

Recommendation Engine

Online Programming Platform

Team Members:

Dhaval Suthar Prajakta Sumbe Ravi Kiran Veena Iyer

Date: 04/27/2019

Overview & Purpose

Competitive programming is a mind sport usually held over the Internet or a local network, involving participants trying to program according to provided specifications. The aim of competitive programming is to write the source code of computer programs which are able to solve given problems. Major companies hire from top coding platforms. The planning, workforce, time and money which goes into recruiting is cut to half by the competitive coding platforms.

Docker - https://hub.docker.com/r/suthardhaval24/ds finalproject

Heroku -

Git Hub - https://github.com/DS2019Spring/Final_Repository

GOALS

1. Recommending the questions that a programmer should solve given his/her current expertise is a big challenge for Online Programming Platforms but is an essential task to judge a programmer's expertise in that particular area which will help companies in their hiring process.

USE CASES

- **1. Student -** Can be used to provide the suggested questions to the user based on user profile.
- **2. Online Platforms/Company:** Can use the predicted attempts to evaluate the expertise of the user and suggest questions appropriately.

Data Ingestion

We will work with the data wherein the features are as below:

user_id pro	blem_id	level_type	attempts_range sub	mission_count proble	em_solved contr	ibution country	follower_count i	max_rating	rating	rank
	b_918		1	84	73	10 Bangladesh	120			advanced
ser_1 pro	b_2990	F	1	84	73	10 Bangladesh	120			advanced
	b_1358		2	84	73	10 Bangladesh	120			advanced
ser_1 pro	b_4278	A	1	84	73	10 Bangladesh	120			advanced
ser_1 pro	b_1868	A	1	84	73	10 Bangladesh	120			advanced
ser_1 pro	b_2872	A	1	84	73	10 Bangladesh	120			advanced
	_	E	1	84	73	10 Bangladesh	120			advanced
	b_4386		2	84	73	10 Bangladesh	120			advanced
	b_1981		2	84	73	10 Bangladesh	120			advanced
	b_4550		1	84	73	10 Bangladesh	120			advanced
-	b_1911		1	84	73	10 Bangladesh	120			advanced
	b_4930		2	84	73	10 Bangladesh	120			advanced
	b_522		1	84	73	10 Bangladesh	120			advanced
	_	D	2	84	73	10 Bangladesh	120			advanced
	b_1279		1	84	73	10 Bangladesh	120			advanced
	b_70	D	2	84	73	10 Bangladesh	120			advance
ser_1 pro	b_6304	A	1	84	73	10 Bangladesh	120			advance
	b_6173		1	84	73	10 Bangladesh	120			advance
ser_1 pro	b_5115	С	3	84	73	10 Bangladesh	120			advanced
ser_1 pro	b_4864	Α	3	84	73	10 Bangladesh	120	502.007	499.713	advanced
70 user_1000	prob_16	89 A	3	259	235	0 India	41	371.273	336.583	intermed
'1 user_1000	prob_18	99 C	2	259	235	0 India	41	371.273	336.583	intermed
'2 user 1000	prob 48	86 C	2	259	235	0 India	41	371.273	336.583	intermed
'3 user_1000	prob_64	34 A	2	259	235	0 India	41	371.273	336.583	intermed
4 user 1000	prob 35	08 A	1	259	235	0 India	41	371.273	336.583	intermed
'5 user_1000	prob_32	09 B	1	259	235	0 India	41	371.273	336.583	intermed
6 user_1000			1	259	235	0 India	41	371.273	336.583	intermed
77 user_1000	prob_58	01 B	1	259	235	0 India	41	371.273	336.583	intermed
78 user_1000	prob_33	34 B	3	259	235	0 India	41	371.273	336.583	intermed
'9 user_1000	prob_75	7 C	1	259	235	0 India	41	371.273	336.583	intermed
0 user_1000	prob_17	05 B	2	259	235	0 India	41	371.273	336.583	intermed
1 user_1000	prob_46	72 A	2	259	235	0 India	41	371.273	336.583	intermed
2 user_1000	prob_60	04 B	3	259	235	0 India	41	371.273	336.583	intermed
33 user_1000	prob_13	94 B	3	259	235	0 India	41	371.273	336.583	intermed
34 user_1000	prob_30	24 B	1	259	235	0 India	41	371.273	336.583	intermed

235

235

0 India

0 India

0 India

41 371.273 336.583 intermediate

371.273 336.583 intermediate

371.273 336.583 intermediate

41

PROCESS OUTLINE

185 user_1000 prob_3453 C

186 user_1000 prob_5890 B

187 user_1000 prob_713 A

- 1. Data Preprocessing
 - → Preparing final dataset by joining three subsets of data
 - → Data Cleaning, handling missing values.
- 2. Exploratory Data Analysis.
- 3. Study supervised approaches and select the best model for prediction.

259

- 4. Design a pipeline and system to implement this approach.
- 5. Deploy the model.

Exploratory Data Analysis

For exploring the various facets of our data we performed the following exploratory data analysis

The data head consists of -

To summarize the description of the dataset

Dataset Summary

We then performed data cleaning by checking and removing null values if any

weighed against each other and appropriate feature is selected.

	level_type	attempts_range	submission_count	problem_solved	contribution	follower_count	max_rating	rating	rank
0	Е	1	84	73	10	120	502.007	499.713	advanced
1	F	1	84	73	10	120	502.007	499.713	advanced
2	D	1	84	73	10	120	502.007	499.713	advanced
3	Α	1	84	73	10	120	502.007	499.713	advanced
4	Α	2	84	73	10	120	502.007	499.713	advanced

The data has an attempt range that ranges from 1 to 6 which denotes the number of attempts made to solve a question. The count of the attempts throughout the data is as below.

The submission count indicates the number of submissions done by the user

The problem solved indicates the number of problems solved.

Contribution indicates what the user would contribute to online programming dynamics stated below.

From the above graph we can see that contribution has negative data and thus to clean the data and to regraph contribution.

Rating is provided to user as per the above features mentioned judging the overall performance of a user.

Count of ranks involve four levels which is encoded with label encoder -

Beginner, Intermediate, Advanced, Expert

Level type indicates the complexity of the problem which is also labelled using the label encoder.

Correlation matrix explains the relation or the correlation between all the other features.

The numeric correlation data and its plots for our dataset is as below -

	level_type	attempts_range	submission_count	problem_solved	contribution	follower_count	max_rating	rating	rank
level_type	1.000000	-0.118299	0.247137	0.246154	0.154910	0.105787	0.323155	0.331006	-0.040756
attempts_range	-0.118299	1.000000	-0.255634	-0.254370	-0.180278	-0.111819	-0.474133	-0.537495	-0.258369
submission_count	0.247137	-0.255634	1.000000	0.997876	0.450986	0.320270	0.596288	0.546349	-0.098268
problem_solved	0.246154	-0.254370	0.997876	1.000000	0.448609	0.321789	0.596167	0.548583	-0.099975
contribution	0.154910	-0.180278	0.450986	0.448609	1.000000	0.484814	0.548499	0.485399	-0.078745
follower_count	0.105787	-0.111819	0.320270	0.321789	0.484814	1.000000	0.392347	0.342860	-0.037046
max_rating	0.323155	-0.474133	0.596288	0.596167	0.548499	0.392347	1.000000	0.941270	-0.160896
rating	0.331006	-0.537495	0.546349	0.548583	0.485399	0.342860	0.941270	1.000000	-0.075068
rank	-0.040756	-0.258369	-0.098268	-0.099975	-0.078745	-0.037046	-0.160896	-0.075068	1.000000

level_type -	1.0	-0.1	0.2	0.2	0.2	0.1	0.3	0.3	-0.0	- 0.9
attempts_range -	-0.1	1.0	-0.3	-0.3	-0.2	-0.1	-0.5	-0.5	-0.3	
submission_count -	0.2	-0.3	1.0	1.0	0.5	0.3	0.6	0.5	-0.1	- 0.6
problem_solved -	0.2	-0.3	1.0	1.0	0.4	0.3	0.6	0.5	-0.1	
contribution -	0.2	-0.2	0.5	0.4	1.0	0.5	0.5	0.5	-0.1	- 0.3
follower_count -	0.1	-0.1	0.3	0.3	0.5	1.0	0.4	0.3	-0.0	- 0.0
max_rating -	0.3	-0.5	0.6	0.6	0.5	0.4	1.0	0.9	-0.2	
rating -	0.3	-0.5	0.5	0.5	0.5	0.3	0.9	1.0	-0.1	0.3
rank -	-0.0	-0.3	-0.1	-0.1	-0.1	-0.0	-0.2	-0.1	1.0	
	level_type -	ttempts_range	mission_count -	roblem_solved -	contribution -	follower_count -	max_rating -	rating -	rank -	

Data Processing

Once the above cleaning and data is processed we plot the dataset to see any evident relations for each feature.

Feature Engineering

Once all the data is cleaned and processed and performing exploratory analysis to understand the relevance of data we perform feature engineering. In this process we use label encoder to label the level type that indicates the level of complexity of the questions and then label the rank which recognizes the performance overall of the user. We have level type data in the form of A-H and rank as Beginner, Intermediate, Advanced, Expert.

	level_type	attempts_range	submission_count	problem_solved	contribution	follower_count	max_rating	rating	rank
0	5	1	84	73	10	120	502.007	499.713	0
1	6	1	84	73	10	120	502.007	499.713	0
2	4	1	84	73	10	120	502.007	499.713	0
3	1	1	84	73	10	120	502.007	499.713	0
4	1	2	84	73	10	120	502.007	499.713	0

Modelling

Modelling is the process of using data for making predictions which are likely to influence the future results. We went through multiple models and to name a few which brought in some kind of sense to the modelling process viz

We have used Gradient Boosting a technique for classifying problems, Random Forest Classifier and Support Vector Machine (SVM) a discriminative classifier We also compared the result with AutoMI techniques like H2O.ai

Model Evaluation and Tuning

We used K-fold validation which is a statistical method used to estimate the skill of machine learning models. Cross validation is used to protect overfitting in predictive model, particularly in a case where the amount of data may be validated. In K cross validation data is divided into K subsets. Now the holdout method is repeated 5 times, such that each time, one of K subsets is used as test set or validation set.

Mape for Training and Testing data

Model	Test	Train
Support Vector Machine	51	54
Gradient Boost	33	45
K Fold Validation	52	

Auto ML

Automated machine learning is the process of automating the end-to-end process of applying machine learning to real-world problems.

Using H20

AutoML is a function in H2O that automates the process of building a large number of models, with the goal of finding the "best" model without any prior knowledge.

AutoMl Model	Test	Train
H2O	48%	51 %

Model Selection

On the basis of above evaluation and tuning evaluation we see that Support Vector Machine provides the best result for our model.

Model Deployment

We pickle our model by creating a pickle file. Pickle is the standard way of serializing objects in Python. One can use the pickle operation to serialize your machine learning algorithms and save the serialized format to a file. Later you can load this file to deserialize your model and use it to make new predictions. Thus we created a pickle file which is then integrated with a flask application which is then deployed on heroku to host and run the application.

1. Language: Python, Html, css, javascript

2. Web Framework: Flask

3. Container: Docker

4. Web Platform: Heroku

USER INTERFACE -

Our application expects you to log into the application and look input user id. The input is then looked up in the excel file and given as input to our model. The model then based on multiple features provides list of questions as output that it infers as the user can solve.

Reference

https://dzone.com/articles/using-an-automl-h2o-model-to-predict-attrition-and https://medium.com/analytics-vidhya/gentle-introduction-to-automl-from-h2o-ai-a42b393 b4ba2

https://stackabuse.com/scikit-learn-save-and-restore-models/ http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

https://www.heroku.com/ http://flask.pocoo.org/