

VIETNAM NATIONAL UNIVERSITY HANOI (VNU) VNU UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Computer Architecture Lecture 4: Internal Memories

Duy-Hieu Bui, PhD

VNU Information Technology Institute
Laboratory for Smart Integrated System (SISLAB)

Email: hieubd@vnu.edu.vn www.uet.vnu.edu.vn/~hieubd

- 1. Khái niệm chung
- 2. Bộ nhớ trong
 - RAM
 - ROM
 - DRAM
 - FLASH
 - Non-volatile Memory

Tham khảo chương 5, "Computer Organization and Architecture: Designing for Performance", William Stallings, 10th edition

- Bộ nhớ: thiết bị có thể bảo quản và khôi phục một thông tin
- Từ nhớ: tập bits có thể được đọc hay ghi đồng thời
- Các kiểu vật liệu nhớ:
 - Bán dẫn semiconductor (register, cache, bộ nhớ chính, ...)
 - Từ mangnetic (đĩa mềm, đĩa cứng, ...)
 - Optic (CD-ROM, DVD-ROM)
 - **–** ...

- 1. Vị trí
- 2. Dung lượng
- 3. Đơn vị truyền
- 4. Kiểu truy cập
- 5. Hiệu năng
- 6. Kiểu vật liệu
- 7. Đặc trưng vật liệu
- 8. Tổ chức

- Vị trí
 - CPU
 - Internal
 - External
- Dung lượng
 - Phụ thuộc vào kích thước từ nhớ, và
 - Số lượng từ nhớ
- Đơn vị truyền
 - Bên trong: phụ thuộc vào độ rộng bus dữ liệu
 - Bên ngoài: block(>từ nhớ)
 - Đơn vị có thể đánh địa chỉ được

- Kiểu truy cập
 - Tuần tự: VD băng từ
 - Trực tiếp:
 - Mỗi 1 block có 1 địa chỉ duy nhất
 - Truy cập = cách nhảy đến vùng lân cập và tìm tuần tự
 - Thời gian truy cập vào vị trị hiện tại hiện tại và trước đó
 - VD: HardDisk, Floppy Disk,...
 - Ngẫu nhiên:
 - Mỗi địa chỉ xác định chính xác một vị trí
 - Thời gian truy cập không phụ thuộc vào vị trí cũng như lần truy cập trước
 - VD: RAM, ...
 - Kết hợp:
 - Một từ được định vị thông qua việc sử dụng một phần nội dung của từ đó
 - Thời gian truy cập không phụ thuộc vào vị trí cũng như lần truy cập trước
 - VD: cache, ...

Chiến thuật phân cấp bộ nhớ: How much? How fast? How

expensive?

- Registers
- L1 Cache
- L2 Cache
- Main memory
- Disk cache
- Disk
- Optical
- Tape

Hiệu năng:

- Thời gian truy cập: khoảng thời gian từ khi gửi địa chỉ cho đến khi thu được dữ liệu trọn vẹn
- Thời gian chu trình nhớ Memory Cycle Time:
 - Thời gian bộ nhớ đòi hỏi để "hồi phục" trước lần truy cập kế tiếp
 - = access + recovery
- Tốc độ chuyển dữ liệu

Kiểu vật liệu:

Semiconductor :RAM

- Magnetic: Disk & Tape

Optical: CD & DVD

Others: Bubble, Hologram

- Đặc trưng vật liệu:
 - Phân rã Decay
 - Dễ thay đổi Volatility
 - Có thể xoá được Erasable
 - Năng lượng tiêu thụ
- Tổ chức:
 - Cách thức sắp xếp các bits trong một từ
 - Thường không rõ ràng
 - VD: interleaved

- 1. Khái niệm chung
- 2. Bộ nhớ trong
 - RAM
 - ROM
 - DRAM
 - FLASH
 - Non-volatile Memory

- Bộ nhớ bên trong máy tính
 - Semiconductor
 - Truy cập ngẫu nhiên

Semiconductor Memory types

- Random Access Memory (RAM): Iwu giữ những dữ liệu tạm thời
- Read Only Memory (ROM): Iwu giữ thông tin cố định

Memory Type	Category	Erasure	Write Mechanism	Volatility	
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile	
Read-only memory (ROM)	Read-only	Masks Not possible			
Programmable ROM (PROM)	memory	Trot possible		Nonvolatile	
Erasable PROM (EPROM)		UV light, chip- level			
Electrically Erasable PROM (EEPROM)	Read-mostly memory	Electrically, byte-level	Electrically		
Flash memory		Electrically, block-level			

SRAM – Static RAM

- Bits được lưu trong các flip-flops
- Không cần làm tươi, có tốc độ cao
- Phức tạp, kích thước to hơn, giá thành cao

DRAM – Dynamic RAM

- Bits được lưu trữ trong các tụ điện
- Đơn giản, kích thước bé, giá thành rẻ
- Chậm, cần 1 chu trình làm tươi ngay cả khi đã được cung cấp nguồn

- Đường địa chỉ được kích hoạt khi đọc/ghi bit
 - Transistor switch closed (current flows)
- Ghi
 - Voltage to bit line
 - High for 1 low for 0
 - Then signal address line
 - Transfers charge to capacitor
- Đọc
 - Address line selected
 - transistor turns on
 - Charge from capacitor fed via bit line to sense amplifier
 - Compares with reference value to determine 0 or 1
 - Capacitor charge must be restored

Cơ chế làm tươi - refresh

- Sau khi đọc, nội dung của DRAM cell đã bị thay đổi
- Lưu các giá trị cells trong bộ đệm hàng row buffer
- Ghi lại các giá trị đó cho các cells trong lần đọc kế tiếp

- Thực tế, DRAM cell sẽ mất nội dung ngay cả khi không có tác vụ đọc
 - → lý do được gọi là "dynamic"
- Vì thế các cells trong DRAM cần được định kỳ đọc và ghi lại nội dung

- Transistor arrangement gives stable logic state
- State 1
 - C₁ high, C₂ low
 - $-T_1T_4$ off, T_2T_3 on
- State 0
 - C₂ high, C₁ low
 - $-T_2T_3$ off, T_1T_4 on
- Address line transistors T₅ T₆ is switch Bit line B
- Write apply value to B & compliment to B
- Read value is on line B

- Cả hai đều có tính chất volatile
 - Cần cung cấp năng lượng để bảo quản dữ liệu

Dynamic cell

- Đơn giản, kích thước nhỏ gọn
- Mật độ cell cao
- Chi phí thấp
- Cần chu kỳ làm tươi
- Cho phép kết hợp thành các đơn vi nhớ lớn

Static

- Nhanh hơn, cồng kềnh hơn
- Cho phép xây dựng các bộ nhớ Cache

Read Only Memory (ROM)

- Lưu giữ thông tin cố định permanent storage, nonvolatile
 - Microprogramming
 - Library subroutines
 - Systems programs (BIOS)
 - Function tables
- Kiểu:
 - Written during manufacture
 - Very expensive for small runs
 - Programmable (once)
 - PROM
 - Needs special equipment to program
 - Read "mostly"
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - Flash memory
 - Erase whole memory electrically

Programmable ROM (PROM)

- Less expensive alternative
- Nonvolatile and may be written into only once
- Writing process is performed electrically and may be performed by supplier or customer at a time later than the original chip fabrication
- Special equipment is required for the writing process
- Provides flexibility and convenience
- Attractive for high volume production runs

Read-Mostly Memory

EPROM

Erasable programmable read-only memory

Erasure process can be performed repeatedly

More expensive than PROM but it has the advantage of the multiple update capability

EEPROM

Electrically erasable programmable read-only memory

Can be written into at any time without erasing prior contents

Combines the advantage of non-volatility with the flexibility of being updatable in place

More expensive than EPROM

Flash Memory

Intermediate between EPROM and EEPROM in both cost and functionality

Uses an electrical erasing technology, does not provide byte-level erasure

Microchip is organized so that a section of memory cells are erased in a single action or "flash"

Synchronous DRAM (SDRAM)

- Truy cập được đồng bộ hoá với một đồng hồ bên ngoài
 - Địa chỉ được truyền đến RAM
 - RAM tìm dữ liệu (CPU đợi như DRAM thông thường)
 - Khi SDRAM chuyển dữ liệu theo thời gian đồng bộ với system clock,
 CPU biết được khi nào dữ liệu sẵn sàng
 - => CPU không cần phải chờ và có thể làm việc khác
 - Burst mode: cho phép SDRAM thiết lập dòng dữ liệu theo từng block
 - Chỉ chuyển dữ liệu 1 lần trong 1 chu kỳ đồng hồ
- DDR-SDRAM Double-data-rate 1 SDRAM
 - Gửi dữ liệu 2 lần trong một chu kỳ đồng hồ (leading & trailing edge)
- DDR2-SDRAM Double-data-rate 2 SDRAM
- DDR3-SDRAM Double-data-rate 3 SDRAM
- Cache DRAM: (misubishi)
 - Tích hợp SRAM cache (16k) vào trong DRAM chip

DRAM Read Timing

Việc truy cập là không đồng bộ: được kiểm soát bởi các tín hiệu RAS & CAS, các tín hiệu này có thể được sinh ra ngẫu nhiên

Timing figures taken from "A Performance Comparison of Contemporary DRAM Architectures" by Cuppu, Jacob, Davis and Mudge

DDR SDRAM

DDR SDRAM	Release	Bus Clock	Internal Memory Clock	Prefetch	Transfer Rate	Voltage	DIMM	SO-DIMM	MicroDIMM
Standard	year	(MHz)	(MHz)	(min burst)	(MT/s)	Voltage	pins	pins	pins
DDR1	2000	100–200	100–200	2n	200–400	2.5/2.6	184	200	172
DDR2	2003	200–533.33	100–266.67	4n	400–1066.67	1.8	240	200	214
DDR3	2007	400–1066.67	100–266.67	8n	800–2133.33	1.5/1.35	240	204	214
DDR4	2014	1066.67–2133.33	133.33-266.67	8n	2133.33–4266.67	1.05/1.2	288	256	_

Standard name	Memory clock	Cycle time	I/O Bus clock	Data transfers per second	Module name	Peak transfer rate
DDR-200	100 MHz	10 ns ^[1]	100 MHz	200 Million	PC-1600	1600 MB/s
DDR-266	133 MHz	7.5 ns	133 MHz	266 Million	PC-2100	2100 MB/s
DDR-300	150 MHz	6.67 ns	150 MHz	300 Million	PC-2400	2400 MB/s
DDR-333	166 MHz	6 ns	166 MHz	333 Million	PC-2700	2700 MB/s
DDR-400	200 MHz	5 ns	200 MHz	400 Million	PC-3200	3200 MB/s
DDR2-400	100 MHz	10 ns	200 MHz	400 Million	PC2-3200	3200 MB/s
DDR2-533	133 MHz	7.5 ns	266 MHz	533 Million	PC2-4200 PC2-4300 ¹	4266 MB/s
DDR2-667	166 MHz	6 ns	333 MHz	667 Million	PC2-5300 PC2-5400 ¹	5333 MB/s
DDR2-800	200 MHz	5 ns	400 MHz	800 Million	PC2-6400	6400 MB/s
DDR2-1066	266 MHz	3.75 ns	533 MHz	1066 Million	PC2-8500	8533 MB/s
DDR3-800	100 MHz	10 ns	400 MHz	800 Million	PC3-6400	6400 MB/s
DDR3-1066	133 MHz	7.5 ns	533 MHz	1066 Million	PC3-8500	8533 MB/s
DDR3-1333	166 MHz	6 ns	667 MHz	1333 Million	PC3-10600	10667 MB/s[4] 🔊
DDR3-1600	200 MHz	5 ns	800 MHz	1600 Million	PC3-12800	12800 MB/s
1						

DDR SDRAM Standard	Internal rate (MHz)	Bus clock (MHz)	Prefetch	Data rate (MT/s)	Transfer rate (GB/s)	Voltage (V)
SDRAM	100-166	100-166	1n	100-166	0.8-1.3	3.3
DDR	133-200	133-200	2n	266-400	2.1-3.2	2.5/2.6
DDR2	133-200	266-400	4n	533-800	4.2-6.4	1.8
DDR3	133-200	533-800	8n	1066-1600	8.5-14.9	1.35/1.5
DDR4	133-200	1066-1600	8n	2133-3200	17-21.3	1.2

9/14/2021 Duy-Hieu Bui 27

Tổ chức bộ nhớ

- Mạch nhớ W từ B bits được tổ chức dưới dạng 1 ma trận n hàng và m cột từ nhớ B bits
 - Cần n*m =W words, kích thước bus địa chỉ = /log₂W/
 - B đường dữ liệu

Ví dụ: 16 Mb DRAM (4M x 4)

RAS: Row Address Select; CAS: Column Address Select

OE: Output Enable; WE: Write Enable

Multi-bank memory

Tổ chức bộ nhớ lớn

(a) 8 Mbit EPROM

(b) 16 Mbit DRAM

Độ trễ từ MC đến chips nhớ

Memory Controller

On-Chip Memory Controller

Also: cơ chế lập lịch phức tạp hơn Memory controller thi hành cùng tốc độ x16 DRAM CPU thay vì tốc độ xung x16 DRAM **FSB** x16 DRAM x16 DRAM CPU Memory 128-bit 100MHz bus Controller and caches x16 DRAM x16 DRAM All on same chip x16 DRAM x16 DRAM Disadvantage: memory type is now tied to the CPU implementation

Memory Latency is Long

- Thường từ 60-100ns
- Lãng phí thời gian của CPU:
 - 2GHz CPU
 - $\rightarrow 0.5$ ns / cycle
 - 100ns memory → 200 cycle CPU latency!
- Solution: sử dụng bộ nhớ đệm có tốc độ cao hơn Caches

Memory Latency is Long

- Thường từ 60-100ns
- Lãng phí thời gian của CPU:
 - 2GHz CPU
 - $\rightarrow 0.5$ ns / cycle
 - 100ns memory → 200 cycle CPU latency!
- Solution: sử dụng bộ nhớ đệm có tốc độ cao hơn Caches

Hard Failure

- Permanent physical defect
- Memory cell or cells affected cannot reliably store data but become stuck at 0 or 1 or switch erratically between 0 and 1
- Can be caused by:
 - Harsh environmental abuse
 - Manufacturing defects
 - Wear

Soft Error

- Random, non-destructive event that alters the contents of one or more memory cells
- No permanent damage to memory
- Can be caused by:
 - Power supply problems
 - Alpha particles

Hamming code

Parity bit (a)

Error correcting code efficiency

	Single-Erro	r Correction	Single-Error Correction/ Double-Error Detection			
Data Bits	Check Bits	% Increase	Check Bits	% Increase		
8	4	50	5	62.5		
16	5	31.25	6	37.5		
32	6	18.75	7	21.875		
64	7	10.94	8	12.5		
128	8	6.25	9	7.03		
256	9	3.52	10	3.91		

Bit Position	12	11	10	9	8	7	6	5	4	3	2	1
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data Bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check Bit					C8				C4		C2	C1

Bit position	12	11	10	9	8	7	6	5	4	3	2	1
Position number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check bit					C8				C4		C2	C1
Word stored as	0	0	1	1	0	1	0	0	1	1	1	1
Word fetched as	0	0	1	1	0	1	1	0	1	1	1	1
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Check Bit					0				0		0	1

- Used both for internal memory and external memory applications
- First introduced in the mid-1980's
- Is intermediate between EPROM and EEPROM in both cost and functionality
- Uses an electrical erasing technology like EEPROM
- It is possible to erase just blocks of memory rather than an entire chip
- Gets its name because the microchip is organized so that a section of memory cells are erased in a single action
- Does not provide byte-level erasure
- Uses only one transistor per bit so it achieves the high density of EPROM

Duy-Hieu Bui

46

Non-volatile memory

(a) Transistor structure

(b) Flash memory cell in one state

(c) Flash memory cell in zero state

Accessing flash memory

(a) NOR flash structure

(b) NAND flash structure

NOR Flash vs. NAND Flash

(a) NOR

(b) NAND

Performance vs. Cost

Emerging memory

(a) STT-RAM

(b) PCRAM

Emerging memories

- Khái niệm về bộ nhớ trong máy tính, các đặc điểm chính, ...
- Bộ nhớ chính
 - Nguyên tắc
 - Phân loại
 - Tổ chức bộ nhớ lớn