# 6. Digital Circuits

### Integrated digital circuits are

- made up of a collection of resistors, diodes and transistors
- fabricated on a single piece of semiconductor material (e.g. silicon) called substrate - also called die, or chip

### **Discrete components: Resistors**





### **Discrete components: Diodes**



### **Discrete components: transistors**



### **Example of a simple circuit**



|                                                      | State Representing Bit   |                           |  |
|------------------------------------------------------|--------------------------|---------------------------|--|
| Technology                                           | 0                        | 1                         |  |
| Pneumatic logic                                      | Fluid at low pressure    | Fluid at high pressure    |  |
| Relay logic                                          | Circuit open             | Circuit closed            |  |
| Complementary metal-oxide semiconductor (CMOS) logic | 0–1.5 V                  | 3 .5–5.0 V                |  |
| Transistor-transistor logic (TTL)                    | 0-0.8 V                  | 2 .0-5.0 V                |  |
| Dynamic memory                                       | Capacitor discharged     | Capacitor charged         |  |
| Nonvolatile, erasable memory                         | Electrons trapped        | Electrons released        |  |
| Microprocessor on-chip serial number                 | Fuse blown               | Fuse intact               |  |
| Polymer memory                                       | Molecule in state A      | Molecule in state B       |  |
| Fiber optics                                         | Light off                | Light on                  |  |
| Magnetic disk or tape                                | Flux direction "north"   | Flux direction "south"    |  |
| Compact disc (CD)                                    | No pit                   | Pit                       |  |
| Writeable compact disc (CD-R)                        | Dye in crystalline state | Dye in noncrystalline sta |  |

Table 3-1

Physical states representing bits in different logic and memory technologies.

# Scale of integration

| Complexity               | No. of gates      |
|--------------------------|-------------------|
| Small-scale (SSI)        | < 12              |
| Medium-scale (MSI)       | 12 - 99           |
| Large-scale (LSI)        | 100 - 9999        |
| Very large-scale (VLSI)  | 10,000 – 99,999   |
| Ultra large-scale (ULSI) | 100,000 – 999,999 |
| Giga-scale (GSI)         | ≥ 1,000,000       |

### **Examples of SSI logic devices**



# **Example of GSI device:** A microprocessor, MPU, CPU



To make logic outputs switch between High and Low (1 and 0), transistors are used.

#### 2 broad families:

- use bipolar junction transistors
- e.g. TTL (transistor-transistor logic) circuits

- use unipolar field-effect transistors
- e.g. CMOS (complementary metal-oxide semiconductor) circuits

### **Bipolar junction transistors (BJT)**

- Base, emitter, collector
- With correct voltage at B, current will flow between C and E



# MOS Field-effect transistors (MOSFET)

- Gate, drain, source
- With correct voltage at G, current will flow between S and D



**NMOS** 

**PMOS** 

# **TTL family**

- different prefixes
- different in electrical characteristics such as power dissipation, delay time, switching speed
- do not differ in pin layout or logic function

# examples (hex inverters)

| TTL series | Prefix | E.g.    |
|------------|--------|---------|
| Standard   | 74     | 7404    |
| High-speed | 74H    | 74H04   |
| Low-power  | 74L    | 74L04   |
| Advanced   | 74ALS  | 74ALS04 |
| low-power  |        |         |
| Schottky   |        |         |

# **CMOS** family

- old series not compatible with TTL
- HC series pin-compatible with TTL: share same pin layout



# examples (quad 2-input NOR)

| CMOS series                      | Prefix | Example       |
|----------------------------------|--------|---------------|
| Old<br>(seldom used)             | 40/140 | 4001<br>14001 |
| Metal gate                       | 74C    | 74C02         |
| High speed                       | 74HC   | 74HC02        |
| Electrically compatible with TTL | 74HCT  | 74HCT02       |

# Logic-level Voltage Ranges

#### TTL

Vcc nominally +5v

#### **CMOS**

- V<sub>DD</sub> ranges from +3 to +18v
- +5v is most often used when CMOS ICs are used in same circuit with TTL ICs

# Incompatible voltage ranges



# **Unconnected (floating) inputs**

#### TTL

- floating input acts like logic 1
- measures dc level between 1.4 to 1.8 volts
- not recommended due to noise pick-up CMOS
  - disastrous result
  - IC may become overheated
  - all unused <u>input</u> pins must be connected to VDD, GND, or another input

# **Active levels**

Recall 5.16: ODD and EVEN\* example

| A signal is said to be <b>active high</b> if | it produces the <u>named</u> effect or result when it is logic 1  TRUE (asserted) when it is 1 |
|----------------------------------------------|------------------------------------------------------------------------------------------------|
| A signal is said to be active low if         | it produces the <u>named</u> effect or result when it is logic 0  TRUE (asserted) when it is 0 |

Most signals that we encounter are active high

# **Active levels (examples)**

| Signal<br>name | Effect/result when signal=0 | Effect/result<br>when<br>signal=1 | Active<br>high/low |
|----------------|-----------------------------|-----------------------------------|--------------------|
| Subtract       | Add Y to X                  | Subtract Y from X                 | Active high        |
| Add*           | Add Y to X                  | Subtract Y from X                 | Active low         |
| Unmute         | Mute a speaker              | Unmute a speaker                  | Active high        |
| Unmute*        | Unmute a speaker            | Mute a speaker                    | Active low         |
| Read           | Write data                  | Read data                         | Active high        |
| Write*         | Write data                  | Read data                         | Active low         |

Active high or active low depends on the signal name and effect/result



Each row shows a different naming convention for active levels.

Active low signals, being less common, are usually highlighted to draw our attention.

# **Asserted and negated**

**Asserted**: when an active high signal is =1; or

when an active low signal is =0;

**Negated**: otherwise

Example: the timing diagram below shows that the signals are **asserted** for a while and negated (or deasserted) for the rest of the time

Active High Open  $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ Active Low Reset\*  $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 

# Logic circuit connection diagrams

Fig. 4-32 contains more information than the usual circuit diagram to facilitate circuit connection and troubleshooting

- pin numbers, IC numbers, component values, signal names and power supply voltages are clearly indicated
- conform to bubble-to-bubble design rules
- active levels are clearly indicated



Fig. 4-32 Typical logic-circuit connection diagram



A 2-input multiplexer (you're not expected to know what that is yet): (a) cryptic logic diagram; (b) proper logic diagram using active-level designators and alternate logic symbols.

Fig. 6-11 Bubble-to-bubble logic diagram (Wakerly, 4<sup>th</sup> ed)

# **Troubleshooting Digital Systems**

### Read supplementary lab manual

- Fault detection
- Fault isolation
- Fault correction

#### Internal IC faults

- malfunction in internal circuitry
- short circuit
- open circuit
- short between two pins

#### **External IC faults**

- open signal line
- shorted signal lines
- faulty power supply
- wrong connection

## **NEVER tie any circuit output to:**

- another output unless you are very sure
- Vcc , GND or any other fixed voltage level

#### The transistor as a Switch



From *Digital Design*: *Principles and Practices*, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

# A simple BJT logic inverter





## A simple BJT logic inverter





### **TTL** inverter





### **TTL** inverter





### **CMOS** inverter



### **CMOS** inverter



# **Examples of CMOS logic circuits**















## **Digital Circuits Characteristics**



Fig. 3-25 Typical input-output transfer characteristic of a CMOS inverter

## transfer characteristic:



# time-based signals:



#### **Voltage parameters:**

Voн (min) - Minimum output voltage produced for logic 1

VIH (min) - Minimum input voltage to be recognised as logic 1

VIL (max) - Maximum input voltage to be recognised as logic 0

Vol (max) – Maximum output voltage produced for logic 0

#### Voltage parameters and noise margin:

High-state DC noise margin =  $V_{OH}(min) - V_{IH}(min)$ 



#### Voltage parameters and noise margin:



Low-state DC noise margin =  $V_{IL}(max) - V_{OL}(max)$ 

## Some typical values



#### **Current parameters**

III – Maximum current that flows into the input at logic 1

IL - Maximum current that flows into the input at logic 0

Ioн – Maximum current that flows from the output at logic 1

**IOL** – Maximum current that flows from the **output** at logic **0** 

Very small leakage current in CMOS (1µA)

0.02 - 24 mA depends on family

#### Other characteristics

#### Fan-out

- specifies the number of standard loads that the output gate can drive
- More loads may reduce DC noise margins and switching speed

#### **Speed**

Time taken for output to switch between 0 and 1

#### **Power dissipation**

- power consumed by the gate or device
- For CMOS, most of the power is consumed when output switches between 0 and 1 (dynamic power dissipation)
- $\bullet$   $P = C V^2 f$
- Proportional to switching frequency f and square of power supply voltage V
- Static power dissipation (when there is no switching) is usually very small

#### **Propagation delay**

- average transition delay time for signal to propagate from input to output
- e.g. 9 19 ns for 74HC00
- t<sub>PD</sub>, or t<sub>PHL</sub> & t<sub>PLH</sub>
- t<sub>PHL</sub>= delay when output changes from High to Low
- t<sub>PLH</sub>= delay when output changes from Low to High

#### Propagation delay (inverter):



### **Tristate outputs**

#### 3 output states:

- logic 0
- logic 1
- high impedance (Hi-Z)
  - neither 0 nor 1
  - behaves like an open circuit

When a device is enabled, output is logic 0 or 1 When device is disabled, output is in Hi-Z E.g. tristate buffer, tristate inverter

#### **Tristate inverter**



- (a) & (b): Tristate device behaves as a normal inverter when enabled.
- (c): Device output is in high-impedance when disabled.

#### **CMOS** Tristate buffer



From *Digital Design: Principles and Practices*, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

# Advantage of using logic devices with tristate outputs

Two or more outputs can be connected together.

However, at any one time only one (or no) output should be enabled.

Otherwise, it can lead to bus contention and damage the devices.

Example: memory devices have tristate outputs to share the same data bus.









#### **Open-collector/drain output**



# Application: open-drain output can drive LED

- If A=B=1
- Q1 and Q2 ON
- Z=0
- LED ON

- If A=0 or B=0
- Q1 or Q2 OFF
- Z=1
- LED OFF



#### Open-drain outputs can be tied together



#### Summary of wired-AND circuit behaviour

| Inputs of NAND gates |       |       | Outputs                            |   |
|----------------------|-------|-------|------------------------------------|---|
| A=B=1                | C=D=1 | E=F=1 | U, V, W                            | Z |
| No                   | No    | No    | U=1; V=1; W=1                      | 1 |
| No                   | No    | Yes   | W=(EF)'=0; => U=V=0                | 0 |
| No                   | Yes   | No    | V=(CD)'=0; => U=W=0                | 0 |
| No                   | Yes   | Yes   | V=(CD)'=0; W=(EF)'=0;<br>=> U=0    | 0 |
| Yes                  | No    | No    | U=(AB)'=0; => V=W=0                | 0 |
| Yes                  | No    | Yes   | U=(AB)'=0; W=(EF)'=0;<br>=> V=0    | 0 |
| Yes                  | Yes   | No    | U=(AB)'=0; V=(CD)'=0;<br>=> W=0    | 0 |
| Yes                  | Yes   | Yes   | U=(AB)'=0; V=(CD)'=0;<br>W=(EF)'=0 | 0 |

#### Imagine an elastic band: