

NPN SILICON GERMANIUM RF TRANSISTOR NESG3031M05

NPN SIGE RF TRANSISTOR FOR LOW NOISE, HIGH-GAIN AMPLIFICATION FLAT-LEAD 4-PIN THIN-TYPE SUPER MINIMOLD (M05, 2012 PKG)

FEATURES

- The device is an ideal choice for low noise, high-gain amplification
 NF = 0.6 dB TYP., Ga = 16.0 dB TYP. @ VcE = 2 V, Ic = 6 mA, f = 2.4 GHz
 NF = 0.95 dB TYP., Ga = 10.0 dB TYP. @ VcE = 2 V, Ic = 6 mA, f = 5.2 GHz
 NF = 1.1 dB TYP., Ga = 9.5 dB TYP. @ VcE = 2 V, Ic = 6 mA, f = 5.8 GHz
- Maximum stable power gain: MSG = 14.0 dB TYP. @ VcE = 3 V, Ic = 20 mA, f = 5.8 GHz
- SiGe HBT technology (UHS3) adopted: fmax = 110 GHz
- Flat-lead 4-pin thin-type super minimold (M05, 2012 PKG)

<R> ORDERING INFORMATION

Part Number	Order Number	Package	Quantity	Supplying Form
NESG3031M05	NESG3031M05-A	Flat-lead 4-pin thin-type super minimold (M05, 2012 PKG)	50 pcs (Non reel)	8 mm w ide embossed taping Pin 3 (Collector), Pin 4 (Emitter) face the
NESG3031M05-T	1 NESG3031M05-T1-A	(Pb-Free)	3 kpcs/reel	perforation side of the tape

Remark To order evaluation samples, contact your nearby sales office. Unit sample quantity is 50 pcs.

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Collector to Base Voltage	Vсво	12.0	V
Collector to Emitter Voltage	Vceo	4.3	V
Emitter to Base Voltage	Vево	1.5	V
Collector Current	lc	35	mA
Total Pow er Dissipation	Ptot Note	150	mW
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-65 to +150	°C

Note Mounted on 1.08 cm² × 1.0 mm (t) glass epoxy PWB

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Document No. PU10414EJ04V0DS (4th edition)
Date Published December 2008 NS

ELECTRICAL CHARACTERISTICS (TA = +25°C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
DC Characteristics						
Collector Cut-off Current	Ісво	VcB = 5 V, le = 0 mA	_	-	100	nA
Emitter Cut-off Current	Ево	V _{EB} = 1 V, lc = 0 mA	1	-	100	nA
DC Current Gain	hre Note 1	VcE = 2 V, lc = 6 mA	220	300	380	
RF Characteristics						V
Insertion Pow er Gain	S _{21e} 2	VcE = 3 V, lc = 20 mA, f = 5.8 GHz	6.0	8.5	-	dB
Noise Figure (1)	NF	$\begin{split} &\text{Vce} = 2 \text{ V, lc} = 6 \text{ mA, f} = 2.4 \text{ GHz}, \\ &\text{Zs} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}} \end{split}$		0.6	-	dB
Noise Figure (2)	NF	$\begin{split} &V_{\text{CE}} = 2 \text{ V}, \text{ lc} = 6 \text{ mA}, \text{ f} = 5.2 \text{ GHz}, \\ &Z_{\text{S}} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}} \end{split}$	-	0.95	_	dB
Noise Figure (3)	NF	$\begin{split} &V_{\text{CE}} = 2 \text{ V}, \text{ lc} = 6 \text{ mA}, \text{ f} = 5.8 \text{ GHz}, \\ &Z_{\text{S}} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}} \end{split}$	1	1.1	1.5	dB
Associated Gain (1)	Ga	$\begin{split} &\text{Vce} = 2 \text{ V, lc} = 6 \text{ mA, f} = 2.4 \text{ GHz}, \\ &\text{Zs} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}} \end{split}$		16.0	_	dB
Associated Gain (2)	Ga	$\begin{split} &\text{Vce} = 2 \text{ V, lc} = 6 \text{ mA, f} = 5.2 \text{ GHz}, \\ &\text{Zs} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}} \end{split}$	-	10.0	_	dB
Associated Gain (3)	Ga	$\begin{split} &\text{Vce} = 2 \text{ V, lc} = 6 \text{ mA, f} = 5.8 \text{ GHz}, \\ &\text{Zs} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}} \end{split}$	7.5	9.5	_	dB
Reverse Transfer Capacitance	Cre Note 2	VcB = 2 V, I∈ = 0 mA, f = 1 MHz	_	0.15	0.25	pF
Maximum Stable Pow er Gain	MSG ^{Note}	$V_{CE} = 3 \text{ V}, \text{ lc} = 20 \text{ mA}, \text{ f} = 5.8 \text{ GHz}$	11.0	14.0	-	dB
Gain 1 dB Compression Output Pow er	Po (1 dB)	$\begin{split} \text{VcE} &= 3 \text{ V, } \text{ kc (set)} = 20 \text{ mA}, \\ \text{f} &= 5.8 \text{ GHz}, \text{ Zs} = \text{Zsopt}, \text{ ZL} = \text{ZLopt} \end{split}$	-	13.0	-	dBm
Output 3rd Order Intercept Point	OIP ₃	$\begin{split} \text{VCE} &= 3 \text{ V, lc (set)} = 20 \text{ mA,} \\ \text{f} &= 5.8 \text{ GHz, Zs} = Z_{\text{Sopt, ZL}} = Z_{\text{Lopt}} \end{split}$	-	18.0	-	dBm

Notes 1. Pulse measurement: PW \leq 350 μ s, Duty Cycle \leq 2%

2. Collector to base capacitance when the emitter grounded

3. MSG =
$$\frac{S_{21}}{S_{12}}$$

hfe CLASSIFICATION

Rank	FB		
Marking	T1K		
h _{FE} Value	220 to 380		

TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)

REVERSE TRANSFER CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

COLLECTOR CURRENT vs.
BASE TO EMITTER VOLTAGE

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE

Remark The graphs indicate nominal characteristics.

Remark The graphs indicate nominal characteristics.

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

Remark The graphs indicate nominal characteristics.

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

Remark The graphs indicate nominal characteristics.

<R> S-PARAMETERS

- S-parameters and noise parameters are provided on our Web site in a format (S2P) that enables the direct import of the parameters to microwave circuit simulators without the need for keyboard inputs.
- · Click here to download S-parameters.
- [RF and Microwave] ® [Device Parameters]
- URL http://www.necel.com/microwave/en/

<R> PACKAGE DIMENSIONS

FLAT-LEAD 4-PIN THIN-TYPE SUPER MINIMOLD (M05, 2012 PKG) (UNIT: mm)

PIN CONNECTIONS

- 1. Base
- 2. Emitter
- 3. Collector
- 4. Emitter

Remark () : Reference value