Lista nº 5

Disciplina: Álgebra Linear

Nome:

Matrícula:

1. Determine uma base para cada um dos seguintes espaços vetoriais:

(a)
$$S = \{(x, y) \in R^2 / x + y = 0\}$$

(b)
$$S = \{(x, y, z) \in \mathbb{R}^3 / 2x - y + 3z = 0\}$$

(c)
$$S = \{(x, y, x); x, y \in R\}$$

(d)
$$S = \{(x, y, z, w); x - 3y + z = 0\}$$

(e)
$$S = \{(x, y, z) \in \mathbb{R}^3 / x = 3y e z = -y\}$$

- 2. Considere o conjunto $B=\{v1,v2,v3\}$, onde v1=(1,2,3), v2=(-5,1,1) e v3=(0,0,1)
- (a) Verifique se o conjunto B é uma base do IR³.
- (b)Seja \hat{B} o conjunto formado pelos vetores v1 e v2 de B substituindo-se o vetor v3 pelo vetor \hat{v} 3 = (7,3,5). Verifique se o conjunto \hat{B} é LI ou LD.
- (c) Mostre que \hat{v} 3=(7,3,5) é uma combinação linear dos vetores v1 e v2 de B.
- 3. Sejam $\beta = \{(1,0), (0,1)\}, \beta_1 = \{(-1,1), (1,1)\}, \beta_2 = \{(\sqrt{3},1), (\sqrt{3},-1)\} \text{ e } \beta_3 = \{(2,0), (0,2)\} \text{ bases ordenadas de } R^2.$
- (a) Ache as matrizes de mudança de base

i)
$$[I]^{\beta}_{\beta_1}$$
 ii) $[I]^{\beta}_{\beta_2}$ iii) $[I]^{\beta}_{\beta_3}$

b)Quais sao as coordenadas do vetor v = (-5,1) em relação as bases:

i)
$$\beta$$
 ii) β_1 iii) β_2 iv) β_3

c) As coordenadas de um vetor ${\bf v}$ em relação à base β_1 são dadas por

$$[v]_{\beta_1} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Quais são as coordenadas de v em relação à base:

i)
$$\beta$$
 ii) β_2 iii) β_3

Lista nº 5 2

5. Determinar as coordenadas do polinômio $p(t) \in P_3(R)$, dado por $p(t)=10+t^2+2t^3$, $t \in R$ em relação as seguintes bases de $P_3(R)$:

- i) base canônica ii) {1,1+t,1+t+t²,1+t+t²+t³} iii) {4+t,2,2-t²,t+t³}