Theorem 3-3

If two parallel lines are cut by a transversal, then same-side interior angles are supplementary.

Given: $k \parallel n$; transversal t cuts k and n.

Prove: $\angle 1$ is supplementary to $\angle 4$.

The proof is left as Exercise 22.

Theorem 3-4

If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one also.

Given: Transversal t cuts l and n;

 $t \perp l; l \parallel n$

Prove: $t \mid n$

The proof is left as Exercise 13.

For the rest of this book, arrowheads will no longer be used in diagrams to suggest that a line extends in both directions without ending. Instead, pairs of arrowheads (and double arrowheads when necessary) will be used to indicate parallel lines, as shown in the following examples.

z = 140

Example 1 Find the measure of $\angle PQR$.

Solution The diagram shows that

$$\overrightarrow{QR} \perp \overrightarrow{RS} \text{ and } \overrightarrow{QP} \parallel \overrightarrow{RS}.$$

Then by Theorem 3-4, $\overrightarrow{OR} \perp \overrightarrow{OP}$ and $m \angle POR = 90.$

Find the values of x, y, and z. Example 2

Since $a \| b$, 2x = 40. (Why?) Solution x = 20.Thus. Since $c \parallel d$, y = 40. (Why?) Since $a \| b$, y + z = 180. (Why?) 40 + z = 180

