ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ - ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ

(2021 - 2022)

2η Σειρά Αναλυτικών Ασκήσεων

Διδάσκων Μαθήματος:

Κ. Τζαφέστας

Ονοματεπώνυμο:

Χρήστος Τσούφης

Αριθμός Μητρώου:

• 031 17 176

Στοιχεία Επικοινωνίας:

- el17176@mail.ntua.gr
- chris99ts@gmail.com

Ασκηση 2.1 (Διαφορική Κινηματική Ανάλυση – Υπολογισμός Ιακωβιανής Μήτρας – Ιδιόμορφες Διατάξεις)

Έστω ρομποτική κινηματική αλυσίδα τριών βαθμών ελευθερίας (q_1, q_2, q_3) της οποίας η κινηματική δομή περιγράφεται μέσω των ακόλουθων μητρώων μετασχηματισμού συντεταγμένων:

$$A_1^0(q_1) = \begin{bmatrix} c_1 & 0 & s_1 & l_0 \\ 0 & 1 & 0 & l_1 \\ -s_1 & 0 & c_1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_2^1(q_2) = \begin{bmatrix} c_2 & -s_2 & 0 & l_2c_2 \\ s_2 & c_2 & 0 & l_2s_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \kappa \alpha i A_3^2(q_3) = \begin{bmatrix} c_3 & -s_3 & 0 & -l_3s_3 \\ s_3 & c_3 & 0 & l_3c_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $(όπου c_i = cos(q_i), s_i = sin(q_i)$ για $i \in \{1, 2, 3\}$ και l_0, l_1, l_2, l_3 : σταθερά μήκη συνδέσμων)

- α) Να προσδιοριστεί (με εφαρμογή της γεωμετρικής μεθόδου) η Iακωβιανή μήτρα $J(q_1, q_2, q_3)$ του διαφορικού κινηματικού μοντέλου του ρομποτικού αυτού μηχανισμού.
- **β)** Να εξετασθεί πότε ο μηχανισμός εμφανίζει **ιδιόμορφες διατάξεις** ως προς τη γραμμική ταχύτητα ($\mathbf{v}_{\mathbf{E}}$) του τελικού στοιχείου δράσης. Να δοθεί γεωμετρική ερμηνεία των ανωτέρω ιδιόμορφων διατάξεων του μηχανισμού.

Λύση:

α) Ο προσδιορισμός γίνεται ως εξής:

$$A_2^0 = A_1^0 \cdot A_2^1 = \begin{bmatrix} c_1 & 0 & s_1 & l_0 \\ 0 & 1 & 0 & l_1 \\ -s_1 & 0 & c_1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_2 & -s_2 & 0 & l_2 c_2 \\ s_2 & c_2 & 0 & l_2 s_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_1 c_2 & -c_1 s_2 & s_1 & c_1 c_2 l_2 + l_0 \\ s_2 & c_2 & 0 & l_1 + l_2 s_2 \\ -c_2 s_1 & s_1 s_2 & c_1 & -c_2 l_2 s_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3^0 = A_2^0 \cdot A_3^2 = \begin{bmatrix} c_1 c_2 & -c_1 s_2 & s_1 & c_1 c_2 l_2 + l_0 \\ s_2 & c_2 & 0 & l_1 + l_2 s_2 \\ -c_2 s_1 & s_1 s_2 & c_1 & -c_2 l_2 s_1 \end{bmatrix} \begin{bmatrix} c_3 & -s_3 & 0 & -l_3 s_3 \\ s_3 & c_3 & 0 & l_3 c_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$\Rightarrow A_3^0 = \begin{bmatrix} c_1 c_2 c_3 - c_1 s_2 s_3 & -c_1 c_2 s_3 - c_1 c_3 s_2 & s_1 & c_1 c_2 l_2 + c_1 c_2 l_3 s_3 - c_1 c_3 l_3 s_2 + l_0 \\ c_2 s_3 + c_3 s_2 & c_2 c_3 - s_2 s_3 & 0 & c_2 c_3 l_3 + l_1 + l_2 s_2 + l_3 s_2 s_3 \\ -c_2 c_3 s_1 + s_1 s_2 s_3 & c_2 s_1 s_3 + c_3 s_1 s_2 & c_1 & -c_2 l_2 s_1 - c_2 l_3 s_1 s_3 + c_3 l_3 s_1 s_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$\Rightarrow A_3^0 = \begin{bmatrix} c_1 c_{23} & -c_1 s_{23} & s_1 & c_1 c_2 l_2 - l_3 c_1 s_{23} + l_0 \\ s_{23} & c_{23} & 0 & l_3 c_3 + l_1 + l_2 s_2 \\ -s_1 c_{23} & s_1 s_{23} & c_1 & -c_2 l_2 s_1 + s_1 l_3 s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$`O\pi ov, c_{i...j} = \cos(q_i + \dots + q_j), s_{i...j} = \sin(q_i + \dots + q_j),$$

$$\cos(q_i \pm \frac{\pi}{2}) = \mp \sin(q_I), \sin(q_i \pm \frac{\pi}{2}) = \pm \cos(q_I),$$

 $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$, $\cos(a \pm b) = \cos a \cos b + \sin a \sin b$

Οπότε, ο προσανατολισμός και η θέση του εκάστοτε στοιχείου δράσης, αντίστοιχα, ως προς το σύστημα συντεταγμένων του μηχανισμού θα είναι:

$$\begin{split} \boldsymbol{A_3^0} &= \begin{bmatrix} c_1c_{23} & -c_1s_{23} & s_1 & c_1c_2l_2 - l_3c_1s_{23} + l_0 \\ s_{23} & c_{23} & 0 & l_3c_{23} + l_1 + l_2s_2 \\ -s_1c_{23} & s_1s_{23} & c_1 & -c_2l_2s_1 + s_1l_3s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \\ \boldsymbol{R_3^0}(\boldsymbol{q_1}, \boldsymbol{q_2}, \boldsymbol{q_3}) &= \begin{bmatrix} c_1c_{23} & -c_1s_{23} & s_1 \\ s_{23} & c_{23} & 0 \\ -s_1c_{23} & s_1s_{23} & c_1 \end{bmatrix} \\ \boldsymbol{p_3^0}(\boldsymbol{q_1}, \boldsymbol{q_2}, \boldsymbol{q_3}) &= \begin{bmatrix} c_1c_2l_2 - l_3c_1s_{23} + l_0 \\ l_3c_{23} + l_1 + l_2s_2 \\ -c_2l_2s_1 + s_1l_3s_{23} \end{bmatrix} \end{split}$$

$$A_{2}^{0} = \begin{bmatrix} c_{1}c_{2} & -c_{1}s_{2} & s_{1} & c_{1}c_{2}l_{2} + l_{0} \\ s_{2} & c_{2} & 0 & l_{1} + l_{2}s_{2} \\ -c_{2}s_{1} & s_{1}s_{2} & c_{1} & -c_{2}l_{2}s_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$R_{2}^{0}(\mathbf{q}_{1}, \mathbf{q}_{2}) = \begin{bmatrix} c_{1}c_{2} & -c_{1}s_{2} & s_{1} \\ s_{2} & c_{2} & 0 \\ -c_{2}s_{1} & s_{1}s_{2} & c_{1} \end{bmatrix}$$

$$p_{2}^{0}(\mathbf{q}_{1}, \mathbf{q}_{2}) = \begin{bmatrix} c_{1}c_{2}l_{2} + l_{0} \\ l_{1} + l_{2}s_{2} \\ -c_{2}l_{2}s_{1} \end{bmatrix}$$

$$A_{1}^{0} = \begin{bmatrix} c_{1} & 0 & s_{1} & l_{0} \\ 0 & 1 & 0 & l_{1} \\ -s_{1} & 0 & c_{1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$R_{1}^{0}(\mathbf{q}_{1}) = \begin{bmatrix} c_{1} & 0 & s_{1} \\ 0 & 1 & 0 \\ -s_{1} & 0 & c_{1} \end{bmatrix}$$

$$p_{1}^{0}(\mathbf{q}_{1}) = \begin{bmatrix} l_{0} \\ l_{1} \\ 0 \end{bmatrix}$$

Ο πίνακας $A_1^0(q_1)$ περιγράφει στροφή της q_1 γύρω από τον άξονα y. Οπότε, θα ισχύει:

$$b = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\widehat{b_0} = R_0^0 b = I_3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Οι πίνακες $A_2^1(q_2)$, $A_3^2(q_3)$ περιγράφουν στροφή των q_2 , q_3 γύρω από τον άξονα z. Οπότε, θα ισχύει:

$$b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\widehat{b_1} = R_1^0 b = \begin{bmatrix} c_1 & 0 & s_1 \\ 0 & 1 & 0 \\ -s_1 & 0 & c_1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\widehat{b_2} = R_2^0 b = \begin{bmatrix} c_1 c_2 & -c_1 s_2 & s_1 \\ s_2 & c_2 & 0 \\ -c_2 s_1 & s_1 s_2 & c_1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} s_1 \\ 0 \\ c_1 \end{bmatrix}$$

Για τον υπολογισμό της Ιακωβιανής μήτρας απαραίτητα είναι επίσης και τα εξής μεγέθη:

$$J_{L_i} = \widehat{b_{i-1}} \times \widehat{r_{i-1,E}}$$

$$J_{A_i} = \widehat{b_{i-1}}$$

$$\begin{bmatrix} \overrightarrow{r_{i-1,E}} \\ 0 \end{bmatrix} = A_n^0 \cdot \overrightarrow{r} - A_{i-1}^0 \cdot \overrightarrow{r}$$

$$\overrightarrow{r} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T$$

 Γ ια i = 1:

$$\begin{split} \left[\overrightarrow{r_{0,E}}\right] &= A_3^0 \cdot \overrightarrow{r} - A_0^0 \cdot \overrightarrow{r} \Rightarrow \widehat{r_{0,E}} = p_3^0 = \begin{bmatrix} c_1 c_2 l_2 - l_3 c_1 s_{23} + l_0 \\ l_3 c_{23} + l_1 + l_2 s_2 \\ -c_2 l_2 s_1 + s_1 l_3 s_{23} \end{bmatrix} \\ J_{A_1} &= \widehat{b_0} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ J_{L_1} &= \widehat{b_0} \times \widehat{r_{0,E}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} c_1 c_2 l_2 - l_3 c_1 s_{23} + l_0 \\ l_3 c_{23} + l_1 + l_2 s_2 \\ -c_2 l_2 s_1 + s_1 l_3 s_{23} \end{bmatrix} = \begin{bmatrix} -c_2 l_2 s_1 + l_3 s_1 s_{23} \\ 0 \\ -c_1 c_2 l_2 + c_1 l_3 s_{23} - l_0 \end{bmatrix} \end{split}$$

 Γ ια i=2:

$$\begin{split} \left[\overrightarrow{r_{1,E}}\right] &= A_3^0 \cdot \vec{r} - A_1^0 \cdot \vec{r} \Rightarrow \widehat{r_{1,E}} = p_3^0 - p_1^0 = \begin{bmatrix} c_1 c_2 l_2 - l_3 c_1 s_{23} + l_0 \\ l_3 c_{23} + l_1 + l_2 s_2 \\ -c_2 l_2 s_1 + s_1 l_3 s_{23} \end{bmatrix} - \begin{bmatrix} l_0 \\ l_1 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 c_2 l_2 - c_1 l_3 s_{23} \\ c_{23} l_3 + l_2 s_2 \\ -c_2 l_2 s_1 + l_3 s_1 s_{23} \end{bmatrix} \\ J_{A_2} &= \widehat{b_1} = \begin{bmatrix} s_1 \\ 0 \\ c_1 \end{bmatrix} \\ J_{L_2} &= \widehat{b_1} \times \widehat{r_{1,E}} = \begin{bmatrix} s_1 \\ 0 \\ c_1 \end{bmatrix} \times \begin{bmatrix} c_1 c_2 l_2 - c_1 l_3 s_{23} \\ c_{23} l_3 + l_2 s_2 \\ -c_2 l_2 s_1 + l_3 s_1 s_{23} \end{bmatrix} = \begin{bmatrix} c_1 (c_1 c_2 l_2 - c_1 l_3 s_{23} + l_2 s_2) \\ c_1 (c_1 c_2 l_2 - c_1 l_3 s_{23}) - s_1 (-c_2 l_2 s_1 + l_3 s_1 s_{23}) \end{bmatrix} \Rightarrow J_{L_2} &= \begin{bmatrix} -c_1 (c_{23} l_3 + l_2 s_2) \\ l_2 c_2 - l_3 s_{23} \\ s_1 (c_{23} l_3 + l_2 s_2) \end{bmatrix} \\ \Rightarrow J_{L_2} &= \begin{bmatrix} -c_1 (c_{23} l_3 + l_2 s_2) \\ l_2 c_2 - l_3 s_{23} \\ s_1 (c_{23} l_3 + l_2 s_2) \end{bmatrix} \end{split}$$

 Γ ια i = 3:

Υπολογισμός Ιακωβιανής Μήτρας:

$$\boldsymbol{J}(\overrightarrow{\boldsymbol{q}}) = \begin{bmatrix} J_{L_1}J_{L_2}J_{L_3} \\ J_{A_1}J_{A_2}J_{A_3} \end{bmatrix} = \begin{bmatrix} -c_2l_2s_1 + l_3s_1s_{23} & -c_1(c_{23}l_3 + l_2s_2) & -c_1c_{23}l_3 \\ 0 & l_2c_2 - l_3s_{23} & -l_3s_{23} \\ -c_1c_2l_2 + c_1l_3s_{23} - l_0 & s_1(c_{23}l_3 + l_2s_2) & c_{23}l_3s_1 \\ 0 & s_1 & s_1 \\ 1 & 0 & 0 \\ 0 & c_1 & c_1 \end{bmatrix}$$

β) Ο μηχανισμός εμφανίζει ιδιόμορφες διατάξεις ως προς τη γραμμική ταχύτητα (v_E) για τιμές όπου ισχύει ότι $\det(J[1:3, 1:3]) = 0$

Εάν $l_2=0$, τότε ο μηχανισμός εμφανίζει ιδιόμορφες διατάξεις ως προς τη γραμμική ταχύτητα για κάθε συνδυασμό θέσεων των (q_1, q_2, q_3) . Μάλιστα, η 2^{η} και η 3^{η} στήλη του πίνακα J[1:3, 1:3] θα είναι ίδιες. Γεωμετρικά, αυτό θα σημαίνει ότι η 2^{η} και η 3^{η} άρθρωση θα βρίσκονται στον ίδιο άξονα και έτσι, θα ελέγχουν τη γραμμική ταχύτητα του τελικού στοιχείου με τον ίδιο τρόπο με αποτέλεσμα να χάνεται ένας βαθμός ελευθερίας.

Εάν $l_3=0$, τότε ο μηχανισμός εμφανίζει ιδιόμορφες διατάξεις ως προς τη γραμμική ταχύτητα για κάθε συνδυασμό θέσεων των (q_1,q_2,q_3) . Μάλιστα, η 3^η στήλη του πίνακα J[1:3,1:3] θα μηδενίζεται. Γεωμετρικά, αυτό θα σημαίνει ότι η q_3 δεν θα ελέγχει τη γραμμική ταχύτητα του τελικού στοιχείου αφού αυτό βρίσκεται πάνω στον άξονά της.

Εάν $l_2 \neq 0$, $l_3 \neq 0$, τότε ο μηχανισμός εμφανίζει ιδιόμορφες διατάξεις ως προς τη γραμμική ταχύτητα για $c_3 = 0 \Leftrightarrow q_3 = k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$. Μάλιστα, η 2^{η} και η 3^{η} στήλη του πίνακα J[1:3, 1:3] θα είναι η μια πολλαπλάσια της άλλης. Γεωμετρικά, αυτό θα σημαίνει ότι ο σύνδεσμός l_3 θα έχει την ίδια διεύθυνση με τον l_2 στις θέσεις αυτές και έτσι, θα ελέγχουν τη γραμμική ταχύτητα του τελικού στοιχείου με τον ίδιο τρόπο (κάθετα στην δ/νση των συνδέσμων) με αποτέλεσμα να χάνεται ένας βαθμός ελευθερίας.

Εάν $l_3s_{23} - l_2c_2 - l_0c_1 = 0$, τότε οι στήλες του πίνακα J[1:3, 1:3] είναι γραμμικά εξαρτημένες. Γεωμετρικά, αυτό θα σημαίνει ότι η κίνηση των αρθρώσεων θα ελέγχει την γραμμική ταχύτητα σε δυο από τις τρεις ανεξάρτητες διευθύνσεις με αποτέλεσμα να χάνεται ένας βαθμός ελευθερίας.

Μια γεωμετρική ερμηνεία των παραπάνω για τους πίνακες $A_i^{i-1}(q_i)$ θα είναι:

Άσκηση 2.2 (Μήτρα D-Η – Υπολογισμός Ιακωβιανής Μήτρας – Ιδιόμορφες Διατάξεις)

Εστω ρομποτική κινηματική αλυσίδα τριών βαθμών ελευθερίας (q_1, q_2, q_3) της οποίας η κινηματική δομή περιγράφεται από τον ακόλουθο πίνακα παραμέτρων D-H (όπου l_1 , l_2 , l_3 : σταθερά μήκη συνδέσμων):

i	d_i	θ_i	a _i	a_i
1	l_1	$q_1 + \frac{\pi}{2}$	0	$-\frac{\pi}{2}$
2	0	$q_2 - \frac{\pi}{2}$	0	$-\frac{\pi}{2}$
3	l_2	$q_3 + \frac{\overline{\pi}}{2}$	0	$+\frac{\pi}{2}$

- α) Να προσδιοριστεί η \mathbf{I} ακω $\mathbf{\beta}$ ιανή μήτρα $\mathbf{J}(q_1, q_2, q_3)$ του διαφορικού κινηματικού μοντέλου του ρομποτικού βραχίονα.
- β) Να εξετασθεί πότε ο μηχανισμός εμφανίζει **ιδιόμορφες διατάξεις** ως προς τη γωνιακή ταχύτητα (ω_E) του τελικού στοιχείου δράσης, και να δοθεί γεωμετρική ερμηνεία των διατάξεων αυτών.

Λύση:

α) Γενικά,

$$\boldsymbol{A_i^{i-1}} = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \cdot \cos a_i & \sin \theta_i \cdot \sin a_i & a_i \cdot \cos \theta_i \\ \sin \theta_i & \cos \theta_i \cdot \cos a_i & -\cos \theta_i \cdot \sin a_i & a_i \cdot \sin \theta_i \\ 0 & \sin a_i & \cos a_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Οπότε,

$$A_{1}^{0} = \begin{bmatrix} \cos\left(q_{1} + \frac{\pi}{2}\right) & -\sin\left(q_{1} + \frac{\pi}{2}\right) \cdot \cos\left(-\frac{\pi}{2}\right) & \sin\left(q_{1} + \frac{\pi}{2}\right) \cdot \sin\left(-\frac{\pi}{2}\right) & 0 \cdot \cos\left(q_{1} + \frac{\pi}{2}\right) \\ \sin\left(q_{1} + \frac{\pi}{2}\right) & \cos\left(q_{1} + \frac{\pi}{2}\right) \cdot \cos\left(-\frac{\pi}{2}\right) & -\cos\left(q_{1} + \frac{\pi}{2}\right) \cdot \sin\left(-\frac{\pi}{2}\right) & 0 \cdot \sin\left(q_{1} + \frac{\pi}{2}\right) \\ 0 & \sin\left(-\frac{\pi}{2}\right) & \cos\left(-\frac{\pi}{2}\right) & 0 \cdot \sin\left(q_{1} + \frac{\pi}{2}\right) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow A_{1}^{0} = \begin{bmatrix} -\sin(q_{1}) & 0 & -\cos(q_{1}) & 0 \\ \cos(q_{1}) & 0 & -\sin(q_{1}) & 0 \\ 0 & -1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow A_{1}^{0} = \begin{bmatrix} -s_{1} & 0 & -c_{1} & 0 \\ c_{1} & 0 & -s_{1} & 0 \\ 0 & -1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2}^{1} = \begin{bmatrix} \cos\left(q_{2} - \frac{\pi}{2}\right) & -\sin\left(q_{2} - \frac{\pi}{2}\right) \cdot \cos\left(-\frac{\pi}{2}\right) & \sin\left(q_{2} - \frac{\pi}{2}\right) \cdot \sin\left(-\frac{\pi}{2}\right) & 0 \cdot \cos\left(q_{2} - \frac{\pi}{2}\right) \\ \sin\left(q_{2} - \frac{\pi}{2}\right) & \cos\left(q_{2} - \frac{\pi}{2}\right) \cdot \cos\left(-\frac{\pi}{2}\right) & -\cos\left(q_{2} - \frac{\pi}{2}\right) \cdot \sin\left(-\frac{\pi}{2}\right) & 0 \cdot \sin\left(q_{2} - \frac{\pi}{2}\right) \\ 0 & \sin\left(-\frac{\pi}{2}\right) & \cos\left(-\frac{\pi}{2}\right) & 0 \cdot \sin\left(q_{2} - \frac{\pi}{2}\right) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow A_{2}^{1} = \begin{bmatrix} \sin(q_{2}) & 0 & \cos(q_{2}) & 0 \\ -\cos(q_{2}) & 0 & \sin(q_{2}) & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow A_{2}^{1} = \begin{bmatrix} s_{2} & 0 & c_{2} & 0 \\ -c_{2} & 0 & s_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3}^{2} = \begin{bmatrix} \cos\left(q_{3} + \frac{\pi}{2}\right) & -\sin\left(q_{3} + \frac{\pi}{2}\right) \cdot \cos\left(+\frac{\pi}{2}\right) & \sin\left(q_{3} + \frac{\pi}{2}\right) \cdot \sin\left(+\frac{\pi}{2}\right) & 0 \cdot \cos\left(q_{3} + \frac{\pi}{2}\right) \\ \sin\left(q_{3} + \frac{\pi}{2}\right) & \cos\left(q_{3} + \frac{\pi}{2}\right) \cdot \cos\left(+\frac{\pi}{2}\right) & -\cos\left(q_{3} + \frac{\pi}{2}\right) \cdot \sin\left(+\frac{\pi}{2}\right) & 0 \cdot \sin\left(q_{3} + \frac{\pi}{2}\right) \\ 0 & \sin\left(+\frac{\pi}{2}\right) & \cos\left(+\frac{\pi}{2}\right) & 0 \cdot \sin\left(q_{3} + \frac{\pi}{2}\right) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow A_{3}^{2} = \begin{bmatrix} -\sin(q_{3}) & 0 & \cos(q_{3}) & 0 \\ \cos(q_{3}) & 0 & \sin(q_{3}) & 0 \\ 0 & 1 & 0 & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow A_{3}^{2} = \begin{bmatrix} -s_{3} & 0 & c_{3} & 0 \\ c_{3} & 0 & s_{3} & 0 \\ 0 & 1 & 0 & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$`O\pi ov$$
, $c_{i...j} = cos(q_i + \dots + q_j)$, $s_{i...j} = sin(q_i + \dots + q_j)$, $cos(q_i \pm \frac{\pi}{2}) = \mp sin(q_I)$, $sin(q_i \pm \frac{\pi}{2}) = \pm cos(q_I)$,

 $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$, $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$

Έτσι,

$$\boldsymbol{A_2^0} = \boldsymbol{A_1^0} \cdot \boldsymbol{A_2^1} = \begin{bmatrix} -s_1 & 0 & -c_1 & 0 \\ c_1 & 0 & -s_1 & 0 \\ 0 & -1 & 0 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_2 & 0 & c_2 & 0 \\ -c_2 & 0 & s_2 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -s_1 s_2 & c_1 & -c_2 s_1 & 0 \\ c_1 s_2 & s_1 & c_1 c_2 & 0 \\ c_2 & 0 & -s_2 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3^0 = A_2^0 \cdot A_3^2 = \begin{bmatrix} -s_1 s_2 & c_1 & -c_2 s_1 & 0 \\ c_1 s_2 & s_1 & c_1 c_2 & 0 \\ c_2 & 0 & -s_2 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -s_3 & 0 & c_3 & 0 \\ c_3 & 0 & s_3 & 0 \\ 0 & 1 & 0 & l_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$\Rightarrow A_3^0 = \begin{bmatrix} c_1 c_3 + s_1 s_2 s_3 & -c_2 s_1 & c_1 s_3 - c_3 s_1 s_2 & -c_2 s_1 l_2 \\ -c_1 s_2 s_3 + c_3 s_1 & c_1 c_2 & c_1 c_3 s_2 + s_1 s_3 & c_1 c_2 l_2 \\ -c_2 s_3 & -s_2 & c_2 c_3 & l_1 - l_2 s_2 \end{bmatrix}$$

Από την ανάλυση D-Η προκύπτει ότι ο προσανατολισμός και η θέση του τελικού στοιχείου δράσης, αντίστοιχα, ως προς το σύστημα συντεταγμένων του μηχανισμού:

$$\mathbf{A_3^0}(\mathbf{q_1}, \mathbf{q_2}, \mathbf{q_3}) = \begin{bmatrix} c_1c_3 + s_1s_2s_3 & -c_2s_1 & c_1s_3 - c_3s_1s_2 & -c_2s_1l_2 \\ -c_1s_2s_3 + c_3s_1 & c_1c_2 & c_1c_3s_2 + s_1s_3 & c_1c_2l_2 \\ -c_2s_3 & -s_2 & c_2c_3 & l_1 - l_2s_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$\Rightarrow \mathbf{R_3^0}(\mathbf{q_1}, \mathbf{q_2}, \mathbf{q_3}) = \begin{bmatrix} c_1c_3 + s_1s_2s_3 & -c_2s_1 & c_1s_3 - c_3s_1s_2 \\ -c_1s_2s_3 + c_3s_1 & c_1c_2 & c_1c_3s_2 + s_1s_3 \\ -c_2s_3 & -s_2 & c_2c_3 \end{bmatrix}$$

$$\mathbf{p_3^0}(\mathbf{q_1}, \mathbf{q_2}, \mathbf{q_3}) = \begin{bmatrix} -c_2s_1l_2 \\ c_1c_2l_2 \\ l_1 - l_2s_2 \end{bmatrix}$$

$$\mathbf{A_2^0}(\mathbf{q_1}, \mathbf{q_2}) = \begin{bmatrix} -s_1 s_2 & c_1 & -c_2 s_1 & 0 \\ c_1 s_2 & s_1 & c_1 c_2 & 0 \\ c_2 & 0 & -s_2 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$\Rightarrow \mathbf{R_2^0}(\mathbf{q_1}, \mathbf{q_2}) = \begin{bmatrix} -s_1 s_2 & c_1 & -c_2 s_1 \\ c_1 s_2 & s_1 & c_1 c_2 \\ c_2 & 0 & -s_2 \end{bmatrix}$$

$$\mathbf{p_2^0}(\mathbf{q_1}, \mathbf{q_2}) = \begin{bmatrix} 0 \\ 0 \\ l_1 \end{bmatrix}$$

$$\mathbf{A_1^0}(\mathbf{q_1}) = \begin{bmatrix} -s_1 & 0 & -c_1 & 0 \\ c_1 & 0 & -s_1 & 0 \\ 0 & -1 & 0 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow$$

$$\Rightarrow \mathbf{R_1^0}(\mathbf{q_1}) = \begin{bmatrix} -s_1 & 0 & -c_1 \\ c_1 & 0 & -s_1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\mathbf{p_1^0}(\mathbf{q_1}) = \begin{bmatrix} 0 \\ 0 \\ l_1 \end{bmatrix}$$

Υπολογισμός Ιακωβιανής Μήτρας:

$$J(\vec{q}) = \begin{bmatrix} J_{L_1} J_{L_2} J_{L_3} \\ J_{A_1} J_{A_2} J_{A_3} \end{bmatrix}$$

Για τον υπολογισμό της Ιακωβιανής μήτρας απαραίτητα είναι επίσης και τα εξής μεγέθη:

$$\begin{split} J_{L_i} &= \widehat{b_{i-1}} \times \widehat{r_{i-1,E}} \\ J_{A_i} &= \widehat{b_{i-1}} \\ \begin{bmatrix} \overrightarrow{r_{i-1,E}} \\ 0 \end{bmatrix} &= A_n^0 \cdot \overrightarrow{r} - A_{i-1}^0 \cdot \overrightarrow{r} \\ \overrightarrow{r} &= [0\ 0\ 0\ 1]^T \end{split}$$

 Γ ια i = 1:

$$b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\widehat{b_0} = R_0^0 b = I_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \overrightarrow{r_{0,E}} \\ 0 \end{bmatrix} = A_3^0 \cdot \overrightarrow{r} - A_0^0 \cdot \overrightarrow{r} \Rightarrow \widehat{r_{0,E}} = p_3^0 = \begin{bmatrix} -c_2 s_1 l_2 \\ c_1 c_2 l_2 \\ l_1 - l_2 s_2 \end{bmatrix}$$

$$J_{A_1} = \widehat{b_0} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$J_{L_1} = \widehat{b_0} \times \widehat{r_{0,E}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} -c_2 s_1 l_2 \\ c_1 c_2 l_2 \\ l_1 - l_2 s_2 \end{bmatrix} = \begin{bmatrix} -c_1 c_2 l_2 \\ -c_2 l_2 s_1 \\ 0 \end{bmatrix}$$

 Γ ια i=2:

$$\begin{split} \widehat{b_1} &= \mathbf{R}_1^0 b = \begin{bmatrix} -s_1 & 0 & -c_1 \\ c_1 & 0 & -s_1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -c_1 \\ -s_1 \\ 0 \end{bmatrix} \\ \begin{bmatrix} \overrightarrow{r_{1,E}} \\ 0 \end{bmatrix} &= A_3^0 \cdot \overrightarrow{r} - A_1^0 \cdot \overrightarrow{r} \Rightarrow \widehat{r_{1,E}} = p_3^0 - p_1^0 = \begin{bmatrix} -c_2 s_1 l_2 \\ c_1 c_2 l_2 \\ l_1 - l_2 s_2 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ l_1 \end{bmatrix} = \begin{bmatrix} -c_2 s_1 l_2 \\ c_1 c_2 l_2 \\ -l_2 s_2 \end{bmatrix} \\ J_{A_2} &= \widehat{b_1} = \begin{bmatrix} -c_1 \\ -s_1 \\ 0 \end{bmatrix} \\ J_{L_2} &= \widehat{b_1} \times \widehat{r_{1,E}} = \begin{bmatrix} -c_1 \\ -s_1 \\ 0 \end{bmatrix} \times \begin{bmatrix} -c_2 s_1 l_2 \\ c_1 c_2 l_2 \\ -l_2 s_2 \end{bmatrix} = \begin{bmatrix} l_2 s_1 s_2 \\ -c_1 l_2 s_2 \\ -c_1^2 c_2 l_2 - c_2 l_2 s_1^2 \end{bmatrix} = \begin{bmatrix} l_2 s_1 s_2 \\ -c_1 l_2 s_2 \\ -l_2 c_2 \end{bmatrix} \end{split}$$

 $\Gamma \iota \alpha \ i = 3$:

$$\widehat{b_2} = R_2^0 b = \begin{bmatrix} -s_1 s_2 & c_1 & -c_2 s_1 \\ c_1 s_2 & s_1 & c_1 c_2 \\ c_2 & 0 & -s_2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -c_2 s_1 \\ c_1 c_2 \\ -s_2 \end{bmatrix}$$

$$\begin{bmatrix} \overrightarrow{r_{2,E}} \\ 0 \end{bmatrix} = A_3^0 \cdot \overrightarrow{r} - A_2^0 \cdot \overrightarrow{r} \Rightarrow \overrightarrow{r_{2,E}} = p_3^0 - p_2^0 = \begin{bmatrix} -c_2 s_1 l_2 \\ c_1 c_2 l_2 \\ l_1 - l_2 s_2 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ l_1 \end{bmatrix} = \begin{bmatrix} -c_2 s_1 l_2 \\ c_1 c_2 l_2 \\ -l_2 s_2 \end{bmatrix}$$

$$J_{A_3} = \widehat{b_2} = \begin{bmatrix} -c_2 s_1 \\ c_1 c_2 \\ -s_2 \end{bmatrix}$$

$$J_{L_3} = \widehat{b_2} \times \widehat{r_{2,E}} = \begin{bmatrix} -c_2 s_1 \\ c_1 c_2 \\ -s_2 \end{bmatrix} \times \begin{bmatrix} -c_2 s_1 l_2 \\ c_1 c_2 l_2 \\ -l_2 s_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Επομένως,

$$J = \begin{bmatrix} J_{L_1} J_{L_2} J_{L_3} \\ J_{A_1} J_{A_2} J_{A_3} \end{bmatrix} = \begin{bmatrix} -c_1 c_2 l_2 & l_2 s_1 s_2 & 0 \\ -c_2 l_2 s_1 & -c_1 l_2 s_2 & 0 \\ 0 & -l_2 c_2 & 0 \\ 0 & -c_1 & -c_2 s_1 \\ 0 & -s_1 & c_1 c_2 \\ 1 & 0 & -s_2 \end{bmatrix}$$

β) Ο μηχανισμός εμφανίζει ιδιόμορφες διατάξεις ως προς τη γωνιακή ταχύτητα (ω_E) για τιμές όπου ισχύει ότι $\det(J[3:6, 3:6]) = 0$.

$$\begin{vmatrix} 0 & -c_1 & -c_2 s_1 \\ 0 & -s_1 & c_1 c_2 \\ 1 & 0 & -s_2 \end{vmatrix} = 0 \Rightarrow -c_1^2 c_2 - c_2 s_1^2 = 0 \Rightarrow -c_2 (c_1^2 + s_1^2) = 0 \Rightarrow c_2 = 0$$

Εάν $c_2=0$, τότε ο μηχανισμός εμφανίζει ιδιόμορφες διατάξεις ως προς τη γωνιακή ταχύτητα για $c_3=0 \Leftrightarrow q_2=k\pi+\frac{\pi}{2}$, $k\in\mathbb{Z}$. Γεωμετρικά, αυτό θα σημαίνει ότι ο άξονας της $1^{\eta\varsigma}$ και $3^{\eta\varsigma}$ άρθρωσης θα είναι ο ίδιος και έτσι, αυτές οι αρθρώσεις θα ελέγχουν τη γωνιακή ταχύτητα του τελικού στοιχείου με τον ίδιο τρόπο (στον άξονα z_0) σε δυο από τις τρεις διευθύνσεις, αφού θα είναι γραμμικά εξαρτημένες, με αποτέλεσμα να γάνεται ένας βαθμός ελευθερίας.

Ασκηση 2.3 (Ρομποτικό Δυναμικό Μοντέλο)

Εστω ρομποτικό σύστημα (κινούμενος ρομποτικός βραχίονας) δύο βαθμών ελευθερίας, που εικονίζεται στο ακόλουθο Σ χήμα I, με h και l_1 σταθερά μήκη συνδέσμων και (q_1, q_2) γενικευμένες μεταβλητές μετατοπίσεως $(q_1$ γραμμική μετατόπιση της κινούμενης βάσης και q_2 γωνιακή μετατόπιση στη στροφική άρθρωση). Υποθέτουμε ότι η κινούμενη ρομποτική βάση έχει μάζα M. Υποθέτουμε επίσης την ύπαρζη σημειακής μάζας m στο σημείο E (όπως εικονίζεται στο Σ χήμα I) ενώ θεωρούμε τους συνδέσμους κατά τα λοιπά αβαρείς. Υποθέτουμε επίσης ότι ασκείται στο τελικό εργαλείο δράσης σταθερή εξωτερική δύναμη F_x (κατά τη δ/νση του x_0 , όπως εικονίζεται στο σχήμα), καθώς και ότι η διεύθυνση επίδρασης της βαρύτητας g είναι αυτή που σημειώνεται στο σχήμα.

Να γραφούν οι δυναμικές εξισώσεις κίνησης του ρομποτικού μηχανισμού, χρησιμοποιώντας μεθοδολογία Lagrange.

Σχήμα 1: Ρομποτικό σύστημα με 2 β.ε. (κινούμενου ρομποτικού βραχίονα)

<u>Λύση</u>:

Στόχος είναι η εξαγωγή του δυναμικού μοντέλου Lagrange για το Ρομποτικό Σύστημα.

1η Προσέγγιση:

Ευθεία Γεωμετρική Κινηματική Ανάλυση:

$$x = q_1 + l_1 c_2$$
$$y = l_1 s_2$$
$$z = 0$$

Οπότε, η ταχύτητα προκύπτει ως εξής:

$$V_{x} = \frac{\partial x}{\partial t} = \frac{\partial x}{\partial q_{1}} \frac{\partial q_{1}}{\partial t} + \frac{\partial x}{\partial q_{2}} \frac{\partial q_{2}}{\partial t} = \dot{q}_{1} - l_{1} s_{2} \dot{q}_{2}$$

$$V_{y} = \frac{\partial y}{\partial t} = \frac{\partial y}{\partial q_{2}} \frac{\partial q_{2}}{\partial t} = l_{1} c_{2} \dot{q}_{2}$$

$$V_{z} = 0$$

Οπότε,
$$\vec{V} = \begin{bmatrix} 1 & -l_1 s_2 \\ 0 & l_1 c_2 \end{bmatrix} \begin{bmatrix} \dot{q_1} \\ \dot{q_2} \end{bmatrix}$$

Όπου, Ι είναι η ροπή αδράνειας της μάζας m και $\mathbf{w_z}$ η γωνιακή ταχύτητα $\mathbf{q_2}$ και

$$|\vec{V}| = \sqrt{{\dot{q_1}}^2 - 2l_1s_2{\dot{q_2}}{\dot{q_1}} + l_1^2{\dot{q_2}}^2}$$

Οπότε τελικά,

$$E = \frac{1}{2} \left(m |\vec{V}|^2 + M |V_x|^2 + I w_z^2 \right) \Rightarrow$$

$$\Rightarrow E = \frac{1}{2} \left((m+M) \left(\dot{q_1}^2 - 2l_1 s_2 \dot{q_2} \dot{q_1} \right) + \left(m l_1^2 \dot{q_1}^2 + M l_1^2 s_2^2 \dot{q_2}^2 \right) + I \dot{q_2}^2 \right)$$

$$\vec{P} = -m \vec{q} y = m g l_1 s_2$$

 Γ ια i = 1:

$$\frac{\partial E}{\partial \dot{q}_1} = (m+M)\dot{q}_1 - 2l_1s_2\dot{q}_2$$

$$\frac{\partial}{\partial t} \left(\frac{\partial E}{\partial \dot{q}_1}\right) = (m+M)\ddot{q}_1 - 2l_1s_2\ddot{q}_2 - 2l_2c_2\dot{q}_2^2$$

$$\frac{\partial E}{\partial q_1} = 0$$

$$\frac{\partial P}{\partial q_1} = 0$$

$$\tau_1 = (m+M)\ddot{q}_1 - l_1s_2\ddot{q}_2 - 2l_2c_2\dot{q}_2^2 - F_x$$

 Γ ια i = 2:

$$\begin{split} \frac{\partial \mathbf{E}}{\partial \dot{q}_2} &= -(m+M)l_1s_2\dot{q}_1 + ml_1^2\dot{q}_2 + Ml_1^2s_2^2\dot{q}_2 + I\dot{q}_2 \\ \frac{\partial}{\partial \mathbf{t}} \left(\frac{\partial \mathbf{E}}{\partial \dot{q}_2} \right) &= -(m+M)l_1s_2\ddot{q}_1 - (m+M)l_1c_2\dot{q}_1\dot{q}_2 + ml_1^2\ddot{q}_2 + Ml_1^2s_2^2\ddot{q}_1 + 2Ml_1^2s_2c_2\dot{q}_2^2 + I\ddot{q}_2 \\ \frac{\partial \mathbf{E}}{\partial q_2} &= -(m+M)l_1c_2\dot{q}_1\dot{q}_2 + Ml_1^2s_2c_2\dot{q}_2^2 \\ \frac{\partial \mathbf{P}}{\partial q_2} &= mgl_1c_2 \\ \\ \mathbf{\tau}_2 &= -(m+M)l_1s_2\ddot{q}_1 + (ml_1^2 + Ml_1^2s_2^2 + I)\ddot{q}_2 - 2(m+M)l_1c_2\dot{q}_1\dot{q}_2 + 3Ml_1^2s_2c_2\dot{q}_2^2 + mgl_1c_2 \end{split}$$

2η Προσέγγιση:

Ισχύει ότι

$$J = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -l_1 s_2 & l_1 c_2 & 0 & 0 & 0 & 1 \end{bmatrix}^T$$

Οπότε,

$$V_x = \dot{q}_1 - l_1 s_2 \dot{q}_2$$

$$V_y = l_1 c_2 \dot{q}_2$$

$$V_{Mx} = \dot{q}_1$$

Έτσι,

$$K = \frac{1}{2}(MV_M^2 + mV_m^2) \Rightarrow K = \frac{1}{2}(m+M)\dot{q_1}^2 + \frac{1}{2}ml_1^2\dot{q_2}^2 - ml_1s_2\dot{q_1}\dot{q_2}$$

$$P = mgh + mgl_1s_2$$

Άρα,

$$L = K - P = \frac{1}{2}(m+M)\dot{q_1}^2 + \frac{1}{2}ml_1^2\dot{q_2}^2 - ml_1s_2\dot{q_1}\dot{q_2} - mgh - mgl_1s_2$$

Επομένως,

$$\tau = \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} - J^T F$$

Όπου,

$$F = \begin{bmatrix} F_{x} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Συνεπώς,

$$\tau_1 = (m+M)\ddot{q_1} - l_1 s_2 m \ddot{q_2} - l_1 c_2 m {\dot{q_2}}^2 - F_x$$

$$\tau_2 = -l_1 s_2 m \ddot{q_1} + m l_1^2 \ddot{q_2} + m g l_1 c_2 + l_1 s_2 F_x$$

Resources

- [1] Υλικό & Σημειώσεις Μαθήματος
- [2] John J. Craig, Introduction to robotics: Mechanics & Control (2009)