1. Q —
$$\int (\ln(x))^2 dx$$

A — Let
$$u = (\ln(x))^2$$
 and $v' = 1$.

$$\frac{d}{dx}(\ln(x))^2 = 2\ln(x)\frac{d}{dx}\ln(x)$$

$$=\frac{2\ln(x)}{x}$$

Therefore $u' = \frac{2\ln(x)}{x}$ and v = x

According to integration by parts:

$$\int uv' = uv - \int vu'$$

Therefore
$$\int (\ln(x))^2 dx = x(\ln(x))^2 - 2 \int \ln(x) dx$$

To calculate
$$\int \ln(x) dx$$
, let $u = \ln(x)$ and $v' = 1$.

Therefore
$$u' = \frac{1}{x}$$
 and $v = x$

Therefore
$$\int \ln(x)dx = x \ln(x) - \int 1dx$$

$$= x \ln(x) - x + C_1$$

Therefore
$$\int (\ln(x))^2 dx = x(\ln(x))^2 - 2[x \ln(x) - x] + C$$

$$= x(\ln(x))^2 - 2x\ln(x) + 2x + C$$