

ESTUFAS DE BAIXO CUSTO MODELO PESAGRO-RIO

(Informe Técnico 29, ISSN 0101-3769)

Marco Antonio de Almeida Leal Luiz Carlos Santos Caetano José Márcio Ferreira

INTRODUÇÃO

Atualmente existem várias atividades agrícolas e comerciais que dependem de estruturas com cobertura de plástico transparente, também conhecidas como "casas de vegetação" ou "estufas". Entre estas atividades, as mais importantes são: cultivo protegido de hortaliças e plantas ornamentais, produção de mudas, hidroponia, secagem de grãos e comércio de plantas. Muitas vezes o fator que limita o início ou a expansão destas atividades é o alto custo das estufas. Além disto, muitas estufas comerciais não estão adaptadas para as condições climáticas de regiões tropicais.

Visando solucionar estes problemas, a PESAGRO-RIO desenvolveu um modelo de estufa com as seguintes qualidades:

- Custo reduzido, sendo três a cinco vezes inferior ao custo de uma estufa comercial.
- Adaptada ao clima de regiões tropicais.
- Dimensões flexíveis para se adaptarem a quaisquer necessidades. Larguras de 5 ou 8 metros. Comprimento e altura variáveis.
- Fácil construção, não necessitando de mão de obra especializada.
- Utiliza materiais facilmente encontrados na propriedade agrícola ou no comércio local.

Esta estrutura também pode ser utilizada como galpão para diversas atividades: depósito, criação animal, área de trabalho, etc. Para isto, deve ser coberta com plástico de dupla face (Duplalon®), sendo a face branca voltada para cima e a face preta voltada para baixo.

CARACTERÍSTICAS

Sua estrutura pode ser de madeira serrada (perna de três de Massaranduba ou Aparajú) ou madeira roliça (Eucalipto), com arcos feitos em vergalhão embutidos em mangueiras de borracha. A madeira serrada é mais fácil de encontrar no comércio local e possui maior durabilidade.

Além de utilizar materiais simples, o baixo custo deste modelo é devido à sua estrutura ser travada com arames, como uma barraca de camping. Isto permite maior espaçamento entre os esteios e também o uso de varas de vergalhão no lugar de tubos de ferro galvanizado. Entretanto, sua vida útil é inferior a dos modelos comerciais, sendo variável em função da qualidade da madeira utilizada e dos cuidados com sua manutenção.

É composta por módulos. O modelo de 8 metros de largura possui módulos de 3,50 metros e o modelo de 5 metros de largura possui módulos de 3,00 metros. O comprimento da estufa será variável em função do número de módulos construídos.

Seu desenho permite uma excelente aeração, sendo que a altura do pé direito pode ser aumentada ou reduzida, de acordo com cada necessidade. Estufas altas permitem maior aeração, mas possuem maior custo e estão mais sujeitas à danos causados por vendavais.

Para obter uma estrutura durável e eficiente é necessário seguir corretamente alguns detalhes de construção que serão explicados posteriormente. É importante que o construtor tenha conhecimentos de carpintaria e alinhamento de estruturas. Caso contrário é necessário contratar um carpinteiro ou mestre de obras. A manutenção da estufa é feita mantendo os arames de travamento sempre esticados e substituindo os arames arrebentados e as madeiras quebradas.

Inicialmente, será mostrado o projeto de construção do modelo de 8,00m de largura, que exige maiores detalhes. Em seguida, será mostrado o projeto do modelo de 5,00m de largura, que aproveitará a maioria dos detalhes do modelo de largura maior.

MODELO DE 8,00m DE LARGURA

O projeto apresentado nas Figuras 1, 2, 3 e 4 é de uma estufa de 280m² (10 módulos de 3,50m), com 2,50m de pé direito.

Material e Custos

Peças Nº 1 e 2: 15 pernas de três (6,0 x 7,5 cm) de Massaranduba com 4,50m.	R\$ 506,25
Peça Nº 3: 22 pernas de três (6,0 x 7,5 cm) de Massaranduba com 3,00m.	R\$ 495,00

Peça Nº 4: 10 caibros (3,0 x 7,5 cm) de Massaranduba com 3,50m (ou 36m corridos).	R\$ 122,50
Peça Nº 5: 18 peças (5,0 x 2,5cm) de Massaranduba com 2,30m.	R\$ 58,50
Peça Nº 6: 9 peças (5,0 x 2,5cm) de Massaranduba com 2,00m.	R\$ 23,40
Peça Nº 7: 8 caibros (3,0 x 7,5 cm) de Massaranduba com 2,50m.	R\$ 70,00
Peça Nº 8: 20 caibros (3,0 x 7,5 cm) de Massaranduba com 3,50m (ou 71m corridos).	R\$ 245,00
25 ripas (3,0 x 1,5cm) de Eucalipto ou Cedrinho com 4,00m.	R\$ 100,00
11 varas de vergalhão 1/2" com no mínimo 10m de comprimento.	R\$ 440,00
100 metros de mangueira de polietileno ¾".	R\$ 40,00
20 kg de arame N ^o 12.	R\$ 130,00
3 kg de prego 19 x 36.	R\$ 18,00
2 kg de prego 15 x 15.	R\$ 16,00
100 metros de plástico agrícola de 100micras e 4,00m de largura.	R\$ 580,00
TOTAL	R\$ 2.844,65

Obs:

- As pernas de três de Massaranduba podem ser substituídas por Eucalipto roliço com 25cm de diâmetro, e os caibros da cumeeira por Eucalipto roliço com 10cm de diâmetro.
- Estes preços foram levantados em dezembro de 2005 no Rio de Janeiro.
- A mão de obra necessária para construção desta estufa é de aproximadamente 20 dias/homem
- Neste orçamento não está incluído o custo da tela lateral ou outros acessórios.

As peças Nº 5, 6 e 7 podem ser de qualquer outra madeira (Cedrinho, por exemplo), desde que não rachem facilmente ao serem pregadas. Não é recomendável Pinho por este ser muito atacado por cupins.

As ripas, por levarem muitos pregos, devem ser de madeira macia (Cedrinho, Eucalipto) para não racharem.

A mangueira de polietileno não necessita ser nova. Podem ser utilizadas mangueiras velhas, já furadas, ou mangueiras baratas de plástico reciclado. Não usar conduítes sanfonados.

O plástico utilizado é de 100 micras de espessura e 4,00m de largura. Deve ser tratado contra raios ultravioleta. Sem este tratamento ele rasga rapidamente. Este plástico é facilmente encontrado em lojas de insumos agropecuários. No caso de se usar plástico de dupla face, este deve ter 150 micras de espessura.

É importante que no topo da cumeeira não existam pregos ou saliências que possam rasgar o plástico na hora de sua colocação.

Posicionamento da Estufa

Quanto ao posicionamento da estufa em relação ao Sol, em regiões tropicais isto tem influência muito pequena no seu desempenho. É melhor posicionar a estufa no sentido de menor declividade do terreno, ou que os ventos fortes percorram a estufa no sentido da cumeeira.

Em locais de ventos fortes, é recomendável travar os esteios laterais da estufa com esticadores de arame, do mesmo modo que é feito com os esteios frontais. Também se recomenda a utilização de concreto na base dos esteiros.

A estufa pode ser construída em terrenos de pequena inclinação, mas esta deve ser no sentido do comprimento e nunca no sentido da largura. Pode haver desnível entre os módulos, mas os esteios de um mesmo módulo devem estar sempre em nível. Deve-se também observar certos cuidados na colocação do plástico. Quando o desnível médio entre cada módulo for maior que 0,10m, é necessário usar plástico de 6,00m de largura para a cobertura da estufa.

Fixação dos Esteios

Em primeiro lugar, é necessário se determinar a profundidade em que se fixarão os esteios. No projeto apresentado, os esteios estão fixados com 0,50m de profundidade. Mas em terrenos soltos, é necessário aumentar esta profundidade (aumentando-se também o tamanho dos esteios, principalmente nos esteios centrais).

A altura do pé direito pode ser alterada, modificando-se o tamanho das peças N^o 1, 2 e 3. Jamais deve ser alterado o tamanho das peças N^o 5 e 6, pois isto impediria a formação do arco da estufa. Lembrar que a tesoura (peças N^o 5 e 6) começa na mesma altura do pé direito.

Os esteios devem ser fixados conforme a Figura 4. Devem ser alinhados e nivelados.

Montagem do Arco

O próximo passo é fazer as tesouras, conforme a Figura 3. As peças N° 5 devem ser colocadas de forma que sua maior largura fique voltada para baixo. E a peça N° 6 deve ser colocada de forma que sua maior largura fique na vertical.

Em seguida, deve ser colocado o vergalhão dentro das mangueiras de polietileno. Como a função da mangueira é evitar o contato do vergalhão com o plástico, ela deve ter 8,80m de comprimento. O arco (vergalhão revestido com a mangueira) deve ser fixado na cumeeira, nas pontas da tesoura e nos esteios laterais. Cuidado para não deixar algum prego saliente que poderá rasgar o plástico na hora de sua colocação. A fixação do arco na cumeeira deve ser muito bem feita, pois há a tendência do arco se soltar e modificar a sua curvatura.

A fixação do caibro lateral, no caso de se usar madeira roliça, deve ser de forma que entre eles haja um espaço onde ficará o vergalhão (Figura 5). Recomenda-se que se faça um pequeno corte nos esteios na posição os caibros serão pregados. No caso de se usar madeira serrada, como o esteio (pernas de três) é muito fino, não é possível pregar os dois caibros, mas somente um. Estes devem ser unidos fora do esteio (Figura 6). Para isto, se recomenda comprar caibros corridos e uma quantidade um pouco maior para as emendas. Recomenda-se que a fixação dos caibros nas pernas de três seja realizada através de barras roscadas ou parafusos.

As peças Nº 7 (caibros que ficam no início e no final da estrutura) devem ser fixadas na parte superior dos esteios.

O próximo passo é a colocação do arame. Este deve ser fixado nas peças N^{o} 2 ou nos caibros. Ao passar pelo arco, o arame deve dar uma volta. Cuidado para não deixar pontas que poderão rasgar o plástico.

As peças Nº 2 devem ser travadas, pois ao contrário das peças Nº 1 e 3, não estão travadas entre sí por caibros e recebem uma grande carga proveniente dos arames, tendendo a curvar-se para dentro da estrutura. Além disto, os arames que correm por dentro da estufa devem ficar muito bem fixados nas peças Nº 2. É muito importante que isto seja feito, pois se as peças Nº 2 entortarem ou os arames soltarem, o plástico ficará frouxo, formando bolsas de água durante as chuvas e rasgando rapidamente. Existem duas maneiras de travar estas peças: A primeira é através de mão francesas internas. Entretanto, esta opção promove a perda de espaço interno. A segunda opção, mais recomendável, é o travamento através de esticadores externos, feitos com fios de arame nº 12, conforme a Figura 7.

Colocação do plástico

Este modelo de estufa exige que o plástico fique bem esticado, necessitando da força de, no mínimo, cinco homens para que o plástico fique na tensão adequada.

Em primeiro lugar, é preciso cortar as ripas no tamanho correto. As ripas do meio devem ter 4,00m, o tamanho da largura do plástico. No caso de se usar plástico de 6,00m, as ripas também devem ter 6,00m. A primeira e a última ripa devem ter 3,75m, para que sobre 0,25m de plástico para fora da estufa. O plástico é cortado no tamanho de 9,50m.

Coloca-se o plástico por cima da estrutura, de modo que fique sobrando 0,25m para cada lado do arco (no primeiro e no último arco sobrará para fora da estufa). No caso de estufas construídas em terrenos inclinados, a maior parte do plástico deve sobrar para o lado do arco mais alto. Ao enrolar o plástico na ripa, deve ser observado se a quantidade (tamanho) de plástico a ser enrolado é a mesma para as duas pontas da ripa. A ripa deve ser enrolada a partir do interior do

plástico, como mostra a Figura 8. A primeira ponta do plástico a ser pregada não necessita de muita tensão.

Importante ao pregar a ripa no caibro, é que esta fique inclinada, com uma ponta na parte inferior do caibro e a outra na parte superior. Com isto, a ripa do próximo plástico terá espaço para ser pregada, em baixo de onde está a ponta da ripa do plástico anterior (Figura 9). Isto facilita muito a colocação do plástico.

Prega-se cada ponta do plástico de uma vez. Toda tensão que o plástico necessita deve ser aplicada ao se pregar a segunda ponta do plástico. É necessário puxar o plástico e enrolá-lo na ripa, até que a força de cinco homens não consiga mais esticá-lo. Sempre pregar a ripa de modo que a ponta da próxima ripa se encaixe abaixo da ponta da ripa anterior. Pregar muito bem as ripas, pois ventos fortes podem soltá-las, o que causa a perda do plástico de cobertura.

MODELO DE 5,00m DE LARGURA

O projeto apresentado nas Figuras 10, 11, 12 e 13 é de uma estufa de 60m² (4 módulos de 3,00m) com 1,80m de pé direito.

Material e Custos

Peças Nº 1 e 2: 7 pernas de três (6,0 x 7,5 cm) de Massaranduba com 3,70m.	R\$ 210,00
Peça Nº 3: 10 pernas de três (6,0 x 7,5 cm) de Massaranduba com 2,50m.	R\$ 187,50
Peça Nº 4: 2 caibros (3,0 x 7,5 cm) de Massaranduba com 6,00m.	R\$ 42,00
Peça Nº 5: 8 caibros (3,0 x 7,5 cm) de Massaranduba com 1,70m.	R\$ 56,00
Peça Nº 6: 8 caibros (3,0 x 7,5 cm) de Massaranduba com 3,00m (ou 25m corridos).	R\$ 84,00
8 ripas de Eucalipto ou Cedrinho (3,0 x 1,5cm) com 4,00m.	R\$ 40,00
5 varas de vergalhão 3/8" com 10m de comprimento.	R\$ 150,00
30 metros de mangueira de polietileno ¾".	R\$ 12,00
5 kg de arame Nº 12.	R\$ 32,50
2 kg de prego 19 x 36.	R\$ 12,00
1 kg de prego 15 x 15.	R\$ 8,00
30 metros de plástico agrícola de 100micras e 4,00 m de largura.	R\$ 174,00
TOTAL	R\$ 1.008,00

Obs:

- As pernas de três de Massaranduba podem ser substituídas por Eucalipto roliço com 25cm de diâmetro, e os caibros da cumeeira por Eucalipto roliço com 10cm de diâmetro.
- Estes preços foram levantados em dezembro de 2005 no Rio de Janeiro.

- A mão de obra necessária para construção desta estufa é de aproximadamente 5 dias/homem.
- Neste orçamento não está incluído o custo da tela lateral ou outros acessórios.

A construção desta estufa é muito parecida com a estufa de 8,00m de largura (ver detalhes), sendo diferente em apenas alguns aspectos:

- Neste modelo, não existe tesoura nos esteios centrais. Somente em locais de muito vento é recomendável a sua colocação.
- Como o vão da cumeeira é muito grande (6,00m), a madeira do caibro deve ser de boa qualidade para que não fique curvada. Caso contrário recomenda-se utilizar uma peça de madeira roliça.
- O plástico é colocado com muito menos tensão, necessitando da força de apenas três homens para ser "esticado".
- Para construir esta estufa em terrenos com inclinações, não é necessário usar plástico de 6,00m de largura.
- Os pedaços de mangueira para encapar o vergalhão devem ter 6,00m.
- As ripas onde o plástico ficará enrolado terão o tamanho de 4,00m no meio da estufa, e irá sobrar 0,50m de plástico para cada lado do arco. As primeiras e últimas ripas devem ter 3,50m, para sobrar 0,50m de plástico para fora da estufa.
- O plástico é cortado no tamanho de 7,00m.
- Devido aos esteios centrais serem colocados a cada 6,00m, este modelo exige que sempre se construa um número par de módulos.
- Como não existem tesouras nos esteios centrais, é preciso certos cuidados para que os arcos fiquem bem formados. Primeiro deve-se montar os arcos inicial e final. Depois monta-se os arcos centrais seguindo a mesma curvatura dos arcos inicial e final. Para isto, pode-se utilizar linhas de nível. O vergalhão que forma o arco deve ficar muito bem pregado à cumeeira, para que não corra de um lado para o outro da estufa, deformando o arco.

PESAGRO RIO

• Sede (Niterói): (21) 3603 9200.

Estação Experimental de Seropédica

- Chefia: (21) 2682 1074 e (21) 2682 1091.
- Área de Olericultura: (21) 2682 1196.

Figura 1: Estufa de 8,00 x 35,00 m (280 m²)

Figura 2: VISTA FRONTAL

Arco (vergalhão + mangueira)

Figura 5: Fixação do vergalhão e dos caibros laterais - madeira roliça

Figura 4: Posicionamento dos esteios

Figura 6: Fixação do vergalhão e dos caibros laterais - madeira serrada

Figura 7: Travamento através de esticadores externos

Figura 8: Colocação do plástico (enrolamento da ripa com o plástico)

Figura 9: Colocação do plástico (pregamento das ripas)

Figura 10: Estufa de 5,00 x 12,00 m (60 m²)

Figura 11: Vista frontal

Figura 12: Módulo central

Figura 13: Posicionamento dos esteios