Phylogenetic trees

Distance-based methods and UPGMA

Outline

- Distance-based methods for phylogenetic tree estimation
- Computing distances between sequences
- The UPGMA distance-based method
- The "molecular clock assumption"

Basic idea of distance-based methods

- Suppose we can compute a "distance", d_{ij}, between each pair of taxa based on some data (e.g., sequences)
- Can we come up with a tree structure (with lengths assigned to branches) that accurately reflect the pairwise distances?
 - i.e., is there a tree such that d_{ij} is equal to the length of the path between i and j in the tree, for all pairs of taxa, i and j?

$$d_{15} \stackrel{?}{=} L_{16} + L_{68} + L_{58}$$

Distance-based methods for phylogenetic tree reconstruction

- Given $n \times n$ distance matrix for n entities (e.g., taxa), construct the tree for these n entities
- Algorithms
 - UPGMA
 - Neighbor joining
- Assume additivity and sometimes a "molecular clock"
- Additivity means we can add up the branch lengths of the tree connecting two nodes and get their distances
 - In other words, "additivity" of the distances means that there exists some tree that perfectly explains these distances
- In practice, distances will only be approximately additive

Defining distance between sequences

- Fractional alignment mismatch for two sequences i and j
 - $p_{ij} = m_{ij}/L_{ij}$
 - · Gives an estimate of changes per site
 - $-m_{ij}$: Number of mismatches between sequences i and j
 - $-L_{ij}$: Number of aligned positions between sequences i and j
 - Assumes that changes have happened only once
 - Underestimates the distance between sequences
- Jukes Cantor distance
 - Removes assumption above
 - The most likely evolutionary distance d_{ij} between sequences i and j, where p_{ij} is the fractional mismatch defined above

$$d_{ij} = -\frac{3}{4}\ln(1 - \frac{4}{3}p_{ij})$$

Jukes Cantor Distance

$$d_{ij} = -\frac{3}{4}\ln(1 - \frac{4}{3}p_{ij})$$

UPGMA algorithm for phylogenetic tree reconstruction

- UPGMA: Unweighted pair group method using arithmetic averages
- Start with each taxon as its own disconnected node
- At each step, merge two closest nodes to create a new node in the tree
 - Set new node at height determined by nodes being merged
 - Recompute distance between new node and all other nodes
- Intermediate nodes will correspond to a set of taxa
- We will call taxa associated with an intermediate node i cluster C_i
- Need to compute
 - Distance between two clusters
 - Height

Computing distance between clusters

- Let *i* and *j* be two nodes
- Let C_i be the cluster of taxa for node i
- Let C_i be the cluster of taxa for node j
- $|C_i|$: Number of taxa in C_i
- Distance between nodes i and j

$$d_{ij} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_j} d_{pq}$$

Computing distance from a new node

- Let k be a new node to be created from merging i and j
- Let C_i be the cluster of taxa for node i
- Let C_i be the cluster of taxa for node j
- Distance d_{kl} between nodes k and l, $l \neq i$ and $l \neq j$

$$d_{kl} = \frac{1}{|C_k||C_l|} \sum_{p \in C_k, q \in C_l} d_{pq}$$

This is equal to

$$d_{kl} = \frac{d_{il}|C_i| + d_{jl}|C_j|}{|C_i| + |C_j|}$$

Derivation of the efficient distance calculation

$$\begin{aligned} d_{kl} &= \frac{1}{|C_k||C_l|} \sum_{p \in C_k, q \in C_l} d_{pq} \\ &= \frac{1}{|C_k||C_l|} \left(\sum_{p \in C_i, q \in C_l} d_{pq} + \sum_{p \in C_j, q \in C_l} d_{pq} \right) \\ &= \frac{1}{|C_k||C_l|} \left(|C_i||C_l|d_{il} + |C_j||C_l|d_{jl} \right) \\ &= \frac{|C_i|d_{il} + |C_j|d_{jl}}{|C_k|} \\ &= \frac{|C_i|d_{il} + |C_j|d_{jl}}{|C_l| + |C_l|} \end{aligned}$$

UPGMA algorithm

- Input
 - n taxa
 - Distance matrix for all pairs of n taxa, d_{ij}
- Output
 - Tree *T*
- Initialization
 - Assign each taxon i to its own cluster C_i
 - Define one leaf of T for each taxon
- Iterate until only two clusters remain
 - Find two nodes C_i and C_j that have the smallest d_{ij}
 - Define new cluster $C_k = C_i \cup C_j$
 - Define daughters of k as i and j, place at height $d_{ij}/2$
 - Add k to cluster set. Remove i and j from the set of clusters
- Terminate
 - When only two clusters C_i and C_j remain, place root at $d_{ij}/2$

UPGMA example

		Α	В	C	D	Е
initial	A	0	8	8	5	3
state	В		0	3	8	8
State	C			0	8	8
	D				0	5
	E					0

Example calculation

$$d_{(A,E)B} = \frac{d_{AB} + d_{EB}}{1+1} = \frac{16}{2}$$

UPGMA example (cont.)

BC

after two merges

AED

after three merges

$$\begin{array}{c|c}
AED & 0 & 8 \\
BC & 0 \\

AED,BC = \frac{2 \times A_{AE,BC} + 1 \times A}{2 + 1}
\end{array}$$

Ε

D

В

Α

final state

UPGMA relies on the molecular clock assumption

- Sequences diverge at the same rate at all points in the phylogeny
- Distance from any leaf to root is the same.
- If this is true the distances are said to have an "ultrametric" property
- This assumption is rarely true in practice

The molecular clock assumption & ultrametric data

• Ultrametric data: for all triplets of taxa, i, j, k, the pairwise distances between them are either all equal, or two are equal and the remaining one is smaller

Problem with UPGMA when the molecular clock assumption does not hold

Actual tree

Constructed by UPGMA

Summary

- Distance-based methods construct trees that attempt to fit pairwise distance data
- Pairwise distances may be computed from pairwise alignments using the appropriate corrections
- UPGMA is a distance-based method that is successful if the data are ultrametric or perhaps approximately ultrametric

	CI	C2	D	PA	PB	-
CI	0	0-09	0098	0.105	6.12	
CL		O	6.072	0.076	6. [0]	
P			0	6.04	0.061	_
PA				0	v. 068	
PB					O	

	•		•	
	D. PA	Cl	CZ	PB
D, PA	0	0.1019	0.074	0.0645
		0	0.09	0.12
$\frac{c1}{}$			0	0.10
(2				-
PB				0

	D. PALPB	<u> </u>	0.083
D_PA_PB	0	o · [0766]	6.07
CI			0
(2		1	

	D.PA.PB,CZ	C [
D.PA.PB,CZ	0	0-10325
CI		0

