Batch Scheduling

Pierre, Slava, Ming-Ming, Jules

Grenoble Alpes University

17.01.2023

Outline

- Dynamic programming : Knapsack problem with width
- Peuristic Tree Search: Knapsack problem with width and conflicts
- 3 Column Generation and Dynamic Programming : the Single machine batch scheduling problem with Makespan objective
- Column Generation and Heuristic Tree Search

Dynamic programming: Knapsack problem with width

We consider the Knapsack problem with width:

Input

- n items; for each item j = 1, ..., n
 - a weight $w_i \in \mathbb{N}^*$
 - a width I_j ∈ N
 a profit p_i ∈ N*
- a capacity $C \in \mathbb{N}^*$

Problem

- Select a subset of items such that the total weight of the selected items does not exceed the knapsack capacity
- Objective: maximize the total profit of the selected items minus the maximum width among the selected items

Resolution

Algorithm description

- Initialization;
- Sort the items by increasing width $[l_1, l_2, ..., l_n]$;
- Compute a basic knapsack with all the items;
 - Initialize f(i, c) with 0 for all i, c;
 (f(i, c) is the max value for capacity = c and number of items = i)
 - Iterate over items i
 - For c in $0, ... \min(w[i], C) : f[i][c] = f[i-1][c]$
 - For c in w[i], .. capacity: $f[i][c] = \max(f[i][c w[i]] + p[i], f[i 1][c])$
- Find $i \in \{1, ..., n\}$ s.t $f(i, C) I_i$ is maximal;
- Return the solution corresponding to this index.

Complexity

- Sorting is done in O(n log n)
- ullet Solving the knapsack problem with dynamic programming is done in O(nC)
- Overall, complexity is O(nC) (since usually C is much bigger than n)

Heuristic Tree Search: Knapsack problem with width and conflicts

We consider a Knapsack problem with width and conflicts.

Input

- n items; for each item j = 1, ..., n
 - a weight $w_i \in \mathbb{N}^+$
 - a width I_j ∈ N⁺
 a profit p_i ∈ N⁺
 - a profit p_j C IV
- a capacity $C \in \mathbb{N}^+$
- a graph G such that each node corresponds to an item

Problem

- Select a subset of items such that the total weight of the selected items does not exceed the knapsack capacity
- If there exists an edge between vertex j_1 and j_2 in G, then item j_1 and item j_2 must not be both selected
- Maximize the total profit of the selected items minus the maximum width amorugation the selected items

Tree Generation

17.01.2023

Conflicts: [(2,3)]

Item	1	2	3	4	5
p_j	7	3	5	1	2

Conflicts: [(2,3)]

Item	1	2	3	4	5
pj	7	3	5	1	2

Node 1:

• Items: {1,2}

• Value: 10

• Potential new items: {4,5}

• Potential increase: $p_4 + p_5 = 3$

Conflicts: [(2,3)]

Item	1	2	3	4	5
pj	7	3	5	1	2

Node 1:

• Items: {1,2}

• Value: 10

• Potential new items: {4,5}

• Potential increase: $p_4 + p_5 = 3$

Node 2:

• Items: $\{1, 3, 5\}$

Value: 14

Potential new items: {4}

• Potential increase: $p_4 = 1$

Conflicts: [(2,3)]

Item	1	2	3	4	5
p_j	7	3	5	1	2

Node 1:

• Items: $\{1, 2\}$

• Value: 10

• Potential new items: {4,5}

• Potential increase: $p_4 + p_5 = 3$

Node 2:

• Items: $\{1, 3, 5\}$

Value: 14

Potential new items: {4}

• Potential increase: $p_4 = 1$

 $Value(Node 2) \ge Value(Node 1) + Potential Increase(Node 1)$

Conflicts: [(2,3)]

	Item	1	2	3	4	5
ſ	p_j	7	3	5	1	2

Node 1:

• Items: $\{1, 2\}$

• Value: 10

• Potential new items: {4,5}

• Potential increase: $p_4 + p_5 = 3$

Node 2:

• Items: $\{1, 3, 5\}$

Value: 14

Potential new items: {4}

• Potential increase: $p_4 = 1$

 $Value(Node 2) \ge Value(Node 1) + Potential Increase(Node 1)$

We do not need to explore Node 1.

Domination rule

Conflicts: [(2,3)]

Item	1	2	3	4	5
p_j	7	3	5	1	2
Wj	3	3	2	1	1

Node 1:

• Items: {1,2}

• Value: 10

Weight: 6

Potential new items: {4,5}

Node 2:

• Items: {1,3}

Value: 12

Weight: 5

• Potential new items: {4,5}

Potential new items(Node 1) = Potential new items(Node 2)

 $Value(Node 2) \ge Value(Node 1) \& Weight(Node 1) \ge Weight(Node 2)$

We do not need to explore ${\sf Node}\ 1.$

17.01.2023

Single machine batch scheduling problem with Makespan objective

We consider the Single machine batch scheduling problem with Makespan objective:

Input:

- n jobs; for each job $j=1,\ldots,n$, a processing time $p_i\in\mathbb{N}^*$ and a size $s_i\in\mathbb{N}^*$
- ullet a batch capacity $Q\in\mathbb{N}^*$

Problem

Partition the jobs into batches and sequence the batches such that:

- each job must be in exactly one of the batches
- the processing time of a batch is equal to the longest processing time among all jobs it contains
- the total size of the jobs in a batch does not exceed its capacity
- Objective: minimize the makespan of the schedule

17 01 2023

Example

Job	1	2	3	4	5	6
p_j	4	2	2	1	3	1
Sj	1	1	2	2	2	1

Solution

- Q = 3, n = 6.
- Batch 1 : jobs 1 and 5, $p_{max}^1 = 4$, size = 3.
- Batch 2 : jobs 2 and 3, $p_{max}^2 = 2$, size = 3.
- Batch 3: jobs 4 and 6, $p_{max}^3 = 1$, size = 3.
- The makespan of this solution is 7.

Exponentional formulation

Modelisation

- Let us define the K feasible patterns (batches) such that : $\forall j \in \{1, ..., n\}, \ \forall k \in K, \ x_i^k = 1 \ \text{if job } j \ \text{is in the batch } k.$
- For all $k \in K$, we define $p_{max}^k = \max(p_j^k|job\ j$ is in batch $k) = \max(p_j^k x_j^k,\ j \in \{1,...,n\})$ which is the maximum processing time among the jobs in batch k.
- Variables :
 - $v^k \in \mathbb{N}, \forall k = 1, ..., n$
 - $y^k = 1$ if batch k is scheduled, otherwise $y^k = 0$
- Objective: $\min \sum_{k=1}^{K} p_{max}^{k} y^{k}$
- Constraints: $\sum_{k=1}^{K} x_j^k y^k = 1$ $\forall j = 1, ..., n$ (each job must be in exactly one of the batches)

Remark

The second and third constraints are in creation of patterns.

Algortihm Description

Description

- To solve this MIP model we use column generation. The main difficulty is to choose the column of minimun reduced cost, it's the pricing problem.
- We then want to create a new column (batch) that maximize the profits (but minimize the maximum processing time), respecting the constraints of a batch. This problem is exactly the knapsack with width problem with instance $(w_j, l_j, p_j) = (s_j, p_j, v_j) \ \forall j \in \{1, ..., n\}$ where v_j is the value of dual variable j of the previous primal MIP.

Column Generation and Heuristic Tree Search

We consider the Single machine batch scheduling problem with conflicts and Makespan objective:

Input:

- *n* jobs; for each job $j=1,\ldots,n$, a processing time $p_j\in$ and a size $s_j\in$ ⁺
- ullet a batch capacity $Q\in\mathbb{N}$
- a graph G such that each node corresponds to a job

Problem

Partition the jobs into batches and sequence the batches such that:

- each job must be in exactly one of the batches
- the processing time of a batch is equal to the longest processing time among all jobs it contains
- the total size of the jobs in a batch does not exceed its capacity
- if there exists an edge between vertex j_1 and vertex j_2 in G, then job j_1 and job j_2 must not be in the same batch
- Objective: minimize the makespan of the schedule

Pricing problem algorithms

Column generation algorithm: Limited discrepancy search

Time limit: 60 seconds Number of instances: 10 Size of the instances: ≈ 50 jobs

Gap to the best Beam256 Beam128 BFS0.05 BFS0.1 Beam64 Beam32 Beam16 Gap 1.75% 0.25% 1.13% 2.53% 0.68% 1.37% ∞

Comparison between problems 3 and 4

Instance 100

Problem 3 (without conflicts): Problem 4 (with conflicts):

Value of the solution: 9430 Value of the solution: 9247

The set of feasible solutions for the problem 4 is included in the set of feasible solutions for the problem 3, yet we found a better solution for problem 4.

