

Latent Association Graph Inference for Binary Transaction Data

ISBA World Meeting 2022

Luis Carvalho¹ and David Reynolds²

June 2022

¹Boston University, ²University of New Hampshire

• Goal: given collection of item groups, identify sets of items that are frequently observed together.

Transaction 1	Transaction 2	Transaction 3
Bacon	Baking powder	Beer
Bread	Bread	Chips
Cheese	Eggs	Bread
Eggs	Flour	Eggs
Juice	Milk	Meat
Milk	Oil	Milk

• Goal: given collection of item groups, identify sets of items that are frequently observed together.

Transaction 1	Transaction 2	Transaction 3
Bacon	Baking powder	Beer
Bread	Bread	Chips
Cheese	Eggs	Bread
Eggs	Flour	Eggs
Juice	Milk	Meat
Milk	Oil	Milk

• Applications in databases, bioinformatics, image classification, and market transaction data.

- Most popular approach: *Apriori* algorithm, selecting increasingly large overlapping itemsets
 - Enumerative, so computationally hard
 - Focus on frequency, so also hard to interpret

- Most popular approach: Apriori algorithm, selecting increasingly large overlapping itemsets
 - Enumerative, so computationally hard
 - o Focus on frequency, so also hard to interpret
- Our approach: use a **latent association graph** (LAG) with a **clique cover** representing transactions

ullet Given n items and "popularity" parameters γ , a **chordal** LAG G capturing copurchasing patterns has density

$$P(G) \propto \prod_{u,v \in \{1,\ldots,n\}, u < v} rac{\exp\{I((u,v) \in G)(\gamma_u + \gamma_v)\}}{1 + \exp\{\gamma_u + \gamma_v\}}$$

and prior $\gamma \sim N(0,cI_n)$, with c large

ullet Given n items and "popularity" parameters γ , a **chordal** LAG G capturing copurchasing patterns has density

$$P(G) \propto \prod_{u,v \in \{1,\ldots,n\}, u < v} rac{\exp\{I((u,v) \in G)(\gamma_u + \gamma_v)\}}{1 + \exp\{\gamma_u + \gamma_v\}}$$

and prior $\gamma \sim N(0,cI_n)$, with c large

- A transaction T is a disjoint collection of k "cliques":
 - The cardinality follows an *Ewens* distribution with parameter θ :

$$P(k\,|\, heta) = rac{S_n^k heta^k}{ heta(heta+1)\cdots(heta+n-1)},$$

a model for the number of different types of elements in a sample of size n

 \circ Ewens parameter has quasi-conjugate prior $P(\theta) \propto (\Gamma(\theta)/\Gamma(\theta+n))^{
u}\theta^{\eta}$ with u and η small

- A transaction T is a disjoint collection of k "cliques":
 - $\circ~$ Each clique $c \in T$ has probability

$$\pi_c \propto \exp\left(lpha_{|c|} + \left|c
ight|^{-1} \sum_{v \in c} eta_v
ight) \doteq \exp(x_c^ op(lpha,eta))$$

where α controls for clique cardinality and β represents item (frequency) popularities, with a joint non-informative prior

 \circ We set conditions on α to favor small, often *minimum*, clique covers of T, roughly $\alpha_k > \alpha_{k-1} + \rho(\theta)$ where ρ is a penalty for introducing a new clique in the cover

- A transaction T is a disjoint collection of k "cliques":
 - $\circ~$ Each clique $c \in T$ has probability

$$\pi_c \propto \exp\left(lpha_{|c|} + \left|c
ight|^{-1} \sum_{v \in c} eta_v
ight) \doteq \exp(x_c^ op(lpha,eta))$$

where α controls for clique cardinality and β represents item (frequency) popularities, with a joint non-informative prior

 \circ We set conditions on α to favor small, often *minimum*, clique covers of T, roughly $\alpha_k > \alpha_{k-1} + \rho(\theta)$ where ρ is a penalty for introducing a new clique in the cover

Finding posterior modes

- Given transaction set \mathcal{T} , alternate between finding the conditional posterior modes of $[G, S, k(S) \mid \alpha, \beta, \gamma, \theta, \mathcal{T}]$ and $[\alpha, \beta, \gamma, \theta \mid G, S, k(S), \mathcal{T}]$:
 - \circ Initialize G with a minimal triangulation of an inferred graph based on Fisher exact tests for each pair of items; set S and k using minimum clique cover on G
 - \circ **Update** hyper-parameters $\alpha, \beta, \gamma, \theta$ via regularized IRLS as usual for GLMs
 - \circ **Update** G with a specialized neighborhood search in the space of transaction-consistent chordal graphs; again minimum clique cover update for S and k

Finding posterior modes

- Given transaction set \mathcal{T} , alternate between finding the conditional posterior modes of $[G,S,k(S) \mid \alpha,\beta,\gamma,\theta,\mathcal{T}]$ and $[\alpha,\beta,\gamma,\theta \mid G,S,k(S),\mathcal{T}]$:
 - \circ Initialize G with a minimal triangulation of an inferred graph based on Fisher exact tests for each pair of items; set S and k using minimum clique cover on G
 - \circ **Update** hyper-parameters $\alpha, \beta, \gamma, \theta$ via regularized IRLS as usual for GLMs
 - \circ **Update** G with a specialized neighborhood search in the space of transaction-consistent chordal graphs; again minimum clique cover update for S and k
- Cutting corners: a clique partition s of a transaction has a prohibitively combinatorial normalizing constant, so we adopt an approximation inspired by Breslow's method:

$$P(s \,|\, k(s), G, lpha, eta) = rac{\prod_{c \in s} \exp(x_c^{ op}(lpha, eta))}{\sum_{ ilde{s}: k(ilde{s}) = k(s)} \prod_{ ilde{c} \in ilde{s}} \exp(x_{ ilde{c}}^{ op}(lpha, eta))} \ pprox rac{\prod_{c \in s} \exp(x_c^{ op}(lpha, eta))}{\left\{\sum_{ ilde{c} \in C(G)} \exp(x_{ ilde{c}}^{ op}(lpha, eta))
ight\}^{k(s)}}$$

MCMC sampling

- Again we iterate but by Gibbs sampling $[G,S,k(S)\,|\,\alpha,\beta,\gamma,\theta,\mathcal{T}]$ and $[\alpha,\beta,\gamma,\theta\,|\,G,S,k(S),\mathcal{T}]$ using Metropolis-Hastings steps
 - Initialize chains at the estimated posterior modes (warm start)
 - At iteration t, sample candidate G^* from the chordal neighborhood of G^t , then (S^*,k^*) using a randomized perfect elimination scheme (PES)

Acceptance/rejection ratio is approximately

$$egin{aligned} \log R([G^*,S^*,k^*],[G^t,S^t,k^t]) &pprox \sum_{u,v} \delta_{G^*,G^t}(u,v)(\gamma_u^t+\gamma_v^t) + \ &\sum_{i=1}^m (k_i^*-k_i^t) \log heta^t + \sum_{c \in s_i^*} x_c^ op(lpha^t,eta^t) - \sum_{c \in s_i^t} x_c^ op(lpha^t,eta^t) \end{aligned}$$

with
$$\delta_{G^*,G^t}(u,v) = I((u,v) \in G^*) - I((u,v) \in G^t)$$

MCMC sampling

- Again we iterate but by Gibbs sampling $[G,S,k(S)\,|\,\alpha,\beta,\gamma,\theta,\mathcal{T}]$ and $[\alpha,\beta,\gamma,\theta\,|\,G,S,k(S),\mathcal{T}]$ using Metropolis-Hastings steps
 - Initialize chains at the estimated posterior modes (warm start)
 - \circ At iteration t, sample candidate G^* from the chordal neighborhood of G^t , then (S^*,k^*) using a randomized perfect elimination scheme (PES)
 - \circ Sample α, β, γ using Metropolis adjusted Langevin algorithm (MALA) steps, as usual in GLMs, but for θ use a tailored gamma proposal

MCMC sampling

- Again we iterate but by Gibbs sampling $[G,S,k(S)\,|\,\alpha,\beta,\gamma,\theta,\mathcal{T}]$ and $[\alpha,\beta,\gamma,\theta\,|\,G,S,k(S),\mathcal{T}]$ using Metropolis-Hastings steps
 - Initialize chains at the estimated posterior modes (warm start)
 - \circ At iteration t, sample candidate G^* from the chordal neighborhood of G^t , then (S^*,k^*) using a randomized perfect elimination scheme (PES)
 - \circ Sample α, β, γ using Metropolis adjusted Langevin algorithm (MALA) steps, as usual in GLMs, but for θ use a tailored gamma proposal
- Overall, still computationally expensive but manageable
 - Bottleneck: exploring the space of chordal LAGs and sampling clique covers
 - Optimizing and sampling hyper-parameters is easier, but still based on approximations

Simulation Studies

- Generate 100 datasets from n=30 items under two scenarios: sparse, with $\gamma_v\stackrel{
 m iid}{\sim}N(-2,1)$, and dense, with $\gamma_v\stackrel{
 m iid}{\sim}N(-1,1)$, both with $\beta\sim N(0,I_n)$ and $\theta=0.25$
 - \circ Low false positive and negative rates: e.g. for a LAG with 500 edges, two chains after burn-in:

Simulation Studies

- ullet Generate 100 datasets from n=30 items under two scenarios: sparse and dense
 - Low false positive and negative rates
 - \circ Dense LAGs perform worse, due to confounding high eta with high γ

Case Study: Instacart

- Random sample of $5{,}000$ transactions with $12{,}114$ items
- Compared to FIM (Apriori): sparser representation, accuracy comparable to peak FIM performance but often outperforms FIM on predictive accuracy

Discussion

- LAG is arguably more representative and interpretable model, but there's no free lunch:
 - We had to cut many corners and develop new optimization and sampling routines for chordal graphs
 - Current code is still slow, being implemented in *R*
 - The elephant in the room: MCMC methods for **discrete** parameters

Discussion

- LAG is arguably more representative and interpretable model, but there's no free lunch:
 - We had to cut many corners and develop new optimization and sampling routines for chordal graphs
 - Current code is still slow, being implemented in *R*
 - The elephant in the room: MCMC methods for **discrete** parameters
- Future directions:
 - Develop more efficient sampling procedures
 - Port most of the code to C/C++
 - Apply methodology to other fields, including databases and bioinformatics

Discussion

- LAG is arguably more representative and interpretable model, but there's no free lunch:
 - We had to cut many corners and develop new optimization and sampling routines for chordal graphs
 - Current code is still slow, being implemented in R
 - The elephant in the room: MCMC methods for **discrete** parameters
- Future directions:
 - Develop more efficient sampling procedures
 - Port most of the code to C/C++
 - Apply methodology to other fields, including databases and bioinformatics

Reynolds, D. and Carvalho, L., Computational Statistics and Data Analysis 160 (2021)

Thanks!