Flavour Mixing Effects in the Direct Detection of Dark Matter

Anja Beck

Lehrstuhl für Theoretische Physik IV Fakultät Physik Technische Universität Dortmund

1. August 2017

Flavour Mixing Effects in the Direct Detection of Dark Matter

Flavour Mixing

Effects in the

Dunkle Materie

-07-25

Flavour-Mischun

Verwendete

Neue Wechsel

wirkung

Ergebniss

Abbildung: Energieverteilung im Universum (ESA, Planck Colaboration 2013)

Flavour Mixing Effects in the Direct Detection of Dark Matter Einführung

Dunkle Materie

└─Dunkle Materie

Menschen schauen schon immer in den Himmel. Dunkle Materie als Lösung für zu schnelle Galaxien. Großteil dessen was das Universums ausmacht ist unbekannt.

Effects in the Direct Detection of Dark Matter Anja Beck

Flavour Mixing

Direct Detection

Einführung

lavour-1ischun

Verwendeter

Formalismus

Neue Wechselwirkung

F.....l...

Ergebniss

Literatur

 $Abbildung: \ Direct \ Detection: \ Streuung \ eines \ DM-Teilchens \ am \ Atomkern.$

Flavour Mixing Effects in the Direct Detection of Dark

Matter

Einführung

Direct Detection

Direct Detection

Flavour Mixing

Effects in the

Direct Detection

Flavour-

of Dark Matter Anja Beck Die Massen-Eigenzustände sind nicht gleich den

Flavour-Eigenzuständen.

$$\mathcal{L}^{(\mathsf{mass})} = -rac{v}{\sqrt{2}} \left[ar{\mathcal{E}}_L \lambda^{\mathsf{e}} \mathcal{E}_R + ar{\mathcal{D}}_L \lambda^{\mathsf{d}} \mathcal{D}_R + ar{\mathcal{U}}_L \lambda^{\mathsf{u}} \mathcal{U}_R + \mathsf{h.c.}
ight]$$

Teilchen-Multipletts diagonalisiert:

• Massenterme werden durch unitäre Rotation der

$$E_L \rightarrow S_e E_L \qquad E_R \rightarrow R_e E_R$$

Flavour-Mischung

Ursprung

 $\bar{E}_I \lambda^e E_R \rightarrow \bar{E}_I S_e^{\dagger} \lambda^e R_e E_R$

$$ar U_I \gamma^\mu D_I o ar U_I \gamma^\mu S_d^\dagger S_d D_I$$

Flavour Mixing Effects in the Direct Detection of Dark

Flavour-Figurauständen $\mathcal{L}^{(mass)} = -\frac{v}{-m} \left[\tilde{E}_L \lambda^a E_R + \tilde{D}_L \lambda^d D_R + \tilde{U}_L \lambda^u U_R + h.c. \right]$ Massenterme werden durch unitäre Rotation der

Flavour-Mischung

Teilchen-Multipletts diagonalisiert: $E_L \rightarrow S_a E_L$ $E_R \rightarrow R_a E_R$ $\tilde{E}_1 \lambda^a E_D \rightarrow \tilde{E}_1 S^{\dagger} \lambda^a R_a E_D$

Die Massen-Eigenzustände sind nicht gleich den

· Dadurch verändert sich der Strom $\bar{U}_i \gamma^{\mu} D_i \rightarrow \bar{U}_i \gamma^{\mu} S_i^{\dagger} S_i D_i$

Flavour Mixing Effects in the Direct Detection of Dark Matter		Formalismus Operatoren	017 07 25
Anja Beck Einführung	Unchirale Operatoren:		
Flavour- Mischung Verwendeter Formalismus	$egin{aligned} R_{1,q} &= (ar{\chi}\gamma_{\mu}\chi)(ar{q}\gamma^{\mu}q) \ R_{2,q} &= (ar{\chi}\gamma_{\mu}\gamma_5\chi)(ar{q}\gamma^{\mu}q) \end{aligned}$	$egin{aligned} R_{3,q} &= (ar{\chi}\gamma_{\mu}\chi)(ar{q}\gamma^{\mu}\gamma_{5}q) \ R_{4,q} &= (ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{q}\gamma^{\mu}\gamma_{5}q) \end{aligned}$	
Neue Wechsel- wirkung Ergebnisse Literatur	Chirale Operatoren: $Q_{1ij}=(ar{\chi}\gamma_{\mu} ilde{ au}^3\chi)(ar{Q}_{L}^{i}\gamma^{\mu} au^3Q_{L}^{j})$	$Q_{5ij} = (ar{\chi} \gamma_{\mu} \gamma_{5} ilde{ au}^{3} \chi) (ar{Q}_{L}^{i} \gamma^{\mu} au^{3} Q_{L}^{j})$	
	$egin{aligned} Q_{2ij} &= (ar{\chi}\gamma_{\mu}\chi)(ar{Q}_{L}^i\gamma^{\mu}Q_{L}^j) \ Q_{3ij} &= (ar{\chi}\gamma_{\mu}\chi)(ar{U}_{R}^i\gamma^{\mu}U_{R}^j) \end{aligned}$	$egin{aligned} Q_{6ij} &= (ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{j}) \ Q_{7ij} &= (ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{U}_{R}^{i}\gamma^{\mu}U_{R}^{j}) \end{aligned}$	
	$Q_{4ij}=(ar{\chi}\gamma_{\mu}\chi)(ar{D}_R^i\gamma^{\mu}D_R^j)$ Ziel: Drücke die Koeffizienten d	$Q_{8ij}=(ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{D}_{R}^{i}\gamma^{\mu}D_{R}^{j})$ Her unchiralen Operatoren in	
6/18	Abhängigkeit der Koeffizienten der chiralen Operatoren aus.		

-Verwendeter Formalismus Chirale Operatoren: $Q_{k\bar{q}} = (\bar{\chi}\gamma_{\mu}\bar{\tau}^3\chi)(\bar{Q}_L^i\gamma^{\mu}\tau^3Q_L^i)$ $Q_{k\bar{q}} = (\bar{\chi}\gamma_{\mu}\gamma_5\bar{\tau}^3\chi)(\bar{Q}_L^i\gamma^{\mu}\tau^3Q_L^i)$ $Q_{2ij} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{Q}_L^i\gamma^{\mu}Q_L^j)$ $Q_{1ij} = (\tilde{\chi} \gamma_{\mu} \chi)(\tilde{U}_{R}^{i} \gamma^{\mu} U_{R}^{j})$ -Formalismus $Q_{4j} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{D}_{R}^{j}\gamma^{\mu}D_{R}^{j})$ Ziel: Drücke die Koeffizienten der unchiralen Operatoren in Abhängigkeit der Koeffizienten der chiralen Operatoren aus.

Flavour Mixing Effects in the Direct Detection of Dark

Matter

Formalismus

 $R_{3,q} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{q}\gamma^{\mu}\gamma_5 q)$

 $R_{4,q} = (\tilde{\chi}\gamma_{\mu}\gamma_5\chi)(\tilde{q}\gamma^{\mu}\gamma_5q)$

 $Q_{6ij} = (\tilde{\chi}\gamma_{\mu}\gamma_{5}\chi)(\tilde{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{j})$

 $Q_{7ij} = (\tilde{\chi}\gamma_{\mu}\gamma_{5}\chi)(\tilde{U}_{R}^{i}\gamma^{\mu}U_{R}^{j})$

 $Q_{k\bar{j}} = (\bar{\chi}\gamma_{\mu}\gamma_5\chi)(\bar{D}_R^i\gamma^{\mu}D_R^j)$

Unchirale Operatoren:

 $R_{1,q} = (\tilde{\chi}\gamma_{\mu}\chi)(\tilde{q}\gamma^{\mu}q)$

 $R_{2,q} = (\bar{\chi}\gamma_{\mu}\gamma_5\chi)(\bar{q}\gamma^{\mu}q)$

Formalismus

Verwendeter

Einfügen der CKM-Matrix:

Formalismus Rechnung: Schritt 2

Identifikation der nicht-chiralen Operatoren:

und rechtshändigen Projektoren:

Umschreiben der chiralen Teilchen-Multipletts mit den links-

$$\begin{split} \bar{Q}_L^i \gamma^\mu Q_L^j &= \frac{1}{2} (\bar{u} \gamma^\mu u \delta_{iu} \delta_{ij} + V_{id}^* V_{jd} \bar{d} \gamma^\mu d + V_{is}^* V_{js} \bar{s} \gamma^\mu s) \\ &- \frac{1}{2} (\bar{u} \gamma^\mu \gamma_5 u \delta_{iu} \delta_{ij} + V_{id}^* V_{jd} \bar{d} \gamma^\mu \gamma_5 d + V_{is}^* V_{js} \bar{s} \gamma^\mu \gamma_5 s) \end{split}$$

 $Q_{2ij} = rac{1}{2}(R_{1u}\delta_{iu}\delta_{ij} + V_{id}^*V_{jd}R_{1d} + V_{is}^*V_{js}R_{1s}) \ - rac{1}{2}(R_{3u}\delta_{iu}\delta_{ij} + V_{id}^*V_{jd}R_{3d} + V_{is}^*V_{js}R_{3s})$

Flavour Mixing

Effects in the

Verwendeter Formalismus

-Verwendeter Formalismus

Matter

-Formalismus

Flavour Mixing Effects in the Direct Detection of Dark

Imschreiben der chiralen Teilchen, Multipletts mit den lieb

 $\tilde{Q}_i^i \gamma^\mu Q_i^i = \frac{1}{2} (\tilde{u} \gamma^\mu u \delta_{ik} \delta_{il} + V_{il}^* V_{kl} \tilde{d} \gamma^\mu d + V_{il}^* V_{kl} \tilde{s} \gamma^\mu s)$ $-\frac{1}{2}(\bar{u}\gamma^{\mu}\gamma_{5}u\delta_{ia}\delta_{i} + V_{id}^{*}V_{id}\bar{d}\gamma^{\mu}\gamma_{5}d + V_{ia}^{*}V_{id}\bar{s}\gamma^{\mu}\gamma_{5}s)$

> $Q_{2ij} = \frac{1}{2} (R_{1a}\delta_{ia}\delta_{ij} + V_{id}^*V_{jd}R_{1d} + V_{ic}^*V_{jc}R_{1c})$ $\frac{1}{\pi}(R_{ba}\delta_{ia}\delta_{ii} + V_{ca}^*V_{id}R_{bd} + V_{c}^*V_{ic}R_{bc})$

Flavour Mixing Effects in the Direct Detection of Dark

Flavour Mixing

Flavour Mixing Neue Wechselwirkung Effects in the Direct Detection of Dark Matter Anja Beck • Neue U(1)-Symmetrie mit Eichboson Z' [1] • Unter der neuen Wechselwirkung geladene Teilchen: Neue Wechsel-• Leptonen der zweiten und dritten Generation wirkung Neue Quarks • Dunkle Materie [2] • Ein paar Worte zu $L_{\mu} - L_{\tau}$.

Neue Wechselwirkung

Neue Wechselwirkung

Kopplung der neuen Quarks an die SM-Quarks

Abbildung: Wechselwirkung von SM-Quarks mit dem Eichboson Z' (aus [1])

Flavour Mixing Effects in the Direct Detection of Dark

Natter

Neue Wechselwirkung

Neue Wechselwirkung

Neue Wechselwirkung

Direct Detection of Dark Matter Anja Beck

Flavour Mixing

Effects in the

Neue Wechselwirkung

Loop-Diagramm zur Streuung am Atomkern

Neue Wechsel-

wirkung

Flavour Mixing Effects in the Direct Detection of Dark 2017-07-25 Matter Neue Wechselwirkung -Neue Wechselwirkung

Flavour Mixing

Direct Detection mit Flavour-Mischung

Annahmen: DM koppelt ausschließlich an Z'. Von den Quarks

s, b

Anja Beck

Ergebnisse

wechselwirken nur s, b mit Z'.

Flavour Mixing Effects in the Direct Detection of Dark Matter -Ergebnisse -Direct Detection mit Flavour-Mischung

-07-25

Direct Detection mit Flavour-Mischung

b, s

Schranken aus dem B-Zerfall 1

 $C_{2bs} = 8 \cdot 10^{-9} (1+i)$

Real- und Imaginärteil variabel

Ergebnisse

Abbildung: $q_I = q_\chi = 1$

-Schranken aus dem B-Zerfall 1

Schranken aus dem B-Zerfall 1

Schranken aus dem B-Zerfall 1

Real- und Imaginärteil variabel

Ergebnisse

Abbildung: $q_I = 1, q_\chi = 1/6$

Schranken aus dem B-Zerfall 1

-Schranken aus dem B-Zerfall 1

Schranken aus dem B-Zerfall 2

 $- Im(C_{2bs}) = 8 \cdot 10^{-8}$

 $Im(C_{2bs}) = 8 \cdot 10^{-9}$

Fester Realteil, variabler Imaginärteil

10-18

Ergebnisse

Abbildung: $q_I = q_\chi = 1$

-Schranken aus dem B-Zerfall 2

Schranken aus dem B-Zerfall 2

Flavour Mixing Effects in the Direct Detection of Dark Matter Anja Beck

Schranken aus dem *B*-Zerfall 2

Fester Realteil, variabler Imaginärteil

Anja Bed

Einführun

lavour-Mischung

Verwendeter

Name Western

Neue Wechselwirkung

Ergebnisse

Ergebnisse

Abbildung: $q_I = 1, q_\chi = 1/6$

Schranken aus dem B-Zerfall 2

Schranken aus der Relic Density

Anja Beck

Einführun

Flavour-Mischun

Verwendeter

Neue Wechsel-

WIIKUIIG

Ergebnisse

Abbildung: $q_I = q_\chi = 1$

Schranken aus der Relic Density

Ergebnisse

Abbildung: $q_I = 1, q_{\chi} = 1/6$

Schranken aus der Relic Density

Bibliographie

Flavour Mixing Effects in the Direct Detection of Dark

W. Altmannshofer, S. Gori, M. Pospelov und I. Yavin Dressing Lu - Lr in Color. 2016. arXiv: 1403.1269v3

L. - L. Model 2017, arXiv: 1609.04026v2 [hep-ph]

-Bibliographie