An Introduction to Computational Macroeconomics

Dynamic Programming: Chapter 2

John Stachurski

June - July 2022

Markov Dynamics

Our next task is to review Markov dynamics

- An essential workhorse for countless models in
 - economics
 - finance
 - operations research, etc.
- Very general can handle most processes of interest
- Elegant theory
- Natural fit for dynamic programming (Markov decisions)

Topics

- 1. Nonnegative matrices
- 2. The Perron-Frobenius theorem
- 3. A lake model of employment flows
- 4. Markov chains
- 5. Stationarity and ergodicity
- 6. Approximation
- 7. Expectations

Reminders

 $\underline{\mathrm{Def}}.\ (\lambda,v)\in\mathbb{C}\times\mathbb{C}^n \ \mathrm{is\ an\ eigenpair\ of}\ n\times n\ \mathrm{matrix}\ A\ \mathrm{if}$

$$v \neq 0$$
 and $Av = \lambda v$

The **eigenspace** of eigenvalue λ is

$$E_{\lambda}:=\{w\in\mathbb{C}^n:w=0 \text{ or } (\lambda,w) \text{ is an eigenpair of } A\}$$

Ex. Show that E_{λ} is a linear subspace of \mathbb{C}^n

<u>Proof</u>: If $v, w \in E_{\lambda}$ and $\alpha, \beta \in \mathbb{C}$, then

$$A(\alpha w + \beta v) = \alpha Aw + \beta Av = \alpha \lambda w + \beta \lambda v = \lambda (\alpha w + \beta v)$$

Reminders

 $\underline{\mathrm{Def}}.\ (\lambda,v)\in\mathbb{C} imes\mathbb{C}^n$ is an **eigenpair** of n imes n matrix A if

$$v \neq 0$$
 and $Av = \lambda v$

The **eigenspace** of eigenvalue λ is

$$E_{\lambda}:=\{w\in\mathbb{C}^n:w=0 \text{ or } (\lambda,w) \text{ is an eigenpair of } A\}$$

Ex. Show that E_{λ} is a linear subspace of \mathbb{C}^n

<u>Proof</u>: If $v, w \in E_{\lambda}$ and $\alpha, \beta \in \mathbb{C}$, then

$$A(\alpha w + \beta v) = \alpha Aw + \beta Av = \alpha \lambda w + \beta \lambda v = \lambda(\alpha w + \beta v)$$

Implication: exists a continuum of eigenvectors paired with λ

So what can we say about uniqueness?

Let (λ, v) be an eigenpair for A

<u>Def.</u> v has (geometric) multiplicity one if dim $E_{\lambda} = 1$

In other words,

$$w \in E_{\lambda} \implies w = \alpha v \text{ for some } \alpha \in \mathbb{C}$$

In a sense, there is "just one" eigenvector corresponding to λ , since any other is a scalar multiple

Nonnegative Matrices

Def. Matrix A is called

- nonnegative, and we write $A\geqslant 0$, if all elements of A are nonnegative
- **positive**, and we write $A\gg 0$, if every element of A is strictly positive
- irreducible if it is square, nonnegative and

$$\sum_{k\in\mathbb{N}}A^k\gg 0$$

Note: positive \implies irreducible \implies nonnegative

Let A be $n \times n$

It is <u>not</u> always true that r(A) is an eigenvalue of A

Example. Let

$$A := \begin{pmatrix} -1 & 0 \\ 0 & 1/2 \end{pmatrix}$$

Set of eigenvalues (the **spectrum**) of A is $\sigma(A) = \{-1, 1/2\}$

Hence
$$r(A) = |-1| = 1 \notin \sigma(A)$$

However, when $A \geqslant 0$, we have the following result

Theorem. (Perron–Frobenius) If $A \ge 0$, then r(A) is an eigenvalue of A with nonnegative, real-valued right and left eigenvectors

In particular, there exists

- a nonnegative, nonzero <u>column</u> vector e s.t. Ae = r(A)e
- ullet a nonnegative, nonzero \underline{row} vector arepsilon s.t. arepsilon A = r(A)arepsilon

If A is irreducible, then these eigenvalues are everywhere positive and have multiplicity of one

If A is positive, then with e and ε such that $\langle \varepsilon, e \rangle = 1$, we have

$$r(A)^{-t}A^t \to e\,\varepsilon \qquad (t \to \infty)$$

In this setting,

- r(A) is also called the **dominant eigenvalue**
- e is called the dominant right eigenvector
- ε is called the **dominant left eigenvector**

Note also

$$\varepsilon A = r(A)\varepsilon \iff A^{\top}\varepsilon^{\top} = r(A)\varepsilon^{\top}$$

Hence ε^{\top} is the dominant right eigenvector of A^{\top}

Since the dominant eigenvectors are only defined up to constant multiples, we often normalize so that $\langle \varepsilon, e \rangle = 1$

Let's check these results for arbitrary positive A

```
julia> right evecs = eigvecs(A)
2×2 Matrix{Float64}:
 -0.649386 0.725426
 0.760459 0.6883
julia> e = right_evecs[:, 2] # dominant right eigenvector
2-element Vector{Float64}:
0.7254262498099013
0.6882999027217298
julia> left_evs = eigvecs(A') # transpose to get left eigenvector
2×2 Matrix{Float64}:
-0.6883 0.760459
 0.725426 0.649386
julia> \epsilon = left evs[:, 2]' # dominant left eigenvector
1×2 adjoint(::Vector{Float64}) with eltype Float64:
0.760459 0.649386
```

Checking the eigenpair relations

```
julia> A * e
2-element Vector{Float64}:
0.8370977873925273
0.7942562400820743
iulia> rA * e
2-element Vector{Float64}:
0.8370977873925274
0.7942562400820744
julia> ∈ * A
1×2 adjoint(::Vector{Float64}) with eltype Float64:
0.877524 0.749352
iulia> rA * ∈
1×2 adjoint(::Vector{Float64}) with eltype Float64:
0.877524 0.749352
```

```
The matrix A is everywhere positive
  Hence we expect, for large k,
        r(A)^{(-k)} * A^k \approx e \epsilon
julia> k = 1000
1000
julia > rA^{(-k)} * A^{k}
2×2 Matrix{Float64}:
0.552414 0.471728
 0.524142 0.447586
julia> e * ∈
2×2 Matrix{Float64}:
0.551657 0.471082
 0.523424 0.446972
```

Corollary: bounds on the spectral radius

Fix $n \times n$ matrix A and set

- $rs_i(A) := the i-th row sum of A and$
- $cs_j(A) := the j-th column sum of A$

Corollary. If $A \geqslant 0$, then

- 1. $\min_i \operatorname{rs}_i(A) \leqslant r(A) \leqslant \max_i \operatorname{rs}_i(A)$ and
- 2. $\min_{j} \operatorname{cs}_{j}(A) \leqslant r(A) \leqslant \max_{j} \operatorname{cs}_{j}(A)$

Ex. Prove this via the PF theorem

Proof for the column sum case

Fix $A \geqslant 0$ and let e be the dominant right eigenvector

We normalize e by setting $\mathbb{1}^{\top}e = \sum_{i} e_{i} = 1$

From r(A)e = Ae we have

$$r(A) = r(A)\mathbb{1}^{\top} e = \mathbb{1}^{\top} (r(A)e) = \mathbb{1}^{\top} Ae = \sum_{j} \operatorname{cs}_{j}(A)e_{j}$$

Therefore, $\underline{r}(A)$ is a weighted average of the column sums

Hence $\min_{j} \operatorname{cs}_{j}(A) \leqslant r(A) \leqslant \max_{j} \operatorname{cs}_{j}(A)$

Stochastic Matrices

Let P be a square matrix

<u>Def.</u> P is called **stochastic** if $P \ge 0$ and P1 = 1

Ex. Show that P is stochastic $\implies r(P) = 1$

 $\underline{\mathsf{Row}}$ vector ψ is called a **stationary distribution** of P if

$$\psi\geqslant 0$$
, $\psi\mathbb{1}=1$ and $\psi P=\psi$

Stationary distributions very important for Markov dynamics...

Existence of Stationary Distributions

Let P be a stochastic matrix

Ex. Prove: P has at least one stationary distribution

Proof: By the PF theorem,

 \exists a nonzero, nonnegative row vector φ satisfying $\varphi P = \varphi$

Since φ is nonzero, $\varphi \mathbb{1} > 0$

Setting $\psi := \varphi/(\varphi 1)$ gives the desired vector

Existence of Stationary Distributions

Let P be a stochastic matrix

Ex. Prove: P has at least one stationary distribution

Proof: By the PF theorem,

 \exists a nonzero, nonnegative row vector φ satisfying $\varphi P = \varphi$

Since φ is nonzero, $\varphi\mathbb{1}>0$

Setting $\psi := \varphi/(\varphi\mathbb{1})$ gives the desired vector

Uniqueness of Stationary Distributions

Ex. Prove: If P is also **irreducible**, then the stationary vector ψ is everwhere positive and unique

Proof of Positivity: See Perron-Frobenius theorem

Proof of Uniqueness: Let $\varphi\geqslant 0$ satisfy $\varphi\mathbb{1}=1$ and $\varphi P=\varphi$

By the Perron–Frobenius theorem, $\phi=\alpha\psi$ for some $\alpha>0$

But then $1 = \varphi 1 = \alpha \psi 1 = \alpha$

Hence $\varphi = \psi$

Uniqueness of Stationary Distributions

Ex. Prove: If P is also **irreducible**, then the stationary vector ψ is everwhere positive and unique

Proof of Positivity: See Perron-Frobenius theorem

Proof of Uniqueness: Let $\varphi\geqslant 0$ satisfy $\varphi\mathbb{1}=1$ and $\varphi P=\varphi$

By the Perron–Frobenius theorem, $arphi=lpha\psi$ for some lpha>0

But then $1 = \varphi \mathbb{1} = \alpha \psi \mathbb{1} = \alpha$

Hence $\varphi = \psi$

Uniqueness of Stationary Distributions

Ex. Prove: If P is also **irreducible**, then the stationary vector ψ is everwhere positive and unique

Proof of Positivity: See Perron-Frobenius theorem

Proof of Uniqueness: Let $\varphi\geqslant 0$ satisfy $\varphi\mathbb{1}=1$ and $\varphi P=\varphi$

By the Perron–Frobenius theorem, $\phi = \alpha \psi$ for some $\alpha > 0$

But then $1 = \varphi \mathbb{1} = \alpha \psi \mathbb{1} = \alpha$

Hence $\varphi = \psi$

```
julia> P = [0.2 \ 0.8;
           0.1 0.9]
2×2 Matrix{Float64}:
   0.2 0.8
   0.1 0.9
julia> using QuantEcon
julia> mc = MarkovChain(P)
   Discrete Markov Chain
    stochastic matrix of type Matrix{Float64}:
    [0.2 0.8; 0.1 0.9]
julia> is irreducible(mc)
true
julia> stationary distributions(mc)
   1-element Vector{Vector{Float64}}:
    [0.111111111111111, 0.8888888888888888888]
```

Lake Model of Employment

An illustration of the Perron-Frobenius theorem

We analyze a model of employment and unemployment flows in a large population

The model is sometimes called a "lake model"

Two "pools" of workers:

- those who are currently employed and
- those who are currently unemployed but still seeking work

FP theorem helps us analyze dynamics

Workers

- exit the workforce at rate d
- enter the workforce at rate b
- **separate** from their jobs at rate α
- find jobs at rate λ

Assumptions:

- All parameters lie in (0,1)
- New workers are initially unemployed

Transition rates:

Let

- $u_t :=$ number of **unemployed workers** at time t
- $e_t := \text{number of } \mathbf{employed workers}$
- $n_t := e_t + u_t := \text{total population of workers}$

Dynamics are

$$u_{t+1} = (1 - d)\alpha e_t + (1 - d)(1 - \lambda)u_t + bn_t$$
$$e_{t+1} = (1 - d)(1 - \alpha)e_t + (1 - d)\lambda u_t$$

Figure: Example simulation when b > d (population growth)

Can we say more about the dynamics of this system?

For example,

- what long run unemployment rate should we expect?
- do outcomes depend on the initial conditions u_0 and e_0 ?
- Or are there general statements we can make?

We define

$$x_t := \begin{pmatrix} u_t \\ e_t \end{pmatrix}$$

and

$$A:=\begin{pmatrix} (1-d)(1-\lambda)+b & (1-d)\alpha+b \\ (1-d)\lambda & (1-d)(1-\alpha) \end{pmatrix}$$

Dynamics can now be written

$$x_{t+1} = Ax_t$$

Hence

$$x_t = A^t x_0$$
 where $x_0 = \begin{pmatrix} u_0 \\ e_0 \end{pmatrix}$

Ex. With g := b - d, show that $n_{t+1} = (1 + g)n_t$ for all t

Proof: The column sums of A are

$$(1 - d)(1 - \lambda) + b + (1 - d)\lambda = 1 + g$$

and

$$(1-d)\alpha + b + (1-d)(1-\alpha) = 1+g$$

From $x_{t+1} = Ax_t$ and $n_t = u_t + e_t$ we have

$$n_{t+1} = \mathbb{1}^{\top} x_{t+1} = \mathbb{1}^{\top} A x_t = (1+g) \mathbb{1}^{\top} x_t = (1+g) n_t$$

Ex. With g := b - d, show that $n_{t+1} = (1+g)n_t$ for all t

Proof: The column sums of A are

$$(1 - d)(1 - \lambda) + b + (1 - d)\lambda = 1 + g$$

and

$$(1-d)\alpha + b + (1-d)(1-\alpha) = 1 + g$$

From $x_{t+1} = Ax_t$ and $n_t = u_t + e_t$ we have

$$n_{t+1} = \mathbb{1}^{\top} x_{t+1} = \mathbb{1}^{\top} A x_t = (1+g) \mathbb{1}^{\top} x_t = (1+g) n_t$$

Ex. Prove that r(A) = 1 + g

Proof: We know that

$$\min_{j} \operatorname{cs}_{j}(A) \leqslant r(A) \leqslant \max_{j} \operatorname{cs}_{j}(A)$$

Hence
$$1 + g \leqslant r(A) \leqslant 1 + g$$

PF theorem $\implies 1+g$ is the dominant eigenvalue of A

Ex. Show that $\mathbb{1}^{\top} := (1 \ 1)$ is the dominant left eigenvector of A

Proof:

$$1^{\top}A = (1+g \ 1+g) = r(A)1^{\top}$$

Ex. Prove that
$$r(A) = 1 + g$$

Proof: We know that

$$\min_{j} \operatorname{cs}_{j}(A) \leqslant r(A) \leqslant \max_{j} \operatorname{cs}_{j}(A)$$

Hence
$$1 + g \leqslant r(A) \leqslant 1 + g$$

PF theorem $\implies 1+g$ is the dominant eigenvalue of A

Ex. Show that $\mathbb{1}^{\top} := (1 \ 1)$ is the dominant left eigenvector of A

Proof

$$1^{\top} A = (1 + g \quad 1 + g) = r(A) 1^{\top}$$

Ex. Prove that
$$r(A) = 1 + g$$

Proof: We know that

$$\min_{j} \operatorname{cs}_{j}(A) \leqslant r(A) \leqslant \max_{j} \operatorname{cs}_{j}(A)$$

Hence
$$1 + g \leqslant r(A) \leqslant 1 + g$$

PF theorem $\implies 1+g$ is the dominant eigenvalue of A

Ex. Show that $\mathbb{1}^{\top} := (1 \ 1)$ is the dominant left eigenvector of A

Proof

$$\mathbb{1}^{\top} A = \begin{pmatrix} 1+g & 1+g \end{pmatrix} = r(A)\mathbb{1}^{\top}$$

Ex. Prove that
$$r(A) = 1 + g$$

Proof: We know that

$$\min_{j} \operatorname{cs}_{j}(A) \leqslant r(A) \leqslant \max_{j} \operatorname{cs}_{j}(A)$$

Hence
$$1 + g \leqslant r(A) \leqslant 1 + g$$

PF theorem $\implies 1+g$ is the dominant eigenvalue of A

Ex. Show that $\mathbb{1}^{\top} := (1 \ 1)$ is the dominant left eigenvector of A

Proof:

$$1^{\top} A = (1 + g \quad 1 + g) = r(A) 1^{\top}$$

Ex. Prove that

$$\bar{x} := \begin{pmatrix} \bar{u} \\ \bar{e} \end{pmatrix}$$

with

$$ar{u} := rac{1 + g - (1 - d)(1 - lpha)}{1 + g - (1 - d)(1 - lpha) + (1 - d)\lambda} \quad ext{and} \quad ar{e} := 1 - ar{u}$$

is the dominant right eigenvector of \boldsymbol{A}

Proof: Just show
$$A\bar{x} = (1+g)\bar{x}$$

Ex. Prove that

$$\bar{x} := \begin{pmatrix} \bar{u} \\ \bar{e} \end{pmatrix}$$

with

$$ar{u} := rac{1 + g - (1 - d)(1 - lpha)}{1 + g - (1 - d)(1 - lpha) + (1 - d)\lambda} \quad ext{and} \quad ar{e} := 1 - ar{u}$$

is the dominant right eigenvector of \boldsymbol{A}

Proof: Just show
$$A\bar{x} = (1+g)\bar{x}$$

using LinearAlgebra

```
\alpha, \lambda, d, b = 0.01, 0.1, 0.02, 0.025
a = b - d
A = [(1 - d) * (1 - \lambda) + b (1 - d) * \alpha + b;
                                 (1 - d) * (1 - \alpha)
       (1 - d) * \lambda
\bar{u} = (1 + q - (1 - d) * (1 - \alpha)) /
           (1 + q - (1 - d) * (1 - \alpha) + (1 - d) * \lambda)
\bar{\mathbf{e}} = \mathbf{1} - \bar{\mathbf{u}}
\bar{x} = [\bar{u}; \bar{e}]
println(isapprox(A * \bar{x}, (1 + q) * \bar{x})) # prints true
```


Let

$$D := \{ x \in \mathbb{R}^2 : x = \alpha \bar{x} \text{ for some } \alpha > 0 \}$$

- Shown as a dashed black line in the last figure
- The two time paths are of the form $(x_t)_{t\geqslant 0}=(A^tx_0)_{t\geqslant 0}$
- In both cases, the paths converge to D over time

Suggests all paths are "eventually almost" multiples of \bar{x}

How can we explain this strong regularity?

From the Perron–Frobenius theorem, since $A \gg 0$, we have

$$A^t pprox r(A)^t \cdot \bar{x} \mathbb{1}^\top = (1+g)^t \begin{pmatrix} \bar{u} & \bar{u} \\ \bar{e} & \bar{e} \end{pmatrix}$$
 for large t

Hence, $\forall x_0 = (u_0 \ e_0)^{\top}$,

$$A^{t}x_{0} \approx (1+g)^{t} \begin{pmatrix} \bar{u} & \bar{u} \\ \bar{e} & \bar{e} \end{pmatrix} \begin{pmatrix} u_{0} \\ e_{0} \end{pmatrix}$$
$$= (1+g)^{t} (u_{0} + e_{0}) \begin{pmatrix} \bar{u} \\ \bar{e} \end{pmatrix} = n_{t}\bar{x},$$

where $n_t = (1 + g)^t n_0$ and $n_0 = u_0 + e_0$

Regardless of x_0 , state scales along \bar{x} at rate of population growth

Rates

Unemployment rate = u_t/n_t

For large t, we have $u_t \approx n_t \bar{u}$

Hence unemployment rate $\approx (n_t \bar{u})/n_t = \bar{u}$

Hence \bar{u} is the long run rate of unemployment

Similarly, \bar{e} is the long run employment rate

⇒ dominant eigenvector gives unemployment rates

Extensions

Further analysis: how are α , λ , b and d determined?

For the hiring rate λ , we could use the job search model

In particular, with w^* as the reservation wage, we could set

$$\lambda = \mathbb{P}\{w_t \geqslant w^*\} = \sum_{w \in W} \varphi(\mathbb{1}\{w \geqslant w^*\})$$

Doing so would allow us to study the crucial rate λ in terms of fundamental primitives, such as

- unemployment compensation
- impatience of individual agents, etc.

Markov Chains

Let

- $X = \{x_1, \dots, x_n\}$ = arbitrary finite set
- P be an $n \times n$ stochastic matrix

A Markov chain is generated by some stochastic matrix P

Interpretation:

 $P_{ij} = \text{ probability of moving from } x_i \text{ to } x_j \text{ in one step}$

Example.

$$P = \left(\begin{array}{ccccc} 0.97 & 0.03 & 0.00 & 0.00 & 0.00 \\ 0.05 & 0.92 & 0.03 & 0.00 & 0.00 \\ 0.00 & 0.04 & 0.92 & 0.04 & 0.00 \\ 0.00 & 0.00 & 0.04 & 0.94 & 0.02 \\ 0.00 & 0.00 & 0.00 & 0.01 & 0.99 \end{array}\right)$$

Transition probabilities:

Notation: We use the identification $P_{ij} :=: P(x_i, x_j)$

In this notation, P is a stochastic matrix iff

$$P\geqslant 0\quad\text{and}\quad \sum_{x'\in \mathsf{X}}P(x,x')=1\text{ for all }x\in \mathsf{X}$$

Equivalent:

$$P\geqslant 0$$
 and $P\mathbb{1}=\mathbb{1}$

Equivalent:

$$P(x, \cdot) \in \mathcal{D}(X)$$
 for all $x \in X$

We call P "a stochastic matrix on X"

Let

- $(X_t)_{t \ge 0}$ be a sequence of X-valued random variables
- P be a stochastic matrix on X

<u>Def.</u> We call $(X_t)_{t\geqslant 0}$ *P*-Markov if

$$\mathbb{P}\left\{X_{t+1} = x' \mid X_0, X_1, \dots, X_t\right\} = P(X_t, x') \quad \text{for all} \quad t \geqslant 0, \ x' \in \mathsf{X}$$

Standard terminology

- $(X_t)_{t\geqslant 0}$ is a Markov chain
- P is the transition matrix of $(X_t)_{t\geqslant 0}$
- We call either X_0 or its distribution ψ_0 the **initial condition**

Let

- 1. P be a stochastic matrix on X
- 2. ψ_0 be an element of $\mathcal{D}(X)$

This algorithm yields a $P ext{-Markov}$ chain with initial condition ψ_0

Application: Day laborer

A worker is either unemployed $(X_t = 1)$ or employed $(X_t = 2)$ each day

- In state 1 he is hired with probability $\alpha \in (0,1)$
- In state 2 he is fired with probability $\beta \in (0,1)$

The corresponding state space and transition matrix are

$$X = \{1,2\}$$
 and $P = \begin{pmatrix} 1-\alpha & \alpha \\ \beta & 1-\beta \end{pmatrix}$

Ex. Show that

$$\psi^* := \frac{1}{\alpha + \beta} (\beta \quad \alpha) = \text{ unique stationary distribution}$$

```
function create_laborer_model(; α=0.3, β=0.2)
    return (; α, β)
end

function laborer_update(x, model) # update X from t to t+1
    (; α, β) = model
    if x == 1
        x' = rand() < α ? 2 : 1
    else
        x' = rand() < β ? 1 : 2
    end
    return x'
end</pre>
```

Ex. Write a function that simulates $(X_t)_{t\geqslant 0}$ given ψ_0 , where

$$X_0 \sim \psi_0 = (p, 1-p)$$

Using simulation, show that, for large k,

1.
$$\frac{1}{k} \sum_{t=1}^{k} \mathbb{1}\{X_t = 1\} \approx \psi^*(1)$$

2.
$$\frac{1}{k} \sum_{t=1}^{k} \mathbb{1}\{X_t = 2\} \approx \psi^*(2)$$

Check: this convergence does not depend on distribution of X_0

Below we explain why this is true

```
function sim chain(k, p, model)
    X = Array{Int32}(undef, k)
    X[1] = rand() 
    for t in 1:(k-1)
        X[t+1] = laborer update(X[t], model)
    end
    return X
end
function test convergence(; k=10\ 000\ 000, p=0.5)
    model = create_laborer_model()
    (: \alpha. \beta) = model
    \psi \text{ star} = (1/(\alpha + \beta)) * [\beta \alpha]
    X = sim chain(k, p, model)
    \psi_e = (1/k) * [sum(X .== 1) sum(X .== 2)]
    error = maximum(abs.(\psi_star - \psi_e))
    approx equal = isapprox(\psi star, \psi e, rtol=0.01)
    println("Sup norm deviation is $error")
    println("Approximate equality is $approx equal")
 end
```

And now in Python

```
@njit
def sim chain(k, p, model):
    X = np.empty(k, dtype=int32)
    X[0] = 1 if np.random.rand() < p else 2
    for t in range(k-1):
        X[t+1] = laborer update(X[t], model)
    return X
@njit
def test convergence (model, k=10\ 000\ 000, p=0.5):
    \alpha. \beta = model
    \psi star = (1/(\alpha + \beta)) * np.array((\beta, \alpha))
    X = sim chain(k, p, model)
    \psi_e = (1/k) * np.array((sum(X == 1), sum(X == 2)))
    error = np.max(np.abs(\psi star - \psi e))
    return error
model = Model()
error = test convergence(model)
print(f"Sup norm deviation is {error}")
```

Application: S-s Dynamics

Consider a firm whose inventory behavior follows S-s dynamics Meaning:

- firm waits until its inventory falls below some level s>0
- then replenishes by buying some fixed amount

Reasonable if ordering inventory involves a fixed cost (We will see this behavior later in a DP problem with fixed costs)

Inventory $(X_t)_{t\geqslant 0}$ obeys

$$X_{t+1} = \max\{X_t - D_{t+1}, 0\} + S\mathbb{1}\{X_t \leqslant s\},\tag{1}$$

where

- ullet $(D_t)_{t\geqslant 1}$ is demand, IID with $D_t\stackrel{d}{=} arphi\in \mathcal{D}(\mathbb{Z}_+)$ for all t and
- S = amount of stock ordered when inventory $\leqslant s$

We assume φ obeys the geometric distribution:

$$\varphi(d) = \mathbb{P}\{D_t = d\} = p(1-p)^d \text{ for } d \in \mathbb{Z}_+$$

We take $X := \{0, \dots, S + s\}$ to be the state space

Ex. Show that X satisfies

$$X_t \in \mathsf{X} \implies \mathbb{P}\{X_{t+1} \in \mathsf{X}\} = 1$$

Proof: Let $X_t = x \in S$, so that

$$X_{t+1} = \max\{x - D_{t+1}, 0\} + S1\{x \leqslant s\}$$

Evidently $X_{t+1} \in \mathbb{Z}_+$. Also,

$$x \leqslant s \implies X_{t+1} = \max\{x - D_{t+1}, 0\} + S \leqslant s + S$$

and

$$s < x \leqslant S + s \implies X_{t+1} = \max\{x - D_{t+1}, 0\} \leqslant S + s$$

Ex. Show that X satisfies

$$X_t \in \mathsf{X} \implies \mathbb{P}\{X_{t+1} \in \mathsf{X}\} = 1$$

Proof: Let $X_t = x \in S$, so that

$$X_{t+1} = \max\{x - D_{t+1}, 0\} + S1\{x \leqslant s\}$$

Evidently $X_{t+1} \in \mathbb{Z}_+$. Also,

$$x \leqslant s \quad \Longrightarrow \quad X_{t+1} = \max\{x - D_{t+1}, 0\} + S \leqslant s + S$$

and

$$s < x \leqslant S + s \implies X_{t+1} = \max\{x - D_{t+1}, 0\} \leqslant S + s$$

lf

$$h(x,d) = \max\{x - d, 0\} + S1\{x \le s\}$$

then

$$X_{t+1} = h(X_t, D_{t+1})$$
 for all $t \geqslant 0$

The transition matrix can be expressed as

$$P(x, x') = \mathbb{P}\{h(x, D_{t+1}) = x'\}$$
$$= \sum_{d>0} \mathbb{1}\{h(x, d) = x'\} \varphi(d)$$

(In calculations we truncate the sum)

```
using Distributions, IterTools, QuantEcon
function create inventory model(; S=100, # Order size
                                   s=10, # Order threshold
                                   p=0.4) # Demand parameter
    \phi = Geometric(p)
    h(x, d) = max(x - d, 0) + S*(x \le s)
    return (: S. s. p. o. h)
end
"Simulate the inventory process."
function sim_inventories(model; ts_length=200)
    (; S, s, p, \phi, h) = model
   X = Vector{Int32}(undef, ts_length)
   X[1] = S # Initial condition
   for t in 1:(ts length-1)
        X[t+1] = h(X[t], rand(\phi))
    end
    return X
end
```


Multistep transitions

Fix a state space X and transition matrix P on X

The k-th power P^k is called the k-step transition matrix

• $P^k(x, x')$ denotes the (x, x')-th element of P^k

Claim:

$$P^k(x,x') = \mathbb{P}\{X_{t+k} = x' \mid X_t = x\}$$
 for any P -chain $(X_t)_{t\geqslant 0}$

This claim can be verified by induction

Fix
$$t \in \mathbb{N}$$
 and $x, x' \in X$

True by definition when k=1

Multistep transitions

Fix a state space X and transition matrix P on X

The k-th power P^k is called the k-step transition matrix

• $P^k(x,x')$ denotes the (x,x')-th element of P^k

Claim:

$$P^k(x,x') = \mathbb{P}\{X_{t+k} = x' \mid X_t = x\}$$
 for any P -chain $(X_t)_{t\geqslant 0}$

This claim can be verified by induction

Fix
$$t \in \mathbb{N}$$
 and $x, x' \in X$

True by definition when k = 1

Now suppose true at k, so that

$$P^{k}(x, x') = \mathbb{P}\{X_{t+k} = x' \mid X_{t} = x\}$$

By the law of total probability, we have

$$\mathbb{P}\{X_{t+k+1} = x' \mid X_t = x\}$$

$$= \sum_{z} \mathbb{P}\{X_{t+k+1} = x' \mid X_{t+k} = z\} \mathbb{P}\{X_{t+k} = z \mid X_t = x\}$$

Applying the induction hypothesis, the last equation becomes

$$\mathbb{P}\{X_{t+k+1} = x' \mid X_t = x\} = \sum_{z} P^k(x, z) P(z, x') = P^{k+1}(x, x')$$

This completes our proof by induction

Lemma. The following statements are equivalent:

- 1. *P* is irreducible
- 2. For any *P*-chain (X_t) and any $x, x' \in X$, there exists a $k \geqslant 0$ such that

$$\mathbb{P}\{X_k = x' \, | \, X_0 = x\} > 0$$

Proof:

statement
$$1\iff \sum_{k\geqslant 0}P^k\gg 0$$

$$\iff \forall\,x,x'\in\mathsf{X},\;\exists\,k\geqslant 0\;\text{s.t.}\;P^k(x,x')>0$$

$$\iff \text{statement}\;2$$

Dynamics of Marginals

Fix a stochastic matrix P on X and let (X_t) be a P-chain

By the law of total probability, for all $x, x' \in X$,

$$\mathbb{P}\{X_{t+1} = x'\} = \sum_{x \in X} \mathbb{P}\{X_{t+1} = x' \mid X_t = x\} \mathbb{P}\{X_t = x\}$$

Let $\psi_t : \stackrel{d}{=} X_t$ for all t

Using this notation, we can rewrite the last display as

$$\psi_{t+1}(x') = \sum_{x \in X} P(x, x') \psi_t(x)$$
 for all $x \in X$

Treating each ψ_t as a <u>row</u> vector, we get $\psi_{t+1} = \psi_t P$

Stationarity

Distributions update via $\psi_{t+1} = \psi_t P$

Recall also that ψ^* is called **stationary** for P if $\psi^* = \psi^* P$

Now we can interpret this expression

If ψ^* is stationary for P, then

$$X_t \stackrel{d}{=} \psi^* \implies X_{t+1} \stackrel{d}{=} \psi^*$$

We recall that

- every stochastic matrix on X has at least one stationary distribution, and
- uniqueness in $\mathfrak{D}(X)$ holds whenever P is irreducible

Ergodicity

Theorem. Let P be irreducible with stationary distribution ψ^*

For any P-Markov chain (X_t) and any $x \in X$, we have

$$\mathbb{P}\left\{\lim_{k \to \infty} \frac{1}{k} \sum_{t=0}^{k-1} \mathbb{1}\{X_t = x\} = \psi^*(x)\right\} = 1$$

Meaning: For (almost) every P-Markov chain that we generate,

fraction of time chain spends in state $x \approx \psi^*(x)$

Markov chains with this property are sometimes said to be ergodic

Example. Recall the model

$$X = \{1,2\}, \quad P = \begin{pmatrix} 1-\alpha & \alpha \\ \beta & 1-\beta \end{pmatrix} \quad \text{and} \quad \psi^* := \frac{1}{\alpha+\beta} \begin{pmatrix} \beta & \alpha \end{pmatrix}$$

Since *P* is irreducible, ergodicity holds:

$$\mathbb{P}\left\{\lim_{k \to \infty} \frac{1}{k} \sum_{t=0}^{k-1} \mathbb{1}\{X_t = x\} = \psi^*(x)\right\} = 1$$

This is what we saw in the simulations above

Figure: Ergodicity in the inventory model

Ex. Prove $P\gg 0$ implies $\psi P^t\to \psi^*$ as $t\to \infty$ for any $\psi\in \mathcal{D}(\mathsf{X})$

Proof: P is positive and r(P) = 1

PF theorem implies $P^t \to e \, \varepsilon$ as $t \to \infty$, where $\langle e, \varepsilon \rangle = 1$

In this case we know

- 1 is the dominant right eigenvector,
- ψ^* is the dominant left eigenvector and $\langle \psi^*, \mathbb{1} \rangle = \psi^* \mathbb{1} = 1$

Hence, for any $\psi \in \mathcal{D}(X)$, we have

$$\psi P^t o \psi \mathbb{1} \, \psi^* = \psi^* \quad \text{as} \quad t o \infty$$

Ex. Prove $P\gg 0$ implies $\psi P^t\to \psi^*$ as $t\to\infty$ for any $\psi\in \mathcal{D}(\mathsf{X})$

Proof: P is positive and r(P) = 1

PF theorem implies $P^t \to e \, \varepsilon$ as $t \to \infty$, where $\langle e, \varepsilon \rangle = 1$

In this case we know

- 1 is the dominant right eigenvector,
- ψ^* is the dominant left eigenvector and $\langle \psi^*, \mathbb{1}
 angle = \psi^* \mathbb{1} = 1$

Hence, for any $\psi \in \mathfrak{D}(\mathsf{X})$, we have

$$\psi P^t o \psi \mathbb{1} \, \psi^* = \psi^* \quad \text{as} \quad t o \infty$$

Recall the model

$$X = \{1,2\}, \quad P = \begin{pmatrix} 1-\alpha & \alpha \\ \beta & 1-\beta \end{pmatrix} \quad \text{and} \quad \psi^* := \frac{1}{\alpha+\beta} \begin{pmatrix} \beta & \alpha \end{pmatrix}$$

Ex. Fix $\alpha=0.3$ and $\beta=0.2$

Compute the sequence (ψP^t) for different choices of ψ

Confirm that your results are consistent with the claim that

$$\psi P^t o \psi^*$$
 as $t o \infty$ for any $\psi \in \mathcal{D}(\mathsf{X})$

Approximation

It can be helpful to reduce continuous state Markov models to finite state models

For example, suppose that $(X_t)_{t\geqslant 0}$ evolves in $\mathbb R$ according to

$$X_{t+1} = \rho X_t + b + \nu \varepsilon_{t+1}, \quad (\varepsilon_t) \stackrel{\text{IID}}{\sim} N(0,1). \tag{2}$$

This is a linear Gaussian AR(1) model

To approximate it we use Tauchen's method

We assume throughout that |
ho| < 1

Under this assumption, (2) has a unique stationary distribution ψ^* given by

$$\psi^* = N(\mu_x, \sigma_x^2)$$
 with $\mu_x := \frac{b}{1-
ho}$ and $\sigma_x^2 := \frac{v^2}{1-
ho^2}$

This means that ψ^* has the following property:

$$X_t \stackrel{d}{=} \psi^*$$
 and $X_{t+1} =
ho X_t + b +
u arepsilon_{t+1}$ implies $X_{t+1} \stackrel{d}{=} \psi^*$

Ex. Prove this. Hints: When $X_t \stackrel{d}{=} \psi^*$,

- is X_{t+1} normally distributed?
- what is its mean and variance?

Tauchen's discretization method

We start with the case b=0

Fix $m, n \in \mathbb{N}$

Create state space $X := \{x_1, \dots, x_n\}$ via

- set $x_1 = -m \sigma_x$,
- set $x_n = m \sigma_x$ and
- set $x_{i+1} = x_i + s$ for $i \in \{1, ..., n-1\}$ where

$$s = \frac{x_n - x_1}{n - 1}$$

A grid that brackets the stationary mean on both sides by m standard deviations:

Create an $n \times n$ matrix P such that, For $i, j \in [n]$,

- 1. if j = 1, then set $P(x_i, x_j) = F(x_1 \rho x_i + s/2)$
- 2. If j = n, then set $P(x_i, x_j) = 1 F(x_n \rho x_i s/2)$
- 3. Otherwise, set

$$P(x_i, x_j) = F(x_j - \rho x_i + s/2) - F(x_j - \rho x_i - s/2)$$

Finally, if $b \neq 0$, then replace x_i with $x_i + \mu_x$ for each i

shift the grid X to be centered on the stationary mean

using QuantEcon

```
ρ, b, ν = 0.9, 0.0, 1.0
μ_x = b/(1-ρ)
σ_x = sqrt(ν^2 / (1-ρ^2))

n = 15
mc = tauchen(n, ρ, ν)
approx_sd = stationary_distributions(mc)[1]

function psi_star(y)
    c = 1/(sqrt(2 * pi) * σ_x)
    return c * exp(-(y - μ_x)^2 / (2 * σ_x^2))
end
```


Figure: Comparison of $\psi^*=N(\mu_x,\sigma_x^2)$ and its discrete approximant

Conditional Expectations

Let P be any stochastic matrix on X

For each $h \in \mathbb{R}^{X}$ and $x \in X$, we define

$$(Ph)(x) := \sum_{x' \in \mathsf{X}} h(x') P(x, x')$$

Equivalently

$$(Ph)(x) = \mathbb{E}[h(X_{t+1}) \,|\, X_t = x]$$
 when (X_t) is P -Markov

This interpretation extends to powers:

$$(P^k h)(x) = \sum_{x' \in X} h(x') P^k(x, x') = \mathbb{E}[h(X_{t+k}) \mid X_t = x]$$

Quick note on conventions

When updating distributions we use <u>row</u> vectors:

$$(\psi_t P)(x') = \sum_{x \in \mathsf{X}} P(x, x') \psi_t(x)$$

When taking conditional expectations we use <u>column</u> vectors:

$$(Ph)(x) := \sum_{x' \in \mathsf{X}} h(x') P(x, x')$$

The Law of Iterated Expectations

We now prove a version of the law of iterated expectations

Let
$$(X_t)$$
 be $P ext{-Markov}$ with $X_0\stackrel{d}{=}\psi_0$

Fix
$$t,k\in\mathbb{N}$$
 and set $\mathbb{E}_t:=\mathbb{E}[\cdot\,|\,X_t]$

We claim that

$$\mathbb{E}[\mathbb{E}_t[h(X_{t+k})]] = \mathbb{E}[h(X_{t+k})]$$
 for any $h \in \mathbb{R}^X$

(A special case of the general rule $\mathbb{E}[\mathbb{E}[Y \mid X]] = \mathbb{E}[Y]$)

To see this, recall that $\mathbb{E}[h(X_{t+k}) \mid X_t = x] = (P^k h)(x)$

Hence
$$\mathbb{E}[h(X_{t+k}) \mid X_t] = (P^k h)(X_t)$$

Therefore,

$$\mathbb{E}[\mathbb{E}_{t}[h(X_{t+k})]] = \mathbb{E}[(P^{k}h)(X_{t})]$$

$$= \sum_{x'} (P^{k}h)(x')\psi_{t}(x') = \sum_{x'} (P^{k}h)(x')(\psi_{0}P^{t})(x')$$

Since $\psi_0 P^t$ is a row vector, we can write the last expression as

$$\psi_0 P^t P^k h = \psi_0 P^{t+k} h = \psi_{t+k} h = \mathbb{E}h(X_{t+k})$$