Multiple Linear Regression

• R2 Score = 0.7894

Support Vector Machine

S.No	Kernel	С	R2 Score
1.	linear	1000	0.6340
2.	rbf	2000	-0.1077
3.	poly	3000	0.0489
4.	sigmoid	4000	-20.720
5.	linear	2000	0.6893
<u>6.</u>	linear	3000	0.7651
7.	linear	4000 noSC	0.7648
8.	linear	4000 withSC	0.7413

Decision Tree

S.No	citerion	splitter	Max_features	R2 Score
1.	Squared_error	best	-	0.7205
2.	Squared_error	best	auto	0.6855
3.	Squared_error	best	sqrt	0.6102
4.	Squared_error	best	Log2	0.7157
5.	Squared_error	random	auto	0.7128
6.	Squared_error	random	sqrt	0.5629
7.	Squared_error	random	Log2	0.6324
8.	Friedman_mse	best	auto	0.7056
9.	Friedman_mse	best	sqrt	0.7244
10.	Friedman_mse	best	Log2	0.6499
11	Friedman_mse	random	auto	0.7167
12	Friedman_mse	random	sqrt	0.6325

13	Friedman_mse	random	Log2	0.6875
14	Absolute_error	best	auto	0.6802
15	Absolute_error	best	sqrt	0.7506
16	Absolute_error	best	Log2	0.7026
17	Absolute_error	random	auto	0.6715
18	Absolute_error	random	sqrt	0.6542
19	Absolute_error	random	Log2	0.6516
20	poisson	best	auto	0.7073
21	poisson	best	sqrt	0.7004
22	poisson	best	Log2	0.6873
23	poisson	random	auto	0.6745
24	poisson	random	sqrt	0.6688
25	poisson	random	Log2	0.6890

Random Forest

S.No	N_estimators	criterion	Max_features	R2 Score
1.	100	Squared_error	1.0	0.8532
2.	25	Squared_error	1.0	0.8514
3.	25	Absolute_error	auto	0.8407
4.	25	Absolute_error	sqrt	0.8611
5.	25	Friedman_mse	auto	0.8508
6.	25	Friedman_mse	Log2	0.8644
7	25	poisson	sqrt	0.8611
8	25	poisson	Log2	0.8644

- Problem Statement Identification
 Predict the insurance charges based on the several parameters
- Data preprocessing is nominal data so the technique used is One Hot Encoding
- Many models have created but random forest algorithm gives higher accuracy with corresponding parameters. So the higher accuracy model is saved, loaded, and moved to deployment phase.