Formal languages and Automata 形式语言与自动机

Chapter 2 FINITE AUTOMATA

Beijing University of Posts and Telecommunications

北京邮电大学

刘咏彬 liuyb@bupt.edu.cn

2023.9

Finite Automaton (FA)

- Recognizer for "Regular Languages"
- A finite automaton is severely limited in its capacity to "remember" things during the computation.
- Deterministic Finite Automata (DFA)
 - The machine can exist in only one state at any given time
- Non-deterministic Finite Automata (NFA)
 - The machine can exist in multiple states at the same time

Finite State Accepter

- finite: a finite set of internal states and no other memory.
- accepter: it processes strings and either accepts or rejects them, so we can think of it as a simple pattern recognition mechanism.

Deterministic Finite Accepter - Definition 2.1

• A DFA is defined by the 5-tuple:

$$(Q, \sum, \delta, q_0, F)$$

 A Deterministic Finite Accepter(DFA) consists of:

Q: a finite set of internal states

 \sum : a finite set of input symbols (alphabet)

 $\delta:\ Q\times\sum \to Q, is a total function called the transition function$

q₀: a initial state (start state)

F: set of final states(accepting state)

Transition function δ

- The transitions from one internal state to another are governed by the transition function δ .
- For example, if

$$\delta (q_0, a) = q_1,$$

then if the dfa is in state q_0 and the current input symbol is a, the dfa will go into state q_1 .

Example 2.1

EXAMPLE 2.1

The graph in Figure 2.1 represents the dfa

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\}),$$

where δ is given by

$$\delta(q_0, 0) = q_0,$$
 $\delta(q_0, 1) = q_1,$
 $\delta(q_1, 0) = q_0,$ $\delta(q_1, 1) = q_2,$
 $\delta(q_2, 0) = q_2,$ $\delta(q_2, 1) = q_1.$

Transition graphs

- The **vertices** represent states and the edges represent transitions.
- The labels on the vertices are the names of the states,
- The labels on the edges are the current values of the input symbol.

Transition table

 A dfa can easily be implemented as a computer program; for example, as a simple table-lookup or as a sequence of if statements.

开始状态

接受状态

FIGURE 2.3

注意: 在状态转移表的开始状态和结束状态上标记

What does a DFA do on reading an input string?

- Input: a string w in ∑*
- Question: Is w acceptable by the DFA?
- •Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Compute the next state from the current state, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed, the current state is one of the accepting states (F) then accept w;
 - Otherwise, reject w.

补充 Example

Build a DFA for the following language:

L = {w | w is a binary string that contains 01 as a substring}

- Steps for building a DFA to recognize L:
 - 1. $\sum = \{0,1\}$
 - 2. Decide on the states: Q
 - 3. Designate start state and final state(s)
 - 4. δ : Decide on the transitions:
 - "Final" states == same as "accepting states"
 - Other states == same as "non-accepting states"

DFA for strings containing 01

 Multiply labeled edges are shorthand for two or more distinct transitions

What makes this DFA deterministic?

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\sum = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

• Transition table

symbols

	δ	0	1
states	\rightarrow \mathbf{q}_0	q_1	$ \mathbf{q}_0 $
	\mathbf{q}_1	q_1	q_2
	*q ₂	\mathbf{q}_2	\mathbf{q}_2

Extended transitions funtion

• $\delta^*(q, w) == destination state from state q on input string w$

ullet Formally, we can define δ^\square recursively by

$$\delta^*(q, \lambda) = q,$$

$$\delta^*(q, wa) = \delta (\delta^*(q, w), a),$$

Work out using the input sequence w=10010, a=1:

Languages and Dfa's

 The language is the set of all the strings accepted by the automaton.

• DEFINITION 2.2

The language accepted by a dfa M = (Q, Σ , δ , q0, F) is the set of all strings on Σ accepted by M. In formal notation,

$$L(M) = \{ w \in \Sigma^* : \delta^* (q_0, w) \in F \}$$
.

- ullet A dfa will process every string in Σ^\square and either accept it or not accept it.
- Nonacceptance means that the dfa stops in a nonfinal state, so that

$$\overline{L(M)} = \{ w \in \Sigma^* : \delta^* (q_0, w) \notin F \}$$
.

Trap state

- The state q₂ is a trap state.
- The automaton accepts all strings consisting of an arbitrary number of a's, followed by a single b.

• Find a deterministic finite accepter that recognizes the set of all strings on $\Sigma = \{a, b\}$ starting with the prefix ab.

• Find a deterministic finite accepter that recognizes the set of all strings on $\Sigma = \{a, b\}$ starting with the prefix ab.

• Find a dfa that accepts all the strings on {0, 1}, except those containing the substring 001.

Regular Languages

- Every finite automaton accepts some language.
- If we consider all possible finite automata, we get a set of languages associated with them. We will call such a set of languages a **family**.

• DEFINITION 2.3

A language L is called regular if and only if there exists some deterministic finite accepter M such that

$$L = L(M)$$
.

Show that the language

$$L = \{awa : w \in \{a, b\} *\}$$

is regular.

To show that a language is regular, all we have to do is find a dfa for it.

Show that the language

$$L = \{awa : w \in \{a, b\} *\}$$

is regular.

To show that a language is regular, all we have to do is find a dfa for it.

• Let L be the language in Example 2.5. Show that L² is regular. We can write an explicit expression for L², namely,

$$L^2 = \{aw_1aaw_2a : w_1, w_2 \in \{a, b\}^*\}$$

• Let L be the language in Example 2.5. Show that L² is regular. We can write an explicit expression for L², namely,

$$L^2 = \{aw_1aaw_2a : w_1, w_2 \in \{a, b\}^*\}$$

END