Softmax Function has a numerical problem: e^{z_i} could be very big

$$\hat{y} = \begin{bmatrix} \frac{e^{z_1}}{\sum_{k=1}^{K} e^{z_k}} \\ \vdots \\ \frac{e^{z_i}}{\sum_{k=1}^{K} e^{z_k}} \end{bmatrix}$$
 Let's change z_i
$$z_i \leftarrow z_i + u$$
 for every i
$$\vdots$$

$$\frac{e^{z_K}}{\sum_{k=1}^{K} e^{z_k}}$$

$$z_i \leftarrow z_i + u$$
 for every i

Then, each element of \hat{y} will change or not?

$$\frac{e^{z_i+u}}{\sum_{k=1}^K e^{z_k+u}} = \frac{e^{z_i} e^u}{\sum_{k=1}^K e^{z_k} e^u} = \frac{e^{z_i}}{\sum_{k=1}^K e^{z_k}}$$

Thus, each element of \hat{y} is NOT changed after $z_i \leftarrow z_i + u$ for every i

 e^{z_i} could be very big e^{100} , it will cause numerical problem (overflow)

Solution: $u = -\max\{z_1, ..., z_K\}$

e.g. e^{100} and u = -99, then $e^{100+u} = e^1$

Softmax function: a uniqueness problem

$$\hat{y} = \begin{bmatrix} \frac{e^{z_1}}{\sum_{k=1}^{K} e^{z_k}} \\ \vdots \\ \frac{e^{z_i}}{\sum_{k=1}^{K} e^{z_k}} \\ \vdots \\ \frac{e^{z_K}}{\sum_{k=1}^{K} e^{z_k}} \end{bmatrix}$$
Let's change w_i

$$w_i \leftarrow w_i + v$$

$$z_i \leftarrow z_i + u$$

$$u = v^T x$$
for every i

 $z_i = w_i^T x + b_i$

Then, each element of
$$\hat{y}$$
 will change or not?
$$\frac{e^{z_i+u}}{\sum_{k=1}^K e^{z_k+u}} = \frac{e^{z_i} e^u}{\sum_{k=1}^K e^{z_k} e^u} = \frac{e^{z_i}}{\sum_{k=1}^K e^{z_k}}$$
Thus, each element of \hat{y} is NOT changed after $w_i \leftarrow w_i + v$ for every i

So, if w_i is an optimal parameter, then $w_i + v$ is also an optimal parameter.

The optimal parameters are not unique... (the same conclusion for b_i)

Softmax function: a uniqueness problem

The optimal parameters are not unique...

Solution: "remove" z_1 , w_1 and b_1

$$\hat{y} = \begin{bmatrix} \frac{e^{z_1}}{\sum_{k=1}^{K} e^{z_k}} \\ \vdots \\ e^{z_i} \\ \frac{\sum_{k=1}^{K} e^{z_k}}{\sum_{k=1}^{K} e^{z_k}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sum_{k=1}^{K} e^{z_k - z_1}} \\ \vdots \\ \frac{e^{z_i - z_1}}{\sum_{k=1}^{K} e^{z_k - z_1}} \\ \vdots \\ \frac{e^{z_K - z_1}}{\sum_{k=1}^{K} e^{z_k - z_1}} \end{bmatrix}$$

rename $z_k - z_1$ as z_k for k > 1