Nonparametric Adaptive Control

RECENT ADVANCES IN MODEL REFERENCE ADAPTIVE CONTROL: THEORY AND APPLICATIONS

ORGANIZERS

ANTHONY CALISE, Georgia Institute of Technology
ERIC JOHNSON, Georgia Institute of Technology
TANSEL YUCELEN, Georgia Institute of Technology
GIRISH CHOWDHARY, Massachusetts Institute of Technology

Model Reference Adaptive Control (MRAC)

- Want to make the uncertain system behave like the reference model
- Need quantifiable metrics on performance and stability
- Need to enable agile and health-aware UAV operation
- Approach:
 - ☐ Simultaneously track the reference model and learn the uncertainty

Existing Relevant work in MRAC

- Classic work in Model reference adaptive control (MRAC) Narendra, Ioannou, Aström, Boyd etc.
 - Not guaranteed to be robust in presence of noise
 - Not guaranteed to learn the uncertainty without persistent excitation (PE)
- Classic robustifying modifications to MRAC: σ -mod (Ioannou 84), e-mod (Narendra 86), projection based adaptation
 - Not guaranteed to learn the uncertainty
- \blacksquare L_1 adaptive control (Cao, Hovakimyan 08)
 - Not concerned with *learning* uncertainty, tracking performance guaranteed through point wise uncertainty domination
- Intelligent excitation (Cao 07):
 - Learns the uncertainty at the cost of added control effort
- Modern modifications to MRAC: *Q*-modification (Volyanksyy 09), C-MRAC (Lavretsky 2009), Least squares adaptation (Ngyuen 2006), DF-MRAC (Yucelen 2010),....
 - ☐ Require PE operation to guarantee convergence: added control effort
 - ☐ Do not provide quantifiable (exponential) stability guarantees

Approximate Model Inversion (AMI) Based MRAC

Plant

$$\dot{x} = f(x, u),$$

- $x \in \Re^n$: system states
- $u \in \mathbb{R}^m$: control inputs (multiple input), controllable
- *f* satisfies conditions for a unique solution, unknown

Problem Statement: Model Reference Adaptive Control

Design a control law u(t) such that the plant tracks the reference model

$$\dot{x}_{rm} = f_{rm}(x_{rm}, r)$$

- $x_{rm} \in \Re^n$: system states
- $r \in \mathbb{R}^l$: Exogenous inputs
- f_{rm} bounded input bounded output stable and continuously differentiable

Overview of Inversion Based MRAC

- Approximate inversion model \hat{f}
- Design a pseudocontrol ν to minimize the tracking error: $e = x x_{rm}$

Modeling error $\Delta \in \Re^n$

$$\dot{x} = \hat{f}(x, u) + \left[f(x, u) - \hat{f}(x, u) \right]$$

Combined pseudo-control action:

$$\nu = -Ke + \dot{x}_{rm} - \nu_{ad}$$

Choice of adaptive element

Structured Uncertainty

Given that there exists a constant matrix W^* and known basis functions $\sigma(x,u) \in \Re^m$ such that

$$\Delta(x, u) = W^{*T} \sigma(x, u)$$

Then, choose adaptive element:

$$v_{ad} = W^T \sigma(x, u)$$

Unstructured Uncertainty (more general)

Given $\Delta(x, u)$ is continuous and defined over a compact set, then :

$$\Delta(x,u) = W^{*^T} \Phi(x,u) + \tilde{\epsilon}$$

where $\Phi(x, u)$ are basis function of a Neural Network adaptive element:

$$v_{ad} = W^T \Phi(x, u)$$

Radial Basis Function NN

- Radial Basis Functions (RBFs) are Gaussian Kernels
- Select n_2 centers x_{c_i}
- Select a width parameter
- Add a bias term, then $\Phi(\bar{x}) \in \Re^{n_2+1}$

$$\Phi(\bar{x}) = \begin{bmatrix} b_w \\ e^{\frac{-||x_{c_1} - \bar{x}||^2}{2\mu^2}} \\ \vdots \\ e^{-||x_{c_{n_2}} - \bar{x}||^2} \\ e^{\frac{-||x_{c_{n_2}} - \bar{x}||^2}{2\mu^2}} \end{bmatrix}$$

Universal Approximation with RBFs

■ Given fixed number of RBFs with a fixed width μ there exists an ideal set of weights W^* such that

$$\bar{\epsilon} = \sup_{\bar{x} \in D} ||W^{*T} \Phi(\bar{x}) - \Delta(z)||$$

- $ar{\epsilon}$ can be made arbitrarily small given sufficient number of RBFs
- RBF NN $\nu_{ad} = W^T(t)\Phi(\bar{x})$
- Ideally, we would like $W(t) \rightarrow W^*$
- Traditionally, adaptive control is happy with keeping e bounded

RBF adaptive law

The following adaptive law guarantees that the tracking error stays bounded in a compact neighborhood

$$\dot{W} = -\Gamma \Phi(\bar{x}) e^T P B$$

■ Can use σ — mod, or e — mod or proj to guarantee boundedness in presence of noise:

$$\dot{W} = -\Gamma \Phi(\bar{x}) e^T P B - \kappa W$$

Limitations of RBF based neuro-adaptive control

- RBFs: linear-in-theparameters, easier to analyze and easier to tune
- Current approach: preallocate RBFs based on prior domain knowledge
- Problem: How to assign the centers of the RBFs (e.g. in fault tolerant control)
- Problem: How many RBFs needed
- Problem: How to guarantee long-term learning

No matter how good your adaptive control algorithm, if the adaptive element's representation is bad, you are out of luck

The problem of locality

- Nardi (2000) and Sundararajan (2002) tune RBF centers using the instantaneous tracking error
 - ☐ Rank-1 (greedy) update, moves all centers together in one direction
 - ☐ Ultimate boundedness guaranteed, but no guarantee that centers are actually moved to improve the representation
- Sanner and Slotine (1996), used heuristics to assign centers across a bounded domain: must assume bounded operating domain
- We offer a Reproducing Kernel Hilbert Space based approach that tackles the problem at its root

Reproducing Kernel Hilbert Spaces

- A mercer kernel $k(x_1, x_2)$ is a continuous, symmetric, positive semi-definite function for $x_1, x_2 \in D \subset \Re^n$
- Can think of a kernel as a measure on how different two points are
- (Mercer) There exists a Hilbert space H of functions and a mapping $\psi: D \to H$
- $\psi(x)$ takes you from a finite dimensional *input* space to an infinite dimensional *feature* space
- $\blacksquare \psi(x)$ need not be unique and is often unknown

$$k(x_1, x_2) = \langle \psi(x_1), \psi(x_2) \rangle_H$$

PE signals and the RKHS

lacksquare The linear subspace generated by l RBF centers c_i

$$F_c = \left\{ \sum_{i=1}^l \alpha_i k(c_i, .) : \alpha_i \in \Re \right\}$$

- A trajectory in the \Re^n is mapped to the feature space H
- The nonlinear trajectory is transported to the feature space H by the mapping ψ
- In H the trajectory is linearly parameterized over F_C

PE signals and the RKHS

Lose PE if trajectory is out of the range of F_C

Let x evolve according to $\dot{x} = f(x, u)$, then, if there exists a time t_f s.t. the mapping $\psi(x(t))$ is orthogonal to F_c for all $t \ge t_f$ then the signal $\Phi(x(t))$ is not PE

- Key realization: Just because x(t)is PE, doesn't mean $\Phi(x(t))$ is PE too! (Thm 2)
- If x(t) stops evolving, $\phi(x(t))$ stops being PE (Thm 3)

What's happening

- PE of the RBFs is dependent on center location
- If x(t) is too far away from the centers c, then $\sigma_i(x(t)) = e^{\frac{-||x-c_i||^2}{2\mu^2}} \approx 0$
- That means, no matter what you weights are $v_{ad} = W^T \sigma(x(t)) \approx 0$
- Therefore the weights can end up bursting!
- Need a method to select centers online to ensure the RBF representation is valid
- This leads to a nonparametric approach: in which the number of RBFs are not fixed apriori

Linear independence in RKHS

Add x(t) to the dictionary of centers $C_l = \{c_i\}_{i=1}^l$ using a linear independence test (Nguyen-Tong et al.)

$$\gamma = \left\| \sum_{i=1}^{l} a_i \phi(c_i) - \phi(x(t)) \right\|$$

- Let K be the Kernel matrix s.t. $K_{i,j} = \Phi(x_i, x_j)$ then $\gamma = k(x(t), x(t)) [K(C_l, x(t)]^T \hat{a}_l)$
- The Budgeted Kernel Restructuring Algorithm (BKR):
 - \square Add x(t) if $\gamma > \eta$ and increase size of dictionary, recalculate γ
 - \square If dictionary size exceeds budget, add center by removing an existing center with the least γ , recalculate γ' s

Recap of BKR-CL (CDC 11, TNNLS 12)

- A linear independence test in a Reproducing Hilbert Space used to select new centers online (Budgeted Kernel Restructuring (BKR))
- If $\gamma = \left\|\sum_{i=1}^{l} a_i \psi(c_i) \psi(x(t))\right\| > \epsilon$ then add x(t) as a center to the kernel dictionary $D_t = [c_1, c_2, ..., c_b]$
- Correspondingly update the history stack
- When budget reached ($|D_t|$ =b), remove the point with minimal γ
- Update NN weights using Concurrent Learning (CL) weight update law

Concurrent Learning adaptive law

- Use online recorded data concurrently with current data
- For the stored data point x_k assume that \dot{x}_k is available and let $\epsilon_k(t) = W^T(t)\Phi(x_k) \Delta(x_k) = W^T(t)\Phi(x_k) (\dot{x}_k v_k)$, since $\dot{x} = \hat{f} + \Delta$

Concurrent learning adaptive law

$$\dot{W}(t) = -\Gamma \Phi(x(t))e^{T}(t)PB - \Gamma \sum_{k=1}^{p} \Phi(x_k)\epsilon_k^{T}(t)$$
Instantaneous update, \dot{W}_t
Update on recorded data, \dot{W}_b

- Online history stack matrix $Z = [\Phi(x_1), \Phi(x_2), ..., \Phi(x_{p_{\text{max}}})]$
- \blacksquare Max dimension of Z is fixed, so the data is recorded sparsely
- \blacksquare Z is not a moving window of data (although it could be)

Weight error dynamics

Key insight comes from analyzing the weight error dynamics:

$$\dot{W}(t) - \dot{W}^* = -\Gamma \Phi(x(t)) e^T(t) P B - \Gamma \sum_{k=1}^p \Phi(x_k) \epsilon_k^T(t)$$
 But, $\epsilon_k = \nu_{ad}(x_k) - \Delta(x_k) = W^T(t) \Phi(x_k) - \Delta(x_k)$

However, $\Delta(x_k) = W^{*T} \Phi(x_k)$, and recall that $\widetilde{W} = W - W^*$, so,

$$\epsilon_k = \widetilde{W}^T \Phi(x_k)$$

This yields:

$$\dot{\widetilde{W}}(t) = -\Gamma \Phi(x(t)) e(t)^T P - \Gamma \sum_{k=1}^p \Phi(x_j) \left(\widetilde{W}^T(t) \Phi(x_k) \right)^T$$

$$\dot{\widetilde{W}}(t) = -\Gamma \Phi(x(t)) e(t)^T P - \Gamma \sum_{k=1}^p \Phi(x_k) \Phi^T(x_k) \widetilde{W}(t)$$

Theoretical impact of BKR on CL

THM: UUB of BKR-CL

The switched close loop system defined by the weight error dynamics and the tracking error dynamics is globally uniformly ultimately bounded.

- Let $\Omega_t = \sum_{k=1}^p \Phi_t(x_k) \Phi_t^T(x_k)$, where $\Phi_t(x_k) = [k(x_k, c_1), k(x_k, c_2), ..., k(x_k, c_l)]$, with l the number of centers in the dictionary
- Then the rank-condition is typically automatically satisfied because a new kernel is only added if it is not in the span of the space generated by existing centers

BKR-CL: a non parametric approach on a budget

- Once history stack is full, singular value maximizing algorithm (ACC 11) used
- The dictionary and history stack updates are coupled
- SVD calculation is the most expensive part, can be further improved
- Theorem: UUB of the switched closed loop system guaranteed

Wing Rock dynamics with BKR-CL

- Highly swept-back aircraft are susceptible to Wing Rock: lightly damped oscillations
- lacksquare ϕ : roll angle, p roll rate, δ_a aileron

A model for Wing Rock dynamics (Monahemi 96)

$$\dot{\phi} = p$$

$$\dot{p} = \delta_a + \Delta(\phi, p)$$

- Inversion model: $\nu = \delta$
- Task: track roll commands in presence of wing rock dynamics: $\Delta(\phi, p) = 0.8 + 0.23\phi + 0.69p 0.62|\phi| + 0.01|p|p + 0 + .02p^3$
- Second order reference model used
- History stack max size: 32, RBF dictionary max size: 20

Comparison with traditional methods

Final center assignment with 12 centers

- Centers are assigned along the path of the system
- Video of the moving centers: http://www.youtube.com/watch?feature=player_detailpage&v=0_CGXmSXegs

Long-Term learning (TNN 11)

Online estimate of uncertainty

Estimate of uncertainty with weights frozen post-simulation

- Important insight: Good online tracking of uncertainty doesn't mean you are actually learning the uncertainty
- BKR-CL tracks the uncertainty and learns it over the long term
- Reference: Kingravi, Chowdhary, Vela, Johnson CDC 2011 (Dec), and TNN 2011 (submitted)

Nonparametric Bayesian Models in Adaptive Control

A stochastic representation of the uncertainty may be more natural, e.g. Gaussian Processes (GP):

$$\Delta(x) \sim GP(m(x), k(x, x'))$$

- \square m(x) is the mean function and k(x, x') is the covariance function
- New Approach: GP-MRAC
 - ☐ Let the prior be a Gaussian Process
 - Perform Bayesian posterior inference to estimate the mean $(\overline{m}(x))$ using observed data
 - ☐ The adaptive control: $v_{ad} = \overline{m}(x)$
- Bayesian inference needs to be performed in a sequential manner online on a Budget: Remove data points using information theoretic measures (K-L divergence)
- Benefits:
 - ☐ Kernels evolve with data: globally applicable
 - Paradigm shift: represent uncertainty as a distribution over functions
 - Inherently handles measurement noise

GP representation of uncertainty

Gaussian Processes

- A Gaussian Process is a collection of random variables, any finite subset of which has a joint Gaussian distribution
- A Gaussian process is completely characterized by the mean m(x) and the covariance function k(x, x'): $f(x) \sim GP(m(x), k(x, x'))$
- GPs are a Bayesian Nonparametric (BNP) model widely studied for supervised learning problems³
- Nonparametric: The number of parameters are not fixed a-priori, rather they grow in response to the data
- Offline learned dynamic models using GPs have been used in robotics^{3,4} Some references:
 - **1. Rasmussen** C. E., Williams C. K. I. Gaussian processes for machine learning, the MIT press 2005
 - **Csató** L., and Opper M., Sparse on-line Gaussian processes, Neural Computations, 14(3):641-668, 2002.
 - 3. Ko J., **Fox** D., GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models, Autonomous Robots, 27(1), 2009.
 - 4. Ko J., Klein D., **Fox** D., Haehnel D., Gaussian process and reinforcement learning for identification and control of an autonomous blimp. IEEE ICRA, 2007.

GP Inference

- $Z_t = \{z_1, z_2, \dots, z_t\}$ a set of recorded states up to time t
- For each *i* the measurements of the modeling error are:

$$y_i = (\dot{z} + \epsilon_i) - \nu = \Delta(z_i) + \epsilon_i$$

Where $\epsilon_i \sim \mathcal{N}(0, \omega^2)$ Gaussian white noise

- $\blacksquare Y_t = \{y_1, y_2, ..., y_t\}$
- Bayesian inference:

$$posterior = \frac{(prior * likelihood)}{total\ probability}$$

GP Inference

- Let $K_t \in \Re^{t \times t}$ be the kernel matrix s.t. $K_{i,j} = k(z_i, z_j)$
- The joint distribution of training inputs Y_t and y_{t+1} is

$$\begin{bmatrix} Y_t \\ y_{t+1} \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K_t(Z_t, Z_t) + \omega^2 I & \overline{k} \\ \overline{k}^T & k_* \end{bmatrix} \right)$$

- Where $\bar{k} = K(z_{t+1}, Z_{-t}), k_* = k(z_{t+1}, z_{t+1})$
- The closed form for Gaussian distributions makes inference easy

GP Inference

 \blacksquare Predicting the value at a point z_{t+1}

$$\Delta_{t+1} \sim \mathcal{N}(m(\mathbf{z}_{t+1}), \operatorname{cov}(\mathbf{z}_{t+1}, \mathbf{Z}_t))$$

With the predictive mean given by

$$m(z_{t+1}) = K(z_{t+1}, Z_t)(K(Z_t, Z_t) + \omega^2 I)^{-1}Y_t$$

The predictive covariance given by

$$\mathbb{V}(\mathbf{z}_{t+1}) = k_* - \overline{k}^T (K_t + \omega^2 I)^{-1} \overline{k}$$

- The inversion is well defined for Gaussian kernels due to Mercer's theorem
- Can avoid the inverse and do a sequential update (see Csato 2002, Sparse Online Gaussian Processes, Neural Computation)

The need for Sparsification

- Quick recap of GP-MRAC
 - ☐ Model the adaptive element as the mean of a GP
 - Perform nonparameteric inference on the GP using data pairs $(\widehat{\Delta}, x)$ noisy modeling error estimates $(\widehat{\Delta} = \dot{\hat{z}} \nu)$
 - \square GP adds a kernel $k(z_t, .)$ at every input point
- Adding a kernel at every input point can quickly become intractable in online applications
- Need a way to filter through and only pick relevant points as kernels

Budgeted GP inference

- Need to limit the max allowable size of the kernel dictionary: Budget
- After the budget is reached, new data incorporated only by replacing old data
- Two possible methods
 - Remove the oldest point from kernel dictionary
 - Use KL divergence between prior and posterior after getting a measurement (z, \dot{z})

GP MRAC algorithm recap

Algorithm: while new measurements (z_t, \hat{z}_t) Prior is a Gaussian Process Perform online Bayesian posterior inference to estimate the mean $(\overline{m}(x))$ \square Adaptive element output: $v_{ad} = \overline{m}(z)$ Determine whether to add the current state z in the dictionary of kernels If budget has been reached remove an old point using either KL divergence (KD) or oldest point (OP) method Benefits: Kernels evolve with data: globally applicable nonparametric method Paradigm shift: represent uncertainty as a distribution over functions

Inherently handles measurement noise, analysis requires Ito calculus

Wing Rock dynamics with BKR-CL

- Highly swept-back aircraft are susceptible to Wing Rock: lightly damped oscillations
- lacksquare ϕ : roll angle, p roll rate, δ_a aileron

A model for Wing Rock dynamics (Monahemi 96)

$$\dot{\phi} = p$$

$$\dot{p} = \delta_a + \Delta(\phi, p)$$

- Inversion model: $\nu = \delta$
- Task: track roll commands in presence of wing rock dynamics: $\Delta(\phi, p) = 0.8 + 0.23\phi + 0.69p 0.62|\phi| + 0.01|p|p + 0 + .02p^3$
- Second order reference model used
- History stack max size: 32, RBF dictionary max size: 20

Case 1: System operates in expected domain

- RBF centers spread in expected domain of operation, system does not leave that domain
- Tracking performance comparable, GP-MRAC has less oscillations

Case 1: System operates in expected domain

- Uncertainty captured better with GP-MRAC online
- Noise leads to oscillatory behavior with current choice of gains and bounds on the projection operator for traditional MRAC
- GP-MRAC (KD) exhibits long-term learning of the uncertainty

Case 2: System leaves expected domain

- The reference commands drive the system out of [-1,1], where centers were distributed
- More oscillation seen without GP-MRAC

Case 1: System operates in expected domain

- Uncertainty captured better with GP-MRAC online
- Noise leads to oscillatory behavior with current choice of gains and bounds on the projection operator for traditional MRAC
- GP-MRAC (KD) exhibits long-term learning of the uncertainty

The benefit in terms of reduced oscillations

- Significant reduction in oscillations with GP-MRAC
- Indicates that the adaptive element can predict and cancel out the uncertainty better

Where the centers are

- Both KL and OD place centers along the trajectory
- KL retains older centers, OD only keeps recent centers: forgets older data (good for time-varying uncertainties)

Summary

- Presented BKR-CL: a non parameteric approach to RBF NN adaptive element on a budget
 - CL helps in guaranteeing weights go to their ideal values
 - ☐ BKR helps in ensuring the centers are relevant
- Presented GP-MRAC a budgeted Bayesian Nonparameteric MRAC scheme
 - Bayesian inference used to estimate ideal weights, guaranteed optimal
 - Can extended operating domain almost globally
 - ☐ Can be thought of a stochastic nonparametric extension of BKR-CI

Examples: BKR-CL

Example GP-MRAC

Ш<u>іТ</u>

Future: Information enabled Optimal Control

Adaptive-MPC

- CL-MRAC good at learning and simultaneously stabilizing unstable systems
- Problem: Difficult to guarantee optimality under constraints with MRAC
- Idea: learn the model using CL-MRAC, Switch to MPC when model learned
- Preliminary results: Combined CL MRAC-MPC approach guarantees stability and optimality in presence of state and actuator constraints

Ongoing: Technologies for Persistent UAS missions (Boeing R&D)

- Persistent UAV missions bring new challenges
 - How to achieve mission objective in presence of fuel and communication constraints
 - UAV dynamics and health may change during mission (fault tolerance)
- Ongoing work:
 - Improving planning by using information contained in the internal parameters of adaptive controllers
 - ☐ Improved planning algorithms in the framework dynamic programming/reinforcement learning
 - nonparametric Bayesian models for planning

Health Aware Planning

- How can we use learned system information for making better decisions?
- How can this information be shared across the fleet?

Questions??

Metrics based adaptive fault tolerant control GNC 09, 10; ACC 10; Infotech 10,11