12. Lecture 12

Numerical Integration

We use polynomial interpolation techniques to derive numerical integration schemes to approximate

$$I(f) = \int_{\alpha}^{\beta} f(x) \ dx,$$

for $\alpha < \beta$. Let $\{x_0, ..., x_n\} \subset [a, b]$ be distinct, where a < b are such that $[\alpha, \beta] \subseteq [a, b]$. Let $p \in \mathbb{P}^n$ interpolates f at $\{x_0, ..., x_n\}$. We propose to approximate I(f) by

$$Q(f) = \int_{\alpha}^{\beta} p(x) \ dx.$$

Using the Lagrange polynomials $\{l_i(x)\}_{i=0}^n$ associated with the interpolations points $\{x_i\}_{i=0}^n$, we write

$$p(x) = \sum_{i=0}^{n} f(x_i)l_i(x)$$

so that

$$Q(f) = \int_{\alpha}^{\beta} \left(\sum_{i=0}^{n} f(x_i) l_i(x) \right) dx = \sum_{i=0}^{n} f(x_i) \int_{\alpha}^{\beta} l_i(x) dx$$
$$= \sum_{i=0}^{n} w_i f(x_i),$$

where we defined

$$w_i := \int_{-\beta}^{\beta} l_i(x) \ dx.$$

This leads to the following definition of quadrature.

Definition 12.1 (Quadrature). An integral approximation of the form

$$I(f) \approx Q(f) = \sum_{i=0}^{n} w_i f(x_i)$$

is called a quadrature. The real numbers $\{w_i\}$ are the weights and $\{x_i\}$ are the nodes.

Example 12.1 (Rectangle quadrature). Let $x_0 \in [a, b]$. Find the quadrature approximating

$$I(f) = \int_{a}^{b} f(x) \ dx$$

based on polynomial interpolation using x_0 and \mathbb{P}^0 . In this case, $p(x) = f(x_0)l_0(x) = f(x_0)$ and

$$Q(f) = \int_{a}^{b} f(x_0) \ dx = (b - a)f(x_0),$$

which is the area of the shaded region in Figure 4.

FIGURE 4. Rectangle quadrature. The approximation Q(f) corresponds to the area of the shaded region.

Example 12.2 (Trapezoidal quadrature). Consider $p \in \mathbb{P}^1$ interpolating f at $x_0 = a$ and $x_1 = b$ to approximate

$$I(f) = \int_{a}^{b} f(x) \ dx.$$

In that case,

$$p(x) = l_0(x)f(a) + l_1(x)f(b) = \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$$

so that

$$Q(f) = \int_{a}^{b} p(x) \ dx = \frac{f(a)}{b-a} \int_{a}^{b} (b-x) \ dx + \frac{f(b)}{b-a} \int_{a}^{b} (x-a) \ dx.$$

Both integrals equal $\frac{1}{2}(b-a)^2$ so

$$Q(f) = \frac{b-a}{2} (f(a) + f(b)).$$

See Figure 5 for an illustration.

FIGURE 5. Trapezoidal quadrature. The approximation Q(f) corresponds to the area of the shaded region.

Example 12.3 (3 Points Quadrature). Consider the interpolation nodes $\{x, x - h, x - 2h\}$ for some h > 0 and $x \in \mathbb{R}$ and use a quadratic polynomial interpolant to derive a quadrature scheme to approximate

$$I(f) = \int_{x-h}^{x} f(t) dt.$$

Note that this will use interpolation points outside the integration region. In Example 11.1, we have already computed the corresponding lagrange polynomials l_0 ,

 l_1 and l_2 . To derive such quadrature scheme, we need to compute

$$w_i = \int_{r-b}^{x} l_i(t) \ dt,$$

which seems like a lot of work... perhaps there is a better way (later).

We now discuss how well Q(f) approximate I(f).

Theorem 12.1 (Interpolation error). Let $f \in C^{(n+1)}[a,b]$, $\{x_0,...,x_n\}$ distinct in [a,b] and $a \leq \alpha < \beta \leq b$. If $p \in \mathbb{P}^n$ interpolates f at x_i , i=0,...,n, and $Q(f) = \sum_{i=0}^n w_i f(x_i)$, with $w_i = \int_{\alpha}^{\beta} l_i(x) dx$, then we have

$$I(f) - Q(f) = \frac{1}{(n+1)!} \int_{\alpha}^{\beta} f^{(n+1)}(\xi_x) \prod_{i=0}^{n} (x - x_i) dx,$$

where for every $x \in [\alpha, \beta]$, $\xi_x \in [a, b]$. Moreover, if $\prod_{i=0}^n (x - x_i)$ does not change sign on [a, b], then there exists $\xi \in [a, b]$ with

$$I(f) - Q(f) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \int_{\alpha}^{\beta} \prod_{i=0}^{n} (x - x_i) \ dx.$$

Proof. In view of the interpolation error provided by Theorem 4.1, for $x \in (\alpha, \beta)$ there exists $\xi_x \in (a, b)$ such that

$$I(f) - Q(f) = \int_{\alpha}^{\beta} (f(x) - p(x)) \ dx = \frac{1}{(n+1)!} \int_{\alpha}^{\beta} f^{(n+1)}(\xi_x) \prod_{i=0}^{n} (x - x_i) \ dx.$$

This is the first claim. To continue further, it suffices to note that $f^{(n+1)}(\xi_x)$ is continuous (see Remark 11.1) and invoke the mean value theorem for integrals to write

$$\frac{1}{(n+1)!} \int_{\alpha}^{\beta} f^{(n+1)}(\xi_x) \prod_{i=0}^{n} (x - x_i) \ dx = \frac{f^{(n+1)}(\xi)}{(n+1)!} \int_{\alpha}^{\beta} \prod_{i=0}^{n} (x - x_i) \ dx,$$

for some $\xi \in (a, b)$. This implies the second claim.

Example 12.4 (Error for the Trapezoidal quadrature). For some $\xi \in (a,b)$ the above theorem guarantees that

$$\int_{a}^{b} f(x) \ dx - \frac{b-a}{2} \left(f(a) + f(b) \right) = \frac{f''(\xi)}{2} \int_{a}^{b} (x-a)(x-b) \ dx$$

using the fact that (x-a)(x-b) does not change sign. Hence, computing the integral leads to

$$\int_{a}^{b} f(x) dx - \frac{b-a}{2} (f(a) + f(b)) \stackrel{y=x-a}{=} \frac{f''(\xi)}{2} \int_{0}^{b-a} y(y-(b-a)) dy = -\frac{f''(\xi)}{12} (b-a)^{3}.$$

Example 12.5 (Simpson quadrature). We want to approximate

$$I(f) = \int_{-1}^{1} f(x) \ dx$$

using a polynomial of degree 2 interpolating f at $x_0 = -1$, $x_1 = 0$ and $x_2 = 1$. We first compute the lagrange polynomials

$$l_0(x) = \frac{(x-0)(x-1)}{(-1-0)(-1-1)} = \frac{x^2 - x}{2}$$
$$l_1(x) = \frac{(x+1)(x-1)}{(0+1)(0-1)} = 1 - x^2$$
$$l_2(x) = \frac{(x-0)(x+1)}{(1-0)(1+1)} = \frac{x^2 + x}{2}$$

Therefore,

$$w_0 = \int_{-1}^1 l_0(x) \ dx = \int_{-1}^1 \frac{1}{2} x^2 \ dx = \frac{1}{3}$$

$$w_1 = \int_{-1}^1 l_1(x) \ dx = \int_{-1}^1 (1 - x^2) \ dx = \frac{4}{3}$$

$$w_2 = \int_{-1}^1 l_3(x) \ dx = \int_{-1}^1 \frac{1}{2} x^2 \ dx = \frac{1}{3}.$$

and the quadrature rule reads

$$I(f) \approx Q(f) = \frac{1}{3}f(-1) + \frac{4}{3}f(0) + \frac{1}{3}f(1).$$

However,

$$\prod_{i=0}^{2} (x - x_i) = (x+1)x(x-1) = (x^2 - 1)x$$

changes sign on [-1,1] so we cannot get a formula involving $f'''(\xi)$ for some (fixed) $\xi \in (-1,1)$.

We now discuss a possibly simpler way to compute the weights w_i . This relies on the observation that when $f \in \mathbb{P}^n$ is a polynomial of degree n, then its interpolant $p \in \mathbb{P}^n$ is f itself (since interpolant are unique). This means

$$I(f) = \int_{a}^{b} f(x) \ dx = \int_{a}^{b} p(x) \ dx = Q(f)$$

for all $f \in \mathbb{P}^n$. In other words, the quadrature is *exact* for $p \in \mathbb{P}^n$. In particular, this means that

$$J_0 := \int_a^b 1 \, dx = \sum_{i=0}^n w_i 1 = Q(1)$$

$$J_1 := \int_a^b x \, dx = \sum_{i=0}^n w_i x_i = Q(x)$$

$$\vdots$$

$$J_n := \int_a^b x^n \, dx = \sum_{i=0}^n w_i x_i^n = Q(x^n).$$

Hence, the weights $\{w_i\}_{i=0}^n$ satisfy the linear system

$$A^{t}w := \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ x_{0} & x_{1} & x_{2} & \dots & x_{n} \\ x_{0}^{2} & x_{1}^{2} & x_{2}^{2} & \dots & x_{n}^{2} \\ & & \vdots & & & \\ x_{0}^{n} & x_{1}^{n} & x_{2}^{n} & \dots & x_{n}^{n} \end{pmatrix} \begin{pmatrix} w_{0} \\ w_{1} \\ \vdots \\ w_{n} \end{pmatrix} = \begin{pmatrix} J_{0} \\ J_{1} \\ \vdots \\ J_{n} \end{pmatrix}.$$

Recall that you get the linear system

$$Aw := \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_n^n \\ & & \vdots & & \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix},$$

when solving the interpolation problem $p(x_i) = y_i$, where

$$p(x) = c_0 + c_1 x + \dots c_n x^n.$$

We already know that A is non-singular and it follows that A^t is also non-singular. As a consequence, we realize that

Remark 12.1 (Uniqueness of Weights). The weights w_i making the quadrature Q exact on \mathbb{P}^n are uniquely determined from the exactness conditions

$$Q(x^{j}) = \sum_{i=0}^{n} w_{i} x_{i}^{j} = \int_{a}^{b} x^{j} dx, \qquad j = 0, ..., n.$$

Example 12.6 (Simpson's quadrature).

$$Q(f) = w_0 f(-1) + w_1 f(0) + w_2 f(1) \approx \int_{-1}^{1} f(x) dx.$$

The exactness conditions (for \mathbb{P}^2) are

$$2 = \int_{-1}^{1} 1 \ dx = w_0(1) + w_1(1) + w_2(1)$$
$$0 = \int_{-1}^{1} x \ dx = w_0(-1) + w_1(0) + w_2(1)$$
$$\frac{2}{3} = \int_{-1}^{1} x^2 \ dx = w_0(-1)^2 + w_1(0)^2 + w_2(1)^2,$$

i.e.

$$w_0 = w_2 = \frac{1}{3}$$
 and $w_1 = \frac{4}{3}$

as previously obtained.

Remark 12.2 (Higher order exactness for Simpson). Note that in addition of being exact for any polynomial of degree 2, the Simpson's quadrature rule also satisfy

$$0 = \int_{-1}^{1} x^3 dx = \frac{1}{3} (-1)^3 + 0 + \frac{1}{3} (1)^3$$

but

but
$$\frac{2}{5}=\int_{-1}^1 x^4\ dx\neq \frac{1}{3}(-1)^4+0+\frac{1}{3}(1)^4=\frac{2}{3}.$$
 Hence, the Simpson's quadrature rule is exact for \mathbb{P}^3 but not \mathbb{P}^4 .

Last lecture introduced the Simpson's rule

$$I(f) := \int_{-1}^{1} f(x) \ dx \approx \frac{1}{3} f(-1) + \frac{4}{3} f(0) + \frac{1}{3} f(1) =: Q(f).$$

We found that Q was exact for cubics.

Consider instead the quadrature scheme based on the nodes $\{x_0, x_1, x_2, x_3\} := \{-1, 0, 1/2, 1\}$, i.e.

$$I(f) \approx Q(f) = \sum_{i=0}^{3} w_i f(x_i).$$

We also saw during the last lecture that there exists a unique set of weights w_i , i = 0, 1, 2, 3 making Q exact for cubics (see Remark 12.1). Note that the Simpson's scheme can be interpreted as

$$Q(f) = \frac{1}{3}f(-1) + \frac{4}{3}f(0) + 0f(1/2) + \frac{1}{3}f(1)$$

and hence is the unique scheme. Applying the error formula provided by Theorem 12.1 gives

$$I(f) - Q(f) = \frac{1}{4!} \int_{-1}^{1} f^{(4)}(\xi_x) \prod_{i=0}^{3} (x - x_i) \ dx.$$

The quantity on the right side of the above relation is usually quite large. To get quadrature to approximate integrals, we need *composite schemes*.

Composite Schemes. Suppose you have a scheme

$$Q(f) = \sum_{i=0}^{n} w_i f(x_i) \approx \int_a^b f(x) \ dx = I(f),$$

exact on \mathbb{P}^n , where $\{x_0,...,x_n\}$ are distinct in [a,b].

We want to deduce from a scheme on $[\alpha, \beta]$. Let λ be the linear mapping taking [a, b] onto $[\alpha, \beta]$, i.e.

$$\lambda(x) = \alpha + \frac{x - a}{b - a}(\beta - \alpha)$$

 $(\lambda(a) = \alpha \text{ and } \lambda(b) = \beta)$. As we saw in an early homework, if $p \in \mathbb{P}^n$, then so is $q(x) = p(\lambda(x))$. Also,

$$\lambda^{-1}(x) = a_{\frac{t-\alpha}{\beta-\alpha}}(b-a)$$

is a linear mapping from $[\alpha, \beta]$ to [a, b]. Now, for $q \in \mathbb{P}^n$

$$\tilde{I}(q) := \int_{\alpha}^{\beta} q(t) dt = \frac{\beta - \alpha}{b - a} \int_{a}^{b} q(\lambda(x)) dx,$$

where we have used the change of variable $x = \lambda^{-1}(t)$ or $t = \lambda(x)$ so that $\frac{dx}{dt} = \frac{b-a}{\beta-\alpha}$ and $dt = \frac{\beta-\alpha}{b-a}dx$. Since the composition $q \circ \lambda$ is in \mathbb{P}^n and the quadrature scheme is exact on \mathbb{P}^n

$$\tilde{I}(q) := \frac{\beta - \alpha}{b - a} \sum_{i=0}^{n} w_i q(\lambda(x_i)).$$

We set

(8)
$$\tilde{w}_i = \frac{\beta - \alpha}{b - a} w_i \quad \text{and} \quad \tilde{x}_i = \lambda(x_i)$$

to deduce that

$$\int_{\alpha}^{\beta} q(t)dt = \sum_{i=0}^{n} \tilde{w}_{i}q(\tilde{x}_{i}) =: \tilde{Q}(q).$$

In conclusion, given a scheme

$$I(f) = \int_a^b f(x) \ dx \approx Q(f) = \sum_{i=0}^n w_i f(x_i)$$

which is exact on \mathbb{P}^n , we get a *translated* scheme

$$\tilde{I}(f) = \int_{\alpha}^{\beta} f(t) dt \approx \tilde{Q}(f) = \sum_{i=0}^{n} \tilde{w}_{i} f(\tilde{x}_{i})$$

which is also exact on \mathbb{P}^n using the notation (8).

Remark 13.1 (Property of the translated scheme). The map λ is a linear map of [a,b] onto $[\alpha,\beta]$ so it maps points in a proportional way: $a \to \alpha$ and $b \to \beta$ implies $(a+b)/2 \to (\alpha+\beta)/2$. More generally, for any $t \in [0,1]$

$$[a,b] \ni ta + (1-t)b \to t\alpha + (1-t)\beta \in [\alpha,\beta].$$

Composite Quadrature. We want to approximate

$$I(f) = \int_{a}^{b} f(x) \ dx$$

and introduce N+1 distinct points

$$a = x_0 < x_1 < \dots < x_N = b$$

and set $h = \max_{i=1,...,N} (x_i - x_{i-1})$. Hence, we split the integral over [a,b] onto N pieces

$$I(f) = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} f(x) \ dx$$

and use a base (translated) quadrature scheme over each sub-interval.

13.1. Simpson's Composite Quadrature Rule. If we use the Simpson's rule

$$\int_{-1}^{1} g(t) dt \approx \frac{1}{3}g(-1) + \frac{4}{3}g(0) + \frac{1}{3}g(1)$$

to approximate

$$\int_{x_{i-1}}^{x_i} f(x) \ dx,$$

we have

$$\int_{x_{i-1}}^{x_i} f(x) \ dx \approx \sum_{i=0}^{2} \tilde{w}_i f(\tilde{x}_i),$$

where

$$\tilde{w}_2 = \tilde{w}_0 = \frac{x_i - x_{i-1}}{2} \frac{1}{3}$$
 and $\tilde{w}_1 = \frac{x_i - x_{i-1}}{2} \frac{4}{3}$

and the nodes are moved proportionally

$$-1 \to x_{i-1}$$
, $1 \to x_i$ and $0 \to \frac{x_{i-1} + x_i}{2}$.

This implies

$$\int_{x_{i-1}}^{x_i} f(x) \ dx \approx \frac{x_i - x_{i-1}}{6} \left(f(x_{i-1}) + 4f(x_{i-1/2}) + f(x_i) \right),$$

where

$$x_{i-1/2} := \frac{x_{i-1} + x_i}{2}.$$

Gathering all the approximations in all subinterval, we arrive at the *composite* Simpson's rule approximation

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{N} \frac{x_{i} - x_{i-1}}{6} \left(f(x_{i-1}) + 4f(x_{i-1/2}) + f(x_{i}) \right) =: \sum_{i=1}^{N} \tilde{Q}_{i}(f).$$

Regarding the integration error, the Simpson's rule is the rule based on $\{-1,0,1/2,1\}$, which is exact for cubics. Since $\frac{1}{2} = \frac{3}{4}(1) + \frac{1}{4}(-1)$, the translated rule is the rule on

$$\{x_{i-1}, \frac{1}{2}(x_{i-1} + x_i), \frac{3}{4}x_i + \frac{1}{4}x_{i-1}, x_i\} := \{\tilde{x}_0, \tilde{x}_1, \tilde{x}_2, \tilde{x}_3\},\$$

which is exact on cubics. The error formula (Theorem 12.1) gives

$$\int_{x_{i-1}}^{x_i} f(x) \ dx - \tilde{Q}_i(f) = \frac{1}{24} \int_{x_{i-1}}^{x_i} f^{(4)}(\xi_x) \prod_{j=0}^{3} (x - \tilde{x}_j) \ dx,$$

provided that $f \in C^4[a, b]$. Let $||f^{(4)}||_{\infty} = \max_{t \in [a, b]} |f^{(4)}(t)|$, then

$$\left| \int_{x_{i-1}}^{x_i} f(x) \ dx - \tilde{Q}(f) \right| \le \frac{1}{24} \|f^{(4)}\|_{\infty} h^4 \int_{x_{i-1}}^{x_i} dx$$

(since $|x - \tilde{x}_i| \le h$ as $x, \tilde{x}_i \in [x_{i-1}, x_i]$). Therefore, we obtain that

$$\left| \int_{x_{i-1}}^{x_i} f(x) \ dx - \tilde{Q}(f) \right| \le \frac{1}{24} \|f^{(4)}\|_{\infty} h^4(x_i - x_{i-1}).$$

Summing over all subintervals gives an estimate for the error

$$\left| \int_{a}^{b} f(x) \ dx - \sum_{i=1}^{N} \tilde{Q}_{i}(f) \right| \leq \sum_{i=1}^{N} \left| \int_{x_{i-1}}^{x_{i}} f(x) \ dx - \tilde{Q}_{i}(f) \right| \leq \frac{b-a}{24} \|f^{(4)}\|_{\infty} h^{4}.$$

In general, a quadrature rule which is exact on \mathbb{P}^n translated to an interval of size h has a local accuracy of h^{n+2} and usually results in a global accuracy of h^{n+1} when used in a composite quadrature.

Gaussian Quadrature. We noted last lecture that the order of a quadrature is determined by exactness on \mathbb{P}^n . It is natural to optimize the order by allowing the nodes to move.

We start with examples.

Example 14.1 (One point).

$$I(f) = \int_{a}^{b} f(x) \ dx \approx (b - a)f(x_i).$$

Note that the weight (b-a) makes the quadrature exact on constants. For the quadrature to be exact on linears, we need that

$$\frac{b^2 - a^2}{2} = \int_a^b x \ dx = (b - x)x_i,$$

or

$$x_i = \frac{b+a}{2},$$

which implies that

$$Q(f) = (b-a)f\left(\frac{b+a}{2}\right).$$

This is called the mid-point rule. It is exact for linears but not quadratics since

$$\frac{b^3 - a^3}{3} = \int_a^b x^2 \neq (b - a) \left(\frac{a + b}{2}\right)^2.$$

Example 14.2 (Two points formula). The two-points formula has 4 unknowns (2 weights and 2 interpolation points). We show that we can determine these unknowns for the quadrature to be exact on cubics. For this, the following 4 exactness conditions (see Remark 12.1)

$$2 = \int_{-1}^{1} dx = w_1 + w_2$$

$$0 = \int_{-1}^{1} x dx = w_1 x_1 + w_2 x_2$$

$$\frac{2}{3} = \int_{-1}^{1} x^2 dx = w_1 x_1^2 + w_2 x_2^2$$

$$0 = \int_{-1}^{1} x^3 dx = w_1 x_1^3 + w_2 x_2^3.$$

From the second condition, we deduce that $w_1x_1 = -w_2x_2$. This into the 4th condition yield

$$0 = w_2 x_2 (x_1^2 - x_2^2).$$

Note that $w_1 \neq 0$, for otherwise it would be a one-point rule which cannot be exact for cubics, and $x_2 \neq 0$ for otherwise the second condition would imply that $x_1 = x_2 = 0$ and the interpolation points would not be distinct. Therefore, we must have $x_1^2 = x_2^2$, i.e.

$$x_1 = -x_2$$

(again, we want distinct interpolation points). Using the second constraint again, this implies that $w_2x_1 - w_2x_1 = 0$ or

$$w_1 = w_2$$
.

Now the second and fourth constraints hold. The first condition requires

$$w_1 + w_2 = 2$$
 \Longrightarrow $w_1 = w_2 = 1$.

Finally, the third condition implies

$$\frac{2}{3} = 2w_1x_1^2$$
 or $x_1 = \pm\sqrt{\frac{1}{3}}$.

Finally, the scheme is

$$\int_{-1}^{1} f(x) \ dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}}) := Q(f)$$

and is exact on cubics. It is not exact on quartics since

$$\frac{2}{5} = \int_{-1}^{1} x^4 \ dx \neq Q(x^4) = \frac{1}{9} + \frac{1}{9}.$$

Example 14.3 (Three points). Can we make a three points quadrature rule exact on \mathbb{P}^5 ? Here the unknowns are $\{w_i, x_i\}_{i=0}^2$. Assume the scheme is symmetric about the origin, i.e.

$$Q(f) = w_1 f(-x_1) + w_0 f(0) + w_1 f(x_1).$$

Notice that the symmetry implies that for all odd degree conditions:

$$0 = \int_{-1}^{1} x^{2j+1} dx = -w_1 x_1^{2j+1} + w_0 0 + w_1 x_1^{2j+1} = Q(x^{2j+1}), \qquad j \ge 0.$$

We now check the even degree conditions:

$$2 = \int_{-1}^{1} 1 \, dx \stackrel{?}{=} 2w_1 + w_0$$
$$\frac{2}{3} = \int_{-1}^{1} x^2 \, dx \stackrel{?}{=} 2w_1 x_1^2$$
$$\frac{2}{5} = \int_{-1}^{1} x^4 \, dx \stackrel{?}{=} 2w_1 x_1^4.$$

Divide the third relation by the second to get

$$\frac{3}{5} = x_1^2 \qquad \Longrightarrow \qquad x_1 = \sqrt{\frac{3}{5}}.$$

From the second relation we compute w_1 :

$$\frac{1}{3} = w_1 \frac{3}{5} \qquad \Longrightarrow \qquad w_1 = \frac{5}{9}.$$

This in the first constraint implies that

$$\frac{10}{9} + w_0 = 2 \qquad \Longrightarrow \qquad w_0 = \frac{8}{9}$$

and the scheme reads

$$Q(f) = \frac{5}{9}f(-\sqrt{3/5}) + \frac{8}{9}f(0) + \frac{5}{9}f(\sqrt{3/5}).$$

This scheme is exact on \mathbb{P}^5 but not on \mathbb{P}^6 .

Definition 14.1 (Gaussian Quadrature). A quadrature involving n points, which is exact on \mathbb{P}^{2n+1} is called a Gaussian quadrature.

Generalization: Weighted Gaussian Quadrature. Given a non-negative weight functions w(x) only vanishing at a discrete set of points, we want to derive Gaussian quadrature schemes such that

$$\int_{a}^{b} w(x)f(x) dx \approx \sum_{i=0}^{n} w_{i}f(x_{i}).$$

Notice that the assumption on the weight function implies that when $[\alpha, \beta] \subseteq [a, b]$ with $\alpha < \beta$ then

$$\int_{\alpha}^{\beta} w(x) \ dx > 0.$$

We define

$$\langle f, g \rangle_w := \int_a^b w(x) f(x) g(x) \ dx.$$

The mapping $\langle .,. \rangle_w$ provides an inner product on C[a,b], i.e.

(1) $\langle ., . \rangle_w$ is bilinear, i.e.

$$\langle \alpha f + \beta g, h \rangle_w = \alpha \langle f, h \rangle_w + \beta \langle f, h \rangle_w,$$

and

$$\langle h, \alpha f + \beta g \rangle_w = \alpha \langle h, f \rangle_w + \beta \langle h, g \rangle_w$$

for $f, g, h \in C[a, b]$ and $\alpha, \beta \in \mathbb{R}$.

(2) $\langle ., . \rangle_w$ is symmetric, i.e.

$$\langle f, g \rangle_w = \langle f, g \rangle_w, \qquad f, gC^{[a, b]}.$$

(3) $\langle ., . \rangle_w$ is positive definite, i.e.

$$\langle f, f \rangle_w \ge 0, \qquad f \in C[a, b]$$

and equals 0 only if f is the zero function, i.e. f(x) = 0.

The above three properties implies that

$$||f||_w := (\langle f, f \rangle_w)^{1/2}$$

is a norm on C[a, b] and

$$|\langle f, g \rangle_w| \le ||f||_w ||g||_w$$

(Cauchy-Schwartz inequality).

Definition 14.2 (w-orthogonality). We say that f is w-orthogonal to \mathbb{P}^k is

$$\langle f, p \rangle_w = 0$$
 for all $p \in \mathbb{P}^k$.

Theorem 14.1 (Gaussian Quadrature). Suppose there is a nonzero $q_{k+1} \in \mathbb{P}^{k+1}$ which is w-orthogonal to \mathbb{P}^k . If q_{k+1} has k+1 distinct roots $\{x_0,...,x_k\}$, then quadrature based on the nodes $\{x_0,...,x_k\}$ approximating

$$I(f) = \int_{a}^{b} w(x)f(x) \ dx$$

which is exact on \mathbb{P}^k is in fact exact on \mathbb{P}^{2k+1} , i.e. a Gaussian quadrature.

Note that the quadrature Q is exact on \mathbb{P}^k (or \mathbb{P}^{2k+1}) means that

$$I(p) = \int_{a}^{b} w(x)p(x) \ dx = Q(p)$$

for every $p \in \mathbb{P}^k$ (or \mathbb{P}^k). As in the case w(x) = 1, the exactness conditions uniquely determine the quadrature weights.

We postpone the proof of this theorem for later. For now, we make the following remark.

Remark 14.1 (Leading Coefficient of w-orthogonal polynomial). If $q_{k+1} \in \mathbb{P}^{k+1}$ is w-orthogonal to \mathbb{P}^k and nonzero then

$$q_{k+1}(x) = a_{k+1}x^{k+1} + a_kx^k + \dots + a_0$$

and $a_{k+1} \neq 0$. Indeed, if $a_{k+1} = 0$ then $q_{k+1} \in \mathbb{P}^k$ and

$$0 = \langle q_{k+1}, q_{k+1} \rangle_w = \int_a^b w(x) q_{k+1}^2(x) \ dx,$$

which implies that $q_{k+1} = 0$ and contradicts our assumption. Moreover, since we are only interested in the roots of q_{k+1} , we may assume that q_{k+1} is monic, i.e. $a_{k+1} = 1$ and

$$q_{k+1}(x) = x^{k+1} + a_k x^k + \dots + a_0.$$

Example 14.4 (k = 1 and w(x) = 1). Find a monic $q \in \mathbb{P}^2$ with

$$\langle f, g \rangle_w = \int_{-1}^1 f(x)g(x) \ dx.$$

We are looking for α and β such that

$$0 = \langle q, 1 \rangle_w = \int_{-1}^{1} (x^2 + \alpha x + \beta) \ dx = \frac{2}{3} + \alpha 0 + 2\beta,$$

i.e. $2\beta = -\frac{2}{3}$ or $\beta = -\frac{1}{3}$. In addition, we want

$$0 = \langle q, x \rangle_w = \int_{-1}^{1} (x^3 + \alpha x^2 + \beta x) \ dx = \frac{2}{3} \alpha,$$

and so $\alpha = 0$. This implies that the desired polynomial is

$$q(x) = x^3 - \frac{1}{3},$$

which has two roots, namely

$$\pm \frac{1}{\sqrt{3}}$$

There are the quadrature nodes derived in Example 14.2.

Example 14.5 (k = 2 and w(x) = 1). Find $q \in \mathbb{P}^3$,

$$q(x) = x^3 + \alpha x^2 + \beta x + \gamma,$$

which is w-orthogonal to \mathbb{P}^2 with w(x) = 1. The desired polynomial must satisfy the following 3 constraints

$$\alpha \frac{2}{3} + 2\gamma = \langle q, 1 \rangle_w = 0$$
$$\frac{2}{5} + \frac{2}{3}\beta = \langle q, x \rangle_w = 0$$
$$\alpha \frac{2}{5} + \frac{2}{3}\gamma = \langle q, x^2 \rangle_w = 0.$$

The first and last constraints hold only if

$$A := \begin{pmatrix} \frac{2}{3} & 2\\ \frac{2}{5} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} \alpha\\ \gamma \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

Note that $det(A) = \frac{4}{9} - \frac{4}{5} \neq 0$, so the only solution is $\alpha = \gamma = 0$. From the second constraint, we find that

$$\frac{1}{5} + \frac{\beta}{3} = 0 \qquad \Longrightarrow \qquad \beta = -\frac{3}{5}.$$

The desired polynomial reads

$$q(x) = x^3 - \frac{3}{5}x = (x^2 - \frac{3}{5})x$$

and has roots $-\sqrt{3/5}$, 0, $\sqrt{3/5}$.

15. Lecture 15

We start with the proof of the quadrature theorem (Theorem 14.1).

Proof of Theorem 14.1. Let $\{x_0,..,x_k\}$ be distinct roots of q_{k+1} and let Q be the associated exact quadrature scheme exact on \mathbb{P}^k . The latter is assumed to be non zero, belongs to \mathbb{P}^{k+1} and is w-orthogonal to \mathbb{P}^k . Let $p \in \mathbb{P}^{2k+1}$ and factor (using polynomial division with reminder)

$$p = qs + r$$

with $r, s \in \mathbb{P}^k$. Then,

$$I(p) = \int_{a}^{b} w(x)p(x) \ dx = \underbrace{\int_{a}^{b} w(x)q(x)s(x) \ dx}_{=0} + \int_{a}^{b} w(x)r(x) \ dx$$

using the fact that q is w-orthogonal to \mathbb{P}^k and $s \in \mathbb{P}^k$. Now, since Q is exact on \mathbb{P}^k , then

$$I(p) = \sum_{j=0}^{k} w_j r(x_j).$$

Moreover, the nodes $\{x_0,...,x_k\}$ are the roots of p, so that computing further

$$I(p) = \sum_{j=0}^{k} w_j r(x_j) = \sum_{j=0}^{k} w_j \left(\underbrace{q(x_j)}_{=0} s(x_j) + r(x_j) \right) = Q(p),$$

which proves the quadrature is exact on \mathbb{P}^{2k+1}

Lemma 15.1 (Roots of w-orthogonal polynomial). If $q \in \mathbb{P}^{k+1}$ is non zero and is w-orthogonal to \mathbb{P}^k , then all of the roots of q are distinct and in (a,b).

Proof. We will see in the next lemma (Lemma 15.2) that q as real coefficients. If q does not have any root in (a, b) then q > 0 or q < 0 in (a, b) and so

$$\int_{a}^{b} w(x)q(x) \ dx > 0 \quad \text{and} \quad \int_{a}^{b} w(x)q(x) \ dx < 0,$$

either contradicting the w-orthogonality of q in $\mathbb{P}^0 \subset \mathbb{P}^k$.

Suppose now that q has $1 \le l < k+1$ roots in (a,b), denoted $y_1, y_2, ..., y_l$ (repeated according to their multiplicity), and set

$$r(x) = \prod_{y_j \text{ root of odd multiplicity}} (x - y_j).$$

As the polynomial q changes sign across a root of odd multiplicity (as does r(x)), the product q(x)r(x) has the same sign except for $x = y_j$, where y_j is a root of odd multiplicity. This implies that

$$\int_{a}^{b} w(x)q(x)r(x) \ dx \neq 0.$$

As $r \in \mathbb{P}^k$, this is a contradiction with the w-orthogonality in \mathbb{P}^k . As a consequence, there must be k+1 roots of q in (a,b) and so they must be distinct for the resulting r to belongs to \mathbb{P}^{k+1} .

Lemma 15.2 (Real coefficients). There is a unique monic real polynomial $q \in \mathbb{P}^{k+1}$, which is w-orthogonal to \mathbb{P}^k .

Proof. Let $q = x^{k+1} + \alpha_k x^k + ... + \alpha_0$. Then q is a w-orthogonal to \mathbb{P}^k if and only if

$$\langle q, x^j \rangle_w = 0, \qquad j = 0, ..., k,$$

i.e.

$$\langle x^{k+1}, x^j \rangle_w + \sum_{l=0}^k \alpha_l \langle x^l, x^j \rangle_w = 0, \qquad j = 0, ..., k.$$

This is equivalent to

$$A \begin{pmatrix} \alpha_0 \\ \dots \\ \alpha_k \end{pmatrix} = F,$$

where the coefficients of the matrix A are given by

$$A_{i,l} = \langle x^l, x^j \rangle_w$$
 $j, l = 0, ..., k$

and

$$F_j = -\langle x^{k+1}, x^j \rangle_w, \qquad j = 0, ..., k.$$

Suppose that $A\beta = 0$ for some $\beta \in \mathbb{R}^{k+1}$. Set

$$r(x) = \beta_k x^k + \beta_{k-1} x^{k-1} + \dots + \beta_0.$$

The jth equation of $A\beta = 0$ is

$$0 = \sum_{l=0}^{k} A_{j,l} \beta_l = \sum_{l=0}^{k} \langle x^l, x^j \rangle_w \beta_l = \sum_{l=0}^{k} \langle \beta_l x^l, x^j \rangle_w = \langle r(x), x^j \rangle_w, \quad j = 0, 1, ..., k,$$

i.e. r(x) is w-orthogonal to \mathbb{P}^k . As $r \in \mathbb{P}^k$

$$0 = \langle r(x), r(x) \rangle_w \implies r(x) = 0$$
, i.e. $\beta = 0$.

This proves that A is nonsingular. As A is real valued, so is A^{-1} . (For instance, the inverse can be computed by row reducing $(A:I) \to (I:A^{-1})$.)

Every weighted quadrature problem gives rise to a sequence of orthogonal polynomial. The sequence follows a 3 term recurrence.

Start with $\tilde{p}_0 = 1 \in \mathbb{P}^0$ (nothing to be orthogonal to). Then $\tilde{p}_1 \in \mathbb{P}^1$ must be orthogonal to 1. If $\tilde{p}_1(x) = x + \alpha$ then α must satisfy

$$0 = \langle x + \alpha, 1 \rangle_w$$
, or $\alpha = -\langle x, 1 \rangle_w$.

Suppose we have computed \tilde{p}_{i-1} and \tilde{p}_i . Write

$$\tilde{p}_{j+1} = (x+\alpha)\tilde{p}_j + \beta \tilde{p}_{j-1}.$$

Then for $\theta \in \mathbb{P}^{j-2}$

$$\langle \tilde{p}_{j+1}, \theta \rangle_w = \langle (x+\alpha) \tilde{p}_j, \theta \rangle_w + \beta \underbrace{\langle \tilde{p}_{j-1}, \theta \rangle_w}_{=0} = \underbrace{\langle \tilde{p}_j, (x+\alpha) \theta \rangle_w}_{=0} = 0.$$

We also need

$$0 = \langle \tilde{p}_{j+1}, \tilde{p}_{j-1} \rangle_w = \langle (x+\alpha)\tilde{p}_j, \tilde{p}_{j-1} \rangle_w + \beta \langle \tilde{p}_{j-1}, \tilde{p}_{j-1} \rangle_w.$$

The α term goes away so

$$\beta = -\frac{\langle x\tilde{p}_j, \tilde{p}_{j-1}\rangle_w}{\langle \tilde{p}_{j-1}, \tilde{p}_{j-1}\rangle_w}.$$

Also

$$0 = \langle \tilde{p}_{j+1}, \tilde{p}_j \rangle_w = \langle (x+\alpha)\tilde{p}_j, \tilde{p}_j \rangle_w + \beta \underbrace{\langle \tilde{p}_{j-1}, \tilde{p}_j \rangle_w}_{=0},$$

and so we find

$$\alpha = -\frac{\langle x\tilde{p}_j, \tilde{p}_j \rangle_w}{\langle \tilde{p}_j, \tilde{p}_j \rangle_w}.$$

The values of α and β determines \tilde{p}_{j+1} . Note that the orthogonal polynomials always satisfy 3 term recurrence relations!

Rodrigues Formula for Legendre Polynomials.

Example 15.1. w(x) = 1, a = -1, b = 1] Consider the approximation $I(f) = \int_{-1}^{1} f(x) dx$. Then

$$\tilde{p}_n(x) = \frac{1}{(2n)(2n-1) \cdot \dots \cdot (n+1)} \frac{d^n}{dx^n} [(x^2 - 1)^n].$$

To see this, we check that it is a monic polynomial of degree n and w-orthogonal to \mathbb{P}^{n-1} . We leave the first part as an exercise (Exercise 15.1). Now, if $p \in \mathbb{P}^{n-1}$

$$\int_{-1}^{1} \frac{d^{n}}{dx^{n}} [(x^{2} - 1)^{n}] p(x) \ dx = \underbrace{\frac{d^{n}}{dx^{n}} [(x^{2} - 1)^{n}]}_{0} \Big|_{-1}^{1} - \int_{-1}^{1} \frac{d^{n-1}}{dx^{n-1}} [(x^{2} - 1)^{n}] p'(x) \ dx.$$

Repeating this by moving all derivatives over to p, we arrive at

$$\int_{-1}^{1} \frac{d^{n}}{dx^{n}} [(x^{2} - 1)^{n}] p(x) \ dx = (-1)^{n} \int_{-1}^{1} (x^{2} - 1)^{n} \underbrace{p^{(n)}(x)}_{=0} \ dx = 0$$

because $p \in \mathbb{P}^{n-1}$.

Definition 15.1 (Legendre Polynomials). The polynomial

$$\frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n].$$

is called the Legendre polynomial (different normalization) and satisfies

$$(n+1)p_{n+1}(x) = (2n+1)xp_n(x) - np_n(x).$$

Exercise 15.1. Show that

$$\tilde{p}_n(x) = \frac{1}{(2n)(2n-1) \cdot \dots \cdot (n+1)} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$

is a polynomial of degree n and is monic (i.e. the leading coefficient is 1).

Rodrigues Formula for Chebyshev Polynomials.

Example 15.2 (Chebyshev polynomials). We recall that the Chebyshev are given by

$$T_n(x) = \cos(n\cos^{-1}(x)).$$

Note that for $n \neq j$

$$\int_0^\pi \cos(n\theta)\cos(j\theta)\ d\theta = 0.$$

We leave the above claim as exercise.

Set
$$\theta = \cos^{-1}(x)$$
, then $x = \cos(\theta)$ and

$$dx = -\sin(\theta)d\theta = -\sqrt{1 - \cos^2(\theta)} \ d\theta = -\sqrt{1 - x^2} \ d\theta.$$

Using the orthogonality above

$$0 = \int_0^{\pi} \cos(n\theta) \cos(j\theta) \ d\theta = \int_{-1}^1 \cos(n \cos^{-1}(x)) \cos(j \cos^{-1}(x)) \frac{dx}{\sqrt{1 - x^2}}$$
$$= \int_{-1}^1 \frac{1}{\sqrt{1 - x^2}} T_n(x) T_j(x) \ dx,$$

i.e. the Chebyshev polynomial T_n are orthogonal polynomials on -1,1 with weights $w(x) = \frac{1}{\sqrt{1-x^2}}$ and satisfy the recurrence

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

as we have seen already in Section 5.1.

We saw last lecture that the Chebyshev polynomials are orthogonal with respect to the scalar product

$$\langle f, g \rangle_w = \int_{-1}^1 \underbrace{\frac{1}{\sqrt{1 - x^2}}}_{=:w(x)} f(x)g(x) \ dx,$$

i.e. T_{n+1} satisfies $T_{n+1} \in \mathbb{P}^{n+1}$ and

$$\langle T_{n+1}, T_j \rangle_w = 0, \qquad 0 \le j \le m.$$

As $\{T_j\}_{j=0}^n$ is a basis for \mathbb{P}^n , T_{n+1} is w-orthogonal to \mathbb{P}^n . The Rodrigues formula for the Chebyshev polynomials reads

$$\tilde{T}_n = w(x) \frac{d^n}{dx^n} \left(w(x) (1 - x^2)^n \right) = \frac{1}{(1 - x^2)^{1/2}} \frac{d^n}{dx^n} \left((1 - x^2)^{n - 1/2} \right)$$

using the definition of the weight $w(x) = (1 - x^2)^{-1/2}$. Note that

$$\frac{d^n}{dx^n}(fg) = \sum_{j=0}^n \binom{n}{j} f^{(j)} g^{(n-j)}$$

(you can prove this by induction). Therefore,

$$\tilde{T}_n(x) = \frac{1}{(1-x^2)^{1/2}} \frac{d^n}{dx^n} \left((1-x)^{n-1/2} (1+x)^{n-1/2} \right)$$

$$= \frac{1}{(1-x^2)^{1/2}} \sum_{j=0}^n \binom{n}{j} c_{j,n} (1-x)^{n-j-1/2} (1+x)^{j-1/2}$$

$$= \sum_{j=0}^n \binom{n}{j} c_{j,n} (1-x)^{n-j} (1+x)^j.$$

This proves that $\tilde{T}_n \in \mathbb{P}^n$. We now check that it is w-orthogonal. We use integration by parts again:

$$I := \int_{-1}^{1} (1 - x^{2})^{-1/2} \tilde{T}_{n}(x) p(x) dx$$

$$= \int_{-1}^{1} \frac{d^{n}}{dx^{n}} \left((1 - x^{2})^{-1/2} (1 - x^{2})^{n} \right) p(x) dx$$

$$= p(x) \frac{d^{n-1}}{dx^{n-1}} \left((1 - x)^{n-1/2} (1 + x)^{n-1/2} \right) \Big|_{x=-1}^{x=1} - \int_{-1}^{1} \frac{d^{n-1}}{dx^{n-1}} \left((1 - x^{2})^{-1/2} (1 - x^{2})^{n} \right) p'(x) dx$$

$$= -\sum_{i=0}^{n-1} {n-1 \choose j} c_{n-1,j} (1-x)^{n-j-1/2} (1+x)^{j+1-1/2}.$$

Note that all terms evaluated at either x = -1 or x = 1 are zero because the have positive powers of (1-x) and (1+x). Repeating the argument gives

$$I = (-1)^n \int_{-1}^{1} (1 - x^2)^{-1/2} (1 - x^2)^n p^{(n)}(x) \ dx = 0$$

for $p \in \mathbb{P}^{n-1}$. Since, T_n and \tilde{T}_n differ at most by a normalization constant, T_n is also a polynomial of degree n, w-orthogonal to \mathbb{P}^{n-1} .