1 Description:

This project work mainly focuses on analysing the Consumer Price Index data of whole India from January 2013 to March 2023. In the following the work, the aim is to achieve a good insight about the data and to build a model to forecast the Index number in upcoming future. The following dataset contains various columns such regarding the changing CPI values of all over the year. Those columns are Cereals and products, Meat and Fish, Egg, Milk and products and many more. Also the following data contains Consumer Price Index (CPI) values for Rural, Urban and Rural and Urban combined sector.

The dataset is collected from here

2 Problem Formulation:

- 1. Collect the data and pre-process the data before analysis.
- 2. Dividing the data into different sectors in terms of Rural, Urban, and Rural and Urban Combined.
- 3. Developing an insight about the Consumer Price Index Data over different sectors.
- 4. Compare different products under a single sector in terms of their Consumer Price Index Value
- 5. Finally, predict the CPI numbers by building the best time series model.

Software Used: Python and R-Studio

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     sns.set_theme(style="darkgrid",palette='deep', font='sans-serif')
     import warnings
     warnings.filterwarnings(action= 'ignore')
[2]: df = pd.read_csv('/content/drive/MyDrive/EDA_DA/
      All_India_Index_july2019_20Aug2020_dec20_0.csv',dtype={'Year':str})
[3]:
    # first 2 rows of the data
     df.head(2)
[3]:
       Sector Year
                       Month Cereals and products Meat and fish
                                                                       Egg
                                              107.5
                                                                    108.1
     0
      Rural
               2013
                     January
                                                             106.3
               2013
                                              110.5
                                                             109.1
                                                                     113.0
     1
       Urban
                     January
                           Oils and fats
                                                  Vegetables
       Milk and products
                                           Fruits
                                                                     Housing
     0
                    104.9
                                    106.1
                                            103.9
                                                        101.9
                                                                         NaN
                    103.6
                                    103.4
                                            102.3
                                                        102.9
                                                                       100.3
     1
                                                               . . .
        Fuel and light
                        Household goods and services Health
                 105.5
     0
                                                104.8
                                                        104.0
                 105.4
                                                104.8
                                                        104.1
     1
        Transport and communication Recreation and amusement
                                                                Education \
     0
                              103.3
                                                         103.4
                                                                     103.8
     1
                              103.2
                                                         102.9
                                                                     103.5
```

Personal care and effects Miscellaneous General index

```
0 104.7 104.0 105.1
1 104.3 103.7 104.0
```

[2 rows x 30 columns]

[4]: # describtive statistics df.describe().T

[4]:		count	mean		std	min	`
	Cereals and products	363.0	136.070523	14.3288	377	107.5	
	Meat and fish	360.0	155.327222	32.819	364	106.3	
	Egg	363.0	140.285124	22.347	112	102.7	
	Milk and products	363.0	139.686226	17.812	480	103.6	
	Oils and fats	363.0	131.473278	29.759	782	101.1	
	Fruits	363.0	140.286777	16.9596	676	102.3	
	Vegetables	363.0	155.646556	28.0540	053	101.4	
	Pulses and products	363.0	140.880716	23.747	592	103.5	
	Sugar and Confectionery	363.0	110.737466	8.9709	903	85.3	
	Spices	363.0	143.365289	25.5583	353	101.8	
	Non-alcoholic beverages	363.0	133.459229	18.982	385	104.8	
	Prepared meals, snacks, sweets etc.	360.0	148.338611	22.473	193	106.7	
	Food and beverages	363.0	141.905510	19.279	498	105.5	
	Pan, tobacco and intoxicants	360.0	154.618056	29.240	886	105.1	
	Clothing	360.0	141.934722	20.652	368	105.9	
	Footwear	360.0	135.271667	19.096	613	105.0	
	Clothing and footwear	360.0	140.949167	20.388	539	105.8	
	Fuel and light	363.0	135.752617	21.633	542	105.4	
	Household goods and services	360.0	136.052778	18.836	591	104.8	
	Health	363.0	137.750138	23.1248	388	104.0	
	Transport and communication	360.0	126.543056	18.685	162	103.2	
	Recreation and amusement	360.0	133.270833	19.7063	305	102.9	
	Education	360.0	140.532778	20.862	561	103.5	
	Personal care and effects	360.0	132.495000	22.3602	294	102.1	
	Miscellaneous	360.0	133.551944	20.2838	342	103.7	
	General index	360.0	138.914444	19.9074	439	104.0	
		25%		75%		ax	
	Cereals and products	124.050		146.000	174		
	Meat and fish	129.800		190.150	223		
	Egg	122.000		157.150	197		
	Milk and products	128.250		153.750	177		
	Oils and fats	110.400		138.200	209		
	Fruits	130.250		151.800	179		
	Vegetables	134.800		171.200	245		
	Pulses and products	119.850		164.100	191		
	Sugar and Confectionery	103.400		118.150	123		
	Spices	127.100		160.600	212		
	Non-alcoholic beverages	119.600		142.150	177		
	Prepared meals, snacks, sweets etc.	131.17		162.975	196		
	Food and beverages	128.700		156.950	183		
	Pan, tobacco and intoxicants	130.32		184.450	202		
	Clothing	125.400		153.475	190		
	Footwear	120.57		146.100	187		
	Clothing and footwear	124.850	0 140.80	152.300	189	.6	

```
Fuel and light
                                   116.300 131.20 148.150 183.2
Household goods and services
                                   120.850 134.80 150.100 178.6
                                   118.350 133.10 156.250 186.6
                                   111.675 119.40 139.800 169.0
Transport and communication
Recreation and amusement
                                   117.125 129.55 148.800 172.8
Education
                                   123.475 139.30 159.250 178.5
Personal care and effects
                                   112.375 127.05 154.975 181.5
Miscellaneous
                                   116.450 129.00 149.475 177.9
General index
                                   123.150 136.45 155.250 178.0
```

[5]: df.columns

[6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 366 entries, 0 to 365
Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	Sector	366 non-null	object
1	Year	366 non-null	object
2	Month	366 non-null	object
3	Cereals and products	363 non-null	float64
4	Meat and fish	360 non-null	float64
5	Egg	363 non-null	float64
6	Milk and products	363 non-null	float64
7	Oils and fats	363 non-null	float64
8	Fruits	363 non-null	float64
9	Vegetables	363 non-null	float64
10	Pulses and products	363 non-null	float64
11	Sugar and Confectionery	363 non-null	float64
12	Spices	363 non-null	float64
13	Non-alcoholic beverages	363 non-null	float64
14	Prepared meals, snacks, sweets etc.	360 non-null	float64
15	Food and beverages	363 non-null	float64
16	Pan, tobacco and intoxicants	360 non-null	float64
17	Clothing	360 non-null	float64
18	Footwear	360 non-null	float64
19	Clothing and footwear	360 non-null	float64
20	Housing	244 non-null	object
21	Fuel and light	363 non-null	float64
22	Household goods and services	360 non-null	float64
23	Health	363 non-null	float64
24	Transport and communication	360 non-null	float64

25	Recreation and amusement	360 non-null	float64
26	Education	360 non-null	float64
27	Personal care and effects	360 non-null	float64
28	Miscellaneous	360 non-null	float64
29	General index	360 non-null	float64

dtypes: float64(26), object(4)

memory usage: 85.9+ KB

Dividing the dataset in terms of sectors.

```
[7]: df_r = df[df.Sector == 'Rural']
df_u = df[df.Sector == 'Urban']
df_ru = df[df.Sector == 'Rural+Urban']
```

[8]: print('The shape of rural sector dataframe is {} and urban sector dataframe is {} and urban sector dataframe is {} and urban dataframe is {} '.format(df_r.shape, df_u.shape, df_ru.shape))

The shape of rural sector dataframe is (122, 30) and urban sector dataframe is (122, 30) and rural + urban dataframe is (122, 30)

3 Rural

[9]: df_r.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 122 entries, 0 to 363
Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	Sector	122 non-null	object
1	Year	122 non-null	object
2	Month	122 non-null	object
3	Cereals and products	121 non-null	float64
4	Meat and fish	120 non-null	float64
5	Egg	121 non-null	float64
6	Milk and products	121 non-null	float64
7	Oils and fats	121 non-null	float64
8	Fruits	121 non-null	float64
9	Vegetables	121 non-null	float64
10	Pulses and products	121 non-null	float64
11	Sugar and Confectionery	121 non-null	float64
12	Spices	121 non-null	float64
13	Non-alcoholic beverages	121 non-null	float64
14	Prepared meals, snacks, sweets etc.	120 non-null	float64
15	Food and beverages	121 non-null	float64
16	Pan, tobacco and intoxicants	120 non-null	float64
17	Clothing	120 non-null	float64
18	Footwear	120 non-null	float64
19	Clothing and footwear	120 non-null	float64
20	Housing	2 non-null	object
21	Fuel and light	121 non-null	float64
22	Household goods and services	120 non-null	float64
23	Health	121 non-null	float64
24	Transport and communication	120 non-null	float64
25	Recreation and amusement	120 non-null	float64

```
26 Education 120 non-null float64
27 Personal care and effects 120 non-null float64
28 Miscellaneous 120 non-null float64
29 General index 120 non-null float64
dtypes: float64(26), object(4)
memory usage: 29.5+ KB
```

Formatting the Date column into a timestamp format

```
[10]: df_r['Date'] = pd.to_datetime(df_r['Year'] + ' ' + df_r['Month'])
# shift column 'Name' to first position
first_column = df_r.pop('Date')

# insert column using insert(position, column_name,
# first_column) function
df_r.insert(0, 'Date', first_column)
```

```
[11]: df_r.drop(['Year','Month'],axis = 1, inplace = True)
    df_r.reset_index(drop=True,inplace=True)
```

Removing the non significant columns

```
[12]: df_r.drop(['Housing'],axis = 1, inplace = True)
```

Replacing the null values with forward fill method

```
[13]: df_r = df_r.fillna(method='ffill')
```

4 Visualisation of Rural Data

```
[14]: import textwrap
[15]: # Plot the responses for different events and regions
      cols = df_r.columns[2:27]
      length = len(cols)
      wrapped_labels = [textwrap.fill(label, 15) for label in cols]
      # Creating subplot axes
      fig, axes = plt.subplots(5,5,figsize=(30,12),sharex = True)
      fig.tight_layout(h_pad = 2)
      i = 0
      for name, ax in zip(cols, axes.flatten()):
        # Adjust the width parameter as needed
        sns.lineplot(y=name, x= "Date", data=df_r, ax=ax)
        ax.set_ylabel(wrapped_labels[i],fontproperties={'family':'monospace', 'size':
      →10,'weight':'demibold'})
        i += 1
      plt.suptitle('Time Series plots for Rural Commodities', size = 30, __
      →fontproperties={'family':'monospace', 'weight':'bold'})
      fig.subplots_adjust(top=0.9)
      plt.gcf().autofmt_xdate()
      plt.show()
```

Time Series plots for Rural Commodities

5 Urban

[16]: df_u.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 122 entries, 1 to 364
Data columns (total 30 columns):

	columns (total 30 columns):		_
#	Column	Non-Null Count	Dtype
0	Sector	122 non-null	object
1	Year	122 non-null	object
2	Month	122 non-null	object
3	Cereals and products	121 non-null	float64
4	Meat and fish	120 non-null	float64
5	Egg	121 non-null	float64
6	Milk and products	121 non-null	float64
7	Oils and fats	121 non-null	float64
8	Fruits	121 non-null	float64
9	Vegetables	121 non-null	float64
10	Pulses and products	121 non-null	float64
11	Sugar and Confectionery	121 non-null	float64
12	Spices	121 non-null	float64
13	Non-alcoholic beverages	121 non-null	float64
14	Prepared meals, snacks, sweets etc.	120 non-null	float64
15	Food and beverages	121 non-null	float64
16	Pan, tobacco and intoxicants	120 non-null	float64
17	Clothing	120 non-null	float64
18	Footwear	120 non-null	float64
19	Clothing and footwear	120 non-null	float64
20	Housing	121 non-null	object
21	Fuel and light	121 non-null	float64
22	Household goods and services	120 non-null	float64
23	Health	121 non-null	float64
24	Transport and communication	120 non-null	float64
25	Recreation and amusement	120 non-null	float64
26	Education	120 non-null	float64
27	Personal care and effects	120 non-null	float64
28	Miscellaneous	120 non-null	float64
29	General index	120 non-null	float64

```
dtypes: float64(26), object(4)
memory usage: 29.5+ KB
```

Formatting the Date column to timestamp format

```
[17]: df_u['Date'] = pd.to_datetime(df_u['Year'] + ' ' + df_u['Month'])
# shift column 'Name' to first position
first_column = df_u.pop('Date')

# insert column using insert(position, column_name,
# first_column) function
df_u.insert(0, 'Date', first_column)
[18]: df_u.drop(['Year', 'Month'], axis = 1, inplace = True)
df_u.reset_index(drop=True,inplace=True)
[19]: df_u['Housing'] = df_u.Housing.astype(float)
```

Removing Null Values

```
[20]: df_u = df_u.fillna(method='ffill')
```

6 Visualisation of Urban Data

```
[21]: # Plot the responses for different events and regions
      cols = df_u.columns[2:28]
      length = len(cols)
      wrapped_labels = [textwrap.fill(label, 15) for label in cols]
      # Creating subplot axes
      fig, axes = plt.subplots(6,5,figsize=(30,12),sharex = True)
      i = 0
      for name, ax in zip(cols, axes.flatten()):
        # Adjust the width parameter as needed
        sns.lineplot(y=name, x= "Date", data=df_u, ax=ax)
        ax.set_ylabel(wrapped_labels[i],fontproperties={'family':'monospace', 'size':
      →10,'weight':'demibold'})
        i += 1
      plt.suptitle('Time Series plots for Urban Commodities', size = 30, u
      →fontproperties={'family':'monospace', 'weight':'bold'})
      fig.subplots_adjust(top=0.9)
      for i in range(26, len(axes.flatten())):
        fig.delaxes(axes.flatten()[i])
      fig.tight_layout(h_pad = 2)
      plt.gcf().autofmt_xdate()
      plt.show()
```


7 Rural and Urban (Combined)

[22]: df_ru.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 122 entries, 2 to 365
Data columns (total 30 columns):

Dava	COTAMINE (COCCAT CO COTAMINE):		
#	Column	Non-Null Count	Dtype
0	Sector	122 non-null	object
1	Year	122 non-null	object
2	Month	122 non-null	object
3	Cereals and products	121 non-null	float64
4	Meat and fish	120 non-null	float64
5	Egg	121 non-null	float64
6	Milk and products	121 non-null	float64
7	Oils and fats	121 non-null	float64
8	Fruits	121 non-null	float64
9	Vegetables	121 non-null	float64
10	Pulses and products	121 non-null	float64
11	Sugar and Confectionery	121 non-null	float64
12	Spices	121 non-null	float64
13	Non-alcoholic beverages	121 non-null	float64
14	Prepared meals, snacks, sweets etc.	120 non-null	float64
15	Food and beverages	121 non-null	float64
16	Pan, tobacco and intoxicants	120 non-null	float64
17	Clothing	120 non-null	float64
18	Footwear	120 non-null	float64
19	Clothing and footwear	120 non-null	float64
20	Housing	121 non-null	object
21	Fuel and light	121 non-null	float64
22	Household goods and services	120 non-null	float64
23	Health	121 non-null	float64
24	Transport and communication	120 non-null	float64
25	Recreation and amusement	120 non-null	float64
26	Education	120 non-null	float64
27	Personal care and effects	120 non-null	float64
28	Miscellaneous	120 non-null	float64
29	General index	120 non-null	float64

dtypes: float64(26), object(4)

memory usage: 29.5+ KB

Data Cleaning:

Formatting the misspelled words from the dataset.

```
[23]: | df_ru[df_ru['Month'] == 'Marcrh']
[23]:
               Sector Year
                              Month Cereals and products Meat and fish
                                                                             Egg
                                                                                 \
         Rural+Urban 2014 Marcrh
                                                     120.7
                                                                    119.3 121.0
          Milk and products Oils and fats
                                            Fruits
                                                    Vegetables
                                                                     Housing \
                      116.1
      44
                                     106.9
                                             118.7
                                                         116.3
          Fuel and light
                         Household goods and services Health \
      44
          Transport and communication Recreation and amusement Education \
      44
                                                          110.6
                                                                      112.0
                                111.4
          Personal care and effects Miscellaneous General index
      44
                              109.0
                                             111.3
                                                            114.2
      [1 rows x 30 columns]
[24]: df_ru[df_ru['Month'] == 'Marcrh'].index
[24]: Int64Index([44], dtype='int64')
[25]: df_ru.at[44,'Month']='March'
[26]: df_ru[df_ru['Month'] == 'Marcrh']
[26]: Empty DataFrame
      Columns: [Sector, Year, Month, Cereals and products, Meat and fish, Egg, Milk
      and products, Oils and fats, Fruits, Vegetables, Pulses and products, Sugar and
      Confectionery, Spices, Non-alcoholic beverages, Prepared meals, snacks, sweets
      etc., Food and beverages, Pan, tobacco and intoxicants, Clothing, Footwear,
      Clothing and footwear, Housing, Fuel and light, Household goods and services,
      Health, Transport and communication, Recreation and amusement, Education,
      Personal care and effects, Miscellaneous, General index]
      Index: []
      [0 rows x 30 columns]
     Formatting the Date column to timestamp format
[27]: df_ru['Date'] = pd.to_datetime(df_ru['Year'] + ' ' + df_ru['Month'])
      # shift column 'Name' to first position
      first_column = df_ru.pop('Date')
```

insert column using insert(position, column_name,

first_column) function

df_ru.insert(0, 'Date', first_column)

```
[28]: df_ru.drop(['Year','Month'],axis = 1, inplace = True)
df_ru.reset_index(drop=True,inplace=True)
```

```
[29]: df_ru['Housing'] = df_ru.Housing.astype(float)
```

Replacing Null Values with forward fill method

```
[30]: df_ru = df_ru.fillna(method='ffill')
```

8 Visualisation of Rural and Urban Data Combined

```
[31]: # Plot the responses for different events and regions
      cols = df_ru.columns[2:28]
      length = len(cols)
      wrapped_labels = [textwrap.fill(label, 15) for label in cols]
      # Creating subplot axes
      fig, axes = plt.subplots(6,5,figsize=(30,12),sharex = True)
      for name, ax in zip(cols, axes.flatten()):
          # Adjust the width parameter as needed
        sns.lineplot(y=name, x= "Date", data=df_ru, ax=ax, errorbar=('se',2))
        ax.set_ylabel(wrapped_labels[i],fontproperties={'family':'monospace', 'size':
       →10,'weight':'demibold'})
        i += 1
      plt.suptitle('Time Series plots for Rural and Urban combined Commodities', size = 30, u
       →fontproperties={'family':'monospace', 'weight':'bold'})
      fig.subplots_adjust(top=0.9)
      for i in range(26, len(axes.flatten())):
        fig.delaxes(axes.flatten()[i])
      fig.tight_layout(h_pad = 2)
      plt.gcf().autofmt_xdate()
      plt.show()
```


9 Inflation calculation over months

```
[32]: infl_r = (df_r['General index'].diff()/df_r['General index'].shift())*100
infl_u = (df_u['General index'].diff()/df_u['General index'].shift())*100
infl_ru = (df_ru['General index'].diff()/df_ru['General index'].shift())*100
```

10 Visualisation of Inflation for different sectors

11 Observation:

- 1. In all the sectors there is a positive growth in index numbers over the period of time.
- 2. For Rural sector, the *Housing* column was a redundant column.
- 3. Maximum fluctuations can be seen in Vegetables, Egg, Fruits columns for all the sectors.
- 4. Remaining many columns exhibit very low fluctuations over the years.
- 5. From the *Inflation* plots of the sectors, it can be claimed that the inflations are a stationary process.

```
[34]: data = pd.DataFrame()
  data['Date'] = df_r.Date
  data['infl_r'] = infl_r
  data['infl_u'] = infl_u
```

```
data['infl_ru'] = infl_ru
data['ind_r'] = df_r['General index']
data['ind_u'] = df_u['General index']
data['ind_ru'] = df_ru['General index']
```

Saving the data into a dataframe

```
[35]: data.to_csv('inflation_data.csv',index=False)
```

Further analysis and model fitting on the general CPI numbers were done in R-Studio

[]:

1 Analysis and Forecasting of the Consumer Price Index Values

The Analsis part of this work was done in R-Studio

```
version[['version.string']]
## [1] "R version 4.2.1 (2022-06-23 ucrt)"
```

1.1 Loading Required Prerequisites

```
library(tidyquant)
library(gridExtra)
library(tibbletime)
library(forecast)
library(itsmr)
library(here)
library(fpp2)
library(tseries)
library(ggplot2)
library(ggthemes)
library(patchwork)

#set theme
theme_set(theme_gdocs())
theme_set(theme_stata())
```

1.2 Rural Consumer Price Index

1.2.1 Decomposition:

Decomposing the Rural Consumer Price Index (CPI) into different time series components:

```
rural <- ts(df$ind_r, start=c(2013,1),frequency = 12)
forecast::autoplot(decompose(rural,type="multiplicative"))</pre>
```


From the above graph, it is clear that the rural CPI has an influence of trend and seasonal components. Those factors are need to be removed in order to fit a model over the data.

```
rur_decomp <- stl(rural, s.window = 12) # estimate the seasonal component
rur_adjseason <- rural - seasonal(rur_decomp) #deseason the data
plot1 <- autoplot(rur_adjseason,ylab='Index Value',main='Deseasonalized Rural Index Plot') #plot
plot2 <- ggAcf(rur_adjseason) + ggtitle('ACF of Deseasonalized Rural Index')
plot3 <- ggPacf(rur_adjseason) + ggtitle('PACF of Deseasonalized Rural Index')
plot1 /(plot2 | plot3)</pre>
```


1.2.2 Model Building:

```
rur_sarima <- auto.arima(rural, stepwise = F, approximation = F, seasonal = T, allowdrift = F,
                         parallel = F, trace = F)
summary(rur_sarima)
## Series: rural
##
  ARIMA(3,1,0)(0,1,1)[12]
##
##
   Coefficients:
##
            ar1
                     ar2
                              ar3
                                      sma1
##
         0.2251 -0.1075 -0.2303 -0.8275
## s.e. 0.0931
                 0.0954
                           0.0947
                                    0.1539
##
## sigma^2 = 0.653: log likelihood = -136.21
## AIC=282.41
               AICc=282.99
                              BIC=295.87
##
## Training set error measures:
##
                         ME
                                 RMSE
                                          MAE
                                                       MPE
                                                               MAPE
## Training set 0.002089793 0.7496647 0.55366 -0.01108663 0.381082 0.07761259
##
                       ACF1
## Training set 0.001313648
```

:. The best fitted model is:

$$(1 - 0.2251B + 0.1075B^2 + 0.2303B^3)(1 - B)(1 - B^{12})X_t = (1 - 0.8275B^{12})Z_t$$

plot(rur_sarima) # inspect the roots


```
plot1 <- autoplot(residuals(rur_sarima),ylab='residuals',main='Residuals of SARIMA model of Rural Index')
plot2 <- ggAcf(residuals(rur_sarima)) + ggtitle('ACF of Residuals')
plot3 <- ggPacf(residuals(rur_sarima))+ ggtitle('PACF of Residuals')
plot1 / (plot2 | plot3)</pre>
```


After successfully fitting the SARIMA model, the periodicity in the residuals have been removed which can be shown in the ACF and PACF plots.

1.2.3 Forecasting:

Performing forecasting from the given data

```
train_rur <- window(rural, end=c(2022,8))</pre>
test <- window(rural, start=c(2022,9))</pre>
sarimab2 <- auto.arima(train_rur, stepwise = F, approximation = F, seasonal = T, allowdrift = F,</pre>
                        parallel = F, trace = F)
forecasts <- forecast::forecast(sarimab2, h = 40)</pre>
fore1 <-autoplot(forecasts)+autolayer(rural) + ggtitle("Rural CPI Number")
forecast::accuracy(forecasts,test)
                           ME
                                   RMSE
                                               MAE
                                                             MPE
                                                                       MAPE
  Training set 0.005771456 0.7251087 0.5135852 -0.008749863 0.3597190 0.07410219
##
                -0.351384173\ 0.9406011\ 0.7141639\ -0.198477039\ 0.4023338\ 0.10304251
##
##
## Training set 0.02709658
## Test set 0.18289626 2.221401
```

1.3 Urban Consumer Price Index

1.3.1 Decomposition:

Decomposing the Urban Consumer Price Index (CPI) into different time series components:

```
urban <- ts(df$ind_u, start=c(2013,1),frequency = 12)
forecast::autoplot(decompose(urban,type="multiplicative"))</pre>
```


From the above graph, it is clear that the urban CPI has an influence of trend and seasonal components. Those factors are need to be removed in order to fit a model over the data.

```
ur_decomp <- stl(urban, s.window = 12) # estimate the seasonal component
ur_adjseason <- urban - seasonal(rur_decomp) #deseason the data
plot1 <- autoplot(ur_adjseason,ylab='Index Value',main='Deseasonalized Urban Index Plot') #plot
plot2 <- ggAcf(ur_adjseason) + ggtitle('ACF of Deseasonalized Urban Index')
plot3 <- ggPacf(ur_adjseason) + ggtitle('PACF of Deseasonalized Urban Index')
plot1 /(plot2 | plot3)</pre>
```


1.3.2 Model Building:

```
ur_sarima <- auto.arima(urban, stepwise = F, approximation = F, seasonal = T, allowdrift = F,
                         parallel = F, trace = F)
summary(ur_sarima)
## Series: urban
## ARIMA(0,1,0)(0,1,1)[12]
##
## Coefficients:
##
           sma1
##
         -0.6922
## s.e. 0.1022
##
## sigma^2 = 0.5895: log likelihood = -129.15
## AIC=262.31 AICc=262.42
                             BIC=267.69
##
## Training set error measures:
##
                       ME
                                RMSE
                                           MAE
                                                       MPE
                                                                MAPE
## Training set 0.02249555 0.7223709 0.5243375 0.003239058 0.3690756 0.07523757
##
                      ACF1
## Training set 0.06816845
```

:. The best fitted model is:

$$(1-B)(1-B^{12})X_t = (1-0.6922B^{12})Z_t$$

plot(ur_sarima) # inspect the roots

Inverse MA roots


```
plot1 <- autoplot(residuals(ur_sarima),ylab='residuals',main='Residuals of SARIMA model of Urban Index')
plot2 <- ggAcf(residuals(ur_sarima)) + ggtitle('ACF of Residuals')
plot3 <- ggPacf(residuals(ur_sarima)) + ggtitle('PACF of Residuals')
plot1 / (plot2 | plot3)</pre>
```


After successfully fitting the SARIMA model, the periodicity in the residuals have been removed which can be shown in the ACF and PACF plots.

1.3.3 Forecasting:

Performing forecasting from the given data.

```
train_ur <- window(urban, end=c(2022,8))</pre>
test <- window(urban, start=c(2022,9))</pre>
sarimab2 <- auto.arima(train_ur,stepwise = F, approximation = F, seasonal = T, allowdrift = F,</pre>
                        parallel = F, trace = F)
forecasts <- forecast::forecast(sarimab2, h = 40)</pre>
fore2 <-autoplot(forecasts)+autolayer(urban)+ ggtitle("Urban CPI Number")
forecast::accuracy(forecasts,test)
                          ME
                                  RMSE
                                              MAE
                                                            MPE
                                                                     MAPE
  Training set 0.02599193 0.6872455 0.5013260 0.004731289 0.3591034 0.07364111
##
                -0.86120116 \ 1.3449544 \ 0.9869431 \ -0.494431286 \ 0.5658951 \ 0.14497470
##
##
                       ACF1 Theil's U
## Training set 0.06000911
## Test set 0.22241215 1.64087
```

1.4 Rural and Urban Consumer Price Index

1.4.1 Decomposition:

Decomposing the Rural and Urban Combined Consumer Price Index (CPI) into different time series components:

```
ru <- ts(df$ind_ru, start=c(2013,1),frequency = 12)
#options(repr.plot.width=3,repr.plot.height=3)
forecast::autoplot(decompose(ru,type="multiplicative"))</pre>
```


From the above graph, it is clear that the rural and urban combined CPI has an influence of trend and seasonal components. Those factors are need to be removed in order to fit a model over the data.

```
ru_decomp <- stl(ru, s.window = 12) # estimate the seasonal component
ru_adjseason <- ru - seasonal(ru_decomp) #deseason the data
plot1 <- autoplot(ru_adjseason,ylab= 'Index Value', main='Deseasonalized Rural & Urban Index Plot') #plot
plot2 <- ggAcf(ru_adjseason) + ggtitle('ACF of Deseasonalized Rural & Urban Index')
plot3 <- ggPacf(ru_adjseason) + ggtitle('PACF of Deseasonalized Rural & Urban Index')
plot1 /(plot2 | plot3)</pre>
```


1.4.2 Model Building:

Fitting the best fitted SARIMA model over the Rural and Urban Combined Index Number

```
## ARIMA(0,1,1)(0,1,1)[12]
##
## Coefficients:
##
          ma1
                  sma1
        0.1711 -0.7422
##
## s.e. 0.0993 0.1113
##
## sigma^2 = 0.5952: log likelihood = -130.07
## AIC=266.13 AICc=266.36
                           BIC=274.21
##
## Training set error measures:
##
                       ME
                              RMSE
                                      MAE
                                                     MPE
                                                             MAPE
                                                                         MASE
## Training set 0.01165685 0.7225065 0.534809 -0.002287157 0.3715703 0.07573248
##
## Training set -0.009995881
```

 \therefore The best fitted model is:

$$(1-B)(1-B^{12})X_t = (1+0.1711B)(1-0.7422B^{12})Z_t$$

plot(ru_sarima) # inspect the roots

Inverse MA roots


```
plot1 <- autoplot(residuals(ru_sarima),ylab='residuals',main='Residuals of SARIMA model of Rural & Urban Index
plot2 <- ggAcf(residuals(ru_sarima))+ ggtitle('ACF of Residuals')
plot3 <- ggPacf(residuals(ru_sarima))+ ggtitle('PACF of Residuals')
plot1 / (plot2 | plot3)</pre>
```


After successfully fitting the SARIMA model, the periodicity in the residuals have been removed which can be shown in the ACF and PACF plots.

1.4.3 Forecasting:

Performing forecasting from the given data.

```
train_ru <- window(ru, end=c(2022,8))</pre>
test <- window(ru, start=c(2022,9))
sarimab2 <- auto.arima(train_ru,stepwise = F, approximation = F, seasonal = T, allowdrift = F,</pre>
                        parallel = F, trace = F)
forecasts <- forecast::forecast(sarimab2, h = 40)</pre>
fore3 <- autoplot(forecasts)+autolayer(ru)+ ggtitle("Rural & Urban CPI Number")
forecast::accuracy(forecasts,test)
                         ME
                                 RMSE
                                             MAE
                                                          MPE
                                                                    MAPE
## Training set 0.0174232 0.6699495 0.4864256 -0.001910502 0.3446993 0.07076272
                -0.4975685 \ 1.0471078 \ 0.7693449 \ -0.283095274 \ 0.4366137 \ 0.11192037
##
##
## Training set -0.0455699
                                   NA
## Test set 0.2173080 1.892605
```

Forecasts for the given Index numbers

```
fore3 / (fore1 | fore2)
```


The End