SpatialData: an open and universal data framework for spatial omics

Huan Xu

Single-cell biology: genomics & microscopy

Single-cell biology: genomics & microscopy

Spatial transcriptomics timeline

Spatial multi-omics approaches

Spatial components of molecular tissue biology

Spatial omics data elements

Variable of Table of Lance	Deeder forestier	Dete	D		
Vendor/Technology	Reader function		SpatialData elements		
		Transcripts locations	Points		
		Raster Images	mages		
		Segmentation masks	Labels		
NanoString CosMx	cosmx	Gene expression	Table		
		Fluorescent marker intensity	Table		
		Metadata	Table		
		Transcripts locations	Points		
		Raster Images	Images		
10x Genomics Xenium	vonium	Cell segmentation	Shapes		
TOX Genomics Aemain	xeriiuiii	Nuclei Segmentation	Shapes		
		Gene expression	Table		
		Metadata	Table		
		Raster Images	Images		
10x Genomics Visium	visium	Circular regions	Shapes		
TOX Genomics visium	VISIUITI	Gene expression	Table		
		Metadata	Table		
		Raster Images	Images		
CyCIF (MCMICRO	mcmicro	Segmentation masks	Labels		
output)	memicro	Protein expression	Table		
		Metadata Table	Table		
		Raster Images	Images		
Imagine Mass	atainha al-	Segmentation masks	Labels		
Cytometry (Steinbock output)	steinbock Protein expression Table	Table			
. ,		Metadata	Table		

Analytical challenges of Multi-omics spatial data

1. Integration of large image data

--> Lazy loading the required details

2. Spatial alignment of multimodal spatial omics data

--> Data transformation, Common coordinate system

3. Cross-modality aggregation

--> Uniform interface for aggregating all data types

4. Interactive annotation

--> Interactive digital viewer/analyzer

Existing spatial multi-omics tools

				_	-4											441	
				D	ata Type	S						Operations			PIC	otting	
Method	Raster images		Multiscale raster	Polygons	Regular shapes	Points	Features matrix	Annotation matrix	Graphs	Points aggregation	Geometry intersection	Transforms	Coordinate systems	Interactive annotation		Interactive Plotting	Language
Voyager	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	No	R
SpatialExperiment	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	No	R
Giotto object	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Partial	No	No	No	No	Yes	Yes	R
Squidpy AnnData	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	Python
SpatialData	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Python
7																	

Existing spatial omics tools

				D	ata Type	s						Operations			Ple	otting	
Method	Raster images	Raster labels	Multiscale raster	Polygons	Regular shapes	Points	Features matrix	Annotation matrix	Graphs	Points aggregation	Geometry intersection	Transforms	Coordinate systems	Interactive annotation		Interactive Plotting	Language
Voyager	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	No	R
SpatialExperiment	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	No	R
Giotto object	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Partial	No	No	No	No	Yes	Yes	R
Squidpy AnnData	Ves	Ves	No	No	Ves	No	Vas	Ves	Ves	No	No	No	No	Ves	Ves	Ves	Python
SpatialData	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Python

scverse

Foundational tools for single-cell omics data analysis

Zulip

GitHub

Discourse

Twitter

YouTube

scanpy

Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It includes preprocessing, visualization, clustering, trajectory inference and differential expression testing. The Python-based implementation efficiently deals with datasets of more than one million cells.

GitHub Documentation and tutorials PyPI Conda

muon

muon is a Python framework for multimodal omics analysis. While there are many features that muon brings to the table, there are three key areas that its functionality is focused on.

Documentation

Tutorials PyPI Website

squidpy

Squidpy is a tool for the analysis and visualization of spatial molecular data. It builds on top of scanpy and anndata, from which it inherits modularity and scalability. It provides analysis tools that leverages the spatial coordinates of the data, as well as tissue images if available.

Documentation and tutorials

scvi-tools

scvi-tools is a library for developing and deploying machine learning models based on PyTorch and AnnData. With an emphasis on probablistic models, scvi-tools steamlines the development process via training, data management, and user interface abstractions. scvi-tools also contains easy-to-use implementations of more than 14 state-of-the-art probabilistic models in the field.

Documentation and tutorials PyPI Website

anndata

AnnData is a Python package for handling annotated data matrices in memory and on disk, positioned between pandas and xarray. anndata offers a broad range of computationally efficient features including, among others, sparse data support, lazy operations, and a PyTorch interface.

GitHub Documentation PyPI Conda

mudata

MuData is a format for annotated multimodal datasets where each modality is represented by an AnnData object. MuData's reference implementation is in Python, and the cross-language functionality is achieved via HDF5-based .h5mu files with libraries in R and Julia.

GitHub Documentation PyPI Conda Muon.jl

spatialdata

SpatialData is a data framework that comprises a FAIR storage format and a collection of python libraries for performant access, alignment, and processing of uni- and multi-modal spatial omics datasets. This repository contains the core spatialdata library. See the links below to learn more about other packages in the SpatialData ecosystem.

GitHub Documentation PyPI spatialdata-io

SpatialData Framework §

Generate new datasets for exploration

Integrative analysis of breast cancer spatial data:

H&E, Xenium and Visium

Vendor/Technology	Reader function	Data	SpatialData elements		
		Transcripts locations	Points		
		Raster Images	Images		
		Segmentation masks	Labels		
NanoString CosMx	cosmx	Gene expression	Table		
		Fluorescent marker intensity	Table		
		Metadata	Table		
		Transcripts locations	Points		
		Raster Images	Images		
10x Genomics Xenium	venium	Cell segmentation	Shapes		
TOX GENOTINGS METHALIT	Xemum	Nuclei Segmentation	Shapes		
		Gene expression	Table		
		Metadata	Table		
		Raster Images	Images		
10x Genomics Visium	visium	Circular regions	Shapes		
TOX GENOTINGS VISIGITI	Visium	Gene expression	Table		
		Metadata	Table		
		Raster Images	Images		
CyCIF (MCMICRO	mcmicro	Segmentation masks	Labels		
output)	memicro	Protein expression	Table		
		Metadata	Table		
		Raster Images	Images		
Imagine Mass Cytometry (Steinbock	steinbock	Segmentation masks	Labels		
output)	Stellbock	Protein expression	Table		
-		Metadata	Table		

SpatialData specifications

- Points
- Shapes (polygons)
- Table

NGFF Specifications

- (Multiscale) Images
- (Multiscale) Labels
- Coordinate systems and transformations

spatialdata.zarr on-disk format

- Images
- (Multiscale) Image sample 1
- (Multiscale) Image sample 2
- (Multiscale) Image sample ...
- Labels
- (Multiscale) Labels sample 1
- (Multiscale) Labels sample 2
- (Multiscale) Labels sample ...
- Shapes
- Shapes sample 1
- Shapes sample 2
- Shapes sample ...
- Points
- Points sample 1
- Points sample 2 Parquet table
- Points sample ...
- Table
- Table

→ Zarr array (AnnData)

→ Zarr array (OME-NGFF)

1: -omics layer alignment

- Set python env
- Load libraries
- Prepare Xenium raw data into Zarr data
- Read Zarr data in Napari

Napari is available in Orion! Access through Thinlinc

- Add landmarks in different image layers
- Affine similarity transformation
- Align the –omics images layers
 - Align the rest of the Spatial Elements
- Save back as Zarr data (lightweight)

2: Data query

Napari- interactive query

Jupyter notebook query

3: Aggregate signals across spatial layers

Aligned multi-omics layers

- Select ROIs (aggregate shapes by shapes)
- Aggregate Spatial Elements
- Annotation layers, benchmarking
- Determine major subclones (Visium data, CopyKat)
- Xenium sc Annotation Scanpy label transfer
- Visium sc-deconvolution Cell2location

4: Spatial data analysis & visualization

UMAP

Connectivity

Co-co-ocurrance prob

Many more...

5: Deep-learning and predictions of spatial -omics data

Additional aligned modality training data improves annotation accuracy

6: Others: Combing multiple spatial datasets

6: Others: Cell-cell communication

Ecosystem packages maintained by scverse community

Package	Description
CellOracle	A computational tool that integrates single-cell transcriptome and epigenome profiles to infer gene regulatory networks (GRNs), critical regulators of cell identity.
CellRank	CellRank is a toolkit to uncover cellular dynamics based on Markov state modeling of single-cell data. It contains two main modules - kernels compute cell-cell transition probabilities and estimators generate hypothesis based on these.
Cell_BLAST	Cell BLAST is a cell querying tool for single-cell transcriptomics data.
CellphoneDB	CellphoneDB is a publicly available repository of HUMAN curated receptors, ligands and their interactions paired with a tool to interrogate your own single-cell transcriptomics data (or even bulk transcriptomics data if your samples represent pure populations!). A distinctive feature of CellphoneDB is that the subunit architecture of either ligands and receptors is taken into account, representing heteromeric complexes accurately. This is crucial, as cell communication relies on multi-subunit protein complexes that go beyond the binary representation used in most databases and studies. CellphoneDB also incorporates biosynthetic pathways in which we use the last representative enzyme as a proxy of ligand abundance, by doing so, we include interactions involving non-peptidic molecules. CellphoneDB includes only manually curated and reviewed molecular interactions with evidenced role in cellular communication.
Cirrocumulus	Cirrocumulus is an interactive visualization tool for large-scale single-cell genomics data.
DoubletDetection	DoubletDetection is a Python3 package to detect doublets (technical errors) in single-cell RNA-seq count matrices.

Input CellphoneDB database annotated scRNAseq per celltype DEGs cell types pre-computed by the user Approaches CellphoneDB tool method 1 simple analysis method 2 statistical_analysis method 3 DEG_analysis Null distribution of the mean significant DEGs Random shuffle (R1-L1) in cluster1-cluster2 True observation RELEVANT (1) = all genes expressed & at least one gene is DEG Results Important - interpreting results relevant.txt cell pairs means.txt cell pairs significant DEGs

Summary

SpatialData framework:

- Represents and manipulates multi-omics spatial data formats
- Aligns datasets across modalities using coordinate transformations
- Enables spatial querying, aggregation, and annotation
- Integrates with deep learning (PyTorch) and analysis (scverse) ecosystems, which allows in depth interrogation of the –omics spatial data