Inteligencia Artificial en los Sistemas de Control Autónomo Máster Universitario en Ingeniería Industrial

Departamento de Automática

Objectives

- 1. Describe biological neurons and networks
- 2. Basics of artifical neurons and networks
- 3. Understand the role of trainning in ANNs
- 4. Strengths and weaknesses of ANNs

Bibliography

- A. Tettamanzi, M. Tomassini. Soft Computing. Integrating Evolutionary, Neural, and Fuzzy Systems. Springer-Verlag. 2001
- McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 7:115 133.
- Rosenblatt, Frank. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65;386-408

Table of Contents

- I. Introduction
 - History
 - Structure of neurons
- 2. Artificial neurons
 - Definition
 - Logical gates with a neuron
 - Activation functions
 - Learning limits

3. Artificial Neural Networks

- Definition
- Application examples
- Separability
- Topologies
- Layered networks
- Feedforward networks
- 4. Training algorithms
 - Problem statement
 - Gradient descent algorithm
 - Stochastic Gradient Descent Algorithm
 - Other optimization algorithms
 - Backpropagation algorithm
 - Learning problems

History

1943-McCulloch & Pitts First neural network designers
1949-Hebb First learning rule
1958-Rosenblatt Perceptron
1969-Minsky & Papert Perceptron limitation - Death of ANN
1986 - Rumelhart et al. Re-emergence of ANN: Backpropagation
2012 - Krizhevsky Convolutional Neural Networks - Deep learning

Structure of neurons (I)

Animal	Neurons	
Sponge	0	
Roundworm	302	
Jellyfish	800	
Ant	250,000	
Cockroach	1,000,000	
Frog	16,000,000	
Mouse	71,000,000	
Cat	760,000,000	
Macaque	6,376,000,000	
Human	86,000,000,000	
Elephant	267,000,000,000	

Human brain

Neuron switching time: 0.001 s Synapsis: 10-100 thousand Scene recognition time: 0.1 s

Structure of neurons (II)

A neuron has a cell body ...

- ... a branching input structure (dendrite) and
- ... a branching output structure (axon)

Axons connect to dendrites via synapses

Structure of neurons (III)

A neuron only fires if its input signal exceeds a threshold

- Good connections allowing a large signal
- Slight connections allowing a weak signal
- Synapses may be either excitatory or inhibitory

Synapses vary in strength

Definition (I)

- a_i Normalized input ($0 \le a_i \le 1$)
- w_i Weight of input j $(0 \le w_i \le 1)$
- θ Threshold
- g Activation function

Neuron model (perceptron)

$$\gamma = g\left(\sum_{i=1}^n w_i a_i\right)$$

Definition (II)

- Each neuron has a threshold value
- Each neuron has weighted inputs
- The input signals form a weighted sum
- If the activation level exceeds the threshold, the neuron activates

Definition (III)

The idealized activation function is a step function

$$g(x) = \begin{cases} 1 & \text{if } \sum_{i=1}^N w_i x_i > \theta \\ 0 & \text{otherwise} \end{cases}$$

The step function is rarely used in practice

Logical gates with a neuron

A neuron can implement a logical gate

a₂ w₂ = 1

 \mathfrak{a}_2

Definition of neuron (alternative version)

- a_i Normalized input $(0 \le a_i \le 1)$
- w_i Weight of input j $(0 \le w_i \le 1)$
- wo Bias
 - Activation function

Neuron model

$$\gamma = g\left(\sum_{i=0}^n w_i a_i\right)$$

Example of biased neuron

AND logical gate with a biased input

\mathfrak{a}_0	\mathfrak{a}_1	\mathfrak{a}_2	Output
I	O	O	0
I	O	I	0
I	I	O	0
I	I	I	I

Activation functions

Activation functions: Sigmoid function

- S-shaped, continuous and everywhere differentiable
- Asymptotically approach saturation points
- Derivative fast computation
- Range $\in [0,1]$

Sigmoid function

$$g(x) = \frac{1}{1 + e^{-x}}$$

$$g'(x) = g(x)(1 - g(x))$$

Activation functions: Tanh function

- Asymptotically approach saturation points
- Range $\in [-1, 1]$
- Bigger derivative than sigmoid (faster training)

Tanh function

$$g(x)=tanh(x)=\frac{2}{1+e^{-2x}}-1$$

$$g'(x)=1-g(x)^2$$

Activation functions: Softmax function

- Generalization of the logistic function
- Usually used in the output layer in classification problems
- Asymptotically approach saturation points

Softmax function

$$g(\boldsymbol{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} \operatorname{for} j = 1,...,K$$

with **z** a K-dimensional vector

Learning limits (I)

Problem: A single neuron only can solve linearly separable problems

Learning limits (II)

XOR cannot be implemented with a neuron

Solution: Neuronal networks

Definition (I)

- A very much simplified version of biological nerve systems
- A set of nodes (neurons)
 - Each node has input and output
 - Each node performs a simple computation
- Weighted connections between nodes
 - Connectivity gives the structure of the net
 - What can be computed by an ANN is primarily determined by the connections and their weights
- It can recognize patterns, learn and generalize

Definition (II)

ANN properties

- Noise tolerance
- General function approximator

Machine Learning tasks

- Supervised learning (classification and regression)
- Unsupervised learning (known as self-organizing maps in ANN terminology)
 - Autoencoders

Application examples:

• Robotics, vehicle control, computer vision, videogames, spam filtering

Human readability less important than performance

Definition (III)

In order to learn, it needs at least two components

Inputs Which consists of any normalized information

Outputs Which are the outcome arrived

Hidden nodes (Optional) No direct interaction

Artificial Neural Networks

Definition (IV)

(More info)

Application examples (I)

Application examples (II)

Application examples (III)

Separability

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	A B A	BSA	

(Demo online)

Topologies (I)

Acyclic Networks

- Without directed cycles
- Easy to analyze

Recurrent Networks

- With directed cycles
- Much harder to analyze
- Potentially unstable

Modular nets

- Consists of several modules
- Each module is itself an ANN
- Sparse connections between modules

Topologies (II)

Asymmetric fully connected networks

- Every node is connected to every other node
- Connection may be excitatory (positive), inhibitory (negative), or irrelevant (o)
- Most general

Symmetric fully connected nets

• Weights are symmetric ($w_{ij} = w_{ji}$)

Layered networks (I)

- Nodes are partitioned into subsets, called layers
- No connections from nodes in layer j to those in layer k if j > k

- Inputs are applied to nodes in layer o
- Nodes in input layer without computation

Layered networks (II)

Perceptron: ANN whose input is directly contected with its output

Artificial Neural Networks

Layered networks (III)

The input layer

- Introduces input values into the network
- No activation function or other processing

The hidden layer(s)

- Perform classification of features
- Two hidden layers are sufficient to solve any problem
- Features imply more layers may be better

The output layer

- Functionally just like the hidden layers
- Outputs are passed on to the world outside the neural network

Feedforward networks

- Also known as **multilayer perceptron** (MLP)
- Most widely used architecture
- A connection is allowed from a node in layer i only to nodes in layer i+1

Training algorithms

Problem statement (I)

ANN can perform different tasks

Classification, regression, others

Classification (or supervised learning) uses a training set

A ₁	A_2	A_3	O	Y
1,1	2,5	4,5	0,2	-0,1
0,9	2,4	1,2	0,5	0,4
1,0	2,0	9,9	0,4	1,2

Toss function: Measure of the error

- Usually mean squared error (mse): $E = \frac{1}{2}(\gamma \sigma)^2 = f(w)$
- Y and O are the desired and observed outputs

Training algorithms

Problem statement (II)

$$E=rac{1}{2}Err^2=rac{1}{2}\left[\gamma-g\left(\sum_{j=0}^n w_j x_j
ight)
ight]^2$$

where

- Desired output
- w_i Weight connection j
- x_i Input j

Problem: Determine w that minimize f(w)

- This is a classical optimization problem
- Any optimization algorithm can be used
- ... in AI, optimization means search

Gradient Descent Algorithm (I)

Given the error

$$\mathbf{E} = \frac{1}{2}\mathbf{Err}^2$$

Take partial derivatives

$$\begin{split} \frac{\partial E}{\partial w_j} &= Err \frac{\partial Err}{\partial w_j} \\ &= Err \frac{\partial}{\partial w_j} g \left(\gamma - \sum_{j=0}^n w_j x_j \right) \\ &= -Err \times g'(w) \times x_j \end{split}$$

Gradient Descent Algorithm (II)

Weight update

$$\textbf{w}_j^{k+1} = \textbf{w}_j^k + \alpha \times Err \times \textbf{g}'(\textbf{w}) \times \textbf{x}_j$$

with

- α Learning rate ($|\alpha| < 1$)
- Difference desired and current output
- Derivate of activation function
- Input j

Each iteration is named epoch

Learning algorithm (single neuron)

- 1. Apply input signal and compute outout
- 2. If output == desired output, do nothing
- 3. If output < desired output, increase weights
- 4. If output > desired output, decrease weights

Gradient Descent Algorithm (III)

Stochastic Gradient Descent (I)

It approximates the gradient by taking samples of the trainning set

On-line One sample

Mini-batch Several samples

Batch All the samples

Weights update rule: $\mathbf{w}^{k+1} = \mathbf{w}^k - \alpha \nabla \mathbf{g}(\mathbf{i}\mathbf{n})$

• where α is the learning rate

SGD is slow and prone to local minima

Stochastic Gradient Descent (II)

Usually, a momentum is introduced: $w^{k+1} = w^k - \alpha z^{k+1}$, where $z^{k+1} = \beta z^k + \nabla g(in)$

- α is the learning rate
- β is the momentum strength
- If $\beta = 0$ then gradient descend

(On-line demo)

Other optimization algorithms

Other optimization algorithms

- Newton's method
- Quasi-Newton's method
- Levenberg-Marquardt method
- Conjugate Gradient

Backpropagation algorithm (I)

Efficient learning algorithm for multilayer perceptrons. Three steps

- Feed-forward step. Feed input, compute output and error
- 2. Feed-backward step. Compute individual contribution to error
- Adjust weights. Modify weights to minimize error: Input, output and hidden layers

Backpropagation algorithm (II)

Output layer: Same as single neuron

$$W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$$

Define modified error as

$$\Delta_i = Err_i \times g'(in_i)$$
, then

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$

Backpropagation algorithm (III)

Hidden layer: Propagate error

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$

where

$$\Delta_j = g'(in) \times \sum_j W_{j,i} \Delta_i$$

Backpropagation algorithm

- Compute output
- 2. Compute output error Δ
- 3. For each layer, repeat the following steps
 - 3.1 Propagate Delta backwards
 - 3.2 Update weights between two layers

Learning problems

Potential problems

- Local minima
- Flat plateau
- Oscillation
- Missing good minima

Learning problems: Under and overfitting (I)

Underfitting: Does not learn

Topology too simple

Overfitting: Memorizes samples

- Topology too complex
- Perhaps, the most serious concern in MI.
- The net fails when exposed to new

Under- and Over-fitting examples

Learning problems: Under and overfitting (II)

Solution: Evaluate generalization capabilities

• Split training and validation sets and measure errors

Acknowlegements

- Jesus Aguilar Ruiz, Pablo de Olavide, Seville, Spain
- Daniel Rodríguez, Universidad de Alcalá, Alcalá de Henares, Spain

