LEPTONS

е

$$J=\frac{1}{2}$$

Mass $m=(548.579909065\pm0.000000016)\times 10^{-6}$ u Mass $m=0.51099895000\pm0.00000000015$ MeV $\begin{aligned} |m_{e^+}-m_{e^-}|/m < 8\times 10^{-9}, \ \text{CL} = 90\% \\ |q_{e^+}+q_{e^-}|/e < 4\times 10^{-8} \end{aligned}$ Magnetic moment anomaly $(g-2)/2 = (1159.65218062\pm0.00000012)\times 10^{-6}$ ($g_{e^+}-g_{e^-}$) / $g_{\text{average}} = (-0.5\pm2.1)\times 10^{-12}$ Electric dipole moment $d < 0.041\times 10^{-28}$ e cm, CL = 90% Mean life $\tau > 6.6\times 10^{28}$ yr, CL = 90% [a]

 μ

$$J=\frac{1}{2}$$

Mass $m=0.1134289259\pm0.0000000025$ u Mass $m=105.6583755\pm0.0000023$ MeV Mean life $\tau=(2.1969811\pm0.0000022)\times10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-}=1.00002\pm0.00008$ $c\tau=658.6384$ m Magnetic moment anomaly $(g-2)/2=(11659205.9\pm2.2)\times10^{-10}$ ($g_{\mu^+}-g_{\mu^-}$) / $g_{\rm average}=(-0.11\pm0.12)\times10^{-8}$ Electric dipole moment $|{\rm d}|<1.8\times10^{-19}$ e cm, CL =95%

Decay parameters [b]

$$\begin{split} \rho &= 0.74979 \pm 0.00026 \\ \eta &= 0.057 \pm 0.034 \\ \delta &= 0.75047 \pm 0.00034 \\ \xi P_{\mu} &= 1.0009^{+0.0016}_{-0.0007} \ [c] \\ \xi P_{\mu} \delta/\rho &= 1.0018^{+0.0016}_{-0.0007} \ [c] \\ \xi' &= 1.00 \pm 0.04 \\ \xi'' &= 0.98 \pm 0.04 \\ \alpha/A &= (0 \pm 4) \times 10^{-3} \\ \alpha'/A &= (-10 \pm 20) \times 10^{-3} \\ \beta/A &= (4 \pm 6) \times 10^{-3} \\ \beta'/A &= (2 \pm 7) \times 10^{-3} \\ \overline{\eta} &= 0.02 \pm 0.08 \end{split}$$

 μ^+ modes are charge conjugates of the modes below.

μ^- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$e^-\overline{ u}_e u_\mu$	pprox 100%		53
$e^-\overline{ u}_e u_\mu\gamma$	[d] $(6.0\pm0.5)\times10^{-2}$	₎ –8	53
$e^-\overline{ u}_e u_\mu\dot{e}^+e^-$	[e] $(3.4\pm0.4)\times10$	₁ –5	53
Lepton Family n	umber (<i>LF</i>) violatir	ng modes	
$e^- u_e\overline{ u}_\mu$ LF	[f] < 1.2 %	90%	53
$e^-\gamma$	< 4.2 × 10		53
$e^{-\stackrel{'}{e}+}e^{-}$ LF	< 1.0 imes 10	₀ -12 90%	53
$e^- 2\gamma$	< 7.2 × 10	90%	53

au

$$J = \frac{1}{2}$$

Mass
$$m=1776.93\pm0.09$$
 MeV $(m_{\tau^+}-m_{\tau^-})/m_{\rm average} < 2.8\times10^{-4},~{\rm CL}=90\%$ Mean life $\tau=(290.3\pm0.5)\times10^{-15}$ s $c\tau=87.03~\mu{\rm m}$ Magnetic moment anomaly $=-0.057$ to $0.024,~{\rm CL}=95\%$ ${\rm Re}(d_{\tau})=-0.185$ to $0.061\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$ ${\rm Im}(d_{\tau})=-0.103$ to $0.0230\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$

Weak dipole moment

$${\rm Re}(d_{_T}^w) <~0.50 \times 10^{-17}~e\,{\rm cm},~{\rm CL} = 95\% \\ {\rm Im}(d_{_T}^w) <~1.1 \times 10^{-17}~e\,{\rm cm},~{\rm CL} = 95\% \\$$

Weak anomalous magnetic dipole moment

$$\begin{array}{l} {\rm Re}(\alpha_{\tau}^{\it w}) < \ 1.1 \times 10^{-3}, \ {\rm CL} = 95\% \\ {\rm Im}(\alpha_{\tau}^{\it w}) < \ 2.7 \times 10^{-3}, \ {\rm CL} = 95\% \\ \tau^{\pm} \rightarrow \ \pi^{\pm} \, {\it K}_{\it S}^{\it 0} \, \nu_{\tau} \ ({\rm RATE \ DIFFERENCE}) \ / \ ({\rm RATE \ SUM}) = \\ (-0.36 \pm 0.25)\% \end{array}$$

Decay parameters

See the au Particle Listings for a note concerning au-decay parameters.

$$ho(e ext{ or } \mu) = 0.745 \pm 0.008$$
 $ho(e) = 0.747 \pm 0.010$
 $ho(\mu) = 0.763 \pm 0.020$
 $ho(\mu) = 0.985 \pm 0.030$
 $ho(e) = 0.994 \pm 0.040$
 $ho(\mu) = 1.030 \pm 0.059$
 $ho(e ext{ or } \mu) = 0.013 \pm 0.020$
 $ho(\mu) = 0.094 \pm 0.073$

$$(\delta \xi)(e \text{ or } \mu) = 0.746 \pm 0.021$$

 $(\delta \xi)(e) = 0.734 \pm 0.028$
 $(\delta \xi)(\mu) = 0.778 \pm 0.037$
 $\xi(\pi) = 0.993 \pm 0.022$
 $\xi(\rho) = 0.994 \pm 0.008$
 $\xi(a_1) = 1.001 \pm 0.027$
 $\xi(\text{all hadronic modes}) = 0.995 \pm 0.007$
 $\xi'(\mu) = 0.2 \pm 1.0$
 $\overline{\eta}(\mu) = -1.3 \pm 1.7$
 $(\xi \kappa)(e \text{ or } \mu) = 0.5 \pm 0.4$
 $(\xi \kappa)(e) = -0.4 \pm 1.2$
 $(\xi \kappa)(\mu) = 0.8 \pm 0.6$

 au^+ modes are charge conjugates of the modes below. " h^\pm " stands for π^\pm or K^\pm . " ℓ " stands for e or μ . "Neutrals" stands for γ 's and/or π^0 's.

au^- DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 5/31/2024 10:12

Modes with one charged particle

Modes with	n on	e charged	i partic	le	
particle ⁻ ≥ 0 neutrals $\geq 0K^0\nu_{\tau}$		(85.24	± 0.06) %	_
("1-prong")					
particle ⁻ ≥ 0 neutrals $\geq 0K_L^0\nu_{ au}$		(84.58	± 0.06) %	_
$\mu^- \overline{ u}_\mu u_ au$	[g]	(17.39	± 0.04) %	885
$\mu^- \overline{ u}_\mu u_ au \gamma$	[e]	(3.67 =	± 0.08	$) \times 10^{-3}$	885
$e^-\overline{ u}_e u_ au$	[g]	(17.82 =	± 0.04) %	888
$e^-\overline{ u}_e u_ au \gamma$	[e]	(1.83 =	± 0.05) %	888
$h^- \geq 0 K_L^0 \; u_ au$		(12.03	± 0.05) %	883
$\mathit{h}^- u_ au$		(11.51 =	± 0.05) %	883
$\pi^- u_{ au}$	[g]	(10.82	± 0.05) %	883
$\mathit{K}^- u_ au$	[g]	(6.96 =	± 0.10	$) \times 10^{-3}$	820
$h^- \geq 1$ neutrals $ u_ au$		(37.00 =	± 0.09) %	_
$h^- \geq 1\pi^0 u_ au(ext{ex}. extit{ extit{K}}^0)$		(36.50 =	± 0.09) %	_
$\mathit{h}^-\pi^0 u_{ au}$		(25.93	± 0.09) %	878
$\pi^-\pi^0 u_ au$	[g]	(25.49	± 0.09) %	878
$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$		(3.0 =	± 3.2	$) \times 10^{-3}$	878
$\mathit{K}^-\pi^0 u_ au$	[g]	(4.33 =	± 0.15	$) \times 10^{-3}$	814
$h^- \geq 2\pi^0 u_ au$		(10.81 =	± 0.09) %	_
$h^-2\pi^0 u_ au$		(9.48 =	± 0.10) %	862
$h^- 2\pi^0 u_ au (\mathrm{ex}.K^0)$		(9.32 =	± 0.10) %	862
$\pi^- 2\pi^0 u_ au$ (ex. \mathcal{K}^0)	[g]	(9.26 =	± 0.10) %	862
$\pi^- 2\pi^0 u_{ au} (ext{ex}. { extit{K}}^0)$,		< 9		\times 10 ⁻³ CL=95%	862
$\pi^- 2\pi^0 u_ au$ (ex. K^0), vector		< 7		$\times 10^{-3}$ CL=95%	862
VCCLOI					

$\mathcal{K}^- 2\pi^0 u_{ au} (\mathrm{ex}.\mathcal{K}^0)$	[g]	$(6.5 \pm 2.2) \times 10^{-4}$	796
$h^- \geq 3\pi^0 u_ au$	[0]	$(1.34 \pm 0.07)\%$	_
$h^- \geq 3\pi^0 \nu_{\tau} (\text{ex. } K^0)$		$(1.25 \pm 0.07)\%$	_
$h^{-}3\pi^{0}\nu_{\tau}$		(1.18 ± 0.07) %	836
$\pi^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0})	[g]	•	836
$K^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0} ,	[g]	·	766
	[6]	(4.0 ± 2.1) × 10	700
$^{\eta)}_{h^-4\pi^0 u_{_{\mathcal{T}}}(ext{ex}.\mathcal{K}^0)}$		$(1.6 \pm 0.4) \times 10^{-3}$	800
$h^- 4\pi^0 \nu_{\tau} (\text{ex.} K^0, \eta)$	[ø]	$(1.1 \pm 0.4) \times 10^{-3}$	800
$a_1(1260)\nu_{\tau} \rightarrow \pi^- \gamma \nu_{\tau}$	[6]	$(4.0 \pm 1.5) \times 10^{-4}$	_
$K^- \geq 0\pi^0 \geq 0K^0 \geq 0\gamma \nu_{\tau}$		(1.552± 0.029) %	820
$K^- \geq 1 \; (\pi^0 \text{ or } K^0 \text{ or } \gamma) \; \nu_{\tau}$		$(8.59 \pm 0.28) \times 10^{-3}$	_
, , ,			
	des	with K^0 's	
K_S^0 (particles) ν_{τ}		$(9.43 \pm 0.28) \times 10^{-3}$	_
$h^{-}\overline{K}^{0}\underline{\nu_{\tau}}$		$(9.87 \pm 0.14) \times 10^{-3}$	812
$\pi^-\overline{K}^0_2 u_ au$	[g]		812
$\pi^-\overline{K}^0$		$(5.4 \pm 2.1) \times 10^{-4}$	812
$(\text{non-}K^*(892)^-)\nu_{ au}$		2	
$K^-K^0\nu_{\tau}$	[g]	$(1.486 \pm 0.034) \times 10^{-3}$	737
$K^{-} K^{0} \geq 0 \pi^{0} \nu_{\tau}$		$(2.99 \pm 0.07) \times 10^{-3}$	737
$h^{-}\overline{K}^{0}\pi^{0}\nu_{\tau}$		$(5.32 \pm 0.13) \times 10^{-3}$	794
$\pi^{-} \overline{K}{}^{0} \pi^{0} \nu_{ au}$	[g]	$(3.82 \pm 0.13) \times 10^{-3}$	794
$\overline{K}^0 \rho^- \nu_{ au}$		$(2.2 \pm 0.5) \times 10^{-3}$	612
$K_{-0}^{-1}K^{0}\pi^{0}\nu_{\tau}$	[g]	$(1.50 \pm 0.07) \times 10^{-3}$	685
$\pi^- \overline{K}^0 \geq 1 \pi^0 \nu_{\tau}$		$(4.08 \pm 0.25) \times 10^{-3}$	_
$\pi^-\overline{K}{}^0\pi^0\pi^0\nu_{\tau}(\mathrm{ex}.K^0)$	[g]	$(2.6 \pm 2.3) \times 10^{-4}$	763
$K^{-}K^{0}\pi^{0}\pi^{0}\nu_{\tau}$		$< 1.6 \times 10^{-4} \text{CL} = 95\%$	619
$\pi^- K^0 \overline{K}{}^0 \nu_{\tau}$		$(1.55 \pm 0.24) \times 10^{-3}$	682
π^- K $_5^0$ K $_5^0$ $ u_ au$	[g]	$(2.35 \pm 0.06) \times 10^{-4}$	682
π^- K $_{S}^{ar{0}}$ K $_{L}^{ar{0}}$ $ u_{ au}$	[g]	$(1.08 \pm 0.24) \times 10^{-3}$	682
$\pi^- K^0_L K^0_L u_ au$		$(2.35 \pm 0.06) \times 10^{-4}$	682
$\pi^{-} K^{0} \overline{K}^{0} \pi^{0} \nu_{\tau}$		$(3.6 \pm 1.2) \times 10^{-4}$	614
$\pi^- {\mathsf K}^0_{\mathsf S} {\mathsf K}^0_{\mathsf S} \pi^0 u_ au$	[g]	$(1.82 \pm 0.21) \times 10^{-5}$	614
$\pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}$ $K^{*-} K^{0} \pi^{0} \nu_{\tau} \rightarrow$		$(1.08 \pm 0.21) \times 10^{-5}$	_
$\pi^-K^0_SK^0_S\pi^0 u_ au$			
$f_1(1285)\pi^- u_ au ightarrow$		(6.8 \pm 1.5) $ imes$ 10 ⁻⁶	_
$\pi^-K^0_SK^0_S\pi^0 u_ au$			
$f_1(1420)\pi^-\nu \rightarrow$		$(2.4 \pm 0.8) \times 10^{-6}$	_
$\pi^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{\tau}$,	
$\pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}$ $\pi^{-} K_{S}^{0} K_{L}^{0} \pi^{0} \nu_{\tau}$ $\pi^{-} K_{L}^{0} K_{L}^{0} \pi^{0} \nu_{\tau}$	[g]	$(3.2 \pm 1.2) \times 10^{-4}$	614
$\pi^ K_0^{0}$ K_0^{0} π^0 ν_{π}		$(1.82 \pm 0.21) \times 10^{-5}$	614
$K - K_0^0 K_0^0 V$		$< 6.3 \times 10^{-7} \text{CL} = 90\%$	466
$K^{-}K_{S}^{0}K_{S}^{0}\nu_{ au}$ $K^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{ au}$		< 4.0	337
$N = NSNS^{N-\nu_{\tau}}$		× 10 CL=90%	J31

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathit{K}^{0}\mathit{h}^{+}\mathit{h}^{-}\mathit{h}^{-}\geq 0$ neutrals $ u_{ au}$		< 1.7	×	10 ⁻³ CL=95%	760
$\begin{array}{llll} h^- h^- h^+ & \geq 0 \; \text{neutrals} \; \geq 0 K_L^0 \nu_\tau & (15.20 \pm 0.06) \% \\ h^- h^- h^+ & \geq 0 \; \text{neutrals} \; \nu_\tau & (14.55 \pm 0.06) \% \\ (\text{ex.} \; K_S^0 \rightarrow \; \pi^+ \pi^-) & (14.55 \pm 0.06) \% & 861 \\ (\text{ex.} \; K_S^0 \rightarrow \; \pi^+ \pi^-) & (9.80 \pm 0.05) \% & 861 \\ h^- h^- h^+ \nu_\tau & (9.80 \pm 0.05) \% & 861 \\ h^- h^- h^+ \nu_\tau & (9.46 \pm 0.05) \% & 861 \\ h^- h^- h^+ \nu_\tau & (9.31 \pm 0.05) \% & 861 \\ \pi^- \pi^+ \pi^- \nu_\tau & (9.31 \pm 0.05) \% & 861 \\ \pi^- \pi^+ \pi^- \nu_\tau & (9.02 \pm 0.05) \% & 861 \\ \pi^- \pi^+ \pi^- \nu_\tau & (\text{ex.} K^0) & (9.02 \pm 0.05) \% & 861 \\ \pi^- \pi^+ \pi^- \nu_\tau & (\text{ex.} K^0) & (9.02 \pm 0.05) \% & 861 \\ h^- h^- h^+ \geq 1 \; \text{neutrals} \; \nu_\tau & (5.29 \pm 0.05) \% & -1 \\ h^- h^- h^+ \geq 1 \pi^0 \nu_\tau & (\text{ex.} K^0) & (5.09 \pm 0.05) \% & -1 \\ h^- h^- h^+ \geq 1 \pi^0 \nu_\tau & (\text{ex.} K^0) & (5.09 \pm 0.05) \% & -1 \\ h^- h^- h^+ \geq 1 \pi^0 \nu_\tau & (\text{ex.} K^0) & (5.09 \pm 0.05) \% & -1 \\ h^- h^-$	$K^0h^+h^-h^- u_ au$	[g]	(2.5 \pm	2.0)×	10^{-4}	760
$\begin{array}{llll} h^- h^- h^+ & \geq 0 \; \text{neutrals} \; \geq 0 K_L^0 \nu_\tau & (15.20 \pm 0.06) \% \\ h^- h^- h^+ & \geq 0 \; \text{neutrals} \; \nu_\tau & (14.55 \pm 0.06) \% \\ (\text{ex.} \; K_S^0 \rightarrow \; \pi^+ \pi^-) & (14.55 \pm 0.06) \% & 861 \\ (\text{ex.} \; K_S^0 \rightarrow \; \pi^+ \pi^-) & (9.80 \pm 0.05) \% & 861 \\ h^- h^- h^+ \nu_\tau & (9.80 \pm 0.05) \% & 861 \\ h^- h^- h^+ \nu_\tau & (9.46 \pm 0.05) \% & 861 \\ h^- h^- h^+ \nu_\tau & (9.31 \pm 0.05) \% & 861 \\ \pi^- \pi^+ \pi^- \nu_\tau & (9.31 \pm 0.05) \% & 861 \\ \pi^- \pi^+ \pi^- \nu_\tau & (9.02 \pm 0.05) \% & 861 \\ \pi^- \pi^+ \pi^- \nu_\tau & (\text{ex.} K^0) & (9.02 \pm 0.05) \% & 861 \\ \pi^- \pi^+ \pi^- \nu_\tau & (\text{ex.} K^0) & (9.02 \pm 0.05) \% & 861 \\ h^- h^- h^+ \geq 1 \; \text{neutrals} \; \nu_\tau & (5.29 \pm 0.05) \% & -1 \\ h^- h^- h^+ \geq 1 \pi^0 \nu_\tau & (\text{ex.} K^0) & (5.09 \pm 0.05) \% & -1 \\ h^- h^- h^+ \geq 1 \pi^0 \nu_\tau & (\text{ex.} K^0) & (5.09 \pm 0.05) \% & -1 \\ h^- h^- h^+ \geq 1 \pi^0 \nu_\tau & (\text{ex.} K^0) & (5.09 \pm 0.05) \% & -1 \\ h^- h^-$	Modes with	thre	e charged	narticles		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		tiii C	_	-		861
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_		,	,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\text{ex. } K_c^0 \to \pi^+\pi^-)$		(21.00 ±	0.00) /0		001
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
$\begin{array}{llllllllllllllllllllllllllllllllllll$			(9.80 \pm	0.05)%		861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau} \qquad (9.31 \pm 0.05)\% \qquad 861$ $\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0}) \qquad (9.02 \pm 0.05)\% \qquad 861$ $\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0}), \qquad < 2.4 \qquad \% \qquad \text{CL=95\%} \qquad 861$ $\text{non-axial vector} \qquad \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0},\omega) \qquad [g] (8.99 \pm 0.05)\% \qquad 861$ $h^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \qquad (5.29 \pm 0.05)\% \qquad - 60$ $h^{-}h^{-}h^{+} \geq 1\pi^{0}\nu_{\tau}(\text{ex}.K^{0}) \qquad (5.09 \pm 0.05)\% \qquad - 60$	' '		(9.46 \pm	0.05) %		861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0}) \qquad (9.02 \pm 0.05)\% \qquad 861$ $\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0}), \qquad < 2.4 \qquad \% \qquad \text{CL=95\%} \qquad 861$ non-axial vector $\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0},\omega) \qquad [g] (8.99 \pm 0.05)\% \qquad 861$ $h^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \qquad (5.29 \pm 0.05)\% \qquad -$ $h^{-}h^{-}h^{+} \geq 1\pi^{0}\nu_{\tau}(\text{ex}.K^{0}) \qquad (5.09 \pm 0.05)\% \qquad -$	$\mathit{h^-h^-h^+} \nu_{ au}(\mathrm{ex.} \mathit{K}^0, \omega)$		(9.43 \pm	0.05) %		861
$\pi^-\pi^+\pi^-\nu_{ au}(\text{ex.}K^0),$ < 2.4 % CL=95% 861 non-axial vector $\pi^-\pi^+\pi^-\nu_{ au}(\text{ex.}K^0,\omega)$ [g] (8.99 \pm 0.05) % 861 $h^-h^-h^+ \geq 1$ neutrals $\nu_{ au}$ (5.29 \pm 0.05) % - $h^-h^-h^+ \geq 1\pi^0\nu_{ au}(\text{ex.}K^0)$ (5.09 \pm 0.05) % -			(9.31 \pm	0.05) %		861
non-axial vector $\pi^-\pi^+\pi^-\nu_\tau (\text{ex}.K^0,\omega) \qquad [g] (8.99 \pm 0.05) \% \qquad 861$ $h^-h^-h^+ \geq 1 \text{ neutrals } \nu_\tau \qquad (5.29 \pm 0.05) \% \qquad -h^-h^-h^+ \geq 1\pi^0\nu_\tau (\text{ex}.K^0) \qquad (5.09 \pm 0.05) \% \qquad -h^-h^-h^+ \geq 1\pi^0\nu_\tau (\text{ex}.K^0) \qquad (5.09 \pm 0.05) \%$			(9.02 \pm	0.05) %		861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex.}K^{0},\omega)$ [g] (8.99 \pm 0.05) % 861 $h^{-}h^{-}h^{+} \geq 1$ neutrals ν_{τ} (5.29 \pm 0.05) % $-$ $h^{-}h^{-}h^{+} \geq 1\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$ (5.09 \pm 0.05) %			< 2.4	%	CL=95%	861
$h^- h^- h^+ \geq 1$ neutrals $ u_{ au}$ (5.29 \pm 0.05) % $ h^- h^- h^+ \geq 1 \pi^0 u_{ au}$ (ex. K^0) (5.09 \pm 0.05) % $-$	non-axial vector	r 1	(0 00)	0.05.)0/		061
$h^- h^- h^+ \ge 1 \pi^0 \nu_{\tau} (\text{ex. } K^0)$ (5.09 ± 0.05)%		[g]				801
			•	,		_
$h^- h^- h^+ \pi^0 \nu_{\tau}$ (4.76 ± 0.05)%	$h^-h^-h^+\pi^0 u_{ au}$		•	,		834
\cdot			`	,		834
	, ,					834
			•	,		834
, , , , , , ,			`	,		834
		[g]	`	,		834
$h^- h^- h^+ \ge 2\pi^0 \nu_{\tau} (\text{ex.}) $ (5.17 ± 0.31) × 10 ⁻³	· · · · · · · · · · · · · · · · · · ·	[0]	`	,	₁₀ -3	_
κ^0)			•	,		
$h^- h^- h^+ 2\pi^0 \nu_{\tau}$ (5.05 ± 0.31) × 10 ⁻³	$h^-h^-\overset{\cdot}{h}^+2\pi^0 u_{ au}$		($5.05 \pm$	0.31)×	10^{-3}	797
			(4.95 \pm	0.31)×	₁₀ -3	797
/ ([g]	(10 \pm	4)×	10^{-4}	797
, ,			(2.13 \pm	0.30)×	10^{-4}	749
						749
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0} , η , (1.7 ± 0.4) × 10 ⁻⁴			$(1.7 \pm$	0.4) ×	10^{-4}	-
$f_1(1285))$					F	
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0} , η , [g] (1.4 \pm 2.7) \times 10 ⁻⁵		[g]	$(1.4 \pm$	2.7) ×	10 ⁻⁵	-
$\omega, f_1(1285))$					3	
						794
						794
						763
						794 794
$0\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$			(3.73 ±	0.13) X	10	194
	, ,		(3.45 +	0.07) ×	₁₀ -3	794
, , , , , , , , , , , , , , , , , , , ,	,					794
\mathcal{L}		[g]	•	,		794

$$\begin{array}{c} K^-\rho^0\nu_{\tau} \to \\ K^-\pi^+\pi^-\nu_{\tau} \\ K^-\pi^+\pi^-\nu_{\tau} \\ K^-\pi^+\pi^-\pi^0\nu_{\tau} \\ K^-\pi^+\pi^-\pi^0\nu_{\tau} (\text{ex}.K^0) \\ K^-\pi^+\pi^-\pi^0\nu_{\tau} (\text{ex}.K^0,\eta) \\ K^-\pi^+\pi^-\pi^0\nu_{\tau} (\text{ex}.K^0,\eta) \\ K^-\pi^+\pi^-\pi^0\nu_{\tau} (\text{ex}.K^0,\omega) \\ K^-\pi^+\pi^-\pi^0\nu_{\tau} (\text{ex}.K^0,\omega,\eta)]g] \\ (3.9 \pm 1.4 \) \times 10^{-4} \\ (3.9 \pm 1.4 \$$

Miscellaneous other allowed modes

$4h^-3h^+ u_ au$		<	4.3			>	< 10 ⁻⁷ C	L=90%	682
$4h^-3h^+\pi^0 u_ au$		<	2.5			>	$< 10^{-7} $	L=90%	612
$X^-(S=-1)\nu_{ au}$		(2.92	\pm	0.04) %	6		_
$K^*(892)^- \geq 0$ neutrals \geq		(1.42	\pm	0.18) %	6	S=1.4	665
$0 {\cal K}_L^0 u_ au$									
$K^*(892)^- \nu_{ au}$		(1.20	\pm	0.07) %	6	S=1.8	665
$K^*(892)^- u_ au ightarrow \pi^- \overline{K}{}^0 u_ au$		(7.82	\pm	0.26) >	< 10 ⁻³		_
$K^*(892)^0K^- \geq 0$ neutrals $ u_ au$							< 10 ⁻³		542
$K^*(892)^0 K^- \nu_{ au}$		(2.1	\pm	0.4) >	< 10 ⁻³		542
$\overline{K}^*(892)^0\pi^- \geq 0$ neutrals $ u_ au$		(3.8	\pm	1.7) >	< 10 ⁻³		656
$K^*(892)^0 \pi^- \nu_{\tau}$		(< 10 ^{−3}		656
$(\overline{K}^*(892)\pi)^-\nu_{\tau} \rightarrow \\ \pi^-\overline{K}^0\pi^0\nu_{\tau}$		(1.0	±	0.4) >	< 10 ⁻³		_
$K_1(1270)^- \nu_{\tau}$		(4.7	\pm	1.1) >	< 10 ⁻³		447
$K_1(1400)^- \nu_{\tau}$		•					< 10 ⁻³	S=1.7	335
$K^*(1410)^- \nu_{\tau}$							< 10 ⁻³		326
$K_0^*(1430)^- u_ au$		<	5			>	$< 10^{-4} $	L=95%	317
$K_2^*(1430)^-\nu_{\tau}$		<	3			>	$< 10^{-3}$ C	L=95%	315
$\eta \pi^- \nu_{ au}$		<	9.9			>	< 10 ⁻⁵ C	L=95%	797
$\eta\pi^-\pi^0 u_ au$	[g]	(1.39	\pm	0.07) >	< 10 ⁻³		778
$\eta\pi^-\pi^0\pi^0 u_ au$	[g]						< 10 ⁻⁴		746
$\eta K^- u_{ au}$	[g]		1.55	\pm	0.08) >	< 10 ⁻⁴		720
$\eta K^*(892)^- \nu_{ au}$							< 10 ⁻⁴		511
$\eta K^- \pi^0 u_ au$	[g]	(4.8	\pm	1.2) >	< 10 ⁻⁵		665
$\eta {\it K}^-\pi^0$ (non- ${\it K}^*$ (892)) $ u_ au$		<	3.5			>	$< 10^{-5}$ C	L=90%	_
$\eta \overline{K}{}^0 \pi^- \nu_{ au}$	[g]	(9.4	\pm	1.5) >	$< 10^{-5}$		661
$\eta \overline{K}{}^0 \pi^- \pi^0 \nu_{ au}$		<	5.0			>	< 10 ⁻⁵ C	L=90%	590
$\etaK^-K^0 u_ au$		<	9.0				$< 10^{-6}$ C		430
$\eta \pi^+ \pi^- \pi^- \geq 0$ neutrals $ u_{ au}$		<	3			>	$< 10^{-3}$ C	L=90%	744
$\eta \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} (\text{ex.} K^{0})$	[g]						< 10 ⁻⁴		744
$\eta \pi^- \pi^+ \pi^- \nu_{\tau} (\text{ex.} K^0, f_1)$ (1285)	5))	•		\pm			< 10 ⁻⁵		_
$\eta a_1(1260)^- \nu_\tau \to \eta \pi^- \rho^0 \nu_\tau$			3.9				< 10 ⁻⁴ C		_
$\eta \eta \pi^- \nu_{\tau}$			7.4				< 10 ⁻⁶ C		637
$\eta \eta \pi^- \pi^0 \nu_{ au}$			2.0				< 10 ⁻⁴ C		559
$\eta \eta K^- \nu_{ au}$			3.0				< 10 ⁻⁶ C		382
$\eta'(958)\pi^{-}\nu_{\tau}$			4.0				< 10 ⁻⁶ C		620
$\eta'(958)\pi^-\pi^0\nu_{\tau}$			1.2				< 10 ⁻⁵ C		591
$\eta'(958) K^- \nu_{ au}$			2.4				< 10 ⁻⁶ C	L=90%	495
$\phi \pi^- \nu_{ au}$							< 10 ⁻⁵		585
$\phi K^- \nu_{\tau}$	[g]						< 10 ⁻⁵		445
$f_1(1285)\pi^-\nu_{\tau}$							< 10 ⁻⁴		408
$f_1(1285)\pi^- u_ au$ $ o$		(1.18	±	0.07) >	< 10 ⁻⁴	S=1.3	_
$\eta\pi^-\pi^+\pi^- u_ au$									

Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes

L means lepton number violation (e.g. $\tau^- \to e^+ \pi^- \pi^-$). Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^- \pi^+ \pi^-$). B means baryon number violation.

` •		,		
$e^-\gamma$	LF	< 3.3	$\times 10^{-8}$ CL=90%	888
$e^-\gamma\gamma$	LF	< 2.5	$\times 10^{-4}$ CL=90%	888
$\mu^-\gamma$	LF	< 4.2	$\times 10^{-8}$ CL=90%	885
$\mu^- \gamma \gamma$	LF	< 5.8	$\times 10^{-4}$ CL=90%	885
$e^-\pi^0$	LF	< 8.0	$\times 10^{-8}$ CL=90%	883
$\mu^-\pi^0$	LF	< 1.1	$\times 10^{-7}$ CL=90%	880
$e^{-}K_{S}^{0}$	LF	< 2.6	$\times 10^{-8}$ CL=90%	819
$\mu^- K_S^0$	LF	< 2.3	\times 10 ⁻⁸ CL=90%	815
$e^-\eta$	LF	< 9.2	$\times 10^{-8}$ CL=90%	804
$\mu^-\eta_{\parallel}$	LF	< 6.5	$\times 10^{-8}$ CL=90%	800
$e^- ho^0$	LF	< 2.2	$\times 10^{-8}$ CL=90%	719
$\mu^- ho^0$	LF	< 1.7	$\times 10^{-8}$ CL=90%	715
$e^-\omega$	LF	< 2.4	$\times 10^{-8}$ CL=90%	716
$\mu^-\omega$	LF	< 3.9	$\times 10^{-8}$ CL=90%	711
$e^{-}K^{*}(892)^{0}$	LF	< 1.9	$\times 10^{-8}$ CL=90%	665
$\mu^- K^* (892)^0$	LF	< 2.9	$\times 10^{-8}$ CL=90%	659
$e^{-}\overline{K}^{*}(892)^{0}$	LF	< 1.7	$\times 10^{-8}$ CL=90%	665
$\mu^{-}\overline{K}^{*}(892)^{0}$	LF	< 4.3	$\times 10^{-8}$ CL=90%	659
$e^- \eta'(958)$	LF	< 1.6	$\times 10^{-7}$ CL=90%	630
$\mu^- \eta'(958)$	LF	< 1.3	$\times 10^{-7}$ CL=90%	625
$e^- f_0(980) \rightarrow e^- \pi^+ \pi^-$	LF	< 3.2	\times 10 ⁻⁸ CL=90%	_

$\mu^- f_0(980) \rightarrow \mu^- \pi^+ \pi^-$	LF	< 3.4	$\times 10^{-8}$ CL=90%	_
$e^-\phi$	LF	< 2.0	$\times 10^{-8} \text{CL} = 90\%$	596
$\mu^- \phi$	LF	< 2.3	$\times 10^{-8} \text{CL} = 90\%$	590
$e^-e^+e^-$	LF	< 2.7	$\times 10^{-8}$ CL=90%	888
$e^{-}\mu^{+}\mu^{-}$	LF	< 2.7	$\times 10^{-8} \text{CL} = 90\%$	882
$e^+\mu^-\mu^-$	LF	< 1.7	$\times 10^{-8} CL = 90\%$	882
$\mu^-e^+e^-$	LF	< 1.8	$\times 10^{-8}$ CL=90%	885
$\mu^{+}e^{-}e^{-}$	LF	< 1.5	$\times 10^{-8}$ CL=90%	885
$\mu^{-}\mu^{+}\mu^{-}$	LF	< 2.1	$\times 10^{-8}$ CL=90%	873
$e^{-}\pi^{+}\pi^{-}$	LF	< 2.3	$\times 10^{-8}$ CL=90%	877
$e^{+}\pi^{-}\pi^{-}$	L	< 2.0	$\times 10^{-8}$ CL=90%	877
$\mu^{-}\pi^{+}\pi^{-}$	LF	< 2.1	$\times 10^{-8}$ CL=90%	866
$\mu^{+}\pi^{-}\pi^{-}$	L	< 3.9	$\times 10^{-8} CL = 90\%$	866
$e^-\pi^+K^-$	LF	< 3.7	$\times 10^{-8} CL = 90\%$	813
$e^-\pi^-K^+$	LF	< 3.1	$\times 10^{-8} CL = 90\%$	813
$e^+\pi^-K^-$	L	< 3.2	$\times 10^{-8} CL = 90\%$	813
$e^{-}K_{S}^{0}K_{S}^{0}$	LF	< 7.1	$\times 10^{-8} CL = 90\%$	736
$e^{-}K^{+}K^{-}$	LF	< 3.4	$\times 10^{-8} CL = 90\%$	739
$e^+ K^- K^-$	L	< 3.3	$\times 10^{-8} CL = 90\%$	739
$\mu^-\pi^+$ K $^-$	LF	< 8.6	$\times 10^{-8} CL = 90\%$	800
$\mu^{-}\pi^{-}K^{+}$	LF	< 4.5	$\times 10^{-8} CL = 90\%$	800
$\mu^+\pi^-$ K $^-$	L	< 4.8	$\times 10^{-8} CL = 90\%$	800
$\mu^- K^0_S K^0_S$	LF	< 8.0	$\times 10^{-8} CL = 90\%$	696
$\mu^- K^+ K^-$	LF	< 4.4	$\times 10^{-8} CL = 90\%$	699
$\mu^{+} K^{-} K^{-}$	L	< 4.7	$\times 10^{-8} CL = 90\%$	699
$e^-\pi^0\pi^0$	LF	< 6.5	$\times 10^{-6} CL = 90\%$	878
$\mu^-\pi^0\pi^0$	LF	< 1.4	$\times 10^{-5}$ CL=90%	867
$e^-\eta\eta$	LF	< 3.5	$\times 10^{-5} CL = 90\%$	699
$\mu^- \eta \eta$	LF	< 6.0	$\times 10^{-5}$ CL=90%	653
$e^-\pi^0\eta$	LF	< 2.4	$\times 10^{-5}$ CL=90%	798
$\mu^-\pi^0\eta$	LF	< 2.2	$\times 10^{-5}$ CL=90%	784
pe-e-	L,B	< 3.0	$\times 10^{-8}$ CL=90%	641
$\overline{p}e^+e^-$	L,B	< 3.0	$\times 10^{-8}$ CL=90%	641
$\overline{p}e^+\mu^-$	L,B	< 2.0	$\times 10^{-8}$ CL=90%	635
$\overline{p}e^{-}\mu^{+}$	L,B	< 1.8	$\times 10^{-8}$ CL=90%	635
$\rho\mu^-\mu^-$	L,B	< 4.0	$\times 10^{-8}$ CL=90%	618
$\overline{p}\mu^+\mu^-$	L,B	< 1.8	$\times 10^{-8}$ CL=90%	618
$\overline{p}\gamma$	L,B	< 3.5	$\times 10^{-6}$ CL=90%	641
$\overline{p}\pi^0$	L,B	< 1.5	$\times 10^{-5}$ CL=90%	632
$\overline{p}2\pi^0$	L,B	< 3.3	$\times 10^{-5}$ CL=90%	604
$\overline{p}\eta$	L,B	< 8.9	$\times 10^{-6}$ CL=90%	475
$\overline{p}\pi^0\eta$	L,B	< 2.7	$\times 10^{-5}$ CL=90%	360
$\Lambda \pi^-$	L,B	< 7.2	$\times 10^{-8}$ CL=90%	525
$\overline{\Lambda}\pi^-$	L,B	< 1.4	$\times 10^{-7} CL = 90\%$	525

Heavy Charged Lepton Searches

L^{\pm} – charged lepton

Mass m > 100.8 GeV, CL = 95% [h] Decay to νW .

L^{\pm} – stable charged heavy lepton

Mass m > 102.6 GeV, CL = 95%

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings.

Mass m < 0.8 eV, CL = 90% (tritium decay)

Mean life/mass, $\tau/m > 300$ s/eV, CL = 90% (reactor)

Mean life/mass, $\tau/m > 7 \times 10^9$ s/eV (solar)

Mean life/mass, $\tau/m > 15.4$ s/eV, CL = 90% (accelerator)

Magnetic moment $\mu < 0.064 \times 10^{-10}~\mu_B$, CL = 90% (solar + radiochemical)

Number of Neutrino Types

Number $\textit{N} = 2.996 \pm 0.007$ (Standard Model fits to LEP-SLC data)

Number $N=2.92\pm0.05$ (S = 1.2) (Direct measurement of invisible Z width)

Neutrino Mixing

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Masses, Mixing, and Oscillations."

$$\begin{split} &\sin^2(\theta_{12}) = 0.307 \pm 0.013 \\ &\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ &\sin^2(\theta_{23}) = 0.553^{+0.016}_{-0.024} \quad (S = 1.1) \quad \text{(Inverted order)} \\ &\sin^2(\theta_{23}) = 0.558^{+0.015}_{-0.021} \quad \text{(Normal order)} \\ &\Delta m_{32}^2 = (-2.529 \pm 0.029) \times 10^{-3} \text{ eV}^2 \quad \text{(Inverted order)} \\ &\Delta m_{32}^2 = (2.455 \pm 0.028) \times 10^{-3} \text{ eV}^2 \quad \text{(Normal order)} \end{split}$$

$$\begin{array}{l} \sin^2(\theta_{13}) = (2.19 \pm 0.07) \times 10^{-2} \quad (\text{S} = 1.2) \\ \delta, \ \textit{CP} \ \text{violating phase} = 1.19 \pm 0.22 \ \pi \ \text{rad} \quad (\text{S} = 1.2) \\ \left< \Delta m_{21}^2 - \Delta \overline{m}_{21}^2 \right> < 1.1 \times 10^{-4} \ \text{eV}^2, \ \text{CL} = 99.7\% \\ \left< \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \right> = (-0.12 \pm 0.25) \times 10^{-3} \ \text{eV}^2 \end{array}$$

NOTES

- [a] This is the best limit for the mode $e^- \rightarrow \nu \gamma$.
- [b] See the review on "Muon Decay Parameters" for definitions and details.
- [c] P_{μ} is the longitudinal polarization of the muon from pion decay. For V-A coupling, $P_{\mu}=1$ and $\rho=\delta=3/4$.
- [d] This only includes events with energy of e>45 MeV and energy of $\gamma>40$ MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings for the energy limits used in this measurement.
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.