Εισαγωγή στην Αριθμητική Ανάλυση

Σταμάτης Σταματιάδης stamatis@materials.uoc.gr

Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Πανεπιστήμιο Κρήτης

ΔΕΚΑΤΗ ΔΙΑΛΕΞΗ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Ορισμοί (1/2)

Μια εξίσωση που περιγράφει μια σχέση μεταξύ μιας ανεξάρτητης μεταβλητής x, μιας εξαρτημένης συνάρτησης y(x), και μίας ή περισσότερων παραγώγων τής y λέγεται συνήθης Διαφορική Εξίσωση (ΔΕ):

$$y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x))$$
.

Η συγκεκριμένη εξίσωση είναι ΔΕ τάξης n.

Ορισμοί (1/2)

• Μια εξίσωση που περιγράφει μια σχέση μεταξύ μιας ανεξάρτητης μεταβλητής x, μιας εξαρτημένης συνάρτησης y(x), και μίας ή περισσότερων παραγώγων τής y λέγεται συνήθης Δ ιαφορική Εξίσωση (Δ E):

$$y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x))$$
.

Η συγκεκριμένη εξίσωση είναι ΔΕ τάξης η.

• Μια γενική λύση της παραπάνω εξίσωσης περιέχει n αυθαίρετες σταθερές, επομένως υπάρχει μια n-παραμετρική οικογένεια λύσεων. Οι n σταθερές αποκτούν συγκεκριμένες τιμές αν γνωρίζουμε την τιμή της συνάρτησης και των παραγώγων της έως και n-1 τάξης σε συγκεκριμένο σημείο.

Ορισμοί (1/2)

Μια εξίσωση που περιγράφει μια σχέση μεταξύ μιας ανεξάρτητης μεταβλητής x, μιας εξαρτημένης συνάρτησης y(x), και μίας ή περισσότερων παραγώγων τής y λέγεται συνήθης Διαφορική Εξίσωση (ΔΕ):

$$y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x))$$
.

Η συγκεκριμένη εξίσωση είναι ΔΕ τάξης η.

- Μια γενική λύση της παραπάνω εξίσωσης περιέχει n αυθαίρετες σταθερές, επομένως υπάρχει μια n-παραμετρική οικογένεια λύσεων. Οι n σταθερές αποκτούν συγκεκριμένες τιμές αν γνωρίζουμε την τιμή της συνάρτησης και των παραγώγων της έως και n-1 τάξης σε συγκεκριμένο σημείο.
- Ο αναλυτικός υπολογισμός της γενικής λύσης της παραπάνω ΔΕ είναι εφικτός για πολύ ειδικές περιπτώσεις. Συνήθως όμως αρκούν οι αριθμητικές τιμές της y(x) σε διάφορα σημεία.

Ορισμοί (2/2)

Αν στη ΔΕ τα y(x₀), y'(x₀),..., y⁽ⁿ⁻¹⁾(x₀) είναι γνωστά για κάποιο σημείο x₀, έχουμε πρόβλημα αρχικών τιμών. Η Αριθμητική Ανάλυση παρέχει μεθόδους που υπολογίζουν με αυτές τις τιμές μια προσέγγιση στην τιμή της y(x) σε κάποιο σημείο x₁.

Ορισμοί (2/2)

- Αν στη ΔΕ τα y(x₀), y'(x₀),..., y⁽ⁿ⁻¹⁾(x₀) είναι γνωστά για κάποιο σημείο x₀, έχουμε πρόβλημα αρχικών τιμών. Η Αριθμητική Ανάλυση παρέχει μεθόδους που υπολογίζουν με αυτές τις τιμές μια προσέγγιση στην τιμή της y(x) σε κάποιο σημείο x₁.
- Αρχικά θα ασχοληθούμε με ΔΕ πρώτης τάξης με αρχική συνθήκη, δηλαδή της μορφής

$$y' = f(x, y)$$
, $\mu \epsilon y(x_0) = y_0$.

Θα παρουσιάσουμε μεθόδους για τον υπολογισμό της $y(x_1)$. Κατόπιν, θα εφαρμόσουμε τις μεθόδους σε συστήματα ΔΕ πρώτης τάξης και σε ΔΕ υψηλότερης τάξης.

Γενικά χαρακτηριστικά των αλγόριθμων (1/3)

• Οι μέθοδοι που θα παρουσιάσουμε υπολογίζουν την τιμή $y_1 \approx y(x_1)$ για την $\Delta {\rm E}$

$$y' = f(x,y)$$
, $\mu \epsilon y(x_0) = y_0$.

- Το σφάλμα κάθε μεθόδου, η διαφορά $y_1 y(x_1)$, αυξάνει όταν αυξάνει το $(x_1 x_0)$. Για μέθοδο τάξης p το σφάλμα είναι ανάλογο του $(x_1 x_0)^{p+1}$.
- Αν η απόσταση αρχικού (έστω a) και τελικού σημείου (έστω b) δεν είναι κατάλληλα «μικρή», διαιρούμε το διάστημα [a,b] σε μικρά τμήματα μεταξύ των σημείων $x_0 \equiv a, x_1, x_2, ..., x_n \equiv b$, και χρησιμοποιούμε επαναληπτικά την επιλεγμένη μέθοδο.
- Τα σημεία διαμοιρασμού του διαστήματος [a,b] δεν είναι απαραίτητο να ισαπέχουν, ούτε να είναι γνωστά εκ των προτέρων: οι μέθοδοι μεταβλητού βήματος χρησιμοποιούν τις τιμές των $x_0, x_1, ..., x_i$ και τις αντίστοιχες τιμές του y ώστε να υπολογίσουν το σημείο x_{i+1} .

Γενικά χαρακτηριστικά των αλγόριθμων (2/3)

Διάκριση σε explicit/implicit

Οι μέθοδοι επίλυσης ΔΕ χωρίζονται σε δύο βασικές κατηγορίες: άμεσες (explicit) και πεπλεγμένες (implicit).

explicit

Οι αλγόριθμοι explicit εκφράζουν την y_1 ως συνάρτηση των x_0, y_0, x_1 και πιθανώς των τιμών της y σε διάφορα σημεία στο (x_0, x_1) . Μπορούν επομένως να την υπολογίσουν απευθείας, με έκφραση της μορφής π.χ.

$$y_1 = G(x_0, x_1, y_0)$$
.

Γενικά χαρακτηριστικά των αλγόριθμων (2/3)

Διάκριση σε explicit/implicit

Οι μέθοδοι επίλυσης ΔE χωρίζονται σε δύο βασικές κατηγορίες: άμεσες (explicit) και πεπλεγμένες (implicit).

explicit

Οι αλγόριθμοι explicit εκφράζουν την y_1 ως συνάρτηση των x_0 , y_0 , x_1 και πιθανώς των τιμών της y σε διάφορα σημεία στο (x_0,x_1) . Μπορούν επομένως να την υπολογίσουν απευθείας, με έκφραση της μορφής π.χ.

$$y_1 = G(x_0, x_1, y_0)$$
.

implicit

Οι αλγόριθμοι implicit προσδιορίζουν μια έκφραση της μορφής

$$G(x_0, x_1, y_0, y_1) = 0 ,$$

ή γενικότερα, ένα μη γραμμικό σύστημα εξισώσεων. Ο υπολογισμός της y_1 απαιτεί τη λύση μιας αλγεβρικής εξίσωσης με μέθοδο εύρεσης ρίζας συνάρτησης, ή τη λύση του μη γραμμικού συστήματος.

Γενικά χαρακτηριστικά των αλγόριθμων (3/3)

Αριθμητική ευστάθεια

Η ευστάθεια μιας μεθόδου επίλυσης ΔE αναφέρεται στη συμπεριφορά της διαφοράς μεταξύ της τιμής που υπολογίζει και της πραγματικής τιμής της λύσης.

Αν το σφάλμα μεγαλώνει σε κάθε επανάληψη και τελικά κυριαρχεί της λύσης, η μέθοδος που ακολουθείται είναι ασταθής.

Μαθηματική έκφραση

Μια μέθοδος επίλυσης είναι αριθμητικά ευσταθής αν, για $y(x_i) \neq 0$, τα σχετικά σφάλματα

$$\left| \frac{y_i - y(x_i)}{y(x_i)} \right|$$

είναι φραγμένα (δεν απειρίζονται) όταν $i \to \infty$.

Γενικά χαρακτηριστικά των αλγόριθμων (3/3)

Αριθμητική ευστάθεια

Η ευστάθεια μιας μεθόδου επίλυσης ΔE αναφέρεται στη συμπεριφορά της διαφοράς μεταξύ της τιμής που υπολογίζει και της πραγματικής τιμής της λύσης.

Αν το σφάλμα μεγαλώνει σε κάθε επανάληψη και τελικά κυριαρχεί της λύσης, η μέθοδος που ακολουθείται είναι ασταθής.

Μαθηματική έκφραση

Μια μέθοδος επίλυσης είναι αριθμητικά ευσταθής αν, για $y(x_i) \neq 0$, τα σχετικά σφάλματα

$$\left| \frac{y_i - y(x_i)}{y(x_i)} \right|$$

είναι φραγμένα (δεν απειρίζονται) όταν $i \to \infty$.

Παρατήρηση

Μια μέθοδος implicit είναι πιο χρονοβόρα αλλά ευσταθής σε ΔE που οι explicit μέθοδοι αδυνατούν να επιλύσουν σωστά χωρίς να χρειαστεί να κάνουν το βήμα ιδιαίτερα μικρό (εξισώσεις stiff).

Μέθοδος Σειράς Taylor (1/3)

Ανάπτυγμα Taylor

Μια συνάστηση y(x), συνεχής και παραγωγίσιμη στο διάστημα $[x_0, x_1]$, με γνωστές τιμές αυτής και των παραγώγων της στο x_0 , μπορεί να υπολογιστεί σε κάποιο σημείο x_1 από το ανάπτυγμα Taylor,

$$y(x_1) = y(x_0) + y'(x_0)(x_1 - x_0) + \frac{y''(x_0)}{2!}(x_1 - x_0)^2 + \cdots$$

Μέθοδος Σειράς Taylor (1/3)

Ανάπτυγμα Taylor

Μια συνάρτηση y(x), συνεχής και παραγωγίσιμη στο διάστημα $[x_0,x_1]$, με γνωστές τιμές αυτής και των παραγώγων της στο x_0 , μπορεί να υπολογιστεί σε κάποιο σημείο x_1 από το ανάπτυγμα Taylor,

$$y(x_1) = y(x_0) + y'(x_0)(x_1 - x_0) + \frac{y''(x_0)}{2!}(x_1 - x_0)^2 + \cdots$$

Μεθοδολογία

Από την ΔΕ y' = f(x, y), με $y(x_0) = y_0$, έχουμε

$$y'(x_0) = f(x_0, y(x_0)) = f(x_0, y_0)$$

και

$$\begin{split} y''(x) &=& \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} = f_x + f_y y' \Rightarrow y''(x_0) \text{ givests }, \\ y'''(x) &=& f_{xx} + 2f_{xy} y' + f_{yy} (y')^2 + f_y y'' \Rightarrow y'''(x_0) \text{ givests }, \\ &\vdots &\vdots \end{split}$$

Μέθοδος Σειράς Taylor (2/3)

Ο τύπος υπολογισμού του y_{i+1} με τη μέθοδο σειράς Taylor είναι

$$y_{i+1} = y_i + f(x_i, y_i)(x_{i+1} - x_i) + \frac{(x_{i+1} - x_i)^2}{2!} (f_x + f_y f)|_{x_i} + \frac{(x_{i+1} - x_i)^3}{3!} (f_{xx} + 2f_{xy} f + f_{yy} (f)^2 + f_y (f_x + f_y f))|_{x_i} + \cdots$$

Ο τύπος είναι explicit.

Μέθοδος Σειράς Taylor (2/3)

Ο τύπος υπολογισμού του y_{i+1} με τη μέθοδο σειράς Taylor είναι

$$y_{i+1} = y_i + f(x_i, y_i)(x_{i+1} - x_i) + \frac{(x_{i+1} - x_i)^2}{2!} (f_x + f_y f)|_{x_i} + \frac{(x_{i+1} - x_i)^3}{3!} (f_{xx} + 2f_{xy} f + f_{yy} (f)^2 + f_y (f_x + f_y f))|_{x_i} + \cdots$$

Ο τύπος είναι explicit.

Αν γράψουμε το ανάπτυγμα Taylor της y(x) στο σημείο x_{i+1} και το υπολογίσουμε στο x_i , προκύπτει άλλος τύπος προσδιορισμού του y_{i+1} :

$$y(x_{i}) = y(x_{i+1}) + y'(x_{i+1})(x_{i} - x_{i+1}) + \frac{y''(x_{i+1})}{2!}(x_{i} - x_{i+1})^{2} + \cdots \Rightarrow$$

$$y_{i+1} = y_{i} + (x_{i+1} - x_{i})y'(x_{i+1}) - \frac{y''(x_{i+1})}{2!}(x_{i+1} - x_{i})^{2} + \cdots \Rightarrow$$

$$y_{i+1} = y_{i} + (x_{i+1} - x_{i})f(x_{i+1}, y_{i+1}) - \frac{(x_{i+1} - x_{i})^{2}}{2!}(f_{x} + f_{y}f)|_{x_{i+1}} + \cdots$$

Ο τύπος είναι implicit.

Μέθοδος Σειράς Taylor (3/3) _{Σφάλιια}

Σφάλμα ενός βήματος

Αν κρατήσουμε παραγώγους μέχρι και τάξης m το σφάλμα είναι

$$\varepsilon = \frac{y^{(m+1)}(\xi)}{(m+1)!} (x_{i+1} - x_i)^{m+1} , \qquad \xi \in (x_i, x_{i+1}) .$$

Ολικό Σφάλμα

Σε εκτεταμένο διάστημα [a,b] ο υπολογισμός του y(b) με γνωστό το y(a) γίνεται σταδιακά σε διαστήματα $[x_i,x_{i+1}]$ μήκους h. Το ολικό σφάλμα είναι

$$|E| \leq \frac{(b-a)M}{(m+1)!}h^m \Rightarrow |E| \propto h^m$$
,

όπου $M = \max \left| y^{(m+1)}(\xi_i) \right|$ για κάθε i και $\xi_i \in (x_i, x_{i+1}).$

Μέθοδοι Euler

Μέθοδος forward Euler

Η απλούστερη από τις μεθόδους Taylor. Προκύπτει από τη σειρά Taylor αν αποκόψουμε όρους με δεύτερη ή μεγαλύτερη παράγωγο:

$$y_{i+1} = y_i + (x_{i+1} - x_i)f(x_i, y_i) + \mathcal{O}((x_{i+1} - x_i)^2)$$
.

Η μέθοδος είναι explicit. Αν είναι ευσταθής, υπάρχει άνω όριο για το επιτρεπτό $h=x_{i+1}-x_i$.

Μέθοδοι Euler

Μέθοδος forward Euler

Η απλούστερη από τις μεθόδους Taylor. Προκύπτει από τη σειρά Taylor αν αποκόψουμε όρους με δεύτερη ή μεγαλύτερη παράγωγο:

$$y_{i+1} = y_i + (x_{i+1} - x_i)f(x_i, y_i) + \mathcal{O}((x_{i+1} - x_i)^2)$$
.

Η μέθοδος είναι explicit. Αν είναι ευσταθής, υπάρχει άνω όριο για το επιτρεπτό $h=x_{i+1}-x_i$.

Μέθοδος backward Euler

Προκύπτει από την forward Euler με αλλαγή $x_i\leftrightarrow x_{i+1},\,y_i\leftrightarrow y_{i+1}$ (ή την implicit Taylor με m=1):

$$y_{i+1} = y_i + (x_{i+1} - x_i)f(x_{i+1}, y_{i+1}) + \mathcal{O}((x_{i+1} - x_i)^2)$$
.

Η μέθοδος έχει μεγαλύτερες υπολογιστικές απαιτήσεις από την forward Euler όμως είναι ευσταθής με πολύ χαλαρούς περιορισμούς για το επιτρεπτό h.

Μέθοδοι Euler

Μέθοδος forward Euler

Η απλούστερη από τις μεθόδους Taylor. Προκύπτει από τη σειρά Taylor αν αποκόψουμε όρους με δεύτερη ή μεγαλύτερη παράγωγο:

$$y_{i+1} = y_i + (x_{i+1} - x_i)f(x_i, y_i) + \mathcal{O}((x_{i+1} - x_i)^2)$$
.

Η μέθοδος είναι explicit. Αν είναι ευσταθής, υπάρχει άνω όριο για το επιτρεπτό $h=x_{i+1}-x_i$.

Μέθοδος backward Euler

Προκύπτει από την forward Euler με αλλαγή $x_i\leftrightarrow x_{i+1},\,y_i\leftrightarrow y_{i+1}$ (ή την implicit Taylor με m=1):

$$y_{i+1} = y_i + (x_{i+1} - x_i)f(x_{i+1}, y_{i+1}) + \mathcal{O}((x_{i+1} - x_i)^2)$$
.

Η μέθοδος έχει μεγαλύτερες υπολογιστικές απαιτήσεις από την forward Euler όμως είναι ευσταθής με πολύ χαλαρούς περιορισμούς για το επιτρεπτό h.

Ολικό σφάλμα

Σε επαναλαμβανόμενη εφαρμογή σε διαστήματα μήκους h οι μέθοδοι έχουν ολικό σφάλμα $\propto h$.

Μέθοδος Crank–Nicolson (1/2)

Οι δύο τύποι που είδαμε, forward και backward Euler, είναι

$$y_{i+1} = y_i + (x_{i+1} - x_i)f(x_i, y_i) + \mathcal{O}((x_{i+1} - x_i)^2),$$

$$y_{i+1} = y_i + (x_{i+1} - x_i)f(x_{i+1}, y_{i+1}) + \mathcal{O}((x_{i+1} - x_i)^2).$$

Το ημιάθροισμά τους είναι άλλος ένας τύπος implicit, πιο ακριβής:

$$y_{i+1} = y_i + \frac{x_{i+1} - x_i}{2} (f(x_i, y_i) + f(x_{i+1}, y_{i+1})) + \mathcal{O}((x_{i+1} - x_i)^3) .$$

Προσέξτε το τοπικό σφάλμα: με ακριβή μαθηματική αντιμετώπιση, προκύπτει ο συντελεστής του αθροίσματος των όρων που είναι ανάλογοι του $(x_{i+1}-x_i)^2$ είναι και αυτός ανάλογος του $(x_{i+1}-x_i)$.

Mέθοδος Crank–Nicolson (2/2)

Παρατηρήστε ότι
 η ΔΕ y' = f(x,y), $y(x_0) = y_0$, μπορεί να λυθεί με ολοκλήρωση:

$$y' = f(x, y) \quad \Rightarrow \quad dy = f(x, y) \, dx \Rightarrow \int_{y_i}^{y_{i+1}} \, dy = \int_{x_i}^{x_{i+1}} f(x, y) \, dx$$
$$\Rightarrow \quad y_{i+1} - y_i = \int_{x_i}^{x_{i+1}} f(x, y) \, dx .$$

Ας εφαρμόσουμε τον κανόνα τραπεζίου για τον υπολογισμό του ολοκληρώματος:

$$y_{i+1} \approx y_i + \frac{x_{i+1} - x_i}{2} (f(x_i, y_i) + f(x_{i+1}, y_{i+1}))$$
.

Παρατηρήστε ότι καταλήξαμε στο ημιάθροισμα των τύπων Euler, τον τύπο της μεθόδου Crank-Nicolson.

Το τοπικό σφάλμα είναι αυτό που προβλέπεται από τη μέθοδο τραπεζίου, δηλαδή ανάλογο του h^3 . Το ολικό σφάλμα μετά από n επαναλήψεις είναι ανάλογο του h^2 .

Μέθοδοι Runge-Kutta (1/3)

Οι μέθοδοι της οικογένειας Runge–Kutta (RK) επιλύουν αριθμητικά τη ΔE προσεγγίζοντας το αποτέλεσμα τής σειράς Taylor με γραμμικό συνδυασμό s τιμών της συνάρτησης f(x,y) υπολογισμένων σε διάφορα σημεία.

Γενική μορφή explicit RK με s στάδια

 $\text{και } h = x_{i+1} - x_i.$

$$y_{i+1} = y_i + \sum_{j=1}^s b_j k_j, \ \mu\epsilon$$

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf(x_i + c_2 h, y_i + a_{21} k_1)$$

$$k_3 = hf(x_i + c_3 h, y_i + a_{31} k_1 + a_{32} k_2)$$

$$\vdots \qquad \vdots$$

$$k_s = hf(x_i + c_s h, y_i + a_{s1} k_1 + a_{s2} k_2 + \dots + a_{s,s-1} k_{s-1}),$$

Μέθοδοι Runge-Kutta (2/3)

Γενική μορφή implicit RK με s στάδια

$$\begin{array}{lcl} y_{i+1} & = & y_i + \displaystyle \sum_{j=1}^s b_j k_j \;,\; \text{ } \mu\epsilon \\ \\ k_1 & = & hf(x_i + c_1 h, y_i + a_{11} k_1 + a_{12} k_2 + \cdots + a_{1s} k_s) \\ k_2 & = & hf(x_i + c_2 h, y_i + a_{21} k_1 + a_{22} k_2 + \cdots + a_{2s} k_s) \\ k_3 & = & hf(x_i + c_3 h, y_i + a_{31} k_1 + a_{32} k_2 + \cdots + a_{3s} k_s) \\ \vdots & \vdots & \vdots \\ k_s & = & hf(x_i + c_s h, y_i + a_{s1} k_1 + a_{s2} k_2 + \cdots + a_{ss} k_s) \;, \end{array}$$

ка
$$h = x_{i+1} - x_i$$
.

Μέθοδοι Runge-Kutta (3/3)

Συντελεστές

- Τα a_{ij} , b_i , c_i είναι συγκεκριμένοι αριθμοί για κάθε μέθοδο.
- Οι συντελεστές a_{ii} αποτελούν τα στοιχεία του πίνακα Runge-Kutta.
- Τα b_i λέγονται βάρη.
- Τα c_i λέγονται κόμβοι.
- Οι τιμές τους για μια μέθοδο RK τάξης p προσδιορίζονται, αν και όχι μονοσήμαντα, από την απαίτηση η μέθοδος RK να υπολογίζει τιμή για το y_{i+1} που να διαφέρει κατά ένα όρο $\mathcal{O}(h^{p+1})$, το πολύ, από την τιμή που υπολογίζει η μέθοδος σειράς Taylor κρατώντας μέχρι και την παράγωγο τάξης p.

Παραδείγματα explicit μεθόδων Runge-Kutta (1/4)

Μέθοδος Heun

Η κλασική explicit μέθοδος Runge–Kutta δεύτεοης τάξης ή μέθοδος Heun, έχει εξισώσεις

$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2),$$

 $k_1 = hf(x_i, y_i),$
 $k_2 = hf(x_i + h, y_i + k_1).$

Το ολικό σφάλμα ανάλογο του h^2 . Παρατηρήστε ότι γράφεται ως εξής

$$y_{i+1} = y_i + \frac{h}{2}(f(x_i, y_i) + f(x_i + h, y_i + hf(x_i, y_i)))$$
.

Μοιάζει με τη μέθοδο Crank-Nicolson (τραπεζίου),

$$y_{i+1} \approx y_i + \frac{h}{2}(f(x_i, y_i) + f(x_{i+1}, y_{i+1}))$$
,

υπολογίζει όμως το y_{i+1} στο δεξί μέλος με τη μέθοδο forward Euler ώστε να είναι explicit.

Παραδείγματα explicit μεθόδων Runge-Kutta (2/4)

Μέθοδος Ralston

Ένα άλλο σύνολο συντελεστών δίνει τη μέθοδο Ralston, πάλι Runge–Kutta δεύτερης τάξης:

$$y_{i+1} = y_i + \frac{1}{4}(k_1 + 3k_2),$$

 $k_1 = hf(x_i, y_i),$
 $k_2 = hf(x_i + 2h/3, y_i + 2k_1/3)$

Το ολικό σφάλμα και αυτής της μεθόδου είναι ανάλογο του h^2 . Η Ralston έχει μικρότερο συντελεστή σε σχέση με την Heun.

Παραδείγματα explicit μεθόδων Runge-Kutta (3/4)

RK4

Η κλασική explicit μέθοδος Runge–Kutta τέταςτης τάξης (RK4) έχει εξισώσεις

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) ,$$

$$k_1 = hf(x_i, y_i) ,$$

$$k_2 = hf(x_i + h/2, y_i + k_1/2) ,$$

$$k_3 = hf(x_i + h/2, y_i + k_2/2) ,$$

$$k_4 = hf(x_i + h, y_i + k_3) .$$

Το τοπικό σφάλμα είναι ανάλογο του h^5 και επομένως το ολικό είναι ανάλογο του h^4 .

Παραδείγματα explicit μεθόδων Runge–Kutta (4/4)

RK3/8

Μια τροποποίηση της RK4, πάλι μέθοδος τέταρτης τάξης, η Runge–Kutta $^3/8$, είναι η ακόλουθη:

$$y_{i+1} = y_i + \frac{1}{8}(k_1 + 3k_2 + 3k_3 + k_4),$$

$$k_1 = hf(x_i, y_i),$$

$$k_2 = hf(x_i + h/3, y_i + k_1/3),$$

$$k_3 = hf(x_i + 2h/3, y_i - k_1/3 + k_2),$$

$$k_4 = hf(x_i + h, y_i + k_1 - k_2 + k_3).$$

Το τοπικό σφάλμα και σε αυτή είναι ανάλογο του h^5 και επομένως το ολικό είναι ανάλογο του h^4 . Η μέθοδος RK^3/s έχει μικρότερο συντελεστή από την κλασική RK4.

Butcher tableau (1/2)

Οι explicit μέθοδοι Runge–Kutta κωδικοποιούνται γράφοντας τους συντελεστές a_{ii}, b_i, c_i στον ακόλουθο πίνακα

Ο πίνακας αυτός λέγεται Butcher tableau.

Butcher tableau (2/2)

Για τις implicit μεθόδους Runge-Kutta το Butcher tableau έχει τη μορφή

Παρατηρήστε ότι στις μεθόδους που είναι explicit ο πίνακας των συντελεστών a_{ij} έχει μη μηδενικά στοιχεία μόνο κάτω από τη διαγώνιο ενώ στις implicit είναι πλήρης ή τουλάχιστον έχει μη μηδενική διαγώνιο.

Παραδείγματα Butcher tableau (1/2)

Η κλασική explicit RK4, με εξισώσεις

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) ,$$

$$k_1 = hf(x_i, y_i) ,$$

$$k_2 = hf(x_i + h/2, y_i + k_1/2) ,$$

$$k_3 = hf(x_i + h/2, y_i + k_2/2) ,$$

$$k_4 = hf(x_i + h, y_i + k_3) ,$$

έχει το ακόλουθο Butcher tableau:

Παραδείγματα Butcher tableau (2/2)

• Η μέθοδος Crank-Nicolson έχει εξισώσεις

$$y_1 = y_0 + (k_1/2 + k_2/2),$$

 $k_1 = hf(x_0, y_0)$
 $k_2 = hf(x_0 + h, y_0 + k_1/2 + k_2/2)$

και Butcher tableau το

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & \frac{1}{2} & \frac{1}{2} \\
\hline
& \frac{1}{2} & \frac{1}{2}
\end{array}.$$

• Η μέθοδος forward Euler έχει εξισώσεις

$$y_1 = y_0 + k_1,$$

 $k_1 = hf(x_0, y_0)$

και Butcher tableau το

$$\begin{array}{c|c} 0 & 0 \\ \hline & 1 \end{array}$$

Ευστάθεια μεθόδων Runge-Kutta

Συνάρτηση ευστάθειας

Σε κάθε διάστημα $[x_i, x_{i+1}]$ θέτουμε

$$z = hf_y(x_i, y_i) .$$

Συνάςτηση ευστάθειας μιας μεθόδου RK είναι η μιγαδική συνάςτηση μιγαδικής μεταβλητής

$$R(z) = \frac{\det(I - zA + ze \cdot b^{T})}{\det(I - zA)}$$

με A, b πίνακες διάστασης $s \times s$ και s αντίστοιχα, με στοιχεία τους συντελεστές a_{ij} , b_i μιας μεθόδου RK s σταδίων και e το διάνυσμα με την τιμή 1 σε όλα τα στοιχεία του.

Περιοχή ευστάθειας

Τα σημεία z του μιγαδικού επιπέδου στα οποία ισχύει $|R(z)| \leq 1$ αποτελούν την περιοχή ευστάθειας της μεθόδου.

Παράδειγμα διερεύνησης ευστάθειας

Forward Euler

Η μέθοδος έχει συνάςτηση ευστάθειας την R(z)=1+z. Η πεςιοχή ευστάθειας της είναι τα σημεία $z\equiv hf_y(x_i,y_i)$ που ικανοποιούν τη σχέση $|1+z|\leq 1$. Αν το z είναι πραγματικό, η μέθοδος είναι ευσταθής για $-2\leq z\leq 0$.

Παράδειγμα διερεύνησης ευστάθειας

Forward Euler

Η μέθοδος έχει συνάςτηση ευστάθειας την R(z)=1+z. Η περιοχή ευστάθειας της είναι τα σημεία $z\equiv hf_y(x_i,y_i)$ που ικανοποιούν τη σχέση $|1+z|\leq 1$. Αν το z είναι πραγματικό, η μέθοδος είναι ευσταθής για $-2\leq z\leq 0$.

Backward Euler

Η μέθοδος έχει συνάςτηση ευστάθειας την R(z)=1/(1-z). Η πεςιοχή ευστάθειας της είναι τα σημεία $z\equiv hf_y(x_i,y_i)$ που ικανοποιούν τη σχέση $|1-z|\geq 1$. Αν το z είναι πραγματικό, η μέθοδος είναι ευσταθής για $z\leq 0$ ή $z\geq 2$.

Παράδειγμα διερεύνησης ευστάθειας

Forward Euler

Η μέθοδος έχει συνάςτηση ευστάθειας την R(z)=1+z. Η περιοχή ευστάθειας της είναι τα σημεία $z\equiv hf_y(x_i,y_i)$ που ικανοποιούν τη σχέση $|1+z|\leq 1$. Αν το z είναι πραγματικό, η μέθοδος είναι ευσταθής για $-2\leq z\leq 0$.

Backward Euler

Η μέθοδος έχει συνάρτηση ευστάθειας την R(z)=1/(1-z). Η περιοχή ευστάθειας της είναι τα σημεία $z\equiv hf_y(x_i,y_i)$ που ικανοποιούν τη σχέση $|1-z|\geq 1$. Αν το z είναι πραγματικό, η μέθοδος είναι ευσταθής για $z\leq 0$ ή $z\geq 2$.

Παράδειγμα

Έστω n ΔΕ $y' = 50(\cos x - y)$ με y(0) = 1 και ζητούμε το y(2). Έχουμε $z = hf_y(x_i, y_i) = -50h$ και h > 0.

- H forward Euler είναι ευσταθής αν $-2 \le -50h \le 0 \Rightarrow h \le 0.04$.
- Η backward Euler είναι ευσταθής για κάθε h αφού z=-50h<0.

Σε ποια συμπεράσματα θα καταλήγαμε αν ζητούσαμε το y(-1);

Επίλυση συστήματος διαφορικών εξισώσεων 1ης τάξης

Έστω ότι έχουμε n συναρτήσεις y_j με $j=1,\ldots,n$, που εξαρτώνται από μία ανεξάρτητη μεταβλητή x και ικανοποιούν τις σχέσεις

$$y'_1 = f_1(x, y_1, y_2, \dots, y_n),$$

 $y'_2 = f_2(x, y_1, y_2, \dots, y_n),$
 \vdots
 $y'_n = f_n(x, y_1, y_2, \dots, y_n),$

με αρχικές συνθήκες $y_j(a)=y_j^a$. Ζητούμε την τιμή μίας ή περισσότερων από τις y_j στο b.

Όλες οι μέθοδοι που είδαμε για την απλή ΔE μπορούν να εφαρμοστούν και σε σύστημα ΔE .

Προσοχή: Οι εξισώσεις δεν μπορούν να λυθούν ανεξάρτητα, πρέπει να λυθούν όλες μαζί ταυτόχρονα.

Μεθοδολογία

- Επιλέγουμε μία μέθοδο επίλυσης απλής ΔΕ.
- Λαμβάνοντας υπόψη το σφάλμα της και την περιοχή ευστάθειας επιλέγουμε το αρχικό h.
- Υπολογίζουμε προσεγγιστικά την τιμή όλων των συναρτήσεων στο σημείο $x_1 = a + h$ χρησιμοποιώντας τις (γνωστές) τιμές τους στο $x_0 \equiv a$.
- Επιλέγουμε νέο h ή διατηφούμε το αρχικό και επαναλαμβάνουμε τον υπολογισμό για το επόμενο διάστημα, κοκ.

Προσέξτε ότι για κάθε συνάςτηση θα χρειαστούμε ανεξάςτητες βοηθητικές ποσότητες. Π.χ. για μέθοδο RK s σταδίων θα χρειαστούμε s συντελεστές k για κάθε μία από τις n συναςτήσεις. Πρώτα θα γίνουν οι υπολογισμοί όλων των k_1 , μετά των k_2 , κλπ.

Παράδειγμα

Έστω ότι έχουμε το ακόλουθο σύστημα ΔΕ:

$$y' = f(x, y, z) ,$$

$$z' = g(x, y, z) ,$$

 $\mu \varepsilon \ y(x_0) = y_0, \ z(x_0) = z_0.$

Επιλέγω να εφαρμόσω τη μέθοδο Heun:

$$k_1 = hf(x_i, y_i, z_i) ,$$

$$\ell_1 = hg(x_i, y_i, z_i) ,$$

$$k_2 = hf(x_i + h, y_i + k_1, z_i + \ell_1) ,$$

$$\ell_2 = hg(x_i + h, y_i + k_1, z_i + \ell_1) ,$$

$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2) ,$$

$$z_{i+1} = z_i + \frac{1}{2}(\ell_1 + \ell_2) .$$

Διαφορική εξίσωση ανώτερης τάξης

Μια ΔE τάξης $n \geq 2$ μπορεί να γραφτεί ως ένα σύστημα n ΔE πρώτης τάξης αν κάθε παράγωγο μικρότερη της ανώτερης την αποδώσουμε σε νέα συνάρτηση.

Παράδειγμα

Έχουμε τη ΔΕ

$$y'' = f(x, y, y') ,$$

με $y(x_0) = y_0$ και $y'(x_0) = d_0$.

θέτουμε $z \equiv y'$ οπότε η διαφορική εξίσωση γίνεται

$$z' = f(x, y, z) .$$

Συμπληφώνεται με την εξίσωση y'=z ώστε να δημιουργηθεί το ακόλουθο σύστημα:

$$y' = z,$$

$$z' = f(x, y, z),$$

με $y(x_0) = y_0$ και $z(x_0) = d_0$.

Η λύση του συστήματος υπολογίζει και τη λύση της αρχικής εξίσωσης.