Calendario de actividades

Nº	Actividad	Inicio	Entrega	Detalles
1	Revisión de trabajos rela-	Enero	Marzo	Revisión de literatura sobre vehículos autónomos, incluyendo
	cionados con vehículos	2024	2024	técnicas de percepción y control.
	autónomos			
2	Revisión de trabajos rela-	Enero	Marzo	Revisión de literatura sobre sistemas de parqueo automático,
	cionados con parqueo au-	2024	2024	enfocándose en algoritmos de detección y maniobra.
	tomático			
3	Selección de tecnología	Enero	Abril	Selección de herramientas y tecnologías para la simulación,
	para simulación	2024	2024	como CARLA y otros simuladores de vehículos.
4	Revisión de técnicas de	Marzo	Julio	Estudio de métodos para detectar contornos en imágenes, in-
	detección de contornos	2024	2024	cluyendo técnicas de procesamiento de imágenes.
5	Revisión de técnicas de	Marzo	Julio	Estudio de métodos para detectar líneas en imágenes, como
	detección de líneas	2024	2024	la transformada de Hough.
6	Revisión de técnicas para	Marzo	Julio	Estudio de técnicas para manejar homografías en imágenes,
	manejo de homografías	2024	2024	aplicadas a la reconstrucción de escenas.
7	Instalación de CARLA	Abril	Mayo	Instalación del simulador CARLA, configurando el entorno
	Simulator	2024	2024	de desarrollo y pruebas.
8	Estudio de la docu-	Abril	Octubre	· 1
	mentación de CARLA	2024	2024	cluyendo ejemplos y casos de uso.
	Simulator			
9	Diseño y Configuración	Mayo	Octubre	
	del Entorno de simu-	2024	2024	cluyendo la creación de escenarios y la integración de sen-
	lación			sores.
10	Adquisición de datos de	Mayo		Obtención de datos de sensores en el entorno simulado, como
	sensores en simulación	2024	2024	cámaras.
11	Extracción de imágenes	Octubre	Octubre	• 1
	RGB de maniobras de	2024	2024	capturando diferentes ángulos y condiciones.
	estacionamiento			
12	Extracción de con-			Detección de contornos importantes en las imágenes, uti-
	tornos relevantes de las	2024	2024	lizando técnicas de procesamiento de bordes.
	imágenes			
13	Extracción de líneas de			Detección de líneas en los contornos de las imágenes, apli-
	los contornos	2024	2024	cando algoritmos de detección de líneas.
14	Extracción de las ecua-			or€álculo de ecuaciones de las líneas detectadas, representando
	ciones de las líneas	2024	2024	las líneas en un sistema de coordenadas.
15	Extracción de intersec-		I	or€álculo de intersecciones de las líneas detectadas, determi-
	ciones de las líneas	2024	2024	nando puntos clave en la escena.

Nº	Actividad	Inicio	Entrega	Detalles
16	Selección del primer	Diciemb	I	Identificación del primer punto de fuga usando clustering,
	punto de fuga mediante	2024	2025	agrupando puntos de intersección relevantes.
	clustering			
17	Selección del segundo	Diciemb		Identificación del segundo punto de fuga usando lógica
	punto de fuga mediante	2024	2025	geométrica, analizando la disposición espacial.
	lógica geométrica		_	
18	Reconstrucción de	l	or E ebrero	·
	la retícula de esta-	2024	2025	los puntos de fuga y las líneas detectadas.
	cionamiento		_	
19	Mejora de la recon-	l I	or E ebrero	Optimización de la retícula usando el filtro de Kalman, mejo-
	strucción de la retícula	2024	2025	rando la precisión de la reconstrucción.
	(Filtro de Kalman)			
20	Representación de homo-	Enero	Marzo	Representación de la homografía en 3D, visualizando la
	grafía correspondiente en	2025	2025	relación espacial entre el vehículo y el estacionamiento.
2.1	3D		3.6	
21	Seguimiento de uno	Enero	Marzo	Seguimiento de un cajón de estacionamiento específico, mon-
	de los cajones de esta-	2025	2025	itoreando su posición y orientación.
22	cionamiento	D	1.6	M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22	Cálculo de las distancias	Enero	Marzo	Medición de distancias a las esquinas del cajón, utilizando
	a las cuatro esquinas del	2025	2025	coordenadas cilíndricas para la representación.
22	cajón Representación de pose	Enero	Marzo	Representación de la posición del vehículo respecto al cajón,
23	del vehículo relativa al	2025	2025	facilitando la maniobra de estacionamiento.
	cajón	2025	2023	facilitatido la mamobra de estacionamiento.
24	Diseño e implementación	Marzo	Mayo	Creación de un entorno de aprendizaje por refuerzo, config-
21	de un enviroment RL	2025	2025	urando el entorno y las condiciones de entrenamiento.
25	Diseño del action space y	Marzo	Mayo	Definición del espacio de acciones y observaciones, especifi-
23	observation space	2025	2025	cando las posibles acciones y estados del agente.
26	Diseño de función de rec-	Marzo	Mayo	Creación de la función de recompensa para el agente RL,
	ompensa	2025	2025	incentivando comportamientos deseados durante el entre-
	F		= 020	namiento.
27	Entrenamiento de un	Abril	Mayo	Entrenamiento del agente de RL para estacionamiento, uti-
	agente RL para esta-	2025	2025	lizando el entorno y la función de recompensa definidos.
	cionamiento		-	,
28	Experimentación y docu-	Mayo	Junio	Realización de experimentos y documentación de resultados,
	mentación de resultados	2025	2025	evaluando el desempeño del agente RL.
29	Redacción y Revisión del	Octubre	Junio	Escritura y revisión del documento de tesis, compilando los
	documento de tesis	2024	2025	resultados y conclusiones del proyecto.

Cronograma de actividades

