Указания по монтажу и эксплуатации

5. Тепловой расчёт

по существующим методикам с применением основных расчётных справочно-информационной литературе и, с учётом данных, приведённых в настоящих рекомендациях. Тепловой поток Q, Bt, условиях (нормированных), определяется формуле:

$$Q = Q_{_{Hy}} \cdot (\frac{\Theta}{70})^{1+n} \cdot (\frac{M_{np}}{0,1}) \cdot b = Q_{_{Hy}} \cdot \phi_1 \cdot \phi_2 \cdot b =$$

$$= K_{_{Hy}} \cdot 70 \cdot F \cdot \phi_1 \cdot \phi_2 \cdot b, B\tau$$

где:

Q – номинальный тепловой поток конвектора при нормальных условиях (Массовый расход теплоносителя – 0,1 кг/с, температурный напор – 70 °C);

9 - фактический температурный напор, °С, определяемый по формуле

$$\Theta = \frac{t_{H} + t_{K}}{2} t_{\Pi} = t_{H} - \frac{\Delta t_{\Pi p}}{2} - t_{\Pi} BT$$

t.. и t.. - соответственно начальная и конечная температуры теплоносителя (на входе и выходе) в конвекторе, °С;

 $\mathbf{t}_{_}$ - расчётная температура помещения, принимаемая равной расчётной температуре воздуха в помещении t_s, °C; Δt_{nn} - перепад температур теплоносителя между входом и выходом конвектора, °С;

70 - нормированный температурный напор, °С;

n и m – эмпирические показатели степени соответственно при относительных температурном напоре и расходе теплоносителя для разных типов конветкора (см. таб. 1 и 2), М – фактический массный расход теплоносителя через отопи-тельный прибор (конвектор), кг/с;

$$\mathsf{Mnp} = \frac{\mathsf{Q}_{\mathsf{nom}}}{\mathsf{c} \cdot (\mathsf{t}_{\mathsf{H}} - \mathsf{t}_{\mathsf{K}})'} \frac{\mathsf{Kr}}{\mathsf{c}}$$

с – удельная теплоемкость воды, Дж/(кг·К)

0,1 – нормированный массный расход теплоносителя через конвектор, кг/с;

b – безразмерный поправочный коэффициент на расчётное атмосферное давление (см. таб. 3); $\phi_1 = (\frac{\Theta}{70})^{(1+n)}$ — безразмерный поправочный коэффициент, с помощью которого учитывается изменение теплового потока конвектора при отличии расчётного температурного напора от нормального;

 $\phi_2 = (\frac{M_{np}}{0.1})^m$ - безразмерный поправочный коэффициент, с помощью которого учитывается изменение теплового потока конвектора при отличии расчётного (фактического) массного расхода теплоносителя через прибор от нормального;

в – безразмерный поправочный коэффициент, характеризующий зависимость теплопередачи конвектора

k-безразмерный поправочный коэффициент, учитывающий влияние конструкции и материала декоративной воздуховыпускной решетки на теплоотдачу конвектора;

 $\mathbf{K}_{\mathbf{u}_{\mathbf{v}}}$ – коэффициент теплопередачи конвектора при нормальных условиях, определяемый по формуле

$$K_{Hy} = \frac{BT}{M^2 \cdot C}, \frac{Q_{Hy}}{F \cdot 70}$$

F – площадь наружной поверхности теплообмена конвектора, м².

Коэффициент теплопередачи конвектора K, Bт/(м².°C), при условиях, отличных от нормальных, определяется по

$$K = K_{_{H\!Y}} \cdot (\frac{\Theta}{70})^n \cdot (\frac{M_{np}}{0.1})^m \cdot b = K_{_{H\!Y}} \cdot (\frac{\Theta}{70})^n \cdot \phi_2 \cdot b$$

Таблица 1 - Усреднённые значения показателей степени n конвектора VITRON показателей степени n конвектора VITRON с ествественной конвекцией

Таблица 2 - Усреднённые значения с принудительной конвекцией

Коэффициент п для ВКВ 24В

K	Коэффициент n для BK							
Ширина	160	200	260	300	360	400		Ц
Высота	160	200	260	300	300	400		Е
65	1,8	1,75	1,7	1,65	1,6	1,55		
70	1,75	1,7	1,65	1,6	1,55	1,5		
75	1,7	1,65	1,6	1,55	1,5	1,45		
80	1,65	1,6	1,55	1,5	1,45	1,4		
90	1,6	1,55	1,5	1,45	1,4	1,3		
110	1,5	1,3	1,3	1,3	1,3	1,3		
140	1,41	1,34	1,32	1,3	1,28	1,25		
150	1,4	1,35	1,32	1,3	1,28	1,25		
200	1,3	1,25	1,3	1,28	1,26	-		
300	1,2	-	1,28	1,26	1,24	-		
400	1,1	-	1,27	1,25	1,22	-		l '
500	1,0	-	1,26	1,24	1,2	-		
600	0,9	-	1,25	1,23	1,18	-		

)	300	360	400		Ширина	160	200	260	300	360	400	
,	300	360	400		Высота	160	200	260	300	360	400	
	1,65	1,6	1,55		65	-	-	1,7	1,65	1,6	1,55	
5	1,6	1,55	1,5		70	-	-	1,65	1,6	1,55	1,5	
	1,55	1,5	1,45		75	1,7	1,65	1,6	1,55	1,5	1,45	
5	1,5	1,45	1,4		80	-	-	1,55	1,5	1,45	1,4	
	1,45	1,4	1,3		90	1,6	1,55	1,5	1,45	1,4	1,3	
	1,3	1,3	1,3		110	1,5	1,3	1,3	1,3	1,3	1,3	
2	1,3	1,28	1,25		140	1,4	1,35	1,32	1,3	1,28	1,25	
2	1,3	1,28	1,25		150	1,4	1,35	1,32	1,3	1,28	1,25	
	1,28	1,26	-		Табли	ица 3	- Знач	нение	попр	авочн	ЮГО	

коэффициента b.

Коэф b	Атмосферное давление				
	мм рт.ст.	гПа			
0,965	690	920			
0,97	700	933			
0,975	710	947			
0,98	720	960			
0,985	730	973			
0,99	740	987			
0,995	750	1000			
1	760	1013,3			
1,01	780	1040			

Указания по монтажу и эксплуатации

6. Гидравлический расчёт

Гидравлический расчёт проводится по существующим с применением основных расчётных специальной зависимостей. изложенных справочно-информационной литературе и, с учётом данных, приведённых в настоящих рекомендациях. Пригидравлическомрасчётетеплопроводовпотеридавления на трение и преодоление местных сопротивлений следует определять по методу «характеристик сопротивления»

$$\Delta P = S_{yy} \cdot G_{yy}^2$$

или по методу «удельных линейных потерь давления»

$$\Delta P = R \cdot L + Z$$

ДР - потери давления на трение и преодоление местных сопроцтивлений, Па;

 $S = A \zeta'$ - характеристика сопротивления участка теплопроводов, равная потере давления в нём при расходе теплоносителя $1 \, \text{кг/c}$, $\Pi a / (\text{кг/c})^2$;

А - удельное скоростное давление в теплопроводах при расходе теплоносителя 1 кг/с, $\Pi a/(\kappa r/c)^2$ (при теплоносителе воде принимается по приложению 1);

 $\zeta' = [(\lambda/d_{\text{\tiny BU}}) \cdot L + \Sigma \zeta]$ - приведённый коэффициент сопротивления рассчитываемого участка теплопровода;

λ - коэффициент трения;

d... - внутренний диаметр теплопровода, м;

 $\lambda / d_{_{RH}}$ - приведённый коэффициент гидравлического трения, 1/м;

G - массовый расход теплоносителя, кг/с;

R - удельная линейная потеря давления на 1 м трубы,

Z - местные потери давления на участке, Па.

Потери давления на участке находятся по формуле Дарси-

$$\Delta P_{yq} = \left(\frac{\lambda}{d_B}\right) \cdot I_{yq} \cdot \left(\frac{\rho \cdot \omega^2}{2}\right) + \sum \zeta_{yq} \cdot \left(\frac{\rho \cdot \omega^2}{2}\right)$$

где:
$$R = (\frac{\lambda}{d_B}) \cdot (\frac{\rho \cdot \omega^2}{2})$$
 - потери давления на трение

 $Z = \sum \zeta_{yq} \cdot (\frac{\rho \cdot \omega^2}{2})$ - потери давления на местные сопротивления;

λ – коэффициент гидравлического сопротивления характеризующий потери давления на трение и зависит от характера движения жидкости (ламинарного или турбулентного) и эквивалентной шероховатости труб;

d - внутренний диаметр, мм;

ω – скорость движения воды в трубопроводе, м/с;

р – плотность воды, кг/м3; Скорость воды на участке находится по формуле

$$\omega_{yq} = \frac{4 \cdot G}{3600 \cdot p \cdot \pi \cdot d_B^2}$$

Коэффициент гидравлического сопротивления для области $(4000 < \text{Re} < \frac{\text{d}}{\Lambda_3})$ находится по формуле Блазиуса:

$$\lambda = \frac{0.3164}{(\text{Re})^{0.25}}$$

где Re - критерий (число) Ренольдса

Re =
$$\frac{\omega \cdot d_B}{V}$$

 ${f v}$ – коэффициент кинематической вязкости (для воды ${f v}=0.365\cdot 10^{-6}$

Д - эквивалент шероховатости труб, для меди = 0,002

34 35