## **Periodic Sedimentation**

I scaled the equation with time  $t^* = t/\tau_B$ , where  $\tau_B = \beta \sigma^2/\Gamma$ . We have:

$$\frac{\partial \rho}{\partial t} = \Gamma \nabla \left( \rho \nabla \frac{\delta F[\rho]}{\delta \rho} \right)$$

and so

$$\frac{\partial \rho}{\partial t^*} = \Gamma \tau_B \nabla \left( \rho \nabla \frac{\delta F[\rho]}{\delta \rho} \right)$$
$$= \beta \sigma^2 \nabla \left( \rho \nabla \frac{\delta F[\rho]}{\delta \rho} \right).$$

Since we set  $\beta = 1$ , I have scaled the equation in the code by  $\sigma^2$ . Choosing  $\sigma = 1$ ,  $\bar{\rho} = 0.072$ ,  $\epsilon = 3.5$  and a = 0.1, where the only choice I made is  $\sigma$ , the rest is determined by the paper. I checked before that the points are random and they are and the interval is  $\bar{\rho} \pm \frac{1}{20}$ . Then I let this run up to  $t^* = 300$ , like in the paper. Then I chose the initial condition with more



Figure 1: Figure 8 from paper with  $\sigma = 1$ .

randomness:  $\bar{\rho} \pm \frac{1}{10}$ .

Then I chose  $\bar{\rho} = 0.072(\cos(\pi y_2/15) + 1)$ , to see what happens if there are already clusters in the initial condition.

Then I chose  $\bar{\rho} = 0.072(\cos(\pi y_2/5) + 1)$ , to see what happens if there are already clusters in the initial condition.



Figure 2: Figure 8 from paper with  $\sigma = 1$ , more randomness in  $\rho_0$ .

## 1 Constriction Flow

I first tried to rewrite the initial condition in terms of h = 0. It does solve for a smaller external potential and without constriction, but I still get the warning with the integration tolerances.

Then I went back to the original problem. This solves well with  $V_0 = 10$  instead of  $V_0 = 1000$  and the quality of the result becomes worse for higher strengths of the external potential. With this I could put the interaction on. However, they are influenced by the boundaries. Therefore, I put the problem into periodic boundaries. This works but it's not comparable to the results from the paper.



Figure 3: Figure 8 from paper with  $\sigma = 1$ ,  $\bar{\rho} = 0.072(\cos(\pi y_2/15) + 1)$ .



Figure 4: Figure 8 from paper with  $\sigma = 1$ ,  $\bar{\rho} = 0.072(\cos(\pi y_2/5) + 1)$ .



Figure 5: Figure 8 from paper with  $\sigma = 1$ ,  $\bar{\rho} = 0.072(\cos(\pi y_2) + 1)$ .



Figure 6: Figure 8 from paper with  $\sigma = 1$ ,  $\bar{\rho} = 0.072(\cos(\pi y_2) + 1)$  running up to  $t^* = 600$  instead of  $t^* = 300$ .



Figure 7: Constriction with  $\kappa = -0.2$  and  $b = 0.6, V_0 = 10.$ 



Figure 8: Constriction with  $\kappa = -0.2$  and b = 0.6,  $V_0 = 10$ .



Figure 9: Constriction with  $\kappa = -0.6$  and  $b = 0.6, V_0 = 10.$ 



Figure 10: Constriction with  $\kappa=-1$  and  $b=0.6,\ V_0=10.$