1. Blokea: Sistema Eragileak

Informazio-Sistemen Arkitektura

Telekomunikazio Teknologiaren Ingeniaritzako Gradua (3. Maila)

Irakaslea

- (Miren) Nekane Bilbao Maron
- Emaila: nekane.bilbao@ehu.eus
- Telefonoa: 946017302
- Bulegoa: P3F7
- Tutoretzak:
 - Data email bidez ados daiteke.
 - Zalantza batzuk email bidez ere ebaz daitezke.

1. Blokea. Sistema Eragileak

Helburuak edo gaitasunak

- Sistema Eragileetako kontzeptuak menperatzea: Etendurak, Sistema deiak, Prozesuak eta hariak, prozesuen arteko komunikazio eta sinkronizazio primitiboak.
- Sistema Eragilearen antolaketako atal desberdinak menperatzea: Prozesuen kudeaketa, Memoria kudeatzeko eskemak, Sarrera/Irteeraren kudeaketa, Fitxategi-sistemaren antolaketa.

1. Blokea - Edukiak

- 1. Ordenagailuen Arkitekturako kontzeptuak
- 2. Sistema Eragileak. Sarrera.
- 3. Prozesuak
 - Prozesuak eta hariak
 - Prozesuen arteko komunikazioa
 - Komunikazio eta Sinkronizazio Mekanismoak
 - Planifikazioa
- 4. Sarrera/Irteera
- 5. Memoriaren Kudeaketa
 - Memoria birtuala edo alegiazko memoria
 - Orrikapena eta Segmentazioa
 - Ordezkapeneko algoritmoak
- 6. Fitxategi Sistema
 - Fitxategiak eta direktorioak
 - Fitxategi Sistemaren antolaketa

1. Blokea – Sistema Eragileak

- Bibliografia eta baliabideak:
 - Juanjo Igarza irakaslearen apunteak
 - Operating Systems Design and Implementation. 3rd edition. 2006 A.S.Tanenbaum.
 - Sistemas Operativos. Una visión aplicada. J. Carretero. Liburutegian
 - Apunteak (pdf) Carretero
 - Apunteak (pdf) Tanenbaum

1. Gaia – Edukiak ORDENAGAILUAREN ARKITEKTURAKO KONTZEPTUAK

- Konputagailuaren egitura eta funtzionamendua
- Konputagailuaren programazio-eredua
- Etendurak
- Erlojua
- Memoria
- Memoria birtuala edo alegiazko memoria
- Sarrera/Irteera eta konkurrentzia
- Babes mekanismoak
- Multiprozesadore eta multikonputagailuak

- 1.1 Konputagailuaren egitura eta funtzionamendua
 - Prozesadorea

- 1.1 Konputagailuaren egitura eta funtzionamendua
 - Von Neumann-en arkitekturako oinarrizko 4 osagaiak:

- Monoprozesadorea
- Multiprozesadore
- Multikonputagailua

1.2 Konputagailuaren programazio-eredua.

- •Biltegiratze-osagaiak: Erregistroak, memoria eta S/I mapa
- Agindu-multzoa
- •Egoera-erregistroa

1.2 Konputagailuaren programazio-eredua. Exekuzio-mailak

1.2 Konputagailuaren programazio-eredua. Exekuzio-sekulentzia:

- · a) pc-k erakutsitako agindua irakurri
- b) pc gehitu
- C) Agindua exekutatu
 - sekuentzia lineala: elkarren segidako agindua
 - begizta infinitua
- Aginduen sekuentzia linealaren Etetea:
 - Salto agindu batek PCa aldatzen du (jump, call)
 - Barne edo kanpoko etendura gertatzen da (prozesadoreak PCa aldatzen du)
 - TRAP agindu batek etendura eragiten du

Kernel-ak soilik egin dezakeen gauza bat egin behar dugunean erabiltzen dira TRAP aginduak.

*PC (Programa-kontagailua)

- 1.3 Etendurak
 - Etendura onartzean HW-k:
 - Uneko agindua bukatu
 - Prozesadorearen erregistroak gorde: egoera eta PC
 - Exekuzio maila igo (Kernel-mailara)
 - Sistema Eragilera salto egin
 - SEak
 - Etendura tratatzeko errutina
- Etenduraren eragilea

 Etendura-eskaera

 Kontrol Unitatea

 SE
 Etend.
 Taula

 Etendura tratatzeko errutina

- Etenduren sortzaileak:
 - Erlojua, Sarrera/irteera gailuak
 - TRAP agindua
 - Programen salbuespenak
 - HW salbuespenak

- 1.4 Erlojua
 - Hiru ikuspuntu:
 - Makina aginduen faseak gobernatzen dituen osziladorea
 - Etendura periodikoa, Tick. Multiataza
 - Kontagailua: data eta ordua
 - Bateriadun hardwareak
 - Sistema Eragileak

- 1.5 Memoria
 - Informazioaren zati desberdinak hierarkiaren maila desberdinetan

nagusia

- Koherentzia arazoak
- Informazioaren migrazioa
 - Automatikoa
 - Eskari esplizituagatik
- Helbideen itzulpena

Memoria

nagusia

- Memoria birtualik gabe:
 - Monoprogramazioa
 - Multiprogramazioa
- Memoria birtuala:
 - Datuak Disko ↔ Memoria Nagusia (RAM)

Memoria A Programa Sistema Eragilea

A Programa B Programa C Programa Sistema Eragilea

- 1.6 Memoria birtuala edo alegiazko memoria
 - Prozesadoreak helbide birtualak erabiltzen ditu
 - Memoriaren mapa zati bat diskoan (swap) dago eta beste bat memoria nagusian
 - MMUk (Memory Management Unit) helbide birtualak fisiko bihurtzen ditu
 - Helbidea RAMean ez dagoenean MMUk salbuespena sortzen du (HW etendura)
 - SEak orri falta kudeatuko du: RAM eta HD (swap) arteko trukaketa bat.

S/I = Sarrera/Irtera = I/O

- 1.7 Sarrera/Irteera eta konkurrentzia
 - PUZ eta I/O-ren arteko konkurrentzia
 - S/I programatua: konkurrentziarik ez
 - Etenduren bidezko S/I: konkurrentzia
 - DMA (Direct memory access) bidezko S/I: konkurrentzia maximoa

- 1.7 Sarrera/Irteera eta konkurrentzia
 - Itxaronaldi aktiboa

```
n = 0
while n < m
  read kontrol erregistroa
  if (kontrol erregistroa = datua_prest)
            read datu erregistroa
            store memoria nagusian
            n = n + 1
  endif
endwhile</pre>
```

- Itxaronaldi pasiboa
 - Etenduren erabilera
- DMA: Begizta ere HW bidez.

- 1.8 Babes mekanismoak
 - PUZ exekuzio mailak
 - Nukleo: Makina agindu guztiak. S/I eta erregistro bereziak erabilgarri
 - Erabiltzaile: Agindu-multzo murriztua
 - Eragiketa pribilegiatuak bakarrik nukleo moduan
 - Etendurekin automatikoki nukleo mailara pasatzen da.

Etendura maskaradun bat ingoratzen den etendura da! Adbibidez, ariketa atomikoak egin nahian erabiltzen da!

- Erlojuaren etendura maskaraezina (multiataza)
 - Prozesu bakar batek PUZa ez monopolizatzeko
- S/I beti agindu pribilegiatuen bidez
- Memoria
 - Langa erregistroak

~~"Muga"

- 1.9 Multiprozesadore eta multikonputagailua
 - Potentzia gehiagoren premia. Prozesadore bat baino gehiago erabiltzeak eraginak ditu SEan.
 - Bi arkitektura:
 - Multiprozesadore:
 - Prozesadore bakoitzean programa bat, memoria eta S/I partekatzen.
 - Programa desberdinak baliabideak konpartitzen.
 - Prozesadore kopurua mugatua (arkitektura, asetze-arazoak)

- 1.9 Multiprozesadore eta multikonputagailua
 - Bi arkitektura:
 - Multikonputagailua:
 - Nodoz osatuta (prozesadorea+memoria+S/I propioak)
 - Programek ezin dituzte konpartitu datuak memorian
 - Ez dago nodo kopuruan mugarik

- 1.9 Multiprozesadore eta multikonputagailua
 - GPU: Grafikoak prozesatzeko unitatea
 - Beharrezkoa pantaila bidez bistaratzerako
 - Aplikazioak:
 - Gaming
 - Al

Iturria: https://www.nvidia.com/es-la/drivers/what-is-gpu-computing/

Iturria: https://www.itwriting.com/blog/tag/gpu-computing

- 1.9 Multiprozesadore eta multikonputagailua
 - GPU vs PUZ

PUZ	GPU
Central Processing Unit	Graphics Processing Unit
Latentzia baxua	Throughput altua
Serie Prozesamendurako	Paralelo Prozesamendurako
Elkarrekintza behar duten atazak	Lana ataza txikietan banatzen du, paraleloan prozesatzeko
4-8 Core (AUL)	Ehunaka edo milaka Core (AUL)
Programazio tradizionalaren exekuzioa PUZ sekuentziala	Software bidez PUZ funtzioak GPU funtzio bihurtu behar dira

Iturria: https://towardsdatascience.com/parallel-computing-upgrade-your-data-science-with-a-gpu-bba1cc007c24