Elementary Linear Algebra - MATH 2250 - Day 22

Name:

- 1. Find the eigenvalues and the eigenvectors of a triangular matrix: Once with distinct eigenvalues and once with equal eigenvalues.
- 2. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Find the eigenvalues of A and their corresponding eigenvectors. Call these eigenvalues λ_1 and λ_2 , and the corresponding eigenvectors v_1 and v_2 .

Let
$$S = \left[\begin{array}{c|c} v_1 & v_2 \end{array} \right]$$
. Evaluate AS .

Let $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2)$. Evaluate $S\Lambda$.

Evaluate S^{-1} .

Evaluate $S^{-1}AS$.

Multiply the eigenvalues of A, and compare it with the product of the pivots.

Is it true that the pivots of A are the same as eigenvalues of A?

3. Using the same matrix A as in problem 1, recall that $A = S\Lambda S^{-1}$. Evaluate A^2 , A^3 , and A^4 . What are the eigenvalues of A^2 , A^3 , A^4 ?

4. What are the eigenvalues of $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Is the matrix diagonalizable? What is the diagonlized A?

5. What are the eigenvalues of $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

What are the algebraic multiplicities of the eigenvalues of A?

What are the geometric multiplicities of the eigenvalues of A?

Is the matrix diagonalizable? Why?

6. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
. Find λ and x such that $Ax = \lambda x$

Switch two rows of A to get B. Is it true that $Bx = \lambda x$?

What are all the eigenvalues of B?

- 7. If the all the eigenvalues of $A_{n\times n}$ are distinct, then the eigenvectors of A are _______, and hence they form a _____ for \mathbb{R}^n . That is, every vector $v \in \mathbb{R}^n$ can be written as a _____ of the eigenvectors of A.
- 8. Is it true that if A is diagonalizable, then the eigenvalues of A are distinct? Check it for the identity matrix.

9. If A diagonalizable, is it true that the diagonalized A is the same as rref(A)? Give an example.

10. Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$.