Unit Test 2- Machine Learning

Marks: 30	Duration: 1 Hour	
		Points: 28/30
1. RollNo *		
41310		
2. Name *		
Prem Vinod	Bansod	
	stering starts from the bottom criterion is reached.(Unit 6, Co	
d. k-mear	ns	
a. Divisive	е	
b. Agglon	nerative 🗸	
c. Both a	and b	

4. Which classification algorithm is used when there is a case of a feature can present or absent. (binary distribution) (Unit 4, CO3(M),Bloom's level(Understand)) * (1/1 Point)				
	■ Bernoulli naive bayes ✓			
	multinomial naive bayes			
	Gaussian naive bayes			
	None			
5.	What is the type of Hierarchical Clustering (Unit 5, CO4(L),Bloom's level(Remember)) * (1/1 Point)			
	k-mediod			
	K-means			
	Dendogram			
	Top-Down Clustering (Divisive) ✓			
6.	Which of these are reasons for Deep Learning recently taking off? (Unit 6, CO5(H),Bloom's level(Understand)) * (1/1 Point)			
	✓ We have access to a lot more data. ✓			
	\checkmark We have access to a lot more computational power \checkmark			
	Neural Networks are a brand new field.			
	Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.	/		

7	. In which of the following scenario a gain ratio is preferred over Information Gain? (Unit 5, CO3(M),Bloom's level(Analyze)) * (1/1 Point)
	When a categorical variable has very large number of category
	None of these
	When a categorical variable has very small number of category
	Number of categories is the not the reason
8	. The time complexity of hierarchical clustering is (Unit 4, CO4(H),Bloom's level(analysis)) * (1/1 Point)
	o(n)
	○ O(n^2) ✓
	n logn
	logn
9	Threshold for binarizing (mapping to booleans) of sample features in BernalliNB function in Skikit learn is set using (Unit 4, CO3(H),Bloom's level(Implement/design)) * (1/1 Point)
	binarize ✓
	None
	class_prior
	alpha

 Decision trees that are too large are susceptible to a phenomenon known as (Unit 5, CO3(H),Bloom's level(Understand)) * (-/1 Point) 				
A) Overfitt	ing			
B) Pruning				
None of th	e above			
c) Both A a	and B			
additional ef	11. which type of rating can be collected constantly and do not require additional efforts from the side of the user (Unit 6, CO5(L),Bloom's level(Understand) * (1/1 Point)			
implicit rat	ings 🗸			
explicit rat	ings			
12. Match the pair (Unit 4, CO3(M),Bloom's level(Understand))				
a. SVM b. NN (1/1 Point)	1.Nondeterministic algorithm2. Deterministic algorithm *			
a-2, b-1				
a-1, b-2				
13. In the Random forest algorithm, The final prediction is calculated by the predictions from all decision trees. (Unit 5, CO3(H),Bloom's level(design)) * (1/1 Point)				
Taking Me	dian of			
taking Mode Of				

	adding
	averaging
14.	In normal distribution (Unit 4, CO3(H),Bloom's level(Analyze)) * (1/1 Point)
	Mode>Mean>Median
	Median>Mean>Mode
	■ Mode=Median=Mean ✓
	None
15.	The raw data are first processed offline like item based filtering or some dimensionality reduction techniques. At run time, only the precomputed or "learned" model is required to make predictions in recommendation system. This is called: (Unit 6, CO5(M),Bloom's level(understand)) * (1/1 Point)
	pre-processing based
	memory-based
	none
	model-based ✓
16.	Which classification algorithm is used when there is a case of a continuous distribution characterized by its mean and variance.(Unit 4, CO3(M),Bloom's level(Understand)) * (1/1 Point)
	■ Gaussian naive bayes ✓
	None
	multinomial naive bayes

Bernoulli naive bayes 2

(1/1 Point)

1

17. The difference of SVR and SVM is: (Unit 4, CO3(M),Bloom's level(Understand)) (1/1 Point)
margin of tolerance is not used
o real no
margin of tolerance is used
Both same
18. Fill in the blanks
the Normal curve is and the total AUC is (Unit 4, CO3(M),Bloom's level(Analyze)) * (1/1 Point)
symmetrical,<1
Nonsymmetrical, >1
Nonsymmetrical, 1
symmetrical,1 ✓
19. Item1 Item2 Item3 Item4 Item5 Alice 1 3 3 2 ? User1 2 4 2 2 4 User2 1 3 3 5 1 User3 4 5 2 3 3 User4 1 1 5 2 1
Predict the rating of Item 5 to Use Alice by naive bayes classifier (Unit 6, CO5(H),Bloom's level(Solve)) *

 $https://forms.office.com/pages/responsepage.aspx?id = PaYKCtCCoUu5CdeYbs5MTFXdF3AZoKBLo1M_LFe06v5UQTVSTjJER002VTZH... \\ 6/11$

	<u>2</u>
	3
	None of the above
20.	Naive Bayes classifier assumes that the presence of a particular feature in a class is related to the presence of any other feature. (Unit 6, CO4(H),Bloom's level(Understand)) * (1/1 Point)
	■ False ✓
	True
21.	syntax to import agglomerative clustering.(Unit 6, CO4(H),Bloom's level(design)) * (-/1 Point)
	a. sklearn.cluster import AgglomerativeClustering
	b. sklearn import AgglomerativeClustering
	c. sklearn.hierarchical import AgglomerativeClustering
	d. scipy.cluster import AgglomerativeClustering
22.	. Which of the following would have a constant input in each epoch of training a Deep Learning model? (Unit 6, CO5(H),Bloom's level(Understand)) * (1/1 Point)
	■ Weight between input and hidden layer ✓
	Weight between hidden and output layer
	Biases of all hidden layer neurons
	Activation function of output layer

23 is a type of Bagging Algorithm. (Unit 5, CO3(M),Bloom's level(remember)) * (1/1 Point)
GBM
Light GBM
XGBM
Random forest ✓
24. In SVM the complexity of trained classifier is characterized by (Unit 4, CO3(L),Bloom's level(Understand/remember)) * (1/1 Point)
None of the above
the # of support vectors
the dimensionality of the data
25. Which of the following algorithm doesn't uses learning Rate as of one of its hyperparameter? (Unit 5, CO3(M),Bloom's level(Understand)) * (1/1 Point)
Gradient Boost
None of the above
AdaBoost
Random Forest

26. Item1 Item2 Item3 Item4 Item5 User1 2 3 5 User2 3 4 4 User3 3 3 1 5 4 User4 5 5 2 1 1 Compute Cosine similarity between item 1 and item 5. (Unit 6, CO5(M), Bloom's level(Solve)) * (1/1 Point) None 1 0.99 🗸 0.92 27. Which of the following is/are not true about DBSCAN clustering algorithm: 1. For data points to be in a cluster, they must be in a distance threshold to a core point 2. It has strong assumptions for the distribution of data points in dataspace 3. It has substantially high time complexity of order O(n3) 4. It does not require prior knowledge of the no. of desired clusters 5. It is robust to outliers (Unit 5, CO4(H), Bloom's level(Understand)) * (1/1 Point) 2 and 3 2 only 4 only 1 only

28. MultinomialNB(alpha=1.0, class prior=None, fit prior=True) Here what is alpha indicate (Unit 4, CO3(H), Bloom's level(Implement/design)) * (1/1 Point) smoothing parameter <

	None
	Threshold
	Weight
29	. Male height: Normal with μ = 70.0″ and σ = 2.8″ Find the height range of 68% (Unit 4, CO3(H),Bloom's level(Analyze/solve)) * (1/1 Point)
	67.2 to 70
	67.2 to 72.8 ✓
	60 to 70
	65.2 to 70.8
30	Point out the correct statement. (Unit 5, CO4(H),Bloom's level(Remember)) * (1/1 Point)
	In general, the merges and splits are determined in a greedy manner
	The choice of an appropriate metric will influence the shape of the clusters
	All of the mentioned
	Hierarchical clustering is also called HCA
31	. Which of the following is a method of choosing the optimal number of clusters for k-means? (Unit 5, CO4(M),Bloom's level(Remember)) * (1/1 Point)
	all of the above
	the elbow method
	the silhouette method

cross-validation

- 32. Which of the following true about weak learners used in the ensemble model?
 - 1. They have low variance and they don't usually overfit
 - 2. They have high bias, so they can not solve hard learning problems
 - 3. They have high variance and they don't usually overfit Unit 5, CO3(H), Bloom's level(understand)) * 🛄 (1/1 Point)

1	and	2	/
_	C C.	_	

2	and	2
_	and	J

None of these

1 and 3

Go back to thank you page

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the privacy or security practices of its customers, including those of this form owner. Never give out your password.

Powered by Microsoft Forms | Privacy and cookies | Terms of use