

Unidade IV

Noções de Probabilidade

Estatística Aplicada

Ana Maria Nogales Vasconcelos

Maria Teresa Leão Costa

PROBABILIDADE - CONCEITOS BÁSICOS

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

1) Especifique o espaço amostral.

(1⁰)

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

1) Especifique o espaço amostral.

 (1^0)

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

$$\Omega = [(b,b),(b,v),(v,b),(v,v)]$$

$$P\{(b,b)\}=??$$

$$P\{(b,b)\} = \frac{3}{5} \times \frac{2}{4} = \frac{6}{20}$$

3. Determine as probabilidades dos demais eventos elementares.

3. Determine as probabilidades dos demais eventos elementares.

3. Determine as probabilidades dos demais eventos elementares.

Observe que a probabilidade da segunda bola selecionada ser branca ou vermelha **depende** da cor da primeira bola selecionada!!!

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, COM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, COM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

1) Especifique o espaço amostral.

(1º)

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, COM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

1) Especifique o espaço amostral.

 (1^0)

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, COM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, COM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, COM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, COM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, COM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, COM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

$$\Omega = [(b, b), (b, v), (v, b), (v, v)]$$

$$P\{(b,b)\}=??$$

$$P\{(b,b)\} = \frac{3}{5} \times \frac{3}{5} = \frac{9}{25}$$

3. Determine as probabilidades dos demais eventos elementares.

Exemplo 2:

3. Determine as probabilidades dos demais eventos elementares.

Exemplo 2:

3. Determine as probabilidades dos demais eventos elementares.

Observe que a probabilidade da segunda bola selecionada ser branca ou vermelha **NÃO depende** da cor da primeira bola selecionada!!!

Dizemos que os eventos são INDEPENDENTES!!!

Eventos Independentes:

Dois eventos são independentes quando a ocorrência de um deles não altera a probabilidade da ocorrência do outro.

Definição:

Seja ε : Ω e os eventos.

Os eventos A e B são INDEPENDENTES se, e somente se:

$$P(A \cap B) = P(A) \times P(B)$$

A probabilidade de uma criança do sexo masculino nascida prematuramente completar 1 ano é de $^3/_5$ e de uma menina é de $^2/_3$. Qual a probabilidade de ambos completarem 1 ano?

Sejam os eventos:

```
A = \{criança\ do\ sexo\ masculino\ nascida\ prematuramente\ completar\ 1\ ano\}
```

 $B = \{criança do sexo feminino nascida prematuramente completar 1 ano\}$

A probabilidade de uma criança do sexo masculino nascida prematuramente completar 1 ano é de $^3/_5$ e de uma menina é de $^2/_3$. Qual a probabilidade de ambos completarem 1 ano?

Sejam os eventos:

```
A = \{criança\ do\ sexo\ masculino\ nascida\ prematuramente\ completar\ 1\ ano\}
```

 $B = \{criança\ do\ sexo\ feminino\ nascida\ prematuramente\ completar\ 1\ ano\}$

 $P\{Ambos\ nascerem\ prematuramente\} = P(A \cap B) = ???$

A probabilidade de uma criança do sexo masculino nascida prematuramente completar 1 ano é de $^3/_5$ e de uma menina é de $^2/_3$. Qual a probabilidade de ambos completarem 1 ano?

Sejam os eventos:

```
A = \{criança\ do\ sexo\ masculino\ nascida\ prematuramente\ completar\ 1\ ano\}
```

 $B = \{criança\ do\ sexo\ feminino\ nascida\ prematuramente\ completar\ 1\ ano\}$

 $P\{Ambos\ nascerem\ prematuramente\} = P(A \cap B) = ???$

Como os eventos A e B são independentes então

A probabilidade de uma criança do sexo masculino nascida prematuramente completar 1 ano é de $^3/_5$ e de uma menina é de $^2/_3$. Qual a probabilidade de ambos completarem 1 ano?

Sejam os eventos:

 $A = \{criança\ do\ sexo\ masculino\ nascida\ prematuramente\ completar\ 1\ ano\}$

 $B = \{criança\ do\ sexo\ feminino\ nascida\ prematuramente\ completar\ 1\ ano\}$

 $P\{Ambos\ nascerem\ prematuramente\} = P(A \cap B) = ???$

Como os eventos A e B são independentes então

$$P\{Ambos\ nascerem\ prematuramente\} = P(A \cap B) = P(A) \times P(B) = \frac{3}{5} \times \frac{2}{3}$$

$$=\frac{2}{5}$$

VARIÁVEL ALEATÓRIA - MODELOS PROBABILÍSTICOS

Variável Aleatória

- ◆ O conceito de variável aleatória nos permite passar dos resultados do experimento propriamente ditos para uma função numérica dos resultados.
- Variável aleatória característica numérica dos resultados de um experimento

Variável Aleatória

- Variável aleatória característica numérica dos resultados de um experimento aleatório.
- Exemplos:
 - X número de caras em 2 lançamentos de uma moeda;
 - Y número de bolas brancas dentre duas selecionadas de uma urna sem reposição;
 - **Z** número de estudantes em uma amostra aleatória de 10 estudantes que utilizam ônibus para se deslocar para a escola.
 - **W** = altura dos usuários selecionados aleatoriamente entre os que frequentam uma academia.

Voltando ao **Exemplo 1...**

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

O interesse do estudo pode ser no *número de bolas brancas dentre* as 2 selecionadas. Assim...

Voltando ao **Exemplo 1...**

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso , SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

O interesse do estudo pode ser no *número de bolas branças dentre* as 2 selecionadas. Assim...

IL

Voltando ao **Exemplo 1...**

De uma urna contendo 5 bolas sendo 2 vermelhas e 3 brancas foram extraídas duas bolas ao acaso, SEM REPOSIÇÃO, e verifica-se a cor das bolas selecionadas.

O interesse do estudo pode ser no *número de bolas branças dentre* as 2 selecionadas. Assim...

10

Voltando ao **Exemplo 1...**

Seja variável aleatória X: número de bolas brancas dentre as 2 selecionadas.

Voltando ao **Exemplo 1...**

Seja variável aleatória *X: número de bolas brancas dentre as 2 selecionadas.*

$$P(X = 0) =$$

Voltando ao **Exemplo 1...**

Seja variável aleatória *X: número de bolas brancas dentre as 2 selecionadas.*

$$P(X = 0) = P\{(b, b)\}$$

Voltando ao **Exemplo 1...**

Seja variável aleatória *X: número de bolas brancas dentre as 2 selecionadas.*

$$P(X = 0) = P\{(b, b)\} = \frac{6}{20}$$

Voltando ao Exemplo 1...

Seja variável aleatória *X: número de bolas brancas dentre as 2 selecionadas.*

$$P(X = 0) = P\{(b, b)\} = \frac{6}{20}$$
 e $P(X = 2)$

Voltando ao **Exemplo 1...**

Seja variável aleatória X: número de bolas brancas dentre as 2 selecionadas.

$$P(X = 0) = P\{(b, b)\} = \frac{6}{20}$$

$$P(X = 0) = P\{(b, b)\} = \frac{6}{20}$$
 e $P(X = 2) = P\{(v, v)\} = \frac{2}{20}$

Voltando ao Exemplo 1...

Seja variável aleatória *X: número de bolas brancas dentre as 2 selecionadas.*

$$P(X = 0) = P\{(b, b)\} = \frac{6}{20}$$
 e $P(X = 2) = P\{(v, v)\} = \frac{2}{20}$
 $P(X = 1) =$

Voltando ao Exemplo 1...

Seja variável aleatória *X: número de bolas brancas dentre as 2 selecionadas.*

$$P(X = 0) = P\{(b, b)\} = \frac{6}{20}$$
 e $P(X = 2) = P\{(v, v)\} = \frac{2}{20}$
 $P(X = 1) = P\{(b, v), (v, b)\} =$

Voltando ao **Exemplo 1...**

Seja variável aleatória *X: número de bolas brancas dentre as 2 selecionadas.*

$$P(X = 0) = P\{(b, b)\} = \frac{6}{20}$$
 e $P(X = 2) = P\{(v, v)\} = \frac{2}{20}$
 $P(X = 1) = P\{(b, v), (v, b)\} = P\{(b, v)\} + P\{(v, b)\}$

Voltando ao Exemplo 1...

Seja variável aleatória *X: número de bolas brancas dentre as 2 selecionadas.*

$$P(X = 0) = P\{(b, b)\} = \frac{6}{20}$$
 e $P(X = 2) = P\{(v, v)\} = \frac{2}{20}$
 $P(X = 1) = P\{(b, v), (v, b)\} = P\{(b, v)\} + P\{(v, b)\} = \frac{6}{20} + \frac{6}{20} = \frac{12}{20}$

Voltando ao Exemplo 1...

Seja variável aleatória *X: número de bolas brancas dentre as 2 selecionadas.*

$$P(X = 2) = P\{(b, b)\} = \frac{6}{20}$$
 e $P(X = 0) = P\{(v, v)\} = \frac{2}{20}$
 $P(X = 1) = P\{(b, v), (v, b)\} = P\{(b, v)\} + P\{(v, b)\} = \frac{6}{20} + \frac{6}{20} = \frac{12}{20}$

X	P(X=x)	Modelo
0	2/20	Probabilístico
1	12/20	
2	6/20	

Modelos Probabilísticos

Os modelos probabilísticos são construídos a partir de certas hipóteses ou conjeturas sobre o problema em questão e constituem-se de duas partes:

- possíveis resultados o espaço amostral
- uma certa *lei* que nos diz quão provável é cada resultado (ou grupos de resultados) – as probabilidades.

Exemplo 3:

Estudos indicam que 20% da população de uma comunidade participam do programa habitacional. Três pessoas desta população são selecionadas e verifica-se se participam do programa habitacional (sim / não).

Exemplo 3:

Estudos indicam que 20% da população de uma comunidade participam do programa habitacional. Três pessoas desta população são selecionadas e verifica-se se participam do programa habitacional (sim / não).

Assim a experiência aleatória é

ε: Selecionar 3 pessoas da população estudada e verificar se participam do programa hanitacional.

Exemplo 3:

Estudos indicam que 20% da população de uma comunidade participam do programa habitacional. Três pessoas desta população são selecionadas e verifica-se se participam do programa habitacional (sim / não).

Assim a experiência aleatória é

ε: Selecionar 3 pessoas da população estudada e verificar se participam do programa hanitacional. e seu espaço amostral

$$\Omega = \left\{ (s, s, n), (s, s, n), (s, n, s), (s, n, n), \\ (n, s, s), (n, s, n), (n, n, s), (n, n, n) \right\}$$

Exemplo 3:

Estudos indicam que 20% da população de uma comunidade participam do programa habitacional. Três pessoas desta população são selecionadas e verifica-se se participam do programa habitacional (sim / não).

Assim a experiência aleatória é

ε: Selecionar 3 pessoas da população estudada e verificar se participam do programa hanitacional. e seu espaço amostral

$$\Omega = \left\{ (s, s, n), (s, s, n), (s, n, s), (s, n, n), \\ (n, s, s), (n, s, n), (n, n, s), (n, n, n) \right\}$$

X: número de pessoas dentre as 3 selecionadas que participam do programa habitacional.

Exemplo 3:

Estudos indicam que 20% da população de uma comunidade participam do programa habitacional. Três pessoas desta população são selecionadas e verifica-se se participam do programa habitacional (sim / não).

Assim a experiência aleatória é

ε: Selecionar 3 pessoas da população estudada e verificar se participam do programa hanitacional. e seu espaço amostral

$$\Omega = \left\{ (s, s, n), (s, s, n), (s, n, s), (s, n, n), \\ (n, s, s), (n, s, n), (n, n, s), (n, n, n) \right\}$$

X: número de pessoas dentre as 3 selecionadas que participam do programa habitacional.

Valores possíveis de X: $\{0,1,2,3\}$

X é uma variável aleatória.

Tipos de Variáveis:

- Variáveis Aleatória DISCRETA quando o conjunto de valores possíveis é um conjunto finito ou infinito enumerável.
- Variáveis Aleatória CONTÍNUA quando conjunto de valores possíveis é um conjunto infinito não enumerável, isto é, um intervalo.

Distribuição Binomial

Seja uma experiência aleatória ε com apenas 2 resultados possíveis (ou os resultados podem ser agrupados em duas classes ou categorias) chamados **sucesso** e **fracasso**. \Longrightarrow **Experiência de Bernoulli**

Considere,

- k repetições de uma experiência de Bernoulli;
- repetições independentes,
- lacktriangle a probabilidade de sucesso em cada repetição da experiência é sempre igual a π .

Seja a variável aleatória X: número de sucessos nas k repetições.

Valores possíveis de X: {0,1,2, ..., k}

e $\pi = P(sucesso)$

Exemplo 3:

Estudos indicam que 20% da população de uma comunidade participam do programa habitacional. Três pessoas desta população são selecionadas e verifica-se se participam do programa habitacional (sim / não).

Assim a experiência aleatória é

ε: Selecionar 3 pessoas da população estudada e verificar se participam do programa hanitacional. e seu espaço amostral:

sucesso – participar do programa habitacional
$$\pi = P(sucesso) = 0.2$$

X: número de pessoas dentre as 3 selecionadas que participam do programa habitacional.

Valores possíveis de X: {0,1,2,3}

X é uma variável aleatória.

		(n,n,s)	(n,s,s)		
		(n,s,n)	(s,n,s)		
	(n,n,n)	(s,n,n)	(s,s,n)	(s,s,s)	
X	0	1	2	3	

	(n,n,n)	(n,n,s) (n,s,n) (s,n,n)	(n,s,s) (s,n,s) (s,s,n)	(s,s,s)
X	0	1	2	3
	0,8x0,8x0,8	0,2x0,8x0,8	0,2x0,2x0,8	0,2x0,2x0,2

Função de Probabilidade:

$$p_i = P(X = x) = {k \choose x} \pi^x (1 - \pi)^{k - x}$$

$$x = 0,1,...,k$$
.

sendo que:

$$\binom{k}{x} = \frac{k!}{x!(k-x)!}$$

X tem **DISTRIBUIÇÃO** de **BINOMIAL** com parâmetros π e k.

Medidas Características:

$$E(X) = k\pi$$

$$V(X) = k\pi(1-\pi)$$

sucesso – participar do programa habitacional $\pi = P(sucesso) = 0.2$

X tem Distribiução Binomial com parâmetros k = 3 e $\pi = 0, 2$

Exemplo 3:

Estudos indicam que 20% da população de uma comunidade participam do programa habitacional. Três pessoas desta população são selecionadas e verifica-se se participam do programa habitacional (sim / não).

$$sucesso$$
 – participar do programa habitacional π = P(sucesso) = 0,2

X: número de pessoas dentre as 3 selecionadas que participam do programa habitacional.

X tem Distribiução Binomial com parâmetros k = 3 e $\pi = 0, 2$

Determine a probabilidade de:

- a) nenhum dos selecionados participar do programa habitacional;
- b) Dois participarem do programa habitacional;
- c) Pelo menos dois participarem do programa habitacional;
- d) O número esperado de participantes do programa habitacional e o desvio padrão.