Math 122 Assignment 5 Solution Ideas

- 1. (a) $(1331)_b = b^3 + 3b^2 + 3b + 1 = (b+1)^3$, and since b is an integer, we have the cube of an integer. Now for a valid base we need b > 1, and also since we have a digit of 3 we need b > 3. So for $b \ge 4$ we have that $(1331)_b$ is the cube of an integer.
 - (b)

$$(31)_b \times (14)_b = (464)_b$$

$$(3b+1)(b+4) = 4b^2 + 6b + 4$$

$$3b^2 + 13b + 4 = 4b^2 + 6b + 4$$

$$b^2 - 7b = 0$$

$$b(b-7) = 0$$

Therefore b = 0 or b = 7. Since we can't have a base of 0, we have that b = 7 (and note that this is OK since all our digits are less than 7).

- (c) Say $(56)_b = n^2$ and $(66)_b = (n+1)^2$. Then $(5b+6) = n^2$ and $(6b+6) = (n+1)^2 = n^2 + 2n + 1$. Subtract the first equation from the second to obtain b = 2n + 1. Sub this expression for b into the equation $5b+6=n^2$ to obtain $n^2 = 5(2n+1)+6=10n+11$, which rearranges to $n^2 10n 11 = 0$. Factoring, we get (n-11)(n+1) = 0, from which we have n = 11 or n = -1. Since we only want positive values for our base, this means that n = 11 and so b = 23 (and note that this is OK since all our digits are less than 23).
- (d) We set the base 5 and base 7 expansions equal to each other and solve for x:

$$(24x3)_5 = (x02x)_7$$

$$2(5^3) + 4(5^2) + 5x + 3 = 7^3x + 0 + 2(7) + x$$

$$250 + 100 + 5x + 3 = 343x + 14 + x$$

$$339 = 339x$$

$$1 = x$$

2. (a) Note that there is more than one way to prove our statement. Here is one method: Here we proceed by a proof by induction. We wish to prove the statement $S(n): 6|n^3+5n$ for all $n \geq 1$. Basis: When n = 1 we have $n^3 + 5n = 1 + 5(1) = 6$ and 6|6.

Induction Hypothesis: Suppose that $6|k^3 + 5k$ for some integer $k \geq 1$.

Induction Step: We want to show that $6|(k+1)^3 + 5(k+1)$.

$$(k+1)^3 + 5(k+1) = k^3 + 3k^2 + 3k + 1 + 5k + 5$$

= $k^3 + 3k^2 + 8k + 6$
= $k^3 + 5k + 3k^2 + 3k + 6$

Now $6|k^3 + 5k$ by the induction hypothesis, and 6|6, so we now turn our attention to $3k^2 + 3k = 3(k^2 + k)$. If k is an even integer we have that $k^2 + k$ is also an even integer, and if k is an odd integer we have that $k^2 + k$ is an even integer. Therefore $k^2 + k$ is

even in all cases and so $2|(k^2+k)$. Thus there exists $l \in \mathbb{Z}$ such that $k^2+k=2l$, and so $3k^2+3k=3(k^2+k)=3(2l)=6l$. Since $l \in \mathbb{Z}$ we have that $6|3k^2+3k$.

Now with $6|k^3 + 5k$, $6|3k^2 + 3k$, and 6|6 we have that $6|k^3 + 5k + 3k^2 + 3k + 6$ and so $6|(k+1)^3 + 5(k+1)$.

Conclusion: Therefore, by induction, we have that $6|n^3 + 5n$ for all $n \ge 1$.

Another way to prove our statement would be to use modular arithmetic and work modular 6. Here we proceed by cases:

Our value n can be congruent to any of $0, 1, 2, 3, 4, 5 \pmod{6}$.

- If $n \equiv 0 \pmod{6}$ we have $n^3 + 5n \equiv 0 + 5(0) \equiv 0 \pmod{6}$.
- If $n \equiv 1 \pmod{6}$ we have $n^3 + 5n \equiv 1 + 5(1) \equiv 6 \equiv 0 \pmod{6}$.
- If $n \equiv 2 \pmod{6}$ we have $n^3 + 5n \equiv 2^3 + 5(2) \equiv 8 + 10 \equiv 18 \equiv 0 \pmod{6}$.
- If $n \equiv 3 \pmod{6}$ we have $n^3 + 5n \equiv 3^3 + 5(3) \equiv 27 + 15 \equiv 42 \equiv 0 \pmod{6}$.
- If $n \equiv 4 \pmod{6}$ we have $n^3 + 5n \equiv 4^3 + 5(4) \equiv 64 + 20 \equiv 84 \equiv 0 \pmod{6}$.
- If $n \equiv 5 \pmod{6}$ we have $n^3 + 5n \equiv 5^3 + 5(5) \equiv 125 + 25 \equiv 150 \equiv 0 \pmod{6}$.

In all cases we have that $n^3 + 5n \equiv 0 \pmod{6}$, which means that $6|n^3 + 5n$. Therefore $6|n^3 + 5n$ for all $n \geq 1$. (In fact, this proves that $6|n^3 + 5n$ for all $n \in \mathbb{Z}$!)

- (b) Suppose that for nonzero integers a and b we have that $\gcd(a,b)=1$ and $a\mid c$ and $b\mid c$. Since $a\mid c$ there exists $k\in\mathbb{Z}$ such that c=ak, and since $b\mid c$ there exists $l\in\mathbb{Z}$ such that c=bl. Since $\gcd(a,b)=1$ there exist integers x and y such that ax+by=1. Multiplying by c gives acx+bcy=c. From there we have that a(bl)x+b(ak)y=c and so ab(lx+ky)=c. Since $l,x,k,y\in\mathbb{Z}$ we have that $lx+ky\in\mathbb{Z}$, and so $ab\mid c$.
- 3. Notice that $24 = 2^3 \cdot 3$ and $42 = 2 \cdot 3 \cdot 7$. Thus the prime power decomposition of our number will be comprised of the primes 2, 3, and 7. Now, values that are a fourth power will have exponents that are multiples of 4 and in the prime power decomposition, and values that are a sixth power will have exponents that are multiples of 6 and in the prime power decomposition. Thus our exponents in the prime power decomposition must be multiples of both 4 and 6. Since lcm(4,6) = 12 we can use exponents of 12 as our smallest possible value. Thus the smallest integer that is divisible by 24 and 42, and is simultaneously a fourth power and a sixth power is $2^{12}3^{12}7^{12}$.
- 4. (a) The prime power decomposition of n^3 will consist of the same primes in the prime power decomposition as n, but the primes in the decomposition of n^3 will have exponents that are 3 times that of the exponents in the decomposition of n. So if p is a prime number such that $p \mid n^3$, then p will be in the prime power decomposition of n^3 and p will be in the prime power decomposition of n. Therefore p|n. Since p|n there exists $k \in \mathbb{Z}$ such that n = pk, and so we can write $n^3 = p^3k^3$. Since $k \in \mathbb{Z}$, we have that $k^3 \in \mathbb{Z}$, and so $p^3|n^3$.

(b) Say gcd(a, 63) = d. By definition, this means that d|n and d|63. We know that $63 = 3^27$, which (by FTA) says that the possible divisors of 63 are:

$$\begin{array}{rcl}
1 & = & 3^{0}7^{0} \\
3 & = & 3^{1}7^{0} \\
9 & = & 3^{2}7^{0} \\
7 & = & 3^{0}7^{1} \\
21 & = & 3^{1}7^{1} \\
63 & = & 3^{2}7^{1}
\end{array}$$

Thus the possibilities for gcd(a, 63) are only: 1, 3, 7, 9, 21, 63.

(c) Consider the positive integers n and n+9 and the positive integer d where d|n and d|n+9. This means that there exists $k \in \mathbb{Z}$ such that n=dk and there exists a $l \in \mathbb{Z}$ such that n+9=dl. Thus we have

$$n+9 = dl$$

$$dk+9 = dl$$

$$9 = dl - dk$$

$$9 = d(l-k)$$

Since $k, l \in \mathbb{Z}$ we have $l - k \in \mathbb{Z}$ and so d|9. Since $9 = 3^2$, the FTA says that the only possible divisors are $1 = 3^0$, $3 = 3^1$ and $9 - 3^2$. Thus d = 1 or d = 3 or d = 9.

5. (a) Suppose $a \equiv b \pmod{12}$ and $b \equiv c \pmod{18}$. This means that 12|(a-b) and 18|(b-c). That is, there exists $k \in \mathbb{Z}$ such that (a-b) = 12k, and there exists $l \in \mathbb{Z}$ such that (b-c) = 18l.

Now (a-c)=(a-b)+(b-c)=12k+18l=3(4k+6l). Since $k,l\in\mathbb{Z}$ we have that $4k,6l\in\mathbb{Z}$ and so $4k+6l\in\mathbb{Z}$. Therefore 3|(a-c). This in turn gives that $a\equiv c\pmod 3$.

- (b) There are many combinations that are possible here for x and m. One such example is m=8 and x=3. Here we have $x^2\equiv 3^2\equiv 9\equiv 1\pmod 8$, but $3\not\equiv 1\pmod 8$ and $x\not\equiv -1\equiv 7\pmod 8$.
- (c) To find the last digit of 37^{37} in base 10 we want to find the remainder of 37^{37} when dividing by 10, so we will work (mod 10).

$$37^{37} \equiv 7^{37} \equiv 7 \cdot (7)^{36} \equiv 7 \cdot (7^2)^{18} \equiv 7 \cdot (49)^{18} \equiv 7 \cdot (9)^{18} \equiv 7 \cdot (-1)^{18} \equiv 7 \pmod{10}$$
. Since $0 \le 7 < 10$, we now have that 7 is the remainder of 37^{37} when divided by 10. Therefore the last digit of 37^{37} is 7.

To find the last digit of 37^{37} in base 7 we want to find the remainder of 37^{37} when dividing by 7, so we will work (mod 7).

$$37^{37} \equiv 2^{37} \equiv 2 \cdot (2)^{36} \equiv 2 \cdot (2^3)^{12} \equiv 2 \cdot (8)^{12} \equiv 2 \cdot (1)^{12} \equiv 2 \pmod{7}.$$

Since $0 \le 2 < 7$, we now have that 2 is the remainder of 37^{37} when divided by 7. Therefore the last digit of 37^{37} in base 7 is 2.