기술통계 Descriptive Statistics

CE730 통계와 금융

조남운

주제

- 자료의 구분
- 자료의 정리
- 표본자료의 대표치

자료의 구분

자료의 분류

분류 기준	자료분류		
숫자가 의미있는가?	양적 자료 / 질적 자료		
셀 수 있는 숫자인가?	이산형 자료 / 연속형 자료		
자료의 측정과 시간	횡단면 자료 / 종단면 자료 / 패널 자료		

양적 / 질적 자료 Quantitative / Qualitative

- Quantitative Model은 수식, 혹은 논리적 관계로 표현 가능
 - Quantitative Data에서의 수는 의미가 있음
 - 연산 가능
 - 예: 가계소득, 길이, 학점
- Qualitative Model
 - Qualitative Data에서의 수는 식별 이상의 의미가 없음
 - 여사 무의미
 - 명목형 자료, 순서형 자료
 - 예: 성별, 국적, 혈액형

이산형 / 연속형 자료 Discrete / Continuous

- 셀 수 있는 자료
 - 예: 주사위의 눈금, 도산 기업체의 수 등
- 셀 수 없는 자료
 - 예: 질량, 길이, (사실상) 가계소득

횡단면 / 종단면 / 패널 자료 Cross-sectional / Longitudinal / Panel

- 횡단면 자료 Cross-sectional Data
 - 고정된 시간에 획득한 자료
 - 예: 특정 사안에 대한 설문조사
- 종단면 자료 Longitudinal Data or, Time Series Data
 - 시간의 흐름에 따라 측정한 자료
 - 예: 국내총생산, 실업률, 물가지표
- 패널 자료 Panel Data
 - 주기적으로 동일 표본으로부터 횡단면자료를 획득
 - 횡단면과 종단면이 모두 존재
 - 예: 재정패널, 복지패널 등

척도 Scales

- 수집된 자료의 기준설정을 위한 분류
 - 명목척도 Nominal Scales
 - 순서척도 Ordinal Scales
 - 구간척도 Interval Scales
 - 비율척도 Ratio Scales

명목척도 Nominal Scales

- 각 범주의 숫자는 오로지 식별만을 위해 기능함
- 코드 (code)
 - 예:
 - 성별코드 0:여성, 1:남성
 - 지역코드 02:서울, 031:경기도 ...
 - 결혼여부 0:미혼 1:기혼
- 숫자 내용은 의미 없음

순서척도 Ordinal Scales

- 명목척도와 마찬가지로 숫자의 크기는 무의미
- 다만 숫자의 크기 순서는 의미가 있음
- 예: 리커르트 척도 (5점척도)
 - 1:전혀 그렇지 않다 2: 그렇지 않다 3: 중립 4: 그 렇다 5: 매우 그렇다
 - 1: 초등학교 졸 2: 중학교졸 ..

구간척도 Interval Scales

- 등급간 서열 뿐만 아니라 간격이 일정
- 더하거나 뺄 수 있음
- 예: 소득 수준
 - 1: 1000만원 미만
 - 2: 1000 2000만원
 - ...
 - 4: 3000 4000만원
 - 5: 4000만원 이상

비율적도 Ratio Scales

- 구간형 자료 중에서 기준값의 비율로 표현되는 척 도
- 절대 0값을 가진다는 의미이기도 함
- 모든 연산이 가능
- 기준값이 단위가 됨
- 예
 - 길이, 중량, 시간, 밀도, 각도, 거리 등

자료의 정리

주가수익률 데이터 P/E ratio (PER) Data

- 주가수익률 Price-to-Earning Ratio
 - 기업의 EPS (earning per share)에 대하여 투자 자들이 주식가격으로 얼마나 지불하는가를 나타 냄
 - 낮은 P/E ratio는 주식이 저평가되었다는 것을 의미하지만 반드시 그렇게 해석되어야만 하는 것 은 아님

$$P/E \ ratio := rac{주식가격}{EPS}$$

Raw Data

- 2002년 96개 기업 PER data
- 81 63 98 86 83 44 43 58 55 50 29 28 40 36 32 23 21 28 27 26 16 16 20 19 17 13 13 15 15 14 12 12 13 12 12 11 11 12 12 12 11 11 11 11 11 64 58 10 10 10 43 42 93 83 81 28 28 56 50 48 22 21 36 32 30 16 15 28 27 23 13 13 20 18 17 12 12 15 14 14 11 11 12 12 11 10 12 12 11 11 11 12 10 10 10
- 아래 링크로 억세스 가능
 - https://docs.google.com/spreadsheets/d/ 1r3Lbu0x1qWoFzwHCZGIHVdRJZ_Mxwu_MHd2Cr9uk6l A/edit?usp=sharing
- 위 자료를 어떻게 하면 특성을 파악할 수 있을까?

(상대)도수분포 (Relative) Frequency Distribution

- 자료의 구성을 알아볼 수 있음
- 구간별로 해당되는 관측치의 수 (frequency: 도수, 빈도)를 셈
- 상대도수: 전체 자료 수에서 해당 빈도가 차지하는 비율
- 도수 구간은 데이터의 성격이 잘 드러나는 수준에 서 결정해야함

도수분포표 Frequency Distribution Table

Table 1

범위		누적도수	도수	상대도수	%
0	10	96	7	0.0729	7.3
10	20	89	49	0.5104	51
20	30	40	15	0.1563	15.6
30	40	25	5	0.0521	5.2
40	50	20	7	0.0729	7.3
50	60	13	4	0.0417	4.2
60	70	9	2	0.0208	2.1
70	80	7	0	0	0
80	90	7	5	0.0521	5.2
90	100	2	2	0.0208	2.1
	총합		96	1	100

<u> 히스토그램</u>

주요 금융 데이터의 이해

보조교재 2장, 4장

주가지수

- 주식시장 전체의 주식가격 움직임을 대표
 - 최초 주가를 100으로 설정
- 산출법에 따른 분류
 - 시가총액식 주가지수 (가중평균)
 - 모든 주가*상장주식수의 합/기준시점 주가*상 장주식수의 합
 - 다우존스식 주가지수 (단순평균)
 - 대표 우량주 주가 합계를 채택종목수로 나눔

한국의 주가지수

- 한국 종합 주가지수 기준시점: 1980.1.4
 - 이 시점의 지수가 100
- KOSPI 200
 - 대표성이 큰 200기업의 주가지수
- 코스닥 종합지수
 - 상장주식에 대한 시가총액으로 작성

한국 종합주가지수: 2001 - 2011

KOSPI: 1993-2017

현재 종합주가지수

현재 종합주가지수

전일대비 89.43포인트 하락

코스 23 실시간 1개월 1일 3개월 3년 1,929.04 ₹89.43 -4.43% 2,228.96 시가 1,937,17 2,018,47 2,231,47 전일지수 52주최고 1.906.41 1,583.85 고가 1,966,73 1,716,86 거래량 현주 403,362 52주최저 1,261.30 거래대금 얼룩 8,509,596 저가 1,920,67 외국인 (2) -4,055938.75 총 933종목 상한가 16 상승 455 하락 ▼827 하한가 48 2009 2010 2011 외국인 ▼4,055억 기관 ▲ 6,415억 프로그램 ▲ 9,557억 개인 ▼ 3,847억

코스

전일대비 89.43포인트 하락

23 실시간

매입/매도된 주식수

코스피: 2018.9.20

KOSPI: Korea composite Stock Price Index

개별주식시세

건설업 | -2.65%

종목명	현재가	등락률	종목명	현재가	등락률
BS금융지주	14,600	-4.89%	DGB금융지주	16,300	-1.81%
HMC투자증권	17,950	-3.75%	KB금융	47,150	-2.38%

개별주식시세

건설업 | -2.65%

종목명	현재가	등락률	종목명	현재가	등락률
BS금융지주	14,600	-4.89%	DGB금융지주	16,300	-1.81%
HMC투자증권	17,950	-3.75%	KB금융	47,150	-2.38%

현재 주당 가격

개별주식시세

건설업 | -2.65%

종목명	현재가	등락률	종목명	현재가	등락률
BS금융지주	14,600	-4.89%	DGB금융지주	16,300	-1.81%
HMC투자증권	17,950	-3.75%	KB금융	47,150	-2.38%

현재 주당 가격

전일 종가 대비 현재 가격

주가 데이터의 측정주기

- 연도: 1년에 1개 자료
- 분기: 연간 4개
- 월별: 연간 12개
- 일별: 주당 5개 (월-금)
- 분: 1시간에 60개
- 틱: 거래 발생시마다
 - 틱자료는 유상 (코스콤)

주가 자료의 측정값

- 종가로 측정
 - 측정주기에서 가장 마지막 틱에 거래된 값
- 통화량 데이터는 종가에 해당하는 말잔과 함께 평 균에 해당하는 평잔이 함께 측정되고 있음
 - 통계학적 측면에서는 종가보다는 평균이 해당 주기의 움직임을 더 잘 대표함

시계열 자료의 표현

- 금융 데이터는 시계열 (time series) 자료임
- 관측 시점, 그리고 관측시점 사이의 간격 (time lag) 이 중요한 정보임
- 시간 정보는 하첨자로 표현

$$Y_t: t = 1,2,3,\dots$$
 Y_1, Y_2, Y_3, \dots

시계열도표 Time Series Plot

- 시간 경과에 따른 금융데이터를 그래프로 표현
- 가로축: 시간, 세로축: 금융데이터
- 주로 꺾은선그래프를 사용

종합주가지수: 분별

종합주가지수: 일별

종합주가지수: 주별

종합주가지수: 월별

표본자료의 대표치

표본자료의 특성

- 중심
 - 중심화 측도
- 퍼진 정도
 - 산포 측도
- 기타
 - 치우친 정도: 왜도
 - 집중된 정도: 첨도

중심화 측도 Measure of Central Tendency

- 자료의 중심성을 표현하는 좀 더 압축적 형태
- 분포보다는 정보량이 적음
- 주요 중심화 측도
 - 평균 mean
 - 중위수 median
 - 최빈값 mode

평균 Mean (Average)

- 가장 널리 사용하는 중심 측도
- 산술평균 Arithmetic Mean
- 가중평균 Weighted Mean
- 기하평균 Geometric Mean

Data

- 일단, 수치 데이터로 한정하자.
- 데이터의 형태
 - 수치 데이터의 뭉치
 - 값들과, 값들을 구분하는 구분자 (separator)로 구분
 - txt, csv, tsv
 - 좀 더 자동화된 프로그램의 경우 이를 자동화함
 - 통계프로그램 (R, STATA, SPSS, SAS 등)
 - 스프레드쉬트

자료의 형식적 표현 Data: Formal Representation

- 자료 전체는 집합 X 로 표현
- 자료의 각 값은 x_i로 표현

$$X = \{x_1, x_2, \dots, x_N\}$$
$$x_i \in X$$

모산술평균 Population Arithmetic Mean, µ

$$\mu := \frac{1}{N} \sum_{i=1}^{N} x_i$$

- 모집단 전체의 산술평균
- 모집단 전체의 값을 알아야 하므로 쉽게 구할 수 있는 값이 아님
- 표본평균을 통해 추정

표본평균 Sample Mean

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} x_i$$

- 표집으로 구한 표본들의 산술평균
- (주요 조건을 충족한다는 전제하에) 모산술평균의 좋은 추정치

산술평균의특성

- 모든 자료값을 사용
- (unique) 주어진 자료에 대해 반드시 하나만 존재 함
 - 좋은 특성
- 극단값 (extreme value)에 영향을 받음
 - 나쁜 특성

$$\sum_{i=1}^{N} (x_i - \mu) = \sum_{i=1}^{n} (x_i - \bar{X}) = 0$$

연습

- 자료를 구하기
- 샘플 추출하기
- 모산술평균, 표본평균을 구해보기
- 스프레드쉬트 사용

연습

Index	Data
1	32
2	83
3	82
4	70
5	29
6	36
7	49
8	90
9	21
10	90

Index	Sample Index	Sample Data
1	9	21
2	1	32
3	8	90
4	1	32
5	10	90

Statistics	Value
Population Arithmetic Mean	58.2
Sample Mean	53

가중평균 Weighted Mean

$$\bar{X}_w := \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

- 산술평균의 일반화
 - 산술평균은 모든 자료값의 가중치가 같은 가중 평균과 동등한 의미임
- 가중치 *w_i*

예: 주가수익자료

주식수	주가수익률	주식수*주가 수익률
7	9	63
8	9	72
6	12	72
7	14	98
1	8	8
9	11	99
6	10	60

Statistics	Value
Weighted Mean	10.727272727

기하평균 Geometric Mean

$$G := \left(\prod_{i=1}^{n} x_i\right)^{1/n} = (x_1 x_2 \cdots x_n)^{1/n}$$

- 지수적 성장을 하는 자료의 경우 산술평균보다 좋 은 특성을 보임
- 산술평균의 지수적 표현
 - 기하평균의 정의식에 로그를 취하면 로그데이터 의 산술평균임을 확인할 수 있음

산술평균 vs. 기하평균

- 예: 자산 가치가 3년간 1억 → 2억 → 10억 → 20 억으로 증가한 경우
- Q: 매년 평균적으로 얼마나 증가했나?
 - 산술평균: (2배 + 5배 + 2배)/3 = 3배
 - 하지만 3년간 3배 성장은 27배 (오차가 금)
 - 기하평균: (2*5*2)^(1/3) ≈ 2.714
 - 3년간 2.714배 성장할 경우: 19.99배 (오차가 적음)

기하평균의 특성

- 자료의 값이 양수이어야 함
- 산술평균보다 같거나 작음
 - 같은 경우는 모든 자료의 값이 같을 경우뿐임
- 산술평균보다 극단값의 영향을 적게 받음

연습: CJ의 5년간 평균성장률 구하기

- EPS: Earning Per Share
- 주당 순이익
- 구하고자 하는 것:
 - 5년간 연평균 EPS 성장률
 - Average Annual Compound Growth Rate

사업연도	EPS	Growth Rate (%)
제45기	1078	
제46기	7369	583.58
제47기	4815	-34.66
제48기	2179	-54.75
제49기	1981	-9.09

 E_t

자산 수익률 Asset Return

● 단순 총수익률 One Period Simple Gross Return

$$\frac{P_t}{P_{t-1}}$$

● 단순 수익률 Simple Return

$$R_t := \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}}$$

• k 시점 단순 수익률 k Period Simple Return

$$1 + R_{t}(k) = \frac{P_{t}}{P_{t-k}} = \frac{P_{t}}{P_{t-1}} \frac{P_{t-1}}{P_{t-2}} \cdots \frac{P_{t-k+1}}{P_{t-k}}$$

$$= (1 + R_{t})(1 + R_{t-1}) \cdots (1 + R_{t-k+1}) = \prod_{j=0}^{k-1} (1 + R_{t-j})$$
Namun Cho/ mailto:namun@snu,ac,kr

연평균 자산수익률

$$1 + R_{t}(k) = \frac{P_{t}}{P_{t-k}} = \frac{P_{t}}{P_{t-1}} \frac{P_{t-1}}{P_{t-2}} \cdots \frac{P_{t-k+1}}{P_{t-k}}$$

$$= (1 + R_{t})(1 + R_{t-1}) \cdots (1 + R_{t-k+1}) = \prod_{j=0}^{k-1} (1 + R_{t-j})$$

Annualized[
$$R_t(k)$$
] =
$$\left[\prod_{j=0}^{k-1} (1 + R_{t-j}) \right]^{1/k} - 1$$

연평균 성장률

Annualized[$R_t(5)$] = $(1981/1078)^{1/5} - 1 \approx 0.164$

사업연도	EPS	Growth Rate (%)
제45기	1078	
제46기	7369	583.58
제47기	4815	-34.66
제48기	2179	-54.75
제49기	1981	-9.09

 E_t

 R_t

중위수 Median

- 주어진 n개의 자료를 크기순 으로 정렬(sort)했을 때 (n+1)/2 번째 수
- 자료의 갯수가 홀수 일때는 단일수
- 자료의 갯수가 짝수 일때는 n/2번째 값과 n/2 + 1 번째 값의 산술평균
- n분위수의 n/2 분위

1, 3, 3, 6, 7, 8, 9

Median =
$$\underline{6}$$

1, 2, 3, 4, 5, 6, 8, 9

Median = $(4 + 5) \div 2$

= <u>4.5</u>

https://en.wikipedia.org/wiki/Median#/media/ File:Finding_the_median.png

최 비 값 Mode

- 빈도수가 최대인 자료값
 - 빈도수: 자료값이 나타난 횟수
- 예:
 - {11,14,13,13,12,50,13}
 - 최빈값: 13
 - 자료 13의 빈도수: 3

https://en.wikipedia.org/wiki/ Mode_(statistics)#/media/ File:Visualisation_mode_median_mean.svg

분포에 따른 산술평균, 중위수, 최빈값의 관계

산술평균, 중위수, 최빈값

	Mean	Median	Mode
유일성 (Unique)	Yes	Yes	No
모든 자료를 사용	Yes	No	No
극단값 영향	Yes	No	No
자료재정렬 필요성	No	Yes	Yes

보라색 영역: Bad Property

Namun Cho/ mailto:namun@snu.ac.kr

금융 응용 연습

포트폴리오

- 투자금을 여러 종목에 나누어 투자한 내역
 - 위험을 줄이기 위한 목적

포트폴리오의예: 상호기금 포트폴리오

the stock portfolio of a mutual fund

TABLE 25-1	Fidelity Spartan 500 Index Fund, Top Holdings (as of November 2014)		
Company	Percent of mutual fund assets invested in a company		
Apple Inc.	3.4%		
Exxon Mobil Corp	. 2.3		
Microsoft Corp.	1.8		
S&P 500 Index Fu	ture 1.7		
Johnson & Johnso	n 1.6		
General Electric C	Co. 1.4		
Berkshire Hathawa	ay Inc. 1.3		
Wells Fargo & Co.	. 1.3		
Chevron Corp.	1.3		
JPMorgan Chase	& Co. 1.2		

Source: Fidelity Investments.

포트폴리오의 수익률

- 수익률의 기본원칙 := [추가로 얻은 금액] / [투자금액]
- 따라서 포트폴리오의 수익률 = [포트폴리오 투자로 얻은 금액] / [포트폴리오에 투자한 금액]
- 연수익률로 환산하기 위해서는 기하평균을 사용

예제 3.1

- 구매금액 (분모)1910*100+750*200
- 수입금 1850*100+100*8+900*200+ 5*200
- 순수입금 (분자) = 수입금 - 구매금액
- 7.5%

	A사 주식	B사 주식
구매가격	1910	750
구매수량	100	200
현재가격(1 년후)	1850	900
배당액	8	5

예제 3.2

- 우측표: 어떤 포트폴리오의 연간 수익률
- Q: 만일 이 관리자에게 1999 년초에 1000만원을 투자했다 면 2002년말에는 얼마가 되 어 있을까?

Year	R[t]
1999	10%
2000	7%
2001	-4%
2002	11%

 $1000 \times (1+0.1)(1+0.07)(1-0.04)(1+0.11) \approx 1254$

3.2 포트폴리오의 연평균 수익률

 $[(1+0.1)(1+0.07)(1-0.04)(1+0.11)]^{1/4} - 1 \approx 0.058 = 5.8\%$

- 4년간 수익률의 기하평균
- 맞는지 체크하기 위해 1000*(1.058)^4 를 계산해 보고 1254와 비슷한 값이 나오는지 확인하라
- 산술평균으로 계산할 경우
 - (0.1+0.07-0.04+0.11)/4 = 0.0625
 - 1000*(1+0.0625)^4 ≈ 1274 원임

예제 3.3: 불확실한 투자

- 투자금 1000만원
- 40% 수익을 얻을 확률: 1/2 → H(high)라고 명명
- 20% 손실 (-20% 수익)을 얻을 확률: 1/2 → L(low)이라고 명명
- 2년후 기대 수익률은 얼마?

경우의수 Cases

1년차	2년차	1년차금액	2년차금액	확률	2년차 기대값
H	Н	1400	1960	0.25	490
H	L	1400	1120	0.25	280
L	H	800	1120	0.25	280
L	L	800	640	0.25	160
	총합	4400	4840	1	1210

연평균 수익률

- 2년차 기대수익: 1210
- $1210 = 1000(1+r)^2 \Rightarrow r = 0.1 = 10\%$

산포 측도 Measures of Dispersion

- 자료의 퍼진 정도에 대한 통계 량
- 퍼진정도:
 - BLUE > RED
- 금융에서는 이를 변동성 (volatility) 이라고 하기도 함
- 예:
 - (3%, -40%, 50%)의 포트 폴리오
 - versus (2%, 0%, 3%)의 포트폴리오
 - 후자의 변동성이 더 적음 ⇒ lower risk

https://en.wikipedia.org/wiki/Statistical_dispersion#/media/File:Comparison_standard_deviations.svg

산포 측도의 종류

- 범위 Range
- 절대평균편차 MAD: Mean Absolute Deviation
- 분산 Variance
- 표준편차 Standard Deviation
- 변동계수 Coefficient of Variation
- 샤프지수 Sharpe Ratio

범위 Range

Range := max(X) - min(X)

- 자료의 최대값과 최소값의 차이
- 장점: 계산이 쉽다
- 단점: 오로지 두 자료의 값 만 사용

절대표준편차 Mean Absolute Deviation

- 자료값(xi)과 산술평균(bar X)의 거리의 산술평균
- 계산적 특성상 최소 MAD를 만드는 선형함수는 유일하지 않음
 - 참고: 최소 분산을 만드 는 선형함수는 유일함 (OLS)

$$\mathsf{MAD} := \frac{1}{n} \sum_{i=1}^{n} \left| x_i - \overline{X} \right|$$

분산 Variance

- 모분산 Population
 Variance
- 모표준편차 Population
 Standard Deviation
- 표본분산 Sample Variance
- 표본표준편차 Sample
 Standard Deviation

$$\sigma^2 := E(X - \mu)^2$$

$$\sigma = \sqrt{\sigma^2}$$

$$s^2 := \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{X})^2$$

$$s = \sqrt{s^2}$$

분산의특성

- 평균으로부터 거리가 먼 자료 에 가중치 부과
 - 제곱의 평균이므로
- ◆ 수리적으로 좋은 성질 → 산포 측도로 가장 많이 사용
- 표준편차 := 분산^0.5

체비셰프 부등식 Chevyshev's Inequality

● μ 중심으로 k*σ 범위 내에 전체 자료의 100(1-1/k²)% 가 포함됨을 의미

$$P(|x - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$

• 모집단 분포와 무관함: 장점 $P(\mu - k\sigma \le x \le \mu + k\sigma) \ge 1 - \frac{1}{k^2}$

변동계수 Coefficient of Variation

- 측정 단위에 따른 문제를 해 결하는 산포측도
- 자료 측정단위가 작은 자료 들을 비교하려 할 때 CV를 비교

$$CV := \frac{\sigma}{\mu}$$

샤프지수 Sharpe Ratio

- Rp: 포트폴리오 수익률
- RF: 무위험 자산 (Risk-free Asset)의 수익률
 - 국공채 등
- σp: 포트폴리오 수익률의 표준편차
- 의미: 위험자산 투자로 얻는 초과이득
- 높을 수록 유리
- 리스크 프리미엄의 일종

Sharpe Ratio :=
$$\frac{\overline{R}_p - \overline{R}_F}{\sigma_p}$$

그룹화 자료로부터 통계 량 계산하기

- 중심값 mid point
 - 구간의 상한(UM)과 하한 (LM)의 산술평균
 - (UM+LM)/2
- 중심값으로 간주하고 근사치 계산

구간	도수	누적도수	중심값
-25 <x≤-20< th=""><th>1</th><th>1</th><th>-22.5</th></x≤-20<>	1	1	-22.5
-20 <x≤-15< th=""><th>0</th><th>1</th><th>-17.5</th></x≤-15<>	0	1	-17.5
-15 <x≤-10< th=""><th>3</th><th>4</th><th>-12.5</th></x≤-10<>	3	4	-12.5
	8	12	-7.5
	10	22	-2.5
	20	42	2.5
	8	50	7.5
	4	54	12.5
15 <x≤20< th=""><th>2</th><th>56</th><th>17.5</th></x≤20<>	2	56	17.5

<표3.7: 디즈니사 주식의 월간로그수익률 자료의 도수분포표>

그 밖의 통계량

- 왜도
 - 분포의 비대칭정도
- 첨도
 - 분포가 집중된 정도
- 분위수
 - 분포의 요약

왜도계수: 정의 Coefficient of Skewness

$$\mu_3 := \frac{E(X - \mu)^3}{\sigma^3}$$

- 모왜도계수
- 표본왜도계수

$$\hat{\mu}_3 := \frac{n}{(n-1)(n-2)} \left(\frac{\sum_{i=1}^{n} (x_i - \overline{x})^3}{s^3} \right)$$

왜도계수와 비대칭성

첨도계수: 정의 Coefficient of Kurtosis

$$\mu_4 := \frac{E(X - \mu)^4}{\sigma^4}$$

- 모첨도계수
- 표본첨도계수

$$\hat{\mu}_4 := \frac{n(n-1)}{(n-1)(n-2)(n-3)} \left(\frac{\sum_i^n (x_i - \overline{x})^4}{s^4} \right)$$

점도계수와 자료분포

- 첨도의 기준: 정규분포 (첨도 계수 = 3)
 - 0 기준으로 +/- 평가를 위해 첨도계수를 µ4-3 으 로 정의내리기도 함
 - mesokurtic
- µ4>3 : 긴꼬리분포 leptokurtic
- µ4<3: 짧은꼬리분포 platykurtic

https://www.quora.com/How-can-lunderstand-different-types-of-kurtosis

m분위수

- 4분위수 quartiles
- 5분위수 quintiles
- 10분위수 deciles
- 100분위수 percentiles

- 계산절차
 - 자료를 정렬한다
 - 작은 자료 ~ 큰 자료
 - 분위수를 구한다

m분위수 :=
$$\frac{y}{m}(n+1)$$
, $y = 1, 2, \dots, m-1$

수염상자그림 Box and Whisker Plot

- 100분위수 중
 - Q25 (25 percentile)
 - \equiv Q1 (1 quartile)
 - Q75 (75 percentile)
 - \equiv Q3 (3 quartile)
 - Q50 = median
- 수염은 ±1.5IQR
 - IQR: InterQuartile Range
 - max는 Q3+1.5IQR보다 작은 값 중 가장 큰 값
 - min은 Q1-1.5IQR보다 큰 값
 중 가장 작은 값
- 수염 초과값은 Outlier (특이치)

https://en.wikipedia.org/wiki/Box_plot#/media/File:Boxplot_vs_PDF.svg

상자그림과 분포

https://sites.google.com/site/ davidsstatistics/home/notched-box-Namun Cho/ mailto:namun@snu.ac.kr

과제#1

- 주식 자료 사이트에서 주가 자료 100개 구하기
 - 업종번호는 국내외 주식 자신의 학번 끝 3자리로 검색할 것
 (없을 경우 +1 해나가면서 나올 때까지 검색)
 - 일별 종가만 구할것 (과제수행일로부터 과거 100일간)
- 다음의 통계량을 구할 것
 - 산술평균, 중위값, (존재한다면)최빈값, 기하평균, 분산, 표준편차, 변동계수, 왜도계수, 첨도계수, 4분위수
 - 가중평균은 거래주식수로 할 것 (당일거래량/당일주가)
- 본 슬라이드 설명 후 Ims 의 과제란에 공시예정
 - 과제란에 스프레드쉬트 파일 포맷으로 업로드할 것

Next Topic

• Ch4: 확률, 확률변수, 기대치

수고하셨습니다!

수고하셨습니다!

