形式语言与自动机 作业三

cycleke

1 第一题

Design context-free grammars for the following languages:

1.1 (a)

The set $\{a^ib^jc^k|i\neq j\ or\ j\neq k\}$, that is, the set of strings of a's followed by b's followed by c's, such that there are either a different number of a's and b's or a different number of b's and c's, or both.

解 1.1 我们定义一个 CFG $G = (\{S, A, B, C, D, E\}, \{a, b, c\}, P, S)$, 其中 P 为

 $S \rightarrow ADC|DBC|ABE|AEC|AD|DB|BE|EC$

 $A \rightarrow aA|a$

 $B \rightarrow bB|b$

 $C \rightarrow cC|c$

 $D \to aDb|\varepsilon$

 $E \rightarrow bEc|\varepsilon$

其中 A,B,C 表示各个字符的正闭包,D 和 E 则分别表示 ab 相等和 bc 相等的字符串,而我们按照 i,j,k 的关系来生成 S。

1.2 (b)

The set of all strings a's and b's that are not of the form ww, that is, not equal to any string repeated.

 \mathbf{H} 1.2 我们定义一个 CFG $G = (\{S, A, B\}, \{a, b\}, P, S)$, 其中 P 为

 $S \rightarrow AB|BA|A|B$

 $A \rightarrow aAa|aAb|bAa|bAb|a$

 $B \rightarrow aBa|aBb|bBa|bBb|b$

其中 A, B 表示中心为 a, b 的奇数长度的字符串,于是我们可以使用 A, B 来表示奇数长度的串而对于偶数长度的串,我们利用 AB, BA 来构造,而 AB 的中心不同所以他们的连接一定不是回文串。

1.3 (c)

The set of all strings with twice as many 0's as 1's.

解 1.3 我们定义一个 CFG
$$G = (\{S\}, \{0, 1\}, P, S)$$
,其中 P 为 $S \rightarrow \varepsilon |1S00|00S1|0S1S0|SS$

1.4 (d)

L(00*11*22*00*11*22*00*11*22*)

解 1.4 我们定义一个 CFG $G = (\{S\}, \{0, 1, 2\}, P, S)$, 其中 P 为

$$S \rightarrow AAA$$

$$A \rightarrow BCD$$

$$B \rightarrow 0|0B$$

$$C \rightarrow 1|1C$$

$$D \rightarrow 2|2C$$

2 第二题

Consider the CFG G defined by productions:

$$S \rightarrow aS|Sb|a|b$$

Prove by induction on the string length that no string in L(G) has ba as a substring.

证明 我们需要证明 $w \in L(G)$, w 不包含子串 ba。

基础: 当 |w| = 1 时,显然 w 不包含子串 ba。

归纳: 假设对于所有的 $n \le k, w \in L(G), |w| = n$,串 w 均不包含子串 ba 。对于串 w, |w| = k + 1,根据 G 的文法,我们可以分为两种情况

- 由 $S \to aS$,有 w = as, |s| = k。依据归纳假设,s 不包含子串 ba。我们只是在 s 头部添加了一个字符 a,只会产生两种新子串 aa, ab,而 $aa \neq ba$, $ab \neq ba$ 所以不会产生子串 ba。
- 由 $S \to Sb$,有 w = sb, |s| = k。依据归纳假设,s 不包含子串 ba。我们只是在 s 尾部添加了一个字符 b,只会产生两种新子串 ab, bb,而 $ab \ne ba$, $bb \ne ba$ 所以不会产生子串 ba。

所以对于长度为k+1的串,它亦不包含子串 ba。

综上所述, L(G) 中的字符串不会包含 ba。