

Amendments to the Specification:

Please replace Table I beginning at page 16, with the following rewritten

Table I:

Table 1.

Sample	APCE activity ^a	$\alpha_2\text{AP}_{\text{act}}/\alpha_2\text{AP}_{\text{pro}}$ ratio ^b	N-terminal sequence(s) of $\alpha_2\text{AP}$					<u>SEQ ID NO.</u>
			1	5	10	15	20	
Human	606	2.70	MEPLG NQEQQ	RQLTS S PLT L	GPNQE LKLGN	QVSP L QEPGG		<u>12</u> <u>13</u>
Chimpanzee	653	2.31	MEPLG NQEQQ	RQLTS S PLT L	GPNQE LKLGN	QVSP QEPG		<u>14</u> <u>15</u>
Baboon	601	0.25	MEPLG NQERV	WQLTS P PLT L	GPNQE LKLGN	RVP PL QEPGG		<u>16</u> <u>17</u>
Bovine	560	Single form	F SPVS	TMEPL	DLQLM	DGQAQ ^c		<u>18</u>
Murine	662	Single form	VDLPG	QQPVS	EQAQQ	K LPL P ^c		<u>19</u>
Ostrich	652	Single form	LQVDY	L VLEV	A ^c			<u>20</u>

Table 1. Comparison of APCE activity, $\alpha_2\text{AP}_{\text{act}}/\alpha_2\text{AP}_{\text{pro}}$ ratio, and $\alpha_2\text{AP}$ N-terminal sequence in human plasma with those in animal plasma. ^a RK(DABCYL)-TSGPNQEQQ(EDANS)R substrate (SEQ ID NO:9) (100 μM , 10 μl) was added to 40 ml of plasma diluted with 150 μl of 50 mM Tris-150 mM NaCl-1mM EDTA, pH 7.5, and incubated at 22° C. The increase of fluorescence intensity was monitored with time at excitation and emission wavelengths of 360 and 460 nm, using a BIO-TEK FL600 fluorescence plate reader. APCE activity was obtained by linear regression analyses of early time points and reported as fluorescence intensity/hour. Plasma samples were prepared from citrated blood of 5 humans, 6 chimpanzees, 5 baboons, 10 cows, 6 mice, or 2 ostriches. ^b N-terminal sequence analysis of $\alpha_2\text{AP}$ purified from pooled human, chimpanzee and baboon plasma revealed two sequences. One sequence began with Met ($\alpha_2\text{AP}_{\text{pro}}$); the second sequence started with Asn ($\alpha_2\text{AP}_{\text{act}}$). The ratio of $\alpha_2\text{AP}_{\text{act}}/\alpha_2\text{AP}_{\text{pro}}$ was expressed as (pmol of Asn)/(pmol of Met). ^c Only a single N-terminal sequence was reported for purified $\alpha_2\text{AP}$ from bovine, murine and ostrich plasma (23-25).