Chapter 4 – Dimension Reduction

Data Mining for Business Intelligence Shmueli, Patel & Bruce

Exploring the data

Statistical summary of data: common metrics

- Average
- Median
- Minimum
- Maximum
- Standard deviation
- Counts & percentages

Summary Statistics – Boston Housing

	Average	Median	Min	Max	Std	Count	Countblank
CRIM	3.61	0.26	0.01	88.98	8.60	506	0
ZN	11.36	0.00	0.00	100.00	23.32	506	0
INDUS	11.14	9.69	0.46	27.74	6.86	506	0
CHAS	0.07	0.00	0.00	1.00	0.25	506	0
NOX	0.55	0.54	0.39	0.87	0.12	506	0
RM	6.28	6.21	3.56	8.78	0.70	506	0
AGE	68.57	77.50	2.90	100.00	28.15	506	0
DIS	3.80	3.21	1.13	12.13	2.11	506	0
RAD	9.55	5.00	1.00	24.00	8.71	506	0
TAX	408.24	330.00	187.00	711.00	168.54	506	0
PTRATIO	18.46	19.05	12.60	22.00	2.16	506	0
В	356.67	391.44	0.32	396.90	91.29	506	0
LSTAT	12.65	11.36	1.73	37.97	7.14	506	0
MEDV	22.53	21.20	5.00	50.00	9.20	506	0

Correlations Between Pairs of Variables: Correlation Matrix from Excel

	PTRATIO	В	LSTAT	MEDV
PTRATIO	1			
В	-0.17738	1		
LSTAT	0.374044	-0.36609	1	
MEDV	-0.50779	0.333461	-0.73766	1

Summarize Using Pivot Tables

Counts & percentages are useful for summarizing categorical data

Boston Housing example:

471 neighborhoods border the Charles River (1)

35 neighborhoods do not (0)

Count of MEDV	
CHAS	Total
0	471
1	35
Grand Total	506

Pivot Tables - cont.

Averages are useful for summarizing grouped numerical data

Boston Housing example:

Compare average home values in neighborhoods that border Charles River (1) and those that do not (0)

Average of MEDV	'		
CHAS		Total	
	C		22.09
•	1		28.44
Grand Total			22.53

Pivot Tables, cont.

Group by multiple criteria:

- By # rooms and location
- E.g., neighborhoods on the Charles with 6-7 rooms have average house value of 25.92 (\$000)

Average of MEDV	CHAS		
RM	0	1	Grand Total
3-4 4-5	25.30		25.30
4-5	16.02		16.02
5-6	17.13	22.22	17.49
6-7	21.77	25.92	22.02
7-8	35.96	44.07	36.92
8-9	45.70	35.95	44.20
Grand Total	22.09	28.44	22.53

Pivot Table - Hint

- To get counts, drag any variable (e.g. "ID") to the data area
- Select "settings" then change "sum" to "count"

Correlation Analysis

Below: Correlation matrix for portion of Boston

Housing data

Shows correlation between variable pairs

	CRIM	ZN	INDUS	CHAS	NOX	RM
CRIM	1					
ZN	-0.20047	1				
INDUS	0.406583	-0.53383	1			
CHAS	-0.05589	-0.0427	0.062938	1		
NOX	0.420972	-0.5166	0.763651	0.091203	1	
RM	-0.21925	0.311991	-0.39168	0.091251	-0.30219	1

Reducing Categories

- A single categorical variable with m categories is typically transformed into m-1 dummy variables
- Each dummy variable takes the values 0 or 1
 0 = "no" for the category
 1 = "yes"
- Problem: Can end up with too many variables
- Solution: Reduce by combining categories that are close to each other
- Use pivot tables to assess outcome variable sensitivity to the dummies
- Exception: Naïve Bayes can handle categorical variables without transforming them into dummies

Combining Categories

Many zoning categories are the same or similar with respect to CATMEDV

Principal Components Analysis

Goal: Reduce a set of numerical variables.

The idea: Remove the overlap of information between these variable. ["Information" is measured by the sum of the variances of the variables.]

Final product: A smaller number of numerical variables that contain most of the information

Principal Components Analysis

How does PCA do this?

- •Create new variables that are linear combinations of the original variables (i.e., they are weighted averages of the original variables).
- •These linear combinations are uncorrelated (no information overlap), and only a few of them contain most of the original information.
- The new variables are called principal components.

Example - Breakfast Cereals

name	mfr	type	calories	protein	rating
100%_Bran	Ν	С	70	4	68
100%_Natural_Bran	Q	С	120	3	34
All-Bran	K	С	70	4	59
All-Bran_with_Extra_Fiber	K	С	50	4	94
Almond_Delight	R	С	110	2	34
Apple_Cinnamon_Cheerios	G	С	110	2	30
Apple_Jacks	K	С	110	2	33
Basic_4	G	С	130	3	37
Bran_Chex	R	С	90	2	49
Bran_Flakes	Р	С	90	3	53
Cap'n'Crunch	Q	С	120	1	18
Cheerios	G	С	110	6	51
Cinnamon_Toast_Crunch	G	С	120	1	20

Description of Variables

Name: name of cereal

mfr: manufacturer

type: cold or hot

calories: calories per

serving

protein: grams

fat: grams

sodium: mg.

fiber: grams

carbo: grams complex

carbohydrates

sugars: grams

potass: mg.

vitamins: % FDA rec

shelf: display shelf

weight: oz. 1 serving

cups: in one serving

rating: consumer reports

Consider calories & ratings

```
calories ratings
calories 379.63 -189.68
ratings -189.68 197.32
```

 Total variance (="information") is sum of individual variances: 379.63 + 197.32

• Calories accounts for 379.63/197.32 = 66%

First & Second Principal Components

 Z_1 and Z_2 are two linear combinations.

- Z₁ has the highest variation (spread of values)
- Z₂ has the lowest variation

PCA output for these 2 variables

Top: weights to project original data onto $z_1 \& z_2$ e.g. (-0.847, 0.532) are

weights for Z₁

Bottom: reallocated variance for new variables

z₁: 86% of total variance

z₂: 14%

	Components				
Variable	1	2			
calories	-0.84705347	0.53150767			
rating	0.53150767	0.84705347			

Variance	498.0244751	78.932724
Variance%	_ 86.31913757	13.68086338
Cum%	86.31913757	100
P-value	0	1

Principal Component Scores

XLMiner: Principal Components Analysis - Scores

Row Id.	1	2
100%_Bran	44.92	2.20
100%_Natural_Bran	-15.73	-0.38
All-Bran	40.15	-5.41
All-Bran_with_Extra_Fiber	75.31	13.00
Almond_Delight	-7.04	-5.36
Apple_Cinnamon_Cheerios	-9.63	-9.49
Apple_Jacks	-7.69	-6.38
Basic_4	-22.57	7.52
Bran_Chex	17.73	-3.51

Weights are used to compute the above scores

• e.g., col. 1 scores are computed z_1 scores using weights (-0.847, 0.532)

Properties of the resulting variables

New distribution of information:

- New variances = 498 (for z_1) and 79 (for z_2)
- <u>Sum</u> of variances = sum of variances for original variables calories and ratings
- New variable z_1 has most of the total variance, might be used as proxy for both *calories* and *ratings*
- z₁ and z₂ have correlation of zero (no information overlap)

Generalization

 $X_1, X_2, X_3, ... X_p$, original p variables

 Z_1 , Z_2 , Z_3 , ... Z_p , weighted averages of original variables

All pairs of Z variables have 0 correlation

Order Z's by variance (z_1 largest, z_p smallest)

Usually the first few Z variables contain most of the information, and so the rest can be dropped.

PCA on full data set

Variable	1	2	3	4	5	6
calories	0.07624155	-0.01066097	0.61074823	-0.61706442	0.45754826	0.12601775
protein	-0.00146212	0.00873588	0.00050506	0.0019389	0.05533375	0.10379469
fat	-0.00013779	0.00271266	0.01596125	-0.02595884	-0.01839438	-0.12500292
sodium	0.98165619	0.12513085	-0.14073193	-0.00293341	0.01588042	0.02245871
fiber	-0.00479783	0.03077993	-0.01684542	0.02145976	0.00872434	0.271184
carbo	0.01486445	-0.01731863	0.01272501	0.02175146	0.35580006	-0.56089228
sugars	0.00398314	-0.00013545	0.09870714	-0.11555841	-0.29906386	0.62323487
potass	-0.119053	0.98861349	0.03619435	-0.042696	-0.04644227	-0.05091622
vitamins	0.10149482	0.01598651	0.7074821	0.69835609	-0.02556211	0.01341988
shelf	-0.00093911	0.00443601	0.01267395	0.00574066	-0.00823057	-0.05412053
weight	0.0005016	0.00098829	0.00369807	-0.0026621	0.00318591	0.00817035
cups	0.00047302	-0.00160279	0.00060208	0.00095916	0.00280366	-0.01087413
rating	-0.07615706	0.07254035	-0.30776858	0.33866307	0.75365263	0.41805118
Variance	7204.161133	4833.050293	498.4260864	357.2174377	72.47863007	4.33980322
Variance%	55.52834702	37.25226212	3.84177661	2.75336623	0.55865192	0.0334504
Cum%	55.52834702	92.78060913	96.62238312	99.37575531	99.93440247	99.96785736

- First 6 components shown
- First 2 capture 93% of the total variation
- Note: data differ slightly from text

Normalizing data

- In these results, sodium dominates first PC
- Just because of the way it is measured (mg), its scale is greater than almost all other variables
- Hence its variance will be a dominant component of the total variance
- Normalize each variable to remove scale effect
 Divide by std. deviation (may subtract mean first)
- Normalization (= standardization) is usually performed in PCA; otherwise measurement units affect results
- Note: In XLMiner, use correlation matrix option to use normalized variables

PCA using standardized variables

Variable	1	2	3	4	5	6
calories	0.32422706	0.36006299	0.13210163	0.30780381	0.08924425	-0.20683768
protein	-0.30220962	0.16462311	0.2609871	0.43252215	0.14542894	0.15786675
fat	0.05846959	0.34051308	-0.21144024	0.37964511	0.44644874	0.40349057
sodium	0.20198308	0.12548573	0.37701431	-0.16090299	-0.33231756	0.6789462
fiber	-0.43971062	0.21760374	0.07857864	-0.10126047	-0.24595702	0.06016004
carbo	0.17192839	-0.18648526	0.56368077	0.20293142	0.12910619	-0.25979191
sugars	0.25019819	0.3434512	-0.34577203	-0.10401795	-0.27725372	-0.20437138
potass	-0.3834067	0.32790738	0.08459517	0.00463834	-0.16622125	0.022951
vitamins	0.13955688	0.16689315	0.38407779	-0.52358848	0.21541923	0.03514972
shelf	-0.13469705	0.27544045	0.01791886	-0.4340663	0.59693497	-0.12134896
weight	0.07780685	0.43545634	0.27536476	0.10600897	-0.26767638	-0.38367996
cups	0.27874646	-0.24295618	0.14065795	0.08945525	0.06306333	0.06609894
rating	-0.45326898	-0.22710647	0.18307236	0.06392702	0.03328028	-0.16606605
Variance	3.59530377	3.16411042	1.86585701	1.09171081	0.96962351	0.72342771
Variance%	27.65618324	24.3393116	14.35274601	8.39777565	7.45864248	5.5648284
Cum%	27.65618324	51.99549484	66.34824371	74.74601746	82.20465851	87.76948547

- First component accounts for smaller part of variance
- Need to use more components to capture same amount of information

Principal Component Analysis

<u>Idea</u>

- Feature Selection 이 아닌 Linear Combination of features.
- d차원 -> M(<d) 차원(Intrinsic Dimension)

<u>목적</u>

Basis Set : {x₁, x₂} {u₁, u₂} *d*차원을 span하는 basis set은 ⁻*d*개의 벡터로 구성

PCA

예)

- x_1, x_2 중의 택일 보다는 $a = x_1 + x_2$ 라는 x_1, x_2 의 선형조합의 새로운 변수가 더유용 (cf. $b = x_1 x_2$)
- Why? *a*의 분산이 *b*나 *x*1, *x*2의 분산보다 크다.
- What ? (x1, x2) -> a; dimensionality reduction (2->1)

또는
$$a = \frac{1}{\sqrt{2}} (1, 1) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{w}^\mathsf{T} \mathbf{x}$$

PCA - 계속

Algorithm

Given $\{ x^n : n = 1,, N \}$ (Training Data set),

- 1. Normalize (Where)
- 2. Compute the eigenvalues λ 's of covariance matrix (correlation) of x^{n} ,

$$\widetilde{\mathbf{x}}^{n} = \mathbf{x}^{n} - \widetilde{\mathbf{x}}$$

$$\Sigma = E(\mathbf{x}^{n} \mathbf{x})$$

$$\mathbf{x} = \frac{1}{N} \sum_{n} \mathbf{x}^{n}$$

3. Then choose the M largest λ 's and project x^n onto these M corresponding orthonormal eigenvectors, respectively Result : x^n (d차원) -> z^n (M차원)

PCA - 예제

Training Pattern =
$$\begin{cases} \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{cases}$$

$$\overline{x} = 0 \text{ Olded}$$

$$\Sigma = (\text{covariance M}) = (\text{correlation M})$$

$$= \sum_{i=1}^{7} x^{i} x^{i}^{\top} = \frac{1}{7} \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$$

$$\sum e = \lambda e \stackrel{\text{def}}{=} \stackrel{\text{Ed}}{=} E$$

$$\lambda_{1} = 6, \lambda_{2} = 4$$

$$e_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, e_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \text{ respectively}$$

PCA - 예제 2

One – dimension 으로 줄이면 e_1 으로 projection 함. Training Patterns

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1, 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \frac{-1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1, 1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \frac{-2}{\sqrt{2}}$$

$$\vdots$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1, 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{2}{\sqrt{2}}$$

$$\left\{ \frac{-1}{\sqrt{2}}, \frac{-2}{\sqrt{2}}, \frac{0}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}} \right\}$$

PCA - 기하적 의미

PCA

[문제] Given x (input vectors),
we want to find the most principal(중요한)
component

[답] Compute the largest eigenvalue of correlation (covariance) matrix of input ptns(i.e. $E[xx^T]$), λ_0 , then project x onto $\vec{e}_0(\lambda_0$ 의 짝 maximal e-vector).

PCA - 결론

- PCA는 기본적으로 unsupervised, 즉 target info 사용 안함.

PCA에서는 을 선택 그러나 가 바람직 U_2

- 실제로 매우 유용

PCA in Classification/Prediction

- Apply PCA to training data
- Decide how many PC's to use
- Use variable weights in those PC's with validation/new data
- This creates a new reduced set of predictors in validation/new data

Regression-Based Dimension Reduction

- Multiple Linear Regression or Logistic Regression
- Use subset selection
- Algorithm chooses a subset of variables
- This procedure is integrated directly into the predictive task

Decision Tree-Based Dimension Reduction

- Decision Tree's learning algorithm or recursive partitioning, automatically chooses variables that are useful for prediction / classification
- If a variable is not useful, it is not chosen by DT

Neural Networks, Support Vectors

- Most other models do NOT provide dimension reduction technique
- You have to feed the ones that are useful

Filter vs Wrapper

Variable combination vs variable selection

- Filter vs Wrapper
 - Filter: unsupervised ~ Correlation based, PCA
 - Wrapper: supervised ~ Forward selection, Genetic Algorithm Wrapper
 - 1: Choose a set of variables
 - 2: Train a model with the set
 - 3: If it is good enough, stop. Otherwise, go to step 1

Summary

- Data summarization is an important for data exploration
- Data summaries include numerical metrics (average, median, etc.) and graphical summaries
- Data reduction is useful for compressing the information in the data into a smaller subset
 - Categorical variables can be reduced by combining similar categories
 - Principal components analysis transforms an original set of numerical data into a smaller set of weighted averages of the original data that contain most of the original information in less variables.