# #2: Representação de Números Inteiros

# Computer Architecture 2020/2021 Ricardo Rocha

Computer Science Department, Faculty of Sciences, University of Porto

### Números Inteiros sem Sinal

A base de um sistema de numeração define o conjunto de símbolos válidos para representar números inteiros sem sinal nessa base:

- Base 2 utiliza 2 símbolos (0, 1)
- Base 10 utiliza 10 símbolos (0, ..., 9)
- Base 16 utiliza 16 símbolos (o, ..., 9, A, ..., F)

Um número pode ter representações diferentes conforme a base utilizada, mas o seu valor é sempre calculado da mesma forma:

- $\mathbf{v} = \mathbf{a}_{n-1} \mathbf{x} \mathbf{b}^{n-1} + \mathbf{a}_{n-2} \mathbf{x} \mathbf{b}^{n-2} + \dots + \mathbf{a}_{1} \mathbf{x} \mathbf{b}^{1} + \mathbf{a}_{0} \mathbf{x} \mathbf{b}^{0}$ , em que  $\mathbf{a}_{n-1} \mathbf{a}_{n-2} \dots \mathbf{a}_{1} \mathbf{a}_{0}$  são a sequência de símbolos da representação de  $\mathbf{v}$  na base  $\mathbf{b}$
- Exemplo:  $137_{16}$  tem o valor de 1 x  $16^2$  + 3 x  $16^1$  + 7 x  $16^0$  = 311

Partindo duma representação decimal (base 10), a conversão de base é conseguida pela realização de divisões inteiras sucessivas pela nova base até se atingir um quociente inferior à nova base. A representação do valor na nova base é a concatenação dos restos obtidos no processo.

$$98_{10} = 1x8^2 + 4x8^1 + 2x8^0 = 142_8$$



$$98_{10} = 1x2^6 + 1x2^5 + 0x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = 1100010_2$$



Alternativamente podemos utilizar diretamente a representação em potências da base:

$$620_{10} = ? \times 16^{3} + ? \times 16^{2} + ? \times 16^{1} + ? \times 16^{0} = ????_{16}$$

$$16^{3} = 4096 > 620$$

$$16^{2} = 256 \implies 2\times256 <= 620 (3\times256 > 620) \implies 620 - (2\times256) = 108$$

$$16^{1} = 16 \implies 6\times16 <= 108 (7\times16 > 108) \implies 108 - (6\times16) = 12$$

$$16^{0} = 1 \implies 12\times1 <= 12$$

$$620_{10} = 2 \times 16^{2} + 6 \times 16^{1} + 12 \times 16^{0} = 26C_{16}$$

A conversão entre bases que são potência uma da outra é ainda mais direta pois o expoente da potência determina o número de dígitos necessários para representar o valor na nova base.

Por exemplo, conversões entre a base 2 e a base 16. Como 16 = 24, cada dígito em base 16 pode ser representado com 4 dígitos em base 2. Da mesma forma, 4 dígitos em base 2 podem ser representados com 1 dígito em base 16.

$$7_{16} = 0111_{2}$$
 $F_{16} = 1111_{2}$ 
 $F_{7_{16}} = 1111_{111_{2}}$ 

# Aritmética (Adição)

Independentemente da base usada, o algoritmo usado para operações aritméticas é o mesmo.

$$c1 = (y0 + z0) / b$$
  
 $c2 = (c1 + y1 + z1) / b$   
 $c3 = (c2 + y2 + z2) / b$   
 $r0 = (y0 + z0) \mod b$   
 $r1 = (c1 + y1 + z1) \mod b$   
 $r2 = (c2 + y2 + z2) \mod b$   
 $r3 = c3$ 

### **Números Inteiros com Sinal**

Na base decimal, os números inteiros negativos são representados pelo sinal '-' antes do número. Em binário (base 2), usamos o bit mais significativo (o da esquerda) para representar o sinal.

- Bit o representa um número positivo e bit 1 representa um número negativo
- Para usar bit de sinal é necessário fixar o número de bits usado na representação

#### Exemplo com 4 bits:

$$5_{10} = 0101_2$$

$$-5_{10} = 1101_{2}$$

## Complemento para 1

Números positivos são representados de igual forma. Números negativos são representados como o resultado da subtração da codificação positiva ao valor '111 ... 111'. Ou seja, os números negativos podem ser vistos como a negação do positivo correspondente por inversão dos bits (os o's passam a 1's e vice-versa).

#### Exemplo com 4 bits:

$$5_{10} = 0101_2$$
 $-5_{10} = 1111_2 - 0101_2 = 1010_{2 \text{ (compl p/1)}}$ 

## Complemento para 2

Números positivos são representados de igual forma. Números negativos são representados como o complemento para 1 + 1<sub>2</sub>.

Em complemento para 2, a sequência de bits  $\mathbf{a}_{n-1} \mathbf{a}_{n-2} \dots \mathbf{a}_1 \mathbf{a}_0$  na base **b** representa o valor  $\mathbf{v} = -\mathbf{a}_{n-1} \mathbf{x} \mathbf{b}^{n-1} + \mathbf{a}_{n-2} \mathbf{x} \mathbf{b}^{n-2} + \dots + \mathbf{a}_1 \mathbf{x} \mathbf{b}^1 + \mathbf{a}_0 \mathbf{x} \mathbf{b}^0$ .

#### Exemplo com 4 bits:

$$5_{10} = 0101_2$$
 $-5_{10} = 1010_2 + 1_2 = 1011_{2 \text{ (compl p/ 2)}} = -1x2^3 + 1x2^1 + 1x2^0 = -8+2+1$ 
 $-(-5_{10}) = 0100_2 + 1_2 = 0101_{2 \text{ (compl p/ 2)}}$ 

### Resumo

| Decimal | Binário<br>sem sinal | Binário<br>com sinal | Complem.<br>para 1 | Complem.<br>para 2 |
|---------|----------------------|----------------------|--------------------|--------------------|
| 3       | 011                  | 011                  | 011                | 011                |
| 2       | 010                  | 010                  | 010                | 010                |
| 1       | 001                  | 001                  | 001                | 001                |
| 0       | 000                  | 000 / 100            | 000 / 111          | 000                |
| -1      | _                    | 101                  | 110                | 111                |
| -2      | <u> </u>             | 110                  | 101                | 110                |
| -3      | _                    | 111                  | 100                | 101                |
| -4      | _                    | _                    | _                  | 100                |