- Fecha esperada de terminación:
- 1. Recuerde que la matriz $H = X(X'X)^{-1}X'$ es simétrica e idempotente.
 - a) Muestre que cada uno de los elementos de la diagonal h_{ii} , llamado algunas veces "apalancamiento" de y_i en \hat{y}_i , (i = 1, ..., n) está entre 0 y 1.
 - b) Muestre que si $X_{n\times q}$, la suma de los h_{ii} es q.
 - c) Muestre que si y_i se reemplaza por $y_i^* = y_i + 1$, entonces $\hat{y}_i^* = \hat{y}_i + h_{ii}$.
- 2. Repita el análisis discutido en clase de los datos del score adaptativo de Gesell y la edad del niño cuando se emite la primer palabra. [Los datos los encuentran en Comunidad como GesellScore.dat.]
- 3. El siguiente juego de datos es sobre el endurecimiento de cemento Portland y famoso por su difícil modelación. Draper & Smith (1998) discuten el análisis de los datos en varias secciones de su texto. [Los datos los encuentran en *Comunidad* como Hald.dat.]

variable	concepto
x_1	Cantidad de tricalcio de aluminiato, $3 CaO \cdot Al_2O_3$.
x_2	Cantidad de tricalcio de silicato, $3 CaO \cdot SiO_2$.
x_1	Cantidad de tricalcio de aluminio ferrito, $4 CaO \cdot Al_2O_3 \cdot Fe_2O_2$.
x_1	Cantidad de dicalcio de silicato, $2 CaO \cdot SiO_2$.
y	Calor en calorías por gramo de cemento.

Los regresores, x_1, x_2, x_3, x_4 son medidos como porcentaje del peso de las ollas donde se hace el cemento.

-1					
$_{\rm obs}$	x_1	x_2	x_3	x_4	y
1	7	26	6	60	78.5
2	1	29	15	52	74.3
3	11	56	8	20	104.3
4	11	31	8	47	87.6
5	7	52	6	33	95.9
6	11	55	9	22	109.2
7	3	71	17	6	102.7
8	1	31	22	44	72.5
9	2	54	18	22	93.1
10	21	47	4	26	115.9
11	1	40	23	34	83.8
12	11	66	9	12	113.3
13	10	68	8	12	109.4

- a) Ajuste el modelo de regresión lineal múltiple en los 4 regresores x's y comente. Calcule los residuales $y \hat{y}$, los estandarizados, los studentizados interna y externamente y compárelos. Así también, calcule los estadísticos de Cook para cada una de las observaciones.
- b) Elimine la octava observación y repita el inciso anterior. Comente.
- c) Indique las diferencias más importantes entre ambos ajustes. Compare las estimaciones de β .