

HCM University of Technology

MACHINE ELEMENTS

ME2007

Project Report

Submitted To: Submitted By:

Phan Dinh Huan Nguyen Quy Khoi

Asst. Professor 1852158

Faculty of Mechanical CC02

Engineering HK192

Contents

1	Mot	or Design	7
	1.1	Nomenclature	7
	1.2	Calculate η_{sys}	8
	1.3	Calculate P_{motor}	8
	1.4	Calculate n_{motor}	8
	1.5	Choose motor	9
	1.6	Calculate power, rotational speed and torque	9
		1.6.1 Power	9
		1.6.2 Rotational speed	10
		1.6.3 Torque	10
2	Cha	in Drive Design	11
	2.1	Nomenclature	11
	2.2	Find p	12
	2.3	Find a, x_c , and $i \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	13
	2.4	Strength of chain drive	13
	2.5	Force on shaft	14
3	Gea	rbox Design (Helix gears)	16
	3.1	Nomenclature	16
	3.2	Choose material	18

	3.3	Calcul	ate $[\sigma_H]$ and $[\sigma_F]$	18
		3.3.1	Working cycle of bearing stress	18
		3.3.2	Working cycle of equivalent tensile stress	18
		3.3.3	Aging factor	19
		3.3.4	Calculate $[\sigma_H]$ and $[\sigma_F]$	19
	3.4	Transn	mission Design	20
		3.4.1	Determine basic parameters	20
		3.4.2	Determine gear meshing parameters	20
		3.4.3	Other parameters	21
		3.4.4	Contact stress analysis	21
		3.4.5	Bending stress analysis	22
		3.4.6	Force on shafts	23
4	Sha	ft Desig	n	25
	4.1	Nome	nclature	26
	4.2	Choos	e material	27
	4.3	Tranm	ission Design	27
		4.3.1	Load on shafts	27
		4.3.2	Preliminary calculations	28
		4.3.3	Identify the distance between bearings and applied forces	28
		4.3.4	Determine shaft diameters and lengths	29

List of Tables

1.1	System overall specifications	10
2.1	Chain drive specifications	15
3.1	Gearbox specifications	24

List of Figures

1	Mechanical transmission system of a belt conveyor	5
2	Input load diagram	6
4.1	Shaft design and its dimensions	30
4.2	Force analysis of shafts	31
4.3	Shear force - Bending moment diagram on (xOz) of shaft 1	31
4.4	Shear force - bending moment diagram on (yOz) of shaft 1	32
4.5	Shear force - Bending moment diagram on (xOz) of shaft 2	33
4.6	Shear force - Bending moment diagram on (yOz) of shaft 2	34

Design Problem

 D_{bc} pulley diameter, mm

 F_t tangential force, N

L service life, years

T working torque, $N \cdot mm$

t working time, s

 v_{bc} conveyor belt speed, m/s

 δ_u error of speed ratio, %

Figure 1: Mechanical transmission system of a belt conveyor

Given the mechanical transmission system in figure 1, determine the specifications for each machine element.

- 1. Electric motor
- 2. Elastic coupling
- 3. Gearbox
- 4. Chain drive
- 5. Belt conveyor

Figure 2: Input load diagram

Design parameters The chosen parameters are given in column 8:

- $F_t = 4500 (N)$
- $v_{bc} = 3.05 \, (\text{m/s})$
- $D_{bc} = 500 \, (\text{mm})$
- L = 4 (years)
- $T_1 = T (N \cdot mm), t_1 = 12 (s)$
- $T_2 = 0.7T (N \cdot mm), t_2 = 60 (s)$
- $\delta_u \leq \pm 5\%$

The machine works in one direction for 300 days, 2 shifts per day, 8 hours each and the load is low. Also, for the rest of this report, we will consider shaft 1 is the one connected to the electric motor, while shaft 2 is the connection between the chain drive and gearbox.

Chapter 1

Motor Design

1.1 Nomenclature

n_{bc}	rotational speed of belt	u_{hg}	transmission ratio of helical
	conveyor, rpm		gear
n_{sh}	rotational speed of shaft, rpm	u_{sys}	transmission ratio of the
P_{m}	maximum operating power of		system
	belt conveyor, kW	T_{motor}	motor torque, $N \cdot mm$
P_{motor}	calculated motor power to	T_{sh}	shaft torque, $N \cdot mm$
	drive the system, kW	η_b	bearing efficiency
P_{sh}	operating power of shaft, kW	η_c	coupling efficiency
P_{w}	operating power of the belt	η_{ch}	chain drive efficiency
	conveyor given a workload,	η_{hg}	helical gear efficiency
	kW	η_{sys}	efficiency of the system
u_{ch}	transmission ratio of chain	1	shaft 1
	drive	2	shaft 2

1.2 Calculate η_{sys}

From table (2.3):

$$\eta_c = 1$$

$$\eta_b = 0.99$$

$$\eta_{hg} = 0.96$$

$$\eta_{ch} = 0.95$$

$$\eta_{sys} = \eta_c \eta_b^3 \eta_{hg} \eta_{ch} \approx 0.88$$

1.3 Calculate P_{motor}

$$P_{m} = \frac{F_{t}v_{bc}}{1000} \approx 13.73 \text{ (kW)}$$
From equation (2.13):
$$P_{w} = P_{m} \sqrt{\frac{\left(\frac{T_{1}}{T}\right)^{2} t_{1} + \left(\frac{T_{2}}{T}\right)^{2} t_{2}}{t_{1} + t_{2}}} \approx 10.41 \text{ (kW)}$$

$$P_{motor} = \frac{P_{w}}{\eta_{sys}} \approx 11.76 \text{ (kW)} < P_{m}$$

1.4 Calculate n_{motor}

$$n_{bc} = \frac{6 \times 10^4 v}{\pi D_{bc}} \approx 116.5 \text{ (rpm)}$$
 $u_{ch} = 5 \text{ (table (2.4))}$
 $u_{hg} = 5 \text{ (table (2.4))}$
 $u_{sys} = u_{ch} u_{hg} = 25$
 $n_{motor} = u_{sys} n_{bc} \approx 2912.54 \text{ (rpm)}$

1.5 Choose motor

To work normally, the maximum operating power of the chosen motor must be no smaller than both estimated P_{motor} and P_m . Since $P_{motor} < P_m$ for our case, the minimum operating power of choice is P_m . In similar fashion, its rotational speed must also be no smaller than estimated n_{motor} .

Thus, from table (P1.3), we choose motor 4A160M2Y3 which operates at 18.5 kW and 2930 rpm

$$\Rightarrow P_{motor} = 18.5 \text{ kW}, n_{motor} = 2930 \text{ (rpm)}$$

Recalculating u_{sys} with the new P_{motor} and n_{motor} , we obtain:

$$u_{sys} = \frac{n_{motor}}{n_{bc}} \approx 25.15$$

Assuming $u_{hg} = const$:

$$u_{ch} = \frac{u_{sys}}{u_{hg}} \approx 5.03$$

1.6 Calculate power, rotational speed and torque

Let us denote P_{sh1} , n_{sh1} and T_{sh1} be the transmitted power, rotational speed and torque onto shaft 1, respectively. Similarly, P_{sh2} , n_{sh2} and T_{sh2} will be the transmitted parameters onto shaft 2. These notations will be used throughout the next chapters.

1.6.1 Power

$$P_{ch} = P_m \approx 13.73 \text{ (kW)}$$

$$P_{sh2} = \frac{P_{ch}}{\eta_b \eta_{ch}} \approx 14.59 \text{ (kW)}$$

$$P_{sh1} = \frac{P_{sh2}}{\eta_b \eta_{hg}} \approx 15.35 \text{ (kW)}$$

1.6.2 Rotational speed

$$n_{sh1} = n_{motor} = 2930 \text{ (rpm)}$$

 $n_{sh2} = \frac{n_{sh1}}{u_{hg}} = 586 \text{ (rpm)}$

1.6.3 Torque

$$T_{motor} = 9.55 \times 10^{6} \frac{P_{motor}}{n_{motor}} \approx 60298.63 \text{ (N} \cdot \text{mm)}$$

$$T_{sh1} = 9.55 \times 10^{6} \frac{P_{sh1}}{n_{sh1}} \approx 50047.56 \text{ (N} \cdot \text{mm)}$$

$$T_{sh2} = 9.55 \times 10^{6} \frac{P_{sh2}}{n_{sh2}} \approx 237825.99 \text{ (N} \cdot \text{mm)}$$

In summary, we obtain the following table:

	Motor	Shaft 1	Shaft 2
P(kW)	18.5	14.59	15.35
и	5	5.0)3
n (rpm)	2930	2930	586
$T(N \cdot mm)$	60298.63	50047.5	6 237825.99

Table 1.1: System overall specifications

Chapter 2

Chain Drive Design

2.1 Nomenclature

[i]	permissible impact times per	F_{v}	centrifugal force, N
	second	i	impact times per second
[s]	permissible safety factor	k	overall factor
[P]	permissible power, kW	k_0	arrangement of drive factor
a	center distance, mm	k_a	center distance and chain's
a_{max}	maximum center distance, mm		length factor
a_{min}	minimum center distance, mm	k_{bt}	lubrication factor
\boldsymbol{B}	bush length, mm	k_c	rating factor
d	driving sprocket diameter, mm	k_d	dynamic loads factor
d_c	pin diameter, mm	k_{dc}	chain tension factor
F_0	sagging force, N	k_f	loosing factor
F_1	tight side tension force, N	k_n	coefficient of rotational speed
F_2	slack side tension force, N	k_x	chain weight factor
F_r	force on the shaft, N	k_z	coefficient of number of teeth
F_t	effective peripheral force, N		

n_{01}	experimental rotational speed,	v	instantaneous velocity along the
	rpm		chain, m/s
n_{ch}	rotational speed of a sprocket,	X	chain length in pitches, the
	rpm		number of links
P_t	calculated power, kW	x_c	an even number of links
p	pitch, mm	z	number of teeth of a sprocket
p_{max}	permissible sprocket pitch, mm	z_{max}	maximum number of teeth of the
Q	permissible load, N		driven sprocket
q	mass per meter of chain, kg/m	1	subscript for driving sprocket
S	safety factor	2	subscript for driven sprocket

2.2 Find p

Since the driving sprocket is connected to shaft 1, $n_1 = n_{sh2} = 586$ (rpm).

Find z Since z_1 and z_2 is preferably an odd number according to p.80:

$$z_1 = 29 - 2u_{ch} = 18.94 \approx 19$$

$$z_2 = u_{ch} z_1 = 95.57 \approx 97 \le z_{max} = 120$$

Because $z_1 \ge 15$, we use table (5.8) and interpolation to approximate p_{max} . Therefore, $p_{max} \approx 33.58$ (mm).

Find k Since $n_{ch} = 586 \approx 600 \, (\text{rpm})$, choose $n_{01} = 600 \, (\text{rpm})$, which is obtained from table (5.5). Then, we calculate k_z and k_n .

$$k_z = \frac{25}{z_1} \approx 1.32, k_n = \frac{n_{01}}{n_{ch}} \approx 1.02$$

Specifying the chain drive's working condition and ultizing table (5.6), we find out that $k_0 = k_a = k_{dc} = k_{bt} = 1$, $k_d = 1.25$, $k_c = 1.3$.

$$\Rightarrow k = k_0 k_a k_{dc} k_{bt} k_d k_c = 1.625$$

Find p From table (5.5):

$$P_t = P_{ch} k k_z k_n \approx 30.05 \text{ (kW)} \le 42 \text{ (kW)} \Rightarrow [P] = 42 \text{ (kW)}$$

Using the table, we also get the other parameters:

$$p = 31.75 \text{ (mm)}, d_c = 9.55 \text{ (mm)}, B = 27.46 \text{ (mm)},$$

$$d_1 = \frac{p}{\sin\frac{180^\circ}{z_1}} \approx 192.9 \text{ (mm)}, d_2 = \frac{p}{\sin\frac{180^\circ}{z_2}} \approx 980.49 \text{ (mm)}$$

Having p = 31.75 (mm) $\leq p_{\text{max}} \approx 33.58$ (mm), we can safely choose the number of chains as 1, which is in agreement with the given figure. Hence, from table (5.2), we obtain the parameters in the section for 1 strand chain drive:

$$Q = 56.7 \times 10^3 \text{ (N)}, q = 2.6 \text{ (kg/m)}$$

By comparison to the conditions in the sub-table, the choice of B is satisfactory.

Find a, x_c , and i2.3

Find x_c $a_{min} = 30p = 952.5 \text{ (mm)}, a_{max} = 50p = 1587.5 \text{ (mm)}.$ Limiting the range of choice for a in $[a_{min}, a_{max}]$, we can approximate a = 1000 (mm). $x = \frac{2a}{p} + \frac{z_1 + z_2}{2} + \frac{(z_2 - z_1)^2 p}{4\pi^2 a} \approx 125.89 \Rightarrow x_c = 126$

$$x = \frac{2a}{p} + \frac{z_1 + z_2}{2} + \frac{(z_2 - z_1)^2 p}{4\pi^2 a} \approx 125.89 \Rightarrow x_c = 126$$

Find a From equation (5.13), we calculate a again with x_c :

$$a = \frac{p}{4} \left(x_c - \frac{z_2 + z_1}{2} + \sqrt{\left(x_c - \frac{z_2 + z_1}{2} \right)^2 - 2\frac{(z_2 - z_1)^2}{\pi^2}} \right) - 0.003a \approx 998.98 \text{ (mm)}$$

Find i From table (5.9):

$$i = \frac{z_1 n_{sh2}}{15x} \approx 6 < [i] = 25$$

2.4 Strength of chain drive

For moderate workload, choose $k_d = 1.2$. Let the chain drive be angled 30° with respect to ground, we obtain $k_f = 4$.

$$v_1 = \frac{n_{ch}pz_1}{6 \times 10^4} \approx 5.89 \,(\text{m/s})$$

Find F_t , F_v , F_0 We also need to calculate F_t , F_v and F_0 :

$$F_t = \frac{10^3 P_{ch}}{v_1} \approx 2329.53 \text{ (N)}$$

$$F_v = q v_1^2 \approx 90.25 \text{ (N)}$$

$$F_0 = 9.81 \times 10^{-3} k_f qa \approx 101.92 \text{ (N)}$$

Validate s This value must be larger than the permissible safety factor to operate properly. From equation (5.15):

$$s = \frac{Q}{k_d F_t + F_0 + F_v} \approx 18.98 \ge [s] = 13.2$$
, where [s] is chosen from table (5.10).

2.5 Force on shaft

From p.87:

$$F_2 = F_0 + F_v \approx 192.17 \text{ (N)}$$

$$F_1 = F_t + F_2 \approx 2521.7 \text{ (N)}$$

Choose $k_x = 1.15$ and follow equation (5.20):

$$F_r = k_x F_t \approx 2678.96 \,(\mathrm{N})$$

In summary, we have the following table:

	driving	driven	
[P] (kW)	42		
Q(N)	56700		
p (mm)	31.7	75	
i	6		
a (mm)	998.98		
Z	19	97	
d (mm)	192.9	980.49	
d_c (mm)	9.55		
B (mm)	27.46		
v (m/s)	5.01		
u_{ch}	5		

Table 2.1: Chain drive specifications

Chapter 3

Gearbox Design (Helix gears)

3.1 Nomenclature

$[\sigma_H]$	permissible contact stress, MPa	F_a	axial force, N
$[\sigma_F]$	permissible bending stress,	F_r	radial force, N
	MPa	F_t	tangential force, N
$[\sigma_H]_{max}$	permissible contact stress due to	H	surface roughness, HB
	overload, MPa	K_d	coefficient of gear material
$[\sigma_F]_{max}$	permissible bending stress due	K_F	load factor from bending stress
	to overload, MPa	K_{FC}	load placement factor
AG	accuracy grade of gear	K_{FL}	aging factor due to bending
a	center distance, mm		stress
b	face width, mm	K_{Fv}	factor of dynamic load from
c	gear meshing rate		bending stress at meshing area
d	pitch circle, mm	$K_{F\alpha}$	factor ofload distribution from
d_a	addendum diameter, mm		bending stress on gear teeth
d_b	base diameter, mm	$K_{F\beta}$	factor of load distribution from
d_f	deddendum diameter, mm		bending stress on top land

K_H	load factor of contact stress	S_H	safety factor of contact stress	
K_{HL}	aging factor due to contact stress	ν	rotational velocity, m/s	
K_{Hv}	factor of dynamic load from	X	gear correction factor	
	contact stress at meshing area	Y_F	tooth shape factor	
$K_{H\alpha}$	factor of load distribution from	Y_{eta}	helix angle factor	
	contact stress on gear teeth	Y_{ϵ}	contact ratio factor	
$K_{H\beta}$	factor of load distribution from	у	center displacement factor	
	contact stress on top land	z_H	contact surface's shape factor	
k_x	a coefficient	z_M	material's mechanical properties	
k_y	a coefficient		factor	
m	traverse module, mm	z_{min}	minimum number of teeth	
m_F	root of fatigue curve in bending		corresponding to β	
	stress test	z_v	virtual number of teeth	
m_H	root of fatigue curve in contact	z_{ϵ}	meshing condition factor	
	stress test	α	normal pressure angle,	
m_n	normal module, mm		following Vietnam standard	
N_{FE}	working cycle of equivalent		(TCVN 1065-71), i.e. $\alpha = 20^{\circ}$	
	tensile stress corresponding to	α_t	traverse pressure angle, °	
	$[\sigma_F]$	ϵ_{lpha}	traverse contact ratio	
N_{FO}	working cycle of bearing stress	ϵ_{eta}	face contact ratio	
	corresponding to $[\sigma_F]$	β	helix angle, °	
N_{HE}	working cycle of equivalent	eta_b	base circle helix angle, °	
	tensile stress corresponding to	ψ_{ba}	width to shaft distance ratio	
	$[\sigma_H]$	ψ_{bd}	face width factor	
N_{HO}	working cycle of bearing stress	σ_b	ultimate strength, MPa	
	corresponding to $[\sigma_H]$	σ_{ch}	yield limit, MPa	
S	length, mm			
S_F	safety factor of bending stress			

permissible σ_{Flim}^o bending stress subscript for pinion 1 corresponding to working cycle, subscript for driven gear MPasubscript for variable value after permissible σ_{Hlim}^{o} correction contact stress corresponding to working cycle, MPa

3.2 Choose material

From table (6.1), the material of choice for both gears is steel 40X with $S \le 100$ (mm), HB250, $\sigma_b = 850$ (MPa), $\sigma_{ch} = 550$ (MPa).

Table (6.2) also gives $\sigma_{Hlim}^{o} = 2\text{HB} + 70$, $S_{H} = 1.1$, $\sigma_{Flim}^{o} = 1.8\text{HB}$, $S_{F} = 1.75$

Therefore, they have the same properties except for their surface roughness H.

For the pinion,
$$H_1 = \text{HB250} \Rightarrow \sigma^o_{Hlim1} = 570 \text{ (MPa)}, \ \sigma^o_{Flim1} = 450 \text{ (MPa)}$$

For the driven gear, $H_2 = \text{HB240} \Rightarrow \sigma^o_{Hlim2} = 550 \text{ (MPa)}, \ \sigma^o_{Flim2} = 432 \text{ (MPa)}$

3.3 Calculate $[\sigma_H]$ and $[\sigma_F]$

3.3.1 Working cycle of bearing stress

Using equation (6.5):

$$N_{HO1} = 30H_1^{2.4} = 17.07 \times 10^6 \text{ (cycles)}$$

$$N_{HO2} = 30H_2^{2.4} = 15.4749 \times 10^6 \text{ (cycles)}$$

3.3.2 Working cycle of equivalent tensile stress

Since $H_1, H_2 \le \text{HB350}, m_H = 6, m_F = 6.$

Both gears meshed indefinitely, thus c = 1.

Applying equation (6.7) and T_1 , T_2 , t_1 , t_2 in the initial parameters:

$$N_{HE1} = 60c \left[\left(\frac{T_1}{T} \right)^3 n_1 t_1 + \left(\frac{T_2}{T} \right)^3 n_2 t_2 \right] \approx 5.73 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh1})$$

$$N_{HE2} = 60c \left[\left(\frac{T_1}{T} \right)^3 n_1 t_1 + \left(\frac{T_2}{T} \right)^3 n_2 t_2 \right] \approx 1.15 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh2})$$

$$N_{FE1} = 60c \left[\left(\frac{T_1}{T} \right)^{m_F} n_1 t_1 + \left(\frac{T_2}{T} \right)^{m_F} n_2 t_2 \right] \approx 3.35 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh1})$$

$$N_{FE2} = 60c \left[\left(\frac{T_1}{T} \right)^{m_F} n_1 t_1 + \left(\frac{T_2}{T} \right)^{m_F} n_2 t_2 \right] \approx 0.67 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh2})$$

3.3.3 Aging factor

For steel, $N_{FO1} = N_{FO2} = 4 \times 10^6$ (MPa). Applying equations (6.3) and (6.4) yield:

$$K_{HL1} = {}^{m} \sqrt[H]{N_{HO1}/N_{HE1}} \approx 1.2$$

 $K_{HL2} = {}^{m} \sqrt[H]{N_{HO2}/N_{HE2}} \approx 1.54$
 $K_{FL1} = {}^{m} \sqrt[L]{N_{FO1}/N_{FE1}} \approx 1.03$
 $K_{FL2} = {}^{m} \sqrt[L]{N_{FO2}/N_{FE2}} \approx 1.35$

3.3.4 Calculate $[\sigma_H]$ and $[\sigma_F]$

Since the motor works in one direction, $K_{FC} = 1$

$$[\sigma_{H1}] = \sigma^o_{Hlim1} K_{HL1} / S_{H1} \approx 621.61 \text{ (MPa)}$$

 $[\sigma_{H2}] = \sigma^o_{Hlim2} K_{HL2} / S_{H2} \approx 771.63 \text{ (MPa)}$
 $[\sigma_{F1}] = \sigma^o_{Flim1} K_{FC1} K_{FL1} / S_{F1} \approx 264.85 \text{ (MPa)}$
 $[\sigma_{F2}] = \sigma^o_{Flim2} K_{FC2} K_{FL2} / S_{F2} \approx 332.48 \text{ (MPa)}$

The permissible contact stress due to overload must be lower than 1.25 times of either $[\sigma_{H1}]$ or $[\sigma_{H2}]$, whichever is smaller. For permissible bending stress, it is equal to either $[\sigma_{F1}]$ or $[\sigma_{F2}]$, whichever is larger:

$$[\sigma_H]_{max} = \frac{1}{2} ([\sigma_{H1}] + [\sigma_{H2}]) \approx 696.62 \text{ (MPa)} \leq 1.25 [\sigma_H]_{min} = 1.25 [\sigma_{H1}]$$

 $[\sigma_F]_{max} = [\sigma_{F2}] = 0.8\sigma_{ch} \approx 440 \text{ (MPa)}$

3.4 Transmission Design

3.4.1 Determine basic parameters

Examine table (6.5) gives $K_a = 43$

Assuming symmetrical design, table (6.6) also gives $\psi_{ba} = 0.5$

$$\Rightarrow \psi_{bd} = 0.53 \psi_{ba} (u_{hg} + 1) = 1.59$$

From table (6.7) , using interpolation, we approximate $K_{H\beta} \approx 1.108, K_{F\beta} \approx 1.2558$

Since the gear system only consists of involute gears and it is also a speed reducer gearbox, we estimate a using equation (6.15a) gives:

$$a = K_a (u_{hg} + 1) \sqrt[3]{\frac{T_{sh1} K_{H\beta}}{[\sigma_H]^2 u_{hg} \psi_{ba}}} \approx 91.94 \text{ (mm)}$$

According to SEV229-75 standard, we choose $a_w = 100 \,\mathrm{mm}$

3.4.2 Determine gear meshing parameters

Find m Applying equation (6.17) and choose m from table (6.8):

$$m = (0.01 \div 0.02) a_w \approx (0.92 \div 1.84) \text{ (mm)} \Rightarrow m = 1.5 \text{ (mm)}$$

Find z_1 , z_2 , b_w Let $\beta = 15^\circ$. Combining equation (6.18) and (6.20), we come up with the formula to calculate z_1 . From the result, z_1 is rounded up to the nearest odd number (preferably a prime number).

$$z_1 = \frac{2a_w \cos \beta}{m(u_{hg} + 1)} \approx 19.73 \Rightarrow z_1 = 21$$

$$z_2 = u_{hg}z_1 = 105$$

$$\Rightarrow b_w = \psi_{ba}a_w = 50 \text{ (mm)}$$

Recalculate β There are 2 approaches for correction involving the change of either α or β . Because altering α leads to many other corrections $(d_1, d_2 \text{ and } a)$, β will be used instead.

Since z_1 is rounded, we must find β to obtain the correct angle, ensuring that $\beta \in (8^{\circ}, 20^{\circ})$. Using equation (6.32):

$$\beta = \arccos \frac{m(z_1 + z_2)}{2a_w} \approx 19.09^{\circ}$$

Find x_1 , x_2 To find x_1 and x_2 , we will follow the calculation scheme provided in p.103. Since $\beta \approx 19.09^{\circ} \in (17, 21]$, $z_{min} = 15$, which leads to z_1 satisfying condition $z_1 \ge z_{min} + 2 > 10$, according to table (6.9). Combined with $u_{hg} = 5 \ge 3.5$, we obtain $x_1 = 0.3$, $x_2 = -0.3$, disregarding the calculation of y.

3.4.3 Other parameters

$$d_{1} = d_{w1} = \frac{mz_{1}}{\cos \beta} \approx 33.33 \text{ (mm)}$$

$$d_{2} = d_{w2} = \frac{mz_{2}}{\cos \beta} \approx 166.67 \text{ (mm)}$$

$$d_{a1} = d_{1} + 2(1 + x_{1})m \approx 37.23 \text{ (mm)}$$

$$d_{a2} = d_{2} + 2(1 + x_{2})m \approx 168.77 \text{ (mm)}$$

$$d_{f1} = d_{1} - (2.5 - 2x_{1})m \approx 30.48 \text{ (mm)}$$

$$d_{f2} = d_{2} - (2.5 - 2x_{2})m \approx 162.02 \text{ (mm)}$$

3.4.4 Contact stress analysis

From section 6.3.3. in the text, contact stress applied on a gear surface must satisfy the condition below:

$$\sigma_H = z_M z_H z_{\epsilon} \sqrt{2T_{sh1} K_H \frac{u_{hg} + 1}{b_w u_{hg} d_{w1}^2}} \le [\sigma_H]$$

Find $z_M = 274$, according to table (6.5)

Find
$$z_H$$
 $\beta_b = \arctan(\cos \alpha_t \tan \beta) \approx 17.94^\circ \Rightarrow z_H = \sqrt{2 \frac{\cos \beta_b}{\sin(2\alpha_t)}} \approx 1.7$

Find z_{ϵ} Obtaining z_{ϵ} through calculations:

$$\epsilon_{\alpha} = \frac{\sqrt{d_{a1}^2 - d_{b1}^2} + \sqrt{d_{a2}^2 - d_{b2}^2} - 2a_w \sin \alpha_t}{2\pi m \frac{\cos \alpha_t}{\cos \beta}} \approx 1.34$$

$$\epsilon_{\beta} = b_w \frac{\sin \beta}{m\pi} \approx 3.47 > 1 \Rightarrow z_{\epsilon} = \epsilon_{\alpha}^{-0.5} \approx 0.86$$

Find K_H We find K_H using equation $K_H = K_{H\beta}K_{H\alpha}K_{H\nu}$

From table (6.13), $v \le 6 \text{ (m/s)} \Rightarrow AG = 8$

From table (P2.3), using interpolation, we approximate:

$$K_{Hv} \approx 1.05, K_{Fv} \approx 1.14$$

From table (6.14), using interpolation, we approximate:

$$K_{H\alpha} \approx 1.09, K_{F\alpha} \approx 1.27$$

 $\Rightarrow K_H \approx 1.27$

Find σ_H After calculating z_M , z_H , z_ϵ , K_H , we get the following result:

$$\sigma_H \approx 663.86 \, \text{MPa} \leq [\sigma_H] \approx 696.62 \, \text{MPa}$$

3.4.5 Bending stress analysis

For safety reasons, the following conditions must be met:

$$\sigma_{F1} = 2 \frac{T_{sh1} K_F Y_{\epsilon} Y_{\beta} Y_{F1}}{b_w d_{w1} m_n} \le [\sigma_{F1}]$$

$$\sigma_{F2} = \frac{\sigma_{F1} Y_{F2}}{Y_{F1}} \le [\sigma_{F2}]$$

Find Y_{ϵ} Knowing that $\epsilon_{\alpha} \approx 1.64$, we can calculate $Y_{\epsilon} = \epsilon_{\alpha}^{-1} \approx 0.75$

Find
$$Y_{\beta}$$
 $Y_{\beta} = 1 - \frac{\beta}{140} \approx 0.86$

Find Y_F Using formula $z_v = z \cos^{-3}(\beta)$ and table (6.18):

$$z_{v1} = z_1 \cos^{-3}(\beta) \approx 24.88 \Rightarrow Y_{F1} \approx 3.6$$

$$z_{v2} = z_2 \cos^{-3}(\beta) \approx 124.42 \Rightarrow Y_{F2} \approx 3.64$$

Find K_F Using $K_{F\beta}$, $K_{F\alpha}$, $K_{F\nu}$ calculated from the sections above, we derive: $K_F = K_{F\beta}K_{F\alpha}K_{F\nu} \approx 1.82$

Find σ_F Since $m_n = m \cos \beta \approx 1.42$, substituting all the values, we find out that:

$$\sigma_{F1} \approx 179.07 \, (\text{MPa}) \leq [\sigma_{F1}] \approx 264.85 \, (\text{MPa})$$

$$\sigma_{F2} \approx 181.06 \, (\text{MPa}) \le [\sigma_{F2}] \approx 332.48 \, (\text{MPa})$$

3.4.6 Force on shafts

$$F_t = \frac{2T_{sh1}}{d_1} \approx 3003.15 \text{ (N)}$$

$$F_r = F_t \tan \alpha_t \approx 1131.8 \, (\mathrm{N})$$

$$F_a = F_t \tan \beta \approx 1039.35 (N)$$

In summary, we have the following table:

	pinion	driving gear	
H (HB)	250	240	
$[\sigma_H]$ (MPa)	621.61	771.63	
$[\sigma_F]$ (MPa)	264.85	332.48	
$[\sigma_H]_{max}$ (MPa)	696	.62	
$[\sigma_F]_{max}$ (MPa)	440)	
σ_H (MPa)	621.61	771.63	
σ_F (MPa)	179.07	181.06	
σ_H (MPa)	663.86		
α_{tw} (°)	20.65		
β (°)	19.09		
a_w (mm)	100)	
b_w (mm)	50		
m (mm)	1.5		
\mathcal{Z}	21	105	
d (mm)	33.33	166.67	
d_a (mm)	37.23	168.77	
d_f (mm)	30.48	162.02	
d_b (mm)	31.32	156.62	
v (m/s)	5		
u_{hg}	5		

Table 3.1: Gearbox specifications

Chapter 4

Shaft Design

4.1 Nomenclature

subscript for x-axis

[au]	permissible torsion, MPa	q	standardized coefficient of shaft
r	position of applied force on the		diameter
	shaft, mm	b_O	rolling bearing width, mm
hr	tooth direction	l_m	hub diameter, mm
cb	role of gear on the shaft (active or	k_1	distance between elements, mm
	passive)	k_2	distance between bearing surface
cq	rotational direction of the shaft		and inner walls of the gearbox, mm
σ_b	ultimate strength, MPa	k_3	distance between element surface
σ_{ch}	yield limit, MPa		and bearing lid, mm
S	safety factor	h_n	distance between bearing lid and
F_{x}	applied force, N		bolt, mm
F_t	tangential force, N	T	torque on shaft
F_r	radial force, N	α_{tw}	meshing profile angle, $^{\circ}$
F_a	axial force, N	β	helix angle, °
a_w	shaft distance, mm	1	subscript for shaft 1
d	shaft diameter, mm	2	subscript for shaft 2
d_w	gear diameter, mm		

4.2 Choose material

For moderate load, we will use quenched steel 40X to design the shafts. From table 6.1, the specifications are as follows: $S \leq 100 \, (\text{mm})$, HB260, $\sigma_b = 850 \, (\text{MPa})$, $\sigma_{ch} = 550 \, (\text{MPa})$.

4.3 Tranmission Design

4.3.1 Load on shafts

Applied forces from Gears

Following p.186, the subscript convention of the book will be used in this chapter. If a symbol has 2 numeric subscripts, the first one is the ordinal number of shafts while the second one is used for machine elements.

On shaft 1, the motor is labeled 1 and the pinion is labeled 2. On shaft 2, the driven gear is labeled 1 and the driving sprocket is labeled 2. Therefore, we obtain:

$$r_{12} = -d_{w12}/2 \approx -13.57 \text{ (mm)}, hr_{12} = +1, cb_{12} = +1, cq_1 = +1$$

 $r_{21} = +d_{w21}/2 \approx +67.84 \text{ (mm)}, hr_{21} = -1, cb_{21} = -1, cq_2 = -1$

Find magnitude of F_t , F_r , F_a Using the results from the previous chapter: $\alpha_{tw} \approx 21.17^{\circ}$, $\beta = 20^{\circ}$, $d_{w12} \approx 27.14$ (mm)

$$\begin{cases} F_{t12} = F_{t21} = \frac{2T_{sh1}}{d_{w12}} \approx 2769.03 \text{ (N)} \\ F_{r12} = F_{r21} = \frac{F_{t12} \tan \alpha_{tw}}{\cos \beta} \approx 1141.36 \text{ (N)} \\ F_{a12} = F_{a21} = F_{t12} \tan \beta \approx 1007.84 \text{ (N)} \end{cases}$$

Find direction of F_t , F_r , F_a Following the sign convention, we obtain the forces:

$$\begin{cases} F_{x12} = \frac{r_{12}}{|r_{12}|} cq_1 cb_{12} F_{t12} \approx -2769.03 \text{ (N)} \\ F_{y12} = -\frac{r_{12}}{|r_{12}|} \frac{\tan \alpha_{tw}}{\cos \beta} F_{t12} \approx 1141.36 \text{ (N)} \\ F_{z12} = cq_1 cb_{12} hr_{12} F_{t12} \tan \beta \approx 1007.84 \text{ (N)} \end{cases}$$

$$\begin{cases} F_{x21} = \frac{r_{21}}{|r_{21}|} cq_2 cb_{21} F_{t21} \approx 2769.03 \text{ (N)} \\ F_{y21} = -\frac{r_{21}}{|r_{21}|} \frac{\tan \alpha_{tw}}{\cos \beta} F_{t21} \approx -1141.36 \text{ (N)} \\ F_{z21} = cq_2 cb_{21} hr_{21} F_{t21} \tan \beta \approx -1007.84 \text{ (N)} \end{cases}$$

Applied forces from Chain drives

Assuming the angle between x-axis and F_r is 210° and $F_r \approx 2539.28$ (N) (chapter 2), we get the direction of F_r on shaft 2:

$$\begin{cases} F_{x22} = F_{r22}\cos 210^{\circ} \approx -1269.64 \text{ (N)} \\ F_{y22} = F_{r22}\sin 210^{\circ} \approx -2199.08 \text{ (N)} \end{cases}$$

4.3.2 Preliminary calculations

Since shaft 1 receives input torque T_{sh1} and shaft 2 produces output torque T_{sh2} , $[\tau_1] = 15$ (MPa) and $[\tau_2] = 30$ (MPa). Using equation (10.9), we can approximate d_1 and d_2 :

$$d_1 \ge \sqrt[3]{\frac{T_{sh1}}{0.2[\tau_1]}} \approx 23.22 \text{ (mm)} \Rightarrow d_1 = 25 \text{ (mm)}$$

 $d_2 \ge \sqrt[3]{\frac{T_{sh2}}{0.2[\tau_2]}} \approx 30.99 \text{ (mm)} \Rightarrow d_2 = 35 \text{ (mm)}$

4.3.3 Identify the distance between bearings and applied forces

In this section, we will find all the parameters in Figure 4.1. However, if a parameter has 2 numeric subscripts, the first one will denote the ordinal number

of shafts.

From table (10.2), we can estimate b_O . On shaft 1, $b_{O1} = 15$ (mm). On shaft 2, $b_{O2} = 21$ (mm). Using equation (10.10), the gear hubs are $l_{m13} = l_{m12} = 1.5d_1 \approx 34.83$ (mm), $l_{m23} = l_{m22} = 1.5d_2 \approx 46.48$ (mm) (l_{m22} is the chain hub)

From table (10.3), we choose $k_1 = 10 \,(\text{mm})$, $k_2 = 8 \,(\text{mm})$, $k_3 = 15 \,(\text{mm})$, $h_n = 18 \,(\text{mm})$. This parameters apply for both shafts in the system.

Table (10.4) introduce the formulas for several types of gearbox. Since our system only concerns about 1-level gear reducer, the formulas below are used:

On shaft 1:

$$l_{12} = -l_{c12} = -[0.5(l_{m12} + b_{O1}) + k_3 + h_n] \approx -57.92 \text{ (mm)}$$

 $l_{13} = 0.5(l_{m13} + b_{O1}) + k_1 + k_2 \approx 42.92 \text{ (mm)}$
 $l_{11} = 2l_{13} \approx 85.83 \text{ (mm)}$

On shaft 2:

$$l_{22} = -l_{c22} = -[0.5(l_{m22} + b_{O2}) + k_3 + h_n] \approx -66.74 \text{ (mm)}$$

 $l_{23} = 0.5(l_{m23} + b_{O2}) + k_1 + k_2 \approx 51.74 \text{ (mm)}$
 $l_{21} = 2l_{23} \approx 103.48 \text{ (mm)}$

4.3.4 Determine shaft diameters and lengths

From the diagram, we derive the reaction forces at A_1 , A_2 , B_1 , B_2 , which are R_{A1x} , R_{A1y} , R_{B1x} , R_{B1y} , R_{A2x} , R_{A2y} , R_{B2x} , R_{B2y} . Using equilibrium conditions:

$$\begin{cases} \sum_{i} \mathbf{F_i} = 0 \\ \sum_{i} \mathbf{r_i} \times \mathbf{F_i} = 0 \end{cases}$$

We obtain the results as follows:

From the reaction forces, we can easily draw shear force-bending moment diagram

Figure 4.1: Shaft design and its dimensions

$$\begin{cases} R_{A1x} \approx 1384.51 \, (\text{N}) \\ R_{A1y} \approx -570.68 \, (\text{N}) \\ R_{B1x} \approx 1384.51 \, (\text{N}) \\ R_{B1y} \approx -570.68 \, (\text{N}) \end{cases} \qquad \begin{cases} R_{A2x} \approx 703.98 \, (\text{N}) \\ R_{A2y} \approx 4188.06 \, (\text{N}) \\ R_{B2x} \approx -2203.37 \, (\text{N}) \\ R_{B2y} \approx -847.62 \, (\text{N}) \end{cases}$$

for both shafts on 2 major planes (xOz) and (yOz).

From equation (10.15), we calculate the total bending moment at point C_2 , A_2 , D_2 , B_2 , A_1 , D_1 , B_1 , C_1

Figure 4.2: Force analysis of shafts

Figure 4.3: Shear force - Bending moment diagram on (xOz) of shaft 1

Figure 4.4: Shear force - bending moment diagram on (yOz) of shaft 1

Figure 4.5: Shear force - Bending moment diagram on (xOz) of shaft 2

Figure 4.6: Shear force - Bending moment diagram on (yOz) of shaft 2