Part II: Using FD Theory to do Database Design

Recall that poorly designed table?

part	manufacturer	manAddress	seller	sellerAddress	price
1983	Hammers 'R Us	99 Pinecrest	ABC	1229 Bloor W	5.59
8624	Lee Valley	102 Vaughn	ABC	1229 Bloor W	23.99
9141	Hammers 'R Us	99 Pinecrest	ABC	1229 Bloor W	12.50
1983	Hammers 'R Us	99 Pinecrest	Walmart	5289 St Clair W	4.99

- We can now express the relationships as FDs:
 - ◆ part → manufacturer
 - ♦ manufacturer → address
 - ♦ seller → address
- The FDs tell us there can be redundancy, thus the design is bad.
- That's why we care about FDs.

Decomposition

◆To improve a badly-designed schema R(A₁, ... A_n), we will decompose it into smaller relations

 $R1(B_1, ... B_j)$ and $R2(C_1, ... C_k)$ such that:

- $R1 = \pi_{B1, ... Bj}(R)$
- $R2 = \pi_{C1, ... Ck}(R)$
- $R1 \bowtie R2 = R$

 $R(A_1, ... A_n)$

Set of attributes: A

Decompose into:

- $R1(B_1, ... B_i)$

Set of attributes: B, and

- $R2(C_1, ... C_k)$

Set of attributes: C

$$B \cup C = A$$
, $R1 \bowtie R2 = R$

$$R1 \bowtie R2 = R$$

 $R1 = \pi_B(R)$

$$R2 = \pi_{C}(R)$$

But which decomposition?

- Decomposition can definitely improve a schema.
- But which decomposition?
 There are many possibilities.
- And how can we be sure a new schema doesn't exhibit other anomalies?
- Boyce-Codd Normal Form guarantees it.

Boyce-Codd Normal Form

- We say a relation R is in BCNF if for every nontrivial FD $X \rightarrow Y$ that holds in R, X is a superkey.
 - Remember: *nontrivial* means *Y* is not contained in *X*.
 - Remember: a *superkey* doesn't have to be minimal.
- [Exercise]

Intuition

In other words, BCNF requires that:
Only things that functionally determine
everything
can functionally determine anything.
Why is the BCNF property valuable?

Note:

- FDs are not the problem. They are facts!
- The schema (in the context of the FDs) is the problem.

R is a relation; F is a set of FDs. Return the BCNF decomposition of R, given these FDs.

BCNF_decomp(R, F):

If an FD $X \rightarrow Y$ in F violates BCNF

Compute X^+ .

Replace *R* by two relations with schemas:

$$R_1 = X^+$$

 $R_2 = R - (X^+ - X)$

Project the FD's F onto R_1 and R_2 .

Recursively decompose R_1 and R_2 into BCNF.

[Example]

Decomposition Picture

3) Everything except the new stuff is the other new relation. *X* is in both new relations to make a connection between them.

Some comments on BCNF decomp

- If more than one FD violates BCNF, you may decompose based on any one of them.
 - So there may be multiple results possible.
- The new relations we create may not be in BCNF. We must recurse.
 - We only keep the relations at the "leaves".
- How does the decomposition step help? [Exercise]

Speed-ups for BCNF decomposition

- Don't need to know any keys.
 - Only superkeys matter.
- And don't need to know all superkeys.
 - Only need to check whether the LHS of each FD is a superkey.
 - Use the closure test (simple and fast!).

BCNF

- Every attribute depends on:
 - The key
 - The whole key
 - And nothing but the key...

so help me Codd....

More speed-ups

- When projecting FDs onto a new relation, check each new FD:
 - Does the new relation violate BCNF because of this FD?
- If so, abort the projection.
 - You are about to discard this relation anyway (and decompose further).

Properties of Decompositions

What we want from a decomposition

- 1. No anomalies.
- 2. Lossless Join: It should be possible to
 - a) project the original relations onto the decomposed schema
 - b) then reconstruct the original by joining. We should get back exactly the original tuples.
- Dependency Preservation:
 All the original FD's should be satisfied.

What is lost in a "lossy" join?

- For any decomposition, it is the case that:
 - $r \subseteq r_1 \bowtie ... \bowtie r_n$
 - I.e., we will get back every tuple.
- But it may not be the case that:
 - $r \supseteq r_1 \bowtie ... \bowtie r$
 - I.e., we can get spurious tuples.
- [Exercise]

What BCNF decomposition offers

- 1. No anomalies: ✓ (Due to no redundancy)
- 2. Lossless Join: ✓ (Section 3.4.1 argues this)
- 3. Dependency Preservation: X

The BCNF *property* does not guarantee lossless join

- If you use the BCNF decomposition algorithm, a lossless join is guaranteed.
- If you generate a decomposition some other way
 - you have to check to make sure you have a lossless join
 - even if your schema satisfies BCNF!
- We'll learn an algorithm for this check later.

Preservation of dependencies

- BCNF decomposition does not guarantee preservation of dependencies.
- I.e., in the schema that results, it may be possible to create an instance that:
 - satisfies all the FDs in the final schema,
 - but violates one of the original FDs.
- Why? Because the algorithm goes too far — breaks relations down too much.
- [Exercise]

3NF is less strict than BCNF

- ◆ 3rd Normal Form (3NF) modifies the BCNF condition to be less strict.
- An attribute is *prime* if it is a member of any key.
- A violates 3NF iff X is not a superkey and A is not prime.
- ◆I.e., it's ok if X is not a superkey as long as A is prime.
- [Exercise]

F is a set of FDs; L is a set of attributes. Synthesize and return a schema in 3rd Normal Form.

3NF_synthesis(*F, L*):

Construct a minimal basis M for F.

For each FD $X \rightarrow Y$ in M

Define a new relation with schema $X \cup Y$.

If no relation is a superkey for *L*Add a relation whose schema is some key.

[Example]

3NF synthesis doesn't "go too far"

- BCNF decomposition doesn't stop decomposing until in all relations:
 - \rightarrow if $X \rightarrow A$ then X is a superkey.
- 3NF generates relations where:
 - $X \rightarrow A$ and yet X is *not* a superkey, but A is at least prime.
- [Example]

What a 3NF decomposition offers

- 1. No anomalies : X
- 2. Lossless Join: ✓
- 3. Dependency Preservation: <
- Neither BCNF nor 3NF can guarantee all three! We must be satisfied with 2 of 3.
- lacktriangle Decompose too far \Rightarrow can't enforce all FDs.
- lacktriangle Not far enough \Rightarrow can have redundancy.
- We consider a schema "good" if it is in either BCNF or 3NF.

How can we get anomalies?

- ◆3NF synthesis guarantees that the resulting schema will be in 3rd normal form.
- This allows FDs with a non-superkey on the LHS.
- This allows redundancy, and thus anomalies.

How do we know...?

- ... that the algorithm guarantees:
- ◆3NF: A property of minimal bases [see the textbook for more]
- Preservation of dependencies: Each FD from a minimal basis is contained in a relation, thus preserved.
- Lossless join: We'll return to this once we know how to test for lossless join.

"Synthesis" vs "decomposition"

- 3NF synthesis:
 - We build up the relations in the schema from nothing.
- BCNF decomposition:
 - We start with a bad relation schema and break it down.

Testing for a Lossless Join

- ♦ If we project R onto R_1 , R_2 ,..., R_k , can we recover R by rejoining?
- We will get all of R.
 - Any tuple in R can be recovered from its projected fragments. This is guaranteed.
- But will we get only R?
 - Can we get a tuple we didn't have in R? This part we must check.

Aside: when we <u>don't</u> need to test for lossless Join

- Both BCNF decomposition and 3NF synthesis guarantee lossless join.
- So we don't need to test for lossless join if the schema was generated via BCNF decomposition or 3NF synthesis.
- But merely satisfying BCNF or 3NF does not guarantee a lossless join!

The Chase Test

- Suppose tuple t appears in the join.
- Then t is the join of projections of some tuples of R, one for each R_i of the decomposition.
- ◆Can we use the given FD's to show that one of these tuples must be t?
- [Example]

Setup for the Chase Test

- Start by assuming t = abc....
- For each i, there is a tuple s_i of R that has a, b, c,... in the attributes of R_i .
- s_i can have any values in other attributes.
- We'll use the same letter as in t, but with a subscript, for these components.

The algorithm

- 1. If two rows agree in the left side of a FD, make their right sides agree too.
- 2. Always replace a subscripted symbol by the corresponding unsubscripted one, if possible.
- 3. If we ever get a completely unsubscripted row, we know any tuple in the project-join is in the original (*i.e.*, the join is lossless).
- 4. Otherwise, the final tableau is a counterexample (*i.e.*, the join is lossy).

[Exercise]