An Introduction to Deep Learning

(part 3)

Farnoosh Heidarivincheh EMAT31530 - February 2021

So far, we have discussed

- Neural networks with Fully-Connected layers
- The optimization process / How the network is trained

Outline

- Convolutional Neural Networks
 - Different Layers
 - Popular Architectures
- Other Popular Neural Networks
 - Recurrent Neural Networks
 - Long Short-Term Memory Networks
 - Auto-Encoders
 - Generative Adversarial Networks

Image classification with CNN

- No need to pre-process images
- CNNs outperform traditional approaches

Image classification with **CNN** - Layers in a CNN:

- Input
- Convolutional
- Pooling

- Fully-Connected (FC)
- **Drop-out**
- Activation (ReLU, ...) Batch Normalisation (BN), ...

- It is the main building block of a CNN
- its neurons can have more than one dimension
- It captures the correlation among neighboring data points

Convolutional layer

Kernel size: 3×3×3

Convolutional layer

This is repeated for every pixel of the image (if *stride*=1)

Convolutional layer

This is repeated for every pixel of the image (if *stride*=1)

Convolutional layer

This is repeated for every pixel of the image (if *stride*=1)

Convolutional layer

This is repeated for every pixel of the image (if *stride*=1)

Convolutional layer

RGB image input X

Conv layer output

Convolutional layer

RGB image input X

This can be used as the input to another layer

Activation layer

- It introduces non-linearity to the network
- Non-linearity helps the network learn complex patterns
- The most common activations are Sigmoid, ReLU and Tanh

Activation layer

ReLU(x) = max(0, x)(Rectified Linear Unit)

Pooling layer

- It down-samples its input
- It reduces the network sensitivity to the features' location
- Two common pooling layers are average and max pooling

Pooling layer is not learnable

Fully-Connected layer

- It connects all its inputs to all the outputs
- It is usually used as the last layers of a network (before classification)

Fully-Connected layer

- It connects all its inputs to all the outputs
- It is usually used as the last layers of a network (before classification)

Drop-out layer

- It randomly drops out (sets to 0) neurons during training
- This prevents over-fitting (regularisation)

Batch-Normalisation layer

- It normalises its input across mini-batches
- It stabilises the network against the changes in the distribution of its input
- It helps the network generalise better to test data (regularisation)

Batch-Normalisation layer

It subtracts the mini-batch mean from its input and divides it by the mini-batch standard deviation

$$\hat{x} = \frac{x - m}{s}$$

This is then shifted and scaled by two learnable parameters

$$x^{BN} = \hat{x} \cdot \gamma + \beta$$

The BN output has a distribution with mean β and standard deviation γ

CNN – VGG16

- It has 138 million parameters
- Its output layer has 1000 neurons

```
Input \rightarrow Conv \rightarrow ReLU \rightarrow Conv \rightarrow ReLU \rightarrow Max-pool \rightarrow Conv \rightarrow ReLU \rightarrow ReLU \rightarrow Conv \rightarrow ReLU \rightarrow ReLU
```

CNN – ResNet

- It uses residual (shortcut) connections
- It has increased the number of layers (152)
- It has 26 million parameters (CBR: Conv → BN → ReLU)

CNN for image classification

- AlexNet
- Inception-v1/v2/v4
- Inception-ResNets
- Xception
- DenseNet
- ResNeXt

Recurrent Neural Networks (RNN)

- They process sequences of data
- They back-propagate loss through time

Long Short-Term Memory Networks (LSTM)

- They are a special type of Recurrent Networks
- They can store information in their memory for long durations

Auto-Encoders

They reconstruct their input

Generative Adversarial Networks (GAN)

- They are generative models e.g. when trained they can generate fake images out of noise
- They have two sub-network (discriminative and generative)
- The two sub-networks compete against each other (adversarial)

Summary and Conclusion

We saw different types of layers in a CNN

Convolutional, Activation, Pooling Fully-Connected, Drop-out, Batch Normalisation, ...

- We saw some popular neural networks
 - CNN (VGG and ResNet)
 - RNN and LSTM
 - Auto-Encoder
 - GAN

Thanks for your attention