1. 将同一新鲜马铃薯块茎切成4根粗细相同、长为 $5~{
m cm}$ 的条,再将这4根马铃薯条分别放在不同浓度的KNO $_3$ 溶液中, $30~{
m min}$ 和 $4~{
m h}$ 后测量每一根的长度,结果如下图所示。下列结论错误的是()

- A. a马铃薯条细胞通过渗透作用吸水
- B. b马铃薯条细胞质壁分离逐渐复原
- C. c马铃薯条细胞质壁分离
- D. d马铃薯条细胞浸泡液浓度增加
- 2. 从生命活动的角度理解,人体的结构层次为()
 - A. 原子、分子、细胞器、细胞
 - B. 细胞、组织、器官、系统
 - C. 元素、无机物、有机物、细胞
 - D. 个体、种群、群落、生态系统
- 3. 原核细胞和真核细胞最主要的区别在于()
 - A. 有无核物质
 - B. 有无细胞壁
 - C. 有无核膜
 - D. 有无细胞膜
- 4. 地球上最基本的生命系统是()
 - A. 细胞
 - B. 组织
 - C. 器官
 - D. 系统
- 5. 下列哪种生物体不是由细胞构成的()
 - A. 酵母菌
 - B. 蓝藻

	C. 大肠杆菌
	D. 艾滋病病毒
6.	下列元素中,构成有机物基本骨架的是()
	A. 氮
	B. 氢
	C. 氧
	D. 碳
7.	下列属于大量元素的一组是()
	A. N. S. O. Mg
	В. Н., О., К., В
	C. P. N. C. Mo
	D. Ca, C, O, Mn
8.	在生物组织中可溶性还原糖、脂肪、蛋白质的鉴定实验中,对实验材料的选择叙述中,错误的是()
	A. 甘蔗茎含有较多的蔗糖且近于白色, 因此可以用于进行可溶性还原糖的鉴定
	B. 花生种子含脂肪多旦子叶肥厚,是用于脂肪鉴定的理想材料
	C. 大豆种子蛋白质含量高,是进行蛋白质鉴定的理想植物组织材料
	D. 胡萝卜不适于作还原性糖的检测材料
9.	一般情况下,活细胞中含量最多的化合物是()
	A. 蛋白质
	B. 水
	C. 淀粉
	D. 糖原
10	. 水对细胞的正常生活起重要作用,以下说法错误的是()
	A. 营造液体环境
	B. 作为良好溶剂
	C. 运输养料和废物
	D. 不参与化学反应
11	下列与无机盐的功能无关的是()

A. 是细胞中能源物质之一

- B. 是某些重要复杂化合物的成分
- C. 能维持生物体的生命活动
- D. 能维持细胞的形态和功能
- 12. 下列属于生命大分子物质的是()
 - A. 糖、结合水
 - B. 纤维素、蔗糖
 - C. 蛋白质、核酸
 - D. 脂肪、无机盐
- 13. 糖原、核酸、淀粉的基本组成单位分别是()
 - A. 碱基、单糖、氨基酸
 - B. 葡萄糖、核苷酸、麦芽糖
 - C. 葡萄糖、核苷酸、葡萄糖
 - D. 单糖、碱基、葡萄糖
- 14. 下列氨基酸中,不是组成蛋白质的氨基酸的是()

A.
$$CH_2$$
—HS NH_2 — C — $COOH$ H

B. COOH H
$$NH_2 - C - C - COOH$$

$$H H H$$

- 15. 烫发时,先用还原剂使头发角蛋白的二硫键断裂,再用卷发器将头发固定形状,最后用氧化剂使角蛋白在新的位置形成二硫
 - 键。这一过程改变了角蛋白的()
 - A. 氨基酸排列顺序
 - B. 氨基酸种类
 - C. 氨基酸数目
 - D. 空间结构

16. 生物体内的蛋白质具有多样性,其原因不可能是() A. 组成肽键的化学元素不同 B. 组成蛋白质的氨基酸种类和数量不同 C. 蛋白质的空间结构不同 D. 组成蛋白质的氨基酸排列顺序不同 17. 医生给低血糖休克病人静脉注射50%的葡萄糖溶液,其目的是() A. 提供全面营养 B. 供给能量 C. 调节生命活动 D. 供给水分 18. 下列各种化合物中,都属于脂质的-A. 酶、胰岛素、血红蛋白 B. 核糖核酸、脱氧核糖酸 C. 葡萄糖、乳酸、油脂 D. 胆固醇、雌激素、磷脂 **19.** 细胞学说揭示了() A. 植物细胞与动物细胞的区别 B. 真核细胞与原核细胞的区别 C. 细胞为什么能产生新细胞

D. 生物体结构具有统一性

20. 下列能正确表示细胞膜结构的是(

21.	. 细胞膜上与细胞的识别、免疫反应、信息传递和血型决定有着密切关系的是 ()
	A. 糖蛋白	
	B. 磷脂	
	C. 脂肪	
	D. 核酸	
22.	. 下列哪一项不是细胞间信息交流的方式()	
	A. 细胞膜将细胞与环境分隔开	
	B. 精子和卵细胞相互接触完成受精作用	
	C. 胰岛细胞形成的胰岛素通过血液运输作用于组织细胞	
	D. 高等植物细胞之间通 <mark>过胞</mark> 问连丝相互连接	
23.	. 人的心肌细胞中,明显比腹肌细胞多的细胞器是()	
	A. 核糖体	
	B. 线粒体	
	C. 内质网	
	D. 高尔基体	
24.	. 可以与细胞膜形成的吞噬泡融合 , 并消化掉吞噬泡内物质的细胞器是 ()	
	A. 线粒体	
	B. 溶酶体	
	C. 高尔基体	
	D. 内质网	
25.	. 下列结构中均不含磷脂的细胞器是()	
	A. 线粒体和中心体	
	B. 中心体和核糖体	
	C. 高尔基体和液泡	
	D. 内质网和染色体	

26. 在榕树和黄牛的细胞中,都能发现的细胞器是()

- A. 中心体和内质网
- B. 线粒体和叶绿体
- C. 核糖体和线粒体
- D. 核糖体和叶绿体
- 27. 在唾液腺细胞中,参与合成并分泌唾液淀粉酶的细胞器有()
 - A. 线粒体、中心体、高尔基体、内质网
 - B. 内质网、核糖体、叶绿体、高尔基体
 - C. 内质网、核糖体、高尔基体、线粒体
 - D. 内质网、核糖体、高尔基体、中心体
- 28. 细胞核是细胞结构中最重要的部分,有关细胞核的叙述不正确的是()

- A. 细胞核是细胞新陈代谢的主要场所
- B. 细胞核是生命活动的控制中心
- C. 细胞核是细胞代谢和遗传的控制中心
- D. 细胞核是具有双层膜的结构
- 29. 下列现象中属于渗透作用的是()
 - A. 水分子通过细胞壁黑
 - B. 葡萄糖分子通过细胞膜
 - C. K+通过原生质层小
 - D. 水分子通过原生质层的施合
- 30. 某物质从低浓度处向高浓度处跨膜运输,该过程()
 - A. 为自由扩散
 - B. 为协助扩散
 - C. 为主动运输
 - D. 没有载体蛋白参与

- 31. 红萝卜细胞的液泡中含有紫红色的花青素,将红萝卜切成小块放到水中,水的颜色无明显变化。若进行加热,随水温的升
 - 高,水的颜色逐渐变红。其原因是()
 - A. 水温升高后细胞壁受到破坏,失去了选择透过性即真
 - B. 水温升高时,红萝卜细胞中花青素的溶解度加大
 - C. 加热使细胞膜和液泡膜失去控制物质进出的功能
 - D. 加热使花青素分子的活性加大而容易透过细胞膜由不
- 32. 形成蛋白质结构的层次从小到大依次是()
 - ①氨基酸
 - ②C、H、O、N等元素
 - ③氨基酸脱水缩合
 - ④一条或几条多肽链连接在一起
 - ⑤多肽
 - ⑥蛋白质
 - A. $(2\rightarrow 1)\rightarrow (3\rightarrow 4)\rightarrow (5)\rightarrow (6)$
 - B. $2 \rightarrow 1 \rightarrow 6 \rightarrow 5 \rightarrow 3 \rightarrow 4$
 - C. $\textcircled{2} \rightarrow \textcircled{1} \rightarrow \textcircled{3} \rightarrow \textcircled{5} \rightarrow \textcircled{4} \rightarrow \textcircled{6}$
 - D. $\textcircled{1} \rightarrow \textcircled{2} \rightarrow \textcircled{3} \rightarrow \textcircled{4} \rightarrow \textcircled{5} \rightarrow \textcircled{6}$
- 33. 下面甲→ 戊是用显微镜观察的几个操作步骤,如下图在显微镜下要把视野中的物像从图1转为图2,其正确的操作步骤是(
)
 - 甲:转动粗准焦螺旋
 - 乙:调节光圈
 - 丙:转动细准焦螺旋
 - 丁:转动转换器
 - 戊:移动标本

- A. $\Psi \rightarrow Z \rightarrow \overline{D} \rightarrow T$
- B. $Z \rightarrow \Psi \rightarrow \mathcal{L} \rightarrow \mathcal{T}$
- C. 丁 \rightarrow 戊 \rightarrow 丙 \rightarrow 乙
- D. 戊 \rightarrow T \rightarrow Z \rightarrow 丙
- 34. 下列关于物质的鉴定,采用的试剂、实验操作方法及实验现象均正确的是()

	A	В	C	D
	脂肪	淀粉	葡萄糖	蛋白质
试剂	苏丹III染夜	碘液	双缩脲试剂	斐林试剂
水浴加热	不加热	加热	加热	不加热
现象	橘黄色	蓝色	砖红色	紫色
观察	显微镜观察	直接观察	直接观察	直接观察

- A. A
- В. В
- C. C
- D. D
- **35.** 透析型人工肾的关键材料是一种人工合成的膜材料—血液透析膜,当病人的血液流经人工肾时,血液透析膜把病人的代谢 废物透析掉,然后干净的血液返回病人体内。这是试图模拟细胞膜的什么功能()
 - A. 将细胞与外界环境分隔开的功能
 - B. 控制物质进出细胞的功能
 - C. 具有免疫作用的功能
 - D. 进行细胞间信息交流的功能
- 36. 下列是植物细胞部分膜结构示意图,它们分别属于哪一部分(按①②③④的顺序)()

- A. 细胞膜、高尔基体膜、线粒体膜、核膜
- B. 细胞膜、叶绿体膜、线粒体膜、内质网膜
- C. 线粒体膜、核膜、内质网膜、高尔基体膜
- D. 叶绿体膜、细胞膜、线粒体膜、核膜
- **37.** 如图 , 甲、乙为两个渗透装置。甲图是发生渗透作用时的初始状态 , 乙图是较长时间之后 , 根据漏斗内外的水分子达到动态 平衡时的状态 , 判断下列有关叙述错误的是 ()

- A. 图甲中③为半透膜,水分子能自由通过
- B. 图甲中溶液②的浓度大于溶液①的浓度

- C. 图乙中溶液①的浓度与溶液②的浓度相等
- D. 图甲中溶液①和②浓度差越大,则图乙中的水柱越高
- 38. 下图是三个相邻的植物细胞之间水分流动方向示意图。图中三个细胞的细胞液浓度关系是()

- A. 甲> 乙> 丙
- B. 甲<乙<丙
- C. 甲> 乙, 乙<丙
- D. 甲<乙, 乙>丙
- 39. 已知某种物质通过细胞膜的方式如下图所示,则下列哪种物质与其有相同的运输方式()

- A. H₂O
- B. K⁺
- C. 甘油
- D. 脂肪酸
- 40. 当你连续嗑带盐的瓜子,你的口腔和唇的黏膜会有干涩的感觉。其原因是()
 - A. 口腔和唇的黏膜细胞质浓度大于细胞外液浓度,细胞失水
 - B. 口腔和唇的黏膜细胞质浓度小于细胞外液浓度,细胞失水
 - C. 口腔和唇的黏膜细胞质浓度大于细胞外液浓度,细胞吸水
 - D. 口腔和唇的黏膜细胞质浓度小于细胞外液浓度,细胞吸水
- 41. 下图表示细胞内4种重要的有机物的组成及功能,请据图回答下面的问题:

- (1) a一般是 _____; e在动物细胞中是指 _____, 在植物细胞中主要是指 _____。
- (2) f是指 _____, 它是由b(甘油和脂肪酸)组成的。除f之外,脂质还包括 _____ 等。
- (3) d是指 _____ , 生物体内的h分为 ____ 和 ___ 两大类。
- 42. 脑啡肽是一种具有镇痛作用的药物,它的基本组成单位是氨基酸,下面是脑啡肽的结构简式。请回答下列问题:

- (1) 组成氨基酸的四种主要元素是 ______, 氨基酸的结构通式为 _____。
- (2) 脑啡肽是由 _____ 个氨基酸经过 _____ 的方式形成的化合物,这一过程共生成 _____ 个水分。
- (3) 氨基酸分子之间连接的化学键叫 ______, 并用方框在图中标出一个该化学键。
- 43. 下图为DNA分子平面结构模式图。请回答问题:

- (1) 图中1表示 _____, 2表示 _____, 1、2、3结合在一起的结构称为 _____。
- (2) 若4表示鸟嘌呤,则3表示____(填写中文名称)。
- (3) 真核细胞的DNA主要分布在 _____ 中。
- **44.** 炸薯条是常见的快餐食品。若马铃薯块茎中还原糖含量过高,可能导致油炸过程中产生有害物质。为准确检测还原糖含量,研究人员采用不同方法制备了马铃薯提取液,如下表所示:

方法	提取液颜色	提取液澄清度	还原糖漫出程度
_	浅红褐色	不澄清	不充分
=	深红褐色	澄清	充分

	请回答	答问题:
	(1)	马铃薯提取液中含有淀粉,此外还含有少量麦芽糖、果糖和 等还原糖,这些还原糖能与 试剂发
		生作用,生成砖红色沉淀。
	(2)	据表分析,三种马铃薯提取液制备方法中,方法最符合检测还原糖的要求,原因是这种方法制备提取液
		时还原糖浸出程度, 并且提取液的, 有利于对实验结果的准确观察。
45.	下图表	表示动物、植物细胞二合一显微结构模式图。据图回答,【 】中写序号。
		$\frac{1}{\sqrt{3}}$
		5 / 45
		$13\frac{9}{11}$
		$\frac{11}{8}$
		10 12 14
		$9\overline{1}$
		A B
	(1)	若某细胞含有AB两图中各种细胞器,则为 细胞。
	(2)	提供细胞能量的"动力工厂"为【 】。
	(3)	结构5为,在动物细胞中功能为,在植物细胞与 形成有关。
	(4)	细胞内表面积最大的膜结构是【 】。
	(5)	如果B图为大蒜根细胞,则应该没有【 】。
	(6)	甲状腺细胞中碘的浓度远比血浆中高,这说明甲状腺细胞吸收碘是通过 方式.决定甲状腺细胞能完成这
		功能的结构是【 】。
46.	某学生	上用紫色洋葱鳞片叶表皮作实验材料,观察到甲、乙两个图像。
	请回答	· · · · · · · · · · · · · · · · · · ·
		b
		世 乙
	(d)	
	(1)	撕取洋葱 (内、外)表皮,置于滴加清水的载玻片上制成临时装片.原生质层包
		括。
	(2)	在盖玻片的一侧滴加0.3g/mL蔗糖溶液,用吸水纸从另一侧吸取,重复几次后,可观察到的是图,其中
		所示细胞发生了 现象。
	(3)	b中充满了。
47.	如图序	听示 是物质的跨膜运输过程,据图回答:

浅黄色

澄清

充分

★●○♥○ 代表各种物质分子或离子

- (1) A代表 _____ 分子; B代表 _____; D代表 _____。
- (2) 在 $a \sim e$ 的五种过程中,代表被动运输的是_____。
- (3)据图,细胞膜的功能特点是_____。
- 48. 生物学家马古利斯于1970年提出了关于线粒体和叶绿体的内共生起源学说,如下图所示。

她认为,细菌和蓝藻被原始真核单细胞生物吞噬后,在长期的共生过程中演化成了线粒体和叶绿体.如当这种细菌被原始真核细胞吞噬后,即与宿主细胞间形成互利的共生关系:原始真核细胞利用这种细菌获得更充分的能量;而这种细菌则从宿主细胞获得更适宜的生存环境。与此类似,叶绿体的祖先可能是蓝细菌(cyanbacteria),当这种蓝细菌被原始真核细胞摄人后,为宿主细胞进行光合作用;而宿主细胞则为其提供其他的生存条件。

研究发现,线粒体、叶绿体的内膜和外膜存在明显的性质和成分差异。外膜与真核细胞的内膜系统具有性质上的相似,可与内质网和高尔基体膜融合沟通;而它们的内膜则与细菌质膜相似,内陷折叠形成细菌的间体、线粒体的和叶绿体的类囊体。 在膜的化学成分上,线粒体和叶绿体内膜的蛋白质/脂质比远大于外膜,接近于细菌质膜的成分。

请回答问题:

- (1) 从细胞类型上分类,蓝藻是 _____生物。
- (2) 原始真核单细胞生物吞噬细菌、蓝藻的方式体现了细胞膜具有 _____ 的结构特性。
- (3)由线粒体和叶绿体的形成过程,可以推测它们内部含有 _____(细胞器)。在叶绿体中能显著增大膜面积、有利于酶附着,提高光合作用代谢效率的结构是 _____。依据内共生起源学说,线粒体、叶绿体之所以具有双层膜结构的原因是

