Solutions to Ireland, Rosen "A Classical Introduction to Modern Number Theory"

Richard Ganaye

November 7, 2024

Chapter 4

Ex. 4.1 Show that 2 is a primitive root modulo 29.

```
Proof. Let p = 29: p - 1 = 2^2 \times 7.

2^4 = 16 \neq 1[29]

2^{14} = 4^7 = 4 \times 16^3 = 64 \times 256 \equiv 6 \times (-34) = -204 \equiv 86 = 3 \times 29 - 1 \equiv -1[29]

2^{28} \equiv 1[29] and 2^d \neq 1 if d \mid 28, d < 28, hence 2 is a primitive element modulo 29. \square
```

Ex. 4.2 Compute all primitive roots for p = 11, 13, 17, and 19.

Proof. • p = 11. Then $p - 1 = 10 = 2 \times 5$.

 $2^2=4\not\equiv 1\pmod{11}$, and $2^5=32\equiv -1\not\equiv 1\pmod{11}$, so 2 is a primitive element modulo 11.

The other primitive elements modulo 11 are congruent to the powers $2^i, i \wedge 10 = 1, 1 \leq i < 10$, namely $2, 2^3, 2^7, 2^9$.

 $2^7 \equiv 7 \pmod{11}, 2^9 \equiv 6 \pmod{11}$, so

 $\{\overline{2}, \overline{8}, \overline{7}, \overline{6}\}$ is the set of the generators of $U(\mathbb{Z}/11\mathbb{Z})$.

Similarly:

- p = 13: $\{2, 6, 11, 7\}$ is the set of the generators of $U(\mathbb{Z}/13\mathbb{Z})$.
- $p = 17 : \{3, 10, 5, 11, 14, 7, 12, 6\}$ is the set of the generators of $U(\mathbb{Z}/17\mathbb{Z})$.
- $p = 19 : \{2, 13, 14, 15, 3, 10\}$ is the set of the generators of $U(\mathbb{Z}/19\mathbb{Z})$.

I obtain these results with the direct orders in S.A.G.E.:

```
p = 19; Fp = GF(p); a = Fp.multiplicative_generator()
print([a^k for k in range(1,p) if gcd(k,p-1) == 1])
```

Ex. 4.3 Suppose that a is a primitive root modulo p^n , p an odd prime. Show that a is a primitive root modulo p.

Proof. Suppose that a is a primitive root modulo p^n : then \overline{a} is a generator of $U(\mathbb{Z}/p^n\mathbb{Z})$. If a was not a primitive root modulo p, \overline{a} is not a generator of $U(\mathbb{Z}/p\mathbb{Z})$, so there exists $b \in \mathbb{Z}$, $b \wedge p = 1$ such that $a^k \not\equiv b \pmod{p}$ for all $k \in \mathbb{Z}$. A fortior $a^k \not\equiv b \pmod{p^n}$, and $b \wedge p^n = 1$, so $\overline{b} \in U(\mathbb{Z}/p^n\mathbb{Z})$ and $\overline{b} \not\in \langle \overline{a} \rangle$ in $U(\mathbb{Z}/p^n\mathbb{Z})$, in contradiction with the hypothesis. So a is a primitive root modulo p.

(the reasoning on the orders of a, modulo p and modulo p^n , is possible, but not so easy.)

Ex. 4.4 Consider a prime p of the form 4t + 1. Show that a is a primitive root modulo p iff -a is a primitive root modulo p.

Proof. Solution 1.

As. p-1 is even, $(-a)^{p-1} = a^{p-1} \equiv 1 \pmod{p}$.

If $(-a)^n \equiv 1 \pmod{p}$, with $n \in \mathbb{N}$, then $a^n \equiv (-1)^n \pmod{p}$.

If n is odd, then $a^n \equiv -1, a^{2n} \equiv 1 \pmod{p}$. As a is a primitive root modulo p, $p-1 \mid 2n, 2t \mid n$, so n is even: this is a contradiction.

Consequently, n is even, and $a^n \equiv 1 \pmod{p}$, so $p-1 \mid n$, so the least $n \in \mathbb{N}^*$ such that $a^n \equiv 1 \pmod{p}$ is p-1: the order of a modulo p is p-1, a is a primitive root modulo p.

Reciprocally, if -a is a primitive root modulo p, we apply the previous result at -a to to obtain that -(-a) = a is a primitive root.

Solution 2.

Let $p-1=2^{a_0}p_1^{a_1}\cdots p_k^{a_k}$ the decomposition of p-1 in prime factors. As p_i is odd for $i=1,2,\cdots k, (p-1)/p_i$ is even, and a is primitive, so

$$(-a)^{(p-1)/p_i} = a^{(p-1)/p_i} \not\equiv 1 \pmod{p},$$

 $(-a)^{(p-1)/2} = (-a)^{2k} = a^{2k} = a^{(p-1)/2} \not\equiv 1 \pmod{p}.$

So the order of a is p-1 modulo p (see Ex. 4.8): a is a primitive element modulo p. \square

Ex. 4.5 Consider a prime p of the form 4t+3. Show that a is a primitive root modulo p iff -a has order (p-1)/2.

Proof. Let a a primitive root modulo p.

As $a^{p-1} \equiv 1 \pmod{p}$, $p \mid (a^{(p-1)/2} - 1)(a^{(p-1)/2} + 1)$, so $p \mid a^{(p-1)/2} - 1$ or $p \mid a^{(p-1)/2} + 1$. As a is a primitive root modulo p, $a^{(p-1)/2} \not\equiv 1 \pmod{p}$, so

$$a^{(p-1)/2} \equiv -1 \pmod{p}.$$

Hence $(-a)^{(p-1)/2} = (-1)^{2t+1}a^{(p-1)/2} \equiv (-1) \times (-1) = 1 \pmod{p}$.

Suppose that $(-a)^n \equiv 1 \pmod{p}$, with $n \in \mathbb{N}$.

Then $a^{2n} = (-a)^{2n} \equiv 1 \pmod{p}$, so $p - 1 \mid 2n, \frac{p-1}{2} \mid n$.

So -a has order (p-1)/2 modulo p.

Reciprocally, suppose that -a has order (p-1)/2 = 2t+1 modulo p. Let $2, p_1, \ldots p_k$ the prime factors of p-1, where p_i are odd.

$$a^{(p-1)/2} = a^{2t+1} = -(-a)^{2t+1} = -(-a)^{(p-1)/2} \equiv -1$$
, so $a^{(p-1)/2} \not\equiv 1 \pmod{2}$.

As p-1 is even, $(p-1)/p_i$ is even, so

 $a^{(p-1)/p_i} = (-a)^{(p-1)/p_i} \not\equiv 1 \pmod{p}$ (since -a has order p-1).

So the order of a is p-1 (see Ex. 4.8): a is a primitive root modulo p.

Ex. 4.6 If $p = 2^{2^n} + 1$ is a Fermat prime, show that 3 is a primitive root modulo p.

Proof. Solution 1 (with quadratic reciprocity).

Write $p = 2^k + 1$, with $k = 2^n$.

We suppose that n > 0, so $k \ge 2, p \ge 5$. As p is prime, $3^{p-1} \equiv 1 \pmod{p}$.

In other words, $3^{2^k} \equiv 1 \pmod{p}$: the order of 3 is a divisor of 2^k , a power of 2.

3 has order 2^k modulo p iff $3^{2^{k-1}} \not\equiv 1 \pmod{p}$. As $\left(3^{2^{k-1}}\right)^2 \equiv 1 \pmod{p}$, where p is prime, this is equivalent to $3^{2^{k-1}} \equiv -1 \pmod{p}$, which remains to prove.

$$3^{2^{k-1}} = 3^{(p-1)/2} \equiv \left(\frac{3}{p}\right) \pmod{p}.$$

As the result is true for p=5, we can suppose $n\geq 2$. From the law of quadratic reciprocity:

$$\left(\frac{3}{p}\right)\left(\frac{p}{3}\right) = (-1)^{(p-1)/2} = (-1)^{2^{k-1}} = 1.$$

So $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right)$

$$p = 2^{2^n} + 1 \equiv (-1)^{2^n} + 1 \pmod{3}$$

 $\equiv 2 \equiv -1 \pmod{3}$,

so $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right) = -1$, that is to say

$$3^{2^{k-1}} \equiv -1 \pmod{p}.$$

The order of 3 modulo $p = 2^{2^n} + 1$ is $p - 1 = 2^{2^n} : 3$ is a primitive root modulo p. (On the other hand, if 3 is of order p - 1 modulo p, then p is prime, so

$$F_n = 2^{2^n} + 1$$
 is prime $\iff 3^{(F_n - 1)/2} = 3^{2^{2^n - 1}} \equiv -1 \pmod{F_n}$.)

Solution 2 (without quadratic reciprocity, with the hint of chapter 4).

As above, if if we suppose that 3 is not a primitive root modulo p, then $3^{2^{n-1}} \equiv 1 \pmod{p}$, so $n \geq 2$, and $(-3)^{(p-1)/2} = 3^{2^{n-1}} \equiv 1 \pmod{p}$, so -3 is a square modulo p: there exists $a \in \mathbb{Z}$ such that $-3 \equiv a^2 \pmod{p}$.

As $2 \wedge p = 1$, there exists $u \in \mathbb{Z}$ such that $2u \equiv -1 + a \pmod{p}$ (\overline{u} is similar to $\omega = \frac{-1+i\sqrt{3}}{2} \in \mathbb{C}$). Then

$$8u^{3} \equiv (-1+a)^{3}$$

$$\equiv -1+3a-3a^{2}+a^{3}$$

$$\equiv -1+3a+9-3a$$

$$\equiv 8 \pmod{p}$$

As $p \wedge 2 = p \wedge 8 = 1$, $u^3 \equiv 1 \pmod p$. Moreover, if $u \equiv 1 \pmod 3$, then $a \equiv 3 \pmod p$, $-3 \equiv 9 \pmod p$, $p \mid 12$, so p = 2 or p = 3, in contradiction with $p \geq 5$. So the order of u modulo p is $3 : (\mathbb{Z}/p\mathbb{Z})^*$ contains an element \overline{u} of order 3. So $3 \mid p-1$, $p \equiv 1 \pmod 3$, but $p \equiv (-1)^{2^n} + 1 \equiv 2 \equiv -1 \pmod 3$: this is a contradiction, so 3 is a primitive root modulo $p = 2^{2^n} + 1$.

Ex. 4.7 Suppose that p is a prime of the form 8t + 3 and that q = (p - 1)/2 is also a prime. Show that 2 is a primitive root modulo p.

Proof. The first examples of such couples (q, p) are (5, 11), (29, 59), (41, 83), (53, 107), (89, 179). <math>p = 2q + 1 = 8t + 3 and p, q are prime numbers.

From Fermat's little theorem, $2^{p-1} \equiv 1 \pmod{p}$, so $2^{2q} \equiv 1 \pmod{p}$.

The order of 2 modulo p divides 2q: to prove that the order of 2 is 2q = p - 1, it is suffisant to prove

$$2^2 \not\equiv 1 \pmod{p}, \quad 2^q \not\equiv 1 \pmod{p}.$$

If $2^2 \equiv 1 \pmod{p}$, then $p \mid 3$, p = 3 and q = 1 : q is not a prime, so $2^2 \not\equiv 1 \pmod{p}$. If $2^q = 2^{(p-1)/2} \equiv 1 \pmod{p}$, then 2 is a square modulo p (prop. 4.2.1) : there exists $a \in \mathbb{Z}$ such that $2 \equiv a^2 \pmod{p}$.

From the complementary case of law of quadratic reciprocity (see next chapter, prop. 5.1.3), 2 is a square modulo p iff

$$1 = \left(\frac{2}{p}\right) = (-1)^{(p^2 - 1)/8}.$$

Yet $p \equiv 3 \pmod 8$, so $p^2 \equiv 1 \pmod {16}$, $\binom{2}{p} = (-1)^{(p^2-1)/8} = -1$, so 2 is not a square modulo p. This is a contradiction, so $2^q \not\equiv 1 \pmod p$: 2 is a primitive root modulo p.

Ex. 4.8 Let p be an odd prime. Show that a is a primitive root modulo p iff $a^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all prime divisors q of p-1.

Proof. • If a is a primitive root, then $a^k \not\equiv 1$ for all $k, 1 \le k < p-1$, so $a^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all prime divisors q of p-1.

• In the other direction, suppose $a^{(p-1)/q} \not\equiv 1 \pmod p$ for all prime divisors q of p-1. Let δ the order of a, and $p-1=q_1^{a_1}q_2^{a_2}\cdots q_k^{a_k}$ the decomposition of p-1 in prime factors. As $\delta \mid p-1, \delta = q_1^{b_1}p_2^{b_2}\cdots q_k^{b_k}$, with $b_i \leq a_i, i=1,2,\ldots,k$. If $b_i < a_i$ for some index i, then $\delta \mid (p-1)/q_i$, so $a^{(p-1)/q_i} \equiv 1 \pmod p$, which is in contradiction with the hypothesis. Thus $b_i = a_i$ for all i, and $\delta = q-1$: a is a primitive root modulo p. \square

Ex. 4.9 Show that the product of all the primitive roots modulo p is congruent to $(-1)^{\phi(p-1)}$ modulo p.

Proof. Here we suppose p prime, p > 2. Let g a primitive root modulo p. $U(\mathbb{Z}/p\mathbb{Z})$ is cyclic, generated by \overline{g} :

$$U(\mathbb{Z}/p\mathbb{Z}) = \{\overline{1}, \overline{g}, \overline{g}^2, \dots, \overline{g}^{p-2}\}, \qquad \overline{g}^{p-1} = \overline{1}.$$

 \overline{g}^k is a primitive element iff $k \wedge (p-1) = 1$, so the product of primitive elements in $U(\mathbb{Z}/p\mathbb{Z})$ is

$$\overline{P} = \prod_{\substack{k \wedge (p-1)=1\\1 \le k < p-1}} \overline{g}^k.$$

so $\overline{P} = \overline{g}^S$, where $S = \sum_{\substack{k \wedge (p-1)=1\\1 \leq k < p-1}} k$.

From Ex. 2.22, we know that for $n \geq 2$,

$$\sum_{\substack{k \wedge n = 1 \\ 1 < k < n}} k = \frac{1}{2} n \phi(n).$$

So
$$S = \sum_{\substack{k \wedge (p-1)=1\\1 \le k < p-1}} k = \frac{1}{2}(p-1)\phi(p-1).$$

As p > 2, p-1 is even. $(\overline{g}^{(p-1)/2})^2 = \overline{g}^{p-1} = \overline{1}$, and $\overline{g}^{(p-1)/2} \neq \overline{1}$. As $\mathbb{Z}/p\mathbb{Z}$ is a field, $\overline{g}^{(p-1)/2} = -\overline{1}$.

Thus $\overline{P} = (-\overline{1})^{\phi(p-1)}$: so the product P of all the primitive roots modulo p is such that

$$P \equiv (-1)^{\phi(p-1)} \pmod{p}.$$

Ex. 4.10 Show that the sum of all the primitive roots modulo p is congruent to $\mu(p-1)$ modulo p.

Proof. Notation : $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is the field with p elements, |x| the multiplicative order of an element $x \in \mathbb{F}_p^*$, $\mathbb{N}^* = \{1, 2, 3, \ldots\}$.

$$\psi: \left\{ \begin{array}{ccc} \mathbb{N}^* & \to & \mathbb{F}_p \\ n & \mapsto & \psi(n) = \sum_{d \in \mathbb{F}_p^*, |d| = n} d \end{array} \right.$$

 $\psi(n)$ is the sum of the elements with order n in \mathbb{F}_p^* . So $\psi(n)=0$ if $n\nmid p-1$, and $S = \psi(p-1)$ is the sought sum of all the primitive roots modulo p.

We compute for all $n \in \mathbb{N}^*$

$$f(n) = \sum_{d|n} \psi(d).$$

f(n) is the sum of elements whose order divides n, in other worlds the sum of the roots of $x^n - 1$. This sum is, up to the sign, the coefficient of x^{n-1} , so is null, except in the case n=1, where the sum of the unique root 1 of x-1 is 1. So

$$f(1) = 1, \quad \forall n > 1, f(n) = 0,$$

 $(f = \chi_{\{1\}})$ is the characteristic function of $\{1\}$).

From the Möbius inversion formula, for all $n \in \mathbb{N}^*$, $\psi(n) = \sum_{d|m} \mu\left(\frac{n}{d}\right) f(d)$, so

$$\psi(p-1) = \sum_{d|p-1} \mu\left(\frac{p-1}{d}\right) f(d) = \mu(p-1).$$

Conclusion:

$$S = \sum_{d \in \mathbb{F}_n^*, |d| = p-1} d = \mu(p-1)$$
:

the sum of all the primitive roots modulo p is congruent to $\mu(p-1)$ modulo p.

Ex. 4.11 Prove that $1^k + 2^k + ... + (p-1)^k \equiv 0 \pmod{p}$ if $p-1 \nmid k$, and $-1 \pmod{p}$ if p - 1 | k.

Proof. Let $S_k = 1^k + 2^k + \dots + (p-1)^k$. Let g a primitive root modulo $p : \overline{g}$ a generator of \mathbb{F}_p^* . As $(\overline{1}, \overline{g}, \overline{g}^2, \dots, \overline{g}^{p-2})$ is a permutation of $(\overline{1}, \overline{2}, \dots, \overline{p-1})$,

$$\overline{S_k} = \overline{1}^k + \overline{2}^k + \dots + \overline{p-1}^k$$

$$= \sum_{i=0}^{p-2} \overline{g}^{ki} = \begin{cases} \overline{p-1} = -\overline{1} & \text{if } p-1 \mid k \\ \frac{\overline{g}^{(p-1)k} - 1}{\overline{g}^k - 1} = \overline{0} & \text{if } p-1 \nmid k \end{cases}$$

since $p-1 \mid k \iff \overline{g}^k = \overline{1}$.

Conclusion:

$$1^{k} + 2^{k} + \dots + (p-1)^{k} \equiv 0 \pmod{p} \text{ if } p - 1 \nmid k$$
$$1^{k} + 2^{k} + \dots + (p-1)^{k} \equiv -1 \pmod{p} \text{ if } p - 1 \mid k$$

4.12 Use the existence of a primitive root to give another proof of Wilson's $theorem(p-1)! \equiv -1 \pmod{p}$.

Proof. As the result is trivial if p=2, we suppose that p is an odd prime.

Let g a primitive root modulo p: \overline{g} a generator of \mathbb{F}_p^* .

As $(\overline{g}^{(p-1)/2})^2 = \overline{g}^{p-1} = \overline{1}$, and $\overline{g}^{(p-1)/2} \neq 1$ in the field \mathbb{F}_n^* , then $\overline{g}^{(p-1)/2} = -1$, and $(\overline{1}, \overline{g}, \overline{g}^2, \dots, \overline{g}^{p-2})$ is a permutation of $(\overline{1}, \overline{2}, \dots, \overline{p-1})$, so

$$\overline{(p-1)!} = \prod_{k=0}^{p-2} \overline{g}^k
= \overline{g}^{\sum_{k=0}^{p-2} k}
= \overline{g}^{(p-2)(p-1)/2}
= \left(\overline{g}^{(p-1)/2}\right)^{p-2}
= (-\overline{1})^{p-2}
= -1$$

Hence $(p-1)! \equiv -1 \pmod{p}$ for each prime p.

Ex. 4.13 Let G be a finite cyclic group and $g \in G$ a generator. Show that all the other generators are of the form g^k , where (k, n) = 1, n being the order of G.

Proof. Suppose $G = \langle g \rangle$, with Card G = n, so the order of g is n.

Let x another generator of G, then $x = g^k$, and $g = x^l$, $k, l \in \mathbb{Z}$, so $g = g^{kl}, g^{kl-1} =$ $e: n \mid kl-1$, then $kl-1=qn, q \in \mathbb{Z}$, so $n \wedge k=1$.

Reciprocally, if $u \wedge k = 1$, there exist $u, v \in \mathbb{Z}$ such that un + vk = 1, so $g = g^{un + vk} = 1$ $(g^n)^u(g^k)v=x^v\in\langle x\rangle$, so $G\subset\langle x\rangle$, $G=\langle x\rangle$: x is a generator of G.

Conclusion: if g is a generator of G, all the other generators are the elements g^k , where $k \wedge n = 1$, n = |G|.

Ex. 4.14 Let A be a finite abelian group and $a, b \in A$ elements of order m and n, respectively. If (m, n) = 1, prove that ab has order mn.

Proof. Suppose $|a|=m, |b|=n, m \wedge n=1$. • If $(ab)^k=e$, then $a^k=b^{-k}$, so $a^{kn}=b^{-kn}=(b^n)^{-k}=e$, so $m\mid kn$, with $m\wedge n=1$, so $m \wedge k$.

Similarly, $b^{km} = a^{-km} = (a^m)^{-k} = e$, so $n \mid km, n \land m = 1 : n \mid k$.

As $n \mid k, m \mid k, n \land m = 1, nm \mid k$.

• Reciprocally, if $nm \mid k, nm = qnm, q \in \mathbb{Z}$, so $(ab)^k = a^k b^k = (a^m)^{qn} (b^n)^{qm} = e$.

$$\forall k \in \mathbb{Z}, \ (ab)^k = e \iff nm \mid k.$$

So |ab| = nm.

Ex. 4.15 Let K be a field and $G \subset K^*$ a finite subgroup of the multiplicative group of K. Extend the arguments used in the proof of Theorem 4.1 to show that G is cyclic.

Solution 1.

Proof. Let n = |G|. From Lagrange's theorem, $a^n = 1$ for all $a \in G$, so the polynomial $x^n - 1 \in K[x]$ has exactly n roots in G, and so

$$\forall x \in K, x \in G \iff x^n = 1.$$

If $d \mid n$, the polynomial $x^d - 1 \in K[x]$ has exactly d roots in K otherwise $x^n - 1 = (x^d - 1)g(x), g(x) \in K[x]$, and $\deg(g) = n - d$ has at most n - d roots, so $x^n - 1$ would have less than n roots in K. As $x_0^d = 1 \Rightarrow x_0^n = 1$, all these roots are in $G : x^d - 1$ has d roots in G.

Let $\psi(d)$ the number of elements in G of order d ($\psi(d) = 0$ if $d \nmid n$). Then $\sum_{c|d} \psi(c) = d$. Applying the Möbius inversion theorem, $\psi(d) = \sum_{c|d} \mu(c) d/c = \Phi(d)$ (Prop. 2.2.5), in particular, $\psi(n) = \phi(n) > 1$ if n > 2. Since a group of order 2 is cyclic, we have shown in all cases the existence of an element of order n in G, so G is cyclic.

(variation: $\psi(d) = 0$ if there exists no element of order d, and $\psi(d) = \phi(d)$ otherwise: see Ex.4.13. So $\psi(d) \leq \phi(d)$ for all $d \mid n$. As $\sum_{d \mid n} \psi(d) = \sum_{d \mid n} \phi(d) = n$, $\psi(d) = \phi(d)$ for all $d \mid n$. So there exists in G an element of order n, and G is cyclic.)

Solution 2.

Proof. Let $n = |G| = p_1^{a_1} \cdots p_k^{a_k}$. From Lagrange's theorem, $y^n = 1$ for all $y \in G$. $p(x) = x^{n/p_1} - 1 \in K[x]$ has at most $n/p_1 < n$ roots in K^* , a fortiori in G, so there exists $a \in G$ such that $a^{n/p_1} \neq 1$.

Let $c_1 = a^{n/p_1^{a_1}} = a^{p_2^{a_2} \cdots p_k^{a_k}}$. Then $c_1^{p_1^{a_1}} = 1$ and $c_1^{p_1^{a_1-1}} = a^{n/p_1} \neq 1$, so $|c_1| = p_1^{a_1}$. Similarly, there exist c_2, \ldots, c_k with respective orders $|c_i| = p_i^{a_i}$.

From exercise 4.14, we obtain by induction that $c = c_1 \cdots c_k$ has order $p_1^{a_1} \cdots p_k^{a_k} = n$, so G is cyclic.

Ex. 4.16 Calculate the solutions to $x^3 \equiv 1 \pmod{19}$ and $x^4 \equiv 1 \pmod{17}$.

Proof. Here we note a the class of a in $\mathbb{Z}/p\mathbb{Z}$.

Let
$$x \in \mathbb{F}_{19}$$
. $x^3 - 1 = 0 \iff x - 1 = 0 \text{ or } x^2 + x + 1 = 0$.

$$x^{2} + x + 1 = 0 \iff (x + 10) - 99 = 0$$

 $\iff (x + 10)^{2} - 4 = 0$
 $\iff (x + 8)(x + 12) = 0$

So, for all $x \in \mathbb{Z}$,

$$x^3 \equiv 1 \pmod{19} \iff x \equiv 1, 7, 11 \pmod{19}$$
.

Let $x \in \mathbb{F}_{17}$.

$$x^4 = 1 \iff x^2 = 1 \text{ or } x^2 = -1 = 4^2$$

 $\iff x = \pm 1 \text{ or } x = \pm 4$

So, for all $x \in \mathbb{Z}$,

$$x^4 \equiv 1 \pmod{17} \iff x \equiv -1, 1, -4, 4 \pmod{17}.$$

Alternatively, we can take primitives roots modulo 19 and 17.

2 is a primitive root modulo 19, Let $x = 2^k \in \mathbb{F}_{19}$.

$$x^{3} = 1 \iff 2^{3k} = 1$$

$$\iff 18 \mid 3k$$

$$\iff 6 \mid k$$

$$\iff x = 1, 2^{6} = 7, 2^{12} = 11$$

3 is a primitive root modulo 17. Let $x = 3^k \in \mathbb{F}_{17}$.

$$x^{4} = 1 \iff 3^{4k} = 1$$

$$\iff 16 \mid 4k$$

$$\iff 4 \mid k$$

$$\iff x = 1, 3^{4} = -4, 3^{8} = -1, 3^{12} = 4$$

Ex. 4.17 Use the fact that 2 is a primitive root modulo 29 to find the seven solutions to $x^7 \equiv 1 \pmod{29}$.

Proof. Let $x \in \mathbb{Z}$, then $x \equiv 2^k \pmod{29}$, $k \in \mathbb{N}$.

$$x^7 \equiv 1 \pmod{29} \iff 2^{7k} \equiv 1 \pmod{29}$$

$$\iff 28 \mid 7k$$

$$\iff 4 \mid k$$

So the group cyclic S of the roots of $x^7 - 1$ in \mathbb{F}_{29} are

$$S = \{1, 2^4, 2^8, 2^{12}, 2^{16}, 2^{20}, 2^{24}\},$$

$$S = \{1, 16, 24, 7, 25, 23, 20\}.$$

Ex. 4.18 Solve the congruence $1 + x + \cdots + x^6 \equiv 0 \pmod{29}$.

Proof. As $(1 + x + \cdots + x^6)(1 - x) = 1 - x^7$,

$$1 + x + \dots + x^6 \equiv 0 \pmod{29} \iff \begin{cases} x^7 \equiv 1 \pmod{29} \\ x \not\equiv 1 \pmod{29} \end{cases}$$

From Ex. 4.17, the solutions are congruent to 2^4 , 2^8 , 2^{12} , 2^{16} , 2^{20} , 2^{24} modulo 29.

Ex. 4.19 Determine the numbers a such that $x^3 \equiv a \pmod{p}$ is solvable for p = 7, 11, 13.

Proof. (a) If
$$p = 7$$
, then $3 \mid p - 1, d = 3 \land (p - 1) = 3$. From Prop. 4.2.1, $\exists x \in \mathbb{Z}, \ a \equiv x^3 \pmod{7} \iff a \equiv 0 \pmod{7} \text{ or } a^{(p-1)/3} = a^2 \equiv 1 \pmod{7}.$

8

So the numbers a such that $x^3 \equiv a \pmod{7}$ is solvable are congruent at 0, 1, -1 modulo 7.

(b) If p = 11, then $d = 3 \land (p - 1) = 1$. With the same proposition,

$$\exists x \in \mathbb{Z}, \ a \equiv x^3 \pmod{11} \iff a \equiv 0 \pmod{11} \text{ or } a^{p-1} = a^6 \equiv 1 \pmod{11}.$$

So all integers a are cube modulo 11, in only one way.

For an alternative proof, the application

$$f: \left\{ \begin{array}{ccc} \mathbb{F}_{11}^* & \to & \mathbb{F}_{11}^* \\ x & \mapsto & x^3 \end{array} \right.$$

f is a bijection. Indeed,

- \bullet f is a group homomorphism,
- $x^3 = 1 \Rightarrow (x^3)^7 = 1 \Rightarrow x = 1 \text{ so } \ker(f) = \{1\},\$
- $f: \mathbb{F}_{11}^* \to \mathbb{F}_{11}^*$ is injective and \mathbb{F}_{11}^* is finite, so f is bijective.

In
$$\mathbb{F}_{11}$$
, $0 = 0^3$, $1 = 1^3$, $2 = 7^3$, $3 = 9^3$, $4 = 5^3$, $5 = 3^3$, $6 = 8^3$, $7 = 6^3$, $8 = 2^3$, $9 = 4^3$, $10 = 10^3$.

(c) If p = 13, then $3 \mid p - 1, 3 \land (p - 1) = 3$, so

$$\exists x \in \mathbb{Z}, \ a \equiv x^3 \pmod{13} \iff a \equiv 0 \pmod{13} \text{ or } a^{(p-1)/3} = a^4 \equiv 1 \pmod{13} \iff a \equiv 0, 1, -1, 5, -5 \pmod{13}$$

$$(5 \equiv 8^3 \pmod{13}.)$$

Ex. 4.20 Let p be a prime, and d a divisor of p-1. Show that dth powers form a subgroup of $U(\mathbb{Z}/p\mathbb{Z})$ of order (p-1)/d. Calculate this subgroup for p=11, d=5, for p=17, d=4, and for p=19, d=6.

Proof. Here p is a prime number, and $d \mid p-1$. Let

$$f: \left\{ \begin{array}{ccc} \mathbb{F}_p^* & \to & \mathbb{F}_p^* \\ x & \to & x^d \end{array} \right.$$

Then f is a group homomorphism, and $\operatorname{im}(f)$ is the set of dth powers, and consequently is a subgroup of $U(\mathbb{F}_p) = \mathbb{F}_p^*$. $\ker(f)$ is the group of the roots of $x^d - 1$. As $d \mid p - 1$, the polynomial $x^d - 1$ has exactly d roots (Prop. 4.1.2), so $|\ker(f)| = d$.

As $\operatorname{im}(f) \simeq \mathbb{F}_p^* / \ker(f)$,

$$|\operatorname{im}(f)| = |\mathbb{F}_p^*|/|\ker(f)| = (p-1)/d.$$

So there exist exactly (p-1)/d dth powers in $(\mathbb{Z}/p\mathbb{Z})^*$.

From Prop. 4.2.1, as $d \mid p-1, d \wedge p-1$, for all $x \in \mathbb{F}_n^*$,

$$x \in \operatorname{im}(f) \iff x^{(p-1)/d} = 1.$$

So the group of dth powers is the group of the roots of $x^{(p-1)/d} - 1$.

- If p = 11, d = 5, $im(f) = \{1, -1\}$.
- If $p = 17, d = 4, x \in \text{im}(f) \iff x^4 = 1 : \text{im}(f) = \{1, -1, 4, -4\}.$
- If $p = 19, d = 6, x \in \text{im}(f) \iff x^3 = 1 : \text{im}(f) = \{1, 7, 7^2 = 11\},$ where $7 \equiv 2^6 \pmod{19}$.

Ex. 4.21 If g is a primitive root modulo p, and d|p-1, show that $g^{(p-1)/d}$ has order d. Show also that a is a dth power iff $a \equiv g^{kd} \pmod{p}$ for some k. Do Exercises 16-20 making use of those observations.

Proof. Let $x = \overline{g}^{(p-1)/d} \in \mathbb{F}_p^*$, where g is a primitive root modulo p. For all $k \in \mathbb{Z}$,

$$x^{k} = 1 \iff g^{k\frac{p-1}{d}} = 1$$
$$\iff p-1 \mid k\frac{p-1}{d}$$
$$\iff d \mid k$$

So the ordre of $\overline{g}^{(p-1)/d}$ is d.

- If $\overline{a} = \overline{g}^{kd}$, then $\overline{a} = x^d$, where $x = \overline{g}^k$, so \overline{a} is a dth power.
- If $\overline{a} \neq \overline{0}$ is a dth power, $\overline{a} = x^d, x \in \mathbb{F}_p^*$. As $x \in \langle \overline{g} \rangle, x = \overline{g}^k$, so $\overline{a} = \overline{g}^{kd}$.

So, if $a \not\equiv 0 \pmod{p}$, a is a dth power iff $a \equiv g^{kd} \pmod{p}$ for some k.

By example (Ex. 4.20), 2 is a primitive root modulo 19, so the 6th powers modulo 19 are $2^0 = 1, 2^6 = 7, 2^{12} = 11$.

Ex. 4.22 If a has order 3 modulo p, show that 1 + a has order 6.

Proof. If a has order 3 modulo p, then $0 \equiv a^3 - 1 = (a-1)(a^2 + a + 1) \pmod{p}$, with $a \not\equiv 1 \pmod{p}$, so $a^2 + a + 1 \equiv 0 \pmod{p}$. Thus

$$(1+a)^3 \equiv 1 + 3a + 3a^2 + a^3$$

 $\equiv 1 + 3a + 3(-1-a) + 1$
 $\equiv -1 \pmod{p}$

So $(1+a)^6 \equiv 1 \pmod{p}$.

 $(1+a)^2 \equiv 1 + 2a + a^2 = 1 + 2a + (-1-a) \equiv a \not\equiv 1 \pmod{p}.$

So $(1+a)^6 \equiv 1, (1+a)^2 \not\equiv 1, (1+a)^3 \not\equiv 1 \pmod{p}$, so the order of 1+a divides 6, but doesn't divides 2 or 3, so 1+a has order 6 modulo p.

Ex. 4.23 Show that $x^2 \equiv -1 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{4}$, and that $x^4 \equiv -1 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{8}$.

Proof. If $x^2 \equiv -1 \pmod{p}$, then \overline{x} has order 4 in \mathbb{F}_p^* , hence from Lagrange's theorem, $4 \mid p-1$.

Reciprocally, suppose $4 \mid p-1$, so $p=4k+1, k \in \mathbb{N}^*$. From proposition 4.2.1, as $2 \mid p-1, -1$ is a square modulo p iff $(-1)^{(p-1)/2} \equiv 1 \pmod{p}$, which is true because $(-1)^{(p-1)/2} = (-1)^{2k} = 1$.

If $x^4 \equiv -1 \pmod{p}$, then $\overline{x}^8 = 1 \in \mathbb{F}_p^*$, and $\overline{x}^4 \neq 1$, so x has order 8 in \mathbb{F}_p^* , so $8 \mid p-1$. Reciprocally, if $p \equiv 1 \pmod{8}$, p = 8K + 1, $K \in \mathbb{N}^*$. From Prop.4.2.1, as $4 \mid p-1$, there exists $x \in \mathbb{Z}$ such that $-1 = x^4$ iff $(-1)^{(p-1)/4} \equiv 1 \pmod{8}$, which is true because $(-1)^{(p-1)/4} = (-1)^{2K} = 1$.

Conclusion:

$$\exists x \in \mathbb{Z}, \ x^4 \equiv -1 \pmod{p} \iff p \equiv 1 \pmod{8}.$$

Ex. 4.24 Show that $ax^m + by^n \equiv c \pmod{p}$ has the same number of solutions as $ax^{m'} + by^{n'} \equiv c \pmod{p}$, where m' = (m, p - 1) and n' = (n, p - 1).

Proof. If $a \wedge b \nmid c$, the two equations have no solution. So we can suppose $a \wedge b \mid c$, and after division by $\delta = a \wedge b$, we obtain an equation $a'x^m + b'y^n = c'$, $a' = a/\delta, b' = b\delta, c' = c\delta$, and $a' \wedge b' = 1$. So it remains to prove that $ax^m + by^n \equiv c \pmod{p}$ has the same number of solutions as $ax^{m'} + by^{n'} \equiv c \pmod{p}$ when $a \wedge b = 1$.

In this case the equation au + bv = c has solutions. Let N the number of solutions $(\overline{x}, \overline{y})$ of the equation $\overline{a} \, \overline{x}^m + \overline{b} \, \overline{y}^n = \overline{c}, N'$ the number of solutions $(\overline{x}, \overline{y})$ of the equation $\overline{a} \, \overline{x}^{m'} + \overline{b} \, \overline{y}^{n'} = \overline{c}$. Then

$$\begin{split} N &= \operatorname{Card}\{(\overline{x}, \overline{y}) \in \mathbb{F}_p \times \mathbb{F}_p \mid \overline{a} \, \overline{x}^m + \overline{b} \, \overline{y}^n = \overline{c}\} \\ &= \sum_{\overline{a}\overline{u} + \overline{b}\overline{v} = \overline{c}} \operatorname{Card}\{(\overline{x}, \overline{y}) \in \mathbb{F}_p \times \mathbb{F}_p \mid \overline{x}^m = \overline{u}, \overline{y}^n = \overline{v}\} \\ &= \sum_{\overline{a}\overline{u} + \overline{b}\overline{v} = \overline{c}} \operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} \times \operatorname{Card}\{\overline{y} \in \mathbb{F}_p \mid \overline{y}^n = \overline{v}\}. \end{split}$$

The same is true for N', so it is suffisant to prove that

$$\operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} = \operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^{m'} = \overline{u}\},\$$

where $m' = m \wedge (p-1)$, and a similar equality for the equation $\overline{y}^n = \overline{v}$. Let \overline{g} a generator of \mathbb{F}_p^* . Write $\overline{u} = \overline{g}^r, r \in \mathbb{N}$.

$$\exists \overline{x} \in \mathbb{F}_p, \ \overline{x}^m = \overline{u} \iff \exists k \in \mathbb{Z}, \ \overline{g}^{mk} = \overline{g}^r$$

$$\iff \exists k \in \mathbb{Z}, \ p-1 \mid mk-r$$

$$\iff \exists k \in \mathbb{Z}, \exists l \in \mathbb{Z}, \ r = mk + l(p-1)$$

$$\iff m \land (p-1) \mid r$$

So

$$\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} \neq \emptyset \iff m \land (p-1) \mid r,$$

and similarly

$$\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^{m'} = \overline{u}\} \neq \emptyset \iff m' \land (p-1) \mid r.$$

Since $m' \wedge (p-1) = (m \wedge (p-1)) \wedge (p-1) = m \wedge (p-1)$, these two conditions are equivalent, so these two sets are empty for the same values of \overline{u} .

Let \overline{u} is such that $\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} \neq \emptyset$, and x_0 a fixed solution of $\overline{x}^m = \overline{u}$. Write $\overline{x} = \overline{g}^k, \overline{x_0} = g^{k_0}$. Let $d = m \land (p-1)(=m')$.

$$\overline{x}^{m} = u \iff \overline{x}^{m} = \overline{x_0}^{m}$$

$$\iff \overline{g}^{mk} = \overline{g}^{mk_0}$$

$$\iff p - 1 \mid m(k - k_0)$$

$$\iff \frac{p - 1}{d} \mid \frac{m}{d}(k - k_0)$$

$$\iff \frac{p - 1}{d} \mid k - k_0$$

$$\iff \exists j \in \mathbb{Z}, k = k_0 + j \frac{p - 1}{d}$$

As g is a primitive root modulo p, the distinct solutions are $x_0, x_0 g^{\frac{p-1}{d}}, \dots, x_0 g^{k\frac{p-1}{d}}, \dots x_0 g^{(d-1)\frac{p-1}{d}}$. so in this case

$$\operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} = d = m \land (p-1).$$

As $m' \wedge (p-1) = m \wedge (p-1)$,

$$\operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^m = \overline{u}\} = \operatorname{Card}\{\overline{x} \in \mathbb{F}_p \mid \overline{x}^{m'} = \overline{u}\}.$$

So N = N': $ax^m + by^n \equiv c \pmod{p}$ has the same number of solutions as $ax^{m'} + by^{n'} \equiv c$ (mod p), where m' = (m, p - 1) and n' = (n, p - 1).

Ex. 4.25 Prove Propositions 4.2.2 and 4.2.4.

Proposition 4.2.2. Suppose that a is odd, $e \geq 3$, and consider the congruence $x^n \equiv a \pmod{2^e}$. If n is odd, a solution always exists and it is unique.

If n is even, a solution exists iff $a \equiv 1 \pmod{4}$, $a^{2^{e-2}/d} \equiv 1 \pmod{2^e}$, where $d = 1 \pmod{4}$ $(n, 2^{e-2})$. When a solution exists there are exactly 2d solutions.

Proof. We suppose that a is odd and $e \geq 3$.

From Theorem 2', we know that $\{(-1)^a 5^b \mid 0 \le a \le 1, 0 \le b \le 2^{e-2}\}$ constitutes a reduced residue system modulo 2^e , so we can write

$$a \equiv (-1)^s 5^t \pmod{2^e}, 0 \le s \le 1, 0 \le t \le 2^{e-2},$$

 $x \equiv (-1)^y 5^z \pmod{2^e}, 0 \le y \le 1, 0 \le z \le 2^{e-2}.$

For all $x \in \mathbb{Z}$,

$$x^n \equiv a \pmod{2^e} \iff (-1)^{ny} 5^{nz} \equiv (-1)^s 5^t \pmod{2^e}$$

Then $(-1)^{ny} \equiv (-1)^s \pmod{4}$, $ny \equiv s \pmod{2}$, $(-1)^{ny} = (-1)^s$, so $5^{nz} \equiv 5^t \pmod{2^e}$. Reciprocally, if $ny \equiv s \pmod{2}$ and $5^{nz} \equiv 5^t \pmod{2^e}$, then $x^n \equiv a \pmod{2^e}$, so

$$x^n \equiv a \pmod{2^e} \iff \left\{ \begin{array}{ccc} ny & \equiv & s \pmod{2} \\ 5^{nz} & \equiv & 5^t \pmod{2^e} \end{array} \right. \iff \left\{ \begin{array}{ccc} ny & \equiv & s \pmod{2} \\ nz & \equiv & t \pmod{2^{e-2}} \end{array} \right.$$

since the order of 5 modulo 2^e is 2^{e-2} .

 \bullet Suppose that n is an odd integer. Then

$$\left\{ \begin{array}{lll} ny & \equiv & s \pmod{2} \\ nz & \equiv & t \pmod{2^{e-2}} \end{array} \right. \iff \left\{ \begin{array}{lll} y & \equiv & s \pmod{2} \\ z & \equiv & n't \pmod{2^{e-2}} \end{array} \right.$$

where n' is an inverse of n modulo 2^{e-2} : $nn' \equiv 1 \pmod{2^{e-2}}$.

So $x^n \equiv a \pmod{2^e}$ has an unique solution modulo 2^e .

 \bullet Suppose that n is an even integer.

Then
$$\begin{cases} ny \equiv s \pmod{2} \\ nz \equiv t \pmod{2^{e-2}} \end{cases} \text{ implies } s \equiv 0 \pmod{2} \text{ and } d = n \wedge 2^{e-2} \mid t.$$
Then $a \equiv (-1)^s 5^t \equiv 5^t \pmod{2^e}$, so $a \equiv 1 \pmod{4}$.

Hence $a^{\frac{2^{e-2}}{d}} \equiv \left(5^{2^{e-2}}\right)^{\frac{t}{d}} \equiv 1 \pmod{2^e}$, since 5 has order 2^{e-2} , and $d \mid t$.

So, if n is even, and $d = n \wedge 2^{e-2}$,

$$\exists x \in \mathbb{Z}, \ x^n \equiv a \pmod{2^e} \Rightarrow \begin{cases} a \equiv 1 \pmod{4} \\ a^{\frac{2^{e-2}}{d}} \equiv 1 \pmod{2^e} \end{cases}$$

Reciprocally, suppose that $\begin{cases} a \equiv 1 \pmod{4} \\ a^{\frac{2^{e-2}}{d}} \equiv 1 \pmod{2^e} \end{cases}$. Then $a \equiv (-1)^s 5^t \pmod{2^e}$ implies $a \equiv (-1)^s \pmod{4}$, so s is even, and $a \equiv 5^t \pmod{2^e}$.

Therefore $5^{t\frac{2^{e-2}}{d}} \equiv 1 \pmod{2^e}$, which implies $2^{e-2} \mid t^{\frac{2^{e-2}}{d}}$, so $d \mid t$.

$$\exists x \in \mathbb{Z}, \ x^n \equiv a \pmod{2^e} \iff \exists y \in \mathbb{Z}, \ \exists z \in \mathbb{Z}, \ \begin{cases} ny \equiv s \pmod{2} \\ nz \equiv t \pmod{2^{e-2}} \end{cases}$$

$$\iff \exists z \in \mathbb{Z}, \ nz \equiv t \pmod{2^{e-2}} \pmod{2^{e-2}}$$

$$\iff \exists z \in \mathbb{Z}, \ 2^{e-2} \mid nz - t$$

$$\iff \exists z \in \mathbb{Z}, \ \frac{2^{e-2}}{d} \mid \frac{n}{d}z - \frac{t}{d}$$

$$\iff \exists z \in \mathbb{Z}, \ \exists q \in \mathbb{Z}, \ q \frac{2^{e-2}}{d} + z \frac{n}{d} = \frac{t}{d}$$

As $\frac{2^{e-2}}{d} \wedge \frac{n}{d} = 1$, there exists a solution (q, z_0) of this last equation, where $0 \le z_0 < \frac{2^{e-2}}{d}$, and so $x_0 = 5^{z_0}$ is a particular solution of $x^n \equiv a \pmod{2^e}$, therefore

$$\exists x \in \mathbb{Z}, \ x^n \equiv a \pmod{2^e} \iff \left\{ \begin{array}{ccc} a & \equiv & 1 \pmod{4} \\ a^{\frac{2^{e-2}}{d}} & \equiv & 1 \pmod{2^e} \end{array} \right.$$

If there exists a particular solution $x_0 \equiv (-1)^{y_0} 5^{z_0}$, then

$$x^{n} \equiv a \pmod{2^{e}} \iff x^{n} \equiv x_{0}^{n} \pmod{2^{e}}$$

$$\iff \begin{cases} ny \equiv ny_{0} \pmod{2} \\ nz \equiv nz_{0} \pmod{2^{e-2}} \end{cases}$$

$$\iff n(z - z_{0}) \equiv 0 \pmod{2^{e-2}} \pmod{2^{e-2}} \quad \text{(since } n \text{ even)}$$

$$\iff \frac{2^{e-2}}{d} \mid \frac{n}{d}(z - z_{0})$$

$$\iff \frac{2^{e-2}}{d} \mid z - z_{0}, \quad \text{(since } \frac{2^{e-2}}{d} \land \frac{n}{d} = 1)$$

$$\iff \exists k \in \mathbb{Z}, \ z = z_{0} + k \frac{2^{e-2}}{d}$$

As the order of 5 modulo 2^e is 2^{e-2} , the solutions of $x^n \equiv a \pmod{2^e}$ are

$$x_k = (-1)^y 5^{z_0 + k\frac{2^{e-2}}{d}}, \ 0 \le y < 2, \ 0 \le k < d,$$

so there are exactly 2d solutions modulo 2^e .

Proposition 4.2.4. Let 2^l be the highest power of 2 dividing n. Suppose that a is odd and that $x^n \equiv a \pmod{2^{2l+1}}$ is solvable. Then $x^n \equiv a \pmod{2^e}$ is solvable for all $e \geq 2l+1$, and consequently for all $e \geq 1$). Moreover, all these congruences have the same number of solutions.

Proof. We suppose that a is odd, and that $x^n \equiv a \pmod{2^{2l+1}}$ is solvable. l is such that $n = 2^l n'$, where n' is an odd integer.

Let the induction hypothesis be, for a fixed integer $m \geq 2l+1$,

$$\exists x_0 \in \mathbb{Z}, \ x_0^n \equiv a \pmod{2^m}.$$

Let $x_1 = x_0 + b2^{m-l}$: we show that for an appropriate choice of $b \in \{0,1\}$, $x_1^n \equiv a \pmod{2^{m+1}}$.

$$x_1^n = x_0^n + nb2^{m-l}x_0^{n-1} + 2^{2m-2l}A, \ A \in \mathbb{Z}.$$

Since $m \ge 2l + 1, 2m - 2l \ge m + 1$, so

$$x_1^n \equiv x_0^n + nb2^{m-l}x_0^{n-1} \pmod{2^{m+1}}.$$

$$x_1^n \equiv a \pmod{2^{m+1}} \iff (x_0^n - a) + n'bx_0^{n-1}2^m \equiv 0 \pmod{2^{n+1}}$$

 $\iff \frac{x_0^n - a}{2^m} + n'bx_0^{n-1} \equiv 0 \pmod{2}$

As a is odd, and $x_0^n \equiv a \pmod{2^m}$, $m \ge 1$, x_0 is odd, and n' is odd, so there exists an unique $b \in \{0,1\}$ such that $\frac{x_0^n - a}{2^m} + n'bx_0^{n-1} \equiv 0 \pmod{2}$. So there exists $x_1 \in \mathbb{Z}$ such that $x_1^b \equiv a \pmod{2^{m+1}}$, and the induction is completed. Therefore, $x^n \equiv a \pmod{2^e}$ is solvable for all $e \ge 2l + 1$, and consequently for all $e \ge 1$).

From the Proposition 4.2.2., with the hypothesis $e \geq 3$, we know that the number of solutions of the solvable equation $x^n \equiv a \pmod{2^e}$, $e \geq 2l+1$, is 1 if n is odd, $2(n \wedge 2^{e-2})$ if n is even.

If n is even, $l \ge 1$, $e \ge 2l+1 \ge 3$. Since $e \ge 2l+1$, and $n=2^l n'$ for an odd n', $l \le \frac{e-1}{2} \le e-2$, so $n \wedge 2^{e-2} = n'2^l \wedge 2^{e-2} = 2^l$, and the number of solutions is 2^{l+1} , independent of $e \ge 2l+1$.

Conclusion: under the hypothesis $x^n \equiv a \pmod{2^{2l+1}}$, where $l = \operatorname{ord}_2(n)$, then $x^n \equiv a \pmod{2^e}$ is solvable for all $e \geq 1$, and all these congruences have the same number of solutions for $e \geq 2l+1, e \geq 3$.

Chapter 5

Ex. 5.1 Use Gauss' lemma to determine $\binom{5}{7}$, $\binom{3}{11}$, $\binom{6}{13}$, $\binom{-1}{p}$.

Proof. • a = 5, p = 7.

The array of values of the least residues modulo p = 7, for $1 \le k \le (p-1)/2$.

So the number of negative least residues is $\mu = 1$, and $\left(\frac{5}{7}\right) = (-1)^{\mu} = -1$.

• a = 3, p = 11.

So
$$\mu = 2$$
, $\left(\frac{3}{11}\right) = (-1)^{\mu} = 1$.
• $a = 6$, $p = 13$.

So $\mu = 3$, $\left(\frac{6}{13}\right) = (-1)^{\mu} = -1$.

• If a=-1, and p an odd prime, the values of the least residues of -k modulo p for $k=1,2,\ldots,(p-1)/2$ are -k, all negative. So the number of negative least residues is $\mu=(p-1)/2$, and $\left(\frac{-1}{p}\right)=(-1)^{(p-1)/2}$.

Ex. 5.2 Show that the number of solutions to $x^2 \equiv a \pmod{p}$ is equal to 1 + (a/p).

Proof. Let N the number of solutions of $x^2 \equiv a \pmod{p}$.

- If $\left(\frac{a}{p}\right) = 0$, then $p \mid a, a \equiv 0 \pmod{p}$, so the unique solution of $x^2 \equiv a = 0$ is $x \equiv 0 \pmod{p}$, so $N = 1 = 1 + \left(\frac{a}{p}\right)$.
 - If $(\frac{a}{n}) = -1$, then $N = 0 = 1 + (\frac{a}{n})$.
- If $\binom{a}{p} = 1$, then $x^2 \equiv a \pmod{p}$ has a solution x_0 , and $x^2 \equiv a \pmod{p} \iff x^2 \equiv x_0^2 \pmod{p} \equiv p \mid (x x_0)(x + x_0) \equiv x \equiv \pm x_0 \pmod{p}$, so $N = 2 = 1 + \binom{a}{p}$.

Ex. 5.3 Suppose $p \nmid a$. Show that the number of solutions to $ax^2 + bx + c \equiv 0 \pmod{p}$ is equal to $1 + ((b^2 - 4ac)/p)$.

Proof. Here p is an odd prime number, and $p \nmid a$. Let N be the number of solutions of $ax^2 + bx + c \equiv 0 \pmod{p}$

For $\overline{x} \in \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$,

$$\begin{split} \overline{a}\overline{x}^2 + \overline{b}\overline{x} + \overline{c} &= \overline{a} \left(\overline{x}^2 + \frac{\overline{b}}{\overline{a}} \ \overline{x} + \frac{\overline{c}}{\overline{a}} \right) \\ &= \overline{a} \left(\left(\overline{x} + \frac{\overline{b}}{2\overline{a}} \right)^2 - \frac{\overline{b}^2 - 4\overline{a}\overline{c}}{4\overline{a}^2} \right) \end{split}$$

Let $\Delta = b^2 - 4ac$. Then N is the number of solutions of $\left(\overline{x} + \frac{\overline{b}}{2\overline{a}}\right)^2 - \frac{\overline{\Delta}}{4\overline{a}^2} = \overline{0}$ in \mathbb{F}_p . As in Ex.5.2, N = 1 if $\overline{\Delta} = \overline{0}$, N = 0 if $\overline{\Delta}$ is not a square in \mathbb{F}_p^* , otherwise $\overline{\Delta} = \delta^2$, $\delta \in \mathbb{F}_p^*$, and the solutions are $\overline{x} = (-\overline{b} \pm \overline{\delta})/2\overline{a}$, so N = 2. In the three cases, $N = 1 + \left(\frac{\Delta}{p}\right)$. \square

Ex. 5.4 Prove that $\sum_{a=1}^{p-1} (a/p) = 0$.

Proof. Here p is an odd prime (the result is false if p=2). In the interval [1, p-1], there exist (p-1)/2 residues, and (p-1)/2 nonresidues (Prop. 5.1.2., Corollary 1), so $\sum_{a=1}^{p-1} (a/p) = 0$.

Proof. As an alternative proof, let $S = \sum_{a=1}^{p-1} {a \choose p}$, and b a nonresidue modulo $p: (\frac{b}{p}) = -1$ (such a b exists if $p \neq 2$). As $a \mapsto ab$ is a bijection from \mathbb{F}_p^* to itself,

$$\left(\frac{b}{p}\right)S = \sum_{a=1}^{p-1} \left(\frac{ab}{p}\right) = \sum_{c=1}^{p-1} \left(\frac{c}{p}\right) = S,$$

so -S = S, S = 0.

Ex. 5.5 Prove that $\sum_{x=1}^{p-1}((ax+b)/p)=0$ provided that $p \nmid a$. There is a mistake in the sentence: we must read Prove that $\sum_{x=0}^{p-1}((ax+b)/p)=0$ provided that $p \nmid a$.

By example,

$$\sum_{x=1}^{5-1} \left(\frac{x+1}{5} \right) = \left(\frac{2}{5} \right) + \left(\frac{3}{5} \right) + \left(\frac{4}{5} \right) = -1 \neq 0.$$

Proof. From exercise 5.3, as $\binom{0}{p} = 0$, we know that

$$\sum_{\overline{x} \in \mathbb{F}_p} \left(\frac{x}{p} \right) = \sum_{x=0}^{p-1} \left(\frac{x}{p} \right) = \sum_{x=1}^{p-1} \left(\frac{x}{p} \right) = 0.$$

(This sum is well defined, since $(\frac{x}{p})$ depends only of \overline{x} : $x \equiv x' \pmod{p} \Rightarrow (\frac{x}{p}) = (\frac{x'}{p})$.) As $\overline{a} \neq \overline{0}$ in \mathbb{F}_p , $f: \left\{ \begin{array}{ccc} \mathbb{F}_p & \to & \mathbb{F}_p \\ x & \mapsto & \overline{a}x + \overline{b} \end{array} \right.$ is a bijection. Thus

$$\sum_{x=0}^{p-1} \left(\frac{ax+b}{p} \right) = \sum_{x \in \mathbb{F}_p} \left(\frac{f(x)}{p} \right)$$
$$= \sum_{y \in \mathbb{F}_p} \left(\frac{y}{p} \right) \qquad (y = f(x))$$
$$= 0$$

Ex. 5.6 Show that the number of solutions to $x^2 - y^2 \equiv a \pmod{p}$ is given by:

$$\sum_{y=0}^{p-1} \left(1 + \left(\frac{y^2 + a}{p} \right) \right).$$

Proof. Let $S = \{(\overline{x}, \overline{y}) \in \mathbb{F}_p^2 \mid \overline{x}^2 - \overline{y}^2 = \overline{a}\}$. From Ex.5.2,

$$|S| = \sum_{\overline{y} \in \mathbb{F}_p} \text{Card } \{ \overline{x} \in \mathbb{F}_p \mid \overline{x}^2 = \overline{y}^2 + \overline{a} \}$$
$$= \sum_{y=0}^{p-1} \left(1 + \left(\frac{y^2 + a}{p} \right) \right).$$

Ex. 5.7 By calculating directly show that the number of solutions to $x^2 - y^2 \equiv a \pmod{p}$ is p-1 if $p \nmid a$, and 2p-1 if $p \mid a$. (Hint. Use the change of variables u = x + y, v = x - y.)

Proof. Let $S = \{(\overline{x}, \overline{y}) \in \mathbb{F}_p^2 \mid \overline{x}^2 - \overline{y}^2 = \overline{a}\}$, and $T = \{(\overline{u}, \overline{v}) \in \mathbb{F}_p^2 \mid \overline{u}\,\overline{v} = \overline{a}\}$. Then $f: \begin{cases} S \to T \\ (\overline{x}, \overline{y}) \mapsto (\overline{x} + \overline{y}, \overline{x} - \overline{y}) \end{cases}$ is well defined (if $(\overline{x}, \overline{y}) \in S, (\overline{x} - \overline{y})(\overline{x} + \overline{y}) = a$, so $(\overline{x} + \overline{y}, \overline{x} - \overline{y}) \in T$). Moreover f is a bijection, with inverse $(\overline{u}, \overline{v}) \mapsto ((\overline{u} + \overline{v})/2, (\overline{u} - \overline{v})/2)$, so |S| = |T|.

We compute |T|.

- Suppose $p \nmid a$, so $\overline{a} \neq \overline{0}$. For $\overline{v} \neq 0$, there is no solution, and for each $\overline{v} \neq 0$, we obtain the unique solution $(\overline{a} \, \overline{v}^{-1}, \overline{v})$, so there exist p-1 solutions.
- Suppose $p \mid a$. The solutions of $\overline{uv} = \overline{0}$ are $(\overline{0}, \overline{0})$, $(\overline{0}, \overline{v})$ for each $\overline{v} \neq \overline{0}$, $(\overline{u}, \overline{0})$ for each $\overline{v} \neq \overline{0}$, that is to say N = 1 + (p 1) + (p 1) = 2p 1 solutions.

Conclusion:

Card
$$\{(\overline{x}, \overline{y}) \in \mathbb{F}_p^2 \mid \overline{x}^2 - \overline{y}^2 = \overline{a}\} = p - 1$$
 if $p \nmid a$
= $2p - 1$ if $p \mid a$

Ex. 5.8 Combining the results of Ex. 5.6 and 5.7 show that:

$$\sum_{y=0}^{p-1} \left(\frac{y^2 + a}{p} \right) = \begin{cases} -1 & \text{if } p \nmid a \\ p - 1 & \text{if } p \mid a \end{cases}$$

Proof. Let $S = \{(\overline{x}, \overline{y}) \in \mathbb{F}_p^2 \mid \overline{x}^2 - \overline{y}^2 = \overline{a}\}.$

We obtain in Ex 5.6, $|S| = \sum_{y=0}^{p-1} \left(1 + \left(\frac{y^2 + a}{p}\right)\right)$, and in Ex. 5.7. , |S| = p - 1 if $p \nmid a$, |S| = 2p - 1 if $p \mid a$. So

$$S - p = \sum_{y=0}^{p-1} \left(\frac{y^2 + a}{p} \right) = \begin{cases} -1 & \text{if } p \nmid a \\ p - 1 & \text{if } p \mid a \end{cases}$$

Ex. 5.9 Prove that $1^2 3^2 \cdots (p-2)^2 \equiv (-1)^{(p+1)/2} \pmod{p}$ using Wilson's theorem.

Proof. Here p is an odd prime.

From Wilson's theorem, as $k(p-k) \equiv -k^2 \pmod{p}$ for $k = 1, 2, \dots, p-1$,

$$-1 \equiv (p-1)!$$

$$\equiv \left[1 \times 2 \times \dots \times k \times \dots \times \left(\frac{p-1}{2}\right)\right] \times \left[\left(\frac{p+1}{2}\right) \times \dots \times (p-k) \dots \times (p-2) \times (p-1)\right]$$

$$\equiv \prod_{k=1}^{(p-1)/2} k(p-k)$$

$$\equiv (-1)^{(p-1)/2} \prod_{k=1}^{(p-1)/2} k^2$$

$$\equiv (-1)^{(p-1)/2} \left[\left(\frac{p-1}{2}\right)!\right]^2 \pmod{p}$$

So

$$\left[\left(\frac{p-1}{2} \right)! \right]^2 \equiv (-1)^{(p+1)/2} \pmod{p}.$$

Moreover, from Wilson' theorem and Fermat's little theorem,

$$1^{2}2^{2}3^{2}\cdots(p-1)^{2} = [(p-1)!]^{2} \equiv 1 \pmod{p}$$
$$2^{2}4^{2}\cdots(p-1)^{2} = (2^{p-1})^{2} \left[\left(\frac{p-1}{2}\right)! \right]^{2} \equiv \left[\left(\frac{p-1}{2}\right)! \right]^{2} \pmod{p}$$

Thus

$$1^2 3^2 \cdots (p-2)^2 \left[\left(\frac{p-1}{2} \right)! \right]^2 \equiv 1 \pmod{p}.$$

which gives

$$1^2 3^2 \cdots (p-2)^2 \equiv (-1)^{(p+1)/2} \pmod{p}.$$

Ex. 5.10 Let $r_1, r_2, \ldots, r_{(p-1)/2}$ be the quadratic residues between 1 and p. Show that their product is congruent to 1 (mod p) if $p \equiv 3 \pmod{4}$, and to -1 if $p \equiv 1 \pmod{4}$.

Proof. We proved in Ex. 5.9 that

$$\left[\left(\frac{p-1}{2} \right)! \right]^2 \equiv (-1)^{(p+1)/2} \pmod{p}.$$

The application $f: \left\{ \begin{array}{ccc} \{\overline{1},\overline{2},\ldots,\overline{(p-1)/2}\} & \mapsto & \{\overline{r_1},\overline{r_2},\ldots,\overline{r_{(p-1)/2}}\} \\ x & \mapsto & x^2 \end{array} \right.$ is a bijection, so

$$\prod_{i=1}^{(p-1)/2} r_i \equiv \left[\left(\frac{p-1}{2} \right)! \right]^2 \pmod{p},$$

so

$$\prod_{i=1}^{(p-1)/2} r_i \equiv (-1)^{(p+1)/2} \pmod{p}.$$

That is to say, the product of the quadratic residues between 1 and p is congruent to 1 \pmod{p} if $p \equiv 3 \pmod{4}$, and to -1 if $p \equiv 1 \pmod{4}$.

Ex. 5.11 Suppose that $p \equiv 3 \pmod{4}$, and that q = 2p + 1 is also prime. Prove that $2^p - 1$ is not prime. (Hint: Use the quadratic character of 2 to show that $q \mid 2^p - 1$) One must assume that p > 3.

Proof. The result is false if p = 3, so we must suppose p > 3.

p=4k+3 for an integer k, so $q=2p+1=8k+7\equiv -1\pmod 8$. Thus

$$\left(\frac{2}{q}\right) = (-1)^{(q^2 - 1)/8} = 1.$$

So $2^{(q-1)/2} \equiv 1 \pmod{q}$, $2^p \equiv 1 \pmod{q}$, so $q \mid 2^p - 1$.

Moreover, as p > 3, $q = 2p + 1 < 2^p - 1$

 $(2p+1 < 2^p-1 \iff 2p < 2^p-2 \iff p+1 < 2^{p-1}.$

 $4+1 < 2^{4-1}$ and for all $k \ge 4$, $k+1 < 2^{k-1}$ implies $k+2 < 2^{k-1} + 1 \le 2^k$, and $4+1 < 2^{4-1}$, so by induction $k+1 < 2^{k-1}$ for all k > 3.

So $q \mid 2^p - 1$ with $1 < q < 2^p - 1 : 2^p - 1$ is composite.

Conclusion: if $p \equiv 3 \pmod{4}$, p > 3 is prime, and q = 2p + 1 is also prime, then $2^p - 1$ is not a prime.

For instance, le Mersenne's number $2^{11}-1=2047$ is not a prime : $2047=23\times89$. \square

Ex. 5.12 Let $f(x) \in \mathbb{Z}[x]$. We say that a prime p divides f(x) if there's an integer n such that $p \mid f(n)$. Describe the prime divisors of $x^2 + 1$ and $x^2 - 2$.

Proof. p divides $x^2 + 1$ iff there exists $a \in \mathbb{Z}$ such that $-1 \equiv a^2 \pmod{p}$, iff p = 2 or $\binom{-1}{n} = 1$ iff p = 2 or $p \equiv 1 \pmod{4}$.

p divides $x^2 - 2$ iff there exists $a \in \mathbb{Z}$ such that $2 \equiv a^2 \pmod{p}$, iff p = 2 or $\binom{2}{p} = 1$ iff p = 2 or $p \equiv \pm 1 \pmod{8}$.

Ex. 5.13 Show that any prime divisor of $x^4 - x^2 + 1$ is congruent to 1 modulo 12.

Proof. • As $a^6 + 1 = (a^2 + 1)(a^4 - a^2 + 1)$, $p \mid a^4 - a^2 + 1$ implies $p \mid a^6 + 1$, so $\left(\frac{-1}{p}\right) = 1$ and $p \equiv 1 \pmod{4}$.

• $p \mid 4a^4 - 4a^2 + 4 = (2a - 1)^2 + 3$, so $\left(\frac{-3}{p}\right) = 1$. As $-3 \equiv 1 \pmod{4}$, $\left(\frac{-3}{p}\right) = \left(\frac{p}{3}\right)$, so $\left(\frac{p}{3}\right) = 1$, thus $p \equiv 1 \pmod{3}$. $4 \mid p - 1 \text{ and } 3 \mid p - 1$, thus $12 \mid p - 1$:

$$p \equiv 1 \pmod{12}$$
.

Ex. 5.14 Use the fact that $U(\mathbb{Z}/p\mathbb{Z})$ is cyclic to give a direct proof that (-3/p) = 1 when $p \equiv 1 \pmod{3}$. [Hint: There is a ρ in $U(\mathbb{Z}/p\mathbb{Z})$ of order 3. Show that $(2\rho + 1)^2 = -3$.]

Proof. Suppose that $p \equiv 1 \pmod{3}$. Let g a generator of \mathbb{F}_p^* . Then g has order p-1, thus $\rho = g^{(p-1)/3}$ has order 3. As $\rho^3 = 1$, $\rho \neq 1$, then $\rho^2 + \rho + 1 = 0$.

$$(2\rho + 1)^{2} = 4\rho^{2} + 4\rho + 1$$
$$= 4(\rho^{2} + \rho + 1) - 3$$
$$= -3.$$

Thus $\left(\frac{-3}{p}\right) = 1$.

The inverse form of this proposition is also true for an odd prime p: if $\left(\frac{-3}{p}\right) = 1$, then there exists $a \in \mathbb{F}_p^*$ such that $-\overline{3} = a^2$. $\rho = \frac{-1+a}{2}$ has order 3. Indeed $\rho^2 = \frac{1+a^2-2a}{4} = \frac{-2-2a}{4} = \frac{-1-a}{2}$, so

$$1 + \rho + \rho^2 = 1 + \frac{-1+a}{2} + \frac{-1-a}{2}$$
$$= 0$$

so $\rho \neq 1, \rho^3 = 1$. The group \mathbb{F}_p^* contains an element of order 3, thus from Lagrange's theorem $3 \mid p-1 : p \equiv 1 \pmod{3}$.

Ex. 5.15 If $p \equiv 1 \pmod{5}$, show directly that (5/p) = 1 by the method of Ex. 5.14. [Hint: Let ρ be an element of $U(\mathbb{Z}/p\mathbb{Z})$) of order 5. Show that $(\rho + \rho^4)^2 + (\rho + \rho^4) - \overline{1} = \overline{0}$, etc.]

Proof. Let g a generator of \mathbb{F}_p^* . g has order p-1, thus $\rho=g^{(p-1)/5}$ has order 5.

$$\begin{cases} \alpha = \rho + \rho^4 \\ \beta = \rho^2 + \rho^3 \end{cases}$$

As $0 = \rho^5 - 1 = (\rho - 1)(1 + \rho + \rho^2 + \rho^3 + \rho^4)$ and $\rho \neq 1$, then $1 + \rho + \rho^2 + \rho^3 + \rho^4 = 0$,

$$\alpha + \beta = -1$$

$$\alpha \beta = \rho^3 + \rho^4 + \rho + \rho^2 = -1$$

So α, β are the roots in \mathbb{F}_p of $x^2 + x - 1$: $\alpha^2 + \alpha - 1 = 0$. Thus $4\alpha^2 + 4\alpha - 4 = (2\alpha + 1)^2 - 5 = 0$: $\overline{5}$ is a square in \mathbb{F}_p^* and $\left(\frac{5}{p}\right) = 1$.

Ex. 5.16 Using quadratic reciprocity find the primes for which 7 is quadratic residue. Do the same for 15.

Proof. 7 is a quadratic residue for 2 and for the odd primes such that $\left(\frac{7}{n}\right) = 1$. From the law of quadratic reciprocity,

$$\left(\frac{7}{p}\right) = 1 \iff (-1)^{(p-1)/2} \left(\frac{p}{7}\right) = 1$$

iff either $p \equiv 1 \pmod{4}$ and $\binom{p}{7} = 1$, or $p \equiv -1 \pmod{4}$ and $\binom{p}{7} = -1$.

In the first case, $p \equiv 1 \pmod{4}, p \equiv 1, 4, 2 \pmod{7}$, which gives $p \equiv 1, -3, 9$ $\pmod{28}$.

In the second case, $p \equiv -1 \pmod{4}, p \equiv -1, -4, -2 \pmod{7}$, which gives $p \equiv$ $-1, 3, -9 \pmod{28}$.

Conclusion: the primes for which 7 is a quadratic residue are 2 and the odd primes p such that

$$\left(\frac{7}{p}\right) = 1 \iff p \equiv \pm 1, \pm 3, \pm 9 \pmod{28}.$$

15 is a quadratic residue for 2 and for the odd primes such that $\left(\frac{15}{p}\right) = 1$.

$$\left(\frac{15}{p}\right) = 1 \iff \left(\frac{3}{p}\right) = \left(\frac{5}{p}\right) = 1 \text{ or } \left(\frac{3}{p}\right) = \left(\frac{5}{p}\right) = -1$$

From the examples of theorem 2, we know that

$$\left(\frac{3}{p}\right) = 1 \iff p \equiv 1, -1 \pmod{12}, \quad \left(\frac{3}{p}\right) = -1 \iff p \equiv 5, -5 \pmod{12},$$

$$\left(\frac{5}{p}\right) = 1 \iff p \equiv 1, -1 \pmod{5}, \quad \left(\frac{5}{p}\right) = -1 \iff p \equiv 2, -2 \pmod{5}.$$

As $5 \wedge 12 = 1$, there exist 8 cases, all possible, which give

$$\left(\frac{15}{p}\right) = 1 \iff p \equiv \pm 1, \pm 7, \pm 11, \pm 17 \pmod{60}.$$

For instance, the primes $2, 7, 11, 17, 43, 53, 59, 61, 67, 137, \ldots$ are suitable.

Ex. 5.17 Supply the details to the proof of Proposition 5.2.1 and to the corollary to the lemma following it.

Proposition 5.2.1

- (a) $(a_1/b) = (a_2/b)$ if $a_1 \equiv a_2 \pmod{b}$.
- (b) $(a_1a_2/b) = (a_1/b)(a_2/b)$.
- (c) $(a/b_1b_2) = (a/b_1)(a/b_2)$.

Proof. (a) Let $b = p_1 p_2 \cdots p_m$, where the p_i are not necessarily distinct primes. For each prime p_i , $(a_1, p_i) = (a_2, p_i)$ (Prop. 5.1.2 (c)), so $\prod_i (a_1, p_i) = \prod_i (a_2, p_i)$, thus $(a_1/b) = (a_2/b)$.

- (b) From Prop. 5.1.2(b), $(a_1 a_2/b) = \prod_i (a_1 a_2/p_i) = \prod_i (a_1/p_i)(a_2/p_i) = \prod_i (a_1/p_i) \prod_i (a_2/p_i) = (a_1/b)(a_2/b).$
- (c) Let $b_1 = p_1 p_2 \cdots p_m$, $b_2 = q_1 q_2 \cdots q_l$. Then $b_1 b_2 = p_1 p_2 \cdots p_m q_1 q_2 \cdots q_l = \prod_{i=1}^{m+l} r_i$, where $r_i = p_i$ for $i = 1, \dots, m$, $r_i = q_{i-m}$ for $i = m+1, \dots, m+l$. Then $(a/b_1 b_2) = \prod_{i=1}^{m+l} (a/r_i) = \prod_{i=1}^m (a/p_i) \prod_{j=1}^l (a/q_i) = (a/b_1)(a/b_2)$.

Lemma. Let r and s be odd integers. Then

(a) $(rs-1)/2 \equiv ((r-1)/2) + ((s-1)/2) \pmod{2}$.

(b)
$$(r^2s^2-1)/8 \equiv ((r^2-1)/8) + ((s^2-1)/8) \pmod{2}$$
.

(Proof in the book.)

Corollary. Let r_1, r_2, \ldots, r_m be odd integers. Then

(a)
$$\sum_{i=1}^{m} (r_i - 1)/2 \equiv (r_1 r_2 \cdots r_m - 1)/2 \pmod{2}$$
.

(b)
$$\sum_{i=1}^{m} (r_i^2 - 1)/8 \equiv (r_1^2 r_2^2 \cdots r_m^2 - 1)/8 \pmod{2}$$
.

Proof. Let $\mathcal{P}(m)$ the proposition defined by

$$\mathcal{P}(m) \iff \sum_{i=1}^{m} (r_i - 1)/2 \equiv (r_1 r_2 \cdots r_m - 1)/2 \pmod{2}.$$

Then $\mathcal{P}(1) \iff (r_1 - 1)/2 \equiv (r_1 - 1)/2 \pmod{2}$ is true, and $\mathcal{P}(2)$ is part (a) of the lemma. If we make the induction hypothesis $\mathcal{P}(m)$, then

$$\sum_{i=1}^{m+1} (r_i - 1)/2 = \sum_{i=1}^{m} (r_i - 1)/2 + (r_{m+1} - 1)/2$$

$$\equiv (r_1 r_2 \cdots r_m - 1)/2 + (r_{m+1} - 1)/2 \pmod{2}$$

$$\equiv (r_1 r_2 \cdots r_m r_{m+1} - 1)/2 \pmod{2},$$

where the last congruence is a consequence of the part (a) of the Lemma : the induction is completed, and $\mathcal{P}(m)$ is true for all $m \geq 1$.

The proof of part (b) is similar.

Ex. 5.18 Let D be a square-free integer that is also odd and positive. Show that there's an integer b prime to D such that (b/D) = -1.

Proof. Let $D = p_1 p_2 \cdots p_k$, where the p_i are distinct odd primes.

Let s a nonresidue modulo p_k . From Chinese remainder theorem, as $p_i \wedge p_j = 1$ if $i \neq j$, there exists an integer b such that

$$b \equiv 1 \pmod{p_1}, b \equiv 1 \pmod{p_2}, \dots, b \equiv 1 \pmod{p_{k-1}}, b \equiv s \pmod{p_k}.$$

Then $(b/p_i) = 1$, i = 1, 2, ..., k - 1, $(b/p_k) = -1$, so $b \wedge p_i = 1$ for all i = 1, 2, ..., k. Then $b \wedge D = b \wedge p_1 \cdots p_k = 1$, and

$$\left(\frac{b}{D}\right) = \prod_{i=1}^{k} \left(\frac{b}{p_i}\right) = \left(\frac{b}{p_k}\right) = -1.$$

Ex. 5.19 Let D be as in Exercise 18. Show that $\sum (a/D) = 0$, where the sum is over a reduced residue system modulo D. Conclude that exactly one half of the elements in $U(\mathbb{Z}/D\mathbb{Z})$ satisfy (a/D) = 1.

Proof. Let b such that (b/D) = 1: the existence of b comes from Ex 5.18.

Let $S = \sum_{a \in A} (a/D)$, where A is reduced residue system modulo D. As two reduced system modulo D represent the same elements in $U(\mathbb{Z}/D\mathbb{Z})$, the sum is independent of the reduced residue system A: we can write

$$S = \sum_{\overline{a} \in U(\mathbb{Z}/D\mathbb{Z})} (a/D).$$

As $b \wedge D = 1$, we know from Ex. 3.6 that $B = bA = \{ba \mid a \in A\}$ is also a reduced system modulo D. In other words, the application $U(Z/DZ) \to U(\mathbb{Z}/D\mathbb{Z}), \overline{a} \mapsto \overline{a}\overline{b}$ is a bijection, so

$$\left(\frac{b}{D}\right)S = \sum_{\overline{a} \in U(\mathbb{Z}/D\mathbb{Z})} \left(\frac{b}{D}\right) \left(\frac{a}{D}\right) = \sum_{\overline{a} \in U(\mathbb{Z}/D\mathbb{Z})} \left(\frac{ba}{D}\right) = \sum_{\overline{c} \in U(\mathbb{Z}/D\mathbb{Z})} \left(\frac{c}{D}\right) = S \qquad (\overline{c} = \overline{a}\overline{b}).$$

As (b/D) = -1, -S = S, so S = 0.

Since $(a/D) = \pm 1$, one half of the elements in $U(\mathbb{Z}/D\mathbb{Z})$ satisfy (a/D) = 1, and one half of the elements in $U(\mathbb{Z}/D\mathbb{Z})$ satisfy (a/D) = -1.

Ex. 5.20 (continuation) Let $a_1, a_2, \ldots, a_{\phi(D)/2}$ be integers between 1 and D such that $(a_i, D) = 1$ and $(a_i/D) = 1$. Prove that D is a quadratic residue modulo a prime $p \not\mid D$, $p \equiv 1 \pmod{4}$ iff $p \equiv a_i \pmod{D}$ for some i.

Proof. From Ex. 5.19 we know that there exist exactly $\phi(D)/2$ integers a_i between 1 and D such that $a_i \wedge D = 1$ and $(a_i/D) = 1$. So $\{\overline{a_1}, \dots, \overline{a_{\phi(D)/2}}\}$ is the set of all $\overline{a} \in U(\mathbb{Z}/D\mathbb{Z})$ such that (a/D) = 1.

Let $D = p_1 p_2 \cdots p_k$, with distinct p_i , and p a prime number, $p \equiv 1 \pmod{4}$, $p \notin \{p_1, \ldots, p_k\}$ (so $p = 4k + 1, k \in \mathbb{N}$).

(\Leftarrow) Suppose that $p \equiv a_i$ for some $i, 1 \le i \le \phi(D)/2$, then $(p/D) = (a_i/D) = 1$, so (Prop. 5.2.2)

$$\left(\frac{D}{p}\right) = (-1)^{\frac{p-1}{2}\frac{D-1}{2}} \left(\frac{p}{D}\right) = (-1)^{2k\left(\frac{D-1}{2}\right)} \left(\frac{p}{D}\right) = \left(\frac{p}{D}\right) = 1.$$

 (\Rightarrow) Suppose that D is a quadratic residue modulo p. Then (D/p)=1, so

$$\left(\frac{p}{D}\right) = (-1)^{\frac{p-1}{2}\frac{D-1}{2}} \left(\frac{D}{p}\right) = 1.$$

Thus $\overline{p} \in \{\overline{a_1}, \dots, \overline{a_{\phi(D)/2}}\}$ since $\{\overline{a_1}, \dots, \overline{a_{\phi(D)/2}}\}$ is the set of all $\overline{a} \in U(\mathbb{Z}/D\mathbb{Z})$ such that (a/D) = 1. Consequently $p \equiv a_i \pmod{D}$ for some i.

Ex. 5.21 Apply the method of Ex. 5.19 and 5.20 to find those primes for which 21 is a quadratic residue.

Proof. Let $D=21=3\times 7$ (D is positive, odd and square-free). We first search the $\phi(D)/2=6$ integers $a,\ 1\leq a\leq 21$, such that (a/D)=1.

$$\left(\frac{a}{21}\right) = 1 \iff \left(\frac{a}{3}\right) = \left(\frac{a}{7}\right) = 1 \text{ or } \left(\frac{a}{3}\right) = \left(\frac{a}{7}\right) = -1.$$

The first case is equivalent to $a \equiv 1 \pmod{3}$, $a \equiv 1, 2, 4 \pmod{7}$, that is $a \equiv 1, 16, 4 \pmod{21}$.

The second case gives $a \equiv -1 \pmod{3}$, $a \equiv -1, -2, -4 \pmod{7}$, that is $a \equiv -1, -16, -4 \pmod{21}$, or equivalently $a \equiv 20, 5, 17 \pmod{21}$.

So $A = \{1, 4, 5, 16, 17, 20\}$ is the set of the integers a such that $1 \le a \le 21$, (a/D) = 1.

As (21/3) = (21/7) = 0, 21 is not a quadratic residue modulo 3 or 7.

• $p \equiv 1 \pmod{4}$.

From Ex.5.20, we know that D=21 is a quadratic residue modulo an odd prime p, $p \neq 3, p \neq 7, p \equiv 1 \pmod{4}$, iff $p \equiv a \pmod{D}$ for some $a \in A$.

• $p \equiv -1 \pmod{4}$.

As $D=21\equiv 1\pmod 4$, $\binom{D}{p}\binom{p}{D}=(-1)^{\frac{p-1}{2}\frac{D-1}{2}}=1$, so the same reasoning as in Ex. 5.20 show that D is a quadratic residue modulo 21 iff $p\equiv a, a\in A$.

Conclusion: 21 is a quadratic residue for 2, and for the primes p such that

$$p \equiv 1, 4, 5, 16, 17, 20 \pmod{21}$$
.

Ex. 5.22 Use the Jacobi symbol to determine (113/997), (215/761), (514/1093), and (401/757).

Proof. $(113/997) = (997/113) = (93/11) = (113/93) = (20/93) = (2^2/93)(5/93) = (5/93) = (93/5) = (5/3) = (5/3) = (2/3) = -1.$

 $(215/761) = (761/215) = (116/215) = (2^2/215)(29/215) = (29/215) = (215/29) = (12/29) = (2^2/29)(3/29) = (3/29) = (29/3) = (2/3) = -1.$

(514/1093) = (2/1093)(257/1093) = -(257/1093) = -(1093/57) = -(65/257) = -(257/65) = -(62/65) = -(2/65)(31/65) = -(31/65) = -(65/31) = -(3/31) = (31/3) = (1/3) = 1.

$$(401/757) = (757/401) = (356/401) = (401/89) = (45/89) = (89/45) = (44/45) = (2^2/45)(11/45) = (11/45) = (45/11) = (1/11) = 1.$$

Ex. 5.23 Suppose that $p \equiv 1 \pmod{4}$. Show that there exist integers s and t such that $p \equiv 1 + s^2$. Conclude that p is not a prime in $\mathbb{Z}[i]$. Remember that $\mathbb{Z}[i]$ has unique factorization.

Proof. As $p \equiv 1 \pmod{4}$, then $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = 1 : -1$ is a square modulo p.

So $-1 \equiv s^2 \pmod{p}$, $s \in \mathbb{Z}$: there exist $s \in \mathbb{Z}$, $t \in \mathbb{Z}$ such that $pt = 1 + s^2$.

In $\mathbb{Z}[i]$, p|(s+i)(s-i).

If p was a prime in $\mathbb{Z}[i]$, then $p \mid s+i$ ou $p \mid s-i$.

This implies $s \pm i = (a + bi)p, (a, b) \in \mathbb{Z}^2$, thus $\pm 1 = bp, p \mid 1$: it's impossible.

Conclusion: if $p \equiv 1 \pmod{4}$, p is not a prime in $\mathbb{Z}[i]$.

Ex. 5.24 If $p \equiv 1 \pmod{4}$, show that p is a sum of two squares, i.e. $p = a^2 + b^2$ with $a, b \in \mathbb{Z}$. (Hint: $p = \alpha \beta$, with α and β being non units in $\mathbb{Z}[i]$. Remember that $\mathbb{Z}[i]$ has unique factorisation.)

Proof. $\mathbb{Z}[i]$ is a principal ideal domain, thus p prime is in $\mathbb{Z}[i]$ iff p is irreducible in $\mathbb{Z}[i]$.

If $p \equiv 1 \pmod{4}$, p is not a prime from Ex.5.23, so it is not irreducible:

 $p = \alpha \beta$, $\alpha, \beta \in \mathbb{Z}[i], N(\alpha) > 1, N(\beta) > 1$ (where $N(a + bi) = a^2 + b^2$ is the complex norm).

$$N(p) = p^2 = N(u)N(v), 1 < N(u) < p^2$$

Thus N(u) = p, that is $p = a^2 + b^2$, where u = a + bi.

Conclusion : if p is prime in \mathbb{N} , $p \equiv 1 \pmod{4}$, then $p = a^2 + b^2$, $a, b \in \mathbb{Z}$, p is a sum of two squares.

Ex. 5.25 An integer is called a biquadratic residue modulo p if it is congruent to a fourth power. Using the identity $x^4 + 4 = ((x+1)^2 + 1)((x-1)^2 + 1)$ show that -4 is a biquadratic residue modulo p iff $p \equiv 1 \pmod{4}$.

Proof.
$$x^4 + 4 = (x^4 + 4x^2 + 4) - 4x^2 = (x^2 + 2)^2 - 4x^2 = (x^2 + 2 - 2x)(x^2 + 2 + 2x)$$
, so

$$x^4 + 4 = ((x-1)^2 + 1)((x+1)^2 + 1).$$

If $-4 \equiv x^4$ [p], then $p \mid (x+1)^2 + 1$ or $p \mid (x-1)^2 + 1$

In the two cases, -1 is a quadratic residue modulo p, thus $\left(\frac{-1}{p}\right) = 1 : p \equiv 1$ [4].

Reciprocally, if $p \equiv 1$ [4], $\left(\frac{-1}{p}\right) = 1$, then it exists an integer a such that $-1 \equiv a^2$ [p].

Let x = a - 1. Then $p \mid (x + 1)^2 + 1$, thus $p \mid x^4 + 4 : -4$ is a biquadratic residue modulo p.

Conclusion:

$$\exists x \in \mathbb{Z}, \ x^4 \equiv -4 \ [p] \iff p \equiv 1 \ [4].$$

Ex. 5.26 This exercise and Ex. 5.27 and 5.28 give Dirichlet's beautiful proof that 2 is a biquadratic residue modulo p iff p can be written in the form $A^2 + 64B^2$, where $A, B \in \mathbb{Z}$. Suppose that $p \equiv 1 \pmod{4}$. Then $p = a^2 + b^2$ by Ex. 5.24. Take a to be odd. Prove the following statements:

(a)
$$(a/p) = 1$$
.

(b)
$$((a+b)/p) = (-1)^{((a+b)^2-1)/8}$$
.

(c)
$$(a+b)^2 \equiv 2ab \pmod{p}$$

(d)
$$(a+b)^{(p-1)/2} \equiv (2ab)^{(p-1)/4} \pmod{p}$$
.

Proof. Let p a prime number, $p \equiv 1$ [4]: $p = 4k + 1, k \in \mathbb{N}^*$.

Then $p = a^2 + b^2$ (Ex. 5.24).

As a, b are not of the same parity, up to exchange a and b, we will suppose that a is odd (then b is even).

(a)

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} = a^{2k} \ [p].$$

Using the law of quadratic reciprocity for Jacobi's symbol (Proposition 5.2.2), where a, p are odd numbers :

$$\left(\frac{a}{p}\right) = \left(\frac{p}{a}\right)(-1)^{\frac{p-1}{2}\frac{a-1}{2}} = \left(\frac{p}{a}\right),$$

since $p \equiv 1$ [4].

If $a=p_1p_2\cdots p_l$ is the decomposition of a in prime factors, with not necessarily distinct primes , then

$$\left(\frac{p}{a}\right) = \left(\frac{p}{p_1}\right)\left(\frac{p}{p_2}\right)\cdots\left(\frac{p}{p_l}\right).$$

Since $p = a^2 + b^2$, $p \equiv b^2 [p_i]$, thus $\left(\frac{p}{p_i}\right) = 1$ for all i.

$$\left(\frac{a}{p}\right) = \left(\frac{p}{a}\right) = 1.$$

(b) a + b is odd, and $p \equiv 1$ [4], thus

$$\left(\frac{a+b}{p}\right) = \left(\frac{p}{a+b}\right) = \left(\frac{2^2p}{a+b}\right) = \left(\frac{2}{a+b}\right)\left(\frac{2p}{a+b}\right).$$

If $a + b = q_1 q_2 \cdots q_l$, as $2p = (a + b)^2 + (a - b)^2$, $2p \equiv (a - b)^2$ $[q_i]$, thus $\binom{2p}{q_i} = 1$.

$$\left(\frac{2p}{a+b}\right) = \left(\frac{2p}{q_1}\right) \cdots \left(\frac{2p}{q_l}\right) = 1.$$

Moreover $(\frac{2}{a+b}) = (-1)^{\frac{(a+b)^2-1}{8}}$, so

$$\left(\frac{a+b}{p}\right) = (-1)^{\frac{(a+b)^2-1}{8}}.$$

(c)
$$(a+b)^2 = a^2 + b^2 + 2ab = p + 2ab \equiv 2ab$$
 [p]

$$(d)[(a+b)^2]^{\frac{p-1}{4}} \equiv (2ab)^{\frac{p-1}{4}} [p], \text{ thus}$$

$$(a+b)^{\frac{p-1}{2}} \equiv (2ab)^{\frac{p-1}{4}} [p].$$

Ex. 5.27 Suppose that f is such that $b \equiv af \pmod{p}$. Show that $f^2 \equiv -1 \pmod{p}$, and that $2^{(p-1)/4} \equiv f^{ab/2} \pmod{p}$.

Proof. Let f such as $b \equiv af[p]$.

This is equivalent to $\overline{f} = \overline{b}\overline{a}^{-1}$ dans \mathbb{F}_n^* .

As
$$\overline{a}^2 = -\overline{b}^2$$
, $\overline{f}^2 = -\overline{1}$: $f^2 \equiv -1$ [p]. We deduce from Ex. 5.26 (d) and (b) that

$$(2ab)^{\frac{p-1}{4}} \equiv (a+b)^{\frac{p-1}{2}} = \left(\frac{a+b}{p}\right)$$

$$\equiv (-1)^{\frac{(a+b)^2-1}{8}}$$

$$\equiv (f^2)^{\frac{(a+b)^2-1}{8}}$$

$$\equiv f^{\frac{(a+b)^2-1}{4}} = f^{\frac{a^2+b^2-1+2ab}{4}}$$

$$\equiv f^{\frac{p-1}{4}} f^{\frac{ab}{2}} \pmod{p}$$

Since $a^{\frac{p-1}{2}} = (\frac{a}{p}) = 1$ from Ex. 5.26(a)), then

$$(ab)^{\frac{p-1}{4}} \equiv (a^2 f)^{\frac{p-1}{4}} \equiv a^{\frac{p-1}{2}} f^{\frac{p-1}{4}} \equiv f^{\frac{p-1}{4}} [p],$$

SO

$$2^{\frac{p-1}{4}} f^{\frac{p-1}{4}} \equiv f^{\frac{ab}{2}} f^{\frac{p-1}{4}} [p].$$

As $f^{\frac{p-1}{4}} \not\equiv 0 \ [p],$

$$2^{\frac{p-1}{4}} \equiv f^{\frac{ab}{2}} [p].$$

Ex. 5.28 Show that $x^4 \equiv 2 \pmod{p}$ has a solution for $p \equiv 1 \pmod{4}$ iff p is of the form $A^2 + 64B^2$.

Proof. If $p \equiv 1$ [4] and if there exists $x \in \mathbb{Z}$ such that $x^4 \equiv 2$ [p], then

$$2^{\frac{p-1}{4}} \equiv x^{p-1} \equiv 1 \ [p].$$

From Ex. 5.27, where $p = a^2 + b^2$, a odd, we know that

$$f^{\frac{ab}{2}} \equiv 2^{\frac{p-1}{4}} \equiv 1 \ [p].$$

Since $f^2 \equiv -1$ [p], the order of f modulo p is 4, thus $4 \mid \frac{ab}{2}$, so $8 \mid ab$. As a is odd, $8 \mid b$, then $p = A^2 + 64B^2$ (with A = a, B = b/8).

Reciprocally, if $p = A^2 + 64B^2$, then $p \equiv A^2 \equiv 1$ [4]. Let a = A, b = 8B. Then

$$2^{\frac{p-1}{4}} \equiv f^{\frac{ab}{2}} \equiv f^{4AB} \equiv (-1)^{2AB} \equiv 1 \ [p].$$

As $2^{\frac{p-1}{4}} \equiv 1$ [p], $x^4 \equiv 2$ [p] has a solution in \mathbb{Z} (Prop. 4.2.1) : 2 is a biquadratic residue modulo p.

Conclusion:

$$\exists A \in \mathbb{Z}, \exists B \in \mathbb{Z}, p = A^2 + 64B^2 \iff (p \equiv 1 \ [4] \text{ and } \exists x \in \mathbb{Z}, x^4 \equiv 2 \ [p]).$$

Remark: the equation $x^4 \equiv 2$ [p] has also solutions if $p \equiv -1$ [8].

Indeed, the equation $x^4 \equiv 2$ [p] has a solution in \mathbb{Z} iff $2^{\frac{p-1}{d}} = 1$, where $d = 4 \land (p-1) = 2$, thus iff $2^{\frac{p-1}{2}} \equiv 1$ [p], which is true as $\left(\frac{2}{p}\right) = 1$.

For instance, $8^4 \equiv 2 \pmod{23}$, with $23 \equiv -1 \pmod{8}$.

Ex. 5.29 Let (RR) be the number of pairs (n, n + 1) in the set $1, 2, 3, \ldots, p - 1$ such that n and n + 1 are both quadratic residues modulo p. Let (NR) be the number of pairs (n, n + 1) in the set $1, 2, 3, \ldots, p - 1$ such that n is a quadratic nonresidue and n + 1 is a quadratic residue. Similarly, define (RN) and (NN). Determine the sums (RR) + (RN), (NR) + (NN), (RR) + (NR), and (RN) + (NN).

Proof. Let E = [1, p-2]. Then |E| = p-2.

Write RR the set of integers $n \in E$ such that n and n+1 are both a quadratic residues, and (RR) = |RR| its cardinality, and similar definitions for RN, NR, NN.

As $E = RR \cup RN \cup NR \cup NN$ (disjoint union),

$$(RR) + (RN) + (NR) + (NN) = |E| = p - 2.$$

• The union $RR \cup RN$ is the set of $n \in E$ such that n is a quadratic residue. Its cardinality is the number of quadratic residues in [1, p-2], that is the number of quadratic residues in [1, p-1], minus s, where s=1 if $p-1 \equiv -1$ is a residue, s=0 otherwise. Since $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$, we obtain $s=\frac{1+(-1)^{\frac{p-1}{2}}}{2}$, and the total number of quadratic residues is (p-1)/2, thus

$$(RR) + (RN) = \frac{p-1}{2} - s = \frac{p-1}{2} - \frac{1 + (-1)^{\frac{p-1}{2}}}{2} = \frac{1}{2}(p-2 - (-1)^{\frac{p-1}{2}}).$$

• Similarly, (NR) + (NN) is the number of quadratic nonresidues in [1, p-1], minus t, where t=1 if p-1 is a quadratic nonresidue, t=0 otherwise : $t=\frac{1-(-1)^{\frac{p-1}{2}}}{2}$, so

$$(NR) + (NN) = \frac{1}{2}(p - 2 + (-1)^{\frac{p-1}{2}})$$

(the sum of these two results is indeed p-2=|E|).

• Since 1 is a residue, (RR) + (NR) is the number of residues in [1, p-1], minus 1:

$$(RR) + (NR) = \frac{p-1}{2} - 1.$$

• (RN)+(NN) is the number of nonresidues in [2,p-1], equal to the number of residues in [1,p-1]:

$$(RN) + (NN) = \frac{p-1}{2}.$$

Ex. 5.30 Show that $(RR) + (NN) - (RN) - (NR) = \sum_{n=1}^{p-1} (n(n+1)/p)$. Evaluate this sum and show that it is equal to -1. (Hint: The result of Exercise 8 is useful.)

Proof. Let χ be the characteristic function of $RR \cup NN$: if $1 \leq n \leq p-1$, $\chi(n)=1$ if n, n+1 are both quadratic residues, or if n, n+1 are both quadratic nonresidues. Then

$$\chi(n) = \frac{1}{2} \left(1 + \left(\frac{n}{p} \right) \left(\frac{n+1}{p} \right) \right)$$

(if $\chi(n) = 1$, $\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right) = 1$, and $\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right) = -1$ otherwise.) Similarly, let χ' be the characteristic function of the complement $RN \cup NR : \chi(n) = 1$ if exactly one of the integer n, n+1 is a residue, 0 otherwise. Then $\chi'(n) = 1 - \chi(n)$, so

$$\chi'(n) = \frac{1}{2} \left(1 - \left(\frac{n}{p} \right) \left(\frac{n+1}{p} \right) \right).$$

Since

$$|(RR) \cup (NN)| = \sum_{n=1}^{p-1} \chi(n)$$
$$|(RN) \cup (NR)| = \sum_{n=1}^{p-1} \chi'(n),$$

we obtain

$$(RR) + (NN) - (RN) - (NR) = \sum_{n=1}^{p-1} (\chi(n) - \chi'(n))$$

$$= \frac{1}{2} \sum_{n=1}^{p-1} \left(1 + \left(\frac{n(n+1)}{p} \right) \right) - \left(1 - \left(\frac{n(n+1)}{p} \right) \right)$$

$$= \sum_{n=1}^{p-1} \left(\frac{n(n+1)}{p} \right)$$

To evaluate this sum S, note that $4n(n+1) = (2n+1)^2 - 1$, so

$$S = \sum_{p=1}^{p-1} \left(\frac{n(n+1)}{p} \right) = \sum_{p=1}^{p-1} \left(\frac{4n(n+1)}{p} \right) = \sum_{p=1}^{p-1} \left(\frac{(2n+1)^2 - 1}{p} \right).$$

This sum can be written $S = \sum_{\overline{n} \in \mathbb{F}_p^*} ((2n+1)^2 - 1)/p) = \sum_{\overline{n} \in \mathbb{F}_p} ((2n+1)^2 - 1)/p)$, since (0/p) = 0. As $f: \mathbb{F}_p \to \mathbb{F}_p, \overline{n} \mapsto (2\overline{n} + 1)$ is a bijection (2 is invertible in \mathbb{F}_p^*),

$$\sum_{\overline{n} \in \mathbb{F}_p} \left(\frac{(2n+1)^2 - 1}{p} \right) = \sum_{\overline{y} \in \mathbb{F}_p} \left(\frac{y^2 - 1}{p} \right) \qquad (y = 2n + 1).$$

As $p \nmid 1$, the evaluation of this last sum is given in Exercise 5.8 : S = -1, so

$$(RR) + (NN) - (RN) - (NR) = \sum_{n=1}^{p-1} \left(\frac{n(n+1)}{p}\right) = -1.$$

Ex. 5.31 Use the results of Exercises 29 and 30 to show that $(RR) = \frac{1}{4}(p-4-\varepsilon)$, where $\varepsilon = (-1)^{(p-1)/2}$

Proof. To summarize the results of the Ex. 5.29 and 5.30,

$$(a)(RR) + (RN) + (NR) + (NN) = p - 2$$
$$(b)(RR) + (NN) - (RN) - (NR) = -1$$

and

$$(c)(RR) + (RN) = \frac{1}{2} \left(p - 2 - (-1)^{\frac{p-1}{2}} \right)$$
$$(d)(RR) + (NR) = \frac{p-1}{2} - 1$$

The sum of (a) and (b) gives

$$(e)(RR) + (NN) = \frac{p-3}{2}.$$

The sum of (c),(d),(e) gives (using (a))

$$2(RR) + p - 2 = \frac{p-2}{2} + \frac{p-1}{2} + \frac{p-3}{2} - 1 - \frac{(-1)^{\frac{p-1}{2}}}{2},$$

so

$$\begin{split} 2(RR) &= \frac{p-1}{2} + \frac{p-3}{2} - \frac{p-2}{2} - 1 - \frac{(-1)^{\frac{p-1}{2}}}{2} = \frac{p}{2} - 2 - \frac{(-1)^{\frac{p-1}{2}}}{2}, \\ (RR) &= \frac{1}{4}(p-4-\varepsilon), \text{ where } \varepsilon = (-1)^{\frac{p-1}{2}}. \end{split}$$

Ex. 5.32 If p is an odd prime, show that $(2/p) = \prod_{j=1}^{(p-1)/2} 2\cos(2\pi j/p)$. Use this to give another proof to Proposition 5.1.3.

Proof. Let p an odd prime number, and $\zeta = e^{2i\pi/p}$: then $\zeta^p = 1$.

$$P = \prod_{j=0}^{p-1} (\zeta^j + \zeta^{-j}) = \prod_{j=0}^{p-1} 2\cos(2\pi j/p).$$

$$P = \zeta^{0} \zeta^{-1} \cdots \zeta^{-(p-1)} \prod_{j=0}^{p-1} (\zeta^{2j} + 1)$$

$$= (\zeta^{p})^{-(p-1)/2} \prod_{j=0}^{p-1} (\zeta^{2j} + 1)$$

$$= \prod_{j=0}^{p-1} (\zeta^{2j} + 1)$$

As ζ^j depends only of the class $\overline{j} \in \mathbb{F}_p$, this product can be written

$$P = \prod_{\overline{j} \in \mathbb{F}_p} (\zeta^{2j} + 1) = \prod_{\overline{k} \in \mathbb{F}_p} (\zeta^k + 1) \qquad (k = 2j),$$

since $f: \mathbb{F}_p \to \mathbb{F}_p, x \mapsto 2x$ is a bijection. So

$$P = \prod_{k=0}^{p-1} (\zeta^k + 1).$$

Since $\zeta^0 = 1, \zeta, \dots, \zeta^{p-1}$ are the roots of the polynomial $f(x) = x^p - 1$, then $1 + \zeta^0, \dots, 1 + \zeta^{p-1}$ are the roots of $g(x) = (x-1)^p - 1 = f(x-1)$, so $g(x) = \prod_{k=0}^{p-1} (x-(1+\zeta^k))$. As $g(0) = (-1)^p - 1 = -2 = (-1-\zeta^0) \cdots (-1-\zeta^{p-1}) = -\prod_{k=0}^{p-1} (\zeta^k + 1)$, we obtain

$$P = \prod_{j=0}^{p-1} 2\cos(2\pi j/p) = \prod_{k=0}^{p-1} (\zeta^k + 1) = 2,$$

SO

$$\prod_{j=1}^{p-1} 2\cos(2\pi j/p) = 1.$$

$$1 = \prod_{j=1}^{p-1} 2\cos(2\pi j/p)$$

$$= \prod_{j=1}^{(p-1)/2} 2\cos(2\pi j/p) \prod_{j=(p+1)/2}^{p-1} 2\cos(2\pi j/p)$$

$$= \prod_{j=1}^{(p-1)/2} 2\cos(2\pi j/p) \prod_{k=1}^{(p-1)/2} 2\cos(2\pi - 2\pi k/p) \qquad (k = p - j)$$

As $\cos(2\pi - \alpha) = \cos(\alpha)$,

$$1 = \left(\prod_{j=1}^{(p-1)/2} 2\cos(2\pi j/p)\right)^2, \text{ so } \prod_{j=1}^{(p-1)/2} 2\cos(2\pi j/p) = \pm 1$$

Case 1: if $1 \le j \le p/4, 0 \le 2\pi j/p < \pi/2$, so $\cos(2\pi j/p) > 0$,

case 2: if $p/4 < j \le (p-1)/2, \pi/2 < 2\pi j/p < \pi$, so $\cos(2\pi j/p) < 0$.

In the first case, $2 \le 2j \le (p-1)/2$: the least residue of 2j is positive. In the second case $p/2 < 2j \le p-1$: the least residue of 2j is negative.

Let μ the number of negative least residues of the integer 2j, $1 \le j \le (p-1)/2$: we know from Gauss' Lemma that $(2/p) = (-1)^{\mu}$. As μ is also the number of j, $1 \le j \le$ (p-1)/2 such that $\cos(2\pi j/p) > 0$,

$$\prod_{j=1}^{(p-1)/2} 2\cos(2\pi j/p) = (-1)^{\mu} = \left(\frac{2}{p}\right).$$

If
$$p \equiv 1$$
 [8], $p = 8q + 1, q \in \mathbb{N}$. For $1 \le j \le (p - 1)/2$,

$$cos(2\pi j/p) < 0 \iff p/4 \le j \le (p-1)/2 \iff 2q+1 \le j \le 4q,$$

so
$$\mu = 2q$$
 and $(2/p) = (-1)^{\mu} = 1$.

If
$$p \equiv -1$$
 [8], $p = 8q - 1, q \in \mathbb{N}^*$.

$$cos(2\pi j/p) < 0 \iff p/4 \le j \le (p-1)/2 \iff 2q \le j \le 4q-1,$$

so
$$\mu = 2q$$
 and $(2/p) = (-1)^{\mu} = 1$.

If $p \equiv 3$ [8], $p = 8q + 3, q \in \mathbb{N}$.

$$\cos(2\pi j/p) < 0 \iff p/4 \le j \le (p-1)/2 \iff 2q+1 \le j \le 4q+1,$$

so
$$\mu = 2q + 1$$
 and $(2/p) = (-1)^{\mu} = 1$.

If $p \equiv -3$ [8], $p = 8q - 3, q \in \mathbb{N}^*$,

$$\cos(2\pi j/p) < 0 \iff p/4 \le j \le (p-1)/2 \iff 2q \le j \le 4q - 2,$$

so
$$\mu = 2q - 1$$
 and $(2/p) = (-1)^{\mu} = 1$.

Ex. 5.33 Use Proposition 5.3.2 to derive the quadratic character of -1.

Proof. Let $f(z) = e^{2\pi i z} - e^{-2\pi i z}$. If p is an odd prime, $a \in \mathbb{Z}$, and $p \nmid a$, we know from Prop. 5.3.2 that

$$\prod_{l=1}^{(p-1)/2} f\left(\frac{la}{p}\right) = \left(\frac{a}{p}\right) \prod_{l=1}^{(p-1)/2} f\left(\frac{l}{p}\right).$$

For a = -1, as f(-z) = -f(z),

$$\left(\frac{-1}{p}\right) \prod_{l=1}^{(p-1)/2} f\left(\frac{l}{p}\right) = \prod_{l=1}^{(p-1)/2} f\left(\frac{-l}{p}\right)$$
$$= (-1)^{(p-1)/2} \prod_{l=1}^{(p-1)/2} f\left(\frac{l}{p}\right)$$

Moreover $f(z) = 0 \iff e^{4\pi i z} = 1 \iff 4\pi i z = 2ki\pi, k \in \mathbb{Z} \iff z = k/2, k \in \mathbb{Z}, \text{ so, if } l \in \mathbb{Z}, f\left(\frac{l}{p}\right) = 0 \iff l/p = k/2, k \in \mathbb{Z} \iff p \mid 2l \iff p \mid l. \text{ For } 1 \leq l < p, \text{ this is impossible, so } \prod_{l=1}^{(p-1)/2} f\left(\frac{l}{p}\right) \neq 0. \text{ Consequently,}$

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}.$$

Ex. 5.34 If p is an odd prime distinct from 3, show that

$$\left(\frac{3}{p}\right) = \prod_{j=1}^{(p-1)/2} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right).$$

Proof. Let p an odd prime number, $p \neq 3$ and $\zeta = e^{2i\pi/p}$.

$$3 - 4\sin^2\left(\frac{2\pi j}{p}\right) = 3 - 4\left(\frac{\zeta^j - \zeta^{-j}}{2i}\right)^2$$
$$= 3 + \zeta^{2j} + \zeta^{-2j} - 21$$
$$= 1 + \zeta^{2j} + \zeta^{-2j}$$
$$= 1 + 2\cos\left(\frac{4\pi j}{p}\right)$$

(Or $\cos(2\alpha) = 1 - 2\sin^2\alpha$, so $3 - 4\sin^2\alpha = 1 + 2\cos\alpha$.) Let

$$P = \prod_{j=1}^{p-1} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right) = \prod_{\overline{j} \in \mathbb{F}_p^*} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right).$$

Then

$$\begin{split} P &= \prod_{\overline{j} \in \mathbb{F}_p^*} \left(1 + \zeta^{2j} + \zeta^{-2j} \right) \\ &= \prod_{\overline{k} \in \mathbb{F}_p^*} \left(1 + \zeta^k + \zeta^{-k} \right) \qquad (k = 2j) \end{split}$$

since $f: \mathbb{F}_p \to \mathbb{F}_p, \overline{j} \mapsto 2\overline{j}$ is a bijection. So

$$P = \prod_{k=0}^{p-1} \zeta^{-k} \left(1 + \zeta^k + \zeta^{2k} \right)$$

$$= 3 \prod_{k=1}^{p-1} \zeta^{-k} \left(1 + \zeta^k + \zeta^{2k} \right)$$

$$= 3 \prod_{k=0}^{p-1} \zeta^{-k} \frac{\prod_{k=1}^{p-1} (1 - \zeta^{3k})}{\prod_{k=1}^{p-1} (1 - \zeta^k)}$$

 $\prod_{k=0}^{p-1} \zeta^{-k} = (\zeta^p)^{-(p-1)/2} = 1$. Morover, $\prod_{k=1}^{p-1} (1-\zeta^{3k}) = \prod_{k=1}^{p-1} (1-\zeta^k)$, since $\overline{k} \mapsto 3\overline{k}$ is a bijection in \mathbb{F}_p^* , so P=3, and consequently

$$\begin{split} 1 &= \prod_{j=1}^{p-1} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right) \\ &= \prod_{j=1}^{(p-1)/2} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right) \prod_{j=(p+1)/2}^{p-1} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right) \\ &= \prod_{j=1}^{(p-1)/2} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right) \prod_{k=1}^{(p-1)/2} \left(3 - 4\sin^2\left(\frac{2\pi (k-j)}{p}\right)\right) \\ &= \left[\prod_{j=1}^{(p-1)/2} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right)\right]^2 \\ &= \left[\prod_{j=1}^{(p-1)/2} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right)\right]^2 \\ &\text{So } \prod_{j=1}^{(p-1)/2} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right) = \pm 1. \end{split}$$

Let ν the number of negative factors in this product. If $1 \le j \le (p-1)/2$, then $0 < 4\pi j/p < 2\pi$.

$$1 + 2\cos\frac{4\pi j}{p} < 0 \iff \cos\frac{4\pi j}{p} < \cos\frac{2\pi}{3}$$

$$\iff \frac{2\pi}{3} < \frac{4\pi j}{p} < \frac{4\pi}{3}$$

$$\iff \frac{p}{6} < j < \frac{p}{3}$$

$$\iff \frac{p}{2} < 3j < p$$

Let μ the number of integers $j, 1 \le j \le (p-1)/2$ such their least remainder is negative. Since $3 \le 3j \le 3(p-1)/2$ and $3j \ne p/2$, these j are such that $\frac{p}{2} < 3j < p$, so $\mu = \nu$. Therefore

$$\prod_{j=1}^{(p-1)/2} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right) \right) = (-1)^{\nu} = (-1)^{\mu} = \left(\frac{3}{p}\right).$$

Ex. 5.35 Use the preceding exercise to show that 3 is a square modulo p iff p is congruent to 1 or -1 modulo 12.

Proof. We know from Ex. 5.34 that $\nu = \text{Card}\{j \in [1, (p-1)/2] \mid p/2 \leq 3j < p\} = \mu$. ν is the number of j such that $p/6 \leq j < p/3$, so $\nu = \lfloor p/3 \rfloor - \lfloor p/6 \rfloor$.

If
$$p = 12k + 1$$
, $\nu = \lfloor p/3 \rfloor - \lfloor p/6 \rfloor = 4k - 2k = 2k : (3/p) = (-1)^{\nu} = 1$
If $p = 12k + 5$, $\nu = \lfloor p/3 \rfloor - \lfloor p/6 \rfloor = 4k + 1 - 2k = 2k + 1 : (3/p) = (-1)^{\nu} = -1$
If $p = 12k - 5$, $\nu = \lfloor p/3 \rfloor - \lfloor p/6 \rfloor = 4k - 2 - (2k - 1) = 2k - 1 : (3/p) = (-1)^{\nu} = -1$
If $p = 12k - 1$, $\nu = \lfloor p/3 \rfloor - \lfloor p/6 \rfloor = 4k - 1 - (2k - 1) = 2k : (3/p) = (-1)^{\nu} = -1$
3 is a square modulo $p \ (p \neq 2, p \neq 3)$ iff p is congruent to 1 or -1 modulo 12.

Ex. 5.36 Show that part (c) of Proposition 5.2.2 is true if a is negative and b is positive (both still odd).

As said by Adam Michalik, the Jacobi symbol $\left(\frac{a}{b}\right)$ only defined for positive b, so the question, which concerns $\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)$, a < 0 makes no sense.

To give sense to this question, we must substitute the Kronecker symbol to the Jacobi symbol. The Kronecker symbol (not defined in Ireland-Rosen) is the usual extension of Jacobi symbol (see for instance [Henri Cohen] A course in computational algebraic number theory, [Henri Cohen] Number theory (vol. 1), or [Harvey Cohn] Advanced number theory).

We define Kronecker (or Kronecker-Jacobi) symbol $\left(\frac{a}{b}\right)$ for any a and b in \mathbb{Z} in the following way.

- (1) If b = 0, then $\left(\frac{a}{0}\right) = 1$ if $a = \pm 1$, and is equal to 0 otherwise.
- (2) For $b \neq 0$, write $b = \prod p$, where the p are not necessarily distinct primes (including 2), or p = -1 to take care of the sign. Then we set

$$\left(\frac{a}{b}\right) = \prod \left(\frac{a}{p}\right),$$

where $\left(\frac{a}{p}\right)$ is the Legendre symbol defined above for p>2, and where we define

$$\begin{pmatrix} \frac{a}{2} \end{pmatrix} = \begin{cases} 0 & \text{if } a \text{ is even} \\ (-1)^{(a^2 - 1)/8} & \text{if } a \text{ is odd,} \end{cases}$$

and also

$$\left(\frac{a}{-1}\right) = \begin{cases} 1 & \text{if } a \ge 0\\ -1 & \text{if } a < 0 \end{cases}$$

Proof. Suppose a < 0, b > 0, both odd. Let $a = -A, A > 0, A = p_1 p_2 \cdots p_k$, where the p_i are not necessarily distinct primes. Then

so, from Prop. 5.2.2, as A, b are odd and positive,

$$\begin{split} \left(\frac{a}{b}\right) \left(\frac{b}{a}\right) &= (-1)^{\frac{b-1}{2}} \left(\frac{A}{b}\right) \left(\frac{b}{A}\right) \\ &= (-1)^{\frac{b-1}{2}} (-1)^{\frac{A-1}{2} \frac{b-1}{2}} \\ &= (-1)^{\frac{b-1}{2} \left[1 + \frac{-a-1}{2}\right]} \\ &= (-1)^{\frac{b-1}{2} \frac{1-a}{2}} \\ &= (-1)^{\frac{b-1}{2} \frac{a-1}{2}} \end{split}$$

So the law of quadratic reciprocity remains valid for the Kronecker symbol when a is negative (b > 0, a, b both odd).

Ex. 5.37 Show that if a is negative, then $p \equiv q \pmod{4a}$, $p \nmid a$ implies (a/p) = (a/q).

Proof. Write a=-A, A>0. As $p\equiv q\pmod{4a}$, we know from Prop. 5.3.3. (b) that (A/p)=(A/q). Moreover,

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{pmatrix} \frac{-A}{p} \end{pmatrix} = (-1)^{(p-1)/2} \begin{pmatrix} \frac{A}{p} \end{pmatrix}$$
$$\begin{pmatrix} \frac{a}{q} \end{pmatrix} = \begin{pmatrix} \frac{-A}{q} \end{pmatrix} = (-1)^{(q-1)/2} \begin{pmatrix} \frac{A}{q} \end{pmatrix}$$

As $p \equiv q \pmod{4a}$, p = q + 4ak, $k \in \mathbb{Z}$, so

$$(-1)^{(p-1)/2} = (-1)^{(q+4ak-1)/2} = (-1)^{(q-1)/2},$$

so
$$(a/p) = (a/q)$$
.

Ex. 5.38 Let p be an odd prime. Derive the quadratic character of 2 modulo p by verifying the following steps, involving the Jacobi symbol:

$$\left(\frac{2}{p}\right) = \left(\frac{8-p}{p}\right) = \left(\frac{p}{p-8}\right) = \left(\frac{8}{p-8}\right) = \left(\frac{2}{p-8}\right).$$

Generalize the argument to show that

$$\left(\frac{a}{p}\right) = \left(\frac{a}{p-4a}\right), \quad a > 0, p \nmid a.$$

(As in Ex. 5.36, since 8 - p or p - 8 is negative, we interpret (a/b) as the Kronecker symbol: see definition in Ex. 5.36.)

Proof. As $(2^2/p) = 1$ and $8 - p \equiv 8 \pmod{p}$,

$$\left(\frac{2}{p}\right) = \left(\frac{2^2}{p}\right)\left(\frac{2}{p}\right) = \left(\frac{8}{p}\right) = \left(\frac{8-p}{p}\right).$$

As p and 8 - p are odd numbers and p > 0, from the extension of the law of quadratic reciprocity to a < 0 proved in Ex. 5.36, we obtain

$$\left(\frac{8-p}{p}\right) = (-1)^{\frac{7-p}{2}\frac{p-1}{2}} \left(\frac{p}{8-p}\right).$$

Moreover

$$(7-p)(p-1) \equiv (-1-p)(p-1) = 1-p^2 \pmod{8}$$

As p = 2k + 1 is odd, $p^2 = 4k^2 + 4k + 1 = 8\frac{k(k+1)}{2} + 1 \equiv 1 \pmod{8}$, so $(7-p)(p-1) \equiv 0 \pmod{8}$ and $\frac{7-p}{2}\frac{p-1}{2}$ is even, so

$$\left(\frac{8-p}{p}\right) = \left(\frac{p}{8-p}\right).$$

As p > 0, $\left(\frac{p}{-1}\right) = 1$, thus $\left(\frac{p}{8-p}\right) = \left(\frac{p}{-1}\right)\left(\frac{p}{p-8}\right) = \left(\frac{p}{p-8}\right)$ (with the same argument, this is also true for the 3 odd primes such that 8 - p > 0), so

$$\left(\frac{8-p}{p}\right) = \left(\frac{p}{p-8}\right).$$

As $p \equiv 8 \pmod{p-8}$, $\left(\frac{p}{p-8}\right) = \left(\frac{8}{p-8}\right)$, and since $8 = 2^2 \times 2$, $\left(\frac{8}{p-8}\right) = \left(\frac{2}{p-8}\right)$. We have proved for all odd primes p that

$$\left(\frac{2}{p}\right) = \left(\frac{8-p}{p}\right) = \left(\frac{p}{p-8}\right) = \left(\frac{8}{p-8}\right) = \left(\frac{2}{p-8}\right).$$

The preceding arguments remain valid if we replace the odd prime p by any odd positive integer. So with an immediate induction, we see that for all $k \in \mathbb{N}$,

$$\left(\frac{2}{p}\right) = \left(\frac{2}{p - 8k}\right).$$

So the quadratic character of 2 modulo p depends only of the class of p modulo 8.

If
$$p \equiv 1 \pmod{8}$$
, $\binom{2}{p} = \binom{2}{1} = 1$.

If
$$p \equiv -1 \pmod{8}$$
, $\binom{2}{n} = \binom{2}{-1} = 1$.

If
$$p \equiv -1 \pmod{8}$$
, $\binom{2}{p} = \binom{2}{-1} = 1$.
If $p \equiv \pm 3 \pmod{8}$, $\binom{2}{p} = \binom{2}{\pm 3} = -1$.

Generalization: let a > 0 and p an odd positive integer such that $p \wedge a = 1$ (not necessarily prime).

$$\left(\frac{a}{p}\right) = \left(\frac{4ap}{p}\right) = \left(\frac{4a-p}{p}\right) = (-1)^{\frac{4a-p-1}{2}\frac{p-1}{2}} \left(\frac{p}{4a-p}\right).$$

$$(4a - p - 1)(p - 1) = 4a(p - 1) + 1 - p^2 \equiv 0 \pmod{8}$$
, so

$$\left(\frac{a}{p}\right) = \left(\frac{p}{4a - p}\right).$$

As $(\frac{p}{1}) = 1$,

$$\left(\frac{p}{4a-p}\right) = \left(\frac{p}{p-4a}\right).$$

Since $p \equiv 4a \pmod{p} - 4a$, and 4 is a square.

$$\left(\frac{p}{p-4a}\right) \equiv \left(\frac{4a}{p-4a}\right) = \left(\frac{a}{p-4a}\right).$$

We have proved

$$\left(\frac{a}{p}\right) = \left(\frac{4a - p}{p}\right) = \left(\frac{p}{p - 4a}\right) = \left(\frac{4a}{p - 4a}\right) = \left(\frac{a}{p - 4a}\right).$$

By induction, for all $k \ge 0$, $\left(\frac{a}{p}\right) = \left(\frac{a}{p-4a}\right)$, so $\left(\frac{a}{p}\right)$ depends only of the class of p modulo 4a.

Chapter 6

Ex. 6.1 Show that $\sqrt{2} + \sqrt{3}$ is an algebraic integer.

Proof. Let
$$x = \sqrt{2} + \sqrt{3}$$
. Then $x^2 = 5 + 2\sqrt{6}$. $(x^2 - 5)^2 = (2\sqrt{6})^2 = 24$, so $x^4 - 10x^2 + 1 = 0$: x is an algebraic integer. \Box

Ex. 6.2 Let α be an algebraic number. Show that there's an integer n such that $n\alpha$ is an algebraic integer.

(0 is a valid answer to this sentence! More seriously, we search a *positive* integer n.)

Proof. Let α an algebraic number. By definition, there exist $a_0, a_1, \dots, a_n \in \mathbb{Z}, a_n \neq 0$, such that

$$a_n\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_k\alpha^k + \dots + a_0 = 0.$$

(Up to multiply this equation by -1, we can suppose that $a_n > 0$).

Multiplying by a_n^{n-1} , we obtain

$$a_n^n \alpha^n + a_n^{n-1} a_{n-1} \alpha^{n-1} + \dots + a_n^{n-1} a_k \alpha^k + \dots + a_n^{n-1} a_0 = 0.$$

So

$$(a_n \alpha)^n + a_{n-1} (a_n \alpha)^{n-1} + \dots + a_n^{n-k-1} a_k (a_n \alpha)^k + \dots + a_n^{n-1} a_0 = 0.$$

Soit $p(x) = x^n + \sum_{k=0}^{n-1} a_n^{n-k-1} a_k x^k$. Then $p(x) \in \mathbb{Z}[x]$, p(x) is monic, and $p(a_n x) = 0$.

So $a_n x$ is an algebraic integer, with $m = a_n \in \mathbb{N}^*$.

Conclusion : if α is an algebraic number, there exists an integer m>0 such that $m\alpha$ is an algebraic integer.

Ex. 6.3 If α and β are algebraic integers, prove that any solution to $f(x) = x^2 + \alpha x + \beta = 0$ is an algebraic integer. Generalize this result.

Proof. Let γ a root of $x^2 + \alpha x + \beta$, where α, β verify:

$$\alpha^n + r_1 \alpha^{n-1} + \dots + r_n = 0, \quad r_i \in \mathbb{Z},$$

$$\beta^m + s_1 \beta^{m-1} + \dots + s_m = 0, \quad s_i \in \mathbb{Z}.$$

Let V the set of linear combinations with integer coefficients of

$$\alpha^{i} \beta^{j} \gamma^{k}, 0 \le i < n, 0 \le j < m, 0 \le k < 2.$$

Then V if a finitely generated \mathbb{Z} -module.

Moreover, for all $\delta \in V, \gamma \delta \in V$. Indeed, every $\delta \in V$ is a linear combination with coefficients in \mathbb{Z} of $\alpha^i \beta^j, \alpha^i \beta^j \gamma$, and

$$\gamma(\alpha^{i}\beta^{j}) = \alpha^{i}\beta^{j}\gamma \in V$$

$$\gamma(\alpha^{i}\beta^{j}\gamma) = \alpha^{i}\beta^{j}\gamma^{2} = \alpha^{i}\beta^{j}(-\alpha\gamma - \beta) = -\alpha^{i+1}\beta^{j}\gamma - \alpha^{i}\beta^{j+1} \in V.$$

(if i+1=n, we replace $\alpha^{i+1}=\alpha^n$ by $-\sum_{k=1}^{n-1}r_k\alpha^{n-k}$, and a similar replacement if if j+1=m.)

As for each $\gamma \in V$, where V if a finitely generated \mathbb{Z} -module, $x\gamma \in V$, so γ is an algebraic integer (Proposition 6.1.4).

More generaly, if $\gamma^n + \alpha_1 \gamma^{n-1} + \cdots + \alpha_n = 0$, where the α_i are algebraic integers, then x is an algebraic integer.

Ex. 6.4 A polynomial $f(x) \in \mathbb{Z}[x]$ is said to be primitive if the greatest common divisor of its coefficients is 1. Prove that product of primitive polynomials is also primitive.

Solution 1

Proof. Let $p(x) = \sum_{i=0}^{n} a_i x^i$, $q(x) = \sum_{j=0}^{m} b_j x^j$ two primitive polynomials, and p a prime number. There exist a coefficient of p(x) (and of q(x)) not divisible by p. Let

$$i_0 = \min\{i \in [0, n] \mid a_i \neq 0 [p]\}\$$

 $j_0 = \min\{j \in [0, m] \mid b_j \neq 0 [p]\}\$

Let
$$p(x)q(x) = \sum_{k=0}^{n+m} c_k x^k$$
. Then $c_k = \sum_{i+j=k} a_i b_j$, $k = 0, \ldots n+m$. Then

$$c_{i_0+j_0} = \sum_{i+j=i_0+j_0} a_i b_j.$$

- If $i < i_0$, then $a_i \equiv 0 \pmod{p}$.
- If $i > i_0$, then $j < j_0$ and $b_j \equiv 0 \pmod{p}$.

In the two cases $a_i b_j \equiv 0 \pmod{p}$, so $c_{i_0+j_0} \equiv a_{i_0} b_{j_0} \pmod{p}$, so $c_{j_0} \not\equiv 0 \pmod{p}$: as it's true for all primes p, the polynomial p(x)q(x) is primitive.

Solution 2

Proof. Let

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{Z}[x] & \to & \mathbb{F}_p[x] \\ p(x) = a_0 + \dots + a_n x^n & \mapsto & \overline{p}(x) = \overline{a_0} + \dots + \overline{a_n} x^n, \end{array} \right.$$

where $\overline{a_i}$ is the class of a_i in \mathbb{F}_p . φ is a ring homomorphism.

As $\mathbb{F}_p[x]$ is an integrity domain, if p(x), q(x) are both primitive,

$$\overline{p(x)} \neq 0, \overline{q(x)} \neq 0 \Rightarrow \overline{p(x)q(x)} = \overline{p(x)} \overline{q(x)} \neq 0.$$

As $p(x)q(x) \neq 0$ in all fields \mathbb{F}_p , p(x)q(x) is a primitive polynomial.

Ex. 6.5 Let α be an algebraic integer and $f(x) \in \mathbb{Q}[x]$ be the monic polynomial of least degree such that $f(\alpha) = 0$. Use Exercise 6.4 to show that $f(x) \in \mathbb{Z}[x]$.

Proof. As α is an algebraic integer, there exists a monic polynomial $h(x) \in \mathbb{Z}[x]$ such that $h(\alpha) = 0$. As $f(x) \in \mathbb{Q}[x]$ is the minimal polynomial of α , and $h(\alpha) = 0$, f(x)divides h(x) in $\mathbb{Q}[x]$.

(quick reminder: $h(x) = q(x)f(x) + r(x), q(x), r(x) \in \mathbb{Q}[x], \deg(r(x)) < \deg(f(x))$ or r(x) = 0. As $r(\alpha) = 0$ and $f(x) \in \mathbb{Q}[x]$ is the monic polynomial of least degree such that $f(\alpha) = 0$, r = 0 so $f(x) \mid h(x)$.

So there exists $g(x) \in \mathbb{Q}[x]$ such that h(x) = f(x)g(x). As h(x), f(x) are both monic, g(x) is also monic.

Let $d \in \mathbb{Z}, d \neq 0$ such that $df(x) = \sum_{i=0}^{m} a_i x^i \in \mathbb{Z}[x]$, and $c = a_1 \wedge a_2 \wedge \cdots \wedge a_m$, $a_i = cb_i$, with $b_1 \wedge b_2 \wedge \cdots \wedge b_m = 1$, so $\overline{f(x)} = \frac{c}{d}f_1(x)$, with f_1 is primitive. Similarly $g(x) = \frac{s}{t}g_1(x), \ s, t \in \mathbb{Z}, \ g_1(x)$ primitive.

So $h(x) = \frac{cs}{dt} f_1(x) f_2(x) = \frac{u}{v} f_1(x) f_2(x)$, where $u \wedge v = 1$. The polynomial $f_1(x) f_2(x) = \sum_{k=0}^{r} c_k x^k$ is primitive (Ex. 6.4). As $vh(x)(x) = uf_1(x) f_2(x)$, $c \mid uc_k$, and $u \wedge v = 1$, thus $v \mid c_k, k = 0, 1, ..., r$. As $c_1 \wedge \cdots c_k = 1$, $v \mid 1$, so $v = \pm 1$. $h(x) = uf_1(x)f_2(x)$ is monic, thus u=1, and f_1, f_2 are monic. From $f(x)=\frac{c}{d}f_1(x)$ we deduce $\frac{c}{d}=1$ and $f(x) = f_1(x) \in \mathbb{Z}[x].$

Conclusion: if f(x) is the minimal polynomial of an algebraic integer $\alpha, f \in \mathbb{Z}[x]$. \square

Ex. 6.6 Let $x^2 + mx + n \in \mathbb{Z}[x]$ be irreducible, and α be a root. Show that $\mathbb{Q}[\alpha] = \mathbb{Z}[x]$ $\{r+s\alpha:r,s\in\mathbb{Q}\}\ is\ a\ ring\ (in\ fact,\ it\ is\ a\ field).\ Let\ m^2-4n=D_0^2D,\ where\ D\ is$ square-free. Show that $\mathbb{Q}[\alpha] = \mathbb{Q}[\sqrt{D}]$.

Proof. By definition, for all $z \in \mathbb{C}, z \in \mathbb{Q}[\alpha] \iff \exists P \in \mathbb{Q}[x], z = P(\alpha).$ The Euclidean division gives $P = Q_1(x^2 + mx + n) + R(x), \ Q_1, R \in \mathbb{Q}[x], \deg(R) < 2,$ so $R = rx + s, \ r, s \in \mathbb{Q}$. So $z = Q_1(\alpha)(\alpha^2 + m\alpha + n) + r\alpha + s = r\alpha + s$:

$$\mathbb{Q}(\alpha) = \{ z \in \mathbb{C} \mid \exists r \in \mathbb{Q}, \exists s \in \mathbb{Q}, \ z = r + s\alpha \}.$$

- $\mathbb{Q}[\alpha] \subset \mathbb{C}$, where $(\mathbb{C}, +, \times)$ is a field. $1 \in \mathbb{Q}[\alpha]$ $(1 = P_0(\alpha)$, where P_0 is the constant polynomial 1).
- Let $\beta, \gamma \in \mathbb{Q}[\alpha]$: $\beta = P(\alpha), \gamma = Q(\alpha)$, where P, Q are in $\mathbb{Q}[x]$. Then $\alpha \beta = P(\alpha) Q(\alpha) = R(\alpha)$, where $R = P Q \in \mathbb{Q}[x]$, and $\alpha\beta = P(\alpha)Q(\alpha) = S(\alpha)$, where $S = PQ \in \mathbb{Q}[x]$. So $\alpha \beta \in \mathbb{Q}[\alpha], \alpha\beta \in \mathbb{Q}[\alpha]$. So $\mathbb{Q}[\alpha]$ is a subring of $(\mathbb{C}, +, \times)$.
 - Let $\beta = P(\alpha) \in \mathbb{Q}[\alpha)$, $P \in \mathbb{Q}[x]$ and $\beta \neq 0$. As $\beta \neq 0$, $Q = x^2 + mx + n \nmid P$.

Let $D \in \mathbb{Q}[x]$ such that $D \mid P, D \mid Q$. As Q is irreducible by hypothesis, $D = \lambda$ or $D = \lambda Q$, $\lambda \in \mathbb{C}^*$ (D is an associate of 1 or Q). If $D = \lambda Q$, then $Q \mid D$, and $D \mid P$, so $Q \mid P$. Since $Q(\alpha) = 0$, this implies $\beta = P(\alpha) = 0$, in contradiction with the definition of β . So $D = \lambda \mid 1$. Therefore $P \land Q = 1$.

From Bézout's theorem, there exist polynomials $U, V \in \mathbb{Q}[x]$ such that UP + VQ = 1. As $\mathbb{Q}(\alpha) = 0$, $U(\alpha)P(\alpha) = 1$ and $\gamma = U(\alpha) \in \mathbb{Q}[\alpha]$ is such that $\gamma\beta = 1$. Therefore $\mathbb{Q}[\alpha]$ is a subfield of $(\mathbb{C}, +, \times)$ (and $\mathbb{Q}(\alpha) = \mathbb{Q}[\alpha]$).

As $x^2 + mx + n$ is irreducible, $\Delta = m^2 - 4n \neq 0$ (if not, $x^2 + mx + n = (x + m/2)^2 - (m^2 - 4n)/4 = (x + m/2)^2$ is not irreducible). So $\Delta \in \mathbb{Z} \setminus \{0\}$ can be written $\Delta = m^2 - 4n = D_0^2 D$, where D is square-free (positive or negative), $D \neq 0, D_0 \neq 0$.

 $\alpha = -\frac{m}{2} + \varepsilon \frac{\sqrt{\Delta}}{2}, \ \varepsilon = \pm 1, \text{ so } \alpha = -\frac{m}{2} + \varepsilon D_0 \frac{\sqrt{D}}{2}, \text{ thus } \alpha \in \mathbb{Q}[\sqrt{D}] \text{ and } \mathbb{Q}[\alpha] \subset \mathbb{Q}[\sqrt{D}].$ As $D_0 \neq 0$, $\sqrt{D} = \varepsilon \frac{2\alpha + m}{D_0} \in \mathbb{Q}[\alpha]$, so $\mathbb{Q}[\sqrt{D}] \subset \mathbb{Q}[\alpha]$:

$$\mathbb{Q}[\alpha] = \mathbb{Q}[\sqrt{D}].$$

Ex. 6.7 (continuation) If $D \equiv 2, 3 \pmod{4}$, show that all the algebraic integers in $\mathbb{Q}[\sqrt{D}]$ have the form $a + b\sqrt{D}$, where $a, b \in \mathbb{Z}$. If $D \equiv 1 \pmod{4}$, show that all the algebraic integers in $\mathbb{Q}[\sqrt{D}]$ have the form $a + b((-1 + \sqrt{D})/2)$, where $a, b \in \mathbb{Z}$.

Proof. (We write $\overline{\mathbb{Z}}$ the ring of algebraic integers in \mathbb{C} , and \mathcal{O}_K (or \mathbb{Z}_K) the ring of algebraic integers in the field K.)

If D = 1, $\mathbb{Q}[\sqrt{D}] = \mathbb{Q}$. If $D \neq 1$, as D is square-free, D in not a square, so \sqrt{D} is irrational.

Let $\gamma=r+s\sqrt{D}\in\mathbb{Q}[\sqrt{D}]\ (r,s\in\mathbb{Q})$ an algebraic integer of $\mathbb{Q}[\sqrt{D}]\ (D\in\mathbb{Z},D)$ square-free). $(\gamma-r)^2=s^2D$, so $\gamma^2-2r\gamma+r^2-Ds^2=0$. γ is a root of

$$p(x) = x^2 - 2rx + r^2 - Ds^2.$$

If s=0, then the minimal polynomial of γ is x-r. As $r=\gamma$ is an algebraic integer and $r\in\mathbb{Q}$, then $r\in\mathbb{Z}$. In this case $r\in\mathbb{Z}$ and s=0.

If $s \neq 0$, $\gamma \notin \mathbb{Q}$, so no polynom of degree $d \leq 1$ has the root γ . Thus the minimal polynomial of γ is p(x). From Exercise 6.5, $p(x) \in \mathbb{Z}[x]$, so (in the two cases $s = 0, s \neq 0$)

$$2r \in \mathbb{Z}, r^2 - Ds^2 \in \mathbb{Z}.$$

Reciprocally, if $2r \in \mathbb{Z}$, $r^2 - Ds^2 \in \mathbb{Z}$, then $p(x) \in \mathbb{Z}[x]$ and $p(\gamma) = 0$, thus γ is an algebraic integer.

If $r, s \in \mathbb{Q}$, $D \neq 1$ square-free,

$$r + s\sqrt{D} \in \overline{\mathbb{Z}} \iff 2r \in \mathbb{Z}, \ r^2 - Ds^2 \in \mathbb{Z}.$$

Let $\gamma = r + s\sqrt{D} \in \overline{\mathbb{Z}}$. We can write

$$r = \frac{a}{d}, s = \frac{b}{d},$$
 $a, b, d \in \mathbb{Z}, d \ge 1, d \land a \land b = 1.$

Then

$$n = \frac{2a}{d} \in \mathbb{Z}, \quad m = \frac{a^2 - Db^2}{d^2} \in \mathbb{Z}.$$

As D is square-free, $D \not\equiv 0 \pmod{4}$.

• Case 1 : $D \equiv 2, 3 \pmod{4}$. $n^2 - 4m = \frac{4Db^2}{d^2}$, so $d \mid 2a, d^2 \mid 4Db^2$.

If $2 \mid d$, $4 \mid a^2 - Db^2$, $a^2 \equiv Db^2 \pmod{4}$. As $d \land a \land b = 1$, and $2 \mid d$, a or b is odd, and $a^2 \equiv Db^2 \pmod{4}$, $D \not\equiv 0 \pmod{4}$, implies that a and b are both odd. Then $a^2 \equiv b^2 \equiv 1 \pmod{4}$, so $D \equiv 1 \pmod{4}$: this is in contradiction with the hypothesis $D \equiv 2, 3 \pmod{4}$. So d is an odd number.

Consequently, $d \mid p, d^2 \mid Dq^2$. If $p \in \mathbb{N}$ is a prime factor of d, $p \mid d$, $p \mid a$, and $d \wedge a \wedge b = 1$, so $p \nmid b$, and since $p^2 \mid Db^2$, $p^2 \mid D$, in contradiction with D squarefree. So $d \geq 1$ has no prime factor : d = 1 and $r = a, s = b \in \mathbb{Z}$. Reciprocally , any $\gamma = a + b\sqrt{D}$, $a, b \in \mathbb{Z}$ is an algebraic integer, so

$$\mathcal{O}_{\mathbb{Q}[\sqrt{D}]} = \overline{\mathbb{Z}} \cap \mathbb{Q}[\sqrt{D}] = \{a + b\sqrt{D} \mid a, b \in \mathbb{Z}\}.$$

• Case $2: D \equiv 1 \pmod{4}$.

Then $r = \frac{n}{2}, n \in \mathbb{Z}$. Write $s = \frac{u}{v}, u \wedge v = 1, v \geq 1$.

 $m=r^2-Ds^2=\frac{n^2}{4}-D\frac{u^2}{v^2}\in\mathbb{Z},\ 4D\frac{u^2}{v^2}=n^2-4m\in\mathbb{Z},\ \text{so}\ v^2\mid 4Du^2.$ Since $u\wedge v=1, u^2\wedge v^2=1,\ \text{so}\ v^2\mid 4D.$ As D is square-free, v has no odd prime factor, so $v=2^k.$ Since D is odd, $k\leq 1$ and v=1 or v=2. So r,s are both half-integers: $r=n/2, s=n'/2,\ n,n'\in\mathbb{Z}.$

 $4m = n^2 - Dn'^2$, thus $n^2 \equiv n'^2 \pmod{4}$, so n, n' have the same parity. Let $a = \frac{n+n'}{2} \in \mathbb{Z}$, $b = n' \in \mathbb{Z}$. Then n = 2a - b, n' = b and $\gamma = \frac{n}{2} + \frac{n'}{2}\sqrt{D} = a - \frac{b}{2} + \frac{b}{2}\sqrt{D} = a + b\left(\frac{-1+\sqrt{D}}{2}\right)$.

Reciprocally, $\frac{-1+\sqrt{D}}{2}$ is a root of $x^2+x+\frac{1-D^2}{4}\in\mathbb{Z}[x]$, so every $a+b\left(\frac{-1+\sqrt{D}}{2}\right)$ is an algebraic integer.

$$\mathcal{O}_{\mathbb{Q}[\sqrt{D}]} = \overline{\mathbb{Z}} \cap \mathbb{Q}[\sqrt{D}] = \{a + b \left(\frac{-1 + \sqrt{D}}{2}\right) \mid a, b \in \mathbb{Z}\}.$$

Ex. 6.8 Let $\omega = e^{2\pi i/3}$, ω satisfies $x^3 - 1 = 0$. Show that $(2\omega + 1)^2 = -3$, and use this to determine (-3/p) by the method of section 2.

Proof. As $\omega^2 + \omega + 1 = 0$, $(2\omega + 1)^2 = 4\omega^2 + 4\omega + 1 = -4 + 1 = -3$. Let $\alpha = 2\omega + 1$, so $\alpha^2 = -3$

$$\left(\frac{-3}{p}\right) \equiv (-3)^{(p-1)/2} \pmod{p}$$
$$\equiv \alpha^{p-1} \pmod{p}$$
$$\alpha^p = \left(\frac{-3}{p}\right)\alpha.$$

From Prop. 6.1.6,

$$\alpha^p = (2\omega + 1)^p$$

$$\equiv 2^p \omega^p + 1 \pmod{p}$$

$$\equiv 2\omega^p + 1 \pmod{p}$$

- If $p \equiv 0 \pmod{3}$, $\left(\frac{-3}{p}\right) = 0$.
- If $p \equiv 1 \pmod{3}$, $\omega^p = \omega$, so $\alpha^p \equiv \alpha \pmod{p}$. $\left(\frac{-3}{p}\right)\alpha \equiv \alpha \pmod{p}$, thus $\left(\frac{-3}{p}\right)\alpha^2 \equiv \alpha^2 \pmod{p}$, $\left(\frac{-3}{p}\right)3 \equiv 3 \pmod{p}$. As $p \wedge 3 = 1$, $\left(\frac{-3}{p}\right) \equiv 1 \pmod{p}$. Since $\left(\frac{-3}{p}\right) = \pm 1$, $\left(\frac{-3}{p}\right) = 1$.
- If $p \equiv -1 \pmod{3}$,

$$\alpha^p \equiv 2\omega^p + 1 \pmod{p}$$

$$\equiv 2\omega^2 + 2 = 2(-1 - \omega) + 1 = -2\omega - 1 = -\alpha \pmod{p}.$$

Conclusion:

$$p \equiv 0[3] \iff \left(\frac{-3}{p}\right) = 0$$
$$p \equiv 1[3] \iff \left(\frac{-3}{p}\right) = 1$$
$$p \equiv -1[3] \iff \left(\frac{-3}{p}\right) = -1$$

In other words, $\left(\frac{-3}{p}\right) = \left(\frac{p}{3}\right)$.

Remark : $\alpha = 2\omega + 1 = \omega - \omega^2 = g$, the quadratic Gauss sum for p = 3.

Ex. 6.9 Verify Proposition 6.3.2 explicitly for p = 3, 5, i.e., write out the Gauss sum longhand and square.

Proof. • p=3. Let $\omega = e^{2i\pi/3}$. Let $g = \sum_{t=0}^{2} (t/3)\omega^t$ the quadratic Gauss sum. Then $g = \omega - \omega^2$.

As
$$1 + \omega + \omega^2 = 0$$
, $g^2 = (\omega - \omega^2)^2 = \omega^2 - 2\omega^3 + \omega^4 = \omega^2 - 2 + \omega = -3$:

$$g^2 = -3.$$

• p=5. Let
$$\zeta = e^{2i\pi/5}$$
.
 $g = \sum_{t=0}^{4} (t/3)\zeta^t = \zeta - \zeta^2 - \zeta^3 + \zeta^4$.
Then $g = \alpha - \beta$, where $\alpha = \zeta + \zeta^4, \beta = \zeta^2 + \zeta^3$.
 $\alpha + \beta = \zeta + \zeta^4 + \zeta^2 + \zeta^3 = -1$.
 $\alpha\beta = \zeta^3 + \zeta^4 + \zeta^6 + \zeta^7 = \zeta^3 + \zeta^4 + \zeta + \zeta^2 = -1$

So α, β are the two roots of $x^2 + x - 1$.

$$g^{2} = (\alpha - \beta)^{2}$$
$$= \alpha^{2} + \beta^{2} - 2\alpha\beta$$
$$= (\alpha + \beta)^{2} - 4\alpha\beta$$
$$= (-1)^{2} - 4(-1)$$
$$= 5.$$

Remark: here we know explicitely g:

if
$$p = 3$$
, $g = \omega - \omega^2 = i\sqrt{3}$.

If
$$p = 5$$
, $g = \alpha - \beta = (-1 + \sqrt{5})/2 - (-1 - \sqrt{5})/2 = \sqrt{5}$.

Ex. 6.10 What is $\sum_{a=1}^{p-1} g_a$?

Proof. From Prop. 6.3.1 and Lemma 2,

$$\sum_{a=1}^{p-1} g_a = g_1 \sum_{a=1}^{p-1} \left(\frac{a}{p} \right) = 0.$$

Ex. 6.11 By evaluating $\sum_{t} (1 + (t/p))\zeta^{t}$ in two ways, prove that $g = \sum_{t} \zeta^{t^{2}}$.

Proof. For $a \in \mathbb{F}_p$, Write $N[x^2 = a]$ the number of solutions of the equation $x^2 = a$ in \mathbb{F}_p . We know from Ex. 5.2 that $N[x^2 = a] = 1 + (a/p)$. So

$$\sum_{t=0}^{p-1} \zeta^{t^2} = \sum_{\bar{t} \in \mathbb{F}_p} \zeta^{t^2}$$

$$= \sum_{\bar{t} \in \mathbb{F}_p} N[x^2 = t] \zeta^t$$

$$= \sum_{\bar{t} \in \mathbb{F}_p} \left(1 + \left(\frac{t}{p} \right) \right) \zeta^t$$

$$= \sum_{\bar{t} \in \mathbb{F}_p} \zeta^t + \sum_{\bar{t} \in \mathbb{F}_p} \left(\frac{t}{p} \right) \zeta^t$$

$$= \sum_{t=0}^{p-1} \left(\frac{t}{p} \right) \zeta^t$$

$$= g$$

Ex. 6.12 Write $\psi_a(t) = \zeta^{at}$. Show that

(a)
$$\overline{\psi_a(t)} = \psi_a(-t) = \psi_{-a}(t)$$

(b)
$$(1/p)\sum_a \psi_a(t-s) = \delta(t,s)$$

Proof. (a) Let $a \in \mathbb{Z}$. As $\overline{\zeta} = \zeta^{-1}$,

$$\overline{\psi_a(t)} = \overline{\zeta^{at}} = \zeta^{-at}$$

$$= \zeta^{a(-t)} = \zeta^{(-a)t}$$

$$= \psi_a(-t) = \psi_{-a}(t)$$

$$\overline{\psi_a(t)} = \psi_a(-t) = \psi_{-a}(t)$$

(b) From Corollary of Lemma 1:

$$\frac{1}{p} \sum_{a=0}^{p-1} \psi_a(t-s) = \frac{1}{p} \sum_{a=0}^{p-1} \zeta^{a(t-s)} = \delta(t,s)$$
$$\frac{1}{p} \sum_{a} \psi_a(t-s) = \delta(t,s).$$

Ex. 6.13 Let f be a function from \mathbb{Z} to the complex numbers. Suppose that p is a prime and that f(n+p) = f(n) for all $n \in \mathbb{Z}$. Let $\hat{f}(a) = p^{-1} \sum_t f(t) \psi_{-a}(t)$. Prove that $f(t) = \sum_{a} \hat{f}(a)\psi_{a}(t)$. This result is directly analogous to a result in the theory of Fourier

Proof. Let $\hat{f}(a) = p^{-1} \sum_{t} f(t) \psi_{-a}(t)$. Then

$$\sum_{a=0}^{p-1} \hat{f}(a)\psi_a(t) = \sum_{a=0}^{p-1} p^{-1} \sum_{s=0}^{p-1} f(s)\psi_{-a}(s)\psi_a(t)$$

$$= p^{-1} \sum_{s=0}^{p-1} f(s) \sum_{a=0}^{p-1} f(s)\psi_{-a}(s)\psi_a(t)$$

$$= p^{-1} \sum_{s=0}^{p-1} f(s) \sum_{a=0}^{p-1} f(s)\psi_a(t-s)$$

$$= \sum_{s=0}^{p-1} f(s)\delta(s,t)$$

$$= f(t)$$

Ex. 6.14 In Ex. 13 take f to be the Legendre symbol and show that $\hat{f}(a) = p^{-1}g_{-a}$.

Proof. Here $f(a) = (\frac{a}{p})$. Then $\hat{f}(a) = p^{-1} \sum_{t=0}^{p-1} (\frac{t}{p}) \zeta^{-at} = p^{-1} g_{-a}$.

Ex. 6.15 Show that

$$\left| \sum_{t=n}^{m} \left(\frac{t}{p} \right) \right| < \sqrt{p} \log p.$$

The inequality holds for the sum over any range.

Lemma. If $0 \le x \le \frac{\pi}{2}$, $\sin x \ge \frac{2}{\pi}x$.

Proof. As – sin is a convex function on $[0, \pi/2]$, the graph of sin is above any chord, and the chord between the points (0,0) and $(\pi/2,1)$ has equation $y=(2/\pi)x$, we conclude that $\sin x \geq \frac{2}{\pi}$ for $0 \leq x \leq \pi/2$.

Proof. Let $S = \sum_{t=n}^{m} {t \choose p} g$ with $n \le m$. Then $|S| = \sqrt{p} \left| \sum_{t=n}^{m} {t \choose p} \right|$. As $(t/p)g = g_t$,

$$\begin{split} S &= \sum_{t=m}^{n} g_{t} \\ &= \sum_{t=m}^{n} \sum_{s=0}^{p-1} \binom{s}{p} \zeta^{ts} \\ &= \sum_{s=0}^{p-1} \binom{s}{p} \zeta^{ms} \sum_{t=m}^{n} \zeta^{(t-m)s} \\ &= \sum_{s=0}^{p-1} \binom{s}{p} \zeta^{ms} \sum_{u=0}^{n-m} \zeta^{us} \qquad (u = t - m) \\ &= \sum_{s=1}^{p-1} \binom{s}{p} \zeta^{ms} \frac{\zeta^{(n-m+1)s} - 1}{\zeta^{s} - 1} \end{split}$$

(since for s=0, the sum $\sum_{u=0}^{n-m} \zeta^{us} = n-m+1$ and $\sum_{s=0}^{p-1} \left(\frac{s}{p}\right) = 0$). So

$$\begin{split} S &= \sum_{s=1}^{p-1} \binom{s}{p} \frac{\zeta^{(n+1)s} - \zeta^{ms}}{\zeta^s - 1} \\ &= \sum_{s=1}^{p-1} \binom{s}{p} \frac{\zeta^{\frac{n+m+1}{2}s}}{\zeta^{\frac{s}{2}}} \frac{\zeta^{\frac{n-m+1}{2}s} - \zeta^{\frac{-n+m-1}{2}s}}{\zeta^{\frac{s}{2}} - \zeta^{\frac{-s}{2}}} \\ &= \sum_{s=1}^{p-1} \binom{s}{p} \zeta^{\frac{n+m}{2}s} \frac{\sin\left((n-m+1)s\frac{\pi}{p}\right)}{\sin\left(s\frac{\pi}{p}\right)} \end{split}$$

As $\sin(x) \ge \frac{2}{\pi}x$ for $x \in [0, \frac{\pi}{2}]$, for all $s, 1 \le s < \frac{p}{2}, 0 \le \frac{s\pi}{p} \le \frac{\pi}{2}$, so

$$\left| \frac{\sin\left((n-m+1)s\frac{\pi}{p}\right)}{\sin\left(s\frac{\pi}{p}\right)} \right| \le \frac{1}{\frac{2}{\pi}\left(s\frac{\pi}{p}\right)} = \frac{p}{2s} \qquad (s=1,2,\ldots,(p-1)/2).$$

Since $\left(\frac{s}{p}\right)\zeta^{ts}$ depends only of the class of s, we can replace in the preceding calculation the values $s=1,2,\ldots,p-1$ by $s=-(p-1)/2,\ldots,-1,1,\ldots,(p-1)/2$, so

$$S = \sum_{s=1}^{(p-1)/2} \binom{s}{p} \zeta^{\frac{n+m}{2}s} \, \frac{\sin\left((n-m+1)s\frac{\pi}{p}\right)}{\sin\left(s\frac{\pi}{p}\right)} + \sum_{s=-(p-1)/2}^{-1} \binom{s}{p} \zeta^{\frac{n+m}{2}s} \, \frac{\sin\left((n-m+1)s\frac{\pi}{p}\right)}{\sin\left(s\frac{\pi}{p}\right)}.$$

As sin is an odd function,

$$S = \sum_{s=1}^{(p-1)/2} \binom{s}{p} \zeta^{\frac{n+m}{2}s} \, \frac{\sin\left((n-m+1)s\frac{\pi}{p}\right)}{\sin\left(s\frac{\pi}{p}\right)} + \sum_{s=1}^{(p-1)/2} \binom{-s}{p} \zeta^{-\frac{n+m}{2}s} \, \frac{\sin\left((n-m+1)s\frac{\pi}{p}\right)}{\sin\left(s\frac{\pi}{p}\right)}.$$

Thus

$$|S| \le 2 \sum_{s=1}^{(p-1)/2} \frac{p}{2s} = p \sum_{s=1}^{(p-1)/2} \frac{1}{s}.$$

As $S = \sum_{t=0}^{m} \left(\frac{t}{p}\right)g$ and $|g| = \sqrt{p}$

$$\left| \sum_{t=n}^{m} \left(\frac{t}{p} \right) \right| \le \sqrt{p} \sum_{s=1}^{(p-1)/2} \frac{1}{s}.$$

It remains to do a sufficient estimation of the harmonic sum. We prove by induction that for all $n \geq 1$,

$$1 + \frac{1}{2} + \dots + \frac{1}{n} \le \log(2n + 1).$$

As $1 \leq \log(3)$, this proposition is true for n = 1. Suppose that is it true for n - 1:

$$1 + \frac{1}{2} + \dots + \frac{1}{n-1} \le \log(2n-1).$$

Then

$$1 + \frac{1}{2} + \dots + \frac{1}{n} \le \frac{1}{n} + \log(2n - 1).$$

If we prove that $\frac{1}{n} + \log(2n-1) \le \log(2n+1)$, the induction is done. Let $u(x) = \log(2x+1) - \log(2x-1) - \frac{1}{x}, x > \frac{1}{2}$.

$$u'(x) = \frac{2}{2x+1} - \frac{2}{2x-1} - \frac{1}{x^2}$$
$$= \frac{-4}{4x^2 - 1} + \frac{1}{x^2}$$
$$= \frac{-1}{(4x^2 - 1)x^2} < 0$$

As $u(x) = \log\left(\frac{2x+1}{2x-1}\right) - \frac{1}{x}$, $\lim_{x \to +\infty} u(x) = 0$. Moreover u is a decreasing function, so for all x > 1/2, u(x) > 0, and for all $n \in \mathbb{N}$, $n \ge 1$,

$$\frac{1}{n} + \log(2n - 1) \le \log(2n + 1).$$

We have proved by induction that for all $n \geq 1$,

$$1 + \frac{1}{2} + \dots + \frac{1}{n} \le \log(2n + 1).$$

If n = (p-1)/2, where p is an odd prime $(p \ge 3)$,

$$\sum_{s=1}^{(p-1)/2} \frac{1}{s} \le \log p.$$

Conclusion:

$$\left| \sum_{t=n}^{m} \left(\frac{t}{p} \right) \right| < \sqrt{p} \log p.$$

Ex. 6.16 Let α be an algebraic number with minimal polynomial f(x). Show that f(x)does not have repeated roots in \mathbb{C} .

Proof. Let γ a repeated root of f(x). Then $f(\gamma) = f'(\gamma) = 0$, so $x - \gamma$ is a common factor of f and f'. Thus $f \wedge f' \neq 1$ (deg $(f \wedge f') \geq 1$). Since $f \wedge f' \mid f$ and f is irreducible (with f, $f \wedge f'$ monic), we conclude $f \wedge f' = f$, so $f \mid f'$. In \mathbb{C} , this is impossible since $\deg(f) \geq 1$, so $f' \neq 0$, and $\deg(f') < \deg(f)$. f(x) does not have repeated roots in \mathbb{C} . \square

Ex. 6.17 Show that the minimal polynomial for $\sqrt[3]{2}$ is $x^3 - 2$.

Proof. Let $f(x) = x^3 - 2$. Then $f(\sqrt[3]{2}) = 0$. If f(x) was not irreducible, then f(x) = 0u(x)v(x), with $1 \leq \deg(u) \leq \deg(v) \leq 2, \deg(u) + \deg(v) = \deg(f) = 3$, so $\deg(u) = 2$ $1, \deg(v) = 2.$

Then $f(x) = (ax + b)(cx^2 + dx + e)$, $a, b, c, d, e \in \mathbb{Q}$. Let w = -b/a. Then f(w) = $w^3 - 2 = 0$ and $w \in \mathbb{Q}$, so there exist $p, q \in \mathbb{Z}$, such that $w = p/q, p \land q = 1$.

Thus $p^3 = 2q^3$, so p^3 is even, thefore p is even : $p = 2p', p' \in \mathbb{Z}$. $8p'^3 = 2q^3, 4p'^3 = q^3$, so q^3 is even, which implies that q is even. Then $2 \mid p \land q = 1$: this is a contradiction.

So $f(\sqrt[3]{2}) = 0$, and f is monic, irreducible: f is the minimal polynomial of $\sqrt[3]{2}$ on \mathbb{Q} .

Ex. 6.18 Show that there exist algebraic numbers of arbitrarily high degree.

Proof. As $1+x+\cdots+x^{p-1}$ is irreducible on $\mathbb{Q}[x]$ (Prop. 6.4.1), the numbers $\zeta_p=e^{2i\pi/p}$, with p prime number, are algebraic numbers of arbitrary large degree.

Ex. 6.19 Find the conjugates of $\cos(2\pi/5)$.

Proof. Let $\gamma = \cos(2\pi/5)$, $\zeta = e^{2i\pi/5}$ and $\alpha = \zeta + \zeta^4$, $\beta = \zeta^2 + \zeta^3$. Then $\gamma = \frac{\zeta + \zeta^{-1}}{2} = \frac{\zeta + \zeta^{4}}{2} = \frac{\alpha}{2}$. $\alpha + \beta = \zeta + \zeta^{4} + \zeta^{2} + \zeta^{3} = -1$. $\alpha\beta = \zeta^{3} + \zeta^{4} + \zeta^{6} + \zeta^{7} = \zeta^{3} + \zeta^{4} + \zeta + \zeta^{2} = -1$ So α , β are the two roots of $x^2 + x - 1$: $\alpha^2 + \alpha - 1 = 0$, so $4(\alpha/2)^2 + 2(\alpha/2) - 1 = 0$: $\gamma = \alpha/2$ is a root of

$$f(x) = 4x^2 + 2x - 1.$$

As $\Delta = 4 \times 5$, the two roots of f are irrational. $\deg(f) = 2$ and f has no root in \mathbb{Q} , so f(x)is irreducible in $\mathbb{Q}[x]$. So the minimal polynomial of $\gamma = \cos(2\pi/5)$ is $f(x) = 4x^2 + 2x - 1$. The other root of f is $\beta/2 = (\zeta^2 + \zeta^3)/2 = \cos(4pi/5)$.

Conclusion: the conjugates of $\gamma = \cos(2\pi/5)$ are $\gamma = \cos(2\pi/5)$ and $\cos(4\pi/5)$.

Ex. 6.20 Let F be a subfield of \mathbb{C} which is a finite-dimensional vector space over \mathbb{Q} of degree n. Show that every element of F is algebraic of degree at most n.

Proof. Let $\alpha \in F$, with $\dim_{\mathbb{Q}} F = n$. Any subset of n+1 vectors in F is linearly dependent, so $\{1, \alpha, \alpha^2, \cdots, \alpha^n\}$ is linearly dependent.

Thus there exists $(a_0, \ldots, a_n) \in \mathbb{Q}^{n+1}, (a_0, \ldots, a_n) \neq (0, 0, \ldots, 0)$ such that $a_0 + a_1 \alpha + a_1 \alpha + a_2 \alpha + a_2 \alpha + a_2 \alpha + a_2 \alpha + a_3 \alpha + a_4 \alpha +$ $\cdots + a_n \alpha^n = 0.$

Let $f(x) = a_0 + a_1x + \cdots + a_nx^n$. Then $f(x) \in \mathbb{Q}[x], f(x) \neq 0$ and $f(\alpha) =$ $0, \deg(f(x)) \leq n$. So every element of F is algebraic of degree at most n.

Ex. 6.21 Let $f(x) = \sum_{n=0}^{\infty} a_n x^n / n!$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n / n!$ be power series with a_n and b_n integers. If p is a prime such that $p|a_i$ for $i = 0, \ldots, p-1$, show that each coefficient c_t of the product $f(x)g(x) = \sum_{n=0}^{\infty} c_n x^n$ for $t = 0, \ldots, p-1$ may be written in the form p(A/B), $p \nmid B$.

Proof. Let $k \in \mathbb{N}, 0 \le k \le p-1$.

$$c_k = \sum_{i+j=k} \frac{a_i}{i!} \frac{b_j}{j!}$$

$$= \sum_{i=0}^k \frac{a_i}{i!} \frac{b_{k-i}}{(k-i)!}$$

$$= \frac{1}{k!} \sum_{i=0}^k \binom{k}{i} a_i b_{k-i}$$

As
$$k! \wedge p = 1$$
, and $\sum_{i=0}^{k} {k \choose i} a_i b_{k-i} \equiv 0 \pmod{p}$ for $k = 0, 1, \dots, p-1$, $c_k = p(A/B), p \wedge B = 1$.

Ex. 6.22 Show that the relation $\varepsilon \equiv 1 \pmod{p}$ in Proposition 6.4.4 can also be achieved by replacing x by 1 + t instead of e^z .

Warning: incomplete solution.

Proof. We know from Prop. 6.4.3 that

$$g(\zeta) = \varepsilon \prod_{k=1}^{(p-1)/2} (\zeta^{2k-1} - \zeta^{-(2k-1)}),$$

where $\varepsilon = \pm 1$. Let

$$f(x) = \sum_{j=1}^{p-1} \chi(j) x^j - \varepsilon \prod_{k=1}^{(p-1)/2} (x^{2k-1} - x^{p-(2k-1)}).$$

Then f(0) = 0 and $f(\zeta) = 0$, so $(x^p - 1)$ divides f(x). As $f(x) \in \mathbb{Z}[x]$ and $x^p - 1 \in \mathbb{Z}[x]$ is monic, $f(x) = (x^p - 1)h(x), h(x) \in \mathbb{Z}[x]$. If we replace x by 1 + t, we obtain

$$f(1+t) = \sum_{j=1}^{p-1} \chi(j)(1+t)^j - \varepsilon \prod_{k=1}^{(p-1)/2} \left((1+t)^{2k-1} - (1+t)^{p-(2k-1)} \right).$$

We compute the coefficient of $t^{(p-1)/2}$ in the polynomial f(1+t) :

$$\sum_{j=1}^{p-1} \chi(j) (1+t)^j = \sum_{j=1}^{p-1} \chi(j) \sum_{i=1}^j \binom{j}{i} t^i$$
$$= \sum_{i=1}^{p-1} \sum_{j=i}^{p-1} \chi(j) \binom{j}{i} t^i$$

So the coefficient of $t^{(p-1)/2}$ in $\sum_{j=1}^{p-1} \chi(j) (1+t)^j$ is $\sum_{j=(p-1)/2}^{p-1} \chi(j) {j \choose (p-1)/2}$.

$$\begin{split} \prod_{k=1}^{(p-1)/2} ((1+t)^{2k-1} - (1+t)^{p-(2k-1)}) &= \prod_{k=1}^{(p-1)/2} \left((1+(2k-1)t) - (1+(p-(2k-1))t + t^2u(t) \right) \\ &= \prod_{k=1}^{(p-1)/2} \left((4k-2-p)t + t^2v(t) \right) \\ &= t^{(p-1)/2} \prod_{k=1}^{(p-1)/2} (4k-2-p) + t^{(p-1)/2}w(t), \end{split}$$

where u(t), v(t), w(t) are polynomials. So the coefficient of $t^{(p-1)/2}$ in f(1+t) is

$$c_{(p-1)/2} = \sum_{j=(p-1)/2}^{p-1} \chi(j) {j \choose (p-1)/2} - \varepsilon \prod_{k=1}^{(p-1)/2} (4k - 2 - p).$$

Furthermore,

$$f(1+t) = ((1+t)^p - 1) h(1+t)$$

$$= \left[\sum_{i=1}^p \binom{p}{i} t^i\right] h(1+t)$$

$$= \left[\sum_{i=1}^p i! \binom{p}{i} \frac{t^i}{i!}\right] h(1+t)$$

$$= \left[\sum_{i=0}^p a_i \frac{t^i}{i!}\right] h(1+t),$$

where $a_0 = 0, a_i = i!\binom{p}{i} = \frac{p!}{(p-i)!}$, so $p \mid a_i, i = 0, \ldots, p-1$: the conditions of Ex.21 are verified, so $f(1+t) = \sum_{i=0}^{p-1} c_i t^i$ is such that $c_{(p-1)/2} = p(A/B)$, $p \nmid B$. Equating these two evaluations of $c_{(p-1)/2}$, we obtain

$$\sum_{j=(p-1)/2}^{p-1} \chi(j) \binom{j}{(p-1)/2} - \varepsilon \prod_{k=1}^{(p-1)/2} (4k - 2 - p) = p \frac{A}{B}, \quad p \nmid B.$$

Multiplying by B(p-1)!/2, we obtain, as $p \nmid B$,

$$\frac{(p-1)!}{2} \sum_{j=(p-1)/2}^{p-1} \chi(j) {j \choose (p-1)/2} \equiv \varepsilon \frac{(p-1)!}{2} \prod_{k=1}^{(p-1)/2} (4k-2)$$

$$\equiv \varepsilon (2 \cdot 4 \cdot 6 \cdots (p-1)) \prod_{k=1}^{(p-1)/2} (2k-1) \equiv \varepsilon (p-1)!$$

$$\equiv -\varepsilon \pmod{p}$$

To prove that $\varepsilon = +1$, it remains to prove

$$\frac{(p-1)!}{2} \sum_{j=(p-1)/2}^{p-1} \chi(j) \binom{j}{(p-1)/2} \equiv -1 \pmod{p}$$
??

I haven't found such a direct proof, but if we know from Prop. 6.4.4. that $\varepsilon = 1$, then this proposition is certainly true (morever, I have verified this proposition on S.A.G.E. for the primes p < 100). I will appreciate an answer.

Ex. 6.23 If $f(x) = x^n + a_1 x^{n-1} + \ldots + a_n$, $a_i \in \mathbb{Z}$, and p is prime such that $p \mid a_i$ for $i = 1, \ldots, n$, and $p^2 \nmid a_n$, show that f(x) is irreducible over \mathbb{Q} (Eisenstein's irreducibility criterion).

Lemma. If $f \in \mathbb{Z}[x], \deg(f) \geq 1$, is not irreducible in $\mathbb{Q}[x]$, then there exist $g, h \in \mathbb{Z}[x], \deg(g) \geq 1, \deg(h) \geq 1$ such that f = gh.

Proof. (lemma) Suppose that $f(x) = \sum_{k=0}^{n} a_k x^k, a_k \in \mathbb{Z}$, is not irreducible in $\mathbb{Q}[x]$.

Then $f(x) = f_1(x)f_2(x)$, with $f_1, f_2 \in \mathbb{Q}[X]$, and $\deg(f_1) \geq 1, \deg(f_2) \geq 1$. As in Ex. 6.5, we can write $f_1(x) = \lambda p(x), f_2(x) = \mu q(x)$ where $\lambda, \mu \in \mathbb{Q}$, and $p, q \in \mathbb{Z}[X]$ are primitive. Let $\nu = \lambda \mu \in \mathbb{Q}$: write $\nu = u/v, u \wedge v = 1, v \geq 1$. Then $r(x) = p(x)q(x) = \sum_{k=0}^{n} c_k x^k$ is primitive (Ex. 6.4), and $f(x) = \frac{u}{v} r(x) = \frac{u}{v} p(x) q(x)$.

As vf(x) = ur(x), $v \mid uc_i$, i = 0, 1, ..., n, with $u \wedge v = 1$, so $u \mid c_i$ for all i. The polynomial r being primitive, $v \mid 1$, so $v = \varepsilon = \pm 1$.

Let $g(x) = \varepsilon up(x), h(x) = q(x)$. Then $g, h \in \mathbb{Z}[x], \deg(g) \ge 1, \deg(h) \ge 1$, and f = gh is the product of two non constant polynomials in $\mathbb{Z}[x]$.

Proof. (Ex. 6.23)

Let

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{Z}[x] & \to & \mathbb{F}_p[x] \\ p(x) = a_0 + \dots + a_n x^n & \mapsto & \overline{p}(x) = \overline{a_0} + \dots + \overline{a_n} x^n, \end{array} \right.$$

where $\overline{a_i}$ is the class of a_i in \mathbb{F}_p . φ is a ring homomorphism.

We show that $f(x) = g(x)h(x), g, h \in \mathbb{Z}[x], \deg(g) \ge 1, \deg(h) \ge 1$ is impossible. Indeed in such a situation,

$$\overline{f}(x) = x^n = \overline{g}(x)\overline{h}(x).$$

As the only irreducible factor of x^n is x, the unicity of the decomposition of a polynomial in irreducible factors in $\mathbb{F}_p[x]$ gives

$$\overline{g}(x) = \lambda x^i, \ \overline{h}(x) = \mu x^j, \ \lambda, \mu \in \mathbb{F}_p, i, j \in \mathbb{N}.$$

As $\deg(\overline{g}) \leq \deg(g), \deg(\overline{h}) \leq \deg(h)$ and $\deg(\overline{g}) + \deg(\overline{h}) = n = \deg(f) + \deg(g)$, this implies that $i = \deg(\overline{f}) = \deg(f), j = \deg(\overline{g}) = \deg(g)$, so $i \geq 1, j \geq 1$. Therefore $p \mid g(0), p \mid h(0)$, so $p^2 \mid a_n = g(0)h(0)$, which is in contradiction with the hypothesis.

From the lemma we deduce that f(x) is irreducible in $\mathbb{Q}[x]$.