# PREDICTING ELECTRICITY PRICE PREDICTIONUSING DEEPLEARNING

#### TEAM LEADER

723721243038: PRAJEESH P

**Phase2 Submission Document** 

**Project:** Electricity Price Prediction



## **Introduction:**

- Electricity price prediction is a fascinating area of study that focuses on forecasting the future prices of electricity.
- It involves using historical data, along with various statistical and machine learning techniques, to analyze and predict the fluctuations in electricity prices.
- This prediction can be valuable for both consumers and energy providers, as it helps them make informed decisions regarding energy usage, pricing strategies, and resource allocation.
- The goal is to develop accurate models that consider factors such as market conditions, weather patterns, supply and demand dynamics, and regulatory policies to anticipate electricity price movements.
- By leveraging advanced analytics and data-driven insights, electricity price prediction can contribute to optimizing energy consumption, reducing costs, and promoting sustainability

# **Content for Project Phase2:**

Consider exploring advanced regression techniques like Gradient Boosting or XGBoost forimprovedPredictionaccuracy.

# **DataSource:**

A good data source for electricity price prediction using deep learning should beAccurate, Complete, Coveringthegeographicareaofinterest, Accessible.

DatasetLink:( <a href="https://www.kaggle.com/datasets/chakradharmattapalli/electricity-price-prediction">https://www.kaggle.com/datasets/chakradharmattapalli/electricity-price-prediction</a>)

| Day Mo | onth | Year | PeriodOfDay | ForecastWindProduction | SystemLoadEA | SMPEA | ORKTemperature | ORKWindspeed | CO2Intensity | ActualWindProduction | SystemLoadEP2 | SMPEP2 |
|--------|------|------|-------------|------------------------|--------------|-------|----------------|--------------|--------------|----------------------|---------------|--------|
| 1      | 11   | 2011 | 0           | 315.31                 | 3388.77      | 49.26 | 6              | 9.3          | 600.71       | 356                  | 3159.6        | 54.32  |
| 1      | 11   | 2011 | 1           | 321.8                  | 3196.66      | 49.26 | 6              | 11.1         | 605.42       | 317                  | 2973.01       | 54.23  |
| 1      | 11   | 2011 | 2           | 328.57                 | 3060.71      | 49.1  | 5              | 11.1         | 589.97       | 311                  | 2834          | 54.23  |
| 1      | 11   | 2011 | 3           | 335.6                  | 2945.56      | 48.04 | 6              | 9.3          | 585.94       | 313                  | 2725.99       | 53.47  |
| 1      | 11   | 2011 | 4           | 342.9                  | 2849.34      | 33.75 | 6              | 11.1         | 571.52       | 346                  | 2655.64       | 39.87  |
| 1      | 11   | 2011 | 5           | 342.97                 | 2810.01      | 33.75 | 5              | 11.1         | 562.61       | 342                  | 2585.99       | 39.87  |
| 1      | 11   | 2011 | 6           | 343.18                 | 2780.52      | 33.75 | 5              | 7.4          | 545.81       | 336                  | 2561.7        | 39.87  |
| 1      | 11   | 2011 | 7           | 343.46                 | 2762.67      | 33.75 | 5              | 9.3          | 539.38       | 338                  | 2544.33       | 39.87  |
| 1      | 11   | 2011 | 8           | 343.88                 | 2766.63      | 33.75 | 4              | 11.1         | 538.7        | 347                  | 2549.02       | 39.87  |
| 1      | 11   | 2011 | 9           | 344.39                 | 2786.8       | 33.75 | 4              | 7.4          | 540.39       | 338                  | 2547.15       | 39.87  |
| 1      | 11   | 2011 | 10          | 345.02                 | 2817.59      | 33.75 | 4              | 7.4          | 532.3        | 372                  | 2584.58       | 39.87  |
| 1      | 11   | 2011 | 11          | 342.23                 | 2895.62      | 47.42 | 5              | 5.6          | 547.57       | 361                  | 2641.37       | 39.87  |
| 1      | 11   | 2011 | 12          | 339.22                 | 3039.67      | 44.31 | 5              | 3.7          | 556.14       | 383                  | 2842.19       | 51.45  |
| 1      | 11   | 2011 | 13          | 335.39                 | 3325.1       | 45.14 | 5              | 3.7          | 590.34       | 358                  | 3082.97       | 51.4   |
| 1      | 11   | 2011 | 14          | 330.95                 | 3661.02      | 46.25 | 4              | 9.3          | 596.22       | 402                  | 3372.55       | 52.82  |
| 1      | 11   | 2011 | 15          | 325.93                 | 4030         | 52.84 | 5              | 3.7          | 581.52       | 368                  | 3572.64       | 53.65  |
| 1      | 11   | 2011 | 16          | 320.91                 | 4306.54      | 59.44 | 5              | 5.6          | 577.27       | 361                  | 3852.42       | 54.21  |
| 1      | 11   | 2011 | 17          | 365.15                 | 4438.05      | 62.15 | 6              | 5.6          | 568.76       | 340                  | 4116.03       | 58.33  |
| 1      | 11   | 2011 | 18          | 410.55                 | 4585.84      | 61.81 | 8              | 7.4          | 560.79       | 358                  | 4345.42       | 58.33  |
| 1      | 11   | 2011 | 19          | 458.56                 | 4723.93      | 61.88 | 9              | 7.4          | 542.8        | 339                  | 4427.29       | 58.33  |
| 1      | 11   | 2011 | 20          | 513.17                 | 4793.6       | 61.46 | ?              | ?            | 535.37       | 324                  | 4460.41       | 58.33  |
| 1      | 11   | 2011 | 21          | 573.36                 | 4829.44      | 61.28 | 11             | 13           | 532.52       | 335                  | 4493.22       | 58.27  |
| 1      | 11   | 2011 | 22          | 636.75                 | 4888.29      | 61.63 | 11             | 22.2         | 534.34       | 372                  | 4513.02       | 58.26  |
| 1      | 11   | 2011 | 23          | 683.59                 | 4936.25      | 62.12 | 11             | 18.5         | 530.08       | 415                  | 4490.71       | 58.26  |
| 1      | 11   | 2011 | 24          | 731.07                 | 4995.51      | 62.83 | 11             | 22.2         | 517.55       | 513                  | 4493.73       | 58.26  |
| 1      | 11   | 2011 | 25          | 780.23                 | 5044.68      | 60.2  | 11             | 20.4         | 506.83       | 623                  | 4481.31       | 58.15  |
| 1      | 11   | 2011 | 26          | 828.09                 | 5018.8       | 56.25 | 12             | 20.4         | 513.98       | 683                  | 4408.46       | 54.74  |
| 1      | 11   | 2011 | 27          | 873.81                 | 4916.93      | 56.25 | 11             | 24.1         | 518.96       | 711                  | 4341.14       | 54.74  |
| 1      | 11   | 2011 | 28          | 920.69                 | 4933.87      | 56.25 | 12             | 22.2         | 525.69       | 761                  | 4338.35       | 54.14  |
| 1      | 11   | 2011 | 29          | 985.09                 | 4978.87      | 56.25 | 11             | 25.9         | 528.47       | 750                  | 4294.17       | 53.6   |
| 1      | 11   | 2011 | 30          | 1044.37                | 5013.1       | 56.25 | 11             | 22.2         | 528.17       | 758                  | 4318.87       | 53.63  |
| 1      | 11   | 2011 | 31          | 1098.97                | 5061.1       | 56.25 | 11             | 24.1         | 513.22       | 805                  | 4375.62       | 53.63  |

## **Data Collection and Preprocessing:**

- ✓ Importing the dataset: Obtain a comprehensive dataset containing relevant featuressuchasForeCastWind production, SystemLoadEA, SMPEA, ORKTemprature, ORKWindspeed etc.
- ✓ Data preprocessing: Clean the data by handling missing values, outliers, andcategoricalvariables. Standardizeornormalizenumerical features.

# **Exploratory Data Analysis (EDA):**

- ✓ Visualize and analyze the dataset to gain insights into the relationships betweenvariables.
  - ✓ Identifycorrelationsandpatternsthatcaninformfeatureselectionandengineering.
  - ✓ Presentvarious data visualization stogain in sights into the dataset.
  - ✓ Explorecorrelations between features and the target variable (electricity price prediction).
  - ✓ DiscussanysignificantfindingsfromtheEDAphasethatinform featureselection.

# **Feature Engineering:**

- ✓ Createnewfeaturesortransformexistingonestocapturevaluableinformation.
- ✓ Utilize domain knowledge to engineer features that may impact electricity prices, such asproximitytoschools, college, other organization.
  - ✓ Explaintheprocessofcreatingnewfeaturesortransformingexistingones.
- ✓ Showcase domain-specific feature engineering, such as proximity scores or composite indicators.
  - ✓ Emphasizetheimpactofengineeredfeatures onmodelperformance.

#### Model Evaluation and Selection:

- Splitthedatasetintotrainingandtestingsets.
- Evaluate models using appropriate metrics (e.g., Mean Absolute Error, Mean SquaredError,R-squared)toassesstheirperformance.
  - Usecross-validationtechniquestotunehyperparametersandensuremodelstability.
- Compare the results with traditional linear regression models to highlightimprovements.
  - Selectthebest-performing model for further analysis.

## **Model Interpretability:**

- Explain how to interpret feature importance from Gradient Boosting and XGBoostmodels.
- Discuss the insights gained from feature importance analysis and their relevance toelectricitypriceprediction.
- Interpret feature importance from ensemble models like Random Forest and GradientBoostingtounderstandthefactors influencinghouseprices.

## **Deployment and Prediction:**

- Deploythechosenregressionmodeltopredict electricityprices.
- Develop a user-friendly interface for users to input property features and receive pricepredictions.
- Will reiterate the impact of these techniques onimproving the accuracy and robustness of house price predictions.
- Future Work: We will discuss potential avenues for future work, such as incorporating additional data sources (e.g., real-time economic indicators), exploring deep learning models for prediction, or expanding the project into a web application with more features and interactivities

## **PROGRAM:**

# **ELECTRICTY PRICE PREDICTION**

# # IMPORTING REQUIRED PACKAGES

import numpy as np import pandas as pd importmatplotlib.pyplot as plt importseaborn as sns importos

df = pd.read\_csv("C:/Users/Lenovo/Desktop/Electricity updated.csv", low\_memory = False) df

|    |     | HolidayFlag | DayOfWeek | WeekOfYear | Day | Month | Year | PeriodOfDay | For ecast Wind Production | SystemLoadEA | SMPEA | ORKTemperature | ORKWindspe |
|----|-----|-------------|-----------|------------|-----|-------|------|-------------|---------------------------|--------------|-------|----------------|------------|
|    | 0   | 0           | 1         | 44         | 1   | 11    | 2011 | 0           | 315.31                    | 3388.77      | 49.26 | 6              |            |
|    | 1   | 0           | 1         | 44         | 1   | 11    | 2011 | 1           | 321.8                     | 3196.66      | 49.26 | 6              | 1          |
|    | 2   | 0           | 1         | 44         | 1   | 11    | 2011 | 2           | 328.57                    | 3060.71      | 49.1  | 5              | 1          |
|    | 3   | 0           | 1         | 44         | 1   | 11    | 2011 | 3           | 335.6                     | 2945.56      | 48.04 | 6              |            |
|    | 4   | 0           | 1         | 44         | 1   | 11    | 2011 | 4           | 342.9                     | 2849.34      | 33.75 | 6              | 1          |
|    |     |             |           |            |     |       |      |             |                           |              |       |                |            |
| 38 | 009 | 1           | 1         | 1          | 31  | 12    | 2013 | 43          | 1179.14                   | 3932.22      | 34.51 | 6              | 2          |
| 38 | 010 | 1           | 1         | 1          | 31  | 12    | 2013 | 44          | 1152.01                   | 3821.44      | 33.83 | 5              | 2          |
| 38 | 011 | 1           | 1         | 1          | 31  | 12    | 2013 | 45          | 1123.67                   | 3724.21      | 31.75 | 4              | 2          |
| 38 | 012 | 1           | 1         | 1          | 31  | 12    | 2013 | 46          | 1094.24                   | 3638.16      | 33.83 | 5              | 1          |
| 38 | 013 | 1           | 1         | 1          | 31  | 12    | 2013 | 47          | 1064                      | 3624.25      | 33.83 | 5              | 1          |

# # CHECKING FOR NULL VALUES

df1 = df.isnull()
df1

|       | HolidayFlag | DayOfWeek | WeekOfYear | Day   | Month | Year  | PeriodOfDay | Forecast W ind P roduction | SystemLoadEA | SMPEA | ORKTemperature | ORKWinds |
|-------|-------------|-----------|------------|-------|-------|-------|-------------|----------------------------|--------------|-------|----------------|----------|
| 0     | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |
| 1     | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |
| 2     | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |
| 3     | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |
| 4     | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |
|       |             |           |            |       |       |       |             |                            |              |       |                |          |
| 38009 | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |
| 38010 | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |
| 38011 | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |
| 38012 | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |
| 38013 | False       | False     | False      | False | False | False | False       | False                      | False        | False | False          |          |

## # ADDING NULL VALUES

df1 = df.isnull().sum()

df1

```
Out[5]: HolidayFlag 0
DayOfWeek 0
WeekOfYear 0
Day 0
Month 0
Year 0
PeriodOfDay 0
ForecastWindProduction 0
SystemLoadEA 0
SMPEA 0
ORKTemperature 0
ORKWindspeed 0
CO2Intensity 0
ActualWindProduction 0
SystemLoadEP2 0
SMPEP2 0
SMPEP2 0
SMPEP2.1 0
dtype: int64
```

## # CHECKING THE DATA TYPES

df2 = df.dtypesdf2

```
Out[6]: HolidayFlag int64
    DayOfWeek int64
    WeekOfYear int64
    Day int64
    Month int64
    Year int64
    PeriodOfDay int64
    ForecastWindProduction object
    SystemLoadEA object
    ORKTemperature object
    ORKWindspeed object
    CO2Intensity object
    ActualWindProduction object
    SystemLoadEP2 object
    SystemLoadEP2 object
    SystemLoadEP2.1 object
    SystemLoadEP2.1 object
    SystemLoadEP2.1 object
    SystemLoadEP2.1 object
    dtype: object
```

#### # REPLACING SPECIAL CHARACTER WITH NULL VALUE

df.replace(to\_replace='?',value='0',inplace=True) df

## # CHECKING FOR ANY SPECIAL CHARACTERS IN FEATURES

df4 = df[df['ORKWindspeed']=='?'] df4

#### **# VISUALIZATION FOR ABOVE DATAS**

importseaborn as sns
importmatplotlib.pyplot as plt
correlations = df.corr(method='pearson')
plt.figure(figsize=(16, 12))
sns.heatmap(correlations, cmap="coolwarm", annot=True)
plt.show()



## # COVERTING THE FILE AS CSV

 $df.to\_csv(r'E:\file3.csv')$ 

df

#### # IMPORTING THE FILE

dtf1=pd.read\_csv("E:/file3.csv")

dtf1

#### # CONVERTING THE DATATYPES OF FEATURES

dtf1['ForecastWindProduction'] = dtf1['ForecastWindProduction'].astype(float) dtf1['SystemLoadEA'] = dtf1['SystemLoadEA'].astype(float) dtf1['SMPEA'] = dtf1['SMPEA'].astype(float) dtf1

#### # CHECKING THE DATA TYPES

dtf1.dtypes

Out[17]: Unnamed: 0 int64 int64 HolidayFlag DayOfWeek int64 WeekOfYear int64 int64 Month int64 Year int64 int64 PeriodOfDay ForecastWindProduction float64 SystemLoadEA float64 SMPEA ORKTemperature float64 SMPEA int64 float64 ORKWindspeed CO2Intensity ActualWindProduction float64 int64 float64 SystemLoadEP2 float64 SMPEP2 SystemLoadEP2.1 float64 SMPEP2.1 float64 dtype: object

#### # IMPLEMENTING LSTM MODEL

## # IMPORTING THE REQUIRED PACKAGES

import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.model\_selection import train\_test\_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense import matplotlib.pyplot as plt

#### # LOAD THE DATASET

data = pd.read\_csv("C:/Users/STUDENT/Desktop/Electricity updated.csv", low\_memory = False)

## **# SELECT THE FEATURES AND THE TARGET VARIABLES**

X = data[['ForecastWindProduction','SystemLoadEA','SMPEA', 'ORKTemperature', 'ORKWindspeed', 'CO2Intensity']].values
y = data['SystemLoadEP2.1'].values

#### # NORMALIZE THE FEATURE AND THE TARGET VARIABLES

scaler\_X = MinMaxScaler()
X = scaler\_X.fit\_transform(X)
scaler\_y = MinMaxScaler()
y = scaler\_y.fit\_transform(y.reshape(-1, 1))

#### # SPLIT THE DATAS INTO TRAINING AND TESTING

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=42)

#### # BUILD THE FEEDFORWARD NEURAL NETWORK

```
model = Sequential()
model.add(Dense(64, input_dim=X.shape[1], activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
```

#### # TRAIN THE MODEL

history = model.fit(X\_train, y\_train, epochs=5, batch\_size=32, validation\_data=(X\_test, y\_test), verbose=2)

```
Fpoch 1/5
951/951 - 3s - loss: 0.0064 - val_loss: 5.9933e-04 - 3s/epoch - 3ms/step
Epoch 2/5
951/951 - 2s - loss: 6.2950e-04 - val_loss: 5.9561e-04 - 2s/epoch - 2ms/step
Epoch 3/5
951/951 - 1s - loss: 6.3446e-04 - val_loss: 6.1864e-04 - 1s/epoch - 1ms/step
Epoch 4/5
951/951 - 2s - loss: 6.3290e-04 - val_loss: 5.7935e-04 - 2s/epoch - 2ms/step
Epoch 5/5
951/951 - 1s - loss: 6.4003e-04 - val_loss: 5.7708e-04 - 1s/epoch - 1ms/step
```

#### **# VISUALIZE THE TRAINING PROCESS**

```
plt.figure(figsize=(12, 6))
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
```

