Answer all questions (Q.1: 20 marks, Q.2: 20 marks)

Full Marks: 40

1. A real-valued baseband pulse g(t) with support [0,T] is given by

$$g(t) = A \cos\left(\frac{\pi t}{T} - \pi \alpha\right) \operatorname{rect}\left(\frac{t - (T/2)}{T}\right), \quad A > 0, \quad 0 < \alpha < \frac{1}{2}.$$

Let h(t) be the impulse response of a filter matched to g(t), satisfying the condition $h((1-\alpha)T) = A/2$. Let $y(t) = h(t) \star g(t)$.

- (a) Find h(t) and sketch its plot, labeling the relevant portions. [6]
- (b) Find the matched filter output y(t) in the range $0 \le t \le T$. Find the value of α for which y(T/2) = 0.
- (c) For the value of α obtained in (b), find y(t) in the range $T < t \le 2T$. [4]
- (d) For the value of α obtained in (b), find |H(f)|, where H(f) is the transfer function of the matched filter. [4]
- 2. Consider the case of binary signaling over an AWGN channel in a bit interval [0, T] with waveforms $s_1(t)$ (for symbol '1') and $s_0(t)$ (for symbol '0'), where the received signal is given by

$$x(t) = \begin{cases} A\left(\frac{t^2}{\alpha^2 T^2} - 1\right) \operatorname{rect}\left(\frac{t - (T/2)}{T}\right) + w(t) & \text{if symbol '1' is transmitted,} \\ B\left(1 - \frac{4}{T^2}\left(t - \frac{T}{2}\right)^2\right) \operatorname{rect}\left(\frac{t - (T/2)}{T}\right) + w(t) & \text{if symbol '0' is transmitted,} \end{cases}$$

 $0 \le t \le T$, A > 0, B > 0, $0 < \alpha < 1$. The additive noise w(t) is a real-valued zero-mean white Gaussian random process with p.s.d. $N_0/2$. The MAP receiver makes the decision

$$\int_0^T x(t)h(t)dt \stackrel{1}{\underset{<}{>}} \lambda_{MAP}.$$

The apriori probability of occurrence of symbol '0' is p_0 . The waveforms $s_1(t)$ and $s_0(t)$ are orthogonal, and $s_1(t)$ and $s_0(t)$ have the same energy. h(t) is chosen so as to minimize P_e and satisfies h(0) = -A/2.

- (a) Find the value of α . Find B (in terms of A).
- (b) Sketch the plots of $s_1(t)$ and $s_0(t)$, labeling the relevant portions in terms of A, T, and t. [4]
- (c) If $\lambda_{MAP} = \frac{N_0}{2} \ln\left(\frac{2}{3}\right)$, then calculate p_0 . [4]
- (d) For the values of the parameters obtained in (a), (b), and (c), find P_e in terms of A,T, and N_0 . Calculate P_e when $A^2T = 9N_0$.

Some Formulae

• If $X \sim \mathcal{N}(0,1)$, then its p.d.f.

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad -\infty < x < \infty, \quad \text{and} \quad \Pr[X > x] = \int_x^\infty f_X(y)dy = Q(x) = 1 - Q(-x)$$

•
$$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1 & \text{if } |t| \leq \frac{T}{2}, \\ 0 & \text{if } |t| > \frac{T}{2}, \end{cases}$$
 $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$

• Fourier Transform pairs:

$$\operatorname{rect}\left(\frac{t}{T}\right) \leftrightarrow T\operatorname{sinc}\left(fT\right)\,,\qquad \exp(j2\pi f_0 t) \leftrightarrow \delta(f-f_0)\,,\qquad G(t) \leftrightarrow g(-f)$$

• MAP receiver:

$$p_1 \exp \left\{ -\frac{1}{2} \left(\frac{y-m_1}{\sigma} \right)^2 \right\} \begin{array}{l} 1 \\ > \\ < \\ 0 \end{array} p_0 \exp \left\{ -\frac{1}{2} \left(\frac{y-m_0}{\sigma} \right)^2 \right\}$$

$$\lambda_{MAP} = \frac{(m_1 + m_0)}{2} - \frac{\sigma^2}{(m_1 - m_0)} \ln \frac{p_1}{p_0}$$

•
$$Q(x) \approx \frac{1}{x\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad x \ge 2.5$$