1. If a set 'A' has n elements then the power set of A has —— elements	
A. n	
B. n^2	
C. 2^{n}	
D. 3^{n}	
ANSWER: C	
2. If A, B and C are sets then $A \times (B \cup C)$ is ———	
A. $(A \cap B) \times (A \cap C)$	
$\mathbf{B.}\; (A\times B)\cap (B\times C)$	
$\mathbf{C}.\ (A\times B)\cup (A\times C)$	
$\mathbf{D}.\ (A\times B)\cup (B\times C)$	
ANSWER: C	
3. If the relation R is reflexive, symmetric and transitive then the relation R	?
is called ———	
A. poset	
B. equivalence relation	
C. partial order relation	
D. equivalance classes	
ANSWER: B	
4. In a poset, the greatest and least element if they exist are ——	
A. more than one	
B. zero	
C. exactly two	
D. unique	

ANSWER: D

5. Determine which of the following relations is a function with domain

$$\{1, 2, 3, 4\}$$
 ———

A.
$$\{(1,1),(2,1),(3,1),(4,1),(3,3)\}$$

B.
$$\{(1,2),(2,3),(4,2)\}$$

C.
$$\{(1,4),(2,3),(3,2),(4,1)\}$$

D.
$$\{(1,1),(3,2),(4,1)\}$$

ANSWER: C

6. Which of the following subsets forms a partition for $S = \{1, 2, 3, 4, 5, 6\}$

B.
$$\{\{1,3\},\{3,5\},\{2,4,6\}\}$$

D.
$$\{\{1\}, \{1, 3, 5\}, \{2, 4, 6\}\}$$

ANSWER: C

- 7. If the relation R is defined on set of all integers as $R = \{(a,b)|ab \geq 0\}$ then R is
 - A. reflexive and transitive
 - B. symmetric and transitive
 - C. transitive but not reflexive
 - D. reflexive and symmetric

ANSWER: D

8. Let $R = \{(1,1), (1,3), (3,2), (3,4), (4,2)\}$ and $S = \{(2,1), (1,3), (3,4), (4,1)\}$

then
$$R \bullet S$$
 is

A.
$$\{(1,3),(1,4),(3,1)\}$$

B.
$$\{(1,3),(1,4),(3,1),(4,1)\}$$

C.
$$\{(1,1),(1,3),(4,1)\}$$

D.
$$\{(1,3),(3,1),(4,1)\}$$

ANSWER: B

9. If M_R and M_S be the matrix representation of a relation R and S then $M_{R\oplus S}$ is ——

A.
$$M_R + M_S$$

B.
$$M_{R \cup S}$$

C.
$$M_{R \cap S}$$

D.
$$M_{R \cup S} - M_{R \cap S}$$

ANSWER: D

10. If $A=\{1,2,3\}, B=\{w,x,y,z\}$ and $f:A\to B$ then how many functions of f are there ——

- A. 4
- B. 8
- C. 16
- D. 64

ANSWER: D

11. If the function $f: A \to B$ is invertible then f is ———

- A. one to one
- B. onto
- C. bijective
- D. many to one

ANSWER: C

12. Equivalence class of a' under the relation R is defined as

- A. $\{x | (a, x) \in R\}$
- **B.** $\{x | (x, a) \in R\}$
- C. $\{a|(a,x) \in R\}$
- D. $\{a | (x, a) \in R\}$

ANSWER: A

- 13. If $f: R \to R$ is given by $f(x) = x^3 2$ then f^{-1} is ———
 - A. $(x-2)^3$
 - B. $(x-2)^{\frac{1}{3}}$
 - C. $(x^3+2)^{\frac{1}{3}}$
 - D. $(x+2)^{\frac{1}{3}}$

ANSWER: D

14. If $S = \{1, 2, 3, 4, 5\}$ and the function $f: S \to S$ is given by

$$f = \{(1,2), (2,1), (3,4), (4,5), (5,3)\}$$
 then f^{-1} is

- A. $\{(2,1),(1,2),(4,3),(5,4),(3,5)\}$
- B. $\{(4,3),(5,4)\}$
- C. $\{(2,1),(1,2),(4,3)\}$
- D. $\{(2,1), (1,2), (4,3), (5,4)\}$

ANSWER: A

- 15. If $f: A \to B$ and $g: B \to A$ then $g \circ f$ is
 - A. I_A
 - B. many one
 - $\mathbf{C}.~I_B$
 - D. does not exist

ANSWER: A

- 16. In the generalization of a Pigeohole principle if the n pigeons are accomodated in 'm' holes then ———-
 - A. $n \leq m$
 - B. $n \ge m$
 - C. n < m
 - D. n > m

ANSWER: D

- 17. The dual of $A = (\bar{B} \cap A) \cup (A \cap B)$
 - A. $A = (\bar{B} \cup A)$
 - $\mathbf{B.}\ A = (A \cap B)$
 - C. $A = (\bar{B} \cup A) \cap (A \cup B)$
 - D. $A = \phi$

ANSWER: C

- - **A.** *n*
 - $\mathbf{B.}\ 2^m$
 - C. 2^{n}
 - $\mathbf{D}.\ m$

ANSWER: B