Алгоритмы и структуры данных. Семинар 15. Запросы на отрезках, решаем задачи вместе.

- 1. Используя дерево отрезков, реализуйте структуру множество для небольшого диапазона возможных значений U. За время $O(\log U)$ необходимо поддерживать стандартные операции insert, erase и lower bound.
- 2. Пусть дана последовательность a_1, a_2, \ldots, a_n . Используя дерево отрезков, научитесь за время $O(\log n)$ отвечать на следующие запросы:
 - Изменить значение i-го элемента на x.
 - По заданным числам p и x, найти минимальное $i \geq p$, такое что $a_i \geq x$.
- 3. Пусть дана последовательность a_1, a_2, \ldots, a_n , все $a_i \in \{0, 1\}$. Предложите структуру данных за время $O(\log n)$ выполняющую следующие две операции:
 - Присвоить $a_i = x$ для данных i и x.
 - Найти отрезок максимальной длины, состоящий только из 1.
- 4. Дана табличка $n \times n$. Требуется придумать структуру со временем построения $O(n^2 \log^2 n)$ и ответом на запрос минимума в прямоугольнике за O(1).
- 5. Реализуйте структуру данных, поддерживающую за время $O(\log n)$ выполнение следующих операций: запрос суммы на отрезке, прибавление линейной функции $(a \cdot i + b)$ на отрезке.
- 6. Предложите, как с помощью структуры дерева отрезков выполнять следующие операции с последовательностью a_1, a_2, \ldots, a_n :
 - Изменить значение i-го элемента на x за $O(\log n)$.
 - Узнать сумму всех чисел на отрезке с l по r за время $O(\log(r-l+1))$.
- 7. Дана последовательность a_1, a_2, \ldots, a_n и q двумерных запросов «сколько чисел в интервале от x до y находятся на отрезке с l по r?». Считая, что все запросы даны заранее, найдите на них ответы за время $O((n+q)\log n)$, используя O(n+q) дополнительной памяти.
- 8. Дано n прямоугольников со сторонами, параллельными осям координат. Прямоугольники заданы целочисленными координатами своих углов. За время $O(n \log n)$ найдите площадь их объединения.
- 9. Пусть вы решаете динамическую задачу о сумме на отрезке с запросами изменения в точке для очень большого массива, который хранится во внешней памяти. Предложите решение за время:
 - (a) $O(\frac{n}{B})$ на построение и $O(\frac{\log \frac{n}{M}}{\log B})$ на запрос;
 - (b) $O(\frac{n}{B})$ на построение и $O(\frac{n}{BM}+1)$ на запрос амортизированно.