

Chapter 1 The Where, Why, and How of Data Collection

Chapter Goals

After completing this chapter, you should be able to:

- Describe key data collection methods
- Know key definitions:
 - ◆ Population vs. Sample

- Primary vs. Secondary data types
- ◆Qualitative vs. Qualitative data ◆Time Series vs. Cross-Sectional data
- Explain the difference between descriptive and inferential statistics
- Describe different sampling methods

Tools of Business Statistics

Descriptive statistics

Collecting, presenting, and describing data

Inferential statistics

 Drawing conclusions and/or making decisions concerning a population based only on sample data

Descriptive Statistics

Collect data

e.g. Survey, Observation,Experiments

Present data

e.g. Charts and graphs

Characterize data

• e.g. Sample mean = $\frac{\sum x_i}{n}$

Data Sources

Survey Design Steps

- Define the issue
 - what are the purpose and objectives of the survey?
- Define the population of interest
- Formulate survey questions
 - make questions clear and unambiguous
 - use universally-accepted definitions
 - limit the number of questions

Survey Design Steps

(continued)

- Pre-test the survey
 - pilot test with a small group of participants
 - assess clarity and length
- Determine the sample size and sampling method
- Select Sample and administer the survey

Types of Questions

Closed-end Questions

Select from a short list of defined choices

Example: Major:	business	liberal arts	
	science	other	

Open-end Questions

 Respondents are free to respond with any value, words, or statement

Example: What did you like best about this course?

Demographic Questions

Questions about the respondents' personal characteristics

Populations and Samples

 A Population is the set of all items or individuals of interest

Examples: All likely voters in the next election
 All parts produced today
 All sales receipts for November

A Sample is a subset of the population

Examples: 1000 voters selected at random for interview
 A few parts selected for destructive testing
 Every 100th receipt selected for audit

Population vs. Sample

Population

abcd
efghijklmn
opqrstuvw
xyz

Sample

Why Sample?

- Less time consuming than a census
- Less costly to administer than a census
- It is possible to obtain statistical results of a sufficiently high precision based on samples.

Sampling Techniques

Statistical Sampling

Items of the sample are chosen based on known or calculable probabilities

Simple Random Samples

- Every individual or item from the population has an equal chance of being selected
- Selection may be with replacement or without replacement
- Samples can be obtained from a table of random numbers or computer random number generators

Stratified Samples

- Population divided into subgroups (called strata) according to some common characteristic
- Simple random sample selected from each subgroup
- Samples from subgroups are combined into one

Systematic Samples

- Decide on sample size: n
- Divide frame of N individuals into groups of k individuals: k=N/n
- Randomly select one individual from the 1st group
- Select every kth individual thereafter

Cluster Samples

- Population is divided into several "clusters," each representative of the population
- A simple random sample of clusters is selected
 - All items in the selected clusters can be used, or items can be chosen from a cluster using another probability sampling technique

Population divided into 16 clusters.

Randomly selected clusters for sample

Key Definitions

- A population is the entire collection of things under consideration
 - A parameter is a summary measure computed to describe a characteristic of the population
- A sample is a portion of the population selected for analysis
 - A statistic is a summary measure computed to describe a characteristic of the sample

Inferential Statistics

 Making statements about a population by examining sample results

Inferential Statistics

Drawing conclusions and/or making decisions concerning a population based on sample results.

Estimation

 e.g.: Estimate the population mean weight using the sample mean weight

Hypothesis Testing

 e.g.: Use sample evidence to test the claim that the population mean weight is 120 pounds

Data Types

Data Types

- Time Series Data
 - Ordered data values observed over time
- Cross Section Data
 - Data values observed at a fixed point in time

Data Types

	Sales (in \$1000's)				
	2003	2004	2005	2006	
Atlanta	435	460	475	490	
Boston	320	345	375	395	
Cleveland	405	390	410	395	
Denver	260	270	285	280	

Time Series Data

Cross Section Data

Data Measurement Levels

Chapter Summary

- Reviewed key data collection methods
- Introduced key definitions:
 - Population vs. Sample
 - Qualitative vs. Qualitative data
- Primary vs. Secondary data types
- Time Series vs. Cross-Sectional data
- Examined descriptive vs. inferential statistics
- Described different sampling techniques
- Reviewed data types and measurement levels