Alan Daniel Matzumiya Zazueta

Análisis Numerico de ODEs : Proyecto Final

Estimación del número de reproducción básica de una epidemia de dengue para una sola cepa.

1. Descripcion del modelo.

Una medida simple pero eficaz de la transmisibilidad de una enfermedad infecciosa viene dada por el número de reproducción básica R_0 , definido como el número total de infecciones secundarias producidas por la introducción de un único infeccioso en una población completamente susceptible [7].

Para las enfermedades transmitidas por vectores como la malaria y el dengue, R_0 es el número de casos secundarios producidos por un solo vector infeccioso introducido en una población huésped y vector completamente susceptible.

En general, para los modelos epidémicos simples, si R_0 es mayor que la unidad se producirá una epidemia mientras que si R_0 es menor que la unidad es muy probable que no ocurra un brote. Por lo tanto, el valor de R_0 se puede utilizar para determinar la intensidad de las medidas de control que deben aplicarse para contener la epidemia.

El siguiente sistema de ecuaciones diferenciales ordinarias es un modelo epidemiologico determinista del tipo vector-huesped, donde el vector es el mosquito y el huesped es el humano, que tiene como objetivo determinar el número de reproducción básica para una epidemia de dengue.

Matematicamente, el modelo es el siguiente:

$$\frac{dS_H}{dt} = \Pi_H + \lambda_H S_H - \mu S \tag{1}$$

$$\frac{dE_H}{dt} = \lambda_H S_H - (\sigma_H + \mu) E_H \qquad (2)$$

$$\frac{dI_H}{dt} = \sigma_H E_H - (\tau_H + \mu + \delta_H) I_H \qquad (3)$$

$$\frac{dI_H}{dt} = \sigma_H E_H - (\tau_H + \mu + \delta_H) I_H \tag{3}$$

$$\frac{dR_H}{dt} = \tau_H I_H - \mu R_H \tag{4}$$

$$\frac{dS_V}{dt} = \Pi_V + \lambda_V S_V - \mu_V S \tag{5}$$

$$\frac{dE_V}{dt} = \lambda_V S_V - (\sigma_V + \mu_V) E_V \tag{6}$$

$$\frac{dI_V}{dt} = \sigma_V E_V - (\tau_H + \mu_V + \delta_V) I_V \tag{7}$$

Donde:

$$\lambda_H = C_{HV} \frac{I_V}{N_H} \tag{8}$$

$$\lambda_V = C_{HV} \frac{I_H}{N_H} \tag{9}$$

$$C_{HV}(t) = \begin{cases} \text{si } t < t^* & C_{HV1} \\ \text{si } t \ge t^* & C_{HV2} \end{cases}$$
 (10)

2. Planteamientos e hipotesis del modelo.

- Este modelo asume que la poblacion de huespedes y vectores estan distribuidos homogeneamente.
- La poblacion de humanos que se recuperan de la infecccion debido a un serotipo de dengue en particular se vuelven inmunes [1].
- Los vectores infectados por un serotipo en particular de dengue nunca se recuperan [1].
- También se modifico el modelo original de Garba et al. [3] asumiendo que los seres humanos expuestos y los vectores expuestos no transmiten la enfermedad.
- El modelo supone que la población humana susceptible S_H tiene una tasa de reclutamiento constante Π_H y una tasa de mortalidad natural μ .
- Los individuos susceptibles se infectan con el virus del dengue debido al contacto con los vectores infectados a una velocidad λ_H y estos entran en la clase expuesta E_H .
- La población expuesta E_H decrece a una tasa de mortalidad natural μ y los individuos expuestos que desarrollan síntomas se mueven a la clase I_H infectada a una tasa σ_H .
- La población infectada I_H decrece debido a la tasa de mortalidad natural μ , la tasa de mortalidad inducida por la enfermedad δ_H y la tasa de recuperación de los individuos infectados τ_H .
- La población recuperada R_H disminuye debido a la tasa de mortalidad natural μ .
- La población vector S_V susceptible tiene una tasa de reclutamiento constante Π_V y una tasa de mortalidad natural μ_V .
- Los vectores sensibles están infectados con el virus del Dengue (debido al contacto efectivo con seres humanos infectados) a una velocidad λ_V y luego se mueven a la clase de vector expuesta E_V . La clase expuesta del vector E_V decrece a una tasa de mortalidad natural λ_V .

- Los vectores expuestos desarrollan síntomas y se desplazan al vector infectado de clase I_V a una velocidad σ_V . Los vectores infectados, además de la tasa de mortalidad natural μ_V , muere a una tasa de mortalidad inducida por la enfermedad δ_V .

3. Descripcion de las variables y parametros.

3.1. Variables del sistema:

- N(t): Esta variable representa el total de la poblacion de humanos para un tiempo t y se divide en cuatro clases: S_H, E_H, I_H, R_H .
- $S_H(t)$: Poblacion de humanos susceptibles a un tiempo t.
- $E_H(t)$: Humanos expuestos a un tiempo t
- $I_H(t)$: Humanos infectados a un tiempo t
- $R_H(t)$: Humanos recuperados a un tiempo t
- $N_V(t)$: Esta variable representa la poblacion total de vectores para un tiempo t y se divide en tres clases: S_V, E_V, I_V .
- $S_V(t)$: Vectores susceptibles para un tiempo t
- $E_V(t)$: Vectores expuestos para un tiempo t
- $I_V(t)$: Vectores infectados para un tiempo t

3.2. Parametros del sistema:

- Π_H : Tasa de reclutamiento de la población $S_H(t)$.
- Π_V : Tasa de reclutamiento de la población $S_V(t)$.
- μ : Tasa de mortalidad natural de la población $S_H(t)$.
- δ_H : Tasa de mortalidad de la poblacion I_H debido a la enfermedad.
- μ_V : Tasa de mortalidad natural de la población $S_V(t)$.
- δ_V : Tasa de mortalidad de la poblacion I_V debido a la enfermedad.
- σ_H : Velocidad con la cual los individuos de la clase expuesta pasa a ser parte de la clase infectada I_H al desarrollar sintomas.
- τ_H : Tasa de recuperación de los individuos infectados I_H .
- σ_V : Velocidad con la cual los individuos de la clase expuesta E_V pasa a ser parte de la clase infectada I_V al desarrollar sintomas.

- λ_H : Velocidad con la cual la poblacion susceptible $S_H(t)$ es infectada del virus, asi dando entrada a nueva poblacion expuesta E_H .
- λ_V : Velocidad con la cual la poblacion susceptible $S_V(t)$ es infectada del virus, asi dando entrada a nueva poblacion expuesta E_V .
- C_{VH} : Tasa de contacto eficaz.

Los datos epidemiológicos utilizados en este estudio fueron recogidos por Punjab Disaster Management Authority de Punjab (PDMA) durante la epidemia de dengue de 2011 en Punjab, Pakistán.

Para este modelo se ha utilizado ajuste por mínimos cuadrados ordinarios a los datos para estimar los parámetros del modelo [5, 6, 8].

La mayoría de los estudios anteriores han utilizado valores asumidos para la tasa de contacto eficaz C_{VH} . [2 - 4]

Además, para tener en cuenta el efecto de las medidas de control que se implementaron durante la epidemia real, se asumio que la tasa de transmisión eficaz C_{HV} es una función del tiempo t, ademas de que se supuso que la velocidad de transmisión fue constante hasta el momento en que se implementaron las medidas de control, tras lo cual cambió a un valor constante diferente.

Para la funcion de C_{HV} , donde t^* es el momento en que se implementaron las medidas de control, para los fines de este estudio y en vista de que no hay información concreta disponible al respecto, se ha supuesto que $t^* = 8$ semanas.

La aplicación del algoritmo por mínimos cuadrados ordinarios al modelo vectorhost da como resultado un valor de $C_{HV1}=8,1897~{\rm semanas^{-1}}$ antes de la implementación de las medidas de control y un valor de $C_{HV2}=0,9523~{\rm semanas^{-1}}$ después de la aplicación de medidas de control.

Así, se obtuvo una estimación de $R_0 = 2,9871$ antes de la implementación de las medidas de control y $R_0 = 0,3473$ después de la implementación de las medidas de control.

3.3. Valores de las condiciones iniciales y los parametros.

Condicion inicial	Valor
$S_H(t)$	1 millon
$E_H(t)$	15
$I_H(t)$	3
$R_H(t)$	0
$S_V(t)$	0,1 millon
$E_V(t)$	60
$I_V(t)$	20

Cuadro 1: Valores numericos de las condiciones iniciales utilizados en la simulacion.

Condicion inicial	Valor	Unidades
π_H	140	semanas ⁻¹
π_V	28000	semanas ⁻¹
$\frac{1}{\mu}$	3494	semanas
δ_H	0,0035	semanas ⁻¹
$\frac{1}{\mu_V}$	2	semanas
δ_V	0,01	semanas
$\frac{1}{\sigma_H}$	1	semanas
$\frac{1}{ au_H}$	1	semanas
$\frac{1}{\sigma_V}$	$\frac{7}{10}$	semanas

Cuadro 2: Valores numericos de los parametros utilizados en la simulacion.

4. Simulacion del sistema.

Para simular la solucion del sistema mostrado anteriormente se utilizo la herramienta de odeint en python y ademas se implementaron los metodos de Euler y Runge-Kutta de orden 4 para comparar los resultados.

Para la implementacion de los metodos se utilizaron las siguientes ecuaciones.

4.1. Metodo de Euler.

El sistema mencionado anteriormente se puede representar de la siguiente manera:

$$\begin{split} f_1 &= \Pi_H + \lambda_H S_H - \mu S \\ f_2 &= \lambda_H S_H - (\sigma_H + \mu) E_H \\ f_3 &= \sigma_H E_H - (\tau_H + \mu + \delta_H) I_H \\ f_4 &= \tau_H I_H - \mu R_H \\ f_5 &= \Pi_V + \lambda_V S_V - \mu_V S \\ f_6 &= \lambda_V S_V - (\sigma_V + \mu_V) E_V \\ f_7 &= \sigma_V E_V - (\tau_H + \mu_V + \delta_V) I_V \end{split}$$

Si denotamos a X como el siguiente vector de funciones:

$$X = (f_1, f_2, f_3, f_4, f_5, f_6, f_7)$$
(11)

Podriamos definir al sistema de ecuaciones diferenciales por la siguiente funcion f' con su respectiva condicion inicial X_0 :

$$f'(t,X); X_0 = (S_{H0}, E_{H0}, I_{H0}, R_{H0}, S_{V0}, E_{V0}, I_{V0})$$
(12)

Implementando el metodo de euler a este sistema quedaria como sigue:

$$X_{n+1} = X_n + hf'(t_n, X_n)$$
(13)

Donde X_{n+1} es la solucion del sistema al tiempo t_{n+1} y h es la particion de los subintervalos.

4.2. Metodo de Runge-Kutta de orden 4.

Para este metodo se utilizaron las siguientes ecuaciones:

$$X_{n+1} = X_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
(14)

Donde:

$$k_1 = f'(t_n, X_n)$$

$$k_2 = f'(t_n + \frac{1}{2}h, X_n + \frac{1}{2}k_1h)$$

$$k_3 = f'(t_n + \frac{1}{2}h, X_n + \frac{1}{2}k_2h)$$

$$k_4 = f'(t_n + h, X_n + k_3h)$$

Para comparar resultados entre los metodos implementados se utilizo la misma particion h en los tres casos, tomando un valor de h=0.035 sobre un intervalo desde t=0 y t=35 semanas.

5. Bibliografia.

- 1. World Health Organization: dengue and severe dengue fact sheet. 2012. [http://www.who.int/mediacentre/factsheets/fs117/en/]
- 2. Garba SM, Gumel AB: Abu Bakar MR: Backward bifurcations in dengue transmission dynamics. Math Biosci 2008, 215:11–25.
- 3. Garba S, Gumel A: Effect of cross-immunity on the transmission dynamics of two strains of dengue. Int J Comput Math 2010, 87(10):2361–2384.
- 4. Wearing HJ, Rohani P: Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci 2006, 103(31):11802–11807.
- 5. Chowell G, Diaz-Dueñas P, Miller J, Alcazar-Velazco A, Hyman J, Fenimore P, Castillo-Chavez C: Estimation of the reproduction number of dengue fever from spatial epidemic data. Math Biosci 2007, 208(2):571–589.
- 6. Cintrón-Arias A, Castillo-Chávez C, Bettencourt LM, Lloyd AL, Banks H: The estimation of the effective reproductive number from disease outbreak data. Math Biosci Eng 2009, 6(2):261–282.
- 7. Van den Driessche P, Watmough J: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 2002, 180:29–48.
- 8. Chowell G, Hengartner N, Castillo-Chavez C, Fenimore F, Hyman J: The basic reproductive number of Ebola and effects of public health measures: the cases of Congo and Uganda. J Theor Biol 2004, 229:119–126.