Supplementary Materials for "A Communication-Efficient Parallel Algorithm for Decision Tree"

Qi Meng 1* , Guolin Ke 2* , Taifeng Wang 2 , Wei Chen 2 , Qiwei Ye 2 , Zhi-Ming Ma 3 , Tie-Yan Liu 2

¹Peking University ²Microsoft Research ³Chinese Academy of Mathematics and Systems Science

¹qimeng13@pku.edu.cn; ²{Guolin.Ke, taifengw, wche, qiwye, tie-yan.liu}@microsoft.com; ³mazm@amt.ac.cn

This supplementary document is composed of the proofs for Theorem 4.1 (for both regression and classification) and Theorem 4.2 in the paper "A Communication-Efficient Parallel Algorithm for Decision Tree".

First of all, we review the definitions of information gain in classification and variance gain in regression.

Definition 0.1 [1][2] In classification, the information gain (IG) for attribute $X_j \in [w_1, w_2]$ at node O, is defined as the entropy reduction of the output Y after splitting node O by attribute X_j at w, i.e.,

$$IG_{j}(w; O) = \mathcal{H}_{j} - (\mathcal{H}_{j}^{l}(w) + \mathcal{H}_{j}^{r}(w))$$

$$= P(w_{1} \leq X_{j} \leq w_{2})H(Y|w_{1} \leq X_{j} \leq w_{2}) - P(w_{1} \leq X_{j} < w)H(Y|w_{1} \leq X_{j} < w)$$

$$- P(w \leq X_{j} \leq w_{2})H(Y|w \leq X_{j} \leq w_{2}),$$

where $H(\cdot|\cdot)$ denotes the conditional entropy.

In regression, the variance gain (VG) for attribute $X_j \in [w_1, w_2]$ at node O, is defined as variance reduction of the output Y after splitting node O by attribute X_j at w, i.e.,

$$VG_{j}(w; O) = \sigma_{j} - (\sigma_{j}^{l}(w) + \sigma_{j}^{r}(w))$$

$$= P(w_{1} \leq X_{j} \leq w_{2})Var[Y|w_{1} \leq X_{j} \leq w_{2}] - P(w_{1} \leq X_{j} < w)Var[Y|w_{1} \leq X_{j} < w]$$

$$- P(w_{2} \geq X_{j} \geq w)Var[Y|w_{2} \geq X_{j} \geq w],$$

where $Var[\cdot|\cdot]$ denotes the conditional variance.

The conditional entropy $H(\cdot|\cdot)$ and the conditional variance $Var(\cdot|\cdot)$ are calculated according to the conditional distribution $P(\cdot|\cdot)$. For K class classification, we assume Y is a discrete random variable which takes value from the set $\{1,\cdots,K\}$ and we have

$$H(Y|w_1 \le X_j \le w_2) = -\mathbb{E}_{(Y|w_1 \le X_j \le w_2)} \log p(Y|w_1 \le X_j \le w_2)$$
 (1)

$$= -\sum_{k=1}^{K} p(Y = k | w_1 \le X_j \le w_2) \log p(Y = k | w_1 \le X_j \le w_2).$$
 (2)

For regression, we assume that Y is a continuous random variable and

$$Var(Y|w_1 \le X_j \le w_2) = \mathbb{E}\left[(Y - \mathbb{E}[Y|w_1 \le X_j \le w_2)]^2 \middle| w_1 \le X_j \le w_2 \right]$$
 (3)

$$= \int p(y|w_1 \le X_j \le w_2)y^2 dy - \left(\int p(y|w_1 \le X_j \le w_2)y dy\right)^2.$$
 (4)

^{*}Denotes equal contribution. This work was done when the first author was visiting Microsoft Research Asia.

1 Theorem 4.1 and its Proof for classification and regression

Theorem 4.1: In classification, suppose we have M local machines, and each one has n training data. PV-Tree at an arbitrary tree node with local voting size k and global majority voting size 2k will select the most informative attribute with a probability at least

$$\sum_{m=[M/2+1]}^{M} C_{M}^{m} \left(1 - \left(\sum_{j=k+1}^{d} \delta_{(j)}(n,k) \right) \right)^{m} \left(\sum_{j=k+1}^{d} \delta_{(j)}(n,k) \right)^{M-m},$$

where $\delta_{(j)}(n,k) = \alpha_{(j)}(n) + 4e^{-c_{(j)}n(l_{(j)}(k))^2}$ with $\lim_{n\to\infty} \alpha_{(j)}(n) = 0$ and $c_{(j)}$ is constant.

Proof for classification:

Firstly we introduce some notations. We use subscript n to denote the corresponding empirical statistics, which is calculated based on the empirical distribution \mathbb{P}_n . Let $w_j^* = argmax_w IG_j(w)$ and $w_{n,j}^* = argmax_w IG_{n,j}(w)$. We denote $IG_j(w_j^*)$ as IG_j , which is the largest information gain for attribute j. We denote $IG_{n,j}(w_{n,j}^*)$ as $IG_{n,j}$, which is the largest empirical information gain for attribute j. As we defined in the main paper, we denote the index of attribute with the j-th largest information gain as (j), and its corresponding information gain as $IG_{(j)}$, i.e.,

$$IG_{(1)} \ge \cdots \ge IG_{(j)} \ge \cdots \ge IG_{(d)}$$
.

The corresponding empirical information gain for attribute (j) denoted as

$$IG_{n,(1)},...,IG_{n,(j)},...,IG_{n,(d)}.$$

Note that $IG_{n,(1)},...,IG_{n,(j)},...,IG_{n,(d)}$ may not be in an increasing order. Similarly, we denote the index of attribute with the j-th largest empirical information gain as (j'), and its corresponding empirical information gain as $IG_{n,(j')}$, i.e.,

$$IG_{n,(1')} \ge \cdots \ge IG_{n,(j')} \ge \cdots \ge IG_{n,(d')}$$
.

Our proof idea is as follows:

Step 1: Because $IG_{n,j} \in d(IG_j, l_j(k))$ is a sufficient condition for $(1) \in \{(1^{'}), ..., (k^{'})\}$ to be satisfied², we use concentration inequalities to derive a lower bound of probability for $IG_{n,j} \in d(IG_j, l_j(k)), \forall j$, where $d(x, \epsilon)$ denotes the neighborhood of x with radius ϵ .

Step 2: By local top-k and global top-2k voting, the most informative attribute (1) will be contained in the global selected set, i.e., $(1) \in \{(1^{'}), ..., (k^{'})\}$, if only no less than [M/2 + 1] local workers select it. We calculate the probability for the case no less than [M/2 + 1] of all machines select attribute (1) using binomial distribution.

Firstly, we give the probability to ensure $(1) \in \{(1'), ..., (k')\}$. We bound the difference between the information gain and the empirical information gain for an arbitrary attribute. To be clear, we will prove, with probability at least $\delta_j(n,k)$, we have

$$|IG_{n,i} - IG_i| \leq l_i(k)$$
.

For simplify the notations, let $H_j^l(w)=H(Y|w_1\leq X_j\leq w), P_j^l(w)=P(w_1\leq X_j\leq w), H_j^r(w)=H(Y|w\leq X_j\leq w_2)$ and $P_j^r(w)=P(w\leq X_j\leq w_2)$. We decompose $\mathcal{H}_{n,j}^l(w_{n,j}^*)-\mathcal{H}_j^l(w_j^*)$ as

$$\mathcal{H}_{n,j}^l(w_{n,j}^*) - \mathcal{H}_j^l(w_j^*) \tag{5}$$

$$= P_{n,j}^l(w_{n,j}^*)H_{n,j}^l(w_{n,j}^*) - P_i^l(w_i^*)H_i^l(w_i^*)$$
(6)

$$= P_{n,j}^{l}(w_{n,j}^{*})H_{n,j}^{l}(w_{n,j}^{*}) - P_{n,j}^{l}(w_{j}^{*})H_{j}^{l}(w_{j}^{*}) + P_{n,j}^{l}(w_{j}^{*})H_{j}^{l}(w_{j}^{*}) - P_{j}^{l}(w_{j}^{*})H_{j}^{l}(w_{j}^{*}).$$
(7)

We decompose $\mathcal{H}_{n,j}^r(w_{n,j^*}) - \mathcal{H}_j^r(w_j^*)$ in a similar way, i.e.,

$$\mathcal{H}_{n,j}^r(w_{n,j}^*) - \mathcal{H}_i^r(w_i^*) \tag{8}$$

$$= P_{n,i}^{r}(w_{n,i}^{*})H_{n,i}^{r}(w_{n,i}^{*}) - P_{n,i}^{r}(w_{i}^{*})H_{i}^{l}(w_{i}^{*}) + P_{n,i}^{r}(w_{i}^{*})H_{i}^{r}(w_{i}^{*}) - P_{i}^{r}(w_{i}^{*})H_{i}^{r}(w_{i}^{*}).$$
(9)

²In order to $(1) \in \{(1^{'}),...,(k^{'})\}$, the number of $IG_{n,j}$ which is larger than $IG_{n,(1)}$ is at most k-1.

By adding Ineq.(7) and Ineq.(9), we have the following,

$$\begin{split} &P(|IG_{n,j}-IG_{j}|>l_{j}(k))\\ &=P\left(\left|\mathcal{H}_{n,j}^{l}(w_{n,j}^{*})+\mathcal{H}_{n,j}^{r}(w_{n,j}^{*})-(\mathcal{H}_{j}^{l}(w_{j}^{*})+\mathcal{H}_{j}^{r}(w_{j}^{*}))\right|>l_{j}(k)\right)\\ &\leq P\left(\left|P_{n,j}^{l}(w_{j}^{*})H_{j}^{l}(w_{j}^{*})-P_{j}^{l}(w_{j}^{*})H_{j}^{l}(w_{j}^{*})\right|>\frac{l_{j}(k)}{3}\right)+\\ &P\left(\left|P_{n,j}^{r}(w_{j}^{*})H_{j}^{r}(w_{j}^{*})-P_{j}^{r}(w_{j}^{*})H_{j}^{r}(w_{j}^{*})\right|>\frac{l_{j}(k)}{3}\right)+\\ &P\left(\left|P_{n,j}^{l}(w_{n,j}^{*})H_{n,j}^{l}(w_{n,j}^{*})-P_{n,j}^{l}(w_{j}^{*})H_{j}^{l}(w_{j}^{*})+P_{n,j}^{r}(w_{n,j}^{*})H_{n,j}^{r}(w_{n,j}^{*})-P_{n,j}^{r}(w_{j}^{*})H_{j}^{r}(w_{j}^{*})\right|>\frac{l_{j}(k)}{3}\right)\\ &\triangleq I_{1}+I_{2}+I_{3} \end{split}$$

For term I_1 , by using Hoeffding's inequality, we have

$$I_1 \le P\left(H_j^l(w_j^*) \times \left| P_j^l(w_j^*) - P_{n,j}^l(w_j^*) \right| > \frac{l_j(k)}{3}\right)$$
(10)

$$\leq P\left(\left|P_{j}^{l}(w_{j}^{*}) - P_{n,j}^{l}(w_{j}^{*})\right| > \frac{l_{j}(k)}{3H_{j}^{l}(w_{j}^{*})}\right) \tag{11}$$

$$\leq 2 \exp\left(-\frac{2nl_j(k)^2}{9(H_j^l(w_j^*))^2}\right)$$
(12)

Similarly, for term I_2 , we have

$$I_2 \le 2 \exp\left(-\frac{2nl_j(k)^2}{9(H_i^*(w_i^*))^2}\right)$$
 (13)

Let $c_j = \min\left\{\frac{2}{9(H_j^l(w_j^*))^2}, \frac{2}{9(H_j^l(w_j^*))^2}\right\}$, we have

$$I_1 + I_2 \le 4 \exp\left(-c_j n l_j(k)^2\right). \tag{14}$$

For the term I_3 , we have

$$J = P_{n,j}^{l}(w_{n,j}^{*})H_{n,j}^{l}(w_{n,j}^{*}) - P_{n,j}^{l}(w_{j}^{*})H_{j}^{l}(w_{j}^{*}) + P_{n,j}^{r}(w_{n,j}^{*})H_{n,j}^{r}(w_{n,j}^{*}) - P_{n,j}^{r}(w_{j}^{*})H_{j}^{r}(w_{j}^{*})$$

$$= \frac{1}{n}\sum_{i=1}^{n}I(w_{1} \leq x_{i,j} \leq w_{n,j}^{*})H_{n,j}^{l}(w_{n,j}^{*}) + \frac{1}{n}\sum_{i=1}^{n}I(w_{n,j}^{*} < x_{i,j} \leq w_{2})H_{n,j}^{r}(w_{n,j}^{*})$$

$$-\frac{1}{n}\sum_{i=1}^{n}I(w_{1} \leq x_{i,j} \leq w_{j}^{*})H_{j}^{l}(w_{j}^{*}) - \frac{1}{n}\sum_{i=1}^{n}I(w_{j}^{*} < x_{i,j} \leq w_{2})H_{j}^{r}(w_{j}^{*}),$$

where $x_{i,j}$ is the j-th attribute for the i-th instance in the training set.

Let Θ denote the set of all possible values of $(p_1^l, p_1^r, \cdots, p_{K-1}^l, p_{K-1}^r, w_j)$, where $p_k^l = P(Y = k | w_1 \leq X_j \leq w_j)$ and $p_k^r = P(Y = k | w_j < X_j \leq w_2)$. Define the criterion function $\mathbb{M}(\theta) = Pm_\theta$, where $m_\theta(x,y) = -\log p_k^l I(w_1 \leq x \leq w_j) - \log p_k^r I(w_2 \geq x > w_j)$ if y = k. The vector $\theta^* = (p_1^{l*}, p_1^{u*}, \cdots, p_{K-1}^{l*}, p_{K-1}^{u*}, w_j^*)$ maximizes $\mathbb{M}(\theta)$, while $\theta_n^* = (p_{n,1}^{l*}, p_{n,1}^{r*}, \cdots, p_{n,K-1}^{l*}, p_{n,K-1}^{r*}, w_{n,j}^*)$ minimizes $\mathbb{M}_n(\theta)$. Straightforward algebra shows that

$$(m_{\theta} - m_{\theta^*})(X, Y) = I(Y = k)[(\log p_k^{l^*} - \log p_k^{r^*})(I(w_1 \le X \le w_{j,n}^*) - I(w_1 \le X < d_j^*))(15)$$

$$+ (\log p_{n,k}^{l^*} - \log p_k^{l^*})I(w_1 \le X \le w_{n,j}^*)$$

$$+ (\log p_{n,k}^{u^*} - \log p_k^{r^*})I(w_{n,j}^{u^*} \le X \le w_2)]$$

$$(17)$$

By following the proof of Theorem 1 in [3], we can get that $n^{2/3}I_3$ converges to $c_2 \max_t Q(t)$, where c_2 is a constant and Q(t) is composed by the standard two-sided Brownian Motion [3]. Therefore, we have

$$P\left(|J| > c_2 n^{-\frac{2}{3}} q_\alpha\right) < \alpha. \tag{18}$$

where q_{α} is the upper α -quantile of $\max_t Q(t)$. Let $c_2 n^{-\frac{2}{3}} q_{\alpha_j(n)} = \frac{l_j(k)}{3}$. With probability at most $\alpha_j(n)$, we have $IG_{n,j}(w_j^*) - IG_{n,j} > \frac{l_j(k)}{2}$, i.e.,

$$I_2 = P\left(|J| > \frac{l_j(k)}{3}\right) < \alpha_j(n) \tag{19}$$

By combining Inequalities (14) and (19), we have, with probability at most $\delta_j(n,k) = \alpha_j(n) + 4 \exp(-c_j n l_j(k)^2)$,

$$|IG_{n,j} - IG_j| > l_j(k). \tag{20}$$

Thus we can get

$$P(|IG_{n,(j)} - IG_{(j)}| \le l_j(k), \forall j \ge k+1) \ge 1 - \sum_{j=k+1}^d \delta_{(j)}(n,k).$$
(21)

By binomial distribution, we can derive the results in the theorem. \Box

Proof for regression:

The proof is similar to classification. We continue to use notations in the previous section and just substitute IG to VG.

Similarly, we will prove, with probability at least $\delta_i(n, k)$, we have

$$|VG_{n,j} - VG_j| \le l_j(k).$$

By the definition of variance gain, we have the following,

$$\begin{split} &P\left(|VG_{n,j}-VG_{j}|>l_{j}(k)\right)\\ &\leq P(|\sigma_{n,j}^{l}(w_{n,j}^{*})+\sigma_{n,j}^{r}(w_{n,j}^{*})-\sigma_{j}^{l}(w_{j}^{*})-\sigma_{j}^{r}(w_{j}^{*})|>l_{j}(k))\\ &\leq P\left(\left|P_{n,j}^{l}(w_{j}^{*})\sigma_{j}^{l}(w_{j}^{*})-P_{j}^{l}(w_{j}^{*})\sigma_{j}^{l}(w_{j}^{*})\right|>\frac{l_{j}(k)}{3}\right)+\\ &P\left(\left|P_{n,j}^{r}(w_{j}^{*})\sigma_{j}^{r}(w_{j}^{*})-P_{j}^{r}(w_{j}^{*})\sigma_{j}^{r}(w_{j}^{*})\right|>\frac{l_{j}(k)}{3}\right)+\\ &P\left(\left|P_{n,j}^{l}(w_{n,j}^{*})\sigma_{j}^{l}(w_{j}^{*})-P_{j}^{r}(w_{j}^{*})\sigma_{j}^{r}(w_{j}^{*})\right|>\frac{l_{j}(k)}{3}\right)+\\ &P\left(\left|P_{n,j}^{l}(w_{n,j}^{*})\sigma_{n,j}^{l}(w_{n,j}^{*})-P_{n,j}^{l}(w_{j}^{*})\sigma_{j}^{l}(w_{j}^{*})+P_{n,j}^{r}(w_{n,j}^{*})\sigma_{n,j}^{r}(w_{n,j}^{*})-P_{n,j}^{r}(w_{j}^{*})\sigma_{j}^{r}(w_{j}^{*})\right|>\frac{l_{j}(k)}{3}\right)\\ &\triangleq I_{1}+I_{2}+I_{3} \end{split}$$

For term I_1 , by using Hoeffding's inequality, we have

$$I_{1} \leq P\left(\sigma_{j}^{l}(w_{j}^{*}) \times \left| P_{j}^{l}(w_{j}^{*}) - P_{n,j}^{l}(w_{j}^{*}) \right| > \frac{l_{j}(k)}{3}\right)$$

$$\leq P\left(\left| P_{j}^{l}(w_{j}^{*}) - P_{n,j}^{l}(w_{j}^{*}) \right| > \frac{l_{j}(k)}{3\sigma_{j}^{l}(w_{j}^{*})}\right)$$
(22)

$$\leq 2\exp\left(-\frac{2nl_j(k)^2}{9(\sigma_j^l(w_j^*))^2}\right) \tag{23}$$

Similarly, for term I_2 , we have

$$I_2 \le 2 \exp\left(-\frac{2nl_j(k)^2}{9(\sigma_j^r(w_j^*))^2}\right)$$
 (24)

Let $c_j = \min\left\{\frac{2}{9(\sigma_j^l(w_j^*))^2}, \frac{2}{9(\sigma_j^l(w_j^*))^2}\right\}$, we have

$$I_1 + I_2 \le 4 \exp(-c_i n l_i(k)^2).$$
 (25)

For the term I_3 , let $J = P_{n,j}^l(w_{n,j}^*)\sigma_{n,j}^l(w_{n,j}^*) - P_{n,j}^l(w_j^*)\sigma_j^l(w_j^*) + P_{n,j}^r(w_{n,j}^*)\sigma_{n,j}^r(w_{n,j}^*) - P_{n,j}^r(w_j^*)\sigma_j^r(w_j^*)$. According to Theorem 2.2 established by [3], the following holds,

$$P\left(|J| > c_2 n^{-\frac{2}{3}} q_\alpha\right) < \alpha. \tag{26}$$

where c_2 is a constant for fixed distribution P and q_{α} is the upper α -quantile of the standard two-sided Brownian Motion [3]. With probability at most $\alpha_j(n)$, we have $|J| > \frac{l_j(k)}{3}$, i.e.,

$$I_3 = P\left(|J| > \frac{l_j(k)}{3}\right) < \alpha_j(n) \tag{27}$$

By combining Ineq.(25) and (27), we have, with probability at most $\delta_j(n,k) = \alpha_j(n) + 4 \exp(-c_j n l_j(k)^2)$,

$$|VG_{n,j} - VG_j| > l_j(k). \tag{28}$$

Thus we can get

$$P(|VG_{n,(j)} - VG_{(j)}| \le h, \forall j \ge k+1) \ge 1 - \sum_{j=k+1}^{d} \delta_{(j)}(n,k).$$
 (29)

By binomial distribution, we can derive the results in the theorem. \Box

2 Theorem 4.2 and its proof

Theorem 4.2: We denote quantized histogram with b bins of the underlying distribution P as P^b , that of the empirical distribution P_n as P^b_n , the information gain of X_j calculated under the distribution P^b and P^b_n as IG^b_j and $IG^b_{n,j}$ respectively, and $f_j(b) \triangleq |IG_j - IG^b_j|$. Then, for $\epsilon \leq \min_{j=1,\dots,d} f_j(b)$, with probability at least $\delta_j(n, f_j(b) - \epsilon)$, we have $|IG^b_{n,j} - IG_j| > \epsilon$.

Proof:

First, $|IG_{n,j}^b - IG_j| = |IG_{n,j}^b - IG_j^b + IG_j^b - IG_j| \ge ||IG_{n,j}^b - IG_j^b| - |f(b)||$. Second, when n is large enough, we have $|f(b)| - |IG_{n,j}^b - IG_j^b| > \epsilon$ with probability $\delta_j(n, f_j(b) - \epsilon)$ for $\epsilon \le \min_{j=1, \cdots, d} f_j(b)$. Thus, the proposition is proven. \square

References

- [1] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. *The elements of statistical learning*, volume 1. Springer series in statistics Springer, Berlin, 2001.
- [2] J. Ross Quinlan. Induction of decision trees. In Machine learning, volume 1, pages 81-106. Springer, 1986.
- [3] Moulinath Banerjee, Ian W McKeague, et al. Confidence sets for split points in decision trees. *The Annals of Statistics*, 35(2):543–574, 2007.