

Departamento Académico de Economía Matemáticas III (30651) Primer Semestre 2016 Profesores D. Winkelried, O. Bueno, E. Mantilla, D. Bohorquez y C. Aparicio

Examen Final

SECCIÓN I

1. Ecuación en diferencias de segundo orden (4 ptos)

Considere la ecuación en diferencias

$$y_t - 2\rho \cos(\theta) y_{t-1} + \rho^2 y_{t-2} = b_t$$

donde $0 < \rho < 1$ y $\theta \in (0, \pi)$.

- a) (2 ptos) Si $b_t = b$ (constante), encuentre la trayectoria de y(t) considerando que $y(0) = y\left(\frac{\pi}{2\theta}\right) = 0$.
- b) (2 ptos) Si b_t es una función arbitraria de t, la solución particular tendrá la forma

$$y_p(t) = \sum_{h=0}^{\infty} w_h b_{t-h} .$$

Encuentre una expresión, lo más simple posible y en términos de ρ y θ , para el coeficiente w_h .

Ayuda: Recuerde que
$$\frac{1}{(1-r_1z)(1-r_2z)} = \frac{1}{r_1-r_2} \left(\frac{r_1}{1-r_1z} - \frac{r_2}{1-r_2z} \right)$$
.

2. Sistema en diferencias (4 ptos)

Considere el sistema

$$x_{t} - x_{t-1} = \alpha_{1}(x_{t-1} - \gamma y_{t-1}) + \beta,$$

$$y_{t} - y_{t-1} = \alpha_{2}(x_{t-1} - \gamma y_{t-1}),$$

donde $\beta > 0$. Defina $\lambda = 1 + \alpha_1 - \alpha_2 \gamma$ y asuma que $|\lambda| < 1$.

a) (2 ptos) Defina la variable

$$z_t = x_t - \gamma y_t .$$

A partir del sistema presentado, deduzca una ecuación en diferencias para z_t , $z_t = f(z_{t-1})$, y resuélvala considerando que $z(0) = (1 + \delta)\beta/(1 - \lambda)$ donde $\delta > 0$. Analice la estabilidad de z(t).

b) (2 ptos) Deduzca una ecuación en diferencias de primer orden y con término móvil para $y_t, y_t = f(y_{t-1}, t)$, y resuélvala considerando que $y(0) = y_0$. Analice la estabilidad de y(t).

3. Ecuación diferencial de primer orden (3 ptos)

Considere la ecuación diferencial

$$\dot{y} = (a_1 - y)(y - a_2)(y - a_3),$$

donde $0 < a_1 < a_2 < a_3$.

- a) (1 pto) Encuentre los estados estacionarios de y, e indique si se tratan de puntos estables o inestables.
- b) (2 ptos) Con el mayor detalle posible, esboce el diagrama de fase y describa el comportamiento de la trayectoria y(t) considerando diversos puntos iniciales y(0).