

## Appendix to Section 3: A brief overview of Geodetics



Geodesy

 Navigation Geeks do Calculations in Geocentric (spherical) Coordinates

- Map Makers Give Surface Data in Terms of Geodetic (elliptical) Coordinates
- Need to have some idea how to relate one to another

-- science of geodesy



Medicinies & Figure 1999 Engineering

# How Does the Earth Radius Vary with Latitude?



Ellipse:

$$\left[\frac{r}{R_{eq}}\right]^2 + \left[\frac{z}{R_{eq}\sqrt{1 - e_{Earth}^2}}\right]^2 = 1$$

"a"

"b"





## How Does the Earth Radius vary with Latitude?





# How Does the Earth Radius vary with Latitude?

$$\frac{R_{eq}^2}{R_{earth}^2} = \cos^2[\lambda] \left[ 1 + \frac{\tan^2[\lambda]}{[1 - e_{Earth}^2]} \right] =$$

$$\left[\frac{\left[1 - e_{\text{Earth}}^2\right] \cos^2\left[\lambda\right] + \sin^2\left[\lambda\right]}{\left[1 - e_{\text{Earth}}^2\right]}\right] =$$

Inverting ....

$$\frac{\cos^{2}\left[\lambda\right] + \sin^{2}\left[\lambda\right] - e_{Earth}^{2}\cos^{2}\left[\lambda\right]}{\left[1 - e_{Earth}^{2}\right]} = \frac{1 - e_{Earth}^{2}\cos^{2}\left[\lambda\right]}{\left[1 - e_{Earth}^{2}\right]}$$

$$\frac{R_{\text{earth}(\lambda)}}{R_{\text{eq}}} = \sqrt{\frac{1 - e_{\text{Earth}}^2}{1 - e_{\text{Earth}}^2 \cos^2[\lambda]}}$$



## **Earth Radius vs Geocentric Latitude**

$$\frac{R_{earth(\lambda)}}{R_{eq}} = \sqrt{\frac{1 - e_{Earth}^2}{1 - e_{Earth}^2 \cos^2[\lambda]}}$$

Polar Radius: 6356.75170 km

Equatorial Radius: 6378.13649 km

$$e_{\text{Earth}} \sqrt{1 - \left[\frac{b}{a}\right]^2} = \sqrt{\frac{a^2 - b^2}{a^2}} =$$

$$\frac{\sqrt{[6378.13649]^2 - 6378.13649^2}}{[6378.13649]} = 0.08181939$$

Medicines & Ferrospess Engineering

# Earth Radius vs Geocentric Latitude (concluded)



MAE 5540 - Propulsion Systems

Geocentric Latitude, deg.



### Earth Radius ... alternate formula

• Earth radius as Function of Latitude

$$R_{earth} = \frac{a_{equitorial}}{\sqrt{\left[1 + \frac{e_{earth}^2}{1 - e_{earth}^2} \sin^2 \lambda\right]}}$$

$$a_{equitorial} = 6378.13649 \text{ km}$$

$$b_{polar} = 6356.7515 \text{ km}$$

$$e_{\text{earth}} = \sqrt{1 - \left[\frac{b_{\text{polar}}}{a_{\text{equitorial}}}\right]^2}$$





### What is the mean radius of the earth?





### What is the Earth's Mean Radius?

(continued)

Earth's (ellipsoid) Volume

$$V_{E} = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \pi \left[ R_{E_{\lambda}} \cos(\lambda) \right]^{3} d\lambda =$$

$$R_{eq}^{3} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \pi \left[ \frac{1 - e_{Earth}^{2}}{1 - e_{Earth}^{2} \cos^{2}[\lambda]} \right]^{3/2} \cos^{3}(\lambda) d\lambda =$$

$$\frac{4\pi}{3}\sqrt{1-e^2_{\text{earth}}} R_{\text{eq}}^3$$



### What is the Earth's Mean Radius?

(continued)

Based on Volume

Ellipsoid Volume: 
$$\frac{4\pi}{3}\sqrt{1-e^2}$$
  $R_{eq}^3$  Sphere Volume:  $\frac{4\pi}{3}$   $R_{sphere}^3$ 

$$R_{\text{sphere}} \approx R_{\text{mean}} = [1 - 0.08181939^2]^{1/6} 6378.13649 = 6371.0002 \text{ km}$$

 Mean Radius we have been using is for a Sphere with same volume as the Earth

$$M_E = \rho_E V_E$$

"gravitational radius"

Medicine C Ferrospess Engineering

# Earth Radius vs Geocentric Latitude (concluded)



MAE 5540 - Propulsion Systems

Geocentric Latitude, deg.

IIItah@tata

Madrentes & ladrenes

# Geocentric vs Geodetic Coordinates

 Map makers define a new latitude which is the angle that normal to the Earth's surface makes with the respect to the equatorial plane

· Geodetic latitude



IVIAE 3340 - FTOPUISION SÝSIEMS

# Geocentric vs Geodetic engineering Coordinates (contined)

Since the Earth is Elliptical only along the z-axis ... geodetic and geocentric longitude are identical

Altitude is an extension of the line of latitude geodetic)



# UtahState Geocentric vs Geodetic Engineering Coordinates (contined)

 Complex nonlinear equations describe relationship between geocentric and geodetic latitude

Derivation requires
 Extensive
 Knowledge of
 Spherical
 Trigonometry



# Geocentric vs Geodetic Coordinates (contined)

#### **Geocentric Cartesian Coordinates**

\* 
$$x_{target} = [R'_{\lambda'} + h] \cos(\lambda') \cos(\delta)$$

$$y_{\text{target}} = [R'_{\lambda'} + h] \cos(\lambda') \sin(\delta)$$

$$z_{target} = \left[R'_{\lambda'}\left[1 - e^2_{earth}\right] + h\right] \sin(\lambda')$$

$$R'_{\lambda'} = \frac{R_{eq}}{\sqrt{1 - e_{earth}^2 \sin^2(\lambda')}}$$

\* We would be here all week if I try to derive this

"Radius of Curvature"



Whitmore, Stephen A., and Haering, Edward A., Jr., FORTRAN Program for the Analysis of Ground Based Range Tracking Data--Usage and Derivations, NASA TM 104201, December, 1992

Medicinical & Figure 1920 Engineering

# Geocentric vs Geodetic Coordinates (contined)

#### **Geocentric Polar Coordinates**

$$R_{target} = \sqrt{x_{target}^2 + y_{target}^2 + z_{target}^2}$$

$$\delta_{\text{target}} = \tan^{-1} \left[ \frac{y_{\text{target}}}{x_{\text{target}}} \right]$$

$$\lambda_{target} = tan^{-1} \left[ \frac{z_{target}}{\sqrt{x_{target}^2 + y_{target}^2}} \right]$$

"Radius of Curvature"

## UtahState Geocentric vs Geodetic

Coordinates (concluded)

Inverse Relationships, non-linear no direct solution

$$h = \frac{\sqrt{X_{target}^2 + Y_{target}^2}}{\cos(\lambda')} - R'_{\lambda'}$$

$$\delta_{\text{target}} = \tan^{-1} \left[ \frac{y_{\text{target}}}{x_{\text{target}}} \right]$$

$$\lambda'_{\text{target}} = _{\text{tan}}^{-1} \left[ \frac{Z_{\text{target}}}{\sqrt{X_{\text{target}}^2 + y_{\text{target}}^2}} \times \left[ \frac{1}{1 - e_{\text{earth}}^2 \frac{R'_{\lambda'}}{R'_{\lambda'} + h_{\text{target}}}} \right] \right]$$

Whitmore, Stephen A., and Haering, Edward A., Jr., FORTRAN Program for the Analysis of Ground Based Range Tracking Data--Usage and Derivations, NASA TM 104201, December, 1992

- Given geodetic coordinates -compute geocentric
  - i) Compute geocedtric cartesian coordinates

Range, runway threshholds, radar antennae, beacon ....

$$x_{target} = \left[R'_{\lambda'} + h\right] cos(\lambda') cos(\delta)$$

$$y_{\text{target}} = [R'_{\lambda'} + h] \cos(\lambda') \sin(\delta)$$

$$z_{\text{target}} = \left[ R'_{\lambda'} \left[ 1 - e^2_{\text{earth}} \right] + h \right] \sin(\lambda')$$

$$R'_{\lambda'} = \frac{R_{eq}}{\sqrt{1 - e_{earth}^2 \sin^2(\lambda')}}$$

## Pulling it all together (continued)

- Given geodetic coordinates -- compute geocentric
  - ii) Compute Geocentric polar coordinates next

$$R_{target} = \sqrt{x_{target}^2 + y_{target}^2 + z_{target}^2}$$

$$\delta_{\text{target}} = \tan^{-1} \left[ \frac{y_{\text{target}}}{x_{\text{target}}} \right]$$

$$\lambda_{target} = tan^{-1} \left[ \frac{z_{target}}{\sqrt{x_{target}^2 + y_{target}^2}} \right]$$

Madiantel & Ferences Engineering

### Pulling it all together (concluded)

Given geocentric (usually x,y,z) coordinates -- Reg

GPS, INS, TLE's ....

## No explicit solution: requires

- 1) series expansion solution,
- 2) numerical iteration,
- 3) or a special solution called "Ferrari's method"\*\*

$$R'_{\lambda'} = \frac{R_{eq}}{\sqrt{1 - e_{earth}^2 \sin^2(\lambda')}}$$

$$h = \frac{\sqrt{X_{target}^2 + y_{target}^2}}{\cos(\lambda')} - R'_{\lambda'}$$

$$\delta_{\text{target}} = \tan^{-1} \left[ \frac{y_{\text{target}}}{x_{\text{target}}} \right]$$

$$\lambda'_{target} = _{tan}^{-1} \left[ \frac{Z_{target}}{\sqrt{X_{target}^2 + Y_{target}^2}} \times \left[ \frac{1}{1 - e_{earth}^2} \frac{R'_{\lambda'}}{R'_{\lambda'} + h_{target}} \right] \right]$$

\*\*NASA Technical Paper 3430, Whitmore and Haering, FORTRAN Program for Analyzing Ground-Based Tracking Data: Usage and Derivations, Version 6.2, 1995



## **Numerical Example**

Edwards Air Force Base, Radar Site #34

$$\lambda' = 34.96081^{\circ}$$

$$\delta = -117.91150^{\circ}$$

$$h = 2563.200 ft$$

 Find corresponding geocentric cartesian and polar coordinates



## Numerical Example (cont'd)

Compute Local Radius of Curvature

$$R'_{\lambda'} = \frac{R_{eq}}{\sqrt{1 - e^2 \sin^2(\lambda')}} =$$

$$\frac{6378.13649 \text{ km}}{\sqrt{1 - \left[0.08181939 \sin \left(34.96081 \times \frac{\pi}{180}\right)\right]^2}} =$$

6392.187109 km



## Numerical Example (cont'd)

Compute X and Y (geocentric)

$$r_{\text{target}} = [R'_{\lambda'} + h] \cos(\lambda') =$$

$$[6392.1871 + (2536.2 \times 3.048 \times 10^{-4})] \cos (34.96081 \times \frac{\pi}{180}) =$$

5239.3131 km

$$x_{\text{target}} = r_{\text{target}} \cos(\delta) =$$

5239.3131 km × cos (-117.91150 × 
$$\frac{\pi}{180}$$
) =

-2452.5602 km

$$y_{\text{target}} = r_{\text{target}} \sin(\delta) =$$

$$5216.0074 \text{ km} \times \sin \left(-117.91150 \times \frac{\pi}{180}\right) =$$

-4629.83218 km



## Numerical Example (cont'd)

Compute z (geocentric)

$$z_{\text{target}} = \left[ R'_{\lambda'} \left[ 1 - e^2_{\text{earth}} \right] + h \right] \sin(\lambda') =$$

$$\left[6392.1871 \text{ km} \left[1 - 0.08181939^2\right] + \left[2536.2 \times 3.048 \times 10^{-4}\right] \sin \left(34.96081 \times \frac{\pi}{180}\right)\right]$$

3638.7480 km

### Numerica Example (Conta) considering

### Compute Geocentric Polar Coordinates

$$R_{\text{target}} = \sqrt{2452.5602^2 + 4629.83218^2 + 3638.7480^2} =$$

6378.94104km

$$\delta_{\text{target}} = \tan^{-1} \left[ \frac{y_{\text{target}}}{x_{\text{target}}} \right] =$$

$$\frac{180}{\pi} \times \tan^{-1} \left[ \frac{-4629.83218}{-2452.5602} \right] = -117.9115^{\circ}$$

$$\lambda_{\text{target}} = \tan^{-1} \left[ \frac{Z_{\text{target}}}{\sqrt{X_{\text{target}}^2 + y_{\text{target}}^2}} \right] =$$

$$\frac{180}{\pi} \times \tan^{-1} \left[ \frac{3638.7480}{5239.3131} \right] = 34.7803^{\circ}$$

MAE 5540 - Propu



Medicinies & Fierospeise Engineering

### Numerical Example (cont'd)

### Compute Local Earth Radius and Geocentric Distance Above Geoid

$$R_{E_{\lambda}} = R_{eq}$$

$$\frac{1 - e_{Earth}^2}{1 - e_{Earth}^2 \cos^2[\lambda]} =$$

6378.13649 km
$$\frac{1 - 0.08181939^{2}}{1 - 0.08181939^{2} \cos^{2} \left[34.7083 \times \frac{\pi}{180}\right]}$$

6364.23 km

$$D_{geoid} = R_{target} - R_{E_{\lambda}} =$$

[6378.94104 - 6364.23] km = 14.7 km = 48228.25 ft



### Numerical Example (concluded)

Comparison



 Earth Oblateness is NOT trivial, and in the REAL World -- it must be accounted for

## Appendix II: Rigorous Derivation of Realizable Launch Inclination

Launch Initial Conditions

• Position: λ, Latitude

 $\Omega$ , Longitude (Inertial)

h, Altitude





MAE 5540 - Propulsion Systems



### Launch Initial Conditions





Medianica & तवालकाट Engineering





### Computing the Hour Angle

- $\cdot\, heta_{
  m G}$  Historically Expressed in Hours
- ... Sometimes referred to as <u>Greenwich</u>

  <u>Mean Sidereal Time</u> ... but we are going to treat it as an angle

$$\theta_{\rm G} = \omega_{\rm earth} \times \left[ T_{\rm GMST} - T_{\rm JD2000} \right]$$

 Sidereal time is a measure of the Earth's rotation with respect to distant celestial objects.