

Planul cursului

- 1. Introducere
- 2. Modelul de regresie liniară simplă
- 3. Modelul de regresie liniară multiplă
- 4. Modele de regresie neliniară
- 5. Ipoteze statistice: normalitatea erorilor, homoscedasticitatea, necorelarea erorilor, multicoliniaritatea.

5. Verificarea ipotezelor modelului de regresie

Ipotezele statistice care se formulează în modelarea econometrică sunt ipoteze asupra componentei aleatoare (erorilor) și ipoteze asupra componentei deterministe (variabilelor independente).

- **5.1.** Ipotezele asupra componentei aleatoare (erorilor) sunt următoarele:
- a. Media erorilor este nulă: $M(\varepsilon_i) = 0$.
- b. Ipoteza de homoscedasticitate: $V(\varepsilon_i) = \sigma^2$
- c. Ipoteza de normalitate: $\varepsilon_i \sim N(0, \sigma^2)$

5. Verificarea ipotezelor modelului de regresie

Ipoteza de necorelare sau de independență a erorilor: $cov(\varepsilon_{i}, \varepsilon_{i})=0$.

5.2. Ipotezele asupra variabilelor independente

- a. Variabilele independente sunt nestochastice sau deterministe.
- b. Variabilele independente și variabila eroare sunt necorelate, $cov(X_i, \varepsilon_i)=0$.
- c. Ipoteza de necoliniaritate a variabilelor independente.

5.1. Ipotezele asupra componentei aleatoare (erorilor)

a. Media erorilor este nulă

1. Definire: $M(\varepsilon_i) = 0$ care este echivalentă cu $M(Y/X) = \beta_0 + \beta_1 X$.

2. Efectele încălcării acestei ipoteze:

dacă această ipoteză este încălcată, atunci se modifică proprietățile estimatorilor parametrilor modelului de regresie (parametrii sunt estimați deplasat sau cu o eroare sistematică).

3. Testarea ipotezei cu privire la media erorilor

□Ipoteze:

$$H_0: M(\varepsilon) = 0$$

$$H_1$$
: $M(\varepsilon)$ #0

□Alegerea testului:

$$t = \frac{\hat{M}(\varepsilon) - M(\varepsilon)}{\sqrt{\hat{V}(\hat{M}(\varepsilon))}}$$

Calculul statisticii test: $t_{calc} = \frac{W(e_i)}{S_{\hat{M}(\epsilon_i)}}$

□ Decizie

4. Exemplu

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	58508,12	6084511	1582428	1957596,554	15
Residual	-98125,2	131202,7	,00000	73271,63549	15
Std. Predicted Value	-,778	2,300	,000	1,000	15
Std. Residual	-1,290	1,725	,000	,964	15

a. Dependent Variable: salariu

One-Sample Statistics

				Std. Error	
	N	Mean	Std. Deviation	Mean	
Unstandardized Residual	15	,0000000	73271,63549	18918,65	

One-Sample Test

		Test Value = 0					
					95% Coi Interva	l of the	
				Mean	Difference		
	t	df	Sig. (2-tailed)	Difference	Lower	Upper	
Unstandardized Residual	,000	14	1,000	,00000000	-40576,5	40576,48	

5. Corectarea modelului

- □ Modelul inițial se corectează cu ajutorul estimației erorilor calculate la nivelul eșantionului.
- Modelul corectat este de forma:

$$y_i^* = \beta_0 + \beta_i x_i + u_i$$
, unde:

$$y_i^* = y_i - M(\varepsilon_i)$$

b. Ipoteza de homoscedasticitate a erorilor

1. Definire

- ipoteza de homoscedasticitate presupune ca varianța erorilor să fie constantă:

$$V(\varepsilon_i) = \sigma^2$$

- această ipoteză presupune o varianță constantă și egală a erorilor la nivelul distribuțiilor condiționate de forma

$$Y \mid X = x_i$$

2. Efectele încălcării acestei ipoteze

pierderea eficienței estimatorilor parametrilor modelului de regresie (estimează parametrul cu o varianță mai mare).

3. Identificarea heteroscedasticității

3.1. Procedee grafice

- presupun reprezentarea distribuției erorilor și aprecierea varianței acesteia.

- cazul existenței heteroscedasticității:

3.2. Procedee numerice

a. Testul Glejser (pentru modele simple)

are la bază un model de regresie între variabila reziduală estimată și variabila independentă.

Etapele testării:

1. Se estimează modelul de regresie de forma:

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon$$

- 2. Se calculează erorile estimate e_i .
- 3. Se construiește un model de regresie pe baza erorilor estimate în valoare absolută și variabila

a. Testul Glejser

independentă. Exemplu:

$$\left|\varepsilon_{i}\right| = \alpha_{0} + \alpha_{1} \cdot x_{i} + u_{i}$$

4. Se testează parametrii acestui model: dacă parametrul α_1 este semnificativ, atunci modelul inițial este heteroscedastic.

Exemplu:

a. Testul Glejser

Coefficientsa

			dardized cients	Standardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	50921,663	12000,771		4,243	,001	
	PIB	,016	,012	,348	1,337	,204	

a. Dependent Variable: erori

b. Testul Breusch-Pagan-Godfrey (pentru modele multiple)

este similar testului Glejser, cu excepția faptului că se consideră ca variabilă dependentă pătratul erorilor.

b. Testul Breusch-Pagan-Godfrey (pentru modele multiple)

Heteroskedasticity Test: Breusch	n-Pagan-Godfrey			
F-statistic	0.991388	Prob. F(2,7)		0.4177
Obs*R-squared	2.207309	Prob. Chi-Square	` '	0.3317
Scaled explained SS	1.612479	Prob. Chi-Square	0.4465	
Test Equation:				
Dependent Variable: RESID^2				
Method: Least Squares				
Sample: 1 10				
Included observations: 10				
Variable	Coefficient	Std. Error t-Statisti		Prob.
C	-3.516496	658.6977	-0.005339	0.9959
X1	0.855525	2.856270	0.299525	0.7732
X2	-0.480219	3.606007	-0.133172	0.8978
R-squared	0.220731	Mean dependent v		44.96155
Adjusted R-squared	-0.001917	S.D. dependent va		81.83752
S.E. of regression	81.91594	Akaike info criter		11.89259
Sum squared resid	46971.55	Schwarz criterion		11.98336
Log likelihood	-56.46295	Hannan-Quinn cri		11.79301
F-statistic	0.991388	Durbin-Watson st	at	1.709325
Prob(F-statistic)	0.417740			

4. Corectarea heteroscedasticității

4.1. Dacă se cunosc parametrii σ_i^2

Corecția heteroscedasticității este aplicată modelului de regresie liniară simplă:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Corectarea heteroscedasticității presupune ponderarea modelului inițial cu variabila $\frac{1}{\sigma_i}$.

Noul model de regresie (corectat) se obține astfel:

$$\frac{y_i}{\sigma_i} = \frac{\beta_0}{\sigma_i} + \beta_1 \frac{x_i}{\sigma_i} + \frac{\varepsilon_i}{\sigma_i}$$

Estimarea parametrilor acestui model se realizează pe baza MCMMP ponderată (*method of weighted least squares*).

4.2. Dacă nu se cunosc parametrii σ_i^2 Corecția heteroscedasticității se realizează pe baza relației:

$$\sigma_i^2 = \sigma^2 x_i^2$$

Corectarea heteroscedasticității presupune ponderarea modelului inițial cu variabila $1/x_i$.

Noul model de regresie (corectat) este de forma:

$$\frac{y_i}{x_i} = \frac{\beta_0}{x_i} + \beta_1 + \frac{\varepsilon_i}{x_i}$$

c. Ipoteza de normalitate a erorilor

1. Formularea problemei

erorile ϵ urmează o lege normală de medie 0 și varianță σ^2 :

$$\varepsilon_i \sim N(0, \sigma^2)$$

2. Efectele încălcării acestei ipoteze

ipoteza de normalitate a erorilor este importantă pentru stabilirea proprietăților estimatorilor parametrilor modelului de regresie.

dacă $\varepsilon_i \sim N(\theta, \sigma^2)$, atunci estimatorii parametrilor modelului de regresie urmează, de asemenea, o lege normală:

$$\hat{\beta}_i \sim N(\beta_i, \sigma_{\hat{\beta}_i}^2)$$

dacă ipoteza de normalitate este încălcată, atunci estimatorii parametrilor modelului de regresie nu urmează o lege normală (pentru eșantioane de volum mare, proprietatea de normalitate este atinsă asimptotic).

3. Verificarea normalității erorilor

3.1. Procedee grafice

- Histograma (curba frecvenței):
- P-P Plot sau Q-Q Plot;
- Box-Plot.

- a. Reprezentarea histogramei și a curbei frecvențelor
- se reprezintă curba frecvenței sau histograma reziduurilor și se observă dacă forma distribuției acestora are alură de clopot.

Exemplu:

Histograma și curba frecvențelor

Histogram

Dependent Variable: greut

Regression Standardized Residual

Mean = -1,85E-15 Std. Dev. = 0,943 N = 10

b. P-P Plot sau Q-Q Plot

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: greut

c. Box-plot

3.2. Procedee numerice

a. Testul Kolmogorov-Smirnov

- presupune compararea frecvențelor cumulate (calculate) cu frecvențele teoretice cumulate extrase din tabelul Gauss.

Ipoteze statistice:

H₀: ipoteza de normalitate

H₁: distribuția erorilor nu urmează o lege normală

Regula de decizie:

valoarea probabilității asociate statisticii test calculate (Sig.) se compară cu α (0,05): dacă Sig.<0,05, atunci se respinge ipoteza de normalitate a erorilor.

Exemplu:

One-Sample Kolmogorov-Smirnov Test

		greut
N		10
Normal Parameters a,b	Mean	58,5000
	Std. Deviation	7,83511
Most Extreme	Absolute	,276
Differences	Positive	,161
	Negative	-,276
Kolmogorov-Smirnov Z		,873
Asymp. Sig. (2-tailed)		,432

a. Test distribution is Normal.

b. Calculated from data.

b. Testul Jarque-Bera

se bazează pe verificarea simultană a proprietăților de asimetrie și boltire ale seriei reziduurilor. Pentru o distribuție normală, valoarea coeficientului de asimetrie Fisher (*sw*) este zero, iar valoarea coeficientului de boltire Fisher (*k*) este zero.

Ipoteze statistice

H₀: ipoteza de normalitate

H₁: distribuția erorilor nu urmează o lege normală

Calculul statisticii test:

□ statistica test JB se calculează după relația:

$$JB = \frac{n}{6} \cdot \left(sw^2 + \frac{k^2}{4} \right)$$

unde: sw este coeficientul de asimetrie (Skewness):

$$sw = \frac{\mu_3}{\sigma^3}$$

k este coeficientul de boltire (Kurtosis):

$$k = \frac{\mu_4}{\mu_2^2} - 3$$

În cazul unui model de regresie, estimațiile celor doi parametri ai formei unei distribuții au următoarele relații:

$$sw = \sqrt{\frac{(\sum_{i} \frac{e_{i}^{3}}{n-2})^{2}}{(\sum_{i} \frac{e_{i}^{2}}{n-2})^{3}}}$$

$$k = \frac{\sum_{i} \frac{e_{i}^{4}}{n-2}}{(\sum_{i} \frac{e_{i}^{2}}{n-2})^{2}} - 3$$

unde: $e_i = y_i - y_{x_i}$

Regula de decizie:

Statistica JB urmează o lege $\chi^2_{\alpha,2}$.

- dacă valoarea calculată a statisticii test JB > $\chi^2_{\alpha;2}$ sau Sig.<0,05, atunci se respinge ipoteza Ho.

Exemplu.

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std.	Skewness		Kurtosis	
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
Unstandardized Residual	7	-2.61905	2.14286	.0000000	1.889822	529	.794	-1.375	1.587
Valid N (listwise)	7								