MATH 26200: Point-Set Topology

Take-home Final

Hung Le Tran

03 Mar 2024

Textbook: Munkres, Topology.

Problem 8.1 (done)

Give examples (and justification) for each of the following:

- (a) A topological space X with a subspace A that is compact but not closed.
- (b) A connected space that is not path connected.
- (c) A compact Hausdorff space that is not second countable. (Hint: first find a locally compact Hausdorff space that is not second countable)
- (d) A connected space that is not locally connected.
- (e) A Hausdorff space that is not regular.

Solution

- (a) $X = \{1, 2\}$ with topology $\mathcal{T} = \{\emptyset, \{1\}, \{1, 2\}\}$. Then $\{1\}$ is clearly compact, but it is not closed.
- (b) (The topologist's sine curve) Let $X = \{(x, \sin\left(\frac{1}{x}\right)) : x \in (0, 1]\} \subset \mathbb{R}^2$. It has closure $\overline{X} = X \cup \{0\} \times [-1, 1]$. Since X is a continuous image of a connected set, namely (0, 1], it is connected. So \overline{X} is also connected. However, it is not path connected. Suppose there exists some $f : [0, 1] \to \overline{S}$ such that f(0) = (0, 0) and $f(1) = (1, \sin(1))$. We have that $\{t : f(t) \in \{0\} \times [-1, 1]\} \subset [0, 1]$ is preimage of a closed set so it is closed, so it has a max t_0 . For f to be continuous, then $f(t_0) = (0, 0)$. Then consider $f : [t_0, 1] \to \overline{X}$, then $\forall t > t_0, f(t) \in X$. WLOG, $t_0 = 0$.

But then for all n, choose $u_n \in (0, f_1(\frac{1}{n}))$ such that $\sin(1/u_n) = (-1)^n$. By Intermediate Value Theorem, f_1 is continuous so there exists some $0 < t_n < 1/n$ such that $f_1(t_n) = u_n$. Then it follows that $f_1(t_n) = (-1)^n$. It's clear that $t_n \xrightarrow{n \to \infty} 0 \Rightarrow f_2(t_n) \xrightarrow{n \to \infty} 0$. But $f_2(t_n) = (-1)^n$ which doesn't converge. $\Rightarrow \Leftarrow$

- (c) Take \mathbb{R} . It is Hausdorff, locally compact and not second countable. So its one-point compactification (S^1) is then compact, Hausdorff and not second countable.
- (d) \overline{X} from (b). It is connected as previously shown. However, at (0,0), it is not locally connected, since for every $U \subset \mathbb{R}^2$ open, one can exhibit the separation $U \cap \{0\} \times [1,1] \sqcup U (U \cap \{0\} \times [1,1])$.
- (e) Consider \mathbb{R}_K . Then WTS there doesn't exist any open, disjoint U, V such that $0 \in U, K \subset V$. Suppose there does exist. Then U contains some basis element that contains 0. It can't be of the form (a,b) since all (a,b) around 0 intersect K. So it has to be some (a,b)-K. But there exists some $\frac{1}{n} \in (a,b)$ still. V also contains some basis element that contains $\frac{1}{n}$, which has to be of the form (c,d). Then $((a,b)-K)\cap (c,d)\neq\varnothing$, so $U\cap V\neq\varnothing$.

Problem 8.2 (done)

Show that if X is a compact metric space, then the metric topology is second countable (i.e., it has a countable basis).

Solution

Fix $n \in \mathbb{N}$. Then $\mathcal{U}_n = \{B(x, \frac{1}{n}) : x \in X\}$ is an open cover for X, so it reduces to some finite subcover \mathcal{V}_n . Take $\mathcal{V} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$, which is countable. WTS \mathcal{V} is a basis for the metric topology on X.

 \mathcal{V} is a collection of open sets in X, so it remains to show that for every $x \in U \subset X$ open, there exists some $V \in \mathcal{V}$ such that $x \in V \subset U$.

Take $x \in U \subset X$ open. Since U is open, there exists some $B(x,r) \subset U \subset X$ (WLOG, ball centered at x). Then there exists some N such that $\frac{1}{N} < \frac{r}{2}$. Consider the finite subcover \mathcal{V}_N , then there has to exist some $B(x',\frac{1}{N}) \ni x \Rightarrow d(x,x') < \frac{1}{N} < \frac{r}{2}$. But $\frac{1}{N} < \frac{r}{2}$ so in fact $B(x',\frac{1}{N}) \subset B(x,r) \subset U$, and $B(x',\frac{1}{N}) \subset \mathcal{V}_n \subset \mathcal{V}$.

Using Lemma 26.4, it follows that \mathcal{V} is a basis for X. So X is 2nd countable.

Problem 8.3 (25.7 done)

Consider the "infinite broom" X pictured in Figure 25.1. Show that X is not locally connected at p, but is weakly locally connected at p. [Hint: Any connected neighborhood of p must contain all the points a_i .]

(You may use 25.6 without proving it)

Solution

We view the "infinite broom" as a subspace of \mathbb{R}^2 .

1. WTS X is not locally connected at p. WTS for any $V \ni p$ to be connected, it has to contain all points $(0, a_i)$.

If V doesn't contain all the points a_i , then consider $I = \{i : (0, a_i) \in V\} \neq \emptyset$ has some minimum element n > 1, which implies $(0, a_n) \in V$ but $(0, a_{n-1}) \notin V$. $V \subset \mathbb{R}^2$ open so $V \cap 0 \times \mathbb{R}$ is open, so there exists some b such that $a_n < b < a_{n-1}$ and $(0, b) \in V$. $(0, b) \in V$ implies that there exists some $B((0, b), r) \subset V$, and we know from construction of the infinite broom that there exists some broom segment from a_{n-1} that intersects this B((0, b), r), hence intersecting V. One can then exhibit a separation of V with this intersection and its complement in V.

So V has to contain all $(0, a_i)$.

But then if one take a small enough open neighborhood U around p such that it doesn't contain all $(0, a_i)$, then there can't exist $p \in V \subset U$ that is connected. So X is not locally connected at p.

2. WTS X is weakly locally connected at p.

Take any open $U \ni p$, then there exists some open ball $p \in B(p,r) \subset U$. Since the broom segments decrease in height (y-coordinate) as n increases, there exists some N such that for all $n \ge N$, all of the broom segments originating from a_n is contained in B(p,r). Then consider V to be the union of $[p,a_N]$ and all broom segments of a_n of $n \ge N$. Then $V \subset B(p,r) \subset U$. Furthermore, this V contains a smaller neighborhood $B(p,\frac{h}{2})$ where h is the y-coordinate of the tallest broom segment from a_N . \square

Problem 8.4 (33.9 done)

Show that \mathbb{R}^J in the box topology is completely regular. [Hint: Show that it suffices to consider the case where the box neighborhood $(-1,1)^J$ is disjoint from A and the point is the origin. Then use the fact that a function is continuous in the uniform topology is also continuous in the box topology.]

Solution

It suffices to show that given closed set $A \subset \mathbb{R}^J$ that does not contain 0, there is a continuous $f : \mathbb{R}^J \to [0,1]$ such that f(0) = 1 and $f(A) = \{0\}$. If the point of concern is not 0, translate it there.

Since A is closed, there exists $\prod_{\alpha \in I} (-r_{\alpha}, r_{\alpha}) \cap A = \emptyset$.

We first show that one can separate 0 and $\mathbb{R}^J - (-1,1)^J$ by a continuous function. $(-1,1)^J$ is exactly B(0,1) of \mathbb{R}^J in the uniform topology. So $\mathbb{R}^J - (-1,1)^J$ is closed. \mathbb{R}^J with the uniform topology is metrizable, so it is definitely completely regular, so there exists some continuous $f: \mathbb{R}^J \to [0,1]$ such that f(0) = 1 and $f(\mathbb{R}^J - (-1,1)^J) = \{0\}$. However, the uniform topology is coarser than the box topology, so this f is continuous in the box topology too.

Then let us look at $h: \mathbb{R}^J \to \mathbb{R}^J$, $(x_\alpha)_{\alpha \in J} \mapsto (x_\alpha/r_\alpha)_{\alpha \in J}$. It is continuous in the box topology (both domain and codomain), since the preimage of a basic open set $\prod_{\alpha \in J} (v_\alpha - \varepsilon_\alpha, v_\alpha + \varepsilon_\alpha)$ is $\prod_{\alpha \in J} (rv_\alpha - r\varepsilon_\alpha, rv_\alpha + r\varepsilon_\alpha)$ is open.

Finally, consider $g = f \circ h : \mathbb{R}^J \to [0,1]$ is continuous. g(0) = f(h(0)) = 1, and $h(A) \subset \mathbb{R}^J - (-1,1)^J$ so $g(A) \subset f(\mathbb{R}^J - (-1,1)^J) = \{0\}$, as required.

Hence \mathbb{R}^J in the box topology is completely regular.

Problem 8.5 (38.3 done)

Under what conditions does a metrizable space have a metrizable compactification?

Solution

A compact metric space is second countable, so for the compactification of X to be metrizable, it is necessary for X to be second countable.

It remains for us to show that this is the sufficient condition. Suppose X is second countable. Then from the proof of the Urysohn Metrization Theorem, we already constructed an embedding $F: X \to \mathbb{R}^{\omega}$ with \mathbb{R}^{ω} in the product topology, which we know is metrizable with metric D. Then $\overline{F(X)}$ in \mathbb{R}^{ω} is a metrizable compactification of X.

Problem 8.6 (46.5 done)

Consider the sequence of functions $f_n:(-1,1)\to\mathbb{R}$, defined by

$$f_n(x) = \sum_{k=1}^n kx^k$$

- (a) Show that (f_n) converges in the topology of compact convergence; conclude that the limit function is continuous. (This is a standard fact about power series.)
- (b) Show that (f_n) does not converge in the uniform topology.

Solution

(a) Denote $\mathcal{F} = \{f_n\}$. Take any $K \subset (-1,1)$ compact, then it must be closed and bounded, say $x \in K \Rightarrow |x| \leq B$. Clearly, B < 1.

Let $f(x) = \sum_{k=1}^{\infty} kx^k$ on (-1,1). It is well-defined — in fact, the series converges absolutely, by the M-test:

$$k|x|^k \le kB^k, \sum_{k=1}^{\infty} kB^k = \frac{B}{(1-B)^2}$$

So by the M-test, the convergence is automatically uniform (on K).

It follows that f_n converges to f in the topology of compact convergence.

Now (-1,1) is locally compact, so it is compactly generated, so $\mathcal{C}((-1,1),\mathbb{R})$ is closed in Y^X in the topology of compact convergence. $f_n \xrightarrow{n \to \infty} f \Rightarrow f \in \mathcal{C}((-1,1),\mathbb{R})$, so f is continuous.

(b) We have for all $1 \gg \varepsilon > 0$, for any n > 2, choose $a_n = 1 - \frac{1}{n^2} \in (-1, 1)$, then

$$d(f_n, f) \ge |f_n(a_n) - f(a_n)|$$

$$= \frac{1}{(1 - a_n)^2} a_n^{n+1} (n(1 - a_n) + 1)$$

$$= n^4 \left(1 - \frac{1}{n^2}\right)^{n+1} \left(\frac{n}{n^2} + 1\right)$$

$$\ge n^4 \left(1 - \frac{n+1}{n^2}\right) \text{ (Bernoulli's inequality)}$$

$$= n^4 - n^3 - n^2 \not< \varepsilon$$

so the convergence is not uniform.