

4. Minimizacija Booleovih izraza

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- vremenski hazard
- implikanti i minimalna suma
- minimizacija višeizlazne funkcije
- Quine-McCluskeyeva metoda

- podsjetiti se:
 - Booleova funkcija je opis digitalnog sklopa:
 - operator ⇔ osnovni logički sklop
 - izraz koji utvrđuje Booleovu funkciju ⇔ sklop

Primjer:
$$f = A \cdot (\overline{B} + C) + A \cdot \overline{D}$$

- želja:
 - pojednostavljivanje sklopa
 - najjednostavniji sklop pokazuje niz pogodnosti:
 - tehnički razlozi
 - ~ potrošnja, disipacija, ...
 - ekonomski razlozi
 - ~ cijena sklopova, prostor na pločici, ...
 - pojednostavljivanje sklopa ⇔ pojednostavljivanje izraza
 ~ postići *minimalno* ostvarenje dane Booleove funkcije:
 - "jednostavan" sklop = ?
 - ~ kriteriji jednostavnosti
 - mjere složenosti sklopa?

- kriteriji jednostavnosti kontradiktorni
 ~ uobičajeno u inženjerskoj praksi!
 - najjeftinije ostvarenje
 min broj standardnih sklopova
 ili izvoda/kućišta standardnih modula (komponenti)
 - eventualni porast broja razina logike
 zapis "funkcije višeg reda"
 - faktorizacija $f = A \cdot (B + C) + A \cdot D$ ~ dekompozicija u češće korištene komponentne funkcije
 - vrijeme propagacije signala nije minimalno!
 - najveća brzina rada sklopa \sim funkcija drugog reda: $\longrightarrow f = A \cdot B + A \cdot C + A \cdot D$ dvije razine logike (ILI-I, NI-NI, ...)

- mjere složenosti digitalnog sklopa:
 - brzina rada ~ broj razina "logike"
 - broj utrošenih primitivnih sklopova:
 - bez ograničenja
 - izvedba *u dvije razine*
 - broj utrošenih primitivnih sklopova
 + ukupan broj ulaza u logičke sklopove
 - bez ograničenja
 - izvedba *u dvije razine*

- minimizacija (engl. minimization) izraza koji prikazuje Booleovu funkciju
 - pronaći onaj izraz koji minimizira odabranu mjeru složenosti:

"za zadanu funkciju od n varijabli iz skupa 2^{2^n} njih, odrediti onaj izraz, unutar velikog broja ekvivalentnih, koji će zadovoljiti neke od kriterija jednostavnosti"

- standardni postupak minimizacije
 ~ primjena na funkcije drugog reda:
 - "Neki se izraz drugog reda u obliku sume produkata smatra minimalnim *minimiziranim* ako ne postoji:
 - niti jedan drugi ekvivalentni izraz s manje produkata,
 - niti jedan drugi ekvivalentni izraz s istim brojem produkata, ali manjim brojem literala."

literal = {varijabla | komplement}

- sintaksne manipulacije Booleovog izraza radi postizanja minimalnog izraza
 - ~ algebarska minimizacija:
 - transformacija funkcije zamjenom jednog njenog oblika (izraza) drugim, uzastopnom primjenom postulata i teorema Booleove algebre
 - ne postoji sustavan postupak koji vodi do minimuma

Primjer:
$$f(A, B, C) = B\overline{C}(\overline{C} + \overline{C}A) + (\overline{A} + \overline{C})(\overline{A}B + \overline{A}C)$$

 $f(A, B, C) = B\overline{C}(\overline{C} + \overline{C}A) + (\overline{A} + \overline{C})(\overline{A}B + \overline{A}C)$
 $= B\overline{C} \cdot \overline{C} \cdot (1 + A) + (\overline{A} + \overline{C}) \cdot \overline{A} \cdot (B + C)$
 $= B \cdot (\overline{C} \cdot \overline{C}) \cdot (1 + A) + \overline{A} \cdot (\overline{A} + \overline{C}) \cdot (B + C)$
 $= B\overline{C} \cdot 1 + \overline{A} \cdot (B + C)$
 $= B\overline{C} + \overline{A}B + \overline{A}C$
 $= B\overline{C} + \overline{A}B \cdot (C + \overline{C}) + \overline{A}C$
 $= B\overline{C} + \overline{A}BC + \overline{A}B\overline{C} + \overline{A}C$
 $= (B\overline{C} + \overline{A}BC) + (\overline{A}BC + \overline{A}C)$
 $= B\overline{C}(1 + \overline{A}) + \overline{A}C(B + 1)$
 $= B\overline{C} \cdot 1 + \overline{A}C \cdot 1$
 $= \overline{A}C + B\overline{C}$

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- vremenski hazard
- minimizacija višeizlazne funkcije
- Quine-McCluskeyeva metoda

- grafički prikaz Booleovih funkcija:
 - tablica u 2-dimenzijskom obliku
 - polja
 ~ standardni članovi (produkti/sume)
 - "razlika" grafički susjednih polja u samo jednoj varijabli!

Α	В	f	f(A,B	Α	
0	0	α_0		0	1
0	1	α_1	\Rightarrow B 0	α_0	α_2
1	0	α_2	1		
1	1	α_3	ı	α_1	α_3

- K-tablice (Karnaughove tablice), M. Karnaugh, 1953:
 - grafičke strukture s 2ⁿ polja za prikaz f(x₁, x₂, ..., x_n)
 - označavanje polja
 ~ "pravokutne koordinate", Grayev kod (d_{min} = 1)
 - minimizacija
 "grupiranje" polja:
 temeljeno na ljudskoj sposobnosti raspoznavanja uzoraka (1 i 0)
 - K-tablice za n > 2 varijable
 ~ simetrija oko jedne stranice, superpozicija
 - praktična primjena: n ≤ 6

podsjetnik: Grayev kod

• izgradnja K tablice:

f(A,B,C) AB							
•	00	01	11	10			
C 0	0	2	6	4			
1	1	3	7	5			

f(A,B,C,D,E) ABC									
	000	001	011	010	110	111	101	100	
DE 00	0	4	12	8	24	28	20	16	
01	1	5	13	9	25	29	21	17	
11	3	7	15	11	27	31	23	19	
10	2	6	14	10	26	30	22	18	

f(A,B,C,D,E) ABC									
		000	010	110	100	001	011	111	101
DE	00	0	8	24	16	4	12	28	20
	01	1	9	25	17	5	13	29	21
	11	3	11	27	19	7	15	31	23
	10	2	10	26	18	6	14	30	22

susjednost polja:

$$12 = 1100 \equiv AB\bar{C}\bar{D} : D \equiv 2^{0}$$

$$13 = 1101 \equiv AB\bar{C}D \rightarrow 15 = 1111 \equiv AB\bar{C}D : C \equiv 2^{1}$$

$$09 = 1001 \equiv A\bar{B}\bar{C}D : B \equiv 2^{2}$$

$$05 = 0101 \equiv \bar{A}B\bar{C}D : A \equiv 2^{3}$$

- upisivanje funkcija u K-tablice:
 - funkcija u obliku sume minterma, Σm_i:
 1 za svaki m_i
 - funkcija u obliku produkta maksterma, ∏M_i:
 0 za svaki M_i, ostalo su 1 (1 se pišu, 0 se *ne* pišu!)
 - nepotpuno specificirane funkcije (engl. incompletely specified functions):
 - parcijalne funkcije
 - neke kombinacije argumenata se ne pojavljuju
 ~ funkcijska vrijednost nije specificirana,
 X (engl. don't care)
 - X se interpretiraju onako kako najbolje odgovara pri minimizaciji (→ "joker")!

Primjer:
$$z = f(A, B, C, D)$$

= $\sum m(4,5,13,14,15) + \sum d(1,3,7,8,12)$

f(A,B,C,D) AB								
	00	01	11	10				
CD 00		1	X	X				
01	X	1	1					
11	X	Х	1					
10			1					

- prikaz "složene" Booleove funkcije
 osnovne operacije nad Booleovim funkcijama:
 - jednostavno dobivanje rješenja kombiniranjem pripadnih K tablica
 - kombiniranje K tablica
 kombiniranje pojedinih polja K-tablica funkcija

Primjer:
$$h = f \oplus g = f \cdot g + f \cdot g$$

f(A,B,C,D) AB								
	00	01	11	10				
CD 00		1						
01	1	1	1					
11	1	1	1					
10			1	1				

g(A,B,C,D) AB							
	00	01	11	10			
CD 00		1	1	1			
01		1	1				
11			1				
10		1	1				

h(A,	AB				
	_	00	01	11	10
CD	00			1	1
	01	1			
	11	1	1		
	10		1		1

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- vremenski hazard
- implikanti i minimalna suma
- minimizacija višeizlazne funkcije
- Quine-McCluskeyeva metoda

- postupak minimizacije za funkcije u obliku sume produkata:
 - "zaokruživanje" uzoraka 2ⁱ susjednih polja s 1
 ~ "eliminiranje" i varijabli
 - par polja: 1 varijabla (T9: simplifikacija)

$$f(a,b,c,...) = a \cdot \varphi(b,c,...) + \overline{a} \cdot \varphi(b,c,...)$$
$$= (a + \overline{a}) \cdot \varphi$$
$$= \varphi$$

- četvorka polja: 2 varijable
- osmorka polja: 3 varijable
- itd. (ako ide ©)

- postupak minimizacije za funkcije u obliku sume produkata:
 - "zaokruženje"
 - ~ produkt, ali više *nije standardni*
 - inkluzivna disjunkcija zaokruženja
 - suma produkata (= funkcija drugog reda)
 - težnja
 - ~ pronaći *minimalnu* sumu:
 - što manji broj zaokruženja
 manji broj I sklopova = manji broj ulaza u ILI sklop
 - što veći broj 1 u zaokruženju
 - ~ I sklop s manjim brojem ulaza

Primjer: $f(A, B, C, D) = \sum m(5,6,9,10,13,14)$

$$f(A,B,C,D) = f(A,B,C,D) = f(A,B,C,D) = E\overline{D} + A\overline{D} + AC\overline{D} + AC\overline{D}$$

- postupak minimizacije nepotpuno specificirane funkcije u obliku sume produkata:
 - nužno je prekriti sve 1, ali ne i sve X
 - X se interpretira kao 1 (X = 1)
 samo ako se time može proširiti zaokruženje (→ joker!)
 - veće zaokruženje
 jednostavniji Booleov izraz = jednostavniji sklop!

Primjer:
$$f = \sum m(2,5,15) + \sum d(0,1,3,4,7,9,13,14)$$

$$f(A, B, C, D) = \overline{A}\overline{B}C\overline{D} + \overline{A}B\overline{C}D + ABCD$$

$$f(A, B, C, D) = \overline{A}\overline{B} + BD$$

• preljevanje zaokruženja preko rubova:

$$f(A, B, C, D) = \overline{A}\overline{B}\overline{C}D + A\overline{B}\overline{C}D$$
$$= \overline{B}\overline{C}D$$

- minimizacija funkcije u obliku produkta maksterma
 - isti postupak, samo se zaokružuju 0
 - rezultat je produkt suma
 - "čitanje" zaokruženja 0 kao sume produkata
 - ~ *komplement* funkcije

Primjer:
$$f = \prod M(5,7,15)$$

$$f(A, B, C, D) = \left(A + \overline{B} + \overline{D}\right) \cdot \left(\overline{B} + \overline{C} + \overline{D}\right)$$
$$= \dots$$
$$= A\overline{C} + \overline{B} + \overline{D}$$

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- vremenski hazard
- implikanti i minimalna suma
- minimizacija višeizlazne funkcije
- Quine-McCluskeyeva metoda

- zapažanje:
 - *stvarni* (kombinacijski) sklopovi posjeduju svojstveno kašnjenje (t_d)!
 - promatrati ostvarenu logičku funkciju + t_d

 moguće neočekivano ponašanje sklopa u prijelaznoj pojavi

- vremenski hazard
 - ~ neželjeni impulsi kao rezultat:
 - kašnjenja stvarnih sklopova
 - konkretnog dizajna složenijeg sklopa
 - ~ struktura sklopa izražena kombinacijom jednostavnijih sklopova (komponenti)

hazard (rizik):

pojava privremenog krivog impulsa koji u određenim slučajevima *može* prouzrokovati pogrešan rad sklopa:

- statički 0-hazard :
 - ~ izlaz statički u 0, a za prijelazne pojave generira se 1
- statički 1-hazard :
 - ~ izlaz statički u 1, a za prijelazne pojave generira se 0
- dinamički hazard :
 - ~ generiranje ≥ 1 impulsa pri promjeni stanja na izlazu

Primjer: statički 0-hazard

- logički hazard:
 - rezultat logičke implementacije funkcije, odnosno minimizacije Booleovog izraza!
 - statički logički hazard:
 - \sim tipična pojava kad dva logička signa<u>la</u> koji imaju suprotne vrijednosti (A i A) poprimaju *istu* vrijednost *za vrijeme prijelaznog stanja*:
 - razmatrati ih kao različite signale!
 - dodati redundantni član (produkt/sumu)
 - standardno rješenje
 - ~ izbjeći očitanje signala za prijelazne pojave:
 - impulsi sinkronizacije
 - ~ usporavanje rada sustava!

Primjer: $f = A\overline{B} + BC$

- *B* mijenja stanje iz 1 u 0: $(A, B, C): (1,1,1) \rightarrow (1,0,1)$
- I sklop $BC\underline{v}$ iše ne daje 1 ILI sklopu, a I sklop AB treba t_d vremena da ga generira

Vremenski hazard

- rješenje
 - ~ "olabaviti" minimizaciju dodavanjem redundantnog I sklopa koji daje 1 ILI sklopu AC kada su (A,C)=(1,1):

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- vremenski hazard
- implikanti i minimalna suma
- minimizacija višeizlazne funkcije
- Quine-McCluskeyeva metoda

- neke definicije:
 - *implikant*, i_i:
 - produkt u zapisu funkcije kao sume produkata
 - "implicira" f = 1 $f = B\overline{C}D + BCD + A\overline{C}D$ $i_1 = B\overline{C}D, i_2 = BCD, i_3 = A\overline{C}D$
 - primarni implikant (primarni član), pi_i:
 - ~ implikant koji se *ne može* kombinirati u drugi implikant s manjim brojem literala

$$f = B\overline{C}D + BCD + A\overline{C}D = BD + A\overline{C}D$$

$$pi_1 = BD, pi_2 = A\overline{C}D$$

- prekrivanje (više) minterma nekim (primarnim) implikantom
 - ~ (primarni) implikant nastao je kombiniranjem tih minterma te ih može *zamijeniti* u izrazu za funkciju
- bitni primarni implikant
 - \sim primarni implikant koji *jedini prekriva* (engl. cover) neki $m_{\rm i}$

- potpuna suma (engl. complete sum)
 suma svih primarnih implikanata funkcije, Σpi_i
- minimalna suma = minimalno prekrivanje
 suma primarnih implikanata koja prekriva (sadrži)
 sve minterme funkcije uz minimalni broj članova:
 minimizirani izraz za funkciju!

minimalna suma = $A\overline{C}D + BD$

Primjer: sustavno utvrđivanje minimalne sume

početi od funkcije zadane u kanonskom obliku

$$f = f(A, B, C, D)$$

$$= B\overline{C}D + BCD + A\overline{C}D$$

$$= (A + \overline{A}) \cdot B\overline{C}D + (A + \overline{A}) \cdot BCD + A \cdot (B + \overline{B}) \cdot \overline{C}D$$

$$= AB\overline{C}D + \overline{A}B\overline{C}D + ABCD + \overline{A}BCD + AB\overline{C}D + A\overline{B}\overline{C}D$$

$$= AB\overline{C}D + \overline{A}B\overline{C}D + ABCD + \overline{A}BCD + AB\overline{C}D$$

$$= \overline{A}B\overline{C}D + \overline{A}BCD + AB\overline{C}D + AB\overline{C}D + AB\overline{C}D$$

$$= \overline{A}B\overline{C}D + \overline{A}BCD + AB\overline{C}D + AB\overline{C}D + ABCD$$

$$= m_5 + m_7 + m_9 + m_{13} + m_{15}$$

$$= \sum (5,7,9,13,15)$$

```
implikanti = mintermi_funkcije (produkti_s_4_literala)
            ∪ produkti s 3 literala

∪ produkti s 2 literala
            \cup ...
   mintermi funkcije = \{m_5, m_7, m_9, m_{13}, m_{15}\}
                           = \left\{ \overline{ABCD}, \overline{ABCD}, A\overline{BCD}, AB\overline{CD}, AB\overline{CD}, ABCD \right\}
   produkti_s_3_literala
   ~ međusobno kombinirati minterme
   produkti_s_2_literala
   ~ međusobno kombinirati produkte_s_3_literala
   itd. ...
```

produkti_s_3_literala
~ međusobno kombinirati minterme_funkcije:

$$f = \overline{A}B\overline{C}D + \overline{A}BCD + A\overline{B}\overline{C}D + AB\overline{C}D + ABCD$$

$$\overline{A}B\overline{C}D + \overline{A}BCD = \overline{A}B \cdot (\overline{C} + C) \cdot D = \overline{A}BD$$

$$\overline{A}B\overline{C}D + AB\overline{C}D = (\overline{A} + A) \cdot B\overline{C}D = B\overline{C}D$$

$$\overline{A}BCD + ABCD = (\overline{A} + A) \cdot BCD = BCD$$

$$A\overline{B}\overline{C}D + AB\overline{C}D = A \cdot (\overline{B} + B) \cdot \overline{C}D = A\overline{C}D$$

$$AB\overline{C}D + ABCD = AB \cdot (\overline{C} + C) \cdot D = ABD$$
produkti_s_3_literala: $\{\overline{A}BD, B\overline{C}D, BCD, A\overline{C}D, ABD\}$

produkti_s_2_literala ~ međusobno kombinirati produkte_s_3_literala: $\{\overline{A}BD, B\overline{C}D, BCD, A\overline{C}D, ABD\}$ $\overline{A}BD + ABD = (\overline{A} + A) \cdot BD = BD$ $B\overline{C}D + BCD = B \cdot (\overline{C} + C) \cdot D = BD$ produkt_s_2_literala: $\{BD\}$ implikanti = $\{\overline{ABCD}, \overline{ABCD}, A\overline{BCD}, AB\overline{CD}, ABCD\}$ $\cup \left\{ \overline{A}BD, B\overline{C}D, BCD, A\overline{C}D, ABD \right\}$ $\cup \{BD\}$ primarni_implikanti = $\{BD, A\overline{C}D\}$ $potpuna_suma = BD + ACD$

prekrivanje minterma primarnim implikantima
 tablica prekrivanja

	m_5	$ m_7 $	m_9	m_{13}	m_{15}
	\overline{ABCD}	$\overline{A}BCD$	$A\overline{BCD}$	$AB\overline{C}D$	ABCD
\overline{ACD}			×	×	
BD	×	×		×	×

- *bitni* prim<u>arni</u> implikant
 - ~ npr. ACD jedini prekriva m_9

	m_5	m_7	$ (m_9)$	m_{13}	m_{15}
	\overline{ABCD}	$\overline{A}BCD$	\overrightarrow{ABCD}	$AB\overline{C}D$	ABCD
\overline{ACD}			×	×	
BD	×	×		×	×

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- vremenski hazard
- implikanti i minimalna suma
- minimizacija višeizlazne funkcije
- Quine-McCluskeyeva metoda

višeizlazna funkcija

~ skup Booleovih funkcija nad istim skupom varijabli:

definira "višeizlazni sklop" (engl. multiple-output circuit)

Primjer: pretvorba 3-bitovnog broja u (3-bitovni) Grayev kod

$$g_{2} = \varphi_{2}(b_{2}, b_{1}, b_{0})$$

$$g_{1} = \varphi_{1}(b_{2}, b_{1}, b_{0})$$

$$g_{0} = \varphi_{0}(b_{2}, b_{1}, b_{0})$$

Primjer : (nastavak)

b2	b1	b0	g2	g1	g0
0	0	0	0	0	0
Λ	0	1	n	Ω	1
0	1	0 1 0 1 0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

- zapažanje:
 - 5 *različitih* produkata (nema *istih* produkata)

- minimizacija višeizlazne funkcije
 ~ mogućnosti:
 - zasebna minimizacija komponentnih funkcija f_i
 - združena minimizacija svih komponentnih funkcija višeizlazne funkcije (f₁, ..., f_n)
 povoljnije rješenje?
- minimizirana višeizlazna funkcija:
 - višestruko korištenje pojedinih produktnih članova
 ušteda sklopovlja višeizlaznog sklopa
 - prilagodba (prethodnih) postupaka minimizacije
 istovremena minimizacija komponentnih funkcija

Primjer:

$$f_0 = AC + AB = pi_i + pi_2$$
$$= AC + AB\overline{C} = pi_i + m_6$$

$$f_1 = \overline{AB} + B\overline{C} = pi_3 + pi_4$$
$$= \overline{AB} + AB\overline{C} = pi_3 + m_6$$

 višeizlazna funkcija {f₀, f₁} ima povoljnije rješenje (pi₁, pi₃, m₆) u odnosu na zasebnu minimizaciju f₀ i f₁ što daje (pi₁, pi₂, pi₃, pi₄)

- konceptualizacija postupka višeizlazne minimizacije:
 - višeizlazni primarni implikant pi_i nije nužno primarni implikant pojedinih funkcija:

$$pi_1, pi_2 \Rightarrow f_0$$

 $pi_3, pi_4 \Rightarrow f_1$
 $m_6 = pi_5 \Rightarrow f_0 \cdot f_1$

- združena minimizacija n funkcija f₁÷f_n:
 - odrediti pi_i za svaku f_i posebno
 - odrediti pi_i za svaku *kombinaciju* f_i
 rodukti 2 i više f_i

Primjer: $f(A, B, C, D) = \{f_1, f_2, f_3\}$

Primjer: $f(A, B, C, D) = \{f_1, f_2, f_3\}$

f_2f_3					AB
		00	01	11	10
CD	00	<u>\</u>	$\langle \hat{r} \rangle$		
	01			1	
	11				
	10	·			

čitanje primarnih implikanata

Minimizacija višeizlazne funkcije

Primjer: $f(A, B, C, D) = \{f_1, f_2, f_3\}$

$$f_1 = c + d + f$$

 $f_2 = b + c + e$
 $f_3 = b/d + e + g$

- izbor minimalnog skupa višeizlaznih pi
 koji će prekrivati sve tri funkcije f₁, f₂, f₃:
 - povoljan izbor
 - pi_i koji se javljaju u max broju f_i:
 max zajedničko korištenje produkata
 - početi od f₁·f₂·f₃
 - izabrani složeniji pi_i javljaju se u "nižim" K tablicama kao zalihosti X
- komentar rješenja primjera:
 - h (f₃) ne doprinosi prekrivanju
 - f₂ ne daje p_i
 - a je nepotreban, jer ga prekrivaju f, e, h
 - f₃ ima opcije (b ili d)

Sadržaj predavanja

- minimum Booleove funkcije
- K tablice
- minimizacija K tablicama
- vremenski hazard
- implikanti i minimalna suma
- minimizacija višeizlazne funkcije
- Quine-McCluskeyeva metoda
 - minimizacija potpuno specificirane funkcije
 - minimizacija nepotpuno specificirane funkcije

- tablična metoda prikladna za minimizaciju funkcija većeg broja varijabli:
 - može se provesti i manipuliranjem indeksima standardnih članova
 - numerički postupak
 pogodan za programsku implementaciju
- W. V. Quine, 1952;
 poboljšanje: E. J. McCluskey, 1956

- potpuno specificirana funkcija u obliku sume standardnih produkata
- postupak u dvije faze:
 - prva faza
 - nalaženje primarnih implikanata (~ potpune sume):
 najveća zaokruženja u K-tablicama
 - druga faza
 - određivanje optimalnog (*minimalnog*) skupa primarnih implikanata (~ minimalne sume)

- prva faza: nalaženje potpune sume
 - svrstavanje minterma u klase prema broju jedinica
 - uspoređivanje elemenata *susjednih* klasa ~ kombiniranje elemenata koji se mogu simplificirati (T9) $A \cdot \varphi + \overline{A} \cdot \varphi = \varphi$ (*)
 - dobiveni produkti (s manjim brojem literala)
 ~ klasa u novoj tablici
 - elementi koji nisu kombinirani
 primarni implikanti
 - ponavljanje prethodnog koraka za elemente koji su izgubili istu varijablu
 - postupak se zaustavlja kad nema više kandidata za kombiniranje

- dodaci za *numerički* postupak, korištenjem *indeksa* minterma:
 - klase su susjedne
 - elementi za kombiniranje se razlikuju za 2^k,
 k = 0, 1, 2, ...
 - element u višoj klasi mora biti veći
 - eliminira se literal 2^k

Primjer:
$$z = f(A, B, C, D) = \sum (1,3,5,6,9,11,12,13,14,15)$$

prva faza

		В	•	_
	Α	В	С	D
	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
1 2 3 4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8 9	1	0	0	0
	1	0	0	1
10	1	0	1	1 0
11	1	0	1	1
12	1	1	0	0
13	1 1 1 1	1	0	1
14	1	1	1	0
15	1	1	1	1

1	1	✓	1	1,3	(2)	✓	1	1,3,9,11	(2,8)	Ŋ
2	3	✓		1,5	(4)	\checkmark		1,5,9,13	(4,8)) (
į	5	\checkmark		1,9	(8)	\checkmark		1,9,3,11	(8,2)	()
!	6	\checkmark	2	3,11	(8)	✓		1,9,5,13	(8,4)	(
! !	9	\checkmark		5,13	(8)	\checkmark	2	9,11,13,15	(2,4)	Ŋ
	12	✓		6,14	(8)			12,14,13,15	(2,1)) [
3	11	✓		9,11	(2)	\checkmark		12,13,14,15	(1,2)	
! !	13	\checkmark		9,13	(4)	\checkmark		9,13,11,15	(4,2)	Ċ
	14	✓		12,13	(1)	\checkmark		 		•
4	15	√		12,14	(2)	✓				
!			3	11,15	(4)	√				
				13,15	(2)	\checkmark				
	 			14,15	(1)	√				_

- rezultat prve faze: z = f(A, B, C, D) $=\sum_{1}^{1}(1,3,5,6,9,11,12,13,14,15)$
- primarni članovi
 - ~ potpuna suma

$$POTPUNA SUMA$$
 $= BC\overline{D} = a$
 $1,3,9,11 (2,8)$
 $= \overline{B}D = b$
 $1,5,9,13 (4,8)$
 $= \overline{C}D = c$
 $1,1,13,15 (2,4)$
 $= AD = d$
 $1,1,13,15 (1,2)$
 $= AB = e$
 $= BC\overline{D} = AB$

$$z = f(A, B, C, D)$$

$$= BC\overline{D} + BD + CD + AD + AB$$

$$= 6,14(8) + 1,3,9,11(2,8) + 1,5,9,13(4,8) + 9,11,13,15(2,4) + 12,13,14,15(1,2)$$

AB

- druga faza: nalaženje minimalne sume
 - formiranje tablice primarnih implikanata i označavanje prekrivanja minterma
 - nalaženje bitnih primarnih implikanata, koji jedini prekrivaju pojedini minterm
 označiti minterme koje taj član pokriva
 - bitni primarni implikanti ulaze u minimalnu sumu
 - preostale minterme prekriti minimalnim podskupom preostalih primarnih implikanata
 - prednost:
 primarni implikanti s manjim brojem literala

tablica prekrivanja:

		1	3	5	6	9	11	12	13	14	15
$BC\overline{D}$	a				Χ					Χ	
$\overline{B}D$	b	X	Χ			X	X				
$\overline{C}D$	C	X		X		X			X		
AD	d					X	Х		Х		Х
AB	e							X	X	X	X
		√									

minimalna suma:

$$z = a + b + c + e$$

$$= BC\overline{D} + BD + CD + AB$$

$$= 6,14(8) + 10$$

$$+1,3,9,11(2,8) + 1,5,9,13(4,8) + 12,13,14,15(1,2)$$
FER Faculty Digital to legible 2020/21

- nakon nalaženja bitnih primarnih članova moguća pojava cikličke tablice
 - svaki preostali minterm prekriven je istim brojem preostalih primarnih implikanata;
 Pyne-McCluskeyev pristup (Petrickov postupak):
 - preostale primarne implikante tretirati kao logičke varijable i izgraditi funkciju P

```
P = (\text{suma pi koji prekrivaju } m_{i1}) \cdot (\text{suma pi koji prekrivaju } m_{i2}) \cdot ...
= ... = suma produkata
```

 uzeti produkt s *minimalnim* brojem primarnih implikanata

- Petrickov postupak (algoritam):
 - 1. ukloniti bitne primarne implikante i pripadne minterme
 - 2. unijeti *pokrate* za preostale primarne implikante
 - 3. formirati logičku funkciju *P* (čije su varijable te pokrate) koja je istinita kada su prekriveni svi stupci (mintermi); *P* je *produkt suma* primarnih implikanata koje prekrivaju pojedini minterm (stupac)
 - 4. P izraziti kao sumu produkata (primjenjujući konjunkciju logičko I i apsorpciju X + XY = X) te je minimizirati; svaki produkt u dobivenoj sumi P je moguće rješenje
 - 5. odabrati produkte s *najmanjim brojem varijabli*; svaki takav produkt predstavlja moguće rješenje s *minimalnim* brojem primarnih implikanata
 - 6. odabrati preostale produkte, ili produkte koji odgovaraju najmanjem ukupnim brojem literala

Primjer: $f(A, B, C) = \Sigma m(1, 2, 3, 4, 5, 6)$

rezultat prve faze = potpuna suma (koraci 1 i 2)

		1	2	3	4	5	6
а	1,3(2)	×		×			
b	1,5(4)	×				×	
С	2,3(1)		×	×			
d	2,6(4)		×				×
е	4,5(1)				×	×	
f	4,6(2)				×		×

korak 3:

$$P = (a+b)(c+d)(a+c)(e+f)(b+e)(d+f)$$

korak 4:

$$P = (a+b)(c+d)(a+c)(e+f)(b+e)(d+f)$$

$$= [(a+b)(a+c)][(d+c)(d+f)][(e+b)(e+f)]$$

$$= (a+bc)(d+cf)(e+bf)$$

$$= (ad+acf+bcd+bcf)(e+bf)$$

$$= ade + abdf + acef + abcf + bcde + bcdf + bcef + bcf$$

korak 5:

produkti s minimalnim brojem varijabli su *ade* i *bcf*, što daje *dva* rješenja:

$$f(A, B, C) = ade = \overline{AC} + B\overline{C} + A\overline{B}$$

$$f(A, B, C) = bcf = \overline{B}C + A\overline{C} + \overline{A}B$$

- minimizacija *nepotpuno specificiranih funkcija* u obliku sume produkata: $f = \sum_{i=1}^{n} m_i + \sum_{j=1}^{n} d_j$ ~ modifikacija osnovnog postupka uvođenjem "vektora redundancija"
- postupak:
 - početna tablica
 ~ mintermi i nespecificirane kombinacije
 - svaki produktni član dobiva oznaku redundantnosti:
 - d = 0 : produkt *nije* zanemariv
 - \sim simplifikacija je uključila barem jedan $m_{\rm i}$
 - d = 1: produkt je zanemariv (\rightarrow redundancija!)
 - ~ nastao kombiniranjem samo di

- prva faza:
 - kombiniranje produkata kao u osnovnom postupku, uz evidenciju redundantnosti
 - $d = d_{i1} \cdot d_{i2}$: produkt zanemariv samo ako je nastao simplifikacijom zanemarivih produkata
 - priprema druge faze
 - \sim izbor pi_i koji *nisu zanemarivi* (d = 0):
 - tablica prekrivanja (odabir minimalne sume)
 upis samo pi, koji nisu zanemarivi
 - stupci tablice
 samo m_i (X ne treba prekriti)
- druga faza:
 - ~ identična osnovnom postupku

Primjer: $f(A, B, C, D) = \sum m(5,9,12,15) + \sum d(2,7,8,10,13)$

	ABCD	d			ABCD	d	
2	0010	1	✓	2,10	-010	1	
8	1000	1	✓	8,9	100-	0	\checkmark
5	0101	0	✓	8,10	10-0	1	
9	1001	0	✓	8,12	1-00	0	✓
10	1010	1	✓	5,7	01-1	0	✓
12	1100	0	✓	5,13	-101	0	✓
7	0111	1	✓	9,13	1-01	0	✓
13	1101	1	✓	12,13	110-	0	✓
15	1111	0	✓	7,15	-111	0	\checkmark
				13,15	11-1	0	✓

ABCD d

8,9,12,13 1-0- 0

8,12,9,13 1-0- 0

5,7,13,15 -1-1 0

5,13,7,15 -1-1 0

druga faza :

		5	9	12	15
$A\overline{C}$	a		X	Χ	
BD	b	X			X
		\checkmark	$\overline{\hspace{1cm}}$	\checkmark	\checkmark

$$f = A\overline{C} + BD$$

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 4: Minimizacija logičkih funkcija.
- minimum Booleove funkcije: str. 129-133
- K tablice,
 minimizacija K tablicama: str. 133-147
- vremenski hazard: str. 123-125, 159-160
- Quine-McCluskeyeva metoda: str. 147-151
- minimizacija višeizlazne funkcije: str. 151-157

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 4: Minimizacija logičkih funkcija.
- minimum Booleove funkcije: 4.1-4.2, 4.14,
- K tablice,
 minimizacija K tablicama: 4.3-4.11, 4.16
- vremenski hazard: 4.18-4.21
- Quine-McCluskeyeva metoda: 4.12, 4.13, 4.15, 4.17
- minimizacija višeizlazne funkcije: 4.22-4.24

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 4: Minimizacija logičkih funkcija.
- minimum Booleove funkcije:
 - riješeni zadaci: 4.8a-c, 4.26, 4.27
 - zadaci za vježbu: 1-3, 7 (str.165-166)
- minimizacija K tablicama:
 - riješeni zadaci: 4.1-4.7, 4.8d, 4.13-4.16, 4.20-4.24
 - zadaci za vježbu: 4, 6, 8 (str.165-166)
- vremenski hazard:
 - riješeni zadaci: 4.5, 4.10
- Quine-McCluskeyeva metoda:
 - riješeni zadaci: 4.8e, 4.9-4.12, 4.17-4.19, 4.23
 - zadaci za vježbu: 5, 11, 12 (str.165-166)