Av1

Pergunta 1

3 pontos

(HW) Um circuito combinacional ´e descrito pela tabela verdade a seguir.

A	В	C	Q
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	X
1	1	1	1

Como simplificação para a tabela verdade, o circuito foi implementado pela expressão Booleana $Q = B + \overline{A} \ \overline{C}$. Qual seria a saída do circuito implementado se a entrada recebesse a combinação a = '1', b = '1' e c = '0'?

Escolha pelo menos uma resposta correta

(A) U (indefinido)

Resposta correta

(C) (

(D) X

Pergunta 2

3 pontos

(HW) Queremos implementar um buzzer no carrinho da APS-A que apite quando o carrinho estiver com ambos os motores ligados reversamente. A expressão booleana que representa esta condição é:

Escolha pelo menos uma resposta correta

(y11 . not y10) + (y21 . not y20)

- (y11 + not y10) (y21 + not y20)
- (not y11 . y10 . not y21 . not y20) + (not y11 . not y10 . not y21 . y20)
- **(E)** (y11 ⊕ y10) + (y21 ⊕ y20)

Pergunta 3

6 pontos

(HW) Dado o circuito lógico a seguir, obtenha a expressão booleana correspondente e simplifique-a.

Pergunta 4

5 pontos

CB

(HW) Dado o mapa de Karnaugh a seguir, escreva a expressão booleana **simplificada** correspondente:

CD AB	00	01	11	10		
00	0	0	X	0		
01	1	X	X	X	AB+	Ē
11	1	1	0	0		
10	1	0	0	1		

Pergunta 5

5 pontos

(HW) Utilizando álgebra booleana, determine a forma mais simplificada da expressão:

$$Q = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC = \overline{AC} + AC + \overline{AC} + \overline$$

Indicar as etapas usadas na simplicação. Escreva as expressões em algum formato compreensível.

Propriedades:

	22
Lei da identidade	$A = A$ $\overline{A} = \overline{A}$
Lei da comutatividade	$A \cdot B = B \cdot A$
Let da comutatividade	A+B=B+A
	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
Lei da associatividade	A + (B+C) = (A+B) + C
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$A \cdot A = A$
Lei da idempotência	A + A = A
Lei do complemento duplo	$A = \overline{\overline{A}}$
• C • C • C • C • C • C • C • C • C • C	$A \cdot \overline{A} = 0$
Lei da complementariedade	$A + \overline{A} = 1$
T -: 4- i-t	$A \cdot 1 = A$
Lei da intersecção	$A \cdot 0 = 0$
Lei da união	A + 1 = 1
Lei da dillao	A + 0 = A
Lei da distributividade	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
Lei da distributividade	$A + (B \cdot C) = (A + B) \cdot (A + C)$
	$\overline{AB} = \overline{A} + \overline{B}$
Teorema de DeMorgan	$\overline{A+B} = \overline{A} \cdot \overline{B}$
Absoroto	$A + A \cdot B = A$
Absorção	$A \cdot (A + B) = A$
	$A + \overline{A} \cdot B = A + B$
	$A \cdot (\overline{A} + B) = A \cdot B$

Pergunta 6

4 pontos

(HW) Escreva a expressão de Q nos formatos produto das somas (PoS) e soma de produtos (SoP) para a tabela verdade a seguir:

	A	В	C	Q
P05	0	0	0	0
(A1B+()(A+B+()(M+B+()(A+B+()	0	0	1	1
	0	1	0	0
50P	0	1	1	1
	1	0	0	1
ABC+ABC+ABC+ABC	1	0	1	0
	1	1	0	0
·	1	1	1	1

Escreva as expressões em algum formato compreensível.

Pergunta 7

4 pontos

(HW) Determine a função lógica implementada pelo circuito a seguir na

tecnologia CMOS:

Pergunta 8

3 pontos

(SW) Qual adição de 4 bits com complemento de 2 poderia resultar em overflow? As variáveis a, b, c, d são independentes e podem assumir '0' ou '1'.

Escolha pelo menos uma resposta correta

(A) Nenhum

(B) Apenas II

Resposta correta

- C Apenas I
- D lell

Pergunta 9

7 pontos

(SW) Considerando dados binários sempre codificados em **complemento de 2 e 8 bits** de largura, responda:

- 0b01011110 em binário é quanto em decimal? [Em branco 1]
- 0b11001110 em binário é quanto em decimal? [Em branco 2]
- Como -92 em decimal é representado em bin´ario? [Em branco 3]
- Como 122 em decimal é representado em bin´ario? [Em branco 4]
- Como 247 em decimal é representado em hexadecimal? [<u>Em branco 5</u>]
- Como 0x27 em hexadecimal é representado em decimal? [Em branco 6]
- Como 0b01100111 em binário é representado em hexadecimal? [Em branco 7]

Em branco 1 94

Resposta correta

Respostas devem ter associação exata

Em branco 2

-50

Resposta correta

Respostas devem ter associação exata

Em branco 3

10100100

Resposta correta

Respostas devem conter réplicas aceitáveis

Em branco 4

01111010

Resposta correta

Respostas devem conter réplicas aceitáveis

Em branco 5	F7	Resposta correta		
Respostas devem conter réplicas aceitáveis				
Em branco 6	39	Resposta correta		
Respostas devem conter réplicas aceitáveis				
Em branco 7	67	Resposta correta		

Respostas devem conter réplicas aceitáveis

Pontuação: Permitir crédito parcial