01RAD - přednáška 8, 29.10.2024

VĚTA 3.10

Nechť v modelu (**) platí, že $e \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ a $h(\mathbf{X}) = m+1$. Označme SSE_F reziduální s.č. plného modelu a SSE_R reziduální s.č. modelu, kde platí H_0 : $\mathbf{C}\beta = \mathbf{b}$. Potom je za platnosti H_0 splněno

$$F = \frac{\Delta SSE}{s_n^2} \sim F(r, n-m-1),$$
 kde $\Delta SSE = SSE_R - SSE_F.$

Lemma 3.2

Označme \widehat{eta}_F a \widehat{eta}_R LSE parametru eta v plném a redukovaném modelu. Potom platí

1)
$$\widehat{eta}_R = \widehat{eta}_F - (oldsymbol{X}^T oldsymbol{X})^{-1} oldsymbol{C}^T oldsymbol{A} (oldsymbol{C} \widehat{eta}_F - oldsymbol{b})$$
, kde $oldsymbol{A} = \left(oldsymbol{C} (oldsymbol{X}^T oldsymbol{X})^{-1} oldsymbol{C}^T
ight)^{-1}$,

2)
$$\triangle SSE = SSE_R - SSE_F = \left(\mathbf{C}\widehat{\beta}_F - \mathbf{b}\right)^T \mathbf{A} \left(\mathbf{C}\widehat{\beta}_F - \mathbf{b}\right)$$
.

Důkaz.

Důkaz Věty 3.10.

Poznámka 3.10

• použitím rozkladu SST = SSE + SSR dostaneme

$$\Delta SSE = SSR_F - SSR_R$$
.

interpretace: nárůst regresního součtu čtverců díky neplatnosti H_0

dále

$$SSR_F = SSR_R + \Delta SSE$$
,

kde ΔSSE se nazývá extra sum of squares (přidaný k SSR díky neplatnosti H_0)

- např. pokud $\beta_R = (\beta_0, \beta_1, \dots, \beta_{m-1}, 0)$, tzn. $\beta_m = 0$ a skutečný model má $\beta = \beta_F$, potom ΔSSE je extra regresní součet čtverců získaný díky přidání β_m do modelu
- umožňuje rozklad *SSR* plného modelu na jednotlivé části $(x_1, x_2 | x_1, x_3 | x_2 x_1, \dots)$

PŘÍKLAD 3.7 (Porodní váha)

0.1945428

```
mod <- lm(Weight ~ Age + Sex + Sex:Age)
anova(mod)
## Analysis of Variance Table
## Response: Weight
##
            Df Sum Sq Mean Sq F value
                                        Pr(>F)
## Age 1 1013799 1013799 31.0779 1.862e-05 ***
## Sex 1 157304 157304 4.8221
                                       0.04006 *
## Age:Sex 1
                 6346
                         6346 0.1945
                                       0.66389
## Residuals 20 652425 32621
mod0 <- lm(Weight ~ Age + Sex)</pre>
anova (mod0.mod)
## Analysis of Variance Table
## Model 1: Weight ~ Age + Sex
## Model 2: Weight ~ Age + Sex + Sex: Age
    Res.Df
              RSS Df Sum of Sq
                                  F Pr(>F)
        21 658771
## 1
## 2
        20 652425 1 6346 2 0 1945 0 6639
SSR <- sum((predict(mod)-mean(v))^2)
SSR0 <- sum((predict(mod0)-mean(v))^2)
D.SSE <- SSR-SSRO; D.SSE
## 6346.225
MSE<- sum((predict(mod)-Weight)^2)
F<- D.SSE/MSE*(24-3-1); F
```

PŘÍKLAD 3.8 (Data cement)

2667.899

```
mod <- lm(v ~ x1 + x2 + x3 + x4)
anova (mod)
## Analysis of Variance Table
## Response: y
##
           Df Sum Sq Mean Sq F value
                                      Pr(>F)
## x1
        1 1450.08 1450.08 242.3679 2.888e-07 ***
## x2
            1 1207.78 1207.78 201.8705 5.863e-07 ***
## x3
                 9.79
                        9.79 1.6370
                                        0.2366
## x4 1 0.25 0.25
                              0.0413
                                       0.8441
## Residuals 8
                47.86
                        5.98
## ---
v.hat <- predict(mod)</pre>
SSR <- sum((v.hat-mean(v))^2): SSR
```

3.6 Predikce

a) Intervaly spolehlivosti pro $E(Y_X)$

- nechť $\mathbf{x}_0 = (1, x_{0,1}, \dots, x_{0,m})^T$ je nový bod proměnné \mathbf{x}
- bodový odhad $E(Y_{X_0})$ je roven

$$\widehat{Y}_{\boldsymbol{x}_0} = \widehat{\beta}_0 + \sum_{i=1}^m x_{0,i} \widehat{\beta}_i = \boldsymbol{x}_0^T \widehat{\boldsymbol{\beta}}$$

- tzn. $Var(\widehat{Y}_{\mathbf{x}_0}) = \mathbf{x}_0^T \cdot Var(\widehat{\beta}) \cdot \mathbf{x}_0 = \sigma^2 \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0$
- a může být odhadnut pomocí

$$\widehat{\sigma}^2(\widehat{Y}_{\mathbf{X}_0}) = s_n^2[\mathbf{X}_0^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}_0]$$
 (rozptyl predikce)

• speciálně pokud $\mathbf{x}_0^T = \mathbf{x}_i^T$ (*i*-tý řádek matice \mathbf{X})

$$\widehat{\sigma}^2(\widehat{Y}_{\mathbf{X}_i}) = s_n^2[\mathbf{x}_i^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_i] = s_n^2h_{ii}$$
 kde $h_{ii} = (\mathbf{H})_{ii}$ a $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$

• pro normální chyby lze odvodit interval spolehlivosti pro $\mathsf{E}(Y_{\mathbf{X}_0}) = \mu_{\mathbf{X}_0}$

• $\widehat{Y}_{\mathbf{X}_0}$ má totiž normální rozdělení (je to LK složek vektoru $\widehat{\beta}$) a platí

$$\mathsf{E}(\widehat{\mathsf{Y}}_{\mathbf{X}_0}) = \mu_{\mathbf{X}_0} = \mathbf{x}_0^T \boldsymbol{\beta} \quad \mathsf{a} \quad \mathsf{Var}(\widehat{\mathsf{Y}}_{\mathbf{X}_0}) = \sigma^2 \mathbf{x}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0$$

tzn.

$$rac{\widehat{Y}_{oldsymbol{X}_0} - \mu_{oldsymbol{X}_0}}{\sigma \sqrt{oldsymbol{x}_0^T (oldsymbol{X}^T oldsymbol{X})^{-1} oldsymbol{x}_0}} \sim oldsymbol{\mathcal{N}}(0,1)$$

a díky nezávislosti $\widehat{\beta}$ a s_n^2 $rac{Y_{oldsymbol{X}_0} - \mu_{oldsymbol{X}_0}}{s_n \sqrt{oldsymbol{x}_0^T (oldsymbol{X}^T oldsymbol{X})^{-1} oldsymbol{x}_0}} \sim \mathsf{t}(n-m-1)$

• $100(1-\alpha)\%$ IS pro $\mu_{\mathbf{x}_0}$ tedv ie:

$$\left(\widehat{Y}_{m{X}_0} \pm \operatorname{t}_{1-rac{lpha}{2}}(n-m-1) \cdot s_n \sqrt{m{x}_0^{\mathcal{T}}(m{X}^{\mathcal{T}}m{X})^{-1}m{x}_0}
ight)$$

Poznámka: Intervaly spolehlivosti v R

95% intervaly spolehlivosti CI<-predict(mod.lin, new, interval = "confidence")</pre>

b) Intervaly predikce pro Y_{X_0}

- bodový odhad je opět $\widehat{Y}_{\boldsymbol{X}_0}$
- pokud $Y_{\mathbf{X}_0}$ je skutečná hodnota $Y_{\mathbf{X}}$ v bodě $\mathbf{x} = \mathbf{x}_0$, potom $Y_{\mathbf{X}_0}$ a $\widehat{Y}_{\mathbf{X}_0}$ budou nezávislé za předpokladu, že pozorování $Y_{\mathbf{X}_0}, Y_1, \dots, Y_n$ jsou nezávislá (což předpokládáme)
- potom

$$\mathsf{Var}(\widehat{Y}_{\boldsymbol{X}_0} - Y_{\boldsymbol{X}_0}) = \mathsf{Var}(\widehat{Y}_{\boldsymbol{X}_0}) + \mathsf{Var}(Y_{\boldsymbol{X}_0}) = \sigma^2(1 + \boldsymbol{x}_0^T(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{x}_0),$$

takže

$$rac{\widehat{Y}_{m{X}_0}-Y_{m{X}_0}}{\sigma\sqrt{1+m{x}_0^T(m{X}^Tm{X})^{-1}m{x}_0}}\sim \mathsf{N}(0,1) \quad \mathsf{a} \quad rac{\widehat{Y}_{m{X}_0}-Y_{m{X}_0}}{m{s}_n\sqrt{1+m{x}_0^T(m{X}^Tm{X})^{-1}m{x}_0}}\sim \mathsf{t}(n-m-1)$$

(za předpokladu normality chyb)

• $100(1-\alpha)\%$ IP pro $Y_{\boldsymbol{X}_0}$ tedy je

$$\left(\widehat{Y}_{\boldsymbol{X}_0} \pm \mathsf{t}_{1-\frac{\alpha}{2}}(n-m-1) \cdot s_n \sqrt{1+\boldsymbol{x}_0^T(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{x}_0}\right)$$

Poznámka: 95% Intervaly predikce v 🗣:

PI<-predict(mod.lin, new, interval = prediction")"

Poznámka 3.11 (Extrapolace)

- ullet u jednoduché LR kvalita predikce závisela na vzdálenosti x_0 od \overline{x}
- je třeba si dát pozor na predikce mimo $\langle x_{min}, x_{max} \rangle$
- podobné závěry platí i pro vícerozměrnou LR
- protože rozptyl predikce je úměrný $\mathbf{x}_0^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0$, v bodech s velkými hodnotami této veličiny nebude predikce spolehlivá
- speciálně pokud \mathbf{x}_i jsou pozorovaná data, můžeme očekávat, že body s nejvyššími hodnotami $\mathbf{x}_i^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_i = h_{ii}$ budou na hranici množiny, kde je predikce spolehlivá
- tzn., že vnitřek elipsoidu

$$\boldsymbol{x}^T(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{x} \leq \max_{1 \leq i \leq n} h_{ii}$$

může být považován za přípustný obor predikce

4. Rezidua, diagnostika a transformace

- je třeba ověřit adekvátnost modelu máme R², t, F statistiky, byly odvozeny za předpokladu linearity modelu a dalších podmínek pro ověření je důležitý nástroj analýza reziduí
- je také třeba ověřit vliv jednotlivých pozorování na model analýza odlehlých (outliers) a vlivných pozorování (influential observations)

 při detekci problémů s modelem mohou pomoci transformace proměnných nebo metoda na korekci nekonstantního rozptylu

4.1 Rezidua

Připomenutí:

$$\widehat{\mathbf{y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{H}\mathbf{y}, \text{ kde } \mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T, \hat{\mathbf{e}} = \mathbf{y} - \widehat{\mathbf{y}} = (\mathbf{I}_n - \mathbf{H})\mathbf{y} = (\mathbf{I}_n - \mathbf{H})\mathbf{e}$$

Dále jsme ukázali:

$$\mathsf{E}(\widehat{\mathbf{e}}) = \mathbf{0}, \quad \mathsf{Cov}(\widehat{\mathbf{e}}) = \sigma^2(\mathbf{I}_n - \mathbf{H}), \quad \mathsf{pokud} \ \mathbf{e} \sim \mathsf{N}_n(\mathbf{0}, \sigma^2\mathbf{I}_n) \ \mathsf{potom} \ \widehat{\mathbf{e}} \sim \mathsf{N}_n(\mathbf{0}, \sigma^2(\mathbf{I}_n - \mathbf{H}))$$

Při označení
$$h_{ij} = \boldsymbol{H}_{ij}$$
 tedy platí $\operatorname{\sf Var}(\widehat{e}_i) = \sigma^2(1-h_{ii})$ a $\operatorname{\sf Cov}(\widehat{e}_i,\widehat{e}_j) = -\sigma^2h_{ij}$

Obecně bývá výhodnější pracovat s normovanými rezidui

$$r_i = \frac{\widehat{e}_i}{\sigma \sqrt{1 - h_{ii}}},$$
 pro která platí $Var(r_i) = 1$

• pokud σ^2 odhadneme pomocí $s_n^2 = \frac{1}{(n-m-1)} SSE$, dostaneme

$$\widehat{r}_i = \frac{\widehat{e}_i}{s_{-1}\sqrt{1-h_{ii}}}, \quad i=1,\ldots,n,$$
 tzv. interně studentizovaná rezidua

někdy také **standardizovaná rezidua**, funkce v **R**: rstandard(mod)

• pokud σ^2 odhadneme na základě modelu, ve kterém bylo vynecháno *i*-té pozorování, ozn. $\widehat{\sigma}^2_{(-i)}$, dostaneme

$$\widehat{t}_i = rac{\widehat{e}_i}{\widehat{\sigma}_{(-i)}\sqrt{1-h_{ii}}}, \quad i=1,\ldots,n, \quad {\sf tzv.} \ {\sf extern\check{e}} \ {\sf studentizovan\acute{a}} \ {\sf rezidua}$$

někdy také **studentizovaná rezidua**, funkce v **R**: rstudent(mod)

např. $\widehat{\sigma}_{(-i)}^2 = \frac{1}{n-m-2} \mathit{SSE}_{(-i)}$ je nestranný odhad σ^2 v modelu bez *i*-tého pozorování

Poznámka 4.1

- ullet pokud je h_{ii} malé, pro velká n by se mělá $\widehat{e}_i,\widehat{r}_i,\widehat{t}_i$ chovat přibližně stejně a $\widehat{r}_i,\widehat{t}_ipprox N(0,1)$
- ullet pro malá n (n < 20) a/nebo $h_{ii} pprox 1$ je preferováno použití \widehat{r}_i nebo \widehat{t}_i
- ullet častěji bývá doporučováno \widehat{t}_i
- h_{ii} hraje zásadní roli v diagnostice modelu, probereme jeho základní vlastnosti

Leverage h_{ii} - potenciál i-tého pozorování leverage point - pákový bod, vzdálený bod

Vlatnosti potenciálu h_{ii}

•
$$Var(\widehat{e}_i) = \sigma^2(1 - h_{ii}) \ge 0 \implies h_{ii} \le 1$$

•
$$\mathbf{H}^2 = \mathbf{H}$$
 \Rightarrow $h_{ii} = \sum_{i=1}^n h_{ij} h_{ji} = \sum_{i=1}^n (h_{ij})^2$ tedy $h_{ii} > 0$ (dá se ukázat: $h_{ii} \ge \frac{1}{n}$)

•
$$\boldsymbol{HX} = \boldsymbol{X}$$
 \Rightarrow $\sum_{i=1}^{n} h_{ij} x_{j1} = \sum_{i=1}^{n} h_{ij} = x_{i1} = 1$ tedy $\sum_{i=1}^{n} h_{ij} = 1$, $\forall i \in \widehat{\boldsymbol{n}}$ (v mod. s interceptem)

- význam h_{ii} vyplyne z následujících úvahy: $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$ \Rightarrow $\hat{\mathbf{y}}_i = \sum_{j=1}^n h_{ij} y_j = h_{ii} y_i + \sum_{j=1, j \neq i}^n h_{ij} y_j$
 - pokud $h_{ii}pprox 1$, potom $\widehat{y}_ipprox y_i$ a model je nucen proložit přímku bodem $(m{x}_i,y_i)$ i když když tam neplatí
 - body s "velkým h_{ii}" body s velkým potenciálem (high leverage points)
 - tyto body by měly být detekovány pro další zkoumání
- otázka je, jaká hodnota h_{ji} je "velká"

Heuristické pravidlo:
$$\sum_{i=1}^{n} h_{ii} = \operatorname{tr}(\boldsymbol{H}) = m+1$$
, tzn. $\frac{m+1}{n}$ je průměrná hodnota h_{ii} i-té pozorování má velký potenciál, jestliže $h_{ii} > \frac{3(m+1)}{n}$

4.2 Grafy reziduí

- A) ověření normality histogramy, Q-Q plots
 - tyto obrázky nezávisí na počtu nezávislých proměnných x, vše stejné jako v jednorozměrné LR testv normalitv: Shapiro-Wilk, Lilliefors, Anderson-Darling
- B) pro ověření funkční formy pro $E(Y_x)$ a / nebo konstantního rozptylu se nejčastěji používají:
 - 1) grafy \widehat{e}_i , \widehat{r}_i nebo \widehat{t}_i oproti \boldsymbol{x}_i^c , $j=1,\ldots,m$, kde \boldsymbol{x}_i^c je j-tý sloupec \boldsymbol{X}
 - 2) grafy $\widehat{e}_i, \widehat{r}_i$ nebo \widehat{t}_i oproti \widehat{y}_i
 - 3) partial residual plots

testy konstantního rozptylu: Breusch-Pagan, Levene

Poznámka 4.2

Zdůvodnění 1): normální rovnice $\mathbf{X}^T(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}) = 0$ implikují $\mathbf{X}^T(\mathbf{y} - \widehat{\mathbf{y}}) = \mathbf{X}^T\widehat{\boldsymbol{e}} = 0$

připomenutí:
$$\mathbf{Y}_i = \beta_1 x_i + e_i$$
, $\widehat{\beta}_1 = \frac{\sum\limits_{i=1}^n x_i y_i}{\sum\limits_{i=1}^n x_i^2} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\|^2}$

• pro LR model bez interceptu pro \hat{e} v závislosti na x_i^c bude odhad směrnice

$$\widehat{\beta}_j^* = \frac{(\mathbf{x}_j^c)^T \widehat{\mathbf{e}}}{\|\mathbf{x}_i^c\|^2} = 0$$

- graf $\widehat{e}_i, \widehat{r}_i, \widehat{t}_i$ oproti \mathbf{x}_j^c by měl dávat náhodně rozptýlené body kolem osy x (bez trendů, $\widehat{r}_i, \widehat{t}_i$ uvnitř $\approx \pm 2$)
- ullet pokud tomu tak není, může to naznačovat nelinearitu v $oldsymbol{x}_i$ nebo nekonstantní rozptyl

Zdůvodnění 2): ukázali jsme
$$\sum_{i=1}^{n} \widehat{y}_i \widehat{e}_i = 0$$

• pro LM bez interceptu pro \widehat{e}_i oproti \widehat{y}_i tedy platí

$$\widehat{\beta} = \frac{\widehat{\boldsymbol{e}}^T \widehat{\boldsymbol{y}}}{\|\widehat{\boldsymbol{v}}\|^2} = 0$$

- body by opět měly být náhodně rozptýlené kolem osy x
- trychtýřovitý tvar indikuje nekonstantní rozptyl
- trendy indikují nelinearitu

Ad 3) Partial residual plots

- i když grafy $\hat{\boldsymbol{e}}$ oproti \boldsymbol{x}_j^c a $\hat{\boldsymbol{y}}$ mohou indikovat nedostatky modelu, nemusí být zřejmé, jaké ty nedostatky jsou
- V SLR graf \hat{e}_i oproti x_i lze použít pro detekci nelinearity
- ullet ale v MLR tyto grafy mohou být zavádějící, protože $\widehat{m{e}}$ závisí na všech prediktorech, nemusí být tedy izolován efekt dané proměnné při odstranění efektů ostatních
- pro zkoumání efektů j-té proměnné lze použít partial residual plots
 lze je chápat jako ekvivalent scatterplotů v SLR
- definujme $\widehat{\boldsymbol{e}}_{j}^{*} = \widehat{\boldsymbol{e}} + \widehat{\beta}_{j} \boldsymbol{x}_{j}^{c}$, kde $\widehat{\boldsymbol{e}}$ je vektor reziduí modelu, $\widehat{\beta}_{j}$ je LSE parametru β_{j} , \boldsymbol{x}_{j}^{c} je j-tý sloupec \boldsymbol{X}
- ullet partial residual plot (PRP): graf $\widehat{m{e}}_j^*$ oproti $m{x}_j^c$, $j=1,\ldots,m$
- ullet pokud je model správný, měly by být body náhodně rozmístěné kolem přímky se směrnicí \widehat{eta}_j

Zdůvodnění:

Foot2

- vztah mezi $\hat{\boldsymbol{e}}_{i}^{*}$ a \boldsymbol{x}_{i}^{c} má formu SLR bez interceptu
- ullet pokud je model správný, platí $\mathsf{E}(\widehat{e}_i) = 0$ a $\mathsf{Var}(\widehat{e}_i) = \sigma^2(1-h_{ii})$
- ullet má tedy smysl uvažovat regresní model pro $\widehat{m{e}}_j^*$ oproti $m{x}_j^c$ $(\widehat{m{e}}_j^* = \gamma_j m{x}_j^c + m{e})$
- pro odhad koeficientu platí

$$\widehat{\gamma}_j = \frac{(\widehat{\boldsymbol{e}}_j^*)^T \boldsymbol{x}_j^c}{\|\boldsymbol{x}_j^c\|^2} = \frac{(\widehat{\boldsymbol{e}} + \widehat{\beta}_j \boldsymbol{x}_j^c)^T \boldsymbol{x}_j^c}{\|\boldsymbol{x}_j^c\|^2} = \frac{\widehat{\boldsymbol{e}}^T \boldsymbol{x}_j^c + \widehat{\beta}_j \|\boldsymbol{x}_j^c\|^2}{\|\boldsymbol{x}_j^c\|^2} = \widehat{\beta}_j$$

mod <- lm(Price ~ Feet2 + Age)

PŘÍKLAD 4.1 (Housing Price Data)

۸ ۵۵

Drico

	1 0012	/ igc	1 1100	summary(mod)
1	1800	1	120000	## Estimate Std. Error t value Pr(> t)
2	1650	7	110000	## (Intercept) 13238.600 7677.183 1.724 0.110273 ## Feet2 60.589 3.644 16.625 1.19e-09 ***
3	2750	12	150000	## Age -1726.762 364.172 -4.742 0.000479 ***
4	1550	8	90000	##
				## Residual standard error: 7763 on 12 degrees of freedom
:	:	:	:	## Multiple R-squared: 0.9586, Adjusted R-squared: 0.9517
	•	•	•	## F-statistic: 139 on 2 and 12 DF, p-value: 5.021e-09

termplot(mod, partial.resid=TRUE, terms="Feet2")

termplot(mod, partial.resid=TRUE, terms="Age")

PŘÍKLAD 4.2 (Porodní váha)

```
mod <- lm(Weight ~ Age + Sex)
termplot(mod, partial.resid=TRUE, terms="Age")
termplot(mod, partial.resid=TRUE, terms="SEX")</pre>
```


- ullet PRPs jsou někdy kritizovány za nadhodnocování efektu $oldsymbol{x}_{j}^{c}$
- alternativa: partial regression plot (added variable plot)
 motivace: ptáme se, zda přidat novou proměnnou do modelu a chceme odhadnout její efekt

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \gamma \mathbf{w} + \mathbf{e}$$
, kde \mathbf{w} je nový vektor regresorů

lze zapsat jako

$$m{Y} = [m{X} \ m{w}] \left[egin{array}{c} m{eta} \ \gamma \end{array}
ight] + m{e} = m{X}_w m{eta}_w + m{e}$$

(4.1)

požitím normálních rovnic lze odvodit

$$\widehat{\gamma} = \frac{\widehat{\mathbf{e}}^{I}(I - \mathbf{H})\mathbf{w}}{\|(I - \mathbf{H})\mathbf{w}\|^{2}}$$

- $\widehat{\gamma}$ je směrnice RM pro $\widehat{m{e}}$ v závislosti na $m{w}_{res} = (m{I} m{H})m{w}$
- uvažujme teď naopak, že \boldsymbol{w} je sloupec původní matice, např. \boldsymbol{x}_j^c a ozn. $\boldsymbol{X}_{(-j)}$ matici \boldsymbol{X} bez sl. j v předchozím modelu položme $\boldsymbol{X} = \boldsymbol{X}_{(-j)}$ a $\boldsymbol{w} = \boldsymbol{x}_i^c$, potom LSE parametru β_i je

$$\widehat{eta}_j = rac{\widehat{m{e}}_{(-j)}^Tm{x}_{j,res}^c}{\|m{x}_j^c\|_{\infty}\|^2}, \quad \mathsf{kde} \ \widehat{m{e}}_{(-j)} \ \mathsf{jsou} \ \mathsf{rezidua} \ \mathsf{modelu} \ \mathsf{bez} \ m{x}_j^c$$

a $m{x}^c_{i,res} = (m{I} - m{H}_{(-j)}) m{x}^c_i$, tedy jsou to rezidua modelu pro $m{x}^c_j$ v závislosti na ostatních proměnných

Added variable plot: graf $\widehat{\boldsymbol{e}}_{(-j)}$ proti $\boldsymbol{x}_{j,res}^c$, $j=1,\ldots,m$

- ullet pokud je model správný, body by měly být náhodně rozptýlené kolem přímky se směrnicí \widehat{eta}_j procházející počátkem
- ullet pokud závislost na $oldsymbol{x}_i^c$ není lineární, projeví se to odklonem bodů od přímky
- funkce v 😱: avPlots() knihovna car

PŘÍKLAD 4.3 (Housing Price Data)

mod <- lm(Price ~ Feet2 + Age)
avPlots(mod)</pre>

