Methodology for Converting Doses

- 1. **Determine average particle size:** Particle size dimensions are preferentially selected according to availability. If only one dimension is provided, it is designated as length.
 - a. Average particle size (measured)
 - b. Median of particle size range (measured)
 - c. Average particle size (nominal)
 - d. Median of particle size range (nominal)
- 2. **Calculate particle volume:** Particle volume is determined according to shape as follows:
 - a. **Sphere:** $V = \frac{4}{3} \pi r^3$ where r = length/2
 - b. **Fiber:** $V = \pi r^2 h$ where r = width/2 and h = length
 - c. Fragment: $\frac{\pi}{6}L^3CSF^2$ where L = length and CSF = 0.4
 - i. CSF = Corey Shape Factor, $CSF = \frac{H}{\sqrt{LW}}$, ~average CSF for irregular particles is 0.4 as determined by Kooi & Koelmans 2019 (1)
- 3. **Calculate particle mass:** Multiply calculated particle volume by density ($\rho V = m$). The reported density is preferentially used. If density is not reported, density estimates (2) based on polymer type and weathering are used:

Polymer	Chemical	Weathered
PE	0.935	1.01
PP	0.875	0.945
PET	1.205	1.385
PA	1.09	1.145
PS	1.07	1.09
PVC	1.34	1.525
PVA	1.25	1.28

- 4. Calculate estimated dose:
 - a. Particles/Volume → Mass/Volume: Calculated particle mass is multiplied by the reported dose in particles per volume.
 - b. Mass/Volume → Particles/Volume: The reported dose in mass per volume is divided by the calculated mass per particle.

References:

- 1. Kooi, M.; Koelmans, A. A., Simplifying Microplastic via Continuous Probability Distributions for Size, Shape, and Density. *Environmental Science & Technology Letters* **2019**, *6*, (9), 551-557.
- 2. Koelmans, A. A.; Redondo-Hasselerharm, P. E.; Mohamed Nor, N. H.; Kooi, M., Solving the Nonalignment of Methods and Approaches Used in Microplastic Research to Consistently Characterize Risk. *Environ Sci Technol* **2020**.