LECTURER: TAI LE QUY

MACHINE LEARNING – SUPERVISED LEARNING

Introduction to Machine Learning	1
Regression	2
Basic Classification Techniques	3
Support Vector Machines	4
Decision & Regression Trees	5

REGRESSION

STUDY GOALS

- understand the concept of regression and when to use it.
- evaluate a regression model's performance.
- utilize regularization techniques and understand where they are implemented.
- apply different well-known regression models with the use of Python.

- 1. How do regression models work, and what is the math behind them?
- 2. How can we evaluate the performance of a regression model?
- 3. How can we reduce bias and variance in regression models?
- 4. How can we apply a regression model with Python?

REGRESSION

Important Regression Terms and Their Synonyms			
Term	Synonyms		
Target variable (Y)	Label, y variable, dependent variable		
Input (X)	X variables, independent variables, pre- dictors, features		
Coefficient (ω_i)	Weight, slope, regression coefficient		
(y-axis) Intercept (ω_0)	Bias		
Loss function	Cost function, target function, objective function, error function		

Weight Slope Regression Coefficient

$$y = \dots \omega * x$$

Weight Slope Regression Coefficient

$$y = \omega_0 + \omega * x$$

Weight Slope Regression Coefficient

$$y = \omega_0 + \omega * x + \varepsilon$$
Random Error

Mean absolute error (MAE): absolute difference between all predictions and the actual values

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

- Mean squared error (MSE): The deviations between the actual and the predicted values are taken to the square.
- Root mean square error
 (RMSE): the result is
 telegraphed in the unit of the
 label being predicted

$$MSE \ = \ \frac{1}{n} \sum_{i \, = \, 1}^{n} \left(\ y_{i} - \widehat{y}_{i} \right)^{2} \quad RMSE \ = \ \sqrt{\frac{1}{n} \sum_{i \, = \, 1}^{n} \left(\ y_{i} - \widehat{y}_{i} \right)^{2}}$$

REGRESSION

LASSO AND RIDGE REGULARIZATION

$$y = \omega_0 + \sum_{i=1}^n \omega_i x_i + \varepsilon$$

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

LASSO AND RIDGE REGULARIZATION

$$y = \omega_0 + \sum_{i=1}^n \omega_i x_i + \varepsilon$$

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

LASSO AND RIDGE REGULARIZATION

Source of image: https://learn.iu.org/

LASSO REGRESSION

- Lasso (least absolute shrinkage and selection operator)
 - It differs from ridge regression only in that the L2 norm is exchanged for the L1 norm
- The loss function:

$$RSS + \alpha \sum_{i=1}^{n} |\omega_{i}|$$

ELASTIC NET

- Elastic net: selects important coefficients, as does lasso regression, and is effective in handling correlated features, as is ridge regression.
 - r=0: lasso regression
 - r=1: ridge regression

$$\alpha \sum_{i=1}^{n} \left(r\omega_i^2 + (1-r)|\omega_i| \right)$$

REGRESSION

- Generalized linear models (GLMs) are a category of expanded linear regression models.
- General models are developed by relaxing the assumptions of linear models.
- GLMs all essentially comprise the following three components:
 - 1. A linear predictor $\eta_i = \omega_0 + \omega_1 \ x_{1i} + ... + \omega_p \ x_{pi}$
 - 2. A probability distribution that generates the target variable Y
 - 3. A monotone differentiable **link function** $g(\mu_i) = \eta_i$ describing how the mean depends on the linear predictor η_i .

Some Probability Distributions and Their Link Functions				
Distribution	Use	Notation	Link function	
Gaussian	Linear repose	$N(\mu,\!\!\sigma 2)$	"Identity": μ	
Poisson	Counts of events	$N(\mu)$	$Log(\mu)$	
Bernoulli	Outcome of sin- gle yes/no occurren- ces	Bern(p)	$Logit(\mu)$	
Binomial	Count of yes occurrences out of n yes/no events	$Bin(n,\mu)/n$	$Logit(\mu)$	

Poisson regression

$$\begin{array}{l} ln \ \eta_i = \omega_0 + \omega_1 x_{1i} \\ y_i \hspace{-0.5mm} \sim \hspace{-0.5mm} Poisson(\eta_i) \end{array}$$

REGRESSION

Logistic function

$$p(X) = \frac{e^{\omega_0 + \omega_1 X}}{1 + e^{\omega_0 + \omega_1 X}}$$

Multiple features

$$p\left(X\right) = \frac{\mathrm{e}^{\omega_0 + \omega_1 X_1 + \ldots + \omega_p X_p}}{1 + \mathrm{e}^{\omega_0 + \omega_1 X_1 + \ldots + \omega_p X_p}}$$

- Model Training via Maximum Likelihood
 - Estimates for our regression coefficients ω such that the predicted probability $\mathbf{p}(\mathbf{X})$ for each observation matches the observed output value Y of the observation as closely as possible

$$l(\omega_0,\omega_1) = \prod_{i\colon y_i=1} p(X_i) \prod_{i'\colon y'_i=0} [1-p(x'_i)]$$

LOGISTIC REGRESSION - EXAMPLE

STUDY GOALS REVIEW

- understand the concept of regression and when to use it.
- evaluate a regression model's performance.
- utilize regularization techniques and understand where they are implemented.
- apply different well-known regression models with the use of Python.

UNIT 2

TRANSFER TASK

Stock market prediction: Case study

- Stock market prediction is the act of trying to determine the future value of a company stock or other financial instrument traded on an exchange. The successful prediction of a **stock's future price** could yield significant profit.
- Create a rough project plan to achieve this goal. For each phase of this plan, explain how regression techniques might be applied

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

© 2022 IU Internationale Hochschule GmbH

This content is protected by copyright. All rights reserved.

This content may not be reproduced and/or electronically edited, duplicated, or distributed in any kind of form without written permission by the IU Internationale Hochschule GmbH.