K-ONE 기술 문서 #14

Cloud 환경 기반 LoRaWAN provisioning : Network Server , Gateway

> Document No. K-ONE #1 Version 1.0 Date 2016-05-01 Author(s) 소재영

■ 문서의 연혁

버전	날짜	작성자	비고
초안 - 0.5	2016. 04. 15	소재영	
1.0	2016. 05. 08	소재영	

본 문서는 2015년도 정부(미래창조과학부)의 재원으로 정보통신 기술진홍센터의 지원을 받아 수행된 연구임 (No. B0190-15-2012, 글로벌 SDN/NFV 공개소프트웨어 핵심 모듈/기능 개발)

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No. B0190-15-2012, Global SDN/NFV OpenSource Software Core Module/Function Development)

기술문서 요약

사물인터넷 (IoT , Internet of Things) 단말의 수가 기하급수적으로 늘어남에 따라 서버로 전송되는 데이터 트래픽의 양도 증가한다. 이에 따라 , 기존 네트워크 서버의 부하를 유연하고 지능적으로 관리 제어할 수 있는 기술이 필요하다. 사물인터넷을 위한 다양한 프로토콜이 존재 한다. 우리는 그 중 저 전력 무선 통신 장치들을 위한 LoRaWAN을 연구 대상으로 하며 여기서 소개하는 테스트베드는 향후 연구에 기초가 되는 역할을 수행하게 될 것이다.

본 문서는 LoRaWAN이나 OpenStack을 잘 모르는 사용자도 간단하게 테스트베드 구축을 할 수 있도록 하는데 초점을 두고 작성 하였다. 따라서 서버나 게이트웨이의 세부적인 동작 이해를 위해서는 LoRa Alliance에서 공개한 specification을 참조하는 것이 좋다. 또한 테스트베드 구축을 위해 사용한 장치와 게이트웨이의 경우 어플리케이션 개발을 할 수 있도록 관련 소스코드가 공개되어 있으므로 세부동작은 사용자가 원하는 대로 수정하여 사용할 수 있다.

Contents

K-ONE #1. Cloud 환경 기반 LoRaWAN provisioning

1. OpenStack 기반 LoRaWAN 테스트베드 구성	6
1.1. HW 시스템 환경	
1.2. SW 시스템 환경	6
2. 인터페이스 정의	8
2.1. 프로토콜 스택	8
2.1.1. UDP , TCP	
2.2. 메시지 프로토콜	
2.2.1. Gateway <-> Network Server	10
2.2.2. LoRaWAN Controller <-> Servers , gateway ······	13
2.2.3. Network Server <-> Application Server ·····	15
2.3. JSON 프로토콜 ······	
2.3.1. Gateway <-> Network Server ······	
2.3.2. Controller -> Servers , gateway ······	19
2.3.3. Network Server -> Application Server	19
3. LoRaWAN Network Server ·····	
3.1. 기능	
3.2. HW 시스템 환경	
3.3. SW 시스템 환경	20
3.4. 운용방법 및 검증	21
4. LoRaWAN Gateway ·····	
4.1.1. 기능	
4.1.2. HW 시스템 환경	
4.1.3. SW 시스템 환경	23
4.1.4. 운용방법 및 검증	24

표 목차

丑	1	테스트베드에 사용어 서버 스펙6
丑	2	local.conf7
丑	3	TCP port
丑	4	UDP port
丑	5	PUSH_DATA format10
丑	6	PUSH_ACK format ······11
丑	7	PULL_RESP format ······11
丑	8	TX_ACK format ······12
丑	9	PULL_DATA format
丑	10	PULL_ACK format13
丑	11	HELLO_GW format13
丑	12	HELLO_NS format14
丑	13	HELLO_APP format ······15
丑	14	APP_DATA_UP format ······15
丑	15	APP_DATA_DOWN format ·······16
丑	16	stat JSON object16
丑	17	′rxpk JSON object ······17
丑	18	txpk JSON object18
丑	19	JSON object between Controller and servers, gateway ······19
丑	20	JSON object between Network Server and Application Server19
丑	21	Network Server & flavor

그림 목차

그림	1 테스트베드 하드웨어 구성6
그림	2 테스트베드 SW 시스템 환경6
그림	3 communication diagram ————————————————————————————————————
그림	4 Protocol Stack9
그림	5 Upstream GWMP sequence diagram
그림	6 Downstream GWMP sequence diagram
그림	7 Gateway PULL_DATA diagram13
그림	8 HELLO_GW diagram
그림	9 HELLO_NS diagram
그림	10 HELLO_AS diagram
	11 APP_DATA diagram16
그림	12 Network Server 시스템 환경 ·······20
	13 heat template의 network server 쉘 스크립트21
	14 Network Server의 구동확인22
그림	15 Network Server 구동 로그 ······22
	16 LoRa IoT Station ————————————————————————————————————
그림	17 Hardware architecture of LoRa IoT Station23
그림	18 Gateway SW 시스템 환경 #1 ······23
그림	19 Gateway SW 시스템 환경 #2 ·······24
그림	20 Gateway log #1
그림	21 Gateway log #225

1. OpenStack 기반 LoRaWAN 테스트베드 구성

1.1. HW 시스템 환경

그림 1 테스트베드 하드웨어 구성

Model	SC-743	
CPU	Intel(R) Xeon(R) CPU E5-2650 v2, 2.60 GHz, 8-cores	
RAM	64GB	
SDD	480GB	

표 1 테스트베드에 사용어 서버 스펙

1.2. SW 시스템 환경

20	QEMU (OpenStack Liberty stable)
	Ubuntu Server 14.04.3
	Vmware Workstation
	Windows 7

그림 2 테스트베드 SW 시스템 환경

o OpenStack은 All-In-One Single Machine형태로 compute node , controller node , network node를 단일 ubuntu server에 설치하였다. 아래는 설치에 사용한 devstack용 local.conf 파일이다.

표 2 local.conf

[[local|localrc]]

HOST_IP=192.168.10.19

SERVICE_HOST=192.168.10.19

MYSQL_HOST=192.168.10.19

RABBIT_HOST=192.168.10.19

GLANCE_HOSTPORT=192.168.10.19:9292

ADMIN PASSWORD=secrete

DATABASE_PASSWORD=secrete

RABBIT PASSWORD=secrete

SERVICE_PASSWORD=secrete

Do not use Nova-Network disable_service n-net

Enable Neutron

ENABLED_SERVICES+=,heat,h-eng,h-api,h-api-cfn,h-api-cw,q-svc,q-dhcp,q-meta,q-agt,q-l3

Neutron options

Q_USE_SECGROUP=True

FLOATING_RANGE="192.168.10.0/24"

FIXED_RANGE="10.0.0.0/24"

Q_FLOATING_ALLOCATION_POOL=start=192.168.10.170,end=192.168.10.180 PUBLIC_NETWORK_GATEWAY="192.168.10.100"

Q_L3_ENABLED=True

PUBLIC_INTERFACE=eth0

Open vSwitch provider networking configuration Q_USE_PROVIDERNET_FOR_PUBLIC=True

OVS_PHYSICAL_BRIDGE=br-ex

PUBLIC BRIDGE=br-ex

OVS_BRIDGE_MAPPINGS=public:br-ex

2. 인터페이스 정의

o 본 장에서는 Gateway 와 Network Server간 , Network Server 와 Application Server 간 , LoRaWAN Controller 와 Server들 간의 인터페이스를 정의한다. 특히 Gateway 와 Network Server간 인터페이스 GWMP (Gateway message protocol) 는 SEMTECH에서 공개한 'LoRaWAN Network Server Demonstration: Gateway to Server Interface Definition' 문서와 동일하다.

2.1. 프로토콜 스택

그림 3 communication diagram

LoRa Gateway Message Protocol	LoRa Server Message Protocol
	message i lococo.
UDP	TCP

그림 4 Protocol Stack

2.1.1. UDP, TCP

o Gateway와 Network Server를 제외한 모든 통신은 TCP로 이뤄진다. 통신에 사용

되는 포트를 정리하면 아래의 표와 같다.

丑 3 TCP port

	LoRaWAN Controller	Network Server
	destination port	destination port
Network Server	1683	-
Application Server	1682	1681
Gateway	1684	UDP

丑 4 UDP port

GWMP message type	Direction	Gateway UDP source port	Network Server UDP port	Gateway UDP destination port
PUSH_DATA	To server	Arbitrary		
				PUSH_DATA
PUSH_ACK	To gateway			메시지의 source
				port
PULL_DATA	To server	Arbitrary		
			1680	PULL_DATA
PULL_ACK	To gateway			메시지의 source
				port
				가장최근
PULL_RESP	To gateway			PULL_DATA메시
				지의 source port

o 표2는 서버간 TCP포트, LoRaWAN Controller와 gateway간 TCP포트를, 표3은 gateway와 Network Server간의 메시지별 UDP port를 나타낸다.

2.2. 메시지 프로토콜

2.2.1. Gateway <-> Network Server

o PUSH_DATA 메시지는 gateway에서 Network Server로 메시지를 보낼 때 사용되는 메시지이다. Payload는 JSON Object로 구성되며 Device가 보내는 데이터 뿐만 아니라 무선통신에서 발생한 파라미터 정보, Gateway 상태정보 등이 포함된다.

丑	5	PUSH	DATA	format

Offset	Number of octets	Function	Value
0	1	Protocol version	0x01 or 0x02
1	2	Token	Arbitrary value set by
1	2	Token	Gateway
2	1	PUSH_DATA	0x00
3	1	identifier	UXUU
4	8	Gateway EUI	
12		JSON object	

o PUSH_ACK 메시지는 Network Server가 PUSH_DATA메시지를 정상적으로 수진 했을 때 gateway로 보내는 메시지 이다. PUSH_ACK 메시지에는 응답하고자 하는 PUSH_DATA메시지의 tocken이 포함되어야 한다.

丑 6 PUSH_ACK format

Offset	Number of octets	Function	Value
0	1	Protocol version	0x01 or 0x02
1	2	Token	Token of the
1	_	TOREIT	PUSH_DATA
3	1	PUSH_ACK idenfier	0x01

그림 5 Upstream GWMP sequence diagram

o PULL_RESP 메시지는 Network Server에서 Gateway로 메시지를 보낼 때 사용되는 메시지이다. Protocol이 V2인 경우 PUSH_ACK 메시지에는 응답하고자 하는 PUSH_DATA메시지의 tocken이 포함되어야 한다.

표 7 PULL_RESP format

Offset	Number of octets	Function	Value
0	1	Protocol version	0x01 or 0x02

1	2	Unusad(V1) /Talcan(V2)	Token of the
1	2	Unused(V1)/Token(V2)	PULL_DATA
3	1	PULL_DATA identifier	0x03
4		JSON object	

o TX_ACK 메시지는 GWMP V2에서만 사용되는 메시지로 Gateway에서 Network Server로 PULL_RESP 메시지를 정상 수신했음을 알리는 메시지이다. Token 필드에는 응답하고자하는 PULL_RESP의 token값이 포함되어야 한다.

丑 8 TX_ACK format

Offset	Number of octets	Function	Value
0	1	Protocol version	0x01 or 0x02
1	2	Token	Token of the PULL RESP
3	1	TX ACK identifier	0x05
4		JSON object	

그림 6 Downstream GWMP sequence diagram

o PULL_DATA 메시지는 Network Server가 PULL_RESP 메시지를 보낼 때 사용할 UDP 포트를 알려주기 위한 메시지이다.

표 9 PULL_DATA format

Offset	Number of octets	Function	Value
--------	------------------	----------	-------

0	1	Protocol version	0x01 or 0x02
1	2	Token	Arbitrary value set by Gateway
3	1	TX_ACK identifier	0x05
4		JSON object	

o PULL_ACK 메시지는 Network Server가 PULL_DATA를 수신했음을 알리는 메시지이다. Token 필드에는 응답하고자하는 PULL_DATA의 token값이 포함되어야한다.

표 10 PULL_ACK format

Offset	Number of octets	Function	Value
0	1	Protocol version	0x01 or 0x02
1	2	Token	Token of PULL_DATA
3	1	TX_ACK identifier	0x05
4		JSON object	

그림 7 Gateway PULL_DATA diagram

2.2.2. LoRaWAN Controller <-> Servers , gateway

o HELLO_GW 메시지는 LoRaWAN Controller가 Gateway에게 Network Server의 IP 주소를 알려주기 위한 메시지이다.

표 11 HELLO_GW format

Offset	Number of octets	Function	Value
0	4	total payload length	
1	2	Protocol version	0
3	1	HELLO_GW identifier	0x02
4		JSON object	

그림 8 HELLO_GW diagram

o HELLO_NS 메시지는 LoRaWAN Controller가 Network Server 에게 Gateway 와 Application Server의 IP 주소 , Application Server에 해당하는 APP EUI 를 알려 주기 위한 메시지이다. APP EUI는 Application Server를 구분하는 식별자로 사용된다.

丑 12 HELLO_NS format

Offset	Number of octets	Function	Value
0	4	total payload length	
1	2	Protocol version	0
3	1	HELLO_GW identifier	0x03
4		JSON object	

그림 9 HELLO_NS diagram

o HELLO_APP 메시지는 LoRaWAN Controller가 Application Server에게 Network Server의 IP 주소를 알려주는 메시지이다.

표 13 HELLO_APP format

Offset	Number of octets	Function	Value
0	4	total payload length	
1	2	Protocol version	0
3	1	HELLO_GW identifier	0x04
4		JSON object	

2.2.3. Network Server <-> Application Server

o APP_DATA_UP 메시지는 Network Server에서 Application Server로 메시지를 보낼 때 사용하는 메시지이다.

표 14 APP_DATA_UP format

Offset	Number of octets	Function	Value
0	1	Protocol Version	0
1	1	APP_DATA_UP	0
1	1	identifier	U

2	4	Device Address	0x00
6		JSON object	

o APP_DATA_DOWN 메시지는 Network Server에서 Application Server로 메시지를 보낼 때 사용하는 메시지이다.

亞 15 APP_DATA_DOWN format

Offset	Number of octets	Function	Value
0	1	Protocol Version	
1	1	APP_DATA_DOWN	0
1	1	identifier	U
2	4	Device Address	0x01
6		JSON object	

2.3. JSON 프로토콜

2.3.1. Gateway <-> Network Server

o stat (Gateway -> Network Server)

표 16 stat JSON object

Name	Required	Туре	Function
time	No	string	UTC system time of the

			gateway.
			(ISO 8601)
lati	No	float	The latitude of the
lati	INU	Hoat	gateway
long	No	float	The longitude of the
long	INU	Hoat	gateway
alti	No	signed integer	The altitude of the
aiti	INU	signed integer	gateway
rxnb	No	unsigned integer	The number of radio
TXIID	INU	unsigned integer	frames received
			The number of radio
rxok	No	unsigned integer	frames received with
			correct CRC
			The number of radio
rxfw	No	unsigned integer	frames forwarded to
			network server
1	NI.		Proportion of radio
ackr	No	unsigned integer	frames acknowledged
dwnb	No	uncioned integer	The number of radio
awno	INO	unsigned integer	frames received
txnb	No	ungioned integer	The number of radio
txiib	INU	unsigned integer	frames transmitted

o rxpk (Gateway -> Network Server)

표 17 rxpk JSON object

Name	Required	Туре	Function
	•	•	UTC system time of the
time	No	Chrima	receipt of the LoRa
ume	INO	String	frame
			(ISO 8601)
			The value of the
tmst	Yes	unsigned integer	gateway internal time
			counter
freq	Yes	unsigned float	The frequency of the
ireq	103	unsigned noat	signal
chan	Yes	unsigned integer	Concentrator "IF"
Chari	165	unbighed integer	channel
rfch	Yes	unsigned integer	Concentrator radio
Tierr	165	anoighea mieger	freqency chain
			The result of the
stat	Yes	signed integer	gateway's CRC test on
			the frame
modu	Yes	string	The modulation
			technique used
datr	Yes	string	Datarate identifier
codr	Yes	string	ECC code rate
rssi	Yes	signed integer	The measured received
1551	res	signed integer	signal strength in dBm
			The measured received
lsnr	Yes	signed float	signal to noise ratio in
			dBm
size	No	unsigned integer	the number of octetc in

			the receivied frame
data	Voc	etring	The frame payload
data	Yes	string	encoded into Base64

o txpk (Network Server -> Gateway)

표 18 txpk JSON object

Name	Required	Туре	Function
	<u>*</u>	J I	If true, the gateway is
imme	No	boolean	commanded to transmit
			the frame immediately
			If "imme" is not true
			and "tmst" is present,
			the gateway is
			commanded to transmit
t-ma a t	No	umaiamad intaaau	the frame
tmst	NO	unsigned integer	
			when its internal
			timestamp counter
			equals the
			value of "tmst"
			If "imme" is false or not
			present and "tmst" is
,.	3/		not
time	Yes	string	present, the gateway is
			commanded to transmit
			the frame at this time
			The centre frequency on
			when the frame is to be
freq	No	unsigned float	transmitted in units of
			MHz
			The antenna on which
			the gateway is
rfch	Yes	unsigned integer	commanded
			to transmit the frame
			The output power which
powe	No	signed integer	what the gateway is
1			commanded to transmit
			the frame
modu	No	string	The modulation
			technique to be used
datr	No	string	Datarate identifier
			ECC code rate. "codr"
			comprises the string
			"k/n",
codr	Yes	string	where 'k' represents the
			carried bits and 'n' the
			total number of bits
			transmitted
			If true, commands
			gateway to invert the
ipol	Yes	bool	
			polarity of
			the transmitted bits

-				
	ai_a	NIa		The number of octets in
	size	No	unsigned integer	the received frame
	•			The frame payload,
	data	No	string	encoded into Base64
				If not false, disable
	nara	No	bool	physical layer CRC
	ncrc	NO	0001	generation
				by the transmitter

2.3.2. Controller -> Servers , gateway

o "NS", "APP", "GW", "DEV"

표 19 JSON object between Controller and servers,gateway

Name	Required	Туре	Function
ip_address	except "DEV"	string	ip address
APP EUI	only for APP	string	Application
THI _LOI	Offiny for 741 f	Stillig	identifier
DEV_EUI	only for DEV	string	Device identifier

2.3.3. Network Server -> Application Server

표 20 JSON object between Network Server and Application Server

Name	Required	Туре	Function
from	Yes	leveto	key for
fport	res	byte	encryption
data	Yes	float	Data of the
data	res	Hoat	device
long	Vac	float	The longitude of
long	Yes	noat	the gateway
1.0	V	0 1	The latitude of
lati	Yes	float	the gateway
gwEUI	Yes	string	Gateway identifier

3. LoRaWAN Network Server

3.1. 기능

o Network Server는 LoRaWAN device와의 통신을 위한 가장 핵심적인 기능들을 수행 한다. 현재는 Device의 인증 (Activation By Personalization) , LoRaWAN device의 데이터 암호화 및 복호화 , uplink 통신(network server -> application server)시 해당 appliocation server로 포워딩, downlink 통신(network server -> device)시 통신 상태를 고려한 gateway 선정, gateway 부하 모니터링 등의 기능 을 수행하고 있다.

o 앞으로 추가되어야 할 기능으로는 첫 번째로 원활한 무선구간 통신을 위한 Class 별 MAC Command를 통한 device 제어 기능이 추가 되어야 한다. 그리고 device activation을 위한 OTAA (Over-the-Air Activation)기능 또한 추가되어야 한다.

3.2. HW 시스템 환경

o 테스트에 사용한 OpenStack flavor는 다음 표와 같다.

표 21 Network Server용 flavor

VCPUs	RAM(MB)	Root Disk(GB)	Ephemeral	Swap Disk
VCIUS	(MAIVI(IVID)	Root Disk(GD)	Disk(GB)	(MB)
1	1024	5	1	0

3.3. SW 시스템 환경

o 테스트에 사용한 SW 시스템 환경은 다음과 같다.

	Network Server
	Java 1.8
Ubuntı	u Server 14.04 LTS (Trusty Tahr)
QEM	1U(OpenStack Liberty stable)
	Ubuntu Server 14.04.3
	Vmware Workstation
	Windows 7

그림 12 Network Server 시스템 환경

3.4. 운용방법 및 검증

o Horizon의 " Create LoRaWAN Network " 탭을 이용하여 망을 생성하면 ubuntu 계정의 디렉토리에 LoRaWAN_heat_script.yaml 파일이 생성되며 heat stack을 생성한다. LoRaWAN Controller는 입력받은 정보들을 토대로 연결을 허용해줄 gateway , application server 목록들을 Network Server로 전달한다. Network Server는 전달받은 목록들의 연결만 허용한다. 망을 생성하는데 사용한 heat template 에는 network server가 부팅이 완료된 후에 자동으로 구동할 수 있도록 쉘 스크립트를 추가 하였다.

```
ntw:
    type: OS::Nova::Server
    properties:
    name: LoRaWAN Network Server
    inage: ( get_param: inage )
    flavor: { get_param: flavor }
    key_name: { get_param: key_name }
    networks:
        - port: { get_resource: ntw_port }
    user_data_format: RAW
    user_data_i |
        #!/bin/sh
        echo start > /home/ubuntu/bootup.log
        sudo apt-get update
        sudo apt-get install sshpass -y
        sshpass -y qwer1234 scp -o StrictHostKeyChecking=no stack@192.168.10.19:/home/stack/ns.jar /home/ubuntu/ns.jar
        /etc/jre1.8.0_74/bin/java -jar /home/ubuntu/ns.jar 192.168.10.19 > /home/ubuntu/bootup.log
        echo end > /home/ubuntu/end.log
```

그림 13 heat template의 network server 쉘 스크립트

o 추가한 쉘 스크립트는 SCP를 통해 구동에 필요한 network server JAR 파일을 받아오고 Controller의 주소를 argument로 구동을 하게 한다. Network server가 정상적으로 구동중인지를 확인하려면 현재 열려있는 포트를 조회하면 알 수 있다. 1680 (gateway), 1683 (Controller), 1681 (Application Server)들이 목록에 보이면 연결이 정상적으로 맺어진 상태이다.

```
🖱 🗊 ubuntu@lorawan-network-server: ~
 ile Edit View Search Terminal Help
ubuntu@lorawan-network-server:-$ netstat -nap
(No info could be read for "-p": geteuid()=1000 but you should be root.)
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
0 0 0.0.0.0:22 0.0.0.0:* LIST
                                                                                                                                     State
LISTEN
                                                                                                                                                             PID/Program name
                                  0 20.2.0.12:22
0 :::1681
                                                                                      192.168.10.19:40073
                                                                                                                                      ESTABLISHED
                                                                                                                                      LISTEN
                                                                                                                                     LISTEN
                                  0 20.2.0.12:60019
0 20.2.0.12:1681
                                                                                                                                     ESTABLISHED
ESTABLISHED
                                                                                      192.168.10.19:1683
                                                                                      192.168.10.178:39783
192.168.10.179:52242
0.0.0.0:*
0.0.0.0:*
                                   0 20.2.0.12:1681
0 0.0.0.0:25100
0 0.0.0.0:68
                                                                                                                                     ESTABLISHED
                                         ::38186
```

그림 14 Network Server의 구동확인

o 구동관련 로그를 실시간으로 확인하려면 Network Server 프로세스를 kill 명령어로 종료시킨 후 , SCP로 받아온 ns.jar파일을 controller 주소로 argument로 하여 재 실행 하면 관련 로그를 확인할 수 있다.

그림 15 Network Server 구동 로그

4. LoRaWAN Gateway

4.1.1. 기능

o LoRaWAN Gateway는 device와 Network Server사이에서 단순히 데이터를 포워 당하는 역할을 수행한다. LoRaWAN Controller가 HELLO_GW 메시지를 통해 데이터를 포워딩해야할 목적지의 주소를 전달하고 이를 수신한 Gateway는 해당하는 목적지의 주소로 device의 데이터를 포워딩 한다. 이때 무선 통신 구간의 상태를 짐작할 수 있는 파라미터 값들을 추가로 JSON형태로 추가하여 Network Serrver로 포워딩 한다. 현재 데이터 포워딩을 제외하고 특별한 기능을 수행하고 있지는 않다.

4.1.2. HW 시스템 환경

o kerlink 사의 LoRa IoT Station 868MHz

그림 16 LoRa IoT Station

4.1.3. SW 시스템 환경

o Packet_forwarder application은 Semtech에서 제공하는 LoRa HAL을 기반으로 동작한다. Packet_forwarder application과 LoRa HAL은 github에 공개되어 있으며 추가로 device관련 예제 코드도 공개되어있다.

그림 18 Gateway SW 시스템 환경 #1 o kerlink IoT Station에서 사용되는 리눅스 커널과 펌웨어는 http://wikikerlink.fr/lora-station 에 공개 되어 있으며 현재 실험환경 구성에 사용된 버전은 다음과 같다.

4.1.4. 운용방법 및 검증

```
[root@Wirgrid_0806038d /root] # get_version -u -v
KERNEL_VER=3.10.37-klk-d26c52
PIC_VER=8.3
BOOTSTRAP_VER=
UBOOT_VER=1610
SCRIPT_VER=1610
INITRAMFS_VER=g4b3543a
FILESYSTEM_VER=2011.08-gdbb0f32
KNETD_VER="wirma2_v3.10 WAN_3.15 (Apr 14 2015-11:18:56)"
PROD_FW=wirmaV2_wirgrid_v2.2
LORABOARD_MANUFACTURER=00
LORABOARD_TYPE="868-27dBm"
LORABOARD_HWYERSION=05
LORABOARD_SFP1ALNO=00201F
```

그림 19 Gateway SW 시스템 환경 #2

o Semtech에서 제공하는 순수한 Packet_forwarder application의 경우 처음 실행하면config 파일을 읽어서 데이터를 포워딩할 목적지를 정한다. 우리는 데이터의 목적지를 LoRaWAN Controller로부터 받아올 수 있도록 어플리케이션이 실행되면 Controller로 TCP 소켓통신을 하여 HELLO_GW 메시지를 받는 절차를 추가 하였다. Controller로부터 HELLO_GW 메시지를 정상적으로 수신한다면 아래와 같은 로그를 확인할 수 있다.

```
INFO: try connection .

INFO: connection complete .

INFO: read size 44

,{"NS":{"ip_address":"192.168.10.177"}}INFO: 1server hostname or IP address is c onfigured to "192.168.10.177"

INFO: 2server hostname or IP address is configured to "192.168.10.177"

INFO: [main] concentrator started, packet can now be received WARNING: [gps] GPS out of sync, keeping previous time reference WARNING: [gps] GPS out of sync, keeping previous time reference INFO: [down] PULL_ACK received in 9 ms
```

그림 20 Gateway log #1

o Device의 데이터와 gateway의 gps정보가 정상적으로 수신되면 아래와 같은 로그를 확인할 수 있다.

```
###### 2016-03-29 11:41:46 GMT #####
### [UPSTREAM] ###
# RF packets received by concentrator: 1
# CRC_OK: 100.00%, CRC_FAIL: 0.00%, NO_CRC: 0.00%
# RF packets forwarded: 1 (17 bytes)
# PUSH_DATA datagrams sent: 2 (390 bytes)
# PUSH_DATA acknowledged: 100.00%
### [DOWNSTREAM] ###
# PULL_DATA sent: 1 (100.00% acknowledged)
# PULL_RESP(onse) datagrams received: 1 (167 bytes)
# RF packets sent to concentrator: 1 (17 bytes)
# TX errors: 0
### [GPS] ###
# Valid time reference (age: 1 sec)
# GPS coordinates: latitude 37.62045, longitude 127.05935, altitude 52 m
###### END ####
INFO: [up] PUSH_ACK received in 2 ms
```

그림 21 Gateway log #2

References

- [1] LoRaWAN Specification V1.0 , https://www.lora-alliance.org/
- [2] LoRaWAN Network Server Demonstration: Gateway to Server Interface Definition , http://iot.semtech.com/
- [3] Installation of OpenStack All-In-One Single Machine , http://docs.openstack.org/developer/devstack/guides/single-machine.html
- [4] Heat template examples ,https://github.com/openstack/heat-templates/tree/master/hot

K-ONE 기술 문서

- K-ONE 컨소시엄의 확인과 허가 없이 이 문서를 무단 수정하여 배포하는 것을 금지합니다.
- 이 문서의 기술적인 내용은 프로젝트의 진행과 함께 별도의 예고 없이 변경 될 수 있습니다.
- 본 문서와 관련된 문의 사항은 아래의 정보를 참조하시길 바랍니다. (Homepage: http://opennetworking.kr/projects/k-one-collaboration-project/wiki, E-mail: k1@opennetworking.kr)

작성기관: K-ONE Consortium

작성년월: 2016/01