34Hz

実験項目	実験 B 2 回路製作・測定基礎			
	(LCR 直列回路)			
校名 科名	熊本高等専門学校 人間情報シスラ	- ム工学科		
学年 番号	3 年	42 号		
氏名	山口惺司			
班名 回数	4 班	2 回目		
実験年月日 建物 部屋名	2023年 5月 11日 木曜 天候 曇り 気温 3号棟 1階 HI実験室	盘 25℃ 湿度 39%		
共同実験者名	山内玲奈			

科目担任	実験指導者	

1. 実験の目的

L, C, R を直列に接続した回路はある周波数で電圧と電流の位相差が 0 となり、いわゆる共振と呼ばれる現象を起こす。この時の電流の値、各素子の端子電圧と電流の位相差の関係、インピーダンスの特性等を電圧及び電流波形から観測し、共振現象を理論的かつ実験的に理解する。

2. 実験の原理

図 3.1 の LCR 直列回路において、インピーダンス Z は

$$Z^{\cdot} = R + j(\omega L - \frac{1}{\omega c})(1)$$

であるので、リアクタンスXは

$$X = \omega L - \frac{1}{\omega C} (2)$$

となる。周波数を 0 から ∞ まで変化させたとき、X=0 となる点が存在し、このとき Z は最小となり、電流 i は最大となる。この状態を共振といい、このときの周波数を 共振周波数 f_0 という。

$$f_0 = \frac{1}{2\pi\sqrt{LC}} (3)$$

3. 実験回路

図1LCR 直列回路

表 1 使用器具

図中の記号	名称	型番
Е	低周波発振器	AG-204D
R	ダイヤル型抵抗器	B141-44
L	固定誘導器	B158-8
С	ディケードキャパシタ	B198-12
その他	オシロスコープ	TBS1064

4. 実験内容

- 1. 共振周波数 $f_0 = 5kHz$ になるような C (理論値)を算出する. この C を用いて、 図 3.1 の LCR 回路を組む. 理論値では共振周波数がずれることがあるので、発振器の周波数を変えながらオシロスコープで V_{ab} と V_{ac} の波形を観察し、共振周波数(測定値)を求める.
- 2. ディケードキャパシタを操作し、共振周波数 f_0 が 5kHz になるような C(測定値)を測定する.
- 3. 共振周波数 5kHz の前後 0.5kHz おきに 5 土 2kHz $(3kHz\sim7kHz)$ まで、 V_{ab} を一 定 (2Vp-p) に保 ちながら発振器の周波数を変え、オシロスコープの波形から V_{ab} と V_{ac} の波形を観測し、 V_{ab} と V_{ac} の v_{ab} の v_{ab} と v_{ac} の v_{ab} と v_{a
- 4. これらの結果を参考に、周波数 f と電流 i の関係(f-i の特性)と、周波数 f と位相差 θ の関係(f- θ の特性)をグラフに描く.

5. 実験結果

実験 1

 $f_0 = 5kHz$ 、L = 10mH とあり、実験の原理 より(3)式に代入すると、

$$5 \times 10^3 = \frac{1}{2\pi\sqrt{10 \times 10^{-3} \times C}}$$

となり、これを計算すると $C = 0.103 \mu F$ (理論値)となる。

この C を用いて図 1 の LCR 回路を組むと共振周波数(測定値) f0 は 4.9kHz となった。

実験 2

共振周波数 f_0 が 5kHz になるように設定すると $C = 0.0947 \mu F$ となった。

実験3

実験2で求めた値を使用して実験した。

実験の結果を表2に示す。

また、周波数が 3kHz、5kHz(共振周波数、7kHz の時の波形とベクトル図を図 2~7 に示す。

注:本実験ではオシロスコープの CH2 を基準に位相差を出しているので、本来の実験と比べて位相差 の正負が反転している。

表 2 共振周波数 5kHz±2kHz の時の Vab と Vac の p-p 値と位相差及び電流

周波数(5±2kHz)	V _{ab} の p-p 値(V)	V _{ac} の p-p 値(V)	位相差 θ (°)	電流 I(mA)
+2.0	2.0	0.82	-60.2	8.2
+1.5	2.0	0.98	-55.0	9.8
+1.0	2.0	1.24	-44.2	12.4
+0.5	2.0	1.60	-28.1	16
±0	2.0	1.84	6.12	18.4
-0.5	2.0	1.52	35.2	15.2
-1.0	2.0	1.09	55.8	10.9
-1.5	2.0	0.75	67.7	7.5
-2.0	2.0	0.57	73.8	5.7

図 2 周波数 3kHz

図3 周波数 3kHz の時のベクトル図

図 4 周波数 5kHz(共振周波数)

図5 周波数 5kHz の時のベクトル図

実験 4

これらの結果を参考に、周波数 f と電流 i の関係 (f-i の特性) と、周波数 f と位相差 θ の関係 (f- θ の特性) を図 8,9 に描く.

図8 周波数fと電流Iの関係(f-iの特性)

図 9 周波数 f と位相差 θ の関係(f- θ の特性)

6. 考察

・実験 1.2 について

実験 1 で求めた周波数 5kHz、L=10mH の時の C の理論値が $0.103\,\mu$ F で、実験 2 で実際に測定して求めた C の計測値が $0.0947\,\mu$ F と誤差が $0.0083\,\mu$ F となり誤差率 8.8% とあまり正確な値とは言えない。このような結果になった原因は、オシロスコープの周波数を読み取る時に値が常に動いていたため、正確に値を読めなかったのではと考える。

・実験 3,4 について

共振周波数 5kHz の時の位相差は 0° になるはずが 6.12° になっている理由は、実験 2 で求めた C の値は使用しているためだと思われる。

また、実験原理通り周波数が共振状態にある時に電流は18.4mAと最大になっている。

7. 研究課題

1. 共振周波数の前後における周波数 f と電流 i の関係及び f-i の特性について調 べよ. 理論上はどのような数式になるか、どのようなグラフになるかなど.

LCR 直列回路の電流 I を求める式は

$$I = \frac{E}{Z}$$
であり、 $Z' = R + j(\omega L - \frac{1}{\omega C})$ である。

そのため、 $\left(\omega L - \frac{1}{\omega C}\right) = 0$ の時共振状態になるため、Z=R で最小になり、I は最大になる。

また、グラフは共振状態の時に I は最大値となり、共振周波数から離れるにつれて小さくなっていくグラフとなる。

2. 共振周波数の前後における周波数 f と位相差 θ の関係及び f- θ の特性につい て調べよ. 理論上はどのような数式になるか. どのようなグラフになるかなど.

 $X_L < X_C$ の時も $X_L > X_C$ の時も位相差 θ は

$$\theta = tan^{-1} \left(\frac{X_L - X_C}{R} \right)$$

 $X_L=X_C$ のとき共振状態にあるため $\theta=0$ となる。

また、グラフは arctan の形になると考えられる。

8. <u>感想</u>

少し実験のミスがあったが、ペアと協力して実験をすることができた。 授業で習ったところを実験することで復習になり、とてもよかった。