Single Final State for NFAs

Any NFA can be converted

to an equivalent NFA

with a single final state

NFA

In General

NFA

Equivalent NFA

Single final state

Extreme Case

NFA without final state

Add a final state
Without transitions

Properties of Regular Languages

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Regular language L_1

Regular language $\,L_{2}\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_1

NFA M_2

Single final state

Single final state

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$A = \{ba\}$$

$$A = \{ba\}$$

$$A = \{ba\}$$

Star Operation

NFA for L_1*

NFA for
$$L_1^* = \{a^n b\}^*$$

$$w = w_1 w_2 \cdots w_k$$
$$w_i \in L_1$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state final state and vice versa

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the ${\sf DFA}$ that accepts L_1
- 2. Make final states non-final, and vice-versa

Intersection

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cap L_2$ regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular} \\ \\ \text{regular}$$

Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$${a,bc}* = {\lambda,a,bc,aa,abc,bca,...}$$

Why do we need Regular Expressions? «Click»

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

$$L((a+b\cdot c)*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression: $(a+b)\cdot a*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression r = (0+1)*00(0+1)*

$$L(r)$$
 = { all strings with at least two consecutive 0 }

Regular expression
$$r = (1+01)*(0+\lambda)$$

$$L(r)$$
 = { all strings without two consecutive 0 }

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if
$$L(r_1) = L(r_2)$$

$$L = \{ all strings without two consecutive 0 \}$$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expr.

Regular Expressions and Regular Languages

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Theorem - Part 1

Languages
Generated by
Regular Expressions

Regular
Languages

1. For any regular expression r the language L(r) is regular

Theorem - Part 2

2. For any regular language L there is a regular expression r with L(r) = L

Proof - Part 1

1. For any regular expression r the language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: \emptyset , λ , α

NFAS

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

```
Assume for regular expressions r_1 and r_2 that L(r_1) and L(r_2) are regular languages
```

Inductive Step

We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union
$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1) L(r_2)$
Star $(L(r_1))*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

Are regular languages

And trivially:

 $L((r_1))$ is a regular language

Proof - Part 2

2. For any regular language L there is a regular expression r with L(r) = L

Proof by construction of regular expression

Since L is regular take the NFA M that accepts it

$$L(M) = L$$

Single final state

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Example:

Another Example: \boldsymbol{a} a Reducing the states: \boldsymbol{a} bb*abb*(a+b)

Resulting Regular Expression:

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

In General

Removing states: q_{j} q_i qaae*dce*bce*d q_i q_j ae*b

The final transition graph:

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$

Why do we need Regular Expressions?

Let's say you want to find a phone number in a string. You know the pattern: three numbers, a hyphen, three numbers, a hyphen, and four numbers.

Here's an example: 415-555-4242.

Without RE, your Python code may look lengthy like this.

```
def isPhoneNumber(text):
    if len(text) != 12:
        return False
    for i in range(0, 3):
        if not text[i].isdecimal():
            return False
    if text[3] != '-':
        return False
    for i in range(4, 7):
        if not text[i].isdecimal():
            return False
    if text[7] != '-':
        return False
    for i in range(8, 12):
        if not text[i].isdecimal():
            return False
    return True
```

Why do we need Regular Expressions?

With Regular Expression, your Python code will be compact.

```
import re
phoneNumRegex = re.compile(r'\d\d\d-\d\d\d\d\d\d\d')
mo = phoneNumRegex.search('My number is 415-555-4242.')
print('Phone number found: ' + mo.group())
```

Output:

Phone number found: 415-555-4242

