湖南大学理工类火修课程

大学数学AII

—— 多元微分学

2.6 隐函数微分法

• 主 讲: 于 红 香

第二章 多元函数微分学

第六节 隐函数的微分法

- 一. 由一个方程确定的隐函数求导法
- 二. 由方程组确定的隐函数求导法

第二章 多元函数微分学

第六节 隐函数的微分法

本节学习要求:

- 正确理解多元隐函数的概念。
- 熟练掌握一元隐函数微分法则。
- 熟练掌握一个方程确定的多元隐函数微分法则。
- 了解由方程组确定的多元隐函数微分法则。
- 了解隐函数存在定理。

利用多元函数的偏导数求

一元函数的隐函数导数

设
$$x^2 + y^2 = 1$$
,求 $\frac{dy}{dx}$.

【解】 方程两边直接关于x求导,有

$$2x + 2y \frac{\mathrm{d} y}{\mathrm{d} x} = 0,$$

解得
$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = -\frac{x}{y}(y \neq 0)$$

为什么要求 $y \neq 0$? 几何上如何解释?

- 1.隐函数存在的条件;
- 2.隐函数若存在,是否可导?推出求导公式。
- 3.三元以上的方程及方程组情形如何?

定理1

设函数F(x, y)在点 $P_0(x_0, y_0)$ 的邻域 $U(P_0)$ 内有连续偏导数,

且
$$F(x_0, y_0) = 0$$
, $F_y'(x_0, y_0) \neq 0$, 则方程 $F(x, y) = 0$ 在点 P_0 的

某邻域内唯一确定一个有连续导数的函数y = y(x),它满足

$$y_0 = y(x_0), \quad \underline{\mathbf{d}} \quad \frac{\mathrm{d} y}{\mathrm{d} x} = -\frac{F_x'}{F_y'}$$

设
$$xy-2^x+2^y=0$$
,求 $\frac{dy}{dx}$.

【解1】

方程两边直接关于**求导,有

注意:

原方程中的X,y 不独立具有 函数关系!

$$y + x \cdot \frac{\mathrm{d} y}{\mathrm{d} x} - 2^x \ln 2 + 2^y \ln 2 \cdot \frac{\mathrm{d} y}{\mathrm{d} x} = 0,$$

解得
$$\frac{dy}{dx} = -\frac{y - 2^x \ln 2}{x + 2^y \ln 2} \qquad (x + 2^y \ln 2 \neq 0)$$

设
$$xy-2^x+2^y=0$$
,求 $\frac{dy}{dx}$.

【解2】

$$\Leftrightarrow F(x, y) = xy - 2^x + 2^y$$
, \emptyset

注意:

新方程*F*(*x*,*y*)=0 中的*x*,*y*为 独立自变量!

$$\frac{\partial F}{\partial x} = y - 2^x \ln 2 , \qquad \frac{\partial F}{\partial y} = x + 2^y \ln 2$$

故
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{y - 2^x \ln 2}{x + 2^y \ln 2}$$
 $(x + 2^y \ln 2 \neq 0)$

定理2

设三元函数F(x, y, z)在点 $P_0(x_0, y_0, z_0)$ 的邻域 $U(P_0)$ 内有连续偏导数,

且 $F(x_0, y_0, z_0) = 0$, $F'_z(x_0, y_0, z_0) \neq 0$, 则方程F(x, y, z) = 0在点 P_0 的

某邻域内唯一确定一个有连续导数的函数z = z(x, y),它满足

$$z_0 = z(x_0, y_0), \quad \underline{\square}$$

$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}, \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}.$$

对方程 F(x, y, z) = 0 两边分别关于 x, y 求偏导,得

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0, \qquad \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial y} = 0$$

因为 $F(x, y, z) \in C^1(U(x_0, y_0, z_0)), F'_z(x_0, y_0, z_0) \neq 0,$

由连续函数性质 \exists U((x_0, y_0)),在其中 $F'_z(x, y, z) \neq 0$,

故

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} = -\frac{F_{x}'}{F_{z}'} \right) \stackrel{\triangle}{\longrightarrow} \left(\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{F_{y}'}{F_{z}'} \right)$$

求方程 $e^{-xy} - 2z + e^z = 0$ 所确定的函数z = z(x, y)的偏导数.

【解1】

中的次,次,之为 独立自变量!

注意:
新方程
$$F(x,y,z)=0$$
 $\frac{\partial F}{\partial x}=-ye^{-xy}$, $\frac{\partial F}{\partial y}=-xe^{-xy}$, $\frac{\partial F}{\partial z}=-2+e^z$,

$$\frac{\partial z}{\partial x} = -ye , \quad \frac{\partial z}{\partial y} = -xe^{-x}, \quad \frac{\partial z}{\partial z} = -2 + e^{-x},$$

$$\frac{\partial z}{\partial z} = -\frac{\partial F}{\partial z} = -\frac{ye^{-xy}}{-2 + e^{z}} = \frac{ye^{-xy}}{e^{z} - 2} \qquad (e^{z} - 2 \neq 0)$$

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{-xe^{-xy}}{-2 + e^z} = \frac{xe^{-xy}}{e^z - 2} \qquad (e^z - 2 \neq 0)$$

【例】 求方程 $e^{-xy} - 2z + e^z = 0$ 所确定的函数z = z(x, y)的偏导数.

【解2】

注意:

原方程中的X,y,Z 不独立具有 函数关系! 对方程两边关于x求偏导: $e^{-xy} - 2z + e^z = 0$

$$-ye^{-xy} - 2z'_{x} + e^{z} \cdot z'_{x} = 0 z'_{x} = \frac{ye^{-xy}}{e^{z} - 2}$$

对方程两边关于y求偏导: $e^{-xy}-2z+e^z=0$

$$-xe^{-xy} - 2z'_{y} + e^{z} \cdot z'_{y} = 0$$

$$z'_{y} = \frac{xe^{-xy}}{e^{z} - 2}$$

【例】 设
$$F(x+y+z, xyz) = 0$$
确定 $z = z(x,y),$ 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y},$ 其中 $F \in C^1$.

[解]
$$\frac{\partial F}{\partial x} = F_1' + yzF_2'$$
, $\frac{\partial F}{\partial y} = F_1' + xzF_2'$, $\frac{\partial F}{\partial z} = F_1' + xyF_2'$,

故
$$\frac{\partial z}{\partial x} = -\frac{F_1' + yzF_2'}{F_1' + xyF_2'}$$
$$\frac{\partial z}{\partial y} = -\frac{F_1' + xzF_2'}{F_1' + xyF_2'}$$
$$(F_1' + xyF_2' \neq 0)$$

为了将一个方程确定的隐函数的求导方法推广至由方程组确定的隐函数的 情形,我们首先要介绍雅可比行列式.

雅可比行列式

设
$$u_i = F_i(x_1, x_2, \dots, x_n) \in C^1(\Omega), \quad (i = 1, 2, \dots, n)$$

$$J = \frac{\partial(u_1, u_2, \dots, u_n)}{\partial(x_1, x_2, \dots, x_n)} = \frac{\partial(F_1, F_2, \dots, F_n)}{\partial(x_1, x_2, \dots, x_n)}$$
 雅可比行列式记号

$$= \begin{vmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial F_n}{\partial x_1} & \frac{\partial F_n}{\partial x_2} & \cdots & \frac{\partial F_n}{\partial x_n} \end{vmatrix}$$

雅可比行列式

当所出现的函数均有一阶连续偏导时,

雅可比行列式有以下两个常用的性质:

$$\frac{\partial(u_1, u_2, \dots, u_n)}{\partial(t_1, t_2, \dots, t_n)} = \frac{\text{复合函数情形}}{\partial(t_1, t_2, \dots, t_n)} = \frac{\partial(u_1, u_2, \dots, u_n)}{\partial(x_1, x_2, \dots, x_n)} \cdot \frac{\partial(x_1, x_2, \dots, x_n)}{\partial(t_1, t_2, \dots, t_n)}.$$

2.
$$\frac{\partial(u_1, u_2, \dots, u_n)}{\partial(x_1, x_2, \dots, x_n)} \cdot \frac{\partial(x_1, x_2, \dots, x_n)}{\partial(u_1, u_2, \dots, u_n)} = 1.$$

设
$$F,G \in C^1$$
, 方程组
$$\begin{cases} F(x,y,z) = 0\\ G(x,y,z) = 0 \end{cases}$$
 确定函数

移项,得

$$y = y(x), z = z(x), \stackrel{d}{x} \frac{dy}{dx}, \frac{dz}{dx}$$

方程组中每个方程两边关于x 求导:

$$\begin{cases} \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\partial F}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}x} = 0 \\ \frac{\partial G}{\partial x} + \frac{\partial G}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\partial G}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}x} = 0 \end{cases}$$

$$\frac{\partial F}{\partial y} \left(\frac{\mathrm{d} y}{\mathrm{d} x} \right) + \frac{\partial F}{\partial z} \left(\frac{\mathrm{d} z}{\mathrm{d} x} \right) = -\frac{\partial F}{\partial x}$$

$$\frac{\partial G}{\partial y} \frac{\mathrm{d} y}{\mathrm{d} x} + \frac{\partial G}{\partial z} \frac{\mathrm{d} z}{\mathrm{d} x} = -\frac{\partial G}{\partial x}$$

设
$$F,G \in C^1$$
, 方程组
$$\begin{cases} F(x,y,z) = 0\\ G(x,y,z) = 0 \end{cases}$$
 确定函数

$$y = y(x), z = z(x), \stackrel{d}{x} \frac{dy}{dx}, \frac{dz}{dx}$$
.

故由克莱姆法则, 当 $\frac{\partial(F,G)}{\partial(y,z)} \neq 0$ 时, 方程组有唯一解:

$$\frac{\mathrm{d} y}{\mathrm{d} x} = -\frac{\frac{\partial (F,G)}{\partial (x,z)}}{\frac{\partial (F,G)}{\partial (y,z)}},$$

$$\frac{\mathrm{d}z}{\mathrm{d}x} = -\frac{\frac{\partial(F,G)}{\partial(y,x)}}{\frac{\partial(F,G)}{\partial(y,z)}}$$

【解】 令
$$F(x, y, z) = x^2 + y^2 - z$$
, $G(x, y, z) = x^2 + 2y^2 + 3z^2$,

$$\boxed{\frac{\partial(F,G)}{\partial(y,z)} = \begin{vmatrix} 2y & -1 \\ 4y & 6z \end{vmatrix}} = 4y(3z+1).$$

$$\frac{\partial(F,G)}{\partial(x,z)} = \begin{vmatrix} 2x & -1 \\ 2x & 6z \end{vmatrix} = 2x(6z+1)$$

$$\frac{\partial(F,G)}{\partial(y,x)} = \begin{vmatrix} 2y & 2x \\ 4y & 2x \end{vmatrix} = -4xy$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x(6z+1)}{4y(3z+1)}$$

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{x}{3z+1}$$

设
$$F, G \in C^1$$
,方程组
$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$
确定函数

$$u = u(x, y), v = v(x, y), \stackrel{?}{R} \frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial x}.$$

将y看成常数

利用问题 1 的结论

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$

对方程组中的每个方程关于变量 x 求导,

然后解关于
$$\frac{\partial u}{\partial x}$$
 和 $\frac{\partial v}{\partial x}$ 的二元一次方程组.

$$\begin{cases} F'_{x} + F'_{u} \cdot u'_{x} + F'_{v} \cdot v'_{x} = 0 \\ G'_{x} + G'_{u} \cdot u'_{x} + G'_{v} \cdot v'_{x} = 0 \end{cases} \stackrel{\text{deg}}{=} \frac{\partial(F, G)}{\partial(u, v)} \neq 0 \text{ By},$$

$$\frac{\partial u}{\partial x} = - \frac{\frac{\partial (F,G)}{\partial (x,v)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

$$\frac{\partial v}{\partial x} = - \frac{\frac{\partial (F,G)}{\partial (u,x)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

将x看成常数

$$\begin{cases}
F(x, y, u, v) = 0 \\
G(x, y, u, v) = 0
\end{cases}$$

对方程组中的每个方程关于变量 y 求导,

然后解关于
$$\frac{\partial u}{\partial y}$$
 和 $\frac{\partial v}{\partial y}$ 的二元一次方程组.

$$\begin{cases} F_{y}' + F_{u}' \cdot \boldsymbol{u}_{y}' + F_{v}' \cdot \boldsymbol{v}_{y}' = 0 \\ G_{y}' + G_{u}' \cdot \boldsymbol{u}_{y}' + G_{v}' \cdot \boldsymbol{v}_{y}' = 0 \end{cases}$$

$$\frac{\partial u}{\partial y} = - \frac{\frac{\partial (F,G)}{\partial (y,v)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

$$\frac{\partial v}{\partial y} = - \frac{\frac{\partial (F,G)}{\partial (u,y)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

隐函数存在定理

定理3

设
$$X_0(x_0, y_0, u_0, v_0) \in \mathbb{R}^4$$
,若

(1)
$$F(x, y, u, v), G(x, y, u, v) \in C^1(U(X_0));$$

$$(2)F(x_0, y_0, u_0, v_0) = 0, G(x_0, y_0, u_0, v_0) = 0;$$

(3)雅可比行列式
$$\frac{\partial(F,G)}{\partial(u,v)}$$
 在 X_0 的值不为0.

则方程组 $\begin{cases} F(x, y, u, v) = 0 \\ C(x, y, u, v) = 0 \end{cases}$ 在 X_0 的某邻域内唯一确定两个二元函数

$$u = u(x, y), v = v(x, y),$$
其满足 $u_0 = u(x_0, y_0), v_0 = v(x_0, y_0),$ 且

$$\frac{\partial u}{\partial x} = - \frac{\frac{\partial (F,G)}{\partial (x,v)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

$$\frac{\partial v}{\partial x} = - \frac{\frac{\partial (F,G)}{\partial (u,x)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

$$\frac{\partial u}{\partial y} = - \frac{\frac{\partial (F,G)}{\partial (y,v)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

$$\frac{\partial v}{\partial y} = - \frac{\frac{\partial (F,G)}{\partial (u, y)}}{\frac{\partial (F,G)}{\partial (u, v)}}$$

$$\frac{\partial(F,G)}{\partial(u,v)} = \begin{vmatrix} 2u & -1 \\ 1 & 2v \end{vmatrix} = 4uv + 1$$

$$\frac{\partial(F,G)}{\partial(x,v)} = \begin{vmatrix} 1 & -1 \\ 0 & 2v \end{vmatrix} = 2v$$

$$\frac{\partial u}{\partial x} = -\frac{2v}{4uv + 1}$$

同理可得

$$\frac{\partial(F,G)}{\partial(u,x)} = \begin{vmatrix} 2u & 1\\ 1 & 0 \end{vmatrix} = -1$$

$$\frac{\partial(F,G)}{\partial(y,v)} = \begin{vmatrix} 0 & -1 \\ -1 & 2v \end{vmatrix} = -1$$

$$\frac{\partial(F,G)}{\partial(u,y)} = \begin{vmatrix} 2u & 0\\ 1 & -1 \end{vmatrix} = -2u$$

$$\frac{\partial v}{\partial x} = \frac{1}{4uv + 1}$$

$$\frac{\partial u}{\partial y} = \frac{1}{4uv + 1}$$

$$\frac{\partial v}{\partial y} = \frac{2u}{4uv + 1}$$

在实际求解时,我们往往按照前面分析的过程,对方程组中的每一个方程两边关于某一个变量求导,然后解关于相应的偏导数的代数方程组.

方法1: 用公式;

方法2:解方程组

【例】设
$$\begin{cases} u^2 - v + x = 0\\ u = u(x, y), v = v(x, y), \dot{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}. \end{cases}$$

【解】 方程组两边关于
$$x$$
求偏导:
$$\begin{cases} 2u \cdot u_x - v_x + 1 = 0 \\ u_x + 2v \cdot v_x = 0 \end{cases}$$

$$\begin{cases} 4uv \cdot u'_{x} - 2v \cdot v'_{x} + 2v = 0 \\ u'_{x} + 2v \cdot v'_{x} = 0 \end{cases} \qquad u'_{x} = \frac{-2v}{4uv + 1}$$

【例】设
$$\begin{cases} u^2 - v + x = 0 \\ \mathbf{m} 定 \mathbf{w} = u(x, y), v = v(x, y), \mathbf{x} \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}. \end{cases}$$

【解】 方程组两边关于
$$y$$
求偏导:
$$\begin{cases} 2u \cdot u_y - v_y = 0 \\ u_y + 2v \cdot v_y - 1 = 0 \end{cases}$$

解3: 方程组两边直接求全微分:

形式不变性

$$\begin{cases} 2u \cdot du - dv + \overline{d}x = 0 \\ du + 2v \cdot dv - dy = 0 \end{cases}$$

$$\begin{cases} 4uv \cdot du - 2v dv + 2v dx = 0 \\ du + 2v \cdot dv - dy = 0 \end{cases}$$

$$du = \underbrace{\frac{-2v}{4uv + 1}} dx + \underbrace{\frac{1}{4uv + 1}} dy$$

$$\begin{cases} 2u \cdot \mathbf{d} \, u - \mathbf{d} \, v + \mathbf{d} \, x = 0 \\ 2u \cdot \mathbf{d} \, u + 4uv \cdot \mathbf{d} \, v - 2u \, \mathbf{d} \, y = 0 \end{cases} \qquad \mathbf{d} \, v = \underbrace{\frac{1}{4uv + 1}} \mathbf{d} \, x + \underbrace{\frac{2u}{4uv + 1}} \mathbf{d} \, y$$

解法3: 两边全微分
$$\begin{cases} dx = -2udu + dv + dz \\ dy = du + zdv + vdz \end{cases}$$

$$\begin{cases} 2u du - dv = -dx + dz \\ du + z dv = dy - v dz \end{cases}$$

$$|| du = \frac{-z dx + dy + (z - v) dz}{2uz + 1}, dv = \frac{dx + 2u dy - (1 + 2uv) dz}{2uz + 1}$$

思考题1

隐函数求导小结

方法1:公式法:各变量独立;

方法2: 方程两边求偏导: 明确函数关系;

方法3:全微分法:直接微分,不考虑函数关系。

$$(1)F(x, y) = 0$$
 确定隐函数 $y = f(x)$.

$$\frac{\mathrm{d} y}{\mathrm{d} x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} \quad \left(\frac{\partial F}{\partial y} \neq 0\right)$$

(2) 方程 F(x, y, z) = 0确定隐函数z = f(x, y).

$$\frac{\partial z}{\partial x} = -\frac{\partial F}{\partial z} , \qquad \frac{\partial z}{\partial y} = -\frac{\partial y}{\partial F}$$

$$\frac{\partial z}{\partial z} = \frac{\partial F}{\partial z}$$

(3) 方程组
$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$
 确定函数 $z = z(x), y = y(x),$

$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = -\frac{\frac{\partial(F,G)}{\partial(x,z)}}{\frac{\partial(F,G)}{\partial(y,z)}}, \qquad \frac{\mathrm{d}\,z}{\mathrm{d}\,x} = -\frac{\frac{\partial(F,G)}{\partial(y,x)}}{\frac{\partial(F,G)}{\partial(y,z)}}.$$

(4) 方程组
$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$

确定函数
$$u = u(x, y), v = v(x, y),$$

$$\frac{\partial u}{\partial x} = - \frac{\frac{\partial (F,G)}{\partial (x,v)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

$$\frac{\partial v}{\partial x} = -\frac{\frac{\partial (F,G)}{\partial (u,x)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

$$\frac{\partial u}{\partial y} = -\frac{\frac{\partial (F,G)}{\partial (y,v)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

$$\frac{\partial v}{\partial y} = -\frac{\frac{\partial (F,G)}{\partial (u,y)}}{\frac{\partial (F,G)}{\partial (u,v)}}$$

设 $\varphi(u,v)$ 具有连续偏导数,证明由方程 $\varphi(cx-az,cy-bz)=0$

所确定的函数
$$z = f(x, y)$$
满足 $a \frac{\partial z}{\partial x} + b \frac{\partial z}{\partial y} = c$.

设u = f(x, y, z)有连续的一阶偏导数,又函数y = y(x)及z = z(x)

分别由下面两式确定
$$e^{xy} - xy = 2$$
, $e^x = \int_0^{x-2} \frac{\sin t}{t} dt$. 求 $\frac{du}{dx}$.

答案:
$$\frac{\mathrm{d}u}{\mathrm{d}x} = f_1' - \frac{y}{x}f_2' + \left[1 - \frac{e^x(x-z)}{\sin(x-z)}\right]f_3'$$

