Parameter Efficient Fine Tuning (PEFT)

Pawan Goyal

CSE, IIT Kharagpur

CS60010

Different Perspectives to think about PEFT

Pruning

- During pruning, a fraction of the lowest-magnitude weights are removed
- · The non-pruned weights are re-trained
- Pruning for multiple iterations is more common (<u>Frankle & Carbin, 2019</u>)

How to apply Pruning for Pre-trained models?

- Pruning does not consider how weights change during fine-tuning
- Magnitude pruning: keep weights farthest from 0
- Movement pruning [Sanh et al., 2020]: keep weights that move the most away from 0

Revisiting full fine-tuning

- Assume we have a pre-trained autoregressive language model $P_{\phi}(y|x)$
 - E.g., GPT based on Transformer
- Adapt this pretrained model to downstream tasks (e.g., summarization, NL2SQL, reading comprehension)
 - Training dataset of context-target pairs $\{(x_i, y_i)\}_{i=1,\dots,N}$
- During full fine-tuning, we update ϕ_o to $\phi_o+\Delta\phi$ by following the gradient to maximize the conditional language modeling objective

$$\max_{\phi} \sum_{(x,y)} \sum_{t=1}^{|y|} \log(P_{\phi}(y_t|x, y_{< t}))$$

LoRA: Low-rank Adaptation

- For each downstream task, we learn a different set of parameters $\Delta\phi$
 - $|\Delta \phi| = |\phi_o|$
 - GPT-3 has a $|\phi_o|$ of 175 billion
 - Expensive and challenging for storing and deploying many independent instances
- Key idea: encode the task-specific parameter increment $\Delta \phi = \Delta \phi(\Theta)$ by a smaller-sized set of parameters $\Theta, |\Theta| \ll |\phi_o|$
- The task of finding $\Delta\phi$ becomes optimizing over Θ

$$\max_{\Theta} \sum_{(x,y)} \sum_{t=1}^{|y|} \log(P_{\phi_o + \Delta\phi(\Theta)}(y_t | x, y_{< t}))$$

$$|\Delta\phi(t)| < < |\Delta\phi|$$

Low-rank-parameterized update matrices

- Updates to the weights have a low "intrinsic rank" during adaptation (Aghajanyan et al. 2020)
- $W_0 \in \mathbb{R}^{d imes k}$: a pretrained weight matrix
- Constrain its update with a low-rank decomposition: \checkmark $W_0 + \Delta W = W_0 + B\underline{A}$

$$W_0 + \Delta W = W_0 + BA$$

where $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$, $r \ll \min(d, k)$

Only A and B contain **trainable** parameters

B TX (d+K) << d,K

LoRA: What happens during training and inference?

- $W_0 + \Delta W = W_0 + BA$
- During training, W_0 is frozen and does not receive gradient updates.
- For $h = W_0 x$, forward pass would be

$$h = W_0 x + \Delta W x = W_0 x + BA x$$

At inference time?

Use the matrix $W = W_0 + BA$, so no additional latency

Which weight matrices to apply to?

Which weight matrices in Transformers should we apply LoRA to?

	# of Trainable Parameters = 18M						
Weight Type Rank r	$\begin{bmatrix} W_q \\ 8 \end{bmatrix}$	W_k 8	W_v 8	W_o 8	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o
WikiSQL (±0.5%) MultiNLI (±0.1%)					71.4 91.3	73.7 91.3	73.7 91.7

Adapting both Wq and Wv gives the best performance overall.

What is the optimal rank r for LoRA?

	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	$W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o$	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI (±0.1%)	$W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o$	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

LoRA already performs competitively with a very small \boldsymbol{r}

Understanding LoRA Parameters over GPT-3

- Trainable parameters = $2 \times \hat{L}_{LoRA} \times d_{model} \times r$
- For GPT-3, $d_{model} = 12288$, 96 decoders and 96 attention heads

	$r_v = 2$	4.7 M
	$r_q = r_v = 1$	4.7 M
LoRA	$r_q = r_v = 2$	9.4 M
	$r_q = r_k = r_v = r_o = 1$	9.4 M
	$r_q = r_v = 4$	18.8 M
	$r_q = r_k = r_v = r_o = 2$	18.8 M
	$r_q = r_v = 8$	37.7 M
	$r_q = r_k = r_v = r_o = 4$	37.7 M
	$r_q = r_v = 64$	301.9 M
	$r_q = r_k^1 = r_v = r_o = 64$	603.8 M

Applying LoRA to Transformer

Model & Method	# Trainable	E2E NLG Challenge					
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr	
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47	
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40	
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47	
GPT-2 M (Adapter ^H)	11.09M	67.3 _{±.6}	$8.50_{\pm .07}$	$46.0_{\pm.2}$	$70.7_{\pm .2}$	$2.44_{\pm .01}$	
GPT-2 M (FT ^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41	
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49	
GPT-2 M (LoRA)	0.35M	$70.4_{\pm.1}$	$\pmb{8.85}_{\pm.02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{71.8}_{\pm.1}$	$2.53_{\pm.02}$	
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45	
GPT-2 L (Adapter ^L)	0.88M	$69.1_{\pm.1}$	$8.68_{\pm .03}$	$46.3_{\pm .0}$	$71.4_{\pm .2}$	$\pmb{2.49}_{\pm.0}$	
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm .3}$	$8.70_{\pm .04}$	$46.1_{\pm .1}$	$71.3_{\pm .2}$	$2.45_{\pm .02}$	
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47	
GPT-2 L (LoRA)	0.77M	$70.4_{\pm.1}$	$\pmb{8.89}_{\pm.02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{72.0}_{\pm.2}$	$2.47_{\pm .02}$	

GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG Challenge. For all metrics, higher is better. LoRA outperforms several baselines with comparable or fewer trainable parameters