CS480 – ARTIFICIAL INTELLIGENCE FALL 2015

TOPIC: INTELLIGENT AGENTS

CHAPTER: 2 DATE: 8/26

Mustafa Bilgic

http://www.cs.iit.edu/~mbilgic

OUTLINE

- Definition of an agent
- The concept of rationality
- Characteristics of the task environments
- Agent programs

AGENT

An **agent** is anything that can be viewed as perceiving its **environment** thorough **sensors** and acting upon that environment through **actuators**.

AGENT What are the sensors and actuators for humans? For robots?

4

PERCEIVE AND ACT

- Percept: An agent's perceptual inputs at any given instant
- **Percept sequence**: The complete history of everything the agent has perceived
- Agent function: $perceptSequence \rightarrow action$
- **Agent program**: The implementation of the agent function

The agent function is a mathematical abstraction and the agent program is a concrete implementation of it

THE VACUUM ENVIRONMENT

A Possible Agent function for VE

Percept Sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
[A, Clean], [B, Clean]	Left
•••	
[A, Clean], [A, Clean]	Right
•••	

What is the size of this table?

What is the right action for a given percept sequence?

THE CONCEPT OF RATIONALITY

- **Rational agent:** the agent that does the *right* thing; i.e., the right hand side of the function table is filled *correctly*.
- How do we define the *right* thing?

PERFORMANCE MEASURE

- **Performance measure** evaluates the sequence of environment states
 - Note the emphasis on environment states, not agent states
 - If we defined performance measure in terms of agent states, the agent can delude itself $\stackrel{\circ}{\cup}$
- Example performance measures for the VE?
 - Amount of dirt the agent sucked
 - Number of clean cells per unit time
- ⇒ Performance measures should be designed according to what is desired in the environment rather than according to how one thinks the agent should behave

COMING BACK TO RATIONALITY

- Is the simple agent that acts based on the agent function "if dirty, suck; if clean, move to the other square" rational?
- It depends!
- Rationality depends on
 - 1. The performance measure
 - 2. Agent's prior knowledge of the environment
 - 3. Actions it can perform
 - 4. Agent's percept sequence to date

DEFINITION OF A RATIONAL AGENT

- For each possible percept sequence, a rational
 agent should select an action that is
 - expected to maximize its performance measure, given
 - the evidence provided by the percept sequence and
 - whatever built-in knowledge the agent has.

SIMPLE AGENT IS RATIONAL IF

- 1. The performance measure awards a point for each clean square at each time step
- 2. The geography of the environment is known but the dirt distribution and the initial location is unknown
- 3. Clean squares stay clean and sucking cleans the current square
- 4. The only available actions are Left, Right, and Suck
- 5. The agent correctly perceives its location and its dirt status

WHAT IF

- We also allow the action "Stop." Is the simple agent ("if dirty, suck; if clean, move to the other square") still rational?
- What if, in addition, we change the performance measure as "reward for clean squares; penalize for electricity consumption"?

RATIONALITY AND PERFECTION

- The rationality is not the same as perfection
- Perfection maximizes *actual* performance
- We cannot predict everything that'll happen in the future, and thus cannot maximize actual performance
- Rationality maximizes expected performance
 - Given what it knows, what information it can gather, what it can learn, what actions it can perform, and what the performance measure is, a rational agent is the one that can maximize expected performance

AUTONOMY AND LEARNING

- Gathering information is not just enough; the agents should also learn from past experience
- For e.g., if we look at a more realistic scenario
 - A clean square can become dirty again
 - The dirt distribution is not even; some squares become dirty more often than others

THE TASK ENVIRONMENTS

• PEAS

- Performance
- Environment
- Actuators
- Sensors

AUTOMATED TAXI

Performance

- Safe, fast, legal, comfortable, maximum profits
- Side note: It may not be (and often is not) possible to maximize all performance measures; trade-offs have to be defined.

Environment

• Roads, other traffic, pedestrians, customers, weather

Actuators

Steering, accelerator, brake, signal, horn, display

Sensors

· Cameras, GPS, speedometer, engine sensors, keyboard, microphone

More examples in Figure 2.5 in the book

ENVIRONMENT PROPERTIES

Fully observable vs. partially observable:

- If the sensors detect all aspects that are *relevant* to the choice of action
- Fully observable ⇒ No need to keep track of an internal representation of the world
- Partially observable environments can be due to noise, inaccurate sensors, or the information is simply not available
 - Chess: FO, Poker: PO
 - o Vacuum environment where the cleaner has a local sensor?
 - o Taxi environment?

- Single agent vs. multi-agent
 - Crossword puzzle: SA
 - Chess: MA
 - MA: Can be competitive, cooperative, a mix
 - Taxi environment?

o Deterministic vs. Stochastic:

- Deterministic if the next state is *completely* determined by the current state and the action executed by the agent
- A multi-agent system can be deterministic; for e.g., chess is deterministic
- Uncertain ≠ Stochastic
- Uncertain if partially observable or stochastic

• Episodic vs. Sequential:

- In each episode, the agent receives a percept and then performs a single action. The next episode does not depend on the actions taken in the previous episodes
- Classification/categorization of objects: E
- Chess: S

• Static vs. Dynamic:

- Dynamic if the environment can change while the agent is thinking
- In dynamic environments, "no decision" is equal to "deciding not to act"
- Poker: S
- Driving: D

ENVIRONMENT PROPERTIES

Objecte vs. Continuous:

- Discrete if states, percepts, and actions are discrete
- Chess: state of the board and moving pieces are D
- Driving: the location, steering, speeding are C

o Known vs. Unknown:

- Known if the agent knows the "laws of the physics" of the environment
 - That is, the outcomes in a deterministic environment and the probabilities of the outcomes in a stochastic environment are known
- K vs. U is not the same as FO vs. PO
 - An environment can be PO and K: e.g., card games where the rules are known but the state is partially observable

THE SIMPLEST VS. HARDEST

- Simplest: Fully-observable, single-agent, deterministic, episodic, static, discrete, and known
 - Many toy examples
- Hardest: Partially-observable, multi-agent, stochastic, sequential, dynamic, continuous, and unkown
 - Driving in a foreign country using a rental car

CHARACTERISTICS OF ENVIRONMENTS

- Most of the characteristics depend on how you define the task
- Often, the real-world is the hardest
- However, simplifications are made to make progress
- For e.g., often playing chess is a known environment, but the first-time player might not fully know the rules of the game, yet.

AGENT PROGRAM TYPES

- 1. Simple reflex agents
- 2. Model-based reflex agents
- 3. Goal-based agents
- 4. Utility-based agents

SIMPLE REFLEX AGENTS

- Select actions based on *only* the current percept ignoring the past
- Works if the environment is fully-observable and episodic

SIMPLE REFLEX AGENTS

29

REFLEX AGENT

```
function Reflex-Vacuum-Agent([location, status]) returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left
```

```
function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition—action rules

state ← INTERPRET-INPUT(percept)

rule ← RULE-MATCH(state, rules)

action ← rule.ACTION
return action
```

Model-Based Agent

- Handle partial-observability → keep track of what is not observed
 - Keep an internal state based on the percept history
- The agent needs the knowledge of how the world works → a model of the world

Model-Based Agent

32

Model-Based Agent

```
function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition—action rules

state ← INTERPRET-INPUT(percept)

rule ← RULE-MATCH(state, rules)

action ← rule.ACTION

return action
```

GOAL-BASED AGENT

- The current state is not always enough to determine what to do next
- Need goal states that are desirable
- Goal-based action is
 - Easier if a single action can take you there
 - Need searching and planning if more actions are required
- Goal-based is much more flexible and general than reflexbased agents
 - New goals can be defined easily without changing much of the agent program
 - In the reflex-based agent, the rules will have to be re-written

GOAL-BASED AGENT

35

UTILITY-BASED AGENT

- o Goals define "happy" vs. "not-happy"
- Utility defines "how happy" the agent will be in a given state
- Utility functions are internalizations of the performance measures
- Again, utility-based agents are more flexible than
 - reflexive agents, and
 - goal-based agents
- Utility-based agents can handle stochasticity, multiple conflicting goals, etc.

UTILITY-BASED AGENT

37

LEARNING AGENT

- The rules that map a percept / percept sequence to an action are learned
- The learning agent tries to maximize the performance measure
- A critic provides feedback to the agent on how well it has done
- The agent needs to explore different possibilities to be able to improve

LEARNING AGENT

39