II. Priprema za vježbu:

a) Nacrtati blokovsku shemu dinamičkog matematičkog modela razmatranog procesa upravljanog P-regulatorom te izraditi simulacijski model razmatranog procesa u Simulinku. Model donijeti na vježbu.

b) Nacrtati polove i nule prijenosne funkcije procesa u s-ravnini.

Polovi i nule:

```
44 - P = pole(G)

45 - Z = zero(G)

Command Window

P = -15.2452 +83.4635i

-15.2452 -83.4635i

-28.2184 + 0.0000i

Z = -235.8491
```

Naredba pzplot(G) ih crta:

c) Pomoću Hurwitzovog kriterija stabilnosti odrediti područje vrijednosti pojačanja P-regulatora za koje je regulacijski krug stabilan. Prikažite izračun.

Za tri različite vrijednosti pojačanja regulatora $K_R = 0.6 K_{R,kr}$, $K_R = K_{R,kr}$ i $K_R = 1.2 K_{R,kr}$ uradite sljedeće:

1. a) Simulacijom odredite odziv regulacijskog kruga na skokovitu promjenu referentne veličine sile napetosti F_r s F_{T0} na $1.1 \cdot F_{T0}$.

2. b) Naredbama Matlaba nacrtati polove i nule regulacijskog kruga u s-ravnini.

```
%pokusavam nesto
60
61 -
             %obicniKr
            num1 = [0.28907*0.02596 68.17857*0.02596]

den1 = [4.9242*10^-6 2.8907*10^-4 0.0396857+0.02596*0.28907 1+68.1785*0.02596]

fja1 = tf(num, den)
62 -
64
65
66
            %kr je 0.6Kr
            numv = [0.28907*0.015576 68.17857*0.015576]

denv = [4.9242*10^-6 2.8907*10^-4 0.0396857+0.015576*0.28907 1+68.1785*0.015576]

fjav = tf(numv, denv)
68 -
69 -
70
71
             %kr je 1.2Kr
72
73 -
74 -
75 -
76
77
78 -
            numm = [0.28907*0.031152 68.17857*0.031152]
denm = [4.9242*10^-6 2.8907*10^-4 0.0396857+0.031152*0.28907 1+68.1785*0.031152]
fjam = tf(numm, denm)
            pzmap(fja1, fjav, fjam)
legend('Kr=1Kr', 'Kr=1.6Kr', 'Kr=0.2Kr')
79 -
```


3. c) Naredbama Matlaba nacrtati Bodeov dijagram i odrediti fazno osiguranje, amplitudno osiguranje i presječnu frekvenciju.

```
07
        %pokusaj bodea
88
89
90 -
        numb = [0.28907*0.02596 68.17857*0.02596]
        denb = [4.9242*10^-6 2.8907*10^-4 0.039685 1]
91 -
92
        numb12 = [0.28907*0.031152 68.17857*0.031152]
93 -
94 -
        denb12 = [4.9242*10^-6 2.8907*10^-4 0.039685 1]
95
96
97 -
        numb06 \equiv [0.28907*0.015576 68.17857*0.015576]
        denb06 = [4.9242*10^-6 2.8907*10^-4 0.039685 1]
98 -
99
100
101
102
        funkcijabode = tf(numb, denb)
103 -
        funkcijabode12 = tf(numb12, denb12)
104 -
105 -
        funkcijabode06 = tf(numb06, denb06)
106
        bode(funkcijabode06, funkcijabode, funkcijabode12)
107 -
        title('funkcijabode bode');
108 -
109 -
        legend('Kr=0.6Kr', 'Kr=Kr', 'Kr=1.2Kr')
```


 $\label{eq:ZaKr} \textbf{Za Kr} = \textbf{0.6Kr} \\ A_{\text{\tiny F}} = 4.44 (ispod\ osi) dB \ \omega_{\text{\tiny m}} = 97.9 rad/s\ \omega_{\text{\tiny G}} = 84.3 rad/s\ \gamma = 40.1 deg$

Za Kr=Kr

 A_r =-0.000035dB ω_π =97.9 rad/s ω_c =97.9rad/s γ =0.0011deg

Za Kr=1.2 Kr

A.=-1.58dB (iznad x osi) ω_x =97.9rad/s ω_c =102rad/s γ =-6.83deg

4. d) Naredbama Matlaba nacrtati Nyquistov dijagram. Usporediti dijagrame za zadana pojačanja.

denb06 = [4.9242*10^-6 2.8907*10^-4 0.039685 1]

```
funkcijabode  tf(numb, denb)
funkcijabode12  tf(numb12, denb12)
funkcijabode06  tf(numb06, denb06)
% bode(funkcijabode06, funkcijabode, funkcijabode12);
% title('funkcijabode bode');
% legend('Kr=0.6Kr', 'Kr=Kr', 'Kr=1.2Kr');
nyquist(funkcijabode06, funkcijabode, funkcijabode12)
legend('Kr=0.6Kr', 'Kr=Kr', 'Kr=1.2Kr')
```

5. 0.Dahiani - nala//kn\...fia\

IZVJEŠTAJ	
IZV IENTA I	
Odgovorite na sljedeća pitanja.	
	i.
Odgovorite na sljedeća pitanja.	i.

Neke od naredbi Matlaba korisne za rad na vježbi:

margin, bode, nyquist, zoom, pzmap, feedback

b) Koliko iznosi najveće pojačanje regulatora za koje je regulacijski krug stabilan, tj. vrijednost [1] $K_{R,kr}$ dobivena u točki c) pripreme za vježbu? [1]

Odgovor: Kr= 0.02596

c) Napišite karakteristični polinom prijenosne funkcije zatvorenog kruga u standardnom obliku.

[1]

$$4.9242*10^{-6} \text{ s}^{3} + 2.8908*10^{-4} \text{ s}^{2} + 0.0396857\text{s} + 1 + \text{Kr}^{*}0.28907\text{s} + \text{Kr}^{*}68.1785 = 0$$

4. d) Na istom grafu prikažite polove i nule zatvorenog regulacijskog kruga za $K_R = 0.6$ $K_{R,kr}$,

 $K_R = K_{R,kr}$ te $K_R = 1.2 K_{R,kr}$. Dodajte legendu [2]

- 5. e) Odrediti amplitudno osiguranje A_r , frekvenciju ω_{π} , fazno osiguranje γ i presječnu frekvenciju ω_c regulacijskog kruga ako se koristi P regulator:
 - i. $K_R = 0.6 K_{R,kr}$; [2] ii. $K_R = K_{R,kr}$; [2] iii. $K_R = 1.2 K_{R,kr}$; [2]

Za Kr=Kr

A.=-0.000035dB $ω_n$ =97.9 rad/s $ω_e$ =97.9rad/s γ=0.0011deg

Za Kr=1.2 Kr

 A_r =-1.58dB (iznad x osi) ω_r =97.9rad/s ω_c =102rad/s γ =-6.83deg

- 6. f) Za vrijednosti pojačanja regulatora $K_R = 0.6 K_{R,kr}$ i skokovitu promjenu referentne veličine sile napetosti F_r s F_{T0} na $1.1 \cdot F_{T0}$,
 - i. prikažite odziv regulacijskog kruga. [1]

- ii. koliko iznosi pogreška u stacionarnom stanju ε∞? [1]
- 7. ϵ_{∞} = 0.48V referenca izlaz sustava sve kroz referencu puta 100%
 - i. koliko iznosi maksimalno nadvišenje σ_m ? [1]

(ymax - ys) / (ys - ymin) sve puta 100%

Ymax = 10.59, ys=10.42... ymin=10.23

10.42 do 10.59

8. g) Za vrijednosti pojačanja regulatora $K_R = K_{R,kr}$ i skokovitu promjenu referentne veličine sile napetosti F_r s F_{T0} na 1.1· F_{T0} ,

i. prikažite odziv regulacijskog kruga. [1]

ii. koliko iznosi pogreška u stacionarnom stanju ε_{∞} ? [1]

&∞ = 0.36V

- 9. h) Za vrijednosti pojačanja regulatora $K_R = 1.2 K_{R,kr}$ i skokovitu promjenu referentne veličine sile napetosti F_r s F_{T0} na $1.1 \cdot F_{T0}$,

 i. prikažite odziv regulacijskog kruga. [1]

koliko iznosi pogreška u stacionarnom stanju ε∞? ii.

ε∞ = 8.622e+07