Balanis Quick Reference

Andrew Whelan

Contents

1	Basics								
	1.1	Maxw	vell's Equations						
	1.2	Const	citutive Relations						
	1.3	Bound	dary Conditions						
	1.4	Mater	rial Considerations						
			Magnets						
		1.4.2	Dielectrics/Insulators						
		1.4.3	Conductors						
		1.4.4	Semiconductors						

Notation

∂_t	$\frac{\partial}{\partial t}$	
E	Electric Field Intensity	$[\mathrm{V}\ \mathrm{m}^{\text{-1}}]$
H	Magnetic Field Intensity	$[\mathrm{A~m}^{\text{-1}}]$
D	Electric Flux Density	$[C m^{-2}]$
B	Magnetic Flux Density	$[\mathrm{Wb}\ \mathrm{m}^{\text{-}2}]$
$J_{c/d/i}$	Electric Current Density $(conduction/displacement/impressed)$	$[\mathrm{A~m^{\text{-}2}}]$
$\mathfrak{M}_{d/i}$	Magnetic Current Density (displacement/impressed)	$[\mathrm{V}\ \mathrm{m}^{\text{-}2}]$
$ ho_e$	Electric Charge Density	$[C m^{-2}]$
$ ho_m$	Magnetic Charge Density	$[\mathrm{Wb}\ \mathrm{m}^{\text{-}2}]$
ϵ	Permittivity	$[\mathrm{F}\ \mathrm{m}^{\text{-1}}]$
μ	Permeability	$[\mathrm{H}\ \mathrm{m}^{\text{-1}}]$
σ	Conductivity	$[S m^{-1}]$
$\eta := \sqrt{rac{\mu}{\epsilon}}$	Wave Impedance	$[S^{\text{-}1}]$
f	Frequency	$[s^{-1}]$
λ	Wavelength	[m]
$\omega := 2\pi f$	Angular Frequency	$[s^{-1}]$
$k := \frac{2\pi}{\lambda}$	Wavenumber	$[m^{-1}]$
v_f	Velocity of front part of wave	$[\mathrm{ms}^{\text{-}1}]$
v_g	Group velocity of wave (envelope velocity)	$[\mathrm{ms}^{\text{-}1}]$
v_p	Phase velocity of wave (peak/trough velocity)	$[\mathrm{ms}^{\text{-}1}]$

1 Basics

1.1 Maxwell's Equations

Differential Form

Maxwell-Faraday:
$$\nabla \times E = -\partial_t B - \mathfrak{M}_i$$
 (1a)
Ampère-Maxwell: $\nabla \times H = \partial_t D + J_c + J_i$ (1b)
Gauss: $\nabla \cdot D = \rho_e$ (1c)

Gauss (Magnetism):
$$\nabla \cdot B = 0 = \rho_m$$
 (1d)

Integral Form

$$\oint_C E \cdot dl = -\partial_t \iint_S B \cdot ds - \iint_S \mathfrak{M}_i \cdot ds$$
 (2a)

$$\oint_C H \cdot dl = \partial_t \iint_S D \cdot ds + \iint_S (J_c + J_i) \cdot ds$$
(2b)

$$\iint_{S} D \cdot ds = \iiint_{V} \rho_{e} \cdot dv \tag{2c}$$

$$\iint_{S} B \cdot ds = 0 = \iiint_{V} \rho_{m} \cdot dv \tag{2d}$$

1.2 Constitutive Relations

$$D = \epsilon E \tag{3a}$$

$$B = \mu H \tag{3b}$$

$$J_c = \sigma E \tag{3c}$$

1.3 Boundary Conditions

	General	Finite σ , no source/charge	Medium 1 PEC	Medium 1 PMC
$E_{\parallel} := n \times E$	$E_{\parallel 2} - E_{\parallel 1} = -M_s$	$E_{\parallel 2} - E_{\parallel 1} = 0$	$E_{\parallel 2} = 0$	$E_{\parallel 2} = -M_s$
$H_{\parallel} := n \times H$	$H_{\parallel 2} - H_{\parallel 1} = J_s$	$H_{\parallel 2} - H_{\parallel 1} = 0$	$H_{\parallel 2} = J_s$	$H_{\parallel 2} = 0$
$D_{\perp} := n \cdot D$	$D_{\perp 2} - D_{\perp 1} = \phi_{es}$	$D_{\perp 2} - D_{\perp 1} = 0$	$D_{\perp 2} = \phi_{es}$	$D_{\perp 2} = 0$
$B_{\perp} := n \cdot B$	$B_{\perp 2} - B_{\perp 1} = \phi_{ms}$	$B_{\perp 2} - B_{\perp 1} = 0$	$B_{\perp 2} = 0$	$B_{\perp 2} = \phi_{ms}$

1.4 Material Considerations

All the constitutive parameters of (3) are typically time/space-varying tensors. Furthermore, they are complex-valued in order to model dissipation for time-varying fields.

Generally, we can classify materials into categories described below.

1.4.1 Magnets

The magnetization is the net effect of the microscopic magnetic dipoles created by orbiting electrons. A large value of μ indicates a stronger magnetization.

1.4.2 Dielectrics/Insulators

Here, the dominant charges are on the boundary of the material creating an overall electric dipole. A large value of ϵ indicates a stronger ability to store charge, but must be weighed vs. σ and ω also. The condition for a good dielectric is

$$\frac{\sigma}{\omega\epsilon} \ll 1$$
 (4)

1.4.3 Conductors

Here, there are free charges creating currents throughout the material, due to valence electrons that aren't tightly bound. The condition here is the opposite of the above:

$$\frac{\sigma}{\omega\epsilon} \gg 1$$
 (5)

1.4.4 Semiconductors

These are roughly in between an insulator and a conductor, with the condition

$$\frac{\sigma}{\omega\epsilon} = O(1) \tag{6}$$

2 P.E.C Field Derivation

1. Starting from Maxwell's equations (1) and constitutive equations (3), transform to frequency domain to simplify curl equations:

$$\nabla \times H = J + j\omega D \tag{7a}$$

$$\nabla \times E = -j\omega B \tag{7b}$$

2. Introduce magnetic vector potential A and electric potential ϕ defined by:

$$B = \nabla \times A \tag{8a}$$

$$E = -\nabla \phi - j\omega A \tag{8b}$$

and fix Lorenz gauge:

$$\nabla \cdot A = -\frac{j\omega}{c^2}\phi\tag{9}$$

- 3. Apply the above with some vector identities to reduce Ampere-Maxwell equation (7a) to Helmholtz equation:
 - (a) Substitute the constitutive conditions (3) and potentials (8) respectively to (7a):

$$\frac{1}{\mu}\nabla \times B = J + j\omega\epsilon E$$

$$\implies \frac{1}{\mu}\nabla \times \nabla \times A = J - j\omega\epsilon\nabla\phi - \omega^2\epsilon A$$

(b) Use the vector calculus identity $\nabla \times \nabla \times A = \nabla(\nabla \cdot A) - \nabla^2 A$, so

$$\frac{1}{\mu} \left(\nabla (\nabla \cdot A) - \nabla^2 A \right) = J - j\omega \epsilon \nabla \phi - \omega^2 \epsilon A$$

(c) Apply the Lorenz gauge condition (9):

$$-\frac{1}{\mu}(\frac{j\omega}{c^2}\nabla\phi + \nabla^2 A) = J - j\omega\epsilon\nabla\phi - \omega^2\epsilon A$$

$$\implies -\frac{1}{\mu}\nabla^2 A = J - \omega^2\epsilon A$$

$$\implies \nabla^2 A + k^2 A = -\mu J.$$

4. Solve for vector potential using Green functions to get

$$A = \mu \int J(r)G(r, r')dr' \tag{10}$$

5. Plug into electric field formula (8b) in terms of potentials:

$$A = \frac{j}{\omega}(\nabla \phi + E)$$

Use the far field assumption on the scalar potential $\nabla\phi\to 0$ - this can be worked out to die off quickly asymptotically. Finally we arrive at

$$E \approx -\omega \mu j \int J(r)G(r,r')dr'$$

$$\Longrightarrow E \approx -\eta k j \int J(r)G(r,r')dr'$$