

Universidade Estadual de Campinas

MT-624: BIOMATEMÁTICA I

Prova 03

Professor:
Wilson Castro Ferreira Jr
IMECC-UNICAMP

Estudante:
Paulo Henrique Ribeiro do Nascimento
CETEC-UFRB

18 de janeiro de 2021

Sumário

nário							-		•		•		•			 •				•	•	-		
OVA 03: MS	680	- 1	/T	524	- 1	IS	Sen	n 2	202	20									•					
Questão 01																								
1(a) .															-								-	
1(b) .																								
1(c)																								
1(d)														 										
1(e)														 	-								-	
1(f)														 	-								-	
1(g) .																								
Questão 02														 										
2(a) .														 										
2(b) .														 										
2(c)														 										
2(d) .														 										
2(e)														 										
Questão 03														 										
3(a) .														 										
3(b) .																								
3(c)																								
3(d) .														 										
Questão 04																								
4(a)														 										
4(b)														 										
4(c)														 										
4(d)														 										
Questão 05														 										
5(a) .																								
5(b) .																								
· /																								
6(a)																								
()														 										
6(c)																								

PROVA 03: MS680 - MT624 - II Sem 2020

POSTADA: 14 de Janeiro de 2021 (Quinta - feira)

RECEBIMENTO: 18 de Janeiro de 2021 (Segunda - feira - 08:00 horas da manhã)

ATENÇÃO:

1 - As Questões devem ser encaradas como oportunidades para demonstrar conhecimento e não como perguntas.

Precisão e **Concisão** serão qualidades avaliadas. Portanto, atente para o enunciado das questões para evitar uma exposição de fatos e desenvolvimentos não relacionados ou não solicitados.

- 2 A **Redação** de cada Prova deve apresentar a forma de um depoimento **pessoal** distinto. Caso ocorram, todas as cópias envolvidas serão invalidadas.
- 3 Cada Questão resolvida deve ser precedida de seu respectivo Enunciado Original completo.
- 4 A Resolução deve ser **digitalizada** em um **único documento pdf** (*Manuscritos* **NÃO** serão aceitos!)
- 5 O documento pdf da Resolução deve ser enviado no **Anexo** de uma mensagem com título "**PROVA 03**" para o endereço eletrônico: wilson@unicamp.br, até, no máximo, às 08:00 da manhã do dia 18 de Janeiro de 2021 Segunda Feira.
- 6 Não deixe para resolver, redigir e/ou enviar a sua Prova na última hora e evitando assim ser responsabilizado por acidentes imprevisíveis, mas possíveis. (Lei de Murphy)

Questão 01: Método de Fourier e Linearização Logarítmica Assintótica

Considere um Modelo Matemático descrito por funções

$$egin{array}{lcl} x:\mathbb{R} &
ightarrow & \mathbb{C}^n \ & t & \mapsto & x(t) = (x_1(t), \ldots, x_n(t))^t, \end{array}$$

definidas Newtoniamente como soluções de uma equação diferencial vetorial "Malthusiana" da forma abaixo, em que $S \in M_n(\mathbb{R})$ é uma matriz $n \times n$ simétrica:

$$\frac{dx}{dt} = \begin{pmatrix} \frac{dx_1}{dt} \\ \vdots \\ \frac{dx_n}{dt} \end{pmatrix} = Sx. \tag{1}$$

- a Mostre que se v for um autovetor de S referente ao autovalor λ , $Sv = \lambda v$, então a função $h : \mathbb{R} \to \mathbb{C}^n$, da forma $h(t) = e^{\lambda t} v$ é solução da equação. (Chamada Solução básica de Fourier).
- b Verifique a veracidade do Princípio de Superposição: "Se $h_k(t) = e^{\lambda_k t} v^k$ são soluções básicas de Fourier, então, qualquer combinação linear $h = \sum_k c_k e^{\lambda_k t} v^k$ (para conjuntos de coeficientes $\{c_k\} \in \mathbb{C}$) é solução do mesmo sistema com condição inicial $h(0) = \sum_k c_k v^k$.
- c Citando o enunciado completo do Teorema Espectral para matrizes simétricas, verifique que o Problema de valor inicial $\frac{dX}{dt} = SX$, $X(0) = \alpha \in \mathbb{C}^n$ sempre tem solução obtida pelo Principio de Superposição, e determine os valores dos respectivos coeficientes c_k como projeções.

(Observação: É relativamente fácil demonstrar que, existindo, a solução do Problema de Valor Inicial é único. (V. Bassanezi - Ferreira). Portanto, a solução espectral de Fourier é "A solução".)

- d Se a matriz S tem seus autovalores (reais) ordenados segundo $\lambda_{k+1} < \lambda_k < \ldots < \lambda_1$, mostre que, em geral, uma solução x(t) da Equação $\frac{dx}{dt} = Sx$, admite a seguinte linearização assintótica: $\frac{\log |x(t)|}{\lambda_1 t} \to 1$. (Obs: O Teorema espectral garante a ortogonalidade dos autovalores $\{v_k\}$)
- e Portanto, se $x(t_n)$ são dados de um fenômeno dinâmico com t_n muito grandes, qual o teste gráfico natural (e porque) deve ser seguido para determinar se é razoável descrever x(t) por um Modelo $\frac{dx}{dt} = Sx$ e qual o maior valor de seu autovalor.

EXTRA:

Considere a Equação Diferencial Matricial (Operacional) $\frac{dX}{dt} = AX$, onde $A \in M_n(\mathbb{C})$ e $X : \mathbb{R} \to M_n(\mathbb{C}) =$ "Matrizes quadradas complexas de ordem n".

f - Mostre que cada coluna da matriz X é solução da Equação Vetorial $\frac{dx}{dt} = Ax$ e vice-versa, se cada coluna for solução da Equação Diferencial Vetorial então a respectiva matriz será solução da Equação Operacional (Matricial).

Definição: A solução U(t) da Equação Diferencial Matricial $\frac{dX}{dt} = AX$, com condição inicial U(0) = I = "Matriz Identidade de ordem n", é denotada pela notação exponencial: $U(t) = e^{At}$.

g - Utilizando os argumentos do Método Operacional mostre que a solução de uma equação com influência externa $f(t)(f:\mathbb{C}\to\mathbb{C}^n)\frac{dx}{dt}=Sx+f(t)$ é da forma $x(t)=e^{At}x(0)+\int_0^t e^{A(t-\tau)}f(\tau)\ d\tau$.

1(a)

Seja v um autovetor de S referente ao autovalor λ e

$$egin{array}{lll} h: \mathbb{R} &
ightarrow & \mathbb{C}^n \ & t & \mapsto & (h_1(t), \ldots, h_n(t))^t, \end{array}$$

uma função tal que $h_k(t) = e^{\lambda_k t} v_k$.

Temos, portanto, que $\frac{dh_k}{dt} = \lambda_k e^{\lambda_k t} v_k$.

Logo,

$$\frac{dh_k}{dt} = \begin{bmatrix} \lambda_1 e^{\lambda_1 t} v_1 \\ \lambda_2 e^{\lambda_1 t} v_2 \\ \vdots \\ \lambda_n e^{\lambda_n t} v_n \end{bmatrix} = \underbrace{\begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}}_{\mathcal{E}} \cdot \underbrace{\begin{bmatrix} e^{\lambda_1 t} v_1 \\ e^{\lambda_1 t} v_2 \\ \vdots \\ e^{\lambda_n t} v_n \end{bmatrix}}_{h} = Sh(t)$$

Como queríamos mostrar.

1(b)

Considere $h_i(t)$, com $1 \le i \le N$ e $i \in \mathbb{N}$, soluções para a equação (1), ou seja, $\frac{dh_i}{dt} = Sh_i$, com $1 \le i \le N$ e $i \in \mathbb{N}$,

O que queremos mostrar é que

$$h(t) = \sum_{i=1}^{N} c_i h_i(t),$$

 $c_i \in \mathbb{C}$ é, também, solução de (1).

De fato, temos que

$$\frac{dh}{dt} = \frac{d}{dt} \left(\sum_{i=1}^{N} c_i h_i(t) \right) = \sum_{i=1}^{N} c_i \frac{d}{dt} (h_i(t)) = \sum_{i=1}^{N} c_i (S h_i(t)) = S \sum_{i=1}^{N} c_i h_i(t) = S h_i(t).$$

Como queríamos mostrar.

1(c)

Teorema Espectral para matrizes simétricas

Seja $M_n(\mathbb{R})$ o espaço vetorial de matrizes quadradas de ordem n e $S \in M_n(\mathbb{R})$ uma matriz simétrica. Então S é diagonalizável. Além disso, existe uma matriz ortogonal P tal que:

$$S = P D P^{-1},$$
 (2)

mais ainda, existe uma base ortonormal $\mathcal{B} = \{v_1, \dots, v_n\}$ de autovetores de S.

Considere o PVI

$$\begin{cases} \frac{d}{dt}X(t) = SX \\ X(0) = X_0. \end{cases}$$
 (3)

Mostramos, no item anterior, que $X(t) = \sum_{i=1}^{N} c_i X_i(t)$, em que $\frac{d}{dt} X_i(t) = S X_i(t)$, é uma solução de (3).

1(d)

De acordo com o que foi visto nos itens anteriores, temos que:

$$|x(t)| = |e^{St}v| \le |e^{St}||v|$$

Como v é uma combinação linear de autovetores de S, ou seja, ortogonais, |v|=1. Então

$$|x(t)| \le |e^{\mathsf{S}t}| \le |e^{\lambda_1 t}| \Rightarrow \log|x(t)| \le \log|e^{\lambda_1 t}| \le |\log e^{\lambda_1 t}| = |\lambda_1 t|$$

Segue que

$$\lim \frac{\log |x(t)|}{\lambda_1 t} \leq \lim \frac{|\lambda_1 t|}{\lambda_1 t} \to 1$$

1(e)

1(f)

1(g)

Considere o PVI

$$\begin{cases} \frac{d}{dt}U(t) = AU(t) + f(t) \\ U(0) = U_0 \end{cases}$$

em que $f: \mathbb{C} \to \mathbb{C}^n$ é uma função.

Vamos obter a sua solução, utilizando argumentos do Método Operacional:

$$\frac{d}{dt}U(t) = AU(t) + f(t) \implies DU(t) = AU(t) + f(t)$$

$$\Rightarrow (D - A)U(t) = f(t)$$

$$\Rightarrow (D - A)e^{At}e^{-At}U(t) = f(t)$$

$$\Rightarrow e^{At}D(e^{-At}U(t)) = f(t)$$

$$\Rightarrow D(e^{-At}U(t)) = e^{-At}f(t)$$

$$\Rightarrow e^{-At}U(t) = U(0) + \int_0^t e^{-A\tau}f(\tau) d\tau$$

$$\Rightarrow U(t) = e^{St}U(0) + \int_0^t e^{A(t-\tau)}f(\tau) d\tau.$$

Como queríamos mostrar.

Além disso, observamos que a operação efetuada sobre a função f para o cálculo de U(t) depende da constante U(0) e, portanto, isso nos dá uma família de inversas de D-A. Ademais, U(0) é a solução da equação homogênea e, portanto, o termo integral representa uma solução particular.

Questão 02: Médias e Homogeneidade

Uma Média M_{φ} para uma sequência de dados numéricos $a_k>0,\ M_{\varphi}(a_1,\ldots,a_n)$ segundo Kolmogorov-Nagumo (KN) é definida da forma

$$M_{\varphi}(a_1,\ldots,a_N)=\varphi^{-1}\left(\frac{1}{N}\left\{\varphi(a_1),\ldots,\varphi(a_N)\right\}\right),$$

onde φ é uma função real contínua estritamente monotônica e convexa/côncava.

- a Obtenha as respectivas funções φ para que as Médias usuais, Aritmética, Harmônica, Geométrica e Quadrática sejam da forma prevista acima.
- b Analisando o gráfico de suas respectivas funções φ representativas, dados dois números positivos, 0 < a < b, discuta a ordem para os valores obtidos de suas Médias $M_{\varphi}(a, b)$, com funções $\varphi(x) = x^{2n}$ e $\varphi(x) = x^{\frac{1}{2n}}$.
- c Argumente, com base na questão anterior, que escolhendo capciosamente a função $\varphi(x) = x^{\lambda}$, $\lambda > 0$, a respectiva média KN M_{φ} de filhos de um casal brasileiro pode ser qualquer número real entre $m = \min\{a_k\}$ e $M = \max\{a_k\}$, onde $a_k =$ "Número de casais com k filhos".
- d Considere uma população de N indivíduos submetidos à medida de um aspecto biológico (digamos, a idade) cujos valores são representados (no respectivo espaço de aspecto etário) pelos seguintes números positivos $\{a_k\}_{1 \le k \le N}$. Discuta, com argumentos, a definição de uma medida de Heterogeneidade desta população quanto a este aspecto em termos de Médias gerais de KN.
- e Considere a dinâmica de uma população descrita pelo Modelo Malthusiano de mortalidade $\frac{dN}{dt}=-\mu N,\ N(0)=N_0.$ Defina, com justificativa, a expressão para a Média de Sobrevivência KN M, com $\varphi(x)=x^\lambda,\ \lambda>-1$, e calcule-a em termos elementares para $\lambda=n\in\mathbb{N}.$ (Sugestão de Cálculo Elementar: Derivada paramétrica $\frac{d}{d\mu}$ de integral conhecida. Observação: As Médias Harmônica e Geométrica para a sobrevivência são infinitas e, portanto, não trazem informação útil sobre a distribuição de sobrevivência da população, o mesmo acontecendo para $\lambda\leq -1.$)

2(a)

Seja $A = \{a_1, a_2, \dots, a_N\}$, com $a_k > 0, \forall k = 1, \dots, N$. O que devemos mostrar é que existe uma função inversível φ , monótona e apenas convexa ou apenas côncava, tal que

$$M_{\varphi}(\mathcal{A}) = \varphi^{-1} \left[M_{\mathcal{A}}(\varphi(a_1), \ldots, \varphi(a_N)) \right]$$

é válida para as médias aritmética M_A , harmônica M_H , Geométrica M_G e quadrática M_2 .

Para a média aritmética M_A de A, temos:

$$M_A(\mathcal{A}) = \frac{1}{N} \sum_{k=1}^N a_k = \sum_{k=1}^N \frac{a_k}{N}$$

Se fizermos $\varphi(a_k)=a_k$, temos $\varphi^{-1}(a_k)=a_k$. O que nos leva a:

$$M_{A}(A) = \sum_{k=1}^{N} \frac{a_{k}}{N}$$

$$= \sum_{k=1}^{N} \frac{\varphi(a_{k})}{N}$$

$$= M_{A}(\varphi(a_{1}), \dots, \varphi(a_{N}))$$

$$= \varphi^{-1}(M_{A}(\varphi(a_{1}), \dots, \varphi(a_{N}))$$

Observação: A função identidade é inversível, estritamente monótona e convexa.

No caso da média harmônica M_H de A, temos:

$$M_H(A) = \left(\frac{1}{N}\sum_{k=1}^N \frac{1}{a_k}\right)^{-1}.$$

Se fizermos $\varphi(a_k) = \frac{1}{a_k}$, temos $\varphi^{-1}(a_k) = \frac{1}{a_k}$. O que nos leva a:

$$M_{H}(\mathcal{A}) = \left(\frac{1}{N} \sum_{k=1}^{N} \varphi(a_{k})\right)^{-1}$$
$$= M_{A}(\varphi(a_{1}), \dots, \varphi(a_{k}))^{-1}$$
$$= \varphi^{-1}(M_{A}(\varphi(a_{1}), \dots, \varphi(a_{k})))$$

Observação: A função φ é inversível, estritamente monótona e estritamente convexa.

No caso da média geométrica M_G de A, temos:

$$M_G(A) = \sqrt[N]{\prod_{k=1}^N a_k}.$$

Se fizermos $\varphi(a_k) = \ln(a_k)$, temos $\varphi^{-1}(a_k) = \exp(a_k)$. O que nos leva a:

$$M_G(\mathcal{A}) = \sqrt[N]{\prod_{k=1}^N \exp(\varphi(a_k))}$$

$$= \exp\left(\frac{1}{N} \sum_{k=1}^N \varphi(a_k)\right)$$

$$= \phi^{-1}(M_A(\varphi(a_1), \dots, \varphi(a_N)))$$

Observação: A função φ é inversível, estritamente monótona, mas não é convexa.

No caso da média quadrática M_2 de \mathcal{A} , temos:

$$M_2(\mathcal{A}) = \sqrt{\frac{1}{N} \sum_{k=1}^{N} a_k^2}.$$

Wilson Castro Ferreira Jr

9

Se fizermos $\varphi(a_k)=a_k^2$, temos $\varphi^{-1}(a_k)=\sqrt{a_k}$. O que nos leva a:

$$M_2(\mathcal{A}) = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \varphi(a_k)}$$

$$= \sqrt{M_A(\varphi(a_1), \dots, \varphi(a_N))}$$

$$= \varphi^{-1}(M_A(\varphi(a_1), \dots, \varphi(a_N)))$$

Observação: A função φ é inversível, estritamente monótona e estritamente convexa.

2(b)

Considere as funções $\varphi_n(x)=x^{2n}$ e $\psi_n(x)=x^{\frac{1}{2n}}$, para $n=\{1,2,\ldots\}$. Claramente, para valores de $x>0,\ \varphi$ é: crescente; convexa e admite inversa, a saber, $\varphi^{-1}(x)=x^{\frac{1}{2n}}$. Já ψ é: crescente; côncava e admite inversa, a saber, $\psi^{-1}(x)=x^{2n}$.

Para dois valores reais distintos, positivos e não-nulos, a < b, temos que:

$$M_{arphi}(\{a,b\})=arphi^{-1}\left(rac{1}{2}\left[arphi(a)+arphi(b)
ight]
ight)=arphi^{-1}\left(rac{1}{2}\left[a^{2n}+b^{2n}
ight]
ight)=\left[rac{1}{2}\left(a^{2n}+b^{2n}
ight)
ight]^{rac{1}{2n}}$$

е

$$\textit{M}_{\psi}(\{\textit{a},\textit{b}\}) = \psi^{-1}\left(\frac{1}{2}\left[\psi(\textit{a}) + \psi(\textit{b})\right]\right) = \psi^{-1}\left(\frac{1}{2}\left[\textit{a}^{\frac{1}{2n}} + \textit{b}^{\frac{1}{2n}}\right]\right) = \left\lceil\frac{1}{2}\left(\textit{a}^{\frac{1}{2n}} + \textit{b}^{\frac{1}{2n}}\right)\right\rceil^{2n}$$

Fonte - Elaborada pelo autor

Observa-se, através dos gráficos das funções φ_n , na Figura 1, que quanto maiores são os valores de n, mais a sequência de gráficos das funções φ_n se aproximam da reta (x=1), ou ainda, se afastam da primeira bissetriz, na qual a média de KN é relativa a função $\varphi(x)=x$. Aqui, acredito, que quanto mais uma função se afasta da primeira bissetriz, temos que as médias de KN, M_{φ_n} , relativas aos mesmos dois números a < b e as respectivas φ aumentam, ou seja,

$$M_{\varphi_1} \leq M_{\varphi_2} \leq \dots$$

O mesmo se observa nos gráficos das funções ψ_n (ver Figura 2), onde os gráficos das funções $\psi_n(x)$ se afastam de $\psi(x)=x$, à medida que os valores de n crescem. Assim,

$$M_{\psi_1} \leq M_{\psi_2} \leq \dots$$

Figura 2 – Gráficos das funções $\psi_n(x) = x^{\frac{1}{2n}}$

Fonte - Elaborada pelo autor

2(c)

Considere o conjunto $A = \{a_k, 1 \le k \le N, k \in (N)\}$, em que a_k representa o número de casais com k filhos.

Considere, agora, a função $\varphi(a_k)=a_k^\lambda$, crescente, visto que $a_k>0$, $\forall k$ e $\lambda>0$. Claramente, sua inversa é $\varphi^{-1}(a_k)=a_n^{\frac{1}{\lambda}}$, crescente e, para $\lambda>1$, φ é convexa; para $0<\lambda<1$, côncava. Para $\lambda=1$, temos a função identidade.

Portanto, a média de Kolmogorov-Nagumo relativa a função φ é dada por:

$$M_{\varphi}(A) = \varphi^{-1} \left[\frac{1}{N} \sum_{k=1}^{N} \varphi(a_k) \right].$$

Sendo $m = \min\{a_k\}$ e $M = \max\{a_k\}$, temos que:

$$\begin{split} m &\leq a_k \leq M \quad \Rightarrow \quad m^\lambda \leq a_k^\lambda \leq M^\lambda \\ &\Rightarrow \quad N \ m^\lambda \leq \sum_{k=1}^N a_k^\lambda \leq N \ M^\lambda \\ &\Rightarrow \quad m^\lambda \leq \frac{1}{N} \sum_{k=1}^N a_k^\lambda \leq M^\lambda \\ &\Rightarrow \quad m \leq \varphi^{-1} \left[\frac{1}{N} \sum_{k=1}^N a_k^\lambda \right] \leq M. \end{split}$$

Como queríamos demonstrar.

2(d)

Considere uma população com N indivíduos a qual queremos estabelecer uma determinada medida de heterogeneidade de um aspecto biológico cujo valores pertencem ao conjunto $A = \{a_k, \ 1 \le k \le N, k \in \mathbb{N}\}.$

Construiremos uma medida de dispersão, as quais os valores de A desviam da média de KN relativa à função φ , M_{φ} , inversível, monótona e estritamente convexa (côncava).

Seja
$$d_k = a_k - M_{\varphi}(A)$$
, o desvio que cada valor $a_k \in A$ toma da média $M_{\varphi}(A) = \varphi^{-1}\left(\frac{1}{N}\sum_{k=1}^N a_k\right)$.

A raiz quadrada da média aritmética dos quadrados dos desvios

$$\sigma = \sqrt{\frac{1}{N} \left(\sum_{k=1}^{N} d_k^2 \right)}$$

mede o quão heterogêneo é essa população. Observa-se que, quanto maior o valor de σ , mais díspares estão os termos $a_k \in A$.

2(e)

Questão 03: Predação e Sobrevivência

Considere uma grande população distribuída *uniformemente* no espaço em regiões esféricas cujo tamanho é descrito por N(t) e cuja mortalidade é causada unicamente por uma predação "periférica" com taxa proporcional (e coeficiente λ) ao número de indivíduos localizados na superfície exterior da esfera.

- a Descreva, com argumentos, um Modelo Diferencial para a dinâmica de mortalidade desta população,
- b Mostre que o tempo médio aritmético de sobrevivência dos indivíduos $T_*(N_0, \lambda)$, aumenta com o tamanho inicial do grupo, o que caracteriza um Efeito de Rebanho Egoísta, e determine este valor.
- c Determine também o tempo médio quadrático de sobrevivência desta população.
- d Segundo o Principio de Weber-Fechner, quão bem recebido é um novo membro de um grupo? Ou seja, como interpretar neste contexto, a antológica frase de Woody Allen: "Eu não gostaria de fazer parte de um clube que me recebesse (bem) como um de seus membros".

3(a)

Considere uma grande população N(t) distribuída *uniformemente* em uma superfície esférica de raio r. Como estamos trabalhando em um agrupamento esférico de raio r (espaço físico tridimensional), onde a população (presas) N é proporcional ao seu volume ($N \propto V$) que, por sua vez, é proporcional ao cubo do seu raio ($V \propto r^3$), temos, por transitividade, que $N \propto r^3$ ou, equivalentemente, $r \propto N^{\frac{1}{3}}$. Além disso, como a população é distribuída uniformemente na superfície da esfera de área A e esta é proporcional ao quadrado do raio da esfera, ou seja, $A \propto r^2$, implicando em $A \propto N^{\frac{2}{3}}$. Assim, concluímos que as presas são em número proporcional a $N^{\frac{2}{3}}$. Dessa forma, é razoável considerar que a taxa de predação é proporcional a $N^{\frac{2}{3}}$, ou seja,

$$\frac{dN}{dt} = -\lambda N^{\frac{2}{3}}, \ \lambda > 0. \tag{4}$$

3(b)

Analisemos, dimensionalmente, a equação (4). Assim, temos:

$$\begin{bmatrix} \frac{dN}{dt} \end{bmatrix} = \begin{bmatrix} -\lambda N^{\frac{2}{3}} \end{bmatrix}$$

$$\Rightarrow T^{-1}P = [\lambda]P^{\frac{2}{3}}$$

$$\Rightarrow [\lambda] = T^{-1}P^{\frac{1}{3}}$$

e, portanto, podemos concluir que

$$T_*(N_0, \lambda) = \alpha \lambda^{-1} N_0^{\frac{1}{3}},\tag{5}$$

em que $\alpha \in \mathbb{R}$.

A solução da equação (4) é obtida da seguinte maneira:

$$N^{-\frac{2}{3}} dN = -\lambda dt \Rightarrow \int N^{-\frac{2}{3}} dN = -\lambda \int dt \Rightarrow 3N^{\frac{1}{3}} = -\lambda t + K \Rightarrow$$

$$N(t) = \left(-\frac{\lambda}{3}t + C\right)^{3}.$$
(6)

Ao aplicarmos a condição $N(0)=N_0$ em (6), obtemos: $C=N_0^{\frac{1}{3}}$. Portanto, temos que

$$N(t) = \left(-\frac{\lambda}{3}t + N_0^{\frac{1}{3}}\right)^3. \tag{7}$$

Comparando-se as equações (5) e (7), constatamos que $\alpha=1$ e, consequentemente, temos:

$$T_*(N_0, \lambda) = \lambda^{-1} N_0^{\frac{1}{3}},$$
 (8)

3(c)

3(d)

Claramente, o comportamento de busca da proteção por um grupo presas é intensificado pelo indivíduo, se este percebe que sua inclusão pouco modifica a percepção da quantidade de elementos do referido grupo, pelo predador. Por isso, temos o princípio de Weber-Fechner na sua versão de percepção de cardinalidade.

Portanto, considerando o princípio de Weber-Fechner, um indivíduo é bem recebido pelo grupo se este possui uma quantidade elevada de membros.

Questão 04

Considere um líquido em repouso (por exemplo, um lago) onde está suspensa uma "população" de partículas esféricas de variados raios r que se dissolvem (ou se evaporam) a uma taxa proporcional à área de sua superfície exterior.

- a Descreva, justificando, a população destas partículas em um dado instante segundo o conceito de densidade de Euler.
- b Obtenha o tempo de "existência" de uma partícula de raio R.
- c Descreva um Modelo Conservativo de Euler, Integral e Diferencial, para a distribuição destas partículas ao longo do tempo.
- d Faça uma analogia deste modelo com o modelo demográfico contínuo de Euler.
- 4(a)
- 4(b)
- 4(c)
- 4(d)

Questão 05: Principio de Conservação

Considere uma população distribuída continuamente segundo Euler em um espaço de aspecto unidimensional representado por \mathbb{R}^+ , onde é definido um "Campo de velocidades" v(x) que determina a taxa de modificação do aspecto x em termos dele mesmo.

a - Se $x_1(t)$ e $x_2(t)$ são dois pontos móveis no espaço de aspecto que "seguem" o movimento determinado por v(x), isto é, $\frac{dx_k}{dt} = v(x_k)$, com $x_1(0) < x_2(0)$, analise o sentido (no modelo) para a expressão

 $\frac{d}{dt}\left(\int_{x_1(t)}^{x_2(t)}\rho(x,t)\ dx\right).$

b - Desenvolva a expressão acima e utilize seu resultado para definir **justificadamente** o conceito de Fluxo de Transporte J(x, t).

5(a)

Considere o campo v(x) e dois pontos $x_1(t) < x_2(t)$, $\forall t$.

Como as trajetórias dos pontos $x_1(t)$ e $x_2(t)$, respectivamente, dos pontos x_1 e x_2 se movimentam com o campo, nenhum outro ponto cruza com eles (Unicidade local de solução do Problema de Cauchy).

Portanto, o tamanho da população N(t) no intervalo móvel $[x_1(t), x_2(t)]$ se mantém constante e é igual a

$$N(t) = \int_{x_1(t)}^{x_2(t)} \rho(x, t) dx$$

e, a sua derivada

$$\frac{d}{dt}N(t) = \frac{d}{dt}\left(\int_{x_1(t)}^{x_2(t)} \rho(x,t) \ dx\right)$$

é nula.

5(b)

Para calcular a derivada $\frac{d}{dt}N(t)$, vamos efetuar uma mudança de variáveis de tal forma que a região de integração seja fixada e se deixe o integrando apenas como uma função de t. Considere, então, a variável ξ e $x(\xi,t)=x$. Portanto,

$$N(t) = \int_{\xi_1}^{\xi_2} \rho(x(\xi, t), t) \frac{\partial x(\xi, t)}{\partial \xi} d\xi$$

Implicando em

$$\frac{d}{dt}N(t) = \int_{\xi_1}^{\xi_2} \frac{\partial}{\partial t} \left[\rho(x(\xi, t), t) \frac{\partial x(\xi, t)}{\partial \xi} \right] d\xi = \int_{\xi_1}^{\xi_2} \left[\left(\frac{\partial \rho}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial \rho}{\partial t} \right) \frac{\partial x}{\partial \xi} + \rho \frac{\partial^2 x}{\partial t \partial \xi} \right] d\xi.$$

Como
$$\frac{\partial x}{\partial t} = v(\xi, t)$$
 e $\frac{\partial^2 x}{\partial t \partial \xi} = \frac{\partial}{\partial \xi} \left(\frac{\partial x}{\partial t} \right) = \frac{\partial}{\partial \xi} v(\xi, t) = \frac{\partial v}{\partial x} \frac{\partial x}{\partial \xi}$, segue que
$$\frac{d}{dt} N(t) = \int_{\xi_1}^{\xi_2} \left(\frac{\partial \rho}{\partial x} v(\xi, t) + \frac{\partial \rho}{\partial t} + \rho \frac{\partial v}{\partial x} \right) \frac{\partial x}{\partial \xi} d\xi$$
$$= \int_{\xi_1}^{\xi_2} \left(\frac{\partial \rho}{\partial t} + \frac{\partial \rho}{\partial x} v(\xi, t) + \rho \frac{\partial v}{\partial x} \right) dx$$
$$= \int_{\xi_1}^{\xi_2} \left[\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) \right] dx,$$

a equação integral do princípio de conservação.

Como não há variação na população e, admitindo-se que, as funções ρ e v são continuamente deriváveis, temos a ED parcial para a conservação da população ou quantidade de indivíduos é dada por:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho \ v) = 0.$$

Assim, não há ganho e nem há perda de indivíduos na população entre $[\xi_1, \xi_2]$ mas, apenas, um transporte, e, então,

$$\int_{x_1}^{x_2} \frac{\partial \rho}{\partial t} = \int_{x_1}^{x_2} -\frac{\partial}{\partial x} (\rho \ v) = \rho(x_1, t) v(x_1, t) - \rho(x_2, t) v(x_2, t).$$

O termo $\rho(x, t)v(x, t) = \rho v$ expressa a quantidade de indivíduos que passa por x, na direção positiva, por unidade de tempo, e é chamado de **fluxo** J(x, t).

Questão 06: Sedimentação

Seja $0 \le x$ a coordenada da posição longitudinal em um rio "infinito" com escoamento unidimensional a uma velocidade de arrasto v>0 constante. Suponha que neste rio exista uma população de partículas suspensas descrita pela densidade $\rho(x,t)$ que se depositam no seu leito (deixando, assim, de serem suspensas) a uma taxa proporcional à densidade delas. Suponha ainda que exista uma injeção de partículas em x=0 descrita por um fluxo de entrada J(0,t)=a>0 constante e que a densidade seja nula a longas distâncias, isto é, $\rho(\infty,t)=0$, a qual fornece a taxa de produção

- a Interprete e determine a expressão $N(t)=\int_0^\infty \rho(x,t)\ dx$ mostrando que ela se aproxima de um valor constante. (Sugestão: Obtenha uma equação para $\frac{dN}{dt}$)
- b Argumente que a distribuição espacial de partículas suspensas se aproxima de uma densidade constante com o tempo $\rho_{\infty}(x) = \lim_{t \to \infty} \rho(x,t)$ e calcule esta distribuição. (sugestão: Considere a equação estacionária, sem variação no tempo).
- c Determine a quantidade total de material depositado no leito do rio durante um intervalo de tempo $[t_1, t_2]$.
- 6(a)
- 6(b)
- 6(c)