CORRIGÉ DU DM N°1 (CAPES Ext. 2008)

Autour d'un théorème de Tchebychev concernant la répartition des nombres premiers.

PARTIE A : Une estimation à la Tchebychev

I. Une minoration de la fonction π

A.I.1.

A.I.1.a. Comme $a \in \mathbb{N}^*$, la fonction $x \to (1-x)^{a-1}$ est continue sur [0,1] et $\int_0^1 (1-x)^{a-1} dx = \frac{1}{a}$.

A.I.1.b. Une intégration par parties avec des fonctions polynomiales donc de classe \mathscr{C}^1 , donne

$$\mathrm{I}(b+1,a) = \int_0^1 \underbrace{x^b}_{=u} \underbrace{(1-x)^{a-b-1}}_{=v'} \, \mathrm{d}x = \left[\frac{1}{b-a} (1-x)^{a-b} \times x^b \right]_0^1 + \frac{b}{a-b} \int_0^1 x^{b-1} (1-x)^{a-b} \, \mathrm{d}x = \frac{b}{a-b} \mathrm{I}(b,a) \, .$$

A.I.1.c. On en déduit :

$$I(b,a) = \frac{b-1}{a-b+1}I(b-1,a) = \frac{b-1}{a-b+1}\frac{b-2}{a-b+2}I(b-2,a) = \cdots$$
$$= \frac{(b-1)!}{(a-b+1)\cdots(a-1)}I(1,a) = \frac{(b-1)!(a-b)!}{a!} = \frac{1}{b\binom{a}{b}}.$$

A.I.2.

A.I.2.a. Il suffit de développer par la formule du binôme :

$$\int_0^1 (1 - x + xy)^{a-1} \, \mathrm{d}x = \int_0^1 \sum_{j=0}^{a-1} \binom{a-1}{j} x^j y^j (1 - x)^{a-1-j} \, \mathrm{d}x$$

$$= \sum_{j=k-1}^a \sum_{k=1}^a \left(\int_0^1 \binom{a-1}{k-1} x^{k-1} (1 - x)^{a-k} \, \mathrm{d}x \right) y^{k-1} = \sum_{k=1}^a \binom{a-1}{k-1} \mathrm{I}(k, a) y^{k-1} \, .$$

A.I.2.b. Ainsi

$$\sum_{k=1}^{a} {a-1 \choose k-1} \mathbf{I}(k,a) y^{k-1} = \int_{0}^{1} (1+(y-1)x)^{a-1} dx$$

$$= \frac{1}{a(y-1)} \left[(1+(y-1)x)^{a} \right]_{0}^{1} = \frac{y^{a}-1}{a(y-1)} = \frac{1}{a} \sum_{k=1}^{a} y^{k-1}.$$

Par unicité de l'écriture d'un polynôme dans la base canonique de $\mathbb{R}[X]$ (en d'autres termes on « identifie » les coefficients des y^{k-1}), il vient : $\binom{a-1}{k-1} \mathrm{I}(k,a) = \frac{1}{a}$; donc, pour tout $k \in [\![1,a]\!]$:

$$I(k,a) = \frac{1}{a\binom{a-1}{k-1}}$$

ce qui, pour k = b, donne le résultat demandé.

A.I.3.

A.I.3.a. On a, en utilisant encore la formule du binôme :

$$\mathbf{I}(b,a) = \int_0^1 x^{b-1} (1-x)^{a-b} \, \mathrm{d}x = \int_0^1 \sum_{k=0}^{a-b} (-1)^k \binom{a-b}{k} x^{k+b-1} \, \mathrm{d}x = \sum_{k=0}^{a-b} (-1)^k \binom{a-b}{k} \frac{1}{k+b} \cdot \sum_{k=0}^{a-b} (-1)^k \binom{a-b}{k} \cdot \sum_$$

A.I.3.b. On remarque que si $k \in [0, a - b]$, alors $k + b \in [b, a]$. Ainsi $\frac{\Delta_a}{k + b} \in \mathbb{N}$.

$$\begin{array}{l} \text{Comme } \binom{a-b}{k} \in \mathbb{N}, \; (-1)^k \in \mathbb{Z}, \, \text{il vient } \, \mathrm{I}(b,a) \Delta_a \in \mathbb{Z}. \\ \text{Mais } \mathrm{I}(b,a) > 0 \, \text{ et } \, \Delta_a \in \mathbb{N}. \, \text{Donc } \, \mathrm{I}(b,a) \Delta_a \in \mathbb{N}. \end{array}$$

Or
$$I(b, a)\Delta_a = \frac{\Delta_a}{b\binom{a}{b}}$$
 donc $b\binom{a}{b}$ divise Δ_a .

A.I.4.

A.I.4.a. Pour a = 2n et b = n, la question précédente donne $n \binom{2n}{n}$ divise Δ_{2n} , qui lui-même divise Δ_{2n+1} .

Et
$$(2n+1)\binom{2n}{n}=\frac{(2n+1)!}{n!n!}=(n+1)\binom{2n+1}{n+1}$$
 divise Δ_{2n+1} , toujours d'après la question précédente.

A.I.4.b. On remarque que n et 2n+1 sont premiers entre eux, car si p>1 divise n, il divise 2n et ne peut diviser 2n + 1 (sinon il diviserait leur différence!).

Par le lemme de Gauss et la remarque précédente, le produit $n(2n+1)\binom{2n}{n}$ divise Δ_{2n+1} .

A.I.4.c. Posons $u_{n,k} = {2n \choose k}$, pour $k \in [0, 2n]$. On a :

$$\frac{u_{n,k+1}}{u_{n,k}} = \frac{2n - k}{k+1}$$

Ainsi, $\frac{u_{n,k+1}}{u_{n,k}} \le 1$ (resp. > 1) si et seulement si $k \le n - \frac{1}{2}$ (resp. $k > n - \frac{1}{2}$).

Ainsi la suite $(u_{n,k})_k$ est croissante sur [0, n-1] et décroissante sur [n, 2n].

Or $u_{n,n-1} = \frac{n}{n+1} \times u_{n,n} < u_{n,n}$. Tous les termes de la suite sont donc bien inférieurs à $u_{n,n} = \binom{2n}{n}$.

A.I.4.d. On a

$$4^{n} = (1+1)^{2n} = \sum_{k=0}^{2n} {2n \choose k} \le (2n+1) {2n \choose n},$$

en majorant chaque terme par le maximum, puisqu'il y a 2n+1 termes.

A.I.4.e. On sait que $n(2n+1)\binom{2n}{n}$ divise Δ_{2n+1} , donc lui est inférieur, et que $(2n+1)\binom{2n}{n} \ge 4^n$. Donc

A.I.4.f. Soit $n \ge 9$. Si n est impair, on pose n = 2m + 1 avec $m \ge 4$. Alors d'après la question précédente

$$\Delta_n \ge m4^m = \frac{n-1}{2}2^{n-1} \ge 4 \times 2^{n-1} > 2^n$$
.

Si n est pair, on pose n = 2m avec $m \ge 5$, et l'on a

$$\Delta_n = \Delta_{2m} \ge \Delta_{2m-1} \ge (m-1)4^{m-1} = \left(\frac{n}{2} - 1\right)2^{n-2} \ge 4 \times 2^{n-2} = 2^n$$

ce qui établit le résultat dans tous les cas.

On vérifie ensuite que ce résultat reste valable pour n=7 et n=8 à l'aide de la calculatrice :

$$\Delta_8 = 840 > 2^8 = 256, \Delta_7 = 420 > 2^7 = 128, \text{ mais } \Delta_6 = 60 < 2^6 = 64.$$

A.I.5.

A.I.5.a. D'après la propriété rappelée en début d'énoncé concernant la valuation d'un ppcm, on a :

$$\mathbf{v}_p(\Delta_n) = \max(\mathbf{v}_p(2), \dots, \mathbf{v}_p(n)).$$

En particulier, il existe un entier $k \in [1, n]$ tel que $\nu_p(\Delta_n) = \nu_p(k)$. Dono

$$p^{\mathbf{v}_p(\Delta_n)} = p^{\mathbf{v}_p(k)} \leqslant \prod_{p \in \mathcal{P}} p^{\mathbf{v}_p(k)} = k \leqslant n \,.$$

A.I.5.b. Il résulte de l'inégalité précédente que, si $p \in \mathcal{P}$ est tel que $v_p(\Delta_n) \ge 1$, on a $p \le p^{\nu_p(\Delta_n)} \le n$, donc si p est un nombre premier tel que p > n on a nécessairement $\nu_p(\Delta_n) = 0$ donc

$$\Delta_n = \prod_{p \in \mathcal{P}} p^{v_p(\Delta_n)} = \prod_{p \le n} p^{v_p(\Delta_n)}.$$

A.I.5.c. Donc en utilisant la majoration de A.I.5.a:

$$\Delta_n = \prod_{p \le n} p^{\nu_p(\Delta_n)} \le \prod_{p \le n} n = n^{\pi(n)}.$$

A.I.6.

A.I.6.a. On sait que $n^{\pi(n)} \ge \Delta_n \ge 2^n$, cette dernière inégalité étant vraie pour $n \ge 7$. En prenant le logarithme : $\pi(n) \ge \ln 2 \times \frac{n}{\ln n}$.

A.I.6.b. . On a $\pi(2) = 1 < 2$, $\pi(3) = 2 \ge 1.892789260$, $\pi(4) = 2 \ge 22$, $\pi(5) = 3 \ge 2.153382791$ et $\pi(6) = 3 \ge 2.321116844$, donc l'inégalité est en fait valable pour tout $n \ge 3$.

II. Une majoration de la fonction π

A.II.1.

A.II.1.a. Par définition :

$$\binom{b}{a} = \frac{(a+1) \times \dots \times (b-1) \times b}{(b-a)!}.$$

Soit p premier tel que a (s'il en existe!) Alors <math>p figure dans le produit $(a+1) \times \cdots \times (b-1) \times b$ et par suite p divise $(b-a)! \binom{b}{a}$.

Mais compte tenu de l'hypothèse de l'énoncé, on a $b-a \le a$ donc p est strictement plus grand que tous les entiers qui figurent dans le produit (b-a)!; il est donc premier avec tous ces entiers, donc avec leur produit, et d'après le théorème de Gauss, on en déduit que p divise $\binom{b}{a}$. Comme il s'agit de nombres

premiers, le produit $\prod_{a divise aussi <math>\binom{b}{a}$.

A.II.1.b. Il suffit que remarquer que si a=m+1 et b=2m+1, alors $0<\frac{b}{2} \le a < b$; on peut donc directement appliquer le résultat précédent.

A.II.1.c. . Il suffit ici d'utiliser la propriété bien connue $\binom{n}{k} = \binom{n}{n-k}...$

A.II.1.d. Facilement :

$$4^m \times 2 = 2^{2m+1} = (1+1)^{2m+1} = \sum_{k=0}^{2m+1} \binom{2m+1}{k} \ge \binom{2m+1}{m} + \binom{2m+1}{m+1} = 2\binom{2m+1}{m}.$$

A.II.1.e.
$$\prod_{m+1 \le n \le 2m+1} p$$
 divise $\binom{2m+1}{m}$ donc $\prod_{m+1 \le n \le 2m+1} p \le \binom{2m+1}{m} \le 4^m$.

A.II.1.f. Montrons par récurrence la propriété P_n .

- pour n=1, l'entier k appartient alors à $\{1,2\}$. Pour k=1 on a $\prod_{p\leqslant 1} p=1$ (par convention, car il n'y a aucun nombre premier $\leqslant 1$!) et $1\leqslant 4$; pour k=2 $\prod_{p\leqslant 2} p=$ et $2\leqslant 4^2\ldots$
- $\bullet\,\,$ supposons la propriété $P_n\,$ vérifiée. Il s'agit de démontrer $P_{n+1}\,$ c'est-à-dire

$$\forall k \in \llbracket 1, 2n+2 \rrbracket \ , \ \prod_{p \leqslant k} p \leqslant 4^k \, .$$

Compte tenu de P_n , il suffit de le vérifier pour k=2n+1 et k=2n+2. De plus 2n+2=2(n+1) n'étant pas un nombre premier, on a $\prod_{p\leqslant 2n+2} p=\prod_{p\leqslant 2n+1} p$ donc il ne reste plus qu'à démontrer l'inégalité ____

 $\prod_{p\leqslant 2n+1}p\leqslant 4^{2n+1},$ ce qui découle de la question précédente puis que :

$$\prod_{p \leqslant 2n+1} p = \prod_{n+1$$

Cela achève la récurrence.

A.II.2.

A.II.2.a. Pour les 5/2: on sait que $e^m = \sum_{k=0}^{\infty} \frac{m^k}{k!}$ donc $e^m > \frac{m^m}{m!}$.

$$\begin{aligned} &Sinon: \text{en posant } u_m = \frac{m! \mathrm{e}^m}{m^m} \text{ on a } \frac{u_{m+1}}{u_m} = \mathrm{e}\left(\frac{m}{m+1}\right)^m \text{ donc } \ln\left(\frac{u_{m+1}}{u_m}\right) = 1 - m\ln\left(1 + \frac{1}{m}\right); \\ &\text{on connaît l'inégalité } \ln(1+x) \leqslant x \text{ pour tout réel } x > -1, \\ &\text{donc } \ln\left(1 + \frac{1}{m}\right) \leqslant \frac{1}{m} \text{ et } \ln\left(\frac{u_{m+1}}{u_m}\right) \geqslant 0; \\ &\text{on a donc } \frac{u_{m+1}}{u_m} \geqslant 1 \text{ et la suite } (u_m) \text{ est croissante.} \end{aligned}$$

On aura donc pour tout $m \in \mathbb{N}^*$ $u_m \ge u_1 \ge 1$, ce qui donne l'inégalité demandée.

A.II.2.b. Notons p_k le k-ième nombre premier $(p_1 = 2, p_2 = 3...)$. Ainsi les nombres premiers inférieurs à n sont $p_1, p_2, \ldots, p_{\pi(n)}$. De plus on a de façon évidente $p_k \ge k$ pour tout k donc

$$\pi(n)! = 2 \times 3 \times \cdots \times \pi(n) \leq p_1 \times p_2 \times \cdots \times p_{\pi(n)} = \prod_{p \leq n} p \leq 4^n.$$

Puisque d'après la question précédente $\pi(n)! \geqslant \left(\frac{\pi(n)}{\mathrm{e}}\right)^{\pi(n)}$ on en déduit $\left(\frac{\pi(n)}{\mathrm{e}}\right)^{\pi(n)} \leqslant 4^n$ puis en prenant le logarithme :

$$\pi(n) \left(\ln(\pi(n)) - 1 \right) \le n \ln 4.$$

A.II.3.

A.II.3.a. Si $f(x) = x \ln x - x$, alors $f'(x) = \ln x$ montre que la fonction f est strictement croissante sur $[1, +\infty[$.

Supposons que $e^{\frac{n_0}{\ln n_0}} < \pi(n_0)$.

La question précédente montre que $f(\pi(n_0)) \leq n_0 \ln 4$. Par stricte croissance de la fonction f on aura

$$f\left(e\frac{n_0}{\ln n_0}\right) < f(\pi(n_0)) \le n_0 \ln 4$$

ce qui implique, en utilisant la définition de f:

$$\frac{\mathbf{e}}{\ln n_0} (\ln n_0 - \ln \ln n_0) < \ln 4$$

soit

$$\frac{\ln \ln n_0}{\ln n_0} > 1 - \frac{\ln 4}{\mathbf{e}} \cdot$$

A.II.3.b. Une étude rapide de la fonction $g: x \mapsto \frac{\ln x}{x}$ sur $[1, +\infty[$, montre que pour tout $x \ge 1$, $0 \le g(x) \le e^{-1}$, le maximum étant atteint en x = e. Ainsi

$$\frac{\ln 4}{\mathrm{e}} < \frac{\ln \ln n_0}{\ln n_0} \leqslant \frac{1}{\mathrm{e}}$$

soit $e < 1 + \ln 4$, ce qui est faux car $e \approx 2.718 > 1 + \ln(4) \approx 2.386$.

PARTIE B : Autour d'un théorème de Mertens

I. Une formule de Legendre sur la valuation p-adique de n!

B.I.1. L'ensemble des entiers $k \in \mathbb{N}$ tels que $n < p^k$ est non vide (car $\lim_{k \to +\infty} p^k = +\infty$). Il admet donc un plus petit élément k_0 .

Comme $n \ge 2$, il vient $k_0 \ge 1$ et cet entier k_0 est défini par

$$p^{k_0 - 1} \le n < p^{k_0} \iff (k_0 - 1) \ln p \le \ln n < k_0 \ln p \iff k_0 - 1 = \left| \frac{\ln n}{\ln p} \right|$$
.

B.I.2.

B.I.2.a. Si p^{k+1} divise a, alors p^k divise également a. Donc $\mathbf{U}_{k+1}\subseteq \mathbf{U}_k$.

Si $k \in [0, k_0 - 1]$, on a $p^k \le n$ par définition de k_0 . Donc $p^k \in U_k$. Mais p^{k+1} ne divise pas p^k , c'est-à-dire que p^k n'appartient pas à U_{k+1} ; cela prouve l'inclusion stricte $U_{k+1} \subsetneq U_k$.

Si $k \ge k_0$, on a $n < p^k$ donc p^k ne peut diviser aucun entier de [1, n] et $U_k = \emptyset$.

B.I.2.b. Il suffit de passer aux complémentaires (car V_k est le complémentaire de U_k dans [1, n]).

B.I.2.c. Il est évident que $\Omega_i \cap \Omega_j = \emptyset$ pour $i \neq j$, puisque $\nu_p(a)$ est unique.

Si
$$a \in \Omega_i$$
, alors $a \in [\![1,n]\!]$ par définition, donc $\bigcup_{i=0}^{k_0-1} \Omega_i \subset [\![1,n]\!]$.

Réciproquement, soit $a \in [\![1,n]\!]$. On décompose a en facteurs premiers :

$$a = p_1^{\nu_{p_1}}(a) \times p_2^{\nu_{p_2}}(a) \times \dots \times p_j^{\nu_{p_j}}(a)$$

- s'il existe i tel que $p=p_i$, soit $k=\mathbf{v}_p(a)$; alors $k\leqslant k_0-1$ car sinon on aurait $p^k>n$ d'où a>n ce qui est faux; donc $a\in\Omega_k\subset\bigcup_{i=0}^{k_0-1}\Omega_i$.

- sinon,
$$v_p(a) = 0$$
 et $a \in \Omega_0 \subset \bigcup_{i=0}^{k_0-1} \Omega_i$.

On a donc démontré l'autre inclusion $[\![1,n]\!]\subset\bigcup_{i=0}^{k_0-1}\Omega_i,$ d'où l'égalité de ces deux ensembles.

B.I.3.

B.I.3.a. Un entier a appartient à Ω_k si et seulement si $\nu_p(a) = k$ c'est-à-dire si et seulement si p^k divise a et p^{k+1} ne divise pas a (par définition de $\nu_p(a)$). Cela équivaut à dire que $a \in U_k \cap V_{k+1}$.

B.I.3.b. Pour $k \ge 1$, les éléments de U_k sont $p^k, 2p^k, \ldots, jp^k, \ldots$ avec $jp^k \le n$ soit $j \le \left\lfloor \frac{n}{p^k} \right\rfloor$. Donc $\operatorname{card}(U_k) = \left\lfloor \frac{n}{p^k} \right\rfloor$. Par passage au complémentaire, $\operatorname{card}(V_k) = n - \left\lfloor \frac{n}{p^k} \right\rfloor$.

Enfin, on connaît la formule:

$$\operatorname{card}(\mathbf{U}_k \cap \mathbf{V}_{k+1} = \operatorname{card}(\mathbf{U}_k) + \operatorname{card}(\mathbf{V}_{k+1}) - \operatorname{card}(\mathbf{U}_k \cup \mathbf{V}_{k+1}).$$

Or $U_{k+1} \cup V_{k+1} = \llbracket 1, n \rrbracket$ (ils sont complémentaires) donc aussi $U_k \cup V_{k+1} = \llbracket 1, n \rrbracket$ (puisque $U_{k+1} \subset U_k \subset \llbracket 1, n \rrbracket$). On a donc $\operatorname{card}(U_k \cup V_{k+1}) = n$ et la formule précédente conduit à

$$\operatorname{card}(\mathbf{U}_k \cap \mathbf{V}_{k+1} = \left\lfloor \frac{n}{p^k} \right\rfloor + \left(n - \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \right) - n = \left\lfloor \frac{n}{p^k} \right\rfloor - \left\lfloor \frac{n}{p^{k+1}} \right\rfloor.$$

B.I.4. Comme $n! = \prod_{1 \le a \le n} k$, on a : $\mathbf{v}_p(n!) = \sum_{a=1}^n \mathbf{v}_p(a)$. D'après la question **B.I.2.c** :-

$$\nu_p(n!) = \sum_{a=1}^n \nu_p(a) = \sum_{k=0}^{k_0-1} k \operatorname{card}(\Omega_k) = \sum_{k=0}^{+\infty} k \operatorname{card}(\Omega_k)$$

puisque $\operatorname{card}(\Omega_k) = 0$ pour $k \ge k_0$

Donc

$$\begin{split} \mathbf{v}_p(n!) &= \sum_{k \geqslant 0} \left(k \left\lfloor \frac{n}{p^k} \right\rfloor - k \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \right) \\ &= \sum_{k \geqslant 0} \left(k \left\lfloor \frac{n}{p^k} \right\rfloor - (k+1) \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \right) + \sum_{k \geqslant 0} \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \\ &= \sum_{k \geqslant 0} \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \text{ (par t\'el\'escopage et somme finie)} \\ &= \sum_{k \geqslant 1} \left\lfloor \frac{n}{p^k} \right\rfloor \left(= \sum_{k=1}^{k_0-1} \left\lfloor \frac{n}{p^k} \right\rfloor = \sum_{k=1}^{k_0} \left\lfloor \frac{n}{p^k} \right\rfloor \right) \end{split}$$

II. Un théorème de Mertens

B.II.1. On sait que $x-1<\lfloor x\rfloor\leqslant x.$ Donc, par la formule de Legendre

$$\sum_{k=1}^{k_0} \left(\frac{n}{p^k}-1\right) < \operatorname{v}_p(n!) \leqslant \sum_{k=1}^{k_0-1} \frac{n}{p^k}$$

Or d'une part

$$\sum_{k=1}^{k_0} \left(\frac{n}{p^k} - 1 \right) \geqslant \frac{n}{p} - 1$$

(car tous les termes de la somme sont positifs) et d'autre part

$$\sum_{k=1}^{k_0} \frac{n}{p^k} \le \sum_{k=1}^{+\infty} \frac{n}{p^k} = \frac{n}{p} \frac{1}{1 - \frac{1}{p}} = \frac{n}{p - 1}$$

car on a ici reconnu une série géométrique convergente de raison $\frac{1}{p}$.

Puisque $\frac{n}{p-1} = \frac{n}{p} + \frac{n}{p(p-1)}$, on obtient bien la double inégalité de l'énoncé.

B.II.2. La décomposition de n! en facteurs premiers s'écrit

$$n! = \prod_{p \le n} p^{\nu_p(n!)} \,.$$

Donc

$$\ln(n!) = \sum_{p \le n} \nu_p(n!) \ln p.$$

Or

$$\frac{n}{p} - 1 < \nu_p(n!) \le \frac{n}{p} + \frac{n}{p(p-1)}$$

Donc

$$n\sum_{p\leqslant n}\frac{\ln p}{p}-\sum_{p\leqslant n}\ln p<\ln n!\leqslant n\sum_{p\leqslant n}\frac{\ln p}{p}+n\sum_{p\leqslant n}\frac{\ln p}{p(p-1)}$$

B.II.3.

B.II.3.a. La série entière $\sum \frac{x^k}{2^k}$ admet R=2 comme rayon de convergence et a pour somme

$$\forall x \in]-2,2[\ , \ f(x) = \sum_{k=0}^{+\infty} \frac{x^k}{2^k} = \frac{1}{1-\frac{x}{2}} = \frac{2}{2-x} \quad \text{(série géométrique)} \, .$$

Pour tout x tel que |x| < 2, on peut dériver cette série terme à terme. Il vient

$$\forall x \in]-2,2[, f'(x) = \sum_{k=1} @+\infty \frac{k}{2^k} x^{k-1} = \frac{2}{(2-x)^2}.$$

Pour x = 1, on obtient

$$\sum_{k=1}^{+\infty} \frac{k}{2^k} = 2.$$

B.II.3.b. On sait que pour $m \ge 2$

$$\frac{1}{m(m-1)} = \frac{1}{m-1} - \frac{1}{m}$$

Donc

$$\sum_{m=2^{r-1}+1}^{2^r} \frac{1}{m(m-1)} = \sum_{m=2^{r-1}+1}^{2^r} \left(\frac{1}{m-1} - \frac{1}{m} \right) = \frac{1}{2^{r-1}} - \frac{1}{2^r} = \frac{1}{2^r}$$

Ainsi

$$U_r = \sum_{m=2^{r-1}+1}^{2^r} \frac{\ln m}{m(m-1)} \le \ln(2^r) \sum_{m=2^{r-1}+1}^{2^r} \frac{1}{m(m-1)} \le \frac{r \ln 2}{2^r} \cdot$$

B.II.3.c. La série de terme général U_r converge car $0 < U_r \le \ln 2 \frac{r}{2^r}$, qui est le terme général d'une série à termes positifs convergente et

$$\sum_{r=1}^{+\infty} \mathbf{U}_r \leqslant 2 \ln 2 = \ln 4.$$

B.II.3.d. Comme, pour $m \ge 2$, $\frac{\ln m}{m(m-1)} > 0$, on peut sommer la série $\sum \frac{\ln m}{m(m-1)}$ par paquets et

$$\sum_{m=2}^{+\infty} \frac{\ln m}{m(m-1)} = \sum_{r=1}^{+\infty} \mathbf{U}_r \le \ln 4.$$

B.II.3.e. On a, pour $u \ge 0$

$$\ln(1+u) = \int_0^u \frac{dt}{1+t} \le u$$

et la formule de Taylor avec reste intégrale pour la fonction $u\mapsto \ln(1+u)$, qui est de classe \mathscr{C}^{∞} , donne

$$\ln(1+u) = u - \frac{u^2}{2} + \int_0^u (t-u) \times \frac{dt}{(1+t)^2} \ge u - \frac{u^2}{2}.$$

(on pouvait aussi, bien sûr, étudier les fonctions $u \mapsto \ln(1+u) - u$ et $u \mapsto \ln(1+u) - u + \frac{u^2}{2}$).

Il suffit ensuite de remplacer u par $\frac{1}{n}$ pour montrer que

$$1 - \frac{1}{2n} \le n \ln \left(1 + \frac{1}{n} \right) \le 1$$

et

$$\ln\left(1+\frac{1}{n}\right) \geqslant \frac{1}{n} - \frac{1}{2n^2} \geqslant \frac{1}{n} - \frac{1}{2n} = \frac{1}{2n}$$

B.II.3.f. - Première méthode : Comme le suggère l'énoncé, démontrons la propriété

 (P_n) : il existe un réel $\theta_n \in [0,1]$ tq $\ln n! = n \ln n - n + 1 + \theta_n \ln n$

par récurrence sur n.

- On le vérifie aisément pour n=1 (!) et n=2 (on trouve $\theta_2 = \frac{1-\ln 2}{\ln 2} \approx 0,44$).
- Supposons la propriété acquise à l'ordre n. Alors

$$\ln(n+1)! = \ln n! + \ln(n+1) = n \ln n - n + 1 + \theta_n \ln n + \ln(n+1)$$

$$= (n+1)\ln(n+1) - (n+1) + 1 + \underbrace{\left[1 - n \ln\left(1 + \frac{1}{n}\right) + \theta_n \ln n\right]}_{-\Delta} \quad (*)$$

En utilisant les inégalités démontrées dans la question précédente, ainsi que la propriété $\theta_n \in [0,1]$ on a

$$A_n \le 1 - \left(1 - \frac{1}{2n}\right) + \theta_n \ln n \le \frac{1}{2n} + \ln n \le \ln\left(1 + \frac{1}{n}\right) + \ln n = \ln(n+1)$$

et

$$A_n \ge 1 - 1 + \theta_n \ln n \ge 0.$$

 A_n étant compris entre 0 et $\ln(n+1)$ il existe bien un réel $\theta_{n+1} \in [0,1]$ tel que $A_n = \theta_{n+1} \ln(n+1)$, ce qui, en remplaçant dans (*) donne la propriété à l'ordre n+1 et achève la récurrence.

- Seconde méthode (bien meilleure): Utilisons une comparaison série/intégrale. La fonction $t \mapsto \ln t$ est croissante sur \mathbb{R}^{+*} . Donc, pour tout entier $k \ge 1$

$$\ln k \le \int_{k}^{k+1} \ln t \, \mathrm{d}t \le \ln(k+1)$$

et

$$\sum_{k=1}^{n-1} \ln k \le \int_{1}^{n} \ln t \, dt \le \sum_{k=1}^{n} \ln k.$$

Donc (une primitive de $t \mapsto \ln t$ étant $t \mapsto t \ln t - t$):

$$\ln n! - \ln n \le n \ln n - n + 1 \le \ln n!$$

soit $0 \le \ln n! - n \ln n + n - 1 \le \ln n$. Il existe donc un réel $\theta_n \in [0,1]$ tel que pour tout $n \ge 1$

$$\ln n! = n \ln n - n + 1 + \theta_n \ln n.$$

B.II.4. En utilisant les questions B.II, il vient

$$\sum_{p \le n} \frac{\ln p}{p} \ge \frac{\ln n!}{n} - \sum_{p \le n} \frac{\ln p}{p(p-1)}$$

$$\ge \ln n - 1 + \frac{1}{n} + \theta_n \frac{\ln n}{n} - \sum_{p \le n} \frac{\ln p}{p(p-1)}$$

$$\ge \ln n - 1 - \ln 4 + \frac{1}{n} + \theta_n \frac{\ln n}{n}$$

$$\ge \ln n - 1 - \ln 4.$$

B.II.5. De même

$$\sum_{p \le n} \frac{\ln p}{p} \le \frac{\ln n!}{n} + \frac{1}{n} \sum_{p \le n} \ln p$$

$$\le \ln n - 1 + \frac{1}{n} + \theta_n \frac{\ln n}{n} + \frac{1}{n} \sum_{p \le n} \ln p$$

$$\le \ln n - 1 + \frac{1}{n} + \theta_n \frac{\ln n}{n} + \ln 4 \quad \text{(en prenant le logarithme dans A.II.1.f)}$$

$$\le \ln n + \frac{\ln n - (n-1)}{n} + \ln 4 \le \ln n + \ln 4 \quad \text{(car } \ln x \le x - 1)$$

Ainsi

$$-\ln 4 - 1 \leqslant \sum_{p \leqslant n} \frac{\ln p}{p} - \ln n \leqslant \ln 4$$

ce qui montre que $\sum_{p \le n} \frac{\ln p}{p} = \ln n + O(1)$.

III. Le comportement asymptotique de
$$\left(\sum_{p\leqslant n}\frac{1}{p}\right)_n$$

B.III.1.

B.III.1.a. On « sait » que la série $\sum \frac{1}{n \ln^2 n}$ converge (série de Bertrand, avec $\alpha = 1$ et $\beta = 2$), alors que la série $\sum \frac{1}{n \ln n}$ diverge (cas $\alpha = \beta = 1$). Les séries de Bertrand *n'étant pas au programme*, il faut le redémontrer.

Pour ce faire, on procède par comparaison série/intégrale :

$$\int_{2}^{X} \frac{dt}{t \ln^{2} t} = \int_{\ln 2}^{\ln X} \frac{du}{u^{2}} = \frac{1}{\ln 2} - \frac{1}{\ln X} \text{ donc l'intégrale } \int_{2}^{+\infty} \frac{dt}{t \ln^{2} t} \text{ existe et vaut } \frac{1}{\ln 2}$$

et

$$\int_2^{\mathbf{X}} \frac{\mathrm{d}t}{t \ln t} = \int_{\ln 2}^{\ln \mathbf{X}} \frac{\mathrm{d}u}{u} = \ln \ln \mathbf{X} - \ln \ln 2 \underset{\mathbf{X} \to +\infty}{\longrightarrow} +\infty \text{ donc l'intégrale } \int_2^{+\infty} \frac{\mathrm{d}t}{t \ln t} \text{ diverge.}$$

Les fonctions $t\mapsto \frac{1}{t\ln t}$ et $t\mapsto \frac{1}{t\ln^2 t}$ étant continues, positives et décroissantes sur $[2,+\infty[$, le théorème du cours affirme alors que la série $\sum \frac{1}{n\ln^2 n}$ est de même nature que l'intégrale $\int_2^{+\infty} \frac{\mathrm{d}t}{t\ln^2 t}$, donc converge, et que la série $\sum \frac{1}{n\ln n}$ est de même nature que l'intégrale $\int_2^{+\infty} \frac{\mathrm{d}t}{t\ln t}$, donc diverge.

Plus précisément : par décroissance de $t\mapsto \frac{1}{t\ln t}$ sur $[2,+\infty[$

$$\forall k \ge 2, \ \frac{1}{(k+1)\ln(k+1)} \le \int_{k}^{k+1} \frac{\mathrm{d}t}{t\ln t} \le \frac{1}{k\ln k}$$

puis

$$\sum_{k=3}^{\mathcal{N}} \frac{1}{k \ln k} \leqslant \int_{2}^{\mathcal{N}} \frac{dt}{t \ln t} = \ln \ln \mathcal{N} - \ln \ln 2 \leqslant \sum_{k=2}^{\mathcal{N}-1} \frac{1}{k \ln k}$$

et enfin

$$-\ln \ln 2 \le \sum_{k=2}^{N-1} \frac{1}{k \ln k} - \ln \ln N \le -\ln \ln 2 + \frac{1}{2 \ln 2} - \frac{1}{N \ln N}$$

 $\text{Donc } \sum_{k=2}^{n-1} \frac{1}{k \ln k} - \ln \ln n \text{ est born\'ee c'est-\`a-dire } \sum_{k=2}^{n-1} \frac{1}{k \ln k} = \ln \ln n + \mathrm{O}(1) \,.$

B.III.1.b. On a

$$u_{n+1} - u_n = \frac{1}{n \ln n} - \ln \left(\frac{\ln(\ln(n+1))}{\ln n} \right)$$

$$= \frac{1}{n \ln n} - \ln \left(1 + \frac{\ln(1+1/n)}{\ln n} \right)$$

$$= \frac{1}{n \ln n} - \ln \left(1 + \frac{1}{n \ln n} - \frac{1}{2n^2 \ln n} + o\left(\frac{1}{n^2 \ln n}\right) \right)$$

$$= \frac{1}{2n^2 \ln n} + o\left(\frac{1}{n^2 \ln n}\right).$$

B.III.1.c. La série $\sum (u_{n+1} - u_n)$ est convergente car son terme général est équivalent quand $n \to +\infty$ à $\frac{1}{2n^2 \ln n}$, terme général d'une série à termes positifs convergente.

Il en résulte que la suite (u_n) converge; si ℓ est sa limite on a $u_n = \ell + \mathrm{o}(1)$ soit

$$\sum_{k=2}^{n-1} \frac{1}{k \ln k} = \ln \ln n + \ell + o(1).$$

B.III.2.

B.III.2.a. Montrons d'abord la transformation d'Abel. On a $a_n = A_n - A_{n-1}$ pour $n \ge 1$, en posant $A_0 = 0$ d'où :

$$\sum_{n=1}^{N} a_n b_n = \sum_{n=1}^{N} (A_n - A_{n-1}) b_n = \sum_{n=1}^{N} A_n b_n - \sum_{n=0}^{N-1} A_n b_{n+1}$$
$$= A_N b_N + \sum_{n=1}^{N-1} A_n (b_n - b_{n+1})$$

On écrit ensuite, avec $a_n = \delta(n) \frac{\ln n}{n}$ et $b_n = \frac{1}{\ln n}$,

$$\sum_{p \le n} \frac{1}{p} = \sum_{k=2}^{n} \delta(k) \frac{\ln k}{k} \times \frac{1}{\ln k}$$

$$= \sum_{k=2}^{n} \left(\delta(k) \frac{\ln k}{k} \right) \times \frac{1}{\ln n} + \sum_{k=2}^{n-1} \psi(k) \left(\frac{1}{\ln n} - \frac{1}{\ln(n+1)} \right)$$

$$= \frac{\psi(n)}{\ln n} + \sum_{k=2}^{n-1} \psi(k) \left(\frac{\ln(1+1/k)}{(\ln k)(\ln(k+1))} \right)$$

B.III.2.b. On fait un simple développement asymptotique 'l'indication de l'énoncé est inutilement compliquée) :

$$\begin{split} \psi(k) \frac{\ln(1+1/k)}{\ln k \ln(k+1)} &= \psi(k) \frac{\frac{1}{k} + \mathcal{O}(1/k^2)}{\ln^2(k)(1+\frac{1}{k} + \mathcal{O}(1/k^2))} \\ &= \frac{\psi(k)}{\ln^2 k} \times \left(\frac{1}{k} + \mathcal{O}\left(\frac{1}{k^2}\right)\right) \\ &= \frac{\ln k + \mathcal{O}(1)}{\ln^2 k} \times \left(\frac{1}{k} + \mathcal{O}\left(\frac{1}{k^2}\right)\right) \quad \text{(d'après le théorème de Mertens)} \\ &= \frac{1}{k \ln k} + \mathcal{O}\left(\frac{1}{k \ln^2 k}\right). \end{split}$$

B.III.3. On a

$$\sum_{p \le n} \frac{1}{p} = \sum_{k=2}^{n-1} \psi(k) \frac{\ln(1+1/k)}{\ln k \ln(k+1)} + \frac{\psi(n)}{n}$$

avec $\psi(k) \frac{\ln(1+1/k)}{\ln k \ln(k+1)} = \frac{1}{k \ln k} + v_k$, où v_k est le terme général d'une série absolument convergente. En notant V_n sa somme partielle d'ordre n, il vient

$$\sum_{p \le n} \frac{1}{p} = \sum_{k=2}^{n-1} \frac{1}{k \ln k} + V_{n-1} + \frac{\psi(n)}{n} = \ln \ln n + \ell + O(1) + V_{n-1} + \frac{\ln n + O(1)}{n} = \ln \ln n + \lambda + +O(1).$$

B.III.4. Écrivons

$$\begin{split} \sum_{k=1}^{n-1} \frac{\pi(k)}{k(k+1)} + \frac{\pi(n)}{n} &= \sum_{k=1}^{n-1} \pi(k) \left(\frac{1}{k} - \frac{1}{k+1} \right) + \frac{\pi(n)}{n} \\ &= \frac{\pi(1)}{1} + \sum_{k=2}^{n-1} \frac{1}{k} (\pi(k) - \pi(k-1)) - \frac{\pi(n-1)}{n} + \frac{\pi(n)}{n} \\ &= \sum_{p \leqslant n-1} \frac{1}{p} + \frac{1}{n} (\pi(n) - \pi(n-1)) \\ &= \sum_{p \leqslant n} \frac{1}{p} \, \cdot \end{split}$$

On sait que si u_n et v_n sont les termes de séries positives, équivalentes et divergentes, alors les sommes partielles $\sum_{k=1}^{n} u_k$ et $\sum_{k=1}^{n} v_k$ sont équivalentes.

Supposons que $\frac{\pi(n)}{n} \sim \frac{C}{\ln n}$. Alors $\frac{\pi(n)}{n(n+1)} \sim \frac{C}{n \ln n}$, terme général d'une série divergente donc

$$\sum_{k=1}^{n-1} \frac{\pi(k)}{k(k+1)} \sim \mathsf{C} \sum_{k=1}^{n-1} \frac{1}{k \ln k} \sim \mathsf{C} \ln \ln n$$

et puisque $\frac{\pi(n)}{n} \sim \frac{\mathbb{C}}{n \ln n}$ on aura

$$\sum_{n \le n} \frac{1}{p} = \sum_{k=1}^{n-1} \frac{\pi(k)}{k(k+1)} + \frac{\pi(n)}{n} \sim C \ln \ln n.$$

Donc

$$\ln \ln n + \lambda + o(1) \sim C \ln \ln n \Longrightarrow C = 1$$
.

IV. Une application à l'étude des entiers possédant de grands facteurs premiers

B.IV.1. On sait que

$$\sum_{p\leqslant n}\frac{1}{p}=\ln\ln n + \lambda + o(1), \text{ et } \sum_{p\leqslant \sqrt{n}}\frac{1}{p}=\sum_{p\leqslant \lceil \sqrt{n}\rceil}\frac{1}{p}=\ln\ln (\left\lfloor \sqrt{n}\right\rfloor + \lambda + o(1) = \ln\ln \sqrt{n} + \lambda + o(1)$$

En soustrayant, il vient :

$$\sum_{\sqrt{n}$$

B.IV.2.

B.IV.2.a. Lorsque $n \in A(x)$, on a $n = mp \le x$, donc $p \le \frac{x}{m}$. Et puisque $p > \sqrt{n}$, alors $mp = n < p^2$, donc m < p.

Réciproquement, si $m , alors <math>n = mp < p^2$ donc $p > \sqrt{n}$ donc $p = P^+(n)$ et $n = mp \le x \Rightarrow n \in A(x)$.

B.IV.2.b. Supposons que mp = m'p' et que $m \neq m'$. Par exemple que m < m'. Comme $p \wedge p' = 1$, il vient que p divise m', donc qu'il existe $k \ge 1$ tel que m' = kp. On a alors

$$m'^2 \le m'p' = mp = \frac{mm'}{k} \le x \Rightarrow km' \le m$$

Ainsi $km' \le m < m' \Rightarrow k \le 1$. Donc k = 1 et m = m' et p = p'.

B.IV.2.c. Cette question se déduit immédiatement des deux questions précédentes.

B.IV.2.d. D'après la question précédente, le cardinal de A(x) est exactement égal au nombre de couples $(m,p) \in \mathbb{N}^* \times \mathcal{P}$ tels que m .

Or pour chaque nombre premier $p \le x$, si $m \in \mathbb{N}^*$ vérifie m on a <math>m < p donc $m \le p-1$ et $m \le \frac{x}{p}$ donc $m \le \left\lfloor \frac{x}{p} \right\rfloor$.

Réciproquement, si $1 \le m \le p-1$ et $m \le \left\lfloor \frac{x}{p} \right\rfloor$, on aura bien m . Donc pour chaque <math>p premier $\le x$, le nombre d'entiers m possible est min $\left(p-1, \left\lfloor \frac{x}{p} \right\rfloor\right)$ ce qui prouve que

$$a(x) = \sum_{p \le x} \min\left(p - 1, \left\lfloor \frac{x}{p} \right\rfloor\right).$$

B.IV.3.

B.IV.3.a. On a $p-1 \le \left|\frac{x}{p}\right|$ si et seulement si $p-1 \le \frac{x}{p}$ soit $p^2-p-x \le 0$.

Cette équation admet une seule racine positive qui est $\varphi(x) = \frac{1 + \sqrt{1 + 4x}}{2}$. Donc , comme p est entier on a $p \le \varphi(x)$. On vérifie immédiatement la réciproque.

B.IV.3.b. On a

$$\sqrt{x} = \frac{\sqrt{4x}}{2} < \frac{1 + \sqrt{1 + 4x}}{2} < \frac{\sqrt{4x} + 1}{2} < \sqrt{x} + 1$$

B.IV.3.c. On sait que $\min(p-1, \left\lfloor \frac{x}{p} \right\rfloor = p-1)$ si et seulement si $p \le \varphi(x)$. Donc

$$a(x) = \sum_{p \le \varphi(x)} (p-1) + \sum_{\varphi(x)$$

- S'il n'existe pas de nombre premier dans l'intervalle $]\sqrt{x}, \varphi(x)]$ alors, pour p premier on a $p \leqslant \varphi(x) \iff p \leqslant \sqrt{x}$ et $p > \varphi(x) \iff p > \sqrt{x}$, donc on obtient directement l'égalité demandée.
- S'il existe un nombre premier p_0 dans l'intervalle $]\sqrt{x}, \varphi(x)]$ (forcément unique d'après **B.IV.3.b**), on a alors $\sum_{p \leqslant \varphi(x)} (p-1) = \sum_{p \leqslant \sqrt{x}} (p-1) + (p_0-1)$ et $\sum_{\varphi(x) (*).$

Puisque $\sqrt{x} < p_0$ on a $x < p_0^2$ donc $\left\lfloor \frac{x}{p_0} \right\rfloor \le p_0 - 1$ et puisque $p_0 \le \varphi(x)$ on a $p_0 - 1 \le \left\lfloor \frac{x}{p_0} \right\rfloor$ d'après **B.IV.3.a**.

Finalement ici, $\left\lfloor \frac{x}{p_0} \right\rfloor = p_0 - 1$ de sorte que les deux termes dans (*) se simplifient et on a encore l'égalité voulue.

B.IV.3.d. On a $\sum_{p \leqslant \sqrt{x}} (p-1) \leqslant (\sqrt{x}-1)\pi(\lfloor \sqrt{x} \rfloor)$ (il y a en effet $\pi(\lfloor \sqrt{x} \rfloor)$ termes dans la somme, que l'on majore tous par $\sqrt{x}-1$).

De plus, on a vu dans la partie \mathbf{A} que $\pi(n) = \mathcal{O}\left(\frac{n}{\ln n}\right)$ donc $(\sqrt{x} - 1)\pi(\lfloor \sqrt{x} \rfloor) = 0\left(\frac{x}{\ln x}\right) = o(x)$, ce qui établit le résultat demandé.

B.IV.3.e. On sait que

$$\sum_{\sqrt{x} \leqslant p \leqslant x} \left\lfloor \frac{x}{p} \right\rfloor \leqslant \sum_{\sqrt{x} \leqslant p \leqslant x} \frac{x}{p} = x \sum_{\sqrt{x} \leqslant p \leqslant x} \frac{1}{p} \sim x \ln 2$$

et que

$$\sum_{\sqrt{x} \leqslant p \leqslant x} \left\lfloor \frac{x}{p} \right\rfloor \geqslant \sum_{\sqrt{x} \leqslant p \leqslant x} \left(\frac{x}{p} - 1 \right) = x \ln 2 + o(x) \sim x \ln 2$$

B.IV.3.f. Finalement

$$a(x) = \sum_{p \le \sqrt{x}} (p-1) + \sum_{\sqrt{x} \le p \le x} \left\lfloor \frac{x}{p} \right\rfloor = x \ln 2 + o(x) \sim x \ln 2$$

