Sign Language Detection System

Project Pitch for SIT210

Abhayraj Singh, 2410994753

Understanding the Problem Domain

Communication Barriers

Significant challenges for individuals with speech and hearing impairments in daily interactions.

Industry Solutions

Existing interpreter services are often **expensive**, and current real-time technologies are **limited**.

Key Challenges

- Accessibility & Cost
- Lack of Multi-Modal Aids
- Limited Context-Specific
 Solutions

Bridging Gaps & Seizing Opportunities

Current Limitations

Existing solutions often fall short in terms of **flexibility** and **affordability**, creating significant hurdles for widespread adoption.

- High cost of specialized equipment
- Lack of adaptability to diverse environments
- Dependency on human interpreters

Emerging Opportunities

There's a clear opportunity to leverage **embedded systems** to develop multi-model, low-cost assistive devices.

- Direct sign-to-text/speech translation
- Enhanced independence for users
- Scalable and accessible technology

1

3

Identify the Need

Recognizing the communication void.

Innovate Solutions

Developing accessible technology.

2

Empower Users

Fostering independence.

Our Innovative Solution Overview

Push-Button Aid

Utilizing an **Arduino Nano 33 IoT** for direct, tactile input.

Camera-Based Recognition

Leveraging a **Raspberry Pi 4** for advanced visual sign detection.

Real-time Translation

Instantaneous conversion of signs to text/speech.

Multi-Modal Input

Combining tactile and visual methods for comprehensive input.

Accessible UI

Designing for ease of use and broad accessibility.

Core System Components

Raspberry Pi 4

- Gesture Recognition:
 Processing video input.
- **Dashboard/Display:** Visual output interface.
- **Audio Output:** Text-to-speech functionality.

Arduino Nano 33 IoT

- **Button Panel Input:** Direct user interaction.
- **LCD Feedback:** Immediate visual confirmation.
- **Protocol Communication:** Interfacing with Pi.

Camera & Interconnections

- **Real-time Video Feed:** Capturing sign language.
- **Wired:** UART/I2C/SPI for robust data flow.

System Architecture: Block Diagram

This diagram illustrates the logical flow and interconnection of the main components within our sign language detection system.

Robust Communication Protocols

UART

Universal Asynchronous Receiver-Transmitter for serial data exchange.

12C

Inter-Integrated Circuit for efficient short-distance communication.

SPI

Serial Peripheral Interface for high-speed synchronous data transfer.

These protocols ensure **reliable and efficient data exchange** between the Arduino and Raspberry Pi, forming the backbone of our system's communication.

Key Evaluation Criteria

Robustness

Ability to handle **simultaneous inputs** and ensure effective **error recovery**.

Responsiveness

Providing **real-time feedback** for all user actions and system processes.

Fault Tolerance

System maintains functionality even if one input method experiences a failure.

Tested Prototype

Demonstrated performance across multiple user and environmental scenarios.

Project Scope & Justification

Integrated Systems

Two embedded systems seamlessly integrated for a justified, real-world purpose.

Protocol Demonstration

Clear demonstration of communication protocols (I2C/SPI/UART) in action.

Empowering Communication

