Chapitre 2

Structures algébriques

1. Groupes

Introduction : utilité de la notion de structures algébriques, de morphismes

1.1. Définition et premières propriétés

Définition 1 : groupe

Soit G un ensemble. On dit que (G,*) est un groupe si

- * est une loi de composition interne sur G.
- * est associative.
- ullet G possède un élément neutre pour *.
- Tout élément de G admet pour * un symétrique appartenant à G.

Si de plus * est commutative, le groupe est dit abélien ou commutatif.

Propriétés : dans un groupe (G,*)

- Le neutre est unique
- Le symétrique d'un élément est unique : on le note a^{-1} .
- $(a^{-1})^{-1} = a$
- Tout élément est **régulier** pour la loi * .
- Démonstration 1

1.2. Exemples de groupes « connus »

- o Groupes de nombres : $(\mathbb{R},+),(\mathbb{C},+),(\mathbb{R}_+^*,\times),(\mathbb{C}^*,\times)$
- o Groupe $GL_n(K)$ des matrices inversibles (loi \times)
- \circ Groupe orthogonal O(E) (loi \circ)
- o Groupe symétrique d'ordre n, noté \mathfrak{S}_n (loi \circ)

1.3. <u>Sous-groupes</u>

Définition 2 : sous-groupe

Soit (G,*) un groupe. On dit que H est un sous-groupe de G (pour la loi *) si $H \subset G$ et si (H,*) est lui-même un groupe.

Propriétés : si ${\cal H}$ est un sous-groupe de ${\cal G}$

- Le neutre de H est nécessairement le neutre de G.
- ullet Le symétrique d'un élément dans H est aussi son symétrique dans G.
- Démonstration

Proposition: caractérisations d'un sous-groupe

Soit (G,*) un groupe dont l'élément neutre est noté e.

Les trois affirmations suivantes sont équivalentes :

- 1) H est un sous-groupe de G.
- 2) $H \subset G$, $e \in H$ et $\forall (a,b) \in H^2$, $a * b \in H$ et $a^{-1} \in H$
- 3) $H \subset G$, $e \in H$ et $\forall (a,b) \in H^2, a * b^{-1} \in H$
- Démonstration **6**
- Exemples:
 - Ohaîne de groupes pour l'addition : $\mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$
 - o Chaîne de groupes pour la multiplication : $\{1\} \subset \{-1,1\} \subset \mathbb{Q}^* \subset \mathbb{R}^* \subset \mathbb{C}^*$.
 - o Autre chaîne de groupes pour la multiplication : $\mathbb{Q}_{+}^{*} \subset \mathbb{R}_{+}^{*} \subset \mathbb{R}^{*}$.

Propriété : intersection de deux sous-groupes

L'intersection de deux sous-groupes de (G,*) est aussi un sous-groupe de G.

• Démonstration **7**

1.4. Sous-groupes de \mathbb{Z}

Proposition : sous-groupes de $(\mathbb{Z},+)$

Les seuls sous-groupes $(\mathbb{Z},+)$ sont du type $n\mathbb{Z}$ où $n \in \mathbb{N}$.

• Démonstration 8

1.5. Sous-groupes de \mathbb{R} (complément hors-programme)

- On rappelle (MPSI) que tout intervalle de \mathbb{R} rencontre \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$: on dit que \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont **denses** dans \mathbb{R} (notion reprise au chapitre 5).
- Il est bon de connaître le résultat suivant (hors-programme) :

Proposition : sous-groupes de $(\mathbb{R},+)$

Les seuls sous-groupes $(\mathbb{R},+)$ sont :

- ou bien du type $\alpha \mathbb{Z}$ où $\alpha \in \mathbb{R}_+$
- ou bien denses dans \mathbb{R} .
- Idée de la démonstration (plan) 9
- Les deux prototypes de sous-groupes de \mathbb{R} sont ainsi \mathbb{Z} et \mathbb{Q} .

1.6. Groupe-produit

Proposition - Définition 4 : groupe-produit

Soient $(G_1,*)$ et (G_2,\circ) deux groupes.

On définit sur $G_1 \times G_2$ une loi notée \otimes définie par :

$$\forall (a,b) \in G_1 \times G_2, \forall (c,d) \in G_1 \times G_2: (a,b) \otimes (c,d) = (a*c,b \circ d)$$

Alors $(G_1 \times G_2, \otimes)$ est un groupe.

Ce groupe est appelé le groupe-produit des groupes $(G_1,*)$ et (G_2,\circ) .

- Démonstration à faire en exercice (aucune difficulté majeure).
- Exemple : en définissant (a,b)+(c,d)=(a+c,b+d), on démontre que $(\mathbb{R}^2,+)$ est naturellement muni de cette structure de groupe-produit.
- De la même manière, on obtient des structures naturelles de groupes pour $(\mathbb{R}^n,+),(\mathbb{C}^n,+)$.

1.7. Morphismes de groupes

a) <u>Définition</u>

Définition 6 : morphisme de groupes

On appelle morphisme du groupe $(G_1,*)$ vers le groupe (G_2,\circ) toute application $\Phi:G_1\to G_2$ telle que $\forall (x,y)\in G_1^{\ 2}:\Phi(x*y)=\Phi(x)\circ\Phi(y)$.

Si Φ est de plus bijective, on parle d'isomorphisme de groupes

b) Exemples

- $\qquad \qquad \ln: (\mathbb{R}_+^*, \times) \to (\mathbb{R}, +) \ \text{et} \ \exp: (\mathbb{R}, +) \to (\mathbb{R}_+^*, \times) \ \text{sont des isomorphismes}.$
- **↓** La signature $\varepsilon: (\mathfrak{S}_n, \circ) \to (\{-1,1\}, \times)$ est un morphisme de groupes
- lacktriangle Le déterminant $d\acute{e}t: (GL_n(\mathbb{K}), \times) \to (\mathbb{K}^*, \times)$ est un morphisme de groupes

c) Propriétés

Propriété 1 : image du neutre, du symétrique

Soit Φ un morphisme du groupe $(G_1,*)$ vers le groupe (G_2,\circ) .

Soit e_1 (resp. e_2) le neutre de G_1 (resp. G_2).

- 1. $\Phi(e_1) = e_2$
- 2. $\forall x \in G : \Phi(x^{-1}) = [\Phi(x)]^{-1}$
- Noter pour 1. la situation identique à celle de l'algèbre linéaire
- Démonstration

Propriété 2 : image directe et image réciproque de sous-groupes

Soit Φ un morphisme du groupe $(G_1,*)$ vers le groupe (G_2,\circ) .

Soit H_1 (resp. H_2) un sous-groupe de G_1 (resp. G_2).

- 1. $\Phi(H_1)$ est un sous-groupe de G_2 .
- 2. $\Phi^{-1}(H_2)$ est un sous-groupe de G_1 .
- Démonstration 11 . En particulier :

Propriété 3 : image et noyau d'un morphisme

Soit Φ un morphisme du groupe $(G_1,*)$ vers le groupe (G_2,\circ) de neutre e_2 .

- 1. $\operatorname{Im}(\Phi) = \Phi(G_1)$ est un sous-groupe de G_2 appelé image de Φ .
- 2. Ker $(\Phi) = \Phi^{-1}(\{e_2\}) = \{x \in G_1 / \Phi(x) = e_2\}$ est un sous-groupe de G_1 appelé noyau de Φ .
- Démonstration 12
- Exemple d'utilisation du noyau :

Groupe	Morphisme utilisé	Sous-groupe
$(\mathfrak{S}_{_{n}},\circ)$	$\varepsilon: (\mathfrak{S}_n, \circ) \to (\{-1,1\}, \times)$	Groupe alterné \mathfrak{A}_n
$(O(E),\circ)$	$d\acute{e}t:(O(E),\circ)\to (\{-1,1\},\times)$	Groupe spécial orthogonal $SO(E)$
(\mathbb{C}^*, \times)	$Module: (\mathbb{C}^*, \times) \to (\mathbb{R}_+^*, \times)$	$U = \{z \in \mathbb{C} / z = 1\}$

Propriété 4 : condition d'injectivité d'un morphisme de groupe

Soit Φ un morphisme du groupe $(G_1,*)$ de neutre e_1 vers le groupe (G_2,\circ) . Φ est injectif si et seulement si $\operatorname{Ker}(\Phi)=\{e_1\}$

- Démonstration 13
- Noter que la situation est identique à celle de l'algèbre linéaire.

Propriété 5 : isomorphisme réciproque

Soit Φ un isomorphisme du groupe $(G_1,*)$ sur le groupe (G_2,\circ) .

Alors Φ^{-1} est un isomorphisme du groupe (G_2, \circ) sur le groupe $(G_1, *)$.

• Démonstration

2. Anneaux

2.1. Définition

Définition 1 : anneau, anneau commutatif

On dit que $(A, +, \times)$ est un anneau si

- (A,+) est un groupe commutatif (neutre noté 0_A).
- $\bullet~\times$ est une loi de composition interne, associative et A possède un neutre distinct de 0_A , noté 1_A (souvent appelé l'élément ${\bf unit\acute{e}}$ de l'anneau) .
- × est distributive par rapport à la loi +

Si de plus \times est commutative, l'anneau est dit commutatif.

2.2. Exemples

- $(\mathbb{Z},+,\times)$, $(\mathbb{R}[X],+,\times)$, $(\mathcal{L}(E),+,\circ)$, $(\mathcal{M}_n(K),+,\times)$ sont des anneaux
 - 🖶 seuls les deux premiers sont commutatifs et intègres (cf. plus loin)

2.3. Groupe des inversibles d'un anneau

• On note que pour la loi \times , les éléments d'un anneau A ne sont pas nécessairement inversibles. On rappelle à ce sujet la propriété :

Proposition: groupe des inversibles d'un anneau

Soit $(A, +, \times)$ est un anneau.

Soit A^* l'ensemble de ses éléments inversibles (pour la loi \times).

Alors (A^*,\times) est un groupe.

• Exemples: $(GL(E), \circ)$, $(GL_n(K), \times)$, $(\{-1,1\}, \times)$, (\mathbb{R}^*, \times)

2.4. Autre exemple d'anneau : produit d'anneaux

Définition 2 : anneau produit

Si $(A_1,+,\times)$ et $(A_2,+,\times)$ sont des anneaux, $(A_2\times A_2,\oplus,\otimes)$ est un anneau appelé anneau-produit des anneaux A_1 et A_2 si on a posé :

$$\forall (a,b) \in A_2 \times A_2, \forall (c,d) \in A_2 \times A_2 :$$

$$(a,b) \oplus (c,d) = (a+c,b+d) \quad \text{ et } \quad (a,b) \otimes (c,d) = (a \times c,b \times d)$$

- On généralise sans difficulté cette définition à un produit de n anneaux

2.5. Sous-anneau

Définition 2 : sous-anneau

On dit que $(A',+,\times)$ est un sous-anneau d'un anneau $(A,+,\times)$ si $A'\subset A$ et si $(A',+,\times)$ est lui-même un anneau <u>de même unité</u> 1_A .

Proposition: caractérisation d'un sous-anneau

 $(A',+,\times)$ est un sous-anneau de l'anneau A si :

- $A' \subset A$
- $1_A \in A'$
- $\forall a,b \in A'^2 : a+b \in A', (-a) \in A' \text{ et } a \times b \in A'$
- Démonstration 1
- Exemple : le plus petit sous-anneau de \mathbb{R} est \mathbb{Z} 18

2.6. Morphisme d'anneaux

Définition 2 : morphisme d'anneau

Soient $(A, +, \times)$ et $(B, +, \times)$ deux anneaux et une application $\Phi: A \to B$.

On dit que Φ est un morphisme d'anneaux si

- $\forall a,b \in A : \Phi(a+b) = \Phi(a) + \Phi(b)$
- $\forall a,b \in A : \Phi(a \times b) = \Phi(a) \times \Phi(b)$
- $\bullet \quad \Phi(1_A) = 1_B$
- C'est en particulier un morphisme de groupes, et donc $\Phi(0_A) = 0_B$.
- Exemple 1: $z \mapsto \overline{z}$ est un automorphisme du corps $(\mathbb{C}, +, \times)$
- Exemple 2 : $Id_{\mathbb{R}}$ est le seul automorphisme du corps $(\mathbb{R},+,\times)$

Propriété: image d'un anneau par un morphisme

Si Φ est un morphisme d'anneaux de $(A,+,\times)$ vers $(B,+,\times)$, alors $\mathrm{Im}(\Phi)$ est un sous anneau de B.

- Démonstration 19
- Attention : $Ker(\Phi)$ n'est pas un sous-anneau, mais un idéal de A.

2.7. Anneau intègre

Définitions 4 : diviseurs de zéro, anneau intègre

- 1. Soit $(A,+,\times)$ un anneau et a un élément de A. a est un **diviseur de zéro** si $a\neq 0_A \quad \text{et} \quad \exists b\in A\smallsetminus\{0_A\}\ /\ a\times b=0_A$
- 2. Un anneau intègre est un anneau commutatif sans diviseur de zéro.
- Autrement dit, si $(A,+,\times)$ est un anneau commutatif, il est intègre si : $\boxed{\forall (a,b) \in A^2 \,:\, [a \times b = 0_A] \Rightarrow [a = 0_A \text{ ou } b = 0_A]}$
- Exemples : $(\mathbb{Z},+,\times)$ et $(\mathbb{R}[X],+,\times)$ sont des anneaux intègres.
- Contre-exemples : $(\mathcal{L}(E), +, \circ)$ et $(\mathcal{M}_n(K), +, \times)$ ne sont pas intègres. <u>Exercice</u> : le justifier par deux arguments très distincts 20.

3. Corps

3.1. Définition

• On note que dans un anneau A, 0_A n'est jamais inversible (exercice in TD).

Définition 1 : corps

Un corps $(K, +, \times)$ est un anneau commutatif dans lequel tout élément non nul est inversible.

- Exemples:
 - \circ \mathbb{C} , \mathbb{R} sont des corps.
 - \circ Le corps $\mathbb{R}(X)$ des fractions rationnelles sur \mathbb{R} (Idem pour \mathbb{C}).
- Propriété : tout corps est en particulier un anneau intègre

3.2. Sous-corps

Définition 2 : sous-corps

On dit que $(K',+,\times)$ est un sous-corps d'un corps $(K,+,\times)$ si $K'\subset K$ et si $(K',+,\times)$ est lui-même un corps <u>de même unité</u> 1_K .

Proposition: caractérisation d'un sous-corps

 $(K',+,\!\times)$ est un sous-corps du corps K si :

- $K' \subset K$
- $1_{\scriptscriptstyle K} \in K'$
- $\forall (x,y) \in K'^2 : x + y \in K', (-x) \in K', x \times y \in K'$
- $\forall x \in K' \setminus \{0_K\} : x^{-1} \in K'$
- Justification 21
- Chaînes de corps : $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ et au-delà ? \longrightarrow \mathbb{H} quaternions 22

4. Algèbre

4.1. Définition

Définition 1: K-algèbre

 $(\mathcal{A},+,\!\times\!,.)$ est une $K\!\text{-algèbre si}$

- $(\mathcal{A}, +, \times)$ est un anneau
- $(\mathcal{A}, +, .)$ est un K-espace vectoriel
- $\forall (x,y) \in \mathcal{A}, \ \forall \alpha \in K : \alpha.(x \times y) = (\alpha.x) \times y = x \times (\alpha.y)$

L'algèbre est dite commutative (respectivement intègre) si l'anneau est commutatif (respectivement intègre).

- Exemples:
 - o Tout corps $\mathbb K$ est une $\mathbb K$ -algèbre ($\dim_{\mathbb K}(\mathbb K)=1)$
 - o ${\mathbb C}$ est une ${\mathbb R}$ -algèbre ($\dim_{\mathbb R}$ ${\mathbb C}$ = 2)
 - $\circ \quad (\mathbb{K}[X],+,\!\times,\!.)\,, (\mathcal{L}(E),+,\!\circ,\!.)\,, (\mathcal{M}_{\!\scriptscriptstyle n}(K),+,\!\times,\!.)\,, (\mathcal{F}(X,\mathbb{K}),+,\!\times,\!.)$

4.2. Sous-algèbre

Définition 2 : On dit que \mathcal{A}' est une sous-algèbre d'une \mathbb{K} -algèbre $(\mathcal{A},+,\times,.)$ si $\mathcal{A}'\subset\mathcal{A}$ et si \mathcal{A}' est elle-même une \mathbb{K} -algèbre <u>de même unité</u> $1_{\mathcal{A}}$.

Proposition: caractérisation d'un sous-algèbre

 $(\mathcal{A}',+,\!\times,\!.)$ est une sous-algèbre de la \mathbb{K} -algèbre $(\mathcal{A},+,\!\times,\!.)$ si :

- $\mathcal{A}' \subset \mathcal{A}$, $1_{\mathcal{A}} \in \mathcal{A}'$
- $\forall (x,y) \in \mathcal{A}'^2 : x + y \in \mathcal{A}', \ x \times y \in \mathcal{A}' \ , \ \forall x \in \mathcal{A}', \ \forall \alpha \in \mathbb{K} : \alpha.x \in \mathcal{A}'$
- Justification 23

5. Idéaux

5.1. Définition

Définition : On dit que \mathcal{I} est un idéal de l'anneau commutatif $(A,+,\times)$ si

- $(\mathcal{I},+)$ est un sous-groupe du groupe (A,+)
- $\forall a \in A, \ \forall x \in \mathcal{I} : \ a \times x \in \mathcal{I} \ (\text{surstabilité})$

5.2. Exemples:

 $\bullet \quad$ Exemple 1 : $\{0\}$ et A sont des idéaux de A. A ce sujet :

Si \mathcal{I} est un idéal de A: $[\mathcal{I} = A] \Leftrightarrow [1 \in \mathcal{I}]$

- Exemple 2 : Idéaux de \mathbb{Z} : les seuls idéaux de \mathbb{Z} sont du type $n\mathbb{Z}$
- Exemple 3 : le noyau d'un morphisme d'anneaux est un idéal 26

 \rightleftharpoons ce n'est jamais un sous-anneau de $A: 1_A \not\in Ker(\Phi)!$

5.3. <u>Idéaux de</u> $\mathbb{K}[X]$

Théorème : Les idéaux de $\mathbb{K}[X]$ sont tous du type $(P)=\{P\times Q\,,\,Q\in\mathbb{K}[X]\}$. Si $P\neq 0\,,\,P$ peut être choisi unitaire.

• Démo. **27**

5.4. Applications

a) <u>Exemple 1 : nombres algébriques</u>

Définition : nombre algébrique, transcendant

Un nombre $\alpha \in \mathbb{K}$ (où. $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) est dit algébrique s'il existe un polynôme non nul $P \in \mathbb{K}[X]$ tel que $P(\alpha) = 0$.

Dans le cas contraire, il est dit transcendant.

- Endomorphisme (d'anneaux) d'évaluation : $Eval_{\alpha}: \begin{cases} \mathbb{K}[X] \to \mathbb{K} \\ P \to P(\alpha) \end{cases}$
 - ♣ Justification, nature du noyau

 28
- $\bullet \quad$ Conséquence : polynôme minimal (irréductible) d'un nombre algébrique
- b) Exemple 2 : polynôme minimal d'un endomorphisme, d'une matrice