# Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Фізико-технічний інститут

## Криптографія

Комп'ютерний практикум №1 Експериментальна оцінка на символ джерела відкритого тексту

Виконали:

Студенти 3 курсу

Загородній Я.М, Венгер П.Ю.

Перевірив:

**Мета роботи:** засвоєння поняття ентропії на символ джерела та його надлишковості, вивчення та порівняння різних моделей джерела відкритого тексту для наближеного визначення ентропії, набуття практичних навичок щодо оцінки ентропії на символ джерела

#### Постановка задачі:

- 1. Написати програми для підрахунку частот букв і частот біграм в тексті, а також підрахунку  $H_1$  та  $H_2$  за безпосереднім означенням. Підрахувати частоти букв та біграм, а також значення  $H_1$  та  $H_2$  на довільно обраному тексті російською мовою достатньої довжини (щонайменше 1Мб), де імовірності замінити відповідними частотами. Також одержати значення  $H_1$  та  $H_2$  на тому ж тексті, в якому вилучено всі пробіли.
- 2. За допомогою програми CoolPinkProgram оцінити значення  $\mathbf{H}^{(10)}, \mathbf{H}^{(20)}, \mathbf{H}^{(30)}$
- 3. Використовуючи отримані значення ентропії, оцінити надлишковість російської мови в різних моделях джерела

### Хід роботи

Весь код програми поданий в lab1\_cryptography.ipynb, також будуть прикріплені файли excel з табличками

```
import regex
import collections
import unicodedata
text_war_peace = open("D:\Web-devoloped\Krpt\lab1_text.txt").read()
text_war_peace = text_war_peace.lower().replace("n","").replace("\n"," ")
text_war_peace = ' '.join(text_war_peace.split())

#without space
# string_text = ''.join(c for c in text_war_peace if unicodedata.category(c).startswith('L'))

#with space
string_text = regex.sub(r'[^\w\s]+|[\d]+', r'',text_war_peace).strip()

word_sort = sorted(string_text)
print(string_text)
print("OK")

✓ 0.7s

лев толстой война и мир тома первый и второй в шкловский война и мир льва толстого замысел в году
ОК
```

```
frequency= sorted(freq, key=lambda x : alpcount[x],reverse=1)
  relative_frequencies = []
 v for letter in frequency:
      relative_frequencies.append(freq[letter])
  frequency_data = pd.DataFrame(index=frequency)
  frequency_data['relative_frequency'] = relative_frequencies
  print(frequency_data.head(10))
  frequency_data.to_excel("relative_frequencies.xlsx")
✓ 0.1s
 relative_frequency
          0.110161
           0.081928
          0.079719
           0.064138
           0.063714
           0.056262
           0.051702
           0.048350
           0.044482
           0.043574
```

```
import math
input_text = string_text
bigrams = []
for i in range(len(input_text) - 1):
    if input_text[i] in alphabet and input_text[i + 1] in alphabet:
    bigrams.append(input_text[i] + input_text[i + 1])
double_bigrams = []
double_bigrams.append(input_text[i] + input_text[i + 1])
# Підрахунок частот біграм
bigram_counts = dict(Counter(bigrams))
bigram_frequencies = {bigram: count / len(bigrams) for bigram, count in bigram_counts.items()}
double_bigram_counts = dict(Counter(double_bigrams))
double_bigram_frequencies = {bigram: count / len(double_bigrams) for bigram, count in double_bigram_counts.items()}
monogram_counts = dict(Counter(input_text))
monogram_frequencies = {letter: count / len(input_text) for letter, count in monogram_counts.items() if letter in alphabet}
monogram entropy contributions = []
for frequency in monogram_frequencies.values():
   if frequency > 0: - # Переконайтеся, що частота не дорівнює нулю - monogram_entropy_contributions.append(frequency * math.log(frequency, 2))
# Обчислюємо загальну ентропію Н1 для монограм
H1_monogram = -sum(monogram_entropy_contributions)
print("Entropy H1 ", H1_monogram)
print(monogram entropy contributions)
```

```
import numpy as np
def calculate_entropy(bigram, freq_bigram):
  --entropy_contributions = []
  for frequency in freq_bigram.values():
       entropy_contributions.append(frequency * math.log(frequency, 2) if frequency > 0 else 0)
 ---return -sum(entropy_contributions) / 2
# Обчислення ентропії для біграм і двійних біграм
H_bigrams = calculate_entropy(bigrams, bigram_frequencies)
H_double_bigrams = calculate_entropy(double_bigrams, double_bigram_frequencies)
print("Entropy of bigrams (H2):", H_bigrams)
print("Entropy of double bigrams (H22):", H_double_bigrams)
R_bigrams = 1 - (H_bigrams / math.log2(N))
R double bigrams = 1 - (H double bigrams / math.log2(N))
# Виведення надлишковості
print("Redundancy R (bigrams):", R_bigrams)
print("Redundancy R (double bigrams):", R_double_bigrams)
# Створення DataFrame з алфавіту
frequency_df = pd.DataFrame(index=alphabet, columns=alphabet)
# Створення всіх можливих біграм з алфавіту
bigrams_list = [i + j for i in alphabet for j in alphabet]
# Заповнення DataFrame біграмами
for idx, letter in enumerate(alphabet):
   frequency_df[letter] = bigrams_list[idx * len(alphabet):(idx + 1) * len(alphabet)]
# Транспонування DataFrame для правильного формату
frequency_df = frequency_df.T
# Заповнення DataFrame частотами біграм
for bigram in bigram_frequencies.keys():
   row_idx, col_idx = np.where(frequency_df == bigram)
    frequency_df.iloc[row_idx, col_idx] = bigram_frequencies[bigram]
```

```
# Встановлення 0 для біграм, які не мають частоти
   for bigram in bigrams_list:
       row idx, col idx = np.where(frequency df == bigram)
      frequency df.iloc[row idx, col idx] = 0
   # Вивід фінального DataFrame (необов'язково)
   print(frequency df)

√ 0.5s

Entropy of bigrams (H2): 4.14798745486047
Entropy of double bigrams (H22): 4.148029783764964
Redundancy R (bigrams): 0.17770353451525878
Redundancy R (double bigrams): 0.1776951432390237
                  6
        а
                         В
                                              д
a 0.000337 0.001553 0.005636 0.001614 0.003114 0.001772
                                                                 0
6 0.001273 0.000025 0.000103 0.000011 0.000027 0.002457
                                                                 0
в 0.006747 0.000258 0.00048 0.000441 0.000769 0.005354
                                                                 0
   0.00116 0.000038 0.000128 0.000011 0.001181 0.000654
                                                                 0
д 0.004996 0.000088 0.001093 0.000064 0.000077 0.005291 0.000001
e 0.000218 0.002334 0.003611 0.004567 0.003916 0.002243
                                                                 a
ë 0.000002 0.000003 0.000006 0.000002 0.000002 0.000002
                                                                 0
ж 0.001473 0.000081 0.000027 0.000026 0.000832 0.004267
                                                                 0
з 0.006234 0.000207 0.000981 0.00055 0.000959 0.000302
                                                                 0
и 0.000355 0.001397 0.005116 0.001258 0.002888 0.003424
                                                                 0
й 0.000208 0.000408 0.000792 0.000364 0.000785 0.000126
                                                                 0
κ 0.00858 0.000518 0.000627 0.000176 0.000261 0.000636 0.000002
л 0.008445 0.00034 0.000823 0.000409 0.000624 0.004992 0.000004
м 0.003523 0.000338 0.000815 0.000376 0.000402 0.003456
                                                                 0
н 0.012856 0.000352 0.000531 0.00031 0.001429 0.010714
                                                                 ø
o 0.000217 0.005194 0.011612 0.006031 0.006358 0.003333 0.000001
п 0.001264 0.000001 0.000001 0.000015 0.000002 0.00292
p 0.009785 0.000261 0.000512 0.000409 0.000505 0.007073
                                                                 0
c 0.001787 0.000207 0.002371 0.000166 0.000549 0.004165 0.000039
т 0.006795 0.000283 0.003355 0.000143 0.000411 0.005487 0.000004
ю
         0
                  0
                           0
                               0.00005 0.000046 0.000045
         0
                  0
                           0
                               0.00018 0.000132 0.000293
```

```
# Створення DataFrame з алфавіту
   frequency_df = pd.DataFrame(index=alphabet, columns=alphabet)
   # Генерація всіх можливих біграм з алфавіту
   bigrams_list = [letter1 + letter2 for letter1 in alphabet for letter2 in alphabet]
   # Заповнення DataFrame біграмами
 v for idx, letter in enumerate(alphabet):
      frequency_df[letter] = bigrams_list[idx * len(alphabet):(idx + 1) * len(alphabet)]
   # Транспонування DataFrame для правильного формату
   frequency_df = frequency_df.T
   # Заповнення DataFrame частотами двійних біграм
 v for bigram in double_bigram_frequencies.keys():
       row_idx, col_idx = np.where(frequency_df == bigram)
       frequency_df.iloc[row_idx, col_idx] = double_bigram_frequencies[bigram]
   # Встановлення 0 для біграм, які не мають частоти

√ for bigram in bigrams list:

       row_idx, col_idx = np.where(frequency_df == bigram)
      frequency_df.iloc[row_idx, col_idx] = 0
   # Вивід фінального DataFrame
   print(frequency_df.head())
   # Збереження DataFrame у файл Excel
   frequency df.to excel("double bigram frequencies.xlsx")

√ 0.7s

                 6
                                               Д
                                                        еë
                           В
                                                                     ж
 0.00032 0.001537 0.005553 0.001611 0.002976 0.001749 0 0.001443 \
6 0.001226 0.00002 0.000125 0.000008 0.000028 0.002376 0 0.000008
в 0.006535 0.000274 0.000464 0.000428 0.000756 0.005116 0 0.000053
г 0.001096 0.000036 0.000116 0.000011 0.001104 0.000632 0 0.000005
д 0.004786 0.000083 0.001059 0.000075 0.000066 0.005152 0 0.000024
                            ц
                                                  ш
                                                             щ
a 0.004863 0.001559 ... 0.000136 0.001331 0.001676 0.000265
                                                                       0 \
6 0.000009 0.000889 ... 0.000006 0.00002 0.000008 0.000252
                                                                 0.00011
в 0.000665 0.003762 ... 0.000058 0.000238 0.001247 0.000009 0.000028
 0.000045 0.000941 ... 0.000003 0.000035 0.000009
                                                            a
                                                                       a
д 0.000052 0.002937 ... 0.000202 0.000075 0.000127 0.000002
                                                                 0.00021
                                               я
         ы
                  ь
                            э
                                     ю
                  0 0.000345 0.000949 0.003096
```

Результат

|                    | Текст без пробілів             | Текст з пробілами                    |
|--------------------|--------------------------------|--------------------------------------|
| Букви              | liters.xlsx                    | liters_space.xlsx                    |
| Біграма            | relative_frequencies.xlsx      | relative_frequencies_space.xlsx      |
| Біграма з кроком 2 | double_bigram_frequencies.xlsx | double_bigram_frequencies_space.xlsx |

#### Ентропія

|                 | Текст без пробілів  | Текст з пробілами   |
|-----------------|---------------------|---------------------|
| H1              | 4.380281723653518   | 3.8548255361596637  |
| R1              | 0.13165355045441962 | 0.23581991316532558 |
| H2              | 4.14798745486047    | 3.9667620592447643  |
| R2              | 0.17770353451525878 | 0.21362963214514696 |
| Н2 (з кроком 2) | 4.148029783764964   | 3.966857027999631   |
| R2 (з кроком 2) | 0.1776951432390237  | 0.2136108055521767  |

Пункт 2. За допомогою програми CoolPinkProgram оцінити значення  $H^{(10)}$ ,  $H^{(20)}$ ,  $H^{(30)}$ .

# Для H<sup>(10)</sup>:



# Для H<sup>(20)</sup>:



## Для H<sup>(30)</sup>:



|            | Ентропія              | Надлишковість         |
|------------|-----------------------|-----------------------|
| $H^{(10)}$ | 1.97914 < H < 2.84321 | 0.43136 < H < 0.60417 |
| $H^{(20)}$ | 1.72479 < H < 2.47775 | 0.50445 < H < 0.65504 |
| $H^{(30)}$ | 1.75197 < H < 2.45965 | 0.50807 < R < 0.64961 |

#### Висновок

Ознайомилися з поняттями ентропії на символ джерела та його надлишковості, навчилися визначати частоти літер та біграм на довільному тексті.

3 отриманих значень можемо визначити, що ентропія H1 з пробілами більша за H1 без пробілів. Ентропія та надлишковість перехресних та неперехресних біграм без пробілів (або з пробілами) (H2 та H2(з кроком 2)) майже не відрізняються.