Session 5: Orthogonal Matrices

Optimization and Computational Linear Algebra for Data Science

Marylou Gabrié (based on material by Léo Miolane)

Contents

1. Gram-Schmidt algorithm

How to create an orthonormal basis

- 2. Orthogonal Matrices
 - 2.1 Definition
 - 2.2 Orthogonal matrices and norm
 - 2.3 Orthonormal bases
- 3. Session 6: Eigenvalues & eigenvectors (Preview!)
 - 1.1 Definition
 - 1.3 Eigenspaces

1. Gram-Schmidt algorithm

Gram-Schmidt algorithm: purpose

The Gram-Schmidt process takes as

- Input: a linearly independent family (x_1, \ldots, x_k) of \mathbb{R}^n .
- Output: an orthonormal basis $(v_1, \ldots v_k)$ of $\mathrm{Span}(x_1, \ldots, x_k)$.

Consequence

Every subspace of \mathbb{R}^n admits an orthonormal basis.

1. Gram-Schmidt algorithm 4/20

1.2 Gram-Schmidt construction

The Gram-Schmidt process constructs v_1, v_2, \ldots, v_k in this order, such that for all $i \in \{1, \ldots, k\}$:

$$\mathcal{H}_i: egin{cases} (v_1,\dots,v_i) ext{ is an orthonormal family} \ \operatorname{Span}(v_1,\dots,v_i) = \operatorname{Span}(x_1,\dots,x_i). \end{cases}$$

Itera	tive cons	structio	n of the v_i 's	

Itera	tive cons	structio	n of the v_i 's	

Itera	tive cons	structio	n of the v_i 's	

2. Orthogonal matrices

2. Orthogonal matrices 7/2

2.1 Orthogonal matrices definition

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is called an *orthogonal matrix* if its columns are an orthonormal family.

A proposition

Proposition

Let $A \in \mathbb{R}^{n \times n}$. The following points are equivalent:

- 1. A is orthogonal.
- **2.**A^T A = Id_n.
- $3. AA^{\mathsf{T}} = \mathrm{Id}_n$

2.2 Orthogonal matrices & norm

Proposition

Let $A\in\mathbb{R}^{n\times n}$ be an orthogonal matrix. Then A preserves the dot product in the sense that for all $x,y\in\mathbb{R}^n$,

$$\langle Ax, Ay \rangle = \langle x, y \rangle.$$

In particular if we take x=y we see that A preserves the Euclidean norm: $\|Ax\|=\|x\|$.

\mathbb{R}^n Orthogonal matrices = rotations

11/7	Oitii	ogonat	matrices – rotation	5

2.3 Orthonormal bases

- Let $(a_1, a_2, \dots a_n)$ an orthonormal basis of \mathbb{R}^n , and A the $\mathbb{R}^{n \times n}$ matrix collecting the basis vectors in its columns.
- Consider $x=(x_1,x_2,\cdots,x_n)$ in \mathbb{R}^n , where $x_1,\cdots x_n$ are the coordinates in the canonical basis of \mathbb{R}^n .

Proposition

The coefficients of x in the $(a_1, a_2, \cdots a_n)$ basis are given by

$$x' = A^{\top} x$$

Proof.

13/20

2. Orthogonal matrices 2.3 Orthonormal bases

2. Orthogonal matrices 2.3 Orthonormal bases

2. Orthogonal matrices 2.3 Orthonormal bases

Session 6 - Eigenvalues & eigenvectors (preview)

Introduction

Session 6 - Eigenvalues & eigenvectors (preview)

1.1 Definition

Definition

Let $A\in\mathbb{R}^{n\times n}$. A **non-zero** vector $v\in\mathbb{R}^n$ is said to be an eigenvector of A is there exists $\lambda\in\mathbb{R}$ such that

$$Av = \lambda v$$
.

The scalar λ is called the eigenvalue (of A) associated to v.

Examples: I_d ? matrix A with $\ker(A) \neq \{0\}$?

Example: diagonal matrices

		НЪ			-6			_						

Session 6 - Eigenvalues & eigenvectors (preview) Session 6 - 1.1 Definition

M	a	tr	IX	V	VI	tr	1	10	(315	36	n	Va	al	u	es	5/\	/e	C	to	rs	5	

Session 6 - Eigenvalues & eigenvectors (preview) Session 6 - 1.1 Definition

E >	(a	n	ıŗ	ole	e:	0	rt	th	0	g	or	ıa	lι	pr	0	je	C	tic	or	1		

Session 6 - Eigenvalues & eigenvectors (preview) Session 6 - 1.1 Definition

1.3 Eigenspaces

Definition

If $\lambda \in \mathbb{R}$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, the set

$$E_{\lambda}(A) = \{ x \in \mathbb{R}^n \, | \, Ax = \lambda x \}$$

is called the eigenspace of A associated to λ . The dimension of $E_{\lambda}(A)$ is called the multiplicity of the eigenvalue λ .

Examples: Eigenvalue 1 for I_d ? Eigenvalue 0 for $\ker(A)$?