$$1. \ \overline{V} = \frac{ox}{ot}; \ v(t) = \frac{dx}{dt}$$

2. 
$$\overline{a} = \frac{\partial V}{\partial t}$$
;  $a(t) = \frac{d^2x}{dt^2}$ 

3. 
$$\chi(t) = \chi_0 + V_0 t + \frac{1}{2}at^2$$

$$\Rightarrow constant acceleration$$

$$5. a_c = \frac{V_t^2}{R} = R \omega^2$$

5 centripetal acceleration of circular motion

7. 
$$\vec{r}(t) = \vec{r_0} + \vec{V_0}t + 2\vec{a}t^2$$

Scoretart acceleration in vectors



13. 
$$f_s \leq M_s N$$
;  $f_k = M_k N$   
Ustatic and kinetic friction

16. 
$$U(x) = \int F(x) dx$$
Ly potential energy of conservative force

19.0k= 
$$K_2 - K_1 = \int_{\vec{x}_1}^{\vec{x}_2} \vec{F}(\vec{x}) \cdot d\vec{x} \rightarrow \text{vector form}$$

20. 
$$\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x} \iff F$$
 is conservative

21, 
$$\frac{dA}{dt}$$
 = constant -> a planet in orbit

22. 
$$\frac{R^3}{T^2} = \frac{GM}{4\pi L^2} \rightarrow planet orbiting M$$

is velocity of planet orbiting M

sgeneral gravitational potential energy

26. 
$$X = \frac{\sum M_i X_i}{\sum M_i} \rightarrow center of mass$$

$$27. F = M \overset{\circ}{X}_{com} = M \frac{d\dot{X}}{dt^2}$$

32. 
$$V_f - V_r = V_{rel} \ln \frac{M_r}{M_f}$$

with the prochet equation



33. 
$$U_1 = \frac{m_1 - m_2}{m_1 + m_2} V_1 + \frac{2m_2}{m_1 + m_2} V_2$$

$$U_2 = \frac{m_3 - m_1}{m_1 + m_2} V_2 + \frac{2m_1}{m_1 + m_2} V_1$$
Stotally ellastic collision

34. 
$$0 = 00 + W_0 t + \frac{1}{2} x t^2$$
4 constant angular queleration

35. 
$$I = \int V^2 dM \rightarrow moment of inertia$$

36. 
$$K_r = \frac{1}{2} I \omega^2 \rightarrow rotational kinetic energy$$

38. 
$$F = \frac{dP}{dt}$$
;  $I = \frac{dL}{dt}$ 



46. 
$$\overline{\omega} = \frac{\partial 0}{\partial t}$$
;  $\omega(t) = \frac{\partial 0}{\partial t}$ 

$$47. \overline{X} = \frac{\omega \omega}{\delta t} i X(t) = \frac{d^2 \delta}{dt^2}$$

$$51$$
,  $\omega_p = \frac{mgL}{I\omega}$ 

6 angular frequency of gyroscope precession

52. 
$$\chi(t) = A\cos(\omega t + Q)$$
;  $\omega = \sqrt{\frac{k}{m}}$   
Usimple harmonic motion

57. 
$$\omega_{\text{pendulum}} = \sqrt{\frac{9}{2}}$$

$$\omega_{\text{angular frequency of pendulum}}$$

58. 
$$\chi(t) = Ae^{i\omega t} + Be^{-i\omega t}$$
  
58.  $\chi(t) = Ae^{i\omega t} + Be^{-i\omega t}$ 

59. 
$$\chi(t) = A e^{-\frac{b}{5m}t} \cos(\omega't + \dot{q}); \omega' = \sqrt{\omega^2 + (\frac{b}{2m})^2}$$

4 damped S.H.M. with  $f = bv$ 

60. 
$$\chi(t) = \frac{\left(\frac{F_{o}}{m}\right)\cos(\omega t - \phi)}{\sqrt{(\omega_{o}^{2} - \omega^{2}) + \omega^{2}(\frac{b}{m})^{2}}}$$

4 damped S.H. M. driven by Focos wt

61. 
$$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$
 - wave equation

62. 
$$V = \sqrt{\frac{T}{M}}$$
;  $M = \frac{M}{L} \rightarrow$  wave speed of string wave

63. 
$$\psi(x,t) = A\cos(kx - \omega t + \phi)$$
;  $k = \frac{\omega}{v}$ 

5 a solution to the wave equation

64. 
$$\psi(x,t) = F(x-vt)$$

4 a general solution to the wave equation

is parameters of the wave function

67. 
$$u = \frac{E}{L} = \frac{1}{2} M (A \omega)^2$$
Ly energy density of a sinusoidal wave

69. 
$$\beta = 10 \log \frac{I}{I_0}$$
;  $I_0 = 10^{-12} \text{ W/m}^2$ 
4 sound intensity (in decibels)

70. 
$$\lambda' = \lambda \mp \frac{u}{f}$$
5 doppler effect (source moving at velocity u)

71. 
$$f' = f(1 \pm \frac{u}{v})$$
6 doppler effect (observer moving at velocity u)

72. 
$$\omega = \omega_1 - \omega_2$$

beat frequency of two waves interfering

79. 
$$F. \circ X$$
,  $= F_2 \circ X_2 = W$ ;  $\frac{F_1}{A_1} = \frac{F_2}{A_2}$   
5 hydrauliz press

87. PV = nRT

88. PV = NKT = = NK

89. K= 3kT

90. P(V) = V2 e TT

Ly possibility of gas atom velocity

91.  $V = \frac{3}{2}NkT = \frac{3}{2}PV \rightarrow internal energy$ 

92. OU = Q - OW Sfirst law of thermodynamics

93.  $C_V = \frac{3}{2}R$ Uspecific heat of constant volume process

94. Cp = \frac{5}{2}R

G specific heat of constant pressure process

95.  $N = \frac{Q_1 - Q_2}{Q_1}$ Gefficiency of heat engines

96.  $N = 1 - \frac{T^2}{T_1}$ Gefficiency of cornot cycle 97. OS = OQ - rentropy

98. S. - S. = nRln V.

99. O Sunverse 20
Grecond law of thermodynamics

100. S = kln so 4 so is the number of arrangements possible

101. F = 1 8.82 -> Coulomb's law

102, F = 1 8,8, ? = 1 8,8, ? = 4 1 8,8, ?

103, F = & E(F)

104. E = Br - electric field

105, P= gd - electric dipole moment

106. T=PXE

4) torque of an electric dipole in an uniform field

107. U = -P. E Spotential energy of an electric dipole in an uniform field

110. 
$$E(r) = \frac{\lambda}{2\pi \xi_0 r}$$
Selectric field of a long wire of charge

111. 
$$E(r) = \frac{8}{280}$$
  
Selectric field of a sheet of charge

112. 
$$E(r) = \frac{Qr}{4\pi \epsilon_0 R^3}$$

4 plectric field of the inside of a uniform sphere

118. 
$$U = \frac{1}{2}CV^2 = \frac{1}{2C}Q^2 \rightarrow potential energy$$
119.  $I = Avne \rightarrow current in a wire A av O$ 

120. 
$$J = \frac{I}{A} = \text{NeV} \rightarrow \text{current density}$$

123. 
$$J = ne \frac{eE}{m} Z = 6E$$
 - conductivity

Formulas

131. 
$$M = \overline{A}I \rightarrow magnetic dipole 131$$

132.  $\overline{L} = M \times \overline{B} \rightarrow torque$  on a dipole

133.  $U = -M \cdot \overline{B} \rightarrow potential energy of a dipole

134.  $d\overline{B} = \frac{M \circ I}{4\pi} \frac{d \overline{I} \times \hat{\Gamma}}{|D \Gamma|^2}$ 
 $\Rightarrow \text{Riot-Savart law}$ 

135.  $B(z) = \frac{M \circ I R^2}{2(z^2 + R^2)^{\frac{1}{2}}}$ 
 $\Rightarrow \text{magnetic field of a circular current}$ 

136.  $B(z) = \frac{M \circ I}{2\pi Z}$ 
 $\Rightarrow \text{magnetic field of an infinite wire}$ 

137.  $F = \frac{M \circ I \cdot I}{2\pi Z}$ 
 $\Rightarrow \text{magnetic force of two parallel wires}$ 

138.  $\oint \overline{B} \cdot d\overline{\Gamma} = M \circ I \cdot I \cdot I - I \cdot I$ 
 $\Rightarrow \text{magnetic field inside a solenoid}$ 

140.  $B = \frac{M \circ N \cdot I}{2\pi R}$ 
 $\Rightarrow \text{magnetic field inside a torioid}$ 

140.  $B = \frac{M \circ N \cdot I}{2\pi R}$ 
 $\Rightarrow \text{magnetic field inside a torioid}$$ 

141. 
$$\oint \vec{E} \cdot d\vec{r} = -\frac{d\Phi_{\delta}}{dt} \rightarrow Foroday's law$$

142.  $\oint \vec{E} \cdot d\vec{r} = -\iint_{\delta} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A} \rightarrow Foroday's law$ 

143.  $E = M \frac{d\vec{I}}{dt} \rightarrow mutual induction$ 

144.  $\frac{Q_{i}}{Z_{z}} = \frac{N_{i}}{N_{z}} \rightarrow transformer$ 

145.  $Q = L \frac{d\vec{I}}{dt} \rightarrow self inductonce$ 

146.  $U = \frac{1}{2}LI^{2} \rightarrow potential energy of an inductor$ 

147.  $U = \frac{B^{2}}{2} \cdot Volume$ 

149.  $U = \frac{1}{2} \cdot Volume$ 

148.  $U = \frac{1}{2} \cdot Volume$ 

149.  $U = \frac{1}{2} \cdot Volume$ 

149.  $U = \frac{1}{2} \cdot Volume$ 

150.  $U = \frac{1}{2} \cdot Volume$ 

150.  $U = \frac{1}{2} \cdot Volume$ 

151.  $U = \frac{1}{2} \cdot Volume$ 

152.  $U = \frac{1}{2} \cdot Volume$ 

153.  $U = \frac{1}{2} \cdot Volume$ 

154.  $U = \frac{1}{2} \cdot Volume$ 

155.  $U = \frac{1}{2} \cdot Volume$ 

156.  $U = \frac{1}{2} \cdot Volume$ 

157.  $U = \frac{1}{2} \cdot Volume$ 

158.  $U = \frac{1}{2} \cdot Volume$ 

159.  $U = \frac{1}{2} \cdot Volume$ 

150.  $U = \frac{1}{2} \cdot Volume$ 

150.  $U = \frac{1}{2} \cdot Volume$ 

151.  $U = \frac{1}{2} \cdot Volume$ 

151.  $U = \frac{1}{2} \cdot Volume$ 

152.  $U = \frac{1}{2} \cdot Volume$ 

153.  $U = \frac{1}{2} \cdot Volume$ 

154.  $U = \frac{1}{2} \cdot Volume$ 

155.  $U = \frac{1}{2} \cdot Volume$ 

156.  $U = \frac{1}{2} \cdot Volume$ 

177.  $U = \frac{1}{2} \cdot Volume$ 

188.  $U = \frac{1}{2} \cdot Volume$ 

199.  $U = \frac{1}{2} \cdot Volume$ 

4 electromagnetic wave equation

146. 
$$V_{\varepsilon} = \frac{\varepsilon_{v} \varepsilon^{2}}{2}$$
;  $V_{B} = \frac{B^{2}}{2M_{v}}$   
Ly energy of electromagnetic wave

148. 
$$\bar{T} = \frac{\epsilon_0 B_0}{2M_0} \rightarrow intensity$$