LinearRegression

In [1]:

```
import numpy as np
import pandas as pd
```

data collection

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
```

In [3]:

```
df = pd.read_csv(r"C:\Users\user\Desktop\11_winequality-red.csv")
df
```

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66

1599 rows × 12 columns

first 10 rows

In [4]:

```
df.head(10)
```

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alco
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	1
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	1
4											•

data cleaning

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [6]:

df.describe()

Out[6]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total : di
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.4
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.8
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.0
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.0
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.0
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.0
4							>

In [7]:

df.columns

Out[7]:

In [8]:

sb.pairplot(df)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x209a025df70>

In [9]:

sb.distplot(df["density"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]:

<AxesSubplot:xlabel='density', ylabel='Density'>

In [10]:

sb.distplot(df["density"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='density', ylabel='Density'>

In [11]:

Out[11]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	qualit
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	
1500	^ ^	0.540	0.40	2.2	0.070	22.2	40.0	0 00574	^ 40	^ 75	44.0	*

In [12]:

```
sb.heatmap(df1.corr())
```

Out[12]:

<AxesSubplot:>

model building

```
In [16]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

linear regression

```
In [17]:
```

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
```

Out[17]:

LinearRegression()

In [18]:

```
print(lr.intercept_)
```

4.440892098500626e-15

In [19]:

```
coef = pd.DataFrame(lr.coef_,x.columns,columns=['Co_efficient'])
coef
```

Out[19]:

Co_efficient

```
fixed acidity
                    4.638736e-17
    volatile acidity -3.741660e-16
        citric acid
                   -4.503987e-16
    residual sugar -6.525389e-18
                    5.598087e-15
         chlorides
free sulfur dioxide
                    4.208415e-18
total sulfur dioxide
                   -1.407067e-19
           density
                    1.000000e+00
                    3.803632e-16
               pН
                    -5.457805e-16
        sulphates
           alcohol
                    3.796431e-17
           quality
                     3.061217e-17
```

```
In [20]:
```

```
print(lr.score(x_test,y_test))
```

1.0

In [21]:

```
prediction = lr.predict(x_test)
pp.scatter(y_test,prediction)
```

Out[21]:

<matplotlib.collections.PathCollection at 0x209a9d36790>

lasso and ridge regression

```
In [22]:
```

```
lr.score(x_test,y_test)
```

Out[22]:

1.0

In [23]:

```
lr.score(x_train,y_train)
```

Out[23]:

1.0

In [24]:

from sklearn.linear_model import Ridge,Lasso

```
In [25]:
r = Ridge(alpha=10)
r.fit(x_train,y_train)
r.score(x_test,y_test)
r.score(x_train,y_train)
Out[25]:
0.8213534011567556
In [26]:
l = Lasso(alpha=10)
1.fit(x_train,y_train)
1.score(x_test,y_test)
1.score(x_train,y_train)
Out[26]:
0.0
elasticnet
In [27]:
from sklearn.linear_model import ElasticNet
e = ElasticNet()
e.fit(x_train,y_train)
Out[27]:
ElasticNet()
In [28]:
print(e.coef_)
[0. 0. 0. 0. 0. -0. 0. -0. 0. -0. -0.]
```

```
In [29]:
```

```
print(e.intercept_)
```

0.9967834405719392

In [30]:

predictions = e.predict(x_test)
predictions

Out[30]:

```
array([0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
In [31]0.99678344, 0.99678344, 0.99678344, 0.99678344,
print(e0s2867834tes0;99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
-0.00410790678344670799678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
In [32]0.99678344, 0.99678344, 0.99678344, 0.99678344,
from sklearh 1 mbort 0 m 29678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
mean 93:0:$40, 0.100 78:41, 01.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
In [33]0.99678344, 0.99678344, 0.99678344, 0.99678344,
print("Mean678344ate.29678344meer12678344, abs81678344rop(99678344predictions))
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
Mean Ab@o\0628844or0.0900&4445205996482007 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
mean 956443, 12066540 6.99678344, 0.99678344, 0.99678344,
      0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
```

```
0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
In [34]0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.996788344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.996783444, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.996788344, 0.9967883444, 0.996788344, 0.996788844, 0.996788844, 0.996788844, 0.9967888444, 0.9967888444, 0.996788444, 0.996788444444444444444444444
Mean Sq\theta a Peg78344 r: 03.98678344 780808678344 0.99678344 0.99678344
               0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
FOOT (MICAI)4 SQUARGO (CINO)44, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
      [35]0.99678344, 0.99678344, 0.99678344, 0.99678344,
print("Rod9678344sq0a99678344r",np95678344metPi29678344sq0a99678344r(y test,predictions)))
               0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
Root Me@n99678P44,E0r0P678044898744678634354799678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
In [ ]:0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
               0.99678344, 0.99678344, 0.99678344, 0.99678344,
```