Loan Default Prediction

COSC 522 Final Project (Group 3)

Andrew Penny | Cody Lee Viscardis | Peter Mansfield | Soe Thet Ko

Overview

Problem Statement

Inaccurate risk assessment on loan applications

- cause financial losses for lending institutions
 hinder financial inclusion for qualified borrowers

Traditional loan assessment methods rely heavily on credit scores and financial history.

Proposed Solution

To develop a machine learning model that leverages customer demographics and predicts potential loan defaults with accuracy over 90%

Potential Benefits

- loan providers can make informed decisions and minimize risks
 qualified applicants get access to loan

Methodology

Dataset

"Loan Prediction Based on Customer Behavior" from Kaggle

- historical data of over 250,000 borrowers
- 11 features
- target: Risk_Flag indicates loan defaulted or not

(https://www.kaggle.com/datasets/subhamjain/loan-prediction-based-on-customer-behavior)

	ld	Income	Age	Experience	Married/ Single	House_Ownership	Car_Ownership	Profession	CITY	STATE	CURRENT_JOB_YRS	CURRENT_HOUSE_YRS	Risk_Flag
0	1	1303834	23	3	single	rented	no	Mechanical_engineer	Rewa	Madhya_Pradesh	3	13	0
1	2	7574516	40	10	single	rented	no	Software_Developer	Parbhani	Maharashtra	9	13	0
2	3	3991815	66	4	married	rented	no	Technical_writer	Alappuzha	Kerala	4	10	0
3	4	6256451	41	2	single	rented	yes	Software_Developer	Bhubaneswar	Odisha	2	12	1
4	5	5768871	47	11	single	rented	no	Civil_servant	Tiruchirappalli[10]	Tamil_Nadu	3	14	1

Dataset Snippet

Methodology - cont.

Algorithms

The following four architectures are chosen to train a binary classifier with supervised learning on the dataset.

- **Gradient Boosting**

 - can handle complex data high accuracy by combining predictions of weaks learners sequentially
- Neural Network
 can detect complex nonlinear relationships
 quite resistant to label-noise
- Logistic Regression easy to implement and efficient to train
 - high interpretability
- Random Forest

 - features importance interpretability
 high accuracy by averaging multiple decision trees constructed in parallel

Evaluation

The following metrics and plots are used to visualize and evaluate the model's performance on the test set.

Accuracy, Precision, Recall, F1 score, Confusion Matrix, ROC Curve, ROC AUC

Results - Gradient Boosting Classifier

<u>Initial LogReg for analysis - model</u> <u>predicting all negatives (majority class)</u>

Accuracy: 0.8759325396825397

Precision: 0.0 Recall: 0.0 F1 Score: 0.0 Confusion Matrix: [[44147 0] [6253 0]]

<u>Undersampled to balance and used</u> <u>standard scaler - trained GRADIENT</u> BOOSTING CLASSIFIER

Accuracy: 0.6291636422292121 Precision: 0.6316717422663889 Recall: 0.6314693158147733 F1 Score: 0.6315705128205128

Confusion Matrix: [[3860 2298] [2300 3941]]

Undersampled dataset and retrained logreg model- still predicting all negatives

Accuracy: 0.49665295588353897

Precision: 0.0 Recall: 0.0 F1 Score: 0.0 Confusion Matrix:

[[6158 0] [6241 0]]

<u>Implemented GridSearch on GBC model-</u> best model results:

Best Hyperparameters: {'learning_rate': 0.2, 'max depth': 7, 'min samples split': 4,

'n_estimators': 150}

Evaluation Metrics with Best Model: Accuracy: 0.8449068473263973 Precision: 0.8603137516688919 Recall: 0.8259894247716713 F1 Score: 0.8428022561922669

Confusion Matrix:

[[5321 837]

[1086 5155]]

Results - Neural Network

Model Fitting:

Early Stopped At 25 Epochs

loss: 0.3652

accuracy: 0.8774

val loss: 0.3656

val accuracy: 0.8750

Model Evaluation:

loss: 0.3647

accuracy: 0.8754

Optimizer: Adam

Learning rate: 0.005

Loss Function:

Binary_crossentropy

Metrics: Accuracy

Train/Test/Validation Split:

80/10/10

Normalization: Z-Score

Categorical Encoding: Label

Network Architecture:

Layer (type)	Output Shape	Param #
dense_5 (Dense)	(None, 16)	192
dropout_4 (Dropout)	(None, 16)	0
dense_6 (Dense)	(None, 16)	272
dropout_5 (Dropout)	(None, 16)	0
dense_7 (Dense)	(None, 16)	272
dropout_6 (Dropout)	(None, 16)	0
dense_8 (Dense)	(None, 16)	272
dropout_7 (Dropout)	(None, 16)	0
dense_9 (Dense)	(None, 1)	17

Total params: 1025 (4.00 KB)
Trainable params: 1025 (4.00 KB)
Non-trainable params: 0 (0.00 Byte)

Results - Logistic Regression

Nonviable Solution

- Multiple feature removal
- 4-8x Oversampling minority class
- 90-15% Undersampling majority class

	ı	orecision	recall	f1-score	support
	0 1	0.87 0.00	1.00 0.00	0.93 0.00	24407 3593
accura macro a weighted a	avģ	0.44 0.76	0.50 0.87	0.87 0.47 0.81	28000 28000 28000
[[24407 [3593	0] 0]]	1			

Results - Random Forest Classifier

Model 1 (use all features,

no undersampling/oversampling)

	precision		recall	f1-score
	0	0.94	0.95	0.94
	1	0.60	0.54	0.57
accui	racy			0.96
macro	avg	0.77	0.74	0.75
weighted	avg	0.89	0.90	0.98
Confusion	n Matrix			
[[41937	2210]			
[2905	3348]]			

Model 2 (use all features, undersample the majority class)

pr	ecision	recall	f1-score
0	0.83	0.89	0.86
1	0.88	0.81	0.84
accuracy			0.85
macro avg	0.85	0.85	0.85
weighted avg	0.85	0.85	0.85
Confusion Matrix			
[[5548 705]			
[1174 5079]]			

Model 3 (use all features, oversample the minority class)

pı	ecision	recall	f1-score
0	0.93	0.90	0.92
1	0.90	0.93	0.92
accuracy			0.92
macro avg	0.92	0.92	0.92
weighted avg	0.92	0.92	0.92
Confusion Matrix	(
[[39731 4416]			
[2898 41249]]			

ROC AUC score: 0.9171631141413912

Model 4 (drop two features due to correlation, oversampling still applied)

	precision	recall	f1-score
0	0.93	0.91	0.92
1	0.91	0.93	0.92
accuracy			0.92
macro avg	0.92	0.92	0.92
weighted avg	0.92	0.92	0.92
Confusion Ma	trix		
[[39957 419	9]		
[3013 4113	4]]		

Final Model (drop three less important features based on feature importance analysis, oversampling still applied)

Numerical Features: Standard Scalar Normalization Categorical Features: Binary and One-Hot Encoding High Cardinal Categorical Features: Target Train/Test Split: 80/20 Undersampling: RandomUnderSampler Oversampling: SMOTE 'Experience' & 'Current Job Yrs' correlation: 0.64
'City' & 'State' correlation: 0.34
'Car Ownership', 'Marital Status', 'House Ownership' < 0.025
Importance

Conclusion

Random Forest:

- Only Model to achieve ≥90% benchmark
- Overall, effective method for actuarial analysis

Lessons Learned:

- Rebalancing is important for skewed dataset
- Can get the same or even higher performance by dropping correlated features and less important features

Solution Improvements:

- Larger dataset with additional features
- Analysis of model on various other loan sub-categories (vehicles, revolving lines, etc.) and accompanying credit risk to derive model generalizability

