Name:	
-------	--

Roll Number:_____

Quiz-3

Max. Time: 20 min Max. Points: 20

Note: Solve all parts. Limit your written responses to the provided space.

- Q.1. [8] Choose by putting a check mark on the most appropriate option. Note: No cutting/overwriting is allowed.
- i. Every linear transformation is a matrix transformation.
- (A) True (B) False
- ii. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ with A as its standard matrix, is onto if and only if the columns of A span \mathbb{R}^m .
- (A) True (B) False
- iii. The columns of the standard matrix for a linear transformation A from \mathbb{R}^n to \mathbb{R}^m are not the images of the of the columns of $n \times n$ identity matrix I.
- (A) True (B) False
- iv. When two linear transformations are performed one after another, the combined effect will always be linear.
- (A) True (B) False
- v. If A is a 2×3 matrix representing a linear transformation T, then T cannot map \mathbb{R}^3 onto \mathbb{R}^2 .
- (A) True (B) False
- vi. The codomain of the transformation $x \mapsto Ax$ is the set of all linear combinations of the columns of A.
- (A) True (B) False
- vii. The transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector **x** in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
- (A) True (B) False
- viii. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and \mathbf{c} is in \mathbb{R}^m , then whether \mathbf{c} is in the range of T is a uniqueness question.
- (A) True (B) False

Q.2. [7+5]

a) For the following transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$, check if the given vector **b** is in its range.

$$\mathbf{b} = \begin{bmatrix} -1\\1\\0 \end{bmatrix} A = \begin{bmatrix} 1 & -4 & 7 & -5\\0 & 1 & -4 & 3\\2 & -6 & 6 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -4 & 7 & -5 & -1 \\ 0 & 1 & -4 & 3 & 1 \\ 2 & -6 & 6 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & 7 & -5 & -1 \\ 0 & 1 & -4 & 3 & 1 \\ 0 & 2 & -8 & 6 & 2 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & -4 & 7 & -5 & -1 \\ 0 & \boxed{1} & -4 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The system is consistent, so **b** is in the range of the transformation $\mathbf{x} \mapsto A\mathbf{x}$.

b) Consider $T: \mathbb{R}^2 \to \mathbb{R}^2$. Give the standard matrix for the linear transformation A that first reflects points through the vertical axis x_2 and then rotates points $\frac{\pi}{2}$ radians.

$$\mathbf{e}_1 \to \mathbf{e}_1 \to -\mathbf{e}_2$$
 and $\mathbf{e}_2 \to \mathbf{e}_2 - 2\mathbf{e}_1 \to -\mathbf{e}_1 + 2\mathbf{e}_2$, so $A = \begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix}$

Name:	Roll Number: