Determinant(行列式)

Let
$$A=[m{a}_1\ \cdots m{a}_n]=egin{bmatrix} \tilde{m{a}}_1^T \ dots \ \tilde{m{a}}_n^T \end{bmatrix}$$
 be an $n{ imes}n$ matrix.

The meaning of determinant of matrix A, $\det A$:

 $|\det A|$ is equal to the volume of n-dimensional hyper parallelohedron(超平行多面体) with n edges a_1,\cdots,a_n or $\tilde{a}_1,\cdots,\tilde{a}_n$.

Example
$$n=2$$
 $A = [\boldsymbol{a}_1 \, \boldsymbol{a}_2]$

$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad \det A = a_{11}a_{22} - a_{21}a_{12}$$

The area:
$$|a_1||a_2|\sin|\theta| = |a_1||a_2||\sin\theta|$$

$$= |a_1||a_2|\sqrt{1-\cos^2\theta}$$

$$= |a_1||a_2|\sqrt{1-\left(\frac{a_1\cdot a_2}{|a_1||a_2|}\right)^2}$$

$$= \sqrt{|a_1|^2|a_2|^2 - (a_1\cdot a_2)^2}$$

$$= \sqrt{(a_{11}^2 + a_{21}^2)(a_{12}^2 + a_{22}^2) - (a_{11}a_{12} + a_{21}a_{22})^2}$$

$$= \sqrt{a_{11}^2a_{12}^2 + a_{11}^2a_{22}^2 + a_{21}^2a_{12}^2 + a_{21}^2a_{22}^2}$$

$$= \sqrt{a_{11}^2a_{22}^2 - 2a_{11}a_{12}a_{21}a_{22} + a_{21}^2a_{12}^2}$$

$$= \sqrt{(a_{11}a_{22} - a_{21}a_{12})^2} = |a_{11}a_{22} - a_{21}a_{12}|$$

When does $\det A=0$ happen?

$$a_2 = 0$$

$$egin{aligned} oldsymbol{a}_1 &= oldsymbol{0} \ oldsymbol{a}_2 &= oldsymbol{0} \end{aligned}$$

$$a_2 = ka_1$$

$$k\boldsymbol{a}_1 - \boldsymbol{a}_2 = \boldsymbol{0}$$

$$0 \cdot \boldsymbol{a}_1 - \boldsymbol{a}_2 = \mathbf{0}$$

$$\boldsymbol{a}_1 + \boldsymbol{a}_2 = \boldsymbol{0}$$

Vectors $\{a_1, a_2\}$ are

Vectors $\{oldsymbol{a}_1,oldsymbol{a}_2\}$ are

Vectors $\{a_1, a_2\}$ are

NOT linearly independent.

NOT linearly independent.

NOT linearly independent.

When does $\det A \neq 0$ happen?

Neither a_1 nor a_2 is a zero vector, and they have different directions.

There is no k such that $a_1 = ka_2$.

Vectors $\{a_1, a_2\}$ ARE linearly independent.

In general

$$\det A \neq 0 \Leftrightarrow \{ m{a}_1, \cdots, m{a}_n \}, \{ \tilde{m{a}}_1, \cdots, \tilde{m{a}}_n \}$$
: linearly independent $\Leftrightarrow \operatorname{rank} A = n$ $\det A = 0 \Leftrightarrow \{ m{a}_1, \cdots, m{a}_n \}, \{ \tilde{m{a}}_1, \cdots, \tilde{m{a}}_n \}$: NOT linearly independent $\Leftrightarrow \operatorname{rank} A < n$

However
$$\det A \left\{ egin{array}{l} = 0 \\ \neq 0 \end{array} \right.$$
 only shows $\mathrm{rank} A \left\{ egin{array}{l} < n \\ = n \end{array} \right.$

Still, unlike the rank, the determinant takes a real value. And therefore it is useful to judge which of the matrices A and B is closer to non-full rank by looking at their determinants, e.g. $\det A = 10$ and $\det B = 0.1$.

Let us consider a linear mapping represented by a 2×2 matrix A: y = Ax.

Suppose that a vector x_1 is mapped to a vector y_1 , and another vector x_2 is mapped to another vector y_2 : $y_1 = Ax_1$, $y_2 = Ax_2$.

These can be expressed using matrices as,

$$\begin{bmatrix} \boldsymbol{y}_1 & \boldsymbol{y}_2 \end{bmatrix} = A \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 \end{bmatrix}.$$

Here, all the matrices $\begin{bmatrix} y_1 & y_2 \end{bmatrix}$, A and $\begin{bmatrix} x_1 & x_2 \end{bmatrix}$ are square.

Then we have,

$$\det \begin{bmatrix} \boldsymbol{y}_1 & \boldsymbol{y}_2 \end{bmatrix} = \det (A \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 \end{bmatrix}) = \det A \cdot \det \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 \end{bmatrix},
\det A = \frac{\det \begin{bmatrix} \boldsymbol{y}_1 & \boldsymbol{y}_2 \end{bmatrix}}{\det \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 \end{bmatrix}}.$$

So, the determinant of a matrix indicates how many times larger the area spanned by the mapped vectors y_1 and y_2 is than the original one.

The relation between the rank and the determinant of a matrix $\operatorname{rank} A$ is the maximum size (the number of rows, the number of columns) of the minors (小行列式) of A whose value are not zero.

An example for intuitive understanding: a diagonal matrix(対角行列)

$$A = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{bmatrix}$$

A minor (whose size is $(n-2)\times(n-2)$)

$$= a_3 \times a_4 \times \dots \times a_n \neq 0$$

$$\square$$

$$\operatorname{rank} A = n - 2$$

$$\begin{bmatrix} A \boldsymbol{x} = \begin{bmatrix} 0 \\ 0 \\ a_3 x_3 \\ \vdots \\ a_n x_n \end{bmatrix}$$
 The matrix A can transfer only $n-2$ elements x_3, \cdots, x_n out of the n elements of the vector \boldsymbol{x} .