

Artificial Intelligence?

"The science and engineering of making intelligent machines, especially intelligent computer programs". (John McCarthy)

Al in a nutshell

Traditional Approach vs. Machine Learning Approach

Traditional Programming: you code the behavior of the program

Machine Learning: you leave a lot of that to the machine to learn from data

GENERAL FLOW

Traditional Approach

$$8 \longrightarrow f(x) = 2x \longrightarrow 16$$

data

х	у
1	2
2	4
3	6
4	8
5	10
6	12
7	14

$$y = 2x$$

Mudah melihat fungsinya (rule)!

Coba Tebak Fungsi/Rule-nya...!

х	У
1	1
2	4
3	9
4	16
5	25
6	36
7	49

х	у
1	3
2	7
3	13
4	21
5	31
6	43
7	57

Machine Learning Approach

GOAL?

Aku sudah terlatih dan pintar!

Jadi, apa yang bisa kubantu?

Ya, aku bisa memprediksi "sesuatu" Dari data di masa depan yang belum pernah kulihat

Perlu diingat!

Prediksiku hanya estimasi, bisa saja salah 😊

Machine Learning Definition

"Machine learning is a branch of artificial intelligence that enables computers to learn from data and improve their performance over time without being explicitly programmed." (Arthur Samuel)

Workflow

Training

Testing

Workflow (cont'd)

Training

Testing

Jenis-jenis learning

Supervised Learning

Model dilatih dengan data yang diberi label sesuai keluaran yang sebenarnya.

Unsupervised Learning

Model dilatih dengan data yang tidak terlabel. Model diharapkan mencari pola tersembunyi.

Reinforcement Learning

Model dilatih pada lingkungan tertentu dengan trial and error. Biasanya dengan proses reward and punishment.

Intuition Behind Learning

Parameters

Internal variables or settings of a model that determine its behavior and ability to make predictions. Parameters are learned or adjusted during the training phase of the model.

Loss function

Also known as cost function or objective function, is a mathematical function that measures the difference between the predicted output of a machine learning model and the actual output.

Optimization

Process of finding the best set of parameters or weights for a model that minimizes a given loss function.

Training data: $\{(x_i, y_i)\}_{i=1}^n$

$$f(x) = ax + b$$

Temukan a dan b terbaik, sehingga $f(x_i) \approx y_i$

Let's play...

Training data: $\{(x_i, y_i)\}_{i=1}^n$

$$f(x) = ax + b$$

Temukan a terbaik, sehingga $f(x_i) \approx y_i$

1. Pilih sebuah Loss Function:

$$L(a) = \frac{1}{n} \sum_{i} (y_i - f(x_i))^2$$

MSE (Mean Squared Error)

$$L(a) = \frac{1}{n} \sum_{i} (y_i - ax_i)^2$$

Let's play.. (cont'd)

1. Pilih sebuah Loss Function:

MSE (Mean Squared Error)

$$L(a) = \frac{1}{n} \sum_{i} (y_i - ax_i)^2 \qquad f(x) = 0$$

2. Tentukan tujuan (objective)

minimize L(a)

Let's play.. (cont'd)

2. Tentukan tujuan (objective)

3. Buat aturan untuk update nilai \boldsymbol{a}

$$a_{baru} \leftarrow a_{lama} - \eta \frac{dL(a)}{da}$$

 η = learning rate

3. Berhenti jika telah mencapai convergence

$$f(x) = a_{baru}x$$

We have a new model!!

Summary

We have dataset

$$\{(x_i,y_i)\}_{i=1}^n$$

We have a model

$$f(x) = \frac{a}{x}$$

$$L(a) = \frac{1}{n} \sum_{i} (y_i - ax_i)^2$$

Update parameter(s) (optimization/minimization)

$$a_{baru} \leftarrow a_{lama} - \eta \frac{dL(a)}{da}$$

$$f(x) = a_{baru}x$$

No

Stop(?)

What we've learned...

- Definisi Al ML
- Intuisi learning dalam ML
- How to train ML (Parameters, Loss Function, Optimization)

Next lecture...

- Kapan kita menggunakan ML
- Membahas tugas-tugas dalam ML
- Membahas algoritma-algoritma dalam ML
- Cara menentukan metrik-metrik evaluasi performa ML

