180.633 Econometrics

Midterm, 10am-12pm, March 25, Spring 2020

Note:

- 1 This is an open-book exam. But please finish it independently.
- 2 The TA will email you the exam 5 minutes before the exam.
- 3 Students should scan their answers and email back to tzhoul1@jhu.edu within 20 minutes after the exam.
- 4 The TA will be available for questions on Skype or Zoom during the exam.

Directions:

- 1. Any theorem in Hansen's book may be invoked without proof, but should be cited in your proofs.
- 2. Show all of your work and explain your reasoning: partial credit is given for partial solutions.

QUESTIONS:

1. (10 points) Show that the conditional variance can be written as

$$\sigma^2(\mathbf{x}) = \mathbb{E}[y^2|\mathbf{x}] - (\mathbb{E}[y|\mathbf{x}])^2.$$

2. (20 points) Suppose that

$$\boldsymbol{x} = \begin{pmatrix} 1 \\ x_2 \\ x_3 \end{pmatrix}$$

and $x_3 = \alpha_1 + \alpha_2 x_2$ is a linear function of x_2 .

- (a) Show that $Q_{xx} = \mathbb{E}[xx']$ is not invertible.
- (b) Use a linear transformation of x to find an expression for the best linear predictor of y given x. (Be explicit, but do not just use the generalized inverse formula.)
- 3. (10 points) Show that if $X = [X_1 \ X_2]$ and $X_1'X_2 = 0$, then the corresponding projection matrices satisfy $P = P_1 + P_2$.
- 4. (5 points) Using the notations in Chapter 3, for which observations will $\hat{\beta}_{(-i)} = \hat{\beta}$?
- 5. (20 points) Consider an i.i.d. sample $\{y_i, x_i\}$, i = 1, ..., n, where x_i is $k \times 1$. Assume the linear conditional expectation model

1

$$y_i = \mathbf{x}_i' \mathbf{\beta} + e_i$$
$$\mathbb{E}[e_i | \mathbf{x}_i] = 0$$

Assume that $X'X/n = I_k$ (orthonormal regressors). Consider the OLS estimator $\hat{\beta}$ for β .

- (a) Find $V_{\widehat{\beta}} = \text{Var}(\widehat{\beta})$.
- (b) In general, are $\widehat{\beta}_j$ and $\widehat{\beta}_\ell$ for $j \neq \ell$ correlated or uncorrelated? Explain.
- (c) Find a sufficient condition so that $\widehat{\beta}_j$ and $\widehat{\beta}_\ell$ for $j \neq \ell$ are uncorrelated.
- 6. (20 points) The model is

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + e_i$$

$$\mathbb{E}[e_i | \mathbf{x}_i] = 0$$

$$\mathbb{E}[e_i^2 | \mathbf{x}_i] = \sigma_i^2$$

$$\mathbf{\Omega} = \operatorname{diag} \{\sigma_1^2, \dots, \sigma_n^2\}.$$

The parameter $\boldsymbol{\beta}$ is estimated both by OLS $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$ and GLS $\tilde{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{\Omega}^{-1}\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\Omega}^{-1}\boldsymbol{y}$. Let $\hat{\boldsymbol{e}} = \boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}$ and $\tilde{\boldsymbol{e}} = \boldsymbol{y} - \boldsymbol{X}\tilde{\boldsymbol{\beta}}$ denote the residuals. Let $\hat{R}^2 = 1 - \hat{\boldsymbol{e}}'\hat{\boldsymbol{e}}/(\boldsymbol{y}^*\boldsymbol{y}^*)$ and $\tilde{R}^2 = 1 - \tilde{\boldsymbol{e}}'\tilde{\boldsymbol{e}}/(\boldsymbol{y}^*\boldsymbol{y}^*)$ denote the equation R^2 where $\boldsymbol{y}^* = \boldsymbol{y} - \bar{\boldsymbol{y}}$.

If the error e_i is truly heteroskedastic,

- (a) Show that $\operatorname{Cov}\left(\widehat{\boldsymbol{\beta}},\widetilde{\boldsymbol{\beta}}\,\middle|\,\boldsymbol{X}\right)=\operatorname{Var}\left(\,\widetilde{\boldsymbol{\beta}}\,\middle|\,\boldsymbol{X}\,\right)$. Also find $\operatorname{Cov}\left(\widetilde{\boldsymbol{\beta}},\widetilde{\boldsymbol{\beta}}-\widehat{\boldsymbol{\beta}}\,\middle|\,\boldsymbol{X}\right)$.
- (b) Will \hat{R}^2 or \tilde{R}^2 be smaller? Prove it.
- 7. (5 points) For the regression in-sample predicted value \hat{y}_i show that $\hat{y}_i | X \sim \mathcal{N}(x_i' \boldsymbol{\beta}, \sigma^2 h_{ii})$ where h_{ii} are the leverage values as in equation (3.41) in the textbook.
- 8. (10 points)
 - (a) In the *normal* regression model, let s^2 be the unbiased estimator of the error variance σ^2 from equation (4.26) in the textbook. Find $Var(s^2)$. Show that $Var(s^2)$ is strictly larger than the Cramér-Rao Lower Bound for σ^2 .
 - (b) In the *linear* regression model (Assumption 4.2), provide a condition under which the variance of OLS $\hat{\beta}$ hits the Cramér-Rao lower bound for β .