EXERCISES FOR INF3320

BEZIER CURVES AND SURFACES

9/11/2010

- 1. Let $\mathbf{p}_0 = (-1,1)$, $\mathbf{p}_1 = (1,1)$, $\mathbf{p}_2 = (1,0)$ be the control points of a quadratic Bezier curve \mathbf{p} .
 - (a) Evaluate ${\bf p}$ at $t=\frac{1}{4}$ using the de Casteljau algorithm.
 - (b) Evaluate \mathbf{p} at $t = \frac{1}{4}$ using recursion on the basis functions.
- 2. Express a quadratic Bezier curve $\mathbf{p}(t) = \sum_{i=0}^{2} \mathbf{p}_{i} B_{0,2}(t)$ in monomial form, i.e., in the form $\mathbf{p}(t) = \mathbf{a}_{0} + \mathbf{a}_{1}t + \mathbf{a}_{2}t^{2}$.
- 3. Express a quadratic polynomial $\mathbf{p}(t) = \mathbf{a}_0 + \mathbf{a}_1 t + \mathbf{a}_2 t^2$ in Bezier form, i.e., in the form $\mathbf{p}(t) = \sum_{i=0}^{2} \mathbf{p}_i B_{0,2}(t)$.
- 4. Show that the Bernstein polynomial $B_{i,d}$ attains its unique maximum at t = i/d.
- 5. Start from ex7-6_bezier.cpp.template and implement the function deCasteljauEval which applies the de Casteljau algorithm to the Bezier curve defined by src_points at the parameter value t (the degree of the curve is implicitly given by how many points there are).