(22) In the opposite figure:

If Δ CBA ~ Δ CED

using the lengths shown on the figure,

then $ED + EA = \cdots cm$.

- (a) 12
- (b) 13
- (c) 14

(d) 15

(23) In the opposite figure:

Rectangle ABCD ~ rectangle XBYL,

then the length of $\overline{YC} = \cdots \cdots cm$.

- (a) 6
- (b) 8
- (c) 10

(d) 11

(24) In the opposite figure:

Polygon ABCD ~ polygon EFLD

then $X = \cdots cm$.

(a) 5

(b) 3

(c) 7.5

(d) 6

🍁 (25) In the opposite figure :

If \triangle ABC \sim \triangle AED,

 $m (\angle B) = 3 X + 10^{\circ}, m (\angle AED) = X + 30^{\circ},$

then m $(\angle A) = \cdots$

- (a) 50°
- (b) 40°
- (c) 30°
- (d) 60°

$$a:b=1:2,b:c=3:8$$

if the length of the side of the greatest hexagon = 32 cm.

- , then the perimeter of the smallest hexagon = \cdots cm.
- (a) 12
- (b) 6
- (c) 36
- (d) 48

(18) In the opposite figure:

$$m (\angle BAD) = m (\angle C)$$
, $AB = 16$ cm.

$$BD = 12 \text{ cm.}$$
, then $DC = \dots \text{cm.}$

(a) 16

(b) 12

(c) $9\frac{1}{3}$

(d) $23\frac{1}{3}$

(19) In the opposite figure:

If B is the midpoint of \overline{CE}

, then
$$DE = \cdots cm$$
.

(a) 4

(b) 5

(c)6

(d)7

(20) In the opposite figure:

$$AC = \cdots cm$$
.

(a) 6.2

(b) 6

(c) 7.2

(d)7

(21) In the opposite figure:

If
$$m (\angle ADC) = m (\angle ACB)$$

- , then AB = \cdots cm.
- (a) 12

(b) 16

(c) 18

(d) 20

(22) In the opposite figure:

If
$$m (\angle A) = m (\angle D)$$

, then
$$X = \cdots$$

(a) 5

(b) 4

(c)3

(d) 2

(23) In the opposite figure:

If
$$\overline{AB} / \overline{EC}$$

, then
$$\frac{ED}{BC} = \cdots$$

8cm. D

