

RF Components and Basic Concepts 1.18 - S-Parameters

Why we need S-parameters?

• For high frequencies, it is convenient to describe a given network in terms of waves rather than voltages or currents. Microwave theory deals with power quantities rather than Voltage or current.

➤ Why?

- Measurement of high-frequency voltages and currents in laboratory proves very difficult but measuring the average power is easier.
- Microwave theory models devices and circuits by parameters that can be obtain through the measurement of power quantities. These parameters are called scattering parameters or Sparameters.

Path Loss and Return Loss

• Path loss (or path attenuation) is the reduction in power density (attenuation) of an electromagnetic wave as it propagates through space.

• **Return loss** is the **loss** of power in the signal returned/reflected by a discontinuity in a transmission line.

S-parameters

• We define S-Parameters for any two-port network.

- We have incident wave and reflected wave At the input $(V_1^+ \ and \ V_1^-)$
- We have incident wave and reflected wave At the output $(V_2^+ \ and \ V_2^-)$

S-parameters

II. S12

III. S21

IV. S22

$$egin{pmatrix} b_1 \ b_2 \end{pmatrix} = egin{pmatrix} S_{11} & S_{12} \ S_{21} & S_{22} \end{pmatrix} egin{pmatrix} a_1 \ a_2 \end{pmatrix}. \hspace{5mm} b_1 = S_{11}a_1 + S_{12}a_2 \hspace{5mm} b_2 = S_{21}a_1 + S_{22}a_2 \;.$$

$$S_{11} = \frac{V_1^-}{V_1^+} \ (V_2^+ = 0)$$

S11 shows the accuracy of Input matching.

$$S_{11} = 10\log(\frac{V_1^-}{V_1^+})$$

$$S_{11} \leq -15 \ dB$$

$$S_{12} = \frac{V_1^-}{V_2^+} \ (V_1^+ = 0)$$

 S12 shows the reverse isolation Of the circuit.

- Reverse isolation is a measure of how well a signal applied to the device output is "isolated" from its input.
- How much of the output signal couples to the input network.

$$S_{22} = \frac{V_2^-}{V_2^+} (V_1^+ = 0)$$

S22 shows the accuracy of output matching.

$$S_{22} = 10\log(\frac{V_2^-}{V_2^+})$$

$$S_{22} \leq -15 dB$$

$$S_{21} = \frac{V_2^-}{V_1^+} (V_2^+ = 0)$$

S21 shows the gain of the Circuit.

$$S_{12} = 10\log(\frac{V_2^-}{V_1^+})$$

