### M 348 HOMEWORK 7

## ZUN CAO

- 1. Chapter 3.1 Ex # 1, 2 (b)(c)
- 2. Chapter 3.1 Ex # 4
- 3. Additional Problem 1:

 $\overline{Date: 3/27/2024}$ .

|                               | M348 Hw7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3.1                           | Ex#182 (b),(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|                               | (-1,0),(2,1),(3,1),(5,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|                               | P3(X)=0L1(X)+1L2(X)+1L3(X)+2L4(X) (n=4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                               | $L_1(x) = (X-X_2)(X-X_3)(X-X_4)$ $L_2(x) = (X-X_1)(X-X_3)(X-X_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                               | $(\chi_1 - \chi_2)(\chi_1 - \chi_3)(\chi_1 - \chi_4) \qquad (\chi_2 - \chi_1)(\chi_2 - \chi_3)(\chi_2 - \chi_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|                               | $L_{3}(X) = (X-X_{1})(X-X_{2})(X-X_{4})$ $L_{4}(X) = (X-X_{1})(X-X_{2})(X-X_{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                               | $(X_3-X_1)(X_3-X_2)(X_3-X_4)$ $(X_4-X_1)(X_4-X_2)(X_4-X_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Plugin numbers Weget=         | $L_{1}(x) = \frac{(x-2)(x-3)(x-5)}{(-1-2)(-1-3)(-1-5)} = \frac{(x-2)(x-3)(x-5)}{-72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                               | $L_2(X) = \frac{(X - (-1))(X - 3)(X - 5)}{(2 - (-1))(2 - 3)(2 - 5)} = \frac{(X + 1)(X - 3)(X - 5)}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| -9-                           | $-L_3(x) = \frac{(\chi - (-1))(\chi - 2)(\chi - 5)}{(3 - (-1))(3 - 2)(3 - 5)} = \frac{(\chi + 1)(\chi - 2)(\chi - 5)}{-8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                               | $\frac{L_4(x) = \frac{(X - (-1))(X - 2)(X - 3)}{(5 - (-1))(5 - 2)(5 - 3)} = \frac{(X + 1)(X - 2)(X - 3)}{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|                               | $P_{3}(x) = 0 + \frac{(x+1)(x-3)(x-5)}{9} + \frac{(x+1)(x-2)(x-5)}{(-9)} + 2 - \left(\frac{(x+1)(x-2)(x-3)}{36}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                               | $\frac{1}{3}(x) = \frac{8(x+1)(x-3)(x-5) - 9(x+1)(x-2)(x-5) + 4(x+1)(x-2)(x-3)}{72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|                               | $\frac{P_3(x)}{72} = \frac{3x^2 - 18x^2 + 33x + 54}{72} = \frac{x^3 - 6x^2 + 11x + 18}{24} = \frac{x^3}{24} - \frac{x^2}{4} + \frac{11x}{24} + \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| @Newton<br>Divided Difference | $\begin{vmatrix} -1 & 0 \\ 2 & 1 \end{vmatrix} > \frac{1-0}{2-(-1)} = \frac{1}{3} > \frac{0-\frac{1}{3}}{2-(-1)} = -\frac{1}{12} + \frac{1}{3} = -\frac{1}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                               | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
|                               | $P(x) = 0 + \frac{1}{3}(x - (-1)) - \frac{1}{12}(x - (-1))(x - 2) + \frac{1}{24}(x - (-1))(x - 2)(x - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                               | $P(X) = \frac{1}{3}(X+1) - \frac{1}{12}(X+1)(X-2) + \frac{1}{24}(X+1)(X-2)(X-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -           |
|                               | $P(X) = \frac{X^{3}}{24} - \frac{X^{2}}{4} + \frac{11X}{24} + \frac{3}{4}$ (Same as previous)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|                               | The state of the s | K3 X2 IIX 3 |
|                               | After Checking, we see the two methods generate the same polynomial pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 4 24 1    |
|                               | Therefore, agreement verfied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |

# 



$$(0)(0,-2),(2,1),(4,4)$$

1 Method 1 = Lagrange Interpolation

$$L_1(\chi) = \frac{(\chi - \chi_2)(\chi - \chi_3)}{(\chi_1 - \chi_2)(\chi_1 - \chi_3)} = \frac{(\chi - 2)(\chi - 4)}{(0 - 2)(0 - 4)} = \frac{(\chi - 2)(\chi - 4)}{8}$$

$$L_2(x) = \frac{(x-x_1)(x-x_2)}{(x_2-x_1)(x_2-x_2)} = \frac{(x-0)(x-4)}{(2-0)(2-4)} = \frac{x(x-4)}{-4}$$

$$l_3(\chi) = \frac{(\chi - \chi_1)(\chi - \chi_2)}{(\chi_3 - \chi_1)(\chi_3 - \chi_2)} = \frac{(\chi - 0)(\chi - 2)}{(4 - 0)(4 - 2)} = \frac{\chi(\chi - 2)}{8}$$

$$P_2(x) = -2\left(\frac{(x-2)(x-4)}{8}\right) + \frac{x^2-4x}{(-4)} + 4\left(\frac{x^2-2x}{8}\right)$$

$$P_2(x) = -\frac{x^2-6x+8}{4} - \frac{x^2-4x}{4} + \frac{x^2-2x}{2}$$

$$P_{2}(x) = \frac{-(x^{2}-6x+8)-(x^{2}-4x)+2(x^{2}-2x)}{4}$$

$$P_2(x) = \frac{3}{2}x - 2$$

Method 2 = Newton's Divided Difference

$$P(X) = \frac{3}{2}X - 2$$

After checking, we find the two methods generate the same polynomial  $P(x) = \frac{3}{2}x - 2$ . Therefore, agreement verified.



| 3.1Ex4.        |                                                                                                                                                                                                                                                                            |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (0)            | we can use Newton's divided difference to find the polynomial.                                                                                                                                                                                                             |
|                | $\begin{vmatrix} 0 & 0 \\ 0 & > \frac{1-0}{1-0} = 1 \\ 0 & 0 \end{vmatrix}$                                                                                                                                                                                                |
|                | $\begin{vmatrix} 1 & 1 & -0 & -1 & -1 & -1 & -1 & -1 & -$                                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                                                            |
|                | 3 7 3-2 = 5                                                                                                                                                                                                                                                                |
|                | $P_3(x) = 0 + 1(x - 0) + 0(x - 0)(x - 1) + \frac{2}{3}(x - 0)(x - 1)(x - 2)$                                                                                                                                                                                               |
|                | $B(X) = X + \frac{2}{3}X(X-1)(X-2)$                                                                                                                                                                                                                                        |
|                | $\beta(x) = \frac{2}{3}x^3 - 2x^2 + \frac{7}{3}x$                                                                                                                                                                                                                          |
| 413            | → b/c we already have 4 points.                                                                                                                                                                                                                                            |
|                | Since we want to find polynomial more than degree 3, we can add extra points.                                                                                                                                                                                              |
| olynomial 1    | Add (4,3). Therefore 1                                                                                                                                                                                                                                                     |
|                | $\begin{vmatrix} 0 & 0 \\ 1 & 1 \end{vmatrix} > \frac{1-0}{1-0} = 1 \begin{vmatrix} 1-1 \\ 2 & 0 \end{vmatrix} = 0$                                                                                                                                                        |
| -9-            | $\begin{vmatrix} 1 & 2 & 2 & -1 \\ 2 & 2 & -1 & -1 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 2 & -1 \\ 2 & 2 & -1 & -1 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 2 & -1 \\ 2 & 2 & -1 & -1 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 2 & -1 \\ 2 & 2 & -1 & -1 \end{vmatrix}$ |
|                | $\begin{vmatrix} 2 & 2 & -2 & -3 & -2 & -3 & -2 & -4 & -5 & -4 & -5 & -4 & -5 & -4 & -5 & -4 & -6 & -7 & -7 & -7 & -7 & -7 & -7 & -7$                                                                                                                                      |
|                | $\frac{3}{4} = \frac{3}{3} = \frac{7}{4-3} = \frac{4}{4} = \frac{4}{2} = \frac{4}{2}$                                                                                                                                                                                      |
|                | $P_4(x) = P_3(x) + (-\frac{17}{24})(x-0)(x-1)(x-2)(x-3)$                                                                                                                                                                                                                   |
|                | $P_4(x) = \frac{2}{5}x^3 - 2x^2 + \frac{7}{3}x - \frac{17}{24}x(x-1)(x-2)(x-3)$                                                                                                                                                                                            |
| By calculator_ | $P_{4}(X) = -\frac{17}{24} x^{4} + \frac{59}{12} x^{3} - \frac{235}{24} x^{2} + \frac{79}{12} x$                                                                                                                                                                           |
| we get=        | 1447 24 1 12 1                                                                                                                                                                                                                                                             |
| dynomial 2     | Add (5,9). Therefore 2                                                                                                                                                                                                                                                     |
|                | 0 0 > 1-0 = 1 = 1-1                                                                                                                                                                                                                                                        |
|                | $\begin{vmatrix} 1 & 1 & -5 & -5 & -\frac{2}{3} \\ -\frac{2-1}{3} & -\frac{1}{5} & -\frac{2}{3} & -\frac{5}{5} & -\frac{2}{3} \end{vmatrix}$                                                                                                                               |
|                | $\begin{vmatrix} 2 & 2 & -1 \\ 2 & -1 & -1 \end{vmatrix} > \frac{5-1}{3-1} = 2  \frac{4}{3-2} = \frac{5}{5-0} = \frac{10}{10}$                                                                                                                                             |
|                | $\begin{vmatrix} 3 & 7 > \frac{7-2}{3-2} = 5 \\ 7 > \frac{9-7}{5-1} = 1 > \frac{1-5}{5-7} = -\frac{4}{3} > \frac{3-2}{5-1} = -\frac{5}{6} \end{vmatrix}$                                                                                                                   |
|                | 5 9 5-3-1                                                                                                                                                                                                                                                                  |
|                | $P_4(x) = P_3(x) - \frac{3}{10}(x - 0)(x - 1)(x - 2)(x - 3)$                                                                                                                                                                                                               |
| 0_             | $P_{4}(X) = \frac{2}{3}X^{3} - 2X^{2} + \frac{7}{3}X - \frac{3}{10}X(X-1)(X-2)(X-3)$                                                                                                                                                                                       |
| We get         | $P_4(x) = -\frac{3}{10}x^4 + \frac{37}{15}x^3 - \frac{53}{10}x^2 + \frac{62}{15}x$                                                                                                                                                                                         |
|                |                                                                                                                                                                                                                                                                            |
|                |                                                                                                                                                                                                                                                                            |

| (c)               | No. Not exist. 4 points > n=4 0≤3<4-1, so B(X) is unique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                   | Since $B(x) = \frac{2}{3}x^3 - 2x^2 + \frac{7}{3}x$ is the unique cubic polynomial which pass through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h the first three     |
|                   | points, we can plug in X=4 to see whether B(x>=2 to decide whether the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nere exist a          |
|                   | polynomial of degree 3 or less that pass through these 4 points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
|                   | $P_3(4) = \frac{2}{3}(4)^3 - 2(4)^3 + \frac{7}{3} \cdot 4 = \frac{128}{3} - 32 + \frac{28}{3} = 20 + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                   | Since the only possible polynomial fails, there is no such polynomial that these 4 pts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pass through          |
| Additional Proble | ml.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                     |
| (a)               | $ 2^{x}-P_{4}(x)  \leq \frac{(x-0)(x-0.1)(x-0.2)(x-0.3)(x-0.4)}{5!} f^{(5)}(c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                   | $f^{(s)}(c) = 2^{c} \cdot  n^{5}(2)   0 < C < 0.4    f^{(s)}(c)   \le 2^{0.4}  n^{5}(2)   on  [0, 0.4]$ $  2^{x} - P_{4}(x)  \le \frac{(x-0)(x-0.1)(x-0.2)(x-0.3)(x-0.4)}{5!} 2^{0.4}  n^{5}(2) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|                   | $ 2^{x}-P_{4}(x)  \leq \frac{(x-0)(x-0.1)(x-0.2)(x-0.3)(x-0.4)}{2^{0.4}} 2^{0.4}  _{1.5}^{5}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ledos                 |
|                   | N+ v = 0.0E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ording to calculator  |
|                   | $ 2^{0.05} - P_4(0.05)  \le \frac{0.05(0.05 - 0.1)(0.05 - 0.2)(0.05 - 0.3)(0.05 - 0.4)}{5!} e^{0.4}  5  = 0.05(0.05 - 0.1)(0.05 - 0.3)(0.05 - 0.4) e^{0.4}  5  = 0.05(0.05 - 0.1)(0.05 - 0.3)(0.05 - 0.4) e^{0.4}  5  = 0.05(0.05 - 0.1)(0.05 - 0.3)(0.05 - 0.4) e^{0.4}  5  = 0.05(0.05 - 0.1)(0.05 - 0.3)(0.05 - 0.3)(0.05 - 0.4) e^{0.4}  5  = 0.05(0.05 - 0.1)(0.05 - 0.3)(0.05 - 0.3)(0.05 - 0.4) e^{0.4}  5  = 0.05(0.05 - 0.1)(0.05 - 0.3)(0.05 - 0.3)(0.05 - 0.4) e^{0.4}  5  = 0.05(0.05 - 0.1)(0.05 - 0.3)(0.05 - 0.3)(0.05 - 0.4) e^{0.4}  5  = 0.05(0.05 - 0.1)(0.05 - 0.3)(0.05 - 0.3)(0.05 - 0.4) e^{0.4}  5  = 0.05(0.05 - 0.1)(0.05 - 0.3)(0.05 - 0.4) e^{0.4}  5  = 0.05(0.05 - 0.4) e^{0.4}  $ | 77794×10 <sup>8</sup> |
|                   | At x=0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ata calculator        |
|                   | $ \uparrow(0.47)=2 \gamma(2)\approx 0.211125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gto Calculator        |
|                   | $ 2^{0.25} - P_4(0.25)  \le \frac{0.25(0.25 - 0.1)(0.25 - 0.2)(0.25 - 0.3)(0.25 - 0.4)}{5!} e^{0.4}  e^{0.25} - 0.4  e^{0.25}  $ | 1412×10 <sup>-8</sup> |
| (b)               | When $x=0.05$ , the upper error bound is 5.77294×10 <sup>-8</sup> , = 0.57729×10 <sup>-7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-1=6 places.         |
|                   | When $X=0.05$ , the upper error bound is 5.71244×10°, = 0.57729×10° 6 decimal places is guaranteed to be correct.  When $X=0.25$ , the upper error bound is 2.47412×10 <sup>-8</sup> = 0.24741×10 <sup>-7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 places.             |
|                   | 7 decimal places is guaranteed to be correct. 0.2474/<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| 0_                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |

4. Chapter 3.2 CP # 3 The total world oil production in millions of barrels per day is shown in the table that follows. Determine and plot the degree 9 polynomial through the data. Use it to estimate 2010 oil production. Does the Runge phenomenon occur in this example? In your opinion, is the interpolating polynomial a good model of the data? Explain.

To plot the interpolating polynomial, you may use newtonDD. Submit:

- the interpolating polynomial;
- a plot of the data points and the polynomial;
- the estimated value of oil production;
- answers and explanations about the Runge phenomenon (per the textbook's description).

```
    rewtonDD ×
    C:\Users\13464\AppData\Local\Programs\Python\Python310\python.exe C:\Users\13464\Desktop\M348\HW7\newtonDD.py
    Interpolating Polynomial:
    P(x) =
        -0.000735 * (x - 1994) * (x - 1995) * (x - 1996) * (x - 1997) * (x - 1998) * (x - 1999) * (x - 2000) * (x - 2001) * (x - 2002)
        +0.002865 * (x - 1994) * (x - 1995) * (x - 1996) * (x - 1997) * (x - 1998) * (x - 1999) * (x - 2000) * (x - 2001)
        -0.007915 * (x - 1994) * (x - 1995) * (x - 1996) * (x - 1997) * (x - 1998) * (x - 1999) * (x - 2000)
        -0.012366 * (x - 1994) * (x - 1995) * (x - 1996) * (x - 1997) * (x - 1998) * (x - 1999)
        -0.035750 * (x - 1994) * (x - 1995) * (x - 1996) * (x - 1997) * (x - 1998)
        -0.035750 * (x - 1994) * (x - 1995) * (x - 1996) * (x - 1997)
        -0.068833 * (x - 1994) * (x - 1995) * (x - 1996)
        +0.419500 * (x - 1994) * (x - 1995)
        +0.956000 * (x - 1994)
        +67.052000
        Estimate 2010 value = -1951646.134000001

        Process finished with exit code 0
```

#### Solution.

• As shown in the picture, we get P(x) = -0.000735\*(x-1994)\*(x-1995)\*(x-1996)\*(x-1997)\*(x-1998)\*(x-1999)\*(x-2000)\*(x-2001)\*(x-2002)+0.002865\*(x-1994)\*(x-1995)\*(x-1996)\*(x-1996)\*(x-1999)\*(x-1999)\*(x-2000)\*(x-1994)\*(x-1995)\*(x-1996)\*(x-1997)\*(x-1998)\*(x-1999)\*(x-2000)+0.012306\*(x-1994)\*(x-1995)\*(x-1996)\*(x-1996)\*(x-1997)\*(x-1998)\*(x-1999)+0.002175\*(x-1994)\*(x-1995)\*(x-1996)\*(x-1997)\*(x-1998)-0.035750\*(x-1994)\*(x-1995)\*(x-1996)\*(x-1997)-0.068833\*(x-1994)\*(x-1995)\*(x-1996)+0.419500\*(x-1994)\*(x-1995)+0.956000\*(x-1994)+67.052000

• Plot of the data points and the polynomial:



- The estimated value of oil production is around -1951646, (-1951646.134000001), as shown in the bottom of the first picture.
- Runge phenomenon does occur in this example. In this case, the interpolating polynomial is a degree 9 polynomial, which is quite high. This phenomenon is clearly observed in the plot, where the interpolating polynomial deviates dramatically from the trend of the data as we move outside the range of the given data points, specifically after the year 2003, leading to a very large negative prediction for the year 2010.

From my perspective, the interpolating polynomial is not a good model of the data for predictions. The degree of the polynomial is too high for the number of data points, and while it may model the within-sample data accurately, it is unsuitable for making predictions outside that range.

#### # Newton Divided Difference Interpolation

```
import numpy as np
import matplotlib.pyplot as pyp
import argparse
# this just makes it so that if you do "python3 newtonDD.py --test", it will run test en
# where numbers are input through the command line. You can modify how this is carried of
# changing the testNewton() function
'''parser = argparse.ArgumentParser(description="Provide Newton's Divided Difference Int
parser.add_argument("-t","--test",action="store_true")
TEST = parser.parse_args().test'',
# Evaluate divided difference interpolant
def newtonEval(t,coefs,x):
   n = len(coefs)
   value = coefs[n-1]
   for i in range(n-2,-1,-1): # same as n-2, n-3, n-4, ..., 0
       value = value*(t-x[i]) + coefs[i]
   return value
# Set up divided difference coefficients
def newtonDDsetup(x,y):
   n = len(x)
   if (len(y) != n):
       print("ERROR CODE 1: x and y are different sizes")
       exit(1)
   # DD level 0
   # coefs[i] = y[i] for i=0,1,2,...,n-1
   coefs = [y[i] for i in range(n)]
   # DD higher levels (bottom to top, overwrite lower entries as they are finished)
```

```
for level in range(1,n): # 1,2,3,4, ... n-1
        for i in range(n-1,level-1,-1): \#n-1, n-2, ..., level
            dx = x[i] - x[i-level]
            if (dx==0): exit(2)
            coefs[i] = (coefs[i]-coefs[i-1])/dx
    return coefs
# x,y are 1d- arrays
def newtonDD(x,y):
    n = len(x)
    if (len(y) != n): exit(1)
    coefs = newtonDDsetup(x, y)
    printPolynomial(coefs, x)
    x_values = np.linspace(np.min(x), np.max(x), 500)
    y_values = [newtonEval(x, y, coefs) for x in x_values]
    estimate_2010 = newtonEval(2010, coefs, x)
    print()
    print("Estimate 2010 value = " + str(estimate_2010))
    ','if TEST: print("x =",x)
    if TEST: print("y =",y)
    if TEST:
        print("The coefs are: ", end=" ")
        for i in range(n):
            print(" %g"%(coefs[i]),end=" ")
        print(),,,
    m = 10*n
    minx = min(x)
    maxx = max(x)
    t = np.arange(minx,maxx+1,(maxx-minx)/m)
    val = newtonEval(t,coefs,x)
```

```
# plot
    pyp.plot(t,val)
    for i in range(n):
        pyp.plot(x[i],y[i],'k*')
   pyp.xlabel("x")
   pyp.ylabel("y")
    pyp.xlim(1994,2010)
   pyp.ylim(-400, 100)
    pyp.title("Newton DD interpolation")
    pyp.legend(["Newton DD interpolant","Data points"],loc="best")
    pyp.show()
# Estimate for 2010 using the interpolating polynomial
def printPolynomial(coefs, x):
    n = len(coefs)
    print("Interpolating Polynomial:")
    print("P(x) =")
    for i in range(n - 1, -1, -1): \# Start from the last coefficient
        term = f"{coefs[i]:+.6f}" # Include sign in format
        for j in range(i):
            term += f'' * (x - \{x[j]:.0f\})"
        if i > 0:
            print(f"{term}")
        else:
            print(term)
```

```
'''def printPolynomial(coefs, x):
   n = len(coefs)
   terms = []
   # Construct the polynomial as a string
   for i in range(n):
       term = f"{coefs[i]:.6f}"
       for j in range(i):
            term += f''*(x - {x[j]:.3f})"
       terms.append(term)
   # Combine terms into a polynomial string
   polynomial = " + ".join(terms)
   print("Interpolating Polynomial:")
   print(f"P(x) = {polynomial}")'''
'', 'def testNewton():
   n = int(input("Enter n: "))
   # Get data from command line
   ans = input("Enter data by points? [y/n] ")
   if (ans[0] == 'y' or ans[0] == 'Y'):
       data = input(f"Enter {n} data points (x1 y1 x2 y2 ... xn yn): ").split(" ")
       # other ways to do this; just for testing without entering a file.
       # pull all the x-values and convert to floats: even indices 0, 2, 4, ...
       x = list(map(float, np.array(data)[np.arange(0,len(data),2)]))
       # pull all the y-values and convert to floats: odd indices 1, 3, 5, ...
       y = list(map(float, np.array(data)[np.arange(1,len(data),2)]))
   else:
       x_data = input(f"Enter {n} distinct x values (x1 x2 ... xn): ").split(" ")
       x = list(map(float,x_data))
```

```
y_data = input(f"Enter {n} distinct y values (y1 y2 ... yn): ").split(" ")
y = list(map(float,y_data))
newtonDD(x,y)'''
```

#### 

years = np.array([1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003])
production = np.array([67.052, 68.008, 69.803, 72.024, 73.400, 72.063, 74.669, 74.487, 7
newtonDD(years, production)