Contents

Li	st of Code Challenges	xviii
A l	bout the Textbook	xxi
	Meet the Authors	xxi
	Meet the Development Team	xxii
	Acknowledgments	xxiii
1	Where in the Genome Does DNA Replication Begin?	2
	A Journey of a Thousand Miles	3
	Hidden Messages in the Replication Origin	5
	DnaA boxes	5
	Hidden messages in "The Gold-Bug"	6
	Counting words	7
	The Frequent Words Problem	8
	Frequent words in Vibrio cholerae	10
	Some Hidden Messages are More Surprising than Others	11
	An Explosion of Hidden Messages	13
	Looking for hidden messages in multiple genomes	13
	The Clump Finding Problem	14
	The Simplest Way to Replicate DNA	16
	Asymmetry of Replication	18
	Peculiar Statistics of the Forward and Reverse Half-Strands	22
	Deamination	22
	The skew diagram	23
	Some Hidden Messages are More Elusive than Others	26
	A Final Attempt at Finding <i>DnaA</i> Boxes in <i>E. coli</i>	
	Epilogue: Complications in <i>oriC</i> Predictions	

Open Problems	33
Multiple replication origins in a bacterial genome	33
Finding replication origins in archaea	35
Finding replication origins in yeast	36
Computing probabilities of patterns in a string	37
Charging Stations	39
The frequency array	39
Converting patterns to numbers and vice-versa	41
Finding frequent words by sorting	43
Solving the Clump Finding Problem	44
Solving the Frequent Words with Mismatches Problem	47
Generating the neighborhood of a string	49
Finding frequent words with mismatches by sorting	51
Detours	52
Big-O notation	52
Probabilities of patterns in a string	52
The most beautiful experiment in biology	57
Directionality of DNA strands	59
The Towers of Hanoi	60
The overlapping words paradox	62
Bibliography Notes	64
Which DNA Patterns Play the Role of Molecular Clocks?	66
Do We Have a "Clock" Gene?	67
Motif Finding Is More Difficult Than You Think	68
Identifying the evening element	68
Hide and seek with motifs	69
A brute force algorithm for motif finding	71
Scoring Motifs	72
From motifs to profile matrices and consensus strings	72
Towards a more adequate motif scoring function	75
Entropy and the motif logo	76
From Motif Finding to Finding a Median String	77
The Motif Finding Problem	77
Reformulating the Motif Finding Problem	77
The Median String Problem	80
Why have we reformulated the Motif Finding Problem?	82

2

Greedy Motif Search	83
Using the profile matrix to roll dice	83
Analyzing greedy motif finding	85
Motif Finding Meets Oliver Cromwell	86
What is the probability that the sun will not rise tomorrow?	86
Laplace's Rule of Succession	87
An improved greedy motif search	88
Randomized Motif Search	91
Rolling dice to find motifs	91
Why randomized motif search works	93
How Can a Randomized Algorithm Perform So Well?	96
Gibbs Sampling	98
Gibbs Sampling in Action	100
Epilogue: How Does Tuberculosis Hibernate to Hide from Antibiotics?	
Charging Stations	
Solving the Median String Problem	
Detours	
Gene expression	108
DNA arrays	
Buffon's needle	
Complications in motif finding	
Relative entropy	
Bibliography Notes	
How Do We Assemble Genomes?	115
Exploding Newspapers	
The String Reconstruction Problem	
Genome assembly is more difficult than you think	
Reconstructing strings from <i>k</i> -mers	
Repeats complicate genome assembly	
String Reconstruction as a Walk in the Overlap Graph	
From a string to a graph	
The genome vanishes	
Two graph representations	
Hamiltonian paths and universal strings	
Another Graph for String Reconstruction	
Gluing nodes and de Bruijn graphs	131

3

Walking in the de Bruijn Graph
Eulerian paths
Another way to construct de Bruijn graphs
Constructing de Bruijn graphs from <i>k</i> -mer composition
De Bruijn graphs versus overlap graphs
The Seven Bridges of Königsberg
Euler's Theorem
From Euler's Theorem to an Algorithm for Finding Eulerian Cycles 146
Constructing Eulerian cycles
From Eulerian cycles to Eulerian paths
Constructing universal strings
Assembling Genomes from Read-Pairs
From reads to read-pairs
Transforming read-pairs into long reads
From composition to paired composition
Paired de Bruijn graphs
Complications of paired de Bruijn graphs
Epilogue: Genome Assembly Faces Real Sequencing Data
Breaking reads into <i>k</i> -mers
Splitting the genome into contigs
Assembling error-prone reads
Inferring multiplicities of edges in de Bruijn graphs
Charging Stations
The effect of gluing on the adjacency matrix
Generating all Eulerian cycles
Reconstructing a string spelled by a path in the paired de Bruijn graph . 166
Maximal non-branching paths in a graph
Detours
A short history of DNA sequencing technologies
Repeats in the human genome
Graphs
The icosian game
Tractable and intractable problems
From Euler to Hamilton to de Bruijn
The seven bridges of Kaliningrad
The BEST Theorem
Bibliography Notes

4	How Do We Sequence Antibiotics?	182
	The Discovery of Antibiotics	183
	How Do Bacteria Make Antibiotics?	184
	How peptides are encoded by the genome	184
	Where is Tyrocidine encoded in the <i>Bacillus brevis</i> genome?	186
	From linear to cyclic peptides	188
	Dodging the Central Dogma of Molecular Biology	188
	Sequencing Antibiotics by Shattering Them into Pieces	190
	Introduction to mass spectrometry	190
	The Cyclopeptide Sequencing Problem	191
	A Brute Force Algorithm for Cyclopeptide Sequencing	193
	A Branch-and-Bound Algorithm for Cyclopeptide Sequencing	194
	Mass Spectrometry Meets Golf	
	From theoretical to real spectra	197
	Adapting cyclopeptide sequencing for spectra with errors	198
	From 20 to More than 100 Amino Acids	201
	The Spectral Convolution Saves the Day	203
	Epilogue: From Simulated to Real Spectra	
	Open Problems	
	The Beltway and Turnpike Problems	
	Sequencing cyclic peptides in primates	
	Charging Stations	
	Generating the theoretical spectrum of a peptide	
	How fast is CyclopeptideSequencing?	
	Trimming the peptide leaderboard	
	Detours	
	Gause and Lysenkoism	
	Discovery of codons	
	Quorum sensing	
	Molecular mass	
	Selenocysteine and pyrrolysine	
	Pseudo-polynomial algorithm for the Turnpike Problem	
	Split genes	
	Bibliography Notes	221
5	How Do We Compare Biological Sequences?	222
-	Cracking the Non-Ribosomal Code	

The RNA Tie Club	.3
From protein comparison to the non-ribosomal code	4
What do oncogenes and growth factors have in common?	:5
Introduction to Sequence Alignment	6
Sequence alignment as a game	6
Sequence alignment and the longest common subsequence	27
The Manhattan Tourist Problem	9
What is the best sightseeing strategy?	9
Sightseeing in an arbitrary directed graph	2
Sequence Alignment is the Manhattan Tourist Problem in Disguise 23	3
An Introduction to Dynamic Programming: The Change Problem 23	6
Changing money greedily	6
Changing money recursively	37
Changing money using dynamic programming	9
The Manhattan Tourist Problem Revisited	1
From Manhattan to an Arbitrary Directed Acyclic Graph	:5
Sequence alignment as building a Manhattan-like graph 24	:5
Dynamic programming in an arbitrary DAG	:6
Topological orderings	-7
Backtracking in the Alignment Graph	51
Scoring Alignments	3
What is wrong with the LCS scoring model?	3
Scoring matrices	4
From Global to Local Alignment	5
Global alignment	5
Limitations of global alignment	7
Free taxi rides in the alignment graph	9
The Changing Faces of Sequence Alignment	51
Edit distance	51
Fitting alignment	3
Overlap alignment	3
Penalizing Insertions and Deletions in Sequence Alignment	4
Affine gap penalties	4
Building Manhattan on three levels	6
Space-Efficient Sequence Alignment	9
Computing alignment score using linear memory	9
The Middle Node Problem 27	'n

	A surprisingly fast and memory-efficient alignment algorithm	. 273
	The Middle Edge Problem	. 275
	Epilogue: Multiple Sequence Alignment	. 277
	Building a three-dimensional Manhattan	. 277
	A greedy multiple alignment algorithm	. 280
	Detours	. 282
	Fireflies and the non-ribosomal code	. 282
	Finding an LCS without constructing a city	. 283
	Constructing a topological ordering	. 284
	PAM scoring matrices	. 285
	Divide-and-conquer algorithms	. 287
	Scoring multiple alignments	. 289
	Bibliography Notes	. 291
6	Are There Fragile Regions in the Human Genome?	292
	Of Mice and Men	. 293
	How different are the human and mouse genomes?	. 293
	Synteny blocks	. 294
	Reversals	. 294
	Rearrangement hotspots	. 295
	The Random Breakage Model of Chromosome Evolution	. 297
	Sorting by Reversals	. 299
	A Greedy Heuristic for Sorting by Reversals	. 304
	Breakpoints	. 306
	What are breakpoints?	. 306
	Counting breakpoints	. 307
	Sorting by reversals as breakpoint elimination	. 308
	Rearrangements in Tumor Genomes	
	From Unichromosomal to Multichromosomal Genomes	
	Translocations, fusions, and fissions	. 311
	From a genome to a graph	. 313
	2-breaks	. 314
	Breakpoint Graphs	. 316
	Computing the 2-Break Distance	. 320
	Rearrangement Hotspots in the Human Genome	. 323
	The Random Breakage Model meets the 2-Break Distance Theorem	. 323
	The Fraoile Breakage Model	324

Epilogue: Synteny Block Construction	325
Genomic dot-plots	325
Finding shared k-mers	
Constructing synteny blocks from shared <i>k</i> -mers	329
Synteny blocks as connected components in graphs	331
Open Problem: Can Rearrangements Shed Light on Bacterial Evolution?	333
Charging Stations	335
From genomes to the breakpoint graph	
Solving the 2-Break Sorting Problem	338
Detours	340
Why is the gene content of mammalian X chromosomes so conserved? .	340
Discovery of genome rearrangements	340
The exponential distribution	341
Bill Gates and David X. Cohen flip pancakes	342
Sorting linear permutations by reversals	343
Bibliography Notes	346
Bibliography	349
Image Courtesies	355

List of Code Challenges

Chapter 1	2
(1A) Compute the Number of Times a Pattern Appears in a Text	 8
(1B) Find the Most Frequent Words in a String	 8
(1C) Find the Reverse Complement of a DNA String	 12
(1D) Find All Occurrences of a Pattern in a String	 13
(1E) Find Patterns Forming Clumps in a String	 15
(1F) Find a Position in a Genome Minimizing the Skew	 25
(1G) Compute the Hamming Distance Between Two Strings	 27
(1H) Find All Approximate Occurrences of a Pattern in a String	 27
(1I) Find the Most Frequent Words with Mismatches in a String	 28
(1J) Find Frequent Words with Mismatches and Reverse Complements .	 29
(1K) Generate the Frequency Array of a String	 40
(1L) Implement PATTERNTONUMBER	 42
(1M) Implement NUMBERTOPATTERN	 43
(1N) Generate the <i>d</i> -Neighborhood of a String	 50
Chapter 2	66
(2A) Implement MOTIFENUMERATION	 71
(2B) Find a Median String	 81
(2C) Find a <i>Profile</i> -most Probable <i>k</i> -mer in a String	 85
(2D) Implement GreedyMotifSearch	 85
(2E) Implement GreedyMotifSearch with Pseudocounts	 91
(2F) Implement RANDOMIZEDMOTIFSEARCH	 93
(2G) Implement GIBBSSAMPLER	 100
(2H) Implement DISTANCEBETWEENPATTERNANDSTRINGS	 107

Chapter 3	115
(3A) Generate the <i>k</i> -mer Composition of a String	120
(3B) Reconstruct a String from its Genome Path	125
(3C) Construct the Overlap Graph of a Collection of <i>k</i> -mers	128
(3D) Construct the de Bruijn Graph of a String	132
(3E) Construct the de Bruijn Graph of a Collection of k -mers	
(3F) Find an Eulerian Cycle in a Graph	146
(3G) Find an Eulerian Path in a Graph	147
(3H) Reconstruct a String from its <i>k</i> -mer Composition	147
(3I) Find a k-Universal Circular String	. 148
(3J) Reconstruct a String from its Paired Composition	157
(3K) Generate the Contigs from a Collection of Reads	160
(3L) Construct a String Spelled by a Gapped Genome Path	169
(3M) Generate All Maximal Non-Branching Paths in a Graph	169
Chapter 4	182
(4A) Translate an RNA String into an Amino Acid String	186
(4B) Find Substrings of a Genome Encoding a Given Amino Acid String	187
(4C) Generate the Theoretical Spectrum of a Cyclic Peptide	191
(4D) Compute the Number of Peptides of Given Total Mass	193
(4E) Find a Cyclic Peptide with Theoretical Spectrum Matching an Idea	ıl
Spectrum	
(4F) Compute the Score of a Cyclic Peptide Against a Spectrum	198
(4G) Implement Leaderboard Cyclopeptide Sequencing	200
(4H) Generate the Convolution of a Spectrum	203
(4I) Implement CONVOLUTION CYCLOPEPTIDE SEQUENCING	205
(4J) Generate the Theoretical Spectrum of a Linear Peptide	211
(4K) Compute the Score of a Linear Peptide	214
(4L) Implement TRIM to Trim a Peptide Leaderboard	215
(4M) Solve the Turnpike Problem	219
Chapter 5	222
(5A) Find the Minimum Number of Coins Needed to Make Change	240
(5B) Find the Length of a Longest Path in a Manhattan-like Grid	245
(5C) Find a Longest Common Subsequence of Two Strings	252
(5D) Find the Longest Path in a DAG	. 253
(5E) Find a Highest-Scoring Alignment of Two Strings	255

(5F) Find a Highest-Scoring Local Alignment of Two S	trings 260
(5G) Compute the Edit Distance Between Two Strings	262
(5H) Find a Highest-Scoring Fitting Alignment of Two	Strings 263
(51) Find a Highest-Scoring Overlap Alignment of Two	Strings 264
(5J) Align Two Strings Using Affine Gap Penalties	268
(5K) Find a Middle Edge in an Alignment Graph in Lir	near Space 275
(5L) Align Two Strings Using Linear Space	276
(5M) Find a Highest-Scoring Alignment of a Collection	of Strings 279
(5N) Find a Topological Ordering of a DAG	285
Chapter 6	292
(6A) Implement GREEDYSORTING to Sort a Permutation	on by Reversals 305
(6B) Compute the Number of Breakpoints in a Permuta	ation 308
(6C) Compute the 2-Break Distance Between a Pair of C	Genomes 321
(6D) Find a Shortest Transformation of One Genome in	to Another via 2-Breaks322
(6E) Find All Shared <i>k</i> -mers of a Pair of Strings	
(6F) Implement CHROMOSOMETOCYCLE	
(6G) Implement CYCLETOCHROMOSOME	
(6H) Implement COLOREDEDGES	
(6I) Implement GRAPHTOGENOME	
(6J) Implement 2-BreakOnGenomeGraph	
(6K) Implement 2-BreakOnGenome	