```
In [1]: import pandas as pd
import numpy as np
from xgboost import XGBRegressor
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split, RandomizedSearchCV, GridSearc
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
import matplotlib.pyplot as plt
import seaborn as sns
import time
```

In [2]: # Read the dataset
 file_path = r"D:\CV things\ML projects\audi.csv"
 df = pd.read_csv(file_path)
 print(df.shape)
 df

(10668, 9)

Out[2]:		model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
	0	A1	2017	12500	Manual	15735	Petrol	150	55.4	1.4
	1	A6	2016	16500	Automatic	36203	Diesel	20	64.2	2.0
	2	A1	2016	11000	Manual	29946	Petrol	30	55.4	1.4
	3	A4	2017	16800	Automatic	25952	Diesel	145	67.3	2.0
	4	А3	2019	17300	Manual	1998	Petrol	145	49.6	1.0
	•••									
10	663	A3	2020	16999	Manual	4018	Petrol	145	49.6	1.0
10	664	A3	2020	16999	Manual	1978	Petrol	150	49.6	1.0
10	665	A3	2020	17199	Manual	609	Petrol	150	49.6	1.0
10	666	Q3	2017	19499	Automatic	8646	Petrol	150	47.9	1.4
10	667	Q3	2016	15999	Manual	11855	Petrol	150	47.9	1.4

10668 rows × 9 columns

```
In [3]: # Label Encoding for categorical features
    categorical_features = ['model', 'transmission', 'fuelType']
    le = LabelEncoder()
    df[categorical_features] = df[categorical_features].apply(lambda col: le.fit_transf df.head()
```

Out[3]:		model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
	0	0	2017	12500	1	15735	2	150	55.4	1.4
	1	5	2016	16500	0	36203	0	20	64.2	2.0
	2	0	2016	11000	1	29946	2	30	55.4	1.4
	3	3	2017	16800	0	25952	0	145	67.3	2.0
	4	2	2019	17300	1	1998	2	145	49.6	1.0

```
In [4]: # Countplot for categorical variables
plt.figure(figsize=(10, 6))
for col in categorical_features:
    sns.countplot(data=df, x=col)
    plt.title(f'Countplot of {col}')
    plt.show()
```



```
In [5]: # Preprocessing
        X = df.drop('price', axis=1)
        y = df['price']
        # Train-test split
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
In [6]: # R2 Score before Feature Engineering
        xgb = XGBRegressor()
        xgb.fit(X_train, y_train)
        y_pred = xgb.predict(X_test)
        r2_base = r2_score(y_test, y_pred)
        print(f"R2 Score before feature engineering: {r2_base}")
        R2 Score before feature engineering: 0.9624305988307729
In [7]: # Feature Engineering - Creating a new feature 'Year_Mileage'
        df['Year_Mileage'] = df['year'] * df['mileage']
        df.head()
Out[7]:
           model year price transmission mileage fuelType tax mpg engineSize Year_Mileage
                                                       2 150
        0
               0 2017 12500
                                      1
                                           15735
                                                               55.4
                                                                          1.4
                                                                                 31737495
        1
               5 2016 16500
                                      0
                                           36203
                                                           20
                                                               64.2
                                                                          2.0
                                                                                 72985248
                                                       0
               0 2016 11000
                                                                                 60371136
        2
                                      1
                                           29946
                                                       2
                                                           30
                                                               55.4
                                                                          1.4
               3 2017 16800
                                      0
                                           25952
                                                       0 145 67.3
                                                                                 52345184
        3
                                                                          2.0
                                                       2 145 49.6
               2 2019 17300
                                      1
                                            1998
                                                                          1.0
                                                                                  4033962
In [8]: # Scatterplot showing Year_Mileage vs. Price after feature engineering
        plt.figure(figsize=(8, 6))
        sns.scatterplot(data=df, x='Year_Mileage', y='price', alpha=0.5, palette='viridis')
        plt.title('Year_Mileage vs. Price')
        plt.xlabel('Year Mileage')
```

plt.ylabel('Price')

plt.show()


```
In [9]: # Correlation heatmap
    plt.figure(figsize=(10, 8))
    sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()
```



```
In [10]: # Preprocessing
   X = df.drop('price', axis=1)
   y = df['price']

# Train-test split
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta)

# R2 Score after Feature Engineering
   xgb = XGBRegressor()
    xgb.fit(X_train, y_train)
   y_pred = xgb.predict(X_test)
   r2_base = r2_score(y_test, y_pred)

print(f"R2 Score after feature engineering: {r2_base}")
```

R2 Score after feature engineering: 0.9613934545410823

```
In [11]:
          # Get numerical columns and set the ones to display
          numerical columns = df.select dtypes(include='number').columns.tolist()
           num_cols_to_display = 9
          num_cols = numerical_columns[:num_cols_to_display]
          # Visualize distributions before scaling for each numerical feature separately
          plt.figure(figsize=(15, 15))
          for i, col in enumerate(num_cols):
               plt.subplot(3, 3, i+1)
               sns.histplot(df[col], bins=20, kde=True, color='skyblue')
               plt.title(f"Distribution of {col} (Before Scaling)")
               plt.xlabel('')
               plt.ylabel('')
          plt.tight_layout()
          plt.show()
                 Distribution of model (Before Scaling)
                                                 Distribution of year (Before Scaling)
                                                                                Distribution of price (Before Scaling)
                                          4000
          1750
```



```
In [12]: # Assuming df contains your dataset and numerical columns are the columns you want
         scaler = StandardScaler()
        X_scaled = scaler.fit_transform(df[numerical_columns])
        # Create a DataFrame for scaled features
        X_scaled_df = pd.DataFrame(X_scaled, columns=numerical_columns)
        X scaled df['price'] = df['price'] # Include the target variable if needed
        X = X_scaled_df.drop('price', axis=1)
        y = X_scaled_df['price']
        X_scaled_df.head()
Out[12]:
             model
                       year price transmission
                                             mileage fuelType
                                                                        mpg engineSize
                                                                 tax
        0 -1.123544 -0.046450 12500
                                   -0.108347 -0.386836 1.050783 0.357147 0.357550
                                                                              -0.880218
        1 -0.160831 -0.507834 16500
                                   0.114925
        2 -1.123544 -0.507834 11000
                                   -0.880218
        3 -0.545916 -0.046450 16800
                                   0.114925
        4 -0.738459 0.876318 17300
                                   -0.108347 -0.971285 1.050783 0.282706 -0.090355
                                                                              -1.543647
In [13]: # Visualize distributions after scaling for each numerical feature separately
        plt.figure(figsize=(15, 15))
        for i, col in enumerate(num_cols):
            plt.subplot(3, 3, i+1)
            sns.histplot(X_scaled_df[col], bins=20, kde=True, color='salmon') # Adjust col
            plt.title(f"Distribution of {col} (After Scaling)")
            plt.xlabel('')
```

plt.ylabel('')

plt.tight_layout()

plt.show()

In [14]: # Assuming you've performed the train-test split previously X_train_scaled, X_test_scaled, y_train_scaled, y_test_scaled = train_test_split(X,

```
In [15]:
         # R2 Score after scaling
         scaled_xgb = XGBRegressor()
          scaled_xgb.fit(X_train_scaled, y_train_scaled)
         y_pred_scaled = scaled_xgb.predict(X_test_scaled)
         r2_scaled = r2_score(y_test_scaled, y_pred_scaled)
         print(f"R2 Score after scaling: {r2_scaled}")
```

R2 Score after scaling: 0.9613934545410823

```
In [16]:
         # Hyperparameter tuning
         param dist = {
             'n_estimators': range(100, 300),
              'learning_rate': [0.01, 0.1, 0.2, 0.3],
              'max_depth': range(3, 8)
         # Initialize XGBoost regressor and RandomizedSearchCV
         xgb = XGBRegressor()
         # RandomizedSearchCV
         start_time_random = time.time()
         random_search = RandomizedSearchCV(estimator=xgb, param_distributions=param_dist, n
         # Perform RandomizedSearchCV on the scaled training data
         random_search.fit(X_train_scaled, y_train_scaled)
         # Get the best estimator
         best_xgb_random = random_search.best_estimator_
         end_time_random = time.time()
         random_search_time = end_time_random - start_time_random
         # Predictions using the best model
         y_pred_random = best_xgb_random.predict(X_test_scaled)
In [17]: # Print mean scores and standard deviations for different hyperparameter combination
         cv_results = random_search.cv_results_
         for mean_score, std_score, params in zip(
             cv_results["mean_test_score"],
             cv_results["std_test_score"],
             cv_results["params"]
         ):
             print(f"Mean R2: {mean score:.4f}, Std: {std score:.4f} for {params}")
```

```
te': 0.01}
         Mean R2: 0.9585, Std: 0.0036 for {'n_estimators': 294, 'max_depth': 6, 'learning_ra
         te': 0.3}
         Mean R2: 0.8792, Std: 0.0027 for {'n estimators': 228, 'max depth': 3, 'learning ra
         te': 0.01}
         Mean R2: 0.9394, Std: 0.0018 for {'n_estimators': 237, 'max_depth': 7, 'learning_ra
         te': 0.01}
         Mean R2: 0.9610, Std: 0.0044 for {'n estimators': 166, 'max depth': 4, 'learning ra
         te': 0.3}
         Mean R2: 0.9591, Std: 0.0036 for {'n_estimators': 228, 'max_depth': 6, 'learning_ra
         te': 0.3}
         Mean R2: 0.9617, Std: 0.0028 for {'n estimators': 124, 'max depth': 6, 'learning ra
         te': 0.1}
         Mean R2: 0.8467, Std: 0.0033 for {'n_estimators': 152, 'max_depth': 4, 'learning_ra
         te': 0.01}
         Mean R2: 0.9542, Std: 0.0023 for {'n estimators': 114, 'max depth': 4, 'learning ra
         te': 0.1}
         Mean R2: 0.9599, Std: 0.0021 for {'n_estimators': 231, 'max_depth': 4, 'learning_ra
         te': 0.1}
         Mean R2: 0.9002, Std: 0.0019 for {'n_estimators': 210, 'max_depth': 4, 'learning_ra
         te': 0.01}
         Mean R2: 0.9297, Std: 0.0019 for {'n_estimators': 208, 'max_depth': 7, 'learning_ra
         te': 0.01}
         Mean R2: 0.9606, Std: 0.0033 for {'n_estimators': 176, 'max_depth': 4, 'learning_ra
         te': 0.2}
         Mean R2: 0.8640, Std: 0.0030 for {'n_estimators': 204, 'max_depth': 3, 'learning_ra
         te': 0.01}
         Mean R2: 0.9539, Std: 0.0022 for {'n_estimators': 213, 'max_depth': 3, 'learning_ra
         te': 0.1}
         Mean R2: 0.9620, Std: 0.0024 for {'n_estimators': 208, 'max_depth': 5, 'learning_ra
         te': 0.1}
         Mean R2: 0.9608, Std: 0.0032 for {'n estimators': 165, 'max depth': 5, 'learning ra
         te': 0.3}
         Mean R2: 0.9573, Std: 0.0023 for {'n_estimators': 163, 'max_depth': 4, 'learning_ra
         te': 0.1}
         Mean R2: 0.9610, Std: 0.0034 for {'n_estimators': 204, 'max_depth': 4, 'learning_ra
         Mean R2: 0.9619, Std: 0.0030 for {'n_estimators': 263, 'max_depth': 6, 'learning_ra
         te': 0.2}
In [18]: # Evaluate the model
         r2 random = r2 score(y test scaled, y pred random)
         mae = mean_absolute_error(y_test_scaled, y_pred_random)
         mse = mean_squared_error(y_test_scaled, y_pred_random)
         rmse = np.sqrt(mse)
         print("Best XGBoost Model Parameters:", random_search.best_params_)
         Best XGBoost Model Parameters: {'n_estimators': 208, 'max_depth': 5, 'learning_rate
         ': 0.1}
In [19]: print(f"R2 Score after RandomizedSearchCV: {r2_random}")
         print(f"MAE: {mae}")
         print(f"MSE: {mse}")
         print(f"RMSE: {rmse}")
```

Mean R2: 0.8895, Std: 0.0035 for {'n_estimators': 151, 'max_depth': 7, 'learning_ra

R2 Score after RandomizedSearchCV: 0.9609913901632462

MAE: 1554.2503148430178 MSE: 5369702.057036524 RMSE: 2317.2617584201666

```
In [20]: # Residual plot
    residuals = y_test_scaled - y_pred_random
    plt.figure(figsize=(8, 6))
    sns.residplot(x=y_pred_scaled, y=residuals, lowess=True, color='skyblue')
    plt.title('Residual Plot')
    plt.xlabel('Predicted')
    plt.ylabel('Residuals')
    plt.show()
```



```
In [21]: # Scatterplot for actual vs. predicted prices
   plt.figure(figsize=(8, 6))
   sns.scatterplot(x=y_test_scaled, y=y_pred_random)
   plt.title('Actual vs. Predicted Prices')
   plt.xlabel('Actual Price')
   plt.ylabel('Predicted Price')
   plt.show()
```

Actual vs. Predicted Prices


```
In [22]: # Define the parameter grid for GridSearchCV
         param_grid = {
              'n_estimators': [100, 150, 200, 250, 300],
              'learning_rate': [0.01, 0.1, 0.2, 0.3],
              'max_depth': [3, 4, 5, 6, 7]
         }
         # Initialize XGBoost regressor
         xgb = XGBRegressor()
         # GridSearchCV
         start_time_grid = time.time()
         # Initialize GridSearchCV
         grid_search = GridSearchCV(estimator=xgb, param_grid=param_grid, cv=5, scoring='r2'
         # Perform GridSearchCV on the scaled training data
         grid_search.fit(X_train_scaled, y_train_scaled)
         end_time_grid = time.time()
         grid_search_time = end_time_grid - start_time_grid
         # Get the best estimator
         best_xgb_grid = grid_search.best_estimator_
         # Predictions using the best model from GridSearchCV
         y_pred_grid = best_xgb_grid.predict(X_test_scaled)
```

```
Mean R2: 0.6913, Std: 0.0096 for {'learning_rate': 0.01, 'max_depth': 3, 'n_estimat
ors': 100}
Mean R2: 0.8061, Std: 0.0051 for {'learning_rate': 0.01, 'max_depth': 3, 'n_estimat
ors': 150}
Mean R2: 0.8609, Std: 0.0031 for {'learning rate': 0.01, 'max depth': 3, 'n estimat
ors': 200}
Mean R2: 0.8900, Std: 0.0025 for {'learning_rate': 0.01, 'max_depth': 3, 'n_estimat
ors': 250}
Mean R2: 0.9077, Std: 0.0025 for {'learning rate': 0.01, 'max depth': 3, 'n estimat
ors': 300}
Mean R2: 0.7381, Std: 0.0053 for {'learning_rate': 0.01, 'max_depth': 4, 'n_estimat
ors': 100}
Mean R2: 0.8439, Std: 0.0035 for {'learning rate': 0.01, 'max depth': 4, 'n estimat
ors': 150}
Mean R2: 0.8939, Std: 0.0019 for {'learning_rate': 0.01, 'max_depth': 4, 'n_estimat
ors': 200}
Mean R2: 0.9181, Std: 0.0017 for {'learning rate': 0.01, 'max depth': 4, 'n estimat
ors': 250}
Mean R2: 0.9304, Std: 0.0018 for {'learning_rate': 0.01, 'max_depth': 4, 'n_estimat
ors': 300}
Mean R2: 0.7700, Std: 0.0045 for {'learning_rate': 0.01, 'max_depth': 5, 'n_estimat
ors': 100}
Mean R2: 0.8673, Std: 0.0028 for {'learning_rate': 0.01, 'max_depth': 5, 'n_estimat
ors': 150}
Mean R2: 0.9114, Std: 0.0025 for {'learning_rate': 0.01, 'max_depth': 5, 'n_estimat
ors': 200}
Mean R2: 0.9316, Std: 0.0028 for {'learning_rate': 0.01, 'max_depth': 5, 'n_estimat
ors': 250}
Mean R2: 0.9413, Std: 0.0030 for {'learning_rate': 0.01, 'max_depth': 5, 'n_estimat
ors': 300}
Mean R2: 0.7878, Std: 0.0069 for {'learning rate': 0.01, 'max depth': 6, 'n estimat
ors': 100}
Mean R2: 0.8813, Std: 0.0038 for {'learning rate': 0.01, 'max depth': 6, 'n estimat
ors': 150}
Mean R2: 0.9208, Std: 0.0022 for {'learning_rate': 0.01, 'max_depth': 6, 'n_estimat
ors': 200}
Mean R2: 0.9393, Std: 0.0020 for {'learning rate': 0.01, 'max depth': 6, 'n estimat
ors': 250}
Mean R2: 0.9482, Std: 0.0022 for {'learning_rate': 0.01, 'max_depth': 6, 'n_estimat
ors': 300}
Mean R2: 0.7973, Std: 0.0068 for {'learning rate': 0.01, 'max depth': 7, 'n estimat
ors': 100}
Mean R2: 0.8884, Std: 0.0036 for {'learning_rate': 0.01, 'max_depth': 7, 'n_estimat
ors': 150}
Mean R2: 0.9261, Std: 0.0020 for {'learning rate': 0.01, 'max depth': 7, 'n estimat
ors': 200}
Mean R2: 0.9424, Std: 0.0018 for {'learning_rate': 0.01, 'max_depth': 7, 'n_estimat
ors': 250}
Mean R2: 0.9502, Std: 0.0025 for {'learning_rate': 0.01, 'max_depth': 7, 'n_estimat
ors': 300}
Mean R2: 0.9439, Std: 0.0020 for {'learning_rate': 0.1, 'max_depth': 3, 'n_estimato
rs': 100}
Mean R2: 0.9498, Std: 0.0021 for {'learning_rate': 0.1, 'max_depth': 3, 'n_estimato
rs': 150}
Mean R2: 0.9533, Std: 0.0021 for {'learning_rate': 0.1, 'max_depth': 3, 'n_estimato
rs': 200}
Mean R2: 0.9552, Std: 0.0022 for {'learning_rate': 0.1, 'max_depth': 3, 'n_estimato
rs': 250}
Mean R2: 0.9569, Std: 0.0022 for {'learning rate': 0.1, 'max depth': 3, 'n estimato
```

```
rs': 300}
Mean R2: 0.9530, Std: 0.0024 for {'learning_rate': 0.1, 'max_depth': 4, 'n_estimato
rs': 100}
Mean R2: 0.9566, Std: 0.0024 for {'learning rate': 0.1, 'max depth': 4, 'n estimato
rs': 150}
Mean R2: 0.9590, Std: 0.0022 for {'learning rate': 0.1, 'max depth': 4, 'n estimato
rs': 200}
Mean R2: 0.9605, Std: 0.0022 for {'learning_rate': 0.1, 'max_depth': 4, 'n_estimato
rs': 250}
Mean R2: 0.9615, Std: 0.0023 for {'learning rate': 0.1, 'max depth': 4, 'n estimato
rs': 300}
Mean R2: 0.9582, Std: 0.0029 for {'learning_rate': 0.1, 'max_depth': 5, 'n_estimato
rs': 100}
Mean R2: 0.9603, Std: 0.0026 for {'learning rate': 0.1, 'max depth': 5, 'n estimato
rs': 150}
Mean R2: 0.9618, Std: 0.0024 for {'learning_rate': 0.1, 'max_depth': 5, 'n_estimato
rs': 200}
Mean R2: 0.9626, Std: 0.0024 for {'learning rate': 0.1, 'max depth': 5, 'n estimato
rs': 250}
Mean R2: 0.9630, Std: 0.0022 for {'learning_rate': 0.1, 'max_depth': 5, 'n_estimato
rs': 300}
Mean R2: 0.9608, Std: 0.0028 for {'learning rate': 0.1, 'max depth': 6, 'n estimato
rs': 100}
Mean R2: 0.9621, Std: 0.0028 for {'learning_rate': 0.1, 'max_depth': 6, 'n_estimato
rs': 150}
Mean R2: 0.9628, Std: 0.0027 for {'learning_rate': 0.1, 'max_depth': 6, 'n_estimato
rs': 200}
Mean R2: 0.9630, Std: 0.0026 for {'learning_rate': 0.1, 'max_depth': 6, 'n_estimato
rs': 250}
Mean R2: 0.9630, Std: 0.0026 for {'learning_rate': 0.1, 'max_depth': 6, 'n_estimato
rs': 300}
Mean R2: 0.9601, Std: 0.0028 for {'learning_rate': 0.1, 'max_depth': 7, 'n_estimato
rs': 100}
Mean R2: 0.9608, Std: 0.0030 for {'learning_rate': 0.1, 'max_depth': 7, 'n_estimato
rs': 150}
Mean R2: 0.9610, Std: 0.0030 for {'learning_rate': 0.1, 'max_depth': 7, 'n_estimato
rs': 200}
Mean R2: 0.9607, Std: 0.0030 for {'learning rate': 0.1, 'max depth': 7, 'n estimato
rs': 250}
Mean R2: 0.9604, Std: 0.0031 for {'learning_rate': 0.1, 'max_depth': 7, 'n_estimato
rs': 300}
Mean R2: 0.9519, Std: 0.0032 for {'learning_rate': 0.2, 'max_depth': 3, 'n_estimato
rs': 100}
Mean R2: 0.9554, Std: 0.0032 for {'learning_rate': 0.2, 'max_depth': 3, 'n_estimato
rs': 150}
Mean R2: 0.9573, Std: 0.0034 for {'learning rate': 0.2, 'max depth': 3, 'n estimato
rs': 200}
Mean R2: 0.9586, Std: 0.0035 for {'learning_rate': 0.2, 'max_depth': 3, 'n_estimato
rs': 250}
Mean R2: 0.9596, Std: 0.0036 for {'learning rate': 0.2, 'max depth': 3, 'n estimato
rs': 300}
Mean R2: 0.9575, Std: 0.0033 for {'learning_rate': 0.2, 'max_depth': 4, 'n_estimato
rs': 100}
Mean R2: 0.9598, Std: 0.0032 for {'learning_rate': 0.2, 'max_depth': 4, 'n_estimato
rs': 150}
Mean R2: 0.9609, Std: 0.0035 for {'learning_rate': 0.2, 'max_depth': 4, 'n_estimato
rs': 200}
Mean R2: 0.9617, Std: 0.0033 for {'learning_rate': 0.2, 'max_depth': 4, 'n_estimato
rs': 250}
```

```
Mean R2: 0.9620, Std: 0.0032 for {'learning rate': 0.2, 'max depth': 4, 'n estimato
rs': 300}
Mean R2: 0.9608, Std: 0.0027 for {'learning_rate': 0.2, 'max_depth': 5, 'n_estimato
rs': 100}
Mean R2: 0.9619, Std: 0.0027 for {'learning rate': 0.2, 'max depth': 5, 'n estimato
rs': 150}
Mean R2: 0.9623, Std: 0.0025 for {'learning_rate': 0.2, 'max_depth': 5, 'n_estimato
rs': 200}
Mean R2: 0.9624, Std: 0.0025 for {'learning rate': 0.2, 'max depth': 5, 'n estimato
rs': 250}
Mean R2: 0.9622, Std: 0.0026 for {'learning_rate': 0.2, 'max_depth': 5, 'n_estimato
rs': 300}
Mean R2: 0.9623, Std: 0.0030 for {'learning rate': 0.2, 'max depth': 6, 'n estimato
rs': 100}
Mean R2: 0.9626, Std: 0.0030 for {'learning_rate': 0.2, 'max_depth': 6, 'n_estimato
rs': 150}
Mean R2: 0.9623, Std: 0.0030 for {'learning rate': 0.2, 'max depth': 6, 'n estimato
rs': 200}
Mean R2: 0.9619, Std: 0.0030 for {'learning_rate': 0.2, 'max_depth': 6, 'n_estimato
rs': 250}
Mean R2: 0.9616, Std: 0.0031 for {'learning_rate': 0.2, 'max_depth': 6, 'n_estimato
rs': 300}
Mean R2: 0.9600, Std: 0.0038 for {'learning_rate': 0.2, 'max_depth': 7, 'n_estimato
rs': 100}
Mean R2: 0.9596, Std: 0.0039 for {'learning rate': 0.2, 'max depth': 7, 'n estimato
rs': 150}
Mean R2: 0.9592, Std: 0.0039 for {'learning_rate': 0.2, 'max_depth': 7, 'n_estimato
rs': 200}
Mean R2: 0.9586, Std: 0.0041 for {'learning_rate': 0.2, 'max_depth': 7, 'n_estimato
rs': 250}
Mean R2: 0.9581, Std: 0.0042 for {'learning_rate': 0.2, 'max_depth': 7, 'n_estimato
rs': 300}
Mean R2: 0.9548, Std: 0.0026 for {'learning rate': 0.3, 'max depth': 3, 'n estimato
rs': 100}
Mean R2: 0.9581, Std: 0.0025 for {'learning_rate': 0.3, 'max_depth': 3, 'n_estimato
rs': 150}
Mean R2: 0.9597, Std: 0.0025 for {'learning rate': 0.3, 'max depth': 3, 'n estimato
rs': 200}
Mean R2: 0.9604, Std: 0.0028 for {'learning_rate': 0.3, 'max_depth': 3, 'n_estimato
rs': 250}
Mean R2: 0.9610, Std: 0.0027 for {'learning rate': 0.3, 'max depth': 3, 'n estimato
rs': 300}
Mean R2: 0.9592, Std: 0.0043 for {'learning_rate': 0.3, 'max_depth': 4, 'n_estimato
rs': 100}
Mean R2: 0.9607, Std: 0.0045 for {'learning rate': 0.3, 'max depth': 4, 'n estimato
rs': 150}
Mean R2: 0.9612, Std: 0.0046 for {'learning_rate': 0.3, 'max_depth': 4, 'n_estimato
rs': 200}
Mean R2: 0.9615, Std: 0.0046 for {'learning_rate': 0.3, 'max_depth': 4, 'n_estimato
rs': 250}
Mean R2: 0.9615, Std: 0.0045 for {'learning_rate': 0.3, 'max_depth': 4, 'n_estimato
rs': 300}
Mean R2: 0.9603, Std: 0.0035 for {'learning_rate': 0.3, 'max_depth': 5, 'n_estimato
rs': 100}
Mean R2: 0.9608, Std: 0.0031 for {'learning_rate': 0.3, 'max_depth': 5, 'n_estimato
rs': 150}
Mean R2: 0.9606, Std: 0.0030 for {'learning_rate': 0.3, 'max_depth': 5, 'n_estimato
rs': 200}
Mean R2: 0.9604, Std: 0.0030 for {'learning rate': 0.3, 'max depth': 5, 'n estimato
```

```
rs': 250}
         Mean R2: 0.9601, Std: 0.0030 for {'learning_rate': 0.3, 'max_depth': 5, 'n_estimato
         rs': 300}
         Mean R2: 0.9603, Std: 0.0036 for {'learning rate': 0.3, 'max depth': 6, 'n estimato
         rs': 100}
         Mean R2: 0.9600, Std: 0.0033 for {'learning_rate': 0.3, 'max_depth': 6, 'n_estimato
         rs': 150}
         Mean R2: 0.9594, Std: 0.0035 for {'learning_rate': 0.3, 'max_depth': 6, 'n_estimato
         rs': 200}
         Mean R2: 0.9589, Std: 0.0036 for {'learning_rate': 0.3, 'max_depth': 6, 'n_estimato
         rs': 250}
         Mean R2: 0.9584, Std: 0.0036 for {'learning_rate': 0.3, 'max_depth': 6, 'n_estimato
         rs': 300}
         Mean R2: 0.9582, Std: 0.0042 for {'learning rate': 0.3, 'max depth': 7, 'n estimato
         rs': 100}
         Mean R2: 0.9573, Std: 0.0043 for {'learning_rate': 0.3, 'max_depth': 7, 'n_estimato
         rs': 150}
         Mean R2: 0.9565, Std: 0.0044 for {'learning rate': 0.3, 'max depth': 7, 'n estimato
         rs': 200}
         Mean R2: 0.9560, Std: 0.0044 for {'learning_rate': 0.3, 'max_depth': 7, 'n_estimato
         rs': 250}
         Mean R2: 0.9555, Std: 0.0045 for {'learning rate': 0.3, 'max depth': 7, 'n estimato
         rs': 300}
In [24]: # Evaluate the model
         r2_grid = r2_score(y_test_scaled, y_pred_grid)
         print("Best XGBoost Model Parameters (GridSearchCV):", grid_search.best_params_)
         print(f"R2 Score after GridSearchCV: {r2_grid}")
         Best XGBoost Model Parameters (GridSearchCV): {'learning rate': 0.1, 'max depth': 6
          , 'n estimators': 300}
         R2 Score after GridSearchCV: 0.963084519548073
In [25]: # Residual plot
         residuals = y_test_scaled - y_pred_grid
          plt.figure(figsize=(8, 6))
         sns.residplot(x=y_pred_grid, y=residuals, lowess=True, color='skyblue')
          plt.title('Residual Plot')
         plt.xlabel('Predicted')
         plt.ylabel('Residuals')
         plt.show()
```



```
In [26]: # Scatterplot for actual vs. predicted prices
  plt.figure(figsize=(8, 6))
  sns.scatterplot(x=y_test_scaled, y=y_pred_grid)
  plt.title('Actual vs. Predicted Prices')
  plt.xlabel('Actual Price')
  plt.ylabel('Predicted Price')
  plt.show()
```

Actual vs. Predicted Prices


```
In [27]: print(f"RandomizedSearchCV took {random_search_time} seconds.")
print(f"GridSearchCV took {grid_search_time} seconds.")
```

RandomizedSearchCV took 10.409626483917236 seconds. GridSearchCV took 53.03264260292053 seconds.

```
In [28]: # Display feature importance for the best model in decreasing order and different c
plt.figure(figsize=(10, 6))
feat_importances = pd.Series(best_xgb_grid.feature_importances_, index=X.columns)
feat_importances = feat_importances.sort_values(ascending=False) # Sort in decreas
sns.barplot(x=feat_importances.values, y=feat_importances.index, palette='viridis')
plt.title('Feature Importances')
plt.xlabel('Importance')
```

Out[28]: Text(0.5, 0, 'Importance')

Feature Importances


```
In [29]:
         # Select the top 5 features based on importance
         top_features = feat_importances.index[:5]
         # Extract only the top 5 features from the original dataset
         X_top5 = X[top_features]
         # Train-test split with the selected features
         X_train_top5, X_test_top5, y_train_top5, y_test_top5 = train_test_split(X_top5, y,
         # Initialize XGBoost regressor
         xgb_top5 = XGBRegressor()
         # Fit the model using the top 5 features
         xgb_top5.fit(X_train_top5, y_train_top5)
         # Make predictions
         y_pred_top5 = xgb_top5.predict(X_test_top5)
         # Evaluate the model with the top 5 features
         r2_top5 = r2_score(y_test_top5, y_pred_top5)
         print(f"R2 Score with the top 5 features: {r2_top5}")
```

R2 Score with the top 5 features: 0.9569746615504151