BROWNIAN MOTION AND STOCHASTIC CALCULUS HW 5

TOMMENIX YU ID: 12370130 STAT 38500

Discussed with classmates.

Exercise 1.

Proof.

For convenience, define mesh $\Pi^{(n)}$ on [r, s] with $r = t_0 < t_1 < \cdots < t_n = s$ and $t_i := r + \frac{i}{n}(s - r)$. Then, using these nodes we can define

$$f^{(n)}(x) := \sum_{i=1}^{n} \mathbb{1}_{t_{i-1} \le x < t_i} f(t_{i-1})$$

which just means $f^{(n)}(x) = f(t_{i-1}) = : F_n^n$ for $t_{i-1} \le x < t_i$, and $\{F_j^i\}$ is a countable collection of sequences (F^i is the *i*-th sequence).

But then we have by sbp that for any $\omega \in \Omega$

$$\int_{r}^{s} f^{(n)}(t)dB_{t} = \sum_{i=1}^{n} f(t_{i-1})[B_{t_{i}} - B_{t_{i-1}}] = (F_{n-1}^{n}B_{t_{n}} - F_{0}^{n}B_{t_{0}}) - \sum_{i=1}^{n} B_{t_{i}}(F_{t_{i}}^{n} - F_{t_{i-1}}^{n})$$

but then we take $n \to \infty$ and by continuity of f we know $F_{n-1}^n \to f(s)$ and since f differentiable and B_t continuous we have

$$\sum_{i=1}^{n} B_{t_i}(F_{t_i}^n - F_{t_{i-1}}^n) \to \int_{r}^{s} B_{t} df(t) = \int_{r}^{s} B_{t} f'(t) dt$$

whereas the left hand side converges because we can smoothly truncate f outside of [0, t] (where it's defined) to make it compact support, then the limit converges as a stochastic integration

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(t_{i-1}) [B_{t_i} - B_{t_{i-1}}] = \int_{r}^{s} f(t) dB_t$$

from discussion in class if we take $f^{(n)}$ as a constant random variable measurable with respect to \mathcal{F}_t (actually this is much easier since f is deterministic so $f^{(n)} \in \mathcal{F}_0$). Hence

$$\int_{r}^{s} f(t)dB_{t} = \lim_{n \to \infty} (F_{n-1}^{n} B_{t_{n}} - F_{0}^{n} B_{t_{0}}) - \sum_{i=1}^{n} B_{t_{i}} (F_{t_{i}}^{n} - F_{t_{i-1}}^{n}) = f(s)B_{s} - f(r)B_{r} - \int_{r}^{s} B_{t} f'(t)dt.$$

We use Riemann sum see that $\int_{r}^{s} f(t)dB_{t} \sim N$:

Writing out Riemann sum we get

$$\int_{r}^{s} B_{t} f'(t) dt = \lim_{n \to \infty} \sum_{i=1}^{n} B_{t_{i-1}} \left(f(t_{i}) - f(t_{i-1}) \right).$$

Now we note that

$$\begin{split} &f(s)B_{s}-f(r)B_{r}-\sum_{i=1}^{n}B_{t_{i-1}}\left(f(t_{i})-f(t_{i-1})\right)\\ &=\left(f(s)-f(r)-\sum_{i=1}^{n}\left(f(t_{i})-f(t_{i-1})\right)\right)B_{r}+\sum_{i=2}^{n}\left(f(s)-\sum_{j=i}^{n}\left(f(t_{i})-f(t_{i-1})\right)\right)\left[B_{t_{i}}-B_{t_{i-1}}\right]\\ &=0\cdot B_{r}+\sum_{i=2}^{n}\left(f(s)-f(s)+f(t_{i-1})\right)\left[B_{t_{i}}-B_{t_{i-1}}\right]=\sum_{i=2}^{n}f(t_{i-1})\left[B_{t_{i}}-B_{t_{i-1}}\right] \end{split}$$

which is a sum of independent normal distributions, thus normal.

But on the other hand we have pointwise limit by Riemann integral that

$$\lim_{n \to \infty} \left[f(s)B_s - f(r)B_r - \sum_{i=1}^n B_{t_{i-1}} \left(f(t_i) - f(t_{i-1}) \right) \right] = f(s)B_s - f(r)B_r - \int_r^s B_t f'(t)dt$$

which then implies weak converge, which means the limiting random variable has normal distribution, which by IBP is what we want.

Exercise 2.

Proof.

The idea is that we first show the result for $t_1 \le t \le t_2$, then we inductively show the result for all $t_j \le t \le t_{j+1}$ holds.

For $t_1 \le t \le t_2$:

We explicitly compute

$$\left(\int_{0}^{t} A_{s} dB_{s}\right)^{4} = \left(\sum_{i=1}^{2} A_{t_{i-1}} [B_{t_{i}} - B_{t_{i-1}}]\right)^{4}$$

$$= \sum_{i=1}^{2} A_{t_{i-1}}^{4} [B_{t_{i}} - B_{t_{i-1}}]^{4} + 6A_{t_{1}}^{2} A_{t_{0}}^{2} [B_{t_{2}} - B_{t_{1}}]^{2} [B_{t_{1}} - B_{t_{0}}]^{2}$$

$$+ 4 \sum_{i \neq j} A_{t_{j-1}}^{3} A_{t_{i-1}} [B_{t_{j}} - B_{t_{j-1}}]^{3} [B_{t_{i}} - B_{t_{i-1}}]$$

but for those with the largest index corresponding to an odd power, we know it vanishes after taking expectation, for instance if we let i = 2, j = 1 below then

$$\begin{split} & \mathbb{E}\left[A_{t_{i-1}}A_{t_{j-1}}^{3}[B_{t_{i}}-B_{t_{i-1}}]^{3}[B_{t_{j}}-B_{t_{j-1}}]\right] = \mathbb{E}\left[\mathbb{E}\left[A_{t_{i-1}}A_{t_{j-1}}^{3}[B_{t_{i}}-B_{t_{i-1}}]^{3}[B_{t_{j}}-B_{t_{j-1}}]\right|\mathcal{F}_{t_{j-1}}\right]\right] \\ = & \mathbb{E}\left[A_{t_{i-1}}A_{t_{j-1}}^{3}[B_{t_{j}}-B_{t_{j-1}}]\mathbb{E}\left[[B_{t_{i}}-B_{t_{i-1}}]^{3}\middle|\mathcal{F}_{t_{i-1}}\right]\right] = \mathbb{E}\left[A_{t_{i-1}}A_{t_{j-1}}^{3}[B_{t_{j}}-B_{t_{i-1}}]\cdot 0\right] = 0 \end{split}$$

with the exact same manipulation we can throw away all terms with odd power largest index.

Now we compute the leftover terms one by one:

$$\mathbb{E}\left[\sum_{i=1}^{2} A_{t_{i-1}}^{4} [B_{t_{i}} - B_{t_{i-1}}]^{4}\right] = \mathbb{E}\left[\sum_{i=1}^{2} A_{t_{i-1}}^{4} \mathbb{E}\left[[B_{t_{i}} - B_{t_{i-1}}]^{4} \middle| \mathcal{F}_{t_{i-1}}\right]\right] = 3\mathbb{E}\left[\sum_{i=1}^{2} (t_{i} - t_{i-1})^{2} A_{t_{i-1}}^{4}\right]$$

$$\leq 3C^{4} \sum_{i=1}^{n} (t_{i} - t_{i-1})^{2}$$

and similarly (again, i = 2, j = 1 below)

$$\begin{split} & \mathbb{E}\left[A_{t_{i-1}}^2 A_{t_{j-1}}^2 [B_{t_i} - B_{t_{i-1}}]^2 [B_{t_j} - B_{t_{j-1}}]^2\right] \\ \leq & C^4 \mathbb{E}\left[[B_{t_j} - B_{t_{j-1}}]^2 \mathbb{E}\left[[B_{t_i} - B_{t_{i-1}}]^2 \middle| \mathcal{F}_{t_i}\right]\right] = C^4 (t_i - t_{i-1}) \mathbb{E}\left[[B_{t_j} - B_{t_{j-1}}]^2\right] \\ = & C^4 (t_i - t_{i-1}) (t_j - t_{j-1}) \end{split}$$

And thus adding all together

$$\mathbb{E}\left[\left(\int_0^t A_s dB_s\right)^4\right] \le 3C^4t^2 \le 4C^4t^2$$

for this case.

Now assume we've finished for $t_{k-1} \le t < t_k$ and we want to show for $t_k \le t < t_{k+1}$, we just compute (again we throw away odd terms by IH, and exact same computation as above (and a similar one for second order))

$$\mathbb{E}\left[\left(\int_{0}^{t} A_{s} dB_{s}\right)^{4}\right] \leq \mathbb{E}\left[|Z_{t_{n}} + A_{t_{n}}[B_{t-t_{n}}]|^{4}\right]$$

$$\leq \mathbb{E}[Z_{t_{n}}^{4}] + \mathbb{E}[|A_{t_{n}}[B_{t-t_{n}}]|^{4}] + \mathbb{E}[Z_{t_{n}}^{2} \cdot |A_{t_{n}}[B_{t_{n+1}-t_{n}}]|^{2}]$$

$$\leq 3C^{4}t_{n}^{2} + 3C^{4}(t-t_{n})^{2} + 6C^{4}t_{n}(t-t_{n}) \leq 3C^{4}t^{2} \leq 4C^{4}t^{2}$$

which inductively proves our result.

(2):

Define the approximating simple process $A_s^{(n)}$ to A_s in the same manner as in class

$$A_s^{(n)} := n \int_{\frac{k-1}{n}t}^{\frac{k}{n}t} A_w dw, \qquad \frac{k}{n}t \le s \le \frac{k+1}{n}t$$

thus $A_s^{(n)}$ is simple and we can see that $A_s^{(n)} \to A_s$ pointwise.

Now, for convenience denote $A := \int_0^t A_s dB_s$ and $B_n := \int_0^t A_s^{(n)} dB_s$, then we have

And we have

$$\mathbb{E}\left[A^4 - B_n^4\right] = \mathbb{E}\left[\left(A^2 + B_n^2\right)\left(A^2 - B_n^2\right)\right]$$

where $A_s^{(n)} \stackrel{L^2}{\rightarrow} A_s$. Moreover

$$A^2 + B_n^2 \le C^2 \int_0^t |dB_s| \le q^2(\omega)C^2$$

for some constant q dependent on ω and in the same manner we bound $A + B_n \leq 2Cq(\omega)$.

Putting together we have

$$\lim_{n \to \infty} (A^2 + B_n^2) (A^2 - B_n^2) \le \lim_{n \to \infty} 2q^2 C^2 (A^2 - B_n^2) \to 0$$

so $\mathbb{E}\left[\lim_{n\to\infty}(A^4-B_n^4)\right]=0$ and by DCT we have

$$\lim_{n \to \infty} \mathbb{E}\left[(A^4 - B_n^4) \right] = \mathbb{E}\left[\lim_{n \to \infty} (A^4 - B_n^4) \right] = 0$$

which, together with part 1 we know

$$\mathbb{E}\left[\left(\int_0^t A_s dB_s\right)^4\right] \leq 4C^4t^2.$$

Exercise 3.

Proof.

Using the very same method as in part (1) of question 2 above, we have shown already that the terms with odd largest degree is 0, this gives us only one type 2-1 term left, i.e.:

$$\begin{split} \left(\int_{0}^{t} A_{s} dB_{s}\right)^{3} &= \left(\sum_{i=1}^{n} A_{t_{i-1}} [B_{t_{i}} - B_{t_{i-1}}]\right)^{3} \\ &= \sum_{i=1}^{n} A_{t_{i-1}}^{3} [B_{t_{i}} - B_{t_{i-1}}]^{3} + \sum_{i \neq j} A_{t_{i-1}}^{2} A_{t_{j-1}} [B_{t_{i}} - B_{t_{i-1}}]^{2} [B_{t_{j}} - B_{t_{j-1}}] \\ &+ \sum_{i,j,k \text{ distinct}} A_{t_{i-1}} A_{t_{j-1}} A_{t_{k-1}} [B_{t_{i}} - B_{t_{i-1}}] [B_{t_{j}} - B_{t_{j-1}}] [B_{t_{k}} - B_{t_{k-1}}] \\ &= \sum_{i > j} A_{t_{i-1}}^{2} A_{t_{j-1}} [B_{t_{i}} - B_{t_{i-1}}]^{2} [B_{t_{j}} - B_{t_{j-1}}] \end{split}$$

and taking expectation we have

$$\mathbb{E}\left[\left(\int_0^t A_s dB_s\right)^3\right] = \sum_{i>j} (t_i - t_{i-1}) \mathbb{E}\left[A_{t_{j-1}} \mathbb{E}\left[A_{t_{j-1}}^2 [B_{t_j} - B_{t_{j-1}}] \middle| \mathcal{F}_{t_j-1}\right]\right]$$

where we just define $A_s := \mathbb{1}_{B_{t_i} - B_{t_{i-1}} > 0}$ for $s \in [t_{j-1}, t_j)$, which in other words we have

$$\mathbb{E}\left[A_{t_{i-1}}^{2}[B_{t_{j}}-B_{t_{j-1}}]\middle|\mathcal{F}_{t_{j}-1}\right]=\varepsilon>0$$

and since $\mathbb{E}[\mathbb{1}_{B_{t_j}-B_{t_{j-1}}>0}] = \frac{1}{2}$ we can compute

$$\mathbb{E}\left[\left(\int_0^t A_s dB_s\right)^3\right] \geq \sum_{i>j} (t_i - t_{i-1}) \frac{1}{2} \varepsilon \geq 0.$$

For the degree one claim it is correct. We know $B_t \stackrel{d}{\sim} -B_t$, and thus

$$\mathbb{P}\left(\sum_{i=1}^n A_{t_{i-1}}[B_{t_i} - B_{t_{i-1}}] > 0\right) = \mathbb{P}\left(\sum_{i=1}^n A_{t_{i-1}}[-B_{t_i} + B_{t_{i-1}}] > 0\right) = \mathbb{P}\left(\sum_{i=1}^n A_{t_{i-1}}[B_{t_i} - B_{t_{i-1}}] < 0\right)$$

and since
$$\mathbb{P}\left(\sum_{i=1}^{n} A_{t_{i-1}}[B_{t_i} - B_{t_{i-1}}] = 0\right) = 0$$
 we know

$$\mathbb{P}\left(\sum_{i=1}^n A_{t_{i-1}}[B_{t_i} - B_{t_{i-1}}] > 0\right) = \frac{1}{2}.$$

Exercise 4.

Proof.

(1):

By Markov's inequality we have for each $s \in \mathcal{D}_n$

$$\mathbb{P}\left\{|Z_{s+2^{-n}} - Z_s|^{\alpha} \ge 2^{-n\frac{\beta}{2}}\right\} \le \frac{\mathbb{E}[|Z_{s+2^{-n}} - Z_s|^{\alpha}]}{2^{-n\frac{\beta}{2}}} \le c2^{-n(1+\beta)}2^{n\frac{\beta}{2}} = c2^{-\frac{n\beta}{2}} \cdot 2^{-n(1+\beta)}$$

and thus if we only want more than 1 s that satisfies it, we can bound it by union bound:

$$\mathbb{P}\left\{\exists s \in \mathcal{D}_n : |Z_{s+2^{-n}} - Z_s|^{\alpha} \ge 2^{-n\frac{\beta}{2}}\right\} \le 2^n c 2^{-\frac{n\beta}{2}} \cdot 2^{-n} = c 2^{-\frac{n\beta}{2}}.$$

(2):

Denote event

$$E_n := \mathbb{P}\left\{\exists s \in \mathcal{D}_n : |Z_{s+2^{-n}} - Z_s| \ge 2^{-n\varepsilon}\right\}$$

then

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \sum_{n=1}^{\infty} c2^{-\frac{n\beta}{2}} < \infty$$

and thus by Borel Cantelli with probability 1 the event is not infinitely recurring, hence w.p.1 for sufficiently large n and all $s \in \mathcal{D}_n$ we have

$$|Z_{s+2^{-n}} - Z_s| \le 2^{-n\varepsilon}.$$

(3):

From last part for each ω there is a particular N such that for n > N the bound holds. And because there is a unique binary representation of real number there is a $I \subset \mathbb{Z}^*$ such that (WLOG t > s):

$$t - s = \sum_{i \in I \subset \mathbb{Z}^*} \frac{1}{2^i}$$

and thus there exists an increasing sequence $\{t_n\}$ such that $s=t_0, t=\lim_{n\to\infty}t_n$ and $t_n-t_{n-1}=\frac{1}{2^{i_n}}$ where i_n is the nth smallest integer in I (if only finite step we make all remaining $t_m=t$). This is defined so we can do triangle inequality

$$|Z_t - Z_s| \le \sum_{n=1}^{\infty} |Z_{t_n} - Z_{t_{n-1}}|$$

For $U := \max \{I \cap \{1, 2, ..., N\}\}$ there is a unique constant $C' := C'(\omega)$ that bounds $\sum_{n=1}^{U} |Z_{t_n} - Z_{t_{n-1}}|$. For the remaining terms we can use part (2) and get bound

$$\sum_{n=U}^{\infty}|Z_{t_n}-Z_{t_{n-1}}|\leq \sum_{n=U}^{\infty}2^{-n\varepsilon}< C''|t-s|^{\varepsilon}$$

and putting together we have

$$|Z_t - Z_s| \le C' + C''|t - s|^{\varepsilon} \le C|t - s|^{\varepsilon}$$

since $|t - s| > 2^{-N}$ on the sum of first finite terms.

Extension to a continuous function is just because we have a continuous control on a dense set, and we are on \mathbb{R} .

Exercise 5.

Proof.

(1):

The fact that \hat{Z}_t is adapted follows from definition.

 \hat{Z}_t is L^1 because for any $0 \le t < 1$ we know f is compact therefore bounded on $[0, t \land T]$ and hence if we denote $E := \{P \le 1\}$ we have

$$\int_{\Omega} \hat{Z}_t d\mathbb{P} = \int_{\{\Omega - E\}} \int_0^{T \wedge t} f(s) dB_s d\mathbb{P} \in L^1.$$

Martingale property:

For any fixed t < 1, we know again that f is bounded on [0, t], and hence we know from class that Z_s for $s \in [0, t]$ is a Martingale. But this argument extends to s < 1 since for each s we can pick $t \in (s, 1)$ and run the argument. Now, for s < t and $\forall A \in \mathcal{F}_s$

$$\begin{split} \int_A Z_{t \wedge T} d\mathbb{P} &= \int_{A \cap \{T \leq s\}} Z_T d\mathbb{P} + \int_{A \cap \{s < T < t\}} Z_t d\mathbb{P} + \int_{A \cap \{T \geq t\}} Z_t d\mathbb{P} \\ &= \int_{A \cap \{T \leq s\}} Z_T d\mathbb{P} + \int_{A \cap \{s < T < t\}} Z_s d\mathbb{P} + \int_{A \cap \{T \geq t\}} Z_s d\mathbb{P} = \int_A Z_{s \wedge T} d\mathbb{P} \end{split}$$

and hence it \hat{Z}_t is a Martingale.

(2):

Since $f \in L^1[0,1)$ we have L^1 . Adapted is from definition.

We know the improper integral

$$\int_0^1 f^2(s)ds < \infty$$

just by p-test, in particular this means we can exchange the limit and expectation on the simple process approximation, i.e. if we denote $\hat{Z}_t^{(n)}$ as a simple process approximation to \hat{Z}_t , then really

$$\lim_{n \to \infty} \mathbb{E} \left[\int_0^{t \wedge T} (f(s)^{(n)} - f(s))^2 ds \right] = 0$$

by above improper integral estimation. Also, by $L^2[0,1)$ of f we know the variance rule holds so we can get the square out and get convergence of $\hat{Z}_t^{(n)}$ by Cauchy sequence in L^2 , which cannot be other thing other than \hat{Z}_t . So

$$\lim_{n\to\infty} \hat{Z}_t^{(n)} = \hat{Z}_t$$

in L^2 . This gives us Martingale property because we know (from the same argument for L^2 in class) $\hat{Z}_t^{(n)}$ is a Martingale, but note that they are also L^1 so we can exchange limit and

have

$$\mathbb{E}[\hat{Z}_t|\mathcal{F}_s] = \mathbb{E}[\lim_{n \to \infty} \hat{Z}_t^{(n)}|\mathcal{F}_t] \stackrel{DCT}{=} \lim_{n \to \infty} \hat{Z}_s^{(n)} = \hat{Z}_t.$$

(3): (idea by Liam)

The stopping time we pick is

$$T := \min\{t : \hat{Z}_t = 1\}$$

and it's easy to see then \hat{Z}_t is not a martingale (expectation not 0) but hard to see that $\mathbb{P}(T < 1) = 1$. We show it now.

We want to make the vertical fluctuation horizontal, to do so we define $t_k = \sum_{j=0}^k \frac{1}{n-j}$ for integer $k \le n-1$. Then we define a left Riemann sum approximation to f, i.e.

$$A_s^{(n)} = \left(1 - \frac{j}{n}\right)^{-\frac{1}{2}} \qquad \frac{j}{n} \le s < \frac{j+1}{n}$$

which we can still conclude convergence because f is deterministic.

Then we define

$$Y(t_k) = Z^{(n)}\left(\frac{k}{n}\right)$$

for grid points (which by construction goes like $O(\log k)$) and for $0 < s < t_{k+1} - t_k$ we define

$$Y(t_k + s) = Z^{(n)} \left(\frac{k}{n} + s \frac{n - k}{n} \right)$$

with idea being for how long we've stretched B_s in the integral, we reduce the stretch to a horizontal one. So by the correspondence between Y and Z, if Y touches 1 with probability 1 before $\log n$ as $n \to \infty$, then the result will hold. So we only need to show Y is a Brownian motion.

For convenience, we denote the map $F: \mathbb{R} \to \mathbb{R}$ such that F(x) = y is the element such that $Y(x) = Z^{(n)}(y)$, which is well-defined and 1-1 since that's how we've defined Y.

Lemma 0.1. *Y is a Brownian motion.*

Proof. $Y_0 = 0$ is obvious. The fact that it's continuous follows from the continuity of Z_n .

To show independent increment, note that $Y(t) - Y(s) \in \sigma\left(B_w : F(s) \le w \le F(t)\right)$ and $Y(s) \in \mathcal{F}_{F(s)}$ thus they are independent.

To show Gaussian increment, we compute (say $t_j \le s < t < t_i$)

$$Y(t) - Y(s) = \left(1 - \frac{j}{n}\right)^{-\frac{1}{2}} (B_{F(t_{j+1})} - B_{F(s)}) + \sum_{k=j+1}^{i-1} \left(1 - \frac{k}{n}\right)^{-\frac{1}{2}} (B_{F(t_{k+1})} - B_{F(t_k)}) + \left(1 - \frac{i-1}{n}\right)^{-\frac{1}{2}} (B_{F(t)} - B_{F(t_{i-1})})$$

and we note that for $t_i \le a < b < t_{i+1}$ we can compute

$$\left(1 - \frac{i}{n}\right)^{-\frac{1}{2}} [B_{F(b)} - B_{F(a)}] = B\left(\frac{n}{n-i} \frac{b(n-i)+i}{n}\right) - B\left(\frac{n}{n-i} \frac{a(n-i)+i}{n}\right) = B(b) - B(a) \sim N(0,b-a)$$

and apply this repeatedly we get (by independent increment)

$$Y(t) - Y(s) \sim N(0, t_{j+1} - s) + \sum_{k=j+1}^{i-1} N(0, t_{i+1} - t_i) + N(0, t - t_{i-1}) \sim N(0, t - s).$$

So indeed *Y* is a Brownian motion.

Thus, for each n there's a corresponding Y^n that is defined like above and is a Brownian motion. Thus

$$\mathbb{P}(T < 1) = \mathbb{P}\left(\max_{0 \le s \le \log n + O(1)} B_s \ge 1\right)$$

which goes to 1 as $n \to \infty$ since the stopping time $\tau := \min\{t : B_t = 1\}$ has

$$\mathbb{P}(\tau < \infty) = 1.$$