Explaining the Bag Gain in Batch Steganography

Eli Dworetzky, Jessica Fridrich

IH&MMSEC 2023

Batch / Pooled Stego

Alice

- spreads payload across a bag of images
- maintains fixed communication rate r > 0

Warden

- inspects a bag of B images $\mathbf{X} = (X_1, \dots, X_B)$
- ullet has a single-image detector d
- pools the soft outputs¹ $d(X_1), \ldots, d(X_B)$ to decide:

$$\mathcal{H}_0$$
: **X** is cover $(r=0)$

$$\mathcal{H}_1$$
: **X** is stego $(r > 0)$

¹E.g. logits of neural network, outputs of quantitative steganalyzer, projection of linear classifier in a rich model, etc.

Who knows what

Alice does not need to know Warden's

- detector d
- pooling method

Warden knows Alice's

- communication rate r > 0
- ullet bag size B
- stego scheme
- spreading strategy
- cover source to train d

Performance vs. Bag Size

- Best pooler² for 3 spreading strategies
 - IMS: Image Merging Sender
 - SLS: Shift-limited Sender
 - MDS: Minimum Deflection Sender
- Fixed rate r = 0.3 bpp (HILL, ALASKA II)

²Y. Yousfi, E. Dworetzky, J. Fridrich, "Detector-Informed Batch Steganography and Pooled Steganalysis", IH&MMSEC 2022.

Warden's Pooler

- ullet Suppose detector outputs $d(X_1),\ldots,d(X_B)$ are Gaussian r.v.s
- ullet Embedding payload $lpha_i$ in image X_i shifts the mean by b_ilpha_i
- ullet The parameter b_i reflects the difficulty of steganalyzing image X_i

$$\mathcal{H}_0: \quad d(X_i) \sim \mathcal{N}(0,1) \quad \text{for all } i$$

 $\mathcal{H}_1: \quad d(X_i) \sim \mathcal{N}(b_i \alpha_i, 1) \quad \text{for all } i$

- Mean-shifted Gauss-Gauss problem ⇒ Warden's most powerful pooler is a correlator
- ullet Deflection coefficient describes detectability in bag ${f X}$

$$\Delta^2(\mathbf{X}) = \sum_{i=1}^B b_i^2 \alpha_i^2$$

Alice's Cover Source

Alice's cover source has two types of images: easy and hard.

Hard to steganalyze (complex content / strong noise)

- $b_i = \varepsilon > 0$ (small)
- selected with probability $p \in (0,1)$

Easy to steganalyze (smooth content / weak noise)

- $b_i = 1$
- ullet selected with probability 1-p

Bag loss and bag gain ($\varepsilon=0.05$, p=0.3)

Bag loss and bag gain in ALASKA II

