3GPP TR 38.873 V16.0.0 (2019-06)

Technical Report

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Time Division Duplex (TDD) operating band in Band n48; (Release 16)

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© 2019, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC). All rights reserved.

UMTSTM is a Trade Mark of ETSI registered for the benefit of its members 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTETM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association

Contents

Fore	eword	4
1	Scope	
2	References	
3 3.1	Definitions and abbreviations	
3.2	Abbreviations.	5
4	Background	6
5	Frequency band arrangements and regulatory background	6
6	Operating band, channel bandwidths, channel numbering	8
7	Study of UE and BS requirements	
7.1 7.1.1	UE requirements	
7.1.1	1.1 Vendor A	14
7.2	BS requirements	16
Ann	nev A· Change history	10

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document is a technical report for the work item of TDD operating band in Band n48.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications"
- [2] RP-182865, "New WID on introduction of n48"

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

A-MPR Additional Maximum Power Reduction

BS Base Station
CA Carrier Aggregation

CBRS Citizens Broadband Radio Service
CBSD Citizens Broadband Radio Service Device

DC Dual Connectivity

DL Downlink

GSCN Global Synchronization Channel Number

EUD End User Device E-UTRA Evolved UTRA NR New Radio

NR-ARFCN NR Absolute Radio Frequency Channel Number

NS Network Signalling
PC3 Power Class 3
REFSENS Reference Sensitivity
SCS Subcarrier Spacing
Schoolspace Sensitivity
Subcarrier Spacing

SS Synchronization Symbol TDD Time Division Duplex UE User Equipment

UL Uplink

UMTS Universal Mobile Telecommunications System UTRA UMTS Terrestrial Radio Access

4 Background

On April 21^{st} 2015, the FCC released a Report and Order (R&O) and Second Further Notice of Proposed Rulemaking (Second FNPRM) to establish new rules for commercial use of the 3550-3700 MHz band. This framework creates a contiguous 150 MHz block at 3550-3700 MHz (3.5 GHz) for mobile broadband that FCC calls "Citizens Broadband Radio Service (CBRS)" and regulated under new Part 96 of FCC's Rules. On May 2^{nd} 2016, a second R&O and Order on Reconsideration was released by FCC to finalize the rules. On October 24, 2018, the FCC released an Order revising the licensing and technical rules in the CBRS band.

The objective of the Work Item is to specify a new NR TDD operating band (3550 - 3700 MHz) with support of the following SCS and bandwidths (for PC3 power class only):

NR	SCS	5	10	15	20	40	50	60	80	90	100
Band	kHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
	15	Yes	Yes	Yes	Yes	Yes	Yes ¹				
n48	30		Yes	Yes	Yes	Yes	Yes ¹				
	60		Yes	Yes	Yes	Yes	Yes ¹				
Note 1:	Note 1: This UE channel bandwidth is applicable only to DL										
NI-4- O	0		II /DI La	والمراجع والمالية والمراجع							

Note 2: Only symmetric UL/DL bandwidths are defined for non-CA operation

5 Frequency band arrangements and regulatory background

The 3550 – 3700 MHz band plan is shown in Figure 5.1. The adjacent 3700 – 4200 MHz band is used by C-Band Fixed Satellite Services Earth Stations. On the lower side, the band 3100-3550MHz is used by US Department of Defense (DoD) for operating various types of shipborne, land-based, and aeronautical mobile radar systems.

	US Department of Defense (DoD) systems	New 3.5GHz band		C-Band Fixed Satellite Services Earth Stations	
31	00 35	50	3700		4200

Figure 5.1: Band plan

Summary of the FCC's rules relevant to RAN4 work to define a new band for US 3.5GHz band are provided below:

3.5 GHz Emissions and Interference Limits:

(1) General protection levels. Except as otherwise specified below, for CBSD channel and frequency assignments, the conducted power of any CBSD emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper assigned channel edge and within 0-10 megahertz below the lower assigned channel edge. At all frequencies greater than 10 megahertz above the upper assigned channel edge and less than 10 MHz below the lower assigned channel edge, the conducted power of any CBSD emission shall not exceed -25 dBm/MHz. The upper and lower assigned channel edges are the upper and lower limits of any channel assigned to a CBSD, or in the case of multiple contiguous channels, the upper and lower limits of the combined contiguous channels.

For channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies

greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

(2) Additional protection levels: the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

Figure 5.2: CBSD & EUD Emission Limits

(3) Measurement procedure:

(i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's authorized frequency channel, a resolution bandwidth of no less than one percent of the fundamental emission bandwidth may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full reference bandwidth (*i.e.*, 1 MHz or 1 percent of emission bandwidth, as specified). The fundamental emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

6 Operating band, channel bandwidths, channel numbering

5.2 Operating bands

Because in this case E-UTRA band 48 is re-farmed the band number is re-used.

NR operating band	Uplink (UL) operating band BS receive / UE transmit Ful_low - Ful_high	Downlink (DL) operating band BS transmit / UE receive FDL_low - FDL_high	Duplex Mode
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n48	3550 MHz – 3700 MHz	3550 MHz – 3700 MHz	TDD

5.3 UE channel bandwidth

From the WID we can determine the Channel bandwidths. Channel bandwidth of 5 MHz can be used only as a part of DC or CA-configuration as it is not discoverable in initial acquisition because the synchronization raster does not support 15 kHz. Channel bandwidths of 50 MHz - 100 MHz are listed in WID as applicable only for DL. Furthermore, the WID states that only symmetric UL/DL bandwidths are defined for non-CA operation, therefore channel bandwidths of 50 MHz - 100 MHz can be used only as Scell in CA-configuration.

	NR band / SCS / UE Channel bandwidth												
NR Band	SCS kHz	5 MHz	10 ^{1,2} MHz	15 ² MHz	20 ² MHz	25² MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
n41	15		Yes	Yes	Yes			Yes	Yes				
	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes	Yes
	15	Yes ⁴	Yes	Yes	Yes			Yes	Yes ⁵				
n48	30		Yes	Yes	Yes			Yes	Yes⁵	Yes⁵	Yes⁵	Yes⁵	Yes⁵
	60		Yes	Yes	Yes			Yes	Yes ⁵				

NOTE 3: This UE channel bandwidth is applicable only to downlink.

NOTE 4: For this bandwidth, the minimum requirements are restricted to operation when carrier is configured as an Scell part of DC or CA configuration.

NOTE 5: For this bandwidth, the minimum requirements are restricted to operation when carrier is configured as an downlink SCell part of CA configuration

5.4.2.1 NR-ARFCN and channel raster

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band

NR Operating	ΔF _{Raster} (kHz)	Uplink Range of N _{REF}	Downlink Range of N _{REF}
Band		(First – <step size=""> – Last)</step>	(First – <step size=""> – Last)</step>
n41	15	499200 - <3> - 537999	499200 - <3> - 537999
1141	30	499200 - <6> - 537996	499200 - <6> - 537996
n48	15	636667 - <1> - 646666	636667 - <1> - 646666
	30	636668 - <2> - 646666	636668 - <2> - 646666

5.4.3.1 Synchronization raster and numbering

Table 5.4.3.3-1: Applicable SS raster entries per operating band

NR Operating Band	SS Block SCS	SS Block pattern ¹	Range of GSCN (First – <step size=""> – Last)</step>
n41	15kHz	Case A	6246 – <3> – 6717
	30 kHz	Case C	6252 - <3> - 6714
n48	30 kHz	Case C	7884 – <1> – 7982

7 Study of UE and BS requirements

7.1 UE requirements

6.2.1 UE maximum output power

This work-item is for PC3 power class only. Tolerances are copied from E-UTRA band 48.

Table 6.2.1-1: UE Power Class

NR band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)
n41			26	+2/-3 ³	23	±2 ³
n48					23	+2/-3

6.2.3 UE additional maximum output power reduction

NS- signalling is needed due to FCC emission requirements. NS_27 is copied from E-UTRA band 48. NS_100 or NS_27U is not needed as UTRA is not deployed in this band.

Table 6.2.3.1-1: Additional maximum power reduction (A-MPR)

Network Signalling label	Requirements (subclause)	NR Band	Channel bandwidth (MHz)	Resources Blocks (<i>N</i> _{RB})	A-MPR (dB)
NS_27	6.5.2.3.8 6.5.3.3.10	n48	5, 10, 15, 20, 40	Table 6.2.3.15-1	Table 6.2.3.15-2

NOTE 1: This NS can be signalled for NR bands that have UTRA services deployed

NOTE 2: No A-MPR is applied for 5 MHz CBW where the lower channel edge is ≥ 1930 MHz,10 MHz CBW where the lower channel edge is ≥ 1950 MHz and 15 MHz CBW where the lower channel edge is ≥ 1955 MHz.

NOTE 3: Applicable when the NR carrier is within 1447.9 – 1462.9 MHz

Table 6.2.3.1-1A: Mapping of Network Signaling label

NR band	Value of additionalSpectrumEmission								
INK Dallu	0	1	2	3	4	5	6	7	
n41	NS_01	NS_04							
n48	NS_01	NS_27							

NOTE: additionalSpectrumEmission corresponds to an information element of the same name defined in sub-clause 6.3.2 of TS 38.331 [7].

6.2.3.15 A-MPR for NS 27

A-MPR studies are presented in clause 7.1.1 of present contribution.

Following A-MPR definition was agreed.

Table 6.2.3.15-1: A-MPR for NS 27

Channel	Carrier Centre		Regio	n A		Region B		
Bandwidth, MHz	Frequency, Fc, MHz	RBstart*12* SCS	RBend*12* SCS	LCRB*12* SCS	A-MPR	LCRB*12* SCS	A-MPR	
5 MHz	$3552.5 \le F_C \le 3697.5$							
10 MHz	3555 ≤ F _C ≤ 3695							
15 MHz	$3557.5 \le F_C < 3562.5$	<1.8MHz			A3			
13 1011 12	$3687.5 < F_C \le 3692.5$	>11.52 MHz			ζ3			
15 MU-	3562.5 ≤ F _C ≤ 3687.5	Note 1		<1.44MHz	A4			
15 MHz			Note 2	<1.44IVIDZ				

Channel	Carrier Centre		Regio	n A		Region B		
Bandwidth, MHz	Frequency, Fc, MHz	RBstart*12* SCS	RBend*12* SCS	LCRB*12* SCS	A-MPR	LCRB*12* SCS	A-MPR	
20 MHz	$3560 \le F_C < 3570$	<3.6MHz			A5			
ZU IVITZ	$3680 < F_C \le 3690$	>12.96MHz			AS			
20 MHz	3570 ≤ F _C ≤ 3680	Note 1		<1.44MHz	A6			
			Note 2		Au			
	3570 ≤ F _C < 3600	<11.34M						
40 MHz	3570 ≥ F _C < 3600		>31.0MHz	<1.8MHz	A7			
40 1011 12	2650 - E - < 2690	>24.48MHz			Ai			
	$3650 < F_C \le 3680$		<6.48MHz	<1.8MHz	1			
40 MHz	$3600 \le F_C \le 3650$	Note 1		<1.44MHz	A8	~[30]MH-z	เวา	
40 10172	2000 7 LC 7 2020		Note 2	< 1. 44 1VI⊓Z	AO	>[20]MHz	[2]	

NOTE 1: <[(3530M-Fc)+5*BW/2]/5, Fc<3567.5M for BW=15M, Fc<3580M for BW=20M, Fc<3625M for BW=40M

NOTE 2: >[(Fc-3720M)+5*BW/2]/5, Fc>3682.5M for BW=15M, Fc>3670M for BW=20M, Fc>3625M for BW=40M

Table 6.2.3.15-2: A-MPR for modulation and waveform type

Modulati	Modulation/Waveform		A2	A3	A4	A5	A6	A7	A8
modulation, wavelerm		Outer	Outer/Inner						
	PI/2 BPSK			4	4	4	4	10.5	4
DET a	QPSK			4	4	4	4	10.5	4
DFT-s- OFDM	16 QAM			5	4	5	4	11	4
OFDIVI	64 QAM			5	4	5	4	11	4
	256 QAM							11	
	QPSK			6	4	6	4	11.5	4
CP-	16 QAM			6	4	6	4	11.5	4
OFDM	64 QAM			6	4	6	4	11.5	4
	256 QAM							11.5	

NOTE 1: The backoff applied is max (MPR, A-MPR) where MPR is defined in Table 6.2.2-1

NOTE 2: Outer and inner allocations are defined in clause 6.2.2

6.5.2.3 Additional spectrum emission mask

6.5.2.3.8 Requirements for network signalled value "NS_27"

Following the FCC requirements additional spectrum emission mask is defined as follows.

Table 6.5.2.3.8-1: Additional requirements for "NS_27"

Spectrum emission limit (dBm) / measurement bandwidth for each channel bandwidth									
Δf _{OOB} 5 10 15 20 40 Measurement MHz MHz MHz MHz MHz MHz bandwidth									
± 0 - 1		-13				1 % channel bandwidth			
± 1 - X			-13						
$<-$ X or $>$ X when 3540 MHz $<$ Δf_{OOB} $<$ 3710 MHz	-25				1 MHz				
NOTE: X is occupied channe	l band	width a	as defi	ned in	Table	6.5.1-1			

6.5.3.3Additional spurious emissions

6.5.3.3.9 Requirement for network signalled value "NS_27"

Following the FCC requirements additional spurious emissions is defined as follows.

Table 6.5.3.3.9-1: Additional requirements

Frequency range (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20, 40 MHz	Measurement bandwidth
9 kHz – 3530 MHz	-40	
3530 MHz – 3540 MHz	-25	1 MHz
3710 MHz – 3720 MHz	-25	I IVITZ
3720 MHz – 12.75 GHz	-40	1

7.3.2 Reference sensitivity power level

n77 and n78 REFSENS is used to allow co-banding. Channel bandwidths larger than 40 MHz can be used only in CA as these bandwidths are DL-only therefore the REFSENS can also only be verified in CA mode.

Table 7.3.2-1: Two antenna port reference sensitivity QPSK PREFSENS

	Operating band / SCS / Channel bandwidth / Duplex-mode													
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Duplex Mode
	15		-94.8	-93.0	-91.8			-88.6	-87.6					
n41 ¹	30		-95.1	-93.1	-92.0			-88.7	-87.7	-86.9	-85.6	-85.1	-84.7	TDD
	60		-95.5	-93.4	-92.2			-88.9	-87.8	-87.1	-85.6	-85.1	-84.7	
	15	-99	-95.8	-94.0	-92.7			-89.6	-88.6 ⁴					
n48¹	30		-96.1	-94.1	-92.9			-89.7	-88.7 ⁴	-87.9 ⁴	-86.6 ⁴	-86.1 ⁴	-85.6 ⁴	TDD
	60		-96.5	-94.4	-93.1			-89.9	-88.8 ⁴	-88.0 ⁴	-86.74	-86.2 ⁴	-85.7 ⁴	

NOTE 1: Four Rx antenna ports shall be the baseline for this operating band except for two Rx vehicular UE.

NOTE 4: For these bandwidths, the minimum requirements are restricted to operation when carrier is configured as an downlink carrier part of CA configuration

For UE(s) equipped with 4 Rx antenna ports, reference sensitivity for 2Rx antenna ports in Table 7.3.2-1 shall be modified by the amount given in $\Delta R_{IB,4R}$ in Table 7.3.2-2 for the applicable operating bands.

Operating band	ΔR _{IB,4R} (dB)
n1, n2, n3, n40, n7, n34, n38, n39, n41, n66, n70	-2.7
n48, n77, n78, n79	-2.2

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.2-1 and Table 7.3.2-2 shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2-3.

Table 7.3.2-3: Uplink configuration for reference sensitivity

	Operating band / SCS / Channel bandwidth / Duplex mode													
Operating Band	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Duplex Mode
	15		50	75	100			216	270					
n41	30		24	36	50			100	128	162	216	243	270	TDD
	60		10	18	24			50	64	75	100	120	135	
	15	25	50	75	100			216						
n48	30		24	36	50			100						TDD
	60		10	18	24			50						
	15	25	50	75	100			216	270					
n50	30		24	36	50			100	128	162	NOTE 3			TDD
	60		10	18	24			50	64	75	NOTE 3			

NOTE 1: ¹ Refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.3.2-1).

NOTE 2: ² refers to Band 20; for 15 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16; for 30 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 6 and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 8; for 60 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 3 and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RBstart 4;

NOTE 3: For DL channel bandwidths that do not have symmetric UL channel bandwidth, highest valid UL configuration with lowest duplex distance shall be used.

Unless given by Table 7.3.2-4, the minimum requirements specified in Tables 7.3.2-1 and 7.3.2-2 shall be verified with the network signalling value NS_01 (Table 6.2.3-1) configured.

Table 7.3.2-4: Network signaling value for reference sensitivity

Operating	Network
band	Signalling
	value
n2	NS_03
n12	NS_06
n25	NS_03
n48	NS_27
n66	NS_03
n70	NS_03
n71	NS_35

7.6.2 In-band blocking

n48 is added into in-band blocking table.

Table 7.6.2-4: In-band blocking for NR bands with F_{DL_low} ≥ 3300 MHz and F_{UL_low} ≥ 3300 MHz

NR band	Parameter	Unit	Case 1	Case 2				
	Pinterferer	dBm	-56	-44				
n48, n77,	Finterferer (offset)	MHz	-CBW/2 -	≤ -CBW/2 -				
n78, n79			F _{loffset, case 1}	F _{loffset, case 2}				
			and	and				
			BW/2 +	≥ CBW/2 +				
			Floffset, case 1	Floffset, case 2				
	F _{interferer}			F _{DL_low} – 3CBW				
			NOTE 2	to				
				F _{DL_high} + 3CBW				
			ferer offset Finterfere					
fu	ırther adjusted to ($ F_{ m interferer} $	SCS + 0.5)SCS MH	Iz with SCS the				
SI	ub-carrier spacing of	of the wan	ted signal in MHz. Th	ne interferer is an				
	NR signal with an SCS equal to that of the wanted signal.							
			e requirement applies					
	•	•	- F _{loffset case 1} ; b: CB					

7.6.3 Out-of-band blocking

n48 is added into out-of-band blocking table. Note 3 is assigned to band 48 to allow usage of n77/n78 filter. Same approach is used in E-UTRA to allow band 48 share filter with bands 42 and 43.

NOTE 3: CBW denotes the channel bandwidth of the wanted signal

Table 7.6.3-4: Out of-band blocking for NR bands with F_{DL low}≥ 3300 MHz and F_{UL low}≥ 3300 MHz

NR band	Parameter	Unit	Range1	Range 2	Range 3				
n48, n77,	P _{interferer}	dBm	-44	-30	-15				
n78 (NOTE 3)	Finterferer (CW)	MHz	$\begin{array}{c} -60 < f - F_{DL_low} \leq \\ -3CBW \\ or \\ 3CBW \leq f - F_{DL_high} < \\ 60 \end{array}$	$-200 < f - F_{DL_low} \le$ -MAX(60,3CBW) or $MAX(60,3CBW) \le f -$ $F_{DL_high} < 200$	$1 \le f \le F_{DL_low} - MAX(200,3CBW)$ or $F_{DL_high} + MAX(200,3CBW)$ $\le f \le 12750$				
n79 (NOTE 4)	F _{interferer} (CW)	MHz	N/A	$-150 < f - F_{DL_low} \le$ $-MAX(60,3CBW)$ or $MAX(60,3CBW) \le f F_{DL_high} < 150$	$1 \le f \le F_{DL_low} - \\ MAX(150,3CBW) \\ or \\ F_{DL_high} \\ + MAX(150,3CBW) \\ \le f \le 12750$				
6									

NOTE 3: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 2700 MHz and F_{Interferer} < 4800 MHz. For CBW > 15 MHz, the requirement for Range 1 is not applicable and Range 2 applies from the frequency offset of 3CBW from the band edge. For CBW larger than 60 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.

The power level of the interferer (PInterferer) for Range 3 shall be modified to -20 dBm, for FInterferer > 3650 MHz and F_{Interferer} < 5750 MHz. For CBW ≥ 40 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3CBW from the band edge.

7.1.1 A-MPR

7.1.1.1 Vendor A

Simulation assumptions were as follows

IQ-Image and LO leakage = 28 dBc

CIM3 = 60 dBc

PA calibration point was 20 MHz, 15 kHz, QPSK, DFT-S-OFMA, 100 RB at lower channel edge with 0.5 dB MPR

A-MPR concept and results

FCC emission requirements are tighter outside of the band compared to inside the band with an exception that first 10 MHz on high side of that band has same -13 dBm requirement as within the band. Therefore, it would be beneficial to define two different A-MPRs firstly the band edge A-MPR which has higher -25 dBm...-40 dBm emission requirement on IMD3 region and secondly an inner-band A-MPR which would have lower A-MPR as -13 dBm requirement would apply on IMD3 region. This concept is presented in Figure.

Figure 7.1.1.1-1: Two different A-MPRs per CH BW

Based on concept presented in Figure 7.1.1.1-1 we provide simulation results in Tables 7.1.1.1-1 and 7.1.1.1-2 below. Total UE output power backoff is max(MPR, A-MPR).

Table 7.1.1.1-1: A-MPR regions for n48

Channel Bandwidth, MHz	Carrier Centre Frequency, Fc, MHz	A-MPR
5 MHz	$3552.5 \le F_C \le 3697.5$	A1
10 MHz	$3555 \le F_C \le 3695$	A2
15 MHz	$3557.5 \le F_C < 3562.5$ $3687.5 < F_C \le 3692.5$	А3
15 MHz	3562.5 ≤ F _C < 3687.5	A4
20 MHz	3560 ≤ F _C < 3570 3680 < F _C ≤ 3690	A5
20 MHz	3570 ≤ F _C < 3680	A6
40 MHz	$3570 \le F_C < 3600$ $3650 < F_C \le 3680$	A7
40 MHz	3600 ≤ F _C < 3650	A8

Table 7.1.1.1-2: n48 A-MPR

		5 MHz Edge		10 MH:	z Edge	15 MHz	Edge	15 MHz	Center	
		А	1	А	2	А	3	А	4	
		Outer	Inner	Outer	Inner	Outer	Inner	Outer	Inner	
	pi/2-BPSK	-	-	-	-	1,5	1,5	-	-	
	QPSK	-	-	-	-	3	2	-	-	
SC- FDMA	16QAM	-	-	-	-	3	2,5	-	-	
I Dillira	64QAM	-	-	-	-	3	-	-	-	
	256QAM	-	-	-	-	-	-	-	-	
	QPSK	-	-	-	-	4	3	-	-	
OFDMA	16QAM	-	-	-	-	4	3	-	-	
OFDMA	64QAM	-	-	-	-	4	-	-	-	
	256QAM	-	-	-	-	-	-	-	-	
		20 MH:	z Edge	20 MHz	Center	40 MHz	Edge	40 MHz	Center	
		A5		А	6	A7			A8	
		Outer	Inner	Outer	Inner	Outer	Inner	Outer	Inner	
	pi/2-BPSK	3	1,5	-	-	8	8	1	-	
	QPSK	3,5	2	2	-	8	8	2	-	
SC- FDMA	16QAM	4,5	2,5	-	-	8,5	8,5	2,5	-	
	64QAM	4,5	-	-	-	8	8,5	-	-	
	256QAM	5	-	-	-	8	8,5	-	-	
	QPSK	6	3,5	-	-	8,5	8,5	-	-	
OFDMA	16QAM	6	3,5	-	-	8,5	9	-	-	
OFDIVIA	64QAM	6	-	-	-	8,5	9	-	-	
	256QAM	-	-	-	-	8,5	8	-	-	

As can be seen from results presented in Table 7.1.1.1-2 our results indicate there is no need to specify A-MPR for A1, A2, A4, A6 inner and A8 inner scenarios. A-MPR needed for A6 and A8 outer allocations is limited to only few

modulations. For A5 there is an A-MPR need for many modulations but additive backoff compared to MPR is 1.5-3 dB. A8 requires always substantial A-MPR.

7.2 BS requirements

The following BS specific 38.104 changes are expected due to introduction of Band n48:

6.6.4.2.1 Basic limits for Wide Area BS (Category A)

For BS operating in Bands n1, n2, n3, n7, n25, n34, n38, n39, n40, n41, n48, n50, n65, n66, n70, n74, n75, n77, n78, n79, *basic limits* are specified in table 6.6.4.2.1-2:

Table 6.6.4.2.1-2: Wide Area BS operating band unwanted emission limits (NR bands above 1 GHz) for Category A

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10 MHz, \Delta f_{max})$	$5.05 \text{ MHz} \le f_\text{offset} < $ min(10.05 MHz, f_offset _{max})	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.5 MHz ≤ f_offset < f_offset _{max}	-13 dBm (Note 3)	1MHz

- NOTE 1: For a BS supporting non-contiguous spectrum operation within any *operating band*, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -13 dBm/1 MHz.
- NOTE 2: For a *multi-band connector* with Inter RF Bandwidth gap < 2*Δf_{OBUE} the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth.
- NOTE 3: The requirement is not applicable when $\Delta f_{max} < 10$ MHz.

6.6.4.2.2.1Category B requirements (Option 1)

For BS operating in Bands n1, n2, n3, n7, n25, n34, n38, n39, n40, n41, n48, n50, n65, n66, n70, n75, n77, n78, n79, basic limits are specified in tables 6.6.4.2.2.1-2:

Table 6.6.4.2.2.1-2: Wide Area BS operating band unwanted emission limits (NR bands above 1 GHz) for Category B

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz $\leq \Delta f <$ min(10 MHz, Δf_{max})	$5.05 \text{ MHz} \leq f_\text{offset} < $ min(10.05 MHz, f_offset _{max})	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.5 MHz ≤ f_offset < f_offset _{max}	-15 dBm (Note 3)	1MHz

NOTE 1: For a BS supporting non-contiguous spectrum operation within any *operating band*, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -15 dBm/1 MHz.

NOTE 2: For a *multi-band connector* with Inter RF Bandwidth gap < 2*Δf_{OBUE} the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth.

NOTE 3: The requirement is not applicable when Δf_{max} < 10 MHz.

6.6.4.2.5.3 Additional operating band unwanted emissions limits for Band n48

The following requirement may apply to BS operating in Band n48 in certain regions. Emissions shall not exceed the maximum levels specified in Table 6.6.4.2.5.3-1.

Table 6.6.4.2.5.3-1: Additional operating band unwanted emission limits for Band n48

Channel	Frequency offset of	Frequency offset of	Minimum	Measurement
bandwidth	measurement	measurement filter centre	requirement	bandwidth
	filter -3dB point, ∆f	frequency, f_offset	-	(Note)
All	0 MHz ≤ Δf < 10 MHz	0.5 MHz ≤ f_offset < 9.5 MHz	-13 dBm	1 MHz

Note:

The resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.5.2.3 Additional spurious emissions requirements

Table 6.6.5.2.3-1: BS spurious emissions *basic limits* for BS for co-existence with systems operating in other frequency bands

System type for NR to co-exist with	Frequency range for co-existence requirement	Basic limits	Measurement bandwidth	Note
UTRA FDD Band	3510 – 3590 MHz	-52 dBm	1 MHz	This is not applicable to BS operating in Band n48.
				This is not applicable to be operating in band 1146.
XXII or E-UTRA Band 22	3410 – 3490 MHz	-49 dBm	1 MHz	
E-UTRA Band 42	3400 – 3600 MHz	-52 dBm	1 MHz	This is not applicable to BC energting in Band n49
E-UTRA Danu 42	3400 – 3600 MHZ	-52 UDIII		This is not applicable to BS operating in Band n48,
				n77 and n78.
E-UTRA Band 43	3600 – 3800 MHz	-52 dBm	1 MHz	This is not applicable to BS operating in Band n48,
				n77 and n78.
E-UTRA Band 48	3550 – 3700 MHz	-52 dBm	1 MHz	This is not applicable to BS operating in Band n48,
or NR Band n48				n77 and n78.
NR Band n77	3.3 – 4.2 GHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
				Band n48, n77 and n78
NR Band n78	3.3 – 3.8 GHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
				Band n48, n77 and n78

The following requirement may apply to BS operating in Band n48 in certain regions. The power of any spurious emission shall not exceed:

Table 6.6.5.2.3-6: Additional BS Spurious emissions limits for Band n48

Frequency range	Maximum Level	Measurement Bandwidth (NOTE)	Note
3530MHz – 3720MHz	-25dBm	1 MHz	Applicable 10MHz from the assigned channel edge
3100MHz – 3530MHz 3720MHz – 4200MHz	-40dBm	1 MHz	

NOTE: The resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.5.2.4 Co-location with other base stations

Table 6.6.5.2.4-1: BS spurious emissions basic limits for BS co-located with another BS

Type of co-located	Frequency range	Basic limits			Measurement	Note	
BS	for co-location requirement	WA BS	MR BS	LA BS	bandwidth		
UTRA FDD Band XXII or E-UTRA Band 22	3410 – 3490 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n48	
E-UTRA Band 42	3400 – 3600 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n48	
E-UTRA Band 43	3600 – 3800 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n48	
E-UTRA Band 48 or NR Band n48	3550 – 3700 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n48	
NR Band n77	3.3 – 4.2 GHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n48	
NR Band n78	3.3 – 3.8 GHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n48	

Annex A: Change history

Change history							
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	
2019-04	RAN4#90 bis	R4-1904591				Initial TR skeleton	0.0.1
2019-04	RAN4#90 bis	R4-1904592				The following agreed text proposals have been included:	0.1.0
						R4-1900392 TP to TR 38.173: Definitions and abbreviations, Nokia	
						R4-1900393 TP to TR 38.173: Background information, Nokia	
						R4-1900395 TP to TR 38.173: Frequency band arrangements and regulatory background, Nokia	
						R4-1900055 TP to TR 38.173: n48 A-MPR, Nokia	
						R4-1902447 TP to TR 38.173: Analysis on UE requirements for n48, Nokia	
						R4-1900394 TP to TR 38.173: BS requirements, Nokia	
2019-06	RAN#84	RP-190910				V1.0.0 is submitted for 1 step approval	1.0.0
2019-06	RAN#84					Approved by plenary – Rel-16 spec under change control	16.0.0