

MANUAL TÉCNICO DA FRESADORA CNC PARA PCI

Revisão 1.0

Jaraguá do Sul 30 de julho de 2023

1. Grbl:

A versão utilizada pode ser verificada após conectar o arduino e conectar o Universal Gcode Sender, conforme o manual de instruções CNC PCI, onde aparecerá uma mensagem no *Console* indicando qual a versão do Grbl embarcada no arduíno, conforme a figura 1. Neste caso, a atual versão seria a 0.9j.

Para a sua instalação, acesse: https://github.com/grbl/grbl . Na aba "Code", selecione "Download ZIP" e extraia o arquivo. Após, embarque no arduíno, conforme a referência [1].

Figura 1: versão Grbl

2. Configuração do Grbl:

Para acessar as configurações a partir do *Software* Universal Gcode Sender (Versão 2.0.13):

- Certifique-se que o cabo USB do Arduino esteja conectado no computador;
- Certifique-se que o *firmware* selecionado é o GRBL;
- Atualize a lista de portas seriais e selecione a porta correta para o seu *hardware*;
- Selecione a taxa de transmissão correta, nesse caso 115200;
- Conecte-a clicando no ícone :
- Na aba "Machine", selecione "Firmware Settings".

As configurações da figura 2 foram as mais compatíveis com o *hardware*. Os parâmetros podem ser alterados diretamente pela tabela, e seus dados serão guardados diretamente no arduino, podendo

Setting	Value	Description
\$0	10	Step pulse time
\$1	255	Step idle delay
\$2	0	Step pulse invert
\$3	0	Step direction invert
\$4	0	Invert step enable pin
\$5	0	Invert limit pins
\$6	0	Invert probe pin
\$10	3	Status report options
\$11	0.010	Junction deviation
\$12	0.002	Arc tolerance
\$13	0	Report in inches
\$20	0	Soft limits enable
\$21	0	Hard limits enable
\$22	0	Homing cycle enable
\$23	0	Homing direction invert
\$24	25.000	Homing locate feed rate
\$25	500.000	Homing search seek rate
\$26	250	Homing switch debounce de
\$27	1.000	Homing switch pull-off dista
\$100	150.000	X-axis travel resolution
\$101	150.000	Y-axis travel resolution
\$102	150.000	Z-axis travel resolution
\$110	320.000	X-axis maximum rate
\$111	330.000	Y-axis maximum rate
\$112	100.000	Z-axis maximum rate
\$120	10.000	X-axis acceleration
\$121	10.000	Y-axis acceleration
\$122	10.000	Z-axis acceleration
\$130	200.000	X-axis maximum travel
\$131	200.000	Y-axis maximum travel
\$132	200.000	Z-axis maximum travel

Figura 2: Parâmetros utilizados no Grbl

ser desligado ou o software ser resetado sem que perca os parâmetros, desde que não mude o Grbl embarcado. Os parâmetros foram definidos através de cálculos e percepções, sua alteração inconsequente pode comprometer o bom funcionamento da CNC.

Docentes: Rodrigo J. Piontkewicz e Marcos A. Salvador

Alguns parâmetros importantes configurados acima:

• \$100, \$101 e \$102 (Passos por milímetro):

Para o cálculo de quantos passos os motores devem executar para percorrer 1 mm, utiliza-se a seguinte equação:

$$Pmm = \frac{Prev * micropassos}{mm por rev}$$

Sendo:

Pmm: Passos por milímetro;

Prev: Passos por revolução, geralmente 200;

Micropassos: micropassos que o motor dará, configurados no drive;

Mm por revolução: quantos mm a máquina percorreu após uma revolução.

Cálculo:

 Como a cnc possui polia, a relação estabelecida será de 3 para 1, então o motor terá que dar 3 revoluções para equivaler a 1 revolução no eixo. Então o que seria 200 passos por revolução, será 600 passos por revolução;

• Os mm por revolução são definidos pelo eixo roscado, onde cada revolução resulta num deslocamento de 4mm (passo da rosca), conforme medido com auxílio de um paquímetro;

• Micropassos configurados em 1.

Realizando alguns testes com alguns parâmetros, e verificando se de fato a cnc estava percorrendo a distância estipulada no *software*. Obtivemos a seguinte tabela:

Teste valores para \$100	Medida nominal	Medida medida
142.850	50mm	47.4mm
139.534	50mm	46.5mm
150	50mm	50mm

- Realizando teste com após definir em \$100, \$101 e \$102 em 150:
 - 115mm eixo x;
 - 90mm eixo y;
 - Distância entre linhas: 3mm;
 - Distância entre quadrados: 5mm.

• \$110 e \$111 (Taxa máxima em de mm/min):

Este parâmetro define a velocidade máxima que cada eixo pode se movimentar, sendo importante para a velocidade de execução no G0, que seria o movimento onde a fresa levanta da

Figura 3: Testes feitos para verificação dos parâmetros

placa e vai até a outra trilha, por ser uma movimentação mais rápida a velocidade acaba sendo estipulada conforme os valores de \$110 e \$111.

A definição deste parâmetro consiste em acelerar o eixo e testar se ele moverá, para o teste, do eixo X por exemplo, digite na barra de comando "G0 X20", observe sempre se haverá distância suficiente para a movimentação. Ao atingir o limite máximo, os motores não conseguirão movimentar os eixos, então desça gradualmente os valores até que voltem a funcionar (pode ser que faça bastante barulho, mas é normal). Ao achar o valor margem que permita a movimentação, reduza 20% desse valor e introduza o valor no parâmetro correspondente.

Teste de aceleração:

(Parâmetro \$110 – Eixo X):

Valor Estipulado	Movimentou?
400	Não
390	Sim
395	Sim

395 - 20% = 316

(Parâmetro \$111 – Eixo Y):

Valor Estipulado	Movimentou?
410	Sim
420	Não
450	Não
440	Não
430	Não
425	Não
415	Sim

415-20% = 332

Assumimos: 320 X e 330 Y.

3. Diagrama Elétrico da CNC:

A Figura 4 apresenta o diagrama de ligação elétrica da CNC, permitindo visualizar todas as ligações estabelecidas. A partir de um plugue macho de 3 pinos o circuito pode ser energizado se conectado a uma tomada elétrica de 220 V. A alimentação dos componentes da CNC passa primeiramente por um fusível de vidro de 5A e é acionada/interrompida por uma chave geral, sendo sua energização sinalizada por um indicador luminoso (lâmpada verde). A partir do acionamento da chave geral todos os drivers e fontes são energizados. Com exceção da fonte e alimentação para acionamento do Spindle, que possui uma chave adicional para possibilitar ligar/desligar o mesmo a qualquer momento sem interferir na alimentação dos demais componentes do sistema. Além disso, cabe destacar que o kit Arduino Uno é alimentado diretamente a partir da conexão USB com o computador, ou seja, o cabo USB provém alimentação e comunicação para a placa. A figura 5 por sua vez, ilustra a montagem do diagrama esquemático no gabinete elétrico do equipamento propriamente.

Figura 4

Figura 5

4. Especificações Técnicas Gerais:

- → Motores de passo:
 - ◆ NEMA 23 (eixo X e Y) e NEMA 17 (eixo Z):
 - ◆ 1,8° por passo do motor;
 - ◆ 200 passos para completar 360°;
- → Spindle:
 - ◆ Limite 1/8 de polegada;
 - ◆ 3,175 mm diâmetro da pinça do spindle;
- → Equipamento construído com armação composta por perfis de alumínio estrutural e fechada com acrílico incolor;
- → Medidas do equipamento (L x A x P): 650 x 560 x 650 mm;
- → Medidas da mesa (X e Y): 250mm x 200mm;

Figura 6: Equipamento montado

• Principais itens utilizados:

<u>Descrição</u>	Quantidade
Perfil de Alumínio 40x40 mm	4 metros
Gabinete elétrico 35X26X17 cm	1 unidade
Kit Fusos de esferas SFU 1205 x 600	2 unidades
Kit Fusos de esferas SFU 1205 x 200	1 unidade
Eixo Guias linear 10 x 650 mm	4 unidades
Eixo Guias linear 10 x 200 mm	2 unidades
Kit de engrenagens 20T6.35 - 60T8	3 unidades
Correia dentada 200 mm GT2, larg. 6 e passo 2 mm	1 unidade
Correia dentada 400 mm GT2, larg. 6 e passo 2 mm	2 unidades
Esteira Porta Cabos 18x28mm	1 metro
Arduino Uno	1 unidade
Driver motor de passo TB6600	2 unidades
Driver motor de passo AKDMP5-2.2A	1 unidade
Motor de Passo Nema 23	2 unidades
Motor de Passo Nema 17	1 unidade
SPINDLE 500W ER11 12000 RPM	1 unidade
Fonte spindle 100 Vdc 4 A	1 unidade

Referência:

[1] CONRADO, RODRIGO. **AtividadeMakerGrbl09j**. Disponível em: https://atividademaker.com.br/upload/grbl/AtividadeMakerGrbl09j.pdf.

Docentes: Rodrigo J. Piontkewicz e Marcos A. Salvador