## **UMWELT-PRODUKTDEKLARATION**

nach ISO 14025 und EN 15804

Deklarationsinhaber Verband der Deutschen Holzwerkstoffindustrie e.V. (VHI)

Herausgeber Institut Bauen und Umwelt e.V. (IBU)
Programmhalter Institut Bauen und Umwelt e.V. (IBU)

Deklarationsnummer EPD-VHI-20150034-IBE1-DE

Ausstellungsdatum 30.07.2015 Gültig bis 29 07 2020

## WPC - Fassadenelemente Verband der Deutschen Holzwerkstoffindustrie e.V.



www.bau-umwelt.com / https://epd-online.com





#### 1. Allgemeine Angaben

## Verband der Deutschen Holzwerkstoffindustrie e.V.

#### Programmhalter

IBU - Institut Bauen und Umwelt e.V.

Panoramastr. 1

10178 Berlin

Deutschland

#### Deklarationsnummer

EPD-VHI-20150034-IBE1-DE

## Diese Deklaration basiert auf den Produktkategorienregeln:

Fassadenelemente aus Holz-Polymer-Verbundwerkstoffen (WPC), 07.2014

(PCR geprüft und zugelassen durch den unabhängigen Sachverständigenausschuss)

#### Ausstellungsdatum

30.07.2015

#### Gültig bis

29.07.2020

Wermanjes

Prof. Dr.-Ing. Horst J. Bossenmayer (Präsident des Instituts Bauen und Umwelt e.V.)

Dr. Burkhart Lehmann (Geschäftsführer IBU)

#### WPC - Fassadenelemente

#### Inhaber der Deklaration

Verband der Deutschen Holzwerkstoffindustrie e.V. Ursulum 18 35396 Gießen

#### Deklariertes Produkt/deklarierte Einheit

1 m<sup>2</sup> Fassadenelement aus WPC

#### Gültigkeitsbereich:

Es handelt sich bei dieser EPD um eine Verbands-EPD. Als Datenbasis für das Fassadenelement aus Wood-Polymer-Composite (WPC) wurde das gewichtete Mittel aus Herstellerangaben von drei Mitgliedsunternehmen herangezogen. Die Mitglieder können den Verbands-Internetseiten entnommen werden

Die datenliefernden Häuser repräsentieren einen Anteil von 100 % der deutschen Produktion.
Der Geltungsbereich der EPD umfasst alle Fassadenelemente aus Holz-Kunststoff-Werkstoffen, da die verschiedenen Kunststoffarten entsprechend ihrer Anteile berücksichtigt werden.
Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen,

#### Verifizierung

Die CEN Norm /EN 15804/ dient als Kern-PCR

Ökobilanzdaten und Nachweise ist ausgeschlossen.

Verifizierung der EPD durch eine/n unabhängige/n Dritte/n gemäß /ISO 14025/

intern

extern

1

Dr. Frank Werner,

Unabhängige/r Prüfer/in vom SVR bestellt

#### 2. Produkt

#### 2.1 Produktbeschreibung

Bei dem deklarierten Produkt handelt es sich um ein speziell für den Außenbereich geeignetes Holz-Kunststoff-Fassadenelement. Die Kunststoffmatrix kann entweder aus Polyethylen (PE), Polypropylen (PP) oder Polyvinylchlorid (PVC) bestehen.

Die EPD bezieht sich nicht auf ein spezifisches Produkt eines Herstellers sondern deklariert die durchschnittliche Umweltqualität für alle WPC-Fassadenelemente von Mitgliedsunternehmen des VHI. Die Angaben repräsentieren 100 % des deutschen Marktes. Detaillierte Daten sind der Produktbeschreibung des jeweiligen Herstellers zu entnehmen.

#### 2.2 Anwendung

WPC-Fassadenelemente dienen der Fassadenverkleidung und können nur als nichttragfähiges Bauelement eingesetzt werden (keine bautechnische Zulassung).

Die Produkte sind gesundheitlich unbedenklich und technisch sicher.

#### 2.3 Technische Daten

Die nachfolgend aufgeführten bautechnischen Daten gelten für alle WPC-Fassadenelemente der beteiligten Hersteller.

#### **Bautechnische Daten**

| Bezeichnung                                                                        | Wert                                | Einheit |
|------------------------------------------------------------------------------------|-------------------------------------|---------|
| Dichte nach /EN ISO 1183-3/                                                        | 1150 -<br>1260                      | kg/m³   |
| Flächengewicht                                                                     | 7,5 - 8,76                          | kg/m²   |
| Feuchtegehalt nach /ISO 16979/                                                     | 0 - 1,5                             | M%      |
| Längenbezogene Masse der<br>Profile nach /DIN EN 15534-<br>1:2014/                 | 1520 -<br>2300                      | g/m     |
| Abmessungen (Dicke, Länge und<br>Breite der Profile nach /DIN EN<br>15534-1:2014/) | 2,5/82/100<br>0-<br>20/242/400<br>0 | mm      |
| Abweichung von der Geradheit nach /DIN EN 15534-1/                                 | 1                                   | mm      |
| Krümmung nach /DIN EN 15534-<br>1/                                                 | 0,5                                 | mm      |



| Biegeeigenschaften nach /EN 310:1993/ - Elastizitätsmodul                      | -                                 | MPa             |
|--------------------------------------------------------------------------------|-----------------------------------|-----------------|
| Biegeeigenschaften nach /EN 310:1993/ - Biegefestigkeit                        | -                                 | MPa             |
| Feuchtebeständigkeit unter<br>zyklischen Bedingungen nach /EN<br>15534-1:2014/ | -                                 | -               |
| Schlagfestigkeit nach /EN 477/ -<br>Risslänge                                  | kein Riss                         | mm              |
| Schlagfestigkeit nach /EN 477/ -<br>Eindrucktiefe                              | <0,5                              | mm              |
| Linearer thermischer<br>Ausdehnungskoeffizient nach<br>/ISO 11359-2/           | 1,7E-05 -<br>2,8E-05              | K <sup>-1</sup> |
| Quellung nach /EN 317/ (Länge,<br>Breite, Dicke)                               | 0,2/0,7/0,4-<br>0,3/0,94/4,<br>16 | %               |
| Verhalten bei Witterungsbelastung nach /EN ISO 4892-2:2013/                    | -                                 | -               |

2.4 Inverkehrbringung/Anwendungsregeln

Für das Inverkehrbringen sind keine gesetzlichen Regelungen zu beachten. Allgemeine Regelungen zu WPC-Produkten sind der Produktnorm /DIN EN 15234 Teile: 1, 4, 5/ sowie den Güte- und Prüfrichtlinien der Gemeinschaft für Holzwerkstoffe (www.vhi.de) zu entnehmen.

#### 2.5 Lieferzustand

Die WPC-Fassadenelemente der verschiedenen Hersteller sind in den unter 2.3 angegebenen Dimensionen erhältlich.

Das WPC-Fassadenelement kann unterschiedliche Farben aufweisen, wie braun oder grau. Das durchschnittliche Flächengewicht liegt bei 7,79 kg/m².

#### 2.6 Grundstoffe/Hilfsstoffe

Das durchschnittliche WPC-Fassadenelement besteht hauptsächlich aus folgenden Grundstoffen:

| Inhaltsstoffe    | Beschreibung                                                                  | Anteil in M-% |
|------------------|-------------------------------------------------------------------------------|---------------|
| Holzfasern       | Fichte und Kiefer aus<br>Industrierestholz                                    | 63            |
| Kunststoffmatrix | Polyethylen (PE)<br>Polypropylen (PP)<br>Polyvinylchlorid (PVC)               | 29            |
| Additive         | Haftvermittler, Gleitmittel, Farbstoffe, Füllstoffe und Dispergierhilfsmittel | 8             |

Der in das Produkt eingearbeitete Kunststoff oder Kunststoffgemisch muss zu 100 % aus Neuware bestehen oder aus sortenreinem Kunststoff, der als Reststoff bei der einmaligen industriellen Produktion angefallen ist. Es dürfen außerdem Rezyklate eingesetzt werden, die sortenrein und schadstofffrei sind.

Zudem werden bei der Produktion, um die natürliche Holzoptik zu erhalten, organische Pigmente und UV-Stabilisatoren eingearbeitet.

Der Holzanteil am Produkt muss mindestens 50 Gewichtsprozente (trocken) betragen und aus nachweislich nachhaltiger Forstwirtschaft (/FSC/- oder /PEFC/-Zertifikat) stammen. Naturbelassenes Altholz (Altholzkategorie Al gemäß Altholzverordnung) kann eingesetzt werden, hingegen Altholz der Kategorien All bis AlV nicht. Weitere Naturfasern dürfen Bestandteil des Produktes sein.

Um Rohstoffe einzusparen und Emissionen zu vermeiden, kann auch Mahlgut aus Elementen des eigenen Systems, die vom Markt zurückgenommen wurden, wieder zugegeben werden.

#### 2.7 Herstellung

Nachfolgende Abbildung zeigt beispielhaft den Ablauf einer Extrusion von WPC-Elementen:



Bei der Herstellung von WPC-Fassadenelementen gibt es zwei unterschiedliche Verfahren.

Zum einen die Direktextrusion, in der die Rohstoffe direkt zugegeben werden, und zum anderen ein zweistufiger Prozess aus *Compoundieren* und Extrudieren. In diesem werden die Rohstoffe zunächst zu *Compounds* verarbeitet und anschließend dem Extrusionsprozess zugeführt. Beide Verfahren werden in der Praxis eingesetzt.

Im Anschluss an die Kühlung werden die WPC-Fassadenelemente zugeschnitten und für den Transport verpackt.

Die WPC-Fassadenelemente werden in Deutschland und benachbarten Ländern produziert.

Die Fassadenelemente verlassen die Extruderanlage mit einer Feuchte von 0 %. Anschließend kommt es zur Feuchteaufnahme aus der Umgebung und damit zu Quellvorgängen und geringen Dimensionsänderungen.

Alle beteiligten Hersteller haben ein Qualitätsmanagementsystem in Anlehnung an bzw. nach /ISO 9001/ implementiert.

## 2.8 Umwelt und Gesundheit während der Herstellung

Die verwendeten Rohstoffe werden ohne umweltschädliche Wirkungen in die Produktionsanlage eingebracht. Das eingesetzte Kühlwasser wird im Kreislauf geführt und kommt nicht in Kontakt mit dem Produkt.

Die thermische sowie stoffliche Verwertung der entstehenden Produktionsabfälle gewährleistet eine optimale Nutzung der Ressourcen.

Das Produktionspersonal ist während der Herstellung zu keiner Zeit einer Gefährdung der Gesundheit ausgesetzt.

#### 2.9 Produktverarbeitung/Installation

Die fertigen WPC-Fassadenelemente werden zur Baustelle transportiert und angebracht. Bei der Montage werden eine Unterkonstruktion, z.B. aus Holz oder WPC, sowie Befestigungsmaterialien, wie Schrauben und Montageklammern aus Edelstahl, benötigt.

Die Unterkonstruktion ist auf einem tragfähigen Untergrund zu installieren.

Weitere Anweisungen sind den entsprechenden



Hinweisen sowie den Internetseiten der Hersteller zu entnehmen.

#### 2.10 Verpackung

Die Verpackung der WPC-Fassadenelemente erfolgt sowohl auf Hartfaserplatten, als auch auf Kanthölzern. Durchschnittlich werden für die Verpackung eines Fassadenelementes folgende Materialien benötigt:

| Material                            | Menge in kg/m² |
|-------------------------------------|----------------|
| Kanthölzer                          | 0,08           |
| Polyethylen-Folie und Polyesterband | 0,28           |
| Graupappe                           | 0,10           |
| Hartfaserplatte                     | 0,04           |
| Summe                               | 0.50           |

#### 2.11 Nutzungszustand

Für den Zeitraum der Nutzung erfolgen keine Veränderungen des Werkstoffes. Lediglich farbliche Veränderungen der Oberfläche durch Verwitterung sind möglich.

#### 2.12 Umwelt & Gesundheit während der Nutzung

Während der Nutzung entstehen durch die Verwendung der WPC-Fassadenelemente keine negativen Einflüsse auf Umwelt und Gesundheit. Eine Freisetzung von Emissionen in Wasser oder Luft ist nicht bekannt.

#### 2.13 Referenz-Nutzungsdauer

Es wird keine Referenznutzungsdauer deklariert; laut Herstellerangaben kann bei durchschnittlicher Beanspruchung eine Nutzungsdauer (SL) von 40 Jahren angenommen werden.

Hierbei wird auch die technische Lebensdauer einzelner Komponenten nicht überschritten und somit muss während der Nutzungsdauer kein Austausch berücksichtigt werden.

#### 2.14 Außergewöhnliche Einwirkungen

#### **Brand**

Die WPC-Fassadenelemente erfüllen nach /DIN EN 13501-5/ die Anforderungen für Verhalten bei äußerer Brandeinwirkung. Das Brandverhalten führt nach /EN

ISO 11925-2/ und /DIN EN 13501-1/ zu einer Einstufung der Fassadenelemente in Klasse E.

#### Brandschutz

| Bezeichnung          | Wert |
|----------------------|------|
| Baustoffklasse       | E    |
| Brennendes Abtropfen | -    |
| Rauchgasentwicklung  | -    |

#### Wasser

Die WPC-Fassadenelemente sind in Wasser unlöslich und quellen bei starkem Wassereinfluss auf. Es sind keine Inhaltsstoffe bekannt, die bei Wassereinwirkung ausgewaschen werden könnten.

#### Mechanische Zerstörung

Kein spezifischer Deklarationsbedarf.

#### 2.15 Nachnutzungsphase

Für WPC-Produkte bestehen zwei Entsorgungswege, die stoffliche und thermische Verwertung. Bei der thermischen Verwertung wird der Abfall z.B. über eine kommunale Müllverbrennungsanlage entsorgt. Hingegen wird bei der stofflichen Verwertung das Produkt sortiert, aufgemahlen und in die Produktion von WPC-Unterkonstruktionen eingebracht.

#### 2.16 Entsorgung

Derzeit kann der Verbraucher die WPC-Fassadenelemente direkt beim Hersteller oder über die kommunalen Abfallentsorgungsstrukturen abgeben.

Das Entsorgen der WPC-Fassadenelemente unterliegt der Altholzverordnung über /Anforderungen an die Verwertung und Beseitigung von Altholz, AltholzV, vom 15.8.2002, BGBI I 2002, 3302/. Alle mit PE oder PP gebundenen WPC-Produkte sind der Altholzkategorie A II zuzuordnen, mit PVC gebundene WPC-Produkte sollten in A III einsortiert werden.

Eine Deponierung von Altholz ist nach §8 AltholzV nicht zulässig (AVV 17 02 01).

#### 2.17 Weitere Informationen

Weitere Informationen können über die Internetseiten des Verbandes (http://www.vhi.de) sowie den Seiten der Produkthersteller bezogen werden.

#### 3. LCA: Rechenregeln

#### 3.1 Deklarierte Einheit

Die deklarierte Einheit ist wie folgt definiert: 1 m² installierte WPC-Fassadenelemente, mit den Abmessungen 1.000-4.000 mm/80-240 mm/18-25 mm und einem Flächengewicht von 7,79 kg/m², über eine Nutzungsdauer von 40 Jahren.

Die Zusammensetzung der WPC-Fassadenelemente ergibt sich aus dem gewichteten Durchschnitt in Abhängigkeit des Produktionsvolumens der beteiligten Hersteller.

Angabe der deklarierten Einheit

| Bezeichnung               | Wert       | Einheit        |
|---------------------------|------------|----------------|
| Umrechnungsfaktor zu 1 kg | 0,1284     | -              |
| Deklarierte Einheit       | 1          | m <sup>2</sup> |
| Dichte                    | 1211       | kg/m³          |
|                           | 54 %       |                |
| Drofilt in                | Vollprofil |                |
| Profiltyp                 | und 46 %   | -              |
|                           | Hohlkamm   |                |

| erprotii |  |
|----------|--|
|          |  |

#### 3.2 Systemgrenze

Typ der EPD: Wiege bis Werkstor mit Optionen Gemäß /EN 15804/ werden folgende Module verwendet:

#### Modul A1-3

Für die Herstellung findet die aggregierte Darstellung in Form von A1-3 Verwendung. Darunter fallen die Rohstoffversorgung, die Herstellung der WPC-Fassadenelemente, alle Transporte zum Hersteller, die benötigten Energieverbräuche und Ressourcen sowie jegliche anfallende Produktionsabfälle.

#### Modul A4

Transport des Produktes von dem Hersteller zur Baustelle

#### Modul B2

Instandhaltung der WPC-Fassadenelemente während der Nutzungsphase: Reinigung der WPC-Fassadenelemente



#### Modul C2

Transport des ausrangierten Produktes zum Recyclinghof oder Hersteller

#### Modul C3

Abfallbehandlung, wie thermische oder stoffliche Verwertung

Auf Grund der gewählten Systemgrenzen (Definition des *End-of-waste* Status) findet keine Abfallbeseitigung (Modul C4) der WPC-

Fassadenelemente statt. Es wird somit nur der Export der materialinhärenten Eigenschaften bilanziert.

#### Modul D

Gutschriften und Lasten außerhalb des betrachteten Systems durch thermische und stoffliche Verwertung

#### 3.3 Abschätzungen und Annahmen

Es werden - abgesehen von den unter 4 beschriebenen Szenarien - keine weiteren Annahmen und Abschätzungen getroffen, die sich auf das Ergebnis auswirken.

#### 3.4 Abschneideregeln

Es wurden keine bereits bekannten Stoff- oder Energieströme, die unterhalb der 1 % Grenze lagen, vernachlässigt.

#### 3.5 Hintergrunddaten

Zur Darstellung des Lebenszyklus wurde das Software-System /GaBi/ in der Version 6.4 verwendet. Die eingesetzten Datensätze entstammen den Datenbanken /GaBi/ und /Ökobaudat/.

#### 3.6 Datenqualität

Die für die Bilanzierung genutzten Datensätze aus /GaBi/ sowie /Ökobaudat/ sind nicht älter als 10 Jahre. Die Datenerfassung für die untersuchten Produkte erfolgte anhand von Auswertungen der internen Produktions- und Umweltdaten sowie der Erhebung LCA-relevanter Daten innerhalb der Lieferkette. Die

erhobenen Daten wurden auf Plausibilität und Konsistenz geprüft.

Die verwendeten Hintergrunddaten für die eingesetzten Holzrohstoffe sowie Additive beruhen auf Veröffentlichungen aus den Jahren 1993 bis 2012.

#### 3.7 Betrachtungszeitraum

Die erhoben Herstellerdaten beziehen sich auf das Jahr 2013.

#### 3.8 Allokation

Die vorgenommenen Allokationen entsprechen den Anforderungen der /EN15804/.

Folgende Allokationen und Systemraumerweiterungen wurden durchgeführt:

#### Modul A1

Herstellung der Holzfasern aus Industrierestholz, welches bei der Herstellung von Schnittholz im Sägewerk anfällt. Das Industrierestholz wurde auf Basis des Preises alloziert.

#### Modul C3

Die zu entsorgenden Produkte werden auf Basiseiner Systemraumerweiterung der thermischen und stofflichen Verwertung zugeführt. Wärme, Strom und wiederverwendbare Rohstoffe werden durch Substitutionsprozesse dem System gutgeschrieben.

Modul D

In Modul D sind die Gutschriften für die thermische sowie stoffliche Verwertung der zu entsorgenden Produkte dargestellt.

#### 3.9 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD Daten nur möglich, wenn alle zu vergleichenden Datensätze nach /EN 15804/ erstellt wurden und der Gebäudekontext, bzw. die produktspezifischen Leistungsmerkmale, berücksichtigt werden.

#### 4. LCA: Szenarien und weitere technische Informationen

Die folgenden technischen Informationen sind Grundlage für die deklarierten Module oder können für die Entwicklung von spezifischen Szenarien im Kontext einer Gebäudebewertung genutzt werden, wenn Module nicht deklariert werden (MND).

Transport zu Baustelle (A4)

| Bezeichnung                               | Wert    | Einheit |  |  |
|-------------------------------------------|---------|---------|--|--|
| Liter Treibstoff                          | 0,00142 | l/100km |  |  |
| Transport Distanz                         | 500     | km      |  |  |
| Auslastung (einschließlich Leerfahrten)   | 85      | %       |  |  |
| Rohdichte der transportierten<br>Produkte | 1211    | kg/m³   |  |  |

#### Einbau ins Gebäude (A5)

Zusammensetzung der zu entsorgenden

Verpackungsabfälle:

| verpaenangeablane. |      |         |
|--------------------|------|---------|
| Bezeichnung        | Wert | Einheit |
| Kanthölzer         | 15   | %       |
| Polyethylen-Folie  | 55   | %       |
| Polyesterband      | 2    | %       |
| Graupappe          | 20   | %       |
| Hartfaserplatte    | 8    | %       |

Instandhaltung (B2)

| Bezeichnung   Wert   Eir | nheit |
|--------------------------|-------|
|--------------------------|-------|

| Informationen zu Unterhalt<br>Reinigungshäufigkeit in m²/a | 0,0298 | -              |
|------------------------------------------------------------|--------|----------------|
| Wasserverbrauch                                            | 0,083  | m <sup>3</sup> |
| Hilfsstoff Reinigungsmittel                                | 0,01   | kg             |
| Instandhaltungszyklus in m²/SL                             | 1,192  | Anzahl/SL      |
|                                                            |        |                |

#### Ende des Lebenswegs (C1-C4)

Nach Herstellerangaben kann davon ausgegangen werden, dass 70 % der WPC-Produkte stofflich und 30 % thermisch verwertet werden. Es werden in Teil 5 jweils 100 % Szenarien zur stofflichen und thermischen Verwertung deklariert.

Der durchschnittliche Transportweg zwischen Endverbraucher und Entsorgungsanlage beträgt 250 km.

Wiederverwendungs-, Rückgewinnungs- und Recyclingpotential (D), relevante Szenarioangaben

Hier werden die aus der thermischen und stofflichen Verwertung der Abfälle resultierende Energien (elektrische und thermische) bzw. das entstehende Recyclingmaterial gutgeschrieben. Der Wirkungsgrad der Abfallverwertungsanlagen liegt bei 66 % für deutsche und 69 % für europäische Anlagen. Bei den verwendeten Datensätzen handelt es sich um deutsche und europäische Verwertungsanlagen. Als Datensätze für Strom und Wärme werden



DE:Strommix (Produktionsmix) verwendet sowie DE: Prozessdampf aus Erdgas 85 % aus /GaBi 6.4/.



#### 5. LCA: Ergebnisse

| ANG                | ABE D        | ER S        | YSTE                                              | MGRE                           | NZEN                | (X = II        | I ÖKO     | BILAN   | IZ EN      | THAL                                                | ΓEN; M                                             | IND = I          | MODU      | L NIC            | HT DE       | KLARIERT)                                                            |
|--------------------|--------------|-------------|---------------------------------------------------|--------------------------------|---------------------|----------------|-----------|---------|------------|-----------------------------------------------------|----------------------------------------------------|------------------|-----------|------------------|-------------|----------------------------------------------------------------------|
| Produ              | uktions<br>m | stadiu      | Erricl                                            | ım der<br>ntung<br>es<br>verks |                     |                | Nutzi     | ungssta | ıdium      |                                                     |                                                    | Ent              | sorgun    | gsstadi          |             | Gutschriften<br>und Lasten<br>außerhalb der<br>Systemgrenze          |
| Rohstoffversorgung | Transport    | Herstellung | Transport vom<br>Hersteller zum<br>Verwendungsort | Montage                        | Nutzung / Anwendung | Instandhaltung | Reparatur | Ersatz  | Erneuerung | Energieeinsatz für das<br>Betreiben des<br>Gebäudes | Wassereinsatz für das<br>Betreiben des<br>Gebäudes | Rückbau / Abriss | Transport | Abfallbehandlung | Beseitigung | Wiederverwendungs-,<br>Rückgewinnungs-<br>oder<br>Recyclingpotenzial |
| <b>A</b> 1         | A2           | А3          | A4                                                | A5                             | B1                  | B2             | В3        | B4      | B5         | В6                                                  | В7                                                 | C1               | C2        | С3               | C4          | D                                                                    |
| X                  | Х            | Х           | Х                                                 | MND                            | MND                 | Х              | MND       | MND     | MND        | MND                                                 | MND                                                | MND              | Х         | Х                | MND         | Х                                                                    |

# Param eter Einheit A1-A3 A4 B2 C2 C3/I C3/2 D/I D/2 GWP [kg CO<sub>2</sub>-Äq.] -5,58E-1 2,35E-1 2,27E-1 1,10E-2 8,78E+0 8,78E+0 -2,75E+0 -2,95E ODP [kg CFC11-Äq.] 3,72E-9 2,83E-13 4,76E-12 1,38E-13 0,00E+0 0,00E+0 2,63E-8 9,24E

| [kg CO <sub>2</sub> -Äq.]                  | -5,58E-1                                                                                                                   | 2,35E-1  | 2,27E-1                                               | 1,10E-2                                                | 8,78E+0                                               | 8,78E+0                                                | -2,75E+0                                               | -2,95E+0                                               |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| [kg CFC11-Äq.]                             | 3,72E-9                                                                                                                    | 2,83E-13 | 4,76E-12                                              | 1,38E-13                                               | 0,00E+0                                               | 0,00E+0                                                | 2,63E-8                                                | 9,24E-10                                               |
| [kg SO <sub>2</sub> -Äq.]                  | 1,76E-2                                                                                                                    | 1,00E-3  | 5,26E-4                                               | 4,88E-4                                                | 0,00E+0                                               | 0,00E+0                                                | -8,66E-3                                               | -8,59E-3                                               |
| [kg (PO <sub>4</sub> ) <sup>3</sup> - Äq.] | 2,05E-3                                                                                                                    | 2,74E-4  | 5,63E-5                                               | 1,33E-4                                                | 0,00E+0                                               | 0,00E+0                                                | -1,16E-3                                               | -9,69E-4                                               |
| [kg Ethen Äq.]                             | 2,71E-3                                                                                                                    | -3,44E-4 | 7,80E-5                                               | -1,68E-4                                               | 0,00E+0                                               | 0,00E+0                                                | -1,13E-3                                               | -2,36E-3                                               |
| [kg Sb Äq.]                                | 2,26E-6                                                                                                                    | 1,19E-8  | 1,14E-6                                               | 5,78E-9                                                | 0,00E+0                                               | 0,00E+0                                                | -1,07E-6                                               | -5,21E-5                                               |
| [MJ]                                       | 2,21E+2                                                                                                                    | 3,13E+0  | 6,63E+0                                               | 1,52E+0                                                | 0,00E+0                                               | 0,00E+0                                                | -1,53E+2                                               | -1,41E+2                                               |
|                                            | [kg CFC11-Äq.]<br>[kg SO <sub>2</sub> -Äq.]<br>[kg (PO <sub>4</sub> ) <sup>3</sup> - Äq.]<br>[kg Ethen Äq.]<br>[kg Sb Äq.] |          | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

GWP = Globales Erwärmungspotenzial; ODP = Abbau Potential der stratosphärischen Ozonschicht; AP = Versauerungspotenzial von Boden und Legende Wasser; EP = Eutrophierungspotenzial; POCP = Bildungspotential für troposphärisches Ozon; ADPE = Potenzial für den abiotischen Abbau nicht fossiler Ressourcen; ADPF = Potenzial für den abiotischen Abbau fossiler Brennstoffe

## ERGEBNISSE DER ÖKOBILANZ RESSOURCENEINSATZ: 1 m² WPC-Fassadenelement Parameter Einheit A1-A3 A4 B2 C2 C3/1 C3/2

| Parameter | Einheit | A1-A3   | A4      | B2      | C2      | C3/1    | C3/2    | D/1      | D/2      |
|-----------|---------|---------|---------|---------|---------|---------|---------|----------|----------|
| PERE      | [MJ]    | 1,23E+0 | 2,39E-1 | 2,58E-1 | 1,17E-1 | 0,00E+0 | 0,00E+0 | -1,77E+1 | -1,04E+0 |
| PERM      | [MJ]    | 8,41E+1 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0  | -9,11E+1 |
| PERT      | [MJ]    | 8,53E+1 | 2,39E-1 | 2,58E-1 | 1,17E-1 | 0,00E+0 | 0,00E+0 | -1,77E+1 | -9,21E+1 |
| PENRE     | [MJ]    | 9,40E+1 | 3,14E+0 | 4,48E+0 | 1,53E+0 | 0,00E+0 | 0,00E+0 | -1,66E+2 | -8,57E+0 |
| PENRM     | [MJ]    | 1,41E+2 | 0,00E+0 | 2,38E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0  | -1,31E+2 |
| PENRT     | [MJ]    | 2,35E+2 | 3,14E+0 | 6,86E+0 | 1,53E+0 | 0,00E+0 | 0,00E+0 | -1,66E+2 | -1,39E+2 |
| SM        | [kg]    | 0,00E+0  | 7,40E+0  |
| RSF       | [MJ]    | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 8,19E+1  | 4,10E+0  |
| NRSF      | [MJ]    | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 1,29E+2  | 6,45E+0  |
| FW        | [m³]    | 3,39E+1 | 1,38E-1 | 9,09E-1 | 6,73E-2 | 0,00E+0 | 0,00E+0 | 1,14E+1  | -1,45E+1 |

PERE = Erneuerbare Primärenergie als Energieträger; PERM = Erneuerbare Primärenergie zur stofflichen Nutzung; PERT = Total erneuerbare Primärenergie; PENRE = Nicht-erneuerbare Primärenergie als Energieträger; PENRM = Nicht-erneuerbare Primärenergie zur stofflichen Nutzung; PENRT = Total nicht erneuerbare Primärenergie; SM = Einsatz von Sekundärstoffen; RSF = Erneuerbare Sekundärbrennstoffe; FW = Einsatz von Süßwasserressourcen

### ERGEBNISSE DER ÖKOBILANZ OUTPUT-FLÜSSE UND ABFALLKATEGORIEN:

| Parameter | Einheit | A1-A3   | A4      | B2      | C2      | C3/1    | C3/2    | D/1      | D/2      |
|-----------|---------|---------|---------|---------|---------|---------|---------|----------|----------|
| HWD       | [kg]    | 8,19E-5 | 2,53E-6 | 1,42E-6 | 1,23E-6 | 0,00E+0 | 0,00E+0 | -7,25E-5 | -2,41E-5 |
| NHWD      | [kg]    | 1,39E-1 | 7,84E-4 | 1,65E-3 | 3,82E-4 | 0,00E+0 | 0,00E+0 | -4,56E-2 | -1,01E-1 |
| RWD       | [kg]    | 5,59E-3 | 4,17E-6 | 9,27E-5 | 2,03E-6 | 0,00E+0 | 0,00E+0 | -5,55E-3 | -5,07E-4 |
| CRU       | [kg]    | 0,00E+0  | 0,00E+0  |
| MFR       | [kg]    | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 7,40E+0 | 0,00E+0  | 0,00E+0  |
| MER       | [kg]    | 0,00E+0 | 0,00E+0 | 0,00E+0 | 0,00E+0 | 7,79E+0 | 3,90E-1 | 0,00E+0  | 0,00E+0  |
| EEE       | [MJ]    | 0,00E+0  | 0,00E+0  |
| EET       | [MJ]    | 0,00E+0  | 0,00E+0  |

HWD = Gefährlicher Abfall zur Deponie; NHWD = Entsorgter nicht gefährlicher Abfall; RWD = Entsorgter radioaktiver Abfall; CRU = Legende Komponenten für die Wiederverwendung; MFR = Stoffe zum Recycling; MER = Stoffe für die Energierückgewinnung; EEE = Exportierte Energie thermisch

GWP: Anteil biogenes CO<sub>2</sub> A1-3: -8,78 kg CO<sub>2</sub>-Äq., C3: 8,78 kg CO<sub>2</sub>-Äq.

#### 6. LCA: Interpretation

Für die Interpretation der Ergebnisse der Ökobilanz werden die Indikatoren der Sachbilanz sowie der Wirkungsabschätzung eingehend untersucht. Die Zahlen beziehen sich auf 1m² WPC-Fassadenelemente.

#### Indikatoren der Sachbilanz

Mehr als 80 % des Primärenergieeinsatzes wird durch nicht erneuerbare Energieträger (**PENRT**) gewonnen.

Der Anteil erneuerbarer Energieträger an der Primärenergie (**PERT**) liegt bei ca. 20 %. Im Vergleich zu anderen Lebenszyklusphasen wird in A1-3 die meiste Primärenergie benötigt, sowohl zur stofflichen als auch zur energetischen Nutzung. Ebenso hat beim Indikator Verbrauch von Süßwasserressourcen (**FW**) die Produktion (A1-3) der WPC-Fassadenelementes einen entscheidenden Einfluss. Durch Verbrennung bzw. stoffliche



Verwertung werden sowohl ca. 25 - 30 % der Wasserressourcen verbraucht, als auch gutgeschrieben.

In Bezug auf die Abfallkategorien ist festzustellen, dass es sich bei mehr als 96 % des anfallenden Abfalls um nicht gefährlichen Abfall handelt.

#### Indikatoren der Wirkungsabschätzung

Zu den Umweltauswirkungen im Lebenszyklus von 1 m² WPC-Fassadenelement tragen sowohl die Produktion (A1-3) als auch die Entsorgung bei. Der Einfluss der Instandhaltung (B2) liegt in allen Umweltwirkungskategorien unter 12 %.

Das Treibhauspotential (**GWP**) wird zu 35 % durch die Produktion (A1-3) dominiert. Zudem entfallen 25-35 % auf die Entsorgung sowie die Gutschriften außerhalb der Systemgrenzen.

Das Ozonabbaupotential (**ODP**) wird zu 70 % durch die Abfallbehandlung, insbesondere durch die thermische Verwertung, verursacht. Weitere 30 %

entfallen auf die Produktionsphase.

Bedingt durch die starke Umweltwirkung der Produktion (A1-3) der WPC-Fassadenelemente und die Entlastung durch das Recyclingpotential (D) werden auch das Sommersmogpotential (POCP), der elementare abiotische Ressourcenverbrauch (ADPe) und der fossile abiotische Ressourcenverbrauch (ADPf) zu knapp 60 % bzw. 40 % von diesen Lebenszyklusphasen dominiert.

Sowohl das Versauerungspotential (**AP**) also auch das Euthrophierungspotential (**EP**) sind von den Lebenszyklusphasen A1-3 und D bestimmt. Die Phasen A4 und C2-3 tragen durch Emissionen bei Verbrennung von Abfall und durch beim Transport auftretende Emissionen mit 10-15 % zum Gesamtergebnis bei.

Nachfolgende Grafiken zeigen deutlich die entstehenden Umweltlasten durch die Produktion (A1-3) aber auch die Entlastung durch die stoffliche sowie energetische Verwertung.



■A1-3 ■A4 ■B2 ■C2 ■C3/1 ■D/1





#### 7. Nachweise

Laut /Produktkategorieregeln für Bauprodukte Teil: B/ sind keine Nachweise für dieses Produkt zu erbringen.

#### 8. Literaturhinweise

**Institut Bauen und Umwelt e.V.**, Berlin (Hrsg.): Erstellung von Umweltproduktdeklarationen (EPDs);

**Allgemeine Grundsätze** für das EPD-Programm des Instituts Bauen und Umwelt e.V. (IBU), 2013-04.

## **Produktkategorienregeln für Bauprodukte Teil A**: Rechenregeln für die Ökobilanz und Anforderungen an den Hintergrundbericht. 2013-04.

#### ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

#### EN 15804

EN 15804:2012-04+A1 2013, Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products.

#### **PCR Fassadenelemente**

Produktkategorieregeln für Bauprodukte Teil B: Anforderungen an die EPD für Fassadenelemente aus Holz-Polymer-Verbundwerkstoffen (WPC), 2014

#### Altholzverordnung

Verordnung über Anforderungen an die Verwertung und Beseitigung von Altholz (AltholzV), 2012

#### **DIN EN 13501-1**

Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten; Deutsche Fassung EN 13501-1:2007+A1:2009

#### **DIN EN 13501-5**

Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 5: Klassifizierung mit den Ergebnissen aus Prüfungen von Bedachungen bei Beanspruchung durch Feuer von außen; Deutsche Fassung EN 13501-5:2005+A1:2009

#### **DIN EN 15534**

Verbundwerkstoffe aus cellulosehaltigen Materialien und Thermoplasten (üblicherweise Holz-Polymer-Werkstoffe (WPC) oder

Naturfaserverbundwerkstoffe (NFC) genannt) - Teil 1: Prüfverfahren zur Beschreibung von Compounds und Erzeugnissen; Deutsche Fassung EN 15534-1:2014

#### **DIN EN ISO 9001**

Qualitätsmanagementsysteme - Erfolg durch Qualität; Deutsche Fassung EN 9001:2008

#### EN ISO 11925-2

Prüfungen zum Brandverhalten - Entzündbarkeit von Produkten bei direkter Flammeneinwirkung - Teil 2: Einzelflammentest (ISO 11925-2:2010); Deutsche Fassung EN ISO 11925-2:2010



#### **EN ISO 1183-3**

Kunststoffe - Bestimmung der Dichte von nicht verschäumten Kunststoffen - Teil 3: Gas-Pyknometer-Verfahren (ISO 1183-3:1999); Deutsche Fassung EN ISO 1183-3:1999

#### ISO 16979

Holzwerkstoffe - Bestimmung des Feuchtegehaltes, ISO 16979:2003-05

#### EN 310:1993

Holzwerkstoffe; Bestimmung des Biege-Elastizitätsmoduls und der Biegefestigkeit; Deutsche Fassung EN 310:1993

#### EN 477

Profile aus weichmacherfreiem Polyvinylchlorid (PVC-U) zur Herstellung von Fenstern und Türen - Bestimmung der Stoßfestigkeit von Hauptprofilen mittels Fallbolzen; Deutsche Fassung EN 477:1995

#### ISO 11359-2

Kunststoffe - Thermomechanische Analyse (TMA) - Teil 2: Bestimmung des linearen thermischen Ausdehnungskoeffizienten und der Glasübergangstemperatur, ISO 11359-2:1999-10

#### **EN 317**

Spanplatten und Faserplatten; Bestimmung der Dickenquellung nach Wasserlagerung; Deutsche Fassung EN 317:1993

#### EN ISO 4892-2:2013

Kunststoffe - Künstliches Bestrahlen oder Bewittern in Geräten, Teil 2: Xenonbogenlampen

#### Europäisches Abfallverzeichnis

Verordnung über das Europäische Abfallverzeichnis (Abfallverzeichnis-Verordnung-AVV), 2001

#### GaBi 6.4

Software-System and Databases for Life Cycle Engineering, PE International AG, Leinfelden-Echterdingen, 1992-2015, with special acknowledgment to LBP, University of Stuttgart

#### ÖKOBAU.DAT

Ökobau.dat 2014, Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

#### FSC

Forest Stewardship Council, Deutschland

#### **PEFC**

Programme for the Endorsement of Forest Certification Schemes, Deutschland



Herausgeber Institut Bauen und Umwelt e.V. Panoramastr.1 10178 Berlin Deutschland

+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 Tel Fax Mail info@bau-umwelt.com www.bau-umwelt.com Web



Programmhalter

Institut Bauen und Umwelt e.V. Tel +49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@bau-umwelt.com Panoramastr.1 Fax 10178 Berlin Mail Deutschland Web www.bau-umwelt.com



**Ersteller der Ökobilanz** SKZ - Das Kunststoff-Zentrum Tel +49 931 4104-433 Friedrich-Bergius-Ring 22 Fax +49 931 4104-707 97076 Würzburg Mail kfe@skz.de Germany Web www.skz.de



Inhaber der Deklaration

Verband der Deutschen Holzwerkstoffindustrie e.V. Ursulum 18 35396 Gießen Germany

+49 641 97547-0 +49 641 97547-99 Tel Fax Mail vhimail@vhi.de Web www.vhi.de