

CHM116 Extra Credit Homework Summer 2012 10 points

Due at the beginning of class on July 27, 2012

- Find the pH of these buffer solutions using the information provided: 1.
- p Ker 3.85 1 L solution containing 80 g of lactic acid (MW=90.8) and 120 g of sodium lactate (MW =112.06).
 - 20 ml of 0.25 M HCl (hydrochloric acid) added to 1L of water. b.
 - What is the resulting pH if you add 10 mL of 3 M HCl to the buffer in 5a?
- How many grams of sodium succinate (MW = 140 g/mol) and disodium succinate (MW = 162 g/mol) must be added to 1 L of water to produce a solution with pH = 6.0 and a total solute concentration of 50 mM? The pKa is 5.64.

monosodium succinate

disodium succinate

- 3. You have been hired in Dr. Hrycyna's lab and are asked to make a buffer with a pH of 11.8.
 - What acid/conjugate base pair is best for this solution? a. Why?
 - b. Calculate the amounts (in grams) of acid/conjugate base you should combine to get 4L of a 0.25 M solution.

- Buffers are important physiological compounds that resist a change in pH.
 - a. Calculate the pH of a buffer system that is 0.25 M benzoic acid and 0.75 M benzoate if the p K_a = 4.2
 - Calculate the number of moles of benzoate and benzoic acid that are required to make a liter of 0.5 M buffer solution at the pH calculated in part a.
- a. If 5mL of 0.1 M NaOH (a strong base) is added to 100 mL of 0.05M phosphate buffer (phosphoric acid = H₃PO₄), pH 7.1, what is the resulting pH? (Ignore the volume change)

Clearly identify the appropriate acid and conjugate base and determine their concentrations in the final solution.

What would the resulting pH be if instead you added 5 mL of 0.25M
 HCI? (Ignore the volume change)

Acid	на	Ka	pK_a
Formic acid	НСООН	1.78×10^{-4}	3.75
Acetic acid	CH3COOH	1.76×10^{-5}	4.75
Pyruvic acid	CH3COCOOH	3.16×10^{-3}	2.50
Lactic acid	CH3CHOHCOOH	1.38×10^{-4}	3.85
Malic acid	HOOC — CH ₂ — CHOH — COOH	(1) 3.98×10^{-4}	3.40
malic aciu	OH OH	(2) 5.5×10^{-6}	5.26
Citric acid	ноос-сн ₂ -с-сн ₂ -соон	(1) 8.14×10^{-4}	3.09
	соон		
		(2) 1.78×10^{-5}	4.75
		(3) 3.9×10^{-6}	5.41
Carbonic acid	H ₂ CO ₃	(1) 4.3×10^{-7}	6.4
	H2CO3	(2) 5.6×10^{-11}	10.2
Phosphoric acid	H_3PO_4	(1) 7.25×10^{-3}	2.14
	n3r04	(2) 6.31×10^{-8}	7.20
		(3) 3.98×10^{-13}	12.4
Ammonium ion	NH ⁺ ₄	5.6×10^{-10}	9.25

Sodium Succinate
$$MW = 140g | mol - HA$$

disedium Succinate $MW = 162g | mol - H$
 IL
 $pH = 6.0$ [total] = 50 m/M pk_a 5.64
 $pH = pk_a + log \frac{A^-}{HA}$
 $0.3c = log \frac{A^-}{HA}$
 $0.3c = log \frac{A^-}{HA}$
 $2.29 = \frac{A^-}{HA} = \frac{2.29}{10}$
 $2.29 + 1.0 = 3.29$
 $A^-: 2.29/3.29 = 70\%$ of $0.05 \text{ m} = 0.035 \text{ mol/L}$
 $HA: 1/3.29 = 36\%$ of $0.05 \text{ m} = 0.015 \text{ mol/L}$

3) Poy 3- and # Poy2- because the pka is closest to 11.8 P043- MW = 95g/mol HP042- MW = 96 g/mol b) 11.8 = 12.4 + log [P043] [HP042] -0.6 = log [Pa] [HPa] 0.25 +1 = 1.25 0.25 = [P043] [HP042] $P04^{3-}$: $0.25/1.25 - 20\% \times 0.25 M = 0.05 mol \times 4K = 0.2m$ 4V = 0.2m 4V = 0.2m 4V = 0.2m

b) Ratio:
$$\frac{A^{-}}{HA} = \frac{0.75}{0.25}$$
 0.75+0.25 = 1.00