Эйлеровы и гамильтоновы циклы

Владимир Подольский

Факультет компьютерных наук, Высшая Школа Экономики

Сборка генома

Эйлеровы циклы

Гамильтоновы циклы

• Геном — это строка из символов А, С, G и Т

- Геном это строка из символов A, C, G и T
- Как расшифровывают геном?

- Геном это строка из символов А, С, G и Т
- Как расшифровывают геном?
- Сначала секвенирование читаем фрагменты генома

- Геном это строка из символов А, С, G и Т
- Как расшифровывают геном?
- Сначала секвенирование читаем фрагменты генома
- Но секвенирование умеет находить только короткие фрагменты генома

- Геном это строка из символов А, С, G и Т
- Как расшифровывают геном?
- Сначала секвенирование читаем фрагменты генома
- Но секвенирование умеет находить только короткие фрагменты генома
- Так что затем нужна сборка: из коротких фрагментов собрать геном

Найдите строку, в которой все подстроки длины 3 — это AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC.

Найдите строку, в которой все подстроки длины 3 — это AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC.

Оказывается в этой задаче полезны циклы в графах

Сборка генома

Эйлеровы циклы

Гамильтоновы циклы

Определение

Эйлеровы циклы проходят по каждому ребру ровно один раз

Определение

Эйлеровы циклы проходят по каждому ребру ровно один раз

 Определение годится и для ориентированных, и для неориентированных графов

Определение

Эйлеровы циклы проходят по каждому ребру ровно один раз

- Определение годится и для ориентированных, и для неориентированных графов
- В цикле начальная и конечная вершины должны совпадать

Определение

Эйлеровы циклы проходят по каждому ребру ровно один раз

- Определение годится и для ориентированных, и для неориентированных графов
- В цикле начальная и конечная вершины должны совпадать
- Можно также рассматривать эйлеровы пути, в них начальная и конечная вершины совпадать не обязаны

Примеры

Примеры

Граф без эйлерова цикла

Граф с эйлеровым циклом

Примеры

Граф без эйлерова цикла

Граф с эйлеровым циклом

Критерий

Теорема

Связный *неориентированный* граф содержит эйлеров цикл тогда и только тогда, когда степень каждой вершины четна

Критерий

Теорема

Связный *неориентированный* граф содержит эйлеров цикл тогда и только тогда, когда степень каждой вершины четна

Теорема

Сильно связный *ориентированный* граф содержит эйлеров цикл тогда и только тогда, когда для каждой вершины ее входная степень равна исходящей степени

Если в какой-то вершине исходящая степень не равна входящей, то цикла точно нет

В другую сторону, пусть каждая вершина сбалансирована

Начнем ходить из какой-то вершины

Начнем ходить из какой-то вершины

Начнем ходить из какой-то вершины

Поскольку каждая вершина сбалансирована, если мы в нее вошли, мы можем выйти

Рано или поздно мы вернемся в изначальную вершину

Рано или поздно мы вернемся в изначальную вершину

Но что делать дальше? Мы не прошли по всем ребрам и при этом попали в тупик

Поскольку граф сильно связный, есть непройденное ребро, которое выходит из вершины построенного цикла

Получили второй цикл

Объединим эти два цикла: сначала идем по первому, потом обходим по второму, затем заканчиваем с первым

Мы получили больший цикл!

Повторим процесс с G

Повторим процесс с G

Повторим процесс с G

Снова объединяем циклы

Снова объединяем циклы

Снова объединяем циклы

Снова объединяем циклы

Эйлеров цикл построен

Эйлеровы пути

- Для эйлеровых путей есть аналогичный критерий
- Графу разрешается содержать две несбалансированные вершины: начальную и конечную точку в пути
- Добавляя ребро между этими вершинами мы получим граф с эйлеровым циклом

Сборка генома

Эйлеровы циклы

Гамильтоновы циклы

Сборка генома

Гамильтоновы циклы

Определение

Гамильтонов цикл — это цикл в графе, проходящий по всем вершинам ровно один раз.

Пример

Пример

Простой критерий?

• Неизвестно простого способа проверять, есть ли в графе гамильтонов цикл

Простой критерий?

- Неизвестно простого способа проверять, есть ли в графе гамильтонов цикл
- Мы не знаем алгоритма, работающего за полиномиальное время

Простой критерий?

- Неизвестно простого способа проверять, есть ли в графе гамильтонов цикл
- Мы не знаем алгоритма, работающего за полиномиальное время
- Задача о гамильтоновом цикле относится к NP-полным задачам, так что вопрос о ее полиномиальный разрешимости — центральный открытый вопрос теоретической информатики

Сборка генома

Эйлеровы циклы

Гамильтоновы циклы

Сборка генома

Найдите строку, в которой все подстроки длины 3 — это AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC.

Найдите строку, в которой все подстроки длины 3 — это AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC.

Оказывается в этой задаче полезны циклы в графах

Все подстроки длины 3

```
TCCAGCATCA
TCC
CCA
  CAG
   AGC
    GCA
     CAT
      ATC
       TCA
```

Все подстроки длины 3

```
TCCAGCATCA
TCC
 CCA
  CAG
   AGC
    GCA
     CAT
       ATC
        TCA
```

Каждые две соседние строки длины 3 пересекаются по общей части длины 2

Наша цель — найти строку, все подстроки которой
 — это AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

- Наша цель найти строку, все подстроки которой
 это AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC
- Другими словами, нам нужно найти перестановку этих строк длины 3, такую что каждые две последовательные строки пересекаются по длине 2

 Например, пусть мы ищем последовательность, в которой все подпоследовательности, это ACG, TAC и CGC

 Например, пусть мы ищем последовательность, в которой все подпоследовательности, это ACG, TAC и CGC

 Например, пусть мы ищем последовательность, в которой все подпоследовательности, это ACG, TAC и CGC

- Например, пусть мы ищем последовательность, в которой все подпоследовательности, это ACG, TAC и CGC
- Переставим их так: ТАС, АСG, СGС

Ищем перестановку

- Например, пусть мы ищем последовательность, в которой все подпоследовательности, это ACG, TAC и CGC
- Переставим их так: ТАС, АСG, СGС
- Получаем слово ТАССС

TCAGCA

TCAGCAT

TCAGCATC

TCAGCATCC

TCAGCATCCA

Справились ли мы с задачей?

• Мы свели задачу к поиску гамильтонова пути!

Справились ли мы с задачей?

- Мы свели задачу к поиску гамильтонова пути!
- Но у нас нет эффективного алгоритма для поиска гамильтонова пути

Справились ли мы с задачей?

- Мы свели задачу к поиску гамильтонова пути!
- Но у нас нет эффективного алгоритма для поиска гамильтонова пути
- Так что этот подход бесполезен для последовательностей большого размера

• Чему соответствуют ребра на картинке?

- Чему соответствуют ребра на картинке?
- Последовательностям длины 4!

• Синие ребра — все последовательности длины 4 в нашем слове

 Сейчас: вершины — последовательности длины 3, ребра — последовательности длины 4

 Идея: вершины — последовательности длины 2, ребра — последовательности длины 3

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

Проводим только ребра, соответствующие данным нам последовательностям длины 3

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

Теперь нужно найти перестановку ребер

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

А это эйлеров путь!

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

Мы знаем как такой путь построить

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCC

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCCA

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCCAG

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCCAGC

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCCAGCA

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCCAGCAT

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCCAGCATC

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC

TCCAGCATCA

 Эйлеровы пути проходят по всем ребрам ровно один раз

- Эйлеровы пути проходят по всем ребрам ровно один раз
- Гамильтоновы пути проходят по всем вершинам ровно один раз

- Эйлеровы пути проходят по всем ребрам ровно один раз
- Гамильтоновы пути проходят по всем вершинам ровно один раз
- Выглядят похоже, но принципиально различаются с точки зрения алгоритмической сложности

- Эйлеровы пути проходят по всем ребрам ровно один раз
- Гамильтоновы пути проходят по всем вершинам ровно один раз
- Выглядят похоже, но принципиально различаются с точки зрения алгоритмической сложности
- Сборка генома: важно найти правильную модель!

- Эйлеровы пути проходят по всем ребрам ровно один раз
- Гамильтоновы пути проходят по всем вершинам ровно один раз
- Выглядят похоже, но принципиально различаются с точки зрения алгоритмической сложности
- Сборка генома: важно найти правильную модель!
- Описанная идея используется в современных сборщиках генома