

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 837 052 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 22.04.1998 Bulletin 1998/17

(21) Application number: 96918841.6

(22) Date of filing: 19.06.1996

(51) Int. CI.⁶: **C07C 233/52**, C07C 233/84, C07C 271/24, C07C 311/06, C07C 311/11, C07C 311/13, C07C 311/19, C07D 493/08, C07D 495/08, A61K 31/16

(86) International application number: PCT/JP96/01685

(11)

(87) International publication number: WO 97/00853 (09.01.1997 Gazette 1997/03)

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Designated Extension States:

(30) Priority: 21.06.1995 JP 154575/95

(71) Applicant: SHIONOGI & CO., LTD. Osaka-shi, Osaka-fu 541 (JP)

(72) Inventors:
• OHTANI, Mitsuaki
Nara 630 (JP)

AL LT LV SI

 ARIMURA, Akinori Osaka-shi Osaka 558 (JP)

 TSURI, Tatsuo Kobe-shi Hyogo 651-11 (JP)

KISHINO, Junji
 Hyogo 654-01 (JP)

 HONMA, Tsunetoshi Nara 630-02 (JP)

(74) Representative:

Baverstock, Michael George Douglas et al BOULT WADE TENNANT, 27 Furnival Street London EC4A 1PQ (GB)

- (54) BICYCLIC AMINO DERIVATIVES AND PGD 2 ANTAGONIST CONTAINING THE SAME
- (57) A compound of the formula (I):

wherein

is

for example, a compound below:

wherein

R₁ is CH₃, H or Na; and X1-X2-X3 is

or a salt or a hydrate thereof is useful as a PGD₂ antagonist and can be used as a drug for treating diseases in which mast cell dysfunction is involved, for example, systemic mastocytosis and disorder of systemic mast cell activation, and also tracheal contraction, asthma, allergic rhinitis, allergic conjunctivitis, urticaria, injury due to ischemic reperfusion, and as an anti-inflammatory agent. It is particularly useful in the treatment of nasal occlusion.

Description

5

10

FIELD OF THE INVENTION

The present invention relates to bicyclic amino derivatives and prostaglandin D₂ (hereinafter, referred to as PGD₂) antagonist containing them.

BACKGROUND OF THE INVENTION

Some bicyclic amino derivatives of the present invention are known to be useful as thromboxane A_2 (TXA₂) antagonists (Japanese Patent Publication (KOKOKU) No. 79060/1993). However, Japanese Patent Publication (KOKOKU) No. 79060/1993 only describes the compounds as useful as TXA₂ antagonists, and does not suggest usefulness thereof as PGD₂ antagonists as disclosed by the present invention.

Namely, TXA₂ is known to have activities such as action against platelet agglutination, thrombogenesis, etc. The TXA₂ antagonist has therefore been considered to be useful as an anti-thrombotic agent, and also in the treatment of myocardial infarction or asthma by antagonizing against TXA₂.

On the other hand, the PGD₂ antagonist of the present invention is useful in the improvement of conditions due to excessive production of PGD₂. Specifically, it is useful as a drug for treating diseases in which mast cell dysfunction is involved, for example, systemic mastocytosis and disorder of systemic mast cell activation, and also tracheal contraction, asthma, allergic rhinitis, allergic conjunctivitis, urticaria, injury due to ischemic reperfusion, and inflammation.

As is apparent from the above, the TXA₂ antagonist and the PGD₂ antagonist are completely different from each other in terms of the active site, mechanism of action, and application, and have quite different characteristics. Accordingly, it has never been expected that any compound could possess these activities simultaneously.

PGD₂ is produced through PGG₂ and PGH₂ from arachidonic acid by the action of cyclooxygenase activated by immunological or unimmunological stimulation and is the major prostanoid that is produced and released from mast cells. PGD₂ has various potent physiological and pathological activities. For example, PGD₂ can cause strong tracheal contraction, which leads to bronchial asthma, and, in a systemic allergic state, it can dilate the peripheral vessels, which leads to an anaphylactic shock. Especially, much attention has been paid to the idea that PGD₂ is one of the causal substances responsible for the onset of nasal occlusion in the allergic rhinitis. Therefore, it has been proposed to develop an inhibitor against the biosynthesis of PGD₂ or an antagonist of PGD₂ receptor as a drug for the reduction of nasal occlusion. However, the inhibitor of PGD₂ biosynthesis possibly affects greatly the synthesis of prostaglandins in other organisms, and therefore, it is desirable to develop an antagonist (blocker) specific to PGD₂ receptor.

DISCLOSURE OF THE INVENTION

The present inventors have studied intensively to develop PGD₂ receptor antagonists (blockers) specific to PGD₂ receptor, and found that compounds of the formula (I) below or its salt possess a potent activity as PGD₂ receptor antagonists and are chemically and biochemically stable.

Accordingly, the present invention provides a PGD₂ antagonist which comprises a compound of the general formula (I) below or its salt or a hydrate thereof as an active ingredient:

wherein

55

50

45

is

OI

15

20

25

30

10

5

A is alkylene which optionally is intervened by a hetero atom or phenylene, contains oxo group, and/or has an unsaturated bond;

B is hydrogen, alkyl, aralkyl or acyl;

R is COOR₁, CH₂OR₂ or CON(R₃)R₄;

R₁ is hydrogen or alkyl;

R₂ is hydrogen or alkyl;

R₃ and R₄ each are independently hydrogen, alkyl, hydroxy or alkylsulfonyl;

X₁ is a single bond, phenylene, naphthylene, thiophenediyl, indolediyl, or oxazolediyl;

 X_2 is a single bond, -N=N-, -N=CH-, -CH=N-, -CH=N-N-, -CH=N-O-, -C=NNHCSNH-, -C=NNHCONH-, -CH=CH-, -CH(OH)-, -C(CI)=C(CI)-, - (CH₂)n-, ethynylene, -N(R₅)-, -N(R₅₁)CO-, -N(R₅₂)SO₂-, - N(R₅₃)CON(R₅₄)-, -CON(R₅₅)- -SO₂N(R₅₆)-, -O-, -S-, -SO-, -SO₂-, -CO-, oxadiazolediyl, thiadiazolediyl or tetrazolediyl;

X₃ is alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclic group, cycloalkyl, cycloalkenyl, thiazolinylidenemethyl, thiazolinylidenemethyl, -CH=NR₆ or -N=C(R₇)R₈;

 R_5 , R_{51} , R_{52} , R_{53} , R_{54} , R_{55} and R_{56} each are hydrogen or alkyl;

R₆ is hydrogen, alkyl, hydroxy, alkoxy, carbamoyloxy, thiocarbamoyloxy, ureido or thioureido:

R₇ and R₈ each are independently alkyl, alkoxy or aryl;

35 n is 1 or 2;

Z is -SO₂- or -CO-; and

m is 0 or 1;

wherein a cyclic substituent may have one to three substituents selected from the group consisting of nitro, alkoxy, sulfamoyl, substituted- or unsubstituted-amino, acyl, acyloxy, hydroxy, halogen, alkyl, alkynyl, carboxy, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxyalkyl, trifluoromethyl, alkylthio, -N=PPh₃, oxo, thioxo, hydroxyimino, alkoxyimino, phenyl and alkylenedioxy.

THE BEST EMBODIMENT FOR PRACTICING THE INVENTION

45

Specific examples of compounds usable as a PGD₂ antagonist above include a compound of the formula (I) wherein

50

m is 0; and when Z is SO₂, both X₁ and X₂ are a single bond; X₃ is alkyl, phenyl, naphthyl, stylyl, quinolyl or thienyl; and a cyclic substituent among these substituents optionally has one to three substituents selected from the group consisting of nitro, alkoxy, substituted- or unsubstituted-amino, halogen, alkyl and hydroxyalkyl, or a salt or hydrate thereof. Similarly, specific examples include a compound of the formula (I) wherein

15 Y is

when m is 1, both X_1 and X_2 are a single bond; and X_3 is phenyl optionally substituted with halogen, or a salt or hydrate 30 thereof.

;

Similarly, specific examples include a compound of the formula (I) wherein

35 Y

40 is

when m is 1, X₁ is phenyl, X₂ is -CH₂- or -N=N- and X₃ is phenyl, or a salt or hydrate thereof.

Similarly, examples of compounds of the formula (I) include those of the formula (Ia):

55

5

$$\begin{array}{c}
A - R \\
N - SO_2 - X_1 - X_2 - X_3 \\
B
\end{array}$$
(Ia)

wherein A, B, R, X_1 , X_2 and X_3 are as defined above, or its salt or hydrate thereof, provided that those wherein (1) X_1 and X_2 are a single bond, and X_3 is substituted- or unsubstituted-phenyl, or naphthyl; and (2) A is 5-heptenylene, R is COOR₁ (R₁ is hydrogen or methyl), X_1 is 1,4-phenylene, X_2 is a single bond, and X_3 is phenyl are excluded.

Similarly, examples of compounds of the formula (I) include those of the formula (Ib):

wherein

30

35

40

45

55

5

10

is

A, B, R, X_1 , X_2 and X_3 are as defined above, or a salt or hydrate thereof, provided that those wherein X_1 and X_2 are a single bond, and X_3 is phenyl, and wherein X_1 is a single bond, X_2 is -O-, and X_3 is benzyl are excluded.

More specifically, examples of compounds of the formula (I) include those of the formula (Ia) wherein X_1 and X_2 are a single bond, X_3 is isoxazolyl, thiadiazolyl, isothiazolyl, morpholyl, indolyl, benzofuryl, dibenzofuryl, dibenzothienyl, dibenzothienyl, carbazolyl, xanthenyl, phenanthridinyl, dibenzothiepinyl, dibenzothiepinyl, cinnolyl, chromenyl, benzimidazolyl or dihydrobenzothiepinyl, or its salt or hydrate thereof.

Similarly, examples of compounds of the formula (I) include those of the formula (Ia) wherein X_1 is a single bond, X_2 is phenylene, X_3 is alkenyl, alkynyl, -CH=NR₆ or -N=C(R₇)R₈, or a salt or hydrate thereof.

Similarly, examples of compounds of the formula (I) include those of the formula (Ia) wherein R is $COOR_1$, X_1 is phenylene or thiophenediyl, X_2 is a single bond, -N=H-, -CH=CH-, -CONH-, - NHCO- or ethynylene and X_3 is phenyl, thiazolinylidenemethyl, thiazolinylidenemethyl or thienyl, or a salt or hydrate thereof.

More specifically, examples of the compound (I) of the present invention include those of the formula (Ib) wherein

is

10

5

15

25

30

35

or a salt or hydrate thereof. Examples of more preferred compounds include those of the formula (lb) wherein R is COOR₁ (R₁ is as defined above) or a salt or hydrate thereof.

Similarly, examples of compound (I) include those of the formula (Ib) wherein X_1 is phenylene or thiophenediyl, X_2 is a single bond, -N=H-, -CH=CH-, ethynylene, -O-, -S-, -CO-, -CON(R₅₅)- (R₅₅ is as defined above), -N(R₅₁)CO- (R₅₁ is as defined above) and X_3 is phenyl, or a salt or hydrate thereof.

More specifically, examples of compound (I) include those of the formula (Ib) wherein

is

40

or a salt or hydrate thereof. Examples of more preferred embodiments include those wherein B is hydrogen, both X_1 and X_2 are a single bond, X_3 is thienyl, thiazolyl, thiadiazolyl, isothiazolyl, pyrrolyl, pyridyl, benzofuryl, benzimidazolyl, benzothienyl, dibenzofuryl, dibenzothienyl, quinolyl or indolyl or a salt or hydrate thereof. Similarly, examples include those wherein X_1 is phenylene, thiophenediyl, indolediyl or oxazolediyl, X_2 is a single bond, -N=H-, -CH=CH-, ethynylene, -S- or -O-, and X_3 is anyl or heterocyclic group, or a salt or hydrate thereof.

The compounds of the general formula (Ia) and (Ib) are novel compounds synthesized by the present inventors. The terms used throughout the present specification are as defined below.

The term "alkylene" means $C_1 \cdot C_9$ straight or branched chain alkylene, for example, methylene, methylmethylene, dimethylene, methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene, or the like. The alkylene above can be intervened by a hetero atom(s) (oxygen, sulfur, nitrogen atom, or the like) or phenylene (e.g., 1,4-phenylene, 1,3-phenylene, 1,2-phenylene, or the like), contain an oxo group, and/or have one or more double- or triple-bonds at any positions on the chain. Examples include $-(CH_2)_2-O-CH_2-$, $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_2-O-(CH_2)_3-$, $-(CH_2)_2-O-(CH_2)_4-$, $-(CH_2)_2-O-(CH_2)_5-$, $-(CH_2)_2-O-(CH_2)_6-$, $-(CH_2)_2-S-(CH_2)_2-$, $-(CH_2)_2-S-(CH_2)_4-$, $-(CH_2)_2-O-(CH_2)_3-$, $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_2-O-(CH_2)_3-$, $-(CH_2)_2-$, -(C

ene, 3-oxopentylene, 5-oxohexylene, vinylene, 1-propenylene, 2-propenylene, 1-butenylene, 2-butenylene, 3-bute-

nylene, 1,2-butadienylene, 1,3-butadienylene, 1-pentenylene, 2-pentenylene, 3-pentenylene, 4-pentenylene, 1,2-pentadienylene, 1,3-pentadienylene, 1,4-pentadienylene, 2,3-pentadienylene, 2,4-pentadienylene, 1-hexyenylene, 2-hexenylene, 3-hexenylene, 4-hexenylene, 5-hexenylene, 1,2-hexadienylene, 1,3-hexadienylene, 1,4-hexadienylene, 1,5-hexadienylene, 2,3-hexadienylene, 2,4-hexadienylene, 3,4-hexadienylene, 3,5-hexadienylene, 4-heptenylene, 5-heptenylene, 2-heptenylene, 3-heptenylene, 4-heptenylene, 5-heptenylene, 2,2-dimethyl-5-heptenylene, 6-heptenylene, 1,2-heptadienylene, 1,3-heptadienylene, 1,4-heptadienylene, 1,5-heptadienylene, 1,6-heptadienylene, 2,3-heptadienylene, 2,4-heptadienylene, 2,5-heptadienylene, 2,6-heptadienylene, 3,4-heptadienylene, 3,5-heptadienylene, 3,6-heptadienylene, 4,6-heptadienylene or 5,6-heptadienylene, 1-propynylene, 3-butynylene, 2-pentynylene, 5-hexynylene, 6-heptynylene, -(CH₂)-CH=CH-O-(CH₂)₂-, -CH₂-S-(CH₂)₃-, -CH₂-cis-CH=CH-1,2-phenylene-CH₂-, -CH=CH-1,4-phenylene-(CH₂)₂-, -4-oxo-4,5-hexenylene-, and the like.

The term "alkyl" means C_1 - C_{20} straight or branched chain alkyl, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, i-pentyl, neopentyl, t-pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, and the like.

The term "aryl" means C_6 - C_{14} monocyclic or condensed ring, for example, phenyl, naphthyl (e.g., 1-naphthyl, 2-naphtyl), anthryl (e.g., 1-anthryl, 2-anthryl, 9-anthryl), phenanthryl (e.g., 2-phenanthryl, 3-phenanthryl, 9-phenanthryl), fluorenyl (e.g., 2-fluorenyl), and the like. Phenyl is especially preferred.

The term "aralkyl" means a group formed by substituting an alkyl as defined above with an aryl above at any substitutable positions on the alkyl. Examples include benzyl, phenethyl, phenylpropyl (e.g., 3-phenylpropyl), naphtylmethyl (e.g., α -naphtylmethyl), anthrylmethyl (e.g., 9-anthrylmethy), phenanthrylmethyl (e.g., 3-phenanthrylmethyl), and the like.

The term "acyl" means C_1 - C_9 acyl derived from aliphatic carboxylic acid, for example, formyl, acetyl, propionyl, butyryl, valeryl, and the like.

The term "alkylsulfonyl" means a group formed by substituting a sulfonyl with an alkyl above, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, and the like.

The term "alkenyl" is C_2 - C_{20} straight or branched chain alkenyl, which corresponds to an alkyl above containing one or more double bonds. Examples include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,2-butadienyl, 1-pentenyl, 1,2-pentadienyl, 2-hexyenyl, 1,2-hexadienyl, 3-heptenyl, 1,5-heptadienyl, and the like.

The term "alkynyl" is C_2 - C_{20} straight or branched chain, alkynyl, which corresponds to an alkyl above containing one or more triple bonds. Examples include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, and the like.

The term "heterocyclic group" means 5 - 7 membered cyclic group containing one or more hetero atoms selected independently from the group consisting of oxygen, sulfur and/or nitrogen atom on the ring, and is optionally condensed with a carbon ring or other heterocyclic group at any substitutable positions. Examples include pyrrolyl (e.g., 1-pyrrolyl, 3-pyrrolyl), indolyl (e.g., 2-indolyl, 3-indolyl, 6-indolyl), carbazolyl (e.g., 2-carbazolyl, 3-carbazolyl), imidazolyl (e.g., 1imidazolyl, 4-imidazolyl), pyrazolyl (e.g., 1-pyrazolyl, 3-pyrazolyl), benzimidazolyl (e.g., 2-benzimidazolyl, 5-benzimidazolyl), indazolyl (e.g., 3-indazolyl), indolizinyl (e.g., 6-indolyzinyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), quinolyl (e.g., 8-quinolyl), isoquinolyl (e.g., 3-isoquinolyl), acridyl (e.g., 1-acridyl), phenanthrydinyl (e.g., 2-phenanthrydinyl, 3phenanthrydinyl), pyridazinyl (e.g., 3-pydidazinyl), pyrimidinyl (e.g., 4-pyrimidinyl), pyrazinyl (e.g., 2-pyrazinyl), cinnolinyl (e.g., 3-cinnolinyl), phthaladinyl (e.g., 5-phthaladinyl), quinazolinyl (e.g., 2-quinazolinyl), isoxazolyl (e.g., 3-isoxazolyl, 4-isoxazolyl), benzisoxazolyl (e.g., 1,2-benzisoxazol-4-yl, 2,1-benzisoxazol-3-yl), oxazolyl (e.g., 2-oxazolyl, 4oxazolyl, 5-oxazolyl), benzoxazolyl (e.g., 2-benzoxazolyl), benzoxadiazolyl (e.g., 4-benzoxadiazolyl), isothiazolyl (e.g., 3-isothiazolyl, 4-isothiazolyl) benzisothiazolyl (e.g., 1,2-benzisothiazol-3-yl, 2,1-benzisothizol-5-yl), thiazolyl (e.g., 2-thiazolyl), benzothiazolyl (e.g., 2-benzothiazolyl), thiadiazolyl (e.g., 1,2,3-thiadiazol-4-yl), oxadiazolyl (e.g., 1,3,4-oxadiazol-2-yl), dihydroxadiazolyl (e.g., 4,5-dihydro-1,2,4-oxadiazol-3-yl), furyl (e.g., 2-furyl, 3-furyl), benzofuryl (e.g., 3benzofuryl), isobenzofuryl (e.g., 1-isobenzofuryl), thienyl (e.g., 2-thienyl, 3-thienyl), benzothienyl (1-benzothiophen-2-yl, 2-benzothiophen-1-yl), tetrazolyl (e.g., 5-tetrazolyl), benzodioxolyl (e.g., 1,3-benzodioxol-5-yl), dibenzofuryl (e.g., 2dibenzofuryl, 3-dibenzofuryl), dibenzoxepinyl (e.g., dibenz[b,f]oxepin-2-yl), dihydrodibenzoxepinyl (e.g., dihydrodibenz[b,f]oxepin-2-yl, chromenyl (e.g., 2H-chromen-3-yl, 4H-chromen-2-yl), dibenzothiepinyl (e.g., dibenzo[b,f]thiepin-3-yl, dihydrodibenzo[b,f]thiepin-3-yl), morpholinyl (e.g., 1,4-morpholin-4-yl), phenothiadinyl (2-phenothiadinyl), cyclopentathienyl (e.g., cyclopenta[b]thiophen-3-yl), cyclohexathienyl (e.g., cyclohexa[b]thiophen-3-yl), and the like.

The term "cycloalkyl" means C_3 - C_8 cyclic alkyl, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.

The term "cycloalkenyl" means C_3 - C_8 cyclic alkenyl, for example, cyclopropenyl (e.g., 1-cyclopropenyl), cyclobutenyl (e.g., 2-cyclobuten-1-yl), cyclopentenyl (1-cyclopenten-1-yl), cyclohexenyl (1-cyclohexen-1-yl), and the like.

55

The term "alkoxy" means C_1 - C_6 alkoxy, for example, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, and the like. Examples of the substituted amino in the definition of "substituted- or un-substituted-amino" include mono- or disubstituted amino such as methylamino, ethylamino, dimethylamino, cyclohexylamino, phenylamino, diphenylamino, or

cyclic amino such as piperidino, piperadino or morpholino.

5

15

35

40

The term "acyloxy" means an acyloxy derived from the "acyl" above, for example, acetyloxy, propionyloxy, butyryloxy, valeryloxy, and the like.

The term "halogen" means fluorine, chlorine, bromine and iodine.

The term "alkoxycarbonyl" means an alkoxycarbonyl group derived from the "alkoxy" above, for example, methoxycarbonyl, ethoxycarbonyl, phenyloxycarbonyl, and the like.

The term "aralkyloxycarbonyl" means an aralkyloxycarbonyl group derived from the "aralkyl" above, for example, benzyloxycarbonyl, phenethyloxycarbonyl, and the like.

The term "aryloxycarbonyl" means an aryloxycarbonyl group derived from the "aryl" above, for example, phenyloxycarbonyl, naphtyloxycarbonyl, and the like.

The term "alkenyloxy" means an alkenyloxy group derived from the "alkenyl" above, for example, vinyloxy, 1-propenyloxy, 2-butenyloxy, and the like.

The term "hydroxyalkyl" means a hydroxyalkyl group derived from the "alkyl" above, for example, hydroxymethyl, hydroxyethyl, hydroxypropyl, and the like.

The term "alkylthio" means an alkylthio group derived from the "alkyl" above, for example, methylthio, ethylthio, propylthio, and the like.

The term "alkylenedioxy" means C₁ - C₃ alkylenedioxy, for example, methylenedioxy, ethylenedioxy, propylenedioxy, and the like.

In the case of "phenylene, "naphthylene", "thiophenediyl", "indolediyl", "oxazolediyl", "oxadiazolediyl" and tetrazolediyl", the said group can bind to the neighboring groups at any two substitutable sites.

In the definitions above, when a substituent(s) is cyclic, it may be substituted by one to three substituents selected from nitro, alkoxy, sulfamoyl, substituted- or un-substituted-amino, acyl, acyloxy, hydroxy, halogen, alkyl, alkynyl, carboxy, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxyalkyl, trifluoromethyl, alkylthio, - N=PPh₃, oxo, thioxo, hydroxyimino, alkoxyimino, phenyl and alkylenedioxy. The substituent(s) may bind to any substitutable positions on the ring.

Examples of salts of the compound (I) include those formed with an alkali metal (e.g., lithium, sodium or potassium), an alkaline earth metal (e.g., calcium), an organic base (e.g., tromethamine, trimethylamine, triethylamine, 2-aminobutane, t-butylamine, disopropylethylamine, n-butylmethylamine, cyclohexylamine, dicyclohexylamine, N-isopropylcyclohexylamine, furfurylamine, benzylamine, methylbenzylamine, dibenzylamine, N,N-dimethylbenzylamine, 2-chlorobenzylamine, 4-methoxybenzylamine, 1-naphthylenemethylamine, diphenylbenzylamine, triphenylamine, 1-naphthylamine, 1-aminoanthoracene, 2-aminoanthoracene, dehydroabiethylamine, N-methylmorpholine or pyridine), an amino acid (e.g., lysine, or arginine), and the like.

The term "hydrate" means a hydrate of the compound of the formula (I) or its salt. Examples include mono- and dihydrates.

The present compounds are shown by the formula (I) and are inclusive of the form of any types of stereoisomers (e.g., diastereomer, epimer, enantiomer) and racemic compounds.

Among the compounds of the general formula (I), those wherein m=1, especially, those shown in Tables 3b and 3c below are known compounds described in Japanese Patent Publication (KOKAI) No. 180862/1990.

Among the compounds of the general formula (I), those wherein m=0, [i.e., those shown by the general formula (I')], can be prepared by reacting an amino compound of the general formula (II) with a reactive derivative of sulfonic acid or carboxylic acid corresponding to the partial structure: Z-X₁-X₂-X₃ as shown below.

Wherein A, B, R, X₁, X₂, X₃, Y and Z are as defined above.

mide, iodide), acid anhydride (e.g., mixed acid anhydride with formic acid or acetic acid), active ester (e.g., succinimide ester), and examples thereof generally include acylating agents used for the acylation of amino group. The carboxylic acid X_3 - X_2 - X_1 -COOH can be used in the reaction as it is without converting into a reactive derivative, in the presence of a condensing agent (e.g., dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, N,N'-carbonyldiimidazole) which are used in the condensing reaction between amine and carboxylic acid.

The reaction can be conducted under the conditions generally used for the acylation of amino groups. For example, in the case of condensation using an acid halide, the reaction is carried out using a solvent such as an ether solvent (e.g., diethylether, tetrahydrofuran, dioxane), benzene solvent (e.g., benzene, toluene, xylene), halogenated hydrocarbon solvent (e.g., dichloromethane, dichloroethane, chloroform), ethyl acetate, dimethylformamide, dimethyl sulfoxide, acetonitrile, or the like, if necessary, in the presence of a base (e.g., organic base such as triethylamine, pyridine, N,N-dimethylaminopyridine, N-methylmorpholine; inorganic base such as sodium hydroxide, potassium carbonate, or the like) under cooling, at room temperature or under heating, preferably at temperature ranging from -20°C to a temperature under cooling, or from room temperature to a refluxing temperature of the reaction system, for several min to several hr, preferably for 0.5 hr to 24 hr, more preferably, for 1 hr to 12 hr.

The reaction conditions for the reaction between other reactive derivative or a free acid and an amine (II) can be determined in a conventional manner depending on the characteristics of the respective reactive derivative or free acid. The reaction product can be purified by conventional purification methods, for example, the extraction with a solvent, chromatography, recrystallization, or the like.

15

45

Specific examples of the compound (II) as a starting material for the present method are as follows. Examples of 3-amino[2.2.1]bicyclic compound include 7-(3-aminobicyclo[2.2.1]hept-2-yl)-5-heptenoic acid, 7-(3-aminobicyclo[2.2.1]hept-2-yl)-5-heptenoic acid, 6-(3-aminobicyclo[2.2.1]hept-2-yl)-5-hexenoic acid, 5-(3-aminobicyclo[2.2.1]hept-2-yl)-5-hexenoic acid. Specific examples of 2-amino-6,6-dimethyl[3.1.1]bicyclic compound include 7-(2-amino-6,6-dimethylbicyclo[3.1.1]hept-3-yl)-5-heptenoic acid. In these starting compounds, the heptenoic acid chain may be saturated to form heptanoic acid chain, intervened by a hetero atom(s) or a hetero group(s) such as -O-, -S-, -NH-, or a phenylene(s), or substituted with an oxo group. Examples of such compounds include 7-(3-aminobicyclo[2.2.1]hept-2-yl)heptanoic acid, 4-[2-(2-aminobicyclo[3.1.1]hept-3-yl)ethoxyphenylacetic acid, 7-(3-aminobicyclo[2.2.1]hept-2-yl)-6-oxo-heptanoic acid. These starting compounds are either described in the Japanese Patent Publication (KOKOKU) No. 79060/1993 or 23170/1991, or can be prepared according to the method described therein.

Sulfonic acid X_3 - X_2 - X_1 -SO₂OH and carboxylic acid X_3 - X_2 - X_1 -COOH corresponding to the partial structure Z- X_1 - X_2 - X_3 mean a sulfonic acid or carboxylic acid having substituents corresponding to the Xs above. That is, examples include alkane-sulfonic acid or -carboxylic acid, alkene-sulfonic acid or -carboxylic acid, alkyne-sulfonic acid or -carboxylic acid, cycloalkane-sulfonic acid or -carboxylic acid, cycloalkane-sulfonic acid or -carboxylic acid, aryl-sulfonic acid or -carboxylic acid, aryl-sulfonic acid or -carboxylic acid, heteroarylalkyl-sulfonic acid or -carboxylic acid, and substituted-amino-sulfonic acid or -carboxylic acid. Each of sulfonic and carboxylic acids may have a substituent(s) above. These sulfonic acids and carboxylic acids are commercially available or can be easily synthesized from a known compound(s) in accordance with a known method. Upon reaction, the sulfonic or carboxylic acid can be converted into the corresponding reactive derivative above, if necessary. For example, when an acid halide is needed, the compound is reacted with thionyl halide (e.g., thionyl chloride), phosphorous halide (e.g., phosphorous trichloride, phosphorous pentachloride) or oxalyl halide (e.g., oxalyl chloride) in accordance with a known method such as those described in the literature (e.g., Shin-Jikken-Kagaku-Koza, vol. 14, pp. 1787 (1978); Synthesis, 852-854 (1986); Shin-Jikken-Kagaku-Koza, vol. 22, pp. 115 (1992)). The other reactive derivatives can also be prepared in accordance with known methods.

Among the objective compounds (I), those wherein the side chain A contains an unsaturated bond, especially a double bond, can also be prepared by reacting an aldehyde derivative of the general formula (III) below with an ylide compound corresponding to the rest of the side chain A-R under the conditions of the Wittig reaction:

50
$$Y'$$
 $X - X_1 - X_2 - X_3$ Y' $X - X_1 - X_2 - X_3$ $X - X_1 - X_2 - X_3$

wherein A, B, R, X₁, X₂, X₃, Y and Z are as defined above.

The starting compound (III) can be prepared in accordance with a method described in, for example, Japanese Patent Publication (KOKAI) No. 256650/1990. Further, an ylide compound corresponding to the rest of the side chain A-R can be synthesized by reacting triphenylphosphine with a corresponding halogenated alkanoic acid, or an ester derivative, ether derivative or amide derivative thereof in the presence of a base according to a known method.

Among the objective compounds (I), those wherein R is COOH can be converted into a corresponding ester derivative, alcohol derivative, ether derivative, amide derivative, if desired. For example, ester derivatives can be prepared by esterifying a carboxylic acid in a conventional manner. An ester derivative, when reduced, gives an alcohol derivative, and amidated, gives an amide derivative. An ether derivative can be obtained by O-alkylating an alcohol derivative.

The compound (I) of the present invention shows antagonistic effect against PGD₂ in vitro through the binding to PGD₂ receptor, and is useful as a drug for treating diseases in which mast cell dysfunction due to excessive production of PGD₂ is involved. For example, the compound (I) is useful as a drug for treating diseases, such as systemic mastocytosis and disorder of systemic mast cell activation, and also tracheal contraction, asthma, allergic rhinitis, allergic conjunctivitis, urticaria, injury due to ischemic reperfusion, and inflammation. The compound (I) shows preventive effect on nasal occlusion in vivo, and therefore is especially useful as a drug for treating that.

When using a compound (I) of the present invention in treatment, it can be formulated into ordinary formulations for oral and parenteral administration. A pharmaceutical composition containing a compound (I) of the present invention can be in the form for oral and parenteral administration. Specifically, it can be formulated into formulations for oral administration such as tablets, capsules, granules, powders, syrup, and the like; those for parenteral administration such as injectable solutions or suspensions for intravenous, intramuscular or subcutaneous injection, inhalant, eye drops, nasal drops, suppositories, or percutaneous formulations such as ointments.

In preparing the formulations, carriers, excipients, solvents, and bases known to one ordinary skilled in the art may be used. In case of tablets, they are prepared by compressing or formulating an active ingredient together with auxiliary components. Examples of usable auxiliary components include pharmaceutically acceptable excipients such as binders (e.g., cornstarch), fillers (e.g., lactose, microcrystalline cellulose), disintegrants (e.g., starch sodium glycolate) or lubricants (e.g., magnesium stearate). Tablets may be coated appropriately. In the case of liquid formulations such as syrups, solutions, or suspensions, they may contain suspending agents (e.g., methyl cellulose), emulsifiers (e.g., lecithin), preservatives, and the like. In the case of injectable formulations, it may be in the form of solution or suspension, or oily or aqueous emulsion, which may contain suspension-stabilizing agent or dispensing agent, and the like. In the case of an inhalant, it is formulated into a liquid formulation applicable to an inhaler. In the case of eye drops, it is formulated into a solution or a suspension. Especially, in the case of nasal drug for treating nasal occlusion, it can be used as a solution or suspension prepared by a conventional formulating method, or as a powder formulated using a powdering agent (e.g., hydroxypropyl cellulose, carbopole), which are administered into the nasal cavity. Alternatively, it can be used as an aerosol after filling into a special container together with a solvent of low boiling point.

Although an appropriate dosage of the compound (I) varies depending on the administration route, age, body weight, sex, or condition of the patient, and the kind of drug(s) used together, if any, and should be determined by the physician in the end, in the case of oral administration, the daily dosage can generally be between about 0.01 - 100 mg, preferably about 0.01 - 10 mg, per kg body weight. In the case of parenteral administration, the daily dosage can generally be between about 0.001 - 100 mg, preferably about 0.001 - 1 mg, more preferably about 0.001 - 1 mg, per kg body weight. The daily dosage can be administered in 1 - 4 divisions.

The following Examples are provided to further illustrate the present invention and are not to be construed as limiting the scope thereof.

45

35

10

50

Example 1

5
$$COOCH_3$$
 $COOCH_3$ $COOCH_3$ $COOCH_3$ $COOCH_3$ $COOCH_3$ $COOCH_4$ $COOCH_3$ $COOCH_4$ CO

Methyl (Z)-7-[(1S,2R,3R,4R)-3-aminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (II-1) (251 mg, 1.00 mmol) was dissolved in methylene chloride (8 ml) and triethylamine (0.238 ml, 2.00 mmol) was added thereto under a nitrogen atmosphere. To the mixture was added 2-chlorosulfonyldibenzofuran (350 mg, 1.31 mmol) under ice-cooling, and the mixture was stirred for 30 min and allowed to warm up to room temperature. The reaction mixture was purified by column chromatography on silica gel (n-hexane/ethyl acetate (1:4)) and recrystallized from n-hexane (10 ml) to yield methyl (Z)-7-[(1S,2R,3R,4R)-3-(2-dibezofuryl)sulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (1a-1) (342 mg, 0.710 mmol). Yield 71 %, mp 115-116 °C.

Elemental analysis (C ₂₇ H ₃₁ NO ₅ S)					
Calcd. (%):	C, 67.34;	H, 6.49;	N, 2.91;	S, 6.66	
Found (%):	C, 67.16;	H, 6.47 ;	N, 2.99;	S, 6.66	

35

40

45

55

30

20

IR(CHCl₃):3382,3024,2952,2874,1726,1583,1465,1442,1319,1245,1154 ,1121,1104,1071,1019,890,840,817 /cm.

 1 H NMR(CDCl₃)δ: 0.94-1.92(14H,m),2.15-2.24(3H,m),2.99-3.07(1H,m) 3.66(3H,s),4.98(1H,d,J=6.6Hz),5.10-5.22(2H,m),7.39-7.46(1H,m),7.51-7.70(3H,m),7.87-8.13(2H,m),8.53(1H,d,J=2.1Hz) [α]_D=0.6° (CHCl₃,c=1.01%,23°C). ([α]₃₆₅=+37.0° (CHCl₃,c=1.01%,23°C).

Methyl (Z)-7-[(1S,2R,3R,4R)-3-(2-dibezofuryl)sulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (1a-1) (234 mg, 0.50 mmol) was dissolved in methanol (6 ml)/tetrahydrofuran (4 ml). To the solution was added 1 N potassium hydroxide (1.50 ml, 1.50 mmol) under ice-cooling. After the reaction mixture was warmed up to room temperature, it was allowed to react for 16 hr and concentrated to remove the solvent. To the residue were added ethyl acetate (50 ml) and water (10 ml), and then 1 N HCl (2.00 ml, 2.00 mmol), and the organic layer was separated. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated. The residue was purified by column chromatography on silica gel (n-hexane/ethyl acetate (1:1) containing 0.2 % acetic acid) to yield (Z)-7-[(1S,2R,3R,4R)-3-(2-dibenzofuryl)sulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (1a-2) (203 mg, 0.434 mmol). Yield 87 %, oil.

IR (CHCl₃): 3266, 3026, 2952, 2874, 1708, 1465, 1443, 1423, 1319, 1267, 1245, 1153, 1121, 1104, 1072, 906 /cm.

¹H NMR(CDCl₃) δ : 0.93-1.94(14H,m),2.12-2.19(1H,m), 2.26(2H,t, J=7.2Hz), 3.00-3.08(1H,m),5.12-5.25(2H,m), 5.26(1H,d,J=6.6Hz), 7.38-7.45(1H,m),7.51-7.70(3H,m),7.87-8.13(2H,m), 8.54(1H, d, J=2.1Hz).
[α]_D=+6.8° (CHCl₃,c=1.08 %, 23 °C).

(Z)-7-[(1S,2R,3R,4R)-3-(2-Dibenzofuryl)sulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (1a-2) (453 mg, 0.97 mmol) was dissolved in methanol (5 ml). After addition of 1 N sodium methoxide/methanol (1.034 N, 0.937 ml, 0.97 mmol), the mixture was allowed to warm up to room temperature and to react for 1 hr. The solvent was removed by distillation to yield the sodium salt (1a-3) (457 mg, 0.933 mmol). Yield 96 %. Amorphous powder.

Elemental analysis (C ₂₆ H ₂₈ NO ₅ SNa 0.6H ₂ O)						
Calcd.(%):						
Found (%):	C,62.45;	H,5.92;	N,2.99;	S,6.49;	Na,4.46	

IR (KBr): 434, 3280, 3074, 3007, 2952, 2873, 1566, 1467, 1444, 1417, 1344, 1315, 1270, 1248, 1200, 1189, 1154, 1124, 1107, 1075, 1058, 895, 842, 818 /cm.

 1 H NMR(CD₃OD)δ: 1.02-2.05(16H, m), 2.16-2.23(1H, m), 2.94-3.00(1H, m), 4.98-5.05(2H, m), 7.41-7.48(1H, m), 7.53-7.62(1H, m), 7.66(1H, d, J=8.4Hz), 7.77(1H, d, J=8.4Hz), 8.57(1H, d, J=2.1Hz). [α]_D=-15.2° (CH₃OH, c=1.07%, 22°C).

Example 2

5

10

15

20

35

COOCH₃

$$(II-2)$$

$$(Ik-11)$$

$$(1k-12)$$

$$(1k-12)$$

Methyl (Z)-7-[(1S,2R,3R,4R)-3-aminobicyclo[2.2.1]hept-2-yl]-5-heptenoate trifrluroroacetate (II-2) (232 mg, 0.636 mmol), which was prepared by the method described in Reference Example 4 of the Japanese Patent Publication (KOKOKU) No. 79060/1993, was dissolved in methylene chloride (5 ml). To the solution were added triethylamine (0.279 ml, 2.00 mmol) and 4-biphenylcarbonyl chloride under ice-cooling and stirred for 7 hr at the same temperature. The reaction mixture was purified by column chromatography on silica gel (ethyl acetate/n-hexane (1:4)) to yield methyl (Z)-7-[(1S,2R,3R,4R)-3-(4-biphenyl)carbonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (1k-11) (221 mg, 0.512 mmol). The compound (1k-11) (190 mg, 0.440 mmol) was dissolved in methanol (6 ml). To the solution was added 1 N KOH (1.10 ml, 1.10 mmol) under ice-cooling and stirred for 15 hr at room temperature. The reaction mixture was concentrated in vacuo. The residue, after the addition of water (20 ml) and 1 N HCl (2 ml), was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane (1:1) containing 0.3 % acetic acid) to yield (Z)-7-[(1S,2R,3R,4R)-3-(4-biphenyl)carbonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (1k-12) (172 mg, 0.412 mmol). Yield 94 %.

The following compounds can also be prepared in the following manner.

Example 3

To a suspension of 4-carboxybutyltriphenylphosphonium bromide (14.8 g, 33.3 mmol) and tetrahydrofuran (80 ml) was added potassium t-butyrate (7.55 g, 67.3 mmol) at room temperature under a nitrogen atmosphere. After stirring for 1 hr at room temperature, the mixture was cooled to -20°C and a solution of N-[(1S,2S,3S,4R)-3-formylmethylbicyclo[2.2.1]hept-2-yl]benzenesulfonamide (III-1) (Japanese Patent Publication (KOKAI) No. 256650/1990, Reference Example 2) (3.25 g, 11.1 mmol) in tetrahydrofuran (20 ml) was added slowly. After stirring for about 1 hr at -20 °C, the ice bath was removed and the mixture was further stirred for 1 hr. To the reaction solution was added 2 N HCl and the mixture was extracted with ethyl acetate, washed with water and brine, and concentrated. After the addition of toluene and 1 N sodium hydroxide to the resultant crude product, aqueous layer was separated. The organic layer was washed with water again and the washing was combined with the previously obtained aqueous layer. After the addition of 2 N HCl, the aqueous solution was extracted with ethyl acetate. The extract was washed with water and brine, dried over sodium sulfate, and concentrated. The residue was purified by column chromatography on silica gel to obtain calcium (Z)-7-[(1R,2S,3S,4S)-3-phenylsulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (1d-1) (3.29 g, yield 79 %, mp 62°C).

Elemental analysis (C ₂₀ H ₂₇ NO ₄ S)						
Calcd.(%):						
Found (%):	C, 63.56;	H, 7.21;	N, 3.83;	S, 8.43		

 $\begin{array}{l} [\alpha]_{D} + + 5.3 \pm 0.5^{\circ} \ (\text{CHCl}_3, \ c = 1.003 \ \%, \ 22^{\circ} \text{C}) \\ [\alpha]_{D} + 27.1 \pm 0.7^{\circ} \ (\text{MeOH, c} = 1.015 \ \% \ 24 \ ^{\circ} \text{C}) \\ IR(\text{Nujol}) \ 3282, \ 3260, \ 3300, \ 2400, \ 1708, \ 1268, \ 1248, \ 1202, \ 1162, \ 1153, \ 1095, \ 1076/cm. \\ ^{1}\text{H NMR } \delta \ 0.88-2.10(\text{m}, 14\text{H}), \ 2.14(\text{br S}, \ 1\text{H}), \ 2.34(\text{t}, \ J = 7.2\text{Hz}, \ 2\text{H}), \ 2.95-3.07(\text{m}, \ 1\text{H}), \ 5.13-5.35(\text{m}, \ 3\text{H}), \ 7.45-7.64(\text{m}, 3\text{H}), \ 7.85-7.94(\text{m}, 2\text{H}), \ 9.52(\text{brS}, \ 1\text{H}). \end{array}$

Compounds prepared in accordance with a method described in Examples above are shown in Tables below.

Table 1a

COOR
NSO ₂ -X ₁ -X ₂ -X ₃

3
J
\
CF ₃
⊢SO₂NH₂
) —осн ,
// CO13
· /_\
s"
>-(
الع
_
_
осн _а

EP 0 837 052 A1

coor	1
NSO2-X1-X2-X3 H	

				
	No.	R ₁	X ₁ X ₂ -X ₃	
	1a-24	СНз		
10	1a-25	н	—⟨	
	1a-26	Na		
	1a-27	CH₃	A A.	
15	1a-28	н	-\ _N=N-\ \\\	
,,,	1a-29	Na		
	1a-30	CH ₃		
	1a-31	н		
20				
	1a-32	CH ₃		
	1a-33	н		
25		СН₃	N=CH	
,	1a-34	3		
	1a-35	CH ₃	_ {_}_Сн=сн₂	
30	1a-36	н		
	1a-37	СН₃		
	1a-38	н		
	•			
35	1a-39	CH₃		
	1a-40	н		
40	1a-41	Н	С осн₃	
	1- 43	СН₃	_	
	1a-42		~s~_{~}	
	1a-43	н		
45	1a-44	CH₃		
	1a-45	н		

	No.	R ₁	X ₁ -X ₂ -X ₃	
10		-		
	1a-46	CH ₃		
	1a-47 1a-48	H	- ()-= ()	
		Na		
15	1a-49	CH ₃		
	1a-50	н		
	1a-51	СН₃	NO ₂	
	1a-52	H	-(_}=-(_ }	
20			NH ₂	
	1a-53	CH ₃		
	1a-54	н	's' —	
	1a-55	СН₃	- ⟨_}	
25	1a-56	н		
	18-50	•••		
	1a-57	СН3	→	
30	1a-58	н		
	1a-59	сн		
35	1a-60	н	- ⟨¯⟩ -= ,⟨ ⟩	
33	4 44		₩ НО	
	1a-61	CH₃	~~~~	
	1a-62	н		
40	1a-63	СНз		
40	12-64	н	—<(СН ₂)₅СН₃	
			_	
	1a-65	СН3		
45	1a-66	Н	- J-OH	
	1a-67	СН₃		
	1a-67 1a-68	Н	— √ >F	
	14-70	П		
50				

	No.	R ₁	X ₁ -X ₂ -X ₃
10	1a-69 1a-70	сн ₃ н	-СН₃
15	1a-71 1a-72	сн ₃ н	
	1a-73 1a-74	сн ₃ н	-OAc
20	1a-75 1a-76	сн ₃ ` н	-COOR1
25	1a-77 1a-78	CH₃ H	$-$ \bigcolor NO ₂
	1a-79	н	-C)-OCH ₃
30	. 1a-80 1a-81	CH₃ H	NO ₂
35	1a-82 1a-83	CH₃ H	NH ₂
-	1a-84	н	NO ₂
40	1a-85	н	NH ₂ OCH ₃
45	1a-86	н	$ NO_2$ OH
	1a-87	н	NH ₂
			·

	No.	R ₁	X ₁ -X ₂ -X ₃
10	1a-88 1a-89	сн₃ н	-⟨, H-g-()
15	1a-90 1a-91	СН ₃ Н	
20	1a-92 1a-93	сн₃ н	-<> - <a>- - <a>- - <a>- - <a>- - <a>- - <a>-<a>-<a>-<a>-<a>-<a>-<a>-<a>-<a>-<a>
	1a-94	н	-C-H-C-och
25	1a-9 5	н	—————————————————————————————————————
30	1a-96	н	-С-й-С-и-С-он -С-й-С-и-С-
	· 1a-97	н	но
35	1a-98 1a-99	H Na	och,
40			

EP 0 837 052 A1

	No.	R ₁	X ₁ -X ₂ -X ₃	·
10				
	1a-100	CH ₃	NH	
	1a-101	н	\$	
15 .	1a-102	сн₃	NNa	
20	1a-103	СН₃		
	1a-104	н	S NH	
			s s	
25	1a-105	СНз	N-OCH ₃	
	12-106	Н		
	1a-107	CH ₃	→ Nace H	
30	1a-108	Н	N-OC₂H₅	
	1a-109	СНз	N-N	
	1a-110	н	W 8' W	
25	1a-111	СНз		
35	1a-112	н		
	1a-113	СН₃	Ph	
	1a-114	н	Ph	
40				

_	No.	R ₁	X ₁ -X ₂ -X ₃
10	1a-115 1a-116 1a-117 1a-118	CH ₃ H Na i-Pr	-CH2-
15	1a-119 fa-120 1a-121	CH ₃ Na H	─
20	1a-122 1a-123	CH₃ H	——————————————————————————————————————
	1a-124	CH ₃	CH ₂ OMs
25	1a-125 1a-126	CH₃ H	-CH2-CDAc
	1a-127 1a-1 <i>2</i> 8	сн₃ н	-{_}он
30	· 1a-129	CH ₃	-{
35	1a-130 1a-131	CH₃ H	— он
	1a-132 1a-133	CH₃ H	—————осн _з
40	1a-134	н	
	1a-135 1a-136	CH₃ H	-\(\)-\(\)\-\(\)\-\(\)
45	1a-137 1a-138	CH₃ H	
50	1a-139 1a-140	сн _з	-сн ₂ -

5	COOR,
	Н

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	1a-141 1a-142	с н ₃ н	-CH ₂ -NC	
15	1a-143	н	NO ₂	
20	1a -144	н	NH ₂	
	1a-145	н		
25	1a-146	. н	NO ₂	
30	1a-147	н		
35	1a-148	н	OCH ₃	
40	1a-149	н		
45	1a-150	н	ÖH OAc	
50	1a-151	H .	OCH ₃	

COOR ₁

	No.	R ₁	X ₁ -X ₂ -X ₃	
10			/ □\	
	1a-152	Н		
15	1a-153	н		
20	1a-154	н	CH ₃ O O	
25	1a-155	н		
30	1a-156	н		٠
35	1a-157	н	S	
	1a-158	н	SO ₂	
40 45	1a-159	н	N-CH _S	
	1a-160	н	NH	
50			~	

COOR ₁
· · · · · · · · · · · · · · · · · · ·

	No.	R ₁	X ₁ -X ₂ -X ₃
10	1a-161	н	
15	1a-162	н	CH ₃ O
20	1a-163	н	HO
20	1a-164	н	C ₂ H ₅ Q
25	1a-165 ·	н	CH ₃ O NO ₂
30	1a-166	Н	CH ₃ O NO ₂
	1a-16 7	н	
35	1a-168	н	
40	1a-169	н	N OCH3
45	12-170	н	OCH ₃
	1a-171	CH ₃	H ₃ C ₁
50	1a-172	Н	~s L J

	No.	R ₁	X ₁ -X ₂ -X ₃
10	1a-173	н	
15	1a-174	н	
20	1a-175 1a-176	CH₃ H	
25	1a-177 1a-178	сн ₃ н	H OCH ₃
30	1a-179 1a-180	CH₃ H	Н Он
	1a-181	н	N CH ₃
35	1a-182 1a-183	сн₃ н	

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	1a-184	н		
15	1a-185	н	- NH	
20	1a-186 1a-187	сн₃ н		
25	1a-188 1a-189	сн _а	COOR ₁	
30	1a-190 1a-191	сн _э н	COOR,	
35	1a-192 1a-193	CH₃ H	COOR	

	No.	$X_1-X_2-X_3$	
10	1a-194	CH₃O	
15	1a-195	CH ₉ O	
20	1a-196	CH ₃ O	
25	1a-19 7	сн,о	
	1a-198	————осн _я	
30	1a-199	`осн _ь	
35	1a-200	CH ₃ O	
	1a-0201	O ₂ N	
40	1a-202	-{	
45	1a-203	CH ₃ O NO ₂	

55

COOH

	No.	X ₁ -X ₂ -X ₃
10	1a-204	CH ₃ O N=N-
15	1a-205	CH30 N=N-(-)-N(
20	1a-206	N=N-(-)-OCH3 OCH3
	1a-207	-_N=N-_NO2
25	1a-208	N=CH-OCH
30	1a-209	CH₃O ————————————————————————————————————
	1a-210	CH3O
35	1a-211	CH ₉ O
40	1a-212	OCH ₃
	1a-213	осн _э
4 5		осн₃

5	Соон ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	No. $X_1-X_2-X_3$
10	1a-214 CH ₃ O
15	1a-215 ————————————————————————————————————
20	1a-216 ————————————————————————————————————
25	1a-217
30	1a-218
35	1a-219
	1a-220 CH ₃ O
40	1a-221 — N-C-F
45	1a-222 ——————————————————————————————————
50	1a-223 OCH ₃ OCH ₃ OCH ₃

5	COOH NSO ₂ -X ₁ -X ₂ -X ₃
	No. $X_{1}-X_{2}-X_{3}$
10	1a-224 CH ₃ O CH ₃
15	1a-225
	1a-226 CH ₃ O
20	1a-227 CH ₃ O ————————————————————————————————————
25	1a-228
30	1a-229 CH ₃ O NH ₂
	1a-230 CH ₃ O NO ₂
35	1а-231
40 45	1a-232 ———————————————————————————————————
	1a-233 — Ö-N-Ö-CI
	1a-234 $ - CF_3 $ 1a-235 $ - CH_3 $
50	1a-235 — OCH₃

5	Соон Н Н
	No. $X_1-X_2-X_3$
10	1a-236 — N- C- OCH₃
15	1a-237 ————————————————————————————————————
	1a-238 ———N-Ü—————————————————————————————————
20	1a-239 CH ₃ O OCH ₃ OCH
25	1a-240 CH ₃ O O N
<i>30</i>	1a-241 — ОСН3 ОСН3 ОСН3
	1a-242 CH ₃ O OCH ₃ OCH
35	1a-243 CH ₃ O OCH ₃ OCH ₃ OCH ₃ OCH ₃
40	1a-244 ———————————————————————————————————
45	1a-245 — N-S — OCH ₃ OCH ₃ OCH ₃ OCH ₃
50	1a-246 CH ₃ O OCH ₃ OCH ₃ OCH ₃ OCH ₃

5	СООН No. X ₁ -X ₂ -X ₃	
10	1a-247 CH ₃ O OCH ₃ O O	
15	1a-248 СН ₉ О О С-N С-N ОСН ₉	
	1a-249 CH ₃ Q O O O O O O O O O O O O O O O O O O O	
20	1а-250	
25	1a-251 CH ₀ O O OCH ₆ OC	
<i>30</i>	CH ₃ O OCH ₃ CH ₃ O OCH ₃ CH ₃ O OCH ₃	
	1a-253 OCH ₃ OCH ₃ OCH ₃ OCH ₃	
35	1a-254 CH ₃ O OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	
40	1a-255 CH ₃ CH ₃ CH ₃	
45	1a-256 O CH ₃ O OCH ₃	
50	1a-257	

	No. X ₁ -X ₂ -X ₃	
10	1a-258 ————————————————————————————————————	
15	1a-259 CH ₃ O	
	1a-260 CH ₃ Q CH ₂ —CH ₂ —	
20	1a-261 CH ₃ O	
	1a-262 ———————————————————————————————————	
25	1a-263	
30	1a-264 ————————————————————————————————————	
	1a-265	
35	OCH ₃ 1a-266 NH———OCH ₃	
40 40	1a-267 ————————————————————————————————————	
	1a-268 ————————————————————————————————————	
45	1a-269 ————————————————————————————————————	
	1a-270 ————————————————————————————————————	
50	1a-271	

СООН
NSO ₂ -X ₁ -X ₂ -X ₃

5	*NSO ₂ X ₁ -X ₂ -X ₃ H		
	No.	X ₁ -X ₂ -X ₃	
10	1a-272		
15	1a-273		
	1a-274	—————————————————————————————————————	
20	1a-275	CH ₃ Q CH ₂	
25	1a-276	CH ₂ Q	
30	1a-277	Осн	
	1a-278	CH ₃ O	
35	1a-279	—————————————————————————————————————	
40	1a-280	CH,O,O,O	
45	1a-281	CH3O	
	1a-282		
50	1a-283		

5	, NSO ²	-X ₁ -X ₂ -X ₃
	No.	X ₁ -X ₂ -2

	No.	X ₁ -X ₂ -X ₃
10	1a-284	
15	1a-285	CH ₃ Q CH ₃ Q
	1a-286	CH ₃ O
20	1a-287	CH ₃ O O S
25	1a-288	CH3O NH
30	1a-289	CH ₉ O CH ₉
35	1a-290	CH ₃ O ₂
40	1a-291	CH ₉ O
W	1a-292	CH ₃ O
45	1a-293	сньо
50	1a-294	CH ₃ O

٠,٠

	соон
NSO H	O ₂ -X ₁ -X ₂ -X ₃

	\	
	No.	X ₁ -X ₂ -X ₃
10	1a-295	CH ³ O
15	1a-296	CH ₂ O H
20	1a-297	CH ₀ CH ₃
	1a-298	CH ₉ O
25	1a-299	CH₃O H NO₂
<i>30</i>	1a-300	CH3O H OCH3
35	1a-301	CH ₃ O OCH ₃
	1a-302	CH ₃ O NH NO ₂
40	1a-303	CH ₃ O OCH ₃
45	1a-304	CH-O O NH
50	1a-305	O ₂ N NH
		37

40	No.	R ₁	X ₁ -X ₂ -X ₃
10	1b-1	СНз	
15	1b-2	СНЗ	-CH ₂ -C
	1b-3	н	-{
20	1b-4	н	
25	1b-5	н	CH ₉ O
	1b-6	н	CH ₃ O
30	1b-7	н	CH ₂ O ————————————————————————————————————
35	1b-8	н	CH ₃ Q CH ₂
40	1b-9	н	CH ₃ O
45	1b-10	н .	CH ₃ O

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	1b-11	Н		
15	1b-12	н	осн _я	
20	1b-13	Н	CH ₃ O OCH ₃ OCH ₃ OCH ₃ OCH ₃	
25	1b-14	Н	CH ₃ O	
30	1b-15	Н	-\(\bar{\bar{\sigma}}\)-s-\(\bar{\sigma}\)	

Table 1c

5

COOR₁

	No.	R ₁	X ₁ -X ₂ -X ₃
10	1c-1	СН	~\bar{\range}=\bar{\range}
	1c-2	сн₃	
15	1c-3	к	
20	1c-4	н	-CH ₂ -C
	1c-5	н	
25	1c-6	н	OCH3 OCH3 OCH3
30	1c-7	н.	CH ₃ O
35	1c-8	н	- ⟨>-∘-⟨>
40	1c-9	н	
	1c-10	н	CH ₂ O
45	1c-11	н	CH ₃ O OCH ₃ OCH ₃ OCH ₃
50	1c-12	н	CH ₃ O OCH ₃

Table 1d

10	No.	R ₃ R ₄	X ₁ ·X ₂ ·X ₃
	1d-1	H SO₂CH₃	
15	1d-2	н н	
	1d-3	н он	—()CH ₂ —()
	1d-4	H SO₂CH₃	
20	1d-5	H SO₂CH₃	
25	1d-6	н so₂cн₃	сн ₃ о
30	1d-7	н so₂сн₃	CH ₃ O ————————————————————————————————————
35	1d-8	H SO₂CH₃	CH ₂ O
40	1d-9	H SO₂CH₃	сн,о
45	1d-10	H SO₂CH₃	CH ₈ O

	No.	R ₃ R ₄	$X_1-X_2-X_3$
10	1d-11	H SO₂CH₃	осн,
15	1d-12	н ѕо₂сн₃	
20	1d-13	н ѕо₂сн₃	сңо оснь оснь оснь оснь оснь
25	1d-14	н so₂cн₃	CH3O
30	1d-15	н ѕо₂сн₃	

Table 1e

5

10 R_1 $X_1-X_2-X_3$ No. 1e-1 Н 15 1e-2 Н 20 Н 1e-3 25 Н 1e-4 н 1e-5 30 1e-6 Н 35 Н 1e-7 40 1e-8 45 1c-9 Н 50 Н 1e-10

Table 1f "N-202-X1-X2-X3

5

55

10	No.	R ₂	X ₁ -X ₂ -X ₃
15	16-1	н	
20	1f-2	н	CH ₃ O
	11:3	н	—————————————————————————————————————
25	1f-4	н	
30	11-5	н	OCH3
35	1f-6 _.	н	сн ₃ о
40	. 1f-7	н	CH ₃ O CH ₂
	1f-8	н	CH ₃ O
45	16-9	н	CH ₃ O OCH ₃ OCH ₃ OCH ₃
50	11-10	н	CH ₃ O

Table 1g COOR₁

10	No.	R ₁	X ₁ -X ₂ -X ₃
	1g-1	н	
15	1g-2	н	CH ₃ O
20	1g-3	н	——————————————————————————————————————
25	1g-4	н	─
	1g-5	н	OCH3 C-N-C-N-OCH3 OCH3
30	1g-6	н	сньо
35	1g-7	н	- ○ - ○
40	1g-8	н	CH ₃ O CH ₂
	1g-9	н	CH ₃ O
45	1g-10	н	сн₃о осн₃
50	1g-11	н	сн _з о

55

Table 1h	COOR, N-SO ₂ -X ₁ -X ₂ -X ₃
----------	---

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	1h-1	н	~~~	
15	1h-2	н	—⟨¯>-сн₂-⟨¯>	<i>:</i>
20	1h-3	Н	- ⟨□} - =⟨□⟩	
25	1b-4	н	осн _я	Ħ
30	1h-5	н	CH ₃ O	
	1h-6	Н		
35	1h-7	Н	CH ₃ O	
40	1 h-8	Н	CH ₃ O	р
45	1h-9	Н	CH ₃ O OCH ₃ OCH ₃ OCH ₃ OCH ₃	и
50	1b-10	Н	CH ₃ O	r.

Table 1i

5

10	No.	R ₂	X ₁ -X ₂ -X ₃
	1i-1	н	- ○ - ○
15	1i-2	н	-CH2-C
20	1i-3	н	- ⟨
	1i-4	н	осн _я
25	1i-5	н	CH ² O
30	1i-6	н	- ⟨□}-∘-⟨□⟩
35	11-7	н	
40	1i-8	н	CH3O CH5
40	1i-9	н	
45	1i-10	н	CHO OCH CHO OCH
	1i-11	н	
50	1i-12	н	CH3O

Table 1j	
table 11	
	COOR
	N-SO ₂ -X ₁ -X ₂ -X ₃
	"

10	No.	R ₁	X ₁ -X ₂ -X ₃
10	1j-1	СНз	
	1j-2	н	—(
	1j-3	Na	
15	1j-4	н	~
	1j-5	СН3	
	1j-6	СН₃	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20	11-7	н	
			→
	1j-8	СНз	₹
25			
	1j-9	СН₃	~ <u>~</u> }-ë- { ~}
30	1j-10	н	
00	1j-11	СН₃	
	-√ 1j-12	н	o=c' .
	·		
35			→
	1j-13	СН₃	C=0
	1j-14	н	
40	1j-15	СНЗ	
	1j-16	Н	- ⟨ > = - ⟨ >

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	1 j -17	н		
15	1j-18 1j-19	сн ₃ н		
20	1j-20 1j-21	сн ₃		
25	1j-22	н	- N=PPh ₃	
30	1j-23 1j-24	CH₃ H	-\(\)-\(\)-\(\)-\(\)-\(\)	
<i>35</i>	1j-25 1j-26	CH₃ H		
	1j-27	н	-H-C	
40	1j-28 1j-29	сн₃ н	-N_O	

N-SO ₂ -X ₁ -X ₂ -X ₃
н

	No.	R ₁	X ₁ -X ₂ -X ₃
10	1j-30	Н	сн ₃ о ————————————————————————————————————
15	1j-31	Н	-\bigcip_N=N-\bigcip_och_3
20	1j-32	Н	сң _о о
	1j-33	Н	
25	1j-34	Н	CH ₃ O
30			21.2
	1j-35	Н	CH ₃ O
35	1 j-36	н	OCH,
40	1j-37	н	-C-N-C-och,
45	1j-38	Н	CH3O OCH3 OCH3 OCH3

•

Table 1k

10	No.	R ₁	X ₁ -X ₂ -X ₃
	1k-1	н	-0-CH2-
15	1k-2 1k-3	СН₃	
20	1k-4	н	
	1k-5	н	
25	1k-6	н.	
	1k-7	Н .	- ⟨¯⟩-∘-⟨¯⟩
30	1k-8	н	− С о−С он
	1k-9	н -	
35	1k-10	н	————————————————————————————————————
40	1k-11	CH₃	→
1 0	1k-12	н	

COOR₁

No. $R_1 X_1-X_2-X_1$	3
1k-13 H ——N=N—	осн,
15 1k-14 H	
20 1k-15 H	
1k-16 H	
1k-17 H CH₃O	
1k-18 H ———————————————————————————————————	2-{\bigs_}
1k-19 H ——Ö-Ö-N-	осн _з
40	
1k-20 H ———————————————————————————————————	

•44

55

50

Table 1m

10	No.	R ₁	X ₁ -X ₂ -X ₃
	1m-1 1m-2	CH₃ H	- ⟨¯⟩- = -⟨¯⟩
15	1m-3 1m-4	СН₃ Н	$-\bigcirc\!\!-\!\!\bigcirc$
20	1m-5 1m-6	сн _а н	-(
	1m-7 1m-8	CH₃ H	─
25	1m-9 1m-10	CH₃ H	-\(\bigc_{\rightarrow}\)-OAc
30	1m-11 1m-12	сн _а н	
35	1m-13 1m-14	CH₃ H	-{
40	1m-15 1m-16	сн₃ н	——————————————————————————————————————
***	1m-17 1m-18	СН₃ Н	————————

N-CO-X ₁ -X ₂ -X ₃

40	No.	R ₁	X ₁ -X ₂ -X ₃
10	1m19 1m-20	сн _а н	-Сосн
15	1m-21	н	-=
	1 m-22	н	
20	1m-23 1m-24	CH₃ H	- ⟨□⟩
<i>25</i>	1m-25 1m-26	СН₃ Н	————OAc
	1m-27 1m-28	сн₃ н	ОН
30	1m-29 1m-30	сн₃ н	———осн _а
35	1m-31	н	——— ⁸ -й———
	1m-32	н	
40	1m-33	н	

ŧ ".

1.2

N-CO-X₁-X₂-X₃

	No.	R ₁	X ₁ -X ₂ -X ₃
10	1m-34	Н	CH ₃ O
15	1m-35	н	сно
20	1m-36	Н	-√_N=N-√_>-OCH₃
25	1m-37	н	CH3O
30	1m-38	Н	OCH3 OCH3 OCH3
	1m-39	н	CH ₃ O OCH ₃ OCH ₃ OCH ₃ OCH ₃
35	1m-40	н	OCH3 OCH3 OCH3 OCH3 OCH3
40			

Table 2a

5

NHCOX, X₂-X₃

10	No.	R ₁	X ₁ -X ₂ -X ₃
–	2a-1 2a-2	сн _а	√
15	2a-3 2a-4	СН₃ Н	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	2a-5 2a-6	Na CH ₃	→
20	2a-7	Н	
	2a-8 2a-9	сн	———сно
25	2a-10 2a-11	сн ₉ н	- NH
30	2a-12 2a-13	сн ₉ н	NH S e
35	2a-14 2a-15	сн₃ н	
	2a-16 2a-17	сн₃ н	
40	2a-18	СН	
45	2a-19 2a-20 2a-21	н сн₃ н	
	2a-22	Na	
50	2a-23 2a-24	сн ,	-√ै -ċੈ -

55

4.

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	2a-25 2a-26	сн₃ н	-сн ₂ -	
15	2a-27 2a-28	CH₃ H		
	2a-29 2a-30	сн _з н	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
20	2a-31	СН₃	√	
25	2a-32 2a-33	СН ₃ Н	-CH2-N N	
30	2a-34 2a-35	сн ₃ н	~ <u></u>	
	2a-36 2a-37	СН ₃ Н	-H-(-)-(-)	
35	2a-38 2a-39	сн₃ н	→\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
40	2a-40 2a-41	сн ₃ н	-W, H, NH2	
	2a-42 2a-43	сн ₃ н	-√N-N-NH2	
45	2a-44 2a-45	сн₃ н		
50	2a-46 2a-47	СН₃ Н		

10	No.	R ₁	X ₁ -X ₂ -X ₃	
	2a-48	CH ₃	N=N	
	2a-49	н	_/_/_/N-//_/	
15	2a-50	CH ₃		
	2a-51	н	S-4NH2	
	2a-52	СНЗ	→ CN	
20	2a-53	Н		
	2a-54 2a-55	CH₃ H	-\(\big _{N-\big }^{\big _{N-\big }}	
			— н	
25	2a-56 2a-57	CH₃ H	-√	
	3d-37		CH₃	
30	2a-58	CH ₃	N=N N-CH₃	
50	2a-59	н	N N	
	2a-60	сн _а		
35	2a-61	••		
	2a-62	CH	/=\	
	2a-63	CH₃ H		
40				
	2a-64	СНз		
	2a-65	н	N-0-	
45	2a-66	СНз		•
	2a-67	н		

ž.,

:5

57

55

50

5

50

55

 R_1 $X_1-X_2-X_3$ No. 10 CH₃ 2a-68 2a-69 Н 15 2a-70 СН3 н 2a-71 СНэ 2a-72 20 н 2a-73 2a-74 СНз н 2a-75 25 СН₃ 2a-76 2a-77 Н 30 2a-78 CH₃ 2a-79 н СНз 2a-80 35 н 2a-81 СН₃ 2a-82 2a-83 н 40 СН₃ 2a-84 2a-85 н 2a-86 СНз 45 2a-87 н

10	No.	R ₁	X ₁ -X ₂ -X ₃	
	2a-88 2a-89	сн₃ н		
15	2a-90 2a-91	сн₃ н		
	2a-92 2a-93	CH ₃ H	_ _ _	
20	2a-94 2a-95 2a-96 2a-97	CH ₃ H Na Ca ^{1/2}		
25	2a-98	сн₃	_	
	2a-99	Н	- _}-•-_}	
30	2a-100 2a-101	CH₃ H	N _O N	,
35	2a-102 2a-103	CH₃ H	N.O. CH	
40	2a-104 2a-105	сн ₃ н	осн	
40	2a-106 2a-107	CH₃ H		
45	2a-108 2a-109 2a-110	CH3 H Na	-\$-\$-	
50	2a-111 2a-112	сн₃ н	—(

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	2a-113 2a-114	CH₃ H	-CF ₃	
15	2a-115 2a-116	сн₃ н	————cн ₃	
20	2a-117 2a-118	CH₃ H	~~;	
	2a-119	H .	OAG	
25	2a-120	н	→ OH	
30	2a-121	н	-√ ocH₃	
35	2a-122	н	- ○	
	2a-123	н	-CH ₂ -	
40	2a-124	н	−cH₂-	
45	2a-125	н	o=	

10	No.	R ₁	X ₁ -X ₂ -X ₃	
70	2a-126	н	→ Br	
15	2a-127	н		
	2a-128	н	-H—	
20	2a-129	н		
25	2a-130	н		
30	2a-131	н		
<i>35</i>	2a-132	н	HO R	
	2a-133	н	HO S	
40	2a-134	н	CH2-O-	
45	2a-135	н	J	
50	2a-136	н		

55

5

٠,١.

 R_1 $X_1 - X_2 - X_3$ No. 10 Н 2a-137 15 2a-138 Н 2a-139 20 2a-140 25 Н 2a-141 30 Н 2a-142 35 Н 2a-143 н 2a-144 40 Н 2a-145 45 Н 2a-146 2a-147 Н 50

55

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	2a-148	н	-=-(
15	2a-149	н	-=-	
	2a-150	н	_{s»	
20	2a-151	Н	Z,N	
	2a-152	н	H ₃ C N	
25	2a-153	н ·	H _s C	
30	2a-154	н	{s}сн _з	
35	2a-155	н	-	
	2 a-156	н	T N	
40	2a-157	н	H ₃ CZ _S ,N	
45	2a-158	н	₹,'n	
,	2a-159	н	−√ >−√	

;;

2a-160 H HOCC 15 2a-161 H ACC SN 10 2a-162 H NO2 2a-163 H N 2a-163 H N 2a-165 H 30 2a-166 H 35 2a-166 H 36 2a-167 H 40 2a-168 H 36 2a-169 H SC SC COCH ₃	10	No.	R ₁	X ₁ -X ₂ -X ₃	·
2a-161 H H ₀ C-S ^N 2a-162 H - NO ₂ 2a-163 H - N 2a-163 H - N 2a-164 H - N 30 2a-165 H - N 32-166 H - N 32-166 H - N 340 2a-168 H - N 40 2a-169 H - N 35 OCH ₀ 45 2a-170 H - S	,,,	2a-160	н	ноос	
22-163 H	15	2a-161	н	H ₃ C-\sum_S'N	
25 2a-164 H	20	2a-162	Н	NO ₂	
2a-164 H N N N N N N N N N N N N N N N N N N		2a-163	н	√ N	
2a-166 H	25	2a-164	н	→	
2a-167 H 2a-168 H 2a-169 H 2a-170 H 35	30	2a-165	Н	——	
2a-167 H 2a-168 H 2a-169 H 2a-170 H 3a-170 H		2a-166	н	~~~~\^\	
2a-169 H ———————————————————————————————————	35	2a-167	н		
2a-170 H ———————————————————————————————————	40	2a-168	н		
\$	45	2a-169	н	-{}s-{}-och _s	
	50	2a-170	н		

40	No.	R ₁	X ₁ -X ₂ -X ₃
10	2a-171	н	₹ _s ⊥ _{cн₃}
15	2a-172	н.	H ₃ C-S
20	2a-173	н	SBr
	2a-174	н	S Br
25	2a-175	н	Hcs Is
30	2a-176	н	S OCH
	2a-177	н	S
35	2a-178	н	S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-
40	2a-179	н	Br S
	2a-180	н	S LOCH3
45	2a-181	н	SCH,
50	2a-182	н	SCH

٠;:

::

۲٠

5.3

55

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	2a-183	н	-\(\)-\(\)-\(\)-\(\)	
15	2a-184	н ,	-Cs	
20	2a-185	н		
25	2a-186	н		
	2a-187	Н	H ₃ CQ	
30	2a-188	н		
<i>35</i>	2a-189	Н .	⊸(N _N cH₃	
	2a-190	н	H	
40	2a-191	н	N. CH ₃	
4 5	2a-192	н	N C₂H₅	
50	2a-193	н	N Ac	

5	NHCOX ₁ ·X ₂ ·X ₃

	No.	R ₁	X ₁ -X ₂ -X ₃	
10	2a-194	н		
15	2a-195	н	H ₃ CZ _S	
20	2a-196	н	S CH ₉	
25	2a-197	н		
30	2a-198	н		
	2a-199	н	ОН	
35	2a-200	н	CSD S	
40	2a-201	н		
4 5	2a-202	н	-\s\-\s\-\s\-\s\-\s\-\s\-\s\-\s\-\s\-\s	
50	2a-203	н		

• 1

Соон
NHCOX ₁ X- ₂ X- ₃

5 No. $X_1-X_2-X_3$ 10 2a-204 2a-205 15 2a-206 20 2a-207 25 2a-208 30 2a-209 2a-210 35 2a-211 40 2a-212 45 2a-213 50

	NHCOX ₁ -X ₂ -X ₃
•	

	<u></u>	البريسيس مردد	
<u> </u>	No.	X ₁ -X ₂ -X ₃	
10	2a-214	S C(CH ₃) ₃	
15	2a-215	S	
20	2a-216	S C	
	2a-217		
25	2a-218	SOCH	;
30	2a-219	S H ₃ C	·
35	2a-220	S H ₃ CO	
40	2a-221	сн₂он	
	2a-222	сн ₂ осн ₃	
45	2a-223	S COCH3	
50			

•	No.	X ₁ -X ₂ -X ₃
10	2a-224	-{
15	2a-225	-√_S-√_CH ₉
20	2a-226	–————————————————————————————————————
25	2a-227	–√∑–s–√ осн₃
	2a-228	-{\$\sigma}-s-{\$\sigma}
30	2a-229	H ₃ C CH ₃ CH ₃
35	2a-230	
40	2a-231	H ₃ CO ————————————————————————————————————
	2a-232	H ₃ CO ————————————————————————————————————
4 5	2a-233	H ₃ CQ ————————————————————————————————————
50		

		
	No.	X ₁ -X ₂ -X ₃
10	2a-234	H ₃ CO S H ₃ C
15	2a-235	H ₃ CO ————————————————————————————————————
20	2a-236	H ₃ CO ————————————————————————————————————
25	2a-237	H ₃ CO H ₃ CO
	2a-238	H ₃ C ————————————————————————————————————
30	2a-239	H ₃ C ————————————————————————————————————
35	2a-240	H ₃ C ————————————————————————————————————
40	2a-241	————— осн _а
45	2a-242	CH ₃ OCH ₃ CH ₃
50	2a-243	-√S-√S H₃CO

 $X_1 - X_2 - X_3$ No. 10 осн₃ 2a-244 осн₃ 15 2a-245 OCH3 2a-246 20 2a-247 , рснэ 25 2a-248 OCH3 30 2a-249 35 2a-250 нон₂с 2a-251 40 нзсонис

55

45

50

5	NHCOX ₁ -X ₂ -X ₃

5	<u>.</u>	
_	No.	X ₁ -X ₂ -X ₃
10	2a-252	-√CH ₃
15	2a-253	-CH ₃ S-CH ₃
20	2a-254	CH ₃ S—CH ₃
25	2a-255	H ₃ CO CH ₃ S-
30	2a-256	H ₃ CO ————————————————————————————————————
35		H₃CO
40	2a-257	СООН

. ŧ

	<u> </u>	
	No.	X ₁ -X ₂ -X ₃
10	2a-258	H ₃ CO
15	2a-259	H ₃ CO ————————————————————————————————————
20	2a-260	OCH ₃
25	2a-261	S COCH3
30	2a-262	S Coch
	2a-263	S OCH3
35	2a-264	CH ₃
40	2a-265	S CH3
45	2a-266 ≗∞	Стъ снъ снъ снъ спът спът спът спът спът спът спът спъ
50	2a-267	SCH ₃

	\		
	No.	X ₁ -X ₂ -X ₃	
10	2a-268		
15	2a-269		•
20	2a-270		2,
25	2a-271		۲.,,
30	2a-272	HO	
	2a-273		
35	2a-274		Ÿ
40	2a-27 5	HON	<i>18</i> .
45	2a-276	HO	· 1 .
50	2a-277	-CSD	्र ११

				
		No.	X ₁ -X ₂ -X ₃	
10	2	a-278	S N CH ₃	
15	2	a-279	C_2H_5	_
20	2	a-280	COCH ₆	
25	2	a-281	CINT .	
	2	a-282	SHS	
30	:	2a-283	S C_2H_5	
35	;	2a-284	S COCH ₃	
40	2	2a-285		
4 5 '	:	2a-286		
50	2	2a-287	CH ₃	

5	NHCOX ₁ -X ₂ -X ₃	он	
	No.	X ₁ -X ₂ -X ₃	
10	2a-288	N _{C2} H ₅	
15	2a-289	Coch	:
20	2a-290		¢
25	2a-291	CH ₃	۷,
30	2a-292	N _{C₂H₅}	
35	2a-293	COCH ₉	
. 40	2a-294		14
	2a-295	Ċн	
45	2a-296	OCH ₃ OCH ₃ OCH ₃	t;
50	,		78

NHCOX₁·X₂·X₃

5		
	 No.	X ₁ -X ₂ -X ₃
10	2a-297	—— °- N——— он
15	2a-298	———° - р-с-н-
20	2a-299	H ₃ CO O C-N OCH ₃ OCH ₃
25	2a-300	-C-H-CH3
30	2a-301	-C-N-C-N-
	2a-302	————————————————————————————————————
35	2a-303	-\(\bigc^{\color{1}}\)-\(\bigc^{\color{1}}\)-\(\bigc^{\color{1}}\)-\(\bigc^{\color{1}}\)
40	2a-304	-C-y-c-y-c-h
45	2a-305	—————————————————————————————————————
50	2a-306	—————————————————————————————————————

NHCOX₁-X₂-X₃

	No.	X ₁ -X ₂ -X ₃
10	2a-307	H ₃ CO OCH ₃ OCH ₄ OCH ₅ OCH ₅
15	2a-308	—————————————————————————————————————
20	2a-309	
25	2a-310	—————————————————————————————————————
30	2a-311	—————————————————————————————————————
35	2a-312	—— h-с-й-с-й-он
40	2a-313	—————————————————————————————————————
	2a-314	-CH3
45	2a-315	H ₃ CO OCH ₃ OCH ₃ OCH ₃
**		

1.12

55

٠,٠,

80

Table 2e

5

NHCOX₁-X₂-X₃

20 Table 2f

25

No. R_1 $X_1-X_2-X_3$ 2f-1 H \bigcirc 2f-2 H \bigcirc 35 $2f\cdot 3$ H

Table 2g

No. $R_3 R_4 X_1-X_2-X_3$ 2g-1 H SO₂CH₃

55

Table 2h

	No.	X ₁ -X ₂ -X ₃
10	2h-1	S
	2h-2	S CH ₃
15	2h-3	
	2h-4	-\(\bar{\bar{\sigma}}\)-s-\(\bar{\sigma}\)
20	2h-5	-
	2h-6	
25		

Table 2i

No.	X ₁ -X ₂ -X ₃
2i-1	\Z_s\
2i-2	Сн ₃
2i-3	
21-4	
2i-5	
2i-6	

Table 2j

5

NHCOX1-X5-X3

	No.	X ₁ -X ₂ -X ₃
10	2j-1	S
	2j-2	K _s Crt
15	2j-3	
	2j-4	
20	2j-5	
	2j-6	
25		<u> </u>

Table 2k

NHCOX₁-X₂-X₃

	No.	X ₁ -X ₂ -X ₃
35	2k-1	
	2k-2	SCH
40	2k-3	
	2k-4	(
45	2k-5	- ⟨\$\rightarrow\$-\(\sigma\rightarrow\$-\sigma\rightarrow\$-\sigma\rightarrow\$-\(\sigma\rightarrow\$-\sigma\ri
	2k-6	
50		

55

Table 3a

5

COOR₁

10	No.	R ₁	X ₁ -X ₂ -X ₃	·
	3a-1	сн₃		
15	3a-2 3a-3	н сн₃		
,,	3a-4 3a-5	H H₃N⁺C(CH₂OH)₃	$\overline{}$	
	3a-6 3a-7	Na 1/2 Ca		
20	3a-8	н	{T}-tBu	
25	3a-9	н	-CMe	
	3a-10	CH ₃	 _	
30	3a-11	Н		
	3a-12 3a-13	CH₃ H	Br	
35	3a-14	сн _з	Br	
	3a-15	сн₃	→	
40	3a-16	Н	(
	3a-17	сн₃	-	
45	3a-18	H 	\	

84

50

EP 0 837 052 A1

	No.	R ₁	X ₁ -X ₂ -X ₃
10	3a-19	СН₃	H₃C
	3a-20	Н	— Сн₃ н₃с
15	3a-21	СН₃	<u></u>
	3a-22	н	—(s)—Br
	3a-23	CH ₃	— СҺ ₂ ОН
20	3a-24	н	
	3a-25	н	—(СН ₂) ₃ СН ₃
	3a-26	СН₃	
25	3a-27	н	—(CH₂) ₇ CH₃
30	3a-28	СН₃	
30	3a-29	н	→ OCH ₃
35	3a-30	СН₃	
	3a-31	CH ₃	
	3a-32	H N-	>= <
40	3a-33	Na	
	3a-34	H	
	3a-35	Na	
45			

Table 3b

No	o. R ₁	X ₁ -X ₂ -X	3
3b-	-1 CH ₃	—()_CH ₂ -	√ >
3Ь	-2 H		
3h	-3 н	————N=P	N-
3b	-4 н	-(Br

 No.	R ₁	X ₁ -X ₂ -X ₃	
3c-1	н	-\(\)_N=N-\(\)	

Table 3d

5

N-SO₂-X₁-X₂-X₃

10	No.	R ₁	X ₁ -X ₂ -X ₃
	3d-1 3d-2	1/2 Ca Na	
15	3d-3	Na	СН3
	3d-4	Na	-√ _Ca
	3d-5	СН₃	. 🗇
20	3d-6	н	
	3d-7	сн	•
	3d-8	H	
25	3d-9	Na	
	3d-10	сн₃	
	3d-11	Н	—
30	3d-12	Na	《 》
	3d-13	1/2 Ca	_
	3d-14	н	
35	3d-15	Na	

40

45

50

55

٠,٠

5	N-SO ₂	COOR ₁		
	No.	R ₁	X ₁ -X ₂ -X ₃	
10	3d-16	н	-	
	3d-17	н	-{_}(CH₂)₄CH₃	
15	3d-18	н	—(CH ₂) ₃ CH ₃	
	3d-19 3d-20	с н,	мнсн	
20	3d-21 3d-22	н сн•		
25	3d-23	н	-√_Br	
	3d-24	н	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	
30	3d-25 3d-26	H Na	-{_} C₂H₅	racemic compound
35	3d-27 3d-28	H	C ₂ H ₅	racemic compound
	3d-29 3d-30	H Na	-√D-Br	racemic compound
40 Table		=^^coor,	<u> </u>	
4 5	NHS	O ₂ X ₁ -X ₂ -X ₃]	
	No.	R _i	X ₁ -X ₂ -X	3
50	3e-1	1/2Ca	-{->	-СН ₃

Physicochemical properties of compounds above are shown below. The compound number below corresponds to that described in Tables above.

No.1a — 4 $[\alpha]_D = -11.5^{\circ} (CHCl_3, c=1.01, 23.5^{\circ}C).$ No.1a — 5 $[\alpha]_{D}$ = -10.0° (CHCl₃,c=1.01,25.0°C). No.1a --- 6 10 CDCI₃ 300MHz 0.93-1.96(14H,m),2.20-2.26(3H,m),3.03(1H,m),3.67(3H,s),4.99(1H,d,J=6.6H z),5.10-5.24(2H,m),7.37-7.51(3H,m),7.54-7.64(3H,m),7.76-7.88(2H,m),8.11(1 H,m). IR (CHCl₃):3384,3278,3026,2952,2874,1727,1436,1411,1324,1155,1097 /cm. 15 $[\alpha]_D$ = -9.0° (CHCl₃,c=1.04,22.0°C). No.1a - 7 CDCl₃ 300MHz 0.93-2.00(14H,m),2.18(1H,m),2.28(2H,t,J=7.2Hz),3.04(1H,m),5.15-5.25(2H,m), 20 5.28(1H,d,J=6.9Hz),7.36-7.50(3H,m),7.54-7.63(3H,m),7.76-7.89(2H,m), 8.12(1H,m). IR(CHCl₃):3268,3028,2952,2872,1708,1452,1410,1324,1155,1097 /cm. $[\alpha]_D$ =-9.1° (CHCl₃,c=1.01,24.0°C). No.1a -8 CDCl₃ 300MHz 0.94-1.99(14H,m),2.21-2.29(3H,m),3.05(1H,m),3.67(3H,s),4.92(1H,d,J=6.3Hz),5.14-5.30(2H,m),7.70-7.78(6H,m),7.96-8.01(2H,m). IR(CHCl₃):3376,3272,3018,2946,2868,1727,1616,1435,1388,1324,1162,1130, 1069 /cm. 30 $[\alpha]_D = +1.6^{\circ}$ (CHCl₃,c=1.01,24.0°C). mp.117-119°C. No.1a --- 9 35 CDCl₃ 300MHz 0.95-2.08(14H,m),2.19(1H,m), 2.32(2H,t,J=7.2Hz),3.06(1H,m),5.20-5.30(2H, m),5.34(1H,d,J=6.6Hz),7.69-7.78(6H,m),7.96-8.03(2H,m). IR(CHCl₃):3260,3020,2950,2868,1708,1389,1324,1162,1130,1069 /cm. $[\alpha]_{D}$ = +13.3° (CHCl₃,c=1.05,24.0°C). 40 mp.118-120°C No.1a — 10 CDCl₃ 300MHz 45 0.96-1.98(14H,m),2.15-2.32(3H,m),3.04(1H,m),3.66(3H,s),5.12-5.26(5H,m),7.67-7.78(4H,m),7.93-8.07(4H,m), IR(CHCl₃):3276,3018,2946,2868,1726,1595,1435,1341,1162,1095 /cm. $[\alpha]_{D}$ = -1.5° (CHCl₃,c=1.01,25.0°C). mp.133-139°C. No.1a --- 11 CD₃OD 300MHz 1.05-1.98(14H,m),2.13-2.22(3H,m),2.97(1H,m),5.09-5.22(2H,m),7.85-7.92(4H,m),7.95-8.05(4H,m). IR(KBr):3385,3261,3069,3003,2954,2872,1708,1596,1428,1413,1378,1343,1326,1236,1186,1160,1096 /cm. 55 mp.144-146°C.

No.1a — 12

CDCl₃ 300MHz

0.96-1.96(14H,m),2.22-2.27(3H,m),3.03(1H,m),3.66(3H,s),3.87(3H,s),4.86(1 H,d,J=6.9Hz),5.18-5.24(2H,m),6.99-7.02(2H,m),7.55-7.66(2H,m),7.66-7.69(2 H,m),7.89-7.92(2H,m).
IR(CHCl₃):3374,3270,3016,2948,2870,1726,1608,1518,1487,1458,1437,1248, 1157,1037.

 $[\alpha]_D$ =+4.2° (CHCl₃,c=1.01,24°C).

mp.85-87°C.

10 No.1a — 13

5

15

25

30

40

50

CDCl₃ 300MHz

0.97-1.99(14H,m),2.18(1H,m),2.30(2H,t,J=7.2Hz),3.04(1H,m),3.86(3H,s),5.1 8(1H,d,J=5.7Hz),5.23-

5.26(2H,m),6.99-7.02(2H,m),7.55-7.58(2H,m),7.66-7.6 8(2H,m),7.89-7.92(2H,m).

IR(CHCl₃):3380,3260,3020,2948,2868,1708,1608,1519,1487,1458,1306,1293, 1248,1156 /cm. $[\alpha]_D$ =+18.3° (CHCl₃,c=1.00,25.5°C)

No.1a --- 14

20 CDCl₃ 300MHz

 $0.98-\tilde{2}.00(14H,m),2.20(1H,m),2.25(2H,t,J=7.2Hz),3.02(1H,m),3.67(3H,s),4.8$ 5(1H,d,J=6.3Hz),5.19-5.25(2H,m),7.13(1H,dd,J=4.8,3.6Hz),7.39(1H,d,J=4.8 Hz),7.40(1H,d,J=3.6Hz),7.71-7.74(2H,m),7.86-7.89(2H,m). IR(CHCl₃):3374,3270,3018,2946,2868,1727,1593,1434,1322/cm. [α]_D= +5.6° (CHCl₃,c=1.01,24°C).

mp.69-71°C.

No.1a — 15

CDCI₃ 300MHz

0.95-2.00(14H,m),2.17(1H,m),2.32(2H,t,J=7.2Hz),3.03(1H,m),5.20(1H,d,J=6.5.28(2H,m),7.13(1H,dd,J=4.8,3.3Hz),7.38(1H,d,J=4.8Hz),7.43(1H,d,J=3.3Hz),7.73(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz). IR(CHCl₃):3260,3022,2948,2868,1709,1593,1404,1321,1154/cm. $[\alpha]_D = +20.8^{\circ}$ (CHCl₃,c= 1.07,23°C).

9Hz),5.24-

35 mp.71-73°C.

No.1a --- 16

CDCl₃ 300MHz

0.98-2.00(14H,m),2.27(2H,t,J=7.5Hz),2.28(1H,m),3.13(1H,m),3.66(3H,s),4.9 5.29(2H,m),7.40-7.65(6H,m),7.76(1H,d,J=8.4Hz),7.90-8.02(4H,m). IR(CHCl₃):3376,3276,3018,2946,2868,1726,1593,1435,1394,1322,1159/cm. $[\alpha]_{D}$ = +7.0° (CHCl₃,c=1.07,24°C).

0(1H,d,J=6.9Hz),5.25-

45 No.1a --- 17

CDCl₃ 300MHz

1.02-2.07(14H,m),2.25(1H,m),2.34(2H,t,J=6.6Hz),3.14(1H,m),5.28-5.33(3H, 7.65(2H,m),7.76(1H,d,J=8.1Hz),7.89-8.02(4H,m).

m),7.39-7.57(4H,m),7.62-

IR(CHCl₃):3260,2948,2868,1709,1593,1394,1324,1157/cm. [α]_D=+20.2° (CHCl₃,c=1.02,24°C).

No.1a — 18

55 CDCl₃ 300MHz

1.05-1.97(14H,m),2.25(2H,t,J=7.2Hz),2.33(1H,m),3.12(1H,m),3.67(3H,s),4.9 5.29(2H,m),7.24(1H,d,J=3.9Hz),7.39-7.45(3H,m),7.56(1H,d,J=3.9Hz),7.59-7.62(2H,m). IR(CHCl₃):3372,3272,3018,2946,2868,1727,1433,1331,1152/cm.

1(1H,d,J=6.6Hz),5.24-

 $[\alpha]_D$ =-5.7° (CHCl₃,c=1.01,23°C). No.1a — 19 5 CDCl₃ 300MHz 1.05-2.05(14H,m),2.28-2.33(3H,m),3.13(1H,m),5.18(1H,d,J=6.3Hz),5.27-5.31 (2H,m),7.24(1H,d,J=4.2Hz),7.39-7.42(3H,m),7.56(1H,d,J=4.2Hz),7.58-7.62(2 H,m). IR(CHCl₃):3372,3254,3018,2948,2868,1707,1431,1328,1151/cm. $[\alpha]_D$ = +4.5° (CHCl₃,c=1.01,21.5°C). 10 No.1a -- 20 CDCI₃ 300MHz 1.05-2.00(14H,m),2.26(2H,t,J=7.5Hz),2.33(1H,m),3.11(1H,m),3.68(3H,s),4.9 15 2(1H,d,J=6.0Hz),5.27(2H,m),7.05(1H,m),7.10(1H,d,J=3.6Hz),7.25(1H,m),7.3 2(1H,m),7.49(1H,d,J=3.6Hz). $IR(CHCl_3):3372,3272,3018,2946,2686,1727,1438,1417,1333,1151/cm.$ $[\alpha]_D$ =-9.2° (CHCl₃,c=1.01,25°C). No.1a — 21 20 CDCl₃ 300MHz 1.02-2.01(14H,m),2.28-2.34(3H,m),3.13(1H,m),5.12(1H,d,J=6.9Hz),5.28-5.32 (2H,m), 7.06(1H,m), 7.10(1H,d, J=3.9Hz), 7.25(1H,m), 7.32(1H,m), 7.50(1H,d, J=3.9Hz). IR(CHCl₃):3350,3250,2948,1709,1440,1420,1330,1151. $[\alpha]_D$ =+2.5° (CHCl₃,c=1.00,25°C). 25 No.1a - 22 CDCl₃ 300MHz m),5.41(1H,d,J=6.6Hz),7.31-0.96-2.05(14H,m),2.25(1H,m),2.35(2H,t,J=7.0Hz),3.11(1H,m),5.20-5.34(2H, 30 7.49(5H,m)7.62(1H,d,J=7.8Hz),8.11(1H,d.d,J= 1.8 and 7.8Hz),8.35(1H,d,J=1.8Hz). IR(CHCl₃):3384,3271,3025,2958,1708,1608,1559,1537,1357,1168/cm. $[\alpha]_D = +18.3^{\circ}$ (CHCl₃,c=0.31,22°C). No.1a -- 23 CDCl₃ 300MHz 0.97-2.07(14H,m),2.24(1H,m),2.35(2H,t,J=6.9Hz),3.09(1H,m),3.86(3H,s),5.2 5.35(2H,m),5.44(1H,d,J=6.3Hz),6.97-7.00(2H,m),7.26-7.28(2H,m),7.59(1H, d,J=8.1Hz),8.06(1H,d.d,J=2.1 and 40 8.1Hz),8.29(1H,d,J=2.1Hz). IR(CHCl₃):3384,3270,2959,1709,1609,1535,1519,1357,1302,1255,1226,1169/cm. $[\alpha]_{D}$ =+17.0 ° (CHCl₃,c=1.00,21°C). No.1No.1a --- 24 45 CDCI₃ 300MHz 0.95-2.00(14H,m),2.20-2.25(1H,m),2.26(2H,t,J=7.2Hz),3.02-3.10(1H,m), 3.66(3H,s),4.92(1H,d,J=6.6Hz),5.16-5.31(2H,m),7.52-7.60(3H,m),7.94-8.06(6H,m). IR(CHCl₃):3376,3020,2946,2868,1726,1436,1366,1298,1164,1090,890/cm. 50 $[\alpha]_D = +11.2 \pm 0.5$ ° (CHCl₃,c=1.04,23.5°C) mp.101-103°C No.1a — 25 55 CDCl₃ 300MHz 0.95-2.08(14H,m),2.15-2.22(1H,m),2.33(2H,t,J=6.9Hz),3.02-3.10(1H,m), 5.21-5.31(2H,m),5.34(1H,d,J=6.3Hz),7.51-7.59(3H,m),7.92-8.07(6H,m).

IR(CHCl₃):3258,3022,2948,2868,1707,1399,1328,1298,1163,1089,1051,892/cm.

 $[\alpha]_D$ =+29.8±0.7 ° (CHCl₃,c=1.05,25°C) mp.158-160°C

No.1a --- 26

Anal. Calcd for $C_{26}H_{30}N_3O_4SNa$ 0.8 H_2O : C,60.29;H,6.15;N,8.11;S,6.19;Na, 4.44; Found: C,60.15;H,6.19;N,8.15;S,6.03;Na,4.98. [α]_D= -16.6° (CHCl₃,c=1.04,25.0°C).

10 No.1a - 27

5

CDCl₃ 300MHz

0.92-1.98(14H,m),2.20(1H,m),2.26(2H,t,J=7.5Hz),3.03(1H,m),3.12(6H,s),3.6 6(3H,s),4.87(1H,d,J=6.6Hz),5.16-5.32(2H,m),6.73-6.80(2H,m),7.88-8.00(6H, m).

15 IR(CHCl₃):3376,3020,2946,1726,1601,1518,1442,1419,1362,1312,1163,1133, 1088 /cm. $[\alpha]_D$ =+55.3° (CHCl₃,c=0.53,24.0°C). mp.158-168°C

No.1a -- 28

20

CDCl₃+CD₃OD 300MHz

0.99-2.14(14H,m),2.21(1H,m),2.31(2H,t,J=7.2Hz);2.94(1H,m), 3.12(6H,s),5.22-5.38(2H,m),6.73-6.81(2H,m),7.87-8.00(6H,m).

IR(KBr):3434,3309,2946,1708,1604,1520,1442,1416,1366,1312,1252,1164,1 155,1134,1091 /cm.

 $[\alpha]_D$ = not measurable (colored, insufficient energy) mp.193-196°C

No.1a - 29

30 CD₃OD 300MHz

1.02-1.96(14H,m),2.10(2H,t,J=7.8Hz),2.16(1H,m),2.98(1H,m),3.11(6H,s), 5.07-5.27(2H,m),6.80-6.87(2H,m),7.84-8.00(6H.m).

 $IR(KBr): 3433, 3087, 3004, 2949, 2871, 1604, 1565, 1520, 1444, 1420, 1364, 1312, 1\ 253, 11638, 1136, 1090\ /cm.$

 $[\alpha]_D$ = not measurable

35

40

45

55

25

No.1a --- 30

CDCl₃ 300MHz

0.95-1.99(14H,m),2.22(1H,m),2.26(2H,t,J=7.2Hz),2.35(3H,s),3.06(1H,m),3.6 6(3H,s),4.95(1H,d,J=6.9Hz),5.15-5.30(2H,m),7.26-7.32(2H,m),7.97-8.06(6H, m).

 $\label{eq:local_$

No.1a -- 31

CDCl₃ 300MHz

0.93-2.01(14H,m),2.19(1H,m),2.31(2H,t,J=7.2Hz),2.35(3H,s),3.06(1H,m), 5.17-5.32(2H,m),7.25-7.32(2H,m),7.96-8.07(6H,m).

 $IR(CHCl_3): 3267, 3028, 2952, 2874, 1759, 1708, 1592, 1495, 1368, 1328, 1299, 1163, \ 1138, 1088, 1050, 1008/cm.$

50 $[\alpha]_D$ =+21.7 ° (CHCl₃,c=0.51,22°C).

No.1a --- 32

CDCl₃ 300MHz

0.93-1.99(14H,m),2.21(1H,m),2.27(2H,t,J=7.2Hz),3.05(1H,m),3.67(3H,s),4.9 2(1H,d,J=6.6Hz)5.15-5.30(2H,m),6.72(1H,s),6.96-7.00(2H,m),7.86-8.04(6H, m). IR(CHCl₃):3374,3276,3018,2946,2686,1725,1605,1589,1502,1433,1396,1330, 1271,1164,1135,1089 /cm. [α]_D=+18.6° (CHCl₃,c=1.00,26.0°C).

```
No.1a - 33
         CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz
         0.98-2.08(14H,m),2.20(1H,m),2.28(2H,t,J=7.2Hz),2.98(1H,m),5.18-5.32(2H,
                                                                                                      m),6.92-6.99(2H,m),7.85-
5
         8.02(6H,m).
         IR(KBr):3385,3248,2948,2876,1717,1601,1505,1430,1399,1296,1280,1219,1 165,1136,1092 /cm.
         [\alpha]_{D}= -16.0° (CH<sub>3</sub>OH,c=1.08,26.0°C).
         mp.208-210°C
     No.1a --- 34
         mp.82-83°C [\alpha]<sub>D</sub>= +10.6° (CHCl<sub>3</sub>,c=1.01,23.5°C).
     No.1a - 35
15
         mp.80-82°C \{\alpha\}_{D}= -1.8° (CHCl<sub>3</sub>,c=1.07,22.0°C).
     No.1a --- 36
          TLC Rf=0.25 (ethyl acetate/n-hexane = 1:1 (0.3% acetic acid))
20
     No.1a - 37
          CDCl<sub>3</sub> 300MHz
         0.92-1.96(14H,m),2.21(1H,m),2.27(2H,t,J=7.4Hz),3.01(1H,m),3.66(3H,s),4.7
25
                                                                                                         1(1H,d,J=6.6Hz),5.14-
         5.29(2H,m),7.12(1H,d,J=16.2Hz),7.24(1H,d,J=16.2Hz),
                                                                                                         7.28-7.42(3H,m),7.52-
         7.56(2H,m), 7.62(2H,d,J=8.7Hz), 7.85(2H,d,J=8.7Hz).
         IR(CHCl<sub>3</sub>):3384,3283,3023,2954,2876,1730,1595,1494,1317,1163,1147 /cm.
         [\alpha]_{D}= +10.5° (CHCl<sub>3</sub>,c=1.01,24°C).
         mp 116-117 °C.
30
     No.1a - 38
         CDCl<sub>3</sub> 300MHz
         0.92-1.99(14H,m),2.17(1H,m),2.32(2H,t,J=7.2Hz),3.02(1H,m),5.23-5.29(3H,
35
         m),7.11(1H,d,J=16.2Hz),7.23(1H,d,J=16.2Hz),7.28-7.41(3H,m),7.52-7.55(2H,
         m),7.61(2H,d,J=8.7Hz),7.86(2H,d,J=8.7Hz).
         IR(CHCl<sub>3</sub>):3515,3384,3270,3022,3015,2957,2876,2669,1708,1595,1496,1320, 1157 /cm.
         [\alpha]_{D}= +27.1° (CHCl<sub>3</sub>,c=1.02,24°C).
40
     No.1a - 39
         CDCl<sub>3</sub> 300MHz
         0.92-1.99(14H,m),2.15(1H,m),2.28(2H,t,J=7.4Hz),3.01(1H,m),3.68(3H,s),4.9
                                                                                                         6(1H,d,J=6.6Hz),5.16-
         5.32(2H,m),6.60(1H,d,J=12.0Hz),6.74(1H,d,J=12.0Hz), 7.16-7.23(5H,m),7.35(2H,d,J=8.4Hz),7.72(2H,d,J=8.4Hz).
45
         IR(CHCl<sub>3</sub>):3384,3283,3023,3015,2954,2876,1730,1595,1493,1324,1163,1147 /cm.
         [\alpha]_D= +13.7° (CHCl<sub>3</sub>,c=1.00,24°C).
     No.1a -- 40
50
         CDCI<sub>3</sub> 300MHz
         0.90-2.16(14H,m),2.12(1H,m),2.34(2H,t,J=7.2Hz),3.02(1H,m),5.16(1H,d,J=6.
         5.34(2H,m),6.60(1H,d,J=12.3Hz),6.74(1H,d,J=12.3Hz),7.14-7.24(5H,m),7.35(2H,d,J=8.1Hz),7.72(2H,d,J=8.1Hz).
         IR(CHCl<sub>3</sub>):3515,3384,3269,3025,3021,3014,2957,2876,2668,1709,1595,1322, 1162,1147 /cm.
```

55

 $[\alpha]_{D}$ = +26.4° (CHCl₃,c=1.00,24°C).

No.1a --- 41

CDCl₃ 300MHz

0.98-1.99(14H,m),2.17(1H,m),2.32(2H,t,J=7.2Hz),3.00(1H,m),3.84(3H,s), 5.20-5.26(3H,m),6.90-6.95(2H,m),6.98(1H,d,J=16.2Hz),7.17(1H,d,J= 16.2Hz),7.46-7.49(2H,m),7.58(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz). IR(CHCl₃):3258,3018,3002,2950,1709,1590,1509,1457,1404,1302,1250,1153 /cm. [α]_D= +30.2° (CHCl₃,c=1.00,23°C). mp.99-100 °C

10 No.1a — 42

15

CDCl₃ 300MHz

1.01-1.99(14H,m),2.28(2H,t,J=7.2Hz),2.30(1H,m),3.10(1H,m),3.66(3H,s),5.0 7(1H,br),5.25-5.30(2H,m),6.98-7.04(2H,m),7.16(1H,d,J=16.2Hz),7.28-7.37(3 H,m),7.47-7.50(3H,m). IR(CHCl₃):3372,3276,3020,2946,2870,1727,1491,1433,1331,1152 /cm. $[\alpha]_{D}$ = -11.5° (CHCl₃,c=1.07,21.5°C).

No.1a -- 43

20 CDCl₃ 300MHz

 $\begin{array}{l} 0.98\text{-}2.00(14\text{H,m}), 2.11\text{-}2.36(3\text{H,m}), 3.12(1\text{H,m}), 5.10(1\text{H,d},\text{J=}6.6\text{Hz}), 5.29\text{-}5.32(2\text{H,m}), 6.99\text{-}\\ 7.04(2\text{H,m}), 7.23(1\text{H,d},\text{J=}21.6\text{Hz}), 7.32\text{-}7.49(6\text{H,m}).\\ \text{IR}(\text{CHCl}_3):3380, 3248, 3020, 2948, 2868, 1709, 1491, 1430, 1329, 1151/cm.\\ \text{[α]}_{D}=+3.4^{\circ}\ (\text{CHCl}_3, \text{c=}1.03, 25^{\circ}\text{C}). \end{array}$

25 No.1a --- 44

CDCl₃ 300MHz

1.00-2.00(14H,m),2.13(1H,m),2.29(2H,t,J=7.4Hz),2.90-3.13(5H,m),3.68(3H,s),4.74(1H,d,J=6.6Hz),5.15-5.30(2H,m),7.18-7.29(7H,m),7.76(2H,d,J=8.1Hz). IR(CHCl₃):3384,3282,3063,3028,3023,3016,2953,2876,1730,1599,1496,1319, 1157 /cm. [α]_D=+2.3° (CHCl₃,c=1.00,25°C). mp.85.0-86.0°C

35 No.1a --- 45

CDCl₃ 300MHz

0.90-2.05(14H,m), 2.09(1H,m), 2.35(2H,t), J=6.9Hz), 2.90-3.13(5H,m), 5.18(1H,d), 2.90-3.13(5H,m), 3.18(1H,d), 3.18(1H,d),

40 IR(CHCl₃):3510,3384,3270,3087,3063,3026,3018,3014,2955,2876,2670,1708, 1599,1496,1318,1157/cm. $[\alpha]_D$ =+8.5° (CHCl₃,c=1.01,25°C).

No.1a --- 46

45 $[\alpha]_D$ =+6.8° (CHCl₃,c=1.05,25°C). mp.99-100°C.

No.1a — 47

CDCI₃ 300MHz

0.97-2.01(14H,m),2.14(1H,m),2.36(2H,t,J=7.2Hz),3.02(1H,m),5.23(1H,d,J=5. 7.39(3H,m),7.54-7.58(2H,m),7.63-7.66(2H,m),7.8 5-7.88(2H,m). IR(CHCl₃):3375,3260,3022,2948,2212,1707,1596,1497,1396,1322,1160/cm. [\alpha]_D=+25.0° (CHCl₃,c=1.02,24°C). mp.117-118°C.

55 No.1a — 48

50

CD₃OD 300MHz 1.05-1.93(14H,m),2.10-2.15(3H,m),2.96(1H,m),5.08-5.28(2H,m),7.38-7.40(3

H,m),7.554-

7.56(2H,m), 7.69(1H,d,J=8.4Hz), 7.87(1H,d,J=8.4Hz).

No.1a -- 49

CDCl₃ 300MHz 5

> 0.96-1.97(14H,m),2.24(1H,m),2.31(2H,t,J=6.9Hz),3.05(1H,m),3.69(3H,s),5.1 5(1H,d,J=6.6Hz),5.25-5.27(2H,m),7.40-7.43(3H,m),7.61-7.64(2H,m),7.85(1H, d,J=8.1Hz),8.07(1H,dd,J=8.1,1.8Hz),8.58(1H,d,J=1.8Hz). IR(CHCl₃):3374,3020,2948,2870,2212,1726,1606,1530,1493,1437,1345,1167/cm. $[\alpha]_D$ =+2.4° (CHCl₃,c=1.03,25°C). mp.77-79°C.

10

15

No.1a -- 50

CDCl₃ 300MHz

1.00-2.02(14H,m),2.20(1H,m),2.34(2H,t,J=6.6Hz),3.08(1H,m),5.26-5.29(2H, m),5.41(1H,d,J=6.9Hz),7.40-7.43(3H,m),7.61-7.64(2H,m),7.84(1H,d,J=8.1Hz),8.07(1H,dd,J=8.4,1.8Hz),8.57(1H,dd,J=1.8Hz). IR(CHCl₃):3380,3254,2952,2880,2212,1707,1606,1531,1493,1409,1344,1166. $[\alpha]_D = +23.4^{\circ} (CHCl_3, c=1.00, 25^{\circ}C).$

No.1a — 51

20

25

30

CDCI₃ 300MHz

0.95-1.98(14H,m),2.23(1H,m),2.30(2H,t,J=7.2Hz),3.00(1H,m),3.66(3H,s),4.5 6(2H,br),4.70(1H,d,J=6.9Hz),5.20-5.29(2H,m),7.15(1H,dd,J=7.8,1.8Hz),7.23 (1H,d,J=1.8Hz),7.36-7.39(3H,m),7.46(1H,d,J=7.8Hz),7.53-7.56(2H,m), IR(CHCl₃):3494,3386,3028,2952,2874,1725,1611,1559,1497,1422,1317,1162/cm.

No.1a -- 52

CDCl₃ 300MHz

0.96-2.04(16H,m),2.20(1H,m),2.36(2H,t,J=6.9Hz),2.99(1H,m),5.17(1H,d,J=6. 3Hz),5.28-5.31(2H,m),7.18(1H,dd,J=9.6,1.8Hz),7.25(1H,m),7.36-7.39(3H,m), 7.46(1H,d,J=7.8Hz),7.52-7.56(2H,m), IR(CHCl₂):3482,3378,3260,3022,2948,2868,1708,161 2,1495, 1422, 1317/cm. $[\alpha]_D = +15.0^{\circ} (CHCl_3, c=1.00, 24^{\circ}C).$

No.1a — 53

35

40

45

55

CDCl₃ 300MHz

1.01-2.05(15H,m),2.31(2H,t,J=7.2Hz),3.10(1H,m),3.67(3H,s),5.02(1H,br),5.2 5.33(2H,m),7.18(1H,d,J=4.2Hz),7.36-7.39(3H,m),7.48(1H,d,J=4.2Hz),7.51-7.55(2H,m). IR(CHCl₃):3372,3270,3018,3004,2946,2868,2202,1726,1486,1433,1336,115 4/cm. $[\alpha]_D$ =+0.6° (CHCl₃,c=1.11,25°C), $[\alpha]_{436}$ +17.8° (CHCl₃,c=1.11,25°C).

No.1a --- 54

CDCi₃ 300MHz

0.99-2.11(14H,m),2.27(1H,m),2.37(2H,t,J=7.5Hz),3.13(1H,m),5.16(1H,d,J=6. 5.35(2H,m), 7.18(1H,d,J=3.6Hz), 7.37-7.39(3H,m), 7.50(1H,d,J=3.6Hz), 7.52-7.55(2H,m). IR(CHCl₃):3484,3370,3246,2948,2868,2202,1708,1486,1429,1335,1153/cm. $[\alpha]_D=+17.8^{\circ}$ (CHCl₃,c=1.00,24°C). mp.95-96°C

6Hz),5.31-

No.1a — 55

CDCI₃ 300MHz

0.95-1.92(14H,m),2.15(1H,m),2.24(2H,t,J=7.5Hz),3.00(1H,m),3.66(3H,s),5.1 0-5.30(3H,m),7.40-7.60(7H,m),7.70(1H,d,J=7.8Hz),8.08(1H,d,J=8.1Hz).(CHCl₃):3356,3020,2948,2868,2210,1727,1490,1458,1437,1341,1165/cm. [α] _D=-58.4° (CHCl₃,c=1.00,26°C). mp.84-85°C.

No.1a - 56

CDCl₃ 300MHz

0.95-1.95(14H,m),2.10(1H,m),2.27(2H,t,J=6.9Hz),3.00(1H,m),5.17-5.21(2H,

m),5.38(1H,d,J=6.9Hz),7.39-

7.60(7H,m), 7.70(1H,dd,J=7.8,1.5Hz), 8.07(1H,J=6.6,1.5Hz).

IR(CHCl₃):3364,3026,2952,2874,2212,1707,1597,1491,1458,1411,1341,1164/cm.

 $[\alpha]_D$ =-43.1° (CHCl₃,c=1.00,25°C).

No.1a --- 57

10

20

30

45

55

5

CDCl₃ 300MHz

0.99-1.97(14H,m),2.23-2.30(3H,m),3.01(1H,m),3.67(3H,s),5.17-5.26(3H,m),7.

36-7.38(3H,m),7.50-

7.56(3H,m),7.60(1H,m),7.83(1H,m),8.05(1H,m).

IR(CHCl₃):3376,3020,2946,2870,1727,1598,1491,1437,1412,1330,1245,116 3/cm.

15 $[\alpha]_D=-12.7^{\circ}$ (CHCl₃,c=1.00,24°C).

No.1a -- 58

CDCl₃ 300MHz

0.97-1.98(14H,m),2.20(1H,m),2.33(2H,t,J=6.9Hz),3.02(1H,m),5.19-5.28(3H,

m),7.36-7.38(3H,m),7.47-

7.55(3H,m),7.69(1H,m),7.83(1H,m),8.04(1H,m).

IR(CHCl₃):3376,3260,3022,3002,2948,2868,2220,1708,1598,1490,1455,1412, 1327,1162/cm.

 $[\alpha]_D$ =-8.6° (CHCl₃,c=1.01,24°C).

25 No.1a — 59

CDCl₃ 300MHz

 $0.95 - 1.99 (24 H, m), 2.20 (1 H, m), 2.28 (2 H, t, J = 7.8 Hz), 2.53 (1 H, s), 2.96 (1 H, m), 3.6 \\ 9 (3 H, s), 4.99 (1 H, d, J = 6.6 Hz), 5.18 - 1.00 (1 H, d), 2.28 (2 H, t, J = 7.8 Hz), 2.53 (1 H, s), 2.96 (1 H, m), 3.6 \\ 9 (3 H, s), 4.99 (1 H, d, J = 6.6 Hz), 5.18 - 1.00 (1 H, d), 2.28 (2 H, t, J = 7.8 Hz), 2.53 (1 H, s), 2.96 (1 H, m), 3.6 \\ 9 (3 H, s), 4.99 (1 H, d), 2.28 (2 H, t, J = 7.8 Hz), 2.53 (1 H, s), 2.96 (1 H, m), 3.6 \\ 9 (3 H, s), 4.99 (1 H, d), 3.6 \\ 9 (3 H, s), 4.99 (1 H, s$

5.20(2H,m),7.53(2H,d,J=8.4Hz),7.82(2H,d, J=8.4Hz).

IR(CHCl₃):3583,3376,3002,2936,2852,1725,1591,1490,1437,1393,1325,116 0/cm.

 $[\alpha]_{D}$ =-8.8° (CHCl₃,c=1.00,24°C).

No.1a --- 60

35 CDCl₃ 300MHz

0.96-2.05(24H,m),2.22(1H,m),2.33(2H,m),2.88(1H,m),5.22-5.26(2H,m),5.30(

1H,d,J=5.7Hz),7.50(2H,d,J=8.7Hz),7.80(2H,d,J=8.7Hz).

 $IR(CHCl_3): 3376, 3260, 3022, 2936, 2852, 1710, 1592, 1491, 1452, 1395, 1325, 1159/cm.\\$

 $[\alpha]_D$ =-8.9° (CHCl₃,c=1.06,24°C),

40 mp.88-91°C

No.1a --- 61

CDCI₃ 300MHz

0.95-2.24(23H,m),2.29(2H,m),2.99(1H,m),3.69(3H,s),4.76(1H,d,J=6.3Hz),5.2 1-5.24(2H,m),6.28(1H,m),7.50-

7.53(2H,m),7.77-7.80(2H,m).

 $IR(CHCl_3): 3374, 3270, 3018, 2942, 2868, 2196, 1726, 1589, 1490, 1435, 1324, 1158/cm.$

 $[\alpha]_D=+7.7^{\circ}$ (CHCl₃,c=1.02,24°C), mp.93-95°C

50 No.1a --- 62

CDCl₃ 300MHz

0.96-2.45(23H,m),2.36(2H,d,J=6.9Hz),2.99(1H,m),5.24(1H,d,J=6.3Hz),5.24-5.32(2H,m),6.28(1H,m),7.50-

7.53(2H,m),7.78-7.81(2H,m).

IR(CHCl₃):3468,3

374,3260,3020,2942,2868,2196,1598,1490,1455,1398,1322,1157/cm.

 $[\alpha]_{D}=+19.4^{\circ}$ (CHCl₃,c=1.03,24°C).

No.1a --- 63

CDCl₃ 300MHz

0.93-1.95(25H,m),2.16(1H,m),2.29(2H,t,J=7.2Hz),2.43(2H,t,J=6.9Hz),2.94(1

H,m),3.69(3H,s),4.95(1H,d,J=6.9Hz),5.21-5.24(2H,m),7.49(2H,d,J=8.7Hz),7.79(2H,J=8.7Hz).

IR(CHCl₃):3376,3018,2946,2866,2222,1727,1592,1456,1435,1325,1158/cm.

 $[\alpha]_D$ =+3.7° (CHCl₃,c=1.00,25°C).

No.1a - 64

10

CDCl₃ 300MHz

0.93-1.97(26H,m),2.35(2H,t,J=7.2Hz),2.43(2H,t,J=7.2Hz),3.00(1H,m),5.08(1

5.27(2H,m),7.49(2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz).

IR(CHCl₃):3260,3020,2948,2864,2222,1708,1592,1489,1456,1397,1324,1156/cm.

15 [α]_D=+14.4° (CHCl₃,c=1.00,25°C) mp.70-71°C.

No.1a --- 65

CDCl₃ 300MHz

20 0.95-1.98(14H,m),2.18(1H,m),2.30(2H,t,J=7.2Hz),3.00(1H,m),3.67(3H,s),4.8

3(1H,d,J=6.9Hz),5.22-

5.25(2H,m), 5.54(1H,br), 6.82-6.85(2H,m), 7.42-7.45(2H,m), 7.59-7.62(2H,m), 7.82-7.85(2H,m).

 $IR(CHCl_3): 3576, 3374, 3018, 2946, 2868, 2208, 1725, 1607, 1587, 1514, 1435, 1325, \ 1270, 1162, 1133/cm.$

 $[\alpha]_D=+9.1^{\circ}$ (CHCl₃,c=1.03,24°C), mp.111-112°C

25 No.1a --- 66

30

40

50

CDCl₃ 300MHz

0.97-2.03(14H,m),2.15(1H,m),2.35(2H,t,J=7.5Hz),3.00(1H,m),5.17(1H,d,J=6.

6Hz),5.26-5.30(2H,m),6.82-

H,d,J=6.6Hz),5.26-

6.85(2H,m),7.42-7.45(2H,m),7.59-7.62(2H,m),7.8 2-7.85(2H,m).

IR(CHCl₃):3260,2948,2870,2208,1709,1607,1587,1514,1396,1325,1270,1162, 1133/cm.

[α]_D=-21.0° (CHCl₃,c=1.00,23°C), mp.161-162°C

No.1a --- 67

35 CDCl₃ 300MHz

0.95-1.98(14H,m),2.20(1H,m),2.29(2H,t,J=7.2Hz),3.01(1H,m),3.67(3H,s),4.8

2(1H,d,J=6.6Hz),5.19-

5.27(2H,m),7.05-7.10(2H,m),7.51-7.56(2H,m),7.61-7.6 4(2H,m),7.84-7.87(2H,m).

IR(CHCl₃):3374,3280,3020,2946,2868,2214,1727,1589,1509,1435,1327,1233, 1161,1134/cm.

 $[\alpha]_D$ =+6.7° (CHCl₃,c=1.01,24°C), mp.84-85°C

No.1a — 68

CDCl₃ 300MHz

0.96-2.01(14H,m),2.15(1H,m),2.34(2H,t,J=6.9Hz),3.02(1H,m),5.23-5.27(3H,

m),7.04-7.10(2H,m),7.51-

45 7.56(2H,m),7.61-7.64(2H,m),7.85-7,88(2H,m).

IR(CHCl₃):3374,3258,3020,2948,2868,2214,1708,1589,1509,1455,1398,1322, 1156/cm.

 $[\alpha]_D$ =+22.6° (CHCl₃,c=1.02,24°C), mp.135-136°C

No.1a --- 69

CDCl₃ 300MHz

0.95-1.98(14H,m), 2.19(1H,m), 2.29(2H,t), 1.97-2.2Hz), 2.39(3H,s), 3.01(1H,m), 3.6 9(3H,s), 4.80(1H,d), 1.96-6.6Hz), 1.98-1.1Hz), 1.

IR(CHCl₃):3374,3022,2946,2868,2210,1727,1589,1511,1436,1323,1161,1133/cm.

55 [α]_D=+9.2° (CHCl₃,c=1.02,24°C).

mp.116-118°C

No.1a -- 70

CDCl₃ 300MHz

1.15-2.00(14H,m),2.13(1H,m),2.33-2.38(5H,m),3.04(1H,m),5.14(1H,d,J=6.6

Hz),5.25-

5.30(2H,m), 7.17(2H,d,J=7.8Hz), 7.44(2H,d,J=7.8Hz), 7.62(2H,d,J=8.4Hz), 1.17(2H,d,J=8.4Hz), 1.17(2

No.1a - 71

10

20

30

40

5

CDCl₃ 300MHz

0.95-1.96(14H,m),2.19(1H,m),2.29(2H,t,J=7.2Hz),3.00(1H,m),3.20(1H,s),3.6 5(3H,s),4.81(1H,d,J=6.6Hz),5.20-5.27(2H,m),7.46-7.54(4H,m),7.62-7.65(2H, m),7.85-7.88(2H,m). IR(CHCl₃):3374,3290,3018,3002,2946,2868,2212,2110,1726,1591,1507,1435, 1401,1324,1161/cm.

 $[\alpha]_{D}=+9.6^{\circ}$ (CHCl₃,c=1.01,24°C), mp.136-138°C,

No.1a — 72

CDCl₃ 300MHz

0.96-2.01(14H,m),2.14(1H,m),2.35(2H,t,J=7.2Hz),3.05(1H,m),3.20(1H,s),5.1 6(1H,d,J=7.2Hz),5.26-5.29(2H,m),7.45-7.53(4H,m),7.63(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz).
IR(CHCl₃):3462,3374,3290,3024,2948,2868,2212,2110,1708,1591,1508,1455, 1401,1321,1274,1160,1132/cm.
[\alpha]_D=+24.3\(\circ\) (CHCl₃,c=1.03,24\(\circ\)C), mp.96-99\(\circ\)C

25 No.1a — 73

CDCl₃ 300MHz

0.95-1.98(14H,m),2.19(1H,m),2.27-2.32(5H,m),3.01(1H,m),3.67(3H,s),4.80(15.27(2H,m),7.12(2H,m),7.56(2H,m),7.63(2H,m),7.84(2H, m).

H,d,J=6.6Hz),5.20-

IR(CHCl₃):3374,3276,3018,2946,2868,2214,1762,1730,1589,1506,1435,1368, 1161/cm.

 $[\alpha]_D$ =+7.8° (CHCl₃,c=1.02,24°C), mp.102-104°C

No.1a - 74

35 CDCl₃ 300MHz

0.95-2.05(14H,m),2.15(1H,m),2.32-2.37(5H,m),3.02(1H,m),5.14(1H,d,J=6.6 Hz),5.26-5.30(2H,m),7.10-7.13(2H,m),7.54-7.57(2H,m),7.62-7.64(2H,m),7.84-7.87(2H,m). IR(CHCl₃):3482,3250,3022,2946,2868,2214,1716,1709,1589,1507,1454,1396, 1368,1322,1195,1161/cm. $[\alpha]_D$ =+15.0° (CHCl₃,c=1.00,24°C) mp.129-131°C

No.1a — 75

CDCl₃ 300MHz

0.95-1.99(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),3.02(1H,m),3.67(3H,s),3.9 4(3H,s),4.79(1H,d,J=6.6Hz),5.19-5.29(2H,m),7.60-7.63(2H,m),7.65-7.67(2H, m),7.86-7.89(2H,m),8.04-8.06(2H,m).
IR(CHCl₃):3378,3018,2946,2880,1720,1604,1435,1307,1276,1161,1106 /cm.
[\alpha]_{n=+}7.3° (CHCl₃,c=1.01,25°C), mp.132-133°C

No.1a - 76

50

55

45

CDCl₃+CD₃OD 300MHz 1.04-2.05(14H,m),2.19(1H,m),2.32(2H,t,J=6.9Hz),2.93(1H,m)5.27-5.31(2H,

m),7.60-7.63(2H,m),7.65-

7.68(2H,m),7.86-7.89(2H,m),8.05-8.07(2H,m). IR(CHCl₃):3402,3299,2955,2876,2665,2549,1455,1422,1313,1281,1164 /cm.

[a]_D=-21.1° (CH₃OH,c=1.03,23°C), mp.227-229(dec.)

No.1a --- 77

CDCl₃ 300MHz

0.96-1.99(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),3.02(1H,m),3.68(3H,s),4.8

8(1H,d,J=6.3Hz),5.19-

5.29(2H,m),7.67-7.72(4H,m),7.89-7.91(2H,m),8.24-8.2 7(2H,m).

 $IR(CHCl_3): 3376, 3276, 3020, 2946, 2870, 2214, 1726, 1594, 1519, 1455, 1435, 1389, 1344, 1161/cm.\\$

 $[\alpha]_{D}=+7.7^{\circ}$ (CHCl₃,c=1.02), mp.87-89°C

No.1a - 78

10

20

5

CDCl₃ 300MHz

0.98-2.00(14H,m),2.18(1H,m),2.34(2H,t,J=7.2Hz),3.02(1H,m),5.24-5.28(2H,

m),5.32(1H,d,J=5.7Hz),7.67-

7.72(4H,m),7.89-7.92(2H,m),8.23-8.26(2H,m).

IR(CHCl₃):3374,3260,2948,2214,1708,1595,1344,1160/cm.

15 $[\alpha]_D=+23.3^{\circ}$ (CHCl₃,c=1.00), mp.102-103°C.

No.1a - 79 CDCl₃ 300MHz

0.93-2.02(14H,m),2.13(1H,m),2.36(2H,t,J=7.1Hz),3.05(1H,m),3.84(3H,s),5.1

8(1H,br),5.27-5.31(2H,m),6.88-

6.91(2H,m),7.48-7.50(2H,m),7.60-7.63(2H,m) 7.83-7.85(2H,m).

IR(CHCl₃):3380,3252,3020,2950,2868,2208,1708,1589,1511,1457,1396,1321, 1286,1160/cm.

 $[\alpha]_D=+26.7^{\circ}$ (CHCl₃,c=1.00). mp.75-77°C

No.1a --- 80

25 CDCl₃ 300MHz

0.96-1.99(14H,m),2.21(1H,m),2.30(2H,t,J=7.8Hz),3.02(1H,m),3.68(3H,s),4.8

0(1H,d,J=6.6Hz),5.19-

5.28(2H,m),7.51-7.77(5H,m),7.87-7.90(2H,m),8.13(1H, m).

IR(CHCl₃):3374,3270,3018,2946,2868,2216,1726,1607,1567,1527,1495,1456, 1436,1344,1296,1161/cm.

 $[\alpha]_D = +7.4^{\circ}$ (CHCl₃,c=1.00,22°C), mp.68-70°C

30

35

40

50

No.1a — 81

CDCl₃ 300MHz

0.97-2.01(14H,m),2.16(1H,m),2.34(2H,t,J=7.2Hz),3.01(1H,m),5.22-5.28(3H, m),7.51(1H,m),7.65(1H,m)7.70-

7.76(3H,m),7.88-7.91(2H,m),8.12(1H,dd,J=6. 9Hz,1.5Hz).

IR(CHCl₃):3480,3382,3262,3026,2952,2872,2218,1708,1607,1567,1526,1396, 1343,1225,1160/cm.

 $[\alpha]_D=+22.0^{\circ}$ (CHCl₃,c=1.00), mp.92-94°C

No.1a - 82

CDCl₃ 300MHz

0.95-1.98(14H,m),2.20(1H,m),2.29(2H,t,J=7.2Hz),3.01(1H,m),3.67(3H,s),4.3 0(2H,br),4.79(1H,d,J=6.9Hz),5.20-5.29(2H,m),6.71-6.76(2H,m),7.18(1H,m),7.37(1H,dd,J=7.8,1.2Hz),7.61-7.65(2H,m),7.83-7.87(2H,m).

IR(CHCl₃):3376,3020,2946,2868,2202,1725,1613,1589,1484,1454,1315,1253, 1161/cm.

45 $[\alpha]_D = +8.9^{\circ}$ (CHCl₃,c=1.00,22°C). mp.68-70°C

No.1a - 83

CDCl₃ 300MHz

0.97-1.99(14H,m),2.17(1H,m),2.33(2H,t,J=6.9Hz),2.99(1H,m),5.20-5.28(2H,

m),5.37(1H,d,J=6.9Hz),6.45(2H,br),6.71-6.76(2H,m),7.19(1H,dd,J=7.8,6.6Hz

),7.37(1H,m),7.62(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz).

IR(CHCl₃):3478,3378,3260,3022,2950,2868,2204,1708,1613,1589,1484,1454, 1396,1316,1160/cm.

 $[\alpha]_{D}=+17.1^{\circ}$ (CHCl₃,c=1.01).

No.1a --- 84

CDCl₃ 300MHz

1.00-2.08(14H,m),2.21(1H,m),2.37(2H,t,J=6.9Hz),3.06(1H,m),3.86(3H,s),5.2 9. 5.33(2H,m),5.45(1H,d,J=6.6Hz),6.91-6.94(2H,m),7.56-7.59(2H,m),7.81(1H, d.t,J=8.1Hz),8.04(1H,d.d,J=8.1&1.8Hz),8.57(1H,d,J=2.1Hz). IR(CHCl₂):3492,3254,3028,2954,2202,1708,1597,1512,1344,1291,1250/cm. $[\alpha]_{D}=+27.4^{\circ}$ (CHCl₃,c=0.53,23°C). No.1a --- 85 CDCl₃ 300MHz 2-0.96-2.05(14H,m),2.20(1H,m),2.35(2H,t,J=6.9Hz),2.99(1H,m),3.84(3H,s),5.2 5.31(3H,m),6.89(2H,d,J=8.7Hz),7.19(1H,brs),7.29(1H,brs),7.45-7.50(3H,m IR(CHCl₃):3478,3378,3020,2950,2868,2202,1708,1606,1511,1421,1311,128 7,1248,1155/cm. $[\alpha]_D = +17.1^{\circ} (CHCl_3, c=1.00, 23^{\circ}C).$ No.1a - 86 CDCI₃ 300MHz 1.03-2.05(14H,m),2.21(1H,m),2.37(2H,t,J=6.9Hz),3.04(1H,m),529-5.33(2H, m),5.57(1H,d,J=6.3Hz),6.84-6.87(2H,m)7.50-7.53(2H,m),7.79(1H,d,J=8.1Hz),8.03(1H,d,d,J=1.5and8.1Hz),8.57(1H,d,J=1.5Hz). IR(CHCl₃):3250,3024,2950,2868,2200,1707,1515,1344,1271,1166,1143/cm. $[\alpha]_D$ =+21.2° (CHCl₃,c=0.26,22°C). No.1a -- 87 CD₃OD 300MHz 1.04-2.00(14H,m),2.18(1H,m),2.26(2H,t,J=5.4Hz),2.93(1H,m),5.19-5.24(2H, m),6.77-6.80(2H,m),7.05(1H,d.d,J=2.1and8.1Hz),7.22(1H,d,J=2.1Hz),7.38-7. 42(3H,m). IR(CHCl₃):3377,2952,2873,2204,1705,1607,1515,1425,1312,1267,1222,115 3/cm. $[\alpha]_{D}$ =-15.6° (CH₃OH,c=1.02,22°C). No.1a --- 88 CDCl₃ 300MHz 0.90-1.96(14H,m),2.22-2.31(3H,m),2.95(1H,m),3.65(3H,s),4.87(1H,d,J=6.6H)z),5.13-5.28(2H,m),7.46-7.62(3H,m),7.82-7.89(4H,m),7.90-7.96(2H,m),8.42(1 H,brs). IR(CHCl₃):3376,3016,2946,2868,1720,1677,1592,1514,1498,1429,1376,1314, 1241,1156,1094 /cm. $[\alpha]_D$ = -10.7° (CHCl₃,c=1.04,22.0°C) mp.134-136°C No.1a - 89 CDCl₃+CD₃OD 300MHz m),7.46-7.62(3H,m),7.82-0.96-2.08(14H,m),2.23(1H,m),2.28(2H,t,J=7.2Hz),2.89(1H,m),5.20-5.32(2H, 7.97(6H,m). IR(KBr):3272,3007,2952,2874,1708,1660,1592,1527,1498,1433,1400,1317,1 260,1152,1094 /cm. $[\alpha]_{D}$ = -24.4° (CH₃OH,c=1.02,25.0°C).

5

10

15

20

25

30

35

40

45

50

No.1a — 90

CDCl₃ 300MHz z),5.10-5.25(2H,m),7.81-0.89-1.96(14H,m),2.23-2.33(3H,m),2.92(1H,m),3.67(3H,s),4.85(1H,d,J=6.3H)7.90(4H,m),8.10-8.18(2H,m),8.31-8.40(2H,m),8.77(1 H,s). IR(CHCl₃):3372,3018,2946,2868,1718,1685,1592,1527,1436,1397,1346,1318, 1256,1154,1099 /cm. $[\alpha]_{D}$ = -16.1° (CHCl₃,c=1.00,23.0°C).

No.1a --- 91

CDCl₃+CD₃OD 300MHz H,m),8.09-8.16(2H,m),8.30-0.94-2.02(14H,m),2.18-2.36(3H,m),2.87(1H,m),5.15-5.30(2H,m),7.82-7.92(4

EP 0 837 052 A1 8.37(2H,m). $IR(KBr): 3284, 3112, 3006, 2952, 2874, 1707, 1593, 1528, 1498, 1399, 1348, 1320, 1\ 259, 1153, 1093\ /cm.$ $[\alpha]_D$ = -26.3° (CH₃OH,c=1.01,22°C). No.1a — 92 CDCI₃ 300MHz 0.93-1.95(14H,m),2.22-2.31(3H,m),2.98(1H,m),3.68(3H,s),5.07(1H,d,J=6.9H z),5.10-5.24(2H,m),7.18(1H,m),7.35-7.43(2H,m),7.70(2H,d,J=7.8Hz),7.88-8.05(4H,m),8.50(1H,brs), IR(CHCl₃):3382,3008,2952,1720,1675,1599,1525,1499,1438,1321,1253,1161, 1087 /cm. 10 $[\alpha]_D$ = -16.6° (CHCl₃,c=1.03,24.0°C) mp.100-101°C No.1a -- 93 CDCl₃+CD₃OD 300MHz 15 0.96-2.00(14H,m),2.18-2.35(3H,m),2.90(1H,m),5.15-5.30(2H,m),7.18(1H,m), 7.33-7.42(2H,m),7.65-7.74(2H,m),7.90-8.08(4H,m). IR(KBr):3347,3194,3011,2955,2875,1706,1650,1602,1544,1499,1443,1325, 1265,1165,1091 /cm. $[\alpha]_D$ = -19.4° (CH₃OH,c=1.00,24.0°C) mp.158-159°C 20 No.1a - 94 CD₃OD 300MHz 1.05-2.00(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.98(1H,m),3.80(3H,s),5.1 3-5.27(2H,m),6.88-6.98(2H,m),7.54-7.64(2H,m),7.94-8.12(4H,m). 25 IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,1 302,1248,1162,1107,1090,1032/cm. $[\alpha]_{D}$ = -19.1° (CH₃OH,c=1.01,24°C). No.1a --- 95 CD₃OD 300MHz 1.04-2.02(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.93-3.02(7H,m),5.13-5.27 (2H,m),6.82-6.92(2H,m),7.51-7.59(2H,m),7.95-8.02(2H,m),8.04-8.11(2H,m). 35 IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,1 302,1248,1162,1107,1090,1032/cm. $[\alpha]_D$ =-17.6° (CH₃OH,c=1.01,24°C). No.1a — 96 40 CD₃OD 300MHz 1.05-2.02(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.98(1H,m),5.13-5.27(2H, m),6.75-6.84(2H,m),7.43-7.52(2H,m),7.94-8.12(4H,m), IR(KBr):3339,3197,2953,2875,1707,1644,1606,1541,1514,1446,1325,1293,1 259,1240,1225,1161,1091/cm. $[\alpha]_D$ = -18.7° (CH₃OH,c=1.00,24°C). mp.193-196°C 45 No.1a — 97 d₆-DMSO 300MHz 50 1.05-2.08(15H,m),2.15(2H,t,J=7.5Hz),2.89(1H,m),5.18-5.28(2H,m),6.78-7.12 (3H,m),7.73(1H,d.d,J=1.4and7.8Hz),7.91-7.95(3H,m),8.14(2H,d,J=8.4Hz),9.71(1H,s). IR(KBr):3407,3191,2953,1711,1646,1614,1603,1537,1457,1326,1162,1151/cm.

55 No.1a — 98

 $[\alpha]_D$ =-20.7° (CH₃OH,c=1.01,21°C).

CDCI₃ 300MHz 0.93-2.00(14H,m),2.21(1H,m),2.31(2H,t,J=7.2Hz),2.93(1H,m),3.84(3H,s),3.8

5(6H,s),5.15-

 $5.30(2H,m), 5.45(1H,d,J=6.3Hz), 7.04(2H,s), 7.78-7.86(2H,m), 7.9\ 0-7.98(2H,m), 8.58(1H,s).$ $IR(CHCl_3): 3264, 3008, 2954, 2874, 1707, 1670, 1607, 1537, 1506, 1451, 1421, 1308, \ 1158, 1129, 1086/cm.$ $[\alpha]_D=-7.2^\circ\ (CHCl_3, c=1.01, 23.5^\circ C).\ mp.147-149^\circ C.$

5 No.1a — 99

CD₂OD 300MHz

1.04-1.98(14H,m),2.21(1H,m),2.10(2H,t,J=7.2Hz),2.95(1H,m),3.76(3H,s),3.8

6(6H,s),5.07-

5.24(2H,m),7.19(2H,s),7.99(2H,d,J=8.7Hz),8.13(1H,d,J=8.7Hz).

IR(KBr):3354,3002,2950,2874,1656,1607,1570,1508,1452,1413,1314,1233,1 185,1157,1127,1092/cm.
 [α]_D= -20.3° (CH₃OH,c=1.00,23.5°C).

No.1a --- 100

15 CDCl₃ 300MHz

1.14-1.97(14H,m),2.19(1H,m),2.28(2H,t,J=7.4Hz),3.04(1H,m),3.69(3H,s),5.0 5.29(2H,m)7.65(2H,d,J=8.4Hz),7.87(1H,s),7.98(2H,d, J=8.4Hz). IR(CHCl₃):3386,3271,3025,3015,2955,2877,1755,1712,1608,1331,1162/cm. [α]_{D=} -29.4° (CH₃OH,c=1.01,25°C).

3(1H,d,J=6.9Hz),5.15-

No.1a — 101

25

d₆-DMSO

1.00-2.20(17H,m),2.84(1H,m),5.00-5.20(2H,m),7.78(2H,d,J=8.2Hz),7.84(1H, s),7.89-7.95(3H,m). IR(KBr):3269,3065,3008,2952,2874,2763,1746,1707,1607,1322,1157 /cm. [\alpha]_p= -26.2\(^{\text{CH}}_3\text{OH}_3\text{CH}_3\text{OH}_3\text{CH}3\text{CH}_3\text{CH}_3\text{CH}3

No.1a --- 102

30 CD₃OD

1.00-2.25(17H,m),2.92(1H,s),3.64(3H,s),5.07-5.21(2H,m),7.53(1H,s),7.77(2H, d,J=8.6Hz),7.90(2H,d,J=8.6). IR(KBr):3430,3277,3006,2952,2873,1720,1687,1620,1571,1438,1312,1156 /cm. $[\alpha]_D = -27.3^{\circ}$ (CH₃OH,c=0.51,26°C), mp 230-232°C.

35 No.1a --- 103

CDCl₃ 300MHz

0.94-1.96(14H,m),2.19(1H,m),2.28(2H,t,J=7.2Hz),3.04(1H,m),3.69(3H,s),5.1 5.28(2H,m),7.60(2H,d,J=8.4Hz),7.67(1H,s),7.98(2H,d, J=8.4Hz).

1(1H,d,J=6.6Hz),5.15-

40 IR(CHCl₃):3381,3021,2955,2876,1735,1605,1437,1411,1325,1231,1177 /cm. [α]_D=+8.6° (CHCl₃,c=1.00,23°C).

No.1a - 104

45 CDCl₃ 300MHz

 $0.94-1.96(14H,m),2.21(1H,m),2.31(2H,t,J=6.8Hz),2.99(1H,m),5.18-5.28(2H,m),5.45(1H,d,J=6.6Hz),7.61(2H,d,J=8.7Hz),7.67(1H,s),7.99(2H,d,J=8.7Hz).\\ IR(CHCl_3):3382,3222,3028,3019,2957,2876,1736,1709,1604,1412,1322,1301,1286,1179,1162 /cm.\\ [<math>\alpha$]_D= +10.4° (CHCl_3,c=1.00,23°C).

No.1a --- 105

50

55

CDCl₃ 300MHz

0.92-1.98(14H,m),2.17(1H,m),2.26(2H.d,J=7.5Hz),3.01(1H,m),3.69(3H,s),4.0 1(3H,s),4.84(1H,d,J=6.3Hz),5.14-5.30(2H,m),7.71(2H,d,J=8.7Hz),7.87(2H,d,J=8.7Hz),8.09(1H,s). IR(CHCl₃):3385,3284,3025,3015,2954,2877,2821,1730,1598,1459,1438,1403, 1341,1160,1052 /cm. $[\alpha]_{D}$ +3.6° (CHCl₃,c=1.00,26°C).

No.1a - 106 CDCl₃ 300MHz 0.92-2.08(14H,m),2.14(1H,m),2.34(2H,d,J=7.2Hz),3.02(1H,m),4.01(3H,s),5.1 9(1H,d,J=6.9Hz),5.23-5.32(2H,m),7.71(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz),8.09(1H,s). IR(CHCl₃):3510,3384,3268,3028,3021,3014,2957,2877,2821,2667,2821,2666, 1707,1598,1459,1404,1341,1324,1160,1052 /cm. $[\alpha]_D$ = +11.8° (CHCl₃,c=1.01,25°C). mp 95-96°C No.1a --- 107 CDCl₃ 300MHz 0.92-1.97(14H,m),1.34(3H,t,J=7.2Hz),2.18(1H,m),2.28(2H.d,J=7.4Hz),3.01(1 H,m),3.68(3H,s),4.26(2H,q,J=7.2Hz),4.86(1H,d,J=6.6Hz),5.15-5.29(2H,m),7. 15 71(2H,d,J=8.7Hz),7.87(2H,d,J=8.7Hz),8.09(1H,s). IR(CHCl₃):3385,3282,3025,3026,3015,2954,2877,1729,1599,1480,1458,1438, 1403,1338,1161 /cm. $[\alpha]_D = +4.4^{\circ} (CHCl_3, c=1.00, 25^{\circ}C).$ No.1a — 108 20 CDCl₃ 300MHz 0.90-2.04(14H,m),1.34(3H,t,J=7.2Hz),2.14(1H,m),2.34(2H,d,J=7.1Hz),3.01(1 H,m), 4.27(2H,q, J=7.2Hz), 5.20(1H,d, J=6.6Hz), 5.21-5.35(2H,m), 7.71(2H,d, J=6.6Hz), 5.21-5.35(2H,m), 7.71(2H,d, J=6.6Hz) 8.4Hz),7.88(2H,d,J=8.4Hz),8.10(1H,s). 25 IR(CHCl₃):3514,3384,3270,3025,3015,3015,2957,2877,1708,1599,1458,1403, 1324,1324,1160,1050 /cm. $[\alpha]_D$ = +12.7° (CHCl₃,c=1.00,25°C). No.1a --- 109 $[\alpha]_D$ =+8.5° (CHCl₃,c=1.00,25°C).mp109.0-111.0°C 30 No.1a --- 110 CDCl₃:CD₃OD(95:5) 35 0.92-2.06(14H,m),2.20(1H,m),2.30(2H,d,J=7.2Hz),2.99(1H,m),5.22-5.33(2H, m), 7.54-7.66(3H,m),8.07(2H,d,J=9.0Hz),8.12-8.20(2H,m),8.29(2H,d,J=9.0Hz IR(Nujol):3270,2956,2924,2854,1716,1548,1485,1319,1167/cm. $[\alpha]_D$ =+17.0° (CHCl₃,c=1.00,25°C). mp.166.5-168°C No.1a --- 111 $[\alpha]_D$ =+2.6° (CHCl₃,c=1.00,24°C).mp120.0-121.0°C No.1a --- 112 45 CDCi₃ 300MHz 0.96-2.04(14H,m),2.19(1H,m),2.33(2H,d,J=7.1Hz),3.07(1H,m),5.28-5.31(2H, m),5.33(1H,d,J=6.6Hz),7.54-7.63(3H,m),8.05(2H,d,J=8.4Hz),8.18-8.23(2H,m),8.41(2H,d,J=8.4Hz).IR(CHCl₃):3384,3269,3025,3015,2957,2877,1708,1598,1496,1457,1417,1326, 1164 /cm. 50 $[\alpha]_D$ = +12.2° (CHCl₃,c=1.00,24°C). mp.163-164°C

No.1a — 113

 $[\alpha]_D$ = +22.1° (CHCl₃,c=1.05,25°C). mp.90-92°C

No.1a — 114

 $[\alpha]_D$ = +2.2° (CHCl₃,c=1.02,25°C).

No.1a -- 115

CDCl₃ 300MHz

0.90-1.98(14H,m),2.15-2.22(1H,m),2.27(2H,t,J=7.2Hz),2.95-3.04(1H,m),
3.68(3H,s),4.04(2H,s),4.85(1H,d,J=6.6Hz),5.10-5.27(2H,m),7.12-7.34(7H,m),7.76-7.82(2H,m).
IR(CHCl₃):3384,3026,2952,1727,1595,1493,1436,1318,1155,1091,890/cm.
[\alpha]_D=0°
[\alpha]₄₃₆=+4.9\pmu0.4 ° (CHCl₃,c=1.05,23°C)

10 No.1a - 116

5

15

30

40

45

50

55

CDCI₃ 300MHz

0.90-2.10(14H,m),2.10-2.18(1H,m),2.32(2H,t,J=7.2Hz),2.96-3.04(1H,m), 4.04(2H,s),5.14(1H,d,J=6.6Hz),5.16-5.28(2H,m),7.12-7.34(7H,m),7.76-7.82(2H,m).

IR(CHCl₃):3260,3020,2950,1709,1407,1318,1154,1091,892/cm. [α]_D=+9.1±0.5 ° (CHCl₃,c=1.04,23°C)

No.1a - 117

20 CD₃OD 300MHz

0.96-2.18(17H,m),2.89-2.92(1H,m),4.05(2H,s),4.95-5.22(2H,m),7.15-7.42(7H,m),7.75-7.81(2H,m). IR(KBr):3429,3279,2951,2872,1563,1494,1453,1408,1313,1155,1093,1057/cm. [α]_D=-16.3 \pm 0.5 ° (CH₃OH,c=1.06,25°C)

25 No.1a --- 118

CDCl₃ 300MHz

 $0.98-1.70(15H,m), 1.80-2.00(5H,m), 2.20-2.40(3H,m), 2.98(1H,m), 4.06(2H,s), 4. \\ 72(1H,d,J=6.3Hz), 5.00-5.23(3H,m), 7.16(2H,d,J=8.4Hz), 7.26-7.33(5H,m), 7.7 9(2H,d,J=8.1Hz). \\ IR(CHCl_3):3376,3020,2948,2868,1716,1596,1492,1453,1407,1318,1155,1105/cm. \\ [\alpha]_D=+2.4° (CHCl_3,c=1.08,24°C).$

No.1a - 119

35 CDCl₃ 300MHz

 $\begin{array}{l} 0.90\text{-}2.02(14\text{H,m}), 2.20(1\text{H,m}), 2.29(2\text{H,t,J}=7.2\text{Hz}), 3.00(1\text{H,m}), 3.68(3\text{H,s}), 4.8\\ 5.34(2\text{H,m}), 7.00\text{-}7.09(4\text{H,m}), 7.22(1\text{H,m}), 7.37\text{-}7.45(2\text{H,m}), 7.79\text{-}7.86(2\text{H,m}).\\ \text{IR}(\text{CHCl}_3): 3376, 3018, 2946, 2868, 1727, 1582, 1486, 1321, 1243, 1151, 1093 /cm.\\ \text{[α]}_{D} = +4.5^{\circ} \text{ (CHCl}_3, \text{C}=1.05, 23.5^{\circ}\text{C}). \end{array}$

6(1H,d,J=6.9Hz),5.13-

No.1a --- 120

CD₃OD 300MHz

1.00-2.00(14H,m),2.13(2H,t,J=7.5Hz),2.16(1H,m),2.91(1H,m),5.05-5.33(2H, m),7.04-7.11(4H,m),7.18-7.25(1H,m),7.38-7.48(2H,m),7.80-7.87(2H,m). IR(KBr):3430,3278,3006,2952,2873,1583,1487,1410,1322,1298,1245,1152,1 095 /cm. $[\alpha]_D$ = -8.8° (CH₃OH,c=1.05,25.0°C).

No.1a --- 121

CDCI- 300MH

CDCl₃ 300MHz 0.90-2.10(14H,m),2.15(1H,m),2.35(2H,t,J=7.2Hz),3.01(1H,m),5.20(1H,d,J=6. 9Hz),5.22-5.35(2H,m),7.00-7.09(4H,m),7.18-7.25(1H,m),7.37-7.45(2H,m),7.7 9-7.86(2H,m). IR(CHCl₃):3260,3020,2948,2868,1708,1582,1486,1409,1321,1296,1243,1151, 1093 /cm. [α]_{D=+13.1° (CHCl₃,c=1.04,24.0°C).}

No.1a --- 122

CDCl₃ 300MHz

0.90-2.00(14H,m),2.23(1H,m),2.28(2H,t,J=7.5Hz),2.96(1H,m),3.67(3H,s),4.6

9(1H,d,J=6.6Hz),5.15-

5.32(2H,m),6.22(1H,s),6.98-7.40(5H,m),7.30-7.38(2H, m),7.68-7.74(2H,m).

 $IR(CHCl_3): 3416, 3370, 3018, 2946, 2868, 1725, 1587, 1508, 1437, 1400, 1320, 1149, \ 1094 \ /cm.$

 $[\alpha]_D$ = +6.2° (CHCl₃,c=1.04,25.0°C).

No.1a -- 123

10

20

5

CDCI₃ 300MHz

0.90-2.04(14H,m),2.18(1H,m),2.33(2H,t,J=7.2Hz),2.96(1H,m),5.04-5.35(3H,

m),6.98-7.12(3H,m),7.12-

7.20(2H,m),7.28-7.38(2H,m)7.66-7.74(2H,m).

IR(CHCl₃):3424,3270,3028,2952,2872,1708,1587,1508,1445,1399,1320,1148, 1092 /cm.

15 $[\alpha]_{D}$ = +20.9° (CHCl₃,c=1.06,23.0°C).

No.1a - 124

CDCI₃ 300MHz

0.90-2.00(14H,m),2.18(1H,m),2.28(2H,t,J=7.2Hz),3.00(1H,m),3.14(3H,s),3.6

8(3H,s),4.56(2H,s),4.84(1H,d,J=6.3Hz),5.10-5.29(2H,m),7.16-7.26(4H,m),7.2 6-7.34(2H,m),7.78-7.84(2H,m).

IR(CHCl₃):3384,3028,2952,2874,1727,1598,1501,1435,1410,1370,1329,1172, 1148,1091 /cm.

 $[\alpha]_{D}$ = +2.7° (CHCl₃,c=1.09,23.0°C).

25 No.1a — 125

CDCI₃ 300MHz

0.90-2.00(14H,m),2.18(1H,m),2.28(2H,t,J=7.2Hz),2.29(3H,s)3.00(1H,m),3.6

8(3H,s),4.04(2H,s),4.80(1H,d,J=6.6Hz),5.11-5.29(2H,m),6.99-7.06(2H,m),7.1

7.19(2H,m),7.31(2H,d,J=8.1Hz),7.79(2H,d,J=8.1Hz).

IR(CHCl₃):3382,3280,3024,2950,2874,1730,1596,1504,1435,1407,1367,1318 1196,1155,1091 /cm.

 $[\alpha]_{D}$ = +2.9° (CHCl₃,c=1.06,23.0°C).

No.1a - 126

35

30

CDCl₃ 300MHz

0.90-2.02(14H,m),2.14(1H,m),2.29(3H,s),2.32(2H,t,J=7.2Hz),3.01(1H,m),4.0 3(2H,s),5.10(1H,d,J=6.6Hz),5.15-

5.30(2H,m)6.98-7.06(2H,m)7.11-7.18(2H, m),7.30(2H,d,J=8.1Hz),7.79(2H,d,J=8.1Hz).

 $IR(CHCl_3): 3374, 3260, 3020, 2948, 2868, 1749, 1708, 1596, 1504, 1407, 1369, 1317, \ 1195, 1155, 1091 \ / cm.$

40 $[\alpha]_D = +10.0^{\circ} (CHCl_3, c=1.09, 23.0^{\circ}C).$

No.1a --- 127

CDCl₃ 300MHz

45 0.87-1.95(14H,m),2.18-2.32(3H,m),2.95(1H,m),3.69(3H,s),3.96(2H,s),4.79(1

H,d,J=6.6Hz),4.97-

5.17(2H,m),5.54(1H,s),6.75-6.82(2H,m),6.97-7.05(2H,m), 7.25-7.33(2H,m),7.75-7.81(2H,m). IR(CHCl₃):3382,3026,2950,2874,1722,1595,1511,1436,1407,1317,1257,1154, 1090 /cm.

 $[\alpha]_D = -2.1^{\circ}$ (CHCl₃,c=1.00,21.5°C).

50 No.1a — 128

55

CDCl₃ 300MHz

 $0.85 - 2.02(14 \text{H,m}), 2.18(1 \text{H,m}), 2.31(2 \text{H,t,J} = 7.2 \text{Hz}), 2.96(1 \text{H,m}), 3.95(2 \text{H,s}), 5.0 \\ 5 - 5.27(3 \text{H,m}), 6.73 - 6.82(2 \text{H,m}), 6.96 -$

7.04(2H,m),7.25-7.32(2H,m),7.74-7.81(2 H,m).

IR(CHCl₃):3262,3020,2948,2868,1708,1596,1511,1407,1315,1242,1154,1091 /cm.

 $[\alpha]_D$ =+4.8° (CHCl₃,c=1.04,22°C).

No.1a - 129

CDCl₃ 300MHz

0.89-1.98(14H,m),2.18(1H,m),2.27(2H,t,J=7.2Hz),2.99(1H,m),3.68(3H,s),3.7

9(3H,s),3.98(2H,s),4.81(1H,d,J=6.6Hz),5.10-5.27(2H,m),6.81-6.87(2H,m),7.0

3-7.10(2H,m),7.25-

7.32(2H,m),7.75-7.82(2H,m).

IR(CHCl₃):3382,3276,3006,2950,2874,1726,1609,1509,1457,1436,1407,1315, 1244,1154,1091,1033/cm.

 $[\alpha]_{D}=+19.3^{\circ}$ (CHCl₃,c=1.05,23°C).

10 No.1a — 130

5

15

CDCl₃ 300MHz

0.90-2.00(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),2.98(1H,m),3.69(3H,s),4.8

1(1H,d,J=6.6Hz),5.12-

5.32(2H,m),5.46(1H,brs),6.84-7.01(6H,m),7.76-7.83(2 H,m)

IR(CHCl₃):3380,3284,3024,2952,2874,1724,1588,1504,1488,1436,1321,1296, 1149,1091/cm.

 $[\alpha]_{D}$ =+28.9° (CHCl₃,c=1.01,23°C).

No.1a — 131

20 CDCl₃ 300MHz

0.92 - 2.10(14 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 5.18 - 5.35(3 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.34(2 H,t,J = 6.9 Hz), 2.96(1 H,m), 2.18(1 H,m), 2.18(

m),6.84-7.01(6H,m),7.75-

7.83(2H,m).

IR(CHCl₃):3270,3028,2952,2874,1708,1589,1505,1489,1456,1322,1297,1238, 1148,1091/cm.

 $[\alpha]_D = +7.7^{\circ}$ (CHCl₃,c=1.09,24°C).

25

No.1a — 132

CDCI₃ 300MHz

0.91-2.02(14H,m),2.19(1H,m),2.29(2H,t,J=7.2Hz),2.99(1H,m),3.68(3H,s),3.8 3(3H,s),4.82(1H,d,J=6.6Hz),5.14-

5.33(2H,m),6.90-7.04(6H,m),7.76-7.83(2H, m).

 $IR(CHCl_3): 3384, 3006, 2952, 2874, 1727, 1589, 1502, 1488, 1459, 1438, 1321, 1295, \ 1231, 1150, 1092, 1033/cm.$

 $[\alpha]_D = +3.1^{\circ}$ (CHCl₃,c=1.01,23°C).

No.1a -- 133

35

45

50

30

TLC Rf=0.21 (ethyl acetate/n-hexane = 1:1 (0.3% acetic acid))

No.1a -- 134

40 CDCl₃ 300MHz

0.97-2.10(14H,m),2.20(1H,m),2.36(2H,t,J=6.9Hz),3.04(1H,m),5.22-5.33(2H,m),5.41(1H,d,J=6.6Hz),7.02(1H,d,J=9.0Hz),7.09-7.13(2H,m),7.26-7.32(1H,m

),7.43-

7.49(2H,m),7.93(1H,d.d,J=2.4and9.0Hz),8.46(1H,d,J=2.4Hz).

IR(CHCl₃):3384,3270,3020,2958,1709,1610,1587,1537,1479,1352,1271,1252, 1167/cm.

 $[\alpha]_D=+20.9^{\circ}$ (CHCl₃,c=0.51,22°C).

No.1a — 135

CDCl₃ 300MHz

0.96-2.02(14H,m),2.21(1H,m),2.29(2H,t,J=7.2Hz),3.07(1H,m),3.68(3H,s),5.0 4(1H,d,J=6.9Hz),5.16-

5.33(2H,m),7.48-7.55(2H,m),7.64(1H,m),7.76-7.82(2H, m),7.88-7.94(2H,m),7.98-8.04(2H,m).

IR(CHCl₃):3384,3282,3026,2952,2874,1727,1663,1596,1446,1396,1316,1274, 1163,1090 /cm.

 $[\alpha]_{D}$ = +3.1° (CHCl₃,c=1.03,22.0°C).

55 No.1a — 136

CDCl₃ 300MHz

0.95-2.05(14H,m),2.19(1H,m),2.34(2H,t,J=7.2Hz),3.08(1H,m),5.10-5.40(2H,

m),5.35(1H,d,J=6.8Hz),7.45-

7.58(2H,m),7.64(1H,m),7.74-7.84(2H,m),7.84-7. 95(2H,m),7.95-8.06(2H,m). IR(CHCl₂):3260,3018,2950,2870,1708,1662,1595,1446,1395,1316,1274,1162, 1090 /cm. $[\alpha]_{D}$ = +12.9° (CHCl₃,c=1.05,21.5°C).

No.1a --- 137

CDCl₃ 300MHz

0.97-2.04(14H,m),2.27(1H,m),2.31(2H,t,J=7.2Hz),3.07(1H,m),3.70(3H,s),5.1 5-5.30(3H,m),7.48-7.68(5H,m),7.96-8.02(2H,m).

10 IR(CHCl₃):3382,3030,2952,2878,1725,1446,1329,1154,1098 /cm. $[\alpha]_D$ = -12.1° (CHCl₃,c=1.03,22.0°C).

No.1a --- 138

15 CDCl₃ 300MHz

> 0.95-2.04(14H,m),2.25(1H,m),2.35(2H,t,J=7.2Hz),3.08(1H,m),5.15-5.34(2H, m),5.41(1H,d,J=6.6Hz),7.48-7.68(5H,m),7.98-8.03(2H,m).

IR(CHCl₃):3370,3242,3022,2950,2870,1707,1445,1408,1329,1154,1099 /cm.

 $[\alpha]_D$ =-0.6° (CHCl₃,c=1.06,21.5°C) $[\alpha]_{365}$ = +30.7° (CHCl₃,c=1.06,21.5°C).

No.1a -- 139

20

25

CDCl₃ 300MHz

0.92-2.19(14H,m),2.27-2.34(3H,m),3.26(1H,m),3.65(3H,s),4.28(2H,s),4.37(1 H,d,J=7.4Hz),5.34-5.50(2H,m),7.37-

IR(CHCl₃):3389,3294,3028,3015,2954,2877,1730,1600,1488,1325,1151,1129/cm. $[\alpha]_D = -24.8^{\circ} (CHCl_3, c=1.01, 24^{\circ}C).$

No.1a - 140

30 CDCl₃ 300MHz

> 0.92-2.22(15H,m),2.34(2H,t,J=7.1Hz),3.24(1H,m),4.29(2H,s),4.81(1H,d,J=7. 4Hz),5.32-5.52(2H,m),7.36-7.62(9H.m).

IR(CHCl₃):3510,3388,3251,3031,3015,2956,2877,2668,1708,1601,1488,1318, 1151,1129 /cm.

35 $[\alpha]_D = -24.6^{\circ} (CHCl_3, c=1.02,25^{\circ}C).$

No.1a - 141

CDCI₃ 300MHz

0.92-2.19(15H,m),2.32(2H,t,J=7.2Hz),3.26(1H,m),3.65(3H,s),4.31(2H,s)4.48 40 (1H,d,J=7.4Hz),5.33-5.49(2H,m),7.42-7.80(8H,m). IR(CHCl₃):3388,3285,3018,2955,2877,2225,1730,1597,1479,1320,1152,1129/cm. $[\alpha]_{D}$ = -20.1° (CHCl₃,c=0.96,25°C).

No.1a - 142

CDCI₃ 300MHz

0.92-2.22(15H,m),2.35(2H,t,J=6.8Hz),3.25(1H,m),4.32(2H,s),4.86(1H,d,J=7. 4Hz),5.33-5.53(2H,m),7.43-7.80(8H,m).

50 IR(CHCl₃):3512,3388,3258,3031,3023,3014,2956,2877,2225,1708,1597,147 9,1319,1151,1128 /cm. $[\alpha]_D$ = -19.3° (CHCl₃,c=1.09,23°C).

No.1a - 143

55 CDCl₃ 300MHz

> 1.00-1.93(14H,m),2.17(1H,m),2.27(2H,t,J=7.2Hz),3.07(1H,m),5.17-5.22(2H, m),5.36(1H,d,J=6.9Hz),7.77(1H,d,J=9.0Hz),8.11-8.17(2H,m)8.36(1H,d.d,J= 2.1and9.0Hz),8.51(1H,d,J=1.8Hz),8.65(1H,d,J=2.1Hz).

IR(CHCl₃):3382,3266,3026,2954,2874,1708,1632,1585,1528,1458,1419,1345, 1153/cm. $[\alpha]_{D}=+7.6^{\circ}$ (CHCl₃,c=1.04,22°C). No.1a - 144 CDCl₃ 300MHz 6Hz),5.15-0.95-1.90(14H,m),2.17(1H,m),2.25(2H,t,J=7.5Hz),3.02(1H,m),5.09(1H,d,J=6. 5.21(2H,m),6.72(1H,d,J=8.4Hz),6.85(1H,s),7.54(1H,d,J=8.4Hz),7. 72(1H,d,J=9.0Hz),7.83(1H,d.d,J=1.8and9.0Hz),8.32(1H,d,J=1.8Hz). IR(CHCl₃):3380,3260,3022,2948,2868,2352,1709,1636,1460,1425,1313,1291, 1265,1148,1130/cm. $[\alpha]_D$ =+12.9° (CHCl₃,c=1.02,22.5°C). No.1a --- 145 CDCl₃ 300MHz 2(1H,d,J=6.3Hz),5.19-0.97-1.90(14H,m),2.15(1H,m),2.27(2H,t,J=6.9Hz),3.02(1H,m),3.08(6H,s),5.1 5.25(2H,m),6.78-6.84(2H,m),7.53(1H,d,J=8.7Hz),7.76-7.83(2H,m),8.30(1H,d,J=1.8Hz). IR(CHCl₃):3272,3030,2950,2874,1708,1635,1601,1511,1457,1425,1357,1328, 1151,1124/cm. $[\alpha]_{D}=+6.3^{\circ}$ (CHCl₃,c=1.04,23°C). No.1a --- 146 CDCl₃ 300MHz 0.95-2.00(14H,m),2.16(1H,m),2.29(2H,t,J=7.2Hz),3.05(1H,m),4.10(3H,s),5.1 5.28(2H,m),5.38(1H,d,J=6.9Hz),7.67-7.74(2H,m),8.08(1H,d.d,J=1.8and9.0 Hz),8.11(1H,s),8.61(1H,d,J=1.8Hz). $IR(CHCl_3):3260,3020,2948,2868,1708,1639,1606,1528,1470,1455,1424,1349,$ 1311,1238,1174,1149,1120,1079,1060,1022/cm. $[\alpha]_{D}=+7.8^{\circ}$ (CHCl₃,c=1.00,23°C). No.1a --- 147 CDCl₃ 300MHz 0-0.92-1.92(14H,m), 2.17(1H,m), 2.25(2H,t,J=7.2Hz), 3.01(1H,m), 3.97(3H,s), 5.15.27(5H,m), 6.92(1H,s), 7.29(1H,s), 7.52(1H,d,J=8.7Hz), 7.82(1H,d,d,J=2.1a,nd8.7Hz), 8.33(1H,d,J=2.1Hz).IR(CHCl₃):3380,3264,3002,2950,2868,1708,1634,1476,1452,1426,1317,1264, 1218,1169,1147,1115,1068,1031/cm. $[\alpha]_{D}=+5.6^{\circ}$ (CHCl₃,c=1.02,23°C). No.1a - 148 CDCl₃ 300MHz 0.90-1.98(14H,m),2.15(1H,m),2.28(2H,t,J=6.9Hz),2.91(6Hs),3.03(1H,m),4.01 (3H,s),5.15-5.26(3H,m),7.18(1H,s),7.38(1H,s),7.59(1H,d,J=8.7Hz),7.87(1H,d,d,J=2.1and8.7Hz),8.40(1H,d,J=2.1Hz). IR(CHCl₃):3384,3266,2956,1709,1632,1602,1495,1473,1458,1430,1317,1231, 1148,1121/cm. $[\alpha]_D$ =+11.2° (CHCl₃,c=1.01,23°C). No.1a - 149 CDCl₃ 300MHz 0.99-1.90(14H,m),2.17(1H,m),2.28(2H,t,J=7.2Hz),3.00(1H,m),5.13-5.19(2H, m),5.43(1H,d,J=6.0Hz),7.02(1H,d.d,J=2.4and9.0Hz),7.38-7.41(2H,m),7.58(1 H,d,J=8.7Hz), 7.96(1H,d.d,J=1.8and 8.7Hz), 8.45(1H,d,J=1.8Hz). $IR(CHCl_3): 3270, 3020, 2948, 2868, 1709, 1601, 1478, 1448, 1419, 1315, 1147, 1120/cm.$ $[\alpha]_{D}$ =-11.4° (CHCl₃,c=1.01,23°C).

No.1a --- 150

5

10

15

20

25

35

40

45

50

55

CDCl₃ 300MHz

0.97-1.88(14H,m),2.12-2.31(3H,m),2.38(3H,s),3.01(1H,m),5.14-5.19(2H,m),5. 36(1H,d,J=6.6Hz),7.24(1H,d.d,J=2.4and9.0Hz),7.59(1H,d,J=6.3Hz),7.66(1H, d,J=8.7Hz),7.72(1H,d,J=2.4Hz),8.01(1H,d.d,J=1.8and8.7Hz),8.49(1H,d,J=1.8Hz). IR(CHCl₃):3470,3374,3260,3018,2950,2868,1709,1474,1444,1412,1370,1319, 1266,1162,1145,1118/cm. $[\alpha]_D = +4.9^{\circ}$ (CHCl₃,c=1.00,24°C). No.1a - 151 CDCl₃ 300MHz 0.97-1.89(14H,m),2.17(1H,m),2.25(2H,t,J=7.2Hz),3.03(1H,m),3.92(3H,s),5.1 10 5-5.20(2H,m),5.32(1H,d,J=6.6Hz),7.11(1H,d.d,J=2.4and9.3Hz),7.45(1H,d,J= 2.4Hz),7.50(1H,d,J=9.3Hz),7.62(1H,d,J=8.7H),7.97(1H,d.d,J=2.1and8.7Hz), 8.50(1H,d,J=2.1Hz). IR(CHCl₃):3260,3018,2948,1708,1483,1454,1432,1314,1287,1268,1188,1169, 1147/cm. $[\alpha]_D = +4.9^{\circ}$ (CHCl₃,c=1.01,23.5°C). 15 No.1a — 152 CDCl₃ 300MHz 0.98-2.04(14H,m),2.15(1H,m),2.30(2H,t,J=6.6Hz),3.04(1H,m),5.17-5.29(3H, m),7.41(1H,d.d,J=1.5and8.1Hz),7.64-7.68(2H,m),7.92(1H,d,J=8.4Hz),8.00(1 20 H,d.d,J=1.8and8.4Hz),8.49(1H,d,J=1.8Hz). IR(CHCl₃):3266,3028,2952,2872,1707,1629,1591,1456,1416,1318,1275,1150/cm. $[\alpha]_D = +3.2^{\circ}$ (CHCl₃,c=1.04,23°C). 25 No.1a --- 153 CDCl₃ 300MHz 0.97-1.88(14H,m),2.16(1H,m),2.26(2H,t,J=7.2Hz),3.03(1H,m),4.64-4.65(2H, m),5.16-5.50(5H,m),6.13(1H,m),7.14(1H,d.d,J=2.7and9.0Hz),7.46-7.52(2H, 30 m),7.63(1H,d,J=8.7Hz),7.97(1H,d.d,J=1.8and8.7Hz),8.49(1H,d,J=1.8Hz). IR(CHCl₃):3374,3260,3020,2948,2868,1708,1599,1478,1446,1414,1314,1284, 1268,1184,1148,1120/cm. $[\alpha]_D = +5.3^{\circ}$ (CHCl₃,c=1.00,23°C). No.1a - 154 35 CDCl₃ 300MHz 0.99-2.00(15H,m),2.26(2H,t,J=7.2Hz),3.03(1H,m),4.07(3H,s),5.23-5.27(2H,m),5.36(1H,d,J=7.2Hz),7.20(1H,s),7.36-7.48(2H,m),7.55-7.58(1H,m),7.91-7.93 (1H,m),8.52(1H,s). IR(CHCl₃):3362,3257,3020,2948,2868,1708,1637,1602,1579,1488,1457,1437, 40 1413,1345,1318,1301,1276,1182,1104/cm. $[\alpha]_D$ = +19.4° (CHCl₃,c=1.01,25°C). mp.88-90°C No.1a — 155 45 CDCl₃ 300MHz 0.92-2.02(14H,m),2.15(1H,m),2.31(2H,t,J=7.2Hz),3.01(1H,m),4.10(2H,s),5.1 0(1H,d,J=6.6Hz),5.18-5.35(2H,m),7.04-7.26(5H,m),7.67-7.76(2H,m). IR(CHCl₃):3266,3028,2952,2952,2872,1708,1599,1574,1478,1457,1418,1301, 1258,1147,1124,1101,1080/cm. 50 $[\alpha]_{365}$ +33.4° (CHCl₃,c=1.00,23°C). No.1a --- 156 CDCl₃ 300MHz 55

0.91-2.21(15H,m),2.33(2H,t,J=6.9Hz),3.01(1H,m)5.11(1H,d,J=6.6Hz),5.27-5. 6.96(5H,m),7.35(1H,d,J=2.1Hz),7.42(1H,d.d,J=2.1and8.7Hz). IR(CHCl₃):3384,3263,2957,1708,1587,1489,1462,1416,1290,1222,1151,1123/cm. $[\alpha]_D = +6.4^{\circ} (CHCl_3, c=1.00, 23^{\circ}C).$

35(2H,m),6.85-

No.1a --- 157

CDCl₃ 300MHz

0.97-1.91(14H,m),2.18(1H,m),2.26(2H,t,J=6.9Hz),3.04(1H,m),5.18-5.26(3H, 8.00(3H,m),8.25(1H,m),8.69(1H,m).

m),7.52-7.56(2H,m),7.88-

IR(CHCl₃):3382,3268,2952,2874,1707,1457,1425,1409,1318,1152/cm. [α]_D=+4.4° (CHCl₃,c=1.02,22°C).

No.1a --- 158

10

15

25

30

5

CDCl₃ 300MHz

1.02-1.97(14H,m),2.20(1H,m),2.29(2H,t,J=7.2Hz),3.06(1H,m),5.19-5.24(2H,m),5.58(1H,d,J=6.6Hz),7.62(1H,m),7.72(1H,m),7.86-7.91(2H,m),7.96(1H,d,J=7.8Hz),8.04(1H,d,d,J=1.5and8.1Hz),8.34(1H,d,J=1.2Hz). IR(CHCl₃):3490,3260,3020,2950,2870,1707,1456,1399,1312,1165/cm. $[\alpha]_D$ =-8.3° (CHCl₃,c=1.00,23°C).

No.1a — 159

20 CDCl₃ 300MHz

 $\begin{array}{l} 0.92\text{-}1.88(14\text{H,m}), 2.13(1\text{H,m}), 2.24(2\text{H,m}), 3.02(1\text{H,m}), 3.90(3\text{H,s}), 5.12\text{-}5.26(3)\\ 7.58(4\text{H,m}), 7.97(1\text{H,d.d,J}=1.8\text{and}7.5\text{Hz}), 8.13(1\text{H,d,J}=7.5\text{Hz}), 8.64 (1\text{H,d,J}=1.8\text{Hz}).\\ \text{IR}(\text{CHCl}_3): 3382, 3266, 3018, 2956, 1708, 1629, 1594, 1476, 1467, 1325, 1245, 1227, 1158, 1146/cm.\\ \text{[α]}_{D}=+14.6^{\circ} \text{ (CHCl}_3, \text{c=}1.00, 22^{\circ}\text{C}). \end{array}$

H,m),7.29-

No.1a --- 160

CDCl₃ 300MHz

0.93-1.88(14H,m),2.18-2.24(3H,m),3.00(1H,m),5.08-5.21(3H,m),7.28-7.33(1

H,m),7.47-

7.51(3H,m),7.90(1H,d.d,J=1.5and7.8Hz),8.10(1H,d,J=7.8Hz),8.63 -8.64(2H,m). IR(CHCl₃):3465,3380,3275,3020,2957,2876,1708,1627,1604,1495,1473,1457, 1328,1240,1222,1156,1149/cm. $[\alpha]_D$ =+8.2° (CHCl₃,c=1.01,22°C).

No.1a - 161

35

40

50

55

CDCI₃ 300MHz

 $\begin{array}{l} 0.98\text{-}1.88(14\text{H,m}), 2.17(1\text{H,m}), 2.24(2\text{H,t,J}=7.2\text{Hz}), 3.05(1\text{H,m}), 5.16\text{-}5.20(2\text{H,m}), 5.35(1\text{H,d,J}=6.6\text{Hz}), 7.40(1\text{H,m}), 7.55(1\text{H,m}), 7.63(1\text{H,d,J}=8.1\text{Hz}), 7.89(1\text{H,d,J}=1.5\text{and}8.1\text{Hz}), 8.01(1\text{H,m}), 8.06(1\text{H,d,J}=8.1\text{Hz}), 8.12(1\text{H,d,J}=1.5\text{Hz}). \\ IR(CHCl_3): 3478, 3266, 3028, 2952, 2874, 1708, 1454, 1417, 1323, 1196, 1148/cm. \\ [\alpha]_D=+21.9^{\circ} (CHCl_3, c=1.01, 23^{\circ}C). \end{array}$

No.1a - 162

45 CDCl₃ 300MHz

 $0.96-\overset{7}{1}.98(14H,m),2.02(1H,m),2.25(2H,t,J=7.2Hz),3.05(1H,m),4.10(3H,s),5.1$ $5.25(2H,m),5.41(1H,d,J=7.2Hz),7.35-7.42(1H,m),7.51-7.64(3H,m),7.94-8.0\ 0(1H,m),8.16(1H,s).$ $IR(CHCl_3):3368,3274,3028,2952,2874,1708,1633,1583,1465,1452,1438,1413,\ 1315,1151,1103,1053,1024/cm.$ $[\alpha]_D=+15.1^{\circ}\ (CHCl_3.c=1.01,23^{\circ}C).\ mp.108-110^{\circ}C$

No.1a — 163

d₆-DMSO 300MHz

0.97-1.84(14H,m),1.92(1H,m),2.04(2H,t,J=7.5Hz),2.90(1H,m),5.08-5.23(2H, m),7.32(1H,s),7.38-7.61(2H,m),7.62(1H,s)7.68-7.71(1H,m),7.92(1H,s),8.14-8. 17(1H,m),10.7(1H,s),11.9(1H,s). IR(KBr):3350,3295,2952,2874,1707,1636,1601,1466,1431,1389,1315,1251,1 174,1146,1106/cm. [α]_{D=} -25.3° (CH₃OH,c=1.01,25°C). mp.159-162°C

No.1a --- 164 CDCl₃ 300MHz 0.98-1.96(17H,m),2.05(1H,m),2.25(2H,t,J=7.2Hz)3.07(1H,m)4.32(2H,q,J=7. 2Hz),5.19-5.23(2H,m),5.31(1H,d,J=7.8Hz),7.38(1H,m)7.41-7.62(3H,m),7.95(1H,m),8.15(1H,s). IR(CHCl₃):3360,3018,2946,2870,1709,1633,1457,1445,1425,1394,1314,1176, 1152,1105/cm. $[\alpha]_D$ = +12.7° (CHCl₃,c=1.02,25°C). mp.108-109°C No.1a -- 165 10 CDCl₃ 300MHz 0.95-1.98(15H,m),2.26(2H,t,J=7.5Hz),3.04(1H,m),4.15(3H,s)5.20-5.26(2H,m),5.34(1H,d,J=6.9Hz),7.41-7.47(1H,m),7.65-7.68(2H,m)7.89-7.92(1H,m),8.3 2(1H,s). IR(CHCl₃):3366,3087,3022,2957,1708,1632,1538,1463,1408,1364,1346,1308, 1227,1212,1205,1167/cm. 15 $[\alpha]_{D}$ = +19.6° (CHCl₃,c=1.01,25°C). No.1a - 166 CDCI₃ 300MHz 0.97-2.02(15H,m),2.27(2H,t,J=6.9Hz),3.07(1H,m),4.14(3H,s)5.21-5.27(2H,m 20),5.47(1H,d,J=6.9Hz),7.64(1H,s),7.72(1H,d.d,J=0.6and9.0Hz)8.25(1H,s)8.4 7(1H,d.d,J=2.4and9.0Hz),8.94(1H,d.d,J=0.6and2.4Hz). IR(CHCl₃):3373,2957,1708,1639,1587,1528,1467,1428,1415,1345,1221,1184, 1155/cm. $[\alpha]_D$ = +14.4° (CHCl₃,c=0.50,25°C) 25 No.1a --- 167 CDCI₃ 300MHz 0.92-2.00(14H,m),2.15(1H,m),2.27(2H,t,J=7.2Hz),3.04(1H,m),3.97(2H,s),5.1 5-5.30(3H,m),7.35-7.47(2H,m),7.55-7.63(1H,m), 7.80-7.96(3H,m), 8.05(1H,d,J=0.3Hz).30 IR(CHCl₃):3260,3020,2948,2868,1707,1451,1413,1319,1172,1144,1101,1071/cm. $[\alpha]_{D}$ =+18.2° (CHCl₃,c=1.04,22°C). No.1a - 168 35 CDCI₃ 300MHz 0.90-1.88(14H,m),2.16(1H,m),2.25(2H,t,J=6.9Hz),3.00(1H,m),5.00-5.19(2H, m),5.35(1H,d,J=6.6Hz),7.25-7.30(1H,m),7.48-7.50(2H,m),7.73(1H,d.d,J=1.5 and8.1Hz),8.08-8.14(3H,m),8.93(1H,s). IR(CHCl₃):3466,3380,3276,3016,2957,1708,1630,1495,1458,1324,1241,1150/cm. 40 $[\alpha]_D = +18.0^{\circ} (CHCl_3, c=1.00, 22^{\circ}C).$ No.1a - 169 CDCl₃ 300MHz 45 0.87-1.86(14H,m),2.15(1H,m),2.25(2H,t,J=6.9Hz),2.98(1H,m),3.89(3H,s),5.0 n-5.22(2H,m),5.27(1H,d,J=6.9Hz),6.88(1H,d.d,J=2.1and8.4Hz),6.94(1H,d,J= 2.1Hz),7.69(1H,d.d,J=1.5and7.8Hz),7.92-8.01(3H,m),8.83(1H,s). IR(CHCl₃):3465,3378,3276,3022,2957,1708,1630,1609,1569,1459,1433,1314, 1281,1229,1151/cm. $[\alpha]_D=+19.3^{\circ}$ (CHCl₃,c=1.01,21°C).

No.1a --- 170

50

55

CDCl₃ 300MHz

0.88-2.25(17H,m),3.04(1H,m),3.84(3H,s),3.95(3H,s),5.06-5.26(3H,m),6.87-6.

93(2H,m),7.69(1H,d.d,J=1.6and8.2Hz),7.93-9.05(3H,m).

 $IR(CHCl_3):3026,2957,1708,1630,1601,1460,1331,1243,1224,1152/cm.$

 $[\alpha]_D=+17.2^{\circ}$ (CHCl₃,c=1.00,22°C).

No.1a -- 171

CDCl₃ 300MHz

0.95-2.00(14H,m),2.16-2.32(3H,m),2.66(3H,s),3.14(1H,m),3.68(3H,s),5.09(1

H,d,J=6.8Hz),5.10-

2-

5.28(2H,m),7.45(1H,d.d.,J=1.8&8.6Hz),7.75-7.84(2H,m).

 $IR(CHCl_3): 3374, 3018, 2946, 2868, 1725, 1585, 1513, 1436, 1340, 1278, 1153, 1112 \ /cm.$

 $[\alpha]_{D}$ = -14.7° (CHCl₃,c=1.07,25.0°C).

No.1a — 172

10

20

5

CDCl₃ 300MHz

0.97-2.02(14H,m),2.23(1H,m),2.28(2H,t,J=7.2Hz),2.66(3H,s),3.14(1H,m),5.1

5.22(2H,m),5.41(1H,d,J=7.2Hz),7.45(1H,d.d.,J=2.1&8.7Hz),7.76(1H,d,J=8.7Hz),7.78(1H,d,J=2.1Hz).

IR(CHCl₃):3372,3250,3022,2950,2868,1707,1514,1419,1336,1279,1154,1112 /cm.

15 [α]_D= -4.1° (CHCl₃,c=1.08,26.0°C) m.p.141-143°C

No.1a — 173

CDCI₃ 300MHz

1.15-2.42(17H,m),2.91(1H,m),5.15(1H,d,J=4.2Hz),5.25-5.40(2H,m),7.85(1H, t,J=7.2Hz),8.00(1H,t,J=8.1Hz),8.15-8.20(2H,m),8.67(1H,d,J=8.1Hz),8.73(1H, d,J=8.1Hz),8.83(1H,s),9.43(1H,s).

IR(KBr):3422,3269,3046,2952,2871,1711,1617,1447,1333,1243,1161,1146/cm.

 $[\alpha]_D$ =-41.0° (CH₃OH,c=1.01,23°C).

25 No.1a - 174

CDCl₃+d₆-DMSO 300MHz

1.00-1.92(14H,m),2.20(2H,t,J=6.6Hz),2.35(1H,m),2.92(1H,m),5.05-5.22(2H,

m),6.63(1H,d,J=5.4Hz),7.77-

7.92(3H,m),8.31(1H,d.d,J=1.8and8.7Hz),8.59(1

H,d,J=8.7Hz),8.73(1H,d,J=8.7Hz),9.01(1H,s),9.55(1H,d,J=1.8Hz).

IR(KBr):3433,3252,2952,2871,1696,1578,1423,1335,1308,1219,1185,1160,1 106/cm.

 $[\alpha]_D$ =-19.3° (DMSO,c=0.50,23°C).

No.1a --- 175

35

40

50

55

30

CDCI₃ 300MHz

0.96-1.87(14H,m),2.20-2.25(3H,m),2.95(1H,m),3.66(3H,s),4.74(1H,d,J=6.6H

z),5.10-5Hz),7.68-

5.12(2H,m),6.88(1H,d,J=1.2Hz),7.37-7.50(3H,m),7.56(1H,dd,J=8.7,1.

7.77(3H,m),8.06(1H,s),9.44(1H,dd,J=1.2Hz).

IR(CHCl₃):3462,3374,3026,3006,2952,2872,1724,1610,1580,1484,1452,1358, 1309,1147.

 $[\alpha]_D$ =+16.4° (CHCl₃,c=1.05,26°C). mp.130-132°C.

No.1a — 176

45 CDCl₃+CD₃OD 300MHz

1.00-2.02(14H,m)2.22(1H,m),2.29(2H,t,J=6.9Hz),2.88(1H,m),5.16-5.26(2H,

m),6.87(1H,s),7.28-

7.57(4H,m),7.69(1H,d,J=8.4Hz),7.75-7.78(2H,m),7.99(1H, s).

IR(KBr):3254,2944,1704,1484,1453,1358,1305,1147.

 $[\alpha]_D$ =+13.0° (CH₃OH,c=1.02,24°C), mp.160-161°C

No.1a — 177

CDCl₃ 300MHz

0.96-1.88(14H,m),1.88-2.26(3H,m),2.94(1H,m),3.67(3H,s),3.87(3H,s),4.67(1

H,brs),5.08-

5.14(2H,m),6.77(1H,d,J=1.5Hz),6.99-7.02(2H,m),7.53-7.57(1H, m),7.65-7.70(3H,m),8.00(1H,s),9.27(1H,brs). IR(CHCl₃):3426,3376,3006,2952,1724,1610,1495,1438,1357,1308,1282,1249, 1177,1147/cm.

 $[\alpha]_D$ =+18.1° (CHCl₃,c=1.02,22°C).

No.1a — 178

CDCl₃+CD₃OD 300MHz

0.96-1.91(14H,m),2.19(1H,m),2.27(2H,t,J=6.0Hz),2.85(1H,m),3.87(3H,s),5.1

6-5.23(2H,m),6.99-

7.02(2H,m),7.41(1H,m),7.64-7.73(3H,m),7.92(1H,m).

IR(CHCl₃):3366,3261,3004,2954,2873,1705,1611,1496,1458,1438,1304,1286, 1253,1180,1149,1128/cm. $[\alpha]_{D}$ =+14.6° (CHCl₃,c=1.02,22°C).

No.1a - 179

10

CDCl₃+CD₃OD 300MHz

0.96-1.87(14H,m),2.15-2.23(3H,m),2.93(1H,m),3.85(3H,s),5.10-5.16(2H,m),6. 90-6.93(2H,m),7.50(1H,m),7.60-7.65(3H,m),7.91(1H,d,J=0.9Hz).

IR(CHCl₃):3369,3270,2950,2873,1719,1612,1498,1456,1440,1359,1306,1269, 1219,1146,1127/cm.

15 $[\alpha]_D=+18.1^{\circ}$ (CH₃OH,c=1.00,22°C).

No.1a — 180

CDCl₃+CD₃OD 300MHz

20 1.03-1.86(14H,m),2.08-2.17(3H,m),2.91(1H,m),5.06-5.10(2H,m),6.76(1H,m), 6.86-6.90(2H,m),7.48(1H,m),7.61-7.69(3H,m),7.89(1H,m).

IR(CHCl₃):3360,3259,2954,2873,1706,1612,1497,1457,1360,1306,1272,1230, 1176,1148,1126/cm. $[\alpha]_D$ =+20.3° (CH₃OH,c=1.00,22°C).

25 No.1a — 181

30

45

50

55

CDCl₃ 300MHz

0.97-1.96(14H,m), 2.15(1H,m), 2.29(2H,t,J=6.9Hz), 3.05(1H,m), 3.81(3H,s)5.0

8(1H,d,J=6.9Hz),5.23-

5.25(2H,m),6.62(1H,s),7.47-7.54(5H,m),7.59(1H,m),7.70(1H,m),7.97(1H,m). IR(CHCl₃):3380,3260,3020,2946,2868,1708,1466,1388,1328,1149/cm.

 $[\alpha]_D = +32.9^{\circ} (CHCl_3, c=1.07, 22^{\circ}C).$

No.1a — 182

35 CDCl₃ 300MHz

 $0.94-1.90(14H,m),2.25(2H,t,J=7.5Hz)2.30(1H,m),2.98(1H,m),3.70(3H,s)4.8 \\ 3(1H,d,J=6.6Hz),5.13-5.16(2H,m),6.95(1H,d,J=1.5Hz),7.11-7.23(2H,m),7.43(\\ 1H,d,J=8.1Hz),7.65(1H,d,J=8.1Hz),7.79-7.93(4H,m),9.08(1H,br).$

IR(CHCl₃):3458,3372,3020,3002,2946,2868,1719,1598,1452,1422,1321,1300, 1157/cm.

40 [α]_D=-6.6° (CHCl₃,c=1.00), mp 150-151°C

No.1a --- 183

CDCl₃ 300MHz

0.95-1.94(14H,m),2.26(1H,m),2.28(2H,t,J=7.5Hz),3.00(1H,m),5.16-5.19(2H,m),5.32(1H,d,J=7.2Hz),6.93(1H,d,J=1.2Hz),7.13(1H,m),7.22(1H,dd,J=7.8,6.6Hz),7.42(1H,d,J=7.8Hz),7.63(1H,d,J=7.8Hz),7.76(2H,d,J=8.4Hz),7.90(2H,d,J=8.4Hz),8.95(1H,br). IR(CHCl₃):3458,3374,3260,3020,3002,2948,2868,1708,1598,1452,1422,130 1,1156/cm. [\alpha]_{D=+17.9°} (CHCl₃,c=1.01,22°C).

No.1a --- 184

CDCl₃ 200MHz

0.92-2.00(14H,m),2.20(1H,m),2.34(2H,t,J=6.8Hz),3.05(1H,m),5.20-5.36(3H,

m),7.39-7.44(2H,m),7.61-

7.66(1H,m), 7.80-7.84(1H,m), 8.05(2H,d,J=8.6Hz), 8.40(2H,d,J=8.6Hz).

 $\label{eq:local_$

No.1a - 185

CDCl₃ 300MHz

0.89-2.20(15H,m),2.26(2H,d.t,J=2.1and7.2Hz),2.99(1H,m),5.08(1H,d,J=6.3H

z),5.09-

5.24(2H,m),6.90(1H,d,J=1.2Hz),7.32-7.48(4H,m),7.64-7.72(3H,m),8. 20(1H,d,J=1.2Hz),9.00(1H,s). IR(CHCl₃):3464,3375,3275,3022,2956,1707,1605,1490,1449,1356,1322,1219, 1147,1131/cm. $[\alpha]_{D}$ =+21.6° (CHCl₃,c=1.01,23°C).

No.1a - 186

10

5

CDCl₃:300MHz 1.36-2.24(14H,m),2.31(2H,t,J=7.4Hz),2.49(1H,brs),3.37(1H,m),3.67(3H,s),5. 38-5.50(2H,m),7.40-7.68(9H,m). IR(CHCl₃):3375,1727,1602,1435,1362,1221,1207,1168,1045/cm.

15 No.1a — 187

CDCl₃:300MHz

1.10-2.25(14H,m),2.36(2H,t,J=7.2Hz),2.47(1H,m),3.37(1H,m),5.35-5.54(2H, m),5.62(1H,d,J=7.2Hz),7.39-7.70(9H,m).

20 IR(CHCl₃):3674,3496,3376,3234,3012,2952,2880,2650,1725(sh),1709,1602,1 485,1420,1360,1167/cm. $[\alpha]_{D}$ =+32° (CHCl₃,c=1.69).

No.1a — 188

25 CDCl₃ 200MHz

0.86-1.92(14H,m),2.22(3H,m),2.36(3H,s),2.95(1H,m),3.67(3H,s),3.93(3H,s),4. 81(1H,d,J=6.2Hz),5.04-5.20(2H,m),7.02-7.05(2H,m),7.31(1H,d,J=8.6Hz),7.3 9(1H,d,J=7.8Hz),7.79-7.89(3H,m). IR(CHCl₃):3385,3286,3029,3019,3015,2954,2877,1718,1617,1598,1567,1507, 1311,1269,1153 /cm. [a]_D= -29.4° (CHCl₃,c=1.01,25°C).

No.1a --- 189

 $[\alpha]_D = -7.7^{\circ}$ (CHCl₃,c=1.00,24°C).

35 No.1a --- 190

 $[\alpha]_{D}=-17.3^{\circ}$ (CHCl₃,c=1.00,24°C).

No.1a — 191

40

45

55

30

CDCl₃ 300MHz 0.95-2.20(14H,m),2.30(1H,m),2.36(2H,d,J=6.9Hz),3.21(1H,m),4.25(2H,s),5.0 7(1H,d,J=7.8Hz),5.35-5.48(2H,m),7.25(1H,d,J=1.8 and 8.1Hz),7.32-7.35(2H,m),7.59(1H,d,J=8.1Hz),7.94(1H,s),8.14(1H,d,J=2.7Hz),8.23(1H,d.d,J=2.7a nd8.7Hz).

IR(CHCl₃):3386,3026,3015,2957,2877,2633,1702,1617,1573,1530,1348,1123 /cm.

 $[\alpha]_{D}$ = -6.1° (CHCl₃,c=1.01,25°C).

No.1a - 192

50 CDCl₃ 300MHz

0.92-2.20(14H,m),2.13(3H,m),3.23(1H,m),3.64(3H,s),3.94(3H,s),4.22(2H,s),4. 36(1H,d,J=7.8Hz),5.37-5.42(2H,m),7.16-7.42(6H,m),7.53(1H,d,J=8.4Hz),7.9 4(1H,s). IR(CHCl₃):3389,3022,3013,2953,2877,1716,1616,1560,1485,1340,1326,1124 /cm. [\alpha]_D= -15.2° (CHCl₃,c=1.01,25°C).

No.1a --- 193

CDCl₃ 300MHz

0.92-2.20(14H,m),2.25(1H,m),2.35(2H,t,J=7.2Hz),3.17(1H,m),4.22(2H,s),4.9 1(1H,d,J=7.5Hz),5.37-5.42(2H,m),7.13-7.43(6H,m),7.60(1H,d,J=8.1Hz),8.05(1H,s). IR(CHCl₃):3511,3387,3029,3020,3011,2957,2877,2651,1698,1614,1560,1505, 1320,1280,1252,1126 /cm. $[\alpha]_{D}$ = -0.9° (CHCl₃,c=1.00,25°C). 5 No.1b - 1 CDCI₃ 300MHz 0.98-1.56(15H,m),1.85-1.90(5H,m),2.23(1H,m),3.05(1H,m),3.66(3H,s),4.77(1 H,d,J=6.0Hz),5.08-10 5.28(2H,m),7.46(3H,m),7.38-7.54(2H,d,J=7.5Hz),7.72(2H,d,J=8.4Hz),7.93(2H,d,J=8.4Hz). IR(CHCl₃):3384,3028,2952,2876,1719,1595,1391,1322,1155/cm. $[\alpha]_{436} + 4.0 \sim +6.0 (CHCl_3, c=1.00, 23°C).$ mp.96-98°C No.1b — 2 CDCl₃ 300MHz 0.98-1.52(15H,m),1.85-1.90(5H,m),2.17(1H,m),3.00(1H,m),3.67(3H,s),4.05(2 H,s),4.83(1H,d,J=6.0Hz),5.05-5.23(2H,m),7.14(2H,d,J=7.2Hz),7.17-7.32(5H, m),7.78(2H,d,J=8.4Hz). $IR(CHCl_3):3384,3026,2952,2874,1719,1595,1453,1407,1320,1180/cm.$ 20 $[\alpha]_D$ =+2.5° (CHCl₃,c=1.02,24°C). No.1b — 3 25 CDCI₃ 300MHz 0.96-2.05(20H,m),2.07(1H,m),3.07(1H,m),4.04(2H,s),5.21-5.35(2H,m),5.55(1 H,d,J=6.9Hz), 7.14(2H,d,J=6.6Hz), 7.20-7.32(5H,m), 7.78(2H,d,J=8.1H). IR(CHCl₃):3250,3022,2950,1699,1596,1495,1453,1405,1318,1153/cm. $[\alpha]_D$ = +17.1° (CHCl₃,c=1.01,25°C). mp.129-131°C. 30 No.1b -- 4 CDCI₃ 200MHz 0.90-2.10(15H,m),1.19(3H,s),1.20(3H,s),3.11(1H,m),5.24-5.32(2H,m),5.70(1 H,d,J=6.6Hz),7.38-7.68(4H,m),7.96-35 8.04(2H,m), 8.53(1H,d,J=1.4Hz).IR(CHCl₃):3384,3246,2958,1701,1632,1595,1468,1445,1322,1216,1202,1190, 1155,1122/cm. $[\alpha]_D = +10.8^{\circ}$ (CHCl₃,c=0.51,23°C). No.1b - 5 1.02-2.10(15H,m),1.16(6H,s),3.02(1H,m),4.09(3H,s),5.23-5.28(2H,m),5.76(1 H,d,J=7.2Hz),7.36-7.63(4H,m),7.97(1H,d,J=7.8Hz),8.16(1H,s). IR(CHCl₃):3369,2959,1702,1635,1585,1468,1454,1441,1415,1318,1222,1189, 1170,1154/cm. 45 $[\alpha]_{D}=+9.9^{\circ}$ (CHCl₃,c=1.00,23°C). No.1c --- 1 CDCl₃ 300MHz 1.10-2.02(14H,m),2.27(2H,t,J=7.5Hz),2.50(1H,m),2.89(3H,s),3.31(1H,m),3.6 50 4(3H,s),5.16-5.30(2H,m),7.34-7.42(3H,m),7.50-7.59(2H,m),7.62-7.68(2H,m), 7.76-7.82(2H,m). IR(CHCl₃):3020,2946,2868,2212,1727,1596,1495,1437,1339,1156,1135,1084 /cm. $[\alpha]_{D}$ =-16.1° (CHCl₃,c=1.05,25.0°C). m.p.100-102°C No.1c -- 2

115

CDCl₃ 300MHz

5

10

15

20

25

35

40

45

50

55

2(3H,s),5.02-5.30(2H,m),7.50-1.10-2.05(14H,m),2.23(2H,t,J=7.5Hz),2.53(1H,m),2.91(3H,s),3.35(1H,m),3.6 7.60(3H,m),7.90-8.08(6H,m). IR(CHCl₃):3016,2946,2868,1728,1437,1398,1340,1160,1086 /cm. $[\alpha]_{D}$ =-32.5° (CHCl₃,c=1.00,25.0°C). No.1c -3 CD₃OD 300MHz 1.15-2.05(14H,m),2.13(2H,t,J=7.2Hz),2.47(1H,m),2.91(3H,s),3.27(1H,m),4.9 0-5.30(2H,m),7.37-7.44(3H,m),7.53-7.61(2H,m),7.71-7.77(2H,m),7.81-7.87(2 H,m). IR(KBr):3412,2999,2951,2871,2217,1560,1399,1243,1159,1137,1103,1084. $[\alpha]_D$ =-8.6° (CH₃OH,c=1.03,23°C). No.1d — 1 CDCl₃ 300MHz),7.51-7.59(3H,m),7.91-1.00-2.16(15H,m),2.36(2H,t,J=7.2Hz),3.17(1H,m),3.33(3H,s),5.23-5.43(3H,m 8.10(6H,m),9.02(1H,brs). $IR(CHCl_3): 3382, 3268, 3028, 2954, 2874, 1715, 1442, 1400, 1337, 1162, 1120, 1089/cm.\\$ $[\alpha]_D$ =+40.0° (CHCl₃,c=0.53,22°C). No.1d — 2 CDCl₃ 300MHz 1.03-2.30(17H,m),3.03(1H,m),4.03(2H,s),5.26(2H,m),5.84(1H,br),5.25-5.29(1 H,d,J=6.6Hz),6.03(1H,br),7.14(2H,d,J=8.1Hz),7.26-7.31(5H,m),7.80(2H,d,J=8.1Hz).IR(CHCl₃):3376,3002,2946,1669,1595,1492,1454,1406,1318,1154/cm. $[\alpha]_{D}=+4.3^{\circ}$ (CHCl₃,c=1.00,23°C). No.1d — 3 CDCl₃ 300MHz 6Hz),5.21-0.96 - 2.17 (17 H, m), 2.33 (2 H, t, J = 6.9 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, m), 4.04 (2 H, s), 5.10 (1 H, d, J = 6.0 Hz), 3.01 (1 H, d, J =5.26(2H,m),7.14(2H,d,J=8.7Hz),7.16-7.32(5H,m),7.78(2H,d,J=8.4 Hz). IR(CHCl₃):3260,3020,2946,1711,1596,1492,1457,1407,1318,1154/cm. $[\alpha]_D = +9.3^{\circ}$ (CHCl₃,c=1.09,25°C). No.1d --- 4 CDCl₃ 300MHz 0.95-2.14(15H,m),2.34(2H,t,J=7.2Hz),3.09(1H,m),3.30(3H,s),4.04(2H,s),5.19 (1H,d,J=7.2Hz),5.22-5.39(2H,m),7.10-7.35(7H,m),7.81(2H,d,J=8.1Hz),9.10(1 H,brs). $IR(CHCl_3): 3382, 3260, 3028, 2952, 2874, 2670, 1713, 1595, 1492, 1450, 1405, 1338, \ 1160, 1120, 1092/cm.$ $[\alpha]_{D}$ =+22.2° (CHCl₃,c=1.07,22°C). No.1d -- 5 CDCl₃ 300MHz 1.00-2.10(14H,m),2.30-2.39(3H,m),3.15(1H,m),3.35(3H,s),5.18-5.40(3H,m),7. 41(1H,d.t.,J=0.9and7.8Hz),7.50-7.69(3H,m),7.88-8.15(2H,m),8.60(1H,d,J=1.5Hz),9.06(1H,s). IR(CHCl₃):3382,3268,3028,2954,2874,1714,1442,1402,1338,1188,1155,1 121,1072/cm. $[\alpha]_{D}=+15.3^{\circ}$ (CHCl₃,c=1.00,22°C). No.1e — 1 CDCl₃ 300MHz 1.19 - 2.45 (19 H,m), 2.58 (1 H,m), 5.63 (1 H,d,J = 3.0 Hz), 7.42 - 7.65 (4 H,m), 7.94 - 8.03 (2 H,m), 8.49 - 8.50 (1 H,m).

IR(CHCl₃):3293,3024,1710,1595,1584,1467,1445,1410,1324,1222,1213,1206, 1190,1160/cm.

```
[\alpha]_D=-41.1° (CHCl<sub>3</sub>,c=1.01,23°C).
     No.1e -- 2
5
          CDCI<sub>3</sub> 300MHz
          1.10-2.25(19H,m),2.94(1H,m),4.12(3H,s),5.53(1H,d,J=7.2Hz),7.39(1H,m),7.5
                                                                                                                                   0-
          7.62(3H,m),7.96(1H,d,J=7.5Hz),8.13(1H,s).
          IR(CHCl<sub>3</sub>):3367,3025,2955,1711,1634,1600,1584,1468,1454,1440,1415,1342, 1317,1222,1189,1157/cm.
          [\alpha]_D=+1.2^{\circ} (CHCl<sub>3</sub>,c=1.00,25°C).
10
     No.1f --- 1
          CDCl<sub>3</sub> 300MHz
          1.08-2.47(19H,m),2.56(1H,m),3.52(2H,t,J=6.6Hz),5.59(1H,d,J=2.4Hz),7.40-7.
                                                                                                                     66(4H,m),7.95-
15
          8.04(2H,m),8.50(1H,d,J=1.8Hz).
          IR(CHCl<sub>3</sub>):3624,3383,3295,2950,2877,1705,1595,1584,1468,1445,1405,1347, 1337,1324,1224,1190,1160/cm.
          [\alpha]_D=-54.1° (CHCl<sub>3</sub>,c=1.01,23°C).
     No.1f -2
20
          CDCl<sub>3</sub> 300MHz
          1.08-2.24(19H,m),2.94(1H,m),3.53(2H,t,J=6.3Hz),4.13(3H,s),5.47(1H,d,J=6.
                                                                                                                          6Hz), 7.36-
          7.63(4H,m),7.96(1H,d,J=6.3Hz),8.14(1H,s).
          IR(CHCl<sub>3</sub>):3625,3368,3025,3013,2949,2877,1710,1634,1600,1584,1468,1454,
          1440,1415,1342,1317,1232,1220,1189,1157/cm.
25
         [\alpha]_D=-5.6° (CHCl<sub>3</sub>,c=1.00,25°C).
     No.1g --- 1
          CDCl<sub>3</sub> 200MHz
30
          1.17 - 2.34 (15 H,m), 3.22 (1 H,m), 5.10 - 5.16 (2 H,m), 5.45 (1 H,d,J=7.0 Hz), 7.35 - 7.66
                                                                                                                       (4H,m),7.95-
          8.01(2H,m), 8.51(1H,d,J=2.0Hz).
          IR(CHCl<sub>3</sub>):3383,3275,2959,1707,1595,1584,1468,1445,1425,1319,1269,1248, 1190,1149,1123/cm.
         [\alpha]_D = +64.3^{\circ} (CHCl<sub>3</sub>,c=1.01,23°C).
35
     No.1g — 2
          CDCI<sub>3</sub> 300MHz
          1.10-2.15(13H,m),2.36(2H,t,J=7.2Hz),3.21(1H,m),4.09(3H,s),5.10-5.22(2H,m
                                                                                                       ),5.43(1H,d,J=7.8Hz),7.36-
          7.62(4H,m),7.96(1H,d,J=7.8Hz),8.12(1H,s).
40
          IR(CHCl<sub>3</sub>):3366,2959,1708,1635,1600,1585,1467,1454,1440,1415,1345,1318, 1233,1189,1152/cm.
         [\alpha]_D=+103.1° (CHCl<sub>3</sub>,c=1.01,23°C).
     No.1h — 1
45
         CDCl<sub>3</sub> 300MHz
         0.90-1.60(17H,m),1.83(1H,m),2.11(1H,m),2.22(2H,t,J=7.2Hz),3.07(1H,m),5.
                                                                                                           11(1H,d,J=7.2Hz),7.38-
         7.47(1H,m),7.50-7.60(1H,m),7.60-7.72(2H,m),7.88-8. 12(2H,m),8.54(1H,d,J=0.9Hz).
         IR(CHCl<sub>3</sub>):3382,3274,2926,1707,1464,1442,1318,1266,1188,1153,1121,1105, 1071,1019/cm.
50
         [\alpha]_D=-2.8° (CHCl<sub>3</sub>,c=1.01,23°C).
     No.1i — 1
         [\alpha]_{365} +50.9° (CHCl<sub>3</sub>,c=1.01,24°C).
     No.1i -- 2
         CDCI<sub>3</sub> 300MHz
```

```
0.98-1.70(11H,m),1.80-2.00(5H,m),2.19(1H,m),3.03(1H,m),3.64(2H,t,J=6.6H
                                                                                                                            ),7.27-
         z),4.05(2H,s),4.69(1H,d,J=6.6Hz),5.15(1H,m),5.25(1H,m),7.16(2H,d,J=7.2Hz
         7.32(5H,m),7.77(2H,d,J=8.4Hz).
         IR(CHCl_3):3376,3004,2946,2316,1596,1492,1453,1407,1318,1154/cm.
         [\alpha]_{D}= +3.5° (CHCl<sub>3</sub>,c=1.00,22°C).
5
         mp.80.5-82.0°C
     No.1j --- 1
          [\alpha]_{436}=-7.5±0.5 ° (CHCl<sub>3</sub>,c=1.05,22°C).
10
          No.1j --- 2
          [\alpha]_{D}=-9.7±0.5 ° (CHCl<sub>3</sub>,c=1.06,22°C).
15
     No.1j -3
          [\alpha]_D=+15.0±0.5 ° (CH<sub>3</sub>OH,c=1.06,24.5°C).
          mp.101-108°C
20
      No.1j --- 4
          [\alpha]_{D}=-28.0±0.6 ° (CHCl<sub>3</sub>,c=1.06,24°C).
          mp.159-161°C
25
      1j — 5
          [\alpha]_D=-12.5±0.5 ° (CHCl<sub>3</sub>,c=1.04,23°C).
          mp.99-101°C
30
      No.1j -- 6
          CDCl<sub>3</sub> 300MHz
                                                                                                              (1H,d,J=6.8Hz),5.13-
          0.90-2.03(14H,m),2.20(1H,m),2.30(2H,t,J=7.3Hz),3.00(1H,m)3.68(3H,s),4.76
          5.35(2H,m), 7.01-7.08(4H,m), 7.19-7.26(1H,m), 7.37-7.46 \ (2H,m), 7.80-7.84(2H,m).
 35
          IR(CHCl<sub>3</sub>):3382,3280,3080,3016,2952,2900,1727,1582,1486,1432,1322,1150/cm.
          [\alpha]_{D}= -31.0° (CHCl<sub>3</sub>,c=1.05,26°C).
      No.1j — 7
 40
           CDCl<sub>3</sub> 300MHz
                                                                                                       8Hz),5.21-5.34(2H,m),7.01-
           0.91-2.09(14H,m),2.15(1H,m),2.35(2H,t,J=7.5Hz),3.01(1H,m),5.17(1H,d,J=6.
          7.08(4H,m),7.15-7.27(1H,m),7.37-7.43(2H,m),7.8 0-7.85(2H,m).
           IR(CHCl<sub>3</sub>):3474,3386,3270,3024,2958,2900,2675,1711,1584,1488,1420,1323, 1298,1150/cm.
          [\alpha]_{D}= -13.4° (CHCl<sub>3</sub>,c=1.01,26°C).
 45
      No.1j — 8
           CDCl<sub>3</sub> 300MHz
           0.95-2.14(13H,m),2.30(2H,t,J=7.5Hz),2.36(1H,m),2.84(1H,m),2.91(1J=4.8Hz ),3.66(3H,s),5.33-5.52(2H,m),6.82-
 50
           6.87(1H,m),6.93-7.00(2H,m),7.09-7.15(4H, m),7.28-7.36(2H,m),7.54-7.59(1H,m).
           IR(CHCl<sub>3</sub>):3350,3010,2950,2880,1728,1603,1582,1489,1461,1438,1360,1160 /cm.
           [\alpha]_D= +75.1° (CHCl<sub>3</sub>,c=1.13,26°C).
      No.1j — 9
           CDCl<sub>3</sub> 300MHz
           0.95-2.03(14H,m),2.20(1H,m),2.29(2H,t,J=7.5Hz),3.06(1H,m),3.68(3H,s),4.9
                                                                                                             8(1H,d,J=7.4Hz),5.14-
```

5.34(2H,m),7.46-7.54(2H,m),7.60-7.68(1H,m),7.75-7.8 0(2H,m),7.88-7.92(2H,m),7.99-8.03(2H,m). IR(CHCl₃):3384,3280,3020,2960,2888,1727,1662,1600,1316,1273,1163/cm. $[\alpha]_D = -41.0^{\circ}$ (CHCl₃,c=1.17,26°C).

5 No.1j --- 10

CDCl₃+CD₃OD 300MHz

0.94-2.08(14H,m),2.21(1H,m),2.34(2H,t,J=6.2Hz),3.04(1H,m),5.21-5.35(2H,

m),5.40(1H,m),7.49-

7.58(2H,m),7.64-7.68(1H,m),7.79-8.06(6H,m).

IR(CHCl₃):3475,3370,3250,3018,2956,2976,2650,1709,1662,1595,1445,1420, 1395,1317,1274,1163/cm. $[\alpha]_D$ = -17.1° (CHCl₃,c=1.13,25°C).

No.1j — 11

15 CDCl₃ 300MHz

1.06-1.98(14H,m),2.24-2.29(3H,m),3.13(1H,m),3.66(3H,s),5.10-5.24(2H,m),5. 40(1H,d,J=6.3Hz),7.39-7.49(3H,m),7.59-7.64(3H,m),7.80-7.83(2H,m),8.08-8. 11(1H,m). IR(CHCl₃):3302,3012,2948,2905,1727,1661,1593,1435,1332,1312,1287,1271, 1165/cm. $[\alpha]_D = +15.6^{\circ}$ (CHCl₃,c=1.03,26°C).

20

25

10

No.1j --- 12

CDCl₃ 300MHz

1.08-1.98(14H,m),2.23(1H,m),2.33(2H,t,J=7.5Hz),3.16(1H,m),5.18-5.26(2H, m),5.39-5.45(1H,m),7.39-7.49(3H,m),7.60-7.64(3H,m),7.80-7.83(2H,m),8.09-8.12(1H,m). IR(CHCl₃):3325,3022,2956,2872,2680,1708,1662,1603,1598,1425,1340,1316, 1288,1271,1165/cm. [α]_D= +9.7° (CHCl₃,c=0.52,25°C).

No.1j — 13

30

35

45

50

55

CDCl₃ 300MHz

0.95-2.00(14H,m),2.20(1H,m),2.27(2H,t,J=6.3Hz),3.03(1H,m),3.67(3H,s),4.9 9(1H,d,J=6.6Hz),5.12-5.31(2H,m),7.47-7.55(2H,m),7.60-7.69(2H,m),7.76-7.8 1(2H,m),7.96-8.05(1H,m),8.08-8.14(1H,m),8.27-8.28(1H,m).

IR(CHCl₃):3674,3538,3376,3276,3012,2948,2860,1726,1662,1595,1440,1335, 1317,1297,1274,1166,1150/cm. [α]_D=+10.2° (CHCl₃,c=1.00,25°C).

No.1j — 14

40 CDCi₃ 300MHz

 $0.93-2.08(14H,m),2.21(1H,m),2.32(2H,t,J=6.3Hz),3.00(1H,m),5.20-5.36(2H, m),5.38(1H,d,J=6.2Hz),7.50-7.55(2H,m),7.63-7.71(2H,m),7.77-7.81(2H,m),7. 99-8.04(1H,m),8.10-8.18(1H,m),8.32-8.36(1H,m).\\ IR(CHCl_3):3674,3480,3374,3258,3012,2950,2875,2650,1709,1662,1598,1418, 1335,1317,1274,1143/cm.\\ [\alpha]_D=+61.0° (CHCl_3,c=1.19,25°C).$

No.1j — 15

CDCl₃ 300MHz

0.90-2.00(14H,m)2.19(1H,m)2.30(2H,t,J=7.3Hz),3.01(1H,m),3.67(3H,s),4.8 2(1H,d,J=6.6Hz),5.14-5.34(2H,m),7.36-7.39(3H,m),7.53-7.57(2H,m),7.62-7.6 6(2H,m),7.83-7.88(2H,m). IR(CHCl₃):3376,3276,3010,2948,2868,2212,1727,1597,1500,1437,1325,1161/cm. [\alpha]_D=-7.2° (CHCl₃,c=1.00,26°C).

No.1j --- 16

CDCl₃ 300MHz

0.93-2.03(14H,m),2.15(1H,m),2.36(2H,t,J=7.5Hz),3.05(1H,m),5.20-5.40(3H, m),7.36-7 7.66(4H,m),7.84-7.88(2H,m).

m),7.36-7.39(3H,m),7.55-

EP 0 837 052 A1 IR(CHCl₃):3470,3376,3260,3012,2950,2868,2675,2212,1708,1596,1503,1416, 1396,1322,1160. $[\alpha]_D$ =-22.4° (CHCl₃,c=1.00,26°C). No.1j --- 17 CDCl₃ 300MHz m),5.10-1.00-1.60(9H,m)1.79-1.89(5H,m)2.17(1H,brs),2.23(2H,t,J=7.2Hz),3.03(1H, Hz),7.60-7.68(2H,m),7.98-5.23(2H,m),5.49(1H,d,J=6.6Hz),7.40(1H,t,J=7.4Hz),7.53(1H,t,J=7.2 8.03(2H,m),8.55(1H,d,J=1.5Hz). IR(CHCl₃):3516,3384,3270,2666,1708,1632,1595,1584,1467,1445,1425,1374, 1345,1321,1269,1248,1218/cm. $[\alpha]_D = -7.8^{\circ}(CHCl_3, c=1.01, 22^{\circ}C).$ No.1j — 18 CDCl₃ 300MHz 0(1H,d,J=6.4Hz),5.14-0.90-2.03(14H,m),2.19(1H,m),2.30(2H,t,J=7.5Hz),3.00(1H,m),3.67(3H,s),4.8 5.35(2H,m),6.99-7.04(2H,m),7.16-7.22(2H,m),7.34-7.4 9(4H,m),7.57-7.61(1H,m). IR(CHCl₃):3376,3276,3012,2948,2875,1727,1583,1488,1471,1432,1330,1311, 1150/cm. $[\alpha]_D = +54.0^{\circ} (CHCl_3, c=0.99, 25^{\circ}C).$ No.1j --- 19 CDCl₃ 300MHz 0.91 - 2.09(14H,m), 2.15(1H,m), 2.34(2H,t,J=7.5Hz), 3.01(1H,m), 5.16(1H,d,J=6.4), 3.01(1H,m), 3.16(1H,d,J=6.4), 3.01(1H,d,J=6.4), 3.01(1H,d,J=6Hz),5.24-5.40(2H,m),7.01-7.08(2H,m),7.15-7.25(2H,m),7.35-7.53(4H,m),7.5 9-7.65(1H,m). IR(CHCl₃):3470,3376,3260,3012,2950,2875,2640,1708,1583,1488,1471,1430, 1335,1305,1149/cm. $[\alpha]_D = -21.0^{\circ} (CHCl_3, c=1.30, 25^{\circ}C).$ No.1j -- 20 CDCl₃ 300MHz 1.17(1H,m), 1.26-1.34(2H,m), 1.54-2.24(11H,m), 2.31(2H,t,J=7.4Hz), 2.48(1H,m), 2.48(brs),3.37(1H,m),3.67(3H,s),5.35-5.50(2H,m),7.39-7.68(9H,m). IR(CHCl₃):3377,1727,1601,1435,1362,1168/cm. No. 1j -- 21 CDCl₃ 300MHz 1,10-2.25(14H,m),2.36(2H,t,J=7.2Hz),2.47(1H,m),2.89(1H,m),5.35-5.53(2H, m),5.63(1H,d,J=7.2Hz),7.40- $IR(CHCl_3): 3674, 3496, 3374, 3234, 3010, 2952, 2870, 2640, 1730 (sh), 1710, 1605, 1\ 485, 1425, 1360, 1167/cm.$ $[\alpha]_{D}$ =-43.0° (CHCl₃,c=1.01,25°C). No.1j --- 22 CDCl₃ 300MHz 0,98-1.95(14H,m),2.25-2,31(3H,m),2.95(1H,m),5.19-5.30(2H,m),5.33(1H,d,J =3.9Hz),6.58(1H,d,J=7.5Hz),6.80(1H,t,J=7.5Hz),6.99-7.05(1H,m),7.44-7.53(6H,m),7.60-7.73(9H,m),7.94-7.73(3H,m),8.23-8.26(2H,m),10.66(1H,s). IR(CHCl₃):3475,3372,3260,3008,2952,2868,2722,1725,1710(sh),1663,1590,1 571,1525,1448,1437,1345,1314,1161,1112/cm. $[\alpha]_{D}=+12.9^{\circ}$ (CHCl₃,c=0.12,23°C). No.1j -- 23

5

10

15

20

25

30

35

40

45

50

55

CDCl₃ 300MHz 0.94~1.94(14H,m),2.23-2.30(3H,m),2.98(1H,m),3.68(3H,s),5.09(1H,d,J=6.2H 7.22(1H,m),7.34-7.42(2H,m),7.68-7.73(2H,m),7.89-8. 03(4H,m),8.51(1H,s).

z),5.15-5.28(2H,m),7.14-

IR(CHCl₃):3372,3275,1724,1673,1599,1438,1320,1161/cm. $[\alpha]_{D}$ = +17.0° (CHCl₃,c=1.38,25°C). No.1j --- 24 5 CDCl₃+CD₃OD 300MHz 0.96-2.05(14H,m),2,25-2.34(3H,m),2.92(1H,m),5.16-5.34(2H,m),7.14-7.22(1 H,m),7.29-7.42(2H,m),7.70(2H,d,J=7.6Hz),7.92-8.05(4H,m). IR(CHCl₃):3616,3426,3375,3010,2950,2828,2645,1708,1672,1599,1439,1323, 1161/cm. 10 $[\alpha]_D=+21.0^{\circ}$ (CH₃OH,c=1.00,22°C). No.1j - 25 CDCl₃ 300MHz 15 1.03(1H,m),1.18-2.01(13H,m),2.20(1H,brs),2.27(2H,t,J=7.4Hz),3.08(1H,m),3. 66(3H,s),5.11(1H,d,J=6.6Hz),5.14-5.34(2H,m),7.54-7.62(3H,m),8.04-8.32(6H, m). IR(CHCl₃):3384,3278,1726,1605,1484,1448,1331,1161/cm. No.1j -- 26 20 CDCl₃+CD₃OD 300MHz 1,03-2.10(14H,m),2.22(1H,m).2.31(2H,t,J=7.5Hz),2.98(1H,m),5.23-5.38(2H, m),7.55-7.66(3H,m),8.05-8.08(2H,m),8.14-8.18(2H,m),8.28-8.31(2H,m). IR(Nujol):3260,2720,2660,1711,1545,1460,1317,1163/cm. 25 $[\alpha]_D = +15.8^{\circ}$ (CH₃OH,c=1.01,22°C). No.1i -27 $[\alpha]_D$ = +16.7° (CHCl₃,c=1.00,23°C). 30 No.1j - 28 CDCi₂ 300MHz 1.01(1H,m),1.14-1.29(2H,m),1.46-2.19(11H,m),2.33(2H,t,J=7.2Hz),2.41(1H, brs),3.18-35 3.21(5H,m),3.68(3H,s),3.73-3.76(4H,m),4.37(1H,d,J=7.2Hz),5.35-5. 45(2H,m). IR(CHCl₃):3392,1727,1435,1335,1148/cm. $[\alpha]_D$ = +10.7°(CHCl₃,c=1.39,26°C). No.1j --- 29 40 CDCl₃ 300MHz 1.00(1H,m),1.20-1.29(2H,m),1,48-2.25(12H,m),2.37(2H,t,J=7.2Hz),,3.17-3.2 2(5H,m),3.74-3.79(4H,m),4.79(1H,d,J=7.8Hz),5.34-5.54(2H,m). IR(CHCl₃):3470,3390,3270,2675,1709,1455,1420,1315,1147/cm. 45 $[\alpha]_D$ = +16.8°(CHCl₃,c=1.42,26°C). No.1k --- 1 $[\alpha]_D$ = -25.4° (CHCl₃,c=1.08,23°C). 50 No.1k --- 2 CDCl₃ 200MHz 1.07-2.28(14H,m),2.32(2H,t,J=7.4Hz),2.63(1H,m),3.63(3H,s),3.93(1H,m),5.3 0-55 5.52(2H,m), 6.35(1H,d,J=7.0Hz), 7.48-7.60(3H,m), 7.88-8.02(6H,m). IR(CHCl₃):3438,3002,2946,2868,1727,1652,1514,1485,1363,1310,1245,1154 /cm. $[\alpha]_D$ =-80.4° (CHCl₃,c=1.01,24.0°C).

No.1k - 3

CDCl₃ 200MHz m),6.33(1H,d,J=7.5Hz),7.48-1.10-2.26(14H,m),2.37(2H,t,J=7.2Hz),2.60(1H,m),3.93(1H,m),5.30-5.50(2H, 7.58(3H,m),7.88-7.99(6H,m). 5 IR(CHCl₃):3446,3004,2952,2874,1709,1652,1515,1485,1305,1153 /cm. $[\alpha]_{D}=-96.4^{\circ}$ (CHCl₃,c=1.05,23.0°C). No.1k -4 10 CDCl₃ 300MHz m),6.08(1H,d,J=7.6Hz),7.39-1.05-2.17(14H,m),2.38(2H,t,J=7.2Hz),2.52(1H,m),3.81(1H,m),5.33-5.50(2H, 7.53(3H,m),7.57-7.62(6H,m). IR(CHCl₃):3420,3250,3008,2948,2870,2660,2208,1735(sh),1705,1640,1500/cm. $[\alpha]_D$ =-21.9±0.6° (CHCl₃,c=1.02,22°C). 15 No.1k --- 5 CDCl₃ 300MHz m),6.07(1H,d,J=7.6Hz),7.33-1.05-2.14(14H,m),2.38(2H,t,J=7.2Hz),2.51(1H,m),3.81(1H,m),5.34-5.46(2H, 20 7.56(5H,m). $IR(CHCl_3): 3422, 3250, 3010, 2950, 2876, 2664, 2558, 2210, 1735 (sh), 1705, 1645, 1\ 502, 1441, 1410, 1307, 1276 /cm.$ $[\alpha]_D$ =-63.6±1.9° (CHCl₃,c=0.56,22°C). No.1k — 6 CDCl₃ 300MHz m),6.21(1H,d,J=7.2Hz),7.41-1.04-2.24(14H,m),2.36(2H,t,J=7.5Hz),2.58(1H,m),3.88(1H,m),5.30-5.43(2H, 7.49(3H,m),7.73-7.77(2H,m). IR(CHCl₃):3447,3011,2955,1708,1653,1603,1578,1515,1486,1457,1312,1211, 1164/cm. 30 $[\alpha]_D = -60.3^{\circ}$ (CHCl₃,c=1.00,23°C). No.1k — 7 35 CDCl₃ 300MHz m),6.17(1H,d,J=8.7Hz),6.99-1.04-2.22(14H,m),2.36(2H,t,J=7.2Hz),2.57(1H,m),3.87(1H,m),5.30-5.44(2H,m),5.30-5.44(2H,m),2.36(2H,t,J=7.2Hz),2.57(1H,m),3.87(1H,m),5.30-5.44(2H,m),2.36(2H,t,J=7.2Hz),2.57(1H,m),3.87(1H,m),5.30-5.44(2H,m),3.87(1H,m),3.87.40(7H,m),7.73(2H,d,J=7.5Hz). IR(CHCl₃):3449,3013,2955,1739,1708,1651,1609,1588,1522,1487,1243,1227, 1169/cm. $[\alpha]_D$ =-60.2° (CHCl₃,c=0.92,23°C). 40 No.1k — 8 CDCl₃ 300MHz m),6.19(1H,d,J=7.5Hz),6.83-1.04-2.25(14H,m),2.34(2H,t,J=7.5Hz),2.56(1H,m),3.87(1H,m),5.30-5.44(2H, 45 6.94(6H,m),7.69(2H,d,J=8.7Hz). IR(CHCl₃):3599,3455,3012,2955,1711,1644,1604,1577,1524,1507,1492,1290, 1236,1197,1170/cm. $[\alpha]_D$ =-47.7° (CHCl₃,c=1.01,22°C). No.1k - 9 50 CDCl₃ 300MHz 1.04-2.20(14H,m),2.31(3H,s),2.36(2H,t,J=7.2Hz),2.56(1H,m),3.86(1H,m),5.3 5.43(2H,m), 6.16(1H,d,J=7.2Hz), 7.00-7.11(6H,m), 7.74(2H,d,J=8.7Hz).IR(CHCl₃):3450,3010,2955,1750,1709,1651,1609,1596,1523,1489,1370,1247, 1227,1183/cm.

 $[\alpha]_D$ =-54.7° (CHCl₃,c=1.01,22°C).

55

No.1k — 10 CDCl₃ 300MHz 1.04-2.22(14H,m),2.35(2H,t,J=7.2Hz),2.56(1H,m),3.82(3H,s),3.86(1H,m),5.3 0.5-5 43(2H,m),6.17(1H,d,J=6.9Hz),6.89-7.01(6H,m),7.70(2H,d,J=8.7Hz). IR(CHCl₃):3023,2955,1742,1708,1649,1613,1602,1577,1522,1507,1490,1227, 1210,1170/cm. $[\alpha]_D$ =-58.1° (CHCl₃,c=1.01,22°C). No.1m — 1 10 CDCl₃ 300MHz 1.06-2.25(14H,m),2.32(2H,t,J=7.4Hz),2.61(1H,m),3.63(3H,s),3.91(1H,m),5.3 3-5.47(2H,m),6.24(1H,d,J=6.9Hz),7.35-7.38(3H,m),7.53-7.60(4H,m),7.75-7.7 8(2H,m). IR(CHCl₃):3438,3008,2946,2875,2212,1732,1650,1605,1519,1496/cm. 15 $[\alpha]_D = +76^{\circ} (CHCl_3, c=1.39, 24^{\circ}C)$ No.1m -2 CDCl₃ 300MHz 1.05-2.20(14H,m),2.36(2H,t,J=6.2Hz),2.59(1H,m),3.89(1H,m),5.29-5.48(2H, 20 m),6.26(1H,d,J=7.0Hz),7.26-7.38(3H,m),7.52-7.60(4H,m),7.73-7.77(2H,m). IR(CHCl₃):3444,3012,2952,2874,2664,2214,1718(sh),1708,1649,1605,1520,1 498/cm. $[\alpha]_D$ = +81.4° (CHCl₃,c=1.01,23°C) No.1m — 3 CDCI₃ 300MHz 1.06-2.23(14H,m),2.32(2H,t,J=7.0Hz),2.62(1H,m),3.63(3H,s),3.93(1H,m),5.3 5.50(2H,m),6.28(1H,d,J=7.0Hz),7.38-7.51(3H,m),7.58-7.67(4H,m),7.83-7.8 8(2H,m), IR(CHCl₃):3438,3008,2948,2875,1783(w),1727,1650,1608,1580(w),1523,150 1,1482/cm. 30 $[\alpha]_D = +59^{\circ} (CHCl_3, c=1.49, 25^{\circ}C)$ No.1m -- 4 CDCl₃ 300MHz 35 1.08-2.25(14H,m),2.36(2H,t,J=7.4Hz),2.59(1H,m),3.91(1H,m),5.28-5.48(3H, m),6.29(1H,d,J=7.4Hz),7.38-7.50(3H,m),7.61-7.67(4H,m),7.81-7.86(2H,m). IR(CHCl₃):3436,3010,2948,2868,1727,1715(sh),1649,,1615(w),1524,1502,14 82,1372/cm. $[\alpha]_D = +72^{\circ} (CHCl_3, c=0.98, 25^{\circ}C)$ 40 No.1m - 5 CDCl₃ 300MHz 1.09-2.20(14H,m),2.32(2H,t,J=7.2Hz),2.63(1H,m),3.63(3H,s),3.92(1H,m),5.3 45 5.51(2H,m), 6.35(1H,d,J=7.0Hz), 7.51-7.60(3H,m), 7.92-7.97(6H,m). IR(CHCl₃):3436,3008,2946,2875,1727,1652,1608(w),1515,1484/cm. $[\alpha]_D$ = +82° (CHCl₃,c=0.99,25°C)

m),6.32(1H,d,J=7.4Hz),7.51-

1.09-2.23(14H,m),2.37(2H,t,J=7.2Hz),2.60(1H,m),3.92(1H,m),5.30-5.49(2H,

IR(CHCl₃):3436,3010,2950,2875,2670,1727,1715(sh),1650,1605(w),1515,148 4/cm.

No.1m --- 6

CDCl₃ 300MHz

7.55(3H,m),7.85-7.98(6H,m).

 $[\alpha]_D$ = +84° (CHCl₃,c=1.54,25°C)

50

55

No.1m --- 7

CDCl₃ 300MHz 9-1.03-2.18(14H,m),2.32(2H,t,J=7.4Hz),2.59(1H,m),3.64(3H,s),3.89(1H,m),5.2 5.49(2H,m),6.16(1H,d,J=7.8Hz),6.98-7.06(4H,m),7.14-7.20(1H,m),7.34-7.4 1(2H,m),7.73-7.78(2H,m). 5 IR(CHCl₃):3438,3008,2946,2868,1727,1648,1610,1586,1519,1485/cm. $[\alpha]_D$ = +54° (CHCl₃,c=1.29,25°C). No. 1m - 8 10 CDCl₃ 300MHz 1.06-2.21(14H,m),2.36(2H,t,J=7.5Hz),2.58(1H,m),3.88(1H,m),5.31-5.46(2H, m),6.17(1H,d,J=6.9Hz),6.99-7.05(4H,m),7.15-7.21(1H,m),7.36-7.41(2H,m),7.72-7.75(2H,m). IR(CHCl₃):3436,3010,2948,2868,2675,1730(sh),1709,1647,1608,1586,1520,1 485/cm. $[\alpha]_{D}$ = +56° (CHCl₃,c=0.97,25°C) 15 No.1m - 9 CDCl₃ 300MHz 1.05-2.18(14H,m),2.29-2.34(5H,m),2.59(1H,m),3.64(3H,s),3.89(1H,m),5.32-5. 20 46(2H,m),6.16(1H,d,J=7.5Hz),7.00-7.11(6H,m),7.74-7.77(2H,m). IR(CHCl₃):3440,3010,2946,2868,1729,1649,1595,1519,1488/cm. $[\alpha]_{D}$ = +47° (CHCl₃,c=0.82,25°C). No.1m — 10 CDCl₃ 300MHz 6.17(1H,d,J=7.0Hz),6.99-1.04-2.20(14H,m),2.31-2.39(5H,m),2.57(1H,m),3.87(1H,m),5.28-5.47(2H,m), 7.12(6H,m),7.72-7.76(2H,m). IR(CHCl₃):3674,3572,3438,3010,2948,2868,2626,1748,1710,1648,1615,1595, 1520,1489/cm. 30 $[\alpha]_D = +51^{\circ} (CHCl_3, c=0.91, 25^{\circ}C)$ No.1m - 11 CDCl₃ 300MHz 35 1.04-2.16(14H,m),2.31(2H,t,J=7.2Hz),2.59(1H,m),3.63(3H,s),3.89(1H,m),5.2 5.49(2H,m),6.24(1H,d,J=7.4Hz),6.54(1H,s),6.83-6.93(6H,m),7.69-7.73(2H, m). IR(CHCl₃):3674,3588,3438,3296,3010,2946,2868,1725,1646,1603,1520,1504, 1489/cm. $[\alpha]_D$ = +51° (CHCl₃,c=0.91,25°C) 40 No.1m — 12 CDCl₃ 300MHz 1.04-2.21(14H,m),2.33(2H,t,J=8.0Hz),2.56(1H,m),3.87(1H,m),5.28-5.48(2H, m),6.23(1H,d,J=8.0Hz),6.75(1H,m),6.87-6.94(6H,m),7.66-7.71(2H,m),9.63(1 H,brs). 45 $IR(CHCl_3): 3674, 3582, 3436, 3275, 3010, 2950, 2868, 2675, 1727, 1710 (sh), 1643, 1\ 603, 1522, 1504, 1490 / cm.$ $[\alpha]_{D}$ = +30° (CHCl₃,c=0.97,25°C) No.1m — 13 50 CDCI₃ 300MHz 1.01-2.18(14H,m),2.31(2H,t,J=7.4Hz),2.58(1H,m),3.63(3H,s),3.82(3H,s),3.89 (1H,m),5.29-5.48(2H,m),6.14(1H,d,J=7.0Hz),6.88-7.02(6H,m),7.70-7.74(2H, m). IR(CHCl₃):3442,3402,3004,2946,2868,1727,1648,1600,1518,1499/cm. $[\alpha]_D=+42^{\circ}$ (CHCl₃,c=1.82,26°C) 55

No.1m — 14 CDCl₃ 300MHz 7-1.05-2.21(14H,m),2.35(2H,t,J=7.2Hz),2.55(1H,m),3.82(3H,s),3.88(1H,m),5.2 5.46(2H,m),6.16(1H,d,J=7.2Hz),6.88-7.02(6H,m),7.68-7.73(2H,m). IR(CHCl₃):3438,3012,2948,2870,2650,1730(sh),1709,1647,1615(sh),1601,15 19,1492/cm. $[\alpha]_D = +64^{\circ} (CHCl_3, c=0.70, 25^{\circ}C)$ No.1m — 15 10 CDCl₃ 300MHz 1.05-2.20(14H,m),2.29-2.36(5H,m),2.62(1H,m),3.63(3H,s),3.92(1H,m),5.30-5. 50(2H,m),6.25(1H,d,J=7.2Hz),7.16-7.21(2H,m),7.59-7.64(4H,m),7.83-7.87(2H,m).IR(CHCl₃):3446,3010,2946,2868,1745(sh),1728,1650,1615,1525,1507,1486/cm. 15 $[\alpha]_D = +65.0^{\circ} (CHCl_3, c= 1.02, 23^{\circ}C)$ No.1m — 16 CDCl₃ 300MHz 20 1.08-2.21(14H,m),2.34-2.40(5H,m),2.59(1H,m),3.90(1H,m),5.29-5.48(2H,m), 6.29(1H,d,J=7.0Hz),7.18(2H,d,J=8.6Hz),7.58-7.64(4H,m),7.83(2H,d,J=8.2Hz IR(CHCl₃):3438,3012,2948,2870,2622,1749,1710,1649,1610,1526,1508,1487/cm. 25 $[\alpha]_D = +66^{\circ} (CHCl_3, c=1.21, 24^{\circ}C)$ No.1m — 17 CDCl₃ 300MHz 30 1.06-2.19(14H,m),2.32(2H,t,J=7.2Hz),2.62(1H,m),3.63(3H,s),3.93(1H,m),5.3 0-5.50(2H,m),6.32(1H,d,J=7.6Hz),6.41(1H,s),6.94(2H,d,J=9.0Hz),7.47(2H,d, J=9.0Hz),7.58(2H,d,J=8.6Hz),7.81(2H,d,J=8.6Hz). IR(CHCl₃):3580,3434,3284,3010,2946,2868,1726,1646,1606,1528,1490/cm. 35 $[\alpha]_D = +62.4^{\circ} (CHCl_3, c=1.01,23^{\circ}C)$ No.1m --- 18 CDCl₃+CD₃OD 300MHz 1.11-2.18(14H,m),2.32(2H,t,J=7.4Hz),2.59(1H,m),3.88(1H,m),5.30-5.49(2H, 40 m),6.55(1H,d,J=7.0Hz),6.92(2H,d,J=8.6Hz),7.47(2H,d,J=8.6Hz),7.59(2H,d,J=8.6Hz),7.79(2H,d,J=8.2Hz). IR(Nujol):3398,3175,2725,1696,1635,1601,1531,1510/cm. $[\alpha]_D = +99.5^{\circ} (CH_3OH, c=1.011, 25^{\circ}C)$ No.1m — 19 CDCl₃ 300MHz 1.05-2.20(14H,m),2.32(2H,t,J=7.4Hz),2.61(1H,m),3.63(3H,s),3.86(3H,s),3.94 (1H,m),5.30-5.50(2H,m), 6.24(1H,d,J=7.0Hz), 6.99(2H,d,J=8.6Hz), 7.53-7.63(4H,m), 7.82(2H,d,J=8.6Hz). 50 IR(CHCl₃):3440,3006,2946,2875,1726,1649,1606,1527,1510,1489/cm. $[\alpha]_D = +68^{\circ} (CHCl_3, c=0.88, 26^{\circ}C)$ No.1m - 20 55 CDCl₃ 300MHz

5.48(2H,m),6.35(1H,d,J=7.2Hz),6.98(2H,d,J=8.8Hz),7.51-7.61(4H,m),7.81(2H,d,J=8.4Hz),8.34(1H,brs).

8-

1.09-2.20(14H,m),2.35(2H,t,J=7.3Hz),2.58(1H,m),3.85(3H,s),3.89(1H,m),5.2

IR(CHCl₃):3446,3012,2952,2881,2640,1730(sh),1707,1647,1606,1527,1510,1 489/cm.

 $[\alpha]_{D}=+83^{\circ}$ (CHCl₃,c=1.00,25°C). No.1m --- 21 CDCl₃ 300MHz 5 m),6.11(1H,d,J=7.5Hz),7.33-1.05-2.14(14H,m),2.37(2H,t,J=7.2Hz),2.51(1H,m),3.81(1H,m),5.34-5.46(2H, 7.48(3H,m),7.53-7.55(2H,m). IR(CHCl₃):3420,3250,3008,2948,2870,2660,2210,1735(sh),1705,1645,1503,1 441,1409/cm. $[\alpha]_{D}=+59.2\pm1.0^{\circ}$ (CHCl₃,c=1.023,22°C). 10 No.1m - 22 CDCl₃ 300MHz 1.05-2.17(14H,m),2.37(2H,t,J=7.2Hz),2.52(1H,m),3.82(1H,m),5.32-5.47(2H, m),6.20(1H,d,J=7.6Hz),7.38-7.53(3H,m),7.58-7.61(6H,m),9.11(1H,brs). 15 IR(CHCl₃):3420,3250,3010,2984,2870,2675,2208,1730(sh),1705,1640,1500,1 406/cm. $[\alpha]_{D}=+57.4^{\circ}$ (CHCl₃,c=1.83,23°C). No.1m -- 23 20 CDCl₃ 300MHz 1.05-2.18(14H,m),2.31(2H,t,J=7.5Hz),2.60(1H,m),3.63(3H,s),3.90(1H,m),5.3 2-5.47(2H,m),6.22(1H,d,J=6.9Hz),7.40-7.49(3H,m),7.76-7.79(2H,m). IR(CHCl₃):3438,3008,2946,2868,1727,1651,1603,1585,1512,1484/cm. $[\alpha]_{D}=+52^{\circ}$ (CHCl₃,c=1.49,25°C). 25 No.1m - 24 CDCl₃ 300MHz 1.05 - 2.21(14 H, m), 2.36(2 H, t, J = 7.2 Hz), 2.57(1 H, m), 3.89(1 H, m), 5.28 - 5.47(2 H, m), 2.36(2 H, t, J = 7.2 Hz), 2.57(1 H, m), 3.89(1 H, m), 3.8m),6.22(1H,d,J=7.0Hz),7.39-30 7.55(3H,m),7.73-7.79(2H,m). IR(CHCl₃):3676,3572,3436,3010,2948,2875,1730(sh),1709,1650,1600,1580,1 514,1484/cm. $[\alpha]_{D}=+57^{\circ}$ (CHCl₃,c=0.97,26°C). No.1m -- 25 CDCl₃ 300MHz 1.04-2.18(14H,m),2.28-2.35(5H,m),2.59(1H,m),3.62(3H,s),3.88(1H,m),5.29-5. 49(2H,m), 6.20(1H,d,J=7.2Hz), 7.15(2H,d,J=9.0Hz), 7.80(2H,d,J=8.8Hz). $IR(CHCl_3):3436,3010,2946,2868,1752,1727,1653,1602,1519,1491/cm.$ 40 $[\alpha]_D = +53^{\circ}$ (CHCl₃,c=1.63,25°C). No.1m - 26 45 CDCl₃ 300MHz 1.05-2.19(14H,m),2.32-2.38(5H,m),2.56(1H,m),3.88(1H,m),5.29-5.47(2H,m), 6.25(1H,d,J=7.4Hz),7.15(2H,d,J=9.0Hz),7.78(2H,d,J=8.6Hz). IR(CHCl₃):3434,3016,3006,2948,2880,2622,1752,1730(sh),1710,1651,1605,1 520,1492/cm. $[\alpha]_{D=+58^{\circ}}$ (CHCl₃,c=3.68,24°C) 50 No.1m --- 27 CDCl₃ 300MHz 1.05-2.16(14H,m),2.30(2H,t,J=7.5Hz),2.57(1H,m),3.62(3H,s),3.87(1H,m),5.2 $5.47(2H,m), 6.32(1H,d,J=7.4Hz), 6.85(2H,d,J=8.6Hz), 7.62(2H,d,J=8.6Hz), 8.\ 35(1H,s).$ 55 IR(CHCl₂):3580.3450.3216.3010.2946.2868,1726,1640,1608,1584,1528,1496/cm. $[\alpha]_D=+56.2^{\circ}$ (CHCl₃,c=0.713,23°C)

No.1m - 28 CDCI₃ 200MHz 1.10-2.25(14H,m),2.32(2H,t,J=7.2Hz),2.55(1H,brs),3.82-3.93(1H,m),5.27-5.4 5 7(2H,m), 6.25(1H,d,J=7.4Hz), 6.86(2H,d,J=8.6Hz), 7.62(2H,d,J=8.6Hz). IR(CHCl₃):3438,3242,2675,1730(sh),1708,1639,1607,1585/cm. No.1m --- 29 10 CDCI₃ 300MHz 1.05-2.18(14H,m),2.31(2H,t,J=7.4Hz),2.58(1H,m),3.64(3H,s),3.85(3H,s),3.89 (1H,m),5.29-5.48(2H,m), 6.14(1H,d,J=6.6Hz), 6.92(2H,d,J=9.0Hz), 7.74(2H,d,J=9.0Hz). IR(CHCl₃):3445,3008,2946,2868,1727,1646,1606,1578,1523,1493/cm. $[\alpha]_D = +53^{\circ} (CHCl_3, c=2.03, 24^{\circ}C)$ 15 No.1m — 30 CDCl₃ 300MHz 1.04-2.21(14H,m),2.36(2H,t,J=7.3Hz),2.56(1H,m),,3.85(3H,s),3.88(1H,m),5. 27-5.46(2H,m),6.15(1H,d,J=7.2Hz),6.92(2H,d,J=8.6Hz),7.73(2H,d,J=8.6Hz) 20 IR(CHCl₃):3440,3010,2950,2870,2645,1727,1710(sh),1646,1606,1575,1524,1 494/cm. $[\alpha]_D = +62^{\circ}$ (CHCl₃,c=1.10,24°C). No.1m --- 31 25 CDCl₃+CD₃OD 300MHz 1.16-2.20(14H,m),2.31(2H,t,J=7.2Hz),2.59(1H,m),3.85(1H,m),5.31-5.51(2H, m),7.13-7.21(1H,m),7.31-7.42(2H,m),7.68-7.93(6H,m). IR(Nujol):3344,3175,2715,2675,1699,1631,1566/cm. $[\alpha]_D$ =+67° (CH₃OH,c=1.01,24°C). 30 No.1m --- 32 CDCl₃ 200MHz 35 1.09-2.23(14H,m),2.33(2H,t,J=7.1Hz),2.57(1H,brs),3.40-3.93(9H,m),4.41(1H, brs),5.29-5.48(2H,m),6.44(1H,d,J=7.4Hz),7.43(2H,d,J=8.2Hz),7.80(2H,d,J=7.8Hz). IR(CHCl₃):3434,3354,1726,1720(sh),1660(sh),1626/cm. No.1m - 33 40 CDCl₃ 200MHz 1.14-2.25(14H,m),2.37(2H,t,J=7.3Hz),2.64(1H,brs),3.93-4.01(1H,m),5.30-5.5 1(2H,m),6.47(1H,d,J=7.4Hz),7.63-7.74(2H,m),7.79(2H,s),7.89-7.93(1H,m),8.00(1H,dd,J=2.3,1.0Hz),8.30(1H,d,J=1.0Hz),8.65-8.73(2H,m). IR(CHCl₃):3450,2675,1728,1707,1649,1528,1509/cm. $[\alpha]_D = +82.8 \pm 1.2^{\circ} (CHCl_3, c=1.01, 23^{\circ}C).$ 45 No.2a-1 $[\alpha]_D = +69.0^{\circ}$ (MeOH,c=1.01,25°C) 50 No.2a-2

CDCl₃ 300MHz 0.99(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.3 5.52(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H, m),7.66 and 7.80(each 2H,each d,J=8.7Hz).

IR(CHCl₃):3116,3014,2925,2870,2663,1708,1651,1610,1524,1504,1484,1472 /cm.

 $[\alpha]_D$ = +64.1° (MeOH,c=1.02,25°C).

55

0(1H,m),5.35-

```
[α]<sub>D</sub>=+76.6° (MeOH,c=1.18,26°C).
```

5 No.2a-4

10

20

30

40

No.2a-3

No.2a-5

15 $CD_3OD\ 300MHz$ 0.98(1H,d,J=9.9Hz),1.18 and 1.25(each 3H,each s),1.56-1.71(3H,m),1.98-2. 40(11H,m),4.17(1H,m),5.41-5.52(2H,m),7.52-7.61(3H,m),7.91-8.01(6H,m). IR(KBr):3416,3063,2983,2921,2869,1704,1643,1566,1518,1488,1408 /cm. [α]_D= +62.0° (MeOH,c=1.00, 25°C).

No.2a-6

 $[\alpha]_D = +64.1^{\circ}$ (MeOH,c=1.01,25°C).

25 No.2a-7

 $[\alpha]_D = +65.3^{\circ}$ (MeOH,c=0.99,25°C).

No.2a-8

 $[\alpha]_{D}=+74.0^{\circ}$ (MeOH,c=1.01,25°C).

No.2a-9

35 $[\alpha]_D = +71.0^{\circ}$ (MeOH,c=1.10,25°C).

No.2a-10

 $[\alpha]_D$ =+74.7° (MeOH,c=1.00,25°C).

No.2a-11

 $[\alpha]_D$ =+72.1° (MeOH,c=1.00,25°C).

45 No.2a-12

 $[\alpha]_D$ =+53.1° (CHCl₃,c=1.01,26°C). m.p.155.0-156.0°C

50 No.2a-13

No.2a-14

 $[\alpha]_D = +72.5^{\circ}$ (MeOH,c=1.07,25°C).

5 No.2a-15

CDCl₃ 300MHz

0.99(1H,d,J=9.9Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),4.27(1H,m),5.30-5.50(2H,m),6.29(1H,d,J=9.0Hz),7.11 and 7.20(each 1H,each d, J=16.2Hz),7.29-7.55(5H,m),7.57 and 7.72(each 2H,each d,J=8.7Hz).

 $IR(CHCl_3): 3453, 3083, 3022, 3013, 2925, 2870, 1708, 1650, 1607, 1560, 1522, 1496 \ / cm.$

 $[\alpha]_D$ = +72.3° (MeOH,c=1.00,27°C).

m.p.115.0-117.0°C

15 No.2a-16

10

CDCl₃ 300MHz

0.92(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.48(14H,m),3.6 2(3H,s),4.29(1H,m),5.30-5.50(2H,m),6.20(1H,d,J=8.7Hz),6.59 and 6.68 (each 1H,each,d,J=12.3Hz),7.23(5H,s),7.29 and 7.59(each 2H,each d,J=8.1Hz).

 $\label{eq:local_$

 $[\alpha]_D$ = +56.8° (MeOH,c=1.04,24°C).

No.2a-17

25

20

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.38(14H,m),4.2 6(1H,m),5.30-5.50(2H,m),6.23(1H,d,J=8.4Hz),6.59 and 6.70(each 1H,each d,J=12.3Hz),7.23(5H,s),7.30 and 7.57(each 2H,each d,J=8.7Hz).

30 IR(CHCl₃):3452,3081,3019,3014,2925,2870,2665,1708,1650,1607,1521,1495 /cm. [α]_D= +61.6° (MeOH,c=1.00,27°C).

No.2a-18

35 CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each,s),1.50-2.50(14H,m),3.61 (3H,s),4.31(1H,m),5.35-5.51(2H,m),6.33(1H,d,J=8.4Hz),7.48-7.64(4H,m),7.7 9-7.83(2H,m),7.91(1H,dt,J=1.5 and 7.8Hz),8.01(1H,dt,J=1.5 and 7.8Hz),8. 13(1H,t,J=1.5Hz).

IR(CHCl₃):3450,3026,3013,2925,2870,1730,1659,1600,1510 /cm.

40 $[\alpha]_D = +56.0^{\circ} (MeOH, c=1.01, 25^{\circ}C).$

No.2a-19

CDCl₃ 300MHz

 $\begin{array}{lll} 45 & 0.95(1\text{H,d,J=}9.9\text{Hz}), 1.14 & \text{and} & 1.21(\text{each} & 3\text{H,each} & \text{s}), 1.53-2.60(14\text{H,m}), 4.25(& 1\text{H,m}), 5.35-5.64(2\text{H,m}), 7.21(1\text{H,d,J=}7.8\text{Hz}), 7.49-7.68(4\text{H,m}), 7.76-7.84(3\text{H,m}), 8.25(1\text{H,m}), 8.43(1\text{H,m}). \\ & 1\text{R}(\text{CHCl}_3):3382,3196,3025,3015,2925,2870,1725,1652,1599,1577,1521/cm.} \\ & [\alpha]_D = +55.9^\circ \text{ (MeOH,c=}1.00,25^\circ\text{C)}. \end{array}$

50 No.2a-20

CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.6 2(3H,s),4.31(1H,m),5.35-5.51(2H,m),6.24(1H,d,J=8.4Hz),7.40-7.52(3H,m),7.71-7.76(2H,m).

55 IR(CHCl₃):3453,3025,3013,2925,2870,1730,1753,1579,1514,1486 /cm.

 $[\alpha]_{D}$ = +61.2° (MeOH,c=1.04,25°C).

No.2a-21

No.2a-22

10

15

20

25

 d_6 -DMSO 300MHz 0.86(1H,d,J=9.9Hz),1.10 and 1.16(each 3H,each s),1.42-1.52(3H,m),1.85-2. 46(11H,m),3.98(1H,m),5.32-5.43(2H,m),7.41(3H,m),7.88(2H,d,J=6.6Hz),8.19 (1H,d,J=6.6Hz). IR(KBr):3367,3060,2984,2922,2868,1634,1563,1529,1487/cm. [α]_D=+47.7° (MeOH,c=1.00,25°C).

No.2a-23

 $[\alpha]_{D}=+62.7^{\circ}$ (MeOH,c=1.01,27°C).

No.2a-24

CDCl₃ 300MHz 0.99(1H,d,J=10.2Hz),1.14 and 1.25(each 3H,each s),1.52-2.50(14H,m),4.3 1(1H,m),5.36-5.52(2H,m),6.34(1H,d,J=8.4Hz),7.47-7.52(2H,m),7.59-7.64(1H, m),7.78-7.83(6H,m). IR(CHCl₃):3449,3027,3013,2925,2869,1708,1656,1599,1518,1493 /cm. [α]_D= +63.1° (MeOH,c=1.00,25°C).

No.2a-25

30

40

45

 $[\alpha]_D$ =+35.1° (MeOH,c=1.00,25°C).

No.2a-26

 $[\alpha]_D=+35.5^{\circ}$ (MeOH,c=1.02,25°C).

No.2a-27

CDCI₃ 300MHz

No.2a-28

CDCl₃ 300MHz 6(1H,m),5.34s),1.52-2.50(14H,m),4.2 1.23(each 3H.each 0.98(1H,d,J=10.2Hz),1.12 and 2H.each d,J=9.0Hz,),6.98and 7.70(each 5.51(2H,m),6.20(1H,d,J=9.0Hz),7.01 50 7.15(2H,m), 7.17(1H,t,J=7.5Hz), 7.34-7.40(2H,m).IR(CHCl₃):3454,3031,3018,2925,2870,1708,1650,1588,1523,1487/cm. $[\alpha]_D$ = +56.2° (MeOH,c=1.00,25°C).

55 No.2a-29

 $[\alpha]_D$ =+53.0° (MeOH,c=1.03,25°C).

No.2a-30

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 5(1H,m),5.30-5.50(2H,m),6.23(1H,d,J=8.7Hz),6.36(1H,s),7.26-7.39(10H,m),7. 60 and 7.68(each 2H,each d,J=8.4Hz,). IR(CHCl₃):3451,3088,3064,3029,3014,2925,2869,1707,1652,1522,1495 /cm. $[\alpha]_D$ =+54.2° (MeOH,c=1.00,25°C).

No.2a-31

10

5

CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.6 3(3H,s),4.31(1H,m),5.30-5.50(2H,m),6.26(1H,d,J=8.4Hz),6.90(1H,t,J=7.4Hz), 7.13(1H,d,J=8.7Hz),7.29(2H,t,J=8.0Hz),7.67-7.75(5H,m),7.82(1H,s).

15 IR(Nujol):3380,3244,1723,1638,1601,1578,1535,1495 /cm. [α]_D=+73.6° (MeOH,c=0.50,26°C). m.p.133.0-134.0°C

No.2a-32

20

 $[\alpha]_D$ =+56.1° (MeOH,c=1.02,26°C).

No.2a-33

25 CDCl₃ 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.21(each,3H,each s),1.50-2.50(14H,m),4.25 (1H,m),5.13(2H,s),5.30-5.70(3H,m),6.41(1H,d,J=8.2Hz),6.89(1H,s),7.09(1H, s),7.17 and 7.72(each 2H,each d,J=8.2Hz),7.62(1H,s). IR(CHCl₃):3450,3125,3031,3013,2925,2870,2467,1917,1708,1654,1615,1575, 1523,1497 /cm. [α]_D=+55.2° (MeOH,c=1.01,26°C).

30

40

50

No.2a-34

 $[\alpha]_D = +72.9^{\circ}$ (MeOH,c=1.03,25°C).

35 No.2a-35

CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.24(each 3H,each s),1.52-2.48(14H,m),4.2 8(1H,m),5.35-5.51(2H,m),6.28(1H,d,J=8.7Hz),7.34-7.37(3H,m),7.52-7.55(2H, m),7.58 and 7.71(each 2H,each d,J=8.7Hz). IR(CHCl₃):3515,3452,3030,3012,2925,2870,1739,1708,1652,1607,1555,1521, 1497 /cm. $[\alpha]_D$ =+74.3° (MeOH,c=1.01,25°C).

No.2a-36

45 $[\alpha]_D = +23.4^{\circ} (MeOH, c=1.07, 25^{\circ}C).$

No.2a-37

CDCl₃ 300MHz

0.83(1H,d,J=10.5Hz),0.95 and 1.18(each 3H,each s),1.44-2.46(14H,m),3.9 2(1H,m),5.34-5.52(3H,m),7.26-7.54(9H,m),7.62(1H,s). IR(CHCl₃):3432,3310,3189,3023,3014,2924,2870,1704,1610,1594,1523,1487 /cm. $[\alpha]_D$ =+25.3° (MeOH,c=1.00,26°C).

55 No.2a-38

 $[\alpha]_D$ =+70.9° (MeOH,c=1.02,25°C).

No.2a-39

```
[\alpha]_{D}=+70.6° (MeOH,c=1.01,25°C).
          No.2a-40
                    [\alpha]_D=+74.7^{\circ} (MeOH,c=1.00,25°C).
           No.2a-41
10
                     [\alpha]_D=+72.1° (MeOH,c=1.01,24°C).
           No.2a-42
                     [\alpha]_D=+69.2^{\circ} (MeOH,c=1.00,25°C).
15
           No.2a-43
                     [\alpha]_D = +70.8^{\circ} (MeOH,c=1.00,25°C).
20
            No.2a-44
                     [\alpha]_D=+60.4^{\circ} (MeOH,c=1.00,26°C).
           No.2a-45
                      CDCl<sub>3</sub> 300MHz
                                                                                                                                                                                                                                                                  1H,m),5.34-
                                                                                                                                                                                        s),1.55-2.52(14H,m),4.29(
                                                                                                                                                       3H,each
                      0.97(1H,d,J=9.9Hz),1.13
                                                                                            and
                                                                                                                  1.23(each
                      5.54(2H,m),6.33(1H,d,J=9.0Hz),7.10(1H,t,J=7.4Hz),7.34(2H,t,J =7.4Hz),7.52(2H,m),7.68 and 7.75(each 2H,each
                      d,J=8.4Hz),7.80(1H,s),8. 10(1H,s),10.09(1H,s).
30
                      IR(CHCl_3): 3393, 3195, 3093, 3033, 3013, 2925, 2870, 1698, 1656, 1598, 1537, 1498 \ /cm.
                      [\alpha]_{D}=+59.4^{\circ} (MeOH,c=1.01,24°C).
            No.2a-46
 35
                      [\alpha]_D=+63.5° (MeOH,c=1.00,25°C).
            No.2a-47
                       CDCl<sub>3</sub> 300MHz
 40
                                                                                                                   1.23(each
                                                                                                                                                        3H,each
                                                                                                                                                                                         s),1.54-2.48(14H,m),4.29(
                                                                                                                                                                                                                                                                   1H,m),5.35-
                                                                                             and
                       0.97(1H,d,J=9.9Hz),1.12
                      5.52(2H,m), 6.32(1H,d,J=8.7Hz), 7.26(1H,m), 7.41(2H,t,J=7.8Hz), 7.64(2H,d,J=7.5Hz), 7.73 \ and \ 7.77(each\ 2H,each\ 2
                      d,J=8.4Hz),7.95(1H,s),9. 20(1H,s),10.38(1H,s).
                       IR(CHCl_3): 3450, 3339, 3003, 2992, 2925, 2870, 1706, 1653, 1596, 1523, 1495/cm.\\
 45
                       [\alpha]_{D}=+63.3^{\circ} (MeOH,c=1.00,25°C).
             No.2a-48
                       [\alpha]_{D}=+63.8^{\circ} (MeOH,c=1.00,24°C).
 50
             No.2a-49
                        CDCl<sub>3</sub> 300MHz
                                                                                                                                                          3H,each
                                                                                                                                                                                          s),1.55-2.52(14H,m),4.3
                                                                                                                      1.26(each
                        1.00(1H,d,J=10.5Hz),1.17
                                                                                                and
                        5.54(2H,m),6.35(1H,d,J=9.0Hz),7.50-7.62(3H,m),7.90 and 8.3 3(each 2H,each d,J=8.4Hz),8.21(2H,m).
 55
                        IR(CHCl<sub>3</sub>):3451,3029,3022,3016,2925,2870,1708,1655,1542,1508,1498,1471, 1459 /cm.
                       [\alpha]_D=+63.5° (MeOH,c=1.02,25°C):
                        m.p.135.0-137.0°C
```

```
No.2a-50
         [\alpha]_D=+68.9° (MeOH,c=1.01,24°C).
     No.2a-51
         d<sub>6</sub>-DMSO 300MHz
         0.87(1H,d,J=9.9Hz),1.10 and 1.17(each 3H,each s),1.40-1.60(3H,m),1.90-2. 40(11H,m),3.98(1H,m),5.35-
         5.46(2H,m),7.64(1H,s),7.65 and 7.91(each 2H, each d,J=8.7Hz),8.06(1H,d,J=6.0Hz),9.32(1H,brs).
         IR(KBr): 3385, 2962, 1734, 1707, 1632, 1529, 1498 / cm.
10
         [\alpha]_D=+68.4° (MeOH,c=1.01,24°C).
     No.2a-52
15
         [\alpha]_{D}=+76.2° (MeOH,c=1.01,24°C).
     No.2a-53
         [\alpha]_D=+73.9^{\circ} (MeOH,c=1.02,24°C).
20
     No.2a-54
         [\alpha]_D=+68.1° (MeOH,c=1.00,24°C).
    No.2a-55
         [\alpha]_D=+67.8° (MeOH,c=1.00,24°C).
     No.2a-56
30
         [\alpha]_D=+65.4^{\circ} (MeOH,c=1.03,25°C).
     No.2a-57
35
         [\alpha]_D=+63.4° (MeOH,c=1.01,24°C).
     No.2a-58
         [\alpha]_{D}=+66.6° (MeOH,c=1.01,24°C).
40
     No.2a-59
         [\alpha]_D=+65.5^{\circ} (MeOH,c=1.00,24°C).
   No.2a-60
         [\alpha]_D=+60.9^{\circ} (MeOH,c=1.02,25°C).
     No.2a-61
50
         CDCl<sub>3</sub> 300MHz
         0.97(1H,d,J=10.0Hz),1.10
                                         and
                                                  1.22(each
                                                                  3H,each
                                                                                s),1.50-2.50(14H,m),4.2
                                                                                                               6(1H,m),5.30-
         5.54(2H,m),6.28(1H,d,J=8.6Hz),6.60 and 6.82(each 1H,each d,J=12.4Hz,),7.12(2H,d,J=6.0Hz),7.25 and
         7.62(each 2H,each d,J=8.6Hz),8.47(2H,d,J=6.0Hz).
55
         IR(CHCl<sub>3</sub>):3452,3027,3019,3013,2925,2870,2480,1708,1651,1606,1520,1494 /cm.
         [\alpha]_D=+61.6° (MeOH,c=1.01,25°C).
```

No.2a-62

 $[\alpha]_D$ =+72.0° (MeOH,c=0.93,25°C).

5 No.2a-63

CDCl₃ 300MHz 0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.2 9(1H,m),5.36-5.55(2H,m),6.35(1H,d,J=9.1Hz),7.04 and 7.27(each 1H,each d,J=16.5Hz),7.37(2H,d,J=6.6Hz),7.56 and 7.76(each 2H,each d,J=8.4Hz), 8.57(2H,d,J=6.6Hz).

 $IR(CHCl_3): 3452, 3024, 3018, 3014, 2925, 2870, 2470, 1933, 1708, 1652, 1605, 1521, \ 1496 \ /cm. \\ [\alpha]_D=+69.2^{\circ} \ (MeOH, c=1.01, 25^{\circ}C).$

No.2a-64

15

25

35

45

50

10

 $[\alpha]_D=+56.9^{\circ}$ (MeOH,c=1.24,25°C).

No.2a-65

20 CDCl₃ 300MHz

 $0.98(\overset{\circ}{1}\text{H,d,J}=10.5\text{Hz}),1.12$ and $1.23(\text{each}\ 3\text{H,each}\ s),1.54-2.46(14\text{H,m}),4.2$ 7(1H,m),5.23(2H,s),5.34-5.52(2H,m),6.26(1H,d,J=8.4Hz),7.32-7.45(5H,m),7. 64 and 7.71 (each 2H,each d,J=8.4Hz),8.15(1H,s). IR(CHCl₃):3452,3088,3065,3032,3013,2925,2870,1708,1653,1611,1559,1522, 1496 /cm. [α]_D=+61.0° (MeOH,c=0.91,25°C).

No.2a-66

 $[\alpha]_D = +76.0^{\circ}$ (MeOH,c=1.01,25°C).

30 No.2a-67

CDCl₃ 300MHz 8(1H,m),5.32-3H,each s),1.54-2.46(14H,m),4.2 1.24(each 0.98(1H,d,J=10.4Hz),1.14 and 16.4Hz),7.02(1H,dd,J=5.8 and 5.53(2H,m),6.27(1H,d,J=8.6Hz),6,92-7.31(each 1H,each d,J= 3.6Hz),7.12(1H,d,J=3.6Hz),7.24(1H,d,J=5.8 Hz),7.51 and 7.70(each 2H,each d,J=8.4Hz). IR(CHCl₃):3453,3029,3013,2925,2870,1739,1650,1604,1524,1515,1494 /cm. $[\alpha]_{D}=+76.2^{\circ}$ (MeOH,c=1.00,24°C). m.p.104.0-106.0°C

40 No.2a-68

 $[\alpha]_D=+57.7^{\circ}$ (MeOH,c=1.01,25°C).

No.2a-69

CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.54-2.48(14H,m),4.2 8(1H,m),5.34-5.53(2H,m),6.29(1H,d,J=9.0Hz),6,54-6.74(each 1H,each d,J= 12.0Hz),7.02(1H,dd,J=4.8 and 3.3Hz),6.97(1H,dd,J=3.3 and 1.2Hz),7.13(1 H,dd,J=4.8 and 1.2Hz),7.44 and 7.70(each 2H,each d,J=8.7Hz). IR(CHCl₃):3453,3025,3010,2925,2870,1708,1650,1607,1559,1523,1493 /cm. [α]_D=+58.4° (MeOH,c=1.00,25°C).

No.2a-70

 $[\alpha]_D = +48.6^{\circ}$ (MeOH,c= 1.00,25°C).

No.2a-71

CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.3 1(3H,s),4.26(1H,m),5.33-5.52(2H,m),6.20(1H,d,J=9.3Hz),7.02-7.11(6H,m),7. 70(2H,d,J=9.0Hz).
IR(CHCl₃):3460,3031,3022,3011,2925,2870,1750,1708,1650,1608,1597,1523, 1490 /cm.
[\alpha]_{D=+48.9°} (MeOH,c=1.01,25°C).

No.2a-72

10

 $[\alpha]_D = +51.2^{\circ}$ (MeOH,c=1.02,25°C).

No.2a-73

15 CDCl₃ 300MHz

0.97(1H,d,J=9.9Hz), 1.11 and 1.23(each 3H,each s), 1.54-2.48(14H,m),4.27(1H,m),5.32-5.52(2H,m),6.24(1H,d,J=9.0Hz),6.83-6.94(6H,m),7.65(2H,d,J=9.0Hz). IR(CHCl₃):3598,3451,3199,3033,3012,2925,2870,1708,1642,1604,1524,1507, 1491 /cm. $[\alpha]_D$ =+52.2° (MeOH,c=1.01,25°C).

20

No.2a-74

 $[\alpha]_D = +51.5^{\circ}$ (MeOH,c=0.92,25°C).

25 No.2a-75

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.46(14H,m),3.8 2(3H,s),4.25(1H,m),5.32-5.52(2H,m),6.19(1H,d,J=8.7Hz),6.89-7.01(6H,m),7.65-7.68(2H,m).

30 IR(CHCl₃):3450,3025,3008,2925,2870,2837,1741,1649,1612,1521,1505,1490 /cm. $[\alpha]_D$ =+51.1° (MeOH,c=1.00,25°C).

No.2a-76

 $[\alpha]_D=+60.4^{\circ}$ (MeOH,c=0.98,25°C).

No.2a-77

CDCl₃ 300MHz

40 0.99(1H,d,J=10.5Hz),1.15 and 1.24(each 3H,each s),1.54-2.48(14H,m),2.3 4(3H,s),4.29(1H,m),5.32-5.54(2H,m),6.32(1H,d,J=8.4Hz),7.19 and 7.60 (each 2H,each d,J=8.4Hz),7.63 and 7.79(each 2H,each d,J=8.4Hz).

$$\label{eq:chcl} \begin{split} &\text{IR(CHCl}_3): 3452, 3027, 3012, 2925, 2870, 1751, 1709, 1651, 1611, 1560, 1527, 1509, \ 1489 \ / \text{cm.} \\ &\text{[α]}_D = +61.2^{\circ} \ (\text{MeOH,c=}1.00, 25^{\circ}\text{C}). \end{split}$$

45

55

No.2a-78

 $[\alpha]_D=+67.4^{\circ}$ (MeOH,c=1.01,25°C).

50 No.2a-79

CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.54-2.54(14H,m),4.3 1(1H,m),5.32-5.54(2H,m),6.36(1H,d,J=8.2Hz),6.93 and 7.48(each 2H,each d,J=8.6Hz),7.59 and 7.75(each 2H,each d,J=8.4Hz). IR(CHCl₃):3593,3448,3192,3030,3010,2925,2870,1708,1644,1608,1591,1559, 1530,1516,1491 /cm. $[\alpha]_{D}$ =+65.8° (MeOH,c=1.01,25°C).

No.2a-80

 $[\alpha]_D$ =+66.9° (MeOH,c=1.01,25°C).

5 No.2a-81

CDCI₃ 300MHz

0.99(1H,d,J=10.5Hz),1.15 and 1.24(each 3H,each s),1.54-2.48(14H,m),3.8 6(3H,s),4.29(1H,m),5.34-5.52(2H,m),6.20(1H,d,J=8.7Hz),6.99 and 7.55 (each 2H,each d,J=9.0Hz),7.61 and 7.77(each 2H,each d,J=8.7Hz).

 $IR(CHCl_3): 3450, 3009, 2925, 2870, 2838, 1740, 1708, 1650, 1608, 1557, 1528, 1512, \ 1491 \ /cm. \\ [\alpha]_{D=+66.2^{\circ}} \ (MeOH, c=1.01, 25^{\circ}C).$

No.2a-82

15

10

 $[\alpha]_D=+57.7^{\circ}$ (MeOH,c=1.02,24°C).

No.2a-83

20 CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.54-2.48(14H,m),2.3 3(3H,s),4.26(1H,m),5.32-5.52(2H,m),6.25(1H,d,J=8.7Hz),7.16 and 7.75 (each 2H,each d,J=8.7Hz). IR(CHCl₃):3452,3030,3022,3012,2925,2870,1754,1709,1654,1604,1585,1522, 1493 /cm. [α]_D=+57.4° (MeOH,c=1.01,24°C).

25

35

No.2a-84

 $[\alpha]_D=+57.8^{\circ}$ (MeOH,c=1.01,24°C).

30 No.2a-85

CDCl₃ 300MHz

0.95(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.54-2.48(14H,m),4.2 5(1H,m),5.32-5.52(2H,m),6.28(1H,d,J=8.7Hz),6.87 and 7.57(each 2H,each d,J=9.0Hz).

IR(CHCl₃):3590,3450,3166,3019,3012,2925,2871,1708,1637,1608,1583,1531, 1498 /cm.

 $[\alpha]_D = +56.0^{\circ}$ (MeOH,c=1.01,24°C).

No.2a-86

40 $[\alpha]_D = +59.3^{\circ}$ (MeOH,c=1.01,22°C).

No.2a-87

CDCI₃ 300MHz

0.98(1H,d,J=10.0Hz),1.13 and 1.23(each 3H,each s),1.54-2.48(14H,m),3.8 5(3H,s),4.25(1H,m),5.32-5.53(2H,m),6.19(1H,d,J=8.8Hz),6.93 and 7.69 (each 2H,each d,J=9.0Hz). IR(CHCl₃):3450,3030,3017,3012,2925,2870,2840,1740,1708,1647,1606,1575, 1525,1496 /cm. $[\alpha]_D=+58.2^\circ$ (MeOH,c=0.99,22°C).

50 No.2a-88

 $[\alpha]_D = +50.9^{\circ}$ (MeOH,c=1.02,25°C).

No.2a-89

55

45

CDCl₃ 300MHz 0.99(1H,d,J=10.2Hz),1.18 and 1.26(each 3H,each s),1.56-2.48(14H,m),4.2 9(1H,m),5.36-5.54(2H,m),7.03(1H,d,J=8.7Hz),7.21(1H,s),7.43(2H,m),7.74(1 H,ddd,J=1.8,6.9 and 8.7Hz),8.22(1H,dd,J=1.8 and

```
8.1Hz).
          IR(CHCl<sub>3</sub>):3443,3087,3023,3014,2925,2870,1708,1685,1658,1630,1517,1466 /cm.
         [\alpha]_D = +57.1^{\circ} (MeOH,c=1.01,22°C).
         m.p.117.0-118.0°C
5
     No.2a-90
         [\alpha]_D = +54.1^{\circ} (MeOH,c=1.01,22°C).
     No.2a-91
         CDCl<sub>3</sub> 300MHz
         0.97(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.2 4(1H,m),5.34-5.52(2H,m),6.49-
         6.53(2H,m),7.11(1H,dd,J=0.9 and 3.6Hz),7.4 4(1H,dd,J=0.9 and 1.8Hz).
          IR(CHCl<sub>3</sub>):3437,3033,3022,3014,2925,2870,1739,1708,1655,1595,1520,1472 /cm.
15
         [\alpha]_D = +55.0^{\circ} (MeOH,c=1.00,22°C).
     No.2a-92
         [\alpha]_D = +50.3^{\circ} (MeOH,c=1.00,22°C).
20
     No.2a-93
          CDCl<sub>3</sub> 300MHz
         0.95(1H,d,J=10.5Hz),1.12
                                                                                 s),1.52-2.46(14H,m),4.2
25
                                         and
                                                   1.23(each
                                                                   3H,each
                                                                                                                5(1H,m),5.34-
         5.52(2H,m),6.12(1H,d,J=8.7Hz),7.07(1H,dd,J=3.9 and 5.1Hz), 7.45-7.48(2H,m).
         IR(CHCl<sub>3</sub>):3450,3023,3011,2925,2870,1739,1708,1645,1531,1501,1471 /cm.
         [\alpha]_D = +49.1^{\circ} (MeOH, c=1.02,24°C).
30 No.2a-94
         [\alpha]_D = +51.5^{\circ} (MeOH, c=1.00, 24°C).
     No.2a-95
35
         CDCl<sub>3</sub> 300MHz
         0.96(1H,d,J=10.5Hz),1.11
                                         and
                                                   1.23(each
                                                                   3H,each
                                                                                 s),1.52-2.46(14H,m),4.2
                                                                                                                5(1H,m),5.34-
         5.56(2H,m),6.14(1H,d,J=8.7Hz),7.34(2H,d,J=2.0Hz),7.85(1H,t, J=2.0Hz).
         IR(CHCl<sub>3</sub>):3452,3114,3030,3013,2925,2870,1708,1649,1535,1498,1471/cm.
40
         [\alpha]_D = +55.5^{\circ} (MeOH,c=1.00,25°C).
         m.p.87.0-88.0°C
     No.2a-96
         CD<sub>3</sub>OD 300MHz
45
         0.94(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.50-1.76(3H,m),1.94-2.39(11H,m),4.11(1H,m),5.39-
         5.49(2H,m),7.43-7.51(2H,m),8.05(1H,m).
         IR(KBr):3369,3084,2985,2921,2868,1630,1566,1538,1503 /cm.
         [\alpha]_D = +38.8^{\circ} (MeOH, c=1.01,22°C).
50
     No.2a-97
         CD<sub>3</sub>OD 300MHz
         0.93(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.48-1.58(3H,m),1.96-2. 36(11H,m),4.10(1H,m),5.35-
55
         5.50(2H,m),7.42-7.51(2H,m),8.06(1H,m).
         IR(KBr):3447,3087,2987,2922,2868,1629,1545,1501 /cm.
         [\alpha]_D=+52.9^{\circ} (MeOH,c=1.01,24°C).
```

```
No.2a-98
         [\alpha]_D=+53.2° (MeOH,c=1.02,23°C).
     No.2a-99
5
         CDCl<sub>3</sub> 300MHz
                                                                                                                    5(2H,m),5.34-
                                                                      3H.each
                                                                                    s), 1.26-2.45(24H,m), 4.2
                                                     1.22(each
                                           and
         0.97(1H,d,J=10.2Hz),1.12
         5.52(2H,m), 6.18(1H,d,J=8.7Hz), 6.91 and 7.66(each 2H, each d, J=9.0Hz).
         IR(CHCl_3): 3455, 3029, 3019, 2939, 2862, 1738, 1709, 1645, 1605, 1523, 1494 \ / cm.
10
         [\alpha]_{D}=+51.4^{\circ} (MeOH,c=1.00,23°C).
     No.2a-100
          [\alpha]_D=+49.3° (MeOH,c=1.00,24°C).
15
     No.2a-101
          [\alpha]_D = +51.3^{\circ} (MeOH,c=1.00,24°C).
20
     No.2a-102
          [\alpha]_D = +48.8^{\circ} (MeOH,c=1.01,23°C).
     No.2a-103
          CDCl<sub>3</sub> 300MHz
          0.94(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.52-2.46(14H,m),2.4 8(3H,d,J=0.3Hz),4.20(1H,m),5.32-
          5.54(2H,m),6.46(1H,brs),7.12(1H,d,J=9.0 Hz).
          IR(CHCl<sub>3</sub>):3415,3144,3029,3011,2926,2871,1708,1671,1598,1538,14564 /cm
30
          [\alpha]_{D}=+49.6° (MeOH,c=1.01,23°C).
      No.2a-104
          [\alpha]_D=+77.0° (MeOH,c=1.02,23°C).
35
      No.2a-105
           CDCl<sub>3</sub> 300MHz
                                                                           s), 1.51-2.44(14H,m), 3.90(6
                                                                                                            H,s),4.20(1H,m),5.38-
                                               1.21(each
                                                              3H,each
           93(1H,d,J=9.9Hz),1.09 and
 40
          5.50(2H,m),5.87(1H,d,J=9.0Hz),6.25
                                                                and
                                                                                   7.54
                                                                                                      (each
                                                                                                                           1H,each
          \label{eq:def-J} {\sf d,J=15.6Hz),6.84(1H,d,J=8.1Hz),7.03(1H,d,J=1.8Hz),7.09(1~H,dd,J=1.8~and~8.1Hz).}
          IR(CHCl_3): 3439, 3028, 3012, 2937, 2871, 2841, 1739, 1708, 1661, 1620, 1600, 1513 \ /cm.
          [\alpha]_{D}=+77.3^{\circ} (MeOH,c=1.01,23°C).
 45
      No.2a-106
          [\alpha]_D=+67.0^{\circ} (MeOH,c=1.00,25°C).
     No.2a-107
           [\alpha]_D = +66.6^{\circ} (MeOH,c=1.01,24°C).
           m.p.168.0-170.0°C
```

No.2a-108

 $[\alpha]_D$ =+61.8° (MeOH,c=1.00,22°C).

```
No.2a-109
```

 $\begin{array}{c} \text{CDCl}_3 \ 300 \text{MHz} \\ 0.96 (1\text{H,d,J}=10.2\text{Hz}), 1.10 \quad \text{and} \quad 1.22 (\text{each} \quad 3\text{H,each} \quad \text{s}), 1.51\text{-}2.45 (14\text{H,m}), 4.2 \quad 5 (1\text{H,m}), 5.33\text{-}\\ 5.49 (2\text{H,m}), 6.21 (1\text{H,d,J}=8.7\text{Hz}), 7.25 \quad \text{and} \quad 7.60 (\text{each} \, 2\text{H,each} \, \text{d,J}=8.7\text{Hz}), 7.33\text{-}7.41 (5\text{H,s}). \\ \text{IR} (\text{CHCl}_3): 3453, 3062, 3028, 3014, 2925, 2870, 1739, 1708, 1651, 1594, 1557, 1515, 1481 /cm.} \\ \text{I}_{\text{CD}} (\text{MeOH,c}=1.01, 22^{\circ}\text{C}). \\ \text{No.2a-110} \\ \text{CD}_{\text{3}} \text{OD} \ 300 \text{MHz} \\ \end{array}$

0.94(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.54-2.37(14H,m),4.12(1H,m),5.38-5.49(2H,m),7.25 and 7.68(each 2H,each d,J=8.7Hz),7.41(5H,s)

IR(KBr):3435,3058,2986,2920,2866,1635,1595,1562,1521,1482,1439,1411 /cm.

 $[\alpha]_D = +47.3^{\circ}$ (MeOH, c=1.01, 23°C).

20 No.2a-111

 $[\alpha]_D = +65.6^{\circ}$ (MeOH,c=1.01,24°C).

No.2a-112

25

30

15

CDCl₃ 300MHz 0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.51-2.46(14H,m),4.2 7(1H,m),5.35-5.50(2H,m),6.22(1H,d,J=8.4Hz),7.40 and 7.66(each 2H,each d,J=9.0Hz). IR(CHCl₃):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 /cm. $[\alpha]_D$ =+65.6° (MeOH,c=1.01,22°C).

- 942

No.2a-113

 $[\alpha]_D$ =+59.6° (MeOH,c=1.00,24°C).

35 No.2a-114

CDCl₃ 300MHz 0.98(1H,d,J=10.2Hz),1.12 and 1.24(each 3H,each s),1.52-2.46(14H,m),4.2 9(1H,m),5.35-5.51(2H,m),6.28(1H,d,J=8.4Hz),7.70 and 7.83(each 2H,each d,J=8.4Hz). IR(CHCl₃):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 /cm. $[\alpha]_D$ =+60.6° (MeOH,c=1.01,22°C).

No.2a-115

45

55

40

 $[\alpha]_D$ =+59.7° (MeOH,c=0.99,24°C).

No.2a-116

50 CDCl₃ 300MHz

 $0.97(1H,d,J=10.2Hz),1.12 \quad \text{and} \quad 1.23(\text{each} \quad 3H,\text{each} \quad \text{s}),1.52-2.46(14H,m),2.3 \quad 9(3H,\text{s}),4.27(1H,m),5.33-5.51(2H,m),6.24(1H,d,J=9.0Hz),7.23 \quad \text{and} \quad 7.62 \quad (\text{each} \, 2H,\text{each} \, d,J=8.4Hz).$ $IR(CHCl_3):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513/cm.$ $[\alpha]_D=+59.7^{\circ} \quad (\text{MeOH},c=0.99,24^{\circ}C).$

No.2a-117

 $[\alpha]_D = +56.7^{\circ}$ (MeOH,c=1.00,23°C).

No.2a-118

CDCl₃ 300MHz

3(1H,m),5.34s),1.53-2.44(14H,m),4.2 0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each 5.51(2H,m),6.02(2H,s),6.13(1H,d,J=8.7Hz),6.83(1H,dd,J=1.2 and 7.8Hz),7.22-7.25(2H,m). IR(CHCl₃):3453,3031,3020,3012,2924,2870,1740,1708,1650,1619,1605,1519, 1504,1480 /cm. $[\alpha]_D = +57.2^{\circ}$ (MeOH,c=1.02,23°C).

No.2a-119

10

15

20

5

CDCI₃ 300MHz

0.96(1H,d,J=10.5Hz),1.07 and 1.23(each 3H,each s),1.51-2.44(14H,m),2.3 2(3H,s),4.26(1H,m),5.37-5.52(2H,m),6.40(1H,d,J=9.0Hz),7.09(1H,m),7.30(1 H,m),7.46(1H,m),7.66(1H,m). IR(CHCl₃):3443,3028,3012,2925,2870,1766,1747,1709,1657,1607,1516,1479 /cm. $[\alpha]_{D}$ =+53.2° (MeOH,c=0.99,21°C).

No.2a-120

CDCl₃ 300MHz 0(1H,m),5.35s),1.53-2.44(14H,m),4.3 0.98(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each 5.52(2H,m),6.42(1H,d,J=8.7Hz),6.85(1H,m),6.99(1H,dd,J=1.2 and 8.4Hz),7.27(1H,m),7.39(1H,m). IR(CHCl₃):3463,3033,3021,3014,2992,2924,2870,1708,1643,1597,1523,1488 /cm. $[\alpha]_{D}=+46.3^{\circ}$ (MeOH,c=1.01,21°C).

No.2a-121

CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.47-2.47(14H,m),3.9 5(3H,s),4.31(1H,m),5.32-5.50(2H,m),6.98(1H,dd,J=0.9 and 8.4Hz),7.09(1H, ddd,J=0.9,7.7 and 8.4Hz),7.45(1H,m),8.19(1H,dd,J=2.1 and 8.1Hz),8.32(1 H,d,J=9.0Hz).

IR(CHCl₃):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600, 1536,1483,1470 /cm. $[\alpha]_D=+38.1^{\circ}$ (MeOH,c=1.02,23°C).

No.2a-122

35

45

50

55

30

 $[\alpha]_{D}=+42.3^{\circ}$ (MeOH,c=0.99,23°C).

No.2a-123

 $[\alpha]_D=+38.7^{\circ}$ (MeOH,c=1.00,21°C). 40

No.2a-124

 $[\alpha]_D = +45.0^{\circ}$ (MeOH,c=1.01,21°C). m.p.119.0-120.0°C

No.2a-125

 $[\alpha]_D=+49.8^{\circ}$ (MeOH,c=1.01,22°C).

No.2a-126

CDCI₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 1.23(each 3H,each s),1.52-2.47(14H,m),4.2 6(1H,m),5.34and 5.50(2H,m),6.22(1H,d,J=8.7Hz),7.55-7.61(4H,m).

IR(CHCl₃):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600, 1536,1483,1470 /cm. $[\alpha]_D=+63.0^{\circ}$ (MeOH,c=1.01,23°C).

```
No.2a-127
         CDCl<sub>3</sub> 300MHz
         0.91(1H,d,J=10.2Hz),1.10
                                         and
                                                  1.20(each
                                                                  3H,each
                                                                                s),1.50-2.42(14H,m),4.2
                                                                                                              3(1H,m),5.31-
5
         5.51(2H,m),6.45(1H,d,J=8.4HZ),7.01(1H,t,J=7.4Hz),7.22-7.27( 2H,m),7.33-7.40(4H,m),7.53(2H,d,J=9.0Hz),8.30
         and 8.48(each 1H, each s)
         IR(CHCl<sub>3</sub>):3452,3028,3022,3015,2925,2870,1708,1654,1590,1514,1478 /cm.
         [\alpha]_{D}=+59.5° (MeOH,c=1.01,23°C).
    No.2a-128
         d<sub>6</sub>-DMSO 300MHz
         0.84(1H,d,J=9.9Hz),1.06
                                                 1.19(each
                                        and
                                                                 3H,each
                                                                                s),1.37-2.37(14H,m),3.79(
                                                                                                                1H,m),5.35-
         5.51(2H,m),6.08(1H,d,J=8.7Hz),6.85-6.90(1H,m),7.18-7.23(2H,m),7.35-7.38(2H,m),8.42(1H,s),12.00(1H,s).
15
         IR(Nujol):3395,3345,2925,2866,2623,2506,1697,1658,1638,1597,1557 /cm.
         [\alpha]_D=+26.0° (MeOH,c=1.01,23°C).
         m.p.164.0-166.0°C
    No.2a-129
20
         CDCl<sub>3</sub> 300MHz
         1.01(1H,d,J=10.0Hz),1.17
                                         and
                                                  1.25(each
                                                                  3H,each
                                                                                s), 1.54-2.52(14H,m), 4.3
                                                                                                              4(1H,m),5.36-
         5.57(2H,m), 6.42(1H,d,J=8.6Hz), 7.51-7.60(2H,m), 7.77(1H,dd,J=1.8 and 8.6Hz), 7.85-7.96(3H,m), 8.24(1H,brs).
         IR(CHCl<sub>3</sub>):3451,3060,3028,3010,2925,2870,1708,1652,1629,1600,1517,1502 /cm.
25
         [\alpha]_D=+68.6° (MeOH,c=1.00,22°C).
    No.2a-130
         CDCl<sub>3</sub> 300MHz
30
         1.02(1H,d,J=10.2Hz),1.04
                                                  1.26(each
                                                                  3H,each
                                                                                s),1.54-2.52(14H,m),4.4
                                                                                                              1(1H,m),5.41-
         5.58(2H,m),6.14(1H,d,J=9.0Hz),7.43-7.59(4H,m),7.85-7.92(2H, m),8.27(1H,dd,J=1.8 and 7.2Hz).
         IR(CHCl<sub>3</sub>):3436,3032,3010,2924,2870,2664,1708,1652,1512,1498 /cm.
        [\alpha]_D = +93.9^{\circ} (MeOH,c=1.00,22°C)
        m.p.94.0-96.0°C
35
    No.2a-131
        [\alpha]_D = +50.2^{\circ} (MeOH,c=0.95,21°C).
    No.2a-132
        [\alpha]_D=+10.9^{\circ} (MeOH,c=0.92,21°C).
    No.2a-133
45
        [\alpha]_D = +60.4^{\circ} (MeOH,c=1.00,21°C).
```

No.2a-134

 $[\alpha]_D$ =+38.5° (MeOH,c=1.01,23°C). 50

No.2a-135

55

 $[\alpha]_D = +52.5^{\circ}$ (MeOH,c=1.01,23°C). m.p.180.0-182.0°C

No.2a-136

[α]_D=+35.3° (MeOH,c=1.02,23°C). m.p.79.0-80.0°C

No.2a-137

5

10

CDCl₃ 300MHz 0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.43(3H,t,J=6.9Hz),1. 52-2.44(14H,m),4.03(2H,q,J=6.9Hz),4.26(1H,m),5.33-5.50(2H,m),6.19(1H,d, J=8.7Hz),6.88-7.00(6H,m),7.65-7.68(2H,m). IR(CHCl₃):3455,3031,3024,3014,2988,2925,2870,1741,1708,1649,1602,1521, 1504,1490 /cm.

IR(CHCl₃):3455,3031,3024,3014,2988,2925,2870,1741,1708,1649,1602,1521, 1504,1490 /cm. [α]_D=+52.0° (MeOH,c=1.01,23°C).

15 No.2a-138

No.2a-139

25 CDCl₃ 300MHz 1.00(1H,d,J=10.2Hz),1.16 and 1.24(each 3H,each s),1.59-2.52(14H,m),4.3 1(1H,m),5.40-5.53(2H,m),6.36(1H,d,J=8.7Hz),6.70(1H,d,J=1.5Hz),7.12(1H, m),7.30(1H,m),7.47(1H,dd,J=0.6 and 8.1Hz),7.61(1H,d,J=8.4Hz). IR(CHCl₃):3449,3243,3029,3022,3013,2925,2871,1707,1631,1542,1505 /cm. 30 $[\alpha]_D=+63.4^{\circ}$ (MeOH,c=1.00,23°C).

[α]_D=+63.4° (MeOH,c=1.00,23°C). m.p.178.0-179.0°C

III.p. 170.0-173.0

No.2a-140

No.2a-141

CDCl₃ 300MHz
0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),3.8 4(3H,s),4.27(1H,m),5.34-5.52(2H,m),6.28(1H,d,J=9.0Hz),6.91 and 7.47 (each 2H,each d,J=9.0Hz),6.98 and 7.14(each 1H,each d,J=16.5Hz),7.54 and 7.70(each 2H,eachd,J=8.7Hz).

IR(CHCl₃):3453,3025,3015,2925,2870,2839,1740,1708,1649,1602,1510,1493, 1470 /cm.

[α]_D=+73.4° (MeOH,c=1.02,22°C).
m.p.155.0-157.0°C

No.2a-142

55 CDCl₃ 300MHz
0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.45(14H,m),3.7 9(3H,s),4.27(1H,m),5.34-5.50(2H,m),6.24(1H,d,J=9.0Hz),6.49 and 6.62 (each 1H each d,J=12.3Hz),6.77 and 7.16(each 2H,each d,J=8.7Hz),7.32 and 7.59(each 2H,eachd,J=8.1Hz).

```
IR(CHCl<sub>3</sub>):3453,3025,3014,2925,2870,2839,1739,1708,1649,1606,1510, 1494 /cm.
         [\alpha]_D = +60.7^{\circ} (MeOH,c=0.99,22°C).
     No.2a-143
5
         [\alpha]_D = +57.3^{\circ} (MeOH,c=1.01,23°C).
     No.2a-144
         [\alpha]_D=+12.2^{\circ} (MeOH,c=1.00,23°C).
10
          m.p.114.0-116.0°C
     No.2a-145
         CDCl<sub>3</sub> 300MHz
15
         0.95(1H,d,J=10.2Hz),1.10
                                          and
                                                    1.21(each
                                                                     3H,each
                                                                                   s),1.52-2.44(14H,m),4.2
                                                                                                                  5(1H,m),5.33-
          5.49(2H,m),6.37(1H,d,J=8.7Hz),7.45-7.47(3H,m),7.62-7.66(2H, m),7.69 and 7.80(each 2H,each d,J=7.5Hz,).
         IR(CHCl<sub>3</sub>):3449,3058,3027,3012,2925,2870,1708,1655,1513,1481,1043 /cm.
         [\alpha]_D = +61.0^{\circ} (MeOH,c=1.01,23°C).
20
     No.2a-146
         CDCl<sub>3</sub> 300MHz
         0.95(1H,d,J=10.5Hz),1.09
                                                                                   s), 1.50-2.41(14H,m), 4.2
                                                                                                                  5(1H,m),5.33-
                                          and
                                                    1.21(each
                                                                     3H,each
          5.49(2H,m),6.33(1H,d,J=8.4Hz),7.49-7.61(3H,m),7.91-7.92(2H, m),7.82 and 7.97(each 2H,each d,J=8.7Hz,).
25
          IR(CHCl<sub>3</sub>).3447,3029,3023,3015,2925,2870,1708,1660,1514,1484,1321,1161 /cm.
         [\alpha]_D = +62.0^{\circ} (MeOH, c=1.00, 22°C).
     No.2a-147
30
          CDCl<sub>3</sub> 300MHz
         0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.5 1(3H,s),4.26(1H,m),5.34-
         5.51(2H,m),6.23(1H,d,J=8.4Hz),7.26 and 7.64 (each 2H,each d,J=8.4Hz).
         IR(CHCl<sub>3</sub>).3453,3027,3015,2925,2870,2665,1708,1648,1596,1516,1484 /cm.
35
         [\alpha]_D = +67.7^{\circ} (MeOH,c=0.82,22°C).
     No.2a-148
         [\alpha]_D=+72.5^{\circ} (MeOH,c=1.01,25°C).
40
     No.2a-149
         [\alpha]_D = +67.8^{\circ} (MeOH,c=0.98,25°C).
     No.2a-150
         CDCl<sub>3</sub> 300MHz
         0.94(1H,d,J=10.2Hz),1.10
                                          and
                                                    1.23(each
                                                                    3H,each
                                                                                   s),1.52-2.50(14H,m),4.2
                                                                                                                  2(1H,m),5.36-
         5.55(2H,m),6.48(1H,d,J=8.4Hz),8.35(1H,s),8.90(1H,s).
         IR(CHCl<sub>3</sub>):3443,3374,3091,3024,3012,2925,2871,1709,1652,1525,1494 /cm.
50
         [\alpha]_D = +58.1^{\circ} (MeOH,c=1.01,23°C).
         m.p.120.0-122.0°C
     No.2a-151
55
         [\alpha]_D=+40.6° (MeOH,c=1.01,23°C).
```

No.2a-152

CDCl₃ 300MHz

0.96(1H,d,J=10.5Hz),1.10 and 1.24(each 3H,each s),1.50-2.50(14H,m),2.7 1(3H,s),4.26(1H,m),5.37-5.51(2H,m),6.02(1H,d,J=9.0Hz),8.731(1H,s).

 $IR(CHCl_3):3463,3435,3087,3025,3014,2925,2870,1708,1649,1523,1503 \ /cm.$

 $[\alpha]_{D}=+54.1^{\circ}$ (MeOH,c=1.02,22°C).

No.2a-153

10

20

30

40

45

50

5

CDCl₃ 300MHz

0.95(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.50-2.50(14H,m),2.50(3H,s),4.26(1H,m),5.36-5.51(2H,m),6.01(1H,d,J=8.4Hz),6.88(1H,d,J=5.1Hz), 7.26(1H,d,J=5.1Hz). IR(CHCl₃):3469,3431,3025,3013,2925,2871,2664,1708,1639,1544,1505 /cm.

15 $[\alpha]_D = +35.8^{\circ}$ (MeOH, c=1.03,22°C).

No.2a-154

CDCl₃ 300MHz

0.95(1H,d,J=9.9Hz),1.10 and 1.22(each 3H,each s),1.52-2.46(14H,m),2.51(3H,d,J=1.2Hz),4.26(1H,m),5.34-5.50(2H,m),6.00(1H,d,J=8.4Hz),6.73(1H,dd, J=5.1 and 3.6Hz),7.29(1H,d,J=3.6Hz). IR(CHCl₃):3450,3431,3026,3011,2925,2869,1739,1708,1639,1547,1508 /cm. $[\alpha]_D=+50.5^{\circ}$ (MeOH,c=1.01,22°C).

25 No.2a-155

CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.19 and 1.25(each 3H,each s),1.53-2.48(14H,m),4.3 1(1H,m),5.36-5.51(2H,m),6.79(1H,d,J=9.3Hz),7.29(1H,m),7.41(1H,m),7.48(1 H,s),7.51(1H,m),7.66(1H,d,J=8.1Hz). IR(CHCl₃):3436,3029,3024,3015,2925,2871,2670,1708,1659,1598,1510 /cm. $[\alpha]_D$ =+69.1° (MeOH,c=1.01,22°C).

No.2a-156

35 CDCl₃:CD₃O_D=10.1 300MHz

0.99(1H,d,J=9.9Hz),1.11 and 1.21(each 3H,each s),1.56-2.58(14H,m),4.22(1H,m),5.35-5.59(2H,m),6.83(1H,d,J=8.4Hz),7.48(1H,d,J=8.4Hz),7.61(1H,dd, J=1.5 and 8.4Hz),8.09(1H,d,J=1.5Hz),8.12(1H,s).

IR(KBr):3422,3115,2985,2922,2869,2609,1708,1636,1578,1529,1470 /cm.

 $[\alpha]_D$ =+62.8° (MeOH,c=1.01,22°C).

No.2a-157

 $[\alpha]_D$ =+40.0° (MeOH,c=0.95,22°C).

No.2a-158

CDCl₃ 300MHz

 $1.00(\overset{\circ}{1}\text{H,d,J}=10.5\text{Hz}), 1.17$ and 1.24(each 3H, each s), 1.54-2.50(14H,m), 4.3 4(1H,m), 5.36-5.52(2H,m), 7.80(1H,d,J=9.0Hz), 9.30(1H,s). IR(CHCl₃):3410,3122,3030,3012,2925,2871,2668,1709,1667,1538,1466 /cm. [α]_D=+44.9° (MeOH, c=0.99,22°C).

No.2a-159

55

CDCl₃ 300MHz 0.97(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.55-2.43(14H,m),3.0 3(6H,s),4.23(1H,m),5.32-5.51(2H,m),6.16(1H,d,J=8.7Hz),6.87 and 7.63 (each 2H,each d,J=8.7Hz).

IR(CHCl₃):3457,3028,3006,2924,2870,2654,1739,1709,1637,1608,1608,1534, 1501 /cm. $[\alpha]_D$ =+64.8° (MeOH,c=1.01,22°C). No.2a-160 5 d₆-DMSO 300MHz 0.83(1H,d,J=9.9Hz),1.02 and 1.19(each 3H,each s),1.38-1.61(3H,m),1.90-2. 32(11H,m),3.90(1H,m),5.41-5.44(2H,m),7.32(1H,dd,J=0.9 and 7.2Hz),7.45-7.60(2H,m),7.77(1H,dd,J=0.9 7.8Hz),8.03(1H,d,J=6.9Hz),12.40(1H,s). IR(Nujol):3315,2924,2856,2656,2535,1737,1703,1637,1598,1581,1541 /cm. 10 $[\alpha]_D=+78.5^{\circ}$ (MeOH,c=1.01,24°C). m.p.161.0-162.0°C No.2a-161 15 $[\alpha]_D=+65.3^{\circ}$ (MeOH,c=1.00,22°C). No.2a-162 CDCl₃ 300MHz 20 0.99(1H,d,J=10.2Hz),1.13 and 1.25(each 3H,each s),1.53-2.45(14H,m),4.3 0(1H,m),5.36-5.51(2H,m),6.32(1H,d,J=8.4Hz),7.88 and 8.28(each 2H,each d,J=9.0Hz). IR(CHCl₃):3448,3029,3016,2925,2870,1708,1664,1602,1527,1484,1347 /cm. $[\alpha]_D = +72.7^{\circ}$ (MeOH,c=1.02,22°C). 25 No.2a-163 CDCl₃ 300MHz 0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.51(14H,m),4.2 6(1H,m),5.36-5.57(2H,m),6.68(1H,d,J=7.8Hz),7.41(1H,dd,J=4.8 8.1Hz), 30 and 8.20(1H,d,J=8.1Hz),8.66(1H,d,J=4.8Hz),9.00(1H,s). IR(CHCl₃):3448,3026,3013,2925,2870,2534,1709,1658,1590,1515,1471 /cm. $[\alpha]_D = +71.3^{\circ}$ (MeOH,c=1.01,22°C). 35 No.2a-164 $[\alpha]_D = +40.8^{\circ}$ (MeOH,c=0.98,22°C). No.2a-165 40 CDCl₃ 300MHz 0.96(1H,d,J=10.5Hz),1.11 and 1.24(each 3H,each s), 1.55-2.52(14H,m), 4.2 4(1H,m),5.37-5.57(2H,m),6.63(1H,d,J=7.8Hz),7.59 and 8.63(each 2H each d,J=6.0Hz). IR(CHCl₃):3447,3346,3028,3016,2925,2870,2538,1941,1708,1662,1556,1516 /cm. 45 $[\alpha]_D = +75.4^{\circ}$ (MeOH,c=1.01,22°C). No.2a-166 CDCl₃ 300MHz 50

CDCl₃ 300MHz 0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.51-2.44(14H,m),2.9 5(6H,s),4.25(1H,m),5.33-5.50(2H,m),6.19(1H,d,J=8.7Hz),6.77 and 6.97 (each 2H,each d,J=8.4Hz),6.94 and 7.65(each 2H,each d,J=9.0Hz). IR(CHCl₃):3453,3024,3016,2924,2871,2806,1739,1708,1647,1612,1604,1515, 1490 /cm. [α]_D=+53.1° (MeOH,c=1.02,23°C). m.p.104.0-105.5°C

No.2a-167

CDCl₃ 300MHz

1.01(1H,d,J=9.9Hz),1.19 and 1.26(each 3H,each s),1.56-2.53(14H,m),4.37(1H,m),5.35-5.55(2H,m),6.47(1H,d,J=8.4Hz),7.61-7.71(2H,m),7.79(2H,s),7.89 -7.97(2H,m),8.27(1H,d,J=2.1Hz),8.66-8.73(2H,m).
IR(CHCl₃):3450,3024,3014,2925,2870,2667,1707,1650,1531,1509 /cm.
[\alpha]_{n=+}70.5° (MeOH,c=1.00,22°C).

10 No.2a-168

5

15

25

CDCl $_3$ 300MHz 1.02(1H,d,J=10.2Hz),1.20 and 1.26(each 3H,each s),1.56-2.50(14H,m),4.3 8(1H,m),5.36-5.56(2H,m),6.51(1H,d,J=8.4Hz),7.61-7.93(7H,m),8.74(1H,d,J=8.4Hz),9.15(1H,s). IR(CHCl $_3$):3517,3451,3060,3028,3011,2925,2870,2664,1709,1651,1519,1498/cm. [α] $_D$ =+54.4° (MeOH,c=1.00,23°C).

No.2a-169

20 CDCl₃ 300MHz

0.96(TH,d,J=10.5Hz),1.09 and 1.21(each 3H,each s),1.50-2.44(14H,m),3.8 5(3H,s),4.24(1H,m),5.32-5.48(2H,m),6.19(1H,d,J=8.4Hz),6.94 and 7.45 (each 2H,each d,J=9.0Hz),7.11 and 7.45(each 2H,each d,J=8.7Hz).

IR(CHCl₃):3516,3453,3029,3009,2925,2870,2840,2665,1708,1650,1593,1515, 1493,1482 /cm.

 $[\alpha]_D=+57.8^{\circ}$ (MeOH,c= 1.00,23°C).

No.2a-170

CDCl₃ 300MHz 0.98(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.52-2.50(14H,m),4.2 8(1H,m),5.33-5.54(2H,m),6.25(1H,d,J=8.2Hz),7.38-7.44(2H,m),7.74(1H,s),7.81-7.86(2H,m). IR(CHCl₃):3517,3448,3427,3024,3013,2925,2870,2669,1708,1650,1562,1535, 1500 /cm. $[\alpha]_{\rm D}$ =+61.6° (MeOH,c=1.00,23°C).

No.2a-171

35

40 [α]_D=+52.4° (MeOH,c=1.00,23°C).

No.2a-172

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.09 and 1.28(each 3H,each s),1.50-2.40(14H,m),2.6 9(3H,s),4.24(1H,m),5.35-5.51(2H,m),5.96(1H,d,J=8.7Hz),7.03 and 7.07 (each 1H,each d,J=5.4Hz). IR(CHCl₃):3451,3031,3013,2925,2870,2666,1708,1647,1542,1497 /cm. [α]_D=+51.2° (MeOH,c=1.00,23°C).

50 No.2a-173

45

55

CDCl₃ 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.50-2.45(14H,m),4.2 2(1H,m),5.35-5.49(2H,m),6.05(1H,d,J=8.4Hz),7.26 and 7.75(each 1H,each d,J=1.5Hz).

IR(CHCl₃):3451,3011,3029,3011,2925,2870,1708,1652,1538,1500 /cm. $[\alpha]_D = +50.6^{\circ}$ (MeOH,c=1.01,23°C).

No.2a-174

CDCl₃ 300MHz

 $0.96(\bar{1}H,d,J=10.2Hz),1.13$ and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 9(1H,m),5.35-5.51(2H,m),7.02(1H,d,J=8.4Hz),7.32 and 8.16(each 1H,each d,J=3.9Hz). IR(CHCl₃):3417,3115,3023,3014,2925,2870,1708,1645,1530 /cm. [α]_{D=+48.8°} (MeOH,c=1.02,23°C).

No.2a-175

10

CDCl₃ 300MHz

 $0.97(1\text{H,d,J}=10.2\text{Hz}), 1.14 \quad \text{and} \quad 1.23(\text{each} \quad 3\text{H,each} \quad \text{s}), 1.50-2.52(14\text{H,m}), 2.5 \quad 2(3\text{H,s}), 4.29(1\text{H,m}), 5.34-5.51(2\text{H,m}), 7.78(1\text{H,d,J}=9.0\text{Hz}), 7.24 \quad \text{and} \quad 7.52 \ (\text{each} \ 1\text{H,each} \ \text{d,J}=5.4\text{Hz}). \\ \text{IR(CHCl}_3): 3329, 3093, 3023, 3015, 2924, 2871, 1708, 1640, 1526 \ /cm. \\$

 $[\alpha]_D = +45.0^{\circ}$ (MeOH,c=1.01,23°C).

No.2a-176

CDCl₃ 300MHz

20 0.95(1H,d,J=10.5Hz),1.09 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.4 0(3H,d,J=0.9Hz),4.24(1H,m),5.35-5.51(2H,m),6.05(1H,d,J=8.7Hz),6.95(1H, m),7.57(1H,d,J=3.3Hz).
IR(CHCl₃):3517,3444,3103,3024,3013,2926,2870,1739,1708,1649,1636,1507/cm.
[α]_D=+54.8° (MeOH,c=1.01,23°C).
m.p.97.0-99.0°C

No.2a-177

25

30

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.45(14H,m),3.9 3(3H,s),4.27(1H,m),5.34-5.50(2H,m),6,35(1H,d,J=3.3Hz),7.80(1H,d,J=8.7Hz),8.10(1H,d,J=3.3Hz).
IR(CHCl₃):3395,3121,3031,3019,3012,2925,2871,1739,1709,1640,1557,1533 /cm.
[α]_D=+22.8° (MeOH,c=1.01,23°C).
m.p.109.0-112.0°C

35 No.2a-178

CDCl₃ 300MHz

 $0.96(1H,d,J=10.5Hz), 1.10 \qquad and \qquad 1.23(each \qquad 3H,each \qquad s), 1.51-2.45(14H,m), 4.2 \qquad 4(1H,m), 5.35-5.50(2H,m), 6.09(1H,d,J=8.4Hz), 7.17-7.31(6H,m), 7.95(1H,d,J=1.5Hz).$

40 IR(CHCl₃):3510,3451,3062,3031,3022,3011,2925,2870,2662,1708,1651,1582, 1535,1497,1477/cm. [α]_D=+47.9° (MeOH,c=1.01,25°C).

No.2a-179

45 CDCl₃ 300MHz

0.96(1 H,d,J=10.2 Hz),1.14 and 1.24(each 3H,each s),1.52-2.48(14H,m),4.3 0(1H,m),5.36-5.52(2H,m),6.73(1H,d,J=9.0 Hz),6.26 and 7.37(each 1H,each d,J=6.0 Hz). IR(CHCl₃):3509,3429,3115,3094,3025,3014,2925,2871,2666,1708,1649,1529, 1510 /cm. [α]_D=+51.0° (MeOH,c=1.02,25°C).

No.2a-180

50

55

CDCl₃ 300MHz

0.95(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.52-2.46(14H,m),3.8 9(3H,s),4.21(1H,m),5.35-5.50(2H,m),6.05(1H,d,J=8.4Hz),6.46 and 7.04 (each 1H,each d,J=1.8Hz).
IR(CHCl₃):3516,3450,3114,3031,3010,2925,2871,1708,1648,1546,1511,1477 /cm.
[\alpha]_D=+49.1° (MeOH,c=1.01,25°C).

No.2a-181

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.52-2.48(14H,m),2.4 2(3H,s),4.31(1H,m),5.34-5.52(2H,m),8.07(1H,d,J=9.3Hz),7.27 and 8.17 (each 1H,each d,J=3.3Hz). IR(CHCl₃):3510,3301,3112,3023,3007,2924,2871,2663,1708,1636,1534 /cm. $[\alpha]_{\Omega}=+41.0^{\circ}$ (MeOH,c=0.96,25°C).

No.2a-182

10

15

20

5

CDCl₃ 300MHz 0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.46(14H,m),2.5 1(3H,s),4.21(1H,m),5.35-5.51(2H,m),6.05(1H,d,J=8.1Hz),7.26 and 7.78 (each 1H,each d,J=1.8Hz). IR(CHCl₃):3509,3450,3109,3024,3012,2925,2870,2666,1708,1650,1535,1 498,1471 /cm. [α]_D=+52.9° (MeOH,c=0.95,25°C).

No.2a-183

CDCl₃ 300MHz

0.96(1H,d,J=10.5Hz),1.12 and 1.22(each 3H,each s),1.52-2.46(14H,m),4.2 5(1H,m),5.33-5.51(2H,m),6.17(1H,d,J=8.7Hz),7.01-7.05(3H,m).7.14 and 7.6 2(each 2H,each d,J=8.7Hz),7.27-7.34(2H,m). IR(CHCl₃):3428,3026,3015,2925,2870,2666,1739,1708,1643,1613,1594,1526, 1499 /cm. $[\alpha]_D$ =+64.8° (MeOH,c=1.02,23°C).

25 No.2a-184

CDCl₃ 300MHz

No.2a-185

35

40

55

30

CDCl $_3$ 300MHz 1.00(1H,d,J=10.2Hz),1.18 and 1.25(each 3H,each s),1.55-2.50(14H,m),4.3 4(1H,m),5.35-5.54(2H,m),6.36(1H,d,J=8.7Hz),7.37(1H,t,J=7.4Hz),7.50(1H,m),7.57-7.59(2H,m),7.79(1H,dd,J=1.8 and 8.1Hz),7.99(1H,d,J=7.8Hz),8.39(1 H,d,J=1.8Hz). IR(CHCl $_3$):3451,3030,3020,2870,2665,1708,1652,1632,1603,1586,1514,1469, 1448 /cm. [α] $_D$ =+59.4° (MeOH,c=1.01,24°C).

No.2a-186

45 CDCl₃ 300MHz

 $1.00(1H,d,J=10.5Hz),1.17 \quad \text{and} \quad 1.25(\text{each} \quad 3H,\text{each} \quad \text{s}),1.54-2.50(14H,m),4.3 \quad 3(1H,m),5.35-5.54(2H,m),6.37(1H,d,J=8.7Hz),7.37(1H,t,J=7.4Hz),7.51(1H,t,J=7.8Hz),7.56(1H,m), \quad 7.70(1H,dd,J=1.2 \quad \text{and} \quad 8.4Hz),7.97(3H,m). \\ IR(CHCl_3):3451,3030,3014,2924,2870,2671,1739,1708,1652,1577,1517,1488, 1471 /cm.$

50 $[\alpha]_{D}=+72.2^{\circ}$ (MeOH,c=1.00,24°C).

No.2a-187

CDCl₃ 300MHz

1.00(1H,d,J=9.8Hz),1.18 and 1.25(each 3H,each s),1.54-2.53(14H,m),4.07(3H,s),4.37(1H,m),5.30-5.54(2H,m),7.34(1H,m),7.47(1H,s),7.47-7.60(2H,m),7. 93(1H,d,J=7.8Hz),8.43(1H,s),8.49(1H,d,J=9.0Hz). IR(CHCl₃):3397,3074,3027,3020,3009,2924,1738,1708,1647,1633,1534,1465, 1453 /cm. [α]_D=+43.7° (MeOH,c=1.01,25°C).

No.2a-188

CDCI₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.50(14H,m),4.2 3(1H,m),5.37-5.50(2H,m),6.10(1H,d,J=9.0Hz),6.20(1H,m),6.51(1H,m),6.97(1 H,m),10.81(1H,brs).
IR(CHCl₃):3450,3236,3112,3029,3015,2925,2871,2645,1701,1616,1558,1516 /cm.
[α]_D=+50.6° (MeOH,c=1.01,24°C).

No.2a-189

10

5

CDCl₃ 300MHz

0.94(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.50-2.46(14H,m),3.93(3H,s),4.18(1H,m),5.35-5.52(2H,m),6.03(1H,d,J=9.3Hz),6.09(1H,m),6.48(1H, m),6.73(1H,m).
IR(CHCl₃):3452,3102,3028,3007,2925,2871,2666,1739,1708,1650,1536,1499, 1471 /cm.

15 [α]_D=+49.8° (MeOH,c=1.01,23°C).

m.p.101.5-103.5°C

No.2a-190

20 CDCl₃ 300MHz

No.2a-191

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.55-2.44(14H,m),3.6 6(3H,s),4.20(1H,m),5.35-5.51(2H,m),5.93(1H,d,J=8.4Hz),6.27(1H,dd,J=1.8 and 2.7Hz),6.56(1H,t,J=2.7Hz),7.19(1H,t,J=1.8Hz). IR(CHCl₃):3452,3031,3018,3006,2925,2871,2662,1736,1710,1634,1609,1556, 1498 /cm. $[\alpha]_D=+43.1^{\circ}$ (MeOH,c=1.01,23°C).

No.2a-192

35

40

50

25

30

CDCl₃ 300MHz

0.96(1H,d,J=10.5Hz),1.11 and 1.21(each 3H,each s),1.43(3H,t,J=7.5Hz),1. 54-2.44(14H,m),3.93(2H,q,J=7.5Hz),4.21(1H,m),5.33-5.51(2H,m),5.94(1H,d, J=8.4Hz),6.27(1H,dd,J=1.8 and 2.7Hz),6.62(1H,t,J=2.7Hz),7.26(1H,t,J=1.8 Hz).

IR(CHCl₃):3630,3452,3032,3018,3006,2925,2871,2661,1735,1710,1633,1610, 1555,1497 /cm. $[\alpha]_D$ =+40.1° (MeOH,c=1.00,23°C).

No.2a-193

45 CDCl₃ 300MHz

 $0.95(1H,d,J=10.2Hz),1.10 \quad \text{and} \quad 1.22(\text{each} \quad 3H,\text{each} \quad \text{s}),1.53-2.49(14H,m),2.5 \quad 8(3H,\text{s}),4.21(1H,m),5.35-5.54(2H,m),6.15(1H,d,J=8.1Hz),6.52(1H,dd,J=1.8 \text{ and } 3.6Hz),7.29(1H,t,J=3.6Hz),7.94(1H,t,J=1.8Hz). \\ IR(CHCl_3):3516,3450,3410,3152,3027,3015,2925,2871,2670,1732,1648,1574, 1509 /cm. \\ [\alpha]_{D=+45.0^{\circ}} \text{ (MeOH,c=}1.01,25^{\circ}\text{C)}.$

No.2a-194

CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.11 and 1.24(each 3H,each s),1.52-2.53(14H,m),4.3 4(1H,m),5.33-5.57(2H,m),6.21(1H,d,J=8.6Hz),7.35-7.50(2H,m),7.83(1H,s),7.86(1H,m),8.31(1H,m).
IR(CHCl₃):3443,3067,3013,2925,2870,2665,1708,1651,1515,1493 /cm.
[α]_D=+55.7° (MeOH,c=1.01,23°C).

No.2a-195

CDCl₃ 300MHz

1.01(1H,d,J=10.0Hz),1.06 and 1.26(each 3H,each s),1.50-2.64(14H,m),2.6 8(3H,s),4.40(1H,m),5.36-5.61(2H,m),6.02(1H,d,J=9.4Hz),7.30-7.42(2H,m),7. 73-7.86(2H,m).
IR(CHCl₃):3510,3434,3062,3029,3014,2924,2871,2669,1708,1650,1563,1539, 1500 /cm.
[\alpha]_{D=+72.4°} (MeOH,c=1.00,23°C).
m.p.111.0-112.0°C

10 No.2a-196

15

25

30

40

50

CDCl₃ 300MHz

0.42 and 1.04(each 3H,each s),0.80(1H,d,J=10.0Hz),1.11-2.48(14H,m),2.2 4(3H,s),4.02(1H,m),5.23-5.44(2H,m),5.53(1H,d,J=8.8Hz),7.27-7.31(2H,m),7.42-7.48(3H,m),7.93(1H,s). IR(CHCl₃):3419,3114,3025,3006,2924,2871,2662,1737,1709,1636,1540,1519 /cm. [α]_D=+43.7° (MeOH,c=1.01,23°C).

No.2a-197

20 CDCl₃ 300MHz

No.2a-198

CDCl₃ 300MHz

 $0.96(\overset{\circ}{1}\text{H,d,J}=10.2\text{Hz}), 1.11 \quad \text{and} \quad 1.22(\text{each} \quad 3\text{H,each} \quad \text{s}), 1.50-2.44(14\text{H,m}), 4.2 \quad 4(14\text{H,m}), 4.42(2\text{H,s}), 5.35-5.49(2\text{H,m}), 6.25(1\text{H,d,J}=8.1\text{Hz}), 7.33(1\text{H,m}), 7.43(1 \quad \text{H,dd,J}=1.5\text{and} \quad 7.5\text{Hz}), 7.49(1\text{H,d,J}=8.1\text{Hz}), 7.60-7.63(1\text{H,m}), 7.68(1\text{H,dd,J}=1.8 \text{ and} \quad 7.8\text{Hz}), 8.02(1\text{H,d,J}=1.8\text{Hz}), 8.19(1\text{H,dd,J}=1.5 \text{ and} \quad 8.1\text{Hz}). \\ \text{IR}(\text{CHCl}_3): 3448, 3030, 3012, 2925, 2870, 1739, 1708, 1671, 1588, 1559, 1514, 1472 / cm. } \\ [\alpha]_{D}=+56.9^{\circ} \text{ (MeOH,c}=1.01, 24^{\circ}\text{C}).$

35 No.2a-199

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.51-2.46(14H,m),3.4 0(1H,m),3.76(1H,m),4.24(1H,m),5.33-5.51(3H,m),6.25(1H,m),7.16(1H,m),7.2 4-7.33(2H,m),7.46(1H,d,J=7.5Hz),7.52-7.60(2H,m),7.85(1H,dd,J=1.8 and 4.5Hz).

 $IR(CHCl_3):3583,3447,3062,3028,3013,2924,2871,2663,1708,1651,1600,1557,\ 1514,1471\ /cm.\ [\alpha]_{D=+}54.8°\ (MeOH,c=1.00,23°C).$

No.2a-200

CDCl₃ 300MHz

No.2a-201

55 CDCl₃ 300MHz

0.95(1H,d,J=9.9Hz),1.15 and 1.22(each 3H,each s),1.55-2.60(14H,m),4.26(1H,m),5.35-5.63(2H,m),7.14(1H,d,J=9.9Hz),7.34 and 7.40(each,1H,each d, J=12.9Hz),7.62-7.73(4H,m),8.25-8.30(2H,m),8.72(1H,d,J=1.5Hz).

IR(CHCl₃):3443,3389,3297,3061,3030,3016,2925,2870,1726,1708,1652,160 3,1521,1483,1472,1309 /cm.

```
[\alpha]_D=+61.1^{\circ} (MeOH,c=1.01,23°C).
     No.2a-202
5
         CDCl<sub>3</sub> 300MHz
         0.96(1H,d,J=10.2Hz),1.09 and 1.22(each 3H,each s),1.52-2.43(14H,m),2.6 3(3H,s),4.25(1H,m),5.33-
         5.49(2H,m),6.19(1H,d,J=8.4Hz),7.10
                                                     and
                                                              7.58
                                                                             each,2H,each
                                                                                                 d,J=9.0Hz),7.21(1H,m),7.30-
         7.32(2H,m),7.46(1H,d,J=7.5Hz)
          IR(CHCl<sub>3</sub>):3511,3453,3062,3032,3014,2925 2870,1739,1708,1650,1595,1556, 1516,1482,1471 /cm.
10
         [\alpha]_D=+60.2^{\circ} (MeOH,c=1.01,25°C).
     No.2a-203
15
         CDCI<sub>3</sub> 300MHz
         0.96(1H,d,J=10.5Hz),1.09
                                          and
                                                    1.23(each
                                                                    3H,each
                                                                                  s),1.52-2.43(14H,m),4.2
                                                                                                                 3(1H,m),5.35-
         5.51(2H,m),5.93(1H,d,J=8.7Hz),6.56(1H,dd,J=0.9 and 1.8Hz), 7.43(1H,t,J=1.8Hz),7.92(1H,dd,J=0.9 and 1.8Hz).
         IR(CHCl<sub>3</sub>):3517,3450,3134,3031,3008,2925,2870,2667,1708,1656,1588,1570, 1514/cm.
         [\alpha]_D=+46.7^{\circ} (MeOH,c=0.92,25°C).
20
     No.2b-1
         [\alpha]_D= +25.6° (MeOH,c=1.01,23°C).
    No.2b-2
         [\alpha]_D= +38.9° (MeOH,c=1.01,24°C).
     No2c-1
30
         [\alpha]_D= +60.5° (MeOH,c=1.01,22°C).
     No.2c-2
35
         [\alpha]_D= +55,8° (MeOH,c=0.92,22°C).
     No.2c-3
         [\alpha]_D= +54,7° (MeOH,c=1.01,22°C).
40
     No.2d-1
         [\alpha]_D= -6.2° (MeOH,c=1.00,21°C).
    No.2d-2
45
         [\alpha]_D = +15.8^{\circ} (MeOH,c=0.34,22°C).
     No.2d-3
50
         [\alpha]_{D}=+31.6° (MeOH,c=1.01,22°C).
    No.2e-1
55
         [\alpha]_D = -9.4^{\circ} (MeOH,c=1.00,22°C).
```

```
No.2e-2
                    [\alpha]_{D}= -1.8° (MeOH,c=1.02,23°C).
          No.2e-3
                     [\alpha]_{D}= -6.7° (MeOH,c=1.01,23°C).
           No.2f-1
10
                     [\alpha]_D= +6.8° (MeOH,c=1.01,23°C).
           No.2f-2
                     [\alpha]_{D}= -2.6° (MeOH,c=1.00,22°C).
15
           No.2f-3
                     [\alpha]_D= -3.5° (MeOH,c=1.01,22°C).
20
           No.2g-1
                      [\alpha]_{D}= +54,6° (MeOH,c=1.01,24°C).
           No.3a-2
                      CDCl<sub>3</sub> 300MHz
                                                                                                                                                                                                                                 5.00(1H,d,J=6.9Hz),5.30-
                      0.98-2.15(14H,m), 2.31(2H,t,J=7.2Hz), 2.35-2.40(1H,m), 3.10-3.20(1H,m),
                      5.48(2H,m),6.75(1H,d,J=10.2Hz),7.38-7.52(6H,m).
                      IR(CDCl_3): 3266, 3028, 2954, 2874, 1709, 1620, 1448, 1412, 1318, 1141, 970, 892/cm. \\
 30
                      [\alpha]_D = +20.3\pm0.6° (CHCl<sub>3</sub>,c=1.05,24°C).
            No.3a-3
 35
                       CDCl<sub>3</sub> 300MHz
                                                                                                                                                                                                                   J=6.6Hz),5.13-5.29(2H,m),7.38-
                       0.95-2.00(14H,m),2.20-2.29(3H,m),3.00-3.08(1H,m),3.66(3H,s),5.00(1H,d,
                       7.52(3H,m),7.59-7.65(2H,m),7.69-7.75(2H,m),7.92-7.98(2H,m).
                       IR(CHCl_3): 3376, 3018, 2946, 2868, 1727, 1594, 1436, 1395, 1322, 1157, 1095, 890 \ / cm.
                       [\alpha]_D = +2.3\pm0.4° (CHCl<sub>3</sub>,c=1.03,22°C).
                       mp.65-66.5°C
  40
            No.3a-4
                       CDCl<sub>3</sub> 300MHz
                       0.93 - 2.05(14H,m), 2.15 - 2.22(1H,m), 2.31(2H,t,J=7.2Hz), 3.01 - 3.10(1H,m), \quad 5.18 - 5.31(3H,m), 7.38 - 7.52(3H,m), 7.58 - 7.52(3H,m), 7.52 - 7.52(3H,m), 7.52(
  45
                       7.66(2H,m),7.69-7.76(2H,m),7.92-7.98(2H,m)
                       IR(CHCl<sub>3</sub>):3374,3260,3020,2948,2868,1708,1594,1479,1396,1319,1156,1095, 1052,891/cm.
                       [\alpha]_{D}=+13.1±0.5 ° (CHCl<sub>3</sub>,c=1.16,24°C).
  50 No.3a-6
                       CD<sub>3</sub>OD 300MHz
                       1.04-1.95(14H,m),2.07(2H,t,J=7.8Hz),2.14-2.22(1H,m),2.94-3.00(1H,m), 5.04-5.25(2H,m),7.36-7.52(3H,m),7.66-
                       7.71(2H,m),7.78-7.85(2H,m),7.91-7.97(2H,m).
                       IR(KBr): 3421, 3278, 2951, 2872, 1562, 1481, 1409, 1317, 1156, 1097, 1057, 895/cm.\\
  55
                       [\alpha]_{D}=-15.3±0.5 ° (CHCl<sub>3</sub>,c=1.06,23°C).
                       mp.105-112°C
```

No.3a-11

CDCl₃ 300MHz

0.90-2.04(14H,m),2.08-2.19(1H,m),2.35(2H,t,J=7.2Hz),2.95-3.04(1H,m), 5.17-5.32(3H,m),7.56-7.63(2H,m),7.83-7.95(2H,m).

IR(CHCl₃):3260,3020,2948,2868,1707,1569,1456,1383,1325,1268,1160,1088, 1053,1006,892/cm. $[\alpha]_D$ =+8.3±0.5 ° (CHCl₃,c=1.00,22°C).

No.3a-16

10

15

5

CDCl₃ 300MHz

0.80-1.90(14H,m),1.98-2.04(1H,m),2.27(2H,t,J=7.2Hz),2.88(6H,s),2.90-2.98(1H,m),4.88-5.00(2H,m),5.13(1H,d,J=7.2Hz),7.18(1H,d,J=7.5Hz),7.48-7.60(2H,m),8.25-8.33(2H,m),8.53(1H,d,J=8.7Hz). IR(CHCl₃):3272,3020,2946,2866,2782,1708,1573,1455,1407,1311,1229,1160, 1142,1070,942,891/cm. $[\alpha]_D$ =-19.7±0.6 ° (CHCl₃,c=1.08,23.5°C).

No.3a-31

CDCI₃ 300MHz

20 0.80-1.85(14H,m),2.02-2.08(1H,m),2.20(2H,t,J=7.2Hz),2.85-2.95(1H,m), 4.92(2H,m),4.96(1H,d,J=6.9Hz),7.50-7.70(3H,m),7.92-

7.98(1H,m),8.07(1H,d,J=8.4Hz),8.29(1H,dd,J=1.5&7.5Hz),8.65(1H,Ll;):3374,3016,2946,2868,1727,1506,1435,13 18,1160,1133,1105,1051, 984,890/cm.

 $[\alpha]_D$ =-39.3±0.8 ° (CHCl₃,c=1.07,22°C).

 $[\alpha]_D$ =-29.2±0.6 ° (CHCl₃,c=1.08,22°C).

25

No.3a-32

CDCl₃ 300MHz

0.80-1.90(14H,m),1.95-2.05(1H,m),2.27(2H,t,J=7.2Hz),2.90-2.96(1H,m),

4.85-

3.68(3H,s),4.80-

5.00(2H,m),5.23(1H,d,J=6.6Hz),7.50-7.72(3H,m),7.95(1H,d,J=8.1Hz), 8.07(1H,d,J=8.4Hz),8.29(1H,dd,J=1.2&7.5Hz),8.66(1H,d,J=9.0Hz). IR(CHCl₃):3270,3020,2948,2868,1708,1455,1412,1317,1159,1132,1104,1079, 1051,983,891/cm.

35 No.3a-33

CD₃OD 300MHz

0.94-1.84(14H,m), 1.96-2.08(3H,m), 2.77-2.84(1H,m), 4.67-4.84(2H,m), 7.55-7.75(3H,m), 8.02(1H,d,J=7.8Hz), 8.12-8.26(2H,m), 8.74(1H,d,J=8.7Hz).

40 IR(KBr):3432,3298,2951,2872,1564,1412,1315,1159,1134,1107,1082,1058, 986/cm. $[\alpha]_D$ =-79.9±1.2 ° (CH₃OH,c=1.00,23°C).

No.3a-34

45 CDCl₃ 300MHz

 $\begin{array}{l} 0.97\text{-}1.91(14\text{H,m}), 2.13\text{-}2.20(1\text{H,m}), 2.42(2\text{H,t,J}=7.2\text{Hz}), 3.00\text{-}3.07(1\text{H,m}), \\ 5.24(2\text{H,m}), 5.33(1\text{H,d,J}=6.9\text{Hz}), 7.57\text{-}7.68(2\text{H,m}), 7.82\text{-}8.00(4\text{H,m}), 8.45(1\text{H,d,J}=1.2\text{Hz}) \\ \text{IR}(\text{CHCl}_3): 3260, 3020, 2948, 1708, 1408, 1319, 1154, 1129, 1073, 953, 893/cm. \\ [\alpha]_D=+20.7\pm0.6 \, ^{\circ} \, \text{(CHCl}_3, \text{c}=1.07, 22^{\circ}\text{C}). \end{array}$

5.06-

No.3a-35

50

CD₃OD 300MHz

1.03-2.20(m,17H),2.97(m,1H),5.02(m,2H),7.64(m,2H),8.00(m,4H),8.43 (S,1H).

55 IR(KBr):3360,3285,1562,1407,1316,1153,1130,1075/cm.

[α]_D≒0

 $[\alpha]_{365}$ =+20.9±0.6 ° (CH₃OH,c=1.04,23°C).

No.3d-1

CDCl₃ 300MHz

0.93-2.55(m,17H),3.02(m,1H),5.24(m,2H),6.48(m,1H),7.35-7.60(m,3H),7.85-8.00(m,2H) IR(Nujol): 3275,1548,1160,1094,758,719,689,591,557/cm.

 $[\alpha]_D$ =+19.0±0.6° (CH₃OH,c=1.010,26.5°C).

10

5

Elemental analysis (C ₂₀ H ₂₆ NO ₄ S 1/2Ca 1.0 H ₂ O)					
					H ₂ O, 4.35
Found:	C, 57.80;	H, 6.68;	N, 3.68;	Ca, 5.06;	H ₂ O, 4.50

15 No.3d-6

 $[\alpha]_D$ =-20.7±0.6 ° (CHCl₃,c=1.00,24°C).

No.3d-7

20

[
$$\alpha$$
]_D=-3.2±0.4 ° (CHCl₃:c=1.03,22°C). mp.65-67°C

No.3d-8

25

$$[\alpha]_D$$
=-14.5±0.5 ° (CHCl₃,c=1.07,24°C).

No.3d-9

30 [α]_D=+12.2±0.5 ° (CH₃OH,c=1.00,23°C). mp.119-125°C

No.3d-10

35 $[\alpha]_D=+39.7\pm0.8$ ° (CHCl₃,c=1.07,22°C).

No.3d-11

 $[\alpha]_D$ =+29.2±0.7 ° (CHCl₃,c=1.06,22°C).

No.3d-12

40

 $[\alpha]_D = +76.4 \pm 1.1 \degree (CH_3OH, c=1.03, 24 \degree C).$

45 No.3d-14

 $[\alpha]_D$ =-20.6±0.6 ° (CHCl₃,c=1.07,22°C).

No.3d-15

50

 $[\alpha]_{365}$ =-28.0±0.7 ° (CH₃OH,c=1.03,24.5°C).

No.3d-16

 $[\alpha]_D = -8.7 \pm 0.5$ ° (CHCl₃,c=1.06,22°C).

No.3d-17

CDCl₃ 300MHz

0.80-2.15(m,24H),2.32(t,J=7Hz,2H),2.68(t,J=7Hz,2H),3.02(m,1H),2.15

 $(m,\!24H),\!2.32(t,\!J=\!7Hz,\!2H),\!2.68(t,\!J=\!7Hz,\!2H),\!3.02(m,\!1H),\!5.22(m,\!2H),\!5.38(d,\!3H),\!3.02(m,\!3H),\!3.0$

Apart, J=8Hz,2H),7.81(A2B2qBpart, J=8Hz,2H), 9.86 (brs,1H).

[α]_D≒0

 $[\alpha]_{365}$ =-9.7±0.5° (CHCl₃,c=1.03,22°C).

10 No.3d-24

5

 $[\alpha]_D$ =+19.2±0.6 ° (CHCl₃,c=1.05,23°C).

No.3d-26

15

CD₃OD 300MHz

0.90-2.20(20H,m),2.88(1H,m),3.07(2H,q,J=7.0Hz),5.00-5.40(2H,m),7.20-7.60(4H,m),7.95(1H,m). IR(KBr):3415,3254,1698,1564,1314,1154/cm.

20 No.3d-28

CD₃OD 300MHz

0.90-2.20(20H,m), 2.73(2H,q,J=7.0Hz), 2.93(1H,m), 5.00-5.30(2H,m), 7.40-7.50(2H,m), 7.60-7.77(2H,m). IR(KBr):3435,3280,1562,1323,1304,1151/cm.

No.3d-30

25

30

Elemental analysis (C₂₀H₂₅BrNO₄SNa)

Calcd.: C50.21; H5.27; Br16.70; N2.93; S6.70; Na4.81

Found: C50.22; H5.40; Br15.57; N2.88; S6.41; Na5.10

35 IR(KBr):3425,3280,3085,1697,1570,1410,1321,1165,1155/cm.

No.3e-1

CD₃OD 300MHz

40 0.71(1H,d,J=10.2Hz),1.04(3H,s),1.12(3H,s),1.35-2.28(14H,m), 5.39(2H,m),7.37(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz). 2.42(3H,s),3.17-3.25(1H,m),5.18-

J=7Hz,1H),7.30(A2B2q-

 $IR(CHCl_3)$:3400,3289,2986,2924,2870,1559,1424,1322,1305,1160,1095,1075, 1030/cm. [α]_D=+25.9±0.7 ° (CH₃OH,c=1.00,23°C).

45 Compounds prepared in Examples above were tested for in vivo and in vitro activity according to the method shown in Experimental examples below.

Experiment 1 Binding to PGD₂ Receptor

- 50 Material and Method
 - (1) Preparation of Human Platelet Membrane Fraction

A Blood sample was obtained using a plastic syringe containing 3.8 % sodium citrate from veins of healthy volunteers (adult male and female), put into a plastic test tube and mixed gently by inversion. The sample was then centrifuged at 1800 rpm, 10 min at room temperature, and supernatant containing PRP (platelet rich plasma) was collected. The PRP was re-centrifuged at 2300 rpm, 22 min at room temperature to obtain platelets. The platelets were homogenized using a homogenizer (Ultra-Turrax) followed by centrifugation 3 times at 20,000 rpm, 10 min at 4°C to obtain a

platelet membrane fraction. After protein determination, the membrane fraction was adjusted to 2 mg/ml and preserved in a refrigerator at -80°C until use.

(2) Binding to PGD2 Receptor

5

15

20

25

30

45

50

To a binding-reaction solution (50 mM Tris/HCl, pH 7.4, 5 mM MgCl₂) (0.2 ml) were added human platelet membrane fraction (0.1 mg) and 5 nM [3 H]PGD₂ (115Ci/mmol), and reacted at 4°C for 90 min. After the reaction finished, the reaction mixture was filtered through a glass fiber filter paper, washed several times with cooled saline, and measurement made of radioactivity retained on the filter paper. The specific binding was calculated by subtracting the non-specific binding (the binding in the presence of 10 μ M PGD₂) from the total binding. The binding-inhibitory activity of each compound was expressed as concentration required for 50 % inhibition (IC₅₀), which was determined by depicting a substitution curve by plotting the binding ratio (%) in the presence of each compound, where the binding ratio in the absence of a test compound is 100 %. The results are shown in Table below.

Compound number	Activity (μM)	compound number	activity (μM)
3a-4	0.6	2a-4	0.54
1a-115	8.6	2a-17	0.12
1a-28	0.045	2a-21	5.2
1a-47	0.0086	2a-28	0.046
1a-100	0.56	2a-95	1.6
1a-176	0.047	2a-109	0.003
1a-2	0.13	1a-162	0.027

Experiment 2 Evaluation of Antagonistic Activity Against PGD₂ Receptor Using Human Platelet

Peripheral blood was obtained from a healthy volunteer using a syringe in which 1/9 volume of citric acid/dextrose solution had been previously added. The syringe was subjected to centrifugation at 180 g for 10 min to obtain the supernatant (PRP: platelet rich plasma). The resultant RRP was washed 3 times with a washing buffer and the number of platelets was counted with a micro cell counter. A suspension adjusted to contain platelets at a final concentration of 5 x 10^8 /ml was warmed at 37°C, and then subjected to the pretreatment with 3-isobutyl-1-methylxanthine (0.5mM) for 5 min. To the suspension was added a test compound diluted at various concentrations. Ten-minutes later, the reaction was induced by the addition of 0.1-2.0 μ M PGD₂ and, 15-minutes later, stopped by the addition of HCl. The platelets were destroyed with an ultrasonic homogenizer. After centrifugation, the cAMP in the supernatant was determined by radioassay. PGD₂ receptor antagonism of a drug was evaluated as follows. The inhibition rate regarding cAMP increased by the addition of PGD₂ was determined at individual concentration, and then the concentration of the drug required for 50 % inhibition (IC₅₀) was calculated. The results are shown in the Table below.

Compound number	Inhibition of Increase of Human Platelet cAMP (IC ₅₀₎ (µM)
3a-16	0.37
1a-12	12.11
1a-28	0.30
1a-47	2.09
2a-2	0.77
2a-4	0.94
2a-35	1.52
2a-75	0.71

Experiment 3 Experiment Using Nasal Occlusion Model

The method used for measuring the nasal cavity resistance and evaluating the anti-nasal occlusion using a guinea pig are described below.

A 1% ovalbumin (OVA) solution was treated with an ultrasonic nebulizer to obtain an aerosol. A Hartley male guinea pig was sensitized by inhaling twice the aerosol for 10 min at one-week intervals. Seven-days after the sensitization, the guinea pig was exposed to an antigen to initiate the reaction. Then the trachea was incised under anesthesia with pentobarbital (30 mg/kg, i.p.) and cannulas were inserted into the trachea at the pulmonary and nasal cavity sides. The canal inserted at the pulmonary side was connected with an artificial respirator that provides 4 ml air 60 times/min. After arresting the spontaneous respiration of a guinea pig with Garamin (2 mg/kg, i.v.), air was supplied to the snout side with an artificial respirator at the frequency of 70 times/min, and the flow rate of 4 ml air/time, and the atmospheric pressure required for the aeration was measured by the use of a transducer fitted at the branch. The measurement was used as a parameter of the nasal cavity resistance. The exposure of an antigen was carried out by generating aerosol of 3 % OVA solution for 3 min between the respirator and nasal cavity cannula. The test drug was injected intravenously 10 min before the antigen exposure. The nasal resistance between 0 to 30 min was measured continuously and the effect was expressed as inhibition rate to that obtained for vehicle using the AUC for 30 min (on the vertical axis, nasal cavity resistance (cm H₂O), and on the horizontal axis, time (0 - 30 min)) as an indication. The result is shown below.

20	
25	
30	
35	
40	
45	

Compound number	Inhibition Rate (%) 1 mg/kg (i.v.)	Remarks
1a-28	44	. ,
1a-98	69	
1a-100	50	
1a-115	66	
1a-116	48	
1a-120	58	3mg/kg (i.v.)
1a-2	82	:
1a-162	80	
1a-176	60	
1a-267	62	
2a-4	60	
2a-21	52	
2a-28	54	
2a-95	77	
2a-96	77	10mg/kg(p.o.)
2a-109	73	
2a-110	66	10mg/kg(p.o.)
22a-194	79	

Formulation 1 Preparation of Tablets

Tablets each containing 40 mg of active ingredient were prepared in a conventional manner. The ingredients for 40 mg tablet are as follows:

	Calcium (+)-(Z)-7-[(1R,2S,3S,4S)-3-benzenesulfonamidobicyclo[2.2.1]hept-2-yl]-5-heptenoate dihydrate	40.0 mg
5	Hydroxypropyl cellulose	3.6 mg
	Magnesium stearate	0.4mg
	Cornstarch	18.0 mg
10	Lactose	58.0 mg
		Total 120.0 mg

Formulation 2 Preparation of Granules

Ingredients:

15

20	Calcium (+)-(Z)-7-[(1R,2S,3S,4S)-3-benzenesulfonamidobicyclo[2.2.1]hept-2-yl]-5-heptenoate dihydrate	100.0 mg
	Hydroxypropyl cellulose	30.0 mg
	Carmellose Calcium	30.0 mg
25	Talc	10.0 mg
20	Poloxamer 188	20.0 mg
	Crystalline cellulose	70.0 mg
	Cornstarch	300.0 mg
30	Lactose	440.0 mg
		Total 1000.0 mg

Claims

35

1. A PGD₂ antagonist comprising a compound of the general formula (I) below or a salt or a hydrate thereof as an active ingredient:

50 wherein

is

OI

15

20

25

30

35

10

5

A is alkylene which optionally is intervened by a hetero atom or phenylene, contains oxo group, and/or has an unsaturated bond;

B is hydrogen, alkyl, aralkyl or acyl;

R is COOR₁, CH₂OR₂ or CON(R₃)R₄;

R₁ is-hydrogen or alkyl;

R₂ is hydrogen or alkyl;

R₃ and R₄ each are independently hydrogen, alkyl, hydroxy or alkylsulfonyl;

X₁ is a single bond, phenylene, naphthylene, thiophenediyl, indolediyl, or oxazolediyl;

 X_2 is a single bond, -N=N-, -N=CH-, -CH=N-, -CH=N-O-, -C=NNHCSNH-, -C=NNHCONH-, -CH=CH-, -CH(OH)-, -C(Cl)=C(Cl)-, - (CH₂)n-, ethynylene, -N(R₅)-, -N(R₅₁)CO-, -N(R₅₂)SO₂-, -N(R₅₃)CON(R₅₄)-, -CON(R₅₅)- -SO₂N(R₅₆)-, -O-, -S-, -SO-, -SO₂-, -CO-, oxadiazolediyl, thiadiazolediyl or tetrazolediyl;

 X_3 is alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclic group, cycloalkyl, cycloalkenyl, thiazolinylidenemethyl, thiazolidinylidenemethyl, -CH=NR₆ or -N=C(R₇)R₈;

 R_5 , R_{51} , R_{52} , R_{53} , R_{54} , R_{55} and R_{56} each are hydrogen or alkyl;

R₆ is hydrogen, alkyl, hydroxy, alkoxy, carbamoyloxy, thiocarbamoyloxy, ureido or thioureido;

R₇ and R₈ each are independently alkyl, alkoxy, or aryl;

n is 1 or 2;

Z is -SO₂- or -CO-; and

m is 0 or 1;

- wherein a cyclic substituent may have one to three substituents selected from the group consisting of nitro, alkoxy, sulfamoyl, substituted- or unsubstituted-amino, acyl, acyloxy, hydroxy, halogen, alkyl, alkynyl, carboxy, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxyalkyl, trifluoromethyl, alkylthio, N=PPh₃, oxo, thioxo, hydroxyimino, alkoxyimino, phenyl and alkylenedioxy.
- The PGD₂ antagonist of claim 1 wherein the active ingredient is a compound of the formula (I) wherein

50

is

5

10

15

20

25

30

35

40

45

55

;

m is 0; and when Z is SO_2 , both X_1 and X_2 are a single bond; X_3 is alkyl, phenyl, naphthyl, stylyl, quinolyl or thienyl; and a cyclic substituent among these substituents optionally has one to three substituents selected from the group consisting of nitro, alkoxy, substituted- or unsubstituted-amino, halogen, alkyl and hydroxyalkyl, or a salt or hydrate thereof.

3. The PGD₂ antagonist of claim 1 wherein the active ingredient is a compound of the formula (I) wherein

is

when m is 1, both X_1 and X_2 are a single bond; and X_3 is phenyl optionally substituted with halogen, or a salt or hydrate thereof.

4. The PGD₂ antagonist of claim 1 wherein the active ingredient is a compound of the formula (I) wherein

is

;

when m is 1, X_1 is phenyl, X_2 is -CH₂- or -N=N- and X_3 is phenyl, or a salt or hydrate thereof.

5. The PGD₂ antagonist of claim 1 which is a drug for treating nasal occulsion.

6. A compound of the formula (la):

$$\begin{array}{c}
A - R \\
N - SO_2 - X_1 - X_2 - X_3 \\
B
\end{array}$$
(Ia)

wherein A, B, R, X_1 , X_2 and X_3 are as defined above, or a salt or hydrate thereof, provided that those wherein (1) X_1 and X_2 are a single bond, and X_3 is substituted- or unsubstituted-phenyl, or naphthyl; and (2) A is 5-heptenylene, R is COOR₁ (R₁ is hydrogen or methyl), X_1 is 1,4-phenylene, X_2 is a single bond, and X_3 is phenyl are excluded.

- 7. The compound of claim 6, a salt or hydrate thereof, wherein X₁ and X₂ are a single bond, X₃ is isoxazolyl, thiadiazolyl, isothiazolyl, morpholyl, indolyl, benzofuryl, dibenzofuryl, dibenzodioxinyl, benzothienyl, dibenzothienyl, carbazolyl, xanthenyl, phenanthridinyl, dibenzoxepinyl, dibenzothiepinyl, cinnolyl, chromenyl, benzimidazolyl or dihydrobenzothiepinyl, and A, B and R are as defined above.
- 8. The compound of claim 6, a salt or hydrate thereof, wherein X₁ is a single bond, X₂ is phenylene, X₃ is alkenyl, alkynyl, -CH=NR₆ or -N=C(R₇)R₈, and A, B, R, R₆, R₇, and R₈ are as defined above.
- 9. The compound of claim 6, a salt or hydrate thereof, wherein R is COOR₁, X₁ is phenylene or thiophenediyl, X₂ is a single bond, -N=N-, -CH=CH-, -CONH-, -NHCO- or ethynylene and X₃ is phenyl, thiazolinylidenemethyl, thiazolid-inylidenemethyl or thienyl, and A, B, R₁, R₆, R₇, and R₈ are as defined above.

30 10. A compound of the formula (lb):

$$A - R$$
 Y'

N—CO— $X_1 - X_2 - X_3$

B

(Ib)

wherein

15

20

25

50 is

A, B, R, X_1 , X_2 and X_3 are as defined above, or a salt or hydrate thereof, provided that those wherein X_1 and X_2 are a single bond, and X_3 is phenyl, and wherein X_1 is a single bond, X_2 is -O-, and X_3 is benzyl are excluded.

11. The compound of claim 10, a salt or hydrate thereof, wherein

is

and A, B, R, X₁, X₂ and X₃ are as defined above.

- 12. The compound of claim 11, a salt or hydrate thereof, wherein R is COOR₁ (R₁ is as defined above).
- 13. The compound of claim 11, a salt or hydrate thereof, wherein X₁ is phenylene or thiophenediyl, X₂ is a single bond, N=H-, -CH=CH-, ethynylene, -O-, -S-, -CO-, -CON(R₅₅)- (R₅₅ is as defined above), -N(R₅₁)CO- (R₅₁ is as defined above) and X₃ is phenyl or thienyl.
 - 14. The compound of claim 10, a salt or hydrate thereof, wherein

is

and A, B, R, X₁, X₂, X₃ and Z are as defined above.

- 15. The compound of claim 14, a salt or hydrate thereof, wherein B is hydrogen, both X₁ and X₂ are a single bond, X₃ is thienyl, thiazolyl, thiadiazolyl, isothiazolyl, pyrrolyl, pyridyl, benzofuryl, benzimidazolyl, benzothienyl, dibenzofuryl, dibenzothienyl, quinolyl or indolyl.
- 16. The compound of claim 15, a salt or hydrate thereof, wherein X₁ is phenylene, thiophenediyl, indolediyl or oxazolediyl, X₂ is a single bond, -N=H-, -CH=CH-, ethynylene, S- or -O-, and X₃ is aryl or heterocyclic group.

55

50

5

10

15

20

30

35

40

INTERNATIONAL SEARCH REPORT

International application No.

			PCT/JP96/01685	
A. CLA	SSIFICATION OF SUBJECT MATTER Int	. C16 C07C233/	52, 233/84, 271/24,	
	/06, 311/11, 311/13, 311/19 18, 31/27, 31/33, 31/34, 3	1/76 71/70		
According	to International Patent Classification (IPC) or to both	national classification and II	PC	
	LDS SEARCHED			
Minimum d	ocumentation searched (classification system followed b	y classification symbols) Int	c16 C07C233/52,	
495	/84, 271/24, 311/06, 311/11 /08, A61K31/16, 31/18, 31/2	, 311/13, 311/19 7. 31/33, 31/34	9, C07D493/08,	
	tion searched other than minimum documentation to the		·	
	out out and animals occupaning to the	existi tisti tuca documenti sie i	included in the fields searched	
L	•			
	ata base consulted during the international search (name	of data base and, where practic	able, search terms used)	
CAS	ONLINE			
C. DOCT	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant par	Relevant to claim No.	
x	JP, 6-279395, A (Ono Pharm			
	UCTODER 4, 1994 (04. 10. 9	lceutical Co., I	Ltd.), 1 - 16	
	& EP, 608847, A	•		
x	JP, 2-180862, A (Ono Pharm	oceutical Co		
	12 . 13 . 1990 (13. 07. 90)		Ltd.), 1 - 16	
	& EP, 312906, A & US, 5168	.01, A		
х	JP, 63-139161, A (Shionogi	6 Co T+4)	1 16	
	June 10, 1988 (10. 06. 88)		1 - 16	
	& EP, 226345, A & US, 48619 & US, 4960909, A & US, 4970	13, A		
	& US, 5041635, A & US, 5041	1451, A		
	& US, 5043456, A			
х	JP, 60-178876, A (E.R. Squi	hh f Come Tue	,	
	September 12, 1985 (12, 09)	. 851	1 - 16	
	& EP, 150709, A & US, 45269	01, A		
	-			
Furthe	er documents are listed in the continuation of Box C.	See patent family	sanex.	
• Special	Special categories of cited documents: T later document published after the international (illing data or print).			
"A" consists defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention				
"E" sartier d	"E" satisf document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is			
CLUBEL IO	est which may throw doubts on priority claim(s) or which is establish the publication date of another clinion or other reason (as specified)	and when the document	is taken alone	
	O" document referring to as oral disclosure, we exhibition or other			
"P" document published prior to the international filling date but later than				
the priority date chained "&" document member of the same patent family				
	Date of the actual completion of the international search September 13 1996 (13 09 06)			
September 13, 1996 (13. 09. 96) September 24, 1996 (24. 09. 96)				
	ame and mailing address of the ISA/ Authorized officer			
Japa	Japanese Patent Office			
	acsimile No. Telephone No.			
orm PCT/ISA/210 (second sheet) (July 1992)				

(HIS PAGE BLANK (USPTO)