# EE2331 Data Structures and Algorithms

Recursion

### Outline

- Recursion
  - Factorial
  - Fibonacci Sequence
  - Binary Search

- Recursion is a powerful and elegant algorithm in solving complex problems. It usually results in more "clean" code that is easier to understand
- Daily life problems solved by recursion
  - Distributing quiz papers
    - You want to distribute the quiz papers to each of the students in the classroom.
    - Method 1 You give one paper to each student directly one by one
    - Method 2 You ask each student to pick up one paper and pass the rest to the neighbor until everyone has a paper





Method 1 – Iteration (Pseudo Code):

```
distributeSomething(people[], items[]) {
   for each person in people[]
     take one item from items[]
     give item to person
}
```

Method 2 – Recursion (Pseudo Code):

```
distributeSomething(people[], items[], k) {
   if (each person in people[] got an item)
      return

pick one item from items[]
   give item to kth person
   distributeSomething(people[], items[], k+1)
}
```

### Recursion

- A recursive algorithm is an algorithm which calls itself with "smaller (or simpler)" input values
- Sometimes, a complicated problem can be simplified by breaking it into same problems of smaller scale
- Recursion is a technique that solves a problem by solving a smaller problem of the same kind
- Recursion is good when the problem is recursively defined, or when the data structure that the algorithm operates on is recursively defined.



### Recursion

In C++, a function may call itself directly

```
int functionA(...) {
    ...
    functionA(...);
    ...
}
```

When a function call itself recursively, each invocation gets a fresh set of all automatic (local) variables, independent of the previous set. These automatic variables, parameters and return address (back to the caller) are stored collectively into a call stack, known as an activation record. The record is removed (pop from stack) when the function returns. Since each call creates a separate record, a subroutine can be reentrant, and recursion is automatically supported.

### Two Essential Steps

 Express the problem in the form of recurrence essentially requires to define two things:

#### Base Case

You must have some base cases, which can be solved without recursion

#### Recursive Case

 The cases that are to be solved recursively, the recursive call must always be to a case that makes progress toward a base case

 n factorial, n!, is defined as the product of all integers between n and 1

- $n! = n \times (n-1) \times (n-2) \times ... \times 1$
- 0! = 1 (the base case)
- 1! = 1
- $2! = 2 \times 1 = 2$
- $3! = 3 \times 2 \times 1 = 6$
- •

•  $n! = n \times (n-1) \times (n-2) \times ... \times 1$ 

```
int factorial(int n) {
  int result = 1;
  while (n > 1)
    result *= n--;
  times
  return result;
}
```

```
Time Complexity:
```

O(n)

Space Complexity:

2 variables (*n* and *result*) throughout the whole function

= O(1)

(i.e. independent of the size of *n*)

- $n! = n \times (n-1) \times (n-2) \times ... \times 1$  (closed-form)
- $n! = n \times (n-1)!$  (recursive form)

- $3! = 3 \times 2!$
- $2! = 2 \times 1!$
- $1! = 1 \times 0!$
- 0! = 1 (base case)



•  $n! = n \times (n-1)!$ 

```
int factorial(int n) {
   //precondition: n \ge 0
                                            Terminate condition (base
                                            case, not solved by recursion)
   if (n == 0) return 1;
   return (n * factorial(n − 1)); ←
                                            Invariant: as n > 0, so n - 1 \ge 0
                                            Therefore, factorial(n-1)
}
                                            returns (n-1)! correctly
                int factorial(int n) {
                    return (n == 0? 1: n * factorial(n - 1));
```

Calling factorial(20)

```
int factorial(int n) { n = 20
  if (n == 0) return 1;
  return (n * factorial(n - 1));
}
```

Space requirement: allocated one integer (int n) through out the whole function



Calling factorial(20)

```
int factorial(int n) { n = 20
    if (n == 0) return 1;
    return (n * factorial(n - 1));
}
int factorial(int n) { n = 19
    if (n == 0) return 1;
    return (n * factorial(n - 1));
}
```

**Another** integer (int n) being allocated in this function (i.e. totally 2 integers in memory)



Calling factorial(20)

```
int factorial(int n) \{ n = 20 \}
   if (n == 0) return 1;
  return (n * factorial(n - 1));
   int factorial(int n) { n = 19
      if (n == 0) return 1;
      return (n * factorial(n - 1));
       int factorial(int n) { n = 18
          if (n == 0) return 1;
          return (n * factorial(n - 1));
```



**Another** integer (int n) being allocated in this function (i.e. totally 3 integers in memory)



```
int factorial(int n) \{ n = 20 \}
                                                                    20!
   int factorial(int n) \{ n = 19 \}
                                                       20
                                                                      19!
     int factorial(int n) { n = 18
                                                                         18!
                                                             19
          int factorial(int n) \{ n = 2 \}
                                                                  18
                                                                            17!
             int factorial(int n) { n = 1
                 if (n == 0) return 1;
                 return (n *
```

The function of n = 0 returns 1 and now totally only 20 integers in memory

```
int factorial(int n) \{ n = 20 \}
                                                                  20!
  int factorial(int n) { n = 19
                                                       20
                                                                     19!
     int factorial(int n) { n = 18
                                                                        18!
                                                            19
          int factorial(int n) \{ n = 2 \}
                                                                 18
                                                                           17!
             if (n == 0) return 1;
              return (n *
               The function of n = 1 returns 1
               and now totally only 19 integers
               in memory
```

```
int factorial(int n) { n = 20

int factorial(int n) { n = 19

if (n == 0) return 1;

return (n * 6402373705728000);
}
```

The function of n = 18 returns 6402373705728000 and now totally only 2 integers in memory



```
int factorial(int n) { n = 20
  if (n == 0) return 1;
  return (n * 121645100408832000);
}
```

The function of n = 19 returns 121645100408832000 and now totally only 1 integer in memory



The function of n = 20 returns 2,432,902,008,176,640,000 and now no integers in memory

Space Complexity = Time Complexity =



### Time Complexity

#### Running time

- Let T(n) be the running time of input size equals to n
- ■The running time for line 1 is a constant O(1), let us use 1.
- The running time for line 2 is equal to a constant O(1) + T(n-1)

T(n) 
$$T(n) = \begin{cases} O(1), & n = 0 \\ O(1) + T(n-1), & n \ge 1 \end{cases}$$

How to solve the above equation?

$$T(n)=i+T(n-i)$$
  
Until n-i = 0, so i = n  
 $T(n)=n+T(0)$ 

• fib(n) = fib(n-1) + fib(n-2)

#### Recursively defined





Leonardo Fibonacci

Old European culture: Fibonacci

Visit

- By definition, the first two Fibonacci numbers are 0 and 1, and each remaining number is the sum of the previous two.
- In mathematical terms, the sequence F<sub>n</sub> of Fibonacci numbers is defined by the recurrence relation:

$$F_n = F_{n-1} + F_{n-2}$$
 where  $F_0 = 0$  and  $F_1 = 1$ 

So the Fibonacci number sequence is as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

```
• fib(n) = fib(n - 1) + fib(n - 2)

    e.g. Compute fib(4)

   = fib(3) + fib(2)
   = [fib(2) + fib(1)] + [fib(1) + fib(0)]
   = [\{fib(1) + fib(0)\} + fib(1)] + [fib(1) + fib(0)]
   = [\{1 + 0\} + 1] + [1 + 0]
   = 3
```

• fib(n) = fib(n - 1) + fib(n - 2)

```
int fib(int n) {
                                           Check base cases before
                                           recursion
  if (n == 0) return 0;
  if (n == 1) return 1;
  return (fib(n - 1) + fib(n - 2));
                          Calling itself
                          (recursion)
```





### In-class exercise

• fib(n) = fib(n - 1) + fib(n - 2)

```
int fib(int n) {
   if (n == 0) return 0;
   if (n == 1) return 1;
   return (fib(n - 1) + fib(n - 2));
}
```

Exercise:
Compute fib(n) using a non-recursive method; use loop/iteration. Write your pseudocode.

### In-class exercise

• fib(n) = fib(n - 1) + fib(n - 2)

```
int fib(int n) {
   if (n == 0) return 0;
   if (n == 1) return 1;
   return (fib(n - 1) + fib(n - 2));
}
```

Exercise:
Compute fib(n) using a non-recursive method; use loop/iteration. Write your pseudocode.

There are two methods. In method 1, you can use an array to save all the fib(i) for i=0 to n. You can use vector or int\* to declare this array. In method 2, we just use 2 int variables to save fib(n-1) and fib(n-2).

# Searching in Sorted Array



To look for a certain element in the array, e.g. 6



To look for a certain element in the array, e.g. 6



compare array[mid] with 6 array[mid] == 6 : the answer!

array[mid] < 6 : search right sub-sequence



Since 5 < 6, the answer must be in the right sub-sequence



The new search windows is [mid + 1, high] update low and recalculate mid pointers



Since 8 > 6, the answer must be in the left sub-sequence



The new search window is [low, mid - 1]

Update high and recalculate mid pointers



array[3] == 6

The answer is 3

- The no. of elements to be searched is halved in each search cycle
- The expected number of elements to be searched is  $log_2 n + 1$ , where n is total number of elements
- The procedures in each search cycle are the same and could be recursively defined
- Binary Search can be implemented with Iterative (looping) approach or Recursive approach

# Iterative Implementation of Binary Search

An iterative approach (using loops) Update either the *mid*, *low* or *high* indexes in each iteration Loop until *low > high* (the failure condition) Time: O(log n) / Space: O(1) int binsch(int array[], int low, int high, int x) { int mid; while (low <= high) { mid = (high + low) / 2;if (array[mid] == x) return mid; //x has been found if (array[mid] > x) high = mid - 1; if (array[mid] < x) low = mid + 1; return -1; //cannot find x in the array

}

# Recursive Implementation of Binary Search

```
int binsch(int array[], int low, int high, int x) {
    int mid = (high + low) / 2;
    if (low > high)
        return -1; //cannot find x in the array
    if (array[mid] == x)
        return mid; //x is found
    if (array[mid] > x)
        return binsch(array, low, mid - 1, x);
    if (array[mid] < x)
        return binsch(array, mid + 1, high, x);
}
```

### Recursion vs. Iteration

- Iteration sometimes can be used in place of recursion
  - An iterative algorithm uses a looping structure
  - A recursive algorithm uses a branching structure
- Recursive solutions are often less efficient, in terms of both time and space, than iterative solutions
- Recursion can simplify the solution of a problem, often resulting in shorter, more easily understood source code

# Pros of Using Recursion

- Natural and elegant way of solving problems
- Logical simplicity
  - e.g. Fibonacci sequence
- Self-documentation, increase readability
  - e.g. factorial, recursive binary search
- Handle complicated problems
- Programming efficiency

# Cons of Using Recursion

- Often more expensive than non-recursive solution, in terms of time and space
- Space:
  - Activation record and stack
  - Recursive algorithm may need space proportional to the number of nested calls to the same function.

#### Time:

- Introduced overhead
- The operations involved in calling a function allocating, and later releasing, local memory, copying values into the local memory for the parameters, branching to / returning from the function

