Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 1

5. Unipolarni tranzistori

Unipolarni tranzistor

Aktivni element s tri priključka

- ulazni, izlazni i zajednički priključak
- promjenom napona u ulaznom krugu upravlja se struja u izlaznom krugu
- primjena: pojačalo, sklopka
- prednost: beskonačan ulazni otpor upravljanje bez potroška snage

Nazivi i tipovi

Nazivi

- unipolarni tranzistor struju vodi samo jedan tip nosilaca
- tranzistor s efektom polja električkim poljem (naponom) u ulaznom krugu modulira se poluvodički otpornik u izlaznom krugu
- □ FET skraćenica engleskog naziva Field Effect Transistor

Tipovi

- MOSFET Metal-Oxide-Semiconductor FET
- JFET spojni FET (od Junction FET)
- MESFET Metal-Semiconductor FET

Struktura MOSFET-a (1)

Struktura n-kanalnog MOSFET-a obogaćenog tipa

Priključci

- uvod S (engl. Source)
- □ odvod D (engl. Drain)
- upravljačka elektroda –G (engl. Gate)
- □ podloga B (engl. Body)

Dimenzije budućeg kanala

- \Box $L \rightarrow dužina$
- \bigcup $W \rightarrow$ širina

Struktura MOSFET-a (2)

za n-kanal $\rightarrow p$ -podloga

osnovni dio strukture - MOS

- M metal (engl. Metal)
- □ O oksid SiO2 (engl. Oxide)
- S poluvodič (engl. Semiconductor) struja MOS strukture $I_G = 0$

n⁺ područja – kontakti uvoda i odvoda

Podloga (B) se najčešće kratko spaja s uvodom (S)

Priključak malog napona U_{DS}

Napon $U_{DS} \! > \! 0 \to {\rm zaporno}$ polarizira ${\it pn}\text{-spoj}$ odvod-podloga Između odvoda i uvoda ne teče struja

Uz mali $U_{DS}
ightarrow$ jednake širine osiromašenih slojeva na stranama uvoda i odvoda

Utjecaj napona U_{GS}

- Napon $U_{GS} > 0$ na površinu podloge ispod oksida privlači elektrone i odbija šupljine
- Uz dovoljno velik $U_{GS} > 0$ površina postaje n-tip \rightarrow inverzijski sloj n-kanal
- Stvaranjem *n*-kanala → između uvoda i odvoda formira se poluvodički otpornik *n*-tipa

Granica stvaranja kanala: $U_{GS} = U_{GS0} \rightarrow$ koncentracija elektrona u kanalu jednaka je koncentraciji šupljina u podlozi

$$U_{GS0} \equiv$$
 napon praga

Rad uz mali napon U_{DS}

$$U_{GS0} = 1 \text{ V}$$

Za $U_{GS} > U_{GS0}$ i za mali napon $U_{DS} > 0$ teče struja odvoda I_D

Za mali napon $U_{DS} > 0$ pad napona u kanalu je zanemariv; MOSFET je linearni otpornik

Povećanjem napona U_{GS} raste koncentracija elektrona u kanalu i vodljivost kanala; MOSFET je naponom upravljani linearni otpornik

Rad uz veći napon U_{DS}

Povećanjem napona U_{DS} nastaje pad napona u kanalu

Koncentraciju elektrona u kanalu određuje: na strani uvoda $\rightarrow U_{GS}$ na strani odvoda $\rightarrow U_{GD} = U_{GS} - U_{DS}$

Kanal se prema odvodu sužava; otpor kanala raste

Za napon $U_{DSS}=U_{GS}-U_{GS0} \rightarrow U_{GD}=U_{GS0} \rightarrow$ kanal se na strani odvoda zatvara

Promjena struje I_D s naponom U_{DS}

Za male napone $U_{DS} \rightarrow \text{struja } I_D$ raste linearno s $U_{DS} \rightarrow \text{linearno područje}$

Za veće napone $U_{DS} < U_{GS} - U_{GS0} \rightarrow$ otpor kanala raste; struja I_D raste sporije s $U_{DS} \rightarrow$ triodno područje

Za $U_{DS}=U_{GS}-U_{GS0}
ightarrow$ kanal se zatvara; struja postiže maksimalnu vrijednost I_{DS}

Za $U_{DS} > U_{GS} - U_{GS0} \rightarrow$ kanal je zatvoren; struja ostaje konstantna $I_D = I_{DS} \rightarrow$ područje zasićenja

Izvod strujno-naponske karakteristike (1)

$$U_{GS} > U_{GS0}$$
, $U_{DS} < U_{GS} - U_{GS0}$

Kapacitet oksida po jedinici površine:

$$C_{ox} = \varepsilon_{ox}/t_{ox}$$

Naboj elektrona:

$$dQ = -C_{ox}(dy \cdot W)[U_{GS} - U_{GS0} - U(y)]$$

Driftna struja:

$$I = \frac{dQ}{dt} = \frac{dQ}{dy} \frac{dy}{dt} = \frac{dQ}{dy} v(y)$$

$$v(y) = -\mu_n F(y) = \mu_n dU(y)/dy$$

$$I = -\mu_n C_{ox} W [U_{GS} - U_{GS0} - U(y)] \frac{dU(y)}{dy}$$

Struja odvoda: $I_D = -I$

Izvod strujno-naponske karakteristike (2)

Diferencijalna jednadžba:

$$I_D dy = \mu_n C_{ox} W [U_{GS} - U_{GS0} - U(y)] dU(y)$$

Integriranjem po kanalu: od y = 0 do y = L; od U(0) = 0 do $U(L) = U_{DS}$

$$I_D = K \left[(U_{GS} - U_{GS0})U_{DS} - \frac{U_{DS}^2}{2} \right] - \text{struja } I_D \text{ u triodnom području}$$

$$K = \mu_n C_{ox} \frac{W}{L}$$
 - strujni koeficijent

$$\mathbf{Za}\ U_{\!D\!S} = U_{\!D\!S\!S} = U_{\!G\!S} - U_{\!G\!S\!0}$$

$$I_D = I_{DS} = \frac{K}{2}(U_{GS} - U_{GS0})^2$$
 - struja I_D u području zasićenja

Izlazne karakteristike

obogaćeni tip $\rightarrow U_{GS0}$ = 1 V

triodno područje

za
$$0 \le U_{DS} \le U_{GS} - U_{GS0}$$

$$I_D = K \left[(U_{GS} - U_{GS0})U_{DS} - \frac{U_{DS}^2}{2} \right]$$

područje zasićenja

$$\mathbf{Za}\ U_{\!D\!S}\!\geq U_{\!G\!S}-U_{\!G\!S\!0}$$

$$I_D = I_{DS} = \frac{K}{2}(U_{GS} - U_{GS0})^2$$

linearno područje za mali U_{DS}

$$I_D \approx K(U_{GS} - U_{GS0})U_{DS}$$

područje zapiranja za $U_{GS} < U_{GS0}$

$$I_D = 0$$

Prijenosne karakteristike

za U_{DS} = 3 V \rightarrow područje zasićenja

za U_{DS} = 1 V \rightarrow područje zasićenja i triodno područje

za područje zasićenja – nelinearna prijenosna karakteristika → izlazne karakteristike nisu ekvidistantne

Veza prijenosnih i izlaznih karakteristika

Prijenosne karakteristike mogu se konstruirati iz izlaznih karakteristika

5. Unipolarni tranzistori

Tipovi n-kanalnog MOSFET-a

obogaćeni tip \rightarrow kanal se stvara pozitivnim naponom $U_{GS} = U_{GS0}$

osiromašeni tip \rightarrow vodi struju uz U_{GS} = 0 V; kanal se zatvara negativnim naponom U_{GS} = U_{GS0}

n-kanalni MOSFET \rightarrow vodi struju uz $U_{GS} > U_{GS0}$

Električki simboli *n*-kanalnog MOSFET-a

obogaćeni tip

puna crta između uvoda i odvoda ightarrow postojanje kanala uz U_{GS} = 0 V isprekidana crta između uvoda i odvoda ightarrow izostanak kanala uz U_{GS} = 0 V strelica ightarrow od p-podloge prema n-kanalu

5. Unipolarni tranzistori

Primjer 5.1 (1)

- Prijenosna karakteristika MOSFET-a području zasićenja prikazana je na slici. Debljina sloja SiO₂ iznad kanala je 20 nm, a pokretljivost većinskih nosilaca u kanalu je 400 cm²/Vs
- a) Koliki je omjer širine i dužine kanala W/L?
- b) Kolika je dužina kanala L ako kapacitet upravljačke elektrode prema kanalu mora biti $C_G \le 20 \text{ fF?}$

Rješenje:

a)
$$I_D = \frac{K}{2} (U_{GS} - U_{GS0})^2$$

iz slike: za $I_D=0 \rightarrow U_{GS}=U_{GS0}=-3$ V, za $U_{GS}=0 \rightarrow I_D=1$ mA

Primjer 5.1 (2)

$$K = \frac{2I_D}{(U_{GS} - U_{GS0})^2} = \frac{2 \cdot 1}{(0+3)^2} = 0,222 \text{ mA/V}^2$$

$$K = \mu_n C_{ox} \frac{W}{L} = \mu_n \frac{\varepsilon_{ox}}{t_{ox}} \frac{W}{L}$$

$$\frac{W}{L} = K \frac{t_{ox}}{\mu_n \, \varepsilon'_{ox} \, \varepsilon_0} = 0,222 \cdot 10^{-3} \frac{20 \cdot 10^{-7}}{400 \cdot 3,9 \cdot 8,854 \cdot 10^{-14}} = 3,22$$

b)
$$C_G = C_{ox} W L$$
 $C_{ox} = \frac{K}{\mu_n} \frac{L}{W}$

$$C_G = \frac{K}{\mu_n} \frac{L}{W} W L = \frac{K}{\mu_n} L^2$$

$$L = \sqrt{\frac{C_G \ \mu_n}{K}} = \sqrt{\frac{20 \cdot 10^{-15} \cdot 400}{0,222 \cdot 10^{-3}}} = 1,90 \ \mu \text{m}$$

CMOS struktura

nMOS → na *p*-podlozi

pMOS → u zasebnom *n*-otoku

Zbog električke izolacije *p*-podloga se spaja na najniži, a *n*-otok na najviši potencijal u sklopu

5. Unipolarni tranzistori

Električki simboli *p*-kanalnog MOSFET-a

obogaćeni tip

puna crta između uvoda i odvoda ightarrow postojanje kanala uz U_{GS} = 0 V isprekidana crta između uvoda i odvoda ightarrow izostanak kanala uz U_{GS} = 0 V strelica ightarrow od p-kanala prema n-podlozi

5. Unipolarni tranzistori

Tipovi p-kanalnog MOSFET-a

struja je I_D negativna

obogaćeni tip \rightarrow kanal se stvara negativnim naponom U_{GS} = U_{GS0}

osiromašeni tip \rightarrow vodi struju uz U_{GS} = 0 V; kanal se zatvara pozitivnim naponom U_{GS} = U_{GS0}

 $p\text{-kanalni MOSFET} \rightarrow \text{vodi struju}$ uz $U_{GS} \! < \! U_{GS0}$

Izlazne karakteristike p-kanalnog MOSFETa

obogaćeni tip $\rightarrow U_{GS0} = -1 \text{ V}$

triodno područje

za
$$U_{GS}-U_{GS0} \leq U_{DS} \leq 0$$

$$I_D = K \left[(U_{GS} - U_{GS0})U_{DS} - \frac{U_{DS}^2}{2} \right]$$

područje zasićenja

$${\rm za}\ U_{\rm DS}\!\leq U_{\rm GS}-U_{\rm GS0}$$

$$I_D = \frac{K}{2} (U_{GS} - U_{GS0})^2$$

koeficijent struje

$$K = -\mu_p C_{ox} \frac{W}{L}$$

područje zapiranja za $U_{GS} > U_{GS0}$

$$I_D = 0$$

Primjer 5.2 (1)

MOSFET ima strujni koeficijent K iznosa $0.4~\rm{mA/V^2}$ i napon praga $U_{GS0}=-1~\rm{V}$. Nacrtati izlazne karakteristike ako je MOSFET

- a) *n*-kanalni,
- b) *p*-kanalni.

Rješenje:

Struja I_D

$$I_D = K \left[(U_{GS} - U_{GS0})U_{DS} - \frac{U_{DS}^2}{2} \right]$$
 u triodnom području

$$I_D = I_{DS} = \frac{K}{2}(U_{GS} - U_{GS0})^2$$
 u području zasićenja

a) Uz U_{GS0} < $0 \rightarrow$ *n*-kanalni MOSFET je osiromašenog tipa; K = + 0,4 mA/V 2 triodno područje za U_{DS} < U_{GS} – U_{GS0} područje zasićenja za U_{DS} > U_{GS} – U_{GS0}

Primjer 5.2 (2)

U_{GS}, V	- 1	0	1	1	3
U_{GS} – U_{GS0} , V	0	1	2	3	4
I_D , mA	0	0,2	0,8	1,8	3,2

b) Uz U_{GS0} < 0 \to p-kanalni MOSFET je obogaćenog tipa; K = - 0,4 mA/V² triodno područje za U_{DS} > U_{GS} - U_{GS0} područje zasićenja za U_{DS} < U_{GS} - U_{GS0}

$U_{GS}, { m V}$	- 1	- 2	- 3	- 4	- 5
$U_{GS}-U_{GS0}, \mathrm{V}$	0	- 1	- 2	- 3	- 4
I_D , mA	0	- 0,2	- 0,8	- 1,8	- 3,2

Primjer 5.2 (3)

5. Unipolarni tranzistori

Porast struje u zasićenju

n-kanalni MOSFET obogaćenog tipa \rightarrow U_{GS0} = 1 V

Modulacija dužine kanala

Točka dodira pomiče se prema uvodu

Kanal se skraćuje

U kanalu elektroni se ubrzavaju naponom $U_{DS} = U_{DSS} = U_{GS} - U_{GS0}$

U području zasićenja struja I_D raste s naponom U_{DS}

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L - \Delta L} (U_{GS} - U_{GS0})^2 = I_{DS} \frac{1}{1 - (\Delta L/L)}$$

Struktura spojnog FET-a

Struktura *n*-kanalnog JFET-a

Priključci

- □ uvod S
- □ odvod D
- upravljačka elektroda G
- druga upravljačka elektroda G₂

Kanal

- ☐ *L* dužina
- W širina
- 2a tehnološka debljina

Električki simboli JFET-a

strelica \rightarrow od p-tipa prema n-tipu poluvodiča za n-kanalni \rightarrow od p-upravljačke elektrode prema n-kanalu za p-kanalni \rightarrow od p-kanala prema n-upravljačkoj elektrodi

Linearno područje rada

 U_{GS} < 0 \rightarrow zaporno polarizira *pn*-spoj upravljačka elektroda-kanal

Uz mali $U_{DS} \rightarrow \text{zanemariv}$ pad napona u kanalu

Povećanjem iznosa $U_{GS} \rightarrow$ osiromašena područja se šire; kanal se sužava

Za $U_{GS} = U_P \rightarrow \text{kanal se zatvara}$

 $U_P \equiv$ napon dodira

Za mali napon U_{DS} ; JFET je linearni otpornik

$$I_D = G_0 \left[1 - \left(\frac{U_K - U_{GS}}{U_K - U_P} \right)^{1/2} \right] U_{DS}$$

 $U_K \rightarrow$ kontaktni potencijal upravljačka elektroda-kanal

 $G_0 \rightarrow \text{vodljivost potpuno otvorenog kanala}$

Rad uz veći napon U_{DS}

Povećanjem napona U_{DS} nastaje pad napona u kanalu

pn-spoj upravljačka elektroda-kanaljače se zaporno polarizira na straniodvoda

Kanal se prema odvodu sužava; otpor kanala raste

Struja I_D sve sporije raste s naponom $U_{DS} \! o \! {\rm triodno\ područje}$

$$I_{D} = G_{0} \frac{U_{K} - U_{P}}{3} \left\{ 3 \frac{U_{DS}}{U_{K} - U_{P}} - 2 \left[\left(\frac{U_{K} - U_{GS} + U_{DS}}{U_{K} - U_{P}} \right)^{3/2} - \left(\frac{U_{K} - U_{GS}}{U_{K} - U_{P}} \right)^{3/2} \right] \right\}$$

Struja I_D mijenja se s naponima U_{DS} i U_{GS}

Zatvaranje kanala

Za napon $U_{DSS} = U_{GS} - U_P \rightarrow U_{GD} = U_P$ \rightarrow kanal se na strani odvoda zatvara

Struja postiže maksimalnu vrijednost $I_D = I_{DS} \rightarrow \mathsf{područje}$ zasićenja

$$I_D = I_{DS} = G_0 \frac{U_K - U_P}{3} \left[1 - 3 \frac{U_K - U_{GS}}{U_K - U_P} + 2 \left(\frac{U_K - U_{GS}}{U_K - U_P} \right)^{3/2} \right]$$

Struja I_D mijenja se naponom U_{GS}

Modulacija dužine kanala

Točka dodira pomiče se prema uvodu Kanal se skraćuje U kanalu elektroni se ubrzavaju naponom $U_{DS}=U_{DSS}=U_{GS}-U_{P}$

U području zasićenja struja I_{D} raste s naponom U_{DS}

$$I_D = I_{DS} \frac{L}{L - \Delta L}$$

Karakteristike JFET-a

prijenosna karakteristika

izlazne karakteristike

 $I_{DSS} \rightarrow$ maksimalna struja JFET-a

za
$$U_{DS} = U_{DSS} \le U_{GS} - U_P \longrightarrow {\rm triodno\ područje}$$

za
$$U_{DS} = U_{DSS} > U_{GS} - U_P \rightarrow \text{područje zasićenja}$$

5. Unipolarni tranzistori

JFET u području zasićenja

JFET se najviše koristi u pojačalima – radi u području zasićenja

puna crta – točan izraz crtkano – jednostavniji izraz Umjesto točnog i nepraktičnog izraza u sklopovskoj analizi koristi se jednostavniji izraz

$$I_D = I_{DS} = I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2$$

MESFET

Radi se u galij-arsenidu – velika brzina rada Sličan JFET-u Upravljačka elektroda- kanal je ispravljački spoj metal-poluvodič Za ispravan rad $\to U_{GS} < 0$

Temperaturna svojstva FET-ova

MOSFET – porastom temperature smanjuju se K i $U_{GS0} \rightarrow$

JFET - porastom temperature smanjuje se pokretljivost i sužavaju osiromašeni slojevi →

Kod obje vrste FET-ova \rightarrow porastom temperature pri manjim strujama struja I_D se povećava, a pri većim strujama se smanjuje

Proboji FET-ova

MOSFET

- lavinski proboj spoja odvod-podloga
- prohvat
- proboj oksida

JFET

lavinski proboj spoja odvod-kanal; uz probojni napon U_B proboj nastupa uz $U_{DS} = U_B + U_{GS}$

Dinamički parametri FET-a

Opisuju odnose malih izmjeničnih veličina u režimu malog signala Uz mali signal: $i_D = f(u_{GS}, u_{DS})$

$$di_D = \frac{\partial i_D}{\partial u_{GS}} du_{GS} + \frac{\partial i_D}{\partial u_{DS}} du_{DS} \rightarrow i_d = g_m u_{gs} + g_d u_{ds}$$

Dinamički parametri:

strmina

$$g_m = \frac{\mathrm{d}i_D}{\mathrm{d}u_{GS}}\bigg|_{U_{DS} = \text{konst}} = \frac{i_d}{u_{gs}}\bigg|_{u_{ds} = 0}$$

☐ izlazna dinamička vodljivost

$$g_d = \frac{\mathrm{d}i_D}{\mathrm{d}u_{DS}} \bigg|_{U_{GS} = \mathrm{konst}} = \frac{i_d}{u_{ds}} \bigg|_{u_{gs} = 0}$$
 $r_d = \frac{1}{g_d}$

izlazni dinamički otpor

$$r_d = \frac{1}{g_d}$$

Model FET-a za mali signal

Koristi se u području zasićenja

Slijedi iz: $i_d = g_m u_{gs} + u_{ds}/r_d$

Drugi oblik

$$u_{ds} = -\mu u_{gs} + r_d i_d$$
, $\mu = g_m r_d$

faktor naponskog pojačanja

$$\mu = -\frac{\mathrm{d}u_{DS}}{\mathrm{d}u_{GS}}\bigg|_{I_D = \text{konst}} = -\frac{u_{ds}}{u_{gs}}\bigg|_{u_{ds} = 0}$$

Za neopterećen izlaz $\rightarrow i_d = 0$ $u_{ds} = -g_m r_d u_{gs} = -\mu u_{gs}$ maksimalno naponsko pojačanje FET- a

Model za visoke frekvencije

Kapaciteti C_{gs} i C_{gd} :

za MOSFET → kapacitet MOS strukture

za JFET → kapacitet zaporno polariziranih *pn*-spojeva

za MESFET → kapacitet zaporno polariziranog spoja metal-poluvodič

Grafičko određivanje dinamičkih parametara (1)

Strmina:

$$g_m = \frac{\Delta i_D}{\Delta u_{GS}} \bigg|_{U_{DS} = \text{konst}}$$

Grafičko određivanje dinamičkih parametara (2)

Izlazni dinamički otpor:

$$r_d = \frac{\Delta u_{DS}}{\Delta i_D} \bigg|_{U_{GS} = \text{konst}}$$

Analitičko određivanje dinamičkih parametara (1)

Strmina:

MOSFET

$$i_D = \frac{K}{2} (u_{GS} - U_{GS0})^2$$

$$g_m = \frac{di_D}{du_{GS}} = K (U_{GS} - U_{GS0}) = \sqrt{2KI_D}$$

JFET

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2$$

$$g_m = \frac{\mathrm{d}i_D}{\mathrm{d}u_{GS}} = \frac{2I_{DSS}}{-U_P} \left(1 - \frac{U_{GS}}{U_P} \right) = \frac{2}{-U_P} \sqrt{I_{DSS} I_D}$$

Analitičko određivanje dinamičkih parametara (2)

Izlazni dinamički otpor:

model nagiba izlaznih

karakteristika u području zasićenja

$$r_d = \frac{1}{g_d} \approx \frac{1}{\lambda I_D}$$

MOSFET

$$i_{D} = \frac{K}{2} (u_{GS} - U_{GS0})^{2} (1 + \lambda u_{DS})$$

$$g_{d} = \frac{di_{D}}{du_{DS}} = \lambda \frac{K}{2} (U_{GS} - U_{GS0})^{2} \approx \lambda I_{D}$$

JFET

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 \left(1 + \lambda u_{DS} \right)$$

$$g_d = \frac{\mathrm{d}i_D}{\mathrm{d}u_{DS}} = \lambda I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2 \approx \lambda I_D$$

Primjer 5.3 (1)

Parametri n-kanalnog MOSFET-a su konstanta $K=80~\mu\text{A/V}^2$, napon praga $U_{GS0}=2~\text{V}$ i faktor modulacije dužine kanala $\lambda=0.005~\text{V}^{-1}$. FET radi s naponom $U_{GS}=5~\text{V}$. Izračunati struju odvoda I_D , strminu g_m , izlazni dinamički otpor r_d i faktor naponskog pojačanja μ uz:

a)
$$U_{DS1} = (U_{GS} - U_{GS0})/2$$
,

b)
$$U_{DS2} = 2(U_{GS} - U_{GS0}).$$

Rješenje:

a) $U_{DS1} < (U_{GS} - U_{GS0}) \rightarrow \text{triodno područje}$

$$i_D = K \left[(u_{GS} - U_{GS0}) u_{DS} - \frac{u_{DS}^2}{2} \right]$$

$$di_D = 1 \qquad di$$

$$g_m = \frac{di_D}{du_{GS}}\Big|_{U_{DS1}} = KU_{DS1}$$
 $g_d = \frac{1}{r_d} = \frac{di_D}{du_{DS}}\Big|_{U_{GS}} = K(U_{GS} - U_{GS0} - U_{DS1})$

Primjer 5.3 (2)

$$\mu = g_m r_d = \frac{U_{DS1}}{U_{GS} - U_{GS0} - U_{DS1}}$$

U statičkoj točki

$$U_{DS1} = (U_{GS} - U_{GS0})/2 = 1,5 \text{ V} \qquad I_{D1} = K \left[(U_{GS} - U_{GS0})U_{DS1} - \frac{U_{DS1}^2}{2} \right] = 0,27 \text{ mA}$$

$$g_{m1} = KU_{DS1} = 0,12 \text{ mA/V} \qquad r_{d1} = \frac{1}{K(U_{GS} - U_{GS0} - U_{DS1})} = 8,33 \text{ k}\Omega$$

$$\mu_1 = \frac{U_{DS1}}{U_{CS} - U_{CS0} - U_{DS1}} = 1$$

b) $U_{DS1} > (U_{GS} - U_{GS0}) \rightarrow \text{područje zasićenja}$

$$i_{D} = \frac{K}{2} (u_{GS} - U_{GS0})^{2} (1 + \lambda u_{DS})$$

$$g_{m} = \frac{\mathrm{d}i_{D}}{\mathrm{d}u_{GS}} \bigg|_{U_{DS2}} = K (U_{GS} - U_{GS0}) (1 + \lambda U_{DS2}) \qquad g_{d} = \frac{1}{r_{d}} = \frac{\mathrm{d}i_{D}}{\mathrm{d}u_{DS}} \bigg|_{U_{GS}} = \lambda \frac{K}{2} (U_{GS} - U_{GS0})^{2}$$

Primjer 5.3 (3)

$$g_d = \frac{1}{r_d} = \frac{\mathrm{d}i_D}{\mathrm{d}u_{DS}}\Big|_{U_{CS}} = \lambda \frac{K}{2} (U_{GS} - U_{GS0})^2 = \frac{I_{D2}}{U_{DS2} + 1/\lambda}$$
 $\mu = g_m r_d$

U statičkoj točki

$$U_{DS2} = 2(U_{GS} - U_{GS0}) = 6 \text{ V} \qquad I_{D2} = \frac{K}{2} (U_{GS} - U_{GS0})^2 (1 + \lambda U_{DS2}) = 0,37 \text{ mA}$$

$$g_{m2} = K (U_{GS} - U_{GS0}) (1 + \lambda U_{DS2}) = 0,24 \text{ mA/V}$$

$$r_{d2} = \frac{U_{DS2} + 1/\lambda}{I_{D2}} = 557 \text{ k}\Omega \qquad \mu_2 = g_{m2} r_{d2} = 134$$

Uz pretpostavku da je $(1 + \lambda U_{DS2}) \approx 1 \rightarrow$

$$I_{D2} = 0.36 \text{ mA}$$
 $g_{m2} = 0.24 \text{ mA/V}$ $r_{d2} = 556 \text{ k}\Omega$ $\mu_2 = 133$

Dinamički parametri mogu se računati i za triodno područja rada FET-a.

U pojačalima FET treba raditi u području zasićenja, jer jedino u tom području osigurava veće naponsko pojačanje.

Primjer 5.4

Napon praga p-kanalnog MOSFET-a je $U_{GS0} = -1.5 \text{ V}$. Kada MOSFET radi u području zasićenja pri naponu $U_{GS} = -4 \text{ V}$ vodi struju od 1 mA. Koliki su napon U_{GS} i strmina g_m tog FET-a u području zasićenja uz struju od 4 mA? Zanemariti porast struje odvoda u području zasićenja.

Rješenje:

U području zasićenja:
$$i_D = \frac{K}{2} (u_{GS} - U_{GS0})^2$$

$$K = \frac{2I_{D1}}{(U_{GS1} - U_{GS0})^2} = \frac{2 \cdot (-1 \cdot 10^{-3})}{(-4 + 1.5)^2} = -320 \,\mu\text{A/V}^2$$

$$g_m = K (u_{GS} - U_{GS0}) = \sqrt{2 \,K \,I_D}$$

$$g_{m2} = \sqrt{2 \,K \,I_{D2}} = \sqrt{2 \cdot (-320 \cdot 10^{-6}) \cdot (-4 \cdot 10^{-3})} = 1.6 \,\text{mA/V}$$

$$U_{GS2} = \frac{g_{m2}}{K} + U_{GS0} = \frac{1.6 \cdot 10^{-3}}{-320 \cdot 10^{-6}} - 1.5 = -5 - 1.5 = -6.5 \,\text{V}$$

Primjer 5.5 (1)

Izlazne karakteristike nekog realnog MOSFET-a, dobivene mjerenjem, prikazane su na slici.

- a) U radnoj točki A odrediti dinamičke parametre: strminu g_m , izlazni dinamički otpor r_d i faktor naponskog pojačanja μ .
- b) Odrediti parametar modulacije dužine kanala λ koji aproksimira nagib izlaznih karakteristika u području zasićenja.
- c) Korištenjem parametra λ izračunati izlazni dinamički otpor za $U_{DS} = 7 \text{ V i}$ za sva tri napona U_{GS} sa slike.

Primjer 5.5 (2)

Rješenje:

a) U točki A: $U_{GSA}=3$ V, $U_{DSA}=7$ V, $I_{DA}=5$ mA Strmina: $g_m=\frac{\Delta i_D}{\Delta u_{GS}}\bigg|_{U_{DS}=\text{konst}}$

Uz
$$U_{DSA} = 7 \text{ V} \rightarrow I_{D1} = 2,55 \text{ mA}$$
 za $U_{GS1} = 2 \text{ V}$ i $I_{D2} = 8,25 \text{ mA}$ za $U_{GS2} = 4 \text{ V}$
$$g_m = \frac{I_{D2} - I_{D1}}{I_{GS2} - I_{GS2}} = \frac{8,25 - 2,55}{4 - 2} \cdot 10^{-3} = 2,85 \text{ mA/V}$$

Izlazni dinamički otpor:

$$r_d = \frac{\Delta u_{DS}}{\Delta i_D} \bigg|_{U_{GS} = \text{konst}}$$

Uz
$$U_{GSA} = 3 \text{ V} \rightarrow I_{D3} = 4,95 \text{ mA}$$
 za $U_{DS3} = 4 \text{ V}$ i $I_{D4} = 5,05 \text{ mA}$ za $U_{DS4} = 10 \text{ V}$
$$r_d = \frac{U_{DS4} - U_{DS3}}{I_{D4} - I_{D3}} = \frac{10 - 4}{5,05 - 4,95} \cdot 10^3 = 60 \text{ k}\Omega \qquad \mu = g_m \, r_d = 2,85 \cdot 60 = 171$$

Primjer 5.5 (3)

b) Primjenom modela za modulaciju dužine kanala

$$I_{D3} = \frac{K}{2} (U_{GSA} - U_{GS0})^2 (1 + \lambda U_{DS3}) \qquad I_{D4} = \frac{K}{2} (U_{GSA} - U_{GS0})^2 (1 + \lambda U_{DS4})$$

$$\lambda = \frac{I_{D4} - I_{D3}}{I_{D3} U_{DS4} - I_{D2} U_{DS1}} = \frac{5,05 - 4,95}{4,95 \cdot 10 - 5,05 \cdot 4} = 3,41 \cdot 10^{-3} \text{ V}^{-1}$$

c) Izlazni dinamički otpor $r_d = \frac{1}{\lambda I_D}$ $za U_{GS1} = 2 \text{ V} \rightarrow r_{d1} = \frac{1}{\lambda I_{D1}} = \frac{1}{3,41 \cdot 10^{-3} \cdot 2,55} = 115 \text{ k}\Omega$ $za U_{GSA} = 3 \text{ V} \rightarrow r_{dA} = \frac{1}{\lambda I_{DA}} = \frac{1}{3,41 \cdot 10^{-3} \cdot 5} = 58,7 \text{ k}\Omega$ $za U_{GS2} = 4 \text{ V} \rightarrow r_{d2} = \frac{1}{\lambda I_{D2}} = \frac{1}{3,41 \cdot 10^{-3} \cdot 8,25} = 35,6 \text{ k}\Omega$