Question 1	
i.	ii.
Total Cost = $50,000 + 25x + 10x^2$ (1 mark)	$C = \frac{50,000 + 25x + 10x^2}{}$
	x
	(1 mark)
iii.	iv.
$C = 50,000x^{-1} + 25 + 10x$	
dC -2 -2 -2 -3 -4 - 3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	x > 0
$\frac{dC}{dx} = -50,000x^{-2} + 10 = 0$ for turning point	(1 mark)
	v.
$\frac{50,000}{x^2} = 10 \text{ (1 mark)}$	
$10x^2 = 50,000$	$\frac{dC}{dx} $
$x^2 = 5,000$	dx
x = 70.7 (1 mark)	10
$If x < 70.7, \frac{dC}{dx} < 0$	y = 10
$\frac{1}{dx}$ $\frac{1}{dx}$	
If $x > 70.7$, $\frac{dC}{dx} > 0$ (1 mark)	
$\int_{0}^{\infty} \frac{11 x > 70.7}{dx} > 0 \text{ (1 mark)}$	
\therefore minimum cost when $x = 70.7$	(70.7,0)
x = 71 to nearest whole number.	
	x = 0
	• 1 mark for shape
	• 1 mark for shape • 1 mark for x intercept
	-
	T mark for labeling vertical asymptote
	1 mark for labeling horizontal asymptote

a.		
<i>y</i> =	20x +	20

Gradient of tangent = 20

(1 mark)

b.

$$y = Ax^2$$
$$y = 20x + 20$$

At point of tangency

$$Ax^2 = 20x + 20$$
 (1 mark)

$$Ax^2 - 20x - 20 = 0$$

At point of tangency, only one solution

$$b^2 - 4ac = 0 \quad (1 \text{ mark})$$

$$400 + 80A = 0$$

$$80A = -400$$

$$A = -5$$
 (1 mark)

c.

$$y = -5x^2$$

$$y = 20x + 20$$

$$-5x^2 = 20x + 20$$

$$5x^2 + 20x + 20 = 0$$

$$x^2 + 4x + 4 = 0$$

$$(x+2)^2 = 0$$

$$x = -2$$
 (1 mark)

When
$$x = -2$$
, $y = -5 \times -2^2$

$$y = -20$$
 (1 mark)

(-2, -20)

d.

$$y = 20x + 20$$

X intercept when y = 0

$$20x + 20 = 0$$

$$20x = -20$$

$$x = -1$$

- 1 mark for parabola positioned correctly
- 1 mark for line
- 1 mark for point (0,20)
- 1 mark for point (-1,0)
- 1 mark for point (-2,-20)

	,		`
Δ	1	1	١
c.	1	1	

1 mark for shading correct region in graph on page 2.

e.(ii)

$$A = \int_{-2}^{0} (20x + 20 + 5x^{2}) dx$$
 (1 mark)

$$A = 10x^2 + 20x + \frac{5x^3}{3}\Big|_{-2}^{0}$$
 (1 mark)

$$A = 0 - \left[40 - 40 - \frac{40}{3}\right]$$

$$A = 13\frac{1}{3}$$
 sq units. (1 mark)

f.

$$y = 2x + c$$

$$y = 20x + 20$$

When
$$x = -3$$
, $y = -40$

$$-40 = 2 \times -3 + c$$

$$-40 = -6 + c$$

$$c = -34$$

$$\therefore y = 2x - 34$$

(1 mark)

Question 3

ล.

$$Pr = \frac{\binom{7}{1}\binom{3}{1}}{\binom{10}{2}} \quad (1 \text{ mark})$$

$$Pr = 0.467 (1 \text{ mark})$$

b

$$Pr = \frac{\binom{5}{2} \binom{5}{0}}{\binom{10}{2}} \quad (1 \text{ mark})$$

$$Pr = 0.222$$
 (1 mark)

c.

$$Mean = n \times \frac{D}{N}$$

$$n = 2, N = 7, D = 3$$
 (1 mark)

Mean =
$$2 \times \frac{3}{7} = 0.857$$
 (1 mark)

7

$$Pr(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

$$n = 3, x = 2, p = \frac{2}{3}$$
 (1 mark)

$$\Pr(X = 2) = {3 \choose 2} \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^1$$

$$Pr(X = 2) = 0.444$$
 (1 mark)

Question 3 (continued)

e. (i)

Pr. Laura wins a set = $\frac{1}{5}$

Pr. Laura wins at least one set = 1 - Pr Laura wins 0 sets (1 mark)

Pr. Laura wins at least one set = $1 - {3 \choose 0} \left(\frac{1}{5}\right)^0 \left(\frac{4}{5}\right)^3 (1 \text{ mark})$

Pr. Laura wins at least one set = $1 - \frac{64}{125}$

Pr. Laura wins at least one set = $\frac{61}{125}$ = 0.49(1 mark)

e.(ii)

Binomial

Mean = np

 $Mean = 10 \times \frac{4}{5}$

Mean = 8 (1 mark)

f.(i)

$$Pr(X > 27) = 1 - Pr(X < 27)$$

$$= 1 - Pr(Z < \frac{27 - 30}{2}) \quad (1 \text{ mark})$$

$$= 1 - Pr(Z < -1.5)$$

$$= 1 - Pr(Z > 1.5)$$

$$= 1 - [1 - Pr(Z < 1.5)]$$

$$= Pr(Z < 1.5)$$

$$= 0.9332 \quad (1 \text{ mark})$$

f.(ii)

$$1 - Pr(X=0) = 0.9844$$

$$Pr(X=0) = 0.0156$$

Let there be n balls in the box

$$(0.5)^n = 0.0156$$
 (1 mark)

 $n\log_{10}(0.5) = \log_{10}0.0156$

$$n = \frac{\log_{10} 0.0156}{\log_{10} 0.5}$$

n=6 (1 mark)

Question 4		
a.(i) 100 °C (1 mark)		a.(ii) $100 = 20 + A \times e^{0} \text{ (1 mark)}$ $100 = 20 + A$ $A = 80 \text{ (1 mark)}$
a.(iii) From the information given, $T = 70$ °C when $t = 10$	(1 mark)	a.(iv) $T = T_0 + Ae^{kt}$ $70 = 20 + 80e^{10k}$ $50 = 80e^{10k}$
		$0.625 = e^{10k}$ (1 mark) $10k = \log_e 0.625$ (1 mark) 10k = -0.47 k = -0.047 k = -0.05 to two decimal places (1 mark)
b.(i) $T - T_0 = Ae^{kt}$ $\theta = 80e^{-0.05t} (1 \text{ mark})$ $\frac{d\theta}{dt} = -4e^{-0.05t} (1 \text{ mark})$		b.(ii) $\frac{d\theta}{dt} = -4e^{-0.05t}$ For all values of $t, e^{-0.5t} > 0$ $\therefore -4 \times e^{-0.5t} < 0 \text{ for all values of } t$ (1 mark)
b.(iii) When $t = 10$ $\frac{d\theta}{dt} = -4e^{-0.5}$ = -2.426 °C/ min (1 mark)		$\mathbf{b.(iv)} \atop \theta = 80e^{-0.05t}$
		 1 mark for shape 1 mark for point (0,80)

END OF SUGGESTED SOLUTIONS 2002 Mathematical Methods Trial Examination 2

KILBAHA PTY LTD (Publishers in Education)	TEL: (03) 9817 5374
ABN 47 065 111 373	FAX: (03) 9817 4334
PO BOX 2227 KEW VIC 3101 AUSTRALIA	chemas@chemas.com
	www.chemas.com