「지능화 파일럿 프로젝트」프로젝트 설계

머신러닝을 이용한 UV LED 광 출력 추정 모델 개발(6주차)

2021. 10. 14

2020254011

윤 재 웅

이번주 진행 사항

진행사항 1) 데이터 확보

- Neuro-Fuzzy 추론 시스템을 적용하기 위해선 다양한 데이터가 필요
- 기존 장비를 이용하여 raw data를 확보하고 이를 통한 분석
- 장비 작동에 핵심이 되는 부분 우선 연구 (ADC 값의 변화)
- 센싱 데이터는 온도만을 사용

[실험데이터-1] 확인													
온도	100-LEVEL	120-LEVEL	150-LEVEL	170-LEVEL	180-LEVEL	200-LEVEL	210-LEVEL	230-LEVEL	240-LEVEL	250-LEVEL			
25	15.4	18.5	23.6	26.3	27.7	30.7	31.9	34.9	35.6	37.6			
26	15.4	18.4	23.5	26.2	27.6	30.6	31.8	34.8	35.6	37.5			
27	15.3	18.4	23.4	26.2	27.5	30.6	31.4	34.7	35.5	37.4			
28	15.2	18.3	23.3	26.1	27.5	30.5	31.3	34.6	35.3	37.3			
29	15.2	18.3	23.2	26.0	27.4	30.4	31.2	34.5	35.2	37.1			
30	15.1	18.2	23.2	25.9	27.3	30.2	31.0	34.4	35.0	37.0			
31	15.1	18.1	23.1	25.8	27.2	30.0	30.9	34.2	34.8	36.8			
32	15.0	18.1	23.0	25.6	27.1	29.9	30.8	34.1	34.8	36.6			
33	15.0	18.1	23.0	25.5	26.9	29.8	30.7	34.0	34.8	36.5			
34	15.0	18.0	22.8	25.4	26.8	29.7	30.6	33.8	34.6	36.4			
35	14.9	17.9	22.7	25.3	26.8	29.5	30.5	33.5	34.5	36.1			
36	14.9	17.9	22.7	25.1	26.7	29.3	30.4	33.4	34.3	35.9			
37	14.8	17.8	22.5	25.0	26.6	29.2	30.3	33.2	34.1	35.7			
38	14.8	17.8	22.4	24.9	26.5	29.0	30.1	33.0	33.8	35.5			
39	14.8	17.7	22.3	24.8	26.4	28.8	30.3	32.8	33.7	35.4			
40	14.7	17.6	22.2	24.7	26.3	28.7	29.9	32.7	33.5	35.2			

[실험데이터-2] 25℃에서 ADC 레벨에 따른 광 출력 변화													
ADC 레벨	광 출력	ADC 레벨	광 출력	ADC 레벨	광 출력	ADC 레벨	광 출력	ADC 레벨	광 출력	ADC 레벨 광 출력		ADC 레벨	광 출력
50	6.8	80	12.0	110	17.0	140	21.7	170	26.4	200	31.1	230	35.0
51	6.9	81	12.1	111	17.1	141	21.8	171	26.5	201	31.3	231	35.1
52	7.1	82	12.3	112	17.3	142	22.0	172	26.7	202	31.4	232	35.3
53	7.3	83	12.5	113	17.5	143	22.2	173	26.8	203	31.6	233	35.4
54	7.5	84	12.7	114	17.7	144	22.3	174	27.0	204	31.7	234	35.6
55	7.6	85	12.8	115	17.8	145	22.4	175	27.2	205	31.8	235	35.8
56	7.8	86	13.0	116	18.0	146	22.6	176	27.3	206	31.9	236	35.9
57	8.0	87	13.2	117	18.1	147	22.8	177	27.5	207	32.1	237	36.1
58	8.2	88	13.4	118	18.3	148	22.9	178	27.6	208	32.2	238	36.3
59	8.3	89	13.5	119	18.4	149	23.0	179	27.8	209	32.3	239	36.5
60	8.5	90	13.7	120	18.6	150	23.2	180	28.0	210	32.4	240	36.6
61	8.7	91	13.8	121	18.8	151	23.4	181	28.1	211	32.6	241	36.7
62	8.9	92	14.0	122	18.9	152	23.5	182	28.3	212	32.7	242	36.9
63	9.0	93	14.2	123	19.1	153	23.7	183	28.5	213	32.9	243	37.0
64	9.2	94	14.4	124	19.2	154	23.8	184	28.6	214	33.0	244	37.2
65	9.4	95	14.5	125	19.4	155	23.9	185	28.7	215	33.1	245	37.3
66	9.6	96	14.7	126	19.5	156	24.1	186	28.9	216	33.3	246	37.5
67	9.8	97	14.8	127	19.7	157	24.3	187	29.1	217	33.4	247	37.7
68	9.9	98	15.0	128	19.8	158	24.5	188	29.2	218	33.5	248	37.8
69	10.1	99	15.2	129	20.0	159	24.6	189	29.3	219	33.7	249	37.9
70	10.3	100	15.4	130	20.1	160	24.8	190	29.5	220	33.8	250	38.0
71	10.3	101	15.5	131	20.3	161	25.1	191	29.6	221	33.9	251	38.1
72	10.6	102	15.7	132	20.5	162	25.2	192	29.8	222	34.0	252	38.3
73	10.8	103	15.9	133	20.6	163	25.3	193	29.9	223	34.2	253	38.4
74	11.0	104	16.0	134	20.8	164	25.5	194	30.1	224	34.3	254	38.5
75	11.1	105	16.2	135	21.0	165	25.6	195	30.3	225	34.4	255	38.7
76	11.3	106	16.4	136	21.1	166	25.8	196	30.4	226	34.5		
77	11.5	107	16.5	137	21.3	167	25.9	197	30.5	227	34.7		
78	11.7	108	16.7	138	21.4	168	26.1	198	30.7	228	34.8		
79	11.8	109	16.9	139	21.6	169	26.3	199	30.9	229	34.9		

다음주 진행 예정 사항

예정 사항 1) 기술 연구 및 적용

- Neuro-Fuzzy 기술 파악 및 적용 준비
- Matlab의 Fuzzy 러닝 알고리즘 지원 기능을 이용한 학습 테스트

문제점 및 애로 사항

문제점 및 애로 사항 1) 데이터 취득 불가 환경 및 Matlab 프로그램 사용

- 경기 북부 및 강원 장기 출장으로 인한 데이터 취득 불가 환경
- 사내 복귀 시점마다 시간을 쪼개 취득하는 방법을 취할 예정
- Matlab 프로그램을 이용하기 위한 방안 모색

주요 일정

WH + TIOLT!	주차															
세부 추진일정	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	비고
프로젝트 계획 수립																
이전 기술의 문제점 파악																
사전 기술 특징 파악																
기술 적용 사례 분석																
데이터 확보																
설계 및 적용																
기술 테스트																
추정 모델 제작 완료																
(관련 논문 제작)																

감사합니다