Array Element Assignments

CS 536: Science of Programming, Spring 2023

2023-04-03 pp. 2,4

A. Why?

• Array assignments aren't like assignments to plain variables because the actual item to change can't be determined until runtime. We can handle this by extending our notion of assignment and/or substitution.

B. Outcomes

After this class, you should

- Know how to perform textual substitution to replace an array element.
- Know how to calculate the wp of an array element assignment.

C. Array Element Assignments

- An array assignment $b[e_0] := e_1$ (where e_0 and e_1 are expressions) is different from a plain variable assignment because the exact element being changed may not be known at program annotation time. E.g., compare these two triples:
 - $\{T\}x := y; y := y + 1\{x < y\}$ • Valid:
 - *Invalid*: {*T*}*b*[*k*]:=*b*[*j*]; *b*[*j*]:=*b*[*j*]+1{*b*[*k*]<*b*[*j*]}
- The problem is what happens if k = j at runtime: What is wp(b[j] := b[j] + 1, b[k] < b[j])?
- The answer should be something like "If $k \neq j$ then b[k] < b[j] + 1 else b[j] + 1 < b[j] + 1". (Note the else clause is false.)
- There are two alternatives for handling array assignments. The one we'll use involves defining the wp of an array assignment using an extended notion of textual substitution:

$$wp(b[e_0]:=e_1,p)\equiv p[e_1/b[e_0]]$$
 and $\{p[e_1/b[e_0]\}b[e_0]:=e_1\{p\}$

- Of course, we need to figure out what syntactic substitution for an array indexing expression means: $(predicate)[expression/b[e_0]]$
- Side note: The other way to handle array assignments, the Dijkstra / Gries technique, is to introduce a new kind of expression and view the array assignment $b[e_0] := e_1$ as short for b := thisnew kind of expression.

D. Substitution for Array Elements

• We'll need to substitute into expressions and predicates. We'll tackle expressions first; below.

- If b and d are different arrays, then a substitution like (b[m])[6/d[2]) should simply $\equiv b[m]$. The situation can be more complicated: The substitution (b[e])[6/d[2]) has to recursively look for substitutions to do inside *e*.
 - $(b[e_2])[e_0/d[e_1]] \equiv b[e_2']$ where $e_2' \equiv (e_2)[e_0/d[e_1]]$. [2023-04-03]
- When the the array names match, as in $(b[k])[e_0/b[e_1]]$, we have to check the indexes k and e_0 for equality at runtime; to do that, we can use a conditional expression.
- Definition (Substitution for an Array Element) Simpler situation
 - At runtime, if $k = e_1$, then $(b[k])[e_0 / b[e_1]] = e_0$. If $k \neq e_1$, then $(b[k])[e_0 / b[e_1]] = b[k]$. (The sense of "=" here is that the two expressions evaluate to the same value.)
 - Textually, $(b[k])[e_0/b[e_1]] \equiv if k = e_1 then e_0 else b[k] fi$.
- Example 1: $(b[k])[5/b[0]] \equiv (if k = 0 \text{ then } 5 \text{ else } b[k] \text{ fi}).$
- **Example 2**: $(b[k])[e_0/b[j]] \equiv (if k = j \text{ then } e_0 \text{ else } b[k] \text{ fi})$.
- Example 3: $(b[k])[b[j]+1/b[j]] \equiv (if k = j \text{ then } b[j]+1 \text{ else } b[k] \text{ fi}).$
 - Note: In $(b[k])[e_0/b[e_1]]$, we don't substitute into e_0 , even if it involves b.
- Example $4:(b[k])[b[i]/b[j]] \equiv (if k = j then b[i] else b[k] fi)$.

The General Case for Array Element Substitution

- When e_2 is not just a simple variable or constant, then in $(b[e_2])[e_0/b[e_1]]$, we have to check e_2 for uses of b[...] and substitute for them also.
- Definition (Substitution for an Array Element) General Case

```
(b[e_2])[e_0/b[e_1]] \equiv if e_2' = e_1 \text{ then } e_0 \text{ else } b[e_2'] \text{ fi where } e_2' \equiv (e_2)[e_0/b[e_1]].
```

• This subsumes the earlier case, since if $e_2 \equiv k$ then $e_2' \equiv k [e_0 / b[e_1]] \equiv k$. We get $(b[k])[e_0 / b[e_1]] \equiv if k = e_1 \text{ then } e_0 \text{ else } b[k] \text{ fi}$

Example 5

- Consider (b[b[k]])[5/b[0]] how should it behave? The inner, nested b[k] should behave like 5 if k = 0, otherwise it should behaves like b[k] as usual. The outer b[...] should behave like 5 if its index behaves like 0, otherwise it should behave as b[...].
- · Following the definition above, we get

```
(b[b[k]])[5/b[0]] \equiv if e_2' = 0 \text{ then } 5 \text{ else } b[e_2'] \text{ fi}
      where e_2' \equiv (b[k])[5/b[0]] \equiv (if k = 0 \text{ then } 5 \text{ else } b[k] \text{ fi})
```

• Substituting the (textual) value of e_2 gives us

```
(b[b[k]])[5/b[0]]
    \equiv if (if k = 0 then 5 else b[k] fi) = 0
     then 5
     else b [if k = 0 then 5 else b [k] fi] fi
```

• After optimization, this is equivalent to if k = 0 then b[5] else if b[k] = 0 then b[b[k]] fifi.

-2-

E. Optimization of Static Cases

- Because $e[e_0/b[e_1]]$ can result in a complicated piece of text, it can be useful to shorten it using various optimizations, similarly to how compilers can optimize code.
- All the optimizations below are intended to be done "statically" (at compile time) we inspect the text of an expression before the code ever runs.
- For the easiest examples, if we know whether or not $k = e_1$, the index of b we're looking for, then we can optimize *if* $k = e_0$ *then* e_1 *else* e_2 *fi* to just the true branch or the false branch.
- *Notation:* $e_1 \mapsto e_2$ (" e_1 optimizes to e_2 ") means we can replace expression e_1 with e_2 .

General Principle (Static Optimizations)

- (Restricted case): For $(b[k])[e_0/b[e_1]]$
 - If $1 = e_1$, then $(b[k])[e_0 / b[e_1]] \mapsto e_0$.
 - If $k \neq e_1$, then $(b[k])[e_0 / b[e_1]] \mapsto b[k]$.
- (General case): For $(b[e_2])[e_0 / b[e_1]]$, let $e_2' \equiv (e_2)[e_0 / b[e_1])$
 - If $e_2' = e_1$, then $(b[e_2])[e_0/b[e_1]] \mapsto e_0$.
 - If $e_2' \neq e_1$, then $(b[e_2])[e_0/b[e_1]] \mapsto b[k]$.
- **Example 6**: $(b[0])[e_1/b[2]] \equiv if 0 = 2$ then e_1 else b[0] $fi \mapsto b[0]$.
- **Example** 7: $(b[2])[e_1/b[2]] \equiv if 2 = 2$ then e_1 else b[2] $fi \mapsto e_1$.
- Example 8:
 - $(b[0])[e_0/b[1]] \equiv if 0 = 1$ then e_0 else b[0] $fi \mapsto b[0]$.
 - $(b[1])[e_0/b[1]] \equiv if 1 = 1$ then e_0 else b[1] $fi \mapsto e_0$.
 - $(b[1])[3/b[2]] \equiv if 1 = 2$ then 3 else b[1] $fi \mapsto b[1]$.
 - $(b[x])[e_0/b[x]] \equiv if x = x$ then e_0 else b[x] $fi \mapsto e_0$.

F. Rules for Simplifying Conditional Expressions

- Let's identify some general rules for simplifying conditional expressions and predicates involving them. This will let us simplify calculation of wp for array assignments.
 - (if T then e_1 else e_2 fi) $\mapsto e_1$.
 - (if F then e_1 else e_2 fi) $\mapsto e_2$.
 - (if B then e else e fi) \mapsto e.
 - If $(B \rightarrow e_1 = e_2)$, then (if B then e_1 else e_2 fi) $\mapsto e_2$.
 - If $(\neg B \rightarrow e_1 = e_2)$, then (if B then e_1 else e_2 fi) $\mapsto e_1$.

¹ The fuller version is "If we know that ... then ... \mapsto ..."

- Let \ominus be a unary operator or relation and \oplus be a binary operation or relation
 - \ominus (if B then e_1 else e_2 fi) \mapsto (if B then $\ominus e_1$ else $\ominus e_2$ fi)
 - (if B then e_1 else e_2 fi) $\oplus e_3 \mapsto$ (if B then $e_1 \oplus e_3$ else $e_2 \oplus e_3$ fi)
 - $b[if B then e_1 else e_2 fi] \mapsto if B then b[e_1] else b[e_2] fi$
 - For any function f(...), $f(if B then e_1 else e_2 fi) \mapsto if B then <math>f(e_1) else f(e_2) fi$
- If B, B_1 , and B_2 are boolean expressions, then
 - (if B then B_1 else F fi) \Leftrightarrow ($B \land B_1$)
 - (if B then F else B_2 fi) \Leftrightarrow $(\neg B \land B_2)$
 - (if B then B_1 else T fi) \Leftrightarrow $(B \rightarrow B_1) \Leftrightarrow (\neg B \lor B_1)$
 - (if B then T else B_2 fi) $\Leftrightarrow (\neg B \rightarrow B_2) \Leftrightarrow (B \lor B_2)$
 - (if B then B_1 else B_2 fi) \Leftrightarrow ((B \rightarrow B₁) \land (\neg B \rightarrow B₂)) \Leftrightarrow ((B \land B₁) \lor (\neg B \land B₂)).
- We can also do reordering of *if-else-if* chains. E.g.,
 - if B_1 then e_1 else if B_2 then e_2 else e_3 fi evaluates e_1 if B_1 (regardless of B_2); it evaluates $e_2[2023-04-03]$ if $\neg B_1 \land B_2$; and it evaluates e_3 if $\neg B_1 \land \neg B_2$.
 - So we (for example) swap e_2 and e_3 by changing the test slightly:

```
• if B_1 then e_1 else if B_2 then e_2 else e_3 fi
     \mapsto if B_1 then e_1 else if \neg B_2 then e_3 else e_2 fi
  or
     \mapsto if \neg B_1 \land B_2 then e_2 else if B_1 then e_1 else e_3 fi
  and so on.
```

- Similarly, we can move an inner *if else* from the true branch of an outer *if else* to the false branch of the outer if - else, in order to make an if-else-if chain. For example,
 - if B_1 then if B_2 then $/*B_1 \wedge B_2 */e_1$ else $/*B_1 \wedge \neg B_2 */e_2$ fi else $/*\neg B_1 */e_3$ fi \mapsto if $\neg B_1$ then e_3 else if B_2 then e_1 else e_2 fi fi
- Example 9:

```
wp(b[i] := b[i] + 1, b[k] < b[i])
    \equiv (b[k] < b[i])[b[i] + 1/b[i]]
    \equiv (b[k])[b[i]+1/b[i]]<(b[i])[b[i]+1/b[i]]
    \equiv if \ k = j \ then \ b[j] + 1 \ else \ b[k] \ fi < b[j] + 1
     \Leftrightarrow if k = j then b[j] + 1 < b[j] + 1 else b[k] < b[j] + 1 fi
     \Leftrightarrow if k = j then F else b[k] < b[j] + 1 fi
    \Leftrightarrow k \neq j \land b[k] < b[j] + 1
```

This gives us the following correctness triple:

```
\{k \neq j \land b[k] < b[j] + 1\}b[j] := b[j] + 1\{b[k] < b[j]\}
```

G. Swapping Array Elements

- To illustrate the use of array references, let's look at the problem of swapping array elements.
- To swap simple variables x and y using a temporary variable u, we can use logical variables cand d and prove

```
{x = c \land y = d} u := x; x := y; y := u {x = d \land y = c}
```

• We can prove this program correct by expanding to a full proof outline; here we're using wp.

```
\{x = c \land y = d\}
{y = d \land x = c} u := x;
{y = d \land u = c} x := y;
\{x = d \land u = c\} y := u
\{x = d \land y = c\}
```

• *Example 10*: For swapping *b* [*m*] and *b* [*n*], we want to prove

```
\{b[m] = c \land b[n] = d\}u := b[m]; b[m] := b[n]; b[n] := u\{b[m] = d \land b[n] = c\}
```

As with simple variables, we can prove this holds by using wp to expand to the full proof outline.

```
Let p \equiv b[m] = c \land b[n] = d and q \equiv b[m] = d \land b[n] = c, then we can prove
    \{p\}\{q_3\}u := b[m]; \{q_2\}b[m] := b[n]; \{q_1\}b[n] := u\{q\}
by using
```

- $q_1 \equiv wp(b[n] := u, q) \equiv q[u/b[n]],$
- $q_2 \equiv wp(b[m] := b[n], q_1) \equiv q_1[b[n]/b[m]]$

// Continuing with logical manipulation

- $q_3 \equiv wp(u := b[m], q_2) \equiv q_2[b[m]/u]$
- (and hopefully) $p \rightarrow q_3$

We'll do this in steps.

```
• q_1 \equiv q[u/b[n]]
     \equiv (b \lceil m \rceil = d \land b \lceil n \rceil = c) \lceil u / b \lceil n \rceil \rceil
     \equiv (b \lceil m \rceil = d) \lceil u / b \lceil n \rceil \rceil \wedge (b \lceil n \rceil = c) \lceil u / b \lceil n \rceil \rceil
     \equiv (b[m])[u/b[n]] = d \wedge (b[n])[u/b[n]] = c
     \equiv (if m = n then u else b [m] fi) = d \land u = c // Stop here for a purely syntactic result
• q_2 \equiv q_1[b[n]/b[m]]
     \equiv ((if m = n then u else b[m] fi) = d \land u = c)[b[n] / b[m]]
     \equiv (if m = n then u else (b[m])[b[n]/b[m]] fi) = d \land u = c
     \equiv (if m = n then u else b[n] fi) = d \land u = c
• q_3 \equiv q_2[b[m]/u]
     \equiv ((if m = n then u else b[n] fi) = d \wedge u = c)[b[m] / u]
     \equiv (if m = n then b[m] else b[n] fi) = d \land b[m] = c)
```

$$\Leftrightarrow (\textit{if } m = n \textit{ then } b [n] \textit{ else } b [n] \textit{ fi}) = d \land b [m] = c)$$

$$// \text{ Because if } m = n \text{ then } b [m] = b [n]$$

$$\Leftrightarrow b [n] = d \land b [m] = c.$$
• Since $p = b [m] = c \land b [n] = d$, we get $p \rightarrow q_3$. (End of Example 10)