Project 3, New York Ride-Share Price Prediction

Elliott Newman: Big Data Analytics:

ISE:4172

Presentation Outline

Problem Statement

- Ryde is a New York City start up company hoping to develop a ride-share smart phone app. Ryde currently has an algorithm that determines a ride's estimated fare but is hoping to make it more robust. There are many variables the algorithm that does not currently consider.
- I'm a Data Scientist hired to create a better way to estimate and predict prices for fares. My technique will be used in the next major app update.

Dataset Description

- Ryde is hoping to use New York Taxi and Limousine data, from recent years, to determine prices.
- Using the nyc.gov website, I gathered Yellow Taxi records from 2019 and 2020. Using sampling and reduction techniques, I merged all the data into a smaller dataset for analysis, and for usability in Google Colab.
- The next slides will review the data collection process and techniques I used to create my initial dataset.

Data Collection Process

The NYC.gov website has datasets on fare prices from January 2019- June 2020.

The data is mined/downloaded and saved in memory of the PySpark application.

Using PySpark, both 2019 and 2020 yellow taxi data are saved in a PySpark dataframe.

Main Data Mining Techniques for Data Collection

- Getting all of the 2019 and 2020 taxi fare data required loading in 18 csv files.
 Here is the programming procedure I used:
- 1. Created each website url as a string with a for loop ('https://s3.amazonaws.com/.../yellow_tripdata_2020-01.csv')
- 2. Using the '!wget' command, saved each dataset
- 3. Read in each .csv file as a PySpark dataframe
- Used stratified random sampling to sampled each monthly dataframe, without replacement, and saved each sampled dataframe as its own variable.
- 5. Merged the sampled dataframes into one dataframe
- 6. Saved my training/test set to local machine in a .csv file to bypass rerunning web downloading steps again

Data Processing, Derived Variables

- After getting my data imported, I went through the variable selection and data cleaning process.
- I selected recommended variables for analysis. They needed to work within a regression model.
- Dropped null values
- Removed negative trip fares/travel distance values
- Converted strings to integers- Day of Week "1" through "7" to 1-7 for One Hot encoding
- Dummy variable creation
- Derived the taxi ride time from subtracting pickup date from drop-off date

- Packages/Methods used for data preparation:
- PySpark dateformat
- PySpark StringType
- PySpark IntegerType
- .between / .otherwise method
- Functools reduce
- Pyspark.Sql

Variables Used and Created

PICKUP TIME

YEAR

MONTH

DAY OF THE WEEK

AMERICAN HOLIDAY

TAXI RIDE **DURATION**

TRAVEL DISTANCE

Categorical/Time Variable represented as dummy 0/1

> Quantitative Variable

Dataset

This table shows the first 5 rows of the dataset, with dummy variables created for categorical variables. These are all examples of Data from Wednesday, January 1st, 2020 around midnight

<pre>df = df.select('2019','Mo df.show(5)</pre>	onth_dummy',	'Day_dum	my','N	Morning', 'N	oon', '	Afternoon',	'Evening	', 'Late N	ight', 'D	uration', 'Rus	h Hour','	Holiday', 'trip_distance', 'fare_amo
++	Day_dummy M	lorning N	+ oon A 1	 fternoon Eve	+ ning Lat	 te Night Du	ration Ru	sh Hour Ho	liday tri	 p_distance far 	+ e_amount +	
0 (12,[1],[1.0]) (7,[0	0	0	0	1	1125	0	1	2.42	13.0	
0 (12,[1],[1.0]) (7,[0	0	0	0	1	611	0	1	1.56	8.5	
0 (12,[1],[1.0]) (7,[0	0	0	0	1	1982	0	1	3.22	20.5	
0 (12,[1],[1.0]) (7,[[3],[1.0])	0	0	0	0	1	389	0	1	1.1	6.0	
] (/) [([ك - 1] ر ك - 1) [

Notes:

- I used One-Hot encoding for Months and Day of the week
- Duration of ride is in seconds.
- Holidays include Christmas Day, New Years Day, 4th of July, Thanksgiving Day, Memorial Day, and Labor Day
- Rush hour is from 7:00 a.m. 9:00 a.m., and 4:00 p.m. 6:00 p.m.

Data Dimensions:

252,817 Rows

11 independent Columns

1 target variable

Summary Statistics-

4	+		+				
j	summary	2019	Morning	Noon	Afternoon	Evening	Late Night
j	count	252817					252817
	mean	0.6665216342255466	0.19935368270329923	0.10278976492878247	0.220720916710506	0.29953286369191945	0.17767001427910306
ĺ	stddev	0.47145670481388074	0.3995152352936398	0.30368469494168093	0.4147334975454707	0.4580543168272847	0.38223547481778436
	min	0	0	0	0	0	0
	25%	0	0	0	0	0	0
	50%	1	0	0	0	0	0
ĺ	75%	1	0	0	0	1	0
	max	1	1	1	1	1	1
4			L			L	

	summary summary 	Duration	Rush Hour	Holiday	trip_distance	fare_amount
-		3950.753947466595 394	0.19970176056198752 0.3997769372457771 0 0 0 0 0	252817 0.010058659030049403 0.09978738294418403 0 0 0 0		• 1
-	++1			+	+	+

Exploration of the Sample Set

I looked at some visualizations and other stats to get a better overview of the data I was working with, and noticeable trends

Most of the test set has data from 2019

There is a .88 correlation between miles traveled and fare price

Average fare amounts for Holidays and Days of the week. No noticeable outlier averages.

₽	C	fare_amount
	Holiday	
	0	13.133695
	1	13.887959

₽		fare_amount	
	DOW_Numb		
	1	13.344262	
	2	13.097132	
	3	13.173227	
	4	13.370718	
	5	13.268927	
	6	12.449302	
	7	13.308415	

Linear Regression

- To begin modeling, I ran a basic .7 / .3 split of a simple Linear Regression model in PySpark.
- Here are the Training and Testing results

--TRAINING RESULT METRICS--

rMSE: 5.925766740041358 MAE: 2.263170195450732 MSE: 35.11471145738039

R2: 0.7630959258446076

Adjusted R2: 0.7630585396853626

--TEST RESULT METRICS--

rMSE: 5.665148590383364

MAE: 2.2566045510773387

MSE: 32.09390855112262

R2: 0.7775819629482204

Adjusted R2: 0.7775000086774289

--INTERCEPT--4.1979145617731675

Test Set Residuals and Coefficients


```
--COEFFICIENTS-
0.0 -0.766933098374347 -0.6077161280070266 -0.6680859571500605
-0.5517995611041213 -0.41281620391838514 -0.3126130528354665 -0.17734165496951595
-0.3732800889281817 -0.05338040603152217 0.01914699203804622 -0.05975468135459216
0.0 0.22824792416719483 0.524526650966548 0.662967722641735
0.7647777442519437 0.665448894588537 0.20587349589489454 0.6215984180729297
1.214492500798028 1.2417664562964559 0.5606208586243349 0.05952869843483893
4.674236537896589e-05 0.27755033193129736 -0.678220635757679 2.740025894038772
```

The residual plot is used to look at the dispersion of predicted fare values compared to residuals. A residual plot is "good" for your model if there aren't clear patterns, they residuals symmetrically distributed, and near 0 on the y axis. I considered the plot in my final model evaluation slide.

Coefficients represent the effect and positive or negative direction of features on the predicted fare value.

Decision Tree Regression

• I also ran a Decision Tree Regressor. Decision trees are classification or regression algorithms that find a predicted value using a tree structure. Documentation is available in Spark for decision trees. Here are the results of the model.

RMSE: 5.34134

MSE: 28.5299

R^2: 0.79817

MAE: 1.76543

DT Model depth: 5

DT Model Numb nodes: 63

```
dt_model.featureImportances

SparseVector(29, {3: 0.0003, 7: 0.0, 8: 0.0005, 9: 0.0002, 24: 0.0017, 25: 0.1444, 28: 0.8529})
```

Features 25 and 28 are Duration and Trip Distance. They have high importance values for features of the model.

Final Model Comparison

Linear Regression

- In our case, the model had a Lower R^2 and higher error values
- This model has a dispersed pattern in the residuals, though some large residuals are clustered near smaller fare values.
- Easily interpretable for business audiences (XW + b, intercept + coefficients)
- Can use backwards Linear Regression to "improve" the model and look for statistically significant features
- Works well for linear data
- Training Time Complexity: O((p^2)n)+p^3)

Decision Tree Regression

- Higher R^2 Value, lower errors
- Metrics for training set error evaluation not as readily available in the DecisionTreeRegressor() function as Linear Regression
- Can describe feature Importance
- Tunable parameters to improve modelsuch as tree depth
- Can work well for non-linear data
- Training Time Complexity: O((n^2)p)

Final Evaluation

Overall, there are benefits of both models approaches. The decision tree has a higher R^2 and lower test error metrics. Based on this alone, it would qualify as the "better" model.

References

- Blog.americansafetycouncil.com
- Classmates
- Dad and aunt, Brooklyn natives
- Matplot Documentation
- Mygeodata.cloud
- Nytimes.com
- Spark Documentation
- Stackoverflow
- Towardsdatascience.com