7
0
S
Z
Ξ
$\overline{}$

Roll No. _____

Total No of Pages: 3

11N501

B. Tech. I - Sem. (New Scheme) Main Exam., July – 2022 1FY1 – 01 Engineering Mathematics – I Common to all Branches

Time: 2 Hours

Maximum Marks: 70 Min. Passing Marks:

Instructions to Candidates:

Part – A: Short answer questions (up to 25 words) 5×3 marks = 15 marks. Candidates have to answer 5 questions out of 10.

¥.

- Part B: Analytical/Problem Solving questions 3×5 marks = 15 marks. Candidates have to answer 3 questions out of 7.
- Part C: Descriptive/Analytical/Problem Solving questions 2×20 marks = 40 marks. Candidates have to answer 2 questions out of 5.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting material is permitted during examination. (Mentioned in form No. 205)

1. NIL

2. NIL

PART-A

- Q.1 What is the largest interval of x for which $f(x) = xe^{x^2}$ is concave upward?
- Q.2 Find the points of inflexion of the curve $y = (x 2)^2 (x 3)^5$.
- Q.3 Find the radius of curvature at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the Folium of Descartes $x^3 + y^3 = 3axy$, a > 0.
- Q.4 If $u = \sec^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$, Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2\cot u$.

[11N501]

Page 1 of 3

- Q.5 Solve the partial differential equation p(1 + q) = 3q.
- Q.6 Solve the differential equation $ydx xdy + x^2 \cos x dx = 0$
- Q.7 If ex is one of the linearly independent solution for the differential equation

$$x \frac{d^2y}{dx^2} - (2x - 1) \frac{dy}{dx} + (x - 1) y = 0,$$

Find the second linearly independent solution.

- Q.8 Write a short note on double points.
- Q.9 Find the values of p and q in the PDE $z^2(p^2 + q^2) = x^2 + y^2$ in term of x, y, z and arbitrary constant.
- Q.10 Find the asymptotes of $y^2(x b) = x^3 + a^3$, a, b > 0.

PART-B

- Q.1 Discuss the maxima and minima of the function $f(x,y) = x^4 + y^4 2x^2 + 4xy 2y^2$.
- Q.2 Trace the Cartesian curve $y^2 (a + x) = x^2 (a x)$, a > 0.
- Q.3 Show that the asymptotes of the following curve cut the curve again in eight points which lie on a circle of radius unity:

$$(x^2 - 4y^2)(x^2 - 9y^2) + 5x^2y - 5xy^2 - 30y^2 + xy + 7y^2 - 1 = 0$$

Q.4 Solve the differential equation -

$$\frac{d^2y}{dx^2} - \frac{1}{x}\frac{dy}{dx} + 4x^2y = x^4$$

- Q.5 The diameter and altitude of a right circular cylinder are measured as 4 cm and 6 cm respectively. If the possible error in each measurement is 0.1 cm, find approximately the maximum possible error in the value computed for the volume and lateral surface.
- Q.6 Solve the ODE y'' + 5y' + 4y = 0 subject to the conditions y(0) = 0 and y'(0) = 3.
- Q.7 Solve the PDE $yp = 2yx + \log q$.

PART-C

- Q.1 Find the dimension of the rectangular box, open at the top, of maximum capacity whose surface is 432sq. cm.
- Q.2 Solve by the method of variation of parameter -

$$(x + 2) \frac{d^2y}{dx^2} - (2x + 5) \frac{dy}{dx} + 2y = (x + 1) e^x$$

- Q.3 Find the equation of circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $(\frac{a}{4}, \frac{a}{4})$.
- Q.4 Find a general solution of the PDE $p^2u^2 + q^2 = 1$ using Charpit's method.
- Q.5 If z be a function of x and y and u = lx + my, v = ly mx be two other variables. Show

that
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (l^2 + m^2) \frac{\partial^2 z}{\partial y^2} + \frac{\partial^2 z}{\partial y^2}$$