Question Number	Answer		Mark
2	(QWC- Work must be clear and organised in a logical manner using technical wording where appropriate		
	Max 4 <u>Uniform</u> electric field (between plates) Force due to E or idea of attraction/repulsion (Ball has an) <u>acceleration</u> (not an increasing velocity) Which is constant/uniform (can be with reference to increasing velocity) Vertical line/ + and – values shows change in direction Inelastic collision/less energy after impact	(1) (1) (1) (1) (1) (1)	4
	Total for question		4

Question	Answer	Mark
Number		
3	Use of W=mg	(1)
	Use of F=BIL	(1)
	B = 0.04 T	(1)
	Total for question	3

Question Number	Answer		Mark
5(a)	The magnetic field (must be) at right angles to the current	(1)	
5(b)	All three units for force, length and current clearly identified (The unit of force is kg m s ⁻² , the unit of current is A, the unit of length is m)	(1)	
	$T = kg A^{-1} s^{-2}$	(1)	2
5(c)	Use of $\rho = m/V$ Use of $mg = BIl$ B = 0.53 (T) (no u.e. as given in question for part (b))	(1) (1) (1)	3
	Example of calculation $m = 2.7 \times 10^3 \text{ kg m}^{-3} \times 10 \times 10^{-3} \text{ m} \times 10 \times 10^{-3} \text{ m} \times l$ $m = 0.27 \times l$ $B = (0.27 \times l \times 9.81 \text{ m s}^{-2}) / (5 \text{ A} \times l)$		
5(d)	B = 0.53 T (Magnetic field is) into paper/page	(1)	
	Total for question		7

Question Number	Answer		Mark
1(a)	Arrow(s) downwards	(1)	1
1(b)	Use of $E = V/d$ Use of $F = EQ$ $F = 5.1 \times 10^{-16} \text{ N}$ $\frac{\text{Example of calculation}}{F = (160 \text{ V} \times 1.6 \times 10^{-19} \text{ C})/5.0 \times 10^{-2} \text{ m}}$ $F = 5.12 \times 10^{-16} \text{ N}$	(1) (1) (1)	3
1(c)	Between the plates there is an acceleration/force which is vertical/upwards Constant horizontal velocity Outside the plates no (electric) field /force acts Or Outside the plates speed so large that gravitational effect negligible	(1) (1) (1)	3
1(d)(i)	Release of (surface) electrons due to heating	(1)	1
1(d)(ii)	Use of $E_k = \frac{1}{2}mv^2$ Use of $V = W/Q$ p.d. = 410 $\frac{\text{Example of calculation}}{E_k = 9.11 \times 10^{-31} \text{ kg} \times (1.2 \times 10^7 \text{ m s}^{-1})^2/2}$ $E_k = 6.56 \times 10^{-17} \text{ J}$ p.d. = $(6.56 \times 10^{-17} \text{ J})/(1.6 \times 10^{-19} \text{ C})$	(1) (1) (1)	3
	p.d. = 41 Total for question		11

Question	Answer		Mark
Number	TY CX DA	(4)	
4(a)	Use of $\Phi = BA$	(1)	
	Converts cm to m Or mT to T $\Phi = 1.1 \times 10^{-4} \text{Wb}$	(1)	
	$\varphi = 1.1 \times 10^{-6} \text{Wb}$	(1)	3
	Example of calculation		
	$\Phi = 6.0 \times 10^{-2} \text{ m} \times 2.4 \times 10^{-2} \text{ m} \times 74 \times 10^{-3} \text{ T}$		
	$\Phi = 1.07 \times 10^{-4} \mathrm{Wb}$		
4(b)	Use of $\mathcal{E} = \Delta \Phi / \Delta t$	(1)	
	Use of time = distance/speed	(1)	
	-	(1)	3
	$\mathcal{E} = 5.3 \text{ mV} (5.0 \text{ mV or } 5.5 \text{ mV depending on value of } \Phi \text{ used, ecf value}$		
	of Φ from (a)) Or	(1)	
		(1) (1)	
	Quotes $\mathcal{E} = Blv$	(1)	
	$l = 6.0 \times 10^{-2} \text{m used}$	(1)	
	$\mathcal{E} = 5.3 \text{ mV}$		
	Example of calculation		
	Time = $0.024 \text{ m} / 1.2 \text{ m s}^{-1}$ t = 0.020 s		
	$\mathcal{E} = 1.1 \times 10^{-4} \text{Wb} / 0.02 \text{s}$		
	= 5.5 mV		
4(c)	Use of $I = V/R$	(1)	
	Use of $F = BIl$	(1)	
	$F = 9.8 \times 10^{-5} \text{ N (ecf value of } \mathcal{E} \text{ from (b))}$	(1)	
	This force is too small to be felt. (this comment must be consistent with their value of force)	(1)	4
	Example of calculation		
	$I = 5.5 \text{ mV} / /0.25 \Omega = 0.022 \text{ A}$		
	$F = 74 \times 10^{-3} \text{ T} \times 0.022 \text{ A} \times 0.060 \text{ m}$		
	$F = 9.8 \times 10^{-5} \text{ N}$		
	Total for question		10