

WHAT IS CLAIMED IS:

1 1. A substrate layout method for reducing cross talk of adjacent signals, the substrate
2 having a plurality of signal pads formed on a die, a ring around said die, and a plurality of
3 signal fingers around said ring, the substrate layout method comprising:

4 forming a guard pad between two adjacent signal pads;

5 forming a guard finger between two adjacent signal fingers;

6 forming a first bonding wire to connect said guard pad to said ring;

7 forming a second bonding wire to connect said ring to said guard finger; and

8 forming a guard trace to connect said guard finger to a via at the edge of the
9 substrate, and connecting said guard trace to a short-circuiting place through said via.

1 2. The substrate layout method as claimed in claim 1, wherein the substrate is a ball
grid array.

1 3. The substrate layout method as claimed in claim 1, wherein said guard pad is
2 selected from the group consisting of a power and ground pad.

1 4. The substrate layout method as claimed in claim 1, wherein said ring is selected
2 from the group consisting of a power and ground ring.

1 5. The substrate layout method as claimed in claim 1, wherein said short-circuiting
2 place is selected from the group consisting of a power and ground plane of the substrate.

1 6. The substrate layout method as claimed in claim 1, wherein said
2 short-circuiting place is selected from the group consisting of a power and ground solder
3 ball under the substrate.

1 7. A substrate layout structure for reducing cross talk of adjacent signals, the substrate
2 having a plurality of signal pads formed on a die, a ring around said die, and a plurality of
3 signal fingers around said ring, the substrate layout structure comprising:

4 a guard pad formed between two adjacent signal pads;

5 a guard finger formed between two adjacent signal fingers;

6 a first bonding wire for connecting said guard pad to said ring;

7 a second bonding wire for connecting said ring to said guard finger; and

8 a guard trace for connecting said guard finger to a via at the edge of the substrate,
9 and connecting said guard trace to a short-circuiting place through said via.

1 8. The substrate layout method as claimed in claim 7, wherein the substrate is a ball
2 grid array.

1 9. The substrate layout method as claimed in claim 7, wherein said guard pad is
2 selected from the group consisting of a power and ground pad.

1 10. The substrate layout method as claimed in claim 7, wherein said ring is selected
2 from the group consisting of a power and ground ring.

1 11. The substrate layout method as claimed in claim 7, wherein said short-circuiting
2 place is selected from the group consisting of a power and ground plane of the substrate.

1 12. The substrate layout method as claimed in claim 7, wherein said
2 short-circuiting place is selected from the group consisting of a power and ground solder
3 ball under the substrate.

1 13. A substrate layout method for reducing cross talk of adjacent signals, the substrate
2 having a plurality of signal pads formed on a die, a ring around said die, and a plurality of
3 signal fingers around said ring, the substrate layout method comprising:

4 forming a guard finger between two adjacent signal fingers;
5 forming a bonding wire to connect said ring to said guard finger; and
6 forming a guard trace to connect said guard finger to a via at the edge of the
7 substrate, and connecting said guard trace to a short-circuiting place through said via.

1 14. The substrate layout method as claimed in claim 13, wherein said ring is selected
2 from the group consisting of a power and ground ring.

1 15. The substrate layout method as claimed in claim 13, wherein said short-circuiting
2 place is a power and ground plane of the substrate.

1 16. The substrate layout method as claimed in claim 13, wherein said
2 short-circuiting place is a power and ground solder ball under the substrate.

1 17. A substrate layout structure for reducing cross talk of adjacent signals, the substrate
2 having a plurality of signal pads formed on a die, a ring around said die, and a plurality of
3 signal fingers around said ring, the substrate layout structure comprising:

4 a guard finger formed between two adjacent signal fingers;
5 a bonding wire for connecting said ring to said guard finger; and

6 a guard trace for connecting said guard finger to a via at the edge of the substrate,
7 and connecting said guard trace to a short-circuiting place through said via.

1 18. The substrate layout method as claimed in claim 17, wherein said ring is selected
2 from the group consisting of a power and ground ring.

1 19. The substrate layout method as claimed in claim 17, wherein said short-circuiting
2 place is selected from the group consisting of a power and ground plane of the substrate.

1 20. The substrate layout method as claimed in claim 17, wherein said
2 short-circuiting place is selected from the group consisting of a power and ground solder
3 ball under the substrate.

1

CONFIDENTIAL - THIS DOCUMENT CONTAINS TRADE SECRET INFORMATION