Differentiable Manifolds and the Hairy Ball Theorem

Jonathan Lau

February 16, 2023

1 Manifolds and Tangent Spaces

Definition 1.1 (Manifold). Let M be a Hausdorff, second countable, locally \mathbb{R}^n topological space. A chart is a pair (U,ϕ) where U is open in M and $\phi:U\to\mathbb{R}^n$ is a homeomorphism onto its image. An atlas \mathcal{A} on M is a collection of charts that cover M such that if $(U,\phi),(V,\psi)\in\mathcal{A}$, the functions $\psi\circ\phi^{-1}$ and $\phi\circ\psi^{-1}$ are smooth on $\phi(U\cap V)$ and $\psi(U\cap V)$ respectively. Each atlas is contained in a unique maximal atlas. A manifold is the space M together with a maximal atlas \mathcal{A} .

Definition 1.2 (Smooth maps between manifolds). A continuous map $F: N \to M$ between manifolds is smooth if for all charts (U, ϕ) on N and (V, ψ) on M, the map $\phi \circ F \circ \psi^{-1}$ is smooth.

stuff