TUKR のアルゴリズム

2022年5月16日

TUKR のアルゴリズム実装で扱う変数を表 1 に示す.

表1 TUKR における変数記号表

	· · · · · · · · · · · · · · · · · · ·
表記	説明
\overline{I}	ドメイン1のデータ数
J	ドメイン2のデータ数
D	データの次元数
$\underline{\mathbf{X}}$	データの集合
	太字下付きは3階のテンソルの意味
	$\mathbf{\underline{X}} = (\mathbf{x_{ij}}) \in R^{I imes J imes D}$
	$\mathbf{x_{ij}} = (\mathbf{x_{ij}^1},,\mathbf{x_{ij}^d})^{\mathrm{T}}$
$\underline{\mathbf{Y}}$	観測データの推定値の集合
	$\underline{\mathbf{Y}} = (\mathbf{y_{ijd}}) \in R^{I \times J \times D}$
${f Z}$	潜在変数の集合
\mathbf{U}	ドメイン1の潜在変数の集合
	$\mathbf{U} = (\mathbf{u_{il_1}}) \in R^{I \times L_1}$
\mathbf{U}	ドメイン2の潜在変数の集合
	$\mathbf{V} = (\mathbf{v_{jl_2}}) \in R^{J imes L_2}$
L_1	ドメイン1の潜在変数の次元数
L_2	ドメイン2の潜在変数の次元数
T	総学習回数
η_1,η_2	各ドメインの学習率
σ_1, σ_2	各ドメインの平滑化カーネルのカーネル幅

1 TUKR のシミュレーションコードの作成手順

1.1 人口データの作成

鞍型の人工データ X を作成する.

1.2 アルゴリズム部の作成

1.2.1 初期化

潜在変数 z を乱数によって初期化し、学習をスタートする。その際、配列のサイズに注意する.

1.2.2 目的関数が最小となるように勾配法で潜在変数の更新を学習回数 T 買い繰り返す.

• 写像の推定

$$f(u_i, v_j) = \frac{\sum_i \sum_j k(u, u_i) k(v, v_j) \mathbf{x_{ij}}}{\sum_{i'} \sum_{j'} k(u, u_{i'}) k(v, v_{j'})}$$
(1)

$$k(\mathbf{u}, \mathbf{u}_i) = exp\left(-\frac{1}{2\sigma^2} \|\mathbf{u} - \mathbf{u}_i\|^2\right)$$
 (2)

$$k(\mathbf{v}, \mathbf{v}_j) = exp\left(-\frac{1}{2\sigma^2} \|\mathbf{v} - \mathbf{v}_j\|^2\right)$$
(3)

潜在変数の推定 誤差関数

$$E = \frac{1}{IJ} \sum_{i} \sum_{j} \|\mathbf{x_{ij}} - \mathbf{f}(\mathbf{u_i}, \mathbf{v_j})\|^2 + \lambda R(\mathbf{u_i}) + \lambda R(\mathbf{v_j})$$
(4)

• 事前分布 $R(\mathbf{u_i})$ は潜在変数に対する正則化項である。 $(\lambda$ は正則化項の強さを決めるハイパラメータ). ガウス事前分布

$$\sum_{i} \|\mathbf{u}_{i}\|^{2} = \sum_{i} \sum_{l} u_{il}^{2} \tag{5}$$

正方形一様分布

$$\sum_{i} \|\mathbf{u}_i\|_p^p = \sum_{i} \sum_{l} u_{il}^p \tag{6}$$

pは十分大きい数(たとえば p=10)

Early stopping

$$\frac{1}{N} \sum_{i} \|\mathbf{u}_i\|^2 \tag{7}$$

一定値(たとえば1)に達したら停止する

勾配法による潜在変数の更新

$$\mathbf{u_i}^{new} = \mathbf{u_i}^{new} - \eta_1 \frac{\partial E}{\partial \mathbf{u_i}^{old}} \tag{8}$$

$$\mathbf{v_j}^{new} = \mathbf{v_j}^{new} - \eta_2 \frac{\partial E}{\partial \mathbf{v_j}^{old}}$$
(9)

1.2.3 近傍半径

TUKR では (基本的に) 近傍半径 σ は固定し,スケジューリングは行わない.