

MOS транзистори

Metal-Oxide Semiconductor Field-Effect Transistor – MOSFET

MOSFET е съкращение от Metal-Oxide Semiconductor Field-Effect Transistor (метал – окис – полупроводник транзистор с полеви ефект). Той представлява електронна версия на ключ.

Предимства: високо входно съпротивление, ниска консумация на мощност, по-добра температурна стабилност, слаба чувствителност към радиация.

MOSFET – Структура на латерален транзистор

MOS транзисторът има четири области – сорс (**source** – S), гейт (**gate** – G), дрейн (**drain** – D) и подложка (**body** - B). Гейтът е изолиран от подложката с тънък окис(SiO_2 или Si_3Ni_4) с дебелина t_{ox} . Повърхността на транзистора е покрита с дебел SiO_2 .

Между сорса и дрейна се формира канал с дължина L и широчина W. За n-канален транзистор областите на сорса и дрейна са с n⁺-тип проводимост (с висока концентрация на примесите), докато подложката е от p-тип.

Figure 4. Development of Enhancement-Mode N-Channel MOSFET

MOSFET – Структура на вертикален транзистор

MOSFET – Вграден и индуциран канал

MOSFET с вграден канал Depletion MOSFET

MOSFET с индуциран канал Enhancement MOSFET

Според начина на създаване на канала се различават два типа MOS транзистори.

При транзисторите с вграден канал проводимият канал под гейта се формира по технологичен начин.

В MOS транзисторите с **индуциран канал**, проводящ канал се създава **при прилагане на напрежение** с определена полярност между гейта и подложката.

MOSFET – n-канал и p-канал

MOSFET с вграден канал

Depletion MOSFET

MOSFET с индуциран канал

Enhancement MOSFET

Според проводимостта на канала двата типа MOS транзистори се срещат с **n-канал** или с **p-канал**.

MOS транзисторът е униполярен елемент. Действието му се определя само от един тип токоносители (основни) – електрони или дупки, но никога от двата едновременно.

MOSFET – схемни символи

Символите за MOS транзистори с **индуциран канал** имат прекъсната линия между сорса и дрейна (липсва технологично създаден канал), докато за транзисторите с **вграден канал** линията е непрекъсната.

MOSFET – схемни символи

За **n-каналните** транзистори стрелката към р- подложката сочи **навътре**, докато за **p-каналните** MOSFET стрелката е **навън**.

MOSFET – схемни символи

В някои приложения (в интегралните схеми) на подложката се подава напрежение, с което допълнително се контролира токът през канала.

В повечето приложения (за дискретни елементи) подложката се свързва към сорса и транзисторът фактически става с три извода.

MOSFET – принцип на действие

Принипът на действие на MOS транзисторите се основава на **полевия ефект** – възможност за промяна на проводимостта на канала между сорса и дрейна чрез напрежение, приложено между гейт и подложка U_{GB} = U_{GS}.

Когато на гейта не е подадено напрежение ($U_{GS} = 0$), във веригата дрейн-сорс не протича ток, защото тя е прекъсната поради липса на проводящ канал.

https://www.youtube.com/watch?v=stM8dgcY1CA

MOSFET – принцип на действие – обеднен слой

При подаване на положително напрежение на гейта (U_{GS}>0) дупките от подложката се отблъскват във вътрешността й. На повърхността се образува **обеднен слой,** който съдържа предимно некомпенсираните заряди на отрицателните акцепторни йони. Ток не тече.

MOSFET – принцип на действие – прагово напрежение

При увеличаване на положителното напрежение $U_{\rm GS}$ към повърхността се привличат електрони, които създават слой с **инверсна** проводимост.

Напрежението U_{GS} , при което се създава инверсен слой в подложката и протича минимален дрейнов ток се нарича **прагово напрежение** U_T . Ако $U_{GS}>U_T$ каналът **се обогатява** с токоносители и токът I_D нараства.

N-канален MOS транзистор с индуциран канал N-channel, enhancement MOSFET

На фиг. е показано семейството изходни статични характеристики $I_D = f(U_{DS})$ при $U_{GS} = const$ за MOS транзистор с N- индуциран канал.

В тях се различават две области – **линейна** (омична, триодна) и област на **насищане** (пентодна).

Примери на изходни характеристики на pmos транзистори с индуциран канал. Обърнете внимание, че стойностите на напреженията Uds, Ugs и токът Id са отрицателни.

NMOS – Изходна характеристика – Линейна област

При по-голямо увеличение на U_{DS} , съответно нараства и $I_{D.}$ Протичането на тока в канала предизвиква вътрешен пад на напрежението върху омичното съпротивление на канала, което довежда до отклонение от линейната зависимост между дрейновите ток и напрежение.

MOSFET – Пад на напрежение в канала

Омичното съпротивление на канала нараства с увеличаване на дължината на канала от S към D, като нараства и падът върху него.

Напрежението, което индуцира канала, е разлика между постоянното U_{GS} и вътрешния пад в канала и съответно намалява от S към D. Това довежда до изменение на сечението на канала.

$$U_{channel} = U_{GS} - I_D \cdot R_{channel}$$

$$R channel$$

MOSFET – Напрежение на насищане

При достигане на напрежението на насищане U_{Dsat} каналът в областта до дрейна се "прищипва", защото индуциращото го напрежение в тази точка става равно на праговото.

По-нататъшното увеличаване на U_{DS} води до насищане на тока I_D . Това е областта на насищане (пентодна).

MOSFET – Режим на насищане

Ако $U_{DS} > U_{Dsat}$ каналът се скъсява, като напрежението върху него остава постоявнно и равно на U_{Dsat} , което определя постоянния ток I_{Dsat} .

Разликата $\Delta U_D = U_{DS} - U_{Dsat}$ пада върху обеднената област с дължина ΔL . Протичането на ток се дължи на екстракцията на електроните от канала и дрейфовото им движение през обеднената област до дрейна.

MOSFET – Ток на дрейна

 $U_{Dsat} = U_{GS} - U_{T}$

Линеен режим $U_{DS} < U_{Dsat}$

 $I_D = k[(U_{GS} - U_T)U_{DS} - \frac{1}{2}U_{DS}^2]$

Режим на насищане $U_{DS} \geq U_{Dsat}$ $I_D = \frac{k}{2}(U_{GS} - U_T)^2$

$$I_D = \frac{k}{2} (U_{GS} - U_T)^2$$

$$k = rac{\mu_{\it eff} C_{\it 0} W}{I}, rac{\it mA}{V^2}$$
 Специфична стръмност

$$C_0 = \frac{\varepsilon \cdot \varepsilon_0}{t_{ox}}$$

Специфичен капацитет на окиса

Ефективна подвижност μ_{eff}

MOSFET – Avalanche breakdown

The breakdown mechanism itself is not destructive for a PN junction. However, overheating caused by the high breakdown current and voltage damages the PN junction unless sufficient heat sinking is provided.

Определяне на режима на работа на транзистора, I_D и U_{DS} Алгоритъм за решаване

- 1. Определя се дали транзисторът е запушен или отпушен
 - а) Ако $U_{GS} < U_{T}$, транзисторът е запушен.

Тогава
$$I_D = 0$$
, $U_{DS} = E_{DD} - I_D R_D = E_{DD}$

- б) Ако $U_{GS} \ge U_T$, транзисторът е отпушен. Тогава:
- 2. Определя се режимът на работа. Изчислява се $U_{Dsat} = U_{GS} U_{T}$
 - а) Ако U_{DS} < U_{Dsat} транзисторът работи в линеен режим. Тогава:

$$I_D = k[(U_{GS} - U_T)U_{DS} - \frac{1}{2}U_{DS}^2]$$
 $U_{DS} = E_{DD} - I_D.R_D$

б) Ако $U_{DS} \ge U_{Dsat}$ транзисторът работи в насищане. Тогава:

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2$$
 $U_{DS} = E_{DD} - I_D.R_D$

Примери за постоянно токов анализ на схеми с MOSFET

Дадено: $k = 0.25 \text{ mA/V}^2$, $U_T = 2\text{V}$

Търси се: $I_D = ?, U_{DS} = ?$

Решение

$$U_{GS} = U_{GG} = 4V$$

 $U_{\rm GS} = U_{\rm GG} = 4$ V $U_{\rm GS} > U_{\rm T}$ – транзисторът е отпушен

$$U_{Dsat} = U_{GS} - U_T = 4 - 2 = 2V$$

Приемаме, че транзисторът е в режимът е насищане

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2 = \frac{0.25.10^{-3}}{2}(4 - 2)^2 = 0.5.10^{-3}\text{A} = 0.5 \text{ mA}$$

Проверка на режима

 $U_{DD} = U_{DS} + I_D.R_D$ Закон на Кирхофф за изходната верига

$$U_{DS} = U_{DD} - I_D \cdot R_D = 6 - 0.5 \cdot 10^{-3} \cdot 5.10^3 = 3.5$$
 $U_{DS} > U_{Dsat}$

$$U_{DS} > U_{Dsat}$$

Транзисторът наистина работи в режим на насищане

Отговор: $I_D = 0.5$ mA, $U_{DS} = 3.5$ V

Примери за постоянно токов анализ на схеми с MOSFET

Виж MOS DC.pdf

https://github.com/vpt-tus/ppe/blob/master/MOSFET/MOS%20DC.pdf

Примери за графично определяне на режима на MOSFET

$$U_{GG} = 10$$
V, $U_{DD} = 7$ V, $R_D = 5\Omega$, $R_G = 1$ M Ω . $U_T = 2$ V

Търси се: I_D = ?, U_{DS} = ?, Режим?

Построява се товарна права с отрези U_{DD} = 7V и U_{DD}/R_D = 7V/5 Ω = 1.4A. Определя се работната точка и от характеристиката се отчитат I_D и U_{DS} за U_{GS} = 10V.

ID [A]	0.95
Ups [V]	2.4
Режим на работа	Линеен

Обосновка за режима:

От характеристиката: $U_{DS} = 2.4 \text{V}$

$$U_{Dsat} = U_{GS} - U_{T} = 10 - 2 = 8V$$

 $U_{DS} < U_{Dsat}$ Транзисторът работи в линеен режим

Примери за графично определяне на режима на MOSFET

$$U_{GG} = -6 \text{V}$$
 $U_{DD} = -8 \text{V}$, $R_D = 400 \text{m}\Omega$, $R_G = 1 \text{M}\Omega$. $U_T = -4 \text{V}$

Търси се: I_D = ?, U_{DS} = ?, Режим?

Построява се товарна права с отрези U_{DD} = -8V и U_{DD}/R_D = -8V/0.400 Ω = -20 A. Определя се раб. Точка за U_{GS} = -6V.

ld [A]	10.5
Uds [V]	-3.8
Режим на работа	Насищане

Обосновка за режима:

От характеристиката: $U_{DS} = -3.8$ V

$$U_{Dsat} = U_{GS} - U_T = -6 - (-4) = -2V$$

 $|U_{DS}| > |U_{Dsat}|$ Транзисторът работи в насищане

Предавателни Характеристики (Transfer Characteristics)

$$I_D = f(U_{GS}), U_{DS} = \text{const}$$

NMOS, индуциран канал

PMOS, индуциран канал

Предавателни Характеристики – Температурна Зависимост

При повишаване на температурата се:

- Намалява праговото напрежение U_T , което предизвиква увеличаване на I_D
- Намалява подвижността на токо-носителите μ_n , което предизвиква намаляване на тока I_D .
- В резултат MOS транзисторите имат **термостабилна точка**.

MOS транзистор с *N* индуциран канал

При MOS транзисторите с повишаване на температурата има област от характеристиката, където токът намалява. Поради това при мощните MOS транзистори не възникват проблеми, характерни за мощните биполярни.

Предавателни Характеристики – Стръмност (transconductance)

$$I_D = f(U_{GS}), U_{DS} = \text{const}$$

Стръмност на предавателната характеристика g_m , (S)

$$g_m = S = \frac{dI_D}{dU_{GS}} = \frac{\Delta I_D}{\Delta U_{GS}}, U_{DS} = const$$

$$g_{\scriptscriptstyle m} = k U_{\scriptscriptstyle DS}$$
 за линеен режим

$$g_{\scriptscriptstyle m} = k(U_{\scriptscriptstyle GS} - U_{\scriptscriptstyle T})$$
 за насищане

MOSFET с вграден канал Depletion MOSFET

MOSFET с вграден канал (depletion mode)

N-канален MOS транзистор с вграден канал N-channel, depletion mode MOSFET

MOS транзисторът с вграден канал е отпушен при $U_{GS} = 0 \text{ V}$ защото каналът е създаден при производството му.

Количеството на токоносители в канала (проводимостта му) зависи от поляритета на приложеното напрежение на гейта.

MOSFET с вграден канал

MOS транзистор с N вграден канал

При положително напрежение $U_{GS} > 0$ се привличат електрони, каналът се обогатява с токоносители и проводимостта му, респективно токът расте.

Ако напрежението е отрицателно $U_{GS} < 0$ електроните се отблъскват от повърхността, каналът обеднява на токоносители и токът намалява.

MOSFET с вграден канал - характеристики

NMOS транзистор с вграден канал

При $U_{GS} = 0$ V протича ток.

При $U_{GS} > 0$ токът I_D расте с нарастване на U_{GS}

При $U_T < U_{GS} < 0 I_D$ намалява.

При $U_{GS} < U_T$ еканалът не съществува. U_T е праговото напрежение на транзистора.

MOSFET с вграден канал – изходни характеристики

Примери на изходни характеристики на n-канални MOS транзистори с вграден канал

MOSFET с вграден канал – предавателни характеристики

Примери на предавателни (transfer) характеристики на n-канални MOS транзистори с вграден канал

MOSFET – защита от статично електричество

Ако стойносттна на напрегнатостта на полето, създадено от $U_{\rm GS}$ стане прекалено голяма, тогава настъпва пробив в изолатора под гейта. Този пробив е разрушителен и транзисторът престава да функционира.

Пробив в окиса настъпва, когато транзисторът не е свързан в схема. Поради много високото входно съпротивление, статичните заряди, натрупани върху гейта, могат да предизвикат напрегнатост на полето, достатъчна, за да настъпи пробив в тънкия окис.

Параметри на MOS Транзисторите

Параметри – key performance parameters

Най-важните параметри според различни производители на MOS транзистори

Table 1 Key Performance Parameters

Parameter	Value	Unit
V _{DS}	40	V
R _{DS(on),typ}	0.5	mΩ
R _{DS(on),max}	0.65	mΩ
I _{D(Silicon Limited)}	564	A
I _{D(Package Limited)}	360	A
Q _G (0V10V)	366	nC

PRODUCT SUMMARY						
V _{DS} (V) at T _J max.	650					
R _{DS(on)} typ. (Ω) at 25 °C	V _{GS} = 10 V 0.171					
Q _g max. (nC)	74					
Q _{gs} (nC)	15					
Q _{gd} (nC)	15					

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
600 V	99 mΩ @ 10 V	33 A

V _{DSS}	60V
R _{DS(on)} typ.	1.15mΩ
max	1.4m Ω
D (Silicon Limited)	338A①
I _{D (Package Limited)}	240A

Параметри – Absolute maximum ratings / Safe operating area

Table 2 Maximum ratings

Baramatar	Cymhol		Value	S	l lmi4	Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	- - - -	- - -	110 85 78 19.4	A	$V_{\rm GS}$ =10 V, $T_{\rm C}$ =25 °C $V_{\rm GS}$ =10 V, $T_{\rm C}$ =100 °C $V_{\rm GS}$ =6 V, $T_{\rm C}$ =100 °C $V_{\rm GS}$ =10 V, $T_{\rm A}$ =25 °C, $R_{\rm thJA}$ =4	
Pulsed drain current ³⁾	I _{D,pulse}	-	-	440	Α	T _A =25 °C	
Avalanche energy, single pulse ⁴⁾	E _{AS}	-	-	115	mJ	$I_{\rm D}$ =92 A, $R_{\rm GS}$ =25 Ω	
Gate source voltage	V _{GS}	-20	-	20	V	-	
Power dissipation	P _{tot}	-	-	150 3.8	W	T _C =25 °C T _A =25 °C, R _{thJA} =40 °C/W ²⁾	
Operating and storage temperature	Tj, Tstg	-55	-	175	°C	IEC climatic category; DIN I 55/175/56	

Работа извън тези граници може да доведе до разрушаване на транзистора

Токът е ограничен от Rds(on)

Параметри – Absolute maximum ratings – Мощност и температура

Table 2 Maximum ratings

Parameter	Or male al		Values			Nata / Task Candition	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	ID	- - - -	- - -	110 85 78 19.4	A	V _{GS} =10 V, T _C =25 °C V _{GS} =10 V, T _C =100 °C V _{GS} =6 V, T _C =100 °C V _{GS} =10 V, T _A =25 °C, R _{thJA} =40°C/W ²⁾	
Pulsed drain current ³⁾	I _{D,pulse}	-	-	440	Α	T _A =25 °C	
Avalanche energy, single pulse ⁴⁾	E _{AS}	-	-	115	mJ	I _D =92 A, R _{GS} =25 Ω	
Gate source voltage	V _{GS}	-20	-	20	V	-	
Power dissipation	P _{tot}	-	-	150 3.8	W	T _C =25 °C T _A =25 °C, R _{thJA} =40 °C/W ²⁾	
Operating and storage temperature	T _j , T _{stg}	-55	-	175	°C	IEC climatic category; DIN IEC 68-1: 55/175/56	

$$P_D = \frac{T_J - T_C}{R_{\theta JC}} \quad P_D = \frac{T_J - T_A}{R_{\theta JA}}$$

 T_J = Junction Temperature / температура на кристала T_C = Case Temperature / темп. на корпуса T_A = Ambient Temperature / околна температура $R_{\theta JC}$ = Junction to Case Thermal Resistance $R_{\theta JA}$ = Junction to Ambient Thermal Resistance

Table 3 Thermal characteristics

Darameter	Cumbal		I Imit		
Parameter	Symbol		Тур.	Max.	Unit
Thermal resistance, junction - case	R _{thJC}	-	-	1	°C/W
Thermal resistance, junction - ambient, 6 cm² cooling area	R _{thJA}	-	-	40	°C/W
Thermal resistance, junction - ambient, minimal footprint ²⁾	RthJA	-	-	62	°C/W

Параметри – Зависимост на Id и P от температура

Параметри – $U_{GS(TH)}$

Прагово напрежение (gate threshold voltage) - U_{GS(th)}

Table 4 Static characteristics

Parameter	0	Values			l	l
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	40	-	-	V	V _{GS} =0 V, I _D =250 uA
Breakdown voltage temperature coefficient	$dV_{(BR)DSS}/dT_{j}$	-	36	-	mV/°C	I _D =5 mA, referenced to 25 °C
Gate threshold voltage	V _{GS(th)}	2.2	-	3.7	V	V _{DS} =V _{GS} , I _D =250 μA
Zero gate voltage drain current	/ DSS	-	-	1 150	μΑ	V _{DS} =40 V, V _{GS} =0 V, T _j =25 °C V _{DS} =40 V, V _{GS} =0 V, T _j =125 °C
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20 V, V _{DS} =0 V
Drain-source on-state resistance	R _{DS(on)}	-	0.5 0.7	0.65	mΩ	V _{GS} =10 V, I _D =100 A V _{GS} =6 V, I _D =50 A
Gate resistance ¹⁾	R _G	-	2.2	-	Ω	-
Transconductance	g_{fs}	-	320	-	s	V _{DS} ≥2 I _D R _{DS(on)max} , I _D =100 A

Праговото напрежение, Vth, се дефинира като минималното напрежение на гейта, необходимо за създаване на инверсна област под гейта и образуване на проводящ канал между дрейна и сорса. Vth обикновено се измерва при ток на дрейна 250 uA.

Vth варира в известни граници за отделните транзистори от даден модел.

 $I_D=f(V_{GS}), |V_{DS}|>2|I_D|R_{DS(on)max}$; parameter: T_j

Параметри – U_{GS(TH)} – Зависимост от температурата

Прагово напрежение като функция на температурата

Vth има отрицателен температурен коефициент, което означава, че когато кристала се нагрява, MOSFET ще се включи при по-ниско напрежение на Ugs.

Параметри – Rds(on)

R_{DS(on)} - (drain-source on-state resistance) – съпротивление между дрейна и сорса, когато транзисторът е "включен".

Table 4 Static characteristics

Parameter	0h -1	Values				
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	40	-	-	V	V _{GS} =0 V, I _D =250 uA
Breakdown voltage temperature coefficient	$dV_{(BR)DSS}/dT_{j}$	-	36	-	mV/°C	I _D =5 mA, referenced to 25 °C
Gate threshold voltage	V _{GS(th)}	2.2	-	3.7	V	V _{DS} =V _{GS} , I _D =250 μA
Zero gate voltage drain current	/ _{DSS}	-	-	1 150	μА	V _{DS} =40 V, V _{GS} =0 V, T _j =25 °C V _{DS} =40 V, V _{GS} =0 V, T _j =125 °C
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20 V, V _{DS} =0 V
Drain-source on-state resistance	$R_{ extsf{DS(on)}}$	-	0.5 0.7	0.65	mΩ	V _{GS} =10 V, I _D =100 A V _{GS} =6 V, I _D =50 A
Gate resistance ¹⁾	R _G	-	2.2	-	Ω	-
Transconductance	g_{fs}	-	320	-	s	V _{DS} ≥2 I _D R _{DS(on)max} , I _D =100 A

Figure 8. Origin of Internal Resistance in a Power MOSFET.

RDS(on) = Rsource + Rch + RA + RJ + RD + Rsub + Rwcml

Параметри – Rds(on) – Зависимост от температурата

Rds(on) расте при повишаване на температурата, което води до намаляване на Id и на разсейвана мощност $P = Id^2.Rds(on)$

Параметри – Rds(on) – Зависимост от Ugs и Id

За да може MOSFET да комутира голям ток с минимални загуби, Rds(on) да е малко, т.е. напрежението Ugs трябва да е достатъчно високо.

Параметри – Drain-source breakdown voltage $V_{(BR)DSS}$

Table 4 Static characteristics

Parameter	O:b al	Values			11	Nata / Tank Camalitian
Parameter	Symbol	Min.	Тур.	Мах.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	40	-	-	V	V _{GS} =0 V, I _D =250 uA
Breakdown voltage temperature coefficient	$dV_{(BR)DSS}/dT_{j}$	-	36	-	mV/°C	<i>I</i> _□ =5 mA, referenced to 25 °C
Gate threshold voltage	V _{GS(th)}	2.2	-	3.7	V	V _{DS} =V _{GS} , I _D =250 μA
Zero gate voltage drain current	/ DSS	-	-	1 150	μA	V _{DS} =40 V, V _{GS} =0 V, T _j =25 °C V _{DS} =40 V, V _{GS} =0 V, T _j =125 °C
Gate-source leakage current	I _{GSS}	-	-	100	nΑ	V _{GS} =20 V, V _{DS} =0 V
Drain-source on-state resistance	R _{DS(on)}	-	0.5 0.7	0.65 -	mΩ	V _{GS} =10 V, I _D =100 A V _{GS} =6 V, I _D =50 A
Gate resistance ¹⁾	R _G	-	2.2	-	Ω	-
Transconductance	g _{fs}	-	320	-	s	V _{DS} ≥2 I _D R _{DS(on)max} , I _D =100 A

Параметри – Drain-source breakdown voltage V_{(BR)DSS}

Table 4 Static characteristics

Parameter	Cumbal	Values			l Init	Nata / Tant Condition	
Farameter	Symbol	Min.	Тур.	Мах.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	40	-	-	V	V _{GS} =0 V, I _D =250 uA	
Breakdown voltage temperature coefficient	$dV_{(BR)DSS}/dT_{j}$	-	36	-	mV/°C	/ _□ =5 mA, referenced to 25 °C	
Gate threshold voltage	V _{GS(th)}	2.2	-	3.7	V	V _{DS} =V _{GS} , I _D =250 μA	
Zero gate voltage drain current	I _{DSS}	-	-	1 150	μА	V _{DS} =40 V, V _{GS} =0 V, T _j =25 °C V _{DS} =40 V, V _{GS} =0 V, T _j =125 °C	
Gate-source leakage current	I _{GSS}	-	-	100	nΑ	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	R _{DS(on)}	-	0.5 0.7	0.65 -	mΩ	V _{GS} =10 V, I _D =100 A V _{GS} =6 V, I _D =50 A	
Gate resistance ¹⁾	R _G	-	2.2	-	Ω	-	
Transconductance	g_{fs}	-	320	-	s	V _{DS} ≥2 I _D R _{DS(on)max} , I _D =100 A	

 $V_{BR(DSS)}=f(T_j); I_D=1 \text{ mA}$

Параметри – Transconductance / стръмност на предавателната характеристика

Table 4 Static characteristics

Devementer	Or smalls all	Values			11:4	Note / Took Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	40	-	-	V	V _{GS} =0 V, I _D =250 uA
Breakdown voltage temperature coefficient	$dV_{(BR)DSS}/dT_{j}$	-	36	-	mV/°C	I _D =5 mA, referenced to 25 °C
Gate threshold voltage	V _{GS(th)}	2.2	-	3.7	V	V _{DS} =V _{GS} , I _D =250 μA
Zero gate voltage drain current	I _{DSS}	-	-	1 150	μА	V _{DS} =40 V, V _{GS} =0 V, T _j =25 °C V _{DS} =40 V, V _{GS} =0 V, T _j =125 °C
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20 V, V _{DS} =0 V
Drain-source on-state resistance	R _{DS(on)}	-	0.5 0.7	0.65	mΩ	V _{GS} =10 V, I _D =100 A V _{GS} =6 V, I _D =50 A
Gate resistance ¹⁾	R _G	-	2.2	-	Ω	-
Transconductance	g_{fs}	-	320	-	s	V _{DS} ≥2 I _D R _{DS(on)max} , I _D =100 A

Отразява чувствителността на дрейновият ток към промените на напрежението гейт-сорс.

Параметри – Dynamic characteristics

Table 5 Dynamic characteristics

Fall time

Parameter	O. mah al		Values			N-4- / T4 C 455	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance ¹⁾	Ciss	-	18000	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz	
Output capacitance ¹⁾	Coss	-	2900	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz	
Reverse transfer capacitance ¹⁾	C _{rss}	-	2000	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz	
Turn-on delay time	$t_{\sf d(on)}$	-	23	-	ns	$V_{\rm DD}$ =20 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =2.7 Ω	
Rise time	t _r	-	75	-	ns	V _{DD} =20 V, V _{GS} =10 V, I _D =30 A,	
Turn-off delay time	$t_{ m d(off)}$	-	I _D \spadesuit				
	1					,	

Figure 11. Power MOSFET (a) Transfer characteristics, (b) Equivalent Circuit Showing Components That Have Greatest Effect on Switching

Параметри – Dynamic characteristics – капацитети

Table 5 Dynamic characteristics

Parameter	Cumbal	Values		
rarameter	Symbol	Min.	Тур.	Max.
Input capacitance ¹⁾	Ciss	-	18000	-
Output capacitance ¹⁾	Coss	-	2900	-
Reverse transfer capacitance ¹⁾	Crss	-	2000	-
Turn-on delay time	$t_{ m d(on)}$	-	23	-
Rise time	tr	-	75	-
Turn-off delay time	$t_{ m d(off)}$	-	197	-
Fall time	$t_{\rm f}$	-	114	-

$$C_{iss} = C_{GS} + C_{GD}$$
, C_{DS} shorted

$$C_{rss} = C_{GD}$$

$$C_{oss} = C_{DS} + C_{GD}$$

Note / Test Condition

 V_{GS} =0 V, V_{DS} =20 V, f=1 MHz

 $V_{GS}=0 \text{ V}, V_{DS}=20 \text{ V}, f=1 \text{ MHz}$

Unit

pF

pF

Параметри – Dynamic characteristics – капацитети

Table 5 Dynamic characteristics

0		Values			N-4- / T / O ///		
Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition		
Ciss	-	18000	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz		
Coss	-	2900	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz		
Crss	-	2000	-	pF	V _{GS} =0 V, V _{DS} = 10 ⁵		
$t_{\sf d(on)}$	-	23	-	ns	V_{DD} =20 V, V_{GS} $R_{G,ext}$ =2.7 Ω		
tr	-	75	-	ns	V _{DD} =20 V, V _{GS} R _{G,ext} =2.7 Ω		
$t_{ m d(off)}$	-	197	-	ns	V _{DD} =20 V, V _{GS} R _{G,ext} =2.7 Ω		
tı	-	114	-	ns	V _{DD} =20 V, V _{GS} R _{G,ext} =2.7 Ω		
	Coss Crss td(on) tr td(off)	C _{iss} - C _{oss} - C _{rss} - t _{d(on)} - t _r - t _{d(off)} -	Min. Typ. C _{iss} - 18000 C _{oss} - 2900 C _{rss} - 2000 t _{d(on)} - 23 t _r - 75 t _{d(off)} - 197	Min. Typ. Max. C _{iss} - 18000 - C _{oss} - 2900 - C _{rss} - 2000 - t _{d(on)} - 23 - t _r - 75 - t _{d(off)} - 197 -	Symbol Min. Typ. Max. C_{iss} - 18000 - pF C_{oss} - 2900 - pF C_{rss} - 2000 - pF $t_{d(on)}$ - 23 - ns t_r - 75 - ns $t_{d(off)}$ - 197 - ns		

C=f(V_{DS}); V_{GS}=0 V; f=1 MHz

Параметри – Dynamic characteristics – закъснения

Закъснението при включване, td(on), е времето, необходимо за зареждане на входния капацитет на MOSFET, преди да започне протичане на дрейнов ток.

td(off) е времето, необходимо за разреждане на капацитета, преди транзистора започне да се "запушва".

Table 5 Dynamic characteristics

Davamatav	Comple at	Values				Nada / Tank Garadidian	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance ¹⁾	Ciss	-	18000	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz	
Output capacitance ¹⁾	Coss	-	2900	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz	
Reverse transfer capacitance ¹⁾	Crss	-	2000	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz	
Turn-on delay time	t _{d(on)}	-	23	-	ns	$V_{\rm DD}$ =20 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =2.7 Ω	
Rise time	$t_{\rm r}$	-	75	-	ns	$V_{\rm DD}$ =20 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =2.7 Ω	
Turn-off delay time	$t_{\sf d(off)}$	-	197	-	ns	V _{DD} =20 V, V _{GS} =10 V, I _D =30 A, R _{G,ext} =2.7 Ω	
Fall time	t _f	-	114	-	ns	$V_{\rm DD}$ =20 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =2.7 Ω	

Параметри – Gate charge characteristics

Table 6 Gate charge characteristics¹⁾

Davamatan	Course to a l		11			
Parameter	Symbol		Тур.	Max.	Unit	
Gate to source charge	Qgs	-	85	-	nC	
Gate charge at threshold	Q _{g(th)}	-	54	-	nC	
Gate to drain charge ²⁾	Q_{gd}	-	121	-	nC	
Switching charge	Q _{sw}	-	152	-	nC	
Gate charge total ²⁾	Q_g	-	366	458	nC	
Gate plateau voltage	V _{plateau}	-	4.8	-	V	
Gate charge total, sync. FET	Q _{g(sync)}	-	245	-	nC	
Output charge ¹⁾	Qoss	-	101	-	nC	

Total Gate Charge (Qg) – количеството заряд, което трябва да се инжектира в гейта, за да се включи MOSFET.

Параметри – Gate charge characteristics

Параметри – Avalanche data

Table 4. Avalanche data

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by Tjmax)	30	Α
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, I _D =I _{AR} , V _{DD} =50V)	140	mJ

Figure 15. Maximum avalanche energy vs temperature

Управление на сетодиоди (резистивен товар)

LED-DRV.asc

https://github.com/vpt-tus/ppe

Без D1

Управление на индуктивен товар

PULSE(0.5V 4.5V 10m 0.1m 0.1m 20m)

.tran 50m

FET-switch-ind-2.asc

https://github.com/vpt-tus/ppe

Разсейвана мощност

FET-switch-power.asc

https://github.com/vpt-tus/ppe

Защо е необходим резистора между гейта и сорса?

Защо е необходим резистора между гейта и сорса?

.model myswitch sw(Ron=1 Roff=10Meg Vt=0.5V Vh=-0.4V)

4.0V 3.0V-2.0V-1.0V-V(ugs) 9V-6V-3V-Id(M1) 240mA 110mA-V(uds) 20ms 25ms 5.0V 4.0V-3.0V-2.0V-1.0V 0.0V V(ugs) 12.012V 12.006V 12.000\ 11.994V 11.988\ Id(M1) 235.4mA 234.3m/ 233.2mA V(uds) 285.4mV 284.3m\

Схеми – CMOS

Схеми – CMOS

Схеми – ОрАтр

