

Introduction

- □ Définition et historique
- ☐ Différentes catégories de robots
- □ Vocabulaire de la robotique
- ☐ Caractérisation des robots
- ☐ Les différents types de robots manipulateurs
- ☐ Utilisation des robots
- ☐ Avenir de la robotique
- □ Bibliographie

Définition et historique

Etymologie: mot tchèque robota (travail)

Définition: « un robot est un système mécanique polyarticulé mû par des actionneurs et commandé par un calculateur, qui est destiné à effectuer une arande variété de tâches »

Robotique médicale

Historique

1947 : premier manipulateur électrique téléopéré

1954: premier robot programmable

1961 : apparition d'un robot sur une chaîne de

montage de General Motors

1961 : premier robot avec contrôle en effort

1963: utilisation de la vision pour la commande

Chirurgie mini-invasive

Télé-écography

Chirurgie neuronale

Chirurgie percutanée

Chirurgie orthopédique

Introduction Définition et historique Différentes catégories de robots Vocabulaire de la robotique Caractérisation des robots Les différents types de robots manipulateurs Utilisation des robots Avenir de la robotique Bibliographie

Caractérisation des robots

Volume accessible par l'outil du robot

Ce volume dépend : de la géométrie du robot de la longueur des segments du débattement des articulations (limité par des butées)

28/01/2023

Caractérisation des robots

Description géométrique: Articulation = liaison entre 2 corps

Nom	Encastrement	Pivot	Glissière	Pivot glissant	Appui plan	Rotule	Linéaire rectiligne	Linéaire annulaire	Ponctuelle
Mouvements	0 Rotation 0 Translation		0 Rotation 1 Translation	1 Rotation 1 Translation			2 Rotations 2 Translations		3 Rotations 2 Translations
Nombre de ddl	0	1	1	2	3	3	4	4	5
Symbole				_	1	\		O -	\otimes

28/01/2023

Caractérisation des robots

Précision / Répétabilité

- ☐ Positionnement absolu imprécis (>1 mm)
 - Erreurs du modèle géométrique
 - Erreurs de quantification de la mesure de position
 - Flexibilité des segments
- □ Répétabilité
 - Erreur maximale de positionnement répétée par l'outil en tout point de l'espace
 - En général, la répétabilité < 0.1 mm

Caractérisation des robots

Performances dynamiques

- Vitesse maximale
 - Vitesse maximale de translation ou de rotation de chaque axe
 - Les constructeurs donnent souvent une vitesse de translation max de l'organe terminal
- □ Accélération maximale
 - Est donnée pour chaque axe dans la configuration la plus défavorable (inertie max, charge max)
 - Dépend de l'inertie et donc de la position du robot

28/01/2023

Introduction

- ☐ Définition et historique
- ☐ Différentes catégories de robots
- □ Vocabulaire de la robotique
- ☐ Caractérisation des robots
- ☐ Les différents types de robots manipulateurs
- ☐ Utilisation des robots
- ☐ Avenir de la robotique
- Bibliographie

28/01/2023

Caractérisation des robots

Charge utile

- ☐ C'est la charge maximale que peut porter le robot sans dégrader la répétabilité et les performances dynamiques du robot
- ☐ La charge utile est nettement inférieure à la charge maximale que peut porter le robot qui est directement dépendante des actionneurs

28/01/2023

Les différents types de robots

- ☐ Les robots SCARA
- SCARA : Selective Compliance Articulated Robot for Assembly
- Caractéristiques
 - > 3 axes, série, RRP, 3 DDL
 - > Espace de travail cylindrique
 - > Précis, très rapide

 $Adent^{TI}$

Les différents types de robots

□ Les robots cylindriques

- Caractéristiques
 - 3 axes, série, RPP, 3 DDL
 - Espace de travail cylindrique
 - Très rapide

28/01/2023

Les différents types de robots

☐ Les robots cartésiens

- Caractéristiques
 - 3 axes perpendiculaires 2 à 2, série, PPP, 3 DDL
 - Espace de travail parallépipèdique
 - Lent, très bonne position

28/01/2023

Les différents types de robots

☐ Les robots sphériques

- Caractéristiques
 - 3 axes, série, RRP, 3 DDL
 - Espace de travail sphérique
 - Grande charge utile

FANUCTM

28/01/2023

Les différents types de robots

- ☐ Les robots parallèles
 - Caractéristiques
 - Plusieurs chaînes cinématiques en parallèle
 - Espace de travail réduit
 - Précis, rapide

 $COMAU^{TM}$

- ☐ Les robots anthropomorphes
 - Caractéristiques
 - Reproduisent la structure d'un bras humain
 - 6 axes, série, 6R, 6 DDL

KawasakiTM

28/01/2023

Utilisation des robots

□ Tâches simples

- La grande majorité des robots est utilisée pour la réalisation de tâches simples et répétitives
- Les robots sont programmés une fois pour toute au cours de la procédure d'apprentissage

Critères de choix de la solution robotique

- La tâche est assez simple pour être robotisée
- Les critères de qualité sur la tâche sont importante
- Pénibilité de la tâche (peinture, charge lourde, environnement hostile, ...)

28/01/2023

Introduction

- ☐ Définition et historique
- ☐ Différentes catégories de robots
- ☐ Vocabulaire de la robotique
- ☐ Caractérisation des robots
- ☐ Les différents types de robots manipulateurs
- Utilisation des robots
- Avenir de la robotique
- Bibliographie

28/01/2023

Utilisation des robots

□ Tâches simples

Exemples: robots soudeurs

Par points

A l'arc

Utilisation des robots

☐ Tâches simples

• Exemples : autres applications

Chargement

Polissage

Positionnement

28/01/2023

Utilisation des robots

☐ Tâches simples

Statistiques nationales sur 1721 robots

Utilisation des robots

☐ Tâches simples

• Exemples : autres applications

Génie génétique

28/01/2023

Utilisation des robots

☐ Tâches complexes

Robotique de service

Robot pompiste

Robot laveur d'avion

Robot grimpeur

Robot de construction

- ☐ Tâches complexes
 - Robotique médicale

Computer motionTM

28/01/2023

Avenir de la robotique

- ☐ Tâches simples
- Stagnation du nombre de robots
- ☐ Tâches complexes
- Robotique médicale
- Robotique de service
- Robotique d'assistance aux manipulations dans la recherche biologique et génétique

28/01/2023

Introduction Définition et historique Différentes catégories de robots Vocabulaire de la robotique Caractérisation des robots Les différents types de robots manipulateurs Utilisation des robots Avenir de la robotique Bibliographie

Introduction

- Définition et historique
- ☐ Différentes catégories de robots
- Vocabulaire de la robotique
- □ Caractérisation des robots
- ☐ Les différents types de robots manipulateurs
- Utilisation des robots
- Avenir de la robotique
- Bibliographie

Bibliographie

- M. W. Spong et M. Vidyasagar, Robot dynamics and control, John Wiley & sons
- John Craig, Introduction to robotics mechanics and control, Addison-Wesley
- C. Canudas de Wit, B. Sciciliano et G. Bastin, Theory of robot control, Stringer
- H. Asada et J. J. E. Slotine, Robot analysis and control, John Wiley & sons
- E. Dombre et W. Khalil, Modélisation et commande des robots, Hermes
- J. P. Lallemand et S. Zeghloul, Robotique Aspects fondamentaux, Masson
- J. Gangloff, Cours de robotique, DEA Phononique, Image et Cybernétique

Classification des systèmes de guidage

Systèmes passifs

- Retour d'information vers l'opérateur (chirurgien)

Systèmes actifs

- Réaliser l'intervention sous supervision humaine

Systèmes interactifs: guides mécaniques

- Systèmes semi-actifs
- Systèmes Synergétiques
- Systèmes téléopérés

Chirurgie mini invasive (MIS)

(Armstrong Healtho

28/01/2023

Chirurgie mini-invasive (exemple)

From traditional to Robot-Aided coronary artery bypass grafting

28/01/2023

Chirurgie mini-invasive nécessite:

Physician's natural senses and artificial sensors Physician's intelligence and computers Physician's dexterity and guiding devices

Physician and Machine Co-operation

Medical robotics = a clinical problem + human matter + a non technical user + a little spoon of robotics + a lot of sensing

28/01/2023

Chirurgie mini invasive (MIS)

Caractéristiques d'un robot pour la chirurgie mini-invasive

- > Contrainte de passage par un point fixe
- > Système de vision
- > Commandé à distance (bras maître, joystick...)
- Retour d'effort (capteur d'effort)

Avantage de la chirurgie mini-invasive

- > Moins de douleur et de traumatisme
- > Un temps plus court de rétablissement
- > Saignement et infection considérablement réduit

Limite de la chirurgie mini-invasive

- Limitation de degré de liberté
- > Champs de travail restreint
- Sécurité de très haut niveau doit être assurée

Chirurgie mini invasive (MIS)

Prototypes en chirurgie mini-invasive (Zeus et Da Vinci)

Zeus

Da Vinci

Ces deux systèmes sont constitués de:

- > Bras esclaves robotisés
- > Une console maître (opérateur et écran de visualisation)
- Système informatique de traitement de données (précision et sûreté de fonctionnement)

28/01/2023

Chirurgie mini invasive (MIS)

I- Une articulation sphériques passive

Avantages: 1. simple à mettre en œuvre

2. minimum de partie en mouvement

Inconvénients: 1. marge de mouvement plus petite

2. centre de rotation mal positionné

ex. ZEUS

2- Poignet avec des articulations rotoïdes (même rayon et axes concourants)

Avantages: 1. Mouvement sphérique au point fixe

2. Grande marge de mouvement angulaire

Inconvénients: 1. Rigidité insuffisante

2. Structure encombrée

28/01/2023

Chirurgie mini invasive (MIS)

- > Robotique Chirurgicale (Chirurgie assistée par robot)
- > Chirurgie mini-invasive
- Exemples: deux prototypes: Zeus (Computer Motion) et Da Vinci (Intuitive Surgery)
- Problématique et technique de passage par le trocart.

Découplage dynamique Approche proposée

Découpler le vecteur couple dynamique Γ en:

- Un couple de tâche $\Gamma_{\text{tâche}}$
- Un couple de posture Γ_{posture}

Safety issues

28/01/2023

Solutions

Hardware solutions:

- · torque and speed limitations
- · redundant sensors
- \cdot safety sensors (accelerometers, force, etc.)
- watchdogs
- · redundant/distributed software and/or hardware

Software development methodologies (critical applications) and risk analysis [Guiochet]

- Man/machine interface design methodology
- Verification procedures

28/01/2023

Risks

Which type? o For whom? o Mechanical o Patient o Chemical/biological o Staff o Thermal o System

o Electrical o Instruments or other systems

o Magnetic

Why?

- o Computer error or shutdown, programming error
- o User error or misunderstanding
- o Mechanical default (break fall down), electrical disconnection
- o Robot default: electronics, control stability, singularities, etc.
- o Application: data acquisition, registration, instrumentation

28/01/2023

Sûreté de fonctionnement et robotique médicale

Modes de Panne

Niveau 0 : Décès de plusieurs patients ou Opérateurs (Catastrophique)

Niveau 1 : Décès Patient ou Opérateur (Très grave) Niveau 2 : Blessure Patient ou Opérateur (Grave)

Niveau 3 : Désagrément Patient ou Opérateur (Tolérable)

Présence humaine (Patient et opérateur)

Limitations opérationnelles

Volume de travail Vitesse d'intervention Configurations des manipulateurs Degrés de liberté Fonctionnalités

Prévention des pannes

Anticiper la panne pour préparer la séquence d'arrêt

Capacité à diminuer le niveau maximum de risque par construction

Possibilité de perte de fiabilité au profit d'une augmentation de la sécurité

28/01/2023

General discussion

| Few systems approved
| Validation: a long and tedious process
| Requires industrial partnership
| Requires clinical partners involved from the beginning
| Clinical added value to be demonstrated
| A lot of academic prototypes
| Needed improvements
| Miniaturization and MEMS
| Simplification of man/machine interfaces
| Cost effectiveness
| Which robot for which surgery?