

**THE FOLLOWING ARE THE ENGLISH TRANSLATION
OF ANNEXES TO THE INTERNATIONAL PRELIMINARY
EXAMINATION REPORT (ARTICLE 34):**

Amended Sheets (Pages 22-27)

We claim:-

1. The use of compounds of the general formula I

5

I

where

10

A is =N- or =CH-;

X when A is =N- is methyl or a radical of the formula IIa

IIa

15

or when A is =CH- is an R radical;

Y is an R radical or a radical of the formula IIb

20

with either X being a radical of the formula IIa or Y being a radical of the formula IIb;

25

R is hydrogen, halogen, C₁-C₄-alkyl, -SO₃H, -SO₃⁻ Me⁺, -SO₃⁻ N⁺R¹R²R³R⁴, -SO₂NR¹R², -CH₂NR¹R², -CH₂R⁵, -COOH, -COO⁻ N⁺R¹R²R³R⁴, -COOR⁶ or -COR⁶;

30

R¹, R², R³ and R⁴ are each independently hydrogen; C₁-C₂₂-alkyl or C₂-C₂₂-alkenyl whose carbon chain may in either case be interrupted by one or more -O-, -S-, -NR⁷-, -CO- or -SO₂- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C₁-C₄-alkoxy and

IIb

5 acetyl; C₃-C₈-cycloalkyl whose carbon skeleton may be interrupted by one or more -O-, -S-, -NR⁷- or -CO- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C₁-C₄-alkoxy and acetyl; hydroabietyl, abietyl or aryl; R¹ and R² or R¹, R² and R³ may combine to form a 5- to 7-membered cyclic radical which comprises the nitrogen atom and may comprise further hetero atoms;

10 R⁵ is a radical of the formula IIb'

15 R⁶ is one of the R¹ alkyl radicals;

15 R⁷ is hydrogen or C₁-C₄-alkyl;

20 Me is an alkali metal ion;

20 Z and Z' are each independently arylene which may be substituted by one or

more of halogen, -SO₃H, -SO₃⁻ Me⁺, -SO₃⁻ N⁺R¹R²R³R⁴, and C₁-C₁₂-alkyl,

and

25 the rings B¹ and B² may each be independently additionally substituted by one or more identical or different R radicals other than hydrogen,

25 as crystallization modifiers for organic pigments.

2. The use according to claim 1, utilizing compounds of the formula Ia

30 where

X^a is methyl or a radical of formula IIa

Y^a is hydrogen, halogen, C₁-C₄-alkyl or a radical of the formula IIb

5

with either X^a being a radical of the formula IIa or Y^a being a radical of the formula IIb;

10

R^{a1}, R^{a2} are each hydrogen, halogen, C₁-C₄-alkyl or a D radical, although R^{a1} can be a D radical only when X is methyl and R^{a2} can be a D radical only when X is a radical of the formula IIa;

15

D is -SO₃H, -SO₃⁻ Me⁺, -SO₃⁻ N⁺R¹R²R³R⁴, -SO₂NR¹R² or -CH₂NR¹R²;

R¹, R², R³ and R⁴ are each independently hydrogen; C₁-C₂₂-alkyl or C₂-C₂₂-alkenyl whose carbon chain may in each case be interrupted by one or more -O- or -NR⁷- moieties; hydroabietyl, abietyl or aryl;

20

Me is an alkali metal ion;

Z is arylene which may be substituted by one or more of halogen, -SO₃H, -SO₃⁻ Me⁺, -SO₃⁻ N⁺R¹R²R³R⁴ and C₁-C₁₂-alkyl, and

25

the rings B^{1a} and B^{2a} may each be independently additionally substituted by halogen or C₁-C₄-alkyl at different positions than R^{a1} and R^{a2}.

3. The use according to claim 1, utilizing compounds of the formula Ib

Ib

where

- 5 Y^b is a radical of the formula IIb

10 R^{b1} , R^{b2} , R^{b3} and R^{b4} are each hydrogen, halogen, C₁-C₄-alkyl or a D radical,
although only one of R^{b1} , R^{b2} , R^{b3} and R^{b4} can be a D radical;

D is -SO₃H, -SO₃⁻ Me⁺, -SO₃⁻ N⁺R¹R²R³R⁴, -SO₂NR¹R² or -CH₂NR¹R²;

15 R^1 , R^2 , R^3 and R^4 are each independently hydrogen; C₁-C₂₂-alkyl or C₂-C₂₂-
alkenyl whose carbon chain may in each case be interrupted by one or
more -O- or -NR⁷- moieties; dehydroabietyl or aryl;

Me is an alkali metal ion;

20 Z is arylene which may be substituted by one or more of halogen, -SO₃H,
-SO₃⁻ Me⁺, -SO₃⁻ N⁺R¹R²R³R⁴ and C₁-C₁₂-alkyl, and

25 the rings B^{1ᵇ} and B^{2ᵇ} may each be independently additionally substituted by
halogen or C₁-C₄-alkyl at different positions than R^{b1} to R^{b4}.

4. A process for converting a crude organic pigment into a finely divided pigmentary form, which comprises finishing said crude pigment in the presence of one or more compounds of the formula I according to claim 1.
- 30 5. The process according to claim 4 wherein said crude organic pigment is subjected to a grinding and/or a recrystallization from organic or aqueous organic solvent in the presence of one or more compounds of the formula I.

6. The process according to claim 4 or 5 wherein said crude organic pigment is synthesized in the presence of one or more compounds of the formula I.
- 5 7. The process according to any of claims 4 to 6 wherein said crude organic pigment and the compound of the formula I are concurrently synthesized in situ and the mixture produced is finished.
- 10 8. The process according to any of claims 4 to 7 wherein said crude organic pigment is a quinophthalone.
9. Pigment preparations comprising
- 15 A) at least one organic pigment, and
- B) at least one compound of the formula I as per claim 1.
10. The pigment preparations according to claim 9 wherein said at least one organic pigment (A) comprises a quinophthalone pigment.
- 20 11. Compounds of the general formula I'

where

- 25 R is hydrogen, halogen, C₁-C₄-alkyl, -SO₃H, -SO₃⁻ Me⁺, -SO₃⁻ N⁺R¹R²R³R⁴, -SO₂NR¹R², -CH₂NR¹R², -CH₂R⁵, -COOH, -COO⁻ N⁺R¹R²R³R⁴, -COOR⁶ or -COR⁶;
- 30 R¹, R², R³ and R⁴ are each independently hydrogen; C₁-C₂₂-alkyl or C₂-C₂₂-alkenyl whose carbon chain may in either case be interrupted by one or more -O-, -S-, -NR⁷-, -CO- or -SO₂- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C₁-C₄-alkoxy and

5

acetyl; C₃-C₈-cycloalkyl whose carbon skeleton may be interrupted by one or more -O-, -S-, -NR⁷- or -CO- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C₁-C₄-alkoxy and acetyl; hydroabietyl, abietyl or aryl; R¹ and R² or R¹, R² and R³ may combine to form a 5- to 7-membered cyclic radical which comprises the nitrogen atom and may comprise further hetero atoms;

10

R⁵ is a radical of the formula IIb'

IIb'

15

R⁶ is one of the R¹ alkyl radicals;

R⁷ is hydrogen or C₁-C₄-alkyl;

20

Me is an alkali metal ion;

Z and Z' are each independently arylene which may be substituted by one or more of halogen, -SO₃H, -SO₃⁻ Me⁺, -SO₃⁻ N⁺R¹R²R³R⁴ and C₁-C₁₂-alkyl, and

25

the rings B¹ and B² may each be independently additionally substituted by one or more identical or different R radicals other than hydrogen with the proviso that when A is =CH-, at least one of the two rings is substituted by at least one R radical other than hydrogen.