In-Class Exercise 6

Diode Circuits

Zener Regulator (1)

- 1. A zener regulator uses a 9-V zener diode to maintain constant 9 V across the load with the input varying from 18 to 25 V and the output current varying from 400 to 800 mA. Assume R_Z = 0 and the minimum current $I_{Z,\min}$ required for the zener diode to operate in the breakdown region, where $I_{Z,\min}$ = 0.1 $I_{Z,\max}$.
 - (a) Select the value for R_i needed and determine its minimum power requirement.
 - (b) Determine the power rating of the zener diode.
 - (c) Calculate the peak-to-peak output variation if $R_Z = 1 \Omega$.

Two extreme conditions:

- 1. The current through the zener diode must be less than its maximum allowable current. This occurs when i_{Ri} is largest and i_{L} is smallest.
- 2. The current must be greater than $I_{z,min}$ in order to have a constant output voltage V_z . This occurs when i_{Ri} is smallest and i_L is largest.

Condition 1:

$$I_{Ri,\text{min}} = I_{z,\text{min}} + I_{L,\text{max}}$$

$$\Rightarrow \frac{18-9}{R_i} = I_{z,\text{min}} + 0.8 = 0.1I_{z,\text{max}} + 0.8$$

Condition 2:

$$I_{Ri,\text{max}} = I_{z,\text{max}} + I_{L,\text{min}}$$

$$\Rightarrow \frac{25 - 9}{R_i} = I_{z,\text{max}} + 0.4$$

$$\Rightarrow R_i = 9.74 \ \Omega \text{ and } I_{z,\text{max}} = 1.24 \ A$$

$$(25 - 9)^2$$

$$P_{Ri} = \frac{(25-9)^2}{9.74} = 26.28 \text{ W}$$

$$P_z = 9 \times 1.24 = 11.2 \text{ W}$$

The voltage across R_z varies from $I_{z,min} \times 1$ to $I_{z,max} \times 1$ or 0.124 V to 1.24 V

The output voltage is then:

$$V_{L,\text{min}} = 9 + 0.124 = 9.124 \text{ V}$$

$$V_{L,\text{max}} = 9 + 1.24 = 10.24 \text{ V}$$

2. Sketch the output waveform when $v_i = 9 \sin 1000t \text{ V}$. Show the maximum and minimum values on the sketch. Assume the diode is ideal.

i. v_i positive $v_o = 0$ as D_1 conducts ii. v_i negative $v_i = v_o$ when $v_i \ge -4$ V iii. v_i negative and $v_i \le -4$ V

$$I = \frac{v_i - (-4)}{2k + 4k} = \frac{v_i + 4}{6k}$$

$$v_o = -4 + 4k \left(\frac{v_i + 4}{6k}\right) = -1.33 + 0.667v_i$$

$$v_o(-9) = -7.33 \text{ V}$$

3. Sketch the output waveform when $v_i = 9 \sin 1000t \text{ V}$. Show the maximum and minimum values on the sketch. Assume the diode is ideal.

i.
$$v_i$$
 positive
 $v_i = v_o$ when $v_i \le 5$ V
when $v_i > 5$ V

$$I = \frac{v_i - (5)}{2k + 2k} = \frac{v_i - 5}{4k}$$

$$v_o = 5 + 2k \left(\frac{v_i - 5}{4k}\right) = 2.5 + 0.5v_i$$

$$v_o(+9) = 6.5$$
 V

ii.
$$v_i$$
 negative
 $v_i = v_o$ when $v_i \ge -6$ V
when $v_i < -6$ V
 $I = \frac{v_i - (-6)}{2k + 4k} = \frac{v_i + 6}{6k}$
 $v_o = -6 + 4k \left(\frac{v_i + 6}{6k}\right) = -2 + 0.667v_i$
 $v_o(-9) = -8$ V

Self-study:

1. Find the output of the clipping circuit for $vi = 8 \sin 1000t$ V, assuming that the diode has a forward voltage of (a) o V

and (b) 0.7 V.

2. For the circuits below, sketch the output waveform when v_i varies linearly from 0 to 150 V. Assume ideal diodes.

