Estimating the target

Estimating the target

- one estimator is not more causal than another.
- different estimators are based on different nuisance parameters and have different statistical properties (bias/variance).

G-formula versus IP-weighting

- G-formula 1. Estimate nuisance parameters $f(a,x) = \mathbb{E}[Y \mid A = a, X = x]$ and the average over the marginal distribution μ_X of X
 - 2. Plug in to estimate the ATE:

$$\hat{\psi}_n^{\text{g-formula}} = \tilde{\Psi}(\hat{f}_n, \hat{\mu}_X) = \int_{\mathbb{R}^d} (\hat{f}_n(1, x) - \hat{f}_n(0, x)) d\hat{\mu}_X(x)$$

- IP-weighting 1. Estimate nuisance parameters $\pi(a \mid x) = P(A = a \mid X = x)$ and the average over the distribution P of O
 - 2. Plug in to estimate the ATE:

$$\hat{\psi}_{n}^{\mathsf{ipw}} = \tilde{\Psi}_{\mathsf{ipw}}(\hat{\pi}_{n}, \hat{P}_{n}) = \int_{\mathbb{R}^{d}} \left(\frac{\mathsf{a} \mathsf{y}}{\hat{\pi}_{n}(\mathsf{a} \mid \mathsf{x})} - \frac{(1-\mathsf{a})\mathsf{y}}{\hat{\pi}_{n}(\mathsf{a} \mid \mathsf{x})} \right) d\hat{P}_{n}(\mathsf{x})$$

One-step estimation

- One-step 1. Estimate nuisance parameters $f(a,x) = \mathbb{E}[Y \mid A = a, X = x], \ \pi(a \mid x) = \mathbb{E}[A \mid X = x]$
 - and the average over the distribution P of O
 - 2. Plug in to estimate the ATE:

$$\hat{\psi}_{n}^{\text{one}} = \tilde{\Psi}_{\text{one}}(\hat{f}_{n}, \hat{\pi}_{n}, \hat{P}_{n}) = \int_{\mathbb{R}^{d}} \sum_{a=0,1} \sum_{y=0,1} \left\{ \left(\frac{a}{\hat{\pi}_{n}(a \mid x)} - \frac{1-a}{\hat{\pi}_{n}(a \mid x)} \right) (y - \hat{f}_{n}(a, x)) + \hat{f}_{n}(1, x) - \hat{f}_{n}(0, x) \right\} d\hat{P}_{n}(o)$$

G-formula versus IP-weighting

Estimation of the averages over μ_X and P is straightforward using the empirical average over the observed data.

This yields:

Properties of the different estimators:

Properties of the different estimators:

- G-formula estimator requires estimator \hat{f}_n for conditional expectation f.
 - consistent if \hat{f}_n is consistent.

IP-weighted estimator requires estimator $\hat{\pi}_n$ for the propensity score π .

• consistent if $\hat{\pi}_n$ is consistent.

Properties of the different estimators:

- G-formula estimator requires estimator \hat{f}_n for conditional expectation f.
 - consistent if \hat{f}_n is consistent.

IP-weighted estimator requires estimator $\hat{\pi}_n$ for the propensity score π .

• consistent if $\hat{\pi}_n$ is consistent.

One-step estimator requires estimators \hat{f}_n and $\hat{\pi}_n$ for conditional expectation f and propensity score π .

Properties of the different estimators:

- G-formula estimator requires estimator \hat{f}_n for conditional expectation f.
 - consistent if \hat{f}_n is consistent.
- IP-weighted estimator requires estimator $\hat{\pi}_n$ for the propensity score π .
 - consistent if $\hat{\pi}_n$ is consistent.
- One-step estimator requires estimators \hat{f}_n and $\hat{\pi}_n$ for conditional expectation f and propensity score π .
 - the one-step estimator and the TMLE estimator share the same large-sample properties.

Properties of the different estimators:

- G-formula estimator requires estimator \hat{f}_n for conditional expectation f.
 - consistent if \hat{f}_n is consistent.

IP-weighted estimator requires estimator $\hat{\pi}_n$ for the propensity score π .

• consistent if $\hat{\pi}_n$ is consistent.

One-step estimator requires estimators \hat{f}_n and $\hat{\pi}_n$ for conditional expectation f and propensity score π .

- the one-step estimator and the TMLE estimator share the same large-sample properties.
- one thing they have in common is an additional bias correction leads to consistency if either \hat{f}_n or $\hat{\pi}_n$ is consistent (commonly known as double robustness).

SMALL EXERCISE:

By the law of large numbers, the one-step estimator converges in probability to:

$$\mathbb{E}_{P_{\mathbf{0}}}\left[\left(\frac{A}{\pi(A\mid X)} - \frac{1-A}{\pi(A\mid X)}\right)\left(Y - f(A,X)\right) + f(1,X) - f(0,X)\right] \tag{1}$$

where (f,π) denotes the limit of $(\hat{f}_n,\hat{\pi}_n)$. Compute the right hand side of (1) when

- 1. $f = f_0$ (i.e., the outcome regression is consistently estimated), and
- 2. $\pi = \pi_0$ (i.e., the propensity score is consistently estimated).

TMLE estimator requires estimators \hat{f}_n and $\hat{\pi}_n$ for conditional expectation f and propensity score π .

• consistent if either \hat{f}_n or $\hat{\pi}_n$ is consistent.

TMLE estimator requires estimators \hat{f}_n and $\hat{\pi}_n$ for conditional expectation f and propensity score π .

• consistent if either \hat{f}_n or $\hat{\pi}_n$ is consistent.

Some other things we will see/explore:

• if $\hat{\pi}_n$ is modeled correctly, the TMLE estimator will have lower variance than the IP-weighted estimator.

TMLE estimator requires estimators \hat{f}_n and $\hat{\pi}_n$ for conditional expectation f and propensity score π .

• consistent if either \hat{f}_n or $\hat{\pi}_n$ is consistent.

Some other things we will see/explore:

- if $\hat{\pi}_n$ is modeled correctly, the TMLE estimator will have lower variance than the IP-weighted estimator.
- the TMLE estimator may have larger variance than the g-formula estimator based on a correctly modeled \hat{f}_n (but it gives protection against the case that it is not).

Can't we just construct a good g-formula estimator???

Can't we just construct a good g-formula estimator???

- ▶ a logistic regression great if correctly specified, but horrible if not.
- a random forest properly tuned?

Predictive performance of an estimator can be measured in terms of some distance¹ between:

1) the observed outcome: Y_i

2) and the predicted conditional expectation: $\hat{f}_n(A_i, X_i)$

¹Measured in terms of a *loss function*.

Predictive performance of an estimator can be measured in terms of some distance¹ between:

- 1) the observed outcome: Y
- 2) and the predicted conditional expectation: $\hat{f}_n(A_i, X_i)$

One example of a loss function $\mathcal{L}(f)(O)$ is the negative log-likelihood loss:

$$\mathcal{L}(\hat{f}_n)(Y_i,A_i,X_i) = -\big(Y_i\log(\hat{f}_n(A_i,X_i)) + (1-Y_i)\log(1-\hat{f}_n(A_i,X_i))\big).$$

¹Measured in terms of a *loss function*.

Predictive performance of an estimator can be measured in terms of some distance¹ between:

- 1) the observed outcome:
- 2) and the predicted conditional expectation: $\hat{f}_n(A_i, X_i)$

One example of a loss function $\mathcal{L}(f)(O)$ is the negative log-likelihood loss:

$$\mathcal{L}(\hat{f}_n)(Y_i, A_i, X_i) = -(Y_i \log(\hat{f}_n(A_i, X_i)) + (1 - Y_i) \log(1 - \hat{f}_n(A_i, X_i))).$$

The estimator \hat{f}_n closest to the true f_0 minimizes the risk:

$$\mathbb{E}_{P_0}[\mathcal{L}(\hat{f}_n)(Y_i,A_i,X_i)].$$

¹Measured in terms of a *loss function*.

The risk can be estimated in a cross-validation scheme.^a

I.e., for each sample split:

- 1. Each model is created and fitted on the training data: \hat{f}_n^{train} .
- 2. The quality of the model is checked on the validation data
 - Average of $\mathcal{L}(\hat{f}_n^{\mathsf{train}})(O_i)$ in the validation sample.

^aTo measure performance on independent data.

Simulated example

- $X \sim \text{Unif}(-2,2)$
- $X_1^{\text{noise}}, \dots, X_5^{\text{noise}} \sim N(0, 1)$
- ▶ $A \in \{0,1\}$ with distribution given X given by:

$$\mathsf{logit}\,\mathbb{E}[A\,|\,X] = \gamma_0 + \gamma_X^{\mathsf{T}}X$$

▶ $Y \in \{0,1\}$ with distribution given X and A given by:

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X^{\mathsf{T}} X^2$$

RF fitted with different values of tuning parameters (nodesize, mtry):

Different GLM models

GLM models fitted with different covariates and functional form of covariates:

This is all about constructing a good estimator for the conditional expectation f.

This does not necessarily translate into a good estimator for the target $\tilde{\Psi}(f, \mu_X)$.

This is all about constructing a good estimator for the conditional expectation f.

This does not necessarily translate into a good estimator for the target $\tilde{\Psi}(f, \mu_X)$.

TMLE is all about constructing a g-formula estimator which is a good estimator for *the target*.

Fix randomness:

```
set.seed(5)
```

Fix a sample size:

Generate covariate $X \in [-2, 2]$:

Generate binary treatment decision A:

```
A <- rbinom(n, 1, prob=plogis(-0.25 + 1.2*X))
```

(corresponding to logit $\mathbb{E}[A \mid X] = \gamma_0 + \gamma_X X$)

Generate binary outcome Y according to

$$\mathsf{logit}\,\mathbb{E}[\,Y\mid A,X\,] = \beta_0 + \beta_A A + \beta_X X^2$$

Generate binary outcome Y according to

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

First generate counterfactuals:

```
Y1 <- rbinom(n, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*1))
Y0 <- rbinom(n, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*0))
```

Generate binary outcome Y according to

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

First generate counterfactuals:

```
Y1 <- rbinom(n, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*1))
Y0 <- rbinom(n, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*0))
```

We only observe the counterfactual outcome corresponding to the observed treatment level:

```
Y <- A*Y1 + (1-A)*Y0
```

Observed data:

```
X A Y
1: -1.1991422 0 0
2: 0.7408744 1 0
3: 1.6675031 1 1
4: -0.8624022 0 1
5: -1.5813995 0 1
---
496: -0.3978523 1 0
497: -1.5069379 0 1
498: 1.8340120 1 1
499: 0.6349484 1 1
500: -0.5214807 0 1
```

Observed data:

X A Y 1: -1.1991422 0 0 2: 0.7408744 1 0 3: 1.6675031 1 1 4: -0.8624022 0 1 5: -1.5813995 0 1 -- 496: -0.3978523 1 0 497: -1.5069379 0 1 498: 1.8340120 1 1 499: 0.6349484 1 1 500: -0.5214807 0 1

Counterfactual data:

	Х	Y1	YO
1:	-1.1991422	0	1
2:	0.7408744	1	0
3:	1.6675031	1	1
4:	-0.8624022	0	1
5:	-1.5813995	1	1
496:	-0.3978523	0	1
497:	-1.5069379	0	1
498:	1.8340120	1	1
499:	0.6349484	0	0
500:	-0.5214807	0	0

Simulating many observations of counterfactuals allows us to approximate the true ATE:

```
X <- runif(1e6, -2, 2)
Y1 <- rbinom(1e6, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*1))
Y0 <- rbinom(1e6, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*0))</pre>
```

The true ATE is then approximately:

```
(true.ate <- mean(Y1 - Y0))
```

since ATE =
$$\mathbb{E}_{P_0}[Y^1] - \mathbb{E}_{P_0}[Y^0]$$
.

Fit correctly specified parametric model:

```
fit.glm <- glm(Y~A+X.squared, data=dt[, X.squared:=X^2],
    family=binomial)</pre>
```

Use model to estimate f(1, X) for all subjects:

And similarly f(0,X) for all subjects:

Then we can estimate the ATE by:

```
(fit.glm <- dt[, mean(pred.glm.A1-pred.glm.A0)])</pre>
```

Using a random forest (no tuning):

Using a misspecified parametric model:

```
fit.glm.mis <- glm(Y~A+X, data=dt, family=binomial)
dt[, pred.glm.mis.A1:=predict(fit.glm.mis, type="response",
    newdata=copy(dt)[, A:=1])]
dt[, pred.glm.mis.A0:=predict(fit.glm.mis, type="response",
    newdata=copy(dt)[, A:=0])]
(fit.glm.mis <- dt[, mean(pred.glm.mis.A1-pred.glm.mis.A0)])</pre>
```

We can investigate the properties of different estimators —

- We know the true value of ATE: $\psi_0 \approx 0.0702$
- ▶ We have generated the outcome Y according to

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

We have generated the treatment A according to

$$\operatorname{logit} \mathbb{E}[A \mid X] = \gamma_0 + \gamma_X X$$

If we repeat the experiment of drawing n observations we would every time end up with a different realization of the particular estimator.

Different estimators

G-formula estimator Using an estimator \hat{f}_n for $f(a,X) = \mathbb{E}[Y \mid A = a, X]$, estimate the ATE by:

$$\hat{\psi}_n^{\text{g-formula}} = \frac{1}{n} \sum_{i=1}^n \left\{ \hat{f}_n(1, X_i) - \hat{f}_n(0, X_i) \right\}$$

Inverse probability weighted estimator Using an estimator $\hat{\pi}_n$ for $\pi(a \mid X) = P(A = a \mid X)$, estimate the ATE by:

$$\hat{\psi}_{n}^{\text{ipw}} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{A_{i} Y_{i}}{\hat{\pi}_{n}(A_{i} \mid X_{i})} - \frac{(1 - A_{i}) Y_{i}}{\hat{\pi}_{n}(A_{i} \mid X_{i})} \right\}$$

TMLE estimator Update the estimator $\hat{f}_n \mapsto \hat{f}_n^*$ in a "targeted way" using the information from the estimator $\hat{\pi}_n$, then estimate the ATE by:

$$\hat{\psi}_{n}^{\text{tmle}} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{f}_{n}^{*}(1, X_{i}) - \hat{f}_{n}^{*}(0, X_{i}) \right\}$$

Today we will just (more or less blindly) use software to estimate TMLE.

Today we will just (more or less blindly) use software to estimate TMLE.

```
library(tmle)
```

- $Y \in \mathbb{R} \text{ or } Y \in \{0,1\}$
- ▶ $A \in \{0, 1\}$
- X a vector, matrix or a data frame

- gform
 - ightharpoonup optional regression formula for the propensity score π
 - ▶ on the form A~X1+X2
 - (overrides call to SuperLearner)
- Qform
 - optional regression formula for the conditional expectation f
 - ▶ on the form Y~X1+X2
 - (overrides call to SuperLearner)

- gform
 - lacktriangle optional regression formula for the propensity score π
 - ▶ on the form A~X1+X2
 - (overrides call to SuperLearner)
- Qform
 - optional regression formula for the conditional expectation f
 - on the form Y~X1+X2
 - (overrides call to SuperLearner)
- cvQinit=FALSE
 - default is TRUE which means cross-validated predicted values are estimated

- ▶ gform
 - ightharpoonup optional regression formula for the propensity score π
 - ▶ on the form A~X1+X2
 - (overrides call to SuperLearner)
- Qform
 - optional regression formula for the conditional expectation f
 - on the form Y~X1+X2
 - (overrides call to SuperLearner)
- cvQinit=FALSE
 - default is TRUE which means cross-validated predicted values are estimated
- gbound
 - truncation of predicted probabilities of treatment

On a sidenote — tomorrow

- ▶ Q.SL.library
 - optional vector of prediction algorithms to use for SuperLearner in initial estimation of f
- ▶ g.SL.library
 - optional vector of prediction algorithms to use for SuperLearner in initial estimation of π
- Q.discreteSL
 - if TRUE, a discrete super learner is used (rather than ensemble)
 - default is FALSE
- g.discreteSL
 - if TRUE, a discrete super learner is used (rather than ensemble)
 - default is FALSE

Note: The discrete super learner simply picks an algorithm from its library by minimizing the cross-validated empirical risk with respect a loss function.

What were the estimated IP weights?

```
summary(fit.tmle$g$g1W)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.04751 0.19441 0.49405 0.49400 0.79710 0.94109
```

Note that weights close to 0 or to 1 would indicate positivity issues.

What were the estimated IP weights?

```
summary(fit.tmle$g$g1W)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.04751 0.19441 0.49405 0.49400 0.79710 0.94109
```

Note that weights close to 0 or to 1 would indicate positivity issues.

What truncation level was used?

```
fit.tmle$gbound
```

[1] 0.03598084 1.00000000

I.e., no weights were truncated.

Explorations based on simulated data

As part of the exercise we want to explore —

- 1. Comparing g-formula estimators for different estimators for f; either different logistic regressions or different machine learning algorithms.
- 2. Properties of the g-formula estimator and the IP-weighted estimator, compared to the TMLE estimator.
- 3. Double robustness: Misspecification of the outcome regression (f).

The exercise is described in detail in: day1-practical1.pdf.

Nice asymptotic behaviour of an estimator

A very desirable property —

 $^{^{2}}o_{P}(1)$ denotes a sequence which is converges to zero in probability.

The empirical measure \mathbb{P}_n of the sample O_1, \ldots, O_n : $\mathbb{P}_n h = \int h d\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n h(O_i).$

A very desirable property —

An estimator $\hat{\psi}_n$ is \sqrt{n} -consistent and asymptotically linear with influence function $\phi(P_0)(O)$ if ²

$$\sqrt{n}(\hat{\psi}_n - \psi_0) = \sqrt{n} \mathbb{P}_n \phi(P_0) + o_P(1),$$

where $\mathbb{E}_{P_0}[\phi(P_0)(O)] = 0$ and $\mathbb{E}_{P_0}[\{\phi(P_0)(O)\}^2] < \infty$.

 $^{^{2}}o_{P}(1)$ denotes a sequence which is converges to zero in probability.

The empirical measure \mathbb{P}_n of the sample O_1, \ldots, O_n : $\mathbb{P}_n h = \int h d\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n h(O_i).$

A very desirable property —

An estimator $\hat{\psi}_n$ is \sqrt{n} -consistent and asymptotically linear with influence function $\phi(P_0)(O)$ if ²

$$\sqrt{n}(\hat{\psi}_n - \psi_0) = \sqrt{n} \mathbb{P}_n \phi(P_0) + o_P(1),$$

where $\mathbb{E}_{P_0}[\phi(P_0)(O)] = 0$ and $\mathbb{E}_{P_0}[\{\phi(P_0)(O)\}^2] < \infty$.

Then CLT + Slutsky implies:

$$\hat{\psi}_n \stackrel{\text{as}}{\sim} \mathcal{N}(\Psi(P_0), \operatorname{Var}(\phi(P_0))/n).$$

The estimator behaves asymptotically as an average of the influence function.

 $^{^{2}}o_{P}(1)$ denotes a sequence which is converges to zero in probability.

Simple example: Estimator for the mean $\psi_0 = \mathbb{E}[X]$:

$$\hat{\psi}_{n,0} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Then

$$\sqrt{n}(\hat{\psi}_n - \psi_0) = \sqrt{n} \frac{1}{n} \sum_{i=1}^n \underbrace{(X_i - \psi_0)}_{=\phi(P_0)(O_i)} = \sqrt{n} \mathbb{P}_n \phi(P_0)$$

 $\hat{\psi}_{\textit{n},0}$ is linear and thus asymptotically linear.

Simple example: Estimator for the mean $\psi_0 = \mathbb{E}[X]$:

$$\hat{\psi}_{n,1} = \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{n}$$

Then

$$\sqrt{n}(\hat{\psi}_{n} - \psi_{0}) = \sqrt{n} \frac{1}{n} \sum_{i=1}^{n} \underbrace{(X_{i} - \psi_{0})}_{=\phi(P_{0})(O_{i})} + \frac{\sqrt{n}}{n} = \sqrt{n} \mathbb{P}_{n} \phi(P_{0}) + \underbrace{\frac{1}{\sqrt{n}}}_{=o(1)}$$

 $\hat{\psi}_{\mathit{n},1}$ is asymptotically linear.

Simple example: Estimator for the mean $\psi_0 = \mathbb{E}[X]$:

$$\hat{\psi}_{n,2} = \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{n^{1/2 + 0.1}}$$

Then

$$\sqrt{n}(\hat{\psi}_n - \psi_0) = \sqrt{n} \frac{1}{n} \sum_{i=1}^n \underbrace{(X_i - \psi_0)}_{=\phi(P_0)(O_i)} + \frac{\sqrt{n}}{n^{1/2 + 0.1}} = \sqrt{n} \mathbb{P}_n \phi(P_0) + \underbrace{\frac{1}{n^{0.1}}}_{=o(1)}$$

 $\hat{\psi}_{\textit{n},2}$ is asymptotically linear.

Simple example: Estimator for the mean $\psi_0 = \mathbb{E}[X]$:

$$\hat{\psi}_{n,3} = \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{n^{1/2 - 0.1}}$$

Then

$$\sqrt{n}(\hat{\psi}_n - \psi_0) = \sqrt{n} \frac{1}{n} \sum_{i=1}^n \underbrace{(X_i - \psi_0)}_{=\phi(P_0)(O_i)} + \frac{\sqrt{n}}{n^{1/2 - 0.1}} = \sqrt{n} \mathbb{P}_n \phi(P_0) + \underbrace{n^{0.1}}_{\to \infty}$$

 $\hat{\psi}_{\textit{n},3}$ is \mathbf{not} asymptotically linear.

An estimator $\hat{\psi}_n$ has rate of convergence $r_n \to \infty$ if ³

$$r_n(\hat{\psi}_n - \psi_0) = O_P(1)$$
, i.e., $\hat{\psi}_n - \psi_0 = O_P(1/r_n)$.

The convergence rate r_n tells us how fast $\hat{\psi}_n$ centers around ψ_0 , with the difference $\hat{\psi}_n - \psi_0$ behaving like $1/r_n$.

- One wants negligible bias such as to obtain reliable confidence intervals for ψ_0 .
- ▶ The bias of an asymptotically linear estimator converges to zero at a rate faster the $1/\sqrt{n}$.

Data-adaptive machine learning estimators rarely achieve this rate.

 $^{^3}O_P(1)$ denotes a sequence which is bounded in probability.

$$\sqrt{n}\hat{\psi}_{n,1} = \sqrt{n}\underbrace{\frac{1}{n}\sum_{i=1}^{n}X_{i}}_{P} + \underbrace{\frac{\sqrt{n}}{n}}_{P}, \quad \text{i.e.,} \quad \sqrt{n}(\hat{\psi}_{n,1} - \psi_{0}) = o_{P}(1).$$

$$\sqrt{n}\hat{\psi}_{n,2} = \sqrt{n}\underbrace{\frac{1}{n}\sum_{i=1}^{n}X_{i}}_{P \to \psi_{0}} + \underbrace{\frac{\sqrt{n}}{n^{1/2+0.1}}}_{\to 0}, \text{ i.e., } \sqrt{n}(\hat{\psi}_{n,3} - \psi_{0}) = o_{P}(1).$$

$$\sqrt{n}\hat{\psi}_{n,3} = \sqrt{n}\underbrace{\frac{1}{n}\sum_{i=1}^{n}X_{i}}_{P} + \underbrace{\frac{\sqrt{n}}{n^{1/2-0.1}}}_{\to \infty}, \quad \text{i.e.,} \quad \sqrt{n}(\hat{\psi}_{n,3} - \psi_{0}) \stackrel{P}{\to} \infty.$$

$$\sqrt{n}\hat{\psi}_{n,1} = \sqrt{n}\underbrace{\frac{1}{n}\sum_{i=1}^{n}X_{i}}_{P \to \psi_{0}} + \underbrace{\frac{\sqrt{n}}{n}}_{N}, \quad \text{i.e.,} \quad \sqrt{n}(\hat{\psi}_{n,1} - \psi_{0}) = o_{P}(1).$$

$$\sqrt{n}\hat{\psi}_{n,2} = \sqrt{n}\underbrace{\frac{1}{n}\sum_{i=1}^{n}X_{i}}_{P_{o}} + \underbrace{\frac{\sqrt{n}}{n^{1/2+0.1}}}_{P_{o}}, \text{ i.e., } \sqrt{n}(\hat{\psi}_{n,3} - \psi_{0}) = o_{P}(1).$$

$$\sqrt{n}\hat{\psi}_{n,3} = \sqrt{n}\underbrace{\frac{1}{n}\sum_{i=1}^{n}X_{i}}_{P} + \underbrace{\frac{\sqrt{n}}{\underbrace{n^{1/2-0.1}}}}_{\to \infty}, \quad \text{i.e.,} \quad \sqrt{n}(\hat{\psi}_{n,3} - \psi_{0}) \stackrel{P}{\to} \infty.$$

[The remainder term that determines the asymptotic bias the estimator].

A key component in constructing a \sqrt{n} -consistent and asymptotically linear estimator, even when using machine learning estimation, is the so-called the efficient influence function (also known as the canonical gradient).

A key component in constructing a \sqrt{n} -consistent and asymptotically linear estimator, even when using machine learning estimation, is the so-called the efficient influence function (also known as the canonical gradient).

- ▶ The efficient influence function provides a nonparametric lower bound for the estimation problem.
- Tells us how to do bias-correction.
- With the bias-correction, the remainder term that we need to control to have \sqrt{n} -consistency and asymptotic linearity admits a nice structure that we *can* control.

\Rightarrow TMLE.