Лекция 6
Интегральные метрики и нелинейные алгоритмы классификации - 1.

Кантонистова Е.О.

ИНТЕГРАЛЬНЫЕ МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ

УИНТЕГРАЛЬНАЯ МЕТРИКА: ROC-AUC

Хотим измерить качество всего семейства классификаторов

$$a(x) = [b(x) > t], t \in \mathbb{R}$$

(без фиксации порога t).

Для этого будем использовать метрику AUC

AUC – Area Under ROC Curve (площадь под ROC-кривой)

ROC-КРИВАЯ

Для каждого значения порога t вычислим:

• False Positive Rate (доля неверно принятых объектов):

$$FPR = \frac{FP}{FP+TN} = \frac{\sum_{i} [y_i = -1][a(x_i) = +1]}{\sum_{i} [y_i = -1]}$$

• True Positive Rate (доля верно принятых объектов):

$$TPR = \frac{TP}{TP + FN} =$$

$$\frac{\sum_{i}[y_{i}=+1][a(x_{i})=+1]}{\sum_{i}[y_{i}=+1]}$$

Actual Values

Positive (1) Negative (0

Positive (1)	TP	FP
Negative (0)	FN	TN

ROC-КРИВАЯ Receiver operating characteristic example 1.0 0.8 True Positive Rate 0.6 0.4 0.2 ROC curve (area = 0.79) 0.0 0.2 0.4 0.6 0.8 0.0 1.0 False Positive Rate

ROC-КРИВАЯ. AUC.

- ullet Каждая точка на ROC-кривой соответствует классификатору ${ullet}$ с фиксированным значением порога t.
- ullet Всего различных порогов l+1, где l- количество объектов.

AUC – площадь под ROC-кривой. $AUC \in [0; 1]$

• AUC = 1 -

идеальная классификация

• AUC = 0.5 -

случайная классификация

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

Упорядочим объекты по убыванию предсказаний:
(0.7,0.4,0.2,0.1,0.05)

1 шаг: t = 0.7, то есть

$$TPR = \frac{TP}{TP+FN}$$

$$a(x) = [b(x) > 0.7]$$

$$FPR = \frac{FP}{FP+TN}$$

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

• Упорядочим объекты по убыванию предсказаний: (0.7,0.4,0.2,0.1,0.05)

1 шаг:
$$t = 0.7$$
, то есть

$$TPR = \frac{TP}{TP + FN}$$

$$a(x) = [b(x) > 0.7]$$

$$FPR = \frac{FP}{FP + TN}$$

$$TPR = \frac{0}{0+3} = 0$$
, $FPR = \frac{0}{0+2} = 0$.

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

• Упорядочим объекты по убыванию предсказаний:

1 шаг:
$$t = 0.7$$
, то есть

$$a(x) = [b(x) > 0.7]$$

$$TPR = \frac{0}{0+3} = 0$$
,

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

2 шаг: t = 0.4, то есть

$$a(x) = [b(x) > 0.4]$$

$$TPR = \frac{1}{1+2} = \frac{1}{3}$$
,

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

3 шаг: t = 0.2, то есть

$$a(x) = [b(x) > 0.2]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

4 шаг: t = 0.1, то есть

$$a(x) = [b(x) > 0.1]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{1}{1+1} = \frac{1}{2}$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0.05, то есть

$$a(x) = [b(x) > 0.05]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{2}{2+0} = 1.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0, то есть

$$a(x) = [b(x) > 0]$$

$$TPR = \frac{3}{3+0} = 1$$
,

$$FPR = \frac{2}{2+0} = 1.$$

индекс джини

Индекс Джини:

$$Gini = 2 \cdot AUC - 1$$

• Индекс Джини — это удвоенная площадь между главной диагональю и ROC-кривой.

PRECISION-RECALL КРИВАЯ

• В случае малой доли объектов положительного класса AUC-ROC может давать неадекватно хороший результат Precision-Recall кривая:

Precision-Recall example: AUC=0.79

AUC-PR

AUC-PR — площадь под PR-кривой

Precision-Recall example: AUC=0.79

НАИВНЫЙ БАЙЕСОВСКИЙ КЛАССИФИКАТОР

Наивный байесовский классификатор — это алгоритм классификации, основанный на теореме Байеса с допущением о независимости признаков.

<u>Пример:</u> фрукт может считаться яблоком, если:

- 1) он красный
- 2) круглый
- 3) его диаметр составляет порядка 8 см

Предполагаем, что признаки вносят независимый вклад в вероятность того, что фрукт является яблоком.

ТЕОРЕМА БАЙЕСА

Теорема Байеса:

$$P(c|x) = \frac{P(x|c) \cdot P(c)}{P(x)}$$

• P(c|x) - вероятность того, что объект со значением признака x принадлежит классу c.

- P(c) априорная вероятность класса c.
- P(x|c) вероятность того, что значение признака равно x при условии, что объект принадлежит классу c.
- ullet P(x) априорная вероятность значения признака x.

ПРИМЕР РАБОТЫ БАЙЕСОВСКОГО АЛГОРИТМА

Пример: на основе данных о погодных условиях необходимо определить, состоится ли матч.

• Преобразуем набор данных

в следующую таблицу:

Weather	No	Yes
Overcast	0	4
Rainy	3	2
Sunny	2	3
Grand Total	5	9

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

ПРИМЕР РАБОТЫ БАЙЕСОВСКОГО АЛГОРИТМА

Решим задачу с помощью теоремы Байеса:

$$P(Yes|Sunny) = P(Sunny|Yes) \cdot P(Yes)/P(Sunny)$$

Ta6	лица часто	т		
Weather	No	Yes	:	
Overcast	0	4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
Grand Total	5	9		
	=5/14	=9/14]	
	0.36	0.64		

•
$$P(Sunny|Yes) = \frac{3}{9}, P(Sunny) = \frac{5}{14}, P(Yes) = \frac{9}{14}.$$

•
$$P(Yes|Sunny) = \frac{3}{9} \cdot \frac{9}{14} : \frac{5}{14} = \frac{3}{5} = 0.6 \Rightarrow 60\%.$$

БАЙЕСОВСКИЙ АЛГОРИТМ ДЛЯ КЛАССИФИКАЦИИ

Аналогичным образом с помощью наивного байесовского алгоритма можно прогнозировать несколько различных классов на основе множества признаков.

- + классификация быстрая и простая
- + в случае, если выполняется предположение о независимости, классификатор показывает очень высокое качество
- если в тестовых данных присутствует категория, не встречавшаяся в данных для обучения, модель присвоит ей нулевую вероятность

НАИВНЫЙ БАЙЕСОВСКИЙ АЛГОРИТМ

https://scikit-learn.org/stable/modules/naive_bayes.html

МЕТОД БЛИЖАЙШИХ СОСЕДЕЙ

_>МЕТОД БЛИЖАЙШИХ СОСЕДЕЙ

Идея: схожие объекты находятся близко друг к другу в пространстве признаков.

МЕТОД БЛИЖАЙШИХ СОСЕДЕЙ

Чтобы классифицировать новый объект, нужно:

- Вычислить расстояние до каждого из объектов обучающей выборки.
- Выбрать к объектов обучающей выборки, расстояние до которых минимально.
- Класс классифицируемого объекта это класс, наиболее часто встречающийся среди к ближайших соседей.

МЕТОД БЛИЖАЙШИХ СОСЕДЕЙ

Число ближайших соседей k – гиперпараметр метода.

Например, для k = 3 получим:

То есть объект будет отнесён к классу *треугольников*.