Klausur "Graphische Datenverarbeitung" SS2009 Prof. Regina Pohle-Fröhlich, Hochschule Niederrhein

Name:
Punkte:

von 100 Punkten

Matrikelnummer:

Note:

Bildverarbeitung

Allgemeine Grundlagen

1. Beschreiben Sie jeweils kurz die Aufgabe der folgenden Stufen der digitalen Bildverarbeitung: Bildverbesserung, Segmentierung und Merkmalsextraktion! (3 Punkte)

2. Nennen Sie zwei Arten von häufig verwendeten Nachbarschaftsdefinitionen in der Bildverarbeitung! Geben Sie für das untenstehende Beispiel jeweils einen möglichen Pfad an, der bei der jeweiligen Nachbarschaftsdefinition durchlaufen werden muss, um die beiden Bildpunkte zu verbinden! (4 Punkte)

Fourier-Transformation

3.	Welche statistische Größe kann im Ursprung des Fourierspektrums abgelesen werden? Verändert sich diese Größe bei der Anwendung einer Kontrastspeizung auf das Originalbild? Begründen Sie ihre Antwort! (3 Punkte)
	De Mittlere Coren vert

	DSF: beschreibt die bollstandige Story 1-B.
C+	
and the telephone and the	
5 Fin Sat	tellitenbild wurde bei der Übertragung zur Erde mit einer sinusförmigen Störung
hoher F	Frequenz überlagert, so dass das Ergebnisbild nachbearbeitet werden muss. Wie
würden	a Sie vorgehen, um diese Störung zu beseitigen? (4 Punkte)
	Mit Trefpresfilter und die Möheren Fregranze
	· · · · · · · · · · · · · · · · · · ·
	z-enterno.
	De Correcte in Rild Léanfgliet du
	Type Alice I revise her einer Dunktoneration und einer Nachbarschatts-
7. Was is	t der Unterschied zwischen einer Funktoperation and office Funktoperation
7. Was is operati	t der Unterschied zwischen einer Punktoperation und einer Nachbarschafts- on? (2 Punkte)
7. Was is operati	on? (2 Punkte)
7. Was is operati	on? (2 Punkte) - ht para hos - ist pixel for pixel meltipliane.
7. Was is operati	on? (2 Punkte) -ht-parator- ist prod for pool meliplane. lack barschafts operation (nittel west follow) medianliste.
operati	on? (2 Punkte) -ht-paratro- ist priel for priel meltiplane. luckbasschafts operation (nittel west filter Medianlister
operati	on? (2 Punkte) -ht-paratro- ist priel for priel meltiplane. luckbasschafts operation (nittel west filter Medianlister
operati	es Ziel wird bei der Kontrastmodifikation mittel Histogrammausgleich verfolgt?
operati	es Ziel wird bei der Kontrastmodifikation mittel Histogrammausgleich verfolgt?
operati	es Ziel wird bei der Kontrastmodifikation mittel Histogrammausgleich verfolgt?
operati	es Ziel wird bei der Kontrastmodifikation mittel Histogrammausgleich verfolgt?
operati	es Ziel wird bei der Kontrastmodifikation mittel Histogrammausgleich verfolgt?

9. Gegeben ist das folgende Bild mit dem dazugehörigen Histogramm.

Überlegen Sie, welches der drei gegebenen Histogramme sich nach einer linearen Kontrastspreizung, nach einer Gamma-Korrektur und nach dem Histogrammausgleich ergibt! (3 Punkte)

10. Für welchen Zweck kann man den Minimum- bzw. Maximumfilter einsetzen? Beschreiben Sie kurz die Vorgehensweise! (4 Punkte)

1. Erklären Sie mit Wofunktioniert! (5 Pun	orten, wie die Faltung eines Bildes mit einer Faltungsmaske nkte)
Dre Fal	ltungs-she und über den Bild verschobe
und ber s	jude verschie brings Schrift verely alse Maske if den Dixelwerta Multiple are clapened werden drese Multiple are
und crosc	chepend werden drese Multiplication
MODING T.	
	nter einem Gradienten? (2 Punkte)
Gradienten	ist en Farbrerlant
3. Zu welcher Filterkla (2 Punkte)	asse zählt die folgende Filtermaske? Wozu wird Sie verwendet?
1 4 6 4 1 4 16 24 16 4	
6 24 36 24 6 4 16 24 16 4	-
1 4 6 4 1	

Segmentierung

14. In dem untenstehenden Bild sollen die Noten segmentiert werden! Wie würden Sie vorgehen? Erläutern bzw. begründen Sie Ihre Vorschläge! (6 Punkte)

PX Les 16110	~ (Noter i	// //	64-		
		and the second s			
phologische Ope	rationen			C:- simpotze	m?
Was verstehen Sie	unter Opening und	Closing? Wo	zu kann ma	n Sie emsetze	,11:
(4 Punkte)		4	1. Patah	~ ~	
,	g : Erosio-	de 0	X 1 CO 1 CO		
10.0em					
<u> Openin</u>	C				

16. Geben Sie für das untenstehende Bild das Ergebnis nach der Erosion gefolgt von einer Dilatation mit dem angegebenen Strukturelement an? (Das Kreuz steht für den Bezugspixel) Wie wird diese Operation genannt? (5 Punkte)

Opening

Computergraphik

OpenGL-Grundlagen
17. OpenGL arbeitet nach dem Prinzip des Zustandsautomaten. Was verstehen Sie darunter? Nennen Sie ein Beispiel für einen solchen Zustand! (3 Punkte)
usus en nel gesetet wurde (Farten,),5 % t so le
bis es geandert und just men Enstende Extrand
was en nel gesetet unde (farten), sit so le bis es geéndert und just men Zustênde Extrand Ansschaften hann.
Graphische Grundalgorithmen
18. Woher kommt die Effizienzsteigerung der Mittelpunkt-Algorithmen gegenüber den naiven Implementierungen? (2 Punkte)
19. Wie entscheidet der Bresenham-Algorithmus, welche der zwei möglichen Alternativen für den zu zeichnenden Punkt gewählt werden. Wann wären beide Alternativen möglich? (2 Punkte)
Antialiasing 20. Eine mit dem Besenham-Algorithmus gezeichnete Linie weist wegen der Rasterung Treppenstufenartefakte auf. Beschreiben Sie eine Möglichkeit, wie diese Artefakte behoben werden können! (3 Punkte)

Füllalgorithmen

21. Geben Sie an, wie der einfache Flood-Fill-Algorithmus (4-er Nachbarschaft) funktioniert! (Sie können bei Bedarf auch den Pseudocode aufschreiben)! Wie oft wird jeder Pixel im schlechtesten Fall getestet? (5 Punkte)

> Start pixel willing with a some du pixel splichtie de sous and a reacher of a sousten alle Northwesterfie Rolling Fight of also alle generasan sed an

Transformation und Projektion

	Wozu werden homogene Koordinaten in der Computergraphik verwendet? Wie erfolgt die Abbildung eines dreidimensionalen Punktes in homogene Koordinaten? Wie viele Möglichkeiten dieser Abbildung existieren? (3 Punkte)
23.	Wozu dient die Modelview-Matrix in OpenGL? (1 Punkt)

24. Gegeben ist der folgende Ausschnitt aus einem Programm: (6 Punkte)

```
glMatrixMode(GL MODELVIEW);
glLoadIdentity();
glPushMatrix();
glTranslatef(3.0, 0.0, 0.0);
glRotatef(90.0,0.0,1.0,0.0);
//erster Punkt=rot
glColor3f(
                           );
glBegin(GL POINTS);
  glVertex3f(5.0, 2.0, 0.0);
glEnd();
glPopMatrix();
glTranslatef( 0.0, 1.0, 0.0);
//zweiter Punkt
                       );
glColor3f(
glBegin(GL POINTS);
  glVertex3f( 0.0, 0.0, 3.0);
glEnd();
```

Geben Sie die Setzung der Farbinformation an, wenn der erste Punkt rot und der zweite

Punkt grau gezeichnet werden soll!

An welchen 3D-Koordinaten im Koordinatensystem von OpenGL werden die beiden Punkte gezeichnet?

P1 () P2 ()

25. Wie sehen die Sichtkörper für die Parallelprojektion und für die perspektivische Projektion aus? (2 Punkte)

26. Ordnen Sie jeder Matrix den zugehörigen Begriff zu durch Verbinden mit einer Linie! (5 Punkte)

$$\begin{bmatrix} \sqrt{2} & -\sqrt{2} & 0 & 0 \\ \sqrt{2} & \sqrt{2} & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translation Rotation Spiegelung Skalierung Einheitsmatrix

Modellierung
27. Nennen Sie jeweils eine Möglichkeit für die Oberflächenrepräsentation und für die Volumenrepräsentation! (2 Punkte)
Freeform Planchage
Freeforn flaction Rammeterby
Texture-Mapping
28. Was versteht man unter Bump-Mapping und welche Vorteile bietet es? (2 Punkte)
Clippen
29. Wie funktioniert Backface Culling und warum stellt dieser Algorithmus allein keine
vollständige Lösung zum Entfernen verdeckter Kanten dar? (2 Punkte)
Backface andling with sichtbare Rückserten entferna
0
Shading-Verfahren
30. Ordnen Sie den drei Bildern das richtige Shading-Verfahren zu! (3 Punkte)

In den unten aufgezeichneten Pixeln sollen mittels des Z-Buffer Algorithmus die beiden mit ihren Z-Werten beschriebenen Polygone dargestellt werden. (3 Punkte)

Pol	ygo	n 1	•			
7						
7.	6					~
7	6	5				
7	6.	5	4			
7.	Ĝ	5	2		:	
7	6	5	2	2		:

	TA ROSE	on 2	13127				Г
4	4777		1000		00000	12218	<u> </u>
	12375			1272	经共享筹算		ļ
5		5		5			
6	B	6.					
8							
9	24181						

Zeichnen Sie die Belegung des Z-Buffers und des Framebuffers in die angegebenen Bereiche.

z-Buffer

3	3	3	3	3	3	3	
4	6	4	4	4	4		
7	5	5	5	5			
7	6	6	6				
7	7	F					
8	8	5	4				
5	6	5	4	3			
7	b	5	¢	3	2		

Framebuffer

Beleuchtungsmodelle

Worin liegen die Unterschiede zwischen lokalen und globalen Beleuchtungsmodellen? Welche Stärken und Schwächen haben sie? Welches der beiden Beleuchtungsmodelle
nutzt OpenGL? (5 Punkte) landen Beichtstrehl wird mir bis zum Auftrehm anfein Objekt betrechten
 ant ein Objekt betrechter
 globalea Be erwesterny von Pokalen
 Was wird durch den ambienten Term beim Phong'schen Beleuchtungsmodell

32. Was wird durch den ambienten Term beim Phong'schen Beleuchtungsmoden approximiert? (1 Punkt)

Polygon 1:								P	oly	go	n 2	*									
									F-83	a cara	23033	3	3		3	3	3		7		
									ă.	4	4	4	4	1	1	4	10020				
7				:					X.	5	5	5	5	-	5	****	-		1		
7	6							1	X,X,X	5	6	6	6						1		
7	6	5						1	(X)	7	7	7.	25.22.2			\dashv			_		
7		W 400 W 50	4					1.		3	8	20/06	-	1							
7	6	40000	4	3				1		9									1		
7	6	5	4	3	2								ŀ		T				1		
eic	hner	Sie	die	Rel	e0111	no d	les 7	Z-Buffei	ימון פי	d de	s F	ran	ıeh	nff	ers	in d	lie	ano	rege	her	ien
ere	iche																				
			*	oc.							г		1 4	···							
		Z-	Buff	ter						. 4	era	mei	оиј	jer							
	T		Ī	1	<u> </u>	<u> </u>	Ī	1		i di	T	T	T			T	T				
	 		 	\vdash			-	1				1	\dagger				T				
	-			-		-						+	1				\dagger				
					 			-			T	+	\top					1			
_	\vdash	-	\vdash	-			<u> </u>	1			T		十				T				
-	+-	_	-	+			\vdash	-			T	\top	\dashv				1				
H	 	 	+-	+	\vdash	-		1		 	\dagger	\dagger	\dashv				T				
-	+	-	-	+	 	-	+	1		\vdash		+	\dashv				1	\exists			
L_				<u> </u>	ــــــــــــــــــــــــــــــــــــــ			J [.]	L		_نان				L						
n cl	ntun	osm	node	elle																	
			1.	T. T.	nters	chie	ede :	zwische	n lok	ale	n u	nd g	glol	oale	en F	3ele	eucl	htu	ngsi	mod	lell
W O. We	lill II	Stäi	n an rken	und	l Scl	ıwä	chei	n haben	sie?	We	lch	es d	ler	bei	den	Ве	leu	cht	ung	;sm	ode
nut	zt Oj	oen(GL?	(5 I	unl	cte)															
	-																				