Werkzeuge der empirischen Forschung

Abgabe: 01.07.2019

Blatt 11 Pohl, Oliver 577878 pohloliq

Aufgabe 31.

 H_0 : Merkmale sind unabhängig

 H_1 : $\neg H_0$

Beobachtete Werte:

n_0	ländlich	städtisch	
Küstentiefland	6	7	13
Inneres Hochland	9	8	17
	15	15	30

Erwartete Werte:

n_e	ländlich	städtisch	
Küstentiefland	6.5	6.5	13
Inneres Hochland	8.5	8.5	17
	15	15	30

Freiheitsgrade: df=1, Vergleichswert = 3.84

Chiquadrat-Teststatistik berechnen:

$$\chi^2 = \frac{(6-6.5)^2}{6.5} + \frac{(7-6.5)^2}{6.5} + \frac{(9-8.5)^2}{8.5} + \frac{(8-8.5)^2}{8.5}$$
$$= 0.0384 + 0.0384 + 0.0294 + 0.0294$$
$$= 0.1356$$

Da 0.1356 < 3.84 wird die Nullhypothese angenommen . Die beiden Merkmale sind unabhängig mit einer Irrtumswahrscheinlichkeit von 0.05.

Werkzeuge der empirischen Forschung

Abgabe: 01.07.2019

Blatt 11 Pohl, Oliver 577878 pohloliq

Aufgabe 32a.

Folgende fiktive Beobachtungen sind gegeben:

X:	1	1	1	1	1
Y:	1	1	1	1	2

Vergleich anhand eines Wilcoxon-Tests:

Zusammenfassen der Beobachtungen zu einer Stichprobe:

Rangzahlen bilden:

Berechnung der Summe der Ränge für Stichprobe X:

$$S_{1} = \sum_{j=1}^{5} R_{1j}$$

$$= \sum_{j=1}^{5} R_{1j} = 5 + 5 + 5 + 5 + 5$$

$$= \sum_{j=1}^{5} R_{1j} = 25$$

Berechnung der Erwartungswerte(unter H0):

$$E(S_1) = \frac{5 \cdot (5+5+1)}{2}$$
$$= 27.5$$

Berechnung der Varianzen:

$$Var(S_1) = \frac{5 \cdot 5 \cdot (5+5+1)}{12}$$
$$= 22.91667$$

Berechnung der Teststatistik des Wilcoxon-Test:

Werkzeuge der empirischen Forschung

Abgabe: 01.07.2019

Blatt 11 Pohl, Oliver 577878 pohloliq

$$Z = \frac{S - E(S)}{\sqrt{varS}}$$
$$= \frac{25 - 27.5}{\sqrt{22.92}}$$
$$= -0.52$$

Berechnung des p-Wertes:

$$p = 2 \cdot pnorm(-0.52)$$

= $2 \cdot 0.302$
= 0.604

Da der p-Wert = 0.604 > 0.05 nehmen wir die Nullhypothese an. Folgende fiktive Beobachtungen sind gegeben:

X:	1	1	1	1	1
Y:	1	1	1	1	5

Vergleich anhand eines Wilcoxon-Tests:

Zusammenfassen der Beobachtungen zu einer Stichprobe:

$$[1, 1, 1, 1, 1, 1, 1, 1, 1, 5]$$

Rangzahlen bilden:

Berechnung der Summe der Ränge für Stichprobe Y:

$$S_1 = \sum_{j=1}^{5} R_{1j}$$

$$= \sum_{j=1}^{5} R_{1j} = 5 + 5 + 5 + 5 + 10$$

$$= \sum_{j=1}^{5} R_{1j} = 30$$

Berechnung der Erwartungswerte(unter H0):

Werkzeuge der empirischen Forschung

Abgabe: 01.07.2019

Blatt 11 Pohl, Oliver 577878 pohloliq

$$E(S_1) = \frac{5 \cdot (5+5+1)}{2}$$

= 27.5

Berechnung der Varianzen:

$$Var(S_1) = \frac{5 \cdot 5 \cdot (5+5+1)}{12}$$
$$= 22.91667$$

Berechnung der Teststatistik des Wilcoxon-Test:

$$Z = \frac{S - E(S)}{\sqrt{varS}}$$
$$= \frac{30 - 27.5}{\sqrt{22.92}}$$
$$= 0.52$$

Berechnung des p-Wertes:

$$p = 2 \cdot pnorm(-0.52)$$

= $2 \cdot 0.302$
= 0.604

Da der p-Wert = 0.604 > 0.05 nehmen wir die Nullhypothese an. Folgende fiktive Beobachtungen sind gegeben:

X:	1	1	1	1	1
Y:	1	1	1	1	10

Vergleich anhand eines Wilcoxon-Tests:

Zusammenfassen der Beobachtungen zu einer Stichprobe:

Werkzeuge der empirischen Forschung

Abgabe: 01.07.2019

Blatt 11 Pohl, Oliver 577878 pohloliq

Rangzahlen bilden:

[5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10]

Berechnung der Summe der Ränge für Stichprobe Y:

$$S_1 = \sum_{j=1}^{5} R_{1j}$$

$$= \sum_{j=1}^{5} R_{1j} = 5 + 5 + 5 + 5 + 10$$

$$= \sum_{j=1}^{5} R_{1j} = 30$$

Berechnung der Erwartungswerte(unter H0):

$$E(S_1) = \frac{5 \cdot (5+5+1)}{2}$$
$$= 27.5$$

Berechnung der Varianzen:

$$Var(S_1) = \frac{5 \cdot 5 \cdot (5+5+1)}{12}$$
$$= 22.91667$$

Berechnung der Teststatistik des Wilcoxon-Test:

$$Z = \frac{S - E(S)}{\sqrt{varS}}$$
$$= \frac{30 - 27.5}{\sqrt{22.92}}$$
$$= 0.52$$

Berechnung des p-Wertes:

$$p = 2 \cdot pnorm(-0.52)$$

Werkzeuge der empirischen Forschung

Abgabe: 01.07.2019

Blatt 11 Pohl, Oliver 577878 pohloliq

$$= 2 \cdot 0.302$$

 $= 0.604$

Da der p-Wert = 0.604 > 0.05 nehmen wir die Nullhypothese an.

Interpretation der Ergebnisse:

Egal wie groß der Ausreißer von der Stichprobe Y ist, der p-Wert ist immer derselbe. Man kann an diesem Beispiel die Robustheit des Wilcoxon-Test sehen.

Werkzeuge der empirischen Forschung

Abgabe: 01.07.2019

Blatt 11 Pohl, Oliver 577878 pohloliq

Aufgabe 32b.

Folgende fiktive Beobachtungen sind gegeben:

X:	1	2	3
Y:	0	0	0

Vergleich anhand eines Wilcoxon-Tests:

Zusammenfassen der Beobachtungen zu einer Stichprobe:

Rangzahlen bilden:

Berechnung der Summe der Ränge für Stichprobe X:

$$S_1 = \sum_{j=1}^{3} R_{1j}$$

$$= \sum_{j=1}^{3} R_{1j} = 4 + 5 + 6$$

$$= \sum_{j=1}^{3} R_{1j} = 15$$

Berechnung der Erwartungswerte(unter H0):

$$E(S_1) = \frac{3 \cdot (3+3+1)}{2}$$
$$= 10.5$$

Berechnung der Varianzen:

$$Var(S_1) = \frac{3 \cdot 3 \cdot (3+3+1)}{12}$$
$$= 5.25$$

Berechnung der Teststatistik des Wilcoxon-Test:

Werkzeuge der empirischen Forschung

Abgabe: 01.07.2019

Blatt 11 Pohl, Oliver 577878 pohloliq

$$Z = \frac{S - E(S)}{\sqrt{varS}}$$
$$= \frac{15 - 10.5}{\sqrt{5.25}}$$
$$= 1.97$$

Berechnung des p-Wertes:

$$p = 2 \cdot pnorm(1.97)$$

= $2 \cdot 0.02$
= 0.04

Da der p-Wert = 0.04 < 0.05 lehnen wir die Nullhypothese ab.

Folgende fiktive Beobachtungen sind gegeben:

X:	1	2	3	10
Y:	0	0	0	

Vergleich anhand eines Wilcoxon-Tests:

Zusammenfassen der Beobachtungen zu einer Stichprobe:

$$[0, 0, 0, 1, 2, 3, 10]$$

Rangzahlen bilden:

Berechnung der Summe der Ränge für Stichprobe Y:

$$S_1 = \sum_{j=1}^{3} R_{1j}$$

$$= \sum_{j=1}^{3} R_{1j} = 2 + 2 + 2$$

$$= \sum_{j=1}^{3} R_{1j} = 6$$

Werkzeuge der empirischen Forschung

Abgabe: 01.07.2019

Blatt 11 Pohl, Oliver 577878 pohloliq

Berechnung der Erwartungswerte(unter H0):

$$E(S_1) = \frac{3 \cdot (3+4+1)}{2}$$

= 12

Berechnung der Varianzen:

$$Var(S_1) = \frac{3 \cdot 4 \cdot (3 + 4 + 1)}{12}$$

= 8

Berechnung der Teststatistik des Wilcoxon-Test:

$$Z = \frac{S - E(S)}{\sqrt{varS}}$$
$$= \frac{6 - 12}{\sqrt{8}}$$
$$= -2.12$$

Berechnung des p-Wertes:

$$p = 2 \cdot pnorm(-2.12)$$

= $2 \cdot 0.017$
= 0.034

Da der p-Wert = 0.034 < 0.05 lehnen wir die Nullhypothese ab.