- Known disagreement between $\Lambda_b(P, P_T)$ Data and MC distributions
- We extract the correction using as control channel $\Lambda_h^0 \to J/\Psi p K^-$ decays
 - **Trigger selection:** inspired by the latest Pentaquark analysis [PRL122(2019)222001]
 - MVA selection: XGBoost classifier (+KFoldCV) trained using PID variables (PIDCorr) and additional kinematic, topological ones to reject MisID and combinatorial backgrounds

Signal (MC): region ± 40 MeV within Λ_b mass peak

Background (Data): sidebands outside the region belonging to the Λ_b mass peak

Veto cuts on MisID background

Cut around the reconstructed mass peak of the candidate, in the replaced mass hypothesis for:

- c) $\bar{\Lambda}_b^0 \to J/\Psi \bar{p} K^+$

- We extract the correction using as control channel $\Lambda_b^0 \to J/\Psi p K^-$ decays: sWeights from unbinned ML fit to the Λ_b mass
- \triangleright Dedicated study to optimise the (MC) binning in $\Lambda_b(P, P_T)$ for the evaluation of the correction
 - 1. Regular-sized binning
 - 2. Rectangular binning
 - 3. **Adaptive** binning

