Forest Biomass Estimation

Practical Session

Chathumal Madhuranga

Downloading ALOS PALSAR Data

Alaska Satellite Facility vertex

- ALOS PALSAR data can be downloaded from this site for 2006 – 2011
- First click on the earth data login and register.
- If you have already registered, log in and look for the ALOS PALSAR data.

Provide the relevant information to the vertex and find the ALOS PALSAR image over Nepal.

Downloading SRTM DEM

You can use GMTSAR website for download DEM

Convert DEM.grd to DEM.tif

Pre process the ALOS PALSAR images

ASF Mapready

Install the setup file for ASF Mapready software given in the software setup folder

Pre processing cont.....

Browse the CEOS formatted ALOS PALSAR level 1.5 Data

Tic the following options and get the final sigma naught images. (not in dB values)

Pre processing cont.....

Pre processing cont.....

 Geocode the product in the UTM projection

• Export the product as a Geo-tiff product.

Speckle filtering

SNAP

• First install the SNAP software using the setup file in the software setup folder.

SNAP speckle filtering cont.....

SNAP speckle filtering cont.....

SNAP speckle filtering cont.....

Running the speckle filtering

Speckle Filtered Image Result

Image conversion to dB and band extraction

dB conversion

Now you can convert the speckle filtered image DN values to the **Sigma Naught dB** values.

Band extraction

Now you can extract the speckle filtered dB band and export it into a geotiff file.

1). Goto the optical tab in SNAP and select Band Extractor

Export the final preprocessed image as a geotiff from SNAP

Biomass Estimation Analysis

1). Analysis of Lidar data using R #install.packages("raster") #install.packages("rgdal") #install.packages("sp") #install.packages("ggplot2") #install.packages("mosaic") #install.packages("mapview") #setwd() library(raster) library(rgdal) library(ggplot2) library(mosaic) library(mapview) #importing rasters dsm<- raster("D:\\2019\\LAOS_Biomass_Training\\2_Training_Data\\Lidar\\dsm_5m.tif") dtm<- raster("D:\\2019\\LAOS_Biomass_Training\\2_Training_Data\\Lidar\\dtm_5m.tif") NAvalue(dsm)=0 NAvalue(dtm)=0

Analysis of Lidar data using R cont....

```
#Generation of canopy height raster
canopy H = dsm - dtm
canopy H[canopy H < 0] < 0
writeRaster(canopy H,"D:\\2019\\LAOS Biomass Training\\4 Results\\3 R Lidar\\canopy H.tif",
      format="GTiff",datatype='FLT4S', overwrite=TRUE)
plot(canopy_H)
#canopy H
#CHM resample it to different resolutions (10m)
canopy_H10 = projectRaster(canopy_H,res=10,crs = crs(canopy_H), method='ngb')
writeRaster(canopy_H10,"D:\\2019\\LAOS_Biomass_Training\\4_Results\\3_R_Lidar\\canopy_H10.tif",
          format="GTiff", datatype='FLT4S',overwrite=TRUE)
#Importing the plot shape file
plots=readOGR("D:\\2019\\LAOS_Biomass_Training\\2_Training_Data\\Ground_Plots\\Plot.shp",stringsA
sFactors = FALSE)
```



```
Analysis of Lidar data using R cont....
#Plotting the shape file
plot_map <- ggplot() + geom_polygon(data = plots, aes(x =</pre>
long, y = lat, group = group), colour = "black")
plot map
#View it on a base map
mapviewOptions(basemaps = c("Esri.WorldImagery"))
mapview(plots, color = "red")
#Extract Mean Canopy Heght values from the canopy height layer
MCH = extract(canopy H10, plots, fun = mean, na.rm = TRUE)
MCH=data.frame(MCH)
##Finding the linear correlation between MCH and AGB
#Combining the shape file data and the extracted data
write.table(plots@data,"D:\\2019\\LAOS_Biomass_Training\\4_Results\\3_R_Lidar\\Data_shp.csv",quote=F,row.na
mes=F,sep=",")
data shp=read.csv("D:\\2019\\LAOS Biomass Training\\4 Results\\3 R Lidar\\Data shp.csv")
Final Data=cbind(data shp,MCH)
cor.test(Final Data$AGB,Final Data$MCH)
plot(Final Data$MCH,Final Data$AGB)
```

Curve types need for the analysis

- Linear functions
- Exponential functions
- Logarithmic functions
- Polynomial functions
- Power functions

Curve fitting to the data set

Analysis of Lidar data using R cont....

```
#Estimation of goodness of fit
##Linear fitting
f1=fitModel(MCH~C+M*(AGB),data = Final_Data)
plotPoints(MCH~AGB,data = Final Data)
plotFun(f1(AGB)~ AGB,add = TRUE, col = 'red')
y1=f1(Final Data$AGB)
cor.test(y1~Final Data$MCH)
##Curve fitting
f2=fitModel(MCH^A+B*log(AGB),data = Final Data)
plotPoints(AGB~MCH,data = Final Data)
plotFun(f2(AGB)~ AGB,add = TRUE, col='blue')
coef(f2)
y2=f2(Final Data$AGB)
cor.test(y2~Final Data$MCH)
#same fitting with "nls" command
#f22=nls(MCH^A+B*log(AGB),data = Final Data)
#x<- predict(f22, newdata=Final Data$AGB)</pre>
#cor.test(x~Final_Data$MCH)
```


Analysis of Lidar data using R cont....

```
#A=-22.188819
#B= 7.151892
#MCH~A+B*log(AGB)
#AGB~exp((MCH-A)/B)
#Biomass map creation from the fitted model
bio=exp((canopy_H10+22.188819)/7.151892)
NAvalue(bio)=0
bio[bio>1000] <- 1000
writeRaster(bio,"D:\\2019\\LAOS_Biomass_Training\\4_Results\\3_R_Lidar\\LidarBiomass.tif",
       format="GTiff",datatype='FLT4S', overwrite=TRUE)
plot(bio)
```

Creating a grid network to densify Plots

Using fishnet tool in Arcmap

We can create a grid network as plots and extract the biomass values into these grid points.

1). Open Arcmap and insert the "L_boundary" shape file from the Training data

2).Search for "fishnet" in the search bar

3).Click on **Create Fishnet** (data management) tool

Fishnet tool cont.....

This is the created grid point shape file. You can write click and export it to a new one if you need.

Table Of Contents

Layers

Grid_label

Grid_label

L_boundary

Biomass Estimation Analysis

2). Analysis of ALOS PALSAR data using R

```
#install.packages("raster")
#install.packages("rgdal")
#install.packages("sp")
#install.packages("ggplot2")
#install.packages("mosaic")
#install.packages("mapview")
#setwd()
library(raster)
library(rgdal)
library(ggplot2)
library(mosaic)
library(mapview
#Importing the speckle filtered ALOS PALSAR HH, HV data
HH_12=raster("D:\\2019\\LAOS_Biomass_Training\\4_Results\\2_SNAP\\dB_images\\HH_12.tif")
HV_12=raster("D:\\2019\\LAOS_Biomass_Training\\4_Results\\2_SNAP\\dB_images\\HV_12.tif")
```

```
#Resampling HH 12 and HV 12 into different resolution (40m)
HV 40 =projectRaster(HV 12,res=40,crs = crs(HV 12), method='ngb')
writeRaster(HV_40, filename="D:\\2019\\LAOS_Biomass_Training\\4_Results\\4_R_ALOS\\HV_40.tif",
          format="GTiff", overwrite=TRUE)
names(HV 40)<-"HV 40"
HH 40 = projectRaster(HH 12, res=40, crs = crs(HH 12), method='ngb')
writeRaster(HH_40, filename="D:\\2019\\LAOS_Biomass_Training\\4_Results\\4_R_ALOS\\HH_40.tif",
          format="GTiff", overwrite=TRUE)
names(HH 40)<-"HH 40"
#Creating a list of rasters
raster list= list(HH 12,HV 12,HH 40,HV 40)
#Importing the densified plot shapefile
dense plots=readOGR("D:\\2019\\LAOS Biomass Training\\2 Training Data\\Ground Plots\\
dense plot 700.shp", stringsAsFactors = FALSE)
```



```
##importing the lidar derived biomass raster
L_bio=raster("D:\\2019\\LAOS_Biomass_Training\\4_Results\\3_R_Lidar\\LidarBiomass.tif")
L bio 40 = projectRaster(L bio,res=40,crs = crs(L bio), method='ngb')
##extracting AGB values for Denseplots from biomass map createed from Lidar
#Extract Mean Canopy Heght values from the canopy height layer
AGB = extract(L bio 40, dense plots, fun = mean, na.rm = TRUE)
AGB=data.frame(AGB)
#Combining the shape file data and the extracted data
write.table(dense plots@data,"D:\\2019\\LAOS Biomass Training\\4 Results\\4 R ALOS\\Data shp.csv",
quote=F,row.names=F,sep=",")
data_shp=read.csv("D:\\2019\\LAOS_Biomass_Training\\4_Results\\4_R_ALOS\\Data_shp.csv")
Final Data ALOS=cbind(data shp,AGB)
```

```
##Croping the rasters to the extent of Lidar boundary
for (x in raster list){
 crop < -crop(x, L bio 40)
 writeRaster(crop, file.path("D:\\2019\\LAOS_Biomass_Training\\4_Results\\4_R_ALOS\\crop_rasters",
names(x)), bylayer=TRUE,
       format="GTiff", overwrite=TRUE)
#creating a cropped raster list
current.list <- list.files(path="D:\\2019\\LAOS_Biomass_Training\\4_Results\\4_R_ALOS\\crop_rasters",
               pattern =".tif$", full.names=TRUE)
raster list <- c()
for (x in current.list){
 y=raster(x)
 raster list <- append(raster list, y)
```

Analysis of ALOS PALSAR data using R cont....

```
#extraction of backscatter values
#Extracting the backscatter values for AGB plots
BS values = list()
for (raster in raster_list){
 backscatter <- extract(raster,dense_plots,na.rm=TRUE)</pre>
 #Append value to the list
 BS<- as.data.frame(backscatter)
 BS_values<-append(BS_values,BS)
BS_values = data.frame(BS_values)
#Getting the name of Rasters
raster_names = list()
for (ras in raster_list){
 x=names(ras)
 raster names=append(raster names,x)
colnames(BS_values)= raster_names
```



```
#Combining the plot AGB values and the Raster backsactter values to a Dataframe.
```

```
AGB_final=cbind(AGB,BS_values)
View(AGB_final)
AGB_final=na.omit(AGB_final)
write.csv(AGB_final,"D:\\2019\\LAOS_Biomass_Training\\4_Results\\4_R_ALOS\\AGB_final.csv")
```

#Pearson correlation for identify the basic relationships of the AGB values and the Data.

```
cor.test(AGB_final$AGB,AGB_final$HV_40, method = "pearson") cor.test(AGB_final$AGB,AGB_final$HV_12, method = "pearson") plot(AGB_final$AGB,AGB_final$HV_40,xlim=c(20,25))
```


Analysis of ALOS PALSAR data using R cont....

```
##Curve fitting
f2=fitModel(HV_40^A+B*log(AGB),data = AGB_final)
plotPoints(HV 40~AGB,data = AGB final)
plotFun(f2(AGB)~ AGB,add = TRUE, col='blue')
coef(f2)
y2=f2(AGB final$AGB)
cor.test(y2~AGB final$HV 40)
#same fitting with "nls" command
#f22=nls(MCH~A+B*log(AGB),data = Final_Data)
#x<- predict(f22, newdata=Final_Data$AGB)</pre>
#cor.test(x~Final_Data$MCH)
#A=-21.052473
#B=1.746382
#BS~A+B*log(AGB)
#AGB~exp((BS-A)/B)
```


Thank you!!!!

