Modulo 1 Sesion 1

```
    whoami → nombre usuario actual, root si eres admin
    /etc/passwd/ → informacion cuentas usuarios
    /etc/shadow/ → Password encriptados
    /etc/group/ → definicion de grupos y usuarios miembros
```

Crear cuentas de usuario

useradd nombre_usuario -d <home_dir> -e <fecha_caducidad> -b <directorio_base> adduser

Gestion de cuentas de usuario

Modificar usuarios:

usermod nombre_usuario -d <home> -e <expire_date> -g <id grupo> -p <contraseña>

Cambiar contraseña passwd <nombre usuario>

Eliminar usuario

userdel <nombreusuario>

Crear cuentas de usuario utilizando informacion de un fichero de texto con el formato de /etc/passwd

newusers

Herramienta en modo grafico: system-config-users

Archivos de configuracion del shell Bash

.bash_profile >> se ejecuta al hacer login. Variables, alias, configuracion del entorno...

.bashrc >> se ejecuta cada vez que iniciamos un shell. Scripts o programas

.bash_logout >> se ejecuta al salir del sistema. Programas, acciones, scripts, ...

Establecer valores usuarios

```
chage -d <ultimo_dia> <usuario> → Fecha del ultimo cambio de password
```

chage -m <*min_dias*> <*usuario*> → n.º días que han de pasar para poder cambiar la contraseña

chaqe -M <max_dias> <usuario> → n.º max días que puede estar con la misma pass

chage -W <warn_dias> <usuario> → dias de antelación para el aviso de cambio de pass

chage -I <inac_dias> <usuario> → n.º dias despues de la expiracion de la pass para que se deshabilite la cuenta deforma automatica si no se cambia la contraseña

chage -E < exp_dias > <usuario → fecha en la que la cuenta expira y se deshabilita de forma automatica

Gestion de grupos

```
groupadd <grupo> → crea grupo
groupmod <grupo> → modifica grupo existente
groupdel <grupo> → borra un grupo
newgrp <grupo> → cambia de grupo activo
gpasswd <grupo> → asigna una contraseña a un grupo
gpasswd -a <user> <grupo> → añade una contraseña a un grupo
groups -a <user> <grupo> → añade un usuario a un grupo
groups [usuario] → informa de los grupos a los que pertenece a un usuario
grpck → comprueba la consistencia del archivo de grupos
```

Sesion 2

Gestion basica de archivos y sistema de archivos

Nombres de directorios y tipo de informacion que contienen

/bin → programas de utilidad fundamental para **cualquier** usuario

/sbin → Programas de utilidad fundamental para el **root**

/boot → archivos fundamentales para el Boot Loader

/dev → Todos los archivos especiales de dispositivo

/etc → Archvos de configuración del sistema

/home → directorios de inicio de todos los usuarios que tienen cuenta en el sistema

/lib → bibliotecas sin las que no pueden funcionar los programas de /bin y /sbin

/media → Puntos de montaje de dispositivos extrabiles (DVD-ROM, Usb...)

/mnt → Puntos de montaje para sistemas de archivos temporales (pen drives)

/opt → programas que no forman parte de la distribucion instalada en el sistema

/proc → sistema de archivos virtual que hace de interfaz con el nucleo y los procesos

/tmp → archivos temporales que se borran al apagar el sistema

/usr → archivos ejecutables, codigos fuente, bibliotecas, doc, y programas y uilidades

/var → Archivos cuyo contenido se espera que cambie durante el funcionamiento del sistema

Ordenes gestion sistema de archivos

 $Pwd \rightarrow muestra ruta actual$

ls → muestra archivos del directorio actual

cd → cambia de directorio

mdkir

rmdir

cat

rm

ср

mν

chmod

touch

file y ls

En /proc/filesystems se enumera, uno por linea, todos los tipos de sistema de archivos disponibles y en proc/mounts sistemas de archivos montados actualmente, inclyendo los manuales o automaticos

Crear un sistema de archivos

Para formatear logicamente particiones creadas con SA de tipo ext2, ext3 o ext4, utilizamos *mke2f*s. La orden completa es:

- *-l* <*dispositivo* (/*dev*/xxx)> → Muestra contenido del superbloque del SA
- -c max-mount-counts < dispositivo $> \rightarrow N.^{\circ}$ max de montajes que se pueden realizar sin comprobacion de la consistencia del SA
- *-L label <dispositivo>* → Pone etiqueta al SA

Para montar un SA y poder utilizarlo utilizamos *mount* pero antes se ha tenido que crear la carpeta donde queramos montarlo

mkdir <directorio/en/el/que/queramos/montarlo> mount -L <label del dispositivo> <ruta en donde montarlo> Parametros:

- -L → para montar sabiendo la etiqueta
- -r → modo solo-lectura
- -o -o -o sista_opciones> → opciones: async, atime, noatime, auto, noauto, context, defaults, dev, nodev, diratime, nodiratime, dirsync, exec, noexec, group, iversion, noiversion, mand, nomand, ...

Gestores de paquetes

Ubuntu → paquetes con extension .*deb* Fedora → paquetes con extension .*rpm*

En Fedora para instalar paquetes se utiliza el programa yum

yum list \rightarrow lista paquetes disponibles en los repositorios para su instalación yum list installed \rightarrow lista paquetes actualmente instalados yum list updates \rightarrow muestra los paquetes con actualizaciones disponibles yum install <nombre-paquete> \rightarrow instalar paquete yum update \rightarrow actualiza todos los paquetes instalados yum remove <nombre-paquete> \rightarrow elimina el paquete y sus dependencias

Gestor de paquetes **rpm**

De forma general, rpm utiliza la estructura rpm <opciones> <nombres-paquetes>

rpm -i <nombre-archivo-paquete> \rightarrow instalar nuevos paquetes

rpm -e <nombre-paquete> → elimina paquetes instalados

rpm -U <nombre-archivo-paquete> \rightarrow actualiza paquetes instalados y elimina la versión previa instalada

rpm -F <nombre-servidor-HTTP/FTP> \rightarrow Actualiza paquetes instalados descargando del servidor rpm -qa | grep <parte-nombre-paquete-buscado> | sort \rightarrow busca paquete instalados por su nombre o parte

```
rpm -qi <nombre-paquete> \rightarrow Muestra informacion precisa del paquete instalado rpm -V <nombre-paquete> \rightarrow Consulta en la bd para verificar si un paquete está instalado
```

Administración de cuotas

Las cuotas de disco permiten limitar el número de recursos de un SA que utilizará un usuario. Para trabajar con cuotas hay que instalar **quota**.

Los límites para usuarios y/o grupos y para bloques y/o i-nodos se establecen como:

- Límite hard → el usuario no puede sobrepasarlo. Si se sobrepasa el sistema no le permitirá usar más bloques.
- Límite soft → Se puede sobrepasar el límite durante cierto tiempo y debe ser inferior al límite hard. Después de un tiempo este límite se transforma en hard.

Para asignar cuotas a un usuario: *quota <username>* y para ver las estadísticas de las cuotas de todos los usuarios *repquota <SA>*.

SESION 3

Orden uptime

Muestra hora actual, tiempo que lleva en marcha el sistema, numero de users conectados y carga media del sistema de los 1,5 y 15 minutos

Orden w

Muestra los usuario conectados y lo que estan haciendo.

Orden time

Mide el tiempo de ejecución de un programa y muestra un resumen del uso de recursos del sistema.

Muestra el tiempo que ha estado ejecutandos(real), el tiempo que lo ha ejecutado en modo usuario (user) y el tiempo usando en modo supervisor (sys).

Orden nice y renice

Planificación por prioridades. Para establecer la prioridad de un proceso a un valor distinto del por defecto se utiliza *nice* en el rango [-20,19]. Valor negativo es el más alto y solo se puede hacer en modo root.

Orden pstree

Visualiza el arbol de procesos en ejecucion

Las opciones son:

- -a → muestra los argumentos de la linea de ordendes
- -A → usa caracteres ASCII par dibujar el arbol
- $-G \rightarrow usa caracteres VT100$
- -h → resalta el proceso actual y sus antepasados
- -H → igual que -h pero para que el proceso que se esspecifique
- -l → formato largo
- -n → ordena procesos por PID del antecesor en vez de por nombre
- -p → desactiva el mostrar los PIDs entre parentesis despues del nombre del proceso
- $-u \rightarrow Si$ uid difiere del uid del padre, se pone entre parentesis

- -V → Visualiza informacion sbre la version
- -Z → Muestra el contexteo de seguridad para cada proceso

Orden ps

Muestra información sobre los procesos en ejecucion:

USER: usuario que lanzo el programa

PID: id del proceso

PPID: identificador del proceso padre

%CPU: % entre el tiempo usado realmente y el que lleva en ejecucion

%MEM: fraccion de memoria consumida

VSZ: tamaño virtual del proceso en KB

RS: memoria real usada en KB

TTY: terminal asociado con el proceso

STAT: estado del proceso(Running, Sleeping, sTopped, Zombie, Durmiendo, N(prioridad baja), <(prioridad alta), s (lider de sesion), l(multithread), + (foreground) y bLoqued)

ps se ejecuta normalmente con -ef : "e" \rightarrow todo proceso que esté en el sistema y "f" \rightarrow informacion completa

Orden top

Muestra tareas que hacen más uso de la CPU en tiempo real.

Orden mpstat

Muestra estadisticas del procesador del sistema junto con la media global de todos los datos mostrados.

La informacion que muestra es:

CPU (n.º procesador)

%user (% de uso de la CPU con tareas nivel usuario)

%nice (% de uso de la CPU con prioridad nice >0)

%sys (% CPU con tareas del sistema)

%iowait (% CPU desocupada)

%irg (% CPU interrupciones hardware)

%soft (% tiempo CPU con interrupciones software)

%idle (% timepo CPU desocupada sin peticiones de disco pendientes) intr/s (n.º interrupciones por segundo recibidas por el procesador)

Se ejecuta con *mpstat [intervalo] [numero]* donde intervalo indica cada cuantos segundos debe mostrar datos, y numero cuantros muestreos se solicitan.

Control y gestión de memoria

Orden free

Consume menos recursos que *top* que sirve para ver el uso actual de memoria informando del consumo de la memoria real o principal (ram) y de la memoria de espacio de intercambio (swap)

Orden wmstat

Supervisar el sistema mostrando infomación de memoria pero también de procesos, E/S y CPU.

Se ejecuta vmstat [tiempo_muestreo] [iteraciones]

La columna *us* muestra programas o peticiones de usuario, la columna *sy* tareas del sistema, esperas E/S, actualización de estadísticas, gestión de prioridades, etc y la columna *id* cuando no está haciendo nada.

La columna r muestra cuántos procesos están en cola de ejecución, la columna *wa* indica que no hay process en swap, la columna *so* indica que se está incrementando el uso del espacio de intercambio y la columna *free* la memoria principal libre se está agotando.

Control y gestión de dispositivos de E/S

Consulta de información de archivos

Para ver la información de los archivos de un directorio o datos de un archivo utilizamos **ls**.

Las opciones son:

- -l para mostrar mas información
- -n muestra ID de usuarios y grupos
- -la muestra lo mismo que -l pero con archivos ocultos
- -li lo mismo que -l pero con inodos
- -lh muestra lo mismo que -l pero el tamaño se lee en KB, MB o GB.
- -X ordena alfabeticamente por directorios
- -t ordena por tiempo de modificacion
- -u ordena por tiempo de acceso

-c ordena por ctime (timepo de ultima modificacion)

Para ver los metadatos de cada SA montado utilizamos df, donde podemos ver capacidad de almacenamiento total, espacio usado y espacio libre, punto de montaje, etc

Para ver el espacio en disco que gasta un directorio de la jerarquia de directorios utilizamos *du*. La ultima linea muestra la cantidad total de bloques de disco utilizados.

Enlaces a archivos

Hay dos tipos de enlaces:

Enlaces simbolicos que hacen referencia al nombre de un archivo

Enlaces duros que hacen referencia a los metadatos de un archivo

Para crear enlaces duros utilizamos *ln <nombre_archivo> <nuevo_nombre>*

Sesion 4

Procesos demonios

Atd

Demonio que ejecuta una orden en momento de tiempo especificado. Se utiliza según la finalidad con:

at -f <script> -t <tiempo> -q <cola> → ordenar la ejecución de ordenes a una determinada hora atq → consultar lista de ordenes

atrm → eliminar ordenes

batch \rightarrow ordenar la ejecucion de ordenes que se ejecutaran cuando la carga del sistema sea baja En /etc/at.deny y /etc/at.allow se puede establecer que usuarios puede usar at

Cron

Sirve para ejecutar ordenes con periodicidad.

El formato de un archivo crontab es:

minuto hora dia-mes mes dia-semana orden

Los posibles valores son:

* : cualquier valor posible

numero: activo para ese valor

dos enteros separados por guion: rango de valores

serie de numeros separados por coma: activa cualquier valor de la lista

Ejemplos

1 20 * * 1-5
$$\rightarrow$$
 a las 20:01 de lunes a viernes 0,30 * 13 * 5 \rightarrow minuto 0 y 30 (cada media hora) el viernes y el dia 13 del mes

Para crear un demonio crontab se crea un fichero con su formato y se ejecuta *crontab < fichero >*

Para consultar la lista de trabajos actual se utiliza *crontab -l*

Para establecer variables de entorno en el crontab se escribe en el fichero crontab <nombre>=<valor> (SHELL , LOGNAME y HOME ya están incluidas)

Para filtrar los usuarios que pueden o no pueden ejecutar la orden crontab se modifican los archivos /etc/cron.deny y /etc/cron.allow