考试课程: 数学实验 考试时间: 2017年6月20日

[说明]

- (1) 第一、二、三、四、五题的答案直接填在试题纸上;
- (2) 第六、七题、简单的解题过程和结果写在试题纸上; 卷面空间不够时请写在背面
- (3) 除非特别说明, 计算结果保留 4位有效数字
- (4) 考试时间为 120 分钟
- 1. (6 分) 现有一函数 f(x), 其在节点 $x_{\nu}(k=0,1,2,3,4)$ 的取值如下:

k	0	1	2	3	4	
$\mathbf{x}_{\mathbf{k}}$	0	0.5	1	1.5	2	
Уk	0	0.4159	1.3272	2.7294	4.6184	

 x_0, x_2, x_4 为插值节点, 那么函数 f(x) 的二次 Lagrange 插值多项式 P(x) =______

$$\int_0^2 P(x) dx = \underline{\hspace{1cm}}$$

2. $(6\ eta)$ 考虑如下的常微分方程初值问题: $\begin{cases} y' = y + 3t \\ y(0) = 1 \end{cases}$,取计算步长 h = 0.1 ,分别利用向前欧拉

3. $(6\, \beta)$ 矩阵 $A = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 6 & 3 \\ 2 & 3 & 8 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $cond_2(A) = \underline{\hspace{1cm}}$, 现求解线性代数方

程组 Ax=b,取初值 $x^{(0)}=\begin{bmatrix}1\\1\\1\end{bmatrix}$,用高斯-赛德尔迭代计算时 $x^{(5)}=$

此时与精确解 x^* 误差的二范数 $\|x^{(5)} - x^*\|_2 =$ ______。

4. (6 分) 用 Newton 法求解方程 $e^x - a = 0$ (a > 0) 和方程 $\frac{1}{a} - \frac{1}{e^x} = 0$ (a > 0) 的迭代公式分别是

 $x_{k+1}=arphi_1(x_k)$ 和 $x_{k+1}=arphi_2(x_k)$ 。 试确定常数 c_1 和 c_2 的值,使迭代法

 $x_{k+1}=c_1arphi_1(x_k)+c_2arphi_2(x_k)$ 局部收敛于 $\ln a$, 并使收敛阶尽可能高, 此时 $c_1=$ ______,

 c_2 =___。收敛阶最高能是_____阶。

5. (6分)为估计某物体的质量,用一台天平独立地测量 5次(单位克),结果为 5.72, 5.48, 5.64, 5.51, 5.43,总体分布服从 $N(\mu,\sigma^2)$ 。写出 σ^2 未知时,参数 μ 的置信水平为 0.95 的置信区间

_______,写出
$$\sigma^2$$
 = 0.01 时,参数 μ 的置信水平为 0. 95 的置信区间_______,

写出方差 σ^2 的置信水平为 0.95 的置信区间

6. (8分)有1000000元资金用于投资,有如下四个项目可选(其中的回报和风险如表中数据),

项目	回报	风险		
房屋信贷	9%	4		
个人贷款	12%	6		
商业贷款	8%	3		
政府债券	6%	1		

未投资的资金存到银行,无风险回报3%。设计一个投资方案,使得

- A. 极大化投资回报;
- B. 平均风险(所有项目风险的加权平均)不超过3。

这个方案一个投资周期(每年)的总回报是多少?

7. (12分)下面是一组中国人口量数据

年份	1908	1933	1953	1964	1982	1990	1995	2000	2013
人口数(亿)	3.0	4.7	6.0	7.2	10.3	11.3	12.0	13.0	13.6

- (1) 建立以年份 x 作为自变量,人口数的对数值 y 作为因变量的回归模型。写出回归直线方程,计算总偏差平方和与回归平方和,并检验模型的有效性,解释得到的结果;
- (2) 考虑人口增长的 Logistic 模型, $\frac{dx}{dt} = rx\left(1 \frac{x}{x_m}\right)$,取 r=0.02,求参数 x_m 的适当的取值。简要给出计算方法和程序。