

Creating the next BIG HIT.

Team: Group 4

LIN FANGZHOU(A0261850H)
YAN ZIHAN(A0261738X)
CHEN YUMENG (A0261899H)
SHI KECHEN (A0261672A)
SU CHEN (A0261760H)

1.1 Industry Overview

The supermarket industry is a highly competitive and dynamic sector

- Impacted by the rise of e-commerce, online shopping, as well as changes in consumer behavior
- As the economy recovered, physical stores receive an onslaught from competitors

Food retailer in Europe, with its headquarters in the UK

Voted Britain's Favorite Supermarket

7 years running

By customers in the Grocer Gold Awards

1.2 Business Problems

1 Deepen customer understanding

Keep business growing & Retain loyal customers

Discover potential profitsand growth opportunities

3 Campaign design

2.1 Project Management Plan

Business Understanding

- Project scope definition
- Resourcing and scheduling
- Industry overview

Data Preparation

- Data exploration
- Data cleaning
- Data transformation

ITERATIVE

Delivery & Presentation

- Insight summary

Analytics Stage

- Clustering analysis & customer profiling
- RFM model to segment customers
- propensity modeling
- Calculate customers' CLV
- Design dashboard to monitor campaign

2.2 Data Preparation

1. Data Exploration

Determine which data to use

3. Data Transformation

Derive new attributes for subsequent analysis

2. Data Cleaning

Correct, impute or remove erroneous value

2.2 Data Exploration

Column Group Name	Description	Columns Included	Туре	Structured or Unstructured	Sample Value
Demo_info	Customers' ID and demographic information	'ID','Year_Birth', 'Education', 'Marital_Status', 'Income', 'Kidhome', 'Teenhome'	Int & Char	Structured	16, 1999-Aug-01, Primary School, Single, 58138.0, 1, 0
Buying_info	Customers' buying amount for different categories of goods	'MntWines','MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds'	Int	Structured	635, 289, 88, 290, 283, 309
Promo_info	Customers' response to previous campaigns	'AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'Response'	Int	Structured	0,0,0,0,1,1
Loyal_info	Customers' joining date of Tesco, and number of days since the last purchase	'Dt_Customer', 'Recency', 'Complain'	Int & Char	Unstructured	2000-01-27, 80, 0
Purchase_beha ve_info	Customers' behavioral data on different purchase channels	'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth'	Int	Structured	10, 8, 9, 3, 8

3.1 K-Means

- Just use Demo_info and Buying_info in clustering
- Exclude categorical variables when clustering: [Education], [Marital Status]

	Year_Birth	Income	Wines	Fruits	Meat	Fish	Sweet	Gold	Children	Expenses	Time_Enrolled_ Days
count	2240	2240	2240	2240	2240	2240	2240	2240	2240	2240	2240
mean	1969	52247	304	26	167	38	27	44	0.95	606	538
std	12	25038	337	40	226	55	41	52	0.75	602	232
min	1893	1730	0	0	0	0	0	0	0	5	26
25%	1959	35539	24	1	16	3	1	9	0	69	367
50%	1970	51742	174	8	67	12	8	24	1	396	539
75%	1977	68290	504	33	232	50	33	56	1	1046	711
max	1996	666666	1493	199	1725	259	263	362	3	2525	1089

3.1 K-Means

Cluster Comparison										
N cluster	CCC	Best								
3	1.83052									
4	2.01093	Optimal CCC								
5	-1.7331									
6	2.74849									

3.1 K-Means

Clusters by income & expense

Cheap customers are the youngest; Elite customers mainly include elites with high education and high income

Value Spend Percentage (%) of Clusters (The proportion of each category that is allocated to a particular cluster)

- Good Customers are main consumers of daily necessities, such as meat, fruit, fish, etc.
- Elite Customers are the major buyers of gold and wine
- Generally, Economical and cheap customer group show low spending habits

Good Customers

- High incomes and high spending habits
- · high education
- main consumers of daily necessities

Elite Customers

- Highest incomes and highest spending habits
- major buyers of gold and wine

Economical Customers

Lower incomes and low spending habits

Cheap Customers

- Lowest spending habits
- youngest group

Data Preparation

Data used: loyal_info, purchase_behave_info, buying_info

- Recency Number of days since customer's last purchase
- Frequency Total number of transactions
- Monetary Total transactions value

	ID	necelicy	riequency	Wildlietary	receiley_score	irequericy_score	monetary_score	HIM_SOONE
0	5524	58	25	1617	3	5	5	35
1	2174	38	6	27	4	1	1	41
2	4141	26	21	776	4	4	4	44
3	6182	26	8	53	4	2	1	42
4	5324	94	19	422	1	4	3	14

Hurdle Rules

More than 1 purchase, spend>10

Customer Segmentation

Customer belongs to one of the ten segments

- Champions----->Bought recently, buy often and spend the most
- Loyal Customers----->Buy on a regular basis. Responsive to promotions.
- Potential Loyalist----->Recent customers with average frequency.
- Recent Customers----->Bought most recently, but not often.
- Promising----->Recent shoppers, but haven't spent much.
- Customers Needing Attention----->Above average recency, frequency and monetary values. May not have bought very recently though.
- About To Sleep----->Below average recency and frequency. Will lose them if not reactivated.
- At Risk----->Purchased often but a long time ago. Need to bring them back!
- Can't Lose Them---->Used to purchase frequently but haven't returned for a long time.
- Hibernating----->Last purchase was long back and low number of orders. May be lost.

Segment Visualization

Segment Visualization

		Recency		Frequency		Monetary		
		mean	count	mean	count	mean	count	
	segment							
	about_to_sleep	48.912088	182	7.252747	182	80.510989	182	
	at_Risk	78.086455	347	17.976945	347	930.123919	347	
	cant_loose	79.611111	162	26.000000	162	1199.253086	162	
	champions	9.166667	168	22.845238	168	1067.440476	168	
•	hibernating	79.883152	368	7.527174	368	102.524457	368	
	loyal_customers	39.478261	345	23.156522	345	1120.031884	345	
	need_attention	50.243243	74	15.364865	74	719.094595	74	
	new_customers	9.460177	113	5.460177	113	48.840708	113	
potential_loyalists		18.882530	332	12.638554	332	442.027108	332	
	promising	29.747664	107	5.448598	107	39.102804	107	

3.4 CLTV Model

Model Introduction*

Buy Till You Die(BTYD) model is built on 4 metrics which are closely related to the ones used for RFM segmentation

BG/NBD Model

- The buying process which models the probability a customer makes a purchase
- The dying process (or dropout) which models the *probability a customer quit and never purchase again*

$$CLV = \sum_{n=1}^{N} \frac{Value_n * Retention^n}{(1 + DiscountRate)^n}$$

*more assumptions and details for the model can be found in the appendix

3.4 CLTV Model

CLTV Estimation

Top 10 CLTV customers (LTV for next 12 months, assume a monthly discount rate of 1%)

	ID	Frequency	Recency	Age	Monetary_value	segment	LTV
333	1826	14	110	110	79.33	potential_loyalists	2806.89
686	8029	14	131	158	108.07	potential_loyalists	2832.24
1486	9264	21	159	160	74.45	champions	2853.27
1138	7959	10	109	128	124.55	potential_loyalists	2888.92
1046	3005	22	149	156	71.74	champions	2925.99
1431	10133	24	218	234	93.96	champions	2956.30
1838	2186	21	178	208	102.59	loyal_customers	3089.57
1544	5350	17	204	233	140.28	loyal_customers	3190.55
1159	5735	17	204	233	140.28	loyal_customers	3190.55
1681	477	21	78	109	98.05	loyal_customers	3904.41

We use Logistic Regression to generate the Propensity Score

Confusion Matrix of Test Data (Cutoff: 0.3)

Accuracy	86.3%
Recall Rate	58.1%
Precision	56.5%

ID	Response	Likely Response	Probability	Segment	CLV
5524	1	1	0.47411	loyal_customers	693.5018
2174	0	0	0.031584	promising	44.77978
4141	0	0	0.020632	loyal_customers	598.9745
6182	0	0	0.043139	potential_loyalists	73.49592
5324	0	0	0.039552	at_Risk	130.1774
7446	0	0	0.01743	champions	577.7868
965	0	0	0.068375	loyal_customers	280.5526
6177	0	0	0.233774	potential_loyalists	110.3127
4855	1	1	0.314662	new_customers	34.71968
5899	0	1	0.790744	hibernating	94.67202
387	0	0	0.013892	hibernating	32.41275
2125	0	0	0.034024	at_Risk	
8180	0	0	0.047543	need_at Accord	ling to the
2569	0	0	0.047652		ted CLV and

Score Band	Total no. of customers	% Total Customers	Cum % of Customers	Good Customer	Good Customer %	Cumulative Good Customer %	Lift	Good Customer Coverage %	Cumulative Good Customer Coverage	CLV
1	23	1.04%	1.04%	19	82.61%	82.61%	5.49	5.71%	5.7%	1380.178
2	18	0.81%	1.85%	15	83.33%	82.93%	5.54	4.50%	10.2%	1284.302
3	17	0.77%	2.62%	14	82.35%	82.76%	5.48	4.20%	14.4%	984.6935
4	20	0.90%	3.52%	18	90.00%	84.62%	5.99	5.41%	19.8%	1031.995
5	21	0.95%	4.47%	16	76.19%	82.83%	5.07	4.80%	24.6%	732.6851
6	16	0.72%	5.19%	10	62.50%	80.00%	4.16	3.00%	27.6%	920 3877
7	19	0.86%	6.05%	15	78.95%	79.85%	5.25	4.50%	The first (l O bondo o
8	34	1.53%	7.58%	23	67.65%	77.38%	4.50	6.91%		l8 bands c
9	9	0.41%	7.99%	5	55.56%	76.27%	3.70	1.50%		customers
10	29	1.31%	9.30%	15	51.72%	72.82%	3.44	4.50%		h probabili
11	28	1.26%	10.56%	14	50.00%	70.09%	3.33	4.20%	respondir	ng to the
12	38	1.72%	12.28%	21	55.26%	68.01%	3.68	6.31%	campaigr	1
13	39	1.76%	14.04%	8	20.51%	62.06%	1.36	2.40%		
14	41	1.85%	15.89%	11	26.83%	57.95%	1.78	3.30%	61.3%	429.1416
15	55	2.48%	18.37%	11	20.00%	52.83%	1.33	3.30%		
16	81	3.66%	22.03%	18	22.22%	47.75%	1.48	5.41%		ined 65.5 %
17	108	4.88%	26.91%	20	18.52%	42.45%	1.23	6.01%		s only have
18	167	7.54%	34.45%	29	17.37%	36.96%	1.16	8.71%	about 159	√of custor
19	384	17.34%	51.78%	29	7.55%	27.11%	0.50	8.71%	with a hig	h probabili
20	1068	48.22%	100.00%	22	2.06%	15.03%	0.14	6.61%	respondir	
Total	2215	100%		333.00	15.03%		1.00	100.00%	campaigr	~

Lift Chart

We combined Response and CLV, divided all customers into four quadrants.

4 Campaign Plan

1 Campaign Objectives

2 Customer Targeting

Campaign Test Experimentation

Performance Measurement

4.1 Campaign Objectives

- Exploit high net worth value customers
 - CLTV and RFM analysis

- Increase sales and increase customer loyalty
 - RFM analysis and propensity model (Y is response)

- Optimize the budget usage (Assume \$10k)
 - Require customization for limited customers with high ROI(>\$1.3) low CPC(<\$30)
 - Channel selection based on the CLTV of customers
 - Message + Email for Tier 1 customers
 - Email for the rest of target customers

4.2 Customer Targeting

CLTV+Propensity Model

Reduce the budget and enhance the ROI (Objective 3)

4.3 Campaign Design

Ideas: Store utilizes frequency of customer purchases and the average spend per order to extrapolate customer value to differentiate the customer bands. Given the response propensity and combined with RFM score, to customize our content (mainly Promo code) to target to-be-maintained customers to achieve the objectives 1,2: Promote customer relationship and increase sales from profitable customers.

Observation Period: Oct 22 – Mar 23

Scoring month: Apr 23 (Now) Performance: May 23 - Oct 23

Previous Campaign 1	May-22	Jun-22		Oct-22	Nov-22	Dec-23		Feb-23	Mar-23		May-23					
Previous C	ampaign 2	Jun-22	Jul-22		Nov-22	Dec-22	Jan-23		Mar-23	Apr-23		Jun-23				
Previous Campaign 3		Jul-22	Aug-22		Dec-22	Jan-23	Feb-23		Apr-23	May-23		Jul-23				
Previous Campaign 4 Aug-2				Aug-22	Sep-22		Jan-23	Feb-23	Mar-23		May-23	Jun-23		Aug-23		
			Previous C	ampaign 5	Sep-22	Oct-22		Feb-23	Mar-23	Apr-23		Jun-23	Jul-23		Sep-23	
This campaign						Oct-22	Nov-22		Mar-23	Apr-23	May-23		Jul-23	Aug-23		Oct-23
variable:									(Today	,					

Dependent variable:

Good(Tag 1): New purchases And entered the promo code we sent (Accept new campaign)

Bad(Tag 0): New purchases Without entering the promo code we sent (Not brought by the new campaign)

4.4 Campaign Test Experimentation

Test, Control Group

Model Effectiveness(BAU)

Comparsion C1~C2

Campaign Effectiveness

Comparsion Test~C2

4.4 Campaign Measurement

- Conversion Rate ~ Sales(AB testing)
- ROI=Campaign Rev-Campaign Cost
- CPC= Cost/#conversion

Ref: Klipfolio

Basic Metrics(In time):
 Volume, Reach, Response
 Profirability, Viewability, Change%

3.4 CLTV Model

Model Introduction

 $CLV = \sum_{n=1}^{N} \frac{Value_n * Retention^n}{(1 + DiscountRate)^n}$

Buy Till You Die(BTYD) model is built on 4 metrics which are closely related to the ones used for RFM segmentation:

- Frequency: The number of repeated purchases the customer made after his first date of first purchase
- Age (Time): The period the customer has been enrolled in the company, expressed in days, weeks or even months. <u>Age = Last</u> <u>date in dataset - first customer purchase date</u>
- Recency: The age of the customer when he made its last purchase.
 <u>Recency = Last customer purchase date first customer purchase date</u>
- Monetary value: The <u>average</u> amount spent by a customer

3.4 CLTV Model

Model Introduction

$$CLV = \sum_{n=1}^{N} \frac{Value_n * Retention^n}{(1 + DiscountRate)^n}$$

Assumptions for BG/NBD model:

- While active, the number of transactions made by a customer follows a Poisson distribution with transaction rate λ
- Heterogeneity in transaction rate λ follows a Gamma
 distribution (each customer has its own probability of buying)
- After any transaction, a customer becomes inactive with probability p.
 The point at which a customer "drops out" (or "die") is distributed across the transactions according to a Geometric distribution
- Heterogeneity in p (dropout probability) follows a Beta distribution
- The transaction rate λ and the dropout probability p vary independently across customers

