UNIDAD 2: MINERÍA DE ELEMENTOS FRECUENTES

MODELO MERCADO CANASTA

Blanca Vázquez y Gibran Fuentes-Pineda Octubre 2020

Introducción

Los principales bloques en minería de datos

- · Clasificación
- Clustering
- · Detección de valor atípicos
- · Minería de patrones

¿Por qué son especiales estos bloques?

NATURALEZA DE LOS DATOS

Consideremos una matriz D de tamaño nxd

	d_1	d_2	d_3	•••	d_n
n_1	0	0	1	0	1
n_2	0	1	0	0	0
n_3	0	0	0	1	1
••••					
doc_n	0	0	1	0	0

RELACIONES ENTRE LOS ELEMENTOS DE D

- · Relaciones entre columnas
 - · Predecir el valor de una columna en especial (clasificación)
- · Relaciones entre filas

RELACIONES ENTRE LOS ELEMENTOS DE D

- · Relaciones entre columnas
- · Relaciones entre filas
 - Determinar subconjuntos de filas con características similares (clustering)
 - Identificar valores anómalos entre filas (detección de valores atípicos)
 - Identificar asociaciones frecuentes entre los elementos (minería de patrones)

MINERÍA DE PATRONES

De manera general, la minería de patrones se define en el contexto de las matrices binarias dispersas.

	Pan	Mantequilla	Leche	Huevos	Yogurt
Cliente_1	1	1	1	0	0
Cliente_2	0	0	1	1	1
Cliente_3	0	1	0	1	1
Cliente_4	1	0	1	0	0

Uno de los estudios más comunes es la minería de elementos frecuentes.

MINERÍA DE ELEMENTOS FRECUENTES

- La minería de elementos frecuentes es el proceso de descubrimiento de tendencias o patrones a partir de grandes conjuntos de datos con el objetivo de guiar futuras decisiones.
- · Surgió en el contexto de los datos de los supermercados

¡VÁMONOS DE COMPRAS!

Figura 1: Imagen tomada de Puig [1]

¿Qué productos compran los clientes?, ¿Cuáles productos compran juntos?

¡VÁMONOS DE COMPRAS!

Figura 2: Imagen tomada de Debashis Borgohain

¡VÁMONOS DE COMPRAS!

La minería de elementos frecuentes ha sido ampliamente usada en los supermercados*.

Comprados juntos habitualmente

Precio total: \$75.05

Agregar los tres al carrito

MODELO MERCADO - CANASTA

Describe una relación de muchos a muchos entre dos clases:

- Elementos (items): son cada uno de los eventos o elementos en una transacción
- Transacciones (baskets): es una colección de items (itemset)

Objetivo: identificar el conjunto de elementos que son adquiridos en conjunto.

 $\{fideos, queso rallado\} \Rightarrow \{salsa\}$

MODELO MERCADO - CANASTA

Se asume lo siguiente:

- El número de elementos en una transacción es más pequeño que el número total de elementos.
- El número de transacciones puede ser tan grande, que podemos llegar a saturar el espacio de almacenamiento.

ELEMENTOS FRECUENTES

Son aquellos conjuntos de elementos que pueden aparecer en muchas transacciones, y estos tendrán un umbral llamado soporte.

Definición: sea *I* un conjunto de elementos, el soporte de *I* es la fracción de transacciones para lo cual *I* es un subconjunto.

EJEMPLO

Base de datos de transacciones de una tiendita

Τ	Elementos
1	{pan, mantequilla, leche}
2	{huevos, leche, yogurt}
3	{pan, queso, huevos, leche}
4	{huevos, leche, galletas, pan}
5	{queso, galletas, yogurt}

CÁLCULO DE SOPORTE

- Recordemos, cada transacción es un conjunto de elementos comprados al mismo tiempo.
- El total de transacciones en la bd = 5
- El soporte de un elemento I se denota por sup(I)
- El $sup(\{pan\}) = 3/5 = 0.6$
- El $sup(\{mantequilla\}) = 1/5 = 0.2$
- El $sup(\{yogurt\}) = 2/5 = 0.6$

CÁLCULO DE SOPORTE

- Cuando se calcula el soporte de un elemento, se dice que es un conjunto único.
- También podemos calcular el soporte para dos o más elementos: sup({galletas, leche}) = 1/5 = 0.2
- Decimos que I es frecuente, si su soporte es igual o mayor al umbral definido para sup

IDENTIFICACIÓN DE ELEMENTOS FRECUENTES

Supongamos que el soporte mínimo *minsup* = 0.5, ¿qué pares de elementos, cumplen este umbral?

Т	Elementos
1	{pan, mantequilla, leche}
2	{huevos, leche, yogurt}
3	{pan, queso, huevos, leche}
4	{huevos, leche, galletas, pan}
5	{queso, galletas, yogurt}

REGLAS DE ASOCIACIÓN

Las reglas de asociación son los elementos más importantes en el modelo mercado canasta.

$${X} \Rightarrow {Y}$$

- * dónde X y Y son elementos individuales o conjuntos de elementos,
- * X se conoce como **antecedente** y Y como **consecuente**

 $\{fideos, queso rallado\} \Rightarrow \{salsa\}$

REGLAS DE ASOCIACIÓN

Ejemplos de asociaciones comunes:

- $\{pa\tilde{n}ales\} \Rightarrow \{cerveza\}$
- $\{leche\} \Rightarrow \{pan\}$
- {pan para hot dogs} \Rightarrow {mostaza}

CONFIANZA

Sea X y Y dos conjuntos de elementos, la confianza $conf(X \cup Y)$ de la regla $X \cup Y$ es la probabilidad condicional de $X \cup Y$ que ocurre en una transacción dado que la transacción contiene X.

$$conf(X \Rightarrow Y) = \frac{sup(X \cup Y)}{sup(X)}$$

CONFIANZA

```
T Elementos

1 {pan, mantequilla, leche}

2 {huevos, leche, yogurt}

3 {pan, queso, huevos, leche}

4 {huevos, leche, yogurt}

5 {queso, leche, yogurt}

conf({huevos, leche} \Rightarrow {vogurt}) - \frac{\sup({huevos, leche} \Rightarrow {\sup({huevos, leche} \Rightarrow {\sup({
```

$$conf(\{huevos, leche\} \Rightarrow \{yogurt\}) = \frac{sup(\{huevos, leche, yogurt\})}{sup(\{huevos, leche\})}$$

$$conf(\{huevos, leche\} \Rightarrow \{yogurt\}) = \frac{sup(2/5)}{sup(3/5)}$$

 $conf(\{huevos, leche\} \Rightarrow \{yogurt\}) = 2/3$

CONFIANZA Y SOPORTE

Las reglas de asociación, se definen por su soporte y su nivel de confianza.

- Semejante al soporte, en donde se define un soporte mínimo (minsup), también se define un nivel de confianza mínimo (minconf)
- El minconf puede ser usado para generar reglas de asociación relevantes
- La confianza (conf) es la fuerza de la asociación entre elementos

CÁLCULO DE LA CONFIANZA

Т	Elementos
1	{pan, gelatina, mantequilla-maní
2	{pan, mantequilla-maní}
3	{pan, leche, mantequilla-maní}
4	{cerveza, pan}
5	{cerveza, leche}

CÁLCULO DE LA CONFIANZA

Calcula la confianza de las siguientes reglas de asociación:

```
conf(\{pan\} \Rightarrow \{mantequilla - mani\})

conf(\{cerveza\} \Rightarrow \{pan\})

conf(\{mantequilla - mani\} \Rightarrow \{gelatina\})

conf(\{gelatina\} \Rightarrow \{leche\})
```

CÁLCULO DE LA CONFIANZA

Calcula la confianza de las siguientes reglas de asociación:

```
conf(\{pan\} \Rightarrow \{mantequilla - mani\}) = (3/5)/(4/5) = 0.75

conf(\{cerveza\} \Rightarrow \{pan\}) = (1/5)/(2/5) = 0.5

conf(\{mantequilla - mani\} \Rightarrow \{gelatina\}) = (1/5)/(3/5) = 0.3

conf(\{gelatina\} \Rightarrow \{leche\}) = (0)/(2/5) = 0
```

IMPORTANTE EN LAS REGLAS DE ASOCIACIÓN

- Reglas con bajo soporte: pueden haber aparecido por casualidad
- Reglas con baja confianza: es probable que no existe relación entre el antecedente y el consecuente
- $\{pepsi\} \Rightarrow \{coca cola\}$

TIPOS DE REGLAS DE ASOCIACIÓN

- · Binarias vs cuantitativas
- · Unidimensionales vs multidimensionales
- · De un nivel vs multinivel

REGLAS BINARIAS Y CUANTITATIVAS

Se basan en los tipos de datos:

- compra{laptop} ⇒ compra{impresora}
- $\cdot \ \textit{edad}\{>30\} \land \textit{sueldo}\{>30,000\} \Rightarrow \textit{compra}\{\textit{SmartTV}\}$

REGLAS UNIDIMENSIONALES Y MULTIDIMENSIONALES

Se basan en las dimensiones de los datos involucrados en la regla

- compra{laptop} ⇒ compra{impresora}
- $edad\{>30\} \land sueldo\{>30,000\} \Rightarrow compra\{SmartTV\}$
- $\cdot \ compra\{traje, camisa\} \Rightarrow compra\{zapatos, corbata\}$

REGLAS DE UN NIVEL VS MULTINIVEL

Se basan en el nivel de abstracción involucrado:

REGLAS DE UN NIVEL VS MULTINIVEL

Se basan en el nivel de abstracción involucrado:

Imagen tomada de Aggarwal, 2015.

EJEMPLOS DE REGLAS DE ASOCIACIÓN

Casas inteligentes:

```
\{temp\_baja\} \Rightarrow \{encender\_calefaccion\}
\{despertador\_activo\} \Rightarrow \{encender\_cafetera\}
```

- Sistemas de recomendación: {El_senor_anillos} ⇒ {El_hobbit}
- Dispositivos móviles: {mensaje_noimportate, reunion} ⇒ {no_notificar}

APLICACIONES DE LA MINERÍA DE ELEMENTOS FRECUENTES

- · Identificación de patrones de compra (asociaciones)
- · Minería de texto
- · Detección de eventos espacio-temporales
- · Detección de errores de programación
- Biomarcardores
- · Identificación de plagio
- · Identificación de patrones en bibliotecas, librerías.

REFERENCIAS

- 1. Introduction to machine learning, Albert Orriols-Puig. URL: https://www.slideshare.net/aorriols/ lecture13-association-rules
- 2. Inteligencia Artificial, Ariel Monteserin,