1. Сгенерировать выборку из N=100 4-х мерных векторов из нормального закона распределения с ненулевым вектором математического ожидания и недиагональной ковариационной матрицей. Ковариационная матрица должна генерироваться случайно перед генерацией выборки и должна удовлетворять всем свойствам ковариационной матрицы.

Затем, считая первые компоненты элементов сгенерированной выборки зависимыми переменными, а остальные компоненты -- независимыми в модели линейной регрессии, найти оценки коэффициентов регрессии и дисперсии случайных ошибок. Проверить остатки модели на нормальность.

Найти истинные значения коэффициентов регрессии (см. доп. файл) и сравнить их с полученными оценками.

2. Из файла Lab2Task2Var[x].scv загрузить данные. Вместо [x] необходимо подставить ваш номер варианта. Данные содержат как значения зависимых переменных, так и независимых. Вид зависимости известен и задан в таблице. Однако кроме коэффициентов регрессии неизвестен и коэффициент α . Предложите метод оценивания всех неизвестных коэффициентов с использованием функции lm, и оцените их. Приведите графическую иллюстрацию полученных результатов (график рассеяния с полученной линией регрессии). Воспользуйтесь функцией nlm, сравните полученные результаты.

Вариант	Зависимость	Вариант	Зависимость
1	$y_i = \beta_0 + \beta_1 \sin(\alpha x_i) + \varepsilon_i$	11	$y_i = \beta_0 + \beta_1 \sin(\alpha x_i) + \varepsilon_i$
2	$y_i = \beta_0 + \beta_1 \ln(\alpha x_i) + \varepsilon_i$	12	$y_i = \beta_0 + \beta_1 \ln(\alpha x_i) + \varepsilon_i$
3	$y_i = \beta_0 + \beta_1 \exp(\alpha x_i) + \varepsilon_i$	13	$y_i = \beta_0 + \beta_1 \exp(\alpha x_i) + \varepsilon_i$
4	$y_i = \beta_0 + \beta_1 x_i^{\alpha} + \varepsilon_i$	14	$y_i = \beta_0 + \beta_1 x_i^{\alpha} + \varepsilon_i$
5	$y_i = \beta_0 + \beta_1/(x_i + \alpha) + \varepsilon_i$	15	$y_i = \beta_0 + \beta_1/(x_i + \alpha) + \varepsilon_i$
6	$y_i = \beta_0 + \beta_1 \sin(\alpha x_i) + \varepsilon_i$	16	$y_i = \beta_0 + \beta_1 \sin(\alpha x_i) + \varepsilon_i$
7	$y_i = \beta_0 + \beta_1 \ln(\alpha x_i) + \varepsilon_i$	17	$y_i = \beta_0 + \beta_1 \ln(\alpha x_i) + \varepsilon_i$
8	$y_i = \beta_0 + \beta_1 \exp(\alpha x_i) + \varepsilon_i$	18	$y_i = \beta_0 + \beta_1 \exp(\alpha x_i) + \varepsilon_i$
9	$y_i = \beta_0 + \beta_1 x_i^{\alpha} + \varepsilon_i$	19	$y_i = \beta_0 + \beta_1 x_i^{\alpha} + \varepsilon_i$
10	$y_i = \beta_0 + \beta_1/(x_i + \alpha) + \varepsilon_i$	20	$y_i = \beta_0 + \beta_1/(x_i + \alpha) + \varepsilon_i$

Замечания: Магистранты, знающие математику, могут заметить, что $\ln(\alpha x_i) = \ln(\alpha) + \ln(x_i)$ и задача значительно упрощается. Однако такое приниматься не будет. Считайте, что Вам задана зависимость вида $y_i = \beta_0 + \beta_1 f(x_i, \alpha) + \varepsilon_i$ и функцию f Вы узнаете уже в самый последний момент.

3. Из файла Lab2Task3Var[x].scv загрузить данные. Данные содержат как значения зависимых переменных, так и независимых в модели множественной линейной регрессии. В случайно выбранные 10 значений у внести пропуски. По полностью наблюдаемым значениям оценки коэффициентов регрессии, определить какие из них статистически значимые, а какие нет. Кроме этого провести "пошаговую оценку коэффициентов регрессии" как с добавлением переменных, так и с удалением. Выберете на ваш взгляд наиболее адекватную модель (если модели получились различные) и спрогнозируйте те значения у, в которые были внесены пропуски, сравните с исходными значениями.