Análise comparativa da eficiência de sensores RGB-D para estimação de Poses Antropométricas

Universidade Federal do ABC Centro de Matemática, Computação e Cognição Bacharelado em Ciência da Computação

Discente:

Vittória Ariel Dos Santos Borotto - RA 11201811288

Orientador:

Mario Alexandre Gazziro

Contextualização e Motivação

O crescente interesse e a expansão dos gêmeos digitais em diversos setores industriais realçam a necessidade de tecnologias de captura de movimento, para a criação de avatares digitais precisos e dinâmicos.

Este trabalho visa, portanto, explorar a eficiência de sensores RGB-D, crucial para aplicações que vão desde a reabilitação física até a geração de experiências imersivas em realidade virtual.

A análise comparativa dos sensores RGB-D e suas implicações para o controle de avatares digitais oferece um campo fértil para inovações tecnológicas que podem transformar a interação humana com ambientes virtuais. Avaliando-se a qualidade e eficiência do body tracking através do Kinect e do sensor Astral S com o software Nuitrack, este estudo busca determinar qual tecnologia oferece a melhor combinação de custo, precisão, proporcionando diretrizes práticas para o desenvolvimento e aplicação eficaz de gêmeos digitais em contextos industriais e de entretenimento.

- Poses Antropométricas
- Body Tracking
- Sensores RGB
- Triangulação

Revisão Bibliográfica

ZED-2i cameras vs RealSense(com 3 diferentes softwares de body tracking)

Ajuste automático do esqueleto para avatares próprios em realidade virtual.

Fusão de Múltiplos Kinects para Rastreamento Corporal Completo em Simulação de Montagem Assistida por Realidade Virtual.

Revisão Bibliográfica

Autorepresentação e Interação em Realidade Virtual Imersiva

Body Tracking em tempo real em realidade virtual usando um Vive tracker

Avaliação de Body Tracking Baseado em Sensor de Profundidade para Sistemas de Detecção de Quedas.

Revisão Bibliográfica

Body Tracking em Tempo Real com Uma Câmera de Profundidade e Sensores Inerciais

Body Tracking Completo Sem Marcadores: Tecnologia de Sensoriamento de Profundidade em Ambientes Virtuais

Metodologia

Metodologia

1. Captura de Poses

	Setup A	Setup B		
Sensor	Astra Stereo S U3	Microsoft Kinect 1.0		
GPU	NVIDIA Titan XP (12GB)	NVIDIA RTX 3060 (12GB)		

2. Execução

- nuitrack_sdk.py
- chamfer.py

Metodologia

3. Tratamento e Processamento

astra_output1.csv

astra_output2.csv

astra_output3.csv

kinect_output1.csv

kinect_output2.csv

kinect_output3.csv

Timestamp	Cabeþa X	Cabeþa Y	Cabeþa Z	Pescopo X	Pescopo Y	Pescopo Z
9499224	57.63186264	543.0914917	1637.654297	72.53990936	428.4141846	1658.393188
9532097	64.45415497	562.0109863	1653.30127	77.87876129	447.4908142	1675.843628
9568049	68.8143692	577.8334961	1676.3396	83.14674377	462.1773682	1691.225464
9599855	72.63653564	587.9700317	1707.283081	87.01809692	471.3661499	1706.815186
9632093	74.98316193	595.9240112	1731.025269	89.80474854	479.6654968	1722.773438
9668079	76.66606903	599.1434326	1762.270508	91.94682312	484.7264404	1740.372803
9700485	80.41764832	600.9530029	1796.076904	95.3104248	489.9060669	1760.697754
9733521	85.90311432	602.7233276	1821.764648	99.2791214	495.2368774	1781.170288
9769470	90.40998077	608.0797729	1840.94043	102.2010117	500.4415588	1802.104736
9800094	93.304245	612.7758179	1855.990356	104.4486237	504.0324707	1820.491455
9831845	94.63384247	616.4610596	1867.293213	106.0400238	506.2206116	1837.60376
9864171	96.0384903	616.6428223	1881.864258	108.3022308	506.3960876	1852.495483
9900466	97.43494415	615.689209	1897.207153	111.0470734	506.0774536	1865.012329
9932221	98.31274414	614.5617065	1913.303589	112.6947479	505.6912842	1877.054443

$$\operatorname{chamfer}(P_1,P_2) = \frac{1}{2n} \sum_{i=1}^n |x_i - \operatorname{NN}(x_i,P_2)| + \frac{1}{2m} \sum_{j=1}^n |x_j - \operatorname{NN}(x_j,P_1)|$$

Análise de Resultado - Comparação

Chamfer

$$ext{chamfer}(P_1,P_2) = rac{1}{2n} \sum_{i=1}^n |x_i - ext{NN}(x_i,P_2)| + rac{1}{2m} \sum_{j=1}^n |x_j - ext{NN}(x_j,P_1)|$$

Discussão dos resultados e Conclusões

	Astra	Kinect	
-100	1383	2128	230
-50	766	1221	323
0	2096	1665	266
50	6	37	246
100	1860	1800	171

Bibliografia

Aharony, N., Meshurer, A., Krakovski, M., Parmet, Y., Melzer, I., & Edan, Y. (2023). Comparative analysis of cameras and software tools for skeleton tracking. Em bioRxiv (p. 2023.08.10.552434). https://doi.org/10.1101/2023.08.10.552434

Ponton, J. L., Ceballos, V., Acosta, L., Ríos, A., Monclús, E., & Pelechano, N. (2023). Fitted avatars: automatic skeleton adjustment for self-avatars in virtual reality. Virtual Reality, 27(3), 2541–2560. https://doi.org/10.1007/s10055-023-00821-z

Gonçalves, G., Melo, M., Barbosa, L., Vasconcelos-Raposo, J., & Bessa, M. (2022c). Evaluation of the impact of different levels of self-representation and body tracking on the sense of presence and embodiment in immersive VR. Virtual Reality, 26(1), 1–14. https://doi.org/10.1007/s10055-021-00530-5

Wang, Y., Chang, F., Wu, Y., Hu, Z., Li, L., Li, P., Lang, P., & Yao, S. (2022). Multi-Kinects fusion for full-body tracking in virtual reality-aided assembly simulation. International Journal of Distributed Sensor Networks, 18(5), 155013292210975. https://doi.org/10.1177/15501329221097591

Caserman, P., Garcia-Agundez, A., Konrad, R., Göbel, S., & Steinmetz, R. (2019b). Real-time body tracking in virtual reality using a Vive tracker. Virtual Reality, 23(2), 155–168. https://doi.org/10.1007/s10055-018-0374-z

Sinha, S., & Deb, S. (n.d.). Depth sensor based skeletal tracking evaluation for fall detection systems. Psu.edu. Retrieved May 2, 2024, from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=08670ecfa146027548b8cac3a148d7d6ebbe994e

Lange, B., Rizzo, S., Chang, C.-yen, Suma, E. A., & Bolas, M. (n.d.). Markerless full body tracking: Depth-Sensing technology within virtual environments. Deadnet.Se:8080. Retrieved May 2, 2024, from http://deadnet.se:8080/ict.usc.edu/pubs/Markerless%20Full%20Body%20Tracking-%20Depth-Sensing%20Technology%20within%20Virtual%20Environments.pdf