Algèbre linéaire Chapitre 4

Definition 0.1

Soient V un \mathbb{R} -espace vectoriel et $S \subset V$ une collection de vecteurs dans V. On dit que S est linéairement dépendante (ou liée) s'il existe des vecteurs distincts $v_1, \ldots, v_r \in S$ et des scalaires $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ non tous nuls tels que $\lambda_1 v_1 + \cdots + \lambda_r v_r = 0$. (Autrement dit, s'il existe une combinaison linéaire (non triviale) de vecteurs de S qui se réduit au vecteur nul.) S'il n'existe pas de tels vecteurs dans S, alors on dit que S est linéairement indépendante (ou libre).

Remarque: si $0 \in S$, alors S est liée car $\lambda \cdot 0 = 0$ pour tout $\lambda \in \mathbb{R}$.

Proposition 0.2

Soient V un \mathbb{R} -espace vectoriel et $v_1, \ldots, v_r \in V$ des vecteurs de V. Alors ces derniers sont linéairement dépendants si et seulement s'il existe $1 \leq i \leq r$ tels que $v_i \in \mathrm{Vect}(\{v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_r\})$, c'est-à-dire si et seulement si l'on peut exprimer un des vecteurs de la liste comme une combinaison linéaire des autres.

Proposition 0.3

Soient V un \mathbb{R} -espace vectoriel et $S \subset V$ une famille libre de vecteurs dans V. Alors tout sous-ensemble $T \subset S$ est aussi libre.

Proposition 0.4

Soient V un \mathbb{R} -espace vectoriel et $S \subset V$ une famille liée de vecteurs dans V. Alors toute collection de vecteurs T contenant S est également liée.

Definition 0.5

Soient V un \mathbb{R} -espace vectoriel et $\mathscr{B} \subset V$ un ensemble de vecteurs de V. On dit que \mathscr{B} est une base de V si les deux conditions suivantes sont vérifiées.

- 1. Tout $v \in V$ est une combinaison linéaire de vecteurs de \mathscr{B} , i.e. $\text{Vect}(\mathscr{B}) = V$.
- 2. Le sous-ensemble ${\mathscr B}$ est linéairement indépendant.

Definition 0.6

On dit d'un \mathbb{R} -espace vectoriel V qu'il est de dimension finie s'il possède une base finie. Sinon, on dit que V est de dimension infinie.

Theorem 0.7

Soit V un \mathbb{R} -espace vectoriel de dimension finie. Alors toutes les bases de V sont finies et possèdent le même nombre d'éléments.

Definition 0.8

Soit V un \mathbb{R} -espace vectoriel de dimension finie. Le nombre d'éléments dans une base s'appelle la dimension de V et on le désigne par dim V.

Proposition 0.9

Soit V un \mathbb{R} -espace vectoriel de dimension finie. Alors les deux affirmations suivantes sont vérifiées.

- 1. Si $\{v_1, \ldots, v_r\}$ est un ensemble générateur de V, alors il existe une base \mathscr{B} de V telle que $\mathscr{B} \subset \{v_1, \ldots, v_r\}$. On parle d'extraction de base.
- 2. Si $\{v_1, \ldots, v_r\}$ est une partie libre de V, alors il existe une base \mathscr{B} de V telle que $\{v_1, \ldots, v_r\} \subset \mathscr{B}$. On parle de complétion en une base.

Theorem 0.10

Soit V un \mathbb{R} -espace vectoriel de dimension finie n. Alors les deux affirmations suivantes sont vérifiées.

- 1. Si $S \subset V$ est une famille génératrice qui possède n éléments, alors S est une base de V.
- 2. Si $S' \subset V$ est une famille libre qui possède n éléments, alors S' est une base de V.

Theorem 0.11

Soient V un \mathbb{R} -espace vectoriel de dimension finie et $W \subset un$ sous-espace vectoriel de V. Alors les affirmations suivantes sont vérifiées.

- 1. Le sous-espace vectoriel W est de dimension finie.
- 2. La dimension de W satisfait $\dim W \leq \dim V$.
- 3. $Si \dim W = \dim V$, alors W = V.

Rappel:

Soient $A \in M_{m \times n}(\mathbb{R})$ et $X = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^T$, où x_1, \dots, x_n sont des inconnues. Alors l'ensemble des solutions du système linéaire AX = 0 est un sous-espace vectoriel de \mathbb{R}^n .

Proposition 0.12

Soient A et X comme ci-dessus. Alors la dimension de l'espace des solutions du système AX = 0 est égale au nombre de variable(s) libre(s) dans une forme échelonnée de A.

Proposition 0.13

Soient A et X comme ci-dessus. Pour trouver une base de l'espace des solutions du système AX = b, on pose successivement une des variables libre égale à 1 et toutes les autres égales à 0.

Theorem 0.14

Soient V un \mathbb{R} -espace vectoriel de dimension finie et W_1 , W_2 des sous-espaces vectoriels de V. Alors $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$.

Corollary 0.15

Soient V un \mathbb{R} -espace vectoriel et W_1 , W_2 deux sous-espaces vectoriels de V tels que $V = W_1 \oplus W_2$. Alors $\dim V = \dim W_1 + \dim W_2$.

Definition 0.16

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice de taille $m \times n$ à coefficients réels.

- 1. Le rang-ligne de A est la dimension de l'espace-lignes de A.
- 2. Le rang-colonne de A est la dimension de l'espace-colonnes de A.

Remarques:

- 1. Le rang-ligne de A est plus petit ou égal à n, car c'est un sous-espace vectoriel de \mathbb{R}^n .
- 2. Le rang-ligne de A est plus petit ou égal à m, car engendré par m vecteurs.
- 3. Le rang-colonne de A est plus petit ou égal à m et n, par le même raisonnement.
- 4. Le rang-colonne de A est égal au rang-ligne de A^T .
- 5. Le rang-ligne de A est égal au rang-colonne de A^T .

Proposition 0.17

Soient $A, B \in M_{m \times n}(\mathbb{R})$ des matrices lignes-équivalentes. Alors l'espace-ligne de A est égal à l'espace-ligne de B. Par conséquent, le rang-ligne de A est égal au rang-ligne de B.

Proposition 0.18

Soit A une matrice échelonnée. Alors le rang de A est égal au nombre de pivots. Aussi, une base de l'espace-ligne de A est donnée par les lignes contenant un pivots.

Lemma 0.19

Soient S un système de m équations linéaires à n inconnues, A la matrice des coefficients de S et \hat{A} sa matrice augmentée. Alors S possède une solution si et seulement si le rang-colonne de A est égal au rang-colonne de \hat{A} .

Definition 0.20

Une base ordonnée d'un espace vectoriel V est une suite ordonnée (v_1, \ldots, v_r) de vecteurs dans V telle que $\{v_1, \ldots, v_r\}$ est une base de V.

Definition 0.21

Soient V un \mathbb{R} -espace vectoriel de dimension finie n, $\mathscr{B} = (v_1, \ldots, v_n)$ une base ordonnée de V et $v \in V$. Comme \mathscr{B} est une base de V, il existe des uniques scalaires $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tels que $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$. On appelle $\alpha_1, \ldots, \alpha_n$ les coordonnées de v par rapport à la base \mathscr{B} et on écrit

$$[v]_{\mathscr{B}} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Proposition 0.22

Soient V un \mathbb{R} -espace vectoriel de dimension finie n et $\mathscr{B} = (v_1, \ldots, v_n)$ une base ordonnée de V. Alors les deux affirmations suivantes sont vérifiées.

- 1. Pour tous $v_1, v_2 \in V$, on $a [v_1 + v_2]_{\mathscr{B}} = [v_1]_{\mathscr{B}} + [v_2]_{\mathscr{B}}$.
- 2. Pour tout $v \in V$ et tout $\lambda \in \mathbb{R}$, on a $[\lambda v]_{\mathscr{B}} = \lambda [v]_{\mathscr{B}}$.

Méthode pour trouver une base à partir d'un système de générateurs :

Soient V un \mathbb{R} -espace vectoriel de dimension finie n, $\mathscr{B} = (v_1, \ldots, v_n)$ une base de V, $S \subset V$ une partie finie et W = Vect(S). Pour trouver une base de S et la compléter en une base de V, on procède comme suit.

- 1. Pour chaque $v \in S$, on écrit $[v]_{\mathscr{B}} = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix}^T$.
- 2. On définit la matrice A dont les lignes sont les vecteurs $[v]_{\mathscr{B}}^T$ $(v \in S)$.
- 3. On cherche une base de l'espace-ligne de cette matrice.
- 4. Les vecteurs colonnes correspondants représentent les coordonnées des vecteurs dans une base de W.