Digit Recognition with Support Vector Machines

Lisa Gaedke-Merzhäuser Paul Korsmeier Lisa Mattrisch Vanessa Schreck

Freie Universität Berlin, Mathematical Aspects of Machine Learning

July 18, 2017

Overview

Outline

- 1. Introduction & Problem Statement
- 2. Support Vector Machines (SVM)
- 3. Sequential Minimal Optimization (SMO)
- 4. Multi-Class Classification
- 5. Results & Conclusions

Introduction & Problem Statement

Main Goal: train algorithm to recognize handwritten digits

Figure: Visualization of eight of these images

Data:

▶ 42,000 grayscale

Introduction & Problem Statement

Support Vector Machines (SVM)

Support Vector Machines (SVM)

Sequential Minimal Optimization (SMO)

Multi-Class Classification

Standard Modell

- SVMs are binary classifiers but we needed to be able to differentiate among 10 classes
- there are different ways to tackle this problem, we decided to mainly focus on two different approaches:
- 1. One-vs-All
- 2. Error Correcting Output Codes

Multi-Class Classification

1. One-Vs-All

Multi-Class Classification

2. Error Correcting Output Codes Idea:

Class	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f ₇	f ₈	f ₉	f_{10}	f_{11}	f_{12}	f_{13}
0	1	1	-1	-1	-1	-1	1	-1	1	-1	-1	1	1	-1
1	-1	-1	1	1	1	1	-1	1	-1	1	1	-1	-1	1
2	1	-1	-1	1	-1	-1	-1	1	1	1	1	-1	1	-1
3	-1	-1	1	1	-1	1	1	1	-1	-1	-1	-1	1	-1
4	1	1	1	-1	1	-1	1	1	-1	-1	1	1	-1	-1
5	-1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1	-1
6	1	-1	1	1	1	-1	-1	-1	-1	1	-1	1	-1	-1
7	-1	-1	-1	1	1	1	1	-1	1	-1	1	1	-1	-1
8	1	1	-1	1	-1	1	1	-1	-1	1	-1	-1	-1	1
9	-1	1	1	1	-1	-1	-1	-1	1	-1	1	-1	-1	1