Opgave om bestemmelse af fjederkonstanten med Hookes lov

Hookes lov siger, at den kraft F, der skal til for at trække en fjeder en given længde x fra sin hvilestilling, er ligefrem proportional med x:

$$F = k \cdot x$$

Proportionalitetsfaktoren k kaldes fjederens fjederkonstant, og den måles som regel i Newton pr. mm udstrækning (N/mm). Den følgende tabel viser sammenhørende målinger på den samme fjeder. Lodder med forskellig vægt i gram er blevet hængt på fjederen, og for hvert lod er udstrækningen af fjederen blevet målt i millimeter:

Masse m (g)	Udstrækning x (mm)
0	0.0
100	4.0
200	7.9
300	11.6
400	15.7
500	19.0
750	25.0
1000	28.0

Illustration af Hookes lov (Wikipedia)

- a. Lav en lineær regression og beregn fjederkonstanten. Du skal udnytte, at $F=m\cdot g$, hvor m er loddets masse og g=9.81 m/s² er tyngdeaccelerationen.
- b. Forklar ved hjælp af regressionsanalysens statistikker, om modellen er god.
- c. Lav en eller flere figurer, der illustrerer data og regressionsmodellen.
- d. Er der på baggrund af dine resultater i de forrige delspørgsmål et eller flere af datapunkterne, der ikke lader til at passe ind i den lineære sammenhæng, som Hookes lov foreskriver?
 - Er det muligt at give en fysisk forklaring på denne afvigelse? Kan du i så fald lave en bedre bestemmelse af fjederens fjederkonstant ved at lave en ny regressionsanalyse, hvor nogle af datapunkterne er udeladt?
- e. Beregn et 95 % konfidensinterval for fjederkonstanten.