Faculty of Engineering – Credit hour system CMP N 301 – Computer Architecture

Sheet (6)_part1 Chapter 5 – Memory

1) [5.3] For Direct-Mapped Cache design with a 32-bit address, the following bits of the address are used to access the cache

		fag	ıde	K	Off	set	
Г	B	1–10	9–5		4-	-0	

- What is the cache block size (in words)?
- How many entries does the cache have?
- What is the ratio between total bits required for such a cache implementation over the data storage bits?
- 2) Starting from power on, the following byte-addressed cache references are recorded.

						P.d Iress							
þ		4	16	132	232	160	1024	30	140	3100	180	2180	
How many blocks are replaceWhat is the hit ratio?				replac	ed/?		X		U				
		• List the final state of the cache, with each valid entry represented as a record of								of			
		/ <inde< th=""><th>x, tag,</th><th>data></th><th><i>V</i></th><th></th><th></th><th></th><th></th><th>\.</th><th>/</th><th></th></inde<>	x, tag,	data>	<i>V</i>					\.	/		

3) Consider the following program and cache behaviors.

_	Data Writes per 1000 Instructions				
250	100	0.30%	2%	64	

- For a write-through, write allocate cache, what are the minimum read and write bandwidths (measured by byte per cycle) needed to achieve a CPI of 2?
- For a write-back, write-allocate cache, assuming 30% of replaced data cache blocks are dirty, what are the minimal read and write bandwidths needed for a CPI of 2?
- What are the minimal bandwidths needed to achieve the performance of CPI-1.5?