Computational Finance FIN-472 Take-Home Exam 1

October 6, 2017

- Please hand in your solutions on Friday 13.10.2017 at the beginning of the lecture.
- For Exercises 4.a, 4.b and 4.c do not forget to upload in moodle the Matlab codes. You should submit only one Matlab file for each part.
- Additionally, print out the Matlab code for Exercises 4.a and 4.b and the plot for Exercise 4.c. These have to be handed in together with the other solutions on Friday 13.10.2017.

Exercise 1: Black Scholes model (8 points /40)

In the Black Scholes model, the dynamics of the price process $(S_t)_{0 \in [0,T]}$ with respect to the real-world measure \mathbb{P} are given by

$$dS_t = S_t(\mu \, dt + \sigma \, dW_t),\tag{1}$$

for parameters $\sigma > 0$ and μ being constant and for a standard Brownian motion W.

a) Show that the process

$$S_t = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right)$$

is s solution of (1) and compute $\mathbb{E}[S_T]$.

b) Let W be a Brownian motion. Show that for any $\lambda \in \mathbb{R}$

$$\mathbb{E}\left[\mathrm{e}^{-\lambda W_T - \frac{\lambda^2}{2}T}\right] = 1$$

c) Suppose that $\sigma \neq 0$. Define

$$\lambda = \frac{\mu - r}{\sigma}$$

and

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = e^{-\lambda W_T - \frac{\lambda^2}{2}T}.$$

Use Bayes formula to show that

$$\mathbb{E}^{\mathbb{Q}}[S_T] = e^{rT}.$$

Explain why this result is consistent with Girsanov's theorem.

Exercise 2: OU process (12 points /40)

An Ornstein-Uhlenbeck process is defined as solution of the stochastic differential equation

$$dX_t = \kappa(\theta - X_t) dt + \lambda dW_t, \quad \text{for } 0 \le t \le T$$
 (2)

for real parameters $\kappa > 0, \lambda > 0, \theta$ and a standard Brownian motion W. Moreover, denote by x_0 the starting value of the process.

- a) Solve (2).
- b) Using the solution found in a) show that

$$\lim_{t\to\infty} \mathbb{E}[X_t] = \theta.$$

- c) In this exercise we compute the quantity $\mathbb{E}[X_T^2]$ in two different ways.
 - Compute $\mathbb{E}[X_T^2]$ by using the solution found in a) and knowing that, if a function f is square-integrable on [0,t], then $\int_0^t f(s)dW_s$ is normally distributed with mean 0 and variance $\int_0^t f^2(s)ds$.
 - Define

$$v(t,x) = \mathbb{E}[(X_T^{t,x})^2]$$

where $X_s^{t,x}$ is the solution of

$$\begin{cases} dX_s = \kappa(\theta - X_s) ds + \lambda dW_s, & \text{for } t \le s \le T \\ X_t = x. \end{cases}$$

Derive the following partial differential equation (PDE) satisfied by v:

$$\begin{cases} v_t + \mathcal{G}v = 0\\ v(T, x) = x^2, \end{cases}$$
 (3)

where \mathcal{G} denotes the generator of the process defined by

$$\mathcal{G}v = \kappa(\theta - x)v_x + \frac{\lambda^2}{2}v_{xx}.$$

Solve the PDE (3) and derive the value of $\mathbb{E}[X_T^2]$.

Hint: In order to solve (3), use the Ansatz $v(t,x) = a(T-t) + b(T-t)x + c(T-t)x^2$, derive the equations for a, b and c and solve them.

Exercise 3: Heston model (8 points /40)

In the Heston model, the dynamics of the price process $(S_t)_{0 \le t \le T}$ with respect to a risk-neutral measure \mathbb{Q} are given by

$$dS_t = rS_t dt + S_t \rho \sqrt{V_t} dW_t^{(1)} + S_t \sqrt{1 - \rho^2} \sqrt{V_t} dW_t^{(2)}$$

where the spot variance v_t (square of the volatility) is modeled by

$$dV_t = \kappa(\theta - V_t)dt + \sigma\sqrt{V_t}dW_t^{(1)}.$$

Here, $W^{(1)}$ and $W^{(2)}$ are independent standard Brownian motions, r is a risk-free interest rate, ρ is a correlation parameter and κ, θ, σ are additional model parameters.

Let U(t, x, y) be the price at time t of a European option with payoff function Ψ , when $S_t = x$ and $V_t = y$, i.e. (by risk-neutral pricing rule)

$$U(t, x, y) = e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}} [\Psi(S_T^{t, x, y})].$$

Derive the pricing PDE satisfied by U(t, x, y).

Exercise 4: Up-and-Out option (12 points /40)

Let $(S_t)_{0 \le t \le T}$ be a price process. The up-and-out call barrier option with discrete monitoring at two monitoring dates is a path-dependent option whose payoff function at maturity time T is given by

$$\Psi(S) := (S_T - K)^+ \mathbb{1}_{\{S_T < b\}} \mathbb{1}_{\{S_{T/2} < b\}} = \begin{cases} (S_T - K)^+ & \text{if } S_t < b, \text{ for } t = \frac{T}{2}, T, \\ 0 & \text{if } S_t \ge b, \text{ for } t = \frac{T}{2} \text{ or } t = T, \end{cases}$$
(4)

where K denotes the strike value and $b \in \mathbb{R}$ is the value of the barrier.

a) Consider a multi-period binomial model over the time interval [0,T] with parameters r,d,u,N, with N even, and denote the initial stock price S_0 by s.

Write a Matlab function BinomialpriceBarrierUODM.m with input parameters

which computes the binomial price at time t = 0 of the up-and-out call barrier option with discrete monitoring at two monitoring dates defined in (4).

Hint: Adapt the iteration formula introduced in slide 31 (Week 2) in order to price this path-dependent option.

b) Consider now the Black Scholes model where the \mathbb{Q} -dynamics of the price process $(S_t)_{0 \leq t \leq T}$ are given by

$$dS_t = rS_t dt + \sigma S_t dW_t, \tag{5}$$

for a risk-free interest rate r and volatility σ . Denote the initial price S_0 by s. Let

$$\{t_k := \frac{Tk}{N_{time}} | k = 0, \cdots, N_{time} \}.$$

be a discretization of [0, T] and let

$$\{(S_{t_k}^i)_{k=0,\cdots,N_{time}}|i=1,\cdots,N_{sim}\}$$

be a set of N_{sim} simulated paths generated by using the discretization scheme

$$S_{t_{k+1}} - S_{t_k} = rS_{t_k} \Delta t + \sigma S_{t_k} \sqrt{\Delta t} Z, \tag{6}$$

where $\Delta t = T/N_{time}$ and $Z \approx N(0,1)$. Then, the Monte Carlo (MC) price at time t=0 of an option maturing at time T with payoff function Ψ is given by

$$P_{MC} := \frac{e^{-rT}}{N_{sim}} \sum_{i=1}^{N_{sim}} \Psi(S^i).$$

Write a Matlab function MCpriceBarrierUODM.m with input parameters

$$r, \sigma, N_{time}, N_{sim}, T, s, K, b$$

that computes the MC price P_{MC} of the up-and-out call barrier option with discrete monitoring at two monitoring dates.

c) Compare the binomial prices computed in part a) with the MC price computed in b), for $N \to \infty$. In particular, consider the following set of parameters

$$s = 1$$
, $r = 0.1$, $T = 0.5$, $K = 0.9$, $\sigma = 0.1$, $b = 1.3$

and plot

- The constant MC price P_{MC} computed in b) with $N_{time} = 100$ and $N_{sim} = 10^6$,
- The binomial price obtained for $N=2,4,\cdots,200$.

against the values of N. What do you observe?

Remark: For this part, please submit on the moodle the Matlab script/function that generates the needed plot.