VLSI System Design and Implementation Midterm Project Report

Student ID: 105062635

Student: 吳浩寧

Introduction

Median Filter 可應用在影像的處理,為給定一個固定大小的 window,以每個點為中心,找出在 window 內所有數值的中位數,並取代原點的值,做用為過濾信號中的雜訊,也可用來修復影像。本次題目規定的 window 大小為 7 x 7,若遇到邊緣,或角落不足 49 個值則以補 0 處理,處理的資料大小為 128 x 128 圖片。

Design Concept

使用 1KB 的 SRAM,在各個 state 之間轉換的條件如下圖:


```
always @(*) begin
   case (state)
                if (Waddr == 937) nextstate = READ;
       INIT:
                else nextstate = INIT;
               if (colori == 48) nextstate = SORT;
       READ:
                else nextstate = READ;
       SORT:
               if (count == 48 && winx == 127) nextstate = WRITE;
                else if (count == 48) nextstate = READ;
                else nextstate = SORT;
       WRITE: if (posx == 133) nextstate = READ;
                else nextstate = WRITE;
        endcase
end
```

Initial

先讀入最初7列數值,為了簡化程式的複雜性,於邊界處我直接將0寫入記體中,寫完938個值即進入Read State。寫入後SRAM的狀態如下圖所示:

000	0	0	0	0	0	0	0	0		0	0	0	0	0
134	0	0	0	0	0	0	0	0		0	0	0	0	0
268	0	0	0	0	0	0	0	0		0	0	0	0	0
402	0	0	0	138	138	140	131	134		117	146	0	0	0
536	0	0	0	137	136	136	132	131		107	78	0	0	0
650	0	0	0	133	133	134	135	133		52	41	0	0	0
784	0	0	0	134	132	132	133	131	•••	44	46	0	0	0

window -

利用 posx、posy 記錄現在寫的位置,已判斷要寫入的值是由 Host 寫入抑或 0

```
always @(*) begin
   if(posx <= 2 || posy <= 2 || posx >= 131 || posy >= 131) begin
     Min = 0;
     busy = 1;
   end else begin
     Min = Din;
     busy = 0;
   end
end
```

Read

從 SRAM 中讀 7 x 7 個數值到一維陣列中,準備進行排序,不完後進入 Sort State。

Sort

使用 Odd-Even Sort 排序法,在偶數步驟從第 1 個數開始兩兩交換,奇數步驟從第 2 個數開始,由於利用硬體平行的計算,可以減少要花的時間,最差情況從第一個位置換到最後也只需 48 個 cycles,完成排序即可以得到中位數,將結果輸出。若已算到一列最後一個 pixel 則進入 Write State,反之回到 Read State。


```
if(count[0] == 0) begin
    for (i = 0; i \leftarrow 46; i = i + 2) begin
        if (color[i] >= color[i+1]) begin
            nextcolor[i+1] = color[i];
            nextcolor[i] = color[i+1];
        end else begin
            nextcolor[i] = color[i];
            nextcolor[i+1] = color[i+1];
    end
    nextcolor[48] = color[48];
    nextcount = count + 1;
end else begin
    for (i = 1; i \le 47; i = i + 2) begin
        if (color[i] >= color[i+1]) begin
            nextcolor[i+1] = color[i];
            nextcolor[i] = color[i+1];
        end else begin
            nextcolor[i] = color[i];
            nextcolor[i+1] = color[i+1];
        end
    nextcolor[0] = color[0];
    nextcount = count + 1;
end
```

Write

寫入新的一列,將已不會使用到的位置蓋掉。

Result

exit

Synthesis Script

```
read file -format verilog LMFE.v
create_clock -period 10 -waveform {0 5} [get_ports {clk}]
set_dont_touch_network
                           [get_clocks clk]
set_fix_hold
                                                [get_clocks clk]
set_clock_uncertainty 0.1 [get_clocks clk]
                      0.5 [get_clocks clk]
set_clock_latency
set_input_delay 5
                       -clock clk [remove_from_collection [all_inputs] [get_ports clk]]
set_output_delay 0.5
                       -clock clk [all_outputs]
set_load
                1
                       [all_outputs]
set_drive
                1
                       [all_inputs]
set_operating_conditions -max_library slow -max slow
set_wire_load_model -name tsmc13_wl10 -library slow
set_max_fanout 20 [all_inputs]
compile ultra
write file -format ddc -hier -output LMFE.ddc
write_file -format verilog -hier -output LMFE_syn.v
write_sdf -version 2.1 -context verilog LMFE.sdf
write_parasitics -format reduced -o LMFE.spef
report_timing > Timing.txt
report area > Area.txt
report_power > Power.txt
```

Area

Number o	f ports:	21
Number o	f nets:	3082
Number o	f cells:	2716
Number o	f combinational cells:	2248
Number o	f sequential cells:	467
Number o	f macros/black boxes:	1
Number o	f buf/inv:	149
Number o	f references:	84

 Combinational area:
 18374.355001

 Buf/Inv area:
 933.569986

 Noncombinational area:
 15054.240097

 Macro/Black Box area:
 69557.296875

 Net Interconnect area:
 403248.722748

Total cell area: 102985.891973
Total area: 506234.614721

Gate count = 102985.89/5.09 = 20232

Power

Cell Internal Power = 2.6582 mW (98%)
Net Switching Power = 53.8356 uW (2%)
-----Total Dynamic Power = 2.7120 mW (100%)
Cell Leakage Power = 47.8403 uW

B	Internal	Switching	Leakage	Total	,	0/	
Power Group	Power	Power	Power	Power	(%)	Attrs
io_pad	0.0000	0.0000	0.0000	0.0000	(0.00%)	
memory	1.6950	5.3692e-04	2.8000e+07	1.7235	(62.45%)	
black_box	0.0000	0.0000	0.0000	0.0000	(0.00%)	
clock_network	0.0000	0.0000	0.0000	0.0000	(0.00%)	
register	0.9597	6.2841e-03	1.3849e+07	0.9799	(35.50%)	
sequential	0.0000	0.0000	0.0000	0.0000	(0.00%)	
combinational	3.4607e-03	4.7014e-02	5.9916e+06	5.6467e-02	(2.05%)	
Total	2.6582 mW	5.3835e-02 mW	4.7840e+07 pW	2.7599	mW		

Timing

	Path
	9.95
10.00 0.50 -0.10 0.00 -0.29	10.00 10.50 10.40 10.40 r 10.11 10.11
	10.11 -9.95
	0.50 -0.10 0.00

Post-synthesis

```
Annotation completed with 0 Errors and 22 Warnings
SDF statistics: No. of Pathdelays = 9099 Annotated = 99.91% -- No. of Tchecks = 4277 Annotated = 99.91%
                      Total
                             Annotated Percentage
                                         99.91
      Path Delays
                              9091
                     9099
        $period
                       1
                                           100.00
         $width
                                 1400
                     1400
                                           100.00
                     2876
                                           99.86
      $setuphold
                                 2872
Output pixel: 0 ~ 1000 are correct!
Output pixel: 0 ~ 2000 are correct!
Output pixel: 0 ~ 3000 are correct!
Output pixel: 0 ~ 4000 are correct!
Output pixel: 0 ~ 5000 are correct!
Output pixel: 0 ~ 6000 are correct!
Output pixel: 0 ~ 7000 are correct!
Output pixel: 0 ~ 8000 are correct!
Output pixel: 0 ~ 9000 are correct!
Output pixel: 0 ~ 10000 are correct!
Output pixel: 0 ~ 11000 are correct!
Output pixel: 0 ~ 12000 are correct!
Output pixel: 0 ~ 13000 are correct!
Output pixel: 0 ~ 14000 are correct!
Output pixel: 0 ~ 15000 are correct!
Output pixel: 0 ~ 16000 are correct!
_____
Congratulations! All data have been generated successfully!
-----PASS-----
Simulation complete via $finish(1) at time 16399741 NS + 0
```

nLint

```
⊞ Clock Domain Analysis
□ Total - 6 Error(s), 210 Warning(s), 16 Information(s)
   ⊖ Compilation & Elaboration -1 Error(s)
      📆 🥸 16651 - view %s is not defined for instance %s - Compilation & Elaboration - 1 Error(s)
            ↑ LMFE.v(47) : Error : view sram_1024x8_t13 is not defined for instance ram1
   □ Naming Convention -15 Warning(s), 3 Information(s)
      ⊕ ♦ NC.9-1 - Signals names are lowercase letters - Naming Convention - 10 Warning(s)
     ⊕ NC.9-5 - Port names are lowercase letters - Naming Convention - 2 Warning(s)

→ NC.12 - Consistent reset signal name - Naming Convention - 1 Warning(s)
     MC.11-1 - For FSM variables, naming in (fsm_cs), (fsm_ns) - Naming Convention - 1 Information(s)

NC.23 - Consistent ordering of bits for describing multibit buses - Naming Convention - 2 Warning(s)
      MC.17 - For asynchronous signals, end in _a - Naming Convention - 1 Information(s)

NC.14-2 - For FSM variables, naming in <fsm_cs>, <fsm_ns> - Naming Convention - 1 Information(s)
   ⊕∲ NC.14-2 - For FSM varia
⊝భ File Header -1 Warning(s)
      ⊞ 🚱 FH.1~4 - Check file header format - File Header - 1 Warning(s)
   Comments -5 Error(s), 9 Information(s)
  COM,1 - Use comments for port declarations - Comments - 5 Error(s)

COM,2 - Comment signal declarations - Comments - 1 Information(s)

COM,3 - Use comments for functional sections - Comments - 8 Information(s)

Coding Style -185 Warning(s), 3 Information(s)
     田令 CS.13 - Use parentheses in complex equations - Coding Style - 11 Warning(s)
田令 CS.7 - Keep line length within 72 characters - Coding Style - 3 Information(s)
     ESC.1 - Code should be aligned in a tabular format - Coding Style - 48 Warning(s)

CS.2 - Use space instead of tab stops for code indentation - Coding Style - 122 Warning(s)
      ⊕ ♦ CS.5 - Preserve port order - Coding Style - 4 Warning(s)
   🛱 🔯 Šynthesis -8 Warning(s)
      i 🚱 SYN.8 - Avoid top level glue logic - Synthesis - 8 Warning(s)
   ⊟ Design For Test -1 Information(s)
      ⊞😵 DFT.10-3 - Avoid floating output - Design For Test - 1 Information(s)
   ⊟ ☑ Design Style -1 Warning(s)
      ∰ 🌺 D.1.1 - Output signals must be registered - Design Style - 1 Warning(s)
```

Primetime Script

```
set search_path ". /theda21_2/CBDK_IC_Contest/cur/SynopsysDC/db /usr/synopsys/synthesis/cur/libraries/syn $search_path"
set link_path {* slow.db fast.db sram_1024x8_t13_slow_syn.db}
read_verilog LMFE_syn.v
current_design LMFE
link_design
set_operating_conditions -min slow -max slow
set_clock_latency 0.5 [get_clocks {clk}]
set_input_delay 5
set_output_delay 0.5
set_load 1
                          -clock clk [remove_from_collection [all_inputs] [get_ports clk]]
-clock clk [all_outputs]
[all_outputs]
                1 [all_outputs
1 [all_inputs]
set_drive
set_max_fanout 20 [current_design]
set_wire_load_model -name tsmc13_wl10 -library slow
set_dont_touch_network [list clk reset]
set_drive 0 [list clk reset]
read sdf LMFE.sdf
report_clock > clock.rpt
report_port -input_delay >> clock.rpt
report_port -output_delay >> clock.rpt
check_timing >> clock.rpt
report_constraint -all_violators > timing.rpt
report_timing >> timing.rpt
report_timing -nets -transition_time -capacitance >> timing.rpt
report_timing -nworst 10 -path_type summary >> timing.rpt
exit
```

Timing

Point	Fanout	Cap	Trans	Incr	Path
data arrival time					9.95
<pre>clock clk (rise edge) clock network delay (ideal clock reconvergence pessim: clock uncertainty Raddr_reg[9]/CK (DFFRX1) library setup time data required time</pre>	•		0.10	10.00 0.50 0.00 -0.10	10.00 10.50 10.50 10.40 10.40 r 10.11 10.11
data required time data arrival time slack (MET)					10.11 -9.95

Critical Path:

winx→winx+1→nextwinx→nextRaddr→Raddr

not false path

PrimetimePX Script

set power_enable_analysis TRUE set power_analysis_mode averaged

". /theda21_2/CBDK_IC_Contest/cur/SynopsysDC/db /usr/synopsys/synthesis/cur/libraries/syn" * slow.db fast.db sram_1024x8_t13_slow_syn.db" set search path

set link library

read_verilog LMFE_syn.v current_design LMFE

LMFE.spef read parasitics

check_timing update_timing report_timing check_power update power

report_power -hierarchy > vf.rpt

exit

Power

Hierarchy		Switch Power		Total Power	%
LMFE	1.40e-03	1.19e-04	4.78e-05	1.56e-03	100.0

Summary

Area	Power (mW)	Time (ns)
506234.614721	1.56	16399741

Discussions & Conclusions

這次遇到的問題包括讀 SRAM 時,由於取得結果會慢一個 cycle,所以在判 斷可否讀值到陣列中時,須多加個 halt 訊號來暫緩一個 cycle;此外本來我將排 序寫成 combinational circuit,直接用 repeat(48)做完,後來才發現這樣會產生 combinational loop, 須改為一個 cycle 進行一個 Odd-Even Sort 的步驟才合理。

此外我記憶體的讀、寫都是循環的,每當遇到最後的位置,下個 clock 即會 重回到位置 0 , 好處是可以省下記憶體空間 , 和多餘的判斷式; 另外 , 我多使用 了 Raddrmod 的訊號來記錄 Raddr 除以一列長度的餘數,如此可以避免使用% 運算子;遇到比較數值大小,則盡量使用合成面積較小的≧、≦而非>、<。

感覺我這次的寫法還可以有不少改進的方式,比如不用寫多餘 0,可以省下 3*4*134-4*3*3=1572 個 cycles,雖然如此判斷式會變複雜,電路面積也會稍微 變大;若在排序同時進行 SRAM 的讀取,可以省下(134-7)*(134-7)=16129 個 cycles;每次讀取 SRAM 到排序陣列也不用全部重讀,只須讀 window 移動後新 增的 7 個數,可以省下(134-7)*(42*(134-7))= 677418 缺點是要多用一個陣列來 存排序後的值。