aAAEC 6311

LAB #1

Objectives:

1) Learn to implement IV procedures using SAS

Card (1995) analyzed the effect of education (measured as yeas of schooling) on earnings (measured as hourly wage). Here we will use the same data from the Young Men Cohort of the 1976 National Longitudinal Survey. The model considered by Card (1995) was:

$$\ln(w_i) = \beta_0 + \mathbf{x}'_{1i}\mathbf{\beta_1} + \beta_2 s_i + \varepsilon_i, \tag{1}$$

where w_i denotes hourly wages, s denotes years of schooling, and \mathbf{x}_1 is a vector of control variables.

In this model the schooling variable is considered endogenous due to the lack of data on ability. Thus, the error is correlated con s. The instrument used by Card (1995) is an indicator for whether a four year college is nearby.

Is the proximity to a college or university (d) a good instrument for schooling?

Part 1. Basic Operations Using SAS

1.1. Import and manipulate the data

Proc import

Data

1.2. Calculate basic summary statistics:

	The SAS System									
	The MEANS Procedure									
Variable	Label	N	Mean	Std Dev	Minimum	Maximum				
wage76	wage76	3010	1.6566642	0.4437980	0	3.1796999				
black	black	3010	0.2335548	0.4231624	0	1.0000000				
age1415	age1415	3010	0.2548173	0.4358309	0	1.0000000				
age1617	age1617	3010	0.2408638	0.4276788	0	1.0000000				
grade76	grade76	3010	13.2634551	2.6769129	1.0000000	18.0000000				
education		3010	13.2634551	2.6769129	1.0000000	18.0000000				
exp76	exp76	3010	8.8561462	4.1416716	0	23.0000000				
expsq76	expsq76	3010	0.9557907	0.8461831	0	5.2900000				
south76	south76	3010	0.4036545	0.4907113	0	1.0000000				
smsa76	smsa76	3010	0.7129568	0.4524571	0	1.0000000				
ca1	ca1	3010	0.3179402	0.4657535	0	1.0000000				

Part 2. LS and IV Estimation Using SAS

2.1. Estimate the parameters of Equation (1) using LS:

The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: wage76 wage76

Number of Observations Read 3010

Number of Observations Used 3010

Analysis of Variance

Source	DF		Mean Square	F Value	Pr > F
Model	6	172.16604	28.69434	204.93	<.0001
Error	3003	420.47657	0.14002		
Corrected Total	3009	592.64262			

 Root MSE
 0.37419
 R-Square
 0.2905

 Dependent Mean
 1.65666
 Adj R-Sq
 0.2891

Coeff Var 22.58701

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	0.12848	0.06760	1.90	0.0575
education		1	0.07401	0.00351	21.11	<.0001
exp76	exp76	1	0.08360	0.00665	12.58	<.0001
expsq76	expsq76	1	-0.22409	0.03178	-7.05	<.0001
black	black	1	-0.18963	0.01763	-10.76	<.0001
south76	south76	1	-0.12486	0.01512	-8.26	<.0001
smsa76	smsa76	1	0.16142	0.01557	10.37	<.0001

2.1.1. Interpret \hat{eta}_2

For every additional year of schooling, we would expect wages to increase by 7.4 percent, ceteris paribus.

2.2. Estimate the parameters of Equation (1) using 2SLS in the proc syslin procedure:

The SAS System

Modelwage76Dependent Variablewage76Labelwage76

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	6	110.8566	18.47610	120.83	<.0001
Error	3003	459.1862	0.152909		
Corrected Total	3009	592.6426			

 Root MSE
 0.39104
 R-Square
 0.19447

 Dependent Mean
 1.65666
 Adj R-Sq
 0.19286

Coeff Var 23.60382

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variable Label
Intercept	1	-0.85249	0.829348	-1.03	0.3041	Intercept
education	1	0.132295	0.049234	2.69	0.0072	
exp76	1	0.107501	0.021301	5.05	<.0001	exp76
expsq76	1	-0.22841	0.033414	-6.84	<.0001	expsq76
black	1	-0.13080	0.052873	-2.47	0.0134	black
south76	1	-0.10490	0.023073	-4.55	<.0001	south76
smsa76	1	0.131321	0.030130	4.36	<.0001	smsa76

2.2.1 Compare the LS and 2SLS (from proc syslin) estimates of β_2 and their corresponding standard errors.

	LS	2SLS
Parameter	0.07401	0.132295
Standard error	0.00351	0.049234

Interpret:

We see that using LS, we estimate that for every additional year of schooling, we would expect wages to increase by 7.4 percent, ceteris paribus. However, when we use 2SLS, we estimate that for every additional year of schooling, we would expect wages to increase by 13.2295 percent, ceteris paribus. The spread of our data is narrower with LS with a smaller standard error (0.00351) while 2SLS has a larger standard error (0.049234).

2.3. Estimate the parameters of Equation (1) using 2SLS in the proc model procedure:

The SAS System

The MODEL Procedure

Nonlinear 2SLS Summary of Residual Errors

Equation	DF Model	DF Error	SSE	MSE	Root MSE	R-Square	Adj R-Sq	Label
wage76	7	3003	459.2	0.1529	0.3910	0.2252	0.2236	wage76

Nonlinear 2SLS Parameter Estimates

Parameter	Estimate	Approx Std Err	t Value	$\begin{array}{c} Approx \\ Pr > t \end{array}$
bo	-0.85249	0.8293	-1.03	0.3041
b 1	0.132295	0.0492	2.69	0.0072
b2	0.107501	0.0213	5.05	<.0001
b 3	-0.22841	0.0334	-6.84	<.0001
b 4	-0.1308	0.0529	-2.47	0.0134
b 5	-0.1049	0.0231	-4.55	<.0001
b6	0.131321	0.0301	4.36	<.0001

Number of Observations Statistics for System
Used 3010 Objective 1.19E-27
Missing 0 Objective*N 3.582E-24

2.3.1 Compare the 2SLS proc syslin and 2SLS proc model estimates of β_2 .

	2SLS (proc syslin)	2SLS (proc model)
Parameter	0.132295	0.132295
Standard error	0.0492	0.0492

Interpret:

Using 2SLS proc sylin and proc model yields us the same exact results for the parameter estimate and standard errors for the variable education.

Part 3. Estimate the parameters of Equation (1) using the 2 step 2SLS procedure described in class (Run two separate regressions).

First stage regression:

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: education

Number of Observations Read 3010

Number of Observations Used 3010

Analysis of Variance

Source	DF	Sum of Squares		F Value	Pr > F
Model	6	10230	1705.08072	451.87	<.0001
Error	3003	11332	3.77343		
Corrected Total	3009	21562			

 Root MSE
 1.94253
 R-Square
 0.4745

 Dependent Mean
 13.26346
 Adj R-Sq
 0.4734

 Coeff Var
 14.64574

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	16.99650	0.17608	96.53	<.0001
ca1	ca1	1	-0.33732	0.08250	-4.09	<.0001
exp76	exp76	1	-0.41001	0.03369	-12.17	<.0001
expsq76	expsq76	1	0.07323	0.16499	0.44	0.6572
black	black	1	-1.00614	0.08965	-11.22	<.0001
south76	south76	1	-0.29146	0.07922	-3.68	0.0002
smsa76	smsa76	1	0.40388	0.08489	4.76	<.0001

The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: wage76 wage76

Number of Observations Read 3010

Number of Observations Used 3010

Analysis of Variance

Source	DF		Mean Square	F Value	Pr > F
Model	6	110.85657	18.47610	115.16	<.0001
Error	3003	481.78604	0.16043		
Corrected Total	3009	592.64262			

 Root MSE
 0.40054
 R-Square
 0.1871

 Dependent Mean
 1.65666
 Adj R-Sq
 0.1854

Coeff Var 24.17770

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	-0.85249	0.84951	-1.00	0.3157
eduhat	Predicted Value of education	1	0.13229	0.05043	2.62	0.0088
exp76	exp76	1	0.10750	0.02182	4.93	<.0001
expsq76	expsq76	1	-0.22841	0.03423	-6.67	<.0001
black	black	1	-0.13080	0.05416	-2.42	0.0158
south76	south76	1	-0.10490	0.02363	-4.44	<.0001
smsa76	smsa76	1	0.13132	0.03086	4.26	<.0001

^{3.1.} How do the parameter estimates obtained in the second stage compare to those obtained using proc syslin and proc model?

The parameter estimates for education obtained in the second stage was 0.13229, which is identical to the values obtained from the proc sylin and proc model.

3.2. How do the standard errors of the coefficients obtained in the second stage compare to those obtained using proc syslin and proc model? If they are different, which ones would you prefer?

Using the standard error from the first stage and comparing this to the proc sylin and proc model, our value from the first stage (0.0825) compared to the proc sylin and proc model (0.0492) is greater. Therefore, all else equal, we would prefer to use the model with smaller standard errors, that being the proc sylin and proc model.

3.3. Use proc model to perform the Hausman test (the degrees of freedom reported by SAS are incorrect).

```
/*IV(2SLS) in proc model with Hausman test*/
proc model data=CARD1;
endogenous education;
instruments cal exp76 expsq76 black south76 smsa76;
parms bo b1 b2 b3 b4 b5 b6;
wage76 = bo+ b1*education + b2*exp76 + b3*expsq76 + b4*black + b5*south76 +
b6*smsa76;
      fit wage76 / ols 2sls hausman ;
run:
/*Be careful: Automatic Hausman test has incorrect degrees of freedom*/
data chisq;
df = 1;
p \text{ val} = 1 - probchi(1.41, df);
chi1 90 = cinv(.90, df);
chi1^{-}95 = cinv(.95, df);
chi1 99 = cinv(.99, df);
run;
```

3.4. What are the conclusions of the test?

Hausman's Specification Test Results

Efficient under H0 Consistent under H1 DF Statistic Pr > ChiSq OLS 2SLS 7 1.41 0.9853

The SAS System

df	p_val	chi1_90	chi1_95	chi1_99
1	0.23506	2.70554	3.84146	6.63490

 H_0 : $plim(b_{iv}-b_{LS})=0$

 H_A : plim(b_{iv} - b_{LS}) $\neq 0$

Since 1.41<2.70554 at even a 90% level, we fail to reject the null hypothesis and conclude there is no evidence of endogeneity.

Part 4. Overidentification tests.

4.1. Use proc syslin

Report and interpret the result of the over-identification test

The over-identification test can only be used if the number of instrumental variables is greater than the number of endogenous variables. Here, we only have one instrumental variable proximity to nearby 4-year college (ca1) as an instrument for one endogenous variable education.

Part 5. Detection of "weakness" in instrumental variables.

5.1. Conduct appropriate analyses to evaluate the weakness of the instruments. Provide conclusions.

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: education

Number of Observations Read 3010

Number of Observations Used 3010

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	6	10230	1705.08072	451.87	<.0001
Error	3003	11332	3.77343		
Corrected Total	3009	21562			

Root MSE 1.94253 **R-Square** 0.4745 **Dependent Mean** 13.26346 **Adj R-Sq** 0.4734

Coeff Var 14.64574

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	16.99650	0.17608	96.53	<.0001
ca1	ca1	1	-0.33732	0.08250	-4.09	<.0001
exp76	exp76	1	-0.41001	0.03369	-12.17	<.0001
expsq76	expsq76	1	0.07323	0.16499	0.44	0.6572
black	black	1	-1.00614	0.08965	-11.22	<.0001
south76	south76	1	-0.29146	0.07922	-3.68	0.0002
smsa76	smsa76	1	0.40388	0.08489	4.76	<.0001

H₀: cal is not a weak instrument H_A: cal is a weak instrument

Since we only have one instrumental variable, we can square the t-value to get the F-value for ca1: F-value_{ca1} = $(t\text{-value}_{ca1})^2 = (-4.09)^2 = 16.7281$. Because the F-value_{ca1} (16.7281) > 10, our instrumental variable ca1 on the proximity of nearby 4-year colleges is not a weak instrumental variable.

Part 6. Use of the control function approach to control for endogeneity

6.1. Compare the 2SLS and control function approach estimates of β_2 and their corresponding standard errors.

The SAS System		

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation	DF Model	DF Error	SSE	MSE	Root MSE	R-Square	Adj R-Sq	Label
wage76	8	3002	420.3	0.1400	0.3742	0.2909	0.2892	wage76

Nonlinear OLS Parameter Estimates

Parameter	Estimate	Approx Std Err	t Value	$\begin{array}{c} Approx \\ Pr > t \end{array}$
bo	-0.85249	0.7935	-1.07	0.2828

Nonlinear OLS Parameter Estimates

Parameter	Estimate	Approx Std Err	t Value	$\begin{array}{c} Approx \\ Pr \geq t \end{array}$
b 1	0.132295	0.0471	2.81	0.0050
b2	0.107501	0.0204	5.27	<.0001
b 3	-0.22841	0.0320	-7.14	<.0001
b4	-0.1308	0.0506	-2.59	0.0098
b 5	-0.1049	0.0221	-4.75	<.0001
b 6	0.131321	0.0288	4.56	<.0001
b 7	-0.05861	0.0472	-1.24	0.2148

Number of ObservationsStatistics for SystemUsed3010Objective0.1396

Missing 0 Objective*N 420.2611

	Control function	2SLS
Parameter	0.132295	0.132295
Standard error	0.0471	0.0492

Interpret:

The estimated parameter of education on wages is the same, however, the estimated standard error in the control function approach is smaller than the 2SLS approach. Theoretically this makes sense, since the control function approach attempts to "clean up" possible correlation between our endogenous variables and the unobservables in our error term.

6.2. Report and interpret the results of the Hausman test for endogeneity.

The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: wage76 wage76

Number of Observations Read 3010

Number of Observations Used 3010

Analysis of Variance

Source	DF		Mean Square	F Value	Pr > F
Model	7	172.38154	24.62593	175.91	<.0001
Error	3002	420.26108	0.13999		
Corrected Total	3009	592.64262			

 Root MSE
 0.37416
 R-Square
 0.2909

 Dependent Mean
 1.65666
 Adj R-Sq
 0.2892

 Coeff Var
 22.58498

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	-0.85249	0.79355	-1.07	0.2828
education		1	0.13229	0.04711	2.81	0.0050
exp76	exp76	1	0.10750	0.02038	5.27	<.0001
expsq76	expsq76	1	-0.22841	0.03197	-7.14	<.0001
black	black	1	-0.13080	0.05059	-2.59	0.0098
south76	south76	1	-0.10490	0.02208	-4.75	<.0001
smsa76	smsa76	1	0.13132	0.02883	4.56	<.0001
ehat1	Residual	1	-0.05861	0.04724	-1.24	0.2148

 H_0 : rho = 0

 H_A : rho $\neq 0$

Since the t-value for rho is -1.24 and the p-value is 0.2148, it is not significant at a α =0.05 level. We fail to reject the null hypothesis and conclude that there is no evidence of endogeneity.

SAS code for the lab

/*Data from Card, D. 1995. "Using Geographic Variation in College Proximity to Estimate The Return to Schooling." NBER Working Paper No. 4483. http://econweb.tamu.edu/gan/econometrics1/w4483.pdf */

/*Importing data from Excel file*/

proc import

datafile="C:\ccarpio\Documents\Teaching TTU\AAEC6311\data\CARD.xls"
out = CARD replace;

```
sheet = "sheet1";
getnames=yes;
run;
/*Variables to be used in estimation*/
           %If
                  If lived in SMSA in 1976 (r0437515=1,2)
            %If
                  If any 4-year college nearby (r0004000!=4)
                  If lived in South in 1976 (r0437511=1)
            %1f
south76
waqe76
           %If
                  '76 log(Wage)
exp76
            %If
                  '76 experience, (10 + age66) - grade76 - 6)
           %If
expsq76
                 '76 experience, exp76 ^2/100 */
/*Cleaning up the data*/
data CARD1;
set CARD;
if wage76="." then delete;
if grade76="." then delete;
/*Delete observations that do not have interview month*/
if intmo66=-999 then delete;
education = grade76;
run;
/*Basic summary statistics*/
proc means data=CARD1;
var wage76 black age1415 age1617 grade76 education exp76 expsq76 black
south76 smsa76 cal;
run;
/*Basic OLS regression*/
proc reg data=CARD1;
model wage76 = education exp76 expsq76 black south76 smsa76;
output out=CARD2 predicted=yhat residual=ehat; /*Save residuals and
predicted values in original dataset*/
run;
quit;
 /*IV(2SLS) in proc syslin*/
proc syslin data=CARD1 2sls; /*Note: you could use ols here too*/
endogenous education;
instruments cal exp76 expsq76 black south76 smsa76;
model wage76 = education exp76 expsq76 black south76 smsa76/ overid;
run;
/*IV(2SLS) in proc model*/
proc model data=CARD1;
endogenous wage76 education;
instruments cal exp76 expsq76 black south76 smsa76;
parms bo b1 b2 b3 b4 b5 b6;
wage76 = bo+ b1*education + b2*exp76 + b3*expsq76 + b4*black + b5*south76 +
b6*smsa76;
      fit wage76 / 2sls ; /*Note: you could use ols here too*/
run;
```

STATA Appendix

Importing and managing data:

import excel "C:\ccarpio\Documents\Teaching
TTU\AAEC6311\data\CARD.xls", sheet("Sheet1") firstrow

drop if if intmo66=-999

Summary statistics:

summarize wage76 black smsa76 south76 exp76 expsq76 grade76 ca1

Max	Min	Std. Dev.	Mean	Obs	Variable
3.1797 1 1 1 25	0 0 0 0	.4441405 .4463393 .499977 .4900326 4.215668	1.657025 .274567 .4915353 .4003299 8.949903	3029 5139 5139 3637 3613	wage76 black smsa76 south76 exp76
6.25 18	0 0 0	.8789053 2.749741 .4628501	.978677 13.2253 .3107608	3613 3613 5139	expsq76 grade76 ca1

Basic OLS:

regress wage76 black smsa76 south76 exp76 expsq76

Source	ss	df	MS		Number of ob F(5, 3004)	
Model Residual	109.752506 482.89011 592.642616	3004 .16	9505012 0749038 		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.1852
 wage76	Coef.	Std. Err.	t	P> t	[95% Conf.	
black smsa76 south76 exp76 expsq76 _cons	2643379 .1996459 1502084 .0532429 2186054 1.374109	.0185019 .0165732 .0161476 .0069544 .0340546	-14.29 12.05 -9.30 7.66 -6.42 38.86	0.000 0.000 0.000 0.000 0.000	3006156 .1671499 1818698 .0396071 2853781 1.30477	2280602 .2321419 1185469 .0668787 1518327 1.443448

ivregress 2sls wage76 black smsa76 south76 exp76 expsq76 (grade76 = ca1), first

First-stage regressions

Number of obs = 3010 F(6, 3003) = 451.87 Prob > F = 0.0000 R-squared = 0.4745 Adj R-squared = 0.4734 Root MSE = 1.9425

grade76		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
black smsa76 south76 exp76 expsq76 ca1	+-	-1.006138 .4038769 291464 4100081 .0732287 3373208	.0896454 .0848872 .0792247 .0336939 .1649946 .0825004 .1760758	-11.22 4.76 -3.68 -12.17 0.44 -4.09 96.53	0.000 0.000 0.000 0.000 0.657 0.000	-1.181911 .2374339 4468042 4760735 2502852 4990839 16.65125	8303656 .5703199 1361238 3439427 .3967426 1755577 17.34174
	-	10.5505	.1700750	50.55	0.000	10.03123	17.54174

Instrumental variables (2SLS) regression Number of obs =

Wald chi2(6) = 726.67 Prob > chi2 = 0.0000 R-squared = 0.2252 Root MSE = .39058

 wage76 |
 Coef.
 Std. Err.
 z
 P>|z|
 [95% Conf. Interval]

 grade76 |
 .1322948
 .0491764
 2.69
 0.007
 .0359109
 .2286788

 black |
 -.130795
 .0528112
 -2.48
 0.013
 -.2343031
 -.0272869

 smsa76 |
 .1313207
 .030095
 4.36
 0.000
 .0723355
 .1903059

 south76 |
 -.1048971
 .0230465
 -4.55
 0.000
 -.1500673
 -.0597269

 exp76 |
 .1075006
 .021276
 5.05
 0.000
 .0658004
 .1492008

 expsq76 |
 -.2284089
 .0333747
 -6.84
 0.000
 -.2938221
 -.1629957

 _cons |
 -.8524886
 .8283829
 -1.03
 0.303
 -2.476089
 .771112

Instrumented: grade76

Instruments: black smsa76 south76 exp76 expsq76 cal

estat endogenous

Tests of endogeneity
Ho: variables are exogenous

Durbin (score) chi2(1) = 1.54263 (p = 0.2142) Wu-Hausman F(1,3002) = 1.53932 (p = 0.2148)

estat firststage

First-stage regression summary statistics

 Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	F(1,3003)	Prob > F
grade76	0.4745	0.4734	0.0055	16.7176	0.0000

Minimum eigenvalue statistic = 16.7176

Critical Values Ho: Instruments are weak	<pre># of endogenous regressors: # of excluded instruments:</pre>	1
2SLS relative bias	5% 10% 20% 30% (not available)	
2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test	10% 15% 20% 25% 16.38 8.96 6.66 5.53 16.38 8.96 6.66 5.53	

<mark>estat overid</mark>

no overidentifying restrictions

Further references about post-estimation tests

http://www.stata.com/manuals13/rivregresspostestimation.pdf