Homework

Ding Yaoyao, 516030910572

2017-09-29

Exercise 1-4

Additional

Problem: If $N = n_1 n_2$, and $gcd(n_1, n_2) = 1$, then $Z_n^* \cong Z_{n_1}^* \times Z_{n_2}^*$. Proof:

- Define the map $\varphi: Z_n^* \to Z_{n_1}^* \times Z_{n_2}^*$ by $\varphi(x) = (x \mod n_1, x \mod n_2)$.
- φ is injective: If $(x \mod n_1, x \mod n_2) = (y \mod n_1, y \mod n_2)$, then $n_1 \mid x y$ and $n_2 \mid x y$. Beacuse n_1 and n_2 are co-prime, $n_1 n_2 \mid x y$, which means $n \mid x y$. Thus x = y (when $x, y \in [0, n)$).
- φ is surjective: For all $(x_1, x_2) \in Z_{n_1}^* \times Z_{n_2}^*$, exist $x \in Z_n^*$ such that $x \mod n_1 = x_1$ and $x \mod n_2 = x_2$ by the Chinese Remainder Theorem(when $\gcd(n_1, n_2) = 1$).
- φ is homomorphic: $\varphi(xy) = (xy \bmod n_1, xy \bmod n_2)$ = $((x \bmod n_1)(y \bmod n_1) \bmod n_1, (x \bmod n_2)(y \bmod n_2) \bmod n_2)$ = $(x \bmod n_1, x \bmod n_2)(y \bmod n_1, y \bmod n_2)$ = $\varphi(x)\varphi(y)$.

Above all, $Z_n^* \cong Z_{n_1}^* \times Z_{n_2}^*$.

3

• \Rightarrow : For all $x \in G$, exist $y \in G$ such that $y^{-1} = x$. So ϕ is surjective. If $\phi(x) = \phi(y)$ (i.e. $x^{-1} = y^{-1}$), we have x = y. So ϕ is injective. Beacuse group G is an abelian group, we have:

$$\phi(xy) = (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = \phi(x)\phi(y)$$

Then ϕ is homomorphic. Above all, ϕ is an isomorphism (exactly automorphism).

• \Leftarrow : Beacuse ϕ is an isomorphism, we have: $xy = ((xy)^{-1})^{-1} = \phi((xy)^{-1}) = \phi(y^{-1}x^{-1}) = \phi(y^{-1})\phi(x^{-1}) = yx$ (for all $x, y \in G$). So group G is an abelian group.

4

- injective: If $\phi(x) = \phi(y)$, then $axa^{-1} = aya^{-1}$. By the cancellation law of group, we get x = y.
- surjective: For all $x \in G$, exist $y = a^{-1}xa \in G$ such that $aya^{-1} = x$.
- homomorphic: $\phi(xy) = a^{-1}xya = a^{-1}x(aa^{-1})ya = (a^{-1}xa)(a^{-1}ya) = \phi(x)\phi(y)$.

Above all, ϕ is an isomorphism (also called inner automorphism).

6

 $H = \langle 1 \rangle, G = \langle 2 \rangle, R = \langle 4 \rangle (\langle k \rangle \text{ means group } (\{kn \mid n \in \mathbb{Z}\}, +)).$

It's obvious that $\langle 4 \rangle < \langle 2 \rangle < \langle 1 \rangle$ and $\langle 2 \rangle \cong \langle 2 \rangle$ (by the identity isomorphism). And I only need to prove $\langle 1 \rangle \cong \langle 4 \rangle$.

Let's define the mapping ϕ : $\langle 1 \rangle \to \langle 4 \rangle$ as $\phi(x) = 4x$ for all $x \in \mathbb{Z}$.

- injective: If $\phi(x) = \phi(y)$, then 4x = 4y. We can get x = y.
- surjective: For all $x \in \langle 4 \rangle$, by the definition of $\langle 4 \rangle$, exist $y \in \mathbb{Z}$ such that 4y = x (i.e. $\phi(y) = x$).
- homomorphic: $phi(x + y) = 4(x + y) = 4x + 4y = \phi(x) + \phi(y)$.

Above all, ϕ is an isomorphism, which means $\langle 1 \rangle \cong \langle 4 \rangle$.

Exercise 1-5

1

	Table 1: Z_7														
n	0	1	2	3	4	5	6								
ord	1	7	7	7	7	7	7								

		Γ	able	e 2:	Z_8			
n	0	1	2	3	4	5	6	7
ord	1	8	4	8	2	8	4	8

	Table 3: Z_{10}													
n	0	1	2	3	4	5	6	7	8	9				
ord	1	10	5	10	5	2	5	10	5	10				

	Table 4: Z_{14}														
$n \mid 0$	1	2	3	4	5	6	7	8	9	10	11	12	13		
ord 1	14	7	14	7	14	7	2	7	14	7	14	7	14		

	Table 5: Z_{15}														
$n \mid 0$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
$ord \mid 1$	15	15	5	15	3	5	15	15	5	3	15	5	15	15	

							Та	ble 6	$: Z_1$.8								
\overline{n}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
ord	1	18	9	6	9	18	3	18	9	2	9	18	3	18	9	6	9	18

5

U(n) is an cyclic group for all $n \in \mathbb{Z}^+$.

The generators:

- $U(8):e^{2\pi i\frac{1}{8}}, e^{2\pi i\frac{3}{8}}, e^{2\pi i\frac{5}{8}}, e^{2\pi i\frac{7}{8}}$
- $U(9):e^{2\pi i\frac{1}{9}}, e^{2\pi i\frac{2}{9}}, e^{2\pi i\frac{2}{9}}, e^{2\pi i\frac{4}{9}}, e^{2\pi i\frac{5}{9}}, e^{2\pi i\frac{7}{9}}, e^{2\pi i\frac{8}{9}}$
- $U(10):e^{2\pi i\frac{1}{10}}, e^{2\pi i\frac{3}{10}}, e^{2\pi i\frac{7}{10}}, e^{2\pi i\frac{9}{10}}$
- $\begin{array}{l} \bullet \ U(13) : e^{2\pi i \frac{1}{13}}, \ e^{2\pi i \frac{2}{13}}, \ e^{2\pi i \frac{3}{13}}, \ e^{2\pi i \frac{4}{13}}, \ e^{2\pi i \frac{4}{13}}, \ e^{2\pi i \frac{5}{13}}, \ e^{2\pi i \frac{6}{13}}, \ e^{2\pi i \frac{7}{13}}, \ e^{2\pi i \frac{8}{13}}, \ e^{2\pi i \frac{9}{13}}, \ e^{2\pi i \frac{19}{13}}, \ e^{2\pi i \frac{19$
- $\bullet \ U(14):e^{2\pi i\frac{1}{14}},\,e^{2\pi i\frac{3}{14}},\,e^{2\pi i\frac{5}{14}},\,e^{2\pi i\frac{9}{14}},\,e^{2\pi i\frac{11}{14}},\,e^{2\pi i\frac{13}{14}}$
- $\begin{array}{l} \bullet \ U(21) : e^{2\pi i \frac{1}{21}}, \ e^{2\pi i \frac{2}{21}}, \ e^{2\pi i \frac{4}{21}}, \ e^{2\pi i \frac{5}{21}}, \ e^{2\pi i \frac{8}{21}}, \ e^{2\pi i \frac{10}{21}}, \ e^{2\pi i \frac{11}{21}}, \ e^{2\pi i \frac{13}{21}}, \ e^{2\pi i \frac{16}{21}}, \\ e^{2\pi i \frac{17}{21}}, \ e^{2\pi i \frac{19}{21}}, \ e^{2\pi i \frac{20}{21}} \end{array}$

12

We only need to prove:

$$(gag^{-1})^r = e \iff a^r = e$$

• \Rightarrow : If $(gag^{-1})^r = ga^rg^{-1} = e$, we have $ga^r = g$, which means $a^r = e$.

•
$$\Leftarrow$$
: $(gag^{-1})^r = ga^rg^{-1} = gg^{-1} = e$.