Familienname:	I	Bsp.	1	2	3	4	$\sum /40$
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Einführung in die Analysis Roland Steinbauer, Sommersemester 2012 8. Prüfungstermin (28.2.2014) Gruppe A

- 1. Definitionen, Sätze & Beweise.
 - (a) Definiere die folgenden Begriffe (je 1 Punkt): Beschränkte Folge, Häufungspunkt einer Menge $A \subseteq \mathbb{R}$, die allgemeine Potenz x^{α} für $\mathbb{R} \ni x > 0$, $\alpha \in \mathbb{R}$
 - (b) Beweise: Jede reelle Cauchy-Folge konvergiert. (5 Punkte)
 - (c) Formuliere den Quotiententest für Reihen. (2 Punkte)
- 2. Begriffe & Ideen.
 - (a) (Stetigkeit vs. gleichmäßige Stetigkeit) (5 Punkte) Für eine Funktion $f: \mathbb{R} \supseteq D \to \mathbb{R}$ definiere die Begriffe Setigkeit (auf D) und gleichmäßige Stetigkeit. Erkläre die Bedeutung dieser Begriffe und diskutiere das Verhältnis dieser Begriffe zueinander.
 - (b) (Konvergenz vs. absolute Konvergenz) (3 Punkte)
 Für (reelle) Reihen definiere die Begriffe Konvergenz und absolute Konvergenz.
 Diskutiere das Verhältnis dieser Begriffe zueinander.
 - (c) (Umkehrsatz) (2 Punkte) Formuliere den Umkehrsatz für streng monotone und stetige Funktionen. Für welche der Aussagen im Satz ist die Stetigkeit notwendige Bedingung?
- 3. Vermischtes.
 - (a) Skizziere die Exponential- und die Logarithmusfunktion und gib die Limiten $\lim_{x\to-\infty}e^x$, $\lim_{x\to\infty}e^x$, $\lim_{x\to0}\log(x)$, $\lim_{x\to\infty}\log(x)$ an. (2 Punkte)
 - (b) Gib je eine reelle Folge mit den folgenden Eigenschaften an: beschränkt aber nicht konvergent, nach oben und unten unbeschränkt, ein Häufungswert aber nach oben unbeschränkt (3 Punkte)
 - (c) Diskutiere die folgende Aussage "Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist stetig, falls sie ohne Absetzen gezeichnet werden kann." (3 Punkte)

Bitte umblättern!

(d) Untersuche die folgenden Reihen auf absolute Konvergenz. (je 2 Punkte)

$$\sum_{n=0}^{\infty} \frac{(-1)^n \, n!}{n^n}, \qquad \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}$$

(e) Berechne: (2 Punkte)

$$\lim_{n \to \infty} \frac{n!}{n^n}$$

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (je 3 Punkte)

- (a) Sei (a_n) eine Nullfolge, dann konvergiert $\sum a_n$.
- (b) Sei $f:[a,b]\to\mathbb{R}$ eine streng monoton wachsende Funktion mit f(a)<0 und f(b)>0. Dann hat f eine Nullstelle x_0 in [a,b].