TP N°1

Analyse spectrale,

Illustration de la décomposition en série de Fourier

11-Préliminaires

$$x(t) = \frac{4E}{\pi} \sum_{k=0}^{+\infty} \frac{\sin((2k+1)2\pi Ft)}{(2k+1)}$$

$$A_k = \frac{4E}{\pi(2k+1)}$$

$$F_k = (2k+1)F$$

12-Saisir le programme ci-dessous, comprendre son fonctionnement

```
%illustration de la decomposition en serie de fourier d'un signal carre
clc; clear all; clf;
t=linspace(0,1.5,1000); %generation d'un vecteur de 1000 points par pas de
h=0; %initialisation de la serie de fourier
for n=1:2:200 %rang de l'harmonique a calculer
    x=[0,0,0.5,0.5,1.0,1.0,1.5,1.5,];
    y=[0,1,1,-1,-1,1,1,0];
    line (x,y,'color','r','linewidth',2) %Tracé d'un signal carré
    grid on; hold on;
    % calcul des composantes et somme pou séries e fourier
    harmonique=(4/(n*pi))*sin(2*pi*n*t); %harmonique de ranf n
    h=h+harmonique; %somme des harmonique
    error=mean ((abs(h)-1).^2); %erreur entre DSF et signal carre
    plot(t,h,'k','linewidth',2)
    title (['signal carre , somme partielle: ','n=',num2str(n),'Erreur = ',
num2str(error)])
    xlabel('seconde')
    pause
    close(figure(1))
    if error<0.01</pre>
        break
    end
    clf
end
```


14-Ecart entre signal carré et sa reconstruction à partir de la DSF

a)

Nous avons fais la somme des sinus qui sont nos « harmoniques » pour nous approchés du plus prés du signal carré.

b)

n	1	5	9	13	17	21	25	29	33	37	41	45	47
Erreur	0.19	0.066	0.041	0.029	0.024	0.019	0.017	0.015	0.013	0.012	0.011	0.01	0.0097

c)

```
function [] = ex14()
n=[ 1    ,5    ,9    ,13    ,17    ,21    ,25    ,29    ,33    ,37    ,41    ,45    ,47]
Erreur =[0.19    ,0.066    ,0.041    ,0.029    ,0.024    ,0.019    ,0.017    ,0.015
,0.013    ,0.012    ,0.011    ,0.01    ,0.0097]
plot(n,Erreur)
```

```
function [] = ex21()
%illustration de la décomposition en série de fourier d'un signal carré
clc; clear all; clf;
t=linspace(0,1.5,1000); %génération d'un vecteur de 1000 points par pas de
1.5e-3
h=0; %initialisation de la série de fourier
for n = 1:2:200
    X = [0,0,0.5,0.5,1.0,1.0,1.5,1.5];
    Y = [0,1,1,-1,-1,1,1,0];
    line(X,Y,'color','r','linewidth',2)
    grid on ; hold on;
    %calcul des co^mposantes et somme pour les séries de fourier
    harmoniques=(4/(n*pi))*sin(2*pi*n*t);  %harmonique de rang n
    h=h+harmoniques; %somme des harmoniques
    error=mean ((abs(h)-1).^2); %erreur entre DSF et signalcarré
    plot (t,harmoniques,'k','linewidth',2)
    title(['signal carré , somme partielle : ','n= ', num2str(n), ' Erreur
= ', num2str(error)])
    xlabel('seconde')
    pause
    close(figure(1))
    if n>46
        break
    end
    clf
end
```

21-Saisir le programme ci-dessous

N	1	5	9	13	17	21	25	29	33	37	41	45	47
Fréquence	1	5	9	13	17	21	25	29	33	37	41	45	47
Amplitude	1.27	0.25	0.14	0.098	0.075	0.061	0.051	0.044	0.039	0.034	0.031	0.028	0.027
Pratique													
Amplitude	1.273	0.254	0.141	0.097	0.074	0.0606	0.051	0.043	0.038	0.034	0.031	0.0282	0.026
Théorique													

Exercice 3: spectre d'amplitude

31-Application de la fonction spectre : somme des deux signaux sinusoïdaux

```
clear all
Fe= 2000;
                                 %frequence d'échantillonage
Te=1/Fe;
                                 %période d'échantillonage
T=1;
                                 %Durée du signal
                                 %nbr de points dans le signal
N=T*Fe
nfft=2048
                                 %puissance de 2 proche de N
t=0:Te:T
                                 %Vesteur temps
x=0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
                                               %calcul de x(t)
figure(1)
plot(1000*t(1:400),x(1:400)) %réprensentationd'un segment de x(t) en ms
title('Signal');
xlabel('temps(ms)');
```

```
\label{eq:continuous} \begin{tabular}{ll} [f,pxx]=spectre(x ,Fe ,nfft ,N) & calculdu spectre d'amplitude figure(2) & plot(f,pxx) & title("spectre d'amplitude de <math>x(t)"); & xlabel('Fréquence (Hz)'); & ylabel('|x(f)|'); & plot('|x(f)|');
```


32-spectre d'un signal composite

a)

```
clear all
Fe= 10000;
                                  %frequence d'échantillonage
Te=1/Fe;
                                 %période d'échantillonage
T=1;
                                 %Durée du signal
N=T*Fe
                                 %nbr de points dans le signal
nfft=2048
                                 %puissance de 2 proche de N
t=0:Te:T
                                 %Vesteur temps
x=\sin(2*pi*10*t) + \sin(2*pi*200*t) + \sin(2*pi*1000*t);
                                                               %calcul de
x(t)
figure(1)
plot(1000*t(1:400),x(1:400))
                                                %réprensentationd'un segment
de x(t) en ms
title('Signal');
xlabel('temps(ms)');
[f,pxx]=spectre(x ,Fe ,nfft ,N)
                                                 %calculdu spectre
d'amplitude
figure(2)
plot(f,pxx)
title("spectre d'amplitude de x(t)");
xlabel('Fréquence (Hz)');
ylabel('|x(f)|')
```


Exercice 4 : Transportation fréquentielle

41-Etude théorique

411.

$$\cos a \times \cos b = \frac{1}{2}\cos(a+b) + \frac{1}{2}\cos(a-b)$$

$$v(t) = k \times m(t) \times p(t)$$

$$v(t) = k \times Acos(2\pi Ft) + Vcos(2\pi F_0 t)$$

$$v(t) = \frac{kA}{2}cos2\pi(F + F_0)t + \frac{kAV}{2}cos2\pi(F_0 - F)t$$

$$v(t) = \frac{0.66 * 1}{2} cos2\pi * (100 + 10000)t + \frac{0.66 * 1 * 3}{2} cos2\pi * (10000 - 100)t$$

412)

$$Fmax = f_0 + F = 10100 \ Hz$$

$$Te = \frac{1}{2 \times 10100} = 5 \times 10^{-5} \ s = 50 \mu s$$

$$N = \frac{T}{Te} = 20 \ 000$$

$$nfft = 2^n > N$$

$$nfft = 2^{15} = 32768$$

42.

421-422.

```
function[]=a411()
fo=1000;
F=10;
Fe=10000;
Te=1/Fe;
V=3;
k=0.66;
A=1;
T=1;
N=T*Fe;
nfft=16384
                                  %puissance de 2 proche de N
t=0:Te:T;
                                  %Vesteur temps
m=A*cos(2*pi*F*t)
%p=V*cos(2*pi*f*t)
%v=k*m*p
figure(1)
plot(1000*t(1:2000),m(1:2000))
                                                  %réprensentationd'un
segment de x(t) en ms
title('Signal');
xlabel('temps(ms)');
[f,pxx]=spectre(m ,Fe ,nfft ,N)
                                                 %calculdu spectre
d'amplitude
figure(2)
plot(f,pxx)
title("spectre d'amplitude de m(t)");
xlabel('Fréquence (Hz)');
ylabel('|x(f)|');
end
```



```
function[]=a411()
fo=1000;
F=10;
Fe=10000;
Te=1/Fe;
V=3;
k=0.66;
A=1;
T=1;
N=T*Fe;
                                  %puissance de 2 proche de N
nfft=16384
t=0:Te:T;
                                  %Vesteur temps
m=A*cos(2*pi*F*t)
p=V*cos(2*pi*fo*t)
v=k*m.*p
figure(1)
hold on;
                                                             %pour que les
plot prenne leur temps pour les afficher bien
subplot(3,2,1)
plot(1000*t(1:8000), m(1:8000), 'color', 'g')
%réprensentationd'un segment de m(t) en ms
title('Signal m');
xlabel('temps(ms)');
[f,pxm]=spectre(m ,Fe ,nfft ,N)
                                                %calculdu spectre
d'amplitude de m
subplot(3,2,3)
plot(1000*t(1:500),p(1:500),'color','b')
%réprensentationd'un segment de p(t) en ms
title('Signal p');
xlabel('temps(ms)');
[f,pxp]=spectre(p ,Fe ,nfft ,N)
                                                %calculdu spectre
d'amplitude de p
subplot(3,2,5)
plot(1000*t(1:1000), v(1:1000), 'color', 'r')
%réprensentationd'un segment de v(t) en ms
title('Signal v');
xlabel('temps(ms)');
[f,pxx]=spectre(v ,Fe ,nfft ,N)
                                                %calculdu spectre
d'amplitude de v
subplot(3,2,2)
plot(f,pxm,'color','g')
title("spectre d'amplitude de m(t)");
xlabel('Fréquence (Hz)');
vlabel('|m(f)|');
subplot(3,2,4)
plot(f,pxp,'color','b')
title ("spectre d'amplitude de p(t)");
xlabel('Fréquence (Hz)');
ylabel('|p(f)|');
subplot(3,2,6)
plot(f,pxx,'color','r')
title("spectre d'amplitude de v(t)");
xlabel('Fréquence (Hz)');
ylabel('|v(f)|');
end
```

