课程作业3

王昆 wangk@smail.nju.edu.cn

2023年5月1日

题目1. 使用组合逻辑电路实现以下函数

$$Y = (A \cdot B) + \overline{(A \cdot C)} \cdot \bar{B}$$

解答.

题目2. 使用卡诺图化简以下函数,并通过只含有NAND门的逻辑电路实现这个函数。

$$F = ABC + B\overline{C}D + \overline{A}BC$$

解答. 化简后为

$$F = BC + BD$$

题目3. 使用卡诺图化简以下函数,并只用NOR门画出简化函数的逻辑电 路。

$$F(A, B, C, D) = \Pi M(1, 2, 3, 8, 9, 10, 11, 14) \cdot d(7, 15)$$

解答.

 $F = \prod M(1,2,3,8,9,10,11,14).d(7, 15)$

F'=B'D+B'C+AC+AB'

By Complementing F F=(B'D+B'C+AC+AB')' = [(B'D)'(B'C)'(AC)'(AB')']'

= (B+D')(B+C')(A'+C')(A'+B)

Taking complement twice and without opening the bracket
F=[(B+D')+(B+C')'('A'+C')+(A'+B)]'
The logic circuit for the simplified function using NOR gates

题目4. 设计一个组合逻辑电路,其功能为统计三个输入A,B,C中'1'出现的次数,写出输出值对应的表达式,画出该电路对应的真值表以及电路图。

解答. 输出两位X和Y,其中X = A'BC + AB'C + ABC' + ABC, Y = A'B'C + A'BC' + ABC' + ABC', 根据表达式写出真值表和电路图即可

题目5. 用多级与非门电路画出下列各式的与非逻辑图:

a)
$$(A\overline{B} + C\overline{D})E + BC(A + B)$$

b)
$$w(x+y+z)+xyz$$

a)
$$(A\overline{B} + C\overline{D})E + BC(A + B)$$

$$= (A\overline{B} + C\overline{D})E + BC(\overline{AB})$$
(1)

图 1: 题5-a

b)
$$w(x+y+z) + xyz = w(\overline{xyz}) + xyz$$
 (2)

图 2: 题5-b

题目6. 考虑一个如图所示的数字显示器,根据左边10个不同的信号输入,能够输出显示0到9的数字。请写出该电路所对应的真值表。

0	1	2	3	4	5	6	7	8	9	L1	L2	L3	L4	L5	L6	L7
1	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	1	0	0	0	0	0	0	0	1	1	1	0	1	1	0
0	0	0	1	0	0	0	0	0	0	1	1	1	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	1	1
0	0	0	0	0	1	0	0	0	0	1	1	1	1	0	0	1
0	0	0	0	0	0	1	0	0	0	1	1	1	1	1	0	1
0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	1

题目7. 设计一个3位输入的逻辑电路,显示输入中有偶数个还是奇数个'1'出现。写出输出值对应的表达式,画出该电路对应的真值表以及电路图。

解答. 设Y代表有偶数个1,则 Y = A'BC + AB'C + ABC' + A'B'C',根据表达式写出真值表和电路图即可。

题目8. 给出两个2比特的自然数 $A(a2\ a1)$ 和 $B(b2\ b1)$,请设计一个电路计算它们差的绝对值|A-B|。

解答.

电路需要共四位输入(a2, a1, b2, b1), 两位输出(c2, c1), 根据题意列出真值表: ↩

A2₽	A1₽	B2₽	B1₽	C2₽	C1₽	ø
0₽	0₽	0₽	0₽	0₽	0₽	ø
0₽	1₽	0₽	0₽	0₽	1₽	۰
1₽	0₽	0₽	0₽	1₽	0₽	۰
1₽	1₽	0₽	0₽	1₽	1₽	47
0₽	0₽	0₽	1₽	0₽	1₽	٠
0₽	1₽	0₽	1₽	0₽	0₽	٠
1₽	0₽	0₽	1₽	0₽	1₽	٠
1₽	1₽	0₽	1₽	1₽	0↔	4
0₽	0₽	1₽	0₽	1₽	0₽	۰
0₽	1₽	1₽	0₽	0₽	1₽	47
1₽	0₽	1₽	0₽	0₽	0₽	47
1₽	1₽	1₽	0₽	0₽	1₽	٦
0₽	0₽	1₽	1₽	1₽	1₽	ø
0₽	1₽	1₽	1₽	1₽	0₽	ø
1₽	0₽	1₽	1₽	0₽	1₽	ته
1₽	1₽	1₽	1₽	0₽	0₽	٠

根据真值表可得到 C1 和 C2 表达式(可以借助卡诺图化简): ₽

$$C2 = A2 \overline{B2} \overline{B1} + A2 A1 \overline{B2} + B2 \overline{A2} \overline{A1} + B2 B1 \overline{A2}$$

$$C1 = \overline{A1} B1 + \overline{B1} A1$$

题目9. 请证明n输入的或门可以用n-1个2输入的或门实现,并说明这句话对于或非门是否仍然适用。

解答. 对于或门成立, 因为

$$(x1 + x2 + x3 + x4 + x5) + \dots = ((((x1 + x2) + x3) + x4) + x5) + \dots)$$

对于或非门不适用,因为

$$((x1+x2')+x3)' = (x1' \cdot x2' + x3') \neq (x1+x2+x3)'$$

题目10. 一个编码器根据图中的方程式将其输入(c,b,a)编码为输出(z,y,x)。请设计一个解码器,从编码器的输出(z,y,x)中解码得到初始输入(c,b,a)。

解答. 列出真值表可得, c=z, $b=y\oplus z$, $a=x\oplus y\oplus z$

题目11. 基于4-路选择器实现下面的三变量函数, 画出电路图。

$$F(A, B, C) = \sum m(1, 3, 5, 6)$$

Minterm	A	В	C	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Table 7.1 Truth Table

Fig.7(a) Implementation Table

Fig.7(b) Logic Diagram of 4X1 Multiplexer

题目12. 用两个16-路选择器和一个2-路的选择器设计一个32-路选择器, 画出示意图。

解答.

To design a 32 X 1 MUX using

Two 16 X 1 MUX & one 2 X 1

There are total 32 input lines and one O/P line. The 2 X 1 MUX will transmit one of the two I/P to output depending upon its select line M. For M=0 upper MUX (I_{0-} I_{15}) will be selected and M=1 lower MUX (I_{16-} I_{31}) will be selected.

题目13. 基于8-路选择器实现下面的四变量函数,画出电路图。

$$Y(A, B, C, D) = \sum m(0, 1, 2, 5, 9, 11, 13, 15)$$

	I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7
A'	0	1	2	3	4	5	6	7
A	8	9	10	11	12	13	14	15
	A'	1	A'	Α	0	1	0	Α

题目14. 对下列逻辑表达式,找出对应2级AND-OR或OR-AND的所有静态冒险,设计能实现同样逻辑的无冒险的电路。

- (1) $F = W \cdot X + W' \cdot Y'$
- (2) $F = W \cdot Y + W' \cdot Z' + X \cdot Y' \cdot Z$
- (3) $F = (W' + X + Y') \cdot (X' + Z')$
- (4) F = (W + Y + Z')(W + X' + Y + Z)(X' + Y')(X + Z)

解答. 画出卡诺图寻找静态冒险。

- (1) $F = W \cdot X + W' \cdot Y' + X \cdot Y'$
- (2) $F = W \cdot Y + W' \cdot Z' + X \cdot Y' \cdot Z + W' \cdot X \cdot Y' + W \cdot X \cdot Z + Y' \cdot Z'$
- (3) $F = (W' + X + Y') \cdot (X' + Z') \cdot (W' + Y' + Z')$
- (4) $F = (W + Y) \cdot (W + X') \cdot (Y' + Z) \cdot (X' + Y') \cdot (X + Z)$

题目15. 借助一个3-8译码器实现以下逻辑函数,并说明这个电路的作用。

(1)
$$S(A, B, C) = \sum m(1, 2, 4, 7)$$
 (2) $C(A, B, C) = \sum m(3, 5, 6, 7)$

解答. 本质上是一个全加器。

题目16. 一个半减法器的输入是两位,输出是差位和借位。试用与门、或门和反相器构造一个半减法器电路。

解答. 设x和y为输入位,我们要在其中计算x-y。有两个输出:差位z和借位b。

如果需要借位,则借位将为1,这仅在 x=0 且 y=1 时发生。因此 $b=\overline{x}y$ 。当 x=1 且 y=0 时,差异位将为 1,当 x=0 且 y=1 时,差异位将为1;在x=y的情况下,差异位将为0。因此我们有 $z=\overline{x}y+x\overline{y}$,这与 $b+x\overline{y}$ 相同。因此我们可以画出半减法器,如下所示。

题目17. 设计一个具有三个输入 x, y 和 z 以及三个输出 A, B 和 C 的组合电路。

当二进制输入为 0、1、2 或 3 时,二进制输出比输入大1。

当二进制输入为 4、5、6 或 7 时,二进制输出比输入小1。

(提示:全加器可以使用方框图表示)

解答. 根据题意可得真值表:

显然 $C = \overline{z}$ 。用卡诺图分析A、B,如下图所示。 最终可以画出电路图:

X	у	Z	A	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

$$x \downarrow y$$

$$x \downarrow y \downarrow 00 \quad 01 \quad 11 \quad 10$$

$$0 \quad 1 \quad 1$$

$$1 \quad 1 \quad 1$$

$$B = x \oplus y \oplus z \quad C = z'$$

题目18. 逻辑函数F(A, B, C, D)的定义是: 只要输入为1的个数大于1,那么输出就为1。

- a) 求出F(A, B, C, D)的最大项表达式。
- b) 使用三级门电路实现。第一级使用AND门,第二级使用OR门,第三级使用AND门。要求门电路个数最少。

解答.

a)

 $F(a,b,c,d) = \prod (0, 1, 2, 4, 8)$

b)

题目19. 构造一个5-32译码器,使用4个带使能端的3-8译码器和一个2-4译码器。

