OEAW AI SUMMER SCHOOL

Introduction to Supervised Machine Learning

Michael Widrich, Johannes Brandstetter Institute for Machine Learning

How to solve these tasks?

- Prediction of trajectory of a space shuttle
- Translation of one language into another
- Prediction of protein function

Explicit models

Traditional approach: Explicit model

Use explicit knowledge to design model deductively

Explicit models

Traditional approach: Explicit model

- Use explicit knowledge to design model deductively
- Pros:
 - Knowledge about behavior of model and environment/problem
 - Knowledge about restrictions of model and reasons for design choices

Explicit models

Traditional approach: Explicit model

- Use explicit knowledge to design model deductively
- Pros:
 - Knowledge about behavior of model and environment/problem
 - Knowledge about restrictions of model and reasons for design choices
- Cons:
 - Sometimes problem is too complex to model
 - Consequences of simplifications of problem/model hard to asses
 - Insufficient knowledge about problem/environment

Machine Learning

Machine Learning: Inductive Learning

Use previously observed data to create model inductively

Machine Learning

Machine Learning: Inductive Learning

- Use previously observed data to create model inductively
- Pros:
 - Problem can be solved without (exhaustive) knowledge about problem
 - Predictions/Insights are created directly from data
 - ☐ Can handle complex problems and profits from big data

Machine Learning

Machine Learning: Inductive Learning

- Use previously observed data to create model inductively
- Pros:
 - □ Problem can be solved without (exhaustive) knowledge about problem
 - Predictions/Insights are created directly from data
 - ☐ Can handle complex problems and profits from big data
- Cons:
 - Data is required (sometimes a lot of data!)
 - Complex models (deep learning) can end up being a black box
 - Naive application might lead to biases

Supervised Machine Learning:

- Learning from input values and corresponding target values
 - ☐ E.g. image + object type, DNA sequence + phenotype, ...

Supervised Machine Learning:

- Learning from input values and corresponding target values
 - ☐ E.g. image + object type, DNA sequence + phenotype, . . .
- Typical usage: predictive modeling
 - Train model on dataset with input+target values
 - □ Use trained model to predict target values for other (new) inputs

Supervised Machine Learning:

- Learning from input values and corresponding target values
 - ☐ E.g. image + object type, DNA sequence + phenotype, ...
- Typical usage: predictive modeling
 - Train model on dataset with input+target values
 - ☐ Use trained model to predict target values for other (new) inputs
- Classification: target value is class label
- Regression: target value is numerical value

Example data for Supervised ML (1)

Example data for Supervised ML (2)

0.99516	0.890813	0.933726	0.793397	0.826405	0.236946	-1
0.853206	0.611647	0.317486	0.633609	0.411492	0.985231	+1
0.387494	0.459847	0.815049	0.394526	0.678227	0.031886	-1
0.733515	0.640438	1.19068	0.639685	0.0793674	0.160503	+1
0.274817	0.261054	1.20056	0.689895	0.401913	0.277955	-1
0.329943	0.241299	0.848705	0.721673	0.973852	0.795238	-1
0.334784	0.350487	0.315131	0.928277	0.816343	0.558292	-1
0.481578	0.738839	0.0925513	0.294667	0.612725	0.573062	-1
0.0940846	0.278992	0.451819	0.900141	0.220497	0.541176	+1
0.360569	0.638554	1.0307	0.260456	0.00658296	0.380672	+1
0.0857518	0.3775	0.386551	0.570562	0.15437	0.102717	+1
0.755808	0.1362	0.544536	0.848888	0.874862	0.307479	-1
0.421025	0.785714	0.449038	0.920612	0.420418	0.749187	-1
0.939446	0.0468747	0.15846	0.625944	0.198894	0.176125	+1
0.845362	0.767883	0.824993	0.725803	0.808218	0.63495	-1
0.484793	0.129329	0.0783719	0.465347	0.291457	0.254278	+1
0.399041	0.751829	0.763511	0.894785	0.47902	0.15156	-1
0.643232	0.615629	0.430261	0.0458972	0.446513	0.844081	+1

Example data for Supervised ML (3)

Terminology

Model: parameterized function/method with specific parameter values (e.g. a trained neural network)

Model class: the class of models in which we search for the model (e.g. neural networks, SVMs, ...)

Parameters: representations of concrete models inside the given model class (e.g. network weights)

Hyperparameters: parameters controlling model complexity or the training procedure (e.g. network learning rate)

Model selection/training: process of finding a model from the model class

Question/Task + Data

Prior Knowledge

Introductory example: Fish recognition

Example borrowed from

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. 2nd edition. John Wiley & Sons, 2001. ISBN 0-471-05669-3.

- Automated system to sort fish in a fish-packing company: salmons must be distinguished from sea bass optically
- Given: a set of pictures with fish labels
- Goal: distinguish between salmons and sea bass

→ Classification task with two labels (salmon vs. sea bass)

Our data (two sample images)

Salmon:

Sea bass:

Our data (two sample images)

Salmon:

Sea bass:

How can we distinguish these two kinds of fish?

Our data (two sample images)

Salmon:

How can we distinguish these two kinds of fish?

First step: Let's take a look at our data!

Preprocessing & Feature Selection

Feature selection:

- What data do we have?
- Removal of redundant features
- Removal of features the model class cannot utilize
- (Deep Learning: Feature selection mainly by neural network)

Preprocessing & Feature Selection

Feature selection:

- What data do we have?
- Removal of redundant features
- Removal of features the model class cannot utilize
- (Deep Learning: Feature selection mainly by neural network)

Preprocessing:

- Contrast and brightness correction
- Segmentation
- Alignment
- Normalization
- ...

Back to our data

Salmon:

Sea bass:

... assume we use length and brightness as features

Back to our data

Salmon:

... assume we use length and brightness as features

→ How do we express/represent these features?

Input representation

 We can represent our objects by vectors of feature values (=feature vectors) of length d

$$\mathbf{x} = (x^1, \dots, x^d)^T$$

 \square E.g.: fish is represented as feature vector with two values length and brightness (i.e. d=2)

Input representation

 We can represent our objects by vectors of feature values (=feature vectors) of length d

$$\mathbf{x} = (x^1, \dots, x^d)^T$$

- \square E.g.: fish is represented as feature vector with two values length and brightness (i.e. d=2)
- An object described by feature vector is also referred to as sample

Input representation

 We can represent our objects by vectors of feature values (=feature vectors) of length d

$$\mathbf{x} = (x^1, \dots, x^d)^T$$

- \square E.g.: fish is represented as feature vector with two values length and brightness (i.e. d=2)
- An object described by feature vector is also referred to as sample
- We assume our feature vectors to be from a set/space X

$$\mathbf{x} = (x^1, \dots, x^d)^T \in X$$

- If X is finite set of labels, we speak of categorical variables/features
- If $X = \mathbb{R}$, real interval, etc., we speak of *numerical* variables/features

Assume our dataset consists of l objects with feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_l$

- Assume our dataset consists of l objects with feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_l$
- Assume we are given a target value $y_i \in \mathbb{R}$ for each sample \mathbf{x}_i

- Assume our dataset consists of l objects with feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_l$
- Assume we are given a target value $y_i \in \mathbb{R}$ for each sample \mathbf{x}_i
- Then all target values constitute the target/label vector:

$$\mathbf{y} = (y_1, \dots, y_l)^T$$

- Assume our dataset consists of l objects with feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_l$
- Assume we are given a target value $y_i \in \mathbb{R}$ for each sample \mathbf{x}_i
- Then all target values constitute the target/label vector:

$$\mathbf{y} = (y_1, \dots, y_l)^T$$

Often we write our dataset, including input features and targets, as data matrix Z:

$$\mathbf{Z} = \begin{pmatrix} \mathbf{X} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} x_1^1 & \dots & x_l^1 \\ \vdots & \ddots & \vdots \\ x_1^d & \dots & x_l^d \\ y_1 & \dots & y_l \end{pmatrix}$$

Back to our data

Salmon:

We now know how to represent our data (=fish features and labels) and will take a look at it via histograms

Length:

Length:

- Assume we want to use a simple threshold as model class to classify our data
 - = model with 1 parameter (threshold value)
 - we have to decide on a single feature (e.g. brightness)
 - □ we have to choose the model parameter(s)

Length:

- Assume we want to use a simple threshold as model class to classify our data
 - = model with 1 parameter (threshold value)
 - we have to decide on a single feature (e.g. brightness)
 - we have to choose the model parameter(s)

Length:

- Assume we want to use a simple threshold as model class to classify our data
 - = model with 1 parameter (threshold value)
 - we have to decide on a single feature (e.g. brightness)
 - we have to choose the model parameter(s)

Length:

Brightness:

■ How do we get the "best" model?

Length:

- How do we get the "best" model?
 - 1. How does our model perform on our data?

Length:

- How do we get the "best" model?
 - 1. How does our model perform on our data?
 - How will it perform on (unseen) future data? (=how will it generalize?)

Length:

- How do we get the "best" model?
 - 1. How does our model perform on our data? Loss function
 - How will it perform on (unseen) future data? (=how will it generalize?)

Scoring our models: Loss function

- Assume we have a model g, parameterized by w
- $\mathbf{g}(\mathbf{x}; \mathbf{w})$ maps an input vector \mathbf{x} to an output value \hat{y}
- We want \hat{y} to be as close as possible to the true target value y

Scoring our models: Loss function

- Assume we have a model g, parameterized by w
- $\mathbf{g}(\mathbf{x}; \mathbf{w})$ maps an input vector \mathbf{x} to an output value \hat{y}
- We want \hat{y} to be as close as possible to the true target value y
- We can use a loss function

$$L(y, g(\mathbf{x}; \mathbf{w}))$$

to measure how close our prediction is to the true target for a given sample with $\mathbf{z} = (\mathbf{x}^T, y)^T$

■ The smaller the loss/cost, the better our prediction

Examples of loss functions

Zero-one loss:
$$L_{\mathbf{zo}}(y, g(\mathbf{x}; \mathbf{w})) = \begin{cases} 0 & y = g(\mathbf{x}; \mathbf{w}) \\ 1 & y \neq g(\mathbf{x}; \mathbf{w}) \end{cases}$$

Quadratic loss: $L_{\mathbf{q}}(y, g(\mathbf{x}; \mathbf{w})) = (y - g(\mathbf{x}; \mathbf{w}))^2$

- Many other loss functions available with different justifications
- Not every loss function is suitable for every task
- Choice of loss function depends on data, task, and model class

Length:

- How do we get the "best" model?
 - How does our model perform on our data? √
 - How will it perform on (unseen) future data? (=how will it generalize?)

Length:

- How do we get the "best" model?
 - How does our model perform on our data? √
 - How will it perform on (unseen) future data? (=how will it generalize?) – Generalization error/risk

Generalization error/risk

■ The generalization error or risk is the expected loss on future data for a given model $g(.; \mathbf{w})$:

$$R(g(.; \mathbf{w})) = \int\limits_{X} \int\limits_{\mathbb{R}} L(y, g(\mathbf{x}; \mathbf{w})) \cdot p(\mathbf{x}, y) dy d\mathbf{x}$$

 \blacksquare $R(g(\mathbf{x}; \mathbf{w}))$ denotes the expected loss for input \mathbf{x}

Generalization error/risk

■ The generalization error or risk is the expected loss on future data for a given model g(.; w):

$$R(g(.; \mathbf{w})) = \int\limits_{X} \int\limits_{\mathbb{R}} L(y, g(\mathbf{x}; \mathbf{w})) \cdot p(\mathbf{x}, y) dy d\mathbf{x}$$

- \blacksquare $R(g(\mathbf{x}; \mathbf{w}))$ denotes the expected loss for input \mathbf{x}
- In practice, we hardly have any knowledge about $p(\mathbf{x},y)$

Generalization error/risk

The generalization error or risk is the expected loss on future data for a given model $g(.; \mathbf{w})$:

$$R(g(.; \mathbf{w})) = \int\limits_{X} \int\limits_{\mathbb{R}} L(y, g(\mathbf{x}; \mathbf{w})) \cdot p(\mathbf{x}, y) dy d\mathbf{x}$$

- \blacksquare $R(g(\mathbf{x}; \mathbf{w}))$ denotes the expected loss for input \mathbf{x}
- In practice, we hardly have any knowledge about $p(\mathbf{x}, y)$
- → We have to estimate the generalization error

Empirical Risk Minimization (ERM)

We do not know the true $p(\mathbf{x}, y)$ but we have access to a subset of n data samples (=our dataset)

Empirical Risk Minimization (ERM)

- We do not know the true $p(\mathbf{x}, y)$ but we have access to a subset of n data samples (=our dataset)
- We can minimize the empirical risk R_{emp} on our dataset (=Empirical Risk Minimization):

$$R_{\text{emp}}(g(.; \mathbf{w}), \mathbf{Z}_n) = \frac{1}{n} \cdot \sum_{i=1}^{n} L(y^i, g(\mathbf{x}^i; \mathbf{w}))$$

Empirical Risk Minimization (ERM)

- We do not know the true $p(\mathbf{x}, y)$ but we have access to a subset of n data samples (=our dataset)
- We can minimize the empirical risk R_{emp} on our dataset (=Empirical Risk Minimization):

$$R_{\text{emp}}(g(.; \mathbf{w}), \mathbf{Z}_n) = \frac{1}{n} \cdot \sum_{i=1}^{n} L(y^i, g(\mathbf{x}^i; \mathbf{w}))$$

Strong law of large numbers:

$$R_{\mathsf{emp}}(g(.; \mathbf{w})) \to R(g(.; \mathbf{w})) \text{ for } n \to \infty$$

Length:

- How do we get the "best" model?
 - How does our model perform on our data? √
 - How will it perform on (unseen) future data? (=how will it generalize?) √

Length:

Brightness:

We can now optimize our model by minimizing the risk on our (training) dataset!

Length:

- We can now optimize our model by minimizing the our (training) dataset!
- ... but the individual features do not separate the classes well :-(

Length:

- We can now optimize our model by minimizing the our (training) dataset!
- ... but the individual features do not separate the classes well :-(
- → Let's combine our features and use a different model class!

Combined features: Linear separation

Combined features: Mildly non-linear separation

Combined features: Highly non-linear separation

Combined features: Highly non-linear separation

Seems perfect on our data, right? Are we done now?

The problem of overfitting

■ With ERM we can optimize our model by minimizing the risk on our (training) dataset

The problem of overfitting

- With ERM we can optimize our model by minimizing the risk on our (training) dataset
- Problem: We might fit our parameters to noise specific to our training dataset (=overfitting)

The problem of overfitting

- With ERM we can optimize our model by minimizing the risk on our (training) dataset
- Problem: We might fit our parameters to noise specific to our training dataset (=overfitting)
- \rightarrow we need to get a better estimate for the (true) risk

Risk estimation: Test set method

- Assume our data samples are independently and identically distributed (i.i.d.)*
- We can split our dataset of n samples into 2 subsets:

Training set: the subset with *l* samples we perform ERM on (i.e. optimize parameters on)

Test set: a subset with m samples we use to estimate the risk

[*) i.i.d.: each sample has the same probability distribution as the others and all are mutually independent.]

Risk estimation: Test set method

- Assume our data samples are independently and identically distributed (i.i.d.)*
- We can split our dataset of n samples into 2 subsets:
 - **Training set:** the subset with *l* samples we perform ERM on (i.e. optimize parameters on)
 - **Test set:** a subset with m samples we use to estimate the risk
- Our estimate R_E on test set will show if we overfit to noise in training set! :)

[*) i.i.d.: each sample has the same probability distribution as the others and all are mutually independent.]

Test set method: Practical hints

- No overlap between training and test set samples (i.i.d.!)
- Random sampling of training and test set samples (i.i.d.!)
- Test set samples are not to be used for preprocessing, feature selection, model selection, etc.

Test set method: Practical hints

- No overlap between training and test set samples (i.i.d.!)
- Random sampling of training and test set samples (i.i.d.!)
- Test set samples are not to be used for preprocessing, feature selection, model selection, etc.
- We might want to use 3 separate subsets:

Training set: subset we train a model on (optimize model parameters)

Validation set: subset we select best model from training on (=model selection)

Test set: subset we use to estimate risk

Cross Validation (1)

- For small datasets, the requirement that training and test set must not overlap is painful
- Solution: Cross Validation (CV)
 - \square Split dataset into n disjoint folds

 - □ Train n times, every time leaving out a different fold as test set
 - □ Average over n estimated risks on test sets to get better estimate of generalization capability

Cross Validation (1)

5-fold Cross Validation

T: Training set; V: Test set

Cross Validation (1)

5-fold Cross Validation

T: Training set; V: Test set

Cross Validation (1)

5-fold Cross Validation

T: Training set; V: Test set

Cross Validation (2)

- Nested Cross Validation
 - □ We can apply another (inner) CV procedure within each training-set of the original (outer) CV
 - → allows for evaluation of model selection procedure

Cross Validation (2)

- Nested Cross Validation
 - We can apply another (inner) CV procedure within each training-set of the original (outer) CV
 - → allows for evaluation of model selection procedure
- Getting a risk estimate on selected model:
 - 1. Apply cross validation on training set (withhold test set)
 - 2. Use test set to estimate risk for the model selected via CV

Cross Validation (2)

- Nested Cross Validation
 - □ We can apply another (inner) CV procedure within each training-set of the original (outer) CV
 - → allows for evaluation of model selection procedure
- Getting a risk estimate on selected model:
 - 1. Apply cross validation on training set (withhold test set)
 - 2. Use test set to estimate risk for the model selected via CV
- In practice, the found model is often trained further or re-trained on complete dataset for best performance

Back to our data

- Now we know we can use ERM to optimize a model on our training dataset (optionally via CV)
- A held-out test set will allow us to get an estimate about the performance on future data (optionally via CV)

Back to our data

- Now we know we can use ERM to optimize a model on our training dataset (optionally via CV)
- A held-out test set will allow us to get an estimate about the performance on future data (optionally via CV)

Done!:)

Common pitfalls

Underfitting: model is too coarse to fit training or test data (too low model complexity)

Overfitting: model fits well to training data but not to future/test data (too high model complexity)

Unbalanced dataset: datasets biased toward a single class need to be evaluated properly (balanced accuracy, ROC AUC, loss weighting, ...)

Hints

- Separate the test set as soon as possible (no feature selection on test set data!)
- Inspect your dataset (clusters/peculiarities due to data creation, artefacts, . . .)
- Which CV/training/evaluation method to use depends on what you want to show/achieve (method comparison, winning a challenge, ...)

Hints

- Separate the test set as soon as possible (no feature selection on test set data!)
- Inspect your dataset (clusters/peculiarities due to data creation, artefacts, . . .)
- Which CV/training/evaluation method to use depends on what you want to show/achieve (method comparison, winning a challenge, ...)
 - Example:
 - Your data was recorded by 5 different labs
 - You want the algorithm to generalize to new labs
 - → If CV folds do not share the same labs we get an estimate for generalization to new labs (=cluster cross validation)

Summary

- Acquire labeled dataset (input features + target values)
- 2. Divide dataset into training and test set
- Select preprocessing pipeline, features, and model class based on training set
- 4. Optimize the model parameters on the training set
- Optionally use validation set or CV to determine best model
- Go back to step 3 if evaluation on validation/training set gave new insights
- Use test set to calculate estimate for generalization error/risk

Summary

- Acquire labeled dataset (input features + target values)
- 2. Divide dataset into training and test set
- Select preprocessing pipeline, features, and model class based on training set
- 4. Optimize the model parameters on the training set
- Optionally use validation set or CV to determine best model
- Go back to step 3 if evaluation on validation/training set gave new insights
- Use test set to calculate estimate for generalization error/risk

Done!:)