Implémentez un modèle de scoring

Mentor: Nassim LOUATI

Examinateur : Sitou AFANOU

Élève : Aymen TLILI

Sommaire

Analyse exploratoire

Modélisation

Sommaire

Interpretation des résultats

Dashboard

Conclusion

Problématiqu

Problématique

Prêt à dépenser, une société financière, propose des crédits à des clients avec peu ou pas d'historique de prêt. L'objectif est de développer un outil de scoring crédit capable de prédire la probabilité de remboursement pour accorder ou refuser un crédit. Face à une demande croissante de transparence des décisions d'octroi, un dashboard interactif sera conçu pour expliquer clairement les décisions aux chargés de relation client et permettre aux clients d'accéder et d'explorer facilement leurs informations personnelles, en phase avec les valeurs de l'entreprise.

Problématique

- Application "train" : 307 511 clients avec Target
- Application "test": 48 744 clients sans information sur la décision d'octroi

Analyse exploratoire

Analyse exploratoire

Feature engineering

Analyse exploratoire

Nous utilisons les méthodes Wrapped et Embedded pour la sélection des variables afin d'identifier les plus pertinentes pour notre modèle.

Feature selection (22)

Modélisation

Modélisation

			Predicte		
			Classified Classified positive negative		
	Actual class	Actual positive	TP	FN	TPR: TP TP + FN
		Actual negative	FP	TN	FPR: TN TN + FP
			Precision: TP TP + FP	Accuracy: TP + TN TP + TN + FP + FN	

Sélection des metriques:

Accuracy ROC et AUC, Precision, Recall, F1 Score, F2 Score, Custom metric

- RandomUnderSample
- RandomOverSample
- SMOTE

Interpretation des résultats

Modèles/ Métriques	Accuracy	Precision	Recall	F1 Score	F2 Score	ROCAUC	FMI					
Régression Logistique												
StandardScaler	0.918	0.5	0.000638	0.00127	0.0008	0.5	0.0179					
ROS	0.657	0.141	0.628	0.23	0.37	0.644	0.297					
RUS	0.659	0.141	0.625	0.23	0.37	0.644	0.297					
Smote	0.658	0.141	0.628	0.23	0.37	0.644	0.298					
DummyClassifier												
MinMaxScaler	0.851	0.0802	0.0788	0.0795	0.079	0.499	0.0795					
StandardScaler	0.851	0.083	0.0823	0.0826	0.082	0.501	0.0826					
ROS	0.498	0.0803	0.493	0.138	0.24	0.496	0.199					
RUS	0.501	0.0808	0.492	0.139	0.24	0.497	0.199					
Smote	0.498	0.0801	0.492	0.138	0.24	0.495	0.198					
RandomForest												
MinMaxScaler	0.918	0.5	0.00159	0.00318	0.002	0.501	0.0282					
StandardScaler	0.918	0.471	0.00128	0.00254	0.0016	0.501	0.0245					
ROS	0.918	0.35	0.00685	0.0134	0.0085	0.503	0.049					
RUS	0.667	0.146	0.634	0.237	0.38	0.652	0.304					
Smote	0.916	0.34	0.0249	0.0463	0.031	0.51	0.0919					
XGBoost												
MinMaxScaler	0.918	0.429	0.0179	0.0343	0.022	0.508	0.0875					
StandardScaler	0.918	0.429	0.0179	0.0343	0.022	0.508	0.0875					
ROS	0.717	0.156	0.562	0.245	0.37	0.646	0.297					
RUS	0.65	0.141	0.645	0.231	0.38	0.648	0.301					
Smote	0.918	0.432	0.0188	0.0361	0.023	0.508	0.0902					
LightGBM												
MinMaxScaler	0.919	0.561	0.0059	0.0117	0.0074	0.503	0.0575					
StandardScaler	0.919	0.576	0.00606	0.012	0.0076	0.503	0.0591					
ROS	0.685	0.154	0.637	0.249	0.39	0.664	0.314					
RUS	0.664	0.148	0.655	0.242	0.39	0.66	0.311					
Smote	0.918	0.455	0.00813	0.016	0.01	0.504	0.0608					

- Impact du déséquilibre : Le déséquilibre des classes influence significativement les performances des modèles.
- Pertinence de l'accuracy : L'accuracy n'est L
 pas un indicateur pertinent pour ce
 projet.
- Meilleurs modèles : La Régression Logistique, XGBoost, et LightGBM offrent les résultats les plus performants.

Interpretation des résultats

- Valeurs de Shapley : Elles évaluent l'importance des variables en comparant les prédictions du modèle avec et sans une variable donnée.
- Interprétation Globale : Permet de comprendre quelles variables influencent le plus les prédictions du modèle.
- Interprétation Locale : Fournit une explication spécifique pour chaque prédiction individuelle.

Analyse data drift

-> Librairie evidently

- Drift augmente avec les bases intermédiaires
- Drift ne dépasse pas le seuil que nous avons défini 50% (7.5%)

Dashboard

Conclusion

 Maj régulière des données pour éviter le data DRIFT

Avoir un feedback des équipes métiers pour confirmer le choix des métriques importantes

L'optimisation des hyperparamètres à travers OPTUNA

Travailler sur la sécurité de l'application

