Revised: 2/15/2021

Data Visualization I

Michael C. Hackett
Assistant Professor, Computer Science

Community
College
of Philadelphia

- ggplot2 is a data visualization package in R
- Allows for declaratively creating graphics
 - Based on the text <u>The Grammar of Graphics</u>
- "You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details."
 - Project homepage: https://ggplot2.tidyverse.org/

• ggplot2 is installed along with the tidyverse: install.packages("tidyverse")

 Can be installed as a stand-alone package: install.packages("ggplot2")

• Extensions:

https://exts.ggplot2.tidyverse.org/gallery/

- ggplot2 is loaded along with the rest of the tidyverse: library(tidyverse)
- Can be loaded by itself: library(ggplot2)

- ggplot2 has a sample data frame for demonstration purposes
 - The mpg dataset contains observations collected by the US Environmental Protection Agency on 38 models of cars

• If tidyverse was loaded:

library(tidyverse)

ggplot2::mpg

If ggplot2 was loaded by itself:
 library(ggplot2)
 mpg

 We'll assume ggplot2 was loaded by itself for the remainder of the lecture


```
> library(ggplot2)
Use suppressPackageStartupMessages() to eliminate package startup messages
Warning message:
package 'ggplot2' was built under R version 3.6.3
> mpg
# A tibble: 234 x 11
                                                                          hwy f1
   manufacturer model
                             displ
                                    year
                                           cyl trans
                                                            drv
                                                                                     class
                                                                    cty
                                                            <chr> <int>
   <chr>>
                 <chr>>
                             <db1>
                                   <int> <int> <chr>
                                                                         <int> <chr> <chr>
 1 audi
                                    <u>1</u>999
                                              4 auto(15)
                                                                            29 p
                 a4
                                                                     18
                                                                                     compact
                                              4 manual(m5) f
 2 audi
                              1.8
                                    1999
                                                                           29 p
                                                                                     compact
                                             4 manual(m6) f
                                                                            31 p
 3 audi
                 a4
                                    2008
                                                                                     compact
 4 audi
                                    2008
                                              4 auto(av)
                                                                            30 p
                 a4
                                                                                     compact
                                    1999
                                              6 auto(15)
 5 audi
                 a4
                                                                            26 p
                                                                                     compact
                                             6 manual(m5) f
                                    1999
 6 audi
                 a4
                                                                            26 p
                                                                                     compact
                                    2008
                                              6 auto(av)
                                                                            27 p
 7 audi
                 a4
                                                                                     compact
                 a4 quattro
                                    1999
                                              4 manual(m5) 4
                                                                            26 p
 8 audi
                                                                                     compact
 9 audi
                              1.8
                                    1999
                                              4 auto(15)
                                                                            25 p
                 a4 quattro
                                                                                     compact
                                    2008
                                              4 manual(m6) 4
                                                                           28 p
10 audi
                 a4 quattro
                                                                                     compact
# ... with 224 more rows
```

- The displ column is the engine size (in liters)
- The hwy column is the highway gas milage in miles-per-gallon

- We begin creating a plot with the ggplot() function
 - This creates a coordinate system that layers can be added on to

- The first argument to the ggplot function is the data we wish to plot ggplot(data = mpg)
- Now that the plot has its data, layers are added that specify how to data is to be displayed.
 - Layers of data are referred to as geometries or geoms

- ggplot2's geom_point() function adds a layer of points to a plot
 - Effectively creating a scatterplot

- The first argument to the geom_point function is the mapping
 - Will define how variables are mapped to different aesthetics or visual properties on this layer

```
geom_point(mapping = aes())
```

The aes function shown here specifies the aesthetics of the layer

 The x and y arguments to the aes function specify which columns to use for the x and y axes of our scatterplot

```
geom\_point(mapping = aes(x = displ , y = hwy))
```


• Now, we simply add this layer to the plot:

```
ggplot(data = mpg) + geom_point(mapping = aes(x = displ , y = hwy))
```



```
ggplot(data = mpg) + geom_point(mapping = aes(x = displ , y = hwy))
```


 The color argument to the geom_point function will specify the color of all the data points

```
geom\_point(mapping = aes(x = displ , y = hwy), color = "red")
```

ggplot(data = mpg) + geom_point(mapping = aes(x = displ , y = hwy), color = "red")

• The color argument to the *aes function* will specify how to color the individual data points

```
geom_point(mapping = aes(x = displ , y = hwy, color = class))
```

 This will apply a unique color to each point, based on the class column of each observation

 $ggplot(data = mpg) + geom_point(mapping = aes(x = displ , y = hwy, color = class))$

 The alpha argument to the aes function will specify the opacity of the data points

```
geom_point(mapping = aes(x = displ , y = hwy, alpha = class))
```

This will apply an opacity to each point, based on the class column of each observation

 $ggplot(data = mpg) + geom_point(mapping = aes(x = displ , y = hwy, alpha = class))$

 The size argument to the aes function will specify the size of the data points

```
geom_point(mapping = aes(x = displ , y = hwy, size = class))
```

 This will apply a size to each point, based on the class column of each observation

 $ggplot(data = mpg) + geom_point(mapping = aes(x = displ , y = hwy, size = class))$

 The shape argument to the aes function will specify the shapes of the data points

```
geom_point(mapping = aes(x = displ , y = hwy, shape = class))
```

 This will apply a shape to each point, based on the class column of each observation

 $ggplot(data = mpg) + geom_point(mapping = aes(x = displ , y = hwy, shape = class))$

Note: Only displays up to 6 shapes (hence why SUV is not shown)

• The geom_smooth function plots a layer of a smooth, fitted line
 ggplot(data = mpg) + geom_smooth(mapping = aes(x = displ , y = hwy))

ggplot2 - Geoms

The layer can be plotted on top of other layers ggplot(data = mpg) +

```
geom_point(mapping = aes(x = displ , y = hwy)) +
geom_smooth(mapping = aes(x = displ , y = hwy))
```


ggplot2 - Geoms

- There is some redundancy in the last slide
 - Both layers needed to be told the x and y values.
- Instead, the mapping can be moved into the original ggplot
 - Now, the data and a default mapping/aesthetic is passed up to any added layers

```
ggplot(data = mpg, mapping = aes(x = displ , y = hwy)) +
geom_point() +
geom_smooth()
```

(Same plot)

ggplot2 - Geoms


```
ggplot(data = mpg, mapping = aes(x = displ , y = hwy)) +
geom_point(mapping = aes(color = class)) +
geom_smooth()
```


• Labels such as title, subtitle, captions, and axis labels can be added using ggplot2's lab function

```
ggplot(data = mpg, mapping = aes(x = displ , y = hwy)) +
geom_point() +
geom_smooth() +
labs(title = "Fuel efficiency generally decreases with engine size")
```


Hackett - Community College of Philadelphia - CSCI 118


```
ggplot(data = mpg, mapping = aes(x = displ , y = hwy)) + geom_point() + geom_smooth() + labs(title = "Fuel efficiency generally decreases with engine size",
```

subtitle = "Two seaters (sports cars) are an exception because of their light weight",
caption = "Data from fueleconomy.gov")

(Shown larger on next slide)

(Shown on next slide)

Fuel efficiency generally decreases with engine size

Two seaters (sports cars) are an exception because of their light weight

ggplot2 - Scales

 Scales in ggplot2 control how a plot maps data values to the visual values of an aesthetic.

 The general format of a scale function is scale_*_function()

• For example, scale_x_reverse will reverse the x axis

ggplot2 - Scales


```
ggplot(data = mpg, mapping = aes(x = displ , y = hwy)) +
geom_point() +
geom_smooth() +
labs(title = "Fuel efficiency generally decreases with engine size",
    subtitle = "Two seaters (sports cars) are an exception because of their light weight",
    caption = "Data from fueleconomy.gov",
    x = "Engine Displacement (L)", y = "Highway Fuel Economy (mpg)") +
scale_x_reverse()
```

(Shown on next slide)

Fuel efficiency generally decreases with engine size

Two seaters (sports cars) are an exception because of their light weight

(Not really helpful for this graph, but it demonstrates a scale in gglplot2)

ggplot2 - Scales

- A scale can be used to adjust the tick marks for the scatterplot.
- The scale_y_continuous function will allow us to change the breaks and limits for the y axis
 - scale_x_continuous would do the same for the x axis
 - Use scale_x_discrete and scale_y_discrete for axes that use discrete variables (like text)
- The **breaks** argument is a vector that specifies the labels
- The limits argument is a vector that specifies the axis' range.

ggplot2 - Scales


```
ggplot(data = mpg, mapping = aes(x = displ , y = hwy)) +
  geom_point() +
  geom_smooth() +
  labs(title = "Fuel efficiency generally decreases with engine size",
      subtitle = "Two seaters (sports cars) are an exception because of their light weight",
      caption = "Data from fueleconomy.gov",
      x = "Engine Displacement (L)", y = "Highway Fuel Economy (mpg)") +
  scale_y_continuous(breaks=seq(0, 50, 5), limits=c(5,50))
```

(Shown on next slide)

Fuel efficiency generally decreases with engine size

ggplot2 - Scales


```
ggplot(data = mpg, mapping = aes(x = displ , y = hwy)) +
 geom_point() +
 geom smooth() +
  labs(title = "Fuel efficiency generally decreases with engine size",
     subtitle = "Two seaters (sports cars) are an exception because of their light weight",
    caption = "Data from fueleconomy.gov",
    x = "Engine Displacement (L)", y = "Highway Fuel Economy (mpg)") +
 scale_y_continuous(breaks=seq(0, 50, 5), limits=c(5,50)) +
 scale_x_continuous(breaks=seq(1.5, 7.1, 0.5), limits=c(1.5, 7))
   (Shown on next slide)
```


Fuel efficiency generally decreases with engine size

Two seaters (sports cars) are an exception because of their light weight

Data from fueleconomy.gov

There are a number of ways to control how the legend is displayed.

Changing the Legend title:

(Shown on next slide)

- Changing the Legend position:
 - "bottom", "top", "left", or "right"

```
ggplot(data = mpg, mapping = aes(x = displ , y = hwy)) +
  geom_point() +
  geom_smooth() +
  labs(x = "Engine Displacement (L)", y = "Highway Fuel Economy (mpg)",
        color = "Car Class") +
  scale_y_continuous(breaks=seq(0, 50, 5), limits=c(5,50)) +
  scale_x_continuous(breaks=seq(1.5, 7.1, 0.5), limits=c(1.5, 7)) +
  theme(legend.position = "bottom")
  (Shown on next slide)
```

Hackett - Community College of Philadelphia - CSCI 118

• We can change the labels in the legend, but it will also require specifying the colors of each:

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
 geom point() +
 geom smooth() +
 labs(x = "Engine Displacement (L)", y = "Highway Fuel Economy (mpg)",
      color = "Car Class") +
 scale_y_continuous(breaks=seq(0, 50, 5), limits=c(5,50)) +
 scale x continuous(breaks=seg(1.5, 7.1, 0.5), limits=c(1.5, 7)) +
 theme(legend.position = "bottom") +
 scale color manual(labels=c("Two Seater", "Compact", "Mid-Size",
                              "Minivan", "Pickup", "Sub-Compact", "SUV"),
                     values=c("red", "orange", "yellow", "green",
                              "blue", "purple", "violet"))
```

(Shown on next slide)

