

Eye Fixation Forecasting in Task-Oriented Virtual Reality

Zhiming Hu
Peking University

jimmyhu@pku.edu.cn

cranehzm.github.io/EyeFixation

Human Visual Attention

Application of Visual Attention

Marketing Strategy Analysis [Zamani et al. 2016]

d) Heat Map

Cognitive Research [Kiefer et al. 2017]

Medical Education [Kok et al. 2017]

c) Gaze Plot

Application of Visual Attention

Gaze-based Interaction [Pfeiffer et al. 2008]

Collaborative System [Zhang et al. 2017]

Gaze-contingent
Eyeglasses
[Padmanaban et al. 2019]

Application of Visual Attention in VR

Gaze-contingent Rendering [Patney et al. 2016]

Redirected Walking [Sun et al. 2018]

Layout Optimization [Alghofaili et al. 2019]

Application of Visual Attention in VR

VR Content Design [Sitzmann et al. 2018]

Gaze Guidance [Grogorick et al. 2017]

LOD Management [Lee et al. 2009]

Research Goals

- Analyze and reveal the characteristics of users' task-oriented visual attention in virtual reality
- Forecast (temporally predict future) eye fixations based on the characteristics of visual attention

Salient Object Detection

Top: Original Images; Bottom: Salient Objects

[1] https://mmcheng.net/msra10k/

Saliency Prediction

Top: Original Images; Bottom: Saliency Maps

[1] http://saliency.mit.edu/results_mit300.html

Visual Attention Prediction in VR

Gaze Prediction in Static Free-Viewing Virtual Environments [Hu et al. 2019]

Visual Attention Prediction in VR

Gaze Prediction in Dynamic Free-Viewing Virtual Environments [Hu et al. 2020]

Our Work vs. Previous Work

Prediction Goal

Eye Fixations vs. Salient Objects, Saliency Maps

> Scene

Immersive Virtual Environments vs. Images, Videos Task-Oriented Situations vs. Free-Viewing Conditions

Current Research

- Propose a novel learning-based fixation prediction model (FixationNet)
- Analyze and reveal the characteristics of users' task-oriented visual attention in VR
- Build a task-oriented VR eye tracking dataset

Data Collection

- > Participants: 27 users (15 male, 12 female, ages 17-32)
- Stimuli: four immersive virtual environments
- > Apparatus: HTC Vive, eye tracker
- Procedure: visual search task
- Data: VR content, task-related objects, eye fixations, head movements

Stimuli

Data Collection

Data Collection Process

Fixation-Gaze Correlation

Fixation-gaze correlations in the horizontal (left) and vertical (right) directions

Eye fixations are highly correlated with historical gaze positions

Fixation-Task Correlation

Fixation-task correlations in the horizontal (left) and vertical (right) directions

Fixations are correlated with task-related objects

Fixation-Saliency Correlation

The distribution of users' fixation positions on the salient regions

The fixation positions are mostly located in the regions with high saliency values

Fixation-Head Correlation

Fixation-head correlations in the horizontal (left) and vertical (right) directions

Fixations have correlations with head velocities

FixationNet Model

FixationNet Model

Architecture of FixationNet model

Results

Prediction Performance

Prediction performances at different time intervals

FixationNet outperforms other methods at different prediction times

Discussion

Future Work

- ➤ Other Factors: Sound, users' mental states, users' gestures, users' behavioral habits, etc.
- Other Tasks: Text editing task, assembly task, collaborative task, etc.
- Application of the Model: Intelligent user interfaces and relevant areas.
- ➤ Other Systems: Augmented reality system, mixed reality system, mobile virtual system, etc.

Thank you