

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

WOOD ANATOMY OF THE NEOTROPICAL SAPOTACEAE XXXV. URBANELLA

RESEARCH PAPER FPL 423

FOREST PRODUCTS LABORATORY
FOREST SERVICE
U.S. DEPARTMENT OF AGRICULTURE
MADISON, WIS.

OCTOBER 1982

This document has been equipment for public returns and sale, its distribution is undividual.

83 01 04 018

Abstract

Urbanella was described in 1890 but has remained submerged as a section of Calocarpum or as a synonym of Pouteria to the present day. Aubréville reinstated Urbanella in the early 1960's while Baehni maintained Calocarpum with Urbanella reduced to synonymy. Urbanella and Calocarpum have many features in common but can be readily separated by means of the parenchyma arrangement that is banded in Urbanella and reticulate in Calocarpum. Both genera have an unusually high silica content.

Preface

The Sapotaceae form an important part of the ecosystem in the neotropics; for example, limited inventories made in the Amazon Basin indicate that this family makes up about 25 percent of the standing timber volume there. This would represent an astronomical volume of timber but at present only a very small fraction is being utilized. Obviously, better information would help utilization--especially if that information can result in clear identification of species.

The Sapotaceae represent a well-marked and natural family but the homogeneous nature of their floral characters makes generic identification extremely difficult. This in turn is responsible for the extensive synonymy. Unfortunately, species continue to be named on the basis of flowering or fruiting material alone and this continues to add to the already confused state of affairs.

This paper on <u>Urbanella</u> is the thirty-fifth in a series describing the anatomy of the secondary xylem of the neotropical Sapotaceae. The earlier papers, all by the same author and under the same general heading, include:

I.	BumeliaRes. Pap. FPL 325	XVIII.	GomphilumaRes. Pap. FPL 362
II.	MastichodendronRes. Pap. FPL 326	XIX.	ChromolucumaRes. Pap. FPL 363
III.	DipholisRes. Pap. FPL 327	XX.	ManilkaraRes. Pap. FPL 371
IV.	AchrouteriaRes. Pap. FPL 328	XXI.	BarylucumaRes. Pap. FPL 372
V.	CalocarpumRes. Pap. FPL 329	XXII.	PradosiaRes. Pap. FPL 373
VI.	ChlorolumaRes. Pap. FPL 330	XXIII.	GayellaRes. Pap. FPL 374
VII.	ChrysophyllumRes. Pap. FPL 331	XXIV.	EcclinusaRes. Pap. FPL 395
VIII.	DiploonRes. Pap. FPL 349	XXV.	RagaiaRes. Pap. FPL 396
IX.	PseudoxytheceRes. Pap. FPL 350	XXVI.	MyrtilumaRes. Pap. FPL 397
Х.	MicropholisRes. Pap. FPL 351	XXVII.	SarcaulisRes. Pap. FPL 398
XI.	PrieurellaRes. Pap. FPL 352	XXVIII.	LabatiaRes. Pap. FPL 416
XII.	NeoxytheceRes. Pap. FPL 353	XXIX.	EglerodendronRes. Pap. FPL 417
XIII.	PodolumaRes. Pap. FPL 354	XXX.	Pseudocladia Res. Pap. FPL 418
XIV.	ElaeolumaRes. Pap. FPL 358	XXXI.	PouteriaRes. Pap. FPL 419
XV.	SandwithiodoxaRes. Pap. FPL 359	XXXII.	RichardellaRes. Pap. FPL 420
XVI.	ParalabatiaRes. Pap. FPL 360	XXXIII.	EnglerellaRes. Pap. FPL 421
XVII.	GambeyaRes. Pap. FPL 361	XXXIV.	Franchetella-EremolumaRes.
	•		Pap. FPL 422

Publication in this manner will afford interested anatomists and taxonomists the time to make known their opinions and all such information is hereby solicited. At the termination of this series the data will be assembled into a comprehensive unit.

WOOD ANATOMY OF THE NEOTROPICAL SAPOTACEAE

XXXV. URBANELLA

Ву

B. F. Kukachka, Botanist $\frac{1}{}$

Forest Products Laboratory, 2/ Forest Service U.S. Department of Agriculture

		2
Acce	ssion For	
NTIS	GRA&I	4
DTIC	TAB	F
Unani	nounced	H
Just:	ification_	
Ву		
Distr	ibution/	
Avai	lability	Codes
1	Avail and	
Dist	Special	
i	1	
	i 1	ĺ
H		ļ
44	<u> </u>	

Introduction

Urbanella was described by Pierre in 1890 based on Lucuma procera Martius from eastern Brazil, which became the generic type Urbanella procera (Martius) Pierre. Concurrently, Pierre described two new species, U. buchananiaefolia from the Peruvian Amazon and U. oblonga from Martinique. Within a few years these species were reduced to sectional status in the allied genus Calocarpum. Aubréville (1) was uncertain regarding the generic status of Urbanella and included it under Calocarpum in his key to the Poutériées. Later, Aubréville

Aubreville (1)— was uncertain regarding the generic status of <u>Urbanella</u> and included it under <u>Calocarpum</u> in his key to the Poutériées. Later, Aubréville (3) included <u>Urbanella</u> in his key to the Sapotaceae but as a "poorly known genus." Baehni (4) accepted <u>Calocarpum</u> as a valid genus but made <u>Urbanella</u> a synonym. Cronquist (5) reduced <u>Calocarpum</u> to a synonym of <u>Pouteria</u> as did Pilz (7), the most recent student of the family.

The woods of <u>Calocarpum</u> and <u>Urbanella</u> are quite similar in their physical appearance, but can be readily separated on the basis of parenchyma arrangement alone, which is reticulate in <u>Calocarpum</u> and banded in <u>Urbanella</u>. Additional differences are to be found in the ray height and intervessel pitting.

Description

General: Wood brown to dark brown, dull and lusterless. Specific gravity average of 0.83 with the individual specimens ranging from 0.65 to 0.96. Growth rings lacking or very indistinct. Bark dull red brown, very fine

SOUTH THE PROPERTY OF SOUTH AND SOUTH SOUTH

The state of the s

^{1/} Pioneer Research Unit, Forest Products Laboratory.

²/ Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

 $[\]underline{3}/$ Underlined numbers in parentheses refer to literature cited at the end of this report.

textured and apparently not laminated, 5-12 mm thick. Outer bark surface gray when cork cells are exposed, otherwise dull red brown. Froth test negative.

Anatomical:

PROBLEM BOOKS AND PROBLEM TO THE PROBLEM FOR THE PROBLEM TO THE PR

- Pores essentially diffuse in most species (fig. 1); tending to radial or clustered echelon arrangement in procera (fig. 3). Solitary pores present but most commonly in radial multiples of 2-4 (5), infrequently to 7-8. Maximum pore diameter of individual specimens ranging from 102 μ m (procera) to 173 μ m (excelsa) with an average of 149 μ m.
- Vessel member length averages 700 μm for all specimens, ranging from 580 to 860 μm in individual specimens. Tyloses thin-walled when present. Intervessel pitting mostly in the 4-6 μm diameter range.
- Axial parenchyma more or less regularly banded; the individual bands irregularly 1-3 (4) seriate. Cells with or without brown contents. Silica particles present and confined to cells with brown contents. Rhombic and microcrystals not observed.
- Wood rays 1-3 occasionally to in-part 4-seriate; heterocellular (figs. 2,4). The maximum body height of the multiseriate portion ranges from 118 to 473 µm with an overall average of 288 µm. Commonly with brown contents. Vessel-ray pitting irregular in shape and size but commonly linear or obovoid. Silica particles common: spheroidal; attaining diameters of 20-30 µm; present in all ray cell types. Rhombic and microcrystals not observed. Pitting on lateral walls of square and erect marginals distinct and abundant.
- Wood fibers moderately thick-walled; ranging in length from 1.03 to 1.69 mm with an overall average of 1.45 mm. Vascular tracheids present in all macerated material but frequently not detectable in prepared slides.
- Silica content determined by chemical analysis ranges from 0.29 percent (procera) to 5.44 percent (excelsa) with an average of 1.86 percent. The value of 5.44 percent is the highest value recorded for the family in over 1,000 analyses.

Diagnostic features: Wood dull brown, lusterless; with an average specific gravity of 0.83 (near family average of 0.87). Growth rings lacking or very indistinct. Pores diffuse in most species (radial or echelon in procera). Axial parenchyma banded; narrow. Wood rays 1-4 seriate; heterocellular. Silica commonly abundant and generally evidenced by "saw-burn" on the wood surfaces. Intervessel pitting 4-6 μm in diameter. Bark fine-textured and nonlaminated.

Similar in many respects to <u>Calocarpum</u> but here the axial parenchyma is reticulate. Approaches <u>Pouteria</u> in some respects but here the intervessel pitting is 6-8 or 8-10 μm in diameter.

<u>Notes</u>

- 1. Lucuma ephedrantha A. C. Smith (8) was described in 1936 and transferred to Calocarpum sp. by Baehni (4) in 1942. Wood specimens available for this study were from the type tree (Krukoff 5422) from Acre Territory and a second specimen, Krukoff 5163 from Amazonas. It is interesting to note that Smith stated "It is a species which falls into Pierre's genus Urbanella, related to Lucuma procera Mart." Anatomically it does not belong to Calocarpum as indicated by Baehni but to Urbanella.
- 2. <u>Lucuma excelsa</u> A. C. Smith (8) was described in 1936 and transferred to <u>Pouteria excelsa</u> (A. C. Smith) Baehni (4) in 1942. Aubréville (2) made the new combination <u>Urbanella excelsa</u> (A. C. Smith) Aubr. in 1963. This species is represented in this study by wood from the type tree (Krukoff 5177) and several others.
- 3. <u>Urbanella procera</u> (Mart.) Pierre is the generic type and is represented here by three specimens from Bahia: Curran 14, 25, and Froes 886.

of a Committee of Committee and Committee and Committee and Committee and Committee and Committee and Committee

- 4. Lucuma chiricana Standley (10) was described from Cooper & Slater 254 (the type) and Cooper & Slater 230, both of which were without flowers. The floral description was based on Cooper 445 or 457 (5) and on the basis of the wood specimens from these trees, they are neither Pouteria nor Urbanella and belong elsewhere. On the basis of the wood anatomy, this author has accepted Cooper & Slater 254, 230, and Forgeson 69A as belonging to Urbanella. Baehni (4) made the new combination Pouteria chiricana (Standley) Baehni but of "uncertain status." Cronquist (5) added the floral description which has been perpetuated by Pilz (7).
- 5. <u>Lucuma izabalensis</u> Standley (9) was described from sterile material (Whitford & Stadtmiller 35) collected in Guatemala. Baehni (4) made the new combination <u>Pouteria izabalensis</u> (Standley) Baehni providing a floral description and citing also J. Record 8841, which is the Yale wood collection. The citation should have been Record G-10. Cronquist (5) cited Englesing 46 from Nicaragua and several others in addition to the preceding. Anatomically, the three wood specimens available for this study, including wood from the type tree, belong to the "Calocarpum group" and specifically to <u>Urbanella</u>.
- 6. Lucuma sclerocarpa Pittier was based on a collection made by Pittier 4357 in Panama. It is still definitely known only from this type collection with accompanying wood specimens. Baehni (4) excluded this specimen from consideration in Pouteria and regarded it as Calocarpum sp. Cronquist (5) referred this specimen to Pouteria making the new combination P. sclerocarpa (Pittier) Cronquist. Lundell (6) made the new combination Calocarpum sclerocarpum (Pittier) Lundell in 1976. The wood anatomy is that of Urbanella rather than Calocarpum.

- 7. Pouteria cooperi Cronquist (5) was described from Cooper 499, which is still only known from the type collection in Panama. Cronquist had placed this species in his "Calocarpum group" and in 1976 Lundell (6) made the new combination Calocarpum cooperi (Cronquist) Lundell. On the basis of the wood anatomy and bark characteristics this specimen is like Pouteria (sensu Aubréville) rather than Calocarpum or Urbanella.
- 8. For a comparison with <u>Calocarpum</u> see the earlier paper in this series, FPL Res. Pap. 329 (1978).

Literature Cited

- 1. Aubréville, Andre. 1961. Notes sur des Poutériées Américaines. Adansonia 1(2):170.
- 2. Aubréville, Andre. 1963. Sapotacées Américaines combinaisons nouvelles. Adansonia 3(1):21.
- 3. Aubréville, Andre. 1964. Sapotacées. Adansonia, Memoire No. 1:81.

THE PARTY OF THE P

- 4. Baehni, Charles.
 1942. Mémoires sur les Sapotacées. II. Le genre <u>Pouteria</u>.
 Candollea 9:426-427.
- Cronquist, Arthur.
 1946. Studies in the Sapotaceae. II. Survey of the North American genera. Lloydia 9(4):259-291.
- 6. Lundell, Cyrus L.
 1976. Studies of American plants XII. Sapotaceae.
 Wrightia 5(7):252-253.
- 7. Pilz, George E. 1981. Sapotaceae of Panama. Ann. Missouri Bot. Gard. 68(1):186-202.
- 8. Smith, A. C. 1936. Plantae Krukovianae-V. Brittonia 2:158-159.
- Standley, Paul C.
 1925. An enumeration of the Sapotaceae of Central America. Trop.
 Woods 4:6.
- Standley, Paul C.
 1929. Studies of American plants. I. Sapotaceae. Field Mus. Nat. Hist. IV(8):251-252.

Table 1. -- Selected measurements of specimens examined 1/-- Urbanella

	Collector and number	Sp. gr.	Si	MPD	VML	FL	IV	~	MBH	Source
			3-61	围					旦	
an bodront bo	Kriikoff 5163	0.81	1.46	165	780	1.55	9	2	339	Brazil
and in an and a	Krukoff 5422	0.80	0.65	158	650	1.39	9	7	173	Brazil
وه [مريم	1880 A89	0.92	5.44	165	700	1.43	9	7	260	Brazil
201010	Froes 106	0.65	1.39	142	280	1.03	4	7	394	Brazil
	Krukoff 5177	0.89	0.78	165	860	1.68	9	က	315	Brazil
	Krukoff 5397	0.82	3.02	165	999	1.35	9	က	355	Brazil
	Krukoff 5534	0.78	2.00	173	700	1.51	9	æ	434	Brazil
	Rosa, N. A. 219		1.90	158	720	1.56	9	7	118	Brazil
	Rosa, N. A. 617			173	630	1.32	9	4	315	Brazil
aracord	Curran 14	0.88	1.79	110	680	1.69	4-5	7	339	Brazil
N. Contraction	Curran 25	0.89	0.88	134	989	1.45	9	7	252	Brazil
	Froes 886	0.92	0.29	102	860	1.32	4-5	7	339	Brazil
chiricana	Cooner & Slater 230	0.81	1.20	158	710	1.35	9-9	7	158	Panama
3000	Coner & Slater 254	0.76	3.80	134	099	1.55	9-9	က	291	Panama
	l	96.0	1.61	158	700	1.52	9-7	7	118	Panama
izabalensis	Enolesino 46	0.81	1.54	134	710	1.54	9-4	က	355	Nicaragua
	Record G-10	0.82	2.10	158	820	1.58	9-7	က	315	Guatemala
	Whitford & Stadtmiller 35	0.88	1.99	134	710	1.52	9-4	ო	473	Guatemala
sclerocarpa	Pittier 4357	0.77	1.72	142	620	1.18	4-5	2	134	Panama

1/ Sp. gr. = specific gravity; Si = silica content; MPD = maximum tangential pore diameter; VML = vessel member length average; FL = fiber length; IV = intervessel pit diameter; R = maximum ray seriation; MBH = maximum body height of multiseriate portion of wood ray. Silica analysis by Martin F. Wesolowski, Chemist, FPL.

Figure 1.--<u>Urbanella excelsa</u>, pore and parenchyma arrangement(Krukoff 5177 (Type), Amazonas, Brazil) X 30.

Figure 3.--Urbanella procera, pore and parenchyma arrangement (Curran 14, Bahia, Brazil) X 30.

Figure 2.--Same as figure 1, tangential section X 110.

Figure 4.--Same as figure 3, tangential section X 110.

U.S. Forest Products Laboratory

SCHOOLS OF SCHOOLS STATES OF STATES

Wood anatomy of the neotropical Sapotaceae: XXXV. Urbanella, by B. F. Kukachka, FPL.

6 p. (USDA For. Serv. Res. Pap. FPL 423).

Urbanella was described in 1890 but has remained submerged as a section of Calocarpum or as a synonym of Pouteria to the present day. Aubréville reinstated Urbanella in the early 1960's while Baehni maintained Calocarpum with Urbanella reduced to synonymy. Urbanella and Calocarpum have many features in common but can be readily separated by means of the parenchyma arrangement that is banded in Urbanella and reticulate in Calocarpum. Both genera have an unusually high silica content.

END

FILMED

2-83

DTIC