

Using Python with SAS

Using SAS Methods on SAS Data

When programming in Python be aware that variable names are case sensitive, indenting code is important and effects the syntax of Python. Python starts with 0 not 1 as SAS does.

Setting up a session and gaining information about it

Import saspy python library to enable a SAS session	Import saspy
Import pandas python library to enable tabular data in Python	Import pandas
For more information-	
https://blog.dominodatalab.com/pandas-for-sas-users-part-1/	
Start a SAS Session	sas = saspy.SASsession()
Provides details of the SAS session	sas
List assigned libraries	sas.assigned_librefs()
List data sets in a library	sas.datasets('sasuser')
	sas.list_tables('sasuser')
Descriptor/Metadata information about the data set.	cars=sas.sasdata('cars,'sashelp')
	cars.columnInfo()
	cars.contents()
End the SAS Session	sas.endsas()

Getting Help

To understand what SAS code is being generated.	sas.teach_me_SAS(True)
When set to True, no output is generated. Make sure it	cars.top("make",order="freq")
is set to false when finished.	sas.teach_me_SAS(False)
To see what methods are available, type the class	sas.
name and then press the TAB key.	
To get help about a particular method, add a ?. The	Cars.hist?
example provides information about what is required	
to produce a Histogram.	

Accessing Data, creating Libraries and manipulate data

Accessing a SAS Data Set	cars=sas.sasdata('cars,'sashelp')
Data Set options can be added. Drop, keep, formats, obs, firstobs	cl2=sas.sasdata('class', 'sashelp',dsopts={'where':'sex = "M"', 'keep':'name age sex'})
Create a SAS library	sas.saslib('pg1', "'c:\data\user'")
Read in a CSV file. By default a data set	sas.read_csv(file="c:\\useful data\\class.csv")
called _csv is created in the Work library. Assigning a variable allows it to be used	ab=sas.read_csv(file="c:\\useful data\\class.csv")
in analysis (see below).	ab.head()

Copyright © 2019, SAS Institute UK. ALL RIGHTS RESERVED.

A named data set can be created.	ab=sas.read_csv(file="c:\\useful data\\class.csv",libref="work", table="class")
Check to see if a data set exists . A Boolean result ('True' or 'False') is returned.	sas.exist("class", "work")
Sort the data set. The variable created	Asc=cars.sort('invoice')
can then be used for analysis. Note, if you don't create an output data set, the	Desc=cars.sort('descending invoice')
original data is modified.	Desc_orig=cars.sort(' origin descending invoice')
	cs=cars.sort('descending invoice', out='cars_sorted') cs.head()
Enables a random sample to be created.	cp=cars.partition()
A new variable (_PartInd_) with a value	cp10pct=cars.partition(fraction=.1)
of 1 or 0 is created. Default split is	cp10pcttype=cars.partition('type',fraction=.1)
70/30. Values assigned randomly. The	
sample can be stratified on a variable	
and the split can also be changed. The	
2 nd and 3 rd examples produce approx. 43	
observations. The 3 rd example ensures	
that 10% of each 'type' is selected.	
Filter the data. The example uses the	cars_train = cars.where('_PartInd_=1')
Partind column created in the	cars_test = cars.where('_PartInd_=0')
previous example.	
This method imputes missing values for	cor=cl_miss.impute({'median': ['height']})
a particular variable or variables. The	cor=cl_miss.impute({'mean': ['height','age']})
impute method can be Mean or Median	
or any other statistic.	
Pandas. Are there any missing values	df.isnull().any()
Change all missing values to 0	df0 = df.fillna(0)
replaces missing values with their mean	df.fillna(df.mean())
replaces 1 column of missing values with	df.fillna(df.median()[['Weight']])
its median	
Symput creates macro variables	sas.symput('macvar',2019)
Symget retrieves macro variables which	x=sas.symget('macvar')
can then be passed to Python variables.	print(x)
This method can be used to transfer	
values from sas.submit session to	
Python.	

Simple Data Analysis

Print the first 5 rows	cars.head()
Print the last 5 rows	cars.tail()
Calculate statistics	cars.means() or cars.describe()
Top 10 /Top n	cars.top("make",order="freq")
	cars.top("make",5,order="freq")
Generate Heat Map	cars.heatmap('origin','type')
	cars.heatmap('origin','type',options='colorstat=pct colormodel=(pink lilac purple)')
Create Histograms	cars.hist('invoice')
Create Scatter Plots	cars.scatter('invoice','mpg_city')
	cars.scatter('invoice','mpg_city/ Group=type')
Create Bar Charts	cars.Bar('type')
	cars.bar('type/ group =origin ')
	cars.bar('type/ group =origin response= invoice ')
Create Series Plots	stock=sas.sasdata('stocks','sashelp')
	stock.series('date','adjclose/groupby = stock')

Additional Objects

Other objects are available that provide different SAS Procedures. They are grouped into the following groups – Utility, Machine Learning, Statistics, Econometric and Time Series, Quality Control and SAS VIYA VDML For full information https://sassoftware.github.io/saspy/api.html#procedure-syntax-statements.

What follows are examples from the Utility and Statistics groups. Accessing the procedures is accessed and executed in a slightly different way.

Using the Univariate Method from the Util object.

To access the Univariate() method, firstly assign	util=sas.sasutil()
a variable to the sas.sasutil library of	
procedures.	
Create an object which contains the output	uni=util.univariate(var='invoice',data="sashelp.cars")
from the Univariate procedure	

Using Proc Reg from the SASstat object

