Sum of roots of polynomials 1

The sum of the roots of any polynomial in the form $ax^n + bx^{n-1} + cx^{n-2} + ... + z = 0$ will always be equal to $-\frac{b}{a}$.

We can see that this holds for quadratics in the form $ax^2 + bx + c = 0$ as we know from when we factorise we need to find two numbers that multiply to c and add to b. This gives us the factors, and since the roots are $(x-x_1)$, it means the sum will be -b (which is $\frac{-b}{1}$ since a = 1 here).

We can also see this from the quadratic equation: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\frac{-b+\sqrt{b^2-4ac}}{2a} + \frac{-b-\sqrt{b^2-4ac}}{2a} = -\frac{2b}{2a} = -\frac{b}{a}$$

If we add the two roots, we get: $\frac{-b+\sqrt{b^2-4ac}}{2a}+\frac{-b-\sqrt{b^2-4ac}}{2a}=-\frac{2b}{2a}=-\frac{b}{a}$ This holds for all polynomials. For example, in the polynomial $p(x)=2x^4-x^3+2x-1=0$ we know the four roots will sum to $\frac{1}{2}$, since $-(-\frac{1}{2}) = \frac{1}{2}$.

Questions

1. Find the roots of the equation $z^{11} = 1$. Use this to show that:

$$\cos\left(\frac{2\pi}{11}\right) + \cos\left(\frac{4\pi}{11}\right) + \cos\left(\frac{6\pi}{11}\right) + \cos\left(\frac{8\pi}{11}\right) + \cos\left(\frac{10\pi}{11}\right) = -\frac{1}{2}$$

- 2. If α is a complex root of the equation $z^5=1$, show that $\alpha+\alpha^2+\alpha^3+\alpha^4=-1$
- 3. The roots of the quadratic equation $ax^2 + bx + c = 0$ are $\sin \theta$ and $\cos \theta$.

Show that:
$$\frac{\sin \theta}{1-\cot \theta} + \frac{\cos \theta}{1-\tan \theta} = -\frac{b}{a}$$