Projet de Conception de mécanisme II : DYNABAL

Groupe 36

Morand Nathann 296190

Ramirez Felipe 331471

Tankwa Baptiste 346039

Torres Tristan 341042

Introduction

• Dynamomètre

Architecture Général

Équilibrage

• Mouvement opposé -> Inverseur de mouvement

Moment annulé

Masse optimisé

Principe de compensation de rigidité

Principe de réglage du zéro

système vis-écrou

- vis différentielle
- Anti-rotation et guidage
- Accouplement
- Rattrapage du jeu

Pas virtuel de 50 μm

2.6: Schéma du principe de vis différentielle

Traduction en guidage Flexible

Concepts Originaux

Equilibrage SFMI à l'aide des roues

Principe de vis différentielle

Précontrainte d'usine

Système multicouches

Système de protection du mécanisme

Dimensionnement du mécanisme

- Minimisation du nombre de lammes
- Minimisation de la rigidité des lammes
- Dimensionnent Réglage du zéro
- Calcul de la rigidité total à vide
- Dimensionnement pusher Réglage de la rigidité

Optimisation Python

Dimensionnent du pusher rigidité zéro

Codétaintes maxines la siadhatsoindes

Revue des performances

Construction

Assemblage vissé

Supports pour lames

Alliage Ti-6Al-4V

Conclusion

