2022 年全国甲卷文科数学卷详解

选择题答案

1	2	3	4	5	6	7	8	9	10	11	12
A	В	D	В	C	C	A	В	D	C	В	A

选择题答案分布情况: 3A,4B,3C,2D

填空题答案

13. $-\frac{3}{4}$; 14. $(x-1)^2 + (y+1)^2 = 5$; 15.满足1 < $e \le \sqrt{5}$ 中的任何一个数都即正确; 16. $\sqrt{3}$ −1

1.设集合 A= $\{-2,-1,0,1,2\}$, B= $\left\{x\Big|_{0< x<\frac{5}{2}}\right\}$,则 AnB=

A. {0,1,2}

B.{-2,-1,0}

C.{0,1}

D. {1,2}

解析:方法一:直接通过交集的运算定义可得 AnB= {0,1,2} 故选 A

方法二:代入排除法,排除 B/C/D,选 A

综上第1题选A

2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取 10 位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这 10 位社区居民在讲座前 和 讲 座 后 问 卷 答 题 的 正 确 率 如 下 图 :

则

- A.讲座前问卷答题的正确率的中位数小于 70%
- B.讲座后问券答题的正确率的平均数大干 85%
- C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
- D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差

解析: A:讲座前问卷大题的正确率中位数为 $\frac{70\%+75\%}{2}$ =72.5% 所以 A 错

B 选项:可直接通过图表观察得知:问卷大题的正确率的平均数大于 85%所以 B 对

C 选项: 讲座前问卷答题的正确率数据波动要大于讲座后问卷答题的正确率,故标准差也应该大于讲座后的标准差,所以 C 错

D选项: 讲座前正确率的极差为 35%, 讲座后的为 20%, 故 D 错。

综上第 2 题选 B

3.若 z=1+i,则 $|iz+3\overline{z}|$ =

A. $4\sqrt{5}$

B. $4\sqrt{2}$

c. $2\sqrt{5}$

D. $2\sqrt{2}$

解析: 由 z=1+i 故 iz + 3z = i(1+i) + 3(1-i) = 2-2i

$$|iz + 3\overline{z}| = |2 - 2i| = 2\sqrt{2}$$

综上第3题选D

4。如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体

的体积为

A.8 B.12 C.16

D.20

解析: 该多面体是一个 $2\times2\times2$ 的正方体与一个直三棱柱的组合体,如上图直三棱柱底面是一个 直 角 边 为 2 的 等 腰 直 角 三 角 形 。 髙 为 2 , 所 以 体 积 为 : $2\times2\times2+\frac{1}{2}\times2\times2\times2=8+4=12$ 故选B

综上第 4 题选 B

5.将函数 $f(x) = \sin\left(\omega x + \frac{\pi}{3}\right)(\omega > 0)$ 的图像向左平移 $\frac{\pi}{2}$ 个单位长度后得到曲线 C,若 C

关于 y 轴对称,则 ω 的最小值是:

$$A\frac{1}{6}$$

$$B.\frac{1}{4}$$

$$C.\frac{1}{3}$$

$$D.\frac{1}{2}$$

g(x) 为 f(x) 向 左 平 移 $\frac{\pi}{2}$ 个 单 位 后 得 到 的 曲 线 , 则

$$k \in \mathbb{Z}$$

$$k \in \mathbb{Z}$$
 故: $\omega = \frac{1}{3} + 2k$ 所以 ω 的最小值为 $\frac{1}{3}$ 选 C

综上第 5 题选 C

6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片 上的数字之积是 4 的倍数的概率为 ()

$$A.\frac{1}{5}$$

$$B.\frac{1}{3}$$

A.
$$\frac{1}{5}$$
 B. $\frac{1}{3}$ C. $\frac{2}{5}$ D. $\frac{2}{3}$

D.
$$\frac{2}{3}$$

【答案】C

【解析】无放回随机抽取 2 张方法有 12, 13, 14, 15, 16, 23, 24, 25, 26, 34, 35, 36, 45, 46, 56 共 15 种, 其中数字之积为 4 的倍数的是 14, 24, 26, ,34, 45, 46 共 6 种, $p = \frac{m}{n} = \frac{2}{5}$ 故选 B。

综上第 6 题选 C

7.函数 $f(x) = (3^x - 3^{-x})\cos x$ 在区间 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 的图像大致为 ()

【答案】A

【解析】因为 $f\left(\frac{\pi}{4}\right) = \left(3^{\frac{\pi}{4}} - 3^{-\frac{\pi}{4}}\right) \cos\frac{\pi}{4} > 0$,所以排除 C,D;又因为

$$f(-x) = (3^{-x} - 3^{-(-x)})\cos(-x) = -(3^x - 3^{-x})\cos x = -f(x)$$
,所以是奇函数,故选 A.

综上第7题选A

8.当 x = 1 时,函数 $f(x) = a \ln x + \frac{b}{x}$ 取得最大值-2,則 f'(2) = 0

B.
$$-\frac{1}{2}$$

B.
$$-\frac{1}{2}$$
 C. $\frac{1}{2}$ D. 1

【答案】B

【解析】因为 $f'(x) = \frac{ax-b}{x^2}$,由题意可知 f'(1) = a-b=0, $f(1) = a \ln 1 + b = b = -2$,

所以
$$a = -2$$
 , 因此 $f'(2) = \frac{-2 \times 2 - (-2)}{4} = -\frac{1}{2}$, 故选 B.

综上第8题选B

9.在长方体 $ABCD - A_1B_1C_1D_1$ 中,己知 B_1D 与平面 ABCD 和平面 AA_1B_1B 所成的角均为 300, 则()

A. AB = 2AD B. AB与平面 AB_1C_1D 所成的角为 30^0

C. $AC = CB_1$ D. B_1D 与平面 BB_1C_1C 所成的角为 45^0

【答案】D

【解析】如图由题意可知 $\angle B_iDB$ 和 $\angle DB_iA$ 分别是 B_iD 与平面 ABCD 和平面 AA_iB_iB 所成

的 角 , 所 以 $\angle B_1DB = \angle DB_1A = 30^\circ$, 设 $AB = a, AD = b, AA_1 = c$ 根 据 题 意 有

$$\frac{b}{\sqrt{a^2+c^2}} = \tan 30^{\circ}$$
,即 $a^2+c^2=3b^2$ ①, 同理有 $a^2+b^2=3c^2$ ②, 由①和②可得

$$a = \sqrt{2}b, b = c$$
, 所以 $AB = \sqrt{2}AD$, A 错误; 所以 $AC = \sqrt{3}b$, $CB_1 = \sqrt{2}b$, C 错误;

过 B做 $BM \perp AB_1$ 于M ,则 $BM \perp$ 面 AB_1C_1D , $\angle BAB_1$ 是AB与平面 AB_1C_1D 所成的角,

$$\sin \angle BAB_1 = \frac{c}{\sqrt{a^2 + c^2}} = \frac{\sqrt{3}}{3}$$
,所以B错误; $\angle B_1DC = B_1D$ 与平面 BB_1C_1C 所成的角,

$$\sin \angle B_1 DC = \frac{B_1 C}{B_1 D} = \frac{\sqrt{2}b}{2b} = \frac{\sqrt{2}}{2}$$
, $\angle B_1 DC = \frac{\pi}{4}$, 故选 D.

综上第9题选 D

10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为 2π ,侧面面积分别为 $S_{\mathbb{H}}$ 和

 $S_{\rm Z}$,体积分别为 $V_{\rm H}$ 和 $V_{\rm Z}$,若 $\frac{S_{\rm H}}{S_{\rm Z}}$ =2,则 $\frac{V_{\rm H}}{V_{\rm Z}}$ = ()

A. $\sqrt{5}$ B. $2\sqrt{2}$ C. $\sqrt{10}$ D. $\frac{5\sqrt{0}}{4}$

【答案】C

【解析】设甲、乙两个圆锥的母线长l,圆锥甲的底面半径为 $r_{\!\scriptscriptstyle \parallel}$,高为 $h_{\!\scriptscriptstyle \parallel}$,圆锥乙的底面 半径为 $r_{\rm Z}$,高为 $h_{\rm Z}$,甲侧面展开图的圆心角为 α ,则乙侧面展开图的圆心角为 $2\pi-\alpha$,

$$\frac{S_{\oplus}}{S_{\Xi}} = \frac{\alpha}{2\pi - \alpha} = 2$$
,所以 $\alpha = \frac{4\pi}{3}$, $r_{\oplus} = \frac{2}{3}l$, $r_{\Xi} = \frac{1}{3}l$, $h_{\oplus} = \frac{\sqrt{5}}{3}l$, $h_{\Xi} = \frac{2\sqrt{2}}{3}l$,

$$\frac{V_{\mathbb{P}}}{V_{\mathbb{Z}}} = \frac{\frac{1}{3}\pi r_{\mathbb{P}}^2 h_{\mathbb{P}}}{\frac{1}{3}\pi r_{\mathbb{Z}}^2 h_{\mathbb{Z}}} = \sqrt{10}$$
, 故选 C.

综上第 10 题选 C

11. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的离心率为 $\frac{1}{3}$, A_1 , A_2 分别为C的左、右顶点,B为

C的上顶点. 若 $\overrightarrow{BA_1} \cdot \overrightarrow{BA_2} = -1$,则C的方程为(

A.
$$\frac{x^2}{18} + \frac{y^2}{16} = 1$$
 B. $\frac{x^2}{9} + \frac{y^2}{8} = 1$ C. $\frac{x^2}{3} + \frac{y^2}{2} = 1$ D. $\frac{x^2}{2} + y^2 = 1$

B.
$$\frac{x^2}{9} + \frac{y^2}{8} = 1$$

C.
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$

D.
$$\frac{x^2}{2} + y^2 = 1$$

【答案】B

【解析】由题意, $A_1(-a,0)$, $A_2(a,0)$, B(0,b) , 所以 $\overrightarrow{BA_1} = (-a,-b)$, $\overrightarrow{BA_2} = (a,-b)$,

$$\overrightarrow{BA_1} \cdot \overrightarrow{BA_2} = -a^2 + b^2 = -1$$
 ①. 又 $1 - \frac{b^2}{a^2} = \frac{1}{9}$,所以 C 的方程为 $\frac{x^2}{9} + \frac{y^2}{8} = 1$,答案选 B.

综上第 11 题选 B

12. 己知
$$9^m = 10$$
, $a = 10^m - 11$, $b = 8^m - 9$, 则 ()

A. a > 0 > b

B. a > b > 0 C. b > a > 0

D. b > 0 > a

【答案】A

【解析】由 $9^m = 10$,可得 $m = \log_9 10 \in (1, 1.5)$.

根据 a , b 的形式构造函数 $f(x) = x^m - x - 1$ (x > 1) ,则 $f'(x) = mx^{m-1} - 1$,

令 f'(x) = 0,解得 $x_0 = m^{\frac{1}{1-m}}$,由 $m = \log_9 10 \in (1,1.5)$ 知 $x_0 \in (0,1)$.

f(x) 在 $(1,+\infty)$ 上单调递增,所以 f(10) > f(8) ,即 a > b ,

又因为 $f(9) = 9^{\log_9 10} - 10 = 0$,所以a > 0 > b,答案选A.

综上第 12 题选 A

13. 已知向量 $\mathbf{a} = (m,3)$, $\mathbf{b} = (1,m+1)$,若 $\mathbf{a} \perp \mathbf{b}$,则 $m = \underline{\hspace{1cm}}$.

【答案】 $-\frac{3}{4}$

【解析】由 $a \perp b$, 得m + 3m + 3 = 0, 解得 $m = -\frac{3}{4}$.

14. 设点 M 在直线 2x+y-1=0 上,点 (3,0) 和 (0,1) 均在 ⊙M 上,则 ⊙M 的方程为

【答案】 $(x-1)^2 + (y+1)^2 = 5$

【解析】方法一: 因为点 (3,0) 和 (0,1) 的中点为 $(\frac{3}{2},\frac{1}{2})$ 且 $k = -\frac{1}{3}$

所以点(3,0)和(0,1)的垂直平分线方程为: y=3x-4

联立方程 $\begin{cases} y = 3x - 4 \\ 2x + y - 1 = 0 \end{cases}, 解得圆心 M(1,-1)$

 $\nabla r^2 = (3-1)^2 + 1^2 = 5$

所以 $\odot M$ 的方程为 $(x-1)^2 + (y+1)^2 = 5$.

方法二: 设圆心M(a,1-2a),则 $r^2 = (a-3)^2 + (1-2a)^2 = (a-0)^2 + (1-2a-1)^2$

解得 a=1

从而得 ⊙M 的方程为 $(x-1)^2 + (y+1)^2 = 5$.

15. 双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为 e ,写出满足条件"直线 y = 2x 与 C 无公共点"的 e 的一个值

【答案】2(答案不唯一,只要 $1 < e \le \sqrt{5}$ 即可)

【解析】因为双曲线C的渐近线方程为 $y=\pm \frac{b}{a}x$,

要使直线 y = 2x 与 C 无公共点,则只需要 $2 \ge \frac{b}{a}$ 即可,

曲
$$\frac{b}{a} \le 2$$
的 $\frac{c^2 - a^2}{a^2} = \frac{b^2}{a^2} \le 4$,所以 $e^2 \le 5$,

解得 $1 < e \le \sqrt{5}$

16. 已知 $\triangle ABC$ 中,点 D 在边 BC 上, $\angle ADB = 120^{\circ}$,AD = 2,CD = 2BD,当 $\frac{AC}{AB}$ 取得最小值时,BD = 2

【答案】 $\sqrt{3}-1$

【解析】设BD = x,则CD = 2x,

则在 $\triangle ABD$ 中由余弦定理得: $AB^2 = 2^2 + x^2 - 2 \times 2 \cdot x \cos 120^\circ$ 即 $AB^2 = 4 + x^2 + 2x$,

在 ΔADC 中由余弦定理得: $AC^2 = 2^2 + (2x)^2 - 2 \times 2 \cdot 2x \cos 60^\circ$ 即 $AC^2 = 4 + 4x^2 + 4x$

所以
$$\left(\frac{AC}{AB}\right)^2 = \frac{4+4x^2+4x}{4+x^2+2x}, x > 0$$

设
$$f(x) = \frac{x^2 + x + 1}{x^2 + 2x + 4}$$
, $x > 0$, 则 $f'(x) = \frac{3x^2 + 6x - 6}{(x^2 + 2x + 4)^2} = 0$ 得: $x = \sqrt{3} - 1$.

可知 f(x) 在 $(0,\sqrt{3}-1)$ 单调递减,在 $(\sqrt{3}-1,+\infty)$ 单调递增,

所以 f(x) 在 $x = \sqrt{3} - 1$ 时取得最小值,

所以当 $\frac{AC}{AB}$ 取得最小值时, $BD = \sqrt{3} - 1$.

17.(12分)

甲、乙两城之间的长途客车均由 A 和 B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的 500 个班次,得到下面列联表:

	准点班次数	未准点班次数
А	240	20
В	210	30

(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率: (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?

附:
$$k^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

 $\frac{240}{260}$ = 0.923

解(1)甲城一共调查了260辆车,其中有240辆准点,故甲城准点的概率=

乙城一共调查了 240 辆,其中有 210 辆准点。故乙城准点的概率= $\frac{210}{240}$ =0.875

(2):

	准点班次数	未准点班次数	合计
A	240	20	260
В	210	30	240
合计	450	50	500

$$k^{2} = \frac{n(ad - bc)^{2}}{(a+b)(c+d)(a+c)(b+d)} = \frac{500(240 \times 30 - 210 \times 20)^{2}}{260 \times 240 \times 450 \times 50} = 3.2 \times 2.706$$

所以有 90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关 18. (12分)

记 S_n 为数列 $\{a_n\}$ 的前n项和. 已知 $\frac{2S_n}{n}+n=2a_n+1$.

- (1) 证明: $\{a_n\}$ 是等差数列;
- (2) 若 a_4 , a_7 , a_9 成等比数列,求 S_n 的最小值.

解: (1) 由已知得 $2S_n + n^2 = 2na_n + n$.

当n=1时,原式恒成立;

当
$$n \ge 2$$
 时, $2S_{n-1} + (n-1)^2 = 2(n-1)a_{n-1} + (n-1)$;

两式相减得: $2a_n + 2n - 1 = 2na_n - 2(n-1)a_{n-1} + 1$,

整理得:
$$(2n-2)a_n = (2n-2)a_{n-1} + (2n-2)$$
,

因为 $n \ge 2$,故2n-2 > 0,所以 $a_n - a_{n-1} = 1 (n \ge 2)$,

所以数列 $\{a_n\}$ 是公差为1的等差数列。

(2) 由 (1)
$$d=1$$
; 由题意 $a_7^2=a_4a_9$, 即 $(a_1+6)^2=(a_1+3)(a_1+8)$,

化简得:
$$a_1 = -12$$
. 故
$$S_n = na_1 + \frac{n(n-1)}{2}d = -12n + \frac{n(n-1)}{2},$$

$$= \frac{1}{2}n^2 - \frac{25}{2}n = \frac{1}{2}(n - \frac{25}{2})^2 - \frac{625}{8},$$

因为 $n \in N^*$, 所以n = 12或n = 13时, $(S_n)_{min} = -78$.

19. (12分)

小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示: 底面 ABCD 是 边长为 8 (单位: cm)的正方形, ΔEAB , ΔFBC , ΔGCD , ΔHDA 均为正三角形,且它们所在的平面都与平面 ABCD 垂直.

- (1) 证明: EF // 平面 ABCD
- (2) 求该包装盒的容积(不计包装盒材料的厚度)

解: (1)过点E作 $EE' \perp AB$ 于点E',过点F作 $FF' \perp BC$ 于点F',连接E'F'

- :底面 ABCD 是边长为 8 的正方形, $\triangle EAB$ 、 $\triangle FBC$ 均为正三角形,且它们所在的平面都与平面 ABCD 垂直
- :: E', F'分别是 AB, BC 的中点

- :. 四边形 EE'F'F 为矩形
- ∴ *EF* || *E* '*F* ', *E* '*F* ' ⊂ 平面 *ABCD*
- ∴ EF || 平面 ABCD
- (2) 过点G,H分别作 $GG' \perp CD,HH' \perp DA$,连接F'G',G'H',H'E',AC,由(1)

及题意可知,EFGH-E'F'G'H'为长方体,故该包装盒可分成一个长方体和四个相等的四棱锥组合而成

由底面 ABCD 是边长为 8 的正方形可得: $E'F' = H'E' = \frac{1}{2}AC = 4\sqrt{2}$

:: 所求该包装盒的容积为

$$\begin{split} V &= V_{EFGH-E'F'G'H'} + 4V_{A-EE'H'H} \\ &= E'F' \times E'H' \times EE' + 4 \times \frac{1}{3} \times S_{EE'H'H} \times \frac{1}{4} AC \\ &= 4\sqrt{2} \times 4\sqrt{2} \times 4\sqrt{3} + 4 \times \frac{1}{3} \times 4\sqrt{2} \times 4\sqrt{3} \times 2\sqrt{2} \\ &= \frac{640\sqrt{3}}{3} \end{split}$$

20. (12 分)已知函数 $f(x) = x^3 - x$, $g(x) = x^2 + a$, 曲线 y = f(x) 在点 $(x_1, f(x_1))$ 处的切线 也是曲线 y = g(x) 的切线.

- (1) 若 $x_1 = -1$, 求a;
- (2) 求 a 的取值范围.

【答案】 (1) a=1; (2) $a \ge -1$

【解析】 (1) ::
$$f'(x) = 3x^2 - 1$$
, :: $f'(1) = 2$, 且 $f(1) = 0$

故 y = f(x) 在点 (1,0) 处的切线为 y = 2x

又
$$y = 2x$$
 与 $y = g(x)$ 相切, 将直线 $y = 2x$ 代入 $g(x) = x^2 + a$ 得 $x^2 - 2x + a = 0$

由
$$\Delta = 4 - 4a = 0$$
 得 $a = 1$

(2) :
$$f'(x) = 3x^2 - 1$$
, 曲线 $y = f(x)$ 在点 $(x_1, f(x_1))$ 处的切线为

$$y-(x_1^3-x_1)=(3x_1^2-1)(x-x_1)$$
, $\exists y=(3x_1^2-1)x-2x_1^3$;

由
$$g(x) = x^2 + a$$
 得 $g'(x) = 2x$,

设
$$y = g(x)$$
 在点 $(x_2, g(x_2))$ 处的切线为 $y - (x_2^2 + a) = 2x_2(x - x_2)$,

$$\mathbb{E}[y = -2x_2x - x_2^2 + a]$$

$$\therefore \begin{cases} 3x_1^2 - 1 = 2x_2 \\ -2x_1^3 = a - x_2^2 \end{cases},$$

$$\therefore a = x_2^2 - 2x_1^3 = \frac{1}{4}(9x_1^4 - 8x_1^3 - 6x_1^2 + 1)$$

当
$$x_1 < -\frac{1}{3}$$
 或 $0 < x_1 < 1$ 时, $h'(x_1) < 0$, 此时函数 $y = h(x_1)$ 单调递减;

当
$$-\frac{1}{3}$$
< x_1 < 0 或 x_1 > 1 时, $h'(x_1)$ > 0 ,此时函数 $y = h(x_1)$ 单调递增;

$$\mathbb{X} h(-\frac{1}{3}) = \frac{20}{27}, \ h(0) = 1, \ h(1) = -4, \ \therefore \ h(x_1)_{\min} = h(1) = -4$$

$$\therefore a \geqslant \frac{-4}{4} = -1, \quad \text{id} a \geqslant -1$$

21. (12分)

设抛物线 $C:y^2=2px(p>0)$ 的焦点为 F,点 D(p,0),过 F 的直线交 C F M,N 两点.当直线 MD 垂直于 x 轴时,|MF|=3.

(1) 求 C 的方程;

(2) 设直线 MD, ND 与 C 的另一个交点分别为 A, B,记直线 MN, AB 的倾斜角分别为 a, β . 当 a- β 取得最大值时,求直线 AB 的方程.

(1) 如图,由已知 $x_M=p$, $|MF|=3=x_M+\frac{p}{2}$,所以 p=2,抛物线 C 的方程 $y^2=4x$

(2)
$$\Leftrightarrow K_{MN} = k_1 = \tan \alpha$$
 , $K_{AB} = k_2 = \tan \beta$, $\tan(\alpha - \beta) = \frac{k_1 - k_2}{1 + k_1 k_2}$

令 $M(x_1,y_1)$, $N(x_2,y_2)$, $(y_1>0$, $y_2<0$) $A(x_3,y_3)$, $B(x_4,y_4)$ $(y_3<0,y_4>0)$, $AB:y=k_2(x-m)$ 由 $\begin{cases} y=k_1(x-1)\\ y^2=4x \end{cases}$ 得 $x_1x_2=1$

$$\pm \begin{cases} y = k_2(x-m) \\ y^2 = 4x \end{cases} \\ \exists k_3 x_4 = m^2$$

由
$$\begin{cases} y = k_{MD}(x-2) \\ y^2 = 4x \end{cases}$$
 得 $x_1x_3 = 4$, $\begin{cases} y = k_{ND}(x-2) \\ y^2 = 4x \end{cases}$ 得 $x_2x_4 = 4$,

所以有 $M(x_1,2\sqrt{x_1}),N(\frac{1}{x_1},\frac{-2}{\sqrt{x_1}}),A(\frac{4}{x_1},\frac{-4}{\sqrt{x_1}}),B(4x_1,4\sqrt{x_1})$

此时易得 $x_3x_4=16x_1x_2=m^2$,所以 m=4,所以 AB 方程: $y=\pm \frac{\sqrt{2}}{2}$ (x-4)

22. 【选修 4-4: 坐标系与参数方程】(10 分)

在直角坐标系 xOy 中,曲线 C_1 的参数方程为 $\begin{cases} x=\frac{2+t}{6}, & (t 是参数), 曲线 <math>C_2$ 的参数方程为 $y=\sqrt{t} \end{cases}$

$$\begin{cases} x = -\frac{2+s}{6}, & (s 是参数). \\ y = -\sqrt{s} \end{cases}$$

- (1) 写出 C₁ 的普通方程;
- (2) 以坐标原点为极点,x 轴正半轴建立极坐标系,曲线 C_3 的极坐标方程为 $2\cos\theta \sin\theta = 0$,求 C_3 与 C_1 交点的直角坐标,及 C_3 与 C_2 交点的直角坐标.

解:

(1)
$$C_1: \begin{cases} x = \frac{2+t}{6},$$
 消去参数 $t \ \# \ x = \frac{2+y^2}{6} \ (y \ge 0) \Longrightarrow \quad y^2 = 6x - 2(y \ge 0). \end{cases}$

(2) C_3 : $2\cos\theta-\sin\theta=0$,两边乘 ρ , \Longrightarrow $2\rho\cos\theta-\rho\sin\theta=0$. $\therefore C_3$:y=2x.

联立
$$\{y^2 = 6x - 2(y \ge 0)\}$$
 解得 $\{x = \frac{1}{2}\}$ 或 $\{x = 1\}$ $\{y = 2\}$

C₂消去参数 s 得y² = -6x - 2(y≤0)

联立
$$\{ y^2 = -6x - 2(y \le 0) \}$$
 解得 $\{ x = -1 \} \}$ 或 $\{ x = -\frac{1}{2} \} \}$ $y = 2x$

综上所述, C_3 与 C_1 交点为($\frac{1}{2}$,1)和(1,2); C_3 与 C_2 交点为(-1,-2)和($\frac{1}{2}$ -1)。

23.已知正实数 $a \cdot b \cdot c$ 满足 $a^2 + b^2 + 4c^2 = 3$ 求证:

$$\widehat{1}$$
 $a + b + 2c \le 3$.

②若
$$b=2c$$
.则 $\frac{1}{a}+\frac{1}{c}\geq 3$.

(1)解析:

由柯西不等式知:

$$(a^2+b^2+4c^2)(1^2+1^2+1^2) \ge (a+b+2c)^2$$

即 $3 \times 3 \ge (a+b+2c)^2$ 且 a.b.c 是正实数

故 $a+b+2c \le 3$ (当且仅当a=b=2c时取等 .即 $a=b=1.c=\frac{1}{2}$)

(2)解析:

由①知 $a+b+2c \le 3$ 且b=2c.

故
$$0 < a + 4c \le 3$$
. $\frac{1}{a + 4c} \ge \frac{1}{3}$

由权方和不等式知

$$\frac{1}{a} + \frac{1}{c} = \frac{1^2}{a} + \frac{2^2}{4c} \ge \frac{9}{a+4c} \ge 3.$$

故
$$\frac{1}{a} + \frac{1}{c} \ge 3$$
.