Concurso Pierre Fermat 2024

Elías López Rivera ¹

Jonathan Sayid Mercado Martínez ²

¹Facultad de Ciencias (UNAM)

² Escuela superior de Física y Matemáticas (IPN)

¹elias.lopezr@ciencias.unam.mx

 2 jmercadom2000@alumno.ipn.mx

Fecha: 19/05/2025

Problema 2

Sea $n \in \mathbb{N}$, $x_0 = 0$, $x_i > 0$ para $i \in \mathbb{N}_n$ y $\sum_{i=1}^n x_i = 1$, demuestre que:

$$1 \le \sum_{i=1}^{n} \frac{x_i}{\sqrt{1 + x_1 + \dots + x_{i-1}}} \frac{x_i}{\sqrt{x_i + x_{i+1} + \dots + x_n}} < \frac{\pi}{2}$$

Demostración.

Definimos $y_i = \sum_{i=0}^i x_i$, reescribiendo obtenemos:

$$\sum_{i=1}^{n} \frac{y_i - y_{i-1}}{\sqrt{1 + y_{i-1}} \sqrt{1 - y_{i-1}}} = \sum_{i=1}^{n} \frac{y_i - y_{i-1}}{\sqrt{1 - (y_{i-1})^2}}$$

Ahora por la defininción de y_i , se sigue que $0 \le y_i < 1$, para toda $i \in \mathbb{N}_n/\{n\}$ la suma esta bien definida pues $1 - (y_{i-1})^2 > 0$, ademas que $y_n = 1$

Tomemos $f:[0,1) \Rightarrow \mathbb{R}^+$, $f(x) = \frac{1}{\sqrt{1-x^2}}$, tenemos que como $f'(x) = \frac{x}{(1-x^2)^{\frac{3}{2}}} \ge 0$ para todo $x \in [0,1)$, por tanto f es creiente en todo su dominio

Consideramos la partición P de [0,1], $P:=\{y_i\}_{i\in\mathbb{N}_n},$ del hecho de que f es creciente obtenemos que:

$$\sum_{i=1}^{n} \frac{y_i - y_{i-1}}{\sqrt{1 - (y_{i-1})^2}} = \underline{S}(P, f)$$

Finalmente obtenemos que

$$\sum_{i=1}^{n} \frac{y_i - y_{i-1}}{\sqrt{1 - (y_{i-1})^2}} < \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx = \frac{\pi}{2}$$

Para la nueva desigualdad tenemos que $\sqrt{1-(y_{i-1})^2} < 1$, por tanto tenemos que:

$$1 = \sum_{i=1}^{n} y_i - y_{i-1} < \sum_{i=1}^{n} \frac{y_i - y_{i-1}}{\sqrt{1 - (y_{i-1})^2}}$$

Problema 3

Si X es un conjunto con una norma $\|.\|$ y que satisface que para todo ϵ existen y_1, y_2, \cdots, y_n en X tal que $X \subset \bigcup_{i=1}^n B(y_i, \epsilon)$. Pruebe que toda sucesión en X tiene una subsucesión de Cauchy

Demostración.

Problema 5

Demuestre que existe una función derivable f tal que $(f(x))^5 + f(x) + x = 0 \ \forall x \in \mathbb{R}$ y obtenga $f'(x) \ \forall x \in \mathbb{R}$

Demostración.

Sea $g: \mathbb{R} \to \mathbb{R}$ tal que $g(x) = -x^5 - x$ como g es continua y estrictacmente monotona, además de invertible tenemos que g^{-1} es continua, luego como $g'(x) = -5x^4 - 1$, tenemos que $g(x) \neq 0$ en todo \mathbb{R} , por tanto aplicando el teorema de la función inversa tenemos que g^{-1} es derivable en \mathbb{R} , luego tenemos que:

$$g \circ g^{-1}(x) = -(g^{-1}(x))^5 - g^{-1}(x) = x \implies (g^{-1}(x))^5 + g^{-1}(x) + x = 0 \ \forall x \in \mathbb{R}$$

Finalmente encontramos $g^{-1'}(x)$ para $x \in \mathbb{R}$:

$$g^{-1'}(x) = \frac{1}{g' \circ g^{-1}(x)} = \frac{1}{-5(g^{-1}(x))^4 - 1}$$