This print-out should have 15 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

MatrixOpsTF01b 001 10.0 points

When

$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$$

and B are matrices such that the product AB is defined, then

$$AB = [B\mathbf{a}_1 \ B\mathbf{a}_2 \ \dots \ B\mathbf{a}_n].$$

True or False?

- 1. TRUE
- 2. FALSE correct

Explanation:

The matrix

$$[B\mathbf{a}_1 \ B\mathbf{a}_2 \ \dots \ B\mathbf{a}_n]$$

is the product BA, not AB, and $AB \neq BA$ in general.

Consequently, the statement is

InverseProp01a 002 10.0 points

Which of the following shows that if A is an invertible $n \times n$ matrix and B is any $n \times n$ matrix such that BA = I, then $B = A^{-1}$.

1. Right-multiply each side of the equation I = BA by A^{-1} . Then

$$A^{-1} = BAA^{-1} = BI = B,$$

so $B = A^{-1}$. correct

2. Subtract A^{-1} from both sides of the equation I = BA. Then

$$I - A^{-1} = BA - A^{-1},$$

so
$$A^{-1} = BI = B$$
.

3. Add A^{-1} to both sides of the equation I = BA. Then

$$I + A^{-1} = BA + A^{-1}$$
,

so
$$A^{-1} = BI = B$$
.

4. Left-multiply each side of the equation I = BA by A^{-1} . Then

$$A^{-1} = A^{-1}BA = BI = B.$$

so
$$B = A^{-1}$$
.

Explanation:

By definition, an $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix C such that AC = I = CA where I is the $n \times n$ identity matrix; we usually write A^{-1} for this matrix C.

So if B is any $n \times n$ matrix such that BA = I, then after multiplying the equation I = BA on the right by A^{-1} we see that

$$A^{-1} = (BA)A^{-1} = B(AA^{-1}) = BI = B$$

because of the associativity of matrix multiplication and the fact that I is the identity matrix.

InverseTF02a 003 10.0 points

If A is an $n \times n$ invertible matrix, then the same sequence of elementary row operations that row reduces A to the identity I_n also reduces A^{-1} to I_n .

True or False?

- 1. FALSE correct
- 2. TRUE

Explanation:

If an $n \times n$ matrix A is invertible, then there exist elementary matrices E_1, E_2, \ldots, E_p such that

$$E_p E_{p-1} \dots E_2 E_1 A = I_n.$$

Now every elementary matrix is invertible, so

$$A = E_1^{-1} E_2 - 1 \dots E_{p-1}^{-1} E_p I_n$$
$$= E_1^{-1} E_2^{-1} \dots E_{p-1}^{-1} E_p^{-1}.$$

But then

$$A^{-1} = E_p E_{p-1} \dots E_2 E_1,$$

SO

$$E_1^{-1}E_2-1\dots E_{p-1}^{-1}E_p^{-1}A^{-1} = I_n.$$

Thus A^{-1} can be row reduced to I_n by the same elementary row operations as used to row reduce A to I_n , but we need to use their inverses and to apply them in the reverse order.

Consequently, the statement is

Invertible01 004 10.0 points

A is an $n \times n$ matrix. Which of the following statements are equivalent to A being invertible?

- (i) A^T is an invertible matrix.
- (ii) The equation $A\mathbf{x} = \mathbf{b}$ has multiple solutions for each \mathbf{b} in \mathbb{R}^n .
- (iii) The columns of A do not span \mathbb{R}^n .
- **1.** ii
- 2. i correct
- 3. ii and iii
- 4. i and iii

- **5.** None of these.
- **6.** All of these.

Explanation:

- (i) Because A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . Mathematically, we can see that $I = I^T = (AA^{-1})^T = (A^{-1})^T A^T$. Hence because A is invertible, A^T must be invertible to satisfy this equation.
- (ii) Because A is invertible, there is an $n \times n$ D such that AD = I. It follows that any \mathbf{b} in \mathbb{R}^n will satisfy the equation $AD\mathbf{b} = I_n\mathbf{b} = \mathbf{b}$. If we let $\mathbf{x} = D\mathbf{b}$, then $A\mathbf{x} = \mathbf{b}$. Hence there is at least one solution, $D\mathbf{b}$, that satisfies the equation $A\mathbf{x} = \mathbf{b}$.
- (iii) Since the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n , then by definition the columns of A span \mathbb{R}^n .

LUDecomp2x3b 005 10.0 points

Determine the Lower Triangular matrix L in an LU-Decomposition of

$$A = \begin{bmatrix} -3 & 5 & 0 \\ -15 & 25 & -5 \end{bmatrix}.$$

$$\mathbf{1.} L = \begin{bmatrix} -3 & 0 \\ -5 & -5 \end{bmatrix}$$

$$\mathbf{2.} \ L \ = \ \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}$$

3.
$$L = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$
 correct

$$\mathbf{4.} \ L \ = \left[\begin{array}{cc} -3 & 0 \\ -15 & -5 \end{array} \right]$$

$$\mathbf{5.} \ L \ = \left[\begin{array}{cc} -3 & 0 \\ 5 & -5 \end{array} \right]$$

$$\mathbf{6.} \ L \ = \ \begin{bmatrix} -3 & 0 \\ 15 & -5 \end{bmatrix}$$

Explanation:

We first determine the elementary matrix reducing A to echelon form U by row reductions downwards.

$$A \sim E_1 A$$

$$= \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} -3 & 5 & 0 \\ -15 & 25 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 5 & 0 \\ 0 & 0 & -5 \end{bmatrix} = U.$$

But an elementary matrix is always invertible. Thus

$$L = E_1^{-1} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}.$$

Consequently,

$$L = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} -3 & 5 & 0 \\ 0 & 0 & -5 \end{bmatrix}$$

NullSpace01a 006 10.0 points

Find a matrix A so that Nul(A) is the set of all vectors

$$H = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a-2b = 3c, \\ 4a = c-d, \right\}$$

in \mathbb{R}^4 .

$$\mathbf{1.} \ A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 0 & -1 & 1 \end{bmatrix}$$

$$\mathbf{2.} \ A = \begin{bmatrix} 1 & -2 & 3 & 0 \\ 4 & 0 & 1 & -1 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 1 & -2 & -3 & 0 \\ 4 & 0 & -1 & 1 \end{bmatrix}$$
 correct

4.
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 0 & 1 & -1 \end{bmatrix}$$

$$\mathbf{5.} \ A = \begin{bmatrix} 1 & -2 & -3 & 0 \\ 4 & 0 & -1 & -1 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 1 & 2 & -3 & 0 \\ 4 & 0 & 1 & -1 \end{bmatrix}$$

Explanation:

Rewrite the conditions

$$a - 2b = 3c, \quad 4a = c - d$$

as

$$a - 2b - 3c = 0,$$

$$4a - c + d = 0,$$

and set

$$A = \begin{bmatrix} 1 & -2 & -3 & 0 \\ 4 & 0 & -1 & 1 \end{bmatrix}.$$

Then

$$A \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1 & -2 & -3 & 0 \\ 4 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
$$= \begin{bmatrix} a - 2b - 3c \\ 4a - c - d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

if and only if

$$a - 2b - 3c = 0.$$

$$4a - c + d = 0.$$

Consequently,

$$Nul(A) = H$$
.

Rank02b 007 10.0 points

Determine the rank of the matrix

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -1 & 3 & -6 \\ -3 & 3 & 0 \end{bmatrix}.$$

- 1. rank(A) = 1
- **2.** rank(A) = 3
- 3. rank(A) = 2 correct
- 4. $\operatorname{rank}(A) = 5$

5.
$$rank(A) = 4$$

Explanation:

Since

$$\operatorname{rref}(A) \ = \ \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix},$$

the first two rows of $\operatorname{rref}(A)$ contain leading 1's, so

$$Rank(A) = 2$$

DetElemOps01TF 008 10.0 points

When the matrix

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is obtained from

$$A = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$$

by interchanging rows, then

$$\det[B] = \det[A].$$

True or False?

- 1. FALSE correct
- 2. TRUE

Explanation:

As 2×2 matrices,

$$\det[B] = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

while

$$\det[A] = \begin{vmatrix} c & d \\ a & b \end{vmatrix} = bc - ad.$$

Thus

$$\det[B] = -\det[A].$$

Consequently, the statement is

DetInverseT/F01a 009 10.0 points

The matrix

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 4 & -4 \\ 1 & 0 & 2 \end{bmatrix}$$

is invertible.

True or False?

- 1. FALSE correct
- 2. TRUE

Explanation:

The matrix A will be invertible if and only if $det(A) \neq 0$. Now

$$\det(A) = \begin{vmatrix} 2 & 1 & 3 \\ 0 & 4 & -4 \\ 1 & 0 & 2 \end{vmatrix}$$
$$= 2 \begin{vmatrix} 4 & -4 \\ 0 & 2 \end{vmatrix} - \begin{vmatrix} 0 & -4 \\ 1 & 2 \end{vmatrix} + 3 \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix}$$
$$= 2 \times 8 - 4 - 3 \times 4 = 0.$$

Consequently, the statement is

FALSE

SubspaceTF01 010 10.0 points

Let H be the set of points inside and on the unit circle in the xy-plane. That is, let

$$H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}.$$

H is a subspace of \mathbb{R}^2 . True or false?

- 1. TRUE
- 2. FALSE correct

Explanation:

If $\mathbf{u} = \begin{bmatrix} .5 \\ .5 \end{bmatrix}$ and c = 4, then \mathbf{u} is in H but $c\mathbf{u}$ is not in H. Since H is not closed under scalar multiplication, H is not a subspace of \mathbb{R}^2 . Consequently, the statement is

BasisNull02a 011 10.0 points

Find a basis for the Null space of the matrix

$$A = \begin{bmatrix} 2 & 4 & 6 & -16 \\ 1 & 5 & 9 & -17 \\ -3 & -4 & -5 & 18 \end{bmatrix}.$$

1.
$$\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} \right\}$$

$$\mathbf{2.} \left\{ \begin{bmatrix} -1\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\-3\\0\\1 \end{bmatrix} \right\}$$

$$\mathbf{3.} \left\{ \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\0\\1 \end{bmatrix} \right\}$$

4.
$$\left\{ \begin{bmatrix} 1\\-2\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix} \right\}$$
 correct

5.
$$\left\{ \begin{bmatrix} -2\\ -3\\ 0\\ 1 \end{bmatrix} \right\}$$

$$6. \left\{ \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Explanation:

We first row reduce $[A \ \mathbf{0}]$:

$$\operatorname{rref}([A \ \mathbf{0}]) = \begin{bmatrix} 1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

to identify the free variables for \mathbf{x} in the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

This shows that x_1 , x_2 are basic variables, while x_3 , x_4 are free variables. So set $x_3 = s$, $x_4 = t$. Then

$$x_1 = s + 2t, \ x_2 = -2s + 3t,$$

and

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} s+2t \\ -2s+3t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ -2 \\ s \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix}.$$

Thus

$$\operatorname{Nul}(A) = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Consequently,

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

is a basis for Nul(A).

$\begin{array}{cc} LinIndSetsTF01b \\ 012 & 10.0 \ points \end{array}$

When $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p$ are vectors in \mathbb{R}^n and

$$H = \operatorname{Span}\{\mathbf{b}_1, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_p\},\,$$

then $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p\}$ is a basis for H. True or False?

- 1. FALSE correct
- 2. TRUE

Explanation:

For the set $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p\}$ to be a basis for H, BOTH of the conditions

(i)
$$H = \operatorname{Span}\{\mathbf{b}_1, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_p\},$$

(ii) the set is linearly independent,

have to be satisfied. Consequently, the statement is

CoordVec01a 013 10.0 points

Find the vector \mathbf{x} in \mathbb{R}^2 having coordinate vector

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 8 \\ -5 \end{bmatrix}$$

with respect to the basis

$$\mathcal{B} = \left\{ \begin{bmatrix} 4\\5 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\}$$

for \mathbb{R}^2 .

1.
$$\mathbf{x} = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

2. no such x exists

3.
$$\mathbf{x} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$
 correct

4.
$$\mathbf{x} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

5.
$$\mathbf{x} = \begin{bmatrix} -5 \\ -2 \end{bmatrix}$$

Explanation:

The coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of a vector \mathbf{x} in \mathbb{R}^2 with respect to a basis

$$\mathcal{B} = \{\mathbf{b}_1, \ \mathbf{b}_2\}$$

for \mathbb{R}^2 satisfies the matrix equation

$$A[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}, \qquad A = [\mathbf{b}_1 \ \mathbf{b}_2].$$

Consequently, when

$$\mathcal{B} = \left\{ \begin{bmatrix} 4\\5 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 8\\-5 \end{bmatrix},$$

$$\mathbf{x} = \begin{bmatrix} 4 & 6 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ -5 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

DimSubspace01a 014 10.0 points

Determine the dimension of the subspace

$$\operatorname{Span}\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \begin{bmatrix} 9\\4\\-2 \end{bmatrix}, \begin{bmatrix} -7\\-3\\1 \end{bmatrix} \right\}$$

of \mathbb{R}^3 .

1.
$$\dim = 3$$

2. dim =
$$1$$

$$3. \dim = 4$$

4.
$$\dim = 2 \text{ correct}$$

5.
$$\dim = 5$$

Explanation:

Since the subspace is the column space of the matrix

$$A = \begin{bmatrix} 1 & 3 & 9 & -7 \\ 0 & 1 & 4 & -3 \\ 2 & 1 & -2 & 1 \end{bmatrix}.$$

its dimension is the number of pivot columns in A. Now

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Thus A has 2 pivot columns, so

dimension
$$= 2$$

RankTF06b 015 10.0 points

If B is an echelon form of an an $m \times n$ matrix A, and if B has three nonzero rows, then the first three row of A form a basis for Row(A).

True or False?

- 1. TRUE
- 2. FALSE correct

Explanation:

Although row operations cannot change the linear dependence relations among *columns* of a matrix, they can change the linear dependence among *rows* of a matrix. For example, when

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

and

$$B = \operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

then $\operatorname{Row}(A) = \mathbb{R}^3$. But the first 3 rows of A do not form a basis for \mathbb{R}^3 . Notice that B is obtained from A by the row operation of interchanging rows 3 and 4 of A.

Consequently, the answer is

FALSE