

# YM2163

NO.84-04 2

# YM2163

Digital Sound Generator (DSG)

#### ■概 要

DSG (Digital Sound Generator)は、内蔵するレジスタアレイに CPU が音程、音色の種類、リズム音の種類などを初期設定するだけで、波形メモリ方式により容易に楽音・リズム音の発生が可能な NMOS-LSI です。

### ■特 長

- 5 V単一電源 N channel E/D MOS
- ●TTL コンパチブルレベル
- ●8ビットまたは16ビットの CPU と容易に接続可能
- ●プリセットされた5種類の楽音および4種類のリズム音が容易に発生可能。楽音は最大4オクターブ発音可能。
- 7ビットD/Aコンバータ内蔵
- ●14ビットタイマー内蔵
- ●24ヒンフラスチック DIL ハッケージ

#### ■端子配置図



## ■ブロック図



#### ■端子機能説明

- [1] V<sub>SS</sub> グランド端子
- $|\bar{2}|$  OR 1  $\sim$   $|\bar{5}|$  OR 4

楽音(オーケストラ音)の出力端子。 4 音マルチブレックスされた形でアナログで出力されます。 4 つの端子のいずれに出力させるかは 4 音それぞれ独立に選択できます。内部はソースフォロアになっており、外部負荷抵抗(標準1 K  $\Omega$ ) によってリズム音 (RH 1 、RH 2 端子に出力)とのミキシングが可能です。

#### 6 IC

イニシャルクリア端子。この端子がローレベルの時、DSG 内部すべてのレジスタアレイの内容を "0" にクリアします。

#### |7| NC

DSG 内部のどこにも電気的に接続されていない端子です。

#### 8 D0 ~ 15 D7

データバス端子。DSG の内部レジスタアレイにデータを書き込む入力端子として、また内部タイマーのフラグの状態を読み出す出力端子として用います。 (表1 参照) 16 TEST

LSIをテストする為の端子です。内部にプルアッフ抵抗がついています。通常はどこにも接続しないで下さい。

#### 17 CS

チップセレクト端子。この端子がハイレベルの時、データバス端子(D0~D7)は ハイインピーダンス状態になり、DSG 内部レジスタアレイへのデータの書き込みや フラグの状態の読み出しは出来ません。 (表1参照)

#### 18 WR

ライト信号入力端子。 $CS \cdot WR \cdot RD = 100$  の状態から  $CS \cdot WR = 000$  の状態に移る時バスデータがレジスタアレイに書き込まれます。 (表 100 を照)

#### 19 RD

リード信号入力端子。 $\overline{\text{CS}} \cdot \overline{\text{WR}} \cdot \overline{\text{RD}} = "1 ″$  でデータバス端子にデータ(フラグの状態) が DSG 内部から出力されます。 (表 1 参照)

|   | C S | WR | R D | D 0 ~ D 7 の状態 | 備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |
|---|-----|----|-----|---------------|----------------------------------------|
| a | 1   | *  | *   | ハイインビーダンス     | * : don't care                         |
| b | 0   | 1  | 1   | ハイインヒーダンス     | c→bまたはc→aの遷移でバスデータ                     |
| c | 0   | 0  | 1   | 入力(書き込み)      | がレジスタアレイに書きこまれます。                      |
| d | 0   | 1  | 0   | 出力(読み出し)      | フラグの状態が読み出されます。                        |
| e | 0   | 0  | 0   | (禁止)          | 使用中この状態にしないで下さい。                       |

表1 データバスコントロール

#### 20 IRQ

インタラプトリクエスト端子。DSG 内蔵タイマーによって周期的にセットされるフラグの状態が、反転されて CPU への割り込み要求信号(\*0 \*がアクティブ)としてこの端子に出力されます。

フラグはデータバスからフラグリセット信号(FGR) = "1" を書き込むことによってリセットされ、IRQ = "1" に戻ります。また、割り込みイネーブル信号(IEN) = "0" をデータバスからレジスタアレイに書き込むと、フラグの状態の如何にかかわらず IRQ = "1" を保ちます。(フラグがマスクされる。)

#### 21 RH 1 22 RH 2

リズム音の出力端子。RH 1 にドラム音系の 2 音が、また RH 2 にノイズ音系の 2 音が、それぞれ 2 音マルチプレクスされてアナログで出力されます。内部は OR 1 ~ OR 4 端子と同様のソースフォロアになっています。(負荷抵抗は外付けです:標準1 K  $\Omega$ )

23 V DD

電源端子(標準電圧+5 V)です。

24 0

クロック(標準1 MHz)の入力端子です。

#### ■機能説明

DSG の全機能は23パイトの内蔵レジスタアレイによって制御されます。CPU はレジスタアレイにデータを書き込むだけでよく、音の発生は DSG 自身が行ないます。次の各プロックによって音が発生されます。

- ●フェイズジェネレータ:楽音の音程をつくる分周器です。
- ●ウェーブROM:楽音の波形を記憶しているメモリです。
- エンベローフジェネレータ:楽音のエンベローフを発生させます。
- ●マルチフライヤ:エンベローフの付加された楽音をつくります。
- ●リズムオシレータ:リズム音の周波数成分をつくります。
- ●リズムエンベローフジェネレータ:リズム音のエンベローフをつくります。
- ●D/Aコンバータ:計算された楽音・リズム音をアナログ信号に変換します。 この他に、タイマではレジスタアレイに設定した周期の時間をカウントし、CPU への割り 込み要求信号を発生させます。

#### \*Write Data

| Address        | Ð 7 | D 6              | D 5       | D 4        | D 3      | D 2      | D 1      | D 0        | COMMENT                                                                           |
|----------------|-----|------------------|-----------|------------|----------|----------|----------|------------|-----------------------------------------------------------------------------------|
| 8 0 H          | 0   | D V 4(0)         | D V 3(0)  | D V 2(0)   | D V 1(0) | D V 0(0) | D V ½(0) | D V 1/4(0) | 分周数 (下位)                                                                          |
| 8 1 H          | 0   | (1)              | (1)       | (1)        | (1)      | (1)      | (1)      | (1)        | 8                                                                                 |
| 8 2 11         | 0   | (2)              | (2)       | (2)        | (2)      | (2)      | (2)      | (2)        |                                                                                   |
| 8 3 H          | 0   | (3)              | (3)       | (3)        | (3)      | (3)      | (3)      | (3)        |                                                                                   |
| 8 4 H          | 0   | K O N(0)         | F D (0)   | B 2 (0)    | B 1 (0)  | D V 7(0) | D V 6(0) | D V 5(0)   | キーフーオー 分周数                                                                        |
| 8 5 H          | 0   | (1)              | (1)       | (1)        | (1)      | (1)      | (1)      | (1)        |                                                                                   |
| 8 6 H          | 0 1 | (2)              | (2)       | (2)        | (2)      | (2)      | (2)      | (2)        |                                                                                   |
| 8 7 11         | 0   | (3)              | (3)       | (3)        | (3)      | (3)      | (3)      | (3)        |                                                                                   |
| 8 8 H          | 0   | E 2 (0)          | E 1 (0)   | S U S (0)  |          | W 3 (0)  | W 2 (0)  | W 1 (0)    |                                                                                   |
| 8 9 H          | 0   | (1)              | (1)       | (1)        |          | (1)      | (1)      | (1)        |                                                                                   |
| 8 A H          | 0   | (2)              | (2)       | (2)        |          | (2)      | (2)      | (2)        |                                                                                   |
| 8 B H          | 0   | (3)              | (3)       | (3)        |          | (3)      | (3)      | (3)        |                                                                                   |
| 8 C H          | 0   | TEST1            | V L. 2(0) | V L, 1 (0) | F 4 (0)  | F 3 (0)  | F 2 (0)  | F 1 (0)    |                                                                                   |
| 8 D H          | 0   | 2                | (1)       | (1)        | (1)      | (1)      | (1)      | (1)        |                                                                                   |
| 8 E H          | 0   | 3                | (2)       | (2)        | (2)      | (2)      | (2)      | (2)        |                                                                                   |
| 8 F H          | 0   | 4                | (3)       | (3)        | (3)      | (3)      | (3)      | (3)        |                                                                                   |
| 9 0 H          | 0   | FGR*             | IEN       | HHD*       | нно *    | SDN *    | HC*      | BD *       | リズムトリガー                                                                           |
| 9 1 H          |     |                  |           |            |          |          |          |            | ↓ ↓ 割込みイネーブル                                                                      |
| 9 2 11         |     | 23.              |           |            |          |          |          |            | フラグリセット                                                                           |
| 9 3 H / 1 of 4 |     |                  |           |            |          |          |          |            |                                                                                   |
| 9 4 H          | 0   |                  | L V 4(0)  | L V 3(0)   | L V 2(0) | L V 1(0) | L V 0(0) | LH(0)      | 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                           |
| 9 5 H          | 0   |                  | (1)       | (1)        | (1)      | (1)      | (1)      | (1)        | $) \qquad (BD) \qquad \begin{matrix} \chi & & \mu \\ & & \downarrow \end{matrix}$ |
| 9 6 H          | 0   |                  | (2)       | (2)        | (2)      | (2)      | (2)      | (2)        |                                                                                   |
| 9 7 H          | 0   |                  | (3)       | (3)        | (3)      | (3)      | (3)      | (3)        |                                                                                   |
| 9 8 H          | 0   | РТ 6             | PT5       | P T 4      | PT3      | PT2      | PT1      | PT0        | タイマー周期(下位)                                                                        |
| 9 9 H          |     |                  |           |            |          |          |          |            |                                                                                   |
| 9 A H          |     |                  | 387       |            |          |          |          |            |                                                                                   |
| 9 B H / 1 of 4 | 1   |                  |           |            |          |          | 27       |            |                                                                                   |
| 9 C H          | 0   | P T 13           | P T 12    | P T 11     | P T 10   | PT9      | РТ8      | P T 7      | タイマー周期(上位)                                                                        |
| 9 D H          | .,4 | d <sup>in.</sup> |           |            |          |          |          |            |                                                                                   |
| 9 E H          |     |                  |           |            |          |          |          |            |                                                                                   |
| 9 F H          | 1   |                  |           |            |          |          |          |            |                                                                                   |

(注) 添字(0)~(3)は発音チャンネルを示します。

#### \*Read Data

| Address    | D 7 | D 6 | D 5 | D 4 | D 3 | 1) 2 | D 1 | D 0  | COMMENT |
|------------|-----|-----|-----|-----|-----|------|-----|------|---------|
| don't care |     |     |     |     |     |      |     | FLAG | ステータス   |

表2 DSGアドレスマップ

(1) 楽音周波数とキイオン・オフデータの設定(アドレス80H~87H)

分周数 DV 7~ DV 写とオクターブ値 B1、B2 を設定すると楽音の基本周波数 f が

$$f = \frac{\phi / 4}{\binom{7}{1} DV_{i} + DV \frac{1}{2} + DV \frac{1}{4}} \times \left(\begin{array}{c} 1\\2 \end{array}\right)^{(3-B_{1}-2\times B_{2})}$$

で決まります。ここで

10 bit

|     |      |      | 1)   |      | JAJ  |      | 数    |        |            |
|-----|------|------|------|------|------|------|------|--------|------------|
| ı   | : K  | r.   |      |      |      | ド    | fit. |        |            |
| DV7 | DV 6 | DV 5 | DV 4 | DV 3 | DV 2 | DV I | DV 0 | D V 15 | $DV^{L_1}$ |
| 128 | 64   | 32   | 16   | 8    | 4    | 2    | 1,   | 1/2    | 1/4        |

φ:DSGのマスタクロックの周波数

| 132 | B 1 | 122 1 |
|-----|-----|-------|
| 0   | 0   | 1     |
| 0   | 1   | 2     |
| 1   | 0   | 3     |
| 1   | 1   | 4     |

楽音の発音は KON データの設定で発音開始・減嚢開始が行なわれます。 $\overline{\mathrm{FD}}$  は KON とは無関係に減衰させる時用います。

| KON |            |
|-----|------------|
| 0   | キイオフ(減衰開始) |
| 1   | キイオン(発音開始) |

| F D |                 |
|-----|-----------------|
| 0   | 4               |
| 1   | フォーシングダンフ(強制減衰) |

(2) 波形メモリ・エンベロープの設定(アドレス88H~8 BH)

楽音の波形とエンベローブが下記データにより選択されます。

|    |    | 波   | 形メモリ        |
|----|----|-----|-------------|
| W3 | W2 | W 1 | 2 30-21     |
| 0  | 0  | 0   |             |
| 0  | 0  | 1   | St(ストリングス)  |
| 0  | 1  | 0   | Or(オルガン)    |
| 0  | 1  | 1   | C1(クラリネット)  |
| 1  | 0  | 0   | Pf(ヒアノ)     |
| 1  | 0  | 1   | Hc(ハーフシコード) |
| 1  | 1  | 0   | *******     |
| 1  | 1  | 1   |             |

(図1参照)

| E2 | E1 |                |
|----|----|----------------|
| 0  | 0  | エンベローブ 0 (減衰音) |
| 0  | 1  | エンベローフ 1 (持続音) |
| 1  | 0  | エンベローフ 2 (持続音) |
| 1  | 1  | エンベローフ 3 (持続音) |

(図2参照)

| # ; | スティン指定  |
|-----|---------|
| SUS |         |
| 0   | サスティンオフ |
| 1   | サスティンオン |

(図2参照)





#### (3) 音量・フィルタセレクトの設定(アドレス8CH~8FH)

楽音の音量調整データと出力端子指定データとが次の様に設定されます。

|     | Pr  | 量(ボリューム)    |
|-----|-----|-------------|
| VL2 | VL1 |             |
| 0   | 0   | 0 dB (ノーマル) |
| 0   | 1   | - 6 dB      |
| 1   | 0   | -12dB       |
| 1   | 1   | - ∞dB       |

| 7157 | 力端 | 子選択(フィルタセレクト)  |
|------|----|----------------|
| E 1  | 0  | OR1端子に出力しない。   |
| F 1  | 1  | OR1端子に出力する。    |
| F 2  | 0  | OR 2 端子に出力しない。 |
|      | 1  | OR 2端子に出力する。   |
| F 3  | 0  | OR 3 端子に出力しない。 |
| ГЭ   | 1  | OR 3 端子に出力する。  |
| F 4  | 0  | OR4端子に出力しない。   |
| r 4  | 1  | OR4端子に出力する。    |

#### (4) リズムトリガー(アドレス90H~93H)

データ "1" を書き込むと下記の如くリズム音が発音され、内蔵のリズムエンベロープ ジェネレータにより自然に減衰し、データは自動的に "0" に戻ります。

|            | 1 | リズムトリガー       | COMMENT                     |  |  |  |
|------------|---|---------------|-----------------------------|--|--|--|
| B D        | 0 |               |                             |  |  |  |
| ь <i>D</i> | 1 | バスドラム発音       | 一 スロエ州 パー山刀。                |  |  |  |
| НС         | 0 |               | D II 1 50 C (2 III )        |  |  |  |
|            | 1 | ハイコンガ発音       | - RH1端子に出力。                 |  |  |  |
| CDN        | 0 |               |                             |  |  |  |
| SDN        | 1 | スネアドラムノイズ     |                             |  |  |  |
| нно        | 0 |               | D. H. O. 501. 4 (2) 11. 14. |  |  |  |
| nno        | 1 | ハイハット(オープン)発音 |                             |  |  |  |
|            | 0 |               | RH2端子に出力。                   |  |  |  |
| HHD        | 1 | ハイハット(クローズ)発音 | K II Z zhi J (~ili //)      |  |  |  |

#### (5) リズムレベル(アドレス94H~97H)

リズム音の出力レベルを内蔵リズムエンベロープジェネレータによらず、DSG外部から制御する時に用います。この場合通常LH=1とします。

|     | 1) | ズ | 4  | L | ベ  | ル |     |
|-----|----|---|----|---|----|---|-----|
| LV4 | LV | 3 | LV | 2 | LV | 1 | LV0 |
| 16  | 8  |   | 4  |   | 2  | ? | 1   |

|    | L  | ベ   | ル   | ホ   | _   | ル   | K   |    |
|----|----|-----|-----|-----|-----|-----|-----|----|
| LH |    |     |     |     |     |     |     |    |
| 0  | 設  | ELT | こりに | ズムし | ノベリ | レをじ | 持し  | ない |
| 1  | 改为 | ELT | こりに | ズムし | ノベノ | レを化 | 科技す | る  |

リズムレベル 0 が最大音量、リズムレベル31が最小音量です。

#### (6) タイマー割り込みコントロール(アドレス98H~9FH、90H~93H)

下記の様に設定されるタイマ周期毎に DSG 内の割り込みフラグがセットされます。

タイマ周期PT=(1+
$$\sum_{i=0}^{13}$$
PTi)× $\frac{28}{\phi}$  (sec)

ここで、φ: DSG のマスタークロックの周波数(Hz)

| I. fV. |        |      |        |       |     |       | F f | b <u>.</u> |     |     |     |     |     |
|--------|--------|------|--------|-------|-----|-------|-----|------------|-----|-----|-----|-----|-----|
| P T 13 | P T 12 | PT11 | P T 10 | P T 9 | РТ8 | P T 7 | РТ6 | PT5        | PT4 | РТ3 | PT2 | PT1 | PT0 |
| 8192   | 4096   | 2048 | 1024   | 512   | 256 | 128   | 64  | 32         | 16  | 8   | 4   | 2   | 1   |

割り込みフラグは、割り込みフラグリセット信号  $FGR = 1^n$  が書き込まれるとリセットされ、FGR は自動的に  $1^n$  に戻ります。

割り込みフラグの状態は割り込みイネーブル信号 IEN = 10 の時、 $\overline{IRQ}$  の端子に反転出力され、またリード(読み出し)モードではD0端子にも出力されます。

# ■電気的特性

#### 絶対最大定格

| 記号   | 0    | 最小 楊 | <br>最大  |               |
|------|------|------|---------|---------------|
| VI   | 端子電圧 | -0.3 | 7       | V             |
| Тор  | 動作温度 | 0    | 70      | ${\mathbb C}$ |
| Tstg | 保存温度 | -50  | <br>125 | C             |

#### 直流特性 (@VDD=4.5~5.5V)

| 記号               |                                       | 最小  | 標準              | 最大  | 単位  |
|------------------|---------------------------------------|-----|-----------------|-----|-----|
| $V_{DD}$         | 電源電圧                                  | 4.5 | 5.0             | 5.5 | V   |
| IDD              | 電源電流 @ RL = 1 K Ω                     |     | 25              | 45  | mΛ  |
| $V_{1L}$         | 入力ローレベル電圧(φ、CS、D0-D7、WR、RD、IC)        |     |                 | 0.8 | v   |
| V <sub>III</sub> | 人力ハイレベル電圧(φ、CS、D 0 - D 7、WR、RD、IC)    | 2.0 |                 |     | v   |
| $v_{ol}$         | 出力ローレベル電圧 (D0、IRQ) @IoL=1.6mA         |     | Color Statement | 0.4 | v   |
| $v_{oh}$         | 出力ハイレベル電圧 (D0)                        | 2.4 |                 |     | V   |
| ILK              | 人力リーク電流(φ、CS、D0-D7、WR、RD、IC) @ VI=5 V |     |                 | 10  | 14A |

#### 交流特性

| 記号     |                                                   |           | 最小   | 標準   | 最大   | 単位  |
|--------|---------------------------------------------------|-----------|------|------|------|-----|
| Tcw    | チップセレクト パルス山                                      | (         | 135  |      |      | ns  |
| Tww    | ライト信号 パルス巾                                        | (         | 135  |      |      | ns  |
| TDS    | データ セットアップ時間                                      | ( 刈3)     | 160  |      |      | ns  |
| TDHW   | データホールド時間(ライト)                                    | ( 刈3)     | 30   |      |      | ns  |
| TACC   | アクセス時間                                            | (     4 ) |      |      | 400  | ns  |
| TDHR   | データホールド時間(リード)                                    | ( 以4)     | 0    |      |      | ns  |
| fψ     | クロック周波数                                           | ([기 5 )   | 0.9  | 1.0  | 1.1  | MHz |
| T ØON  | クロックオン時間 (@ f φ = 1 MHz)                          | (ドイ5)     | 400  |      |      | ns  |
| T øoff | クロックオフ時間 (α f φ = 1 MHz)                          | ( 刈5)     | 400  |      |      | ns  |
| ΤφR    | クロック立上り時間                                         | ( 刈5)     |      |      | 80   | ns  |
| ΤφF    | クロック立下り時間                                         | (    5 )  |      |      | 80   | ns  |
| Тор    | 出力遅延時間 (IRQ) 🗸                                    | (    5 )  |      |      | 700  | ns  |
| Vp-p   | 出力最大振申 (OR1~4、RH1~2)@RL=1KΩ、V <sub>DD</sub> = 5 V | (기 6 )    | 0.60 | 0.90 | 1.40 | v   |

図3 ライトタイミング



(注) TDS、TDHW はCS、WRのいずれか一方がHigh Levelになった時を基準とする。

図4 リードタイミング



(注) TACC は CS、RD の Low Level になるのが遅い方を基準とする。 Tonw は CS、RD のいずれか一方が High Level になった時を基準とする。

図5 クロック/出力タイミング



#### 図6 出力最大振申



(注) W1 = 1、W2 = W3 = 0、VL1 = 0、VL2 = 0の場合で規定する。

#### ■外形寸法図



注)本製品の仕様につきましては、改良等の為、予告なく変更する場合があります。

代理店——

兼松セミコンダクター株式会社 東京都中央区新窓1丁目6番1号 電話 (03) 551-7791

# --日本楽器製造株式会社-

■本 社 〒430

静岡県浜松市中沢町10-1 TEL 0534-65-1111代

お問い合わせ先

■豊岡工場 〒438 01

静岡県磐田郡豊岡村松之木島203電子機器事業部 営業課 TEL 053962-3111代