Analysis of solar radiation potential for business and residential use in Charleston, South Carolina.

Joshua Tanner MEA582 Fall 2012

Problem

- Total amount of solar radiation for a surface
- Differences between an urban and suburban environment
- Method to communicate results to the consumer

Image: NOAA

Reason for study

- LiDAR Data
- Alternative / Renewable Energy
- Web Application Development

Geographic Considerations

- Charleston, South Carolina
- Suburban Neighborhood
- Medical University of South Carolina

Urban

Data

- LiDAR NOAA Coastal Services Center
- Building Footprints City of Charleston
- Neighborhood Boundaries City of Charleston

LiDAR

Building Footprints

Methods Overview

- Analyzing LiDAR points for appropriate DEM cell size
- Creating a terrain from the LiDAR points
- Developing a DEM at the suitable resolution
- Performing solar radiation analysis
- Extracting solar surface using the buildings as a mask
- Calculating statistics on the rooftop radiation surface

Analyse & Create Raster Surface from LiDAR

Perform Solar Analysis

Calculate
Statistics from
Solar Surface

- 1. Determining appropriate cell size
- 2. Creating a terrain from the LiDAR points

3. Develop DEM

4. Perform solar radiation analysis (Watt Hours per Square Meter)

- 5. Extract by mask
- 6. Calculate zonal statistics

Mean Solar Radiation for Rooftops

Results

	Mean	Maximum	Minimum	Standard Deviation
Wagener Terrace	429.59+-204.55	1722.72+-477.78	3.86+-20.09	415.76+-185.54
MUSC	631.51+-204.42	2116.01+-422.46	0.21+-2.35	493.38+-134.11

Values in Watt Hours per Square Meter for Winter Solstice

- * Urban Setting Greater average and maximum solar radiation but also had a minimum statistic of almost zero
- * Suburban Setting Lesser average and maximum solar radiation, but greater minimum value

Results - Mean

Urban - Tall, flat, equipotential surfaces receive sunlight throughout the day.

Can be limited by surrounding buildings.

Suburban - Limited by rooftop slopes and canopy cover.

Results - Max/Min

Maximum - Taller buildings in urban areas are mostly unobstructed and gain sunlight throughout all of peak light hours.

Minimum - Some taller buildings can completely block sunlight from nearby buildings

What's Next

- Solar Analysis for Summer Solstice
- Simple Web Mapping Application to Identify Rooftop Radiation Values

Conclusion

- Most Important Findings
 - LiDAR -> Solar Radiation Surface
 - Characteristics Impacting Radiation Values