

Modelling Vibrations and Phonons

some slides based on talks by Oliver T. Hofmann an a short script by Peter Puschnig

Why calculating vibrations?

- Classification of stationary points (minimum / saddle point)
- If saddle-point: search direction
- Thermodynamic data Zero-point energy (contributes to total energy also at 0K!), partition sums, finite temperature effects
- Connection to experiment: Infra-red intensities: derivative of dipole moment Raman intensities: derivative of polarizabilty

Practical relevance of vibrations

- Identification of chemical species and polymorphs
- Identification of relative orientation of sub-systems (e.g., in TMDs)
- Identification of charged states (fingerprints)
- Understanding interaction between sub-systems
- Determining heat transport (anharmonic effects)
- Dynamic disorder crucially impacting charge transport

–

Expand total energy in Taylor (power) series:

$$E\left(\vec{R}\right) = E\left(\vec{R}_0\right) + \sum_{i} \left(\frac{\partial E}{\partial R_i}\right)_0 \Delta R_i + \sum_{i,j} \left(\frac{\partial^2 E}{\partial R_i \partial R_j}\right)_0 \Delta R_i \Delta R_j + \dots$$
vanishes at extremum

Hessian (needs to be diagonalized to get "force constants")

Hessian from geometry optimization not sufficent

- Analytic second derivative using perturbation theory [1]
- Numerical differentiation (displace all atoms)
 - Computationally very expensive
 - Contains parameter (displacement), needs to be converged carefully
 - Often single displacement problematic to sample all vibrations (different harmonic range)

[1] S. Baroni et al. , Rev. Mod. Phys. 73 , 515 (2001).

How good is the harmonic approximation?

Morse-potential:
$$E = U_0 \left(e^{(2a(r-r_0))} - 2e^{a(r-r_0))} \right)$$
 Harmonic oscillator:
$$E = U_0 + \frac{1}{2}\gamma(r-r_0)^2$$

$$E = U_0 + \frac{1}{2}\gamma(r - r_0)^2$$

Morse-potential:
$$E = U_0 \left(e^{(2a(r-r_0))} - 2e^{a(r-r_0)} \right)$$

Harmonic oscillator: $E = U_0 + \frac{1}{2}\gamma(r-r_0)^2$

$$E = U_0 + \frac{1}{2}\gamma(r - r_0)^2$$

Maximum displacement:

$$A = max(x) = \sqrt{\frac{2k_BT}{\gamma}}$$

ca. 0.1Å at room temperature

Typical displacement in actual calculation: 0.01 Å

too large: anharmonicities too small: numerical noise

The following consideration on how to "diagonalize the Hessian" are inspired by:

Vibrational Analysis in Gaussian

Joseph W. Ochterski, Ph.D. help@gaussian.com

October 29, 1999

available at: http://gaussian.com/wp-content/uploads/dl/vib.pdf which is in turn inspired by "Molecular Vibrations" by Wilson, Decius and Cross

- ➤ Following considerations valid only, when geometry is at a stationary point (first derivatives of energy wrt. displacement vanish)
- ➢ Geometry optimization and frequency calculation must be done at the same level of theory (method, basis set, kpoint grid, etc.)

How to get frequencies and normal modes from Hessian?

 Starting point: Hesse matrix (= force-constant matrix) in Cartesian coordinates

$$H_{cart,ij} = \left(\frac{\partial^2 E}{\partial R_i \partial R_j}\right)_0$$

 1st step: conversion to mass-weighted Cartesian coordinates (might be used in the output of the eigenmodes)

$$H_{MW,ij} = \frac{H_{cart,ij}}{\sqrt{m_i m_j}} = \left(\frac{\partial^2 E}{\partial Q_i \partial Q_j}\right)_0$$
 with $Q_i = \sqrt{m_i} R_i$

 2nd step: identify center of mass and principle axes of inertia (from diagonalizing the moment of inertia tensor)

- 3rd step: Use these to generate the transformation matrix D from 3N mass-weighted cartesian coordinates to a system where 5 (6) translational and rotational degrees of freedom can be easily separated from the vibrations (for details see: https://gaussian.com/vib/)
 - determine translation vectors
 - using the normalized eigenvectors of tensor of inertia produce rotation vectors
 - generate the eigenvectors that are orthogonal to them

This yields: internal coordinates

$$\vec{S} = \overleftrightarrow{D} \vec{Q}$$

4th step: transform Hessian to internal coordinates

$$\overleftrightarrow{H}_{INT} = \overleftrightarrow{D}^T \overleftrightarrow{H}_{MW} \overleftrightarrow{D}$$

 \circ 5th step: diagonalize H_{INT} to obtain eigenvalues λ_i and eigenmodes

Obtain wavenumbers via:

$$\tilde{\nu}_i = \sqrt{\frac{\lambda_i}{4\pi^2 c^2}}$$

- In case you are at a saddle point, you obtain imaginary frequencies (often printed out as negative frequencies)
- > The first six non-immaginary frequencies should be very close to zero

How close depends on the numerical settings

Table 1: The effect of optimization criteria on the low frequencies of water using HF/3-21G*. The frequencies are sorted by increasing absolute value, so that it's easier to distinguish rotational modes from vibrational modes.

Criteria	Low frequencies					
Opt	-0.0008	0.0003	0.0013	40.6275	59.3808	66.4408
Opt=Tight	0.0011	0.0013	0.0015	4.1908	-6.8779	12.4224
Opt=VeryTight	-0.0011	0.0014	0.0015	-0.9207	-1.1831	-1.6023

from Ochterski whitepaper

- > Tradeoff between accuracy and computational effort
- Often, significantly tighter numerical setting are needed when calculating vibrations compared to geometry optimizations

TU

Note: Eigenmodes are typically very different from cartesian displacements ! = coupled motion of atoms

830 cm⁻¹

961 cm⁻¹

Which of the modes is infrared active, which one is Raman active?

Plot dipole-derivative vector

How strongly do the frequencies depend on the used method?

TABLE 1: Frequency Scaling Factors Suitable for Fundamental Vibrations and rms_{ov} (cm⁻¹) Derived from a Least-Squares Fit of Frequencies^a

scale factor^b

0.0522

rms_{ov}^c

106

	AM1	0.9532	126
	PM3	0.9761	159
	HF/3-21G	0.9085	87
	HF/6-31G(d)	0.8953	50
There exist various	HF/6-31+G(d)	0.8970	49
acts of ampirical	HF/6-31G(d,p)	0.8992	53
sets of empirical	HF/6-311G(d,p)	0.9051	54
scaling factors!	HF/6-311G(df,p)	0.9054	56
	MP2-fu/6-31G(d)	0.9427	61
0.0:	MP2-fc/6-31G(d)	0.9434	63
e.g.:	MP2-fc/6-31G(d,p)	0.9370	61
J. Phys. Chem., Vol. 100, No. 41, 1996	MP2-fc/6-311 $G(d,p)$	0.9496	60
	QCISD-fc/6-31G(d)	0.9537	37
	B-LYP/6-31G(d)	0.9945	45
	B-LYP/6-311G(df,p)	0.9986	42
	B-P86/6-31G(d)	0.9914	41
Dath theoretical approach	B3-LYP/6-31G(d)	0.9614	34
Both, theoretical approach	B3-P86/6-31G(d)	0.9558	38
and basis set count!	B3-PW91/6-31G(d)	0.9573	34
	3 6		

method

A 7 / T 1

What about solids?

- > Necessary to be in minimum structure w.r.t. atomic positions
- Not nescessary to be in minimum w.r.t. lattice constants (= corresponds to material exposed to stress and strain)
- Correct description of inter-molecular interactions sizable challenge (van der Waals interactions)
- \triangleright In solids, we are interested in phonon bands \rightarrow we need to calculate off Γ -point!

Situation more complex than in finite-size system, as in a solid we are dealing with an infinite number of interacting atoms!

Exploit periodic boundary conditions!

Instructive compilation of the theoretical background by Peter Puschnig

http://physik.uni-graz.at/~pep/Lehre/PP/DynMat.pdf (13.5.2019)

Taylor series expansion of potential energy

(truncated after harmonic term)

$$W(s_{n\alpha i}) = W(\mathbf{R}_{n\alpha}) + \sum_{n\alpha i} \left[\frac{\partial W(\mathbf{x})}{\partial s_{n\alpha i}} \right]_{\mathbf{x} = \mathbf{R}_{n\alpha}} s_{n\alpha i}$$

$$+ \frac{1}{2} \sum_{n\alpha i} \sum_{n'\alpha' i'} \left[\frac{\partial^2 W(\mathbf{x})}{\partial s_{n\alpha i} \partial s_{n'\alpha' i'}} \right]_{\mathbf{x} = \mathbf{R}_{n\alpha}} s_{n\alpha i} s_{n'\alpha' i'} + O(s^3)$$
unit cell atom in basis
coordinate direction

sum over all pairs of atoms in entire crystal

Force constant matrix

$$\Phi_{n\alpha i}^{n'\alpha'i'} = \left[\frac{\partial^2 W(\mathbf{x})}{\partial s_{n\alpha i}\partial s_{n'\alpha'i'}}\right]_{\mathbf{x} = \mathbf{R}_{n\alpha}}$$

In practice: displace one atom, calculate change in forces on all the other atoms

Equation of motion:

$$M_{\alpha} \frac{d^2 s_{n\alpha i}}{dt^2} = -\sum_{n'\alpha'i'} \Phi_{n\alpha i}^{n'\alpha'i'} s_{n'\alpha'i'}$$

Harmonic oscillator ansatz:

$$s_{n\alpha i}(t) = \frac{1}{\sqrt{M_{\alpha}}} u_{n\alpha i} e^{-i\omega t}$$

Eigenvalue equation for all frequencies

$$\omega^2 u_{n\alpha i} = \sum_{n'\alpha'i'} \frac{\Phi_{n\alpha i}^{n'\alpha'i'}}{\sqrt{M_\alpha M_{\alpha'}}} u_{n'\alpha'i'}$$

Problem: We still need to sum over all atoms in the crystal!

exploit:

periodicity of the lattice $u_{n\alpha i} = c_{\alpha i}e^{i\mathbf{q}\mathbf{R}_n}$

$$u_{n\alpha i} = c_{\alpha i} e^{i\mathbf{q}\mathbf{R}_n}$$

force-constants only depend on difference between unit cells

$$\Phi_{n\alpha i}^{n'\alpha'i'} = \Phi_{\alpha i}^{\alpha'i'}(n-n')$$

final equations to solve:

Eigenvalue equation of dimension 3×number of atoms in unit cell

 $3\times\alpha$ solutions for every q!

q-dependence = phonon band structure

$$\sum_{\alpha'i'} D_{\alpha i}^{\alpha'i'}(\mathbf{q}) c_{\alpha'i'} = \omega^2(\mathbf{q}) c_{\alpha i}$$
 with

$$D_{\alpha i}^{\alpha' i'}(\mathbf{q}) = \left[\sum_{n} \frac{\Phi_{\alpha i}^{\alpha' i'}(n)}{\sqrt{M_{\alpha} M_{\alpha'}}} e^{i\mathbf{q}\mathbf{R}_{n}} \right]$$

Dynamical matrix
$$D_{\alpha i}^{\alpha' i'}(\mathbf{q}) = \left[\sum_{n} \frac{\Phi_{\alpha i}^{\alpha' i'}(n)}{\sqrt{M_{\alpha} M_{\alpha'}}} e^{i\mathbf{q} \mathbf{R}_{n}}\right]$$

Fourier transform of mass-weighted force-constant matrix

one only needs force constants for atoms in the unit cell

BUT: dependence of Φ on n!

→ still, one has to calculate force constants for displacements of every atom in the crystal

In practise:

- > calculate supercells
- > increase size of supercell until impact on force constants becomes negligible

Density functional perturbation theory (DFPT)

aternative approach for obtaining the dynamical matrix

For a detailed discussion see: Baroni et al., Review of Modern Physics, 73 (2001)

In essence:

Exploiting the Born-Oppenheimer approximation and the Hellman-Feynman theorem one can show that for getting the Hesse matrix one needs:

- the ground state density $n_{\mathbf{R}}(\mathbf{r})$ from DFT
- its (linear) response to a distortion of the nuclear geometry

$$\partial n_{\mathbf{R}}(\mathbf{r})/\partial \mathbf{R}_{I}$$
 from DFPT

perturbative treatment of response of electrons to external stimulus)

Example: Phonon band structure of Si.

Hummer et al. Phys. Rev. B 80, 115205 (2009)

Example: Phonon spectra of prototypical MOFs

LOW ENERGY REGION of the phonon bands

Ŵ

T. Kamencek et al., Phys. Rev. Mater., 3, 116003 (2019)

(Projected) density of states:

huge number of (optical) bands

T. Kamencek et al., Phys. Rev. Mater., 3, 116003 (2019)

Analyze band structures in terms of group velocities

calculate thermal, elastic ... properties

T. Kamencek et al., Phys. Rev. Mater., 3, 116003 (2019)

Challenge: How to get interaction energies right?

Problem, e.g., long-range van der Waals interaction, which is not contained in (semi)local DFT.

Challenge, for example, when modelling molecular crystals!

Low-wavenumer regime dominated by inter-molecular vibrations

Bedoya-Martinez et al., J. Phys. Chem. Lett, 2017

Advantage of simulation: Type of vibrations can be analyzed

What about Phonon band structure

Experimental phonon BS exist for deuterated naphthalene!

(a)

Raman spectra

Tomas Kamencek, et al. The Journal of Chemical Theory and Computation 16, 2716-2735 (2020)

PBE with (a) D3-BJ, (b) TS, and (c) D2 vdW correction

Sophisticated classical force field

Tomas Kamencek, et al. The Journal of Chemical Theory and Computation 16, 2716-2735 (2020)