МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Качество и метрология программного обеспечения»

Тема: Измерение характеристик динамической сложности программ
с помощью профилировщика SAMPLER

Студент гр. 7304	 Пэтайчук Н.Г.
Преподаватель	Ефремов М.А.

Санкт-Петербург

Цель работы.

Изучение возможности измерения динамических характеристик программ с помощью профилировщиков на примере профилировщика SAMPLER.

Постановка задачи.

- 1. Ознакомиться с документацией на монитор SAMPLER и выполнить под его управлением тестовые программы test_cyc.c и test_sub.c с анализом параметров повторения циклов, структуры описания циклов, способов профилирования процедур и проверкой их влияния на точность и чувствительность профилирования.
- 2. Скомпилировать и выполнить под управлением SAMPLER'а программу на C, разработанную в 1-ой лабораторной работе.

Выполнить разбиение программы на функциональные участки и снять профили для двух режимов:

- а. измерение только полного времени выполнения программы;
- b. измерение времен выполнения функциональных участков (ФУ);
- 3. Выявить "узкие места", связанные с ухудшением производительности программы, ввести в программу усовершенствования и получить новые профили. Объяснить смысл введенных модификаций программ.

Ход выполнения.

1. Была изучена документация монитора SAMPLER, после чего под его управлением были запущены тестовые программы test_cyc.c и test_sub.c. Для проведения измерений использовалась старая версия профилировщика SAMPLER, запуск которого осуществлялся через DOSBox. Результаты работы монитора программ test_cyc.c и test_sub.c продемонстрированы в Таблицах 1 и 2 соответственно:

Исход. Поз.	Прием.	Общее время	Кол-во	Среднее
	Поз.	(мкс)	проходов	время (мкс)
1:9	1:11	4335.47	1	4335.47
1:11	1:13	8668.43	1	8668.43
1:13	1:15	21678.20	1	21678.20
1:15	1:17	43348.87	1	43348.87
1:17	1:20	4335.47	1	4335.47
1:20	1:23	8670.11	1	8670.11
1:23	1:26	21672.34	1	21672.34
1:26	1:29	43348.03	1	43348.03
1:29	1:35	4334.64	1	4334.64
1:35	1:41	8670.11	1	8670.11
1:41	1:47	21676.53	1	21676.53
1:47	1:51	43348.87	1	43348.87

Таблица 1: Результаты профилирования тестовой программы test сус.с

Исход. Поз.	Прием.	Общее время	Кол-во	Среднее
	Поз.	(мкс)	проходов	время (мкс)
1:24	1:26	433697.35	1	433697.35
1:26	1:28	867391.34	1	867391.34
1:28	1:30	2168480.87	1	2168480.87
1:30	1:32	4336936.59	1	4336936.59

Таблица 2: Результаты профилирования тестовой программы test_sub.c

2. При помощи Borland C++ была скомпилирована программа, написанная на Си, из первой лабораторной работы (program.cpp) после чего была запущена под управлением SAMPLER'а в режиме измерения полного времени выполнения программы. Результаты измерения приведены на Таблице 3:

Исход. Поз.	Прием.	Общее время	Кол-во	Среднее
ИСХОД. 1103.	Поз.	(мкс)	проходов	время (мкс)
1:37	1:50	5521.38	1	5521.38

Таблица 3: Результаты профилирования программы из первой лабораторной работы (полное время работы программы)

- 3. Программ из первой лабораторной работы была разбита на функциональные участки следующим образом:
 - а. Функция main:
 - i. строка 42 строка 49: начало работы функции, объявление переменных, инициализация генератора псевдослучайных чисел;
 - іі. строка 49 строка 55: цикл по генерации исходных данных;
 - ііі. строка 55 строка 57: вызов функции linfit1, окончание работы функции;

b. Функция linfit1:

- i. строка 7 строка 15: начало работы функции, объявление переменных;
- іі. строка 15 строка 26: цикл по вычислению сумм;
- ііі. строка 26 строка 32: вычисление параметров для линеаризации;
- iv. строка 32 строка 37: цикл для заполнения результирующего массива;
- 4. Разбитая на функциональные участки программа была скомпилирована и запущена под управлением SAMPLER'a. Результаты профилирования показаны на Таблице 4:

Исход. Поз.	Прием.	Общее время	Кол-во	Среднее
	Поз.	(мкс)	проходов	время (мкс)
1:7	1:15	191.09	1	191.09
1:15	1:26	2028.19	1	2028.19
1:26	1:32	590.02	1	590.02
1:32	1:37	751.77	1	751.77
1:37	1:57	1.68	1	1.68
1:42	1:49	254.78	1	254.78
1:49	1:55	1727.32	1	1727.32
1:55	1:7	5.87	1	5.87

Таблица 4: Результаты профилирования программы из первой лабораторной работы (разбитие на функциональные участки)

Суммарное время работы T = 5550,72 мкс.

По результатам профилирования видно, что наибольшее время выполнения у функционального участка с циклом вычисления сумм, в то же время выполнения цикла можно уменьшить за счёт исключения вычисления суммы sum_y2, которая используется только для вычисления syy, которая нигде больше не используется, соответственно можно так же удалить переменную syy. Также можно заменить xi и yi на x[i] и y[i] соответственно в вычислениях сумм sum_x, sum_y, sum_x2 и sum_xy и исключить эти переменные. Таким образом, должно уменьшится время выполнения участков 1 : 7 – 1 : 15, 1 : 15 – 1 : 26 и 1 : 26 – 1 : 32. Изменённая программа была записана в файл program_update.cpp.

5. Изменённая программа была скомпилирована и запущена под управлением SAMPLER'a. Результаты профилирования показаны на Таблице 5:

Исход. Поз.	Прием.	Общее время	Кол-во	Среднее
	Поз.	(мкс)	проходов	время (мкс)
1:7	1:14	155.89	1	155.89
1:14	1:22	1789.34	1	1789.34
1:22	1:27	470.17	1	470.17
1:27	1:32	698.13	1	698.13
1:32	1:52	1.68	1	1.68
1:37	1:44	254.78	1	254.78
1:44	1:50	1727.32	1	1727.32
1:55	1:7	5.87	1	5.87

 Таблица 5: Результаты профилирования изменённой программы из первой лабораторной работы

Суммарное время работы T = 5103,18 мкс, уменьшение времени работы составило 447,54 мкс (~ 8%).

Выводы.

В ходе выполнения лабораторной работы была изучена возможность измерения динамических характеристик программ с помощью профилировщиков и было измерено с помощью профилировщика SAMPLER время выполнения всего кода и время выполнения функциональных участков тестовых программ test_cyc.c и test_sub.c, а также программы из первой лабораторной работы.

В ходе профилирования было выяснено, что на цикл с вычислением сумм приходится наибольшее время выполнения среди всех функциональных участков, после чего была проведена оптимизация программы за счёт удаления ненужных переменных и вследствие этого сокращения ненужных вычислений, что привело к уменьшению времени работы на 447,54 мкс, то есть на 8% от времени работы неоптимизированной программы.