1 Variables

2 root

	var	symbol	documentation	type	units	eqs
10	$F_{N,A}$	F	basic directed graph incidence matrix	network		
48	$I_{N,A}$	I_N_A	project node on arc	projection		
96	I_N	I_N	vector of ones of length nodes	projection		
97	I_A	I_A	vector of ones of length arcs	projection		
9	Δ	pulse	pulse of length time interval	frame		7
7	Δt	t_interval	time interval	frame	s	5
6	t^e	te	time end	frame	s	4
4	t	t	time	frame	s	
5	t^o	to	time zero	frame	s	3
3	0	zero	numerical value zero	constant		2
8	0.5	onehalf	numerical one half	constant		6
1	#	value	numerical value	constant		
2	1	one	numerical one	constant		1

3 physical

	var	symbol	documentation	type	units	eqs
98	I_S	I_S	vector of ones of length sepecies	projection		
170	S_S	S_S	species selection	projection		
14	r_{zN}	r_z	z-direction	frame	$\mid m \mid$	10
12	r_{xN}	r_x	x-direction	frame	$\mid m \mid$	8
11	ℓ_N	1	length	frame	$\mid m \mid$	
13	r_{yN}	r_y	y-direction	frame	$\mid m \mid$	9
189	h_N	height	height	frame	$\mid m \mid$	176
18	$n_{N,S}$	n	fundamental state - molar mass	state	mol	129
25	C_N	C	fundamental state - charge	state	As	
24	G_N	G	Gibbs free energy	state	kgm^2s^{-2}	18
17	S_N	S	fundamental state - entropy	state	$kg m^2 K^{-1} s^{-2}$	
23	A_N	A	Helmholts energy	state	$kg m^2 s^{-2}$	17
22	H_N	н	Enthalpy	state	$kg m^2 s^{-2}$	15 128 161
15	V_N	V	fundamental state - volume	state	m^3	11
16	U_N	U	fundamental state - internal energy	state	$kg m^2 s^{-2}$	
32	A^v	Av	Avogadro number	constant	mol^{-1}	
33	B_N	Boltz	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	24
34	R_N	R	Gas constant	constant	$kg m^2 mol^{-1} K^{-1} s^{-2}$	2 25
190	g	g	gravitational constant	constant	ms^{-2}	
35	$U^e{}_N$	Ue	electrical potential – voltage	effort	$kg m^2 A^{-1} s^{-3}$	26
20	p_N	p	pressure	effort	$kg m^{-1} s^{-2}$	13
21	$\mu_{N,S}$	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	14 88

	var	symbol	documentation	type	units	eqs
19	T_N	Т	temperature	effort	K	16 162
28	v_{yN}	v_y	velocity in y-direction	secondaryState	ms^{-1}	20
27	v_{xN}	v_x	velocity in x-direction	secondaryState	ms^{-1}	19
29	v_{zN}	V_Z	velocity in z-direction	secondaryState	ms^{-1}	21

4 reactions

	var	symbol	documentation	type	units	eqs
113	$P_{N,K}$	P_N_K	what node has what reaction	projection		
114	$T_{N,K}$	T_K	temparature of the nodes with reactions	effort	K	99
128	$ar{n}_{N,S}$	cn	normed concentration	secondaryState		112
129	$ar{n}_{N,S,K}$	cn_NK	normed concentration – context node and conversion	secondaryState		113
118	$N_{S,K}$	N	stoichiometric matrix	properties		
115	$E_{aN,K}$	Ea	Arrhenius activation energy	properties	$kg m^2 mol^{-1} s^{-2}$	100
131	$\phi_{N,K}$	interactionProbability	probability for the species to meet to undergo reaction	properties		115
135	$K_{N,K}$	K	reaction"constant	properties	$m^{-3} mol s^{-1}$	119
134	$K^o{}_K$	Ко	Arrhenius frequency factor – a strange construction	properties	$m^{-3} mol s^{-1}$	118
126	$c^n{}_{N,S}$	c_norming	norming concentration used in the definition of the species interaction probability	properties	$m^{-3} mol$	110
136	$ ilde{n}_{N,S}$	nProd	production term for differential component mass balance	conversion	$mol s^{-1}$	120

5 material

	var	symbol	documentation	type	units	eqs
89	ρ_A	density_A	density of arc material	property	$kg m^{-3}$	78
57	k_{zA}^q	kq_z_A	thermal conductivity in z-direction in arc	property	$kg K^{-1} s^{-3}$	47
55	k_{xA}^q	kq_x_A	thermal conductivity in x-direction in arc	property	$kg K^{-1} s^{-3}$	45
107	$h_{A,S}$	h_A	partial molar enthalpies of transport system	property	$kg m^2 mol^{-1} s^{-2}$	93
50	k_{yA}^c	kc_y_A	convective mass conductivity in y-direction in arc	property	$m^{-1} s$	40
26	λ_S	Mm	species' molecular mass	property	$kg mol^{-1}$	
62	$k_y^{d,Fick}{}_{A,S}$	kd_y_Fick	Fick's diffusivity in arc and y-direction	property	ms^{-1}	52
41	$k_{xN,S}^d$	kd_x	diffusional mass conductivity in x-direction	property	$kg^{-1} m^{-4} mol^2 s$	32
39	k_{yN}^q	kq_y	thermal conductivity in y-direction	property	$kg K^{-1} s^{-3}$	30
53	$k_{yA,S}^d$	kd_y_A	diffusional mass conductivity in y-direction in arc	property	$kg^{-1} m^{-4} mol^2 s$	43
38	k_{xN}^q	kq_x	thermal conductivity in x-direction	property	$kg K^{-1} s^{-3}$	29
46	k_{zN}^c	kc_z	convective mass conductivity in z-direction	property	$m^{-1} s$	37
168	$R^e{}_N$	Re	electrical resistance	property	$kg m^2 A^{-2} s^{-3}$	154
63	$k_z^{d,Fick}{}_{A,S}$	kd_z_Fick	Fick's diffusivity in arc and z-direction	property	ms^{-1}	53
56	k_{yA}^q	kq_y_A	thermal conductivity in y-direction in arc	property	$kg K^{-1} s^{-3}$	46
171	$k^{e,x}{}_N$	kex	electrical conductivity – a simple model being a function of a selected set of species	property	$kg^{-1} m^{-2} A^2 s^3$	155
54	$k_{zA,S}^d$	kd_z_A	diffusional mass conductivity in z-direction in arc	property	$kg^{-1} m^{-4} mol^2 s$	44
172	cp_N	ср	specific heat capacity at constant pressure	property	$m^2 K^{-1} s^{-2}$	156
45	k_{yN}^c	kc_y	convective mass conductivity in y-direction	property	$m^{-1} s$	36
40	k_{zN}^q	kq_z	thermal conductivity in z-direction	property	$kg K^{-1} s^{-3}$	31
37	C_{vN}	Cv	total heat capacity at constant volume	property	$kg m^2 K^{-1} s^{-2}$	28
43	$k_{zN,S}^d$	kd_z	diffusional mass conductivity in z-direction	property	$kg^{-1} m^{-4} mol^2 s$	34
49	k_{xA}^c	kc_x_A	convective mass conductivity in x-direction in arc	property	$m^{-1} s$	39

	var	symbol	documentation	type	units	eqs
52	$k_{xA,S}^d$	kd_x_A	diffusional mass conductivity in x-direction in arc	property	$kg^{-1} m^{-4} mol^2 s$	42
42	$k_{yN,S}^d$	kd_y	diffusional mass conductivity in z-direction	property	$kg^{-1} m^{-4} mol^2 s$	33
61	$k_x^{d,Fick}{}_{A,S}$	kd_x_Fick	Fick's diffusivity in arc and x-direction	property	ms^{-1}	51
44	k_{xN}^c	kc_x	convective mass conductivity in x-direction	property	$m^{-1} s$	35
58	m_N	m	mass	property	kg	48
60	v_S	v	molar volume of species	property	$m^3 mol^{-1}$	50
36	C_{pN}	Ср	total heat capacity at constant pressure	property	$kg m^2 K^{-1} s^{-2}$	27
59	$ ho_N$	density	density	property	kgm^{-3}	49
47	$h_{N,S}$	h	partial molar enthalpies	property	$kg m^2 mol^{-1} s^{-2}$	38
51	k_{zA}^c	kc_z_A	convective mass conductivity in z-direction in arc	property	$m^{-1} s$	41
102	$\mu^o{}_{N,S}$	chemPot_o	standard chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	86

6 macroscopic

	var	symbol	documentation	type	units	eqs
188	$\hat{m}^c{}_A$	fmc	mass flow rate	transport	$kg s^{-1}$	174 197
112	$\dot{H}^d{}_N$	aHd	enthalpy accumulation due to diffusive mass flow	transport	$kg m^2 s^{-3}$	98
207	$r^m{}_A$	residual_aE_mechanical	residual form of differential mechanical energy balance	transport	$kg m^2 s^{-3}$	193
205	$\dot{w}^{V}{}_{A}$	fw_V	net volume work	transport	$kg m^2 s^{-3}$	191
101	$\hat{n}^d{}_{A,S}$	fnd	diffusional mass flow in arc	transport	$mol s^{-1}$	85 89
142	\dot{w}_N	aw	enthalpy accumulation due to work flows	transport	kgm^2s^{-3}	126
83	\hat{q}_{xA}	fq_x	heat flow in arc and x-direction	transport	kgm^2s^{-3}	72
86	d_A	d	fow direction of convective flow	transport		75
111	$\dot{H}^c{}_N$	аНс	enthalpy accumulation due to convective mass flow	transport	$kg m^2 s^{-3}$	97
206	$\dot{E}^m{}_A$	aE_mechanical	accumulation of mechanical work	transport	$kg m^2 s^{-3}$	192
196	L_A	length_pipe	length of pipe	transport	m	181
201	$\dot{E}^{p}{}_{A}$	aE_potential	net potential energy	transport	$kg m^2 s^{-3}$	186
141	\hat{w}_A	fw	just an numerical work flow term – as a starter	transport	$kg m^2 s^{-3}$	125 189
84	\dot{q}_N	aq	accumulation due to conductive heat flow	transport	$kg m^2 s^{-3}$	73
87	$c_{A,S}$	c_A	concentration in convective mass flow	transport	$m^{-3} mol$	76
104	$\dot{n}^d{}_{N,S}$	and	accumulation due to diffusional mass transfer	transport	$mol s^{-1}$	90
166	I_N	I	electric current definition	transport	A	152
110	$\hat{H}^d{}_A$	fHd	enthalpy flow due to diffusive mass flow	transport	$kg m^2 s^{-3}$	96
209	$r^m{}_N$	residual_am	residual form of differential mass balance	transport	$kg s^{-1}$	196
200	$\dot{E}^k{}_A$	aE_kinetic	net kinetic energy	transport	$kg m^2 s^{-3}$	185
93	$\dot{n}^c{}_{N,S}$	anc	accumulation due to convective mass flow	transport	$mol s^{-1}$	82

	var	symbol	documentation	type	units	eqs
92	$\hat{n}^c{}_{A,S}$	fnc	convective mass flow in an arc	transport	$mol s^{-1}$	81
91	\hat{V}_A	fV	volumetric flow	transport	$m^3 s^{-1}$	80 172 175 194
109	$\hat{H}^c{}_A$	fHc	enthalpy flow due to convective mass flow	transport	kgm^2s^{-3}	95
69	A_{xzA}	A_xz_A	cross sectional area xz of arc	geometry	m^2	58
70	A_{yzA}	A_yz_A	cross sectional area yz of arc	geometry	m^2	59
66	A_{xzN}	A_xz	cross sectional area xz	geometry	m^2	55
67	A_{yzN}	A_yz	cross sectional area yz	geometry	m^2	56
65	A_{xyN}	A_xy	cross sectional area xy	geometry	m^2	54
68	A_{xyA}	A_xy_A	cross sectional area yz of arc	geometry	m^2	57
191	f	friction_coeff	friction coefficient	properties		
186	$k^{valve}{}_A$	valveConstant	valve constant – pressure difference must be dimensionless	properties	$m^3 s^{-1}$	171
203	$f^l{}_A$	friction_coeff_linear	friction coefficient for linear model	properties	$kg ms^{-3}$	188
64	$D_{N,A}$	D	difference operator	differenceOperator		
145	$n^o{}_{N,S}$	no	initial species masses	state	mol	131
144	$H^o{}_N$	Но	initial enthalpy	state	$kg m^2 s^{-2}$	130
208	\hat{m}_N	am	accumulation of mass	secondaryState	$kg s^{-1}$	195
192	v_{xA}	v_x_A	velocity in arc	secondaryState	ms^{-1}	177
100	$x_{N,S}$	х	concentration mole fraction	secondaryState		84
175	C_{pN}	Ср	total heat capacity	secondaryState	$kg m^2 K^{-1} s^{-2}$	159
149	$ar{T}^o{}_N$	T_normed	normed temperature	secondaryState		135
150	$\bar{p}^o{}_N$	p_normed	normed pressure	secondaryState		136
85	$c_{N,S}$	С	molar concentration	secondaryState	$m^{-3} mol$	74

	var	symbol	documentation	type	units	eqs
99	$n^t{}_N$	nt	total amount	secondaryState	mol	83
146	$T^o{}_N$	T_norming	norming temperature	secondaryState	K	132
147	$p^o{}_N$	p_norming	normed pressure	secondaryState	$kg m^{-1} s^{-2}$	133
174	m_N	m	mass	secondaryState	kg	158
151	$\bar{c}^o{}_{N,S}$	c_normed	normed concentration	secondaryState		137
148	$c^o{}_{N,S}$	c_norming	norming concentration	secondaryState	$m^{-3} mol$	134
176	$T^{ref}{}_N$	T_ref	reference temperature	secondaryState	K	160
138	$\dot{n}^{p}{}_{N,S}$	anProduction	production term	conversion	$mol s^{-1}$	122
143	\dot{H}_N	аН	differential enthalpy balance	diffState	$kg m^2 s^{-3}$	127
139	$\dot{n}_{N,S}$	an	differentional species balance	diffState	$mol s^{-1}$	123

7 control

	var	symbol	documentation	type	units	eqs
185	t_{sA}	t_switch_A	switching times	frame	S	169
179	x_N	x	controller state	state		165
183	$x^{o}{}_{N}$	xo	initial controller state	state		166
178	$B_{A,D}$	В	LTIS B-matrix	constant	s^{-1}	
157	$m^{v\star}{}_A$	setpoint_vector	setpoint for measurement vector	constant		144
159	P	P	gain	constant		
181	$I_{N,D}$	I_N_D	map differential space to node space	constant		
177	$A_{N,D}$	A	LTIS A-matrix	constant	s^{-1}	
158	$m^{m\star}{}_{A,S}$	setpoint_matrix	setpoiint for measurment matrix	constant		145
182	\dot{x}_D	dxdt	differential controller state	diffState	s^{-1}	164
161	$e^m_{A,S}$	error_matrix	output error matrix	algebraic		147
162	$u^{v}{}_{A}$	u_vector	control ouput vector	algebraic		148 170
156	$m_{A,S}$	measurement_matrix	normed measurment of concentration	algebraic		143
163	$u^m{}_{A,S}$	u_matrix	control output matrix	algebraic		149
155	m_A	measurement_vector	normed measurements of temparatures	algebraic		141 142
160	$e^{v}{}_{A}$	error_vector	output error vector	algebraic		146

8 macroscopic-material

	var	symbol	documentation	type	units	eqs
167	IN	_I	link variable I to interface macroscopic $\gg >$ material	get	A	153
103	$_x_{N,S}$	_x	link variable x to interface macroscopic »> material	get		87

9 reactions-macroscopic

	var	symbol	documentation	type	units	eqs
123	$_{T_{N,K}}$	_T_K	link variable T K to interface reactions »> macroscopic	get	K	107
119	$_{-}E^{a}{}_{N,K}$	_Ea	link variable Ea to interface reactions »> macroscopic	get	$kg m^2 mol^{-1} s^{-2}$	103
137	$_{-} ilde{n}_{N,S}$	_nProd	link variable nProd to interface reactions »> macroscopic	get	$mol s^{-1}$	121
122	NS,K	_N	link variable N to interface reactions »> macroscopic	get		106

10 macroscopic-control

	var	symbol	documentation	type	units	eqs
154	$-ar{c}_{N,S}$	_c_normed	link variable c normed to interface macroscopic »> control	get		140
153	$-ar{T}_N$	_T_normed	link variable T normed to interface macroscopic »> control	get		139
152	$ar{p}_N$	_p_normed	link variable p normed to interface macroscopic »> control	get		138

${\bf 11} \quad {\bf material-macroscopic}$

	var	symbol	documentation	type	units	eqs
75	$_k_x^{d,Fick}{}_{A,S}$	_kd_x_Fick	link variable kd x Fick to interface material »> macroscopic	get	ms^{-1}	64
81	$-k_{yA}^q$	_kq_y_A	link variable kq y A to interface material »> macroscopic	get	$kg K^{-1} s^{-3}$	70
79	$-k_z^{d,Fick}{}_{A,S}$	_kd_z_Fick	link variable kd z Fick to interface material »> macroscopic	get	ms^{-1}	68
173	$_c_{pN}$	_cp	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	get	$m^2 K^{-1} s^{-2}$	157
30	$_{-}\lambda_{S}$	_Mm	link variable Mm to interface material »> macroscopic	get	$kg mol^{-1}$	22
74	$-k_{xA,S}^d$	_kd_x_A	link variable kd x A to interface material »> macroscopic	get	$kg^{-1} m^{-4} mol^2 s$	63
82	$-k_{zA}^q$	_kq_z_A	link variable kq z A to interface material $\gg>$ macroscopic	get	$kg K^{-1} s^{-3}$	71
88	$- ho_N$	_density	link variable density to interface material $\gg >$ macroscopic	get	$kg m^{-3}$	77
78	$-k_{zA,S}^d$	_kd_z_A	$\begin{array}{ c c c c c } & link \ variable \ kd \ z \ A \ to \ interface \ material \ >> \ macroscopic \\ & scopic \end{array}$	get	$kg^{-1} m^{-4} mol^2 s$	67
71	$_k_{xA}^c$	_kc_x_A	$\begin{array}{ c c c c c } \hline link \ variable \ kc \ x \ A \ to \ interface \ material \ >> \ macroscopic \\ \hline \end{array}$	get	$m^{-1}s$	60
73	$-k_{zA}^{c}$	_kc_z_A	link variable kc z A to interface material »> macroscopic	get	$m^{-1}s$	62
80	$_k_{xA}^q$	_kq_x_A	$\begin{array}{ c c c c c c } & link \ variable \ kq \ x \ A \ to \ interface \ material \ >> \ macroscopic \\ & scopic \end{array}$	get	$kg K^{-1} s^{-3}$	69
108	$_h_{A,S}$	_h_A	link variable h A to interface material »> macroscopic	get	$kg m^2 mol^{-1} s^{-2}$	94
106	$_h_{N,S}$	_h	link variable h to interface material »> macroscopic	get	$kg m^2 mol^{-1} s^{-2}$	92

	var	symbol	documentation	type	units	eqs
90	_\rho_A	_density_A	link variable density A to interface material »> macroscopic	get	$kg m^{-3}$	79
77	$_k_{yA,S}^d$	_kd_y_A	link variable kd y A to interface material »> macroscopic	get	$kg^{-1} m^{-4} mol^2 s$	66
76	$_k_y^{d,Fick}{}_{A,S}$	_kd_y_Fick	link variable kd y Fick to interface material »> macroscopic	get	ms^{-1}	65
72	$_k_{yA}^c$	_kc_y_A	link variable kc y A to interface material »> macroscopic	get	$m^{-1} s$	61

macroscopic-reactions

	var	symbol	documentation	type	units	eqs
125	$_c_{N,S}$	_c	link variable c to interface macroscopic $\gg>$ reactions	get	$m^{-3} mol$	109

$13 \quad control-macroscopic$

	var	symbol	documentation	type	units	eqs
187	$u^v{}_A$	_u_vector	link variable u vector to interface control $\gg >$ macroscopic	get		173
165	$_m^v{}_A$	_setpoint_vector	link variable setpoint vector to interface control »> macroscopic	get		151
164	$-m^m{}_{A,S}$	_setpoint_matrix	link variable setpoint matrix to interface control »> macroscopic	get		150

14 Equations

15 Generic

no	equation	documentation	layer
1	$1 := \mathbf{Instantiate}(\#, \#)$	numerical one	root
2	$0 := \mathbf{Instantiate}(\#, \#)$	numerical value zero	root
3	$t^o := \mathbf{Instantiate}(t, 0)$	time zero	root
4	$t^e := \mathbf{Instantiate}(t, \#)$	time end	root
5	$\Delta t := \mathbf{Instantiate}(t, \#)$	time interval	root
6	$0.5 := \mathbf{Instantiate}(\#, \#)$	numerical one half	root
7	$\Delta := \mathbf{sign}\left(t - t^o\right) - \mathbf{sign}\left(t - (t^o - \Delta t)\right)$	pulse of length time interval	root
8	$r_{xN} := \mathbf{Instantiate}(\ell_N, \#)$	x-direction	physical
9	$r_{yN} := \mathbf{Instantiate}(\ell_N, \#)$	y-direction	physical
10	$r_{zN} := \mathbf{Instantiate}(\ell_N, \#)$	z-direction	physical
11	$V_N := r_{xN} \cdot r_{yN} \cdot r_{zN}$	volume	physical
13	$p_N := rac{\partial U_N}{\partial V_N}$	pressure	physical
14	$\mu_{N,S} := \frac{\partial U_N}{\partial n_{N,S}}$	chemical potential	physical
15	$H_N := U_N - p_N \cdot V_N$	Enthalpy	physical
16	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	physical
17	$A_N := U_N - T_N \cdot S_N$	Helmholts energy	physical

no	equation	documentation	layer
18	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	physical
19	$v_{xN} := \left(t\right)^{-1} . r_{xN}$	velocity in x-direction	physical
20	$v_{yN} := (t)^{-1} \cdot r_{yN}$	velocity in y-direction	physical
21	$v_{zN} := (t)^{-1} \cdot r_{zN}$	velocity in z-direction	physical
24	$B_N := \mathbf{Instantiate}(S_N, \#)$	Boltzmann constant	physical
25	$R_N := A^v \cdot B_N$	Gas constant	physical
26	$U^e_N := \left(C_N\right)^{-1} . U_N$	electrical potential – voltage	physical
27	$C_{pN} := rac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	material
28	$C_{vN} := \frac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	material
29	$k_{xN}^q := (V_N)^{-1} \cdot C_{pN} \cdot v_{xN}$	thermal conductivity in x-direction	material
30	$k_{yN}^q := (V_N)^{-1} \cdot C_{pN} \cdot v_{yN}$	thermal conductivity in y-direction	material
31	$k_{zN}^q := (V_N)^{-1} \cdot C_{pN} \cdot v_{zN}$	thermal conductivity in z-direction	material
32	$k_{xN,S}^d := \left(\mu_{N,S}\right)^{-1} \cdot \left(v_{xN} \cdot \left(\left(V_N\right)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}}\right)\right)$	diffusional mass conductivity in x-direction	material
33	$k_{yN,S}^d := (\mu_{N,S})^{-1} \cdot \left(v_{yN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right)$	diffusional mass conductivity in y- direction	material
34	$k_{zN,S}^d := (\mu_{N,S})^{-1} \cdot \left(v_{zN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right)$	diffusional mass conductivity in z- direction	material
35	$k_{xN}^c := \left(\lambda_S \star (\mu_{N,S})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	convective mass conductivity in x-direction	mat erial

no	equation	documentation	layer
36	$k_{yN}^c := \left(\lambda_S \star (\mu_{N,S})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{yN}$	convective mass conductivity in y-direction	material
37	$k_{zN}^c := \left(\lambda_S \star (\mu_{N,S})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN}$	convective mass conductivity in z-direction	material
38	$\left \begin{array}{l} h_{N,S} := H_N . \left(n_{N,S} ight)^{-1} \end{array} ight.$	partial molar enthalpies	material
39	$k_{xA}^c := I_{N,A} \star k_{xN}^c$	convective mass conductivity in x-direction in arc	material
40	$k_{yA}^c := I_{N,A} \star k_{yN}^c$	convective mass conductivity in y-direction in arc	material
41	$k_{zA}^c := I_{N,A} \star k_{zN}^c$	convective mass conductivity in z-direction in arc	material
42	$k_{xA,S}^d := I_{N,A} \star k_{xN,S}^d$	diffusional mass conductivity in x-direction in arc	material
43	$k_{yA,S}^d := I_{N,A} \star k_{yN,S}^d$	diffusional mass conductivity in z- direction in arc	material
44	$k_{zA,S}^d := I_{N,A} \star k_{zN,S}^d$	diffusional mass conductivity in z- direction in arc	material
45	$k_{xA}^q := I_{N,A} \star k_{xN}^q$	thermal conductivity in x-direction in arc	material
46	$k_{yA}^q := I_{N,A} \star k_{yN}^q$	thermal conductivity in y-direction in arc	material
47	$egin{aligned} k_{zA}^q := I_{N,A} \star k_{zN}^q \end{aligned}$	thermal conductivity in z-direction in arc	material
48	$m_N := \lambda_S \star n_{N,S}$	mass	material

no	equation	documentation	layer
49	$\rho_N := (V_N)^{-1} \cdot m_N$	density	material
50	$v_S := V_N \star (n_{N,S})^{-1}$	molar volume of species	material
51	$k_x^{d,Fick}{}_{A,S} := I_{N,A} \star \left(v_{xN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and x-direction	material
52	$k_y^{d,Fick}{}_{A,S} := I_{N,A} \star \left(v_{yN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and y-direction	material
53	$k_z^{d,Fick}{}_{A,S} := I_{N,A} \star \left(v_{zN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	Fick's diffusivity in arc and z-direction	material
54	$A_{xyN} := r_{xN} \cdot r_{yN}$	cross sectional area xy	macroscopic
55	$A_{xzN} := r_{xN} \cdot r_{zN}$	cross sectional area xz	macroscopic
56	$A_{yzN} := r_{yN} . r_{zN}$	cross sectional area yz	macroscopic
57	$A_{xyA} := I_{N,A} \star A_{xyN}$	cross sectional area yz of arc	macroscopic
58	$A_{xzA} := I_{N,A} \star A_{xzN}$	cross sectional area xz of arc	macroscopic
59	$A_{yzA} := I_{N,A} \star A_{yzN}$	cross sectional area yz of arc	macroscopic
72	$\hat{q}_{xA} := A_{yzA} \cdot \underline{k_{xA}^q} \cdot (D_{N,A} \star T_N)$	heat flow in arc and x-direction	macroscopic
73	$\dot{q}_N := F_{N,A} \star \hat{q}_{xA}$	accumulation due to conductive heat flow	macroscopic
74	$c_{N,S} := \left(V_N\right)^{-1} . n_{N,S}$	molar concentration	macroscopic
75	$d_A := \mathbf{sign}\left(D_{N,A} \star p_N\right)$	fow direction of convective flow	macroscopic
76	$c_{A,S} := (0.5 \cdot (D_{N,A} - d_A \cdot D_{N,A})) \star c_{N,S}$	concentration in convective mass flow	macroscopic
78	$ ho_A := I_{N,A} \star ho_N$	density of arc material	material
80	$\hat{V}_A := (-\rho_A)^{-1} \cdot -k_{xA}^c \cdot A_{yzA} \cdot (D_{N,A} \star p_N)$	volumetric flow	macroscopic

no	equation	documentation	layer
81	$\hat{n}^c{}_{A,S} := \hat{V}_A \cdot c_{A,S}$	convective mass flow in an arc	macroscopic
82	$\dot{n}^c{}_{N,S} := F_{N,A} \star \hat{n}^c{}_{A,S}$	accumulation due to convective mass flow	macroscopic
83	$n^t{}_N := I_S \star n_{N,S}$	total amount	macroscopic
84	$x_{N,S} := \left(n^t{}_N\right)^{-1} . n_{N,S}$	concentration mole fraction	macroscopic
85	$\hat{n}^d{}_{A,S} := A_{yzA} \cdot \left(- \underline{}_x^{d,Fick}{}_{A,S} \right) \cdot \left(D_{N,A} \star c_{N,S} \right)$	diffusional mass flow in arc	macroscopic
86	$\mu^o{}_{N,S} := \mathbf{Instantiate}(\mu_{N,S},\#)$	standard chemical potential	material
88	$\mu_{N,S} := \mu^o{}_{N,S} + R_N \cdot T_N \cdot \ln\left(\underline{x}_{N,S}\right)$	chemical potential standard model with mole fraction	material
89	$\hat{n}^d{}_{A,S} := A_{yzA} \cdot \left(- \underline{} k^d_{xA,S} \right) \cdot \left(D_{N,A} \star \mu_{N,S} \right)$	diffusional mass flow in arc	macroscopic
90	$\dot{n}^d{}_{N,S} := F_{N,A} \star \hat{n}^d{}_{A,S}$	accumulation due to diffusional mass transfer	macroscopic
93	$h_{A,S} := I_{N,A} \star h_{N,S}$	partial molar enthalpies of transport system	material
95	$\hat{H}^c{}_A := I_S \star (\underline{h_{A,S}} \cdot \hat{n}^c{}_{A,S})$	enthalpy flow due to convective mass flow	macroscopic
96	$\hat{H}^d{}_A := I_S \star \left(_h_{A,S} . \hat{n}^d{}_{A,S} \right)$	enthalpy flow due to diffusive mass flow	macroscopic
97	$\dot{H}^c{}_N := F_{N,A} \star \hat{H}^c{}_A$	enthalpy accumulation due to convective mass flow	macroscopic
98	$\dot{H}^d{}_N := F_{N,A} \star \hat{H}^d{}_A$	enthalpy accumulation due to diffusive mass flow	macroscopic
99	$T_{N,K} := T_N \cdot P_{N,K}$	temparature of the nodes with reactions	reactions

no	equation	documentation	layer
100	$E_{aN,K} := \mathbf{Instantiate}(R_N . T_{N,K}, \#)$	Arrhenius activation energy	reactions
110	$c^n{}_{N,S} := \mathbf{Instantiate}(_c_{N,S},\#)$	norming concentration used in the def- inition of the species interaction proba- bility	reactions
112	$\bar{n}_{N,S} := (c^n{}_{N,S})^{-1} \cdot _c_{N,S}$	normed concentration	reactions
113	$ar{n}_{N,S,K} := P_{N,K} \cdot ar{n}_{N,S}$	normed concentration – context node and conversion	reactions
115	$\phi_{N,K} := \prod_S \bar{n}_{N,S,K}(N_{S,K})$	probability for the species to meet to undergo reaction	reactions
118	$K^{o}_{K} := \mathbf{Instantiate}(I_{S} \star \left(P_{N,K} \star \left(\left(t\right)^{-1} . \left(V_{N}\right)^{-1} . n_{N,S}\right)\right), \#)$	Arrhenius frequency factor — a strange construction	reactions
119	$K_{N,K} := K^o{}_K \cdot \exp\left((-E_{aN,K}) \cdot (R_N \cdot T_{N,K})^{-1}\right)$	reaction"constant	reactions
120	$\tilde{n}_{N,S} := V_N \cdot (N_{S,K} \star (K_{N,K} \cdot \phi_{N,K}))$	production term for differential component mass balance	reactions
122	$\left \stackrel{.}{n^p}_{N,S} := _{} \tilde{n}_{N,S} ight.$	production term	macroscopic
123	$\dot{n}_{N,S} := \dot{n}^c{}_{N,S} + \dot{n}^d{}_{N,S} + \dot{n}^p{}_{N,S}$	differentional species balance	macroscopic
125	$\hat{w}_A := \mathbf{Instantiate}(\hat{H}^c{}_A, \#)$	just an numerical work flow term – as a starter	macroscopic
126	$\dot{w}_N := F_{N,A} \star \hat{w}_A$	enthalpy accumulation due to work flows	macroscopic
127	$\dot{H}_N := \dot{H}^c{}_N + \dot{H}^d{}_N + \dot{q}_N + \dot{w}_N$	differential enthalpy balance	macroscopic
128	$H_N := \int_{t^o}^{t^e} \dot{H}_N \ dt + H^o{}_N$	Enthalpy	macroscopic

no	equation	documentation	layer
129	$n_{N,S} := \int_{t^o}^{t^e} \dot{n}_{N,S} \ dt + n^o{}_{N,S}$	fundamental state - molar mass	macroscopic
130	$H^o{}_N := \mathbf{Instantiate}(H_N, \#)$	initial enthalpy	macroscopic
131	$n^o{}_{N,S} := \mathbf{Instantiate}(n_{N,S},\#)$	initial species masses	macroscopic
132	$T^o{}_N := \mathbf{Instantiate}(T_N, \#)$	norming temperature	macroscopic
133	$p^o{}_N := \mathbf{Instantiate}(p_N, \#)$	normed pressure	macroscopic
134	$c^o{}_{N,S} := \mathbf{Instantiate}(c_{N,S}, \#)$	norming concentration	macroscopic
135	$\bar{T}^o{}_N := T_N \cdot \left(T^o{}_N\right)^{-1}$	normed temperature	macroscopic
136	$\bar{p}^o{}_N := \left(p_N\right)^{-1} . p_N$	normed pressure	macroscopic
137	$\bar{c}^{o}{}_{N,S} := (c^{o}{}_{N,S})^{-1} \cdot c_{N,S}$	normed concentration	macroscopic
141	$m_A := F_{N,A} \star _\bar{T}_N$	normed measurements of temparatures	control
142	$m_A := F_{N,A} \star _\bar{p}_N$	normed measurements of pressures	control
143	$m_{A,S} := F_{N,A} \star _\bar{c}_{N,S}$	normed measurment of concentration	control
144	$m^{v\star}{}_A := \mathbf{Instantiate}(m_A, \#)$	setpoint for measurement vector	control
145	$m^{m\star}{}_{A,S} := \mathbf{Instantiate}(m_{A,S},\#)$	setpoiint for measurment matrix	control
146	$e^{v}{}_{A} := m^{v\star}{}_{A} - m_{A}$	output error vector	control
147	$e^m{}_{A,S} := m^{m\star}{}_{A,S} - m_{A,S}$	output error matrix	control
148	$u^{v}{}_{A} := P \cdot e^{v}{}_{A}$	control ouput vector	control
149	$u^m{}_{A,S} := P \cdot e^m{}_{A,S}$	control output matrix	control

no	equation	documentation	layer
152	$I_N := \frac{dC_N}{dt}$	electric current definition	macroscopic
154	$R^{e}{}_{N} := (I_{N})^{-1} . U^{e}{}_{N}$	electrical resistance	material
155	$k^{e,x}{}_{N} := (R^{e}{}_{N})^{-1} \cdot (S_{S} \star {}_{x}N,S})$	electrical conductivity – a simple model being a function of a selected set of species	material
156	$cp_N := C_{pN} \cdot \left(m_N\right)^{-1}$	specific heat capacity at constant pressure	material
158	$m_N := _\lambda_S \star n_{N,S}$	mass	macroscopic
159	$C_{pN} := m_N \cdot _c_{pN}$	total heat capacity	macroscopic
160	$T^{ref}{}_N := \mathbf{Instantiate}(T_N, \#)$	reference temperature	macroscopic
161	$H_N := C_{pN} \cdot \left(T_N - T^{ref}{}_N\right)$	Enthalpy	macroscopic
162	${T}_{N}:=\mathbf{Root}\left({{H}_{N}} ight)$	temperature	macroscopic
164	$\dot{x}_D := A_{N,D} \star x_N + B_{A,D} \star m_A$	differential controller state	control
165	$x_N := \int_{t^o}^{t^e} I_{N,D} \star \dot{x}_D \ dt + x^o_N$	controller state	control
166	$x^o{}_N := \mathbf{Instantiate}(x_N, \#)$	initial controller state	control
169	$t_{sA} := \mathbf{Instantiate}(I_A . t, \#)$	switching times	control
170	$u^{v}{}_{A} := 0.5 . (I_{A} . 1 - \mathbf{sign} ((I_{A} . t) - t_{sA}))$	control ouput vector – switches	control
171	$k^{valve}{}_A := \mathbf{Instantiate}(\hat{V}_A, \#)$	valve constant – pressure difference must be dimensionless	macroscopic
172	$\hat{V}_{A} := \underline{u}^{v}_{A} \cdot k^{valve}_{A} \cdot \mathbf{sqrt}\left(\left(D_{N,A} \star \left(p_{N} \cdot \left(p^{o}_{N}\right)^{-1}\right)\right)\right)$	volumetric flow	macroscopic

no	equation	documentation	layer
174	$\hat{m}^c{}_A := _\rho_A . \hat{V}_A$	mass flow rate	macroscopic
175	$\hat{V}_A := (I_{N,A} \star v_{xN}) . A_{yzA}$	volumetric flow	macroscopic
176	$h_N := \mathbf{Instantiate}(\ell_N, \#)$	height	physical
177	$v_{xA} := I_{N,A} \star v_{xN}$	velocity in arc	macroscopic
181	$L_A := I_{N,A} \star \ell_N$	length of pipe	macroscopic
185	$\dot{E}^k{}_A := \hat{m}^c{}_A \cdot D_{N,A} \star (v_{xN} \cdot v_{xN})$	net kinetic energy	macroscopic
186	$\dot{E}^p{}_A := \hat{m}^c{}_A \cdot g \cdot D_{N,A} \star h_N$	net potential energy	macroscopic
188	$\left egin{aligned} f^{l}{}_{A} := \mathbf{Instantiate}(\dot{E}^{p}{}_{A}.\left(I_{N,A}\star\left(\ell_{N} ight)^{-1} ight),\#) \end{aligned} ight.$	friction coefficient for linear model	macroscopic
189	$\hat{w}_A := f^l{}_A . L_A$	a linear model	macroscopic
191	$\dot{w}^{V}{}_{A}:=\hat{V}_{A}$. $(D_{N,A}\star p_{N})$	net volume work	macroscopic
192	$\dot{E}^{m}{}_{A} := \dot{E}^{k}{}_{A} + \dot{E}^{p}{}_{A} + \dot{w}^{V}{}_{A} + \hat{w}_{A}$	accumulation of mechanical work	macroscopic
193	$r^m{}_A := \dot{E}^m{}_A - \left(\dot{E}^k{}_A + \dot{E}^p{}_A + \dot{w}^V{}_A + \hat{w}_A\right)$	residual form of differential mechanical energy balance	macroscopic
194	$\hat{{V}}_A := \mathbf{Root}\left(r^m{}_A ight)$	volumetric flow as a root of the pressure distribution	macroscopic
195	$\hat{m}_N := oldsymbol{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	accumulation of mass	macroscopic
196	$r^m{}_N := \hat{m}_N - _\lambda_S \star (\dot{n}_{N,S})$	residual form of differential mass balance	macroscopic
197	$\hat{m}^c{}_A := _\lambda_S \star \hat{n}^c{}_{A,S}$	mass flow rate from molar flow	macroscopic

16 Interface Link Equation

no	equation	documentation	layer
22	$_\lambda_S := \lambda_S$	interface equation	material -> macro- scopic
60	$_k_{xA}^c := k_{xA}^c$	interface equation	material -> macro- scopic
61	$_k_{yA}^c := k_{yA}^c$	interface equation	material -> macro- scopic
62	$_k_{zA}^c := k_{zA}^c$	interface equation	material -> macro- scopic
63	$_k_{xA,S}^d := k_{xA,S}^d$	interface equation	material -> macro- scopic
64	$_k_x^{d,Fick}{}_{A,S} := k_x^{d,Fick}{}_{A,S}$	interface equation	material -> macro- scopic
65	$_{-}k_{y}^{d,Fick}{}_{A,S}:=k_{y}^{d,Fick}{}_{A,S}$	interface equation	material -> macro- scopic
66	$_{-}k_{yA,S}^{d}:=k_{yA,S}^{d}$	interface equation	material -> macro- scopic
67	$_k_{zA,S}^d := k_{zA,S}^d$	interface equation	material -> macro- scopic
68	$_k_z^{d,Fick}{}_{A,S} := k_z^{d,Fick}{}_{A,S}$	interface equation	material -> macro- scopic
69	$_k_{xA}^q := k_{xA}^q$	interface equation	material -> macro- scopic

no	equation	documentation	layer
70	$_k_{yA}^q := k_{yA}^q$	interface equation	material -> macro- scopic
71	$_k_{zA}^q := k_{zA}^q$	interface equation	material -> macro- scopic
77	$_ ho_N := ho_N$	interface equation	material -> macro- scopic
79	$_ ho_A := ho_A$	interface equation	material -> macro- scopic
87	$_x_{N,S} := x_{N,S}$	interface equation	macroscopic -> material
92	$h_{N,S} := h_{N,S}$	interface equation	material -> macro- scopic
94	$_h_{A,S} := h_{A,S}$	interface equation	material -> macro- scopic
103	$_{E^{a}_{N,K}}:=E_{aN,K}$	interface equation	reactions -> macroscopic
106	$N_{S,K} := N_{S,K}$	interface equation	reactions -> macroscopic
107	$_T_{N,K} := T_{N,K}$	interface equation	reactions -> macroscopic
109	$_c_{N,S} := c_{N,S}$	interface equation	macroscopic -> reactions
121	$_{\tilde{n}_{N,S}} := \tilde{n}_{N,S}$	interface equation	reactions -> macroscopic

no	equation	documentation	layer
138	$_{-}ar{p}_{N}:=ar{p}^{o}{}_{N}$	interface equation	macroscopic -> control
139	$\bar{T}_N := \bar{T}^o{}_N$	interface equation	macroscopic -> control
140	$\bar{c}_{N,S} := \bar{c}^o{}_{N,S}$	interface equation	macroscopic -> control
150	$_m^m{}_{A,S} := m^{m\star}{}_{A,S}$	interface equation	control -> macro- scopic
151	$_m^{v}{}_{A} := m^{v\star}{}_{A}$	interface equation	control -> macro- scopic
153	$I_N:=I_N$	interface equation	macroscopic -> material
157	$_c_{pN} := cp_N$	interface equation	material -> macro- scopic
173	$_{u^{v}_{A}}:=u^{v}_{A}$	interface equation	control -> macro- scopic