Qualify Exam (June 10, 2014)

STAT5005+STAT5010 (09:00am-12:00pm)

STAT5005 Advanced Probability Theory

1.

- a) Prove that $W_n \stackrel{d}{\to} Z$ iff $\mathbb{E} f(Wn) \to \mathbb{E} f(Z)$ for any bounded continuous function f.
- b) $X_1, X_2, ...$ are iid with mean 0 and variance 1. Prove that

$$\lim_{n\to\infty} \frac{1}{n^{1/2}} \mathbb{E}\left[\sum_{i=1}^{n} |X_i|\right] = \sqrt{\frac{2}{\pi}}.$$

2.

- a) Prove the Marcinkiewicz-Zygmund strong law of large numbers ($\mathbb{E}(X) = 0, 1).$
- b) $X_1, X_2, ...$ are iid with mean 0 and variance 1. $S_n = X_1 + \cdots + X_n$. Prove that

$$\limsup_{n\to\infty} \frac{S_n}{\sqrt{2n\log\log n}} = 1, a. s..$$

3.

- a) Prove that if A_1 and A_2 are independent, then $\sigma(A_1)$ and $\sigma(A_2)$ are independent.
- b) $X_1, X_2, ...$ are iid with $\mathbb{P}(X_i \le x) = e^{-x}$. $S_n = X_1 + \cdots + X_n$. Find the limiting distribution of $\sum_{i=1}^n I(X_i S_n > 1)$.
- c) X_1, X_2, \dots are iid Unif(0,1) random variables. $S_n = X_1 + \dots + X_n$. Let $T = \inf\{n: S_n > 1\}$. Find $\mathbb{P}(T > n), \mathbb{E}(T), \mathbb{E}(S_T)$.

STAT5010 Advanced Statistical Inference

- 1. $X_1, ..., X_n$ sample from $N(\theta, \sigma^2)$
 - a) If $\sigma^2 = \sigma_0^2$ known, prove \bar{X} is UMVUE of θ
 - b) If σ^2 is unknown, prove \bar{X} is still UMVUE of θ by noting that \bar{X} doesn't depend on σ_0^2 .
 - c) If $\theta = \theta_0$ known, show that $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is not UMVUE of σ^2 .
 - d) If $\sigma^2 = \sigma_0^2$ known, find the UMVUE of $\mathbb{P}(X_1 \ge 0)$.
- 2. Two-sample test with equal variance. Derive LRT for $H_0: \mu_X \mu_Y \ge \delta \leftrightarrow H_1: \mu_X \mu_Y < \delta$.