ to } b$ . | locally | G = subgraph of C(S) given by union of elts of  $L_T$ .  $L_G = \text{ set of geodesics contained in } G$ . Note  $L_T \nsubseteq L_G$ !  $G/\langle f \rangle$  is finite

Say Je LG is lexicographically least if Y x, y ∈ J

the sequence of labels along I is lex. least among all geodesics from x to y in G.

L = set of lex. least gods = LG.

-> this is f-invariant.

Claim 1. Li = # p.

Pf. Take longer and longer lex. least goods local finiteness => some seq. converges.

Claim 2. | he / Loo.

Now take any  $g \in L_L$ . The finitely many elts are permuted by f so some power of f fixes a geodesic.

Cor. Stable translation length for a pA on C(S) is rational.

 $T(f) = \lim_{n \to \infty} \inf \frac{d(f^n(x), x)}{n}$