МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Звіт

Лабораторна робота №1

з дисципліни «Дискретна математика»

Виконав: студент групи КН-113 Власюк Олександр

Викладач: Мельникова Н.І.

Тема Роботи

Моделювання основних логічних операцій. Основні поняття математичної логіки. Логічні операції. Закони логіки висловлювань. Логіка першого ступеня. Предикати і квантори. Закони логіки першого ступеня.

Мета

Засвоїти основні поняття математичної логіки, побудувати складні висловлювання за допомогою логічних операцій та знайти їхні істинностні значення таблицями істинності, використати закони алгебри логіки, та закріпити методи доведень.

Постановка завдання: 5-Варіант

- <u>1.</u> Формалізувати речення. Ігор або втомився, або хворий, якщо він втомився, то він злий; якщо він не злий, отже, він хворий.
- <u>2.</u> Побудувати таблицю істинності для висловлювань: ($x \Leftrightarrow (y \lor z)) \Leftrightarrow (x \Leftrightarrow \overline{(y \land z)});$
- 3. Побудовою таблиць істинності вияснити, чи висловлювання є тавтологією або протиріччям:
- <u>4.</u> За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи ϵ тавтологією висловлювання: $((p \to q) \land \to (p \to r);$
- <u>5.</u> Довести, що формули еквівалентні: $(p \rightarrow q) \rightarrow r$ та $p \rightarrow (q \rightarrow r)$;

Розв'язки:

Завдання 1

Варіант 5

 \underline{I} . Формалізувати речення. Ігор або втомився, або хворий, якщо він втомився, то він злий; якщо він не злий, отже, він хворий.

Розв'язання:

Р – Ігор втомився

q – Ігор хворий

z – Ігор злий

$$(\ p \lor q) \to (p \to z) \lor (\ \overline{z} \to q)$$

Розв'язання:

Але: скористаймось законом де Моргана для зручності складання таблиці:

$$\frac{3}{(y \wedge z) = (y \vee z)}$$

X	у	Z	y	z	1	2	3	4	5
0	0	0	1	1	0	1	1	0	0
0	0	1	1	0	1	0	1	0	1
0	1	0	0	1	1	0	1	0	1
1	0	0	1	1	0	0	1	1	0
0	1	1	0	0	1	0	0	1	0
1	1	0	0	1	1	1	1	1	1
1	0	1	1	0	1	1	1	1	1
1	1	1	0	0	1	1	0	0	0

3. Побудовою таблиць істинності вияснити, чи висловлювання є тавтологією або протиріччям:

Відповідь:

Це висловлювання ϵ нейтральним.

<u>4.</u> За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи ϵ тавтологією висловлювання: $((p \to q) \land \to (p \to r);$

Доведення:

Припустимо, що $(p \rightarrow r) - \varepsilon F$;

Тоді
$$((p \rightarrow q) \land (q \rightarrow r)) - \epsilon T$$
;

$$(p \rightarrow q) - \epsilon T$$
;

$$(q \rightarrow r) - \epsilon T$$
;

Так як $(p \rightarrow r) - \varepsilon F$, то r=0

Тоді у виразі ($q \rightarrow r$) q=0

У виразі $(p \to r)$ тоді виходить що p=0 якщо q=0, що суперечить нашому припущенню. Отже, задана формула не може набувати значення F ні при яких значеннях атомів, тобто ϵ тавтологією.

<u>5.</u> Довести, що формули еквівалентні: ($p \to q$) $\to r$ та $p \to (q \to r)$;

p	q	r	1	2	3	4
0	0	0	1	0	1	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
1	0	0	0	1	1	1
0	1	1	1	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Згідно з табличкою ми бачимо, що при однакових значеннях змінних формули мають різне значення (0,0,0;0,1,0). Отже формули не ε еквівалентними.

Завдання 2

Варіант 5

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступної формули:

$$(x\Leftrightarrow (y\vee z))\Leftrightarrow (x\Leftrightarrow (\overline{y\wedge z}))$$

x	у	Z	y	z	1	2	3	4	5
0	0	0	1	1	0	1	1	0	0
0	0	1	1	0	1	0	1	0	1
0	1	0	0	1	1	0	1	0	1
1	0	0	1	1	0	0	1	1	0
0	1	1	0	0	1	0	0	1	0
1	1	0	0	1	1	1	1	1	1
1	0	1	1	0	1	1	1	1	1
1	1	1	0	0	1	1	0	0	0

Код програмної реалізації:

```
#include <iostream>
 using namespace std;
⊡int main()
     cout << "X = ":
     cin >> x;
     cout << "Y = ":
     cin >> y;
     cout << "Z = ";
     cin >> z;
     if ((x == 0) && (y == 0) && (z == 0)) cout << 0;
     else if ((x == 0) && (y == 0) && (z == 1)) cout << 1;
     else if ((x == 0) && (y == 1) && (z == 0)) cout << 1;
     else if ((x == 0) && (y == 1) && (z == 1)) cout << 0;
     else if ((x == 1) && (y == 0) && (z == 0)) cout << 0;
     else if ((x == 1) && (y == 0) && (z == 1)) cout << 1;
     else if ((x == 1) && (y == 1) && (z == 0)) cout << 1;
     else if ((x == 1) && (y == 1) && (z == 1)) cout << 0;
     else cout << "Please enter correct data!";
```

Результат виконаної програми:

```
© Консоль отладки Microsoft Visual Studio

X = 1
Y = 0
Z = 1
1
C:\Users\HP\source\repos\Cawa\Debug\Cawa.exe (процесс 8088) завершает работу с кодом 0.
Чтобы закрыть это окно, нажмите любую клавишу...
```

Відповідно при введенні некоректних даних виб'є помилку:

```
X = 1
Y = 0
Z = 4
Please enter correct data!
```

Висновок: Виконуючи лабораторну роботу, я засвоїв основні поняття математичної логіки, побудував складні висловлювання за допомогою логічних операцій та знайшов їхні значення таблицями істинності, використав закони алгебри логіки, та закріпив методи доведень.