Classificação Multirrótulo

1001513 – Aprendizado de Máquina 2 Turma A – 2023/2 Prof. Murilo Naldi

Agradecimentos

- Pessoas que colaboraram com a produção deste material: Diego Silva e Ricardo Cerri
- Intel IA Academy

Um problema de classificação binária possui um atributo alvo

- Ele só pode conter dois valores (geralmente, verdadeiro ou falso)

Um problema de classificação multiclasse possui um atributo alvo

- Podemos atribuir n_c valores a esse atributo ($n_c > 2$)

atr ₁	 atr _m	classe
		0
		1
		1
		0

atr ₁	 atr _m	classe
		0
		3
		0
		5

atr ₁	 atr _m	classe
		gato
		rato
		rato
		gato

atr ₁		atr _m	classe
	•••		rato
	•••		gato
			cachorro
			cachorro

Nem todo algoritmo lida com classificação multiclasse

- SVM é um exemplo

E agora, José?

- One-vs-all
- One-vs-One (All-vs-all)
- Codificadores (ex. ECOC)

Visualizing One-vs-all

Photo via SlidePlayer.com

Photo via ScienceDirect.com

Error Correcting Output Codes (ECOC)

- A base do ECOC é decompor um problema multiclasse em um número maior de problemas binários.
- Cada classificador é treinado em um problema de duas metaclasses
 - onde cada meta-classe consiste em algumas combinações das classes originais
- Duas fases:
 - Enconding e deconding

Error Correcting Output Codes (ECOC)

- Encoding gera uma matriz de decomposição
 - sequência de bits representando cada classe, onde cada bit identifica a associação da classe a um classificador
- Decoding faz cada classificador binário lançar um voto para uma das duas metaclasses usadas no treinamento
 - Resultado é colocado em um vetor e comparado com as classes na matriz de decomposição

Outros tipos de problemas

Classificação multirrótulo

 Quando um mesmo exemplo pode ter mais de um rótulo associado a ele ao mesmo tempo

Regressão multiobjetivo

- Similar à classificação multirrótulo, mas para regressão

Outros tipos de problemas

Classificação hierárquica

- A saída está relacionada a uma posição em uma taxonomia

Classificação multi-saída

- Vários problemas multi-classe

Classificação multirrótulo

Exemplos práticos

- Uma música (ou um filme) pode ter mais de um gênero
 - Além de outras tags

- Uma foto pode conter vários objetos
- Uma proteína pode ter mais de uma função
- Um artigo científico pode ser multidisciplinar

Classificação multirrótulo

Transformação do **problema**

- Mudamos a "cara" do problema
 - Mudando os rótulos para **monorrótulo**/simples-rótulo
 - Transformando os rótulos (ex: criar novas classes)
 - Removendo exemplos
 - Removendo rótulos
 - Decomposição (aditiva e multiplicativa)
 - ...
- "Abordagem independente de algoritmo"

Relevância binária (BR)

- Se temos k possíveis rótulos para cada exemplo, criamos k classificadores binários
- Cada um desses classificadores é treinado para predizer se cada exemplo possui ou não um rótulo específico associado a ele

Atributos	Rótulo 1	Rótulo 2	Rótulo 3	Rótulo 4	Rótulo 5
ex1	0	0	1	0	1
ex2	1	0	1	1	0

Atributos	Rótulo 1	Rótulo 2	Rótulo 3	Rótulo 4	Rótulo 5
ex1	0	0	1	0	1
ex2	1	0	1	1	0

Atributos	Rótulo 1
ex1	0
ex2	1

Atributos	Rótulo 2
ex1	0
ex2	0

Atributos	Rótulo 5
ex1	1
ex2	0

Relevância binária (BR)

- Costuma causar desbalanceamento
- Considera independência entre os rótulos
 - Rótulos podem ser dependentes
 - Como considerar isso?

Encadeamento de Classificadores (CC)

- Tenta resolver o problema da (possível) dependência entre as

classes, mas...

Atributos	Rótulo 1	Rótulo 2	Rótulo 3	Rótulo 4	Rótulo 5
ex1	0	0	1	0	1
ex2	1	0	1	1	0

Atributos	Rótulo 1	Rótulo 2	Rótulo 3	Rótulo 4	Rótulo 5
ex1	0	0	1	0	1
ex2	1	0	1	1	0

Atributos	Rótulo 1
ex1	0
ex2	1

Atributos	Rótulo 1	Rótulo 2	Rótulo 3	Rótulo 4	Rótulo 5
ex1	0	0	1	0	1
ex2	1	0	1	1	0

E qual é a relação de dependência entre os rótulos??

Label Powerset (LP)

- Pode ser uma boa opção quando temos poucos rótulos
 - e/ou poucas combinações entre eles
- Número alto de rótulos aumenta muito o número de classes possíveis, tornando o problema difícil

Atributos	Rótulo 1	Rótulo 2	Rótulo 3	Rótulo 4	Rótulo 5
ex1	0	0	1	0	1
ex2	1	0	1	1	0
ex3	1	0	0	1	0
ex4	0	0	0	1	1

Atributos	Rótulo 1	Rótulo 2	Rótulo 3	Rótulo 4	Rótulo 5	Classe
ex1	0	0	1	0	1	5
ex2	1	0	1	1	0	22
ex3	1	0	0	1	0	18
ex4	0	0	0	1	1	3

Dica

Esses (e os próximos) algoritmos estão implementados no scikit-multilearn

http://scikit.ml/api/skmultilearn.html

Classificação multirrótulo - adaptação de algoritmos

Algoritmos adaptados

- A ideia não é mais transformar os rótulos, mas sim usar um classificador específico para o cenário multirrótulo
- Usualmente, adaptações simples de algoritmos "clássicos"

- DT, SVM, kNN...

Classificação multirrótulo - adaptação de algoritmos

ML kNN

- Calcula as probabilidades *a priori* dos rótulos
- Encontra os *k* vizinhos mais próximos
- Usando os rótulos desses vizinhos e as a priori
 - Aplica regra de Bayes
 - Maximum a Posteriori (MAP)

Classificação multirrótulo - adaptação de algoritmos

RNAs

Mais fácil desenhando :)

Classificação multirrótulo - baseados em ensemble

RAKEL (RAndom k-LabELsets)

- "Meio-termo" entre BR e LP
- Escolhe *k-labelsets* (subconjunto de *k* rótulos) aleatórios
- Para cada labelset, executa um LP
- Com a regra da média, determina um score para cada rótulo
 - Que é positivo ou negativo depende de um threshold definido pelo usuário

Classificação multirrótulo - avaliação

Não podemos utilizar as medidas de avaliação estudadas até agora

- Mas podemos usar algumas parecidas ou adaptadas

Classificação multirrótulo - avaliação

Hamming loss

$$HammingLoss(\hat{f}, \mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \frac{a(\mathbf{y}_i, \mathbf{z}_i)}{k}$$

- Sendo $a(y_i, z_i)$ a distância de Hamming entre os vetores verdadeiro e predito (soma do XOR).
- Quanto menor, melhor
 - Zero ocorre quando a classificação é perfeita.

Classificação multirrótulo - avaliação

$$\operatorname{acur\'acia}(\hat{f}, \mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{y}_{i} AND\mathbf{z}_{i}}{\mathbf{y}_{i} OR\mathbf{z}_{i}}$$

$$\operatorname{precisão}(\hat{f}, \mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{y}_{i} A N D \mathbf{z}_{i}}{sum(\mathbf{z}_{i})}$$

revocação
$$(\hat{f}, \mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{y}_{i} AND\mathbf{z}_{i}}{sum(\mathbf{y}_{i})}$$

Por hoje é só

Conjunto de rótulos da imagem:

- praia
- mar
- sol
- cadeira
- montanha
- queria
- muito