Math 449: Numerical Methods

Homework 4

Wenzhen Zhu

Part 1: Theory

Problem 1. Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular and has a decomposition A = LU.

Prove that the decomposition is unique.

(Hint: begin by multiplying both Sides of LU = $\tilde{L}\tilde{U}$ by \tilde{L}^{-1} left & \tilde{U}^{-1} right.

Proof: Since $A \in \mathbb{R}^{n \times n}$ is nonsingular $\Rightarrow det(A) \neq 0$

Assume $A = LU = \widetilde{L}\widetilde{U}$, then we have

 $\det(A) = \det(L) \det(U) = \det(\widetilde{L}) \det(\widetilde{U}) \neq 0$

therefore L, U, \tilde{L} , \tilde{U} are also nonsingular hence the inverse must exist.

 $\therefore \quad \mu u = \tilde{\mu} \tilde{u} \quad \Rightarrow \quad \tilde{\mathcal{L}}^{-1} L = \tilde{u} u^{-1}$

unit lower unit upper triangular triangular

 \Rightarrow $\tilde{\lambda}^{-1}\lambda = \tilde{u}u^{-1} = I$

 $\therefore \quad \widetilde{\lambda} = \lambda , \text{ and } \widetilde{\mathcal{U}} = \mathcal{U}.$