Natural Language Processing Recommendation System

软件学院

Recommendation Systems

- Systems for recommending items (e.g. books, movies, CD's, web pages, newsgroup messages) to users based on examples of their preferences.
- Many on-line stores and browsers provide recommendations (e.g. Amazon, chrome).
- Recommenders have been shown to substantially increase sales at on-line stores.

List of recommendation system dissertation

- 2015
- Novelty and Diversity Evaluation and Enhancement in Recommender Systems Saúl Vargas
- 2014
- A Model-Based Music Recommendation System for Individual Users and Implicit User Groups Yajie Hu
- Aggregating Information from the Crowd: ratings, recommendations and predictions Florent Garcin
- Collaborative Filtering Based Social Recommender Systems Xiwang Yang
- Cross-domain Recommendations based on semantically-enhanced User Web Behavior Julia Hoxha
- Cryptographically-Enhanced Privacy for Recommender Systems Arjan Jeckmans
- Database management system support for collaborative filtering recommender systems Mohamed Sarwat
- Dynamic Generation of Personalized Hybrid Recommender Systems Simon Dooms
- Enhancing Discovery in Geoportals: Geo-Enrichment, Semantic Enhancement and Recommendation Strategies for Geo-Information Discovery Bernhard Vockner
- Exploiting Distributional Semantics for Content-Based and Context-Aware Recommendation Victor Codina
- Exploiting Implicit User Activity for Media Recommendation Michele Trevisiol
- Information Aggregation in Quantized Consensus, Recommender Systems, and Ranking Shang Shang
- More Usable Recommendation Systems for Improving Software Quality Yoonki Song
- Next Generation of Recommender Systems: Algorithms and Applications Lei Li
- SmartParticipation: A Fuzzy-Based Recommender System for Political Community-Building Luis Fernando Terán Tamayo
- Towards Recommender Engineering: Tools and Experiments for Identifying Recommender Differences Michael Ekstrand
- User Factors in Recommender Systems: Case Studies in e-Commerce, News Recommending, and e-Learning Juha Leino
- 2013
- A conceptual model and a software framework for developing context aware hybrid recommender systems Tim Hussein
- Effective tag recommendation system based on topic ontology V Subramaniyaswamy
- Estrategias de recomendación basadas en conocimiento para la localización personalizada de recursos en repositorios educativos (Spanish) Almudena Ruiz-Iniesta
- Evaluating the Accuracy and Utility of Recommender Systems Alan Said
- Evaluation in Audio Music Similarity Julián Urbano
- Improved online services by personalized recommendations and optimal quality of experience parameters Toon De Pessemier
- Integrating Content and Semantic Representations for Music Recommendation Ben Horsburgh
- Latent feature models for dvadic prediction Aditva Krishna Menon
- Living Analytics Methods for the Social Web Ernesto Diaz-Aviles
- Ranking and Context-awareness in Recommender Systems Yue Shi
- 000

Recommendation Systems

Types of Recommendation

- Editorial and hand created
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, MostPopular, RecentUploads
- Tailored to individual users
 - Amazon, Netflix, ...

Recommendation Systems

Personalization

- Recommenders are instances of personalization software.
- Personalization concerns adapting to the individual needs, interests, and preferences of each user.
- Includes:
 - Recommending
 - Filtering
 - Predicting
- From a business perspective, it is viewed as part of Customer Relationship Management (CRM)

Formal Model

- *X* = *set of Customers*
- *S* = *set of Items*
- Utility function $u: X \times S \rightarrow R$
 - -R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]
- Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
 - Explicit/Implicit (learn ratings from user action)
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

Extrapolating Utilities

- Key problem: matrix U is sparse
 - Most people have not rated most items
- Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:
 - 1) Content filtering
 - 2) Collaborative filtering
 - 3) Latent factor based

Content filtering

- Main idea: Recommend items to customer x similar to previous items rated highly by x
- Example:
 - Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
 - Websites, blogs, news
 - Recommend other sites with "similar" content

Content filtering

Item profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)

User profiles and prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item

– ...

• Prediction heuristic:

Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$$

Example: LIBRA

- LIBRA:
 - Learning Intelligent Book Recommending Agent
 - Content filtering recommender for books using information about titles extracted from Amazon.
- Uses information extraction from the web to organize text into fields:
 - Author
 - Title
 - Editorial Reviews
 - Customer Comments
 - Subject terms
 - Related authors
 - Related titles

Example: LIBRA

Pros of Content filtering

- No need for data on other users
 - No cold-start or sparsity problems
- Able to recommend to users with unique tastes
- Able to recommend new & unpopular items
 - No first-rater problem
- Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons of Content filtering

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
- Recommendations for new users
- How to build a user profile?

Collaborate Filtering

- User-user CF
 - Consider user x
 - Find set N of other users whose ratings are
 "similar" to x's ratings
 - Estimate x's ratings based on ratings of users in N
- Item-item CF

User-user CF

Similar users

• Let r_x be the vector of user x's ratings

$$- r_x = [*, _, *, ***], r_y = [*, _, **, **, _]$$

- Jaccard similarity measure
 - $-r_x$, r_y as sets
- Cosine similarity measure
 - $r_x, r_y \text{ as points}$ $\operatorname{sim}(\mathbf{x}, \mathbf{y}) = \cos(\mathbf{r}_x, \mathbf{r}_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||}$
- Pearson correlation coefficient
 - $-S_{xy}$ = items rated by both users x and y
 - $-\bar{r}_x, \bar{r}_y$: avg. rating of x, y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

Rating prediction

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

- So far: User-user collaborative filtering
- Another view: Item-item
- For item *i*, find other similar items
- Estimate rating for item i based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

 $s_{ij}...$ similarity of items i and j $r_{xj}...$ rating of user x on item j N(i;x)... set items rated by x similar to i

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

estimate rating of movie 1 by user 5

users

sim(1,m)	12	11	10	9	8	7	6	5	4	3	2	1	
1.00		4		5			5	?		3		1	1
-0.18	3	1	2			4			4	5			2
0.41		5	3	4		3		2	1		4	2	3
-0.10		2			4			5		4	2		4
-0.31	5	2					2	4	3	4			5
0.59		4			2			3		3		1	6

Neighbor selection:

Identify movies similar to movie 1, rated by user 5 Here we use Pearson correlation as similarity

users

	1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
1	1		3		?	5			5		4		1.00
2			5	4			4			2	1	3	-0.18
3	2	4		1	2		3		4	3	5		<u>0.41</u>
4		2	4		5			4			2		-0.10
5			4	3	4	2					2	5	-0.31
6	1		3		3			2			4		0.59

Compute similarity weights: $s_{13}=0.41$, $s_{16}=0.59$

users

	1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
1	1		3		3	5			5		4		1.00
2			5	4			4			2	1	3	-0.18
3	2	4		1	2		3		4	3	5		<u>0.41</u>
4		2	4		5			4			2		-0.10
5			4	3	4	2					2	5	-0.31
6	1		3		3			2			4		0.59

Predict by taking weighted average: $r_{15} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

CF: common practice

- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$\boldsymbol{r_{ix}} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot \boldsymbol{r_{jx}}}{\sum s_{ij}} \longrightarrow r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

Item-item vs User-user

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that itemitem often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros/Cons of CF

- Pros: Works for any kind of item
 - No feature selection needed
- Cons:
 - Cold Start:
 - Need enough users in the system to find a match
 - Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
 - First rater:
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
 - Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

Hybrid methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add Content filtering methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Evaluating measures

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - Precision at top 10: % of those in top10
 - Rating of top 10: Average rating assigned to top 10
 - Rank Correlation: Spearman's, r_s, between system's and user's complete rankings
- Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

-		•	
-		1	
7		:	,
C		1	١
_	į	i	
_	•	۱	
_			
Ç	ı	,	
f	1	h	

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3			;		
4		2	4		5				?		?	?
5			4	3	4	2			?		?	
6	1		3		3					;		

Training Data Set

Test Data Set

True rating of user **x on item i**

SSE =
$$\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2$$

Predicted rating

Two issues

- Similarity measures are "arbitrary"
 - Pairwise similarities neglect interdependencies among users
 - Taking a weighted average can be restricting
 - Solution: Instead of s_{ij} use w_{ij} that we estimate directly from data
- Finding similar vectors:
 - Common problem that comes up in many settings
 - Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high similarity
 - e.g., user profiles, item profiles
 - We already know how to do this!
 - Dimensionality reduction (SVD)

Interpolation weights wij

Use a weighted sum rather than weighted avg.

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}} \longrightarrow \widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- A few notes:
 - We sum over all movies j that are similar to i and were rated by x
 - * models interaction between pairs of movies (it does not depend on user *x*)
 - �(�;�) ... set of movies rated by user x that are similar to movie i

Interpolation weights wij

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- How to set w_{ij}?
 - Remember, error metric is **SSE:** $\sum_{(i,u)\in R} (\hat{r}_{ui} r_{ui})^2$
 - Find w_{ii} that minimize SSE on training data!
 - Models relationships between item *i and its neighbors j*
 - w_{ij} can be learned/estimated based on x and all other users that rated i

Recommendation as Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find w_{ii} that minimize SSE on training data!

$$\min_{w_{ij}} \sum_{x} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$

Recommendation as Optimization

- We have the optimization problem, now what?
 - Gradient decent
 - Iterate until convergence: $\Diamond \leftarrow \Diamond -\lambda \Diamond \Diamond$
 - where �� is gradient (derivative evaluated on data):

$$\nabla w = \left[\frac{\partial}{\partial w_{ij}}\right] = 2\sum_{x} \left(\left[b_{xi} + \sum_{k \in N(i;x)} w_{ik}(r_{xk} - b_{xk})\right] - r_{xi}\right) \left(r_{xj} - b_{xj}\right)$$

- for $\lozenge \in \{\lozenge, \lozenge, \forall, \lozenge, \forall, \lozenge\}$
- else �/���=�
- Note: we fix movie i, go over all r_{xi} , for every movie $\diamondsuit = \diamondsuit \diamondsuit$; \diamondsuit , we compute $\diamondsuit / \diamondsuit \diamondsuit$

Recommendation as Optimization

• So far:
$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- Weights w_{ij} derived based on their role; no use of an arbitrary similarity measure $(w_{ij} \neq s_{ij})$
- Explicitly account for interrelationships among the neighboring movies
- Next: Latent factor model
 - Extract "regional" correlations

The Netflix challenge

- \$1M prize competition
- Input: huge training dataset
- Goal: improve root mean square prediction error rate of 10% compare to Netflix algorithm
- 40000+ teams from 186 countries (5000+ teams with valid submissions)
- Begins October 2006, winners in June 2009

Performance of various methods

Grand Prize: Factorization Models

- A Short History of Factorization Models
 - 1901 Pearson [1901] invents PCA.
 - 1976 Wiberg [1976] generalizes PCA to PCA with missing values.
 - 1999 Roweis [1998] and Tipping and Bishop [1999] provide a probabilistic interpretation for PCA.
 - 2003-2005 Srebro and Jaakkola [2003] and Srebro et al.
 [2005] introduce L2 regularization into matrix factorization models.
 - 2006 Funk [2006] and Bell et al. [2007] popularize matrix factorization as leading method in the Netflix price.
 - 2008 Singh and Gordon [2008] systematize matrix factorization models
 - with different losses, feature constraints, etc.
 - as well as for several matrices.

- 矩阵分解及矩阵分解的方法
 - 三角分解、满秩分解、QR分解、Jordan分解、 SVD (Singular Value Decomposition)

SVD:

- -任意一个M*N的矩阵A(M行*N列, M>N), 可以被写成三个矩阵的乘积: A=U*S*VT
 - U: M*M列正交矩阵
 - S: M*N的对角线矩阵, 矩阵元素非负
 - VT: N*N的列正交矩阵的转置

• 假设评分矩阵A每一列代表一个user, 每一行 代表一个item:

	Tom	Ben	John	Fred
Season1	5	5	0	5
Season2	5	0	3	4
Season3	3	4	0	3
Season4	0	0	5	3
Season5	5	4	4	5
Season6	5	4	5	5

• 假设评分矩阵A每一列代表一个user, 每一行 代表一个item:

$$A = \begin{bmatrix} 5 & 5 & 0 & 5 \\ 5 & 0 & 3 & 4 \\ 3 & 4 & 0 & 3 \\ 0 & 0 & 5 & 3 \\ 5 & 4 & 4 & 5 \\ 5 & 4 & 5 & 5 \end{bmatrix}$$

对A进行奇异值分解: [U,S,Vtranspose] = svd(A)

- 奇异值矩阵S:
 - 对角线矩阵、对角线元素非负、依次减小
 - 取S对角线上前k个元素,例如k=2,则将S(6*4) 降维成S(2*2),同时,U(6*6)和Vtranspose(4*4) 相应地变为U(6*2)和Vtranspose(4*2)
 - 即:

```
U =

-0. 4472  -0. 5373
-0. 3586   0. 2461
-0. 2925  -0. 4033
-0. 2078   0. 6700
-0. 5099   0. 0597
-0. 5316   0. 1887
```

```
S = 17.7139 0
0 6.3917
```

```
Vtranspose =
-0.5710 -0.2228
-0.4275 -0.5172
-0.3846 0.8246
-0.5859 0.0532
```

• U*S*VT得到A2:

-A2=U(1:6,1:2)*S(1:2,1:2)*(V(1:4,1:2))'

$$A2 = \begin{bmatrix} 5.2885 & 5.1627 & 0.2149 & 4.4591 \\ 3.2768 & 1.9021 & 3.7400 & 3.8058 \\ 3.5324 & 3.5479 & -0.133 & 2.8984 \\ 1.1475 & -0.642 & 4.9472 & 2.3846 \\ 5.0727 & 3.6640 & 3.7887 & 5.3130 \\ 5.1086 & 3.4019 & 4.6166 & 5.5822 \end{bmatrix}$$

- 对比发现: A2和A很接近, k越接近于N, A2和A越接近
- SVD将一个高维矩阵分解为两个低维矩阵
- 从信息论的角度,若数据之间存在相关性 ,则有可压缩性
- 考察A中数据的相关性:
 - 将U的第一列当成x轴上的值,第二列当成y轴上值,即U的每一行用一个二维向量表示
 - 同理V的每一行也用一个二维向量表示

- 直观上: U矩阵和V矩阵可以近似来代表A矩阵
- 近似的:将A矩阵压缩成U矩阵和V矩阵,而 k为压缩比例(对S矩阵取前k个奇异值)
- 寻找相似用户:
 - 假设,新用户Bob对season的评分向量为: [55 0005][™]
 - 则如何寻找Bob的相似用户?

$$Bob_2^T = Bob^T * U_2 * S_2^{-1}$$

$$Bob_{2}^{T} = \begin{bmatrix} 5 & 5 & 0 & 0 & 0 & 5 \end{bmatrix} \times \begin{bmatrix} -0.4472 & 0.5373 \\ -0.3586 & -0.2461 \\ -0.2925 & -0.4033 \\ -0.2078 & -0.6700 \\ -0.5099 & -0.0597 \\ -0.5316 & 0.1187 \end{bmatrix} \times \begin{bmatrix} 17.7139 & 0 \\ 0 & 6.3917 \end{bmatrix}^{-1}$$

$$Bob_2^T = [-0.3775 \ 0.0802]$$

• 找出最相似的用户,即Ben

Netflix数据的"SVD"分解: R≈Q·P^T (SVD: A = UΣV^T)

	users									f factors					
1		3			5			5		4			.1	4	.2
_		5	4			4			2	1	3		5	.6	.5
2	4		1	2		3	a 6	4	3	5			2	.3	.5
	2	4		5			4			2		≈	1.1	2.1	.3
2		4	3	4	2					2	5	ms	7	2.1	-2
1		3		3			2			4		ter	-1	.7	.3
2.0					R									(2

users										
1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6

PT

- 采用两个维度较低的矩阵的乘积Q·PT近似R
- R有很多缺失信息, 但暂时忽略这些信息
 - 通常,希望对打分的预测误差越小越好(误差通过与非空元素的比较来计算,从而空值元素并不对计算产生直接影响)

• 如何预测用户j对项目i的打分?

 $p_i = column j of P^T$

- 假设:用户对项目的真实评分和预测评分 之间的误差服从高斯分布
- 目标函数推导如下:

- 假设:用户对项目的真实评分和预测评分之间的误差服从高斯分布
- 目标函数推导如下; $p(R \mid U, V, \delta^2) = \prod \prod [N(R_{ii} \mid Q_i \cdot P_i^T, \delta^2)]$ $\ln p(R \mid U, V, \delta^2) = -\frac{1}{2\delta^2} \sum_{i=1}^{M} \sum_{j=1}^{N} (R_{ij} - Q_i \cdot P_j^T)^2 - \frac{1}{2} ((\sum_{j=1}^{M} \sum_{j=1}^{N} (\ln \delta^2 + \ln 2\pi))$ 最小化 $\sum_{M}^{M} \sum_{ij}^{N} (R_{ij} - Q_i \cdot P_i^T)^2$

• 最后得到矩阵分解的目标函数,即SSE (sum of the squared errors):

$$L = \sum_{i=1}^{M} \sum_{j=1}^{N} (R_{ij} - Q_i \cdot P_j^T)^2$$

- 最优解:使SSE取值最小
- 优化方法:
 - 交叉最小二乘法(alternative least squares)
 - 随机梯度下降法(stochastic gradient descent)

• 交叉最小二乘法

$$\frac{\partial L}{\partial Q_{i}} = -2\sum_{i=1}^{M} \sum_{j=1}^{N} P_{j}^{T} (R_{ij} - Q_{i} \cdot P_{j}^{T})$$
 分别令L对Q_i和 P_{j} 的偏导为零
$$\frac{\partial L}{\partial P_{j}} = -2\sum_{i=1}^{M} \sum_{j=1}^{N} Q_{i} (R_{ij} - Q_{i} \cdot P_{j}^{T})$$

$$P_{j} = \frac{\sum_{i=1}^{M} R_{ij} Q_{i}}{\sum_{j=1}^{M} Q_{i} Q_{i}}$$

• 随机梯度下降法:

$$Q_{i} = Q_{i} - \gamma \frac{\partial L}{\partial Q_{i}}$$

$$P_{j} = P_{j} - \gamma \frac{\partial L}{\partial P_{j}}$$

- 一个问题: 当用户-项目评分矩阵A非常稀疏时, 就会出现过拟合
- 一个解决方案: 正则化 (regularization)
- 引入正则化项后目标函数:

$$L = \sum_{i=1}^{M} \sum_{j=1}^{N} (R_{ij} - Q_i \cdot P_j^T)^2 + \lambda_1 ||Q_i||^2 + \lambda_2 ||P_j||^2$$

Pros:

- 比较容易实现
- 比较低的时间和空间复杂度
- 预测的精度比较高
- 非常好的扩展性

• Cons:

- 推荐的结果可解释性差
 - user-factor matrix和item-factor matrix, 其中的factor 很难用具体概念来解释
 - 不过,矩阵分解的过程相当于一个软聚类的过程, 得到的每一个factor相当于每一个聚类后的分组

Latent factor method: new advances

- Multi-Relational Factorization Models
- Bayesian Matrix Factorization
- Tensor Factorization Models for Higher Arity Relations
- Factorization Models Involving Time
- Factorization Machines

•