

Modern Block Ciphers

- now look at modern block ciphers
- one of the most widely used types of cryptographic algorithms
- provide secrecy /authentication services
- focus on DES (Data Encryption Standard)
- to illustrate block cipher design principles

2

Block vs Stream Ciphers

- block ciphers process messages in blocks, each of which is then en/decrypted
- like a substitution on very big characters
 - 64-bits or more
- stream ciphers process messages a bit or byte at a time when en/decrypting
- many current ciphers are block ciphers
- broader range of applications

Block Cipher Principles

- most symmetric block ciphers are based on a Feistel Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2⁶⁴ entries for a 64-bit block
- instead create from smaller building blocks
- using idea of a product cipher

5

Claude Shannon and Substitution-Permutation Ciphers

- Claude Shannon introduced idea of substitutionpermutation (S-P) networks in 1949 paper
- · form basis of modern block ciphers
- S-P nets are based on the two primitive cryptographic operations seen before:
 - substitution (S-box)
 - permutation (P-box)
- provide confusion & diffusion of message & key

7

Confusion and Diffusion

- cipher needs to completely obscure statistical properties of original message
- a one-time pad does this
- more practically Shannon suggested combining S & P elements to obtain:
 - confusion makes relationship between ciphertext and key as complex as possible
 - diffusion dissipates statistical structure of plaintext over bulk of ciphertext

Feistel Cipher Structure

- Horst Feistel devised the feistel cipher
 - based on concept of invertible product cipher
- partitions input block into two halves
 - process through multiple rounds
 - perform a substitution on left data half
 - based on round function of right half & subkey
 - then have permutation swapping halves
- implements Shannon's S-P net concept

Feistel Cipher Design Elements

- block size
- key size
- number of rounds
- subkey generation algorithm
- round function
- fast software en/decryption
- ease of analysis

Data Encryption Standard (DES)

- most widely used block cipher in world
- adopted in 1977 by NBS (now NIST)
 - as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security
 - Length of the key
 - Design criteria of S-box

13

DES History

- IBM developed Lucifer cipher
 - by team led by Feistel in late 60's
 - used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others
- in 1973 NBS issued request for proposals for a national cipher standard
- IBM submitted their revised Lucifer which was eventually accepted as the DES with key size of 56 bits to fit on a single chip

DES Design Controversy

- DES standard is public
- There was considerable controversy over design
 - in choice of 56-bit key (vs Lucifer 128-bit)
 - and because design criteria were classified
- subsequent events and public analysis show in fact design was appropriate
- use of DES has flourished
 - especially in financial applications
 - still standardised for legacy application use

Initial Permutation IP

- first step of the data computation
- IP reorders the input data bits
- even bits to LH half, odd bits to RH half
- quite regular in structure (easy in h/w)
- example:

```
IP(675a6967 5e5a6b5a) -> (ffb2194d 004df6fb)
```

17

DES Round Structure

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as:

$$L_i = R_{i-1}$$

 $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$

- F takes 32-bit R half and 48-bit subkey:
 - expands R to 48-bits using perm E
 - adds to subkey using XOR
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes using 32-bit perm P

nans	sion				
4113					
	(c) Exp	ansion l	Permuta	tion (E)	
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Substitution Boxes S

- have eight S-boxes which map 6 to 4 bits
- each S-box is actually 4 little 4 bit boxes
 - outer bits 1 & 6 (row bits) select one row of 4
 - inner bits 2-5 (col bits) are substituted
 - result is 8 lots of 4 bits, or 32 bits
- row selection depends on both data & key
 - feature known as autoclaving (autokeying)
- example:
 - S(18 09 12 3d 11 17 38 39) = 5fd25e03

23

Substitution Boxes S 2 11 15 12 13 15 14 12 0 10 11 5 14 7 11 10 4 13 1 5 12 6 3 2 15 15 3 4 6 10 2 8 5 14 12 11 15 24

Pern	nuta	tion					Ī
(d) Pern	nutation	Function	n (P)				
16 - 1 2 19	7 15 8 13	20 23 24 30	21 26 14 6	29 5 32 22	12 18 27		17 10 .9
THE REAL PROPERTY.	- I -	120 TANKS	100000000	100 44 Tel	11.	4	25

DES Key Schedule

- forms subkeys used in each round
 - initial permutation of the key (PC1) which divides 56-bits in two 28-bit halves
 - 16 stages consisting of:
 - rotating each half separately either 1 or 2 places depending on the key rotation schedule K
 - selecting 24-bits from each half & permuting them by PC2 for use in round function F
- note practical use issues in h/w vs s/w

DE	S Ke	y S	che	dul	е			
				(a) Inp	ut Ke	y		
	.1	2	3	4	5	6	7	8
	9	10	- 11	12	13	14	15	lb
	17	18	. 19	20	21	22	23	24
	:25	26	27	28	29	30	31	32
	33	34	35	36	37	38	39	40
	41	42	43	44	45	46	47	48
	49	50	51	52	53	54	55	56
	57	58	59	60	61	62	63	64

DES Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 - ...
 - 16th round with SK1 undoes 1st encrypt round
 - then final FP undoes initial encryption IP
 - thus recovering original data value

29

Example of DES

Plaintext:	02468aceeca86420
Key:	0f1571c947d9e859
Ciphertext:	da02ce3a89ecac3b

Avalanche Effect

- key desirable property of encryption alg
- where a change of one input or key bit results in changing approx half output bits
- making attempts to "home-in" by guessing keys impossible
- DES exhibits strong avalanche

31

Strength of DES - Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
- brute force search looks hard
- recent advances have shown is possible
 - in 1997 on Internet in a few months
 - in 1998 on dedicated h/w (EFF) in a few days
 - in 1999 above combined in 22hrs!
- still must be able to recognize plaintext
- must now consider alternatives to DES

Strength of DES – Analytic Attacks

- now have several analytic attacks on DES
- these utilise some deep structure of the cipher
 - by gathering information about encryptions
 - can eventually recover some/all of the sub-key bits
 - if necessary then exhaustively search for the rest
- generally these are statistical attacks
- include
 - differential cryptanalysis
 - linear cryptanalysis
 - related key attacks

33

Strength of DES - Timing Attacks

- attacks actual implementation of cipher
- use knowledge of consequences of implementation to derive information about some/all subkey bits
- specifically use fact that calculations can take varying times depending on the value of the inputs to it
- particularly problematic on smartcards

Differential Cryptanalysis

- one of the most significant recent (public) advances in cryptanalysis
- known by NSA in 70's cf DES design
- Murphy, Biham & Shamir published in 90's
- powerful method to analyse block ciphers
- used to analyse most current block ciphers with varying degrees of success
- DES reasonably resistant to it, cf Lucifer

35

Differential Cryptanalysis

- a statistical attack against Feistel ciphers
- uses cipher structure not previously used
- design of S-P networks has output of function f influenced by both input & key
- hence cannot trace values back through cipher without knowing value of the key
- differential cryptanalysis compares two related pairs of encryptions

Differential Cryptanalysis Compares Pairs of Encryptions

- with a known difference in the input
- searching for a known difference in output
- when same subkeys are used

```
\Delta m_{i+1} = m_{i+1} \oplus m'_{i+1}
= [m_{i-1} \oplus f(m_i, K_i)] \oplus [m'_{i-1} \oplus f(m'_i, K_i)]
= \Delta m_{i-1} \oplus [f(m_i, K_i) \oplus f(m'_i, K_i)]
```

37

Differential Cryptanalysis

- have some input difference giving some output difference with probability p
- if find instances of some higher probability input / output difference pairs occurring
- can infer subkey that was used in round
- then must iterate process over many rounds (with decreasing probabilities)

Differential Cryptanalysis

- perform attack by repeatedly encrypting plaintext pairs with known input XOR until obtain desired output XOR
- when found
 - if intermediate rounds match required XOR have a right pair
 - if not then have a **wrong pair**, relative ratio is S/N for attack
- can then deduce keys values for the rounds
 - right pairs suggest same key bits
 - wrong pairs give random values
- for large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs
- Biham and Shamir have shown how a 13-round iterated characteristic can break the full 16-round DES

Linear Cryptanalysis

- another recent development
- also a statistical method
- must be iterated over rounds, with decreasing probabilities
- developed by Matsui et al in early 90's
- based on finding linear approximations
- can attack DES with 2⁴³ known plaintexts, easier but still in practise infeasible

41

Linear Cryptanalysis

find linear approximations with prob p != ½

```
P[i_1, i_2, ..., i_a] \oplus C[j_1, j_2, ..., j_b] = K[k_1, k_2, ..., k_c]
```

where i_a, j_b, k_c are bit locations in P,C,K

- gives linear equation for key bits
- get one key bit using max likelihood alg
- using a large number of trial encryptions
- effectiveness given by: |p⁻¹/₂|

Weak key

- DES weak keys produce sixteen identical subkeys
 - With parity bits
 - Alternating ones + zeros (0x0101010101010101)
 - Alternating 'F' + 'E' (0xFEFEFEFEFEFEFE)
 - '0xE0E0E0E0F1F1F1F1'
 - '0x1F1F1F1F0E0E0E0E'
 - Without parity bits
 - all zeros (0x0000000000000000)
 - all ones (0xFFFFFFFFFFFF)
 - '0xE1E1E1E1F0F0F0F0'
 - '0x1E1E1E1E0F0F0F0F'

Semi-weak key

- Produce 2 different keys instead of 16
 - 0x011F011F010E010E and 0x1F011F010E010E01
 - 0x01E001E001F101F1 and 0xE001E001F101F101
 - 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01
 - 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
 - 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
 - 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1

44

DES Design Criteria

- as reported by Coppersmith in [COPP94]
- 7 criteria for S-boxes provide for
 - non-linearity
 - resistance to differential cryptanalysis
 - good confusion
- 3 criteria for permutation P provide for
 - increased diffusion

45

Block Cipher Design

- basic principles still like Feistel's in 1970's
- number of rounds
 - more is better, exhaustive search best attack
- function f:
 - provides "confusion", is nonlinear, avalanche
 - have issues of how S-boxes are selected
- key schedule
 - complex subkey creation, key avalanche

Summary

- have considered:
 - block vs stream ciphers
 - Feistel cipher design & structure
 - DES
 - details
 - strength
 - Differential & Linear Cryptanalysis
 - block cipher design principles