Painel / Meus cursos / SBL0059 2022.2 / 11 October - 17 October / Teste de revisão 6

Iniciado em Thursday, 13 Oct 2022, 15:57

Estado Finalizada

Concluída em Thursday, 13 Oct 2022, 16:16

Tempo 18 minutos 9 segundos

empregado

Avaliar 6,00 de um máximo de 10,00(60%)

Correto

Atingiu 2,00 de 2,00

Calcule $\int\limits_C x\ ds$, onde C é o segmento de reta x=t , $y=rac{t}{2}$, entre (0,0) e (4,2) .

Escolha uma opção:

- \odot a. $2\sqrt{5}$
- \odot b. $3\sqrt{5}$
- \odot c. $6\sqrt{5}$
- \odot d. $5\sqrt{5}$
- \odot e. $4\sqrt{5}$

Sua resposta está correta.

Sabendo que o segmento de reta é continuo sobre a curva ${\cal C}$ a integral pode ser calculada por :

$$\int\limits_C x \ ds = \int_a^b x(t) \parallel \vec{\mathbf{v}}(t) \parallel \ dt$$

Usando a parametrização $\vec{\mathbf{r}}(t) = x\mathbf{i} + y\mathbf{j}$ temos que:

$$ec{\mathbf{r}}(t) = t\mathbf{i} + rac{t}{2}\mathbf{j}$$

Assim derivamos o $\vec{\mathbf{r}}(t)$ afim de obter o vetor $\vec{\mathbf{v}}(t)$:

$$ec{\mathbf{v}}(t) = \mathbf{i} + rac{1}{2}\mathbf{j}$$

Cujo o módulo é dado por:

$$\| \, \vec{\mathbf{v}}(t) \, \| = \sqrt{(1)^2 + (rac{1}{2})^2}$$

Simplificando,

$$\parallel ec{\mathbf{v}}(t) \parallel = \sqrt{1+rac{1}{4}}$$

$$\|\vec{\mathbf{v}}(t)\| = \frac{\sqrt{5}}{2}$$

Usando \boldsymbol{x} em função de t como dado no enunciado:

$$x(t) = t$$

Substituimos então os dados encontrados na expressão inicial:

$$\int_{a}^{b} x(t) \parallel \vec{\mathbf{v}}(t) \parallel dt = \int_{0}^{4} (t) \frac{\sqrt{5}}{2} dt$$

$$= \left(\frac{\sqrt{5}}{2}\right) \left(\frac{t^{2}}{2}\right) \Big|_{0}^{4}$$

$$= \left(\frac{\sqrt{5}}{2}\right) \left(\frac{4^{2}}{2}\right) - \left(\frac{\sqrt{5}}{2}\right) \left(\frac{0^{2}}{2}\right)$$

$$= \frac{16\sqrt{5}}{4}$$

$$= 4\sqrt{5}$$

Incorreto

Atingiu 0,00 de 2,00

Calcule $\int\limits_{C} rac{x^2}{y^{rac{4}{3}}} \, ds$, onde C é a curva $\, x = t^2$, $y = t^3$, para $1 \leq t \leq 2$.

Escolha uma opção:

- \bigcirc a. $\frac{80\sqrt{10}-13\sqrt{13}}{21}$
- \bigcirc b. $\frac{80\sqrt{10}-13\sqrt{13}}{27}$
- \circ C. $\frac{80\sqrt{10}-13\sqrt{13}}{23}$
- \circ d. $\frac{80\sqrt{10}-13\sqrt{13}}{22}$
- \circ e. $\frac{80\sqrt{10}-13\sqrt{13}}{25}$

Sua resposta está incorreta.

Seja $\vec{\mathbf{r}}(t)=(t^2)\,\mathbf{i}+(t^3)\,\mathbf{j}$, teremos a partir da derivada da função do deslocamento a função da velocidade dada por:

$$\vec{\mathbf{v}}(t) = (2t)\mathbf{i} + (3t^2)\mathbf{j}$$

Calculando o módulo da velocidade teremos:

$$||\vec{\mathbf{v}}|| = \sqrt{(2t)^2 + (3t^2)^2} = \sqrt{4t^2 + 9t^4} = t\sqrt{4 + 9t^2}$$

Resolvendo a integral:

$$\int\limits_{C} rac{x^{2}}{y^{rac{4}{3}}} \, ds = \int_{1}^{2} rac{(t^{2})^{2}}{(t^{3})^{rac{4}{3}}} ||ec{\mathbf{v}}|| \, dt = \ \int_{1}^{2} \left(rac{t^{4}}{t^{4}} t \sqrt{4 + 9t^{2}}
ight) \, dt = \int_{1}^{2} (t \sqrt{4 + 9t^{2}}) \, dt$$

Utilizando o método da substituição teremos:

$$u=4+9t^2$$

$$du = 18t$$

$$\frac{1}{18} \int_{1}^{2} (\sqrt{u}) du = \frac{1}{18} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{1}^{2}$$

$$= \frac{1}{27} \left[(4 + 9t^{2})^{\frac{3}{2}} \right]_{1}^{2} = \frac{80\sqrt{10} - 13\sqrt{13}}{27}$$

A resposta correta é: $\frac{80\sqrt{10}-13\sqrt{13}}{27}$

.

Incorreto

Atingiu 0,00 de 2,00

Encontre o fluxo do campo $\vec{\mathbf{F}}_1 = x\mathbf{i} + y\mathbf{j}$ atarvés da circunferência $\vec{\mathbf{r}}(t) = (\cos(t))\mathbf{i} + (\sin(t))\mathbf{j}$, $0 \leq t \leq 2\pi$.

Escolha uma opção:

- \odot a. $-\pi$
- \odot b. 2π
- \bigcirc C. π
- \odot d. -2π
- \odot e. 3π

Sua resposta está incorreta.

Solução

Primeiro, calcule o vetor normal. Mas lembre que $\vec{n}=\vec{T}\times\vec{k}$, onde $\vec{k}=0$ i+0j+k.

Também lembre que $ec{\mathbf{T}}=rac{ec{\mathbf{v}}}{||ec{\mathbf{v}}||}$, onde $|ec{\mathbf{v}}|=(-\sin(t))\mathbf{i}+(\cos(t))\mathbf{j}$ e $||ec{\mathbf{v}}||=1.$

Portanto, o vetor tangente unitário é $ec{\mathbf{T}} = (-\sin(t))\mathbf{i} + (\cos(t))\mathbf{j}$.

Então podemos calcular o vetor normal,

$$\vec{\mathbf{n}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin(t) & \cos(t) & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\vec{\mathbf{n}} = (\cos(t))\mathbf{i} + (\sin(t))\mathbf{j}$$

Agora, calcule o fluxo $\vec{\mathbf{F}}_1$:

$$\int_0^{2\pi} \left(\vec{\mathbf{F}}_1 \cdot \vec{\mathbf{n}} \right) dt = \int_0^{2\pi} (\cos(t)\mathbf{i} + \sin(t)\mathbf{j}) \cdot (\cos(t)\mathbf{i} + \sin(t)\mathbf{j}) dt$$

$$= \int_0^{2\pi} (\cos(t)^2 + \sin(t)^2) dt = \int_0^{2\pi} dt = 2\pi$$

A resposta correta é: 2π

•

Correto

Atingiu 2,00 de 2,00

Encontre o fluxo do campo $\vec{\mathbf{F}}_2 = -y\mathbf{i} + x\mathbf{j}$ através da circunferência $\vec{\mathbf{r}}(t) = (\cos(t))\mathbf{i} + (\sin(t))\mathbf{j}$, $0 \leq t \leq 2\pi$.

Resposta: 0

Solução

Primeiro, calcule o vetor normal. Mas lembre que $\vec{n}=\vec{T}\times\vec{k}$, onde $\vec{k}=0i+0j+k$.

Também lembre que $\vec{\mathbf{T}}=rac{ec{\mathbf{v}}}{||ec{\mathbf{v}}||}$, onde $\vec{\mathbf{v}}=(-\sin(t))\mathbf{i}+(\cos(t))\mathbf{j}$ e $||ec{\mathbf{v}}||=1.$

Portanto, o vetor tangente unitário é $\vec{\mathbf{T}} = (-\sin(t))\mathbf{i} + (\cos(t))\mathbf{j}$.

Então podemos calcular o vetor normal,

$$ec{\mathbf{n}} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin(t) & \cos(t) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\vec{\mathbf{n}} = (\cos(t))\mathbf{i} + (\sin(t))\mathbf{j}$$

Agora, calcule o fluxo $\vec{\mathbf{F}}_2$:

$$\begin{split} &\int_0^{2\pi} (\vec{\mathbf{F}}_2 \cdot \vec{\mathbf{n}}) \, dt = \\ &\int_0^{2\pi} (-\sin(t)\mathbf{i} + \cos(t)\mathbf{j}) \cdot (\cos(t)\mathbf{i} + \sin(t)\mathbf{j}) \, dt = \\ &\int_0^{2\pi} 0 \, dt = 0 \end{split}$$

A resposta correta é: 0.

Correto

Atingiu 2,00 de 2,00

Encontre o fluxo do campo $\vec{\mathbf{F}}_1 = x\mathbf{i} + y\mathbf{j}$ atarvés da elipse $\vec{\mathbf{r}}(t) = (cos(t))\mathbf{i} + (4sen(t))\mathbf{j}$, $0 \leq t \leq 2\pi$.

Escolha uma opção:

- \odot a. 5π
- \odot b. 7π
- \odot c. 6π
- \odot d. 8π
- \odot e. 4π

Sua resposta está correta.

Solução:

Desta vez nós vamos usar a forma escalar para o cálculo do fluxo. Seja $\vec{r}(t)=\cos(t)\mathbf{i}+4\sin(t)\mathbf{j}$, teremos que $x=\cos(t)$ e $y=4\sin(t)$. Logo $dx=-\sin(t)\,dt$ e $dy=4\cos(t)\,dt$

Agora podemos calcular o fluxo do campo $\vec{\mathbf{F}}_1$:

Teremos $M=\cos(t)$ e $N=4\sin(t)$, substituindo na fórmula:

$$\int_0^{2\pi} M dy - N dx$$

$$= \int_0^{2\pi} (4\cos(t)^2 + 4\sin(t)^2) dt$$

$$= \int_0^{2\pi} 4 dt = 8\pi$$

A resposta correta é: 8π

◀ 16.2 Trabalho, circulação e fluxo

Seguir para...

Simulado da AP2 ▶

