Sl. No	Questions	Max Marks
1	Derive the wave equation for a transverse wave on a stretched string of uniform linear density assuming that the amplitude of oscillations remains small enough so that the string tension can be taken constant throughout. Key: i) Diagram and assumptions used in derivation: ii) Derivation of the wave equations: 4 marks iii) Identification of $\sqrt{(T/\mu)}$ as the speed of the wave: 2 marks	10
2	What are standing waves? Derive the equation for a standing wave on a stretched string of length L fixed at its both ends. Also, find its eigenfrequencies and draw the standing wave pattern for the first four harmonics. Key: i) Definition of standing waves: ii) Derivation of the standing wave equation: 4 marks iii) Mathematical expressions for the first 4 eigen-frequencies: 2 marks iv) Diagram of the first 4 eigen-frequencies: 2 marks	10
3	 (a) Write the expressions for reflection and transmission coefficients of amplitude for a transverse wave on a string when there is a sudden change in the impedance at a boundary. Discuss the scenario when the wave encounters a medium with impedance (i) Z₂ → 0 & (ii) Z₂ → ∞. 	5