Cosine Similarity

K = 1

```
We will be assigning the value

1 = Cosine similarity
2 = Euclidean Distance
3 = normalized euclidean distance.
Choose the value accordingly
1

We are doing the cases for k = 1, 3, 5, 7. Choose one of these values
1

Chosen distance_value is 1
Chosen k value is 1
0.6857142857142857

✓ Type here to search
```

K = 3

```
We will be assigning the value
1 = Cosine similarity
2 = Euclidean Distance
3 = normalized euclidean distance.
Choose the value accordingly
1

We are doing the cases for k = 1, 3, 5, 7. Choose one of these values
3

Chosen distance_value is 1
Chosen k value is 3
0.6857142857142857
```

K = 5

 \equiv

```
We will be assigning the value
1 = Cosine similarity
2 = Euclidean Distance
3 = normalized euclidean distance.
Choose the value accordingly
1

We are doing the cases for k = 1, 3, 5, 7. Choose one of these values
5

Chosen distance_value is 1
Chosen k value is 5
0.6857142857142857

✓

Type here to search

Ty
```

Euclidean Distance

```
C→
            We will be assigning the value
            1 = Cosine similarity
             2 = Euclidean Distance
            3 = normalized euclidean distance.
            Choose the value accordingly
            We are doing the cases for k = 1, 3, 5, 7. Choose one of these values
            Chosen distance_value is 2
           Chosen k value is 1
            0.9571428571428572
==
>_
       [ ]
      Type here to search
≓ŧ
```

K = 3

```
We will be assigning the value
        C→
             1 = Cosine similarity
             2 = Euclidean Distance
             3 = normalized euclidean distance.
            Choose the value accordingly
            We are doing the cases for k = 1, 3, 5, 7. Choose one of these values
            3
            Chosen distance_value is 2
            Chosen k value is 3
            0.9428571428571428
\equiv
>_
       [ ]
Type here to search
```

K = 5

Normalized Euclidean Distance

<u>K = 3</u>

<u>K = 5</u>

<u>K = 7</u>

Table of Results

	Cosine Similarity	Euclidean Distance	Normalized Euclidean Distance
K = 1	68.57%	95.71%	92.86%
K = 3	68.57%	94.29%	94.29%
K = 5	68.57%	94.29%	94.29%
K = 7	68.57%	94.29%	94.29%

Analysis and Conclusions

- We find that the best accuracy is found for Euclidean distance, with k = 1.
- The accuracy decreases as the k value increase, due to overfitting (except for Normalized Euclidean Distance).
- The accuracy seems to not change after a while
- The time taken for compiling(complexity) is least for cosine similarity and least for Euclidean distance metric.