Ostatnio było:

$$\begin{split} A \subset D : & \underset{x \in A}{\forall} \mathcal{O}(f, x) < \varepsilon; A - \text{kostka, to} \\ \exists |\overline{S}(f, \Pi) - \underline{S}(f, \Pi)| < \varepsilon |A|. \end{split}$$

Twierdzenie 1 (Lebesgue'a) niech D - kostka, $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$, f - ograniczona. Wówczas f - (całkowalna na D) ⇔ (zbiór nieciągłości funkcji f jest miary Lebesque'a zero)

Dowód 1 \iff

Chcemy pokazać, że

$$\exists |\overline{S}(f,\Pi) - \underline{S}(f,\Pi)| < \varepsilon,$$

przy założeniu, że zbiór nieciągłośći jest miary L. zero.

Wprowadźmy zbiór $A_n = \left\{ x \in D, \mathcal{O}(f, x) \geqslant \frac{1}{n} \right\}$

$$np. A_2 = \left\{ x \in D, \mathcal{O}(f, x) \geqslant \frac{1}{2} \right\}.$$

Obserwacja 1 $A_1 \subset A_2 \subset A_3 \subset \dots$ a zbiór $A = \bigcup_{n=1}^{\infty} A_n$ będzie zbiorem wszystkich punktów nieciągłości funkcji f na D.

 $Tw.\ Lebesgue'a\ udowodnimy\ dla\ wybranego\ A_n,\ bo\ przeliczalna\ suma\ zbiórów\ miary\ L.\ zero\ też\ jest$ zbiorem miary L. zero.

Uwaga 1 Zbiór A_n jest zbiorem domkniętym (bo lemat).

Wiemy, że A_n jest zbiorem miary L. zero gdy itnieje $P_i \subset D$, $(P_i - kostki)$, że $A_n \subset \bigcup P_i$, $\sum |P_i|$ dowolnie mała (skończona lub nieskończona suma).

Niech $\varepsilon > 0$. Wiemy, że

$$\underset{\varepsilon>0}{\forall}.\exists.\, \underset{n>N}{\forall}\, \frac{1}{n}<\varepsilon.$$

Wybierzmy zatem taki indeks n dla zbioru A_n , że $\frac{1}{n} < \varepsilon$. Wiemy, że A_n - domknięty i ograniczony (bo $A_n \subset D$, a D - kostka w \mathbb{R}^n), to znaczy, że A_n jest zbiorem zwartym, a $\{P_i\}$ jest jego pokryciem. Możemy więc wybrać z niej skończone podpokrycie $\{P_1, P_2, \ldots, P_k\}$ takie, że

$$A_n \subset \bigcup_{j=1}^k P_j$$

$$\sum_{j=1}^k |P_j| < \frac{1}{n}.$$

(możemy tak zrobić, bo zawsze możemy wybrać taką rodzinę $\{P_i\}$, że $\sum |P_i|$ - dowolnie mała. Wy-

bierzmy podział Π zbioru D taki, że Π jest na tyle drobny, że odtwarza pokrycie A_n zbioru $\bigcup P_j$. Oznacza to, że podział Π możemy podzielić na dwa podziały

$$\Pi = \Pi_1 \cup \Pi_2$$
, takie że

$$\Pi_1 \cap \left\{ \bigcup_j P_j \right\} \neq \phi$$

$$oraz \ \Pi_2 \cap \left\{ \bigcup_j P_j \right\} = \phi.$$

 $\begin{array}{l} \Delta: ka\dot{z}da\ kostka\ z\ \{P_j\}\ sklada\ sie\ z\ kostek\ należących\ do\ \Pi_1\\ |\overline{S}(f,\Pi)-\underline{S}(f,\Pi)|=|\overline{S}(f,\Pi_1)-\underline{(f,\Pi_1)}+\overline{S}(f,\Pi_2)-\underline{S}(f,\Pi_2)|,\ ale \end{array}$

$$\overline{S}(f,\Pi_1) - \underline{S}(f,\Pi_1) = \sum_{Q_i \in \Pi_i} (\sup_{x \in Q_i} f - \inf_{x \in Q_I} f) Q_i |$$

$$\tag{1}$$

Gdzie wiemy, że $\sum |Q_i| < \frac{1}{n}$, a f - ograniczona na D czyli

$$\exists . \forall_{x \in D} |f(x)| < \frac{M}{4}.$$

Czyli

$$|\sup_{x \in D} f - \inf_{x \in D} f| < M.$$

Zatem

$$(??) \leqslant M \cdot \sum |Q_i| \leqslant M \cdot \frac{1}{n}.$$

Ale

$$\overline{S}(f,\Pi_2) - \underline{S}(f,\Pi_2) = \sum_{R_j \in \Pi_2} (\sup_{x \in R_j} f - \inf_{x \in R_j} f) |R_j|$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} |R_i| \leq \frac{1}{n} |D|.$$

Zatem

$$|\overline{S}(f,\Pi) - \underline{S}(f,\Pi)| \le M \cdot \frac{1}{n} + \frac{1}{n}|D| = \frac{1}{n} \cdot const.$$

czyli możemy tak zwiększyć n, że $\forall \frac{1}{\varepsilon>0} \cdot const < \varepsilon \quad \square$

Dlaczego wynika z tego prawdziwość dowodu dla całego A?

np. dla A_{2019} działa, ale co dalej. Bo A_k dla k > n też spełniają warunek, że $\frac{1}{k} \cdot const < \varepsilon$, a A_j dla j < n jest takie, że $A_j \subset A_n$

 \Longrightarrow

Wiemy, $\dot{z}e\ f$ - calkowalne, czyli

$$\forall _{\varepsilon>0}. \exists | \overset{S}{(f,\Pi)} - \underset{S}{(f,\Pi)} | < \varepsilon/n.$$

(chcemy pokazać, że A_n jest zbiorem miary L. zero)

$$\begin{split} &\Pi = \{T_i\} \\ &\frac{\varepsilon}{n} > |\overline{S}(f, \Pi) - \underline{S}(f, \Pi)| = \\ &\sum_{x \in T_i} |\sup_{x \in T_i} f - \inf_{x \in T_i} f ||T_i|(*). \end{split}$$

z podziału T_i wybieram takie kostki P_i , że $|\sup_{x \in P_i} f - \inf_{x \in P_i} f \geqslant \frac{1}{n}$.

W'owczas

$$(*) \geqslant \sum_{P_i} \frac{1}{n} |P_i| = \frac{1}{n} \sum_{i=1}^{n} |P_i|$$

$$czyli \underset{\varepsilon>0}{\forall} \frac{\varepsilon}{n} > \frac{1}{n} \sum_{i=1}^{n} |P_i|, gdzie P_i jest pokryciem A_n.$$

Czyli A_n jest zbiorem miary L. zero \square

Przykład 1 $f(x,y) = x \sin(xy)$, $A = [0,1] \times [0,1]$ $\int_A f \stackrel{?}{=} \int_0^1 \varphi_1(x) dx \stackrel{?}{=} \int_0^1 \varphi_2(y) dy$, $gdzie \ \varphi_1(x) = \int_0^1 x \sin(xy) dy$, $\varphi_2(y) = \int_0^1 x \sin(xy) dx$

$$\int_{A} f = \int_{0}^{1} dx \int_{0}^{1} dy f(x, y) \stackrel{?}{=} \int_{0}^{1} dy \int_{0}^{1} dx f(x, y).$$

Rysunek 1: życie było by proste gdybyśmy mogli tak robić

Twierdzenie 2 (Fubiniego)

Niech $f: A \times B \to \mathbb{R}$. $A \subset \mathbb{R}^l, B \subset \mathbb{R}^k, A \times B \subset \mathbb{R}^n$, f - ograniczona i całkowalna na $A \times B$. Oznaczmy $x^l \in A, y^k \in B$, A, B - kostki.

Niech

$$\varphi(x) = \overline{\int_B} f(x^l, y^k) dy^k, \psi(x) = \underline{\int_B} f(x^l, y^k) dy^k.$$

W'owczas

$$\int_{A\times B}f=\int_{A}\varphi=\int_{A}\psi.$$

Uwaga 2 całkowalnośc na $A \times B$ nie oznacza całkowalności na np. B.

Dowód 2 Niech $\{Q_i\} = \Pi_1$ - podział zbioru A, $\{R_j\} = \Pi_2$ - podział zbioru B. Wówczas $\Pi_1 \times \Pi_2$ - podział $A \times B$.

$$\underline{S}(f, \Pi_1 \times \Pi_2) =$$

$$= \sum_{\substack{Q_i \\ R_j}} \inf_{x \in Q_i} f(x, y) |Q_i| |R_j| \leqslant$$

$$\sum_{\substack{Q_i \\ R_j}} \sum_{x \in Q_i} \inf_{y \in R_j} f(x, y) |Q_i| |R_j| \leqslant$$

$$\leqslant \sum_{\substack{Q_i \\ x \in Q_i}} \inf_{x \in Q_i} \sum_{\substack{Q_i \\ y \in R_j}} \inf_{y \in R_j} f(x, y) |R_j| |Q_i| \leqslant$$

$$\sup_{\substack{x \in Q_i \\ bo \ suma \ dolna \ dla \ \psi(x)}} (\psi(x) |Q_i|) = (\psi, \Pi_1).$$

$$Ale \ \underline{\int_{A}} \psi(x) = \sup_{\Pi} \left| \sum_{Q_{i}} \inf_{x \in Q_{i}} \psi(x) |Q_{i}| \right|.$$

Czyli $\underline{S}(f,\Pi_1 \times \Pi_2) \leqslant \underline{S}(\psi,\Pi_1)$. Analogicznie możemy pokazać, że

$$\underline{S}(\psi, \Pi_1) \leqslant \underline{S}(\varphi, \Pi_1) \leqslant \overline{S}(\varphi, \Pi_1) \leqslant \overline{S}(f, \Pi_1 \times \Pi_2).$$

Zatem

$$\underline{S}(f,\Pi_1\times\Pi_2)\leqslant\underline{S}(\psi,\Pi_1)\leqslant\overline{S}(\psi,\Pi_1)\leqslant\overline{S}(\varphi,\Pi_1)\leqslant\overline{S}(f,\Pi_1\times\Pi_2).$$

Skoro f - całkowalna na $A \times B$, to

$$\underset{\varepsilon>0}{\forall}.\exists |\overline{S}(f,\Pi)-\underline{S}(f,\Pi)|<\varepsilon.$$

Co oznacza, że $\int_A \psi \ i \, \int_B \varphi$ - istnieją i wynoszą $\int_{A \times B} f \quad \Box$