

обучение по математика, физика, български и английски език, компютър

🕿: 897 99 54 вечер, г-н Станев: Web страница: www.solemabg.com : E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

Триъгълници

І. Свойства на елементите в триъгълник:

- 1) Височините на всеки триъгълник се пресичат в една точка, която се нарича ортоцентър.
- 2) Медианите на всеки триъгълник се пресичат в една точка, която се нарича медицентър. Тя разделя медианата в отношение 2:1, считано от върха на триъгълника.
- 3) Ъглополовящите на всеки триъгълник се пресичат в една точка, която е център на вписаната в триъгълника окръжност.
- 4) Симетралите на всеки триъгълник се пресичат в една точка, която е център на описаната около триъгълника окръжност.

Бележка:

И четирите забележителни точки, при остроъгълен триъгълник са вътрешни.

- 5) Ако $\gamma = 90^{0} \Leftrightarrow a^{2} + b^{2} = c^{2}$ (Питагоровата теорема).
- 6) Ako $\gamma > 90^0 \Leftrightarrow a^2 + b^2 < c^2$
- 7) Ако $\gamma < 90^{0} \Leftrightarrow a^{2} + b^{2} > c^{2}$
- 8) Формула на Стюарт За всяка точка L (Фиг. 1) от страната ВС на триъ-

гълник е в сила следната формула $AL^2=rac{mb^2+nc^2}{a^2}-mn$, където $\mathsf{BL}=\mathsf{m},\,\mathsf{CL}=\mathsf{n}.$

9) Формули за ъглополовящата: $l_a^2 = bc - \frac{bca^2}{(b+c)^2}$

(подобни формули може да се напишат и за ъглополовящите към другите страни).

- 10) І свойство на ъглополовящата (Фиг.1): Ако

ъглополовяща на даден ъгъл).

- 11) II свойство на ъглополовящата (Фиг.1): $l_a^2 = AC.AB BL.CL$.
- 12) III свойство на ъглополовящите: $l_a = \frac{2bc}{b+c}\cos\frac{\alpha}{2}; l_b = \frac{2ca}{c+a}\cos\frac{\beta}{2}; l_c = \frac{2ab}{a+b}\cos\frac{\gamma}{2}$. 13) Формули за медианите: $4\mathsf{m}_a^2 = 2(\mathsf{b}^2 + \mathsf{c}^2) \mathsf{a}^2$ (подобни формули може да
- се напишат и за медианите към другите страни).

14) Формули за връзка между страна и медиани: $9a^2 = 4(2m_b^2 + 2m_a^2 - m_a^2)$

(подобни формули може да се напишат и за медианите към другите страни).

15) Средна отсечка: Ако М е среда на АС, а N среда на ВС, то средната отсечка MN в \triangle ABC притежава следните свойства: MN||AB и $_{MN} = \frac{1}{2} AB$.

II. Правоъгълен триъгълник с ∢С=90° (фиг.2):

16) Ако ∢А=30°, то
$$a = \frac{1}{2}c$$
.

17) Ако СС₁ медиана, то $CC_1 = \frac{1}{2}c$

c = 2R

18) Ако $CC_1 = h_c$ е височина, а $AC_1 = c_1$ и $BC_1 = c_2$ са проекциите съответно на катетите а и b върху хипотенузата, то

$$a^2 = c.c_2;$$
 $b^2 = c.c_1$ $h_c^2 = c_1.c_2$ $h.c = a.l$

 $a^2=c.c_2;$ $b^2=c.c_1$ $h_c^2=c_1.c_2$ h.c=a.b с 19) Тригонометрични функции: $\sin\alpha=\frac{a}{c};\cos\alpha=\frac{b}{c};tg\alpha=\frac{a}{b};\cot g\alpha=\frac{b}{a}$ 20) Косинусова теорема: $a^2=b^2+c^2-2b.c.\cos\alpha;$ $b^2=a^2+c^2-2a.c.\cos\beta$ и $c^2=a^2+b^2-2a.b.\cos\gamma$.

21) Синусова теорема:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

- 22) Тангенсова теорема: $\frac{a+b}{a-b} = \frac{tg}{tg} \frac{\alpha + \beta}{2}.$
- 23) Теорема за проекциите: a=b.cosy+c.cosβ; b=c.cosα+a.cosy; $c=a.cos\beta+b.cos\alpha$.
 - 24) Молвейдови формули: $\frac{a+b}{c} = \frac{\cos\frac{\alpha-\beta}{2}}{\sin\frac{\gamma}{2}}; \frac{a-b}{c} = \frac{\sin\frac{\alpha-\beta}{2}}{\cos\frac{\gamma}{2}}$

III. Лице на триъгълник:

$$S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c = \frac{1}{2}ab\sin\gamma = \frac{1}{2}bc\sin\alpha = \frac{1}{2}ca\sin\beta$$
25)

26)
$$S = \frac{a^2 \sin \beta \sin \gamma}{2 \sin \alpha} = \frac{b^2 \sin \gamma \sin \alpha}{2 \sin \beta} = \frac{c^2 \sin \alpha \sin \beta}{2 \sin \gamma}.$$

27)
$$S = pr = (p-a)r_a = (p-b)r_b = (p-c)r_c = \frac{abc}{4R}$$
, където $p = \frac{a+b+c}{2}$ е полупе-

риметъра, r – радиуса на вписаната окръжност, r_a , r_b , r_c – радиусите на външно вписаните окръжности; R – радиуса на описаната окръжност.

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

28) Херонова формула: $S = \sqrt{p(p-a)(p-b)(p-c)}$, където р е полупериметъра.

29) Лице на равностранен триъгълник:
$$S = \frac{a^2 \sqrt{3}}{4}$$
, защото $h = \frac{\sqrt{3}}{2}a$.

- 30) Ако един триъгълник е разделен на няколко триъгълници, лицето му е равно на сбора от лицата на тези триъгълници.
- 31) Ако вписаната в произволен ΔABC окръжност допира страната му AB в точка K, като AK=x и BK=y (Фиг. 6), то $S=x.y.\cot g\,\frac{\gamma}{2}$.

IV. Подобни триъгълници:

адрес: гр.София, ж.к. Надежда, бл. 335

32) Теорема на Талес (Фиг. 3): Ако две пресичащи се прави (ОС и ОD) се пресичат от няколко успоредни прави (AB, CD), то отсечките от едната права са пропорционални на съответните отсечки от другата права, т.е. Ако AB||CD, то

$$\frac{OB}{OD} = \frac{OA}{OC} \, \cdot$$

Следствие: Всяка права, успоредна на една от страните в даден триъгълник отсича от другите две страни пропорционални отсечки т.е. Ако MN||AB, то $\frac{CA}{CB} = \frac{CM}{CN} = \frac{MA}{NB}$ (Фиг. 4).

Следствие: Ако
$$\frac{CA}{CB} = \frac{CM}{CN} = \frac{MA}{NB}$$
, то MN//AB. (Фиг. 4)

34) Подобни триъгълници:

Определение: Ако
$$\Delta ABC$$
 – $\Delta A_1B_1C_1$, то

$$\prec$$
A= \prec B= \prec C и $\frac{AB}{A_1B_1}=\frac{BC}{B_1C_1}=\frac{AC}{A_1C_1}=k$, къде-

то k е коефициент на подобие (Фиг. 5)

Признаци за подбие на триъгълници:

Два триъгълника са подобни т.е. $\triangle ABC \sim \triangle A_1B_1C_1$ (Фиг. 5), ако:

I признак: Два ъгъла от единия са съответно равни на два ъгъла от другия, т.е. ≺A=≺A₁ и ≺B=≺B₁;

II признак: Две страни от единия са съответно пропорционални на две страни от другия и ъглите, заключени между тях са равни, т.е. $\frac{AB}{A_1B_1} = \frac{BC}{B_1C_1}$ и ∢В=∢В₁;

III признак: Страните на единия са съответно пропорционални на другия, т.е.

$$\frac{AB}{A_{1}B_{1}} = \frac{BC}{B_{1}C_{1}} = \frac{AC}{A_{1}C_{1}};$$

IV признак: Два правоъгълни триъгълника са подобни, ако катет и хипотенуза от един триъгълник са съответно пропорционални на катет и хипотенуза от друг триъ-

Гълник, т.е.
$$\frac{a}{a_1} = \frac{c}{c_1} \Leftrightarrow \Delta \sim \Delta_1$$

Свойства на подобни триъгълници:

35) Ако
$$\triangle ABC \sim \triangle A_1B_1C_1$$
 (Фиг. 5), то $\frac{AB}{A_1B_1} = \frac{h_c}{h_{c_1}} = \frac{m_c}{m_{c_1}} = \frac{l_c}{l_{c_1}} = \frac{r}{r_1} = \frac{R}{R_1} = \frac{P}{P_1}$ 36) Ако $\triangle ABC \sim \triangle A_1B_1C_1$ (Фиг. 5), то $\frac{S_{\triangle ABC}}{R_1} = \frac{AB^2}{R_1}$.

V. Триъгълник вписан в окръжност или описан около окръжност:

37) Нека произволен \triangle ABC има стани AB=c, BC=a и AC=b, и вписаната в него окръжност допира тези страни съответно в точките K, P, N (Фиг. 6). Ако означим: AK=AN=x, BK=BP=y, CP=CN=z и р — полупериметъра на \triangle ABC, то x=p-a, y=p-b, z=p-c.

37.1) Ако окръжност е вписана в равностранен триъгълник (Фиг. 6), то допирните му точки (т.К, т.Р и т. N) са среди на съответните страни (АВ, ВС и АС).

38) От (37) за радиуса на вписаната в правоъгълен триъгълник ($\angle C=90^0$) окръжност, имаме a+b=c+2r или r=p-c.

39) Права на Ойлер: За всеки произволен триъгълник, ортоцентърът H, медицентърът M и центърът O на описаната окръжност (пресечната точка на симетралите на страните) лежат на една права, като HM = 2MO.

40) Формула на Ойлер (за намиране на разстоянието между центровете на вписаната и описаната окръжност на триъгълник): Ако с d отбележим разстоянието между центровете на вписаната и описаната окръжност на триъгълник, с R – радиуса на описаната окръжност, то $d = \sqrt{R^2 - 2Rr} \ge 0$

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Бележка:

За всеки триъгълник диаметъра на вписаната окръжност е по-малък или равен на радиуса на описаната окръжност. Затова във формулата на Ойлер равенството се получава при равностранен триъгълник (защото тогава центровете на описаната и вписаната окръжност съвпадат).

41) Връзка между радиуса на вписаната в триъгълник окръжност и трите му височини: $\frac{1}{r} = \frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}$.

42) За произволен триъгълник:

адрес: гр.София, ж.к. Надежда, бл. 335

$$r = \frac{a \sin \frac{\beta}{2} \sin \frac{\gamma}{2}}{\cos \frac{\alpha}{2}} = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} = p.tg \frac{\alpha}{2} tg \frac{\beta}{2} tg \frac{\gamma}{2}.$$
 За равнобедрен триъгълник:

$$r = 4R \sin^2 \frac{\alpha}{2} \sin \alpha = 2R(1 - \cos \alpha) \cos \alpha$$

43) За произволен триъгълник: $p = 4R\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}$. За равнобедрен триъ-

ГЪЛНИК:
$$p = 4R \cos^2 \frac{\alpha}{2} \sin \alpha = 2R(1 + \cos \alpha) \sin \alpha$$

44) Теорема на Лайбниц: Нека с М отбележим медицентъра на ДАВС и ако точка Р е произволно избрана в пространството, то имаме изпълнени следните равенства: PA²+PB²+PC²=MA²+MB²+MC²+3PM² или

$$PA^2 + PB^2 + PC^2 = \frac{a^2 + b^2 + c^2}{3} + 3PM^2$$

Следствие 1: Сборът от квадратите на разстоянията на произволна точка от равнината на един триъгълник до трите върха на този триъгълник има най-малка стойност, когато тази точка съвпада с медицентъра.

Следствие 2: Местоположението на точките в равнината на триъгълник, за който сборът от квадратите на разстоянията до трите върха на триъгълника е постоянен, е окръжност с център медицентърът на триъгълника.

Бележка:

Навсякъде в горните формули се използват следните означения: АВ=с, AC=b, BC=a, m_a , m_b , m_c – медиани към съответните страни; l_a , l_b , l_c – ъглополовящи към съответните страни; ha, hb, hc – височини към съответните страни; г - радиуса на вписаната в триъгълник окръжност; R радиус на описаната около триъгълник окръжност; $\angle A = \alpha$, $\angle B = \beta$, $\angle C = \gamma$.

Четириъгълници

I. Произволен четириъгълник:

- 45) Един четириъгълник е вписан в окръжност, когато сборът на два негови срещуположни ъгъла е равен на 180° .
- 46) Центърът на описаната около четириъгълник окръжност лежи на пресечната точка на симетралите му.

Бележка:

Произволен успоредник не може да се впише в окръжност.

- 47) Един четириъгълник е описан около окръжност, когато сборът на две негови срещуположни страни е равен на сбора от другите му две страни;
- 48) Центърът на вписаната в четириъгълник окръжност, лежи на пресечната точка на ъглополовящите на ъглите му.

Бележка:

Произволен успоредник не може да се опише около окръжност.

- 49) Четириъгълникът ABCD е вписан в окръжност, ако е изпълнено равенството OA.OC=OB.OD, където О е пресечната точка на диагоналите му;
- 50) Четириъгълникът ABCD е вписан в окръжност, ако е изпълнено равенството MA.MB=MC.MD, където M е пресечната точка на продълженията на срещуположните му страни AB и CD;
- 51) За всеки четириъгълник ABCD (където AB=a, CD=b, AD=c, BC=d са страните, а $AC=d_1$, $BD=d_2$ – диагоналите му) е изпълнено следното неравенство: ac+bd≥ d₁d₂, като равенството се изпълнява тогава и само тогава, когато четириъгълникът е вписан в окръжност.

4 cтр.

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Първа теорема на Птоломей: Произведението от диагоналите на всеки вписан четириъгълник е равно на сбора от произведенията на срещуположните страни т.е. d_1d_2 =ac+bd.

Втора теорема на Птоломей: Диагоналите във всеки вписан четириъгълник се отнасят помежду си както сборовете от произведенията на страните, пресичащи се в краищата на съответния диагонал т.е. $\frac{d_1}{d_2} = \frac{ab+cd}{bc+ad}.$

- 52) Нека точките С и D лежат в една и съща полуравнина относно правата AB и "виждат" отсечката AB под един и същи ъгъл. Тогава точките A, B, C и D лежат на една окръжност;
- 53) При последователно съединяване средите на страните на произволен четириъгълник се получава успоредник.
- 54) Във всеки четириъгълник отсечките, които съединяват средите на две срещуположни страни, и отсечката, която съединява средите на диагоналите, се пресичат в една точка, която разполовява всяка от тях.
- 55) За всеки четириъгълник ABCD (където AB=a, CD=b, AD=c, BC=d, AC=d₁, BD=d₂, ∢AOB= ϕ , където O е пресечната точка между диагоналите му), диагоналите му са взаимно перпендикулярни тогава и само тогава, когато сборът от квадратите на всеки две негови срещуположни страни е равен на сбора от квадратите на другите две срещуположни страни т.е. $(a^2+b^2)-(c^2+d^2)=2d_1d_2\cos\phi$.

II. Лице на произволен четириъгълник:

адрес: гр.София, ж.к. Надежда, бл. 335

56) $S = \frac{1}{2} d_1 d_2 \sin \varphi = \sqrt{(p-a)(p-b)(p-c)(p-d) - abcd \cos^2 \frac{\alpha + \gamma}{2}}$, където р е по-

лупериметъра на четириъгълника, а ϕ – ъгълът между диагоналите.

- 57) Описан четириъгълник: $S = pr = \sqrt{abcd} \cdot \sin \frac{\alpha + \beta}{2}$.
- 58) Вписан четириъгълник: $S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$;
- 59) Четириъгълник едновременно вписан и описан за окръжност: $S = \sqrt{abcd}$;

III. Успоредник:

- 60) Сборът от квадратите на страните на всеки успоредник е равен на полусбора от квадратите на диагоналите му т.е. $2(a^2+b^2)=d_1^2+d_2^2$;
- 61) Ако α е остър ъгъл от успоредник, а d_1 и d_2 са диагоналите му, то $\cos\alpha = \frac{\left|d_1^2 d_2^2\right|}{4ab};$

- 62) Ако ϕ е остър ъгъл между диагоналите на успоредник, то $\cos \varphi = \frac{\left|a^2 b^2\right|}{d_1.d_2}$;
- 63) Лице на успоредник: $S = ah_a = bh_b = ab\sin\alpha = \frac{1}{4}(d_1^2 d_2^2)tg\alpha = \frac{1}{2}d_1d_2\sin\varphi$,

където d_1 е по-големия диагонал, а ϕ е остър ъгъл между диагоналите му. *Следствие:* От всички успоредници с едни и същи страни a и b най-голямо лице има правоъгълникът (защото α =90°).

Бележки:

- 1. Успоредникът е вид четириъгълник, затова всички твърдения изказани по-горе за четириъгълник важат и за успоредник.
- 2. В успоредникът неможе да се впише и опише окръжност (виж (45) и (46)).

64) Видове успоредници:

64.1) Ромб:

64.1.а) Диагоналите му са перпендикулярни и ъглополовящи на прилежащите му ъгли, затова центъра на вписаната окръжност съвпада с пресечната им точка т.е. h_a = h_b =2r. За тях важат следните равенства: $d_1 = 2a\cos\frac{\alpha}{2}$; $d_2 = 2a\sin\frac{\alpha}{2}$;

64.1.b) За всеки ромб е в сила равенството:
$$d_1^2 + d_2^2 = 4a^2$$
 (виж (60));

64.1.c) Лице:
$$S = ah = a^2 \sin \alpha = \frac{1}{2} d_1 d_2$$
 (виж (63));

64.1.d) Не може да се опише окръжност (виж <u>(45)</u>);

64.2) Правоъгълник:

64.2.а) За диагоналите му е в сила $d_1 = d_2 = \sqrt{a^2 + b^2}$ (виж (60));

64.2.b) Не може да се впише окръжност (виж <u>(47)</u>), а радиуса на описаната окръжност е равна на половината от диагонала;

64.2.c)
$$S = ab = \frac{1}{2}d^2 \sin \varphi$$

IV. Трапец:

65) Средна отсечка – Нека точките М и N са среди съответно на бедрата AD и BC на трапеца ABCD (Фиг. 7), то средната отсечка MN притежава следните свойства:

MN || AB || CD и
$$MN = \frac{AB + CD}{2}$$
.

66) Нека за равнобедрен трапец ABCD (фиг. 7) имаме означенията AB = a, CD = b, DH – височина, тогава

обучение по математика, физика, български и английски език, компютър

: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

 $AH = \frac{a-b}{2}$; $BH = \frac{a+b}{2}$.

адрес: гр.София, ж.к. Надежда, бл. 335

67) За сбора от квадратите на диагоналите за всеки трапец е изпълнено: $d_1^2 + d_2^2 = c^2 + d^2 + 2$ аb, а за разликата им $-d_1^2 - d_2^2 = \frac{a+b}{a-b} (d^2 - c^2)$, където а и b са основи, с и d – бедра, d_1 и d_2 – диагонали на трапеца

Бележка:

За равнобедрен трапец имаме $d_1=d_2$, d=c и първата формула (виж (67)) добива вида $d_1^2=c^2+ab$

- 68) Ако един трапец е вписан в окръжност, то той е равнобедрен т.е. около всеки равнобедрен трапец може да се опише окръжност;
- 69) Центъра на описаната около трапец окръжност лежи на пресечната точка на симетралите (симетралите на голямата и малка основа съвпадат).
- 70) Центъра на вписаната в трапец окръжност лежи на пресечната точка на ъглополовящите му, като ъгълът между ъглополовящите на два прилежащи ъгъла е равен на 90° ;
- 70.1) При произволен трапец центърът на вписаната окръжност лежи на средната му отсечка (виж: Многоъгълник, Зад. 27);
- 70.2) При равнобедрен трапец центърът на вписаната окръжност разполовява средната отсечка;
- 70.3) При равнобедрен трапец симетралите на голямата и малката основа съвпадат, като центърът на вписаната в трапеца окръжност лежи върху нея (виж СУ, 1996 I изпит);
- 71) Ако през точка C построим отсечка CM успоредна на диагонала BD (Фиг. 8), то Δ ACM и трапеца ABCD са равнолицеви т.е. S_{Δ ACM= S_{ABCD} . Ако през точка D построим отсечка DM успоредна на бедрото BC, то получаваме

73) Ако имаме трапеца ABCD, то лицето му е $S = \frac{a+b}{2}h = MN h = (a+b) r$,

защото h=2r. Ако трапеца е равнобедрен, то S=2cr;

74) Теорема на Щайнер – Във всеки трапец средите на основите, пресечната точка на диагоналите и пресечната точка на продължението на бедрата лежат на една права – права на Щайнер.

74.1) Обратна теорема на Щайнер – За всеки четириъгълник, ако среда на основата, пресечната точка на диагоналите и пресечната точка на продължението на бедрата лежат на една права, то четириъгълника е трапец.

Ъгли. Окръжност и кръг

I Ъгли с взаимно успоредни или взаимно перпендикулярни рамене

75) Ако два ъгъла са с взаимно успоредни рамене и

75.1) са от един и същи вид, те са равни, т.е. α=β (Фиг. 9 а).

75.2) не са от един и същи вид, то сборът им е равен на 180° , т.е. $\alpha+v=180^{\circ}$ (Фиг.9 а).

76) Ако два ъгъла са с взаимно перпендикулярни рамене и

76.1) са от един и същи вид, те са равни, т.е. α = β (Фиг. 9 б).

76.2) не са от един и същи вид, то сборът им е равен на 180° , т.е. α + γ = 180° на Φ иг. 9 б).

II. Взаимно положение на права и окръжност:

Определения:

- 1. Хорда: Права която свързва две произволни точки от окръжността.
- 2. Секателна: Права която има две общи точки с окръжността.
- 3. Допирателна: Права която има една обща точка с окръжността.

77) Ако диаметър е перпендикулярен на хорда в окръжност, то той разполовява хордата и съответната и дъга т.е. Ако $MN \perp AB \Leftrightarrow AP=BP$; $\widehat{AN}=\widehat{BN}$ и $\widehat{AM}=\widehat{BM}$ (Фиг. 10);

A P D D D F M P W F M P W F 10

Следствие:

Ако една права минава през средата на хорда и съответната и дъга, то тя минава и през центъра на окръжността и е перпендикулярна на хордата.

78) Ако AB || CD \Leftrightarrow AC=BD и $\widehat{AC}=\widehat{BD}$ (Фиг. 10);

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

79) Ако AB=EF \Leftrightarrow OP=OQ и $\widehat{AC}=\widehat{BD}$ (Фиг. 10):

80) Нека AB, CD, PQ са хорди, които се пресичат в точка M (Фиг. 10) и нека PQ е перпендикулярна на диаметъра, то AM.MB=CM.DM= PM^2 = QM^2 ;

81) Ако точка В (Фиг. 12) е външна за окръжността, правите АВ и СВ са секущи и ЕВ допирателна, то FB.AB=GB.CB=EB²:

Бележка:

Обратните теореми на твърдения (виж (79) и (80)) ни дават достатъчните условия четири (или три) точки да лежат на една окръжност.

82) Ако права е допирателна до окръжност, то тя е и перпендикулярна на радиуса построен в точката на допиране;

83) Ако правите ЕВ и DB (Фиг. 12) са допирателни и се пресичат във външна точка на окръжността, то ОВ е ъглополовяща на ∢EBD и EB=DB;

III. Взаимно положение на окръжност и ъгъл:

84) Централен ъгъл: Върхът му е в центъра на окръжността а раменете му са секателни (Фиг. 13). За този ъгъл имаме ∢AOB=BD.

85) Вписан ъгъл: Върхът му лежи на окръжността, а раменете му са секателни (Фиг. 13). За него имаме:

$$\angle ACB = \frac{1}{2} \widehat{AB} = \frac{1}{2} \angle AOC$$

Следствие 1: Всички вписани ъгли в една и съща окръжност, чиито рамене от сичат едни и същи дъги, са равни.

Следствие 2: Вписани ъгли чиито рамене минават през краищата на диаметър, са прави.

86) Периферен ъгъл: Върхът му лежи на окръжността, едното му рамо е допирателно а другото рамо секателно (Фиг. 13).

$$\angle ACD = \frac{1}{2} \widehat{AC}$$

87) Ъгъл между две хорди (Фиг. 11):

Фиг.12

Фиг.13

$$\angle AMD = \frac{1}{2} (\widehat{AD} + \widehat{CB})$$

88) Ъгъл между две секателни (Фиг. 12):

$$\angle ABC = \frac{1}{2} (\widehat{AC} - \widehat{FG})$$

89) Ъгъл между две допирателни (Фиг. 12):

$$\angle EBD = \frac{1}{2} (EACD - EFGD)$$

IV. Лице на кръг и частите му:

90) Лице на кръгов сектор (изрез):

Определение 1:

Част от кръг ограничен от два радиуса (Фиг. 14), се нарича кръгов сектор (изрез).

$$S=r^2.rac{lpha}{2},$$
 където $lpha$ е в радиани; $S=rac{\pi r r^2 lpha^0}{360^0},$ където $lpha$ е в градуси

91) Лице на кръгов сегмент (отрез)

Определение 2:

Част от кръг ограничен от една хорда и принадлежащата и дъга (Фиг. 15), се нарича кръгов сегмент (отрез).

Фиг.14

$$S_{ompes} = S_{uspes} - S_{\Delta AOB} \Rightarrow S = \frac{r^2}{2} (\alpha - \sin \alpha)$$
, където α е в радиани; $S = \frac{r^2}{2} \left(\frac{\pi \alpha^0}{1000} - \sin \alpha \right)$, където α е в градуси

Многоъгълник:

92) Лице на описан многоъгълник: Лицето S на многоъгълник с периметър 2р, описан около окръжност с радиус r e S=pr. 93) Лице на правилен многоъгълник:

Тема: "Справочник по планиметрия"

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Бележки:

- 1. Ако един многоъгълник е правилен, то около него може да се опише окръжност и в него може да се впише окръжност.
- 2. Страната на правилен шестоъгълник е равна на радиуса на описаната около него окръжност.

$$S_n = \frac{n}{4}a^2 \cot g \frac{180^0}{n} = \frac{n}{2}R^2 \sin \frac{360^0}{n} = \frac{n}{2}r^2tg \frac{180^0}{n}$$
, където n е броя на страните в правил-

ния многоъгълник, a – дължината на страната, R – радиуса на описаната окръжност, r – радиуса на вписаната окръжност.

