CS21 Decidability and Tractability

Lecture 3 January 10, 2014

January 10, 2014

CS21 Lecture 3

Outline

- Regular Expressions
- FA and Regular Expressions
- Pumping Lemma

January 10, 2014

CS21 Lecture 3

Next...

- Describe the set of languages that can be built up from:
 - unions
 - concatenations
 - star operations
- Called "patterns" or regular expressions
- Theorem: a language L is recognized by a FA if and only if L is described by a regular expression.

January 10, 2014

CS21 Lecture 3

Regular expressions

- · R is a regular expression if R is
 - a, for some a $\in \Sigma$
 - -ε, the empty string
 - -Ø, the empty set
 - $-(R_1 \cup R_2)$, where R_1 and R_2 are reg. exprs.
 - $-(R_1 \circ R_2)$, where R_1 and R_2 are reg. exprs.
 - $-(R_1^*)$, where R_1 is a regular expression

A reg. expression R describes the language L(R).

January 10, 2014

CS21 Lecture 3

Regular expressions

```
• example: R = (0 \cup 1)
```

– if $\Sigma = \{0,1\}$ then use " Σ " as shorthand for R

• example: $R = 0 \circ \Sigma^*$

– shorthand: omit " \circ " R = $0\Sigma^*$

– precedence: *, then $^{\circ}$, then $^{\cup}$, unless override

by parentheses

– in example R = $0(\Sigma^*)$, not R = $(0\Sigma)^*$

January 10, 2014

CS21 Lecture 3

Some examples

alphabet $\Sigma = \{0,1\}$

{w : w has at least one 1}
 = Σ*1Σ*

• {w : w starts and ends with same symbol} = $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1$

• $\{w : |w| \le 5\}$

 $= (\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)$

• {w : every 3^{rd} position of w is 1} = $(1\Sigma\Sigma)^*(\epsilon \cup 1 \cup 1\Sigma)$

January 10, 2014

CS21 Lecture 3

Manipulating regular expressions

- · The empty set and the empty string:
 - $-R \cup \emptyset = R$
 - $-R\epsilon = \epsilon R = R$
 - -RØ = ØR = Ø
 - $-\,\cup$ and ° behave like +, x; Ø, ϵ behave like 0,1
- additional identities:
 - $-R \cup R = R$ (here + and \cup differ)
 - $-(R_1*R_2)*R_1* = (R_1 \cup R_2)*$
 - $-R_1(R_2R_1)^* = (R_1R_2)^*R_1$

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

 <u>Theorem</u>: a language L is recognized by a FA if and only if L is described by a regular expression.

Must prove two directions:

- (⇒) L is recognized by a FA implies L is described by a regular expression
- (⇐) L is described by a regular expression implies L is recognized by a FA.

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

(⇐) L is described by a regular expression implies L is recognized by a FA

Proof: given regular expression R we will build a NFA that recognizes L(R).

then NFA, FA equivalence implies a FA for L(R).

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

- R is a regular expression if R is
 - -a, for some a ∈ Σ

 $-\epsilon$, the empty string

-Ø, the empty set

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

 $-(R_1 \cup R_2)$, where R_1 and R_2 are reg. exprs.

- (R₁ ° R₂), where R₁ and R₂ are reg. exprs.

 $-(R_1^*)$, where R_1 is a regular expression

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

(⇒) L is recognized by a FA implies L is described by a regular expression

Proof: given FA M that recognizes L, we will

- build an equivalent machine "Generalized Nondeterministic Finite Automaton" (GNFA)
- 2. convert the GNFA into a regular expression

January 10, 2014

CS21 Lecture 3

12

Regular expressions and FA

- · GNFA definition:
 - it is a NFA, but may have regular expressions labeling its transitions
 - GNFA accepts string $w \in \Sigma^*$ if can be written $w = w_1 w_2 w_3 ... \ w_k$

where each $w_i \in \Sigma^*$, and there is a path from the start state to an accept state in which the i^{th} transition traversed is labeled with R for which $w_i \in L(R)$

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

- · Recall step 1: build an equivalent GNFA
- Our FA M is a GNFA.
- We will require "normal form" for GNFA to make the proof easier:
 - single accept state q_{accept} that has all possible incoming arrows
 - every state has all possible outgoing arrows;
 exception: start state q₀ has no self-loop

January 10, 2014

13

15

17

CS21 Lecture 3

Regular expressions and FA

converting our FA M into GNFA in normal form:

Regular expressions and FA

- On to step 2: convert the GNFA into a regular expression
 - if normal-form GNFA has two states:

the regular expression R labeling the single transition describes the language recognized by the GNFA

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

- if GNFA has more than 2 states:

- select one "q_{rip}"; delete it; repair transitions so that machine still recognizes same language.
- repeat until only 2 states.

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

- how to repair the transitions:
- for every pair of states qi and qi do

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

– summary:

FA M \rightarrow k-state GNFA \rightarrow (k-1)-state GNFA \rightarrow (k-2)-state GNFA $\rightarrow ... \rightarrow$ 2-state GNFA \rightarrow R

- want to prove that this procedure is correct, i.e. L(R) = language recognized by M
 - FA M equivalent to k-state GNFA

- i-state GNFA equivalent to (i-1)-state GNFA (we will prove...)
- 2-state GFNA equivalent to R

19

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

- Claim: i-state GNFA G equivalent to (i-1)state GNFA G' (obtained by removing q_{rip})
- Proof:
 - · if G accepts string w, then it does so by entering states: $q_0,\,q_1,\,q_2,\,q_3,\,\ldots\,,\,q_{accept}$
 - if none are q_{rip} then G^{\prime} accepts w (see slide)
 - else, break state sequence into runs of q_{rip}:

 $q_0q_1...q_iq_{rip}q_{rip}...q_{rip}q_j...q_{accept}$

- transition from \boldsymbol{q}_i to \boldsymbol{q}_i in \boldsymbol{G}' allows all strings taking G from q_i to q_i using q_{rip} (see slide)
- · thus G' accepts w

January 10, 2014

CS21 Lecture 3 20

Regular expressions and FA

Regular expressions and FA

January 10, 2014 CS21 Lecture 3 22

Regular expressions and FA

- Proof (continued):
 - if G' accepts string w, then every transition from qi to qi traversed in G' corresponds to

either

a transition from qi to qi in G

transitions from q_i to q_j via q_{rip} in G

- · In both cases G accepts w.
- · Conclude: G and G' recognize the same language.

January 10, 2014

CS21 Lecture 3

Regular expressions and FA

- Theorem: a language L is recognized by a FA iff L is described by a regular expr.
- · Languages recognized by a FA are called regular languages.
- Rephrasing what we know so far:
 - regular languages closed under 3 operations
 - NFA recognize exactly the regular languages
 - regular expressions describe exactly the regular languages

January 10, 2014

CS21 Lecture 3

Limits on the power of FA

- · Is every language describable by a sufficiently complex regular expression?
- If someone asks you to design a FA for a language that seems hard, how do you know when to give up?
- · Is this language regular?

{w: w has an equal # of "01" and "10" substrings}

January 10, 2014

CS21 Lecture 3

Limits on the power of FA

- · Intuition:
 - FA can only remember finite amount of information. They cannot count
 - languages that "entail counting" should be non-regular...
- Intuition not enough:

{w : w has an equal # of "01" and "10" substrings}

= $0\Sigma^*0 \cup 1\Sigma^*1$

but {w: w has an equal # of "0" and "1" substrings} is not regular!

January 10, 2014 CS21 Lecture 3

Limits on the power of FA

How do you prove that there is no Finite Automaton recognizing a given language?

January 10, 2014

CS21 Lecture 3

Non-regular languages

Pumping Lemma: Let L be a regular language. There exists an integer p ("pumping length") for which every w ∈ L with $|w| \ge p$ can be written as

$$w = xyz$$
 such that

- 1. for every $i \ge 0$, $xy^iz \in L$, and
- 2. |y| > 0, and
- 3. $|xy| \leq p$.

January 10, 2014

27

CS21 Lecture 3

28

Non-regular languages

- Using the Pumping Lemma to prove L is not regular:
 - assume L is regular
 - then there exists a pumping length p
 - select a string $w \in L$ of length at least p
 - argue that for every way of writing w = xyzthat satisfies (2) and (3) of the Lemma, pumping on y yields a string not in L.
 - contradiction.

January 10 2014

CS21 Lecture 3

Pumping Lemma Examples

- Theorem: $L = \{0^n1^n : n \ge 0\}$ is not regular.
- Proof:
 - let p be the pumping length for L
 - choose $w = 0^p1^p$

w = xyz, with |y| > 0 and $|xy| \le p$.

January 10, 2014

CS21 Lecture 3

5

Pumping Lemma Examples

```
- 3 possibilities:
          w = 0000000000...01111111111...1
          w = \underbrace{000000000...011}_{x}\underbrace{11111}_{y}\underbrace{11...1}_{z}
          \mathbf{w} = 0000000000...01111111111...1
```

- in each case, pumping on y gives a string not in language L.

January 10, 2014

CS21 Lecture 3

31

33

Pumping Lemma Examples

- Theorem: $L = \{w: w \text{ has an equal } \# \text{ of 0s } \}$ and 1s} is not regular.
- Proof:
 - let p be the pumping length for L
 - choose $w = 0^p1^p$

```
w = 000000000...01111111111...1
```

w = xyz, with |y| > 0 and $|xy| \le p$.

January 10, 2014 CS21 Lecture 3

Pumping Lemma Examples

- 3 possibilities:

$$w = \underbrace{0000000000...01111111111...1}_{x \ y}$$

$$w = \underbrace{0000000000...011111111111...1}_{x \ y}$$

$$w = \underbrace{0000000000...011111111111...1}_{y \ y}$$

- first 2 cases, pumping on y gives a string not in language L; 3rd case a problem!

January 10, 2014

CS21 Lecture 3

Pumping Lemma Examples

- recall condition 3: $|xy| \le p$
- since $w = 0^p1^p$ we know more about how it can be divided, and this case cannot arise:

$$W = \underbrace{000000000...01}_{X} \underbrace{1111111111...1}_{Y}$$

- so we do get a contradiction.
- conclude that L is not regular.

January 10, 2014

CS21 Lecture 3

34