REPUBLIQUE ISLAMIQUE DE MAURITANIE

Ministère de l'Enseignement Secondaire et Supérieur

Direction des Examens et de l'Evaluation

Service des Examens

Exercice 1

On donne les potentiels standards des deux couples redox suivants: H_2O_2/H_2O : 1,77V et O_2/H_2O_2 : 0,68V

1 Ecrire le bilan de la réaction naturelle entre les deux couples. (0,5pt)

2 On réalise en présence d'ions Fe^{3+} une telle décomposition. L'expérience est réalisée à température constante. On considère que le volume V de la solution aqueuse de peroxyde d'hydrogène reste constant et que le volume molaire d'un gaz est $V_m = 24L/\text{mol}$. On utilise V = 10 mL de solution de peroxyde d'hydrogène de concentration molaire volumique $C = 6 \cdot 10^{-2} \text{ mol}L^{-1}$. On ajoute quelques gouttes du catalyseur et on note à divers instants le volume V_{O2} du gaz dioxygène dégagé. Les résultats sont indiqués dans le tableau ci-dessous :

2-1 Montrer que la concentration volumique du peroxyde d'hydrogène restant en solution est de la forme:

ding to the team of degree						
tmin	0	5	10	15	20	30
V _{O2} formé en mL	0	1,5	2,7	3,6	4,4	5,5
		6	4	5	2	6
[H ₂ O ₂] restant en	6.					
mol/L	10					
	2					

Honneur Fraternité Justice

Durée: 4H Coefficient: 8/4

Série: Mathématiques/T.M.G.M

$$[H_2O_2] = C - \frac{\alpha V_{O2}}{V.V_m}$$

Préciser la valeur de α.

- 2-2 Tracer la courbe $[H_2O_2]=f(t)$. Echelle sur l'axe des abscisses 1 cm représente 3 min, sur l'axe des ordonnés 2Cm représente $10^{\text{-}2}\ \text{mol/L}$
- 2-3 Donner la définition de la vitesse instantanée de disparition du peroxyde d'hydrogène et la calculer en (mol./L/.mn) aux dates $t_0=0$ et $t_{15}=15$ mn. Conclure.(1pt)
- 2-4 Déterminer le temps de démi-réaction. (0,5 pt)

Exercice 2

Les solutions sont maintenant à la température de 25°C pendant toutes les expériences. On dispose de deux solutions :

- Une solution aqueuse (A) d'acide chlorhydrique de concentration $C_A = 0.1 \text{ mol/L}$
- Une solution aqueuse (B) d'une amine RNH₂ de concentration $C_B = 3.2 \cdot 10^{-2}$ mol/L et de
- pH = 11.4.

1 Ecrire l'équation bilan de la réaction du chlorure d'hydrogène avec l'eau. Calculer la valeur du pH de la solution (A). (0,75pt)

- 2 Ecrire l'équation bilan de la réaction de l'amine avec l'eau, en précisant est-ce que la réaction est partielle ou totale. (0,75pt)
- 3 Pour préparer une solution tampon (S) de pH=10,8, on mélange deux volumes des deux solutions (A) et (B).
- 3-1 Calculer les volumes V_A et V_B nécessaires pour obtenir un volume V = 116 mL de la solution tampon (S) de pH = 10,8. (0,75pt)
- 3-2 Ecrie l'équation-bilan de la réaction qui se produit lors du mélange. (0,5 point).
- 3-3 Calculer les concentrations de toutes les espèces présentes dans cette solution. En déduire le pKa du couple associé à l'amine RNH₂ (0,75pt).

Exercice 3

On considère un ressort à spires non jointives de masse négligeable et de constante de raideur K = 12,5 N/m. l'une des extrémités est reliée à un cadre rectangulaire abcd formé de N spires en cuivre de masse m = 320g. Le cadre peut se déplacer sans frottement sur deux roues de masses négligeables (voir fig)

- 1 Préciser l'état d'équilibre du ressort.
- 2 A partir de la position d'équilibre, on communique au cadre une vitesse initiale $V_{\rm O}$ de valeur algébrique
- Vo = -3.15 cm/s à l'instant t = 0. Donner l'équation différentielle du mouvement et en déduire son équation horaire.(0,5pt)

N = 50 spires On fait une ouverture au niveau de l'un des côtés du cadre.

- 3-1 Exprimer la force électromotrice induite dans le cadre en fonction de la vitesse V puis en fonction du temps.
- 3-2 On relie les extrémités du cadre aux bornes d'un oscillographe. On observe sur l'écran l'oscillogramme de la figure ci contre. En déduire la période et l'amplitude des oscillations ;on donne :balayage horizontal 0,2s/Cm,balayage vertical 21mV/Cm. Les comparer avec les valeurs calculées.
- 3-3 On relie les extrémités du cadre entre elles, on constate des amortissements. Quelle est la cause de ces amortissements.

Exercice 4

Des ions 27 Al $^{3+}$ pénètrent en O avec une vitesse $\overrightarrow{V_o}$ horizontal de valeur Vo = 400 Km/s dans un plan de l'espace ABCD vertical de forme carré, de côté 10 cm. On donne AO = OC. On négligera le poids des ions devant les forces électriques et magnétiques.

- 1 dans la région ABCD règne un champ électrique uniforme \vec{E} , vertical orienté du bas vers le haut, d'intensité E = 200 KV/m.
- 1-1 Montrer que la trajectoire des ions reste dans le plan ABCD.
- 1-2 Ecrire l'équation de cette trajectoire. (0,75pt)
- 1.3 Trouver les coordonnées du point de sortie S_1 des ions du champ électrique.

- 1.4 Dans la région ABCD règne un champ électrique uniforme \vec{E} ' de même direction et de même sens que $\vec{V_o}$ de valeur E' = 200 KV/m. Déterminer les coordonnées du point de sortie S_2 des ions de ce champ et leur vitesse V_1 en ce point.
- 2. Dans la région ABCD règne un champ magnétique uniforme \vec{B} horizontal, perpendiculaire à $\vec{V_o}$ et entrant de valeur B = 0,4 T.
- 2-1 Montrer que la trajectoire des ions est dans le plan ABCD. (0,5pt)
- 2-2 Calculer le rayon de cette trajectoire. (0,75pt)
- 2-3 Déterminer les coordonnées du point de sortie S_3 des ions de la région ABCD. On rappelle l'équation du cercle : $(x-xc)^2 + (y-yc)^2 = R^2$ tel que C est le centre du cercle.
- 3- Dans la région ABCD règne un champ magnétique uniforme \vec{B} de même direction et de même sens que $\vec{V_o}$ de valeur B = 0,4T. Donner les coordonnées du point de sortie S₄ des ions dans la région ABCD et la vitesse V₂ des ions en ce point. On donne : masse du proton = masse neutron = 1,67. 10^{-27} Kg Charge élémentaire : e = 1,6. 10^{-19} C (0,5pt)

Exercice 5

On considère trois dipôles D_1 , D_2 et D_3 de nature inconnue ; un de ces trois dipôles est une résistance morte R, l'autre un condensateur de capacité C et le troisième une bobine d'inductance L et de résistance interne r.

Dans une première expérience, on maintient aux bornes de chacun de ces dipôles une tension continue U=18V et on mesure les intensités I du courant qui les traverse.

Dans une deuxième expérience: on maintient aux bornes de chacun de ces dipôles une tension sinusoïdale de valeur efficace $U_{\text{eff}} = 24V$ et de fréquence N = 50Hz et on mesure les intensités efficaces I_{eff} du courant.

Les résultats des deux expériences sont regroupés dans le tableau ci-dessus : Dipôle I(A

1 Calculer pour chaque dipôle les rapports $\frac{\mathbf{U}}{\mathbf{I}}$ et $\frac{\mathbf{U}_{\text{eff}}}{\mathbf{I}_{\text{off}}}$. Montrer que

Dipôle	I(A)	I_{eff}
D_1	7,2	6,4
D_2	3,75	5
D_3	0	10^{-2}
D ₃	U	10

l'analyse de ces résultats permet de déterminer la nature de $\frac{D_3}{(0,75pt)}$

- 2 Calculer pour chaque cas les caractéristiques de chaque dipôle. (0,75pt)
- 3 On considère le cas où la tension est sinusoïdale, déterminer pour chaque dipôle le déphasage entre u(t) et i(t). (0,75pt)
- 4 On branche les trois dipôles en série et on applique aux bornes du dipôle obtenu une tension sinusoïdale de fréquence variable et de valeur efficace $U_{eff} = 24V$.
- 4-1 Faire un schéma du circuit sur lequel vous précisez le branchement d'un oscillographe qui permet de visualiser u(t) et qualitativement i(t). (0,5pt)
- 4-2 pour une valeur déterminée de la fréquence f_0 on constate que la tension u(t) et i(t) sont en phase.

Qu'appelle-t-on ce phénomène ? Calculer la valeur de la fréquence f_0 et celle de l'intensité efficace I_0 correspondante. (0,75pt)

4-3 Calculer le facteur de qualité du circuit et en déduire la largeur de la bande passante. Conclure.