Math 3012 Updated Spring 2025

Note 8. Principle of Inclusion and Exclusion

1 Warm-up problems

Problem 1. Three kids, Alberto, Bernadette, and Carlos, decide to share 11 cookies. They wonder how many ways they could split the cookies up provided that none of them receive more than 4 cookies (someone receiving no cookies is for some reason acceptable to these kids).

Solution. (You can rephrase the problem as follows: Find the number of integer solutions to the equation $x_1 + x_2 + x_3 = 11$, where $0 \le x_i \le 4$ for $i \in \{1, 2, 3\}$.)

Without the "no more than 4" restriction, the answer would be

$$\binom{13}{2}$$

using 11 stars and 2 bars (separating the three kids).

Now count the number of ways that one or more of the kids violates the condition, i.e., gets at least 5 cookies.

Let A be the set of outcomes in which Alberto gets more than 4 cookies. Let B be the set of outcomes in which Bernadette gets more than 4 cookies. Let C be the set of outcomes in which Carlos gets more than 4 cookies.

We are looking (for the sake of subtraction) for the size of the set $A \cup B \cup C$. Using the Principle of Inclusion-Exclusion (PIE), we must find the sizes of $|A|, |B|, |C|, |A \cap B|$ and so on. Here is what we find:

- $|A| = {8 \choose 2}$. First give Alberto 5 cookies, then distribute the remaining 6 to the three kids without restrictions, using 6 stars and 2 bars.
- $|B| = {8 \choose 2}$. Just like above, only now Bernadette gets 5 cookies at the start.
- $|C| = {8 \choose 2}$. Carlos gets 5 cookies first.
- $|A \cap B| = \binom{3}{2}$. Give Alberto and Bernadette 5 cookies each, leaving 1 star to distribute to the three kids (2 bars).
- $|A \cap C| = \binom{3}{2}$. Alberto and Carlos get 5 cookies first.
- $|B \cap C| = \binom{3}{2}$. Bernadette and Carlos get 5 cookies first.
- $|A \cap B \cap C| = 0$. It is not possible for all three kids to get 4 or more cookies.

Combining all of these, we see

$$|A \cup B \cup C| = {8 \choose 2} + {8 \choose 2} + {8 \choose 2} - {3 \choose 2} - {3 \choose 2} - {3 \choose 2} + 0 = 75.$$

Thus, the answer to the original question is

$$\binom{13}{2} - 75 = 78 - 75 = 3.$$

This makes sense now that we see it. The only way to ensure that no kid gets more than 4 cookies is to give two kids 4 cookies and one kid 3; there are three choices for which kid that should be. \Box

Problem 2. Let X and Y be sets, with |X| = k and |Y| = n.

1. How many functions are there from X to Y?

Math 3012 Updated Spring 2025

- 2. How many one-to-one functions are there from X to Y?
- 3. How many onto functions are there from $X \rightarrow Y$?

Solution. 1. How many functions are there from X to Y?

For each $x \in X$, we can choose any of the n elements of Y to map it to. Thus, there are n^k possibilities.

- 2. How many one-to-one functions are there from X to Y?
 - We need n > k.
 - Think of permutations! First x: n choices. Second x: n-1 choices. . . .
 - \bullet This is essentially a length k permutation on n elements, so there are

$$P(n,k) = \frac{n!}{(n-k)!}$$

options.

3. How many onto functions are there from $X \rightarrow Y$?

Condition: $k \ge n$ for an onto function to exist.

Idea: Can we count the functions that are not onto?

2 Principle of Inclusion/Exclusion

Notation:

Let A be a set, and for each $i \in n$, let c_i be a condition that could be satisfied by the elements of A. Let A_i be the subset of A of elements satisfying c_i , i.e.,

$$A_i \subseteq A$$
 and $A_i = \{a \in A \mid a \text{ satisfies condition } c_i\}.$

$$|A_i| = N(c_i) = \#$$
 of elements satisfying c_i

$$N(\bar{c}_i) = |A| - |A_i| = \#$$
 of elements not satisfying c_i

We can combine these: For example, $N(c_1, c_2, \bar{c_3})$ is the number of elements satisfying c_1 and c_2 , but not c_3 .

Theorem 2.1 (The Principle of Inclusion and Exclusion). Let A be a set with |A| = N and suppose we have n conditions c_i , satisfied (respectively) by some of the elements of A.

The number of elements in A satisfying **none** of the conditions c_i is:

$$N(\bar{c_1}\bar{c_2}...\bar{c_n}) = N - \sum_{1 \le i \le n} N(c_i) + \sum_{1 \le i < j \le n} N(c_i, c_j) - \cdots + (-1)^n N(c_1, c_2, ..., c_n)$$

We will skip the proof here, as it will be provided next week. Instead, let's focus on how to apply it

How many onto functions are there from $X \rightarrow Y$?

Let A be the set of functions from X to Y (then $|A| = n^k$). Suppose $Y = \{y_1, y_2, \dots, y_n\}$, then define for each $i \in n$ the condition c_i to be that y_i is not in the range of f.

A function is onto if and only if it satisfies none of these conditions, so the number of onto functions is:

onto functions =
$$N(\bar{c}_1 \bar{c}_2 \dots \bar{c}_n)$$
.

Math 3012 Updated Spring 2025

Note: This problem is nice because $N(c_i) = N(c_j)$ and $N(c_i c_j) = N(c_m c_l)$, etc., so there are fewer calculations.

1. Condition: $N(c_i)$ is the number of functions that don't have y_i in their range:

$$N(c_i) = (n-1)^k$$

2. Condition:

$$N(c_i c_i) = (n-2)^k$$
 for any i, j

. . .

The number of functions that exclude r elements from their range is $(n-r)^k$.

$$N(\bar{c}_1\bar{c}_2\dots\bar{c}_n) = |A| - \sum_{i \in S_n} (n-1)^k + \sum_{1 \le i < j \le n} (n-2)^k + \dots + (-1)^n (n-n)^k$$

Since this does not depend on i due to symmetry:

$$= n^{k} - \binom{n}{1} (n-1)^{k} + \binom{n}{2} (n-2)^{k} - \dots + (-1)^{n} \binom{n}{n} (n-n)^{k}$$
$$= \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{k}$$

This is the number of onto functions $X \to Y$, which is also the number of ways to group k distinct objects into n (non-empty) distinct sets. What if the sets weren't labeled?

We know:

- k distinct objects $\rightarrow n$ non-empty labeled groups

$$=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{k}$$

- n! ways to label n groups.
- So the number of ways to put k unique objects into n non-empty indistinguishable groups is

$$\frac{1}{n!}\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{k}$$

See Note 6-Problem 1-Solution 2