Physical Attacks

-- Building Secure Systems

Cybersecurity Specialization
-- Hardware Security

Tamper Protection Levels

#ZFRO

DG. Abraham et al, "Transaction Security System", IBM System Journal, 1991.

- No security feature, open access
- Example: microcontroller, FPGA with external memory
- No special equipment/tools, minutes to hours

#LOW

- Basic security features, easy to break
- Example: microcontroller with unprotected internal memory but proprietary access
- Low cost tools, \$1000/\$500, hours to days

Tamper Protection Levels

MODL

- = security features against low cost attacks
- Example: microcontroller w protection, but sensitive to power analysis or power glitches
- Some tools/skills, \$10K/\$5K, days to weeks

MOD

- Example: microcontroller with protection against UV light attack, ASICs, secure memory chips, smartcards
- special tools/equipment/skills/knowledge, \$100K/\$50K, weeks to months

Tamper Protection Levels

MODH

- = Application specific security features
- Example: secure FPGA, modern smartcard, complex ASICs
- Group of attackers, \$1M/\$200K, months

HIGH

- * Protection against all known attacks
- Example: secure crypto modules for certification authority, military, banking application
- Team of specialists, design new tools, years

FIPS Security Levels

- 1. Specifies basic security requirements for a cryptographic module
- 2. Adds physical security: tamper evident coating or seals, pick-resistant locks
- 3. Enhances physical security to prevent unauthorized access to critical data
- 4. Detects penetrations to the cryptographic module/device from all directions

Federal information Processing Standards 140 "Security Requirements for Cryptographic Modules".

Known Security Failures

- # Microchip PIC microcontroller
 - Security fuse bug.
- # Hitachi smartcard
 - Information leakage on a product CD
- # Actel secure FPGA
 - Programming software bug
- # Xilinx secure CPLD
 - Programming software bug
- # Dallas SHA-1 secure memory
 - Factory initialization bug

Understanding the Attacks

- # Understand the attacker's motivations
 - Theft, access, DoS, IP piracy
- # Understand the attackers
 - Outsiders, insiders, funded organizations
- # Attacking categories
 - Invasive, semi-invasive, non-invasive
- # Attacking methods
 - Reverse engineering, probing, fault, side channel, software

Securing your System

- # Threat estimation
- # System security evaluation
- #Locating weak points
- #Enhancing system security
 - Choose/upgrade secure components
 - Redesign for security
- # System engineering approach
 - Security has to be built into the system, not onto a given system.