Projection and the Gram-Schmidt Process

The goal this class is to find orthonormal basis for a subspace.

Example:

- What is an orthonormal basis for the span of $\{(2,0),(1,1)\}$?
- How would we do it with 3 vectors?

Definition: Let $u, v \in \mathbb{R}^n$ with v nonzero. Then the projection of u onto v is given by $\operatorname{proj}_v u = \frac{u \cdot v}{\|v\|^2} v$.

Theorem: Let $u, v \in \mathbb{R}^n$ and c be a nonzero scalar. Then

- $\operatorname{proj}_{v}u$ is in $\operatorname{span}v$.
- $u \text{proj}_v u$ is orthogonal to v
- if u is in spanv, then $u = \text{proj}_{u}u$.
- $\operatorname{proj}_{v}u = \operatorname{proj}_{v}vu$.

Let S be a nontrivial subspace with orthogonal basis $\{v_1, \ldots, v_k\}$. Then the projection of u onto S is given by $\operatorname{proj}_S u = \sum_{i=1}^k \operatorname{proj}_{v_i} u$.

Theorem: Let S be a nonzero subspace of \mathbb{R}^n with orthogonal basis $\{v_1, \ldots, v_k\}$, and let u be a vector in \mathbb{R}^n . Then

- $\operatorname{proj}_{S}u$ is in S.
- $u \text{proj}_S u$ is orthogonal to S.
- if u is in S, then $u = \text{proj}_S u$.
- $\operatorname{proj}_{S}u$ is independent of the choice of orthogonal basis for S.

Theorem: (The Gram-Schmidt Process) Let S be a subspace with basis $\{s_1, \ldots, s_n\}$. Define v_1, \ldots, v_k by

- $v_1 = s_1$,
- $v_2 = s_2 \text{proj}_{v_1} s_2$,
- $v_3 = s_3 \text{proj}_{v_1} s_3 \text{proj}_{v_2} s_3$,
- ...
- $v_k = s_k \operatorname{proj}_{v_1} s_k \ldots \operatorname{proj}_{v_{k-1}} s_k$

Then $\{v_1, \ldots, v_k\}$ is an orthogonal basis. To make it orthonormal, just normalize each element.

Example: Find an orthonormal basis for the subspace (1,0,1,1), (0,2,0,3), (-3,-1,1,5).