

Особенности теоретических заданий по робототехнике на ВСОШ

Петровская Наталья Вячеславовна

Заместитель директора Центра Педагогического Мастерства Член ЦПМК по информатике, к.ф.-м.н.

Форма проведения теоретического тура

- **бланковая форма** предлагаются задания с развёрнутым ответом, решения которых записываются на бумаге с последующей проверкой жюри школьного этапа на основании критериев, разработанных соответствующей предметно-методической комиссией;
- компьютерная форма заданий с кратким ответом задания, ответ на которые записывается в виде одного или нескольких чисел, одной или нескольких строк текста, с вводом ответа в тестирующую систему и с последующей автоматической проверкой ответа».

ВИДЫ ТЕОРЕТИЧЕСКИХ ЗАДАНИЙ

- Практико-ориентированные задачи-кейсы или отдельные задачи по робототехнике и связанным с нею дисциплинам
- Преимущественно вычислительные или алгоритмические задачи
- Помимо робототехники требуются знания из различных областей:
 - математика
 - информатика
 - физика

ТЕМАТИКА ТЕОРЕТИЧЕСКИХ ЗАДАНИЙ

- Механика
- Компьютерное зрение
- Электричество (схемы, аккумы, ЦАП, АЦП)
- Алгоритмы
- Микроконтроллеры
- Теория управления
- Протоколы связи
- Теория информации
- БПЛА
- Навигация на плоскости
- Манипуляторы

Проведение ШЭ в системе Сириус-курсы

Класс участия	Количество участников				
5-6	61 223				
7-8	82 061				
9-11	77 888				
ИТОГО	221 172				

• 5-6 класс

• Перед роботом положили штрих-код. Первые две полосы штрих-кода – белая и чёрная – калибровочные, остальные восемь полос значимые. Все полосы одной ширины. Соседние полосы могут быть одного цвета. Робот движется по штрих-коду слева направо, перпендикулярно полосам и считывает цвет полос. Если цвет значимой полосы чёрный, то робот пишет в массив 1, если цвет полосы белый – 0. Какую последовательность из восьми цифр 0 и 1 запишет робот после проезда по данному штрих-коду?

• 5-6 класс

• Робот оснащён датчиком освещённости. Робот заезжает на чёрный прямоугольник, и двигается вдоль его длинной стороны. Показания датчика приведены в таблице. Определите расстояние между двумя крайними положениями, когда робот определил с помощью датчика чёрный цвет. Длина окружности колеса равна 27 см, граница серого равна 31, робот совершает один оборот колеса за 3 секунды. Ответ выразите в сантиметрах.

Время, с	1	2	3	4	5	6	7	8	9	10	11	12
Датчик	50	42	36	32	25	21	24	27	35	41	47	51

• 5-6 класс

Витя собрал колесного робота, но использовал два угловых двигателя с разными характеристиками частоты вращения: левый - 80 грм, правый - 120 грм. При подаче положительных значений на моторы робот движется вперед по дуге. К счастью, каждый из двигателей оснащен энкодером с точностью 1 градус. Витя нашел алгоритм, который можно было бы использовать для синхронизации моторов для прямолинейного движения со средней скоростью *speed*, подаваемой на моторы, но в нем не были указаны значения коэффициентов k1 и k2.

1.1.

Укажите наименьшие по модулю подходящие целые значения этих коэффициентов.

```
while(true){
e = k1*encoderLeft + k2*encoderRight;
left = speed + e;
right = speed - e;
motor(left, right);
sleep(1);
}
```

1.2. После выполнения синхронизации Витя обнаружил, что при значении *speed* = 100 каждый мотор по отдельности под нагрузкой может вращаться с максимальной заявленной скоростью и она пропорциональна *speed*. С какой максимальной линейной скоростью будет двигаться робот с алгоритмом синхронизации при диаметре колес *D*=50 мм? Считайте число π=3,14. Ответ дайте в см/с, округлите до целого.

• 7-8 класс

• Роботу для анализа предъявили маркер. Маркер состоит из 25 элементов одинакового размера. Элементы маркера, расположенные по его границе - всегда чёрные. Четыре элемента, находящиеся в углах внутреннего 3 × 3 квадрата определяют ориентацию маркера — только один из них может быть белым. Пронумерованные 5 элементов маркера кодируют число по правилу: номера элементов, имеющих белый цвет, нужно перемножить. Нумерация элементов привязана к ориентации маркера и показана на рисунке №1. Определите, какое число закодировано на рисунке №2.

7-8 класс

Робот должен проехать по чёрно-белому штрихкоду. Ширина полос штрих-кода разная. При калибровке на чёрном датчик робота показал 7, при калибровке на белом показал 87. В качестве значения границы серого взяли среднее арифметическое показания датчика на белом и чёрном.

Первоначально робот устанавливается так, что он стартует перпендикулярно краю штрихкода. Робот стартует на чёрной полосе и едет равномерно и прямолинейно. Датчик расположен перпендикулярно поверхности штрихкода. После того, как робот съедет со штрихкода, робота остановили. Робот получил следующие данные от датчика освещённости.

	14	11	19	28	35	45	57	68	74	65	53	41	32	23
	2.5	2.4	10	40			5 2	0.0				4.0	40	2.7
	25	34	42	49	57	64	73	80	72	64	56	48	43	37
	30	23	21	29	36	45	51	58	69	75	80	74	63	54
-	40	41	2.5	27	15	5.0	(1	(2	Ι	<u> </u>	<u> </u>	Γ	Γ	Γ
	48	41	35	37	45	56	61	63						

• 7-8 класс

Аня собрала электронное устройство по приведённой схеме. Она поочерёдно нажимала кнопки и смотрела какие лампочки светятся. Укажите, при каких конфигурациях положения ключей Лампа №4 (Л4) будет гореть. За неверно выбранные варианты будут вычтены баллы.

$N_{\underline{0}}$	Выключатель 1	Выключатель 2	Выключатель 3
конфигурац	(B1)	(B2)	(B3)
ИИ			
1	Выключен	Выключен	Выключен
2	Выключен	Выключен	Включен
3	Выключен	Включен	Выключен
4	Выключен	Включен	Включен
5	Включен	Выключен	Выключен
6	Включен	Выключен	Включен
7	Включен	Включен	Выключен
8	Включен	Включен	Включен

• 9-11 класс

На координатной плоскости расположены три Базовых Станции, с известными координатами (хб; уб). Необходимо найти местонахождение дрона (хд;уд), если известно время за которое радиосигнал достиг беспилотника от каждой станции. Радиус покрытия соты от Базовой Станции 5 км. Скорость распространения радиосигнала считать за 300000 км/с. Известно, что:

Координаты базовых станций в километрах 1) (2;1), 2) (7;2), 3) (4;0);

Время в мкс, за которое сигнал достиг дрона 1) 4,7; 2) 13,3; 3) 7,5;

Определите координаты квадрокоптера в километрах с точностью до целых. При расчётах координат учитывайте возможную погрешность оборудования при измерении времени приёма сигнала до 10%. Ответ запишите в формате координаты, например (0;0).

9-11 класс

С помощью четырёх шкивов и двух ремней собрали двухступенчатую ремённую передачу. Ведущий вал делает 10 оборотов за секунду. Ведомый вал делает делает 30 оборотов за секунду. R2=40 мм, R3=120 мм, R4=60 мм. Определите длину R1 в миллиметрах.

• 9-11 класс

Разрядность аналого-цифрового преобразователя (далее АЦП) равна 1 байт, опорное напряжение равно 12 В. АЦП выдало число 106. Определите, какое напряжение в вольтах поступило на вход АЦП. Ответ округлите до целых.

• Справка

Аналого-цифровой преобразователь (АЦП) – устройство, преобразующее входной аналоговый сигнал в дискретный код.

Опорное напряжение АЦП U_0 задаёт диапазон входного напряжения, в котором производится преобразование. Опорное напряжение — это максимальное напряжение, которое можно измерить с помощью данного АЦП.

Разрядность АЦП N_0 характеризует количество дискретных значений, которые преобразователь может выдать на выходе. В двоичных АЦП разрядность измеряется в битах.

Число, которое выдаст АЦП при подаче на него напряжения U можно рассчитать по формуле:

$$N = (2^{N_0} - 1) * \frac{U}{U_0}$$

АЦП может выдать только целое число. Если в результате получается не целое число, то происходит округление по математическим правилам.

• 9-11 класс

- Робот оснащён двумя отдельно управляемыми колёсами. На робота поставили в ряд четыре датчика освещённости. Они расположены перпендикулярно направлению движения «вперёд» и находятся на одинаковом расстоянии друг от друга. Над белым полем все датчики возвращают 50% яркости, над чёрным полем 10%.
- Робот движется по чёрной линии. Для этого используется регулятор в виде суммы попарных разностей показаний противоположных датчиков с коэффициентами k1 и k2:
- u = k1 * (sensor1 sensor4) + k2 * (sensor2 sensor3)
- В центральном положении робота крайние датчики находятся строго над белым полем по бокам линии, центральные датчики строго над чёрной линией.
- Подберите коэффициенты регулятора так, чтобы при попадании одного из центральных датчиков полностью на чёрное поле, а остальных датчиках на белом управляющее воздействие по модулю было равно 60, а при одном крайнем датчике на чёрном и остальных на белом управляющее воздействие по модулю было равно 100.

https://mosrobotics.ru/vsosh/ https://robot.mipt.ru/ https://t.me/vseros_robotics/

