深度学习

F	1	录			3.	2.3 优化器	9
_	1				3.	2.4 权重初始化	10
1	学才	 尺 大 大 大	3		3.	2.5 正则化	10
2	神经	圣网络	3		3.	2.6 训练策略/技巧	10
	2.1	概念	3	4	循环神	经网络	11
	2.2	前馈神经网络	3		4.1	4型网络	11
	2.3	卷积神经网络	4		4.	1.1 RNN	11
		2.3.1 结构	4		4.	.1.2 GRU	11
		2.3.2 实例	6		4.	1.3 LSTM	11
3	问是	- ⁻ ⁻	6	5	Transfe	ormer	12
,	3.1	问题	6		5.1 泊	E意力机制	12
		3.1.1 拟合	6		5.2 Ti	ransformer	13
		3.1.2 梯度	7		5.3 生	E成式模型	13
	3.2	。 改进技术	7	6	其它		14
		3.2.1 损失函数	7		6.1 物	7体检测与图像分割	14
		3.2.2 激活函数	8		6.2 耳	「视化与理解	14
友	1	 片		图	2 =		4
<u>冬</u>	1	Л		图	3 ∄	激活函数图像	9
				图	4 F	RNN与GRU更新单元	11
图	1	前馈神经网络	4	图	5 I	STM更新单元	12
表	<u>.</u>	 格		表	2 %	欠拟合和过拟合	6
1		ТН		表	3 柞	梯度消失和梯度爆炸	7
				表	4 ∜	激活函数对比	8
表 1		奖项获得情况	3	表	5 木	叉重初始化方法对比	10

1 学术史

姓名	图灵奖	诺贝尔奖
Geoffrey Hinton		√
John Hopfield	χ	

表 1: 奖项获得情况

2 神经网络

2.1 概念

深度学习的"深度":神经网络的深度(层数)。

数据集

- 训练集。
- 测试集。
- 验证集。

参数

- 超参数: 网络层数、学习率 (策略)、批量大小。不能只在训练集或测试集上获得,要通过训练和验证获得。
- 非超参数: 网络权重(不唯一,比如倍数)。

2.2 前馈神经网络(Feed-Forward Neural Network, FNN)

相邻层间特征单向连接。

图 1: 前馈神经网络

全连接神经网络(FULL CONNECT NEURAL NETWORK, FCNN)

- 前向传播: 计算结果并保存特征。
- 反向传播: 链式规则。

2.3 卷积神经网络(Convolutional Neural Networks, CNN)

2.3.1 结构

- 卷积层: 提取局部特征。
- 池化层: 降低特征维度。
- 全连接层: 分类。

图 2: 卷积神经网络

卷积

计算:

- 原图像: H₀ × N₀ × M₀ × A₀。
- 卷积核: B×F×F×A₀。
- 填充: P。
- 步幅: S。
- 新图像大小: $N_1 = \frac{N_0 + 2P F}{S} + 1, A_1 = B$ 。
- 参数量: F×F×A₀×B。

1×1卷积:

- 维度变换(降/升维): 改变特征图的深度(通道数)。降维有助于降低模型复杂度和计 算量,同时保持大部分有用信息。
- 非线性引入: 在卷积后添加激活函数, 可以在不改变空间尺寸的情况下引入非线性, 使 模型能够学习更复杂的模式。
- 作为瓶颈层: 在一些架构(如ResNet、Inception)中,可以用作瓶颈层(先降维,再 进行其他卷积,最后恢复维度)。显著减少参数量和计算成本,同时维持性能。
- 特征融合: 融合不同尺度或不同来源的特征图, 合并成一个新的特征表示。

参数量为0, 计算区域的代表性特征值。 池化

- 最大池化 (Max Pooling): 最大值。
- 平均池化(Average Pooling): 平均值。

填充 (PADDING)

- 增加感受野,减少信息损失:确保边缘像素能被卷积核充分覆盖,得到有效处理,而不 是丢失。
- 控制输出尺寸: 通过调整填充量可以精确控制每一层的输出尺寸。

步幅 (STRIDE)

- 控制输出尺寸、下采样程度: 较大步幅可以减小输出的空间尺寸,降低计算复杂度,减少参数量,提高特征图的缩放比例。
- 调整感受野: 较大步幅时输出单元会覆盖较大输入区域,增加感受野,减少重叠区域数量。
- 平衡速度与精度: 较大步幅可加速计算过程,但可能丢失细节信息;较小步幅能更精细地捕捉特征,但会增加计算成本。

2.3.2 实例

趋势: 卷积核变小、层数增加, 抛弃池化层、全连接层。

• LeNet: 没有使用ReLU。

• AlexNet: 最早使用了ReLU、GPU。

• VGGNet: 小卷积核 (感受野上, 3×3×3=1×7×7)。

• GoogleNet: 使用了ReLU, Inception。1×1卷积。

• ResNet: 使用了ReLU, 恒等映射直连边, 残差模块。

3 问题与改进

3.1 问题

3.1.1 拟合

问题	描述	训练收敛的网络	
		训练误差	测试误差
欠拟合	未训练收敛	大	大
过拟合	在训练集上表现良好,但不能推广到测试集	小	大

表 2: 欠拟合和过拟合

3.1.2 梯度

	定义	问题	改善方法
梯	网络层数增加,反	权重更新缓慢, 甚	使用ReLU及其变体。
度	向传播过程中梯度	至停止更新,影响	采用批量规范化。
消	逐渐变小,甚至趋	模型的学习能力,	选择Xavier初始化或He初始化)。
失	于零。	使网络难以训练。	
梯	反向传播过程中梯	权重更新过大,模	使用ReLU及其变体。
度	度变得非常大。	型学习过程不稳	采用梯度裁断。
爆		定,甚至发散,无	使用Adam优化器。
炸		法收敛到最优解。	采用批量规范化,稳定梯度,减小影响。

表 3: 梯度消失和梯度爆炸

3.2 改进技术

3.2.1 损失函数

交叉熵损失函数更适用于分类问题,常用于衡量模型预测的概率分布与真实标记的概率分布之间的差异。

3.2.2 激活函数

激活函数	函数	优点	缺点
ReLU	$y = \max(0, x)$	计算简单,收敛快。解	存在死区问题(神经元
	$\int 1, z > 0$	决了梯度消失问题, 允	输入小于0时将永远不被
	$y' = \begin{cases} 1, & z > 0 \\ 0, & z \leqslant 0 \end{cases}$	许误差迅速回传。有助	激活)。
		于稀疏激活, 更简洁且	非零中心化, 导致下一
		减少过拟合风险。	层权重更新不均衡。
Sigmoid	$y = \frac{1}{1 + e^{-z}}$	输出范围固定在(0,1),	非零中心化, 正输出,
	y' = y(1-y)'	适用于二分类问题。函	减慢收敛速度。
		数平滑且处处可微, 有	计算成本高。
		利于梯度计算。	
Softmax	对单个定义 $y = e^x$	适用于多分类问题。	存在数值溢出问题,不
	$y(x_i) = \frac{e^{x_i}}{\sum_{i=1}^n e^{x_i}}$		适合隐藏层。
Tanh	$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	零中心化输出, 收敛性	易饱合,梯度消失。
		能好,适用于二分类问	
		题。	
Leaky	$y = \max(0.1x, x)$		
ReLU			
	$\int x, \qquad x \geqslant 0$		
ELU	$y = \begin{cases} x, & x \geqslant 0 \\ a(e^x - 1), & x < 0 \end{cases}$		
Maxout	$y = \max(w_1^T x + b_1, w_2^T x + b_2)$		

表 4: 激活函数对比

图 3: 激活函数图像

RELU与SIGMOID对比

- ReLU优点:
 - 梯度问题: ReLU在正区间内不会导致梯度消失; Sigmoid容易陷入饱和区, 在区域内梯度几乎为零,导致梯度消失。
 - 计算效率: ReLU只需判断输入是否大于0, Sigmoid涉及指数运算。
 - 稀疏激活: ReLU有助于产生稀疏激活,使模型更简洁,减少过拟合风险。
 - 收敛速度: ReLU可使随机梯度下降更快收敛。
- Sigmoid优点:
 - 输出范围: Sigmoid将输入映射到(0,1),对特定任务(如二分类问题)更有效。
 - 适用于特定架构或任务: 在RNNs中, Sigmoid被用于门控机制, 控制信息流。
 - 非线性表达能力: Sigmoid在定义域上平滑且处处可微,非线性表达能力强。

3.2.3 优化器

• 二阶算法, 牛顿法。

- SGD.
- SGD + Momentum.
- ADam
- ADamW.

3.2.4 权重初始化

方法	特点	优点	
高斯分布随机初	基于正态分布, 零均值有	确保信号在传播中既不会迅速消	
始化	方差。	失也不会爆炸。	
Xavier初始化	确保前向、反向传播过程	适用于使用Tanh或Sigmoid的网	
	中激活值和梯度方差保持	络。	
Kaiming均 匀	一致。	适用于使用ReLU及其变体的网	
分布初始化		络。	
(He初始化)			

表 5: 权重初始化方法对比

3.2.5 正则化

- 丢弃法(dropout): 在训练过程中随机失活部分神经元(输出0),减少对训练集的过 度依赖,阻止特征间自适应。可以防止过拟合,提高鲁棒性,间接减小计算量,实现模 型平均效果。
- L1正则化: 使权重稀疏。
- L2正则化: 是权重分散。

3.2.6 训练策略/技巧

- 批量规范化(Batch Normalization): 归一化每个小批量样本为标准正态分布,减少梯 度消失和梯度爆炸问题,加速收敛。提高模型稳定性、泛化能力,减少对其他正则化技 术的依赖。
- 早停。
- 梯度裁断 (Gradient Clipping): 限制梯度大小, 防止其变得过大

循环神经网络

典型网络 4.1

4.1.1 RNN (Recurrent Neural Network, 循环神经网络)

循环核计算:

- 隐藏状态更新: $h_t = f_w(h_{t-1}, x_t) = \tanh(w_{xh}x_t + w_{hh}h_{t-1} + b_h)$ 。
- 输出生成: $y_t = f_{why}(h_t) = Softmax(w_{hy}h_t + b_y)$ 。

图 4: RNN与GRU更新单元

4.1.2 GRU(Gated Recurrent Unit networks,门控循环单元网络)

重置门和更新门,没有细胞状态。相比于RNN,主要改善了梯度消失问题。

4.1.3 LSTM (Long Short-Term Memory networks, 长短期记忆网络)

遗忘门、输入门、输出门中使用Sigmoid激活函数。

- 细胞状态(Cell State, 黄色): 贯穿模型,根据遗忘门和输入门的结果,在整个序列上 进行少量的线性交互, 使信息流动而不发生太多改变。
- 遗忘门(Forget Gate, 红色): 决定从细胞状态中丢弃的信息, 查看前一时刻的隐藏状 态和当前输入,输出[0,1]的值给细胞状态的每个元素。0意味着完全丢弃,1意味着完全 保留。
- 输入门(Input Gate,蓝色):,包含一个用于确定要更新部分的Sigmoid层,和一个创 建新候选值向量的Tanh层。

• 输出门(Output Gate,绿色):决定细胞状态的输出。Sigmoid层决定细胞状态的输出 部分,Tanh层缩放细胞状态,与Sigmoid门的输出相乘,得到本时刻输出。

图 5: LSTM更新单元

TRANSFORMER 5

注意力机制 5.1

组件

- 键 (Key)。
- 值(Value)。
- 查询(Query)。

多头自注意力(MULTI-HEAD SELF-ATTENTION)

- 1. 对于输入序列 $X = [x_1, x_2, \dots, x_n]$,其维度是 $[n, d_{model}]$ 。
- 2. 由权重矩阵 W^Q , W^K , W^V 生成查询、键、值,维度是[d_{model} , d_k], $d_k < d_{model}$:

$$Q = XW^Q$$
, $K = XW^K$, $V = XW^V$

3. 将其分割成h个头,每个头维度为dh:

$$Q_{\text{split}} = Split(Q), \quad K_{\text{split}} = Split(K), \quad V_{\text{split}} = Split(V)$$

4. 对每个头计算注意力分数(点乘查询与键, d_k 缩放,Softmax,加权求和):

$$Attention(Q, K, V) = Softmax(\frac{QK^T}{\sqrt{d_k}})V$$

5. 合并头,其中 W^{o} 是一个可学习参数矩阵,维度为 $[hd_k,d_{model}]$,用来向 d_{model} 维映射:

$$MultiHead(Q, K, V) = Concat(head_1, head_2, ..., head_h)W^o$$

在注意力机制中使用位置编码 原始的自注意力机制不包含序列中元素顺序信息, 计算 仅基于元素间关系。为使模型能有效处理序列数据,并理解不同元素间的相对或绝对位置关 系,引入位置编码。位置编码保持了序列信息,使其可以学习更复杂的模式,有助于提高模 型的理解能力和表达能力。另外,位置编码还使得模型可以处理任意长度的序列,支持变长 输入。

5.2 Transformer

掩蔽注意力(MASKED ATTENTION) 确保模型在生成序列时不依赖未来信息,只关注到 它之前的元素。这能模拟真实场景,保证因果关系,维持逻辑性和连贯性,对于生成符合语 法和语义规范的句子非常重要。

5.3 生成式模型

步骤

- 预训练(Pre-training): 在大型、通用数据集上训练模型,让模型学习到输入数据中的 基本特征和模式。
- 微调(Fine-tuning): 在预训练后,将模型应用到具体任务上,并根据该任务的相关数 据集进行进一步训练,调整参数,以优化特定任务的表现。
- 分两步:
 - 迁移学习: 预训练模型已经在大量数据上学到了丰富的特征, 在新任务上只需进 行少量调整就可以获得良好效果。
 - 充分利用数据,适应不同任务需求:有效结合预训练大数据集带来的泛化能力和 微调小数据集中特有的领域信息。

- 节省时间和成本: 获取大规模标注数据是困难而昂贵的,预训练-微调允许在较小规模的数据集上快速开发和部署模型,大大减少了从零开始训练所需的时间和计算资源,同时还能保持较高的性能水平。

自监督学习 使用输入中的一部分预测另一部分,即将部分输入作为标签,无须人工标注标签。

- 数据效率: 使模型能够利用丰富的未标注资源学习有用的表示, 而不需要为每个样本都提供昂贵的手工标注。
- 泛化能力:通过在广泛无关数据上训练,可以学到更通用的语言理解能力和其他领域知识,提高模型对不同任务的适应性和泛化能力。
- 减少过拟合风险: 相比于在小规模标注数据集上直接训练, 在更大规模的数据集上预训练减少了过拟合风险。
- 加速后续学习: 预训练得到的特征可以帮助模型更快地收敛到特定任务的最佳解。

6 其它

6.1 物体检测与图像分割

- 语义分割与实例分割。
- 物体检测: R-CNN, FastR-CNN。
- 转置卷积: 可学习的上采样方法。

6.2 可视化与理解

- 可视化: 卷积核、输出层。
- 理解: 重要像素、显著性。
- 对抗性扰动。
- 风格迁移。