Aquatic Mass Estimator

With a dataset of fish species, with some of it characteristic like it vertical, diagonal, length, height, and width. We will try to predict the weight of the fish based on their characteristic. We will use Linear Regression Method to see whether the weight of the fish related to their characteristic.

1. Species: Species name of fish

2. Weight: Weight of fish in gram

3. Length1: Vertical length in cm

4. Length2: Diagonal length in cm

5. Length3: Cross length in cm

6. Height: Height in cm

7. Width: Diagonal width in cm

import pandas as pd

fish = pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Fish.csv')

fish.head()

	Category	Species	Weight	Height	Width	Length1	Length2	Length3
0	1	Bream	242.0	11.5200	4.0200	23.2	25.4	30.0
1	1	Bream	290.0	12.4800	4.3056	24.0	26.3	31.2
2	1	Bream	340.0	12.3778	4.6961	23.9	26.5	31.1
3	1	Bream	363.0	12.7300	4.4555	26.3	29.0	33.5
4	1	Bream	430.0	12.4440	5.1340	26.5	29.0	34.0

fish.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 159 entries, 0 to 158
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Category	159 non-null	int64
1	Species	159 non-null	object
2	Weight	159 non-null	float64
3	Height	159 non-null	float64
4	Width	159 non-null	float64

```
5 Length1 159 non-null float64
6 Length2 159 non-null float64
7 Length3 159 non-null float64
dtypes: float64(6), int64(1), object(1)
memory usage: 10.1+ KB
```

fish.describe()

	Category	Weight	Height	Width	Length1	Length2	Length3
count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
mean	3.264151	398.326415	8.970994	4.417486	26.247170	28.415723	31.227044
std	1.704249	357.978317	4.286208	1.685804	9.996441	10.716328	11.610246
min	1.000000	0.000000	1.728400	1.047600	7.500000	8.400000	8.800000
25%	2.000000	120.000000	5.944800	3.385650	19.050000	21.000000	23.150000
50%	3.000000	273.000000	7.786000	4.248500	25.200000	27.300000	29.400000
75%	4.500000	650.000000	12.365900	5.584500	32.700000	35.500000	39.650000
max	7.000000	1650.000000	18.957000	8.142000	59.000000	63.400000	68.000000

fish.columns

model.fit(X_train,y_train)

```
▼ LinearRegression
     LinearRegression()
model.intercept
     -684.4235918478537
model.coef_
     array([ 35.19634977, 52.19372157, -37.13869125, 11.2218449 ,
             78.11233002, -59.11783139])
y_pred = model.predict(X_test)
y pred
     array([ 475.93351307, 525.81910195,
                                           77.63275849,
                                                         881.10235121,
             160.9685664 , 255.94371856,
                                          361.87029932,
                                                         358.87068094,
             499.83411068, -150.07834151, -115.91810869, 428.65470115,
             114.67533404, 812.51385122,
                                          586.5071178 ,
                                                         273.38510858,
             579.63900729, 225.18126845,
                                          639.26068037,
                                                         85.00820599,
             136.92159041, -87.7778087,
                                          629.97231046,
                                                         732.63097812,
             859.8720695 , -166.76928607,
                                          342.04209934, 722.92198147,
             321.44827179, 787.98248357, 486.93194673,
                                                         541.89982795,
             376.74813045, 624.81211202, -170.11945033,
                                                         917.76513801,
             792.26439518, -21.15655005,
                                          300.24921659, 914.07325473,
             621.05636286,
                           934.17373986,
                                          676.85479574, 653.92304403,
             615.51226767, 336.61090622,
                                          505.75519147, -33.53283763])
from sklearn.metrics import mean absolute error, r2 score
mean_absolute_error(y_test,y_pred)
     99.58910366731813
r2_score(y_test,y_pred)
     0.83982461599445
```

✓ 0s completed at 5:49 PM

• X