Gossip Algorithms

Devavrat Shah

 MIT

Motivation

- Ad-hoc networks
 - Not deliberately designed with an "infrastructure"
- Some examples
 - Sensor networks
 - formed by randomly deployed sensors in a geographic area
 - for sensing and monitoring environment, surveillance, etc.
 - Peer-to-peer networks
 - formed by computers over Internet or overlay networks
 - for sharing information, computation, etc.
 - Mobile networks
 - formed by automobiles, radio devices
 - for infrastructure-less communication
- In such networks, nodes need to collect, process and communicate information over wireless channel

Characteristics of Ad hoc Networks

- Nodes in such networks
 - Do not have access to addressing, routing information, etc.
 - Possibly have severely limited resources (like energy, computation)
 - nodes may hibernate or leave the network or die
 - Do not know the global network topology,
 - only have access to local information, i.e. neighbors
- Algorithms deployed in such networks need to be
 - Completely distributed
 - Robust against node failures or changes in topology
 - Simple enough so as to be implementable
 - Wireless communication friendly
- Traditional algorithms generally do not meet mentioned constraints
 - → Randomized gossip algorithms are very well suited

Randomized Gossip Algorithm

Characteristics

- Pair-wise operations
 - → satisfies wireless constraint
- Iterative and distributed
- Use of local information only
- Randomized
- Gossip algorithm
 - o By design, redundant and hence not optimal
 - → robust against node failures and changes in topology
- In this talk, we will consider gossip algorithms for averaging
 - Compute average of values given at nodes of the network

(Toy) Example

- Given a network of temperature sensors
 - \circ To sense ambient temperature T
- ullet Sensors have noisy reading, $T_i = T + \eta_i$
 - \circ An unbiased MMSE: $\hat{T} = \frac{1}{6} \sum_{i} T_{i}$
 - → Compute average at each sensor in a distributed manner

(Toy) Example: A Traditional Algorithm

- First, nodes form an "infrastructure" in a distributed fashion
 - A spanning tree
- Use spanning tree to exchange values in an orderly fashion
 - To compute average
- This is simple and distributed, however...

(Toy) Example: A Traditional Algorithm

- A node may fail or die
 - Requires re-computation of infrastructure
 - \rightarrow Algorithms are not robust !

(Toy) Example: Gossip Algorithm

- Every time-step,
 - A node contacts one of its neighbor at random and forms a pair
 - Paired nodes average their current estimates

(Toy) Example: Gossip Algorithm

- Every time-step,
 - A node contacts one of its neighbor at random and forms a pairs
 - Paired nodes average their current estimates
- Estimate of each node converges to average
- Next, lets look at another example where averaging via gossip is useful

(Not So Toy) Example

- In many networking scenarios, scheduling is essential
 - To resolve contention of resources
 - such as bandwidth, hardware, etc.
 - Between different tasks or flows or ...
- Some well-known examples of scheduling
 - In Input-Queued switches to resolve contention in accessing cross-bar fabric
 - o In Wireless networks to resolve contention in accessing bandwidth
 - In Routing to resolve contention in accessing network links

0

Scheduling Algorithms

- The network performance
 - In terms of throughput and delay
 - Is strongly affected by the scheduling algorithm
- Ideally, one would like to have scheduling algorithm
 - That guarantees (close to) optimal performance, and
 - Is easy to implement, i.e.
 - requires few simple operations
 - distributed and robust against changes in network

• Design of implementable high-performance scheduling algorithms has been of central interest for more than a decade

Scheduling Algorithms

- Tassiulas and Ephremides (1992) proposed
 - o Max-Weight scheduling algorithm, that is
 - each time among all *allowable* schedules
 - choose the one with maximum weight
 - where, weight is induced by (function of) queue-size
- They showed it to be throughput optimal
 - In a very general network setup

• Next, lets looks at some examples of this algorithm

Switch Bipartite Graph

Maximum Weight Matching

Wireless Interference Graph

Maximum Weight Matching

Scheduling Algorithms

- The Max-Weight algorithm has good performance
 - However, finding such schedules can become difficult
 - For example, finding Max Weight Matching in a graph
 - requires $O(n^3)$ operations (for a centralized algorithm)
 - o It becomes worse when constraints correspond to independent set
 - it is NP-hard and hard to approximate

- → Is it possible to have any throughput optimal simple solution?
 - Yes, gossip comes to rescue

Scheduling Algorithm via Gossip

- Algorithm Sch-Gossip
 - \circ Let $S(\tau)$ be schedule at time τ .
 - \circ Select $S(\tau+1)$ as follows:
 - generate schedule $R(\tau+1)$ by Random
 - select $S(\tau + 1) = Mix(S(\tau), R(\tau))$

(Similar to Tassiulas (1998) and Giaccone-Prabhakar-S (2002))

- For Sch-Gossip, we obtain the following (Modiano-S-Zussman (2006))
- Theorem 1. Let there exists finite $\delta, \delta_1, \gamma > 0$ such that for any τ ,
 - **P1.** $\Pr\left(R(\tau+1)\text{equal to Max Wt Schedule}\right) > \delta$,
 - **P2.** $\Pr(W(S(\tau+1)) \ge (1-\gamma) \max\{W(S(\tau)), W(R(\tau+1))\}) > \delta_1.$

Then, the algorithm is $1-\gamma-2\sqrt{\frac{\delta_1}{\delta}}$ approximation of throughput optimal algorithm.

Scheduling Algorithm via Gossip

- Theorem implies that, to obtain simple distributed high-throughput algorithm
 - We need a distributed sampler, and
 - A distributed *comparison* algorithm
- Distributed random sampler
 - Can be obtained using simple, local random schemes
 - for matchings, k-factors, independent set,...
- Distributed comparison algorithm
 - Comparing weights is the same as comparing averages
 - → Gossip algorithm for averaging can be used
- There are many other examples where averaging is useful subroutine
 - Computing Top-k eigenvalue, distributed LP, (some) asynchronous optimization, etc

A Bit of History

- Distributed algorithm based on linear dynamics for
 - Averaging or Agreement problem
 - Was first studied by
 - Tsitsiklis (1984), and
 - Tsitsiklis-Bertsekas-Athans (1986)
- Similar algorithm has been re-discovered in many other contexts
 - Load balancing by Rabani-Sinclair-Wanka (1998)
- A good re-cap of the history
 - In recent paper by Blondel-Hendrickx-Olshevsky-Tsitsiklis (2005)

Rest of the Talk

- Averaging
 - Setup, Problem and Quantity of interest
- Algorithm I
 - Randomized terative averaging
- Algorithm II
 - Based on property of exponential variables
- Algorithm III
 - Based on non-reversible Random Walks
- Summary

Averaging

Setup

- Some notation
 - Consider a network of n nodes
 - $\circ G = (\{1, \dots, n\}, E)$ is the corresponding network graph
 - edge $(i,j) \in E$ iff nodes i and j are connected
 - \circ Node i has some real value x_i
 - let vector $\bar{x} = [x_i]$
- We wish to design algorithm for the following task: at each node,
 - \circ compute $x_{ave} = \frac{\sum_{i} x_i}{n}$
- Quantity of interest: computation time
 - \circ How long does it take to obtain good approximation of x_{ave} at all nodes

Time Model

- Synchronous: slotted time (discrete)
 - In matching model multiple node pairs exchange messages
 - these pairs form a matching
 - In push (pull) model a node contacts exactly one other node and sends message
 - however, a node may be contacted by multiple nodes
- Asynchronous: continuous time
 - Each node has its independent exponential clock of rate 1
 - a node performs an operation only when its clock ticks
 - No two clocks tick at the same time
 - only one pair is performing an operation at an instance
- We will consider asynchronous time model
 - However, all results extend to synchronous time models as well
 - Of course, it requires a lot more work (and we've done it)

Algorithm I

Stephen Boyd Arpita Ghosh Balaji Prabhakar

Asynchronous Averaging Algorithm

- ullet Time step of algorithm is any of the n clock tick
 - \circ Equivalently, tick of an exponential clock of rate n
- Algorithm
 - \circ Initially, at time t=0, for $i=1,\ldots,n$,
 - node i sets its estimate, $x_i(0) = x_i$
 - \circ At time t_k (k^{th} clock-tick)
 - one of the n nodes becomes active at random, say i
 - node i contacts one of its neighbor, say j, with prob. P_{ij}
 - nodes i and j set their new estimates as follows:

$$x_i(t_k) = x_j(t_k) = \frac{1}{2} (x_i(t_{k-1}) + x_j(t_{k-1})).$$

 Question: how long does it take to compute average given graph G and matrix P?

Quantity of Interest

• **Definition 1.** ϵ -Averaging time, $T_{ave}(\epsilon, P)$, as

$$T_{ave}(\epsilon, P) = \sup_{x(0)} \inf \left\{ t : \Pr\left(\frac{\|x(t) - x_{ave}\mathbf{1}\|}{\|x(0)\|} > \epsilon \right) < \epsilon \right\}.$$

for gossip algorithm based on P

Some notation

$$\circ$$
 Let $E(P) = \{(i,j) \in E : P_{ij} > 0 \text{ or } P_{ji} > 0\}$

$$\circ$$
 Let $G(P) = (V, E(P))$

 \circ It is required that G(P) is connected for $T_{ave}(\epsilon,P)<\infty$

Main Result

• Theorem 2. For any $0 < \epsilon < 1$,

$$\frac{\log \epsilon^{-1}}{2n \log \lambda_{\max}^{-1}(W)} \le T_{ave}(\epsilon, P) \le \frac{3 \log \epsilon^{-1}}{n \log \lambda_{\max}^{-1}(W)},$$

 \circ where $\lambda_{\max}(W)$ is the second largest eigenvalue of

$$W = I - \frac{1}{2n}D + \frac{1}{2n}(P + P^{T}),$$

with $D = diag(D_1, \dots, D_n)$ such that

$$D_i = \sum_{k=1}^{n} (P_{ik} + P_{ki}).$$

• If
$$P=P^T$$
, then $W=I-\frac{1}{n}\left(I-P\right)$
$$\rightarrow \lambda_{\max}(W)=1-\frac{1}{n}\left(1-\lambda_2(P)\right),$$

$$\rightarrow T_{ave}(\epsilon,P)\sim \frac{\log\epsilon^{-1}}{1-\lambda_2(P)}$$

Pictorial view of Theorem 2

• Relation between averaging and mixing time ($\epsilon = n^{-2}$)

$$T_{ave} = \Theta \left(T_{mix} + \log n \right)$$

Some Implications

- Let's consider the complete graph
- Lower Bound
 - \circ For any P, $\lambda_2(P) \in [-1,1]$
 - \circ Thus, $(1 \lambda_2(P))^{-1} \ge 0.5$
 - $\rightarrow T_{ave}(\epsilon, P) \ge 0.5 \log \epsilon^{-1}$
 - This recovers result of Karp et. al. (2000)
- An upper bound: consider P = [1/n]
 - $\circ \lambda_2(P) = 0$
 - \rightarrow That is, $T_{ave}(\epsilon, P) \leq 3n \log \epsilon^{-1}$
 - \circ In particular, $T_{ave}(1/n^2, P) = O(\log n)$
 - This recovers results of Kempe et al. (2003)

Fastest Averaging Algorithm

- \bullet Given graph G, the fastest averaging algorithm corresponds to
 - Communication matrix P such that
 - corresponding W has minimum $\lambda_{\max}(W)$
 - \circ For any P, $W=W^T$
- Fastest averaging can be posed as the following optimization problem:

$$\begin{aligned} &\min \lambda_{\max}(W), & \text{ given} \\ &W = \frac{1}{n} \sum_{ij} P_{ij} W_{ij} \\ &P_{ij} \geq 0, \ P_{ij} = 0 & \text{if } (i,j) \notin E \\ &\sum_{j} P_{ij} = 1, \ \forall i. \end{aligned}$$
 where, $W_{ij} = I - \frac{(e_i - e_j)(e_i - e_j)^T}{2}$.

- This is known to be a Semi-Definite Program (SDP)
 - Shown recently by Boyd, Diaconis and Xiao (2003)
 - Can be solved in polynomial time

Distributed Optimization

- The SDP corresponding to fast averaging algorithm
 - Can be solved by a centralized procedure
 - We need a distributed gossip algorithm to do so

- We obtain a distributed gossip subgradient method based on
 - o Problem structure,
 - Gossip for averaging, and
 - Recent results on approx. subgradient by Kiwiel (2004)

An Example

- Next, we evaluate performance of algorithm
 - Wireless network
 - how long does it take to average?

- We'll see
 - \circ Geometric random graph, G(n,r), as a model for wireless network
 - \circ Compute λ_{\max} for G(n,r)-conformant P
 - \rightarrow Evaluate of averaging time on G(n,r)

Wireless Network

- Wireless networks are formed by nodes placed in ad hoc manner in some geographic area
 - Two nodes within transmission range of each other can communicate
- Gupta and Kumar (2000) introduced Geometric random graph as a model for such ad hoc wireless networks
 - \circ n nodes are thrown uniformly at random into a unit disc
 - \circ Two nodes within distance r of each other are connected
 - -r represents the transmission radius
 - \circ Denoted as G(n,r)

An Example of G(n,r)

Averaging in G(n,r)

- To facilitate communication in network, the property of connectivity is desirable
 - \circ for r=0 the graph is disconnected
 - \circ for r=1 the graph is completely connected
 - \rightarrow What is the smallest value of r such that graph is connected?
 - \rightarrow How does probability of connectivity change with r?
- G(n,r) exhibits threshold property in connectivity with critical $r_c = \Theta\left(\sqrt{\log n/n}\right)$
 - \circ When $r < (1 \epsilon)r_c$, G(n, r) is disconnected w.p. tending to 1
 - \circ When $r > (1+\epsilon)r_c$, G(n,r) is connected w.p. tending to 1

Averaging in G(n,r)

- ullet We are interested in computing eigenvalues of G(n,r)-conformant P
 - \circ In particular, what are the eigenvalues of P for natural gossip algorithm?
 - Ohnd, what is the smallest second eigenvalue?
- We obtain the following characterization of eigenvalues
- **Theorem 3.** For G(n,r) with $r = \omega\left(\sqrt{\log n/n}\right)$, the second eigenvalue corresponding to natural gossip algorithm as well as the fastest gossip algorithm scales as $1 \Theta(r^2)$.
 - → For natural and fastest averaging algorithms,

$$T_{ave}(\epsilon, P) = \Theta(r^{-2} \log \epsilon^{-1})$$

Summary: Algorithm I

ullet Randomize gossip algorithm based on P

$$\circ T_{ave}(P) \sim \Theta \left(T_{mix}(P) + \log n \right)$$

- \rightarrow pair-wise constraint impose penalty of additive $\log n$
- Fastest gossip algorithm correspond to fastest mixing Markov chain
 - This can be posed as an SDP
 - It can be optimized via gossip algorithm
- Question: does this class of algorithms provide best performance?
 - Lets consider a ring graph

Ring Graph

- We'll consider performance of algorithm on ring graph
 - \circ Each node the n nodes is connected to two of its neighbors

- \circ For any reversible (symmetric) P, $1 \lambda_{max} = O(1/n^2)$
- $\rightarrow T_{ave}(\epsilon) = \Omega(n^2 \log \epsilon^{-1})$ (achieved by symmetric RW)
 - \circ Contrast this with centralized algorithm requiring $\Theta(n)$ time !

Ring Graph

- For a large class of *ring-type* graphs
 - \circ For any reversible random walk, $1 \lambda_{max} \sim 1/{\sf diameter}^2$
 - $\rightarrow T_{ave} \sim \log \epsilon^{-1} \times \mathsf{diameter}^2$
- **Definition 2.** For a proper subset $S \subset V$, the *conductance* of a symmetric stochastic matrix P denoted as $\Phi(P)$ is defined as

$$\Phi_P = \min_{S \subset V: |S| \le n/2} \frac{\sum_{i \in S, j \in S^c} (P_{ij} + P_{ji})}{|S|}.$$

More generally,

$$\Phi(P)^{2}/2 \le (1 - \lambda_{\max}(P)) \le 2\Phi(P)$$

$$\rightarrow \log \epsilon^{-1}/\Phi(P) \le T_{ave} \le \log \epsilon^{-1}/\Phi(P)^2$$

- \circ Usually, for reversible walks (i.e. P), its closer to the upper bound (like ring graph)
- ullet Next, we consider a heuristic lower bound on T_{ave}

Heuristic Lower Bound

- We present a heuristic argument for lower bound
 - \circ On exact averaging time, T_{ave}
- The lower bound suggests $T_{ave} = \Omega(1/\Phi(P))$
 - \circ Where matrix $P = [P_{ij}]$ corresponds to the capacity induced on edges by the algorithm
- ullet Consider the minimizing cut in definition of conductance $\Phi(P)$
 - \circ Denoted by (S, S^c) with $|S| \leq n/2$
 - \circ That minimizes $\frac{\sum_{i \in S, j \notin S^c} P_{ij}}{|S|}$
 - \circ Across this cut, data crosses at rate $O(n\Phi(P))$

Heuristic Lower Bound

- For exact averaging
 - All nodes need to exchange information with all other nodes
 - \circ That is, $\Theta(n)$ amount of information exchange need to happen through each cut
- Thus, the minimal time required for exact averaging
 - \rightarrow Is at least $\Omega(1/\Phi(P))$
 - $\rightarrow T_{ave} = \Omega(1/\Phi(P))$
- For example, for ring graph
 - $\circ \Phi(P) = O(1/n)$ for any algorithm
 - \rightarrow That is, $T_{ave} = \Omega(n)$
- This naturally raises the following question
 - \circ Is it possible to have T_{ave} scaling linearly in $1/\Phi(P)$?

Algorithm II

Damon Mosk Aoyama

Information Spreading

- We'll first consider a related task of spreading information
- As before, consider network of *n* nodes
 - $\circ \ G = (\{1,\dots,n\},E) \ \text{is the corresponding network graph} \\ \ \text{edge} \ (i,j) \in E \ \text{iff nodes} \ i \ \text{and} \ j \ \text{are connected}$
 - \circ Node i has some information \mathcal{I}_i
- We wish to design algorithm for the following task:
 - \circ spread information of each node to all the n nodes
 - o same as computing minimum of values at all nodes
- Quantity of interest: computation time
 - How long does it take to spread information to all nodes

Asynchronous Averaging Algorithm

- ullet Time step of algorithm is any of the n clock ticks
 - \circ Equivalently, tick of an exponential clock of rate n
- Algorithm
 - \circ Initially, at time t = 0, for $i = 1, \ldots, n$,
 - set of information node i, $S_i(0) = \{\mathcal{I}_i\}$
 - \circ At time t_k (k^{th} clock-tick),
 - one of the n node becomes active at random, say i
 - node i contacts one of its neighbor, say j, with prob. P_{ij}
 - nodes i and j exchange all of each others information:

$$S_i(t_k) = S_i(t_k) = S_i(t_{k-1}) \cup S_i(t_{k-1}).$$

• Question: how long does it take to spread all information to all nodes given graph G and matrix P?

Quantity of Interest

• **Definition 3.** ϵ -Spreading time, of a communication matrix P, denoted by $T_{\rm spr}(\epsilon,P)$, is

$$T_{\mathsf{spr}}(\epsilon, P) = \sup_{i \in V} \inf\{t : \Pr(|S_i(t)| < n) \le \epsilon\}.$$

Some notation

$$\circ$$
 Let $E(P) = \{(i, j) \in E : P_{ij} > 0 \text{ or } P_{ji} > 0\}$

$$\circ$$
 Let $G(P) = (V, E(P))$

 \circ It is required that G(P) is connected for $T_{\mathrm{spr}}(\epsilon,P)<\infty$

Performance of Inf. Spr. Algorithm

• **Definition 4.** For a proper subset $S \subset V$, the *conductance* of a symmetric stochastic matrix P denoted as $\Phi(P)$ is defined as

$$\Phi_P = \min_{S \subset V: |S| \le n/2} \frac{\sum_{i \in S, j \in S^c} (P_{ij} + P_{ji})}{|S|}.$$

• **Theorem 4.** For any $\epsilon \in (0,1)$, the ϵ -spreading time, $T_{\text{spr}}(\epsilon,P)$ is bounded as follows:

$$T_{\mathsf{spr}}\left(\epsilon,P\right) = O\left(\frac{\log n + \log \epsilon^{-1}}{\Phi(P)}\right).$$

• Next, we consider algorithm for averaging

Exponential Random Variable

ullet A random variable X has exponential distribution with rate λ

$$\Pr(X > t) = \exp(-\lambda t), \quad t \in \mathbb{R}_+$$

- Consider the following well-known property of exponential distribution
 - \circ Let X_1, \ldots, X_n be independent exponential variables
 - with parameters $\lambda_1, \ldots, \lambda_n$
 - \circ Let $X^* = \min_{i=1}^n X_i$, then
 - $-X^*$ is exponential variable with rate $\sum_{i=1}^n \lambda_i$

This naturally suggests an algorithm for computing average

Algorithm II

- The algorithm is described as follows
 - \circ Initially, for $i=1,\ldots,n$, node i has the value $x_i\geq 1$.
 - \circ Each node i generates r independent random numbers W_1^i, \ldots, W_r^i , where the distribution of each W_ℓ^i is exponential with rate x_i (i.e., with mean $1/x_i$).
 - \circ Each node i computes, for $\ell=1,\ldots,r$, an estimate \hat{W}^i_ℓ of the minimum $\mathbf{W}_\ell=\min_{i=1}^n W^i_\ell$.
 - it can be computed using the information spreading algorithm
 - \circ Each node i computes $\hat{x}_i = \frac{r}{\sum_{\ell=1}^r \hat{W}_{\ell}^i}$ as its estimate of $\sum_{i=1}^n x_i$.

Performance of Algorithm II

• **Theorem 5.** Given an information spreading algorithm with ϵ spreading time T_{ϵ} , the ϵ -averaging time of Algorithm II, $T_{ave}(\epsilon)$ is bounded above as

$$T_{ave}(\epsilon) = O\left(\epsilon^{-2} \log \epsilon^{-1} \mathcal{T}_{\epsilon/2}\right).$$

• Specifically, when Algorithm II uses the info. spr. algo. described earlier

$$T_{ave}(\epsilon) = O\left(\frac{\epsilon^{-2}\log\epsilon^{-1}(\log n + \log\epsilon^{-1})}{\Phi(P)}\right).$$

The above utilizes good Large deviation properties of exponential distribution

Comparison: Algorithm I v/s Algorithm II

ullet Recall that for any random walk on G with transition matrix P

$$\frac{\Phi^2(P)}{2} \le 1 - \lambda_{max}(P) \le 2\Phi(P).$$

- From this, we find that
 - For Algorithm I

$$T_{ave}(\epsilon) \sim \frac{\log \epsilon^{-1}}{\Phi(P)^2}$$

For Algorithm II

$$T_{ave}(\epsilon) \sim \frac{\epsilon^{-2} \log^2(n + \epsilon^{-1})}{\Phi(P)}$$

- Is it possible to obtain best of both Algorithms
 - \circ Scaling of $O(\log \epsilon^{-1}/\Phi(P))$?

Algorithm III

- We (Jung-S (2006)) find an algorithm
 - o Based on non-reversible (non-symmetric) random walk on graph
 - \circ Specifically, given any stochastic matrix P
 - Our gossip algorithm performs as follows:

$$T_{ave}(\epsilon) = O\left(\frac{\Delta \log \epsilon^{-1}}{\Phi(P)}\right)$$

where Δ is the maximum vertex degree of network graph

- \rightarrow The performance scales linearly in $1/\Phi(P)$, and
 - \circ Scales linearly in $\log \epsilon^{-1}$
 - \circ But has additional Δ factor

Summary

- Randomized Gossip Algorithm
 - An attractive algorithmic solution for sensor and peer-to-peer networks
 - Averaging: a very useful subroutine to distributed computation
- Algorithms I
 - Strongly related to Mixing time
- Algorithms II
 - Performance related to conductance
 - → Better scaling in number of nodes compared to Algorithm I
 - \circ But, poor scaling with respect to ϵ
- Algorithm III:
 - o Can we find good non-rev. RW in distributed fashion?