

In front of Singhdurbar, Putalisadak Tel: - 01- 5331144

MECEE BL

Model Entrance Exam

(Model: V)

(Set: B)

Date: Ashar 7th 2082 (Saturday)

Venue: NAME

Time - 11:00 AM

INSTRUCTIONS

There are 200 multiple-choice questions, each having four choices of which only one choice is correct.

Fill the most appropriate one.

1.	The very early st	age of HIV infection befo	ore antibody production	is called:		
	a) Latent period	b) Incubation period	c) Window period	d) Safe period		
2.	Which structurall	y is directly affected in ty	phoid fever?			
	a) Tongue	b) Stomach	c) Rectum	d) Payer's patches		
3.	Breast cancer is a	n example of:				
	a) Sarcoma	b) Adenoma	c) Carcinoma	d) Lymphoma		
4.	Stenson's duct of	pens at:				
	a) Upper first pre	molar	b) Upper second pre	molar		
	c) Upper first mo	lar	d) Upper second molar			
5.	is loc	ated between two pleural	sacs and is the central	compartment of the thoracic		
	cavity?					
	a) Hilum	b) Pleura	c) Mediastinum	d) Thoracic cage		
6.	The total number	r of orifices for outgoing a	=	hrough the bladder is		
	a) 2	b) 3	c) 4	d) 5		
7.		ne triggering the male te pment on a monthly basis		and in females, triggering		
	a) Prolactin	b) GH	c) FSH	d) LH		
8.	Ventral root of sp	pinal nerve is composed o	of			
	a) Somatic motor and visceral sensory fibres					
	b) Somatic sensory and visceral sensory fibres					
	c) Somatic motors and visceral motor fibres					
	d) Somatic sensor	y and visceral motor fibre	S			
9.	Epiboly results in	n:				
	a) Formation of y	olk plug	b) Formation of blast	copore		
	c) Movement of c	horda-mesodermal cells	d) Formation of noto	chord		
10.	Macula lutea is a	part of				
	a) Optic nerve	b) Sclerotic	c) Choroid	d) Retina		
11.	The head of the rib	which articulates with the tra	nsverse process of thoracic	vertebrae is called		
	a) Capitulum	b) Tuberculum	c) Centrum	d) Shaft		
12.	The external fem	ale genitalia are collectiv	ely called the:			
	a) Labia	b) Vulva	c) Clitoris	d) Mons pubis		
13.	Post caval openin	ng in right auricle is guard	ded by:			
	a) Atrio-ventricul	ar valve	b) Tricuspid valve			
	c) Bicuspid valve		d) Eustachian valve			
14.	Number of lobes	in the liver of man and r	abbit are:			
	a) 3 and 4 respect	ively	b) 4 and 5 respective	b) 4 and 5 respectively		
	c) 5 and 4 respecti	ively	d) 4 and 3 respective	d) 4 and 3 respectively		
15.	Ends of long bon	es are covered with:				
	a) Muscles	b) Ligaments	c) Hyaline cartilage	d) Elastic cartilage		

16.	Lining of trachea i	s made up of:					
	a) Simple squamou	s epithelium	b) Stratified epithe	lium			
	c) Pseudostratified	epithelium	d) Stratified cuboic	dal epithelium			
17.	Which structure of myelinated neurons carry out transmission of signals?						
	a) Schwann cell	b) Nodes of Ranvier	c) Axolemma	d) Axon hillock			
18.	What separates on	e sarcomere from anothe	er?				
	a) I-band	b) H-zone	c) Z-discs	d) A-band			
19.	Which is true abou	ıt malarial parasite?					
	a) Malaria transmit	ted by Anopheles discov	ered by Laveran				
	b) Oocyst formed in	n stomach wall of human	Į.				
	c) Haemozoin deriv	ved from globin part of h	aemoglobin				
	d) Ex-flagellation a	ssociated with formation	of microgametes				
20.	Sporozoit of Plasm	ıodium is:					
	a) Infective stage a	nd is uninucleated					
	b) Infectivestage ar	nd is multinucleated					
	c) Pathogenic stage	c) Pathogenic stage and is uninucleated					
	d) Pathogenic stage and is multinucleated						
21.	Which of t he following is correct option in <i>Pheretima</i> ?						
	a) Cuticle - chitinous and non-albumionid						
	b) Arrangement of setae is called oligochaetine						
	c) Post typhlosolar region has no villi and typhlosole						
	d) Pygidium found	in pre-clitellar region					
22.	In <i>Pheretima</i> , which one is not correct?						
	a) Septal nephridia poured waste into intestine						
	b) Both septal and pharyngeal nephridia conserve water						
	c) Blood is red, due to haemoglobin dissolve in coelomic fluid						
	d) 8-10 pairs of nerves arise from cerebral ganglia						
23.	Sperm formation in earthworm takes place in						
	a) testes		b) testis sac				
	c) spermiducal fun	nel	d) seminal vesicles	3			
24.	Select the wrong p	air					
	a) Haldane – Hot d	ilute soup	b) Oparin - Protob	piont			
	c) Fox - Coacervate	es	d) Spallanzni – Ab	iogenesis			
25.	Common origin of man and chimpanzee is best shown by						
	a) Dental formula		b) Cranial capacity	7			
	c) Binocular vision		d) Chromosome n	umber			
26.	What type of respi	ration tadpole of frog?					
	a) Branchial respira	ntion	b) Bucco-pharynge	eal respiration			
	c) Cutaneous respi	ration	d) Pulmonary resp	piration			

1 11 1111 1		MECEE	BE Model Emirance Exam Sel. B (2002 03 07)		
27.	Sinus venosus is found associated on	of frog	;		
	a) dorsal surface b) ventral surface	e c) left side	d) right side		
28.	The example of industrial melanism horganic evolution?	nas been cited in which or	ne of the following theory of		
	a) Lamarckism	b) Darwinism			
	c) Mutation theory	d) Modern synthetic	theory		
29.	Vesa efferentia in frog's testis open int	to the			
	a) transverse collecting tubules	b) urinogenital duct			
	c) bidder's canal	d) seminal vesicle			
30.	Main basis of Neo-Darwinism is				
	a) struggle for existence b) variations	c) survival of the fitt	est d) gene theory		
31.	An important characteristic that hemic	hordates share with chord	ates is		
	a) absence of notochord	b) ventral tubular ne	erve cord		
	c) pharynx with gill slits	d) pharynx without	gill slits		
32.	Correctly matched set of phylum, class	s and example is			
	a) porifera – calcarea– <i>Obelia</i>	b) mollusca – cephal	lopoda – pila		
	c) platyhelminthes - turbellaria- planar	ria d) arthropoda – dipl	opoda – scolopendra		
33.	Trematodes are commonly called:				
	a) eddy worms b) tapeworms	c) flukes	d) sandworms		
34.	Totipotent cells of sponge				
	a) pinacocytes b) thesocytes	c) choanocytes	d) archaeocytes		
35.	Which of the following adaptive mech	anism does not belong to s	stereotype behaviour?		
	a) Reflexes b) Taxes	c) Instinct	d) Swimming		
36.	Suctorial mouth is present in which gr	oup of vertebrates?			
	a) Apoda b) Teleost	c) Cyclostomates	d) Elasmobranch		
37.	Limulus belongs to class				
	a) Merostomata b) Crustacea	c) Onycophora	d) Insecta		
38.	Which of the following is not a fish?				
	a) Cuttle fish b) Sucker fish	c) Flat fish	d) Pipe fish		
39.	Which one of the following is not a cha	aracteristic feature of mam	mal?		
	a) Diphyodont teeth				
	b) Seven cervical vertebrae				
	c) Dicondylic skull with 10 pairs of cranial nerves				
	d) Left aortic arch in the circulatory syst				
40	What do you understand by scansorial				
40.	, , , , , , , , , , , , , , , , , , ,		J) December a true		
44	a) Burrowing type b) Climbing type	,, I 0 11	d) Running type		
41.	Folds of plasma membrane in bacteria		1)		
	a) episomes b) mesosomes	c) sphaerosomes	d) acrosomes		
42.	Most of the plant virus has				
	a) DNA only	b) RNA only			

1 11 1111 12			INLULE D	E Mouet Entrance Exam Ser. B (2002 03	
	c) both DNA and RN	ſΑ	d) coiled nucleus		
43.	Corticolous lichen grow on				
	a) wood	b) bark of tree	c) soil	d) waste land	
44.	Most common and a	dvanced type of conjug	ation in Spirogyra is		
	a) scalariform	b) indirect lateral	c) direct lateral	d) apomixis	
45.	An algae used for qu	iick sewage disposal is			
	a) ulothrix	b) cladophora	c) volvax	d) chlorella	
46.	Apple scab disease i	s caused by			
	a) colletotrichum	b) venturia	c) puccinia	d) ustilago	
47.	Rhizoids in thalloid	forms like Marchetia a	re present on		
	a) dorsal surface	b) ventral surface	c) on margin	d) everywhere	
48.	In pteridophytes circ	cinate vernation is foun	d in		
	a) rhizome	b) rahis	c) fruit	d) leaf	
49.	Endosperm in gymn	osperm is			
	a) generally haploid	b) always haploid	c) generally diploid	d) always diploid	
50.	Plants with Haustor	ia are			
	a) parasites	b) epiphytes	c) insectivorous	d) saprophytes	
51.	Which of the follow	ing is the edible underg	round stem?		
	a) sweet potato	b) potato	c) ground nut	d) carrot	
52.	Unisexual flowers as	re found in			
	a) malvaceae	b) cucurbitaceae	c) liliaceae	d) cruciferae	
53.	Endodermis mainly	helps in			
	a) preventing water l	oss from stele	b) provides protection	n	
	C) maintains protecti		d) all of the above		
54.	Cotton fiber is obtained from				
	a) epidermal tissue system		b) vascular tissue sys		
	c) meristematic tissue	•	d) ground tissue syste		
55.	When phloem is present on both sides of the xylem the vascular bundle is called				
	a) collateral	b) radial	c) conjoint	d) bicollateral	
56.		om epidermal cell in ha	· ·		
	a) mitochondria	b) vacuoles	c) cell wall	d) chloroplasts	
57.	which one results in	energy wastage?			
	a) photosynthesis	b) transpiration	c) photorespiration	d) respiration	
58.	Sinks are related to				
	a) transport of mater	ials	b) stomata		
	c) enzymes		d) phytochromes		
59.		is due to deficiency of			
	a) iron	b) boron	c) potassium	d) molybdenum	
60.	Largest amount of p	hosphate bond energy i	s produced in respirat	ion during	

NAME			MECEE BI	L Model Entrance Exam Set: B (2082-03-0		
	a) anaerobic respiration		B) fermintation by Ye	ast		
	c) glycolysis		d) kreb cycle			
61.	pH of cytoplasma i	s	•			
	a) acidic	b) alkaline	c) slightly acidic	d) strongly acidic		
62.	Folding of inner m	embrane of mitochond	ria are called			
	a) cisternae	b) grana	C) thylakoids	d) cristae		
63.	Each quantasome of	ontainschlorophy	lls molecules			
	a) 60	b) 200	c) 230	d) 280		
64.	Which of the follow	wing plastids are comm	only found in cells not e	exposed to light?		
	a) leucoplast	b) chloroplast	c) chromoplsat	d) plastoquinone		
65.	Nucleoproterins in	cell is synthesized by				
	a) nucleolosus	b) nucleoplasm	c) nuclear membrane	d) outside the nucleus		
66.	Synapsis of homol	ogous chromosomes sta	arts at			
	a) centromere	b) telomere	c) at any points	d) none		
67.	cell undergoes mitosis without any interruption when it has entered					
	a) s-phase		b) G2-phase			
	c) at any time durin	g mitosis	d) G1-phase			
68	.ideal material to study genetics is					
	a) housefly	b) mosquito	c) frog	d) fruitfly		
69.	Organisms that are phenotypically similar but genotypically different are					
	a) heterozygous	b) homozygous	c) monozygous	d) multizygous		
70.	genetic recombination is due to					
	a) fertilization and meiosis		b) mitosis and meiosis	S		
	c) fertilization and mitosis		d) only mitosis			
71.	No of hydrogen bonds between cytosine and guanine is					
	a) 1	b) 2	c) 3	d) 4		
72.	chromosome no in	Downs syndrome is				
	a) 47.	b) 46	c) 23	d) 45		
73.	Heterostyly is four	ıd in				
	a) Tea	b) orchid	c) malva	d) primula		
74.	The smallest nation	nal park of Nepal is				
	a) Khaptad	b) Rara	c) Langtang	d) Chitwan		
75.	Row of tree for pre	venting wind action is	called			
	a) wind fall	b) wind break	c) wind wall	d) wind dam		
76.	desearts can be con	verted into grassland b	y			
	A) oxylophytes	b) psammophytes	c) halophytes	d) tropical trees		
77.	flow of energy in a	n ecosystem is				
	a) unidirectional	b) bidirectional	c) multidirectional	d) polydirectional		
78.	culture media uses					

NAME			MECEE	BL Model Entrance Exam Set: B (2082-	
	a) coconut	b) florigen	c) vernalin	d) azadiractin	
79.	Penicillin is used a	s antibiotics as it inhibi	its		
	a) cell wall formation	on	b) protien synthesis		
	c) lipid synthesis		d) both b and c		
80.	What is a transgen	ic organism?			
	a) An organism tha	t evolved naturally			
	b) An organism wit	h its own genes modifie	d		
	c) An organism con	taining genes from anot	her species		
	d) An organism tha	t cannot reproduce			
81.	The IUPAC name of	of CH ₃ CN is:			
	a) acetonitrile		b) cyanomethane		
	c) methyl cyanide		d) ethanenitrile		
82.		wing forces explain the	· ·		
	a) Hydrogen bondi	O	b) van der Waal's fo	orces	
	c) Dipole-dipole att		d) None of these		
83.	_	olecules by UV light, we	_		
	a) Cl•	b) Cl ⁺	c) Cl	d) all of these	
84.	Which of the following is last step in producing a new product?				
	a) pilot study		b) decision		
	c) making and selling	0 1	d) review		
85.	The compound C4I	H10O can show	1) (1.		
	a) metamerism		b) functional isomer	rism	
0.6	c) position isomeris		d) All of these		
86.	Which of the following represents the correct reaction?				
	a) $CH_4 + 2H_2O - \frac{N_1}{2}$	$\stackrel{1}{\Longrightarrow}$ CO ₂ + 4H ₂	b) $CH_4 + H_2O \xrightarrow{Ni}$	- CO + $3H_2$	
	c) $CH_4 + H_2O \xrightarrow{Ni}$	CH ₂ OH + H ₂	d) CH ₄ + H ₂ O $\stackrel{\text{Ni}}{\longrightarrow}$	► HCHO + 2H ₂	
87.	Paraffins are solub		u) C114 · 1120	110110 / 2112	
o	a) Distilled water	b) Benzene	c) Methanol	d) Sea water	
88.	,	of paper, the amount o	,	,	
	a) 5-6%	b) 99.5%	c) 60-65%	d) 10%	
89.	,	passed over heated iron	,	,	
	a) C ₂ H ₂	b) C ₄ H ₄	c) C ₆ H ₆	d) C ₈ H ₈	
90.	Which of the follow	wing is liquid at room to	emperature (b.p. is sho	•	
	a) $CH_3I \rightarrow 42^{\circ}C$	b) CH ₃ Br \rightarrow 3°C	c) $C_2H_5Cl \rightarrow 12^{\circ}C$	d) $CH_3F \rightarrow -78^{\circ}C$	
91.	Mg reacts with RB	r best in	•	•	
	a) $C_2H_5OC_2H_5$		b) C ₆ H ₅ OCH ₃		
	c) $C_6H_5N(CH_3)_2$		d) Equally in all the	three	
92.	Butane-2-ol is				

NAME			MECEE I	BL Model Entrance Exam Set: B (2082-03-07)
	a) primary alcohol	b) secondary alcohol	c) tertiary alcohol	d) aldehyde
93.	Phenol is less acidic	than		
	a) ethanol	b) o-nitrophenol	c) o-methylphenol	d) o-methoxyphenol
94.	The reaction given b	elow is known as:		
	$C_2H_5ONa + IC_2H_5ONa + IC_2$	$H_5 \rightarrow C_2H_5OC_2H_5 + NaI$		
	a) Kolbe's synthesis		b) Wurtz synthesis	
	c) Williamson's syntl	nesis	d) Grignard's synthe	sis
95.	Which aldehyde can	not be obtained by Ros	enmund's reaction?	
	a) CH₃CHO	b) HCHO	c) CH ₃ CH ₂ CHO	d) All of these
96.	Mixture of chlorobe	nzene and aniline can b	e separated by:	
	a) ether	b) dil. HCl	c) NaOH solution	d) alcohol
97.	Novolac is			
	a) cross-linked polyn	ner	b) linear polymer	
	c) addition polymer		d) synthetic rubber	
98.	Which of the follow	ing is not a target mole	cule for drug function	in body?
	a) Carbohydrates	b) Lipids	c) Vitamins	d) Proteins
99.	The most abundant	element in human body	y is:	
	a) oxygen		b) carbon	
	c) hydrogen		d) nitrogen	
100.	What is the mass of	1 molecule of CO?		
	a) 2.325×10^{-23} g	b) 4.65×10^{-23} g	c) 3.732×10^{-23} g	d) 2.895×10^{-23} g
101.	Calculate the volum	e at STP occupied by 24	10 gm of SO ₂ .	
	a) 64	b) 84	c) 59	d) 73
102.	Which of the follow atom?	ing properties of atom o	ould be explained cor	rectly by Thomson Model of
	a) Overall neutrality	of atom.		
	b) Spectra of hydrogo	en atom.		
	c) Position of electron	ns, protons and neutrons	s in atom.	
	d) Stability of atom			
103.	Degenerate orbitals	means:		
	a) orbitals having sar	ne energy	b) orbitals having sar	me shape
	c) orbitals having sar	ne size	d) orbitals of same su	ıbshell
104.	The angle between t	two covalent bonds is m	naximum in:	
	a) CH ₄		b) H ₂ O	
	c) CO ₂		d) NH ₃	
105.	Which of the follow	ing chemicals is used to	prevent quick setting	g of cement?
	a) Gypsum	b) Fly ash	c) Sodium salt	d) Vinyl resins
106.	The elements with z	ero electron affinity are	2	
	a) Boron and Carbon	1	b) Beryllium and He	lium

NAME			MECE	E BL Model Entrance Exam Set: B (2082-03-07)		
	c) Lithium and Sodi	um	d) Fluorine and Ch	d) Fluorine and Chlorine		
107.	A pair of compound are	ls which have odd elec	trons in the group NO	O , CO , CIO_2 , N_2O_5 , SO_2 and O_3		
	a) NO and ClO ₂	b) CO and SO ₂	c) ClO ₂ and CO	d) SO_2 and O_3		
108.	A neutral molecule	XF3 has a zero-dipole n	noment. The element	X is most likely		
	a) chlorine	b) boron	c) nitrogen	d) carbon		
109.	Acetic acid exists as	dimer in benzene due	to			
	a) condensation read	etion	b) hydrogen bondi	ng		
	c) presence of carbox	kyl group	d) presence of hydr	rogen atom at α-carbon		
110.	Pressure of a mixtur	re of 4 g of O2 and 2 g o	f H ₂ confined in a bu	lb of 1 litre at 0°C is		
	a) 25.215 atm	b) 31.205 atm	c) 45.215 atm	d) 15.210 atm		
111.	During isothermal	expansion of an ideal g	as, its			
	a) internal energy in	creases	b) enthalpy decreases			
	c) enthalpy remains	unaffected	d) enthalpy reduce	s to zero		
112.	For the following re	action in gaseous phas	e			
	$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO(g)$	$CO_2(g)$, K_P/K_C is				
	a) $(RT)^{1/2}$	b) (RT) ^{-1/2}	c) (RT)	d) (RT)-1		
113.	In which of the following	lowing set of compoun	ds oxygen has highe	st and lowest oxidation state?		
	a) Highest = KO ₂ , lo	west = H_2O_2	b) Highest = OF_2 , lowest = H_2O_2			
	c) Highest = OF ₂ , lov	$west = KO_2$	d) Highest = KO_2 , lowest = H_2O_2			
114.	An X molal solution value of X is	n of a compound in be	nzene has mole fracti	ion of solute equal to 0.2. The		
	a) 14	b) 3.2	c) 1.4	d) 2		
115.	For the titration of N	Na_2CO_3 and H_2SO_4 , the	suitable indicator is:			
116.	a) phenolphthaleinDaniell's cell is:	b) methyl orange	c) litmus	d) both a and b		
	a) Zn-Cu cell	b) Ag-Cu cell	c) Li-Cu cell	d) Zn-Ag cell		
117.	An increase in the c	oncentration of the rea	•	, 0		
	a) heat of reaction	b) threshold energy		cy d) activation energy		
118.	Which of the follow a universal solvent	ring statements do not o	, -	tic property of water "Water is		
	a) It can dissolve ma	ximum number of comp	pounds			
	b) It has very low di	electric constant				
	c) It has high liquid	range				
	d) None of these					
119.	In Solvay ammonia	process, sodium bicark	onate is precipitate d	lue to		
	a) presence of NH ₃		b) reaction with CO	\mathcal{O}_2		
	c) reaction with brin	e solution	d) reaction with Na	аОН		

120.	Plaster of Paris on making paste with little water sets to hard mass due to formation of			
	a) CaSO ₄	b) CaSO ₄ .1/2H ₂ O	c) CaSO ₄ .H ₂ O	d) CaSO ₄ .2H ₂ O
121.	Which of the folloare added?	owing will precipitate fi	irst when aqueous sol	ution containing sulphate ions
	a) Mg ²⁺	b) Ca ²⁺	c) Sr ²⁺	d) Ba ²⁺
122.	Charcoal is used	to decolourize the subst	ance because:	
	a) it reduces colou	ır material	b) it oxidises color	ır material
	c) it adsorbs colou	ır material	d) it absorbs colou	ır material
123.	Which of the follo	owing isotope of carbon	is radioactive?	
	a) ¹² C	b) ¹³ C	c) ¹⁴ C	d) All of these
124.	'Plumbago' is the	common name of:		
	a) diamond	b) graphite	c) charcoal	d) lamp black
125.	Which of the follo	owing is nitric anhydrid	le?	
	a) NO	b) N_2O_5	c) NO ₂	d) N_2O_3
126.	A deep brown gas	s is formed by mixing tw	vo colourless gases w	hich are
	a) NO_2 and O_2	b) N ₂ O and NO	c) NO and O_2	d) NH ₃ and HCl
127.	Cupellation proce	ess is used in the metall	urgy of:	
	a) Cu	b) Fe	c) Ag	d) Al
128.	Oxygen gas can b	e prepared from solid K	MnO4 by:	
	a) treating the soli	d with H2 gas	b) strongly heating	g the solid
	c) dissolving the s	olid in dil. H ₂ SO ₄	d) dissolving solic	l in dil. HCl
129.	Which one is mos	st stable to heat?		
	a) HClO	b) HClO ₂	c) HClO ₃	(d) HClO ₄
130.	Mercurous ion is	represented as:		
	a) Hg+	b) Hg ²⁺	c) Hg_2^{2+}	d) Hg_2^+
131.	What is the angle	between \overrightarrow{P} and the resu	altant of $(\overrightarrow{P} + \overrightarrow{Q})$ and $(\overrightarrow{I}$	$\overrightarrow{\mathbf{G}} - \overrightarrow{\mathbf{Q}}$)?
	a) Zero		b) tan ⁻¹ (P/Q)	-,
	c) tan-1 (Q/P)		d) tan-1 (P - Q)/(F	' + Q)
132.	A body is release released from th	9	one second later. The	rds the earth. Another body is e separation between the two
	a) 4.9 m	b) 9.8 m	c) 19.6 m	d) 24.5 m
133.	A fighter plane is point of the circle		rcle of radius 'r'. Its m	inimum velocity at the highest
	a) $\sqrt{3gr}$	b) $\sqrt{2gr}$	c) \sqrt{gr}	d) $\sqrt{\text{gr/2}}$
134.		vn along a direction incl nge of the particle is equ		° with the horizontal direction.
	a) Vertical height		b) Twice the vertice	cal height
	c) Thrice the vertice	cal height	d) Four times the	vertical height
135.	The motion of a r	ocket is based on the pr	inciple of conservatio	n of

NAME			MECEE B	L Model Entrance Exam Set: B (2082-03-07)	
	a) Mass		b) Kinetic energy		
	c) Linear momentur	n	d) Angular momentu	ım	
136.	The same retarding doubled, then the d		a train. The train stop	os after 80 m. If the speed is	
	a) The same	b) Doubled	c) Halved	d) Four times	
137.	The acceleration du < R, then	ie to gravity is g at a poii	nt distant r from the ce	ntre of earth of radius R. If r	
	a) g ∝ r	b) $g \propto r^2$	c) $g \propto r^{-1}$	d) $g \propto r^{-2}$	
138.		n, suspended from the covith a uniform velocity t	· ·	an, has time period T. If the ılum will be	
	a) Less than T	b) Equal to 2T	c) Greater than T	d) Unchanged	
139.	The longitudinal st	rain is only possible in			
	a) Gases	b) Fluids	c) Solids	d) Liquids	
140.	The radius of a soa	p bubble is increased fro	om $\frac{1}{\sqrt{\pi}}$ cm to $\frac{2}{\sqrt{\pi}}$ cm. If	the surface tension of water	
	is 30 dynes per cm,	then the work done will	be		
	a) 180 ergs	b) 360 ergs	c) 720 ergs	d) 960 ergs	
141.	A pendulum clock keeps correct time at 0° C. Its mean coefficient of linear expansion is α K ⁻¹ , then the loss in seconds per day by the clock if the temperature rises by t° C is				
	a) ½ αt × 86400	$b) \frac{\frac{1}{2} \alpha t \times 86400}{1 - \alpha t/2}$	$c) \frac{\frac{1}{2} \alpha t \times 86400}{1 + \alpha t/2}$	d) $\frac{\frac{1}{2} \alpha t \times 86400}{(1 - \alpha t/2)^2}$	
142.	In thermal equilibr	rium, the average velocit	y of gas molecules is		
	a) proportional to $\sqrt{}$	\overline{T} b) proportional to T^2	c) proportional to T ³	d) zero	
143.	The internal energy	y of an ideal gas depend	s upon		
	a) specific volume	b) pressure	c) temperature	d) density	
144.	First law of thermo	dynamics is given by			
	a) $dQ = dU + PdV$	b) $dQ = dU \times PdU$	c) $dQ = (dU + dV) \times I$	P d) dQ = PdU + dV	
145.	An ideal gas at 27°0 the rise in temperat		ically to 8/27 of its orig	ginal volume. If $\gamma = 5/3$, then	
	a) 450K	b) 375K	c) 225K	d) 405K	
146.		orking between 300K an energy supplied to engi		ut of 800J per cycle. What is le?	
	a) 1800J/cycle	b) 1000J/cycle	c) 8000J/cycle	d) 1600J/cycle	
147.	A ray of light incide	ents on a plane mirror at	an angle of 30°. The de	eviation produced in the ray	
	a) 30°	b) 60°	c) 90°	d) 120°	
148.	The ratio of the ref	ractive index of red light	to blue light in air is		
	a) Less than unity				
	b) Equal to unity				
	c) Greater than unit	y			

	d) Less as well as gre	eater than unity dependi	ng upon the experimen	tal arrangement	
149.	The dispersive power of the material of lens of focal length 20 cm is 0.08. The longituding chromatic aberration of the lens is			m is 0.08. The longitudinal	
	a) 0.08 cm	b) 0.08/20 cm	c) 1.6 cm	d) 0.16 cm	
150.	A wave front is a loc	cus of			
	a) Constant amplitud	le	b) Constant intensity		
	c) Constant phase		d) Same wavelength		
151.	When a thin metal p	late is placed in the pat	h of one of the interfer	ing beams of light	
	a) Fringe width incre	eases	b) Fringes disappear		
	c) Fringes become br	ighter	d) Fringes becomes b	lurred	
152.	The diffraction effect	ct can be observed in			
	a) Only sound waves	3	b) Only light waves		
	c) Only ultrasonic wa	aves	d) Sound as well as li	ght waves	
153.	The intensity of sou	nd increases at night du	ie to		
	a) increases in densit	y of air	b) decreases in density of air		
	c) low temperature		d) none of these		
154.			other with same velocity 50m/s. If the apparent is if velocity of sound in air is 330m/s?		
	a) 320Hz	b) 360Hz	c) 390Hz	d) 420Hz	
155.	The distance between	en the nearest node and	antinode in a stationar	y wave is	
	a) λ	b) λ/2	c) λ/4	d) 2λ	
156.	_	m and charge q is place cenergy attained by the		n electric field E and then a distance y is	
	a) qEy²	b) qE ² y	c) qEy	d) q ² Ey	
157.	The dielectric consta	ant of metal is			
	a) 1	b) greater than 1	c) zero	d) infinite	
158.	An aluminium foil capacitor. Then its ca	0 0	s is placed between t	wo plates of parallel plate	
	a) decreases	b) increases	c) remains same	d) becomes zero	
159.				y is v. If 2i current is flowed , then the drift velocity will	
	a) v / 4	b) v / 2	c) v	d) 4v	
160.		ne ohm each are connec series. The resultant re	connected in parallel. Such connection is again connected		
	a) $\frac{5}{3}\Omega$	b) $\frac{3}{2}\Omega$	c) 1Ω	d) $\frac{2}{3}\Omega$	
161.	The resistance of 1 A required will be	A ammeter is 0.018 Ω. To	convert it into 10 A an	nmeter, the shunt resistance	
	a) 0.18Ω	b) 0.0018 Ω	c) 0.002Ω	d) 0.12Ω	
162	Two bulbs of equal	l wattage one having	carbon filament and th	ne other having a tungsten	

filament are connected in series to the mains, then

c) Tungsten filame			b) Carbon filament bulb glows more	
c) Tungsten filament bulbs glows more		d) Carbon filament b	d) Carbon filament bulb glows less	
			d of 16 weber/m in a circular	
a) 10 ¹⁷ rad/sec	b) $\frac{1}{2} \pi \times 10 \text{ rad/sec}$	c) $2\pi \times 10 \text{ rad/sec}$	d) $4\pi \times 10 \text{ rad/sec}$	
		_		
a) 1×10^{-3} N	b) $2 \times 10^{-3} \text{ N}$	c) 4×10^{-3} N	d) $0.25 \times 10^{-3} \text{ N}$	
A magnet is place	ed in iron powder and the	en taken out, then maxii	mum iron powder is at	
a) Some away from	n north pole	b) Some away from s	outh pole	
c) The middle of the	he magnet	d) The end of the mag	gnet	
Faraday's laws are	e consequence of conserv	ation of		
a) Energy		b) Energy and magne	etic field	
c) Charge		d) Magnetic field		
167. A long horizontal metallic rod with length along the east-west direct gravity. The potential difference between its two ends will			t direction is falling under	
a) Be zero		b) Be constant		
c) Increase with ti	me	d) Decrease with time	e	
The kinetic energy of an electron which is accelerated through a potential of 100 volts is				
a) 1.602 × 10 ⁻¹⁷ J		b) 418.6 calories		
c) 1.16 × 10 ⁴ K		d) 6.626 × 10 ⁻³⁴ W-sec	2	
wavelength λ. Th	ne de-Broglie wavelengt	h associated with a pro	9	
a) $\lambda \frac{m}{M}$	b) $\lambda \sqrt{\frac{m}{M}}$	c) $\lambda \frac{M}{m}$	d) $\lambda \sqrt{\frac{M}{m}}$	
Which of the follo	owing statement is not co	orrect?		
a) Photographic plates are sensitive to infrared rays				
b) Photographic plates are sensitive to ultraviolet rays				
c) Infra-red rays are invisible but can cast shadows like visible light				
d) Infrared photons have more energy than photons of visible light				
		,	•	
a) 3.2×10^{-21}	b) 3.2×10^{-19}	c) 3.2×10^{-17}	d) 3.2 × 10 ⁻¹⁵	
The wavelength o	of X-rays is of the order o	f		
a) Centimetre	b) Micron (10-6 m)	c) Angstrom (10 ⁻¹⁰ m)) d) Metre	
Which of the follo	owing is true?			
a) Lyman series is a continuous spectrum				
	orbit of radius 1\AA a) 10^{17} rad/sec Two straight parawith a force of $1\times$ a) 1×10^{-3} N A magnet is place a) Some away from c) The middle of the Faraday's laws are a) Energy c) Charge A long horizonta gravity. The potential of the kinetic energy a) 1.602×10^{-17} J c) 1.16×10^{4} K An electron of mace with the same of $\frac{m}{M}$ Which of the follows as $\frac{m}{M}$ Which of the follows and $\frac{m}{M}$ The wavelength of $\frac{m}{M}$ Which of the follows and $\frac{m}{M}$	orbit of radius 1Å. Its angular velocity will a) 10^{17} rad/sec b) $\frac{1}{2}\pi \times 10$ rad/sec Two straight parallel wires, both carrying with a force of 1×10^{-3} N. If both currents a) 1×10^{-3} N b) 2×10^{-3} N A magnet is placed in iron powder and the a) Some away from north pole c) The middle of the magnet Faraday's laws are consequence of conserval Energy c) Charge A long horizontal metallic rod with lengravity. The potential difference between a) Be zero c) Increase with time The kinetic energy of an electron which is a) 1.602×10^{-17} J c) 1.16×10^{4} K An electron of mass m when accelerated wavelength λ . The de-Broglie wavelength through the same potential difference will a) $\lambda \frac{m}{M}$ b) $\lambda \sqrt{\frac{m}{M}}$ Which of the following statement is not coally a Photographic plates are sensitive to infrate b) Photographic plates are sensitive to ultrate c) Infra-red rays are invisible but can cast slid of the following have more energy than Ultraviolet radiations of 6.2 eV falls on a kinetic energy in joules of the fastest election a) 3.2×10^{-21} b) 3.2×10^{-19} The wavelength of X-rays is of the order of a) Centimetre b) Micron (10^{-6} m) Which of the following is true?	orbit of radius 1Å. Its angular velocity will be a) 10^{17} rad/sec b) $\frac{1}{2}\pi \times 10$ rad/sec c) $2\pi \times 10$ rad/sec Two straight parallel wires, both carrying to ampere in the same with a force of 1×10^{-3} N. If both currents are doubled, the force of a) 1×10^{-3} N b) 2×10^{-3} N c) 4×10^{-3} N A magnet is placed in iron powder and then taken out, then maxing a) Some away from north pole b) Some away from so c) The middle of the magnet d) The end of the maxing a) Energy b) Energy and magnet c) Charge d) Magnetic field A long horizontal metallic rod with length along the east-west gravity. The potential difference between its two ends will a) Be zero b) Be constant c) Increase with time d) Decrease with time The kinetic energy of an electron which is accelerated through a parallel of 1.602×10^{-17} J b) 1.602×10^{-17} J c) 1.602×10^{-17} J b) 1.602×10^{-17} J c) 1.602×10^{-17} J b) 1.602×10^{-17} J b) 1.602×10^{-17} J c) 1.602×10^{-17} J c) 1.602×10^{-17} J b) 1.602×10^{-17} J c) 1.602×10^{-17} J b) 1.602×10^{-17} J c) 1.60	

b) Paschen series is a line spectrum in the infrared

	c) Balmer series is a line spectrum in the ultraviolet						
	d) The spectral series formula can be derived from the Rutherford model of the hydrogen atom						
174.	When p-n junction diode is forward biased, the width of depletion layer						
	a) Increases		b) Decreases				
	c) Remains unch	anged	d) None				
175.	Serious drawback of the semiconductor device is						
	a) They cannot b	e used with high voltage	b) They pollute	the environment			
	c) They are costly	y	d) They do not	d) They do not last for long time			
176.	A piece of copper and the other of germanium are cooled from the room temperature to 80 K, then which of the following would be a correct statement						
	a) Resistance of each increases						
	b) Resistance of each decreases						
	c) Resistance of copper increases while that of germanium decreases						
	d) Resistance of copper decreases while that of germanium increases						
177.	Which statement is correct?						
	a) N-type germanium is negatively charged and P-type germanium is positively charged						
	b) Both N-type and P-type germanium are neutral						
	c) N-type germanium is positively charged and P-type germanium is negatively charged						
	d) Both N-type and P-type germanium are negatively charged						
178.	Sun radiates continuously and maintains its brightness because						
	a) Helium is converted into iron in its core						
	b) Of fusion of hydrogen nuclei into helium						
	c) Fusion of helium in hydrogen						
	d) Burning of carbon, in its core						
179.	An extremely hot star would appear to be						
	a) Red	b) Blue	c) Yellow	d) Orange			
180.	Which is the particle-anti particle pair?						
	a) Electron and proton		b) Electron and	b) Electron and positron			
	c) Proton and ne	utron	d) Neutron and	d) Neutron and electron			
181.	Which number would replace the question mark in the following sequence?						
	446, 222, ?, 54, 26	, 12, 5					
	a) 106	b) 108	c) 110	d) 112			
182.	Ram, Hari and Shyam go for swim after a gap of every 1 day, every 2 days and every 3 days respectively. How many times will all they meet on the same day within 180 days?						
	a) 30	b) 18	c) 15	d) 12			
183.	A man has Rs. 480 in the denominations of one-rupee notes, five-rupee notes and ten-rupee notes. The number of notes of each denomination is equal. What is the total number of notes that he has?						
	a) 45	b) 60	c) 75	d) 90			
184.	Which option m	atches with (10, 40, 160)?					

1. Grain

5. Dough

4. Bread

	a) 5, 20, 160	b) 5, 20, 80	c) 5, 20, 90	d) 5, 30, 80		
185.	If JANAKSIR is coded as 3-5 then what is the code of MATEXPERT?					
	a) 3-6	b) 2-5	c) 3-8	d) 2-6		
186.	What letter is missing in the place of (?)					
	D, F, R, O, I, O, N, D,?					
	a) F	b) H	c) K	d) O		
187.	. Pointing to a lady, a man said "The son of her only brother is the brother of my wife the lady related to the man?					
	a) Mother's sister	b) Grandmother	c) Mother-in-law	d) Sister of father-in-law		
188.	Which diagram best represents animals, dogs and pet?					
	a)	b)				
189.	Point Dis 2 km towa		Point E is 2km towards	wards the North of point B) the South of point D) Which		
	a) ABE	b) ACE	c) ADE	d) ABD		
190.	Today is Varun's birthday. One year, from today he will be twice as old as he was 12 years ago How old is Varun today?					
	a) 20 years	b) 22 years	c) 25 years	d) 27 years		
191.	In a family, the ages of father, mother, son and grandson are A, B, C and D respectively. A $=$ 3, B + C = 78, C + D = 33, the average age of the family is given as 34 years. What is the agof the father?					
	a) 48 years	b) 53 years	c) 55 years	d) 51 years		
192.	Which one will replace the question mark?					
	2 4 0]				
	1 2 4]				
	3 1 3					
	36 ? 91					
	a) 25	b) 59	c) 48	d) 73		
193.	Statements:					
	I. Many people in the area are reported to be suffering from Malaria) II. Private Medical Practitioners in the area have decided to close their clinics for few days a) Statement I is the cause and statement II is its effect.					
	b) Statement II is the cause and statement I is its effect.					
	c) Both the statements I and II are effects of some common cause.					
	d) Both the statements I and II are effects of independent causes.					
194.	Arrange the following words in the best meaningful manner.					

3. Sandwich

2. Plant

- a) 1, 2, 5, 4, 3
- b) 2, 1, 4, 5, 3
- c) 2, 1, 5, 4, 3
- d) 2, 1, 4, 5, 3

- 195. All animals have
 - a Eyes
- b) Four legs
- c) Horns
- d) Instincts
- 196. Group the given figures into three classes using each figure only once.

a) 1,5,6; 3,4,7; 2,6,8

b) 1,3,6; 4,5,9; 2,7,8

c) 1,3,6; 2,5,7; 4,8,9

- d) 6,7,8; 1,3,7; 2,4,9
- 197. Select a figure from amongst the Answer Figures which will continue the same series as established by the five Problem Figures.

198. Choose the figure which is different from the rest.

- b) 2
- c) 3 d) 5
- 199. Select the alternative which represents three out of the five alternative figures which when fitted into each other would form a complete square.

200. Find the number of squares in the given figure.

- a) 31
- b) 34
- c) 35
- d) 36

d) 135

Result will be published on Sunday Log on to www.name.edu.np

or

www.facebook.com/nameinstitute

Best of Luck