Bryan Melanson

How to Not Fail Control Systems

While never going to class

Contents

1	Modeling in the Frequency Domain	2
2	Modeling in the Time Domain	2
3	Time Response	2
4	Reduction of Multiple Systems	2
5	Stability5.1 Routh-Hurwitz Criteria5.2 Routh-Hurwitz Special Cases	2 2 2
6	Steady State Errors	2
7	Root Locus Techniques	2
8	Design via Root Locus	2
9	Frequency Response Techniques	2
10	Design via Frequency Response	2

- 1 Modeling in the Frequency Domain
- 2 Modeling in the Time Domain
- **3 Time Response**
- 4 Reduction of Multiple Systems
- 5 Stability
- 5.1 Routh-Hurwitz Criteria
- 5.2 Routh-Hurwitz Special Cases
- 6 Steady State Errors
- 7 Root Locus Techniques

The root locus approaches straight lines as asymptotes as the locus approaches infinity. Further, the equation of the asymptotes is given by the real-axis intercept, σ_a and angle, θ_a as follows:

$$\sigma_a = rac{\Sigma \ {
m Finite \ Poles} - \Sigma \ {
m Finite \ Zeros}}{\# \ {
m Finite \ Poles} - \# \ {
m Finite \ Zeros}}$$

$$heta_a = rac{(2k-1)\pi}{ ext{\# Finite Poles - \# Finite Zeros}}$$

Where $k=\pm 0,\pm 1,\pm 2,\pm 3$ and the angle is given in radians with respect to the positive extension of the real axis.

- 8 Design via Root Locus
- **9 Frequency Response Techniques**
- 10 Design via Frequency Response