Parallel programming: Introduction to GPU architecture

Caroline Collange she/her

caroline.collange@inria.fr https://team.inria.fr/pacap/members/collange/

> Master 1 PPAR - 2022

Outline of the course

- February 27: Introduction to GPU architecture
 - Parallelism and how to use it
 - Performance models
- March 7: GPU programming
 - The software side
 - Programming model
- March 14: Performance optimization
 - Possible bottlenecks
 - Common optimization techniques
- 4 lab sessions, March 8, 15, 22/24, 29
 - Labs 1&2: computing log(2) the hard way
 - Labs 3&4: yet another Conway's Game of Life

Graphics processing unit (GPU)

- Graphics rendering accelerator for computer games
 - Mass market: low unit price, amortized R&D
 - Increasing programmability and flexibility
- Inexpensive, high-performance parallel processor
 - GPUs are everywhere, from cell phones to supercomputers
- General-Purpose computation on GPU (GPGPU)

GPUs in high-performance computing

GPU/accelerator share in Top500 supercomputers

In 2010: 2%

In 2020: 30%

 2016+ trend: Heterogeneous multi-core processors influenced by GPUs

#2 Summit (USA) 4,608 × (2 Power9 CPUs + 6 Volta GPUs)

#4 Sunway TaihuLight (China) 40,960 × SW26010 (4 big + 256 small cores)

GPUs in the future?

- Yesterday (2000-2010)
 - Homogeneous multi-core
 - Discrete components
- Today (2011-...)Chip-level integration
 - CPU cores and GPU cores on the same chip
 - Still different programming models, software stacks
- Tomorrow
 Heterogeneous multi-core
 - GPUs to blend into throughput-optimized, general purpose cores?

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
 - Hardware trends
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Last century: the free lunch era

- 1980's to 2002: Moore's law, Dennard scaling, micro-architecture improvements
 - Exponential performance increase
 - Software compatibility preserved

Hennessy, Patterson. Computer Architecture, a quantitative approach. 5th Ed. 2010

Do not rewrite software, buy a new machine!

Technology evolution

- Memory wall
 - Memory speed does not increase as fast as computing speed
 - Harder to hide memory latency
- Power wall
 - Power consumption of transistors does not decrease as fast as density increases
 - Performance is now limited by power consumption
- ILP wall
 - Law of diminishing returns on Instruction-Level Parallelism
 - → Pollack rule: cost ≃ performance²

Usage changes

- New applications demand parallel processing
 - Computer games : 3D graphics
 - Search engines, social networks..."big data" processing
- New computing devices are power-constrained
 - Laptops, cell phones, tablets...
 - Small, light, battery-powered
 - Datacenters
 - High power supply and cooling costs
 - And incidentally, climate crisis!

Latency vs. throughput

- Latency: time to solution
 - Minimize time, at the expense of power
 - Metric: time e.g. seconds
- Throughput: quantity of tasks processed per unit of time
 - Assumes unlimited parallelism
 - Minimize energy per operation
 - Metric: operations / time e.g. Gflops / s
- CPU: optimized for latency
- GPU: optimized for throughput

Amdahl's law

Bounds speedup attainable on a parallel machine

- S Speedup
- P Ratio of parallel portions
- N Number of processors

"The more you are, the least faster you go"

G. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. AFIPS 1967.

Why heterogeneous architectures?

Time to run sequential portions $S = \frac{1}{(1-P) + (P)}$ Time to run parallel portions

- Latency-optimized multi-core (CPU)
 - Low efficiency on parallel portions: spends too much resources
- Throughput-optimized multi-core (GPU)
 - Low performance on sequential portions
- Heterogeneous multi-core (CPU+GPU)
 - Use the right tool for the right job
 - Allows aggressive optimization for latency or for throughput

Example: System on Chip for smartphone

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
 - Hardware trends
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

The (simplest) graphics rendering pipeline

How much performance do we need

... to run 3DMark 11 at 50 frames/second?

Element	Per frame	Per second
Vertices	12.0M	600M
Primitives	12.6M	630M
Fragments	180M	9.0G
Instructions	14.4G	720G

- Intel Core i7 2700K: 56 Ginsn/s peak
 - We need to go 13x faster
 - Make a special-purpose accelerator

Aside: GPU as an out-of-order pipeline

Graphics APIs demand that primitives are Clipping, Rasterization drawn in submission order

Attribute interpolation

- e.g. back-to-front rendering
- Shaders proceed out of order
 - 10 000s fragments in flight
 - Shaders render fragments out of order
 - Raster ops put fragments back in order for framebuffer update
 - Various binning and tiling techniques to identify independent fragments

 General-purpose compute pipeline is much simpler than graphics pipeline

GPGPU: General-Purpose computation on GPUs

Early 2000: software and hardware evolution enable general-purpose programming

Today: what do we need GPUs for?

- 1. 3D graphics rendering for games
 - Complex texture mapping, lighting computations...
- 2. Computer Aided Design workstations
 - Complex geometry
- 3. High-performance computing
 - Complex synchronization, off-chip data movement, high precision
- 4. Convolutional neural networks
 - Complex scheduling of low-precision linear algebra
- One chip to rule them all
 - Find the common denominator

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
 - Hardware trends
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Trends: compute performance

Trends: memory bandwidth

Trends: energy efficiency

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
 - Hardware trends
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

What is parallelism?

Parallelism: independent operations which execution can be overlapped Operations: memory accesses or computations

How much parallelism do I need?

- Little's law in queuing theory
 - Average customer arrival rate λ
 - Average time spent W
 - Average number of customers
 L = λ×W
- ← throughput
- ← latency
- ← Parallelism = throughput × latency

- Units
 - For memory: B = GB/s × ns
 - For arithmetic: flops = Gflops/s × ns

Throughput and latency: CPU vs. GPU

→ Need 56 times more parallelism!

Consequence: more parallelism

- GPU vs. CPU
 - 8× more parallelism to feed more units (throughput)
 - 6× more parallelism to hide longer latency
 - 56× more total parallelism
- How to find this parallelism?

Sources of parallelism

- ILP: Instruction-Level Parallelism
 - Between independent instructions in sequential program

- TLP: Thread-Level Parallelism
 - Between independent execution contexts: threads

add
$$r3 \leftarrow r1$$
, $r2$
mul $r0 \leftarrow r0$, $r1$
sub $r1 \leftarrow r3$, $r0$

Avoiding instruction redundancy

- 1840s: Charles Babbage's Analytical Engine programmed using punched cards
 - Instructions : operation cards
 - Operands : variable cards

- Ada Lovelace: "The same operation would be performed on different subjects of operation."
- (Vectors had not been invented yet)

L. F. Menabrea and A. A. Lovelace. Sketch of the Analytical Engine invented by Charles Babbage. 1842

Sources of parallelism

- ILP: Instruction-Level Parallelism
 - Between independent instructions in sequential program
- TLP: Thread-Level Parallelism
 - Between independent execution contexts: threads

- DLP: Data-Level Parallelism
 - Between elements of a vector: same operation on several elements

add
$$r3 \leftarrow r1$$
, $r2$
mul $r0 \leftarrow r0$, $r1$
sub $r1 \leftarrow r3$, $r0$

vadd r
$$\leftarrow$$
 a, b a_{1} a_{2} a_{3} b_{1} b_{2} b_{3} c_{1} c_{2} c_{3}

Example: $X \leftarrow a \times X$

• In-place scalar-vector product: X ← a×X

Sequential (ILP) For
$$i = 0$$
 to $n-1$ do:
 $X[i] \leftarrow a * X[i]$

Threads (TLP)

Launch n threads:

X[tid] ← a * X[tid]

Vector (DLP) $X \leftarrow a * X$

Or any combination of the above

Uses of parallelism

- "Horizontal" parallelism for throughput
 - More units working in parallel

- "Vertical" parallelism for latency hiding
 - Pipelining: keep units busy when waiting for dependencies, memory

Α

How to extract parallelism?

	Horizontal	Vertical
ILP	Superscalar	Pipelined
TLP	Multi-core SMT	Interleaved / switch-on-event multithreading
DLP	SIMD / SIMT	Vector / temporal SIMT

- We have seen the first row: ILP
- We will now review techniques for the next rows: TLP, DLP

Break

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
 - Hardware trends
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Sequential processor

```
for i = 0 to n-1
  X[i] ← a * X[i]

  Source code

move i ← 0
loop:
  load t ← X[i]
  mul t ← a×t
  store X[i] ← t
  add i ← i+1
  branch i<n? loop</pre>
```

Machine code

- Focuses on instruction-level parallelism
 - Exploits ILP: vertically (pipelining) and horizontally (superscalar)

The incremental approach: multi-core

Several processors
 on a single chip
 sharing one memory space

Intel Sandy Bridge

- Area: benefits from Moore's law
- Power: extra cores consume little when not in use
 - e.g. Intel Turbo Boost

Source: Intel

Homogeneous multi-core

Horizontal use of thread-level parallelism

Threads: T0 T1

Improves peak throughput

Example: Tilera Tile-GX

- Grid of (up to) 72 tiles
- Each tile: 3-way VLIW processor,
 5 pipeline stages, 1.2 GHz

Interleaved multi-threading

Vertical use of thread-level parallelism

Threads: T0 T1 T2 T3

 Hides latency thanks to explicit parallelism improves achieved throughput

Example: Oracle Sparc T5

- 16 cores / chip
- Core: out-of-order superscalar, 8 threads
- 15 pipeline stages, 3.6 GHz

Clustered multi-core

- For each individual unit, select between
 - Horizontal replication
 - Vertical time-multiplexing
- Examples
 - Sun UltraSparc T2, T3
 - AMD Bulldozer
 - IBM Power 7, 8, 9

- Area-efficient tradeoff
- Blurs boundaries between cores

Implicit SIMD

- Factorization of fetch/decode, load-store units
 - Fetch 1 instruction on behalf of several threads
 - Read 1 memory location and broadcast to several registers

- In NVIDIA-speak
 - SIMT: Single Instruction, Multiple Threads
 - Convoy of synchronized threads: warp
- Extracts DLP from multi-thread applications

How to exploit common operations?

Multi-threading implementation options:

- Horizontal: replication
 - Different resources, same time
 - Chip Multi-Processing (CMP)
- Vertical: time-multiplexing
 - Same resource, different times
 - Multi-Threading (MT)
- Factorization
 - If we have common operations between threads
 - Same resource, same time
 - Single-Instruction Multi-Threading (SIMT)

Explicit SIMD

- Single Instruction Multiple Data
- Horizontal use of data level parallelism

```
loop:
    vload T ← X[i]
    vmul T ← a×T
    vstore X[i] ← T
    add i ← i+4
    branch i<n? loop

Machine code
```


- Examples
 - Intel MIC (16-wide)
 - AMD GCN GPU (16-wide×4-deep)
 - Most general purpose CPUs (4-wide to 16-wide)

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Example CPU: Intel Core i7

- Is a wide superscalar, but has also
 - Multicore
 - Multi-thread / core
 - SIMD units
- Up to 116 operations/cycle from 8 threads

Example GPU: NVIDIA GeForce GTX 980

- SIMT: warps of 32 threads
- 16 SMs / chip
- 4×32 cores / SM, 64 warps / SM

- 4612 Gflop/s
- Up to 32768 threads in flight

Taxonomy of parallel architectures

	Horizontal	Vertical
ILP	Superscalar / VLIW	Pipelined
TLP	Multi-core SMT	Interleaved / switch-on- event multithreading
DLP	SIMD / SIMT	Vector / temporal SIMT

Classification: multi-core

How to read the table

- Given an application with known ILP, TLP, DLP how much throughput / latency hiding can I expect?
 - For each cell, take minimum of existing parallelism and hardware capability
 - The column-wise product gives throughput / latency hiding

Classification: GPU and many small-core

Takeaway

- Parallelism for throughput and latency hiding
- Types of parallelism: ILP, TLP, DLP
- All modern processors exploit the 3 kinds of parallelism
- GPUs focus on Thread-level and Data-level parallelism

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

What is inside a graphics card?

NVIDIA Volta V100 GPU. Artist rendering!

GPU high-level organization

- Processing units
 - Streaming Multiprocessors (SM) in Nvidia jargon
 - Compute Unit (CU) in AMD's
 - Closest equivalent to a CPU core
 - Today: from 1 to 20 SMs in a GPU
- Memory system: caches
 - Keep frequently-accessed data
 - Reduce throughput demand on main memory
 - Managed by hardware (L1, L2) or software (Shared Memory)

GPU processing unit organization

Each SM is a highly-multithreaded processor

- Today: 24 to 48 warps of 32 threads each
 - \rightarrow ~1K threads on each SM, ~10K threads on a GPU

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling

First-order performance model

Questions you should ask yourself, before starting to code or optimize

- Will my code run faster on the GPU?
- Is my existing code running as fast as it should?
- Is performance limited by computations or memory bandwidth?

Pen-and-pencil calculations can (often) answer such questions

Performance: metrics and definitions

Optimistic evaluation: upper bound on performance

Assume perfect overlap of computations and memory accesses

- Memory accesses: bytes
 - Only external memory, not caches or registers
- Computations: flops
 - Only "useful" computations (usually floating-point) not address calculations, loop iterators..
- Arithmetic intensity: flops / bytes
 = computations / memory accesses
 - Property of the code
- Arithmetic throughput: flops / s
 - Property of code + architecture

The roofline model

- How much performance can I get for a given arithmetic intensity?
 - Upper bound on arithmetic throughput, as a function of arithmetic intensity
 - Property of the architecture

S. Williams, A. Waterman, D. Patterson. *Roofline: an insightful visual performance model* 66 *for multicore architectures.* Communications of the ACM, 2009

Building the machine model

- Compute or measure:
 - Peak memory throughput GTX 980: 224 GB/s
 - Ideal arithmetic intensity = peak compute throughput / mem throughput

```
GTX 980: 4612 (Gflop/s) / 224 (GB/s) = 20.6 flop/B \times 4 (B/flop) = 82 (dimensionless)
```


- Achievable peaks may be lower than theoretical peaks
 - Lower curves when adding realistic constraints

Using the model

- Compute arithmetic intensity, measure performance of program
- Identify bottleneck: memory or computation
- Take optimization decision

Example: dot product

```
for i = 1 to n
r += a[i] * b[i]
```

- How many computations?
- How many memory accesses?
- Arithmetic intensity?
- Compute-bound or memory-bound?
- How many Gflop/s on a GTX 980 GPU?
 - With data in GPU memory?
 - With data in CPU memory?
- How many Gflop/s on an i7 4790 CPU?

GTX 980: 4612 Gflop/s, 224 GB/s i7 4790: 460 Gflop/s, 25.6 GB/s

PCIe link: 16 GB/s

Example: dot product

- How many computations?
- How many memory accesses?
- Arithmetic intensity?
- Compute-bound or memory-bound?
- How many Gflop/s on a GTX 980 GPU?
 - With data in GPU memory?
 - With data in CPU memory?
- How many Gflop/s on an i7 4790 CPU?

PU?

 \rightarrow 1 flop/word = 0.25 flop/B

→ Highly memory-bound

→ 2 n flops

 \rightarrow 2 n words

- 224 GB/s \times 0.25 flop/B \rightarrow 56 Gflop/s
- 16 GB/s \times 0.25 flop/B \rightarrow 4 Gflop/s

25.6 GB/s × 0.25 flop/B → 6.4 Gflop/s Conclusion: don't bother porting to GPU!

GTX 980: 4612 Gflop/s, 224 GB/s i7 4790: 460 Gflop/s, 25.6 GB/s

PCIe link: 16 GB/s

Takeaway

- GPU optimized for throughput
 - Exploits primarily DLP, TLP
 - Energy-efficient on parallel applications with regular behavior
- CPU optimized for latency
 - Exploits primarily ILP
 - Can use TLP and DLP when available
- Performance models
 - Quick estimates and back-of-the-envelope calculations can save time
- Next time: GPU programming in CUDA