Lista de Problemas I
Bacharelado em Ciência da Computação
Álgebra Linear 1 - 2017.2
Prof.º Dr.º Gersonilo Oliveira da Silva
gersonilo@hotmail.com
gersonilo.silva@ufrpe.br

Todas as soluções devem ser **devidamente** justificadas

Problema 1) Considere o espaço \mathbb{R}^2 . Defina apropriadamente as operações de soma e produto por escalar. Elencando suas propriedades. E aludindo-as com exemplos.

Problema 2) Mostre que no caso específico de vetores do espaço \mathbb{R}^2 . Temos a seguinte propriedade: dados dois vetores genéricos v e u, temos que o vetor gerado pela soma: v + u, satifaz a propriedade de ser ele a diagonal primária do losando gerado por v e u. Exiba uma representação geométrica deste fato. E, ademais, mostre que se considerado a soma específica: v + (-u), tem-se que tal vetor é a diagonal secundária do losango gerado por u e v.

Problema 3) Defina produto cartesiano. Utilize tal definição para definir o espaço: $(\mathbb{R}^2, +, \cdot)$. Mostre que a soma em \mathbb{R}^2 e o produto por escalar, são induzidos pela soma e produto por escalar do conjunto \mathbb{R} .

Problema 4) Considere o produto cartesiano. Mostre que o espaço \mathbb{R}^3 pode ser gerado a partir do produto dos espaços $\mathbb{R}^2 \times \mathbb{R}$. Mostre de que forma a soma e o produto por escalar estende-se para o espaço \mathbb{R}^3 . Ademais, mostre que se considerados vetores genéricos v, u e w do espaço \mathbb{R}^3 , então a soma satisfaz a propriedade de o vetor soma: v + u + w ser a diagonal principal do paralelepípedo gerado pelos vetores v, u e w.

Problema 5) Considere o espaço $M(\mathbb{R}, n \times m)$. Defina as operações de soma e produto por escalar. Além disso mostre quais as propriedades que tais operações satisfazem.

Problema 6) Considere os espaços $M(\mathbb{R}, n \times m)$ e $M(\mathbb{R}, s \times l)$. Defina a operação de produto $A \times B$. Determine quais condições os valores de n, m, s e l devem satisfazer para que o produto seja bem definido.

Problema 7) Considere o espaço $M(\mathbb{R}, n)$. Mostre que só existe uma matriz $B \in M(\mathbb{R}, n)$ tal que $A \times B = A$ para toda $A \in M(\mathbb{R}, n)$. Exiba precisamente a estrutura da matriz B.

Problema 8) Considere o espaço $M(\mathbb{R}, 2)$. Seja $A \in M(\mathbb{R}, 2)$. Encontre todas as matrizes que satisfazem a equação: $A \times B = B \times A$.

Problema 9) Considere o espaço $M(\mathbb{R}, 2)$. Mostre que só existe uma matriz que satisfaz a equação: $A \times B = B \times A = I_2$.

Problema 10) Considere o espaço $M(\mathbb{R},3)$. Seja $A \in M(\mathbb{R},3)$. Encontre todas as matrizes que satisfazem a equação: $A \times B = B \times A$.

Problema 11) Considere o espaço $M(\mathbb{R},3)$. Mostre que só existe uma matriz que satisfaz a equação: $A \times B = B \times A = I_3$.

Problema 12) Considere o espaço $M(\mathbb{R},3)$. Defina apropriadamente o operador determinante. Exiba algumas de suas propriedades. Mostre a restrição dessa definição para o espaço $M(\mathbb{R},2)$. Exiba a expressão explícita do determinante de uma matriz genérica do espaço $M(\mathbb{R},3)$.

Problema 13) Considere o espaço $M(\mathbb{R}, n)$. Mostre que as afirmações são equivalentes:

- 1. Uma matriz $A \in M(\mathbb{R}, 3)$ é inversível se, e somente se, existe uma matriz $A^{-1} \in M(\mathbb{R}, 3)$ tal que $A^{-1} \times A = A \times A^{-1} = I_3$;
- 2. Uma matriz $A \in M(\mathbb{R},3)$ é inversível se, e somente se, $det(A) \neq 0$.

Problema 14) Defina as operações elementares no espaço $M(\mathbb{R}, n \times m)$.

Problema 15) Defina matrizes elementares. Exiba exemplos de tais matrizes.

Problema 16) Considere o espaço $M(\mathbb{R}, n \times m)$. Defina a forma canônica escada. E a forma canônica escada reduzida. Exiba exemplos de ambas.

Problema 17) Descreva sucintamente o método de Gauss referente à inversibilidade de matrizes através do uso de operações elementares.

Problema 18) Encontre a inversa, caso exista, das matrizes abaixo:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ 3 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

 $\acute{\rm E}$ fazendo que se aprende a fazer aquilo que se deve aprender a fazer. Aristóteles