# Trabajo 9

## kMeans

Facultad De Ingeniería, Universidad De Cuenca
TEXT MINING
Freddy L. Abad L.
{freddy.abadl}@ucuenca.edu.ec

En esta práctica se verá los elementos necesarios para generar un proceso de agrupamiento usando K-means. El objetivo es que este proceso puede ser aplicado a cualquier caso de prueba que requiera ejecutar este tipo de agrupamiento. En primera instancia se aplicará el proceso para un caso de uso, pero más adelante se ejecutará la misma tarea para otro escenario, indicando los pasos necesarios para reutilizar el proceso creado en una nueva base de datos En general un proceso de agrupamiento basado en k-means requiere cuatro operadores

**Retrieve or Read CSV:** Este operador permitirá leer datos desde una fuente. En este caso se usará la BD IRIS https://archive.ics.uci.edu/ml/datasets/iris. Esta fuente de información es quizás la base de datos más conocida que se encuentra en la literatura de reconocimiento de patrones.

Proceso de Lectura de Archivo Datos



Configuración de proceso Read Csv



La base de datos contiene la siguiente información:

- 1. longitud del sépalo en cm
- 2. ancho del sépalo en cm

- 3. longitud del pétalo en cm
- 4. ancho del pétalo en cm
- 5. clase:
- Iris Setosa
- Iris Versicolor
- Iris Virginica

La idea en esta práctica es tratar de buscar agrupamiento de las flores considerando las variables de la 1 a la 4, sin considerar por supuesto el atributo 5 que representan la clase de flor.

Descripcion de Archivo Fuente

```
datosPractica9.csv ×

longsepalo,anchosepalo,longpetalo,anchopetalo,clase

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa
```

Seleccionar atributos de archivos, se elimina la última columna por razones didácticas, y luego de comprobación



#### Salida de Proceso

| Row No. | longsepalo | anchosepalo | longpetalo | anchopetalo |
|---------|------------|-------------|------------|-------------|
| 7       | 4.600      | 3.400       | 1.400      | 0.300       |
| 8       | 5          | 3.400       | 1.500      | 0.200       |
| 9       | 4.400      | 2.900       | 1.400      | 0.200       |
|         |            |             |            | W-2-2-2     |

Normalize: Este operador permite normalizar los datos. El objetivo de normalizar es poner a competir a todas las variables numéricas en los mismos términos. Dado que el agrupamiento en k-means se basa en distancias, por tanto lo ideal es que las variables sean aproximadamente las mismas. De modo que una variable que esta medida en una unidad muy grande no domine a otra que esta medida en una unidad más pequeña El método usado para normalizar será Z-transformation el cual para cada una de las columnas le va a aplicar la media y lo va a dividir para la desviación estándar. Luego de aplicar este proceso

todas las medias serán 0 y las desviaciones estándar serán 1. Para observar estos valores use el botón Statistics una vez se ejecute el proceso. De esta manera podemos afirmar que todas las variables están en igualdad de condiciones

Normalización



Configuracion de proceso Normalize (Z Transformation como método de Normalización)



#### Salida Proceso



Estadísticas de la salida del proceso



Estadística de Desviación Estándar y media de los datos



**K-means**: Este operador permitirá ejecutar el proceso de agrupamiento. Es necesario indicar el valor de k, que indica el número de grupos que deseamos hallar. Es dificil conocer a priori cuántos grupos se pueden hallar en los datos, por tanto el objetivo es probar varias opciones hasta encontrar valores de similitud muy cercanos entre sí.

Luego de ejecutar este proceso se puede observar que al primer cluster pertenece 50 ítems y al segundo 100 items. En esta opción se puede observar además la tabla de centroides, lo cual indica las medias de las distintas variables una vez que las hemos separado en dos grupos. Al estar normalizadas las variables lo único que se puede indicar con estos valores es que por ejemplo la media del atributo sepal length es -1.011 y del segundo cluster es un valor positivo 0.506. No es posible interpretar directamente estos datos.

Proceso Clustering



Salida proceso



#### Estadística de la salida del proceso



### Salida del proceso cluster



#### Gráfica del cluster de salida



#### Distancia entre centroides

### Avg. within centroid distance

Avg. within centroid distance: 0.935

Distancia entre puntos del cluster 1

#### Avg. within centroid distance\_cluster\_0

Avg. within centroid distance cluster 0: 0.963

Distancia entre puntos del cluster 2

#### Avg. within centroid distance\_cluster\_1

Avg. within centroid distance cluster 1: 0.988

Distancia entre puntos del cluster 3

#### Avg. within centroid distance\_cluster\_2

Avg. within centroid distance cluster 2: 0.867

Medida Davies Bouldin

#### **Davies Bouldin**

Davies Bouldin: 0.834

El gráfico usando la opción Plot permite diferenciar los valores entre los dos clúster. Por ejemplo aquí se puede visualizar que las flores rojas tienen los pétalos más anchos (petal width) y altos (petal height) que las flores rojas.

Cluster Distance Performance: El cual va a permitir evaluar la calidad del agrupamiento, midiendo la distancia promedio de cada una de las flores en el grupo a su centroide de ese cluster. El centroide se convierte como en el representante de cada uno de los grupos.

Del operador de Clustering salen dos terminales:

El Cluster model debe conectarse al Cluster Model en el operador de Performance y el terminal clustered set debe conectarse al terminal example set.





Distancia entre centroides del cluster

## Avg. within centroid distance

Avg. within centroid distance: 0.935

Distancia entre puntos del cluster 1

### Avg. within centroid distance\_cluster\_0

Avg. within centroid distance\_cluster\_0: 0.963

Distancia entre puntos del cluster 2

## Avg. within centroid distance\_cluster\_1

Avg. within centroid distance\_cluster\_1: 0.988

Distancia entre puntos del cluster 3

## Avg. within centroid distance\_cluster\_2

Avg. within centroid distance\_cluster\_2: 0.867

Medida Davies Bouldin

## **Davies Bouldin**

Davies Bouldin: 0.834



#### **Tareas**

- 1. Prueba de cambiar el número de grupos de agrupamiento y verifique los resultados obtenidos. Considere que el conjunto de datos contiene 3 clases de 50 instancias cada una, donde cada clase se refiere a un tipo de planta de iris. Una clase es linealmente separable de las otras 2; los últimos NO son linealmente separables el uno del otro
  - A. Identifique los valores de los centroides para diferentes grupos y explique las diferencias

#### Con K=2 (Centroides)





Con K=4

|   | Name        | • • | Туре    | Missing | Statistics     |                        | Filter (6 / 6 attributes): Search for Attributes |
|---|-------------|-----|---------|---------|----------------|------------------------|--------------------------------------------------|
| , | id<br>id    | 1   | Integer | 0       | Min<br>1       | <sub>Мах</sub><br>150  | Average<br>75.500                                |
| , | Cluster     |     | Nominal | 0       | cluster_3 (24) | Most<br>cluster_0 (56) | Values cluster_0 (56), cluster_2 (44),[2 mor     |
| , | longsepalo  |     | Real    | 0       | Min<br>-1.864  | Max<br>2.484           | Average<br>-0.000                                |
| , | anchosepalo |     | Real    | 0       | Min<br>-2.431  | Max<br>3.104           | Average<br>-0.000                                |
| , | longpetalo  |     | Real    | 0       | Min<br>-1.563  | Max<br>1.780           | Average<br>-0.000                                |
| , | anchopetalo |     | Real    | 0       | Min<br>-1.440  | Max<br>1,705           | Average -0,000                                   |



Avg. within centroid dis...

Avg. within centroid dis...

Avg. within centroid dis...

Avg. within centroid dis...

# Avg. within centroid distance

Avg. within centroid distance: 0.759

Avg. within centroid dis...

Avg. within centroid dis...

Avg. within centroid dis...

# Avg. within centroid distance\_cluster\_0

Avg. within centroid distance\_cluster\_0: 0.867



## Avg. within centroid distance\_cluster\_1

Avg. within centroid distance\_cluster\_1: 0.503

# Criterion Avg. within centroid dis... Avg. within centroid dis... Avg. within centroid dis...

## Avg. within centroid distance\_cluster\_2

Avg. within centroid distance cluster 2: 0.988

# Criterion Avg. within centroid dis... Avg. within centroid dis... Avg. within centroid dis... Avg. within centroid dis...

## Avg. within centroid distance\_cluster\_3

Avg. within centroid distance cluster 3: 0.363

# Avg. within centroid dis... Avg. within centroid dis... Avg. within centroid dis... Avg. within centroid dis...

## **Davies Bouldin**

Davies Bouldin: 0.868

cluster\_1 (27 ...[1 more] Details...

#### Con K=5

| ✓ id            | Integer | 0 | Min<br>1       | Max<br>150             | Average 75,500                      |                                |
|-----------------|---------|---|----------------|------------------------|-------------------------------------|--------------------------------|
| Cluster Cluster | Nominal | 0 | cluster_4 (22) | Most<br>cluster_0 (49) | Values<br>cluster_0 (49), cluster_2 | (29),[3 more]                  |
| ✓ longsepalo    | Real    | 0 | Min<br>-1.864  | Max<br>2.484           | Average<br>-0.000                   |                                |
| ✓ anchosepalo   | Real    | 0 | Min<br>-2.431  | Max<br>3.104           | Average<br>-0.000                   |                                |
| ✓ longpetalo    | Real    | 0 | Min<br>-1.563  | Max<br>1.780           | Average<br>-0.000                   |                                |
| ✓ anchopetalo   | Real    | 0 | Min<br>-1.440  | Max<br>1.705           | Average -0.000                      |                                |
| 197.00          | 77      |   | 40             |                        |                                     | values.                        |
| Cluster Cluster | Nominal | 0 | 20             | cluster_4 (22)         | Most<br>cluster_0 (49)              | cluster_0 (49<br>cluster_1 (27 |



# Avg. within centroid distance

Avg. within centroid distance: 0.603

## Avg. within centroid distance\_cluster\_0

Avg. within centroid distance\_cluster\_0: 0.578

# Avg. within centroid distance\_cluster\_1

Avg. within centroid distance\_cluster\_1: 0.385

## Avg. within centroid distance\_cluster\_2

Avg. within centroid distance\_cluster\_2: 0.931

## Avg. within centroid distance\_cluster\_3

Avg. within centroid distance cluster 3: 0.494

## Avg. within centroid distance\_cluster\_4

Avg. within centroid distance\_cluster\_4: 0.611

## **Davies Bouldin**

Davies Bouldin: 0.940

Dadas esta comparación, dados diversos números de centroides (2,3,4,5) se encuentra que el cluster con un número de centroides igual a 3, cumple la condicion de tener la máxima distancia entre centroides y la mínima distancia entre puntos con su centroide.

B. Use los gráficos disponibles usando diferentes parámetros para decidir el mejor número de cluster?







cluster

Count(cluster)



Dadas esta comparacion, dados diversos números de centroides (2,3,4,5) se encuentra que el cluster con un número de centroides igual a 3, cumple la condicion de tener la máxima distancia entre centroides y la mínima distancia entre puntos con su centroide.