

Perspective Flow Aggregation for Data-Limited 6D Object Pose Estimation

Yinlin Hu ^{1,2,3}, Pascal Fua ¹, Mathieu Salzmann ^{1,2}
¹ EPFL Computer Vision Lab, ² ClearSpace, ³ Magic Leap

Problems

- Most recent 6D object pose estimation methods, including unsupervised ones, require many real training images.
- Unfortunately, for some applications, such as those in space or deep under water, acquiring real images, even unannotated, is virtually impossible. These are the scenarios we refer to as data-limited.
- Although rendering-based synthetic techniques can help, the domain shift between the synthetic and real images is still a problem.

(a) Synthesized images. (b) Although the resulting accuracy on synthetic data is great, (c) that on real images is significantly worse. (d) While the common global-based refinement approach can help, it still suffers from the synthetic-to-real domain gap (DeepIM). (e) Our local-based strategy generalizes much better to real images.

Code is available at:

https://github.com/cvlab-epfl/perspective-flow-aggregation

Solution

 We propose estimating dense 2D-to-2D local correspondences between input images to force the supervision of our training to occur at the pixel-level, making our DNN learn to extract features that contain lower-level information and thus generalize across domains:

From optical flow to pose refinement:

Multi-view flow aggregation:

Experiments

Cross-domain refinement (model is trained purely on synthetic data):

Even more accurate than annotations sometimes:

Annotation

Reprojection

Difference

Our result

Comparing against the SoTA:

Data	Metrics	${\bf PoseCNN}$	SegDriven	PVNet	GDR-Net	DeepIM	CosyPose	Ours (+0)	Ours (+20)
LM	ADD-0.1d	62.7	_	86.3	93.7	88.6	_	84.5	94.4
OLM	ADD-0.1d	24.9	27.0	40.8	62.2	55.5	-	48.2	64.1
VCD	ADD-0.1d AUC	21.3	39.0	_	60.1	-	-	56.4	62.8
ICB	AUC	61.3	-	73.4	84.4	81.9	84.5	76.8	$\bf 84.9$

Training with some real images on OLM:

	0	10	20	90	180
DeepIM	41.1	45.6	48.2	58.1	61.4
CosyPose	42.4	46.8	48.9	58.8	61.9
Ours	48.2	59.5	64.1	64.9	65.3

Multi-view flow aggregation:

tion	N=1	N=2	N=4	N=8
54.1	82.0	82.7	84.3	84.1
52.7	81.1	81.2	83.3	83.9
60.2	82.0	83.4	84.5	84.9
S	~32	~ 25	~20	~14
	54.1 52.7 60.2	54.1 82.0 52.7 81.1 60.2 82.0	54.1 82.0 82.7 52.7 81.1 81.2 60.2 82.0 83.4	54.1 82.0 82.7 84.3 52.7 81.1 81.2 83.3 60.2 82.0 83.4 84.5