

Group work on Medical IR

Georgios Peikos, Wojciech Kusa, Annisa Maulida Ningtyas

Ground Rules

Ask anything you need, whenever you want

If you have a question, please ask it out loud

During the hands-on, report on the combinations you try and the performance

achieved

Introduction to search engines

Indexing

Query Language

Document Ranking and Evaluation

Resources

Hands – on

Experimenting with a Search Engine

Collection of documents

Queries

Lexicon-based ranking models

Neural models

Experimental Evaluation Measures

Human annotated documents – ground truth – labels – grels

Example of Search Engines

PyTerrier/Terrier

Lucene/Anserini/Pyserini

Elastic Search

INQUERY/Lemur/Indri

SMART

MG4J

TIREx (SIGIR 2023)

How many of you have experience with one of these search engines (or another)?

PyTerrier

PyTerrier is a Python framework.

It relies on <u>Terrier</u> information retrieval toolkit, for indexing and retrieval.

Introduction to search engines

Indexing

Query Language

Document Ranking and Evaluation

Resources

Hands - on

Indexing – What can we index?

TREC Collections

TRECCollectionIndexer

Dataframes

DFIndexer

Raw files

FilesIndexer

Dictionaries

IterDictIndexer

```
<DOC>
<DOCNO>FT923-12914
<PROFILE> AN-CGPA3ADFFT</PROFILE>
<DATE>920716
</DATE>
<HEADLINE>
FT 16 JUL 92 / Carrington sees no progress on Bosnia: London Peace Talks
</HEADLINE>
<BYT.TNE>
   By JUDY DEMPSEY and ROBERT MAUTHNER
</BYLINE>
<DATELINE>
   LONDON
</DATELINE>
<PEXT>
PEACE TALKS on Bosnia-Hercegovina made no progress in London yesterday but
negotiators will attempt to resume their efforts today.
Mr Hurd is anxious to use the British presidency of the EC to boost efforts
to find a peaceful solution to the Yugoslav crisis.
</TEXT>
<PUB>The Financial Times
</PUB>
<PAGE>
London Page 2
</PAGE>
</poc>
```

Indexing - Data Structures - What do we get?

Lexicon

Records the list of all unique terms and their statistics.

Document Index

Records the statistics of all documents.

Inverted Index

Records the mapping between terms and documents. Contains many posting lists.

MetaIndex

Records document metadata, e.g., documents text. (useful for re-ranking)

Direct Index

Records terms for each document.

Indexing - Configuration - What can we control?

PyTerrier indexing configuration:

Languages and tokenization, also supports pre-tokenization

Stemming or stopwords removal

indexer.setProperty("termpipelines", "Porterstemmer")

https://pyterrier.readthedocs.io/en/latest/terrier-indexing.html (Bottom of the page) http://terrier.org/docs/current/javadoc/org/terrier/indexing/tokenisation/package-summary.html

Introduction to search engines

Indexing

Query Language

Document Ranking and Evaluation

Resources

Hands - on

Query Language

Flexible query language

term 1 term 2

+term1 -term2

"term 1 term 2"

<top>

<num>> Number: 347

<title> Wildlife Extinction

<desc> Description:

The spotted owl episode in America highlighted U.S. efforts to prevent the extinction of wildlife species. What is not well known is the effort of other countries to prevent the demise of species native to their countries. What other countries have begun efforts to prevent such declines?

<narr> Narrative:

A relevant item will specify the country, the involved species, and steps taken to save the species.

</top>

https://github.com/terrier-org/terrier-core/blob/5.x/doc/querylanguage.md

Introduction to search engines

Indexing

Query Language

Document Ranking and Evaluation

Resources

Hands - on

Retrieval Models

Lexicon-based Models

BM25, Divergence-from-randomness models, etc.

http://terrier.org/docs/current/javadoc/org/terrier/matching/models/package-summary.html

Dense Retrievers & Neural re-rankers
ColBERT, monoT5

https://pyterrier.readthedocs.io/en/latest/neural.html

Evaluation

	301 0 CR93E-10279 0
Ir measures	301 0 CR93E-10505 0
ii_iiieasuies	301 0 CR93E-1282 1
Python package	301 0 CR93E-1850 0
	301 0 CR93E-1860 0
Datainera diberterais data di accessorata	301 0 CR93E-1952 0
Retrieved but unjudged documents	301 0 CR93E-2191 0
Consider them irrelevant (most common approach)	301 0 CR93E-2473 0
Consider them relevant (uncommon approach)	301 0 CR93E-3103 1
` ' ' '	301 0 CR93E-3284 0
Exclude them from evaluation (condensed list evaluation)	301 0 CR93E-38 0
	301 0 CR93E-392 0
	301 0 CR93E-4648 0

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)

 $\underline{https://pyterrier.readthedocs.io/en/latest/experiments.html\#evaluation-measures-objects}$

 $\underline{https://amitness.com/2020/08/information-retrieval-evaluation/?fbclid=IwAR1kM-U5BJmlo1FY5CYtAf_CC5trlYt9plFOWLeiZmrGWLqZg6NS5ZGIrAw}$

Experimentation

Select the Index and the model

tfidf = pt.BatchRetrieve(index, wmodel="BM25")

Retrieve using a query

results = tfidf.transform("term term")

Evaluate using the qrels and your result list

eval_results = pt.Utils.evaluate(results, dataset_qrels, metrics=[P@5,P@10], perquery=False)

Experimentation

All in one

```
pt.Experiment(
        [tfidf,BM25],
        path_queries,
        path_qrels,
eval_metrics=["AP(rel=2)@5", "nDCG@10"])
```

Complex Pipelines: Operators

Employing these operators allow us to create complex retrieval pipelines.

https://pyterrier.readthedocs.io/en/latest/operators.html

Operator	Meaning
>>	Then - chaining pipes
+	Linear combination of scores
*	Scalar factoring of scores
&	Document Set Intersection
1	Document Set Union
%	Apply rank cutoff
۸	Concatenate run with another
**	Feature Union
~	Cache transformer result

Introduction to search engines

Indexing

Query Language

Document Ranking and Evaluation

Resources

Hands - on

Further Resources

PyTerrier

https://github.com/terrier-org/ecir2021tutorial

Tutorial in Medical Search

https://github.com/ielab/health-search-tutorial

Interesting readings

https://link-springer-com.unimib.idm.oclc.org/article/10.1007/s10791-015-9277-8 https://dl-acm-org.unimib.idm.oclc.org/doi/pdf/10.1145/3462476

Introduction to search engines

Indexing

Query Language

Document Ranking and Evaluation

Resources

Hands – on

Hands-on

Running a retrieval pipeline

We will see step-by-step how we can perform a retrieval pipeline

So, open the colab.