Types of Main Memories

 The instructor thanks the authors for sharing the presentation

Semiconductor Memories

- Read Only Memory (ROM)
- Random Access Memory (RAM)

RAM

- Reading and writing is possible
- Both are accomplished using electrical signals.
- Volatile so, used only as temporary storage.
- Two techologies
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)

Dynamic RAM

- Stores data as charge on capacitors
- If capacitor is charged
 - Data is 1
- Else
 - Data is 0.
- Needs refreshing cycle as capacitors have a tendency of discharging.
- The term dynamic refers to this tendency of the stored charge to leak away, even with power continuously applied.
- Volatile
- When read, data is lost. So, restoring need to be done.

Dynamic RAM

- DRAM cell
 - Consists of a transistor and a capacitor.
 - Transistor acts a switch
 - If transistor is closed
 - Allows current to flow
 - Else
 - No current flows

Dynamic RAM

Write

- Voltage signal is applied to the bit line.
 - High voltage 1
 - Low voltage 0
- Address line is activated allowing the charge to be transferred to the capacitor

Read

- Address line is activated
- Charge on capacitor is fed out onto a bit line and to a sense amplifier.
- Sense amplifier compares with reference value and determines if the cell contains 0 or 1.
- The value is restored
- Used for large memory requirements

Static RAM

- Holds the data as long as the power is supplied
- Read operation don't destroy the original data.
- Expensive than DRAM but shorter cycle times.
- Used for faster small memories like cache memory.
- Uses 4 6 transistors to store a single bit of data
- Less power consumption than DRAM
- Complex construction
- Digital
 - Use flip-flops

SRAM

- Transistor arrangement gives stable logic state
- Logic State 1
 - C₁ high, C₂ low
 - T_1 T_4 off, T_2 T_3 on
- Logic State 0
 - C₂ high, C₁ low
 - $-T_2T_3$ off, T_1T_4 on
- Address line controls two transistors T₅ T₆
- When signal is applied to address line, T₅ and T₆ are on.
- Write apply value to B & complement to B
- Read bit value is read from line
 B

SRAM

- Volatile
- Faster
- smaller memory units
- Complex construction
- Don't require refreshing circuit
- Cache memory
- Larger per bit
- Digital

DRAM

- volatile
- slower
- larger memory units
- simpler to build
- require refresh

- Main memory
- smaller per bit
- analog

ROM

- Can only be read
- Non-volatile
- Secured virus do not infect the true ROM
- Applications
 - Microprogramming
 - Library subroutines
 - System programs
 - Function tables

ROM

- Constructed from hard – wired logic encoded in the silicon it self
- If the diode is connected, it binary 1 else 0.

Types of ROM

- Written during manufacture
 - Very expensive for small runs
- Programmable (once)
 - PROM
 - Needs special equipment to program
- Read "mostly"
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - Flash memory
 - Erase whole memory electrically

PROM

PROM

- Programmed using a special equipment
- Programming a PROM is also called as burning
- PROM chips have a grid of columns and rows just as ordinary ROMs do.
- The difference is that every intersection of a column and row in a PROM chip has a fuse connecting them.
- Since all the cells have a fuse, the initial state of a PROM chip is all 1s.
- To change the value of a cell to 0, you use a programmer to send a specific amount of current to the cell.
- The higher voltage breaks the connection between the column and row by burning out the fuse.
- This process is known as burning the PROM.

EPROM

•The first <u>EPROM</u>, an <u>Intel</u> 1702, with the <u>die</u> and <u>wire bonds</u> clearly visible through the erase window.

- Erasable programmable
- Erased using UV rays
- A little glass window is installed in the top of the ROM package, through which you can actually see the chip that holds the memory.
- Ultraviolet light of a specific frequency can be shined through this window for a specified period of time, which will erase the EPROM and allow it to be reprogrammed again.
- Changes cannot be made incrementally; the complete chip must be erased
- Fowler-Nordheim tunneling is used to change the value

EEPROM

- Electrically erasable programmable ROM
- Commonly used for BIOS programs.
- The chip does not have to removed to be rewritten.
- The entire chip does not have to be completely erased to change a specific portion of it.
- Changing the contents does not require additional dedicated equipment.
 - Instead of using UV light, you can return the electrons in the cells of an EEPROM to normal with the localized application of an electric field to each cell.
 - This erases the targeted cells of the EEPROM, which can then be rewritten.
- Fowler-Nordheim tunneling is used to change the value

Comparison of different types of main memories

Метогу Туре	Category	Erasure	Write Mechanism	V olatility
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile
Read-only memory (ROM)	Read-only memory	Not possible	Masks	Nonvolatile
Programmable ROM (PROM)			Electrically	
Erasable PROM (EPROM)	Read-mostly memory	UV light, chip-level		
Electrically Erasable PROM (EEPROM)		Electrically, byte-level		
Flash memory		Electrically, block-level		

References

 William Stallings "Computer Organization and architecture" Prentice Hall, 7th edition, 2006