Basic Graph Algorithms

Lecture 06

Ritu Kundu

King's College London

Tue, Nov 07, 2017

- Introduction
 - Representation
 - Graph Traversal
- BFS
- OFS
 - Application: Topological Sort
 - Application: Strongly Connected Components

Outline

- Introduction
 - Representation
 - Graph Traversal
- BFS
- 3 DFS
 - Application: Topological Sort
 - Application: Strongly Connected Components

Graph

A Graph G = (V, E) consists of a set V of vertices(nodes) and a set E of edges(arcs). $(u, v) \in E$, where $u, v \in V$, denotes an edge between vertex u and vertex v. |V| = n, |E| = m

Types: Based on number of edges

- Dense
- Sparse

Motivation

- Connection Problems
- Trasportation Problems
- Scheduling Problems
- Network Analysis (Visualisation)

Undirected graph

A graph with undirected edges [(u, v) = (v, u)].

Directed graph (Digraph)

A graph with directed edges $[(u, v) \neq (v, u)]$.

Adjacent vertices

Vertices u and v are adjacent vertices iff (u, v) is an edge in the graph.

Incident edge

The edge (u, v) is *incident* on vertices u and v.

Degree

Let G be an undirected graph.

The degree d_u of a vertex u is the number of edges incident on u.

In-degree/ Out-degree

Let G be a directed graph.

The *in-degree* d_u^{in} of a vertex u is the number of edges incident to u (incoming edges).

The *out-degree* d_u^{out} of a vertex u is the number of edges incident from u (outgoing edges).

Path

A path P from vertex v_1 to vertex v_k is a sequence of vertices $P = \langle v_1, v_2, ..., v_k \rangle$ such that $(v_i, v_{i+1}) \in E \forall i = [1..k]$. P is said to be simple iff the vertices are unique.

Cycle

A cycle is a path such that $v_1 = v_k$. A cycle is said to be simple if vertices (except first and last) are unique.

DAG

A Directed Acyclic Graph(DAG) is a directed graph without cycles.

Connected components

A *connected component* of an undirected graph is a **maximal** subset of the vertices such that for every pair u and v of vertices in this subset, there is a path from u to v.

Strongly Connected components

A *strongly connected component* of a directed graph is a **maximal** subset of the vertices such that for every pair u and v of vertices in this subset, there is a path from u to v.

Adjacency Matrix

 $n \times n$ matrix A such that $A(i,j) = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$

Space Complexity: Check $(u, v) \in E$: Traverse neighbours of a vertex u: Check if G has isolated vertex: Check if G is complete: Check if G has a loop:

Example 1: Undirected Graph

	r	s	τ	u	V	W	Х	У	
r	0	1	0	0	1	0	0	0	1
S	1	0	0	0	0	1	0	0	ı
t	0	0	0	1	0	1	1	0	
u	0	0	- 1	0	0	0	0	1	
V	1	0	0	0	0	0	0	0	ı
w	0	1	1	0	0	0	1	0	ı
х	0	0	1	0	0	1	0	1	ı
У	0	0	0	1	0	0	- 1	0	

	r	s	t	u	٧	W	Х	У
r	0	1	0	0	1	0	0	0
s	0	0	0	0	0	1	0	0
t	0	0	0	1	0	0	1	0
u	0	0	0	0	0	0	0	1
V	0	0	0	0	0	0	0	0
w	0	0	1	0	0	0	1	0
W X	0	0	0	0	0	0	0	1
у	0	0	0	0	0	0	0	0

Introduction

Adjacency Matrix

 $n \times n$ matrix A such that $A(i,j) = \begin{cases} 1 \text{ if } (i,j) \in E \\ 0 \text{ otherwise} \end{cases}$

Space Complexity: $O(n^2)$ Check $(u, v) \in E$: O(1)

Traverse neighbours of a vertex u: O(n)Check if G has isolated vertex: $O(n^2)$ Check if G is complete: $O(n^2)$ Check if G has a loop: O(n)

Example 1: Undirected Graph

		3	·	u	v	vv	^	у	
r	0	1	0	0	1	0	0	0	1
s	1	0	0	0	0	1	0	0	ı
t	0	0	0	- 1	0	1	1	0	
u	0	0	1	0	0	0	0	1	
V	1	0	0	0	0	0	0	0	
w	0	1	- 1	0	0	0	1	0	ı
х	0	0	- 1	0	0	1	0	1	ı
у	0	0	0	1	0	0	1	0	

	r	s	t	u	٧	W	Х	У
r	0	1	0	0	1	0	0	0
s	0	0	0	0	0	1	0	0
t	0	0	0	1	0	0	1	0
u	0	0	0	0	0	0	0	- 1
٧	0	0	0	0	0	0	0	0
w	0	0	1	0	0	0	1	0
х	0	0	0	0	0	0	0	1
У	0	0	0	0	0	0	0	0

Adjacency List

Array Adj of length n such that Adj(u) is list of vertois adjacent to u.

Space Complexity: Check $(u, v) \in E$: Traverse neighbours of a vertex u:

Check if G has isolated vertex: Check if G is complete: Check if G has a loop:

Example 1: Undirected Graph

Adjacency List

Array Adj of length n such that Adj(u) is list of vertois adjacent to u.

Space Complexity: O(n+m)Check $(u,v) \in E$: $O(degree_u)$ Traverse neighbours of a vertex u: $O(degree_u)$

Check if G has isolated vertex: O(n)Check if G is complete: O(n+m)

Check if G has a loop : O(n + m) [What if the

list is sorted?]

Example 1: Undirected Graph

Graph Traversal

Problem

Visiting every node of the graph, keeping 'redundancy' minimum.

Methods

- Breadth First Search (BFS)
- Depth First Search (DFS)

Color Code

- White: Unvisted
- Gray: Visited at least once (discovered)
- Black: Dead (finished)

Outline

- Introduction
 - Representation
 - Graph Traversal
- BFS
- 3 DFS
 - Application: Topological Sort
 - Application: Strongly Connected Components

Breadth First Search(BFS)

Visiting Order

Levels: Immediate neighbours, those at 2-hops distance, those at 3-hops distance and so on.

Data Structure used

Queue(FIFO)

Algorithm

Algorithm 1 BFS Algo

```
procedure BFS(G, s) *** G = (V, E) and s \in V ***
  Initialize all nodes as White(unvisited)
  Initialize s as Gray(visited)
  Add s to Queue
  while Queue is not empty do
      Let u be the head of Queue
      for each v adjacent to u do
         if v is unvisted(White) then
            Mark v as Gray(visited)
            Add v to Queue
         end if
      end for
      Remove u(head) from Queue
      Mark u as Black(dead)
  end while
end procedure
```


Queue

Queue

S

Queue

Queue

Algorithm 2 BFS Pseudocode

```
1: procedure BFS(G, s)
2:
       for each u \in V - \{s\} do
3:
           C_{\prime\prime} \leftarrow' White'
4:
       end for
      C_s \leftarrow' Gray'
6:
       Enqueue(Q, s) *** Q is FIFO Queue ***
7:
       while Q \neq \Phi do
8:
           u \leftarrow head(Q)
9:
           for each v \in Adi_u do
10:
                if C_v =' White' then
11:
                    C_v \leftarrow `Gray
   ▷ Add v to the queue
12:
                    Enqueue(Q, v)
                end if
13:
14:
            end for
   ▶ Remove head of the queue
15:
            Dequeue(Q)
            C_{\prime\prime} \leftarrow' Black'
16:
17:
        end while
18: end procedure
```

Algorithm 3 BFS Pseudocode

```
1: procedure BFS(G, s)
       for each u \in V - \{s\} do
           C_{\prime\prime} \leftarrow' White'
                                               \Theta(n)
       end for
5:
      C_c \leftarrow' Grav'
       Enqueue(Q, s) *** Q is FIFO Queue ***
       while Q \neq \Phi do
8:
           u \leftarrow head(Q)
9:
           for each v \in Adi_u do
10:
                if C_v =' White' then
11:
                    C_v \leftarrow `Gray
   ▷ Add v to the queue
12:
                    Enqueue(Q, v)
13:
                end if
14:
            end for
   ▶ Remove head of the queue
15:
            Dequeue(Q)
            C_{\prime\prime} \leftarrow' Black'
16:
17:
        end while
18: end procedure
```

Algorithm 4 BFS Pseudocode

```
1: procedure BFS(G, s)
       for each u \in V - \{s\} do
           C_{\prime\prime} \leftarrow' White'
                                               \Theta(n)
      end for
5:
      C_s \leftarrow' Gray'
      Enqueue(Q, s) *** Q is FIFO Queue ***
       while Q \neq \Phi do
           u \leftarrow head(Q)
9:
           for each v \in Adi_u do
10:
                if C_v =' White' then
                    C_v \leftarrow `Gray
11:
   ▷ Add v to the queue
                                               \Theta(1)
12:
                    Enqueue(Q, v)
13:
                end if
14:
            end for
   > Remove head of the queue
15:
            Dequeue(Q)
            C_{\prime\prime} \leftarrow' Black'
16:
17:
        end while
18: end procedure
```

16/37

Algorithm 5 BFS Pseudocode

```
1: procedure BFS(G, s)
       for each u \in V - \{s\} do
          C_{\prime\prime} \leftarrow' White'
                                              \Theta(n)
      end for
5:
      C_s \leftarrow' Gray'
      Enqueue(Q, s) *** Q is FIFO Queue ***
      while Q \neq \Phi do
           u \leftarrow head(Q)
9:
          for each v \in Adj_u do
10:
                if C_v =' White' then
11:
                    C_v \leftarrow Gray
   ▶ Add v to the queue
12:
                    Enqueue(Q, v)
13:
                end if
14:
           end for
   > Remove head of the queue
15:
            Dequeue(Q)
            C_{\prime\prime} \leftarrow' Black'
16:
17:
       end while
18: end procedure
```

Algorithm 6 BFS Pseudocode

```
1: procedure BFS(G, s)
       for each u \in V - \{s\} do
           C_{\prime\prime} \leftarrow' White'
                                              \Theta(n)
      end for
5:
      C_s \leftarrow' Gray'
      Enqueue(Q, s) *** Q is FIFO Queue ***
      while Q \neq \Phi do
           u \leftarrow head(Q)
9:
           for each v \in Adj_u do
10:
                if C_v =' White' then
11:
                    C_v \leftarrow Gray
   ▶ Add v to the queue
12:
                    Enqueue(Q, v)
13:
                end if
14:
           end for
   > Remove head of the queue
15:
            Dequeue(Q)
                                                               \Theta(1)
            C_{\prime\prime} \leftarrow' Black'
16:
17:
       end while
18: end procedure
```

Algorithm 7 BFS Pseudocode

```
1: procedure BFS(G, s)
       for each u \in V - \{s\} do
           C_{\prime\prime} \leftarrow' White'
                                              \Theta(n)
      end for
5:
      C_s \leftarrow' Gray'
      Enqueue(Q, s) *** Q is FIFO Queue ***
      while Q \neq \Phi do
           u \leftarrow head(Q)
9:
           for each v \in Adi_u do
10:
                if C_v =' White' then
11:
                    C_v \leftarrow Gray
   ▶ Add v to the queue
                                              Θ(1)
                    Enqueue(Q, v)
12:
13:
                end if
14:
            end for
   ▶ Remove head of the queue
15:
            Dequeue(Q)
            C_{\prime\prime} \leftarrow' Black'
16:
17:
       end while
18: end procedure
```

Algorithm 8 BFS Pseudocode

```
1: procedure BFS(G, s)
       for each u \in V - \{s\} do
           C_{\prime\prime} \leftarrow' White'
                                              \Theta(n)
      end for
5:
      C_s \leftarrow' Gray'
      Enqueue(Q, s) *** Q is FIFO Queue ***
      while Q \neq \Phi do
           u \leftarrow head(Q)
9:
           for each v \in Adi_u do
10:
                if C_v =' White' then
11:
                    C_v \leftarrow Gray
   ▶ Add v to the queue
                                              Θ(1)
                    Enqueue(Q, v)
12:
13:
                end if
14:
            end for
   ▶ Remove head of the queue
15:
            Dequeue(Q)
            C_{\prime\prime} \leftarrow' Black'
16:
17:
       end while
18: end procedure
```

Running Time

Initialisation

O(n)

Queuing/Dequeuing

Each $u \in V$ enqueued/dequeued exactly once $(\forall u \in Q \text{ is same as } \forall u \in V) \; \Sigma_{\forall u \in V} O(1) = O(n)$

Checking Adjacent nodes

$$\Sigma_{\forall u \in V} O(Deg(u)) = O(\Sigma_{\forall u \in V}(Deg(u))) = O(m)$$

Total

$$O(n) + O(m) + O(n) = O(m+n)$$

Applications

- Shortest distance (How?)
- Finding Cycle (How?)
- Connected Components in Undirected Graph (How?)

Outline

- Introduction
 - Representation
 - Graph Traversal
- BFS
- OFS
 - Application: Topological Sort
 - Application: Strongly Connected Components

Introduction

Visiting Order

Levels: Go to the deepest level; Backtrack when no other option.

Data Structure used

Stack(LIFO)

- Explicit
- Implicit (Recursive)

Algorithm(recursive)

Algorithm 9 DFS (Basic Algo)

```
procedure BasicDFS(G) *** G = (V, E) ***
  Initialize all nodes as White(unvisited)
  for each u \in V do
      if u is unvisted(White) then
         BASICDFS-VISIT(u)
      end if
  end for
end procedure
procedure BasicDFS-visit(u)
   Mark u as Gray(visited)
   for each v adjacent to u do
      if v is unvisted(White) then
         BASICDFS-VISIT(v)
      end if
   end for
   Mark u as Black(dead)
end procedure
```


Vertex Set (V)

Vertex Set (V)

Vertex Set (V)

Vertex Set (V)

Vertex Set (V)

Vertex Set (V)

Vertex Set (V)

Vertex Set (V)

Vertex Set (V)

Algorithm 10 DFS

```
procedure DFS(G) *** G = (V, E) ***
   for each u \in V do
        C_{"} \leftarrow `White'
   end for
   t \leftarrow 0
   for each u \in V do
        if C_{ii} = 'White' then
            DFS-visit(u)
        end if
   end for
end procedure
procedure DFS-VISIT(u)
    C_u \leftarrow 'Gray
    t \leftarrow t + 1
    d_u \leftarrow t
    for each v \in Adj_u do
        if C_{\nu} = 'White' then
            DFS-VISIT(v)
        end if
    end for
    C_{\prime\prime} \leftarrow 'Black'
    t \leftarrow t + 1
    f_u \leftarrow t
end procedure
```

```
Algorithm 11 DFS
```

```
procedure DFS(G) *** G = (V, E) ***
   for each u \in V do
        C_u \leftarrow 'White'
                                                                \Theta(n)
   end for
   t \leftarrow 0
   for each u \in V do
        if C_{ii} = 'White' then
            DFS-VISIT(u)
        end if
   end for
end procedure
procedure DFS-VISIT(u)
    C_{ii} \leftarrow 'Gray
    t \leftarrow t + 1
    d_u \leftarrow t
    for each v \in Adi_u do
        if C_{\nu} = 'White' then
             DFS-VISIT(v)
        end if
    end for
    C_{\prime\prime} \leftarrow 'Black'
    t \leftarrow t + 1
    f_u \leftarrow t
end procedure
```

```
Algorithm 12 DFS
```

```
procedure DFS(G) *** G = (V, E) ***
   for each u \in V do
        C_u \leftarrow 'White'
   end for
   t \leftarrow 0
   for each u \in V do
        if C_{ii} = 'White' then
            DFS-VISIT(u)
        end if
   end for
end procedure
procedure DFS-VISIT(u)
    C_u \leftarrow 'Gray
    t \leftarrow t + 1
    d_u \leftarrow t
    for each v \in Adi_u do
        if C_{\nu} = 'White' then
            DFS-VISIT(v)
        end if
    end for
    C_{\prime\prime} \leftarrow 'Black'
    t \leftarrow t + 1
    f_u \leftarrow t
end procedure
```

```
\Theta(n)
```

```
Algorithm 13 DFS
```

```
procedure DFS(G) *** G = (V, E) ***
   for each u \in V do
        C_u \leftarrow 'White'
                                                                \Theta(n)
   end for
   t \leftarrow 0
   for each u \in V do
        if C_{ii} = 'White' then
            DFS-VISIT(u)
        end if
   end for
end procedure
procedure DFS-VISIT(u)
    C_u \leftarrow 'Gray
    t \leftarrow t + 1
    d_u \leftarrow t
    for each v \in Adi_u do
        if C_{\nu} = 'White' then
             DFS-VISIT(v)
                                                               \Theta(1)
        end if
    end for
    C_{\prime\prime} \leftarrow 'Black'
    t \leftarrow t + 1
    f_u \leftarrow t
end procedure
```

Algorithm 14 DFS

```
procedure DFS(G) *** G = (V, E) ***
   for each u \in V do
        C_u \leftarrow 'White'
                                                                \Theta(n)
   end for
   t \leftarrow 0
   for each u \in V do
        if C_{ii} = 'White' then
            DFS-VISIT(u)
        end if
   end for
end procedure
procedure DFS-VISIT(u)
    C_{ii} \leftarrow 'Gray
    t \leftarrow t + 1
    d_u \leftarrow t
    for each v \in Adi_u do
        if C_{\nu} = 'White' then
             DFS-VISIT(v)
        end if
    end for
    C_{\prime\prime} \leftarrow 'Black'
    t \leftarrow t + 1
    f_u \leftarrow t
end procedure
```

Algorithm 15 DFS

```
procedure DFS(G) *** G = (V, E) ***
   for each u \in V do
        C_u \leftarrow 'White'
                                                               \Theta(n)
   end for
   t \leftarrow 0
   for each u \in V do
        if C_{ii} = 'White' then
            DFS-VISIT(u)
        end if
   end for
end procedure
procedure DFS-VISIT(u)
    C_u \leftarrow 'Gray
    t \leftarrow t + 1
    d_u \leftarrow t
    for each v \in Adi_u do
        if C_{\nu} = 'White' then
            DFS-VISIT(v)
        end if
    end for
    C_{\prime\prime} \leftarrow 'Black'
    t \leftarrow t + 1
    f_u \leftarrow t
end procedure
```

Algorithm 16 DFS

```
procedure DFS(G) *** G = (V, E) ***
   for each u \in V do
        C_u \leftarrow 'White'
   end for
   t \leftarrow 0
   for each u \in V do
        if C_{ii} = 'White' then
            DFS-VISIT(u)
        end if
   end for
end procedure
procedure DFS-VISIT(u)
    C_u \leftarrow 'Gray
    t \leftarrow t + 1
    d_u \leftarrow t
    for each v \in Adi_u do
        if C_{\nu} = 'White' then
            DFS-VISIT(v)
        end if
    end for
    C_{\prime\prime} \leftarrow 'Black'
    t \leftarrow t + 1
    f_u \leftarrow t
end procedure
```

```
 \sum_{allu \in V} time_{DFS-visit(u)}
```


Running Time

Initialisation

O(n)

DFS-visit for a node u

$$O(Deg(u)) + O(1)$$

DFS-visit for all nodes

$$\Sigma_{\forall u \in V}(O(Deg(u)) + O(1)) = O(\Sigma_{\forall u \in V}(Deg(u) + O(1)))$$

$$= O(\Sigma_{\forall u \in V}(Deg(u)) + (\Sigma_{\forall u \in V}(O(1)))$$

$$= O(2m(\text{or }m) + n) = O(m+n)$$

Total

$$O(m+n) + O(n) = O(m+n)$$

$$V = \{c, d, b, e, a, f, g\}$$

$$V = \{c, d, b, e, a, f, g\}$$

$$V = \{c, d, b, e, a, f, g\}$$

Does the number of DFS trees in a DFS forest depend on the order of vertices (chosen for traversal)?

Applications

- Finding Cycle (How?)
- Topological sorting
- Strongly Connected Components in Directed Graph

Topological Sort

Definition

A topological sort of a DAG G = V, E is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

Example

Topological order:

Algorithm

Pseudocode

Algorithm 17 Topological Sort

procedure TOPOLOGICAL-SORT(G) *** G = (V, E) ***
Call DFS(G) to compute $f_i \forall u \in V$ As each vertex finishes, insert it at the front of a linked list return the linked list of vertices end procedure

Example

Algorithm

Pseudocode

Algorithm 18 Topological Sort

procedure TOPOLOGICAL-SORT(G) *** G = (V, E) ***
Call DFS(G) to compute $f_{ij} \forall u \in V$ As each vertex finishes, insert it at the front of a linked list return the linked list of vertices end procedure

Example

Algorithm

Pseudocode

Algorithm 19 Topological Sort

procedure TOPOLOGICAL-SORT(G) *** G = (V, E) ***
Call DFS(G) to compute $f_u \forall u \in V$ As each vertex finishes, insert it at the front of a linked list return the linked list of vertices end procedure

Example

Vertices in decreasing order of the finishing time = r(16), v(15), s(13), w(12), t(11), u(10), x(8), y(7)

Algorithm

Pseudocode

Algorithm 20 Topological Sort

procedure TOPOLOGICAL-SORT(G) *** G = (V, E) ***
Call DFS(G) to compute $f_u \forall u \in V$ As each vertex finishes, insert it at the front of a linked list return the linked list of vertices end procedure

Example

Vertices in decreasing order of the finishing time = r(16), v(15), s(13), w(12), t(11), u(10), x(8), y(7)

Topological order:

Let
$$V = \{b,, x,, s,\}$$

Let
$$V = \{b,, x,, s,\}$$

Let
$$V = \{b,, x,, s,\}$$

Let
$$V = \{b,, x,, s,\}$$

Let
$$V = \{x,, s,\}$$

Let
$$V = \{x,, s,\}$$

Let
$$V = \{x,, s,\}$$

Let
$$V = \{s,\}$$

Let
$$V = \{s,\}$$

Idea behind algorithm to find SCC

Transpose Graph: G^T

- Definition :
 - Informally- Graph obtained after reversing all the edges.
 - $G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\}$
- Observation : G and G^T have the same SCCs.

Component Graph: GSCC

- Definition :
 - Informally- Graph obtained after by contracting all edges whose incident vertices are within the same SCCs of G.
 - G^{SCC} = (V^{SCC}, E^{SCC}), where V^{SCC} has one vertex for each SCC in G and E^{SCC} has an edge if there's an edge between the corresponding SCC's in G.
- Example :

Observation: *G*^{SCC} is a DAG.

Pseudocode

Algorithm 21 Strongly Connected Component

```
procedure F \bowtie DSCC(G) *** G = (V, E) ***
Call DFS(G) to compute f_v \forall v \in V
Compute G^T *** G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\} ***
Call DFS(G^T) but considering the vertices in decreasing order of f_u computed in the first call to DFS(above step).
return the vertices of each tree in the second call to DFS (above step) as a separate SCC.
end procedure
```

Running time: O(n+m)

Step1: DFS(G)

Step1: DFS(G)

Step1: DFS(G)

Vertices in decreasing order of the finishing time = b(16), e(15), a(14), c(10), d(9), g(7), h(6), f(4)

Step2: Compute G^T

$$G = (V, E)$$

$$G^{T} = (V, E^{T}), E^{T} = \{(u, v) : (v, u) \in E\}$$

Step2: Compute G^T

$$G = (V, E)$$

$$G^{T} = (V, E^{T}), E^{T} = \{(u, v) : (v, u) \in E\}$$

Step3: $DFS(G^T)$ in decreasing order of f_u from step 1

Vertices in decreasing order of the finishing time = b, e, a, c, d, g, h, f

Step3: $DFS(G^T)$ in decreasing order of f_u from step 1

Vertices in decreasing order of the finishing time = b, e, a, c, d, g, h, f

Why the algorithm works?

Idea

By considering vertices in second DFS in decreasing order of finishing times (obtained from first DFS), vertices of the component graph are being visited in topological sort order.

How?

- Notations :
 - d_u , f_u : discovery and finishing time of a vertex u in the first DFS.
 - D_C : Discovery time of the first-discovered vertex in SCC C, i.e. $D_C = min_{u \in C}d_u$.
 - F_C : Finishing time of the last-finished vertex in SCC C, i.e. $D_C = max_{u \in C} f_u$.
- Lemma :Let C and C' be distinct SCCs in G = (V, E). If there is an edge (u, v) in E such that u in C and v in C', then $F_C > F_{C'}$.

- Corollary 1: Let C and C' be distinct SCCs in G = (V, E). If there is an edge (u, v) in E^T where u in C and v in C', then $F_C < F_{C'}$.
- Corollary 2: Let C and C' be distinct SCCs in G = (V, E). If $F_C > F_{C'}$, then there cannot be an edge from C to C' in G^T .

Why the algorithm works? : Intutive Proof

Each time we choose a root for the second DFS, it can reach only

- vertices in its own SCC.
- vertices in SCCs already visited in second DFS.

In effect, vertices of $(G^T)^{SCC}$ in reverse of topologically sorted order.

Why the algorithm works? : Intutive Proof

Each time we choose a root for the second DFS, it can reach only

- vertices in its own SCC.
- vertices in SCCs already visited in second DFS.

In effect, vertices of $(G^T)^{SCC}$ in reverse of topologically sorted order.

What if the first DFS is done on G^T and the second on G?

References

• Cormen, Leiserson, Rivest: Introduction to Algorithms

