#ref #hw #study

1 | Prep. Time.

1.1 | Quiz review

- · wrong list:
 - def of span (verb)
 - def of a field
 - def of a direct sum
 - sum of subspaces
 - cross product
 - connection between linear independence and systems of equations
 - geometric interpretation of dot product
 - U1 + U2 is a direct sum iff U1 intersect U2 = {0}
 - def vector space
 - elementary matrix
 - solving matrix equations
 - finding inverse
 - find the plane containing
 - prove that a set of vectors is linearly dependent if and only if you can write on of the vectors as a linear combination of the others
 - prove or give a counterexample: v1, v2, v3, v4, basis of V, and U is subspace of V.. del v3 v4 is it a basis?
- · solutions
 - def of span (verb)
 - * if the span of a list of vectors equals V, then the list of vecs spans V
 - · ie. if it contains all the nessasarry info, then it spans.
 - def of a field
 - * a set containing at least two distinct elements 0 and 1, along with the operations + and * as defined on the reals/complexs.
 - · commutativity
 - associativity
 - additive identity
 - multiplicative identity
 - · additive inverse
 - · multiplicative inverse
 - · distributive property
 - def direct sum
 - * sum of subspaces where each element in the resultant subspace can be written uniquely as a sum of the elements in the original subspaces

- sum of subspaces
 - * subspaces containing the set of all possible linear combinations from the union of the original subspaces
- cross product #TODO!
 - * the determinant thingy, or
 - * $|A||B|\sin\theta n$
 - · n is the unit vector orthogonal to vectors A and B
- connect between linear independence and systems of equations -"if we take the coefficients of a system of equations as vectors, then the vectors are linearly independent if the system has one solution, and linearly dependent if the system has either zero or infinite solutions"
- geometric interpretation of dot product
 - * %%projection of one vector onto the other times the magnitude of the vector %%
 - * magnitude of projection of a vector onto another vector times the magnitude of the other vector
 - $\cdot |A||B|\cos\theta$
- def vector space
 - * set V with addition and scalar multiplication such that there is
 - · additive identity
 - additive inverse (no multiplicative inverse!)
 - · commutativity
 - assosiativty
 - · distibutive property
- elementary matrix
 - * identity matrix with one row operation applied

1.2 | Content and knowledge review

Screen Shot 2021-10-11 at 8.49.33 PM.png|1000

1.2.1 | Definitions!

- · Vector space
- Subspace
- Sums
- · Direct sums
- linear independence / dependence
- groups
- fields
- spans
- · basis
- dimension

- linear combination
- · commutativity
- associativity
- distributivity
- elementary matrices
- nonsingular matrices