

Operating System BSCS-5th A Department of Computer Science

Bahria University, Labore Campus

Quiz: [2]

Date: 19 Mar 2024

Name: Syed M Ibrahim

Roll No: 03-134221-037

Evaluation of CLO			
CUO2: Apply the concepts of memory management, I/O management	Question Number	Marks	Obtained Marks
CPU management and processor management etc.	1	1.5	1.0
	2	1	1.0
Stion - 1:	Marks	2.5	9.0

Consider the system of five processes (P1 to P5) given below with their arrival time, burst time, and priority. Apply the Preemptive Priority CPU Scheduling Scheme to execute all the processes. Draw the Gant chart, calculate wait time of each process and average turnaround time. Note, smaller the number

Proces	Process Arrival Time		Trote, sina		
P1	0	Burst Time	Priority		
12	3	2 2	2		
14 P5	6	1			
Answer Gant	Chart	6	3		
1	CHAIL				

PM	P3 PI	1897	0/5	
0 5	6	9	2 18	3

Avg. waif =
$$(6-5)+(8+5)+(9+12)$$
 = 9.8
Avg. Tat = $9+20+6+12+18=13$
Throughput = $20/5=4$

b. Consider the given system two processes (P1 and P2) and five semaphore variables S, R, X, Y, & Z. The initial value of each semaphore variable is one. Apply the concept of process synchronization, justify which process would execute prior than other and will both processes execute successfully?

Wait (R); ... Wait(S); ... Signal(R); Wait(R); ... Signal(R); Wait(S); ... Signal(S);

P2 Wait(X); ... Wait(Z); ... Signal(X); Wait(Y); ... Signal(Z); Wait(Y); ... Signal(Y);

Answer:

Both of them can be put to execution first, and mon of them will be completely executed.