Weekly Challenge 12: Closure of Decidable Languages

CS 212 Nature of Computation Habib University Ali Muhammad Asad - aa07190

Fall 2023

1. Put Together

The put-together operation, f, is defined on strings, $u = u_1 u_2 \dots u_m$ and $v = v_1 v_2 \dots v_n$, and extended to languages, L_1 and L_2 , over an alphabet, Σ , as follows.

$$f(u,v) = u_1 u_2 \dots u_m v_1 v_2 \dots v_n$$

$$f(L_1, L_2) = \{ f(u,v) \mid u \in L_1, v \in L_2 \}.$$

Prove or disprove the following claim.

Claim 1. The class of decidable languages is closed under the put-together operation.

Solution: Let L_1 and L_2 be two decidable languages. Let M_1 and M_2 be the Turing Machines that decide L_1 and L_2 respectively. Let L be the language $f(L_1, L_2)$. Then we can construct a Turing Machine M that decides L. For any given string w, the machine M needs to determine if there exists strings u and v such that f(u, v) = w.

Then M works as follows:

- As $w = w_1 w_2 w_3 ... w_p$ (where p = m + n) is a concatenation of u and v, M can try all possible ways of splitting w into two strings u and v as follows; for each i from 0 to p, consider the prefix of w of length i as a potential string u; $u = w_1 w_2 ... w_i$. The remaining part of the string, $w_{i+1} w_{i+2} ... w_p$ is considered as a potential string v. [when i = 0, $u = \emptyset$ and v = w, and when i = p, u = w and $v = \emptyset$].
- Then for each potential string u and v, simulate M_1 on u and M_2 on v.
- If M_1 accepts u and M_2 accepts v, then M accepts w. If either M_1 or M_2 rejects its respective string, then M rejects w for that particular string.

Since both M_1 and M_2 are deciders, they will halt on all inputs. Therefore, M will also halt on all inputs.

If $w \in f(L_1, L_2)$, then there exists $u \in L_1, v \in L_2$ such that w = uv. Machine M will eventually simulate the correct split of w, and both M_1 and M_2 will accept, hence M will accept. If $w \notin f(L_1, L_2)$, then there are no such u and v that can both be accepted by M_1 and M_2 respectively. Thus, for all possible splittings of w, either M_1 or M_2 will reject. Therefore M will also reject. Since M accepts if and only if $w \in f(L_1, L_2)$, and rejects otherwise, M decides $f(L_1, L_2)$. Therefore, $f(L_1, L_2)$ is decidable.

Hence we can conclude that the class of decidable languages is closed under the puttogether operation.