Math 3B: Lecture 8

Noah White

October 15, 2018

The definite integral

Defintion

The definite integral of a function f(x) is defined to be

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \Delta x \sum_{k=1}^{n} f(a + k \Delta x)$$

where $\Delta x = \frac{b-a}{n}$.

Properties of definite integrals

Zero area

$$\int_a^a f(x) \, \mathrm{d} x = 0$$

Properties of definite integrals

Adding areas

$$\int_a^c f(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x + \int_b^c f(x) \, \mathrm{d}x$$

More properties of definite integrals

Reversing the area

$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x$$

More properties of definite integrals

Reversing the area

$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x$$

Additivity

$$\int_a^b f(x) + g(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

More properties of definite integrals

Reversing the area

$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x$$

Additivity

$$\int_a^b f(x) + g(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

Lineararity (scalars factor out)

$$\int_{a}^{b} \alpha f(x) \, \mathrm{d}x = \alpha \int_{a}^{b} f(x) \, \mathrm{d}x$$

Theorem

For any a,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

Theorem

For any a,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

Theorem

For any a,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

Theorem

For any a,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{x} f(t) \, \mathrm{d}t = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

• $F(x) = \int_a^x f(t) dt$ is a function of x.

Theorem

For any a,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

- $F(x) = \int_a^x f(t) dt$ is a function of x.
- every input x produces a number as an output.

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

Why?

Well $F(x) = \int_a^x f(t) dt + C$ for some a and C. So

$$F(b) - F(a) = \int_a^b f(t) dt + C - \int_a^a f(t) dt - C$$
$$= \int_a^b f(t) dt$$

Example 1

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \, \mathrm{d}x$$

Example 1

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \, \mathrm{d}x$$

Solution

An antiderivative of $x^2 - 4$ is $\frac{1}{3}x^3 - 4x$ so

$$\int_0^1 x^2 - 4 \, dx = \frac{1}{3} \cdot 1^3 - 4 - \frac{1}{3} \cdot 0^3 + 4 \cdot 0$$
$$= \frac{1}{3} - 4 = -\frac{11}{3}$$