Chapter 13

Apply It 13.1

1. The graph of $c(q) = 2q^3 - 21q^2 + 60q + 500$ is

There looks to be a relative maximum at q = 2and a relative minimum at q = 5.

and a relative minimum at
$$q = 3$$
.
 $c'(q) = 6q^2 - 42q + 60 = 6(q^2 - 7q + 10)$
 $= 6(q - 5)(q - 2)$
 $c'(q) = 0$ when $q = 2$ or $q = 5$. If $q < 2$, then
 $c'(q) = 6(-)(-) = +$, so $c(q)$ is increasing. If
 $2 < q < 5$, then $c'(q) = 6(-)(+) = -$, so $c(q)$ is
decreasing. If $5 < q$, then $c'(q) = 6(+)(+) = +$, so
 $c(q)$ is increasing. When $q = 2$, there is a relative
maximum, since $c'(q)$ changes from + to -. The
relative maximum value is

 $2(2)^3 - 21(2)^2 + 60(2) + 500 = 552$. When q = 5, there is a relative minimum, since c'(q) changes from - to +. The relative minimum value is $2(5)^3 - 21(5)^2 + 60(5) + 500 = 525.$

2. First, find
$$C'(t)$$
, with $C(t) = \frac{0.14t}{(t+2)^2}$.

$$C'(t) = \frac{0.14(t+2)^2 - 0.14t(2)(t+2)}{(t+2)^4}$$
$$= \frac{0.14(t+2) - 0.28t}{(t+2)^3} = \frac{0.28 - 0.14t}{(t+2)^3}$$
$$0.14(2-t)$$

$$=\frac{0.14(2-t)}{(t+2)^3}$$

C'(t) = 0 when t = 2 and is undefined when t = -2. However, since t denotes the number of hours after an injection, negative values of t are

not reasonable. If
$$0 \le t < 2$$
, $C'(t) = \frac{+}{+} = +$, so

C(t) is increasing. If 2 < t, $C'(t) = \frac{1}{t} = -$, so C(t)

is decreasing. When t = 2, there is a relative

maximum, since C'(t) changes from + to -. The drug is at its greatest concentration 2 hours after the injection.

Problems 13.1

- **1.** Decreasing on $(-\infty, -1)$ and $(3, \infty)$; increasing on (-1, 3); relative minimum (-1, -1); relative maximum (3, 4).
- **2.** Decreasing on $(-\infty, -1)$ and (0, 1); increasing on (-1, 0) and $(1, \infty)$; relative minima (-1, -1) and (1,-1); relative maximum (0,0).
- **3.** Decreasing on $(-\infty, -2)$ and (0, 2); increasing on (-2, 0) and $(2, \infty)$; relative minima (-2, 1) and (2, 1); no relative maximum.
- **4.** Increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$; no relative maximum; no relative minimum.

In the following problems, we denote the critical value by CV.

5.
$$f'(x) = (x+3)(x-1)(x-2)$$

 $f'(x) = 0$ when $x = -3, 1, 2$
CV: $x = -3, 1, 2$

$$-$$
 + $-$ + $-$ + $-$ 3 1 2

Increasing on (-3, 1) and $(2, \infty)$; decreasing on $(-\infty, -3)$ and (1, 2); relative maximum when x = 1; relative minima when x = -3, 2.

6.
$$f'(x) = 2x(x-1)^3$$

CV:
$$x = 0, 1$$

Increasing on $(-\infty, 0)$ and $(1, \infty)$; decreasing on (0, 1); relative maximum when x = 0; relative minimum when x = 1.

7.
$$f'(x) = (x+1)(x-3)^2$$

$$- + +$$

Decreasing on $(-\infty, -1)$; increasing on (-1, 3)and $(3, \infty)$; relative minimum when x = -1.

8.
$$f'(x) = \frac{x(x+2)}{x^2+1}$$

CV: $x = 0, -2$

$$\begin{array}{c} + & - & + \\ -2 & 0 \end{array}$$

Increasing on $(-\infty, -2)$ and $(0, \infty)$; decreasing on (-2, 0); relative maximum when x = -2; relative minimum when x = 0.

9.
$$y = -x^3 - 1$$

 $y' = -3x^2$
CV: $x = 0$

Decreasing on $(-\infty, 0)$; decreasing on $(0, \infty)$; no relative maximum or minimum

10.
$$y = x^2 + 4x + 3$$

 $y' = 2x + 4 = 2(x + 2)$
CV: $x = -2$

Decreasing on $(-\infty, -2)$; increasing on $(-2, \infty)$; relative minimum when x = -2.

11.
$$y = x - x^2 + 2$$

 $y' = 1 - 2x$
CV: $x = \frac{1}{2}$

Increasing on $\left(-\infty, \frac{1}{2}\right)$; decreasing on $\left(\frac{1}{2}, \infty\right)$;

relative maximum when $x = \frac{1}{2}$.

12.
$$y = x^3 - \frac{5}{2}x^2 - 2x + 6$$

 $y' = 3x^2 - 5x - 2 = (3x+1)(x-2)$
CV: $x = -\frac{1}{3}$, 2
 $\frac{+ - + +}{-\frac{1}{3}}$
Increasing on $\left(-\infty, -\frac{1}{3}\right)$ and $(2, \infty)$; decreasing

on
$$\left(-\frac{1}{3}, 2\right)$$
; relative maximum when $x = -\frac{1}{3}$; relative minimum when $x = 2$.

13.
$$y = -\frac{x^3}{3} - 2x^2 + 5x - 2$$

 $y' = -x^2 - 4x + 5 = -(x^2 + 4x - 5)$
 $= -(x + 5)(x - 1)$
CV: $x = -5$, 1

Decreasing on $(-\infty, -5)$ and $(1, \infty)$; increasing on (-5, 1); relative minimum when x = -5; relative maximum when x = 1.

14.
$$y = -\frac{x^4}{4} - x^3$$

 $y' = -x^3 - 3x^2 = -x^2(x+3)$
CV: $x = -3$, 0

Increasing on $(-\infty, -3)$; decreasing on (-3, 0) and $(0, \infty)$; relative maximum at x = -3.

15.
$$y = x^4 - 2x^2$$

 $y' = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x + 1)(x - 1)$
CV: $x = 0, \pm 1$

Decreasing on $(-\infty, -1)$ and (0, 1); increasing on (-1, 0) and $(1, \infty)$; relative maximum when x = 0; relative minima when $x = \pm 1$.

16.
$$y = -3 + 12x - x^3$$

 $y' = 12 - 3x^2 = 3(4 - x^2) = 3(2 + x)(2 - x)$
CV: $x = \pm 2$
 $\frac{- + - -}{-2 - 2}$

Decreasing on $(-\infty, -2)$ and $(2, \infty)$; increasing on (-2, 2); relative minimum when x = -2; relative maximum when x = 2.

17.
$$y = x^3 - \frac{7}{2}x^2 + 2x - 5$$

 $y' = 3x^2 - 7x + 2 = (3x - 1)(x - 2)$
CV: $x = \frac{1}{3}$, 2

Increasing on
$$\left(-\infty, \frac{1}{3}\right)$$
 and $(2, \infty)$; decreasing

on $\left(\frac{1}{3}, 2\right)$; relative maximum when $x = \frac{1}{3}$, relative minimum when x = 2.

18. $y = x^3 - 6x^2 + 12x - 6$ $y' = 3x^2 - 12x + 12 = 3(x^2 - 4x + 4) = 3(x - 2)^2$ CV: x = 2

Increasing on $(-\infty, 2)$ and $(2, \infty)$; no relative maximum or relative minimum.

19.
$$y = 2x^3 - \frac{19}{2}x^2 + 10x + 2$$

 $y' = 6x^2 - 19x + 10 = (2x - 5)(3x - 2)$
CV: $x = \frac{2}{3}, \frac{5}{2}$
 $\frac{+ - + +}{\frac{2}{3} + \frac{5}{2}}$
Increasing on $\left(-\infty, \frac{2}{3}\right)$ and $\left(\frac{5}{2}, \infty\right)$; decreasing on $\left(\frac{2}{3}, \frac{5}{2}\right)$; relative maximum when $x = \frac{2}{3}$; relative minimum when $x = \frac{5}{2}$.

20.
$$y = -5x^3 + x^2 + x - 7$$

 $y' = -15x^2 + 2x + 1 = -(5x + 1)(3x - 1)$
 $CV: -\frac{1}{5}, \frac{1}{3}$
 $\frac{-}{-\frac{1}{5}}, \frac{1}{3}$
Decreasing on $\left(-\infty, -\frac{1}{5}\right)$ and $\left(\frac{1}{3}, \infty\right)$;
increasing on $\left(-\frac{1}{5}, \frac{1}{3}\right)$; relative minimum when $x = -\frac{1}{5}$; relative maximum when $x = \frac{1}{3}$.

21.
$$y = \frac{x^3}{3} - 5x^2 + 22x + 1$$

 $y' = x^2 - 10x + 22$
By the quadratic formula, $y' = 0$ when
$$x = \frac{10 \pm \sqrt{(-10)^2 - 4(1)(22)}}{2(1)} \text{ or } x = 5 \pm \sqrt{3}.$$

CV: $x = 5 \pm \sqrt{3}$

$$\frac{+}{5 - \sqrt{3}} + \frac{+}{5 + \sqrt{3}}$$
Increasing on $(-\infty, 5 - \sqrt{3})$; decreasing on $(5 - \sqrt{3}, 5 + \sqrt{3})$; increasing on $(5 + \sqrt{3}, \infty)$; relative maximum at $x = 5 - \sqrt{3}$; relative minimum at $x = 5 + \sqrt{3}$.

22.
$$y = \frac{9}{5}x^5 - \frac{47}{3}x^3 + 10x$$

 $y' = 9x^4 - 47x^2 + 10 = (9x^2 - 2)(x^2 - 5)$
 $= (3x - \sqrt{2})(3x + \sqrt{2})(x - \sqrt{5})(x + \sqrt{5})$
CV: $x = \pm \frac{\sqrt{2}}{3}, \pm \sqrt{5}$
 $\frac{+ - + - + - + +}{-\sqrt{5} - \frac{\sqrt{2}}{3} \frac{\sqrt{2}}{3} \sqrt{5}}$
Increasing on $(-\infty, -\sqrt{5}), (-\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3})$, and $(\sqrt{5}, \infty)$; decreasing on $(-\sqrt{5}, -\frac{\sqrt{2}}{3})$ and $(\frac{\sqrt{2}}{3}, \sqrt{5})$; relative maxima when $x = -\sqrt{5}$, $\frac{\sqrt{2}}{3}$; relative minima when $x = -\sqrt{5}$,

24.
$$y = 3x - \frac{x^6}{2}$$

 $y' = 3 - 3x^5 = 3(1 - x^5)$
 $= 3(1 - x)(x^4 + x^3 + x^2 + x + 1)$
CV: $x = 1$

Increasing on $(-\infty, 1)$; decreasing on $(1, \infty)$; relative maximum when x = 1.

Decreasing on $(-\infty, -4)$ and $(0, \infty)$; increasing on (-4, 0); relative minimum when x = -4; relative maximum when x = 0.

26.
$$y = \frac{3x^4}{2} - 4x^3 + 17$$

 $y' = 6x^3 - 12x^2 = 6x^2(x-2)$
CV: $x = 0, 2$

Decreasing on $(-\infty, 0)$ and (0, 2); increasing on $(2, \infty)$; relative minimum at x = 2.

27.
$$y = 8x^4 - x^8$$

 $y' = 32x^3 - 8x^7 = 8x^3 (4 - x^4)$
 $= 8x^3 (2 + x^2)(2 - x^2)$
 $= 8x^3 (2 + x^2)(\sqrt{2} - x)(\sqrt{2} + x)$
CV: $x = 0, \pm \sqrt{2}$
 $\frac{+ - + -}{-\sqrt{2}} = 0$ $\sqrt{2}$
Increasing on $(-\infty, -\sqrt{2})$ and $(0, \sqrt{2})$; decreasing on $(-\sqrt{2}, 0)$ and $(\sqrt{2}, \infty)$; relative maxima when $x = \pm \sqrt{2}$, relative minimum when $x = 0$.

Increasing on (-2, 0) and $(2, \infty)$; decreasing on $(-\infty, -2)$ and (0, 2); relative maximum when x = 0; relative minima when $x = \pm 2$.

30.
$$y = \sqrt[3]{x}(x-2)$$

 $y' = \frac{2(2x-1)}{3x^{\frac{2}{3}}}$
CV: $x = 0, \frac{1}{2}$

Decreasing on $(-\infty, 0)$ and $\left(0, \frac{1}{2}\right)$; increasing on $\left(\frac{1}{2}, \infty\right)$; relative minimum when $x = \frac{1}{2}$; no relative maximum.

31.
$$y = \frac{5}{x-1} = 5(x-1)^{-1}$$

 $y' = -5(x-1)^{-2} = -\frac{5}{(x-1)^2}$

CV: None, but x = 1 must be included in the sign chart because it is a point of discontinuity of y.

Decreasing on $(-\infty, 1)$ and $(1, \infty)$; no relative extremum.

32.
$$y = \frac{3}{x} = 3x^{-1}$$

 $y' = -3x^{-2} = -\frac{3}{x^2}$

CV: None, but x = 0 must be included in the sign chart because it is a point of discontinuity of y.

Decreasing on $(-\infty, 0)$ and $(0, \infty)$; no relative extremum.

33.
$$y = \frac{10}{\sqrt{x}} = 10x^{-\frac{1}{2}}$$
. [Note: $x > 0$]
 $y' = -5x^{-\frac{3}{2}} = -\frac{5}{\sqrt{x^3}} < 0 \text{ for } x > 0$.

Decreasing on $(0, \infty)$; no relative extremum.

34.
$$y = \frac{ax+b}{cx+d}$$
$$y' = \frac{(cx+d)(a) - (ax+b)(c)}{(cx+d)^2}$$
$$= \frac{acx+ad-acx-bc}{(cx+d)^2}$$
$$= \frac{ad-bc}{(cx+d)^2}$$

CV: None but $x = -\frac{d}{a}$ must be included in the sign chart because it is a point of discontinuity of

a. For
$$ad - bc > 0$$

$$\frac{+ + +}{-\frac{d}{c}}$$
Increasing on $\left(-\infty, -\frac{d}{c}\right)$ and $\left(-\frac{d}{c}, \infty\right)$; no relative extrema.

b. For
$$ad - bc < 0$$

$$\frac{-}{\left[-\frac{d}{c}\right]}$$
Decreasing on $\left(-\infty, -\frac{d}{c}\right)$ and $\left(-\frac{d}{c}, \infty\right)$; no relative extrema.

35.
$$y = \frac{x^2}{2-x}$$

 $y' = \frac{(2-x)(2x) - x^2(-1)}{(2-x)^2} = \frac{x(4-x)}{(2-x)^2}$

CV: x = 0, 4, but x = 2 must be included in the sign chart because it is a point of discontinuity of

Decreasing on $(-\infty, 0)$ and $(4, \infty)$; increasing on (0, 2) and (2, 4); relative minimum when x = 0; relative maximum when x = 4.

36.
$$y = 4x^2 + \frac{1}{x}$$

 $y' = 8x - \frac{1}{x^2} = \frac{(2x-1)(4x^2 + 2x + 1)}{x^2}$

CV: $x = \frac{1}{2}$, but x = 0 must be included in the

sign chart because it is a point of discontinuity of

$$\frac{y}{-} - + \frac{1}{2}$$

Increasing on $\left(\frac{1}{2}, \infty\right)$; decreasing on $(-\infty, 0)$

and $\left(0, \frac{1}{2}\right)$; relative minimum when $x = \frac{1}{2}$.

37.
$$y = \frac{x^2 - 3}{x + 2}$$

$$y' = \frac{(x+2)(2x) - (x^2 - 3)(1)}{(x+2)^2}$$

$$= \frac{x^2 + 4x + 3}{(x+2)^2} = \frac{(x+1)(x+3)}{(x+2)^2}$$

CV: x = -3, -1, but x = -2 must be included in the sign chart because it is a point of discontinuity of y.

Increasing on $(-\infty, -3)$ and $(-1, \infty)$; decreasing on (-3, -2) and (-2, -1); relative maximum when x = -3; relative minimum when x = -1.

38.
$$y = \frac{2x^2}{4x^2 - 25}$$

 $y' = \frac{(4x^2 - 25)(4x) - (2x^2)(8x)}{(4x^2 - 25)^2}$
 $= -\frac{100x}{(4x^2 - 25)^2} = -\frac{100x}{(2x - 5)^2(2x + 5)^2}$

CV: x = 0, but $x = \pm \frac{5}{2}$ must be included in the

sign chart because they are points of discontinuity of y.

Increasing on $\left(-\infty, -\frac{5}{2}\right)$ and $\left(-\frac{5}{2}, 0\right)$;

decreasing on $\left(0, \frac{5}{2}\right)$ and $\left(\frac{5}{2}, \infty\right)$; relative

maximum at x = 0.

39.
$$y = \frac{ax^2 + b}{cx^2 + d}$$
 for $\frac{d}{c} < 0$.

$$y' = \frac{(cx^2 + d)(2ax) - (ax^2 + b)(2cx)}{(cx^2 + d)^2}$$

$$= \frac{2acx^3 + 2adx - 2acx^3 - 2bcx}{(cx^2 + d)^2}$$

$$= \frac{2x(ad - bc)}{(cx^2 + d)^2}$$

y' = 0 when x = 0.

CV: x = 0; but $x = \pm \sqrt{-\frac{d}{c}}$ must be included in

the sign chart because they are points of discontinuity of y.

decreasing on
$$\left(-\infty, -\sqrt{-\frac{d}{c}}\right)$$
 and $\left(-\sqrt{-\frac{d}{c}}, 0\right)$; relative minimum at $x = 0$.

b. For
$$ad - bc < 0$$

$$\frac{d}{dc} = \frac{1}{c} \left(-\frac{d}{c} \right) \left(-\frac{d}{c} \right)$$
Increasing on $\left(-\infty, -\sqrt{-\frac{d}{c}} \right)$ and $\left(-\sqrt{-\frac{d}{c}}, 0 \right)$; decreasing on $\left(0, \sqrt{-\frac{d}{c}} \right)$ and $\left(\sqrt{-\frac{d}{c}}, \infty \right)$; relative maximum at $x = 0$.

40.
$$y = \sqrt[3]{x^3 - 9x}$$

 $y' = \frac{1}{3} \left(x^3 - 9x \right)^{-\frac{2}{3}} \left(3x^2 - 9 \right) = \frac{\left(x + \sqrt{3} \right) \left(x - \sqrt{3} \right)}{\left[x(x+3)(x-3) \right]^{\frac{2}{3}}}$
CV: $x = \pm \sqrt{3}$, $0, \pm 3$
 $\frac{+}{-3} - \sqrt{3}$ $0, \pm 3$
Increasing on $(-\infty, -3)$, $(-3, -\sqrt{3})$, $(\sqrt{3}, 3)$, and $(3, \infty)$; decreasing on $(-\sqrt{3}, 0)$ and $(0, \sqrt{3})$; relative maximum when $x = -\sqrt{3}$; relative minimum when $x = \sqrt{3}$.

41.
$$y = (x-1)^{2/3}$$

 $y' = \frac{2}{3}(x-1)^{-1/3} = \frac{2}{3\sqrt[3]{x-1}}$
CV: $x = 1$

Increasing on $(1, \infty)$; decreasing on $(-\infty, 1)$; relative minimum when x = 1.

42.
$$y = x^2(x+3)^4$$

 $y' = x^2(4)(x+3)^3 + (x+3)^4(2x)$
 $= 2x(x+3)^3[2x+(x+3)]$
 $= 2x(x+3)^3(3x+3) = 6x(x+3)^3(x+1)$

CV:
$$x = 0, -3, -\frac{-}{-}$$

Increasing on (-3, -1) and $(0, \infty)$; decreasing on $(-\infty, -3)$ and (-1, 0); relative maximum when x = -1; relative minima when x = -3 and x = 0.

43. $y = x^3(x-6)^4$ $y' = x^3 \left[4(x-6)^3 \right] + (x-6)^4 \left(3x^2 \right)$ $= x^2(x-6)^3 [4x+3(x-6)]$ $= x^2(x-6)^3 (7x-18)$ CV: $x = 0, 6, \frac{18}{7}$

> Increasing on $(-\infty, 0)$, $\left(0, \frac{18}{7}\right)$, and $(6, \infty)$; decreasing on $\left(\frac{18}{7}, 6\right)$; relative maximum when $x = \frac{18}{7}$; relative minimum when x = 6.

44.
$$y = (1-x)^{2/3}$$

 $y' = \frac{2}{3}(1-x)^{-1/3}(-1) = -\frac{2}{3(1-x)^{1/3}}$
CV: $x = 1$

Decreasing on $(-\infty, 1)$; increasing on $(1, \infty)$; relative minimum when x = 1.

- **45.** $y = e^{-\pi x} + \pi$ $y' = -\pi e^{-\pi x} < 0$ for all x. Thus decreasing on $(-\infty, \infty)$; no relative extremum.
- 46. $y = x \ln x$. (Note: x > 0.) $y' = 1 + \ln x$ y' = 0 when $1 + \ln x = 0$, $\ln x = -1$, or $x = e^{-1} = \frac{1}{e}$ CV: $x = \frac{1}{e}$ $\frac{-}{e}$

Decreasing on $\left(0, \frac{1}{e}\right)$; increasing on $\left(\frac{1}{e}, \infty\right)$; relative minimum when $x = \frac{1}{e}$.

47. $y = x^2 - 9 \ln x$. [Note: x > 0.] $y' = 2x - \frac{9}{x} = \frac{2x^2 - 9}{x}$ $CV: x = \frac{3\sqrt{2}}{2}$ $\frac{- + \frac{1}{2}}{0 + \frac{1}{2}}$

Decreasing on $\left(0, \frac{3\sqrt{2}}{2}\right)$; increasing on $\left(\frac{3\sqrt{2}}{2}, \infty\right)$; relative minimum when $x = \frac{3\sqrt{2}}{2}$.

48. $y = x^{-1}e^x$ $y' = x^{-1}e^x - x^{-2}e^x = e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) = e^x \left(\frac{x-1}{x^2}\right)$

Increasing on $(1, \infty)$; decreasing on $(-\infty, 0)$ and (0, 1); relative minimum when x = 1.

- **49.** $y = e^x e^{-x}$ $y' = e^x + e^{-x}$ Setting y' = 0 gives $e^x + e^{-x} = 0$, $e^x = -e^{-x}$, CV: None Increasing on $(-\infty, \infty)$; no relative extrema.

- **51.** $y = x \ln x x$. [Note: x > 0.] $y' = \left[x \cdot \frac{1}{x} + (\ln x)(1) \right] - 1 = \ln x$
 - CV: x = 1

Decreasing on (0, 1); increasing on $(1, \infty)$; relative minimum when x = 1; no relative maximum.

52. $y = (x^2 + 1)e^{-x}$ $y' = (x^2 + 1)(-e^{-x}) + e^{-x}(2x)$ $= -e^{-x}[(x^2 + 1) - 2x] = -e^{-x}(x - 1)^2$ CV: x = 1

Decreasing on $(-\infty, 1)$ and $(1, \infty)$; never increasing; no relative extremum.

53. $y = x^2 - 3x - 10 = (x+2)(x-5)$ Intercepts (-2, 0), (5, 0), (0, -10) y' = 2x - 3

CV:
$$x = \frac{3}{2}$$

Decreasing on $\left(-\infty, \frac{3}{2}\right)$; increasing on $\left(\frac{3}{2}, \infty\right)$;

relative minimum when $x = \frac{3}{2}$.

54. $y = 2x^2 + x - 10 = (2x + 5)(x - 2)$ Intercepts $\left(-\frac{5}{2}, 0\right)$, (2, 0), (0, -10) $y' = 4x + 1 = 4\left(x + \frac{1}{4}\right)$

CV:
$$x = -\frac{1}{4}$$

Decreasing on $\left(-\infty, -\frac{1}{4}\right)$; increasing on

$$\left(-\frac{1}{4}, \infty\right)$$
; absolute minimum when $x = -\frac{1}{4}$;

symmetric about $x = -\frac{1}{4}$

55. $y = 3x - x^3 = x(\sqrt{3} + x)(\sqrt{3} - x)$

Intercepts: $(0, 0), (\pm \sqrt{3}, 0)$

Symmetric about origin.

$$y' = 3 - 3x^2 = 3(1+x)(1-x)$$

CV: $x = \pm 1$

Decreasing on $(-\infty, -1)$ and $(1, \infty)$; increasing on (-1, 1); relative minimum when x = -1; relative maximum when x = 1.

56. $y = x^4 - 16 = (x^2 + 4)(x + 2)(x - 2)$

Intercepts $(\pm 2, 0)$, (0, -16)Symmetric about y-axis.

$$y' = 4x^3$$

CV:
$$x = 0$$

Decreasing on $(-\infty, 0)$; increasing on $(0, \infty)$; relative minimum when x = 0.

57.
$$y = 2x^3 - 9x^2 + 12x = x(2x^2 - 9x + 12)$$

Note that $2x^2 - 9x + 12 = 0$ has no real roots. The only intercept is (0, 0).

$$y' = 6x^2 - 18x + 12 = 6(x^2 - 3x + 2)$$

$$=6(x-2)(x-1)$$

CV:
$$x = 1, 2$$

Increasing on $(-\infty, 1)$ and $(2, \infty)$; decreasing on (1, 2); relative maximum when x = 1; relative minimum when x = 2.

58.
$$y = 2x^3 - x^2 - 4x + 4$$

The *x*-intercept is not convenient to find. *y*-intercept is (0, 4).

$$y' = 6x^2 - 2x - 4 = 2(3x + 2)(x - 1)$$

CV:
$$x = -\frac{2}{3}$$
, 1

Increasing on $\left(-\infty, -\frac{2}{3}\right)$ and $(1, \infty)$; decreasing

on $\left(-\frac{2}{3}, 1\right)$; relative maximum when $x = -\frac{2}{3}$;

relative minimum when x = 1.

59.
$$y = x^4 - 2x^2$$

= $x^2(x^2 - 2)$
= $x^2(x + \sqrt{2})(x - \sqrt{2})$

Intercepts (0, 0), $\left(-\sqrt{2}, 0\right)$, $\left(\sqrt{2}, 0\right)$

$$y' = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x+1)(x-1)$$

CV: x = 0, -1, 1

Increasing on (-1, 0) and $(1, \infty)$; decreasing on

 $(-\infty, -1)$ and (0, 1); relative maximum at (0, 0); absolute minima at $x = \pm 1$; symmetric about x = 0.

60.
$$y = x^6 - \frac{6}{5}x^5 = x^5\left(x - \frac{6}{5}\right)$$

Intercepts
$$(0,0)$$
, $\left(\frac{6}{5},0\right)$

$$y' = 6x^5 - 6x^4 = 6x^4(x-1)$$

CV:
$$x = 0, 1$$

Increasing on $(1, \infty)$; decreasing on $(-\infty, 0)$ and (0, 1); relative minimum when x = 1.

61.
$$y = (x-1)^2(x+2)^2$$

Intercepts: (1, 0), (-2, 0), (0, 4)

$$y' = (x-1)^2 \cdot 2(x+2) + (x+2)^2 \cdot 2(x-1)$$
$$= 2(x-1)(x+2)[(x-1) + (x+2)]$$

$$=2(x-1)(x+2)(2x+1)$$

CV:
$$x = 1, -2, -\frac{1}{2}$$

Decreasing on $(-\infty, -2)$ and $\left(-\frac{1}{2}, 1\right)$; increasing

on
$$\left(-2, -\frac{1}{2}\right)$$
 and $(1, \infty)$; relative minima when

x = -2 or x = 1; relative maximum when

$$x = -\frac{1}{2}$$
.

62. $y = \sqrt{x}(x^2 - x - 2) = \sqrt{x}(x - 2)(x + 1)$ [Note $x \ge 0$.] Intercepts (0, 0), (2, 0) $y = x^{5/2} - x^{3/2} - 2x^{1/2}$ $y' = \frac{5}{2}x^{3/2} - \frac{3}{2}x^{1/2} - 2 \cdot \frac{1}{2}x^{-1/2}$ $= \frac{1}{2\sqrt{x}}(5x^2 - 3x - 2)$ $= \frac{1}{2\sqrt{x}}(5x + 2)(x - 1)$

> CV: x = 0, 1 ($x \ge 0$) Decreasing on (0, 1); increasing on (1, ∞); relative minimum when x = 1.

63. $y = 2\sqrt{x} - x = \sqrt{x} (2 - \sqrt{x})$. [Note: $x \ge 0$.]
Intercepts (0, 0), (4, 0) $y' = \frac{1}{\sqrt{x}} - 1 = \frac{1 - \sqrt{x}}{\sqrt{x}}$

Increasing on (0, 1); decreasing on $(1, \infty)$; relative maximum when x = 1.

64. $y = x^{5/3} - 2x^{2/3} = x^{2/3}(x-2)$ Intercepts: (0, 0), (2, 0) $y' = \frac{5}{3}x^{2/3} - \frac{4}{3}x^{-1/3} = \frac{1}{3}x^{-1/3}(5x-4)$ CV: $x = 0, \frac{4}{5}$

Increasing on $(-\infty, 0)$ and $\left(\frac{4}{5}, \infty\right)$; decreasing on $\left(0, \frac{4}{5}\right)$; relative maximum at (0, 0); relative minimum at $x = \frac{4}{5}$; no symmetry.

- 67. $c_f = 25,000$ $\overline{c}_f = \frac{c_f}{q} = \frac{25,000}{q}$ $\frac{d}{dq}(\overline{c}_f) = -\frac{25,000}{q^2} < 0 \text{ for } q > 0, \text{ so } \overline{c}_f \text{ is a decreasing function for } q > 0.$

68.
$$c = 3q - 3q^2 + q^3$$

Marginal cost is given by $\frac{dc}{dq} = 3 - 6q + 3q^2$.

Thus $\frac{dc}{dq}$ is increasing when $\frac{d\left[\frac{dc}{dq}\right]}{dq} < 0$, that is, when -6 + 6q > 0. Hence q > 1.

69.
$$p = 500 - 5q$$

Revenue is given by $r = pq = (500 - 5q)q = 500q - 5q^2$
Marginal revenue is $r' = 500 - 10q$. Marginal revenue is increasing when its derivative is

revenue is increasing when its derivative is positive. But (r')' = -10 < 0. Thus marginal revenue is never increasing.

70.
$$c = \sqrt{q}$$

Marginal cost $=\frac{dc}{dq} = \frac{1}{2\sqrt{q}}$. Since

$$\frac{d\left[\frac{dc}{dq}\right]}{dq} = -\frac{1}{4\sqrt{q^3}} < 0 \text{ for } q > 0, \text{ marginal cost is}$$

decreasing for q > 0.

Average cost
$$= \overline{c} = \frac{c}{q} = \frac{1}{\sqrt{q}}$$
. Since

$$\frac{d\overline{c}}{dq} = -\frac{1}{2\sqrt{q^3}} < 0$$
 for $q > 0$, average cost is

decreasing for q > 0.

71.
$$r = 240q + 57q^2 - q^3$$

$$r' = 240 + 114q - 3q^2 = 3(40 - q)(2 + q)$$

Since $q \ge 0$, we have q = 40 as the only CV. Since r is increasing on (0, 40) and decreasing on $(40, \infty)$, r is a maximum when output is 40.

72.
$$z = (1+b)w_p - bw_c$$
, w_p is function of w_c , and $b > 0$.

a.
$$\frac{dz}{dw_c} = (1+b)\frac{dw_p}{dw_c} - b(1)$$
$$= (1+b)\left[\frac{dw_p}{dw_c} - \frac{b}{1+b}\right] \text{ (factoring)}$$

b. If
$$\frac{dw_p}{dw_c} < \frac{b}{b+1}$$
, then $\frac{dw_p}{dw_c} - \frac{b}{b+1} < 0$.
Because $b > 0$, then $1 + b > 0$. Thus from part (a), $\frac{dz}{dw_c} < 0$ so z is a decreasing function of w_c .

73.
$$E = 0.71 \left(1 - \frac{T_c}{T_h} \right)$$

$$\frac{dE}{dT_h} = 0.71 \left(\frac{T_c}{T_h^2} \right) > 0 \text{, so as } T_h \text{ increases, } E$$

74.
$$r = 2F + \left(1 - \frac{a}{b}\right)p - p^2 + \frac{a^2}{b}$$

$$\frac{dr}{dp} = \left(1 - \frac{a}{b}\right) - 2p = \frac{b - a}{b} - 2p = 2\left(\frac{b - a}{2b} - p\right)$$
Setting $\frac{dr}{dp} = 0$ gives the critical value
$$p = \frac{b - a}{2b}$$
. If $p < \frac{b - a}{2b}$, then $\frac{dr}{dp} > 0$ and r is increasing. If $p > \frac{b - a}{2b}$, then $\frac{dr}{dp} < 0$ and r is

decreasing. Thus revenue is maximum for $p = \frac{b-a}{2b}$.

75.
$$C(k) = 100 \left[100 + 9k + \frac{144}{k} \right], 1 \le k \le 100$$

a.
$$C(1) = 25,300$$

b.
$$C'(k) = 100 \left[9 - \frac{144}{k^2} \right] = 100 \left[\frac{9k^2 - 144}{k^2} \right]$$
$$= 100 \left[\frac{9(k+4)(k-4)}{k^2} \right]$$

Since $k \ge 1$, the only critical value is k = 4. If $1 \le k < 4$, then C'(k) < 0 and C is decreasing. If $4 < k \le 100$, then C'(k) > 0 and C is increasing. Thus C has an absolute minimum for k = 4.

c.
$$C(4) = 17.200$$

76.
$$P = \frac{100}{1 + 100,000e^{-0.36h}}$$
$$\frac{dP}{dt} = \frac{d}{100} \left[100 \left(1 + 100,000e^{-0.36h} \right) \right]$$

$$\frac{dP}{dh} = \frac{d}{dh} \left[100 \left(1 + 100,000e^{-0.36h} \right)^{-1} \right]$$

$$=\frac{3,600,000}{e^{0.36h}\left(1+100,000e^{-0.36h}\right)^2}$$

Since $\frac{dP}{dh} > 0$, P is an increasing function of h.

- **77.** Relative minimum: (-3.83, 0.69)
- **78.** Relative minimum: (1.26, -5.74)
- **79.** Relative maximum: (2.74, 3.74); relative minimum: (-2.74, -3.74)
- **80.** Relative maximum: (0.05, 3.05)
- **81.** Relative minima: 0, 1.50, 2.00; relative maxima: 0.57, 1.77
- **82.** *f* has relative extrema when $x \approx 0.38$, 1.18; f'(x) = 0 when $x \approx 0.38$, 1.18.

83. a. $f'(x) = 4 - 6x - 3x^2$

c. f'(x) > 0 on (-2.53, 0.53); f'(x) < 0 on $(-\infty, -2.53)$, $(0.53, \infty)$, f is inc. on (-2.53, 0.53); f is dec. on $(-\infty, -2.53)$, $(0.53, \infty)$.

84.
$$f'(x) = 4x^3 - 2x - 2(x+2)$$

= $4x^3 - 4x - 4$
CV: $x \approx 1.32$

Problems 13.2

1. $f(x) = x^2 - 2x + 3$ and f is continuous over [0, 3].

$$f'(x) = 2x - 2 = 2(x - 1)$$

The only critical value on (0, 3) is x = 1. We evaluate f at this point and at the endpoints: f(0) = 3, f(1) = 2, and f(3) = 6. Absolute maximum: f(3) = 6; absolute minimum: f(1) = 2

2. $f(x) = -2x^2 - 6x + 5$ and f is continuous over [-3, 2].

$$f'(x) = -4x - 6 = -4\left(x + \frac{3}{2}\right)$$

The only critical value on (-3, 2) is $x = -\frac{3}{2}$. We

have
$$f(-3) = 5$$
, $f\left(-\frac{3}{2}\right) = \frac{19}{2}$, and $f(2) = -15$.

Absolute maximum: $f\left(-\frac{3}{2}\right) = \frac{19}{2}$;

absolute minimum: f(2) = -15

3. $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 2x + 1$ and f is continuous over [-1, 0].

$$f'(x) = x^2 + x - 2 = (x+2)(x-1)$$

There are no critical values on (-1, 0), so we only have to evaluate f at the endpoints:

$$f(-1) = \frac{19}{6}$$
 and $f(0) = 1$.

Absolute maximum: $f(-1) = \frac{19}{6}$

Absolute minimum: f(0) = 1

4. $f(x) = \frac{1}{4}x^4 - \frac{3}{2}x^2$ and f is continuous over

$$f'(x) = x^3 - 3x = x(x + \sqrt{3})(x - \sqrt{3})$$

There are no critical values on (0, 1), so we only have to evaluate f at the end points: f(0) = 0 and

$$f(1) = -\frac{5}{4}$$

Absolute maximum: f(0) = 0;

absolute minimum: $f(1) = -\frac{5}{4}$

5. $f(x) = x^3 - 5x^2 - 8x + 50$ and f is continuous over [0, 5].

$$f'(x) = 3x^2 - 10x - 8 = (x - 4)(3x + 2)$$

The only critical value on (0, 5) is x = 4. We evaluate f at this point and the endpoints: f(4) = 2; f(0) = 50; f(5) = 10.

Absolute maximum: f(0) = 50

Absolute minimum: f(4) = 2

6. $f(x) = x^{\frac{2}{3}}$ and f is continuous over [-8, 8]. $f'(x) = \frac{2}{3}x^{-\frac{1}{3}}$.

The only critical value on (-8, 8) is x = 0. We have f(-8) = 4, f(0) = 0, and f(8) = 4. Thus there is an absolute maximum when x = -8 or x = 8, and an absolute minimum when x = 0. Absolute maximum: f(-8) = f(8) = 4; absolute minimum: f(0) = 0

7. $f(x) = -3x^5 + 5x^3$ and f is continuous over [-2, 0].

$$f'(x) = -15x^4 + 15x^2 = 15x^2 \left(1 - x^2\right)$$

$$=15x^2(1+x)(1-x)$$

The only critical value on (-2, 0) is x = -1. We have f(-2) = 56, f(-1) = -2, and f(0) = 0. Absolute maximum: f(-2) = 56; absolute minimum: f(-1) = -2.

8. $f(x) = \frac{7}{3}x^3 + 2x^2 - 3x + 1$ and f is continuous $f'(x) = 7x^2 + 4x - 3 = (7x - 3)(x + 1)$

The only critical value on (0, 3) is $x = \frac{3}{7}$. We

have
$$f(0) = 1$$
, $f\left(\frac{3}{7}\right) = \frac{13}{49}$, and $f(3) = 73$.

Absolute maximum: f(3) = 73;

absolute minimum: $f\left(\frac{3}{7}\right) = \frac{13}{40}$

9. $f(x) = 3x^4 - x^6$ and f is continuous over [-1, 2].

$$f'(x) = 12x^3 - 6x^5 = 6x^3(2-x^2)$$

$$=6x^3\left(\sqrt{2}-x\right)\left(\sqrt{2}+x\right)$$

The only critical values on (-1, 2) are $x = 0, \sqrt{2}$.

We have
$$f(-1) = 2$$
, $f(0) = 0$, $f(\sqrt{2}) = 4$, and

$$f(2) = -16$$
.

Absolute maximum: $f(\sqrt{2}) = 4$;

absolute minimum: f(2) = -16

10. $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 2$ and f is

continuous over [0, 4].

$$f'(x) = 4x^3 - 24x^2 + 44x - 24$$
$$= 4(x-3)(x-2)(x-1)$$

The critical values of f on (0, 4) are x = 1, 2, 3.

We have
$$f(0) = 2$$
, $f(1) = -7$, $f(2) = -6$, $f(3) = -7$,

and f(4) = 2.

Absolute maxima: f(0) = f(4) = 2

Absolute minima: f(1) = f(3) = -7

11. $f(x) = x^4 - 9x^2 + 2$ and f is continuous over

$$f'(x) = 4x^3 - 18x = 2x(2x^2 - 9)$$

$$=2x(\sqrt{2}x-3)(\sqrt{2}x+3)$$

The only critical values on (-1, 3) are x = 0 and

$$x = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$$
. We have $f(-1) = -6$, $f(0) = 2$,

$$f\left(\frac{3\sqrt{2}}{2}\right) = -\frac{73}{4}$$
, and $f(3) = 2$.

Absolute maximum: f(0) = f(3) = 2;

absolute minimum: $f\left(\frac{3\sqrt{2}}{2}\right) = -\frac{73}{4}$

12. $f(x) = \frac{x}{x^2 + 1}$ and f is continuous over [0, 2].

$$f'(x) = \frac{\left(x^2 + 1\right) - x(2x)}{\left(x^2 + 1\right)^2} = \frac{1 - x^2}{\left(x^2 + 1\right)^2}$$

$$=\frac{(1+x)(1-x)}{(x^2+1)^2}$$

The only critical value on (0, 2) is x = 1. We

have
$$f(0) = 0$$
, $f(1) = \frac{1}{2}$, and $f(2) = \frac{2}{5}$.

Absolute maximum: $f(1) = \frac{1}{2}$;

absolute minimum: f(0) = 0

13. $f(x) = (x-1)^{\frac{2}{3}}$ and f is continuous over [-26, 28].

Absolute maximum: f(-26) = f(28) = 9; absolute minimum: f(1) = 0

14. $f(x) = 0.2x^3 - 3.6x^2 + 2x + 1$ and f is continuous over [-1, 2].

Absolute maximum $f(0.28) \approx 1.28$; absolute minimum f(2) = -7.8

15.

a.
$$-3.22, -0.78$$

Problems 13.3

1. $f(x) = x^4 - 3x^3 - 6x^2 + 6x + 1$ f''(x) = 6(2x+1)(x-2)

f''(x) is 0 when $x = -\frac{1}{2}$, 2. Sign chart for f'':

Concave up on $\left(-\infty, -\frac{1}{2}\right)$ and $(2, \infty)$; concave

down on $\left(-\frac{1}{2}, 2\right)$. Inflection points when

$$x = -\frac{1}{2}$$
, 2.

2. $f(x) = \frac{x^5}{20} + \frac{x^4}{4} - 2x^2$

$$f''(x) = (x-1)(x+2)^2$$

f''(x) is 0 when x = 1, -2. Sign chart for f'':

Concave down on $(-\infty, -2)$ and (-2, 1); concave up on $(1, \infty)$. Inflection point when x = 1.

3. $f(x) = \frac{2 + x - x^2}{x^2 - 2x + 1}$

$$f''(x) = \frac{2(7-x)}{(x-1)^4}$$

f''(x) is 0 when x = 7. Although f'' is not defined when x = 1, f is not continuous at x = 1. So there is no inflection point when x = 1, but x = 1 must be considered in concavity analysis. Sign chart for f'':

Concave up on $(-\infty, 1)$ and (1, 7); concave down on $(7, \infty)$. Inflection point when x = 7.

4.
$$f(x) = \frac{x^2}{(x-1)^2}$$

 $f''(x) = \frac{2(2x+1)}{(x-1)^4}$

$$f''(x) = 0$$
 when $x = -\frac{1}{2}$. Although f'' is not

defined when x = 1, f is not continuous at x = 1. So there is no inflection point when x = 1, but x = 1 must be considered in concavity analysis. Sign chart of f'':

$$-+++$$
 $-\frac{1}{2}$ 1

Concave up on
$$\left(-\frac{1}{2},1\right)$$
 and $(1,\infty)$; concave

down on
$$\left(-\infty, -\frac{1}{2}\right)$$
.

Inflection point when $x = \frac{1}{2}$

5.
$$f(x) = \frac{x^2 + 1}{x^2 - 2}$$
$$f''(x) = \frac{6(3x^2 + 2)}{(x^2 - 2)^3} = \frac{6(3x^2 + 2)}{\left[(x - \sqrt{2})(x + \sqrt{2})\right]^3}$$

f''(x) is never 0. Although f'' is not defined when $x = \pm \sqrt{2}$, f is not continuous at $x = \pm \sqrt{2}$. So there is no inflection point when $x = \pm \sqrt{2}$, but $x = \pm \sqrt{2}$ must be considered in concavity analysis. Sign chart of f'':

$$\begin{array}{c|c} + & - & + \\ \hline -\sqrt{2} & \boxed{\sqrt{2}} \end{array}$$

Concave up on $\left(-\infty, -\sqrt{2}\right)$ and $\left(\sqrt{2}, \infty\right)$;

concave down on $\left(-\sqrt{2}, \sqrt{2}\right)$. No inflection point.

6.
$$f(x) = x\sqrt{a^2 - x^2}$$

$$f''(x) = \frac{x(2x^2 - 3a^2)}{(a^2 - x^2)^{3/2}}$$

Note that the domain of f is [-a, a]. f''(x) is 0 only when x = 0 (on the domain of f); f'' is not defined when $x = \pm a$, which are the endpoints of the domain of f. The only possible point of

inflection occurs when x = 0. Sign chart for f'':

$$\begin{array}{ccccc} & + & - & \\ \hline & + & + & + & \\ \hline -a & 0 & a & \end{array}$$

Concave up on (-a, 0); concave down on (0, a). Inflection point when x = 0.

7.
$$y = -2x^2 + 4x$$

 $y' = -4x + 4$
 $y'' = -4 < 0$ for all x, so the graph is concave down for all x, that is, on $(-\infty, \infty)$.

8.
$$y = -74x^2 + 19x - 37$$

 $y' = -148x + 19$
 $y'' = -148 < 0$ for all x. Thus the graph is concave down on $(-\infty, \infty)$.

9.
$$y = 4x^3 + 12x^2 - 12x$$

 $y' = 12x^2 + 24x - 12$
 $y'' = 24x + 24 = 24(x+1)$

Possible inflection point when x = -1. Concave down on $(-\infty, -1)$: concave up on $(-1, \infty)$; inflection point when x = -1.

10.
$$y = x^3 - 6x^2 + 9x + 1$$

 $y' = 3x^2 - 12x + 9$
 $y'' = 6x - 12 = 6(x - 2)$

Possible inflection point when x = 2. Concave down on $(-\infty, 2)$; concave up on $(2, \infty)$; inflection point when x = 2.

11.
$$y = ax^3 + bx^2 + cx + d$$

 $y' = 3ax^2 + 2bx + c$
 $y'' = 6ax + 2b = 6a\left(x + \frac{b}{3a}\right)$

Possible inflection point when $x = -\frac{b}{3a}$.

For a > 0: concave up on $\left(-\frac{b}{3a}, \infty\right)$; concave

down on $\left(-\infty, -\frac{b}{3a}\right)$; inflection point when

$$x = -\frac{b}{3a}$$
.

For a < 0: concave up on $\left(-\infty, -\frac{b}{3a}\right)$; concave

down on
$$\left(-\frac{b}{3a}, \infty\right)$$
; inflection point when $x = -\frac{b}{3a}$.

12.
$$y = x^4 - 8x^2 - 6$$

 $y' = 4x^3 - 16x$
 $y'' = 12x^2 - 16 = 12\left(x^2 - \frac{4}{3}\right)$
 $= 12\left(x - \frac{2\sqrt{3}}{3}\right)\left(x + \frac{2\sqrt{3}}{3}\right)$

Possible inflection points $x = \pm \frac{2\sqrt{3}}{3}$. Concave up on $\left(-\infty, -\frac{2\sqrt{3}}{3}\right)$ and $\left(\frac{2\sqrt{3}}{3}, \infty\right)$; concave down on $\left(-\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}\right)$; inflection points when $x = \pm \frac{2\sqrt{3}}{3}$.

13.
$$y = 2x^4 - 48x^2 + 7x + 3$$

 $y' = 8x^3 - 96x + 7$
 $y'' = 24x^2 - 96 = 24(x^2 - 4) = 24(x + 2)(x - 2)$

Possible inflection points when $x = \pm 2$. Concave up on $(-\infty, -2)$ and $(2, \infty)$; concave down on (-2, 2); inflection points when $x = \pm 2$.

14.
$$y = -\frac{x^4}{4} + \frac{9x^2}{2} + 2x$$

 $y' = -x^3 + 9x + 2$
 $y'' = -3x^2 + 9 = -3(x^2 - 3)$
 $= -3(x + \sqrt{3})(x - \sqrt{3})$

Possible inflection points when $x = \pm \sqrt{3}$. Concave down on $(-\infty, -\sqrt{3})$ and $(\sqrt{3}, \infty)$; concave up on $(-\sqrt{3}, \sqrt{3})$; inflection points when $x = \pm \sqrt{3}$.

15.
$$y = 2x^{\frac{1}{5}}$$

 $y' = \frac{2}{5}x^{-\frac{4}{5}}$
 $y'' = -\frac{8}{25}x^{-\frac{9}{5}} = -\frac{8}{25x^{\frac{9}{5}}}$

y'' is not defined when x = 0 and y is continuous there. Thus there is a possible inflection point when x = 0. Concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; inflection point when x = 0.

16.
$$y = \frac{a}{x^3} = ax^{-3}$$

 $y' = -\frac{3a}{x^4}$
 $y'' = \frac{12a}{x^5}$

Although y'' is not defined when x = 0, y is not continuous there. Thus there is no possible inflection point. However, x = 0 must be considered in concavity analysis. For a > 0: concave up on $(0, \infty)$; concave down on $(-\infty, 0)$. For a < 0: concave up on $(-\infty, 0)$; concave down on $(0, \infty)$.

17.
$$y = \frac{x^4}{2} + \frac{19x^3}{6} - \frac{7x^2}{2} + x + 5$$

 $y' = 2x^3 + \frac{19}{2}x^2 - 7x + 1$
 $y'' = 6x^2 + 19x - 7 = (3x - 1)(2x + 7)$

Possible inflection points when $x = -\frac{7}{2}, \frac{1}{3}$. Concave up on $\left(-\infty, -\frac{7}{2}\right)$ and $\left(\frac{1}{3}, \infty\right)$; concave down on $\left(-\frac{7}{2}, \frac{1}{3}\right)$; inflection points when $x = -\frac{7}{2}, \frac{1}{3}$.

18.
$$y = -\frac{5}{2}x^4 - \frac{1}{6}x^3 + \frac{1}{2}x^2 + \frac{1}{3}x - \frac{2}{5}$$

 $y' = -10x^3 - \frac{1}{2}x^2 + x + \frac{1}{3}$
 $y'' = -30x^2 - x + 1 = -(5x + 1)(6x - 1)$

Possible inflection points when $x = -\frac{1}{5}, \frac{1}{6}$

Concave down on $\left(-\infty, -\frac{1}{5}\right)$ and $\left(\frac{1}{6}, \infty\right)$; concave up on $\left(-\frac{1}{5}, \frac{1}{6}\right)$; inflection points when $x = -\frac{1}{5}, \frac{1}{6}$.

- 19. $y = \frac{1}{20}x^5 \frac{1}{4}x^4 + \frac{1}{6}x^3 \frac{1}{2}x \frac{2}{3}$ $y' = \frac{1}{4}x^4 - x^3 + \frac{1}{2}x^2 - \frac{1}{2}$ $y'' = x^3 - 3x^2 + x = x(x^2 - 3x + 1)$ y'' is 0 when x = 0 or $x^2 - 3x + 1 = 0$. Using the quadratic formula to solve $x^2 - 3x + 1 = 0$ gives $x = \frac{3 \pm \sqrt{5}}{2}$. Thus possible inflection points occur when x = 0, $\frac{3 \pm \sqrt{5}}{2}$. Concave down on $(-\infty, 0)$ and $(\frac{3 - \sqrt{5}}{2}, \frac{3 + \sqrt{5}}{2})$; concave up on $(0, \frac{3 - \sqrt{5}}{2})$ and $(\frac{3 + \sqrt{5}}{2}, \infty)$; inflection points when x = 0, $(\frac{3 \pm \sqrt{5}}{2}, \infty)$; inflection points
- 20. $y = \frac{1}{10}x^5 3x^3 + 17x + 43$ $y' = \frac{1}{2}x^4 - 9x^2 + 17$ $y'' = 2x^3 - 18x = 2x(x^2 - 9)$ = 2x(x+3)(x-3)

Possible inflection points when $x = 0, \pm 3$. Concave down on $(-\infty, -3)$ and (0, 3); concave up on (-3, 0) and $(3, \infty)$; inflection points when $x = 0, \pm 3$.

21.
$$y = \frac{1}{30}x^6 - \frac{7}{12}x^4 + 6x^2 + 5x - 4$$

 $y' = \frac{1}{5}x^5 - \frac{7}{3}x^3 + 12x + 5$

$$y'' = x^4 - 7x^2 + 12 = (x^2 - 4)(x^2 - 3)$$
$$= (x + 2)(x - 2)(x + \sqrt{3})(x - \sqrt{3})$$

Possible inflection points when $x = \pm 2, \pm \sqrt{3}$. Concave up on $(-\infty, -2), (-\sqrt{3}, \sqrt{3})$, and $(2, \infty)$; concave down on $(-2, -\sqrt{3})$ and $(\sqrt{3}, 2)$; inflection points when $x = \pm 2, \pm \sqrt{3}$.

22.
$$y = x^6 - 3x^4$$

 $y' = 6x^5 - 12x^3$
 $y'' = 30x^4 - 36x^2 = 30x^2\left(x^2 - \frac{6}{5}\right)$
 $= 30x^2\left(x - \sqrt{\frac{6}{5}}\right)\left(x + \sqrt{\frac{6}{5}}\right)$

Possible inflection points when x = 0, $\pm \sqrt{\frac{6}{5}}$. Concave up on $\left(-\infty, -\sqrt{\frac{6}{5}}\right)$ and $\left(\sqrt{\frac{6}{5}}, \infty\right)$; concave down on $\left(-\sqrt{\frac{6}{5}}, 0\right)$ and $\left(0, \sqrt{\frac{6}{5}}\right)$. Inflection points when $x = \pm \sqrt{\frac{6}{5}}$.

23.
$$y = \frac{x+1}{x-1}$$

 $y' = \frac{-2}{(x-1)^2}$
 $y'' = \frac{4}{(x-1)^3}$

No possible inflection point, but we consider x = 1 in the concavity analysis. Concave down on $(-\infty, 1)$; concave up on $(1, \infty)$.

24.
$$y = 1 - \frac{1}{x^2}$$

 $y' = \frac{2}{x^3}$
 $y'' = -\frac{6}{x^4}$

No possible inflection point, but we must consider x = 0 in the concavity analysis. Concave down on $(-\infty, 0)$ and $(0, \infty)$.

25.
$$y = \frac{x^2}{x^2 + 1}$$

 $y' = \frac{\left(x^2 + 1\right)(2x) - x^2(2x)}{\left(x^2 + 1\right)^2} = \frac{2x}{\left(x^2 + 1\right)^2}$
 $y'' = \frac{\left(x^2 + 1\right)^2(2) - 2x(2)\left(x^2 + 1\right)(2x)}{\left(x^2 + 1\right)^4} = \frac{\left(x^2 + 1\right)(2) - 8x^2}{\left(x^2 + 1\right)^3}$
 $= \frac{2\left(1 - 3x^2\right)}{\left(x^2 + 1\right)^3} = \frac{2\left(1 + \sqrt{3}x\right)\left(1 - \sqrt{3}x\right)}{\left(x^2 + 1\right)^3}$

Possible inflection points when $x = \pm \frac{1}{\sqrt{3}}$. Concave down on $\left(-\infty, -\frac{1}{\sqrt{3}}\right)$ and $\left(\frac{1}{\sqrt{3}}, \infty\right)$; concave up on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$; inflection points when $x = \pm \frac{1}{\sqrt{3}}$.

26.
$$y = \frac{ax^{2}}{x+b}$$

$$y' = \frac{(x+b)(2ax) - (ax^{2})(1)}{(x+b)^{2}}$$

$$= \frac{2ax^{2} + 2abx - ax^{2}}{(x+b)^{2}}$$

$$= \frac{ax^{2} + 2abx}{(x+b)^{2}}$$

$$y'' = \frac{(x+b)^{2}(2ax + 2ab) - (ax^{2} + 2abx)(2)(x+b)(1)}{(x+b)^{4}}$$

$$= \frac{2a(x+b)^{3} - 2ax(x+2b)(x+b)}{(x+b)^{4}}$$

$$= \frac{2a(x+b)^{2} - 2ax(x+2b)}{(x+b)^{3}}$$

$$= \frac{2ax^{2} + 4abx + 2ab^{2} - 2ax^{2} - 4abx}{(x+b)^{3}}$$

$$= \frac{2ab^{2}}{(x+b)^{3}}$$

No possible inflection point, but we must include x = -b in the concavity analysis. For a > 0: concave down on $(-\infty, -b)$; concave up on $(-b, \infty)$. For a < 0: concave up on $(-\infty, -b)$; concave down on $(-b, \infty)$.

27.
$$y = \frac{21x+40}{6(x+3)^2}$$

$$y' = \frac{1}{6} \cdot \frac{(x+3)^2(21) - (21x+40)[2(x+3)]}{(x+3)^4}$$

$$= \frac{1}{6} \cdot \frac{(x+3)(21) - (21x+40)(2)}{(x+3)^3}$$

$$= \frac{1}{6} \cdot \frac{-21x-17}{(x+3)^3} = -\frac{1}{6} \cdot \frac{21x+17}{(x+3)^3}$$

$$y'' = -\frac{1}{6} \cdot \frac{(x+3)^3(21) - (21x+17)[3(x+3)^2]}{(x+3)^6}$$

$$= -\frac{1}{6} \cdot \frac{(x+3)(21) - (21x+17)(3)}{(x+3)^4}$$

$$= -\frac{1}{6} \cdot \frac{-42x+12}{(x+3)^4} = \frac{7x-2}{(x+3)^4}$$

Possible inflection point when $x = \frac{2}{7}$ (x = -3 must be considered in concavity analysis). Concave down on $(-\infty, -3)$ and $\left(-3, \frac{2}{7}\right)$; concave up on $\left(\frac{2}{7}, \infty\right)$; inflection point when $x = \frac{2}{7}$.

28.
$$y = 3(x^2 - 2)^2$$

 $y' = 12x(x^2 - 2) = 12(x^3 - 2x)$
 $y'' = 12(3x^2 - 2) = 36\left(x^2 - \frac{2}{3}\right)$
 $= 36\left(x - \frac{\sqrt{6}}{3}\right)\left(x + \frac{\sqrt{6}}{3}\right)$

Possible inflection points when $x = \pm \frac{\sqrt{6}}{3}$.

Concave up on
$$\left(-\infty, -\frac{\sqrt{6}}{3}\right)$$
 and $\left(\frac{\sqrt{6}}{3}, 0\right)$;

concave down on $\left(-\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}\right)$; inflection

points when $x = \pm \frac{\sqrt{6}}{3}$

29.
$$y = 5e^x$$

 $y' = 5e^x$
 $y'' = 5e^x$
Thus $y'' > 0$ for all x . Concave up on $(-\infty, \infty)$.

30.
$$y = e^{x} - e^{-x}$$

 $y' = e^{x} + e^{-x}$
 $y'' = e^{x} - e^{-x}$

Setting y'' = 0 gives $e^x = e^{-x}$ or, equivalently, x = 0. Concave down on $(-\infty, 0)$; concave up on $(0, \infty)$; inflection point when x = 0.

31.
$$y = axe^x$$

 $y' = axe^x + ae^x = ae^x(x+1)$
 $y'' = ae^x(1) + a(x+1)e^x = ae^x(x+2)$
 $y'' = 0$ if $x = -2$. For $a > 0$: concave down on $(-\infty, -2)$; concave up on $(-2, \infty)$; inflection point when $x = -2$. For $a < 0$, concave up on $(-\infty, -2)$; concave down on $(-2, \infty)$; inflection point when $x = -2$.

32.
$$y = xe^{x^2}$$

 $y' = 2x^2e^{x^2} + e^{x^2} = e^{x^2}(2x^2 + 1)$
 $y'' = e^{x^2}(4x) + 2x(2x^2 + 1)e^{x^2} = e^{x^2}(4x^3 + 6x)$
 $= 2xe^{x^2}(2x^2 + 3)$
 $y'' = 0$ when $x = 0$. Concave down on $(-\infty, 0)$; concave up on $(0, \infty)$; inflection point when $x = 0$

33.
$$y = \frac{\ln x}{2x}$$
. (Note: $x > 0$.)

$$y' = \frac{2x \cdot \frac{1}{x} - (\ln x)(2)}{4x^2} = \frac{1 - \ln x}{2x^2}$$

$$y'' = \frac{2x^2 \left(-\frac{1}{x}\right) - (1 - \ln x)(4x)}{4x^4}$$

$$= \frac{-2x - (1 - \ln x)(4x)}{4x^4}$$

$$= \frac{-1 - (1 - \ln x)(2)}{2x^3} = \frac{2\ln(x) - 3}{2x^3}$$

$$y'' \text{ is 0 if } 2\ln(x) - 3 = 0, \ln x = \frac{3}{2}, x = e^{\frac{3}{2}}.$$

Concave down on $\left(0, e^{\frac{3}{2}}\right)$; concave up on $\left(e^{\frac{3}{2}}, \infty\right)$; inflection point when $x = e^{\frac{3}{2}}$.

34.
$$y = \frac{x^2 + 1}{3e^x}$$

$$y' = \frac{3e^x (2x) - (x^2 + 1)3e^x}{9e^{2x}} = \frac{2x - (x^2 + 1)}{3e^x}$$

$$= \frac{2x - x^2 - 1}{3e^x}$$

$$y'' = \frac{3e^x (2 - 2x) - (2x - x^2 - 1)3e^x}{9e^{2x}}$$

$$= \frac{(2 - 2x) - (2x - x^2 - 1)}{3e^x}$$

$$= \frac{x^2 - 4x + 3}{3e^x} = \frac{(x - 1)(x - 3)}{3e^x}$$

Possible inflection points when x = 1, 3. Concave up on $(-\infty, 1)$ and $(3, \infty)$; concave down on (1, 3); inflection point when x = 1, 3.

35.
$$y = x^2 - x - 6 = (x - 3)(x + 2)$$

Intercepts: $(0, -6)$, $(3, 0)$ and $(-2, 0)$
 $y' = 2x - 1 = 2\left(x - \frac{1}{2}\right)$

CV:
$$x = \frac{1}{2}$$

Decreasing on $\left(-\infty, \frac{1}{2}\right)$; increasing on

$$\left(\frac{1}{2}, \infty\right)$$
; relative minimum at $\left(\frac{1}{2}, -\frac{25}{4}\right)$.
 $y'' = 2$

No possible inflection point. Concave up on $(-\infty, \infty)$.

36.
$$y = x^2 + a$$

Intercept $(0, a)$
 $y' = 2x$

$$CV: x = 0$$

Decreasing on $(-\infty, 0)$; increasing on $(0, \infty)$; relative minimum at (0, a).

$$y'' = 2$$

No possible inflection point. Concave up on $(-\infty, \infty)$. Symmetric about the *y*-axis.

37.
$$y = 5x - 2x^2 = x(5 - 2x)$$

Intercepts (0, 0) and $\left(\frac{5}{2}, 0\right)$

$$y' = 5 - 4x$$

CV:
$$x = \frac{5}{4}$$

Increasing on $\left(-\infty, \frac{5}{4}\right)$; decreasing on $\left(\frac{5}{4}, \infty\right)$;

relative maximum at $\left(\frac{5}{4}, \frac{25}{8}\right)$.

$$y'' = -4$$

No possible inflection point. Concave down on $(-\infty, \infty)$.

38.
$$y = x - x^2 + 2 = -(x - 2)(x + 1)$$

Intercepts (2, 0), (-1, 0), and (0, 2)

$$y' = 1 - 2x$$

CV:
$$x = \frac{1}{2}$$

Increasing on $\left(-\infty, \frac{1}{2}\right)$; decreasing on $\left(\frac{1}{2}, \infty\right)$;

relative maximum at $\left(\frac{1}{2}, \frac{9}{4}\right)$

$$y'' = -2$$

No possible inflection point. Concave down on $(-\infty, \infty)$.

39.
$$y = x^3 - 9x^2 + 24x - 19$$

The x-intercepts are not convenient to find; the y-intercept is (0, -19).

$$y' = 3x^2 - 18x + 24 = 3(x - 2)(x - 4)$$

CV:
$$x = 2$$
, $x = 4$

Increasing on $(-\infty, 2)$ and $(4, \infty)$; decreasing on (2, 4); relative maximum at (2, 1); relative minimum at (4, -3).

$$y'' = 6x - 18 = 6(x - 3)$$

Possible inflection point when x = 3. Concave down on $(-\infty, 3)$; concave up on $(3, \infty)$; inflection point at (3, -1).

40.
$$y = x^3 - 25x^2 = x^2(x - 25)$$

Intercepts: (0, 0) and (25, 0)

$$y' = 3x^2 - 50x = 3x \left(x - \frac{50}{3}\right)$$

CV:
$$x = 0, \frac{50}{3}$$

Increasing on $(-\infty, 0)$ and $\left(\frac{50}{3}, \infty\right)$; decreasing

on $\left(0, \frac{50}{3}\right)$; relative maximum at (0, 0); relative

minimum at
$$\left(\frac{50}{3}, -\frac{62,500}{27}\right)$$
.

$$y'' = 6x - 50 = 6\left(x - \frac{25}{3}\right)$$

Possible inflection point when $x = \frac{25}{3}$. Concave

down on
$$\left(-\infty, \frac{25}{3}\right)$$
; concave up on $\left(\frac{25}{3}, \infty\right)$;

inflection point at $\left(\frac{25}{3}, -\frac{31,250}{27}\right)$.

41.
$$y = \frac{x^3}{3} - 5x = \frac{x^3 - 15x}{3}$$

= $\frac{1}{3}x(x + \sqrt{15})(x - \sqrt{15})$

Intercepts (0, 0) and $(\pm \sqrt{15}, 0)$

$$y' = x^2 - 5 = (x + \sqrt{5})(x - \sqrt{5})$$

CV:
$$x = \pm \sqrt{5}$$

Increasing on $\left(-\infty, -\sqrt{5}\right)$ and $\left(\sqrt{5}, \infty\right)$;

decreasing on $(-\sqrt{5}, \sqrt{5})$; relative maximum at

$$\left(-\sqrt{5}, \frac{10}{3}\sqrt{5}\right)$$
; relative minimum at

$$\left(\sqrt{5}, -\frac{10}{3}\sqrt{5}\right).$$

$$y'' = 2x$$

Possible inflection point when x = 0. Concave down on $(-\infty, 0)$; concave up on $(0, \infty)$; inflection point at (0, 0). Symmetric about the origin.

42. $y = x^3 - 6x^2 + 9x = x(x-3)^2$

Intercepts (0, 0) and (3, 0)

$$y' = 3x^2 - 12x + 9 = 3(x-1)(x-3)$$

CV: x = 1 and x = 3

Increasing on $(-\infty, 1)$ and $(3, \infty)$; decreasing on (1, 3); relative maximum at (1, 4); relative minimum at (3, 0).

$$y'' = 6x - 12 = 6(x - 2)$$

Possible inflection point when x = 2. Concave down on $(-\infty, 2)$; concave up on $(2, \infty)$; inflection point at (2, 2).

43. $y = x^3 - 3x^2 + 3x - 3$

Intercept (0, -3)

$$y' = 3x^2 - 6x + 3 = 3(x-1)^2$$

$$CV: x = 1$$

Increasing on $(-\infty, 1)$ and $(1, \infty)$; no relative maximum or minimum

$$y'' = 6(x-1)$$

Possible inflection point when x = 1. Concave down on $(-\infty, 1)$; concave up on $(1, \infty)$; inflection point at (1, -2).

44. $y = 2x^3 + \frac{5}{2}x^2 + 2x = x\left(2x^2 + \frac{5}{2}x + 2\right)$

Intercept (0, 0)

$$y' = 6x^2 + 5x + 2$$

CV: none

Increasing on $(-\infty, \infty)$.

$$y'' = 12x + 5 = 12\left[x + \frac{5}{12}\right]$$

Possible inflection point at $x = -\frac{5}{12}$. Concave

down on $\left(-\infty, -\frac{5}{12}\right)$; concave up on $\left(-\frac{5}{12}, \infty\right)$; inflection point at $\left(-\frac{5}{12}, -\frac{235}{432}\right)$.

45. $y = 4x^3 - 3x^4 = x^3(4 - 3x)$

Intercepts
$$(0,0)$$
, $\left(\frac{4}{3},0\right)$

$$y' = 12x^2 - 12x^3 = 12x^2(1-x)$$

CV:
$$x = 0$$
 and $x = 1$

Increasing on $(-\infty, 0)$ and (0, 1); decreasing on $(1, \infty)$; relative maximum at (1, 1).

$$y'' = 24x - 36x^2 = 12x(2 - 3x)$$

Possible inflection points at x = 0 and $x = \frac{2}{3}$.

Concave down on $(-\infty, 0)$ and $\left(\frac{2}{3}, \infty\right)$; concave

up on $\left(0, \frac{2}{3}\right)$; inflection points at (0, 0) and

46. $y = -x^3 + 8x^2 - 5x + 3$

Intercept (0, 3)

$$y' = -3x^2 + 16x - 5$$
$$= -(3x - 1)(x - 5)$$

CV:
$$\frac{1}{2}$$
, 5

Decreasing on $\left(-\infty, \frac{1}{3}\right)$ and $(5, \infty)$; increasing

on $\left(\frac{1}{3}, 5\right)$; relative minimum at $\left(\frac{1}{3}, \frac{59}{27}\right)$;

relative maximum at (5, 53).

$$y'' = -6x + 16 = -6\left(x - \frac{8}{3}\right)$$

Possible inflection point when $x = \frac{8}{3}$. Concave

up on
$$\left(-\infty, \frac{8}{3}\right)$$
; concave down on $\left(\frac{8}{3}, \infty\right)$;

inflection point at $\left(\frac{8}{3}, \frac{745}{27}\right)$.

47. $y = -2 + 12x - x^3$

Intercept (0, -2)

$$y' = 12 - 3x^2 = 3(2 + x)(2 - x)$$

CV: $x = \pm 2$

Decreasing on $(-\infty, -2)$ and $(2, \infty)$; increasing on (-2, 2); relative minimum at (-2, -18); relative maximum at (2, 14).

$$y'' = -6x$$

Possible inflection point when x = 0. Concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; inflection point at (0, -2).

48. $y = (3+2x)^3$

Intercepts
$$(0, 27), \left(-\frac{3}{2}, 0\right)$$

$$y' = 6(3+2x)^2$$

CV:
$$x = -\frac{3}{2}$$

Increasing on $\left(-\infty, -\frac{3}{2}\right)$ and $\left(-\frac{3}{2}, \infty\right)$; no

relative maximum or minimum.
$$y'' = 24(3+2x)$$

Possible inflection point at $x = -\frac{3}{2}$. Concave

down on
$$\left(-\infty, -\frac{3}{2}\right)$$
; concave up on $\left(-\frac{3}{2}, \infty\right)$;

inflection point at $\left(-\frac{3}{2}, 0\right)$.

49. $y = 2x^3 - 6x^2 + 6x - 2 = 2(x-1)^3$

Intercepts (0, -2), (1, 0)

$$y' = 6(x-1)^2$$

CV:
$$x = 1$$

Increasing on $(-\infty, 1)$ and $(1, \infty)$; no relative maximum or minimum.

$$y'' = 12(x-1)$$

Possible inflection point when x = 1. Concave down on $(-\infty, 1)$; concave up on $(1, \infty)$; inflection point at (1, 0).

50. $y = \frac{x^5}{100} - \frac{x^4}{20} = \frac{x^4}{100}(x-5)$

Intercepts (0, 0), (5, 0)

$$y' = \frac{x^4}{20} - \frac{x^3}{5} = \frac{x^3}{20}(x-4)$$

CV: x = 0 and x = 4

Increasing on $(-\infty, 0)$ and $(4, \infty)$; decreasing on (0, 4); relative maximum at (0, 0); relative minimum at (4, -2.56).

$$y'' = \frac{x^3}{5} - \frac{3x^2}{5} = \frac{x^2}{5}(x-3)$$

Possible inflection points when x = 0 and x = 3. Concave down on $(-\infty, 0)$ and (0, 3); concave up on $(3, \infty)$; inflection point at (3, -1.62).

51.
$$y = 16x - x^5 = x(16 - x^4)$$

= $x(4 + x^2)(4 - x^2)$
= $x(4 + x^2)(2 + x)(2 - x)$

Intercepts (0, 0) and $(\pm 2, 0)$ Symmetric about the origin.

Symmetric about the origin:

$$y' = 16 - 5x^4$$

$$= 5\left(\frac{16}{5} - x^4\right)$$

$$= 5\left(\frac{4}{\sqrt{5}} + x^2\right)\left(\frac{4}{\sqrt{5}} - x^2\right)$$

$$= 5\left(\frac{4}{\sqrt{5}} + x^2\right)\left(\frac{2}{4\sqrt{5}} + x\right)\left(\frac{2}{4\sqrt{5}} - x\right)$$

CV:
$$x = \pm \frac{2}{\sqrt[4]{5}}$$

Decreasing on $\left(-\infty, -\frac{2}{\sqrt[4]{5}}\right)$ and $\left(\frac{2}{\sqrt[4]{5}}, \infty\right)$;

increasing on $\left(-\frac{2}{\sqrt[4]{5}}, \frac{2}{\sqrt[4]{5}}\right)$; relative minimum at

$$\left(-\frac{2}{\sqrt[4]{5}}, -\frac{128}{5\sqrt[4]{5}}\right)$$
; relative maximum at

$$\left(\frac{2}{\sqrt[5]{4}}, \frac{128}{5\sqrt[4]{5}}\right)$$

$$y'' = -20x^3$$

Possible inflection point when x = 0. Concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; inflection point at (0, 0). Symmetric about the origin.

52.
$$y = x^2(x-1)^2$$

Intercepts: $(0, 0), (1, 0)$
 $y' = x^2[2(x-1)(1)] + 2x(x-1)^2$
 $= 2x(x-1)(2x-1)$
 $= 4x^3 - 6x^2 + 2x$
CV: $x = 0, 1$ and $x = \frac{1}{2}$

Decreasing on $(-\infty, 0)$ and $\left(\frac{1}{2}, 1\right)$; increasing

on $\left(0, \frac{1}{2}\right)$ and $(1, \infty)$; relative minima at (0, 0)

and (1, 0); relative maximum at $\left(\frac{1}{2}, \frac{1}{16}\right)$

$$y'' = 12x^2 - 12x + 2 = 2(6x^2 - 6x + 1)$$

From the quadratic formula, there are possible inflection points when $x = \frac{3 \pm \sqrt{3}}{6}$. Concave up

on
$$\left(-\infty, \frac{3-\sqrt{3}}{6}\right)$$
 and $\left(\frac{3+\sqrt{3}}{6}, \infty\right)$; concave

down on $\left(\frac{3-\sqrt{3}}{6}, \frac{3+\sqrt{3}}{6}\right)$; inflection points at

$$\left(\frac{3-\sqrt{3}}{6}, \frac{1}{36}\right) \text{ and } \left(\frac{3+\sqrt{3}}{6}, \frac{1}{36}\right).$$

53.
$$y = 3x^4 - 4x^3 + 1$$

Intercepts (0, 1) and (1, 0) [the latter is found by inspection of the equation]. No symmetry.

$$y' = 12x^3 - 12x^2 = 12x^2(x-1)$$

CV: x = 0 and x = 1

Decreasing on $(-\infty, 0)$ and (0, 1); increasing on $(1, \infty)$; relative minimum at (1, 0).

$$y'' = 36x^2 - 24x = 12x(3x - 2)$$

Possible inflection points at x = 0 and $x = \frac{2}{3}$.

Concave up on $(-\infty, 0)$ and $\left(\frac{2}{3}, \infty\right)$; concave

down on $\left(0, \frac{2}{3}\right)$; inflection points at (0, 1) and

$$\left(\frac{2}{3}, \frac{11}{27}\right).$$

54.
$$y = 3x^5 - 5x^3 = 3x^3 \left[x^2 - \frac{5}{3} \right]$$

= $3x^3 \left(x + \sqrt{\frac{5}{3}} \right) \left(x - \sqrt{\frac{5}{3}} \right)$

Intercepts (0,0) and $\left(\pm\sqrt{\frac{5}{3}},0\right)$

Symmetric about the origin.

$$y' = 15x^4 - 15x^2 = 15x^2(x+1)(x-1)$$

CV: x = 0 and $x = \pm 1$

Increasing on $(-\infty, -1)$ and $(1, \infty)$; decreasing on (-1, 0) and (0, 1); relative maximum at (-1, 2); relative minimum at (1, -2).

$$y'' = 60x^3 - 30x = 60x \left[x + \frac{\sqrt{2}}{2} \right] \left[x - \frac{\sqrt{2}}{2} \right]$$

Possible inflection points at x = 0 and $x = \pm \frac{\sqrt{2}}{2}$.

Concave down on $\left(-\infty, -\frac{\sqrt{2}}{2}\right)$ and $\left(0, \frac{\sqrt{2}}{2}\right)$;

concave up on
$$\left(-\frac{\sqrt{2}}{2}, 0\right)$$
 and $\left(\frac{\sqrt{2}}{2}, \infty\right)$; inflection points at $\left(\frac{\sqrt{2}}{2}, -\frac{7\sqrt{2}}{8}\right)$, $(0, 0)$, and

$$\left(-\frac{\sqrt{2}}{2}, \frac{7\sqrt{2}}{8}\right)$$

55.
$$y = 4x^2 - x^4 = x^2(2+x)(2-x)$$

Intercepts (0, 0) and $(\pm 2, 0)$

Symmetric about the *y*-axis.

$$y' = 8x - 4x^3 = 4x(2 - x^2)$$

= $4x(\sqrt{2} + x)(\sqrt{2} - x)$

CV:
$$x = 0, \pm \sqrt{2}$$

Increasing on $\left(-\infty, -\sqrt{2}\right)$ and $\left(0, \sqrt{2}\right)$;

decreasing on $\left(-\sqrt{2}, 0\right)$ and $\left(\sqrt{2}, \infty\right)$; relative

maxima at $(\pm\sqrt{2}, 4)$; relative minimum at (0, 0).

$$y'' = 8 - 12x^2 = 12\left[\frac{2}{3} - x^2\right]$$

$$=12\left(\sqrt{\frac{2}{3}}-x\right)\left(\sqrt{\frac{2}{3}}+x\right)$$

Possible inflection points when $x = \pm \sqrt{\frac{2}{3}}$

Concave down on $\left(-\infty, -\sqrt{\frac{2}{3}}\right)$ and $\left(\sqrt{\frac{2}{3}}, \infty\right)$;

concave up on $\left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right)$; inflection points at

$$\left(\pm\sqrt{\frac{2}{3}},\,\frac{20}{9}\right).$$

56.
$$y = x^2 e^x$$

Intercept (0, 0)
 $y' = 2xe^x + x^2 e^x = xe^x (2+x)$
CV: $x = 0, -2$
Increasing on $(-\infty, -2)$ and $(0, \infty)$; decreasing on

(-2, 0); relative maximum at $\left(-2, \frac{4}{e^2}\right)$; relative

minimum at (0, 0)

$$y'' = 2e^{x} + 2xe^{x} + 2xe^{x} + x^{2}e^{x}$$

$$= e^{x} (2 + 4x + x^{2})$$

$$x = \frac{-4 \pm \sqrt{16 - 4(1)(2)}}{2}$$

$$= \frac{-4 \pm \sqrt{8}}{2}$$

$$= \frac{-4 \pm 2\sqrt{2}}{2}$$

$$= -2 \pm \sqrt{2}$$

Possible inflection points when $x = -2 \pm \sqrt{2}$. Concave up on $(-\infty, -2 - \sqrt{2})$ and

$$(-2+\sqrt{2}, \infty)$$
; concave down on $(-2-\sqrt{2}, -2+\sqrt{2})$; inflection points at $(-2-\sqrt{2}, (4\sqrt{2}+6)e^{-2-\sqrt{2}})$ and $(-2+\sqrt{2}, (6-4\sqrt{2})e^{-2+\sqrt{2}})$

57.
$$y = x^{1/3}(x-8) = x^{4/3} - 8x^{1/3}$$

Intercepts (0, 0) and (8, 0)

$$y' = \frac{4}{3}x^{1/3} - \frac{8}{3}x^{-2/3}$$
$$= \frac{4}{3}\left[x^{1/3} - \frac{2}{x^{2/3}}\right] = \frac{4(x-2)}{3x^{2/3}}$$

CV: x = 0, 2

Decreasing on $(-\infty, 0)$ and (0, 2); increasing on $(2, \infty)$; relative minimum at

$$(2, -6\sqrt[3]{2}) \approx (2, -7.56)$$

$$y'' = \frac{4}{9}x^{-2/3} + \frac{16}{9}x^{-5/3}$$

$$= \frac{4}{9} \left[\frac{1}{x^{2/3}} + \frac{4}{x^{5/3}} \right] = \frac{4(x+4)}{9x^{5/3}}$$

Possible inflection points when x = -4, 0. Concave up on $(-\infty, -4)$ and $(0, \infty)$; concave

down on (-4, 0); inflection points at $\left(-4, 12\sqrt[3]{4}\right)$

and (0, 0). Observe that at the origin the tangent line exists but it is vertical.

58.
$$y = (x-1)^2(x+2)^2$$

Intercepts (0, 4), (1, 0), (-2, 0)

$$y' = (x-1)^{2}[2(x+2)] + (x+2)^{2}[2(x-1)]$$

$$= 2(x-1)(x+2)(2x+1)$$

CV:
$$x = -2, -\frac{1}{2}, 1$$

Decreasing on $(-\infty, -2)$ and $\left(-\frac{1}{2}, 1\right)$; increasing

on
$$\left(-2, -\frac{1}{2}\right)$$
 and $(1, \infty)$; relative maximum at

$$\left(-\frac{1}{2}, \frac{81}{16}\right)$$
; relative minima at

$$(-2, 0)$$
 and $(1, 0)$; $y' = 2(2x^3 + 3x^2 - 3x - 2)$, so

$$y'' = 6(2x^2 + 2x - 1)$$
. Setting $y'' = 0$ and using

the quadratic formula gives possible inflection

points at $x = \frac{-1 \pm \sqrt{3}}{2}$. Concave up on

$$\left(-\infty, \frac{-1-\sqrt{3}}{2}\right)$$
 and $\left(\frac{-1+\sqrt{3}}{2}, \infty\right)$; concave

down on $\left(\frac{-1-\sqrt{3}}{2}, \frac{-1+\sqrt{3}}{2}\right)$; inflection points

when $x = \frac{-1 \pm \sqrt{3}}{2}$

59. $y = 4x^{1/3} + x^{4/3} = x^{1/3}(4+x)$

Intercepts (0,0) and (-4,0)

$$y' = \frac{4}{3}x^{-2/3} + \frac{4}{3}x^{1/3} = \frac{4}{3} \left[\frac{1}{x^{2/3}} + x^{1/3} \right]$$
$$= \frac{4(1+x)}{3x^{2/3}}$$

CV:
$$x = 0, -1$$

Decreasing on $(-\infty, -1)$; increasing on (-1, 0) and $(0, \infty)$; rel. min at (-1, -3)

$$y'' = -\frac{8}{9}x^{-5/3} + \frac{4}{9}x^{-2/3} = \frac{4}{9} \left[\frac{1}{x^{2/3}} - \frac{2}{x^{5/3}} \right]$$

$$=\frac{4(x-2)}{9x^{5/3}}$$

Possible inflection points when x = 0, 2.

Concave up on $(-\infty, 0)$ and $(2, \infty)$; concave down on

(0, 2); inflection point at (0, 0) and $(2, 6\sqrt[3]{2})$.

Observe that at the origin the tangent line exists but it is vertical.

60. $y = (x+1)\sqrt{x+4}$ [Note: x > -4]

Intercepts (0, 2), (-1, 0) and (-4, 0)

$$y' = (x+1) \cdot \frac{1}{2\sqrt{x+4}} + \sqrt{x+4}(1)$$

$$= \frac{1}{2\sqrt{x+4}}[(x+1)+2(x+4)]$$
$$= \frac{3(x+3)}{2\sqrt{x+4}}$$

CV:
$$x = -3, -4$$

Decreasing on (-4, -3); increasing on $(-3, \infty)$; relative minimum at (-3, -2)

$$y'' = \frac{3}{2} \cdot \frac{\sqrt{x+4(1)-(x+3)} \cdot \frac{1}{2\sqrt{x+4}}}{\left(\sqrt{x+4}\right)^2}$$
$$= \frac{3}{4} \cdot \frac{2(x+4)-(x+3)}{(x+4)^{3/2}} = \frac{3(x+5)}{4(x+4)^{3/2}}$$

No possible inflection point. Concave up on $(-4, \infty)$.

61. $y = 2x^{2/3} - x = x^{2/3}(2 - x^{1/3})$

Intercepts (0,0) and (8,0)

$$y' = \frac{4}{3}x^{-1/3} - 1$$

$$y' = 0$$
 when $x^{-1/3} = \frac{3}{4}$

$$x = \left(\frac{3}{4}\right)^{-3} = \frac{64}{27}$$

CV:
$$0, \frac{64}{27}$$

Increasing on $\left(0, \frac{64}{27}\right)$; decreasing on $(-\infty, 0)$

and $\left(\frac{64}{27}, \infty\right)$; relative maximum at $\left(\frac{64}{27}, \frac{32}{27}\right)$;

relative minimum at (0, 0)

$$y'' = -\frac{4}{9}x^{-4/3} = -\frac{4}{9x^{4/3}}$$

Possible inflection point at x = 0. Concave down on $(-\infty, 0)$ and $(0, \infty)$; no inflection points; vertical tangent line at (0, 0). No symmetry.

62.
$$y = 5x^{2/3} - x^{5/3} = x^{2/3} (5 - x)$$

Intercepts (0, 0) and (5, 0)

$$y' = \frac{10}{3}x^{-1/3} - \frac{5}{3}x^{2/3} = \frac{5}{3} \left[\frac{2}{x^{1/3}} - x^{2/3} \right]$$

$$= \frac{5(2 - x)}{3x^{1/3}}$$

CV: x = 0, 2Increasing on (0, 2); decreasing on $(-\infty, 0)$ and $(2, \infty)$; relative minimum at (0, 0); relative maximum at $\left(2, 3\sqrt[3]{4}\right) \approx (2, 4.76)$

$$y'' = -\frac{10}{9}x^{-4/3} - \frac{10}{9}x^{-1/3} = -\frac{10(1+x)}{9x^{4/3}}$$

Possible inflection point when x = 0, -1. Concave up on $(-\infty, -1)$; concave down on (-1, 0), and $(0, \infty)$; inflection point at (-1, 6). Observe that at the origin the tangent line exists but it is vertical.

67.
$$p = \frac{100}{q+2}$$

$$\frac{dp}{dq} = -\frac{100}{(q+2)^2} < 0 \text{ for } q > 0, \text{ so } p \text{ is decreasing.}$$
Since
$$\frac{d^2p}{dq^2} = \frac{200}{(q+2)^3} > 0 \text{ for } q > 0, \text{ the demand curve is concave up.}$$

68.
$$c = q^2 + 2q + 1$$

$$\overline{c} = \frac{c}{q} = q + 2 + \frac{1}{q}$$

$$\overline{c'} = 1 - \frac{1}{q^2}$$

$$\overline{c''} = \frac{2}{a^3}$$

Since $\overline{c}'' > 0$ for q > 0, the graph of the average cost function is concave up for q > 0.

69. $S = f(A) = 12\sqrt[4]{A}$, $0 \le A \le 625$. For the given values of A we have $S' = 3A^{-\frac{3}{4}} > 0$ and $S'' = -\left(\frac{9}{4}\right)A^{-\frac{7}{4}} < 0$. Thus y is increasing and

70. $g(x) = e^{\frac{U_0}{A}} e^{-\frac{x^2}{2A}}, A > 0, x \ge 0$ (since x represents quantity).

$$g'(x) = -\frac{e^{\frac{U_0}{A}}}{A} \left[x e^{-\frac{x^2}{2A}} \right]$$

$$g''(x) = -\frac{e^{\frac{U_0}{A}}}{A} \left[x \cdot e^{-\frac{x^2}{2A}} \left(-\frac{x}{A} \right) + e^{-\frac{x^2}{2A}} \right]$$

$$= \frac{e^{\frac{U_0}{A}}}{A^2} \cdot e^{-\frac{x^2}{2A}} \left(x^2 - A \right)$$

$$= \frac{e^{\frac{U_0}{A}}}{A^2} \cdot e^{-\frac{x^2}{2A}} \left(x + \sqrt{A} \right) \left(x - \sqrt{A} \right)$$

If $0 \le x < \sqrt{A}$, then g''(x) < 0, so the graph is concave down. If $x > \sqrt{A}$, then g''(x) > 0, so the graph is concave up.

- 71. $y = 12.5 + 5.8(0.42)^x$ $y' = 5.8(0.42)^x \ln(0.42)$ Since $\ln(0.42) < 0$, we have y' < 0, so the function is decreasing. $y'' = 5.8(0.42)^x \ln^2(0.42) > 0$, so the function is concave up.
- 72. $H = 1.00 \left[1 e^{-(0.0464t + 0.0670)} \right]$ $\frac{dH}{dt} = 0.0464 e^{-(0.0464t + 0.0670)} > 0 \text{ , so } H \text{ is increasing.}$ $\frac{d^2H}{dt^2} = -(0.0464)^2 e^{-(0.0464t + 0.0670)} < 0 \text{ , so } H \text{ is concave down.}$

- 73. $n = f(r) = 0.1 \ln(r) + \frac{7}{r} 0.8, 1 \le r \le 10$
 - **a.** $\frac{dn}{dr} = \frac{0.1}{r} \frac{7}{r^2} = \frac{0.1r 7}{r^2} = \frac{0.1(r 70)}{r^2} < 0$ for $1 \le r \le 10$. Thus the graph of f is always falling. Also,

$$\frac{d^2n}{dr^2} = -\frac{0.1}{r^2} + \frac{14}{r^3} = \frac{14 - 0.1r}{r^3}$$
$$= \frac{0.1(140 - r)}{r^3} > 0$$

for $1 \le r \le 10$. Thus the graph is concave up.

c. $\left. \frac{dn}{dr} \right|_{r=5} = -0.26$, so the rate of decrease is 0.26.

- **a.** One relative maximum point
- **b.** One relative minimum point
- c. One inflection point

Two inflection points

$$y = x^5(x-a) = x^6 - ax^5$$

$$y' = 6x^5 - 5ax^4$$

$$y'' = 30x^4 - 20ax^3 = 10x^3(3x - 2a)$$

Possible inflection points when x = 0 and

$$x = \frac{2a}{3}$$
. If $a > 0$, y is concave up on $(-\infty, 0)$ and

$$\left(\frac{2a}{3}, \infty\right)$$
; concave down on $\left(0, \frac{2a}{3}\right)$. If $a < 0$,

y is concave up on $\left(-\infty, \frac{2a}{3}\right)$ and $(0, \infty)$;

concave downon $\left(\frac{2a}{3}, 0\right)$. In either case, y has

two points of inflection, when x = 0 and $x = \frac{2a}{3}$.

76.

$$y = xe^{-x}$$

Intercept (0,0)

$$y' = e^{-x} - xe^{-x} = e^{-x}(1-x)$$

CV:
$$x = 1$$

Increasing on $(-\infty, 1)$; decreasing on $(1, \infty)$;

relative maximum at $(1, e^{-1})$

$$y'' = -e^{-x} - e^{-x} + xe^{-x}$$

$$= -2e^{-x} + xe^{-x}$$

$$= e^{-x}(x-2)$$

Possible inflection point at x = 2.

Concave down on $(-\infty, 2)$; concave up on $(2, \infty)$;

inflection point at $(2, 2e^{-2})$

Answers will vary for $q(p) = Qe^{-Rp}$.

77.
$$y = x^3 - 2x^2 + x + 3$$

$$y' = 3x^2 - 4x + 1$$

When x = 2, then y = 5 and y' = 5. Thus an equation of the tangent line at x = 2 is y - 5 = 5(x - 2), or y = 5x - 5. Graphing the curve and the tangent line indicates that the curve lies above the tangent line around x = 2. Thus the curve is concave up at x = 2.

78.
$$f(x) = 2x^3 + 3x^2 - 6x + 1$$

$$f'(x) = 6x^2 + 6x - 6$$

$$f''(x) = 12x + 6$$

The relative minimum of f' occurs at a value of x for which (f'(x))' = f''(x) = 0. Around this value of x, (f'(x))' goes from – to +. Since (f'(x))' = f''(x), the concavity of f must change from concave down to concave up.

79.
$$f(x) = x^6 + 3x^5 - 4x^4 + 2x^2 + 1$$

$$f'(x) = 6x^5 + 15x^4 - 16x^3 + 4x$$

$$f''(x) = 30x^4 + 60x^3 - 48x^2 + 4$$

Inflection points of f when $x \approx -2.61, -0.26$.

80.
$$f(x) = \frac{x+1}{x^2+1}$$

$$f'(x) = -\frac{x^2 + 2x - 1}{\left(x^2 + 1\right)^2}$$

$$f''(x) = \frac{2(x^3 + 3x^2 - 3x - 1)}{(x^2 + 1)^3}$$

Inflection points of f when $x \approx -3.73, -0.27, 1.00$.

Problems 13.4

1.
$$y = x^2 - 5x + 6$$

$$y' = 2x - 5$$

CV:
$$x = \frac{5}{2}$$

$$v'' = 2$$

$$y''\left(\frac{5}{2}\right) = 2 > 0$$

Thus there is a relative minimum when $x = \frac{5}{2}$.

Because there is only one relative extremum and f is continuous, the relative minimum is an absolute minimum.

2.
$$y = 3x^2 + 12x + 14$$

 $y' = 6x + 12$
CV: $x = -2$
 $y'' = 6$
 $y''(-2) = 6 > 0$

Thus there is a relative minimum when x = -2. Because there is only one relative extremum and f is continuous, the relative minimum is an absolute minimum.

3.
$$y = -4x^2 + 2x - 8$$

 $y' = -8x + 2$
CV: $x = \frac{1}{4}$
 $y'' = -8$
 $y''\left(\frac{1}{4}\right) = -8 < 0$

Thus there is a relative maximum when $x = \frac{1}{4}$.

Because there is only one relative extremum and *f* is continuous, the relative maximum is an absolute maximum.

4.
$$y = 3x^2 - 5x + 6$$

 $y' = 6x - 5$
CV: $x = \frac{5}{6}$
 $y'' = 6$
 $y''\left(\frac{5}{6}\right) = 6 > 0$

Thus there is a relative minimum when $x = \frac{5}{6}$.

Because there is only one relative extremum and *f* is continuous, the relative minimum is an absolute minimum.

5.
$$y = \frac{1}{3}x^3 + 2x^2 - 5x + 1$$

 $y' = x^2 + 4x - 5 = (x+5)(x-1)$
CV: $x = -5$, 1
 $y'' = 2x + 4$
 $y''(-5) = -6 < 0 \Rightarrow \text{ relative maximum when } x = -5$
 $y''(1) = 6 > 0 \Rightarrow \text{ relative minimum when } x = 1$

6.
$$y = x^3 - 12x + 1$$

 $y' = 3x^2 - 12 = 3(x + 2)(x - 2)$
CV: $x = \pm 2$
 $y'' = 6x$
 $y''(-2) = -12 < 0 \Rightarrow \text{ relative maximum when } x = -2$
 $y''(2) = 12 > 0 \Rightarrow \text{ relative minimum when } x = 2$

7.
$$y = 2x^3 - 3x^2 - 36x + 17$$

 $y' = 6x^2 - 6x - 36 = 6(x - 3)(x + 2)$
CV: $x = 3, -2$
 $y'' = 12x - 6$
 $y''(3) = 30 > 0 \Rightarrow \text{ relative minimum when } x = 3$
 $y''(-2) = -30 < 0 \Rightarrow \text{ relative maximum when } x = -2$

8.
$$y = x^4 - 2x^2 + 4$$

 $y' = 4x^3 - 4x = 4x(x+1)(x-1)$
CV: $x = 0, \pm 1$
 $y'' = 12x^2 - 4$
 $y''(0) = -4 < 0 \Rightarrow$ relative maximum when $x = 0$
 $y''(1) = 8 > 0 \Rightarrow$ relative minimum when $x = 1$
 $y''(-1) = 8 > 0 \Rightarrow$ relative minimum when $x = -1$

9.
$$y = 7 - 2x^4$$

 $y' = -8x^3$
CV: $x = 0$
 $y'' = -24x^2$

Since y''(0) = 0, the second-derivative test fails. Using the first-derivative test, we see that f increases for x < 0 and f decreases for x > 0, so there is a relative maximum when x = 0.

10.
$$y = -2x^7$$

 $y' = -14x^6$
CV: $x = 0$
 $y'' = -84x^5$

Since y''(0) = 0, the second-derivative test fails. However, using the first-derivative test, we see that f decreases for x < 0 and for x > 0, so there is neither a relative maximum nor a relative minimum when x = 0.

11.
$$y = 81x^5 - 5x$$

 $y' = 81 \cdot 5x^4 - 5 = 5(81x^4 - 1)$
 $= 5(9x^2 - 1)(9x^2 + 1)$
 $= 5(3x + 1)(3x - 1)(9x^2 + 1)$
CV: $x = \pm \frac{1}{3}$
 $y'' = 81 \cdot 5 \cdot 4x^3$
 $y''\left(-\frac{1}{3}\right) = -60 < 0 \Rightarrow \text{ relative maximum when}$
 $x = -\frac{1}{3}$
 $y''\left(\frac{1}{3}\right) = 60 > 0 \Rightarrow \text{ relative minimum when}$
 $x = \frac{1}{3}$

12.
$$y = 15x^3 + x^2 - 15x + 2$$

 $y' = 45x^2 + 2x - 15 = (5x + 3)(9x - 5)$
CV: $x = -\frac{3}{5}, \frac{5}{9}$
 $y'' = 90x + 2$
 $y''\left(-\frac{3}{5}\right) = -52 \implies \text{relative maximum when}$
 $x = -\frac{3}{5}$
 $y''\left(\frac{5}{9}\right) = 52 \implies \text{relative minimum when } x = \frac{5}{9}$

$$y' = 2\left(x^2 + 7x + 10\right)(2x + 7)$$

$$= 2(x+2)(x+5)(2x+7)$$

$$\text{CV: } x = -2, -5, -\frac{7}{2}$$

$$y'' = 2\left[\left(x^2 + 7x + 10\right)(2) + (2x+7)(2x+7)\right]$$

$$y''(-5) = 18 > 0 \Rightarrow \text{ relative minimum when}$$

$$x = -5$$

$$y''\left(-\frac{7}{2}\right) = -9 < 0 \Rightarrow \text{ relative maximum when}$$

13. $y = (x^2 + 7x + 10)^2$

$$x = -\frac{7}{2}$$

 $y''(-2) = 18 > 0 \implies \text{relative minimum when }$
 $x = -2$

14.
$$y = -x^3 + 3x^2 + 9x - 2$$

 $y' = -3x^2 + 6x + 9 = -3(x^2 - 2x - 3)$
 $= -3(x+1)(x-3)$
CV: $x = -1$, 3
 $y'' = -6x + 6$
 $y''(-1) = 12 > 0 \implies \text{relative minimum when}$
 $x = -1$
 $y''(3) = -12 < 0 \implies \text{relative maximum when}$
 $x = 3$

Problems 13.5

1.
$$y = f(x) = \frac{x}{x-1}$$

When x = 1 the denominator is zero but the numerator is not zero. Thus x = 1 is a vertical asymptote.

$$\lim_{x \to \infty} \frac{x}{x - 1} = \lim_{x \to \infty} \frac{x}{x} = \lim_{x \to \infty} 1 = 1.$$
Similarly $\lim_{x \to -\infty} f(x) = 1$. Thus the line $y = 1$ is a horizontal asymptote.

2.
$$y = f(x) = \frac{x+1}{x}$$

When $x = 0$ the denominator is zero but the numerator is not. Thus $x = 0$ is a vertical asymptote. $\lim_{x \to \infty} \frac{x+1}{x} = \lim_{x \to \infty} \frac{x}{x} = \lim_{x \to \infty} 1 = 1$. Similarly $\lim_{x \to \infty} f(x) = 1$. Thus $y = 1$ is a

horizontal asymptote.

horizontal asymptote.

3.
$$f(x) = \frac{x+5}{2x+7}$$

When $x = -\frac{7}{2}$ the denominator is zero but the numerator is not. Thus $x = -\frac{7}{2}$ is a vertical asymptote. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{2x} = \lim_{x \to \infty} \frac{1}{2} = \frac{1}{2}$. Similarly $\lim_{x \to -\infty} f(x) = \frac{1}{2}$. Thus $y = \frac{1}{2}$ is a

4.
$$y = f(x) = \frac{2x+1}{2x+1}$$

Observe that both the numerator and denominator are zero for $x = -\frac{1}{2}$. For $x \neq -\frac{1}{2}$, we have f(x) = 1. Thus f is a constant function for $x \neq -\frac{1}{2}$. Hence there are no vertical or horizontal asymptotes.

5.
$$y = f(x) = \frac{4}{x}$$

When x = 0 the denominator is zero but the numerator is not zero, so x = 0 is a vertical asymptote.

$$\lim_{x \to \infty} \left(\frac{4}{x}\right) = 0. \text{ Similarly, } \lim_{x \to -\infty} \left(\frac{4}{x}\right) = 0, \text{ so}$$
 $y = 0 \text{ is a horizontal asymptote.}$

6.
$$y = f(x) = 1 - \frac{2}{x^2} = \frac{x^2 - 2}{x^2}$$

When x = 0 the denominator is zero but the numerator is not. Thus x = 0 is a vertical

asymptote.
$$\lim_{x\to\infty} \left(1 - \frac{2}{x^2}\right) = 1 - 0 = 1$$
. Similarly

 $\lim_{x\to-\infty} f(x) = 1$, so y = 1 is a horizontal asymptote.

7.
$$y = f(x) = \frac{1}{x^2 - 1} = \frac{1}{(x - 1)(x + 1)}$$

Vertical asymptotes are x = 1 and x = -1.

$$\lim_{x \to \infty} \frac{1}{x^2 - 1} = \lim_{x \to \infty} \frac{1}{x^2} = 0$$
. Similarly,

 $\lim_{x \to -\infty} f(x) = 0$. Thus y = 0 is a horizontal asymptote.

8.
$$y = f(x) = \frac{x}{x^2 - 9} = \frac{x}{(x - 3)(x + 3)}$$

Vertical asymptotes: x = 3, x = -3.

$$\lim_{x \to \infty} \frac{x}{x^2 - 9} = \lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0$$
. Similarly,

 $\lim_{x \to -\infty} f(x) = 0$. Thus y = 0 is a horizontal

asymptote.

9.
$$y = f(x) = x^2 - 5x + 5$$
 is a polynomial function, so there are no horizontal or vertical asymptotes.

10.
$$y = f(x) = \frac{x^4}{x^3 - 4} = \frac{x^4}{x^3 - (\sqrt[3]{4})^3} = \frac{x^4}{x^3 - (2^{2/3})^3}$$
$$= \frac{x^4}{(x - 2^{2/3})(x^2 + 2^{2/3}x + 2^{4/3})}$$

Vertical asymptote: $x = 2^{2/3}$.

$$\frac{x^4}{x^3 - 4} = x + \frac{4x}{x^3 - 4}$$
 so the line $y = x$ is an oblique asymptote.

11. $f(x) = \frac{2x^2}{x^2 + x - 6} = \frac{2x^2}{(x+3)(x-2)}$

Vertical asymptotes are x = -3 and x = 2

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x^2}{x^2} = \lim_{x \to \infty} 2 = 2, \text{ and}$$

 $\lim_{x \to -\infty} f(x) = 2$. Thus y = 2 is a horizontal asymptote.

12. $f(x) = \frac{x^3}{5}$ is a polynomial function, so there are no horizontal or vertical asymptotes.

13.
$$y = \frac{15x^2 + 31 + 1}{x^2 - 7} = \frac{15x^2 + 31x + 1}{\left(x + \sqrt{7}\right)\left(x - \sqrt{7}\right)}$$

Vertical asymptotes are $x = -\sqrt{7}$ and $x = \sqrt{7}$.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{15x^2}{x^2} = \lim_{x \to \infty} 15 = 15$$

Similarly, $\lim_{x \to -\infty} = 15$. Thus y = 15 is a

horizontal asymptote.

14.
$$y = f(x) = \frac{2x^3 + 1}{3x(2x - 1)(4x - 3)}$$

Vertical asymptotes are x = 0, $x = \frac{1}{2}$, and

$$x = \frac{3}{4}$$
. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x^3}{24x^3} = \lim_{x \to \infty} \frac{1}{12} = \frac{1}{12}$.

Similarly, $\lim_{x \to -\infty} f(x) = \frac{1}{12}$. Thus $y = \frac{1}{12}$ is a horizontal asymptote.

15.
$$y = f(x) = \frac{2}{x-3} + 5 = \frac{5x-13}{x-3}$$

From the denominator, x = 3 is a vertical asymptote.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{5x}{x} = \lim_{x \to \infty} 5 = 5, \text{ and}$$

 $\lim_{x \to -\infty} f(x) = 5. \text{ Thus, } y = 5 \text{ is a horizontal}$

asymptote

16.
$$f(x) = \frac{x^2 - 1}{2x^2 - 9x + 4} = \frac{x^2 - 1}{(2x - 1)(x - 4)}$$

Vertical asymptotes are $x = \frac{1}{2}$ and x = 4.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2}{2x^2} = \lim_{x \to \infty} \frac{1}{2} = \frac{1}{2}$$
, and

$$\lim_{x \to -\infty} f(x) = \frac{1}{2}$$
. Thus $y = \frac{1}{2}$ is a horizontal asymptote.

17.
$$f(x) = \frac{3 - x^4}{x^3 + x^2} = \frac{3 - x^4}{x^2(x+1)}$$

Vertical asymptotes are x = 0 and x = -1.

$$\frac{3-x^4}{x^3+x^2} = -x+1 + \frac{3-x^2}{x^3+x^2}$$
 so the line $y = -x+1$

is an oblique asyptote.

18.
$$y = f(x) = \frac{5x^2 + 7x^3 + 9x^4}{3x^2}$$

Observe that both the numerator and the denominator are zero when x = 0. For $x \ne 0$, we have

$$f(x) = \frac{x^2}{3x^2}(5+7x+9x^2) = \frac{1}{3}(5+7x+9x^2).$$

Thus f is a polynomial function for $x \ne 0$. Hence there are neither horizontal nor vertical asymptotes.

19.
$$y = f(x) = \frac{x^2 - 3x - 4}{1 + 4x + 4x^2} = \frac{x^2 - 3x - 4}{(1 + 2x)^2}$$

From the denominator, $x = -\frac{1}{2}$ is a vertical asymptote

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2}{4x^2} = \lim_{x \to \infty} \frac{1}{4} = \frac{1}{4}$$
, and

$$\lim_{x \to -\infty} f(x) = \frac{1}{4}$$
, so $y = \frac{1}{4}$ is a horizontal asymptote.

20.
$$y = f(x) = \frac{x^4 + 1}{1 - x^4} = \frac{x^4 + 1}{\left(1 + x^2\right)(1 - x)(1 + x)}$$

From the denominator, vertical asymptotes are x = 1 and x = -1.

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{x^4}{-x^4} = \lim_{x\to\infty} -1 = -1, \text{ and}$$

 $\lim_{x \to -\infty} f(x) = -1$. Thus y = -1 is a horizontal asymptote.

21.
$$y = f(x) = \frac{9x^2 - 16}{2(3x + 4)^2} = \frac{(3x + 4)(3x - 4)}{2(3x + 4)^2}$$

When $x = -\frac{4}{3}$, both the numerator and

denominator are zero. Since

$$\lim_{x \to -4/3^+} f(x) = \lim_{x \to -4/3^+} \frac{3x - 4}{2(3x + 4)} = -\infty, \text{ the}$$

line $x = -\frac{4}{3}$ is a vertical asymptote.

$$\lim_{x \to \infty} \frac{9x^2 - 16}{2(3x + 4)^2} = \lim_{x \to \infty} \frac{9x^2}{18x^2} = \lim_{x \to \infty} \frac{1}{2} = \frac{1}{2}.$$

Similarly, $\lim_{x \to -\infty} f(x) = \frac{1}{2}$. Thus $y = \frac{1}{2}$ is a

horizontal asymptote.

22.
$$y = f(x) = \frac{2}{5} + \frac{2x}{12x^2 + 5x - 2} = \frac{24x^2 + 20x - 4}{5(12x^2 + 5x - 2)}$$

= $\frac{4(x+1)(6x-1)}{5(3x+2)(4x-1)}$

When $x = -\frac{2}{3}$ or $x = \frac{1}{4}$, the denominator is 0,

but the numerator is not. Thus, vertical

asymptotes are
$$x = -\frac{2}{3}$$
 and

$$x = \frac{1}{4}$$
. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{24x^2}{60x^2} = \lim_{x \to \infty} \frac{2}{5} = \frac{2}{5}$.

Similarly, $\lim_{x \to -\infty} f(x) = \frac{2}{5}$. Thus, $y = \frac{2}{5}$ is a horizontal asymptote.

23.
$$y = f(x) = 5e^{x-3} - 2$$

We have $\lim_{x \to \infty} f(x) = +\infty$ and

$$\lim_{x \to -\infty} f(x) = 5 \cdot \lim_{x \to -\infty} e^{x-3} - \lim_{x \to -\infty} 2$$

= 5(0) - 2 = -2

Thus y = -2 is a horizontal asymptote. There is no vertical asymptote because f(x) neither increases nor decreases without bound around any fixed value of x.

24. $f(x) = 12e^{-x}$

 $\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to -\infty} f(x) = +\infty$. Thus y = 0

is a horizontal asymptote. There is no vertical asymptote because f(x) neither increases nor decreases without bound around any fixed value of x.

25. $y = \frac{3}{x}$

Symmetric about the origin. Vertical asymptote

is
$$x = 0$$
. $\lim_{x \to \infty} \frac{3}{x} = 0 = \lim_{x \to -\infty} \frac{3}{x}$, so $y = 0$ is a

horizontal asymptote.

$$y' = -\frac{3}{x^2}$$

CV: None, however x = 0 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, 0)$ and $(0, \infty)$.

$$y'' = \frac{6}{x^3}$$

No possible inflection point, but we include x = 0 in the concavity analysis. Concave down on $(-\infty, 0)$; concave up on $(0, \infty)$.

26. $y = \frac{2}{2x-3}$

Intercept: $\left(0, -\frac{2}{3}\right)$

Vertical asymptote is $x = \frac{3}{2}$.

 $\lim_{x \to \infty} y = 0 = \lim_{x \to -\infty} y, \text{ so } y = 0 \text{ is a horizontal asymptote.}$

$$y' = -\frac{4}{(2x-3)^2}$$

CV: None, but $x = \frac{3}{2}$ must be considered in the

inc. dec. analysis. Decreasing on $\left(-\infty, \frac{3}{2}\right)$ and

$$\left(\frac{3}{2}, \infty\right).$$
$$y'' = \frac{16}{(2x-3)^3}$$

No possible inflection point, but $x = \frac{3}{2}$ must be considered in the concavity analysis. Concave

down on $\left(-\infty, \frac{3}{2}\right)$; concave up on $\left(\frac{3}{2}, \infty\right)$.

27. $y = \frac{x}{x-1}$

Intercept (0,0)

Vertical asymptote is x = 1

 $\lim_{x \to \infty} y = 1 = \lim_{x \to -\infty} y, \text{ so } y = 1 \text{ is a horizontal asymptote.}$

$$y' = \frac{(x-1)(1) - x(1)}{(x-1)^2} = -\frac{1}{(x-1)^2}$$

CV: None, but x = 1 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, 1)$ and $(1, \infty)$

$$y'' = \frac{2}{(x-1)^3}$$

No possible inflection point, but x = 1 must be included in concavity analysis. Concave up on $(1, \infty)$, concave down on $(-\infty, 1)$.

28.
$$y = \frac{50}{\sqrt{3x}}$$
 (Note: $x > 0$)

 $\lim y = 0$, so y = 0 is a horizontal asymptote.

 $\lim_{x \to +\infty} y = +\infty$, so the line x = 0 is a vertical

asymptote

$$y' = -\frac{25}{\sqrt{3x^3}}$$
 < 0 for x > 0. Decreasing on (0, ∞).

$$y'' = \frac{75}{2\sqrt{3x^5}} > 0$$
 for $x > 0$. Concave up on

 $(0, \infty)$. No intercepts; no symmetry.

29.
$$y = x^2 + \frac{1}{x^2} = \frac{x^4 + 1}{x^2}$$

 $x \neq 0$, so there is no y-intercept. Setting $y = 0 \Rightarrow$ no x-intercept. Replacing x by -xyields symmetry about the y-axis. Setting $x^2 = 0$ gives x = 0 as the only vertical asymptote. Because the degree of the numerator is greater than the degree of the denominator, no horizontal asymptote exists.

$$y = x^2 + x^{-2}$$

$$y' = 2x - 2x^{-3} = 2x - \frac{2}{x^3} = \frac{2x^4 - 2}{x^3} = \frac{2(x^4 - 1)}{x^3}$$

$$=\frac{2(x^2+1)(x+1)(x-1)}{x^3}$$

CV: $x = \pm 1$, but x = 0 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, -1)$ and (0, 1); increasing on (-1, 0) and $(1, \infty)$; relative minima at (-1, 2) and (1, 2),

$$y'' = 2 + \frac{6}{x^4} > 0$$

for all $x \neq 0$. Concave up on $(-\infty, 0)$ and $(0, \infty)$.

$$30. \quad y = \frac{3x^2 - 5x - 1}{x - 2}$$

Intercept: $\left(0, \frac{1}{2}\right)$

Vertical asymptote is x = 2.

$$\frac{3x^2 - 5x - 1}{x - 2} = 3x + 1 + \frac{1}{x - 2}$$
 so $y = 3x + 1$ is an

$$y' = \frac{(x-2)(6x-5) - (3x^2 - 5x - 1)(1)}{(x-2)^2}$$
$$= \frac{3x^2 - 12x + 11}{(x-2)^2}$$

From the quadratic formula, CV: $x = \frac{6 \pm \sqrt{3}}{2}$,

but x = 2 must be included in the inc.-dec.

analysis. Increasing on
$$\left(-\infty, \frac{6-\sqrt{3}}{3}\right)$$
 and

$$\left(\frac{6+\sqrt{3}}{3},\infty\right)$$
; decreasing on $\left(\frac{6-\sqrt{3}}{3},2\right)$ and

$$\left(2, \frac{6+\sqrt{3}}{3}\right)$$
; relative maximum at

$$\left(\frac{6-\sqrt{3}}{3}, 7-2\sqrt{3}\right)$$
; relative minimum at

$$\left(\frac{6+\sqrt{3}}{3},7+2\sqrt{3}\right).$$

$$y'' = \frac{(x-2)^2 (6x-12) - (3x^2 - 12x + 11)2(x-2)}{(x-2)^4}$$
$$= \frac{(x-2)(6x-12) - 2(3x^2 - 12x + 11)}{(x-2)^3}$$

$$=\frac{(x-2)(6x-12)-2(3x^2-12x+11)}{(x-2)^3}$$

$$=\frac{2}{(x-2)^3}$$

No possible inflection point, but x = 2 must be included in the concavity analysis. Concave down on $(-\infty, 2)$; concave up on $(2, \infty)$

Chapter 13: Curve Sketching

ISM: Introductory Mathematical Analysis

31.
$$y = \frac{1}{x^2 - 1} = \frac{1}{(x+1)(x-1)}$$

Intercept (0, -1)

Symmetric about the *y*-axis.

Vertical asymptotes are x = -1 and x = 1.

$$\lim_{x \to \infty} \frac{1}{x^2 - 1} = 0 = \lim_{x \to -\infty} \frac{1}{x^2 - 1}$$
, so $y = 0$ is a

horizontal asymptote.

$$y' = -\frac{2x}{\left(x^2 - 1\right)^2}$$

CV: x = 0, but $x = \pm 1$ must be included in the inc.-dec. analysis. Increasing on $(-\infty, -1)$ and (-1, 0); decreasing on (0, 1) and $(1, \infty)$; relative maximum at (0, -1).

$$y'' = -2 \cdot \frac{\left(x^2 - 1\right)^2 (1) - x \left[4x\left(x^2 - 1\right)\right]}{\left(x^2 - 1\right)^4}$$

$$= -2 \cdot \frac{\left(x^2 - 1\right) \left[\left(x^2 - 1\right) - 4x^2\right]}{\left(x^2 - 1\right)^4}$$

$$= \frac{2\left(3x^2 + 1\right)}{\left(x^2 - 1\right)^3} = \frac{2\left(3x^2 + 1\right)}{\left((x + 1)(x - 1)\right]^3}$$

No possible inflection point, but $x = \pm 1$ must be considered in the concavity analysis. Concave up on $(-\infty, -1)$ and $(1, \infty)$; concave down on (-1, 1).

32.
$$y = \frac{1}{x^2 + 1}$$

Intercept (0, 1)

Symmetric about the y-axis.

$$\lim_{x \to \infty} \frac{1}{x^2 + 1} = 0 = \lim_{x \to -\infty} \frac{1}{x^2 + 1}$$
, so $y = 0$ is a

horizontal asymptote.

$$y' = \frac{-2x}{\left(x^2 + 1\right)^2}$$

CV: x = 0

Increasing on $(-\infty, 0)$; decreasing on $(0, \infty)$; relative maximum at (0, 1)

$$y'' = \frac{2(3x^2 - 1)}{(x^2 + 1)^3}$$

Possible inflection points at $x = \pm \frac{1}{\sqrt{3}}$. Concave

up on
$$\left(-\infty, -\frac{1}{\sqrt{3}}\right)$$
 and $\left(\frac{1}{\sqrt{3}}, \infty\right)$; concave

down on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$; inflection points at

$$\left(\pm\frac{1}{\sqrt{3}},\frac{3}{4}\right)$$

33.
$$y = \frac{2+x}{3-x}$$

Intercepts: $\left(0, \frac{2}{3}\right)$ and (-2, 0).

 $x = \frac{2}{3}$ is the only vertical asymptote. Since

$$\lim_{x \to \infty} \frac{2+x}{3-x} = \lim_{x \to \infty} \frac{x}{-x} = \lim_{x \to \infty} -1 = -1$$

$$= \lim_{x \to -\infty} \frac{2+x}{3-x}$$

the only horizontal asymptote is y = -1.

$$y' = \frac{(3-x)(1) - (2+x)(-1)}{(3-x)^2} = \frac{5}{(3-x)^2}$$

No critical values, but x = 3 must be considered in the ind.-dec. analysis. Increasing on $(-\infty, 3)$ and $(3, \infty)$.

$$y'' = \frac{10}{(3-x)^3}$$

No possible inflection point, but x = 3 must be included in the concavity analysis. Concave up on $(-\infty, 3)$; concave down on $(3, \infty)$.

34.
$$y = \frac{1+x}{x^2}$$

Intercept is (-1, 0)

Vertical asymptote is x = 0.

$$\lim_{x \to \infty} \frac{1+x}{x^2} = \lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0$$

= $\lim_{x \to -\infty} \frac{1+x}{x^2}$, so y = 0 is the only horizontal

asymptote

$$y' = -\frac{x+2}{x^3}$$

CV: x = -2, but x = 0 must be included in the inc-dec. analysis. Increasing on (-2, 0); decreasing on $(-\infty, -2)$ and $(0, \infty)$; relative

minimum at $\left(-2, -\frac{1}{4}\right)$.

$$y'' = \frac{2(3+x)}{x^4}$$

Possible inflection point when x = 3, but x = 0 must be included in the concavity analysis. Concave up on (-3, 0) and $(0, \infty)$; concave down

on $(-\infty, -3)$; inflection point at $\left(-3, -\frac{2}{9}\right)$.

35.
$$y = \frac{x^2}{7x + 4}$$

Intercept: (0,0)

Vertical asymptote is $x = -\frac{4}{7}$.

$$\frac{x^2}{7x+4} = \frac{1}{7}x - \frac{4}{49} + \frac{16}{49(7x+4)} \text{ so } y = \frac{1}{7}x - \frac{4}{49}$$

is an oblique asymptote.

$$y' = \frac{(7x+4)(2x) - x^2(7)}{(7x+4)^2}$$

$$= \frac{7x^2 + 8x}{(7x+4)^2} = \frac{x(7x+8)}{(7x+4)^2}$$

CV: x = 0, $-\frac{8}{7}$, but $x = -\frac{4}{7}$ must be included in

the inc.-dec. analysis. Increasing on $\left(-\infty, -\frac{8}{7}\right)$

and $(0, \infty)$; decreasing on $\left(-\frac{8}{7}, -\frac{4}{7}\right)$ and

$$\left(-\frac{4}{7},0\right)$$
; relative maximum at $\left(-\frac{8}{7},-\frac{16}{49}\right)$;

relative minimum at (0, 0).

$$y'' = \frac{\left(7x^2 + 4\right)^2 (14x + 8) - \left(7x^2 + 8x\right) [14(7x + 4)]}{(7x + 4)^4}$$

$$=\frac{(7x+4)\bigg[(7x+4)(14x+8)-14\Big(7x^2+8x\Big)\bigg]}{(7x+4)^4}$$

$$=\frac{32}{(7x+4)^3}$$

No possible inflection point but $x = -\frac{4}{7}$ must be included in concavity analysis. Concave down

on $\left(-\infty, -\frac{4}{7}\right)$; concave up on $\left(-\frac{4}{7}, \infty\right)$.

36.
$$y = \frac{x^3 + 1}{x}$$

Intercept: (-1, 0)

Vertical asymptote is x = 0. Because the degree of the numerator is greater than the degree of the denominator, no horizontal asymptote exists. Since $y = x^2 + x^{-1}$,

$$y' = 2x - x^{-2} = 2x - \frac{1}{x^2} = \frac{2x^3 - 1}{x^2}$$
.

CV: $x = \sqrt[3]{\frac{1}{2}}$, but x = 0 must be included in inc.-dec. analysis. Decreasing on $(-\infty, 0)$ and $\left(0, \sqrt[3]{\frac{1}{2}}\right)$; increasing on

$$\left(\sqrt[3]{\frac{1}{2}}, \infty\right)$$
; relative minimum at $\left(\sqrt[3]{\frac{1}{2}}, \sqrt[3]{\frac{1}{4}}\right)$.

$$y'' = 2 + 2x^{-3} = 2 + \frac{2}{x^3} = \frac{2(x^3 + 1)}{x^3}$$

Possible inflection point when x = -1, but x = 0 must be included in concavity analysis. Concave up on $(-\infty, -1)$ and $(0, \infty)$; concave down on (-1, 0); inflection point at (-1, 0).

37.
$$y = \frac{9}{9x^2 - 6x - 8} = \frac{9}{(3x + 2)(3x - 4)}$$

Intercept:
$$\left(0, -\frac{9}{8}\right)$$

Vertical asymptotes:
$$x = -\frac{2}{3}$$
, $x = \frac{4}{3}$

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{9}{9x^2} = \lim_{x \to \infty} \frac{1}{x^2} = 0 = \lim_{x \to \infty} y$$

Thus y = 0 is a horizontal asymptote. Since $y = 9(9x^2 - 6x - 8)^{-1}$,

$$y' = 9(-1)(9x^2 - 6x - 8)^{-2}(18x - 6)$$

$$= -\frac{54(3x-1)}{\left[(3x+2)(3x-4)\right]^2}$$

CV: $x = \frac{1}{3}$, but $x = -\frac{2}{3}$ and $x = \frac{4}{3}$ must be included in inc.-dec. analysis.

Increasing on
$$\left(-\infty, -\frac{2}{3}\right)$$
 and $\left(-\frac{2}{3}, \frac{1}{3}\right)$; decreasing on $\left(\frac{1}{3}, \frac{4}{3}\right)$ and $\left(\frac{4}{3}, \infty\right)$;

relative maximum at $\left(\frac{1}{3}, -1\right)$. Finding y'' gives:

$$y'' = -54 \cdot \frac{\left(9x^2 - 6x - 8\right)^2 (3) - (3x - 1)\left[2\left(9x^2 - 6x - 8\right)(18x - 6)\right]}{\left(9x^2 - 6x - 8\right)^4}$$

$$= -54 \cdot \frac{3(9x^2 - 6x - 8)\left[\left(9x^2 - 6x - 8\right) - 4(3x - 1)(3x - 1)\right]}{\left(9x^2 - 6x - 8\right)^4}$$

$$= \frac{-162(-27x^2 + 18x - 12)}{(9x^2 - 6x - 8)^3} = \frac{486(9x^2 - 6x + 4)}{[(3x + 2)(3x - 4)]^3}$$

Since $9x^2 - 6x + 4 = 0$ has no real roots, y'' is never zero. No possible inflection points,

but $x = -\frac{2}{3}$ and $x = \frac{4}{3}$ must be included in concavity analysis. Concave up on $\left(-\infty, -\frac{2}{3}\right)$

and $\left(\frac{4}{3}, \infty\right)$; concave down on $\left(-\frac{2}{3}, \frac{4}{3}\right)$.

38.
$$y = \frac{4x^2 + 2x + 1}{2x^2}$$

 $4x^2 + 2x + 1$ is never 0 and x cannot be zero. Thus no intercepts. Vertical asymptote is x = 0.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{4x^2}{2x^2} = \lim_{x \to \infty} 2 = 2 = \lim_{x \to \infty} y$$

Thus y = 2 is a horizontal asymptote. Since $y = 2 + x^{-1} + \frac{1}{2}x^{-2}$, we have

$$y' = -x^{-2} - x^{-3} = -x^{-3}(x+1)$$

CV: x = -1, but x = 0 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, -1)$ and $(0, \infty)$; increasing on (-1, 0); relative minimum at $\left(-1, \frac{3}{2}\right)$.

$$y'' = 2x^{-3} + 3x^{-4} = \frac{3}{x^4} \left(\frac{2}{3}x + 1\right).$$

Possible inflection point when $x = -\frac{3}{2}$, but x = 0 must be included in the concavity analysis. Concave down on $\left(-\infty, -\frac{3}{2}\right)$; concave up on $\left(-\frac{3}{2}, 0\right)$ and $(0, \infty)$; inflection point at $\left(-\frac{3}{2}, \frac{14}{9}\right)$. No symmetry.

Chapter 13: Curve Sketching

$$39. \quad y = \frac{3x+1}{(3x-2)^2}$$

Intercepts:
$$\left(-\frac{1}{3}, 0\right), \left(0, \frac{1}{4}\right)$$

Vertical asymptote is $x = \frac{2}{3}$.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{3x}{9x^2} = \lim_{x \to \infty} \frac{1}{3x} = 0 = \lim_{x \to -\infty} y$$

Thus y = 0 is a horizontal asymptote.

$$y' = \frac{(3x-2)^{2}(3) - (3x+1)(2)(3x-2)(3)}{(3x-2)^{4}}$$

$$= \frac{3(3x-2)[(3x-2) - 2(3x+1)]}{(3x-2)^{4}}$$

$$= -\frac{3(3x+4)}{(3x-2)^{3}}$$

CV: $x = -\frac{4}{3}$, but $x = \frac{2}{3}$ must be included in inc.-dec. analysis.

Decreasing on
$$\left(-\infty, -\frac{4}{3}\right)$$
 and $\left(\frac{2}{3}, \infty\right)$;

increasing on $\left(-\frac{4}{3}, \frac{2}{3}\right)$; relative minimum at

$$\left(-\frac{4}{3}, -\frac{1}{12}\right).$$

$$y'' = -3 \cdot \frac{(3x-2)^3(3) - (3x+4)(3)(3x-2)^2(3)}{(3x-2)^6}$$

$$= -3 \cdot \frac{3(3x-2)^2[(3x-2) - 3(3x+4)]}{(3x-2)^6}$$

$$= -3 \cdot \frac{3(-6x-14)}{(3x-2)^4} = \frac{18(3x+7)}{(3x-2)^4}$$

Possible inflection point when $x = -\frac{7}{3}$, but

 $x = \frac{2}{3}$ must be included in concavity analysis.

Concave down on
$$\left(-\infty, -\frac{7}{3}\right)$$
; concave up on $\left(-\frac{7}{3}, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \infty\right)$; inflection point at $\left(-\frac{7}{3}, -\frac{2}{27}\right)$.

40.
$$y = \frac{3x+1}{(6x+5)^2}$$

Intercepts:
$$\left(-\frac{1}{3}, 0\right), \left(0, \frac{1}{25}\right)$$

Vertical asymptote is $x = -\frac{5}{6}$.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{3x}{36x^2} = \lim_{x \to \infty} \frac{1}{12x} = 0 = \lim_{x \to -\infty} y$$

Thus y = 0 is horizontal asymptote.

Thus
$$y = 0$$
 is nonzontal asymptote.

$$y' = \frac{(6x+5)^2(3) - (3x+1)[12(6x+5)]}{(6x+5)^4}$$

$$3(6x+5)[(6x+5) - 4(3x+1)]$$

$$=\frac{3(6x+5)[(6x+5)-4(3x+1)]}{(6x+5)^4}$$

$$= \frac{3(-6x+1)}{(6x+5)^3} = \frac{-3(6x-1)}{(6x+5)^3}$$

CV:
$$x = \frac{1}{6}$$
, but $x = -\frac{5}{6}$ must be included in

inc.-dec. analysis. Decreasing on $\left(-\infty, -\frac{5}{6}\right)$ and

$$\left(\frac{1}{6}, \infty\right)$$
; increasing on $\left(-\frac{5}{6}, \frac{1}{6}\right)$; relative

maximum at
$$\left(\frac{1}{6}, \frac{1}{24}\right)$$
. Finding y'' gives:

$$y'' = -3 \cdot \frac{(6x+5)^3(6) - (6x-1) \left[18(6x+5)^2 \right]}{(6x+5)^6}$$

$$= -3 \cdot \frac{6(6x+5)^2 [(6x+5) - 3(6x-1)]}{(6x+5)^6}$$

$$= -18 \cdot \frac{-12x+8}{(6x+5)^4}$$

$$= 72 \cdot \frac{3x-2}{(6x+5)^4}$$

Possible inflection point when $x = \frac{2}{3}$, but $x = -\frac{5}{6}$ must be included in concavity analysis.

Concave down on $\left(-\infty, -\frac{5}{6}\right)$ and $\left(-\frac{5}{6}, \frac{2}{3}\right)$;

concave up on $\left(\frac{2}{3}, \infty\right)$; inflection point at

$$\left(\frac{2}{3}, \frac{1}{27}\right)$$
.

41.
$$y = \frac{x^2 - 1}{x^3} = \frac{(x+1)(x-1)}{x^3}$$

Intercepts are (-1, 0) and (1, 0). Symmetric about the origin. Vertical asymptote x = 0.

$$\lim_{x \to \infty} \frac{x^2 - 1}{x^3} = \lim_{x \to \infty} \frac{x^2}{x^3} = \lim_{x \to \infty} \frac{1}{x}$$

 $=0 = \lim_{x \to -\infty} \frac{1-x}{x^2}$, so y = 0 is the only horizontal

asymptote. Since $y = x^{-1} - x^{-3}$, then

$$y' = -x^{-2} + 3x^{-4} = x^{-4} \left(-x^2 + 3 \right) = \frac{3 - x^2}{x^4}$$

CV: $x = \pm \sqrt{3}$, but x = 0 must be included in the inc.-dec. analysis. Increasing on $\left(-\sqrt{3}, 0\right)$ and $\left(0, \sqrt{3}\right)$; decreasing on $\left(-\infty, -\sqrt{3}\right)$ and

$$(\sqrt{3}, \infty)$$
; relative maximum at $(\sqrt{3}, \frac{2\sqrt{3}}{9})$;

relative minimum at $\left(-\sqrt{3}, -\frac{2\sqrt{3}}{9}\right)$.

$$y'' = 2x^{-3} - 12x^{-5} = 2x^{-5} \left(x^2 - 6\right) = \frac{2\left(x^2 - 6\right)}{x^5}$$

Possible inflection points when $x = \pm \sqrt{6}$, but x = 0 must be included in the concavity analysis. Concave down on $\left(-\infty, -\sqrt{6}\right)$ and $\left(0, \sqrt{6}\right)$;

concave up on $(-\sqrt{6}, 0)$ and $(\sqrt{6}, \infty)$;

inflection points at $\left(\sqrt{6}, \frac{5\sqrt{6}}{36}\right)$ and

$$\left(-\sqrt{6}, \frac{-5\sqrt{6}}{36}\right).$$

42.
$$y = \frac{3x}{(x-2)^2}$$

Intercept (0,0)

Vertical asymptote at x = 2

$$\lim_{x \to \infty} \frac{3x}{x^2 - 4x + 4} = \lim_{x \to \infty} \frac{3x}{x^2} = \lim_{x \to \infty} \frac{3}{x} = 0 \text{ and}$$

$$\lim_{x \to -\infty} \frac{3x}{x^2 - 4x + 4} = 0$$
, so $y = 0$ is the only

horizontal asymptote.

$$y' = \frac{-3(x+2)}{(x-2)^3}$$

CV: x = -2, but x = 2 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, -2)$ and $(2, \infty)$; increasing on (-2, 2); relative maximum

at
$$\left(-2, -\frac{3}{8}\right)$$

$$y'' = \frac{6(x+4)}{(x-2)^4}$$

Possible inflection point when x = -4, but x = 2 must be included in the concavity analysis.

Chapter 13: Curve Sketching

ISM: Introductory Mathematical Analysis

Concave down on $(-\infty, -4)$; concave up on (-4, 2) and $(2, \infty)$; inflection point at $\left(-4, -\frac{1}{3}\right)$.

43.
$$y = 2x + 1 + \frac{1}{x - 1} = \frac{2x^2 - x}{x - 1} = \frac{x(2x - 1)}{x - 1}$$

Intercepts: (0,0), $\left(\frac{1}{2},0\right)$

x = 1 is the only vertical asymptote. y = 2x + 1 is an oblique asymptote.

$$y' = \frac{(x-1)(4x-1) - (1)(2x^2 - x)}{(x-1)^2}$$
$$= \frac{4x^2 - 5x + 1 - 2x^2 + x}{(x-1)^2}$$
$$= \frac{2x^2 - 4x + 1}{(x-1)^2}$$

CV:
$$\frac{2 \pm \sqrt{2}}{2} = 1 \pm \frac{\sqrt{2}}{2}$$
, but $x = 1$ must be

included in the inc-dec. analysis. Increasing on

$$\left(-\infty, 1 - \frac{\sqrt{2}}{2}\right)$$
 and $\left(1 + \frac{\sqrt{2}}{2}, \infty\right)$; decreasing on

$$\left(1-\frac{\sqrt{2}}{2},1\right)$$
 and $\left(1,1+\frac{\sqrt{2}}{2}\right)$; relative maximum

at
$$\left(1 - \frac{\sqrt{2}}{2}, 3 - 2\sqrt{2}\right)$$
; relative minimum at

$$\left(1+\frac{\sqrt{2}}{2}, 3+2\sqrt{2}\right)$$

$$y'' = \frac{(x-1)^2 (4x-4) - 2(x-1)(2x^2 - 4x + 1)}{(x-1)^4}$$
$$= \frac{2(x-1)}{(x-1)^4}$$

No possible inflection point, but x = 1 must be included in the concavity analysis. Concave down on $(-\infty, 1)$; concave up on $(1, \infty)$. No symmetry.

44.
$$y = \frac{3x^4 + 1}{x^3}$$

No intercepts

Symmetric about the origin.

Vertical asymptote is x = 0. $\frac{3x^4 + 1}{x^3} = 3x + \frac{1}{x^3}$ so

y = 3x is an oblique asymptote.

Since $y = 3x + x^{-3}$,

$$y' = 3 - 3x^{-4} = 3 - \frac{3}{x^4} = \frac{3(x^2 + 1)(x + 1)(x - 1)}{x^4}$$

CV: ± 1 , but x = 0 must be considered in the inc.-dec. analysis. Increasing on $(-\infty, -1)$ and $(1, \infty)$; decreasing on (-1, 0) and (0, 1); relative maximum at (-1, -4); relative minimum at (1, 4).

$$y'' = \frac{12}{x^5}$$

No possible inflection point, but x = 0 must be included in the concavity analysis. Concave down on $(-\infty, 0)$; concave up on $(0, \infty)$.

45.
$$y = \frac{-3x^2 + 2x - 5}{3x^2 - 2x - 1} = \frac{-3x^2 + 2x - 5}{(3x + 1)(x - 1)}$$

Note that $-3x^2 + 2x - 5$ is never zero. Intercept: (0, 5)

Vertical asymptotes are $x = -\frac{1}{3}$ and x = 1.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{-3x^2}{3x^2} = \lim_{x \to \infty} -1 = -1 = \lim_{x \to -\infty} y$$

Thus y = -1 is horizontal asymptote

$$y' = \frac{\left(3x^2 - 2x - 1\right)(-6x + 2) - \left(-3x^2 + 2x - 5\right)(6x - 2)}{\left(3x^2 - 2x - 1\right)^2}$$

$$= \frac{2(3x-1)\left[\left(3x^2-2x-1\right)(-1)-\left(-3x^2+2x-5\right)\right]}{\left(3x^2-2x-1\right)^2}$$

$$= \frac{12(3x-1)}{12(3x-1)} = \frac{12(3x-1)}{12(3x-1)}$$

$$= \frac{12(3x-1)}{\left(3x^2 - 2x - 1\right)^2} = \frac{12(3x-1)}{\left[(3x+1)(x-1)\right]^2}$$

CV: $x = \frac{1}{3}$, but $x = -\frac{1}{3}$ and x = 1 must be included in inc.-dec. analysis.

Decreasing on $\left(-\infty, -\frac{1}{3}\right)$ and $\left(-\frac{1}{3}, \frac{1}{3}\right)$; increasing on $\left(\frac{1}{3}, 1\right)$ and $(1, \infty)$; relative minimum at $\left(\frac{1}{3}, \frac{7}{2}\right)$.

$$y'' = 12 \cdot \frac{\left(3x^2 - 2x - 1\right)^2 (3) - (3x - 1)\left[2\left(3x^2 - 2x - 1\right)(6x - 2)\right]}{\left(3x^2 - 2x - 1\right)^4}$$

$$=12 \cdot \frac{\left(3x^2 - 2x - 1\right) \left[3\left(3x^2 - 2x - 1\right) - 2(3x - 1)(6x - 2)\right]}{\left(3x^2 - 2x - 1\right)^4}$$

$$=12 \cdot \frac{-27x^2 + 18x - 7}{\left(3x^2 - 2x - 1\right)^3} = \frac{-12\left(27x^2 - 18x + 7\right)}{\left[(3x+1)(x-1)\right]^3}$$

Since $27x^2 - 18x + 7$ is never zero, there is no possible inflection point, but $x = -\frac{1}{3}$ and x = 1 must be included

in concavity analysis. Concave down on $\left(-\infty,-\frac{1}{3}\right)$ and $(1,\infty)$; concave up on $\left(-\frac{1}{3},1\right)$.

46.
$$y = 3x + 2 + \frac{1}{3x + 2} = \frac{(3x + 2)^2 + 1}{3x + 2}$$
$$= \frac{9x^2 + 12x + 5}{3x + 2}$$

Note that $9x^2 + 12x + 5$ is never zero. Intercept: $\left(0, \frac{5}{2}\right)$

Vertical asymptote is $x = -\frac{2}{3}$; oblique asymptote is y = 3x + 2.

$$y' = 3 - \frac{3}{(3x+2)^2} = 3 \cdot \frac{(3x+2)^2 - 1}{(3x+2)^2}$$
$$= 3 \cdot \frac{9x^2 + 12x + 3}{(3x+2)^2} = 9 \cdot \frac{(3x+1)(x+1)}{(3x+2)^2}$$

CV: $x = -\frac{1}{3}$ and x = -1, but $x = -\frac{2}{3}$ must be included in inc.-dec. analysis. Increasing on $(-\infty, -1)$ and $\left(-\frac{1}{3}, \infty\right)$; decreasing on $\left(-1, -\frac{2}{3}\right)$ and $\left(-\frac{2}{3}, -\frac{1}{3}\right)$; relative maximum at $\left(-1, -2\right)$; relative minimum at $\left(-\frac{1}{3}, 2\right)$.

$$y'' = -3(-2)(3x+2)^{-3}(3) = \frac{18}{(3x+2)^3}$$

No possible inflection point, but $x = -\frac{2}{3}$ must be included in concavity analysis. Concave down on $\left(-\infty, -\frac{2}{3}\right)$; concave up on $\left(-\frac{2}{3}, \infty\right)$.

47.

48.

49.

50.

51. When $x = -\frac{a}{b}$, then a + bx = 0 so $x = -\frac{a}{b}$ is a vertical asymptote.

$$\lim_{x \to \infty} \frac{x}{a + bx} = \lim_{x \to \infty} \frac{x}{bx} = \lim_{x \to \infty} \frac{1}{b} = \frac{1}{b}$$

Thus $y = \frac{1}{b}$ is a horizontal asymptote.

52. For $y = 6 - 3e^{-x}$ we have

$$\lim_{x \to \infty} \left(6 - 3e^{-x} \right) = \lim_{x \to \infty} \left(6 - \frac{3}{e^x} \right) = 6 - 3(0) = 6$$

Thus the line y = 6 is a horizontal asymptote for the graph of $y = 6 - 3e^{-x}$. For $y = 6 + 3e^{-x}$, we obtain $\lim_{x\to\infty} (6+3e^{-x}) = 6+3(0) = 6$, so the line y = 6 is also a horizontal asymptote for the graph of $y = 6+3e^{-x}$.

53.
$$\lim_{t \to \infty} (250 - 83e^{-t}) = \lim_{t \to \infty} (250 - \frac{83}{e^t})$$

= 250 - 0 = 250
Thus y = 250 is a horizontal asymptote.

54.

55.

$$x \approx \pm 2.45, x \approx 0.67, y = 2$$

56.

In the standard window, two vertical asymptotes of the form x = k, where k > 0, are apparent $(x \approx 0.68 \text{ and } x \approx 7.32)$. By zooming around x = -4, another vertical asymptote is apparent (x = -4). Thus three vertical asymptotes exist.

From the graph, it appears that $\lim_{x\to\infty} y \approx 0.48$.

Thus a horizontal asymptote is $y \approx 0.48$. Algebraically, we have

$$\lim_{x \to \infty} \frac{0.34e^{0.7x}}{4.2 + 0.71e^{0.7x}} = \lim_{x \to \infty} \frac{\frac{0.34e^{0.7x}}{e^{0.7x}}}{\frac{4.2 + 0.71e^{0.7x}}{e^{0.7x}}}$$

$$= \lim_{x \to \infty} \frac{0.34}{\frac{4.2}{e^{0.7x}} + 0.71} = \frac{0.34}{0 + 0.71} \approx 0.48$$

Problems 13.6

- 1. Let the numbers be x and 82 x. Then if $P = x(82 x) = 82x x^2$, we have P' = 82 2x. Setting $P' = 0 \Rightarrow x = 41$. Since P'' = -2 < 0, there is a maximum when x = 41. Because 82 x = 41, the required numbers are 41 and 41.
- 2. Let the numbers be x and 20 x, where $0 \le x \le 20$. Let $P = (2x)(20 x)^2 = 2x^3 80x^2 + 800x$. Setting $\frac{dP}{dx} = 0$ gives $P' = 6x^2 - 160x + 800 = 2(3x - 20)(x - 20) = 0$, from which $x = \frac{20}{3}$ or x = 20. P' > 0 on $\left(0, \frac{20}{3}\right)$ and P' < 0 on $\left(\frac{20}{3}, 20\right)$. Thus P has a

relative and absolute maximum when $x = \frac{20}{3}$. The other number is $20 - x = \frac{40}{3}$.

3. We are given that 15x + 9(2y) = 9000, or $y = \frac{9000 - 15x}{18}$. We want to maximize area A, where A = xy. $A = xy - x \left(\frac{9000 - 15x}{18}\right) - \frac{1}{2}(9000x - 15x^2)$

$$A = xy = x \left(\frac{9000 - 15x}{18}\right) = \frac{1}{18} \left(9000x - 15x^2\right)$$

$$A' = \frac{1}{18}(9000 - 30x)$$

Setting $A' = 0 \Rightarrow x = 300$. Since

 $A''(300) = \frac{1}{18}(-30) < 0$, we have a maximum at

$$x = 300$$
. Thus $y = \frac{9000 - 15(300)}{18} = 250$. The

dimensions are 300 ft by 250 ft.

4. We are given that xy = 1400, or $y = \frac{1400}{x}$, and want to minimize N = 2x + 7y. We have $N = 2x + 7y = 2x + 7\left(\frac{1400}{x}\right), x > 0$

$$N' = 2 - \frac{9800}{r^2} = \frac{2(x^2 - 4900)}{r^2}$$

Setting N' = 0 yields $x^2 = 4900$, so x = 70. We have $N'' = \frac{19,600}{x^3}$, so N''(70) > 0 and we have

a minimum. If x = 70, then y = 20. Thus N = 2(70) + 7(20) = 280 ft.

5. $c = 0.05q^2 + 5q + 500$ Avg. cost per unit $= \overline{c} = \frac{c}{q} = 0.05q + 5 + \frac{500}{q}$

$$\overline{c}'=0.05-\frac{500}{q^2}$$
. Setting $\overline{c}'=0$ yields
$$0.05=\frac{500}{q^2},\ q^2=10,000,\ q=\pm100$$
. We exclude $q=-100$ because q represents the number of units. Since $\overline{c}''=\frac{1000}{q^3}>0$ for $q>0$, \overline{c} is an absolute minimum when $q=100$ units.

- 6. $C = 0.12s 0.0012s^2 + 0.08$, where $0 \le s \le 60$. Setting $\frac{dC}{ds} = 0$ gives $0.12 0.0024s = 0 \Rightarrow s = 50$. Since $\frac{d^2C}{ds^2} = -0.0024 < 0$, a maximum occurs when s = 50. Thus a minimum can occur only at an endpoint of the domain. If s = 0, then C = 0.08; if s = 60, then C = 2.96. Thus the minimum cost of \$0.08 per hour occurs for s = 0 mi/h and might be due to depreciation, insurance, and so on.
- 7. p = -5q + 30Since total revenue = (price)(quantity), $r = pq = (-5q + 30)q = -5q^2 + 30q$ Setting $r' = -10q + 30 = 0 \Rightarrow q = 3$. Since r'' = -10 < 0, r is maximum at q = 3 units, for which the corresponding price is p = -5(3) + 30 = \$15.
- 8. $q = Ae^{-Bp}$ Revenue = $r = pq = pAe^{-Bp}$ $r' = A[e^{-Bp}(1) + pe^{-Bp}(-B)]$ $= A(1 - Bp)e^{-Bp}$ $= AB\left(\frac{1}{B} - p\right)e^{-Bp}$ Critical value: $p = \frac{1}{B}$

If $p < \frac{1}{B}$, then r' > 0 and r is increasing. If $p > \frac{1}{B}$, then r' < 0 and r is decreasing. Thus

revenue is maximum when $p = \frac{1}{B}$. The answer does not depend on A because A represents the initial value of q, so it doesn't change q over time.

9.
$$f(p) = 170 - p - \frac{1600}{p+15}$$
, where $0 \le p \le 100$.

a. Setting
$$f'(p) = 0$$
 gives $-1 + \frac{1600}{(p+15)^2} = 0$, $\frac{1600}{(p+15)^2} = 1$, $(p+15)^2 = 1600$, $p+15 = \pm 40$, from which $p=25$. Since $f''(p) = -\frac{3200}{(p+15)^3} < 0$ for $p=25$, we have an absolute maximum of $f(25) = 105$ grams.

b.
$$f(0) = 63\frac{1}{3}$$
 and $f(100) = \frac{1290}{23} \approx 56.1$, so we have an absolute minimum of $f(100) = \frac{1290}{23} \approx 56.1$ grams.

10.
$$R = D^2 \left(\frac{C}{2} - \frac{D}{3}\right) = \frac{CD^2}{2} - \frac{D^3}{3}$$

The rate of change of *R* is $\frac{dR}{dD} = CD - D^2$. This is the function to be maximized. Setting

$$\frac{d}{dD} \left(\frac{dR}{dD} \right) = C - 2D = 0 \text{ gives } D = \frac{C}{2}. \text{ Since}$$

$$\frac{d^2}{dD^2} \left(\frac{dR}{dD} \right) = -2 < 0, \text{ the maximum rate of}$$

change occurs when $D = \frac{C}{2}$.

11.
$$p = 85 - 0.05q$$

 $c = 600 + 35q$
Profit = Total Revenue - Total Cost
 $P = pq - c = (85 - 0.05q)q - (600 + 35q)$
 $= -(0.05q^2 - 50q + 600)$
Setting $P' = -(0.1q - 50) = 0$ yields $q = 500$.
Since $P''(500) = -0.1 < 0$, P is a maximum when $q = 500$ units. This corresponds to a price of $p = 85 - 0.05(500) = 60 and a profit of $P = $11,900$.

12. Cost per unit = \$3
$$p = \frac{10}{\sqrt{q}}$$

Profit = Total Revenue – Total Cost
$$P = pq - c$$

$$P = \left(\frac{10}{\sqrt{q}}\right)q - (3q) = 10\sqrt{q} - 3q$$
 Setting $P' = \frac{5}{\sqrt{q}} - 3 = 0$ yields $q = \frac{25}{9}$. Moreover, we have $P'' = -\frac{5}{2}q^{-\frac{3}{2}} < 0$ for $q > 0$, so P is maximum when $q = \frac{25}{9}$. The corresponding price is $p = \$6$.

13.
$$p = 42 - 4q$$

$$\overline{c} = 2 + \frac{80}{q}$$

$$Total Cost = c = \overline{cq} = 2q + 80$$

$$Profit = Total Revenue - Total Cost$$

$$P = pq - c = (42 - 4q)q - (2q + 80)$$

$$= -\left(4q^2 - 40q + 80\right)$$

$$P' = -(8q - 40)$$

$$Setting P' = -(8q - 40) = 0 \text{ gives } q = 5. \text{ We find}$$
that $P'' = -8 < 0$, so P has a maximum value when $q = 5$. The corresponding price p is $42 - 4(5) = \$22$.

14.
$$p = \frac{50}{\sqrt{q}}$$

$$\overline{c} = \frac{1}{4} + \frac{2500}{q}$$

Total cost = $c = \overline{c}q = \frac{q}{4} + 2500$

Profit = Total Revenue - Total Cost
$$P = pq - c = 50\sqrt{q} - \frac{q}{4} - 2500$$

Setting $P' = \frac{25}{\sqrt{q}} - \frac{1}{4} = 0$ yields $q = 10,000$.

Since $P'' = -\frac{25}{2}q^{-3/2} < 0$ for $q > 0$, it follows that P is a maximum when $q = 10,000$. The corresponding price is $p = \frac{50}{100} \approx \0.50 . Since
$$MR = \frac{25}{\sqrt{q}} \text{ and } MC = \frac{1}{4}, \text{ then for } q = 10,000 \text{ we}$$
have $MR = \frac{25}{100} = \frac{1}{4} = MC$.

15.
$$p = q^2 - 100q + 3200$$
 on $[0, 120]$

$$\overline{c} = \frac{2}{3}q^2 - 40q + \frac{10,000}{q}$$

Profit = Total Revenue – Total Cost Since total revenue r = pq and total cost = $c = \overline{cq}$,

$$P = pq - \overline{c}q$$

$$= q^3 - 100q^2 + 3200q - \left(\frac{2}{3}q^3 - 40q^2 + 10,000\right)$$

$$= \frac{1}{3}q^3 - 60q^2 + 3200q - 10,000$$

$$P' = q^2 - 120q + 3200 = (q - 40)(q - 80)$$

Setting P' = 0 gives q = 40 or 80. Evaluating profit at q = 0, 40, 80, and 120 gives P(0) = -10,000

$$P(40) = \frac{130,000}{3} = 43,333\frac{1}{3}$$

$$P(80) = \frac{98,000}{3} = 32,666 \frac{2}{3}$$

P(120) = 86,000

Thus the profit maximizing output is q = 120 units, and the corresponding maximum profit is \$86,000.

16. a.
$$c = \overline{cq} = 2q^3 - 42q^2 + 228q + 210$$

$$\frac{dc}{dq} = 6q^2 - 84q + 228 = 6(q^2 - 14q + 38)$$

Using the quadratic formula to solve

$$\frac{dc}{dq} = 0$$
 gives $q = 7 - \sqrt{11} \approx 3.68$ or

 $q = 7 + \sqrt{11} \approx 10.32$. Evaluating c at q = 3,

$$7 - \sqrt{11}$$
, $7 + \sqrt{11}$, and 12 gives 570, $434 + 44\sqrt{11} \approx 579.93$,

$$434 - 44\sqrt{11} \approx 288.07$$
, and 354,

respectively. Thus the minimum cost is

when
$$q = 7 + \sqrt{11} \approx 10.32$$
.

c(10) = 290 and c(11) = 298, so production should be fixed at q = 10 for a minimum cost of \$290.

b. c(7) = 434, so the minimum cost still occurs when $q = 7 + \sqrt{11} \approx 10.32$ and production should again be fixed at 10 units.

17. Total fixed costs = \$1200, material-labor costs/unit = \$2, and the demand equation is $p = \frac{100}{\sqrt{a}}$.

Profit = Total Revenue – Total Cost

$$P = pq - c$$

$$P = \frac{100}{\sqrt{q}} \cdot q - (2q + 1200)$$

$$\sqrt{q}$$

$$= 100\sqrt{q} - 2q - 1200$$

$$=2(50\sqrt{q}-q-600)$$

Setting
$$P' = 2\left(\frac{25}{\sqrt{q}} - 1\right) = 0$$
 yields $q = 625$. We

see that $P'' = -25q^{-\frac{3}{2}} < 0$ for q > 0, so P is maximum when q = 625. When q = 625,

MR =
$$\frac{50}{\sqrt{625}}$$
 = 2 = MC. When q = 625, then p = \$4.

18. Let x = number of \$10 per month increases so the monthly rate is 400 + 10x and the number of rented apartments is 100 - 2x. Monthly revenue r is given by

r = (rent/apt.) (no. of apt. rented)

$$r = (400 + 10x)(100 - 2x)$$

$$r' = (400 + 10x)(-2) + (100 - 2x)(10)$$

$$= 200 - 40x = 40(5 - x)$$

Setting r' = 0 yields x = 5. Since r'' = -40 < 0, then r is maximum when x = 5. This results in a monthly rate for an apartment of 400 + 10(5) = \$450.

19. If x = number of \$0.50 decreases, where $0 \le x \le 48$, then the monthly fee for each subscriber is 24 - 0.50x, and the total number of subscribers is 6400 + 160x. Let r be the total (monthly) revenue.

revenue = (monthly rate)(number of subscribers) r = (24 - 0.50x)(6400 + 160x)

$$r' = (24 - 0.50x)(160) + (6400 + 160x)(-0.50)$$

$$= 640 - 160x = 160(4 - x)$$

Setting
$$r' = 0$$
 yields $x = 4$.

Evaluating r when x = 0, 4, and 48, we find that r is a maximum when x = 4. This corresponds to a monthly fee of 24 - 0.50(4) = \$22 and a monthly revenue r of \$154,880.

20. Note that as the number of units produced and sold increases from 0 to 600, the profit increases from 0 to (600)(400) = \$24,000. Let q = number of units produced and sold beyond 600. Then the total profit P is given by P = (600)(40) + (40 - 0.05q)q $= 24,000 + 40q - 0.05q^2$ P' = 40 - 0.10q Setting P' = 0 yields q = 400. Since P'' = -0.10 < 0, P is a maximum when q = 400.

that is, the total number of units = 600 + 400

= 1000.

 $4 \text{ ft} \times 4 \text{ ft} \times 2 \text{ ft}$

- 21. See the figure in the text. Given that $x^2y = 32$, we want to minimize $S = 4(xy) + x^2$. Since $y = \frac{32}{x^2}$, where x > 0, we have $S = 4x\left(\frac{32}{x^2}\right) + x^2 = \frac{128}{x} + x^2$, from which $S' = -\frac{128}{x^2} + 2x$. Setting S' = 0 gives $2x^3 = 128$, $x^3 = 64$, x = 4. Since $S'' = \frac{256}{x^3} + 2$, we get S''(4) > 0, so x = 4 gives a minimum. If x = 4, then $y = \frac{32}{16} = 2$. The dimensions are
- 22. See the figure in the text. We want to maximize $V = x^2y$ given that $4xy + x^2 = 192$, or $y = \frac{192 x^2}{4x}$ $V = x^2 \left(\frac{192 x^2}{4x}\right) = \frac{1}{4} \left(192x x^3\right), x > 0$ $V' = \frac{1}{4} \left(192 3x^2\right) = \frac{3}{4} \left(64 x^2\right)$ Setting V' = 0 gives x = 8. Since $V'' = \left(\frac{3}{4}\right)(-2x)$, then V''(8) < 0, so x = 8 gives a maximum. If x = 8, then y = 4. The dimensions are $8 \text{ ft} \times 8 \text{ ft} \times 4 \text{ ft}$. The volume is $8^2(4) = 256 \text{ ft}^3$.

- 23. $V = x(L-2x)^2$ $= L^2x - 4Lx^2 + 4x^3$ where $0 < x < \frac{L}{2}$. $V' = L^2 - 8Lx + 12x^2$ $= 12x^2 - 8Lx + L^2$ = (2x - L)(6x - L)For $0 < x < \frac{L}{2}$, setting V' = 0 gives $x = \frac{L}{6}$. Since V' > 0 on $\left(0, \frac{L}{6}\right)$ and V' < 0 on $\left(\frac{L}{6}, \frac{L}{2}\right)$, V is maximum when $x = \frac{L}{6}$. Thus the length of the side of the square must be $\frac{L}{6}$ in., which results in a volume of $\frac{L}{6}\left(L - \frac{L}{3}\right)^2 = \frac{2L^3}{27}$ in³.
- 24. Since xy = 720, then $y = \frac{720}{x}$, x > 0. We want to minimize A where $A = (x+10)(y+8) = (x+10)\left(\frac{720}{x} + 8\right)$ $= 800 + 8x + \frac{7200}{x}$ $A' = 8 \frac{7200}{x^2}$ Setting A' = 0 gives x = 30. Since $A'' = \frac{14,400}{x^3} > 0$ for x = 30, we have a minimum. Thus y = 24, so the dimensions are 30 + 10 by 24 + 8, that is, 40 in. $\times 32$ in.

25. See the figure in the text.

 $V = K = \pi r^{2} h$ (1) $S = 2\pi r h + \pi r^{2}$ (2) From Equation (1) $h = \frac{K}{\pi r^{2}}$. Thus Equation (2) becomes $S = \frac{2K}{r} + \pi r^{2}$ $\frac{dS}{dr} = -\frac{2K}{r^{2}} + 2\pi r = \frac{2(\pi r^{3} - K)}{r^{2}}$.

If
$$S' = 0$$
, then $\pi r^3 - K = 0$, $\pi r^3 = K$,
$$r = \sqrt[3]{\frac{K}{\pi}}$$
. Thus

$$h = \frac{K}{\pi \left(\frac{K}{\pi}\right)^{\frac{2}{3}}} = \left(\frac{K}{\pi}\right)^{\frac{1}{3}} = \sqrt[3]{\frac{K}{\pi}}.$$

Note that since $S'' = 2\pi + \frac{4K}{r^3} > 0$ for r > 0, we have a minimum.

26. See the figure in the text.

$$S = K = 2\pi r h + \pi r^2 \tag{1}$$

$$V = \pi r^2 h \tag{2}$$

From Equation (1), $h = \frac{K - \pi r^2}{2\pi r}$. Thus Equation

(2) becomes

$$V = \frac{Kr - \pi r^3}{2}$$

$$\frac{dV}{dr} = \frac{K - 3\pi r^2}{2}.$$

Setting V' = 0 gives $r = \sqrt{\frac{K}{3\pi}}$. Thus

$$h = \frac{K - \pi \frac{K}{3\pi}}{2\pi \sqrt{\frac{K}{3\pi}}} = \frac{\frac{2}{3}K}{2\pi \sqrt{\frac{K}{3\pi}}}$$

$$=\frac{\frac{2}{3}K}{2\pi\sqrt{\frac{K}{3\pi}}}\cdot\frac{\sqrt{\frac{K}{3\pi}}}{\sqrt{\frac{K}{3\pi}}}=\sqrt{\frac{K}{3\pi}}$$

Note that since $V'' = -3\pi r < 0$ for r > 0, we have a maximum.

27. p = 600 - 2q

$$c = 0.2q^2 + 28q + 200$$

Profit = Total Revenue - Total Cost

$$P = pq - c$$

$$P = (600 - 2q)q - \left(0.2q^2 + 28q + 200\right)$$

$$=-(2.2q^2-572q+200)$$

$$P' = -(4.4q - 572)$$

Setting P' = 0 yields q = 130. Since

P'' = -4.4 < 0, P is maximum when q = 130

units. The corresponding price is

p = 600 - 2(130) = \$340, and the profit is

P = \$36,980. If a tax of \$22/unit is imposed on the manufacturer, then the cost equation is

$$c_1 = 0.2q^2 + 28q + 200 + 22q$$

$$=0.2q^2+50q+200.$$

The demand equation remains the same. Thus

$$P_1 = pq - c_1$$

$$=(600-2q)q-(0.2q^2+50q+200)$$

$$=-(2.2q^2-550q+200)$$

$$P'_1 = -(4.4q - 550)$$

Setting $P'_1 = 0$ yields q = 125. Since

 $P_1''=-4.4<0$, P_1 is maximum when q=125 units. The corresponding price is p=\$350 and

the profit is $P_1 = $34,175$.

28. Original data: p = 600 - 2q,

 $c = 0.2q^2 + 28q + 200$. Revenue, both before and after the license fee, is given by

 $r = pq = 600q - 2q^2$. After the license fee, the cost equation is

 $c_1 = c + 1000 = 0.2q^2 + 28q + 1200$ and the profit

$$P_1 = r - c_1$$

$$= (600q - 2q^2) - (0.2q^2 + 28q + 1200)$$

As in Problem 27, we find that P_1 has a maximum when q = 130 units, which gives p = \$340. Thus the profit-maximizing price and output remain the same. Since

Profit

 $= r - c_1 = r - (c + 1000) = (r - c) - 1000$, when

q = 130 we have

Profit = 36,980 – 1000 (from Problem 27) = \$35,980

29. Let *q* = number of units in a production run. Since inventory is depleted at a uniform rate,

assume that the average inventory is $\frac{q}{2}$. The

value of average inventory is $12\left(\frac{q}{2}\right)$, and

carrying costs are $0.192 \left[12 \left(\frac{q}{2} \right) \right]$. The number

of production runs per year is $\frac{3000}{q}$, and total

set-up costs are $54\left(\frac{3000}{q}\right)$. We want to

minimize the sum C of carrying costs and set-up

$$C = 0.192 \left[12 \left(\frac{q}{2} \right) \right] + 54 \left(\frac{3000}{q} \right)$$
$$= 1.152q + \frac{162,000}{q}$$
$$C' = 1.152 - \frac{162,000}{q^2}$$

Setting
$$C' = 0$$
 yields $q^2 = \frac{162,000}{1.152} = 140,625,$

$$q = 375$$
 (since $q > 0$). Since $C'' = \frac{324,000}{q^3} > 0$,

C is minimum when q = 375. Thus the economic lot size is 375/lot (8 lots).

30.
$$c = 0.004q^3 + 20q + 5000$$

 $p = 450 - 4q$
Profit = Total Revenue - Total Cost
 $P = pq - c$
 $= (450 - 4q)q - (0.004q^3 + 20q + 5000)$
 $P = -(0.004q^3 + 4q^2 - 430q + 5000)$
 $P' = -(0.012q^2 + 8q - 430)$
 $= -2(0.006q^2 + 4q - 215)$
Setting $P' = 0$ yields
 $0.006q^2 + 4q - 215 = 0$
 $q = \frac{-4 \pm \sqrt{21.16}}{0.012} = \frac{-4 \pm 4.6}{0.012}$
Since $q \ge 0$, choose $q = \frac{-4 + 4.6}{0.012} = 50$. Since P

is increasing on [0, 50) and decreasing on $(50, \infty)$, P is maximum when q = 50 units.

31. Let x = number of people over the 30. Note: $0 \le x \le 10$. Revenue = r= (number attending)(charge/person) =(30+x)(50-1.25x) $=1500+12.5x-1.25x^2$ r' = 12.5 - 2.5x

Setting r' = 0 yields x = 5. Since r'' = -2.5 < 0, r is maximum when x = 5, that is, when 35 attend.

- **32.** Let N = horsepower of motor. (Total annual cost) = C = (Annual cost to lease) + (Annual operating cost) $C = (200 + 0.40N) + 80,000 \left(\frac{0.008}{N} \right)$ $=200+0.04N+\frac{640}{N}$ $C' = 0.4 - \frac{640}{M^2}$ Setting C' = 0 yields $N^2 = 1600$, so N = 40(since N > 0). Since $C'' = \frac{1280}{N^3} > 0$ for N > 0, Cis a minimum when N = 40 horsepower.
- **33.** The cost per mile of operating the truck is $0.165 + \frac{s}{200}$. Driver's salary is \$18/hr. The number of hours for 700 mi trip is $\frac{700}{3}$. Driver's salary for trip is $18\left(\frac{700}{s}\right)$, or $\frac{12,600}{s}$. The cost of operating the truck for the trip is $700 \left\lfloor 0.165 + \frac{s}{200} \right\rceil.$ Total cost of trip is $C = \frac{12,600}{s} + 700 \left(0.165 + \frac{s}{200} \right)$ Setting $C' = -\frac{12,600}{s^2} + \frac{7}{2} = 0$ yields $s^2 = 3600$, or s = 60 (since s > 0). Since $C'' = \frac{25,200}{3} > 0$

for s > 0, C is a minimum when s = 60 mi/h.

34. Let q =level of production.

Average Cost =
$$\overline{c}$$
 = $\frac{\text{Total Cost}}{q}$

For $0 \le q \le 5000$, we have

$$\overline{c} = \frac{30q + 10q + 20,000}{q} = 40 + \frac{20,000}{q}$$
.

Note that total cost for 5000 units is 220,000. For

q > 5000,

$$\overline{c} = \frac{(\text{cost for first } 5000) + \begin{pmatrix} \text{cost for those} \\ \text{units beyond } 5000 \end{pmatrix}}{q}$$
$$= \frac{220,000 + [45(q - 5000) + 10(q - 5000)]}{q}$$

$$\overline{c} = 55 - \frac{55,000}{q}$$

If
$$0 < q \le 5000$$
, then $\overline{c}' = -\frac{20,000}{q^2} < 0$ and

thus \overline{c} is decreasing. If q > 5000, then

$$\overline{c}' = \frac{55,000}{g^2} > 0$$
 and thus \overline{c} is increasing.

Hence c is minimum when q = 5000 units.

35. Profit *P* is given by

P = Total revenue - Total cost

= Total revenue – (salaries + fixed cost)

= 50q - (1000m + 3000)

$$=50\left(m^3-15m^2+92m\right)-1000m-3000$$

$$=50(m^3-15m^2+72m-60)$$
, where $0 \le m \le 8$

$$P' = 50(3m^2 - 30m + 72)$$

$$= 150(m^2 - 10m + 24) = 150(m - 4)(m - 6)$$

Setting P' = 0 gives the critical values 4 and 6. We now evaluate P at these critical values and also at the endpoints 0 and 8.

P(0) = -3000

P(4) = 2600

P(6) = 2400

P(8) = 3400

Thus Ms. Jones should hire 8 salespeople to obtain a maximum weekly profit of \$3400.

36. Profit *P* is given by

P = Total revenue - Total cost = pq - Total cost

$$= 400q - 50q^2 - \text{Total cost.} \quad (q \text{ in hundreds})$$

$$\frac{dP}{dq} = 400 - 100q - \frac{d}{dq} \text{ (Total cost)}$$

$$=400-100q$$
 – Marginal cost

$$=400-100q-\frac{800}{a+5}$$

$$=\frac{400(q+5)-100q(q+5)-800}{q+5}$$

$$=\frac{-100q^2-100q+1200}{q+5}$$

$$=\frac{-100(q+4)(q-3)}{q+5}$$

Setting P' = 0 gives the critical value 3 (since q > 0). We find that P' > 0 for 0 < q < 3, and P' < 0 for q > 3. Thus there is a maximum profit when q = 3000 jackets.

37. $x = \text{tons of chemical A } (x \le 4),$

$$y = \frac{24-6x}{5-x}$$
 = tons of chemical B, profit on

A = \$2000/ton, and profit on B = \$1000/ton.

Total Profit =
$$P_T = 2000x + 1000 \left(\frac{24 - 6x}{5 - x} \right)$$

$$=2000 \left[x + \frac{12 - 3x}{5 - x} \right]$$

$$P'_{T} = 2000 \left[1 + \frac{(5-x)(-3) - (12-3x)(-1)}{(5-x)^{2}} \right]$$

$$=2000 \left[1 - \frac{3}{\left(5 - x\right)^2} \right]$$

$$=2000 \left[\frac{x^2 - 10x + 22}{(5 - x)^2} \right]$$

Setting $P'_T = 0$ yields (by the quadratic formula)

$$x = \frac{10 \pm 2\sqrt{3}}{2} = 5 \pm \sqrt{3}$$

Because $x \le 4$, choose $x = 5 - \sqrt{3}$. Since P_T is

increasing on $\left[0, 5 - \sqrt{3}\right)$ and decreasing on

 $(5-\sqrt{3}, 4]$, P_T is a maximum for $x=5-\sqrt{3}$

tons. If profit on A is P/ton and profit on B is

$$\frac{P}{2}$$
/ton, then
$$P_T = Px + \frac{P}{2} \left(\frac{24 - 6x}{5 - x} \right) = P \left[x + \frac{12 - 3x}{5 - x} \right]$$

$$P'_T = P \left[\frac{x^2 - 10x + 22}{(5 - x)^2} \right]$$

Setting $P'_T = 0$ and using an argument similar to that above, we find that P_T is a maximum when $x = 5 - \sqrt{3}$ tons.

38. x = number of floors. Let R = rate of return.

$$R = \frac{\text{Total Revenue}}{\text{Total Cost}}$$

$$= \frac{60,000x}{(10x)[120,000+3000(x-1)]+1,440,000}$$

$$= \frac{2x}{x^2+39x+48}$$

$$R' = 2 \cdot \frac{48 - x^2}{\left(x^2 + 39x + 48\right)^2}$$

R' = 0 when $x = \sqrt{48} = 4\sqrt{3}$ $(x \ge 0)$. Since R is increasing on $(0, 4\sqrt{3})$ and decreasing on

 $(4\sqrt{3}, \infty)$, R is a maximum when

 $x = 4\sqrt{3} \approx 6.93$. The number of floors in the building must be an integer, so we evaluate R when x = 6 and x = 7: $R(6) \approx 0.0377$; $R(7) \approx 0.0378$. Thus 7 floors should be built to maximize the rate of return.

39. $P(j) = Aj \frac{L^4}{V} + B \frac{V^3 L^2}{1+j}$ $\frac{dP}{dj} = \frac{AL^4}{V} - \frac{BV^3 L^2}{(1+j)^2} = 0$

Solving for $(1+j)^2$ gives $(1+j)^2 = \frac{BV^4}{AL^2}$

40. a. $\frac{d}{dv} \left(-2at_r + v - \frac{2al}{v} \right) = 1 + \frac{2al}{v^2} = 0$ when $v = \sqrt{-2al}$. Note that $\frac{d^2}{dv^2} \left(-2at_r + v - \frac{2al}{v} \right) = \frac{-4al}{v^3} > 0$ for a < 0, l > 0, and v > 0. Thus $-2at_r + v - \frac{2al}{v}$ is a minimum for $v = \sqrt{-2al}$.

b.
$$v = \sqrt{-2(-19.6)(20)} = \sqrt{784} = 28$$
 ft/s.

c.
$$N = \frac{-2(-19.6)}{(-2)(-19.6)(0.5) + 28 - \frac{2(-19.6)(20)}{28}}$$
$$\approx 0.5 \text{ cars/s} = 0.5(3600) \text{ cars/h} = 1800$$

d. When $v = \sqrt{-2al}$, then $N = N(l) = \frac{-2a}{2at + \sqrt{2al}}$

$$N = N(l) = \frac{-2a}{-2at_r + \sqrt{-2al} + \frac{-2al}{\sqrt{-2al}}}$$
$$= \frac{-2a}{-2at_r + 2\sqrt{-2al}} = \frac{a}{at_r - \sqrt{-2al}}$$

The relative change in *N* when *l* is reduced from 20 ft to 15 ft is $\frac{N(15) - N(20)}{N(20)}$.

With $a = -19.6 \text{ ft/s}^2$ and $t_r = 0.5 \text{ s}$, then

$$N(20) = \frac{-19.6}{(-19.6)(0.5) - \sqrt{-2(-19.6)(20)}}$$

$$\approx 0.5185$$

$$N(15) = \frac{-19.6}{(-19.6)(0.5) - \sqrt{-2(-19.6)(15)}}$$

\$\approx 0.5756\$

The relative change is

$$\frac{N(15) - N(20)}{N(20)} \approx \frac{0.5756 - 0.5158}{0.5158} \approx 0.1101$$

41. $\overline{c} = \frac{c}{q} = 3q + 50 - 18\ln(q) + \frac{120}{q}, \ q > 0$

$$\frac{d\overline{c}}{dq} = 3 - \frac{18}{q} - \frac{120}{q^2} = \frac{3q^2 - 18q - 120}{q^2}$$
$$= \frac{3(q^2 - 6q - 40)}{q^2}$$

$$=\frac{3(q-10)(q+4)}{a^2}$$

Critical value is q = 10 since $q \ge 0$.

Since
$$\frac{d\overline{c}}{dq} < 0$$
 for $0 < q < 10$, and $\frac{d\overline{c}}{dq} > 0$ for

q > 10, we have a minimum when q = 10 cases. This minimum average cost is $3(10) + 50 - 18 \ln 10 + 12 \approx 50.55 .

42. The profit function is given by

$$P = TR - TC = q^3 - 20q^2 + 160q - (30q + 50)$$
$$= q^3 - 20q^2 + 130q - 50$$

where P is in thousands of dollars, q is in tons, and $0 \le q \le 12$. From the graph, the maximum profit occurs when q = 12 tons. The corresponding maximum profit is \$358,000 and the selling price per ton is \$64,000.

Chapter 13 Review Problems

1.
$$y = \frac{3x^2}{x^2 - 16} = \frac{3x^2}{(x+4)(x-4)}$$

When $x = \pm 4$ the denominator is zero and the numerator is not zero. Thus x = 4 and x = -4 are vertical asymptotes.

$$\lim_{x \to \infty} \frac{3x^2}{x^2 - 16} = \lim_{x \to \infty} \frac{3x^2}{x^2} = \lim_{x \to \infty} 3 = 3$$

Similarly, $\lim_{x \to -\infty} y = 3$. Thus y = 3 is the only

horizontal asymptote.

2.
$$y = \frac{x+3}{9x-3x^2} = \frac{x+3}{3x(3-x)}$$

When x = 0 or x = 3, the denominator is zero and the numerator is not zero. Thus x = 0 and x = 3 are vertical asymptotes.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{x}{-3x^2} = -\frac{1}{3} \lim_{x \to \infty} \frac{1}{x} = 0$$

Similarly, $\lim_{y \to \infty} y = 0$. Thus y = 0 is the only

horizontal asymptote.

3.
$$y = \frac{5x^2 - 3}{(3x + 2)^2} = \frac{5x^2 - 3}{9x^2 + 12x + 4}$$

When $x = -\frac{2}{3}$, the denominator is zero and the

numerator is not zero. Thus $x = -\frac{2}{3}$ is a vertical

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{5x^2}{9x^2} = \lim_{x \to \infty} \frac{5}{9} = \frac{5}{9}$$

Similarly, $\lim_{x \to -\infty} y = \frac{5}{9}$. Thus $y = \frac{5}{9}$ is the only horizontal asymptote.

4.
$$y = \frac{4x+1}{3x-5} - \frac{3x+1}{2x-11} = \frac{-x^2 - 30x - 6}{(3x-5)(2x-11)}$$

When $x = \frac{5}{3}$ or $x = \frac{11}{2}$, the denominator is zero

and the numerator is not zero. Thus $x = \frac{5}{3}$ and

 $x = \frac{11}{2}$ are vertical asymptotes.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{-x^2}{6x^2} = \lim_{x \to \infty} \left(-\frac{1}{6} \right) = -\frac{1}{6}$$

Similarly, $\lim_{x \to -\infty} y = -\frac{1}{6}$. Thus $y = -\frac{1}{6}$ is the only horizontal asymptote.

5.
$$f(x) = \frac{3x^2}{9-x^2}$$

$$f'(x) = \frac{(9-x^2)(6x) - 3x^2(-2x)}{(9-x^2)^2} = \frac{54x}{(9-x^2)^2}$$

Thus x = 0 is the only critical value.

Note: Although f'(3) is not defined, ± 3 are not critical values because ± 3 are not in the domain of f.

6.
$$f(x) = 8(x-1)^2(x+6)^4$$

$$f'(x) = 8(2)(x-1)(x+6)^4 + 8(x-1)^2(4)(x+6)^3$$
$$= 16(x-1)(x+6)^3[x+6+2(x-1)]$$
$$= 16(x-1)(x+6)^3(3x+4)$$

Thus x = 1, x = -6, and $x = -\frac{4}{3}$ are the critical values.

7.
$$f(x) = \frac{\sqrt[3]{x+1}}{3-4x}$$

$$f'(x) = \frac{(3-4x)\left[\frac{1}{3}(x+1)^{-\frac{2}{3}}\right] - (x+1)^{\frac{1}{3}}(-4)}{(3-4x)^2}$$

$$=\frac{\frac{1}{3}(x+1)^{-\frac{2}{3}}[(3-4x)+12(x+1)]}{(3-4x)^2}$$

$$=\frac{8x+15}{3(x+1)^{\frac{2}{3}}(3-4x)^2}$$

f'(x) is zero when $x = -\frac{15}{8}$; f'(x) is not defined when x = -1 or $x = \frac{3}{4}$. However $\frac{3}{4}$ is not in the domain of f.

Thus $x = -\frac{15}{8}$ and x = -1 are critical values.

8.
$$f(x) = \frac{13xe^{-\frac{5x}{6}}}{6x+5}$$

$$f'(x) = 13 \cdot \frac{(6x+5)\left[x\left(-\frac{5}{6}e^{-\frac{5x}{6}}\right) + e^{-\frac{5x}{6}}(1)\right] - xe^{-\frac{5x}{6}}(6)}{(6x+5)^2}$$

$$= \frac{13}{6} \cdot \frac{-e^{-\frac{5x}{6}}\left\{(6x+5)[5x-6] + 36x\right\}}{(6x+5)^2} = \frac{13}{6} \cdot \frac{-\left\{30x^2 + 25x - 30\right\}}{e^{\frac{5x}{6}}(6x+5)^2}$$

$$= \frac{13}{6} \cdot \frac{-5\left(6x^2 + 5x - 6\right)}{e^{\frac{5x}{6}}(6x+5)^2} = \frac{-65(2x+3)(3x-2)}{6e^{\frac{5x}{6}}(6x+5)^2}$$

f'(x) is zero when $x = -\frac{3}{2}$ or $x = \frac{2}{3}$. Although f'(x) is not defined when $x = -\frac{5}{6}$, $-\frac{5}{6}$ is not in the domain of f. Thus $x = -\frac{3}{2}$ and $x = \frac{2}{3}$ are the only critical values.

9.
$$f(x) = -\frac{5}{3}x^3 + 15x^2 + 35x + 10$$

 $f'(x) = -5x^2 + 30x + 35$
 $= -5(x^2 - 6x - 7) = -5(x - 7)(x + 1)$
CV: $x = -1$ and $x = 7$. Decreasing on $(-\infty, -1)$ and $(7, \infty)$; increasing on $(-1, 7)$

10.
$$f(x) = \frac{3x^2}{(x+2)^2}$$
$$f'(x) = \frac{6x(x+2)^2 - 3x^2(2)(x+2)}{(x+2)^4}$$
$$= \frac{(x+2)(6x^2 + 12x - 6x^2)}{(x+2)^4}$$
$$= \frac{12x}{(x+2)^3}$$

CV: x = 0, but x = -2 is also considered in the inc.-dec. analysis. Increasing on $(-\infty, -2)$ and $(0, \infty)$; decreasing on (-2, 0).

11.
$$f(x) = \frac{6x^4}{x^2 - 3}$$

$$f'(x) = 6 \cdot \frac{\left(x^2 - 3\right)\left(4x^3\right) - x^4(2x)}{\left(x^2 - 3\right)^2}$$

$$= \frac{12x^3 \left[2\left(x^2 - 3\right) - x^2\right]}{\left(x^2 - 3\right)^2} = \frac{12x^3 \left(x^2 - 6\right)}{\left(x^2 - 3\right)^2}$$

$$= \frac{12x^3 \left(x + \sqrt{6}\right)\left(x - \sqrt{6}\right)}{\left[\left(x + \sqrt{3}\right)\left(x - \sqrt{3}\right)\right]^2}$$

CV: x = 0, $\pm \sqrt{6}$, but $x = \pm \sqrt{3}$ must also be considered in the inc.-dec. analysis. Decreasing on $\left(-\infty, -\sqrt{6}\right)$, $\left(0, \sqrt{3}\right)$, and $\left(\sqrt{3}, \sqrt{6}\right)$; increasing on $\left(-\sqrt{6}, -\sqrt{3}\right)$, $\left(-\sqrt{3}, 0\right)$ and $\left(\sqrt{6}, \infty\right)$.

12.
$$f(x) = 4\sqrt[3]{5x^3 - 7x}$$

 $f'(x) = 4 \cdot \frac{1}{3}(5x^3 - 7x)^{-2/3}(15x^2 - 7)$
 $= \frac{4(15x^2 - 7)}{3(5x^3 - 7x)^{2/3}}$
 $= \frac{4(\sqrt{15}x + \sqrt{7})(\sqrt{15}x - \sqrt{7})}{3[x(5x^2 - 7)]^{2/3}}$
 $= \frac{4(\sqrt{15}x + \sqrt{7})(\sqrt{15}x - \sqrt{7})}{3[x(\sqrt{5}x + \sqrt{7})(\sqrt{5}x - \sqrt{7})]^{2/3}}$
 $CV: x = \pm \sqrt{\frac{7}{15}}, 0, \pm \sqrt{\frac{7}{5}}$
Increasing on $\left(-\infty, -\sqrt{\frac{7}{5}}\right), \left(-\sqrt{\frac{7}{5}}, -\sqrt{\frac{7}{15}}\right), \left(\sqrt{\frac{7}{15}}, \sqrt{\frac{7}{5}}\right)$, and $\left(\sqrt{\frac{7}{5}}, \infty\right)$; decreasing on $\left(-\sqrt{\frac{7}{15}}, 0\right)$ and $\left(0, \sqrt{\frac{7}{15}}\right)$.

13.
$$f(x) = x^4 - x^3 - 14$$

 $f'(x) = 4x^3 - 3x^2$
 $f''(x) = 12x^2 - 6x = 6x(2x - 1)$
 $f''(x) = 0$ when $x = 0$ or $x = \frac{1}{2}$. Concave up on $(-\infty, 0)$ and $(\frac{1}{2}, \infty)$; concave down on $(0, \frac{1}{2})$.

14.
$$f(x) = \frac{x-2}{x+2}$$

 $f'(x) = \frac{(x+2)(1) - (x-2)(1)}{(x+2)^2} = \frac{4}{(x+2)^2}$
 $f''(x) = -\frac{8}{(x+2)^3}$
 $f''(x)$ is not defined when $x = -2$. Concave up on $(-\infty, -2)$; concave down on $(-2, \infty)$

15.
$$f(x) = \frac{1}{3x+2} = (3x+2)^{-1}$$

 $f'(x) = -(3x+2)^{-2}(3) = -3(3x+2)^{-2}$
 $f'' = 6(3x+2)^{-3}(3) = \frac{18}{(3x+2)^3}$
 $f''(x)$ is not defined when $x = -\frac{2}{3}$. Concave down on $\left(-\infty, -\frac{2}{3}\right)$; concave up on $\left(-\frac{2}{3}, \infty\right)$.

16.
$$f(x) = x^3 + 2x^2 - 5x + 2$$

 $f'(x) = 3x^2 + 4x - 5$
 $f''(x) = 6x + 4 = 2(3x + 2)$
 $f''(x) = 0$ when $x = -\frac{2}{3}$. Concave down on $\left(-\infty, -\frac{2}{3}\right)$; concave up on $\left(-\frac{2}{3}, \infty\right)$.

17.
$$f(x) = (2x+1)^3 (3x+2)$$

 $f'(x) = (2x+1)^3 (3) + (3x+2)[3(2x+1)^2 (2)]$
 $= 3(2x+1)^2 (2x+1+6x+4)$
 $= 3(2x+1)^2 (8x+5)$
 $f''(x) = 3\{(2x+1)^2 (8) + (8x+5)[2(2x+1)(2)]\}$
 $= 12(2x+1)[2(2x+1)+8x+5]$
 $= 12(2x+1)(12x+7)$

$$f''(x) = 0$$
 when $x = -\frac{1}{2}$ or $x = -\frac{7}{12}$. Concave up on $\left(-\infty, -\frac{7}{12}\right)$ and $\left(-\frac{1}{2}, \infty\right)$; concave down on $\left(-\frac{7}{12}, -\frac{1}{2}\right)$.

18.
$$f(x) = (x^2 - x - 1)^2$$

 $f'(x) = 2(x^2 - x - 1)(2x - 1)$
 $= 2(2x^3 - 3x^2 - x + 1)$
 $f''(x) = 2(6x^2 - 6x - 1)$
 $f'''(x) = 0$ when $6x^2 - 6x - 1 = 0$; by the quadratic formula $x = \frac{1}{2} \pm \frac{\sqrt{15}}{6}$. Concave up on $(-\infty, \frac{1}{2} - \frac{\sqrt{15}}{6})$ and $(\frac{1}{2} + \frac{\sqrt{15}}{6})$, ∞ ; concave down on $(\frac{1}{2} - \frac{\sqrt{15}}{6}, \frac{1}{2} + \frac{\sqrt{15}}{6})$.

19.
$$f(x) = 2x^3 - 9x^2 + 12x + 7$$

 $f'(x) = 6x^2 - 18x + 12 = 6(x^2 - 3x + 2)$
 $= 6(x - 1)(x - 2)$
CV: $x = 1$ and $x = 2$
Increasing on $(-\infty, 1)$ and $(2, \infty)$; decreasing on $(1, 2)$. Relative maximum when $x = 1$; relative minimum when $x = 2$.

20. $f(x) = \frac{ax + b}{x^2}$ for a > 0 and b > 0 $f'(x) = \frac{x^2(a) - (ax + b)(2x)}{x^4}$ $= \frac{ax^2 - 2ax^2 - 2bx}{x^4}$ $= \frac{-ax^2 - 2bx}{x^4}$ $= \frac{-ax - 2b}{x^3}$ CV: $x = -\frac{2b}{a}$, but x = 0 must be considered in

inc.-dec. analysis. Decreasing on $\left(-\infty, -\frac{2b}{a}\right)$

and
$$(0, \infty)$$
; increasing on $\left(-\frac{2b}{a}, 0\right)$. Relative minimum when $x = -\frac{2b}{a}$.

21.
$$f(x) = \frac{x^{10}}{10} + \frac{x^5}{5}$$

 $f'(x) = x^9 + x^4 = x^4(x^5 + 1)$
CV: $x = 0$ and $x = -1$
Decreasing on $(-\infty, -1)$; increasing on $(-1, 0)$
and $(0, \infty)$; relative minimum when $x = -1$

22.
$$f(x) = \frac{x^2}{x^2 - 4}$$

$$f'(x) = \frac{\left(x^2 - 4\right)(2x) - x^2(2x)}{\left(x^2 - 4\right)^2}$$

$$= \frac{2x\left[\left(x^2 - 4\right) - x^2\right]}{\left(x^2 - 4\right)^2} = \frac{-8x}{\left(x^2 - 4\right)^2}$$

$$= -\frac{8x}{\left[(x + 2)(x - 2)\right]^2}$$

CV: x = 0, but $x \pm 2$ must be considered in inc.-dec. analysis. Increasing on $(-\infty, -2)$ and (-2, 0); decreasing on (0, 2) and $(2, \infty)$. Relative maximum when x = 0.

23.
$$f(x) = x^{\frac{2}{3}}(x+1) = x^{\frac{5}{3}} + x^{\frac{2}{3}}$$

 $f'(x) = \frac{5}{3}x^{\frac{2}{3}} + \frac{2}{3}x^{-\frac{1}{3}} = \frac{1}{3}x^{-\frac{1}{3}}(5x+2) = \frac{5x+2}{3x^{\frac{1}{3}}}$
CV: $x = 0$ and $x = -\frac{2}{5}$
Increasing on $\left(-\infty, -\frac{2}{5}\right)$ and $(0, \infty)$; decreasing on $\left(-\frac{2}{5}, 0\right)$. Relative maximum when $x = -\frac{2}{5}$; relative minimum when $x = 0$.

24.
$$f(x) = x^3(x-2)^4$$

 $f'(x) = x^3[4(x-2)^3(1)] + (x-2)^4(3x^2)$
 $= x^2(x-2)^3[4x+3(x-2)]$
 $= x^2(x-2)^3(7x-6)$

CV:
$$x = 0, 2, \frac{6}{7}$$

Increasing on $(-\infty, 0), (0, \frac{6}{7})$, and $(2, \infty)$;
decreasing on $(\frac{6}{7}, 2)$. Relative maximum when $x = \frac{6}{7}$; relative minimum when $x = 2$.

25.
$$y = 3x^5 + 20x^4 - 30x^3 - 540x^2 + 2x + 3$$

 $y' = 15x^4 + 80x^3 - 90x^2 - 1080x + 2$
 $y'' = 60x^3 + 240x^2 - 180x - 1080$
 $= 60(x^3 + 4x^2 - 3x - 18)$
 $= 60(x - 2)(x + 3)^2$

Possible inflection points occur when x = 2 or x = -3. Concave down on $(-\infty, -3)$ and (-3, 2); concave up on $(2, \infty)$. Concavity changes at x = 2, so there is an inflection point when x = 2.

26.
$$y = \frac{x^2 + 2}{5x} = \frac{1}{5}x + \frac{2}{5}x^{-1}$$

 $y' = \frac{1}{5}(1 - 2x^{-2})$
 $y'' = \frac{4}{5}x^{-3} = \frac{4}{5x^3}$

y'' is never zero. Although y'' is not defined when x = 0, y is not continuous there. Thus there is no inflection point.

27.
$$y = 4(3x-5)(x^4+2) = 12x^5 - 20x^4 + 24x - 40$$

 $y' = 60x^4 - 80x^3 + 24$
 $y'' = 240x^3 - 240x^2 = 240x^2(x-1)$
Possible inflection points occur when $x = 0$ or $x = 1$. Concave down on $(-\infty, 0)$ and $(0, 1)$; concave up on $(1, \infty)$. Inflection point when $x = 1$.

28.
$$y = x^2 + 2\ln(-x)$$
 (Note: $x < 0$)
 $y' = 2x + \frac{2}{x}$
 $y'' = 2 - \frac{2}{x^2} = \frac{2x^2 - 2}{x^2} = \frac{2(x+1)(x-1)}{x^2}$
Possible inflection point occurs when $x = -1$.
Concave up on $(-\infty, -1)$; concave down on $(-1, 0)$. Inflection point when $x = -1$.

29.
$$y = \frac{x^3}{e^x} = x^3 e^{-x}$$

 $y' = x^3 (-e^{-x}) + e^{-x} (3x^2) = -e^{-x} (x^3 - 3x^2)$
 $y'' = -e^{-x} (3x^2 - 6x) - (x^3 - 3x^2) (-e^{-x})$
 $= e^{-x} (x^3 - 6x^2 + 6x)$
 $= xe^{-x} (x^2 - 6x + 6)$
 y'' is defined for all x and y'' is zero only when $x = 0$ or $x^2 - 6x + 6 = 0$. Using the quadratic formula on the second equation, the possible points of inflection occur when $x = 0$, $3 \pm \sqrt{3}$.
Concave up on $(0, 3 - \sqrt{3})$ and $(3 + \sqrt{3}, \infty)$; concave down on $(-\infty, 0)$ and $(3 - \sqrt{3}, 3 + \sqrt{3})$.
Inflection points when $x = 0$, $3 \pm \sqrt{3}$.

30.
$$y = (x^2 - 5)^3$$

 $y' = 3(x^2 - 5)^2(2x) = 6x(x^2 - 5)^2$
 $y'' = 6(x^2 - 5)^2 + 6x(2)(x^2 - 5)(2x)$
 $= 6(x^2 - 5)(x^2 - 5 + 4x^2)$
 $= 6(x^2 - 5)(5x^2 - 5)$
 $= 30(x^2 - 5)(x^2 - 1)$
 $= 30(x + \sqrt{5})(x - \sqrt{5})(x + 1)(x - 1)$

Possible inflection points occur when $x = \pm \sqrt{5}$ or $x = \pm 1$. Concave up on $\left(-\infty, -\sqrt{5}\right)$, (-1, 1), and $\left(\sqrt{5}, \infty\right)$; concave down on $\left(-\sqrt{5}, -1\right)$ and $\left(1, \sqrt{5}\right)$. Inflection points when $x = \pm \sqrt{5}, \pm 1$.

- 31. $f(x) = 3x^4 4x^3$ and f is continuous on [0, 2]. $f'(x) = 12x^3 - 12x^2 = 12x^2(x-1)$ The only critical value on (0, 2) is x = 1. Evaluating f at this value and at the endpoints gives f(0) = 0, f(1) = -1, and f(2) = 16. Absolute maximum: f(2) = 16; absolute minimum: f(1) = -1.
- 32. $f(x) = 2x^3 15x^2 + 36x$ and f is continuous on [0, 3]. $f'(x) = 6x^2 - 30x + 36 = 6(x - 2)(x - 3)$ The only critical value on (0, 3) is x = 2. Evaluating f at this value and at the endpoints gives f(0) = 0, f(2) = 28, f(3) = 27. Absolute maximum: f(2) = 28; absolute minimum: f(0) = 0.

33. $f(x) = \frac{x}{(5x-6)^2}$ and f is continuous on [-2, 0].

$$f'(x) = \frac{(5x-6)^2(1) - x[10(5x-6)]}{(5x-6)^4}$$

$$=\frac{(5x-6)[(5x-6)-10x]}{(5x-6)^4} = \frac{-5x-6}{(5x-6)^3}$$

$$=-\frac{5x+6}{(5x-6)^3}$$

The only critical value on (-2, 0) is $x = -\frac{6}{5}$. Evaluating f at this value and at the endpoints gives

$$f(-2) = -\frac{1}{128}$$
, $f\left(-\frac{6}{5}\right) = -\frac{1}{120}$ and $f(0) = 0$. Absolute maximum: $f(0) = 0$; absolute minimum:

$$f\left(-\frac{6}{5}\right) = -\frac{1}{120}.$$

34. $f(x) = (x+1)^2 (x-1)^{2/3}$ and f is continuous on [2, 3].

$$f'(x) = (x+1)^{2} \left[\frac{2}{3} (x-1)^{-1/3} \right] + (x-1)^{2/3} [2(x+1)]$$

$$= \frac{2}{3} (x+1)(x-1)^{-1/3} [(x+1) + 3(x-1)]$$

$$= \frac{3}{3}(x+1)(x-1)^{-1/3}(2x-1) = \frac{4(x+1)(2x-1)}{3(x-1)^{1/3}}$$

There are no critical values on [2, 3]. Evaluating f at the endpoints gives f(2) = 9 and $f(3) = 16(2^{2/3}) \approx 25.4$. Absolute maximum $f(3) = 16(2^{2/3}) \approx 25.4$; absolute minimum: f(2) = 9

35. $f(x) = x \ln x$

a.
$$f'(x) = \ln x + x \left(\frac{1}{x}\right) = \ln x + 1$$

$$\ln x + 1 = 0$$

$$\ln x = -1$$

$$x = e^{-1} = \frac{1}{e}$$

CV:
$$x = \frac{1}{e}$$

Decreasing on $\left(0, \frac{1}{e}\right)$ and increasing on $\left(\frac{1}{e}, \infty\right)$. Relative minimum at $x = \frac{1}{e}$.

b. $f''(x) = \frac{1}{x}$

f'' > 0 for all x in the domain of f. Concave up for $(0, \infty)$; there are no points of inflection.

56.
$$y = x^2 e^x$$

Intercept (0, 0)
 $y' = 2xe^x + x^2 e^x = xe^x (2+x)$
CV: $x = 0, -2$
Increasing on $(-\infty, -2)$ and $(0, \infty)$; decreasing on

(-2, 0); relative maximum at $\left(-2, \frac{4}{e^2}\right)$; relative

minimum at (0, 0)

$$y'' = 2e^{x} + 2xe^{x} + 2xe^{x} + x^{2}e^{x}$$

$$= e^{x} (2 + 4x + x^{2})$$

$$x = \frac{-4 \pm \sqrt{16 - 4(1)(2)}}{2}$$

$$= \frac{-4 \pm \sqrt{8}}{2}$$

$$= \frac{-4 \pm 2\sqrt{2}}{2}$$

$$= -2 \pm \sqrt{2}$$

Possible inflection points when $x = -2 \pm \sqrt{2}$. Concave up on $(-\infty, -2 - \sqrt{2})$ and

$$(-2+\sqrt{2}, \infty)$$
; concave down on $(-2-\sqrt{2}, -2+\sqrt{2})$; inflection points at $(-2-\sqrt{2}, (4\sqrt{2}+6)e^{-2-\sqrt{2}})$ and $(-2+\sqrt{2}, (6-4\sqrt{2})e^{-2+\sqrt{2}})$

57.
$$y = x^{1/3}(x-8) = x^{4/3} - 8x^{1/3}$$

Intercepts (0, 0) and (8, 0)

$$y' = \frac{4}{3}x^{1/3} - \frac{8}{3}x^{-2/3}$$
$$= \frac{4}{3}\left[x^{1/3} - \frac{2}{x^{2/3}}\right] = \frac{4(x-2)}{3x^{2/3}}$$

CV: x = 0, 2

Decreasing on $(-\infty, 0)$ and (0, 2); increasing on $(2, \infty)$; relative minimum at

$$(2, -6\sqrt[3]{2}) \approx (2, -7.56)$$

$$y'' = \frac{4}{9}x^{-2/3} + \frac{16}{9}x^{-5/3}$$

$$= \frac{4}{9} \left[\frac{1}{x^{2/3}} + \frac{4}{x^{5/3}} \right] = \frac{4(x+4)}{9x^{5/3}}$$

Possible inflection points when x = -4, 0. Concave up on $(-\infty, -4)$ and $(0, \infty)$; concave

down on (-4, 0); inflection points at $\left(-4, 12\sqrt[3]{4}\right)$

and (0, 0). Observe that at the origin the tangent line exists but it is vertical.

58.
$$y = (x-1)^2(x+2)^2$$

Intercepts (0, 4), (1, 0), (-2, 0)

$$y' = (x-1)^{2}[2(x+2)] + (x+2)^{2}[2(x-1)]$$

$$= 2(x-1)(x+2)(2x+1)$$

CV:
$$x = -2, -\frac{1}{2}, 1$$

Decreasing on $(-\infty, -2)$ and $\left(-\frac{1}{2}, 1\right)$; increasing

on
$$\left(-2, -\frac{1}{2}\right)$$
 and $(1, \infty)$; relative maximum at

$$\left(-\frac{1}{2}, \frac{81}{16}\right)$$
; relative minima at

$$(-2, 0)$$
 and $(1, 0)$; $y' = 2(2x^3 + 3x^2 - 3x - 2)$, so

$$y'' = 6(2x^2 + 2x - 1)$$
. Setting $y'' = 0$ and using

the quadratic formula gives possible inflection

points at $x = \frac{-1 \pm \sqrt{3}}{2}$. Concave up on

$$\left(-\infty, \frac{-1-\sqrt{3}}{2}\right)$$
 and $\left(\frac{-1+\sqrt{3}}{2}, \infty\right)$; concave

down on $\left(\frac{-1-\sqrt{3}}{2}, \frac{-1+\sqrt{3}}{2}\right)$; inflection points

when $x = \frac{-1 \pm \sqrt{3}}{2}$

59. $y = 4x^{1/3} + x^{4/3} = x^{1/3}(4+x)$

Intercepts (0,0) and (-4,0)

$$y' = \frac{4}{3}x^{-2/3} + \frac{4}{3}x^{1/3} = \frac{4}{3} \left[\frac{1}{x^{2/3}} + x^{1/3} \right]$$
$$= \frac{4(1+x)}{3x^{2/3}}$$

CV:
$$x = 0, -1$$

Decreasing on $(-\infty, -1)$; increasing on (-1, 0) and $(0, \infty)$; rel. min at (-1, -3)

$$y'' = -\frac{8}{9}x^{-5/3} + \frac{4}{9}x^{-2/3} = \frac{4}{9} \left[\frac{1}{x^{2/3}} - \frac{2}{x^{5/3}} \right]$$

$$=\frac{4(x-2)}{9x^{5/3}}$$

Possible inflection points when x = 0, 2.

Concave up on $(-\infty, 0)$ and $(2, \infty)$; concave down on

(0, 2); inflection point at (0, 0) and $(2, 6\sqrt[3]{2})$.

Observe that at the origin the tangent line exists but it is vertical.

60. $y = (x+1)\sqrt{x+4}$ [Note: x > -4]

Intercepts (0, 2), (-1, 0) and (-4, 0)

$$y' = (x+1) \cdot \frac{1}{2\sqrt{x+4}} + \sqrt{x+4}(1)$$

$$= \frac{1}{2\sqrt{x+4}}[(x+1)+2(x+4)]$$
$$= \frac{3(x+3)}{2\sqrt{x+4}}$$

CV:
$$x = -3, -4$$

Decreasing on (-4, -3); increasing on $(-3, \infty)$; relative minimum at (-3, -2)

$$y'' = \frac{3}{2} \cdot \frac{\sqrt{x+4(1)-(x+3)} \cdot \frac{1}{2\sqrt{x+4}}}{\left(\sqrt{x+4}\right)^2}$$
$$= \frac{3}{4} \cdot \frac{2(x+4)-(x+3)}{(x+4)^{3/2}} = \frac{3(x+5)}{4(x+4)^{3/2}}$$

No possible inflection point. Concave up on $(-4, \infty)$.

61. $y = 2x^{2/3} - x = x^{2/3}(2 - x^{1/3})$

Intercepts (0,0) and (8,0)

$$y' = \frac{4}{3}x^{-1/3} - 1$$

$$y' = 0$$
 when $x^{-1/3} = \frac{3}{4}$

$$x = \left(\frac{3}{4}\right)^{-3} = \frac{64}{27}$$

CV:
$$0, \frac{64}{27}$$

Increasing on $\left(0, \frac{64}{27}\right)$; decreasing on $(-\infty, 0)$

and $\left(\frac{64}{27}, \infty\right)$; relative maximum at $\left(\frac{64}{27}, \frac{32}{27}\right)$;

relative minimum at (0, 0)

$$y'' = -\frac{4}{9}x^{-4/3} = -\frac{4}{9x^{4/3}}$$

Possible inflection point at x = 0. Concave down on $(-\infty, 0)$ and $(0, \infty)$; no inflection points; vertical tangent line at (0, 0). No symmetry.

62.
$$y = 5x^{2/3} - x^{5/3} = x^{2/3} (5 - x)$$

Intercepts (0, 0) and (5, 0)

$$y' = \frac{10}{3}x^{-1/3} - \frac{5}{3}x^{2/3} = \frac{5}{3} \left[\frac{2}{x^{1/3}} - x^{2/3} \right]$$

$$= \frac{5(2 - x)}{3x^{1/3}}$$

CV: x = 0, 2Increasing on (0, 2); decreasing on $(-\infty, 0)$ and $(2, \infty)$; relative minimum at (0, 0); relative maximum at $(2, 3\sqrt[3]{4}) \approx (2, 4.76)$

$$y'' = -\frac{10}{9}x^{-4/3} - \frac{10}{9}x^{-1/3} = -\frac{10(1+x)}{9x^{4/3}}$$

Possible inflection point when x = 0, -1. Concave up on $(-\infty, -1)$; concave down on (-1, 0), and $(0, \infty)$; inflection point at (-1, 6). Observe that at the origin the tangent line exists but it is vertical.

67.
$$p = \frac{100}{q+2}$$

$$\frac{dp}{dq} = -\frac{100}{(q+2)^2} < 0 \text{ for } q > 0, \text{ so } p \text{ is decreasing.}$$
Since
$$\frac{d^2p}{dq^2} = \frac{200}{(q+2)^3} > 0 \text{ for } q > 0, \text{ the demand curve is concave up.}$$

68.
$$c = q^2 + 2q + 1$$

$$\overline{c} = \frac{c}{q} = q + 2 + \frac{1}{q}$$

$$\overline{c'} = 1 - \frac{1}{q^2}$$

$$\overline{c''} = \frac{2}{a^3}$$

Since $\overline{c}'' > 0$ for q > 0, the graph of the average cost function is concave up for q > 0.

69. $S = f(A) = 12\sqrt[4]{A}$, $0 \le A \le 625$. For the given values of A we have $S' = 3A^{-\frac{3}{4}} > 0$ and $S'' = -\left(\frac{9}{4}\right)A^{-\frac{7}{4}} < 0$. Thus y is increasing and

70. $g(x) = e^{\frac{U_0}{A}} e^{-\frac{x^2}{2A}}, A > 0, x \ge 0$ (since x represents quantity).

$$g'(x) = -\frac{e^{\frac{U_0}{A}}}{A} \left[x e^{-\frac{x^2}{2A}} \right]$$

$$g''(x) = -\frac{e^{\frac{U_0}{A}}}{A} \left[x \cdot e^{-\frac{x^2}{2A}} \left(-\frac{x}{A} \right) + e^{-\frac{x^2}{2A}} \right]$$

$$= \frac{e^{\frac{U_0}{A}}}{A^2} \cdot e^{-\frac{x^2}{2A}} \left(x^2 - A \right)$$

$$= \frac{e^{\frac{U_0}{A}}}{A^2} \cdot e^{-\frac{x^2}{2A}} \left(x + \sqrt{A} \right) \left(x - \sqrt{A} \right)$$

If $0 \le x < \sqrt{A}$, then g''(x) < 0, so the graph is concave down. If $x > \sqrt{A}$, then g''(x) > 0, so the graph is concave up.

- 71. $y = 12.5 + 5.8(0.42)^x$ $y' = 5.8(0.42)^x \ln(0.42)$ Since $\ln(0.42) < 0$, we have y' < 0, so the function is decreasing. $y'' = 5.8(0.42)^x \ln^2(0.42) > 0$, so the function is concave up.
- 72. $H = 1.00 \left[1 e^{-(0.0464t + 0.0670)} \right]$ $\frac{dH}{dt} = 0.0464 e^{-(0.0464t + 0.0670)} > 0 \text{ , so } H \text{ is increasing.}$ $\frac{d^2H}{dt^2} = -(0.0464)^2 e^{-(0.0464t + 0.0670)} < 0 \text{ , so } H \text{ is concave down.}$

- 73. $n = f(r) = 0.1 \ln(r) + \frac{7}{r} 0.8, 1 \le r \le 10$
 - **a.** $\frac{dn}{dr} = \frac{0.1}{r} \frac{7}{r^2} = \frac{0.1r 7}{r^2} = \frac{0.1(r 70)}{r^2} < 0$ for $1 \le r \le 10$. Thus the graph of f is always falling. Also,

$$\frac{d^2n}{dr^2} = -\frac{0.1}{r^2} + \frac{14}{r^3} = \frac{14 - 0.1r}{r^3}$$
$$= \frac{0.1(140 - r)}{r^3} > 0$$

for $1 \le r \le 10$. Thus the graph is concave up.

c. $\left. \frac{dn}{dr} \right|_{r=5} = -0.26$, so the rate of decrease is 0.26.

- **a.** One relative maximum point
- **b.** One relative minimum point
- c. One inflection point

Two inflection points

$$y = x^5(x-a) = x^6 - ax^5$$

$$y' = 6x^5 - 5ax^4$$

$$y'' = 30x^4 - 20ax^3 = 10x^3(3x - 2a)$$

Possible inflection points when x = 0 and

$$x = \frac{2a}{3}$$
. If $a > 0$, y is concave up on $(-\infty, 0)$ and

$$\left(\frac{2a}{3}, \infty\right)$$
; concave down on $\left(0, \frac{2a}{3}\right)$. If $a < 0$,

y is concave up on $\left(-\infty, \frac{2a}{3}\right)$ and $(0, \infty)$;

concave downon $\left(\frac{2a}{3}, 0\right)$. In either case, y has

two points of inflection, when x = 0 and $x = \frac{2a}{3}$.

76.

$$y = xe^{-x}$$

Intercept (0,0)

$$y' = e^{-x} - xe^{-x} = e^{-x}(1-x)$$

CV:
$$x = 1$$

Increasing on $(-\infty, 1)$; decreasing on $(1, \infty)$;

relative maximum at $(1, e^{-1})$

$$y'' = -e^{-x} - e^{-x} + xe^{-x}$$

$$= -2e^{-x} + xe^{-x}$$

$$= e^{-x}(x-2)$$

Possible inflection point at x = 2.

Concave down on $(-\infty, 2)$; concave up on $(2, \infty)$;

inflection point at $(2, 2e^{-2})$

Answers will vary for $q(p) = Qe^{-Rp}$.

77.
$$y = x^3 - 2x^2 + x + 3$$

$$y' = 3x^2 - 4x + 1$$

When x = 2, then y = 5 and y' = 5. Thus an equation of the tangent line at x = 2 is y - 5 = 5(x - 2), or y = 5x - 5. Graphing the curve and the tangent line indicates that the curve lies above the tangent line around x = 2. Thus the curve is concave up at x = 2.

78.
$$f(x) = 2x^3 + 3x^2 - 6x + 1$$

$$f'(x) = 6x^2 + 6x - 6$$

$$f''(x) = 12x + 6$$

The relative minimum of f' occurs at a value of x for which (f'(x))' = f''(x) = 0. Around this value of x, (f'(x))' goes from – to +. Since (f'(x))' = f''(x), the concavity of f must change from concave down to concave up.

79.
$$f(x) = x^6 + 3x^5 - 4x^4 + 2x^2 + 1$$

$$f'(x) = 6x^5 + 15x^4 - 16x^3 + 4x$$

$$f''(x) = 30x^4 + 60x^3 - 48x^2 + 4$$

Inflection points of f when $x \approx -2.61, -0.26$.

80.
$$f(x) = \frac{x+1}{x^2+1}$$

$$f'(x) = -\frac{x^2 + 2x - 1}{\left(x^2 + 1\right)^2}$$

$$f''(x) = \frac{2(x^3 + 3x^2 - 3x - 1)}{(x^2 + 1)^3}$$

Inflection points of f when $x \approx -3.73, -0.27, 1.00$.

Problems 13.4

1.
$$y = x^2 - 5x + 6$$

$$y' = 2x - 5$$

CV:
$$x = \frac{5}{2}$$

$$v'' = 2$$

$$y''\left(\frac{5}{2}\right) = 2 > 0$$

Thus there is a relative minimum when $x = \frac{5}{2}$.

Because there is only one relative extremum and *f* is continuous, the relative minimum is an absolute minimum.

2.
$$y = 3x^2 + 12x + 14$$

 $y' = 6x + 12$
CV: $x = -2$
 $y'' = 6$
 $y''(-2) = 6 > 0$

Thus there is a relative minimum when x = -2. Because there is only one relative extremum and f is continuous, the relative minimum is an absolute minimum.

3.
$$y = -4x^2 + 2x - 8$$

 $y' = -8x + 2$
CV: $x = \frac{1}{4}$
 $y'' = -8$
 $y''\left(\frac{1}{4}\right) = -8 < 0$

Thus there is a relative maximum when $x = \frac{1}{4}$.

Because there is only one relative extremum and *f* is continuous, the relative maximum is an absolute maximum.

4.
$$y = 3x^2 - 5x + 6$$

 $y' = 6x - 5$
CV: $x = \frac{5}{6}$
 $y'' = 6$
 $y''\left(\frac{5}{6}\right) = 6 > 0$

Thus there is a relative minimum when $x = \frac{5}{6}$.

Because there is only one relative extremum and *f* is continuous, the relative minimum is an absolute minimum.

5.
$$y = \frac{1}{3}x^3 + 2x^2 - 5x + 1$$

 $y' = x^2 + 4x - 5 = (x+5)(x-1)$
CV: $x = -5$, 1
 $y'' = 2x + 4$
 $y''(-5) = -6 < 0 \Rightarrow \text{ relative maximum when } x = -5$
 $y''(1) = 6 > 0 \Rightarrow \text{ relative minimum when } x = 1$

6.
$$y = x^3 - 12x + 1$$

 $y' = 3x^2 - 12 = 3(x + 2)(x - 2)$
CV: $x = \pm 2$
 $y'' = 6x$
 $y''(-2) = -12 < 0 \Rightarrow \text{ relative maximum when } x = -2$
 $y''(2) = 12 > 0 \Rightarrow \text{ relative minimum when } x = 2$

7.
$$y = 2x^3 - 3x^2 - 36x + 17$$

 $y' = 6x^2 - 6x - 36 = 6(x - 3)(x + 2)$
CV: $x = 3, -2$
 $y'' = 12x - 6$
 $y''(3) = 30 > 0 \Rightarrow \text{ relative minimum when } x = 3$
 $y''(-2) = -30 < 0 \Rightarrow \text{ relative maximum when } x = -2$

8.
$$y = x^4 - 2x^2 + 4$$

 $y' = 4x^3 - 4x = 4x(x+1)(x-1)$
CV: $x = 0, \pm 1$
 $y'' = 12x^2 - 4$
 $y''(0) = -4 < 0 \Rightarrow$ relative maximum when $x = 0$
 $y''(1) = 8 > 0 \Rightarrow$ relative minimum when $x = 1$
 $y''(-1) = 8 > 0 \Rightarrow$ relative minimum when $x = -1$

9.
$$y = 7 - 2x^4$$

 $y' = -8x^3$
CV: $x = 0$
 $y'' = -24x^2$

Since y''(0) = 0, the second-derivative test fails. Using the first-derivative test, we see that f increases for x < 0 and f decreases for x > 0, so there is a relative maximum when x = 0.

10.
$$y = -2x^7$$

 $y' = -14x^6$
CV: $x = 0$
 $y'' = -84x^5$

Since y''(0) = 0, the second-derivative test fails. However, using the first-derivative test, we see that f decreases for x < 0 and for x > 0, so there is neither a relative maximum nor a relative minimum when x = 0.

11.
$$y = 81x^5 - 5x$$

 $y' = 81 \cdot 5x^4 - 5 = 5(81x^4 - 1)$
 $= 5(9x^2 - 1)(9x^2 + 1)$
 $= 5(3x + 1)(3x - 1)(9x^2 + 1)$
CV: $x = \pm \frac{1}{3}$
 $y'' = 81 \cdot 5 \cdot 4x^3$
 $y''\left(-\frac{1}{3}\right) = -60 < 0 \Rightarrow \text{ relative maximum when}$
 $x = -\frac{1}{3}$
 $y''\left(\frac{1}{3}\right) = 60 > 0 \Rightarrow \text{ relative minimum when}$
 $x = \frac{1}{3}$

12.
$$y = 15x^3 + x^2 - 15x + 2$$

 $y' = 45x^2 + 2x - 15 = (5x + 3)(9x - 5)$
CV: $x = -\frac{3}{5}, \frac{5}{9}$
 $y'' = 90x + 2$
 $y''\left(-\frac{3}{5}\right) = -52 \implies \text{relative maximum when}$
 $x = -\frac{3}{5}$
 $y''\left(\frac{5}{9}\right) = 52 \implies \text{relative minimum when } x = \frac{5}{9}$

$$y' = 2\left(x^2 + 7x + 10\right)(2x + 7)$$

$$= 2(x+2)(x+5)(2x+7)$$

$$\text{CV: } x = -2, -5, -\frac{7}{2}$$

$$y'' = 2\left[\left(x^2 + 7x + 10\right)(2) + (2x+7)(2x+7)\right]$$

$$y''(-5) = 18 > 0 \Rightarrow \text{ relative minimum when}$$

$$x = -5$$

$$y''\left(-\frac{7}{2}\right) = -9 < 0 \Rightarrow \text{ relative maximum when}$$

13. $y = (x^2 + 7x + 10)^2$

$$x = -\frac{7}{2}$$

 $y''(-2) = 18 > 0 \implies \text{relative minimum when }$
 $x = -2$

14.
$$y = -x^3 + 3x^2 + 9x - 2$$

 $y' = -3x^2 + 6x + 9 = -3(x^2 - 2x - 3)$
 $= -3(x+1)(x-3)$
CV: $x = -1$, 3
 $y'' = -6x + 6$
 $y''(-1) = 12 > 0 \implies \text{relative minimum when}$
 $x = -1$
 $y''(3) = -12 < 0 \implies \text{relative maximum when}$
 $x = 3$

Problems 13.5

1.
$$y = f(x) = \frac{x}{x-1}$$

When x = 1 the denominator is zero but the numerator is not zero. Thus x = 1 is a vertical asymptote.

$$\lim_{x \to \infty} \frac{x}{x - 1} = \lim_{x \to \infty} \frac{x}{x} = \lim_{x \to \infty} 1 = 1.$$
Similarly $\lim_{x \to -\infty} f(x) = 1$. Thus the line $y = 1$ is a horizontal asymptote.

2.
$$y = f(x) = \frac{x+1}{x}$$

When $x = 0$ the denominator is zero but the numerator is not. Thus $x = 0$ is a vertical asymptote. $\lim_{x \to \infty} \frac{x+1}{x} = \lim_{x \to \infty} \frac{x}{x} = \lim_{x \to \infty} 1 = 1$. Similarly $\lim_{x \to \infty} f(x) = 1$. Thus $y = 1$ is a

horizontal asymptote.

horizontal asymptote.

3.
$$f(x) = \frac{x+5}{2x+7}$$

When $x = -\frac{7}{2}$ the denominator is zero but the numerator is not. Thus $x = -\frac{7}{2}$ is a vertical asymptote. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{2x} = \lim_{x \to \infty} \frac{1}{2} = \frac{1}{2}$. Similarly $\lim_{x \to -\infty} f(x) = \frac{1}{2}$. Thus $y = \frac{1}{2}$ is a

4.
$$y = f(x) = \frac{2x+1}{2x+1}$$

Observe that both the numerator and denominator are zero for $x = -\frac{1}{2}$. For $x \neq -\frac{1}{2}$, we have f(x) = 1. Thus f is a constant function for $x \neq -\frac{1}{2}$. Hence there are no vertical or horizontal asymptotes.

5.
$$y = f(x) = \frac{4}{x}$$

When x = 0 the denominator is zero but the numerator is not zero, so x = 0 is a vertical asymptote.

$$\lim_{x \to \infty} \left(\frac{4}{x}\right) = 0. \text{ Similarly, } \lim_{x \to -\infty} \left(\frac{4}{x}\right) = 0, \text{ so}$$
 $y = 0 \text{ is a horizontal asymptote.}$

6.
$$y = f(x) = 1 - \frac{2}{x^2} = \frac{x^2 - 2}{x^2}$$

When x = 0 the denominator is zero but the numerator is not. Thus x = 0 is a vertical

asymptote.
$$\lim_{x\to\infty} \left(1 - \frac{2}{x^2}\right) = 1 - 0 = 1$$
. Similarly

 $\lim_{x\to-\infty} f(x) = 1$, so y = 1 is a horizontal asymptote.

7.
$$y = f(x) = \frac{1}{x^2 - 1} = \frac{1}{(x - 1)(x + 1)}$$

Vertical asymptotes are x = 1 and x = -1.

$$\lim_{x \to \infty} \frac{1}{x^2 - 1} = \lim_{x \to \infty} \frac{1}{x^2} = 0$$
. Similarly,

 $\lim_{x \to -\infty} f(x) = 0$. Thus y = 0 is a horizontal asymptote.

8.
$$y = f(x) = \frac{x}{x^2 - 9} = \frac{x}{(x - 3)(x + 3)}$$

Vertical asymptotes: x = 3, x = -3.

$$\lim_{x \to \infty} \frac{x}{x^2 - 9} = \lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0$$
. Similarly,

 $\lim_{x \to -\infty} f(x) = 0$. Thus y = 0 is a horizontal

asymptote.

9.
$$y = f(x) = x^2 - 5x + 5$$
 is a polynomial function, so there are no horizontal or vertical asymptotes.

10.
$$y = f(x) = \frac{x^4}{x^3 - 4} = \frac{x^4}{x^3 - (\sqrt[3]{4})^3} = \frac{x^4}{x^3 - (2^{2/3})^3}$$
$$= \frac{x^4}{(x - 2^{2/3})(x^2 + 2^{2/3}x + 2^{4/3})}$$

Vertical asymptote: $x = 2^{2/3}$.

$$\frac{x^4}{x^3 - 4} = x + \frac{4x}{x^3 - 4}$$
 so the line $y = x$ is an oblique asymptote.

11. $f(x) = \frac{2x^2}{x^2 + x - 6} = \frac{2x^2}{(x+3)(x-2)}$

Vertical asymptotes are x = -3 and x = 2.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x^2}{x^2} = \lim_{x \to \infty} 2 = 2, \text{ and}$$

 $\lim_{x \to -\infty} f(x) = 2$. Thus y = 2 is a horizontal asymptote.

12. $f(x) = \frac{x^3}{5}$ is a polynomial function, so there are no horizontal or vertical asymptotes.

13.
$$y = \frac{15x^2 + 31 + 1}{x^2 - 7} = \frac{15x^2 + 31x + 1}{\left(x + \sqrt{7}\right)\left(x - \sqrt{7}\right)}$$

Vertical asymptotes are $x = -\sqrt{7}$ and $x = \sqrt{7}$.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{15x^2}{x^2} = \lim_{x \to \infty} 15 = 15$$

Similarly, $\lim_{x \to -\infty} = 15$. Thus y = 15 is a

horizontal asymptote.

14.
$$y = f(x) = \frac{2x^3 + 1}{3x(2x - 1)(4x - 3)}$$

Vertical asymptotes are x = 0, $x = \frac{1}{2}$, and

$$x = \frac{3}{4}$$
. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x^3}{24x^3} = \lim_{x \to \infty} \frac{1}{12} = \frac{1}{12}$.

Similarly, $\lim_{x \to -\infty} f(x) = \frac{1}{12}$. Thus $y = \frac{1}{12}$ is a horizontal asymptote.

15.
$$y = f(x) = \frac{2}{x-3} + 5 = \frac{5x-13}{x-3}$$

From the denominator, x = 3 is a vertical asymptote.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{5x}{x} = \lim_{x \to \infty} 5 = 5, \text{ and}$$

 $\lim_{x \to -\infty} f(x) = 5. \text{ Thus, } y = 5 \text{ is a horizontal}$

asymptote

16.
$$f(x) = \frac{x^2 - 1}{2x^2 - 9x + 4} = \frac{x^2 - 1}{(2x - 1)(x - 4)}$$

Vertical asymptotes are $x = \frac{1}{2}$ and x = 4.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2}{2x^2} = \lim_{x \to \infty} \frac{1}{2} = \frac{1}{2}$$
, and

$$\lim_{x \to -\infty} f(x) = \frac{1}{2}$$
. Thus $y = \frac{1}{2}$ is a horizontal asymptote.

17.
$$f(x) = \frac{3 - x^4}{x^3 + x^2} = \frac{3 - x^4}{x^2(x+1)}$$

Vertical asymptotes are x = 0 and x = -1.

$$\frac{3-x^4}{x^3+x^2} = -x+1 + \frac{3-x^2}{x^3+x^2}$$
 so the line $y = -x+1$

is an oblique asyptote.

18.
$$y = f(x) = \frac{5x^2 + 7x^3 + 9x^4}{3x^2}$$

Observe that both the numerator and the denominator are zero when x = 0. For $x \ne 0$, we have

$$f(x) = \frac{x^2}{3x^2}(5+7x+9x^2) = \frac{1}{3}(5+7x+9x^2).$$

Thus f is a polynomial function for $x \ne 0$. Hence there are neither horizontal nor vertical asymptotes.

19.
$$y = f(x) = \frac{x^2 - 3x - 4}{1 + 4x + 4x^2} = \frac{x^2 - 3x - 4}{(1 + 2x)^2}$$

From the denominator, $x = -\frac{1}{2}$ is a vertical asymptote

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2}{4x^2} = \lim_{x \to \infty} \frac{1}{4} = \frac{1}{4}$$
, and

$$\lim_{x \to -\infty} f(x) = \frac{1}{4}$$
, so $y = \frac{1}{4}$ is a horizontal asymptote.

20.
$$y = f(x) = \frac{x^4 + 1}{1 - x^4} = \frac{x^4 + 1}{\left(1 + x^2\right)(1 - x)(1 + x)}$$

From the denominator, vertical asymptotes are x = 1 and x = -1.

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{x^4}{-x^4} = \lim_{x\to\infty} -1 = -1, \text{ and}$$

 $\lim_{x \to -\infty} f(x) = -1$. Thus y = -1 is a horizontal asymptote.

21.
$$y = f(x) = \frac{9x^2 - 16}{2(3x + 4)^2} = \frac{(3x + 4)(3x - 4)}{2(3x + 4)^2}$$

When $x = -\frac{4}{3}$, both the numerator and

denominator are zero. Since

$$\lim_{x \to -4/3^+} f(x) = \lim_{x \to -4/3^+} \frac{3x - 4}{2(3x + 4)} = -\infty, \text{ the}$$

line $x = -\frac{4}{3}$ is a vertical asymptote.

$$\lim_{x \to \infty} \frac{9x^2 - 16}{2(3x + 4)^2} = \lim_{x \to \infty} \frac{9x^2}{18x^2} = \lim_{x \to \infty} \frac{1}{2} = \frac{1}{2}.$$

Similarly, $\lim_{x \to -\infty} f(x) = \frac{1}{2}$. Thus $y = \frac{1}{2}$ is a horizontal asymptote.

22.
$$y = f(x) = \frac{2}{5} + \frac{2x}{12x^2 + 5x - 2} = \frac{24x^2 + 20x - 4}{5(12x^2 + 5x - 2)}$$

= $\frac{4(x+1)(6x-1)}{5(3x+2)(4x-1)}$

When $x = -\frac{2}{3}$ or $x = \frac{1}{4}$, the denominator is 0,

but the numerator is not. Thus, vertical

asymptotes are
$$x = -\frac{2}{3}$$
 and

$$x = \frac{1}{4}$$
. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{24x^2}{60x^2} = \lim_{x \to \infty} \frac{2}{5} = \frac{2}{5}$.

Similarly, $\lim_{x \to -\infty} f(x) = \frac{2}{5}$. Thus, $y = \frac{2}{5}$ is a horizontal asymptote.

23.
$$y = f(x) = 5e^{x-3} - 2$$

We have $\lim_{x \to \infty} f(x) = +\infty$ and

$$\lim_{x \to -\infty} f(x) = 5 \cdot \lim_{x \to -\infty} e^{x-3} - \lim_{x \to -\infty} 2$$

= 5(0) - 2 = -2

Thus y = -2 is a horizontal asymptote. There is no vertical asymptote because f(x) neither increases nor decreases without bound around any fixed value of x.

24. $f(x) = 12e^{-x}$

 $\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to -\infty} f(x) = +\infty$. Thus y = 0

is a horizontal asymptote. There is no vertical asymptote because f(x) neither increases nor decreases without bound around any fixed value of x.

25. $y = \frac{3}{x}$

Symmetric about the origin. Vertical asymptote

is
$$x = 0$$
. $\lim_{x \to \infty} \frac{3}{x} = 0 = \lim_{x \to -\infty} \frac{3}{x}$, so $y = 0$ is a

horizontal asymptote.

$$y' = -\frac{3}{x^2}$$

CV: None, however x = 0 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, 0)$ and $(0, \infty)$.

$$y'' = \frac{6}{x^3}$$

No possible inflection point, but we include x = 0 in the concavity analysis. Concave down on $(-\infty, 0)$; concave up on $(0, \infty)$.

26. $y = \frac{2}{2x-3}$

Intercept: $\left(0, -\frac{2}{3}\right)$

Vertical asymptote is $x = \frac{3}{2}$.

 $\lim_{x \to \infty} y = 0 = \lim_{x \to -\infty} y, \text{ so } y = 0 \text{ is a horizontal asymptote.}$

$$y' = -\frac{4}{(2x-3)^2}$$

CV: None, but $x = \frac{3}{2}$ must be considered in the

inc. dec. analysis. Decreasing on $\left(-\infty, \frac{3}{2}\right)$ and

$$\left(\frac{3}{2}, \infty\right).$$
$$y'' = \frac{16}{(2x-3)^3}$$

No possible inflection point, but $x = \frac{3}{2}$ must be considered in the concavity analysis. Concave

down on $\left(-\infty, \frac{3}{2}\right)$; concave up on $\left(\frac{3}{2}, \infty\right)$.

27. $y = \frac{x}{x-1}$

Intercept (0,0)

Vertical asymptote is x = 1

 $\lim_{x \to \infty} y = 1 = \lim_{x \to -\infty} y, \text{ so } y = 1 \text{ is a horizontal asymptote.}$

$$y' = \frac{(x-1)(1) - x(1)}{(x-1)^2} = -\frac{1}{(x-1)^2}$$

CV: None, but x = 1 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, 1)$ and $(1, \infty)$

$$y'' = \frac{2}{(x-1)^3}$$

No possible inflection point, but x = 1 must be included in concavity analysis. Concave up on $(1, \infty)$, concave down on $(-\infty, 1)$.

28.
$$y = \frac{50}{\sqrt{3x}}$$
 (Note: $x > 0$)

 $\lim y = 0$, so y = 0 is a horizontal asymptote.

 $\lim_{x \to +\infty} y = +\infty$, so the line x = 0 is a vertical

asymptote

$$y' = -\frac{25}{\sqrt{3x^3}}$$
 < 0 for x > 0. Decreasing on (0, ∞).

$$y'' = \frac{75}{2\sqrt{3x^5}} > 0$$
 for $x > 0$. Concave up on

 $(0, \infty)$. No intercepts; no symmetry.

29.
$$y = x^2 + \frac{1}{x^2} = \frac{x^4 + 1}{x^2}$$

 $x \neq 0$, so there is no y-intercept. Setting $y = 0 \Rightarrow$ no x-intercept. Replacing x by -xyields symmetry about the y-axis. Setting $x^2 = 0$ gives x = 0 as the only vertical asymptote. Because the degree of the numerator is greater than the degree of the denominator, no horizontal asymptote exists.

$$y = x^2 + x^{-2}$$

$$y' = 2x - 2x^{-3} = 2x - \frac{2}{x^3} = \frac{2x^4 - 2}{x^3} = \frac{2(x^4 - 1)}{x^3}$$

$$=\frac{2(x^2+1)(x+1)(x-1)}{x^3}$$

CV: $x = \pm 1$, but x = 0 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, -1)$ and (0, 1); increasing on (-1, 0) and $(1, \infty)$; relative minima at (-1, 2) and (1, 2),

$$y'' = 2 + \frac{6}{x^4} > 0$$

for all $x \neq 0$. Concave up on $(-\infty, 0)$ and $(0, \infty)$.

$$30. \quad y = \frac{3x^2 - 5x - 1}{x - 2}$$

Intercept: $\left(0, \frac{1}{2}\right)$

Vertical asymptote is x = 2.

$$\frac{3x^2 - 5x - 1}{x - 2} = 3x + 1 + \frac{1}{x - 2}$$
 so $y = 3x + 1$ is an

$$y' = \frac{(x-2)(6x-5) - (3x^2 - 5x - 1)(1)}{(x-2)^2}$$
$$= \frac{3x^2 - 12x + 11}{(x-2)^2}$$

From the quadratic formula, CV: $x = \frac{6 \pm \sqrt{3}}{2}$,

but x = 2 must be included in the inc.-dec.

analysis. Increasing on
$$\left(-\infty, \frac{6-\sqrt{3}}{3}\right)$$
 and

$$\left(\frac{6+\sqrt{3}}{3},\infty\right)$$
; decreasing on $\left(\frac{6-\sqrt{3}}{3},2\right)$ and

$$\left(2, \frac{6+\sqrt{3}}{3}\right)$$
; relative maximum at

$$\left(\frac{6-\sqrt{3}}{3}, 7-2\sqrt{3}\right)$$
; relative minimum at

$$\left(\frac{6+\sqrt{3}}{3},\,7+2\sqrt{3}\right).$$

$$y'' = \frac{(x-2)^2 (6x-12) - (3x^2 - 12x + 11)2(x-2)}{(x-2)^4}$$
$$= \frac{(x-2)(6x-12) - 2(3x^2 - 12x + 11)}{(x-2)^3}$$

$$=\frac{(x-2)(6x-12)-2(3x^2-12x+11)}{(x-2)^3}$$

$$=\frac{2}{(x-2)^3}$$

No possible inflection point, but x = 2 must be included in the concavity analysis. Concave down on $(-\infty, 2)$; concave up on $(2, \infty)$

Chapter 13: Curve Sketching

ISM: Introductory Mathematical Analysis

31.
$$y = \frac{1}{x^2 - 1} = \frac{1}{(x+1)(x-1)}$$

Intercept (0, -1)

Symmetric about the *y*-axis.

Vertical asymptotes are x = -1 and x = 1.

$$\lim_{x \to \infty} \frac{1}{x^2 - 1} = 0 = \lim_{x \to -\infty} \frac{1}{x^2 - 1}$$
, so $y = 0$ is a

horizontal asymptote.

$$y' = -\frac{2x}{\left(x^2 - 1\right)^2}$$

CV: x = 0, but $x = \pm 1$ must be included in the inc.-dec. analysis. Increasing on $(-\infty, -1)$ and (-1, 0); decreasing on (0, 1) and $(1, \infty)$; relative maximum at (0, -1).

$$y'' = -2 \cdot \frac{\left(x^2 - 1\right)^2 (1) - x \left[4x\left(x^2 - 1\right)\right]}{\left(x^2 - 1\right)^4}$$

$$= -2 \cdot \frac{\left(x^2 - 1\right) \left[\left(x^2 - 1\right) - 4x^2\right]}{\left(x^2 - 1\right)^4}$$

$$= \frac{2\left(3x^2 + 1\right)}{\left(x^2 - 1\right)^3} = \frac{2\left(3x^2 + 1\right)}{\left[(x + 1)(x - 1)\right]^3}$$

No possible inflection point, but $x = \pm 1$ must be considered in the concavity analysis. Concave up on $(-\infty, -1)$ and $(1, \infty)$; concave down on (-1, 1).

32.
$$y = \frac{1}{x^2 + 1}$$

Intercept (0, 1)

Symmetric about the y-axis.

$$\lim_{x \to \infty} \frac{1}{x^2 + 1} = 0 = \lim_{x \to -\infty} \frac{1}{x^2 + 1}$$
, so $y = 0$ is a

horizontal asymptote.

$$y' = \frac{-2x}{\left(x^2 + 1\right)^2}$$

CV: x = 0

Increasing on $(-\infty, 0)$; decreasing on $(0, \infty)$; relative maximum at (0, 1)

$$y'' = \frac{2(3x^2 - 1)}{(x^2 + 1)^3}$$

Possible inflection points at $x = \pm \frac{1}{\sqrt{3}}$. Concave

up on
$$\left(-\infty, -\frac{1}{\sqrt{3}}\right)$$
 and $\left(\frac{1}{\sqrt{3}}, \infty\right)$; concave

down on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$; inflection points at

$$\left(\pm\frac{1}{\sqrt{3}},\frac{3}{4}\right)$$

33.
$$y = \frac{2+x}{3-x}$$

Intercepts: $\left(0, \frac{2}{3}\right)$ and (-2, 0).

 $x = \frac{2}{3}$ is the only vertical asymptote. Since

$$\lim_{x \to \infty} \frac{2+x}{3-x} = \lim_{x \to \infty} \frac{x}{-x} = \lim_{x \to \infty} -1 = -1$$

$$= \lim_{x \to -\infty} \frac{2+x}{3-x}$$

the only horizontal asymptote is y = -1.

$$y' = \frac{(3-x)(1) - (2+x)(-1)}{(3-x)^2} = \frac{5}{(3-x)^2}$$

No critical values, but x = 3 must be considered in the ind.-dec. analysis. Increasing on $(-\infty, 3)$ and $(3, \infty)$.

$$y'' = \frac{10}{(3-x)^3}$$

No possible inflection point, but x = 3 must be included in the concavity analysis. Concave up on $(-\infty, 3)$; concave down on $(3, \infty)$.

34.
$$y = \frac{1+x}{x^2}$$

Intercept is (-1, 0)

Vertical asymptote is x = 0.

$$\lim_{x \to \infty} \frac{1+x}{x^2} = \lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0$$

= $\lim_{x \to -\infty} \frac{1+x}{x^2}$, so y = 0 is the only horizontal

asymptote

$$y' = -\frac{x+2}{x^3}$$

CV: x = -2, but x = 0 must be included in the inc-dec. analysis. Increasing on (-2, 0); decreasing on $(-\infty, -2)$ and $(0, \infty)$; relative

minimum at $\left(-2, -\frac{1}{4}\right)$.

$$y'' = \frac{2(3+x)}{x^4}$$

Possible inflection point when x = 3, but x = 0 must be included in the concavity analysis. Concave up on (-3, 0) and $(0, \infty)$; concave down

on $(-\infty, -3)$; inflection point at $\left(-3, -\frac{2}{9}\right)$.

35.
$$y = \frac{x^2}{7x + 4}$$

Intercept: (0,0)

Vertical asymptote is $x = -\frac{4}{7}$.

$$\frac{x^2}{7x+4} = \frac{1}{7}x - \frac{4}{49} + \frac{16}{49(7x+4)} \text{ so } y = \frac{1}{7}x - \frac{4}{49}$$

is an oblique asymptote.

$$y' = \frac{(7x+4)(2x) - x^2(7)}{(7x+4)^2}$$

$$= \frac{7x^2 + 8x}{(7x+4)^2} = \frac{x(7x+8)}{(7x+4)^2}$$

CV: x = 0, $-\frac{8}{7}$, but $x = -\frac{4}{7}$ must be included in

the inc.-dec. analysis. Increasing on $\left(-\infty, -\frac{8}{7}\right)$

and $(0, \infty)$; decreasing on $\left(-\frac{8}{7}, -\frac{4}{7}\right)$ and

$$\left(-\frac{4}{7},0\right)$$
; relative maximum at $\left(-\frac{8}{7},-\frac{16}{49}\right)$;

relative minimum at (0, 0).

$$y'' = \frac{\left(7x^2 + 4\right)^2 (14x + 8) - \left(7x^2 + 8x\right) [14(7x + 4)]}{(7x + 4)^4}$$

$$=\frac{(7x+4)\bigg[(7x+4)(14x+8)-14\Big(7x^2+8x\Big)\bigg]}{(7x+4)^4}$$

$$=\frac{32}{(7x+4)^3}$$

No possible inflection point but $x = -\frac{4}{7}$ must be included in concavity analysis. Concave down

on $\left(-\infty, -\frac{4}{7}\right)$; concave up on $\left(-\frac{4}{7}, \infty\right)$.

36.
$$y = \frac{x^3 + 1}{x}$$

Intercept: (-1, 0)

Vertical asymptote is x = 0. Because the degree of the numerator is greater than the degree of the denominator, no horizontal asymptote exists. Since $y = x^2 + x^{-1}$,

$$y' = 2x - x^{-2} = 2x - \frac{1}{x^2} = \frac{2x^3 - 1}{x^2}$$
.

CV: $x = \sqrt[3]{\frac{1}{2}}$, but x = 0 must be included in inc.-dec. analysis. Decreasing on $(-\infty, 0)$ and $\left(0, \sqrt[3]{\frac{1}{2}}\right)$; increasing on

$$\left(\sqrt[3]{\frac{1}{2}}, \infty\right)$$
; relative minimum at $\left(\sqrt[3]{\frac{1}{2}}, \sqrt[3]{\frac{1}{4}}\right)$.

$$y'' = 2 + 2x^{-3} = 2 + \frac{2}{x^3} = \frac{2(x^3 + 1)}{x^3}$$

Possible inflection point when x = -1, but x = 0 must be included in concavity analysis. Concave up on $(-\infty, -1)$ and $(0, \infty)$; concave down on (-1, 0); inflection point at (-1, 0).

37.
$$y = \frac{9}{9x^2 - 6x - 8} = \frac{9}{(3x + 2)(3x - 4)}$$

Intercept:
$$\left(0, -\frac{9}{8}\right)$$

Vertical asymptotes:
$$x = -\frac{2}{3}$$
, $x = \frac{4}{3}$

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{9}{9x^2} = \lim_{x \to \infty} \frac{1}{x^2} = 0 = \lim_{x \to \infty} y$$

Thus y = 0 is a horizontal asymptote. Since $y = 9(9x^2 - 6x - 8)^{-1}$,

$$y' = 9(-1)(9x^2 - 6x - 8)^{-2}(18x - 6)$$

$$= -\frac{54(3x-1)}{\left[(3x+2)(3x-4)\right]^2}$$

CV: $x = \frac{1}{3}$, but $x = -\frac{2}{3}$ and $x = \frac{4}{3}$ must be included in inc.-dec. analysis.

Increasing on
$$\left(-\infty, -\frac{2}{3}\right)$$
 and $\left(-\frac{2}{3}, \frac{1}{3}\right)$; decreasing on $\left(\frac{1}{3}, \frac{4}{3}\right)$ and $\left(\frac{4}{3}, \infty\right)$;

relative maximum at $\left(\frac{1}{3}, -1\right)$. Finding y'' gives:

$$y'' = -54 \cdot \frac{\left(9x^2 - 6x - 8\right)^2 (3) - (3x - 1)\left[2\left(9x^2 - 6x - 8\right)(18x - 6)\right]}{\left(9x^2 - 6x - 8\right)^4}$$

$$= -54 \cdot \frac{3(9x^2 - 6x - 8)\left[\left(9x^2 - 6x - 8\right) - 4(3x - 1)(3x - 1)\right]}{\left(9x^2 - 6x - 8\right)^4}$$

$$= \frac{-162(-27x^2 + 18x - 12)}{(9x^2 - 6x - 8)^3} = \frac{486(9x^2 - 6x + 4)}{[(3x + 2)(3x - 4)]^3}$$

Since $9x^2 - 6x + 4 = 0$ has no real roots, y'' is never zero. No possible inflection points,

but $x = -\frac{2}{3}$ and $x = \frac{4}{3}$ must be included in concavity analysis. Concave up on $\left(-\infty, -\frac{2}{3}\right)$

and $\left(\frac{4}{3}, \infty\right)$; concave down on $\left(-\frac{2}{3}, \frac{4}{3}\right)$.

38.
$$y = \frac{4x^2 + 2x + 1}{2x^2}$$

 $4x^2 + 2x + 1$ is never 0 and x cannot be zero. Thus no intercepts. Vertical asymptote is x = 0.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{4x^2}{2x^2} = \lim_{x \to \infty} 2 = 2 = \lim_{x \to \infty} y$$

Thus y = 2 is a horizontal asymptote. Since $y = 2 + x^{-1} + \frac{1}{2}x^{-2}$, we have

$$y' = -x^{-2} - x^{-3} = -x^{-3}(x+1)$$

CV: x = -1, but x = 0 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, -1)$ and $(0, \infty)$; increasing on (-1, 0); relative minimum at $\left(-1, \frac{3}{2}\right)$.

$$y'' = 2x^{-3} + 3x^{-4} = \frac{3}{x^4} \left(\frac{2}{3}x + 1\right).$$

Possible inflection point when $x = -\frac{3}{2}$, but x = 0 must be included in the concavity analysis. Concave down on $\left(-\infty, -\frac{3}{2}\right)$; concave up on $\left(-\frac{3}{2}, 0\right)$ and $(0, \infty)$; inflection point at $\left(-\frac{3}{2}, \frac{14}{9}\right)$. No symmetry.

Chapter 13: Curve Sketching

$$39. \quad y = \frac{3x+1}{(3x-2)^2}$$

Intercepts:
$$\left(-\frac{1}{3}, 0\right), \left(0, \frac{1}{4}\right)$$

Vertical asymptote is $x = \frac{2}{3}$.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{3x}{9x^2} = \lim_{x \to \infty} \frac{1}{3x} = 0 = \lim_{x \to -\infty} y$$

Thus y = 0 is a horizontal asymptote.

$$y' = \frac{(3x-2)^{2}(3) - (3x+1)(2)(3x-2)(3)}{(3x-2)^{4}}$$

$$= \frac{3(3x-2)[(3x-2) - 2(3x+1)]}{(3x-2)^{4}}$$

$$= -\frac{3(3x+4)}{(3x-2)^{3}}$$

CV: $x = -\frac{4}{3}$, but $x = \frac{2}{3}$ must be included in inc.-dec. analysis.

Decreasing on
$$\left(-\infty, -\frac{4}{3}\right)$$
 and $\left(\frac{2}{3}, \infty\right)$;

increasing on $\left(-\frac{4}{3}, \frac{2}{3}\right)$; relative minimum at

$$\left(-\frac{4}{3}, -\frac{1}{12}\right).$$

$$y'' = -3 \cdot \frac{(3x-2)^3(3) - (3x+4)(3)(3x-2)^2(3)}{(3x-2)^6}$$

$$= -3 \cdot \frac{3(3x-2)^2[(3x-2) - 3(3x+4)]}{(3x-2)^6}$$

$$= -3 \cdot \frac{3(-6x-14)}{(3x-2)^4} = \frac{18(3x+7)}{(3x-2)^4}$$

Possible inflection point when $x = -\frac{7}{3}$, but

 $x = \frac{2}{3}$ must be included in concavity analysis.

Concave down on
$$\left(-\infty, -\frac{7}{3}\right)$$
; concave up on $\left(-\frac{7}{3}, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \infty\right)$; inflection point at $\left(-\frac{7}{3}, -\frac{2}{27}\right)$.

40.
$$y = \frac{3x+1}{(6x+5)^2}$$

Intercepts:
$$\left(-\frac{1}{3}, 0\right), \left(0, \frac{1}{25}\right)$$

Vertical asymptote is $x = -\frac{5}{6}$.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{3x}{36x^2} = \lim_{x \to \infty} \frac{1}{12x} = 0 = \lim_{x \to -\infty} y$$

Thus y = 0 is horizontal asymptote.

Thus
$$y = 0$$
 is nonzontal asymptote.

$$y' = \frac{(6x+5)^2(3) - (3x+1)[12(6x+5)]}{(6x+5)^4}$$

$$3(6x+5)[(6x+5) - 4(3x+1)]$$

$$=\frac{3(6x+5)[(6x+5)-4(3x+1)]}{(6x+5)^4}$$

$$= \frac{3(-6x+1)}{(6x+5)^3} = \frac{-3(6x-1)}{(6x+5)^3}$$

CV:
$$x = \frac{1}{6}$$
, but $x = -\frac{5}{6}$ must be included in

inc.-dec. analysis. Decreasing on $\left(-\infty, -\frac{5}{6}\right)$ and

$$\left(\frac{1}{6}, \infty\right)$$
; increasing on $\left(-\frac{5}{6}, \frac{1}{6}\right)$; relative

maximum at
$$\left(\frac{1}{6}, \frac{1}{24}\right)$$
. Finding y'' gives:

$$y'' = -3 \cdot \frac{(6x+5)^3(6) - (6x-1) \left[18(6x+5)^2 \right]}{(6x+5)^6}$$

$$= -3 \cdot \frac{6(6x+5)^2 [(6x+5) - 3(6x-1)]}{(6x+5)^6}$$

$$= -18 \cdot \frac{-12x+8}{(6x+5)^4}$$

$$= 72 \cdot \frac{3x-2}{(6x+5)^4}$$

Possible inflection point when $x = \frac{2}{3}$, but $x = -\frac{5}{6}$ must be included in concavity analysis.

Concave down on $\left(-\infty, -\frac{5}{6}\right)$ and $\left(-\frac{5}{6}, \frac{2}{3}\right)$;

concave up on $\left(\frac{2}{3}, \infty\right)$; inflection point at

$$\left(\frac{2}{3}, \frac{1}{27}\right)$$
.

41.
$$y = \frac{x^2 - 1}{x^3} = \frac{(x+1)(x-1)}{x^3}$$

Intercepts are (-1, 0) and (1, 0). Symmetric about the origin. Vertical asymptote x = 0.

$$\lim_{x \to \infty} \frac{x^2 - 1}{x^3} = \lim_{x \to \infty} \frac{x^2}{x^3} = \lim_{x \to \infty} \frac{1}{x}$$

 $=0 = \lim_{x \to -\infty} \frac{1-x}{x^2}$, so y = 0 is the only horizontal

asymptote. Since $y = x^{-1} - x^{-3}$, then

$$y' = -x^{-2} + 3x^{-4} = x^{-4} \left(-x^2 + 3 \right) = \frac{3 - x^2}{x^4}$$

CV: $x = \pm \sqrt{3}$, but x = 0 must be included in the inc.-dec. analysis. Increasing on $\left(-\sqrt{3}, 0\right)$ and $\left(0, \sqrt{3}\right)$; decreasing on $\left(-\infty, -\sqrt{3}\right)$ and

$$(\sqrt{3}, \infty)$$
; relative maximum at $(\sqrt{3}, \frac{2\sqrt{3}}{9})$;

relative minimum at $\left(-\sqrt{3}, -\frac{2\sqrt{3}}{9}\right)$.

$$y'' = 2x^{-3} - 12x^{-5} = 2x^{-5} \left(x^2 - 6\right) = \frac{2\left(x^2 - 6\right)}{x^5}$$

Possible inflection points when $x = \pm \sqrt{6}$, but x = 0 must be included in the concavity analysis. Concave down on $\left(-\infty, -\sqrt{6}\right)$ and $\left(0, \sqrt{6}\right)$;

concave up on $(-\sqrt{6}, 0)$ and $(\sqrt{6}, \infty)$;

inflection points at $\left(\sqrt{6}, \frac{5\sqrt{6}}{36}\right)$ and

$$\left(-\sqrt{6}, \frac{-5\sqrt{6}}{36}\right).$$

42.
$$y = \frac{3x}{(x-2)^2}$$

Intercept (0,0)

Vertical asymptote at x = 2

$$\lim_{x \to \infty} \frac{3x}{x^2 - 4x + 4} = \lim_{x \to \infty} \frac{3x}{x^2} = \lim_{x \to \infty} \frac{3}{x} = 0 \text{ and}$$

$$\lim_{x \to -\infty} \frac{3x}{x^2 - 4x + 4} = 0$$
, so $y = 0$ is the only

horizontal asymptote.

$$y' = \frac{-3(x+2)}{(x-2)^3}$$

CV: x = -2, but x = 2 must be included in the inc.-dec. analysis. Decreasing on $(-\infty, -2)$ and $(2, \infty)$; increasing on (-2, 2); relative maximum

at
$$\left(-2, -\frac{3}{8}\right)$$

$$y'' = \frac{6(x+4)}{(x-2)^4}$$

Possible inflection point when x = -4, but x = 2 must be included in the concavity analysis.

Chapter 13: Curve Sketching

ISM: Introductory Mathematical Analysis

Concave down on $(-\infty, -4)$; concave up on (-4, 2) and $(2, \infty)$; inflection point at $\left(-4, -\frac{1}{3}\right)$.

43.
$$y = 2x + 1 + \frac{1}{x - 1} = \frac{2x^2 - x}{x - 1} = \frac{x(2x - 1)}{x - 1}$$

Intercepts: (0,0), $\left(\frac{1}{2},0\right)$

x = 1 is the only vertical asymptote. y = 2x + 1 is an oblique asymptote.

$$y' = \frac{(x-1)(4x-1) - (1)(2x^2 - x)}{(x-1)^2}$$
$$= \frac{4x^2 - 5x + 1 - 2x^2 + x}{(x-1)^2}$$
$$= \frac{2x^2 - 4x + 1}{(x-1)^2}$$

CV:
$$\frac{2 \pm \sqrt{2}}{2} = 1 \pm \frac{\sqrt{2}}{2}$$
, but $x = 1$ must be

included in the inc-dec. analysis. Increasing on

$$\left(-\infty, 1 - \frac{\sqrt{2}}{2}\right)$$
 and $\left(1 + \frac{\sqrt{2}}{2}, \infty\right)$; decreasing on

$$\left(1-\frac{\sqrt{2}}{2},1\right)$$
 and $\left(1,1+\frac{\sqrt{2}}{2}\right)$; relative maximum

at
$$\left(1 - \frac{\sqrt{2}}{2}, 3 - 2\sqrt{2}\right)$$
; relative minimum at

$$\left(1+\frac{\sqrt{2}}{2}, 3+2\sqrt{2}\right)$$

$$y'' = \frac{(x-1)^2 (4x-4) - 2(x-1)(2x^2 - 4x + 1)}{(x-1)^4}$$
$$= \frac{2(x-1)}{(x-1)^4}$$

No possible inflection point, but x = 1 must be included in the concavity analysis. Concave down on $(-\infty, 1)$; concave up on $(1, \infty)$. No symmetry.

44.
$$y = \frac{3x^4 + 1}{x^3}$$

No intercepts

Symmetric about the origin.

Vertical asymptote is x = 0. $\frac{3x^4 + 1}{x^3} = 3x + \frac{1}{x^3}$ so

y = 3x is an oblique asymptote.

Since $y = 3x + x^{-3}$,

$$y' = 3 - 3x^{-4} = 3 - \frac{3}{x^4} = \frac{3(x^2 + 1)(x + 1)(x - 1)}{x^4}$$

CV: ± 1 , but x = 0 must be considered in the inc.-dec. analysis. Increasing on $(-\infty, -1)$ and $(1, \infty)$; decreasing on (-1, 0) and (0, 1); relative maximum at (-1, -4); relative minimum at (1, 4).

$$y'' = \frac{12}{x^5}$$

No possible inflection point, but x = 0 must be included in the concavity analysis. Concave down on $(-\infty, 0)$; concave up on $(0, \infty)$.

45.
$$y = \frac{-3x^2 + 2x - 5}{3x^2 - 2x - 1} = \frac{-3x^2 + 2x - 5}{(3x + 1)(x - 1)}$$

Note that $-3x^2 + 2x - 5$ is never zero. Intercept: (0, 5)

Vertical asymptotes are $x = -\frac{1}{3}$ and x = 1.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{-3x^2}{3x^2} = \lim_{x \to \infty} -1 = -1 = \lim_{x \to -\infty} y$$

Thus y = -1 is horizontal asymptote

$$y' = \frac{\left(3x^2 - 2x - 1\right)(-6x + 2) - \left(-3x^2 + 2x - 5\right)(6x - 2)}{\left(3x^2 - 2x - 1\right)^2}$$

$$= \frac{2(3x-1)\left[\left(3x^2-2x-1\right)(-1)-\left(-3x^2+2x-5\right)\right]}{\left(3x^2-2x-1\right)^2}$$

$$= \frac{12(3x-1)}{12(3x-1)} = \frac{12(3x-1)}{12(3x-1)}$$

$$= \frac{12(3x-1)}{\left(3x^2 - 2x - 1\right)^2} = \frac{12(3x-1)}{\left[(3x+1)(x-1)\right]^2}$$

CV: $x = \frac{1}{3}$, but $x = -\frac{1}{3}$ and x = 1 must be included in inc.-dec. analysis.

Decreasing on $\left(-\infty, -\frac{1}{3}\right)$ and $\left(-\frac{1}{3}, \frac{1}{3}\right)$; increasing on $\left(\frac{1}{3}, 1\right)$ and $(1, \infty)$; relative minimum at $\left(\frac{1}{3}, \frac{7}{2}\right)$.

$$y'' = 12 \cdot \frac{\left(3x^2 - 2x - 1\right)^2 (3) - (3x - 1)\left[2\left(3x^2 - 2x - 1\right)(6x - 2)\right]}{\left(3x^2 - 2x - 1\right)^4}$$

$$=12 \cdot \frac{\left(3x^2 - 2x - 1\right) \left[3\left(3x^2 - 2x - 1\right) - 2(3x - 1)(6x - 2)\right]}{\left(3x^2 - 2x - 1\right)^4}$$

$$=12 \cdot \frac{-27x^2 + 18x - 7}{\left(3x^2 - 2x - 1\right)^3} = \frac{-12\left(27x^2 - 18x + 7\right)}{\left[(3x+1)(x-1)\right]^3}$$

Since $27x^2 - 18x + 7$ is never zero, there is no possible inflection point, but $x = -\frac{1}{3}$ and x = 1 must be included

in concavity analysis. Concave down on $\left(-\infty,-\frac{1}{3}\right)$ and $(1,\infty)$; concave up on $\left(-\frac{1}{3},1\right)$.

46.
$$y = 3x + 2 + \frac{1}{3x + 2} = \frac{(3x + 2)^2 + 1}{3x + 2}$$
$$= \frac{9x^2 + 12x + 5}{3x + 2}$$

Note that $9x^2 + 12x + 5$ is never zero. Intercept: $\left(0, \frac{5}{2}\right)$

Vertical asymptote is $x = -\frac{2}{3}$; oblique asymptote is y = 3x + 2.

$$y' = 3 - \frac{3}{(3x+2)^2} = 3 \cdot \frac{(3x+2)^2 - 1}{(3x+2)^2}$$
$$= 3 \cdot \frac{9x^2 + 12x + 3}{(3x+2)^2} = 9 \cdot \frac{(3x+1)(x+1)}{(3x+2)^2}$$

CV: $x = -\frac{1}{3}$ and x = -1, but $x = -\frac{2}{3}$ must be included in inc.-dec. analysis. Increasing on $(-\infty, -1)$ and $\left(-\frac{1}{3}, \infty\right)$; decreasing on $\left(-1, -\frac{2}{3}\right)$ and $\left(-\frac{2}{3}, -\frac{1}{3}\right)$; relative maximum at $\left(-1, -2\right)$; relative minimum at $\left(-\frac{1}{3}, 2\right)$.

$$y'' = -3(-2)(3x+2)^{-3}(3) = \frac{18}{(3x+2)^3}$$

No possible inflection point, but $x = -\frac{2}{3}$ must be included in concavity analysis. Concave down on $\left(-\infty, -\frac{2}{3}\right)$; concave up on $\left(-\frac{2}{3}, \infty\right)$.

47.

48.

49.

50.

51. When $x = -\frac{a}{b}$, then a + bx = 0 so $x = -\frac{a}{b}$ is a vertical asymptote.

$$\lim_{x \to \infty} \frac{x}{a + bx} = \lim_{x \to \infty} \frac{x}{bx} = \lim_{x \to \infty} \frac{1}{b} = \frac{1}{b}$$

Thus $y = \frac{1}{b}$ is a horizontal asymptote.

52. For $y = 6 - 3e^{-x}$ we have

$$\lim_{x \to \infty} \left(6 - 3e^{-x} \right) = \lim_{x \to \infty} \left(6 - \frac{3}{e^x} \right) = 6 - 3(0) = 6$$

Thus the line y = 6 is a horizontal asymptote for the graph of $y = 6 - 3e^{-x}$. For $y = 6 + 3e^{-x}$, we obtain $\lim_{x\to\infty} (6+3e^{-x}) = 6+3(0) = 6$, so the line y = 6 is also a horizontal asymptote for the graph of $y = 6+3e^{-x}$.

53.
$$\lim_{t \to \infty} (250 - 83e^{-t}) = \lim_{t \to \infty} (250 - \frac{83}{e^t})$$

= 250 - 0 = 250
Thus y = 250 is a horizontal asymptote.

54.

55.

$$x \approx \pm 2.45, x \approx 0.67, y = 2$$

56.

In the standard window, two vertical asymptotes of the form x = k, where k > 0, are apparent $(x \approx 0.68 \text{ and } x \approx 7.32)$. By zooming around x = -4, another vertical asymptote is apparent (x = -4). Thus three vertical asymptotes exist.

From the graph, it appears that $\lim_{x\to\infty} y \approx 0.48$.

Thus a horizontal asymptote is $y \approx 0.48$. Algebraically, we have

$$\lim_{x \to \infty} \frac{0.34e^{0.7x}}{4.2 + 0.71e^{0.7x}} = \lim_{x \to \infty} \frac{\frac{0.34e^{0.7x}}{e^{0.7x}}}{\frac{4.2 + 0.71e^{0.7x}}{e^{0.7x}}}$$

$$= \lim_{x \to \infty} \frac{0.34}{\frac{4.2}{e^{0.7x}} + 0.71} = \frac{0.34}{0 + 0.71} \approx 0.48$$

Problems 13.6

- 1. Let the numbers be x and 82 x. Then if $P = x(82 x) = 82x x^2$, we have P' = 82 2x. Setting $P' = 0 \Rightarrow x = 41$. Since P'' = -2 < 0, there is a maximum when x = 41. Because 82 x = 41, the required numbers are 41 and 41.
- 2. Let the numbers be x and 20 x, where $0 \le x \le 20$. Let $P = (2x)(20 x)^2 = 2x^3 80x^2 + 800x$. Setting $\frac{dP}{dx} = 0$ gives $P' = 6x^2 - 160x + 800 = 2(3x - 20)(x - 20) = 0$, from which $x = \frac{20}{3}$ or x = 20. P' > 0 on $\left(0, \frac{20}{3}\right)$ and P' < 0 on $\left(\frac{20}{3}, 20\right)$. Thus P has a

relative and absolute maximum when $x = \frac{20}{3}$. The other number is $20 - x = \frac{40}{3}$.

3. We are given that 15x + 9(2y) = 9000, or $y = \frac{9000 - 15x}{18}$. We want to maximize area A, where A = xy. $A = xy - x \left(\frac{9000 - 15x}{18}\right) - \frac{1}{2}(9000x - 15x^2)$

$$A = xy = x \left(\frac{9000 - 15x}{18}\right) = \frac{1}{18} \left(9000x - 15x^2\right)$$

$$A' = \frac{1}{18}(9000 - 30x)$$

Setting $A' = 0 \Rightarrow x = 300$. Since

 $A''(300) = \frac{1}{18}(-30) < 0$, we have a maximum at

$$x = 300$$
. Thus $y = \frac{9000 - 15(300)}{18} = 250$. The

dimensions are 300 ft by 250 ft.

4. We are given that xy = 1400, or $y = \frac{1400}{x}$, and want to minimize N = 2x + 7y. We have $N = 2x + 7y = 2x + 7\left(\frac{1400}{x}\right), x > 0$

$$N' = 2 - \frac{9800}{r^2} = \frac{2(x^2 - 4900)}{r^2}$$

Setting N' = 0 yields $x^2 = 4900$, so x = 70. We have $N'' = \frac{19,600}{x^3}$, so N''(70) > 0 and we have

a minimum. If x = 70, then y = 20. Thus N = 2(70) + 7(20) = 280 ft.

5. $c = 0.05q^2 + 5q + 500$ Avg. cost per unit $= \overline{c} = \frac{c}{q} = 0.05q + 5 + \frac{500}{q}$

$$\overline{c}'=0.05-\frac{500}{q^2}$$
. Setting $\overline{c}'=0$ yields
$$0.05=\frac{500}{q^2},\ q^2=10,000,\ q=\pm100$$
. We exclude $q=-100$ because q represents the number of units. Since $\overline{c}''=\frac{1000}{q^3}>0$ for $q>0$, \overline{c} is an absolute minimum when $q=100$ units.

- 6. $C = 0.12s 0.0012s^2 + 0.08$, where $0 \le s \le 60$. Setting $\frac{dC}{ds} = 0$ gives $0.12 0.0024s = 0 \Rightarrow s = 50$. Since $\frac{d^2C}{ds^2} = -0.0024 < 0$, a maximum occurs when s = 50. Thus a minimum can occur only at an endpoint of the domain. If s = 0, then C = 0.08; if s = 60, then C = 2.96. Thus the minimum cost of \$0.08 per hour occurs for s = 0 mi/h and might be due to depreciation, insurance, and so on.
- 7. p = -5q + 30Since total revenue = (price)(quantity), $r = pq = (-5q + 30)q = -5q^2 + 30q$ Setting $r' = -10q + 30 = 0 \Rightarrow q = 3$. Since r'' = -10 < 0, r is maximum at q = 3 units, for which the corresponding price is p = -5(3) + 30 = \$15.
- 8. $q = Ae^{-Bp}$ Revenue = $r = pq = pAe^{-Bp}$ $r' = A[e^{-Bp}(1) + pe^{-Bp}(-B)]$ $= A(1 - Bp)e^{-Bp}$ $= AB\left(\frac{1}{B} - p\right)e^{-Bp}$ Critical value: $p = \frac{1}{B}$

If $p < \frac{1}{B}$, then r' > 0 and r is increasing. If $p > \frac{1}{B}$, then r' < 0 and r is decreasing. Thus

revenue is maximum when $p = \frac{1}{B}$. The answer does not depend on A because A represents the initial value of q, so it doesn't change q over time.

9.
$$f(p) = 170 - p - \frac{1600}{p+15}$$
, where $0 \le p \le 100$.

a. Setting
$$f'(p) = 0$$
 gives $-1 + \frac{1600}{(p+15)^2} = 0$, $\frac{1600}{(p+15)^2} = 1$, $(p+15)^2 = 1600$, $p+15 = \pm 40$, from which $p=25$. Since $f''(p) = -\frac{3200}{(p+15)^3} < 0$ for $p=25$, we have an absolute maximum of $f(25) = 105$ grams.

b.
$$f(0) = 63\frac{1}{3}$$
 and $f(100) = \frac{1290}{23} \approx 56.1$, so we have an absolute minimum of $f(100) = \frac{1290}{23} \approx 56.1$ grams.

10.
$$R = D^2 \left(\frac{C}{2} - \frac{D}{3}\right) = \frac{CD^2}{2} - \frac{D^3}{3}$$

The rate of change of *R* is $\frac{dR}{dD} = CD - D^2$. This is the function to be maximized. Setting

$$\frac{d}{dD} \left(\frac{dR}{dD} \right) = C - 2D = 0 \text{ gives } D = \frac{C}{2}. \text{ Since}$$

$$\frac{d^2}{dD^2} \left(\frac{dR}{dD} \right) = -2 < 0, \text{ the maximum rate of}$$

change occurs when $D = \frac{C}{2}$.

11.
$$p = 85 - 0.05q$$

 $c = 600 + 35q$
Profit = Total Revenue - Total Cost
 $P = pq - c = (85 - 0.05q)q - (600 + 35q)$
 $= -(0.05q^2 - 50q + 600)$
Setting $P' = -(0.1q - 50) = 0$ yields $q = 500$.
Since $P''(500) = -0.1 < 0$, P is a maximum when $q = 500$ units. This corresponds to a price of $p = 85 - 0.05(500) = 60 and a profit of $P = $11,900$.

12. Cost per unit = \$3
$$p = \frac{10}{\sqrt{q}}$$

Profit = Total Revenue – Total Cost
$$P = pq - c$$

$$P = \left(\frac{10}{\sqrt{q}}\right)q - (3q) = 10\sqrt{q} - 3q$$
 Setting $P' = \frac{5}{\sqrt{q}} - 3 = 0$ yields $q = \frac{25}{9}$. Moreover, we have $P'' = -\frac{5}{2}q^{-\frac{3}{2}} < 0$ for $q > 0$, so P is maximum when $q = \frac{25}{9}$. The corresponding price is $p = \$6$.

13.
$$p = 42 - 4q$$

$$\overline{c} = 2 + \frac{80}{q}$$

$$Total Cost = c = \overline{cq} = 2q + 80$$

$$Profit = Total Revenue - Total Cost$$

$$P = pq - c = (42 - 4q)q - (2q + 80)$$

$$= -\left(4q^2 - 40q + 80\right)$$

$$P' = -(8q - 40)$$

$$Setting P' = -(8q - 40) = 0 \text{ gives } q = 5. \text{ We find}$$
that $P'' = -8 < 0$, so P has a maximum value when $q = 5$. The corresponding price p is $42 - 4(5) = \$22$.

14.
$$p = \frac{50}{\sqrt{q}}$$

$$\overline{c} = \frac{1}{4} + \frac{2500}{q}$$

Total cost = $c = \overline{c}q = \frac{q}{4} + 2500$

Profit = Total Revenue - Total Cost
$$P = pq - c = 50\sqrt{q} - \frac{q}{4} - 2500$$

Setting $P' = \frac{25}{\sqrt{q}} - \frac{1}{4} = 0$ yields $q = 10,000$.

Since $P'' = -\frac{25}{2}q^{-3/2} < 0$ for $q > 0$, it follows that P is a maximum when $q = 10,000$. The corresponding price is $p = \frac{50}{100} \approx \0.50 . Since
$$MR = \frac{25}{\sqrt{q}} \text{ and } MC = \frac{1}{4}, \text{ then for } q = 10,000 \text{ we}$$
have $MR = \frac{25}{100} = \frac{1}{4} = MC$.

15.
$$p = q^2 - 100q + 3200$$
 on $[0, 120]$

$$\overline{c} = \frac{2}{3}q^2 - 40q + \frac{10,000}{q}$$

Profit = Total Revenue – Total Cost Since total revenue r = pq and total cost = $c = \overline{cq}$,

$$P = pq - \overline{c}q$$

$$= q^3 - 100q^2 + 3200q - \left(\frac{2}{3}q^3 - 40q^2 + 10,000\right)$$

$$= \frac{1}{3}q^3 - 60q^2 + 3200q - 10,000$$

$$P' = q^2 - 120q + 3200 = (q - 40)(q - 80)$$

Setting P' = 0 gives q = 40 or 80. Evaluating profit at q = 0, 40, 80, and 120 gives P(0) = -10,000

$$P(40) = \frac{130,000}{3} = 43,333\frac{1}{3}$$

$$P(80) = \frac{98,000}{3} = 32,666 \frac{2}{3}$$

P(120) = 86,000

Thus the profit maximizing output is q = 120 units, and the corresponding maximum profit is \$86,000.

16. a.
$$c = \overline{cq} = 2q^3 - 42q^2 + 228q + 210$$

$$\frac{dc}{dq} = 6q^2 - 84q + 228 = 6(q^2 - 14q + 38)$$

Using the quadratic formula to solve

$$\frac{dc}{dq} = 0$$
 gives $q = 7 - \sqrt{11} \approx 3.68$ or

 $q = 7 + \sqrt{11} \approx 10.32$. Evaluating c at q = 3,

$$7 - \sqrt{11}$$
, $7 + \sqrt{11}$, and 12 gives 570, $434 + 44\sqrt{11} \approx 579.93$,

$$434 - 44\sqrt{11} \approx 288.07$$
, and 354,

respectively. Thus the minimum cost is

when
$$q = 7 + \sqrt{11} \approx 10.32$$
.

c(10) = 290 and c(11) = 298, so production should be fixed at q = 10 for a minimum cost of \$290.

b. c(7) = 434, so the minimum cost still occurs when $q = 7 + \sqrt{11} \approx 10.32$ and production should again be fixed at 10 units.

17. Total fixed costs = \$1200, material-labor costs/unit = \$2, and the demand equation is $p = \frac{100}{\sqrt{a}}$.

Profit = Total Revenue – Total Cost

$$P = pq - c$$

$$P = \frac{100}{\sqrt{q}} \cdot q - (2q + 1200)$$

$$\sqrt{q}$$

$$= 100\sqrt{q} - 2q - 1200$$

$$=2(50\sqrt{q}-q-600)$$

Setting
$$P' = 2\left(\frac{25}{\sqrt{q}} - 1\right) = 0$$
 yields $q = 625$. We

see that $P'' = -25q^{-\frac{3}{2}} < 0$ for q > 0, so P is maximum when q = 625. When q = 625,

MR =
$$\frac{50}{\sqrt{625}}$$
 = 2 = MC. When q = 625, then p = \$4.

18. Let x = number of \$10 per month increases so the monthly rate is 400 + 10x and the number of rented apartments is 100 - 2x. Monthly revenue r is given by

r = (rent/apt.) (no. of apt. rented)

$$r = (400 + 10x)(100 - 2x)$$

$$r' = (400 + 10x)(-2) + (100 - 2x)(10)$$

$$= 200 - 40x = 40(5 - x)$$

Setting r' = 0 yields x = 5. Since r'' = -40 < 0, then r is maximum when x = 5. This results in a monthly rate for an apartment of 400 + 10(5) = \$450.

19. If x = number of \$0.50 decreases, where $0 \le x \le 48$, then the monthly fee for each subscriber is 24 - 0.50x, and the total number of subscribers is 6400 + 160x. Let r be the total (monthly) revenue.

revenue = (monthly rate)(number of subscribers) r = (24 - 0.50x)(6400 + 160x)

$$r' = (24 - 0.50x)(160) + (6400 + 160x)(-0.50)$$

$$= 640 - 160x = 160(4 - x)$$

Setting
$$r' = 0$$
 yields $x = 4$.

Evaluating r when x = 0, 4, and 48, we find that r is a maximum when x = 4. This corresponds to a monthly fee of 24 - 0.50(4) = \$22 and a monthly revenue r of \$154,880.

20. Note that as the number of units produced and sold increases from 0 to 600, the profit increases from 0 to (600)(400) = \$24,000. Let q = number of units produced and sold beyond 600. Then the total profit P is given by P = (600)(40) + (40 - 0.05q)q $= 24,000 + 40q - 0.05q^2$ P' = 40 - 0.10q Setting P' = 0 yields q = 400. Since P'' = -0.10 < 0, P is a maximum when q = 400.

that is, the total number of units = 600 + 400

= 1000.

 $4 \text{ ft} \times 4 \text{ ft} \times 2 \text{ ft}$

- 21. See the figure in the text. Given that $x^2y = 32$, we want to minimize $S = 4(xy) + x^2$. Since $y = \frac{32}{x^2}$, where x > 0, we have $S = 4x\left(\frac{32}{x^2}\right) + x^2 = \frac{128}{x} + x^2$, from which $S' = -\frac{128}{x^2} + 2x$. Setting S' = 0 gives $2x^3 = 128$, $x^3 = 64$, x = 4. Since $S'' = \frac{256}{x^3} + 2$, we get S''(4) > 0, so x = 4 gives a minimum. If x = 4, then $y = \frac{32}{16} = 2$. The dimensions are
- 22. See the figure in the text. We want to maximize $V = x^2y$ given that $4xy + x^2 = 192$, or $y = \frac{192 x^2}{4x}$ $V = x^2 \left(\frac{192 x^2}{4x}\right) = \frac{1}{4} \left(192x x^3\right), x > 0$ $V' = \frac{1}{4} \left(192 3x^2\right) = \frac{3}{4} \left(64 x^2\right)$ Setting V' = 0 gives x = 8. Since $V'' = \left(\frac{3}{4}\right)(-2x)$, then V''(8) < 0, so x = 8 gives a maximum. If x = 8, then y = 4. The dimensions are $8 \text{ ft} \times 8 \text{ ft} \times 4 \text{ ft}$. The volume is $8^2(4) = 256 \text{ ft}^3$.

- 23. $V = x(L-2x)^2$ $= L^2x - 4Lx^2 + 4x^3$ where $0 < x < \frac{L}{2}$. $V' = L^2 - 8Lx + 12x^2$ $= 12x^2 - 8Lx + L^2$ = (2x - L)(6x - L)For $0 < x < \frac{L}{2}$, setting V' = 0 gives $x = \frac{L}{6}$. Since V' > 0 on $\left(0, \frac{L}{6}\right)$ and V' < 0 on $\left(\frac{L}{6}, \frac{L}{2}\right)$, V is maximum when $x = \frac{L}{6}$. Thus the length of the side of the square must be $\frac{L}{6}$ in., which results in a volume of $\frac{L}{6}\left(L - \frac{L}{3}\right)^2 = \frac{2L^3}{27}$ in³.
- 24. Since xy = 720, then $y = \frac{720}{x}$, x > 0. We want to minimize A where $A = (x+10)(y+8) = (x+10)\left(\frac{720}{x} + 8\right)$ $= 800 + 8x + \frac{7200}{x}$ $A' = 8 \frac{7200}{x^2}$ Setting A' = 0 gives x = 30. Since $A'' = \frac{14,400}{x^3} > 0$ for x = 30, we have a minimum. Thus y = 24, so the dimensions are 30 + 10 by 24 + 8, that is, 40 in. $\times 32$ in.

25. See the figure in the text.

 $V = K = \pi r^{2} h$ (1) $S = 2\pi r h + \pi r^{2}$ (2) From Equation (1) $h = \frac{K}{\pi r^{2}}$. Thus Equation (2) becomes $S = \frac{2K}{r} + \pi r^{2}$ $\frac{dS}{dr} = -\frac{2K}{r^{2}} + 2\pi r = \frac{2(\pi r^{3} - K)}{r^{2}}$.

If
$$S' = 0$$
, then $\pi r^3 - K = 0$, $\pi r^3 = K$,
$$r = \sqrt[3]{\frac{K}{\pi}}$$
. Thus

$$h = \frac{K}{\pi \left(\frac{K}{\pi}\right)^{\frac{2}{3}}} = \left(\frac{K}{\pi}\right)^{\frac{1}{3}} = \sqrt[3]{\frac{K}{\pi}}.$$

Note that since $S'' = 2\pi + \frac{4K}{r^3} > 0$ for r > 0, we have a minimum.

26. See the figure in the text.

$$S = K = 2\pi r h + \pi r^2 \tag{1}$$

$$V = \pi r^2 h \tag{2}$$

From Equation (1), $h = \frac{K - \pi r^2}{2\pi r}$. Thus Equation

(2) becomes

$$V = \frac{Kr - \pi r^3}{2}$$

$$\frac{dV}{dr} = \frac{K - 3\pi r^2}{2}.$$

Setting V' = 0 gives $r = \sqrt{\frac{K}{3\pi}}$. Thus

$$h = \frac{K - \pi \frac{K}{3\pi}}{2\pi \sqrt{\frac{K}{3\pi}}} = \frac{\frac{2}{3}K}{2\pi \sqrt{\frac{K}{3\pi}}}$$

$$= \frac{\frac{2}{3}K}{2\pi\sqrt{\frac{K}{3\pi}}} \cdot \frac{\sqrt{\frac{K}{3\pi}}}{\sqrt{\frac{K}{3\pi}}} = \sqrt{\frac{K}{3\pi}}$$

Note that since $V'' = -3\pi r < 0$ for r > 0, we have a maximum.

27. p = 600 - 2q

$$c = 0.2q^2 + 28q + 200$$

Profit = Total Revenue - Total Cost

$$P = pq - c$$

$$P = (600 - 2q)q - \left(0.2q^2 + 28q + 200\right)$$

$$=-(2.2q^2-572q+200)$$

$$P' = -(4.4q - 572)$$

Setting P' = 0 yields q = 130. Since

P'' = -4.4 < 0, P is maximum when q = 130

units. The corresponding price is

p = 600 - 2(130) = \$340, and the profit is

P = \$36,980. If a tax of \$22/unit is imposed on the manufacturer, then the cost equation is

$$c_1 = 0.2q^2 + 28q + 200 + 22q$$

$$=0.2q^2+50q+200.$$

The demand equation remains the same. Thus

$$P_1 = pq - c_1$$

$$= (600 - 2q)q - (0.2q^2 + 50q + 200)$$

$$=-(2.2q^2-550q+200)$$

$$P'_1 = -(4.4q - 550)$$

Setting $P'_1 = 0$ yields q = 125. Since

 $P_1''=-4.4<0$, P_1 is maximum when q=125 units. The corresponding price is p=\$350 and

the profit is $P_1 = $34,175$.

28. Original data: p = 600 - 2q,

 $c = 0.2q^2 + 28q + 200$. Revenue, both before and after the license fee, is given by

 $r = pq = 600q - 2q^2$. After the license fee, the cost equation is

 $c_1 = c + 1000 = 0.2q^2 + 28q + 1200$ and the profit

$$P_1 = r - c_1$$

$$= (600q - 2q^2) - (0.2q^2 + 28q + 1200)$$

As in Problem 27, we find that P_1 has a maximum when q = 130 units, which gives p = \$340. Thus the profit-maximizing price and output remain the same. Since

Profit

 $= r - c_1 = r - (c + 1000) = (r - c) - 1000$, when

q = 130 we have

Profit = 36,980 – 1000 (from Problem 27) = \$35,980

29. Let *q* = number of units in a production run. Since inventory is depleted at a uniform rate,

assume that the average inventory is $\frac{q}{2}$. The

value of average inventory is $12\left(\frac{q}{2}\right)$, and

carrying costs are $0.192 \left[12 \left(\frac{q}{2} \right) \right]$. The number

of production runs per year is $\frac{3000}{q}$, and total

set-up costs are $54\left(\frac{3000}{q}\right)$. We want to

minimize the sum C of carrying costs and set-up

$$C = 0.192 \left[12 \left(\frac{q}{2} \right) \right] + 54 \left(\frac{3000}{q} \right)$$
$$= 1.152q + \frac{162,000}{q}$$
$$C' = 1.152 - \frac{162,000}{q^2}$$

Setting
$$C' = 0$$
 yields $q^2 = \frac{162,000}{1.152} = 140,625,$

$$q = 375$$
 (since $q > 0$). Since $C'' = \frac{324,000}{q^3} > 0$,

C is minimum when q = 375. Thus the economic lot size is 375/lot (8 lots).

30.
$$c = 0.004q^3 + 20q + 5000$$

 $p = 450 - 4q$
Profit = Total Revenue - Total Cost
 $P = pq - c$
 $= (450 - 4q)q - (0.004q^3 + 20q + 5000)$
 $P = -(0.004q^3 + 4q^2 - 430q + 5000)$
 $P' = -(0.012q^2 + 8q - 430)$
 $= -2(0.006q^2 + 4q - 215)$
Setting $P' = 0$ yields
 $0.006q^2 + 4q - 215 = 0$
 $q = \frac{-4 \pm \sqrt{21.16}}{0.012} = \frac{-4 \pm 4.6}{0.012}$
Since $q \ge 0$, choose $q = \frac{-4 + 4.6}{0.012} = 50$. Since P

is increasing on [0, 50) and decreasing on $(50, \infty)$, P is maximum when q = 50 units.

31. Let x = number of people over the 30. Note: $0 \le x \le 10$. Revenue = r= (number attending)(charge/person) =(30+x)(50-1.25x) $=1500+12.5x-1.25x^2$ r' = 12.5 - 2.5x

Setting r' = 0 yields x = 5. Since r'' = -2.5 < 0, r is maximum when x = 5, that is, when 35 attend.

- **32.** Let N = horsepower of motor. (Total annual cost) = C = (Annual cost to lease) + (Annual operating cost) $C = (200 + 0.40N) + 80,000 \left(\frac{0.008}{N} \right)$ $=200+0.04N+\frac{640}{N}$ $C' = 0.4 - \frac{640}{M^2}$ Setting C' = 0 yields $N^2 = 1600$, so N = 40(since N > 0). Since $C'' = \frac{1280}{N^3} > 0$ for N > 0, Cis a minimum when N = 40 horsepower.
- **33.** The cost per mile of operating the truck is $0.165 + \frac{s}{200}$. Driver's salary is \$18/hr. The number of hours for 700 mi trip is $\frac{700}{3}$. Driver's salary for trip is $18\left(\frac{700}{s}\right)$, or $\frac{12,600}{s}$. The cost of operating the truck for the trip is $700 \left\lfloor 0.165 + \frac{s}{200} \right\rceil.$ Total cost of trip is $C = \frac{12,600}{s} + 700 \left(0.165 + \frac{s}{200} \right)$ Setting $C' = -\frac{12,600}{s^2} + \frac{7}{2} = 0$ yields $s^2 = 3600$, or s = 60 (since s > 0). Since $C'' = \frac{25,200}{3} > 0$

for s > 0, C is a minimum when s = 60 mi/h.

34. Let q =level of production.

Average Cost =
$$\overline{c}$$
 = $\frac{\text{Total Cost}}{q}$

For $0 \le q \le 5000$, we have

$$\overline{c} = \frac{30q + 10q + 20,000}{q} = 40 + \frac{20,000}{q}$$
.

Note that total cost for 5000 units is 220,000. For

q > 5000,

$$\overline{c} = \frac{(\text{cost for first } 5000) + \begin{pmatrix} \text{cost for those} \\ \text{units beyond } 5000 \end{pmatrix}}{q}$$
$$= \frac{220,000 + [45(q - 5000) + 10(q - 5000)]}{q}$$

$$\overline{c} = 55 - \frac{55,000}{q}$$

If
$$0 < q \le 5000$$
, then $\overline{c}' = -\frac{20,000}{q^2} < 0$ and

thus \overline{c} is decreasing. If q > 5000, then

$$\overline{c}' = \frac{55,000}{g^2} > 0$$
 and thus \overline{c} is increasing.

Hence c is minimum when q = 5000 units.

35. Profit *P* is given by

P = Total revenue - Total cost

= Total revenue – (salaries + fixed cost)

= 50q - (1000m + 3000)

$$=50\left(m^3-15m^2+92m\right)-1000m-3000$$

$$=50(m^3-15m^2+72m-60)$$
, where $0 \le m \le 8$

$$P' = 50(3m^2 - 30m + 72)$$

$$= 150(m^2 - 10m + 24) = 150(m - 4)(m - 6)$$

Setting P' = 0 gives the critical values 4 and 6. We now evaluate P at these critical values and also at the endpoints 0 and 8.

P(0) = -3000

P(4) = 2600

P(6) = 2400

P(8) = 3400

Thus Ms. Jones should hire 8 salespeople to obtain a maximum weekly profit of \$3400.

36. Profit *P* is given by

P = Total revenue - Total cost = pq - Total cost

$$= 400q - 50q^2 - \text{Total cost.} \quad (q \text{ in hundreds})$$

$$\frac{dP}{dq} = 400 - 100q - \frac{d}{dq} \text{ (Total cost)}$$

$$=400-100q$$
 – Marginal cost

$$=400-100q-\frac{800}{a+5}$$

$$=\frac{400(q+5)-100q(q+5)-800}{q+5}$$

$$=\frac{-100q^2-100q+1200}{q+5}$$

$$=\frac{-100(q+4)(q-3)}{q+5}$$

Setting P' = 0 gives the critical value 3 (since q > 0). We find that P' > 0 for 0 < q < 3, and P' < 0 for q > 3. Thus there is a maximum profit when q = 3000 jackets.

37. $x = \text{tons of chemical A } (x \le 4),$

$$y = \frac{24-6x}{5-x}$$
 = tons of chemical B, profit on

A = \$2000/ton, and profit on B = \$1000/ton.

Total Profit =
$$P_T = 2000x + 1000 \left(\frac{24 - 6x}{5 - x} \right)$$

$$=2000 \left[x + \frac{12 - 3x}{5 - x} \right]$$

$$P'_{T} = 2000 \left[1 + \frac{(5-x)(-3) - (12-3x)(-1)}{(5-x)^{2}} \right]$$

$$=2000 \left[1 - \frac{3}{\left(5 - x\right)^2} \right]$$

$$= 2000 \left| \frac{x^2 - 10x + 22}{(5 - x)^2} \right|$$

Setting $P'_T = 0$ yields (by the quadratic formula)

$$x = \frac{10 \pm 2\sqrt{3}}{2} = 5 \pm \sqrt{3}$$

Because $x \le 4$, choose $x = 5 - \sqrt{3}$. Since P_T is

increasing on $\left\lceil 0, 5 - \sqrt{3} \right\rceil$ and decreasing on

 $(5-\sqrt{3}, 4]$, P_T is a maximum for $x=5-\sqrt{3}$

tons. If profit on A is P/ton and profit on B is

$$\frac{P}{2}$$
/ton, then
$$P_T = Px + \frac{P}{2} \left(\frac{24 - 6x}{5 - x} \right) = P \left[x + \frac{12 - 3x}{5 - x} \right]$$

$$P'_T = P \left[\frac{x^2 - 10x + 22}{(5 - x)^2} \right]$$

Setting $P'_T = 0$ and using an argument similar to that above, we find that P_T is a maximum when $x = 5 - \sqrt{3}$ tons.

38. x = number of floors. Let R = rate of return.

$$R = \frac{\text{Total Revenue}}{\text{Total Cost}}$$

$$= \frac{60,000x}{(10x)[120,000+3000(x-1)]+1,440,000}$$

$$= \frac{2x}{x^2+39x+48}$$

$$R' = 2 \cdot \frac{48 - x^2}{\left(x^2 + 39x + 48\right)^2}$$

R' = 0 when $x = \sqrt{48} = 4\sqrt{3}$ ($x \ge 0$). Since R is increasing on $(0, 4\sqrt{3})$ and decreasing on

 $(4\sqrt{3}, \infty)$, R is a maximum when

 $x = 4\sqrt{3} \approx 6.93$. The number of floors in the building must be an integer, so we evaluate R when x = 6 and x = 7: $R(6) \approx 0.0377$; $R(7) \approx 0.0378$. Thus 7 floors should be built to maximize the rate of return.

39. $P(j) = Aj \frac{L^4}{V} + B \frac{V^3 L^2}{1+j}$ $\frac{dP}{dj} = \frac{AL^4}{V} - \frac{BV^3 L^2}{(1+j)^2} = 0$

Solving for $(1+j)^2$ gives $(1+j)^2 = \frac{BV^4}{AL^2}$

40. a. $\frac{d}{dv} \left(-2at_r + v - \frac{2al}{v} \right) = 1 + \frac{2al}{v^2} = 0$ when $v = \sqrt{-2al}$. Note that $\frac{d^2}{dv^2} \left(-2at_r + v - \frac{2al}{v} \right) = \frac{-4al}{v^3} > 0$ for a < 0, l > 0, and v > 0. Thus $-2at_r + v - \frac{2al}{v}$ is a minimum for $v = \sqrt{-2al}$.

b.
$$v = \sqrt{-2(-19.6)(20)} = \sqrt{784} = 28$$
 ft/s.

c.
$$N = \frac{-2(-19.6)}{(-2)(-19.6)(0.5) + 28 - \frac{2(-19.6)(20)}{28}}$$
$$\approx 0.5 \text{ cars/s} = 0.5(3600) \text{ cars/h} = 1800$$

d. When $v = \sqrt{-2al}$, then $N = N(l) = \frac{-2a}{2at + \sqrt{2al}}$

$$N = N(l) = \frac{-2a}{-2at_r + \sqrt{-2al} + \frac{-2al}{\sqrt{-2al}}}$$
$$= \frac{-2a}{-2at_r + 2\sqrt{-2al}} = \frac{a}{at_r - \sqrt{-2al}}$$

The relative change in *N* when *l* is reduced from 20 ft to 15 ft is $\frac{N(15) - N(20)}{N(20)}$.

With $a = -19.6 \text{ ft/s}^2$ and $t_r = 0.5 \text{ s}$, then

$$N(20) = \frac{-19.6}{(-19.6)(0.5) - \sqrt{-2(-19.6)(20)}}$$

$$\approx 0.5185$$

$$N(15) = \frac{-19.6}{(-19.6)(0.5) - \sqrt{-2(-19.6)(15)}}$$

\$\approx 0.5756\$

The relative change is

$$\frac{N(15) - N(20)}{N(20)} \approx \frac{0.5756 - 0.5158}{0.5158} \approx 0.1101$$

41. $\overline{c} = \frac{c}{q} = 3q + 50 - 18\ln(q) + \frac{120}{q}, \ q > 0$

$$\frac{d\overline{c}}{dq} = 3 - \frac{18}{q} - \frac{120}{q^2} = \frac{3q^2 - 18q - 120}{q^2}$$
$$= \frac{3(q^2 - 6q - 40)}{q^2}$$

$$=\frac{3(q-10)(q+4)}{a^2}$$

Critical value is q = 10 since $q \ge 0$.

Since
$$\frac{d\overline{c}}{dq} < 0$$
 for $0 < q < 10$, and $\frac{d\overline{c}}{dq} > 0$ for

q > 10, we have a minimum when q = 10 cases. This minimum average cost is $3(10) + 50 - 18 \ln 10 + 12 \approx 50.55 .

42. The profit function is given by

$$P = TR - TC = q^3 - 20q^2 + 160q - (30q + 50)$$
$$= q^3 - 20q^2 + 130q - 50$$

where P is in thousands of dollars, q is in tons, and $0 \le q \le 12$. From the graph, the maximum profit occurs when q = 12 tons. The corresponding maximum profit is \$358,000 and the selling price per ton is \$64,000.

Chapter 13 Review Problems

1.
$$y = \frac{3x^2}{x^2 - 16} = \frac{3x^2}{(x+4)(x-4)}$$

When $x = \pm 4$ the denominator is zero and the numerator is not zero. Thus x = 4 and x = -4 are vertical asymptotes.

$$\lim_{x \to \infty} \frac{3x^2}{x^2 - 16} = \lim_{x \to \infty} \frac{3x^2}{x^2} = \lim_{x \to \infty} 3 = 3$$

Similarly, $\lim_{x \to -\infty} y = 3$. Thus y = 3 is the only

horizontal asymptote.

2.
$$y = \frac{x+3}{9x-3x^2} = \frac{x+3}{3x(3-x)}$$

When x = 0 or x = 3, the denominator is zero and the numerator is not zero. Thus x = 0 and x = 3 are vertical asymptotes.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{x}{-3x^2} = -\frac{1}{3} \lim_{x \to \infty} \frac{1}{x} = 0$$

Similarly, $\lim_{y \to \infty} y = 0$. Thus y = 0 is the only

horizontal asymptote.

3.
$$y = \frac{5x^2 - 3}{(3x + 2)^2} = \frac{5x^2 - 3}{9x^2 + 12x + 4}$$

When $x = -\frac{2}{3}$, the denominator is zero and the

numerator is not zero. Thus $x = -\frac{2}{3}$ is a vertical

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{5x^2}{9x^2} = \lim_{x \to \infty} \frac{5}{9} = \frac{5}{9}$$

Similarly, $\lim_{x \to -\infty} y = \frac{5}{9}$. Thus $y = \frac{5}{9}$ is the only horizontal asymptote.

4.
$$y = \frac{4x+1}{3x-5} - \frac{3x+1}{2x-11} = \frac{-x^2 - 30x - 6}{(3x-5)(2x-11)}$$

When $x = \frac{5}{3}$ or $x = \frac{11}{2}$, the denominator is zero

and the numerator is not zero. Thus $x = \frac{5}{3}$ and

 $x = \frac{11}{2}$ are vertical asymptotes.

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{-x^2}{6x^2} = \lim_{x \to \infty} \left(-\frac{1}{6} \right) = -\frac{1}{6}$$

Similarly, $\lim_{x \to -\infty} y = -\frac{1}{6}$. Thus $y = -\frac{1}{6}$ is the only horizontal asymptote.

5.
$$f(x) = \frac{3x^2}{9-x^2}$$

$$f'(x) = \frac{(9-x^2)(6x) - 3x^2(-2x)}{(9-x^2)^2} = \frac{54x}{(9-x^2)^2}$$

Thus x = 0 is the only critical value.

Note: Although f'(3) is not defined, ± 3 are not critical values because ± 3 are not in the domain of f.

6.
$$f(x) = 8(x-1)^2(x+6)^4$$

$$f'(x) = 8(2)(x-1)(x+6)^4 + 8(x-1)^2(4)(x+6)^3$$
$$= 16(x-1)(x+6)^3[x+6+2(x-1)]$$
$$= 16(x-1)(x+6)^3(3x+4)$$

Thus x = 1, x = -6, and $x = -\frac{4}{3}$ are the critical values.

7.
$$f(x) = \frac{\sqrt[3]{x+1}}{3-4x}$$

$$f'(x) = \frac{(3-4x)\left[\frac{1}{3}(x+1)^{-\frac{2}{3}}\right] - (x+1)^{\frac{1}{3}}(-4)}{(3-4x)^2}$$

$$=\frac{\frac{1}{3}(x+1)^{-\frac{2}{3}}[(3-4x)+12(x+1)]}{(3-4x)^2}$$

$$=\frac{8x+15}{3(x+1)^{\frac{2}{3}}(3-4x)^2}$$

f'(x) is zero when $x = -\frac{15}{8}$; f'(x) is not defined when x = -1 or $x = \frac{3}{4}$. However $\frac{3}{4}$ is not in the domain of f.

Thus $x = -\frac{15}{8}$ and x = -1 are critical values.

8.
$$f(x) = \frac{13xe^{-\frac{5x}{6}}}{6x+5}$$

$$f'(x) = 13 \cdot \frac{(6x+5)\left[x\left(-\frac{5}{6}e^{-\frac{5x}{6}}\right) + e^{-\frac{5x}{6}}(1)\right] - xe^{-\frac{5x}{6}}(6)}{(6x+5)^2}$$

$$= \frac{13}{6} \cdot \frac{-e^{-\frac{5x}{6}}\left\{(6x+5)[5x-6] + 36x\right\}}{(6x+5)^2} = \frac{13}{6} \cdot \frac{-\left\{30x^2 + 25x - 30\right\}}{e^{\frac{5x}{6}}(6x+5)^2}$$

$$= \frac{13}{6} \cdot \frac{-5\left(6x^2 + 5x - 6\right)}{e^{\frac{5x}{6}}(6x+5)^2} = \frac{-65(2x+3)(3x-2)}{6e^{\frac{5x}{6}}(6x+5)^2}$$

f'(x) is zero when $x = -\frac{3}{2}$ or $x = \frac{2}{3}$. Although f'(x) is not defined when $x = -\frac{5}{6}$, $-\frac{5}{6}$ is not in the domain of f. Thus $x = -\frac{3}{2}$ and $x = \frac{2}{3}$ are the only critical values.

9.
$$f(x) = -\frac{5}{3}x^3 + 15x^2 + 35x + 10$$

 $f'(x) = -5x^2 + 30x + 35$
 $= -5(x^2 - 6x - 7) = -5(x - 7)(x + 1)$
CV: $x = -1$ and $x = 7$. Decreasing on $(-\infty, -1)$ and $(7, \infty)$; increasing on $(-1, 7)$

10.
$$f(x) = \frac{3x^2}{(x+2)^2}$$
$$f'(x) = \frac{6x(x+2)^2 - 3x^2(2)(x+2)}{(x+2)^4}$$
$$= \frac{(x+2)(6x^2 + 12x - 6x^2)}{(x+2)^4}$$
$$= \frac{12x}{(x+2)^3}$$

CV: x = 0, but x = -2 is also considered in the inc.-dec. analysis. Increasing on $(-\infty, -2)$ and $(0, \infty)$; decreasing on (-2, 0).

11.
$$f(x) = \frac{6x^4}{x^2 - 3}$$

$$f'(x) = 6 \cdot \frac{\left(x^2 - 3\right)\left(4x^3\right) - x^4(2x)}{\left(x^2 - 3\right)^2}$$

$$= \frac{12x^3 \left[2\left(x^2 - 3\right) - x^2\right]}{\left(x^2 - 3\right)^2} = \frac{12x^3 \left(x^2 - 6\right)}{\left(x^2 - 3\right)^2}$$

$$= \frac{12x^3 \left(x + \sqrt{6}\right)\left(x - \sqrt{6}\right)}{\left[\left(x + \sqrt{3}\right)\left(x - \sqrt{3}\right)\right]^2}$$

CV: x = 0, $\pm \sqrt{6}$, but $x = \pm \sqrt{3}$ must also be considered in the inc.-dec. analysis. Decreasing on $\left(-\infty, -\sqrt{6}\right)$, $\left(0, \sqrt{3}\right)$, and $\left(\sqrt{3}, \sqrt{6}\right)$; increasing on $\left(-\sqrt{6}, -\sqrt{3}\right)$, $\left(-\sqrt{3}, 0\right)$ and $\left(\sqrt{6}, \infty\right)$.

12.
$$f(x) = 4\sqrt[3]{5x^3 - 7x}$$

 $f'(x) = 4 \cdot \frac{1}{3}(5x^3 - 7x)^{-2/3}(15x^2 - 7)$
 $= \frac{4(15x^2 - 7)}{3(5x^3 - 7x)^{2/3}}$
 $= \frac{4(\sqrt{15}x + \sqrt{7})(\sqrt{15}x - \sqrt{7})}{3[x(5x^2 - 7)]^{2/3}}$
 $= \frac{4(\sqrt{15}x + \sqrt{7})(\sqrt{15}x - \sqrt{7})}{3[x(\sqrt{5}x + \sqrt{7})(\sqrt{5}x - \sqrt{7})]^{2/3}}$
 $CV: x = \pm \sqrt{\frac{7}{15}}, 0, \pm \sqrt{\frac{7}{5}}$
Increasing on $\left(-\infty, -\sqrt{\frac{7}{5}}\right), \left(-\sqrt{\frac{7}{5}}, -\sqrt{\frac{7}{15}}\right), \left(\sqrt{\frac{7}{15}}, \sqrt{\frac{7}{5}}\right)$, and $\left(\sqrt{\frac{7}{5}}, \infty\right)$; decreasing on $\left(-\sqrt{\frac{7}{15}}, 0\right)$ and $\left(0, \sqrt{\frac{7}{15}}\right)$.

13.
$$f(x) = x^4 - x^3 - 14$$

 $f'(x) = 4x^3 - 3x^2$
 $f''(x) = 12x^2 - 6x = 6x(2x - 1)$
 $f''(x) = 0$ when $x = 0$ or $x = \frac{1}{2}$. Concave up on $(-\infty, 0)$ and $(\frac{1}{2}, \infty)$; concave down on $(0, \frac{1}{2})$.

14.
$$f(x) = \frac{x-2}{x+2}$$

 $f'(x) = \frac{(x+2)(1) - (x-2)(1)}{(x+2)^2} = \frac{4}{(x+2)^2}$
 $f''(x) = -\frac{8}{(x+2)^3}$
 $f''(x)$ is not defined when $x = -2$. Concave up on $(-\infty, -2)$; concave down on $(-2, \infty)$

15.
$$f(x) = \frac{1}{3x+2} = (3x+2)^{-1}$$

 $f'(x) = -(3x+2)^{-2}(3) = -3(3x+2)^{-2}$
 $f'' = 6(3x+2)^{-3}(3) = \frac{18}{(3x+2)^3}$
 $f''(x)$ is not defined when $x = -\frac{2}{3}$. Concave down on $\left(-\infty, -\frac{2}{3}\right)$; concave up on $\left(-\frac{2}{3}, \infty\right)$.

16.
$$f(x) = x^3 + 2x^2 - 5x + 2$$

 $f'(x) = 3x^2 + 4x - 5$
 $f''(x) = 6x + 4 = 2(3x + 2)$
 $f''(x) = 0$ when $x = -\frac{2}{3}$. Concave down on $\left(-\infty, -\frac{2}{3}\right)$; concave up on $\left(-\frac{2}{3}, \infty\right)$.

17.
$$f(x) = (2x+1)^3 (3x+2)$$

 $f'(x) = (2x+1)^3 (3) + (3x+2)[3(2x+1)^2 (2)]$
 $= 3(2x+1)^2 (2x+1+6x+4)$
 $= 3(2x+1)^2 (8x+5)$
 $f''(x) = 3\{(2x+1)^2 (8) + (8x+5)[2(2x+1)(2)]\}$
 $= 12(2x+1)[2(2x+1)+8x+5]$
 $= 12(2x+1)(12x+7)$

$$f''(x) = 0$$
 when $x = -\frac{1}{2}$ or $x = -\frac{7}{12}$. Concave up on $\left(-\infty, -\frac{7}{12}\right)$ and $\left(-\frac{1}{2}, \infty\right)$; concave down on $\left(-\frac{7}{12}, -\frac{1}{2}\right)$.

18.
$$f(x) = (x^2 - x - 1)^2$$

 $f'(x) = 2(x^2 - x - 1)(2x - 1)$
 $= 2(2x^3 - 3x^2 - x + 1)$
 $f''(x) = 2(6x^2 - 6x - 1)$
 $f'''(x) = 0$ when $6x^2 - 6x - 1 = 0$; by the quadratic formula $x = \frac{1}{2} \pm \frac{\sqrt{15}}{6}$. Concave up on $(-\infty, \frac{1}{2} - \frac{\sqrt{15}}{6})$ and $(\frac{1}{2} + \frac{\sqrt{15}}{6})$, ∞ ; concave down on $(\frac{1}{2} - \frac{\sqrt{15}}{6}, \frac{1}{2} + \frac{\sqrt{15}}{6})$.

19.
$$f(x) = 2x^3 - 9x^2 + 12x + 7$$

 $f'(x) = 6x^2 - 18x + 12 = 6(x^2 - 3x + 2)$
 $= 6(x - 1)(x - 2)$
CV: $x = 1$ and $x = 2$
Increasing on $(-\infty, 1)$ and $(2, \infty)$; decreasing on $(1, 2)$. Relative maximum when $x = 1$; relative minimum when $x = 2$.

20. $f(x) = \frac{ax + b}{x^2}$ for a > 0 and b > 0 $f'(x) = \frac{x^2(a) - (ax + b)(2x)}{x^4}$ $= \frac{ax^2 - 2ax^2 - 2bx}{x^4}$ $= \frac{-ax^2 - 2bx}{x^4}$ $= \frac{-ax - 2b}{x^3}$ CV: $x = -\frac{2b}{a}$, but x = 0 must be considered in

inc.-dec. analysis. Decreasing on $\left(-\infty, -\frac{2b}{a}\right)$

and
$$(0, \infty)$$
; increasing on $\left(-\frac{2b}{a}, 0\right)$. Relative minimum when $x = -\frac{2b}{a}$.

21.
$$f(x) = \frac{x^{10}}{10} + \frac{x^5}{5}$$

 $f'(x) = x^9 + x^4 = x^4(x^5 + 1)$
CV: $x = 0$ and $x = -1$
Decreasing on $(-\infty, -1)$; increasing on $(-1, 0)$
and $(0, \infty)$; relative minimum when $x = -1$

22.
$$f(x) = \frac{x^2}{x^2 - 4}$$

$$f'(x) = \frac{\left(x^2 - 4\right)(2x) - x^2(2x)}{\left(x^2 - 4\right)^2}$$

$$= \frac{2x\left[\left(x^2 - 4\right) - x^2\right]}{\left(x^2 - 4\right)^2} = \frac{-8x}{\left(x^2 - 4\right)^2}$$

$$= -\frac{8x}{\left[(x + 2)(x - 2)\right]^2}$$

CV: x = 0, but $x \pm 2$ must be considered in inc.-dec. analysis. Increasing on $(-\infty, -2)$ and (-2, 0); decreasing on (0, 2) and $(2, \infty)$. Relative maximum when x = 0.

23.
$$f(x) = x^{\frac{2}{3}}(x+1) = x^{\frac{5}{3}} + x^{\frac{2}{3}}$$

 $f'(x) = \frac{5}{3}x^{\frac{2}{3}} + \frac{2}{3}x^{-\frac{1}{3}} = \frac{1}{3}x^{-\frac{1}{3}}(5x+2) = \frac{5x+2}{3x^{\frac{1}{3}}}$
CV: $x = 0$ and $x = -\frac{2}{5}$
Increasing on $\left(-\infty, -\frac{2}{5}\right)$ and $(0, \infty)$; decreasing on $\left(-\frac{2}{5}, 0\right)$. Relative maximum when $x = -\frac{2}{5}$; relative minimum when $x = 0$.

24.
$$f(x) = x^3(x-2)^4$$

 $f'(x) = x^3[4(x-2)^3(1)] + (x-2)^4(3x^2)$
 $= x^2(x-2)^3[4x+3(x-2)]$
 $= x^2(x-2)^3(7x-6)$

CV:
$$x = 0, 2, \frac{6}{7}$$

Increasing on $(-\infty, 0), (0, \frac{6}{7})$, and $(2, \infty)$;
decreasing on $(\frac{6}{7}, 2)$. Relative maximum when $x = \frac{6}{7}$; relative minimum when $x = 2$.

25.
$$y = 3x^5 + 20x^4 - 30x^3 - 540x^2 + 2x + 3$$

 $y' = 15x^4 + 80x^3 - 90x^2 - 1080x + 2$
 $y'' = 60x^3 + 240x^2 - 180x - 1080$
 $= 60(x^3 + 4x^2 - 3x - 18)$
 $= 60(x - 2)(x + 3)^2$

Possible inflection points occur when x = 2 or x = -3. Concave down on $(-\infty, -3)$ and (-3, 2); concave up on $(2, \infty)$. Concavity changes at x = 2, so there is an inflection point when x = 2.

26.
$$y = \frac{x^2 + 2}{5x} = \frac{1}{5}x + \frac{2}{5}x^{-1}$$

 $y' = \frac{1}{5}(1 - 2x^{-2})$
 $y'' = \frac{4}{5}x^{-3} = \frac{4}{5x^3}$

y'' is never zero. Although y'' is not defined when x = 0, y is not continuous there. Thus there is no inflection point.

27.
$$y = 4(3x-5)(x^4+2) = 12x^5 - 20x^4 + 24x - 40$$

 $y' = 60x^4 - 80x^3 + 24$
 $y'' = 240x^3 - 240x^2 = 240x^2(x-1)$
Possible inflection points occur when $x = 0$ or $x = 1$. Concave down on $(-\infty, 0)$ and $(0, 1)$; concave up on $(1, \infty)$. Inflection point when $x = 1$.

28.
$$y = x^2 + 2\ln(-x)$$
 (Note: $x < 0$)
 $y' = 2x + \frac{2}{x}$
 $y'' = 2 - \frac{2}{x^2} = \frac{2x^2 - 2}{x^2} = \frac{2(x+1)(x-1)}{x^2}$
Possible inflection point occurs when $x = -1$.
Concave up on $(-\infty, -1)$; concave down on $(-1, 0)$. Inflection point when $x = -1$.

29.
$$y = \frac{x^3}{e^x} = x^3 e^{-x}$$

 $y' = x^3 (-e^{-x}) + e^{-x} (3x^2) = -e^{-x} (x^3 - 3x^2)$
 $y'' = -e^{-x} (3x^2 - 6x) - (x^3 - 3x^2) (-e^{-x})$
 $= e^{-x} (x^3 - 6x^2 + 6x)$
 $= xe^{-x} (x^2 - 6x + 6)$
 y'' is defined for all x and y'' is zero only when $x = 0$ or $x^2 - 6x + 6 = 0$. Using the quadratic formula on the second equation, the possible points of inflection occur when $x = 0$, $3 \pm \sqrt{3}$.
Concave up on $(0, 3 - \sqrt{3})$ and $(3 + \sqrt{3}, \infty)$; concave down on $(-\infty, 0)$ and $(3 - \sqrt{3}, 3 + \sqrt{3})$.
Inflection points when $x = 0$, $3 \pm \sqrt{3}$.

30.
$$y = (x^2 - 5)^3$$

 $y' = 3(x^2 - 5)^2(2x) = 6x(x^2 - 5)^2$
 $y'' = 6(x^2 - 5)^2 + 6x(2)(x^2 - 5)(2x)$
 $= 6(x^2 - 5)(x^2 - 5 + 4x^2)$
 $= 6(x^2 - 5)(5x^2 - 5)$
 $= 30(x^2 - 5)(x^2 - 1)$
 $= 30(x + \sqrt{5})(x - \sqrt{5})(x + 1)(x - 1)$

Possible inflection points occur when $x = \pm \sqrt{5}$ or $x = \pm 1$. Concave up on $\left(-\infty, -\sqrt{5}\right)$, (-1, 1), and $\left(\sqrt{5}, \infty\right)$; concave down on $\left(-\sqrt{5}, -1\right)$ and $\left(1, \sqrt{5}\right)$. Inflection points when $x = \pm \sqrt{5}, \pm 1$.

- 31. $f(x) = 3x^4 4x^3$ and f is continuous on [0, 2]. $f'(x) = 12x^3 - 12x^2 = 12x^2(x-1)$ The only critical value on (0, 2) is x = 1. Evaluating f at this value and at the endpoints gives f(0) = 0, f(1) = -1, and f(2) = 16. Absolute maximum: f(2) = 16; absolute minimum: f(1) = -1.
- 32. $f(x) = 2x^3 15x^2 + 36x$ and f is continuous on [0, 3]. $f'(x) = 6x^2 - 30x + 36 = 6(x - 2)(x - 3)$ The only critical value on (0, 3) is x = 2. Evaluating f at this value and at the endpoints gives f(0) = 0, f(2) = 28, f(3) = 27. Absolute maximum: f(2) = 28; absolute minimum: f(0) = 0.

33. $f(x) = \frac{x}{(5x-6)^2}$ and f is continuous on [-2, 0].

$$f'(x) = \frac{(5x-6)^2(1) - x[10(5x-6)]}{(5x-6)^4}$$

$$=\frac{(5x-6)[(5x-6)-10x]}{(5x-6)^4} = \frac{-5x-6}{(5x-6)^3}$$

$$=-\frac{5x+6}{(5x-6)^3}$$

The only critical value on (-2, 0) is $x = -\frac{6}{5}$. Evaluating f at this value and at the endpoints gives

$$f(-2) = -\frac{1}{128}$$
, $f\left(-\frac{6}{5}\right) = -\frac{1}{120}$ and $f(0) = 0$. Absolute maximum: $f(0) = 0$; absolute minimum:

$$f\left(-\frac{6}{5}\right) = -\frac{1}{120}.$$

34. $f(x) = (x+1)^2 (x-1)^{2/3}$ and f is continuous on [2, 3].

$$f'(x) = (x+1)^{2} \left[\frac{2}{3} (x-1)^{-1/3} \right] + (x-1)^{2/3} [2(x+1)]$$

$$= \frac{2}{3} (x+1)(x-1)^{-1/3} [(x+1) + 3(x-1)]$$

$$= \frac{3}{3}(x+1)(x-1)^{-1/3}(2x-1) = \frac{4(x+1)(2x-1)}{3(x-1)^{1/3}}$$

There are no critical values on [2, 3]. Evaluating f at the endpoints gives f(2) = 9 and $f(3) = 16(2^{2/3}) \approx 25.4$. Absolute maximum $f(3) = 16(2^{2/3}) \approx 25.4$; absolute minimum: f(2) = 9

35. $f(x) = x \ln x$

a.
$$f'(x) = \ln x + x \left(\frac{1}{x}\right) = \ln x + 1$$

$$\ln x + 1 = 0$$

$$\ln x = -1$$

$$x = e^{-1} = \frac{1}{e}$$

CV:
$$x = \frac{1}{e}$$

Decreasing on $\left(0, \frac{1}{e}\right)$ and increasing on $\left(\frac{1}{e}, \infty\right)$. Relative minimum at $x = \frac{1}{e}$.

b. $f''(x) = \frac{1}{x}$

f'' > 0 for all x in the domain of f. Concave up for $(0, \infty)$; there are no points of inflection.