Instituto Politécnico Nacional

Escuela Superior de Cómputo

Ana Paola Nava Vivas

2CM4

Conversión de NFA a e-NFA, y de e-NFA a DFA:

Autómata finito no determinista, NFA:

(0+1)*01

Autómata finito no determinista, con épsilon (e-NFA).

Transformación de e-NFA a DFA:

 $1\mbox{-}$ Se deben encontrar las transiciones de épsilon para cada estado:

E-closure{q1}	{q1,q2,q4}
E-closure{q2}	{q2}
E-closure{q3}	{q1,q3}
E-closure{q4}	{q4}
E-closure{q5}	{q1,q5}
E-closure{q6}	{q6,q7}
E-closure{q7}	{q7}
E-closure{q8}	{q8}

2- Luego se debe dibujar la tabla de transiciones:

	0	1	Estado	0	1
→ {q1,q2,q4}	{q1,q2,q3,q4,q6,q7}	{q1,q2,q4,q5}	→A	В	С
{q1,q2,q3,q4,q6,q7}	{q1,q2,q3,q4,q6,q7}	*{q1,q2,q4,q5,q8}	В	В	*D
{q1,q2,q4,q5}	{q1,q2,q3,q4,q6,q7}	{q1,q2,q4,q5}	С	В	С
*{q1,q2,q4,q5,q8}	{q1,q2,q3,q4,q6,q7}	{q1,q2,q4,q5}	*D	В	С

3- Entonces ya se puede representar el autómata finito determinístico, DFA:

