# UNCLASSIFIED

# AD NUMBER AD016522 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Controlling DoD Organization: Office of Naval Research, Arlington, VA 22217. **AUTHORITY**

Office of Naval Research ltr dtd 9 Nov 1977; Office of Naval Research ltr dtd 9 Nov 1977

1

#### CHESAPRAKE BAY INSTITUTE

#### THE JOHNS HOPKINS UNIVERSITY

Reference No. 52-6

# REPORT ON SPECIAL CORES TAKEN IN THE YORK RIVER FOR THE NAVAL RESEARCH LABORATORY

By

#### M. C. Powers

This report contains results of work carried out for the Office of Naval Research and the Hydrographic Office of the Navy Department under Contract No. Nonr-24807 with The Johns Hopkins University.

#### Distribution:

- 2 Chief of Naval Operations (Op-316)
- 5 The Hydrographer, U. S. Navy Hydrographic Office
- 5 Inshore Survey Branch, U. S. Navy Hydrographic Office (Attn: Dr. W. L. Tressler)
- 2 Geophysics Branch, Office of Naval Research
- 2 Armaments Branch, Office of Naval Research (Attn: LCDR. T. J. Wadsworth, USN)
- l Director, Naval Ordnance Laboratory
- 1 Commanding Officer, Naval Mine Depot, Yorktown, Va. (Attn: LCDR. N. H Prade, USN)
- 2 Naval Research Laboratory (Attn: Mr. R. J. Urick)
- l Dr. L. W. McKeehan, Yale University
- 1 Director, Institute of Cooperative Research, The Johns Hopkins University
- 3 Files of Chesapeake Bay Institute

Wayne V. Burt Project Supervisor February 29, 1952

# PHYSICAL DATA FROM BOTTOM CORES OBTAINED OFF PIER 1 OF THE NAVAL MINE DEPOT, YORK RIVER

Six cores were taken at the request of NRL personnel working in conjunction with Operation MUD in the area adjacent to Pier 1 of the Naval Mine Depot at Yorktown, Virginia. The locations of the cores are shown in Figure 1. This report contains analyses of cores as requested by NRL. The results of certain other tests which were made in the field are listed.

The sediments in the area are predominantly sand which is derived chiefly from the erosion of nearby beaches. There can be little doubt but what ships occasionally stir the bottom sediments. This stirring puts sediments into suspension and probably results in occasional changes in the type material present.

## Field Tests

As soon as the cores were extruded aboard ship the natural water content, wet density, rigidense and pH were determined. These tests have been described in Chesapeake Eay Institute, Inshore Survey Program, Interim Reports.

Natural water content and porosity are determined from the water contained in the sediment according to the following equations:

In determining porosity it is assumed that the pore space in the sediments is saturated with water.

Wet density of the bulk material was measured with a Braun "MUDWATE" hydrometer.

Rigidense is the depth in centimeters to which a small penetrometer sinks in a section of the core in two minutes.

pH was determined with "pHydrion" pH paper placed directly on the core immediately after extrusion.

#### Laboratory Size Determinations

Size distribution determinations were run on samples taken at various depths in the cores. The samples were selected on the basis of lithologic changes in the cores.

The samples were dispersed in sodium carbonate after removing organic matter and calcium carbonate which tends to flocculate the clay and fine silt fractions. "U. S. Standard" sieves were used to separate fractions larger than 0.062 millimeters. A "BOUYOUCOS" hydrometer was used in the analysis of the lutites. These results were checked against pipette analyses. Only hydrometer results are given in this report.

Most of the central tendencies from the cumulative curves occur in the sand size fractions and are therefore reliable. However, the size analysis of particles less than about 0.03 mm is subject to error due to difference in the dis-aggregating ability of the dispersal agent used. Therefore the size analysis of the fractions in the fine silt and clay range does not give the size distributions that occur in the natural environment.

#### Central Tendencies and Parameters

Cumulative curves were plotted and the following parameters and central tendencies which are discussed by Krumbein and Pettijohn (Manual of Sedimentary Petrography, 1938, Chapter 9) were determined:

Md Median diameter in mm.

 $Q_1$ ,  $Q_3$  First and third quartiles.

P<sub>10</sub>, P<sub>90</sub> Ten and ninety percentiles.

 $QD_a = Q_3 - Q_1$  Arithmetic quartile deviation.

This last term is a measure of sorting and though rarely used by sedimentologists it way move useful in studying the attenuation of sound through sediments since it is affected by grain size. The smaller the numerical value the better
the sorting. Values greater than 0.1 are considered poorly sorted.

$$Sk_a = Q_3 + Q_1$$
 - Md Arithmetic quartile skewness.

This measure of skewness is affected by grain size. A zero value indicates a perfectly symmetrical frequency distribution. Distributions with negative values are skewed toward larger grain sizes and those with positive values are skewed toward smaller grain sizes.

$$\frac{\text{Kq}_{3} = \frac{Q_{3} - Q_{1}}{2 (P_{90} - P_{10})}$$
 Arithmetic quartile kurtosis.

The lower the numerical value, the flatter the frequency curve. The values are independent of grain size.

$$QD_g = \sqrt{\frac{Q_3}{Q_1}}$$
 Geometric quartile deviation.

According to Trask (Origin and Environment of Source Sediments of Petroleum, 1932), who introduced this as a "sorting coefficient", values less than 2.5 indicate well sorted sediments, values from 2.5 to 4.0 indicate moderate sorting while values greater than 4.0 indicate poor sorting.

$$\frac{Sk = Q_3 Q_1}{Md^2}$$
 Square of the geometric quartile skewness.

A perfectly symmetrical frequency curve would have an Sk value of 1.0. Curves with Sk greater than 1.0 are skewed toward smaller grain size and curves with Sk less than 1.0 are skewed toward larger grain sizes.



Figure 1. Chart showing location of cores.

## Core YK-16

| Depth<br>from top<br>in feet | % Nat.<br>water                    | %<br>Porosity                | Wet<br>Density               | Rid.<br>value            | Odo <del>r</del>     | рĦ                |
|------------------------------|------------------------------------|------------------------------|------------------------------|--------------------------|----------------------|-------------------|
| 0<br>2<br>4<br>6             | 190.42<br>197.97<br>58.68<br>28.80 | 81.5<br>82.9<br>60.8<br>43.2 | 1.12<br>1.26<br>1.64<br>1.98 | 5.7<br>3.6<br>3.3<br>1.7 | None<br>None<br>None | 8.0<br>8.0<br>8.0 |
| 61<br>8<br>92                | 60.97<br>51.33                     | 56.7<br>57.6                 | 1.57<br>1.43                 | 3.3<br>4.8               | None<br>None<br>None | 8.0<br>8.0<br>8.0 |

#### Description

| Depth from top in inches | Color     | Roundness<br># | Megascopic<br>sorting## | Grain size of sand fraction*** |
|--------------------------|-----------|----------------|-------------------------|--------------------------------|
| 0-24                     | black     |                | w.                      | V. F.                          |
| 24-66                    | dark grey |                | P.                      | F. to V. F.                    |
| 66-74                    | yellow    | A. to S.A.     | P.                      | C. to F.                       |
| 74-Bottom                | dark grey | A. to S.A.     | P.                      | M. to V. F.                    |

| Depth from top in inches            | Est<br>Gravel |                      | i % of<br>silt      |                    | Consistency or induration                                                   |
|-------------------------------------|---------------|----------------------|---------------------|--------------------|-----------------------------------------------------------------------------|
| 0-24<br>24-66<br>66-74<br>74-Bottam | 5<br>         | 30<br>60<br>90<br>85 | 40<br>25<br>5<br>10 | 30<br>10<br>5<br>5 | Oozey to plastic<br>Plastic to almost soupy<br>Semi-plastic<br>Semi-plastic |

#### \*Roundness

V. A. - Very Angular, A. - Angular, S. A. - Subangular, S. R. - Subrounded R. - Rounded, W. R. - Well Rounded

## \*\*Megascopic Sorting

W. - Well sorted, S. - sorted, F. - Poorly sorted, V. P. - Very Poorly sorted

## \*\*\*Grain Size of Sand Fraction

V. F. - Very Fine, F. - Fine, M. F. - Medium Fine, Medium, C. - Coarse, G. - Gravel

| 0    | VV 1 | 7  |
|------|------|----|
| Core | YK-l | -1 |

| Depth<br>from top<br>in feet            | % Nat.<br>water          | %<br>Porosity        | Wet<br>Density       | Rid.<br>value     | Odor         | pН                |
|-----------------------------------------|--------------------------|----------------------|----------------------|-------------------|--------------|-------------------|
| 0<br>2<br>3 <sup>1</sup> / <sub>2</sub> | 139.37<br>33.55<br>24.33 | 78.6<br>47.3<br>39.1 | 1.40<br>1.98<br>1.96 | 5.8<br>3.7<br>2.0 | None<br>None | 7.0<br>7.0<br>7.0 |

## Description

| Depth from top<br>in inches | Color                                   | Roundness<br>#           | Megascopic<br>sorting** | Grain size of rand fraction***          |
|-----------------------------|-----------------------------------------|--------------------------|-------------------------|-----------------------------------------|
| 0-6<br>6-40<br>40-42        | Medium grey<br>Light grey<br>Light grey | S.A. to A.<br>S.A. to A. | W.<br>P.<br>P.          | F. to V. F.<br>C. to V. F.<br>Mostly C. |

| Depth from top | Es     | timate | Consistency or |      |            |
|----------------|--------|--------|----------------|------|------------|
| in inches      | Gravel | sand   | silt           | clay | induration |
| 0-6            |        | 70     | 15             | 15   | Oozey      |
| 5-40           |        | 90     | 5              | 5    | Soupy      |
| 40-42          | 5      | 90     | 2.5            | 2.5  | Wet        |

# Core YK-18

| Depth<br>from top<br>in feet | % Nat.<br>water | %<br>Porosity | Wet<br>Density | Rid.<br>value | Odor             | рН  |
|------------------------------|-----------------|---------------|----------------|---------------|------------------|-----|
| 0                            | 142.29          | 78.9          | 1.63           | 2.0           | H <sub>2</sub> S | 7.5 |
| 2                            | 137.09          | 78.4          | 1.42           | 0.5           | H <sub>2</sub> S | 7.5 |
| 4                            | 32.71           | 46.0          |                | 2.2           | H_S              | 7.5 |
| 6                            | 102.04          | 73.0          |                | 6*            | None             | 7.5 |

## Description

| Depth from top<br>in inches | Color                               | Roundness                 | Megascopic<br>sorting** | Grain size of sand fraction***                                |
|-----------------------------|-------------------------------------|---------------------------|-------------------------|---------------------------------------------------------------|
| 0-18<br>18-48<br>48-72      | Medium grey<br>Brown<br>Medium grey | S.A. to A.                | W.<br>P.<br>S.          | V. F.<br>C. to V. F.<br>V. F.                                 |
| Depth from top<br>in inches |                                     | mated % of<br>and silt el |                         | nsistency or<br>luration                                      |
| 0-18<br>18-48<br>48-72      | 9                                   | 5                         | 5 Hax<br>0 Sou          | rd-plastic<br>rd-plastic<br>upy with hard-plastic<br>uy balls |

| $\sim \sim 10^{-1}$ | יחדים  | A 1.11 | TAL |
|---------------------|--------|--------|-----|
| CON                 | r LIJ. |        |     |

| Core | TK-36 |  |
|------|-------|--|
|      |       |  |

| Depth<br>from top<br>in feet | % Nat.<br>water | %<br>Parosity | Wet<br>Density | Rid.<br>value | 0d.or | PH  |
|------------------------------|-----------------|---------------|----------------|---------------|-------|-----|
| 0                            | 215.00          | 8 <b>5.</b> 0 | 1.25           | 6+            | None  | 7.2 |
| 2                            | 175.00          | 82.4          | 1.29           | 4.7           | None  | 7.2 |
| 4                            | 38.00           | 50.0          | 1.73           | 4.4           | None  | 7.0 |
| 6                            | 36.00           | 49.1          | 1.88           | 4.3           | None  | 7.0 |
| 8                            | 37.00           | 49.3          | 1.89           | 3.8           | None  | 7.0 |

# Description

| -     | from top Color inches    | Roundness<br>#           | Megascopic<br>sorting** | Grain size of sand fraction ### |
|-------|--------------------------|--------------------------|-------------------------|---------------------------------|
| 0-30  | Dark grey                | S.R. to W.R. Mostly W.R. | S.                      | F. to V.F. Mostly M.F           |
| 30-54 | Mustard<br>salt & pepper | R. to W.R. Mostly W.R.   | s.                      | M. to F. Mostly M.F.            |
| 54-96 | Mustard<br>salt & pepper | R. to W.R. Mostly W.R.   | w.                      | M. to V.F. Mostly F.            |

| sand | silt | clay  | induration        |
|------|------|-------|-------------------|
|      |      |       |                   |
| 5    | 55   | 40    | Sticky gelatinous |
| 60   | 30   | 10    | Soggy slick sand  |
| 100  |      |       | Very wet squisky  |
|      |      | 60 30 | 60 30 10          |

# Core YK-37

| Depth<br>from top<br>in feet  | % Nat.<br>water | %<br>Porosity | Wet<br>Density | Rid.<br>value | Odor | рĦ  |
|-------------------------------|-----------------|---------------|----------------|---------------|------|-----|
| 0                             | 42.00           | 52.5          | 1.83           | 6+            | None | 7.0 |
| 2 <sup>1</sup> / <sub>2</sub> | 35.00           | 48.4          | 1.90           | 4.7           | None | 7.0 |

# Description

| _             | from top inches | Color                 | Ro        | undnes<br>*    | •  | Megascopi<br>sorting** |                                        |
|---------------|-----------------|-----------------------|-----------|----------------|----|------------------------|----------------------------------------|
| 0-12          |                 | Medium graalt & pepp  | ey R.     | to W.          | R. | s.                     | M. to F. Mostly M.                     |
| 12-30         |                 | Medium grasalt & pepp | er Mo     | to W.          | P. | WS                     | M. to F. Mostly M.                     |
| _             | from top inches | Es<br>Gravel          |           | d % of<br>silt |    |                        | Consistency or induration              |
| 0-12<br>12-30 |                 |                       | 90<br>100 | 8              | 2  |                        | Squishy sand Firm sand where undiluted |

# Core YK-38

| Depth<br>from top<br>in feet | % Nat.<br>water | %<br>Porosity | Wet<br>Density | Rid.<br>value | <b>04.</b> or | рĦ  |
|------------------------------|-----------------|---------------|----------------|---------------|---------------|-----|
| 0                            | 78.∞            | 67.5          | 1.57           | 6+            | None          | 8.0 |
| 2                            | 30.00           | 44.6          | 1.94           | 2.0           | None          | 7.0 |
| Ł.                           | 28.00           | 42.8          | 2              | 2.0           | None          | 7.0 |
| 6                            | 28.00           | 42.6          | 1.99           | 3.2           | None          | 7.0 |
| 8                            | 25.00           | 39.8          | 2              | 1.6           | None          | 7.0 |

# Description

| Depth from top Colo<br>in inches |                                      | Megascopic sorting** | Grain size of sand fraction*** |
|----------------------------------|--------------------------------------|----------------------|--------------------------------|
| 0-32 Dark g                      | Floatily D.M.                        | S.                   | M. to F. Mostly M.             |
|                                  | pepper Mostly W.R.                   | W.                   | M. to F. Mostly M.             |
| 36-84 Medium salt &              | grey S.R. to W.R. pepper Mostly W.R. | V.P.                 | G. to F. Mostly M.             |

| Depth from top | Estimated % of |      | ted % of Consistence |      | Consistency or        |
|----------------|----------------|------|----------------------|------|-----------------------|
| in inches      | Gravel         | sand | silt                 | clay | induration            |
| 0-12           |                | 50   | 35                   | 15   | About like toothpaste |
| 12-36          |                | 100  | 0                    | 0    | Very wet but firm     |
| 36-84          | 5              | 95   | 0                    | 0    | Very wet but firm     |

Sample No. YK-16 (5'6")

| Grade Size mm. | Weight | ≸ in Grade Size | Cumulative \$  |
|----------------|--------|-----------------|----------------|
| >1.00          | 0.08   | 0.16            | 0.16           |
| 1.00-7.10      | 0.09   | 0.18            | 0.34           |
| .710500        | 0.15   | 0.30            | 0.64           |
| .500350        | 0.46   | 0.92            | 1.56           |
| .350250        | 6.78   | 13.60           | 15.16          |
| .250177        | 16.67  | 33.20           | <b>48.3</b> 6  |
| .177125        | 13.88  | 28.70           | 77.06          |
| .125088        | 5.43   | 10.80           | 87.86          |
| .088062        | 1.18   | 2.40            | 90 <b>.2</b> 6 |
| .062055        | 0.10   | 0.20            | 90.46          |
| 055031         | 0.70   | 1.40            | 91.86          |
| .031015        | 0.10   | 0.20            | 92.06          |
| .015009        | 1.00   | 2.00            | 94.06          |
| <.009          |        | 6.30            | 100.36         |

# Sample No. YK-16 (7')

| <b>&gt;2.00</b>  | 0.82  | 1.72  | 1.72          |
|------------------|-------|-------|---------------|
| 2.00-1.40        | 0.35  | 0.73  | 2.45          |
| 1.40-1.00        | 0.45  | 0.94  | 3.39          |
| 1.00710          | 0.52  | 1.09  | 4.48          |
| .710500          | 0.73  | 1.53  | 6.01          |
| .500350          | 1.02  | 2.14  | 8.15          |
| .350250          | 3.34  | 7.00  | -15.15        |
| .250177          | 5 .47 | 11.50 | 26.65         |
| .177125          | 2.70  | 5.66  | 32.31         |
| .125088          | 1.64  | 3.44  | 35.75         |
| .088062          | 1.40  | 2.94  | <b>3</b> 8.69 |
| .062055          | 1.00  | 2.10  | 40.79         |
| .0550 <b>3</b> 1 | 11.00 | 23.00 | 63.79         |
| .031015          | 4.00  | 8.40  | 72.19         |
| .015009          | 3.80  | 7.90  | 80.09         |
| <.009            |       | 18.00 | 98.09         |
|                  |       |       |               |

Core YK 16 Depth 5'6"

Md = 0.17

 $Q_1 = 0.13$ 

Q<sub>3</sub> = 0.225

 $r_{90} = 0.07$ 

P = 0.27

Arithmetic Parameters

 $QD_{a} = 0.047$ 

 $SK_a = 0.007$ 

Kq = -0.239

Geometric Parameters

 $QD_{g} = 1.325$ 

Sk = 1.015



Core YK 16 Depth 7'

Md = 0.042  $Q_1 = 0.0125$   $Q_3 = 0.185$   $P_{90} = 0.0052$ 

90 ....

 $P_{10} = 0.32$ 

Arithmetic Parameters

QD<sub>a</sub> = 0.086

 $SK_a = -0.027$ 

 $Kq_{a} = -0.096$ 

Geometric Parameters

 $QD_g = 3.84$ 

Sk = 1.34



Sample No. YK-17 (0')

| Grade Size mm.   | Weight | ₱ in Grade Size | Cumulative % |
|------------------|--------|-----------------|--------------|
| <b>&gt;</b> 1.00 | 0.00   | 0.00            | 0.00         |
| 1.00710          | 0.07   | 0.22            | 0.22         |
| .710-5:00        | 0.08   | 0.25            | 0.47         |
| .500350          | 0.28   | 0.87            | 1.34         |
| .350250          | 5.32   | 16.40           | 17.74        |
| .250177          | 2.45   | 7.55            | 25.29        |
| .177125          | 5.72   | 17.60           | 42.89        |
| .125088          | 2.55   | 7.85            | 50.74        |
| .088062          | 0.52   | 1.60            | 52.34        |
| .062055          | 1.10   | 3.40            | 55.74        |
| .055031          | 3.00   | 9.30            | 65.04        |
| .031015          | 3.60   | 11.10           | 76.14        |
| .015009          | 3.30   | 10.20           | 86.34        |
| <b>&lt;.</b> 009 |        | 13.60           | 99.94        |

Sample No. YK-17 (2')

| >1.00   | 0.02  | 0.04           | .04   |
|---------|-------|----------------|-------|
| 1.00710 | 0.05  | 0.10           | .14   |
| .710500 | 0.22  | 0.47           | .61   |
| .500350 | 0.71  | J. <b>.5</b> 0 | 2.11  |
| .350250 | 4.10  | 8.65           | 10.76 |
| .250177 | 10.50 | 22.10          | 32.86 |
| .177125 | 19.40 | 41.00          | 73.86 |
| .125088 | 8.10  | 17.10          | 90.96 |
| .088062 | 1.44  | 3.02           | 93.98 |
| .062055 | 0.50  | 1.00           | 94.98 |
| .055031 | 0.50  | 1.00           | 95.98 |
| <.031   |       | 1.00           | 96.98 |
|         |       |                |       |

Core YK 17 Depth O'

Md = 0.091

 $Q_1 = 0.0164$ 

Q<sub>3</sub> = 0.18

P<sub>90</sub> = 0.008

 $P_{10} = 0.275$ 

Arithmetic Parameters

 $QD_a = 0.085$ 

 $SK_a = 0.009$ 

 $Kq_a = -0.318$ 

Geometric Parameters

 $QD_g = 3.34$ 

Sk = 0.035



Core YK 17 Depth 2'

|                        | •       |                            |                         |
|------------------------|---------|----------------------------|-------------------------|
| Md = 0.19              |         | rithmetic                  | Geometric<br>Parameters |
| $Q_1 = 0.12$           |         |                            |                         |
| **                     | QL.     | o.035                      | $QD_g = 1.259$          |
| Q <sub>3</sub> = 0.19  | ₹<br>SK | $\zeta_{\mathbf{a}} = 0.0$ | Sk = 0.949              |
| P <sub>90</sub> = 0.08 | 89      |                            | J. 2 0.949              |
|                        | Kq      | $\frac{1}{a} = -0.217$     |                         |
| $P_{10} = 0.25$        |         |                            |                         |
|                        |         |                            |                         |





| Sample N | o. YK | -18 ( | (01) |
|----------|-------|-------|------|
|----------|-------|-------|------|

| Grade Size mm.           | Weight | % in Grade Size | Cumulative     | % |
|--------------------------|--------|-----------------|----------------|---|
| >2.00                    | 0.00   | 0.00            | 0.00           |   |
| 2.00-1.40                | 0.00   | 0.00            | 0.00           |   |
| 1.40-1.00                | 0.00   | 0.00            | 0.00           |   |
| 1.00710                  | 0.06   | 0.20            | 0.20           |   |
| .710500                  | 0.06   | 0.20            | 0.40           |   |
| .500350                  | 0.10   | 0 <b>.3</b> 2   | 0.72           |   |
| <b>.3</b> 50 <b>25</b> 0 | 0.31   | 1.00            | 1.72           |   |
| .250177                  | 0.62   | 2.00            | 3.72           |   |
| .177 .125                | 1.05   | 3.36            | 7.08           |   |
| .125088                  | 3.26   | 10.40           | 17.48          |   |
| .088062                  | 6.55   | 20.90           | <b>38.3</b> 8  |   |
| .062055                  | 5.40   | 17.30           | 55.68          |   |
| .055031                  | 6.00   | 19.20           | 74.88          |   |
| .031015                  | 2.30   | 7.35            | 82.23          |   |
| .015009                  | 4.30   | 13.75           | 9 <b>5.9</b> 8 |   |
| <b>&lt;.</b> 009         | 1.30   | 4.15            | 100.13         |   |
|                          |        |                 |                |   |

# Sample No. YK-18 (4)

|           |       | - 1 - |       |
|-----------|-------|-------|-------|
| ▶2.00     | 0.20  | 0.43  | 0.43  |
| 2.00-1.40 | 0.20  | 0.43  | 0.43  |
| 1.40-1.00 | 0.26  | 0.56  | 1.25  |
| 1.00710   | 0.34  | 0.73  | 1.98  |
| .710500   | 0.80  | 1.73  | 3.71  |
| .500350   | 1.60  | 3.40  | 7.11  |
| .350250   | 19.32 | 43.00 | 50.11 |
| .250177   | 4.35  | 9.40  | 59.51 |
| .177125   | 9.44  | 20.20 | 79.71 |
| .125088   | 1.76  | 3.80  | 83.51 |
| .088 .062 | 0.28  | 0.60  | 84.11 |
| .062      | 0.13  | 0.27  | 84.39 |
| .062055   | 0.75  | 1.50  | 85.88 |
| .055031   | 0.75  | 1.50  | 87.38 |
| .031015   | 1.40  | 2.80  | 90.18 |
| .015009   | 0.50  | 1.00  | 91.18 |
| <.009     | 0.50  | 8.70  | 99.88 |

Core YK 18 Depth O'

Md = 0.058

 $Q_1 = 0.031$ 

 $Q_3 = 0.076$ 

P<sub>90</sub> = 0.0105

 $P_{10} = 0.19$ 

Arithmetic Parameters

 $QD_a = 0.022$ 

 $SK_a = -0.005$ 

 $Kq_a = -0.125$ 

Geometric Parameters

QD<sub>g</sub> = 1.565

Sk = 0.792



$$Md = 0.20$$

$$Q_1 = 0.14$$

$$Q_3 = 0.26$$

$$P_{90} = 0.017$$

Core YK 18 Depth 4'

## Arithmetic Parameters

 $Qr_a = 0.06$ 

$$Kq_a = -0.192$$

Geometric Parameters

$$Sk = 0.909$$



Sample No. YK-18 (6')

| Grade Size mm.   | Weight | % in Grade Size | Cumulative % |
|------------------|--------|-----------------|--------------|
| <b>&gt;</b> 2.00 | 0.08   | 0.20            | 0.20         |
| 2.00-1.40        | 0.07   | 0.17            | 0.37         |
| 1.40-1.00        | 0.14   | 0.34            | 0.71         |
| 1.00710          | 0.18   | 0.45            | 1.16         |
| .710500          | 0.30   | 0.75            | 1.91         |
| .500350          | 0.50   | 1.25            | 3.16         |
| .350250          | 1.18   | 2.94            | 6.10         |
| 250177           | 1.85   | 4.61            | 10.71        |
| .177125          | 1.43   | 3.56            | 14.27        |
| .125088          | 2.83   | 7.05            | 21 .32       |
| .088062          | 5.42   | 13.50           | 34.82        |
| .062055          | 3.60   | 9.00            | 43.82        |
| .055031          | 8.10   | 21.00           | 64.82        |
| .031015          | 4.20   | 10.50           | 75.32        |
| .015009          | 4.80   | 12.00           | 87.32        |
| <.∞9             | 5.40   | 13 00           | 100.32       |

# Sample No. YK-36 (0')

| <b>≥</b> 2.00 | 0.07 | 0.22  | 0.22          |
|---------------|------|-------|---------------|
| 2.00-1.40     | 0.00 | 0.00  | 0.22          |
| 1.40-1.00     | 0.04 | 0.13  | 0.35          |
| 1.00710       | 0.04 | 0.13  | 0.48          |
| .710500       | 0.04 | 0.13  | 0.61          |
| .500350       | 0.04 | 0.13  | 0.74          |
| .350250       | 0.15 | 0.48  | 1.22          |
| -250177       | 0.24 | 0.77  | 1.99          |
| .177125       | 0.37 | 1.18  | 3.17          |
| .125088       | 0.42 | 1.34  | 4.51          |
| .088062       | 0.39 | 1.25  | 5.76          |
| .062055       | 1.00 | 3.20  | 8.96          |
| .055031       | 3.00 | 9.50  | 18.46         |
| .031015       | 4.70 | 14.90 | 33.36         |
| .015009       | 5.40 | 17.20 | <b>5</b> 0.56 |
| <.009         |      | 47.60 | 98.16         |

Core YE 18 Depth 6'

Md = 0.048

Arithmetic Parameters Geometric Parameters

Q<sub>1</sub> = 0.015

 $QD_a = 0.033$ 

QD<sub>3</sub> = 2.28

 $Q_3 = 0.078$   $P_{90} = 0.0086$ 

 $SK_a = -0.01$ 

 $Kq_{a} = -0.184$ 

Sk = 0.518

 $P_{10} = 0.18$ 





| Damble No. IX-30 () | Sample | No. | YK-36 | (5') |
|---------------------|--------|-----|-------|------|
|---------------------|--------|-----|-------|------|

| Grade Size mm. | Weight | % in Grade Size | Cumulative 9  |
|----------------|--------|-----------------|---------------|
| 1.40-1.00      | 0.11   | 0.22            | 0.22          |
| 1.00710        | 0.15   | 0.31            | 0.53          |
| .710500        | 0.19   | 0.39            | 0.92          |
| .500350        | 0.41   | 0.84            | 1.76          |
| .350250        | 7.00   | 14.30           | 16.06         |
| .250177        | 15.45  | 31.50           | 47.56         |
| .177125        | 15.14  | 30.90           | 78.46         |
| .125088        | 5.24   | 10.70           | 89.16         |
| .089062        | 1.11   | 2.26            | 91.42         |
| .062055        | 0.10   | 0.20            | 91.62         |
| .055031        | 0.30   | 0.60            | 92.22         |
| .031015        | 0.30   | 0.60            | 92.82         |
| .015009        | 0.50   | 1.00            | 93.82         |
| <.009          | -      | 5.80            | 99.62         |
|                |        |                 | 3 <del></del> |

# Sample No. YK-37 (0')

| 00. 2 <b>د</b> | 0.89  | 1.87          | 1.87           |
|----------------|-------|---------------|----------------|
| 2.00-1.40      | 0.11  | 0.23          | 2.10           |
| 1.40-1.00      | 0.22  | 0.46          | 2.56           |
| 1.00710        | 0.17  | 0 <b>.3</b> 6 | 2.92           |
| .710500        | 0.30  | 0.63          | 3.55           |
| .500350        | 0.58  | 1.22          | 4.77           |
| .350250        | 7.50  | 15.80         | 20.57          |
| .250177        | 17.03 | 35.80         | <b>56.3</b> 7  |
| .177125        | 9.74  | 20.40         | 76. <b>7</b> 7 |
| .125088        | 4.52  | 9.50          | 86.27          |
| .088062        | 1.09  | 2.30          | 88.57          |
| .062055        | 1.00  | 2.10          | 90.67          |
| .055031        | 0.10  | 0.21          | 90.88          |
| .031015        | 0.00  | 0.00          | 90.88          |
| .015009        | 0.90  | 1.90          | 92.78          |
| <.099          |       | 6.50          | 99.28          |

Core YK 36 Depth 5'

Md = 0.155= 0.132Q3 = 0.215

= 0.08

QD = 0.04

Arithmetic

Parameters

Parameters

Geometric

 $QD_g = 1.259$ 

 $SK_a = 0.018$ 

Kq = -0.205

Sk = 1.225

P<sub>10</sub> = 0.275



Core YK 37 Depth O'

$$Md = 0.182$$

$$Q_1 = 0.135$$

$$P_{00} = 0.046$$

$$QD_a = 0.05$$

$$SK_a = 0.003$$

$$Kq_{a} = -0.397$$

$$QD_g = 1.318$$

$$Sk = 0.96$$



| Sample No. YK | (-37 (2'6'') |
|---------------|--------------|
|---------------|--------------|

| C                  | Grade Size mm. | Weight | % in Grade Size | Cumulative % |
|--------------------|----------------|--------|-----------------|--------------|
|                    | >1.00          | 0.00   | 0.00            |              |
| נ                  | .00710         | 0.02   | 0.05            | .05          |
|                    | .710500        | 0.12   | 0.25            | .30          |
|                    | 500350         | 0.37   | 0.82            | 1.12         |
|                    | 350250         | 4.68   | 10.50           | 11.62        |
|                    | 250177         | 15.51  | 35.00           | 46.62        |
|                    | .177125        | 15.63  | 35.00           | 81.62        |
|                    | .125088        | 5.04   | 11.30           | 92.92        |
|                    | .088062        | 1.34   | 3.00            | 95.92        |
|                    | .062055        | 0.20   | 0.45            | 96.37        |
|                    | .055031        | 0.20   | 0.45            | 96.82        |
|                    | .031015        | 0.20   | 0.45            | 97.27        |
|                    | .015009        | 0.20   | 0.45            | 97.72        |
|                    | ≺.009          |        | 0.90            | 98.62        |
| Sample No. YK-38 ( | 0')            |        |                 |              |
| Sample No. 1K-30 ( | <b>o</b> ,     |        |                 |              |
|                    | >2.00          | 0.01   | 0.02            | 0.02         |
| 2                  | 2.00-1.40      | 0.00   | 0.00            | 0.02         |
|                    | 1.40-1.00      | 0.01   | 0.02            | 0.04         |
|                    | 1.00710        | 0.05   | 0.12            | 0.16         |
|                    | .710500        | 0.11   | 0.25            | 0.41         |
|                    | .500350        | 0.43   | 1.00            | 1.41         |
|                    | .350250        | 3.24   | 7.50            | 8.91         |
|                    | .250177        | 10.48  | 24.30           | 33.21        |
|                    | .177125        | 10.20  | 23.70           | 56.91        |
|                    | .125088        | 5.76   | 13.40           | 70.31        |
|                    | .088062        | 3.26   | 7.55            | 77.86        |
|                    | .062055        | 1.70   | 3.90            | 81.76        |
|                    | .055031        | 1.50   | 3.50            | 85.26        |
|                    | .031015        | 1.30   | 3.00            | 88.26        |
|                    | .015009        | 1.00   | 2.30            | - 90.56      |
|                    | <.009          |        | 4.80            | 95.36        |

Core YK 37 Depth 2'6"

$$Md = 0.17$$

$$Q_1 = 0.135$$

$$Q_3 = 0.21$$

$$P_{90} = 0.1$$

$$QD_a = 0.037$$

$$SK_a = 0.007$$

$$Kq_{a} = -0.25$$

Geometric Parameters

$$QD_g = 1.245$$

$$sk = 0.98$$





Core YK 38 Depth 0'

Md = 0.14

 $Q_1 = 0.071$ 

 $\theta_3 = 0.19$ 

 $P_{90} = 0.01$ 

P<sub>10</sub> = 0.24

Arithmetic Parameters

 $QD_a = 0.06$ 

 $SK_a = 0.12$ 

 $Kq_{a} = -0.261$ 

Geometric Parameters

 $QD_g = 1.645$ 

Sk = 0.694



Sample No. YK-38 (1'6")

| Gra                   | de Size mm.      | Weight       | ≸ in Grade Size | Cumulative \$  |
|-----------------------|------------------|--------------|-----------------|----------------|
|                       | <b>&gt;</b> 2.00 | 0.31         | 0.62            | 0.62           |
|                       | 0-1.40           | 0.25         | 0.50            | 1.12           |
| 1.4                   | 0-1.00           | 0.47         | 0.94            | 2.06           |
| 1.0                   | 0710             | 0.73         | 1.46            | 3.52           |
|                       | 0500             | 1.18         | 2.36            | 5.88           |
|                       | 0350             | 2.15         | 4.31            | 10.19          |
| .35                   | 0 <b>25</b> 0    | 8.55         | 17.10           | 27.29          |
|                       | 0177             | 13.80        | 27.60           | 54.89          |
|                       | 7125             | 14.68        | 29.20           | 84.09          |
|                       | 5088             | 4 .92        | 9.85            | 93.94          |
|                       | 8062             | 0.94         | 1.88            | 95.82          |
|                       | 2055             | 0.20         | 0.40            | 96.22          |
|                       | 5031             | 0.30         | 0.60            | 96.82          |
| _                     | 1015             | 0.50         | 1.00            | 97.82          |
| .01                   | 5009             | 0.40         | 0.80            | 98.62          |
|                       | <.009            |              | 2.60            | 101.22         |
| Sample No. YK-38 (5') | <b>&gt;</b> 2.00 | <b>5.</b> 48 | 11.18           | 11 10          |
| 2.00                  | 0-1.40           | 1.07         | 2.18            | 11.10          |
|                       | 0-1.00           | 1.20         | 2.34            | 13.28<br>15.62 |
|                       | 0710             | 1.37         | 2.78            | 18.40          |
|                       | 0500             | 2.13         | 4.34            | 22.74          |
|                       | 0350             | 3.30         | 6.70            | 29.44          |
| .350                  | 0- <b>.25</b> 0  | 6.80         | 13.80           | 43.24          |
| .250                  | 0 .177           | 7.78         | 15.60           | 59.04          |
|                       | 7125             | 11.64        | 23.70           | 82.74          |
|                       | 5088             | 4.02         | 8.15            | 90.89          |
|                       | 3 .062           | 1.00         | 2.02            | 92.91          |
|                       | 2055             | 0.30         | 0.60            | 93.51          |
|                       | 5 .031           | 0.50         | 1.00            | 94.51          |
|                       | 1 .015           | 0.30         | 0.60            | 95.11          |
|                       | 5009<br>000      | 0.55         | 1.20            | 96.31          |
|                       | <.009            |              | 3.60            | 99.91          |
|                       |                  |              |                 |                |

Core YK 38 Depth 1'6"

Md = 0.19Q, = 0.1h

Q<sub>3</sub> = 0.26

P<sub>90</sub> = 0.11

 $P_{10} = 0.37$ 

Arithmetic Parameters

QD<sub>a</sub> = 0.06

 $SK_a = 0.01$ 

Kq = -0.231

Geometric Parameters

 $QD_g = 1.36$ 

Sk = 1.01





Core YK 38 Depth 5'

Md = 0.21

 $Q_1 = 0.137$ 

 $Q_3 = 0.43$ 

 $P_{90} = 0.092$ 

 $P_{10} = 2.7$ 

Arithmetic Parameters

 $QD_a = 0.146$ 

 $SK_a = 0.073$ 

 $Kq_{a} = -0.056$ 

Geometric Parameters

 $QD_g = 1.77$ 

Sk = 1.33

