ECG2 - Mathématiques

DM2

Exercice 1

On considère l'évolution de l'espérance de vie des hommes et des femmes en France entre 2000 et 2007 :

Année	2000	2001	2002	2003	2004	2005	2006	2007
Hommes (X)	75.3	75.5	75.8	75.9	76.8	76.8	77.2	77.6
Femmes (Y)	82.8	82.9	83	82.9	83.9	83.8	84.2	84.5

On considère la série statistique double associée aux caractères X et Y ci-dessus.

Pour les tracés, on arrondira les valeurs numériques au centième près.

1. (a) import numpy as np

X=np.array([75.3,75.5,75.8,75.9,76.8,76.8,77.2,77.6])

Y=np.array([82.8,82.9,83,82.9,83.9,83.8,84.2,84.5])

 $\begin{array}{c} \text{ np.mean}(X) \\ \text{ np.mean}(Y) \end{array}$

(c) On trouve:

$$\bar{X} = 76.3625 \approx 76.36$$
 et $\bar{Y} = 83.5$.

2.

3. (a) np. std (X) np. std (Y)

On trouve avec Python:

$$\sigma_X\approx 0.79 \quad et \quad \sigma_Y\approx 0.63.$$

- (b) cov = np.mean((X-np.mean(X))*(Y-np.mean(Y)))
- (c) On trouve avec Python : $s_{X,Y}^2 \approx 0.49$.
- (d) Le coefficient de corrélation linéaire est :

$$\rho_{\rm X,Y} = \frac{s_{\rm X,Y}^2}{\sigma_{\rm X}\sigma_{\rm Y}} \approx 0.99.$$

Le coefficient de corrélation linéaire de Y et X est très proche de 1, un ajustement linéaire est donc pertinent.

(e) La droite de régression linéaire a pour équation réduite :

$$y = \frac{s_{X,Y}^2}{s_X^2}(x - \bar{X}) + \bar{Y} \approx 0.79x + 23.4.$$

Exercice 2

1. (a) Soit $u: x \mapsto 1 + x^2$. Alors, pour tout $x \in [-1, 2]$ on a:

$$\frac{x}{1+x^2} = \frac{1}{2} \frac{u'(x)}{u(x)}.$$

Ainsi:

$$\int_{-1}^{2} \frac{x}{1+x^2} dx = \frac{1}{2} \int_{-1}^{2} \frac{u'(x)}{u(x)} dx$$
$$= \frac{1}{2} \left[\ln \left(|u(x)| \right) \right]_{-1}^{2}$$
$$= \frac{1}{2} \left(\ln (5) - \ln (2) \right).$$

(b) Soit $u: x \mapsto e^{3x} + 1$. Alors, pour tout $x \in [0, 1]$ on a:

$$\frac{e^{3x}}{1+e^{3x}} = \frac{1}{3} \frac{u'(x)}{u(x)}.$$

Ainsi:

$$\int_0^1 \frac{e^{3x}}{1 + e^{3x}} dx = \frac{1}{3} \int_0^1 \frac{u'(x)}{u(x)} dx$$
$$= \frac{1}{3} \left[\ln(|u(x)|) \right]_0^1$$
$$= \frac{1}{3} \left(\ln(1 + e^3) - \ln(2) \right).$$

(c) Les fonctions $u: t \mapsto \ln(t)$ et $v: t \mapsto \frac{t^2}{2}$ sont de classe C^1 sur [1, e]. Par intégration par parties, on a donc :

$$\int_{1}^{e} t \ln(t) dt = \int_{1}^{e} u(t) v'(t) dt = [u(t) v(t)]_{1}^{e} - \int_{1}^{e} u'(t) v(t) dt$$

$$= \left[\frac{t^{2} \ln(t)}{2} \right]_{1}^{e} - \int_{1}^{e} \frac{t^{2}}{2} \times \frac{1}{t} dt$$

$$= \frac{e^{2}}{2} - \frac{1}{2} \int_{1}^{e} t dt$$

$$= \frac{e^{2}}{2} - \frac{1}{2} \left[\frac{y^{2}}{2} \right]_{1}^{e}$$

$$= \frac{e^{2} - 1}{4}.$$

2. (a) La fonction $t \mapsto \frac{1}{(2t+3)^2}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$. Soit $A \in [0, +\infty[$ et posons : $u : t \mapsto 2t + 3$. Alors, pour tout $t \in [0, A]$ on a :

$$\frac{1}{(2t+3)^2} = \frac{1}{2} \frac{u'(t)}{u(t)^2}.$$

Ainsi:

$$\int_0^A \frac{1}{(2t+3)^2} dt = \frac{1}{2} \int_0^1 \frac{u'(t)}{u(t)^2} dt$$
$$= \frac{1}{2} \left[-\frac{1}{u(t)} \right]_0^A$$
$$= \frac{1}{2} \left(\frac{1}{3} - \frac{1}{2A+3} \right).$$

Ainsi:
$$\lim_{A \to +\infty} \int_0^A \frac{1}{(2t+3)^2} dt = \frac{1}{6}$$
.
L'intégrale $\int_0^{+\infty} \frac{1}{(2t+3)^2} dt$ est donc convergente et vaut $\frac{1}{6}$.

(b) La fonction $x \mapsto (2x-1)\ln(x-1)$ est continue sur $[2,+\infty[$. L'intégrale est donc impropre en $+\infty$. Soit $A \in [2,+\infty[$. Les fonctions $u: x \mapsto x^2 - x$ et $v: x \mapsto \ln(x-1)$ sont de classe C^1 sur [2,A]. Par intégration par parties, on a donc :

$$\int_{2}^{A} (2x-1)\ln(x-1)dx = \int_{2}^{A} u'(x)v(x)dx = [u(x)v(x)]_{2}^{A} - \int_{2}^{A} u(x)v'(x)dx$$

$$= [(x^{2}-x)\ln(x-1)]_{2}^{A} - \int_{2}^{A} \frac{x^{2}-x}{x-1}dx$$

$$= (A^{2}-A)\ln(A-1) - \int_{2}^{A} xdx$$

$$= (A^{2}-A)\ln(A-1) - \frac{A^{2}}{2} + 2.$$

Ainsi :
$$\lim_{A\to +\infty} \int_0^A (2x-1) \ln(x-1) dx = +\infty$$
.
Par conséquent, $\int_2^{+\infty} (2x-1) \ln(x-1) dx$ diverge.

3. (a) Soit $n \ge 1$. Pour tout $k \in [1, n]$ on a:

$$\frac{k2^k}{k!} = 2 \times \frac{2^{k-1}}{(k-1)!}.$$

Ainsi:

$$\sum_{k=0}^{n} \frac{k2^{k}}{k!} = 2 \sum_{k=1}^{n} \frac{2^{k-1}}{(k-1)!} = 2 \sum_{i=0}^{n-1} \frac{2^{i}}{i!}.$$

Ainsi, la suite des sommes partielles de la série $\sum_{n\geqslant 0}\frac{n2^n}{n!}$ converge vers $2e^2$.

Par conséquent, la série $\sum_{n\geq 0} \frac{n2^n}{n!}$ converge et sa somme vaut $2e^2$.

(b) Pour tout entier naturel *n* on a :

$$\frac{n}{2^{2n+1}} = \frac{1}{8} \times \frac{n}{4^{n-1}}.$$

La série $\sum_{n>0} \frac{n}{2^{2n+1}}$ est donc, à un facteur $\frac{1}{8}$ près, la série géométrique dérivée d'ordre 1 de raison $\frac{1}{4}$.

Par conséquent, la série converge et sa somme vaut $\frac{2}{9}$.

Exercice 3

Soient n et b deux entiers avec $n \ge 1$ et $b \ge 2$. On considère une urne contenant n boules noires et b boules blanches, toutes indiscernables.

Un joueur A effectue des tirages successifs d'une boule **sans remise** dans l'urne jusqu'à obtenir une boule blanche. Il laisse alors la place au joueur B qui effectue des tirages successifs d'une boule **avec remise** dans l'urne jusqu'à obtenir une boule blanche.

On note X la variable aléatoire réelle égale au nombre de boules noires tirées par A avant de tirer une boule blanche et on appelle Y la variable aléatoire réelle égale au nombre de boules noires tirées par B avant de tirer une boule blanche (s'il ne reste plus de boule noire, on a donc Y = 0).

Par exemple, si n = 3 et b = 7 et que les tirages successifs ont donné : « noire, blanche, noire, noire, noire, blanche » alors :

- A a effectué deux tirages, il a retiré une boule noire puis une boule blanche de l'urne;
- l'urne contient maintenant 8 boules dont deux noires et six blanches;
- B a effectué ensuite cinq tirages dans cette urne, il a pioché 4 boules noires qu'il a reposé dans l'urne après chaque tirage puis il a pioché une boule blanche;
- X vaut 1 et Y vaut 4.
- 1. Dans cette question, on suppose que b = n = 2. On suppose donc ici que l'urne contient initialement 2 boules blanches et 2 boules noires.
 - (a) Pour tout $i \in \mathbb{N}^*$, on note B_i l'événement « le joueur A tire une boule blanche au i-ième tirage » et N_i l'événement « le joueur A tire une boule noire au i-ième tirage ».

L'événement [X = 0] est réalisé si et seulement si le joueur A tire une boule blanche du premier coup. Ainsi :

$$P(X=0) = \frac{1}{2}.$$

L'événement [X=1] est réalisé si et seulement si le joueur A tire une boule noire au premier tirage et une boule blanche au second. Ainsi, d'après la formule des probabilités composées :

$$P(X=1) = P(N_1 \cap B_2) = P(N_1)P_{N_1}(B_2) = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}.$$

L'événement [X=2] est réalisé si et seulement si le joueur A tire une boule noire au premier et au second tirage et une boule blanche au troisième. Ainsi, d'après la formule des probabilités composées :

$$P(X=2) = P(N_1 \cap N_2 \cap B_3) = P(N_1)P_{N_1}(N_2)P_{N_1 \cap N_2}(B_3) = \frac{1}{2} \times \frac{1}{3} \times 1 = \frac{1}{6}.$$

(b) Comme il n'y a que deux boules noires dans l'urne, $X(\Omega) = \{0, 1, 2\}$. En particulier X est à support fini donc possède une espérance et une variance :

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) + 2 \times P(X = 2) = \frac{2}{3}$$

et

$$V(X) = E(X^{2}) - E(X)^{2} = 0^{2} \times P(X = 0) + 1^{2} \times P(X = 1) + 2^{2} \times P(X = 2) - \frac{4}{9} = \frac{5}{9}.$$

(c) Cette fois, pour tout $i \in \mathbb{N}^*$, on note B_i l'événement « le joueur B tire une boule blanche au i-ième tirage » et N_i l'événement « le joueur B tire une boule noire au i-ième tirage ».

Comme $X(\Omega) = \{0, 1, 2\}$, la famille ([X = 0], [X = 1], [X = 2]) forme un système complet d'événements de probabilités non nulles. D'après la formule des probabilités totales, on a donc :

$$P\left([Y=0]\right) = P(X=0)P_{[X=0]}\left([Y=0]\right) + P(X=1)P_{[X=1]}\left([Y=0]\right) + P(X=2)P_{[X=2]}\left([Y=0]\right).$$

• Sachant l'événement [X = 0], le joueur B effectue des tirages avec remise dans une urne contenant deux boules noires et une boule blanche. Ainsi :

$$P_{[X=0]}([Y=0]) = P_{[X=0]}(B_1) = \frac{1}{3}.$$

• Sachant l'événement [X = 1], le joueur B effectue des tirages avec remise dans une urne contenant une boule noire et une boule blanche. Ainsi :

$$P_{[X=1]}\left([Y=0]\right) = P_{[X=1]}(B_1) = \frac{1}{2}.$$

• Sachant l'événement [X = 2], le joueur B effectue des tirages avec remise dans une urne contenant deux boules blanches. Ainsi :

$$P_{[X=2]}([Y=0]) = P_{[X=2]}(B_1) = 1.$$

Finalement

$$P([Y=0]) = \frac{1}{2} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{6} = \frac{1}{2}.$$

- (d) Soit $i \in \mathbb{N}^*$. On conserve les notations de la question précédente.
 - Sachant l'événement [X = 0], le joueur B effectue des tirages avec remise dans une urne contenant deux boules noires et une boule blanche. Ainsi :

$$\begin{split} P\left([X=0]\cap[Y=i]\right) &= P(X=0)P_{[X=0]}([Y=i]) \\ &= \frac{1}{2}P_{[X=0]}(N_1\cap\cdots\cap N_i\cap B_{i+1}) \\ &= \frac{1}{2}P_{[X=0]}(N_1)\times\cdots\times P_{[X=0]}(N_i)\times P_{[X=0]}(B_{i+1}) \quad \text{car les tirages sont indépendants (remise)} \\ &= \frac{1}{2}\times\left(\frac{2}{3}\right)^i\times\frac{1}{3} \\ &= \frac{1}{6}\left(\frac{2}{3}\right)^i. \end{split}$$

• Sachant l'événement [X = 1], le joueur B effectue des tirages avec remise dans une urne contenant une boule noire et une boule blanche. Ainsi :

$$\begin{split} P\left([X=1]\cap[Y=i]\right) &= P(X=1)P_{[X=1]}([Y=i]) \\ &= \frac{1}{3}P_{[X=1]}(N_1\cap\cdots\cap N_i\cap B_{i+1}) \\ &= \frac{1}{3}P_{[X=1]}(N_1)\times\cdots\times P_{[X=1]}(N_i)\times P_{[X=1]}(B_{i+1}) \quad \text{car les tirages sont indépendants (remise)} \\ &= \frac{1}{3}\times\left(\frac{1}{2}\right)^{i+1}. \end{split}$$

• Sachant l'événement [X=2], le joueur B effectue des tirages avec remise dans une urne contenant deux boules blanches. Ainsi, il tirera forcément une boule blanche et donc [Y=0] est l'événement certain. Par conséquent comme $i \ge 1$:

$$P([X = 2] \cap [Y = i]) = 0.$$

(e) Il est clair que $Y(\Omega) = \mathbb{N}$. On connaît déjà P(Y = 0), il suffit donc de déterminer P(Y = i) pour tout $i \in \mathbb{N}^*$.

Soit $i \in \mathbb{N}^*$. Comme $X(\Omega) = \{0, 1, 2\}$, la famille ([X = 0], [X = 1], [X = 2]) forme un système complet d'événements de probabilités non nulles. D'après la formule des probabilités totales, on a donc :

$$\begin{split} \mathbf{P}\left([\mathbf{Y}=i]\right) &= \mathbf{P}\left([\mathbf{X}=0] \cap [\mathbf{Y}=i]\right) + \mathbf{P}\left([\mathbf{X}=1] \cap [\mathbf{Y}=i]\right) + \mathbf{P}\left([\mathbf{X}=2] \cap [\mathbf{Y}=i]\right) \\ &= \frac{1}{6} \left(\frac{2}{3}\right)^{i} + \frac{1}{3} \left(\frac{1}{2}\right)^{i+1}. \end{split}$$

On sait que:

$$\sum_{i=1}^{+\infty} \left(\frac{2}{3}\right)^i = \frac{1}{1-\frac{2}{3}} - 1 = 2 \quad \text{et} \quad \sum_{i=1}^{+\infty} \left(\frac{1}{2}\right)^{i+1} = \frac{1}{2} \left(\frac{1}{1-\frac{1}{2}} - 1\right) = \frac{1}{2}.$$

Ainsi:

$$\sum_{i=1}^{+\infty} P(Y=i) = \frac{1}{6} \times 2 + \frac{1}{3} \times \frac{1}{2} = \frac{1}{2}.$$

Comme $P(Y = 0) = \frac{1}{2}$, on a bien :

$$\sum_{i=0}^{+\infty} P([Y = i]) = 1.$$

(f) La variable Y admet une espérance si et seulement si la série $\sum_{i\geqslant 0}i\mathrm{P}(\mathrm{Y}=i)$ converge absolument. Il s'agit d'une série à termes positifs donc il suffit de montrer qu'elle converge. Or pour tout $i\in\mathbb{N}^*$:

$$\begin{split} i \mathbf{P} \left([\mathbf{Y} = i] \right) &= \frac{1}{6} i \left(\frac{2}{3} \right)^i + \frac{1}{3} i \left(\frac{1}{2} \right)^{i+1} \\ &= \frac{1}{9} i \left(\frac{2}{3} \right)^{i-1} + \frac{1}{12} i \left(\frac{1}{2} \right)^{i-1}. \end{split}$$

Ainsi, $\sum_{i\geqslant 0}i{\rm P}({\rm Y}=i)$ est combinaison linéaire des séries géométriques dérivées d'ordre 1 convergentes $\sum_{i\geqslant 0}i\left(\frac{2}{3}\right)^{i-1}$ et $\sum_{i\geqslant 0}i\left(\frac{1}{2}\right)^{i-1}$. Par conséquent elle converge et Y possède donc une espérance. On a deplus :

$$\begin{split} \mathrm{E}(\mathrm{Y}) &= \sum_{i=0}^{+\infty} i \mathrm{P}(\mathrm{Y} = i) = \frac{1}{9} \sum_{i=0}^{+\infty} i \left(\frac{2}{3}\right)^{i-1} + \frac{1}{12} \sum_{i=0}^{+\infty} i \left(\frac{1}{2}\right)^{i-1} \\ &= \frac{1}{9} \frac{1}{\left(1 - \frac{2}{3}\right)^2} + \frac{1}{12} \frac{1}{\left(1 - \frac{1}{2}\right)^2} \\ &= 1 + \frac{1}{3} \\ &= \frac{4}{3}. \end{split}$$

- 2. On se place maintenant dans le cas général.
 - (a) Soit k ∈ [1, n]. Pour tout i ∈ N*, on note B_i l'événement « le joueur A tire une boule blanche au i-ième tirage » et N_i l'événement « le joueur A tire une boule noire au i-ième tirage ».
 L'événement [X = k] est réalisé si et seulement si le joueur A tire des boules noires aux k premiers tirages et une boule blanche au (k+1)-ième. Ainsi, d'après la formule des probabilités composées :

$$\begin{split} \mathbf{P}(\mathbf{X} = k) &= \mathbf{P}(\mathbf{N}_1 \cap \dots \cap \mathbf{N}_k \cap \mathbf{B}_{k+1}) = \mathbf{P}(\mathbf{N}_k) \times \dots \times \mathbf{P}_{\mathbf{N}_1 \cap \dots \cap \mathbf{N}_k}(\mathbf{B}_{k+1}) \\ &= \frac{n}{n+b} \times \frac{n-1}{n+b-1} \times \dots \times \frac{n-(k-1)}{n+b-(k-1)} \times \frac{b}{n+b-k} \\ &= \frac{n!}{(n-k)!} \times \frac{(n+b-(k+1))!}{(n+b)!} \times b \\ &= \frac{n!}{(n-k)!} \times \frac{(n+b-k-1)!}{(n+b)!} \times b. \end{split}$$

D'autre part :

$$\frac{\binom{n-k+b-1}{b-1}}{\binom{n+b}{b}} = \frac{(n-k+b-1)!}{(n-k)!(b-1)!} \times \frac{b!n!}{(n+b)!} = \frac{b}{b} \times \frac{(n-k+b-1)!n!}{(n-k)!(n+b)!} = P(X=k).$$

(b) Remarquons que la formule ci-dessus est aussi vrai pour k = 0:

$$P(X = 0) = P(B_1) = \frac{b}{n+b} = \frac{\binom{n+b-1}{b-1}}{\binom{n+b}{b}}.$$

5

Comme l'urne ne contient que n boules noires, $X(\Omega) \subset [0, n]$ et la question précédente montre qu'en fait $X(\Omega) = [0, n]$. En particulier :

$$\sum_{k=0}^{n} P(X=k) = 1.$$

Or

$$\begin{split} \sum_{k=0}^{n} \mathrm{P}(\mathrm{X} = k) &= \sum_{k=0}^{n} \frac{\binom{n-k+b-1}{b-1}}{\binom{n+b}{b}} = \frac{1}{\binom{n+b}{b}} \sum_{k=0}^{n} \binom{n-k+b-1}{b-1} \\ &= \frac{1}{\binom{n+b}{b}} \sum_{i=0}^{n} \binom{i+b-1}{b-1} \quad \text{en posant } i = n-k. \end{split}$$

Ainsi:

$$\frac{1}{\binom{n+b}{b}} \sum_{i=0}^{n} \binom{i+b-1}{b-1} = 1$$

c'est-à-dire:

$$\sum_{k=0}^{n} \binom{k+b-1}{b-1} = \binom{n+b}{b}.$$