Reminder: The Pipeline

Rendering Styles

• Blocked, wireframe, & shaded renderings

Object Appearance

Light transport in a scene

- Light is emitted from light sources
- Light interacts with surfaces
 - On impact with an object, some light is reflected and some is absorbed
 - Distribution of reflected light determines "finish" (matte, glossy, ...)
- Composition of light arriving at camera determines the appearance of the scene

Interaction of Light With a Surface at a Single Point

Modeling Light Sources

- Generally, light sources are complex
 - The sun, light bulbs, fluorescent lights, monitors, ...
- Simple, point light sources
 - The light source is a single infinitesimal point
 - Emits light equally in all directions (isotropic illumination)
 - Outgoing light is a set of rays originating at light source

A Basic Local Illumination Model

We are interested only in the light that finally arrives at the view point

 This is a function of the light and viewing positions, and local surface reflectance

 We characterize light using RGB triples and operate on each channel separately (light superposition)

Local Illumination Physics

Law of reflection and Snell's law of refraction

Reflection and Refraction (Ray Tracing Rendering)

Refraction

What Are We Trying to Model?

From diffuse to specular reflectance

Diffuse Reflection

This is the simplest kind of reflection

- Also called "Lambertian reflection" (Lambert's Law)
- Models dull, matte surfaces materials like chalk
- Ideal diffuse reflection
 - Scatters incoming light equally in all directions
 - Identical appearance from all viewing directions
 - Reflected intensity depends only on the direction of the light source

Surface

Lambert's Law for Diffuse Reflection

Purely diffuse object

$$I = I_L k_d \cos \theta$$
$$= I_L k_d (\mathbf{n} \cdot \mathbf{L})$$

I: resulting intensity

 I_L : light source intensity

 k_d : (diffuse) surface reflectance coefficient

$$k_d \in [0,1]$$

 θ : angle between normal & light direction

Proof of Lambert's Cosine Law

Specular Reflection

Shiny surfaces

- Their appearance changes as the viewpoint moves
- They have glossy "specular highlights" (specularities)
- A mirror is a perfect specular reflector
 - Incoming light is reflected about normal direction
 - Nothing reflected in other directions

- Most surfaces are imperfect specular reflectors
 - Reflect light rays in cone about perfect reflection direction

The Phong Model

A common specular reflection term is added

It is purely empirical – there is no physical basis for it

$$I = I_L k_d \cos \theta + I_L k_s \cos^n \phi$$
$$= I_L k_d (\mathbf{n} \cdot \mathbf{L}) + I_L k_s (\mathbf{r} \cdot \mathbf{v})^n$$

I: resulting intensity

 I_L : light source intensity

 k_s : (specular) surface reflectance coefficient

$$k_{s} \in [0,1]$$

 ϕ : angle between viewing & reflection direction

n: "shininess" factor

Computing R

All vectors are unit length!

$$R = (N \cdot L) N + S$$

$$S = (N^{\bullet}L) N - L$$

$$R = 2N (N-L) - L$$

The Effect of the Exponent *n*

Comparison

Phong Model Examples

The Ambient Glow

So far, areas not directly illuminated by any light sources appear black

- Looks unnatural
- Lots of ambient light in the real world
- Invent a new light source a constant ambient "glow"
- Add another term to our illumination equation

$$I = I_L k_d \cos \theta + I_L k_s \cos^n \phi + I_a k_a$$

 I_a : ambient light intensity

 k_a : (ambient) surface reflectance coefficient

Our Three Basic Components of Illumination

Combined for the Final Result

Lights and Materials

Light properties

Material properties:

$$k_{d(iffuse)}, k_{s(pecular)}, k_{a(mbient)}$$

$$I_{r} = I_{d_{-}r} k_{d_{-}r} (\mathbf{n} \cdot \mathbf{L}) + I_{s_{-}r} k_{s_{-}r} (\mathbf{r} \cdot \mathbf{v})^{n} + I_{a_{-}r} k_{a_{-}r}$$

$$I_{g} = I_{d_{-}g} k_{d_{-}g} (\mathbf{n} \cdot \mathbf{L}) + I_{s_{-}g} k_{s_{-}g} (\mathbf{r} \cdot \mathbf{v})^{n} + I_{a_{-}g} k_{a_{-}g}$$

$$I_{b} = I_{d_{-}b} k_{d_{-}b} (\mathbf{n} \cdot \mathbf{L}) + I_{s_{-}b} k_{s_{-}b} (\mathbf{r} \cdot \mathbf{v})^{n} + I_{a_{-}b} k_{a_{-}b}$$

Other Examples

Another Example

Questions

If you shine red light (1,0,0) on a diffuse white object (1,1,1) what color does the object appear to have?

What if you shine red light (1,0,0) on a diffuse green object (0,1,0)?

If the object is shiny, what is the color of the highlight?

What color is a mirror?

What Color is a Mirror?

Additional Details

$$I_{r} = I_{d_{-}r} k_{d_{-}r} (\mathbf{n} \cdot \mathbf{L}) + I_{s_{-}r} k_{s_{-}r} (\mathbf{r} \cdot \mathbf{v})^{n} + I_{a_{-}r} k_{a_{-}r}$$

$$I_{g} = I_{d_{-}g} k_{d_{-}g} (\mathbf{n} \cdot \mathbf{L}) + I_{s_{-}g} k_{s_{-}g} (\mathbf{r} \cdot \mathbf{v})^{n} + I_{a_{-}g} k_{a_{-}g}$$

$$I_{b} = I_{d_{-}b} k_{d_{-}b} (\mathbf{n} \cdot \mathbf{L}) + I_{s_{-}b} k_{s_{-}b} (\mathbf{r} \cdot \mathbf{v})^{n} + I_{a_{-}b} k_{a_{-}b}$$

- How can we handle multiple light sources?
 - Sum the intensity of the individual contributions
- What should be done if I > 1?
 - Clamp the value of I to 1
- What should be done if n·L < 0
 - Clamp the value of I to 0 or flip the normal

Shading Polygons

Flat shading

- The model equations are evaluated at surface locations
 - So where do we apply them?
- We can evaluate them just once per polygon
 - Use the resulting color to shade every pixel covered by the polygon

Shading Polygons

Gouraud shading

- Alternatively, we can evaluate the model equations at every vertex
 - Linearly interpolate the vertex colors to shade covered pixels
- Problem: misses details away from the vertices
 - e.g., specular highlights

Shading Polygons

Phong shading

 For every pixel covered by the polygon, interpolate a normal vector from the normal vectors at the vertices

 Use interpolated normal to evaluate the model equations at every pixel

Captures details within polygons

Summary of the Local Model

The Phong local illumination model

- A sum of diffuse, specular, and ambient terms
- Treat each RGB color channel independently
 - Light is additive

Shading every pixel covered by a polygon

- Flat shading: Constant color
- Gouraud shading: Interpolate vertex colors
- Phong shading: Interpolate vertex normals → pixel color

Guerrilla CG Tutorial 03: Smooth Shading

Guerrilla CG Tutorial 04: Smooth Shading Examples

Illumination in the Graphics Pipeline

Z-Buffer Algorithm

for each polygon in model

project vertices of polygon onto image plane

for each pixel inside projected polygon

calculate pixel z-value

if z-value is smaller than pixel's z-value currently in z-buffer

if z-value is smaller than pixel's z-value currently in z-buffer calculate pixel color draw pixel update pixel z-value in z-buffer

end

end

end

Completion of the Z-Buffer Graphics Pipeline

What Have We Ignored?

Some local phenomena

- Shadows every point is illuminated by every light source
- Attenuation intensity falls off with square of distance to light source
- Transparent objects light can be transmitted through surfaces

Global illumination

- Reflections of objects in other objects
- Indirect diffuse light ambient term is just a hack

Realistic surface detail

An orange sphere doesn't have the texture of an orange fruit

Realistic light sources

Advanced Concepts

Physics-based illumination models

Bidirectional reflectance distribution function: BRDF

$$\rho(\theta_i, \varphi_i, \theta_r, \varphi_r, \lambda)$$

 λ : light wavelength

Global Illumination

Computing light interface between all surfaces

Radiosity

Ray tracing

Radiosity

Physics-based

- heat transfer
- illumination engineering

Suited for diffuse reflection

Infinite inter-reflections

Area light sources

Soft shadows

Example

Radiosity Algorithm

Break scene into small patches (polygons)

Assume uniform reflection and emission per patch

Energy balance for all patches:

Light leaving surface = Emitted light + Reflected light

Scene Polygonalization and Form Factors

Notation

- Flux: energy per unit time (W)
- Radiosity B: exiting flux density (W/m²) for surfaces
 - E: exiting flux density for light sources
- Reflectivity R: fraction of incoming light that is reflected (unitless)
- Form factor F_{i,j}: fraction of energy leaving polygon A_i
 and arriving at polygon A_j
 - determined by the geometry of polygons i and j

Energy Balance

$$E_{
m leaving\ surface} = E_{i}A_{i} + R_{i}\sum_{j}^{
m Reflected light} + \sum_{j}^{
m Reflected light}$$

Therefore

$$B_i = E_i + R_i \sum_j B_j F_{j,i} \frac{A_j}{A_i}$$

Now $F_{j,i}A_j = F_{i,j}A_i$ (form-factor reciprocity)

Therefore

$$B_i = E_i + R_i \sum_j B_j F_{i,j}$$

or

$$E_i = B_i - R_i \sum_j B_j F_{i,j}$$

Linear System

Assume constant radiosity polygons (n of them) Compute form factors F_{ij} for $1 \le i,j \le n$ Assemble a system of n linear equations:

$$\begin{bmatrix} E_1 \\ E_2 \\ \vdots \\ E_{n-1} \\ E_n \end{bmatrix} = \begin{bmatrix} 1 - R_1 F_{1,1} & -R_1 F_{1,2} & \dots & -R_1 F_{1,n} \\ -R_2 F_{2,1} & 1 - R_2 F_{2,2} & \dots & -R_2 F_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -R_{n-1} F_{n-1,1} & \dots & 1 - R_{n-1} F_{n-1,n-1} & -R_{n-1} F_{n-1,n} \\ -R_n F_{n,1} & \dots & -R_n F_{n,n-1} & 1 - R_n F_{n,n} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_{n-1} \\ B_n \end{bmatrix}$$

n x n matrix

Solve the system for the exiting fluxes B_i

Comparison Between Direct Illumination and Radiosity

Shadow Details

Radiosity Factory

Museum

Radiosity Summary

Object space algorithm
Suited for diffuse (inter-)reflections
Area light sources
Nice, soft shadows