Рачунарска интелигенција

Генетски алгоритми

Александар Картељ

kartelj@matf.bg.ac.rs

Ови слајдови представљају прилагођење слајдова: A.E. Eiben, J.E. Smith, Introduction to Evolutionary computing: Genetic algorithms

Датум последње измене: 11.12.2019.

Генетски алгоритми

Уводни концепти и једноставни (канонски) генетски алгоритам

Технике претраге

Генетски алгоритам (GA)

- Развијен у Америци 1970-их
- Кључни аутори: J. Holland, K. DeJong, D. Goldberg
- Главне примене:
 - Проблеми у дискретном домену
- Карактеристике:
 - Није претерано брз као и већина популационих метахеуристика
 - Добра хеуристика за решавање комбинаторних проблема
 - Доста варијанти, нпр. различити механизми укрштања, мутације, итд.

Једноставни генетски алгоритам (SGA)

- Оригинални генетски алгоритам (GA) који је развио John Holland се назива још и једноставни (канонски) GA или **SGA** (енг. Simple GA)
- Други GA се разликују у:
 - Репрезентацијама (кодирањима и декодирањима)
 - Мутацијама
 - Укрштању
 - Селекцији

SGA псеудокод

```
Иницијализуј популацију;

Евалуирај популацију; //израчунавање фитнеса хромозома

while Није задовољен услов за завршетак

{

Одабери родитеље за укрштање;

Изврши укрштање и мутацију;

Евалуирај популацију;

}
```

SGA елементи

Карактеристика GA	Имплементација у оквиру SGA
Репрезентација	Низ битова
Укрштање	n-позиционо или равномерно укрштање
Мутација	Извртање битова са фиксном вероватноћом
Селекција родитеља	Фитнес-сразмерна
Селекција преживелих	Родитељи се потпуно замењују децом
Специјалност	Фокус је на укрштању

SGA Репрезентација (кодирање и декодирање)

SGA Укрштање

- 1. Одабери родитеље у скуп за укрштање (величина скупа за укрштање = величина популације)
- 1. Разбацај (енг. Shuffle) скуп за укрштање
- 2. За сваки пар узастопних хромозома примењује се укрштање са вероватноћом p_c , а ако се не примени, онда се копирају родитељи
- 3. За свако дете примењује се мутација са вероватноћом p_m по сваком биту независно
- 4. Замени целу популацију са новодобијеном популацијом деце

SGA оператор укрштања са једном тачком

- Одабери случајну позицију (мању од броја гена)
- Раздвоји сваког родитеља по овој позицији на два дела
- Креирај децу разменом делова између родитеља
- *p*_c је обично из интервала [0.6, 0.9]

SGA оператор мутације

- Сваки ген (бит) са вероватноћом p_m
- p_m се назива стопа мутације
 - Типично има вредност између (1/величина популације) и (1/ дужина хромозома)

SGA оператор селекције

- Основна идеја: боље јединке имају већу шансу
 - Шансе су сразмерне фитнесу
 - Имплементација: рулетски точак
 - Додели свакој јединки исечак точка
 - Окрени точак n пута за одабир n јединки

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

Пример

- Једноставан проблем: max x² на скупу {0,1,...,31}
- GA приступ:
 - Репрезентација: бинарни код, нпр. $01101 \leftrightarrow 13$
 - Величина популације: 4
 - Једнопозиционо укрштање, мутација по битовима
 - Рулетска селекција
 - Случајна иницијализација популације

Пример - селекција

String	Initial	x Value	Fitness	$Prob_i$	Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	0 1 1 0 1	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	01000	8	64	0.06	0.22	0
4	$1\ 0\ 0\ 1\ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

Пример - укрштање

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	0 1 1 0 1	4	01100	12	144
2	1 1 0 0 0	4	$1\ 1\ 0\ 0\ 1$	25	625
2	$ 1 \ 1 \ \ 0 \ 0 \ 0$	2	$1\ 1\ 0\ 1\ 1$	27	729
4	10 0 1 1	2	$1\ 0\ 0\ 0\ 0$	16	256
Sum					1754
Average					439
Max					729

Пример - мутација

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	0 1 1 0 0	$1\ 1\ 1\ 0\ 0$	26	676
2	$1\ 1\ 0\ 0\ 1$	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ 0\ 1\ 1$	$1\ 1\ 0\ 1\ 1$	27	729
4	$1\ 0\ 0\ 0\ 0$	$1\ 0\ 1\ 0\ 0$	18	324
Sum				2354
Average				588.5
Max				729

Закључак

- SGA је и даље тема многих студија
 - Релевантан метод за поређење (енг. benchmark) са другим GA
- Многа ограничења:
 - Репрезентација је превише рестриктивна
 - Мутација и укрштање применљиви само за битовску или целобројну репрезентацију
 - Селекција осетљива на случај када популација конвергира (фитнес вредности блиске)
 - Генерисање популације се може унапредити техником експлицитног преживљавања

Генетски алгоритми

Остали оператори укрштања

Други оператори укрштања

- Квалитет једнопозиционог укрштања
 зависи од редоследа променљивих у репрезентацији решења
 - Већа је шанса да ће гени који су близу бити задржани у потомству
 - Такође, гени који су на различитим крајевима хромозома се не могу наћи у истом потомку
 - Ово се зове позициона пристрасност
 - Може бити корисна уколико знамо структуру проблема, међутим, у општем случају је непожељна

n-позиционо укрштање

- Бира се п случајних позиција
- Раздваја се по тим позицијама
- Спајају се алтернирајући делови
- Ово је уопштење једнопозиционог укрштања, у којем и даље постоји *позициона пристрасност*

Равномерно укрштање

- Као код бацама новчића, додељују се 'главе' једном родитељу, 'писмо' другом
- Баца се новчић за сваки ген првог детета и узима ген из одговарајућег родитеља
- Друго дете је инверз првог
- Наслеђивање је стога независно од позиције

Укрштање или мутација?

• Дебата дуга неколико деценија

- Одговор (или бар опште прихваћенији аргумент):
- Зависи од проблема, али
- Најбоље је да постоје оба пошто имају различите улоге
- Само мутацијски EA су могући, док Само укрштајући EA не би радили

Укрштање или мутација? (2)

- Експлорација: откривање нових области у простору претраге
- Експлоатација: оптимизација у оквиру постојећих области (комбиновање решења)
- Постоји кооперација и конкуренција између њих
- Укрштање ради експлоатацију,
 прави комбинације "између" родитељских хромозома
 → ако неки алел потребан за глобални оптимум не постоји,
 онда глобално решење никад неће бити достигнуто
- Мутација је доминантно експлоративна, пошто уводи нову информацију и тиме проширује простор претраге

 мутација врши и експлоатацију, јер мења локалну околину тренутног решења

Укрштање или мутација? (3)

- Само укрштање може да комбинује информације два родитеља
- Само мутација може да уведе нове информације (генски алели)
- Укрштање не мења фреквенцију генских алела у оквиру популације (на пример: 50% нула на првом биту, ?% после извођења *п* укрштања)
- Да би се погодио оптимум, обично је потребна "срећна" мутација

Генетски алгоритми

Реалне и пермутацијске репрезентације и оператори

Друге репрезентације

- Грејово кодирање целих бројева (и даље бинарни хромозоми)
 - Грејово кодирање је понекад погодније, јер малим променама у генотипу се праве и мале промене у фенотиуп (за разлику од стандардног бинарног кода)
 - "Глаткије" генотип-фенотип пресликавање може да побољша рад GA
- Данас је, међутим, опште прихваћено да је боље кодирати нумеричке вредности директно као:
 - Целе бројеве
 - Реални бројеви у фиксном зарезу
 - Ово захтева да и оператори не буду дизајнирани да раде са бинарним бројевима, већ са одговарајућим типом целим/реалним бројевима

Директна целобројна репрезентација

- Неки проблеми природно имају целобројну репрезентацију решења, нпр. вредности параметара у процесирању слика
- Неки други могу имати категоричке вредности из фиксираног скупа, нпр. {плаво, зелено, жуто, розе}
- n-позиционо / равномерно укрштање ради у овим ситуацијама
- Бинарна мутација се мора проширити (не може бити само извртање битова)
 - Мутирање у блиске (сличне) вредности
 - Мутирање у насумичне вредности (типично код категоричних променљивих)

Проблеми у реалном домену

- Шта ако проблем има решење са реалном репрезентацијом, нпр. у проблемима глобалне оптимизације $f: \mathcal{R}^n \to \mathcal{R}$
- Типичан тест пример: Ackley-јева функција

$$f(\overline{x}) = -c_1 \cdot exp\left(-c_2 \cdot \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}\right)$$
$$-exp\left(\frac{1}{n} \cdot \sum_{i=1}^n cos(c_3 \cdot x_i)\right) + c_1 + 1$$
$$c_1 = 20, c_2 = 0.2, c_3 = 2\pi$$

Пресликавање реалних вредности на низове битова

 $z \in [x,y] \subseteq \mathcal{H}$ представљени као низ битова $\{a_1,...,a_L\} \in \{0,1\}^L$

- $[x,y] \rightarrow \{0,1\}^L$ мора бити инверзно (један фенотип за сваки генотип)
- $\Gamma: \{0,1\}^L \to [x,y]$ дефинише репрезентацију

$$\Gamma(a_1,...,a_L) = x + \frac{y - x}{2^L - 1} \cdot (\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j) \in [x, y]$$

- Само 2^L вредности од могућих бесконачно је могуће кодирати
- L детерминиште прецизност решења
- Велика прецизност дугачки хромозоми (спора еволуција)
- Алтернативно, кодирање може бити директно уз дораду оператора

Мутација за директно реално кодирање

Општа шема за бројеве у фиксном зарезу

$$\overline{x} = \langle x_1, ..., x_l \rangle \rightarrow \overline{x}' = \langle x_1', ..., x_l' \rangle$$

$$x_i, x_i' \in [LB_i, UB_i]$$

- Равномерна мутација: x_{i}' се бира равномерно из [LB_{i} , UB_{i}]
- Аналогно извртању битова (бинарни код) или насумичном мутирању (код целих бројева)

Мутација за директно реално кодирање (2)

- Неравномерне мутације:
 - Постоје мутације чија се вероватноћа мења са временом, позицијом, итд.
 - Стандардни приступ је додељивање случајне девијације свакој променљивој, а потом извлачење променљивих ис N(0, σ)
 - Стандардна девијација σ контролише удео промена (2/3 девијација ће се налазити у опсегу (- σ to + σ)

Укрштање за директно реално кодирање

- Код дискретног домена (бинарни или целобројни):
 - Сваки алел детета z је директно наслеђен од неког од родитеља (x,y) са једнаком вероватноћом: $z_i = x_i$ or y_i
- Овде нема смисла користити n-позиционо или равномерно
- Скица решења:
 - Формирање деце који су "између" родитеља (тзв. Аритметичко укрштање)
 - $z_i = \alpha x_i + (1 \alpha) y_i$ где је $\alpha : 0 \le \alpha \le 1$.
 - Параметар lpha може бити:
 - константа: равномерно аритметичко укрштање
 - променљива (нпр. зависи од старости популације)
 - одабран случајно сваки пут

Једноструко аритметичко укрштање

- Родитељи: (x₁,...,x_n) and (y₁,...,y_n)
- Одабери један ген (*k*) случајно,
- Нпр. за α = 0.5 добијамо:

Једноставно аритметичко укрштање

- Родитељи: (x₁,...,x_n) and (y₁,...,y_n)
- Одабери случајни ген *(k)* који одређује позицију
- Нпр. за α = 0.5 добијамо:

Целовито аритметичко укрштање

- Најчешће коришћено (задржавање 1 детета – дупло више укрштања)
- Родитељи: $\langle x_1,...,x_n \rangle$ and $\langle y_1,...,y_n \rangle$
- Нпр. за α = 0.5 добија се:

Проблеми засновани на пермутацијама

- Постоје многи проблеми који за решење имају уређену структуру: линеарну, квадратну, хијерархијску, итд.
- Задатак је организовати објекте у одговарајућем редоследу:
 - Пример: проблем сортирања
 - Пример: проблем трговачног путника (TSP)
- Овакви проблеми се генерално изражавају посредством пермутација:
 - Ако постоји *n* променљивих, онда је репрезентација сачињена од *n* целих бројева, таквих да се сваки појављује тачно једном

Пример - TSP

- Проблем:
 - Нека је дато п градова
 - Пронаћи руту са минималном дужином
- Кодирање:
 - Означи градове са 1, 2, ..., *n*
 - Једна комплетна рута је једна пермутација (нпр. за n =4 [1,2,3,4], [3,4,2,1] су у реду)
- Простор претраге је ВЕЛИК:

за 30 градова, $30! ≈ 10^{32}$ могућих рута

Мутација над пермутацијама

- Нормални оператори мутације доводе до недопустивих решења
 - Нпр. оператор који гену *i* са вредношћу *j*
 - Мења у неку вредност k би значило да се вредност k појављује више пута, док се вредност j више не налази у решењу
- Стога, се морају мењати вредности бар двема променљивама
- Вероватноћа мутације сада описује вредност примене оператора над целим решењем, а не над појединачним позицијама

Мутација заснована на уметању

- Изаберу се две вредности (два алела) на случајан начин
- Други се умеђе тако да буде после првог, при чему се сви остали померају уколико је потребно
- Приметити да ово задржава већи део уређења односно информације о претходном суседству
 - То је добро, јер мутација не треба да изазива драматичне промене

Мутација заснована на замени

- Изаберу се две вредности на случајан начин и замене се
- Задржава већину уређења

Мутација заснована на инверзији

- Изаберу се две вредности на случајан начин, а потом се обрне редослед вредности између њих
- Мало интензивнија промена уређења од претходна два приступа

Мутација заснована на мешању

- Изабере се подскуп позиција на случајан начин
- Случајно се реорганизују вредности на тим позицијама

(позиције не морају да буду узастопне као на слици)

Укрштање у пермутационим проблемима

• "Нормални" оператори укрштања доводе до недопустивих решења

• Предложени су многи специјализовани оператори у зависности од интензитета комбиновања родитељских алела

Укрштање првог реда

- Идеја је да се задржи релативно уређење
- Општа шема:
 - 1. Одабрати сегмент хромозома првог родитеља
 - 2. Ископирати овај сегмент у прво дете
 - 3. Ископирати преостале вредности (бројеве) тако да:
 - Копирање почиње десно од копираног сегмента
 - Коришћењем редоследа датог другим родитељем
 - 4. Слично се ради и за друго дете

Укрштање првог реда - пример

• Копирање првог сегмента првог родитеља

• Копирање преосталих вредности у редоследу другог 1,9,3,8,2

1 2 3 4 5 6 7 8 9

382456719

9 3 7 8 2 6 5 1 4

Делимично укрштање (РМХ)

Општа шема за родитеље Р1 и Р2:

- 1. Одабрати случајни сегмент и копирати га од Р1
- 2. Почев од позиције почетка сегмента, тражити елементе у том сегменту за Р2 који нису били копирани
- 3. За сваки од ових *і* пронађи пронађи вредност *ј* из *Р1* која је копирана на његово место
- 4. Постави *i* на позицију зауету са *j* у Р2, пошто знамо сигурно да *j* неће бити тамо (она је већ у детету)
- 5. Ако је место на којем се налази j у P2 већ заузето вредношћу k, онда постави i на позицију коју заузима k у P2
- 6. На крају се преостали елементи само ископирају из Р2.

Друго дете се креира аналогно

РМХ - пример

1 2 3 4 5 6 7 8 9 Корак 1 4 5 6 7 9 3 7 8 2 6 5 1 4 1 2 3 4 5 6 7 8 9 Корак 2 2 4 5 6 7 8 9 3 7 8 2 6 5 1 4 1 2 3 4 5 6 7 8 9 9 3 2 4 5 6 7 Корак 3 9 3 7 8 2 6 5 1 4

Генетски алгоритми

Популациони модели и селекција

Популациони модели

- SGA користи тзв. Генерацијски модел (Generation GA GGA):
 - Свака јединка преживи тачно једну генерацију
 - Цео скуп родитеља је замењен својим потомцима
- Са друге стране, постоји и тзв. модел са Стабилним стањем (Steady-State GA SSGA):
 - Једно дете се генерише по генерацији,
 - Један члан популације бива замењен њиме,
- Генерацијски јаз
 - Удео популације која се мења
 - 1.0 за GGA, 1/величина популације за SSGA

Такмичење засновано на фитнесу

- Селекција се може јавити у два наврата:
 - Селекција родитеља за укрштање
 - Селекција преживелих бирање из скупа родитељи + деца оних који ће прећи у наредну генерацију
- Разлике међу селекцијама се праве на основу:
 - оператора: дефинишу различите вероватноће
 - алгоритми: дефинишу како су вероватноће имплементиране

Пример селекције: SGA

• Очекивани број копија јединке і

$$E(n_i) = \mu \cdot f(i)/\langle f \rangle$$

 $(\mu = \text{величина популације}, f(i) = \phi \text{итнес јединке i}, \langle f \rangle просечан фитнес популације)$

- Рулетска селекција:
 - За дату расподелу вероватноћа, окрени рулетски точак *п* пута
 - Нема гарантоване доње или горње границе на n_i
- Baker SUS алгоритам:
 - п еквидистантни граничник постављен на точку једно окретање
 - Гарантује да је $floor(E(n_i)) \le n_i \le ceil(E(n_i))$

Фитнес-сразмерна селекција

• Проблем

- Једна високо квалитетна јединка може брзо да преузме читаву популацију ако су остале јединке значајно лошије: рана конвергенција
- Када су фитнеси слични (пред крај), селекциони притисак је лош
 - Селекциони притисак дефинише колико су фаворизована добра решења
 - Када су фитнеси релативно слични (блиски), смањује се и фаворизација

• Скалирање може да помогне

- Скалирање према најгорем: $f'(i) = f(i) \beta^t$
 - Где је eta најгори фитнес у последњих n генерација

Ранг-базирана селекција

- Покушај да се превазиђу проблеми фитнес-сразмерне селекције
- Вредност фитнеса нема апсолутни већ релативни значај овде
- Најбоља јединка има највиши ранг μ , а најгора ранг 1
- Трошак примене сортирања је обично занемарљив

Турнирска селекција

- Претходне методе се ослањају на опште популационе статистике
 - Ово може бити уско грло, нпр. на паралелним машинама
 - Ослањају се на присуство екстерних фитнес функција које можда не постоје увек: нпр. еволуција ботова за игрице (овде не знамо који је фитнес, али можемо да утврдимо ко боље игра)

• Општа шема:

- Одабери k чланова на случајан начин, а потом одабери најбољег од њих
- Наставити процес за одабир још јединки

Турнирска селекција (2)

- Вероватноћа одабира јединке і зависи од:
 - Ранга *i*
 - Вредности *k*
 - веће k значи и већи селекциони притисак
 - Да ли се такмичару бирају са враћањем
 - Одабир без враћања појачава селекциони притисак
- За k=2, време потребно да најбоља јединка преузме популацију је иста као код линеарног рангирања за s=2 p

Селекција преживелих

- Методе сличне онима које се користе за одабир родитеља за укрштање
 - У генерацијском моделу тривијално, бришу се најстарији, тј. сви родитељи
 - У општем случају се могу бирати/брисати било које јединке из скупа родитеља и деце
- Две групе приступа:
 - Селекција заснована на старости
 - Kao код SGA
 - SSGA може да имплементира брисање случајне (не препоручује се) или брисање најстарије
 - Фитнес-сразмерна селекција
 - Примена неке од раније поменутих метода: рулетска, турнирска, ...
- Специјални случај:
 - Елитизам
 - Често коришћен код оба популациона модела (GGA, SSGA)
 - Увек се задржава копија најбољег решења до сада

Теорема о схемама

- Теоријска основа иза генетских алгоритама и генетског програмирања (John Holland, седамдесете године)
- Неједнакост која објашњава еволутивну динамику
- Теорема (неформално): кратке схеме са натпросечним фитнесом постају експоненцијално учесталије током генерација
- Схема је шаблон који идентификује подскуп ниски које су сличне на појединачним позицијама
- Пример: за бинарне ниске дужине 6, пример схеме је 1*10*1 где оваква схема описује све ниске дужине 6 са фиксираним битовима на 4 описане позиције

Теорема о схемама (2)

- Ред схеме *o(H)* је дефинисан као број фиксираних позиција
- $\partial(X)$ је удаљеност између прве и последње фиксиране позиције
- Фитнес схеме је просечни фитнес свих ниски које припадају схеми

Теорема:

$$\mathrm{E}(m(H,t+1)) \geq rac{m(H,t)f(H)}{a_t}[1-p].$$

- где је m(H,t) број ниски које припадају схеми H у генерацији t, f(H)просечни фитнес схеме H, док је a(t) просечни фитнес у генерацији t
- р је вероватноћа да ће укрштање или мутација "разбити" схему:

$$p=rac{\delta(H)}{l-1}p_c+o(H)p_m$$

 $p=rac{\delta(H)}{I-1}p_c+o(H)p_m$ • / је дужина генотипа док су p_c и p_m вероватноће укрштања и мутације и мутације