CS61B Lecture #20: Trees

A Recursive Structure

- Trees naturally represent recursively defined, hierarchical objects with more than one recursive subpart for each instance.
- Common examples: expressions, sentences.
 - Expressions have definitions such as "an expression consists of a literal or two expressions separated by an operator."
- Also describe structures in which we recursively divide a set into multiple subsets.

Last modified: Mon Oct 8 21:21:22 2018 C561B: Lecture #20 1

Formal Definitions

- Trees come in a variety of flavors, all defined recursively:
 - -61A style: A tree consists of a label value and zero or more branches (or children), each of them a tree.
 - -61A style, alternative definition: A tree is a set of nodes (or vertices), each of which has a label value and one or more child nodes, such that no node descends (directly or indirectly) from itself. A node is the parent of its children.
 - Positional trees: A tree is either empty or consists of a node containing a label value and an indexed sequence of zero or more children, each a positional tree. If every node has two positions, we have a binary tree and the children are its left and right subtrees. Again, nodes are the parents of their non-empty children.
 - We'll see other varieties when considering graphs.

Tree Characteristics (I)

- The *root* of a tree is a non-empty node with no parent in that tree (its parent might be in some larger tree that contains that tree as a subtree). Thus, every node is the root of a (sub)tree.
- The *order*, *arity*, or *degree* of a node (tree) is its number (maximum number) of children.
- \bullet The nodes of a *k-ary tree* each have at most k children.
- A leaf node has no children (no non-empty children in the case of positional trees).

Tree Characteristics (II)

- The *height* of a node in a tree is the smallest distance to a leaf. That is, a leaf has height 0 and a non-empty tree's height is one more than the maximum height of its children. The height of a tree is the height of its root.
- ullet The depth of a node in a tree is the distance to the root of that tree. That is, in a tree whose root is R, R itself has depth 0 in R, and if node $S \neq R$ is in the tree with root R, then its depth is one greater than its parent's.

A Tree Type, 61A Style

```
public class Tree<Label> {
    // This constructor is convenient, but unfortunately causes
    // (harmless) warnings that we will explain later.

public Tree(Label label, Tree<Label>... children) {
    _label = label;
    _kids = new ArrayList<>(Arrays.asList(children));
  }

public int arity() { return _kids.size(); }

public Label label() { return _label; }

public Tree<Label> child(int k) { return _kids.get(k); }

private Label _label;
  private ArrayList<Tree<Label>> _kids;
}
```


Fundamental Operation: Traversal

- Traversing a tree means enumerating (some subset of) its nodes.
- Typically done recursively, because that is natural description.
- As nodes are enumerated, we say they are visited.
- Three basic orders for enumeration (+ variations):
 - Preorder: visit node, traverse its children.
 - Postorder: traverse children, visit node.
 - Inorder: traverse first child, visit node, traverse second child (binary trees only).

Last modified: Mon Oct 8 21:21:22 2018

CS61B: Lecture #20 7

Preorder Traversal and Prefix Expressions

(Assume Tree<Label> is means "Tree whose labels have type Label.)

```
static String toLisp(Tree<String> T) {
  if (T.arity() == 0) return T.label();
  else {
    String R; R = "(" + T.label();
    for (int i = 0; i < T.arity(); i += 1)
        R += " " + toLisp(T.child(i));
    return R + ")";
  }
}</pre>
```

Last modified: Mon Oct 8 21:21:22 2018 CS61B: Lecture #20 8

Inorder Traversal and Infix Expressions

Last modified: Mon Oct 8 21:21:22 2018 C561B: Lecture #20 9

Postorder Traversal and Postfix Expressions

Last modified: Mon Oct 8 21:21:22 2018

CS61B: Lecture #20 10

A General Traversal: The Visitor Pattern

```
void preorderTraverse(Tree<Label> T, Consumer<Tree<Label>> visit)
{
  if (T != null) {
    visit.accept(T);
    for (int i = 0; i < T.arity(); i += 1)
        preorderTraverse(T.child(i), visit);
  }
}</pre>
```

- java.util.function.Consumer<AType> is a library interface that works as a function-like type with one void method, accept, which takes an argument of type AType.
- Now, using Java 8 lambda syntax, I can print all labels in the tree in preorder with:

```
preorderTraverse(myTree, T -> System.out.print(T.label() + " "));
```

Iterative Depth-First Traversals

• Tree recursion conceals data: a *stack* of nodes (all the T arguments) and a little extra information. Can make the data explicit:

```
void preorderTraverse2(Tree<Label> T, Consumer<Tree<Label>> visit) {
   Stack<Tree<Label>> work = new Stack<>();
   work.push(T);
   while (!work.isEmpty()) {
      Tree<Label> node = work.pop();
      visit.accept(node);
      for (int i = node.arity()-1; i >= 0; i -= 1)
            work.push(node.child(i)); // Why backward?
   }
}
```

- \bullet This traversal takes the same $\Theta(\cdot)$ time as doing it recursively, and also the same $\Theta(\cdot)$ space.
- That is, we have substituted an explicit stack data structure (work) for Java's built-in execution stack (which handles function calls).

Last modified: Man Oct 8 21:21:22 2018 C561B: Lecture #20 11 Last modified: Man Oct 8 21:21:22 2018 C561B: Lecture #20 12

Level-Order (Breadth-First) Traversal

Problem: Traverse all nodes at depth 0, then depth 1, etc:

Last modified: Mon Oct 8 21:21:22 2018

CS61B: Lecture #20 13

Breadth-First Traversal Implemented

A simple modification to iterative depth-first traversal gives breadth-first traversal. Just change the (LIFO) stack to a (FIFO) queue:

Times

- The traversal algorithms have roughly the form of the boom example in $\S 1.3.3$ of Data Structures—an exponential algorithm.
- \bullet However, the role of M in that algorithm is played by the \emph{height} of the tree, not the number of nodes.
- In fact, easy to see that tree traversal is $\mathit{linear} : \Theta(N),$ where N is the # of nodes: Form of the algorithm implies that there is one visit at the root, and then one visit for every edge in the tree. Since every node but the root has exactly one parent, and the root has none, must be N-1 edges in any non-empty tree.
- In positional tree, is also one recursive call for each empty tree, but # of empty trees can be no greater than kN, where k is arity.
- \bullet For k-ary tree (max # children is k), $h+1 \leq N \leq \frac{k^{h+1}-1}{k-1}$, where h is height.
- So $h \in \Omega(\log_k N) = \Omega(\lg N)$ and $h \in O(N)$.
- Many tree algorithms look at one child only. For them, worst-case time is proportional to the height of the tree—⊖(lg N)—assuming that tree is bushy—each level has about as many nodes as possible.

Last modified: Mon Oct 8 21:21:22 2018 CS61B: Lecture #20 15

Recursive Breadth-First Traversal: Iterative Deepening

- \bullet Previous breadth-first traversal used space proportional to the width of the tree, which is $\Theta(N)$ for bushy trees, whereas depth-first traversal takes $\lg N$ space on bushy trees.
- \bullet Can we get breadth-first traversal in $\lg N$ space and $\Theta(N)$ time on bushy trees?
- For each level, k, of the tree from 0 to lev, call doLevel(T,k):

```
void doLevel(Tree T, int lev) {
  if (lev == 0)
    visit T
  else
    for each non-null child, C, of T {
       doLevel(C, lev-1);
    }
}
```

- So we do breadth-first traversal by repeated (truncated) depth-first traversals: *iterative deepening*.
- In doLevel(T, k), we skip (i.e., traverse but don't visit) the nodes before level k, and then visit at level k, but not their children.

Last modified: Mon Oct 8 21:21:22 2018 C561B: Lecture #20 16

Iterative Deepening Time?

- \bullet Let h be height, N be $\mbox{\it \#}$ of nodes.
- Count # edges traversed (i.e, # of calls, not counting null nodes).
- \bullet First (full) tree: 1 for level 0, 3 for level 1, 7 for level 2, 15 for level 3.
- Or in general $(2^1-1)+(2^2-1)+\ldots+(2^{h+1}-1)=2^{h+2}-h\in\Theta(N)$, since $N=2^{h+1}-1$ for this tree.
- Second (right leaning) tree: 1 for level 0, 2 for level 2, 3 for level 3.
- Or in general $(h+1)(h+2)/2=N(N+1)/2\in\Theta(N^2)$, since N=h+1 for this kind of tree.

Last modified: Mon Oct 8 21:21:22 2018 CS61B: Lecture #20 17

Iterators for Trees

- Frankly, iterators are not terribly convenient on trees.
- But can use ideas from iterative methods.

```
class PreorderTreeIterator<Label> implements Iterator<Label> {
   private Stack<Tree<Label>> s = new Stack<Tree<Label>>();

   public PreorderTreeIterator(Tree<Label> T) { s.push(T); }

   public boolean hasNext() { return !s.isEmpty(); }
   public T next() {
     Tree<Label> result = s.pop();
     for (int i = result.arity()-1; i >= 0; i -= 1)
        s.push(result.child(i));
     return result.label();
   }
}
```

Example: (what do I have to add to class Tree first?)

```
for (String label : aTree) System.out.print(label + " ");
```

