Cálculo II - Agrupamento 4

2014/15

Folha 1: Transformada de Laplace

- 1. Para cada uma das funções seguintes, determine $F(s) = \mathcal{L}\{f(t)\}$:
 - (a) $f(t) = 2\operatorname{sen}(3t) + t 5e^{-t}$;
 - (b) $f(t) = e^{2t}\cos(5t)$;
 - (c) $f(t) = te^{3t}$;
 - (d) $f(t) = \pi 5e^{-t}t^{10}$;
 - (e) $f(t) = (3t 1) \sin t$;
 - (f) $f(t) = (1 H_{\pi}(t)) \sin t$;
 - (g) $f(t) = (t-2)^2 e^{2(t-2)} H_2(t)$.
- 2. Para cada uma das funções seguintes, determine $\mathcal{L}^{-1}\{F(s)\}$:
 - (a) $F(s) = \frac{2s}{s^2 9}$;
 - (b) $F(s) = \frac{4}{s^7}$;
 - (c) $F(s) = \frac{1}{s^2 + s 2}$;
 - (d) $F(s) = \frac{1}{s^2 + 4s + 6}$;
- 3. Calcule o valor do integral impróprio $\int_0^{+\infty} t^{10} \, e^{-2t} dt.$
- 4. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável. Sabendo que $f'(t) + 2f(t) = e^t$ e que f(0) = 2, determine a expressão de f(t).
- 5. Calcule:
 - (a) $\mathcal{L}\{(t-2+e^{-2t})\cos(4t)\};$
 - (b) $\mathcal{L}^{-1}\left\{\frac{2s-1}{s^2-4s+6}\right\};$

(Teste de 18 de março de 2009).

6. Calcule $\mathcal{L}^{-1}\left\{\frac{2s}{(s-1)(s^2+2s+5)}\right\}$ (Exame do Semestre Especial, janeiro de 2010).