# Stability of ASM and Minuit Based Vertex Reconstructions

Andrew Shultz, Ilya Kravchenko

February 23, 2014



#### Motivation

- Wanted to study the stability of Analytic Sphere Method (ASM) and Minuit based reconstructions with:
  - Different ice models
  - Ray tracing vs. Ara default (straight line) approximation
- A secondary objective was to study the structures of the reconstruction. From the structures we can make conclusions about how UNL's calibration routine might be affected.



#### Outline

- Introduction
- 2 Straight Line Approximation (NTime)
- Oata Used For Ice Models
- 4 Fit Equation
- 5 Ice Models
- 6 Reactions
- Ice Model Conclusion
- Ray Tracing
- © Example Ray Traces
- Ray Tracing Conclusion
- Conclusion



#### Introduction

#### In this talk:

- A look at a few ice models found from data in the RICE paper located:
  - http://icecube.wisc.edu/~mnewcomb/radio/index/rice\_refraction.pdf
- Effect on different reconstructions (testbed, ara02)
- Comparison of a straight line approximation of hit times to ray traced hit times



# Straight Line Approximation (NTime)



• Ara standard ice model:  $n = A - B * e^{C*z}$ 

$$A = 1.78$$
,  $B = 0.43$ ,  $C = 0.016$  or  $16.0$  (for meters or kilometres respectively)

Approximation:

$$T = \int dT = \int_0^s \frac{n(z)ds}{C_{ice}} = \frac{1}{C_{vac}*cos(\theta)} \int_{Z1}^{Z2} n(z)dz$$

After Integration:

$$T = \frac{A(Z_2 - Z_1) - \frac{B}{C} * (e^{(C*Z_2)} - e^{(C*Z_1)})}{C_{vac} * cos(\theta)}$$

$$cos(\theta) = \frac{Z_2 - Z_1}{SLD}$$



#### Data Used For Ice Models



- Data points obtained using a plot digitizer
- Used data:
  - Black Dots with errors
  - Downward pointing triangles with no errors (inverted triangles)
  - Crosses with no errors
  - All data points and associated errors



### Fit Equation

 After looking into existing research on the current model(s) used by various sources an exponential decay function of the form:

$$n = A - B * e^{C*z}$$

appears to be the best function to fit the data to.



### Ice Models



 Lines shown are fits to respective data



Zoom out of left plot



### Testbed Reaction, 2011 data, Pulser: C2V





Figure: Analytic Sphere Method

Figure: Minuit

• Small shifts in structure position with small changes in structure shape (Biggest shift  $\approx 1$ m)



### Testbed Reaction, 2012 data, Pulser: C1H



Figure: Analytic Sphere Method

 ASM is very stable with C1H



Figure: Minuit

ullet Structure shifts  $< 1 \mathrm{m}$ , tiny differences in shape Nebraska

### ARA02 reaction, 2013 data, Pulser: D6V



Figure: Analytic Sphere Method

 Apparent improvement in shape, larger shifts (1m-2m)



Figure: Minuit

ullet Structure shifts  $< 1 \mathrm{m}$ , some differences in shape Nebraska

#### Ice Model Conclusion

- Shallow ice antennas have more stability in reconstruction from the different ice models
- Deep ice antennas have questionable reconstruction stability
- Questionable deep ice reconstruction stability with varied ice models might warrant more research time



# Ray Tracing

- Used my own code
- Code used has been verified against a similar one from Dave Besson
- Code used:
  - Finds shortest path (time-wise)
  - Uses our current ice model for predicted n(z)
- Compared against a straight line approximation using the current ice model (NTime)



# Example Ray Traces



 Path of light from Testbed pulser C2V after 6000ns



• Path of light from 30m above ice after 6000ns

# Ray Traced Times, Testbed Pulser C2V

| Antenna Name | Ray Time (ns) | Ntime (ns) | dT     | Error (%) |
|--------------|---------------|------------|--------|-----------|
| H1           | 138           | 138        | -0.034 | 0.024     |
| H4           | 205           | 205        | -0.106 | 0.052     |
| V2           | 99.9          | 99.9       | -0.009 | 0.009     |
| V1           | 133           | 133        | -0.025 | 0.019     |
| V3           | 133           | 133        | -0.028 | 0.021     |
| H2           | 95.2          | 95.2       | -0.008 | 0.008     |
| V4           | 205           | 205        | -0.116 | 0.057     |
| H3           | 136           | 136        | -0.032 | 0.024     |
| V5           | 194           | 194        | -0.087 | 0.045     |
| H6           | 194           | 194        | -0.085 | 0.044     |
| V7           | 214           | 214        | -0.187 | 0.088     |
| H5           | 191           | 191        | -0.082 | 0.043     |
| H7           | 174           | 174        | -0.066 | 0.038     |
| H8           | 174           | 174        | -0.060 | 0.035     |

• Minuscule error from all ray traces



## Ray Traced Times, Testbed Pulser C1H

| Antenna Name | Ray Time (ns) | Ntime (ns) | dΤ     | Error (%) |
|--------------|---------------|------------|--------|-----------|
| H1           | 131           | 131        | -0.042 | 0.032     |
| H4           | 147           | 147        | -0.042 | 0.028     |
| V2           | 182           | 182        | -0.108 | 0.059     |
| V1           | 137           | 137        | -0.037 | 0.027     |
| V3           | 204           | 204        | -0.137 | 0.067     |
| H2           | 188           | 188        | -0.102 | 0.054     |
| V4           | 138           | 138        | -0.040 | 0.029     |
| H3           | 198           | 198        | -0.148 | 0.075     |
| V5           | 153           | 156        | -3.490 | 2.280     |
| H6           | 172           | 180        | -7.770 | 4.520     |
| V7           | 153           | 156        | -3.350 | 2.190     |
| H5           | 153           | 154        | -1.420 | 0.931     |
| H7           | 107           | 107        | -0.016 | 0.015     |
| H8           | 117           | 117        | -0.015 | 0.012     |

 Only a few notable errors: V5, H6, V7, and H5. These antennas are surface antennas and land in a "reflection zone". There was poor convergence from the ray trace for these antennas, meaning the ray times might actually be closer to NTime.

### Ray Traced Times, ARA02 Pulser D6V

| Antenna Name | Ray Time (ns) | Ntime (ns) | dΤ    | Error (%) |
|--------------|---------------|------------|-------|-----------|
| TV1          | 195           | 195        | 0.005 | 0.002     |
| TV2          | 274           | 274        | 0.010 | 0.004     |
| TV3          | 192           | 192        | 0.006 | 0.003     |
| TV4          | 272           | 272        | 0.006 | 0.002     |
| BV1          | 231           | 231        | 0.008 | 0.004     |
| BV2          | 302           | 302        | 0.009 | 0.003     |
| BV3          | 229           | 229        | 0.005 | 0.002     |
| BV4          | 300           | 300        | 0.008 | 0.003     |
| TH1          | 194           | 194        | 0.009 | 0.005     |
| TH2          | 274           | 274        | 0.009 | 0.003     |
| TH3          | 192           | 192        | 0.006 | 0.003     |
| TH4          | 272           | 272        | 0.009 | 0.003     |
| BH1          | 222           | 222        | 0.007 | 0.003     |
| BH2          | 294           | 294        | 0.012 | 0.004     |
| BH3          | 220           | 220        | 0.004 | 0.002     |
| BH4          | 292           | 292        | 0.007 | 0.002     |

• Tiny error from all ray traces



# Ray Tracing Conclusion

- NTime appears to be a very accurate means of estimating in ice travel time for light
- With such low error between NTime and Ray time, reconstruction stability is relatively unaffected
- Thus, NTime can be relied on for our reconstructions



#### Conclusion

- Both:
  - varied ice models
  - ray tracing

do not seem to hold a solution to our reconstruction difficulties.

 Open for suggestions where sources of reconstruction instability might be.



# Backup



### Ice Models

$$n = A - B * e^{C*z}$$

| Model            | Α    | В    | С     |
|------------------|------|------|-------|
| NTime            | 1.78 | 0.43 | .016  |
| Black Dots       | 2.16 | 0.78 | .0045 |
| Inverse Triangle | 1.83 | 0.48 | 0.012 |
| Crosses          | 1.79 | 0.48 | 0.019 |
| All              | 1.81 | 0.46 | 0.013 |

