

Linkage and segregation analysis in medical genetics

Statistical methods in genetic relatedness and pedigree analysis

NORBIS course, 13th – 17th of June 2022, Oslo Magnus Dehli Vigeland

Outline

Monogenic diseases: Inheritance patterns

Traditional linkage analysis

Segregation analysis in modern genetic diagnostics

Finding the cause of genetic diseases: Two main approaches

Multifactorial disease

- Association analysis
- Case/control design
- Population based

Monogenic diseases: Inheritance patterns

Autosomal dominant (AD) inheritance

Penetrance parameters

 $f_0 = P(\text{aff} \mid NN)$ $f_1 = P(\text{aff} \mid DN)$ $f_2 = P(\text{aff} \mid DD)$

Penetrance values:

$$f_0 = 0$$

$$f_1 = 1$$

$$f_2 = 1$$

- ~50% affected children of an affected mother or father
- Affected male:female ratio is ~1
- Can be inherited from mother or father to both sons and daughters

Autosomal recessive (AR) inheritance

Penetrance values:

$$f_0 = 0$$

$$f_1 = 0$$

$$f_2 = 1$$

- Usually healthy parents
- ~25% of the children are affected
- Affected male:female ratio is ~1

X-linked recessive inheritance

Penetrance values:

Females:

$$f_0 = 0$$

 $f_1 = 0$
 $f_2 = 1$

Males:

$$f_0 = 0$$
$$f_1 = 1$$

- Only males are affected
- Usually inherited through healthy females

Linkage analysis – the basic principle

Compare

- the inheritance pattern of the disease
- IBD pattern across the genome

Goal: Identify the region harbouring the disease-causing locus

Linkage analysis - traditional workflow

1. Starting point: Large affected family

2. SNP genotyping

3. Parametric linkage analysis

Chromosome 1

4. Sequence genes in linkage peak → identify causal mutation

LOD

Recombination rate

- The recombination rate between two loci
 - = average number of recombinant gametes

a b

A b

A B

A B

A B

A B

A B

non-recombinant

non-recombinant

recombinant

recombinant

non-recombinant (!)

recombinant

Loci on different chromosomes: $\theta = 0.5$ Loci far apart on the same chromosome: $\theta \approx 0.5$ Loci right next to each other: $\theta = 0$

Definition: Two loci are *linked* if $\theta < 0.5$

"On the same chromosome, not too far apart"

Crossover rate vs. recombination rate

Crossover rate (= genetic distance) d = E[#crossovers]

- Based on a fundamental property of the meiosis
- Statistically well-behaved
- But:

Hard to observe directly

Recombination rate

 θ = E[#recombinant gametes]

- Not as intuitive
- Relative to markers
- But:

Easy to estimate using genotyping

Haldane's map function:

$$\theta = \frac{1}{2}(1 - e^{-2d})$$

Hypothesis testing in linkage

Hypotheses:

```
H_0: \theta = 0.5 (no linkage)

H_{\Delta}: \theta < 0.5 (linkage)
```

θ = recombination rate between marker and disease

For historical reasons the test statistic is

LOD =
$$log_{10} \frac{P(data \mid \theta = \theta)}{P(data \mid \theta = 0.5)}$$

LOD = "logarithm of the odds"

Traditional significance thresholds:

```
• Autosomal loci: LOD = 3 (p \approx 0.0001)
```

• X-linked loci: LOD = 1.8

Why the LOD? Why not p<0.05?

- The common significance level $\alpha = 0.05$ is not used in linkage analysis
- Reason: Low *a priori* probability of H_A

$$H_0$$
: $\theta = 0.5$ (no linkage)

 H_{A} : $\theta < 0.5$ (linkage)

 $P(H_{\Delta}) = P(random marker near the disease)$ ≈ 1/50

© Clinical Tools, Inc.

Linkage analysis - traditional workflow

1. Starting point: Large affected family

2. SNP genotyping

3. Parametric linkage analysis

Chromosome 1

4. Sequence genes in linkage peak → identify causal mutation

LOD

Modern approach (last decade)

1. Patient genome

identify the causal variant

↑

High-throughput sequencing

2. List of variants

Interpretation

guidelines

Databases

- dbSNP / dbVAR
- 1000 Genomes / ExAC / gnomAD
- OMIM / ClinVar / HGMD
- + many others!

Segregation: Motivating example

- Autosomal dominant disease
- Suspected DNA variant identified:
 - Rare/novel
 - Predicted damaging
 - But...no previous connection with disease

Classification: VUS

(Variant of uncertain significance)

What to do?

- Replicate in unrelated patient
- Functional studies
- Segregation?

Segregation: Motivating example

- + Confirmed carrier
- Confirmed noncarrier
- Proband/index patient

- Autosomal dominant disease
- Suspected DNA variant identified:
 - Rare/novel
 - Predicted damaging
 - But...no previous connection with disease

Classification: VUS

(Variant of uncertain significance)

What to do?

- Replicate in unrelated patient
- Functional studies
- Segregation?

Segregation: Motivating example

- + Confirmed carrier
- Confirmed noncarrier
- Proband/index patient

- Autosomal dominant disease
- Suspected DNA variant identified:
 - Rare/novel
 - Predicted damaging
 - But...no previous connection with disease

Classification: VUS

(Variant of uncertain significance)

What to do?

- Replicate in unrelated patient
- Functional studies
- Segregation?

Co-segregation supports pathogenicity!

But how much?

The ACMG framework for variant interpretation

Published: 05 March 2015

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards PhD , Nazneen Aziz PhD, Sherri Bale PhD, David Bick MD, Soma Das PhD, Julie Gastier-Foster PhD, Wayne W. Grody MD, PhD, Madhuri Hegde PhD, Elaine Lyon PhD, Elaine Spector PhD, Karl Voelkerding MD & Heidi L. Rehm PhD on behalf of; on behalf of the ACMG Laboratory Quality Assurance Committee

```
Genetics in Medicine 17, 405–423 (2015) Cite this article

228k Accesses 9421 Citations 299 Altmetric Metrics
```

ACMG evidence framework

	Benign		Pathogenic				
	Strong	Supporting	Supporting	Moderate	Strong	Very strong	
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4		
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3		
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2		
Allelic data		Observed in trans with a dominant variant BP2 Observed in cis with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3			
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5				
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4				

Source: Richards et al., (2015)

ACMG classification rules

= genetic diagnosis⇒ access to treatment & follow-up of patient and family

ACMG evidence framework

PP1 BS4 Segregation analysis

. . .

Statistical evaluation of co-segregation may be difficult in the clinical laboratory setting. If appropriate families are identified, clinical laboratories are encouraged to work with experts in statistical or population genetics to ensure proper modeling and to avoid incorrect conclusions of the relevance of the variant to the disease.

(Richards et al., 2015)

	ВЗЗ		common PP2	variation PM1	ellect PSS	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PA1	Increased segregation data	\longrightarrow	
De novo data				De novo (without paternity & maternity confirmed) PM6	De nevo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Source: Richards et al., (2015)

How to quantify segregation evidence?

• 2003: Thompson et al. (Am J Hum Genet)

A full-likelihood method for the evaluation of causality of sequence variants from family data

2008: Bayrak-Toydemir et al (Exp Mol Pathol)

Likelihood ratios to assess genetic evidence for clinical significance of uncertain variants: Hereditary hemorrhagic telangiectasia as a model

• 2016: Jarvik & Browning (Am J Hum Genet)

Consideration of cosegregation in the pathogenicity classification of genomic variants

Bayes factor

Jarvik & Browning (2016)

1. Segregation score based on counting: $N = (1/2)^m$ \longrightarrow m = number of meioses informative for cosegregation

m = 4

(moderate evidence)

- 2. Suggested ACMG thresholds
 - $N \le \frac{1}{32} \approx 0.03$: strong $(m \ge 5)$
 - $N \leq \frac{1}{16} \approx 0.06$: moderate $(m \geq 4)$
 - $N \le \frac{1}{8} = 0.125$: supportive $(m \ge 3)$

Jarvik & Browning

	Benign		Pathogenic				
	Strong	Supporting	Supporting	Moderate		ery Strong	
Population Data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases <i>PM2</i>	Prevalence in affecteds statistically increased over controls <i>PS4</i>		
Computational And Predictive Data		Multiple lines of computational evidence suggest no impact <i>BP4</i> Missense when only truncating cause disease <i>BP1</i> Silent variant with non predicted splice impact <i>BP7</i> In-frame indels in repeat w/out known function <i>BP3</i>	Multiple lines of computational evidence support a deleterious effect on the gene /gene product <i>PP3</i>	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before <i>PM5</i> Protein length changing variant <i>PM4</i>	Same amino acid change as an established pathogeni variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
Functional Data	Well-established functional studies show no deleterious effect BS		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation <i>PM1</i>	Well-established functional studies show a deleterious effect <i>PS3</i>		
Segregation Data	Non-segregation with disease <i>BS4</i>		$N \le 1/8$ if 1 family $N \le 1/4$ if > 1 family	$N \le 1/16$ if 1 family $N \le 1/8$ if > 1 family	$N \le 1/32$ if 1 family $N \le 1/16$ if > 1 family		
De novo Data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity & maternity confirmed) PS2		
Allelic Data		Observed in <i>trans</i> with a dominant variant <i>BP2</i> Observed in <i>cis</i> with a pathogenic variant <i>BP2</i>		For recessive disorders, detected in <i>trans</i> with a pathogenic variant <i>PM3</i>			
Other Database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic <i>PP5</i>				
Other Data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene <i>PP4</i>				

Jarvik & Browning (2016)

- Advantage
 - Works well in simple cases
- What are simple cases?
 - no phenocopies
 - complete penetrance
 - allele entered pedigree only once
 - "everyone" genotyped
- Disadvantage:
 - Confusing and potentially inaccurate in other cases

Disease model (f_0, f_1, f_2)

```
f_0 = P(\text{affected} \mid \text{genotype} = \text{n/n})

f_1 = P(\text{affected} \mid \text{genotype} = \text{d/n})

f_2 = P(\text{affected} \mid \text{genotype} = \text{d/d})
```

- f_0 = phenocopy rate
- f_1 = penetrance

"[Thompson's method is more accurate], but requires training and tools." (J&B 2016)

The Bayes factor approach

• Recall, for models M_1 and M_2 :

$$\frac{P(M_1 \mid \text{data})}{P(M_2 \mid \text{data})} = \frac{P(\text{data} \mid M_1)}{P(\text{data} \mid M_2)} \cdot \frac{P(M_1)}{P(M_2)}$$

$$Posterior \ odds = Bayes \ factor \cdot Prior \ odds$$

- Our models
 - \mathcal{C} : variant is causal
 - $\bar{\mathcal{C}}$: variant is not causal
- Our data
 - Carrier statuses g
 - Affection statuses a

Fixed parameters

- Pedigree
- Allele freqs
- Disease model
- +++

The Bayes factor approach (2)

a = affection status vector g = genotype vector g_0 = proband genotype

Contribution of segregation analysis:

$$\frac{B_1}{B_0} = \frac{P(\mathbf{g}, \mathbf{a} \mid \mathcal{C})}{P(\mathbf{g}, \mathbf{a} \mid \overline{\mathcal{C}})} / \frac{P(g_0, \mathbf{a} \mid \mathcal{C})}{P(g_0, \mathbf{a} \mid \overline{\mathcal{C}})}$$

Parametrization of models ${\mathcal C}$ and $\bar{{\mathcal C}}$

- $\bar{\mathcal{C}}$ (variant independent of disease allele)
 - Unlinked

$$\rho = 0.5$$

• Linkage equilibrium r=0

inseparable from

- \mathcal{C} (variant is the disease allele)
 - Complete linkage $\rho = 0$
 - Complete LD r=1

The full-likelihood Bayes factor (FLB)*

$$\text{FLB} = \frac{P(\boldsymbol{g}, \boldsymbol{a} \mid \rho = 0, r = 1)}{P(\boldsymbol{g}, \boldsymbol{a} \mid \rho = \frac{1}{2}, r = 0)} \; \middle/ \; \frac{P(g_0, \boldsymbol{a} \mid \rho = 0, r = 1)}{P(g_0, \boldsymbol{a} \mid \rho = \frac{1}{2}, r = 0)}$$

- FLB = "LOD score adjusted for proband"
- FLB = 1/N (as given by J & B, under ideal conditions)

a = affection status vector g = genotype vector g_0 = proband genotype ρ = recombination rate r = linkage disequilibrium

Computing FLB

$$\text{FLB} = \frac{P(\boldsymbol{g}, \boldsymbol{a} \mid \rho = 0, r = 1)}{P(\boldsymbol{g}, \boldsymbol{a} \mid \rho = \frac{1}{2}, r = 0)} \; \middle/ \; \frac{P(g_0, \boldsymbol{a} \mid \rho = 0, r = 1)}{P(g_0, \boldsymbol{a} \mid \rho = \frac{1}{2}, r = 0)}$$

- All terms are **pedigree likelihoods**: $P(genotypes \mid pedigree; \theta)$
- Implementations notoriously cumbersome
- Old software still prevailing (require bioinformatic training):
 - LINKAGE, FastLink, Allegro, GeneHunter (Elston-Stewart algorithm)
 - MERLIN (Lander-Green algorithm)
- R: pedsuite/segregatr

segregatr: Segregation analysis


```
> library(segregatr)
\triangleright x = nuclearPed(nch = 4, sex = c(1,2,1,1))
> FLB(x,
      aff = c(3, 5, 6),
      unknown = c(1, 2),
      proband = 3,
      carrier = c(3, 5, 6),
      noncarrier = 4,
      freq = 0.00001,
      penetrances = c(0.01, 0.9, 0.9)
[1] 7.107237
```

segregatr: Segregation analysis

Example from research

- Heritable thoracic aortic aneurysms with dissections (HTAAD)
- Potential cause: *SMAD3*:c.XXXG>A
- Classified as VUS
- Challenges:
 - Reduced penetrance
 - Phenocopies

Case report: The use of segregation analysis in interpretation of sequence variants in SMAD3 A Ratajska, MD Vigeland, KV Wirgenes, K Krohg-Sørensen, B Paus

Contours of FLB

Resulted in genetic diagnosis

Sw try &