Лабораторная работа 4.3.3. Исследование разрешающей способности микроскопа методом Аббе.

Дмитрий Норкин и Николай Кузнецов 04/08/2018

Цель работы

Определение дифракционного предела разрешения объектива микроскопа методом Аббе.

Теория

Разрешающей способностью оптического прибора называют минимальное расстояние l_{min} между двумя точками в пространстве предметов, которое прибор может разрешить. Для микроскопа $l_{min} \approx \frac{\lambda}{\sin u} \approx \frac{2f\lambda}{D}$, где u – апертутрный угол объектива микроскопа, т.е угол между оптической осью и лучом, направленным из центра объекта в край линзы; D – диаметр диафрагмы; f – фокусное расстояние линзы.

Рис. 1: Схема установки

В данной работе исследуются двумерные дифракционные решетки. Главные максимумы возникают при условии

$$d\sin\theta_x = m_x\lambda; \quad d\sin\theta_y = m_y\lambda,$$

где θ_x и θ_y — направления на главные максимумы в горизонтальной и вертикальной плоскостях соответственно, а m_x и m_y — порядки этих максимумов.

Рис. 2: Дифракционная картина

Рис. 3: Наблюдение дифракционной картины

Ход работы

Длина волны зеленого лазера, используемого в работе $\lambda = 532$ нм.

Определение периода решеток по их пространственному спектру

Измерим для каждой из решеток сколько максимумов N приходится на участок длины x_N . Затем рассчитаем по формуле $d=\frac{\lambda LN}{x_N}$ период решетки. L=1440 мм.

	1	2	3	4	5
\overline{N}	11	15	30	56	60
x_N , MM	227	207	207	195	184
d, mkm	37	56	111	220	250

Таблица 1: Измерение периода решетки по пространственному спектру

Определение периода решеток по изображению, увеличенному с помощью микроскопа

Соберем модель микроскопа, отъюстируем установку так, чтобы на экране было четкое изображение без аберраций для любой решетки. Измерим параметры установки:

$$a_1=135 \ \mathrm{mm}; \quad a_2=f_2=25 \ \mathrm{mm}; \quad b_1+a_2=713 \ \mathrm{mm}$$
 $b_2=498 \ \mathrm{mm}; \quad f_1=11 \ \mathrm{mm}; \quad b_1=688 \ \mathrm{mm}$

Отсюда увеличение микроскопа $\Gamma=\frac{b_1b_2}{a_1a_2}=102$. Для каждой решетки измерим сколько щелей N приходится на участок изображения длиной x_N , а затем рассчитаем по формуле $d=\frac{x_N}{N\Gamma}$ период решетки.

Рис. 4: Изображение, полученное с помощью микроскопа

	1	2	3	4	5
$\overline{}$	48	39	22	11	10
x_N , MM			246	248	256
d, mkm	36	54	109	222	252

Таблица 2: Измерение периода решеток по изображению, увеличенному с помощью микроскопа

Определение периода решеток по оценке разрешающей способности микроскопа

Теперь поставим щель в фокальную плоскость линзы Π_1 . Если на экране еще видно изображение сетки, то разрешаются 2 соседних щели решетки. Значит $d \approx \frac{2f\lambda}{D}$. Снимем зависимость измерим D для каждой решетки и рассчитаем по нему d.

	1	2	3	4	5
D, mm	3.44	2.38	1.10	0.50	0.47
d, mkm	34	49	106	233	249

Таблица 3: Измерение периода решеток по разрешающей способности микроскопа

Теперь построим график $d(D^{-1})$, вычисленных первым методом, для того, чтобы убедиться, что теория Аббе верна. Как видно, график действительно линеен, откуда можно сделать вывод о справедливости этой теории.

Рис. 5: График зависимости $d(D^{-1})$

Пространственная фильтрация

Возьмем 3 сетку, подберем ширину щели так, чтобы она пропускала ровно только нулевой главный максимум. Поворачивая щель относительно оси системы будем получать различные изображения на экране:

Рис. 6: Горизонтальные полосы

Рис. 7: Вертикальные полосы

Рис. 8: Диагональные полосы

Мультиплицирование

Для наблюдения мультиплицирования поменяем местами сетку и щель. При этом, так как сетка теперь расположена в фокальной плоскости, то она будет расщеплять изображение щели на несколько.

Рис. 9: Расщепленный фурьеобраз щели

Выводы

- Измерен период каждой из решеток 3 разными способами, значения сходятся между собой.
- Проверена теория Аббе построением графика зависимости $d(D^{-1})$ (он линейный).
- Получена картина пространственной фильтрации.
- Получены мультиплицированные изображения щели.