6.2 Product and Quotient of two functions

If you are given the functions f(x) and g(x)

- \succ the product of two functions is defined as f(x)g(x) or (fg)(x)
- > the quotient of two functions is defined as $\frac{f(x)}{g(x)}$ or $\left(\frac{f}{g}\right)(x)$

Similarly, the product of two functions can be found by multiplying the y-coordinates with the same x-coordinates. I.e.)(x, f(x)g(x))

 \triangleright The Domain of fg=

To find the quotient of two functions, we need to divide the y-coordinates with the same x-coordinates.

For the functions f and g, $\frac{f}{g}$ is defined by $\frac{f}{g} = \left\{ \left(x, \frac{f(x)}{g(x)} \right) \middle| \frac{f(x)}{g(x)} \text{ is defined} \right\}$

Note: The quotient of two functions may not be a function due to possible Holes and V.A.(s)

 \succ The Domain of $\frac{f}{g}$ =

Note: The product of two functions will remain a function!

Ex 1) Given
$$f = \{(-3,7), (-2,5), (-1,-4), (2,8)\}$$
 and $g = \{(-4,6), (-2,3), (-1,0), (1,5), (2,-4)\}$
Find

a) $f + g$

b) $f - g$

c)
$$fg$$

e)
$$\frac{g}{f}$$

Ex 2) Let
$$f(x) = \sqrt{x+6}$$
 and $g(x) = x^2 + x - 6$

- a) Determine the equation of h(x) = f(x)g(x)
- b) Determine the equation of $k(x) = \frac{g(x)}{f(x)}$
- c) Sketch the graphs of the combined functions
- d) State the domain and range of h(x) and k(x).

x	f(x)	g(x)	h(x)	k(x)

Ex 3) Consider the following table illustrating the product of functions f(x) and g(x). Let the product be defined as h(x) = f(x)g(x) and the quotient be defined as $k(x) = \frac{f(x)}{g(x)}$. Determine if h(x) and k(x) are even or odd in the following scenarios.

f(x)	g(x)	f(x)g(x)	$\frac{f(x)}{g(x)}$
Even	Even		
Even	Odd		
Odd	Even		
Odd	Odd		

Ex 4) For each of the following pairs of functions, write the equation of $h(x) = \left(\frac{f}{g}\right)(x)$ and state the domain of h(x)

1.
$$f(x) = 10, g(x) = x$$

2.
$$f(x) = 4x, g(x) = 3x - 2$$

3.
$$f(x) = 4x^2$$
, $g(x) = x^2 - 4$

4.
$$f(x) = x^2 - x - 12$$
, $g(x) = x^2 + 2x - 3$

Practice: Product and Quotient of Functions of Different Families

Given $f(x) = \log_2(x+4)$ and $g(x) = \sin(x)$.

- a) Complete the table below
- b) Sketch h(x) = f(x)g(x) on the grid to the left

Note: The grid to the right illustrates $k(x) = \frac{f(x)}{g(x)}$

x	$f(x) = \log_2(x+4)$	$g(x) = \sin(x)$	h(x) = f(x)g(x)	$k(x) = \frac{f(x)}{g(x)}$

Warm Up

3. Determine the graph of h(x) = f(x)g(x), given the graphs of $f(x) = x^2 + x - 6$ and

 $g(x) = \sqrt{x+6}$ by creating a table of values

x	f(x)	g(x)	h(x)
-6			
-5			
-4			
-3			
-2			
-1			
0			
1			
2			
3			

- h(x) in un-simplified form:______ Domain of h(x):_____
- 4. Let $f(x) = mx^2 + 2x + 5$ and $g(x) = 2x^2 nx 2$. The functions are combined to form the new function h(x) = (fg)(x). Points (1, -40) and (-1, 24) satisfy the new function. Determine the values of m and n. [m=3, n=4]