

Varianta 52

Subjectul I

a) 1. b) 10. c) 0. d)
$$\frac{120}{13}$$
. e) 0. f) $\frac{7}{2\sqrt{5}}$.

Subjectul II

1. a)
$$\frac{1}{11}$$
. b) 8. c) $2^{2x} \in \{-1,4\} \Rightarrow x = 1$. d) $x \in \{\hat{1},\hat{2}\}$. e) $P=1$.

2. a) y=0. b) f '(x)=
$$\frac{-2x}{(x^2+4)^2}$$
. c) 0,25. d) $f'(1) = -\frac{2}{25}$. e) $\frac{\pi}{4}$.

Subjectul III

- a) cardP(A)= $2^{10} = 1024$
- b) $X \cup Y \subset A, X \cap Y \subset A$, deci și $X\Delta Y \subset A$.
- c) $X \Delta X = \emptyset$.
- d) Verificare.
- e) $X \cup Y = Y \cup X$ si $X \cap Y = Y \cap X$.
- f) Putem folosi diferența simetrică sub forma: $X\Delta Y = (X Y) \cup (Y X)$. Comutativitatea rezultă din d), elementul neutru Ø din c), simetricul lui X este X din b), proprietatea de parte stabilă din a), asociativitatea este considerată cunoscută.
- g) $X = \{1,2,3,4,5\}\Delta A \Delta \{6,7,8,9,10\} = \emptyset$.
- h) $X_1 \Delta X_2 \Delta ... \Delta X_n = \emptyset$, (se cuplează X și A-X).

Subjectul IV

- a) $f'(x) = 2n^2x (4n-1)a$.
- b) Din $f'(x) > 0 \Rightarrow f(x) > f(0) = 4a^2 > 0, (\forall)x \in (0, \infty).$
- c) Inegalitatea rezultă din b)..
- d) Pentru n=1 inegalitatea e evidentă. Presupunem inegalitatea adevărată pentru un $n \in \mathbb{N}$. Avem de demonstrat ca ea este adevarata pentru n+1, adica

$$\frac{1}{x_1} + \frac{2}{x_1 + x_2} + \ldots + \frac{n}{x_1 + \ldots + x_n} + \frac{n+1}{x_1 + \ldots + x_n + x_{n+1}} + \frac{(n+1)^2}{2(x_1 + \ldots + \ldots x_{n+1})} < 2(\frac{1}{x_1} + \ldots + \frac{1}{x_{n+1}}).$$

Follosind
$$P(n)$$
, $P(n+1)$ se reduce la relatia $\frac{(n+1)(n+3)}{x_1 + ... + x_n + x_{n+1}} < \frac{n^2}{x_1 + ... + x_n} + \frac{4}{x_{n+1}}$.

Aceasta rezulta din punctul c) pentru $a = x_{n+1}$ si $x = x_1 + ... + x_n$.

e) În d) înlocuim $x_1 \to \frac{1}{x_1}, x_2 \to \frac{1}{x_2}, ..., x_n \to \frac{1}{x_n}$, iar ultimul termen din sumă se

neglijează.

f) Fie
$$a_n = \frac{\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1}}{1 + \frac{1}{2} + \dots + \frac{1}{n}} = 1 + \frac{\frac{1}{n+1} - 1}{1 + \frac{1}{2} + \dots + \frac{1}{n}} = 1 - \frac{n}{n+1} \cdot \frac{1}{1 + \frac{1}{2} + \dots + \frac{1}{n}}$$

si cum
$$\lim_{n\to\infty} 1 + \frac{1}{2} + \dots + \frac{1}{n} = +\infty \Rightarrow \lim_{n\to\infty} a_n = 1$$

g) Din e) rezultă $c \le 2$. Fie c minim cu proprietatea $h_1 + h_2 + ... + h_n < c(x_1 + x_2 + ... + x_n)$.

În relația anterioară punem $x_1 = 1, x_2 = \frac{1}{2}, ..., x_n = \frac{1}{n}$. Obținem

$$1 + \frac{2}{1+2} + \dots + \frac{n}{1+2+\dots+n} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{3} + \dots + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 1 + \frac{2}{n+1} < c \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$$

$$2\left(\frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n+1}\right) < c\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \Leftrightarrow 2 \cdot \frac{\frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n+1}}{1 + \frac{1}{2} + \dots + \frac{1}{n}} < c$$

De unde făcând $n \to \infty$, rezultă că $c \ge 2$. Deci c = 2.