13 - Feb 27 Lecture

- Determinants
- Submatrices
- Algorithm for finding the determinant of a square matrix

Determinants	Determinants are a property of / number associated with square matrices.
	\mapsto The determinant of any n×n (square) matrix is <u>defined.</u>
	\mapsto The determinant of any nxm, $n \neq m$ (non-square) matrix is <u>not defined</u> .
	1×1
	Det ([a]) = a (1 term)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$Det\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \underline{ad-bc} (2 \text{ terms})$
	,
	/ [a b c] \
	$ \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \underline{aei} - \underline{afh} - \underline{bdi} + \underline{bfg} + \underline{cdh} - \underline{ceg} (6 \text{ terms}) $
	a h i
	Det([4×4]) = (24 terms)
	Det(LT**TJ) (24 Terms)
	Det ([5×5]) = (120 terms)
	per (L3^3]) = (120 terms)
	A / (5a a a 7) :
	Det ([2x2]) is easy to find. If the matrix is larger, though, using formulas is no longer
	feasible because of the sheer number of terms involved in the calculation. So, we will use
	an algorithm to find the determinant of larger matrices (next page).
Submatrices	Let A(i,j) denote a submatrix, the matrix obtained by removing the ith row
	and j th column of A.
	\longrightarrow If A is a nxm matrix, $A(i,j)$ is a $(n-1)\times(m-1)$ matrix $(n \neq m)$.
	→ If A is square, A(i,j) is square.
	\longrightarrow Note: textbook uses $A_{i,j}$ instead of $A(i,j)$
Ex:	Given A, what is: a) A(2,3)?
	1 2 4
	1=2 A= A(2,3) = 9 10 12
	" q 10 11 12 [13 14 16]
	[13 14 <mark>15 16</mark>]
	j=3 j=4 b) (A(1, 4)?
	rewrite A without [5 6 7]
	highlighted columns/ rows A(1,4) = 9 10 11
	[13 14 15]
	1

Algorithm	for	fin	ding	
determinar	nt o	f a	matrix	

To find the determinant of a nxn matrix A, use either one of the following two formulas. You will choose either a value of i between 1 to n or a value of j between 1 to n. If you choose a value for i, use formula ①. If you choose a value for j, use formula ②.

Formula O	Formula 3
For any i between 1 and n:	For any j between 1 and n:
Det (A) = $\sum_{j=1}^{m} (-1)^{i+j} A_{i,j} \cdot \text{Det} (A_{i,j})$	$Det(A) = \sum_{i=1}^{n} (-1)^{i+j} \cdot A_{i,j} \cdot Det(A(i,j))$
j=1	$ \begin{array}{cccc} \text{Det}(R) & & & & \\$

This formula reduces matrix size. This algorithm continues until Det (A(i,j)) is Det $([2\times2])$. Then, we can use Det $([2\times2])$ = ad-bc to solve everything.

Ex. What is the determinant of A?

 $i=1 \rightarrow \begin{bmatrix} 1 & 0 \\ A = \end{bmatrix}$ Tip: choose i or j so that there are the most zeroes in that row/column. For this example, i=1, i=2, j=1, j=3 are all equally good choices. Each zero means one less term to calculate!

Let i = 1. (use formula 0)

Det (A) =
$$\sum_{j=1}^{n} (-1)^{i+j} \cdot A_{i,j} \cdot \text{Det} (A_{i,j})$$

we will sum j from 1 to 3 since A is a 3×3 matrix (... n is 3)

$$\begin{array}{l} (=1,j=1) \\ (=1,j=2) \\ (=1,j=3) \\ (=1,j=3) \\ (=1,j=3) \\ (=1)^{1+1} \cdot A_{1,1} \cdot \operatorname{Det} \left(A(1,1)\right) + \underbrace{(-1)^{1+2} \cdot A_{1,2} \cdot \operatorname{Det} \left(A(1,2)\right) + \underbrace{(-1)^{1+3} \cdot A_{1,3} \cdot \operatorname{Det} \left(A(1,3)\right)}_{1-1} \\ (=(-1)^{2} \cdot (1) \cdot \operatorname{Det} \left(\begin{bmatrix} 2 & -3 \\ -1 & 1 \end{bmatrix} \right) + \underbrace{(-1)^{3} \cdot (1) \cdot \operatorname{Det} \left(\begin{bmatrix} 0 & -3 \\ 1 & 1 \end{bmatrix} \right) + \underbrace{(-1)^{4} \cdot (4) \cdot \operatorname{Det} \left(\begin{bmatrix} 0 & 7 \\ 1 & -1 \end{bmatrix} \right)}_{1-1} \\ (=(1)(1)[(2)(1) - (-3)(-1)] + \underbrace{(-1)(1)[(0)(1) - (-3)(1)]}_{1-1} + 0 \\ (=(1)(-1) + (-1)(3) + 0 \\ (=-1-3+0) \\ =-4 \end{array}$$

Note: you will get the same determinant value no matter what value of i or j you pick (between 1 and n). So, j=3 and using formula 2 would also result in a determinant of -4. Demonstrating on next page.

So, how exactly does this algorithm work?

= - 4 (same answer :)

1) The formula expands along the row/column you select.

Ex: selecting i=2 would expand along the second row

Ex: selecting j=1 would expand along the first column

2) The formula adds together all terms associated with the selected row 1 column.

Breaking down the formula:

$$Det(A) = \sum_{i=1}^{n} (-1)^{i+j} \cdot A_{i,j} \cdot Det(A(i,j))$$

Ai,; term of A. Pick i or j to maximize the number of zeroes in that column/row.

Det (A(i,j)): if A is nxn, A(i,j) is $(n-1) \times (n-1)$.

```
0 1 3 2 0
A= 0 4 1 3 1
0 -1 -5 2 2
Let j = 1 since that column has the most zeroes.
 Det (A) = \sum_{i=1}^{n} (-1)^{i+j} \cdot A_{i,j} \cdot Det (A(i,j)) \cdot since A_{2,1}, A_{3,1}, A_{4,1},
Det(A) = (-1) 1+1 . A1,1 . Det(A(1,1)) + 0 + 0 + 0 + 0
            = (3)(-234)
             = -702 ← Det(A)
Let (=1). (=1, j=1) (=1, j=2) (=1, j=3) Det (B) = (-1)^{1+1} \cdot B_{1,1} \cdot Det (B(1,1)) + (-1)^{1+2} \cdot B_{1,2} \cdot Det (B(1,2)) + (-1)^{1+3} \cdot B_{1,3} \cdot Det (B(1,3)) + 0
            = (1)(73) + (-3)(43) + (2)(-89)
            = 73 - 129 - 178
            = -234
Let i = 1.
                      i=1,j=1
Det(E) = \frac{(-1)^{1+1} \cdot E_{1,1} \cdot Det(E(1,1))}{(-1)^{1+2} \cdot E_{1,2} \cdot Det(E(1,2)) + \frac{(-1)^{1+3} \cdot E_{1,3} \cdot Det(E(1,3))}{(-1)^{1+3} \cdot E_{1,3} \cdot Det(E(1,3))}
= (1)(1) \cdot Det\begin{bmatrix} 2 & 2 \\ 1 & 4 \end{bmatrix} + (-1)(3) \cdot Det\begin{bmatrix} -5 & 2 \\ 3 & 4 \end{bmatrix} + (1)(1) \cdot Det\begin{bmatrix} -5 & 2 \\ 3 & 1 \end{bmatrix}
          = (1)[(2)(4)-(2)(1)]+(-3)[(-5)(4)-(2)(3)]+(1)[(-5)(1)-(2)(3)]
           = (1)(6) + (-3)(-26) + (1)(-11)
           = 6 + 78 - 11
           - 73
```

```
Let i= 1. i=1,j=1
  Example \
Continued Det (E) = \frac{(-1)^{1+1} \cdot F_{1,1} \cdot \text{pet}(F(1,1))}{1 + (-1)^{1+2} \cdot F_{1,2} \cdot \text{pet}(F(1,2))} + \frac{(-1)^{1+3} \cdot F_{1,3} \cdot \text{pet}(F(1,3))}{1 + (-1)^{1+3} \cdot F_{1,3} \cdot \text{pet}(F(1,3))}
= (1)(4) \cdot \text{Det} \begin{bmatrix} 2 & 2 \\ 1 & 4 \end{bmatrix} + (-1)(3) \cdot \text{Det} \begin{bmatrix} -1 & 2 \\ 2 & 4 \end{bmatrix} + (1)(1) \cdot \text{Det} \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}
                                   = (4) [(2)(4)-(2)(1)] + (-3) [(-1)(4)-(2)(2)] + (1) [(-1)(1)-(2)(2)]
                                   = (4)(6)+(-3)(-8)+(1)(-5)
                                   - 24+24-5
                                   = 43
                       = (4)[(-5)(4)-(2)(3)]+(-1)[(-1)(4)-(2)(2)]+(1)[(-1)(3)-(-5)(2)]
                                    = (4)(-26)+(-1)(-8)+(1)(7)
                                    = -104 + 8 + 7
                                    = -89
```

Determinants	Determinant is a property of / number associated with a square matrix
	(square)
	The determinant of any nxn matrix is defined
	(non-square)
	The determinant of any nxm matrix (n + m) is not defined.
	THE GETEVISION OF SING WATERY ENTRY IS NOT A PINEA.
	Det ([a]) = a (1 +erm)
	per (Easy)
	/ [
	$Det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc (2 \text{ terms})$
	([ca])
	[a b c 7]
	$Det \ \ \ \ \ \ def \ \ \ \ \ \ = aei - afh - bdi + bfg + cdh - ceq$
	$ \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = aei - afh - bdi + bfg + cdh - ceg $ $ (6 terms) * don't need to memorize * $
	Det ([4x4]) = (24 terms)
	Det ([S x 5]) = (120 terms)
	We need a better method of finding the det.
	THE THE THE THE THE THE TENT OF THE ULT.
	late AC: 12 1 who they allowed to consider the other
Submathces	Let A(i,j) denote the matrix obtained by removing the ith row and
	jth column of A.
	(Note: textbook uses Aij)
Ex.	$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ 9 & 10 & 12 \\ 13 & 14 & 16 \end{bmatrix}$
	5 6 7 8 A (2,3) = 9 10 12
	A = 9 10 11 12 13 14 16
	13 14 15 16
	[s 6 7]
	A(1,4) = 9 10 11
	$A(1,4) = \begin{pmatrix} 9 & 10 & 11 \\ 13 & 14 & 15 \end{pmatrix}$
	ر دا ۱۴ در ۱
	If A is square then A(i,j) is square.

	The determinant of a nxn matrix A.
	for any i between 1 and n:
	$Det(A) = \sum_{j=1}^{n} (-1)^{i+j} A_{i,j} det(A_{i,j})$
	J*1
	or for any j between 1 and n:
	n i+j Det (A) = Σ (-1) A i, j Det (A (i, j)) i=1
	$Det (A) = \sum_{i=1}^{N} (-1) A_{i,j} Det (A_{i,j})$
	i=1
Ex.	[1 1 0 7 review
	review $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & -3 \\ 1 & -1 & 1 \end{bmatrix}$ $i = 1$
	[=]
	= 1*+2*+3*
	Let $i = 1$. (selected $i \rightarrow use$ formula 1)
	THE TEXT COUNTY OF THE POST POST POST POST POST POST POST POST
	Sum from 1 to 3 since A is a 3×3 matrix → n=3.
	Sum from 1 to 3 since A is a 3x3 matrix \rightarrow n=3. Det (A) = (-1) A _{1,1} Det (A(1,1)) + (-1) (
	$\int_{0}^{1+1} \int_{0}^{1+1} \int_{0}^{1+1} \int_{0}^{1+1} \int_{0}^{1+2} \int_{0$
	1 (1) 1+3 A Dat (A(1,2))
	T (-1) A1,3 Det (A(1,5)) 5=3
sall to the sale of	= 1(1) · Det $\begin{pmatrix} 2 & -3 \\ -1 & 1 \end{pmatrix}$ + (-1)(1) · Det $\begin{pmatrix} 0 & -3 \\ 1 & 1 \end{pmatrix}$ + 1(0) · Det $\begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}$
will be on test ->	- 1(1) · bet ((-1 1)) + (-1)(1) · bet [1
	Once you get to Det [2×2], use ad-bc. This formula just reduces matrix size until we get to 2×2.
	·
	= - + (-3) + 0
	= - 4

Let
$$j=3$$
. \rightarrow use formula 2

i=1

i=2

Det $(A) = (-1)^{1+3} A_{1,3}$ Det $(A(1,3)) + (-1)^{2+3} A_{2,3}$ Det $(A(2,3)) + (-1)^{3+3} A_{3,3}$ Det $(A(3,3))$

= $(1)(0)$ Det $\begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} + (-1)(-3) \cdot \text{Det} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} + (1)(1) \cdot \text{Det} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$

= $0 + (-6) + 2$

= -4

Will get same answer regardless of i,j picked.

How does this formula work?

- The formula expands along a row or column (the one you pick).
 - Selecting i=2 would expand along the second row.
 - Selecting j=1 would expand along the first column.
- The formula sums over all terms associated with the selected row/column (terms along column/row are added together).

$$(-1)^{(+)} = \begin{bmatrix} + & - & + & \cdots \\ - & + & - \\ + & - & + \\ \vdots & & \ddots \end{bmatrix}$$

 $A_{i,j}$ = term of A. Pick i or j to maximize the number of Os in that column or row.

Ex:
$$\begin{bmatrix} 3 & 1 & 7 \\ 0 & 2 & 3 \\ 0 & 4 & 1 \end{bmatrix}$$
 \rightarrow expand on 1st column. easiest way!

Det (A(i,j)) = If A is nxn, A(i,j) is $(n-1) \times (n-1)$ matrix.

```
0 1 3 2 0

0 4 3 1

0 -1 -5 2 2

0 2 3 1 4
                           Let j=1.
                           Det (A) = (-1)^2 (3) Det (A(1,1)) + 0 + 0 + 0 + 0 

Let B = A(1,1)
                                  A(1,1) \rightarrow \begin{bmatrix} 1 & 3 & 2 & 0 \\ 4 & 1 & 3 & 1 \\ -1 & -5 & 2 & 2 \\ 2 & 3 & 1 & 4 \end{bmatrix} = (-1)^{\frac{1+1}{2}} (1) \cdot \text{Det}(B(1,1)) + (-1)^{\frac{1+2}{2}} (3) \cdot \text{Det}(B(1,2))
\text{Let } B = A(1,1)
                         \begin{bmatrix} 3 & 1 & 4 \end{bmatrix} + (-1)^{3+2} E_{3,2} \cdot Det(E(3,2))
                             E = B(1,1) = -26 (-1)(3)...
                                               = 78 + 2 + (-7)
                                               = 73 = determinant of 1st Det ([3x37)
           veriew Det \begin{bmatrix} 4 & 3 & 1 \\ -1 & 2 & 2 \\ 2 & 1 & 4 \end{bmatrix} = +4 Det (F(1,1)-3 Det (F(1,2)) +1 Det (F[1,3])
                            F=(B(1,27)
                          = 73 - 353 + 2(89)
                            ? 159 -188 ?
Review sion!
                          = -274 (sub to top)
                           ⇒ Det (A) = -822
```