

大学物理-综合实验 | 实验报告

姓名 王元叙

学号 PB22000195

班级 22 级少年班学院 5 班

日期 2023年5月22日

霍尔效应

1 实验目的

- 1. 了解霍尔效应原理以及有关霍尔器件对材料要求的知识。
- 2. 学习用"对称测量法"消除副效应影响。
- 3. 根据霍尔电压判断霍尔元件载流子类型。
- 4. 计算载流子的浓度和迁移速度。

2 实验装置

恒流源两个; 电磁铁 (4900Gs/A); 霍尔样品和样品架; 换向开关两只、导线若干; 数字万用表一台; 小磁针一只。

3 实验原理

3.1 通过霍尔效应测量磁场

图 1.1: 实验装置原理图及电磁铁气隙磁场

3.2 霍尔效应实验中的副效应

在实际应用中,伴随霍尔效应经常存在其他副效应。

1. **愛廷豪森效应**:实际中载流子迁移速率 u 服从统计分布规律, 速度小的载流子受到的洛伦兹力小于霍尔电场作用力, 向霍尔电场作用力方向偏转, 速度大的载流子受到磁场作用力大于霍尔电场作用力, 向洛伦兹力方向偏转。这样使得一侧高速载流子较多, 相当于温度较高, 而另一侧低速载流子较多, 相当于温度较低。这种横向温差就是温差电动势 V_E , 这种现象称为爱廷豪森效应。这种效应建立需要一定时间, 如果采用直

流电测量时会因此而给霍尔电压测量带来误差,如果采用交流电,则由于交流变化快使得爱廷豪森效应来不及建立,可以减小测量误差。

- 2. **不等位效应**: 在使用霍尔元件时还存在不等位电动势引起的误差, 这是因为霍尔电极 B, B' 不可能绝对对 称焊在霍尔片两侧产生的。由于目前生产工艺水平较高, 不等位电动势很小, 故一般可以忽略, 也可以用一个电位器加以平衡 (如图 1 中电位器 R_1)。
- 3. 此外其他副效应如能斯特效应、里纪-勒杜克效应等,可以使用用对称测量法消除。

3.3 堆成测量法的消除副效应

我们可以通过改变 I_S 和磁场 B 的方向消除大多数副效应,即堆成测量法。具体说在规定电流和磁场正反方向后,分别测量下列四组不同方向的 I_S 和 B 组合的 $V_{BB'}$,即

$$+B, +I V_{BB'} = V_1$$

 $-B, +I V_{BB'} = -V_2$
 $+B, -I V_{BB'} = -V_3$
 $-B, -I V_{BB'} = V_4$

然后得到霍尔电压平均值, 这样虽然不能消除所有的副效应, 但其引人的误差不大, 可以忽略不计。

3.4 电导率的测量方法

电导率测量原理如下图所示:

图 1.2: 霍尔效应原理图

设 B',A' 间距离为 L,样品横截面积为 S=bd,流经样品电流为 I_S ,在零磁场下,测得 B 间电压为 $V_{B'A'}$,根据欧姆定律可以求出材料的电导率。电导率 σ 与载流子浓度 n 及迁移率 μ 之间有如下关系:

$$\sigma = ne\mu$$

4 实验步骤

- 1. 用六脚霍尔片接好线路,霍尔片的尺寸为: d = 0.5 mm, b = 4.0 mm, L = 3.0 mn
- 2. 保持 I_M 不变,取 $I_M = 0.45$ A, I_S 取 $1.00, 1.50, \cdots, 4.50$ mA,测绘 $V_H I_S$ 曲线,计算 R_H
- 3. 保持 I_S 不变,取 ${\rm Is}=4.50~{\rm mA},~I_M$ 取 $0.100,0.150,\cdots,0.450~{\rm A},~$ 测绘 V_H-I_M 曲线, 计算 R_H
- 4. 在零磁场下,取 $I_S=1.00 \text{ mA}$,测 $V_{B'A'}$
- 5. 确定样品导电类型, 并求 R_H, n, σ, μ
- 6. 使用四脚锑化铟片完成。取 $I_S = 1.00 \text{mA,Ix}$ 在 0 0.800 A 之间,测绘 $V_H I_M$ 曲线

实验数据与分析 **5**

5.1 保持励磁电流不变测量霍尔系数

保持励磁电流 $I_M =$

表 1 保持励磁电流不变测量霍尔系数数据

1	2.87	2.79	2.83	2.84	2.81
1.5	4.05	4.05	4.11	4.11	4.08
2	5.35	5.36	5.44	5.44	5.40
2.5	6.77	6.75	6.67	6.66	6.61
3	8.09	8.09	7.97	7.95	8.05
3.5	9.43	9.41	9.27	9.27	9.39
4	10.75	10.75	10.58	10.57	10.67
4.5	12.09	12.08	11.89	11.88	11.99

其中第六列数据依据公式 $V_H=rac{V_1+V_2+V_3+V_4}{4}$ 计算得到。使用软件 Origin 拟合 V_H-I_S 图线,如图所示:

图 2.1: $V_H - I_S$ 拟合图线 线性拟合斜率斜率 $k_1 = 2.634V/A, R^2 = 0.99999.$,经过计算可以得到:

$$\begin{split} R_H &= \frac{V_H d}{I_S B} \\ &= \frac{2.634 V/A \times 5 \times 10^{-4} m}{4900 Gs/A \times 0.45 A \times 10^{-4} T/Gs} \\ &= 5.97 \times 10^{-3} m^3/C \end{split}$$

5.2 保持样品电流不变测量霍尔系数

0.1	2.72	2.72	2.53	2.53	2.63
0.15	4.02	4.05	3.89	3.90	3.97
0.2	5.34	5.38	5.20	5.21	5.28
0.25	6.66	6.69	6.51	6.50	6.59
0.3	8.00	8.02	7.84	7.84	7.93
0.35	9.33	9.36	9.17	9.18	9.26
0.4	10.75	10.70	10.52	10.51	10.62
0.45	12.08	12.08	11.89	11.90	11.99

表 2 保持样品电流不变测量霍尔系数数据

其中第六列数据依据公式 $V_H=rac{V_1+V_2+V_3+V_4}{4}$ 计算得到。使用软件 Origin 拟合 V_H-I_M 图线,如图所示:

图 2.2: $V_H - I_M$ 拟合图线 线性拟合斜率 $k_2 = 26.686 mV/A, R^2 = 0.999$,计算可得:

$$\begin{split} R_H &= \frac{V_H d}{I_S B} \\ &= \frac{26.686 \times 10^{-3} V/A \times 5 \times 10^{-4} m}{4900 Gs/A \times 0.0045 A \times 10^{-4} T/Gs} \\ &= 6.05 \times 10^{-3} m^3/C \end{split}$$

5.3 零磁场下测量横向电势差

零磁场下, $I_S=1~\mathrm{mA}$, 测得 $V_{xx}=67.10\mathrm{mV}$ 。在上面两个实验中我们使用不同方法测得了两个 R_H 值,在下面的计算中我们使用二者的平均值

$$R_h = \frac{6.05 + 5.97}{2} \times 10^{-3} m^3 / C = 6.01 \times 10^{-3} m^3 / C$$

于是我们可以计算得到:

$$\begin{split} \sigma &= \frac{1}{\rho} \\ &= \frac{L}{bd} \frac{I_S}{V_{xx}} \\ &= \frac{3}{4 \times 0.5 \times 67.10 \times 10^{-3}} \\ &= 22.355 \text{ S/m} \\ n &= \frac{1}{R_H q} \\ &= \frac{1}{6.01 \times 10^{-3} \cdot 1.60 \times 10^{-19}} \\ &= 1.04 \times 10^{21} \\ \mu &= \frac{\sigma}{nq} \\ &= \frac{22.355}{1.04 \times 10^{21} \cdot 1.6 \times 10^{-19}} \\ &= 0.134 \text{ m}^2/\text{V} \cdot \text{s} \end{split}$$

5.4 确定样品导电类型

使用小磁针放在电磁铁的正上方,根据小磁针方向指向南方可以分析:

图 3: 导电类型分析图

可以知道载流子是 n 型。

5.5 使用锑化铟片绘制 V_H-I_M 图像

保持样品电流 $I_S = 1$ mA 不变

表 3 锑化铟片测量原始数据

0.040	46.85	0.080	91.14
0.120	133.52	0.160	172.41
0.200	201.70	0.240	219.32
0.280	233.56	0.320	245.73
0.360	257.08	0.400	268.53
0.440	280.49	0.480	293.54
0.520	304.83	0.560	316.75
0.600	328.54	0.640	340.57
0.680	352.72	0.720	364.32
0.760	375.89	0.800	387.60

使用软件绘图可以得到:

图 4: 锑化铟片 $V_H - I_M$ 拟合图线 可以观察到在某个拐点以后曲线的斜率发生了突变。