

6.16) A consist entile consists of two very long extindence tubes sequented by linear insolvery mosent of magnetic susceptibility Xm. I comes I Done down the jour conductor & returns along the where one; in each one the current distributes itself instantly over the sistere. Find the regardie I'm the region between hotely $\frac{1}{8} \cdot \frac{1}{18} = \frac{1}{1} \cdot \frac{1}{25} \cdot \frac{1}{18} = \frac{1}{18} \cdot \frac{1}{18} \cdot$ 3, = 7 x M = 0

K = Mx h = 25x 2 cm 3= 0

276 2 cm 5= 6 m I. M. = Th. 88 B(200) = M. (1.1) 1 B = M. (1.1) E &

	FOURTER TRANSFORM WATKSHEET	
	Compute the Fasier transform of the 17-pac data function:	
	Compute the Farier transform of the Dirac data function: E(t) = (t) e E(t) e	
	V-10	
	$\mathcal{E}(+) = \int_{0}^{\infty} S(++) e^{-2\pi i J_{\lambda_{0}}} dt$	
	$ \widetilde{E}(t) = \int_{-\infty}^{\infty} S(t-t_0) e^{-2\pi i y^2 o} dt $ $ \widetilde{E}(t) = e^{-2\pi i y^2 o} \int_{-2\pi i y^2 o} S(t-t_0) dt $	
	-20,100	
	Ture Farrier Hanghorm	
	Inverse Fourier transform $E(+) = \int_{-\infty}^{\infty} E(v) e^{2\pi i j v^{4}} dv$	
	$= \int_{co}^{co} \left(e^{-2i \int_{V}^{+} V^{+}}\right) e^{2i \int_{V}^{+} V^{+}} dV$	
-	1: ((+-1))	
	Write down the Fourier transform of a which is equivalent	
	to compiler, the Fourier transform of a sine were E(d) = sin(211Vf) = [effy c 21)Vel 7	
	25'4 2 20'4	
ya - 11 - va	$E(t) = \int_{-\infty}^{\infty} \left[\frac{2\pi i \sqrt{t} - 2\pi i \sqrt{t}}{2} - 2\pi i \sqrt{t} \right] dt$	
	Lie y - co L - j	
	E(d) = 2 -co e e e e e e e e e e e e e e e e e e e	
	11-10 - 11-10	
		7