

이론, 실습, 시뮬레이션 💯 디지털 논리회로 깨정3판

Chapter 07. 조합논리회로

학습목표 및 목차

- 반가산기, 전가산기, 고속가산기 및 비교기 회로를 설계할 수 있다.
- 디코더와 인코더 동작 원리를 이해하고 응용회로를 설계할 수 있다.
- 멀티플렉서와 디멀티플렉서의 동작 원리를 이해하고 응용회로를 설 계할 수 있다.
- 각종 코드를 변환하는 회로를 설계할 수 있다.
- 패리티 발생기와 검출기의 동작 원리를 이해하고 응용회로를 설계할수 있다.

01. 가산기/감산기

02. 出교기

03. 디코더

04. 인코더

05. 멀티플렉서

06. 디멀티플렉서

07. 코드 변환기

08. 패리티 발생기/검출기

개요

- 개요 조합논리회로는 논리곱(AND), 논리합(OR), 논리 부정(NOT)의 세 가지 기본 논리 회로를 조합하여 구성한 논리 회로
- 조합논리회로는 입력변수, 논리 게이트, 그리고 출력변수들로 구성

1. 반가산기(half-adder, HA)

$$\begin{array}{c}
A \\
+ B \\
\hline
C S
\end{array}$$

$$\begin{array}{c} 0 \\ + 0 \\ \hline 0 & 0 \end{array}$$

$$\begin{array}{c} 0 \\ + 1 \\ \hline 0 1 \end{array}$$

$$\begin{array}{c}
 1 \\
 + 0 \\
 \hline
 0 1
 \end{array}$$

S: sum
C: carry

입	럑	출력		
A	В	S	C	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

$$S = \overline{AB} + A\overline{B} = A \oplus B$$

$$C = A \cdot B$$

2. 전가산기(full-adder, FA)

■ 자리 올림수(carry)를 고려하여 만든 덧셈 회로

	입력			력
A	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
_ 1	1	1	1	1

$$S = \overline{ABC_{in}} + \overline{ABC_{in}} + A\overline{BC_{in}} + ABC_{in}$$

$$= \overline{A(BC_{in} + BC_{in})} + A(\overline{BC_{in}} + BC_{in})$$

$$= \overline{A(B \oplus C_{in})} + A(\overline{B \oplus C_{in}})$$

$$= A \oplus (B \oplus C_{in}) = (A \oplus B) \oplus C_{in}$$

$$C_{out} = \overline{ABC_{in}} + A\overline{BC_{in}} + AB\overline{C_{in}} + ABC_{in}$$

$$= C_{in}(\overline{AB} + A\overline{B}) + AB(\overline{C_{in}} + C_{in})$$

$$= C_{in}(A \oplus B) + AB$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = C_{in}(A \oplus B) + AB$$

• 전가산기는 **반가산기** 2개와 OR 게이트를 이용하여 구성

n개의 비트로 구성된 두 개의 2진수 감산

- B부분
 - 최하위 비트
 - borrow를 빌려올 수는 있어도 하위 비트가 존재하지 않으므로 borrow를 빌려줄 수는 없다.
- A부분
 - borrow를 상위 비트에서 빌려올 수도 있으며, 하위 비트에 빌려줄 수 도 있다.

1. 반감산기(half-subtracter, HS)

- 임의의 입력 비트 두 개 : A와 B
- ■출력
 - 두 비트의 차인 D(difference)와 상위 비트로부터의 borrow를 빌려왔 는지의 여부에 따라 Bo(output borrow)로 표시
- 반감산기 진리표

입	력	출 력		
Α	В	B ₀	D	
0	0	0	0	
0	1	1	1	
1	0	0	1	
1	1	0	0	

■ 출력 D와 Bo에 대한 부울식

$$D = \overline{A}B + A\overline{B} = A \oplus B$$
$$B_0 = \overline{A}B$$

1. 반감산기(half-subtracter, HS)

■ 회로도와 논리기호

(a) 반감산기 회로

2. 전감산기(full-substracter, FS)

- 입력
 - 피감수 비트와 감수 비트인 두 개의 비트 A, B와 하위 비트에 1을 빌려주었는지를 고려한 입력 빌림수 Bi(input borrow)를 포함
- ■출력
 - 차를 나타내는 D(difference)와 상위 비트에서 borrow가 있었는지를 고려한 출력 빌림수 Bo(output borrow)로 구성
- 진리표

입 력			출 력
А	В	Bi	B ₀ D
0	0	0	0 0
0	0	1	1 1
0	1	0	1 1
0	1	1	1 0
1	0	0	0 1
1	0	1	0 0
1	1	0	0 0
1	1	1	1 1

2. 전감산기(full-substracter, FS)

■ 출력 D와 Bo에 대해 각각 부울식으로 표현

$$D = \overline{A} \overline{B} B_i + \overline{A} B \overline{B}_i + A \overline{B} \overline{B}_i + A B B_i$$
$$B_0 = \overline{A} \overline{B} B_i + \overline{A} B \overline{B}_i + \overline{A} B B_i + A B B_i$$

■ 전체 논리 회로도 구성

2. 전감산기(full-subtracter, FS)

■ 부울식 D와 B0를 간소화

$$D = \overline{A} \overline{B} B_i + \overline{A} B \overline{B}_i + A \overline{B} B_i + A B B_i$$

$$= \overline{A} (\overline{B} B_i + B \overline{B}_i) + A (\overline{B} \overline{B}_i + B B_i)$$

$$= \overline{A} (B \oplus B_i) + A (\overline{B} \oplus \overline{B}_i)$$

$$= A \oplus (B \oplus B_i)$$

$$B_{0} = \overline{A} \overline{B} B_{i} + \overline{A} B \overline{B}_{i} + \overline{A} B B_{i} + A B B_{i}$$

$$= B_{i} \overline{A} \overline{B} + A B \overline{B}_{i} + \overline{A} B \overline{B}_{i} + A B B_{i}$$

$$= B_{i} \overline{A} \overline{B} + A B \overline{B}_{i} + \overline{A} B \overline{B}_{i} + A B B_{i}$$

$$= B_{i} \overline{A} \overline{B} + A B \overline{B}_{i} + \overline{A} B \overline{B}_{i} + A B B_{i}$$

$$= B_{i} \overline{A} \overline{B} + A B \overline{B}_{i} + \overline{A} B \overline{B}_{i} + \overline{A} B B_{i}$$

■ 간소화된 부울식에 대한 전감산기 회로

2. 전감산기(full-substracter, FS)

■ 두 개의 반감산기를 이용한 전감산기 회로와 논리기호

(a) 반감안기를 이용한 전감안기 외로

(b) 논리기호

01 가감산기

3. 병렬가감산기(parallel-adder/subtracter)

■ 병렬가산기 : 전가산기 여러 개를 병렬로 연결한 회로

<전가산기를 이용한 병렬가산기>

• 병렬가감산기 : 병렬가산기의 B입력을 부호 S(sign)와 XOR하여 전가산기의 입력으로 사용함으로써 덧셈과 뺄셈이 모두 가능한 회로

■ IC 7483/74283

■ 4비트 2진 전가산기이며, 내부에 carry look ahead 회로 내장

<IC 7483 핀 배치도>

<IC 74283 핀 배치도>

5. BCD 가산기

- BCD 코드는 2진수와 달리 표현범위가 0에서 9까지이다.
- 그러므로 BCD 계산을 하려면 결과를 보정해 주어야 한다.
- 2진수 합의 결과가 1010~1111인 경우 보정
- 6+7=13인 경우

$$\begin{array}{c} 0 & 1 & 1 & 0 \\ + & 0 & 1 & 1 & 1 \\ \hline & 1 & 1 & 0 & 1 \end{array}$$

<BCD 덧셈표>

	6	2진 힡	ļ-			BCD 합				10진값
K	Z_8	Z_4	Z_2	Z_1	C	S_8	S_4	S_2	S_1	10位献
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

$\sqrt{Z_2Z_2}$	7 1			
Z_8Z_4	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	1	1

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

 $C=K+Z_8Z_4+Z_8Z_2$ <BCD 합에서 캐리를 만들어 주어야 하는 경우의 논리식>

<BCD 가산기>

■ 2진 비교기(comparator) : 두 개의 2진수의 크기를 비교하는 회로

■ 1비트 비교기

입	꼉	출력			
A	В	$A=B$ F_1	$ \begin{array}{ c c } \hline A\neq B \\ F_2 \end{array} $	$A>B$ F_3	$A < B$ F_4
0	0	1	0	0	0
0	1	0	1	0	1
1	0	0	1	1	0
_ 1	1	1	0	0	0

$$F_1 = \overline{A \oplus B}, \quad F_2 = A \oplus B,$$

 $F_3 = A \overline{B}, \quad F_4 = \overline{A}B$

<진리표와 논리식>

<회로도>

■ 2비트 비교기

입	력		출력					
A	В	A=B	$A \neq B$	A>B	$A \le B$			
A_1A_2	B_1B_2	F_1	F_2	F_3	F_4			
	0 0	1	0	0	0			
0 0	0 1	0	1	0	1			
0 0	1 0	0	1	0	1			
	1 1	0	1	0	1			
	0 0	0	1	1	0			
0 1	0 1	1	0	0	0			
0 1	1 0	0	1	0	1			
	1 1	0	1	0	1			
	0 0	0	1	1	0			
1 0	0 1	0	1	1	0			
1 0	1 0	1	0	0	0			
	1 1	0	1	0	1			
	0 0	0	1	1	0			
1 1	0 1	0	1	1	0			
1 1	1 0	0	1	1	0			
	1 1	1	0	0	0			

<진리표>

$$F_3 = A_1 \overline{B_1} + A_2 \overline{B_1} \overline{B_2} + A_1 A_2 \overline{B_2}$$
 $F_4 = \overline{A_1} B_1 + \overline{A_1} \overline{A_2} B_2 + \overline{A_2} B_1 B_2$

$$F_2 = (A_1 \oplus B_1) + (A_2 \oplus B_2)$$

$$F_4 = \overline{A_1}B_1 + \overline{A_1}\overline{A_2}B_2 + \overline{A_2}B_1B_2$$

<2비트 비교기 회로>

■ IC 7485(4비트 비교기)

- 7485는 A_3 ~ A_0 와 B_3 ~ B_0 의 크기를 비교하는 회로
- A>B일 때 AGBO의 출력이 1, A<B일 때 ALBO의 출력이 1, A=B일 때 AEBO의 출력이 1이 된다.
- 확장 입력 *AGBI*, *ALBI*, *AEBI*는 LSB로 입력되며, 즉, 아랫단의 *AGBO*, *ALBO*, *AEBO*의 출력이 윗단의 *AGBI*, *ALBI*, *AEBI*의 입력이 된다. 맨 아랫단의 *AGBI*, *ALBI*는 0을 *AEBI*는 1을 입력한다.

<IC 7485 핀 배치도>

	입 력							출력		
A_{3}, B_{3}	A_2 , B_2	A_1 , B_1	A_0, B_0	AGBI	ALBI	AEBI	AGBO A>B	ALBO A <b< th=""><th>AEBO A=B</th></b<>	AEBO A=B	
$A_3 > B_3$	×	×	×	×	×	×	1	0	0	
$A_3 < B_3$	×	×	×	×	×	×	0	1	0	
$A_3 = B_3$	$A_2 > B_2$	×	×	×	×	×	1	0	0	
$A_3 = B_3$	$A_2 < B_2$	×	×	×	×	×	0	1	0	
$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	×	×	×	×	1	0	0	
$A_3 = B_3$	$A_2 = B_2$	$A_1 \leq B_1$	×	×	×	×	0	1	0	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	×	×	×	1	0	0	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 < B_0$	×	×	×	0	1	0	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	1	0	0	1	0	0	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	0	1	0	0	1	0	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	0	0	1	0	0	1	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	0	1	1	0	0	1	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	1	0	1	0	0	1	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	1	1	1	0	0	1	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	1	1	0	0	0	0	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	0	0	0	1	1	0	

<4비트 비교기 IC 7485 진리표>

<IC 7485 크기 비교기 회로>

<7485 IC를 이용한 16비트 비교 회로>

■ 디코덕(decoder)

- 디코더 : 입력선에 나타나는 *n*비트의 2진 코드를 최대 2ⁿ개의 서로 다른 정보로 바꿔주는 조합논리회로
- 인에이블(enable)단자를 가지고 있는 경우는 디멀티플렉서의 기능도 수행
- 실제 상용 IC의 경우에는 디코더와 디멀티플렉서의 기능으로 모두 사용

<디코더와 인코터의 기능>

1. 1×2 디코더

■ 1개의 입력에 따라서 2개의 출력 중 하나가 선택

입력	출력				
A	Y_1	Y_0			
0	0	1			
1	1	0			

$$Y_0 = \overline{A}$$
 $Y_1 = A$

<진리표와 논리식>

<회로도>

■ 인에이블이 있는 1×2 디코더

입력	출력			
E A	Y_1	Y_0		
0 0	0	0		
0 1	0	0		
1 0	0	1		
1 1	1	0		

$$Y_0 = E\overline{A}$$
 $Y_1 = EA$ <진리표와 논리식>

<회로도>

2. 2×4 디코더

■ 2개의 입력에 따라서 4개의 출력 중 하나가 선택

입력		출력				
В	A	Y_3	Y_2	Y_1	Y_0	
0	0	0	0	0	1	
0	1	0	0	1	0	
1	0	0	1	0	0	
1	1	1	0	0	0	

$$Y_0 = \overline{B}\overline{A}$$
 $Y_1 = \overline{B}A$

$$Y_2 = B\overline{A}$$
 $Y_3 = BA$

<회로도>

■2×4 NAND 디코덕

■ 실제 IC들은 AND게이트가 아닌 NAND 게이트로 구성

입력		출력						
В	A	Y_3	Y_2	Y_1	Y_0			
0	0	1	1	1	0			
0	1	1	1	0	1			
1	0	1	0	1	1			
1	1	0	1	1	1			

$$Y_0 = \overline{\overline{B}}\overline{\overline{A}}$$
 $Y_1 = \overline{\overline{B}}\overline{A}$
 $Y_2 = \overline{\overline{B}}\overline{\overline{A}}$ $Y_3 = \overline{\overline{B}}\overline{A}$

<회로도>

■ 인에이블이 있는 2×4 디코더

- 대부분의 IC 디코더들은 인에이블(enable) 입력이 있어서 회로를 제어한다.
- *E*=1일 때만 출력이 동작

입력	출력						
E B A	Y_3	Y_2	Y_1	Y_0			
0 × ×	0	0	0	0			
1 0 0	0	0	0	1			
1 0 1	0	0	1	0			
1 1 0	0	1	0	0			
1 1 1	1	0	0	0			

$$Y_0 = E\overline{B}\overline{A}$$
 $Y_1 = E\overline{B}A$
 $Y_2 = EB\overline{A}$ $Y_3 = EBA$

<회로도>

■ 인에이블이 있는 2×4 NAND 디코더

- NAND 게이트로 구성한 인에이블(enable) 입력이 있는 회로
- *E*=0일 때만 출력이 동작

입력	출력						
E B A	Y_3	Y_2	Y_1	Y_0			
1 × ×	1	1	1	1			
0 0 0	1	1	1	0			
0 0 1	1	1	0	1			
0 1 0	1	0	1	1			
0 1 1	0	1	1	1			

$$Y_0 = \overline{\overline{E}} \overline{\overline{B}} \overline{\overline{A}}$$
 $Y_1 = \overline{\overline{E}} \overline{\overline{B}} \overline{\overline{A}}$
 $Y_2 = \overline{\overline{E}} \overline{\overline{B}} \overline{\overline{A}}$ $Y_3 = \overline{\overline{E}} \overline{\overline{B}} \overline{\overline{A}}$

<회로도>

■ IC 74139 구성도

■ 인에이블 단자를 갖는 2×4 디코더를 두 개 가지고 있는 IC

<IC 74139 핀 배치도>

3. 3×8 디코덕

■ 3개의 입력에 따라서 8개의 출력 중 하나가 선택

입력	출력								
C B A	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0	
0 0 0	0	0	0	0	0	0	0	1	
0 0 1	0	0	0	0	0	0	1	0	
0 1 0	0	0	0	0	0	1	0	0	
0 1 1	0	0	0	0	1	0	0	0	
1 0 0	0	0	0	1	0	0	0	0	
1 0 1	0	0	1	0	0	0	0	0	
1 1 0	0	1	0	0	0	0	0	0	
1 1 1	1	0	0	0	0	0	0	0	

$$Y_0 = \overline{C}\overline{B}\overline{A}, \quad Y_1 = \overline{C}\overline{B}A, \quad Y_2 = \overline{C}B\overline{A}, \quad Y_3 = \overline{C}BA$$

 $Y_4 = C\overline{B}\overline{A}, \quad Y_5 = C\overline{B}A, \quad Y_6 = CB\overline{A}, \quad Y_7 = CBA$

<회로도>

■ IC 74138(3×8 디코덕)

- 3개의 입력에 따라서 8개의 출력 중 하나가 선택
- 세 개의 인에이블 단자를 가지고 있음

active-low

논리회로의 출력이 활성화 되었을 때 Low이거나 활성화되기 위하여 필요한 입력이 Low인 것.

입력				출력							
C B A	G_1	G_2A	G_2B	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0 0 0	1	0	0	1	1	1	1	1	1	1	0
0 0 1	1	0	0	1	1	1	1	1	1	0	1
0 1 0	1	0	0	1	1	1	1	1	0	1	1
0 1 1	1	0	0	1	1	1	1	0	1	1	1
1 0 0	1	0	0	1	1	1	0	1	1	1	1
1 0 1	1	0	0	1	1	0	1	1	1	1	1
1 1 0	1	0	0	1	0	1	1	1	1	1	1
1 1 1	1	0	0	0	1	1	1	1	1	1	1
×××	0	×	×	1	1	1	1	1	1	1	1
×××	×	1	×	1	1	1	1	1	1	1	1
×××	×	×	1	1	1	1	1	1	1	1	1

<IC 74138 진리표>

<IC 74138 내부 회로도>

<IC 74138 핀 배치도>

4. 4×16 디코덕

$D \ C \ B \ A$	<i>Y</i> ₁₅	<i>Y</i> ₁₄	<i>Y</i> ₁₃	<i>Y</i> ₁₂	<i>Y</i> ₁₁	<i>Y</i> ₁₀	Y_9	Y_8	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0 0 0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0 0 1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0 0 1 1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0 1 0 0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0 1 0 1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0 1 1 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0 1 1 1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1 0 0 0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1 0 0 1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1 0 1 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1 0 1 1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1 1 0 0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1 1 0 1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1 1 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1 1 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

■ 2개의 3×8 디코더로 4×16 디코더를 구성

D=0 상위 디코더만 enable되어 출력은 $Y_0 \sim Y_7$ 중의 하나가 1로 되고, 하위 디코더 출력들은 모두 0이 된다.

D=1 하위 디코더만 enable 되어 출력은 $Y_{8} \sim Y_{15}$ 중의 하나가 1로 되고, 상위 디코더 출력들은 모두 0이 된다.

■ IC 74154

<IC 74154 회로도>

<IC 74154 핀 배치도>

■ 2×4 디코더 5개를 이용한 4×16 디코더

$D \ C \ B \ A$	<i>Y</i> ₁₅	<i>Y</i> ₁₄	<i>Y</i> ₁₃	<i>Y</i> ₁₂	<i>Y</i> ₁₁	<i>Y</i> ₁₀	Y_9	Y_8	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0 0 0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0 0 1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
$0 \ 0 \ 1 \ 1$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0 1 0 0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0 1 0 1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0 1 1 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0 1 1 1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1 0 0 0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1 0 0 1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1 0 1 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1 0 1 1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1 1 0 0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1 1 0 1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1 1 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 1 1 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

5. 디코더를 이용한 조합논리회로

❖ 3×8 디코더를 이용하는 경우

<3×8 디코더 출력>

<3×8 디코더 반전출력>

❖ 3×8 디코더를 이용하는 경우의 예

$$F_1(A, B, C) = \sum m(1, 2, 4, 5)$$

$$F_2(A, B, C) = \sum m(1, 5, 7)$$

$$F_1(A, B, C) = \sum m(2, 5, 6)$$
$$F_2(A, B, C) = \sum m(0, 7)$$

❖ 3×8 디코더를 이용하는 경우의 예

$$F_1(A, B, C) = \prod M(2, 7)$$
$$F_2(A, B, C) = \prod M(0, 5, 7)$$

$$F_1(A, B, C) = \prod M(0, 3, 5)$$

 $F_2(A, B, C) = \prod M(2, 3, 4)$

6. BCD-7-세그먼트 디코덕

■ 7 세그먼트 : 숫자 표시 전용 장치

<7-세그먼트의 숫자 표시>

<7-세그먼트 디코더 진리표>

	입	력					출력			
D	C	В	A	$-\frac{a}{a}$	\bar{b}	$-\frac{1}{c}$	\overline{d}	- e	\overline{f}	\overline{g}
0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0
0	0	1	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0	0
0	1	1	0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1	1	0	0
1	0	1	0	×	×	×	×	×	×	×
1	0	1	1	×	×	×	×	×	×	×
1	1	0	0	×	×	×	×	×	×	×
1	1	0	1	×	×	×	×	×	×	×
1	1	1	0	×	×	×	×	×	×	×
1	1	1	1	×	×	×	×	×	×	×

$$\overline{a} = \overline{DCBA} + C\overline{A}$$

$$\overline{b} = C\overline{B}A + CB\overline{A} = C(B \oplus A)$$

$$\overline{c} = \overline{C}B\overline{A}$$

Χ

Χ

Χ

10

Χ

[x]

$$\overline{f} = BA + \overline{C}B + \overline{D}\overline{C}A$$

<7447 진리표>

10진값				입력				출력							
또는 기능	\overline{LT}	RBI	D	C	В	A	$\frac{BI}{RBO}$	\bar{a}	\bar{b}	\bar{c}	\overline{d}	- e	\overline{f}	\overline{g}	
0	1	1	0	0	0	0	1	0	0	0	0	0	0	1	
1	1	×	0	0	0	1	1	1	0	0	1	1	1	1	
2	1	×	0	0	1	0	1	0	0	1	0	0	1	0	
3	1	×	0	0	1	1	1	0	0	0	0	1	1	0	
4	1	×	0	1	0	0	1	1	0	0	1	1	0	0	
5	1	×	0	1	0	1	1	0	1	0	0	1	0	0	
6	1	×	0	1	1	0	1	1	1	0	0	0	0	0	
7	1	×	0	1	1	1	1	0	0	0	1	1	1	1	
8	1	×	1	0	0	0	1	0	0	0	0	0	0	0	
9	1	×	1	0	0	1	1	0	0	0	1	1	0	0	
10	1	×	1	0	1	0	1	1	1	1	0	0	1	0	
11	1	×	1	0	1	1	1	1	1	0	0	1	1	0	
12	1	×	1	1	0	0	1	1	0	1	1	1	0	0	
13	1	×	1	1	0	1	1	0	1	1	0	1	0	0	
14	1	×	1	1	1	0	1	1	1	1	0	0	0	0	
15	1	×	1	1	1	1	1	1	1	1	1	1	1	1	
\overline{BI}	×	×	×	×	×	×	0	1	1	1	1	1	1	1	
\overline{RBI}	1	0	0	0	0	0	0	1	1	1	1	1	1	1	
\overline{LT}	0	×	×	×	×	×	1	0	0	0	0	0	0	0	

<7447의 LED 점등 패턴도>

<7447 회로도>

<7447을 이용한 7-세그먼트 구동 회로 예>

■ 7-세그먼트 공통 회로

<전류 제한 저항을 사용한 7-세그먼트 회로의 예>

<7-세그먼트의 LT, RBI, BI/RBO 사용 예>

- 인코더(encoder)는 디코더의 반대기능을 수행하는 장치로써, 2^n 개의 입력신호로 부터 n개의 출력신호를 만든다.
- 인코더의 역할은 2^n 개중 활성화된 하나의 1비트입력 신호를 받아서 그 숫자에 해당하는 n 비트 2진 정보를 출력한다.

1. 2×1 인코더

■ 입력의 신호에 따라 2개의 2진 조합으로 출력된다.

입	력	출력
D_1	D_0	B_0
0	1	0
1	0	1

$$B_0 = D_1$$

<진리표와 논리식>

<회로도>

2. 4×2 인코더

■ 입력의 신호에 따라 2개의 2진 조합으로 출력된다.

	입	력		출력			
D_3	D_2	D_1	D_0	B_1	B_0		
0	0	0	1	0	0		
0	0	1	0	0	1		
0	1	0	0	1	0		
1	0	0	0	1	1		

$$B_1 = D_2 + D_3$$
, $B_0 = D_1 + D_3$
<진리표와 논리식>

<회로도>

3. 8×3 인코더

■ 8(=2³)개의 입력과 3개의 출력을 가지며, 입력의 신호에 따라 3개의 2진 조합으로 출력

		출력								
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	B_2	B_1	B_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$$
 B_0
 B_1

$$B_2 = D_4 + D_5 + D_6 + D_7$$

$$B_1 = D_2 + D_3 + D_6 + D_7$$

$$B_0 = D_1 + D_3 + D_5 + D_7$$

<회로도>

<진리표와 논리식>

4. 8×3 우선순위 인코더

■ 우선순위 인코더(priority encoder)는 입력에 우선순위를 정하여 여러 개의 입력이 있을 때 우선순위가 높은 입력값에 해당되는 출력신호를 만들어 내는 회로

		출력								
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	B_2	B_1	B_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	×	0	0	1
0	0	0	0	0	1	×	×	0	1	0
0	0	0	0	1	×	×	×	0	1	1
0	0	0	1	×	×	×	×	1	0	0
0	0	1	×	×	×	×	×	1	0	1
0	1	×	×	×	×	×	×	1	1	0
1	×	×	×	×	×	×	×	1	1	1

$$B_{2} = D_{7} + D_{6} + D_{5} + D_{4}$$

$$B_{1} = D_{7} + D_{6} + \overline{D}_{5} \overline{D}_{4} D_{3} + \overline{D}_{5} \overline{D}_{4} D_{2}$$

$$B_{0} = D_{7} + \overline{D}_{6} D_{5} + \overline{D}_{6} \overline{D}_{4} D_{3} + \overline{D}_{6} \overline{D}_{4} \overline{D}_{2} D_{1}$$

<진리표와 논리식>

<회로도>

5. 인코더 IC

■ 74158 : 2×1 인코더/멀티플렉서가 4개 내장

입	력	출력
S	E	Y
×	1	1
0	0	
1	0	

<진리표>

<핀 배치도>

■ 74148(8×3 우선순위 인코더)

- 8개의 논리반전 입력(0-7)과 3개의 논리반전 출력을 가지는 우선순위 인코더이다 . 가장 우선순위가 높은 것은 7번이다.
- *GS*는 데이터 입력 중의 하나가 0이고 *EI*가 0일 때만 0이 된다.
- *EI*와 *EO*는 74148을 여러 개 연결할 때 사용

				입력					출력						
EI	7	6	5	4	3	2	1	0	A_2	A_1	A_0	GS	EO		
1	×	×	×	×	×	×	×	×	1	1	1	1	1		
0	1	1	1	1	1	1	1	1	1	1	1	1	0		
0	0	×	×	×	×	×	×	×	0	0	0	0	1		
0	1	0	×	×	×	×	×	×	0	0	1	0	1		
0	1	1	0	×	×	×	×	×	0	1	0	0	1		
0	1	1	1	0	×	×	×	×	0	1	1	0	1		
0	1	1	1	1	0	×	×	×	1	0	0	0	1		
0	1	1	1	1	1	0	×	×	1	0	1	0	1		
0	1	1	1	1	1	1	0	×	1	1	0	0	1		
0	1	1	1	1	1	1	1	0	1	1	1	0	1		

<진리표>

<IC 74148 핀 배치도>

<회로도>

6. 10진-BCD 우선순위 인코덕

				입력						출	력	
<i>I</i> 9	<i>I</i> 8	<i>I</i> 7	<i>I</i> 6	<i>I</i> 5	<i>I</i> 4	<i>I</i> 3	<i>I</i> 2	<i>I</i> 1				
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	0	1	1	1	0
1	1	1	1	1	1	1	0	×	1	1	0	1
1	1	1	1	1	1	0	×	×	1	1	0	0
1	1	1	1	1	0	×	×	×	1	0	1	1
1	1	1	1	0	×	×	×	×	1	0	1	0
1	1	1	0	×	×	×	×	×	1	0	0	1
1	1	0	×	×	×	×	×	×	1	0	0	0
1	0	×	×	×	×	×	×	×	0	1	1	1
0	×	×	×	×	×	×	×	×	0	1	1	0

<IC 74147 핀 배치도>

<IC 74147 회로도>

- 멀티플렉서(multiplexer or selector)는 여러 개의 입력선들 중에서 하나를 선택 하여 출력선에 연결하는 조합논리회로이다. 선택선들의 값에 따라서 특별한 입력선이 선택된다.
- 멀티플렉서는 많은 입력들 중 하나를 선택하여 선택된 입력선의 2진 정보를 출력선에 넘겨주기 때문에 데이터 선택기(data selector)라 부르기도 한다.
- 하나의 신호선을 이용하여 다수의 정보들을 전송할 수 있는 경제적인 장점

<멀티플렉서와 디멀티플렉서의 역할>

1. 2×1 멀티플렉서

• $2(=2^1)$ 개의 입력중의 하나를 선택선 S에 입력된 값에 따라서 출력으로 보내주는 조합회로

선택선	출력
S	F
0	D_0
1	D_1

<진리표>

$$F = \overline{S}D_0 + SD_1$$

<논리식>

2. 4×1 멀티플렉서

• $4(=2^2)$ 개의 입력중의 하나를 선택선 S_1 과 S_0 에 입력된 값에 따라서 출력으로 보내 주는 조합회로

선택	택선	출력
S_1	S_0	F
0	0	D_0
0	1	$egin{array}{c} D_0 \ D_1 \end{array}$
1	0	D_2
1	1	$D_2 \\ D_3$

<진리표>

$$F = \overline{S_1} \overline{S_0} D_0 + \overline{S_1} S_0 D_1 + S_1 \overline{S_0} D_2 + S_1 S_0 D_3$$

<논리식>

<회로도>

2. 4×1 멀티플렉서

데이터 입력단자와 데이터 선택단자에 파형을 인가하였을 때 출력단자에 나타나는 파형

3. 8×1 멀티플렉서

■ 8(=2³)개의 입력중의 하나를 출력으로 보내주는 조합논리회로

선택선			출력
S_2	S_1	S_0	F
0	0	0	D_0
0	0	1	$egin{array}{c} D_0 \ D_1 \end{array}$
0	1	0	D_2^{-}
0	1	1	D_3^-
1	0	0	$D_2 \\ D_3 \\ D_4$
1	0	1	D_5
1	1	0	$egin{array}{c} D_5 \ D_6 \ D_7 \end{array}$
_1	1	1	D_7

<진리표>

<논리식>

$$F = \overline{S_2} \overline{S_1} \overline{S_0} D_0 + \overline{S_2} \overline{S_1} S_0 D_1 + \overline{S_2} S_1 \overline{S_0} D_2 + \overline{S_2} S_1 S_0 D_3 + S_2 \overline{S_1} \overline{S_0} D_4 + S_2 \overline{S_1} S_0 D_5 + S_2 S_1 \overline{S_0} D_6 + S_2 S_1 S_0 D_7$$

■ 4×1 멀티플렉서 5개를 이용한 16×1 멀티플렉서

5. 멀티플렉서를 이용한 조합회로 구현

- $F(A,B,C) = \sum m(0,1,5,7)$ 를 8×1 멀티플렉서로 구현하는 경우
 - ☞ 3개의 선택선을 입력 *A, B, C*로 사용

A	В	C	F
0	0	0	$1 (D_0)$
0	0	1	$1(D_1)$
0	1	0	$0 (D_2)$
0	1	1	$0 (D_3)$
1	0	0	$0(D_4)$
1	0	1	$1(D_5)$
1	1	0	$0(D_6)$
_1	1	1	$1(D_7)$

<진리표>

05 멀티플렉서

- $F(A,B,C) = \sum m(0,1,5,7)$ 를 4×1 멀티플렉서로 구현하는 경우

\overline{A}	В	C	F	
0	0	0	D -1	1
0	0	$D_0=1$	1	
0	1	0	$D_1 = 0$	0
0		1		0
1	0	0	$D_2 = C$	0
1		1		1
1	1	0	D - C	0
	1	1	$D_3 = C$	1

<진리표>

<회로도>

06 디멀티플렉서

- 1개의 인에이블 입력을 가지고 있는 디코더는 디멀티플렉서로서의 기능을 수행
- 디멀티플렉서는 정보를 한 선으로 받아서 2^n 개의 가능한 출력 선들 중 하나를 선택하여, 받은 정보를 전송하는 회로이다. 디멀티플렉서는 n개의 선택선(selection line)들을 이용하여 출력을 제어
- 디멀티플렉서는 정보를 한 선으로 받아서 2ⁿ 개의 가능한 출력 선들 중 하나를 선택하여, 받은 정보를 전송하는 회로다. 디멀티플렉서는 n 개의 선택선 (selection line)의 값에 의해 하나의 출력선이 선택된다.

06 디멀티플렉서

1. 1× 4 디멀티플렉서

 $S_1 = 0$, $S_0 = 0$ 이면 출력선 X_0 가 선택되어 입력 데이터 D가 출력되며, $S_1 = 0$, $S_0 = 1$ 이면 출력선 X_1 가 선택되어 입력 데이터 D가 출력되고, $S_1 = 1$, $S_0 = 0$ 이면 출력선 X_2 가 선택되어 입력 데이터 D가 출력되며, $S_1 = 1$, $S_0 = 1$ 이면 출력선 X_3 가 선택되어 입력 데이터 D가 출력된다.

데이터 선택 단자	데이디 이건	출력	
S ₁ S ₀	데이터 입력	Х	
0 0	D	$\overline{S_1 S_0}D$	
0 1	D	$ \frac{\overline{S_1} S_0 D}{\overline{S_1} S_0 D} $ $ S_1 \overline{S_0} D $ $ S_1 S_0 D $	
1 0	D	$S_1 \overline{S_0} D$	
1 1	D	S_1S_0D	

<논리식>

$$X_0 = \overline{S_1} \overline{S_0} D$$
$$X_2 = S_1 \overline{S_0} D$$

<회로도>

$$X_1 = \overline{S}1S_0D$$

$$X_3 = S_1 S_0 D$$

06 디멀티플렉서

1. 1×4 디멀티플렉서 회로의 입력단자와 데이터 선택단자에 파형을 인가 하였을 경우에 출력단자에 나타나는 파형

1. 2진 코드-그레이 코드 변환

<2진 코드-그레이 코드 변환 진리표>

2진 코드(입력)	그레이 코드(출력)	2진 코드(입력)	그레이 코드(출력)
$B_3 B_2 B_1 B_0$	G_3 G_2 G_1 G_0	$B_3 B_2 B_1 B_0$	$G_3 G_2 G_1 G_0$
0 0 0 0	0 0 0 0	1 0 0 0	1 1 0 0
0 0 0 1	0 0 0 1	1 0 0 1	1 1 0 1
0 0 1 0	0 0 1 1	1 0 1 0	1 1 1 1
0 0 1 1	0 0 1 0	1 0 1 1	1 1 1 0
0 1 0 0	0 1 1 0	1 1 0 0	1 0 1 0
0 1 0 1	0 1 1 1	1 1 0 1	1 0 1 1
0 1 1 0	0 1 0 1	1 1 1 0	1 0 0 1
0 1 1 1	0 1 0 0	1 1 1 1	1 0 0 0

B_3B_2	3 ₀ 00	01	11	10		
00						
01	1	1	1	1		
11						
10	1	1	1	1		
$G_2 = \overline{B}_3 B_2 + B_3 \overline{B}_2 = B_3 \oplus B_2$						

B_1B_2	3 ₀ 00	01	11	10		
00			1	1		
01	1	1				
11	1	1				
10			1	1		
$G_1 = \overline{B}_2 B_1 + B_2 \overline{B}_1 = B_2 \oplus B_1$						

2. 그레이 코드-2진 코드 변환

<그레이 코드-2진 코드 변환 진리표>

그레이 코드(입력)	2진 코드(출력)	그레이 코드(입력)	2진 코드(출력)
G_3 G_2 G_1 G_0	$B_3 B_2 B_1 B_0$	G_3 G_2 G_1 G_0	$B_3 B_2 B_1 B_0$
0 0 0 0	0 0 0 0	1 0 0 0	1 1 1 1
0 0 0 1	0 0 0 1	1 0 0 1	1 1 1 0
0 0 1 0	0 0 1 1	1 0 1 0	1 1 0 0
0 0 1 1	0 0 1 0	1 0 1 1	1 1 0 1
0 1 0 0	0 1 1 1	1 1 0 0	1 0 0 0
0 1 0 1	0 1 1 0	1 1 0 1	1 0 0 1
0 1 1 0	0 1 0 0	1 1 1 0	1 0 1 1
0 1 1 1	0 1 0 1	1 1 1 1	1 0 1 0

$$B_3 = G_3$$

$$B_2 = \overline{G}_3 G_2 + G_3 \overline{G}_2 = G_3 \oplus G_2$$
 $B_1 = G_3 \oplus G_2 \oplus G_1 = B_2 \oplus G_1$

$$B_1 = G_3 \oplus G_2 \oplus G_1 = B_2 \oplus G_1$$

$$B_0=G_3\oplus G_2\oplus G_1\oplus G_0=B_1\oplus G_0$$

<카르노 맵>

<회로도>

3. BCD 코드-3초과 코드 변환

■ BCD는 10개의 숫자만 가지므로 1010 이후의 6개의 코드는 BCD에 존재하지 않는 코드이며, 입력으로서 사용될 수 없기 때문에 무관항으로 처리한다.

BCD 코드(입력)			3초과 코드(출력)				
B_3	B_2	B_1	B_0	E_3	E_2	E_1	E_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	×	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	x
1	1	1	1	X	X	X	X

<진리표>

08 패리티 발생기/검출기

<8비트 직렬회로에서의 짝수/홀수 패리티 발생>

08 패리티 발생기/검출기

■ IC 74280

■ 9비트 홀수/짝수 패리티 발생과 검출

NC - No internal connection

08 패리티 발생기/검출기

학습목표 및 목차

- 반가산기, 전가산기, 고속가산기 및 비교기 회로를 설계할 수 있다.
- 디코더와 인코더 동작 원리를 이해하고 응용회로를 설계할 수 있다.
- 멀티플렉서와 디멀티플렉서의 동작 원리를 이해하고 응용회로를 설 계할 수 있다.
- 각종 코드를 변환하는 회로를 설계할 수 있다.
- 패리티 발생기와 검출기의 동작 원리를 이해하고 응용회로를 설계할수 있다.

01. 가산기

02. 비교기

03. 디코더

04. 인코더

05. 멀티플렉서

06. 디멀티플렉서

07. 코드 변환기

08. 패리티 발생기/검출기

감사합니다 ☺

