

Introduction to Scientific Computing

What is Research Computing?

- Anything beyond basic IT needs that are required to accomplish research
 - High Performance Computing
 - Large Scale Storage
 - Scientific Software
 - Instrumentation
 - Exotic Architectures
- Faculty of Arts and Sciences (FAS) RC is the largest RC group at Harvard and run Odyssey

High Performance Computing

- Also known as HPC/Supercomputing
- Goal: Solve computationally challenging problems by pushing hardware to the limit and orchestrating thousands of nodes.
- Basic Components
 - Compute Cluster
 - Interconnect
 - Scheduler
 - Operating System (OS)

Compute Cluster

Building Blocks

- Core: Fundamental unit of compute includes its own cache
- Central Processing Unit (CPU): Made up of multiple Cores on a single die
- Random Access Memory (RAM): Memory shared by all the Cores on a Node.
- Node: A single motherboard with RAM and multiple CPU's
- Chassis: Holds nodes (also called blades) and shares power and cooling
- Rack: Holds Chassis along with storage and network switches
- Row: Multiple Racks in a single group
- Datacenter: Collection of Rows that is contained in a single room

Interconnect

Ethernet

- Typically 1 Gb/s but many new systems use 10/100 Gb/s
- Used for normal maintenance operations.

Infiniband

- Low latency high bandwidth interconnect.
- Current generation HDR (High Data Rate) is 200 Gb/s
- Provides RDMA (Remote Direct Memory Access)
- Used for computation and storage access

Scheduler

- The scheduler adjudicates who gets what part of the cluster and when
- Types of Schedulers
 - Slurm
 - SGE (Sun Grid Engine)
 - PBS (Portable Batch System): Moab, TORQUE
 - Condor

Operating System (OS)

- The basic environment that the cluster runs on
- Types of OS's
 - CentOS/RedHat Enterprise Linux 7
 - Ubuntu
 - Windows
 - Mac
- Shell
 - bash
 - c-shell

Large Scale Storage

Classes

- Home Directories
- Lab Storage
- Scratch
- Archive

Storage Technology

Storage Devices

- Hard Drive
- Solid State Drive
- Intel Optane
- RAMFS/Tmpfs

Filesystem Types

- Network File System (NFS)
- Lustre
- Spectrum Scale (aka gpfs)
- CephFS
- ZFS
- Other filesystems: glustre, btrfs, moosefs
- Enterprise Storage Solution (Isilon)
- Cloud Storage: S3 standard
- Tape Library

Data Lifecycle

- 1. Data is gathered from instruments or generated by code.
- Data is reduced in size by pre analysis to only those portions of the data that are important to the scientific question.
- 3. Data is analyzed and scientific results generated.
- 4. Data is cataloged and archived for future use

Note: Scripts that analyze the data and especially codes that generate Data are themselves data that should be archived for posterity and future use.

Scientific Software Classes

- Basic scripts to do rudimentary work
- Very sophisticated scripts that handle bulk analysis
- Code that runs instrumentation and push out data
- Numerical Simulation Codes
- Software Libraries

Version Control

- Allows tracking of changes and enables easy collaboration on codes.
- Defacto standard is git
- Defacto standard repository is github
- All code regardless of scale should be version controlled and backed up on at an external site.
 - It should also be documented

Modules and Containers

Modules

- Allow for a great variety of software to be installed without all of it being loaded for a user.
- The user selects only those modules they need
- Prevents the loading of conflicted libraries

Containers

- Allow for exotic and complex software stacks
- Gives greater flexibility to the user while preserving the ability of the administrator to maintain a modern OS and make changes.
- Defacto standards: Docker and Singularity

Software Best Practices

- Document your code both internally and externally
- If possible make OpenSource
- Pick the right language for your work
- Test your code regularly
 - Just because your code gives what appears to be the right answer does not mean it's actually working correctly.
- Be aware of the code's numerical limitations and quirks
- Use appropriate and optimized numerical methods
- Avoid black boxes
- Recall that the code is only as correct as the author that wrote it
- Be careful when scaling up to more cores or resources

Languages

Scripting

- Bash
- Perl
- Python

Statistics

- R
- Python
- Matlab

Numerical Computation

- Python
- Matlab
- Julia
- C
- Fortran

Parallel Computing

- OpenMP
- Message Passing Interface (MPI)
- CUDA

Parallel Computing

- Embarrassingly Parallel
- SIMD (Single Instruction Multiple Data)
- Thread Based Parallelism
- Rank Based Parallelism
- Hybrid

Instruments

Modern Instruments Can Push out Enormous Amounts of Data

- Telescopes
- Microscopes
- Internet of Things

Pre-Analysis

- Throw out data that cannot be used
- Preprocess data to screen out signal that you care about

Exotic Hardware

- Alternate Machine Learning Architectures
 - ASIC (Application Specific Integrated Circuit)
- Field Programmable Arrays (FPGA)
- Quantum Computing
- Intel Optane

Questions?

FASRC Office Hours 12-3p Wednesdays, 38 Oxford St.

Email: rchelp@rc.fas.harvard.edu