PLANETARY CANDIDATES FROM K2 CAMPAIGN 16

Liang Yu¹, Ian J. M. Crossfield¹, Joshua E. Schlieder², Molly R. Kosiarek^{3,†}, Adina D. Feinstein⁴, John H. Livingston⁵, Andrew W. Howard⁶, Björn Benneke⁷, Erik Petigura^{6,*}, Charles A. Beichman⁸, David A. Berardo¹, Makennah Bristow⁹, Jessie L. Christiansen⁸, David R. Ciardi⁸, Justin Crepp⁹, Courtney D. Dressing¹⁰, Benjamin J. Fulton^{7,‡}, Erica J. Gonzales³, Kevin K. Hardegree-Ullman¹¹, Thomas Henning¹², Howard Isaacson¹⁰, Heather A. Knutson⁷, Sébastien Lépine¹³, Arturo O. Martinez¹⁴, Farisa Y. Morales^{15,16}, Rahul I. Patel⁸, Evan Sinukoff^{6,17}, Michael W. Werner¹⁵

ABSTRACT

We present a catalog of interesting targets recently identified using data from Campaign 16 of the K2 mission. Our catalog includes 32 high-quality planet candidates (showing no signs of being nonplanetary in nature), 54 more ambiguous events that may be either planets or false positives, 169 eclipsing binaries, and 217 other regularly periodic variable sources. We have released light curves for all targets in C16, and have also released system parameters and transit vetting plots for all interesting candidates identified in this paper. Of particular interest is a candidate planet orbiting the bright F dwarf HD 73344 (V = 6.9, K = 5.6) with an orbital period of 15 days. If confirmed, this object would correspond to a $\sim 2.6~R_{\oplus}$ planet and would likely be a favorable target for radial velocity characterization. Campaign 16 is one of just two K2 campaigns observed so far in "forward-facing" mode, which enables immediate follow-up observations from the ground. This paper is intended as a rapid release of planet candidates, eclipsing binaries and other interesting periodic variables to maximize the scientific yield of this campaign, and as a test run for the upcoming TESS mission, whose frequent data releases call for similarly rapid candidate identification and efficient follow-up. Subject headings: methods: data analysis, planets and satellites: detection, techniques: photometric

1. INTRODUCTION

¹ Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

² NASA Goddard Space Flight Center, 8800 Greenbelt Road,

Greenbelt, MD 20771, USA

Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA

⁴ Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA

⁵ Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033,

Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA

Division of Geological and Planetary Sciences, California Insti-

tute of Technology, Pasadena, CA 91125, USA

⁸ Caltech/IPAC-NASA Exoplanet Science Institute, 770 S. Wilson Ave, Pasadena, CA 91106, USA

Department of Physics, University of North Carolina at Asheville, Asheville, NC 28804, USA

Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA

10 Department of Astronomy, University of California, Berkeley,

CA 94720, USA

11 The University of Toledo, 2801 West Bancroft Street, Mail-

stop 111, Toledo, OH 43606, USA

12 Max Planck Institute for Astronomy, Königstuhl 17, D-69117

Heidelberg, Germany

Department of Physics & Astronomy, Georgia State Univer-

sity, 25 Park Place NE 605, Atlanta, GA 30303, USA ¹⁴ Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA

¹⁵ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

¹⁶ Department of Physical Sciences, Moorpark College,7075 Campus Road, Moorpark, CA 93021, USA

17 Institute for Astronomy, University of Hawai'i, Honolulu, HI 96822, USA

- NSF Graduate Research Fellow
- NASA Hubble Fellow
- [‡] Texaco Fellow

By any measure, NASA's K2 mission (Howell et al. 2014) has been a success. Out of the ashes of an ailing spacecraft has risen a tremendously productive scientific mission. Sometime this year K2 will likely run out of the propellant needed to maintain its stable pointing and deliver precise time-series photometry. 2018 is perhaps an appropriate year for this event, since it marks the 40 year anniversary of the first American summit of K2 — the "Savage Mountain" — which itself occurred 40 years after an American team first demonstrated the feasibility of climbing that peak. Hundreds of planets and other astrophysical phenomena have been studied with K2, far fewer than the thousands discovered by the original Kepler mission (Thompson et al. 2017) — just as thousands of climbers have summitted Mount Everest even though only hundreds have ever reached the top of K2. Nonetheless, even after the mission ends, an enduring kinship will remain between those who have been fortunate enough to use K2 in their research efforts.

In that same communal spirit, we provide a rapid, public release of light curves, planet candidates, and other interesting periodic variables from K2's Campaign 16 (C16) in this paper. Unlike most fields observed by K2, C16 was observed in "forward-facing" mode, meaning that the field was observable throughout the night as soon as the campaign ended. We have conducted this quick-look analysis of uncalibrated C16 cadence data and are releasing these data products in order to maximize the scientific yield of what could be K2's final campaign. We hope that this will also provide a test for the imminent TESS mission, whose frequent data releases will also benefit from rapid candidate identification and follow-up.

In the following sections we describe our procedures and results. In Sec. 2, we describe how we compute time-series photometry and search for transit-like sig-

nals. Sec. 3 then discusses our approach for discriminating between various astrophysical signals and measurement noise. Finally, in Sec. 4 we conclude by discussing several particularly interesting systems and reviewing the overall C16 candidate sample.

2. K2 TARGETS AND PHOTOMETRY

2.1. Target Selection and C16 Data Characteristics

K2 target selection is entirely community driven, with all targets selected from Guest Observer (GO) proposals. Our team has proposed large samples of F, G, K, and M dwarfs for every K2 Campaign up to Campaign 17, but in the analysis that follows we use data from all K2 GO proposals to maximize the science yield from this campaign.

During C16, K2 observed 20647 stars in a field centered at RA = 08:54:50, Dec = +18:31:31, for a period of 80 days between 2017 Dec 07 and 2018 Feb 25. This is only the second campaign in which the spacecraft was pointed along the forward-facing direction of its velocity vector (the other, C9, was dedicated mostly to microlensing and was in a dense field unsuited for standard transit searches). Forward-facing observations enable simultaneous observations from the ground and with K2, and also allow the field to be accessed from ground-based observatories as soon as compelling targets can be identified. C16 also overlaps with C5 except for a 40 px-wide strip that is not on silicon in C16. C16 therefore includes dozens of confirmed and candidate planets from C5, some of which we rediscover in our analysis.

2.2. Time-Series Photometry

Raw cadence pixel data for C16 became available on the Mikulski Archive for Space Telescopes $(MAST)^{22}$ on 2018 Feb 28. We first convert the raw cadence data into target pixel files with kadenza²³ (Barentsen 2018), following the approach described in Christiansen et al. (2018).

From then on we process the data using a photometric pipeline that has been described in detail in past works by members of our team (e.g. Crossfield et al. 2015; Petigura et al. 2015, 2018). In brief, we follow an approach similar to that originally outlined by Vanderburg & Johnson (2014). We compute the raw photometry by summing the flux within a soft-edged, stationary, circular aperture centered on each target star. During K2 operations, solar radiation pressure causes the telescope to roll around its boresight. Consequently, stars trace out small arcs of up to several pixels every ~ 6 hr. Interpixel sensitivity variations and aperture losses can then lead to significant changes in the brightness of stars that dominate K2 photometry.

To correct for these motion-dependent systematics, we solve for the roll angle between each frame and an arbitrary reference frame using roughly 100 stars of Kepler magnitude $Kp \sim 12$ mag on an arbitrary output channel (we typically use channel 4). Then we use the publicly available k2phot photometry code²⁴ to model the time- and roll-dependent brightness variations using

22 https://archive.stsci.edu/k2/
23 https://github.com/KoplerCO/ledow

a Gaussian process with a squared-exponential kernel. The models can be individually applied to the raw photometry to produce photometry corrected for motion-dependent systematics or fully detrended photometry. Fig. 1 shows an example of raw K2 photometry for a relatively well-behaved star, along with the same light curve after correction for systematics and subsequent detrending. Some light curves with relatively deep transits, as in this example, show small increases in flux immediately before and after the transits. These are artifacts from the detrending process. The transits are effectively outliers on short timescales that may bias the Gaussian process model, leading to overfitting.

We repeat this photometry process for apertures with radii ranging from 1 to 7 pixels, and also fit a custom, automatically-generated aperture that selects pixels based on how much flux they receive relative to the background. This aperture has an irregular shape and captures most of the flux from each target. For each target we adopt the aperture that minimizes the residual noise on 3 hr timescales. Specifically, we use the median absolute deviation (MAD) of the 3 hr Single Event Statistic (SES) as our noise metric. We define the SES as the depth of a box-shaped dimming relative to the local photometric level. This method of aperture selection favors smaller apertures, which incur less background noise, for fainter stars and larger apertures for brighter targets. For strongly saturated stars the custom aperture is typically chosen, since in these cases circular apertures miss substantial flux.

2.3. Transit Search

We search our calibrated photometry for transit signals using the publicly available TERRA algorithm²⁵ (Petigura et al. 2013a,b). TERRA flags targets with putative transits as threshold-crossing events (TCEs), which we later examine visually (see Sec. 3). Once a TCE is detected, TERRA automatically runs again to search for additional signals in the same system (see Sinukoff et al. 2016) until no more TCEs are found or until the number of candidates exceeds 5.

Many spurious detections at lower S/N are caused by residual outliers in the photometry. In order to reduce the number of spurious detections, we require that TCEs have orbital periods longer than 0.5 d, and that they also show at least three transits. This last criterion rules out any planets with periods longer than half the campaign baseline, or ~ 40 days. Thus many longer-period planets likely remain to be found in this data set. Furthermore, we adopt a threshold of $S/N \ge 12$ to yield a good balance between sensitivity to shallow transits and the number of spurious detections. In previous catalog papers produced using the fully processed target pixel files released later by the K2 project office, we typically vetted candidates down to a lower S/N threshold of 10. We find that spurious detections are more frequent in light curves derived from uncalibrated cadence data than when using fully calibrated pixel files.

In total, TERRA produced a list of 1097 TCEs in C16 with nominal S/N≥12. The distribution of their orbital periods is shown in Fig. 2.

https://github.com/KeplerGO/kadenza
 https://github.com/petigura/k2phot

 $^{^{25}}$ https://github.com/petigura/terra

Fig. 1.— K2 photometry of HD 73344 (V=6.9) and its planet candidate, EPIC 212178066.01. From top to bottom: raw aperture photometry; after removal of telescope systematics, revealing a likely 8.5 ± 0.5 d rotation period; after detrending, clearly revealing candidate transits; and after phase-folding and overplotting a model transit profile (red). The bumps in panel (c) do not occur on the same period as the candidate transit and may be artifacts of the detrending process.

FIG. 2.— Orbital periods of transit-like signals identified in our analysis. The unfilled, narrow-binned histogram (axis at left) shows the Threshold-Crossing Events (TCEs) identified by TERRA in our initial transit search (see Sec. 2.3). The coarser histograms (axis at right) indicate the distributions of 32 high-quality candidates (blue-green) and 54 remaining, plausibly planetary candidates (orange).

3. TRIAGE AND VETTING

The majority of TCEs identified by TERRA are not caused by genuine transiting planets, but instead by residual instrumental artifacts, eclipsing binary stars, or other periodic stellar variability (e.g. pulsations and spot modulations). We manually vet our entire list of 1097 TCEs to differentiate between these various signals. This

process results in a list of robust planet candidates for further follow-up and validation, as well as a list of eclipsing binaries and other periodically variable sources.

We promote TCEs showing no obvious warning signs to the status of "planet candidate" in the spirit of "Kepler Objects of Interest" (KOIs), i.e. events that are almost certainly astrophysical in nature and not obviously false positive scenarios such as eclipsing binaries or variable stars. Details of the vetting process are described in Crossfield et al. (2016) and Petigura et al. (2018). TERRA produces a set of diagnostics for every TCE, which we use to classify the event as a candidate planet, eclipsing binary, periodic variable, or noise. The diagnostics include a summary of basic fit parameters and a suite of diagnostic plots to visualize the nature of the TCE. These plots include the TERRA periodogram, a normalized phase-folded light curve with the best-fit Mandel & Agol (2002) model, the light curve phased to 180° to look for eclipses or misidentified periods, the most probable secondary eclipse identified at any phase, and an autocorrelation function. In the era of TESS, cross-matching to ground-based surveys will be another excellent way to discover false positives (e.g. Oelkers et al. 2018).

Table 2 lists the 32 highest-quality planet candidates whose light curves (shown in Fig. 3) show no obvious signs of being non-planetary in nature; our experience with four years of K2 data leads us to believe that most of these are indeed real planets, ready to be confirmed (e.g., via mass measurements) or statistically validated.

Table 3 lists 54 candidates that could also be transiting planets but that also include some ambiguous warning signs such as a V-shaped transit (frequently caused by eclipsing binaries). Some candidates in this list may be

Fig. 3.— Phase-folded light curves of our 32 high-quality planet candidates. To avoid clutter, we did not label the y-axis. Their system parameters are listed in Table 2.

real planets, but many are likely non-planetary. Following the examples of the KOIs and of Vanderburg et al. (2016), we do not classify candidates with very deep transits as false positives even though transit depths $\gtrsim 5\%$ very likely indicate eclipsing binaries. We plot the light curves of these candidates in Fig. 4.

Finally, we identify a larger sample of periodic astrophysical signals that are almost certainly not caused by planets. Table 4 lists 169 targets that clearly show both transits and secondary eclipses, while Table 5 lists the 217 other periodic, astrophysical signals such as pulsation or coherent stellar rotation. There is likely overlap between these last two tables, e.g. for short-period contact/near-contact binaries whose light curves may have been classified as periodic variables.

After constructing the samples of astrophysical TCEs described above, we also perform ephemeris matching following the approach of Coughlin et al. (2014). By adopting their recommended thresholds for periods and times-of-transit, we identify a number of transit-like signals with matching ephemerides. We do not discard any of these systems, but indicate them in our target tables. This matching exercise also led us to demote 3 systems that we had originally classified as high-quality candidates (211914445.01, 211964332.01 and 251319382.01) down into a lower tier.

To provide the community access to these candidates as rapidly as possible, we have chosen to forego a full MCMC analysis on each candidate's light curve. Instead, we merely list the best-fit parameters reported by TERRA for each candidate in our candidate tables. In some cases TERRA obviously identified a multiple of the true period, and we include a note to that effect where appropriate.

4. DISCUSSION

4.1. Host Star Parameters

Unlike the original Kepler mission, K2 does not have a homogeneous catalog of stellar parameters. Fortunately we still have the benefit of the comprehensive classification catalog of K2 targets produced by Huber et al. (2016), who used a combination of colors, proper motions, spectroscopy, parallaxes, and galactic population synthesis models to derive stellar parameters such as effective temperatures ($T_{\rm eff}$), surface gravities ($\log g$), metallicities ($[{\rm Fe}/{\rm H}]$), radii, masses, densities, distances and extinctions for K2 stars. The typical precision of these classifications is $\approx 2\% - 3\%$ in $T_{\rm eff}$, ≈ 0.3 dex in $\log g$ and ≈ 0.3 dex in $[{\rm Fe}/{\rm H}]$ (Huber et al. 2016). We caution that the Huber et al. (2016) analysis relies on Padova stellar models (Marigo et al. 2008), which systematically underestimate the stellar radii of low-mass stars. But in the absence of spectroscopic follow-up, these are reasonable initial guesses for stellar parameters

Fig. 5 shows the Huber et al. (2016) $T_{\rm eff}$ for the entire C16 sample, along with the distribution among our planet candidate samples. The full campaign shows three distinct populations of targets observed by K2, with peaks around 3500 K, 5000 K, and 6100 K. The number of candidates is of course much lower, but the distribution of $T_{\rm eff}$ for these systems appears to roughly track that of the underlying target distribution even though we do not expect it to, given the change in planet detectability as a function of stellar magnitude, radius, and noise.

In Table 2, we list the R_* and $T_{\rm eff}$ reported by Huber et al. (2016) for all of our high-quality candidates. One of these candidates, EPIC 211812935, lacks stellar parameters from Huber et al. (2016). For this star, we use the isochrones package²⁶ (Morton 2015) in conjunction with the broadband photometry for this star listed in the Ecliptic Plane Input Catalog (BVgri; Huber et al. 2016) to infer the stellar parameters.

4.2. Characteristics of the Planet Candidate Sample

 $^{^{26}}$ https://github.com/timothydmorton/isochrones

Fig. 4.— Phase-folded light curves of our 54 lower-quality planet candidates. Typical transit depths for these candidates range from 300 ppm to 700000 ppm. Their system parameters are listed in Table 3.

Fig. 5.— Distribution of EPIC stellar $T_{\rm eff}$ for the entire C16 target sample (empty, fine-grained histogram) and for our planet candidate sample (shaded, coarser histograms).

The period distribution of our planet candidates, along with that of the TCEs, is shown in Fig. 2. Whereas the TCE distribution peaks for P < 1 d, the number of high-quality candidates increases towards longer periods as expected for real planets (e.g., Fulton et al. 2017). A larger fraction of lower-quality candidates have P < 2 d; based on the occurrence rates of short-period planets, we

expect that many of these shortest-period candidates are not planets.

Fig. 6 plots the Kepler magnitudes (Kp) and transit depths for our candidates. The highest-quality candidates orbit stars with Kp=10-15 mag and have transit depths $\gtrsim 100$ ppm, as is typical for K2 planet catalogs (e.g., Mayo et al. 2018). One candidate has Kp=6.8 mag and is a clear outlier; this would be the brightest host star, by far, for any transiting planet discovered by K2. We discuss this candidate, HD 73344, in more detail in Sec. 4.3 below.

Adopting the stellar parameters of Huber et al. (2016), Fig. 7 plots the planet radius and incident irradiation of all our candidates. Two high-quality candidates have $R_P > 2R_{\rm Jup}$, but we retain these because precise stellar characterization of the host stars could plausibly result in smaller, physically realistic radii.

We detect one possible multi-planet system, with two high-quality candidates around EPIC 212204403. These have periods of 4.7 and 12.6 d and sizes of approximately 3.3 and 2.6 R_{\oplus} , respectively. Based on past studies of multi-planet systems these candidates are likely to be real planets (Lissauer et al. 2012; Sinukoff et al. 2016). Validating them is beyond the scope of this work, but at V=12.564 mag, the system could be an interesting target for radial velocity (RV) mass measurements of multi-planet systems.

Another interesting candidate is EPIC 212048748.01 from the lower-quality "plausible planet candidate" list.

Fig. 6.— Transit depth and stellar magnitude for our planet candidates.

FIG. 7.— Approximate radii and incident insolation for our high-quality candidates (light blue squares) lower-quality candidates (orange circles).

This candidate transits with a 3155 ppm depth and a period of 5.75 d around a high proper motion, infrared bright (K=9.2) star having optical-IR photometry consistent with an M3 spectral type. If confirmed, this $\sim 2R_{\oplus}$ candidate will be a priority target for upcoming IR sensitive precision RV instruments and transit spectroscopy with the James Webb Space Telescope.

Finally, a comparison with the NASA Exoplanet Archive shows that four of our candidates have already been validated using data from C5. Dressing et al. (2017) validated two of our high-quality C16 candidates, 212069861.01 (K2-123b) and 212154564.01 (K2-124b); another candidate 212110888.01 is a previously known hot Jupiter K2-34b (Lillo-Box et al. 2016; Hirano et al. 2016); and our lower-priority candidate 211969807.01 was validated as K2-104b (Mann et al. 2017). Our derived system parameters are in approximate agreement with those in the discovery papers. A combined analysis of the C5 and C16 data (possible for many targets in

C16) may prove fruitful for these systems.

4.3. HD 73344

One candidate of particular interest is HD 73344²⁷ (HIP 42403, EPIC 212178066), whose light curve is shown in Fig 1. This bright F star ($V=6.9~{\rm mag}$) is highly saturated in the K2 data, but a custom aperture encompassing the entire saturated PSF shows the clear transit-like signal highlighted in Fig. 1. Although our purpose is to quickly present candidates to the community, we pause here to briefly investigate this intriguing signal.

The star has been characterized by many groups over the years (e.g., Valenti & Fischer 2005; Paletou et al. 2015), indicating that it lies at a distance of 35.0 ± 0.5 pc (Gaia Collab. et al. 2016) and its parameters are $T_{\rm eff}$ $= 6120 \pm 50 \text{ K}, R_* = 1.15 \pm 0.04 R_{\odot}, M_* = 1.26 \pm 0.04 R_{\odot}$ $0.19\,M_{\odot}$. The star's projected rotational velocity is $v \sin i = 6.3 \pm 0.5 \text{ km s}^{-1}$ (Valenti & Fischer 2005), and our light curve shows evidence of stellar rotation at a period (determined via Lomb-Scargle periodogram) of 8.5 ± 0.5 d. This period would be consistent with the rotation periods of other stars with similar colors, and is consistent with a stellar age of roughly 1 Gyr (Angus et al. 2015). Combining all these parameters indicates that the stellar rotation axis is inclined by $i = 62^{\circ} \pm 10^{\circ}$. Thus, if the candidate signal comes from an object orbiting HD 73344, the angular momentum of the star and the transiting object's orbit are likely misaligned.

Because the star is strongly saturated, we cannot apply a standard centroid analysis of the stellar position in- vs. out-of-transit. However, a transit analysis (identical to that described by Crossfield et al. 2015) implies a stellar density of $\rho_{*,circ}=2.2\pm1.2~{\rm g~cm^{-3}}$ — a loose constraint, but consistent with the spectroscopically-inferred stellar density of $1.2\pm0.2~{\rm g~cm^{-3}}$ and much higher than the low stellar densities that might be expected from an eclipsed giant star. The results of our transit analysis, which includes dilution as a free parameter, are also consistent with no dilution.

The resulting parameters from our transit analysis of HD 73344 are listed in Table 1. If the transits are occurring around the target and not around a background star in the photometric aperture, the stellar radius and transit depth imply a candidate radius of roughly 2.6 R_{\oplus} . This size would imply a corresponding candidate mass of $10 \pm 3 \, M_{\oplus}$ (Wolfgang et al. 2016) and an RV amplitude of ~ 2 m s⁻¹. The star was observed 24 times over eleven years as part of the Lick radial velocity survey (Fischer et al. 2014), but these data have an RMS of 32 m s⁻¹ (despite internal uncertainties of roughly 6 m s⁻¹) and show no coherent RV signal at the candidate period or at our calculated stellar rotation period. Nightly Keck/HIRES RVs over four consecutive nights in 1999 showed a stellar jitter of $3.9 \text{ m}\,\text{s}^{-1}$ (Isaacson & Fischer 2010). HD 73344 also exhibits moderate chromospheric activity ($S_{HK}=0.22,\,R'_{HK}=-4.66;$ Isaacson & Fischer 2010), but at this $T_{\rm eff}$ H&K activity is not the main contribution to jitter. It seems likely that precise

²⁷ This target was proposed by many K2 GO programs: 16009 (PI Charbonneau), 16010 (PI Lund), 16021 (PI Howard), 16028 (PI Cochran), 16063 (PI Redfield), 16068 (PI Jensen), and 16081 (PI Guzik)

TABLE 1 CANDIDATE PARAMETERS FOR HD 73344

Parameter	Units	Value
T_0	$BJD_{TDB} - 2454833$	$3262.8931^{+0.0020}_{-0.0023}$
P	d	$3262.8931^{+0.0020}_{-0.0023}$ $15.61335^{+0.00085}_{-0.00078}$
i	deg	$89.15^{+0.61}_{-1.13}$
$R_{ m circ}/R_*$	%	$2.04^{+0.15}_{-0.10}$
T_{14}	hr	$3.46^{+0.20}_{-0.17}$
T_{23}	hr	$3.22^{+0.21}_{-0.18} \ 0.0327^{+0.0118}_{-0.0042}$
R_*/a	=	$0.0327^{+0.0118}_{-0.0042}$
b		0.46 ± 0.32
$ ho_{*, m circ}$	$\rm g~cm^{-3}$	$2.2^{+1.1}_{-1.3}$
a	AU	$0.1321^{+0.0063}_{-0.0070}$
R_{cand}	R_E	2.56 ± 0.18
$S_{ m inc}$	S_E	96^{+12}_{-11}

RV measurements could confirm this planet candidate — perhaps even before it sets for the season in May-June 2018.

4.4. Conclusions

In a short timespan, we have converted cadence-level K2 data into time-series photometry of 20647 targets, identified 1097 periodic signals (of astrophysical or instrumental origin), and distilled these into 32 high-quality planet candidates, 54 lower-quality candidates, 169 eclipsing binaries, and 217 other periodically-variable astrophysical sources. Four of our candidates have already been validated as planets (see Sec. 4.2), suggesting that our approach successfully identifies planet-like signals. One particularly interesting new target is HD 73344, a V=6.9 F dwarf which may host a 2.6 R_{\oplus} planet on a 15 d orbit (see Sec. 4.3). We have released parameters for all identified systems of interest, along

 28 All available soon/now at https://exofop.ipac.caltech.edu/k2/, or by request.

with light curves and transit vetting plots²⁸, in the belief that rapid identification and public dissemination of interesting signals will maximize the scientific productivity of K2. If K2 continues operating through the end of C17 (another forward-facing campaign), it may prove useful to perform a similarly rapid analysis of those data.

This rapid-release model is also somewhat of an analog for the upcoming TESS mission (Ricker et al. 2014). The release of planet catalogs has occurred only irregularly during the K2 mission, but this paradigm will change once TESS operations begin in earnest. Data from TESS will be released and processed on a 27-day rhythm for most of the two-year mission duration. With the shorter observing windows, ephemeris decay is also a much larger problem for TESS and therefore the importance of securing planet candidates in the same season is even higher. If interesting objects could be rapidly gleaned from TESS data and circulated to the community, follow-up observations and analyses could begin a full season earlier and so the full impact of that mission could more quickly be achieved.

We thank all those who selected the targets observed in C16. I.J.M.C. acknowledges support from NASA through K2GO grant 80NSSC18K0308 and from NSF through grant AST-1824644. He also gratefully acknowledges the hospitality of the organizers and participants of the "Challenge to Super-Earths" workshop at NAOJ, during which much of this work took place. This research has made use of the Exoplanet Follow-up Observing Program (ExoFOP), which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Facilities: Kepler, K2

REFERENCES

Angus, R., Aigrain, S., Foreman-Mackey, D., & McQuillan, A. 2015, MNRAS, 450, 1787, ADS, 1502.06965

Barentsen, Geert; Cardoso, J. V. d. M. 2018, Kadenza: Kepler/K2 Raw Cadence Data Reader, Astrophysics Source Code Library, ADS

Christiansen, J. L. et al. 2018, AJ, 155, 57, ADS, 1801.03874 Coughlin, J. L. et al. 2014, AJ, 147, 119, ADS, 1401.1240 Crossfield, I. J. M. et al. 2016, ApJS, 226, 7, ADS, 1607.05263 —. 2015, ApJ, 804, 10, ADS, 1501.03798

Dressing, C. D. et al. 2017, AJ, 154, 207, ADS, 1703.07416
Fischer, D. A., Marcy, G. W., & Spronck, J. F. P. 2014, ApJS, 210, 5, ADS, 1310.7315

Fulton, B. J. et al. 2017, AJ, 154, 109, ADS, 1703.10375 Gaia Collab. et al. 2016, A&A, 595, A2, ADS, 1609.04172 Hirano, T. et al. 2016, ApJ, 825, 53, ADS, 1602.00638 Howell, S. B. et al. 2014, PASP, 126, 398, ADS, 1402.5163 Huber, D. et al. 2016, ApJS, 224, 2, ADS, 1512.02643 Isaacson, H., & Fischer, D. 2010, ApJ, 725, 875, ADS, 1009.2301 Lillo-Box, J. et al. 2016, A&A, 594, A50, ADS, 1601.07635 Lissauer, J. J. et al. 2012, ApJ, 750, 112, ADS, 1201.5424 Mandel, K., & Agol, E. 2002, ApJ, 580, L171, ADS, astro-ph/0210099

Mann, A. W. et al. 2017, AJ, 153, 64, ADS, 1609.00726
Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T.,
Silva, L., & Granato, G. L. 2008, A&A, 482, 883, ADS,
0711.4922

Mayo, A. W. et al. 2018, ArXiv e-prints, ADS, 1802.05277

Morton, T. D. 2015, isochrones: Stellar model grid package, Astrophysics Source Code Library, 1503.010, ADS
Oelkers, R. J. et al. 2018, AJ, 155, 39, ADS, 1711.03608
Paletou, F., Böhm, T., Watson, V., & Trouilhet, J.-F. 2015, A&A, 573, A67, ADS, 1411.4859

Petigura, E. A. et al. 2018, AJ, 155, 21, ADS, 1711.06377
Petigura, E. A., Howard, A. W., & Marcy, G. W. 2013a,
Proceedings of the National Academy of Science, 110, 19273, ADS, 1311.6806

Petigura, E. A., Marcy, G. W., & Howard, A. W. 2013b, ApJ, 770, 69, ADS, 1304.0460

Petigura, E. A. et al. 2015, ApJ, 811, 102, ADS, 1507.08256 Ricker, G. R. et al. 2014, in Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, Vol. 9143, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 20, 1406.0151, ADS

Sinukoff, E. et al. 2016, ApJ, 827, 78, ADS, 1511.09213
Thompson, S. E. et al. 2017, ArXiv e-prints, ADS, 1710.06758
Valenti, J. A., & Fischer, D. A. 2005, ApJS, 159, 141, ADS
Vanderburg, A., & Johnson, J. A. 2014, PASP, 126, 948, ADS, 1408.3853

Vanderburg, A. et al. 2016, ApJS, 222, 14, ADS, 1511.07820
Wolfgang, A., Rogers, L. A., & Ford, E. B. 2016, ApJ, 825, 19, ADS, 1504.07557

TABLE 2
HIGH-QUALITY CANDIDATE PARAMETERS

Comment																	K2-123b (Dressing et al. 2017)				illo-Box et al.	K2-124b (Dressing et al. 2017)	HD 73344	possible multi	possible multi	I		
$S_{\mathrm{inc}} \\ [F_{\oplus}]$	383 91	20	111	548	90	1996	36	1129	3345	41	41	88	208	740	1427	134	1.41	8.9	17	135	c90T	6.9	96	130	35	80	20	170
$R_P \\ [R_{\oplus}]$	26.3 3.5 2.6	1.3	.i.s	0.0 1.3	5.3	19.0	 0	1.0	15.5	3.0	2.9	5.3	7.3	8.6	3.1	2.1	1.8	2.1	1.0	2.3	10.5	2.7	5.6	3.3	5.6	8.4	30.4	3.8
$T_{ m eff} \ [m K]$	4937 6110 4701	3992	4639	4067	5846	4993	4245	3010	7348	5434	5086	6084	6336	6123	5962	5903	3839	3857	3679	5537	6093	3643	6120	5025	5025	5106	5704	2966
$R_* \ [R_\odot]$	3.5	0.5	0.7	0.5	1.1	$\frac{2.9}{2.9}$	1.21	- i C	1.9	8.0	8.0	1.3	1.4	1.3	1.4	1.1	0.4	0.4	0.3	0.0 6.7	T:Z	0.3	1.2	8.0	8.0	8.0	1.0	1.5
$(R_P/R_*)^2$ [ppm]	4653 515 1156	724	209	548	1916	3547	2702	1099	5310	1180	1090	1475	2345	4648	393	283	1696	2385	833	554	0609	0089	365	1446	917	10630	71135	547
T_{14} [d]	0.1331 0.1550 0.0532	0.0590	0.0610	0.0380	0.1712	0.0688	0.0877	0.0890	0.1141	0.1140	0.1546	0.1240	0.0646	0.1513	0.0530	0.1281	0.1368	0.0733	0.0635	0.1046	0.0813	0.0699	0.1256	0.0964	0.1179	0.1189	0.1132	0.1193
$\frac{T_0}{[{ m BJD} - 2454833]}$	3274.81627 3280.30463 3264.74269	3262.65841	3264.94603	3262.64715	3264.39384	3265.41865	3264.62717	3263.81000 3263.82245	3264.87916	3265.78864	3265.36631	3280.93977	3265.68053	3266.34920	3262.55678	3266.11106	3274.10951	3263.56943	3262.74776	3269.13864	3263.95812	3264.81441	3262.88899	3263.71227	3271.42578	3264.18565	3274.28574	3270.59086
P [d]	16.166729 22.996469 4.399372	2.127017	3.545471	0.530219	14.759545	3.787955	4.894435	9.113770	3.608008	14.455276	11.722909	19.492036	5.170131	4.445545	2.783774	11.560844	30.955010	7.677182	3.355780	7.111692	2.995626	6.414024	15.615671	4.688771	12.554007	6.924813	19.581960	14.877227
Kp	13.292 11.617 13.431	13.258	13.194	14.763	11.982	14.726	14.446	13.564	12.640	13.654	13.131	10.115	10.937	12.521	12.078	11.018	14.102	14.874	12.731	10.513	11.441	15.105	6.793	12.482	12.482	15.147	12.157	11.116
Candidate	211397844.01 211502222.01 211529065.01	211533633.01	211552050.01	211638401.01	211647930.01	211649214.01	211673349.01	211730024.01 211741619.01	211812935.01^{a}	211816003.01	211919004.01	211945201.01	212036875.01	212040382.01	212041476.01	212058012.01	212069861.01	212072539.01	212081533.01	212099230.01	212110888.01	212154564.01	212178066.01	212204403.01	212204403.02	212219881.01	251292838.01	$251319382.02^{\rm b}$

^a Parameters not in EPIC; classified using isochrones as described in Sec. 4.1.

^b Possible multi, but the ephemeris of 251319382.01 matches that of another TCE (see Table 3). We identified hints of a third candidate in this system, with a period of ~ 3.5 d and S/N \sim 7.

TABLE 3
PLAUSIBLE CANDIDATE PARAMETERS

Ephemeris matching	ar? 251404897.01, 212041206.01 211948134.01, 212041206.01		211816003.01, 211914960.01, 212020442.01, 251809628.01 212020442.01, 251809286.01, 251809628.01 211816003.01, 212020442.01, 251809286.01 211816003.01, 212020442.01, 251809628901 211816003.01, 211914343.01, 212020442.01, 251809628901 C C 211644647.01, 211849962.01, 211852187.01, 25138775.99 pp	ion)	211611139.01, 211619805.01, 211914343.01 212231252.01 212222875.01
Comment	somewhat V-shaped slightly asymmetric V-shaped somewhat V-shaped; spotted star? V-shaped somewhat V-shaped V-shaped V-shaped	V-shaped V-shaped V-shaped V-shaped sightly V-shaped somewhat V-shaped v-shaped possible eclipse at phase 0.53 V-shaped Somewhat V-shaped; hint of eclipse V-shaped V-shaped	somewhat V-shaped somewhat V-shaped V-shaped noisy – possibly variable depth somewhat V-shaped somewhat V-shaped somewhat V-shaped K2-104b (Mann et al. 2017); ma V-shaped	V-shaped (or short transit duration) likely SE; somewhat V-shaped v-shaped slightly V-shaped; hint of eclipse V-shaped V-shaped V-shaped V-shaped V-shaped likely even-odd V-shaped V-shaped V-shaped V-shaped V-shaped V-shaped V-shaped likely eclipse somewhat asymmetric V-shaped V-shaped	V-shaped
$(R_P/R_*)^2$ [ppm]	1315 255 356389 46964 16989 5678 5775 775	0 2 4	35 35 36 36 36 37 77 77 77 77	205 305 333 335 305 335 355 355 355 355 3	
T_{14} [d]	0.0543 0.0789 0.1284 0.0952 0.0377 0.0402 0.1167	0.2368 0.0618 0.0618 0.0410 0.0410 0.1172 0.2776 0.1086 0.1086	0.1166 0.1002 0.1002 0.1544 0.1185 0.0568 0.0357 0.0357 0.0357 0.0357 0.0704	0.0544 0.1222 0.1635 0.1837 0.2260 0.0472 0.1452 0.1062 0.1062 0.1063 0.1639	0.1358 0.1779 0.1635 0.1635 0.1636 0.1636 0.0639 0.0639 0.0639 0.0639
$\frac{T_0}{[{ m BJD} - 2454833]}$	3262.97292 3263.17683 3263.37665 3263.44772 3263.89131 3263.60192 3262.61010	3262-6228 3267-90219 3262-6027 3263-31999 3263-31020 3261-64951 3264-30868 3264-30868 3264-30868 3264-30868 3264-30868 3264-30868	3263.4701 3263.4703 3263.47752 3263.45752 3264.54207 3262.47050 3266.50297 3266.5028 3262.86635 3263.46288	3263.45999 3263.45048 3263.51457 3262.8331 3285.09369 3282.38350 3262.55747 3262.55747 3262.8573 3263.55763 3265.55763 3265.55763 3265.55763	3263.29145 3263.30080 3263.28896 3266.42852 3263.28904 3263.29044 3263.29043 3263.29043 3263.29043 3263.29043
[d]	0.635388 2.047321 1.518233 1.630244 2.007583 1.882271 1.856025	1.855381 23.899013 1.856025 8.657873 2.131475 15.404424 20.893387 2.612926 8.971461 19.639070 0.995060	1.810878 1.810343 1.810529 1.811362 9.477889 1.982808 0.501684 7.220291 7.220943 1.974960	1.092810 1.093008 1.744596 3.696095 23.702338 23.918833 5.745780 0.986768 14.226672 1.466477 20.009593 0.5464111.77176	1.190338 1.190321 1.190321 1.190358 5.190251 1.095850 1.190361 0.719634 20.925208 8.855647
Kp	12.375 11.246 15.600 12.242 15.982 12.474 11.796 12.942	13.788 13.788 16.419 12.150 19.166 19.166 11.916 14.873 14.873 15.218 16.238	17.210 14.529 18.032 14.179 17.026 16.570 18.646 14.533 18.314 15.149	15.390 16.339 12.821 18.174 11.835 14.671 12.771 12.771 12.955 10.210 13.704 13.704	15.626 18.097 10.962 16.226 13.553 17.747 9.438 15.991 13.636
Candidate	211492384.01 211503824.01 211543616.01 211544257.01 211546613.01 211611139.01 211616393.01 211616939.01	211620138.01 211642882.01 211642882.01 211733267.01 21174225.01 211814313.01 211830293.01 211863149.01 211886412.01 211886412.01 211886412.01	211914343.01 211914445.01 211914489.01 211914960.01 211921399.01 211948134.01 211964352.01 211964555.01 211969807.01	211972681.01 211973080.01 211997641.01 212024672.01 212033577.01 212041206.01 212045260.01 21206658.01 21206658.01 212196658.01 2121996658.01 2121996658.01 212159514.01	212207368.01 21222377.01 21222337.01 21222394.01 21222894.01 212231252.01 251279430.01 251294036.01 251294036.01

10		
	Ephemeris matching	
${\rm TABLE}3Continued$	*) ² Comment om]	142 slightly V-shaped
	$(R_P/R_*)^2$ [ppm]	0.2285 1693
	$ \begin{bmatrix} P & T_0 & T_1 \\ [d] & [\text{BJD} - 2454833] & [d] \end{bmatrix} $	
	P [d]	30.920978
	Kp	12.434
	Candidate	251380988.01 12.434 30.920978 3274.20733

TABLE 4
SYSTEMS WITH SECONDARY ECLIPSES

Ephemeris matching		$\frac{212048503.01}{211914718.01}$		1000	21144931.01 211432176.01	
Comment	even-odd – half-period	even-odd — half-period even-odd — half-period	twice period	even-oad – nan-penod twice period even-odd – 1.5× period V-shaped; likely even-odd	even-odd — half-period thrice period even-odd; $1.5 \times$ period	slightly V-shaped even-odd – half-period four times period thrice period even-odd – half-period
$\frac{(R_P/R_*)^2}{[\text{ppm}]}$	149235 131088 50598 126507 122533 26770 161675 76907	387212 116056 9442 9632 321572 77241 140535	8800 228283 293171 368062 232835 125677 13062 16936	2,4393 1,668 496880 10943 259506 101331 250566 497678 334820 92013	163414 164032 164032 16631 217820 733825 17691 123582 127918 121654 409431 287143 34039	391961 659 55296 71960 111574 126462 434869 106429 56458 176980
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	0.1047 0.1427 0.2954 0.2036 0.0928 0.0547 0.1114 0.0817	0.1731 0.2575 0.1202 0.1200 0.0897 0.1092 0.2596	0.0714 0.1389 0.0817 0.1499 0.1835 0.0616 0.2313 0.0485	0.0520 0.0817 0.0877 0.0751 0.0727 0.0817 0.0817 0.0817	0.0817 0.0817 0.0817 0.1584 0.1635 0.0522 0.0694 0.0694 0.0817 0.0817	0.0882 0.0282 0.3020 0.2978 0.0817 0.0637 0.0637 0.0550 0.1410
T_0 [BJD _{TDB} - 2454833]	3262.83095 3277.84155 3267.82296 3263.16370 3262.53608 3262.67870 3262.47647	3262.98697 3265.15784 3263.03384 3263.03296 3263.07264 3262.53719 3268.75989	3262.66075 3264.66347 3264.66347 3262.69611 3262.64738 3262.8867 3262.72350	2262,5500 3262,5538 3262,59346 3262,60560 3262,52406 3262,52362 3262,73962 3265,30498 3265,30498	3263,02647 3263,02663 3267,32649 3263,01356 3263,43270 3263,10671 3264,29172 3262,06284 3262,06284 3262,9935 3262,9035	3262.66371 3262.47515 3262.47515 3266.519522 3262.51457 3262.94146 3262.94146 3262.97188 3262.97188
P [d]	0.967865 25.236580 10.337864 13.919301 0.954863 0.554633 2.153178 0.565934	15.091257 3.102398 5.817737 5.817854 1.671965 6.663685 11.114394	0.524461 9.056947 0.737735 0.799768 1.641114 0.555516 0.55516 0.583370	5.24/194 0.715676 0.542618 0.512702 0.539696 0.597258 17.325857 1.359386	0.630717 0.630718 12.427163 1.348851 1.490219 0.958786 11.100314 0.921358 11.078847 0.530431 0.697190	0.884004 0.543877 6.741846 2.044175 0.516235 0.635238 0.544418 0.698333 3.022569 2.958763
Kp	15.649 14.498 12.740 11.951 12.776 15.664 14.888	14.892 14.738 8.550 9.866 14.398 114.659	16.341 14.590 14.381 12.867 15.368 15.991 12.789 12.976	11.473 11.473 11.473 12.814 15.873 14.979 13.908 14.022 12.583	14.157 16.688 12.727 12.729 13.358 12.729 13.059 15.443 16.548 12.886 12.886	13.989 12.622 15.088 13.304 13.962 14.791 14.343 15.812 12.203 14.103
Candidate	211397774.01 211402878.01 211408138.01 211410929.01 211411391.01 211422822.01 211425822.01 211429934.01	211430148.01 211431013.01 21143216.01 211432176.01 211432946.01 211449931.01 211452175.01	211453076.01 211453223.01 211468153.01 211471048.01 211490299.01 211492541.01 211493669.01	211524104.01 211524558.01 211524558.01 211526186.01 21153542.01 21153541.01 211538193.01 211540348.01 211563123.01 211563123.01	211600389.01 211600632.01 211600632.01 211607680.01 211617670.01 211619120.01 21162164.01 211621961.01 211625003.01 211625003.01 211626490.01 211626490.01	211631904.01 21163883.01 211639283.01 211644647.01 211651743.01 211662047.01 211663508.01 211664543.01 211710534.01 211710534.01

TABLE 4 — Continued

Ephemeris matching	eriod 251411166.01 211431013.01 211607804.01	251384067.01, 212048748.01 251374534.02, 212048748.01	$211816003.01,\ 251809286.01,\ 251809628.01\\211764271.01,\ 211812160.01,\ 228682364.01$	211738534.01, 211812160.01, 228682364.01 211738534.01, 211764271.01, 228682364.01 211644647.01, 211852187.01, 251308775.01, 2513 211644647.01, 211849962.01, 251308775.01, 2513 211849962.01, 211852187.01, 251308775.01, 2513	251319382.01, 251315031.01, 211402878.02 251383916.01
Comment	V-shaped; even-odd – half-period five times period likely SE	twice period even-odd – half-period twice period twice period twice period twice period even-odd – half-period even-odd – half-period	thrice period odd-even – half-period twice period odd-even; half-period	thrice period	even-odd – half-period even-odd – half-period even-odd – half-period twice period twice period
$\frac{(R_P/R_*)^2}{[\text{ppm}]}$	348537 68562 483890 13803 5543 51711 129607 68508	120270 52183 291504 636988 31653 4206 92689 392834 627831 522455 114984	35912 110696 110696 109867 1465 203447 364733 37369 37369 376942 376942 376942 37675 82338 7834	408803 2153 2153 8783 4713 248568 34196 249317 5674 32035 31796 34667	1355446 345965 995969 905969 405896 162008 124336 176962 164327 164327 164327 167032 157032 157032 157032
T_{14} T_{14} $[d]$	0.1179 0.1694 0.2452 0.1389 0.0664 0.0705 0.0620 0.1222	0.0748 0.2469 0.0756 0.0817 0.0892 0.0684 0.1628 0.1628 0.0813 0.3813	0.0676 0.0610 0.0817 0.0290 0.2452 0.0418 0.0760 0.0760 0.1267 0.6098 0.4087	0.4087 0.4341 0.5031 0.04525 0.0845 0.0259 0.0290 0.1993 0.2036	0.1566 0.1382 0.3877 0.1609 0.0991 0.1295 0.1512 0.1512 0.1187 0.0817
$\frac{T_0}{[\mathrm{BJD}_{TDB} - 2]}$	3262.72164 3263.40544 3262.93777 3262.64187 3265.94990 3263.09743 3262.90859 3262.91264	3262.56186 3262.68640 3262.9624 3262.9164 3262.9164 3268.97802 3268.57729 3268.57729 3264.34997 3264.30391	3262.46826 3266.06818 3262.79149 3262.92467 3262.92467 3262.47776 3263.36936 3263.47340 3264.506011 3264.32358	3264.29495 3264.50407 3264.49219 3264.47004 3263.16644 3263.37798 3263.37798 3263.36087 3266.50648 3266.50648	3263.45491 3263.37075 3263.372690 3264.32148 3263.14571 3263.60805 3263.5804 3265.44045 3263.40043 3263.40043 3263.40043
[d]	1.052364 2.131554 2.468190 0.568020 4.612166 0.595558 0.595667 3.576744 3.576780	0.542912 3.790180 0.504961 0.593274 1.085097 14.707213 1.549381 20.180269 5.803439 0.575349 2.612938	0.522199 14.343042 0.636109 4.397187 0.526316 1.108972 0.582017 1.810708 9.484994 9.510911	9.516793 9.486580 9.487929 9.492590 0.858465 0.520451 1.324292 0.616444 7.218671 7.220943	1.092917 0.923861 2.851451 3.244126 0.821436 3.88853 3.696871 1.769505 3.408190 2.229820 1.830767 0.617674
Kp	15.428 10.655 16.354 15.604 14.861 13.005 14.804 12.895	14.021 12.23 14.973 15.456 13.485 11.971 16.834 17.558 17.558 17.558 17.558 17.558	15.486 17.636 12.427 12.270 12.493 16.368 14.750 11.448 9.023 16.889	19.874 12.279 12.258 12.482 16.703 18.229 12.051 14.902 9.402 9.402 7.605	13.547 13.173 14.531 13.972 12.700 13.974 10.279 16.843 13.231 11.647 12.733 13.625
Candidate	211721325.01 211732801.01 211737652.01 211738534.01 211744153.01 211750072.01 21175042.01 211764271.01	211768007.01 211770390.01 211807456.01 211809568.01 211812160.01 211822953.01 211829442.01 211829982.01 211839430.01 211839430.01	211841496.01 211852187.01 211858408.01 211858439.01 211906940.01 211910237.01 211914718.01 2119115147.01 2119119555.01	211920462.01 211920638.01 211920604.01 211928811.01 211928959.01 211942157.01 211954280.01 211964001.01 211964001.01 211964050.01	211972837.01 212009702.01 212010565.01 2120120387.01 212012055.01 212026447.01 212026226.01 212037443.01 212039539.01 21204495.01 212048563.01

TABLE 4 — Continued

Ephemeris matching					211034173 04	211934173.03					212009702.01													211759163.01			212085740 01	10:01			251319382.02									
Comment	twice period	twice-period	twice period	possible even-odd				twice period		norman - half-norman	even-odd - nan-period	even-odd – half-period				twice period						double period	even-odd – half-period		even-odd – half-period	twice period	even-odd – half-period twice period	portog portog			odd-even – half-period.	•					twice period	DOIL OF THE PROPERTY OF THE PR		
$\frac{(R_P/R_*)^2}{[\text{ppm}]}$	406463 196260	5075 1629	470271 319979	128377	118402 157737	228	168919	7.7469 450377	96349	112830 48367	136330	91275	$\frac{11010}{58580}$	370025	244959	$\frac{416594}{276502}$	628169	119700	665629 62814	58108	236909	200400 406214	205206	108294 68394	107725	410848	241729 379663	69100	98244	333734 59759	83190	37899	139220	87373	186838	555674	045357 312313	190291	58984	110497
T_{14}	0.1057	0.0505	0.2452	0.2072	0.1082	0.0344	0.1128	0.1162	0.1259	0.1373	0.0817	0.1212	0.2120 0.1336	0.5965	0.1975	0.0817	0.0817	0.2275	0.2452 0.1161	0.0820	0.0597	$0.1360 \\ 0.0817$	0.0993	0.0606	0.1247	0.0740	0.0829	0.1635	0.0817	0.0788	0.4500	0.1305	0.0817	0.0633	0.1084	0.1706	0.1635	0.1346	0.0755	0.3626
$\frac{T_0}{[{ m BJD}_{TDB} - 2454833]}$	3262.76086 3262.94672	3262.88638 3262.88638	3262.49990 3262.88533	3262.92758	3262.81109 3262.97005	3262.96851	3262.87427	3263.13760 3263.04961	3262.74598	3264.12649	3262.87662	3262.97882	3265.85411	3266.59388	3262.85587	3262.70026	3262.93405	3265.32727	3263.01388 3262 90925	3263.08482	3262.72081	3263.13909 3262.90962	3263.03616	3262.85185 3263.15278	3265.59014	3262.78219	3263.63014 3262 86830	3263.72840	3263.02339	3262.97430 3268.62400	3265.28349	3263.26254	3262.96562 3262 55539	3262.67601	3262.81038	3266.48141	3263.21492 3262.47910	3266.66297	3262.53788	3277.27748
[d]	1.204338	0.816734 0.547674	1.743013 0.550820	1.153456	3.797473 0.518748	0.518754	0.989720	4.845501 0 643142	1.991357	16.709659 1.488249	0.610205	1.076390	5.173531	5.489456	0.699705	$0.555517 \\ 0.569192$	0.751394	9.148701	2.724469 12.886147	0.723102	0.526018	$0.793048 \\ 0.594392$	1.160308	0.598120	3.287912	0.505602	1.288312	2.804246	0.691617	0.540527 11.349445	5.998652	2.883162	0.545251 0 493967	0.504475	0.781949	5.214590	1.332797	8.071810	0.678473	26.286249
Kp	14.273 16.782	10.410 14.410	13.598	14.516	14.611	12.262	13.900	13.088	12.624	14.245 14.605	12.079	12.245	12.300	14.143	13.431	15.502 14.620	14.991	12.285	15.437 13.136	13.803	15.093	13.937	13.668	14.794	14.183	15.448	15.238	11.989	14.440	13.537	11.202	12.505	16.059	14.556	14.484	14.568	16.220	11.256		11.763
Candidate	212060710.01	212066805.01 212069706.01	212071939.01 212075294.01	212075842.01	212082682.01 212083250.01	212083455.01	212085654.01	212085740.01	212109233.01	212110007.01	212116340.01	212117087.01	212154158.01 212163353.01	212171851.01	212175087.01	212181460.01	212182233.01	212207194.01	212208163.01	212214592.01	212221986.01	212225413.01 212225806.01	212225986.01	212228588.01	251281013.01	251286992.01	251292508.01 251307609.01	251308775.01	251314585.01	251315031.01 251327548.01	251330444.01	251345848.01	251345849.01 251347050.01	251353301.01	251356484.01	251356953.01	251383916.01 251390801.01	251393748.01	251393916.01	251394139.01

TABLE 4 — Continued

Candidate	Kp	P [d]	T_0 [BJD _{TDB} - 2454833]	T_{14} [d]	$(R_P/R_*)^2$ Comment [ppm]	Ephemeris matching
$\begin{array}{c} 251411166.01 \\ 251809286.01 \\ 251809628.01 \end{array}$	$14.179 \\ 16.200 \\ 20.140$	$\begin{array}{c} 3.374330 \\ 9.485826 \\ 7.220585 \end{array}$	3262.71953 3264.49974 3266.50127	$\begin{array}{c} 0.2550 \\ 0.6392 \\ 0.2244 \end{array}$	23276 52542 38587	211738534.01, 211764271.01, 211812160.01 211644647.01, 211849962.01, 211852187.01, 211915147.01

 $\begin{array}{c} \text{TABLE 5} \\ \text{Systems showing periodic variability} \end{array}$

Candidate	Kp	P [d]	Comment	Ephemeris matching
211404813.01	16.261	0.560055		211637025.01
211405917.01	16.664	$0.537360 \\ 0.912345$		
211417284.01 211419593.01	14.388 14.084	0.912343 0.544223		
211413033.01	9.95	1.694853		
211432103.01	10.249	0.933482	likely even-odd	
211432905.01	17.747	0.565384		
211433054.01	13.798	0.619830		
211434930.01 211440296.01	14.249 15.179	$0.619451 \\ 0.494049$	thrice period	
211440230.01	16.838	0.494049 0.591286	tiffice period	
211442676.01	11.446	0.608446		
211443853.01	14.141	0.561341		
211446249.01	14.273	0.615748	four times period	011799007 01
211446443.01 211448564.01	16.105 14.193	$0.592558 \\ 0.601654$		211733267.01
2114460030.01	14.133 14.430	0.645333		
211460061.01	19.164	0.625954		
211461914.01	14.825	0.654160		
211463443.01	12.520	0.616079		211727340.01
211466875.01	11.368 12.702	0.652342		
211467499.01 211469982.01	12.702 16.85	$0.656892 \\ 0.610206$		
211476633.01	14.316	0.593171		
211478023.01	9.328	0.624181	four times period	
211484212.01	16.047	0.560321		
211489039.01	11.760	0.632470		
211490515.01 211493788.01	14.366 15.443	$1.028101 \\ 0.505653$		
211497766.01	15.273	0.505053 0.599943		
211500156.01	14.979	0.512656		
211505322.01	14.512	0.636194		
211505333.01	14.727	0.573820		011090909 01
211513796.01 211514420.01	14.574 14.713	0.497528 0.625234	thrice period	211830293.01
211514420.01	13.759	0.625254 0.656366	four times period	
211523002.01	15.759	0.534137	iodi times period	
211532642.01	17.637	0.696100	thrice period.	
211536560.01	16.958	0.549796		
211538914.01 211548601.01	10.110 14.234	$0.493530 \\ 0.612276$		
211557076.01	13.619	0.012270 0.757190		
211558647.01	13.173	0.643227	twice period	
211604764.01	15.381	0.631078	double period	
211620946.01	13.789	0.510214	thrice period	
211626641.01 211630761.01	$16.243 \\ 12.248$	$0.530090 \\ 0.866331$		
211635761.01	12.246 14.755	0.725634		
211637025.01	15.064	0.730568		
211637624.01	13.350	0.870809		
211638042.01	15.258	0.549654	thrice period	
211638623.01	15.882	0.930924	four times period	
211647067.01 211648739.01	15.508 11.346	0.588719 0.543899	rour times period	
211655464.01	14.846	0.536933		
211660114.01	15.758	0.571957		
211661302.01	14.459	0.729855	C	
211661627.01	14.265	0.567284	four times period	
211663508.01 211663804.01	14.343 11.477	0.544418 0.504537	four times period marginal. twice period	
211665162.01	14.071	0.509189	marginar. twice period	
211675538.01	10.902	0.942686		
211675809.01	16.992	0.576179	four times period	
211690514.01	14.863	0.543476	twice period	
211690710.01 211712111.01	$10.740 \\ 14.052$	$0.546275 \\ 0.578952$		
211712111.01	14.032 10.481	0.603347	thrice period	
211723397.01	16.886	0.495563	* · · · ·	211538914.01, 211723536.01
211723536.01	13.946	0.495561		211536560.01, 211723397.01
211727340.01	16.741	1.201041		
211731135.01	15.656	0.622298		
211740165.01 211761392.01	12.557 15.241	0.506108 0.651541	period multiple	
211763285.01	13.092	0.504204	r 51104 mainipie	
	14.050	0.602632		
211767109.01 211796365.01	16.387	0.559817		

 ${\tt TABLE~5~--Continued}$

			TABLE 5 — Co	one en eucli
Candidate	Kp	P [d]	Comment	Ephemeris matching
211812650.01	14.449	0.743778		
211814391.01	15.578 13.595	$0.514631 \\ 0.595522$		
211817361.01 211821331.01	13.393 14.997	0.595522 0.667574	twice period	
211821355.01	19.48	0.522619	P	
211836630.01	16.206	0.646600		
211845034.01 211849962.01	$16.466 \\ 14.307$	1.332803 0.546683		
211856772.01	16.732	0.540003 0.509990	twice period	
211859760.01	16.567	0.500960	•	
211862434.01	15.915	0.547386		
211863022.01 211864337.01	14.428 16.056	$0.805189 \\ 0.496984$		
211869527.01	15.525	1.026173		
211871191.01	16.659	0.558281		
211876205.01 211880558.01	17.528 18.228	0.601344 0.616146		211404813.01, 211918516.01
211881456.01	17.431	0.588505		211404013.01, 211310010.01
211894518.01	12.214	1.288034		
211902331.01	9.332	1.034110		251350556.02
211907820.01 211909322.01	16.895 15.311	1.646612 0.838731	twice period	
211911525.01	12.114	0.597831	icc period	
211917859.01	17.481	0.574261		
211918335.01	10.042	0.574317		
211918516.01 211918830.01	14.408 12.798	$0.724075 \\ 0.692784$		
211926098.01	13.349	0.509329		
211926877.01	18.414	0.571362		
211927125.01 211931604.01	$11.200 \\ 11.827$	0.680888 0.828348	twice period	
211938003.01	15.133	0.626346 0.630256	twice period	
211945144.01	13.940	0.656990	twice period	
211945831.01	14.875	0.516025		
211946241.01 211947405.01	$14.332 \\ 13.973$	1.189492 0.604689		
211950298.01	16.326	0.510436		
211951418.01	15.433	0.564096		
211957146.01 211957745.01	12.603 16.262	$0.532536 \\ 0.507392$		
211966619.01	15.166	0.800628		
211996682.01	12.593	1.364680		
212001688.01	14.116	0.796680		
212005402.01 212008305.01	15.052 13.037	$0.679429 \\ 0.615002$		
212011476.01	12.743	0.715915		
212013694.01	15.313	0.552221		
212018921.01	14.748	0.519797		211911525.01
$212018980.01 \\ 212019712.01$	17.863 14.115	$0.519707 \\ 0.952995$		211902331.01
212021237.01	18.791	0.681632		
212022582.01	15.127	0.834426		
$212024898.01 \\ 212027377.01$	15.509 17.643	0.599922 1.106476		
212027952.01	11.290	0.949276		
212028041.01	14.321	0.729797	twice period	
212032754.01	15.853	0.558059		
$212037558.01 \\ 212041051.01$	11.882 16.235	$0.627062 \\ 0.627561$	four times period	
212043122.01	9.899	0.681463	portou	212013694.01
212048412.01	14.391	0.502575		
212050004.01 212050890.01	16.496 13.589	0.681455 0.966599	twice period	
212054062.01	16.709	0.900399 0.944882		
212055545.01	15.058	0.613025		
212060713.01	15.626	0.615370		
$212066299.01 \\ 212085240.01$	11.324 15.164	$2.609746 \\ 0.565691$		
212086317.01	14.301	0.535091		
212086389.01	16.282	0.493336	thrice period	
212089888.01	15.346	0.681236		
212091210.01 212091834.01	$14.526 \\ 16.122$	$0.683492 \\ 0.908531$		
212095395.01	10.122	0.640683		
212102092.01	14.613	1.227465		
$212105446.01 \\ 212106797.01$	14.448 15.529	0.586443 0.614616	twice period	
212100191.01	10.029	0.014010	twice period	

Candidate K	P [d]	Comment	Ephemeris matching
212109327.01 12.47	7 0.492292		251365170.01, 251365173.01
212110857.01 17.7			201000170.01, 201000170.01
212114705.01 19.68		twice period	212010565.01
212118200.01 15.20		•	211661627.01
212118344.01 10.71			
212159519.01 12.77	9 0.717385	twice period	
212159586.01 14.62			
212161144.01 13.82			
212161874.01 16.80			
212163652.01 13.46		twice period	
212164476.01 14.49 212172621.01 11.76		twice period	
212174388.01 14.63		twice period	
212174434.01 13.48		thrice period	
212177756.01 15.78		F	
212180386.01 17.42		double period	
212183082.01 17.32	2 0.575069		
212194110.01 12.81			212085240.01
212194171.01 12.81			212066299.01
212199005.01 14.44		1:1 1 1 10 : 1	
212204655.01 15.16		likely half-period	
212212241.01 15.62 212226872.01 16.14			
212230240.01 11.88			
251277092.01 12.06			
251277701.01 16.01			
251278670.01 11.02			
251279786.01 16.62	4 0.503283		
251282021.01 16.24	0.527674		
251283448.01 14.03			
251283585.01 15.29			
251284270.01 13.64			
251284826.01 13.55 251290111.01 16.01			
251297292.01 14.45		thrice period	
251307454.01 16.14		united period	211552050.01
251316666.01 14.39			211002000101
251321168.01 14.20			
251321696.01 15.70	3 0.631561		
251323035.01 14.22		thrice period	
251336933.01 12.95			
251342381.01 15.77			
251347997.01 14.10			
251348935.01 12.85 251349510.01 12.28			
251350556.01 16.26			
251351108.01 14.09			
251355465.01 16.01			
251356578.01 11.49			
251365170.01 13.31			$212109327.02, 212207368.01,\ 251365173.01$
251365173.01 13.56		twice period	$212109327.02,\ 212207368.01,\ 251365170.01$
251374534.01 13.99			
251384067.01 17.67			
251390658.01 15.33		thrice peris	212022754 01
251391268.01 13.75 251392383.01 16.69	9 0.508759 9 0.567376	thrice period	212032754.01
251397356.01 15.26			
251397429.01 12.39			
251400494.01 12.92		twice period	
251401983.01 14.39		twice period	
251402361.01 15.00		•	
251403257.01 16.49			
251403570.01 14.63			
251809170.01 18.41		twice period	
251809263.01 18.93	0.650882		