

1/9

COPY

SEQUENCE LISTING

<110> Gaudet, Daniel
 RiouxB, John D.
 Arsenault, Steve
 Hudson, Thomas J.
 Daly, Mark J.

<120> Glycerol As A Predictor of Glucose
 Tolerance

<130> 2825.1022-003

<140> US 09/694,088
<141> 2000-10-20

<150> US 60/161,141
<151> 1999-10-22

<160> 23

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 60
<212> DNA
<213> Unknown

<220>

<223> Partial nucleic acid sequence of the GK gene
 comprising a polymorphic site at nucleotide
 position 13 of exon 3

<400> 1

atgccttctt ttgtcaaaga tgggtggaac argaccctaa ggaaattctta cattctgtct 60

<210> 2
<211> 48
<212> DNA
<213> Unknown

<220>

<223> Partial nucleic acid sequence of the GK gene
 comprising a polymorphic site at nucleotide
 position 17 of intron 8

<400> 2

taatggtaaa aaacaaacaa amaaacaaaa aacacaccaa aaaaccaa

48

<210> 3
<211> 94
<212> DNA
<213> Unknown

RECEIVED
SEP 09 2003
TECH CENTER 1600/2003

<220>
 <223> Partial nucleic acid sequence of the GK gene
 comprising a polymorphic site at nucleotide
 position 29 of exon 10

<400> 3
 ttcattctcc cttcaaccat aggtatggaa caggatgtt cttactatgt ratacaggcc 60
 ataagggtgg ttttaataa aaatgattaa gtca 94

<210> 4
 <211> 58
 <212> DNA
 <213> Unknown

<220>
 <223> Partial nucleic acid sequence of the GK gene
 comprising a polymorphic site at nucleotide
 position 22 of intron 12

<400> 4
 gaaattggtg agtgtgttct aacaaaagkt tagaaaaatct gaaaaaatgac acatttca 58

<210> 5
 <211> 8079
 <212> DNA
 <213> Unknown

<220>
 <223> Glycerol kinase gene

<221> misc_feature
 <222> 2214, 2215, 2216, 2217
 <223> n = A,T,C or G

<400> 5
 ggtcagcgg acgcgcgcgg cctcggtctc tggactcgac acctgcccct ccccccctcc 60
 ccggcggtcac ccagggaaacc gcggcgcaatc gccggccgac ctgaagctgg tttcatggca 120
 gcctcaaaga aggcaatggggccatgg tggggggcggttggaccagggg caccagttcg 180
 acgcgtttt tggtagcccc ggggtgacat gtgaagaggc gctgagctgt aaaacgacgg 240
 ccagtcatcc ttgatatctg cctgcatttt tacattaata ttacaatatac ttttcaggt 300
 ttcaattca aaaacagctg aactacttag tcatacatcaa gttagaaataa aacaagagtt 360
 cccaagagaa gggtatgttt ctaatattaa tatgtaaaga cacattatgt ttgttagtcc 420
 atctcaccca acttggccca atgccttctt ttgtcaaaaga tgggtggaaac argaccctaa 480
 gggaaattcta cattctgtct atgagtgtat agagaaaaca tgtgagaaac ttggacagct 540
 caatattgtat atttccaaca taaaaggat ttttagtagaa tattttaccc acatgtaaaa 600
 cgacggccag ttgagagctg tttcctgaa gtatgttca cttgttaat ttttgacttc 660
 cttctgttta actttctttaaagctatt ggtgtcagca accagagggaaaccactgt 720
 gtctgggaca agataactgg agagcctctc tacaatgtg tgggtaaagct gtcatgcgt 780
 gatgtcaaat gtagggcctt tttcacatt gcaatgtaaa acgacggccca gttcccttgat 840
 agtGatttca gtaaggctt atttttttaa atgaagttt tcatgtatata tattttttt 900
 tggctataag tggcttga tctaagaacc cagtttaccg ttgagagct tagaaaaga 960
 atccaggaa ataataactt tgcataaggta agaatttctt cagaagtata ctataagaat 1020
 gtttctttt taaaaaaag ttgcagatt tcactagaaa gaagcatttt atggtacaat 1080
 agttatgttca tacaatttttaa agaattttt tccggataa ttgaggccctg taaaacgacg 1140
 ggcagtttctt tttgttgggt gttttgtt taaactgtta cacttttcat ttgctactg 1200
 aacttcacaa ctgccttttag tccaaagacag gccttccact tagcacttac ttcagtgcag 1260
 tgaaacttcg ttggctcctt gacaatgtga gaaaagttca aaaggccgtt gaagaaaaac 1320
 gagctttttt tggactatt gattcatggc ttattttgggt atgtttaat ataatggata 1380
 tatggagaat ttttcagaa atttttcta gactgcctt cctattgtt ctactagcag 1440

RECEIVED
 SEP 09 2003
 TECH CENTER 1600/2003

RECEIVED

SEP 09 2003

TECH CENTER 16/02/2009

3/9

gtcagactt ttaatttagca tgtaaaaacga cggccagtt tgctctgctg attatgaccc 1500
ttaacaatat gtaaattaaa ttgccaataa gtacaaattt aacctgattt tttactctg 1560
ccttagagtt gacaggagga gtcaatggag gtgtccactg tacagatgta acaaatgcaa 1620
gtaggactat gctttcaac attcattttt tggaaatggga taaacaactc tgcgagtaag 1680
ttctgtttt ctctaaatat agtttccca atacactacc tatttataac cgaaatctta 1740
atattttcag atgtcagtgg agcatgtaaa acgacggcca gtacagtgtt aaataccaa 1800
tcttcgtt tttcagattt tttggaaattc caatggaaat tcttccaaat gtccggagtt 1860
cttctgagat ctatggcta atggtaaaaa acaaacaam aacaaaaaaa caaacaaaaa 1920
aaccaaaaaa caaacaaaaa aaaacctaattt aattaaagtt tactattcat aattcaaaag tcaactgtgt tatgtttt 1980
ctttttacaa tggaaagctg gggccttgg aggtgtgcc caccaagtgt ctccccatcc ccacccttcc ccatgtttagt 2040
tcagtgtgcc tctttttaaa cttagggaaaa caagtaaaag tggtttacaa tgtcatactg tggccattt agaatcttt 2100
tcccttccca tacattttt cttacatatt aacaaatggt gccaatgtt gttttttttt taagtttcat 2160
gccaatgtt gggaaatgaa ggaaatagac agttcattct aataaaatcct atggctttc taaaaagaaa gttataacta 2220
tattgtcatt tatacttca gtgttaggg gaccagtctg tgcttccaga ttggacaaggc caaaaatacg tgagttt 2280
ctaaatttgt aggctggcg cggttattt cttcaataa cccttcaacc ataggatgg aacaggatgt ttcttactat gtratacagg ccataagggtt 2340
ggttttttaa attaaaaat tgattttaa gtctaaatgc atctaaatataa ttgtttttttt 2400
taattttacta ttaaacaact ttttagtctt agttttact taatctttt cttttttttt 2460
tttagagctc aatacaaaat ttgaatcggtt ctaataagaa ccattttttaa ctctttaaattt 2520
tttatatgtg tgtttttaat tggctgggg gggaaatctg actgagacctt catcaatttcc 2580
ttaatgc当地 tctaatttga aacaaggaaat aaacttttta tacagctttaa atgtgttctt 2640
aattctgatc gtttttgcgt taaggattt tttttttttt tggtttattt attgcatttt 2700
tttgcattttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2760
ctactgaaat ctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2820
ccacagtggc ttacaaactt ggcagagaca aaccagtata ttatgttttgcgtt ccattttttaa ctctttaaattt 2880
ctttttttaatc aatatggata atatgacaaa cattcaaaagc taataaaaaat cacagagttt 2940
tctaacaactt ttctggtaaa tcttaataca gaggactcaa aaagttctgc tttttttttt 2980
tttgatttagt tgaaaggaac ctgaaactga tctgggtgtc aggactcaca ggagacctt 3040
attagattgg ttcttcagtt tttatgtttt tttatgtttt tttatgtttt tttatgtttt 3100
agagctctac aatgtgaggt tttttttttt tttatgtttt tttatgtttt tttatgtttt 3180
gctctctaaat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3240
tttatatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3300
ctttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3360
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3420
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3480
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3540
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3600
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3660
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3720
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3780
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3840
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3900
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 3960
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4020
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4080
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4140
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4200
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4260
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4320
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4380
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4440
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4500
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4560
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4620
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4680
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4740
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4800
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4860
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4920
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4980

RECEIVED

SEP 09 2003

4/9

TECH CENTER 1600/2000

attaggcaaa ggaaacagca caaacatagg catcaaggca gaaaaacagg gtgcaaaata 5040
gagttgtata gcttagctga atatcaaggt gaatgcagag gtgttagtgag agaaaaagggtt 5100
ggctgtgacc agatcaaaga gggcttagaa gaccagaata agaagtctca atttattcca 5160
taggctcttgaagcttgc agagttctg agtggaggat tgccattttc agagatgtta 5220
ctatgaaata gatttataac attaattgca ctggtttatt taagattttg gatccatga 5280
atcgagactg tggaaattcca ctcagtcatt tgcaggtaga tggaggaatg accagcaaca 5340
aaattcttat gcagctacaa gcagacattc tgtatatacc agtaggttag taagtcttca 5400
ttcctttaaa ctcccagagt aatgtttctt gtggaaataac tagttcttg ggtgtaaaac 5460
gacggccagt tcccagagta atgtttctt tggaataact agttcttgg gcatatgtaa 5520
ccacaaagat attgatggaa ctctctctcc tcagtgaagc cctcaatgcc cgaaaaccact 5580
gcactgggtt cggctatggc ggcaggggct gcagaaggag tcggcgtatg gagtctcgaa 5640
cccgaggatt tgcgtccgt cacgatggag cggttgaac ctcagattaa tgccggagggt 5700
acatttaaag aatgaaatgt tcagtgatat actgtaaaaa cgaccttagt gcacggggagt 5760
tttggggggc tggttagtta aaagttaaagg aaccaagttaa aatagtaaat gttatcattt 5820
cagattcggc tgccaaagcat attgggctt actgaataaa tgtgaatgag agaaaatcggt 5880
gcttatcaaa agaacttcta aaatcactt ttaaaaatca tttttctac cttctaattc 6060
agccctactg cagtttaatg tgcataataat ttgtcaagaa gatgtttttt gatgaagtca atgggttggg 6120
ggtaactaaga acatctcagc aaactacctt tcgttatgtt tagaaagtga aattcggtat tttattattgt cacattttct 6180
ttacaactca atctccagaa agtggtaaaa atgtttttgt tagtatatta aatagttatt taagttatcta ggcatttaca catagccagg ctgctctgaa 6240
gaaaagcatt atcatatgtc cagagattt gacattttga aaacacttta aagttctaaa 6300
cacaaaatgt aaattatcag gtgtgtaaa acgacggcca gttgggttgg tttgcttgac 6360
tggaaatctt tctgcttggc tgaccacagg tgaccctagt gcaaggatca tctcagggtta 6420
gggctttttt atagtgagta gcatggtaat gttaatcgga gttttctgt tataacttag 6480
gttactctt aaatttagaca actctattag ttatctttaa cagaaattttt tcagtggttt tcattcttctc tgcgtctagg 6540
ggtctaatta gttagaccaa ttaatctttt gggggcagttt aagctggaaa atcaattaaa 6600
gcttaccctt tttaaattttt taatgtgtatg actttctttaa ggggactac attctgctgt 6720
cagctgcagc aataagcaaa agtggaaaata ctaatattta aatgacagga ctttcagact 6780
gactgctgaa agttaaagta tactttaaaat tactggctta aatggaaatg atgcttctta 6840
ttctgtatgt tcccatgaaa gtgaaactta aaaaaaaaaat tcatgattttt ggtttcatga 6900
aaaggccctt tttctatgaa aatttgagaca ggttgcattt ctctaagctt aaagatgggc 6960
tatgtgtcta gagttttaga cttctaaaat gcatgtggc actatatgtt gtttatctt 7020
tcggtgacat acactgcaat ttgagaggggc tggaaattgtt ttgccttggg aaacgatttt 7080
caacagtggc aatattgtt aattttggaa ttggccctgt ttgttgattt ttaattgtga 7140
ggcatgattt agaaatcata tggacttttctc agcttaataa atgattgaat catctgcatt 7200
gctttaactc ctgaattgtt tgcattgtt attgacatat atggtttttgg tttccctt 7260
caggttattcc ataaaaaccta ccaactcatg gatttttttcaag atgtgagttt ttacataat 7320
gaaagaaccc agcaattctg tctcttaatg caatgacact attcatagac tttgatttt 7380
tttataagcc acttgctgca tgacccttca agtagacctg tggctttttttaa taaagaaaat 7440
gcagcaaaaaa gaatgtata gaaatattttt gttttttttttttaa acatccacag 7500
ttaagggttgg gccagctacc ttggggcttgc acccccttca ttgcataac atcctgctcc 7560
attccctcta agatgttagga agaattcgga tccttaccat tggaaatcttcc catgaacat 7620
actcaaacac ttttggacca ggatttttagt ctctgcatttgc catataactt attaaaaagggt 7680
tattactaac ctgtttttttttaa tcagcagctt tttgtttttttaa agagacaccc taaaagttttt 7740
cttttctaca tagttgaaga cagcaacatc ttcaactgtt gtttgaatag aaacctctac 7800
taaatttattta aatagacat tttagtggatcacagcttgc atatttttttca gaaaagtttt 7860
ttggccaaaac tgaaatcctt cagatgtttt ccattttttcc actaattata atgactttctt 7920
gtctgggtct tatagaaaaa gatacttttctt ttttttttttca atcttccctt tttatattttt 7980
.ttactttgtt tgcataacat acatgcctat atattttata cactgagggca gcccatttt 8040
aaataaaagag cacatttatat tcagaagggtt ctaacaggg 8079

<210> 6
<211> 41
<212> PRT
<213> Unknown

<220>
<223> GK N288D mutant

<400> 6
 Phe Gln Ile Gly Gln Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Leu
 1 5 10 15
 Leu Cys Asp Thr Gly His Lys Cys Val Phe Ser Asp His Gly Leu Leu
 20 25 30
 Thr Thr Val Ala Tyr Lys Leu Gly Arg
 35 40

<210> 7
<211> 41
<212> PRT
<213> *Homo sapiens*

<400> 7
 Phe Gln Ile Gly Gln Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Leu
 1 5 10 15
 Leu Cys Asn Thr Gly His Lys Cys Val Phe Ser Asp His Gly Leu Leu
 20 25 30
 Thr Thr Val Ala Tyr Lys Leu Gly Arg
 - 35 40

<210> 8
<211> 41
<212> PRT
<213> Unknown

<220>
<223> Rat

```

<400> 8
Phe Gln Asp Gly Gln Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Leu
   1          5          10          15
Leu Cys Asn Thr Gly His Lys Cys Val Phe Ser Glu His Gly Leu Leu
   20         25         30
Thr Thr Val Ala Tyr Lys Leu Gly Arg
   35         40

```

<210> 9
<211> 41
<212> PRT
<213> Unknown

<220>
<223> Mouse

<400> 9
 Phe Gln Asp Gly Gln Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Leu
 1 5 10 15
 Leu Cys Asn Thr Gly His Lys Cys Val Phe Ser Glu His Gly Leu Leu
 20 25 30
 Thr Thr Val Ala Tyr Lys Leu Gly Arg
 35 40

<210> 10
<211> 39
<212> PRT
<213> E. coli

<400> 10
Val Lys Glu Gly Met Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Met
1 5 10 15
Leu Met Asn Thr Gly Glu Lys Ala Val Lys Ser Glu Asn Gly Leu Leu
20 25 30
Thr Thr Ile Ala Cys Gly Pro
35

<210> 11
<211> 39
<212> PRT
<213> Pseudomonas aeruginosa.

<400> 11
Val Glu Pro Gly Gln Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Leu
1 5 10 15
Leu Met His Thr Gly Asp Lys Ala Val Lys Ser Thr His Gly Leu Leu
20 25 30
Thr Thr Ile Ala Cys Gly Pro
35

<210> 12
<211> 39
<212> PRT
<213> Enterococcus casseliflavus

<400> 12
Phe Glu Lys Gly Met Ile Lys Asn Thr Tyr Gly Thr Gly Ala Phe Ile
1 5 10 15
Val Met Asn Thr Gly Glu Glu Pro Gln Leu Ser Asp Asn Asp Leu Leu
20 25 30
Thr Thr Ile Gly Tyr Gly Ile
35

<210> 13
<211> 41
<212> PRT
<213> Haemophilus influenzae

<400> 13
Val His Ala Gly Gln Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Met
1 5 10 15
Leu Leu His Thr Gly Asn Lys Ala Ile Thr Ser Lys Asn Gly Leu Leu
20 25 30
Thr Thr Ile Ala Cys Asn Ala Lys Gly
35 40

<210> 14
<211> 39
<212> PRT

<213> *Bacillus subtilis*

<400> 14
 Phe Glu Glu Gly Met Gly Lys Asn Thr Tyr Gly Thr Gly Cys Phe Met
 1 5 10 15
 Leu Met Asn Thr Gly Glu Lys Ala Ile Lys Ser Glu His Gly Leu Leu
 20 25 30
 Thr Thr Ile Ala Trp Gly Ile
 35

<210> 15

<211> 41

<212> PRT

<213> *Saccharomyces cerevisiae*

<400> 15
 Tyr Lys Pro Gly Ala Ala Lys Cys Thr Tyr Gly Thr Gly Cys Phe Leu
 1 5 10 15
 Leu Tyr Asn Thr Gly Thr Lys Lys Leu Ile Ser Gln His Gly Ala Leu
 20 25 30
 Thr Thr Leu Ala Phe Trp Phe Pro His
 35 40

<210> 16

<211> 41

<212> PRT

<213> *Mycoplasma genitalium*

<400> 16
 Thr Glu Pro Gly Met Val Lys Asn Thr Tyr Gly Thr Gly Cys Phe Val
 1 5 10 15
 Leu Met Asn Ile Gly Asp Lys Pro Thr Leu Ser Lys His Asn Leu Leu
 20 25 30
 Thr Thr Val Ala Trp Gln Leu Glu Asn
 35 40

<210> 17

<211> 39

<212> PRT

<213> *Enterococcus faecalis*

<400> 17
 Phe Glu Pro Gly Met Val Lys Asn Thr Tyr Gly Thr Gly Ser Phe Ile
 1 5 10 15
 Val Met Asn Thr Gly Glu Glu Pro Gln Leu Ser Lys Asn Asn Leu Leu
 20 25 30
 Thr Thr Ile Gly Tyr Gly Ile
 35

{

<210> 18

<211> 41

<212> PRT

<213> *Mycoplasma pneumoniae*

<400> 18
 Val Glu Pro Ala Met Val Lys Asn Thr Tyr Gly Thr Gly Cys Phe Met
 1 5 10 15
 Leu Met Asn Ile Gly Asn Glu Leu Lys Tyr Ser Gln His Asn Leu Leu
 20 25 30
 Thr Thr Val Ala Trp Gln Leu Glu Asn
 35 40

<210> 19
<211> 41
<212> PRT
<213> Synechocystis PCC6803

<400> 19
 Asp Arg Pro Gly Leu Leu Lys Cys Thr Tyr Gly Thr Gly Ala Phe Leu
 1 5 10 15
 Val Ala Asn Thr Gly Gln Thr Val Thr Arg Ser Gln His Arg Leu Leu
 20 25 30
 Ser Thr Val Ala Trp Thr Gln Thr Asn
 35 40

<210> 20
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> GK gene polymorphism

<400> 20
 ggacargacc ct 12

<210> 21
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> GK gene polymorphism

<400> 21
 aaacaaaahaa acaaaa 16

<210> 22
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> GK gene polymorphism

<400> 22
 actatgtrat aca 13

<210> 23
<211> 16
<212> DNA

9/9

<213> Artificial Sequence

<220>

<223> GK gene polymorphism

<400> 23

aacaaaagkt tagaaa

16