Markovský model

Davá pravděpodobností distribuci přes současné stavi podmíněné všemi předchozími stavy $P(X_t|X_{t-1},\dots X_0)$

Markovská podmínka specifikuje, že součásná distribuce záleží jenom na té předešlé

$$P(X_t|X_{t-1},...X_0) = P(X_t|X_{t-1})$$

Pokud proměnné X přímo nepozorujeme, ale máme k dispozici pozorvání $P(E_t|X_{0:t-1},E_{1:t})=P(E_t|X_t)$ (současné pozorování závisí pouze na současném stavu) jedná se o skrytý markovský model

DEF Filtrování: Úkol je zjistit, v jakém stavu jsem za daného pozorování $P(X_t|E_{1:t})$

DEF Predikce: Úkol je zjistit, v jakém stavu se možná budu v budoucnu nacházet $P(X_t|E_{1:t})$

DEF Vyhlazování: V jakých stavech jsem nejspíš byl v minulosti $P(X_k|E_{1:t})$ pro $0 \le k \le t$

DEF Vysvětlení: To samé jako vysvětlení ale nezískává distribuci přes stavi ale jenom nejpravděpodobnější cestu $argmax_{x_{1:t}}P(x_{1:t}|E_{1:t})$

Dynamické Bayesovské sítě

???