SEIR Model Fitting

The behaviours of discrete $\beta(t)$, $\gamma(t)$, $\delta(t)$:

Optimisation Stages Discussion

For the same set of data:

```
299
       1
               0
298
       2
               0
       4
               0
296
292
               0
284
       16
               0
                                  # handshakes = 10;
269
       31
               0
                                  infectious period = 5;
247
       50
               3
                                  # initial infected people = 1;
212
       79
               9
                                  total # people = 300.
172
       103
               25
122
       141
               37
89
       136
               75
65
       114
               121
51
       85
               164
47
       53
               200
43
       33
               224
41
       14
               245
41
       6
               253
       3
41
               256
41
       1
               258
41
               259
```

Stage 1:

Treat β , γ and δ as unknown parameters and solve for them to minimise the residual.

Stage 2:

Treat β and δ as unknown parameters, and $\gamma=Ae^{Bt}$ and solve for β,δ,A,B to minimise the residual.

Stage 3:

Treat δ as an unknown parameter, $\beta=\frac{L}{1+e^{k(t-t_0)}}$, and $\gamma=Ae^{Bt}$. Solve for L,k,t_0,A,B,δ to minimise the residual.

