EE-222: Microprocessor Systems

The AVR Microcontroller: History & Features

Instructor: Dr. Arbab Latif

Microprocessor vs Microcontroller

Embedded Systems Overview

- Computing systems are everywhere
- Most of us think of "desktop" computers
 - PC's
 - Laptops
 - Mainframes
 - Servers
- But there's another type of computing system
 - Far more common...
 - And that's an Embedded System

What is an Embedded system?

- Self Contained
 - CPU
 - Memory
 - I/O

- Application or Task Specific
 - Not a general-purpose computer
 - Appropriately scaled for the job

Embedded Systems Overview

- Embedded computing systems
 - Computing systems embedded within electronic devices
 - Hard to define. Nearly any computing system other than a desktop computer
 - Billions of units produced yearly, versus millions of desktop units
 - Perhaps 50 per household and per automobile

and even here...

Lots more of these, though they cost a lot less each.

A "short list" of embedded systems

Anti-lock brakes **Auto-focus cameras** Automatic teller machines Automatic toll systems Automatic transmission Avionic systems **Battery chargers** Camcorders Cell phones **Cell-phone base stations** Cordless phones Cruise control **Curbside check-in systems** Digital cameras Disk drives Electronic card readers **Electronic instruments** Electronic toys/games Factory control Fax machines Fingerprint identifiers Home security systems Life-support systems Medical testing systems

Modems MPEG decoders **Network cards Network switches/routers On-board navigation Pagers Photocopiers Point-of-sale systems** Portable video games **Printers Satellite phones** Scanners Smart ovens/dishwashers **Speech recognizers Stereo systems Teleconferencing systems Televisions Temperature controllers** Theft tracking systems TV set-top boxes VCR's, DVD players Video game consoles Video phones Washers and dryers

And the list goes on and on

Microcontroller vs. Microprocessor

High-Processing Power, faster but needs to be interfaced with I/O, memory and other devices.

Control-oriented devices: simply add control devices and a program into the ROM.

Most Common Microcontrollers

- 8-bit microcontrollers
 - AVR
 - PIC
 - HCS12
 - -8051

- 32-bit microcontrollers
 - ARM
 - AVR32
 - PIC32

AVR History

History of AVR

AVR stand for?

Advanced Virtual RISC, the founders are Alf Egil Bogen Vegard Wollan RISC

The **Atmel AVR** is a family of 8-bit RISC <u>microcontrollers</u> produced by <u>Atmel</u>.

The AVR architecture was conceived by two students at the **Norwegian Institute of Technology (NTH)** and further refined and developed at **Atmel Norway**, the Atmel daughter company founded by the two chip architects.

Microchip Technology, Inc. Acquires Atmel

History of AVR

AVR Micro controllers is Family of **RISC Microcontrollers** from Atmel.

There are multiple architectures

RISC (Reduced Instruction Set Computer)
CISC (Complex Instruction Set Computer)

CISC Approach

CISC Approach

Complete the task in few assembly line code TASK multiply 2:3, 5:2 locations numbers and put output in 5:2 location

Command: MULT 2:3, 5:2

MULT is what is known as a "complex instruction." Instruction does 't complete in one cycle execution

Processor hardware that is capable of understanding and executing a series of operations.

RISC Approach

Reduced Introduction Set Computer

Till 1980 Trend was to build increasingly complex CPUs with complex set of instructions like (CISC)

(RISC)

Instruction execute in single cycle

"Architecture which reduces the chip complexity by simpler processing instructions".

RISC architecture CPUs capable of executing only a very limited (simple) set of instructions.

RISC Approach

RISC Approach

RISC processors only use simple instructions that can be executed within one clock cycle. "MULT" command divided into three separate commands:

LOAD A, 2:3 LOAD B, 5:2 PROD A, B STORE 2:3, A

Single Cycle Execution

RISC Microcontroller

Reduced Instruction Set Computers Advantages

- Fast Execution of Instructions due to simple instructions for CPU.
- RISC chips require fewer transistors, which makes them cheaper to design and produce.
- Emphasis on software
- Single-clock, reduced instruction only
- Register to register: "LOAD" and "STORE" are independent instructions
- Spends more transistors on memory registers

AVR Family Overview

Simplified View of AVR Microcontroller

8-bit RISC Single-Chip with Harvard Architecture

AVR Product Family Overview

Product Family	Pin Count	Program Flash Memory (KB)	SRAM (KB)
ATtiny4/5/9/10	6	0.5-1	0.032
ATtiny102/104	8/14	1	0.032
ATtiny13A	8–20	1	0.064
ATtiny20/40	12-20	2/4	0.128/0.256
ATtiny24A/44A/84A	14-20	2–8	Up to 0.512
ATtiny25(V)/45(V)/85(V)	8–20	2–8	Up to 0.512
ATtiny48/88	28–32	4/8	Up to 0.512
ATtiny87/167	20–32	8/16	0.512
ATtiny261A/461A/861A	20–32	2–8	Up to 0.512
ATtiny20x/40x/80x/160x	8–24	2–16	Up to 1
ATtiny21x/41x/81x/161x/321x	8–24	2-32	Up to 2
ATtiny441/841	14–20	4/8	Up to 0.512
ATtiny1634	20	16	1
ATtiny2313A	20	2	0.128
ATmega8A/16A/32A	28–44	8-32	1–2
ATmega8U2/16U2/32U2	32	8-32	0.5–1
ATmega16U4/32U4	32	16/32	1/2
ATmega48PB/88PB/168PB/328PB	32	4-32	0.5–2
ATmega320x/480x	28–48	32-48	Up to 6
ATmega64A/128A	64	64–128	4
ATmega164PA/324PA/644PA/1284P	44	16-128	1–16
ATmega165PA/325PA/645P	44	16–64	1–4
ATmega169PA/329PA/649P	64	16-64	1–4
ATmega324PB	44	32	2
ATmega640/1280/2560/1281/2561	64-100	64-256	8

ATmega16A

AVR Parts Variation

- Variations in the parts:
 - TinyAVR [ATtinyxxxx] to MegaAVR [ATmegaxxxx]
- Mega
 - e.g. ATmega328, ATmega32, ATmega128
- Tiny
 - e.g. ATtiny13, ATtiny25
- Special Purpose AVR
 - e.g. AT90PWM216,AT90USB1287
- XMega
 - New features like DMA, DAC, crypto engine, etc.
- Classic AVR [Discountinued]
 - e.g. AT90S2313, AT90S4433

AVR Parts Variation

 For more details, take a look at: <u>http://ww1.microchip.com/downloads/en/DeviceDoc/300</u> <u>10135D.pdf</u>

ATmega16A

ATmega16A

Name	Value	
Program Memory Type	Flash	
Program Memory Size (KB)	16	
CPU Speed (MIPS/DMIPS)	16	
SRAM Bytes	1,024	
Data EEPROM/HEF (bytes)	512	
Digital Communication Peripherals	1-UART, 1-SPI, 1-I2C	
Capture/Compare/PWM Peripherals	1 Input Capture, 1 CCP, 4PWM	
Timers	2 x 8-bit, 1 x 16-bit	
Number of Comparators	1	
Temperature Range (C)	-40 to 85	
Operating Voltage Range (V)	2.7 to 5.5	
Pin Count	44	

ATmega16A: Features

- Low-power Atmel AVR 8-bit Microcontroller
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single-clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
- Peripheral Features
 - Two 8-bit Timer/Counters
 - One 16-bit Timer/Counter Capture Mode
 - 8-channel, 10-bit ADC
- For more details, take a look at:

http://ww1.microchip.com/downloads/en/devicedoc/atmel-8154-8-bit-avr-atmega16a_datasheet.pdf

Reading Assignment

- The AVR Microcontroller and Embedded Systems: Using Assembly and C by Mazidi et al., Prentice Hall
 - Chapter 2

THANK YOU

