Math3016 Assignment Report

Chenyang Wu, Student ID:32588925

December 10, 2023

Question 1 (i)

Minimum of this function between the interval of 0.2 and 1.5 with epsilon = 0.5 is 0.7551494000000001 (ii)

Minimum of this function between the interval of 0.2 and 1.5 with epsilon = 0.001 is 0.7070158367975996

Hence by minimizing epsilon, we can find a more accurate solution than the one found in part ${\rm i}$

Question 2 (i)

Solution found by the gradient descent algorithm with fixed step size with start point -2, 100 iterations and step size 0.1 is -1.2931977413210847 (ii)

C:\Users\12530\AppData\Local\Temp\ipykernel_2916\2661283232.py:5:
RuntimeWarning: overflow encountered in exp
 return np.sin(x)-np.exp(x)
C:\Users\12530\AppData\Local\Temp\ipykernel_2916\2661283232.py:8:
RuntimeWarning: overflow encountered in exp
 return np.cos(x)-np.exp(x)
C:\Users\12530\AppData\Local\Temp\ipykernel_2916\2661283232.py:5:
RuntimeWarning: invalid value encountered in sin
 return np.sin(x)-np.exp(x)
C:\Users\12530\AppData\Local\Temp\ipykernel_2916\2661283232.py:8:
RuntimeWarning: invalid value encountered in cos
 return np.cos(x)-np.exp(x)

Solution found by the gradient descent algorithm with fixed step size with start point -2, 100 iterations and step size 10 is nan Hence due to high alpha, it diverges

Question 3 (i)

Solution found by the gradient descent algorithm with fixed step size with start point [-8 4], 400 iterations and step size 0.001 is [-2.73052209 -1.10376821] function value: 48.39843167207197

Solution found by the accelerated gradient descent algorithms with start point $[-8 \ 4]$, 400 iterations and step size 0.001 is $[-2.73606588 \ -1.09876278]$ function value: 48.80523010895042

In this case, gradient descent with fixed step size performs better as it get a lower value than the other algorithm.

(ii)

Solution found by the gradient descent algorithm with fixed step size with start point [-1 1], 100 iterations and step size 0.001 is [-0.8677291 0.8677291] function value: -0.37202876139455343

Solution found by the accelerated gradient descent algorithms with start point $[-1 \ 1]$, 100 iterations and step size 0.001 is $[-0.86861331 \ 0.86861331]$ function value: -0.3704706154032733

In this case, accelerated gradient descent performs better as it get a lower value than the other algorithm.

(iii)

Modify the starting point and iterations

Solution found by the gradient descent algorithm with fixed step size with start point [1 -1], 400 iterations and step size 0.001 is [0.74570839 -0.74570839] function value: -0.4937098420841769

Solution found by the accelerated gradient descent algorithms with start point [1 -1], 400 iterations and step size 0.001 is [0.74587646 -0.74587646] function value: -0.49365348182761104

In this case, different starting points and increased iterations might lead to finding a different local minimum.

Question 4

Solution of Newton method of Bohachevsky function with start point $[-5 \ 2]$ and 100 iterations is $[-0.36070816 \ -0.97787629]$

Solution of Newton method with line search of Bohachevsky function with start point $[-5 \ 2]$ and 14 iterations is $[-0.61861207 \ -1.45102235]$

Solution of Newton method of Bohachevsky function with start point $[-4.9 \ 2.1]$ and 53 iterations is $[1.22249478 \ 2.34578393]$

Solution of Newton method with line search of Bohachevsky function with start point $[-4.9 \ 2.1]$ and 100 iterations is $[5.35200912e-09 \ 1.93030743e+00]$

Solution of Newton method of Bohachevsky function with start point $[-10 \quad 1]$ and 100 iterations is $[-3.72041569 \quad -0.94676734]$

Solution of Newton method with line search of Bohachevsky function with start point [-10 1] and 29 iterations is [0.61861207 -0.96851918]

Question 5

The solution of linear conjugate gradient algorithm with start point $[0\ 0]$ matrix $[[\ 3\ -1]$

[-1 3]] and vector [0 1] is [0.125 0.375] with 2 iterations.

The minimum of this function is 6.8125