컴퓨터기초실험 텀프로젝트 (SMART HELMET FOR PERSONAL MOBILITY OF SHARING ECONOMY)

201470105 김소진

201524404 강민진

201645825 이승윤

배경 및 필요성

NEWSIS + 메인 추가

부산경찰, 술 마시고 전동킥보드 탄 20대 3명 적발

기사입력 2020.05.02. 오후 2:37

등 동아일보 + 메인추가

술 취해 전동 킥보드 탄 공무원...음주운전 혐의 입건

기사입력 2020.05.08. 오전 9:54

NEWSIS + 메인추가

상습 음주운전 40대, 이번엔 '만취 킥보드'...1심 벌금형

'서울신문 + 메인추가

공유킥보드 타다가 넘어지는 바람에 음주 적발..."면허취소 수준"

♠ 본문듣기 · 설정

기사입력 2020.04.14. 오후 2:17

배경 및 필요성

공유 전동킥보드 운전자, 차량에 치여 숨져...부산 첫 사망사고 NEWSIS + 메인추가
"안전모 쓸필요 있나"...전동 퀵보드, 방심하면 후회한다
KBS 및 + 메인추가
'자전거 안전모' 안 쓰면 머리 부상 위험 8.8배↑

기사입력 2018.11.03. 오후 9:51

MBC + 메인추가

전동킥보드 이용자 92% 안전모 미착용

따릉이 안전모, 무료대여 나흘만에 절반 사라졌다

기사입력 2018.07.25. 오전 3:06

퍼스널 모빌리티(PM)교통사고 현황 PM = 전통리보드, 전통스케이트보드 등 개인형 이동수단 PM 사고 현황 (단위: 건) 225건 200- 117건 1100- 55 50- 33 61 PM 대 차 150- 128명 124 100- 55 50- 33 10- 26 23 PM 단독 2017년 2018년 자료: 경찰청

전동킥보드 운행시 법적 의무

전동킥보드: 배기량 125cc 이하 이륜차, 50cc 미만 원동기를 단 차

연령 16세 이상 자격 원동기장치자전거 운전면허

허용도로 차도(우측 가장자리 이용)

의무사항 안전모착용, 음주운전금지

자료: 국민권익위원회

① 중앙일보

배경 및 필요성

- 퍼스널 모빌리티: 전기 동력 1-2인용 이동 수단. 전 동 휠, 전기 자전거, 전동 킥보드 등. 친환경 휴대성 강점. 가파른 성장
- 도로교통법상 원동기장치자전거, 도로에서만 통행 가능
- 음주운전, 무면허, 뺑소니에 자동차 운전자와 동일 의무
- 특정범죄 가중처벌 등에 관한 법률(위험운전 등 치사상, 어린이 보호구역에서 어린이 치사상의 가중 처벌(민식이법)) 적용 대상

기존 시스템의 한계

음주 운전 사전 방지 불가

사용자 안전모 착용 선도 한계

어두운 장소, 야간 주행에서 식별 난이

비치된 안전모 잦은 도난 발생

기존 시스템과 비교

기존 개선

제안 시스템 목표와 특성

- 음주 측정
- 착용 인식
- 조명(정지, 방향, 야간)
- 충격 감지
- 도난 방지

제안 시스템 목표와 특성

음주 측정

• 이동 수단에 부착된 알코올 센서를 이용해서 탑승 전 사용자의 음주 여부 확인

조명

- 정지 : 정지 버튼을 이용하여 정지등 표시
- 방향 : 사용자가 이동 수단에 부착된 방향 스위치를 누르면 이동 방향 표시
- 야간 : 광센서를 이용해 자동으로 어두운 상황 파악하여 다른 운전자에 사용자 잘 보이도록 표시

제안 시스템 목표와 특성

착용 인식

• 안전모 내에 위치한 압력 센서를 이용하여 사용자의 착용 여부 확인

충격 감지

• 안전모에 부착된 진동 센서 및 충돌 센서를 이용하여 사고 감지

도난 방지

- •교통 수단과 안전모간 블루투스 연결을 통하여 통신
- 안전모 보관함을 통한 반납 확인

제안 시스템 구성

제안 시스템 구성

Arduino Mega 2560 <안전모>

블루투스

Arduino Mega 2560 <이동수단>

제안 시스템 구성 – 이동 수단

알코올 센서

버튼(전원)

부저

제안 시스템 구성 – 이동 수단

초음파 센서

스위치

서보 모터

기존 시스템 장비

제안 시스템 구성 - 안전모

충돌 센서

압력 센서

가속도 센서

진동 센서

제안 시스템 구성 - 안전모

LED

4채널 릴레이 모듈

광 센서

시스템 작동 과정 - 개요

차량

- 전원 켜기 아케이드 버튼
- 알코올 측정 알코올 센서
- 블루투스 연결 블루투스 모듈
- 보관함 열림 서보 모터
- 방향, 비상등 켜기 푸쉬락 버튼
- 경고, 알림 부저
- 안전모 보관 확인 초음파 센서

안전모

- 블루투스 연결 블루투스 모듈
- 착용 확인 압력 센서
- LED 방향 블루투스 모듈
- LED 정지 가속도 센서
- LED 야간 광 센서
- 사고 확인 진동, 충격 센서

시스템 작동 과정

차량

시스템 작동 과정 (차량 – 전원 켜기)

1. 전원 버튼 누르기


```
void loop()
{
   boolean buttonCurrent = digitalRead(deviceButton);
   if (buttonCurrent == true && buttonLast == false)
   {
      Serial.println("从本");
      buttonLast = true;
```

시스템 작동 과정 (차량 - 알코올 측정)

2. 알코올 센서 동작


```
boolean checkAlcohol()
   Serial.println("알코올 검사 시작");
   unsigned long alcoholInitTime = millis();
   boolean pass = false;
   while (true)
        int alcoholValue = analogRead(alcoholSensor);
        if (alcoholInitTime + interval < millis())</pre>
            if (pass)
                return true;
            else
                return false;
        else
            if (alcoholValue > alcoholStandard)
                alcoholError();
                return false;
            else
                pass = true;
    return true;
```

• 실패시 **부저**, 대기 시간 이후 재시도 가능

시스템 작동 과정 (차량 - 블루투스 연결)

- 3. 블루투스 모듈간 연결
- 연결 성공 :
- 1) 보관함을 열고(Servo 모터 이용)
- 2) 사용자가 착용하면 압력센서를 이용하여 사용자가 안전모 착용을 유지하고 있는지를 주기적으로 확인
- 3) 차량에서 버튼을 누르는 것을 확인하여 안전모에 방향등 신호 및 정지 신호를 보내줘서 LED를 동작하도록 함.
- 연결 실패 : 일정 시간 내에 블루투스 연 결이 안되면 부저가 울리고 장치가 종료

```
boolean checkBluetoothConnection()
    HM10.write(PASS);
    unsigned long start = millis();
    while (true)
        if (HM10.available())
            if (HM10.read() == CONNECT)
                return true;
        if (millis() - start > 10000)
            break;
    return false;
```

시스템 작동 과정 (차량 – 보관함 열림)

서보 모터로 보관함 잠금 해제


```
void openBox()
{
    Serial.println("open");
    myServo.attach(motorPin);
    myServo.write(0);
    delay(500);
    myServo.detach();
    isOpen = true;
}
```

시스템 작동 과정 (차량 – 방향, 비상등 켜기)

방향, 비상등 버튼을 눌러 블루투스로 안전모에 명령 전달


```
void checkLEDButton()
    if (digitalRead(buttonCenter))
        HM10.write(CENTER);
    if (digitalRead(buttonLeft))
        HM10.write(LEFT);
    if (digitalRead(buttonRight))
        HM10.write(RIGHT);
```

시스템 작동 과정 (차량 - 안전모 보관 확인)

4. 초음파 센서로 안전모 반납 확인 후 서보 모터로 잠금


```
void closeBox()
    Serial.println("close");
    myServo.attach(motorPin);
    myServo.write(90);
    delay(500);
    myServo.detach();
    isOpen = false;
```

시스템 작동 과정 (차량 - 안전모 보관 확인)

- 5. 초음파 센서로 안전모 반납 확인 후 서보 모터로 잠금
- 1) 전원 버튼을 다시 누른다.
- 2) <u>초음파 센서</u>를 통해서 보관함에 안전모가 다시 보관되었음이 확인이 되면 <u>Servo 모터</u>를 이용해서 보관함을 잠근다.

안전모

- ⁾● 1. 장치에서 **알코올 센서** 및 **블루투스 연 결**이 확인 되면 장치가 실행
- 2. 장치가 실행되면
- 1) 광센서를 이용해 야간보호등 발광
- 2) **진동센서**를 이용해 사고 감지
- 3) **압력센서**를 이용해 사용자의 안전모 착용 감지
- 4) <u>가속도 센서</u>를 이용해 감속 시 정지 등 발광
- 5) 장치로부터 블루투스 통신을 통해 전 달받은 좌우 방향지시를 통해 좌우 방향 지시등 발광

```
void loop()
 if (isPassed == false && Serial1.available())
    int command = Serial1.read();
    if (command == PASS)
     isPassed = true;
      Serial1.write(CONNECT);
    (isPassed)
   checkLight();
    checkViberation();
    checkWeared();
    checkAccel();
   if (Serial1.available())
     int command = Serial1.read();
     manageCommand(command);
    setLED();
```


- 1. 장치에서 <u>알코올 센서</u> 및 <u>블루투스 연</u>
 <u>결</u>이 확인 되면 장치가 실행
- 2. 장치가 실행되면
- 1) <u>광센서</u>를 이용해 야간보 호등 발광

```
void loop()
{
   if (isPassed == false && Serial1.available())
   {
      int command = Serial1.read();
      if (command == PASS)
      {
        isPassed = true;
        Serial1.write(CONNECT);
      }
   }
   if (isPassed)
   {
      checkLight();
   }
}
```

```
void checkLight()
{
  int lightValue = analogRead(lightSensor);
  //Serial.println("light:" + String(lightValue));
  if (lightValue < lightStandard)
    nightLightDetector = millis();
}</pre>
```

- 1. 장치에서 <u>알코올 센서</u> 및 <u>블루투스 연</u> <u>결</u>이 확인 되면 장치가 실행
- 2. 장치가 실행되면
- 1) 광센서를 이용해 야간보호등 발광
- •2) <u>진동센서</u>를 이용해 사 고 감지

```
void loop()
   if (isPassed == false && Serial1.available())
     int command = Serial1.read();
     if (command == PASS)
       isPassed = true;
       Serial1.write(CONNECT);
   if (isPassed)
     checkLight();
     checkViberation();
void checkViberation()
  int viberation = analogRead(viberationSensor);
  bool viberation2 = digitalRead(viberationSensor2);
  unsigned long current = millis();
  delay(1000);
  Serial.println("vibe:" + String(viberation));
  if (viberation > viberationStandard || viberation2)
    leftDetector = current + 6000;
    rightDetector = current + 6000;
   blinkTime = current + 6000;
```

- 1. 장치에서 **알코올 센서** 및 <u>블루</u> **투스 연결**이 확인 되면 장치가 실 행
- 2. 장치가 실행되면
- 1) <u>광센서</u>를 이용해 야간보호등 발광
- 2) **진동센서**를 이용해 사고 감지
- 3) **압력센서**를 이용해 사용 <u>자의 안전모 착용</u> 감지

```
void loop()
  if (isPassed == false && Serial1.available())
   int command = Serial1.read();
    if (command == PASS)
      isPassed = true;
      Serial1.write(CONNECT);
                              void checkWeared()
  if (isPassed)
                                if (isWeared())
                                  Serial1.write(WEARED);
    checkLight();
                                else
    checkViberation();
                                  Serial1.write(UNWEARED);
    checkWeared();
```

• 압력 센서 부착 사진 삽입

- **▷•** 句. 장치에서 **알코올 센서** 및 <u>블루투</u> ▷ <u>스 연결</u>이 확인 되면 장치가 실행
 - 2. 장치가 실행되면
 - 1) <u>광센서</u>를 이용해 야간보호등 발 광
 - 2) **진동센서**를 이용해 사고 감지
 - 3) **압력센서**를 이용해 사용자의 안 전모 착용 감지
 - •4) <u>가속도 센서</u>를 이용하 감속 시 정지등 발광

```
void accel_calculate()
void loop()
  if (isPassed == false && Serial1.availa
                                                       ac_y = 0;
                                                       ac_z = 0;
                                                       normal_x = 0;
     int command = Serial1.read();
                                                       normal x = 0;
     if (command == PASS)
                                                       normal x = 0;
                                                                                   // 번지수 찾기
                                                       Wire.beginTransmission(mpu add);
                                                                                   // 가속도 데이터 보내달라고 컨트롤 신호 보내기
                                                       Wire.write(0x3B):
        isPassed = true;
                                                                                   // 기달리고,
                                                       Wire.endTransmission(false);
       Serial1.write(CONNECT);
                                                       Wire.requestFrom(mpu_add, 6, true); // 데이터를 받아 처리
                                                       // Data SHIFT
                                                       ac x = Wire.read() << 8 | Wire.read();
                                                       ac_y = Wire.read() << 8 | Wire.read();</pre>
  if (isPassed)
                                                       ac z = Wire.read() << 8 | Wire.read();
                                                       //맵핑화 시킨 것 - 즉 10000으로 맵핑시킴
     checkLight();
                                                       normal x = map(int(ac x), -16384, 16384, -1000, 1000);
     checkViberation();
                                                       normal y = map(int(ac y), -16384, 16384, -1000, 1000);
                                                       normal z = map(int(ac z), -16384, 16384, -1000, 1000);
     checkWeared();
                                                       //각도계산 deg -> 각도
     checkAccel();
                                                       deg = atan2(ac_x, ac_z) * 180 / PI; //rad to deg
value init(); //가속도-각도
                                                       dgy x = gy y / 131.;
                                                                                   //16-bit data to 250 deg/sec
for (int i = 0; i < sum count; i++)
                                                       angle = (0.95 * (angle + (dgy x * 0.001))) + (0.05 * deg);
  accel calculate();
                                                      boolean stopping = true; // 멈추는 중.
  deltha x[1] = deltha x[1] + (normal x);
                                                      // deltha x[1]이 이전, deltha x[2] 가 이후
  deltha y[1] = deltha y[1] + (normal y);
  deltha_z[1] = deltha_z[1] + (normal_z);
                                                      if (deltha x[1] > deltha x[2] + 100)
  angle value = angle value + angle;
                                                         stopping = true;
                                                      else
deltha x[1] = int(deltha_x[1] / sum_count);
```

deltha_y[1] = int(deltha_y[1] / sum_count);
deltha z[1] = int(deltha z[1] / sum count);

stopping = false;

```
if (Serial1.available())
{
   int command = Serial1.read();
   manageCommand(command);
}
setLED();
}
```

 1. 장치에서 <u>알코올 센서</u> 및 <u>블루투스 연결</u>이 확인 되면 장치가 실행

• 2. 장치가 실행되면

• 1) <u>광센서</u>를 이용해 야간보

- 2) <u>진동센서</u>를 이용해 사고
- 3) **압력센서**를 이용해 사용 지

• 4) <u>가속도 센서</u>를 이용해 감속 지 성지능 말짱

• 5) 장치로부터 **블루투스 통신**을 통해 전달받은 좌우 방향지시를 통해 좌우 방향지시등 발광

```
void manageCommand(int command)
{
  unsigned long current = millis();
  if (command == CENTER && centerDetector < current)
    centerDetector = current;
  if (command == LEFT && leftDetector < current)
    leftDetector = current;
  if (command == RIGHT && rightDetector < current)'
    rightDetector = current;
}</pre>
```

```
oid setLED()
unsigned long current = millis();
if (centerDetector + 1000 > current)
  digitalWrite (relayCenter, LOW);
else
  digitalWrite(relayCenter, HIGH);
if (leftDetector + 1000 > current)
  if (blinkTime < current && (blinkTime / 1000) % 2 == 0)
    digitalWrite(relayLeft, HIGH);
    digitalWrite (relayLeft, LOW);
else
  digitalWrite(relayLeft, HIGH);
if (rightDetector + 1000 > current)
  if (blinkTime < current && (blinkTime / 1000) % 2 == 0)
    digitalWrite (relayRight, HIGH);
    digitalWrite (relayRight, LOW);
  digitalWrite(relayRight, HIGH);
if (nightLightDetector + 1000 > current)
  digitalWrite(relayNightLight, LOW);
  digitalWrite(relayNightLight, HIGH);
```


활용 방안

- 가파르게 성장하는 공유형 개인 이동 수단(personal mobility of sharing economy) 시장에 따라 관련 사고 또한 증가
- 사용자의 안전을 가장 먼저 생각하여 음주 운전 방지, 안전모 장착 유도, 교통 사고 예방, 발생시 대처 기능을 수행할 수 있는 스마트 안전모를 제안하여 안전하고 즐거운 개인 이동 수단 이용 문화 형성
- 안전모 비치로 발생할 수 있는 문제(도난)까지 고려

향후 발전 방안

안전모에 GPS, 이동 통신(4G, 5G) 모듈 부착하여 도난시 추적

이동 수단과 완전히 연동되어 상호 보완 동작