Supporting file for reproducing results of the article: Lanthanide molecular nanomagnets as probabilistic bits

July 4, 2023

This document offers a help for reproducing the graphics. As we comment in the readme.txt, the following modules need to be installed:

- 1. numpy
- 2. matplotlib.pyplot
- 3. pandas
- 4. scipy.optimize
- 5. Collections (Counter)
- 6. random
- 7. math
- 8. time

Moreover, the following files must be in the same folder containing the main.py file:

- 1. main.py (Part of the code where the user specifies the parameters).
- 2. read_data.py (Description of the system).
- 3. mag_relaxation.py (Relaxation Mechanisms, Total probability for spin flipping).
- 4. Bolztmann_distribution.py (Zeeman effect, Boltzmann distribution, single probabilities to pass from 0 to 1, and vice versa).
- 5. mean_matrix_state.py (For a two p-bit network, where the collective state is studied in this function).
- 6. association.py (For a two p-bit network, the association factor is calculated).
- 7. plotting.py (Graphical Representation of the results).

8. full_data_file.csv (File which contains all the information for few systems, from the work: Data-driven design of molecular nanomagnets, Nature Communications volume 13, Article number: 7626 (2022).

It is important to emphasize that the file named *main.py* contains the body of the simulator; the user could only change the configuration section at the beginning of the script (lines 25-51). In this version of STOSS we are capable to simulate three main scenarios:

- 1. Magnetization decays at different temperatures at constant magnetic field.
- 2. Magnetization decays at different temperatures at changeable magnetic field.
- 3. Magnetization decays at different temperatures of two p-bit networks.

Considering this idea, the user can select the type of simulation just writing the values in each variable. Figure 1 shows this part of the simulator.

Figure 1: Parameters that can be modified by the user.

Section 3.1. Lanthanide-based, molecular, isolated spin p-bits at constant field

As an example, we present the experiment at 80K employing $N=10^3$ (Figure 2) and $N=10^4$ (Figure 3) spins, respectively. In the case of 80, 40, and 2K, the program compares the results of the magnetic moment with the experimental data extracted from F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki and R. A. Layfield, Science, 2018, 362, 1400–1403.

Figure 2: Relaxation plot employing $N = 10^3$ spins at 80K for $[(Cp^{iPr5})Dy(Cp^*)]^+$ $(Cp^{iPr5}, penta-iso-propylcyclopentadienyl)$.

Figure 4 shows the summary from the simulation process for both cases: $N=10^3$ (a) and $N=10^4$ (b) spins. We also present the parameters (Table 1) which must be written by the user to reproduce those results. Given the stochasticity nature of the STOSS, the results could vary slightly.

Figure 3: Relaxation plot employing $N=10^4$ spins at 80K for $[(\mathrm{Cp^{iPr5}})\mathrm{Dy}(\mathrm{Cp^*})]^+$ $(\mathrm{Cp^{iPr5}}, \mathrm{penta-iso-propylcyclopentadienyl})$.

Table 1: Parameters at 80K for $[(Cp^{iPr5})Dy(Cp^*)]^+$, where DNA = Does Not Apply.

Variable	Figure 2	Figure 3
N_ex	1000	10000
Т	80	80
save	1	1
flag	22	22
$starting_mode$	0	0
$time_steps$	2000	2000
option	0	0
option_2spin	0	0
B_constant	0	0
B_max	DNA	DNA
cycles	DNA	DNA
Bpbit2	DNA	DNA
factor	DNA	DNA
association_factor	DNA	DNA
step_association_factor	DNA	DNA

Figure 4: Summary file of the simulation employing $N = 10^3$ (a) and $N = 10^4$ (b) spins at 80K for $[(Cp^{iPr5})Dy(Cp^*)]^+$ (Cp^{iPr5} , penta-iso-propylcyclopentadienyl; Cp^* , pentamethyl-cyclopentadienyl).

Section 3.2. Lanthanide-based, molecular, dynamically driven spin p-bits

As we could see in the previous part, all the information to simulate this experiment is shown in the (Table 2). The result is presented in the Figure 5 with $N=5\cdot 10^3$ spins and $N=2.5\cdot 10^4$ spins in the Figure 6. Moreover, the summary of each simulation is shown in Figure 7.

Figure 5: Relaxation plot employing $N=5\cdot 10^3$ spins at 20mK for [Dy(bath)(tcpb)₃] and frequency 3 Hz.

Figure 6: Relaxation plot employing $N=2.5\cdot 10^4$ spins at 20mK for [Dy(bath)(tcpb)₃] and frequency 3 Hz.

Table 2: Parameters at 20 mK for $[\text{Dy}(\text{bath})(\text{tcpb})_3]$ and frequency 3 Hz, where DNA = Does Not Apply.

Variable	Figure 5	Figure 6
N_ex	5000	25000
Т	0.02	80 0.02
save	1	1
flag	26	26
starting_mode	0.5	0.5
time_steps	2000	2000
option	1	1
option_2spin	0	0
B_constant	0	0
B_max	0.00025	0.00025
cycles	4	4
B_pbit2	DNA	DNA
factor	DNA	DNA
association_factor	DNA	DNA
step_association_factor	DNA	DNA

Figure 7: Summary file of the simulation employing $N = 5 \cdot 10^3$ (a) and $N = 2.5 \cdot 10^4$ (b) spins at 20mK for [Dy(bath)(tcpb)₃].

Section 3.3. Lanthanide-based, molecular spin p-bit network

This part of the simulator follows the calculations of two p-bit network. To reproduce the result, we present the Table 3 with all the necessary values and its simulation. In contrast, Figure 8 shows the summary part where we could see the computational cost when we increase the number of spins of each p-bit to 1 million with 10,000 total time steps.

Variable	Figure 8
N_ex	1000000
Т	4
save	1
flag	25
starting_mode	0.5
time_steps	10000
option	0
option_2spin	1
B_constant	0
B_max	DNA
cycles	DNA
B_pbit2	0.02
factor	1000
association_factor	time_steps
$step_association_factor$	1

Table 3: Parameters at 4 K to analyze the effect of a p-bit to another, for $[Dy(obPc)_2]$ $Cd[Dy(obPc)_2]$.

Figure 8: Simulation employing $N=10^6$ spins per p-bit at 4 K for $[\mathrm{Dy}(\mathrm{obPc})_2]$ $\mathrm{Cd}[\mathrm{Dy}(\mathrm{obPc})_2]$. Where part a) represents the state of each p-bit, b) the association factor, and c) the relaxation behaviour.