Inhaltsverzeichnis

Allgemeine Kompetenzen	3
Angewandte Betriebsfestigkeit	4
Antriebstechnik	6
Apparatebau	8
Auslands- und Praxisphase, Auslandsstudiensemester	10
Auslands- und Praxisphase, Fachpraktikum	12
Bachelorarbeit	14
Bachelorkolloquium	16
BWL und Projektmanagement für Ingenieure	18
Chemie und Werkstoffe, Werkstoffkunde 2	20
Chemie und Werkstoffe, Werkstoffkunde 1	22
Chemie und Werkstoffe, WK 1 Labor	25
Chemie und Werkstoffe, Werkstoffchemie	27
Chemie und Werkstoffe, WK 2 Labor	29
CNC-Fertigung	31
Einführung in den Ingenieurberuf	33
Elektrotechnik, Elektrotechnik 1	34
Elektrotechnik, Elektrotechnik 2	37
Englisch für Ingenieure	39
Erneuerbare Energien	41
Fertigungstechnik, Fertigungstechnik 1	43
Fertigungstechnik, Labor Fertigungstechnik 1	45
Fertigungstechnik 2	48
Finite Elemente Methode	51
Forschungsprojekt	54
Fügetechnik, Fügetechnik Vorlesung und Laborübungen	56
Getriebetechnik	59
Grundlagen der Verfahrenstechnik, Wärme- und Stoffübertragung	62
Grundlagen der Verfahrenstechnik, Physikalisch-chemisches Grundlagenlabor	64
Hydraulik/Pneumatik	66
Informatik	68
Ingenieurmathematik 1	70
Ingenieurmathematik 2	72

Ingenieurmathematik 3	74
Interdisziplinäres Projekt 1	76
Interdisziplinäres Projekt 2	78
Konstruktion, Konstruktionslabor 1	80
Konstruktion, Konstruktionslabor 2	82
Konstruktion, Konstruktion 1	84
Konstruktion, Konstruktion 2	86
Konventionelle Energietechnik	88
Kunstsofftechnik für Ingenieure	89
Labor und Seminar Energietechnik	92
Labor und Seminar Verfahrenstechnik	94
Maschinenelemente 1	96
Maschinenelemente 2	98
Mechanische Antriebe	100
Mechanische Verfahrenstechnik	102
Mess-, Steuer-, und Regelungstechnik, Messtechnik	104
Mess-, Steuer-, und Regelungstechnik, Steuer- und Regelungstechnik	107
Physik	109
Physik, Labor Physik	112
Pneumatische Steuerungen	114
Produktkalkulation/Kostenrechnung	116
Reinigungstechnik	118
Statik und Festigkeitslehre, Festigkeitslehre	120
Statik und Festigkeitslehre, Statik	122
Studium Generale	124
Technische Mechanik 2, Kinematik und Kinetik	125
Technische Sensorik	127
Thermische Verfahrenstechnik	129
Thermo- und Fluiddynamik, Thermodynamik 1	131
Thermo- und Fluiddynamik, Fluiddynamik	133
Thermo- und Fluiddynamik, Thermodynamik 2	136
Thermo- und Fluiddynamik Labor Thermodynamik	138

Allgemeine Kompetenzen

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Allgemeine Kompetenzen
	General Skills
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Studiendekan MB
Dozent(in):	
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 4. Semester, Pflichtfach
	MAnT, 4. Semester, Pflichtfach
	MEVT, 4. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Seminar, 1 SWS Projekt;
	unterschiedlich
Arbeitsaufwand:	150 h, davon 30 h Präsenz- und 120 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden vertiefen berufsrelevante persönliche
	Kompetenzen wie Durchsetzungsfähigkeit,
	Zuverlässigkeit und Verantwortungsbewusstsein.
	Die Studierenden reflektieren den Kompetenzerwerb.
Inhalt:	Das Modul kann alternativ bestanden werden durch:
	1. Organisation und Durchführung eines
	Auslandsaufenthalts (Fachpraktikum oder
	Auslandssemester im nicht-deutschsprachigen Ausland),
	2. unentgeltliches Angebot von studentischen Tutorien
	mit einer Präsenzzeit von mindestens 4 SWS für die
	Dauer eines Semesters.
	3. mindestens zweijährige aktive Mitarbeit in Gremien
	der akademischen Selbstverwaltung.
	Für die Anerkennung der Leistungspunkte ist ein
	schriftlicher Bericht (4 Textseiten) mit Darstellung der
	Tätigkeit und des Gewinns für die eigene
Studion- Driifungsloistungen	Persönlichkeitsentwicklung erforderlich.
Studien- Prüfungsleistungen: Medienformen:	Testierte Leistung
Literatur:	
Literatur.	

Angewandte Betriebsfestigkeit

Studienrichtung:	MPE, MAnT
Modulbezeichnung:	Angewandte Betriebsfestigkeit
	Structural Durability
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Angewandte Betriebsfestigkeit
	Structural Durability
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. Dr. Ronald Schrank
Dozent(in):	Prof. Dr. Ronald Schrank
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 6. Semester, Wahlpflichtfach
	MAnT, 6. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Statik und Festigkeitslehre, Werkstoffkunde,
	Fertigungstechnik und Konstruktionslehre
Angestrebte Lernergebnisse:	Die Studierenden verstehen die Grundlagen der
	statischen Bauteilfestigkeit sowie der
	Ermüdungsbauteilfestigkeit und deren Abgrenzung. Sie
	können grundlegende Berechnungskonzepte zur
	Bauteildimensionierung sowie zur Bauteiloptimierung
	anwenden, bis hin zur rechnerischen
	Lebensdauerabschätzung unter Belastung durch
	variable Amplituden. Die Anforderungen an
	entsprechende FEM-Modelle zur
	Beanspruchungsanalyse von mechanischen
	Baugruppen/Strukturen werden verstanden und
	umgesetzt sowie typische maschinenbauliche Systeme
	zur Modellbildung geeignet abstrahiert. Die erlernten
	Methoden werden anhand praxisnaher Beispiele,
	welche z. T. in Projektteams bearbeitet werden,
- 1 1	gefestigt.
Inhalt:	Klassifizierungen und Definitionen, Wiederholung
	wesentlicher Grundlagen,
	Betriebsfestigkeit nach modernem Verständnis
	bestehend aus den Teilgebieten:
	- Statische Festigkeit (mit Schwerpunkt
	Festigkeitshypothesen, plastische Tragreserven und
	Einbeziehung von Stabilitätseffekten)

	- Ermüdungsfestigkeit (konstante Amplituden, variable Amplituden, Kollektive, Zählverfahren, Schadensakkumulation, Einflussfaktoren)
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, Interaktive Softwaredemonstration, CAD-Labor
Literatur:	 Radaj, D.; Vormwald, M.: Ermüdungsfestigkeit: Grundlagen für Ingenieure Hänel, B.; Haibach, E.; Seeger, T.; Wirthgen, G.; Zenner, H.: Rechnerischer Festigkeitsnachweis für Maschinenbauteile. Forschungskuratorium Maschinenbau, VDMA Verlag Frankfurt am Main, 7. Ausgabe, 2020.

Antriebstechnik

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Antriebstechnik
	Drive Engineering
ggf. Kürzel	AnT
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Thomas Götze
Dozent(in):	Prof. DrIng. Thomas Götze
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 3. Semester, Pflichtfach
	MAnT, 3. Semester, Pflichtfach
	MEVT, 3. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Ma I u. II, Statik, KFW I, II u. III, Dynamik,
	Antriebstechnik, Maschinenelemente
Angestrebte Lernergebnisse:	Systematische Kompetenz:
	Die Studierenden kennen den Systemcharakter und den
	strukturellen Aufbau von Antriebsanlagen. Sie verfügen
	über ein sicheres Verständnis der wesentlichen Gesetze,
	Theorien und Berechnungsmethoden der
	Leistungsübertragung in den Teilbereichen der
	elektrischen, mechanischen und fluidischen
	Antriebstechnik.
	Instrumentelle Kompetenz:
	Sie kennen die wichtigsten Elemente industrieller
	Antriebstechnik, ihr Leistungsvermögen, ihre
	Besonderheiten und Einsatzbereiche. Sie haben
	Entscheidungskompetenz aufgebaut und an konkreten
	Praxisaufgaben geübt. Sie sind in der Lage,
	Antriebssysteme (AnS) nach Bewegungsvorgaben oder
	Leistungsanforderungen zu projektieren und die
	Antriebsparameter zu berechnen.
	Kommunikative Kompetenz:
	Ein typisches Antriebssystem kann einem Kollegenkreis
	erläutert, begründet und verteidigt werden.
Inhalt:	- Historische Meilensteine der "Bewegungstechnik"
	- Aufbau und Aufgaben von Antriebssystemen (AnS)
	- Kraft- und Bewegungsübertragung/ Leistungsfluss

	1
	- Widerstandskennlinien typischer
	Arbeitsmaschinen/Leistungsbedarf
	- Elektro- und verbrennungsmotorische
	Antriebsmaschinen mit typischen Kennlinienverläufen
	- Zusammenwirken von Antriebs- und Arbeitsmaschine,
	Stabilität von Arbeitspunkten
	- Statisches und dynamisches Momentengleichgewicht,
	dynamische Grundgleichung der Antriebstechnik
	- Reduktion von Trägheiten, Kräften und
	Bewegungsparametern bei vorhandenen Übersetzungen
	Mechanische Antriebselemente und Baugruppen:
	Wellen, kardanische und homokinetische
	Wellengelenke, Aufbau und Einsatz diverser
	Gelenkwellenarten, Mechanische Kupplungen,
	Mechanische Getriebe (gleichförmig und ungleichförmig
	übersetzend)
	Antriebselemente und Baugruppen der Fluidtechnik:
	Funktionsschaltpläne der Hydraulik / Pneumatik,
	Hydraulikpumpen, Hydromotoren und Zylinder,
	Ventiltechnik, offene und geschlossene Kreisläufe,
	Pneumatische Logikschaltungen.
	Theumausche Logikschaltungen.
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Präsentationsskripte
	- Arbeitsblätter mit Abbildungen, Diagrammen und
	Übungen
	- Software SimulationX
	- Demonstrations- und Schnittmodelle, vorrangig aus
	der Industrie zum Stand der Technik
	- Prüfstandsvorführungen
Literatur:	- Haberhauer/Kaczmarek: Taschenbuch der
	Antriebstechnik
	- Dittrich/Schumann: Anwendungen der
	Antriebstechnik, Band 1 - 3
	- Niemann/Winter: Maschinenelemente, Teile 1 und 2
	- Loomann: Zahnradgetriebe
	- Steinhilper: Maschinen- und Konstruktionselemente
	- Grollius: Grundlagen der Hydraulik ; Grundlagen der
	, , ,
	Pneumatik

Apparatebau

Studienrichtung:	MEVT
Modulbezeichnung:	Apparatebau
	Apparatus Engineering
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	N.N. (Verfahrenstechnik)
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MEVT, 6. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Verfahrenstechnik, Energietechnik
Angestrebte Lernergebnisse:	Die Modulinhalte vermitteln den Studierenden die
	Kenntnisse zur Auslegung und Berechnung der
	wichtigsten Apparate der verfahrenstechnischen
	Industrie. Dabei wird besonderes Augenmerk auf den
	Zusammenhang zwischen der Funktion und der
	Konstruktion eines Apparates gelegt. Darüber hinaus
	wird anhand von aktuellen, praxisnahen
	Themenstellungen der Energie- und Verfahrenstechnik
	die selbstständige Problemlösung unter Anleitung
T. I. II.	trainiert.
Inhalt:	Berechnungsgrundlagen, Auslegung von
	Druckbehältern,
	Werkstoffe im Apparatebau und Korrosionsschutz, wesentliche Apparatetypen, Wärmetauscher,
	Sicherheitseinrichtungen
	Berechnungsgrundlagen, Auslegung von
	Druckbehältern,
	Werkstoffe im Apparatebau und Korrosionsschutz,
	wesentliche Apparatetypen, Wärmetauscher,
	Sicherheitseinrichtungen
	_
Studien- Prüfungsleistungen:	nach Absprache; Klausur oder mündliche Prüfung
Medienformen:	Tafel, Power-Point-Präsentationen (als Skript im Netz),
	Arbeitsblätter, Anschauungsbeispiele
Literatur:	Tietze, H.; Wilke, HP.: Elemente des Apparatebaus,

Springer- Verlag
Herz, R.: Grundlagen der Rohrleitungs- und
Apparatetechnik
Vulkan-Verlag, Essen 2002
AD- Merkblätter

Auslands- und Praxisphase, Auslandsstudiensemester

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Auslands- und Praxisphase
	International/Internship phase
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Auslandsstudiensemester
	Semester abroad
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Studiendekan MB
Dozent(in):	
Sprache:	abhängig von der besuchten Hochschule
Zuordnung zum Curriculum:	MPE, 4. Semester, Wahlpflichtfach
	MAnT, 4. Semester, Wahlpflichtfach
	MEVT, 4. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Seminar;
	Module an einer ausländischen Hochschule gemäß
	Learning Agreement
Arbeitsaufwand:	750 h, davon 30 h Präsenz- und 720 h Eigenstudium
Kreditpunkte:	25
Voraussetzungen nach	Mindestens 75 Leistungspunkte aus den ersten 3
Prüfungsordnung:	Semestern.
Empfohlene Voraussetzungen:	Passende Sprachkenntnisse
Angestrebte Lernergebnisse:	Die Studierenden können unter gegenüber der THB
	kulturell abweichenden Bedingungen an der
	akademischen Ausbildung teilnehmen und sich
	erfolgreich den dortigen Anforderungen stellen.
	Die Studierenden runden ihr fachliches
	Qualifikationsprofil ab.
	Die Studierenden erwerben interkulturelle Kompetenz,
	insbesondere die Beherrschung einer Fremdsprache
	wird ausgebaut.
Inhalt:	Die Auslands- und Praxisphase im 4. Semester kann als
	Studiensemester an einer durch die
	Kultusministerkonferenz anerkannten ausländischen
	Hochschule gemäß einer vorher aufzustellenden
	Studienvereinbarung (learning agreement) absolviert
	werden. Die dem Auslandsstudiensemester
	zugeordneten Leistungspunkte werden erteilt, wenn
	mindestens 25 Leistungspunkte der ausländischen
	Hochschule nachgewiesen werden. Davon müssen
	mindestens 20 Leistungspunkte durch Fächer erbracht
	werden, die das fachliche Qualifikationsprofil abrunden.
	Zur Anerkennung im Rahmen des

	Auslandsstudiensemesters kommen nur Module, deren Lehrsprache nicht Deutsch ist. Die Zuordnung von Modulen zum fachlichen Qualifikationsprofil wird bei Abschluss der Studienvereinbarung durch den Studiendekan bestätigt. Im Falle des Nichtbestehens einer oder mehrerer im Auslandsstudiensemester laut Studienvereinbarung vorgesehenen Modulprüfungen wird den Studierenden durch den Studiendekan das erfolgreiche Ablegen von Prüfungen in vergleichbaren Ersatzmodulen aus dem Angebot der THB auferlegt. Diese Ausgleichsregelung ist auf einen Gesamtumfang von 10 Leistungspunkten begrenzt. Das Auslandsstudiensemester wird erst anerkannt, wenn Organisation, Verlauf und Ergebnisse im Rahmen einer Informationsveranstaltung des Fachbereichs, die durch das Akademische Auslandsamt koordiniert wird, vorgestellt wurden und ein informativer Beitrag für den Internetauftritt der Hochschule erstellt wurde. Das Auslandsstudiensemester ist unbenotet, eine Umrechnung der erzielten Prüfungsergebnisse einschließlich der Ausgleichsmodule findet nicht statt. Die im Rahmen der Studienvereinbarung erbrachten und der Auslands- und Praxisphase zugerechneten Prüfungsleistungen können nicht nochmals im Sinne von § 8 Rahmenordnung anerkannt werden. Im Rahmen des Moduls "Allgemeine Kompetenzen" können zusätzlich 5 Leistungspunkte für den Organisationsaufwand des Auslandsaufenthalts erteilt werden.
Studien- Prüfungsleistungen:	Testierte Leistung
Medienformen:	
Literatur:	

Auslands- und Praxisphase, Fachpraktikum

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Auslands- und Praxisphase
	International/Internship phase
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Fachpraktikum
	Internship
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Studiendekan MB
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	abhängig vom Praktikumsort
Zuordnung zum Curriculum:	MPE, 4. Semester, Wahlpflichtfach
	MAnT, 4. Semester, Wahlpflichtfach
	MEVT, 4. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Seminar;
	Tätigkeit in einer Einrichtung der beruflichen Praxis
Arbeitsaufwand:	750 h, davon 30 h Präsenz- und 720 h Eigenstudium
Kreditpunkte:	25
Voraussetzungen nach	Das Auslands- und Praxissemester kann nur begonnen
Prüfungsordnung:	werden, wenn 75 Leistungspunkte aus den ersten drei
	Semestern erworben worden, die Praxisstelle durch den
	zuständigen Praxisbeauftragten genehmigt und ein
	Prüfungsberechtigter als Betreuer benannt wurden
Empfohlene Voraussetzungen:	Ingenieurwissenschaftliche Grundlagen aus dem
	Basisstudium und für das Praxissemester notwendige
	fachspezifische Vertiefungen
Angestrebte Lernergebnisse:	Die Studierenden kennen Aufgabenfelder,
	Problemstellungen und Handlungsweisen der
	beruflichen Praxis des Maschinenbauingenieurs.
Inhalt:	Das Fachpraktikum ist eine berufspraktische,
	studiengangbezogene Vollzeittätigkeit mit einer Dauer
	von mindestens 20 Wochen in einer geeigneten
	Einrichtung der beruflichen Praxis. Eine Einrichtung der
	beruflichen Praxis gilt dann als geeignet, wenn ihre
	Aufgaben den Einsatz von Ingenieuren des
	Maschinenbaus erfordern bzw. sinnvoll erscheinen
	lassen und sie im Hinblick auf die Betreuung der
	Studierenden über entsprechend fachlich und didaktisch
	qualifizierte Mitarbeiter verfügt. Die durchzuführenden
	Tätigkeiten sollen geeignet sein, das Qualifikationsprofil
	des Studierenden zu erweitern.
	Das Fachpraktikum kann auch im Ausland durchgeführt
	werden.

	Vor Antritt des Fachpraktikums sind Einrichtung und
	durchzuführende Tätigkeit und ihre Ziele durch den
	zuständigen Praxisbeauftragten zu bestätigen und ein
	Prüfungsberechtigter als Betreuer zu benennen.
	Die dem Fachpraktikum zugeordneten Leistungspunkte
	werden erteilt, wenn eine qualifizierte Bescheinigung
	der aufnehmenden Einrichtung vorgelegt wird, aus der
	der Umfang der Beschäftigung und das Erreichen der
	vorher vereinbarten Ziele hervorgehen.
	Weitere Voraussetzung für die Erteilung der
	Leistungspunkte ist die Erstellung eines ausführlichen
	schriftlichen Berichts und eine fachbereichsöffentliche
	Präsentation im Rahmen des Praxisseminars im 5.
	Semester.
Studien- Prüfungsleistungen:	Testierte Leistung
Medienformen:	
Literatur:	

Bachelorarbeit

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Bachelorarbeit
	Bachelor Thesis
ggf. Kürzel	BAA
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	7
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Studiendekan MB
Dozent(in):	
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 7. Semester, Pflichtfach
	MAnT, 7. Semester, Pflichtfach
	MEVT, 7. Semester, Pflichtfach
Lehrform / SWS:	
	Selbstständige Arbeit (Projektarbeit), Gruppengröße: 1
	Studierender
Arbeitsaufwand:	360 h, davon 0 h Präsenz- und 360 h Eigenstudium
Kreditpunkte:	12
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden
	- können selbständig und ingenieurmäßig eine
	komplexe Aufgabenstellung bearbeiten,
	- innerhalb eines vorgegebenen Zeitrahmens ein Projekt
	abschließen und das Ergebnis vorführen und
	präsentieren,
	- Stand der Technik, Lösungskonzepte, technische
	Aufbauten, entwickelte Software, erreichte Ergebnisse,
	mögliche Erweiterungen schriftlich in einer
	wissenschaftlichen Ausarbeitung beschreiben und
	dokumentieren.
Inhalt:	Die Bachelorarbeit dient der zusammenhängenden
	Beschäftigung mit einem umfassenden Thema und der
	daraus resultierenden Lösung einer praktischen oder
	theoretischen Problemstellung. In der Regel wird ein
	Thema aus der Industrie unter Betreuung durch einen
	Unternehmensvertreter bearbeitet. In Ausnahmefällen
	kann das Thema der Bachelorarbeit durch die THB
	ausgegeben und betreut werden.
	Die Bearbeitungszeit beträgt in der Regel 10 Wochen.
	Thema, Aufgabenstellung und Umfang sind vom
	Betreuer so zu begrenzen, dass die Bearbeitung in der

Studien- Prüfungsleistungen:	gegebenen Zeit und mit dem vorgesehenen Aufwand von 12 Leistungspunkten grundsätzlich zu bewältigen ist. Die Bachelorarbeit ist – nach Absprache mit dem Betreuer Deutsch oder in Englisch zu verfassen. Wenn die Bachelorarbeit in Englisch verfasst ist, so ist eine Zusammenfassung in deutscher Sprache vorzulegen. Benotete schriftliche Arbeit; Gutachten aufgrund der Abgabe einer schriftlichen Ausarbeitung und
	gegebenenfalls Vorführung eines praktischen
	Ergebnisses im Rahmen der Bachelor-Arbeit und
	mündliche Abschlussprüfung
Medienformen:	
Literatur:	Fachliteratur abhängig von Thema der Bachelorarbeit

Bachelorkolloquium

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Bachelorkolloquium
	Bachelor Colloquium
ggf. Kürzel	ВК
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	7
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Studiendekan MB
Dozent(in):	
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 7. Semester, Pflichtfach
_	MAnT, 7. Semester, Pflichtfach
	MEVT, 7. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Seminar
Arbeitsaufwand:	90 h, davon 45 h Präsenz- und 45 h Eigenstudium
Kreditpunkte:	3
Voraussetzungen nach	Alle Module aus den Semestern 1 bis 6 und das
Prüfungsordnung:	Forschungsprojekt im 7. Semester; mindestens
	ausreichende Bewertung der Bachelorarbeit durch beide
	Gutachter.
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden können die Ergebnisse ihrer
	Bachelorarbeit der Hochschulöffentlichkeit vorstellen.
	Sie sind in der Lage, Außenstehenden die Grundzüge
	ihrer Arbeit darzulegen und das Thema mit
	Fachpublikum vertieft zu diskutieren.
Inhalt:	Nach erfolgreichem Abschluss der Bachelorarbeit
	erläutert der Prüfling seine Arbeit in einem
	hochschulöffentlichem Kolloquium (falls kein
	Sperrvermerk seitens des betreuenden Unternehmens
	vorliegt). Nach Absprache mit den Prüfern kann das
	Kolloquium entweder in deutscher oder englischer
	Sprache durchgeführt werden. Das Kolloquium besteht
	aus einem Vortrag von 20-30 Minuten Dauer, dem sich
	eine Befragung durch die Prüfenden anschließt. Das
	Kolloquium findet an der Hochschule statt. Falls ein
	Sperrvermerk vorliegt, kann das Kolloquium auch beim
St. II. B. II.	betreuenden Unternehmen stattfinden.
Studien- Prüfungsleistungen:	Mündl. Prüfung
Medienformen:	Fraklikanska skilikanska Till III S. I. I. I. I.
Literatur:	Fachliteratur abhängig von Thema der Bachelorarbeit

BWL und Projektmanagement für Ingenieure

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	BWL und Projektmanagement für Ingenieure
	Business Administration and Project Management for
	Engineers
ggf. Kürzel	BWL_und_PM
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Juliane Schneeweiß
Dozent(in):	Prof. DrIng. Juliane Schneeweiß
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 5. Semester, Wahlpflichtfach
	MAnT, 5. Semester, Wahlpflichtfach
	MEVT, 5. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden erwerben grundlegende Fähigkeiten
	zur Identifikation von unterschiedlichen
	Organisationsmöglichkeiten der Produktionsprozesse
	sowie unterschiedlicher Layouts in der Produktion.
	Zudem sind die Studierenden in der Lage
	Produktionsprozessen zu analysieren und
	Verbesserungspotenzial zu identifizieren.
	Die Studierenden erlangen methodische Fähigkeiten zur
	Vorbereitung optimaler Projektentscheidungen auf
	quantitativer Grundlage. Die anvisierten Kenntnisse
	umfassen:
	Aufgaben, die im Zusammenhang mit Projekten
	anfallen, zu identifizieren
	• Faktoren für einen erfolgreichen Projektabschluss zu
	benennen
	Projektbeauftragung, -planung, -steuerung, -kontrolle, Steuerung,
	-review durchzuführen sowie
	Verschiedene Formen der Projektorganisation zu
	erläutern
Inhalti	Finfilhranda Cadankan zu Ilmfald dar
Inhalt:	- Einführende Gedanken zu Umfeld der
	Produktionsunternehmung, - Stellung der Produktion - innerhalb der Unternehmung
	- Stellung der Produktion - Innerhalb der Onterhenmung

und Einbindung in das Ziel- und Planungssystem - Arten von Produktionsprozessen - Prozessanalyse in Hinblick auf Durchlaufzeit und Kapazität - Grundlegende Konzepte des Qualitätsmanagements - Grundlagen des Projektmanagements - Projektorganisation - Projektmanagementphasen (Projektinitiierung, Projektplanung, Projektseuerung und –durchführung, Projektabschluss, Projektcontrolling) Studien- Prüfungsleistungen: Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester Medienformen: - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der Lehrveranstaltung bekannt gegeben		
- Prozessanalyse in Hinblick auf Durchlaufzeit und Kapazität - Grundlegende Konzepte des Qualitätsmanagements - Grundlagen des Projektmanagements - Projektorganisation - Projektmanagementphasen (Projektinitiierung, Projektplanung, Projektsteuerung und –durchführung, Projektabschluss, Projektcontrolling) Studien- Prüfungsleistungen: Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		und Einbindung in das Ziel- und Planungssystem
Kapazität - Grundlegende Konzepte des Qualitätsmanagements - Grundlagen des Projektmanagements - Projektorganisation - Projektmanagementphasen (Projektinitiierung, Projektplanung, Projektsteuerung und –durchführung, Projektabschluss, Projektcontrolling) Studien- Prüfungsleistungen: Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		- Arten von Produktionsprozessen
- Grundlegende Konzepte des Qualitätsmanagements - Grundlagen des Projektmanagements - Projektorganisation - Projektmanagementphasen (Projektinitiierung, Projektplanung, Projektsteuerung und –durchführung, Projektabschluss, Projektcontrolling) Studien- Prüfungsleistungen: Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		- Prozessanalyse in Hinblick auf Durchlaufzeit und
- Grundlagen des Projektmanagements - Projektorganisation - Projektmanagementphasen (Projektinitiierung, Projektplanung, Projektsteuerung und –durchführung, Projektabschluss, Projektcontrolling) Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester Medienformen: - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		Kapazität
- Projektorganisation - Projektmanagementphasen (Projektinitiierung, Projektplanung, Projektsteuerung und –durchführung, Projektabschluss, Projektcontrolling) Studien- Prüfungsleistungen: Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester Medienformen: - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		- Grundlegende Konzepte des Qualitätsmanagements
- Projektmanagementphasen (Projektinitiierung, Projektplanung, Projektsteuerung und –durchführung, Projektabschluss, Projektcontrolling) Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		- Grundlagen des Projektmanagements
Projektplanung, Projektsteuerung und —durchführung, Projektabschluss, Projektcontrolling) Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester Medienformen: - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		- Projektorganisation
Projektabschluss, Projektcontrolling) Studien- Prüfungsleistungen: Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		- Projektmanagementphasen (Projektinitiierung,
Studien- Prüfungsleistungen: Semesterbegleitende Leistungsüberprüfungen und/oder Abschlussklausur nach dem 5. Semester - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		Projektplanung, Projektsteuerung und –durchführung,
Abschlussklausur nach dem 5. Semester - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		Projektabschluss, Projektcontrolling)
Abschlussklausur nach dem 5. Semester - Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der	Studien- Prüfungsleistungen	Semesterhegleitende Leistungsüberprüfungen und/oder
- Vorlesung mit gemischten Medien (Folien, Tafelarbeit, Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der	Studien Trainingsleistangen.	
Beamer etc.) - begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion Literatur: - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der	Medienformen:	
- begleitende Übungen u.a. im Labor, am Computer etc Fallstudiendiskussion - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der	redictionien.	
- Fallstudiendiskussion - Günther, HO.; Tempelmeier, H.: Produktion und Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		,
Logistik. Berlin u.a. - Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a. - Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015. - Weiterführende Literatur wird in der		
Logistik. Berlin u.a Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der	Literatur:	- Günther, HO.; Tempelmeier, H.: Produktion und
 - Kummer, S.; Grün, O.; Jammernegg, W.: Grundzüge der Beschaffung, Produktion und Logistik. München u.a. - Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015. - Weiterführende Literatur wird in der 		
der Beschaffung, Produktion und Logistik. München u.a Pfohl, H.: Logistiksysteme. Berlin/Heidelberg - Jakoby, W.: Projektmanagement für Ingenieure. 3. Aufl., Springer 2015 Weiterführende Literatur wird in der		
- Jakoby, W.: Projektmanagement für Ingenieure. 3.Aufl., Springer 2015.- Weiterführende Literatur wird in der		
Aufl., Springer 2015 Weiterführende Literatur wird in der		- Pfohl, H.: Logistiksysteme. Berlin/Heidelberg
Aufl., Springer 2015 Weiterführende Literatur wird in der		. 5 ,
- Weiterführende Literatur wird in der		
Lehrveranstaltung bekannt gegeben		- Weiterführende Literatur wird in der
		Lehrveranstaltung bekannt gegeben

Chemie und Werkstoffe, Werkstoffkunde 2

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Chemie und Werkstoffe
	Chemistry and Materials
ggf. Kürzel	WK2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Werkstoffkunde 2
	Materials Technology 2
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Dr. rer. nat. Christina Niehus
Dozent(in):	Dr. rer. nat. Christina Niehus
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Grundlegende Kenntnisse der Werkstoffkunde aus WK 1 und WK 2
Angestrebte Lernergebnisse:	Die Studierenden erwerben solide Kenntnisse zu
	Nichteisenmetallen wie Cu und Leichtmetallen wie Al,
	Mg und Ti, deren Eigenschaften und
	Einsatzmöglichkeiten.
	Das Lernziel der Übung für die Studierenden besteht
	darin, den im Modul vermittelten Lehrstoff soweit zu
	durchdringen, dass sie das erworbene Wissen am
	praktischen Beispiel nachvollziehen und die Ergebnisse
	präsentieren können. Durch Kombination der drei
	Vorlesungen mit einer abschließenden Übung werden
	die sozialen Kompetenzen wie Teamfähigkeit und
	Gruppendiskussion herausgebildet sowie die
	Vortragstechniken, insbesondere in der
	seminaristischen Übung, verbessert. So lernen die
	Studierenden, wie aktuelle wissenschaftliche
	Fragestellungen analysiert, strukturiert bearbeitet und
	die erzielten Ergebnisse präsentiert werden.
Inhalt	Leichtmotalle (Al Ma und Ti) Herstellung
Inhalt:	Leichtmetalle (Al, Mg und Ti), Herstellung,
	Eigenschaften, Einteilung, Nomenklatur,
	Wärmebehandlung und Anwendung Kupferwerkstoffe: Einführung, Eigenschaften,
	Ruprerwerkstorie: Einfunrung, Eigenschaften,

	Anwendung
Studien- Prüfungsleistungen:	Vortrag und schriftliche Arbeit; ergibt 1/5 der Modulnote
Medienformen:	Tafelarbeit, Powerpoint- Präsentationen, Filme, Anschauungsmuster, Arbeitsblätter für Übungen
Literatur:	Seidel, W.: Werkstofftechnik, Carl Hanser Verlag München Wien, 2005, ISBN 3-446-22900-0 Bergmann, W.: Werkstofftechnik 1, Carl Hanser Verlag München Wien, 2003/2005, ISBN 3-446-22576-5 Wolfgang Weißbach, Michael Dahms: Werkstoffkunde und Werkstoffprüfung Vieweg; ISBN 3-528-11119-4 E. Hornbogen · H. Warlimont: Metallkunde Springer- Verlag, 4.Auflage; ISBN 3-540-67355-5 Läpple, V.: Werkstofftechnik Maschinenbau, Europa- Verlag, ISBN 978-3-8085-5261-2 Tabellenbuch Metall. Europa Lehrmittel, Haan-Gruiten

Chemie und Werkstoffe, Werkstoffkunde 1

err
ehus
n
S
3
n
Die
if-
und
on
OH
nd
wie
WIC
hung
-
n)

Aufbauend auf den Kenntnissen zum metastabile System des EKD lernen die Studierenden das stabile System kennen, können beide Systeme gut unterscheiden und kennen die jeweiligen Anwendungen. Sie können die Begriffe: Primär-, Sekundär-, und Tertiärzementit; Martensit; Austenit; Ferrit; Ledeburit I und II; Perlit, Graphit zuordnen und können Unterscheidungen in unter- bzw. übereutektoide Stähle und Gusseisen vornehmen. Sie können die Gefügeausbildung von Stählen und Gusseisen zeichnen und erklären. Die Studierenden beherrschen die Grundlagen der Wärmebehandlung, sind in der Lage, die Unterschiede zwischen verschiedenen Glüh- und Härtungsverfahren zu verstehen und an Beispielen anzuwenden. Sie erwerben grundlegende Kenntnisse über mögliche Fehler beim Härten sowie deren Auswirkungen, können ZTU- und ZTA-Schaubilder lesen und anwenden. Einführung: Einteilung, Herstellung und Verarbeitung von Werkstoffen; Geschichtliche Entwicklung; Werkstoffauswahl; Metalltechnische Grundlagen: Keimbildung und Kristallwachstum, struktureller Aufbau (Gitterstrukturen), Gitterbaufehler und deren Einfluss auf die mechanischen Eigenschaften, Allotropie der Metalle Werkstoffprüfverfahren: Überblick über die wichtigsten zerstörungsfreien und zerstörenden Prüfverfahren, detaillierte Vermittlung der theoretischen Grundlagen und Einsatzbereiche am Beispiel von Ultraschall-, Wirbelstrom-, Magnetpulverprüfung, chemischer Analytik mittels Funkenemissionsspektrometrie, Härteprüfung (Brinell-, Vickers-, Rockwellhärte), Zug-, Druck-, Biegeversuch (Hooke'sches Gesetz, Spannungs-Dehnungs-Diagramm, Ermittlung von Festigkeits- und Verformungskennwerten), Kerbschlagbiegeversuch, Wöhler-Diagramm Zustandsdiagramme von Zweistofflegierungen: Begriffserklärungen, Phasenregel, homogene und heterogene Legierungen, Lesen von Zweistoffdiagrammen, Hebelgesetz, Berechnungen an praktischen Beispielen der vollständigen Löslichkeit und beschränkten Löslichkeit im festen Zustand, technisch wichtige eutektische Legierungen sowie deren Eigenschaften und Anwendungen Eisen-Kohlenstoff-Diagramm (EKD):

Inhalt:

Begriffserklärungen, reines Eisen, Eisenlegierungen,

	Kohlenstoff als wichtigstes Legierungselement (LE), Zustandsschaubild (metastabile System, Umwandlungsvorgänge und Gefügeausbildung), Gefügearten und deren Eigenschaften, Einteilung, Nomenklatur, Eigenschaften und Einsatz der Stähle, wichtige LE und deren Einfluss auf die mechanischen Eigenschaften, Einteilung der Eisengusswerkstoffe Themen der Wärmebehandlung: EKD Übersicht, Wiederholung metastabiles System und Hinführen zum stabilen System, Einteilung, Eigenschaften und Anwendungen von Eisengusswerkstoffen, Wärmebehandlung von Stahl Weich-, Spannungsarm-, Normal-, Rekristallisationsglühen Härten ZTU- und ZTA-Schaubilder Härtefehler Randschichthärten Vergüten
Studien- Prüfungsleistungen: Medienformen:	Klausur; 120 min, ergibt 2/5 der Modulnote Tafelarbeit, Powerpoint-Präsentationen, Filme, Anschauungsmuster, Arbeitsblätter für Zustandsdiagramme, EKD, Exkursion zum Industriemuseum mit Führung zum Stahlstandort Brandenburg (letzter Siemens-Martin-
Literatur:	Ofen) Seidel, W.: Werkstofftechnik, Carl Hanser Verlag München Wien, 2005, ISBN 3-446-22900-0 Bergmann, W.: Werkstofftechnik 1, Carl Hanser Verlag München Wien, 2003/2005, ISBN 3-446-22576-5 Wolfgang Weißbach, Michael Dahms: Werkstoffkunde und Werkstoffprüfung Vieweg; ISBN 3-528-11119-4 E. Hornbogen · H. Warlimont: Metallkunde Springer- Verlag, 4.Auflage; ISBN 3-540-67355-5 Läpple, V.: Werkstofftechnik Maschinenbau, Europa- Verlag, ISBN 978-3-8085-5261-2 Tabellenbuch Metall. Europa Lehrmittel, Haan-Gruiten

Chemie und Werkstoffe, WK 1 Labor

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Chemie und Werkstoffe
_	Chemistry and Materials
ggf. Kürzel	WK1-L
ggf. Untertitel	
ggf. Lehrveranstaltungen:	WK 1 Labor
	MT 1 Lab Exercise
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Dr. rer. nat. Christina Niehus
Dozent(in):	Dr. rer. nat. Christina Niehus
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 1. Semester, Pflichtfach
	MAnT, 1. Semester, Pflichtfach
	MEVT, 1. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Labor;
	beginnt in der 2. Semesterhälfte
Arbeitsaufwand:	30 h, davon 15 h Präsenz- und 15 h Eigenstudium
Kreditpunkte:	1
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Kenntnis der Vorlesung WK 1
Angestrebte Lernergebnisse:	Die Studierenden sind mit verschiedenen Methoden der
	zerstörenden und zerstörungsfreien Werkstoffprüfung
	vertraut und können genormte Standardversuche zur
	Werkstoffprüfung selbstständig anwenden und kritisch
	bewerten. Sie sind in der Lage experimentelle Bauteil-
	untersuchungen durchzuführen, auszuwerten sowie die
	Ergebnisse in Prüfberichten zu dokumentieren und zu
	bewerten. Ziel ist der Erwerb von Kenntnissen in der
	Versuchsplanung, -durchführung, Dokumentationen,
	Darstellung und Bewertung von Versuchsergebnissen
	und Messfehlern sowie die Steigerung der
	Teamkompetenzen der Studierenden.
Inhalt:	Härteprüfungen nach Brinell (DIN EN ISO 6506-1),
	nach Vickers (DIN EN ISO 6507-1) und nach Rockwell
	(DIN EN ISO 6508-1) an ausgewählten Werkstoffen
	Zugversuchs nach DIN EN ISO 6892-1: 2009 und der
	Werkstoffkennwerte, Probenmaterial und -vorbereitung
	nach DIN 50125
	Kennenlernen des Grundprinzips der Ultraschallprüfung
	am Beispiel des Impuls-Echoverfahrens mit der
	vorhandenen Messtechnik am Kontrollkörper,
	Ermittlung des Zusammenhangs zwischen Laufzeit des

	Ultraschallechos, Schallgeschwindigkeit und Entfernung zwischen Ultraschallsonde und Störstelle (Fehler),
	Bestimmung von Schallgeschwindigkeiten und
	Laufzeiten von verschiedenen Werkstoffen, Prinzip der
	Fehlerortung durch Ermittlung der Position und Größe
	am Probestück, Erkennung von Fehlern
	Grundlagen der Funkenemissionsspektroskopie,
	Funktionsprinzip eines Spektrometers Spectrolab M10
	mit Hybridoptik - Photomultiplier-Röhren (PMT) und
	CCD-Detektoren (Halbleiter), Anwendungsbeispiele für
	die chemische Analyse
	Grundlagen des Einsatzes von
	Dehnungsmessstreifentechnik (DMS), Prinzip der
	Wheatsoneschen Brückenschaltung, Anwendung des
	Hooke'schen Gesetzes
Studien- Prüfungsleistungen:	Antestate und Protokolle; ergibt 1/10 der Modulnote
Medienformen:	moodle-Antestate, Praktikumsskripte, Normen,
	Versuchsaufbauten
Literatur:	Praktikumsskripte, Mitschriften der Vorlesung WK1
	Tabellenbuch Metall. Europa Lehrmittel, Haan-Gruiten

Chemie und Werkstoffe, Werkstoffchemie

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Chemie und Werkstoffe
	Chemistry and Materials
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Werkstoffchemie
	Chemistry of Materials
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Dr. rer. nat. Christina Niehus
Dozent(in):	Dr. rer. nat. Christina Niehus
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 1. Semester, Pflichtfach
	MAnT, 1. Semester, Pflichtfach
	MEVT, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden erlangen Basiswissen über chemische
	Zusammenhänge zur Beurteilung von
	Werkstoffeigenschaften. Sie verstehen die Grundlagen
	des Aufbaus der Materie und die grundlegenden
	Gesetze der Chemie. Sie kennen einfache Modelle der
	chemischen Bindung und den Einfluss der
	Bindungsarten auf die Struktur und das chemische
	Verhalten von Elementen und Verbindungen. Anhand
	beispielhafter Säure-Base-, Fällungs- und
	Redoxreaktionen verstehen sie die grundlegenden
	Prinzipien chemischer Reaktionen. Sie können einfache
	Redox-Gleichungen aufstellen und haben ein
	grundlegendes Verständnis elektrochemischer
	Sachverhalte. Sie verstehen den Mechanismus von
	Korrosion und kennen Maßnahmen zum
	Korrosionsschutz. Die Studierenden sollen einen
	Überblick über die elektrochemischen Energiespeicher
	und deren Anwendungen erlangen.
	Die Studierenden lernen begriffliche und theoretische
	Grundlagen und Zusammenhänge der Chemie kennen,
	um übergreifende fachliche Problemstellungen zu
	verstehen und um neuere technische Entwicklungen
	einordnen, verfolgen und mitgestalten zu können.

Inhalt:	Chemische Grundbegriffe, Atombau, PSE, ionische Bindung, kovalente Bindung, Metallbindung, Stöchiometrie, Redoxreaktionen Säuren und Basen, Lösungen (Löslichkeit und Konzentration, Auflösungsprozess) Elektrochemie: Elektrolytische Leitung, Elektrodenpotenziale, elektrochemische Spannungsreihe, Elektrolyse, Galvanische Zellen, NERNST-Gleichung, Anwendungen der Elektrochemie wie Korrosion, aktiver/passiver Korrosionsschutz, primäre und sekundäre Zellen, Brennstoffzellen (Typenvergleich und deren Einsatz)
Studien- Prüfungsleistungen:	Klausur; Klausur ergibt 1/5 der Modulnote
Medienformen:	Tafel, ppt-Folien, Demonstrationsversuche, Videofilme, Übungsblätter
Literatur:	C. E. Mortimer; Chemie; Thieme Verlag Stuttgart 2003 P. W. Atkins, J.A. Beran; Chemie einfach alles; Verlag Chemie C. H. Hamann, W. Vielstich; Elektrochemie; Wiley-VCH Verlag

Chemie und Werkstoffe, WK 2 Labor

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Chemie und Werkstoffe
	Chemistry and Materials
ggf. Kürzel	WK2-L
ggf. Untertitel	
ggf. Lehrveranstaltungen:	WK 2 Labor
	MT 2 Lab Exercise
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Dr. rer. nat. Christina Niehus
Dozent(in):	Dr. rer. nat. Christina Niehus
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Labor
Arbeitsaufwand:	30 h, davon 15 h Präsenz- und 15 h Eigenstudium
Kreditpunkte:	1
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Für die Teilnahme sind der Lehrstoff und der
	erfolgreiche Abschluss der WK 1-Vorlesung
	Voraussetzung
Angestrebte Lernergebnisse:	Durch grundlegende Versuche zur Wärmebehandlung,
	Metallographie sowie Versuche zur Werkstoffprüfung
	unter schlagartiger Beanspruchung vertiefen die
	Studierenden die theoretischen Kenntnisse der
	Vorlesung praktisch. Sie verfügen über ein
	Grundverständnis über den Zusammenhang von
	Wärmebehandlung, Gefügeausbildung und
	Werkstoffverhalten. Die Umwandlungscharakteristik
	wird anhand von ZTU-Schaubildern nachvollzogen,
	geübt und daraus das zeitliche Umwandlungsverhalten,
	das entstehende Gefüge und die Härte entnommen. Die
	Studierenden sind in der Lage, durch Anwendung von
	bereits bekannten Werkstoffprüfverfahren wie z. B.
	Rockwell Härteprüfung und Metallographie den Erfolg
	der im Labor selbst durchgeführten Wärmebehandlung
	zu bewerten, die optimale Härtetemperatur festzulegen
	und Fehler bei der Wärmebehandlung zu reflektieren.
	Durch die Prüfung von Schweißnähten mittels
	Härtelinien sowie der Betrachtung der Makroschliffe
	vertiefen die Studierenden das Wissen zur
	Werkstoffprüfung und sind befähigt, reale

	Schweißnähte zu bewerten, die einzelnen Bereiche zuzuordnen und die Kaltrissneigung geschweißter unlegierter Stähle abzuschätzen und die Ergebnisse zu interpretieren. Sie beherrschen die grundlegenden Methoden wie Mikroskopie und Härteprüfung.
Inhalt:	Aufbau einer Schweißnaht, Kennenlernen der wichtigsten Nahtformen, Darstellung einer Schweißnaht und deren Wärmeeinflusszone mit Zuordnung der Bereiche des metastabilen EKD für einen unlegierten Stahl, Kennenlernen von Ätzverfahren und Anwendung der Härteprüfung nach Vickers zur Erstellung einer Härtelinie mit Hilfe eines automatischen Härteprüfers, Bewertung gemäß FKM-Richtlinie Kerbschlagbiegeversuchs nach DIN EN ISO 148-1:2011-01 an V- und U-gekerbten Proben verschiedener Stähle (S 235 JR und X5CrNi18-10) und dessen Verhalten in Abhängigkeit von der Temperatur, Kennenlernen des Digitalmikroskops VHX 100 zur Beurteilung der Bruchflächen, des Bruchaussehens und -verhaltens (Verformungs-, Spröd- und Mischbruch) Wärmebehandlung von Stahl, Unterschied Glühen und Härten, Gefügeänderungen beim Erwärmen – ZTA-Diagramm, Gefügeausbildung beim Abkühlen – ZTU-Diagramm, Einfluss der Legierungselemente (Aufhärtbarkeit, Einhärtbarkeit) Grundlagen zur Metallographie und dessen Anwendung, Kennenlernen der Arbeitsschritte zur Probenpräparation
Studien- Prüfungsleistungen:	(Mikroschliffherstellung) Antestate und Protokolle; Zur Vorbereitung auf das Praktikum sind Kenntnisse über Versuche und Versuchsaufbauten mittels bereitgestellter Unterlagen im Selbststudium zu erarbeiten und vor Praktikumsbeginn durch benotete moodle-Antestate (1/10 der Modulnote) zu belegen.
Medienformen:	moodle-Antestate, Praktikumsskripte, Normen, Versuchsaufbauten
Literatur:	Praktikumsskripte, Mitschriften der Vorlesung WK1 und 2 Tabellenbuch Metall. Europa Lehrmittel, Haan-Gruiten

CNC-Fertigung

Studienrichtung:	MPE, MAnT
Modulbezeichnung:	CNC-Fertigung
	CNC Manufacturing
ggf. Kürzel	CNC
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Martin Kraska
Dozent(in):	DiplIng. Steffen Rotsch
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 6. Semester, Wahlpflichtfach
	MAnT, 6. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Werkstofftechnik, Fertigungstechnik, CAD-Labor
Angestrebte Lernergebnisse:	Arbeitsplanung: Die Studierenden beherrschen folgende
	Arbeitsschritte für die Bearbeitung von Einzelstücken
	und Kleinserien:
	- Machbarkeitsanalyse
	- Auswahl geeigneter Fertigungsverfahren
	- Festlegen der erforderlichen Arbeitsschritte
	- Strategien zur Angebotserstellung für
	WZM und Werkzeuge:
	- Kennen den Aufbau und die Funktion von
	verschiedenen WZM und deren Hauptbaugruppen
	- Können eine WZM anhand wesentlicher Kriterien für
	eine gegebene Aufgabe auswählen
	- Haben einen Überblick über die wichtigsten
	Werkzeuge und Spannmittel
	CNC Programmierung:
	- Kennen die Arbeitsweise mit typischen CAD/CAM-
	Systemen.
	- Können unter Verwendung von SolidWorks-CAM aus
	einem 3D-Modell die Fertigungsstrategie, den
	Arbeitsplan und das CNC-Programm für ein gegebenes
	Werkstück erstellen
	- Können ein Programm auf einer CNC-Maschine
	aufrufen und einfahren.
	- Kennen die Grundfunktionen einer typischen
	Steuerung.

	- Kennen die Normen DIN 66025 / ISO 6983 sowie Struktur und Semantik von NC-Programmen
Inhalt:	
Studien- Prüfungsleistungen:	Belegarbeit: Erstellen eines CNC-Programms für die Herstellung eines Werkstückes auf einer konkreten Werkzeugmaschine und erfolgreiche Simulation des Fertigungsablaufes
Medienformen:	Tafelarbeit, elektronische Medien, Beamer, Anwendung eines CAD/CAM-Systems, Vorlesungsunterlagen (kein Skript), Laborwerkstatt, Praktikumsanleitungen für Laborübungen, CAM-Labor, Software, Bedienungsanleitungen, Hilfesystem
Literatur:	Conrad; Taschenbuch der Werkzeugmaschinen Carl Hanser Verlag Leipzig; 3.Auflage 2015 Kief, Roschiwal, Schwarz; CNC-Handbuch 2015/16; Carl Hanser Verlag München; 2015 Tabellenbuch Zerspanungstechnik; Verlag Europa Lehrmittel Haan-Gruiten; 1. Auflage 2015 Aktuelle Literaturempfehlungen und Skripte werden zu Beginn der Lehrveranstaltung bekannt gegeben

Einführung in den Ingenieurberuf

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Einführung in den Ingenieurberuf
_	Introduction to Engineering
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Martin Kraska
Dozent(in):	Prof. DrIng. Martin Kraska
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 1. Semester, Pflichtfach
	MAnT, 1. Semester, Pflichtfach
	MEVT, 1. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Projekt
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Vorpraktikum
Angestrebte Lernergebnisse:	Die Studierenden erwerben eine Vorstellung vom
	Ingenieurberuf und dem Ziel des Studiums. Sie
	vernetzen sich untereinander. Sie lernen in der
	praktischen Auseinandersetzung Funktion und
	Bestandteile technischer Systeme kennen.
Inhalt:	o Vorstellung verschiedener Fachrichtungen und
	Tätigkeitsfelder
	o Ethik, Nachhaltigkeit und Verantwortung
	o Projektarbeit in der Offenen Werkstatt. Bau,
	Inbetriebnahme und Erprobung eines 3D-Druckers in
	Kleingruppen zu 4-5 Studierenden (auf Basis von
	handelsüblichen Bausätzen). Ausdrücklich wird noch
	keine Entwicklungsleistung in den Projekten
	abgefordert, sondern das Kennenlernen, Nachvollziehen
	und Analysieren von Technik.
Studien- Prüfungsleistungen:	Testierte Leistung
Medienformen:	
Literatur:	

Elektrotechnik, Elektrotechnik 1

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Elektrotechnik
	Electrical Engineering
ggf. Kürzel	ET1
ggf. Untertitel	Gleichstromtechnik
ggf. Lehrveranstaltungen:	Elektrotechnik 1
	Electrical Engineering 1
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	Prof. DrIng. Sören Hirsch
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 1. Semester, Pflichtfach
	MAnT, 1. Semester, Pflichtfach
	MEVT, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Grundkenntnisse in Physik und Mathematik
	entsprechend der Hochschulreife
Angestrebte Lernergebnisse:	In der Vorlesung Elektrotechnik I lernen die
	Studierenden die Grundbegriffe und grundlegenden
	Verfahren zur Beschreibung und Berechnung
	elektrischer Gleichstromnetzwerke kennen. Nach
	erfolgreichem Abschluss können die Studierenden das
	Verhalten linearer Gleichstromnetzwerken selbstständig
	mittels Ersatzschaltungen modellieren, mathematisch
	beschreiben und mit angemessenen Verfahren
	analysieren.
	Die Studierenden kennen den Laborbetrieb mit den
	einschlägigen Sicherheitsvorschriften und beherrschen
	den Umgang mit analogen und digitalen Strom- und
	Spannungsmessern. Die Studierenden können einfache
	Schaltungen aufbauen und messtechnisch analysieren.
	Sie können selbstständig kleine technische Berichte
	verfassen, in denen die Ergebnisse von Messungen
	aussagekräftig dargestellt und kritisch diskutiert
	werden. Vorlesung und Labor des Moduls sind inhaltlich
	eng aufeinander abgestimmt. Die praktischen Versuche
	des Labors vertiefen und veranschaulichen den Stoff
	der Vorlesung und bereiten die Studierenden damit auf
	das gesamte Lernziel des Moduls vor.

	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, elektrische
	Netzwerke durch angemessene Modelle nachzubilden
	und die Grenzen der Ergebnisse ihrer Rechenansätze zu erkennen.
	Die Gruppenarbeit im Labor fordert und fördert die
	Sozialkompetenz und Teamfähigkeit der Studierenden.
Inhalt:	Gleichstromtechnik:
	Elektrische Grundgrößen (Ladung, Elektrische
	Feldstärke, Stromstärke, Spannung, Potential,
	Widerstand, Ohmsche Gesetz, Elektrische Leistung);
	Grundstromkreis (Kirchhoffsche Gesetze, Reihen-,
	Parallel- und Brücken-schaltungen, Elektrische Quellen,
	Spannungs- und Stromteilerregel);
	Verfahren zur Berechnung linearer elektrischer
	Netzwerke (Zweipol, Überlagerungssatz, Zweigstrom-
	und Maschenstromanalyse).
	Labor Elektrotechnik 1:
	Sicherheitsbestimmungen für den Laborbetrieb;
	Einführung in das Anfertigen technischer Berichte;
	Umgang mit analogen und digitalen Strom- und
	Spannungsmessgeräten;
	Messungen an einfachen, praxisrelevanten
	Gleichstromschaltungen; Aufbereitung und Diskussion
	von Messergebnissen.
Studien- Prüfungsleistungen:	Klausur- Vorlesungsteil: Prüfung (KL90); Benotung: Ja
Studien- Fruidingsleistungen.	- Laborteil: Laborschein; Benotung: Nein
	Das Labor ist dann bestanden, wenn alle Laborversuche
	erfolgreich durchgeführt wurden und alle zugehörigen
	Versuchsprotokolle vom Betreuer als "mit Erfolg
	bestanden" testiert wurden.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
Literatur:	- Albach: Elektrotechnik. Band 1 und 2. Pearson
	Studium
	- Führer, u. a.: Grundgebiete der Elektrotechnik. Bd. 1
	und 2.; Hanser Verlag
	- Lindner: Elektro-Aufgaben Bd. 1, Bd. 2 und Bd. 3;
	Hanser Verlag
	- Weißgerber: Elektrotechnik für Ingenieure. Bd. 1 und
	2. Vieweg Verlag
	- Zastrow: Elektrotechnik; Springer Vieweg
	Labarotti Lickarotechnik, opringer vieweg

Elektrotechnik, Elektrotechnik 2

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Elektrotechnik
	Electrical Engineering
ggf. Kürzel	ET2
ggf. Untertitel	Wechselstromtechnik
ggf. Lehrveranstaltungen:	Elektrotechnik 2
	Electrical Engineering 2
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Sören Hirsch
Dozent(in):	Prof. DrIng. Sören Hirsch
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	120 h, davon 60 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	4
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Erfolgreicher Abschluss der LV Elektrotechnik I
Angestrebte Lernergebnisse:	In der Vorlesung Grundlagen der Elektrotechnik II
	lernen die Studierenden die Grundbegriffe und
	grundlegenden Verfahren zur Beschreibung und
	Berechnung elektrischer Wechselstromnetzwerke
	kennen. Sie können das Verhalten linearen
	Wechselstromschaltungen bei Anregung durch
	Sinusgrößen selbstständig mittels Ersatzschaltungen
	modellieren, mathematisch beschreiben und mit
	angemessenen Verfahren analysieren.
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Ihr abstraktes und analytisches Denkvermögen soll
	gestärkt werden. Sie sollen lernen, elektrische
	Netzwerke durch angemessene Modelle nachzubilden
	und die Grenzen der Ergebnisse ihrer Rechenansätze zu
To be also	erkennen.
Inhalt:	Wechselstromtechnik:
	Beschreibung von Wechselgrößen (Winkelfunktion,
	Wechselspannungsgrößen, Arithmetischer Mittelwert,
	Gleichrichtwert, Effektivwert);
	Elektrische Energiespeicher (Elektrisches Verhalten von Kondensator und Spule, Schaltvorgänge in RC- und RL-
	Kondensator und Spule, Schaltvorgange in RC- und RL-

	Netzwerken);
	Komplexe Berechnung (Widerstände im
	Wechselstromkreise, Berechnung , von Strom- und
	Spannungsbeziehungen im Wechselstromkreis,
	Frequenzabhängigkeit im Wechselstromkreis);
	Leistung im Wechselstromkreis (Wirkleistung,
	Blindleistung, Scheinleistung, Leistungsfaktor).
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
Literatur:	- Albach: Elektrotechnik. Band 1 und 2. Pearson
	Studium
	- Führer, u. a.: Grundgebiete der Elektrotechnik. Bd. 1
	und 2.; Hanser Verlag
	- Lindner: Elektro-Aufgaben Bd. 1, Bd. 2 und Bd. 3;
	Hanser Verlag
	- Weißgerber: Elektrotechnik für Ingenieure. Bd. 1 und
	2. Vieweg Verlag
	- Zastrow: Elektrotechnik; Springer Vieweg

Englisch für Ingenieure

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Englisch für Ingenieure
	English for Engineers
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Dr. Annett Kitsche
Dozent(in):	Hr. Montgomery
Sprache:	englisch
Zuordnung zum Curriculum:	MPE, 5. Semester, Wahlpflichtfach
	MAnT, 5. Semester, Wahlpflichtfach
	MEVT, 5. Semester, Wahlpflichtfach
Lehrform / SWS:	4 SWS Seminar
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden erarbeiten und festigen einen grundlegenden Wortschatz im Bereich des Technischen Englisch. Sie werden befähigt, diesen Wortschatz in kommunikativen Situationen kompetent anzuwenden. Sie entwickeln studien- und berufsbezogene Fähigkeiten im Hörverstehen und Sprechen, die sie in die Lage versetzen, an englischsprachigen Fachvorlesungen und Diskussionen erfolgreich teilnehmen zu können sowie eigene Arbeitsergebnisse zu präsentieren. Ihr Können im Lesen und Verarbeiten einschlägiger englischsprachiger Fachliteratur wird weiter ausgeprägt, im Bereich der schriftlichen Sprachausübung steht die Könnensentwicklung in wesentlichen berufsrelevanten Formen im Mittelpunkt.
Inhalt:	Grundwortschatz des ingenieurtechnischen Englisch, Beschreibung und Definition von Funktionen, Design, Arbeitsabläufen und Materialien sowie deren charakteristischen, Energie und Energiequellen, Umweltproblematik, alternative Energien, Motoren, Generatoren Auseinandersetzung mit authentischen, originalsprachigen sowie mit adaptierten Hör- und

	Lesetexten
Studien- Prüfungsleistungen:	mehrere Leistungen im Semesterverlauf (Portfolio)
Medienformen:	In Abhängigkeit davon, ob das Fach in Präsenz oder
	online stattfindet, werden Medien/Internetquellen
	eingesetzt bzw. die Vorteile von Breakout Rooms
	genutzt, um dem interaktiven Charakter entsprechen
	der Lehrveranstaltung entsprechen zu können;
	Internetre
Literatur:	"Exploring Engineering: An Introduction to Engineering
	and Design",
	"Technical English – Mechanical Engineering"

Erneuerbare Energien

Studienrichtung:	WEUT, MEVT
Modulbezeichnung:	Erneuerbare Energien
	Renewable Energy
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. Robert Flassig
Dozent(in):	Prof. Dr. Robert Flassig
Sprache:	deutsch
Zuordnung zum Curriculum:	WEUT, 5. Semester, Pflichtfach
	MEVT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung;
	In diesem Modul kommen Vorlesungen und analytische
	Übungen zum Einsatz. In den analytischen Übungen
	werden praxisnahe Aufgabenstellungen mit
	Unterstützung des Lehrenden selbstständig gelöst.
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Thermo- und Fluiddynamik, Grundlagen der
	Verfahrenstechnik
Angestrebte Lernergebnisse:	Die Studierenden lernen die thermodynamischen,
	technischen, wirtschaftlichen und ökologischen
	Grundlagen von Energieumwandlungsanlagen und -
	prozessen kennen.
	Sie sind befähigt, praxisrelevante Aufgabenstellungen
	aus der Energietechnik selbstständig zu lösen. Darüber
	hinaus besitzen die Studierenden ein grundlegendes
	physikalisches Verständnis für Solarthermie,
	Photovoltaik und Windenergie, mit welchem Sie
	konkrete Auslegungen für gegebene
	Energiebedarfsfragestellungen liefern können.
Inhalt:	Klimaschutz, CO2- Reduktion und regenerative Energien
	Solarthermische Wärmenutzung
	Photovoltaik
	Windkraft
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Power-Point-Präsentationen (als Skript im Netz),
	Arbeitsblätter, Anschauungsbeispiele
Literatur:	Kaltschmitt, M.; Wiese, A.; Streicher, W.: Erneuerbare
	Energien. 5. Aufl. Berlin, Heidelberg: Springer Vieweg,

2013
Quaschning, V.: Regenerative Energiesysteme.
München: Hanser, 2003

Fertigungstechnik, Fertigungstechnik 1

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Fertigungstechnik
	Manufacturing Engineering
ggf. Kürzel	FT1
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Fertigungstechnik 1
	Manufacturing Engineering 1
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sven-Frithjof Goecke
Dozent(in):	Prof. DrIng. Sven-Frithjof Goecke
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 1. Semester, Pflichtfach
	MAnT, 1. Semester, Pflichtfach
	MEVT, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	120 h, davon 60 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	4
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Vorpraktikum
Angestrebte Lernergebnisse:	Die Studierenden kennen die Systematik der
	Fertigungsverfahren des Maschinenbaus, kennen die
	verfahrensunabhängigen Grundlagen und die Prinzipien
	wesentlicher Fertigungsverfahren. Sie können die
	Verfahren bei der Gestaltung von Produkten
	berücksichtigen und sind in der Lage die Verfahren für
	die Herstellung des Produktes unter der
	Berücksichtigung der Kosten und der Funktionserfüllung
	auszuwählen.
Inhalt:	- Urformen (Gießen, Gießverfahren, Pulvermetallurgie,
	generierende Verfahren)
	- Umformtechnik (allgemeine Verfahrensgrundlagen wie
	Umformfestigkeit, Fließkurve, Umformgrad,
	Umformkraft und Umformarbeit, Umformverfahren wie
	Tiefziehen, Gesenkformen, Biegen und Fließpressen)
	- Trennen: Grundlagen der spanabhebenden Formung
	(Werkzeuggeometrie, Kräfte, Leistungsbedarf,
	Spanbildung, Hochgeschwindigkeitsbearbeitung)
	- Spanen mit geometrisch bestimmter Schneide
	(Drehen, Fräsen, Bohren, Senken, Reiben, Räumen)
	- Spanen mit geometrisch unbestimmter Schneide
Chudian Duiffungalaistuuraa	(Schleifen, Honen, Läppen, Strahlspanen)
Studien- Prüfungsleistungen:	Klausur

Modulkatalog MB, SPO 2022, Arbeitsstand 11.06.2023

Medienformen:	Tafel und Power Point-Präsentation mit eingebundenen
	Videos und Anschauungsbeispielen, Manuskript im
	Intranet
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag
	Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den
	Maschinenbau. Springer-Verlag
	Fischer, K. F. u. a.: Taschenbuch der technischen
	Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag

Fertigungstechnik, Labor Fertigungstechnik 1

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Fertigungstechnik
	Manufacturing Engineering
ggf. Kürzel	FT1-L
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Labor Fertigungstechnik 1
	Lab Manufacturing Engineering 1
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Sven-Frithjof Goecke
Dozent(in):	DiplIng. Steffen Rotsch, N.N.
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Labor
Arbeitsaufwand:	30 h, davon 15 h Präsenz- und 15 h Eigenstudium
Kreditpunkte:	1
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Vorpraktikum
Angestrebte Lernergebnisse:	Das Praktikum besteht aus einem theoretischen und
	praktischen Teil und dient der Vertiefung wichtiger
	thematischer Schwerpunkte zur Fertigungstechnik und
	Fertigungsmesstechnik anhand praktischer Beispiele.
	Die Versuche werden nach Anleitungen, in denen
	nochmals die wesentlichen theoretischen Grundlagen
	und die daraus abgeleiteten praktischen
	Aufgabenstellungen zusammen-gefasst sind, von den
	Studierenden selbstständig in Kleingruppen (max. 3
	Teilnehmer) durchgeführt. Zu Beginn des jeweiligen
	Versuches wird durch die Lehrenden das theoretisch
	erforderliche Basiswissen zur Versuchs-durchführung in
	Gesprächsform (Antestat) abgefragt.
	Selbstständige Durchführung grundlegender Versuche
	der Fertigungstechnik sowie die Ausbildung von
	Kompetenzen zur Beurteilung der Eignung und des
	praktischen Einsatzes der angewandten Prüfverfahren,
	Vertiefung des theoretischen Basiswissens zum
	Verständnis Fertigungsprozesse z. B. in Abhängigkeit
	von den Werkstoffen, Prozessparametern; Kenntnis der
	Einteilung der Fertigungsverfahren hinsichtlich typischer
	Eigenschaften, Anforderungen und Einsatzgebiete;
	praktische Übung des selbstständigen Arbeitens nach

	Praktikumsanleitung, Gerätebeschreibungen und
	Normen sowie einer wissenschaftlichen
	Versuchsdokumentation (Protokollerstellung,
	Fehleranalyse)
Inhalt:	FL1 Außen- und Innenmessung mit Handmessgeräten:
Tilliait.	
	Grundverständnis über den Zusammenhang von
	Struktur, Beanspruchung und Werkstoffverhalten soll an
	praktischen Anwendungen vermittelt werden. Die
	Kenntnis des Zusammenhangs zwischen chemischen
	und mechanischen Eigenschaften ist für das
	Verständnis der Theorie der Vorlesung und des
	Einflusses zwischen Materialzusammensetzung, -
	eigenschaften und Verhalten unerlässlich. Das
	Praktikum soll Kenntnisse über den Aufbau und die
	Anwendung von unterschiedlichen Handmesszeugen
	(Messschieber, Messschraube, Feinzeiger,
	Innenmessschraube, Feinzeigermessschraube,
	Innenfeinmessgerät, Einstellring und Endmaße)
	vermitteln. Im Wesentlichen sollen Einsatzmöglichkeiten
	und Einsatzgrenzen der Messgeräte herausgearbeitet
	werden.
	FL2 Erfassung und Verarbeitung von Messdaten:
	Das Praktikum soll Erfahrungen beim Erfassen und
	Verarbeiten von größeren Datenmengen beim
	fertigungstechnischen Messen vermitteln. Es soll die
	Nutzung moderner Datenverarbeitungssysteme geübt
	werden (fertigungstechnisches Messen mit
	1
	unterschiedlichen Mess- und Auswertegeräten, Erfassen
	und Verarbeiten von größeren Datenmengen, Statistik,
	Genauigkeiten, Prozessfähigkeit)
	FL3 Drehen und Oberflächenprüfung:
	Ermittlung des Einflusses der Drehzahl auf die
	Oberflächengüte einer Welle beim Längsdrehen. Das
	praktische Kennenlernen des Fertigungsverfahrens
	Drehen und der Vertiefung der Gesetzmäßigkeiten des
	Spanens mit geometrischer bestimmter Schneide. Dazu
	sollen technologische Arbeitswerte variiert und der
	Einfluss auf die Oberflächenqualität bestimmt werden.
	(Drehzahleinfluss auf die Oberflächengüte einer Welle
	beim Längsdrehen)
	FL4 Fertigung eines prismatischen Teiles:
	Die komplexe Lösung einer Fertigungsaufgabe, bei der
	ein prismatisches Teil hergestellt werden soll (Spanen
	mit geometr. best. Schneidenform: Drehen und Fräsen
	(Gleich- und Gegenlauf), Bohren, Senken, Reiben)
	FL5 Schneiden:
	Mit dem vorhandenen Schneidwerkzeug, bestehend aus

Studien- Prüfungsleistungen: Testierte Leistung Medienformen:	
Literatur: - Lemke: Fertigungsmesstechnik, Verlag Vieweg, Braunschweig - Naumann: Mess- und Prüftechnik, Verlag Viewe Braunschweig - Fritz, Schulz: Fertigungstechnik, VDI Verlag, Düsseldorf - Degner, Lutze, Smejkal: Spanende Formung, Calanser Verlag München Wien - Tschätsch; Handbuch spanende Formgebung; Hoppenstedt Technik Tabellen Verlag Darmstadt - Tschätsch Handbuch Umformtechnik, Hoppenst Technik Tabellen Verlag - Krist: Metallindustrie, Zerspanungstechnik; Verf Werkzeuge, Einstelldaten; Hoppenstedt Technik Tabellen Verlag, Darmstadt - Blume: Einführung in die Fertigungstechnik, Ver Technik Berlin - Semlinger, Hellwig: Spanlose Fertigung: Schneis Biegen –Ziehen, Vieweg Verlag - König: Fertigungsverfahren Band 5 Blechumfort VDI Verlag - Filmm: Spanlose Formgebung, Hanser Verlag - Fischer: Tabellenbuch Metall, Verlag Europa Lelentering, Triemel, u.a.: Qualitätssicherung für Ingenieure, VDI-Verlag, Düsseldorf - DIN 4760 Gestaltabweichung (Begriffe, Ordnungssystem) - DIN 4761 Oberflächencharakter - DIN 4763 Stufung der Zahlenwerte für Rauheitsmessgrößen - DIN 4768 Ermittlung der Rauheitsmessgrößen Rmax - DIN 4769 Oberflächen-Vergleichsmuster - DIN 4775 Prüfung der Rauheit von Werkstückoberflächen	eg, arl edt ahren, rlag den - mung, nrmittel

Fertigungstechnik 2

Studienrichtung:	MPE, MAnT
Modulbezeichnung:	Fertigungstechnik 2
	Manufacturing Engineering 2
ggf. Kürzel	FT2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sven-Frithjof Goecke
Dozent(in):	Prof. DrIng. Sven-Frithjof Goecke
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 3. Semester, Pflichtfach
	MAnT, 3. Semester, Pflichtfach
Lehrform / SWS:	4 SWS Vorlesung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 75 h Präsenz- und 75 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Vorpraktikum, FT1
Angestrebte Lernergebnisse:	Die Studierenden kennen die Systematik der
	Fertigungsverfahren des Maschinenbaus, kennen die
	verfahrensunabhängigen Grundlagen und die Prinzipien
	wesentlicher Fertigungsverfahren. Sie können die
	Verfahren bei der Gestaltung von Produkten
	berücksichtigen und sind in der Lage die Verfahren für
	die Herstellung des Produktes unter der
	Berücksichtigung der Kosten und der Funktionserfüllung
	auszuwählen.
Inhalt:	- Fügen (Schweißtechnik mit Nahtarten, Fugenformen,
	Schweißpositionen, Zusatzwerkstoffen,
	Schweißstromquellen und den Schweißverfahren
	Strahlverfahren EB und Laser, Lichtbogen E, UP, WSG
	und MSG, Pressschweißen WP , Löten mit
	Verbindungsmechanismus und Verfahren, Kleben mit
	Verbindungsmechanismus, Verfahrensvarianten und
	Verbindungsformen)
	- Thermisches Trennen (Autogenbrennschneiden,
	Plasmaschneiden, Laserstrahlschneiden)
	- Abtragverfahren (Funkenerosives Abtragen,
	Wasserstrahlschneiden)
	- Fügen (Schweißtechnik mit Nahtarten, Fugenformen,
	Schweißpositionen, Zusatzwerkstoffen,
	Schweißstromquellen und den Schweißverfahren
	Strahlverfahren EB und Laser, Lichtbogen E, UP, WSG

	und MSG, Pressschweißen WP, Löten mit
	Verbindungsmechanismus und Verfahren, Kleben mit
	Verbindungsmechanismus, Verfahrensvarianten und
	Verbindungsformen)
	- Thermisches Trennen (Autogenbrennschneiden,
	Plasmaschneiden, Laserstrahlschneiden)
	·
	- Abtragverfahren (Funkenerosives Abtragen,
	Wasserstrahlschneiden)
	- Beschichten (Auftragsschweißen, thermisches
	Spritzen, PVD und CVD)
	- Vertiefung Trennen geomtr. best. Schneidenform
	(Grundlagen Bezugssysteme und Schneiden-geometrie,
	Schnitt- und Spanungsgrößen, Zerspanungskinematik
	- Beanspruchung der Schneide (Kräfte (Kienzle),
	Temperaturen, Verschleiß (Taylor), Dreh- und
	Fräszerspanungswerkzeuge)
	- Zerspanbarkeit
	- Vertiefung Trennen geomtr. unbest. Schneidenform
	(Schneideneingriff und Zerspanungskinematik,
	Zerspankräfte), Temperaturen, Verschleiß,
	Zerspanungswerkzeuge Schleif-, Honwerkzeuge und
	Läppmittel)
	- Kühlschmierstoffe
	- Prüfungsvorbereitung
Studien- Prüfungsleistungen:	Klausur
Medienformen:	
Medieniornen.	Tafel und Power Point-Präsentation mit eingebundenen
	Videos und Anschauungsbeispielen, Manuskript im
	-
	Intranet
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag
Literatur:	
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung Band 5 Fügen, Handhaben, Montieren
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung Band 5 Fügen, Handhaben, Montieren
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung Band 5 Fügen, Handhaben, Montieren König, W.:
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung Band 5 Fügen, Handhaben, Montieren König, W.: Band 1 Drehen, Fräsen, Bohren
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung Band 5 Fügen, Handhaben, Montieren König, W.: Band 1 Drehen, Fräsen, Bohren Band 2 Schleifen, Honen, Läppen Band 3 Abtragen
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung Band 5 Fügen, Handhaben, Montieren König, W.: Band 1 Drehen, Fräsen, Bohren Band 2 Schleifen, Honen, Läppen Band 3 Abtragen Band 4 Massivumformen
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung Band 5 Fügen, Handhaben, Montieren König, W.: Band 1 Drehen, Fräsen, Bohren Band 2 Schleifen, Honen, Läppen Band 3 Abtragen Band 4 Massivumformen Band 5 Blechumformen
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung Band 5 Fügen, Handhaben, Montieren König, W.: Band 1 Drehen, Fräsen, Bohren Band 2 Schleifen, Honen, Läppen Band 3 Abtragen Band 4 Massivumformen Band 5 Blechumformen Warnecke, H.J.: Einführung in die Fertigungstechnik,
Literatur:	Fritz, A. H.; Schulze, G.: Fertigungstechnik. VDI-Verlag Beitz, W., Küttner, K. H.: Dubbel - Taschenbuch für den Maschinenbau. Springer-Verlag Fischer, K. F. u. a.: Taschenbuch der technischen Formeln. Fachbuchverlag Leipzig / Carl Hanser Verlag Spur, G.; Stöferle, Th.: Handbuch der Fertigungstechnik Band 3 Trennen Band 4/1 Abtragen/Beschichten Band 4/2 Wärmebehandlung Band 5 Fügen, Handhaben, Montieren König, W.: Band 1 Drehen, Fräsen, Bohren Band 2 Schleifen, Honen, Läppen Band 3 Abtragen Band 4 Massivumformen Band 5 Blechumformen

Fachkunde Metall, Europa Verlag

Finite Elemente Methode

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Finite Elemente Methode
	Finite Element Analysis
ggf. Kürzel	FEM
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Martin Kraska
Dozent(in):	Prof. DrIng. Martin Kraska
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 6. Semester, Pflichtfach
	MAnT, 6. Semester, Wahlpflichtfach
	MEVT, 6. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	Technische Mechanik 1-2, Mathematik 1-3
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Technische Mechanik 3
Angestrebte Lernergebnisse:	Vorlesung:
	Die Studierenden
	- kennen die die FEM als konstruktionsbegleitendes
	Werkzeug für die Bauteiloptimierung und den
	Festigkeitsnachweis
	- haben ein elementares Verständnis von der
	Arbeitsweise der FEM
	- kennen die wichtigsten strukturmechanischen
	Idealisierungen einschließlich Randbedingungen
	- kennen die wesentlichen Fehlermöglichkeiten die
	Möglichkeiten zur Verifikation und Validierung
	- kennen die Voraussetzungen für den erfolgreichen
	Einsatz der FEM im Unternehmen
	Übung:
	Die Studierenden
	- können FEM-Analysen auf Basis vorgefertigter
	Geometriemodelle in ANSYS durchführen
	- können Ergebnisse anhand von analytischen
	Vergleichsrechnungen verifizieren
	- können die numerische Genauigkeit anhand von
	Konvergenzanalysen und Fehlerindikatoren bewerten
	- haben eine Vorstellung, welche erweiterten
	Möglichkeiten separate FEM Programme (am Beispiel
	ANSYS) haben (z.B. Beulen, realistische Lagerungen)

	orfahran dan Einsatz dar EEM hai dar Ontimiarung van
	- erfahren den Einsatz der FEM bei der Optimierung von
	Bauteilen.
	- kennen elementare Möglichkeiten zur
	Qualitätsbeurteilung und Verifikation von FE-Modellen.
Inhalt:	Vorlesung:
	FEM, Simulation und Versuch im
	Produktentwicklungsprozess
	Mathematische Grundlagen:
	Verschiebungsdiskretisierung, Ansatzfunktionen,
	Elemente. Formänderungsenergie und Arbeit der
	äußeren Lasten.
	Prinzip der virtuellen Verrückungen, Steifigkeitsmatrix
	Randbedingungen und Lösung des Gleichungssystems
	• Spannungsbewertung, Versagenshypothesen.
	Analysearten: Statik, Modalanalyse, lineare
	Beulanalyse, stationäre und transiente thermische
	Analyse
	Anforderungen an FE-Programme, Software- und
	Dienstleistungsangebot (Support, Schulungen)
	Anwendungsbeispiele aus Konstruktionsberechnung
	und Fertigungsplanung
	Übungen im CAD-Labor mit ANSYS zu den Themen
	- Stationäre thermische Analyse
	- Strukturmechanik (Bauteil)
	- Strukturmechanik (Baugruppe)
	- Netzkonvergenz und Beseitigung von
	Spannungsspitzen
	- Lineare Beulanalyse und Bauteiloptimierung
	- Dynamische Analyse (modal und transient)
	Die Übungen werden einzeln absolviert. Für das
	Bestehen der Laborübung erforderlich sind
	- Bestehen automatisierter Verständnistests in Moodle
	- Bestehen automatisierter Ergebnisvergleichstests in
	Moodle
	- Berichte zu den Simulationen
	Für analytische Vergleichsrechnungen wird SMath
	Studio empfohlen und an Beispielen demonstriert.
Studien- Prüfungsleistungen:	Klausur; Tests und Berichte zu den Übungen, Testat
Medienformen:	Tafel, Präsentationen am Beamer, Life-
	Demonstrationen;
	Eigene Arbeit mit ANSYS und SMath Studio
Literatur:	Adams/Askenazi: Building better products with FEA
Literatur.	
	(1999)
	Gebhardt: Praxisbuch FEM mit ANSYS. Einführung in die
	lineare und nichtlineare Mechanik (2014).
	Wagner: Lineare und nichtlineare FEM (2019)
	Kraska: SMath Studio Handbuch (2020)

Modulkatalog MB, SPO 2022, Arbeitsstand 11.06.2023

Forschungsprojekt

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Forschungsprojekt
_	Scientific Project
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	7
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sven-Frithjof Goecke
Dozent(in):	
Sprache:	
Zuordnung zum Curriculum:	MPE, 7. Semester, Pflichtfach
	MAnT, 7. Semester, Pflichtfach
	MEVT, 7. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Seminar
Arbeitsaufwand:	450 h, davon 30 h Präsenz- und 420 h Eigenstudium
Kreditpunkte:	15
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Ingenieurwissenschaftliches Grundstudium,
	fachspezifische Vertiefungen sowie die für das konkrete
	Projekt relevanten Pflichtveranstaltungen aus
	den Gebieten Produktentwicklung, Antriebstechnik oder
	Energie- und Verfahrenstechnik.
Angestrebte Lernergebnisse:	Nach Abschluss des Praxisprojektes sind die
	Studierenden in der Lage, kompetent den Stand der
	Technik in Patent- und Literaturdatenbanken zu
	recherchieren.
	Die Studierenden kennen die Anforderungen an
	wissenschaftliche Fachartikel und wissenschaftliche
	Vorträge.
Inhalt:	Das Projekt besteht aus einem seminaristischen
	Auftaktblock einschließlich Vor-Ort-Termin in der TU-
	Bibliothek Berlin, einer freien Projektphase und einem
	Abschlusskolloquium.
	Das Thema und die Teamzusammenstellungen können
	frei gewählt werden. Insbesondere darf die Arbeit im
	Zusammenhang mit einer angestrebten Bachelorarbeit
	an der THB oder in einem Unternehmen stehen, die
	Bewertung erfolgt jedoch ausschließlich durch die THB
	anhand vom Modulverantwortlichen festgelegter
	Kriterien.
Studien- Prüfungsleistungen:	Vortrag und schriftliche Arbeit
Medienformen:	

Literatur:	Spezielle Literatur wird je nach Aufgabenstellung
	empfohlen

Fügetechnik, Fügetechnik Vorlesung und Laborübungen

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Fügetechnik
	Joining Technology
ggf. Kürzel	FüTe
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Fügetechnik Vorlesung und Laborübungen
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sven-Frithjof Goecke
Dozent(in):	Prof. DrIng. Sven-Frithjof Goecke
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 5. Semester, Wahlpflichtfach
_	MAnT, 5. Semester, Wahlpflichtfach
	MEVT, 5. Semester, Wahlpflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Fertigungstechnik 1 und 2
Angestrebte Lernergebnisse:	Der Student / die Studentin kann Fügeverfahren
	hinsichtlich der technologischen Anforderungen und der
	Wirtschaftlichkeit auswählen und optimal unter
	technologischen, ökonomischen und ökologischen
	Gesichtspunkten mit allen Komponenten und im
	Zusammenwirken als Gesamtsystem für eine
	vorgegebene Problemstellung in der Fertigung im
	Maschinenbau einsetzen. Durch die ergänzenden
	Laborübungen lernen die Studenten den Lehrstoff von
	Fügeverfahren in praktischen Beispielen zur Auswahl
	und Anwendung von Schweißverfahren, zur
	Werkstoffauswahl, zu Fügeprozessen einschließlich
	deren Automatisierung und zur Schweißnahtprüfung in
	ganzheitlicher Betrachtung kennen und anwenden. Die
	Studierenden haben damit die Grundkenntnisse zur
	Entwicklung, Planung, Ausführung und Steuerung von
	Fügefertigungseinrichtungen und deren Betrieb in der
	industriellen Produktion.
Inhalt:	- Einführung in die Grundlagen der Schweiß- und
	Fügetechnik
	- Überblick, Einteilung, theoretische Grundlagen und
	Anwendung der Fügeverfahren zum Schmelz- und
	Pressschweißen, d.h. stoffschlüssige zum Schweißen
	und Löten: Lichtbogen, Laser- und Elektronenstrahl,

	Pressschweißen und formschlüssige wie das Nieten,
	umformtechnisches Fügen
	- Schweißbarkeit: Schweißeignung, Schweißsicherheit
	und Schweißmöglichkeit
	- Grundlagen der fügetechnischen Werkstoffkunde
	(Wärmebehandlung der Stähle und Aluminium-
	Werkstoffe, Zeit-Temperatur-Umwandlungsschaubilder,
	Metallurgische Vorgänge beim Schweißen)
	- Grundlagen und Anwendung der Schweißprozesse
	(Wärmeerzeugung und -eintrag in das Bauteil, Messung
	und Berechnung der Streckenergie, Schweißgeräte und
	ihre Kennlinien, Mechanisierung und Automatisierung,
	Qualitätssicherung der Prozesse und der gefügten
	Bauteile)
	Laborübungen
	- Schweißen: thermisch mit E, WSG, MSG und
	Laserstrahl, mechanisch mit Durchsetzfügen und
	Stanznieten
	- Trennen: Plasma-, Laserstrahl- und
	Wasserstrahlschneiden
	- Automatisierung: Schweißen mit einem 6-Achs-
	Knickarmroboter einschließlich optischer Nahtführung
	mit Laserkameras
Studien- Prüfungsleistungen:	Klausur
Medienformen:	VL: Tafel und PPT mit eingebundenen Videos und
	Anschauungsbeispielen und Anschauungsmustern,
	Manuskript
	L: Tafelarbeit, Anschauungsmuster und Arbeitsblätter
	zu den einzelnen Laboren
Literatur:	Ruge, J: Handbuch der Schweißtechnik, Band I-VI,
	Springer-Verlag Berlin 1985-93
	Killing, R: Handbuch der Schweißverfahren Killing, R:
	Handbuch der Schweißverfahren Teil I. Fachbuchreihe
	Schweißtechnik Band 76/I, DVS-Verlag, Düsseldorf
	1/1999
	Böhme, D, Hermann, FD: Handbuch der
	Schweißverfahren Teil II: Autogentechnik, Thermisches
	Schneiden, Elektronen-/Laserstrahlschweißen, Reib-,
	Ultraschall- und Diffusionsschweißen, Fachbuchreihe
	Schweißtechnik Band 76/II, DVS-Verlag, Düsseldorf
	1992
	Wilden, J, Bartout, D, Hofmann, F:
	Lichtbogenfügeprozesse - Stand der Technik und
	Zukunftspotenzial, DVS-Berichte Band 249, DVS-Verlag
	Düsseldorf 1/2009
	Behnisch, H: Kompendium der Schweißtechnik 1-4.
	Fachbuchreihe Schweißtechnik, Band 128, DVS-Verlag,

Düsseldorf 7/2002 Killing, R: Kompendium der Schweißtechnik 1. Verfahren der Schweißtechnik. Fachbuchreihe Schweißtechnik, DVS-Verlag Düsseldorf 7/2002 Probst, R, Herold, H: Kompendium der Schweißtechnik 2. Schweißmetallurgie. Fachbuchreihe Schweißtechnik, DVS-Verlag Düsseldorf 7/2003
DVS-Verlag Düsseldorf 7/2002 Beckert, M, Herold, H: Kompendium der Schweißtechnik 3. Eignung metallischer Werkstoffe zum Schweißen. Fachbuchreihe Schweißtechnik, DVS-Verlag Düsseldorf

Getriebetechnik

Studienrichtung:	MAnT
Modulbezeichnung:	Getriebetechnik
	Kinematics of Mechanisms
ggf. Kürzel	GT
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Thomas Götze
Dozent(in):	Prof. DrIng. Thomas Götze
Sprache:	deutsch
Zuordnung zum Curriculum:	MAnT, 6. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Gutes Verständnis: Geometrie und Vektorrechnung,
	Kinematik, Maschinenelemente und Antriebstechnik
Angestrebte Lernergebnisse:	Systematische Kompetenz:
	Die Studierenden verstehen die GT (Mechanismen) als
	Teilgebiet der mechanischen Antriebstechnik mit
	ungleichförmigen Übersetzungen, oftmals in
	Verbindung mit hydraulischen oder pneumatischen
	Linearantrieben.
	Instrumentelle Kompetenz:
	Die Studierenden beherrschen die Fachtermini der
	Mechanismen und die Unterscheidung in Führungs- und
	Übertragungsgetriebe. Sie können die kinematischen
	Parameter (Lage, Geschwindigkeiten und
	Beschleunigungen) und die Kraftwirkungen
	(Kinetostatik) mit grafisch-zeichnerischen und
	rechnerunterstützten Methoden analysieren. Die
	Studierenden haben einfache Methoden der
	Getriebesynthese kennengelernt und können CAE-
	Werkzeuge einsetzen.
	Entwicklungskompetenz:
	Die Studierenden synthetisieren ein einfaches
	viergliedriges Getriebe, um ein Getriebeglied in 3
Talaalk	bestimmte Positionen zu führen.
Inhalt:	Einführung in das Fachgebiet, Abgrenzungen und
	Einordnung in die mechanische Antriebstechnik;
	Demonstration zahlreicher Anwendungen der
	Getriebetechnik im technischen Umfeld des täglichen

	Lebens; Einteilung für Übertragungs- oder
	Führungsaufgaben; Bezeichnung und Ausführung von
	Getriebegliedern, Gelenken und Organen,
	Modifikationen und kinematische Umkehr;
	Getriebefreiheitsgrad und Berechnung; Ebene
	Koppelgetriebe, 4-, 6- und 8-gliedrige Mechanismen;
	Analyseverfahren kinematischer Parameter:
	Vektoralgebra und Darstellungsmaßstäbe; allgemeine,
	ebene Bewegung und Euler-Gleichung; Momentanpol
	und Geschwindigkeiten, Beschleunigungspol und
	Beschleunigungsermittlung; Lösen von Übungsaufgaben
	mit grafischen Methoden; Relative Bewegung von drei
	Ebenen, Überlagerung von Führungs- und
	Relativbewegung, Ermittlung von Relativpolen und der
	Coriolisbeschleunigung; Kinetostatische Analyse ebener
	Getriebe: Kraftwirkungen auf Getriebeglieder und
	Gelenke, Verfahren der Kraftermittlung und Kraft-
	zerlegung, Culmann- und Seileckverfahren, Joukowsky-
	Hebel; Synthese ebener 4-gliedriger Gelenkgetriebe:
	Lagensynthese (2 Lagen eines Getriebegliedes, 2
	Relativlagen zweier Glieder, 3 Lagen einer
	Koppelebene), Übungsbeispiele zur Lagengeometrie;
	Konstruktion von Abrollkurven (Gangpolbahn und
	Rastpolbahn); Konstruktion von Kurvengetrieben mit
	schwingendem oder gerade geführtem Eingriffsglied;
	Konstruktion und Berechnung von Übergangsfunktionen
	(Sinuiden, geneigte Sinuide nach Bestehorn,
	Parabeläste) und Bewertung der Bewegungsgesetzte
	nach Stoß- und Ruckfreiheit; Einweisung in das
	Kinematikprogramm SAM (Simulation and Analysis of
	Mechanism), Übungen mit einfachen Aufgaben
Studien- Prüfungsleistungen:	Hausarbeiten (2 Konstruktionsbelege); Klausur
Medienformen:	- Präsentationsskript
	- Arbeitsblätter mit Abbildungen und Übungen
	- Demonstrationsmodelle spezieller Mechanismen, von
	Gebrauchsgegenständen bis zu Spezialmodellen, eben
	und räumlich
Literatur:	Volmer: Getriebetechnik Grundlagen
	- Getriebetechnik Lehrbuch
	- Getriebetechnik Leitfaden
	- Getriebetechnik Koppelgetriebe
	- Getriebetechnik Aufgabensammlung
	- Lichtenheld/ Luck: Konstruktionslehre der Getriebe
	- Hagedorn/Thonfeld/Rankers: Konstruktive
	Getriebelehre
	- Luck/Modler: Getriebetechnik
	- Kerle/Pittschellis/Corves: Einführung in die

Getriebelehre
- Hain: Atlas für Getriebekonstruktionen

Grundlagen der Verfahrenstechnik, Wärme- und Stoffübertragung

Studienrichtung:	MEVT
Modulbezeichnung:	Grundlagen der Verfahrenstechnik
	Fundamentals of Process Engineering
ggf. Kürzel	GVT
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Wärme- und Stoffübertragung
	Heat and Mass Transfer
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	DiplIng. Andreas Niemann
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MEVT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	90 h, davon 45 h Präsenz- und 45 h Eigenstudium
Kreditpunkte:	3
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Physik, Technische Thermodynamik 1
Angestrebte Lernergebnisse:	Die Studierenden lernen die Berechnungsmethoden
	insbesondere zur Auslegung von Wärmeübertragern
	kennen und erlangen dadurch eine grundlegende
	Fähigkeit für das weitere Studium der
	Verfahrenstechnik. Die Vermittlung von fachlichem
	Wissen steht hier im Vordergrund. Es sollen
	Kompetenzen und Spezialisierungen im Bereich der
	Verfahrenstechnik herausgearbeitet werden, die für das
	Profil der Studierenden richtungsweisend sind. Ein Ziel
	dabei ist der Erwerb von Lösungskompetenzen für
	komplexere Dimensionierungs- und
	Auslegungsaufgaben der industriellen Praxis durch
	Bearbeitung entsprechender Problemstellungen in den
	Übungen.
	Die Studierenden erwerben ein grundlegendes
	Verständnis für thermische und chemische
	Stoffwandlungsprozesse sowie die dafür unerlässliche
	Grundoperation der Wärmeübertragung. Auf der Basis
	eines anwendungsbereiten Wissens aus der Chemie,
	Physik und den Grundlagen der Technischen
	Thermodynamik können sich die Studierenden in die
	Thematik der Transportvorgänge einarbeiten. Sie sind
	in der Lage, Analogien zwischen Stoff- und
	Energietransportvorgängen zu erkennen und können
	insbesondere Auslegungsrechnungen im Bereich der

	14.00 001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Wärmeübertragung vornehmen. Verbunden damit ist die Anwendung der Fachtermini, sodass technische Problemstellungen mit Fachleuten erörtert und eigene Arbeitsergebnisse in schriftlichen Arbeiten exakt dokumentiert werden können.
Inhalt:	Einführung Transportvorgänge: Triebkraftprozesse, Triebkraftgleichung
	Wärmeleitung: Wirkmechanismus, stationär, eindimensional, ein- und mehrschichtige Wände, Rippen und Stäbe
	Konvektion: Wirkmechanismus, Einflussfaktoren, Ähnlichkeitstheorie, Kennzahlgleichungen, Konvektion mit Phasenwechsel
	Wärmestrahlung: Grundlagen, schwarzer Strahler, grauer Strahler, Strahlungsaustausch
	Wärmedurchgang: Wärmedurchgangskoeffizient Auslegung von Wärmeübertragern: Vorgehensweise, Einfluss der Stromführungen, Bauformen Stoffübertragung: Analogie Wärmeleitung – Diffusion, Grundformen der Kennzahlgleichungen für konvektiven
Studien- Prüfungsleistungen:	Stoffübergang Klausur
Medienformen:	Folienpräsentation – herunterzuladen von moodle; Tafel und farbige Kreide für Ergänzungen zur Folienpräsentation, vorlesungsbegleitende Berechnungsbeispiele und Übungen; Auswahl von Stoffdaten – herunterzuladen von moodle; Übungsaufgaben mit Endergebnisse
Literatur:	Elsner, N.; Dittmann, A.: Grundlagen der Technischen Ther-modynamik. Bd. 2. 8. Aufl. Berlin: Akademie-Verlag, 1993 Behr, H. D.; Stephan, K.: Wärme- und Stoffübertragung. 9. Aufl. Berlin, Heidelberg: Springer Vieweg, 2016 VDI-Gesellschaft für Verfahrenstechnik und Chemieingeni-eurwesen: VDI-Wärmeatlas, 11. Aufl. Berlin, Heidelberg: Springer Vieweg, 2013

Grundlagen der Verfahrenstechnik, Physikalisch-chemisches Grundlagenlabor

Studienrichtung:	MEVT
Modulbezeichnung:	Grundlagen der Verfahrenstechnik
	Fundamentals of Process Engineering
ggf. Kürzel	GVT-L
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Physikalisch-chemisches Grundlagenlabor
	Physical/Chemical Basics Lab
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. Robert Flassig
Dozent(in):	Prof. Dr. Robert Flassig
Sprache:	deutsch
Zuordnung zum Curriculum:	MEVT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Labor;
	Durchführung in Laborgruppen mit ca. 3 Studierenden
	je Versuchsstand,
	Beginn in der 2. Semesterhälfte
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Physik, Technische Thermodynamik 1
Angestrebte Lernergebnisse:	Die Studierenden sind mit dem physikalisch-chemischen
	Grundlagenwissen vertraut und können dieses
	selbständig zur Gewinnung von chemischen
	Analysewerten und Stoffdaten aus Experimenten
	anwenden. Ziel ist der Erwerb von experimentellem
	Verständnis zur Beurteilung vor allem
	elektrochemischer, physikochemischer, analytischer und
	physikalischer Vorgänge bei Energie- und
	Stoffwandlungsprozessen. Daneben erarbeiten sich die
	Studierenden Fähigkeiten in der Dokumentation,
	Darstellung und Bewertung von Versuchsergebnissen
	und Messfehlern in Form wissenschaftlicher Berichte.
	Weiterhin werden die Teamkompetenzen der
	Studierenden durch die erforderliche Selbstorganisation
T 1 1	innerhalb der Laborgruppen weiterentwickelt.
Inhalt:	Es werden Versuche aus den Bereichen der
	Elektrochemie, der chemischen Analytik sowie der
	Grundoperationen der physikalischen Verfahrenstechnik
Studion Prüfungeleistungen	durchgeführt.
Studien- Prüfungsleistungen:	Testierte Leistung
Medienformen:	Versuchsanleitungen mit theoretischen Grundlagen zum

	jeweiligen Versuch zum Herunterladen von moodle,
	Versuchsaufbauten mit rechnergestützter und
	manueller Messwerterfassung
Literatur:	Behr, A.; Agar, D. W.; Jörissen, J.: Einführung in die
	Technische Chemie. Heidelberg: Spektrum
	Akademischer Verlag, 2010
	Behr, H. D.; Stephan, K.: Wärme- und
	Stoffübertragung. 9. Aufl. Berlin, Heidelberg: Springer
	Vieweg, 2016
	VDI-Gesellschaft für Verfahrenstechnik und
	Chemieingenieurwesen: VDI-Wärmeatlas, 11. Aufl.
	Berlin, Heidelberg: Springer Vieweg, 2013

Hydraulik/Pneumatik

Studienrichtung:	MPE, MAnT
Modulbezeichnung:	Hydraulik/Pneumatik
	Hydraulics/Pneumatics
ggf. Kürzel	HyPneu
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Thomas Götze
Dozent(in):	Prof. DrIng. Thomas Götze
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 5. Semester, Wahlpflichtfach
	MAnT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Antriebstechnik 3. Semester
Angestrebte Lernergebnisse:	Systemische Kompetenz:
	Hydraulik und Pneumatik gehören zur Fluidtechnik.
	Die Studierenden sind in der Lage, hydraulische
	Kreisläufe und pneumatische Grundschaltungen zu
	analysieren, zu berechnen und zu projektieren.
	Instrumentelle Kompetenz:
	Sie können die physikalischen Grundlagen der
	Hydrostatik und der Strömungslehre bei Aufgaben der
	Fluidtechnik anwenden. Sie kennen die Besonderheiten
	hydraulischer und pneumatischer Antriebssysteme, den
	Aufbau verschiedener Verdrängermaschinen, die
	Funktion der Steuerelemente und die Grundlagen der
	Gas-Theorie (Zustandsänderungen).
	Praktische Kompetenz (Labor):
	Sie können hydraulische und pneumatische
	Funktionsschaltpläne simulieren,
	gerätetechnisch/konstruktiv umsetzen und Messdaten
	interpretieren.
Inhalt:	Hydraulische und pneumatische Anwendungen von der
	Antike bis zur Gegenwart; Vor- und Nachteile fluidischer
	Antriebssysteme; Hydrostatische und dynamische
	Berechnungsgrundlagen für Druck und Volumenstrom;
	Schaltzeichen für Fluidelemente nach DIN ISO 1219
	und Skizzieren von Funktionsschaltplänen;
	Anwendungen der Strömungsmechanik in Fluidanlagen;

	Statischer und dynamischer Druckaufbau;
	Druckverlustberechnung; Volumetrische und
	hydromechanische Wirkungsgrade; Leistungsbilanz für
	Komponenten und Systeme; Druckflüssigkeiten und
	deren wichtigsten physikalischen und chemischen
	Eigenschaften, Auswahlkriterien; Geräte und
	Komponenten hydraulischer Antriebe,
	Funktionsmerkmale und Dimensionierung; Konstruktion
	und Kennlinienfelder verschiedener
	Verdrängermaschinen, Konstantförder- und
	Verstellmaschinen, Regelpumpen; Berechnung und
	Einsatz von Hydraulikzylindern, Bauarten; Aufbau,
	Funktionsweise und Kennlinien von Druck-, Strom-,
	Sperr und Wegeventilen; Geschlossene Kreisläufe,
	hydrostatische Antriebe und Kennlinien; Zubehör
	(Druckspeicher, Filter, Kühler, Behälter, Verkettungs-
	und Verschraubungstechnik, Rohrkonstruktion,
	Schläuche); Grundschaltungen für häufige
	Aufgabenstellungen; Stetigventile für hydraulische
	Steuerungen/ Regelungen, Proportional- und
	Servotechnik; Laborpraktika, insbesondere
	Druckverlustmessungen, Zylindersteuerungen,
	Kennlinienaufnahme aller Ventilarten, direkt- oder
	vorgesteuert, Demonstration besonderer Effekte und
	typischen Fehlverhalten, Proportionalsteuerung eines
	Dreh- oder Linearantriebes
Studien- Prüfungsleistungen:	Klausur; Testierte Leistung im Labor
Medienformen:	- Präsentationsskripte
	- Arbeitsblätter mit Abbildungen, Nomogrammen und
	Übungen
	- Software FluidSim-P und SimulationX
	- Demonstrations- und Schnittmodelle, vorrangig aus
	der Industrie zum Stand der Technik
	- Industrienahe Laboraggregate für praxisorienti
Literatur:	- Will/Ströhl/Gebhardt: Hydraulik
	- Bauer: Ölhydraulik – Vorlesungsskripten, Teubner-
	Verlag
	- Grollius: Grundlagen der Hydraulik
	- Grollius: Grundlagen der Pneumatik
	- Ebertshäuser/ Helduser: Fluidtechnik von A-Z
	- Findeisen: Ölhydraulik
<u> </u>	1

Informatik

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Informatik
	Informatics
ggf. Kürzel	TRIP
ggf. Untertitel	Technisches Rechnen, Informatik, Programmierung
	(TRIP)
ggf. Lehrveranstaltungen:	
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Guido Kramann
Dozent(in):	Jean Luther Muluem
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 4 SWS Übung
Arbeitsaufwand:	180 h, davon 90 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	6
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Mathematik 1
Angestrebte Lernergebnisse:	Die Studierenden kennen den Grundaufbau und die
	Grundfunktionalität eines PCs.
	Sie kennen die grundlegenden Unterschiede zwischen
	Interpreter- und Compiler-Sprachen, sowie zwischen
	prozeduralen und objektorientierten
	Programmiersprachen.
	Die Studierenden beherrschen eine höhere
	Programmiersprache in elementarer Weise.
	Insbesondere sind sie in der Lage, eine einfache
	Problemstellung in ein prozedurales
	Anwendungsprogramm umzusetzen. Sie sind in der
	Lage dies auch unter Anwendung einer in der
	Lehrveranstaltung vermittelten Software-
	Entwurfsmethode zu bewerkstelligen.
	Darüber hinaus sind die Studierenden in der Lage,
	Gemeinsamkeiten zwischen der erlernten
	Programmiersprache und anderen ihrem Studienfach
	nahen Anwendungsgebieten der Programmierung zu
	erkennen und sich dort einzuarbeiten. Beispiele hierzu:
	Programmierung von Mikrocontrollern, in
	Tabellenkalkulationsprogrammen mit Pivottabellen
	arbeiten und Daten aus externen Quellen geeignet
	verarbeiten und visualisieren, technische Berechnungen

	11 A4 11 1 1 1 1 1 1 5
	mit Mathcad und ähnlichen Programmen
	dokumentieren und durchführen.
Inhalt:	Informatik/Programmierung:
	o Rechneraufbau, Datentypen, Fließkomma-Arithmetik
	o Algorithmen, Flusskontrolle, Funktionen, Objekte,
	Methoden
	Softwareentwicklung: Umgang mit einer Shell, Erstellen
	und Kompilieren von Quellcode, Starten von
	Programmen, Umrechnung zwischen verschiedenen
	Zahlensystemen, Schreiben einfacher
	Hauptprogramme, Prozedurale Anwendungsprogramme
	im Ingenieurwesen. Anwendung von C/C++-
	Datentypen, C/C++-Kontrollstrukturen,
	Methoden:
	Excel und VBA inkl. Pivottabellen und Variablen,
	Diagramme
	Anwendungen:
	o Python als Programmiersprache (Beispiele:
	Zugversuchsdaten einlesen, Diagramm anzeigen, bis
	hin zu GUI falls sonst zu einfach), Bibliotheken
	o OpenSCAD, Aufbau einfacher Geometrien für den 3D-
	Druck
	o SMath-Einführung inkl. Anforderungen an
	Dokumentation von Handrechnungen.
Studien- Prüfungsleistungen:	Pro Semester drei Semester begleitende Prüfungen in
January January	elektronischer Form mit einer Gesamtdauer von 90
	Minuten, in denen sowohl die Theorie, als auch die
	praktischen Programmier-Fertigkeiten abgeprüft
	werden. Die Gesamtnote ergibt sich aus den
	gewichteten Teilnoten.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
. realementer	Beamer etc.)
	- Laborübungen am PC
Literatur:	Folien zur Vorlesung als Portable Document Format-
Literatur.	Datei verfügbar unter: http://www.kramann.info
	Boockmeyer, Fischbeck, Neubert: Fit fürs Studium –
	Informatik
	Kraska: SMath Studio mit Maxima, Einführung und
	Referenz
	NGG G IZ

Ingenieurmathematik 1

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Ingenieurmathematik 1
_	Engineering Mathematics 1
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. rer. nat. Roland Uhl
Dozent(in):	Prof. Dr. habil. Jürgen Socolowsky, Dr. Josef Esser
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 1. Semester, Pflichtfach
	MAnT, 1. Semester, Pflichtfach
	MEVT, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	120 h, davon 60 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	4
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Gute Kenntnisse und Fertigkeiten im Rahmen der
	Schulmathematik
Angestrebte Lernergebnisse:	Vorlesung und Übung Ingenieurmathematik 1:
	Die Studierenden sind mit mathematischen
	Schreibweisen und Formulierungen vertraut und
	können diese anwenden.
	Sie beherrschen sicher das Rechnen mit komplexen
	Zahlen, Vektoren und Matrizen.
	Sie besitzen die Fähigkeit zur selbstkritischen
	Überprüfung von mathematischen Ergebnissen.
	Sie besitzen ein Grundverständnis für verschiedene
	Anwendungen der Mathematik, beispielsweise
	komplexe Zahlen bei der Wechselstromrechnung,
	Vektoren zur Beschreibung geometrischer,
To be allo	physikalischer und technischer Sachverhalte.
Inhalt:	Logik und Mengenlehre: Aussagen,
	Aussagenoperationen, Mengenbegriff, Schreibweisen
	von Mengen, Teilmengenbeziehung,
	Mengenoperationen, Funktionsbegriff, Injektivität und Bijektivität, Umkehrfunktion, Verkettung, binomischer
	Satz, trigonometrische und Arcusfunktionen
	Algebraische Strukturen: Gruppen, Körper, Potenzen
	und Brüche, grundlegende Rechenregeln
	Komplexe Zahlen: der Körper C, komplexe
	Zahlenebene, Eulersche Formel, Exponentialdarstellung,
	Zamenebene, Edicische Former, Exponentialianstellung,

	komplexe Polynome, Fundamentalsatz der Algebra,
	Linearfaktorzerlegung
	Vektorrechnung in der Ebene und im Raum:
	Vektorbegriff, Vektoraddition und -multiplikation mit
	Skalaren, Ortsvektoren, Koordinaten, Skalarprodukt,
	Spatprodukt, Vektorprodukt
	Vektorräume und Matrizen: Rn und Cn, Matrizenbegriff,
	Matrizenrechnung, lineare Gleichungssysteme, inverse
	Matrix, Determinanten
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, Manuskript in pdf-Form
Literatur:	Papula, Lothar: Mathematik für Ingenieure und
	Naturwissenschaftler, Band 1, 2, Vieweg-Verlag
	Fetzer/Fränkel: Mathematik, Lehrbuch für
	Fachhochschulen

Ingenieurmathematik 2

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Ingenieurmathematik 2
	Engineering Mathematics 2
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. Dr. rer. nat. Roland Uhl
Dozent(in):	Prof. Dr. habil. Jürgen Socolowsky, Dr. Josef Esser
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	120 h, davon 60 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	4
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Gute Kenntnisse und Fertigkeiten im Rahmen der
	Schulmathematik
Angestrebte Lernergebnisse:	Die Studierenden beherrschen die grundlegenden
	Rechentechniken beim Differenzieren von Funktionen
	und Bestimmen von Extremwerten.
	Sie besitzen anwendungsbereite Kenntnisse in der
	Integralrechnung für Funktionen mit einer Variablen.
	Sie beherrschen die wichtigsten Integrationsmethoden
	(Substitution, partielle Integration,
	Partialbruchzerlegung).
	Sie kennen die wichtigsten Eigenschaften unendlicher
	Reihen wie Konvergenz und Approximation und können
	Konvergenzkriterien anwenden.
Inhalt:	Ergänzungen zu Vektorräumen: Linearkombinationen,
	lineare Unabhängigkeit, Basen, Basiswechsel,
	Dimensionen
	Lineare Abbildungen: Begriff der linearen Abbildung,
	Drehungen im R2 und R3, Eigenwertprobleme
	Stetigkeit und Grenzwerte im Eindimensionalen:
	Stetigkeitsbegriff, Extrem- und Zwischenwertsatz,
	Grenzwertbegriffe, Exponential-, Logarithmus- und
	Potenzfunktionen
	Differenzialrechnung im Eindimensionalen:
	Ableitungsbegriff, Rechenregeln und Differenziation,
	Bestimmung von Extrema, Ableitungen höherer

	Ordnung, numerisches Lösen von Gleichungen
	Integration von Funktionen einer reellen Variablen:
	Substitution, partielle Integration,
	Partialbruchzerlegung, uneigentliche Integrale,
	numerische Integration (Regel von SIMPSON),
	Anwendungen des bestimmten Integrals beispielsweise
	bei mechanischen Momenten und in der Elektrotechnik
	Reihen: Zahlenreihen, Konvergenzkriterien,
	Potenzreihen, TAYLOR-Reihen, die Reihen der
	wichtigsten elementaren Funktionen, FOURIER-Reihen,
	Anwendungen auf gerade und ungerade Funktionen
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, Manuskript in pdf-Form
Literatur:	Papula, Lothar: Mathematik für Ingenieure und
	Naturwissenschaftler, Band 1-3 Vieweg-Verlag
	Fetzer/Fränkel: Mathematik, Lehrbuch für
	Fachhochschulen

Ingenieurmathematik 3

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Ingenieurmathematik 3
_	Engineering Mathematics 3
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. rer. nat. Roland Uhl
Dozent(in):	Prof. Dr. habil. Jürgen Socolowsky, Dr. Josef Esser
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 3. Semester, Pflichtfach
	MAnT, 3. Semester, Pflichtfach
	MEVT, 3. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	120 h, davon 60 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	4
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden können partielle Ableitungen sicher
	berechnen und diese bei Extremwertaufgaben für
	Funktionen mehrerer reeller Variabler anwenden.
	Sie beherrschen Kurvenintegrale und kennen deren
	Anwendung in Elektrotechnik und Mechanik.
	Sie können wichtige Klassen gewöhnlicher
	Differentialgleichungen der Physik und Technik
	selbständig analytisch lösen.
	Sie können numerische Verfahren dort einzusetzen, wo
	analytische Lösungsverfahren nicht existieren.
	Sie kennen die Bedeutung von Bereichsintegralen und
	können diese berechnen.
	Sie beherrschen die Hauptbegriffe der deskriptiven
	Statistik (Standardabweichung, lineare Korrelation und
	Regression).
Inhalt:	Differentialrechnung für Funktionen mehrerer reeller
	Variabler: partielle Ableitungen, Gradient, totales
	Differential und Linearisierung, Extremwertaufgaben,
	erweiterte Kettenregel
	Kurvenintegrale: Wegunabhängigkeit, Anwendungen in
	der Vektoranalysis
	Gewöhnliche Differentialgleichungen: allgemeine
	Lösungstheorie, separierbare Gleichungen, lineare
	Gleichungen und -systeme, numerische

	Lösungsverfahren
	Bereichsintegrale: Definition, Berechnung durch
	iterierte Integrale
	Grundbegriffe der deskriptiven Statistik: Mittelwerte,
	Standardabweichung, lineare Korrelation und
	Regression
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, Manuskript in pdf-Form
Literatur:	Papula, Lothar: Mathematik für Ingenieure und
	Naturwissenschaftler, Band 2, 3, Vieweg-Verlag
	Fetzer/Fränkel: Mathematik, Lehrbuch für
	Fachhochschulen
	Sachs, Michael: Wahrscheinlichkeitsrechnung und
	Statistik für Ingeni-eurstudenten an Fachhochschulen,
	Fachbuchverlag

Interdisziplinäres Projekt 1

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Interdisziplinäres Projekt 1
	Interdisciplinary Project 1
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Peter Flassig
Dozent(in):	Prof. DrIng. Peter Flassig
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 5. Semester, Pflichtfach
	MAnT, 5. Semester, Pflichtfach
	MEVT, 5. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Übung, 2 SWS Projekt;
	Einführende Vorstellung und Erläuterungen,
	Selbststudium, Teamarbeit, regelmäßige Betreuung und
	Diskussion mit den Dozenten
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Ingenieurwissenschaftliches Grundstudium,
	fachspezifische Vertiefungen sowie die für das konkrete
	Projekt relevanten Pflichtveranstaltungen aus
	den Gebieten Produktentwicklung, Antriebstechnik oder
	Energie- und Verfahrenstechnik.
Angestrebte Lernergebnisse:	Die Studierenden erhalten im Rahmen eines
	geeigneten, technischen Entwicklungsprojekts einen
	Einblick in die Projektarbeit und lernen die Phasen eines
	agilen Produktentstehungsprozesses kennen. Sie bauen
	ihre Kompetenzen in der fachlichen Kommunikation
	(Recherche, Berichte, Präsentationen, Zeichnungen,
	Beschaffung,), der Teamarbeit und auf dem Gebiet
	des Agilen Arbeitens (Scrum-Framework, Kanban,)
	aus.
Inhalt:	Das zu entwickelnde Projekt kann von Studierenden
	selbst vorgeschlagen werden oder aus vorgegebenen
	Projekten ausgewählt werden. Es wird zu Beginn des
	IP1 vereinbart. Ein geeignetes Projekt wäre zum
	Beispiel die Entwicklung, Fertigung, Inbetriebnahme
	und Erprobung von CNC-gesteuerten Kleinmaschinen,
	wie 3D-Drucker, Fräsen, Gravurgeräten,
	Schneidplottern, Koordinatenmessmaschinen und

	ähnlichem, wobei folgende Arbeiten zu behandeln wären: - Mechanische Konstruktion für das Maschinengestell, - Auswahl und Auslegung von Antriebstechnik für die Bewegungsachsen und Arbeitswerkzeuge, - Prozesskette vom CAD-Modell zum Bewegungsablauf, - Analysieren des Verhaltens und Ermitteln des Einflusses auf die Fertigungsqualität. Bei jedem Projekt sollen unter Anwendung einer agilen Arbeitsweise u.a. die Analyse der Aufgabenstellung, Teamarbeit, Konzeptentwicklung, Konzeptpräsentation, Detailkonstruktion und Dokumentation erlernt und gelebt werden. Weiterhin ist angestrebt, die Teilefertigung mithilfe der Zentralwerkstatt der THB und der Offenen Werkstatt durchzuführen sowie den Aufbau und Inbetriebnahme, die Demonstration und Vermessung zu realisieren.
Studien- Prüfungsleistungen:	Die Studien- und Prüfungsleistungen werden am Beginn des Moduls kommuniziert. Sie bestehen u.a. aus Präsentationen, Produktdokumentation, schriftlichen Testaten.
Medienformen:	Je nach Aufgabenstellung z.B. Literatur, Firmenprospekte, Laboreinrichtungen und Messgeräte, Stoffdaten, regelmäßige Beratung der Projektgruppe
Literatur:	Spezielle Literatur wird je nach Aufgabenstellung empfohlen

Interdisziplinäres Projekt 2

Studienrichtung:	IEIT, IMT, WEIT, WEUT, WMT, MPE, MAnT, MEVT
Modulbezeichnung:	Interdisziplinäres Projekt 2
	Interdisciplinary Project 2
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Peter Flassig
Dozent(in):	Prof. DrIng. Peter Flassig
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 6. Semester, Pflichtfach
	IMT, 6. Semester, Pflichtfach
	WEIT, 6. Semester, Pflichtfach
	WMT, 6. Semester, Pflichtfach
	WEUT, 6. Semester, Pflichtfach
	MPE, 6. Semester, Pflichtfach
	MAnT, 6. Semester, Pflichtfach
	MEVT, 6. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Übung, 2 SWS Projekt;
	Einführende Vorstellung und Erläuterungen,
	Selbststudium, Teamarbeit, regelmäßige Betreuung und
	Diskussion mit den Dozenten
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Abgeschlossenes Grundstudium
Angestrebte Lernergebnisse:	Die Studierenden erhalten im Rahmen eines
	geeigneten, technischen Entwicklungsprojekts einen
	Einblick in die Projektarbeit und lernen die Phasen eines
	agilen Produktentstehungsprozesses kennen. Sie bauen
	ihre Kompetenzen in der fachlichen Kommunikation
	(Recherche, Berichte, Präsentationen, Zeichnungen,
	Beschaffung,), der Teamarbeit und auf dem Gebiet
	des Agilen Arbeitens (Scrum-Framework, Kanban,)
	aus.
Inhalt:	Das zu entwickelnde Projekt kann von Studierenden
	selbst vorgeschlagen werden oder aus vorgegebenen
	Projekten ausgewählt werden. Es wird zu Beginn des
	IP1 vereinbart. Ein geeignetes Projekt wäre zum
	Beispiel die Entwicklung, Fertigung, Inbetriebnahme
	und Erprobung von CNC-gesteuerten Kleinmaschinen,
	wie 3D-Drucker, Fräsen, Gravurgeräten,

	Schneidplottern, Koordinatenmessmaschinen und
	ähnlichem, wobei folgende Arbeiten zu behandeln
	wären:
	- Mechanische Konstruktion für das Maschinengestell,
	- Auswahl und Auslegung von Antriebstechnik für die
	Bewegungsachsen und Arbeitswerkzeuge,
	- Prozesskette vom CAD-Modell zum Bewegungsablauf,
	- Analysieren des Verhaltens und Ermitteln des
	Einflusses auf die Fertigungsqualität.
	Bei jedem Projekt sollen unter Anwendung einer agilen
	Arbeitsweise u.a. die Analyse der Aufgabenstellung,
	Teamarbeit, Konzeptentwicklung, Konzeptpräsentation,
	Detailkonstruktion und Dokumentation erlernt und
	gelebt werden. Weiterhin ist angestrebt, die
	Teilefertigung mithilfe der Zentralwerkstatt der THB
	und der Offenen Werkstatt durchzuführen sowie den
	Aufbau und Inbetriebnahme, die Demonstration und
	Vermessung zu realisieren.
Studien- Prüfungsleistungen:	Vortrag und schriftliche Arbeit; Die Studien- und
	Prüfungsleistungen werden am Beginn des Moduls
	kommuniziert. Sie bestehen u.a. aus Präsentationen,
	Produktdokumentation, schriftlichen Testaten.
Medienformen:	Je nach Aufgabenstellung z.B. Literatur,
	Firmenprospekte, Laboreinrichtungen und Messgeräte,
	Stoffdaten, regelmäßige Beratung der Projektgruppe
Literatur:	Spezielle Literatur wird je nach Aufgabenstellung
	empfohlen

Konstruktion, Konstruktionslabor 1

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Konstruktion
_	Mechanical Design
ggf. Kürzel	CAD-1
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Konstruktionslabor 1
	Mechanical Design Lab 1
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Peter Flassig
Dozent(in):	DiplIng. Steffen Rotsch
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 1. Semester, Pflichtfach
	MAnT, 1. Semester, Pflichtfach
	MEVT, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Labor
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Sicherer Umgang mit dem Betriebssystem Windows,
	MS-Office, Internet (Firefox), Dateiexplorer
Angestrebte Lernergebnisse:	Die Studierenden können mit einem aktuellen
	skizzenbasierten CAD-System
	- ein Projekt erstellen,
	- ein neues Volumenmodell für ein Bauteil aufbauen
	und
	- eine Zeichnung von diesem ableiten.
	Sie können
	- einfache Baugruppen aus Einzelmodellen
	zusammenstellen,
	- Verknüpfungen zwischen den Volumenmodellen
	herstellen und
	- eine Stückliste ableiten, Positionsnummern in eine
	Zusammenbauzeichnung einfügen sowie
	Explosionsdarstellungen erzeugen.
	Sie kennen die Ressourcen von Zeichnungsdokumenten
	wie Schriftfelder, Symbole und Rahmen und können
7 1 1	diese an ihre Erfordernisse anpassen.
Inhalt:	Laborinhalte:
	- Einführung in die spezifische Oberfläche von CAD-
	Systemen und deren Elemente
	- Dokumentarten (Volumenmodell,
	Zeichnungsdokument, Baugruppendokument,

	Präsentationsdokument, Projektdokument)
	- Anlegen und Pflegen von Projektdaten
	- Anlegen und Aufbau eines Volumenmodells,
	Strukturbaum, Skizzentechnik, Extrusion und Rotation;
	Regeln zum Aufbau funktionaler Modelle
	- Ableiten von Zeichnungen aus Volumenmodellen,
	Maßeintragungen, Schriftfelder, Ansichten, Schnitte,
	Detailansichten, Eintragung benutzerdefinierter
	Symbole
	- Anlegen von Baugruppen
	Einfügen und platzieren von Bauteilen, festlegen von
	Verknüpfungen, einfügen und anpassen von Normteilen
	aus dem Inhaltscenter
	- Erstellen von Explosionszeichnungen mit Hilfe von
	Präsentationsdokumenten
	- Erstellen und anpassen von Stücklisten; einfügen der
	Stücklisten in die Zusammenbauzeichnung
	- Erstellen von Zeichnungsvorlagen
Studien- Prüfungsleistungen:	Testierte Leistung; Teilnahme und Testat am Ende des
	2. Semesters
Medienformen:	Tafel, Beamer, Lernplattform moodle, Hausarbeiten,
	Übungen, CAD-Labor
Literatur:	- Gomeringer und Heinzler: Tabellenbuch Metall; Verlag
	Europa Lehrmittel
	- Hilfesystem und FAQ des CAD-Systems

Konstruktion, Konstruktionslabor 2

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Konstruktion
_	Mechanical Design
ggf. Kürzel	CAD-2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Konstruktionslabor 2
	Mechanical Design Lab 2
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Peter Flassig
Dozent(in):	DiplIng. Steffen Rotsch
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Labor
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	Teilnahme am Konstruktionsabor 1
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Sicherer Umgang mit dem Betriebssystem Windows,
	MS-Office, Internet (Firefox), Dateiexplorer,
	Grundkenntnisse im Umgang mit CAD-Systemen
Angestrebte Lernergebnisse:	Die Studierenden können mit einem aktuellen
	skizzenbasierten CAD-System
	- ein umfangreiches Einzelbenutzerprojekt verwalten,
	- komplexere Volumenmodelle für ein Bauteil
	analysieren und Fehler im Modell identifizieren und
	korrigieren
	- Umfangreiche Zeichnungen von Modellen ableiten und
	vollständig beschriften.
	Sie haben vertiefte Kenntnisse über den Aufbau von
	Volumenmodellen. Sie kennen verschiedene Werkzeuge
	zur Modellierung von komplexen Bauteilen, wie Schale,
	Formteilung, Entformungsschrägen und
	Blechteilmodellierung. Sie können Werkzeuge zum
	effektiven Aufbau von Volumenmodellen wie Muster
	und Spiegelung anwenden.
	Sie können
	- komplexere Baugruppenstrukturen mit
	Unterbaugruppen zusammenstellen und verwalten,
	- bewegliche Verbindungen zwischen Bauteilen wie z.B.
	Scharniere herstellen und kennen den Unterschied zu
	Verknüpfungen.

Sie kennen die Ressourcen von Zeichnungsdokumenten
wie Schriftfelder, Symbole und Rahmen und können
diese an ihre Erfordernisse anpassen.
Laborinhalte:
- Erweiterte Bauteilmodellierung: Schale, Muster,
Spiegelung, Rippen, Entformungsschrägen und
Entformungsanalyse, Blechteilemodellierung,
Bauteilelemente (Nuten, Freistiche, Zentrierbohrungen)
- Fehleranalyse und Behebung in komplexen Bauteilen
- Anfertigen komplexer Zeichnungen
- Erweiterte Baugruppenmodellierung; Arbeit mit
Unterbaugruppen, Erstellen von Bauteilen im
Baugruppenmodus, und Umgang mit
Skizzenabhängigkeiten,
- Arbeit mit beweglichen Baugruppen und Definition
von beweglichen Verknüpfungen
Testierte Leistung; Teilnahme und erfolgreicher CAD-
Test
Tafel, Beamer, Lernplattform moodle, Hausarbeiten,
Übungen, CAD-Labor
- Gomeringer und Heinzler: Tabellenbuch Metall; Verlag
Europa Lehrmittel
- Hilfesystem und FAQ des CAD-Systems

Konstruktion, Konstruktion 1

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Konstruktion
_	Mechanical Design
ggf. Kürzel	KL1
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Konstruktion 1
	Mechanical Design 1
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Peter Flassig
Dozent(in):	DiplIng. Steffen Rotsch
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 1. Semester, Pflichtfach
	MAnT, 1. Semester, Pflichtfach
	MEVT, 1. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Kenntnisse der Geometrie, projektives Zeichnen,
	praktische Kenntnisse Metallbearbeitung aus
	Lehrausbildung oder Vorpraktikum
Angestrebte Lernergebnisse:	Die Studierenden können einen technischen
	Sachverhalt in einer freihändigen Skizze darstellen.
	Sie können eine gegebene technische Zeichnung lesen
	und erkennen die Zuordnung der Ansichten.
	Sie identifizieren die Maßangaben die
	Zeichnungsangaben von Werkstoffen und Halbzeugen
	sowie die Kennzeichnung der Oberflächenrauheit eines
	in einer Zeichnung dargestellten Bauteils.
	Sie können Toleranzangaben in technischen
	Zeichnungen identifizieren und erläutern.
	Sie können eine technische Zeichnung für einfache
	Dreh- und Frästeile ausführen unter Berücksichtigung
	der Regeln zur Abwicklung der Ansichten, ein
	Bezugssystem festlegen und Maße fertigungs- und
	funktionsgerecht eintragen. Sie können eine
	Werkstoffangabe normgerecht in eine Zeichnung
	eintragen.
Inhalt:	Vorlesung:
	- Technischen Produktdokumentation Einführung:
	Aufbau und Funktion, Fertigungszeichnung,
	Zusammenbauzeichnung, Stückliste, Stücklistenarten

	(Struktur und Inhalt), ZUS - Einführung technisches Zeichnen: Blattformate, Maßstäbe, Blattaufteilung, Schriftfelder, Linienarten, Textangaben - Darstellungslehre: Projektionsarten, Normalprojektion, Isometrie, 3-Tafelprojektion, Abwicklungsmethode 1, 3 und Pfeilmethode - Schnitte und Ansichten: Vollschnitt, Teilschnitt, Ausbruch, Detailansichten, gedrehte Ansichten - Bemaßung: Bestandteile, Maßlinienendezeichen, Maßeintragung, Regeln, Bemaßungsarten (Bezugsbemaßung, Kettenbemaßung, steigende Bemaßung, Koordinatenbemaßung) Bezugssystem, funktions-, fertigungs- und prüfgerechte Maßeintragung, Beispiele - Einführung in die Tolerierung: Allgemeintoleranz, ISO- Toleranzsystem, System Einheitsbohrung, System Einheitswelle, Form und Lagetolerierung - Angaben in Fertigungszeichnungen: Halbzeuge, Werkstoffe, Sachnummer und Benennung, Oberflächen, Werkstückkanten, Wärmebehandlung Übungen, Hausarbeiten: - Technik des freihändigen Skizzierens - Übung zur Darstellungslehre - Übung Fertigungszeichnung - Übung Fertigungszeichnung
	Technik des freihändigen SkizzierensÜbung zur DarstellungslehreÜbung zur Maßeintragung
	- Übung Zusammenbauzeichnung und Stückliste
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, verwendete Folien in pdf-Form, Hausarbeiten, Übungen
Literatur:	 Grollius: Technisches Zeichnen für Maschinenbauer; Hanserverlag Tabellenbuch Metall. Europa Lehrmittel, Haan- Gruiten.

Konstruktion, Konstruktion 2

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Konstruktion
	Mechanical Design
ggf. Kürzel	KL2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Konstruktion 2
	Mechanical Design 2
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Peter Flassig
Dozent(in):	DiplIng. Steffen Rotsch
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	KL1
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Kenntnisse aus dem Vorsemester, Berufspraktische
	Kenntnisse der Metallbearbeitung sind hilfreich
Angestrebte Lernergebnisse:	Die Studierenden können den Inhalt technischer
	Normen (DIN EN ISO) erfassen, interpretieren und auf
	eine gegebene Aufgabenstellung anwenden.
	Sie können basierend auf einem vorgegebenen Konzept
	eine Entwurfsskizze anfertigen. auf dieser können Sie
	geeignete Maße, Oberflächenangaben und Toleranzen
	bestimmen.
	Sie leiten aus einer Entwurfszeichnung die Gestalt aller
	relevanten Einzelteile ab und können aussagekräftige
	Fertigungszeichnungen anfertigen. Der Funktion
	entsprechend legen Sie geeignete Oberflächen-, sowie
	Maß- und Toleranzangaben fest und tragen diese
	normgerecht in die Zeichnungen ein.
	Sie können Stücklisten zusammenstellen und
	Baugruppenzeichnungen anfertigen.
	Sie kennen wesentliche Maschinenelemente, die im
	Maschinenbau Verwendung finden. Sie kennen typische
	Formelemente wie Freistiche, Zentrierbohrungen,
	Fasen, Radien, Bohrungen, Senkungen, Gewinde und
	können diese den Erfordernissen entsprechend einsetzen.
Inhalt:	Vorlesung:
minait.	voriesurig.

	Einführung in die Maschinenelemente:
	- Verbindungselemente am Beispiel Schraubverbindung, Welle-Nabe-Verbindungen am Beispiel Passfeder,
	Lagerungen am Beispiel Wälzlager
	Gestaltungslehre:
	- Spanende Formgebung, Werkzeuge, Maschinen und
	Spannmittel sowie typische Gestaltelemente von
	Werkstücken (Drehen Fräsen)
	- Formgebung durch Urformen Verfahrensablauf und
	Schlussfolgerungen für die Gestaltung der Werkstücke
	(am Beispiel Kunststoffspritzguss bzw. Sandguss)
	- Formgebung durch Umformen, verfahrensgerechte
	Gestaltung (Bearbeitung von Blech, Zuschnitt, Biegen)
	- Formgebung durch Rapid Prototyping (FDM)
	Gestaltung von Werkstücken für den 3D-Druck
	Übungen:
	- Übung Verbindungselemente (Gestaltung einer
	Schraubverbindung)
	- Übung Welle-Nabe-Verbindung (Passfeder)
	- Übung Lager (Einbau eines Wälzlagers)
	- Übung fertigungsgerechtes Gestalten
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, Lernplattform moodle, verwendete
	Folien im pdf-Format, Hausarbeiten, Übungen
Literatur:	- Gomeringer und Heinzler: Tabellenbuch Metall; Verlag
	Europa Lehrmittel
	- Grollius: Technisches Zeichnen für Maschinenbauer;
	Hanserverlag
	- Hoenow: Gestalten und Entwerfen im Maschinenbau;
	Hanserverlag,
	- Schmidt: Konstruktionslehre Maschinenbau; Verlag
	Europa Lehrmittel

Konventionelle Energietechnik

Studienrichtung:	MEVT
Modulbezeichnung:	Konventionelle Energietechnik
	Conventional Energy Technology
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. Robert Flassig
Dozent(in):	Prof. Dr. Robert Flassig
Sprache:	deutsch
Zuordnung zum Curriculum:	MEVT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung;
	Aufbauend auf den Grundkenntnissen vor allem der
	Thermodynamik und der Wärmeübertragung erwerben
	die Studierenden spezifische Kenntnisse zu technischen
	Energiewandlungsprozessen wie thermischer
	Wirkungsgrad, Thermodynamik der
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Thermo- und Fluiddynamik, Grundlagen der
	Verfahrenstechnik
Angestrebte Lernergebnisse:	Aufbauend auf den Grundkenntnissen vor allem der
	Thermodynamik und der Wärmeübertragung werden
	spezifische Kenntnisse zu Energiewandlungsprozessen
	vermittelt, die zu eigenständigem Auslegen von
	Verfahren und Aggregaten befähigen.
Inhalt:	Moderne Kraftwerkstechnik, Combined Cycles
	CCS Technologie
	ORC Prozesse
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Powerpoint-Präsentationen (als Skript im Netz),
	Kurzfilme, Arbeitsblätter und Anschauungsbeispiele,
	Simulationssoftware
Literatur:	Zahoransky, R. A.: Energietechnik. Wiesbaden: Vieweg,
	2002
	Khartchenko, N. V.: Umweltschonende Energietechnik.
	Kamprath-Reihe. Würzburg: Vogel, 1997

Kunstsofftechnik für Ingenieure

Studienrichtung:	IEIT, IAT, IMT, IOE, MPE, MAnTMEVT,
Modulbezeichnung:	Kunstsofftechnik für Ingenieure
	Plastics for Engineers
ggf. Kürzel	KT
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Dr. rer. nat. Christina Niehus
Dozent(in):	Dr. rer. nat. Christina Niehus
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 6. Semester, Wahlpflichtfach
	IAT, 6. Semester, Wahlpflichtfach
	IMT, 6. Semester, Wahlpflichtfach
	IOE, 6. Semester, Wahlpflichtfach
	MPE, 6. Semester, Wahlpflichtfach
	MAnT, 6. Semester, WahlpflichtfachMEVT, 6. Semester,
	Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Vorlesung Werkstoffkunde
Angestrebte Lernergebnisse:	Das Modul soll die Grundlagen der Werkstoffkunde um
	die der Kunststoffe erweitern und vertiefen. Im
	Vordergrund stehen die
	Vermittlung von Kompetenzen im Bereich der
	Kunststoff-
	eigenschaften, deren Einsatzgebiete sowie
	Anwendungen.
	Nach erfolgreichem Abschluss des Moduls haben sich
	die
	Studierenden die Kompetenz erworben, den
	interdisziplinären
	Zusammenhang von Werkstoff, Verarbeitung und
	Anwendung zu
	erfassen. Die Studierenden kennen die wichtigsten
	Monomere zur
	Darstellung von Polymeren. lernen Auswahl und
	Anwendung von
	Kunststoffen hinsichtlich der Eigenschaften so zu
	verstehen, dass

	die enwerhene Methodik eigher angewondet worden
	die erworbene Methodik sicher angewendet werden kann.
	Sie kennen die genormten Prüfverfahren zur Eigenschaftsermittlung und können
	Kunststoffprüfungen, soweit die Geräte und das Labor
	verfügbar sind, selbstständig durchführen. Dazu werden
	Versuche zur thermischen, physikalischen,
	mechanischen Charakterisierung von Polymeren oder
	alternativ eine praxisorientierte Projektarbeit
	angeboten. Die Studierenden sind in der Lage, einfache
	Experimente, wie Flammenprobe, Brennverhalten und
	Dichtebestimmungen, Untersuchungen zur
	Stofftrennung
	selbstständig durchzuführen und auf der Basis dieser
	Ergebnisse zu unterscheiden, welche Art von Kunststoff
	(Thermoplaste, Duromere, Elastomere) vorliegt.
	Anwendung von Prüfverfahren zur Ermittlung der
	mechanischen Kennwerte (Zugversuch,
	Kerbschlagversuch, Biegeversuch, Härteprüfung) sowie
	Untersuchungen zum Alterungs- und
	Beständigkeitsverhalten. Die Studierenden sind in der
	Lage, Werkstoffe in einfachen Fällen eigenständig,
	anforderungsgerecht auszuwählen und für die jeweilige
	Anwendung relevante Prüfmethoden vorzuschlagen
	sowie Prüfergebnisse zu beurteilen.
	Dazu können sie die Ergebnisse analysieren, mit
	Literaturdaten
	vergleichen und Abweichungen hinterfragen sowie von
	Messwerten auf Struktur-Eigenschaftsbeziehungen
- 1 1	schließen.
Inhalt:	- Historische Entwicklung und wirtschaftliche Bedeutung
	- Einteilung, Aufbau und Synthese der Kunststoffe
	- Einführung in die verschiedenen Kunststoffarten
	- Zusammenhang zwischen Aufbau, Struktur,
	Eigenschaften und Verhalten von Kunststoffen
	- Thermisch-mechanische Zustandsbereiche
	- Bauteilfertigung aus Thermoplasten, Elastomeren und
	Duromeren
	- Verarbeitungs- und Recyclingverfahren
	- Prüfverfahren zur Ermittlung der
	physikalisch/chemischen Eigenschaften sowie des
	thermisch-mechanischen Verhaltens
Studien- Prüfungsleistungen:	Schriftliche Prüfungsleistung, 90 Minuten
Medienformen:	Tafel, ppt, Laborversuche
Literatur:	P. Eyerer: Polymer Engineering, 2. Aufl. Springer Verlag
	2020
	H. Domininghaus: Kunststoffe, Eigenschaften und

Anwendungen, 8. Aufl., Springer Vieweg Verlag 2012
B. Schröder; Kunststoffe für Ingenieure, 2014, Springer
Verlag
A. Frick: Praktische Kunststoffprüfung, 2010, Carl
Hanser Verlag
E. Hornborgen, G. Eggeler, E. Werner, Werkstoffe, 10.
Aufl., Springer Verlag
W. Kaiser, Kunststoffchemie für Ingenieure, 4. Aufl.,
2015, Carl Hanser Verlag
Praktikumsanleitungen und alle aufgeführten Normen
sowie Unterlagen zur Vorlesung im moodle-Kurs

Labor und Seminar Energietechnik

Studienrichtung:	MEVT
Modulbezeichnung:	Labor und Seminar Energietechnik
	Lab and Seminar Energy Technology
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. Dr. Robert Flassig
Dozent(in):	Prof. Dr. Robert Flassig, DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MEVT, 6. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Seminar, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Thermo- und Fluiddynamik, Wärme- und
	Stoffübertragung, Konventionelle Energietechnik,
	Erneuerbare Energien
Angestrebte Lernergebnisse:	Die Studierenden führen selbständig Versuchsreihen zur
	Energiewandlung an Labor- und Technikumsanlagen
	durch, die wesentliche Inhalte der Lehrveranstaltungen
	Konventionelle Energietechnik und Erneuerbare
	Energien abbilden. Das dort vermittelte Wissen wird
	durch die Anwendung der theoretischen Grundlagen
	und das Erkennen betrieblicher Besonderheiten
	gefestigt. Durch die Dokumentation der Versuche und
	gewonnenen Erkenntnisse in wissenschaftlichen
	Berichten erweitern die Studierenden ihre Kompetenzen
	im Verfassen wissenschaftlicher Arbeiten.
	Das zugehörige Seminar verfolgt das Ziel, den
	Studierenden einen Einblick in industrielle
	Anwendungen des Gelernten zu ermöglichen und so
	eine Verknüpfung zwischen Theorie und industrieller
	Praxis herzustellen. Die selbständige Einarbeitung in
	zugehörige Themenstellungen sowie das Ausarbeiten
	und Halten von Fachvorträgen fördert die Fähigkeiten
	der Studierenden zur strukturierten Arbeit und
	Kommunikation wissenschaftlich-technischer Inhalte
To be a lieu	weiter.
Inhalt:	Es werden u.a. Versuche aus folgenden Bereichen
	angeboten:
	Solarthermie und Photovoltaik am Sonnensimulator 92

	 Windkraftanlage im Windkanal Wasserstofftechnologie (z.B. Brennstoffzellen) Kraftwerkstechnologie (z.B. Dampfkraftwerk, ORC) Seminar: Exkursionen (z.B. zu den Satdtwerken), Erörterung zugehöriger Themenstellungen, u.a. durch
	Vorträge von Lehrenden, Gastdozenten und Studierenden
Studien- Prüfungsleistungen:	nach Absprache; Benotete Prüfungsleistung
Medienformen:	Versuchsaufbauten mit rechnergestützter und manueller Messwerterfassung, Skripte, Tafel
Literatur:	Zahoransky, R. A.: Energietechnik. Wiesbaden: Vieweg, 2002 Khartchenko, N. V.: Umweltschonende Energietechnik. Kamprath-Reihe. Würzburg: Vogel, 1997 Quaschning, V.: Regenerative Energiesysteme. 9. Aufl. München: Hanser, 2015

Labor und Seminar Verfahrenstechnik

Studienrichtung:	MEVT
Modulbezeichnung:	Labor und Seminar Verfahrenstechnik
	Lab and Seminar Process Engineering
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	N.N. (Verfahrenstechnik)
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MEVT, 6. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Seminar, 2 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Thermo- und Fluiddynamik, Wärme- und
	Stoffübertragung, Mechanische und Thermische
	Verfahrenstechnik
Angestrebte Lernergebnisse:	Die Studierenden führen selbständig Versuchsreihen an verfahrenstechnischen Labor- und Technikumsanlagen durch, die wesentliche Inhalte der Lehrveranstaltungen Mechanische und Thermische Verfahrenstechnik abbilden. Das dort vermittelte Wissen wird durch die Anwendung der theoretischen Grundlagen und das Erkennen betrieblicher Besonderheiten gefestigt. Durch die Dokumentation der Versuche und gewonnenen Erkenntnisse in wissenschaftlichen Berichten erweitern die Studierenden ihre Kompetenzen im Verfassen wissenschaftlicher Arbeiten. Das zugehörige Seminar verfolgt das Ziel, den Studierenden einen Einblick in industrielle Anwendungen des Gelernten zu ermöglichen und so eine Verknüpfung zwischen Theorie und industrieller Praxis herzustellen. Die selbständige Einarbeitung in zugehörige Themenstellungen sowie das Ausarbeiten und Halten von Fachvorträgen fördert die Fähigkeiten der Studierenden zur strukturierten Arbeit und Kommunikation wissenschaftlich-technischer Inhalte weiter.
Inhalt:	Versuche aus dem Bereich Mechanische
	Verfahrenstechnik wie z.B. 94

	 Fördern von Fluiden, Fest-Flüssig-Trennung pneumatische Förderung Versuche aus dem Bereich Thermische, Chemische und Bioverfahrenstechnik, wie z.B. Destillation Biogaserzeugung Seminar: Exkursionen (z.B. in die chemische oder Recyclingindustrie), Erörterung zugehöriger Themenstellungen, u.a. durch Vorträge von Lehrenden, Gastdozenten und Studierenden
Studien- Prüfungsleistungen:	Benotete Protokollierung, Auswertung und Interpretation der Versuche. Der arithmetische Mittelwert aller Protokollnoten ergibt 1/3 der Modulnote Benotete Prüfungsleistung, ergibt 2/3 der Modulnote
Medienformen:	Labor: Versuchsanleitungen mit theoretischen Grundlagen zum jeweiligen Versuch zum Herunterladen von moodle, Versuchsaufbauten mit rechnergestützter und manueller Messwerterfassung Seminar: Folienpräsentation, Tafel
Literatur:	Hemming, W.; Wagner, W.: Verfahrenstechnik. 12. Auf. Kamprath-Reihe. Würzburg: Vogel Business Media, 2017 Vauck, W. R. A.; Müller, H. A.: Grundoperationen chemischer Verfahrenstechnik. 11. Aufl. Stuttgart, Weinheim: Dt. Verl. für Grundstoffindustrie; Wiley-VCH, 2000 Sattler, K.: Thermische Trennverfahren. 3. Aufl. Weinheim: WILEY-VCH, 2001.

Maschinenelemente 1

Studienrichtung:	MPE, MAnT
Modulbezeichnung:	Maschinenelemente 1
	Machine Elements 1
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Peter Flassig
Dozent(in):	Prof. DrIng. Peter Flassig
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 5. Semester, Pflichtfach
	MAnT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Technische Mechanik 1 und 2
	Konstruktionslehre 1 und 2
	Fertigungstechnik 1 und 2
	Werkstoffkunde 1 und 2
Angestrebte Lernergebnisse:	Die Studierenden kennen die Vorgehensweise beim
	Dauerfestigkeitsnachweis. Bei der Konstruktion eines
	Produktes können sie die Maschinenelemente wie
	Wellen, Achsen, Wälzlager und Welle-
	Nabenverbindungen funktions- und kostengerecht
	dimensionieren und in Gesamtentwürfe integrieren.
	Die grundsätzlichen Funktionen, Einsatzmöglichkeiten
	und Parameter von Kupplungen, Bremsen und
	Getrieben sind den Studierenden bekannt.
	Bei der Konstruktion eines Produktes können die
	angegebenen Maschinenelemente funktions- und
	kostengerecht eingesetzt und dimensioniert und
	abgestimmt in einen Gesamtentwurf integriert werden.
Inhalt:	Vorlesung und Übung
	Praktische Festigkeitsberechnung
	(Dauerfestigkeitswerte, maßgebliche Spannungen,
	zulässige Spannungen, Sicherheit)
	Wellen und Achsen (Dauerfestigkeit, Durchbiegung
	und Neigung, kritische Drehzahl)
	Welle-Nabe-Verbindungen (Form- und
	Kraftschlussverb.)
	Wälzlager (Rillenkugellager, Zylinder- und

	Kegelrollenlager)
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Seminaristischer Vortrag, Tafel, ergänzende
	Präsentationen über Beamer (Bilder zur Vorlesung,
	Tabellen, Videos), beispielhafte Anwendung von
	Berechnungs- und CAD-Programmen
Literatur:	Roloff / Matek, Maschinenelemente.
	Vieweg, Braunschweig und Wiesbaden.
	• Decker: Maschinenelemente. Hanser, München.
	• Niemann: Maschinenelemente. Bd. 1, 2. Springer,
	Berlin
	Tabellenbuch Metall. Europa Lehrmittel, Haan-
	Gruiten.

Maschinenelemente 2

Studienrichtung:	MPE, MAnT
Modulbezeichnung:	Maschinenelemente 2
	Machine Elements 2
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Peter Flassig
Dozent(in):	Prof. DrIng. Peter Flassig
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 6. Semester, Pflichtfach
	MAnT, 6. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Technische Mechanik 1 und 2
	Konstruktionslehre 1 und 2
	Fertigungstechnik 1 und 2
	Werkstoffkunde 1 und 3
Angestrebte Lernergebnisse:	Die Studierenden können Maschinenelemente wie
	Gleitlager, Bewegungsschrauben und Führungen sowie
	Verbindungen (Schweißen, Schrauben, Kleben, Löten)
	dimensionieren. Sie kennen die grundsätzlichen
	Funktionen und Parameter von Antriebselementen wie
	Kupplung, Bremsen und Getrieben und können diese in
	Gesamtentwürfe integrieren.
Inhalt:	Vorlesung und Übung
	Gleitlager
	Verbindungen (Schraubenverb., Schweißverb., Löt-
	und Klebverb., Stift- und Bolzenverb.)
	Bewegungsschrauben und Führungen
	Federn
	Elemente der Antriebstechnik (Einführung in Funktion
	und Aufbau von Kupplungen, Bremsen,
	Zahnradgetriebe und Hülltrieben)
	Labor
	Einführung in die Nutzung des CAD-Programms
	Inventor zur Modellierung und Auslegungsrechnung von
	Maschinenelementen
	Einführung in die Nutzung von Programmen zur
	Auslegung von Maschinenelementen wie KissSoft,

Modulkatalog MB, SPO 2022, Arbeitsstand 11.06.2023

	eAssistant oder Mdesign
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Seminaristischer Vortrag, Tafel, ergänzende
	Präsentationen über Beamer (Bilder zur Vorlesung,
	Tabellen, Videos), beispielhafte Anwendung von
	Berechnungs- und CAD-Programmen
Literatur:	Roloff / Matek, Maschinenelemente. Vieweg,
	Braunschweig und Wiesbaden
	Decker: Maschinenelemente. Hanser, München.
	Tabellenbuch Metall. Europa Lehrmittel, Haan-
	Gruiten.

Mechanische Antriebe

Studienrichtung:	MAnT
Modulbezeichnung:	Mechanische Antriebe
	Mechanical Drives
ggf. Kürzel	mAnt
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Thomas Götze
Dozent(in):	Prof. DrIng. Thomas Götze
Sprache:	deutsch
Zuordnung zum Curriculum:	MAnT, 6. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Maschinenelemente, Zahnradberechnung
Angestrebte Lernergebnisse:	Systematische Kompetenz:
	Die Studierenden verstehen die mAnt als Teilgebiet der
	Antriebstechnik mit gleichförmigen Übersetzungen,
	insbesondere die Vielfalt der Zahnradgetriebe in
	stationären und mobilen Anlagen.
	Instrumentelle Kompetenz:
	Sie verfügen über ein sicheres Verständnis der
	wesentlichen Gesetze, Theorien und
	Berechnungsmethoden mechanischer Antriebe und
	beherrschen die Anwendungen bei konkreten
	Praxisaufgaben. Sie sind in der Lage, wichtige Getriebe-
	und Antriebselemente zu berechnen und damit
	Antriebssysteme (AnS) zu projektieren.
	Praktische Kompetenz
	Sie können mechanische Antriebsstränge
	dimensionieren, gerätetechnisch/ konstruktiv simulieren
	und Berechnungsergebnisse interpretieren.
Inhalt:	Einführung in das Fachgebiet der mechanischen
	Antriebe, Einordnung in die Antriebstechnik / -systeme;
	Berechnungsmodelle für die "starre" Maschine /
	Modellableitung; Reduktion von Trägheiten, Kräften und
	Bewegungsparametern bei gegebenen Übersetzungen;
	Anlauf-, Brems- und Übergangsvorgänge; Berechnung
	mit Vereinfachungen, Linearisierungen und grafische
	Ermittlung; Simulation von AnS mit Nichtlinearitäten
	und verzweigten Strukturen (objektorientierte

	Cinculation and Cinculation VV
	Simulationssoftware SimulationX);
	Aufbau und Einsatz diverser Gelenkwellenarten;
	Mechanische Kupplungen in AnS und Auswahl nach
	antriebstechnischen Erfordernissen (Anlauf- und
	Sicherheitskupplungen, Ausgleichskupplungen,
	Schaltkupplungen); Berechnungskriterien;
	Mechanische Getriebe in AnS und Auswahl nach
	antriebstechnischen Erfordernissen (z.B.
	Zahnradgetriebe, Planetenradgetriebe, Hüllgetriebe,
	Reibgetriebe, Verstellgetriebe); hochübersetzende
	Sondergetriebe (Harmonik Drive, Cyclo,); Analyse
	und Synthese von Planetengetrieben, Berechnung und
	Kutzbachplan, Fahrradnabengetriebe (Sachs, Shimano,
	Rohloff, Pinion); Simulation von Bewegungsvorgängen
	in Antriebssystemen; Bewegungsumwandlungen
	(Beispielübungen, Kreativ- und Variantentraining);
	Demonstrationen und Messen an Antriebssträngen im
	Labor
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Präsentationsskripte
	- Arbeitsblätter mit Abbildungen, Diagrammen und
	Übungen
	- Software SimulationX
	- Demonstrations- und Schnittmodelle, vorrangig aus
	der Industrie zum Stand der Technik
	- Prüfstandsvorführungen
Literatur:	- Haberhauer, Kaczmarek: TB der Antriebstechnik
	- Dittrich/Schumann: Anwendungen der
	Antriebstechnik, Band 1 - 3
	- Niemann/Winter: Maschinenelemente, Teile 1 - 3
	- Böge: Die Mechanik der Planetengetriebe
	- Loomann: Zahnradgetriebe
	- Dresig: Schwingungen mechanischer Antriebssysteme
	- Volmer: Getriebetechnik Umlaufrädergetriebe
	- Müller: Die Umlaufgetriebe
	- Funk: Zugmittelgetriebe
	- Volmer: Getriebetechnik Zahnriemengetriebe
t	

Mechanische Verfahrenstechnik

Studienrichtung:	MEVT
Modulbezeichnung:	Mechanische Verfahrenstechnik
	Mechanical Process Engineering
ggf. Kürzel	MVT
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	N.N. (Verfahrenstechnik)
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MEVT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung;
, -	In diesem Modul kommen Vorlesungen und analytische
	Übungen zum Einsatz. In den analytischen Übungen
	werden praxisnahe Aufgabenstellungen mit
	Unterstützung des Lehrenden selbstständig gelöst.
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Thermo- und Fluiddynamik, Technische Mechanik
Angestrebte Lernergebnisse:	In diesem Modul sollen die Studierenden angewandte
	Inhalte und Methoden der mechanischen
	Verfahrenstechnik lernen und dadurch
	Berufsbefähigung erlangen. Die Vermittlung von
	fachlichem Wissen steht hier im Vordergrund. Es sollen
	Kompetenzen und Spezialisierungen im Bereich der
	Verfahrenstechnik herausgearbeitet werden, die für das
	Profil der Studierenden richtungsweisend sind. Ein Ziel
	dabei ist der Erwerb von Lösungskompetenzen für
	komplexere Dimensionierungs- und
	Auslegungsaufgaben der industriellen Praxis durch
	Bearbeitung entsprechender Problemstellungen.
Inhalt:	Fördern von Fluiden: Pumpen, Verdichter
	Verarbeitung von Feststoffen: Zerkleinern, Trennen
	Mechanische Trennverfahren: Sedimentieren,
	Zentrifugieren, Filtrieren, Emulsionstrennung,
	Membranfiltration, Gasreinigung
	Mechanische Stoffvereinigung: Mischen, Rühren,
	Agglomerieren
	Bearbeitung von industriellen Auslegungsbeispielen mit
	verfahrens- und umwelttechnischem Hintergrund in den
	Übungen.

Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Powerpoint – Präsentationen (als Skript im Netz),
	Kurzfilme, Arbeitsblätter und Anschauungsbeispiele,
	Simulationssoftware
Literatur:	Gmehling,J.; Brehm, A.: Grundoperationen. Stuttgart:
	Georg Thieme Verlag, 1996
	Hemming, W.; Wagner, W.: Verfahrenstechnik. 12. Auf.
	Kamprath-Reihe. Würzburg: Vogel Business Media,
	2017
	Schubert, H.: Handbuch der mechanischen
	Verfahrenstechnik. Weinheim: WILEY-VCH, 2003

Mess-, Steuer-, und Regelungstechnik, Messtechnik

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Mess-, Steuer-, und Regelungstechnik
_	Measurement and Control Technology
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Messtechnik
	Measurement Technology
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sven Thamm
Dozent(in):	Prof. DrIng. Eckhard Endruschat
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 3. Semester, Pflichtfach
_	MAnT, 3. Semester, Pflichtfach
	MEVT, 3. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Labor
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Der erfolgreiche Abschluss der Lehrveranstaltungen der
	Fachsemester 1 und 2. Grundkenntnisse in elektrischer
	Messtechnik, wie Sie i.d.R. in Elektrotechnik-Modulen
	vermittelt wird, wird vorausgesetzt.
Angestrebte Lernergebnisse:	Die Studierenden
	- kennen das SI-Maßeinheitensystem und können es
	anwenden (Wiederholung)
	- kennen und verstehen die Begriffe Messkette,
	Messunsicherheit, Vertrauenswahrscheinlichkeit,
	systematischer Messfehler und können diese bei
	einfachen Messaufgaben bestimmen.
	- können Messunsicherheiten von zusammengesetzten
	Messgrößen mittels des Fehlerfortpflanzungsgesetzes
	berechnen oder abschätzen
	- kennen und verstehen die grundsätzlichen
	Eigenschaften und Limitierungen digitalisierender
	Messgeräte bzwverfahren
	- kennen und verstehen die Messverfahren für die
	wichtigsten nichtelektrischen Größen im Kontext
	industrieller, automatisierter Produktion und können
	diese anwenden
	- Verbesserung der Fähigkeit zur gezielten
	Informationsbeschaffung mittels moderner und
	klassischer Medien

	- Fähigkeit, Aufgabenstellungen im Team zu lösen und
	zu diskutieren
	- Fähigkeit, Aufgabenstellungen systematisch zu
	analysieren
Inhalt:	- Messunsicherheiten, ihre Bestimmung und korrekte
	Angabe von Messergebnissen (absolute u. relative
	Messunsicherheit, Vertrauenswahrscheinlichkeit,
	korrekte Interpretation von Gerätedaten, Mittelwert,
	Standardabweichung, Berechnung der statistischen
	Messunsicherheit, Fortpflanzung von
	Messunsicherheiten, systematische Messfehler)
	- Messumformer und Messverstärker, analoge
	Standardsignale, Abgrenzung zu Feldbus-gestützten
	Messsystemen und -Sensoren
	- Das Digital-Speicher-Oszilloskop und verwandte
	Geräte
	- Zeit- und Frequenzmessung
	- Messverfahren für Temperatur, Druck, Kraft,
	• • • • • • • • • • • • • • • • • • • •
	Drehmoment, Beschleunigung, Position (Weg/Abstand,
	Drehwinkel, 3D-Koordinaten), Durchfluss, Füllstand,
	Luftfeuchte
	- Binäre Sensoren
	Laborpraktikum Messtechnik:
	4 ausgewählte Versuche (Bearbeitungszeit: ca. 3 h pro
	Laborübung) aus folgenden Gebieten:
	Temperaturmessung u. Wärmeleitung, Messungen mit
	dem DSO, Einführung in LabView und Digitale
	Messtechnik, Lasertriangulation, etc.
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Beamer, verwendete Folien in pdf-Form,
	Laboranleitungen
Literatur:	Johannes Prock, Einführung in die Prozessmesstechnik,
	Teubner Verlag
	HR. Tränkler, G. Fischerauer, Das Ingenieurwissen:
	Messtechnik, Springer Vieweg (2013), ISBN: 978-3-662-
	44029-2, e-book: 978-3-662-44030-8
	Johannes Niebuhr, Gerhard Lindner, Physikalische
	Messtechnik mit Sensoren, Deutscher Industrieverlag
	(2011), ISBN-13: 978-3835631519
	J. Hoffmann, Taschenbuch der Messtechnik, 7., neu
	bearbeitete Auflage 2015.
	Hanser ISBN 978-3-446-44271-9 (Ist kein Lehrbuch,
	sondern mehr ein Nachschlagewerk. Zum Wiederholen
	des Stoffs zur Messtechnik aber geeignet.)
	Internet-Literatur:
	Die meisten der in diesem Modul behandelten Inhalte
	sind auch auf Wikipedia (www.wikipedia.org) recht

gut beschrieben. Zum Lernen ist diese Quelle u.U.
nützlich.
Im Internet findet man auch eine Fülle von Skripten
zum Thema Messtechnik sowie Steuerungs- und
Regelungstechnik.
"Googeln" mit Stichworten wie "Skript Messtechnik",
"Lecture notes measurement technique", "Skript
Steuerungstechnik", Skript "Regelungstechnik", Skript
"Automatisierungstechnik", "lecture notes sensors",
etc. liefert i.A. sehr viele Treffer.
Bei Nutzung solcher Quellen ist aber unbedingt das
Copyright des Autors zu beachten! D.h., nur wenn der
Autor ausdrücklich die Benutzung seines Skripts für
externe Nutzer zu privaten Zwecken erlaubt, ist der
Gebrauch solcher Quellen legal. Im Zweifelsfall immer

per E-Mail beim Autor um Erlaubnis bitten!

Mess-, Steuer-, und Regelungstechnik, Steuer- und Regelungstechnik

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Mess-, Steuer-, und Regelungstechnik
_	Measurement and Control Technology
ggf. Kürzel	MSR
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Steuer- und Regelungstechnik
	Control Technology
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sven Thamm
Dozent(in):	Prof. DrIng. Sven Thamm
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 3. Semester, Pflichtfach
_	MAnT, 3. Semester, Pflichtfach
	MEVT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor
Arbeitsaufwand:	120 h, davon 60 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	4
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Mathematik 1 und 2
Angestrebte Lernergebnisse:	Kenntnisse über die grundlegenden Methoden der
	Steuer- und Regelungstechnik; eigenständige
	Anwendung auf einfache Probleme; Fähigkeit zur
	Erweiterung auf komplexe Aufgabenstellungen.
Inhalt:	Mathematische Grundlagen linearer und nichtlinearer
	Systeme
	Grundlagen der Steuerungstechnik
	Regelungstechnik
	- Grundbegriffe und Aufgaben der Regelungstechnik
	- Regelstrecken/Prozesse
	- Regelkreise
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel, Powerpoint – Präsentationen (als Skript im Netz)
Literatur:	Tröster: Steuerungs- und Regelungstechnik für
	Ingenieure, Oldenbourg Verlag, 2005
	Reuter, M.; Zacher, S.: Regelungstechnik für
	Ingenieure, Viewegs Fachbücher der Technik
	Große, N.; Schorn, W.: Taschenbuch der praktischen
	Regelungstechnik, Hanser Verlag
	Profos, P. und T Pfeifer (Hrsg.): Handbuch der
	industriellen Messtechnik
	Polke, M.: Prozessleittechnik
	Bergmann, J.: Automatisierungs- und Prozessleittechnik

Physik

Studienrichtung:	IMT, MPE, MAnT, MEVT
Modulbezeichnung:	Physik
	Physics
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Physik
	Physics
Studiensemester:	1
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. Dr. rer. nat. Martin Regehly
Dozent(in):	Prof. Dr. rer. nat. Martin Regehly
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 1. Semester, Pflichtfach
	MPE, 1. Semester, Pflichtfach
	MAnT, 1. Semester, Pflichtfach
	MEVT, 1. Semester, Pflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	120 h, davon 60 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	4
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Grundkenntnisse in Physik und Mathematik
	entsprechend der Hochschulreife
Angestrebte Lernergebnisse:	Fachlich: Die Studierenden
	- kennen die grundlegenden Disziplinen der Physik und
	erfassen die Bedeutung der Physik im Maschinenbau
	- kennen und verstehen die wichtigsten physikalischen
	Größen der Physik und deren Darstellung.
	- kennen und verstehen der Mechanik starrer Körper
	und können diese auf einfache Aufgaben anwenden.
	- Besitzen ein Grundverständnis für die Mechanik
	deformierbarer, fester Körper und inkompressibler
	Flüssigkeiten
	- besitzen ein Grundverständnis für Energieerhaltung,
	fundamentale Kräfte und deren Einfluss auf die
	Bewegung von Körpern. Sie können dieses
	Grundverständnis auf einfache Aufgabenstellungen
	anwenden.
	- können die physikalischen Größen der
	Thermodynamik und die Zustandsänderungen einfacher
	(idealer) Gase beschreiben.
	Überfachlich: Die Studierenden
	- trainieren ihre Kompetenz zur gezielten
	Informationsbeschaffung mittels moderner und

	Islandian Madian
	klassischer Medien.
	- Erwerben die Fähigkeit, Aufgabenstellungen im Team
	zu lösen und zu diskutieren.
Inhalt:	Einleitung
	- Physikalische Größen, SI Einheitensystem
	- Größenordnungen von Längen, Massen, Zeiten,
	mathematische Darstellung
	Mechanik
	Starre Körper:
	- Kinematik: Massenpunkt, Zeit, Ort, Durchschnitts- und
	Momentgeschwindigkeit sowie Beschleunigung,
	gleichförmige und beschleunigte lineare Bewegungen,
	vektorielle Beschreibungen von Bewegungen in
	zwei/drei Dimensionen
	- Dynamik: Newtonsche Axiome, Gültigkeit,
	Bezugssysteme
	- Kräfte: Nahwirkungskräfte (Reibungskräfte),
	Trägheitskräfte (Corioliskraft, Zentrifugalkraft),
	Zentralkäfte (Gravitation, Coulombkraft)
	- Mechanische Arbeit, Energieformen und Umwandlung,
	Energieerhaltungssatz, Leistung
	- Teilchensysteme, Impuls – und Impulserhaltungssatz,
	Kraftstoss, elastische und inelastische Stöße
	- Beschreibung von Schwingungen, harmonischer
	Oszillator, Schwingungsgleichung, Feder- und
	Fadenpendel
	- Drehbewegungen, Winkelgeschwindigkeit und -
	beschleunigung, Drehmoment, Drehimpuls,
	Rotationsenergie
	- Gleichgewicht, Schwerpunkt, Kräftepaare
	Mechanik deformierbarer, fester Körper:
	- Dehnung, Kompression, Scherung, Biegung Mechanik
	inkompressibler Flüssigkeiten:
	- Oberflächenspannung, Kapillarität
	- Druck, Schweredruck, Hydraulik, Auftrieb
	- Kontinuitäts- und Bernoulligleichung
	- Innere Reibung, laminare- und turbulente Strömung
	Einführung in die Wärmelehre
	- Physikalische Größen (Temperatur, Druck, Volumen,
	Stoffmenge) und deren Messung
	- ideales Gas, Zustandsgleichung, Wärmekapazität,
	Wärmeübertragung, einfache thermodynamische
	Prozesse
	Einführung in die Optik
	- Grundlagen der geometrischen Optik, Reflexion &
	Brechung

Studien- Prüfungsleistungen: Medienformen:	 einfache optische Instrumente, Spiegel, Linse, Lupe, Mikroskop Einführung in die Atomphysik Elementarteilchen, Aufbau der Atome, Periodensystem der Elemente Klausur; Abschlussklausur, 90 min Tafel, Beamer, verwendete Folien und Übungsaufgaben werden als pdf übermittelt. Demonstrationsexperimente werden der Physiksammlung entnommen und im Rahmen der Vorlesung gezeigt
Literatur:	- Paul A. Tipler, Gene Mosca, Physik für Studierende der Naturwissenschaften und Technik, 8. Auflage, Springer Verlag - Ekbert Hering, Rolf Martin, Martin Stohrer: Physik für Ingenieure (Springer-Lehrbuch); Springer-Verlag - David Halliday, Robert Resnick, Jearl Walker, Halliday; Physik für natur- und ingenieurwissenschaftliche Studiengänge, Wiley Verlag Nützliche Internet-Literatur: - http://www.leifiphysik.de/ Schulphysik bis zur 13. Klasse, gut geeignet zur Wiederholung - http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Sehr gut strukturierte Webseite mit vielen Videos von Physik-Experimenten, die das physikalische Grundwissen in Form eines Hypertext-Dokuments (html) vermittelt. Die Seite ist auf Englisch und daher gut geeignet, die eigenen Englischkenntnisse zu verbessern

Physik, Labor Physik

Studienrichtung:	IMT, MPE, MANT, MEVT
Modulbezeichnung:	Physik
_	Physics
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Labor Physik
	Physics Lab Exercise
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. Dr. rer. nat. Martin Regehly
Dozent(in):	Prof. Dr. rer. nat. Martin Regehly, Dr. Frank Pinno
Sprache:	deutsch
Zuordnung zum Curriculum:	IMT, 2. Semester, Pflichtfach
	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Labor
Arbeitsaufwand:	30 h, davon 15 h Präsenz- und 15 h Eigenstudium
Kreditpunkte:	1
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Grundkenntnisse in Physik und Mathematik
	entsprechend der Hochschulreife
Angestrebte Lernergebnisse:	Die Studierenden beherrschen den Abstraktionsprozess
	von der Beobachtung eines physikalisch-technischen
	Vorgangs über seine Beschreibung bis hin zur
	formelmäßigen Umsetzung und Berechnung. Sie
	können physikalische Begriffe auf technische
	Anwendungen im Labor übertragen.
	Die Studierenden sollen die Durchführung und
	Auswertung einfacher physikalischer Experimente aus
	den Gebieten Mechanik und Wärmelehre beherrschen.
Inhalt:	Sicherheitsbestimmungen für den Laborbetrieb;
	Einführung in das Anfertigen von Versuchsprotokollen;
	Messungen an einfachen Aufbauten aus diversen
	Gebieten;
	Aufbereitung und Diskussion von Messergebnissen.
	Versuchsthemen:
	- M 1 Federpendel
	- M 2 Gedämpfte und Erzwungene Schwingungen
	- M 3 Elastische Konstanten / Trägheitsmomente
C. II. B. II.	- W 4 Wärmeausdehnung
Studien- Prüfungsleistungen:	Testierte Leistung; Das Labor ist dann bestanden, wenn
	alle Laborversuche erfolgreich durchgeführt wurden

	und alle zugehörigen Versuchsprotokolle vom Betreuer
	als "mit Erfolg bestanden" testiert wurden.
Medienformen:	- Laborversuche, Versuchsanleitungen
Literatur:	Detaillierte Praktikumsanleitungen mit Literaturlisten
	werden ausgegeben.
	Zusätzlich:
	Tipler, Paul A.: Physik (Spectrum Verlag) + Arbeitsbuch
	Halliday, David; Resnick, Robert; Walker, Jearl: Physik
	(Wiley VCH)
	Hering, Ekbert; Martin, Rolf; Stohrer, Martin: Physik für
	Ingenieure (Springer)
	Paus, Hans J.: Physik in Experimenten und Beispielen
	(Hanser)
	Gerthsen, Christian: Physik (Springer Verlag)

Pneumatische Steuerungen

Studienrichtung:	MAnT
Modulbezeichnung:	Pneumatische Steuerungen
	Pneumatic Controls
ggf. Kürzel	PneuStrgn
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Thomas Götze
Dozent(in):	Prof. DrIng. Thomas Götze
Sprache:	deutsch
Zuordnung zum Curriculum:	MAnT, 6. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Antriebstechnik 3. Semester
Angestrebte Lernergebnisse:	Systematische Kompetenz:
	Die Pneumatik ist ein Teilgebiet der Fluidtechnik und
	gehört neben den elektrischen und mechanischen
	Antrieben in das Gebiet der Antriebstechnik. Die
	Studierenden kennen die Fachtermini der Fluidtechnik
	und die Unterschiede der Fachgebiete Hydraulik und
	Pneumatik.
	Instrumentelle Kompetenz:
	Sie verstehen die Besonderheiten der Druckluft als
	Energieträger und kennen die Anlagentechnik zur
	Drucklufterzeugung einschließlich der
	Versorgungsdimensionierung. Sie können die
	Zustandsgleichungen der Gase anwenden. Auf Basis der
	Symbolik nach DIN ISO 1219 können
	Funktionsschaltpläne gelesen und erstellt werden. Sie
	beherrschen die Erweiterung mit Signalgliedern und
	elektropneumatischen Elementen, wodurch die
	pneumatische Aktuatorik in übergeordnete
	Ablaufsteuerungen eingebunden wird.
	Praktische Kompetenz:
	Funktionsschaltpläne werden am PC entworfen und
Inhalt:	simuliert.
iiiidit.	Einführung in das Fachgebiet Fluidtechnik (Hydraulik/
	Pneumatik); Besonderheiten und typische
	Anwendungsgebiete; Drucklufterzeugung: Bauarten von Kompressoren, energetische Betrachtungen,
	114

	Bedarfsermittlung; Druckluftaufbereitung und
	Speicherung: Anforderungen an die Druckluftqualität
	(Filterung und Trocknung); Aufbau von
	Druckluftnetzen, Verteilersysteme, Wartung
	(Wartungseinheiten) und Sicherheit;
	Erstellen von Funktionsschaltplänen mit genormter
	Symbolik; Pneumatische Aktuatorik: Aufbau von
	Pneumatikzylindern, spezielle Pneumatikzylinder,
	Schwenkantriebe und Drehantriebe, Lineareinheiten;
	Elemente der Druckluftsteuerung: Logikventile,
	Wegeventile, Impulsventile, Drosseln, Sperrventile;
	Pneumatische Sensoren und Verknüpfungen;
	Vermeidung von Signalüberschneidungen; Anwendung
	pneumatischer Folgesteuerungen; Elektropneumatik:
	Elektropneumatische Steuerelemente, Sensoren,
	Erweiterung der Funktionsschaltpläne mit
	Elektroplänen, elektrisch verknüpfte Logikaufgaben;
	Schaltplanentwurf am PC mit FluidSim-P,
	Demonstration einfacher Schaltungen der Pneumatik
	und Elektropneumatik; Selbständiger Schaltungsentwurf
	zu verschiedenen Aufgabenstellungen der
	Produktionstechnik, sowohl rein pneumatisch als auch
	mit elektropneumatischen Elementen
Studien- Prüfungsleistungen:	Klausur
Medienformen:	- Präsentationsskript
	- Arbeitsblätter mit Abbildungen und Übungen
	- FESTO-Simulationsprogramm FluidSIM-P
Literatur:	- Will/ Ströhl: Einführung in die Hydraulik und
	Pneumatik
	- Grollius: Grundlagen der Pneumatik
	- Ebertshäuser/ Helduser: Fluidtechnik von A-Z
	- Findeisen: Ölhydraulik
	- BOSCH/Rexroth: Pneumatische Steuerungen

Produktkalkulation/Kostenrechnung

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Produktkalkulation/Kostenrechnung
	Product Costing
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sven-Frithjof Goecke
Dozent(in):	Sebastian Möller
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 5. Semester, Pflichtfach
	MAnT, 5. Semester, Wahlpflichtfach
	MEVT, 5. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Grundlagen Studium MB
Angestrebte Lernergebnisse:	Die Studierenden haben den Entstehungsprozess einer
	Bauteilkalkulation mit der prozessbasierten
	Zuschlagskalkulation durchlaufen. Sie können
	Bauteilkalkulationen anlegen, kennen die
	Kostenbestandteile und die Struktur einer Kalkulation
	und sind sich über die wesentliche
	Wirkzusammenhänge zwischen den einzelnen
	Kalkulationsparametern bewusst. Sie wissen worauf Sie
	bei der Recherche für eine Kalkulation achten müssen,
	können eine Fertigungskonzept / Fertigungsstrategie
	sowie Arbeitspläne erstellen und diese kritisch
	diskutieren.
	Die Studierenden sind ebenfalls in der Lage die
	wesentlichen Kriterien für die Auswahl einer Maschine
	zu ermitteln. Sie können eine Recherche nach
	Fertigungsmaschinen durchführen und den
	Maschinenhersteller anfragen. Dabei kennen Sie die
	wesentlichen Kommunikationsregeln um effektiv zu den
	für die Kalkulation notwendigen Daten zu kommen. Der
	Fokus im Bachelor liegt vorwiegt auf der Kalkulation
	eines Bauteils das durch Zerspanung hergestellt wird.
	Dazu gehört die Ermittlung der Zykluszeit. Die Studierenden lernen dem Umgang mit einer
	Industrieüblichen Kalkulationssoftware. Ein
	116

	abschließender schriftlicher Bericht erläutert die
	angefertigte Kalkulation und ein Vortrag am Ende des
	Semesters simuliert das Vorstellen des Bauteils und der
	Kalkulation vor dem Management.
Inhalt:	- Überblick zu betrieblichen Anwendungen der
	Fertigungstechnik in Bereichen des Maschinen und
	Anlagenbaus
	- Merkmale der Integration in automatische
	Anlagensysteme und daraus resultierender
	Abhängigkeiten bei komplexen betriebswirtschaftlichen
	Fertigungsanlagen
	- Erarbeiten von Spezialwissen zu ausgewählten
	Fertigungstechnologien in Seminaren
	- Erarbeitung eines grundlegenden Verständnisses für
	spezielle Anwendungen im Bereich der Produktion;
	Vorkalkulation der Elemente der Ausrüstungsliste,
	Fertigungszeit und Kosten
	- Befähigung zur praktischen Arbeit mit realen
	Kenntnissen, Stand der Technik heute
	- Einweisung in die Anwendungen von
	Berechnungsprogrammen als Werkzeuge
	- Theoretische und praktische Einordnung sowie
	praktische Bearbeitung von komplexen
	Fallstudien/Anlagenlösungen; Anlagenprojektierung und
	Angebotserstellung als mündliche Prüfung
Studien- Prüfungsleistungen:	Bericht (Facharbeit)
	Einzelarbeit oder Gruppenarbeit
Medienformen:	Vortrag, Powerpoint-Präsentation, Tafel, Arbeitsblätter,
	Übungen
Literatur:	Tabellenbuch Metall
	Tabellenbuch Zerspanung
	Kostenrechnung für Konsturkteure
	S. Möller: Cost Down Guide

Reinigungstechnik

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Reinigungstechnik
	Cleaning Technology
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Sven-Frithjof Goecke
Dozent(in):	Jürgen Hannemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 5. Semester, Wahlpflichtfach
	MAnT, 5. Semester, Wahlpflichtfach
	MEVT, 5. Semester, Wahlpflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Grundlagen Studium Maschinenbau
Angestrebte Lernergebnisse:	Die Studierenden sind in der Lage, wesentliche Inhalte
	und Technologien der Reinigung von Bauteilen und
	Baugruppen im Maschinenbau zu benennen.
	Komponenten betrieblicher Lösungen und deren
	Funktion sind bekannt und können durch den
	Studierenden projektiert/konstruiert werden.
	Die physikalischen und chemischen Zusammenhänge im
	Reinigungsprozess werden vermittelt und sind
	Grundlage des Verständnisses zur Auswahl der
	Reinigungstechnologien.
	Die Technologien der Oberflächenreinigung in
	Vorbereitung auf anschließende
	Oberflächenbeschichtungen/Farbgebungen und
	Endmontagen werden den Studierenden vorgestellt.
	Die geprüften Kenntnisse können Grundlage für
	Ingenieurtechniker im Bereich der
	Reinigungstechnik/Oberflächenbeschichtungen sein.
Inhalt:	Mündliche Prüfung (Verteidigung der Belegarbeit)-
	Überblick zu betrieblichen Anwendungen der
	Reinigungstechnik in Bereichen des Maschinenbaus
	- Merkmale der Integration in automatische
	Anlagensysteme und daraus resultierender
	Abhängigkeiten bei komplexen betriebswirtschaftlichen
	110

	Fertigungsanlagen - Erarbeiten von Spezialwissen zu ausgewählten Reinigungstechnologien in Seminaren - Erarbeitung eines grundlegenden Verständnisses für spezielle Anwendungen im Bereich der Produktion - Befähigung zur praktischen Arbeit mit realen [@[Kommentar_Pruefung]]" Prüfung (Verteidigung der Belegarbeit) Prüfung (Verteidigung der Belegarbeit) Stand der Technik heute - Einweisung in die Anwendung - Theoretische und praktische Einordnung sowie
	praktische Bearbeitung von komplexen Fallstudien/Anlagenlösungen
	- Restschmutzanalysen, Qualitätsprüfungen der Sauberkeit, Fehlersuche und -behebung
Studien- Prüfungsleistungen:	Mündliche Prüfung (Verteidigung der Belegarbeit)
Medienformen:	Tafel, Beamer, Netzwerk TH Brandenburg
Literatur:	Jelinek, T.W.; Reinigen und Entfetten in der Metallindustrie. Leuze Verlag Bad Saulgau 1999 Fachzeitschrift: Galvanotechnik; Leuze Verlag; Bad Saulgau monatlich Hofmann, Hans Georg; Spindler, Jürgen: Verfahren der Oberflächentechnik Fachbuchverlag Leipzig 2004 Lutter, Erich; Die Entfettung 2.Aufl., Bad Saulgau, 1975 Hannemann, Jürgen; Unterlagen der Reinigungstechnologien, Wartenburg, 2004-2016

Statik und Festigkeitslehre, Festigkeitslehre

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Statik und Festigkeitslehre
	Statics and Strength of Materials
ggf. Kürzel	TM2
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Festigkeitslehre
	Strength of Materials
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Martin Kraska
Dozent(in):	Prof. DrIng. Martin Kraska
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 3. Semester, Pflichtfach
	MAnT, 3. Semester, Pflichtfach
	MEVT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	120 h, davon 60 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	4
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Statik, Mathematik 1 und 2
Angestrebte Lernergebnisse:	Die Studierenden können die Belastungsarten
	Zug/Druck, Biegung, Torsion und Querkraftschub
	unterscheiden und dafür Spannungskomppnenten und
	Verformungen berechnen. Für die
	Verformungsberechnung können sie Standardlösungen
	superponieren, die Verschiebungs-
	Differenzialgleichungen integrieren oder den Arbeitssatz
	anwenden.
	Sie können die dafür erforderlichen Querschnittswerte
	berechnen.
	Sie können Auflagerreaktionen und Schnittlasten an
	statisch unbestimmten Systeme unter Berücksichtigung
	des elastischen Verhaltens bestimmen.
	Sie können Spannungen, Verzerrungen und
	Trägheitsmomente auf verschiedene Achsensysteme
	und insbesondere auf Hauptachsen transformieren und
Tobalti	dies am Mohrschen Kreis illustrieren.
Inhalt:	- Zug/Druck, Elastizitätstheorie für axial beanspruchte
	Stabsysteme: Spannung, Dehnung, Stoffgesetz, DGL für
	Einzelstab, Analogie Feder-Stab, thermische Dehnung,
	- Kraftgrößenverfahren für statisch unbestimmte
	Systeme.

	- Torsion, Elastisches Gesetz für den Torsionsstab,
	Schubspannung, polares Trägheitsmoment.
	Dünnwandige geschlossene und offene Querschnitte,
	Bredtsche Formeln
	- Gerade Biegung, Normalspannung,
	Flächenträgheitsmomente einfacher und
	zusammengesetzter Querschnitte (Satz von Steiner),
	Biege-DGL und deren Integration zur Biegelinie
	- Superposition von Standardlösungen,
	Kraftgrößenverfahren.
	- Querkraftschub, Schubspannungsformel, Schubfaktor
	- Ebener Spannungszustand, Hauptspannungen,
	Festigkeitshypothesen, Vergleichsspannungen,
	Mohrscher Spannungskreis,
	- Kesselformeln, Verzerrungszustand, elastisches
	Gesetz, Hauptdehnungen, Anwendung auf
	Dehnungsmessung
	- Verformungsberechnung mit dem Arbeitssatz
	- Knicken von längskraftbelasteten Biegeträgern,
	Eulerfälle
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel und bunte Kreide, Präsentationen am Beamer,
	Anschauungsmodelle
Literatur:	Schnell-Gross-Hauger, Technische Mechanik 2:
	Elastostatik, Schnell-Ehlers-Wriggers, Formeln und
	Aufgaben zur Technischen Mechanik 2,
	Hibbeler, Technische Mechanik 2, Festigkeitslehre
	Mattheck: Warum alles kaputt geht

Statik und Festigkeitslehre, Statik

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Statik und Festigkeitslehre
	Statics and Strength of Materials
ggf. Kürzel	TM 1
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Statik
	Statics
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Martin Kraska
Dozent(in):	Prof. DrIng. Martin Kraska
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	120 h, davon 60 h Präsenz- und 60 h Eigenstudium
Kreditpunkte:	4
Voraussetzungen nach	
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Mathematik 1, Physik
Angestrebte Lernergebnisse:	Die Studierenden können Auflagerreaktionen und
	Schnittlasten in statisch bestimmten einfachen ebenen
	räumlichen Systemen mit dem Schnittprinzip und den
	Gleichgewichtsbedingungen bestimmen.
	Die Studierenden können die Gleichungen für Roll-,
	Gleit und Haftreibung zwischen starren Körpern und
	zwischen starren Körpern und Seilen aufstellen und
	auswerten.
	Die Studierenden können wirkende Lasten an Balken
	auf die Balkenachse reduzieren und die Querkraft- und
	Biegemomentenlinie semigrafisch ermitteln.
	Die Studierenden können Auflager-, Stab-, und
	Gelenkkräfte an Mehrkörpersystemen bestimmen.
Inhalt:	Statik starrer Körper:
	Resultierende Kraft Gleichgewicht am Massenpunkt,
	Resultierendes Moment, Gleichgewicht am Starren
	Körper,
	Stabkräfte in Fachwerken
	Gelenkreaktionen in Mehrkörpersystemen
	Schwerpunktberechnung
	Coulombsches Reibgesetz, Seilreibung
	Schnittlastenverläufe in stabförmigen Tragwerken,
	Schnittmethode, Differenzialgleichungslösung und

	grafisches Verfahren
	Auflagerreaktionen und Schnittlasten bei einfachen 3D-
	Tragwerken
Studien- Prüfungsleistungen:	Klausur
Medienformen:	Tafel und Kreide, Folien/Beamer, Anschauungsmodelle
	an der Magnettafel
Literatur:	Gross, Hauger, Schröder, Wall: Technische Mechanik,
	Band 1, Statik
	Gross, Hauger, Wriggers: Formeln und Aufgaben zur
	Technischen Mechanik 1, Statik,
	Kabus: Mechanik und Festigkeitslehre
	Kabus: Mechanik und Festigkeitslehre Aufgaben
	Hibbeler, Technische Mechanik 1, Statik

Studium Generale

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Studium Generale
ggf. Kürzel	
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	6
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Studiendekane des FBT
Dozent(in):	N.N.
Sprache:	abhängig von der besuchten LV
Zuordnung zum Curriculum:	MPE, 6. Semester, Pflichtfach
	MAnT, 6. Semester, Pflichtfach
	MEVT, 6. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung;
	unverbindlich; variiert je nach besuchter Veranstaltung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Studierenden arbeiten sich in fachlich heterogenen
	Gruppen in Themenbereiche ein, die außerhalb ihres
	fachlichen Schwerpunkts liegen können.
Inhalt:	Erfolgreiche Teilnahme an einem durch den
	Fachbereichsrat für das Studium Generale zugelassenen
	Lehrangebot mit mindestens 5 Leistungspunkten an der
	THB. Es wird eine hochschulweite Regelung angestrebt.
Studien- Prüfungsleistungen:	nach Absprache
Medienformen:	
Literatur:	

Technische Mechanik 2, Kinematik und Kinetik

Studienrichtung:	MPE, MAnT
Modulbezeichnung:	Technische Mechanik 2, Kinematik und Kinetik
_	Kinematics and Kinetics
ggf. Kürzel	TM3
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	Prof. DrIng. Martin Kraska
Dozent(in):	Prof. DrIng. Martin Kraska
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 5. Semester, Pflichtfach
	MAnT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Technische Mechanik 1, Mathematik 1-3
Angestrebte Lernergebnisse:	Die Studierenden können die ebene Bewegung von
	Massenpunkten und starren Körpern beschreiben und
	Geschwindigkeit und Beschleunigungen berechnen.
	Sie können unter Verwendung von Energie- und
	Impulssatz Stoßvorgänge analysieren.
	Sie können Bewegungsgleichungen für ebene Systeme
	unter Verwendung von Trägheitskräften und
	Lagrangeschen Gleichungen in generalisierten
	Koordinaten aufstellen.
	Sie kennen analytische und numerische
	Lösungsverfahren für die entstehenden
	Differenzialgleichungsssteme und können sie für
	einfache Fälle anwenden.
	Sie können Schwingungsvorgänge quantitativ
	beschreiben.
	Sie haben am Beispiel des Einmassenschwingers und
	des Zweimassenschwingers technisch relevante
	Phänomene wie Resonanz, Schwingungsisolation und
	Schwingungstilgung kennengelernt.
Inhalt:	Ebene Kinematik des Massenpunktes und des starren
	Körpers,
	- Kinetische Energie der Drehung und der Translation,
	Energieerhaltung.
	- Impuls und Drehimpuls, Impulserhaltungssatz, elastischer und inelastischer Stoß.
	elastischer und inelastischer Stob.

Literatur:	Gross, Hauger, Schröder, Wall, Technische Mechanik 3: Kinetik Hibbeler, Technische Mechanik 3, Dynamik
Medienformen:	Tafel und bunte Kreide, Präsentationen am Beamer, Anschauungsmodelle, Mathematik-Software SMath Studio
Studien- Prüfungsleistungen:	Klausur
	deren Lösung mit numerischen Verfahren,
	- Aufbereitung von Differenzialgleichungen für und
	 Zweimassenschwinger, Amplitudenfrequenzgang, Schwingungstilgung, Schwingungsisolation
	Vergrößerungsfunktion, Resonanz
	gedämpfte und ungedämpfte Schwingungen,
	- Einmassenschwinger, freie und erzwungene,
	Differenzialgleichungen.
	- Harmonische Schwingungen als Lösungen linearer
	Prinzip von d'Alembert und mit Lagrangeschen Gleichungen in generalisierten Koordinaten.
	- Aufstellung von Bewegungsgleichungen mit dem

Technische Sensorik

Studienrichtung:	IEIT, IAT, MAnT
Modulbezeichnung:	Technische Sensorik
	Sensor Technology
ggf. Kürzel	TS
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	4
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	Prof. DrIng. Steffen Doerner
Dozent(in):	Prof. DrIng. Steffen Doerner
Sprache:	deutsch
Zuordnung zum Curriculum:	IEIT, 4. Semester, Pflichtfach
	IAT, 4. Semester, Pflichtfach
	MAnT, 4. Semester, Wahlpflichtfach
Lehrform / SWS:	3 SWS Vorlesung, 1 SWS Labor
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Abgeschlossene Module: Physik für Ingenieure 1-2,
	Mathematik 1-3, Elektrotechnik 1-3, Chemie und
	Werkstoffe
Angestrebte Lernergebnisse:	Nach dem erfolgreichen Absolvieren dieses Moduls
	verfügen die Studierenden über:
	- Grundlegendes Verständnis der Wandlung
	physikalischer, chemischer und biologischer
	Messgrößen in elektrische Signale
	- Vertiefende Kenntnisse zu verbreiteten
	Sensorprinzipien
	- den Überblick über kommerziell erhältliche Sensoren
	und Befähigung zur deren Auswahl entsprechend des
	Anwendungsgebiets und der Einsatzbedingungen
	- eine Einführung in "Smart Sensors" und
	Multisensorkonzepte
	Die Studierenden sollen daran gewöhnt werden, den in
	den Vorlesungen behandelten Stoff selbstständig
	nachzubereiten und mittels Fachliteratur zu vertiefen.
	Die Technische Sensorik besitzt eine große
	Interdisziplinarität und verknüpft die Gebiete der
	Physik, Chemie und Biologie über Schnittstellen mit der Elektrotechnik. Studierende erlernen hierdurch eine
	abstrakte Sicht- und Herangehensweise über bzw. an
	gestellte sensortechnische Aufgabenstellungen.
Inhalt:	Mechanische Sensoren
בוווומוני	ויוכעוומוווטעווב טכווטעובוו

	Abatand/Desition
	- Abstand/Position,
	- Druck,
	- Kraft,
	- Drehzahl,
	- Beschleunigung,
	- Durchfluss
	Optische Sensoren
	- Fototransistoren,
	- CCD-Sensoren,
	- Faseroptische Sensoren
	Magnetische Sensoren
	- Hallsensoren,
	- magnetoresistive Sensoren,
	- AMR/GMR,
	- Wirbelstromsensoren,
	Temperatursensoren
	- Thermoelemente,
	- resistive Temperatursensoren,
	- radiometrische Temperatursensoren
	Spektroskopische Sensoren
	- dielektrische Sensoren (NIR, UV-VIS, Radiowellen)
	- Massenspektrometer
	- Ionenmobilitätsspektrometer
	Chemisch/biologische Sensoren
	- elektrochemische Sensoren,
	- Biosensoren
	Intelligente Sensorsysteme
	- Smart Sensors,
	- Multisensorkonzepte, Mehrkomponentenanalyse
	- Mikrofluidische Systeme
Studien- Prüfungsleistungen:	Klausur; Laborteil: Das Labor ist dann bestanden, wenn
Stadion Traidings costange m	alle Laborversuche erfolgreich durchgeführt wurden
	und alle zugehörigen Versuchsprotokolle vom Betreuer
	als "mit Erfolg bestanden" testiert wurden.
Medienformen:	- Vorlesung mit gemischten Medien (Tafelarbeit,
	Beamer etc.);
	- Übungsaufgabenblätter
Literatur:	- Tränkler; Obermeier (Hrsg.): Sensortechnik –
Liceratur.	Handbuch für Praxis und Wissenschaft. Springer-Verlag
	Tranabaci fui Fraxis una viissenschart. Springer-Verlag

Thermische Verfahrenstechnik

Studienrichtung:	MEVT
Modulbezeichnung:	Thermische Verfahrenstechnik
	Thermal Process Engineering
ggf. Kürzel	TVT
ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	5
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	N.N. (Verfahrenstechnik)
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MEVT, 5. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 2 SWS Übung;
Leniforni / SVV3.	In diesem Modul kommen Vorlesungen und analytische
	Übungen zum Einsatz. In den analytischen Übungen
	werden praxisnahe Aufgabenstellungen mit
	Unterstützung des Lehrenden selbstständig gelöst.
Arbeitsaufwand:	150 h, davon 60 h Präsenz- und 90 h Eigenstudium
Kreditpunkte:	5
Voraussetzungen nach	keine
Prüfungsordnung:	Keine
Empfohlene Voraussetzungen:	Thermo- und Fluiddynamik, Wärme- und
Empromene Vordassetzungem	Stoffübertragung
Angestrebte Lernergebnisse:	In diesem Modul werden die wichtigsten Grundlagen
/ migesti este zemei gesimesei	der thermischen Verfahrenstechnik vermittelt, so dass
	die Studierenden befähigt sind, praxisrelevante
	Aufgabenstellungen selbständig zu lösen. Ein Ziel dabei
	ist der Erwerb von Lösungskompetenzen für
	komplexere Dimensionierungs- und
	Auslegungsaufgaben der industriellen Praxis durch
	Bearbeitung entsprechender Problemstellungen.
Inhalt:	Thermische Trennverfahren: Eindampfung,
	Destillation/Rektifikation, Adsorption, Absorption,
	Extraktion, Membranverfahren
	Bearbeitung von industriellen Auslegungsbeispielen mit
	verfahrens- und umwelttechnischem Hintergrund in den
	Übungen.
Studien- Prüfungsleistungen:	nach Absprache; Klausur oder mündliche Prüfung
Medienformen:	Tafel, Powerpoint – Präsentationen (als Skript im Netz),
	Kurzfilme, Arbeitsblätter und Anschauungsbeispiele,
	Simulationssoftware
Literatur:	Hemming, W.; Wagner, W.: Verfahrenstechnik. 12. Auf.
	Kamprath-Reihe. Würzburg: Vogel Business Media,

2017
Weiss, S.; Militzer, KE.; Gramlich, K.: Thermische
Verfahrenstechnik. Leipzig, Stuttgart: Dt. Verl. für
Grundstoffindustrie, 1993
Vauck, W. R. A.; Müller, H. A.: Grundoperationen
chemischer Verfahrenstechnik. 11. Aufl. Stuttgart,
Weinheim: Dt. Verl. für Grundstoffindustrie; Wiley-VCH,
2000
Sattler, K.: Thermische Trennverfahren. 3. Aufl.
Weinheim: WILEY-VCH, 2001

Thermo- und Fluiddynamik, Thermodynamik 1

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Thermo- und Fluiddynamik
	Thermo- and Fluid Dynamics
ggf. Kürzel	TFD
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Thermodynamik 1
	Thermodynamics 1
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	DiplIng. Andreas Niemann
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	60 h, davon 30 h Präsenz- und 30 h Eigenstudium
Kreditpunkte:	2
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Ingenieurmathematik 1, Physik
Angestrebte Lernergebnisse:	Die Studierenden erlernen die Handhabung der
	Grundlagenwerkzeuge für die Betrachtung
	thermodynamischer Systeme:
	- Energetische Bilanzierung geschlossener und offener
	Systeme nach dem 1. Hauptsatz der Thermodynamik,
	- Bewertung der Güte und Richtung von
	Energieumwandlungen mithilfe der Größe der Entropie,
	- Thermisches und energetisches Stoffverhalten,
	- Modellannahmen für einfache Grundprozesse.
	Mit diesem allgemeinen Rüstzeug sind die Studierenden
	in der Lage, Zugang zu komplexen Schaltungen
	energietechnischer Anlagen zu finden, da sie deren
	Funktionselemente kennen und berechnen können.
	Weiterhin verschafft die Einführung in die Begriffswelt
	den Studierenden die Möglichkeit, energietechnische
	Probleme fachlich exakt zu kommunizieren.
Inhalt:	Einführung: Maßsysteme / Einheiten. Grundbegriffe
	(Stichworte: Systembegriff, Zustands- und
	Prozessgrößen, Gleichgewicht, Zustandsänderung).
	1. Hauptsatz der Thermodynamik: Anwendung auf
	geschlossene Systeme (Stichworte: Innere Energie,
	Wärme, Volumenänderungsarbeit, Reibungsarbeit,
	Energiebilanzen, Definition der Enthalpie); Anwendung

	auf offene Systeme (Stichworte: Energiebilanz
	, , ,
	stationärer Prozesse, Berechnung der technischen
	Arbeit).
	2. Hauptsatz der Thermodynamik: Erfahrungsgesetz;
	mathematische Formulierung (Stichworte: Definition
	der Entropie, Entropieverhalten geschlossener und
	offener Systeme); T,s-Diagramm.
	Zustandsverhalten reiner Stoffe: Thermisches
	Zustandsverhalten des Idealgases (Stichworte: ideales
	Einzelgas, Idealgasgemisch); Thermisches
	Zustandsverhalten realer Stoffe, z.B. Wasser
	(Stichworte: Dampfdruckkurve, Darstellung im p,v-
	Diagramm); Energetisches Zustandsverhalten des
	Idealgases (Stichworte: innere Energie und Enthalpie,
	spezifische Wärmekapazität, Entropie); Energetisches
	Zustandsverhalten realer Stoffe, z.B. Wasser
	(Stichworte: Enthalpie, Entropie, Stoffdatentafeln,
	energetische Zustandsdiagramme).
	Modellannahmen für einfache Grundprozesse der
	Energiewandlung: Wandlung thermischer in
	mechanische Arbeit und umgekehrt;
	Wärmeübertragung; Wärmespeicherung; Wandlung
	thermischer in kinetische Energie und umgekehrt
Studien- Prüfungsleistungen:	Klausur; Klausur der LV ergibt 1/3 der Modulnote
Medienformen:	Folienpräsentation – herunterzuladen von moodle;
	Tafel und farbige Kreide für Ergänzungen zur
	Folienpräsentation und vorlesungsbegleitende
	Berechnungsbeispiele;
	Auswahl von Stoffdaten – herunterzuladen von moodle;
	Übungsaufgaben mit Endergebnissen zur
Literatur:	- Cerbe, G.; Wilhelms, G.: Technische Thermodynamik.
Literatur.	14. Aufl. München, Wien: Carl Hanser Verlag, 2005
	- Elsner, N.; Dittmann, A.: Grundlagen der Technischen
	Thermodynamik. Bd. 1. 8. Aufl. Berlin: Akademie- Verlag, 1993
	<i>5,</i>
	- Kretzschmar, HJ.; Kraft, I.; Stöcker, I.: Kleine
	Formelsammlung technische Thermodynamik. 4. Aufl.
	München: Fachbuchverl. Leipzig im Hanser Verl., 2011
	- VDI-Gesellschaft für Verfahrenstechnik und
	Chemieingenieurwesen: VDI-Wärmeatlas, 11. Aufl.
	Berlin, Heidelberg: Springer Vieweg, 2013

Thermo- und Fluiddynamik, Fluiddynamik

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Thermo- und Fluiddynamik
	Thermo- and Fluid Dynamics
ggf. Kürzel	TFD
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Fluiddynamik
	Fluid Dynamics
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	DiplIng. Andreas Niemann
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 3. Semester, Pflichtfach
	MAnT, 3. Semester, Pflichtfach
	MEVT, 3. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor;
	Durchführung in Laborgruppen mit ca. 3 Studierenden
	je Versuchsstand, Beginn in der 2. Semesterhälfte
Arbeitsaufwand:	90 h, davon 45 h Präsenz- und 45 h Eigenstudium
Kreditpunkte:	3
Voraussetzungen nach	keine
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Ingenieurmathematik 1 und 2
	Physik
	Technische Mechanik 1 (Teil Statik)
Angestrebte Lernergebnisse:	Die Studierenden erlernen das allgemeine Rüstzeug für
	Berechnungen von einfachen fluidstatischen und
	fluiddynamischen Problemen. Hierzu zählt ganz
	wesentlich die Kenntnis der Erhaltungssätze und das
	Erkennen gültiger Randbedingungen für die Massen-,
	Energie- und Impulsbilanzen. Die Studierenden
	vertiefen das in den Vorlesungen vermittelte Wissen bei
	der Bearbeitung von Übungsaufgaben, die Ergebnisse
	zur Selbstkontrolle beinhalten. Darüber hinaus
	vermitteln die Laborübungen eine plastische
	Anschauung von strömungsmechanischen Effekten,
	sodass das erlernte Grundwissen gefestigt wird. Dieses
	können die Studierenden insbesondere auf die
	Bemessung von Rohrleitungen und Pumpen anwenden.
Inhalt:	Vorlesung / Übung:
	Einführung: Begriffe; physikalische Größen;
	Stoffeigenschaften (Stichworte: Ein- und
	Mehrphasensysteme, Dichte, dynamische Viskosität).
	Hydrostatik: Statischer Druck; Hydrostatisches

Gleichgewicht; Druckkräfte auf Flächen; Statischer Auftrieb und Stabilität des Gleichgewichtszustandes; Aerostatik. Inkompressible Strömungen: Einführung (Stichworte: Stromlinie, Stromfadentheorie, Volumenstrom); Kontinuitätsgleichung; Bernoulli-Gleichung für reibungsfreie Durchströmung (Stichworte: Anwendung z.B. für Messsonden, Behälterausfluss, Kavitation); Impulserhaltung (Stichworte: Stützkraftkonzept, Kräfteplan, Beispiele und Anwendungen); Erweiterung der Bernoulli-Gleichung auf reibungsbehaftete Durchströmung – Einführung Druckverlust; Unterscheidung laminare und turbulente Rohrströmung - Einführung der Reynolds-Zahl; Herleitung des Rohrreibungsbeiwertes für Laminarströmung (Stichworte: Stokes 'sches Gesetz, Geschwindigkeitsprofil, Hagen-Poiseuille 'sches Gesetz); Rohrreibungsbeiwert für turbulente Strömung (Stichworte: Laminare Grenzschicht, Geschwindigkeitsprofil, Wandrauigkeit); Rohrreibungsdiagramm; Druckverluste an Einbauten; Gesamtdruckverlust von Rohrleitungsanlagen; Fördern inkompressibler Fluide (Stichworte: Bernoulli-Gleichung mit Arbeits- und Verlustglied, Anlagen- und Pumpenkennlinie, Leistungsbedarf und Wirkungsgrad von Pumpen, ökonomische Geschwindigkeiten); Durchströmung nichtkreisförmiger Querschnitte; Umströmung von Körpern (Stichworte: Grenzschicht, Ablösung der Grenzschicht, Totwassergebiet, Widerstandskraft und ihre Komponenten, dynamischer Auftrieb). Labor: Grundlagen der Strömungsmesstechnik; Bestimmung dynamischer Kräfte am umströmten Körper (cW- und cA-Beiwert) Viskositätsmessungen Newtonscher Flüssigkeiten bei verschiedenen Temperaturen, Ermittlung von Pumpen- und Anlagenkennlinien; Bestimmung von Betriebspunkten; Messung von Druckverlusten Studien- Prüfungsleistungen: Klausur; Klausur der LV ergibt 1/3 der Modulnote Medienformen: Vorlesung / Übung: Folienpräsentation – herunterzuladen von moodle; Tafel und farbige Kreide für Ergänzungen zur Folienpräsentation und vorlesungsbegleitende Berechnungsbeispiele; Auswahl von Stoffdaten – herunterzuladen von moodle; Übungsaufgaben mit End

Literatur:	Bohl, W.; Elmendorf, W.: Technische Strömunglehre.
	13. Aufl. Würzburg: Vogel Buchverlag, 2005
	Böswirth, L.: Technische Strömungslehre. 4. Aufl.
	Braunschweig: Vieweg-Verlag, 2001
	Sigloch, H.: Technische Fluidmechanik. 5. Aufl. Berlin,
	Heidelberg: Springer, 2005
	Eck,B.: Technische Strömungslehre. 2 Bde. 8. Aufl.,
	Berlin, Heidelberg: Springer, 1978 und 1981

Thermo- und Fluiddynamik, Thermodynamik 2

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Thermo- und Fluiddynamik
	Thermo- and Fluid Dynamics
ggf. Kürzel	TFD
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Thermodynamik 2
	Thermodynamics 2
Studiensemester:	3
Angebotsturnus:	jährlich im Wintersemester
Modulverantwortliche(r):	DiplIng. Andreas Niemann
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 3. Semester, Pflichtfach
	MAnT, 3. Semester, Pflichtfach
	MEVT, 3. Semester, Pflichtfach
Lehrform / SWS:	2 SWS Vorlesung, 1 SWS Übung
Arbeitsaufwand:	90 h, davon 45 h Präsenz- und 45 h Eigenstudium
Kreditpunkte:	3
Voraussetzungen nach	Technische Thermodynamik 1
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Ingenieurmathematik 1 und 2
	Physik
	Werkstoffchemie
Angestrebte Lernergebnisse:	Die Studierenden sind mit den Berechnungsmethoden
	für typische einfache Prozesse vertraut und können sich
	so die Wirkungsweise daraus zusammengesetzter
	Schaltungen energietechnischer Anlagen erschließen.
	Den Studierenden ist damit die grundlegende
	Auslegung bzw. die Überprüfung von Kennwerten zur
	Güte energietechnischer Anlagen, die mit
	verschiedenen Arbeitsmitteln betrieben werden,
	möglich. Bestandteil dessen ist die Fähigkeit,
	Anlagenschemata mit der einschlägigen Symbolik und
	Prozessverläufe in Zustandsdiagrammen darzustellen,
	um so praktische Probleme mit Fachleuten erörtern zu
	können. Die grundlegende Behandlung der
	Thermodynamik von Verbrennungs- und
	klimatechnischen Prozessen stellt weiterhin Bezüge zur
	Chemie bzw. Haus- und Gebäudetechnik her und
	fördert so das interdisziplinäre Denken und Handeln der
- 1 1	Studierenden.
Inhalt:	Kreisprozesse: Einführung; Rechtsprozesse mit Idealgas
	als Arbeitsmittel (Stichworte: Aufbau, Wirkungsweise
	und Bilanzierung von Carnot-Prozess,

	Verbrennungsmotoren, Gasturbinen); Rechtsprozesse mit dampfförmigem Arbeitsmittel (Stichworte: Aufbau, Wirkungsweise und Bilanzierung von Clausius-Rankine-Satt- und -Heißdampfprozess einschließlich Kreisprozesscharakteristik und Möglichkeiten zur Wirkungsgradsteigerung); Linksprozess der Kompressionskältemaschine (Stichworte: Aufbau, Wirkungsweise, Bilanzierung, Darstellung im Ig p,h-Diagramm, Anwendung als Wärmepumpe). Verbrennungsrechnung: Einführung; Bestimmung des
	Luftbedarfes für feste, flüssige und gasförmige Brennstoffe; Bilanzierung des Brennraumes (Stichworte: Massenbilanz, Energiebilanz, Brennwert, Heizwert, Brennwertheizung).
	Grundlagen der Klimatisierung: Thermisches und energetisches Zustandsverhalten feuchter Luft; Mollier-h,x-Diagramm; Zustandsänderungen feuchter Luft
	(Stichworte: Erwärmung, Abkühlung, Mischung, Befeuchtung, Zusammenschaltung der Funktionen zu raumlufttechnischen Anlagen).
Studien- Prüfungsleistungen:	Klausur; Klausur der LV ergibt 1/3 der Modulnote
Medienformen:	Folienpräsentation – herunterzuladen von moodle; Tafel und farbige Kreide für Ergänzungen zur Folienpräsentation und vorlesungsbegleitende Berechnungsbeispiele; Auswahl von Stoffdaten – herunterzuladen von moodle; Übungsaufgaben mit Endergebnissen zur Eig
Literatur:	- Cerbe, G.; Wilhelms, G.: Technische Thermodynamik. 14. Aufl. München, Wien: Carl Hanser Verlag, 2005 - Elsner, N.; Dittmann, A.: Grundlagen der Technischen Thermodynamik. Bd. 1. 8. Aufl. Berlin: Akademie-Verlag, 1993 - Kretzschmar, HJ.; Kraft, I.; Stöcker, I.: Kleine Formelsammlung technische Thermodynamik. 4. Aufl. München: Fachbuchverl. Leipzig im Hanser Verl., 2011 - VDI-Gesellschaft für Verfahrenstechnik und Chemieingenieurwesen: VDI-Wärmeatlas, 11. Aufl. Berlin, Heidelberg: Springer Vieweg, 2013

Thermo- und Fluiddynamik, Labor Thermodynamik

Studienrichtung:	MPE, MAnT, MEVT
Modulbezeichnung:	Thermo- und Fluiddynamik
	Thermo- and Fluid Dynamics
ggf. Kürzel	TFD
ggf. Untertitel	
ggf. Lehrveranstaltungen:	Labor Thermodynamik
	Thermodynamics Lab
Studiensemester:	2
Angebotsturnus:	jährlich im Sommersemester
Modulverantwortliche(r):	DiplIng. Andreas Niemann
Dozent(in):	DiplIng. Andreas Niemann
Sprache:	deutsch
Zuordnung zum Curriculum:	MPE, 2. Semester, Pflichtfach
_	MAnT, 2. Semester, Pflichtfach
	MEVT, 2. Semester, Pflichtfach
Lehrform / SWS:	1 SWS Labor;
	Durchführung in Laborgruppen mit ca. 3 Studierenden
	je Versuchsstand,
	Beginn in der 2. Semesterhälfte
Arbeitsaufwand:	30 h, davon 15 h Präsenz- und 15 h Eigenstudium
Kreditpunkte:	1
Voraussetzungen nach	Technische Thermodynamik 1
Prüfungsordnung:	
Empfohlene Voraussetzungen:	Ingenieurmathematik 1
	Physik
Angestrebte Lernergebnisse:	Die Studierenden sind mit den Berechnungsmethoden
	für typische einfache Prozesse vertraut und können
	diese selbständig auf die Betriebsvermessung
	thermischer Apparate und Anlagen sowie zur
	Gewinnung von Stoffdaten aus thermodynamischen
	Experimenten anwenden. Ziel ist der Erwerb von
	Kenntnissen in der Versuchsplanung und -durchführung
	sowie in der Dokumentation, Darstellung und
	Bewertung von Versuchsergebnissen und Messfehlern
	in Form wissenschaftlicher Berichte. Weiterhin werden
	die Teamkompetenzen der Studierenden durch die
	erforderliche Selbstorganisation innerhalb der
	Laborgruppen weiterentwickelt.
Inhalt:	Wärmeübertragung: Betriebsvermessung verschiedener
	Wärmeübertrager bei unterschiedlichen
	Betriebsbedingungen,
	Wärmepumpe: Betriebsvermessung aller Temperaturen
	Drücke und Durchsätze an einer Wasser-Wasser-
	Wärmepumpe bei verschiedenen Betriebspunkten,

	Innere und äußere Bilanzierung für alle Betriebspunkte
	und Berechnung von Leistungszahlen und
	Wirkungsgraden,
	Kalorimetrie - Grundlagen: Bestimmung der
	Wärmekapazitäten und Wärmeverluste verschiedener
	Kalorimetergefäße, Auswahl des geeigneten
	Kalorimeters für die Versuchsfortsetzung, Bestimmung
	der spezifischen Wärmekapazitäten von verschiedenen
	Werkstoffproben und einer Flüssigkeit. Vollständige
	manuelle Messwerterfassung und Probeeinwaage.
	Kalorimetrie - Verbrennungswärme: Bestimmung von
	Wärmekapazität und Wärmeverlust der
	Kalorimeterbombe mit Referenzsubstanz, manuelle
	Probenaufbereitung zweier verschiedener
	Brennstoffproben (Einwaage, Tablettierung usw.),
	Feuchtebestimmung der Brennstoffproben,
	Brennwertbestimmung der Proben, Berechnung des
	Heizwertes aus dem Brennwert, Diskussion des
	Einflusses der Brennstofffeuchte. Zündung der Probe
	und Messwerterfassung erfolgt vollautomatisch.
Studien- Prüfungsleistungen:	Testierte Leistung
Medienformen:	Versuchsanleitungen mit theoretischen Grundlagen zum
	jeweiligen Versuch zum Herunterladen von moodle,
	Versuchsaufbauten mit rechnergestützter und
	manueller Messwerterfassung
Literatur:	- Cerbe, G.; Wilhelms, G.: Technische Thermodynamik.
	14. Aufl. München, Wien: Carl Hanser Verlag, 2005
	- Elsner, N.; Dittmann, A.: Grundlagen der Technischen
	Thermodynamik. Bd. 1. 8. Aufl. Berlin: Akademie-
	Verlag, 1993
	- Kretzschmar, HJ.; Kraft, I.; Stöcker, I.: Kleine
	Formelsammlung technische Thermodynamik. 4. Aufl.
	München: Fachbuchverl. Leipzig im Hanser Verl., 2011
	- VDI-Gesellschaft für Verfahrenstechnik und
	Chemieingenieurwesen: VDI-Wärmeatlas, 11. Aufl.
	Berlin, Heidelberg: Springer Vieweg, 2013
1	