Моделирование ламинарного течения холодной воды в трубе с нагретой стенкой

Размеры:

Длина трубы	L	= 2	[M]
Диаметр трубы	D	= 0.1	[M]

Входные параметры

Скорость на входе:	V_{inl}	= 0.001	[м с ⁻¹]
температуре на входе	T_{inl}	= 0	[K]
Температура стенки	T_{w}	= 90	[K]

Параметры жидкости:

Плотность	ρ	= 1000	[кг м ⁻³]
Вязкость	μ	= 10 ⁻³	[кг м ⁻¹ с ⁻¹]
Теплопроводность	λ	= 0.6	[Вт (м K) ⁻¹]
Удельная теплоемкость	C _p	= 4217	[Дж (кг К) ⁻¹]
Число Рейнольдса:	Re =	$\frac{V_{inl}D\rho}{\mu} = \frac{0.0}{100}$	$\frac{001 \cdot 0.1 \cdot 1000}{0.001} = 10^2$
Геометрия:	Tube.	WRL	

Физические процессы

Теплоперенос = теплоперенос через h Движение = модель Навье-Стокса

Граничные условия

Стенка:

Геометрия:

Температура: значение = 90, Скорость: прилипание

Свободный выход:

Температура: нулевой градиент, Скорость: давление, значение = 0

Вход/Выход:

Температура: значение = 0

Скорость: нормальная массовая скорость, значение = 1

Параметры расчета

Способ: в секундах, значение = 20

Результаты

Слой распределения температуры Цветовые контуры