IN THE CLAIMS

Kindly amend the claims to read as follows.

Claims 1-31 (canceled).

32. (currently amended): A method of protecting human and animal skin and hair against the damaging effects of UV radiation by treating the skin or hair with a cosmetic formulation, comprising a mixture of micronised organic UV filters selected from the group consisting of: triazine derivatives, benzotriazole derivatives, amides containing a vinyl group, cinnamic acid derivatives, sulfonated benzimidazoles, Fischer base derivatives, diphenylmalonic acid dinitriles, oxalyl amides, camphor derivatives, diphenyl acrylates, para-aminobenzoic acid (PABA) and derivatives thereof, salicylates and benzophenones, wherein the size of the micronized particles is from 0.02 to 2 μm.

33. (canceled).

34. (previously presented): A method according to claim 32, wherein the organic UV filters are chosen from triazine derivatives of formula

(1) N N N R₃

wherein

 R_1 , R_2 and R_3 are each independently of the others hydrogen; OH; C_1 - C_{18} alkoxy; -NH₂; -NH-R₄; -N(R₄)₂; or -OR₄,

R₄ is C₁-C₅alkyl; phenyl; phenoxy; anilino; pyrrolo, wherein phenyl, phenoxy, anilino and pyrrolo are unsubstituted or may be substituted by one, two or three OH groups, carboxy, -CO-NH₂, C₁-C₅alkyl or C₁-C₅alkoxy; a methylidene-camphor group; a group of formula

alkali metal, ammonium, mono-, di- or tri-C1-C4alkylammonium, mono-, di- or tri-

C₂-C₄alkanolammonium salt, or a C₁-C₃alkyl ester thereof; or a radical of formula

(1a)
$$-(CH_2)_{m_1} = 0$$

R₅ is hydrogen; C₁-C₅alkyl which is unsubstituted or substituted by one or more OH groups;

C₁-C₅alkoxy; amino; mono- or di-C₁-C₅alkylamino; M; a radical of formula (1b)

(1c)
$$R'' - \stackrel{R'}{\underset{R'''}{N^{-}}} (CH_2)_{m_3} - ;$$
 (1d) $R'' - \stackrel{R'}{\underset{R'''}{N^{-}}} O^{-};$ or (1e) $-N - \stackrel{CO_2R_6}{\longrightarrow} ;$ wherein

R', R" and R" are each independently of the others C₁-C₁₄alkyl which is unsubstituted or substituted by one or more OH groups;

 H_6 is hydrogen; M; C_1 - C_5 alkyl; or a radical of formula $-(CH_2)_{m_2}$ -O- T_1 ;

M is a metal cation;

T₁ is hydrogen; or C₁-C₈alkyl;

m is 0 or 1;

m₂ is from 1 to 4; and

 m_3 is from 2 to 14.

38. (previously presented): A method according to claim 32, wherein the organic UV filters are chosen from triazine derivatives of formula

wherein

 R_7 and R_8 are each independently of the other C_1 - C_{18} alkyl; C_2 - C_{18} alkenyl; a radical of formula

-CH2-CH(-OH)-CH2-O-T1; or

 R_7 and R_8 are a radical of formula (2a) $R_9 = \begin{bmatrix} R_{10} \\ S_1 \\ R_{11} \end{bmatrix} = \begin{bmatrix} R_{10} \\ S_1 \\ R_{11} \end{bmatrix} = \begin{bmatrix} R_{10} \\ S_1 \\ R_{11} \end{bmatrix}$

 R_9 is a direct bond; a straight-chain or branched C_1 - C_4 alkylene radical or a radical of formula $-C_{m_1}H_{2m_1}O-$;

 R_{10} , R_{11} and R_{12} are each independently of the others C_1 - C_{18} alkyl; C_1 - C_{18} alkoxy or a radical of

formula
$$-0.8i_{13}^{R_{13}}$$
; R_{13} ; R_{13}

R₁₃ is C₁-C₅alkyl;

 m_1 is from 1 to 4;

p₁ is from 0 to 5;

A₁ is a radical of formula

(2b)
$$O-R_{14}$$
; (2c) $-N-CO_2R_{15}$; or (2d) $N-CO_2R_{15}$

 R_{14} is hydrogen; C_1 - C_{10} alkyl, -(CH_2CHR_{16} -O)_{n_1}- R_{15} ; or a radical of formula - CH_2 -CH(-OH)- CH_2 - $O-T_1$;

 R_{15} is hydrogen; M; C_1 - C_5 alkyl; or a radical of formula -(CH₂) $_{m_2}$ -O-(CH₂) $_{m_3}$ -T,;

R₁₆ is hydrogen; or methyl;

T₁ is hydrogen; or C₁-C₈alkyl;

Q₁ is C₁-C₁₈alkyl;

M is a metal cation;

m₂ and m₃ are each independently of the other from 1 to 4; and

n₁ is from 1 to 16.

36. (previously presented): A method according to claim 32, wherein the organic UV filters are chosen from triazine derivatives of formula

wherein

is C₁-C₃₀alkyl; C₂-C₃₀alkenyl; C₅-C₁₂cycloalkyl unsubstituted or mono- or poly-substituted by C₁-C₅alkyl; C₁-C₅alkoxy-C₁-C₁₂alkyl; amino-C₁-C₁₂alkyl; C₁-C₅monoalkylamino-C₁-C₁₂alkyl; C₁-C₅dialkylamino-C₁-C₁₂alkyl; a radical of formula

(3a)
$$-(CH_2)\frac{1}{n_1}(O)\frac{1}{m_1}$$
 ; or (3b) ; wherein

 R_{22} , R_{23} and R_{24} are each independently of the others hydrogen, -OH; C_1 - C_{30} alkyl, C_2 - C_{30} alkenyl,

R₂₅ is hydrogen; or C₁-C₅alkyl;

m, is 0 or 1; and

n, is from 1 to 5.

37. (previously presented): A method according to claim 32, wherein the organic UV filters are chosen from triazine derivatives of formula

r and s are each independently of the other from 0 to 20.

38. (previously presented): A method according to claim 32, wherein the organic UV filters are chosen from triazine derivatives of formula

39. (previously presented): A method according to claim 32, wherein the organic UV filters are chosen from triazine derivatives of formula

 $R_{27}\text{, }R_{28}$ and R_{29} are each independently of the others a radical of formula

(25c)
$$R_{31}$$
 R_{32} 0

R₃₀ is hydrogen; an alkali metal; or an ammonium group -N(R₃₃)₄,

R₃₃ is hydrogen, C₁-C₅alkyl; or a polyoxyethylene radical that has from 1 to 10 ethylene oxide units and the terminal OH group is optionally etherified with a C₁-C₅alcohol;

R₃₁ is hydrogen; -OH; or C₁-C₆alkoxy;

R₃₂ is hydrogen or -COOR₃₀; and

n is 0 or 1.

(previously presented): A method according to claim 32, wherein the organic UV filters are chosen from benzotriazole derivatives of formula

(26)
$$\begin{array}{c} & & & \\ & &$$

T₁ is C₁-C₅alkyl or hydrogen; and

 T_2 is C_1 - C_5 alkyl or phenyl-substituted C_1 - C_5 alkyl.

47. (previously presented): A method according to claim 32, wherein the organic UV filters are chosen from benzotriazole derivatives of formula

T₂ is C₁-C₄alkyl, isooctyl, or phenyl-substituted C₁-C₅alkyl.

42. (previously presented): A method according to claim 32, wherein the Fischer base aldehydes correspond to formula

(32)
$$R_{41}$$
 R_{42} R_{42} R_{44} , wherein R_{43}

 R_{41} is hydrogen; C_1 - C_5 alkyl; C_1 - C_{18} alkoxy; or halogen;

 R_{42} is C_1 - C_8 alkyl; C_5 - C_7 cycloalkyl; or C_6 - C_{10} aryl;

$$R_{43}$$
 is C_1 - C_{18} alkyl or a radical of formula (32a)

R₄₄ is hydrogen; or a radical of formula —C=O

$$R_{45}$$
 is $\begin{bmatrix} R_{47} \\ N \end{bmatrix}_{0}^{R_{48}} = C = C$; C_1 - C_{18} alkoxy; or a radical of formula (32b) $C = C = C = C$

 R_{46} and R_{47} are each independently of the other hydrogen; or C_1 - C_5 alkyl;

R₄₈ is hydrogen; C₁-C₅alkyl; C₅-C₇cycloalkyl; phenyl-C₁-C₃alkyl;

R₄₉ is C₁-C₁₈alkyl;

n is 0 or 1.

43. (previously presented): A method according to claim 32, wherein the organic UV filters are chosen from compounds of formula

(33)
$$ZO_3S$$

$$R_{55}$$

$$C_m - C_n R_{53}$$

$$R_{54}$$

$$R_{53}$$

$$R_{54}$$

$$R_{53}$$

$$R_{54}$$

$$R_{53}$$

$$R_{54}$$

$$R_{53}$$

$$R_{54}$$

$$R_{53}$$

$$R_{54}$$

$$R_{53}$$

$$R_{51}$$

wherein

R₅₀, R₅₁, R₅₂, R₅₃, R₅₄ are each independently of the others hydrogen, C₁-C₈alkyl or C₅-C₁₀cycloalkyl; R₅₅ is hydrogen; C₁-C₈alkyl; C₅-C₁₀cycloalkyl; hydroxyl; C₁-C₈alkoxy; COOR₅₆; or CONR₅₇R₅₈;

 R_{56} , R_{57} and R_{58} are each independently of the others hydrogen or $C_1\text{-}C_6$ alkyl;

X and Y are each independently of the other hydrogen, -CN; CO_2R_{59} ; $CONR_{59}R_{60}$; or COR_{59} ; it being possible for the radicals X and Y additionally to be a C_1 - C_8 alkyl radical, a C_5 - C_{10} cycloalkyl

radical or a heteroaryl radical having 5 or 6 ring atoms, it also being possible for X and Y or

- R₅₀ together with one of the radicals X and Y to be the radical for completing a 5- to 7-membered ring which may contain up to 3 hetero atoms, it being possible for the ring atoms to be substituted by exocyclically double-bonded oxygen and/or by C₁-C₈alkyl and/or by C₅-C₁₀cycloalkyl radicals and/or to contain C=C double bonds;
- Z is hydrogen; ammonium; an alkali metal ion; or the cation of an organic nitrogen base used for neutralisation of the free acid group,

 R_{59} and R_{60} are each independently of the other hydrogen, C_1 - C_8 alkyl or C_5 - C_{10} cycloalkyl; and n and m are each independently of the other 0 or 1.

44. (previously presented): A process for the preparation of mixtures of the organic UV filters suitable for the method defined in claim 32, wherein the UV filters, which are in micronised form, are intimately mixed together.

45. (previously presented): A process for the preparation of mixtures of the organic UV filters suitable for the method defined in claim 32, wherein the organic UV filters are micronised in the form of mixtures of at least two single substances.

for the method defined in claim 32, wherein at least two single substances are melted together, the melt is cooled and the resulting composite is then subjected to a micronisation process.

47. (previously presented): A composite, obtained by melting together an organic UV filter as defined claim 32.

1 (48. (previously presented): A composite according to claim 47, wherein an inorganic pigment is additionally incorporated into the mixture.

(previously presented): A composite according to claim 48, wherein the inorganic pigments are selected from TiO₂, ZnO, iron oxides, mica and titanium or zinc salts of organic acids.

filters defined in claim 32 and at least one antioxidant.

5/l. (previously presented): A composite according to claim 50, wherein the antioxidant is selected from tocopherols, ellagic acid, propyl gallate, butylated hydroxytoluene, butylated hydroxyanisole, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)mesitylene, tetrakis[methylene-3-(3',5'-di-tert-butyl-4'-

hydroxyphenyl)propionate]methane, the compound of formula tert-butyl tert-butyl,

the compound of formula tert-butyl tert-butyl tert-butyl

acid derivatives, rutinic acid, rutinic acid derivatives; urocanic acid, urocanic acid derivatives; and propolis.

52. (previously presented): A composite, obtained by melting together an organic UV filter as defined in claim 32 and at least one antioxidant, and one or more inorganic pigments.

53. (previously presented): A method according to claim 32, wherein a cationic or anionic compound is incorporated into the mixture.

54. (previously presented): A composite, obtained by melting together an organic UV filter as defined in claim 32 and at least one cationic or anionic compound.

55. (previously presented): A method according to claim 32, wherein a pharmaceutical or cosmetic active ingredient is additionally incorporated into the mixture.

56. (previously presented): A cosmetic formulation, comprising an organic UV filter as defined in claim 32, optionally one or more compounds selected from the group consisting of antioxidants, inorganic pigments and cationic or anionic compounds, and also a cosmetically acceptable carrier or adjuvant.

57. (previously presented): A cosmetic formulation according to claim 56, which additionally comprises an oil-soluble, non-micronised UV filter.

68. (previously presented): A pharmaceutical formulation, comprising an organic UV filter as defined in claim 32, optionally one or more compounds selected from antioxidants, inorganic pigments and cationic or anionic compounds, and also a pharmaceutically acceptable carrier or adjuvant.