

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at <http://books.google.com/>

NYPL RESEARCH LIBRARIES

3433 07594529 9

Morgan
CIA

THE
PRINCIPLES AND DOCTRINE
OF
ASSURANCES,
ANNUITIES ON LIVES,
AND
CONTINGENT REVERSIONS,
STATED AND EXPLAINED.

BY WILLIAM MORGAN, F.R.S.
ACTUARY TO THE SOCIETY FOR EQUITABLE ASSURANCES ON LIVES
AND SURVIVORSHIPS.

LONDON:
PRINTED FOR LONGMAN, HURST, REES, ORME, AND BROWN,
PATERNOSTER-ROW.

1821.

ERRATUM. For 1796, in page 83, last line, read 1799.

JOY WOOD
COLLEGE
WILLIAMSON

Printed by A. and R. Spottiswoode,
Printers-Street, London.

P R E F A C E.

THE first edition of this work having been published above forty years ago has long been out of print, and my leisure hours for several years have been employed in preparing the present edition ; in which not only much additional matter is contained, but the solutions of all the different problems are derived from the real probabilities of life rather than from an hypothesis, which in many cases is found to be so defective as not even to approximate to the truth.

Before the year 1788, when I communicated my first paper on the subject to the *Royal Society*, no attempt, to my knowledge, had been made to solve any problem, involving more than one life in the computation, from the real probabilities of life ; but the solutions were derived from the hypothesis of an equal decrement, partly from the want of accurate tables of observation, and partly on account of the facility which it afforded of investigating the most complicated problems in the doctrine of life annuities. In the case of a single life, provided the age neither falls short of twenty nor ex-

ceeds sixty years, the errors produced by this hypothesis are inconsiderable; but at earlier and later periods, and when more than one life is concerned, these errors in many instances render the rules altogether unfit for use.

In the former edition of this work, the rules for determining the values of contingent reversions depending on three lives were for the most part derived from two or three problems in Mr. *Simpson's Select Exercises*; but the solutions of those problems having M. *De Moivre's* hypothesis for their basis were incorrect, and in consequence the above-mentioned rules, so far as they were connected with them, were equally so. It should, however, be observed that having been deduced from plain reasoning and depending on no particular hypothesis, the rules would have been perfectly correct if the solutions of Mr. *Simpson's* problems had been derived from the real probabilities of life. These rules were, indeed, rendered in some degree less inaccurate by adopting the *expectations* of life as deduced from real observations instead of assuming them, agreeable to the hypothesis, to be always equal to half the difference between 86 and the age of the given life. Still, however, they were founded on the supposition that the decrements of life were equal; so that the series expressing the several contingencies were made to decrease in arithmetic progression, while the series expressing the expectation decreased in

a different proportion, and thus made it impossible that a rule founded on such discordant principles should be strictly true.

The values of reversions depending on two lives are as readily determined from real observations as from *De Moivre's* hypothesis, and the rules are as simple : but in regard to those reversions which depend on three lives, it must be acknowledged that the operations are much more complicated and laborious. In some cases the values depend on ten or twelve contingencies, and consequently the series expressing those values are more than twice as numerous. To reduce so many quantities, therefore, into any form that shall not render the computation of them a work of great labour, becomes a matter of considerable difficulty. It is possible that the rules which have been given in this work might have been a little simplified by omitting or altering some of the expressions which appear to be of inconsiderable value ; but the results would then have been only approximations to the truth, and the subject would have been left in the same uncertainty as if the solutions had been derived from the hypothesis which had been found to be so defective.

My chief purpose in the present work has been to give solutions strictly correct according to any table of observations deduced from the real probabilities of life ; and this purpose would have been defeated, if I had omitted any series, how-

ever insignificant, with the view of rendering the process more simple. I know not how far I have succeeded in rendering the rules intelligible to the general class of readers, by giving them in words at length ; but the mathematical reader will find no difficulty by referring to the notes at the end of the work ; where those rules with their demonstrations are given algebraically. By a little management in arranging and conducting the operations, they will be found, however, to be less formidable than they appear ; and though they may be attended with more trouble, than by the method of approximation, they should not be objected to on that account, since the additional labour they produce will be abundantly compensated by the greater accuracy of the computation.

In the first and second chapters the nature of assurances and annuities on lives is stated and explained, together with the principles on which the computations of their values are founded. Being intended as an introduction to the subject, these chapters contain nothing that is either difficult or abstruse, but are written in a plain and familiar manner with the view of preparing the uninformed reader for understanding the solutions of the subsequent problems. Having deduced all those solutions from the real probabilities of life, the examples by which the reasoning in the first and second chapters are illustrated, have been derived from the same source, rather than from the hy-

pothesis of M. *De Moivre*; and with this exception, these two chapters are the same with those in the former edition. It should, however, be observed, that the second section of the first chapter, as well as the introduction written by my invaluable friend and relative Dr. *Price* to that edition, are now entirely omitted, having no particular connection with the subjects of the present work, and containing observations no longer applicable to the circumstances of the Society to which they were addressed.

In the year 1779, when those observations were written, the business of assurances on lives was but little understood and but little practised. Excepting the Society in Serjeants Inn, which assured lives at all ages under 45 at the same annual premium, and never exceeded £300 on the same life, and the *Royal Exchange* Office, which made a few assurances for a single year at the general premium, I believe, of £5 per cent.; the *Equitable* Society had no competitors, and were the only Society which varied their premiums according to the age of the person assured. The assurances for the benefit of surviving families at this period were but few in comparison with those which were made on the lives of those improvident persons who, in the disposal of their property, seemed to have as little consideration for their families as for themselves; and as the price of an annuity on a life, however young, very rarely exceeded seven years purchase, the assurances were seldom made for a longer

term, so that a very small proportion was made on the whole continuance of life, or with any other view than to secure a purchaser from the risk of losing the price of his annuity. Still, however, though the progress of the Society was slow, their number continued to increase and their capital to accumulate. By persevering in a course of strict economy in the management of their affairs ; by guarding against the introduction of bad lives, and abstaining carefully from any measure that had a direct tendency to alienate their funds, they found themselves in the year 1782 in the possession of such a surplus as to justify them in adopting a new and more correct set of tables, which reduced their premiums in some instances to *one half* of their original amount, and at the same time in making an addition to the claims of £1 10s. *per cent.* for every payment which had been made prior to that year. During the following nineteen years four other additions were made to the claims ; and in order to prevent the too frequent recurrence to these additions in future, it was determined in 1800 that none should thereafter be made without a previous investigation of the affairs of the Society —that such investigation should take place at the end of every ten years—and that the amount of the additions in present value should never exceed *two thirds* of the *surplus stock* of the Society. The beneficial effects of these wise regulations have been fully manifested in the decennial investiga-

tions of 1810 and 1820: the additions in those two periods exceeding in present value the sum of three millions sterling, and increasing the sums assured in the *old* policies to five times their original amount. These repeated operations in favour of the members, and the immense increase of the society in numbers, wealth, and credit, have naturally excited a desire of forming similar institutions, or rather *trading companies*, with the view of appropriating the whole, or a greater part of those profits among the partnership which have been so liberally shared in common by all the members of the Equitable Society.

Without entering into the merits or demerits of these companies (for they are of very different descriptions) it is impossible to contemplate without great satisfaction the happy effects produced by the success of the Equitable Society. The multiplication of assurance offices, to which this success has given rise, necessarily increases the number of assurances, and makes the subject more widely known and better understood. Thousands of families are now secured in the enjoyment of comforts, of which they would otherwise have been rendered destitute by the death of their friends or relatives. The establishment therefore of these new offices, if properly conducted, appears to be a considerable public benefit, and the only danger of their not continuing so, arises from the disposition which some of them manifest to make pre-

mature inroads upon their capital. It should be remembered, that the probabilities of life are generally higher in the infancy, than they are in the more advanced state of a Society, and consequently that any measure founded on the expectation that events will prove more and more favourable as the Society becomes longer established, will most probably terminate in disappointment. The Equitable Society proceeded quietly in the same course for near twenty years before they ventured upon any change. During that period the decrements of life among the members had attained such a degree of regularity that very little risk was incurred in founding any new measure on the presumption that they would continue to be equally so. The experience of the last forty years has confirmed this opinion, and the probabilities of life among the members of the Society may now be considered as uniformly regular as they are among the general mass of inhabitants in this country.

The erroneous conclusions deduced from the higher probabilities of life in the first years of a Society, are in danger of deriving additional force from a spirit of competition, and an eager desire of increasing their business. By publishing a devious account of their prosperity founded on these probabilities, they are holding forth advantages which are the less likely to be realized in proportion to their magnitude and the earlier period of

their commencement. It should be particularly observed, that the motives which induce persons to become members with such promises to allure them, will always urge them to press for greater advantages, and the Society will find that the higher the expectations of such persons are raised, the more difficult it will be either to satisfy or to moderate them.

In this commercial country almost every thing becomes a matter of speculation, and the prospect of advantages, however distant, never fails to stimulate adventurers to the pursuit of them. It is no wonder therefore that the great success of one office in the business of assurance on lives should give rise to the establishment of so many new ones. In the course of a few years the number has been increased by about fifteen additional offices, in which are included the whole nearly of the *Fire Offices*, whose business seems to have been extended to assurances on lives with the hope of repairing the losses they have sustained by a ruinous competition with each other in the business of fire-assurances; but I am sorry to say that in some of them this new branch of business does not appear to have been entered upon with a more liberal spirit than they have manifested in their manner of conducting the old one *. To the public in-

* See particularly the prospectus of the *Sun Life Assurance Society*, in the year 1820, in which it is stated "that the managers

deed it is a matter of little moment in what terms they display their superiority to each other, but it is of consequence that they should be convinced of the danger to which they are exposed, by adopting injudicious measures from too eager a pursuit after *monopoly*. As long as they proceed in a safe and honourable course, they have my warmest wishes for their success, as I consider every assurance made for the purpose of providing for a surviving family, in whatever office it is effected, not only as a private but as a public good. It is far from my intention to extend these observations to all the offices which have been established within the last twenty years. Some of them are highly respectable, and cannot fail to prove beneficial to themselves and the public.

" being satisfied that the premiums which have hitherto been required for assurances were not properly *graduated* according to the ages, have had others calculated proportional to the real values of the risks at the different periods of life, and having adopted these new rates, now offer assurances to the public on these terms, which will be found to be more *liberal* than any hitherto granted, the premiums having been, in many cases, reduced twenty and thirty per cent." If we may judge from the great irregularities in the increase and decrease of the difference between the premiums at any two successive ages, for a single year, we shall have no great reason to think very favourably of the superior correctness of this new graduation; nor shall we think more favourably of the greater *liberality* of their terms if we compare them with those of other offices; for instead of being 20 and 30 per cent. *lower*, their premiums for the whole continuance of life at all ages after 45, are really *higher* than the premiums required by any other office in London.

In the former edition of this work I gave a particular account of the *Equitable Society*, which being then almost the only society of the kind, I was induced to enter more minutely into the different methods of ascertaining the real state of that, or of any other similar institution; and concluded with observing, that the accounts of the Equitable Society had been lately investigated by each of those methods, and found to be so highly favourable as to justify the measures then adopted. But on more mature consideration, I have seen reason to change my opinion of those measures; and happily the Society, convinced of their pernicious tendency, have never repeated them. In all the subsequent investigations a more prudent and beneficial course has been pursued. By the method of making additions to the claims, no immediate invasion of the capital takes place; but the profits are divided so gradually, as neither to alienate the capital too suddenly, nor even to prevent the accumulation of it. The effect also of its operation for the first years is almost insensible, so that the credit and consequence of the Society are not impaired by the abrupt diminution of their capital; nor is there any danger of such a diminution at any future period, provided, as in the case of the Equitable Society, the present value of those additions is never suffered to exceed a certain portion of the surplus. Indeed I know

of no other safe and effectual method of appropriating this surplus. The immediate division of it is too ruinous in its consequences to be mentioned, or even thought of. The reduction of the premiums, although it were liable to no other objection, is altogether inadequate in many cases; for if all the annual premiums be remitted in some very old assurances, the present value of them during the remainder of the life assured would not be equal to the present value of a single addition of £1 per cent. In order, therefore, to give the old members their due share in the surplus, it would, in this case, be necessary to supply the deficiency by an immediate payment of money; or in other words, by an immediate invasion of the capital. But the method of making additions to the claims is exposed to none of these difficulties. Every member participates, as nearly as circumstances will admit, in due proportion to his age and the number of his payments;—the annual income of the society is not reduced, and the purpose of the assurance is answered in the best manner, by increasing that provision for a family which it was originally intended to secure for them. The long experience of the Equitable Society has fully demonstrated the excellence of this method in the success with which it has been attended. From the time in which it was first adopted to the last decennial investigation in 1819, the number of

members has increased more than ten-fold, the annual income more than one hundred fold, and the capital in a still higher degree. Many millions have been added to the sums originally assured, and the prospect of still further benefits is now secured by the admirable regulations which were formed in the year 1816, for limiting the number of those who are to share in them at one and the same time. These regulations exclude none from the expectation of partaking in those benefits, as some of the societies lately established have very improperly represented. They only *postpone* the enjoyment of them in order to render them ultimately more secure and valuable to the new members.

Having now been engaged in conducting the affairs of the Equitable Society for almost half a century, I cannot take my leave of the subject without expressing the pleasure I feel in witnessing the success of an institution (begun in obscurity, without any capital, and formed on the narrowest scale), exalted by prudence and economy to the highest summit of wealth and credit, extending its benefits to thousands of families, and affording the most solid reason to hope, that those which it has already conferred are only pledges of still greater benefits to thousands of families hereafter. With an ardent wish that this hope may be realized, and impressed with a lively sense of gratitude for

the many instances of kindness which I have experienced during a long series of years from the members of this Society, I shall now conclude this preface with submitting the following work to the candid perusal of the reader.

Equitable Assurance Office,
May 19th, 1821.

Lately published by the same Author,

MEMOIRS of the Life of Dr. PRICE.

A

TREATISE

OR

ASSURANCES ON LIVES.

CHAPTER I.

*An Introduction to the Doctrine of Assurances
on Lives.*

THE value of an assurance is computed more or less easily, according to the number of lives involved in the calculation. In order, therefore, to give a clear idea of this subject, and the principles from which the more complicated questions are deduced, it will be necessary to begin with those in which only *one* life is concerned.

The simplest of this kind is the assurance of a single life for the term of one year. In this case nothing further is required than to determine the probability of the life's failing in the year; and in proportion as this probability is greater or less, the value of the assurance will be greater or less; so that were it *certain* that the life would fail, this value would be equal to the sum assured; were it

2 AN INTRODUCTION TO THE DOCTRINE

an *even* chance whether the life failed or not, it would be equal to *half* the sum assured; were there only *one* chance out of *twenty* for the life's failing, the value would only be a twentieth of the sum assured; and so on.

Suppose, for example, that 50 persons aged 39 agreed to assure £100 each on their lives for one year. By the *Northampton Table** of Observations it appears that one of them will die in the year. The value of the assurance therefore will be $\frac{1}{50}$ of £100, or £2, from each person; for this contribution will just furnish money enough to pay the claim. But since the money is supposed to be advanced at the beginning, and the claim not to be paid till the end of the year, this sum must be discounted for a year, so that the several contributions, together with their interest, may be just equal to the sum assured. Had these persons been 60 years of age, two of them would have died in the year, and the contributions should have been twice as much; had they been 73 years of age, four of them would have died, and the contributions should have been four times as much. At a more advanced age, a still greater number would have died; so that the value of an assurance for one year, by thus continually increasing with age, must at the extremity of life become equal to the sum assured.

* See Tab. I.

Let the term now be two, three, or any certain number of years, the sum as before £100, the value of the assurance to be paid down immediately, and the sum assured at the end of the year in which the life becomes extinct. The investigation in this case, being more complicated than in the former, may be explained in the following manner : Suppose the age of the person to be assured is 30 years, and the probabilities of life as given in the *Northampton* Table. The number of persons living in that table at the age of 30 is 4385,—at the age of 31 it is reduced to 4310,—at the age of 32 to 4235,—at the age of 33 to 4160, and so on. The chances therefore for his living one year will be 4310 out of 4385 and expressed by the fraction $\frac{4310}{4385}$. The chances for his living two years will be 4235 out of 4385 and expressed by the fraction $\frac{4235}{4385}$. The chances for his living three years will be 4160 out of 4385 and expressed by the fraction $\frac{4160}{4385}$. The chances for his living 4, 5, &c. years, will in like manner, be expressed by the fractions $\frac{4085}{4385}$, $\frac{4010}{4385}$, &c. The difference between the number of persons living at the beginning of each year, and the number living at the beginning of the succeeding year, will denote the number of lives that have failed in the year. The difference between 4385 and 4310—between 4310 and 4235—between 4235 and 4160, and so on to the age of 40, being constantly 75, it follows

♣ AN INTRODUCTION TO THE DOCTRINE

that $\frac{75}{4385}$ will express the probability of the life's failing in the first year; $\frac{75}{4310}$, multiplied into $\frac{4310}{4385}$, or $\frac{75}{4385}$, will express the probability of its failing in the second, after having survived the first year; $\frac{75}{4235}$ multiplied into $\frac{4235}{4385}$ (or $\frac{75}{4385}$) will express the probability of its failing in the third, after having survived the 1st and 2d years, and this fraction will continue invariably the same, while the probabilities of life decrease in an arithmetical progression, so that the value of the assurance in the 1st year will be the sum discounted for a year, and diminished in the ratio of $\frac{75}{4385}$; the value of the assurance in the 2d year will be the sum discounted for two years, and diminished in the same ratio; the value of the assurance in the 3d, 4th, 5th, and four following years, will be the sum discounted for 3, 4, 5, &c. years, diminished still in the same ratio; but after the 9th year the probabilities of life do not decrease in the same arithmetical progression, and consequently the discounted sums must be respectively diminished in a different ratio:—thus in the 10th year the probability of the life's failing will be $\frac{76}{4385}$, in the 11th year $\frac{77}{4385}$, in the 12th year $\frac{78}{4385}$, and so on. The amount of the several sums so discounted and diminished for 2, 3, 4, &c. years, or to the end of life, according as the assurance is for a term of 2, 3, 4, &c. years, or for the *whole* of life, is equal to the value of such assurance. This amount, however, may be determined in a more compendious way than by

the continued addition of the several values in each year; but as my present design is only to give a general idea of the *principles* from which the values of assurances are investigated, the consideration of this part of the subject must be referred to a subsequent chapter.

If, instead of the value of an assurance for any term of years in a *single* payment, the same value were required in *annual* payments, the answer may be obtained in the following manner. Suppose 56 persons, each aged 30, had agreed to assure £100 each on their lives from year to year, for any certain term; that is, by equal contributions to discharge whatever claims may happen in the course of every year. By the *Northampton* Table one of them will die in the first year, and become a claimant at the end of the year. The sum therefore to be contributed from each person will be £1 15s. 9d. nearly; but if the money has been advanced at the beginning of the year, this contribution will be less, or only £1 15s. 9d. discounted for a year. In the second year there will be 55 persons alive, and one in 55 will die by the same table; consequently one again will become a claimant in the course of the second year. But a contribution of £1 15s. 9d. each from 55 persons will not be sufficient to discharge such a claim, and therefore at the beginning of the second year they ought to contribute a little more than they did at the beginning of the first year. For the same rea-

6 AN INTRODUCTION TO THE DOCTRINE

son, those that live to the beginning of the *third* year ought to contribute more than they did in the *second* year in order to make good the claim, and so on for every year during the whole term. If the value of the assurance is paid, not in annual contributions *increasing* from year to year, but in one *fixed* annual contribution, it is obvious that it should be higher than the contribution in the first year of the term, and lower than the contribution in the last year : In other words, it should be such a *mean*, as, being multiplied into the value of the life for the given term, shall produce a sum just equal to the value of the assurance in a single payment. But this will be better understood when the principles on which the values of life annuities are founded, have been explained in the following chapter.

Had the ages of the 56 persons, instead of 30, been 57, two of them would have died by the *Northampton* Table in the first and following years, and the contributions must consequently have been *doubled*. But since at this advanced age the probabilities of dying increase more rapidly than at the earlier age of 30, the contributions necessary to discharge the claims in each year must of course increase in the same proportion, so that the difference between the first and last contribution in the one case must be more considerable than it is in the other ; and hence may be inferred the reason why the annual payment for assuring an old life

for 6 or 7 years exceeds the payment for one year in a much greater proportion than it does in the case of a young life. Were the annual payments to be continued during the *whole* of life, that is, were it an assurance of £100 to be paid whenever the life fails, the reasoning would be the same in all respects ; observing, however, that the *mean* of all the payments would be much more considerable ; for the contributions in this case must increase annually till they become equal to the sum assured. This follows from that invariable law of nature, which, rendering human life more and more precarious, lessens the number of survivors in each year, till at the extreme of life they are reduced to a single person, whose contribution, if he lives to the beginning of the last year, must equal the claim to be paid on his decease. It may not be improper to observe that the *mean* between the first and last payment is not to be understood as a simple *arithmetical* mean, or the *half* of the sum of those payments, but such a constant annual sum, which must so far exceed the value of the assurance for the first year as to produce a surplus, that, in consequence of being improved at compound interest, shall form a capital which shall be sufficient to discharge the claims as they become payable ; so that when the last life drops, just so much of this capital shall remain as shall be equal to one claim.

8 AN INTRODUCTION TO THE DOCTRINE

From these principles the values of all assurances on single lives, on the joint continuance of the lives, or the longest of any number of lives are deduced. It should, however, be observed that as, in supposing any two events, the chance is universally *less* for the happening of *both* of them than of *one*, so the value of an assurance on two joint lives which depends on such a contingency must be *greater* than the value of an assurance on the single life of one of them ; for in the one case the claim is paid if they do not *both* live to the end of the term, that is, if *two* events do not happen ; in the other case, it is paid if *one* does not live to the end of the term, or if *one* event does not happen. For the same reason, the value of an assurance on the longest of two or any number of lives, will be *less* than the value of an assurance on a single life ; for in the former the claim is not paid unless two or more events *do* happen, that is, unless two or more lives fail in the term ; hence it follows that the greater the number of *joint* lives that are assured, the *greater* will be the value of the assurance ; and on the contrary, the *greater* the number assured during the longest liver, the *less* will be the value of the assurance.

In regard to assurances on *survivorships*, especially those cases in which the contingencies are extended to more than two lives, the reasoning is much more complicated, and leads to the most abstruse parts of the doctrine of chances. At present,

therefore, I shall confine myself to those cases in which only two lives are concerned; not only as being the most common, but as the same reasoning, if rightly understood, may be applied to other cases in which a greater number of lives are involved in the computation. To begin with the most simple: Let us suppose the assurance made only for one year on the contingency of one life's surviving another. Let the age of the person to be survived be 50, and of the person who is to be the survivor 30; that is, a given sum is to be paid in case the former should die before the latter in one year. The payment of the claim in this case depends upon either of two events; first, that they shall both die in the year, and the youngest shall die last: secondly, that the oldest person *only* shall die in the year. By the *Northampton* Table* the probability that a person aged 50 dies in the year is $\frac{81}{2857}$, and the probability that a person aged 30 dies in the year is $\frac{75}{4385}$, the probability therefore that they both die is expressed by these two fractions multiplied into each other, or $\frac{81 \times 75}{2857 \times 4385}$;† but that one in particular shall die before the other is very nearly an

* Tab. 1.

† In this and the following chapter, it is taken for granted that the reader is so far acquainted with the doctrine of chances as to know, that the probability that any number of independent events will all happen, is the product of all their probabilities, separately taken, multiplied by one another.

equal chance. *Half* of this fraction, therefore, or $\frac{81 \times 75}{2 \times 2857 \times 4385}$, will be the value of the expectation on the first of the two events. The second, which is by far the most considerable, will be expressed by the probability of the older person's *dying*, or $\frac{81}{2857}$, multiplied into the probability of the younger person's living, or $\frac{81 \times 4310}{2857 \times 4385}$. The sum of these two fractions therefore, or $\frac{81 \times 75}{2 \times 2857 \times 4385}$ added to $\frac{81 \times 4310}{2857 \times 4385}$, will express the ratio in which the sum proposed to be assured, after being discounted for a year, is to be diminished. By reasoning in the same manner the value of the assurance may be determined, if the life to be survived is younger than the life to be the survivor. If the term is extended to two, three, four, &c. years, or to the extremity of life, the principles from which the solution is derived are exactly similar, provided the value is required in *one present payment*. Thus the chance that the older life shall die in each of the following ten years is constantly $\frac{82}{2857}$, and the chance that the younger life shall die in each of those years is constantly $\frac{75}{4385}$ *. Half the fraction $\frac{82 \times 75}{2857 \times 4385}$ will therefore, during this period, invariably express the value of the expectation on the contingency of their both dying in the same year, and one in particular dying *last*. The other expectation after the first year depends on the younger person's living two, three, four, &c. years,

* See page 9.

and the older person's having died in the first, second, third, &c. years, according as the assurance is to be continued for two, three, four, &c. years, and is determined by multiplying $\frac{82}{2857}$ (expressing the latter probability) into the several fractions expressing the former probability, which appear by the *Northampton Table* to be $\frac{4235}{4385} \dots \frac{4160}{4385} \dots \frac{4085}{4385}$, &c.; these fractions being severally multiplied into $\frac{82}{2857}$ and added to $\frac{82 \times 75}{2 \times 2857 \times 4385}$, expressing the expectation on the first contingency, will give the ratio in which the sum to be assured is to be diminished, after having been previously discounted for two, three, four, &c. years respectively. The sum of all these expressions, continued for as many terms as are equal to the number of years for which the assurance is to be made, will give its whole value in one present payment. But if the assurance is not to cease till the claim is determined, those terms must be continued to the extremity of the older life. The repeated multiplications and additions which would be necessary by these means to ascertain the value of the assurance would be attended with great labour, especially if the operations were to be continued during life, or even during a period of eight or ten years. A more concise method, therefore, is given in the fourth chapter of this work, for determining the sum of those terms in all cases, and reducing them into general rules.

In computing the values of assurances on survivorships in *annual* payments from the same principles with those on single lives, the reasoning becomes much more complicated. Suppose a given sum to be paid on the death of a person aged 56, should that happen before the death of another aged 30, and that 58 persons all aged 56 had agreed to assure £100 each on their lives, dependent on this contingency. By the *Northampton* Table one will die out of 58 at the age of 30 in the first year, and two out of the same number at the age of 56. One claim, therefore, will become due in this year, towards which a contribution of £1 14s. 6d. from each person must be paid. That the other does not become due depends upon two events; first, that the younger life which drops was one of those assured against either of the two older lives which failed in this year; secondly, that provided this was the case, the younger person also died *before* the older one in the year. That the first event happens, there are two chances out of 58, or a probability which may be expressed by the fraction $\frac{2}{58}$ or $\frac{1}{29}$; that the second event happens is very nearly an *even* chance which is expressed by $\frac{1}{2}$. These two fractions being multiplied into each other will produce $\frac{1}{58}$, expressing the whole probability that the second claim does not become due; that is, $\frac{1}{58}$ th or £1 14s. 6d. must be added to the former contribution of £1 14s. 6d. which will make the whole

of the first year's assurance equal to £3 9s. and as this is supposed payable at the beginning, and the claim not till the end of the year, it must be discounted for one year. In the second year, there will be very nearly three assurances less than in the first year; and as the deaths among the old and young lives continually bear the same proportion to each other, there will again be nearly two claims to be paid in this year, which being among fewer persons will render the contributions from each so much the higher. In the third year there will be nearly six assurances less than in the first, and three less than in the second year. The claims, however, will be much the same, and consequently the contributions higher than in the preceding year. By reasoning in the same manner, it will be found that the annual payments are continually increasing till they become greatest in the last year; in order therefore to reduce these increasing annual payments to one *fixed* sum which shall be the same during every year of the assurance, it will be necessary to find such a *mean* between the highest and lowest contribution as shall provide a sufficient surplus, with its accumulating interest, to discharge the last claim. To determine with perfect accuracy *how much* the contributions increase and the claims diminish in every year would lead to a train of reasoning so perplexed and complicated as to be altogether unfit for the present purpose, and it will be

14 AN INTRODUCTION TO THE DOCTRINE, &c.

sufficient only to observe from this general view of the subject, since the contributions appear to increase much faster than the claims diminish, that the last contribution must necessarily be the greatest, and consequently that the fixed annual payment must be such a mean as I have described.

As the annual payments in the case of survivorships are made to cease whenever *either* of the lives fails, it is evident that these payments must be such a *mean*, as being multiplied into the value of an annuity on the *joint* lives shall be equal to the value of the assurance in one payment: or in other words, the annual payment will be the quotient arising from the value of the assurance in one payment divided by the value of an annuity on the two joint lives. But this will be better understood when the principles on which the values of annuities on single and joint lives shall have been explained in the following chapter.

CHAPTER II.

*An Introduction to the Doctrine of Annuities
on Lives.*

The value of a life annuity, like that of an assurance, is more or less easily determined in proportion to the number of lives on which the annuity depends. When only *one* life, therefore, is concerned, the operation will be most simple, and if the annuity is limited to a single year, it becomes the exact converse of the operation for an assurance during the same time. In the former, a given sum is to be paid if the life *exists* one year, in the latter the sum is to be paid if the life *fails* in the year; so that if it were an *even* chance whether it would exist through a year, or not, the value of an annuity and of an assurance would be equal; and the former will exceed the latter, in proportion as the chance of *living* exceeds that of *dying* in the year. Suppose, for example, that A. and his heirs were entitled to 50 annuities of £100 each on the single lives of as many persons, whose common age was 39; that is, that they were to receive £100 from every one of 50 persons of this age, at the end of every year while they lived. By the *Northampton Table of Ob-*

16 AN INTRODUCTION TO THE DOCTRINE

servation* it appears that 49 out of the 50 will live one year, and therefore the value of the first payment of those annuities is £100 multiplied by 49 (or £5,000, the sum of all the payments lessened in the ratio of 49 to 50) which is equal to £4,900. But as this money is not payable till the *end* of the year, it must be discounted for a year, so that the present value with the interest may in this time just accumulate to £4,900. Hence it follows that the value of the first payment of an annuity, in the present instance, exceeds that of an assurance for a year, in the ratio of 49 to one, the premium for assuring those several sums on 50 such lives being only £100 discounted for a year†. Had the annuity been on 50 single lives, whose common age was 60, two persons would have died by the *Northampton* Table in the year, so that the first payment would have been £100 multiplied into 48 (or £5,000 lessened in the ratio of 48 to 50) which is equal to £4,800; and in the former chapter‡ it is proved that the premium for assuring those sums is £200§, hence the first payment of an annuity on a life of 60 exceeds an assurance for a year on the same life only in the ratio of 48 to 2 or 24 to 1. At the age of 94 the number of those that die exceeds the number of those that live one year, and con-

* Tab. 1.

† See page 2.

‡ Ibid.

§ It will be remembered that both these sums of £4,800 and £200 are to be discounted for a year.

sequently the value of the first payment of an annuity becomes *less* than the assurance for a year of a sum equal to that annuity. It may be observed from these calculations that the sum of the values of the first payment of an annuity, and of an assurance for one year, is always equal to such first payment of the annuity to be received *certainly* at the end of the year; for if a given sum is to be then received, whether a life *does* or *does not* exist, one or other of these two events must happen, and it is obvious that the expectation on *both* of them is the expectation of a certainty. But the value of the several payments of a life annuity for two, three, or any number of years, may perhaps be determined more simply in the following manner: Suppose the annuity to be confined to one person of the age of 66, and the value of it to be computed from the *Northampton Table*. The number of persons living in that table at the beginning of the first year is 1552, and the number living at the beginning of the following year is 1472. The probability therefore of the person's living in this case, to the end of the first year, is in the proportion of 1472 to 1552, and the value of £1 to be then received on that contingency is the sum discounted for a year, and multiplied into the fraction $\frac{1472}{1552}$. In the second year, the number living at the beginning of the third year being 1392, the probability of the person's living to that time will be in the proportion of 1392 to 1552, and therefore the value of the

18 AN INTRODUCTION TO THE DOCTRINE

second payment of the annuity will be £1 discounted for two years, and multiplied into the fraction $\frac{1392}{1552}$. By reasoning in the same manner, £1 discounted for three years, and multiplied into the fraction $\frac{1312}{1552}$, will give the value of the third payment of the annuity. If the operations are continued for any number of terms, the sum of those terms will be the value of the annuity for an equal number of years; and if in the present case they be continued to 30 terms, it appears from the table that the numerator of the fraction, which constitutes the 31st term, vanishes, and consequently the sum of the different products for 30 terms will express the value of the annuity for the whole duration of a life of 66. The subject may be otherwise explained in the following manner. Suppose a life annuity of £1 payable yearly to every one of 5132 persons, all now aged 20, the first payment of which is to be made a year hence. It appears from the *Northampton Table of Observations*, that only 5060 of these persons will be living at the end of a year, and consequently that the money to be then paid will be only £5,060. The present value therefore of the first payment of the annuities will be the sum which now put out to interest will increase in a year to £5,060, that is, it is £5,060 discounted for a year, or £4,865 7s. 6d.; for this sum added to its interest for a year at £4 per cent. will just make up £5,060. From the same table it appears further, that of 5132 persons living at 20 years of

age, only 4985 will be living at the end of two years. The present value therefore of the second payment of the annuities will be the sum which being now put out to compound interest at £4 per cent. will increase in two years to £4,985. This sum is £4,609. In like manner 4910, 4835, 4760, &c. being the number living at the end of 3, 4, 5, &c. years, the value of the 3d, 4th, 5th, &c. payments of the annuities will be £4,910, £4,835, £4,760, &c. discounted for 3, 4, 5, &c. years respectively. These sums so discounted and continued to the year in which all the lives become extinct will amount to £82,282, and will be sufficient if improved at £4 per cent. to make good the payment of an annuity for life of £1 to every one of 5132 persons aged 20, according to the *Northampton* Table of Observations. The value therefore of such an annuity payable only to one such person must be the 5132d part of £82,282, or £16 Os. 8d.

Were the probabilities of life to decrease in arithmetical progression according to an hypothesis invented by M. De Moivre* the sum of the

* In this hypothesis the limit, or utmost extent of life, is confined to the age of 86; and supposing any number living at a given age, an equal number of them is supposed to die in every year, till at the age of 86 all the lives become extinct. Thus, if there are 50 persons living at the age of 30, one of them by this hypothesis will die annually during the term of 56 years, at which period the last surviving life will have failed; or, in other words, 55 will be living at the end of the 1st year, 54 at the end

two joint lives of the same age, as the money is to be received, in the first case, if only *one* event happens, and, in the second case, it is not to be received, unless that event and *another* happen. For the same reason, an annuity upon *two joint* lives is worth more than an annuity upon *three joint* lives of the same ages, inasmuch as the money in the one case is to be received, if only *two* events happen; in the other it is not to be received, unless those two events and *one more* all happen. Universally, the greater the number of lives, the less will be the value of the annuity on their *joint* continuance; and this number may be so increased, as to render such an annuity nearly of *no* value. When the number of lives exceeds *two*, the computations, in the manner I have described, become so laborious, as to render it necessary to have recourse to methods for approximating to the true values. For this purpose Mr. Simpson in his Select Exercises (prob. ix.) has given a rule for determining the value of three joint lives, from the given value of two joint lives, which has been rendered sufficiently correct in most cases by those tables of the values of single and joint lives, which have since been computed from the real probabilities of human life.*

* In the year 1783 Dr. Price published tables of single and joint lives from the Northampton Table of Observations, and also from the probabilities of life in the whole kingdom of Sweden.

With respect to annuities on the *longest* of any number of lives, the reasoning is less simple, and if more than two lives are concerned, it becomes so complicated, as not to admit of being explained in a few words. I shall therefore confine myself at present to the single case of two lives, which being derived from the same principles with those from which the value of a greater number of lives is determined, will, if properly understood, lead to a general knowledge of the subject in all cases. Suppose the ages of the two persons, during whose lives the annuity is to be enjoyed, are 50 and 60. By the *Northampton* Table the probability of the former's living one year, is expressed by the fraction $\frac{2776}{2857}$, and the probability of the latter's living the same time by the fraction $\frac{1956}{2036}$. The probabilities of their severally *dying* in the year, are $\frac{2776}{2857}$ subtracted from unity, and $\frac{1956}{2036}$ subtracted from unity, that is, they are $1 - \frac{2776}{2857}$ and $1 - \frac{1956}{2036}$. * These two expressions being multiplied into each other will give the probability of their *both* dying

About the same time Mr. Baron *Maseres* also published similar tables from the probabilities of life, as deduced by M. *De Parcieux*. These have been computed at different rates of interest, and are indeed a very important addition to the doctrine of annuities. The Northampton and Sweden tables are inserted in this volume.

* A certainty is always denoted by unity, so that the difference between the probability of an event's *happening* and this certainty, must express the probability of the same event's *not* happening.

24 AN INTRODUCTION TO THE DOCTRINE

in the year*, which is equal to $1 - \frac{2776}{2857} - \frac{1956}{2036} + \frac{2776 \times 1956}{2857 \times 2036}$. If this expression again be subtracted from unity, the remainder will give the probability that they will *not* both die in the year; that is, that one of them at least will live to the end of it. In order therefore to subtract the above expression, nothing more is necessary than to change the different signs in it, and then add the whole to unity; in which case we shall have $\frac{2776}{2857} + \frac{1956}{2036} - \frac{2776 \times 1956}{2857 \times 2036}$ for the probability required. In the same manner the probability of one of them at least, living to the end of the second year may be found to be $\frac{2694}{2857} + \frac{1874}{2036} - \frac{2694 \times 1874}{2857 \times 2036}$, the probability of one of them at least living to the end of the third year $\frac{2612}{2857} + \frac{1793}{2036} - \frac{2612 \times 1793}{2857 \times 2036}$, and so on for a number of years equal to the difference between the age of the younger of the two lives, and that of the oldest life in the table of observations. If those several expressions be respectively multiplied into the annuity discounted for 1, 2, 3, &c. years, and the products be added together, the sum will be the whole value of the annuity for the continuance of the *longest* of two lives aged 50 and 60 years. By proceeding in the same manner the value of an annuity on the longest of any other two lives, and by any table of observations may be determined. But if the values of the single and joint lives are given, it appears from what has been observed in

* See note, page 9.

the beginning of this chapter that the value of an annuity during the continuance of the *longest* of them may be obtained without difficulty. For since $\frac{2776}{2857} + \frac{2694}{2857} + \frac{2612}{2857}$, &c. multiplied into the annuity discounted for 1, 2, 3, &c. years, is shown to be the value of an annuity on a single life of 50, $\frac{1956}{2036} + \frac{1874}{2036} + \frac{1793}{2036}$, &c. so discounted, to be the value of an annuity on a single life of 60, and $\frac{2776 \times 1956}{2857 \times 2036} + \frac{1874 \times 2694}{2857 \times 2036} + \frac{2612 \times 1793}{2857 \times 2036}$, &c. discounted in like manner to be the value of an annuity on two joint lives aged 50 and 60,* it follows that if "from the sum "of the values of an annuity on the single lives, "the value of an annuity on the joint lives be "subtracted, the remainder will give the value of "an annuity on the continuance of the longest of "two such lives."† If the lives are increased to three, four, five, or any other number, the value of an annuity on the *longest* of them may still be found from the values of the single and joint lives; but the operation becomes much more

* See page 20.

† EXAMPLE. Suppose the value to be required of an annuity on the longest of two lives aged 40 and 50, reckoning interest at 4 per cent. and computing from the probabilities of life at *Northampton*. By Tab. 3. the value of a single life of 40 is 13.197, and by the same table the value of a single life of 50 is 11.264. Their sum is 24.461; from which 8.834 (the value of the joint lives of 40 and 50 by Tab. 4.) being subtracted, we have 15.627 for the number of years purchase required.

26 AN INTRODUCTION TO THE DOCTRINE, &c.

complicated, and if the number exceeds three, almost impracticable, especially as there are no tables of the values of *four* joint lives, nor even any tolerably correct method of approximating to them.

CHAPTER III.

On the method of calculating tables of the values of annuities on single and joint lives.

WERE it *certain* that a person of a given age would live to the end of a year, the value of an annuity of £1 on such a life would be the present sum that would increase in a year to the value of a life one year older, together with the value of the single payment of £1 to be made at the end of a year ; that is, it would be £1 together with the value of a life one year older than the given life, multiplied by the value of £1 payable at the end of a year. Let the value of a life one year older than the given life be denoted by N. and the value of £1 payable at the end of a year by $\frac{1}{r}$ *, then will the value of the annuity on the given life on the supposition of a certainty be $\frac{1}{r} + \frac{1}{r} \times N$. But, in fact, it is *uncertain* whether the life will or will not exist to the end of the year ; this value, therefore, must be diminished in the proportion of that uncertainty ; that is, it must be multiplied by the probability that the given life will survive

* If r represent £1 increased by its interest for a year, $\frac{1}{r}$ will be the present value of £1 to be received at the end of a year. See the Appendix at the end of the Tables.

one year, or supposing $\frac{b}{a}$ * to express this probability it will be $\frac{b}{a} \times \frac{1}{1 + N}$. This theorem has been otherwise demonstrated by Mr. *Simpson* in his book on Life Annuities (prob. i. cor. 7th,) and by Dr. *Price* in his Treatise on Reversionary Payments (Note N. Appendix.) Its great utility will appear from the following examples: Suppose the probabilities of life to be as they have been given by Dr. *Price* from the Bills of Mortality at *Northampton*, and the rate of interest to be 3 per cent., or that r is equal to 1.03. By reasoning, as in page 17, the value of a life aged 95 will be expressed by the fraction $\frac{1}{4} \times \frac{1}{1.03} = .242718$. The value of a life one year younger by this theorem will be $\frac{4}{9 \times 1.03} \times 1.242718 = .536232$. The value of a life two years younger will be by the same theorem $\frac{9}{16 \times 1.03} \times 1.536232 = .838961$. The value of a life three years younger will be $\frac{16}{24 \times 1.03} \times 1.838961 = 1.190262$, and if we proceed in this manner the value of every younger life may be deduced from that next proceeding; nor will the number of operations necessary to determine the values of all the lives much exceed the number of those which must otherwise be used for the single value of the youngest life. In computing a table of the values of annuities according to this

* If a denote the number living at the age of the given life, and b the number living in the following year, $\frac{b}{a}$ will express the probability that such life exists one year. (See page 17.)

or any other theorem, it cannot but be particularly agreeable to have the truth of our operations proved as we go on. I do not know that any rule has been delivered for this purpose, on which account I shall beg leave to offer the following : "Find the present value of £1 payable if the youngest life in the table should live to that of the oldest. Find next the present value of £1 payable if the youngest life should live to an age one year less than that of the oldest. Multiply this last value by the value of an annuity on the oldest life but one in the table, found in the manner just directed ; and if the product is equal to the value of £1 payable on the first mentioned contingency in this rule, a demonstration arises of the value of the life's being right. Again, find the value of £1 payable if the youngest life should live to an age two years less than the oldest life in the table. Multiply this by the value of an annuity of £1 on a life two years younger than the oldest life, (found from the value just calculated of a life one year younger,) and if the product is equal to the sum of the two values of £1 payable if the youngest life should continue to the age of the oldest ; and to the age of the life one year less than the oldest, the value of this second life will also be right. In the same manner let the three values of £1 payable if the youngest life should con-

30 ON CALCULATING VALUES OF ANNUITIES

"tinue to the several ages of the oldest, the secon
"and the third lives be added together, and
"they are equal to the product arising from th
"multiplication of the value of an annuity on th
"life three years younger than the oldest, (four
"from the value last calculated of a life two yea
"younger) into the value of £1, payable if th
"youngest life should continue to an age also thr
"years less than the oldest, a demonstration wi
"be given of the correctness of the value of th
"third life. Universally; if the several values o
"£1 payable if the youngest life in the table
"should live to the age of the oldest, the second,
"third, fourth, &c. lives be added together, and
"are found respectively equal to the products
"arising from the value of a life one, two, three,
" &c. years, younger than the oldest life multiplied
"into the value of £1 payable if the youngest life
"should continue to an age one, two, three, four,
" &c. years less than the oldest life, a proof will
"arise of the exactness of the operations as far as
"they have proceeded; and when we have gone
"in this manner through all the ages in the table
"and the sum of the several values of £1 payable
"if the youngest life should continue to the ages
"of all the older lives, is found equal to the value
"found last of all, of the youngest life, we have a
"conclusive proof that the values of the lives at
"all ages in the table have been computed without

"committing any mistake, and are exact at least "as far, or to as many places of decimals as the "equality reaches." This rule will be better understood from the following examples. Let the probabilities of life be as they are in the *Northampton Table*, and the rate of interest 3 per cent. By reasoning as in page 17, the value of £1 payable if a life aged one year lives to the age of 96, is expressed by the fraction $\frac{1}{8650}$ multiplied into £1 discounted for 95 years, or .06032,* which is equal to .00000697. Again the value of £1 payable if the same life continues to the age of 95 years is $\frac{4}{8650}$ multiplied into £1 discounted for 94 years, or .06213, which is equal to .00002873. The value of an annuity on a life of 95 has been found in page 28, to be equal to .242718, and this being multiplied into .00002873 gives .00000697, which has likewise been just found to be the value of £1 payable if a life aged one year lives to 96, and therefore the value of the annuity is proved to be right. The value of £1 payable if a life of one year lives to be 94 is $\frac{9}{8650}$ multiplied into £1 discounted for 93 years, or .063994, which is equal to .00006658. The value of a life aged 94 calculated from the value of a life aged 95 in the manner directed in page 27, is .536232. These multiplied into each other produce .000035703,

* See Tab. 18.

which is also the sum of the values of £1 payable if a life of one year continues to the several ages of 95 and 96; consequently the value of this annuity is also right. Again, the sum of the three values of £1 payable if a life of one year continues to the several ages of 94, 95, and 96 is .00010228. The value of a life aged 93 calculated from the value of a life aged 94 is .838961 and the value of £1 payable if a life aged one year continues to the age of 93 is $\frac{16}{8650}$ multiplied into £1 discounted for 92 years, or .065914 which is equal to .00012192, and .838961 multiplied into this number produces .00010228, or the *sum* of the values just found. Hence it follows that .838961 is the true value of an annuity of £1 on a life aged 93 years. By proceeding in this manner through every age, it will appear at last that the sum of all the values of £1 payable if a life aged one year continues to the several ages of 96, 95, 94, 93, 92, &c. years is 16.0214, which corresponds *exactly* with the value of an annuity of £1 on the same life found in consequence of computing upwards from the oldest to the youngest life according to the theorem in this chapter, and therefore the values of all the lives are strictly true.*

In making these calculations it will be conve-

* See the demonstration of this rule in Note II.

nient to dispose the operations into the following order :

Age.	Values of Lives.	Values of £1 payable.	Sums.
96	0.0000	.00000697	0.000000
95	.242718	.00002873	.00000697
94	.536232	.00006658	.00003570
93	.838961	.00012192	.00010228
	&c.	&c.	&c.

In the first of these columns is the age. In the second the value of a life at that age agreeable to the *Northampton* Table of Observations, found by calculating upwards from the oldest to the youngest, in the manner already directed ; that is, (reckoning interest at 3 per cent.) $.00000 = \frac{0}{1} \times \frac{1}{1.03} \dots$
 $.242718 = \frac{1}{4} \times \frac{1}{1.03} \dots .536232 = \frac{4}{9} \times \frac{1}{1.03} \times \frac{1}{1 + .242718}$
 $\dots .838961 = \frac{9}{16} \times \frac{1}{1.03} \times 1 + .536232, \text{ &c. &c.}$ In the third column is the value of £1 payable to a life aged one year (being the youngest life to which the operations are to be carried), provided it should exist to the ages of 96, 95, 94, &c. that is, .000006032 is the probability that a life aged one shall exist till 96, multiplied by the value of £1 payable at the end of 95 years, or $.00000697 = .06032 \times \frac{1}{8650}$. In like manner $.00002873 = .06213 \times \frac{4}{8650} \dots .00006658 = .063994 \times \frac{9}{8650}, \text{ &c. &c.}$ In the fourth column are the sums of all the values in the third column *above* the values even with those sums, or (which comes to the same thing) the sums of the two numbers immediately above them,

34 ON CALCULATING VALUES OF ANNUITIES

and even with one another in the 3d and 4th columns; that is, $.00000697 = .00000697 + .00000 \dots .00003570 = .00000697 + .00002873 \dots .00010228 = .00006658 + .00003570$, &c. &c. In consequence of this arrangement it will be always found that the product of every number in the second column, multiplied by the number even with it in the third column, gives the number even with both in the fourth column; and this forms a proof that there has been no error during the whole progress of the calculations in any of the preceding ones, and that the value of every life, as it comes out, may be depended on to as many places of decimals, as those in the product just mentioned are the same with the decimal figures in the correspondent number in the 4th column. For example; .838961 (the value of a life aged 93) multiplied by .00012192, gives .00010228, which being the same to the last place of decimals with .00010228 in the 4th column, proves that the values of the lives aged 93, 94, and 95 may be depended upon to the six places of decimals. This proof makes a little more labour necessary in calculating the values of lives; but this addition of labour is more than compensated by the time and trouble that must be saved in consequence of detecting every error as it arises, and also by the satisfaction attending a series of operations, every one of which, if right, proves the truth of all that have been made before it. The following expedient, however, will remove one half the labour. In

order to find the numbers in the third column one multiplication is necessary and one division. The time employed in the latter may be saved by making the number 10,000 the divisor instead of the number in the Table of Observations opposite to the youngest age. For example; in all the operations which bring out the numbers in the third column, the divisor is 8650, but it might have been taken to be 10,000, and then the first number in that column, instead of .00000697, would have been $.000006032 = \frac{1}{10,000} \times .06032$. The second number, instead of .00002873, would have been $\frac{1}{10,000} \times .06213 = .000024852$. The third, instead of .00006658, would have been $\frac{1}{10,000} \times .063994 = .000057595$, &c. &c. And the correspondent sums in the fourth column would have been .00000000000603200003088400008848, &c. The table then would have been as follows;

Age.	Values of Lives.	Values of £1 payable, &c.	Sums.
96	0.00000	.000006032	.000000
95	0.242718	.000024852	.000006032
94	0.536232	.000057595	.000030884
93	0.838961	.000105462	.000088479
92	1.19026	.000162938	.000193941
91	1.50103	.000237755	.000356879
90	1.79474	.000331324	.000594634
89	2.01312	.000459953	.000925958
88	2.18521	.000634219	.001385911
87	2.31236	.000873614	.002020130
86	2.46.81	.001175442	.002893744
85	2.62012	.001553044	.004069186

36 ON CALCULATING VALUES OF ANNUITIES

Age.	Values of Lives.	Values of £1 payable, &c.	Sums.
84	2.79372	.002012447	.005622230
83	2.98226	.002560019	.007634677
82	3.22934	.003156904	.010194696
81	3.49933	.003815466	.013351600
80	3.78150	.004539732	.017167066
79	4.07717	.005323980	.021706798
78	4.37250	.006181998	.027030778
77	4.65192	.007139610	.033212776
76	4.92544	.008192664	.040352386
75	5.19970	.009336205	.048545050
74	5.49113	.010540896	.057881255
73	5.79384	.011809462	.068422151
72	6.10373	.013144757	.080231613
71	6.41788	.014549414	.093376370
70	6.73417	.016026595	.107925784
69	7.05104	.01757936	.12395238
68	7.36731	.01921085	.14153174
67	7.68210	.02092433	.16074259
66	7.99473	.02272330	.18166692
65	8.30467	.02461154	.20439022
64	8.61152	.02659250	.22900176
63	8.91001	.02868621	.25559426
62	9.20550	.03088146	.28428047
61	9.49288	.03319977	.31516193
60	9.77738	.03562933	.34836170
59	10.0587	.03817484	.38399103
58	10.3368	.04084093	.42216587
57	10.6115	.04363262	.46300680
56	10.8826	.04655507	.50663942
55	11.1500	.04961362	.55319449
54	11.4138	.05281375	.60280811
53	11.6739	.05616140	.65562186
52	11.9302	.05966213	.71178326
51	12.1828	.06332250	.77144539
50	12.4360	.06712522	.83476789
49	12.6937	.07105091	.90189311
48	12.9508	.07512666	.97294402
47	13.2028	.07938308	1.0480707
46	13.4498	.0838272	1.1274538
45	13.6920	.0884664	1.2112810
44	13.9295	.0933086	1.2997474
43	14.1625	.0983616	1.3930560
42	14.3911	.1036341	1.4914176

Age.	Values of Lives.	Values of £1 payable, &c.	Sums.
41	14.6200	.1091036	1.5950517
40	14.8480	.1147766	1.7041553
39	15.0753	.1206588	1.8189319
38	15.2978	.1267911	1.9395907
37	15.5156	.1331824	2.0663818
36	15.7290	.1398432	2.1995642
35	15.9380	.1467840	2.3394074
34	16.1427	.1540151	2.4861914
33	16.3433	.1615482	2.6402065
32	16.5400	.1693945	2.8017547
31	16.7328	.1775664	2.9711492
30	16.9218	.1860757	3.1487156
29	17.1072	.1949363	3.3347913
28	17.2891	.2041607	3.5297276
27	17.4675	.2137634	3.7338883
26	17.6426	.2237584	3.9476517
25	17.8144	.2341606	4.1714101
24	17.9830	.2449856	4.4055707
23	18.1486	.2562495	4.6505563
22	18.3111	.2679682	4.9068058
21	18.4708	.2801601	5.1747740
20	18.6385	.2926677	5.4549341
19	18.8208	.3053867	5.7476018
18	19.0131	.3183594	6.0529885
17	19.2184	.3315248	6.3713479
16	19.4359	.3448725	6.7028727
15	19.6577	.3585243	7.0477452
14	19.8728	.3726845	7.4062695
13	20.0814	.3873722	7.7789540
12	20.2837	.4026052	8.1663262
11	20.4800	.4184041	8.5689314
10	20.6633	.4349416	8.9873355
9	20.8123	.4527261	9.4222771
8	20.8857	.4728130	9.8750032
7	20.8538	.4962093	10.3478162
6	20.7275	.5231724	10.8440255
5	20.4735	.5552155	11.3671979
4	20.2109	.5899005	11.9224134
3	19.5757	.6391743	12.5123139
2	18.5995	.7070875	13.1514882
1	13.8585*	1.0000000	13.8585757

* True value 16.0214.

D 3

38 ON CALCULATING VALUES OF ANNUITIES

In this way the same proof of all the operations is obtained; nor has any error arisen except in the value of the life last calculated, which is easily corrected by taking the number of the living at the age of this life, agreeable to the table of observations, instead of supposing it 10,000; that is, by making the value of the life aged one year $\frac{7283}{8650} \times \frac{1}{1.03} \times 1 + 18.5995$, instead of $\frac{7283}{10,000} \times \frac{1}{1.03} \times 1 + 18.5995$.

The use of logarithms will further expedite the computations, by the assistance of which the values of single lives at all ages agreeable to any given table of observations may be calculated in a few hours, without the possibility of committing any mistake.

By a similar process the values of annuities on the *joint continuance* of two lives may be computed with equal facility and correctness. But this part of the subject will require no explanation, as it may easily be understood from what has been already said, in regard to the values of annuities on *single* lives. Thus, let the value of any two joint lives be denoted by M. the probability that two lives, each one year younger, will exist together one year by $\frac{nb}{nm}$, and let $\frac{1}{r}$, as before, be the value of £1 payable at the end of the year; then by reasoning as in page 27, the value of an annuity on the joint continuance of those two younger lives will be expressed by $\frac{nb}{nm} \times \frac{1}{r} + M$. This, together with the necessary proof of the operations,

will be sufficiently explained by the following specimen.

Ages.		Values of Joint Lives.	Values of £1 payable, &c.	Sums.
96	62	0.00000	.000003088146	.0000000000000
95	61	0.23254	.000013279908	.000003088146
94	60	0.51044	.000032066397	.00016368054
93	59	0.79297	.00006107974	.00048434451
92	58	1.1173	.00009801823	.0010951419
91	57	1.3989	.0001483509	.002075324
90	56	1.6618	.0002141533	.003558833
89	55	1.8531	.0003076044	.005700366
88	54	2.0021	.0004383541	.008776410
87	53	2.1110	.0006233915	.013159951
86	52	2.2418	.0008651009	.019393866
85	51	2.3811	.001177799	.02804488
84	50	2.5353	.001570730	.03982287
83	49	2.7043	.002053371	.05553017
82	48	2.9262	.002599382	.07606388
81	47	3.1666	.00322295	.1020577
80	46	3.4157	.00393150	.1342872
79	45	3.6748	.00472411	.1736022
78	44	3.9316	.00561718	.2208433
77	43	4.1723	.00663941	.2770151
76	42	4.4065	.00779328	.3434092
75	41	4.6417	.00907742	.4213420
74	40	4.8924	.01046763	.5121162
73	39	5.1531	.01196935	.6167925
72	38	5.4185	.01359201	.7364860
71	37	5.6861	.01534261	.8724061
70	36	5.9542	.01722868	.10258322
69	35	6.2214	.0192581	.1198119
68	34	6.4868	.0214389	.1390700
67	33	6.7497	.0237799	.1605089
66	32	7.0099	.0262900	.1842888
65	31	7.2667	.0289788	.2105788
64	30	7.5200	.0318562	.2395576
63	29	7.7653	.0349521	.2714138
62	28	8.0075	.0382597	.3063651
61	27	8.2422	.0418121	.3446248
60	26	8.4741	.0456020	.3864369

40 ON CALCULATING VALUES OF ANNUITIES

Ages.		Values of Joint Lives.	Values of £1 payable, &c.	Sums.
59	25	8.7031	.0496420	.4320389
58	24	8.9290	.0539458	.4816809
57	23	9.1518	.0585274	.5356267
56	22	9.3714	.0634013	.5941541
55	21	9.5878	.0685832	.6575554
54	20	9.8067	.0740449	.7261386
53	19	10.0316	.0797670	.8001835
52	18	10.2600	.0857681	.8799505
51	17	10.4934	.0920313	.9657186
50	16	10.7353	.0985301	1.0577499
49	15	10.9847	.1052627	1.1562800
48	14	11.2310	.1123271	1.2615427
47	13	11.4704	.1197755	1.3738698
46	12	11.7033	.1276258	1.4936453
45	11	11.9301	.1358977	1.6212711
44	10	12.1467	.1446616	1.7571688
43	9	12.3408	.1541081	1.9018304
42	8	12.4879	.1646335	2.0559385
41	7	12.5739	.1766009	2.2205720
40	6	12.6052	.1901732	2.3971729
39	5	12.5608	.2059850	2.5873461
38	4	12.5106	.2232773	2.7933311
37	3	12.2268	.2467213	3.0166084
36	2	11.7285	.2782389	3.2633297
35	1	3.5415*	1.0000000	3.5415686

In the third column the values are $\frac{1793}{1874} \times \frac{0}{1} \times \frac{0}{1}$
 $= .00000 \dots \frac{1874}{1956} \times \frac{i}{4} \times \frac{1}{1.03} \times 1. + 0 = .23254 \dots \frac{1956}{2038}$
 $\frac{4}{9} \times \frac{1}{1.03} \times 1 + .23254 = .51044 \dots \frac{2038}{2190} \times \frac{9}{16} \times \frac{1}{1.03}$
 $1 + .51044 = .79297$, and so on. In the four column the numbers of the living at each of the youngest ages to which the values are to be found (which in the present case are 1 and 35) are su

* True value 10.2102.

posed to be 10,000; so that .000003088146 = $\frac{1874}{10,000} \times \frac{1}{10,000} \times .164789$ (the value of £1 payable at the end of 61 years); .000013279908 = $\frac{1956}{10,000} \times \frac{4}{10,000} \times .169733$ (the value of £1 payable at the end of 60 years), or $\frac{4}{10,000} \times .08319977$ (the number in the third column of the table of the values of single lives opposite the age of 61),000032066397 = $\frac{9}{10,000} \times \frac{2038}{10,000} \times .174825$, or $\frac{9}{10,000} \times .03562933$, (the number in the third column of the abovementioned table, opposite the age of 60), and so on. Having therefore previously computed a table of the values of single lives, and preserved the numbers in the third column, one half the trouble of computing the values in the fourth column of the present table may be saved. In the fifth column are the sums respectively of .000003088146 and .00000000 . . . of .000013279908 and .000003088146 . . . of .000032066397 and .000016368054, &c. And the equality of the products of the values even with one another in the third and fourth columns, with the number in the same line in the fifth column, forms the same proof of the accuracy of the operations with that already explained in the account of the method of computing the values of single lives. The calculation of the values of joint lives, in exact agreement to a given table of observations, was formerly considered as a task so laborious, that with the exception of Mr. *Simpson*, who computed the values of joint lives from the London Table,

I do not know that it was ever undertaken. But these values being computed only to one place of decimals, and deduced from a table of observations representing the rate of mortality among the inhabitants of London taken in the gross, and consequently giving the probabilities of life much too low for the middle and higher sorts of people in London itself, were rendered of little use. Recourse therefore was had to the values of joint lives founded on M. *De Moivre's* hypothesis of an equal decrement of human life, which in the middle stages agrees tolerably well with the probabilities of life deduced from real observations, but in the earlier and later stages corresponds so ill with those probabilities, that the values of joint lives derived from it, are much too incorrect to be applied to the solution of problems which involve two or three lives in the computation. The inaccuracy of this hypothesis and the defectiveness of Mr. *Simpson's* tables induced me to be more minute, than I should otherwise have been, in describing the safest and most expeditious method of calculating tables of the values of single and joint lives, from any given table of observations, and since the first publication of this work about forty years ago, I have had the satisfaction of seeing those methods adopted, and such tables computed as have entirely superseded the use of M. *De Moivre's* hypothesis in all cases, and laid the foundation for correct solutions of all the

different problems in the doctrine of Life Annuities and Reversions. It may not be improper to observe that the several tables of the values of single and joint lives in the present volume have been computed in this manner, and that those tables which have been derived from the probabilities of life at *Northampton*, have not only been adopted by the legislature in order to determine the duties on contingent legacies, and for other purposes, but further that they have been applied to the computation of the different premiums of assurance required during the last 38 years by the Equitable society; which premiums, with very little variation, have also been assumed by most of the other assurance offices lately established in this country.

CHAPTER IV.—SECT. I.

An Account of the Method of computing the Values of contingent and other Annuities, the Values of Reversionary Payments, &c.

INTRODUCTION.

IN the preceding chapters I have endeavoured to explain the principles from which the values of assurances and annuities are deduced, which, being properly understood, may be applied without much difficulty to the solution of the more complicated cases of contingent reversions and survivorships. Being now possessed of tables of the values of single and joint lives, computed from real observations, it no longer becomes necessary to have recourse to any rules for approximating to these values, and therefore the rules given for that purpose in the former edition of this work, are now omitted, as well as all those problems whose solutions are derived from M. *De Moivre's* hypothesis of an equal decrement of life. There are however many problems introduced into the present, which were not given in the former edition; but there are no problems inserted, whose solutions are not founded on principles altogether independent of any *hypothesis*, and which are not strictly true, according to any table of observations. In some cases, particularly those in which three lives are concerned, the rules are necessarily more compli-

cated than those derived from M. *De Moivre's* hypothesis; but their superior correctness more than compensates for the greater length of the operations which they require.

In this chapter I have confined myself to a description of the rules, without entering into their demonstrations; many of which are very abstruse and complicated. These have all been inserted in Notes at the end of the Volume, for the information of the mathematical reader, being aware that the *practical* part of this work ought not to be encumbered with analytical operations, which would serve rather to perplex than to inform the reader who is not a mathematician.

The solutions of the greater number of the problems involving three lives in the computation were communicated by myself to the Royal Society, and published in the Philosophical Transactions about 25 years ago, and were I believe the first attempt to give correct rules for determining the values of those contingent reversions, according to the real probabilities of life. By a slight alteration in some of the symbols, these rules have been simplified in a small degree; but they are still rather complicated, nor do I see how they can be rendered less so, without at the same time rendering them less accurate, and thus reducing them to be mere *approximations*, like those which were founded on the erroneous hypothesis of M. *De Moivre*.

46 METHOD OF COMPUTING THE VALUES OF

PROBLEM I.

To find the *expectation* of a given life, according to any table of observations ; or the time which, one with another, a body of people will live at the age of the given life ; some of them living as much *longer* as others live *less* than that time.

SOLUTION. Find the sum of all the living in the table, from the age of the given life ; divide this sum by the number of the living at that age, and the quotient, lessened by half-unity, will be the required expectation.

EXAMPLE. The sum of all the living from the age of ten, in the *Northampton* Table of Observations, is 228599 ; this sum divided by 5675, the number living at the age of ten, gives 40.28, which being lessened by half-unity, the remainder, or 39.78 will be the expectation of a life of ten, according to the probabilities of life at *Northampton*. The *expectation* of a life is the same with the value of an annuity on such life, supposing money not to bear interest ; and therefore having computed the expectation of any given life, a table of the expectations of all the younger lives may be obtained in the same manner as the values of annuities are obtained from those on the older lives ; that is, if E . be the computed expectation of any life, and $\frac{b}{a}$ the probability that a life one year younger shall exist a year, the expectation of such younger life will be $\frac{b}{a} \times \frac{1}{1+E}$. Thus,

CONTINGENT AND OTHER ANNUITIES,

the expectation of a child aged 10 is 39.78, and the probability that a child aged nine exists one year, is $\frac{5675}{5735}$, the expectation therefore of this younger child will be $\frac{5675}{5735} \times 40.78 = 40.86^*$

PROBLEM II.

To determine the value of an annuity on a given life, for any given number of years.

SOLUTION. Find the value of a life as many years older than the given life as are equal to the term for which the annuity is proposed; multiply this value by £1 payable at the end of the term, and also by the probability that the life will continue so long †. Subtract the product from the *given
value
before
attain
Prob.
p. 1
Bal
p. 1*

* See Tab. 2.

† The probability that a life shall continue any number of years, or attain to a *given age*, is the fraction, whose numerator is the number living in the table of observations opposite that age, and denominates the number opposite to the present age of the given life: Thus 2038 is the number opposite to 60, and 4385 the number opposite to 30, $\frac{2038}{4385}$ therefore is the probability that a person aged 30 shall attain to 60, or live 30 years.

In the same manner the probability that any two lives shall continue in being together any number of years, or *both* attain to given ages, is the fraction whose *numerator* is the product arising from the numbers of living in the table, opposite to each of those given ages multiplied by one another, and *denominator* the product arising from the numbers opposite to the present ages, multiplied into each other. Hence the probability, that two lives aged 20 and 25 shall *both* continue in being 10 years is $\frac{1985 \times 4010}{5132 \times 4760} = \frac{177885}{2439840} = \frac{177885}{2439840}$.

48 METHOD OF COMPUTING THE VALUES OF

present value of the given life, and the remainder multiplied into the annuity will be the answer.

EXAMPLE. Let the annuity be £10, the age of the life 30 years, and the proposed term 15 years. The value of a life aged 45, (or 15 years older than the given life) appears by Tab. 3. at 3 per cent. to be 13.692. The value of £1 payable at the end of 15 years, by Tab. 18, is .64186, and the probability that the life will exist so long by Tab. 1. is $\frac{3248}{4385}$. These three quantities, multiplied into each other, produce 6.510, which being subtracted from

Again, the probability that a life shall *fail* in any number of years, or *not* attain to a given age, is the fraction expressing the probability of his *living* so long, subtracted from unity, agreeable to what has been observed in page 23: In other words, it is the fraction whose denominator is the number of the living opposite to the present age, and whose numerator is the difference between this denominator and the number of living at the given age. Thus, $\frac{4}{10} = \frac{2}{5}$ is the probability that a life of 30 shall attain the age of 60; $\frac{3}{5} = \frac{1}{2}$ therefore will be the probability that he shall *not* attain this age; For the same reason $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ and $\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$ being the probabilities that two lives aged 20 and 25 shall severally exist 10 years, $\frac{1}{16} = \frac{1}{16}$ multiplied into $\frac{1}{16} = \frac{1}{256}$ ($= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$) will be the probability that they shall *both die* in 10 years; and this fraction again being subtracted from unity, will give $\frac{255}{256} = \frac{255}{256}$ for the probability that they shall not *both die* in this time, that is, that one of them at least shall *live* 10 years. Further $\frac{1}{16} \times \frac{1}{16} = \frac{1}{256}$ being the probability that the two lives of 20 and 25 shall exist together 10 years, if the numerator be subtracted from the denominator, we shall in this case have $\frac{255}{256} = \frac{255}{256}$ for the probability that they shall *not both live so long*; that is, that one of them at least shall *die* in this time.

16.922 (the present value of the given life by Tab. 3.) leaves 10.412, and this remainder multiplied into 10 gives £104.12 or nearly £104 2s. 5d. for the value required.

COROLLARY 1st. In the same manner may the value of an annuity for a given term upon two *joint* lives be determined; let the age of each of the two persons be 30 years, the term 15 years, and the rate of interest 3 per cent. The value of two joint lives, each aged 45, by Tab. 4. is 9.776, which being multiplied into .64186 (the value of £1 at the end of 15 years by Tab. 18.) and also into $\frac{3248 \times 3248}{4385 \times 4385}$, the probability that *both* lives shall exist so long by Tab. 1., will produce 3.448, and this subtracted from 12.589, the whole present value of the joint lives by Tab. 4., leaves 9.146 for their value during the term proposed. And since the value of the longest of two lives is equal to the joint lives subtracted from the sum of the two single lives *; if from twice 10.412 we subtract 9.146 we shall have 11.678 for the value of the longest of two equal lives aged 30, for the term above mentioned.

COROLLARY 2d. The value of an annuity for the remainder of a term certain after any life or lives is immediately obtained from this problem, or the foregoing corollary, being only the difference be-

* See page 25, and also Prob. III.

50 METHOD OF COMPUTING THE VALUES OF

tween the value of the life or lives found above and the value of an annuity certain for the proposed term. Hence if this term be 15 years, its value at 3 per cent. by Tab. 19. is 11.938, from which 10.412, or 9.146, or 11.678 being subtracted we have either 1.526, 2.792, or .260 for the value of an annuity during the remainder of 15 years after a single life of 30, or after two *joint* lives of the same age, or after the *longest* of two such lives.

COROLLARY 3d. If the value of an annuity or the life or lives for any given term be subtracted from the value of the annuity for the whole life or lives, the difference will be the value of the annuity during the remainder of such life or lives after the expiration of that term. Or it is equal in the case of *single* and *joint* lives to the *product* described in the solution of this problem; thus 6.5 is the value of an annuity of £1 during the remainder of a life of 30 *after* 15 years, and 3.44 the value of the like annuity during two *joint* lives after the same term.*

* In the case of the longest of two lives, it is evident that the value can only be found by taking the *difference* mentioned in the corollary; so that 21.255 being the whole value of the longest of two lives aged 30 at 3 per cent., found by Prob. III., and 11.67 being the value for 15 years, if the latter be subtracted from the former, we shall have 9.577 for the value of the longest of those two lives, *after* the term just mentioned.

PROBLEM III.

To find the value of an annuity during the *longest* of two lives. *Basile p. 381*

SOLUTION. From the sum of the values of the two single lives, subtract the value of the two joint lives, and the remainder will be the value required. *

EXAMPLE. Let the ages of the two lives be 40 and 50, and the rate of interest 5 per cent. By Tab. 3. the value of the single life of 40 is 11.837, the value of the single life of 50 is 10.269, and the value of the two joint lives by Tab. 4. is 8.177, which being subtracted from 22.106, the sum of the two former values, leaves 13.929 for the number of years purchase required.

PROBLEM IV.

To approximate to the value of an annuity on the joint continuance of three lives, A. B. and C. † *Basile p. 37*

SOLUTION. Let A. be the youngest, and C. the oldest of the three lives; take the value of the two joint lives B. and C. and find the age of a single life D. of the same value nearly; then find the value of the joint lives A. and D. which will be the answer.

* See the demonstration in page 23.

† A general account of the method of computing the values of two joint lives from the real probabilities of life has been already given in page 20.

52 METHOD OF COMPUTING THE VALUES OF

EXAMPLE. Supposing the value were required at £4 per cent. of an annuity on the joint continuance of three lives aged 10, 17, and 47 years. By Tab. 4. the value of the two oldest joint lives is 10.208, answering to a single life D. of 55 years, by Tab. 3., and the value of two joint lives aged 10 and 55, by Tab. 4. is 9.256, which is the answer.

PROBLEM V.

To find the value of an annuity upon the longest of the three lives A. B. and C.

SOLUTION. From the sum of the values of the three single lives added to the value of the three joint lives, found by the preceding problem, subtract the sum of the two joint lives of A. and B. of A. and C., and of B. and C., and the remainder will be the answer. *

EXAMPLE. Let the ages of the three lives respectively be 20, 30, and 60, interest £3 per cent. By Tab. 3. the values at £3 per cent. of the several single lives of A. B. and C. are 18.638, 16.922, and 9.777. By the preceding problem the value of the three joint lives is 7.444, these four values added together make 52.781. By Table 4, the several values of the joint lives of A. and B., of A. and C., and of B. and C. are 13.286, 8.597, and 8.378 ; this sum, or 30.261, subtracted from 52.781

* See the demonstration, Note III.

leaves 22.52 for the number of years purchase required.

SCHOLIUM. By proceeding in the same manner, and computing at £4 per cent., the *exact* values of three equal lives, each aged 60, may by the help of the table of three joint lives (Tab. 5.) be found = 13.194; . . . the *exact* value of three equal lives aged 70 = 9.817, and the *exact* value of three equal lives aged 75 = 7.960. The computation of the values of three joint lives for all ages, is a work of such immense labour, that it is never likely to be accomplished; but the approximation in Prob. iv. renders such labour in a great measure unnecessary. Thus the several values above mentioned, by having recourse to this approximation, instead of the correct values of the three joint lives, appear to be 13.251, 9.853, and 7.967, which are sufficiently near the truth for any useful purpose.

PROBLEM VI.

To find the value of an annuity granted upon three lives, A. B. C., on condition of its ceasing as soon as any two of them become extinct.

SOLUTION. From the sum of the values of the two joint lives A. B., A. C., and B. C., subtract twice the value of the three joint lives, A. B. and C., and the remainder will be the answer.*

* See the demonstration, Note IV.

54 METHOD OF COMPUTING THE VALUES OF

EXAMPLE. Let the ages of A. B. and C. respectively be 20, 30, and 60, and the rate of interest £4 per cent. By Tab. 4. the values of the joint lives of A. B., A. C. and B. C. are 11.87, 7.995, and 7.802, the sum of these numbers 27.670. By Prob. iv. the value of the three joint lives is 6.986, the double of which is 13.972, and therefore 13.698 is the value required.

SCHOLIUM. The value of an annuity for an given term, upon the continuance of two lives or of three, is determined from the solution of the second problem, by substituting in the preceding rule the value of the joint lives *for the given term* instead of the values for their *whole duration*.

PROBLEM VII.

To determine the sum to which any given annuity, forborn and improved at compound interest, will amount during the continuance of an given life.

SOLUTION. If the life exists one year, the accumulation will be just £1. If it exists two years the accumulation will be £1 increased by its interest for a year. If it exists three years the accumulation will be £1 increased by its interest for two years, and so on for the other years, so that the whole accumulation will be expressed by the sum of the series arising from the multiplication of these several amounts of £1, into the respective probabilities that the life exists one

two, three, &c. years; thus, supposing the life to be 30 and the rate of interest £4 per cent. the accumulation will be $\frac{4310}{4385} = .9829$ in the 1st year, the accumulation in the 2d year will be $\frac{4285}{4385} \times 1.04 = 1.0044$, the accumulation in the 3d year will be $\frac{4160}{4385} \times 1.0816 = 1.0261$, and so on. But as this would be a very tedious way of obtaining the amount in every separate case, the following theorem is given, by which a table of the amounts during the lives of persons at all ages may be computed with no more labour than would be required to compute the amount during the continuance of the youngest life. Let Q . be the amount of the annuity computed in the manner described above during the oldest life. Let $\frac{b}{a}$ be the probability that a life one year younger exists a year, and let r be £1 increased by its interest for a year; then will the amount during such younger life be $\frac{b}{a} \times \overline{1+r Q}$.* From the amount, thus obtained, may in like manner be computed the amount during the next younger life, and so on during every other younger life in the table of observations.

PROBLEM VIII.

To find the value of an annuity during a given life of £1 payable at the end of the 1st year, £2 at the end of the 2d year, £3 at the end of the

* See the demonstration and the Table in Note V.

56 METHOD OF COMPUTING THE VALUES OF

3d year, and so on; the annuity uniformly increasing every year till the extinction of the given life.

SOLUTION. This, like the preceding problem will not admit of a solution strictly accurate except by a separate computation of the value of each payment of the annuity; so that in order to find the value of the first payment, £1 discounted for a year must be multiplied into the probability that the life exists a year; to find the value of the 2d payment, £2 discounted for two years must be multiplied into the probability that the life exists two years; to find the value of the 3d payment, £3 must be discounted for 3 years and multiplied into the probability that the life exists three years, and so on with regard to the other payments till the life becomes extinct according to the table of observations. Thus, supposing the age of the life to be 35 and the rate of interest 4 per cent. The value of the first payment will be $.9569^* \times \frac{3935}{4010} = .9290$, the value of the 2d payment will be $.9157 \times \frac{3860}{4010} \times 2 = 1.7629$, the value of the 3d payment will be $.8763 \times \frac{3785}{4010} \times 3 = 2.48$; and if these operations be continued to the end of life, the whole value will be 176.967. In order to avoid these tedious operations in every particular case, a table may be constructed by the following theorem of the values of this annuity at all ages.

* See Tab. 1 and 18.

with no more trouble than would be required to compute the value of the like annuity on the youngest life. Let b , a , and r , denote the same quantities as in Prob. VII. ; let R be the value of this annuity computed as above, and N the value of an annuity on the given life ; then will the value of an increasing annuity on a life one year younger than the given life, be equal to $\frac{b}{ar} \times 1 + R + N$.* From this value may be computed the value of an annuity on the next younger life, and so in succession of every other younger life in the table.

COROLLARY 1st. If the annuity is to commence with a larger sum than £1, and in the same manner to go on increasing £1 every year, add to the preceding value the value of the given life, multiplied into the first payment lessened by unity, and the *sum* will be the answer. Thus if instead of £1, £2, £3, &c. the annuities had been £15, £16, £17, &c., the value, supposing the life to be 35, and the rate of interest £4 per cent., would have been 176.967 added to 14.039 multiplied into 14, or £373.513.

COROLLARY 2d. From a table computed by the rule in this problem, the value may be determined of an annuity uniformly *decreasing* every year till the life shall become extinct, provided the annuity does not vanish in the meantime.† Let α be the

* See the demonstration, Note VI.

† It should be observed that unless $\frac{\alpha}{\beta}$ be greater than the difference between the age of the given life, and that of the oldest life in the table, this rule fails.

58 METHOD OF COMPUTING THE VALUES OF

first payment of the annuity, $\alpha - \beta$, the second payment, $\alpha - 2\beta$, the third payment; then will the value of such annuity be $\alpha A - \frac{\beta b}{ar} \times R$, A being the value of an annuity on the given life, R the amount of an increasing annuity on a life one year older, and $\frac{b}{a}$ the probability that the given life exists one year. Thus, if it were required to find the value of an annuity of £70 decreasing £1 annually during the life of a person aged 35 at 4 per cent., it would be equal to $14.195 \times \frac{4010 \times 1}{4085 \times 1.04} \times 176.967 = 993.65 - 167.03 = £826.6$

COROLLARY 3d. By the assistance of the same table the value may be found of £1, payable a life *fails* in the first year, £2 if it fails in the second year, £3 if it fails in the third year, and so on, increasing £1 every year during the whole continuance of such life. Let A be the value of an annuity on the given life, M the value found by this problem of an increasing annuity on the said life, and the required value will be $\frac{1+A}{r} - \frac{r-1.M}{r}$ equal, if the age of the life be 35, and the rate of interest 4 per cent., to $\frac{15.039 - .04 \times 176.967}{1.04} = £7.653.$ *

PROBLEM IX.

To find the value of an annuity during the remainder of the life of A. after the decease of B.

SOLUTION. From the value of an annuity during the life of A. subtract the value of an annuity o

* See the demonstration of this and the second corollary Note VI.

the joint lives of A. and B., and the remainder will be the answer.*

EXAMPLE. Let the respective ages of A. and B. be 35 and 45, and the rate of interest £4 per cent. By Tab. 3. the value of an annuity on the life of A. is 14.039. By Tab. 4. the value of an annuity on the joint lives of A. and B. is 10.622; the difference therefore, or 3.417, is the number of years purchase required.

PROBLEM X.

To find the value of an annuity on the life of A. after the extinction of the two lives of B. and C.

SOLUTION. From the *sum* of the values of an annuity on the life of A. and of an annuity on the three joint lives, subtract the *sum* of the values of the two joint lives A. B. and of the two joint lives A. C., and the remainder will be the number of years purchase required.†

EXAMPLE. Let the respective ages of A., B. and C. be 15, 50, and 65, and the rate of interest £5 per cent. By Tab. 3. the value of an annuity on the life of A. is 14.588. By Prob. iv. the value of the three joint lives may be found equal to 5.631, the sum of these two values is 20.219. By Tab. 4. the values of the joint lives of A. B. and of A. C. are 9.076 and 6.705, deducting their sum, or 15.781, from 20.219, we have 4.438 for the answer.

* See the demonstration, Note VII.

† See the demonstration, Note VIII.

PROBLEM XI.

To find the value of the reversion of the longest of the two lives A. and B. after the decease of C.

SOLUTION. From the value of the longest of the three lives subtract the value of the life of C. and the remainder will be the value required.*

EXAMPLE. Let the ages of the three lives, A. B. C., be 20, 30, and 60 respectively, and the rate of interest £3 per cent. By Prob. v. the value of the longest of the three lives is 22.52. By Tab. 3. the value of an annuity on the life of C. is 9.777, the difference therefore between these two sums, or 12.743, is the answer.

PROBLEM XII.

To find the value of an annuity during the life of A. after the extinction of the *joint* lives of B. and C.

SOLUTION. Subtract the value of the three joint lives from the life of A. and the remainder will be the answer.*

EXAMPLE. Let the value be required of an annuity of £1 at £4 per cent. during the life of A. aged 30, after the joint lives of B. and C. aged 25 and 60. By Prob. iv. the value of the three joint lives may be found = 6.920. By Tab. 3. the value of the single life of A. is 14.781, the difference therefore, or 7.861, is the required value.

* See the demonstration, Note VIII.

PROBLEM XIII.

To find the value of an annuity during the joint lives of A. and B. after the decease of C.

SOLUTION. From the value of the joint lives of A. B. subtract the value of the three joint lives, and the remainder will be the value required. *

EXAMPLE. Let the ages of A. B. and C. respectively be 40, 50, and 60, the annuity £1, and the rate of interest £5 per cent. By Prob. iv. the value of the three joint lives is 5.690. By Tab. 4. the value of the joint lives of A. B. is 8.177; the former subtracted from the latter, leaves 2.487 for the answer.

PROBLEM XIV.

To find the value of an annuity during the joint lives of A. and B. which is to be reduced *one half* during the life of the survivor.

SOLUTION. This annuity is equal to half the sum of the values of the two single lives.†

EXAMPLE. Let the ages of A. and B. respectively be 25 and 32, the annuity £40 which is to be reduced to £20 on the extinction of the joint lives during the life of the survivor, and let the rate of interest be £4 per cent. By Tab. 3. the values of those lives are 15.438, and 14.495, and 14.9665, half their sum multiplied into 40 gives 598.66 for the value required.

* See the demonstration, Note VIII.

† See the demonstration, Note IX.

62 METHOD OF COMPUTING THE VALUES OF

If £1,000 were sunk to purchase such an annuity, it should be £66.8 (or $\frac{1000}{14.9665}$) during the joint lives to be reduced to £33.4 during the life of the survivor.

PROBLEM XV.

Supposing an annuity to be equally enjoyed by A. and B., and that the survivor is to enjoy the whole of it during the remainder of his life, after the decease of the other ; to find the value of the interest of each in that annuity.

SOLUTION. Subtract half the value of the joint lives from the value of the life of A, or B. and the remainder will be the value of A. or B.'s interest. *

EXAMPLE. Let the age of A. be 30, that of B. 45 years, the annuity £1, and the rate of interest 5 per cent. By Table 4. the value of the joint lives is 9.135. By Tab. 3. the value of the life of A. is 13.072, and the value of the life of B. is 11.105, therefore half 9.135 or 4.567, subtracted from 13.072 gives 8.505 for the value of A.'s interest, and 4.567 subtracted from 11.105 gives 6.538 for the value of B.'s interest in the annuity.

PROBLEM XVI.

An annuity is equally enjoyed by A., B. and C during their joint lives, on the decease of either i

* See the demonstration, Note X.

is in like manner to be equally enjoyed by the two survivors during their *joint* lives, and after their extinction it is to be enjoyed by the last survivor during his life, to find the value of A.'s interest in this annuity.

SOLUTION. From the value of the life of A. added to $\frac{1}{3}$ the value of the three joint lives, subtract half the sum of the values of the joint lives A. B. and A. C., and the remainder will be the value of A.'s interest. *

EXAMPLE. Supposing the ages of A., B. and C. respectively to be 35, 45, and 50, and the rate of interest £4 per cent. By Tab. 3. the value of the life of A. is 14.039. By Prob. iv. the value of the three joint lives is 7.318, and by Tab. 4. the values of the joint lives of A. B. and of A. C. are 9.706 and 9.110, therefore the value of A.'s interest will be $14.039 + \frac{7.318}{3} - \frac{9.706 + 9.110}{2} = 7.270$ years purchase.

PROBLEM XVII.

Supposing a given annuity after the decease of A. to be equally divided between B. and C. during their *joint* lives, and then to be enjoyed entirely by the last survivor for life, to find the value of B.'s expectation.

SOLUTION. From the value of an annuity during the remainder of the life of B. after A. found by

* See the demonstration, Note XI.

64 METHOD OF COMPUTING THE VALUES OF

Prob. ix. deduct half the value of an annuity during the joint lives of B. and C. after A. found by Prob. XII. and the remainder will give the value of B.'s expectation. *

EXAMPLE. Let the respective ages of A., B. and C. be 45, 35, and 50, and the rate of interest £ $\frac{1}{2}$ per cent. By Prob. ix. the value of an annuity during the life of B. after A. is 3.417. By Prob. XI. the value of an annuity during the joint lives of B. C. after A. is 1.792, therefore $3.417 - \frac{1.792}{2}$ gives 2.521 for the number of years purchase required.

PROBLEM XVIII.

To find the value of an annuity *after* the extinction of any two of the lives, A. B. C., during the continuance of the life of the last survivor.

SOLUTION. To the sum of the values of the three single lives, add three times the value of the three joint lives; and from this sum let twice the sum of the joint lives of A. and B., B. and C., and C. and A. be deducted, and the remainder will be the number of years purchase required. †

EXAMPLE. Supposing the ages of A., B. and C. to be 15, 50, and 65, and the rate of interest £5 per cent. By Tab. 3. the respective values of the three single lives are 14.588, 10.269, and 7.276. By Prob. iv. the value of the three joint lives is 5.631.

* See the demonstration, Note XII.

† See the demonstration, Note XIII.

By Tab. 4. the values of the joint lives of A. B., B. C., and A. C. are 9.076, 5.897, and 6.705; adding therefore the sum of the single lives to three times the value of the three joint lives, we have 49.026, from which deducting twice the amount of the two joint lives (or 43.856) we have 5.69 for the number of years purchase required.

This may in fact be considered as a corollary to the 10th problem; and when the three lives are of equal age, the value of the annuity is immediately obtained from it, being equal to three times the value of A.'s expectation, as found by that problem.

PROBLEM XIX.

Supposing an annuity to be enjoyed during the life of A., at whose decease B. or his heirs have the nomination of a successor, who is likewise to enjoy the annuity during his life; it is proposed to find the value of the succeeding life.

SOLUTION. From the perpetuity subtract the value of life of A., multiply the remainder by the value of the life to be nominated, divide the product by the perpetuity, and the quotient will be the answer. *

EXAMPLE. Suppose the age of A. to be 65, and that B. has the power of nominating a life at his decease *then* worth $11\frac{1}{2}$ years purchase; to find the present value at £6 per cent. of such successive life. By Tab. 3. the value of the life of A. is

* See the demonstration, Note XIV.

66 METHOD OF COMPUTING THE VALUES OF

6.841 which being deducted from 16.667 (the value of the perpetuity), and 9.826 the remainder multiplied into 11.5, we have 112.999; dividing the sum by 16.667, the perpetuity, 6.78, the quotient will be the answer.

COROLLARY I. If instead of a *life* to be nominated, it were required to determine the present value of the reversion of an annuity for a *certain term of years* after the death of A. the operation will be precisely the same; only substituting the value of the annuity for the term of years instead of the value of the succeeding life; so that if in the above example the term had been 26 years, the value of the reversion at the same rate of interest after the death of A. would have been 9.826 multiplied into 13.00 (the value of the annuity certain by Tab. 19.) and divided as above by 16.667 or 7.664.

COROLLARY II. The same rule may be applied to the solution of this problem, when the annuity is enjoyed during the longest of two or three lives or during the joint continuance of two or three lives, and B. and his heirs have the right of nominating one, two, or three lives at their decease. In all cases "the value of the life or lives in possession is to be deducted from the perpetuity, the remainder is to be multiplied into the value of the life or lives *at the time of nomination*, and the product is to be divided by the perpetuity;" so that if the annuity were enjoyed during the longest of two lives aged 40 and 50, and the value of the

two lives nominated at their decease were equal to 15 years purchase, the reversion at £5 per cent. would be $20 - 13.93$ multiplied into $\frac{15}{20}$, or 4.55.*

PROBLEM XX.

Supposing an estate to be held during the longest of two or three lives, and on the extinction of those lives, that the lease were always to be renewed during other two or three lives at a certain fine; to determine the present value of those fines for ever.

SOLUTION. Find by Prob. III. or Prob. V. the value of an annuity on the longest of two or three lives; find also by the same prob. the value of the lives to be nominated whenever a vacancy happens; subtract the former from the perpetuity, multiply the remainder into the given fine, and the product, divided by the lives to be nominated, will give the value required.

EXAMPLE I. Supposing the lease to be held during two lives of 30 and 45 years, that the ages of the lives to be nominated are always to be 15 years, the rate of interest £5 per cent., and the fines £1000. By Prob. III. the value of two lives of 30 and 45 years is 15.042, the value of two lives each aged 15, is 17.216; the former deducted from 20 leaves 4.958, which being multiplied into 1000,

* It can hardly be necessary to observe, that if the value of the life or lives in possession be added to the value of the life or lives to be nominated at their decease, the *whole* value of the annuity will be obtained.

68 METHOD OF COMPUTING THE VALUES OF

and then divided by 17.216, gives £2878 for the value required.

EXAMPLE II. Supposing the lease is held during three lives aged 30, 45, and 60; that the lives to be nominated are to be each 15 years of age, the fines always £1000, and the rate of interest £ per cent.; then the value of the three lives first mentioned, by Prob. v., will be 15.379, the value of the other lives will be 18.244, the former of these deducted from 20, the perpetuity, leaves 4.62, which being multiplied into 1000, and the product divided by 18.244, will give £2532 for the answer.

PROBLEM XXI.

Supposing a copyhold estate to be held during any number of lives, and that a stated fine will always be paid upon replacing each of them as they become extinct, to find the present value of those fines for ever.

SOLUTION. Subtract the sum of the values of all the single lives upon which the copyhold is held from the perpetuity multiplied by the number of those lives, and reserve the remainder. Find by Table 3. the value of the life to be put in at each renewal, multiply the reserved remainder into the fine, and the product divided by the value of the life to be nominated will give the value sought.

EXAMPLE. Let the number of lives be three, of the several ages of 35, 45, and 55; let the age of the life to be always nominated be 12, the fine £1000, and the rate of interest £4 per cent. B

Tab. 3. the values of each of the three lives are 14.039, 12.283, and 10.201; their sum, or 36.523 being deducted from 75, three times the perpetuity, leaves 38.477 for the remainder to be *reserved*. By Tab. 3. the value of a life of 12 years of age is 17.251; 38.477 therefore multiplied into 1000, the stated fine, and divided by 17.251, gives £2230 for the value required.

COROLLARY. If it were required to determine the annual rent which should be paid as an equivalent for the above fines, their present value must be multiplied into the interest of £1 for a year, and the product will be the answer. Thus, supposing the lives to be as above £2230, their value in one payment being multiplied into .04 (or which is the same thing into $\frac{4}{100}$) will produce £89 4s. 0d. for the rent required.

PROBLEM XXII.

Supposing D. to enjoy an annuity during the life of A., E. to have the right of nominating a successor (B.) on the death of A., and F. to have the like right of nominating (C.) the successor of A. and B.; it is required to determine the values of D. E. and F.'s separate interests in this annuity.

SOLUTION. The value of D.'s interest is immediately obtained from the table of the values of annuities on single lives. The value of E.'s interest may be found by Problem xix.; and in

70 **METHOD OF COMPUTING THE VALUES OF**
order to find the value of F.'s interest, subtract the sum of the two values above mentioned from the perpetuity, multiply the remainder by the assumed value of the life of C., and the product divided by the perpetuity will be the answer.

EXAMPLE. Let the age of A. (as in Prob. xi.) be 65, and the rate of interest £6 per cent., then will D.'s interest by Tab. 3. be 6.841; E.'s interest by Prob. xix. will be 6.78, and their sum will be 13.621, which being deducted from 16.667 (the perpetuity) and 3.046, the remainder multiplied by 11.5 (the assumed value of C.'s life), and the product again divided by 16.667, we have 2.1 as the value of C.'s interest. These three values add together give 15.721 for the *whole* value of the annuity.*

PROBLEM XXIII.

To find the value of a given sum payable on the decease of A.; or in other words to find the value of an *assurance* of any given sum on the whole duration of the life of A.

SOLUTION. Subtract the value of an annuity for the life of A. from the perpetuity, multiply the

* Mr. Simpson in his Select Exercises has given a rule determining by one operation the values of all the successive lives deduced from the same principles with those on which the present solution is founded. But as this problem is generally applied towards determining the separate values of alternate presentations to livings, the rule given above is so far preferable. The operations in both rules may be continued during any number of successive lives.

remainder into the given sum, divide the product by the perpetuity increased by unity, and the quotient will be the answer in a *single* present payment; and this quotient divided by the value of the life, will give the answer in *annual* payments during the continuance of the life, supposing the first of those payments to be made at the *end* of the year; but if the annual payments are to be made at the *beginning* of each year, the above mentioned quotient must be divided by the value of the life increased by unity.

If, instead of a *sum* the value of the reversion of an *estate* were required after the death of A., the value of an annuity on A.'s life must be deducted from the perpetuity, and the remainder multiplied into the annual produce of such estate.

EXAMPLE. Let it be required to determine the value of an assurance of £1000 on the life of A. aged 20, at £4 per cent., either in a single or in annual payments, to be made at the beginning of each year. By Tab. 3. the value of an annuity on the life of A. is 16.033, which being deducted from 25 (the perpetuity) leaves 8.967; multiplying this number by 1000, and dividing the product by 26 (the perpetuity increased by unity), we have 344.884 for the value of the assurance in *one payment*; and dividing 344.884 by 17.033 (the value of the life increased by unity) we have 20.224 for the same value in *annual* payments. Had it been

72 METHOD OF COMPUTING THE VALUES OF

required to find the value of the reversion of an estate of £40 per annum after the life of A., at the same rate of interest, it would have been equal to 8.967 multiplied into 40, or £358.68. *

COROLLARY. The value of a given sum payable on the extinction of any two or three *joint* lives or of the *longest* of two or three lives, is determined in the same manner; only substituting the value of the *joint* lives, or the *longest* of the lives, instead of the value of the *single* life. Let the value be required, at £3 per cent., of £100 payable on the extinction of two *joint* lives aged 35 and 56. By Tab. 4. the value of the joint lives is 8.9608, which being subtracted from 33.333, the perpetuity, leaves 24.3725; multiplying this number by 100, and dividing the product by 34.333, we have £70.9 for the value sought. Again, let it be required to determine the value of £100 at £3 per cent., payable on the extinction of the longest of two lives aged 42 and 63. By Tab. 3. the values of the two single lives are 14.391 and 8.910. By Tab. 4. the value of the joint lives is 7.372, the value therefore of the *longest* of the two lives is 15.929, which being subtracted from 33.333 leaves 17.404. Hence the required value will be 17.404 multiplied into 100, and then divided by 34.333, or £50.692.

* See the demonstration in Note XV. and in Note E. of the Appendix to Dr. Price's Treatise on Reversionary Payments.

PROBLEM XXIV.

To find the value of a given sum payable at the decease of A., should that happen within a given term; or in other words, to find the value of an *assurance* of any given sum on the life of A. for any given term.

SOLUTION. Find the value of an annuity on the life of A. for one year less than the term by Prob. II. Add unity to this value, and divide the sum by £1, increased by its interest for a year. From the quotient subtract the value of the life for the whole term, found by the same problem, multiply the remainder by the given sum, and the product will be the value required in *one* payment. And if this payment be divided by the annuity found above, for one year less than the term, and increased by unity, we shall have the value of the assurance in *annual* payments to be made at the *beginning* of each year of the term. But if those payments are to be made at the *end* of each year, which is seldom the case, the single payment must be divided by the value of the annuity on the life of A. for the whole term.*

EXAMPLE. Let the value be required of an assurance of £1000 on the life of A. aged 30, for 7 years at 3 per cent. By Prob. II. the value of the life for 6 years is found equal to

* See the demonstration, Note XVI.

74 METHOD OF COMPUTING THE VALUES OF
5.1009 ; hence 6.1009 divided by 1.03 is = 5.9223.
The value of the life for 7 years, by the same
problem, is 5.8166, which being subtracted from
5.9223, and the remainder (.10574) multiplied by
1000 will give £105.74, for the value of the assur-
ance in one payment. And 105.74 divided by
6.1009, or 5.8166 will give either 17.32 or 18.18
for the *annual* payments, according as they are
to be made at the *beginning* or the *end* of each
year ; but subject in both cases to failure, if the
life should fail.

COROLLARY I. In like manner may the value
of an assurance on any two or three *joint* lives, or
on the *longest* of two or three, or two out of three
lives for any term be computed, only substituting
the value of the *joint* lives, or of the longest of
the lives, or of two out of three lives, instead of
the single life in the foregoing rule. This will be
better understood from the following examples.

EXAMPLE I. Let the value be required either in
one, or in *annual* payments of an assurance of
£1000 on two joint lives, each aged 30, for the
term of 15 years, at £4 per cent. The value of
the joint lives for 14 years, and also for 15 years,
may be found by Cor. 1. Prob. II. to be equal
respectively to 8.270 and 8.580, adding unity to
the former, and dividing 9.27 the sum by 1.04 we
have 8.913. Deducting .858 from this quotient,
and multiplying .333, the remainder, into 1000,
we have £333 for the value in *one* payment ;

which being divided by 9.27 (found above) gives £35.92 for the same value in *annual* payments.

EXAMPLE II. If the assurance were made during the longest of two lives of the same age, and for the same term, the value of an annuity on those lives for 14 and 15 years, by Cor. 1. Prob. II. being equal to 10.366 and 10.872 respectively, the value in one payment will be $(\frac{10.366}{1.04} =)$ 10.929 lessened by 10.872, (or .057) multiplied into 1000, which is equal to £57; and 57 divided by 11.366 (the value of the longest of the two lives for 14 years, with unity added) gives £5.015, for the answer in annual payments to be made at the *beginning* of each year of the term, and subject to failure should *both* the lives fail in 14 years.

COROLLARY II. Supposing, instead of a *sum*, that the reversion of an *estate* depended on the contingency of A.'s dying in a given time, the value of such reversion may be found by the following rule :* "Subtract the value of A.'s life for the "given term from the value of an annuity certain "for the same term, and reserve the remainder. "Multiply the perpetuity into the probability that "A. *dies* in the given term, and also into £1 dis- "counted for that term. Add this product to "the reserved remainder, and the sum will be the

* See Dr. Price's 14th question in his Treatise on Reversionary Payments.

76 METHOD OF COMPUTING THE VALUES OF

"value of the reversion in years * purchase." Thus the value of the life of A. aged 30, for 20 years at £3 per cent., is 12.436. The value of an annuity certain for 20 years, by Tab. , is 14.877, the remainder to be reserved therefore is .2441. The perpetuity is 33.333, the probability that A. dies in 20 years is $\frac{1528}{4385}$; the value of £1 payable at the end of 20 years by Tab. 18, is .5587. These three quantities multiplied into each other produce 6.481, which being added to .2441, *the reserved remainder*, gives 8.87 for the number of years purchase required. By proceeding in the same manner the value of this contingent reversion after the *joint* lives, or the longest of two or three lives, may be obtained.

PROBLEM XXV.

To find the value of a given sum payable on the contingency of B. surviving A.

SOLUTION. Let P. denote a life one year older than B., and H. denote a life one year older than

* This rule requires no demonstration, as it is self-evident. It may not be improper to observe, that the value in this case may likewise be derived from the rule in the problem.

"Add unity to the value of the life for one year less than the given term. Multiply the value of the life for the given term "by £1 increased by its interest for a year. Subtract this product from the former sum, divide the remainder by the interest "of £1 for a year, and the quotient will be the answer." Hence the value in the example to this corollary will be $\frac{1+12.075-12.436 \times 1.03}{.03} = .266$, or 8.87.

A., multiply the value of the joint lives of A. and B. into the interest of £1 for a year, deduct the product from unity and reserve the remainder. Multiply the value of the joint lives of A. and P. increased by unity into the probability that B. lives a year. Multiply also the value of the joint lives of B. and H, increased by unity into the probability that A. lives a year. Add the former of these values to the reserved remainder, and from this sum subtract the latter value. Divide *half* this new remainder* by £1 increased by its interest for a year, and the quotient multiplied into the given sum will be the value of the reversion. †

* If, instead of a *sum*, the value of an *estate* is required, this *half*-remainder must be divided by the interest of £1 for a year; thus, in the following example .2228 divided by .03 gives 7.427 for the number of years purchase an estate is worth, depending on the contingency of B. aged 56 surviving A. aged 35.

† Mr. Simpson in his Select Exercises has given the following rule (deduced from M. De Moivre's hypothesis) for determining the value of this contingent reversion. "Find the value of an annuity on two equal joint lives, whereof the common age is equal to the age of the older of the two proposed lives A. and B.; which value subtract from the perpetuity, and take half the remainder; then say, as the expectation of the duration of the younger of the two lives A. and B., is to that of the elder, so is the said half-remainder to a fourth proportional, which will be the number of years purchase required, when the life B. in expectation is the older of the two. But if B. be the younger, then add the value so found to that of the joint lives A. and B., and let the sum be subtracted from the perpetuity, and you will also have the answer in this case."

78 METHOD OF COMPUTING THE VALUES OF

EXAMPLES. Suppose the age of A. to be 35 and that of B. 56, the sum £100, and the rate of interest £3 per cent. By Tab. 4. the value of the two joint lives of A. and B. is 8.9608, which being multiplied into .03, and the product subtracted from unity, the remainder to be *reserved* will be .73118. The value of the joint lives of A. and P. by Tab. 4. is 8.785, the probability that B. lives a year is $\frac{2284}{2366}$, and $\frac{9.785 \times 2284}{2366} = 9.4459$. By Tab. 4. the value of the joint lives of B. and H. is 8.9167, the probability that A. lives a year by Tab. 1. is $\frac{3935}{4010}$, and $\frac{9.9167 \times 3935}{4010}$ is equal to 9.7315. Hence 9.7315 deducted from the sum of .73118 and 9.4459 (or 10.1771) leaves .4456, of which the half is .2228, which being

This rule is sufficiently correct in the middle stages of life; but like all the other rules deduced from De Moivre's hypothesis, gives very inaccurate results in the earlier and latter stages of life. It should also be observed that the above rule gives the value of an *estate*. If the value of a *sum* is required, the number of years purchase, found above, must be multiplied into that sum, and divided by the perpetuity increased by unity. Thus in the example given above, the value of an *estate* depending on the contingency of B. aged 56 surviving A. aged 35, is by Mr. Simpson's rule equal to 7.604 years purchase, which being multiplied into 100, and then divided by 34.333 will give £22.15 for the value of £100 to be received on this contingency. The value in *annual payments*, according to either rule, will be the *quotient* arising from the division of the value in a single payment by the value of the two joint lives, or by the value of the joint lives increased by unity, according as those payments are to be made at the *end* or the *beginning* of each year. See the demonstration in Note XVII.

divided by 1.03, and the quotient multiplied into 100, gives £21.631 for the value required.

If the age of A. be 56, and that of B. 35, the reserved remainder, as above, will be .73118, the sum to be *added* to this remainder will be 9.7315, and the sum to be *deducted* will be 9.4459; so that the *new* remainder will be 1.0168. Half this sum divided by 1.03, and multiplied into 100 will produce £49.36 for the value in this case. The sum of these two values is £70.99, which is also the value of the reversion after the extinction of the two joint lives (by the Corollary to Prob. xxiii.), and therefore proves the truth of all the operations.

PROBLEM XXVI.

To find the value of a given sum payable on the decease of B., provided that should happen *after* the decease of A.

SOLUTION. From twice the value of the single life B., deduct the value of the joint lives A. B., multiply the remainder into the interest of £1 for a year, subtract the product from unity and *reserve* this remainder. Let P. and H. denote the same quantities as in the preceding problem, then multiply the value of the joint lives of A. and P. increased by unity, into the probability that B. lives a year; multiply also the value of the joint lives B. H., increased by unity, into the probability that A. lives a year. Subtract this latter product from the sum of the former product added to the

reserved remainder. Divide *half* this *new* remainder * by £1 increased by its interest for a year, and the quotient multiplied into the given sum will produce the answer. †

EXAMPLES. Let the age of A. be 42, that of B. 63 years, the sum £100, and the rate of interest £3 per cent. By Tab. 3. the value of the life of B. is 8.91. By Tab. 4. the value of the joint lives of A. B. is 7.372; therefore 17.82 lessened by 7.372, and multiplied into .03 is .31344, which being subtracted from unity leaves .68656 for the *reserved* remainder. By Tab. 4. the value of the joint lives of A. P. is 7.1719, the probability that B. lives a year is $\frac{1712}{1793}$, and 8.1719 multiplied into this probability is 7.8027. By Tab. 4. the value of the joint lives B. H. is 7.3327. The probability that A. lives a year by Tab. 1. is $\frac{3404}{3482}$, and 8.3327 multiplied into this fraction is 8.1460. Adding 7.8027 to .68656, we have 8.48926; from which deducting 8.146, the *new* remainder will be .34326. Hence .17163 divided by 1.03, and multiplied into 100, gives £16.663 for the value of the reversion. If the ages be inverted, so that A. may be 63 and B. 42 years of age, the value of B.'s life in this case by Tab. 3. will be 14.3911, and the

* The value of an *estate*, as in the former problem, is found by dividing this *half*-remainder by the interest of £1 for a year.

† The value in one sum divided by the value of an annuity on the longest of the two lives increased by unity, will give the value of this reversion in *annual* payments, to be made at the *beginning* of each year. See the demonstration, Note XVIII.

reserved remainder by proceeding as above, will be found equal to .35769. The sum to be *added* in this case will be 8.146 making 8.50369, and the sum to be deducted 7.8027, leaving .70099; the half of which being divided by 1.03, and then multiplied into 100 will give 34.029 for the value of the reversion. Adding both the values, or 16.663 and 34.029 we have 50.692 for the value of the reversion after the extinction of both lives without any restriction as to survivorship, which also is the value by the direct rule, as given in the corollary to Prob. XXIII.*

* Mr. Simpson in his Select Exercises has given the following solution of this problem, derived as in that of the foregoing problem, from *De Moivre's* hypothesis.

"Find the value of an annuity upon the longest of two equal "lives, whereof the common age is that of the older of the lives "of A. and B., which value subtract from the perpetuity, and "take half the remainder. Then it will be as the expectation of "duration of the younger of the lives A. and B. is to that of the "older, so is the said half-remainder to the number of years "purchase required, when the life B. is the older of the two. "But if B. be the younger, then to the number thus found, add "the value of an annuity on the longest of the lives A. and B., "and subtract the sum from the perpetuity for the answer in "this case."

In the example given above, the value of an *estate* on the decease of B. aged 63, provided he shall have survived A. aged 42, is equal to 5.747 years purchase by Mr. Simpson's rule, and consequently the value of £100 will be 574.7 divided by 34.333 or £16.742.

THE solution of the following problems, from the great number of contingencies on which the values of the reversions depend, are necessarily very complicated, and render it impossible, if strict accuracy is required, to deduce such general rules as shall not be attended with considerable labour and difficulty. Having no correct tables of the probabilities of human life, Mr. *Thomas Simpson* availed himself of *De Moivre's* hypothesis to approximate to the values of those reversions in a few cases, observing very wisely that it would be improper to aim at absolute exactness, while the precise law of the decrements of life was unknown. In the former edition of this work the solutions of a great number of the problems involving three lives, were derived from one of Mr. *Simpson's* approximations, and in those cases, where none of the lives are either very young or very old, the rules are tolerably correct. But it seldom happens in survivorships of this kind that all the lives are nearly of equal age: on the contrary, one of them is generally either very young or very old, and these rules are in consequence rendered so far inaccurate. Being possessed, by means of Dr *Price's* Treatise on Reversionary Payments, of those tables of the real probabilities of life, of which

This, like the preceding rule, being derived from an hypothesis not universally true, is equally incorrect in the earlier and latter stages of life.

Mr. *Simpson* regreted the want; I was induced, about 30 years ago, to attempt the solution of the different problems involving two and three lives in the survivorship, on principles strictly true according to any table of observations. These were communicated to the Royal Society at different times, and published in the Philosophical Transactions.* Since the publication of those papers I have revised the whole of them, and with the exception of a few typographical errors, have had the satisfaction of finding the solutions perfectly correct. By altering some of the symbols, the general rules have been rendered less prolix, but when expressed in words at length, they are still rather complicated and laborious; nor should I have given them in this form, had I not determined to avoid all algebraical characters in the practical part of the work. The mathematical reader however will find less difficulty, by having recourse to the notes, which contain the demonstrations of these problems, and give the rules in an algebraical form.

PROBLEM XXVII.

To determine the value of a given sum payable on the contingency of C. surviving B., provided the life of A. shall be then extinct.

* See the Phil. Trans. for the years 1788, 1789, 1791, 1794,

84 METHOD OF COMPUTING THE VALUES OF

SOLUTION. Let H. P. and T. represent lives one year older than A. B. and C. respectively. Multiply the value of the three joint lives A. B. C. (found by Prob. iv.) into the interest of £1 for a year; deduct the product from unity, and dividing the remainder by 3, reserve the quotient. Multiply the value of the three joint lives H. B. C. increased by unity into the probability that A. lives a year. Multiply the value of the three joint lives A. B. T. increased by unity into the probability that C. lives a year; divide the sum of these two products by 6, and reserve this second quotient. Multiply the value of the three joint lives H. B. T. increased by unity into the probability that A. and C. *both* live a year; add one-third of the product to the two quotients reserved above, and let the *sum* be reserved. Multiply the value of the three joint lives H. P. C. increased by unity into the probability that A. and B. *both* live a year. Multiply the value of the three joint lives A. P. T. increased by unity into the probability that B. and C. *both* live a year. Divide the sum of these two products by 6, and reserve the quotient. Multiply the value of the three joint lives A. C. P. increased by unity into the probability that B. lives a year. Add $\frac{1}{3}$ of the product to the *quotient* last reserved. Deduct the amount from the *sum* reserved above. Divide the remainder by £1 increased by its interest for a year, and let this quotient again be reserved.

Find by Prob. xxv. the value of the given sum depending on the contingency of C. surviving B., from which deducting the quotient just reserved, the remainder will be the value required.*

EXAMPLE. Let the ages of C. B. and A. respectively be 69, 44, and 14, the rate of interest £8 per cent., and the given sum £100. By Prob. iv. the value of the joint lives A. B. C. is 5.6417†, which being multiplied into .08 (the interest of £1 for a year) is equal to .169251; subtracting this from unity, and dividing the remainder by 3, we have .276916. The value of the three joint lives

* See the demonstration, Note XIX.

† Particular care should be taken to find the value of the three joint lives with all possible exactness; thus the value of the two joint lives B. C. being 6.0087 is equal to the value of a single life D. aged $72\frac{1}{3}$, and the value of the two joint lives A. D. by taking a mean between the values of two joint lives aged 14 and 72, and of two joint lives aged 14 and 73, is 5.6417. Again, the value of the two joint lives H. D. is a mean between the values of two joint lives aged 15 and 72, and two joint lives aged 15 and 73. In like manner the value of the two joint lives B. T. is 5.7758, which is equal to the value of a life D. aged 73 exactly; therefore the value of the three joint lives A. B. T. is equal to the value of two joint lives aged 14 and 73, or 5.4584. By proceeding as above the values of the joint lives H. P. C. may be found equal to two joint lives aged 15 and $72\frac{3}{5}$ or 5.5498, the value of the joint lives A. P. T. equal to the value of two joint lives aged 14 and $73\frac{1}{10}$, or 5.4314, and so on.

H. B. C. increased by unity is 6.6227, the probability that A. lives a year is $\frac{5423}{5473}$, which, being multiplied by 6.6227, produces 6.5622. The value of the three joint lives A. B. T. increased by unity is 6.4584, the probability that C. lives a year is $\frac{1232}{1312}$, therefore 6.4584 multiplied into this fraction is equal to 6.0646; the sum of these two products, or 12.6268, divided by 6, quotes 2.104467. The value of the three joint lives H. B. T. increased by unity is 6.4404, the probability that A. and C. both live a year is $\frac{5423 \times 1232}{5473 \times 1312}$, which multiplied by 6.4404 produces 5.99244. This divided by 3 quotes 1.99781. The sum therefore to be reserved is composed of the three quotients .276916, 2.104467, and 1.99781, and amounts to 4.379193. Again, the value of the three joint lives H. P. C. increased by unity is 6.5498. The probability that A. and B. both live a year is $\frac{5423 \times 3248}{5473 \times 3326}$; this fraction multiplied by 6.5498 produces 6.33776. The value of the three joint lives A. P. T. increased by unity is 6.4314, the probability that B. and C. both live a year (or $\frac{3248 \times 1232}{3326 \times 1312}$) multiplied into this value produces 5.89761; these two products, (or 12.23537) divided by 6, quote 2.03923 to be reserved. The value of the three joint lives A. P. C. increased by unity, is 6.5684. The probability that B. lives a year is $\frac{3248}{3326}$, which being multiplied into 6.5684, and the product divided by 3, we have 2.13812. Adding this to 2.03923 (the quo-

tient just reserved) and deducting the amount, or 4.177351 from 4.379193, the sum reserved above, there remains .201842, which being divided by 1.03 (or £1 increased by its interest for a year) quotes .19596 to be reserved, or £19.596, supposing the given sum to be £100. By Prob. xxv. the value of £100 payable on the contingency of C. surviving B. is 21.359, deducting therefore 19.596 from this sum, the remainder or £1.763 will be the value required.

SCHOLIUM. As the solutions of the 24 following problems are all derived from the same joint lives increased by unity, and multiplied into the same probabilities respectively, perhaps the general rules may be more simply expressed by adopting the following symbols :

H. B. C. the value of the three joint lives increased by unity and multiplied into the probability that A. lives a year.

A. B. T. the value of the three joint lives increased by unity and multiplied into the probability that C. lives a year.

B. H. T. the value of the joint lives increased by unity and multiplied into the probability that A. and C. live a year.

H. P. C. the value of the joint lives increased by unity and multiplied into the probability that A. and B. live a year.

A. P. T. the value of the joint lives increased

88 METHOD OF COMPUTING THE VALUES OF

by unity and multiplied into the probability that
B. and C. live a year.

A. C. P. the value of the joint lives increased
by unity and multiplied into the probability that
B. lives a year.

The preceding general rule in this case will be
expressed as follows :

“ Multiply the value of the joint lives A. B. C.
“ into the interest of £1 for a year ; deduct the
“ product from unity, and dividing the remainder
“ by 3, reserve the quotient. Add $\frac{1}{3}$ of the sum
“ of H. B. C., and A. B. T. to $\frac{1}{3}$ of B. H. T. and
“ also to the quotient just mentioned, and *reserve*
“ the *sum*. Add $\frac{1}{3}$ of H. P. C. and A. P. T. to $\frac{1}{3}$
“ of A. C. P., subtract the amount from the *re-*
“ *served sum*, divide the remainder by £1 increased
“ by its interest for a year ; let this quotient be
“ deducted from the value of the given sum on
“ the contingency of C. surviving B., and the re-
“ mander will be the value required.”

As this problem may be applied to the solution
of several of the succeeding problems, I shall insert
the following approximation of Mr. Simpson's,
which was given in the former edition of this work
as the only solution then published ; and had its
correctness in all cases been equal to its simplicity,
it would have been better adapted for practice
than the preceding solution.

“ CASE I.—*If the life C. be the oldest of the three.*

" From the value of an annuity on the life C. take
" the value of the two joint lives B. and C., mul-
" tiply the remainder by the given sum, and divide
" the product by twice A.'s expectation, the result
" will be the value sought."

" **CASE II.**—*If the life B. be the oldest of the three.*
" Then from the value of an annuity for as many
" years of C.'s life as are expressed by the double
" of B.'s expectation, subtract the value of the
" two joint lives B. and C.; multiply the remainder
" by the given sum, and divide the product by
" twice the expectation of A., as in the preceding
" case."

" **CASE III.**—*If the life A. be the oldest of the
" three:* Then find the value of the life of C., if
" older than B., otherwise find the value of as
" many years thereof as are expressed by the
" double of B.'s expectation: And from the value
" thus found, let the value of the joint lives A.
" and C. be subtracted; multiply the remainder
" by the given sum, then the product divided by
" twice B.'s expectation will be the answer in this
" case."

The following examples, computed at £3 per cent. from the Northampton Table, will shew how far the above approximation agrees with the correct rule.

90 METHOD OF COMPUTING THE VALUES OF

AGES.			Value of £100 by the rule, when C. is the oldest.	Value by the approximation, when C. is the oldest.
C.	B.	A.		
80	70	40	1.980	2.04
75	65	24	2.394	1.98
65	50	15	2.980	2.82
78	78	20	2.672	2.725
60	45	12	2.783	2.591
69	44	14	1.763	1.40
75	24	65	5.899	6.930

AGES.			Value of £100 by the rule, when B. is the oldest.	Value of £100 by approximation, when B. is the oldest.
C.	B.	A.		
70	80	40	4.646	5.870
50	65	15	5.816	6.326
65	75	24	3.057	5.180
44	69	14	4.923	6.555
14	69	44	16.092	13.800

AGES.			Value of £100 by the rule, when A. is the oldest.	Value of £100 by approximation, when A. is the oldest.
C.	B.	A.		
24	65	75	36.768	39.366
65	24	75	7.878	6.925
20	78	78	36.022	39.636
14	44	69	24.986	20.490
44	14	69	9.542	10.655

AGES.	Value of £100 by the rule, when the three lives are equal.	Value of £100 by the approximation, when the three lives are equal.
70 each	12.90	14.41
75 each	13.80	15.93
80 each	14.51	17.47
85 each	15.09	19.45
7 each	5.678	5.445

In those cases where C. is the youngest, and A. the oldest of the three lives (and which are by far the most common) the approximation appears to differ most from the truth : But when C. is the oldest and A. the youngest, a case however which seldom occurs, the values are in reality so small and the difference between the rule and approximation so inconsiderable, that it is of very little consequence which of them is adopted.

PROBLEM XXVIII.

To find the value of a given sum payable on the decease of A. if his life should be the *first* that fails of the three lives, A. B. and C.

SOLUTION. Retaining the same symbols as in the scholium to the preceding problem, multiply the value of the joint lives A. B. C. into the interest of £1 for a year, deduct the product from unity, and dividing the remainder by 3, reserve the quotient. Add $\frac{1}{6}$ of the sum of A. C. P. * and

* See Schol. to Prob. xxvii.

92 METHOD OF COMPUTING THE VALUES OF

A. B. T. to $\frac{1}{3}$ of A. P. T. and also to the quotient just mentioned, and reserve the *sum*. Add $\frac{1}{3}$ of H. B. C. to $\frac{1}{6}$ of B. H. T. and H. P. C., subtract the amount from the reserved *sum*, divide the remainder by £1 increased by its interest for a year, multiply this quotient into the given sum, and the product will be the value required. *

EXAMPLE. Let the age of A. be 24, that of B. 65, and that of C. 75 years. The sum £1000, and the rate of interest three per cent. The value of the three joint lives A. B. C. by Prob. iv. is 3.7315, which being multiplied into .03, then the product subtracted from unity and the remainder divided by 3, the quotient to be reserved will be 2.9602. The value of A. C. P. is 4.43214, which being divided by 6 gives .73869. The value of A. B. T. is 4.11612, which being divided by 6, quotes .68602. In like manner the value of A. P. T. divided by 3 is 1.29455. These four quantities added together amount to 3.01528 for the *sum* to be reserved. The value of H. B. C. (or 4.65426) divided by 3 is 1.55142. The value of H. B. T. (or 4.049238) divided by 6 is .674873. And the value of H. P. C. (or 4.359834) divided by 6 is .726639. Adding these three last mentioned quotients we have 2.95293, which being subtracted from 3.01528, the reserved *sum*, leaves

* See the demonstration in Note XX.

.06235 for the remainder. Dividing this remainder by 1.03, and multiplying .06053, the quotient, by 1000, the product, or £60.53, will be the value required.

The solution of this problem may also be derived from the solutions of the preceding and of the 25th problems.—“Find by the preceding problem “the value of the given sum on the decease of A. “provided B. (the younger of the two lives of B. “and C.) should be then living, and C. dead; “find next by the 25th problem the value of the “given sum payable if B. is living at the decease “of A., whether C. be then living or not, subtract “the former value from the latter, and the re- “mainder will be the answer.” Thus, in the pre- sent case, the value of £1000 payable on the con- tingency of B. surviving A. *after* C. is 78.78 by Prob. xxvii. And the value of £1000 payable on the contingency of B. surviving A. without any other restriction, is by Prob. xxv. = 139.31. De- ducting 78.78 from this sum, we have £60.53 for the answer as before.

PROBLEM XXIX.

To find the value of a given sum payable on the death of A. if his life should be the *second* that fails of the three lives A. B. and C.

SOLUTION. Find by Prob. xxv. the value of the given sum payable on the contingency of B. sur- viving A. Find by the same problem the value of

94 METHOD OF COMPUTING THE VALUES OF

the given sum payable on the contingency of C. surviving A. Find by the preceding problem the value of the given sum payable on the death of A. if his life should be the *first* that fails of the three lives. From the sum of the two former values subtract twice the value just found, and the remainder will be the answer.*

EXAMPLE. Let the ages, as in the preceding problem, of A. B. and C. respectively, be 24, 65, and 75, the sum £1000, and the rate of interest £3 per cent. By Prob. xxv. the value of £1000 payable on the contingency of B. surviving A. is 139.31, and the value of the same sum payable on the contingency of C. surviving A. is 87.08. By Prob. xxviii. the value of £1000 payable if A. should be the *first* that fails is 60.53, the double of which is 121.06. Deducting this from 226.39, the sum of the two former values, we have £105.33 for the value required.

PROBLEM XXX.

To determine the value of a given sum payable on the death of A. if his life should be the *last* that fails of the three lives A. B. and C.

SOLUTION. Find by Problem xxiii. the value of the given sum payable on the death of A. Find by Problem xxviii. the value of the given sum payable on the death of A., if his life should be the

* See the demonstration, Note XXI.

the *first* that fails of the three lives A. B. and C. Find next by Prob. xxv. the value of the given sum payable if B. should survive A., and also the value provided C. should survive A. The sum of these two last mentioned values being subtracted from the sum of the two former ones, the remainder will be the value required. *

EXAMPLE. Let the ages of A. B. and C. respectively be 14, 44, and 69, the sum £1000, and the rate of interest £3 per cent. By Prob. xxiii. the value of £1000 payable on the death of A. is 392.07. By Prob. xxviii. the value of £1000 payable on the death of A. if his life should be the *first* that fails may be found equal to 77.83, the sum of these two values is 469.9. By Prob. xxv. the values of £1000 payable if B. survives A., and also if C. survives A. may be found respectively equal to 173.25 and 107.95. The sum of these, or 281.2, being subtracted from 469.9 reserved above, leaves £188.7 for the value required.

PROBLEM XXXI.

To find the value of a given sum payable on the decease of A. and B., should they be the *first* that fail of the three lives A. B. and C.

SOLUTION. Find by Prob. xxv. the value of the given sum payable on the contingency of C. surviving A., and also the value of the same on the

* See the demonstration, Note XXII.

contingency of C. surviving B. Let the sum of these two values be *reserved*. Multiply the value of the three joint lives A. B. C. into the interest of £1 for a year, deduct the product from unity, and reserve *two thirds* of the remainder. To one sixth of the sum of H. T. B. and A. P. T.* add one third of A. B. T., let their amount be added to the remainder just mentioned, and then let this *sum* be reserved ; to $\frac{1}{6}$ of H. P. C., add $\frac{1}{6}$ of H. B. C. and of A. C. P. From the amount let the reserved *sum* be deducted, and the remainder be divided by £1 increased by its interest for a year, this quotient multiplied into the given sum, and deducted from the sum of the two values first *reserved* will give the value required.† The value of this reversion may be obtained, though not so expeditiously, from the solution of the 27th problem, by finding the value of the given sum on the contingency of C. surviving A. *after* B., and also on the contingency of C. surviving B. *after* A. The sum of these two values will be the value required. ‡

EXAMPLE. Let the ages of A. B. and C. respectively be 45, 12, and 60 the sum £1000, and the rate of interest £3 per cent. By Problem xxv. the value of the given sum depending on the con-

* See Schol. to Prob. xxvii.

† See the demonstration, Note XXII.

‡ See the demonstration, Note XXIII.

tingency of C. surviving B. is 249.66, and the value on the contingency of C. surviving A. is 113.70, the sum of these two values is 363.36. The value of the joint lives A. B. C. or 7.238, by Prob. iv. multiplied into .03, and the product .21714 deducted from unity leaves .78286, which being multiplied into $\frac{2}{3}$ produces .52190. The quantities *H. T. B.* and *A. P. T.** are respectively equal to 7.63967 and 7.48062; their sum divided by 6 gives 2.52005 which being added to $\frac{1}{3}$ of *A. B. T.*, (or $\frac{7.7338}{3}$) amounts, including the reserved product .52190, to 5.61989. *H. P. C.* may be found = 7.89452... *A. C. P.* = 7.98649, and *H. B. C.* = 8.14328; adding $\frac{1}{3}$ of the former to $\frac{1}{3}$ of the sum of the two latter values we have 5.81979, which being subtracted from 5.61989, reserved above, leaves .3001. This remainder being multiplied into 1000 and divided by 1.03 gives 291.36, which being deducted from 363.36, first reserved, we have £72 for the value required.

Had the value been computed from the 27th Problem, the result would have been exactly the same; for the value of the given sum by that Problem, on the contingency of C. surviving B. *after A.* is 27.3, and the value on the contingency of C. surviving A. *after B.* is 44.7, making together £72. Adopting Mr. Simpson's approximation, instead of the 27th Problem, the value by that rule will be only £47.63.

* See Schol. to Prob. xxvii.

PROBLEM XXXII.

To find the value of a given sum on the death of A. provided B. should survive him in any given number of years.

SOLUTION. Let the sum of the decrements of life from the age of A. during the term, be divided by the number of years in that term; let this again be divided by twice the number of persons living at the age of A., and *reserve* the quotient. Find the value of an annuity on the life of B. for one year less than the term. Add unity to such value and divide the sum by £1 increased by its interest for a year. To this quotient add the value of an annuity on the life of B. for the whole term: Multiply the sum into the *reserved* quotient, and this product being again multiplied into the given sum will be the value required.

EXAMPLE. Let the ages of B. and A. respectively be 65 and 30, the sum £100, the rate of interest 4 per cent., and the term 10 years. By the Northampton Table the sum of the decrements of life for 10 years from the age of A. is 750. This being divided by 10, and the quotient (75) being again divided by 8770 (twice the number of persons living at the age of A.) will give .00855 for the quotient to be *reserved*. The value of an annuity on the life of B. for 9 years may be found by Prob. II. equal to 5.708. Hence 6.708 divided by 1.04 will give 6.45. Adding this quotient to 6.052, the value of an annuity on the life of B. for

10 years, we have 12.502 ; which being multiplied into .00855 the *reserved* quotient, and also into 100 the product £10.69 will be the answer. If the respective ages of B. and C. are 30 and 65, the value of £100 may, by pursuing the same steps, be found equal to 36.56. The sum of these two values is 47.25, which may be found to be the value of £100 payable on the extinction of the two joint lives in ten years, and therefore affording a proof of the accuracy of the rule.*

PROBLEM XXXIII.

To find the value of a given sum payable on the death of B. after A., should that happen in any given number of years.

SOLUTION. Divide the sum of the decrements of life from the age of B. during the given term by the number of years in that term, and let this quotient again be divided by twice the number of persons living at the age of B. *reserving* this second quotient. From the value of an annuity certain, subtract the value of an annuity on the life of A., both for one year less than the given term ; divide the difference by £1 increased by its interest for a year. To this quotient add the difference between the value of an annuity certain, and the value of an annuity on the life of A., both for the given term. Multiply

* See the demonstration in Note XVII.

100 METHOD OF COMPUTING THE VALUES OF

the sum into the *reserved* quotient, and also into the given sum, and the product will be the answer.

EXAMPLE. Let the ages of B. and A. respectively be 60 and 35, the sum £100, the rate of interest 4 per cent., and the term 12 years. The decrements of life by Tab. 1. from the age of B. divided by 12 will be 80.5, and this again divided by 4076, or twice the number of persons living at the age of B., will give .01975 for the quotient to be *reserved*. The value of an annuity on the life of A. for 11 years by Prob. II. is 7.498, which being subtracted from 8.760, the value of an annuity certain for the same time by Tab. 19., and the remainder divided by 1.04, we have 1.218. The value of an annuity on the life of A. for 12 years by Prob. II. is 7.971, which being deducted from 9.385, the value of an annuity certain for the same time by Tab. 19., the difference will be 1.414. Adding this quantity to 1.218, found above, and multiplying 2.632, the sum, into .01975 the *reserved* quotient, the product will be .05198, and consequently the value of £100, the given sum, will be £5.198. If the ages of B. and A. are 35 and 60, the value may be found equal to £4.01. The sum of these two values is £9.208, which is also very nearly the value of the reversion after the extinction of both lives, should that happen in 12 years.

PROBLEM XXXIV.

To find the value of a given sum payable on the decease of A., if his life should be the *first*, or *second* that fails of the three lives A. B. and C.

SOLUTION. Find by Prob. xxv. the value of the given sum payable on the contingency of C. surviving A. Find also by the same problem the value of the given sum payable on the contingency of B. surviving A. Lastly, find by Prob. xxviii. the value of the like sum payable on the death of A., if his life should be the *first* that fails. From the sum of the two former values deduct the latter, and the remainder will be the value required.

EXAMPLE. Let the ages of A. B. and C. as in the Problem xxxi. be respectively 45, 12, and 60, the sum of £1000, and the rate of interest £3 per cent. The value by Prob. xxv. on the contingency of C. surviving A. is 249.66. The value by the same problem on the contingency of B. surviving A. is 463.44; the sum of these two values is 713.10. By Prob. xxviii. the value of the given sum payable on the contingency of A. being the *first* that fails of the three lives is 222.33, which being deducted from 713.10 reserved above we have £490.8 for the required value of the reversion.

REMARK. The value of this reversion may also be obtained from the 28th and 29th Problems;

102 METHOD OF COMPUTING THE VALUES OF

it being evidently equal to the sum of the values of the given sum payable if A. should be the *first*, and also payable if A. should be the *second* that fails of the three lives. Thus, in the present case, the value of the given sum payable if A. should be the *first* that fails appears to be 222.33, and by Problem xxix. the value payable if A. should be the *second* that fails may be found equal to 268.48 the sum of these, or £490.8 is, as before, the value required.

PROBLEM XXXV,

To find the value of a given sum payable on the decease of A. if his life should be the *second* or *third* that fails of the three lives A. B. and C.

SOLUTION. From the value of the reversion of the given sum after the decease of A., found by Prob. xxiii., deduct the value of the same payable if A. should be the *first* that fails, found by Prob. xxviii., and the remainder will be the value required. *

EXAMPLE. Let the ages of A. B. and C. respectively be 24, 65, and 75, the sum £1000, and the rate of interest £3 per cent. By Prob. xxiii. the value of the reversion after the decease of A. is 447.10. By Prob. xxviii. the value of £1000 payable on the decease of A. if his life should be

* See the demonstration in Note XXV.

the *first* that fails is 60.53 ; the difference therefore or £386.57 is the value sought.

PROBLEM XXXVI.

To find the value of a given sum payable on the death of A., if his life should be the *first* or the *last* that fails of the three lives A. B. and C.

SOLUTION. Find by Problem xxv. the value of the given sum payable on the contingency of B. surviving A., and also the value on the contingency of C. surviving A. Find by Problem xxiii. the value of the given sum on the decease of A., and let it be added to *twice* the value on the decease of A. if his life should be the *first* that fails, found by Problem xxviii. From the sum of these latter values, subtract the sum of the two former values, and the remainder will be the answer.*

Or more briefly ; from the value of the absolute reversion after the decease of A. found by Prob. xxiii. deduct the value of the reversion depending on the contingency of A.'s being *second* that fails, found by Prob. xxix., and the remainder will be the value required.†

EXAMPLE. Let the ages of A. B. and C. respectively be 24, 65, and 75, the sum £1000, and the

* See the demonstration, Note XXVI.

† Though the wording of this rule is shorter than that of the preceding, the operation in both is the same.

104 METHOD OF COMPUTING THE VALUES OF

rate of interest £3 per cent. By Prob. xxiii. the value of the given sum after the decease of A. is 447.10. By Prob. xxix. the value of the same on the contingency of A.'s being the *second* that fails is 105.33. Deducting this sum from 447.1 we have £341.77 for the value required.

N. B. The same results will follow if the solution be derived from the 28th and 30th Problems; or in other words, if the value of the reversion on the contingency of A.'s being the *first* that fails, be added to the value of the reversion on the contingency of A.'s being the *last* that fails.

PROBLEM XXXVII,

To find the value of a given sum payable on the decease of A. or B., should *either* of them be the *first* that fails of the three lives A. B. and C.

SOLUTION. Multiply the value of the three joint lives A. B. C. by the interest of £1 for a year, deduct the product from unity and reserve two-thirds of the remainder. To one-third of A. B. T. * add one-sixth of H. T. B., and one-sixth of A. P. T. Let these be added to the reserved remainder, and the *sum* of the whole reserved. To one-third of H. P. C. add one-sixth of H. B. C., and one-sixth of A. C. P., let these be deducted from the *sum* reserved above; multiply

* See Schol. to Prob. xxvii,

the remainder into the given sum, and the product divided by £1 increased by its interest for a year will be the value of the reversion.*

EXAMPLE. Let the ages of A. B. and C. respectively be 45, 12, and 60, the sum £1000, and the rate of interest £3 per cent. The value of the joint lives A. B. C. by Tab. 4. is 7.238 which being multiplied by .03, and the product subtracted from unity, the remainder will be .78286, two-thirds of which, or .52191 is the remainder to be reserved. A. B. T. may be found = 7.7388 of which one-third is 2.57794, H. T. B. and A. P. T. may be found respectively equal to 7.48062 and 7.63967, one-sixth of the sum of these two numbers is 2.52005, which being added to .52191 and 2.57794 gives 5.61990. Again, H. P. C. is equal to 7.89452, and H. B. C. and A. C. P. are respectively equal to 7.98649 and 8.14328, one-third of the former is 2.63150, and one-sixth of the sum of the two latter is 2.68829, these being added together give 5.31979, which being subtracted from 5.61990 will leave .30011. Multiplying this remainder by 1000, and then dividing the product by 1.03 the quotient or £291.37 will be the value required.

REMARK. The solution of this problem may also be derived from that of the 28th Problem, and from the Corollary to the 23d Problem; that is,

* See the demonstration, Note XXVII.

106 METHOD OF COMPUTING THE VALUES OF

by subtracting from the value of the reversion after the three joint lives the value of the given sum payable if C. should be the *first* that fails; but the operation is not reduced by this means.

PROBLEM XXXVIII.

To determine the value of a given sum payable on the decease of A. or B. should *either* of them be the *second* that fails of the three lives A. B. and C.

SOLUTION. Find by the Corollary to Prob. xxiii. the value of the given sum payable on the extinction of the joint lives A. and B. Find by Prob. xxv. the value on the contingency of C. surviving A. and also on the contingency of C. surviving B. Lastly, find by the preceding problem the value of the given sum payable on the contingency of A. or B. being either of them the *first* that fails of the three lives. From the sum of the three former values, deduct twice the value last mentioned, and the remainder will be the value required. *

EXAMPLE. Let the ages of A. B. and C. as in the preceding problem, be 45, 12, and 60. The sum £1000, and the rate of interest £3 per cent. By Prob. xxiii. Cor. the value of the given sum after the extinction of the joint lives A. and B.

* See the demonstration, Note XXVIII.

is £25.39. By Prob. xxv. the value on the contingency of C. surviving A. is 249.66, and the value on the contingency of C. surviving B. is 113.70. By the preceding Problem the value of the given sum depending on the contingency of either A. or B. being the first that fails of the three lives is 291.37, of which the double is 582.74. Deducting this from 988.75, (the sum of the three former values) the remainder will be £406.01, which is the value of the reversion.

PROBLEM XXXIX.

To determine the value of a given sum payable on the decease of A. or B., should *either* of them be the *last* that fails of the three lives A. B. and C.

SOLUTION. Find by Cor. to Prob. xxiii. the value of the given sum payable on the extinction of the longest of the two lives A. and B. Find by Problem xxxvii. the value on the contingency of either A. or B. being the first that fails of the three lives. Find by Prob. xxv. the value on the contingency of C. surviving A., and also the value on the contingency of C. surviving B.; the sum of these two latter values subtracted from the sum of the two former will give the value sought.* Or, find by Corollary to Prob. xxiii. the value of

* See the demonstration, Note XXIX.

108 METHOD OF COMPUTING THE VALUES OF

the given sum payable on the extinction of the longest of the three lives ; from which deduct the value of the same payable on the contingency of C. being the *last* that fails of the three lives (found by Prob. xxx.) and the remainder will be the answer.

EXAMPLE. Let the ages of A. B. and C. be 14, 44, and 69, the sum £1000, and the rate of interest £3 per cent. By the corollary to Prob. xxiii. the value of the given sum payable on the extinction of the two lives A. and B. is 333.5. By Prob. xxxvii. the value of the same on the contingency of either A. or B. being the first that fails is 273.48. The sum of these two values is 606.98. By Prob. xxy. the value of the given sum on the contingency of C. surviving A. is 85.96, and the value on the contingency of C. surviving B. is 213.59. Their sum is 299.55; which being subtracted from 606.98, the remainder, or £307.43 will be the value sought. The same result may be obtained from the second rule; for the value of the reversion after the extinction of the three lives by Corollary to Prob. xxiii. being £330, and the value of the same depending on the contingency of C. being the *last* that fails by Prob. xxx. being 22.57, the difference, or £307.43 will be the value as before.

SECTION II.

IN the preceding section I have given general rules for determining the values of reversions depending upon one, two, and three lives in every case, which, as far as I can discover, will admit of an *exact* solution. But there are several other reversions depending on three lives which involve a contingency that does not appear to admit of such a general expression for determining their *exact* values as shall not render the rules much too complicated and laborious. The contingency to which I refer, is that of *one life's failing after another in any given time*. The fractions expressing the probability of this event are every year increasing, so that the value of the reversion must be represented by as many series at least as are equal to the difference between the age of one of the lives, and that of the oldest life in the table of observations. The 34th, 35th, and 36th problems in Mr. Simpson's Select Exercises, involve this contingency, and by the assistance of M. *De Moivre's* hypothesis admit of an easy solution. But, exclusive of the fallacy of this hypothesis, the supposition that it is an *equal* chance in all cases that one life shall die either *before* or *after* another, whatever be the disparity of their ages, or the number of years in which the event is to happen, must often lead to very erroneous conclusions. In the short term of a single year the chances are indeed so nearly equal, that it would

110 METHOD OF COMPUTING THE VALUES OF

be wrong to perplex the solution by attempting greater accuracy. But when the number of years, and the difference between the two ages are considerable, those chances must vary in proportion; and therefore unless the contingency is blended with another which shall very much diminish the probability of the event, it will always be best to have recourse to a correct, though perhaps more laborious method of solution. By supposing these chances to be equal, and adopting *De Moivre's* hypothesis, the rule in Mr. *Simpson's* 36th problem has been rendered entirely absurd; for although the three lives of A. B. and C. are involved in the question, only two of them are comprehended in this rule; that is, the value of the reversion when C. is the oldest, is made equal to half the difference between the life of C. and the joint lives A. C., and therefore must always be the same, whether B., upon whose life it also depends, be 10 or 20 years younger than C., or indeed whether he does or does not exist at all. In all the different problems contained in this section, either the contingency of *one life surviving another*, or of *one life dying after another*, is involved in the computation. I have therefore in another part of this work * given a general method for determining each of those contingencies, and also for computing tables of the values of them at all ages

* See the two lemmas in Note XXX.; and also the 9th and 10th Tables.

without much labour or difficulty. By the assistance of these tables, though only partially applied to the solution of the following problems, the values appear to approximate sufficiently near the truth, to answer every useful purpose.

PROBLEM XL.

To find the value of an annuity on the life of C. after A. on the particular condition that A.'s life when it fails, shall fail *before* the life of B.

SOLUTION. When C. is the oldest of the three lives. From the sum of the values of the single life C. and the joint lives B. C., subtract the sum of the values of the joint lives A. C., and of the three joint lives A. B. C., then will half the remainder be the value required. When A. is the oldest of the three lives. Find the value of an annuity on the life of C. and on the joint lives B. C. for as many years as are equal to the difference between the age of A. and the oldest life in the table (by Prob. II. and Corollary). To half the sum of these two values add the value of an annuity on the life of C. *after* the above term * multiplied into the probability that B. survives A. found in Tab. 9., and let the sum be reserved. To the value of an annuity on the joint lives A. and C., add the value of an annuity on the three joint lives A. B. C.,

* This is equal to the difference between the value of an annuity on the whole life of C. and of its value during the given term.

subtract half the sum of these two values from the *reserved* sum, and the remainder will be the value sought. *If B. is the oldest of the three lives*: Find the value of an annuity on the life of C., and on the joint lives A. and C., for as many years as are equal to the difference between the age of B. and the oldest life in the table; deduct the latter from the former, and to half the remainder add the value of an annuity on the life of C. after the above term multiplied into the probability that B. dies *after* A. (by Tab. 10.) and let the sum be *reserved*. From the value of an annuity on the joint lives B. C. deduct the value of an annuity on the three joint lives A. B. and C., add half the remainder to the *reserved* sum, and the amount will be the answer. *

EXAMPLE I. Let the ages of C. A. and B. be 60, 25, and 45 years, and the rate of interest £4 per cent. By Tab. 3. the value of an annuity on the life of C. is 9.039, and by Tab. 4. the value of an annuity on the joint lives B. C. is 7.274, the sum of these two values is 16.313. By Tab. 4. the value of an annuity on the joint lives A. C. is 7.906, and by Prob. iv. the value of an annuity on the three joint lives is 6.477. The sum of these two latter values, or 14.383, being deducted from 16.313 leaves 1.930, the half of which, or .965, is the answer.

* See the demonstration, Note XXXI.

EXAMPLE II. The rate of interest being the same, let the respective ages of C. A. and B. be 45, 60, and 25 years. The difference between the age of A. and 96, (the age of the oldest life in the 1st table) is 36. The value of an annuity on the life of C. for 36 years by Prob. II. is 12.180, and the value of an annuity on the joint lives B. C. for the same number of years by Corollary to Prob. II. is 10.158. The value of an annuity on the life of C. after 36 years * is .103. The probability that B. survives A. by Tab. 9. is .788. These two sums multiplied into each other produce .081; which being added to 11.169 (or half the sum of the single and joint lives first found) gives 11.250 for the sum to be reserved. By Tab. 4. the value of the joint lives A. C. is 7.274. By Prob. IV. the value of the three joint lives is 6.477. Half their sum, or 6.875, being deducted from 11.250 reserved above, leaves 4.375 for the value required.

EXAMPLE III. Suppose the ages of C. A. and B. respectively to be 25, 45, and 65, and the rate of interest still at £4 per cent. In this case B. is the eldest of the three lives, and the difference between his age and that of the oldest person in Tab. 1. is 31. The values of an annuity on the life of C. and on the joint lives A. C. for 31 years are 13.968 and 10.025, and half their difference is

* See Note, page 111.

114 METHOD OF COMPUTING THE VALUES OF

1.9715. The value of an annuity on the life of C after 31 years is 1.470. The probability that E dies after A. by Tab. 10. is .2685. These two numbers multiplied into each other produce .3947 which being added to 1.9715 gives 2.366 to be reserved. By Table 4. the value of an annuity on the joint lives B. C. is 6.920. By Prob. IV. the value of an annuity on the three joint lives is 5.781 Half the difference of these two values is .576 which being added to 2.366, the reserved sum we have 2.936 for the number of years purchase required.

PROBLEM XLII.

To find the value of an annuity on the life of C. after the decease of A., on the particular condition that A.'s life when it fails, shall fail ~~after~~ the life of B.

SOLUTION. When C. is the oldest of the three lives. From *half* the difference between the value of an annuity on the life of C. and of an annuity on the joint lives A. C. subtract *half* the difference between the value of an annuity on the joint lives B. C. and on the three joint lives, and the remainder will be the answer. When A. is the oldest of the three lives. Find the value of an annuity on the life of C. and on the joint lives B. C. for as many years as are equal to the difference between the age of A. and the oldest life in the table by Prob. IV. and its Corollary. To *half* the difference between these two values add the value of an annuity on the li-

of C. after the above term * multiplied into the probability that A. dies after B. by Tab. 10., and reserve the sum. Find the difference between the value of an annuity on the joint lives A. C. and the value of an annuity on the three joint lives; subtract *half* this difference from the reserved sum and the remainder will be the value required. *If B. is the oldest of the three lives.* Find the value of an annuity on the life of C. and on the joint lives A. C. for a number of years equal to the difference between the age of B. and the oldest person in the table, and subtract the latter from the former value. From the value of an annuity on the joint lives B. C. subtract the value of an annuity on the three joint lives, add this to the preceding remainder, and let *half* the sum be reserved. From the value of an annuity on the life of C. subtract the value of an annuity on the joint lives A. C., and from the remainder subtract the product arising from the multiplication of the value of an annuity on the life of C. after the above mentioned term into the probability that A. dies *after* B. by Tab. 10. Deducting the *reserved sum* from this remainder, we have the value required. †

EXAMPLE I. Let the ages of C. A. and B. respectively be 65, 35, and 15, the annuity as in

* See Note, page 111.

† See the demonstration, Note XXXII.

116 METHOD OF COMPUTING THE VALUES OF

the examples to the preceding problem £1, and the rate of interest £4 per cent. By Tab. 3. the value of an annuity on the life of C. is 7.761, and by Tab. 4. the value of the joint lives A. C. is 6.747.; half their difference is .507. By Tab. 4. the value of an annuity on the joint lives B. C. is 7.127, and by Prob. iv. the value of an annuity on the three joint lives may be found equal to 6.263. Half the difference between these two values, or .432, being subtracted from .507 leaves .075 for the value required.

EXAMPLE II. Supposing the ages of C. A. and B. respectively to be 35, 65, and 15, and the rate of interest to be £4 per cent. The difference between the age of A. and that of the oldest person in the 1st table being 31 years, the value of an annuity on the single life C. for that term by Prob. II. will be 13.180, and the value of an annuity on the joint lives B. C. for the same term by Corollary to Prob. II. will be 11.369, and *half* their difference will be .906. The value of an annuity on the life of C. after 31 years is .859.* The probability that A. survives B. is .136 (by Tab. 9.) Hence 859 multiplied into .136 will produce .117, which being added to .906 will give 1.023 for the sum to be reserved. The value of an annuity on the joint lives A. C. (by Tab. 4.) is

* See Note, page 111.

6.747. The value of an annuity on the three joint lives by Prob. iv. is 6.263. Half their difference, or .242, subtracted from 1.023, the sum reserved, will leave .781 for the answer.

EXAMPLE III. If the ages of C. A. B. respectively be 15, 35, and 65, and the rate of interest, as above, £4 per cent., the value of an annuity on the life of C. by Tab. 3. will be 16.791, and on the joint lives A. C. by Tab. 4. = 11.787, and their difference will be 5.004. The value of an annuity on the life of C. for 31 years as in the preceding example, will be 14.696, and on the joint lives A. C. it will be 11.369. Half the difference of these two values is 1.6635. The value of an annuity on the joint lives B. C. is 7.127, and the value on the three joint lives by Prob. iv. is 6.267. Half their difference, or .432, added to 1.6635, gives 2.0955 for the sum to be reserved. The value of an annuity on the life of C. after 31 years is 2.095 * which being multiplied into .4037 (the probability by Tab. 10. that A. dies after B.) produces .846. Deducting this from 5.004, found above, we have 4.158; and 2.096, the reserved sum, being again deducted from 4.158, the remainder, or 2.062, will be the value required.

PROBLEM XLII.

To find the value of an annuity on the lives of

* See Note, page 111.

B. and C. after the death of A. provided BOTH of
them should survive A.

SOLUTION. When A. is the youngest of the three lives. From half the sum of the values of the single lives B. and C. subtract half the sum of the values of the joint lives A. C. and B. C., and the remainder will be the value required. If B. and C. are BOTH younger than A : To the value found as above, add half the sum of the values of the single lives of B. and C. after the expiration of as many years as are equal to the difference between the age of A. and that of the oldest life in the table, and from the sum subtract the value of the joint lives B. C. after the expiration of the same term,* then will the remainder be the required value. If one life (B.) be older, and the other (C.) be younger than A. Find the value of an annuity on the life of C. and on the joint lives A. C. for as many years as are equal to the difference between the age of B. and of the oldest life in the table, subtract the latter from the former value and reserve half the remainder. Find the value of the life of C. after the above term,* and multiply it into the probability (found by Tab. 10.) that B. dies after A. To the product add half the difference between the value of the life of B. and of the joint lives A. B., then will this sum added to the reserved remainder be the value sought. †

* See Note, pag. 111.

† See the demonstration, Note XXXIII.

EXAMPLE I. Let the ages of A. B. and C. respectively be 20, 35, and 55, the annuity £1 and the rate of interest £4 per cent. By Tab. 3. the value of an annuity on the life of B. is 14.039, and the value of an annuity on the life of C. is 10.201. By Tab. 4. the value of an annuity on the joint lives of A. C. is 8.869, and of A. B. 11.445. Half the sum of the two former values is 12.120., half the sum of the two latter is 10.157; their difference, or 1.963, is the value required.

EXAMPLE II. Supposing the ages of A. B. and C. to be 60, 50, and 30, respectively, the annuity £1, and the rate of interest £4 per cent. By Tab. 3. the values of the single lives of B. and C. being 11.264, and 14.781, half their sum will be 13.022; and by Tab. 4. the values of the joint lives A. C. and B. A. being 7.802 and 6.989, half their sum will be 7.395, which subtracted from 13.022 leaves 5.627. The difference between the age of A. and that of the oldest life in the first table being 35, the value of an annuity on the life of B. after 35 years by Corollary 3. Prob. II. is .042, and the value of an annuity on the life of C. after the same term is .732. Half their sum, or .387, added to 5.627 gives 6.014. The value of the joint lives B. C. after 35 years is .013, which being deducted from 6.014, leaves 6.001 for the required value.

EXAMPLE III. Supposing the ages of A. B. and C. respectively to be 50, 60, and 30, the annuity

and the rate of interest to be the same as in the preceding examples. The value of an annuity on the life of C. for 35 years by Prob. II. is 14.049 ; the value of an annuity on the joint lives A. C. for the same term by Corollary 1. Prob. II. is 7.789 ; half their difference therefore is 3.160, which is to be *reserved*. The value of an annuity on the life of C. after 35 years by Corollary 3. Prob. II. is .732. The probability that B. dies *after* A. is by Tab. 10 .375. These fractions multiplied into each other produce .2745. The value of an annuity on the life of B. by Tab. 3. is 9.039. The value of the joint lives A. and B. by Tab. 4. is 6.989. Half the difference of these two values, or 1.025 added to .2745 and also to 3.16, *reserved* above, gives 4.4595 for the answer.

PROBLEM XLIII.

To find the value of a given sum S. payable on the extinction of the lives of A. and C., provided B. should survive one life in particular (A.)

SOLUTION. Find by Problem xxv. the value of the given sum payable on the contingency of B. surviving A. Find by Prob. xl., the value of an annuity of £1 during the life of C. after A., provided A. should die before B. ; multiply this into the interest of S. for a year, and divide the product by £1 increased by its interest for a year ; subtract the quotient from the value of S. by the 25th pro-

blem, and the remainder will be the value required.*

EXAMPLE. Supposing the respective ages of A. B. and C. to be 25, 45, and 60, the sum £1000, and the rate of interest £4 per cent. By the 25th prob. the value of £1000 payable on the contingency of B. surviving A. may be found = 204.37. By the first example to Prob. XL. the value of an annuity on the life of C. after A., provided A. dies before B., is .965, which multiplied into 40, (the interest of £1000), and divided by 1.04, gives 37.12. £204.37 lessened by this sum leaves £167.25 † for the value of the reversion.

PROBLEM XLIV.

To find the value of a given sum payable on the extinction of the lives of A. and C. provided B. should die before one life in particular (A.)

* The solutions of this and the two following problems have been given in Notes 34, 35, and 36, independent of any other problems; but those theorems cannot well be expressed in *words* without being rendered too long and complicated. I have therefore in this part of the work preferred the rules which may be derived from other problems as being more concisely *described*, though perhaps the operations may not be much shorter than by those which are derived from the algebraical symbols in the notes above mentioned.

† By the algebraical rule the value is $204.37 - 37.89 = 166.48$, which proves the correctness of both rules, as the small difference arises solely from being obliged to have recourse to the *approximated* values of three joint lives instead of the *real* ones.

SOLUTION. Find by Prob. xxvi. the value of the given sum payable on the decease of A. and B. provided B. dies *before* A. Find by Prob. xli. the value of an annuity on the life of C. after A., provided A. should survive B. Multiply this into the interest of the given sum for a year, and divide the product by £1 increased by its interest for a year. Subtract this quotient from the value found by Prob. xxvi., and the remainder will be the value sought.

EXAMPLE. Let the ages of A. B. and C. respectively be 35, 15, and 65 years, the sum £1000, and the rate of interest 4 per cent. By the 26th prob. the value of £1000 payable on the death of A. and B., provided B. dies before A., may be found equal to 87.018. By the 1st example to Prob. xli. the value of an annuity on the life of C. after A., provided B. dies before A. appears to be .075, which being multiplied into 40 and then divided by 1.04 gives 2.884. The difference therefore between 87.018, and 2.884, or £84.134, is the value of this contingent reversion, which agrees very nearly with the value derived from the algebraical theorem.

PROBLEM XLV.

To find the value of a given sum payable on the extinction of the lives of B. and C. provided *both* of them shall survive A.

SOLUTION. Find by Prob. xxviii. the value of the given sum payable on the death of A. if his life should be the *first* that fails of the three lives. Find by Prob. xlii. the value of an annuity on the lives of B. and C. after A. provided both of them should survive him. Multiply this value into the interest of the given sum for a year, divide the product by £1 increased by its interest for a year, and subtract the quotient from the value found above by Prob. xxviii.; then will the remainder be the value required.

EXAMPLE. Let the respective ages of A. B. and C. be 24, 65, and 75 years; the sum £1000, and the rate of interest £3 per cent. From the example to Prob. xxviii. the value of the given sum payable on the death of A. if his life should be the *first* that fails appears to be 60.53. The value of an annuity on the lives of B. and C. after A. if both of them should survive him, may be found by Prob. xlii. equal to .6191, which being multiplied into 30, the interest of £1000 at £3 per cent., and then divided by 1.03, gives 18.03. Subtracting this sum from 60.53 found above, we have £42.5 for the value of the reversion, which is rather less than the value found by the algebraical theorem.*

PROBLEM XLVI.

To find the value of a given sum payable on the

* See Note to Prob. xliii. page 121.

death of C. if A. should be the first, B. the second, and C. the third that fails of the three lives.

SOLUTION. *When C. is the oldest of the three lives.* To one third of A. $P. C.$ * add one-sixth of $H. P. C.$, one-sixth of $H. T. B.$, and half the value of the joint lives B. C. Multiply half the value of the two joint lives A. T. increased by unity into the probability that C. lives a year, and also into £1 payable at the end of a year. Subtract the value of the three joint lives A. B. C. multiplied into the interest of £1 for a year, from unity, divide $\frac{1}{6}$ th of the remainder by £1 increased by its interest for a year, add the quotient to the five preceding values, and let the *sum be reserved*. To $\frac{1}{6}$ th of A. B. T. add $\frac{1}{3}$ of A. P. T., $\frac{1}{6}$ th of H. B. C. and $\frac{1}{2}$ the value of the two joint lives A. C. divided by £1 increased by its interest for a year. Multiply $\frac{1}{2}$ the value of the two joint lives C. P. increased by unity into the probability that B. lives a year, and also into £1 payable at the end of a year. Multiply the value of the single life C. into the interest of £1 for a year, divide half the remainder by £1 increased by its interest for a year. Add this quotient to the five values just found, and let the whole be subtracted from the *reserved sum*, then will the remainder multiplied into the given sum be the value required. *When B. is the*

* See Schol. to Prob. xxvii.

oldest of the three lives. First find the value as in the preceding case, taking the values of the life of C. and of the joint lives A. C. only for as many years as are equal to the difference between the age of B. and that of the oldest life in the table, and taking the value of the joint lives A. T. for one year less than that difference. Find next the value of a life as many years older than C. as are equal to the said difference, which being subtracted from the perpetuity, let the remainder be multiplied into the interest of £1 for a year, also into the probability that C. lives to the end of the above term, and into the probability that B. dies *after* A. Again, multiply this product into the value of £1 payable at the end of a term exceeding the above difference by one year, and finally into the given sum. This product added to the value found above, will be the answer in this case. *When A. is the oldest of the three lives.* Find the value as in the first case, only taking the value of the life of C. for as many years as are equal to the difference between the age of A. and that of the oldest person in the table. Multiply the value of a life as many years older than C. as are equal to this difference into the interest of £1 for a year, also into the probability that B. and C. *both* live to the end of that term, and lastly into the value of £1 payable at the end of one year exceeding that term, *reserving* the product. Subtract the same value of the life of C. from the perpetuity, multiply the

126 METHOD OF COMPUTING THE VALUES OF

remainder into the interest of £1 for a year, and also into the probability that B. dies *after* A., and into the probability that C. lives to the end of the term above-mentioned. Multiply this product again into the value of £1 payable at the end of one year exceeding that term. From this subtract the product just *reserved*, and multiply the remainder into the given sum. Add this product to the value found above, and the sum will be the value sought.*

EXAMPLE I. Let the ages of A. B. and C. respectively be 18, 39, and 68 years, the sum £1000; and the rate of interest £3 per cent. The value of $\frac{1}{3}$ of A. P. C. is $\frac{6.4879}{3} = 2.1626 \dots$ the value of $\frac{1}{6}$ of H. P. C. is $\frac{6.4181}{6} = 1.0697 \dots$ of $\frac{1}{2}$ of H. T. B. $\frac{6.0039}{6} = 1.0007$, of $\frac{1}{2}$ of B. C. is $\frac{6.3766}{2} = 3.1883$, and of the joint lives A. T. increased by unity and multiplied into the fractions directed in this rule is 3.4035. The value of the three joint lives, A. B. C., or 5.8902, multiplied into .03, and deducted from unity is .823294, which being divided by 6; and multiplied into £1 payable at the end of a year produces .1332. These six quantities added together make 10.9580 for the sum to be reserved.

* The latter part of this rule is not exactly the same with the algebraical theorem; but it is sufficiently correct for any useful purpose. See the demonstration in Note XXXVII.

The value of $\frac{1}{6}$ of A. B. T. is $\frac{60930}{6} = 1.0155 \dots$
of $\frac{1}{3}$ of A. P. T. is $\frac{5.9457}{3} = 1.9819 \dots$ of $\frac{1}{6}$ of H. B.
C. is $\frac{6.5762}{6} = 1.0960 \dots$ of $\frac{1}{2}$ the joint lives of A. C.
divided by £1 increased by its interest for a year
is $\frac{6.4510}{2} = 3.2255$, and of half the joint lives of C.
P. increased by unity and multiplied into the
fractions directed in the rule, is $\frac{6.9748}{2} = 3.4874$.
The value of the life of C. (7.3673) multiplied
into .03 is .221019, and $\frac{.221019}{2}$ divided by 1.03 is
=.1073; which being added to the five quantities
found above, makes 10.9136. Deducting this
from 10.9580, and multiplying the remainder
(.0444) by 1000, we have £44.4 for the value of
the reversion.

EXAMPLE II. Supposing the ages of A. B. and
C. respectively to be 18, 68, and 39, the sum
£1000, and the rate of interest, as in the fore-
going example, £3 per cent. Pursuing the same
steps as above, the values of $\frac{1}{3}$ of A. P. C., $\frac{1}{6}$ of H.
P. C., and $\frac{1}{6}$ of H. T. B., will be $\frac{6.0039}{3} = 2.0310$;
 $\frac{6.0039}{6} = 1.0007$, and $\frac{6.4181}{6} = 1.0697$. — the value
of half the joint lives B. C. = 3.1883, and the
value of the joint lives A. T. for 26 years (being
one year less than the difference between the age
of B. and that of the oldest person in the 1st Table)
may be found = 11.3867. Half of this value mul-
tiplied into $(\frac{1312}{1392} =)$ the probability that B. lives
a year, and then divided by 1.03 gives 5.8775.
The three joint lives A. B. C. multiplied into .03,
then deducted from unity, and $\frac{1}{6}$ of the remainder

128 METHOD OF COMPUTING THE VALUES OF

multiplied into £1 payable at the end of a year produces as in the preceding example .1332; which being added to the five preceding values gives 13.3004 for the *sum to be reserved*.

Again; $\frac{1}{\pi}$ of A. B. T., $\frac{1}{\pi}$ of A. P. T., and $\frac{1}{\pi}$ of H. B. C., are severally equal to $\frac{6.4879}{6} = 1.0813 \dots$
 $\frac{5.9457}{3} = 1.9819 \dots$ and $\frac{6.576}{6} = 1.0960$. The value of the joint lives A. C. for 27 years is 11.5929, therefore $\frac{11.5929}{\pi}$ divided by 1.03 is 5.6276. The value of the joint lives C. P. (6.1374) increased by unity, and half the sum multiplied into the probability that B. lives a year, and also into £1 payable at the end of a year, is 3.2558. The value of the life of C. for 27 years (13.5517) multiplied into .03, and half the product divided by 1.03 gives .1973. Adding these six values we have 13.2399; which being subtracted from 13.3004 (the reserved sum), and the remainder being multiplied into 1000, we have £60.5 for the first part of the answer. The value of a life of 66 (being 27 years older than that of C.) is 7.9937, which being deducted from 33.3333 (the perpetuity), and the remainder multiplied into .03, we have .760158. This product multiplied into $\frac{1552}{3710}$ (the probability that C. lives 27 years) also into .43708 (the value of £1 at the end of 28 years) and into .1311 (the probability that B. dies after A.) and into 1000 (the given sum) produces 18.1, which being added to £60.5 gives £78.6 for the value required.

EXAMPLE III. If the respective ages of A. B. and C. are 68, 39, and 18, let the sum and rate of interest be the same as in the two preceding examples. The values of $\frac{1}{2}$ of A. P. C., $\frac{1}{6}$ of H. P. C., and $\frac{1}{3}$ of H. T. B. are 2.1626, .9910, and 1.0007 respectively, and half the value of the joint lives B. C. is 6.1825. The value of the joint lives A. T. increased by unity is 7.6985. Half this sum multiplied into $\frac{5199}{5262}$ (the probability that C. lives a year) and also into .97087 (the value of £1 payable at the end of a year) produces 3.6839. The value of the three joint lives A. B. C. multiplied into the interest of £1 for a year, &c. is the same as in the two preceding examples, or .1332. These six values added together make 14.1539 for the *sum to be reserved*.

Again, $\frac{1}{2}$ of A. B. T., $\frac{1}{3}$ of A. P. T., and $\frac{1}{6}$ of H. B. C. are respectively equal to 1.0960, 2.1894, and 1.0155. Half the value of the joint lives A. C. (or 3.36075) divided by 1.03 is equal to 3.2629. The value of the joint lives C. P. (or 12.2224) increased by unity, and multiplied into the probability that B. lives a year, and also into the value of £1 payable at the end of a year, is 12.5488, of which one half is 6.2744. The value of the life of C. for 27 years is 15.2083, which being multiplied into .03, and half the product divided by £1 increased by its interest for a year, we have .2215. These six quantities, amounting to 14.0097, being deducted from 14.1539 (the

180 METHOD OF COMPUTING THE VALUES OF

reserved sum) and the remainder multiplied into 1000 produces £144.2 for the first part of the value.

The value of a life aged 45 years is 13.692, which being multiplied into .03 gives .41076. This number being again multiplied into $\frac{1552 \times 3941}{3710 \times 5261}$ (the probability that B. and C. both live 27 years, and also into .43708 (the value of £1 payable at the end of 28 years) we have .04636 the *product to be reserved*. Again, 13.692 subtracted from 33.333, the perpetuity, and the remainder multiplied into .03, produces .58923, which being again multiplied into .3945 (the probability that B. dies after A.), also into $\frac{3945}{5262}$ (the probability that C. lives 27 years), and into .43708 (the value of £1 at the end of 28 years) it produces .06271. Deducting .04636, the *reserved product* from this sum, and multiplying the remainder into 1000, the given sum, and then adding 16.4 the product to 144.2, found above, we have £160.6 for the value required.

PROBLEM XLVII.

To determine the value of a given sum payable on the death of A. or B. should *either* of them be the *first* or *second* that fails of the three lives A., B. and C.

SOLUTION. In this case the payment of the given sum must certainly take place on the extinction of the joint lives of A. and B., inde-

pendent of C., and therefore the value of the reversion may be obtained from the corollary to Prob. XXIII.

PROBLEM XLVIII.

To determine the value of a given sum payable on the decease of A. or B., should either of them be the *second* or *third* that shall fail of the three lives A. B. and C.

SOLUTION. Find by Prob. XLI. the value of an annuity of £1 on the life of A. after C. provided C. should die after B. Find by the same problem the value of an annuity of £1 on the life of B. after C., provided C. should die after A. Find by Prob. VI. the value of an annuity on two out of the three lives. From the perpetuity subtract the sum of these three values, and multiply the remainder into the interest of the given sum for a year, then will the product divided by £1 increased by its interest for a year be the value required.*

EXAMPLE I. Let the respective ages of A. B. and C. be 60, 25, and 45., the sum £100, and the rate of interest £3 per cent. By Prob. XLI. the value of an annuity on the life of A. after C., provided C. dies after B., is .2785. By the same Problem the value of an annuity on the life of B.

* See the demonstration, Note XXXVIII.

132 METHOD OF COMPUTING THE VALUES OF

after C., provided C. dies after A., is 2.4730. By Prob. vi. the value of an annuity on two out of the three lives is 13.5280. The sum of these three values, or 16.2795, being subtracted from 33.3333, the perpetuity, leaves 17.0538; which being multiplied into 3, the interest of £100 for a year, and then divided by 1.03, gives £49.675 for the value sought.

EXAMPLE II. Supposing the ages of A. B. and C. to be 25, 45, and 60 respectively, the sum and rate of interest, as in the preceding example. By Prob. xli. the value of an annuity on the life of A. after C., provided C. dies after B., is 2.2029. By Prob. xli. the value of an annuity on the life of B. after C., provided C. dies after A., is .8626. By Prob. vi. the value of an annuity on two out of the three joint lives is 13.5280. The sum of these three values is 16.5935, which being subtracted from 33.333, and the remainder multiplied into 3, we have 50.2194. This product divided by 1.03 gives 48.756 for the answer. These values by the algebraical rule are a little greater; a difference arising, as I have already observed, from being obliged to have recourse to approximated values of the three joint lives.

PROBLEM XLIX.

To determine the value of a given sum payable on the decease of A. or B., should either of them be the *first* or *last* that fails of the three lives A. B. and C.

SOLUTION. The payment of the sum in this problem, like that in the preceding one, must ultimately take place ; and it is only the single contingency of C.'s being the *first* that fails of the three lives which can *postpone* it after their joint continuance. In order therefore to determine the value of this reversion, find by Problem xli. the value of an annuity on the life of A. after B., provided B. shall have died *after* C., and the value of an annuity on the life of B. after A., provided A. shall have died *after* C. To these add the value of the two joint lives A. B., and let the sum be subtracted from the perpetuity. Multiply the remainder into the interest of the given sum for a year ; divide the product by £1 increased by its interest for a year, and the quotient will be the required value. *

EXAMPLE I. Let the ages of A. B. and C. as in the 1st example of the foregoing problem be 60, 25, and 45, the sum £100, and the rate of interest £3 per cent. By Prob. xli. the value of an annuity on the life of A. after B., provided B. shall have died after C., is .2285, and the value of an annuity on the life of B. after A., provided A. shall have died after C., is 2.6347. The sum of these (2.5932) added to 8.496 gives 11.0892, which subtracted from 33.333, and the remainder multiplied into 3, produces 66.7323, and 66.7323 divided by 1.03 quotes £64.79 for the answer.

* See the demonstration, Note XXXIX.

134 METHOD OF COMPUTING THE VALUES OF

EXAMPLE II. The ages of A, B. and C. being 25, 45, and 60 respectively, and the sum and rate of interest the same as in the preceding example; the value of an annuity on the life of A, after B., provided B. survives C., by Prob. XLI. will be .24846, and the value of an annuity on the life of B. after A., provided A. survives C., will be .851, the value of an annuity on the joint lives A. B. is 11.164. These three values, or 14.4996, subtracted from 33.333, and the remainder multiplied into 3, produces 56.501 ; which being divided by 1.03, we have £54.854 for the value of the reversion in this case.

PROBLEM L.

To determine the value of a given sum payable on the death of A., should his life be the *first* or *second* that fails, and should B.'s life, if it fails, become extinct before the life of C.

SOLUTION. The value of the reversion in this case depends simply on the contingency of C.'s surviving A., and is determined by the solution of the 25th problem.*

PROBLEM LI.

To find the value of a given sum payable on the death of A., should his life be the *second* or *third*

* See the demonstration, Note XL.

that fails, and should B.'s life, when it fails, become extinct before the life of C.

SOLUTION. *When A. is the oldest of the three lives.* Multiply the value of the three joint lives A. B. C. by the interest of £1 for a year, add 2 to the product, and divide the sum by 6; to this quotient add one-third of H. P. C.* one-sixth of H. B. C., and one-sixth of A. B. T.; and from the sum deduct the sum of one-sixth of H. T. B., one-sixth of A. P. T., and one-third of A. P. C., *reserving* the remainder. Multiply half the value of an annuity on the life of A. into the interest of £1 for a year; and also half the difference of the joint lives H. B. and H. C. into the probability that A. lives a year. Deduct the former from the latter product, if B. is younger than C., otherwise add them together. In the one case deduct half the difference between the joint lives of A. C. and A. B. from the *remainder*; in the other case deduct the *sum* of the two values from this half-difference. Lastly, let the last-mentioned sum or remainder, according as it is a positive or negative quantity, be added to or subtracted from the *remainder* first reserved, and if the sum or the difference be divided by £1 increased by its interest for a year, and the quotient multiplied into the given sum, the product will be the value required.

* See Schol. Prob. xxvii.

When B. is the oldest of the three lives. Find the value as in the preceding case, taking the values of A., A. C., and H. C. for as many years as are equal to the difference between the age of B. and the oldest life in the table, and let this value be *reserved*. From the perpetuity subtract the value of a life as many years older than A., as are equal to this difference. Multiply the remainder into the interest of £1 for a year, also into the probability that A. lives to that age, and into the value of £1 payable at the end of the above mentioned term, and reserve the product. To the number expressing the probability that C. dies *after* B. by Tab. 10. add the fraction expressing the probability that C. lives as many years as are equal to the difference above mentioned. Multiply the sum into the reserved product: let this second product again be added to the value first reserved, then will their sum, divided by £1 increased by its interest for a year, and multiplied into the given sum, be the value in this case.

When C. is the oldest of the three lives. The first part of the value is found in every respect in the same manner as in the two preceding cases, only taking the lives A., A. B., and H. B., for as many years as are equal to the difference between the age of C. and of the oldest life in the table. By pursuing nearly the same steps, the second part also is obtained. From the perpetuity subtract the value of a life as many years older than A. as

are equal to the difference between the age of C. and that of the oldest person in the table. Let the remainder be multiplied into the probability that A. lives to that age, and into the interest of £1 for a year, and *reserve* the product. Add the fraction expressing the probability that B. lives as many years as are equal to the difference above mentioned, to the number expressing the probability that C. dies *after* B. by Tab. 10. Multiply the sum into the value of £1 payable at the end of the above term, and also into the reserved product. Add this to the reserved *sum or remainder*. Divide the whole by £1 increased by its interest for a year, and the quotient multiplied into the given sum will be the value required.*

EXAMPLE I. Suppose the respective ages of A. B. and C. to be 65, 40, and 15. The sum £100, and the rate of interest £3 per cent. The value of the three joint lives is 6.51, which being multiplied into .03 produces .1953, and therefore 2.1953 divided by 6, gives .3659. One-third of H. P. C. may be found equal to 2.263, one-sixth of H. B. C. equal to 1.1620, and one-sixth of A. B. T. equal to 1.2357. These four quantities are 5.0266. One-sixth of H. T. B. is 1.1505, one-sixth of A. P. T. is 1.206, and one-third of A. P. C. is 2.442. The sum of these three quantities, or 4.7985, deducted from 5.0266, leaves .2281 for the remainder to be *reserved*. Half the value of an annuity on

* See the demonstration, Note XLI.

198 METHOD OF COMPUTING THE VALUES OF

the life of A. or 4.15035 multiplied into .03 produces .12457. The difference between 7.3385, the value of the joint lives H. C. and 6.8086, the value of the joint lives H. B. is .5299, the half of which being multiplied into $\frac{1552}{1632}$, the probability that A. lives a year, produces .2520, which in this case is to be *added* to .12457, and gives .3766 to be deducted. Half the difference between 7.5970 the value of the joint lives A. C., and 7.0299, the value of the joint lives A. B., is .2836, which being less than .3766, the difference .093 will be a negative quantity. Subtracting this difference from .2281, the remainder *reserved* above, we have .1351, which being divided by 1.03, and the quotient multiplied into 100, produces £13.107 for the required value.

EXAMPLE II. Let the ages of A. B. and C. be 15, 65, and 40 respectively, the sum and rate of interest the same as in the preceding example. The first expression will of course be the same, or .3659. One-third of H. P. C. is 2.3010, one-sixth of H. B. C. is 1.2357, and one-sixth of A. B. T. is 1.2210. The sum of these four quantities is 5.1236. One-sixth of H. T. B. is 1.206. One-sixth of A. P. T. is 1.1315, and one-third of A. P. C. is 2.324. The sum of these three quantities, or 4.6615, deducted from 5.1236, leaves .4621 for the *remainder* to be *reserved*. The value of an annuity on the life of A. for 31 years, or a term equal to the difference between the age of B. and

the oldest life in the table, is 16.513, one half of which being multiplied into .03 produces .2477. The value of an annuity on the joint lives H. C. for 31 years is 11.9787, the value of an annuity on the joint lives H. B. is 7.5613. Half the difference between these two values multiplied into $\frac{5973}{5423}$, the probability that A. lives a year, produces 2.1885, which being added to .2477 the sum will be 2.4362. The value of the joint lives A. C. for 31 years is 12.0524. The value of the joint lives A. B. is 7.597. Half the difference between these two values is 2.2277. Deducting this difference from 2.4362 the remainder will be .2085, which being deducted from .4621, the *reserved remainder* leaves .2536 for the first part of the value in this case. The value of an annuity on a life of 46, or a life 31 years older than A., is 13.450, which being subtracted from 33.333 and the remainder multiplied into .03, gives .59649. This product multiplied into .8999, the value of £1 at the end of 31 years, and into $\frac{3170}{5423}$, the probability that A. lives so long, produces .1395. By Tab. 10. .4516 expresses the probability that C. dies after B., and the fraction $\frac{1152}{3635}$ expresses the probability that C. lives 31 years. The sum of these two expressions is .7686, and .1395 multiplied into .7686 produces .1072. Adding this product to .2536, the first part of the value, and dividing the sum by 1.03, the quotient will be .3503, and consequently the required value £35.03.

140 METHOD OF COMPUTING THE VALUES OF

EXAMPLE III. Suppose the ages of A. B. and C. to be 40, 15, and 65, the sum and rate of interest as in the two preceding examples. The first expression as in those cases will be .3659. One third of H. P. C. is 2.411. One-sixth of H. B. C. is 1.221, and one-sixth of A. B. T. 1.1620. The sum of these four expressions is 5.1599. One-sixth of H. T. B. is 1.131. One-sixth of A. P. T. 1.1505, and one-third of A. P. C. 2.4714, deducting 4.7529, their sum, from 5.1599 we have .407 for the *remainder* to be *reserved*. The value of an annuity on the life of A. for 31 years is 14.0344, which being multiplied into .03, the moiety of the product will be .2105. The value of an annuity on the joint lives H. B. for 31 years is 11.9474, the value of the joint-lives H. C. is 6.9957; half the difference of these two values multiplied into $\frac{3559}{3685}$, the probability that A. lives a year is 2.419, from which subtracting .2105 we have 2.2085. The value of the joint lives A. B. for 31 years is 12.0524. The value of the joint lives A. C. is 7.0299; half their difference is 2.5112, which exceeding 2.2085 by .3027, this difference will be a negative quantity to be subtracted from .407, the reserved remainder, so that the first part of the value is .1043. The value of an annuity on a life of 71, being 31 years older than C., is 6.418. Deducting this from 33.333, and multiplying the remainder into .03, we have .80745; this being again multiplied into $\frac{1152}{3685}$, the probability that A. lives 31 years, pro-

duces .2559. By Tab. 10. the probability that C. dies after B. is .1359, which added to $\frac{3170}{5423}$, the probability that B. lives 31 years, is .7339. The value £1 payable at the end of 31 years is .3999. These three quantities multiplied into each other produce .0751. Adding this product to .1043, the first part of the value, and dividing the sum by 1.03, the quotient will be .1742, and the value of the reversion will in consequence be £17.420.

PROBLEM LII.

To find the value of a given sum payable on the death of A. should his life be the *first* or *last* that fails of the three lives, and should B.'s life, if it fail, become extinct before the life of C.

SOLUTION. Multiply the sum of the values of the three joint lives, and of the life of A. into the interest of £1 for a year, deduct the product from unity, and take half the remainder. Multiply half the difference between the values of the joint lives H. B. and the three joint lives H. B. C. into the probability that A. lives a year. To these two quantities add one-half of A. P. T.* and reserve the *sum*. From the value of the joint lives A. T. subtract the value of the three joint lives A. B. T., multiply half the remainder into the probability that C. lives a year, and to the product add one half of B. H. T., and one-half the value of the

* See Schol. Prob. xxvii.

142 METHOD OF COMPUTING THE VALUES OF

joint lives A. B. From the sum of these three quantities deduct the reserved sum and divide the remainder by £1 increased by its interest for a year. Let the quotient be subtracted from half the value of the joint lives A. C., then will the remainder multiplied into the given sum be the value required. The above rule gives the true value *when A. is the oldest*; but if *C. be the oldest of the three lives*, the annuities on the lives of A., A. B., and H. B. must be continued only for as many years as are equal to the difference between the age of C. and the oldest life in the table; this will give the first part of the value. Find next the value of a life as much older than A. as is equal to the above difference. Deduct this from the perpetuity, and multiply the remainder into the interest of £1 for a year, and into the value of £1 payable at the end of a term one year longer than the said difference. This product again being multiplied into the probability that A. lives as many years as are equal to the said difference, and into the probability that C. *dies* after B. will give another product, which is to be added to the first part of the value; and their sum being multiplied into the given sum will be the value sought. *If B. be the oldest of the three lives*, the values of the lives of A. and A. T. in the first part of the solution must be continued only for as many years as are equal to the difference between the age of B. and that of the oldest life in the table, and the

value of the joint lives A. C. for one year longer. From the perpetuity subtract the value of a life as many years older than A. as is equal to the above difference ; multiply the remainder into the interest of £1 for a year, and also into the value of £1 payable at the end of a term one year longer than the said difference. Again multiply this expression into the probability that C. dies after B. and also into the probability that A. lives to the end of the term above mentioned. Add this second product to the *first* part of the value, and multiply the amount into the given sum for the value required.*

EXAMPLE I. Let the ages of A. B. and C. respectively be 70, 50, and 30, the sum £100, and the rate of interest £3 per cent. The value of the joint lives A. B. C. by Prob. iv. is 5.087, the value of the single life A. is 6.734, their sum, or 11.821, multiplied into .03, and the product subtracted from unity, leaves .6454 ; half of which is .3227. The value of the three joint lives H. B. C. or 4.888, subtracted from 5.361, the value of the two joint lives H. B., leaves .473, which being multiplied into $\frac{1152}{1232}$, the probability that A. lives a year, and the product divided by 2, gives .2212. One-half of A. P. T. is 2.891. These three quantities added together give 3.4349. The difference between 6.031, the value of the joint lives A. T., and 5.079, the value of the three joint lives A. B.

* See the demonstration, Note XLII.

144 METHOD OF COMPUTING THE VALUES OF

T. is .952. Half of this sum multiplied into $\frac{4310}{4385}$, the probability that C. lives a year, produces .4679. One-half of B. H. T. is 2.6815, and half of 5.582, the value of the joint lives A. B. is 2.791. From 5.9404, the sum of these three values, deducting 3.4349 reserved above, we have 2.5055, which being divided by 1.03 quotes 2.4325. Half the sum of 6.043, the value of the joint lives A. C. is 3.0215. Deducting 2.4325 from 3.0215 and multiplying the remainder into the given sum, the product, or £58.90, is the value required.

EXAMPLE II. Supposing the ages of A. B. and C. respectively to be 30, 50, and 70, the sum and rate of interest the same as in the preceding example. The value of the joint lives A. B. C. is 5.087, the value of the life of A. for 26 years, being the difference between the age of C. and that of the oldest life in the table is 14.200; the sum of these two values multiplied into .03, and the product being subtracted from unity, the remainder will be .4214, of which one-half is .2107. The value of the joint lives H. B. for 26 years is 9.851, the value of the three joint lives H. B. C. is 5.079. Half the difference of these two values multiplied into $\frac{4310}{4385}$, the probability that A. lives a year, produces 2.345. One-half of A. P. T. is 2.663. The sum of these three quantities is 5.2187. The difference between 5.785 the value of the joint lives A. T., and 4.888 the value of the three joint lives A. B. T., is .897. The probability that C. lives a

year is $\frac{1152}{1232}$. Multiplying these expressions into each other, and dividing the product by 2, we have .4194. One half of B. H. T. is 2.6815. The value of the joint lives A. B. for 26 years is 9.888, of which the half is 4.944. Deducting 5.2187, the sum reserved above, from 8.0449, the sum of these last three quantities, and dividing the remainder by 1.03, the quotient will be 2.744. Half the value of the joint lives A. C. is 3.0125, and 2.744 subtracted from 3.0125 leaves .2775 for the first part of the solution. The value of an annuity on a life of 56, being 26 years older than the life of A. is 10.883 which being deducted from 33.333 and the remainder multiplied into .03, we have .6735. The value of £1 payable at the end of 27 years is .4502, the probability that A. lives 26 years is $\frac{2366}{4365}$, and the probability that C. dies after B. by Tab. 10. is .2455. These four quantities being multiplied into each other produce .041. Adding this product to .2775, the first part of the solution, and multiplying the sum into 100, we have £31.76 for the value of the reversion in this case.

EXAMPLE III. If the respective ages of A. B. and C. be 50, 70, and 30, the sum and rate of interest as in the two foregoing examples; the value of the life of A. and of the joint lives A. T. respectively for 26 years will be 11.835 and 9.851, the value of the joint lives A. C. for 27 years will be 9.943, and the first part of the solution, by proceeding as above, will be found = .2575. The

146 METHOD OF COMPUTING THE VALUES OF

value of a life of 76, or of a life 26 years older than A., is .4925. Deducting this from .33.33 and multiplying the remainder into .08 we have .8522. The value of £1 payable at the end of 27 years is .4502. The probability that A. live 26 years is $\frac{752}{2857}$, and the probability that C. die after B. is .3122. Multiplying these four quantities into each other, the product becomes .0815. Adding this product to .2575, the first part of the solution, the sum becomes equal to .289, and consequently the value of the reversion of £100 will be £28.900.

PROBLEM LIII.

To determine the value of a given sum payable on the extinction of the three lives A. B. C. provided C. shall die after one life in particular (A.)

SOLUTION. Find by Prob. xli. the value of an annuity on the life of B. after C. provided A. shall have died before C. Multiply this value into the interest of the given sum; divide the product by £1 increased by its interest for a year, and reserve the quotient. Find next by Problem xxvi. the value of the given sum on the event of C.'s dying after A., subtract the reserved quotient from this value, and the remainder will be the value required.*

EXAMPLE I. Let the respective ages of A. B. and C. be 25, 65, and 35, the sum £100, and

See the demonstration Note XLIII.

the rate of interest £3 per cent. By Prob. xli. the value of an annuity on the life of B. after C. provided A. shall have died before C. is = .111, which being multiplied by 3, and then divided by 1.03, quotes .323. By Prob. xxvi. the value of £100 depending on the contingency of C. dying after A. is = 15.903. Deducting .323 from this value, the remainder, or £15.58, will be the value sought.

EXAMPLE II. Supposing the ages of A. B. and C. respectively to be 35, 25, and 65, the sum and rate of interest the same as in the preceding example. The value of the annuity on the life of B. after C. provided A. shall have died before C. may be found by the 2d case Prob. xli. to be equal to 1.8273. This being multiplied into 3 and then divided by 1.03 gives 5.322 for the quotient to be reserved. By Prob. xxvi. the value of £100 payable on the death of C. after A. is 13.272. Deducting 5.322 the reserved quotient from this sum we have £7.95 for the value required.

The values deduced from the algebraical rule (Note 43.) agree very nearly with the above, and would agree exactly if we were possessed of tables giving correct values of annuities on three joint lives.

L
num
ge e
be li
ge ;
hat

but t
 $= \frac{b}{a}$

Ir
om
be 1
of]
the
th
w
d

N O T E S.

NOTE I.

Let r be £1 increased by its interest for a year, b the number of the living in the table opposite to the present age of A. the given life, and $c, d, e, \&c.$ the numbers of the living at the end of 1, 2, 3, &c. years from his present age; then it follows, from what has been said in page 17, that the value of an annuity on this life will be $\frac{c}{br} + \frac{d}{br^2} + \frac{e}{br^3} + \&c. = N.$ Let a denote the number of the living in the table opposite to the age of a person one year younger than A., and the value of an annuity on the life of this younger person will be expressed by $\frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3} + \&c.$

$$\text{But this series is equal to } \frac{b}{ar} \times \overline{1 + \frac{c}{br} + \frac{d}{br^2} + \frac{e}{br^3} + \&c.} \\ = \frac{b}{ar} \times \overline{1 + N.}$$

In the same manner may the theorem be obtained for computing a table of the values of two *joint* lives. Let n be the number of the living in the table opposite to the age of B. the second life, $o, p, q, \&c.$ the numbers living at the end of 1, 2, 3, &c. years from his present age, and the value of an annuity on the two *joint* lives of A. and B. will be $\frac{oc}{nbr} + \frac{pd}{nbr^2} + \frac{qe}{nbr^3} + \&c. = M.$ Let m represent the number living opposite to the age of a person one year younger than B., and the value of an annuity on two *joint* lives, each one year younger than A. and B. will be

$$\frac{nb}{amr} + \frac{oc}{amr^2} + \frac{pd}{amr^3} + \&c. = \frac{nb}{amr} \times \overline{1 + \frac{oc}{nbr} + \frac{pd}{nbr^2} +} \\ \frac{qe}{nbr^3} + \&c. = \frac{nb}{amr} \times \overline{1 + M}.$$

As the *expectations* are the same with the values of annuities on single and joint lives *without interest*, tables of those expectations may be computed from the preceding theorems, by omitting only the fraction $\frac{1}{r}$: that is, the expectation of a life one year younger than A. will be $\frac{b}{a} \times \overline{1 + E.}$, and the expectation of two joint lives each one younger than A. and B. will be $\frac{nb}{am} \times \overline{1 + F.}$; E. being the expectation of the life of A. and F. the expectation of the two joint lives A. and B.

NOTE II.

In the case of the *youngest* life, it is evident that there is no other difference between the operations in this rule and the theorem in Note I., than that those in the former are begun at the last year and continued upwards to the first year of life, and that those in the latter are begun at the first year, and continued downwards to the last year of life. Let $a, b, c, d, e, \dots z$ express the numbers of persons living at all ages in the table, n the difference between the ages of the youngest and oldest life, and $r \neq 1$ increased by its interest for a year. Then will the value of the youngest life by the theorem be $\frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3} + \frac{e}{ar^4}, \&c. \dots + \frac{z}{ar^n}$; and by the rule the sum of all the values of £1 payable if this life exists to the several ages of the oldest, 2d, 3d, 4th, &c. lives is $\frac{z}{ar^n} + \frac{y}{ar^{n-1}} + \frac{x}{ar^{n-2}} + \frac{u}{ar^{n-3}} \dots + \frac{b}{ar}$. The value of an

annuity found by the theorem is, in the present instance, to be multiplied by unity, and will, therefore, remain unaltered, and be just the same with the value found by the rule.

Again; the value of a life one year older by the theorem is $\frac{c}{br} + \frac{d}{br^2} + \frac{e}{br^3} - \dots + \frac{x}{br^{n-1}}$ which being multiplied by the value of £1 payable if the youngest life should continue one year, or by $\frac{b}{ar}$, is equal to $\frac{c}{ar^2} + \frac{d}{ar^3} + \frac{e}{ar^4} - \dots + \frac{x}{ar^n}$. Now the sum of the values of £1 payable if the youngest life should exist to the age of the oldest, and all the intermediate ages between it and a life one year older than the youngest, is expressed by the same fraction in a contrary order, or by $\frac{x}{ar^n} + \frac{y}{ar^{n-1}} + \frac{z}{ar^{n-2}} - \dots + \frac{c}{ar^2}$. The value of a life two years older by the theorem is $\frac{d}{cr} + \frac{e}{cr^2} + \frac{f}{cr^3} - \dots + \frac{x}{cr^{n-2}}$ which being multiplied by £1, payable if the youngest life exists two years, or by $\frac{c}{ar^3}$, is equal to $\frac{d}{ar^3} + \frac{e}{ar^4} + \frac{f}{ar^5} - \dots + \frac{x}{ar^n}$; and this is easily determined to be the sum of all the values of £1 payable if the youngest life exists to the age of the oldest, and all the intermediate ages between it and a life two years older than the youngest. Lastly, the value of an annuity on the oldest life but one is equal to $\frac{z}{yr}$, which being multiplied by the value of £1 payable if the youngest life exists to this age, or by $\frac{y}{ar^{n-1}}$, is equal to $\frac{z}{ar^n}$; and this is evidently the value of £1 payable if the youngest life exists to the age of the oldest. Hence the truth of the rule is manifest.

In the same manner may the proof of the accuracy of the operations in computing the tables of the values of joint lives be demonstrated.

NOTE III. (PROB. V.)

Let $a, b, c, d, \&c.$ be the number of persons living the table at the age of A. in the 1st, 2d, 3d, &c. years; $m, n, o, p, \&c.$ the numbers living at the age of B., and $s, t, u, w, \&c.$ the numbers living at the age of C. in the same years; then will $\frac{b}{a}, \frac{c}{a}, \frac{d}{a}, \&c.$ express the probabilities that A. lives 1, 2, 3, &c. years, $\frac{n}{m}, \frac{o}{m}, \frac{p}{m}, \&c.$ the probabilities that B. lives, and $\frac{t}{s}, \frac{u}{s}, \frac{w}{s}, \&c.$ the probabilities that C. lives to the end of those years. If these fractions severally deducted from unity, we shall have the probabilities that they will die in 1, 2, 3, &c. years, and consequently $1 - \frac{b}{a} \times 1 - \frac{n}{m} \times 1 - \frac{t}{s}$ will be the probability that they will all die in the first year, $1 - \frac{c}{a} \times 1 - \frac{o}{m} \times 1 - \frac{u}{s}$ that they will all die in two years, $1 - \frac{d}{a} \times 1 - \frac{p}{m} \times 1 - \frac{w}{s}$ the probability that they will all die in three years, and so on. The first of these expressions is $1 - \frac{b}{a} - \frac{n}{m} - \frac{t}{s} + \frac{nb}{ams} + \frac{nt}{ms} + \frac{bt}{as} - \frac{bnt}{ams}$, the second = $1 - \frac{c}{a} - \frac{o}{m} - \frac{u}{s} + \frac{oc}{ams} + \frac{cu}{us} - \frac{cou}{ams}$, the third = $1 - \frac{d}{a} - \frac{p}{m} - \frac{w}{s} + \frac{pd}{ams} + \frac{pw}{ms} - \frac{dpw}{ams}$, &c. Deducting these expressions again from unity we shall have the probabilities that they will not all die, that is, that one of them at least will live 1, 2, 3, &c. years. If $\frac{1}{r}, \frac{1}{r^2}, \frac{1}{r^3}, \&c.$ be the values of £1 payable at

the end of 1, 2, 3, &c. years, and these fractions be respectively multiplied into the series expressing the probabilities in the 1st, 2d, 3d, &c. years, the value of the annuity in the 1st year will be $\frac{b}{ar} + \frac{n}{mr} + \frac{t}{sr} - \frac{nb}{amr} - \frac{nt}{msr} - \frac{bt}{asr} + \frac{bnt}{amsr}$, the value in the 2d year = $\frac{c}{ar^2} + \frac{o}{mr^2} + \frac{u}{sr^2} - \frac{oc}{amr^2} - \frac{ou}{msr^2} - \frac{cu}{asr^2} + \frac{cou}{amsr^2}$, the value in the 3d year = $\frac{d}{ar^3} + \frac{p}{mr^3} + \frac{w}{sr^3} - \frac{pd}{amr^3} - \frac{pw}{msr^3} - \frac{dw}{asr^3} + \frac{dpw}{amsr^3}$, &c. &c. But $\frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3}$, &c. is the value of an annuity on the single life of A. $\frac{n}{mr} + \frac{o}{mr^2} + \frac{p}{mr^3}$, &c. the value of an annuity on the single life of B. $\frac{t}{sr} + \frac{u}{sr^2} + \frac{w}{sr^3}$, &c., the same value on the single life of C. $\frac{nb}{amr} + \frac{oc}{amr^2} + \frac{pd}{amr^3}$, &c., $\frac{nt}{msr} + \frac{ou}{nw^2} + \frac{pw}{msr^3}$, &c., $\frac{bt}{asr} + \frac{cu}{asr^2} + \frac{dw}{asr^3}$, &c. are respectively the values of an annuity on the joint lives of A and B., of B and C., and of A and C., and $\frac{bnt}{amsr} + \frac{cou}{amsr^2} + \frac{dpw}{amsr^3}$, &c. the value of an annuity on the three joint lives. These several values being denoted by A, B, C., AB., BC., AC., and ABC., the general rule will be = A. + B. + C. - AB. - BC. - AC. + ABC. Q. E. D.

NOTE IV. (Prob. vi.)

This annuity will be enjoyed during the three joint lives, and also during the joint lives of A and B after C., during the joint lives of A and C after B., and during the joint lives of B and C after A. To find the value of an annuity during the joint lives of A and B after C., let the same symbols be retained as in the preceding note. In the first year the payment of the annuity will depend

on the contingency of A and B both living, and C dying in that year, which by reasoning as in that note will be expressed by $\frac{nb}{am} \times 1 - \frac{t}{s} \times \frac{1}{r} = \frac{nb}{amr} - \frac{nbt}{amsr}$. In the second year the payment will depend on the contingency of A and B both living two years, and C dying in that time and therefore the value will be $\frac{oc}{am} \times 1 - \frac{u}{s} \times \frac{1}{r^2} = \frac{oc}{amr^2} - \frac{ocu}{amsr^2}$. In the third year the value will be $\frac{pd}{amr^3} - \frac{pdw}{amsr^3}$, and so on. Hence the whole value will be equal to $\overline{AB - ABC}$. In like manner the value during the joint lives of AC after B will be $AC - ABC$, and the value during the joint lives of BC after A will be equal to $BC - ABC$. Adding these three values to the value of the annuity during the three joint lives first mentioned, and the sum will be $AB + AC + BC - 2ABC$, agreeable to the general rule.

NOTE V. (Prob. VII.)

The amount of the annuity by any table of observations, supposing the number of persons living at the age of the given life, and at every subsequent year to be denoted by $b, c, d, e, &c.$ will be $\frac{c}{b} + \frac{dr}{b} + \frac{er^2}{b} + \frac{fr^3}{b}, &c. = Q$. Let a denote the number of persons living at the age of a person one year younger than the given life, then the amount of the annuity during the continuance of such younger life be $\frac{b}{a} + \frac{cr}{a} + \frac{dr^2}{a} + \frac{er^3}{a}, &c. = \frac{b}{a} \times 1 + \frac{cr}{b} + \frac{dr^2}{b} + \frac{er^3}{b}, &c. = \frac{b}{a} \times 1 + r Q. - - - Q. E. D. *$

In the former edition of this work, the solution of the

* See Table 7th.

above problem was derived from M. *De Moivre's* hypothesis, and the general rule was expressed by $\frac{r^n - 1}{n(r-1)^2}$ — $\frac{1}{r-1}$, where n denotes the complement or twice the expectation of the given life. In the middle stages of life this rule is sufficiently correct; but in the earlier and later stages it is unfit for use.

NOTE VI. (Prob. VIII.)

Retaining the same symbols as in the preceding note, the value of the annuity on the given life will be expressed by the series $\frac{c}{br} + \frac{2d}{br^2} + \frac{3e}{br^3} + \frac{4f}{br^4} + \&c. = R.$, and the value of the like annuity on a life one year younger will be $= \frac{b}{ar} + \frac{2c}{ar^2} + \frac{3d}{ar^3} + \&c. = \frac{b}{ar} \times 1 + \frac{c}{br} + \frac{d}{br^2} + \frac{e}{br^3} + \&c.$
 $+ \frac{b}{ar} \times \frac{c}{br} + \frac{2d}{br^2} + \frac{3e}{br^3} + \&c. = \frac{b}{ar} \times \overline{1 + R. + N.}$,* (N. being the value of an annuity on the given life.) The solution of this problem, like that of the preceding, was deduced in the former edition of this work from M. *De Moivre's* hypothesis, and the general rule was expressed by $n \times \overline{V - G.}$, n being the *complement*, V. the value of an annuity on the given life, and G. the value of two equal joint lives of the same age. This theorem, like all those which are founded on an equal decrement of life, is correct only in the middle stages of it.

Were the annuity to increase £1 per annum for n years, without being subject to any contingency, the series expressing the value of such annuity, (or $\frac{1}{r} + \frac{2}{r^2} + \frac{3}{r^3} + \frac{4}{r^4} + \cdots + \frac{n}{r^{n-1}}$) may be found equal to $\frac{r}{r-1} - \frac{n}{r^n \cdot r-1} - \frac{1}{r^n \cdot r-1}$.

* See Table 8th.

And the series expressing the amount of £1 in one year, £2 in two years, £3 in three years, &c. for n years (or $1 + 2r + 3r^2 + 4r^3 - \dots - nr^{n-1}$) may be found equal to

$$\frac{n+1.r^{n-1}}{r-1} - \frac{r^{n-1}.r}{(r-1)^2}.$$

DEMONSTRATION of Cor. II. The value of this annuity will be $\frac{ab}{ar} + \frac{a-\beta c}{ar^2} + \frac{a-2\beta d}{ar^3} + \frac{a-3\beta e}{ar^4}, \text{ &c.} = a \times$

$$\frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3} + \text{ &c.} - \beta \times \frac{c}{ar^2} + \frac{2d}{ar^3} + \frac{3e}{ar^4}, \text{ &c.} = a A. -$$

$$\frac{\beta b}{ar} \times \frac{c}{br} + \frac{2d}{br^2} + \frac{3e}{br^3} + \text{ &c.} = a A. - \frac{\beta b}{ar} \times R.$$

DEMONSTRATION of Cor. III. The probability that the life fails in the 1st year is $1 - \frac{b}{a} = \frac{a-b}{a}$, the probability that it fails in the 2d year, after having survived the 1st, is $\frac{b}{a} \times 1 - \frac{c}{b} = \frac{b-c}{a}$, the probability that it fails in the 3d after having survived the first two years is $\frac{c}{a} \times 1 - \frac{d}{c} = \frac{c-d}{a}$, &c., therefore the value of the given sum is $\frac{a-b}{ar} + \frac{2(b-c)}{ar^2} + \frac{3(c-d)}{ar^3} + \text{ &c.} = \frac{1}{r} + \frac{b}{ar^2} + \frac{c}{ar^3} + \frac{d}{ar^4}, \text{ &c.} + \frac{b}{ar^2} + \frac{2c}{ar^3} + \frac{3d}{ar^4} + \text{ &c.} - \frac{b}{ar} - \frac{2c}{ar^2} - \frac{3d}{ar^3} - \text{ &c.} = \frac{1+A}{r} + \frac{M}{r} - M =$

$\frac{1+A-r-1.M}{r}$ Q. E. D. If F. be the value of an annuity certain for a number of years equal to the complement of the given life, the value of this reversion by De Moivre's hypothesis will be = $\overline{F} - A$.

NOTE VII. (PROB. IX.)

The annuity in the first year depends on the contingency of A.'s living and B.'s dying in that year, therefore retaining

the same symbols as in the preceding notes, the value will be expressed by $\frac{b}{a} \times 1 - \frac{n}{m} \times \frac{1}{r} = \frac{b}{ar} - \frac{bn}{amr}$. The annuity in the second year depends on A.'s living two years and B.'s dying in that time, the value therefore for that year will be $\frac{c}{a} \times 1 - \frac{o}{m} \times \frac{1}{r^2} = \frac{c}{ar^2} - \frac{oc}{amr^2}$. In the same manner the value for the third year will be $\frac{d}{ar^3} - \frac{pd}{amr^3}$, and so on for the succeeding years. Hence the whole value will be $\frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3} + \frac{e}{ar^4} + \text{, &c.} - \frac{bn}{amr} - \frac{co}{amr^2} - \frac{dp}{amr^3} - \text{, &c.}$ But the first series expresses the value of an annuity on the life of A., and the second series expresses the value of an annuity on the *joint* lives of A. and B., consequently the truth of the solution is manifest.

NOTE VIII. (PROB. X. XII. and XIII.)

The value of the reversion in this case is the *difference* between the values of an annuity on the longest of the three lives and of an annuity on the longest of the two lives in possession, B and C; that is, it will be equal to A. + B. + C. + ABC. - AB. - AC. - BC. - B - C. + BC. = A. + ABC. - AC. - BA. Q. E. D.—See page 51, and Note III.

REMARK. By reasoning as in *Note VII.*, the value of the annuity in the 12th *Problem* is $\frac{b}{ar} \times 1 - \frac{tn}{ms} + \frac{c}{ars} \times 1 - \frac{uo}{ms} + \frac{d}{ars^2} \times 1 - \frac{wp}{ms}$, &c. = $\frac{b}{ar} + \frac{c}{ars} + \frac{d}{ars^2}$, &c. - $\frac{tnb}{amsr} - \frac{uoc}{amsr^2} - \frac{wpd}{ams}$ —, &c. = A. - ABC.; and the value of the annuity in the 13th Problem is there proved to be = $\frac{bn}{amr} + \frac{co}{amr^2} + \frac{dp}{amr^3} + \text{&c.} - \frac{bnt}{amr} - \frac{con}{amr^2} - \frac{dpr}{amr^3}$ —, &c. = AB. - ABC.

NOTE IX. (PROB. XIV.)

Since the whole annuity is to be enjoyed during the joint lives, and one half of it either during the life of A. after B., or during the life of B. after A., if the first part be denoted by AB., the second part by Note VII. will be equal to $\frac{A.-AB.}{2} + \frac{B.-AB.}{2}$, consequently the required value will be $AB. + \frac{A.-AB.}{2} + \frac{B.-AB.}{2} = \frac{A+B.}{2}$.

NOTE X. (PROB. XV.)

The values of A. and B.'s interest during the joint lives are each equal to $\frac{AB.}{2}$. The values of their reversionary interest by Prob. ix. are either $\overline{A.-AB.}$, or $\overline{B.-AB.}$; adding therefore $\frac{AB.}{2}$ to each of these, the value of A.'s interest will be $A. - \frac{AB.}{2}$, and the value of B.'s interest will be $B. - \frac{AB.}{2}$.

NOTE XI. (PROB. XVI.)

The value of A.'s interest in the annuity during the three joint lives is $\frac{ABC.}{3}$. The value of his interest during the joint lives of himself and B. after C. is $\frac{AB.-ABC.}{2}$, by Prob. XII. The value of his interest during the joint lives of himself and C. after B. is $\frac{AC.-ABC.}{2}$, by the same Problem; and the value of his interest during the remainder of his life after the decease of B and C., by Prob. x., is $A. + ABC. - AC. - AB.$ Adding all these together we have $A. + \frac{ABC.}{3} - \frac{AC.+AB.}{2}$.

NOTE XII. (PROB. XVII.)

During the joint lives of BC. after the decease of A., the value of B.'s expectation will be $= \frac{BC. - ABC.}{2}$, by Prob. XII.; and during the remainder of his life after the decease of A. and C., its value by Prob. x. will be B. + ABC. - AB. - BC.; hence the whole value will be A. - AB. - $\frac{BC. - ABC.}{2}$.

NOTE XIII. (PROB. XVIII.)

By the tenth Problem and Note VIII. it appears that the value of the annuity during the life of A. after B. and C. is A. + ABC. - AB. - AC.; that the value of the same annuity during the life of B. after A. and C. is B. + ABC. - BC. - AB.: and that its value during the life of C. after A. and B. is C. + ABC. - AC. - BC. Adding these three values together, we have A. + B. + C. + 3 ABC. - 2 AB. - 2 AC. - 2 BC. for the value required.

NOTE XIV. (PROB. XIX.)

Let the probabilities that A. lives 1, 2, 3, &c. years be, as usual, denoted by $\frac{b}{a}$, $\frac{c}{a}$, $\frac{d}{a}$, &c., then will the probability that he dies in the first year be $1 - \frac{b}{a} = \frac{a-b}{a}$; the probability that he dies in the second year after having survived the first year will be $\frac{b}{a} \times \frac{b-c}{b} = \frac{b-c}{a}$; the probability that in like manner he dies in the third year will be $\frac{c-d}{a}$, and so on for the other years. Let B. be the value of an an-

nuity on the life to be nominated, then will the value of the reversion for the first year be $\frac{a-b}{a} \times B.$; for the second year $\frac{b-c}{ar} \times B.$; for the third year $\frac{c-d}{ar^2} \times B.$, &c. &c.—
 $= B. + B. \times \frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3}$, &c. — $B. \frac{b}{a} + \frac{c}{ar} + \frac{d}{ar^2}$, &c.
 $= B. + \overline{A. - r A.} \times B.$ (A. being the value of the life of A). $= B. - \overline{r - 1. A.} \times B. = \overline{1 - r - 1. A.} \times B. =$
 $\frac{1}{r-1} - \overline{A. r - 1} \times B.$ But $\frac{1}{r-1}$ is $= P.$ (the perpetuity), therefore the general rule will be expressed by $\frac{P. - A. \times B.}{P.}$.

NOTE XV. (PROB. XXIII.)

By reasoning as above, the value of the assurance in one payment will be $= S. \times \frac{a-b}{ar} + \frac{b-c}{ar^2} + \frac{c-d}{ar^3} + , \&c. =$
 $S. \times \frac{1}{r} + \frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3}, \&c. - S. \times \frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3} + , \&c.$
 $= S. \frac{1 + A.}{r} - S. A. = S. \times \frac{\frac{1}{r-1} - \overline{A. r - 1}}{r}$. Let p denote the perpetuity (or $\frac{1}{r-1}$), then will $p + 1 = \frac{r}{r-1}$ and the above expression become $= \frac{S. \times P. - A.}{P. + 1.}$

The value of the reversion of an *estate* depending on the life's becoming extinct in 1, 2, 3, &c. years, is $\frac{1}{a} - \frac{b}{ar}$
 $+ \frac{1}{r^2} - \frac{c}{ar^2} + \frac{1}{r^3} - \frac{d}{ar^3} - \dots - (z) + \frac{1}{r^{s+1}} + \frac{1}{r^{s+2}}, \&c.$
ad infn. But $\frac{1}{r} + \frac{1}{r^2} + \frac{1}{r^3}, \&c. + \frac{1}{r^{s+1}} + \frac{1}{r^{s+2}}, \&c.$ is equal to P , therefore the reversion is $= P - A.$;—which is indeed so evident as hardly to require a demonstration.

NOTE XVI. (PROB. XXIV.)

It appears, from the preceding note, that the value of the given sum for n years will be $= S. \times \frac{1}{r} + \frac{b}{ar^2} + \frac{o}{ar^3} + \frac{d}{ar^4}$
 $\dots\dots\dots (n-1) - S. \times \frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3} + \dots\dots\dots (n)$. Let A'' represent the value of the life of A for $\overline{n-1}$ years, and A' the same value for n years, then will the required value of the assurance be $S. \times \frac{1+A''}{r} - A' \dots\dots\dots$ Q. E. D.

If the reversion be an *estate* instead of a sum, the value derived from the above expression will be $= \frac{1+A''-rA'}{r-1}$.

NOTE XVII. (PROB. XXV.)

The value of S. in the first year will depend on either of two events: 1st, On the contingency of *both* lives failing in the year, B. having died *last*; 2dly, On the contingency of A. having died and B. having survived him in that year. As it is nearly an equal chance that either A. or B. dies first in any particular year, the first contingency may be fairly expressed by $\frac{a-b}{a} \times \frac{m-n}{m} \times \frac{1}{2}$; the second contingency is $= \frac{a-b}{a} \times \frac{n}{m}$. The value therefore of S. in this year will be $S \times \frac{m+n}{2n} \times \frac{a-b}{ar}$.—In the second year, the value will depend on *both* lives failing in that year, B. having died *last*, or on A's life only having failed in that year. These probabilities are expressed by the fractions $\frac{b-c}{a} \times \frac{n-o}{m} \times \frac{1}{2}$ and $\frac{b-c}{a} \times \frac{o}{m}$, so that the value of S. in the second year is $S \times \frac{n+o}{2m} \times \frac{b-c}{ar^2}$. In the same manner

the value in the third year will be $S \times \frac{o+p}{2m} \times \frac{c-d}{ar^3}$, and so on for the other years. The whole value, therefore, will be S into $\frac{m+n}{2m} \times \frac{a-b}{ar} + \frac{n+o}{2m} \times \frac{b-c}{ar^2} + \frac{o+p}{2m} \times \frac{c-d}{ar^3} - \frac{p+q}{2m} \times \frac{d-e}{ar^4} +$, &c. This series may be resolved into the four following series - - - - $\frac{na}{2amr} + \frac{nb}{2amr^2} + \frac{oc}{2amr^3} + \frac{pd}{2amr^4} +$, &c.; - - - - $+ \frac{na}{2amr} + \frac{ob}{2amr^2} + \frac{pc}{2amr^3} + \frac{qd}{2amr^4} +$, &c.; and $- \frac{mb}{2amr} - \frac{nc}{2amr^2} - \frac{od}{2amr^3} -$, &c.; $- \frac{nb}{2amr} - \frac{oc}{2amr^2} - \frac{pd}{2amr^3} -$, &c. The first of these series is $= \frac{1}{2r} + \frac{AB}{2r}$; the second $= \frac{n}{2mr} \times \frac{1+AP}{1+AB}$ (P being a life one year older than B); the third $= - \frac{b}{2ar} \times \frac{1+BH}{1+AB}$ (H being a life one year older than A); the 4th $= - \frac{AB}{2r}$. Hence the general rule becomes $\frac{S}{2r}$ into $\left(\frac{1-r-1}{1-r-1} AB + \frac{n \cdot 1+AP}{m} - \frac{b \cdot 1+BH}{a} \right)$. When the lives are equal, the last two fractions destroy each other, and the rule is reduced to $\frac{S}{2r} \times \frac{1}{1-r-1} A$ or $\frac{S}{2r} \times \frac{1}{r-1} V - AB$. *

* As $a-b$, $b-c$, $c-d$, &c. in the above demonstration are the decrements of life in each year at the age of A ; if these are nearly equal during any given term (t), their average may be assumed as a constant quantity α , and the first mentioned series $\frac{m+n \cdot a-b}{2mar} + \frac{n+o \cdot b-c}{2mar^2} + \frac{o+p \cdot c-d}{2mar^3}$, &c. will become $\frac{m+n \cdot \alpha}{2mar} - \frac{n+o \cdot \alpha}{2mar^2} + \frac{o+p \cdot \alpha}{2mar^3}$, &c. (t) $= \frac{\alpha}{2a} \times N + \frac{N'+1}{r}$, N being the value of an annuity on the life of A . for t years, and N' the same value for $t-1$ years. Hence the value of the sum S . will be $\frac{S \cdot \alpha}{2ar} \times N + \frac{N'+1}{r}$. — supposing it to depend on the contingency of B . surviving A . in t years. See Prob. xxxii.

NOTE XVIII. (PROB. XXVI.)

Retaining the same symbols as in the preceding note, the value of S in the 1st year depending on the contingency of *both* lives failing in that year, B having died last,

will be $\frac{S.a-b.m-n}{2amr}$. The value of S. in the 2d year will depend on either of two events happening. First, that A. and B. both die in that year after having survived the first year, restrained to the contingency of B's having died last; 2dly, that B. dies in the second, and A. in the first year. The value therefore of S. in this year will be expressed by $\frac{S.b-c.n-o}{2amr^2} + \frac{S.a-b.n-o}{amr^2}$. Again, the value of S

in the 3d year will depend on A. and B.'s both dying in that year, B. having died last, or on B.'s dying in that year, A. having died in the 1st or 2d year. Hence the

value of S in the 3d year will be $\frac{S.c-d.o-p}{2amr^3} + \frac{S.a-c.o-p}{amr^3}$.

By proceeding in this manner for the other years, the whole value of the reversion will be found $= \frac{S}{2am} \times$

$\left(\frac{a-b.m-n}{r} + \frac{b-c.n-o}{r^2} + \frac{c-d.o-p}{r^3}, \text{ &c.} \right) + \frac{S}{amr} \times \left(\frac{a-b.n-o}{r} + \frac{a-c.o-p}{r^2} + \frac{a-d.p-q}{r^3} + \text{ &c.} \right)$ These different series

being expanded will become $\frac{S}{2am} \times \left(\frac{am}{r} + \frac{bn}{r^2} + \frac{co}{r^3} + \text{ &c.} \right)$

$- \frac{S}{2am} \times \left(\frac{an}{r} + \frac{bo}{r^2} + \frac{cp}{r^3} + \text{ &c.} \right) - \frac{S}{2am} \times \left(\frac{bm}{r} + \frac{cn}{r^2} + \frac{do}{r^3} + \text{ &c.} \right) + \frac{S}{2am} \times \left(\frac{bn}{r} + \frac{co}{r^2} + \frac{dp}{r^3} + \text{ &c.} \right) + \frac{S}{amr} \times \left(\frac{an}{r} + \frac{ao}{r^2} + \frac{ap}{r^3} + \text{ &c.} \right) - \frac{S}{amr} \times \left(\frac{bn}{r} + \frac{eo}{r^2} + \frac{dp}{r^3} + \text{ &c.} \right) - \frac{S}{amr} \times \left(\frac{ao}{r} + \frac{ap}{r^2} + \frac{eq}{r^3} + \text{ &c.} \right) + \frac{S}{amr} \times \left(\frac{bo}{r} + \frac{cp}{r^2} + \frac{dq}{r^3} + \text{ &c.} \right)$

The 1st and

6th of these series are $= \frac{s}{2r} \times \overline{1 - AB}$. The 4th = $S \cdot AB \cdot \frac{1}{2}$, and consequently these three series are $= \frac{s}{2r} \times \overline{1 - r - 1} \cdot AB$. The 2d and 8th series are $= S \times \frac{n \cdot AP.}{2mr} - \frac{n}{2mr}$. The 3d series is $= \frac{s \times b \cdot \overline{1 + HB}}{2ar}$. The 5th is $= \frac{s \cdot B.}{r}$, and the 7th is $= S \times \frac{n}{mr} - B$. Adding these last two series, we have $S \times \frac{n}{mr} - \frac{r-1 \cdot B.}{r}$, so that the whole value of the reversion will be $\frac{s}{2r} \times \left(\overline{1 - r - 1} \cdot 2B. - AB. + \frac{n \cdot \overline{1 + AP.}}{m} - \frac{b \cdot \overline{1 + BH.}}{a} \right)$. When the lives are equal, the last two fractions, as in the former case, destroy each other, and the value becomes $\frac{s \times \overline{1 - r - 1 \cdot 2B. - BB.}}{2r}$, or $\frac{s}{2r} \times \overline{r - 1} \cdot V. - \overline{2B. - B.B.} *$.

NOTE XIX. (PROB. XXVII.)

Retaining the same symbols as in the IIId and following notes, the value of the given sum S. in the first year

* By proceeding as in the foregoing note, and supposing the decrements of life at the age of B. for t years to be nearly equal (or a constant quantity β) the value of S. will be expressed by the series $\frac{\beta \cdot a - b}{2amr} + \frac{\beta \cdot b - c}{2amr^2} + \frac{\beta \cdot c - d}{2amr^3} \dots (t) + \frac{\beta \cdot a - b}{2amr^2} + \frac{\beta \cdot a - c}{2amr^3} + \frac{\beta \cdot a - d}{2amr^4} \dots (t-1) = \frac{s}{2b} \times \overline{N - A} + \frac{\overline{N' - A'}}{r}$; N. denoting the value of an annuity certain for t years, N' the same value for $t - 1$ years, and A and A' the value of an annuity on the life of A. for t and $t - 1$ years respectively. See Prob. XXXIII.

Depending on the contingency of C. having survived A. und B. (A. having died before B.) or on the contingency of the three lives having become extinct, A. having died first, B. next, and C. last, will be expressed by $\frac{s}{amsr} \times$

$$\frac{\overline{a-b.m-n.t}}{2} + \frac{\overline{a-b.m-n.s-t}}{6} = \frac{s}{amsr} \times \frac{\overline{a-b.ms}}{6} - \frac{\overline{a-b.ns}}{6} +$$

$\frac{\overline{a-b.mt}}{3} - \frac{\overline{a-b.nt}}{3}$. In the second year the value of S. will depend on either of four events :—1st, on the contingency of all the three lives dying in that year, A. having died first, B. next, and C. last, which probability is expressed by the fraction $\frac{\overline{b-c.n-o.t-u}}{6ans}$; 2dly, On the contingency of B.'s dying in that year, C. living to the end of it, and A.'s dying in the first year $= \frac{\overline{n-o.u.a-b}}{ans}$; 3dly, on the contingency of B.'s dying after A. in the second year, and of C.'s living to the end of that year $= \frac{\overline{n-o.b-c.u}}{2ams}$; 4thly, on the contingency of A.'s dying in the first year, and of B. and C.'s both dying in the second year, B. having died first $= \frac{\overline{a-b.n-o.t-u}}{2ams}$. Hence the whole value in the

second year will be found $= \frac{s}{amsr^2} \times \left(\frac{\overline{b-c.nt}}{6} - \frac{\overline{b-c.ot}}{6} + \frac{\overline{b-c.mu}}{3} - \frac{\overline{b-c.ou}}{3} + \frac{\overline{a-b.nt}}{2} - \frac{\overline{a-b.ot}}{2} + \frac{\overline{a-b.mu}}{2} - \frac{\overline{a-b.ou}}{2} \right)$.

In like manner the value of S. in the third year will depend on the same number of events as in the second year; that is, it will depend on the contingency of all the three lives dying in that year, A. having died first, B. next, and C. last; 2dly, on the contingency of B.'s dying in that particular year, C.'s living to the end of it, and A.'s dying in the first or second year; 3dly, on the con-

tingency of B.'s dying after A. in the third year (both of them having survived the two preceding years), and of C.'s living to the end of that year; and 4thly, on the contingency of A's dying in the first or second year, and of B and C's both dying in the third year, C having died last. These several contingencies are expressed by the respective fractions $\frac{c-d. o-p. u-w}{6ams} - \frac{a-c. o-p. w}{ams} - \frac{c-d. o-p. w}{2ams}$

and $\frac{a-c. o-p. u-w}{2ams}$. Consequently the value for the third year will be $\frac{s}{amsr^3} \times \left(\frac{c-d. ou}{6} - \frac{c-d. pu}{6} + \frac{c-d. ow}{3} - \frac{c-d. pw}{3} + \frac{a-c. ou}{2} - \frac{a-c. pu}{2} + \frac{a-c. ow}{2} - \frac{a-c. pw}{2} \right)$. By

reasoning in the same manner, the value of S in the fourth and following years may be found, and the whole

value of the reversion will be $\frac{s}{6ams} \times \left(\frac{a-b. ns}{r} + \frac{b-c. nt}{r^2} + \frac{c-d. ou}{r^3} + \text{&c.} \right) + \frac{s}{2amsr} \times \left(\frac{a-b. nt}{r} + \frac{a-c. ou}{r^2} + \frac{a-d. pw}{r^3} + \text{&c.} \right) - \frac{s}{6ams} \times \left(\frac{a-b. ns}{r} + \frac{b-c. ot}{r^2} + \frac{c-d. pu}{r^3} + \text{&c.} \right) - \frac{s}{2amsr} \times \left(\frac{a-b. ot}{r} + \frac{a-c. pu}{r^2} + \frac{a-d. qw}{r^3} + \text{&c.} \right) + \frac{s}{3ams} \times \left(\frac{a-b. mt}{r} + \frac{b-c. nu}{r^2} + \frac{c-d. ow}{r^3} + \text{&c.} \right) + \frac{s}{2amsr} \times \left(\frac{a-b. nu}{r} + \frac{a-c. ow}{r^2} + \frac{a-d. px}{r^3} + \text{&c.} \right) - \frac{s}{3ams} \times \left(\frac{a-b. nt}{r} + \frac{b-c. ou}{r^2} + \frac{c-d. pw}{r^3} + \text{&c.} \right) - \frac{s}{2amsr} \times \left(\frac{a-b. ou}{r} + \frac{a-c. pw}{r^2} + \frac{a-d. qx}{r^3} + \text{&c.} \right)$.

These eight series being expanded will become (first) $\frac{s}{6ams} \times \left(\frac{ams}{r} + \frac{bnt}{r^2} + \frac{cou}{r^3} + \text{&c.} \right)$; (second) $- \frac{s}{6ams} \times \left(\frac{bms}{r} + \frac{cnt}{r^2} + \frac{dow}{r^3} + \text{&c.} \right)$; (third) $- \frac{s}{6ams} \times \left(\frac{ans}{r} + \frac{bot}{r^2} + \frac{cpw}{r^3} + \text{&c.} \right)$; (fourth) $+ \frac{s}{6ams} \times \left(\frac{bns}{r} + \frac{cot}{r^2} +$

$\frac{bu}{r^3} + \text{&c.})$; (fifth) $+ \frac{S}{3ams} \times \left(\frac{amt}{r} + \frac{bnu}{r^2} + \frac{cow}{r^3} + \text{&c.} \right)$;
 (sixth) $- \frac{S}{3ams} \times \left(\frac{bnt}{r} + \frac{cnu}{r^2} + \frac{dow}{r^3} + \text{&c.} \right)$; (seventh) $- \frac{S}{3ams} \times \left(\frac{ant}{r} + \frac{bou}{r^2} + \frac{cpw}{r^3} + \text{&c.} \right)$; (eighth) $+ \frac{S}{3ams} \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3} + \text{&c.} \right)$; (ninth) $+ \frac{S}{2msr} \times \left(\frac{nt}{r} + \frac{ou}{r^2} + \frac{pw}{r^3} + \text{&c.} \right)$;
 (tenth) $- \frac{S}{2amsr} \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3} + \text{&c.} \right)$; (eleventh) $- \frac{S}{2msr} \times \left(\frac{ot}{r} + \frac{mu}{r^2} + \frac{qw}{r^3} + \text{&c.} \right)$; (twelfth) $+ \frac{S}{2amsr} \times \left(\frac{bot}{r} + \frac{cpw}{r^2} + \frac{dqw}{r^3} + \text{&c.} \right)$; (thirteenth) $+ \frac{S}{2msr} \times \left(\frac{nu}{r} + \frac{qw}{r^2} + \frac{px}{r^3} + \text{&c.} \right)$; (fourteenth) $- \frac{S}{2amsr} \times \left(\frac{bnu}{r} + \frac{cow}{r^2} + \frac{dpw}{r^3} + \text{&c.} \right)$;
 (fifteenth) $- \frac{S}{2msr} \times \left(\frac{ou}{r} + \frac{pw}{r^2} + \frac{qx}{r^3} + \text{&c.} \right)$; (sixteenth)
 $+ \frac{S}{2amsr} \times \left(\frac{bou}{r} + \frac{cpw}{r^2} + \frac{dqx}{r^3} + \text{&c.} \right)$. The first and
 tenth series are equal $\frac{1}{6r} - \frac{ABC}{3r}$. The third and
 twelfth $= - \frac{n}{6mr} + \frac{n \cdot APC}{3mr}$. The fifth and fourteenth
 $= \frac{t}{3sr} - \frac{t \cdot ABT}{6sr}$. The seventh and sixteenth $= - \frac{nt}{3msr} + \frac{t \cdot APT}{6msr}$. The second series $= - \frac{b}{6ar} \times \overline{1 + HBC}$. The
 fourth $= \frac{bn}{6amsr} \times \overline{1 + HPC}$. The sixth $= - \frac{bt \cdot \overline{1 + HBT}}{3asr}$.
 The eighth series $= \frac{ABC}{3}$. The eleventh $= - \frac{n \cdot CP}{2mr}$. The
 fifteenth $= \frac{nt}{2msr} - \frac{BC}{2}$. The ninth $= \frac{BC}{2r}$. The thir-
 teenth $= \frac{t}{2sr} \times BT$. (H, P, T, being lives one year
 older than A, B, and C.) Now since it appears from
 Note XVII. that $\frac{S}{2r} \times \left(\overline{1 - r - 1} \cdot BC + \frac{t}{2sr} \times \overline{1 + BT} - \frac{n}{2mr} \times \overline{1 + PC} \right)$ is the value of S. depending on the

contingency of C. surviving B.; let R. express that value, then will the value of S. in this Problem be $= R. - S. \times$

$$\left(\frac{1-r-1. ABC}{3r} + \frac{b. 1+HBC}{6ar} + \frac{t. 1+ABT}{6sr} + \frac{bt. 1+HTB}{3ars} - \right.$$

$$\left. \frac{nb. 1+HPC}{6amsr} - \frac{nt. 1+APT}{6msr} - \frac{n. 1+ACP}{3mr} \right). \text{ When the three}$$

lives are of equal age, the value is expressed by $\frac{s}{2r} \times$

$$1 - r - 1. CC. - \frac{s}{8r} \times 1 - r - 1. CCC. = \frac{s}{6r} \times$$

$1 - r - 1. 3CC - 2CCC$, all the fractions after $\frac{1-r-1. ABC}{3r}$ destroying each other.

NOTE XX. (PROB. XXVIII.)

The payment of the sum in the first year depends on one or other of four events:—1st. That the three lives fail, and that A. dies first; 2dly. That B. dies *after* A., and C. lives; 3dly. That C. dies *after* A., and that B. lives; 4thly. That A. only dies, and that B. and C. both live. These several contingencies are expressed by

$$\frac{a-b. m-n. s-t}{3ams} + \frac{a-b. m-n. t}{2ams} + \frac{a-b. s-t. n}{2ams} + \frac{a-b. tn}{ams}. \text{ In the}$$

second and following years one or other of the same events must take place in order to receive the given sum; that is, the three lives must all fail, A. dying first; or only A. and B. must fail, A. dying first, and C. live; or only A. and C. must fail, A. dying first, and B. live; or only A. must fail, and B. and C. both live. The fractions expressing these contingencies in the second year will be

$$\frac{b-c. n-o. t-u}{3ams} + \frac{b-c. n-o. u}{2ams} + \frac{b-c. t-u. n}{2ams} + \frac{b-c. ox}{ams}; \text{ in the}$$

$$\text{third year, } \frac{c-d. o-p. u-w}{3ams} + \frac{c-d. o-p. w}{2ams} + \frac{c-d. u-w. o}{2ams} +$$

$$\frac{c-d. pw}{ams}, \text{ and so on. These fractions being expanded will}$$

$$\begin{aligned}
 & \text{become} = \frac{ams}{3amr} + \frac{bnt}{3amr^2} + \frac{cou}{3amr^3} + \text{&c. } \left(= \frac{1}{3r} \times \overline{1 + ABC} \right) \\
 & - \frac{bms}{3amr} - \frac{cnt}{3amr^2} - \frac{dou}{3amr^3} - \text{&c. } \left(= -\frac{b}{3ar} \times \overline{1 + HBC} \right) \\
 & + \frac{ans}{6amr} + \frac{bot}{6amr^2} + \frac{cpu}{6amr^3} + \text{&c. } \left(= \frac{n}{6mr} \times \overline{1 + APC} \right) \\
 & - \frac{nbs}{6amr} - \frac{oct}{6amr^2} - \frac{pdu}{6amr^3} - \text{&c. } \left(= -\frac{nb}{6amr} \times \overline{1 + HPC} \right) \\
 & + \frac{amt}{6amr} + \frac{bnu}{6amr^2} + \frac{cow}{6amr^3} + \text{&c. } \left(= \frac{t}{6sr} \times \overline{1 + ABT} \right) \\
 & - \frac{mbt}{6amr} - \frac{nct}{6amr^2} - \frac{odw}{6amr^3} - \text{&c. } \left(= -\frac{bt}{6asr} \times \overline{1 + HBT} \right) \\
 & + \frac{ant}{3amr} + \frac{bou}{3amr^2} + \frac{cpw}{3amr^3} + \text{&c. } \left(= \frac{nt}{3mrs} \times \overline{1 + APT} \right) \\
 & - \frac{nbt}{3amr} - \frac{cou}{3amr^2} - \frac{dpw}{3amr^3} - \text{&c. } \left(= -\frac{ABC}{3} \right). \text{ Hence}
 \end{aligned}$$

the whole value will be $\frac{s}{r}$ into $\left(\frac{\overline{1-r-1. ABC}}{3} + \frac{\overline{n. 1 + APC.}}{6m} + \frac{\overline{t. 1 + ABT.}}{6s} + \frac{\overline{nt. 1 + APT.}}{3ms} - \frac{\overline{b. 1 + HBC.}}{3a} - \frac{\overline{bt. 1 + HBT.}}{6as} - \frac{\overline{nb. 1 + HPC.}}{6ma} \right)$. When the three lives are equal, the value becomes $\frac{\overline{s. 1-r-1. CCC.}}{3r}$.

From the demonstration in the preceding Note (XIX.*), it appears, that if the value of the reversion, depending on the contingency of B. surviving A. after C, be deducted from the value depending on the contingency of B. surviving A, whether C. be then living or not, we shall have the value of the reversion in the present case.

* It should be observed, that in that Note C is made to survive B after A; but in the present case, B is made to survive A after C. The symbols therefore in the one must all be changed to produce the proper expressions in the other: that is, B must be substituted in the present case for C, A for B, C for A, m for s , a for m , s for a , &c.

NOTE XXI. (PROB. XXIX.)

In the first year the value depends on the contingency of one or other of three events :—1st. That the three lives become extinct, A. being the second that fails ; 2dly. That A. dies after B., and C. lives ; 3dly. That A. dies after C., and B. lives. But in the second and following years, the value will depend on the contingency of either of seven events :—1st. That the three lives fail in the year, A. being the second that fails ; 2dly. That A. dies after B. in the year, and C. lives to the end of it ; 3dly. That A. dies after C. in the year, and B. lives to the end of it ; 4thly. That A. only dies in the year, B. having died before the beginning, and C. living to the end of it ; 5thly. That A. only dies in the year, C. having died before the beginning, and B. living to the end of it ; 6thly. That A. and C. both die in the year (A. dying first), B. having died before the beginning of that year ; and, 7thly. That A. and B. both die in the year (A. dying first), C. having died before the beginning of that year. The several expressions denoting these contingencies in the first year will

be $\frac{a-b. m-n. s-t.}{3ams} + \frac{a-b. m-n. t}{2ams} + \frac{a-b. s-t. n.}{2ams}$. In the se-

cond year $\frac{b-c. n-o. t-u.}{3ams} + \frac{b-c. n-o. u.}{2ams} + \frac{b-c. t-u. o.}{2ams} + \frac{b-c. m-n. u.}{ams} + \frac{b-c. s-t. o.}{ams} + \frac{b-c. t-u. m-n.}{2ams} + \frac{b-c. n-o. s-t.}{2ams}$.

In the third year, $\frac{c-d. o-p. u-w.}{3ams} + \frac{c-d. o-p. w.}{2ams} + \frac{c-d. u-t. p.}{2ams} + \frac{c-d. m-o. w.}{ams} + \frac{c-d. s-u. p.}{ams} + \frac{c-d. u-w. m-o.}{2ams} + \frac{c-d. o-p. s-u.}{2ams}$,

and so on. These fractions being expanded will form twenty-two series, the sum of which will at last be found

$$\begin{aligned}
 &= \frac{1-r-1. AB.}{2r} - \frac{b.}{2ar} \times \overline{1 + HB.} + \frac{n}{2mr} \times \overline{1 + AP.} + \\
 &\frac{1-r-1. AC.}{2r} - \frac{b}{2ar} \times \overline{1 + HC.} + \frac{t}{2mr} \times \overline{1 + AT.} - \\
 &\frac{2 \times 1-r-1. ABC.}{3r} - \frac{n. 1 + APC.}{3mr} - \frac{t. 1 + ABT.}{3mr} + \frac{2b. 1 + HBC.}{3ar} \\
 &+ \frac{bt. 1 + HBT.}{3asr} - \frac{2nt. 1 + APT.}{3msr} + \frac{nb. 1 + HPC.}{3amr}. \quad \text{The first} \\
 &\text{three fractions express the value of } S. \text{ on the contingency} \\
 &\text{of } B. \text{ surviving } A. (= D.*). \text{ The next three fractions ex-} \\
 &\text{press the same value on the contingency of } C. \text{ surviving } A. \\
 & (= E.*). \text{ The remaining fractions are equal to twice the} \\
 &\text{value of } S. \text{ by the preceding Problem with a negative sign.} \\
 &\text{Let such value be denoted by } M, \text{ and the required value} \\
 &\text{will be equal to } D. + E. - 2M. \text{ When the three lives} \\
 &\text{are of equal age, the value will be } S. \frac{1-r-1. 3CC. - 2CCC.}{3r}.
 \end{aligned}$$

NOTE XXII. (PROB. XXX.)

The value of the given sum in the first year depends only on the extinction of the three lives, A. dying last; and this contingency is expressed by the single fraction $\frac{a-b-m-n-s-t}{8ams}$. In the second and following years the

value depends on either of four events.—1st. On the contingency of the three lives failing in the year, A. dying last;—2dly. On the contingency of A.'s dying *after* B. in the year, C. having died in either of the preceding years;—3dly. On the contingency of A.'s dying *after* C. in the year, B. having died in either of the preceding years;—4thly. On the contingency of A.'s dying in the year, B. and

* See Note XVII.

C. having *both* died in either of the preceding years. In the second year therefore the fractions expressing those contingencies will be $\frac{b-c \cdot n-o \cdot t-u}{3ams} + \frac{b-c \cdot n-o \cdot s-t}{2ams} + \frac{b-c \cdot t-u \cdot m-n}{2ans} + \frac{b-c \cdot m-n \cdot s-t}{ans}$. In the third year they will be $\frac{c-d \cdot o-p \cdot u-w}{3ams} + \frac{c-d \cdot o-p \cdot s-u}{2ams} + \frac{c-d \cdot u-w \cdot m-o}{2ams} + \frac{c-d \cdot m-o \cdot s-u}{ans}$, and so on. Multiplying these fractions respectively into $\frac{1}{r}, \frac{1}{r^2}, \frac{1}{r^3}$, &c., and expanding them into twenty-two different series, the sum of the whole will at last be found equal to $\frac{1-r-1 \cdot A}{r} - \frac{1-r-1 \cdot AB}{2r} + \frac{b \cdot 1+HB}{2ar} - \frac{n \cdot 1+AP}{2mr} - \frac{1-r-1 \cdot AC}{2r} - \frac{t \cdot 1+AT}{2ar} + \frac{b}{2ar} \times \frac{1+HC}{1+HC} + \frac{1-r-1 \cdot ABC}{3r} - \frac{b \cdot 1+HBC}{3ar} + \frac{n \cdot 1+APC}{6mr} - \frac{nb \cdot 1+HPC}{6amr} + \frac{t \cdot 1+ABT}{6ar} - \frac{bt \cdot 1+HBT}{6ar} + \frac{nt \cdot 1+APT}{3mbr}$. The first fraction expresses the value of S. after A.'s decease; the next six fractions are equal — D.+E.; and the remaining ones are equal to M.* Let the absolute reversion after A. be denoted by F., and the value required will be $= \frac{F.+M. - D.+E.}{D.+E.}$ When the three lives are of equal age, the value will be $\frac{S \cdot 1+r-1 \cdot SC + 3CC + CCC}{2r}$, or one-third of the value of the reversion after the longest of the three lives.

This Problem may be solved without the assistance of an algebraical process; the value in this case being evidently the *difference* between the value of the *absolute* reversion after death of A., and the values of the two

* See Note XX.

contingent reversions depending on his life having been the second or the first that failed;—that is, it will be $= F. - \overline{D. + E.} + 2 M. - M. = F. + M. - \overline{D. + E.}$ (M. D. E. denoting the same quantities as in the foregoing Note.)

NOTE XXIII. (PROB. XXXI.)

The payment of the given sum in the first year depends upon either of two events:—1st. On the extinction of the three lives, C having died last; 2dly.. On the extinction only of the two lives A and B, C having survived the year. In the second and following years the payment will depend on either of six events:—1st. On the extinction of the three lives in the year, C having died last; 2dly. On the extinction only of the two lives A and B, C having survived that year; 3dly. On the decease of B in the year, A having died before the beginning, and C living to the end of it; 4thly. On the decease of A in the year, B having died before the beginning, and C living to the end of it; 5thly. On the extinction of the life of C after A in the year, B having died before the beginning of it; 6thly. On the extinction of the life of C after B in the year, A having died before the beginning of it. By reasoning as in Note XIX, the different fractions expressing the value of the reversion in the respective years will be, for the first year, $\frac{\overline{a-b. s-t. m-n}}{3ams} + \frac{\overline{a-b. m-n.t}}{2ams}$; for the second year $\frac{\overline{b-c. n-o. t-u}}{3ams} + \frac{\overline{b-c. n-o. u}}{2ams} + \frac{\overline{n-o. a-b. u}}{ams} + \frac{\overline{b-c. m-n. u}}{ams} + \frac{\overline{b-c. t-u. m-n}}{2ams} + \frac{\overline{t-u. n-o. a-b}}{2ams}$; for the third year $\frac{\overline{c-d. o-p. u-w}}{3ams} + \frac{\overline{c-d. o-p. w}}{2ams} + \frac{\overline{o-p. a-c. w}}{ams} + \frac{\overline{c-d. m-o. w}}{ams}$.

$\frac{c-d \cdot u-w \cdot m-o}{2amr} + \frac{o-p \cdot u-w \cdot a-c}{2amr}$, and so on for the other years, = $\frac{\bar{a}-\bar{b} \cdot t}{2amr} + \frac{\bar{b}-\bar{c} \cdot u}{2amr^2} + \frac{\bar{c}-\bar{d} \cdot w}{2amr^3}$, &c. + $\frac{\bar{a}-\bar{b} \cdot u}{2amr} + \frac{\bar{b}-\bar{c} \cdot t}{2amr^2}$
 $+ \frac{\bar{c}-\bar{d} \cdot s}{2amr^3}$, &c. - $\frac{\bar{a}-\bar{b} \cdot ms}{6amr} - \frac{\bar{b}-\bar{c} \cdot nt}{6amr^2} - \frac{\bar{c}-\bar{d} \cdot ou}{6amr^3}$, &c. + $\frac{\bar{a}-\bar{b} \cdot s}{2amr}$
 $+ \frac{\bar{a}-\bar{c} \cdot ou}{2amr^3} + \frac{\bar{a}-\bar{d} \cdot pw}{2amr^4}$, &c. - $\frac{\bar{a}-\bar{b} \cdot ns}{3amr} - \frac{\bar{b}-\bar{c} \cdot ot}{3amr^2} - \frac{\bar{c}-\bar{d} \cdot pu}{3amr^3}$
&c. - $\frac{\bar{a}-\bar{b} \cdot ot}{2amr^4} - \frac{\bar{a}-\bar{c} \cdot pu}{2amr^3} - \frac{\bar{a}-\bar{d} \cdot gw}{2amr^4}$, &c. + $\frac{\bar{a}-\bar{b} \cdot ns}{6amr} +$
 $\frac{\bar{b}-\bar{c} \cdot nu}{6amr^3} + \frac{\bar{c}-\bar{d} \cdot ow}{6amr^3}$, &c. + $\frac{\bar{a}-\bar{b} \cdot nu}{2amr^2} + \frac{\bar{a}-\bar{c} \cdot ow}{2amr^3} + \frac{\bar{a}-\bar{d} \cdot pt}{2amr^4}$, &c.
- $\frac{2 \cdot \bar{a}-\bar{b} \cdot nt}{3amr} - \frac{2 \cdot \bar{b}-\bar{c} \cdot ou}{3amr^2} - \frac{2 \cdot \bar{c}-\bar{d} \cdot pw}{3amr^3}$, &c. - $\frac{\bar{a}-\bar{b} \cdot ou}{2amr^2} -$
 $\frac{\bar{a}-\bar{c} \cdot pw}{2amr^3} - \frac{\bar{a}-\bar{d} \cdot qx}{2amr^4}$, &c. From the demonstration in Note XVII. it appears that the first two series are equal to D or the value of the given sum on the contingency of C surviving A. Pursuing the same steps as in Note XIX. the other series may be found equal to R - $\frac{2}{3r} \times$

$1-\bar{r}-1 \cdot ABC.$ + $\frac{n}{6mr} \times 1 + APC.$ + $\frac{b}{6ar} 1 + HBC.$ +
 $\frac{nb}{3amr} 1 + HPC.$ - $\frac{nt}{6mr} 1 + APT.$ - $\frac{bt}{6amr} 1 + HBT.$ - $\frac{t}{3ar} 1 + ABT.$ The whole value therefore will be D + R - S. $\times \left(\frac{2 \cdot 1-\bar{r}-1 \cdot ABC.}{3r} + \frac{n \cdot 1 + APC.}{6mr}, \text{ &c. &c.} \right)$

The solution of this Problem may be derived from that of the twenty-seventh Problem; the value in this case being the value of the given sum payable if C lives to the decease of B, in case A is then extinct; and payable also if C lives to the decease of A, in case B. is then extinct.— On the first contingency the value is R - S $\left(\frac{1-\bar{r}-1 \cdot ABC.}{3r} + \frac{n}{3mr} \times 1 + APC. + \frac{nb}{6amr} 1 + HPC. + \frac{nt}{6mr} 1 + APT. - \frac{b}{6ar} \times \right.$

$\frac{1}{1 + HBC} - \frac{bt. 1 + HBT.}{3asr} - \frac{t. 1 + ABT.}{6ar}$). By substituting a, b, A, H , respectively for m, n, B, P , in the above formula, the value on the second contingency will be

$$D = S \times \left(\frac{1-r-1. ABC.}{3r} + \frac{b}{3ar} \times \frac{1}{1 + HBC} + \frac{nb. 1 + HPC.}{6amr} \right. \\ \left. + \frac{bt. 1 + HBT.}{6asr} - \frac{n}{6mr} \times \frac{1}{1 + APC} - \frac{nt. 1 + APT.}{3msr} - \frac{t. 1 + ATB.}{6ar} \right).$$

Adding these two values we have $D + R = S \times \left(\frac{2. 1-r-1. ABC.}{3r} + \frac{n}{6mr} \times \frac{1}{1 + APC} + \frac{b}{6ar} \times \frac{1}{1 + HBC.} \right. \\ \left. + \frac{nb. 1 + HPC.}{3amr} - \frac{nt. 1 + APT.}{6msr} - \frac{bt. 1 + HBT.}{6asr} - \frac{t. 1 + ABT.}{3sr} \right)$

for the value required. When the three lives are of equal age the value becomes $= \frac{s}{3r} \times \frac{1}{1-r-1. 3BB - 2 BBB}$.

NOTE XXIV. (PROB. XXXIV.)

In the first year the payment of the given sum depends upon either of four events :—1st. That the three lives become extinct, A having been the first or second that failed ;—2dly. That A and B both die, and that C lives to the end of the year ;—3dly. That A and C both die, and that B lives to the end of the year ;—4thly. That only A dies, and that B and C both live to the end of the year ; which contingencies are $\frac{2. a-b. m-n. s-t.}{3ams} + \frac{a-b. m-n. t}{ams} + \frac{a-b. s-t. n}{abc}$ $+ \frac{a-b. nt.}{ams}$. In the second and following years the payment will depend upon either of eight events :—1st. That all the three lives fail in the year, A having been the first or second that failed ; 2dly. That C survives, and that A and B both die in the year ; 3dly. That B survives, and

that A and C both die in the year; 4thly. That both B and C survive, and A only dies in the year; 5thly. That A dies in the year, B having died before the beginning, and C lived to the end of it; 6thly. That A dies in the year, C having died before the beginning, and B lived to the end of it; 7thly. That C dies *after* A in the year, B having died in either of the preceding years; 8thly. That B dies after A in the year, C having died in either of the preceding years. The fractions denoting these contingencies for the second year are $\frac{2 \cdot \overline{b-c} \cdot \overline{n-o} \cdot \overline{t-u}}{3ams}$ + $\frac{\overline{b-c} \cdot \overline{n-o} \cdot u}{ams}$ + $\frac{\overline{b-c} \cdot \overline{t-u} \cdot o}{ams}$ + $\frac{\overline{b-c} \cdot u}{ams}$

$$+ \frac{\overline{b-c} \cdot \overline{m-n} \cdot u}{ams} + \frac{\overline{b-c} \cdot \overline{s-t} \cdot o}{ams} + \frac{\overline{b-c} \cdot \overline{t-u} \cdot \overline{m-n}}{2ams} + \frac{\overline{b-c} \cdot \overline{n-o} \cdot \overline{s-t}}{2ams}$$

and so on for the other years. These fractions being expanded into twenty different series, their sum at last may

$$\text{be found } = \frac{s}{2r} \times \left(\frac{1}{1 - r - 1} \cdot AB. + \frac{n \cdot 1 + AP.}{m} - \frac{b \cdot 1 + HB.}{a} \right) + \frac{s}{2r} \times \left(\frac{1}{1 - r - 1} \cdot AC. + \frac{t \cdot 1 + AT.}{s} - \frac{b \cdot 1 + HC.}{m} \right)$$

$$- \frac{s}{r} \times \left(\frac{1 - r - 1}{3} \cdot ABC. + \frac{n \cdot 1 + APC.}{6m} + \frac{t \cdot 1 + ABT.}{6s} + \frac{nt \cdot 1 + AFT.}{3ms} \right. \\ \left. - \frac{b \cdot 1 + HBC.}{3a} - \frac{bt \cdot 1 + HBT.}{6as} - \frac{nb \cdot 1 + HPC.}{6ma} \right).$$

Retaining the same symbols as in Note XXI. the above expressions become D + E - M., which might also have been obtained from the solutions of the twenty-seventh and twenty-eighth Problèmes, by adding the sum of the values of the reversion depending on the contingency of A. being the first, and also on the contingency of A. being the second that fails; that is by adding M to D + E - 2M = D + E - M.

When the lives are all equal the value is = $\frac{s}{2r} \times \frac{1}{2 - r - 1} \cdot 8CC - CCC.$

NOTE XXV. (PROB. XXXV.)

The payment of the given sum in the first year will depend on either of three events:—1st. That all the three become extinct, A having been the second or third that failed; 2dly. That A dies *after* B and C lives to the end of the year;—3dly. That A dies after C and B lives to the end of the year. These three contingencies

$$= \frac{2 \cdot a \cdot b \cdot m \cdot n \cdot s \cdot t}{3ams} + \frac{a \cdot b \cdot m \cdot n \cdot t}{2ams} + \frac{a \cdot b \cdot s \cdot t \cdot n}{2ams}. \quad \text{In}$$

second and following years the payment will depend either of eight events:—1st. That all the three lives in the year, A having been the second or third that failed; 2dly. That A dies *after* B in the year and C lives to the end of it; 3dly. That A dies *after* C in the year and B lives to the end of it; 4thly. That A and C die in the year, B having died before the beginning of it; 5thly. That A and B both die in the year, C having died before the beginning of it; 6thly. That A dies in the year, B and C having both died before the beginning of it; 7thly. That A dies in the year, B having died before the beginning and C lives to the end of it; 8thly. That A dies in the year, C having died before the beginning and B lives to the end of it. The fractions denoting these contingencies for

$$\text{second year are } \frac{2 \cdot b \cdot c \cdot n \cdot o \cdot t \cdot u}{3ams} + \frac{b \cdot c \cdot n \cdot o \cdot u}{2ams} +$$

$$\frac{-u \cdot o}{ams} + \frac{b \cdot c \cdot t \cdot u \cdot m \cdot n}{ams} + \frac{b \cdot c \cdot n \cdot o \cdot s \cdot t}{ams} + \frac{b \cdot c \cdot m \cdot n \cdot s \cdot t}{ams}$$

$$\frac{-c \cdot m \cdot n \cdot u}{ams} + \frac{b \cdot c \cdot s \cdot t \cdot o}{ams}; \quad \text{for the third year } =$$

$$\frac{l \cdot o \cdot p \cdot u \cdot w}{3ams} + \frac{c \cdot d \cdot o \cdot p \cdot w}{2ams} + \frac{c \cdot d \cdot u \cdot w \cdot p}{2ams} + \frac{c \cdot d \cdot u \cdot w \cdot m \cdot o}{ams}$$

$$\frac{-d \cdot o \cdot p \cdot s \cdot u}{ams} + \frac{c \cdot d \cdot m \cdot o \cdot s \cdot u}{ams} + \frac{c \cdot d \cdot m \cdot o \cdot w}{ams} + \frac{c \cdot d \cdot s \cdot u \cdot p}{ams}.$$

These fractions being expanded will at last be found =

$$\frac{s}{r} \times \overline{1 - r - 1. A} - \frac{s}{r} \times \left(\frac{\overline{1 - r - 1. ABC.}}{3} + \frac{\overline{n. 1 + APC.}}{6m} + \frac{\overline{t. 1 + ABT.}}{6s} + \frac{\overline{nt. 1 + AP'T.}}{3ms} - \frac{\overline{b. 1 + HBC.}}{3a} - \frac{\overline{bt. 1 + HBT.}}{6as} - \right. \\ \left. \frac{\overline{nb. 1 + HPC.}}{6ma} \right).$$

The first of these expressions is equal to the reversion of S after A, and the second is equal to - M. (see the preceding Note.) Hence the truth of the general rule is manifest.

The solution of this Problem may also be obtained from the twenty-third and twenty-eighth Problems, and is indeed almost self-evident; but for greater accuracy I have chosen to give the solutions of this and of all the other Problems independent of each other. When the three lives are of equal age the value will be = $\frac{s}{3r} \times \overline{2 - r - 1. 3 C - CCC.}$

NOTE XXVI. (PROB. XXXVI.)

In the first year the payment of the given sum depends upon either of four events:—1st. That the three lives fail, A being the first or last that dies; 2dly. That B dies after A, and C lives; 3dly. That C dies after A, and B lives; 4thly. That A only dies, and B and C both live. In the second and following years, the payment will depend on either of seven events:—1st. That the three lives fail in the year, A having been the first or last that died; 2dly. That B dies after A in the year, and C lives to the end of it; 3dly. That C dies after A in the year, and B lives to the end of it; 4thly. That A only dies, B and C having both lived to the end of the year; 5thly. That A's life fails after B in the year, C having died before the beginning of it; 6thly. That A's life fails after C in the year, B having died before the beginning of it; 7thly. That A

only dies in the year, B and C having both died in either of the preceding years. The fractions expressing the probability of these events in the first year are $\frac{2 \cdot a - b \cdot m - n \cdot s - t}{3ams}$
 $+ \frac{m - n \cdot a - b \cdot t}{2ams} + \frac{s - t \cdot a - b \cdot n}{2ams} + \frac{a - b \cdot tn}{ams}$. In the second year they are $\frac{2 \cdot b - c \cdot n - o \cdot t - u}{3ams} + \frac{n - o \cdot b - c \cdot u}{2ams} + \frac{t - u \cdot b - c \cdot o}{2ams} + \frac{b - c \cdot o \cdot t}{ams} + \frac{b - c \cdot n - o \cdot s - t}{2ams} + \frac{b - c \cdot t - u \cdot m - n}{2ams} + \frac{b - c \cdot m - n \cdot s - t}{ams}$. In the third year they are $\frac{2 \cdot c - d \cdot o - p \cdot u - w}{3ams} + \frac{o - p \cdot c - d \cdot w}{2ams}$
 $+ \frac{u - w \cdot c - d \cdot p}{2ams} + \frac{c - d \cdot p \cdot w}{ams} + \frac{o - d \cdot o - p \cdot s - u}{2ams} + \frac{c - d \cdot u - w \cdot m - o}{2ams}$
 $+ \frac{c - d \cdot s - u \cdot m - o}{ams}$, and so on for the other years. These fractions being expanded will form twenty-two different series, which may be found = $\frac{s}{r} \times \overline{1 - r - 1} \cdot A - \frac{s}{2r} \times (\overline{1 - r - 1} \cdot AB. + \frac{n \cdot 1 + AP.}{m} - \frac{b}{a} \times \overline{1 + HB.}) - \frac{s}{2r} \times (\overline{1 - r - 1} \cdot AC. + \frac{t}{s} \times \overline{1 + AT.} - \frac{b}{a} \times \overline{1 + HC.}) + \frac{s}{r} \times (\frac{2 \cdot 1 - r - 1}{3} ABC. + \frac{t}{3s} \times \overline{1 + ABT.} + \frac{n}{3ms} \times \overline{1 + APC.} - \frac{2b}{3sa} \times \overline{1 + HBC.} - \frac{bt}{3as} \times \overline{1 + HBT.} + \frac{2nt}{3ms} \times \overline{1 + APT.} - \frac{nb}{3ma} \times \overline{1 + HPC.})$. The first of these expressions denotes the value of S. after the decease of A ($\Rightarrow F$); the second denotes the value on the contingency of B surviving A ($= D^*$); the third denotes the value of S. on the contingency of C surviving A ($= E^*$); the fourth denotes twice the value of S on the contingency of A's being the last that fails of the three lives, by Note XX. ($= 2 M$).

* See Note XXI.

Hence the whole value of the reversion will be $F + 2 M - D + E$.

The solution of this, like some of the preceding Problems, may be obtained more easily from other Problems, supposing those Problems to have been previously solved—the value in the present case being evidently the difference between the absolute value after the decease of A, found by Prob. xxiii, and the value on the contingency of A's life having been the second that failed, found by Prob. xxix; that is, it will be $= F + 2 M - D + E$. *

If the three lives are of equal age the value will be $= \frac{s}{3r} \times \frac{2-r-1 \cdot 3C - 3CC + 2CCC}{2r}$.

NOTE XXVII. (PROB. XXXVII.)

In each year the reversion will depend upon either of six events:—1st. If the three lives should fail in the year, A or B having died first; 2dly. If A and B should die in the year, and C live; 3dly. If C should die after A in the year, and B live; 4thly. If C should die after B in the year, and A live; 5thly. If A only should die in the year, and B and C both live; 6thly. If B only should die in the year, and A and C should both live. The fractions denoting these several contingencies, in the first year are

$$\begin{aligned} & \frac{a-b \cdot m-n \cdot s-t}{3ams} + \frac{a-b \cdot m-n \cdot t}{ams} + \frac{a-b \cdot s-t \cdot n}{2ams} + \frac{m-n \cdot s-t \cdot b}{2ams} \\ & + \frac{a-b \cdot nt}{ams} + \frac{m-n \cdot bt}{ams}; \text{ in the 2d year they are } \end{aligned}$$

$$\begin{aligned} & \frac{b-c \cdot n-o \cdot t-u}{3ams} \\ & + \frac{b-c \cdot n-u \cdot u}{ams} + \frac{b-c \cdot t-u \cdot o}{2ams} + \frac{n-o \cdot t-u \cdot c}{2ams} + \frac{b-c \cdot ou}{ams} + \frac{n-o \cdot cu}{ams}, \end{aligned}$$

and so on in the other years. These fractions may be

* See Note XXI.

expanded into the eight following series:—(first) $\frac{S}{3ams} \times$
 $\frac{ans}{r} + \frac{bnu}{r^2} + \frac{cou}{r^3}$, &c. $= \frac{S}{3r} \times \frac{t. 1 + ABT.}{s}$; (second) $\frac{S}{6ams} \times$
 $\frac{bms}{r} + \frac{cnu}{r^2} + \frac{dov}{r^3}$, &c. $= \frac{S}{6r} \times \frac{bt. 1 + HBT.}{as}$; (third) $\frac{S}{6ams} \times$
 $\frac{ant}{r} + \frac{bou}{r^2} + \frac{cpw}{r^3}$, &c. $= \frac{S}{6r} \times \frac{nt. 1 + APT.}{as}$; (fourth) $- \frac{2S}{3ams}$
 $\times \frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3}$, &c. $= - \frac{2S}{3} \times ABC.$; (fifth) $\frac{2S}{3amsr} \times$
 $\frac{ans}{r} + \frac{bnt}{r^2} + \frac{cou}{r^3}$, &c. $= \frac{2S}{3r} \times 1 + ABC.$; (sixth) $- \frac{S}{6ams} \times$
 $\frac{bms}{r} + \frac{cnt}{r^2} + \frac{dou}{r^3}$, &c. $= - \frac{S}{6r} \times \frac{b. 1 + HBC.}{a}$; (seventh) $-$
 $\frac{S}{6ams} \times \frac{ans}{r} + \frac{bot}{r^2} + \frac{cpu}{r^3}$, &c. $= - \frac{S}{6r} \times \frac{n. 1 + APC.}{m}$; (eighth)
 $- \frac{S}{3ams} \times \frac{bns}{r} + \frac{cot}{r^2} + \frac{dpu}{r^3}$, &c. $= - \frac{S}{3r} \times \frac{nb. 1 + HPC.}{am}$. Con-
sequently the whole value will be $\frac{S}{r} \times \left(\frac{2. 1 - r - 1. ABC.}{3} + \right.$
 $\frac{t. 1 + ABT.}{3s} - \frac{b. 1 + HBC.}{6a} - \frac{n. 1 + APC.}{6m} + \frac{bt. 1 + HBT.}{6as} + \frac{nt. 1 + APT.}{6ms}$
 $\left. - \frac{nb. 1 + HPC.}{3am} \right)$. And when the lives are equal, $\frac{S}{r} \times$
 $\frac{2 \times 1 - r - 1 CCC.}{3}$.

NOTE XXVIII. (PROB. XXXVIII.)

In the first year the payment of the given sum will depend on either of four events:—1st. That the three lives fail, A or B having been the *second* that failed; 2dly. that A dies after C, and B lives; 3dly. That B dies after C, and A lives; 4thly. That A and B both die, and C lives. In the second and following years the given sum will become payable, provided either of eleven events should take place. 1st, if the three lives should fail in

the year, A or B having been the second that failed; 2dly. If A should die after C in the year and B live; 3dly. If B should die after C in the year and A live; 4thly. If A and B both die in the year, and C live; 5thly. If B only should die in the year, A having died before the beginning, and C lived to the end of it; 6thly. If A only should die in the year, B having died before the beginning and C lived to the end of it; 7thly. If C should die after A in the year, B having died in either of the foregoing years; 8thly. If C should die after B in the year, A having died in either of the foregoing years; 9thly. If A and B should both die in the year, C having died in either of the preceding years; 10thly. If B only should die in the year, C having died before the beginning and A lived to the end of it; and lastly, If A only should die in the year, C having died before the beginning and B lived to the end of it. The several fractions expressing those contingencies in the first year will be

$$\frac{2. \overline{a-b. m-n. s-t}}{3ams} + \frac{\overline{a-b. s-t. n}}{2ams} + \frac{\overline{m-n. s-t. b}}{2ams} + \frac{\overline{a-b. m-n. t}}{ams}. \text{ In}$$

$$\text{the second year} = \frac{2. \overline{b-c. n-o. t-u}}{3ans} + \frac{\overline{b-c. t-u. o}}{2ams} + \frac{\overline{n-o. t-u. c}}{2ams}$$

$$+ \frac{\overline{b-c. n-o. u}}{ams} + \frac{\overline{n-o. a-b. u}}{ams} + \frac{\overline{b-c. m-n. u}}{ams} + \frac{\overline{b-c. t-u. m-n}}{2ams} +$$

$$\frac{\overline{n-o. t-u. a-b}}{2ams} + \frac{\overline{b-c. n-o. s-t}}{ams} + \frac{\overline{n-o. s-t. c}}{ams} + \frac{\overline{b-c. s-t. o}}{ams}. \text{ In the}$$

$$\text{third year} = \frac{2. \overline{c-d. o-p. u-w}}{3ams} + \frac{\overline{c-d. u-w. p}}{2ams} + \frac{\overline{o-p. u-w. d}}{2ams}$$

$$\frac{\overline{c-d. o-p. w}}{ams} + \frac{\overline{o-p. a-c. w}}{ams} + \frac{\overline{c-d. m-o. w}}{ams} + \frac{\overline{c-d. u-w. m-o}}{2ams} +$$

$$\frac{\overline{o-p. u-w. a-c}}{2ams} + \frac{\overline{c-d. o-p. s-u}}{ams} + \frac{\overline{o-p. s-u. d}}{ams} + \frac{\overline{c-d. s-u. p}}{ams}$$

and so on. These fractions being expanded will form twenty-five different series, the first, second, third, &c. terms of which being respectively multiplied into $\frac{1}{r}, \frac{1}{r^2}, \frac{1}{r^3},$

$$\text{&c., their sum will at last be found} = \frac{1-r-1}{r} \cdot AB + \\ \frac{1-r-1}{2r} \cdot BC + \frac{t. 1+BT}{2sr} - \frac{n. 1+PC}{2mr} + \frac{1-r-1}{2r} \cdot AC + \frac{t. 1+AT}{2sr} - \\ \frac{b. 1+HC}{2ar} - \frac{4. 1-r-1}{3r} \cdot ABC - \frac{2t. 1+ABT}{3sr} + \frac{b. 1+HBC}{3ar} + \frac{n. 1+APC}{3mr} \\ - \frac{bt. 1+HBT}{3asr} - \frac{nt. 1+APT}{3msr} + \frac{2nb. 1+HPC}{3amr}.$$

The first of these expressions is the value of the given sum after the extinction of the two *joint* lives A and B. The three following fractions denote the value on the contingency of C surviving B. The next three fractions express the value of the given sum on the contingency of C surviving A. The seven remaining fractions are equal to twice the value of the reversion on the contingency of A or B being the *first* that fail with a *negative sign**. Let these several values be respectively represented by K, R, E, and N; then will the required value be K + R + E - 2N --- which is the general rule.

When the three lives are of equal age the above fractions may be reduced to $\frac{2. s.}{3r} \times 1 - r - 1 \cdot 3CC - 2CCC$.

NOTE XXIX. (PROB. XXXIX.)

The given sum can be received in the first year only on the extinction of the three lives, restrained to the contingency of C's life having been the first or second that failed. In the second and following years it may be received, provided either of six events shall have happened:—
 1st. If the three lives shall have failed, C having been the first or second that died; 2dly. If A and B shall have both died in the year, C having died before the beginning of it; 3dly. If A only should die in the year, B and C having died in either of the preceding years; 4thly. If B

* See the preceding Note.

only should die in the year, A and C having died in either of the preceding years; 5thly. If A should die after C in the year, B having died before the beginning of it; 6thly. If B should die after C in the year, A having died before the beginning of it. The fractions expressing these contingencies in the first year will be $= \frac{2. a-b. m-n. s-t}{3ams}$. In

the second year $= \frac{2. b-c. n-o. t-u}{3ams} + \frac{b-c. n-o. s-t}{ams} + \frac{b-c. m-n. s-t}{ams} + \frac{n-o. a-b. s-t}{ams} + \frac{n-o. t-u. a-b}{2ams} + \frac{b-c. t-u. m-n}{2ams}$.

In the third year $= \frac{2. c-d. o-p. u-w}{3ams} + \frac{c-d. o-p. s-u}{ams} + \frac{c-d. m-n. s-u}{ams} + \frac{o-p. a-c. s-u}{ams} + \frac{o-p. u-w. a-c}{2ams} + \frac{c-d. u-w. m-n}{ams}$,

and so on in the other years. These fractions being expanded will form 28 different series, the first, second, third, &c. terms of which being multiplied respectively into $\frac{1}{r}, \frac{1}{r^2}, \frac{1}{r^3}$, &c. as in the preceding Note, their sum will at

last be found $= \frac{1-r-1. A+B-AB}{r} - \frac{1-r-1. BC}{2r} - \frac{t. 1+BT}{2sr} + \frac{n. 1+PC}{2mr} - \frac{1-r-1. AC}{2r} - \frac{t. 1+AT}{2sr} + \frac{b. 1+HC}{2r} + \frac{2. 1-r-1. ABC}{3r} - \frac{b. 1+HBC}{6ar} - \frac{n. 1+APC}{6mr} - \frac{nb. 1+HPC}{3amr} + \frac{t. 1+ABT}{3sr} + \frac{bt. 1+HBT}{6asr} + \frac{nt. 1+APT}{6msr}$.

The first of these fractions is the value of the reversion after the longest of the two lives A and B. The second, third, and fourth express the value depending on the contingency of C surviving A, with negative signs. The fifth, sixth, and seventh express the value depending on the contingency of C surviving B, with negative signs. The remaining fractions are the same with those in Note XXVI., expressing the value of the reversion depending on the contingency of A or B being the first that fail. Assuming V, E, R, and N to denote these values respectively, the general rule will be expressed by $V + N -$

$E + R$; which becomes $\frac{2S. 1 - r - 1. 3C - 3CC + CCC}{3r}$ when the lives are of equal age, or "two-thirds the value of the absolute reversion after the extinction of the three lives."

The solution of this problem may also be derived from that of the 30th Problem; the value of the given sum being equal to "the difference between the value of the "absolute reversion after the extinction of the three lives, " and the value of the same depending on the contingency "of C being the *last* that dies." Changing the symbols A, H, a, b, c, d, &c. in Note XXII. for C, T, s, t, u, &c. and *vice versa*, the general rule given above may be obtained, by subtracting the whole from $S. \frac{1 - r - 1. A + B + C - AB - BC - AC + ABC}{r}$; that is calling the longest of the three lives L, and the value by Prob. xxx. O, it will be $\frac{S. 1 - r - 1. L}{r} - O$; but the operation is not shortened by this rule.

NOTE XXX.

LEMMA I. Supposing the ages of A and B to be given, to determine, from any table of observations, the probabilities of survivorship between them.

SOLUTION. Retaining the same symbols as in the preceding notes, let it be required to determine the probability of B surviving A. In the first year this event may take place either by the extinction of both lives, A having died first; or by the death of A only, B having survived to the end of the year. These probabilities are expressed by the fractions $\frac{\overline{a-b. m-n}}{2am} + \frac{\overline{a-b. n}}{ab} = \frac{\overline{a-b. m+n}}{2am}$. In the second and following years the event depends on the same con-

tingencies; that is, on both lives failing in the year, A having died first, or on A's dying in the year, B having lived to the end of it. The fractions therefore denoting these probabilities in the second year will be $\frac{\overline{b - c. n - o}}{2am} + \frac{\overline{b - c. o}}{am} = \frac{\overline{b - c. n + o}}{2am}$, in the third year $\frac{\overline{c - d. o - p}}{2am} + \frac{\overline{c - d. p}}{am} = \frac{\overline{c - d. o + p}}{2am}$, and so on. Hence the whole probability of B's surviving A will be $\frac{1}{2am} \times (\overline{m + n. a - b} + \overline{n + o. b - c} + \overline{o + p. c - d} + \text{&c.})$. Having found by this series the probability of B the elder surviving A the younger, the other expression denoting the probability of A's surviving B is well known to be the difference between the foregoing series and *unity*. Were we possessed of a table of the *expectations* of two joint lives the chance of survivorship might easily be obtained from the above series *; nor will it be found a laborious undertaking to compute from it a table of the probabilities of survivorship between two persons of all ages without having recourse to such expectations. For the probability of survivorship between any two persons being found, the probability between two persons one year younger is obtained with little difficulty, and a table for all the older lives, whose difference of age is the same, may be formed in rather less time than would be necessary for computing the expectations of the same number of joint lives. This will be best exemplified by the following operations, founded on the *Northampton Table of Observations*.

* Supposing the expectation of the joint lives AP to be A'P', and the expectation of the joint lives HB to be H'B', the sum of the series in this Lemma will be $\frac{n. 1 + A'P'}{2m} - \frac{a. H'B'}{2b}$.

Age of B	Age of A	Series expressing the probability of B surviving A.	Probability of A surviving B.
96	86	$\frac{1}{1 \times 145} \times \frac{0+1}{2} \times 34$	= .1173
95	85	$\frac{1}{4 \times 186} \times \left(\frac{4+1}{2} \times 41 + 17 \right)$	= .1606
94	84	$\frac{1}{9 \times 234} \times \left(\frac{9+4}{2} \times 48 + 119.5 \right)$	= .2049
93	83	$\frac{1}{16 \times 289} \times \left(\frac{16+9}{2} \times 55 + 431.5 \right)$	= .2420
92	82	$\frac{1}{24 \times 346} \times \left(\frac{24+16}{2} \times 57 + 1119 \right)$	= .2720
91	81	$\frac{1}{34 \times 406} \times \left(\frac{34+24}{2} \times 60 + 2259 \right)$	= .2897
90	80	$\frac{1}{46 \times 469} \times \left(\frac{46+34}{2} \times 63 + 3999 \right)$	= .3022
			1 - .1173 = .8827
			1 - .1606 = .8394
			1 - .2049 = .7951
			1 - .2420 = .7580
			1 - .2720 = .7280
			1 - .2897 = .7103
			1 - .3022 = .6978

It will readily be seen from these specimens in what manner the probabilities of survivorship between two younger lives are deduced from the probabilities between two older lives whose difference of age is the same; for the numbers 17, - - 119.5 - - - 431.5, &c. in the second, third, fourth, &c. lines, are the sums of the series next preceding; that is, $17 = \frac{1}{2} \times 34 - - 119.5 = \frac{1}{2} \times 41 + 17$; - - - 431.5 = $\frac{1}{2} \times 48 + 119.5$, &c. If the lives be of equal age the above series becomes = $\frac{1}{2}$, which is known to express the probability in that case, and therefore proves the truth of this solution.

Mr. *Simpson* in his Treatise on Annuities and Reversions * has given a curve, whose area determines the probability of survivorship between two persons according to any table of observations. If one of the lives be not very young, so that the equidistant ordinates may not be too few, this area is sufficiently correct. But if the eldest of the two lives is under twenty years of age, it becomes necessary to assume so many equidistant ordinates, to render the solution accurate when the decrements of life are unequal, that the operation is rendered too laborious for practice; nor do I know that it can be necessary to have recourse to this area in any case, especially as the two probabilities of survivorship are so easily computed from the preceding series. As no table of these probabilities according to the real decrements of life has ever been attempted, I have been induced to compute the 9th Table, in the manner described above, which gives the real probabilities of survivorship between two persons of all ages, whose common difference of age is not less than ten years.

* Lemma 2. page 100.

LEMMA II. To determine from any table of observations the probability that *B* the *elder* of two lives dies *after A the younger*, either in any number of years, or during the continuance of the life of *B*.

SOLUTION. This event can take place in the first year only by the extinction of both lives, *A* having died first; the probability of which event is expressed by the fraction

$$\frac{\overline{a-b} \cdot \overline{m-n}}{\overline{2am}} = \frac{\overline{m+n} \cdot \overline{a-b}}{\overline{2am}} - n \cdot \overline{a-b}. \quad \text{In the second year the}$$

probability will be increased; for the event may have taken place as above mentioned in the preceding year, or the lives may have failed in the second year, *A* having died first, or *B* may have died in this year and *A* in the first year. The fractions therefore expressing the probability

$$\text{of the event's happening in two years will be } \frac{\overline{a-b} \cdot \overline{m-n}}{\overline{2am}} + \frac{\overline{b-c} \cdot \overline{n-o}}{\overline{2am}} + \frac{\overline{n-o} \cdot \overline{a-b}}{\overline{am}} = \frac{1}{am} \times \left(\frac{\overline{m+n} \cdot \overline{a-b}}{\overline{2}} + \frac{\overline{n+o} \cdot \overline{b-c}}{\overline{2}} - o \cdot \overline{a-c} \right).$$

In the third year the probability will be still further increased; for in addition to the foregoing contingencies, the event may have taken place by the extinction of the two lives in the third year, *A* having died first, or by the extinction of the life of *A* in the first or second year, and of the life of *B* in the third year. Hence the probability

$$\text{of the events happening in three years will be } \frac{\overline{a-b} \cdot \overline{m-n}}{\overline{2am}} + \frac{\overline{b-c} \cdot \overline{n-o}}{\overline{2am}} + \frac{\overline{n-o} \cdot \overline{a-b}}{\overline{am}} + \frac{\overline{o-p} \cdot \overline{c-d}}{\overline{2am}} + \frac{\overline{o-p} \cdot \overline{a-c}}{\overline{am}} = \frac{1}{am} \times \left(\frac{\overline{m+n} \cdot \overline{a-b}}{\overline{2}} + \frac{\overline{n+o} \cdot \overline{b-c}}{\overline{2}} + \frac{\overline{o+p} \cdot \overline{c-d}}{\overline{2}} - p \cdot \overline{a-d} \right).$$

By proceeding in the same manner for the fourth year the probability will be found $= \frac{1}{am} \times \left(\frac{\overline{m+n} \cdot \overline{a-b}}{\overline{2}} + \frac{\overline{b-c} \cdot \overline{n-o}}{\overline{2}} + \frac{\overline{o+p} \cdot \overline{c-d}}{\overline{2}} + \frac{\overline{p+q} \cdot \overline{d-e}}{\overline{2}} - q \cdot \overline{a-e} \right)$, &c. Supposing β to be the number of persons living at the age of *A* when the

life of B becomes extinct by the table, and a the number living in the preceding year; supposing also μ and v to be the number of persons living at the last two ages in the table, then will the whole probability of B.'s dying *after*

$$A \text{ be } = \frac{1}{am} \times \left(\frac{\overline{m+n. \ a-b}}{2} + \frac{\overline{n+o. \ b-c}}{2} + \frac{\overline{o+p. \ c-d}}{2} + \frac{\overline{p+q. \ d-e}}{2} \right)$$

$$----- + \frac{\overline{\mu+v. \ a-\beta}}{2} - v. \overline{a-\beta} \right). \text{ Now, since it is}$$

well known that the probability of both lives failing, without any regard to the order of their extinction, during the continuance of the life of B, is $\frac{\overline{a-\beta. \ m-v}}{am}$, it follows, that

the probability of A.'s dying *after* B will be the difference between this fraction and the foregoing series.

As this contingency is of considerable importance, and the solutions of a great number of Problems require that it should be previously ascertained, I have, as in the case of the former Lemma, computed a Table for all ages whose common difference is not less than ten years *, which however has been accomplished with much less difficulty in consequence of having already computed the Table in that Lemma.

This will readily appear by comparing the two series expressing the different contingencies in these Lemmas; the terms in the first, as far as they are continued, being uniformly the same with those in the second Lemma; so that if the fraction $\frac{v. \overline{a-\beta}}{am}$ in the latter be subtracted from the sum of that series, the remainder will always express the probability of survivorship in the present case. Thus, the probability of a life of 92 surviving another life of 82 by the 1st Lemma is .2720; the probability therefore that a life of 92 dies *after* another life of 82 will be .2720 -

* Tab. 10.

$\frac{201}{24 \times 346} = .2478$. If the ages were 80 and 60 the probability of the former life becoming extinct *after* the latter would be $.1890 - \frac{1286}{2038 \times 469} = .1876$, and if the ages were 85 and 55 the probability would be $.1130 - \frac{896}{186 \times 2448} = .1110$. The probability that two lives aged 92 and 82 fail in four years is $\frac{23 \times 201}{24 \times 346} = .5569$, that two lives aged 80 and 60 fail in sixteen years is $\frac{468 \times 1286}{469 \times 2038} = .6296$, and that two lives aged 85 and 55 fail in eleven years is $\frac{185 \times 896}{186 \times 2448} = .3640$. The probability therefore that a life of 82 fails *after* a life of 92 is $.5569 - .2480 = .3089$, that a life of 60 fails *after* a life of 80 is $.6296 - .1876 = .4420$, and the probability that a life of 55 fails after another life of 85 is $.3640 - .1110 = .2530$.

In this manner the 10th Table has been computed. But if the probability of survivorship, either in this or the preceding Lemma, be confined to any given number of years, I know of no other method of ascertaining it than by a direct summation of the series; which will be composed of an equal number of terms with the years in which the survivorship is to happen. This would be a work of so much labour as to render the solution of any Problem, involving such a contingency, impracticable. The usual method in this case has hitherto been, to take half the probability of the two lives becoming extinct in the given time, without having any regard to the order of survivorship. But when the ages of the two lives are very different, this method must be incorrect; and in order to ascertain the extent of the inaccuracy, I have computed the following Table :

* See Tab. 9.

NOTES.

TABLE,

Shewing the value, at 4 per cent. of £1, payable at the end of a given time, provided the life of B shall have failed after the life of A.

Ages.	5 years.	10 years.	15 years.	20 years.	25 years.	30 years.	40 years.	Life.											
								True val.	Approx.										
B*	A	True val.	Approx.	True val.	Approx.	True val.	Approx.	True val.	Approx.	True val.	Approx.	True val.	Approx.	True val.	Approx.	True val.	Approx.	True val.	Approx.
20	10	.00154	.00153	.00448	.00472	.00885	.00979	.01382	.01515	.01879	.02050	.02457	.02979	.03118	.03099	.02475			
35	15	.00194	.00206	.00732	.00785	.01459	.01528	.02945	.02516	.02977	.03041	.03588	.03667	.04592	.04523	.03155	.03936		
45	15	.00250	.00266	.00883	.01017	.01882	.01980	.02855	.02958	.03710	.03858	.04456	.04599			.03663	.04829		
50	30	.00504	.00505	.01654	.01656	.03057	.03087	.04454	.04323	.05725	.05872	.06659	.06897			.05197	.06819		
55	15	.00547	.00569	.01175	.01377	.02464	.02640	.03710	.03925	.04685	.05000					.04022	.05644		
65	20	.00725	.00750	.02402	.02410	.04203	.04326	.05460	.05898	.05525	.06692					.04696	.06800		
70	40	.01413	.01421	.04803	.04477	.06948	.07697									.06688	.10354		
75	60	.03557	.03572	.09545	.10379	.12295	.15591									.11524	.17570		
80	70	.07655	.08051	.15576	.18868											.15915	.235503		
85	10	.01156	.01574													.01987	.035500		

* In these specimens (which are sufficient to give an idea of the difference between the true values and the approximation in all cases) I have constantly supposed the life of B to be the eldest. But the differences would have been the same if his life had been the youngest; only that in this case the true values would have varied as much in excess as they here do in defect. This is obvious from the nature of the approximation.

From this table it appears that the approximated and exact values do not materially differ from each other, till the last years of B's life; and that the principal inaccuracy in adopting the approximation will arise after the extinction of the life of B, when it becomes necessary to multiply the fraction expressing the probability of B's dying after A into the remaining series of the solution. But this is obviated by having recourse to the 9th Table, which gives the correct probability of survivorship during the whole continuance of B's life, and which may be as easily applied to the solution of the Problem after his decease as the approximation.

NOTE XXXI. (PROB. XL.)

As the approximation appears from the preceding table to be always sufficiently correct till the latter part of B's life, it is evident that no great inaccuracy will arise from having recourse to it, unless the ages of A and B are materially different,—more especially when C is the oldest of the three lives. But when B or A is the oldest, and their ages are very unequal, the fractions expressing the probability of the one surviving the other, or of the one dying after the other, are combined with a series which is often of considerable importance, and consequently the common method of solution fails in these instances. Being however possessed of the tables deduced from the foregoing Lemmas, even this circumstance is attended with little or no difficulty, and a general rule is obtained as short and accurate as in any other case. But this will be more satisfactorily proved by the following operations:—

1st. *Let C be the oldest of the three lives.* The payment of the annuity in the first year depends on one or other of

two events; either on the event of B's having died *after* A and of C's living to the end of the year, or on the event of A's dying, and of B and C both living to the end of the year. The value therefore of the annuity for the first year will be $\frac{m-n \cdot u-b \cdot t}{2amr} + \frac{a-b \cdot nt}{amr}$. In the second year the

payment of the annuity depends nearly on the same events:—1st. On B's having died *after* A in the first or second year, and C's living to the end of that term; 2dly. On A's *dying* before the end of the second year, and B and C's both *living* to the end of it. Hence the value of the annuity for the second year will be $\frac{a-c \cdot m-o \cdot u}{2amr^2} + \frac{a-c \cdot ou}{amr^2}$. In the third year, by following the same steps, the value of the annuity will be found $= \frac{a-d \cdot m-p \cdot w}{2amr^3} + \frac{a-d \cdot pw}{amr^3}$; and in like manner may be found the value of the annuity in each of the remaining years of C's life. The whole value of the annuity therefore will be expressed by the four following series: $\frac{t}{2ar} + \frac{u}{2ar^2} + \frac{w}{2ar^3} +, \text{ &c.} - \frac{bt}{2asr} - \frac{cu}{2asr^2} - \frac{dw}{2asr^3} -, \text{ &c.} + \frac{nt}{2msr} + \frac{ou}{2msr^2} + \frac{pw}{2msr^3} +, \text{ &c.} - \frac{bnt}{2amsr} - \frac{cou}{2amsr^2} - \frac{dpw}{2amsr^3} -, \text{ &c.} = \frac{C-AC}{2} + \frac{BC-ABC}{2}$.

If A be the oldest of the three lives, let z denote the number of years between the age of A and that of the last person in the table, C' the value of an annuity on the life of C, and B'C' the value of an annuity on the joint lives of B and C for z years; then will the value of the annuity for the first z years be $\frac{C'-AC}{z} + \frac{B'C'-ABC}{z}$. At the expiration of this term the life of A becomes extinct, and the value of the annuity for the remaining years of C's life

(supposing σ , τ , ν , &c. to denote the number of persons living in the table at the age of a person $\overline{z+1}$, $\overline{z+2}$, $\overline{z+3}$, &c. years older than C, and ϕ to denote the probability by Table 9 of B's surviving A), will be $= \phi \times \frac{\sigma}{\sigma\tau\overline{z+1}} + \frac{\sigma}{\sigma\tau\overline{z+2}} + \frac{\nu}{\sigma\tau\overline{z+3}} + \dots$, &c. $= \phi \cdot \overline{C-C'}$. The whole value therefore of the annuity in this case will be $\frac{C'+B'C'}{2} + \phi \cdot \overline{C-C'} - \frac{AC+ABC}{2}$.

If B be the oldest of the three lives, let x denote the number of years between the ages of B and of the last person in the table, C' the value of an annuity on the life of C, and $A'C'$ the value of an annuity on the joint lives of A and C for x years, and π the probability (found by Table 10) that B dies after A. Then, by proceeding as above, the value of the annuity in this case will be $\frac{C'-C'A'}{2} + \pi \cdot \overline{C-C'} + \frac{BC-ABC}{2}$. When the three lives are of equal age the value will be $\frac{C-CCC}{2}$.

As this method of solution is applicable to a great number of problems, I have thought it necessary to make the following computations with the view of determining how far it may be depended upon. It is to be observed, that the fractions $\frac{a-b \cdot m-n \cdot t}{2amr} + \frac{a-c \cdot m-o \cdot u}{2amsr^2} + \frac{a-d \cdot m-p \cdot w}{2amsr^3} + \dots$, &c., should have been, according to Lemma II., in order to express the exact value, $\frac{a-b \cdot m-n \cdot t}{2amr} + \frac{a-b \cdot m-o \cdot u + a-c \cdot n-o \cdot v}{2amsr^2} + \dots$

$\times u + \dots$, &c.; and that it is impossible to find such a general expression for this series as shall render it fit for practice. It has therefore become necessary to have recourse to the preceding method of approximation, and by

comparing the values in the following examples, a correct idea may be formed of its accuracy.

Ages.			* True Value in Years purchase.	Approximated Value in Years purchase.
C.	A.	B.		
78.	15.	75	.138	.146
70.	20.	65	.406	.408
81.	70.	80	.530	.550
15.	85.	10	13.883	13.782
15.	75.	15	11.385	11.230
35.	75.	15	8.968	8.834
15.	65.	20	8.485	8.379
15.	80.	70	9.893	9.529
15.	10.	85	.647	.698
15.	15.	75	1.038	1.193
35.	15.	75	.786	.920
15.	20.	65	1.769	1.876
15.	70.	80	4.307	4.671

From these examples it appears that when C or A is the oldest of the three lives, the approximated and the true values agree sufficiently near for any useful purpose; and even when B is the oldest, that the difference is by no means considerable. It should likewise be observed, that these examples are cases in which the difference is likely to be greatest, and therefore a nearer approxima-

* In these values each term of the series has been separately computed at 4 per cent. from the Northampton Table of Observations.

tion need not be required. Both Mr. *Simpson*, in his Select Exercises, and myself (in a former edition of this work), have given solutions of this Problem; but these being founded on a wrong hypothesis are not so correct as the present, except when C is the oldest of the three lives, nor are they even more simple; so that it can seldom be necessary to have recourse to them. Without the assistance of the preceding Lemmas, and the computations which have been just made, it would not have been possible to have ascertained the degree of accuracy of any approximation; and therefore were no other end answered by them, this of itself would have been of sufficient consequence to deserve the time and labour which I have bestowed upon them. But it will appear in the succeeding Notes that the use and application of these Lemmas, and especially of the tables deduced from them, are much more extensive and important.

NOTE XXXII. (PROB. XLI.)

The payment of this annuity depends only on one contingency; and that is, the extinction of the two lives of A and B before the end of each year (B having died first), and the continuance of the life of C to the end of those respective years. The value therefore for the first year will be $\frac{m-n. a-b. t}{2amr}$; for the second year $\frac{m-o. a-c. u}{2amr^2}$; for the third year $\frac{m-p. a-d. w}{2amr^3}$, and so on for the remaining years. Consequently, when C is the oldest of the three lives, the whole value of the annuity will be $\frac{t}{2sr} + \frac{u}{2sr^2} + \frac{w}{2sr^3} + \text{ &c.} - \frac{bt}{2asr} - \frac{cu}{2asr^2} - \frac{dw}{2asr^3} - \text{ &c.} + \frac{bst}{2amsr} + \frac{cou}{2amsr^2}$

$$+ \frac{dpw}{2msr^3} + , \&c. - \frac{\pi t}{2msr} - \frac{\sigma u}{2msr^2} - \frac{pw}{2msr^3} - , \&c. = \frac{C-AC.}{2} - \\ \underline{\underline{BC-ABC.}} \\ \underline{\underline{2}}$$

If *A* be the oldest of the three lives, let x , C' , and $B'C'$, denote the same quantities as in the second part of the preceding Note; and let φ denote, by Table 8, the probability of *A*'s surviving *B*; then will the value in this case be $\frac{C'-B'C'}{2} - \frac{AC-ABC.}{2} + \varphi. \underline{\underline{C-C'}}$.

If *B* be the oldest of the three lives, let x , π , C' , $A'C'$, σ , τ , v , &c. denote the same quantities as in the third part of the preceding Note; and let α , β , γ , &c. be the number of persons living in the table at the end of $\overline{x+1}$, $\overline{x+2}$, $\overline{x+3}$, &c. years at the age of *A*. The value of the annuity for the first x years will be $= \frac{C-A'C'}{2} - \frac{BC-ABC.}{2}$. In the $\overline{x+1}$.st year, the payment of it will depend on the contingency of *A*'s having died after *B* in $\overline{x+1}$. years, and *C*'s having lived to the end of this term. As the life necessarily becomes extinct in x years, it is plain that the probability of *A*'s dying after him in $\overline{x+1}$ years must be $= \frac{\alpha-\alpha. \sigma}{\alpha} - \pi$; and therefore that the value of the annuity in this year will be $\frac{\overline{\alpha-\alpha. \sigma}}{asr^x+1} - \frac{\pi. \sigma}{sr^x+1}$. In the same manner the value of the annuity in the $\overline{x+2^d}$, $\overline{x+3^d}$, &c. years, will be $\frac{\overline{\alpha-\beta. \tau}}{asr^x+2} - \frac{\pi\tau}{sr^x+2} - \cdots - \frac{\overline{\alpha-\gamma. v}}{asr^x+3} - \frac{\pi. v}{sr^x+3} - \cdots + , \&c.$ But the series $\frac{\overline{\alpha-\alpha. \sigma}}{asr^x+1} + \frac{\overline{\alpha-\beta. \tau}}{asr^x+2} + \frac{\overline{\alpha-\gamma. v}}{asr^x+3} + , \&c. = \underline{\underline{C-C'}} + AC-A'C'$, and the series $- \frac{\pi\sigma}{sr^x+1} - \frac{\pi\tau}{sr^x+2} - \frac{\pi v}{sr^x+3} - , \&c. = - \pi. \underline{\underline{C-C'}}$; the whole value of the annuity therefore, when *B* is the oldest, will be $= C-AC. - \frac{C-A'C'}{2} - \underline{\underline{BC-ABC.}} - \pi. \underline{\underline{C-C'}}$.

If the solution either of this, or of the preceding Problem, be given = Q. the solution of the other Problem will be immediately obtained, being always = $\overline{C-AC-Q}$.

When the three lives are of equal age the value will be
 $= \frac{C+CCC}{2} - CC.$

NOTE XXXIII. (PROB. XLII.)

The payment of the annuity in the first year will depend on either of three events:—1st. On the contingency of B and C both surviving A; 2dly. On the contingency of B.'s dying after A and C living; 3dly. On the contingency of C.'s dying after A and B living. Hence the value of the annuity in the first year will be $\frac{\overline{a-b. nt}}{samr} + \frac{\overline{a-b. m-n. t}}{2amsr} + \frac{\overline{a-b. s-t. n}}{2amsr}$. In the second, third, fourth, &c. years the payment of the annuity will depend on the same number of events:—1st. On A.'s having died, and B and C.'s having both lived to the end of the year; 2dly. On B.'s having died after A, and C.'s having lived; 3dly. On C.'s having died after A and B.'s having lived to the end of the respective years. The fractions therefore expressing the value of the annuity in the second year will be $\frac{\overline{a-c. ou}}{amsr^2} + \frac{\overline{a-c. m-o. u}}{2amsr^2} + \frac{\overline{a-c. s-u. o}}{2amsr^2}$; in the third year $\frac{\overline{a-d. pw}}{amsr^3} + \frac{\overline{a-d. m-p. w}}{2amsr^3} + \frac{\overline{a-d. s-w. p}}{2amsr^3}$, and so on. These fractions may be reduced to the four following series
 $\frac{t}{2ar} + \frac{u}{2ar^2} + \frac{w}{2ar^3} +, \text{ &c.} + \frac{n}{2mr} + \frac{o}{2mr^2} + \frac{p}{2mr^3} +, \text{ &c.} -$
 $\frac{bt}{2asr} - \frac{cu}{2asr^2} - \frac{dw}{2asr^3} -, \text{ &c.} - \frac{bn}{2amr} - \frac{co}{2amr^2} - \frac{dp}{2amr^3} -, \text{ &c.} -$
 $= \frac{C+B}{2} - \frac{AB+AC}{2}$, which is the true value when A is the youngest of the three lives, and B and C are nearly of the

same age. If C is much younger the values of C and AC must be continued only for as many years as are equal to the difference between the age of B and the oldest life in the Table.

If B and C be both younger than A, let x denote the same quantity as in Note XXXI, and the value in that case will be $\frac{C+B}{2} - \frac{AB+AC}{2} + \frac{C^x+B^x}{2} - BC^x$; C^x , B^x , and BC^x , denoting the values of the lives *after* x years.

If one of the lives (B) be older than A and the other younger, let x denote the number of years between the ages of B and of the last person in the Table, C^x the value of an annuity on the life of C after x years, C' and $A'C'$ the value of the single and two joint lives for x years, π the probability found by Tab. x. that B dies *after* A, and the value will then be $\frac{C'+B}{2} - \frac{AB+A'C'}{2} + \pi \cdot C^x$; C^x denoting the value of the life *after* x years. When the three lives are of equal age the value will be $C - CC$.

NOTE XXXIV. (PROB. XLIII.)

In the first year the payment of the given sum will depend on either of two events:—1st. That all the three lives shall become extinct (B having survived A) which is expressed by $\frac{a-b \cdot m-n \cdot s-t}{2mas}$; 2dly. That B shall live, and only A and C die, which is expressed by $\frac{n \cdot a-b \cdot s-t}{mas}$. The value therefore of the given sum in the first year will be $S_{ansr} \times \frac{ams}{2} - \frac{bms}{2} + \frac{ans}{2} - \frac{bns}{2} - \frac{amt}{2} + \frac{bmt}{2} - \frac{ant}{2} + \frac{bnt}{2}$. In the second and following years the payment of S. will depend upon either of seven events:—1st. That all the three lives become extinct in the year, B having survived A; 2dly. That B lives, and A and C die in the year; 3dly.

that A dies in the year, that C dies in any of the preceding years, and B lives; 4thly. That B dies after A in the year, C having died in any of the preceding years; thly. That C dies in the year, B having died after A in ny of the preceding years; 6thly. That B and C both die in the year, A having died in any of the preceding years; nd 7thly, That C dies in the year, A having died in any f the preceding years, and that B lives.

These contingencies in the second year are expressed by

$$\text{he fractions } \frac{\overline{b-c. n-o. t-u}}{2ams} + \frac{\overline{o. b-c. t-u}}{ams} + \frac{\overline{b-c. s-t. o}}{ams} + \\ \frac{\overline{-o. b-c. s-t}}{2ams} + \frac{\overline{t-u. m-n. a-b}}{2ams} + \frac{\overline{t-u. n-o. a-b}}{ams} + \frac{\overline{t-u. a-b. o}}{ams},$$

$$\text{n the third year by the fractions } \frac{\overline{c-d. o-p. u-w}}{2ams} + \frac{\overline{c-d. u-w. p}}{ams} \\ + \frac{\overline{c-d. s-u. p}}{ams} + \frac{\overline{o-p. c-d. s-u}}{2ams} + \frac{\overline{u-w. m-o. a-c}}{2ams} + \frac{\overline{u-w. o-p. a-c}}{ams} \\ + \frac{\overline{u-w. a-c. p}}{ams}, \text{ and so on in the succeeding years; which}$$

fractions may be reduced into the following series: (first)

$$\frac{s}{2ams} \times \left(\frac{ams}{r} + \frac{amt}{r^2} + \frac{amu}{r^3}, \text{ &c.} \right); \text{ (second)} - \frac{s}{2ams} \times \left(\frac{bms}{r} + \frac{ms}{r^2} + \frac{dos}{r^3}, \text{ &c.} \right); \text{ (third)} + \frac{s}{2ams} \times \left(\frac{ans}{r} + \frac{bos}{r^2} + \frac{cps}{r^3}, \text{ &c.} \right); \text{ (fourth)} \\ - \frac{s}{2ams} \times \left(\frac{bns}{r} + \frac{cos}{r^2} + \frac{dps}{r^3}, \text{ &c.} \right); \text{ (fifth)} - \frac{s}{2amsr} \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3}, \text{ &c.} \right); \text{ (sixth)} - \frac{s}{2amsr} \times \left(\frac{amn}{r} + \frac{amw}{r^2} + \frac{amx}{r^3}, \text{ &c.} \right); \\ \text{(seventh)} + \frac{s}{2amsr} \times \left(\frac{ant}{r} + \frac{aow}{r^2} + \frac{apw}{r^3}, \text{ &c.} \right); \text{ (eighth)} - \frac{s}{2amsr} \\ \times \left(\frac{anu}{r} - \frac{aow}{r^2} - \frac{apw}{r^3}, \text{ &c.} \right); \text{ (ninth)} - \frac{s}{2amsr} \times \left(\frac{bmt}{r} + \frac{cmu}{r^2} + \frac{dmw}{r^3}, \text{ &c.} \right); \text{ (tenth)} + \frac{s}{2amsr} \times \left(\frac{bnu}{r} + \frac{cmw}{r^2} + \frac{dmx}{r^3}, \text{ &c.} \right); \\ \text{(eleventh)} + \frac{s}{2amsr} \times \left(\frac{bnu}{r} + \frac{cow}{r^2} + \frac{dpx}{r^3}, \text{ &c.} \right); \text{ (twelfth)} \\ + \frac{s}{2amsr} \times \left(\frac{bns}{r} + \frac{cos}{r^2} + \frac{dps}{r^3}, \text{ &c.} \right); \text{ (thirteenth)} - \frac{s}{2ams} \times$$

$\left(\frac{ant}{r} + \frac{bnu}{r^2} + \frac{cou}{r^3} +, \text{ &c.} \right)$; (fourteenth) $= \frac{s}{2ams} \times \left(\frac{bnt}{r} + \frac{enu}{r^2} + \frac{dow}{r^3} +, \text{ &c.} \right)$; (fifteenth) $= \frac{s}{2ams} \times \left(\frac{ant}{r} + \frac{bou}{r^2} + \frac{cpw}{r^3} +, \text{ &c.} \right)$; (sixteenth) $= \frac{s}{2ams} \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3} +, \text{ &c.} \right)$

The first four and the twelfth series are $= \frac{s}{2r} \times \left(1 - r - 1. AB + \frac{n. 1 + AP}{m} - \frac{b. 1 + HB}{a} - C \right)$. The fifth and sixteenth series are $= \frac{s. r - 1. ABC}{2r}$. The sixth, eleventh, and thirteenth, are $= - \frac{s \times C}{2}$. The seventh and ninth are $= \frac{s. BC - AC}{2r}$. The eighth and tenth $= \frac{s. t}{2sr} \times AT - BT$. The fourteenth is $= \frac{s}{2r} \times \frac{bt. 1 + HBT}{as}$; and the fifteenth $= - \frac{s}{2r} \times \frac{nt. 1 + APT}{ms}$. Let D denote the value of S on the contingency of B surviving A, and the whole value of the reversion, when C is the oldest of the three lives, will be $D + \frac{s}{2r}$ into $(r - 1. ABC - C + BC - AC + \frac{t}{s} \times AT - BT + \frac{b. 1 + HBT}{a} - \frac{n. 1 + APT}{m})$.

If A be the oldest of the three lives, let z, C, B'C, and φ, denote the same quantities as in the second part of Note XXXI, let σ be the number of persons living in the Table at the ages of a person z years older than C, and let B'T' be the value of the joint lives of B and T for z years, then will the value of the reversion in this case be $= D + \frac{s}{2r} \times (r - 1. ABC - C + B'C - AC + \frac{t}{s} \times AT - B'T' + \frac{b. 1 + HBT}{a} - \frac{n. 1 + APT}{m}) + \frac{s. r - 1}{r^{s+1}} \times \frac{\varphi r}{s} \times V - C'$; C' being the value of a life z years older than C.

If B is the oldest of the three lives, let z and π denote the same quantities as in the third part of Note XXXI,

and let r be the number of persons living in the table at the age of a person x years older than C, the value of the reversion will then be $D + \frac{s}{2r} \times \left(\overline{r-1} \cdot \overline{ABC-C} + \overline{BC-A'C} + \frac{t}{s} \times \overline{A'T-BT} + \frac{\overline{b.1+HBT}}{a} - \frac{\overline{n.1+APT}}{m} \right) + \frac{\overline{i.r-1}}{\overline{r^s+1}} \times \frac{\overline{s.r}}{s} + \overline{V-C^x}$; C^x being the value of a life x years older than C.

When the three lives are of equal age the value becomes
 $= \frac{s.\overline{r-1}}{2r} \times \overline{V-CC-C+CCC}$.

The solution of this Problem may be derived from the 25th and 40th Problems; the value of S being equal to the difference between its value on the contingency of B surviving A, and the value of an annuity of £1 during the life of C after A, provided A should die before B, multiplied into the interest of S, and divided by £1 increased by its interest for a year: that is, let D be the former and Δ the latter value, the reversion will be =
 $D - \frac{s.\overline{r-1} \cdot \Delta}{r}$.

NOTE XXXV. (PROB. XLIV.)

The payment in the first year depends on the contingency of the three lives having become extinct (A having survived B), which is expressed by $\frac{\overline{m-n.a-b.s-t}}{2ums}$. In the 2d and following years the given sum will become payable if either of five events should take place:—1st. If the three lives should fail in the year (B having died before A); 2dly. If C should die in any of the preceding years, and A die after B in that particular year; 3dly. If B and C should die in any of the preceding years, and only A die in that year; 4thly. If B should die in any of the pre-

ceding years, and A and C both die in that year; and 5thly. If A should die after B in any of the preceding years, and C die in that year. The different fractions expressing those probabilities in the second year are

$$\frac{m-o \cdot b-c \cdot t-u}{2ams} + \frac{s-t \cdot n-o \cdot b-c}{2ams} + \frac{s-t \cdot m-n \cdot b-c}{ams} +$$

$$\frac{m-n \cdot b-c \cdot t-u}{ams} + \frac{a-b \cdot m-n \cdot t-u}{2ams}, \text{ in the third year}$$

$$\frac{o-p \cdot c-d \cdot u-w}{2ams} + \frac{s-u \cdot o-p \cdot c-d}{2ams} + \frac{s-u \cdot m-o \cdot c-d}{ams} +$$

$$\frac{m-o \cdot c-d \cdot u-w}{ams} + \frac{a-c \cdot m-o \cdot u-w}{2ams}, \text{ and so on in the other years.}$$

Hence the value of the given sum will be = S into

$$\left(\frac{1}{r} + \frac{t}{sr^2} + \frac{u}{sr^3} + \frac{w}{sr^4} + \&c. \right) - \left(\frac{b}{ar} + \frac{c}{ar^2} + \frac{d}{ar^3} + \&c. \right) -$$

$$\left(\frac{t}{asr^2} + \frac{u}{sr^3} + \frac{w}{sr^4} + \&c. \right) - \left(\frac{bt}{asr^2} + \frac{cu}{asr^3} + \frac{dw}{asr^4} + \&c. \right) +$$

$$\left(\frac{bt}{asr} + \frac{cu}{asr^2} + \frac{dw}{asr^3} + \&c. \right) + \left(\frac{b}{ar^2} + \frac{c}{ar^3} + \frac{d}{ar^4} + \&c. \right) -$$

$$\frac{S}{2ams} \times \left(\frac{ans}{r} + \frac{amt}{r^2} + \frac{amu}{r^3} + \&c. \right) + \frac{S}{2ams} \times \left(\frac{bms}{r} + \frac{cns}{r^2} + \frac{dos}{r^3} + \&c. \right) -$$

$$+ \frac{S}{2ams} \times \left(\frac{ans}{r} + \frac{bas}{r^2} + \frac{cps}{r^3} + \&c. \right) + \frac{S}{2ams} \times$$

$$\left(\frac{bns}{r} + \frac{cos}{r^2} + \frac{dps}{r^3} + \&c. \right) + \frac{S}{2amsr} \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dqw}{r^3} + \&c. \right)$$

$$+ \frac{S}{2amor} \times \left(\frac{amu}{r} + \frac{amw}{r^2} + \frac{amx}{r^3} + \&c. \right) - \frac{S}{2amsr} \times \left(\frac{ant}{r} + \frac{aow}{r^2} + \&c. \right)$$

$$+ \frac{apw}{r^3} + \&c. \right) + \frac{S}{2amsr} \times \left(\frac{anu}{r} + \frac{aow}{r^2} + \frac{apx}{r^3} + \&c. \right) + \frac{S}{2amsr} \times$$

$$\left(\frac{bmt}{r} + \frac{cmu}{r^2} + \frac{dmw}{r^3} + \&c. \right) - \frac{S}{2amsr} \times \left(\frac{bmu}{r} + \frac{cmw}{r^2} + \frac{dmx}{r^3} + \&c. \right) -$$

$$- \frac{S}{2amsr} \times \left(\frac{bnu}{r} + \frac{cow}{r^2} + \frac{dpw}{r^3} + \&c. \right) - \frac{S}{2amsr} \times \left(\frac{bns}{r} + \frac{cos}{r^2} + \frac{dps}{r^3} + \&c. \right) + \frac{S}{2ams} \times \left(\frac{amt}{r} + \frac{bnu}{r^2} + \frac{cow}{r^3} + \&c. \right) - \frac{S}{2ams} \times$$

$$\left(\frac{bmt}{r} + \frac{cnw}{r^2} + \frac{dow}{r^3} + \&c. \right) + \frac{S}{2ams} \times \left(\frac{ant}{r} + \frac{bou}{r^2} + \frac{cpw}{r^3} + \&c. \right) +$$

$$\frac{S}{2ams} \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3} + \&c. \right) \text{ The first six series are}$$

$= \frac{s}{r} \times (1 - \overline{r-1} \cdot A + C - AC)$. The remaining sixteen series denote the value of S by the preceding Problem with contrary signs. Let this value be called Y, and the value of an annuity of £1 on the longest of the two lives of A and C be called E, then will the value required be

$= \frac{\overline{s \cdot 1-r-1} \cdot E}{r} - Y$. When the three lives are equal, the value will become $= \frac{\overline{s \cdot 1-r-1} \cdot L}{2r}$. L denoting the value of an annuity on the longest of the three lives. The solution of this problem may also be deduced from the 26th and 41st problems, "the value of S being equal in this case to the difference between its value after the death of A and B, provided B should die before A, and the value of an annuity of £1 during the life of C after A, provided A should survive B, multiplied into the interest of S," that is, let F be the former and X the latter value, the reversion will be $= F - \frac{\overline{s \cdot r-1} \cdot X}{r}$.

NOTE XXXVI. (PROB. XLV.)

In the first year the given sum can be received only provided the three lives shall have failed and the life of A have been the first that became extinct, which contingency is expressed by the fraction $\frac{a-b}{3ans} \cdot \frac{m-n}{2ans} \cdot \frac{s-t}{ans}$. In the second, third, and following years it may be received provided either of four events shall have happened:—1st. If all the three lives shall have failed in the year, A dying first; 2dly. If A shall have died in either of the foregoing years, and B and C both died in that year; 3dly. If A and B shall have both died in the foregoing years (B dying

last) and C died in that year; 4thly. If C and A shall have both died in the foregoing years (C dying last) and B died in that year. The fractions expressing these contingencies in the second year are $\frac{\overline{b-c. n-o. t-u}}{3ams} + \frac{\overline{a-b. n-o. t-u}}{ams} + \frac{\overline{a-b. m-n. t-u}}{2ams} + \frac{\overline{a-b. s-t. n-o}}{2ams}$; in the 3d year

$\frac{\overline{c-d. o-p. u-w}}{3ams} + \frac{\overline{a-c. o-p. u-w}}{ams} + \frac{\overline{a-c.m-o.u-w}}{2ams} + \frac{\overline{a-c. s-u. o-p}}{2ams}$,

and so on in the following years. These fractions being expanded will be formed into the twenty-two following series:

$$\begin{aligned}
 &= (\text{first}) \frac{s}{3ams} \times \frac{ams}{r} + \frac{bnt}{r^2} + \frac{cou}{r^3} + \&c. (\text{second}) - \frac{s}{3ams} \times \\
 &\frac{ans}{r} + \frac{bot}{r^2} + \frac{cup}{r^3} \&c. (\text{third}) - \frac{s}{3ams} \times \frac{ant}{r} + \frac{bnu}{r^2} + \frac{cow}{r^3} \&c. \\
 &(\text{fourth}) + \frac{s}{3ams} \times \frac{ant}{r} + \frac{bou}{r^2} + \frac{cpw}{r^3} \&c. (\text{fifth}) - \frac{s}{3ams} \times \\
 &\frac{dns}{r} + \frac{cnt}{r^2} + \frac{dou}{r^3} \&c. (\text{sixth}) + \frac{s}{3ams} \times \frac{dns}{r} + \frac{cot}{r^2} + \frac{dup}{r^3} \&c. \\
 &(\text{seventh}) + \frac{s}{3ams} \times \frac{bmt}{r} + \frac{cmu}{r^2} + \frac{dmw}{r^3} \&c. (\text{eighth}) - \frac{s}{3ams} \\
 &\times \frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3} + \&c. (\text{ninth}) - \frac{s}{2amst} \times \frac{amu}{r} + \frac{awv}{r^2} + \\
 &\frac{ams}{r^3} \&c. (\text{tenth}) + \frac{s}{amst} \times \frac{aou}{r} + \frac{apw}{r^2} + \frac{aqx}{r^3} \&c. (\text{eleventh}) \\
 &- \frac{s}{amst} \times \frac{bou}{r} + \frac{cpw}{r^2} + \frac{dqx}{r^3} \&c. (\text{twelfth}) - \frac{s}{2amst} \times \frac{bmu}{r} + \\
 &\frac{cnv}{r^2} + \frac{dow}{r^3} + \&c. (\text{thirteenth}) + \frac{s}{2amst} \times \frac{bmu}{r} + \frac{cmw}{r^2} + \\
 &\frac{dmx}{r^3} \&c. (\text{fourteenth}) + \frac{s}{2amst} \times \frac{ans}{r} + \frac{aot}{r^2} + \frac{apu}{r^3} + \&c. (\text{fifteenth}) \\
 &- \frac{s}{2amst} \times \frac{aos}{r} + \frac{aps}{r^2} + \frac{aqx}{r^3} \&c. (\text{sixteenth}) - \frac{s}{2amst} \times \\
 &\frac{dns}{r} + \frac{cos}{r^2} + \frac{dps}{r^3} + \&c. (\text{seventeenth}) + \frac{s}{2amst} \times \frac{bos}{r} + \\
 &\frac{cps}{r^2} + \frac{dqx}{r^3} + \&c. (\text{eighteenth}) - \frac{s}{2amst} \times \frac{anu}{r} + \frac{awv}{r^2} + \frac{qpx}{r^3}
 \end{aligned}$$

$$+ \text{ &c. (nineteenth)} - \frac{S}{2amr} \times \frac{aot}{r} + \frac{api}{r^2} + \frac{aqw}{r^3} \text{ &c.}$$

$$(\text{twentieth}) + \frac{S}{2amr} \times \frac{bot}{r} + \frac{cpw}{r^2} + \frac{dqw}{r^3} + \text{ &c. (twenty-first)}$$

$$+ \frac{S}{2amr} \times \frac{bnu}{r} + \frac{cow}{r^2} + \frac{dpx}{r^3} + \text{ &c. (twenty-second)}$$

$$\frac{S}{2amr} + \frac{amt}{r} + \frac{amw}{r^2} + \frac{amx}{r^3} \text{ &c. These several series may}$$

$$\text{be found equal to S into } \frac{1-r-1}{3r} \cdot ABC - \frac{AB+AC}{2r} - \frac{r-1}{2r} C+B$$

$$+ BC + \frac{n \cdot 1+APC}{6mr} + \frac{t \cdot 1+ABT}{6sr} - \frac{b \cdot 1+HBC}{3ar} - \frac{2nt \cdot 1+APT}{3msr}$$

$$+ \frac{nb \cdot 1+HPC}{3amr} + \frac{bt \cdot 1+HBT}{3asr} + \frac{t \cdot AT-BT}{2sr} - \frac{n \cdot CP-AP}{2mr} \text{ which}$$

is the value required when B and C are nearly of the same age, and both older than A. But when C is much younger than B or A (B being older than A) the annuities on the single life of C, and on the joint lives of AC and AT must be continued only for as many years as are equal to the difference between the age of B and that of the oldest life in the Table. Let these values be denoted by C', A'C' and A'T'. Let π denote the probability that B has died after A by Tab. 10th, z the difference between the age of B and that of the oldest person in the Table, x the number of persons living at the age of C after z years, and C^z the value of C's life after z years,

then will the value in this case be S into $\frac{1-r-1}{3r} ABC -$

$$\frac{AB+A'C'}{2r} - \frac{r-1 \cdot C'+B}{2r} + BC + \frac{n \cdot 1+APC}{6mr} + \frac{t \cdot 1+ABT}{6sr} -$$

$$\frac{b \cdot 1+HBC}{3ar} - \frac{2nt \cdot 1+APT}{3msr} + \frac{nb \cdot 1+HPC}{3amr} + \frac{bt \cdot 1+HBT}{3asr} +$$

$$\frac{t \cdot A'T'-BT}{2sr} - \frac{n \cdot CP-AP}{2mr} + \frac{\pi \cdot x}{sr^2+1} \times r-1 \cdot V-C^z.$$

If both the lives of B and C are younger, let π express as above, let μ and x express the number of persons

living at the age of B and C respectively at the end of y years (or the difference between the age of A and that of the oldest life in the Table), and let φ express the probability that C dies after A by Tab. 10, then will the

value required in this case be S into $\frac{1-r-n}{3r} ABC$ —

$$\frac{AB+AC}{2r} - \frac{r-1}{2r} \cdot \frac{C'+B'}{2r} + B'C' + \frac{n \cdot 1+APC}{6mr} + \frac{t \cdot 1+ABT}{6rt} -$$

$$\frac{b \cdot 1+HBC}{3ar} - \frac{2nt \cdot 1+APT}{3msr} + \frac{nb \cdot 1+HPC}{3amr} + \frac{bt \cdot 1+HBT}{3asr} + \frac{t \cdot AT-BT}{2sr} -$$

$$- \frac{n \cdot C'P'-AP}{2mr} + \frac{xp \cdot r-1 \cdot V-L'y}{mry+1} + \frac{xw \cdot r-1 \cdot V-C'y}{sry+1} + \frac{\varphi u \cdot r-1}{mry+1} +$$

$\bar{V}-\bar{B}'y$; $L'y$ being the value of an annuity on the longest of two lives and $B'y$ and $C'y$ the value of an annuity on single lives, y years older than B and C.

If the three lives are of equal age the value becomes = $\frac{S \cdot r-1 \cdot V-L}{3r}$; L representing the value of an annuity on the longest of the three lives.

The solution of this Problem like that of the two preceding ones may be derived from the twenty-eighth and the forty-second Problems. Let G be the value of S on the contingency of A's life being the first that fails, Γ the value of an annuity of £1 on the lives of B and C after A, provided both of them survive A, then will the value of the reversion be = $G - \frac{S \cdot r-1 \cdot \Gamma}{r}$.

NOTE XXXVII. (PROB. XLVI.)

The payment of the given sum in the first year depends only on the contingency of the three lives becoming extinct in the order specified in this Problem, which is expressed by the fraction $\frac{a-b \cdot m-n \cdot s-t}{6ams}$. In the second year the payment of the given sum depends on either of three

events :—1st. That the three lives fail in the order required by the Problem; 2dly. That B dies after A in the first year, and C dies in the second year; 3dly. That A only dies in the first year, and C dies after B in the second year. These contingencies are expressed by the fractions

$$\frac{\overline{b-c. n-o. t-u}}{6ams} + \frac{\overline{a-b. m-n. t-u}}{2ams} + \frac{\overline{a-b. n-o. t-u}}{2ams}$$

The payment of the given sum in the third year depends on the same number of events :—1st. The three lives must become extinct in the year, in the order stated above; or, 2dly. B must die after A in the first or second year, and C die in the third year; or, 3dly. A must die in the first or second year, and C die after B in the third year, which are denoted by the fractions

$$\frac{\overline{c-d. o-p. u-w}}{6ams} + \frac{\overline{a-c. m-o. u-w}}{2ams} + \frac{\overline{a-c. o-p. u-w}}{2ams}$$

By pursuing the same steps in the following years and expanding the different fractions, the whole value, when C is the oldest of the three lives, will become

$$\begin{aligned} &\text{equal to S into } \frac{1}{6ams} \times \frac{ams}{r} + \frac{bnt}{r^2} + \frac{cou}{r^3} + \&c. - \frac{1}{6ams} \times \\ &\frac{ans}{r} + \frac{bot}{r^2} + \frac{cup}{r^3} + \&c. - \frac{1}{6ams} \times \frac{amt}{r} + \frac{bnu}{r^2} + \frac{cow}{r^3} + \&c. + \\ &\frac{1}{6ams} \times \frac{ant}{r} + \frac{bou}{r^2} + \frac{cwp}{r^3} \&c. - \frac{1}{6ams} \times \frac{bms}{r} + \frac{cnt}{r^2} + \frac{dou}{r^3} + \&c. + \\ &+ \frac{1}{6ams} \times \frac{bns}{r} + \frac{cot}{r^2} + \frac{dup}{r^3} + \&c. - \frac{1}{6amsr} \times \frac{bmt}{r} + \frac{cmu}{r^2} + \\ &\frac{dow}{r^3} + \&c. - \frac{1}{6amsr} \times \frac{bnt}{r} + \frac{cou}{r^2} + \frac{dup}{r^3} + \&c. + \frac{1}{2amor} \times \\ &\frac{amt}{r} + \frac{amu}{r^2} + \frac{amw}{r^3} \&c. - \frac{1}{2amsr} \times \frac{amu}{r} + \frac{amw}{r^2} + \frac{amx}{r^3} \&c. + \\ &- \frac{1}{2amsr} \times \frac{bmt}{r} + \frac{cmu}{r^2} + \frac{dmw}{r^3} + \&c. + \frac{1}{2amsr} \times \frac{bmu}{r} + \\ &\frac{cmw}{r^2} + \frac{dmx}{r^3} + \&c. - \frac{1}{2amor} \times \frac{aot}{r} + \frac{apu}{r^2} + \frac{aqw}{r^3} \&c. + \\ &\frac{1}{2amsr} \times \frac{aou}{r} + \frac{apw}{r^2} + \frac{aqx}{r^3} + \&c. + \frac{1}{2amsr} \times \frac{bgt}{r} + \frac{cpw}{r^2} + \end{aligned}$$

$$\begin{aligned} \frac{dpw}{r^3} & \&c. - \frac{1}{2mr} \times \frac{bou}{r} + \frac{cpw}{r^2} + \frac{dqw}{r^3} & \&c. = S \text{ into} \\ 1-r-1. ABC + 3C & + \frac{BC}{2} - \frac{AC}{2r} + \frac{n. 1+APC}{3mr} - \frac{t. 1+ABT}{6ar} - \\ \frac{b. 1+HBC}{6ar} & - \frac{nt. 1+APT}{3mr} + \frac{nb. 1+HPC}{6amr} + \frac{bt. 1+HBT}{6asr} + \\ t. 1+AT & - \frac{n. 1+CP}{2mr}. \end{aligned}$$

When *B* is the oldest of the three lives, the series expressing the value of an annuity on the single life *C*, and on the joint lives *AC.* and *AT.*, are to be continued only for as many years as are equal to the difference between the age of *B* and that of the oldest life in the table. Let this difference be denoted by *z*; the annuities for *z* years by *C'* and *A'C'*, and the annuity for $\overline{z-1}$. years by *A'T'*; the number of persons living at the end of *z* years at the age of *C* by σ ; and let π denote the probability that *B* dies after *A*; then will the value in this case be *S* into

$$\begin{aligned} 1-r-1. ABC + 3C' & + \frac{BC}{2} - \frac{A'C'}{2r} + \frac{n. 1+APC}{3mr} - \frac{t. 1+ABT}{6ar} - \\ \frac{b. 1+HBC}{6ar} & - \frac{nt. 1+APT}{3mr} + \frac{nb. 1+HPC}{6amr} + \frac{bt. 1+HBT}{6asr} + \frac{t. 1+A'T'}{2ar} - \\ - \frac{n. 1+CP}{2mr} & + \frac{\pi. \sigma. r-1. V-C^x}{s^{x+1}}, \quad C^x \text{ denoting the value of an} \\ \text{annuity on a life } z \text{ years older than } C. \end{aligned}$$

When *A* is the oldest of the three lives, let *x* denote the difference between the age of *A* and that of the oldest person in the table. Let $\mu, \nu, \xi, \sigma, \&c.$ represent the number of the living at the age of *B* at the end of *x*, $\overline{x+1}$, $\overline{x+2}$, &c. years, and $\sigma, \tau, u, \phi, \&c.$ the number of the living at the age of *C*; let π represent the probability that *B* dies after *A*, and *C^x* the value of an annuity on a life *x* years older than *C*; then will the value of *S* in the $\overline{x+1^{\text{st}}}$ year, depending on the contingency of *C*'s dying after *B* in that

year, or of C's dying in that year, B having died after A in either of the foregoing years, be expressed by

$$\frac{\sigma - \sigma \cdot \mu - v}{2msr^x + 1} + \frac{s \cdot \sigma \cdot \sigma - \sigma}{sr^x + 1}. \text{ In the } \overline{x+2^d}, \overline{x+3^d}, \text{ &c. years,}$$

the payment of S will depend on either of three events:—

1st. Of C's dying after B in that particular year; 2dly. Of C's only dying in that year, B having died in either of the preceding $\overline{x+1}$, $\overline{x+2}$, &c. years; or, 3dly. Of C's only dying in the year, B having died after A in the first x years. Hence the value in the $\overline{x+2^d}$ year will be S

$$\text{into } \frac{\sigma - \sigma \cdot \tau - \xi}{2msr^x + 2} + \frac{\sigma - \sigma \cdot \mu - \tau}{msr^x + 3} + \frac{\sigma \cdot \sigma - \nu}{sr^x + 2}; \text{ in the } \overline{x+3^d} \text{ year, S}$$

$$\text{into } \frac{\sigma - \sigma \cdot \xi - \sigma}{2msr^x + 3} + \frac{\sigma - \sigma \cdot \mu - \xi}{msr^x + 4} + \frac{\sigma \cdot \sigma - \varphi}{sr^x + 3}, \text{ and so on. The fractions}$$

$$\frac{\sigma - \sigma}{sr^x + 1} + \frac{\sigma \cdot \sigma - \nu}{sr^x + 2} + \frac{\sigma \cdot \sigma - \varphi}{sr^x + 3} +, \text{ &c. are } \equiv \frac{\sigma \cdot \sigma \cdot r - 1 \cdot V - C^x}{sr^x + 1}. \text{ The}$$

other fractions expanded become $\frac{\mu\tau}{2msr^x + 1} + \frac{\nu\tau}{2msr^x + 2} + \frac{\xi\tau}{2msr^x + 3}$

$$+, \text{ &c. } - \frac{1}{2msr^x} \times \frac{\mu\tau}{r} + \frac{\nu\tau}{r^2} + \frac{\xi\tau}{r^3} +, \text{ &c. } - \frac{1}{2msr^x} \times$$

$$\frac{\tau}{r} + \frac{\nu\tau}{r^2} + \frac{\xi\tau}{r^3} +, \text{ &c. } + \frac{1}{2msr^x} \times \frac{\nu\tau}{r} + \frac{\xi\tau}{r^2} + \frac{\varphi\tau}{r^3} +, \text{ &c. } + \frac{1}{msr^x}$$

$$\times \frac{\mu\tau}{r} + \frac{\mu\nu}{r^2} + \frac{\mu\xi}{r^3} +, \text{ &c. } - \frac{1}{msr^x} \times \frac{\mu\tau}{r} + \frac{\mu\nu}{r^2} + \frac{\mu\xi}{r^3} +, \text{ &c. } - \frac{1}{msr^x + 1}$$

$$\times \frac{\nu\tau}{r} + \frac{\xi\tau}{r^2} + \frac{\varphi\tau}{r^3} +, \text{ &c. } + \frac{1}{msr^x + 1} \times \frac{\nu\tau}{r} + \frac{\xi\tau}{r^2} + \frac{\varphi\tau}{r^3} +, \text{ &c. }$$

The first of these series is $= \frac{\mu\sigma \cdot 1 + BC^x}{2msr^x + 1}$; the second $=$

$$= \frac{\mu\sigma \cdot 1 + BT^x}{2msr^x + 1}; \text{ the third is a continuation of the series } -$$

$$\frac{1}{msr^x} \times \frac{aot}{r} + \frac{apu}{r^2} + \frac{aqw}{r^3}, \text{ &c.}; \text{ the fourth is a continuation}$$

$$\text{of the expression } \frac{B/C'}{2}; \text{ the fifth is } = \frac{\mu\sigma \cdot C^x}{msr^x + 1}; \text{ the sixth}$$

$$= \frac{\mu\sigma \cdot C^x}{msr^x} + \frac{\mu\tau}{msr^x + 1}; \text{ the seventh } = - \frac{\mu\sigma \cdot BC^x}{msr^x + 1}; \text{ and the}$$

eighth = $\frac{\mu r \cdot BTx}{m s r^x + 1}$. Hence the value required in this case will be S into $\frac{1-r-1 \cdot ABC + 3C^x}{6r} + \frac{BC}{2} - \frac{AC}{2r} + \frac{n \cdot 1 + APC}{3mr}$.

$$= \frac{t \cdot 1 + ABT}{6sr} - \frac{b \cdot 1 + HBC}{6ar} - \frac{nt \cdot 1 + APT}{3msr} + \frac{nb \cdot 1 + HPC}{6amr} +$$

$$\frac{bt \cdot 1 + HBT}{6asr} + \frac{t \cdot 1 + AT}{2sr} - \frac{n \cdot 1 + CP}{2mr} + \frac{\mu r}{m s r^x + 1} \times \frac{1 - BC^x}{2} - r - 1 \cdot C^x$$

$$+ \frac{\mu r \cdot 1 + BT^x}{2msr^x + 1} + \frac{n \cdot s \cdot r - 1 \cdot V - C^x}{sr^x + 1}; \text{ } BC^x \text{ and } BT^x \text{ being the values of an annuity on the joint continuance of two lives } x \text{ years older than } BC. \text{ and } BT.$$

When the three lives are all equal the value becomes $S \cdot \frac{r - 1 \cdot V - L}{6r}$; L, as in the foregoing Notes, representing the value of an annuity on the longest of the three lives, and V the perpetuity.

It is to be observed, that the fractions $\frac{a-b \cdot m-n \cdot t-u}{2ams}$, $\frac{a-c \cdot m-o \cdot u-w}{2ams}$, &c. do not accurately express the second contingency in this Problem; but that, according to the Lemma, they should have been $\frac{a-b \cdot m-n}{2am} + \frac{b-c \cdot n-o}{2am} + \frac{n-o \cdot a-b}{am} + \frac{o-p \cdot c-d}{2am}$

$$\frac{n-o \cdot a-b}{am} \times \frac{a-b \cdot m-n}{2am} + \frac{b-c \cdot n-o}{2am} + \frac{n-o \cdot a-b}{am} + \frac{o-p \cdot c-d}{2am}$$

$$+ \frac{o-p \cdot a-c}{am} \times \frac{u-w}{am}, \text{ &c. In order to determine how near the former approach to the true values, I have, in the following examples, separately computed each of those latter fractions; and the results appear to differ so little from the approximated values, that I think a greater degree of accuracy need not be required.}$$

*Value of £100 payable on the contingency in this Problem,
computed from the Northampton Table, at £4 per cent.*

A.	B.	C.	Value by the rule.	Correct value.	Difference.
10.	85.	80	- 1.467	- 1.438	- 0.029
15.	75.	73	- 2.233	- 2.150	- 0.083
15.	75.	35	- 2.761	- 2.589	- 0.172
15.	75.	78	- 1.698	- 1.513	- 0.185
20.	65.	64	- 3.031	- 2.912	- 0.119
20.	65.	70	- 2.588	- 2.580	- 0.008
70.	80.	78	- 9.457	- 9.068	- 0.389
70.	80.	35	- 10.109	- 9.618	- 0.491

I have chosen those ages in which the approximation was likely to have been most inaccurate; for if A and B are both younger, or differ less from each other than they do in these examples, the foregoing rules will be still nearer the truth. I have also uniformly supposed the life of B to be older than that of A, so that the approximated value always errs in excess. If the life of A had been the older of the two, it would have been found to have erred nearly to the same amount in defect. But as in this latter case the value of the reversion is greater than when B is the older life, the error must necessarily bear a less proportion to the whole value than it does in the preceding examples.

With regard to the forty-fifth Problem, the error in some cases is greater, in others less, than in the present Problem. If B and C are both older than A it will be nearly twice as great. If one is older and the other younger, it will be altogether inconsiderable; for the fractions which express the probability of the older of B

and C dying after A will be as much above the truth, as the other fractions expressing the probability that the younger of these two lives die after A will be below it; and thus the errors of one by correcting those of the other will render the computation very nearly accurate.

Mr. Simpson, in his Select Exercises *, has given the fluent $\frac{Sq^x}{2abc m} \times \overline{xx - \frac{2x}{m} + \frac{2}{m^2}}$ (when properly corrected), as the true value of the reveration in the forty-sixth Problem: q denoting unity divided by the rate of interest; m the hyperbolic logarithm of q ; a, b, c , the complements of A, B, C; and x the interval of time during which the value is required. But this fluent by no means expressing the whole value, except in the single case where C is the oldest of the three lives, I was induced in the former edition of this work to complete the solution in all cases; and as the theorems may serve to show the difference between the values derived from M. De Moivre's hypothesis and those derived from the real probabilities of life, it may not be improper to insert them in the present Note.

When C is the oldest of the three lives, let A be the value of an annuity for the time c ; p the value of £1 at the end of c years, and P the perpetuity; then will the value of the sum S be $= \frac{S}{2abc} \times \overline{A - pc \times 2P^2 - Ppc^2}$.

When B is the oldest of the three lives, let the same symbols, a, b, c , and P, be retained. Let B denote the value of an annuity for b years, N the value of an annuity for $c-b$ years, and π the value of £1 payable at the end of b years, the required value will then be expressed by

$$\frac{S}{2abc} \times \overline{B - \pi b \times 2P^2 - P\pi b^2} + \frac{S \cdot b}{2ac} \times \frac{N}{r^b + 1}.$$

* Page 328.

When A is the oldest and B the youngest of the three lives,
 the value will be $\frac{S}{2abc} \times \overline{C-xa} \times 2P^a - Pxa^a + \frac{S}{bc} \times$
 $\frac{\overline{A-a} \times \overline{c-a}}{\overline{r-a+1}} + \frac{Aa}{2r^a+1}$, C being the value of an annuity for a years, A the value of an annuity for $c-a$ years, a the value of an annuity on a life whose complement is $c-a$, and x the value of £1 payable at the end of a years; the other symbols denoting the same quantities as above.

When A is the oldest and C the youngest of the three lives,
 the symbols, a , b , c , r , P , A , and x , remaining the same as in the preceding theorem, let B denote the value of an annuity for $b-a$ years, and β the value of an annuity on a life whose complement is $b-a$, then will the value be
 $\frac{S}{2abc} \times \overline{C-xa} \times 2P^a - Pxa^a + \frac{S.A}{2cr^a+1} + \frac{S.b-a.B-2\beta}{2bcr^a+1}$.

It would be tedious to go through the investigation of each of those theorems, and therefore I shall confine myself to that of the last, which, comprehending in it all the reasoning that has been applied to the solution of the other three, renders a separate investigation unnecessary.

The value, according to Mr. Simpson, during the time x being $\frac{Sq^a}{2abcm} \times xx - \frac{2x}{m} + \frac{2}{m^2}$, let the fluent be corrected by first supposing x to vanish and then to become equal to a , and the value during the time a will become $\frac{aSq^a}{2bcm} - \frac{Sq^a}{bcm^2} + \frac{S}{abcm^3} \times \overline{q^a - 1}$. Let P be now substituted for its equal $-\frac{1}{m}$, C for $1-q^a \times -\frac{1}{m}$, and x for q^a , and the above expression will be reduced to $\frac{S}{2abc} \times \overline{C-xa} \times 2P^a - Pxa^a$. The value of the expectation after the time a depends on the contingency of C's dying *after* the greatest

limit of A's life, having previously survived B. Now as B may have died *within* the limit of A's life, though after the decease of A, this probability must be taken into consideration, which, by reasoning as Mr. Simpson has done in page 316 of his Select Exercises, will be expressed by $\frac{a}{2b}$. The probability of B's dying in x time after this period is $\frac{x}{b}$. The sum of these two fractions, or $\frac{a+2x}{b}$, give the whole probability of B's dying in $a+x$ time, according to the order in the Problem. The value therefore of the reversion during the moment x will be $\frac{a+2x}{2b} \times \frac{x}{c} \times S q^x = \frac{aS}{2bc} \times q^x x + \frac{S}{bc} \times q^x xx$. The fluent of the first expression generated while x is increasing from a to b will be $\frac{aS}{2bc} \times B^*$. The second expression may be changed into $\frac{b-a}{bcr} \times \frac{q^{a-x}}{b-a}$, whose fluent generated as above is equal to $\frac{b-a}{bcr} \times B - \beta \dagger$. As this reversion, expressed by both the preceding quantities, is not to take place till after the expiration of a years, its value will be reduced to $\frac{aS \times B}{2bcr^{a+1}} + \frac{b-a}{bc} \times \frac{B-\beta}{r^{a+1}}$. The third and last part of the reversion depends on the event of C's not dying till after the extinction of the lives of A and B, A having died before B. This expectation during the moment x will be $\frac{S q^a}{2c} \times x$, whose fluent, generated while x is increasing from b to c , will be the value of the reversion, and is equal to $\frac{S}{2c}$ multiplied into M, the value of an annuity certain for $c-b$

* See Simpson's Select Exercises, pag. 324.

† Ibid. pag. 327.

years *. This being discounted for, $b+1$ years will become
 $= \frac{S. M}{2cr^b + 1}$. Hence the whole value of all the expectations
 $= \frac{S}{2abcr} \times \overline{C - xa. 2P^2 - Pxa^2} + \frac{S. a}{2bc} \times \frac{B}{r^a + 1} + \frac{\overline{b-a. S}}{bc} \times$
 $\frac{1-\beta}{r^a + 1} + \frac{S. M}{2c.r^b + 1}$; or, by substituting $\frac{A}{r^a + 1}$ for its equal $\frac{B}{r^a + 1}$
 $+ \frac{M}{r^a + 1} = \frac{S}{2abcr} \times \overline{C - xa. 2P^2 - Pxa^2} + \frac{S. A}{2cr^a + 1} + \frac{\overline{b-a. S. B - 2\beta}}{2bc r^a + 1}$

Q. E. D.

When the lives of B and C are very old, the rules derived from these theorems are altogether wrong, and in some cases they entirely fail. They have been given here merely as a proof (if any proof were necessary) of the extreme incorrectness of M. De Moivre's hypothesis, when applied to complicated cases of this kind.

NOTE XXXVIII. (PROB. XLVIII.)

In the first year the payment of the given sum will depend on either of four events:—1st. That the three lives ie; 2dly. That A and B die, and C lives; 3dly. That A dies after C, and B lives; 4thly. That B dies after C, and lives. The fractions expressing these several contingencies may be reduced to $\frac{1}{ams} \times \left(ams - \frac{bms}{2} - \frac{ans}{2} - \frac{at}{2} + bnt - \frac{bmt}{2}\right)$. In the second and following years the payment will depend on either of thirteen events:—1st. That the three lives die in the year; 2dly. That A and B die in the year, and C lives; 3dly. That A dies after C in the year, and B lives; 4thly. That B dies after C in the year, and A lives; 5thly. That B and C both die

* Simpson's Select Exercises, pag. 324.

in the year, and A in either of the preceding years; 6thly. That A and C both die in the year, and B in either of the preceding years; 7thly. That A and B both die in the year, and C in either of the preceding years; 8thly. That B dies in the year, A in either of the preceding years, and C lives; 9thly. That A dies in the year, B in either of the preceding years, and C lives; 10thly. That B dies in the year, C in either of the preceding years, and A lives; 11thly. That A dies in the year, C in either of the preceding years, and B lives; 12thly. That B dies in the year, A having died *before* C in either of the preceding years; and, 13thly. That A dies in the year, B having died *before* C in either of the preceding years.

From the several fractions expressing these contingencies may be obtained the seventeen following series: $\frac{S}{ams} \times$

$$\left(\frac{ams}{r} - \frac{bnt}{r^2} - \frac{cou}{r^3}, \text{ &c.} \right) - \frac{S}{2ams} \times \frac{bms + ans}{r} - \frac{S}{2ams} \times \left(\frac{ant}{r} + \frac{bow}{r^2} + \frac{cpw}{r^3}, \text{ &c.} \right) + \frac{S}{ams} \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3} +, \text{ &c.} \right) - \frac{S}{2ams} \times \left(\frac{bmt}{r} + \frac{cnu}{r^2} + \frac{dow}{r^3} +, \text{ &c.} \right) + \frac{S}{2amsr} \times \left(\frac{ots}{r} + \frac{pcr}{r^2} + \frac{qds}{r^3} +, \text{ &c.} \right) + \frac{S}{amsr} \times \left(\frac{cot}{r} + \frac{dup}{r^2} + \frac{ewq}{r^3} +, \text{ &c.} \right) - \frac{S}{amsr} \times \left(\frac{cos}{r} + \frac{dps}{r^2} + \frac{eqs}{r^3}, \text{ &c.} \right) + \frac{S}{2amsr} \times \left(\frac{ans}{r} + \frac{aos}{r^2} + \frac{aps}{r^3}, \text{ &c.} \right) - \frac{S}{2amsr} \times \left(\frac{aos}{r} + \frac{aps}{r^2} + \frac{ags}{r^3}, \text{ &c.} \right) + \frac{S}{2amsr} \times \left(\frac{bms}{r} + \frac{cms}{r^2} + \frac{dms}{r^3}, \text{ &c.} \right) - \frac{S}{2amsr} \times \left(\frac{cms}{r} + \frac{dms}{r^2} + \frac{ems}{r^3}, \text{ &c.} \right) + \frac{S}{2amsr} \times \left(\frac{cnu}{r} + \frac{dos}{r^2} + \frac{eps}{r^3}, \text{ &c.} \right) + \frac{S}{2amsr} \times \left(\frac{ant}{r} + \frac{aou}{r^2} + \frac{apw}{r^3}, \text{ &c.} \right) - \frac{S}{2amsr} \times \left(\frac{aot}{r} + \frac{eps}{r^2} + \frac{eqw}{r^3}, \text{ &c.} \right) + \frac{S}{2amsr} \times \left(\frac{bmt}{r} + \frac{cmu}{r^2} + \frac{dmw}{r^3}, \text{ &c.} \right) - \frac{S}{2amsr} \times \left(\frac{cmu}{r} + \frac{dmw}{r^2} + \frac{emw}{r^3}, \text{ &c.} \right)$$

These series may at last be reduced to

$$S \text{ into } \frac{1+r-1 \cdot ABC}{r} - \frac{r-1 \cdot A+B}{2r} + \frac{AC+BC}{2r} - AB +$$

$$\frac{a. 1 + HPC.}{amr} - \frac{m. 1 + APT.}{2mr} - \frac{m. 1 + HBT.}{2mr} + \frac{n. AP-CP.}{amr} +$$

HB-CH. But unless A and B are nearly of the same age, and both older than C , this rule will not be sufficiently correct.

If B be the oldest of the three lives, the annuities A , AC , and HC , should be continued only for as many years (z) as are equal to the difference between the age of B and that of the oldest life in the Table of Observations. Let those annuities respectively be denoted by A' , $A'C'$, and $H'C'$; also let ϕ denote the probability that C survives B , k the number of persons living opposite the age of A at the end of z years, then will the value of S after z years be $\frac{s. \phi k}{ar^z+1} \times r-1. V-A^z$, V representing the perpetuity, and A^z the value of an annuity on a life z years older than A , and the whole value of the reversion in this case will be S into $\frac{1+r-1. ABC.}{r} - \frac{r-1. A'A'B.}{2r} +$

$$\frac{A'C'+BC.}{2r} - AB. + \frac{nb. 1 + HPC.}{amr} - \frac{nb. 1 + APT.}{2mr} - \frac{bt. 1 + HBT.}{2mr} +$$

$$+ \frac{n. AP-CP.}{2mr} + \frac{b. HB-H'C'}{2ar} + \frac{\phi k}{ar^z+1} \times r-1. V-A^z$$

If C be the oldest of the three lives, the given sum, after the necessary extinction of his life, may be received upon either of five events:—1st. If A should have died before C , and B died in the $* z+1^{\text{st}} z+2^{\text{d}}$ &c. year; 2dly. If B should have died before C and A died in those years respectively; 3dly, If A and B should both die; 4thly. If A should die and B live; 5thly. If B should die and A live in either of those years. Let τ denote the proba-

* z , being the difference between the age of C and that of the oldest person in the table.

bility that C dies after A, π the probability that C dies after B, μ the number of persons living in the table opposite the age of B at the end of z years, and β the same number opposite the age of A, then will these contingencies be equal to

$$\frac{\tau\mu \cdot \overline{r-1} \cdot \overline{V-B^z}}{mr^z+1} + \frac{\beta\pi \cdot \overline{r-1} \cdot \overline{V-A^z}}{ar^z+1} + \frac{\beta\mu}{amr^z} \times$$

$$\frac{1+AB^z}{r} - AB^z \text{ and the whole value of the reversion will be } S \text{ into } \frac{1+r-1}{r} \cdot ABC - \frac{r-1}{2r} \cdot A'P' + \frac{AC+BC}{2r} - AB + \\ nb. \frac{1+HPC}{amr} - \frac{nt. 1+APT}{2mr} - \frac{bt. 1+HBT}{2asr} + \frac{\pi. A'P'-CP}{2mr} + \\ \frac{b}{2ar} \times \overline{H'B'-HC} + \frac{\beta\mu}{amr^{z+1}} \times 1+AB^z + \frac{\tau\mu \cdot \overline{r-1} \cdot \overline{V-B^z}}{mr^z+1} + \\ + \frac{\pi\beta \cdot \overline{r-1} \cdot \overline{V-A^z}}{ar^z+1}.$$

If the three lives are of equal age the value becomes $S \cdot \frac{r-1}{r} \times \overline{V-C-CC+CCC}$.

The solution of this problem may be obtained by the assistance of the 6th and 41st problems. Let Z be the value of an annuity by the 6th problem, X the value of an annuity on the life of A after C, provided C should survive B, and Y the value of an annuity on the life of B after C, provided C should survive A, both found by the forty-first problem, then will the value of the given sum be S into $\frac{r-1}{r} \times \overline{V-Z-X+Y}$, which becomes $\frac{S \cdot r-1}{r} \times \overline{V-C-CC+CCC}$ as in the preceding case when the lives are equal.

* B^z , A^z , &c. being the values of annuities on lives z years older than A, B, &c.

NOTE XXXIX. (PROB. XLIX.)

In the first year the payment of the given sum depends upon either of six events :—1st. That the three lives die ; 2dly. That A. and B die and C lives ; 3dly. That A dies before C, and B lives ; 4thly. That B dies before C, and A lives ; 5thly. That A dies, and B and C both live ; 6thly. That B dies, and A and C both live ; in the second and following years, in addition to the above events, it will depend, 7thly. On A and B both dying in the year, C having died in one or other of the preceding years ; 8thly. On B's dying in the year, A having died after C in either of the preceding years ; and 9thly. On A's dying in the year, B having died after C in either of the preceding years. The fractions expressing these several contingencies being expanded, will form the twenty following series :

$$\begin{aligned}
 & \frac{S}{ams} \times \left(\frac{ams}{r} + \frac{bnt}{r^2} + \frac{cou}{r^3} \text{ &c.} \right) - \frac{S}{2ams} \times \left(\frac{bms}{r} + \frac{cnt}{r^2} + \frac{dou}{r^3} \text{ &c.} \right) \\
 & - \frac{S}{2ams} \times \left(\frac{ans}{r} + \frac{bot}{r^2} + \frac{cpu}{r^3} \text{ &c.} \right) - \frac{S}{ams} \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpu}{r^3} \right. \\
 & \text{ &c.} \left. \right) + \frac{S}{2ams} \times \left(\frac{ant}{r} + \frac{bou}{r^2} + \frac{cpw}{r^3} + \text{ &c.} \right) + \frac{S}{2ams} \times \left(\frac{bmt}{r} + \right. \\
 & \frac{cnu}{r^2} + \frac{dow}{r^3} + \text{ &c.} \left. \right) - \frac{S}{2amr} \times \left(\frac{bos}{r} + \frac{cps}{r^2} + \frac{dqw}{r^3} \text{ &c.} \right) + \frac{S}{2amr} \\
 & \times \left(\frac{bot}{r} + \frac{cpu}{r^2} + \frac{dqw}{r^3} + \text{ &c.} \right) - \frac{S}{2amsr} \times \left(\frac{cms}{r} + \frac{dos}{r^2} + \frac{eps}{r^3} \text{ &c.} \right) \\
 & + \frac{S}{2amsr} \times \left(\frac{nct}{r} + \frac{odu}{r^2} + \frac{pew}{r^3} \text{ &c.} \right) + \frac{S}{amsr} \times \left(\frac{cos}{r} + \frac{dps}{r^2} + \right. \\
 & \left. \frac{eqs}{r^3} \text{ &c.} \right) - \frac{S}{2amsr} \times \left(\frac{cot}{r} + \frac{dpu}{r^2} + \frac{eqw}{r^3} \text{ &c.} \right) + \frac{S}{2amsr} \times \left(\frac{ans}{r} \right. \\
 & \left. + \frac{aos}{r^2} + \frac{aps}{r^3} \text{ &c.} \right) - \frac{S}{2amsr} \times \left(\frac{ant}{r} + \frac{aou}{r^2} + \frac{apw}{r^3} \text{ &c.} \right) - \frac{S}{2amr} \\
 & \times \left(\frac{aos}{r} + \frac{aps}{r^2} + \frac{aqw}{r^3} \text{ &c.} \right) + \frac{S}{2amr} \times \left(\frac{aot}{r} + \frac{ajw}{r^2} + \frac{aqw}{r^3} \text{ &c.} \right) \\
 & + \frac{S}{2amsr} \times \left(\frac{bms}{r} + \frac{cms}{r^2} + \frac{dms}{r^3} + \text{ &c.} \right) - \frac{S}{2amsr} \times \left(\frac{bmt}{r} + \frac{cmu}{r^2} \right.
 \end{aligned}$$

$\left. + \frac{dmw}{r^3} + \text{&c.} \right) - \frac{s}{2amr} \times \left(\frac{mc}{r} + \frac{md}{rs} + \frac{me}{r^2} + \text{&c.} \right) + \frac{s}{2amr}$
 $\times \left(\frac{cmt}{r} + \frac{dmu}{r^2} + \frac{emu}{r^3} + \text{&c.} \right)$ The 1st and 4th series are =
 $\frac{1-r-1}{r} \cdot ABC$, the 2d, 10th, and 19th = $-\frac{A}{2}$, the 3d, 8th, and
 15th = $-\frac{B}{2}$, the 5th = $\frac{nt. 1+APT}{2amr}$, the 6th = $\frac{bt. 1+BHT}{2amr}$,
 the 7th and 16th = $\frac{n. PC-AP}{2mr}$, the 9th and 20th =
 $b. \frac{CH-BH}{2ar}$, the 11th and 12th = $AB - \frac{nb. 1+HPC}{amr}$, the
 13th = $\frac{B}{2r}$, the 17th = $\frac{A}{2r}$, the 14th and 18th = $-\frac{BC+AC}{2r}$. Hence the whole value of the reversion
 when A and B are both older than C will be S into
 $\frac{1-r-1}{r} \cdot ABC + \frac{A+B}{2}$
 $+ AB - \frac{BC+AC}{2r} + \frac{n. PC-AP}{2mr} +$
 $b. \frac{CH-BH}{2ar} + \frac{nt. 1+APT}{2amr} + \frac{bt. 1+BHT}{2amr} - \frac{nb. 1+HPC}{amr}$.

If B be the oldest of the three lives, let the same symbols be used as in the preceding Note, and the value will be

S into $\frac{1-r-1}{r} \cdot ABC + \frac{A'+B}{2}$
 $+ AB - \frac{BC+A'C'}{2r} + \frac{n. PC-AP}{2mr}$
 $+ b. \frac{C'H'-BH}{2ar} + \frac{nt. 1+APT}{2mr} + \frac{bt. 1+BHT}{2amr} - \frac{nb. 1+HPC}{amr}$
 $+ \frac{\phi t. r-1. V-A}{ar^{s+1}}$. ϕ in this case denoting the probability that B has died after C.

If C be the oldest of the three lives, the given sum may be received after the necessary extinction of his life, provided either of three events shall happen:—1st. If A shall have died after C in the first two years, and B dies in the $z + 1^{\text{st}} z + 2^{\text{d}}$, &c. year; 2dly. If B having died after

C in the first z years, A dies in the $\overline{z+1^s}$ $\overline{z+2^s}$, etc. year; 3dly. If both A and B having survived the first years, the survivor of them dies in any of the following years. Let π denote the probability that A dies after C, and ϕ , as above, the probability that B dies after C, then

$$\text{will the value of the reversion be } S \text{ into } \frac{1-r-1. ABC + \frac{A' + B'}{2}}{r}$$

$$+ AB - \frac{BC + AC}{2r} + \frac{n. \overline{PC - A'P'}}{2mr} + \frac{b. \overline{HC - B'H'}}{2ar} + \frac{nt. \overline{1 + APT}}{2msr}$$

$$+ \frac{bt. \overline{1 + BHT}}{2asr} - \frac{nb. \overline{1 + HBC}}{amsr} + \frac{\phi. \beta. \overline{r-1}}{\alpha^{x+1}} \times \overline{V - A^x} + \frac{\pi. \mu. \overline{r-1}}{mr^{x+1}}$$

$$\times \overline{V - B^x} + \frac{\beta\mu}{amr^{x+1}} \times \overline{1 - r - 1. A^x + B^x - AB^x}.$$

μ and β denoting the number of persons living at the end of $\overline{z+1}$ years opposite to the ages of B and A.

This problem may also be solved by the assistance of the 41st Problem. Let W be the value of an annuity on the life of A after B, provided B survives C, and Z the value of an annuity on the life of B after A, provided A survives C, then will the value of the given sum be $\frac{s. \overline{r-1}}{r}$

$$\times \overline{V - AB - W + Z}.$$

If the three lives are of equal age the value may be found either from this or the preceding theorems $= \frac{s. \overline{r-1}}{r} \times \overline{V + CC - C + CCC}$.

NOTE XL. (PROB. L.)

The value of the given sum in the 1st year depends on either of four events:—1st. That the three lives fail, A having died first, or B having died first, A next, and C last; 2dly. That A and B die, and C lives; 3dly. That A dies, and B and C both live; 4thly. That A dies after C and B lives. In the second and following years it depends

upon either of six events :— 1st. That the three lives fail in the year in the order above mentioned ; 2dly. That A and B die in the year, and C lives ; 3dly. That A dies in the year, and B and C both live ; 4thly. That A dies after C in the year, and B lives ; 5thly. That A dies before C in the year, and that B dies in any of the preceding years ; 6thly. That A dies in the year, B having died in one or other of the preceding years, and that C lives. These several contingencies in the first year are $\frac{s}{amsr} \times$

$$\left(\frac{a-b \cdot m-n \cdot s-t}{2} + a-b \cdot m-n \cdot t + a-b \cdot nt + \frac{a-b \cdot s+t \cdot n}{2} \right)$$

$$\text{In the second year } \frac{s}{amsr^2} \times \left(\frac{b-c \cdot n-o \cdot t-u}{2} + b-c \cdot n-o \cdot u + b-c \cdot ou + \frac{b-c \cdot t-u \cdot o}{2} + \frac{m-n \cdot b-c \cdot t-u}{2} + m-n \cdot b-c \cdot u \right)$$

$$\text{In the third year } \frac{s}{amsr^3} \times \left(\frac{c-d \cdot o-p \cdot u-w}{2} + c-d \cdot o-p \cdot w + c-d \cdot pw + \frac{c-d \cdot u-w \cdot p}{2} + \frac{m-o \cdot c-d \cdot u-w}{2} + m-o \cdot c-d \cdot w \right),$$

and so on. These fractions being expanded, &c. will at last be found $= \frac{s}{2ams} \times \left(\frac{ams}{r} + \frac{bmt}{r^2} + \frac{cmu}{r^3} \text{ &c.} \right) - \frac{s}{2ams} \times \left(\frac{bms}{r} + \frac{cnt}{r^2} + \frac{dmu}{r^3} \text{ &c.} \right) + \frac{s}{2ams} \times \left(\frac{amt}{r} + \frac{bmu}{r^2} + \frac{cmw}{r^3} \text{ &c.} \right) - \frac{s}{2ams} \times \left(\frac{bmt}{r} + \frac{mcu}{r^2} + \frac{mdw}{r^3} \text{ &c.} \right) = \frac{s}{2r} \times \left(1 - \frac{1}{r} \right), \text{ AC}$

$$+ \frac{t \cdot 1 + AT}{s} - \frac{b \cdot 1 + HC}{a})$$

which by Note XVII is the value of S depending on the contingency of C surviving A, which may be proved from other principles.

The value of the given sum in this case depends either on the contingency of A's life being the *first* that fails of the three lives, or on the contingency of C's living to the decease of A after the extinction of the life of B. If the algebraical fractions in Notes XIX and XX be added

together, changing m , n , B , P in the former Note for a , b , A , H , and *vice versa*, the sum of the terms will be reduced to R , or to the value of the given sum depending on the contingency of C surviving A .

NOTE XLI. (PROB. LI.)

In the first year the value of the given sum depends on either of three events :—1st. On the extinction of the three lives, B having died first, A next, and C last, or B having died first, C next, and A last; 2dly. On the extinction of the life of A after B , C having lived to the end of the year. In the second and following years the value will depend on either of five events :—1st. On the extinction of the three lives in the year in the order mentioned above; 2dly. On the extinction of the life of A after B in the year, C surviving that year; 3dly. On the extinction of the lives of A and C in the year, B having died in either of the preceding years; 4thly. On the death of A in the year, B having died in one or other of the preceding years, and C lived to the end of the year; 5thly. On the death of A in the year, B having died before C in either of the preceding years. The value therefore of the given sum in the first year will be $= \frac{s}{amsr} \times \left(\frac{\overline{a-b. m-n. s-t}}{3} + \frac{\overline{a-b. m-n. t}}{2} \right)$; in the second year $\frac{s}{amsr^2} \times \left(\frac{\overline{b-c. n-o. t-u}}{3} + \frac{\overline{b-c. n-o. u}}{2} + \overline{b-c. t-u. m-n} + \overline{b-c. m-n. u} + \frac{\overline{b-c. m-n. s-t}}{2} \right)$; in the third year $\frac{s}{amsr^3} \times \left(\frac{\overline{c-d. o-p. u-w}}{3} + \frac{\overline{c-d. o-p. w}}{2} + \overline{c-d. u-w. m-o} + \overline{c-d. m-o. w} + \frac{\overline{c-d. m-o. s-u}}{2} \right)$, and so on. Having expanded these several fractions, &c. we

$$\begin{aligned}
 & \text{have } \frac{S}{3ams} \times \left(\frac{ans}{r} + \frac{bnt}{r^2} + \frac{cou}{r^3} + \text{&c.} \right) = \frac{S}{3r} \times \overline{1+ABC} \\
 & - \frac{S}{3ams} \times \left(\frac{bms}{r} + \frac{nct}{r^2} + \frac{odu}{r^3} + \text{&c.} \right) = - \frac{S}{3r} \times \frac{b \cdot \overline{1+HBC}}{a} \\
 & - \frac{S}{3ams} \times \left(\frac{ans}{r} + \frac{bot}{r^2} + \frac{cpu}{r^3} + \text{&c.} \right) = - \frac{S}{3r} \times \frac{\overline{n \cdot 1+ACP}}{m} \\
 & + \frac{S}{3ams} \times \left(\frac{bns}{r} + \frac{cot}{r^2} + \frac{dpw}{r^3} + \text{&c.} \right) = \frac{S}{3r} \times \\
 & \frac{\overline{nb \cdot 1+HPC}}{am} + \frac{S}{6ams} \times \left(\frac{amt}{r} + \frac{bnu}{r^2} + \frac{cow}{r^3} + \text{&c.} \right) = \frac{S}{6r} \times \\
 & \frac{\overline{t \cdot 1+ABT}}{s} - \frac{S}{6ams} \times \left(\frac{bmt}{r} + \frac{cnw}{r^2} + \frac{dow}{r^3} + \text{&c.} \right) = - \frac{S}{6r} \\
 & \times \frac{bt \cdot \overline{1+HBT}}{as} - \frac{S}{6ams} \times \left(\frac{ant}{r} + \frac{bou}{r^2} + \frac{cpw}{r^3} + \text{&c.} \right) = - \frac{S}{6r} \\
 & \times \frac{\overline{nt \cdot 1+APT}}{ms} + \frac{S}{6ams} \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3} + \text{&c.} \right) = \\
 & \frac{8 \times ABC}{6} + \frac{S}{2amr} \times \left(\frac{bt}{r} + \frac{cu}{r^2} + \frac{dw}{r^3} + \text{&c.} \right) = \frac{8+AC}{2r} - \frac{S}{2amr} \\
 & \times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3} \text{ &c.} \right) = - \frac{S \cdot ABC}{2r} - \frac{S}{2amr} \times \left(\frac{ct}{r} + \frac{ds}{r^2} \right. \\
 & \left. + \frac{ew}{r^3} + \text{&c.} \right) = - \frac{S \times b \cdot HC}{2ar} + \frac{S}{2amr} \times \left(\frac{nct}{r} + \frac{odu}{r^2} + \frac{pw}{r^3} \right. \\
 & \left. + \text{&c.} \right) = \frac{S \cdot b \cdot HBC}{2ar} + \frac{S}{2ar} \times \left(\frac{b}{r} + \frac{c}{r^2} + \frac{d}{r^3} + \text{&c.} \right) \\
 & = \frac{S \cdot A}{2r} - \frac{S}{2amr} \times \left(\frac{bn}{r} + \frac{co}{r^2} + \frac{dp}{r^3} + \text{&c.} \right) = - \frac{S \cdot AB}{2r} - \\
 & \frac{S}{2ar} \times \left(\frac{c}{r} + \frac{d}{r^2} + \frac{e}{r^3} + \text{&c.} \right) = \frac{S}{2r} \times \overline{A - \frac{b}{a}} + \frac{S}{2amr} \\
 & \times \left(\frac{nc}{r} + \frac{od}{r^2} + \frac{pe}{r^3} + \text{&c.} \right) = \frac{S \cdot b \cdot HB}{2ar}. \quad \text{The whole value} \\
 & \text{therefore will be, when } A \text{ is the oldest of the three lives} = \\
 & \frac{S}{r} \text{ into } \frac{2+r-1 \cdot ABC}{6} - \frac{\overline{r-1 \cdot A}}{2} + \frac{AC-AB}{2} + \frac{b \cdot \overline{HB-HC}}{2a} + \\
 & \frac{\overline{nb \cdot 1+HPC}}{3am} - \frac{\overline{bt \cdot 1+HBT}}{6as} - \frac{\overline{nt \cdot 1+APT}}{6ms} + \frac{\overline{b \cdot 1+HBC}}{6a} + \frac{\overline{t \cdot 1+ABT}}{6s} \\
 & - \frac{\overline{n \cdot 1+ACP}}{3m}.
 \end{aligned}$$

When *B* is the oldest of the three lives, let *x* be the number of years between the age of *B* and of the oldest

person in the table; τ the number of persons living opposite the age of C and a the same number opposite the age of A at the end of x years; A' , $A'C'$, and $H'C'$ the values of annuities on those single and joint lives for x years, and A^x the value of a life x years older than A. The given sum may be received after the first x years on the death of A, provided C shall have survived that term, or that he shall have died *after* B in the mean time. Let π denote the last-mentioned probability, then will the value of this part of the reversion be S into $\pi + \frac{\tau}{s} \times \frac{a \cdot r-1 \cdot V-A^x}{ar^x+1}$ and the whole value of the reversion $= \frac{S}{r}$ into

$$\frac{2+r-1 \cdot ABC}{6} - \frac{r-1 \cdot A'}{2} + \frac{A'C'-AB}{2} + \frac{b \cdot HB-H'C'}{2a} +$$

$$\frac{ab \cdot 1+HPC}{3am} - \frac{bt \cdot 1+HBT}{6as} - \frac{nt \cdot 1+APT}{6ms} + \frac{b \cdot 1+HBC}{6a} +$$

$$\frac{t \cdot 1+ABT}{6s} - \frac{n \cdot 1+APC}{3m} + \pi + \frac{\tau}{s} \times \frac{a \cdot r-1 \cdot V-A^x}{ar^x}.$$

When C is the oldest of the three lives, let z be the difference between the age of C and of the oldest person in the table, A' , $A'B'$, and $H'B'$ the values of annuities on those single and joint lives for z years, A^z the value of a life z years older than A, μ the number of persons living opposite the age of A at the end of z years, and ϕ the probability that C dies after B, then will the value of the reversion be $\frac{S}{r}$ into $\frac{2+r-1 \cdot ABC}{6} - \frac{r-1 \cdot A'}{2} + \frac{AC-A'B'}{2} +$

$$\frac{b \cdot H'B'-HC}{2a} + \frac{nb \cdot 1+HPC}{3am} - \frac{bt \cdot 1+HBT}{6a} - \frac{nt \cdot 1+APT}{6ms} +$$

$$\frac{b \cdot 1+HBC}{6a} + \frac{t \cdot 1+ABT}{6s} - \frac{n \cdot 1+APC}{3m} + \phi + \frac{\mu}{m} \times \frac{r-1 \cdot V-A^z}{ar^z}.$$

When the three lives are of equal age, the value will be
 $S \cdot \frac{r-1}{6r} \times 2V - 3C - CCC.$

As the reversion in this Problem consists of two parts:—1st. Of the contingency of receiving the given sum on the death of A, provided B should be then dead and C living; and 2dly. Of the contingency of receiving it on the death of A, provided B should be the first, C the second, and A the third that fails;—it follows that the present solution may be obtained from those of the twenty-seventh and forty-sixth Problems. But the computations derived from the addition of those of two Problems would be more tedious and complicated, and therefore the preceding rules are to be preferred.

NOTE XLII. (PROB. LII.)

In the first year the value of the given sum depends upon either of four events:—1st. On the extinction of the three lives, A having been the first or last that failed; 2dly. On A's having been the only life that failed; 3dly. On A's having failed before B, and C's having lived; 4thly. On A's having failed before C and B's having lived; which several contingencies are expressed by the fractions

$$\frac{a-b \cdot m-n \cdot s-t}{2ams} + \frac{a-b \cdot nt}{ams} + \frac{a-b \cdot m-n \cdot t}{2ams} + \frac{a-b \cdot s-t \cdot n}{2ams}$$

In the second and following years the value will depend on either of six events:—1st. On the extinction of the three lives in the year, A having been the first or last that failed; 2dly. On A's having been the only life that failed in the year; 3dly. On A's having failed before B in the year, and C's having lived; 4thly. On A's having failed before C in the year, and B's having lived; 5thly. On B's having failed in either of the preceding years, and A's having died after C in the year; 6thly. On B's having failed before C in either of the preceding years, and A's

having died in the year. The contingencies therefore in the second year will be expressed by the fractions

$$\frac{b-c. n-o. t-u}{2ams} + \frac{b-c. ou}{ams} + \frac{b-c. n-o. u}{ams} + \frac{b-c. t-u. o}{2ams} +$$

$$\frac{b-c. m-n. t-u}{2ams} + \frac{b-c. s-t. m-n}{2ams}, \text{ in the third year by the}$$

$$\text{fractions } \frac{c-d. o-p. u-w}{2ams} + \frac{c-d. pw}{ams} + \frac{c-d. o-p. w}{2ams} + \frac{c-d. u-w. p}{2ams}$$

$$+ \frac{c-d. m-o. u-w}{2ams} + \frac{c-d. s-u. m-o}{2ams}, \text{ and so on. These frac-}$$

tions may be reduced into the twelve following series:

$$\frac{1}{2ams} \times \left(\frac{ams}{r} + \frac{bnt}{r^2} + \frac{cou}{r^3} + \frac{dpw}{r^3} \&c. \right) + \frac{1}{2ams} \times \left(\frac{ant}{r} + \frac{dot}{r^2} \right.$$

$$+ \frac{cpw}{r^3} + \&c. \right) - \frac{1}{2ams} \times \left(\frac{bms}{r} + \frac{cnt}{r^2} + \frac{dou}{r^3} + \&c. \right) - \frac{1}{2ams}$$

$$\times \left(\frac{bnt}{r} + \frac{cou}{r^2} + \frac{dpw}{r^3} + \frac{eqx}{r^4} + \&c. \right) + \frac{1}{2a} \times \left(\frac{b}{r^2} - \frac{c}{r^2} - \frac{d}{r^2} + \right.$$

$$\&c. \right) - \frac{1}{2am} \times \left(\frac{bn}{r^2} + \frac{co}{r^3} + \frac{dp}{r^4} + \&c. \right) - \frac{1}{2a} \times \left(\frac{c}{r^2} + \frac{d}{r^2} \right.$$

$$+ \frac{e}{r^4} + \&c. \right) + \frac{1}{2am} \times \left(\frac{cn}{r^2} + \frac{do}{r^3} + \frac{ep}{r^4} + \&c. \right) - \frac{1}{2as} \times \left(\frac{bu}{r^2} + \right.$$

$$\frac{ew}{r^3} + \frac{dx}{r^4} + \&c. \right) + \frac{1}{2ams} \times \left(\frac{bnu}{r^2} + \frac{cow}{r^3} + \frac{dpx}{r^4} + \&c. \right) +$$

$$\frac{1}{2as} \times \left(\frac{cu}{r^2} + \frac{dw}{r^3} + \frac{ex}{r^4} + \&c. \right) - \frac{1}{2ams} \times \left(\frac{cnw}{r^2} + \frac{dow}{r^3} + \frac{epx}{r^4} \right. \right. + \&c.).$$

From these series the value of the given sum, when A is the oldest of the three lives, may be found equal

$$\text{to S into } \frac{1-r-1. ABC+A}{2r} + \frac{AC}{2} - \frac{AB}{2r} + \frac{b. HB-HBC}{2ar} -$$

$$\frac{t. AT-ABT}{2ar} + \frac{nt. 1+APT}{2mer} - \frac{bt. 1+HBT}{2asr}.$$

When C is the oldest of the three lives, let π denote the probability that C dies after B, let z be the difference between the age of C and that of the oldest life in the table, A', A'B' and H'B', the value of these single and joint lives for z years, and A z the value of a life z years older than A, then will the value be S into

$$\frac{1-r-1. \overline{ABC+A'}}{2r} + \frac{AC}{2} - \frac{A'B'}{2r} + \frac{b. \overline{H'B'-HBC}}{2ar} - \frac{t. \overline{AT-ABT}}{2ar} \\ + \frac{nt. \overline{1+APT}}{2asr} - \frac{bt. \overline{1+HBT}}{2asr} + \frac{nr. \overline{a.r-1.V-Ax}}{asr^2+1} . \quad a \text{ denoting}$$

the number of persons living in the table opposite to the age of A at the end of z years.

If B be the oldest of the three lives, the value of the reversion after the necessary extinction of the life of B will depend on either of three events:—1st. On the contingency of C's having died *after* him in the first x years, and A's having died in the $x+1^{\text{st}}, x+2^{\text{d}}, \&c.$ years; 2dly. On A's having died after C in either of those years; 3dly. On C's having lived and A only having died in either of those years, x representing the difference between the age of B and the oldest life in the table. Let $\alpha, \beta, \gamma, \delta, \&c.$ represent the number of persons living opposite the age of A at the end of $x, x+1, x+2, \&c.$ years, and $\sigma, \tau, \nu, \&c.$ the same numbers opposite the age of C: Let ϕ denote the probability that C dies *after* B in x years, and A^x be the value of a life x years older than A; then will the value on the first of the above mentioned contingencies be $\frac{\phi. \overline{a.r-1.V-Ax}}{asr^2+1}$, and the value on the 2d and 3d contingencies will be expressed by the fractions $\frac{\sigma-\tau. \overline{a-\beta}}{2asr^2+1} + \frac{\tau-\nu. \overline{\beta-\gamma}}{2asr^2+2} + \&c.$ and $\frac{\sigma. \overline{a-\beta}}{asr^2+1} + \frac{\nu. \overline{\beta-\gamma}}{asr^2+2} + \&c.$ $= \frac{1}{2asr^2} \left(\frac{\sigma\tau}{r} + \frac{\beta\nu}{r^2} + \&c. \right) - \frac{1}{2asr^2} \times \left(\frac{\beta\tau}{r} + \frac{\gamma\nu}{r^2} + \&c. \right)$ $+ \frac{1}{2asr^2} \times \left(\frac{\sigma\nu}{r} + \frac{\beta\tau}{r^2} + \frac{\gamma\nu}{r^3} + \&c. \right) - \frac{1}{2asr^2} \times \left(\frac{\beta\sigma}{r} + \frac{\gamma\tau}{r^2} + \frac{\delta\nu}{r^3} + \&c. \right)$ The 2d and third of these series are $= \frac{\sigma\sigma}{2asr^2+1}$. The 1st and 4th are nearly of equal value, and therefore may be considered as destroying each other; hence the

whole value of the given sum, supposing A' and $A'T'$ to be the values of the single and joint lives for x years, $A''C'$ the value of the joint lives, AC for $x+1$ years, and AC^x to be the value of two joint lives x years older than AC , will be

$$S \text{ into } \frac{1-r-1}{2r} \cdot \overline{ABC + A'} + \frac{A''C''}{2} - \frac{AB}{2r} + \frac{b \cdot \overline{HB - HBC}}{2ar} - \\ \frac{t \cdot \overline{A'T' - ABT}}{2sr} + \frac{mt \cdot \overline{1 + APT}}{2msr} - \frac{bt \cdot \overline{1 + HBT}}{2asr} + \frac{\phi \cdot s \cdot \overline{r-1 \cdot V - A^x}}{ar^{x+1}}.$$

If the three lives be of equal age the value becomes

$$S \cdot \frac{r-1}{2r} \times \overline{V - C + CC - CCC}.$$

The solution of this Problem may also be derived from the twenty-eighth and forty-sixth Problems, by “finding “the value on the death of A , should his life be the first “that failed; and also the value should B be the first, C “the second, and A the third, that failed;” but the foregoing rules, in being more simple, are preferable.

In the particular case of the *equality of the three lives*, the value by these Problems will be $\frac{S \cdot r-1 \cdot \overline{V - CCC}}{3r} + \frac{S \cdot r-1 \cdot \overline{V - 3C + 3CC - CCC}}{6r} = \frac{S \cdot r-1 \cdot \overline{V - C + CC - CCC}}{2r}$, agreeing with the value given above, and therefore proving the truth of the solution.

NOTE XLIII. (PROB. LIII.)

The value of the given sum in the first year will depend on the event of the three lives failing, C having died *after* A , and will be expressed by the fraction $\frac{S \cdot a-b \cdot m-n \cdot s-t}{2amsr}$

In the second and following years it will depend on either of five events:—1st. On the failure of the three lives in the year, C having died after A ; 2dly. On the failure of the life of A in the preceding years, and of both the lives of B and C in the year; 3dly. On the failure of the life of C *after* A in the preceding years, and of the life of

B only in the year; 4thly. On the failure of the life of B in the preceding years, and of the life of C after A in the year; 5thly. On the failure of the lives of A and B in the preceding years, and of the life of C only in the year. The value of the reversion therefore for the second year will be

$$\frac{S.b-c.n-o.t-u}{2amr^2} + \frac{S.a-b.n-o.t-u}{amr^2} + \frac{S.a-b.s-t.n-o}{2amsr^2} +$$

$$\frac{S.b-c.t-u.m-n}{2amsr^2} + \frac{S.m-n.a-b.t-u}{amsr^2}; \text{ for the third year}$$

$$\frac{S.c-d.o-p.u-w}{2amr^3} + \frac{S.a-c.o-p.u-w}{amr^3} + \frac{S.a-c.s-u.o-p}{2amsr^3} +$$

$$\frac{S.c-d.u-w.m-o}{2amsr^3} + \frac{S.m-o.s-c.u-w}{amsr^3}, \text{ and so on for the other years.}$$

These fractions being expanded will form twenty-six different series, the sum of which, by proceeding as in the foregoing notes, may at last be found = S into

$$\frac{nb. 1+HPC.}{2amr} - \frac{nt. 1+APT.}{2mr} + \frac{BC.}{2} - \frac{AB.}{2r} + \frac{n. AP-CP.}{2mr} -$$

$$\frac{r-1. ABC-BC+B.}{2r} + \frac{1-r-1. 2C-AC.}{2r} + \frac{t. 1+AT.}{2rt} + \frac{b. 1+HC.}{2ar}$$

The last three fractions express the value of S by Prob. xxvi. on the contingency of C dying after A; which being denoted by R, and the first two fractions being denoted by E, the value, when B is the oldest of the three lives, will be

$$E + R + \frac{BC.}{2} + \frac{n. AP-CP.}{2mr} - \frac{r-1. ABC+B-BC.}{2r} - \frac{AB.}{2r}.$$

When C is the oldest of the three lives, the general rule will be $E + R + \frac{n. A'P'-CP.}{2mr} + \frac{BC.}{2} - \frac{A'B'}{2r} - \frac{r-1. ABC+B'-BC.}{2r}$

$$+ \frac{\mu\pi. r-1. V-B'}{mrs+1}; x$$
 denoting the difference between the

age of C and of the oldest person in the table; μ the number of persons living at the age of B after x years; B' , $A'P'$, and $A'B'$ the values of annuities on those single and joint lives for x years; and π the probability that C dies after A.

When A is the oldest of the three lives, let z be the difference between the age of A and of the oldest person in the table, and C'P' and B'C' be the values of those joint lives for z years. After the extinction of A's life the given sum may be received on either of three events:—1st. On the death of B in the $\overline{z+1}, \overline{z+2}, \overline{z+3}$, &c. year, C having died after A in the first z years; 2dly. On the death of C in the $\overline{z+1}, \overline{z+2}$, &c. year, B having died in the first z years; 3dly. On the extinction of both the lives of B and C after the first z years. Let φ denote the probability that C dies after A in z years, μ and σ respectively the number of persons living opposite the ages of B and C at the end of z years, and the value on the first and second of the above contingencies will be = S. into $\frac{\varphi\mu. \overline{r-1}. V-B^x}{m\sigma^{z+1}} + \frac{m-\mu. \sigma. \overline{r-1}. V-C^x}{m\sigma^{z+1}}$. Let ν, ξ, o , &c. be the number of persons living at the age of B, and τ, u, χ , &c. the number of persons living at the age of C at the end of $\overline{z+1}, \overline{z+2}, \overline{z+3}$, &c. years, and the value on the third contingency will be $\frac{S. \mu\sigma}{m\sigma^z}$ into $\frac{\nu\tau}{\mu\sigma} + \frac{u\xi}{\mu\sigma^2} + \frac{o\chi}{\mu\sigma^3}$, &c. $+ \frac{\nu}{\sigma\tau} + \frac{u}{\sigma^2\chi} + \frac{o}{\sigma^3\tau}$, &c. $- \frac{\nu}{\sigma\tau} - \frac{u}{\sigma^2\chi} - \frac{o}{\sigma^3\tau}$, &c. $+ \frac{\nu}{\mu\tau} + \frac{\xi u}{\mu\sigma^2} + \frac{o\chi}{\mu\sigma^3}$, &c. $+ \frac{o}{\mu\tau^3} +$, &c. $- \frac{\xi}{\mu\tau} - \frac{o}{\mu\tau^2} -$, &c. $- \frac{\nu\tau}{\mu\sigma} - \frac{\xi u}{\mu\sigma^2} - \frac{o\chi}{\mu\sigma^3}$, &c. $= \frac{S. \mu\sigma}{m\sigma^z} \times \frac{1-\overline{r-1}. B^x + C^x - BC^x}{r}$, and the whole value in this case will be E + R + S into $\frac{n. AP - C'P'}{2mr} - \frac{\overline{r-1}. ABC + B' - B'C'}{2r}$ $- \frac{AB.}{2r} + \frac{B'C'}{2} + \frac{\varphi\mu. \overline{r-1}. V-B^x}{m\sigma^{z+1}} + \frac{m-\mu. \sigma. \overline{r-1}. V-C^x}{m\sigma^{z+1}} + \frac{\mu\sigma. \overline{r-1}. V-L^x}{m\sigma^{z+1}}$; L^x being the value of the longest of two lives z years older than B and C.

When the three lives are of equal age, the value of the given sum will be $\frac{S.r-1}{2r} \times \overline{V-3C+3CC-CCC}$, or "half the value of the reversion after the extinction of the three lives," which from self-evident principles is known to be the true value.

The solution of this Problem being also derived from the solutions of the 41st and 26th Problems, the accuracy of the foregoing theorems may be satisfactorily proved in the particular case of the equality of the three lives: thus, the value by Prob. xli. will be $\frac{S.r-1.C-2CC+CCC}{2r}$, and the value by Prob. xxvi. will be $\frac{S.r-1.V-2C+CC}{2r}$. The former of these values being subtracted from the latter will leave $\frac{S.r-1}{2r} \times \overline{V-3C+3CC-CCC}$, as given above— The rules derived from the foregoing solution are nearly as simple as those derived from the above-mentioned Problems, though not capable of being so concisely expressed in words, and therefore not so well adapted for general use.

TABLE I.*

Shewing the Probabilities of the Duration of Human Life
at all Ages, formed from the Register of Mortality at
Northampton, for 46 Years, from 1735 to 1780.

Age.	Living.	Decr.	Age.	Living.	Decr.	Age.	Living.	Decr.
0	11650	1340	31	4310	75	65	1632	80
3 months	10310	554	32	4235	75	66	1552	80
6 months	9756	553	33	4160	75	67	1472	80
9 months	9203	553	34	4085	75	68	1392	80
1 year	8650	1367	35	4010	75	69	1312	80
2 years	7283	502	36	3935	75	70	1232	80
3	6781	335	37	3860	75	71	1152	80
4	6446	197	38	3785	75	72	1072	80
5	6249	184	39	3710	75	73	992	80
6	6065	140	40	3635	76	74	912	80
7	5925	110	41	3559	77	75	832	80
8	5815	80	42	3482	78	76	752	77
9	5735	60	43	3404	78	77	675	73
10	5675	52	44	3326	78	78	602	68
11	5623	50	45	3248	78	79	534	65
12	5573	50	46	3170	78	80	469	63
13	5523	50	47	3092	78	81	406	60
14	5473	50	48	3014	78	82	346	57
15	5423	50	49	2936	79	83	289	55
16	5373	53	50	2857	81	84	234	48
17	5320	58	51	2776	82	85	186	41
18	5262	63	52	2694	82	86	145	34
19	5199	67	53	2612	82	87	111	28
20	5132	72	54	2530	82	88	83	21
21	5060	75	55	2448	82	89	62	16
22	4985	75	56	2366	82	90	46	12
23	4910	75	57	2284	82	91	34	10
24	4835	75	58	2202	82	92	24	8
25	4760	75	59	2120	82	93	16	7
26	4685	75	60	2038	82	94	9	5
27	4610	75	61	1956	82	95	4	3
28	4535	75	62	1874	81	96	1	1
29	4460	75	63	1793	81			
30	4385	75	64	1712	80		Total 299,198	11650

* This and the five following Tables have been taken from Dr. Price's Treatise on Reversionary Payments, &c.

TABLE II.

Shewing the EXPECTATIONS of Human Life at every Age, deduced from the *Northampton* Table of Observations.

Ages.	Expectat.	Ages.	Expectat.	Ages.	Expectat.	Ages.	Expectat.
0	25.18	25	30.85	50	17.99	75	6.54
1	32.74	26	30.33	51	17.50	76	6.18
2	37.79	27	29.82	52	17.02	77	5.83
3	39.55	28	29.30	53	16.54	78	5.48
4	40.58	29	28.79	54	16.06	79	5.11
5	40.84	30	28.27	55	15.58	80	4.75
6	41.07	31	27.76	56	15.10	81	4.41
7	41.03	32	27.24	57	14.63	82	4.09
8	40.79	33	26.72	58	14.15	83	3.80
9	40.36	34	26.20	59	13.68	84	3.58
10	39.78	35	25.68	60	13.21	85	3.37
11	39.14	36	25.16	61	12.75	86	3.19
12	38.49	37	24.64	62	12.28	87	3.01
13	37.83	38	24.12	63	11.81	88	2.86
14	37.17	39	23.60	64	11.35	89	2.66
15	36.51	40	23.08	65	10.88	90	2.41
16	35.85	41	22.56	66	10.42	91	2.09
17	35.20	42	22.04	67	9.96	92	1.75
18	34.58	43	21.54	68	9.50	93	1.37
19	33.99	44	21.03	69	9.05	94	1.05
20	33.43	45	20.52	70	8.60	95	0.75
21	32.90	46	20.02	71	8.17	96	0.50
22	32.39	47	19.51	72	7.74		
23	31.88	48	19.00	73	7.33		
24	31.36	49	18.49	74	6.92		

TABLE III.

ving the Value of an Annuity on a Single Life at every Age according to the Probabilities of the Duration of Human Life at Northampton.

s.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.	Value at 7 per Cent.	Value at 8 per Cent.
1	10.327	8.863				
2	13.008	11.274				
3	16.021	13.465	11.563	10.107	8.963	8.046
4	18.599	15.633	13.420	11.724	10.391	9.321
5	19.575	16.462	14.135	12.348	10.941	9.812
6	20.210	17.010	14.613	12.769	11.315	10.147
7	20.473	17.248	14.827	12.962	11.489	10.304
8	20.727	17.482	15.041	13.150	11.666	10.466
9	20.853	17.611	15.166	13.275	11.777	10.570
10	20.885	17.662	15.226	13.337	11.840	10.631
11	20.812	17.625	15.210	13.335	11.846	10.641
12	20.663	17.523	15.139	13.285	11.809	10.614
13	20.480	17.393	15.043	13.212	11.752	10.569
14	20.283	17.251	14.937	13.130	11.687	10.517
15	20.081	17.103	14.826	13.044	11.618	10.461
16	19.872	16.950	14.710	12.953	11.545	10.401
17	19.657	16.791	14.588	12.857	11.467	10.337
18	19.435	16.625	14.460	12.755	11.384	10.268
19	19.218	16.462	14.334	12.655	11.302	10.200
20	19.013	16.309	14.217	12.562	11.226	10.137
21	18.820	16.167	14.108	12.477	11.157	10.081
22	18.638	16.033	14.007	12.398	11.094	10.030
23	18.470	15.912	13.917	12.329	11.042	9.986
24	18.311	15.797	13.833	12.265	10.993	9.947
25	18.148	15.680	13.746	12.200	10.942	9.907
26	17.983	15.560	13.658	12.132	10.890	9.865
27	17.814	15.438	13.567	12.063	10.836	9.823
28	17.642	15.312	13.473	11.992	10.780	9.778
29	17.467	15.184	13.377	11.917	10.723	9.732
30	17.289	15.053	13.278	11.841	10.663	9.685
31	17.107	14.918	13.177	11.763	10.602	9.635
32	16.922	14.781	13.072	11.682	10.539	9.584
33	16.732	14.639	12.965	11.598	10.473	9.531
34	16.540	14.495	12.854	11.512	10.404	9.476

TABLES.

Table III.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.	Value at 7 per Cent.	Value at 8 per Cent.
33	16.343	14.347	12.740	11.423	10.333	9.418
34	16.142	14.195	12.623	11.331	10.260	9.359
35	15.938	14.039	12.502	11.236	10.183	9.296
36	15.729	13.880	12.377	11.137	10.104	9.231
37	15.515	13.716	12.249	11.035	10.021	9.164
38	15.298	13.548	12.116	10.929	9.935	9.093
39	15.075	13.375	11.979	10.819	9.845	9.019
40	14.848	13.197	11.837	10.705	9.752	8.941
41	14.620	13.018	11.695	10.589	9.657	8.863
42	14.391	12.838	11.551	10.473	9.562	8.783
43	14.162	12.657	11.407	10.356	9.466	8.703
44	13.929	12.472	11.258	10.235	9.366	8.620
45	13.692	12.283	11.105	10.110	9.262	8.533
46	13.450	12.089	10.947	9.980	9.154	8.443
47	13.203	11.890	10.784	9.846	9.042	8.348
48	12.951	11.685	10.616	9.707	8.925	8.249
49	12.693	11.475	10.443	9.563	8.804	8.146
50	12.436	11.264	10.269	9.417	8.681	8.041
51	12.183	11.057	10.097	9.273	8.559	7.937
52	11.930	10.849	9.925	9.129	8.437	7.833
53	11.674	10.637	9.748	8.980	8.311	7.725
54	11.414	10.421	9.567	8.827	8.181	7.614
55	11.150	10.201	9.382	8.670	8.047	7.499
56	10.882	9.977	9.193	8.509	7.909	7.379
57	10.611	9.749	8.999	8.343	7.766	7.256
58	10.337	9.516	8.801	8.173	7.619	7.128
59	10.058	9.280	8.599	7.999	7.468	6.996
60	9.777	9.039	8.392	7.820	7.312	6.860
61	9.493	8.795	8.181	7.637	7.152	6.719
62	9.205	8.547	7.966	7.449	6.988	6.574
63	8.910	8.291	7.742	7.253	6.815	6.421
64	8.611	8.030	7.514	7.052	6.637	6.262
65	8.304	7.761	7.276	6.841	6.449	6.095
66	7.994	7.488	7.034	6.625	6.256	5.922
67	7.682	7.211	6.787	6.405	6.058	5.743
68	7.367	6.930	6.536	6.179	5.855	5.559
69	7.051	6.647	6.281	5.949	5.646	5.370
70	6.734	6.361	6.023	5.716	5.434	5.176
71	6.418	6.075	5.764	5.479	5.218	4.978
72	6.103	5.790	5.504	5.241	5.000	4.778

Table III.—*continued.*

s.	Value at 5 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.	Value at 7 per Cent.	Value at 8 per Cent.
	5.794	5.507	5.245	5.004	4.781	4.576
	5.491	5.230	4.990	4.769	4.565	4.375
	5.199	4.962	4.744	4.542	4.354	4.180
	4.925	4.710	4.511	4.326	4.154	3.994
	4.652	4.457	4.277	4.109	3.952	3.806
	4.372	4.197	4.035	3.884	3.742	3.609
	4.077	3.921	3.776	3.641	3.514	3.394
	3.781	3.643	3.515	3.394	3.281	3.174
	3.499	3.377	3.263	3.156	3.055	2.960
	3.229	3.122	3.020	2.926	2.836	2.751
	2.982	2.887	2.797	2.713	2.632	2.557
	2.793	2.708	2.627	2.551	2.479	2.410
	2.620	2.543	2.471	2.402	2.337	2.275
	2.462	2.393	2.328	2.266	2.207	2.151
	2.312	2.251	2.193	2.138	2.085	2.035
	2.185	2.131	2.080	2.031	1.984	1.939
	2.013	1.967	1.924	1.882	1.842	1.803
	1.794	1.758	1.723	1.689	1.656	1.625
1	1.501	1.474	1.447	1.422	1.398	1.374
2	1.190	1.171	1.153	1.136	1.118	1.102
3	0.839	0.827	0.816	0.806	0.795	0.785
4	0.536	0.530	0.524	0.518	0.512	0.507
5	0.242	0.240	0.238	0.236	0.234	0.232
6	0.000	0.000	0.000	0.000	0.000	0.000

TABLE IV.

Shewing the Value of an Annuity on the *joint Continuance* of Two Lives, having the same common Age, according to the *Northampton Table of Observations*.

Difference of Age 0.

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1- 1	9.491	8.252	7.287	6.515
2- 2	12.789	11.107	9.793	8.741
3- 3	14.196	12.325	10.862	9.689
4- 4	15.181	13.185	11.621	10.365
5- 5	15.638	13.591	11.984	10.691
6- 6	16.099	14.005	12.358	11.031
7- 7	16.375	14.224	12.596	11.251
8- 8	16.510	14.399	12.731	11.382
9- 9	16.483	14.396	12.744	11.404
10-10	16.339	14.277	12.665	11.345
11-11	16.142	14.133	12.546	11.249
12-12	15.926	13.966	12.411	11.139
13-13	15.702	13.789	12.268	11.023
14-14	15.470	13.604	12.118	10.899
15-15	15.229	13.411	11.960	10.767
16-16	14.979	13.212	11.793	10.626
17-17	14.737	13.019	11.630	10.489
18-18	14.516	12.841	11.483	10.365
19-19	14.316	12.679	11.351	10.255
20-20	14.133	12.535	11.232	10.156
21-21	13.974	12.409	11.131	10.074
22-22	13.830	12.293	11.042	10.002
23-23	13.688	12.179	10.951	9.928
24-24	13.534	12.062	10.858	9.853
25-25	13.383	11.944	10.764	9.776
26-26	13.230	11.822	10.667	9.697
27-27	13.074	11.699	10.567	9.616
28-28	12.915	11.573	10.466	9.533
29-29	12.754	11.445	10.362	9.448
30-30	12.589	11.313	10.255	9.360
31-31	12.422	11.179	10.146	9.270
32-32	12.252	11.042	10.034	9.178
33-33	12.079	10.902	9.919	9.082

TABLE IV.—*continued.*

s.	Value at 8 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
34	11.902	10.759	9.801	8.984
35	11.722	10.612	9.680	8.883
36	11.539	10.462	9.555	8.778
37	11.351	10.307	9.427	8.670
38	11.160	10.149	9.294	8.558
39	10.964	9.986	9.158	8.442
40	10.764	9.820	9.016	8.322
41	10.565	9.654	8.876	8.202
42	10.369	9.491	8.737	8.083
43	10.175	9.326	8.599	7.965
44	9.978	9.160	8.457	7.843
45	9.776	8.990	8.312	7.718
46	9.571	8.815	8.162	7.589
47	9.362	8.637	8.008	7.455
48	9.149	8.453	7.849	7.316
49	8.931	8.266	7.686	7.173
50	8.714	8.081	7.522	7.030
51	8.507	7.900	7.366	6.893
52	8.304	7.723	7.213	6.758
53	8.099	7.544	7.056	6.620
54	7.891	7.362	6.897	6.480
55	7.681	7.179	6.735	6.336
56	7.470	6.993	6.571	6.190
57	7.256	6.805	6.404	6.041
58	7.041	6.614	6.234	5.890
59	6.824	6.421	6.062	5.735
60	6.606	6.226	5.888	5.579
61	6.387	6.030	5.712	5.420
62	6.166	5.831	5.533	5.259
63	5.938	5.626	5.347	5.089
64	5.709	5.417	5.158	4.917
65	5.471	5.201	4.960	4.736
66	5.231	4.982	4.759	4.551
67	4.990	4.760	4.555	4.363
68	4.747	4.537	4.348	4.171
69	4.504	4.312	4.140	3.977
70	4.261	4.087	3.930	3.781
71	4.020	3.862	3.719	3.584
72	3.781	3.639	3.510	3.387
73	3.548	3.421	3.304	3.193
74	3.324	3.211	3.105	3.005

TABLES.

TABLE IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
75-75	3.114	3.015	2.917	2.827
76-76	2.920	2.833	2.750	2.668
77-77	2.741	2.656	2.583	2.511
78-78	2.550	2.470	2.410	2.346
79-79	2.338	2.271	2.217	2.161
80-80	2.122	2.068	2.018	1.969
81-81	1.917	1.869	1.827	1.786
82-82	1.719	1.681	1.642	1.606
83-83	1.538	1.510	1.472	1.441
84-84	1.416	1.387	1.357	1.330
85-85	1.309	1.339	1.256	1.232
86-86	1.218	1.195	1.171	1.149
87-87	1.141	1.124	1.098	1.078
88-88	1.103	1.030	1.063	1.044
89-89	1.036	1.015	1.001	0.984
90-90	0.938	0.922	0.909	0.895
91-91	0.769	0.756	0.748	0.737
92-92	0.591	0.583	0.576	0.569
93-93	0.369	0.365	0.361	0.357
94-94	0.203	0.201	0.199	0.197
95-95	0.060	0.060	0.059	0.058
96-96	0.000	0.000	0.000	0.000

Difference of Age *five Years.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1- 6	12.347	10.741	9.479	8.467
2- 7	14.461	12.581	11.100	9.911
3- 8	15.300	13.319	11.755	10.498
4- 9	15.809	13.775	12.165	10.869
5-10	15.974	13.983	12.315	11.010
6-11	16.110	14.068	12.447	11.136
7-12	16.137	14.111	12.498	11.192
8-13	16.089	14.089	12.492	11.197
9-14	15.957	13.992	12.421	11.144
10-15	15.762	13.841	12.302	11.048

TABLE IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
11-16	15.538	13.664	12.158	10.929
12-17	15.308	13.480	12.009	10.805
13-18	15.086	13.303	11.864	10.685
14-19	14.870	13.130	11.723	10.568
15-20	14.660	12.961	11.585	10.453
16-21	14.457	12.799	11.452	10.342
17-22	14.265	12.646	11.327	10.239
18-23	14.082	12.500	11.209	10.140
19-24	13.908	12.361	11.096	10.048
20-25	13.741	12.229	10.989	9.960
21-26	13.584	12.105	10.890	9.879
22-27	13.433	11.987	10.796	9.803
23-28	13.280	11.866	10.699	9.724
24-29	13.124	11.743	10.600	9.643
25-30	12.966	11.618	10.499	9.561
26-31	12.805	11.489	10.396	9.476
27-32	12.641	11.359	10.289	9.389
28-33	12.474	11.225	10.181	9.299
29-34	12.304	11.088	10.069	9.207
30-35	12.131	10.948	9.954	9.112
31-36	11.955	10.805	9.837	9.014
32-37	11.775	10.659	9.716	8.913
33-38	11.592	10.508	9.591	8.808
34-39	11.404	10.354	9.463	8.701
35-40	11.213	10.196	9.331	8.589
36-41	11.021	10.037	9.198	8.476
37-42	10.828	9.877	9.062	8.362
38-43	10.635	9.716	8.927	8.246
39-44	10.437	9.550	8.787	8.127
40-45	10.236	9.381	8.643	8.003
41-46	10.033	9.210	8.497	7.878
42-47	9.829	9.037	8.350	7.751
43-48	9.624	8.862	8.200	7.621
44-49	9.414	8.683	8.046	7.488
45-50	9.204	8.503	7.891	7.353
46-51	8.997	8.326	7.737	7.219
47-52	8.790	8.147	7.582	7.084
48-53	8.579	7.965	7.424	6.945
49-54	8.366	7.780	7.262	6.802
50-55	8.152	7.593	7.098	6.658
51-56	7.941	7.409	6.936	6.515

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
52-57	7.730	7.225	6.774	6.371
53-58	7.518	7.039	6.609	6.225
54-59	7.304	6.850	6.442	6.076
55-60	7.088	6.659	6.272	5.924
56-61	6.870	6.465	6.100	5.770
57-62	6.651	6.270	5.925	5.613
58-63	6.427	6.070	5.744	5.450
59-64	6.201	5.867	5.561	5.284
60-65	5.970	5.658	5.372	5.112
61-66	5.737	5.447	5.180	4.938
62-67	5.503	5.285	4.986	4.760
63-68	5.265	5.017	4.786	4.576
64-69	5.025	4.798	4.585	4.390
65-70	4.783	4.573	4.378	4.199
66-71	4.540	4.349	4.169	4.005
67-72	4.298	4.124	3.960	3.811
68-73	4.059	3.901	3.752	3.616
69-74	3.825	3.683	3.547	3.423
70-75	3.599	3.471	3.347	3.236
71-76	3.386	3.270	3.159	3.059
72-77	3.176	3.070	2.971	2.882
73-78	2.963	2.869	2.780	2.701
74-79	2.743	2.659	2.580	2.511
75-80	2.526	2.448	2.381	2.323
76-81	2.325	2.258	2.195	2.147
77-82	2.131	2.077	2.013	1.975
78-83	1.947	1.899	1.838	1.810
79-84	1.793	1.751	1.750	1.672
80-85	1.645	1.608	1.573	1.539
81-86	1.511	1.478	1.447	1.417
82-87	1.385	1.356	1.329	1.303
83-88	1.284	1.259	1.235	1.212
84-89	1.188	1.164	1.145	1.124
85-90	1.074	1.054	1.038	1.021
86-91	0.921	0.902	0.892	0.879
87-92	0.756	0.738	0.734	0.725
88-93	0.562	0.554	0.547	0.541
89-94	0.377	0.373	0.369	0.365
90-95	0.179	0.177	0.175	0.174
91-96	0.000	0.000	0.000	0.000

Table IV.—*continued.*Difference of Age *ten* Years.

es.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
11	12.346	10.782	9.544	8.547
12	14.239	12.438	11.010	9.857
13	14.895	13.019	11.528	10.324
14	15.287	13.374	11.850	10.617
15	15.391	13.479	11.954	10.716
16	15.486	13.578	12.052	10.812
17	15.490	13.599	12.083	10.849
18	15.436	13.569	12.070	10.847
19	15.316	13.482	12.006	10.799
20	15.151	13.355	11.906	10.719
21	14.974	13.217	11.797	10.631
22	14.795	13.078	11.686	10.541
23	14.612	12.934	11.570	10.446
24	14.424	12.784	11.450	10.348
25	14.230	12.630	11.324	10.244
26	14.030	12.470	11.193	10.135
27	13.832	12.311	11.063	10.027
28	13.642	12.158	10.939	9.924
29	13.461	12.013	10.820	9.826
30	13.286	11.873	10.707	9.732
31	13.121	11.742	10.600	9.644
32	12.961	11.615	10.498	9.561
33	12.798	11.485	10.393	9.474
34	12.632	11.352	10.285	9.386
35	12.463	11.217	10.175	9.295
36	12.291	11.078	10.062	9.201
37	12.116	10.936	9.946	9.105
38	11.937	10.791	9.826	9.005
39	11.755	10.642	9.703	8.902
40	11.568	10.490	9.576	8.795
41	11.382	10.336	9.448	8.688
42	11.195	10.182	9.320	8.560
43	11.007	10.027	9.190	8.471
44	10.817	9.869	9.058	8.358
45	10.622	9.706	8.921	8.242
46	10.424	9.540	8.781	8.122
47	10.221	9.370	8.636	7.998
48	10.014	9.195	8.487	7.870
49	9.803	9.015	8.333	7.737

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
40-50	9.590	8.834	8.177	7.602
41-51	9.383	8.658	8.025	7.470
42-52	9.179	8.483	7.875	7.340
43-53	8.975	8.308	7.724	7.208
44-54	8.767	8.130	7.569	7.073
45-55	8.557	7.948	7.411	6.935
46-56	8.344	7.763	7.249	6.793
47-57	8.127	7.574	7.084	6.648
48-58	7.907	7.382	6.915	6.498
49-59	7.684	7.186	6.742	6.344
50-60	7.461	6.989	6.568	6.189
51-61	7.240	6.795	6.395	6.035
52-62	7.021	6.600	6.222	5.880
53-63	6.795	6.399	6.042	5.719
54-64	6.568	6.196	5.860	5.555
55-65	6.334	5.986	5.671	5.384
56-66	6.098	5.774	5.479	5.209
57-67	5.860	5.559	5.283	5.031
58-68	5.621	5.341	5.084	4.849
59-69	5.380	5.121	4.883	4.665
60-70	5.139	4.900	4.680	4.478
61-71	4.898	4.679	4.476	4.289
62-72	4.659	4.458	4.272	4.099
63-73	4.420	4.236	4.066	3.908
64-74	4.186	4.019	3.864	3.719
65-75	3.958	3.806	3.665	3.533
66-76	3.743	3.606	3.477	3.357
67-77	3.529	3.405	3.289	3.180
68-78	3.310	3.199	3.095	2.996
69-79	3.077	2.979	2.887	2.799
70-80	2.843	2.757	2.675	2.598
71-81	2.618	2.542	2.470	2.402
72-82	2.401	2.334	2.271	2.211
73-83	2.199	2.141	2.085	2.032
74-84	2.043	1.991	1.941	1.894
75-85	1.903	1.856	1.811	1.769
76-86	1.781	1.739	1.699	1.661
77-87	1.670	1.633	1.597	1.562
78-88	1.580	1.546	1.514	1.483
79-89	1.456	1.427	1.400	1.373
80-90	1.302	1.278	1.255	1.234

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
81-91	1.096	1.078	1.061	1.044
82-92	0.877	0.864	0.852	0.840
83-93	0.622	0.614	0.606	0.599
84-94	0.408	0.403	0.398	0.394
85-95	0.189	0.187	0.185	0.183
86-96	0.000	0.000	0.000	0.000

Difference of Age *fifteen* Years.

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-16	11.864	10.406	9.243	8.301
2-17	13.659	11.981	10.642	9.555
3-18	14.277	12.531	11.134	9.998
4-19	14.657	12.876	11.447	10.284
5-20	14.776	12.993	11.561	10.391
6-21	14.904	13.121	11.685	10.510
7-22	14.950	13.178	11.748	10.576
8-23	14.929	13.178	11.761	10.597
9-24	14.834	13.112	11.715	10.566
10-25	14.683	12.998	11.627	10.497
11-26	14.508	12.861	11.519	10.410
12-27	14.323	12.715	11.402	10.314
13-28	14.132	12.564	11.280	10.215
14-29	13.936	12.408	11.153	10.110
15-30	13.734	12.246	11.021	10.001
16-31	13.527	12.078	10.883	9.886
17-32	13.320	11.911	10.746	9.771
18-33	13.121	11.750	10.613	9.660
19-34	12.930	11.595	10.486	9.554
20-35	12.744	11.445	10.363	9.451
21-36	12.567	11.302	10.246	9.354
22-37	12.394	11.163	10.132	9.260
23-38	12.218	11.020	10.015	9.163
24-39	12.038	10.874	9.895	9.063
25-40	11.854	10.725	9.771	8.960
26-41	11.670	10.574	9.647	8.855

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
27-42	11.486	10.423	9.522	8.751
28-43	11.302	10.272	9.396	8.645
29-44	11.114	10.117	9.267	8.536
30-45	10.923	9.959	9.135	8.424
31-46	10.728	9.797	8.998	8.309
32-47	10.530	9.631	8.858	8.189
33-48	10.327	9.461	8.714	8.066
34-49	10.120	9.286	8.565	7.938
35-50	9.912	9.110	8.415	7.809
36-51	9.707	8.937	8.267	7.681
37-52	9.503	8.763	8.119	7.553
38-53	9.296	8.586	7.966	7.421
39-54	9.085	8.406	7.810	7.286
40-55	8.870	8.221	7.651	7.146
41-56	8.655	8.035	7.489	7.005
42-57	8.439	7.848	7.326	6.862
43-58	8.222	7.660	7.162	6.718
44-59	8.003	7.469	6.994	6.570
45-60	7.781	7.274	6.822	6.418
46-61	7.556	7.076	6.648	6.263
47-62	7.328	6.875	6.469	6.104
48-63	7.093	6.667	6.283	5.937
49-64	6.854	6.454	6.093	5.767
50-65	6.611	6.236	5.897	5.590
51-66	6.369	6.019	5.701	5.412
52-67	6.127	5.801	5.504	5.233
53-68	5.884	5.580	5.303	5.050
54-69	5.638	5.357	5.100	4.864
55-70	5.391	5.132	4.893	4.674
56-71	5.145	4.905	4.685	4.482
57-72	4.899	4.679	4.477	4.289
58-73	4.656	4.455	4.269	4.096
59-74	4.418	4.234	4.064	3.906
60-75	4.189	4.021	3.866	3.721
61-76	3.974	3.821	3.679	3.546
62-77	3.760	3.621	3.492	3.371
63-78	3.538	3.414	3.297	3.188
64-79	3.303	3.192	3.068	2.990
65-80	3.063	2.965	2.873	2.786
66-81	2.833	2.746	2.664	2.587
67-82	2.610	2.533	2.461	2.393

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
68-83	2.403	2.336	2.272	2.211
69-84	2.244	2.183	2.126	2.071
70-85	2.097	2.042	1.991	1.941
71-86	1.963	1.914	1.867	1.823
72-87	1.838	1.794	1.753	1.713
73-88	1.736	1.697	1.660	1.625
74-89	1.603	1.570	1.538	1.508
75-90	1.440	1.413	1.387	1.361
76-91	1.221	1.200	1.180	1.160
77-92	0.985	0.970	0.955	0.942
78-93	0.706	0.697	0.688	0.679
79-94	0.458	0.453	0.448	0.443
80-95	0.210	0.208	0.206	0.204
81-96	0.000	0.000	0.000	0.000

Difference of Age *twenty* Years.

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-21	11.413	10.053	8.961	8.070
2-22	13.172	11.605	10.344	9.313
3-23	13.794	12.161	10.843	9.764
4-24	14.178	12.511	11.163	10.057
5-25	14.301	12.633	11.281	10.170
6-26	14.420	12.754	11.400	10.285
7-27	14.451	12.798	11.452	10.341
8-28	14.417	12.786	11.455	10.354
9-29	14.310	12.710	11.401	10.315
10-30	14.150	12.586	11.304	10.239
11-31	13.965	12.441	11.188	10.144
12-32	13.770	12.286	11.062	10.042
13-33	13.570	12.125	10.932	9.934
14-34	13.363	11.959	10.796	9.822
15-35	13.151	11.787	10.655	9.703
16-36	12.932	11.609	10.507	9.579
17-37	12.714	11.430	10.358	9.454
18-38	12.502	11.257	10.214	9.333
19-39	12.297	11.089	10.074	9.215
20-40	12.096	10.924	9.937	9.100

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
21-41	11.906	10.768	9.809	8.992
22-42	11.723	10.619	9.685	8.889
23-43	11.540	10.470	9.562	8.785
24-44	11.354	10.317	9.435	8.679
25-45	11.164	10.160	9.304	8.569
26-46	10.970	10.000	9.170	8.455
27-47	10.773	9.836	9.032	8.338
28-48	10.572	9.667	8.890	8.217
29-49	10.366	9.495	8.744	8.092
30-50	10.160	9.321	8.596	7.966
31-51	9.957	9.151	8.451	7.841
32-52	9.756	8.980	8.306	7.716
33-53	9.550	8.806	8.157	7.588
34-54	9.342	8.629	8.005	7.457
35-55	9.131	8.448	7.849	7.322
36-56	8.916	8.264	7.690	7.183
37-57	8.699	8.076	7.527	7.041
38-58	8.477	7.884	7.360	6.894
39-59	8.253	7.689	7.189	6.744
40-60	8.025	7.490	7.015	6.590
41-61	7.796	7.290	6.838	6.434
42-62	7.567	7.088	6.660	6.276
43-63	7.332	6.881	6.477	6.112
44-64	7.095	6.671	6.289	5.944
45-65	6.850	6.453	6.094	5.769
46-66	6.602	6.230	5.894	5.588
47-67	6.351	6.004	5.690	5.403
48-68	6.096	5.774	5.481	5.213
49-69	5.839	5.541	5.268	5.019
50-70	5.582	5.306	5.054	4.822
51-71	5.328	5.074	4.841	4.626
52-72	5.077	4.845	4.630	4.430
53-73	4.829	4.614	4.417	4.234
54-74	4.585	4.389	4.208	4.040
55-75	4.350	4.171	4.006	3.852
56-76	4.129	3.966	3.815	3.674
57-77	3.908	3.761	3.623	3.494
58-78	3.682	3.549	3.424	3.308
59-79	3.440	3.322	3.210	3.105
60-80	3.197	3.092	2.992	2.899
61-81	2.964	2.870	2.782	2.699

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
62-82	2.739	2.656	2.578	2.504
63-83	2.530	2.457	2.387	2.321
64-84	2.371	2.305	2.242	2.182
65-85	2.228	2.163	2.107	2.053
66-86	2.089	2.035	1.984	1.936
67-87	1.963	1.915	1.870.	1.826
68-88	1.860	1.817	1.777	1.737
69-89	1.722	1.685	1.650	1.616
70-90	1.545	1.515	1.486	1.459
71-91	1.303	1.280	1.259	1.238
72-92	1.044	1.028	1.012	0.997
73-93	0.743	0.733	0.723	0.714
74-94	0.480	0.474	0.469	0.464
75-95	0.219	0.217	0.215	0.213
76-96	0.000	0.000	0.000	0.000

Difference of Age *twenty-five* Years.

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-26	11.037	9.770	8.742	7.897
2-27	12.722	11.264	10.080	9.104
3-28	13.307	11.790	10.555	9.537
4-29	13.661	12.116	10.855	9.813
5-30	13.762	12.220	10.959	9.913
6-31	13.859	12.322	11.062	10.015
7-32	13.871	12.350	11.100	10.060
8-33	13.820	12.323	11.090	10.061
9-34	13.698	12.234	11.024	10.012
10-35	13.525	12.098	10.916	9.925
11-36	13.328	11.941	10.788	9.820
12-37	13.120	11.773	10.651	9.707
13-38	12.906	11.600	10.509	9.588
14-39	12.686	11.420	10.360	9.464
15-40	12.459	11.234	10.205	9.333
16-41	12.229	11.044	10.046	9.198

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
17-42	12.002	10.856	9.889	9.065
18-43	11.785	10.677	9.739	8.938
19-44	11.574	10.502	9.592	8.814
20-45	11.367	10.330	9.448	8.692
21-46	11.167	10.165	9.310	8.574
22-47	10.969	10.001	9.173	8.458
23-48	10.768	9.833	9.031	8.338
24-49	10.562	9.661	8.886	8.214
25-50	10.356	9.488	8.739	8.089
26-51	10.154	9.318	8.595	7.966
27-52	9.952	9.148	8.451	7.842
28-53	9.748	8.975	8.304	7.716
29-54	9.540	8.799	8.153	7.586
30-55	9.329	8.619	7.999	7.453
31-56	9.115	8.436	7.841	7.316
32-57	8.897	8.250	7.680	7.175
33-58	8.677	8.060	7.515	7.031
34-59	8.454	7.866	7.346	6.884
35-60	8.227	7.669	7.174	6.732
36-61	7.997	7.469	6.998	6.577
37-62	7.765	7.265	6.819	6.418
38-63	7.525	7.053	6.631	6.252
39-64	7.281	6.838	6.440	6.081
40-65	7.030	6.614	6.240	5.901
41-66	6.776	6.388	6.037	5.718
42-67	6.522	6.159	5.831	5.532
43-68	6.266	5.929	5.622	5.343
44-69	6.008	5.696	5.411	5.150
45-70	5.749	5.460	5.195	4.953
46-71	5.488	5.222	4.978	4.753
47-72	5.228	4.983	4.758	4.551
48-73	4.970	4.746	4.539	4.348
49-74	4.716	4.511	4.322	4.146
50-75	4.472	4.285	4.112	3.951
51-76	4.245	4.074	3.916	3.768
52-77	4.019	3.864	3.720	3.586
53-78	3.787	3.648	3.518	3.396
54-79	3.540	3.416	3.299	3.189
55-80	3.291	3.180	3.076	2.978
56-81	3.051	2.953	2.861	2.774
57-82	2.820	2.733	2.651	2.574

Table IV.—*continued.*

s.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
33	2.608	2.530	2.457	2.388
34	2.446	2.376	2.310	2.247
35	2.297	2.234	2.174	2.118
36	2.162	2.105	2.051	2.000
37	2.036	1.985	1.937	1.891
38	1.932	1.886	1.843	1.802
39	1.790	1.751	1.714	1.678
40	1.606	1.575	1.544	1.515
41	1.354	1.330	1.307	1.285
42	1.083	1.067	1.050	1.035
43	0.770	0.760	0.750	0.740
44	0.497	0.491	0.485	0.480
45	0.227	0.224	0.222	0.220
46	0.000	0.000	0.000	0.000

Difference of Age *thirty* Years.

s.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
31	10.605	9.438	8.483	7.691
32	12.203	10.865	9.767	8.855
33	12.743	11.355	10.213	9.263
34	13.061	11.651	10.488	9.518
35	13.136	11.732	10.572	9.602
36	13.207	11.812	10.656	9.687
37	13.195	11.819	10.676	9.715
38	13.122	11.772	10.648	9.701
39	12.981	11.665	10.565	9.637
40	12.791	11.513	10.442	9.537
41	12.580	11.342	10.302	9.420
42	12.363	11.165	10.156	9.298
43	12.144	10.985	10.007	9.173
44	11.918	10.799	9.852	9.042
45	11.687	10.607	9.690	8.905
46	11.448	10.408	9.522	8.762
47	11.210	10.208	9.353	8.617

Table IV.—*continued.*

Agea.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
18-48	10.975	10.011	9.186	8.478
19-49	10.746	9.818	9.021	8.338
20-50	10.523	9.630	8.861	8.195
21-51	10.313	9.454	8.712	8.067
22-52	10.111	9.284	8.568	7.944
23-53	9.905	9.111	8.421	7.818
24-54	9.696	8.934	8.270	7.688
25-55	9.484	8.754	8.116	7.555
26-56	9.269	8.570	7.958	7.419
27-57	9.051	8.383	7.797	7.279
28-58	8.830	8.193	7.632	7.135
29-59	8.605	7.999	7.464	6.988
30-60	8.378	7.802	7.302	6.897
31-61	8.147	7.601	7.116	6.682
32-62	7.914	7.397	6.937	6.524
33-63	7.673	7.186	6.750	6.359
34-64	7.429	6.971	6.559	6.189
35-65	7.177	6.747	6.360	6.010
36-66	6.922	6.520	6.156	5.827
37-67	6.663	6.288	5.948	5.639
38-68	6.401	6.052	5.735	5.446
39-69	6.137	5.813	5.518	5.249
40-70	5.871	5.571	5.298	5.047
41-71	5.605	5.329	5.076	4.844
42-72	5.341	5.087	4.854	4.640
43-73	5.081	4.848	4.634	4.436
44-74	4.826	4.613	4.417	4.235
45-75	4.580	4.386	4.206	4.040
46-76	4.348	4.171	4.006	3.853
47-77	4.115	3.954	3.805	3.666
48-78	3.875	3.731	3.596	3.469
49-79	3.619	3.490	3.369	3.256
50-80	3.362	3.247	3.140	3.039
51-81	3.117	3.015	2.920	2.829
52-82	2.882	2.792	2.707	2.627
53-83	2.665	2.585	2.510	2.438
54-84	2.501	2.428	2.360	2.295
55-85	2.349	2.284	2.222	2.164
56-86	2.211	2.158	2.097	2.044
57-87	2.082	2.030	1.980	1.932
58-88	1.975	1.928	1.883	1.841

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
59-89	1.828	1.788	1.750	1.713
60-90	1.641	1.608	1.577	1.547
61-91	1.382	1.358	1.334	1.311
62-92	1.105	1.088	1.071	1.055
63-93	0.785	0.774	0.764	0.754
64-94	0.506	0.500	0.494	0.489
65-95	0.230	0.228	0.226	0.224
66-96	0.000	0.000	0.000	0.000

Difference of Age *thirty-five* Years.

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-36	10.104	9.047	8.173	7.442
2-37	11.600	10.392	9.390	8.551
3-38	12.087	10.838	9.800	8.928
4-39	12.362	11.097	10.043	9.157
5-40	12.405	11.150	10.102	9.219
6-41	12.446	11.203	10.163	9.283
7-42	12.412	11.190	10.165	9.296
8-43	12.325	11.130	10.124	9.270
9-44	12.174	11.012	10.031	9.197
10-45	11.976	10.851	9.900	9.088
11-46	11.756	10.697	9.774	8.962
12-47	11.525	10.481	9.592	8.827
13-48	11.288	10.284	9.425	8.686
14-49	11.045	10.080	9.252	8.538
15-50	10.799	9.872	9.076	8.386
16-51	10.554	9.665	8.899	8.234
17-52	10.313	9.461	8.724	8.083
18-53	10.076	9.260	8.552	7.934
19-54	9.845	9.063	8.383	7.788
20-55	9.617	8.869	8.216	7.643
21-56	9.394	8.679	8.053	7.502
22-57	9.174	8.491	7.891	7.362
23-58	8.951	8.299	7.725	7.218

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
24-59	8.725	8.104	7.556	7.070
25-60	8.495	7.906	7.383	6.919
26-61	8.263	7.704	7.207	6.764
27-62	8.028	7.499	7.027	6.605
28-63	7.785	7.286	6.839	6.439
29-64	7.539	7.069	6.648	6.268
30-65	7.286	6.844	6.447	6.089
31-66	7.028	6.615	6.243	5.905
32-67	6.768	6.382	6.033	5.717
33-68	6.504	6.146	5.820	5.524
34-69	6.239	5.906	5.603	5.326
35-70	5.971	5.663	5.382	5.125
36-71	5.703	5.419	5.159	4.920
37-72	5.435	5.174	4.934	4.714
38-73	5.169	4.930	4.710	4.507
39-74	4.908	4.690	4.488	4.301
40-75	4.656	4.457	4.272	4.101
41-76	4.420	4.238	4.069	3.912
42-77	4.184	4.019	3.865	3.722
43-78	3.942	3.794	3.655	3.525
44-79	3.685	3.552	3.428	3.312
45-80	3.426	3.308	3.197	3.093
46-81	3.176	3.072	2.973	2.881
47-82	2.936	2.843	2.756	2.673
48-83	2.714	2.632	2.554	2.481
49-84	2.544	2.470	2.400	2.334
50-85	2.388	2.322	2.258	2.198
51-86	2.248	2.188	2.131	2.077
52-87	2.117	2.063	2.012	1.963
53-88	2.008	1.960	1.914	1.870
54-89	1.858	1.817	1.778	1.740
55-90	1.666	1.633	1.601	1.570
56-91	1.402	1.377	1.353	1.330
57-92	1.120	1.102	1.085	1.069
58-93	0.794	0.784	0.773	0.763
59-94	0.511	0.505	0.499	0.494
60-95	0.233	0.230	0.228	0.226
61-96	0.000	0.000	0.000	0.000

Table IV.—*continued.*Difference of Age *forty Years.*

s.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
11	9.523	8.585	7.800	7.135
12	10.907	9.839	8.942	8.182
13	11.343	10.242	9.315	8.528
14	11.578	10.468	9.531	8.733
15	11.597	10.500	9.571	8.778
16	11.610	10.528	9.609	8.823
17	11.550	10.491	9.589	8.815
18	11.435	10.404	9.524	8.767
19	11.260	10.263	9.409	8.673
0	11.044	10.085	9.260	8.548
1	10.816	9.894	9.100	8.411
2	10.582	9.698	8.934	8.270
3	10.344	9.497	8.763	8.123
4	10.100	9.290	8.586	7.970
5	9.851	9.077	8.403	7.812
6	9.595	8.858	8.214	7.648
7	9.340	8.639	8.024	7.481
8	9.089	8.422	7.835	7.316
9	8.841	8.207	7.648	7.153
0	8.597	7.995	7.463	6.990
1	8.357	7.787	7.281	6.830
2	8.119	7.580	7.100	6.670
3	7.874	7.365	6.910	6.503
4	7.626	7.147	6.717	6.331
5	7.370	6.920	6.515	6.151
6	7.110	6.689	6.309	5.966
7	6.847	6.454	6.098	5.776
8	6.581	6.215	5.883	5.581
9	6.313	5.973	5.664	5.383
0	6.043	5.729	5.442	5.180
1	5.772	5.483	5.218	4.974
2	5.502	5.236	4.992	4.767
3	5.235	4.991	4.766	4.559
4	4.973	4.749	4.543	4.353
5	4.720	4.516	4.327	4.152
6	4.481	4.295	4.123	3.962
7	4.242	4.073	3.916	3.770
8	3.996	3.844	3.702	3.570
9	3.734	3.598	3.471	3.352

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
40-80	3.469	3.349	3.236	3.130
41-81	3.216	3.109	3.009	2.914
42-82	2.973	2.878	2.789	2.705
43-83	2.750	2.666	2.587	2.511
44-84	2.581	2.505	2.433	2.365
45-85	2.424	2.356	2.291	2.230
46-86	2.282	2.221	2.162	2.107
47-87	2.148	2.093	2.041	1.991
48-88	2.036	1.987	1.941	1.895
49-89	1.882	1.840	1.800	1.761
50-90	1.685	1.651	1.619	1.590
51-91	1.417	1.391	1.367	1.343
52-92	1.130	1.113	1.095	1.079
53-93	0.801	0.790	0.780	0.770
54-94	0.515	0.509	0.503	0.498
55-95	0.234	0.232	0.230	0.228
56-96	0.000	0.000	0.000	0.000

Difference of Age *forty-five Years.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-46	8.888	8.071	7.379	6.787
2-47	10.147	9.221	8.435	7.760
3-48	10.515	9.566	8.759	8.063
4-49	10.697	9.744	8.932	8.230
5-50	10.679	9.742	8.941	8.248
6-51	10.664	9.745	8.956	8.271
7-52	10.586	9.690	8.919	8.248
8-53	10.458	9.591	8.841	8.168
9-54	10.276	9.442	8.718	8.065
10-55	10.055	9.256	8.560	7.951
11-56	9.814	9.052	8.386	7.901
12-57	9.566	8.839	8.203	7.643
13-58	9.312	8.622	8.015	7.479
14-59	9.053	8.399	7.821	7.310

Table IV.—*continued.*

<i>L.</i>	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
0	8.790	8.170	7.622	7.135
1	8.521	7.935	7.416	6.953
2	8.252	7.700	7.208	6.770
3	7.981	7.462	6.998	6.583
4	7.714	7.226	6.789	6.396
5	7.444	6.986	6.576	6.205
6	7.177	6.749	6.364	6.015
7	6.911	6.512	6.151	5.824
8	6.643	6.271	5.934	5.628
9	6.372	6.027	5.713	5.427
0	6.099	5.780	5.489	5.223
1	5.826	5.532	5.263	5.016
2	5.554	5.283	5.035	4.807
3	5.284	5.036	4.803	4.597
4	5.019	4.792	4.583	4.390
5	4.764	4.557	4.365	4.188
6	4.523	4.335	4.160	3.997
7	4.282	4.111	3.952	3.804
8	4.035	3.881	3.737	3.602
9	3.771	3.633	3.505	3.384
0	3.506	3.383	3.268	3.160
1	3.251	3.142	3.040	2.944
2	3.005	2.909	2.818	2.733
3	2.779	2.694	2.613	2.537
4	2.607	2.530	2.457	2.388
5	2.448	2.379	2.313	2.251
6	2.304	2.241	2.182	2.126
7	2.168	2.113	2.060	2.009
8	2.055	2.006	1.959	1.914
9	1.901	1.859	1.818	1.779
0	1.702	1.668	1.635	1.604
1	1.431	1.405	1.380	1.356
2	1.140	1.122	1.105	1.089
3	0.808	0.797	0.786	0.776
4	0.519	0.512	0.507	0.501
5	0.235	0.233	0.231	0.229
6	0.000	0.000	0.000	0.000

Table IV.—*continued.*Difference of Age *fifty* Years.

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-51	8.171	7.479	6.885	6.5
2-52	9.300	8.520	7.848	7.4
3-53	9.611	8.815	8.128	7.3
4-54	9.751	8.957	8.269	7.0
5-55	9.707	8.931	8.256	7.0
6-56	9.659	8.902	8.241	7.0
7-57	9.549	8.817	8.176	7.0
8-58	9.395	8.691	8.073	7.1
9-59	9.191	8.519	7.927	7.1
10-60	8.952	8.314	7.750	7.1
11-61	8.696	8.092	7.557	7.1
12-62	8.433	7.863	7.357	6.9
13-63	8.161	7.625	7.147	6.7
14-64	7.884	7.381	6.931	6.4
15-65	7.597	7.127	6.705	6.1
16-66	7.304	6.866	6.472	6.0
17-67	7.012	6.604	6.236	5.9
18-68	6.721	6.343	6.001	5.8
19-69	6.434	6.084	5.766	5.7
20-70	6.149	5.826	5.532	5.5
21-71	5.870	5.572	5.300	5.4
22-72	5.595	5.321	5.070	4.8
23-73	5.323	5.072	4.841	4.6
24-74	5.056	4.827	4.615	4.4
25-75	4.799	4.589	4.396	4.2
26-76	4.556	4.365	4.188	4.0
27-77	4.313	4.140	3.979	3.8
28-78	4.064	3.908	3.762	3.6
29-79	3.798	3.659	3.528	3.4
30-80	3.530	3.406	3.290	3.1
31-81	3.274	3.164	3.060	2.9
32-82	3.027	2.929	2.838	2.7
33-83	2.800	2.713	2.632	2.5
34-84	2.627	2.549	2.476	2.4
35-85	2.468	2.398	2.331	2.3
36-86	2.323	2.260	2.200	2.1
37-87	2.187	2.130	2.077	2.0
38-88	2.072	2.022	1.974	1.9
39-89	1.915	1.872	1.832	1.7

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
40-90	1.713	1.679	1.646	1.614
41-91	1.439	1.413	1.388	1.364
42-92	1.146	1.128	1.111	1.094
43-93	0.811	0.800	0.790	0.779
44-94	0.521	0.515	0.509	0.503
45-95	0.236	0.234	0.232	0.230
46-96	0.000	0.000	0.000	0.000

Difference of Age *fifty-five* Years.

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-56	7.412	6.843	6.346	5.911
2-57	8.392	7.756	7.199	6.709
3-58	8.630	7.986	7.421	6.922
4-59	8.712	8.075	7.514	7.017
5-60	8.629	8.011	7.466	6.982
6-61	8.542	7.944	7.415	6.945
7-62	8.400	7.828	7.319	6.865
8-63	8.214	7.669	7.184	6.750
9-64	7.984	7.470	7.010	6.598
10-65	7.718	7.236	6.803	6.414
11-66	7.437	6.987	6.581	6.215
12-67	7.149	6.730	6.351	6.009
13-68	6.857	6.468	6.116	5.796
14-69	6.562	6.202	5.876	5.578
15-70	6.264	5.933	5.631	5.355
16-71	5.964	5.660	5.382	5.127
17-72	5.667	5.389	5.133	4.899
18-73	5.378	5.123	4.889	4.673
19-74	5.098	4.866	4.651	4.453
20-75	4.831	4.619	4.424	4.242
21-76	4.583	4.391	4.212	4.046
22-77	4.339	4.164	4.001	3.850
23-78	4.087	3.930	3.783	3.646
24-79	3.820	3.679	3.548	3.424
25-80	3.550	3.425	3.308	3.198

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
26-81	3.292	3.181	3.077	2.979
27-82	3.043	2.945	2.853	2.765
28-83	2.815	2.728	2.646	2.568
29-84	2.641	2.563	2.489	2.418
30-85	2.481	2.411	2.344	2.280
31-86	2.386	2.272	2.212	2.154
32-87	2.198	2.142	2.088	2.036
33-88	2.083	2.033	1.985	1.939
34-89	1.925	1.882	1.841	1.802
35-90	1.723	1.688	1.654	1.622
36-91	1.446	1.420	1.395	1.371
37-92	1.152	1.134	1.116	1.099
38-93	0.815	0.804	0.793	0.783
39-94	0.523	0.517	0.511	0.505
40-95	0.237	0.235	0.233	0.231
41-96	0.000	0.000	0.000	0.000

Difference of Age *sixty* Years.

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-61	6.571	6.123	5.725	5.372
2-62	7.391	6.894	6.452	6.059
3-63	7.545	7.048	6.605	6.209
4-64	7.562	7.076	6.641	6.251
5-65	7.429	6.963	6.546	6.171
6-66	7.290	6.846	6.447	6.087
7-67	7.104	6.684	6.306	5.963
8-68	6.884	6.490	6.134	5.811
9-69	6.628	6.262	5.929	5.626
10-70	6.347	6.008	5.700	5.418
11-71	6.056	5.744	5.460	5.199
12-72	5.763	5.478	5.216	4.976
13-73	5.473	5.212	4.972	4.751
14-74	5.188	4.950	4.731	4.528
15-75	4.911	4.695	4.495	4.310

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
16-76	4.649	4.452	4.270	4.101
17-77	4.388	4.210	4.045	3.892
18-78	4.123	3.964	3.815	3.677
19-79	3.846	3.704	3.571	3.447
20-80	3.569	3.443	3.325	3.214
21-81	3.307	3.195	3.091	2.992
22-82	3.057	2.958	2.865	2.777
23-83	2.828	2.740	2.657	2.579
24-84	2.653	2.574	2.499	2.429
25-85	2.492	2.421	2.354	2.290
26-86	2.346	2.282	2.221	2.163
27-87	2.208	2.151	2.096	2.044
28-88	2.091	2.041	1.992	1.946
29-89	1.933	1.889	1.848	1.808
30-90	1.729	1.694	1.660	1.628
31-91	1.451	1.425	1.400	1.376
32-92	1.155	1.137	1.119	1.102
33-93	0.817	0.806	0.795	0.785
34-94	0.524	0.518	0.512	0.506
35-95	0.238	0.235	0.233	0.231
36-96	0.000	0.000	0.000	0.000

Difference of Age *sixty-five Years.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-66	5.633	5.295	4.996	4.728
2-67	6.266	5.896	5.569	5.276
3-68	6.330	5.965	5.641	5.352
4-69	6.277	5.924	5.611	5.332
5-70	6.102	5.768	5.472	5.209
6-71	5.925	5.610	5.331	5.084
7-72	5.714	5.418	5.157	4.929
8-73	5.480	5.204	4.963	4.752
9-74	5.225	4.969	4.747	4.556
10-75	4.962	4.725	4.522	4.350

Table IV.—*continued.*

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
11-76	4.707	4.487	4.301	4.148
12-77	4.449	4.268	4.195	3.943
13-78	4.185	4.022	3.871	3.729
14-79	3.904	3.759	3.624	3.497
15-80	3.621	3.492	3.372	3.259
16-81	3.348	3.235	3.128	3.028
17-82	3.087	2.987	2.893	2.804
18-83	2.849	2.760	2.677	2.598
19-84	2.668	2.589	2.513	2.442
20-85	2.503	2.431	2.364	2.299
21-86	2.354	2.290	2.229	2.171
22-87	2.216	2.158	2.104	2.051
23-88	2.099	2.048	1.999	1.953
24-89	1.939	1.895	1.854	1.814
25-90	1.734	1.699	1.665	1.633
26-91	1.455	1.429	1.404	1.379
27-92	1.158	1.140	1.122	1.105
28-93	0.819	0.808	0.797	0.786
29-94	0.525	0.519	0.513	0.507
30-95	0.238	0.236	0.234	0.231
31-96	0.000	0.000	0.000	0.000

Difference of Age *seventy* Years.

Ages.	Value at 3 per Cent.	Value at 4 per Cent.	Value at 5 per Cent.	Value at 6 per Cent.
1-71	4.611	4.380	4.169	3.976
2-72	5.061	4.814	4.588	4.380
3-73	5.051	4.811	4.591	4.389
4-74	4.953	4.726	4.516	4.323
5-75	4.768	4.557	4.362	4.181
6-76	4.599	4.403	4.221	4.053
7-77	4.402	4.222	4.055	3.899
8-78	4.180	4.016	3.864	3.722
9-79	3.921	3.775	3.638	3.510
10-80	3.647	3.517	3.395	3.281

Table IV.—*continued.*

Ages	Value at 3 per Cent.	Value at 4 per Centt	Value at 5 per Cent.	Value at 6 per Cent.
11-81	3.380	3.264	3.156	3.054
12-82	3.122	3.020	2.924	2.833
13-83	2.884	2.794	2.709	2.628
14-84	2.703	2.622	2.545	2.472
15-85	2.535	2.462	2.393	2.327
16-86	2.380	2.315	2.253	2.194
17-87	2.235	2.177	2.121	2.069
18-88	2.112	2.061	2.012	1.965
19-89	1.948	1.904	1.862	1.822
20-90	1.739	1.704	1.670	1.638
21-91	1.459	1.432	1.407	1.382
22-92	1.160	1.142	1.124	1.107
23-93	0.820	0.809	0.798	0.788
24-94	0.526	0.520	0.514	0.508
25-95	0.238	0.236	0.234	0.232
26-96	0.000	0.000	0.000	0.000

TABLE V.

Shewing the Values of *three equal joint Lives*, according to the *Northampton Table of Observations*, reckoning Interest at 4 per Cent.

Common Age.	Value at 4 per Cent.	Common Age.	Value at 4 per Cent.	Common Age.	Value at 4 per Cent.
1	5.309	33	8.848	65	3,914
2	8.251	34	8.718	66	3.733
3	9.632	35	8.585	67	3.550
4	10.661	36	8.448	68	3.366
5	11.170	37	8.309	69	3.181
6	11.707	38	8.165	70	2.995
7	12.058	39	8.017	71	2.810
8	12.266	40	7.865	72	2.627
9	12.298	41	7.714	73	2.448
10	12.200	42	7.567	74	2.277
11	12.043	43	7.423	75	2.119
12	11.865	44	7.276	76	1.985
13	11.678	45	7.126	77	1.855
14	11.481	46	6.972	78	1.720
15	11.274	47	6.813	79	1.563
16	11.056	48	6.650	80	1.400
17	10.845	49	6.482	81	1.245
18	10.656	50	6.317	82	1.092
19	10.490	51	6.161	83	0.949
20	10.342	52	6.011	84	0.860
21	10.222	53	5.859	85	0.782
22	10.118	54	5.705	86	0.716
23	10.012	55	5.550	87	0.662
24	9.905	56	5.393	88	0.646
25	9.796	57	5.235	89	0.614
26	9.685	58	5.076	90	0.563
27	9.572	59	4.916	91	0.452
28	9.457	60	4.755	92	0.337
29	9.340	61	4.593	93	0.185
30	9.221	62	4.432	94	0.085
31	9.099	63	4.263	95	0.015
32	8.975	64	4.093		

TABLE VI.

Shewing the Values of *three joint Lives*, whose Differences of Age are 10 and 20 Years, according to the *Northampton Table of Observations*, reckoning Interest at 4 per Cent.

Differences of Age 10 and 20 Years.

Ages.			Value at 4 per Cent.	Ages.			Value at 4 per Cent.
1	11	21	8.627	39	49	59	6.164
2	12	22	9.914	40	50	60	5.994
3	13	23	10.344	41	51	61	5.827
4	14	24	10.598	42	52	62	5.662
5	15	25	10.655	43	53	63	5.494
6	16	26	10.708	44	54	64	5.322
7	17	27	10.700	45	55	65	5.145
8	18	28	10.654	46	56	66	4.965
9	19	29	10.562	47	57	67	4.782
10	20	30	10.438	48	58	68	4.597
11	21	31	10.305	49	59	69	4.408
12	22	32	10.170	50	60	70	4.219
13	23	33	10.031	51	61	71	4.032
14	24	34	9.887	52	62	72	3.847
15	25	35	9.738	53	63	73	3.660
16	26	36	9.584	54	64	74	3.477
17	27	37	9.429	55	65	75	3.298
18	28	38	9.278	56	66	76	3.128
19	29	39	9.131	57	67	77	2.959
20	30	40	8.986	58	68	78	2.785
21	31	41	8.850	59	69	79	2.598
22	32	42	8.718	60	70	80	2.408
23	33	43	8.586	61	71	81	2.224
24	34	44	8.451	62	72	82	2.044
25	35	45	8.313	63	73	83	1.875
26	36	46	8.171	64	74	84	1.743
27	37	47	8.027	65	75	85	1.623
28	38	48	7.878	66	76	86	1.519
29	39	49	7.725	67	77	87	1.425
30	40	50	7.571	68	78	88	1.350
31	41	51	7.420	69	79	89	1.248
32	42	52	7.272	70	80	90	1.122
33	43	53	7.123	71	81	91	0.961
34	44	54	6.971	72	82	92	0.767
35	45	55	6.816	73	83	93	0.549
36	46	56	6.658	74	84	94	0.362
37	47	57	6.497	75	85	95	0.169
38	48	58	6.332				

TABLE VII.

Shewing the Sum to which an Annuity of £1 forborne and improved at 4 per Cent., Compound Interest, will amount on the Extinction of a given Life, computed from the *Northampton* Table of Observations.

Age.	Amount.								
1	137.793	19	98.005	37	50.542	55	23.597	73	8.354
2	156.400	20	94.504	38	48.599	56	22.514	74	7.776
3	160.555	21	91.201	39	46.713	57	21.464	75	7.234
4	161.441	22	88.051	40	44.882	58	20.445	76	6.735
5	159.164	23	84.996	41	43.115	59	19.458	77	6.253
6	156.727	24	82.033	42	41.412	60	18.501	78	5.780
7	153.298	25	79.159	43	39.770	61	17.573	79	5.304
8	149.228	26	76.372	44	38.176	62	16.675	80	4.845
9	144.529	27	73.667	45	36.628	63	15.797	81	4.420
10	137.870	28	71.044	46	35.124	64	14.946	82	4.025
11	132.832	29	68.499	47	33.663	65	14.115	83	3.672
12	127.908	30	66.029	48	32.245	66	13.271	84	3.399
13	123.140	31	63.633	49	30.867	67	12.454	85	3.151
14	118.524	32	61.307	50	29.539	68	11.702	86	2.925
15	114.055	33	59.051	51	28.270	69	10.976	87	2.712
16	109.727	34	56.727	52	27.048	70	10.278	88	2.526
17	105.596	35	54.603	53	25.863	71	9.607	89	2.290
18	101.697	36	54.542	54	24.713	72	8.965	90	2.006

Shewing the Value of an Annuity increasing £1 annually during any given Life, computed at 4 per Cent., from the *Northampton* Table of Observations.

Age.	Value.	Age.	Value.	Age.	Value.	Age.	Value.	Age.	Value.
1	227.229	19	241.804	37	168.354	55	91.585	73	28.628
2	264.241	20	237.726	38	164.010	56	87.573	74	26.155
3	277.694	21	233.841	39	159.644	57	83.497	75	23.855
4	285.801	22	230.056	40	155.258	58	79.555	76	21.738
5	288.356	23	226.233	41	150.897	59	75.658	77	19.730
6	290.507	24	222.372	42	146.565	60	71.811	78	17.811
7	290.655	25	218.473	43	142.262	61	68.019	79	15.962
8	289.337	26	214.537	44	137.953	62	64.288	80	13.828
9	286.483	27	210.564	45	133.634	63	60.589	81	12.736
10	282.570	28	206.555	46	129.310	64	56.964	82	10.810
11	278.197	29	202.512	47	124.985	65	53.386	83	9.603
12	273.670	30	198.434	48	120.663	66	49.895	84	8.627
13	269.091	31	193.841	49	116.349	67	46.500	85	7.735
14	264.461	32	189.670	50	112.085	68	43.209	86	6.926
15	259.784	33	185.466	51	107.913	69	40.030	87	6.158
16	255.065	34	181.229	52	103.797	70	36.974	88	5.434
17	250.441	35	176.967	53	99.701	71	34.048	89	4.599
18	246.029	36	172.673	54	95.629	72	31.263	90	3.689

TABLE VIII. (B.)

Show ing the Value of an Annuity increasing £1 annually during Two joint Lives, whose Difference of Age is Five Years, computed from the *Northampton* Table at 4 per Cent.

Ages.	Value.	Ages.	Value.	Ages.	Value.	Ages.	Value.	Ages.	Value.					
1	6	142.800	18	23	147.872	35	40	97.294	52	57	49.569	69	74	14.293
2	7	172.450	19	24	144.704	36	41	94.279	53	58	47.111	70	75	12.881
3	8	181.950	20	25	141.630	37	42	91.279	54	59	44.690	71	76	11.581
4	9	187.063	21	26	138.676	38	43	88.313	55	60	42.309	72	77	10.416
5	10	187.868	22	27	135.790	39	44	85.350	56	61	39.970	73	78	9.257
6	11	188.104	23	28	132.884	40	45	82.390	57	62	37.676	74	79	8.224
7	12	186.934	24	29	129.960	41	46	79.458	58	63	35.408	75	80	7.227
8	13	184.793	25	30	127.017	42	47	76.557	59	64	33.191	76	81	6.348
9	14	181.654	26	31	124.059	43	48	73.690	60	65	31.010	77	82	5.554
10	15	177.837	27	32	121.095	44	49	70.827	61	66	28.888	78	83	4.835
11	16	173.734	28	33	118.105	45	50	68.012	62	67	26.778	79	84	4.250
12	17	169.654	29	34	115.100	46	51	65.262	63	68	24.763	80	85	3.723
13	18	165.697	30	35	112.414	47	52	62.556	64	69	22.819	81	86	3.334
14	19	161.877	31	36	109.406	48	53	59.872	65	70	20.938	82	87	2.890
15	20	158.162	32	37	106.388	49	54	57.213	66	71	19.139	83	88	2.554
16	21	154.583	33	38	103.365	50	55	54.602	67	72	17.428	84	89	2.227
17	22	151.165	34	39	100.332	51	56	52.060	68	73	15.811	85	90	1.874

TABLE IX.

Shewing the Probabilities of Survivorship between two Persons of all Ages, whose common Difference of Age is not less than ten Years, computed from the *Northampton Table of Observations*.

Ten years difference.				Twenty years difference.				Thirty years difference.			
Ages.		Probabilities.		Ages.		Probabilities.		Ages.		Probabilities.	
11	1	.5859	.4141	21	1	.5246	.4754	31	1	.4823	.5177
12	2	.5136	.4864	22	2	.4433	.5567	32	2	.3936	.6064
13	3	.4823	.5177	23	3	.4088	.5912	33	3	.3557	.6443
14	4	.4598	.5402	24	4	.3900	.6100	34	4	.3286	.6714
15	5	.4470	.5530	25	5	.3769	.6231	35	5	.3135	.6865
16	6	.4343	.5657	26	6	.3640	.6360	36	6	.2985	.7015
17	7	.4253	.5747	27	7	.3548	.6452	37	7	.2883	.7117
18	8	.4191	.5809	28	8	.3484	.6516	38	8	.2798	.7202
19	9	.4160	.5840	29	9	.3452	.6548	39	9	.2753	.7247
20	10	.4153	.5847	30	10	.3441	.6559	40	10	.2733	.7267
21	11	.4158	.5842	31	11	.3440	.6560	41	11	.2724	.7276
22	12	.4168	.5832	32	12	.3442	.6558	42	12	.2718	.7282
23	13	.4178	.5822	33	13	.3444	.6556	43	13	.2714	.7286
24	14	.4190	.5810	34	14	.3447	.6553	44	14	.2711	.7289
25	15	.4202	.5798	35	15	.3451	.6549	45	15	.2708	.7292
26	16	.4216	.5784	36	16	.3456	.6544	46	16	.2706	.7294
27	17	.4226	.5774	37	17	.3458	.6542	47	17	.2701	.7299
28	18	.4232	.5768	38	18	.3454	.6546	48	18	.2690	.7310
29	19	.4234	.5766	39	19	.3444	.6556	49	19	.2672	.7328
30	20	.4231	.5769	40	20	.3429	.6571	50	20	.2650	.7350
31	21	.4222	.5778	41	21	.3408	.6592	51	21	.2621	.7379
32	22	.4209	.5791	42	22	.3384	.6616	52	22	.2589	.7411
33	23	.4197	.5803	43	23	.3359	.6641	53	23	.2556	.7444
34	24	.4183	.5817	44	24	.3335	.6665	54	24	.2522	.7478
35	25	.4170	.5830	45	25	.3309	.6691	55	25	.2487	.7513
36	26	.4156	.5844	46	26	.3283	.6717	56	26	.2452	.7548
37	27	.4141	.5859	47	27	.3256	.6744	57	27	.2416	.7584
38	28	.4126	.5874	48	28	.3228	.6772	58	28	.2379	.7621
39	29	.4110	.5890	49	29	.3199	.6801	59	29	.2341	.7659
40	30	.4094	.5906	50	30	.3170	.6830	60	30	.2302	.7698
41	31	.4078	.5922	51	31	.3143	.6857	61	31	.2263	.7737
42	32	.4063	.5937	52	32	.3116	.6884	62	32	.2223	.7777
43	33	.4049	.5951	53	33	.3088	.6912	63	33	.2181	.7819
44	34	.4034	.5966	54	34	.3060	.6940	64	34	.2138	.7862
45	35	.4019	.5981	55	35	.3032	.6968	65	35	.2093	.7907

Table IX.—*continued.*

Ten years difference.				Twenty years difference.				Thirty years difference.			
Ages.		Probabilities.		Ages.		Probabilities.		Ages.		Probabilities.	
46	36	.4004	.5996	56	36	.3003	.6997	66	36	.2047	.7953
47	37	.3988	.6012	57	37	.2973	.7027	67	37	.2001	.7999
48	38	.3971	.6029	58	38	.2943	.7057	68	38	.1954	.8046
49	39	.3954	.6046	59	39	.2913	.7087	69	39	.1906	.8094
50	40	.3938	.6062	60	40	.2882	.7118	70	40	.1859	.8141
51	41	.3923	.6077	61	41	.2849	.7151	71	41	.1810	.8190
52	42	.3907	.6093	62	42	.2814	.7186	72	42	.1758	.8242
53	43	.3890	.6110	63	43	.2774	.7226	73	43	.1705	.8295
54	44	.3881	.6119	64	44	.2733	.7267	74	44	.1653	.8347
55	45	.3853	.6147	65	45	.2690	.7310	75	45	.1604	.8396
56	46	.3835	.6165	66	46	.2646	.7354	76	46	.1560	.8440
57	47	.3816	.6184	67	47	.2601	.7399	77	47	.1515	.8485
58	48	.3797	.6203	68	48	.2555	.7445	78	48	.1468	.8532
59	49	.3777	.6223	69	49	.2509	.7491	79	49	.1416	.8584
60	50	.3756	.6244	70	50	.2461	.7539	80	50	.1361	.8639
61	51	.3730	.6270	71	51	.2406	.7594	81	51	.1304	.8696
62	52	.3700	.6300	72	52	.2349	.7651	82	52	.1246	.8754
63	53	.3668	.6332	73	53	.2291	.7709	83	53	.1194	.8806
64	54	.3634	.6366	74	54	.2235	.7765	84	54	.1160	.8840
65	55	.3597	.6403	75	55	.2181	.7819	85	55	.1130	.8870
66	56	.3558	.6442	76	56	.2131	.7869	86	56	.1104	.8896
67	57	.3517	.6483	77	57	.2080	.7920	87	57	.1080	.8920
68	58	.3474	.6526	78	58	.2024	.7976	88	58	.1063	.8937
69	59	.3430	.6570	79	59	.1959	.8041	89	59	.1025	.8975
70	60	.3385	.6615	80	60	.1890	.8110	90	60	.965	.9035
71	61	.3338	.6662	81	61	.1823	.8177	91	61	.868	.9132
72	62	.3290	.6710	82	62	.1757	.8243	92	62	.754	.9246
73	63	.3246	.6754	83	63	.1703	.8297	93	63	.618	.9382
74	64	.3204	.6796	84	64	.1673	.8327	94	64	.493	.9507
75	65	.3170	.6830	85	65	.1655	.8345	95	65	.368	.9632
76	66	.3145	.6855	86	66	.1629	.8371	96	66	.258	.9742
77	67	.3120	.6880	87	67	.1638	.8362				
78	68	.3090	.6910	88	68	.1644	.8356				
79	69	.3047	.6953	89	69	.1623	.8377				
80	70	.3000	.7000	90	70	.1567	.8433				
81	71	.2958	.7042	91	71	.1450	.8550				
82	72	.2919	.7081	92	72	.1305	.8695				
83	73	.2890	.7110	93	73	.1108	.8892				
84	74	.2902	.7098	94	74	.924	.9076				
85	75	.2917	.7083	95	75	.717	.9283				
86	76	.2925	.7075	96	76	.512	.9488				

Table IX.—*continued.*

Ten years difference.			
Ages.	Probabilities.		
97 77	.2942	.7058	
98 78	.2994	.7006	
99 79	.3029	.6971	
90 80	.3022	.6978	
91 81	.2897	.7103	
92 82	.2720	.7280	
93 83	.2420	.7580	
94 84	.2049	.7951	
95 85	.1606	.8394	
96 86	.1173	.8827	

Forty years difference.				Fifty years difference.				Sixty years difference,			
Ages.	Probabilities.			Ages.	Probabilities.			Ages.	Probabilities.		
41 1	.4357	.5643		51 1	.3916	.6084		61 1	.3494	.6506	
42 2	.3398	.6602		52 2	.2887	.7113		62 2	.2413	.7587	
43 3	.2985	.7015		53 3	.2446	.7554		63 3	.1952	.8048	
44 4	.2688	.7312		54 4	.2128	.7872		64 4	.1619	.8381	
45 5	.2520	.7480		55 5	.1948	.8052		65 5	.1428	.8572	
46 6	.2353	.7647		56 6	.1768	.8232		66 6	.1237	.8763	
47 7	.2230	.7770		57 7	.1635	.8365		67 7	.1092	.8908	
48 8	.2140	.7860		58 8	.1535	.8465		68 8	.0982	.9018	
49 9	.2086	.7914		59 9	.1474	.8526		69 9	.0912	.9088	
50 10	.2059	.7941		60 10	.1442	.8558		70 10	.0873	.9127	
51 11	.2045	.7955		61 11	.1422	.8578		71 11	.0846	.9154	
52 12	.2035	.7965		62 12	.1406	.8594		72 12	.0825	.9175	
53 13	.2026	.7974		63 13	.1390	.8610		73 13	.0805	.9195	
54 14	.2018	.7982		64 14	.1376	.8624		74 14	.0788	.9212	
55 15	.2011	.7989		65 15	.1362	.8638		75 15	.0775	.9225	
56 16	.2005	.7995		66 16	.1350	.8650		76 16	.0768	.9232	
57 17	.1996	.8004		67 17	.1335	.8665		77 17	.0759	.9241	
58 18	.1981	.8019		68 18	.1314	.8686		78 18	.0743	.9257	
59 19	.1959	.8041		69 19	.1286	.8714		79 19	.0719	.9281	
60 20	.1931	.8069		70 20	.1253	.8747		80 20	.0690	.9310	

Table IX.—*continued.*

Forty years difference.			Fifty years difference.			Sixty years difference.		
Ages.		Probabilities.	Ages.		Probabilities.	Ages.		Probabilities.
61	21	.1896	.8104	71	.1211	.8789	81	.21 .0655 .9345
62	22	.1855	.8145	72	.1165	.8835	82	.22 .0616 .9384
63	23	.1812	.8188	73	.1120	.8880	83	.23 .0581 .9419
64	24	.1768	.8232	74	.1075	.8925	84	.24 .0556 .9444
65	25	.1722	.8278	75	.1032	.8968	85	.25 .0532 .9468
66	26	.1676	.8324	76	.0991	.9009	86	.26 .0511 .9489
67	27	.1629	.8371	77	.0950	.9050	87	.27 .0490 .9510
68	28	.1581	.8419	78	.0907	.9093	88	.28 .0473 .9527
69	29	.1532	.8468	79	.0861	.9139	89	.29 .0448 .9552
70	30	.1483	.8517	80	.0815	.9185	90	.30 .0413 .9587
71	31	.1434	.8566	81	.0770	.9230	91	.31 .0363 .9637
72	32	.1384	.8616	82	.0727	.9273	92	.32 .0310 .9690
73	33	.1335	.8665	83	.0688	.9312	93	.33 .0248 .9752
74	34	.1287	.8713	84	.0660	.9340	94	.34 .0194 .9806
75	35	.1242	.8758	85	.0635	.9365	95	.35 .0140 .9860
76	36	.1199	.8801	86	.0612	.9388	96	.36 .0095 .9905
77	37	.1156	.8844	87	.0591	.9409		
78	38	.1112	.8888	88	.0574	.9426		
79	39	.1064	.8936	89	.0548	.9452		
80	40	.1021	.8979	90	.0511	.9489		
81	41	.0968	.9032	91	.0455	.9545		
82	42	.0919	.9081	92	.0392	.9608		
83	43	.0876	.9124	93	.0315	.9685		
84	44	.0846	.9154	94	.0247	.9753		
85	45	.0818	.9182	95	.0180	.9820		
86	46	.0795	.9205	96	.0123	.9877		
87	47	.0774	.9226					
88	48	.0759	.9241					
89	49	.0732	.9268					
90	50	.0690	.9310					
91	51	.0617	.9383					
92	52	.0533	.9467					
93	53	.0432	.9568					
94	54	.0342	.9658					
95	55	.0251	.9749					
96	56	.0173	.9827					

Table IX.—*continued.*

Seventy years difference.				Eighty years difference.				Ninety years difference.			
Ages.		Probabilities.		Ages.		Probabilities.		Ages.		Probabilities.	
71	1	.3049	.6951	81	1	.2495	.7505	91	1	.1893	.8107
72	2	.1945	.8055	82	2	.1437	.8563	92	2	.0918	.9082
73	3	.1487	.8513	83	3	.1034	.8966	93	3	.0553	.9446
74	4	.1159	.8841	84	4	.0763	.9237	94	4	.0312	.9688
75	5	.0980	.9020	85	5	.0634	.9366	95	5	.0212	.9788
76	6	.0798	.9202	86	6	.0492	.9508	96	6	.0115	.9885
77	7	.0660	.9340	87	7	.0385	.9615				
78	8	.0553	.9447	88	8	.0304	.9696				
79	9	.0484	.9516	89	9	.0250	.9750				
80	10	.0444	.9556	90	10	.0216	.9784				
81	11	.0418	.9582	91	11	.0186	.9814				
82	12	.0397	.9603	92	12	.0157	.9843				
83	13	.0380	.9620	93	13	.0125	.9875				
84	14	.0372	.9628	94	14	.0097	.9903				
85	15	.0368	.9632	95	15	.0070	.9930				
86	16	.0370	.9630	96	16	.0049	.9951				
87	17	.0373	.9627								
88	18	.0375	.9625								
89	19	.0367	.9633								
90	20	.0345	.9655								
91	21	.0309	.9691								
92	22	.0263	.9737								
93	23	.0210	.9790								
94	24	.0164	.9836								
95	25	.0118	.9882								
96	26	.0080	.9920								

TABLE X.
Shewing the Probability of one Life's dying after another.*

Ten Years Difference.			Twenty Years Difference.			Thirty Years Difference.			Forty Years Difference.		
Ages.	Youngest.	Eldest.	Ages.	Youngest.	Eldest.	Ages.	Youngest.	Eldest.	Ages.	Youngest.	Eldest.
1	11	.3974	.5857	1	.21	.3885	.5244	1	.31	.3384	.4821
2	12	.4665	.5134	2	.22	.4596	.4431	2	.33	.3934	.3934
3	13	.4963	.4821	3	.23	.4903	.4086	3	.33	.4155	.3555
4	14	.5177	.4596	4	.24	.4934	.3893	4	.34	.4307	.3284
5	15	.5298	.4468	5	.25	.5028	.3767	5	.35	.4382	.3133
6	16	.5418	.4341	6	.26	.5120	.3638	6	.36	.4456	.2983
7	17	.5502	.4251	7	.27	.5183	.3546	7	.37	.4496	.2881
8	18	.5560	.4189	8	.28	.5223	.3482	8	.38	.4583	.2796
9	19	.5587	.4158	9	.29	.5237	.3450	9	.39	.4541	.2751
10	20	.5592	.4151	10	.30	.5289	.3449	10	.40	.4532	.2731
11	21	.5584	.4156	11	.31	.5293	.3438	11	.41	.4516	.2722
12	22	.5572	.4166	12	.32	.5209	.3440	12	.42	.4497	.2716
13	23	.5560	.4176	13	.33	.5187	.3449	13	.43	.4476	.2712
14	24	.5545	.4188	14	.34	.5179	.3445	14	.44	.4453	.2709
15	25	.5531	.4200	15	.35	.5162	.3449	15	.45	.4430	.2706
16	26	.5514	.4214	16	.36	.5144	.3454	16	.46	.4405	.2704
17	27	.5501	.4224	17	.37	.5128	.3456	17	.47	.4381	.2699
18	28	.5492	.4230	18	.38	.5117	.3452	18	.48	.4360	.2688
19	29	.5467	.4239	19	.39	.5109	.3442	19	.49	.4342	.2670

* It may not be improper to observe, that though this and the 9th Table have been deduced from the decrements of life at Northampton, they may be safely used, even when the values of the life annuities are derived from a different source, as the probabilities they express are nearly the same, from whatever Table of Observations they are computed.

TABLES.

277

Table X.—*continued.*

Ten Years Difference.			Twenty Years Difference.			'Thirty Years Difference.			Forty Years Difference.			
Age.	Youngest.	Eldest.	Age.	Youngest.	Eldest.	Age.	Youngest.	Eldest.	Age.	Youngest.	Eldest.	
20	.5486	-.4229	20	.40	-.5105	.3427	20	.50	.4325	.2648	20	.3459
21	.5491	-.4230	21	.41	-.5105	.3406	21	.51	.4312	.2618	21	.3428
22	.5550	-.4207	22	.42	-.5107	.3498	22	.52	.4298	.2586	22	.3389
23	.5507	-.4195	23	.43	-.5110	.3395	23	.53	.4284	.2553	23	.3353
24	.5517	-.4189	24	.44	-.5110	.3339	24	.54	.4268	.2519	24	.3344
25	.5595	-.4195	25	.45	-.5119	.3306	25	.55	.4253	.2484	25	.3307
26	.5584	-.4154	26	.46	-.5112	.3280	26	.56	.4235	.2449	26	.3274
27	.5544	-.4189	27	.47	-.5118	.3258	27	.57	.4212	.2413	27	.3246
28	.5555	-.4128	28	.48	-.5114	.3225	28	.58	.4199	.2376	28	.3216
29	.5565	-.4107	29	.49	-.5115	.3196	29	.59	.4179	.2338	29	.3184
30	.5576	-.4091	30	.50	-.5115	.3167	30	.60	.4159	.2309	30	.3152
31	.5586	-.4075	31	.51	-.5119	.3140	31	.61	.4136	.2260	31	.3077
32	.5595	-.4060	32	.52	-.5108	.3113	32	.62	.4112	.2220	32	.3029
33	.5603	-.4046	33	.53	-.5104	.3085	33	.63	.4089	.2177	33	.2977
34	.5613	-.4031	34	.54	-.5099	.3057	34	.64	.4066	.2134	34	.2921
35	.5619	-.4016	35	.55	-.5093	.3029	35	.65	.4037	.2089	35	.2858
36	.5627	-.4001	36	.56	-.5086	.3000	36	.66	.4009	.2043	36	.2788
37	.5636	-.3985	37	.57	-.5072	.2969	37	.67	.3978	.1997	37	.2715
38	.5645	-.3968	38	.58	-.5071	.2939	38	.68	.3945	.1950	38	.2637
39	.5655	-.3951	39	.59	-.5051	.2909	39	.69	.3910	.1902	39	.2559
40	.5664	-.3934	40	.60	-.5049	.2878	40	.70	.3872	.1854	40	.2470
41	.5669	-.3920	41	.61	-.5038	.2845	41	.71	.3829	.1805	41	.2384

TABLES.

Table X.—*continued.*

Ten Years Difference.			Twenty Years Difference.			Thirty Years Difference.			Forty Years Difference.		
Ages.	Youngest.	Eldest.	Ages.	Youngest.	Eldest.	Ages.	Youngest.	Eldest.	Ages.	Youngest.	Eldest.
42	.52	.5676	.3904	.42	.62	.5026	.2810	.42	.72	.3785	.1753
43	.53	.5684	.3886	.43	.63	.5017	.2770	.43	.73	.3796	.1699
44	.54	.5692	.3868	.44	.64	.5007	.2728	.44	.74	.3681	.1647
45	.55	.5701	.3849	.45	.65	.4995	.2685	.45	.75	.3617	.1598
46	.56	.5709	.3830	.46	.66	.4982	.2641	.46	.76	.3544	.1553
47	.57	.5716	.3811	.47	.67	.4967	.2596	.47	.77	.3465	.1508
48	.58	.5723	.3792	.48	.68	.4950	.2550	.48	.78	.3383	.1460
49	.59	.5729	.3773	.49	.69	.4945	.2503	.49	.79	.3308	.1407
50	.60	.5737	.3751	.50	.70	.4907	.2455	.50	.80	.3207	.1351
51	.61	.5748	.3725	.51	.71	.4885	.2400	.51	.81	.3105	.1293
52	.62	.5762	.3693	.52	.72	.4860	.2342	.52	.82	.2993	.1234
53	.63	.5778	.3662	.53	.73	.4830	.2284	.53	.83	.2864	.1180
54	.64	.5792	.3629	.54	.74	.4793	.2227	.54	.84	.2706	.1143
55	.65	.5811	.3591	.55	.75	.4747	.2173	.55	.85	.2530	.1110
56	.66	.5830	.3551	.56	.76	.4691	.2123	.56	.86	.2338	.1079
57	.67	.5848	.3511	.57	.77	.4628	.2070	.57	.87	.2127	.1049
58	.68	.5868	.3467	.58	.78	.4561	.2013	.58	.88	.1891	.1023
59	.69	.5886	.3423	.59	.79	.4494	.1947	.59	.89	.1657	.0979
60	.70	.5904	.3377	.60	.80	.4421	.1876	.60	.90	.1424	.0909
61	.71	.5921	.3330	.61	.81	.4332	.1808	.61	.91	.1204	.0601
62	.72	.5936	.3282	.62	.82	.4175	.1740	.62	.92	.0973	.0674
63	.73	.5945	.3237	.63	.83	.4108	.1683	.63	.93	.0740	.0520

TABLES.

279

TABLE X.—*continued.*

Ten Years Difference.			Twenty Years Difference.			Thirty Years Difference.		
Ages.	Youngest.	Eldest.	Ages.	Youngest.	Eldest.	Ages.	Youngest.	Eldest.
64	74	.5950	.3195	64	84	.3935	.1649	.0467
65	75	.5942	.3159	65	85	.3737	.1626	.0184
66	76	.5921	.3133	66	86	.3512	.1607	
67	77	.5895	.3107	67	87	.3256	.1591	
68	78	.5868	.3075	68	88	.2956	.1586	
69	79	.5848	.3030	69	89	.2651	.1549	
70	80	.5829	.2981	70	90	.2338	.1473	
71	81	.5784	.2936	71	91	.2032	.1338	
72	82	.5728	.2694	72	92	.1695	.1166	
73	83	.5649	.2860	73	93	.1335	.0933	
74	84	.5508	.2866	74	94	.0878	.0682	
75	85	.5340	.2873	75	95	.0361	.0361	
76	86	.5147	.2869					
77	87	.4910	.2871					
78	88	.4598	.2902					
79	89	.4256	.2911					
80	90	.3886	.2872					
81	91	.3532	.2708					
82	92	.3089	.2478					
83	93	.2555	.2116					
84	94	.1755	.1626					
85	95	.0827	.0827					

TABLES.

Table X.—*continued.*

Fifty Years Difference.			Sixty Years Difference.			Seventy Years Difference.			Eighty Years Difference.		
Ages,	Youngest,	Eldest,	Ages,	Youngest,	Eldest,	Ages,	Youngest,	Eldest,	Ages,	Youngest,	Eldest,
1	51	.2419	.3914	1	61	.1957	.3491	1	71	.1544	.3045
2	52	.2761	.2985	2	62	.2184	.2411	2	72	.1622	.1942
3	53	.2879	.2444	3	63	.2245	.1950	3	73	.1604	.1484
4	54	.2954	.3126	4	64	.2276	.1617	4	74	.1573	.1156
5	55	.2979	.1946	5	65	.2275	.1426	5	75	.1523	.0977
6	56	.3005	.1766	6	66	.2275	.1235	6	76	.1477	.0795
7	57	.3011	.1633	7	67	.2366	.1090	7	77	.1433	.0657
8	58	.3014	.1533	8	68	.2251	.0960	8	78	.1390	.0550
9	59	.3998	.1472	9	69	.2926	.0910	9	79	.1346	.0481
10	60	.2972	.1440	10	70	.2194	.0870	10	80	.1301	.0440
11	61	.2940	.1420	11	71	.2156	.0843	11	81	.1250	.0414
12	62	.2906	.1404	12	72	.2114	.0822	12	82	.1193	.0392
13	63	.2870	.1388	13	73	.2070	.0802	13	83	.1137	.0375
14	64	.2833	.1373	14	74	.2022	.0785	14	84	.1068	.0366
15	65	.2793	.1359	15	75	.1973	.0768	15	85	.0993	.0361
16	66	.2751	.1347	16	76	.1909	.0764	16	86	.0912	.0360
17	67	.2707	.1332	17	77	.1845	.0755	17	87	.0831	.0362
18	68	.2662	.1311	18	78	.1780	.0739	18	88	.0753	.0360
19	69	.2617	.1283	19	79	.1713	.0714	19	89	.0693	.0350
20	70	.2570	.1250	20	80	.1643	.0685	20	90	.0525	.0327
21	71	.2534	.1208	21	81	.1569	.0649	21	91	.0433	.0286
22	72	.2476	.1162	22	82	.1490	.0610	22	92	.0342	.0235

Table X.—*continued.*

TABLE XI.

Shewing the Probabilities and Expectation of Human Life among Males and Females, separately taken, in the Kingdom of Sweden. *

MALES.				FEMALES.		
	Born 10,282—282 born dead.			10,277—217 born dead.		
Ages.	Living.	Decr.	Expectat.	Living.	Decr.	Expectat.
Born alive	10,000	2300	33.20	10,000	2090	35.70
1 year	7,700	500	42.45	7,910	518	44.00
2	7,200	337	43.83	7,392	350	46.05
3	6,863	240	44.96	7,042	250	47.31
4	6,623	150	45.57	6,792	135	48.04
5	6,473	125	45.62	6,657	120	48.00
6	6,348	105	45.50	6,537	105	47.87
7	6,243	90	45.26	6,432	85	47.64
8	6,153	75	44.91	6,347	70	47.28
9	6,078	65	44.46	6,277	60	46.80
10	6,013	55	43.94	6,217	52	46.25
11	5,958	45	43.26	6,165	46	45.55
12	5,913	45	42.58	6,119	40	44.85
13	5,868	40	41.91	6,079	35	44.15
14	5,828	40	41.24	6,044	35	43.46
15	5,788	39	40.56	6,009	35	42.76
16	5,749	39	39.83	5,974	40	42.04
17	5,710	39	39.11	5,934	40	41.31
18	5,671	44	38.39	5,894	42	40.59
19	5,627	44	37.67	5,852	43	39.87
20	5,583	50	36.95	5,809	43	39.15
21	5,533	50	36.28	5,766	43	38.43
22	5,483	50	35.62	5,723	43	37.72
23	5,433	55	34.96	5,680	44	37.01
24	5,378	55	34.30	5,636	45	36.29
25	5,323	55	33.63	5,591	45	35.58
26	5,268	55	32.98	5,546	50	34.90
27	5,213	55	32.32	5,496	52	34.21

* See Dr. Price's Treatise on Reversionary Payments, Vol. II. pag. 410, 7th edition.

Table XI.—*continued.*

MALES.				FEMALES.		
Ages.	Living.	Decr.	Expectat.	Living.	Decr.	Expectat.
28	5,158	55	31.66	5,444	55	33.53
29	5,103	56	31.00	5,380	55	32.85
30	5,049	59	30.34	5,334	60	32.17
31	4,988	60	29.69	5,274	60	31.54
32	4,928	60	29.04	5,214	65	30.91
33	4,868	60	28.39	5,149	65	30.29
34	4,808	60	27.74	5,084	65	29.66
35	4,748	60	27.09	5,019	60	29.03
36	4,688	60	26.43	4,959	56	28.26
37	4,628	60	25.76	4,903	56	27.50
38	4,568	60	25.09	4,847	56	26.74
39	4,508	60	24.42	4,791	58	25.97
40	4,448	65	23.75	4,733	65	25.21
41	4,383	72	23.15	4,668	75	24.68
42	4,311	80	22.54	4,593	76	24.75
43	4,231	80	21.93	4,517	76	23.62
44	4,151	80	21.32	4,441	75	23.10
45	4,071	80	20.71	4,366	72	22.57
46	3,991	80	20.12	4,294	67	21.91
47	3,911	80	19.52	4,227	65	21.24
48	3,831	80	18.92	4,162	65	20.58
49	3,751	85	18.32	4,097	70	19.92
50	3,666	95	17.72	4,027	75	19.26
51	3,571	95	17.17	3,952	80	18.64
52	3,476	95	16.63	3,872	85	18.01
53	3,381	95	16.08	3,787	85	17.39
54	3,286	95	15.53	3,702	85	16.77
55	3,191	95	14.98	3,617	85	16.15
56	3,096	95	14.43	3,532	85	15.53
57	3,001	100	13.87	3,447	90	14.92
58	2,901	100	13.33	3,357	90	14.31
59	2,801	100	12.79	3,267	100	13.69
60	2,701	105	12.24	3,167	110	13.08
61	2,596	110	11.72	3,057	118	12.56
62	2,486	115	11.21	2,939	120	12.04
63	2,371	115	10.73	2,819	120	11.52
64	2,256	115	10.26	2,699	120	11.01
65	2,141	115	9.78	2,579	120	10.49
66	2,026	115	9.30	2,459	120	9.97

Table XI.—*continued.*

MALES.				FEMALES.		
Ages.	Living.	Decr.	Expectat.	Living.	Decr.	Expectat.
67	1,911	120	8.84	2,339	120	9.46
68	1,791	125	8.40	2,219	120	8.94
69	1,666	125	7.99	2,099	120	8.42
70	1,541	125	7.60	1,979	130	7.91
71	1,416	125	7.22	1,849	140	7.53
72	1,291	120	6.87	1,709	150	7.16
73	1,171	120	6.53	1,559	160	6.78
74	1,051	110	6.22	1,399	150	6.40
75	941	105	5.89	1,249	140	6.03
76	836	100	5.56	1,109	130	5.73
77	736	90	5.25	979	120	5.43
78	646	85	4.92	859	110	5.11
79	561	80	4.59	749	100	4.79
80	481	75	4.27	649	95	4.47
81	406	70	3.96	554	90	4.13
82	336	65	3.69	464	85	3.84
83	271	60	3.45	379	80	3.59
84	211	50	3.30	299	75	3.42
85	161	40	3.16	224	55	3.40
86	121	30	3.04	169	40	3.34
87	91	22	2.88	129	30	3.22
88	69	17	2.64	99	23	3.05
89	52	14	2.34	76	18	2.82
90	38	12	2.02	58	15	2.55
91	26	9		43	12	
92	17	7		31	10	
93	10	6		21	8	
94	4	3		13	6	
95	1	1		7	4	
96	0	0		3	2	
97	0	0		1	1	

TABLE XII.

Shewing the Probabilities of the Duration of Human Life among Males and Females, taken collectively, deduced from the preceding Table.

Born 10,249—249 born dead.							
Age.	Living.	Decr.	Expect.	Age.	Living.	Decr.	Expect.
Born alive	10,000	2195	34.42	33	5,010	63	29.30
1 year	7,805	509	42.95	34	4,947	63	28.67
2 years	7,296	344	44.92	35	4,884	59	28.03
3	6,952	245	46.11	36	4,825	58	27.31
4	6,707	143	46.78	37	4,767	58	26.68
5	6,564	122	46.79	38	4,709	58	26.01
6	6,442	105	46.66	39	4,651	60	25.33
7	6,337	87	46.43	40	4,591	65	24.66
8	6,250	73	46.07	41	4,526	73	24.05
9	6,177	62	45.61	42	4,453	78	23.44
10	6,115	54	45.07	43	4,375	78	22.83
11	6,061	45	44.38	44	4,297	78	22.22
12	6,016	42	43.70	45	4,219	76	21.61
13	5,974	38	43.01	46	4,143	74	20.98
14	5,936	37	42.33	47	4,069	72	20.35
15	5,899	37	41.64	48	3,997	73	19.72
16	5,862	40	40.92	49	3,924	78	19.09
17	5,822	40	40.19	50	3,846	85	18.46
18	5,782	42	39.47	51	3,761	87	17.87
19	5,740	43	38.74	52	3,674	90	17.29
20	5,697	47	38.02	53	3,584	90	16.70
21	5,650	47	37.33	54	3,494	91	16.12
22	5,603	48	36.64	55	3,403	91	15.53
23	5,555	48	35.96	56	3,312	92	14.95
24	5,507	50	35.27	57	3,220	95	14.37
25	5,457	50	34.58	58	3,125	95	13.79
26	5,407	52	33.91	59	3,030	100	13.21
27	5,355	54	33.23	60	2,930	108	12.63
28	5,301	55	32.56	61	2,822	114	12.12
29	5,246	55	31.88	62	2,708	118	11.63
30	5,191	59	31.21	63	2,590	118	11.11
31	5,132	60	30.57	64	2,472	118	10.61
32	5,072	62	29.94	65	2,354	118	10.10

Table XII.—*continued.*

Born 10,249—249 born dead.							
Age.	Living.	Decr.	Expect.	Age.	Living.	Decr.	Expect.
66	2,236	118	9.62	83	309	65	3.57
67	2,118	121	9.15	84	244	55	3.39
68	1,997	124	8.67	85	189	45	3.23
69	1,873	124	8.20	86	144	35	3.09
70	1,749	127	7.72	87	109	27	2.92
71	1,622	133	7.32	88	82	20	2.71
72	1,489	135	6.89	89	62	15	2.43
73	1,354	140	6.53	90	47	14	2.05
74	1,214	130	6.23	91	33	12	1.71
75	1,084	121	5.91	92	21	10	1.40
76	963	115	5.59	93	11	6	
77	848	105	5.28	94	5	3	
78	743	95	4.96	95	2	1	
79	648	90	4.61	96	1	1	
80	558	90	4.28				
81	468	84	4.01				
82	384	75	3.80				

TABLE XIII.

Shewing the Values of Annuities on Single Lives among
Males and Females, according to the Probabilities of
the Duration of Life in the Kingdom of Sweden. See
Table XI.

Ages.	Males.		Females.		Lives in general.	
	4 per Cent.	5 per Cent.	4 per Cent.	5 per Cent.	4 per Cent.	5 per Cent.
1	16.503	14.051	16.820	14.271	16.661	14.161
2	17.355	14.778	17.719	15.034	17.537	14.906
3	17.935	15.279	18.344	15.571	18.139	15.425
4	18.328	15.624	18.780	15.951	18.554	15.787
5	18.503	15.786	18.927	16.088	18.715	15.937
6	18.622	15.901	19.045	16.203	18.833	16.052
7	18.693	15.977	19.131	16.291	18.912	16.134
8	18.725	16.021	19.162	16.335	18.943	16.178
9	18.715	16.030	19.151	16.343	18.933	16.186
10	18.674	16.014	19.109	16.325	18.891	16.169
11	18.600	15.970	19.041	16.286	18.820	16.128
12	18.491	15.896	18.952	16.229	18.721	16.062
13	18.378	15.819	18.840	16.153	18.609	15.986
14	18.246	15.724	18.707	16.059	18.476	15.891
15	18.105	15.624	18.568	15.960	18.336	15.792
16	17.958	15.517	18.424	15.856	18.191	15.686
17	17.803	15.404	18.290	15.761	18.046	15.582
18	17.643	15.285	18.151	15.662	17.897	15.473
19	17.492	15.175	18.013	15.563	17.752	15.369
20	17.335	15.059	17.872	15.462	17.603	15.260
21	17.192	14.955	17.725	15.356	17.458	15.155
22	17.042	14.846	17.573	15.245	17.307	15.045
23	16.887	14.732	17.414	15.129	17.150	14.930
24	16.742	14.627	17.252	15.009	16.997	14.818
25	16.592	14.517	17.087	14.886	16.839	14.701
26	16.436	14.402	16.915	14.757	16.675	14.579
27	16.274	14.282	16.751	14.636	16.512	14.459
28	16.105	14.156	16.588	14.515	16.346	14.335
29	15.930	14.024	16.427	14.396	16.178	14.210
30	15.751	13.889	16.261	14.272	16.006	14.080
31	15.575	13.756	16.104	14.156	15.839	13.956
32	15.395	13.619	15.941	14.035	15.668	13.827

Table XIII.—*continued.*

Ages.	Males.		Females.		Lives in general.	
	4 per Cent.	5 per Cent.	4 per Cent.	5 per Cent.	4 per Cent.	5 per Cent.
33	15.208	13.477	15.787	13.923	15.497	13.700
34	15.014	13.327	15.629	13.806	15.321	13.566
35	14.812	13.170	15.465	13.684	15.138	13.427
36	14.601	13.006	15.278	13.542	14.939	13.274
37	14.382	12.833	15.070	13.382	14.726	13.107
38	14.154	12.652	14.854	13.213	14.504	12.932
39	13.916	12.462	14.629	13.036	14.272	12.749
40	13.668	12.261	14.401	12.856	14.034	12.558
41	13.426	12.065	14.185	12.687	13.805	12.376
42	13.196	11.880	13.994	12.538	13.595	12.209
43	12.984	11.710	13.798	12.387	13.391	12.048
44	12.763	11.532	13.596	12.229	13.179	11.880
45	12.535	11.347	13.383	12.061	12.959	11.704
46	12.297	11.153	13.151	11.876	12.724	11.514
47	12.051	10.951	12.894	11.668	12.472	11.309
48	11.795	10.738	12.620	11.443	12.217	11.090
49	11.528	10.516	12.333	11.205	11.930	10.860
50	11.267	10.298	12.049	10.970	11.658	10.634
51	11.030	10.100	11.769	10.737	11.399	10.418
52	10.785	9.895	11.492	10.507	11.138	10.201
53	10.531	9.682	11.220	10.280	10.875	9.981
54	10.269	9.460	10.937	10.042	10.603	9.751
55	9.998	9.229	10.642	9.792	10.320	9.510
56	9.717	8.988	10.334	9.529	10.025	9.258
57	9.425	8.736	10.012	9.253	9.718	8.994
58	9.140	8.489	9.692	8.976	9.416	8.732
59	8.845	8.232	9.358	8.684	9.101	8.458
60	8.540	7.963	9.039	8.406	8.789	8.184
61	8.241	7.700	8.739	8.144	8.490	7.922
62	7.950	7.442	8.453	7.895	8.201	7.668
63	7.669	7.193	8.166	7.643	7.917	7.418
64	7.382	6.938	7.870	7.382	7.626	7.160
65	7.090	6.676	7.566	7.111	7.328	6.893
66	6.792	6.408	7.252	6.831	7.022	6.619
67	6.489	6.134	6.930	6.541	6.709	6.337
68	6.201	5.872	6.596	6.239	6.398	6.055
69	5.933	5.628	6.253	5.926	6.093	5.777
70	5.670	5.389	5.897	5.599	5.783	5.494
71	5.418	5.158	5.564	5.293	5.491	5.225

Table XIII.—*continued.*

Agea.	Males.		Females.		Lives in general.	
	4 per Cent.	5 per Cent.	4 per Cent.	5 per Cent.	4 per Cent.	5 per Cent.
72	5.180	4.940	5.261	5.013	5.220	4.976
73	4.940	4.719	4.998	4.770	4.969	4.744
74	4.724	4.521	4.792	4.581	4.758	4.551
75	4.487	4.302	4.582	4.388	4.534	4.345
76	4.253	4.084	4.367	4.189	4.310	4.136
77	4.024	3.871	4.145	3.983	4.084	3.927
78	3.768	3.631	3.913	3.767	3.840	3.699
79	3.512	3.390	3.668	3.536	3.590	3.463
80	3.260	3.152	3.402	3.285	3.331	3.218
81	3.017	2.921	3.145	3.041	3.081	2.981
82	2.792	2.706	2.905	2.812	2.848	2.759
83	2.600	2.523	2.699	2.615	2.649	2.569
84	2.473	2.403	2.559	2.480	2.516	2.441
85	2.371	2.306	2.552	2.476	2.461	2.391
86	2.281	2.222	2.518	2.446	2.399	2.334
87	2.154	2.103	2.431	2.365	2.292	2.238
88	1.955	1.912	2.294	2.236	2.124	2.074
89	1.698	1.664	2.108	2.059	1.903	1.861
90	1.417	1.392	1.873	1.833	1.645	1.612
91	1.154	1.136	1.628	1.596	1.391	1.366
92	0.835	0.824	1.349	1.325	1.092	1.074
93	0.477	0.471	1.071	1.054	0.774	0.762
94	0.240	0.238	0.799	0.788	0.519	0.513
95	0.000	0.000	0.544	0.537		
96	0.000	0.000	0.320	0.317		

TABLE XIV.

Shewing the Values of Annuities on Two *joint* Lives, according to the Probabilities (in Table XII.) of the Duration of Human Life among Males and Females collectively, reckoning Interest at 4 per Cent.

Interest 4 per Cent.

Differences of Age 0, 6, 12, and 18 Years.

Ages.	Values.	Ages.	Values.	Ages.	Values.	Ages.	Values.
1- 1	12.252	1- 7	13.989	1-13	13.894	1-19	13.389
2- 2	13.583	2- 8	14.780	2-14	14.557	2-20	14.008
3- 3	14.558	3- 9	15.323	3-15	14.988	3-21	14.417
4- 4	15.267	4-10	15.685	4-16	15.259	4-22	14.671
5- 5	15.577	5-11	15.817	5-17	15.326	5-23	14.725
6- 6	15.820	6-12	15.887	6-18	15.354	6-24	14.740
7- 7	16.003	7-13	15.914	7-19	15.351	7-25	14.727
8- 8	16.109	8-14	15.888	8-20	15.310	8-26	14.673
9- 9	16.152	9-15	15.824	9-21	15.244	9-27	14.590
10-10	16.141	10-16	15.729	10-22	15.149	10-28	14.484
11-11	16.087	11-17	15.617	11-23	15.033	11-29	14.357
12-12	15.982	12-18	15.477	12-24	14.889	12-30	14.202
13-13	15.855	13-19	15.327	13-25	14.736	13-31	14.045
14-14	15.701	14-20	15.164	14-26	14.566	14-32	13.874
15-15	15.535	15-21	15.001	15-27	14.392	15-33	13.700
16-16	15.361	16-22	14.832	16-28	14.216	16-34	13.520
17-17	15.196	17-23	14.665	17-29	14.042	17-35	13.340
18-18	15.023	18-24	14.491	18-30	13.860	18-36	13.141
19-19	14.854	19-25	14.320	19-31	13.687	19-37	12.934
20-20	14.682	20-26	14.144	20-32	13.512	20-38	12.720
21-21	14.525	21-27	13.976	21-33	13.345	21-39	12.505
22-22	14.360	22-28	13.807	22-34	13.173	22-40	12.286
23-23	14.194	23-29	13.635	23-35	12.997	23-41	12.073
24-24	14.020	24-30	13.455	24-36	12.801	24-42	11.873
25-25	13.849	25-31	13.284	25-37	12.599	25-43	11.683
26-26	13.671	26-32	13.108	26-38	12.387	26-44	11.485
27-27	13.495	27-33	12.935	27-39	12.170	27-45	11.284
28-28	13.323	28-34	12.763	28-40	11.953	28-46	11.072
29-29	13.148	29-35	12.586	29-41	11.742	29-47	10.847
30-30	12.965	30-36	12.390	30-42	11.543	30-48	10.606
31-31	12.795	31-37	12.192	31-43	11.359	31-49	10.365

TABLE XIV.—*continued.*

Interest 4 per Cent.

Ages.	Values.	Ages.	Values.	Ages.	Values.	Ages.	Values.
32-32	12.624	32-38	11.988	32-44	11.170	32-50	10.128
33-33	12.456	33-39	11.779	33-45	10.978	33-51	9.905
34-34	12.286	34-40	11.568	34-46	10.775	34-52	9.679
35-35	12.109	35-41	11.361	35-47	10.557	35-53	9.452
36-36	11.904	36-42	11.156	36-48	10.314	36-54	9.207
37-37	11.683	37-43	10.953	37-49	10.059	37-55	8.951
38-38	11.452	38-44	10.741	38-50	9.805	38-56	8.683
39-39	11.209	39-45	10.519	39-51	9.558	39-57	8.404
40-40	10.964	40-46	10.286	40-52	9.308	40-58	8.124
41-41	10.732	41-47	10.049	41-53	9.066	41-59	7.839
42-42	10.531	42-48	9.813	42-54	8.830	42-60	7.569
43-43	10.346	43-49	9.581	43-55	8.597	43-61	7.318
44-44	10.154	44-50	9.351	44-56	8.354	44-62	7.075
45-45	9.954	45-51	9.129	45-57	8.101	45-63	6.836
46-46	9.736	46-52	8.897	46-58	7.841	46-64	6.586
47-47	9.497	47-53	8.658	47-59	7.563	47-65	6.323
48-48	9.236	48-54	8.402	48-60	7.281	48-66	6.048
49-49	8.966	49-55	8.139	49-61	7.008	49-67	5.764
50-50	8.707	50-56	7.874	50-62	6.749	50-68	5.487
51-51	8.469	51-57	7.613	51-63	6.505	51-69	5.221
52-52	8.230	52-58	7.351	52-64	6.256	52-70	4.953
53-53	7.994	53-59	7.083	53-65	6.004	53-71	4.694
54-54	7.748	54-60	6.814	54-66	5.743	54-72	4.455
55-55	7.495	55-61	6.555	55-67	5.474	55-73	4.231
56-56	7.229	56-62	6.299	56-68	5.204	56-74	4.043
57-57	6.954	57-63	6.045	57-69	4.936	57-75	3.844
58-58	6.678	58-64	5.788	58-70	4.664	58-76	3.637
59-59	6.388	59-65	5.519	59-71	4.395	59-77	3.430
60-60	6.104	60-66	5.249	60-72	4.149	60-78	3.210
61-61	5.844	61-67	4.984	61-73	3.927	61-79	2.974
62-62	5.600	62-68	4.729	62-74	3.747	62-80	2.744
63-63	5.367	63-69	4.482	63-75	3.563	63-81	2.557
64-64	5.128	64-70	4.231	64-76	3.370	64-82	2.396
65-65	4.881	65-71	3.982	65-77	3.180	65-83	2.252
66-66	4.626	66-72	3.750	66-78	2.974	66-84	2.123
67-67	4.362	67-73	3.527	67-79	2.743	67-85	2.010
68-68	4.130	68-74	3.340	68-80	2.514	68-86	1.910
69-69	3.851	69-75	3.147	69-81	2.324	69-87	1.798
70-70	3.593	70-76	2.946	70-82	2.155	70-88	1.661
71-71	3.345	71-77	2.752	71-83	2.004	71-89	1.464

Table XIV.—*continued.*

Interest 4 per Cent.

Ages.	Values.	Ages.	Values.	Ages.	Values.	Ages.	Values.
72-72	3.128	72-78	2.558	72-84	1.875	72-90	1.189
73-73	2.935	73-79	2.355	73-85	1.768	73-91	0.937
74-74	2.797	74-80	2.172	74-86	1.692	74-92	0.708
75-75	2.648	75-81	2.017	75-87	1.605	75-93	0.575
76-76	2.490	76-82	1.877	76-88	1.497	76-94	0.481
77-77	2.340	77-83	1.756	77-89	1.339	77-95	0.421
78-78	2.170	78-84	1.639	78-90	1.097		
79-79	1.967	79-85	1.524	79-91	0.863		
80-80	1.758	80-86	1.416	80-92	0.638		
81-81	1.600	81-87	1.320	81-93	0.511		
82-82	1.472	82-88	1.225	82-94	0.427		
83-83	1.364	83-89	1.094	83-95	0.379		
84-84	1.276	84-90	0.902				
85-85	1.212	85-91	0.725				
86-86	1.172	86-92	0.556				
87-87	1.127	87-93	0.459				
88-88	1.071	88-94	0.396				
89-89	0.949	89-95	0.364				
90-90	0.718						
91-91	0.516						
92-92	0.326						
93-93	0.236						
94-94	0.190						
95-95	0.024						

Table XIV.—*continued.*

Interest 4 per Cent.

Differences of Age 24, 30, 36, and 42 Years.

Ages.	Values.	Ages.	Values.	Ages.	Values.	Ages.	Values.
1-25	12.832	1-31	12.196	1-37	11.465	1-43	10.546
2-26	13.409	2-32	12.730	2-38	11.913	2-44	10.946
3-27	13.778	3-33	13.066	3-39	12.164	3-45	11.168
4-28	14.003	4-34	13.264	4-40	12.284	4-46	11.260
5-29	14.037	5-35	13.277	5-41	12.242	5-47	11.183
6-30	14.033	6-36	13.242	6-42	12.185	6-48	11.064
7-31	14.006	7-37	13.170	7-43	12.112	7-49	10.915
8-32	13.944	8-38	13.059	8-44	12.004	8-50	10.743
9-33	13.855	9-39	12.913	9-45	11.865	9-51	10.560
10-34	13.741	10-40	12.743	10-46	11.694	10-52	10.357
11-35	13.604	11-41	12.563	11-47	11.493	11-53	10.140
12-36	13.428	12-42	12.379	12-48	11.259	12-54	9.898
13-37	13.234	13-43	12.196	13-49	11.011	13-55	9.644
14-38	13.023	14-44	11.997	14-50	10.759	14-56	9.371
15-39	12.798	15-45	11.787	15-51	10.514	15-57	9.087
16-40	12.570	16-46	11.562	16-52	10.264	16-58	8.799
17-41	12.351	17-47	11.328	17-53	10.018	17-59	8.503
18-42	12.146	18-48	11.076	18-54	9.761	18-60	8.208
19-43	11.951	19-49	10.819	19-55	9.500	19-61	7.928
20-44	11.751	20-50	10.567	20-56	9.228	20-62	7.658
21-45	11.550	21-51	10.332	21-57	8.953	21-63	7.396
22-46	11.335	22-52	10.092	22-58	8.675	22-64	7.127
23-47	11.107	23-53	9.852	23-59	8.385	23-65	6.851
24-48	10.862	24-54	9.602	24-60	8.097	24-66	6.566
25-49	10.612	25-55	9.347	25-61	7.823	25-67	6.275
26-50	10.364	26-56	9.080	26-62	7.557	26-68	5.986
27-51	10.130	27-57	8.807	27-63	7.297	27-69	5.702
28-52	9.894	28-58	8.534	28-64	7.032	28-70	5.415
29-53	9.659	29-59	8.250	29-65	6.761	29-71	5.136
30-54	9.413	30-60	7.967	30-66	6.481	30-72	4.881
31-55	9.167	31-61	7.702	31-67	6.197	31-73	4.646
32-56	8.912	32-62	7.446	32-68	5.917	32-74	4.453
33-57	8.651	33-63	7.196	33-69	5.642	33-75	4.251
34-58	8.389	34-64	6.942	34-70	5.364	34-76	4.040
35-59	8.114	35-65	6.679	35-71	5.093	35-77	3.833
36-60	7.833	36-66	6.402	36-72	4.840	36-78	3.605
37-61	7.561	37-67	6.115	37-73	4.603	37-79	3.352
38-62	7.296	38-68	5.828	38-74	4.405	38-80	3.098

Table XIV.—*continued.*

Interest 4 per Cent.

Ages.	Values.	Ages.	Values.	Ages.	Values.	Ages.	Values.
39-63	7.033	39-69	5.543	39-75	4.195	39-81	2.889
40-64	6.763	40-70	5.254	40-76	3.975	40-82	2.710
41-65	6.492	41-71	4.977	41-77	3.762	41-83	2.553
42-66	6.225	42-72	4.730	42-78	3.539	42-84	2.418
43-67	5.957	43-73	4.507	43-79	3.295	43-85	2.305
44-68	5.689	44-74	4.322	44-80	3.052	44-86	2.203
45-69	5.426	45-75	4.128	45-81	2.854	45-87	2.083
46-70	5.153	46-76	3.921	46-82	2.684	46-88	1.933
47-71	4.884	47-77	3.715	47-83	2.533	47-89	1.708
48-72	4.633	48-78	3.489	48-84	2.396	48-90	1.385
49-73	4.398	49-79	3.238	49-85	2.277	49-91	1.090
50-74	4.205	50-80	2.990	50-86	2.171	50-92	0.818
51-75	4.008	51-81	2.792	51-87	2.050	51-93	0.662
52-76	3.803	52-82	2.623	52-88	1.901	52-94	0.551
53-77	3.605	53-83	2.475	53-89	1.681	53-95	0.468
54-78	3.389	54-84	2.344	54-90	1.366		
55-79	3.150	55-85	2.232	55-91	1.078		
56-80	2.909	56-86	2.130	56-92	0.810		
57-81	2.710	57-87	2.010	57-93	0.655		
58-82	2.539	58-88	1.864	58-94	0.546		
59-83	2.385	59-89	1.644	59-95	0.464		
60-84	2.248	60-90	1.333				
61-85	2.135	61-91	1.050				
62-86	2.037	62-92	0.789				
63-87	1.926	63-93	0.639				
64-88	1.790	64-94	0.533				
65-89	1.585	65-95	0.456				
66-90	1.290						
67-91	1.017						
68-92	0.764						
69-93	0.617						
70-94	0.514						
71-95	0.441						

TABLE XV.

Shewing the Decremts and Expectations of Life according to the Tables of Mortality published by M. de Parcieux.

Age.	Living.	Dece.	Expect.	Age.	Living.	Dece.	Expect.
0	10,000	2550	34.89	35	4,740	52	30.95
1	7,450	362	45.67	36	4,688	51	30.29
2	7,088	265	47.27	37	4,637	49	29.62
3	6,823	205	47.78	38	4,587	49	28.94
4	6,618	150	48.25	39	4,538	48	28.24
5	6,468	123	48.35	40	4,490	49	27.76
6	6,345	102	48.28	41	4,441	49	26.84
7	6,243	91	48.06	42	4,392	50	26.18
8	6,154	81	47.75	43	4,342	51	25.42
9	6,073	69	47.38	44	4,291	52	24.72
10	6,004	58	46.92	45	4,239	53	24.02
11	5,946	49	46.37	46	4,186	54	23.32
12	5,897	43	45.75	47	4,132	55	22.61
13	5,854	39	45.08	48	4,077	56	21.91
14	5,815	37	44.38	49	4,021	57	21.21
15	5,778	38	43.64	50	3,964	59	20.50
16	5,740	41	42.95	51	3,905	62	19.80
17	5,699	44	42.25	52	3,843	66	19.12
18	5,655	47	41.58	53	3,777	70	18.45
19	5,608	50	40.92	54	3,707	76	17.78
20	5,558	52	40.29	55	3,631	81	17.15
21	5,506	53	39.66	56	3,550	85	16.53
22	5,453	54	39.04	57	3,465	88	15.92
23	5,399	55	38.43	58	3,377	91	15.33
24	5,344	56	37.82	59	3,286	95	14.74
25	5,288	57	37.21	60	3,191	99	14.16
26	5,231	58	36.61	61	3,092	102	13.59
27	5,173	57	35.93	62	2,990	105	13.04
28	5,116	56	35.41	63	2,885	107	12.50
29	5,060	55	35.00	64	2,778	109	11.96
30	5,005	54	34.17	65	2,669	110	11.42
31	4,951	54	33.55	66	2,559	111	10.89
32	4,897	53	32.91	67	2,448	112	10.37
33	4,844	52	32.26	68	2,336	113	9.85
34	4,792	52	31.61	69	2,223	114	9.32

TABLES.

Table XV.—*continued.*

Age.	Living.	Decr.	Expect.	Age.	Living.	Decr.	Expect.
70	2,109	116	8.79	84	404	77	3.59
71	1,993	119	8.28	85	327	66	3.33
72	1,874	125	7.77	86	261	55	3.04
73	1,749	132	7.29	87	206	47	2.72
74	1,617	138	6.85	88	159	42	2.38
75	1,479	142	6.43	89	117	37	2.05
76	1,337	139	5.99	90	80	30	1.77
77	1,198	134	5.71	91	50	22	1.54
78	1,064	128	5.37	92	28	14	1.36
79	936	124	5.04	93	14	8	1.21
80	812	115	4.73	94	6	3	1.17
81	697	107	4.43	95	3	2	83
82	590	98	4.14	96	1	1	50
83	492	88	3.86	97	0	0	0

TABLE XVI.

Shewing the Values of Single Lives according to the Probabilities of the Duration of Life in Mr. De Parcieux's Table of Mortality. See Mr. Florencourt's Dissertations on Political Arithmetic, p. 288.

Interest 5 per Cent.

Age.	Value.	Age.	Value.	Age.	Value.	Age.	Value.
0	11.083	25	15.112	50	11.425	75	4.674
1	14.620	26	15.040	51	11.178	76	4.429
2	15.135	27	14.969	52	10.926	77	4.190
3	15.509	28	14.893	53	10.673	78	3.953
4	15.750	29	14.810	54	10.418	79	3.719
5	15.924	30	14.722	55	10.168	80	3.501
6	16.041	31	14.627	56	9.930	81	3.283
7	16.118	32	14.527	57	9.682	82	3.072
8	16.169	33	14.421	58	9.431	83	2.868
9	16.204	34	14.306	59	9.177	84	2.668
10	16.210	35	14.189	60	8.923	85	2.461
11	16.194	36	14.065	61	8.669	86	2.237
12	16.145	37	13.930	62	8.413	87	1.976
13	16.077	38	13.786	63	8.155	88	1.688
14	15.994	39	13.632	64	7.893	89	1.409
15	15.901	40	13.466	65	7.626	90	1.164
16	15.807	41	13.296	66	7.351		
17	15.716	42	13.116	67	7.069		
18	15.631	43	12.931	68	6.778		
19	15.550	44	12.738	69	6.479		
20	15.474	45	12.539	70	6.171		
21	15.401	46	12.333	71	5.856		
22	15.328	47	12.119	72	5.540		
23	15.256	48	11.897	73	5.232		
24	15.184	49	11.666	74	4.942		

TABLE XVII.

Shewing the Probabilities and Expectation of Life among
Males and Females at Chester.

Age.	MALES.			FEMALES.		
	Living.	Decr.	Expect.	Living.	Decr.	Expectat.
0	1,927	220	28.13	2,139	161	33.27
3 months	-	75	-	-	64	-
6 months	-	76	-	-	69	-
9 months	-	67	-	-	74	-
1 year	1,489	180	35.26	1,771	181	39.09
2	1,309	107	39.04	1,580	127	42.75
3	1,202	67	41.47	1,463	77	45.13
4	1,135	34	42.89	1,386	53	46.61
5	1,101	30	43.20	1,333	30	47.44
6	1,071	24	43.40	1,303	16	47.52
7	1,047	18	43.38	1,285	11	47.18
8	1,029	11	43.03	1,274	9	46.59
9	1,018	8	42.59	1,265	7	45.44
10	1,010	6	41.92	1,258	6	45.17
11	1,004	5	41.16	1,252	6	44.30
12	999	5	40.37	1,246	7	42.94
13	994	6	39.57	1,239	7	42.84
14	988	6	38.81	1,232	8	42.08
15	982	7	38.05	1,224	9	41.35
16	975	9	37.32	1,215	10	40.64
17	966	10	36.66	1,205	11	39.98
18	956	11	36.04	1,194	12	39.35
19	945	11	35.34	1,182	11	38.74
20	934	11	34.86	1,171	10	38.10
21	923	11	34.27	1,161	10	37.43
22	912	12	33.68	1,151	10	36.75
23	900	12	33.12	1,141	11	36.06
24	888	12	32.56	1,130	12	35.41
25	876	13	32.00	1,118	16	34.78
26	863	13	31.48	1,102	16	34.18
27	850	13	30.95	1,086	16	33.69
28	837	12	30.42	1,070	16	33.28
29	825	11	29.86	1,054	16	32.68

TABLES.

290

Table XVII.—*continued.*

Age.	MALES.			FEMALES.		
	Living.	Decr.	Expectat.	Living.	Decr.	Expectat.
30	814	10	29.25	1,038	13	32.27
31	804	9	28.61	1,025	13	31.68
32	795	10	27.93	1,012	13	31.58
33	785	10	27.29	999	13	30.47
34	775	10	26.63	986	13	29.87
35	765	11	25.96	973	14	29.26
36	754	11	25.34	959	14	28.58
37	743	12	24.71	945	14	28.10
38	731	12	24.11	931	14	27.52
39	719	13	23.50	917	15	26.93
40	706	13	22.92	902	15	26.37
41	693	14	22.33	887	15	25.80
42	679	14	21.65	872	15	25.48
43	665	15	21.24	857	14	24.67
44	650	15	20.72	843	15	24.07
45	635	15	20.20	828	15	23.50
46	620	15	19.67	813	15	22.93
47	605	15	19.15	798	15	22.35
48	590	16	18.62	783	16	21.75
49	574	16	18.13	767	15	21.21
50	558	16	17.64	752	15	20.61
51	542	16	17.14	737	14	20.03
52	526	16	16.65	723	14	19.41
53	510	16	16.15	709	14	18.78
54	494	15	15.66	695	14	18.31
55	479	14	15.14	681	13	17.52
56	465	14	14.58	668	13	16.85
57	451	14	14.01	655	13	16.17
58	437	14	13.22	642	15	15.49
59	423	16	12.88	627	15	14.85
60	407	19	12.37	612	20	14.20
61	388	22	11.94	592	25	13.66
62	366	22	11.63	567	25	13.24
63	344	22	11.34	542	25	12.83
64	322	20	11.09	517	21	12.43
65	302	16	10.78	496	17	11.93
66	286	13	10.36	479	15	11.34
67	273	11	9.83	464	15	10.69
68	262	11	9.22	449	16	10.03

Table XVII.—*continued.*

MALES.				FEMALES.		
Age.	Living.	Decr.	Expectat.	Living.	Decr.	Expectat.
69	251	13	8.61	433	20	9.38
70	238	16	8.05	413	25	8.81
71	222	22	7.60	388	30	8.35
72	200	22	7.38	358	30	8.01
73	178	21	7.23	328	30	7.69
74	157	18	7.13	298	27	7.42
75	139	15	6.99	271	23	7.11
76	124	12	6.77	248	22	6.72
77	112	11	6.44	226	21	6.33
78	101	11	6.19	205	21	5.93
79	90	10	5.77	184	21	5.55
80	80	10	5.43	163	21	5.20
81	70	10	5.14	142	21	4.89
82	60	9	4.91	121	21	4.66
83	51	8	4.69	100	21	4.53
84	43	7	4.47	79	18	4.60
85	36	6	4.25	61	12	4.81
86	30	5	4.00	49	8	4.86
87	25	4	3.70	41	6	4.72
88	21	4	3.30	35	4	4.44
89	17	3	2.97	31	4	3.95
90	14	3	2.50	27	4	3.46
91	11	3	2.04	23	4	2.98
92	8	3	1.62	19	4	2.50
93	5	2	1.30	15	4	2.03
94	3	2	0.83	11	4	1.59
95	1	1	0.50	7	3	1.21
96	-	-	-	4	3	0.75
97	-	-	-	1	1	0.50

TABLE XVIII.

the present Value of £1 to be received at the End of any Number of Years, not exceeding 100; discounting at the Rates of 3, 4, 5, and 6 per Cent. Compound Interest.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
1	.970874	.961538	.952381	.943396
2	.942596	.924556	.907029	.889996
3	.915142	.888996	.863838	.839619
4	.888487	.854804	.822702	.792094
5	.862609	.821927	.783526	.747258
6	.837484	.790315	.746215	.704961
7	.813092	.759918	.710681	.665057
8	.789409	.730690	.676839	.627412
9	.766417	.702587	.644609	.591898
10	.744094	.675564	.613913	.558395
11	.722421	.649581	.584679	.526788
12	.701380	.624597	.556837	.496969
13	.680951	.600574	.530321	.468839
14	.661118	.577475	.505068	.442301
15	.641862	.555265	.481017	.417265
16	.623167	.533908	.458112	.393646
17	.605016	.513373	.436297	.371364
18	.587395	.493628	.415521	.350344
19	.570286	.474642	.395734	.330513
20	.553676	.456387	.376889	.311805
21	.537549	.438834	.358942	.294155
22	.521893	.421955	.341850	.277505
23	.506692	.405726	.325571	.261797
24	.491934	.390121	.310068	.246979
25	.477606	.375117	.295303	.232999
26	.463695	.360689	.281241	.219810
27	.450189	.346817	.267848	.207368
28	.437077	.333477	.255094	.195630
29	.424346	.320651	.242946	.184557
30	.411987	.308319	.231377	.174110
31	.399987	.296460	.220359	.164255
32	.388337	.285058	.209866	.154957

Table XVIII.—*continued.*

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
33	.377026	.274094	.199873	.146186
34	.366045	.263552	.190355	.137912
35	.355383	.253415	.181290	.130105
36	.345032	.243669	.172657	.122741
37	.334983	.234297	.164436	.115793
38	.325226	.225285	.156605	.109239
39	.315754	.216621	.149148	.103056
40	.306557	.208289	.142046	.097222
41	.297628	.200278	.135282	.091719
42	.288959	.192575	.128840	.086527
43	.280543	.185168	.122704	.081630
44	.272372	.178046	.116861	.077009
45	.264439	.171198	.111297	.072650
46	.256737	.164614	.105997	.068538
47	.249259	.158283	.100949	.064658
48	.241999	.152195	.096142	.060998
49	.234950	.146341	.091564	.057546
50	.228107	.140713	.087204	.054288
51	.221463	.135301	.083051	.051215
52	.215013	.130097	.079096	.048316
53	.209750	.125093	.075330	.045582
54	.202670	.120282	.071743	.043001
55	.196767	.115656	.068326	.040567
56	.191036	.111207	.065073	.038271
57	.185472	.106930	.061974	.036105
58	.180070	.102817	.059023	.034061
59	.174825	.098863	.056212	.032133
60	.169733	.095060	.053536	.030314
61	.164789	.091404	.050986	.028598
62	.159990	.087889	.046558	.026980
63	.155330	.084508	.046246	.025453
64	.150806	.081258	.044044	.024012
65	.146413	.078133	.041946	.022653
66	.142149	.075128	.039949	.021370
67	.138009	.072238	.038047	.020161
68	.133989	.069460	.036235	.019020
69	.130086	.066788	.034509	.017943
70	.126297	.064219	.032866	.016927

Table XVIII.—*continued.*

Years.	5 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
71	.122619	.061749	.031301	.015969
72	.119047	.059374	.029811	.015065
73	.115580	.057091	.028391	.014213
74	.112214	.054895	.027039	.013408
75	.108945	.052784	.025752	.012649
76	.105772	.050754	.024525	.011933
77	.102691	.048801	.023357	.011258
78	.099700	.046924	.022245	.010620
79	.096796	.045120	.021186	.010019
80	.093977	.043384	.020177	.009452
81	.091240	.041716	.019216	.008917
82	.088582	.040111	.018301	.008412
83	.086002	.038569	.017430	.007936
84	.083497	.037085	.016600	.007487
85	.081065	.035659	.015809	.007063
86	.078704	.034287	.015056	.006663
87	.076412	.032969	.014339	.006286
88	.074186	.031701	.013657	.005930
89	.072026	.030481	.013006	.005595
90	.069928	.029309	.012387	.005278
91	.067891	.028182	.011797	.004979
92	.065914	.027098	.011235	.004697
93	.063994	.026056	.010700	.004432
94	.062130	.025053	.010191	.004181
95	.060320	.024090	.009705	.003944
96	.058563	.023163	.009243	.003721
97	.056858	.022272	.008803	.003510
98	.055202	.021416	.008384	.003312
99	.053594	.020592	.007985	.003124
100	.052033	.019800	.007604	.002947

TABLE XIX.

The present Value of an Annuity of One Pound for any Number of Years not exceeding 100, at the several Rates of 3, 4, 5, and 6*l.* per Cent.

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
1	.9708	.9615	.9523	.9433
2	1.9134	1.8861	1.8594	1.8333
3	2.8286	2.7751	2.7232	2.6730
4	3.7170	3.6299	3.5459	3.4651
5	4.5797	4.4518	4.3294	4.2123
6	5.4171	5.2421	5.0756	4.9173
7	6.2302	6.0020	5.7863	5.5823
8	7.0196	6.7327	6.4632	6.2097
9	7.7861	7.4353	7.1078	6.8016
10	8.5302	8.1109	7.7217	7.3600
11	9.2526	8.7605	8.3064	7.8868
12	9.9540	9.3850	8.8632	8.3838
13	10.6349	9.9856	9.3935	8.8526
14	11.2960	10.5631	9.8986	9.2949
15	11.9379	11.1184	10.3796	9.7122
16	12.5611	11.6523	10.8377	10.1058
17	13.1661	12.1656	11.2740	10.4772
18	13.7535	12.6593	11.6895	10.8276
19	14.3238	13.1339	12.0853	11.1581
20	14.8774	13.5903	12.4622	11.4699
21	15.4150	14.0291	12.8211	11.7640
22	15.9369	14.4511	13.1630	12.0415
23	16.4436	14.8568	13.4885	12.3033
24	16.9355	15.2469	13.7986	12.5503
25	17.4131	15.6220	14.0939	12.7833
26	17.8768	15.9827	14.3751	13.0031
27	18.3270	16.3295	14.6430	13.2105
28	18.7641	16.6630	14.8981	13.4061
29	19.1884	16.9837	15.1410	13.5907
30	19.6004	17.2920	15.3724	13.7648

Table XIX.—*continued.*

Years.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
31	20.0004	17.5884	15.5928	13.9290
32	20.3887	17.8735	15.8026	14.0840
33	20.7657	18.1476	16.0025	14.2302
34	21.1318	18.4111	16.1929	14.3681
35	21.4872	18.6646	16.3741	14.4982
36	21.8322	18.9082	16.5468	14.6209
37	22.1672	19.1425	16.7112	14.7367
38	22.4924	19.3678	16.8678	14.8460
39	22.8082	19.5844	17.0170	14.9490
40	23.1147	19.7927	17.1590	15.0462
41	23.4124	19.9930	17.2943	15.1380
42	23.7013	20.1856	17.4232	15.2245
43	23.9819	20.3707	17.5459	15.3061
44	24.2542	20.5488	17.6627	15.3831
45	24.5187	20.7200	17.7740	15.4558
46	24.7754	20.8846	17.8800	15.5243
47	25.0247	21.0429	17.9810	15.5890
48	25.2667	21.1951	18.0771	15.6500
49	25.5016	21.3414	18.1687	15.7075
50	25.7297	21.4821	18.2559	15.7618
51	25.9512	21.6174	18.3389	15.8130
52	26.1662	21.7475	18.4180	15.8613
53	26.3749	21.8726	18.4934	15.9069
54	26.5776	21.9929	18.5651	15.9499
55	26.7744	22.1086	18.6334	15.9905
56	26.9654	22.2198	18.6985	16.0288
57	27.1509	22.3267	18.7605	16.0649
58	27.3310	22.4295	18.8195	16.0989
59	27.5058	22.5284	18.8757	16.1311
60	27.6755	22.6234	18.9292	16.1614
61	27.8403	22.7148	18.9802	16.1900
62	28.0003	22.8027	19.0288	16.2170
63	28.1556	22.8872	19.0750	16.2424
64	28.3064	22.9685	19.1191	16.2664
65	28.4528	23.0466	19.1610	16.2891

Table XIX.—*continued.*

Years.	8 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
66	28.5950	23.1218	19.2010	16.3104
67	28.7330	23.1940	19.2390	16.3306
68	28.8670	23.2635	19.2753	16.3496
69	28.9971	23.3302	19.3098	16.3676
70	29.1234	23.3945	19.3426	16.3845
71	29.2460	23.4562	19.3739	16.4005
72	29.3650	23.5156	19.4037	16.4155
73	29.4806	23.5727	19.4321	16.4297
74	29.5928	23.6276	19.4592	16.4431
75	29.7018	23.6804	19.4849	16.4558
76	29.8076	23.7311	19.5094	16.4677
77	29.9102	23.7799	19.5328	16.4790
78	30.0099	23.8268	19.5550	16.4896
79	30.1067	23.8720	19.5762	16.4996
80	30.2007	23.9153	19.5964	16.5091
81	30.2920	23.9571	19.6156	16.5180
82	30.3805	23.9972	19.6339	16.5264
83	30.4665	24.0357	19.6514	16.5343
84	30.5500	24.0728	19.6680	16.5418
85	30.6311	24.1085	19.6838	16.5489
86	30.7098	24.1428	19.6988	16.5556
87	30.7862	24.1757	19.7132	16.5618
88	30.8604	24.2074	19.7268	16.5678
89	30.9324	24.2379	19.7398	16.5734
90	31.0024	24.2672	19.7522	16.5787
91	31.0703	24.2954	19.7640	16.5836
92	31.1362	24.3225	19.7752	16.5883
93	31.2002	24.3486	19.7859	16.5928
94	31.2623	24.3736	19.7961	16.5969
95	31.3226	24.3977	19.8058	16.6009
96	31.3812	24.4209	19.8151	16.6046
97	31.4380	24.4431	19.8239	16.6081
98	31.4932	24.4646	19.8323	16.6114
99	31.5468	24.4852	19.8403	16.6145
100	31.5989	24.5050	19.8479	16.6175
Perpetuity.	33.3333	25.0000	20.0000	16.6666

TABLE XX.

Shewing the Sum to which £1 Principal will increase at Compound Interest in any Number of Years not exceeding a Hundred.

N ^t	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
1	1.030,000	1.040,000	1.050,000	1.060,000
2	1.060,900	1.081,600	1.102,500	1.123,600
3	1.092,727	1.124,864	1.157,625	1.191,016
4	1.125,508	1.169,858	1.215,506	1.262,476
5	1.159,274	1.216,652	1.276,281	1.338,225
6	1.194,052	1.265,319	1.340,095	1.418,519
7	1.229,873	1.315,931	1.407,100	1.503,630
8	1.266,770	1.368,569	1.477,455	1.593,848
9	1.304,773	1.423,311	1.551,328	1.689,478
10	1.343,916	1.480,244	1.628,894	1.790,847
11	1.384,233	1.539,454	1.710,339	1.898,298
12	1.425,760	1.601,032	1.795,856	2.012,196
13	1.468,533	1.665,073	1.885,649	2.132,928
14	1.512,589	1.731,676	1.979,931	2.260,903
15	1.557,967	1.800,943	2.078,928	2.396,558
16	1.604,706	1.872,981	2.182,874	2.540,351
17	1.652,847	1.947,900	2.292,018	2.692,772
18	1.702,433	2.025,816	2.406,619	2.854,339
19	1.753,506	2.106,849	2.526,950	3.025,599
20	1.806,111	2.191,123	2.653,297	3.207,135
21	1.860,294	2.278,768	2.785,962	3.399,563
22	1.916,103	2.369,918	2.925,260	3.603,537
23	1.973,586	2.464,715	3.071,523	3.819,749
24	2.032,794	2.563,304	3.225,099	4.048,934
25	2.093,777	2.665,836	3.386,354	4.291,870
26	2.156,591	2.772,469	3.555,672	4.549,382
27	2.221,289	2.883,368	3.733,456	4.822,345
28	2.287,927	2.998,703	3.920,129	5.111,686
29	2.356,565	3.118,651	4.116,135	5.418,387
30	2.427,262	3.243,397	4.321,942	5.743,491
31	2.500,080	3.373,133	4.538,039	6.088,100
32	2.575,082	3.508,058	4.764,941	6.453,386
33	2.652,335	3.648,381	5.003,188	6.840,589
34	2.731,905	3.794,316	5.253,347	7.251,025
35	2.813,862	3.946,088	5.516,015	7.686,086
36	2.898,278	4.103,932	5.791,816	8.147,252

Table XX.—*continued.*

N ^o	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
37	2.985,226	4.268,089	6.081,406	8.636,087
38	3.074,783	4.438,813	6.385,477	9.154,252
39	3.167,026	4.616,365	6.704,751	9.703,507
40	3.262,037	4.801,020	7.039,988	10.285,717
41	3.359,898	4.993,061	7.391,988	10.902,861
42	3.460,695	5.192,783	7.761,587	11.557,032
43	3.564,516	5.400,495	8.149,666	12.250,454
44	3.671,452	5.616,515	8.557,150	12.985,481
45	3.781,595	5.841,175	8.985,007	13.764,610
46	3.895,043	6.074,822	9.434,258	14.590,487
47	4.011,895	6.317,815	9.905,971	15.465,916
48	4.132,251	6.570,528	10.401,269	16.393,871
49	4.256,219	6.833,349	10.921,333	17.377,504
50	4.383,906	7.106,683	11.467,399	18.420,154
51	4.515,423	7.390,950	12.040,769	19.525,363
52	4.650,885	7.686,588	12.642,808	20.696,885
53	4.790,412	7.994,052	13.274,948	21.938,698
54	4.934,124	8.313,814	13.938,696	23.255,020
55	5.082,148	8.646,366	14.635,630	24.650,321
56	5.234,613	8.992,221	15.367,412	26.129,340
57	5.391,651	9.351,910	16.135,783	27.697,101
58	5.553,400	9.725,986	16.942,572	29.358,927
59	5.720,003	10.115,026	17.789,700	31.120,463
60	5.891,603	10.519,627	18.679,185	32.987,690
61	6.068,351	10.940,412	19.613,145	34.966,952
62	6.250,401	11.378,029	20.593,802	37.064,969
63	6.437,913	11.833,150	21.623,492	39.288,867
64	6.631,051	12.306,476	22.704,667	41.646,199
65	6.829,982	12.798,735	23.839,900	44.144,971
66	7.034,882	13.310,684	25.031,895	46.793,669
67	7.245,928	13.843,112	26.283,490	49.601,290
68	7.463,306	14.396,836	27.597,664	52.577,367
69	7.687,205	14.972,709	28.977,548	55.732,009
70	7.917,821	15.571,618	30.426,425	59.075,930
71	8.155,356	16.194,483	31.947,746	62.620,485
72	8.400,017	16.842,262	33.545,134	66.377,715
73	8.652,017	17.515,952	35,222,390	70.360,378
74	8.911,578	18.216,591	36.983,510	74.582,000
75	9.178,925	18.945,254	38.832,685	79.056,920
76	9.454,293	19.703,064	40.774,320	83.800,336
77	9.737,922	20.491,187	42.813,036	88.828,356

Table XX.—*continued.*

Yrs.	5 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
78	10.030,059	21.310,834	44.953,688	94.158,057
79	10.330,961	22.163,268	47.201,372	99.807,541
80	10.640,890	23.049,799	49.561,441	105.795,993
81	10.960,117	23.971,791	52.039,513	112.143,753
82	11.288,920	24.930,662	54.641,488	118.872,378
83	11.627,588	25.927,889	57.373,563	126.004,720
84	11.976,416	26.965,004	60.242,241	133.565,004
85	12.335,708	28.043,604	63.254,353	141.578,904
86	12.705,779	29.165,349	66.417,071	150.073,638
87	13.086,953	30.331,963	69.737,924	159.078,057
88	13.479,561	31.545,241	73.224,820	168.622,740
89	13.883,948	32.807,051	76.886,061	178.740,104
90	14.300,467	34.119,333	80.730,365	189.464,511
91	14.729,481	35.484,106	84.766,883	200.832,381
92	15.171,365	36.903,470	89.005,227	212.882,324
93	15.626,506	38.379,609	93.455,488	225.655,264
94	16.095,301	39.914,794	98.128,263	239.194,580
95	16.578,160	41.511,385	103.034,676	253.546,254
96	17.075,505	43.171,841	108.186,410	268.759,030
97	17.587,770	44.898,715	113.595,730	284.884,572
98	18.115,403	46.694,663	119.275,517	301.977,646
99	18.658,866	48.562,450	125.239,293	320.096,305
100	19.218,631	50.504,948	131.501,257	339.302,083

TABLE XXI.

Shewing the Sum to which £1 per Annum will increase at Compound Interest in any Number of Years not exceeding a Hundred.

$\frac{1}{2}$	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
1	1.000,000	1.000,000	1.000,000	1.000,000
2	2.030,000	2.040,000	2.050,000	2.060,000
3	3.090,900	3.121,600	3.152,500	3.183,600
4	4.183,627	4.246,464	4.310,125	4.374,616
5	5.309,135	5.416,322	5.525,631	5.637,092
6	6.468,409	6.632,975	6.801,912	6.975,318
7	7.662,462	7.898,294	8.142,008	8.393,837
8	8.892,336	9.214,226	9.549,108	9.897,467
9	10.159,106	10.582,795	11.026,564	11.491,315
10	11.463,879	12.006,107	12.577,892	13.180,794
11	12.807,795	13.486,351	14.206,787	14.971,642
12	14.192,029	15.025,805	15.917,126	16.869,941
13	15.617,790	16.626,837	17.712,982	18.882,137
14	17.086,324	18.291,911	19.598,631	21.015,065
15	18.558,913	20.023,587	21.578,563	23.275,969
16	20.156,881	21.824,531	23.657,491	25.672,528
17	21.761,587	23.697,512	25.840,366	28.212,879
18	23.414,435	25.645,412	28.132,384	30.905,652
19	25.116,868	27.671,229	30.539,003	33.759,991
20	26.870,374	29.778,078	33.065,954	36.785,591
21	28.676,485	31.969,201	35.719,251	39.992,726
22	30.536,780	34.247,969	38.505,214	43.392,290
23	32.452,883	36.617,888	41.430,475	46.995,827
24	34.426,470	39.082,604	44.501,998	50.815,577
25	36.459,264	41.645,908	47.727,098	54.864,512
26	38.553,042	44.311,744	51.113,453	59.156,382
27	40.709,633	47.084,214	54.669,126	63.705,765
28	42.930,922	49.967,582	58.402,582	68.528,111
29	45.218,850	52.966,286	62.322,711	73.639,798
30	47.575,415	56.084,937	66.438,847	79.058,186
31	50.002,678	59.328,335	70.760,789	84.801,677
32	52.502,758	62.701,468	75.298,829	90.889,778
33	55.077,841	66.209,527	80.063,770	97.343,164
34	57.730,176	69.857,908	85.066,959	104.183,754
35	60.462,081	73.652,224	90.320,307	111.434,779
36	63.275,944	77.598,313	95.836,322	119.120,866

Table XXI.—*continued.*

N.	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
37	66.174,222	81.702,246	101.628,138	127.268,118
38	69.159,449	85.970,336	107.709,545	135.904,205
39	72.234,232	90.409,149	114.095,023	145.058,458
40	75.401,259	95.025,515	120.799,774	154.761,965
41	78.663,297	99.826,536	127.839,762	165.047,683
42	82.023,196	104.819,597	135.231,751	175.950,544
43	85.483,892	110.012,381	142.993,338	187.507,577
44	89.048,409	115.412,876	151.143,005	199.758,031
45	92.719,861	121.029,392	159.700,155	212.743,513
46	96.501,457	126.870,567	168.685,163	226.508,124
47	100.396,500	132.945,390	178.119,421	241.098,612
48	104.408,395	139.263,206	188.025,392	256.564,528
49	108.540,647	145.833,734	198.426,662	272.958,400
50	112.796,867	152.667,083	209.347,995	290.335,904
51	117.180,773	159.773,767	220.815,395	308.756,058
52	121.696,196	167.164,717	232.856,165	328.281,422
53	126.347,082	174.851,306	245.498,973	348.978,307
54	131.137,494	182.845,358	258.773,922	370.917,006
55	136.071,619	191.159,173	272.712,618	394.172,026
56	141.153,768	199.805,539	287.348,249	418.822,348
57	146.388,381	208.797,761	302.715,661	444.951,689
58	151.780,032	218.149,672	318.851,444	472.648,790
59	157.333,433	227.875,658	335.794,017	502.007,717
60	163.053,436	237.990,685	353.583,717	533.128,180
61	168.945,039	248.510,312	372.262,903	566.115,871
62	175.013,391	259.450,725	391.876,048	601.082,824
63	181.263,792	270.828,754	412.469,851	638.147,793
64	187.701,706	282.661,904	434.093,343	677.436,661
65	194.332,757	294.968,380	456.798,011	719.082,860
66	201.162,740	307.767,115	480.637,911	763.227,832
67	208.197,622	321.077,800	505.669,807	810.021,502
68	215.443,551	334.920,912	531.953,297	859.622,792
69	222.906,858	349.317,748	559.550,962	912.200,160
70	230.594,063	364.290,458	588.528,510	967.932,169
71	238.511,885	379.862,077	618.954,936	1027.008,099
72	246.667,242	396.056,560	650.902,683	1089.628,585
73	255.067,259	412.898,822	684.447,817	1156.006,300
74	263.719,277	430.414,775	719.670,208	1226.366,679
75	272.630,855	448.631,366	756.653,718	1300.948,679
76	281.809,781	467.576,621	795.486,404	1380.005,600
77	291.264,074	487.279,686	836.260,724	1463.805,936
78	301.001,996	507.770,873	879.073,760	1552.634,292

Table XXI.—*continued.*

M	3 per Cent.	4 per Cent.	5 per Cent.	6 per Cent.
79	311.032,056	529.081,708	924.027,448	1646.792,350
80	321.363,018	551.244,976	971.228,821	1746.599,891
81	332.003,909	574.294,775	1020.790,262	1852.395,884
82	342.964,026	598.266,566	1072.829,775	1964.539,637
83	354.252,947	623.197,229	1127.471,264	2083.412,016
84	365.880,535	649.125,118	1184.844,827	2209.416,737
85	377.856,951	676.090,123	1245.087,068	2342.981,741
86	390.192,660	704.138,728	1308.341,422	2484.560,645
87	402.898,440	733.299,077	1374.758,493	2634.634,284
88	415.985,393	763.631,040	1444.496,418	2793.712,341
89	429.464,955	795.176,282	1517.721,238	2962.335,082
90	443.348,903	827.983,333	1594.607,300	3141.075,187
91	457.649,370	862.102,667	1675.337,665	3330.539,698
92	472.378,851	897.586,773	1760.104,549	3531.372,080
93	487.550,217	934.490,244	1849.109,776	3744.254,405
94	503.176,723	972.869,854	1942.565,265	3969.909,669
95	519.272,025	1012.784,648	2040.693,528	4209.104,249
96	535.850,186	1054.296,034	2143.728,205	4462.650,504
97	552.925,692	1097.467,875	2251.914,615	4731.409,534
98	570.513,462	1142.366,590	2365.510,346	5016.294,106
99	588.628,866	1189.061,254	2484.785,863	5318.271,753
100	607.287,732	1237.623,704	2610.025,156	5638.368,058

APPENDIX.

THE last four tables may be found in most of the books on compound interest; and though it forms no part of my design in this work to enter fully into that subject, it may not be improper to give some explanation of the principles on which they are computed; more especially as constant recourse is had to one or other of them in the solution of the different problems in the doctrine of life annuities and reversions.

Let r be £1 increased by its interest for a year, then will £1 be the present value of r to be received at the end of that time; and as r is to 1, so is 1 to $\frac{1}{r}$ *, the present value of £1 to be received at the end of a year. If the payment is postponed to the end of two years, r must be increased by its interest for a year, and will amount to $r + r \times \overline{r - 1} = r^2$. And as r^2 is to 1, so is 1 to $\frac{1}{r^2}$, the present value of £1 to be received at the end of two years. In like manner, if the payment is deferred for three years,

* If r denote the *interest* only of £1, the value of £1 payable at the end of 1, 2, 3, &c. years, will be $\frac{1}{1+r}$, $\frac{1}{(1+r)^2}$, $\frac{1}{(1+r)^3}$, &c.; and the amount of £1 improved, at compound interest, at the end of 1, 2, 3, &c. years, will be $\overline{1+r}$, $\overline{(1+r)^2}$, $\overline{(1+r)^3}$, &c.

r^2 must be increased by its interest for a year, and will amount to $r^2 + r^2 \times r - 1 = r^3$; and r^3 will be to 1 as 1 to $\frac{1}{r^3}$, the present value of £1 to be received at the end of three years. By proceeding in this manner, the value of £1 to be received at the end of 4, 5, 6, &c. years, will be $\frac{1}{r^4}$, $\frac{1}{r^5}$, $\frac{1}{r^6}$, &c. The numbers, therefore, in the different columns of the 18th Table are found by dividing £1 by r , r^2 , r^3 , &c.: thus, if the rate of interest be 3 per cent., the first number is $\frac{1}{1.03} = .9708$; the second number $\frac{1}{1.03^2} = .9426$; the third number $\frac{1}{1.03^3} = .9151$, and so on.

As the value of an annuity certain for any number of years consists of the values of £1 payable at the end of each year in that term, the numbers in the 19th Table are the sums of the values in the 18th Table; hence the value of an annuity certain for three years at 3 per cent. is the sum of the three first numbers in the 18th Table, that is $.9708 + .9426 + .9151 = 2.8285$. For four years it is $2.8285 + .8885 = 3.7170$; and so on for a longer term, and at a different rate of interest. The numbers in the 20th Table, giving the amount of £1 with its accumulated interest in any number of years, are the several powers of r , which have been found above to express that amount; that is, they are r , r^2 , r^3 , r^4 , &c., according as the term is 1, 2, 3, 4, &c. years. Thus, for the term of four years, and at 4 per cent. interest, the fourth number in the second column is $\overline{1.04}^4 = 1.16986$; for the term of six years it is $\overline{1.04}^6 = 1.26532$, &c. And the numbers in the 21st Table, giving the amount of an annuity with its accumulated interest in any number of years, are evidently the

sum of the different powers of r given in Tab. 19th; thus, the amount of £1 per annum for three years is $1 + r + r^2$; for four years $1 + r + r^2 + r^3$, and so on. Supposing then the term to be three years, and the rate of interest 3 per cent., the amount will be 3.0909, as in Tab. 21st, or the sum of £1 added to the first two numbers in the 20th Table. If the term be four years, it will be 4.18368, as in Tab. 21st, or £1 added to the first three numbers in Tab. 20th.

By the assistance of the foregoing tables, an answer to most of the cases in compound interest may be easily obtained; and in order to exemplify this, I shall just insert the following:

I. Supposing an estate subject to a fine of £100, to be paid at the end of every 20 years from the present time, and it were required to know the value of those fines for 100 years, at 5 per cent.—By Tab. 18th, the values of £1 payable at the end of 20, 40, 60, 80, and 100 years, are respectively equal to .3769, .1420, .0535, .0202, and .0076, amounting to .5002; which being multiplied into 100, produces £50.02 for the value of those fines. If their value for ever is required, it may be obtained from the 20th Table, by dividing unity by the amount of £1 in twenty years, lessened by unity, and multiplying the quotient into the given fine. Thus, the amount of £1 in 20 years by Table 20th is 2.6533, and unity divided by 1.6533 quotes .6048; the value, therefore, of the fines for ever is £60.48.

II. Supposing the value were required of an annuity of £100 at 4 per cent., for a term of 20 years, to commence at the expiration of 10 years. By Tab. 19th, the value of an annuity for 30 years, at 4 per cent., is 17.292, and the value of an annuity for 10 years is 8.111; their difference

is 9.181, and consequently the value of this reversionary annuity is £918.100. If the value of this annuity for ever after a term of ten years had been required, 8.111 must have been deducted from 25 (the perpetuity), and the answer in that case would have been £1688.9.

III. Supposing it were required to ascertain the sum which should be annually applied to the extinction of a debt of £1000 in fifteen years, at 5 per cent. In this case, recourse must be had to Tab. 21st, from which it appears that £1 per annum in fifteen years, at 5 per cent., will amount to 21.758. Dividing, therefore, 1000 by 21.758, we have £45.96 for the answer.

A great variety of other cases might be stated; but these are sufficient for my present purpose. If the values are required at a rate of interest different from either of those rates at which the tables are computed, it becomes necessary to adopt other methods; and the following theorems, containing the solution of some of the most important cases, are inserted with the view of giving a general, rather than a complete view of the subject *.

Let p be the present value of an annuity a , n the number of payments at r interest; 1st. If a , n , and r are given, p will be $= \frac{a \cdot \overline{(1+r)^n - 1}}{r \cdot \overline{1+r}^n}$. 2d. If n , p , r are given, a will

* The values in the 19th and 21st Tables are found by a shorter process than by the addition of the several terms in the 18th and 20th Tables. If r be £1 increased by its interest for a year, the value of an annuity certain of £1 for n years will be

$$= \frac{1}{r-1} - \frac{1}{r^n \cdot r-1}; \text{ and the amount of an annuity of £1 in } n \text{ years will be } = \frac{r^n - 1}{r-1}.$$

be $= \frac{pr \cdot 1+r^n}{1+r^n - 1}$. 3d. If a, p, r are given, n will be =

$\frac{\text{Log. B}}{\text{Log. } 1+r}$; B being $= \frac{a}{a-pr}$. 4th. If a, p, n are given,

r will be $= \frac{6 - \sqrt{36 - n - 1 \cdot 12 \cdot G - 1}}{n - 1}$, G being $= \frac{an}{p} \left| \frac{2}{n+1} \right.$.

Again, let m be the amount of an annuity a for n years at r interest; 1st. Supposing a, n, r to be given, m will be

$= \frac{a \cdot 1+r^n - 1}{r}$; 2d. Supposing m, p, r to be given, a will be

$= \frac{mr}{1+r^n - 1}$; 3d. Supposing a, m, r to be given, n will be

$= \frac{\text{Log. C}}{\text{Log. } 1+r}$, (C being $= \frac{mr+a}{a}$); and 4th. Supposing $a, m,$

n to be given, r will be $= \sqrt{\frac{36 + n + 1 \cdot 12 \cdot D - 1 - 6}{n + 1}}$, D being

$= \frac{m}{an} \left| \frac{2}{n-1} \right.$.

EXAMPLE I. Let a the annuity be 10, r the interest .045, and n the time, twenty years, then will p be =

$$\frac{10 \times 1.045^{20} - 1}{.045 \times 1.045^{20}} = \frac{10 \times 1.41171}{.045 \times 2.41171} = 180.079. \text{ If } p, n, \text{ and } r$$

be 180.079, 20, and .045 respectively, a will be =

$$\frac{180.079 \times .045 \times 1.045^{20}}{1.045^{20} - 1} = \frac{14.117}{1.4117} = 10. \text{ If } a, p, \text{ and } r \text{ be}$$

10, 180.079, and .045 respectively, n will be = Log.

$$\frac{10}{10 - .045 \times 180.079} \div \text{Log. } 1.045 = \frac{.3823260}{.0191163} = 20. \text{ And if}$$

$a, p, \text{ and } n$ respectively be 10, 180.079, and 20,

$$\frac{an}{p} \left| \frac{2}{n+1} \right. \text{ will be } = \frac{200}{180.079} \left| \frac{2}{21} \right. = \overline{1.5375} \left| \frac{2}{21} \right. = 1.04181,$$

$$\text{and } r \text{ will be } = \frac{6 - \sqrt{36 - 12 \times 19 \times .04181}}{19} = \frac{6 - \sqrt{36 - 9.5327}}{19} =$$

$$\frac{6 - \sqrt{26.4673}}{19} = \frac{6 - 5.1446}{19} = .045.$$

EXAMPLE II. Let a the annuity be = 10, r the interest = .035, and n the time be 30 years, m the amount will then be $\frac{10 \times \overline{1.035}^{30}-1}{.035} = \frac{10 \times 1.80678}{.035} = 516.227$. Let n , m , and r respectively be 30, 516.227, and .035, and a will be $= \frac{.035 \times 516.227}{\overline{1.035}^{30}-1} = \frac{18.0678}{1.80678} = 10$. If a , m , and r be 10, 516.227, and .035, $\frac{mr+a}{a}$ will be 2.80678, and $n = \text{Log. } 2.80678 \div \text{Log. } 1.035 = \frac{4482090}{.0149403} = 30$. Lastly, if a , m , n , be respectively = 10, 516.227, and 30; $\frac{m^2}{an}$ will be $= \frac{516.227^2}{300} \Big|_{29}^2 = 1.720756 \Big|_{29}^2 = 1.03814$, and $r = \sqrt{\frac{36 + 12 \times 31 \times 0.03814 - 6}{31}} = \sqrt{\frac{50.188 - 6}{31}} = \frac{7.0843 - 6}{31} = .035$.

* It should be observed, that although r has been taken for the interest of £1 for a year in these examples, the rules for determining the values of a , p , m , or n , would have answered equally well if r had been taken for any fraction of a year, and n had been taken for the number of *payments* instead of the number of *years*: thus, if the payments instead of being made yearly had been supposed in these examples to be made quarterly, r in the former would have been $= \frac{.045}{4}$, and in the latter $= \frac{.035}{4}$; and n , instead of being = 20 and 30, would have been = 80 and 120: that is, p in the first example would have been $= \frac{10 \times \overline{1.01125}^{80}-1}{.045 \times \overline{1.01125}^{80}} = 131.418$, and m in the second example $= \frac{10 \times \overline{1.00875}^{120}-1}{.035} = 527.048$; and n in the former would have been $= \text{Log. of } \frac{10}{10 - .045 \times 131.418} \div \text{Log. of } 1.01125 = 80$, and in the latter $= \text{Log. of } \frac{.035 \times 527.048 + 10}{10} \div \text{Log. of } 1.00875 = \frac{.454032}{.0037836} = 120$.

In most books on the subject of annuities certain, and compound interest, it has been usual to combine the five quantities a , m , n , p , and r , and to give theorems for determining the value of either of them when the other four are known. But it seldom or ever happens that m the amount, and p the value of the annuity, are both known in the same case, and therefore it will not be necessary to give those theorems here.

As the following problems have occurred in practice, and I am not aware that solutions of them have been given in any book on the subject, it may not be improper to insert them in this place; although not immediately connected with the object and design of this work.

PROBLEM I. To find the value of an annuity for n years, supposing the first payment to be a , the 2d $\overline{a-d}$, the 3d $\overline{a-2d}$, -- - the n th $\overline{a-n-1}d$.

SOLUTION. The series expressing the value of this annuity, supposing r to be £1 increased by its interest for a year, will be $\frac{a}{r} + \frac{\overline{a-d}}{r^2} + \frac{\overline{a-2d}}{r^3} - - - + \frac{\overline{a-n-1}d}{r^n}$. Let A be the value of £1 per annum for n years, and this series will be found $= a \times A + \frac{\overline{n-1}d}{r^n \cdot r-1} - \frac{\overline{r^{n-1}-1}d}{r^{n-1} \cdot r-1} \cdot a$.

EXAMPLE. Let the annuity be £40 in the first year, decreasing £1 4s. in the 2d and subsequent years for a term of 14 years, and let r be = 1.05. Then will the above expression be $40 \times 9.8986 + \frac{13 \times 1.2}{1.9799 \times .05} - \frac{.88565 \times 1.2}{1.8856 \times .0025} = 395.944 + 157.58 - 225.45 = \text{£}328.074$.

PROBLEM II. To determine the sum to which an annuity will accumulate at the end of n years, supposing

such annuity to be received *yearly*, and its interest to be improved *half-yearly*.

SOLUTION. Let a be the given annuity, and r the interest of £1 for a year; then will the sum to which the first payment of the annuity at the end of the first year, will accumulate, together with its interest, improved *half-yearly* during $n-1$. years, be $= a \cdot \overline{1 + \frac{r}{2}}^{2n-2}$; the sum to which the second payment will accumulate in $n-2$. years, be $a \cdot \overline{1 + \frac{r}{2}}^{2n-4}$; the sum to which the third payment will accumulate in $n-3$ years be $= a \cdot \overline{1 + \frac{r}{2}}^{2n-6}$; and so on.

The whole sum therefore will be expressed by the series

$$a \left(\overline{1 + \frac{r}{2}}^2 + \overline{1 + \frac{r}{2}}^4 + \overline{1 + \frac{r}{2}}^6 + \dots + \overline{1 + \frac{r}{2}}^{2n-2} \right) = a \times \frac{\overline{1 + \frac{r}{2}}^{2n} - 1}{\overline{1 + \frac{r}{2}}^2 - 1}.$$

EXAMPLE. Let a be $= 500$, $r = .05$, and $n = 30$.

The above expression will then be $= 500 \times \frac{\overline{1.025}^{60}-1}{\overline{1.025}^2-1} = 500 \times 67.1567 = 33,578.350$. Were the above sum improved annually, it would amount to 33,219.4. And were the annuity received and improved half-yearly, it would amount to 33,998.

PROBLEM III. To determine the value of £1 *per annum* for n years after n years, of £2 *per annum* for n years after $2n$ years, of £3 *per annum* for n years after $3n$ years, and so on increasing after the expiration of each n years for ever.

SOLUTION. Supposing in this case r to be £1 increased by its interest for a year, and the value of the annuity will

$be = \frac{1}{r^n+1} + \frac{1}{r^{n+2}} + \frac{1}{r^{n+3}} + \text{ &c. } \dots - \left(\frac{1}{r^{2n}} \right) \dots + \frac{2}{r^{2n+1}}$
 $+ \frac{2}{r^{2n+2}} + \frac{2}{r^{2n+3}} + \left(\frac{3}{r^{3n}} \right) \dots + \frac{3}{r^{3n+1}} + \frac{3}{r^{3n+2}} + \frac{3}{r^{3n+3}} + \dots - \left(\frac{3}{r^{4n}} \right) \dots \text{ &c. &c. &c.}$ The sums of these several series are $\frac{1}{r^n \cdot r-1} - \frac{1}{r^{2n} \cdot r-1} \dots - \frac{2}{r^{2n} \cdot r-1} - \frac{2}{r^{3n} \cdot r-1} \dots$
 $- \frac{3}{r^{3n} \cdot r-1} - \frac{3}{r^{4n} \cdot r-1} \dots \text{ &c. &c. respectively.}$ The whole value therefore will be expressed by the two series
 $\frac{1}{r-1} \left(\frac{1}{r^n} + \frac{2}{r^{2n}} + \frac{3}{r^{3n}} + \text{ &c.} \right) - \frac{1}{r-1} \left(\frac{1}{r^{2n}} + \frac{2}{r^{3n}} + \frac{3}{r^{4n}} + \text{ &c.} \right) = \frac{1}{r-1 \cdot r^{n-1}}$.

COROLLARY. If n be = 1, the value of the above annuity will become = $\frac{1}{r-1}$, which is known to be the true value from other principles.

EXAMPLE. Supposing A to hold a lease for 21 years, on condition that at the end of that term the rent should be increased 5 guineas for the next 21 years, 10 guineas for the following 21 years, and so increasing 5 guineas *per annum* every 21 years for ever; what is the value of such increasing rent at £5 *per cent.* **Answer.** In this case n is = 21, and $r = 1.05$; the value therefore will be = $5.25 \times \frac{1}{1.05 \times 1.05^{21} - 1} = 5.25 \times 11.2 = 58.8$.

PROBLEM IV. To determine the sum which should be paid for any given annuity for n years, so as to secure the purchaser the return of his capital at the expiration of the term, supposing him to have the means of reproducing that capital at g *per cent.*, and that the value of the annuity is computed at r *per cent.*

SOLUTION. Let a be the given annuity, and x the capital to be reproduced at the end of n years, or the sum

which should be paid for the annuity on the above conditions. Since $\frac{1+\epsilon^n - 1}{\epsilon}$ is the amount of £1 per annum at ϵ interest in n years, $a - rx \times \frac{1+\epsilon^n - 1}{\epsilon}$ will be equal to x ; from which equation x is easily found = $\frac{n \times 1 + \epsilon^n - 1}{\epsilon + 1 + \epsilon^{n-1} - r}$.

EXAMPLE. A purchases an annuity of £65 for 10 years, and is to be allowed £9 per cent. in the purchase, but being unable to improve the difference between £65 and the interest at £9 per cent. on the capital at no higher rate than £3 per cent.; it is proposed to make him such allowance in the purchase money as shall enable him to replace his capital at the end of the term by improving it at this reduced interest. In this case ϵ is = .03, r = .09, n = 10, and a = 65; and x will therefore be = $\frac{65 \times 1.03^{10-1}}{.03 + 1.03^{10-1} \times .09} = \frac{65 \times .344}{.03 + .344 \times .09} = 366.710$. In other words; $366.710 \times .09 = 33.004$, and $65 - 33.004 (= 31.096)$ multiplied into 11.464 the amount of £1 per annum in 10 years, by Tab. 21, gives 366.710.

COROLLARY. When $\epsilon = r$, the above expression becomes $\frac{1+r^{n-1}}{r \cdot 1+r^n}$ which is known to express the amount of £1 per annum in n years.

OBSERVATION.

The values of annuities on two joint lives in the 4th Table are given only for every five years difference of age, and in the 14th Table for every six years difference. But the values for the intermediate ages may be found with sufficient accuracy by the method of interpolation. Thus, supposing it were required to find from the 4th Table the

value at *5 per cent.* of two joint lives aged 44 and 52; we shall have 7.875 for the value of two joint lives aged 52 and 42, and 7.582 for the value of two joint lives aged 52 and 47. If the difference, or .292 be divided by 5, the quotient or .0586, will be the 5th mean between these two values. Deducting .117, or two of these means, from 7.875, the remainder, or 7.758 will be the value required. In like manner, if it were required to determine the value at *4 per cent.* by the 14th Table of an annuity on two joint lives age 63 and 54, the value of two joint lives aged 63 and 51 is 6.505, the value of two joint aged 63 and 57 is 6.045, and their difference, or .460, being divided by 6, gives .0767 for the 6th mean between those two values, Three of these means, or .230, being subtracted from 6.505, will leave 6.275 for the value of the two joint lives aged 63 and 54 years.

POSTSCRIPT.

THE following *nosological* table, though it may not have an immediate connection with the doctrine of life annuities and reversions, or perhaps lead to any certain conclusions respecting the proportion in which different disorders prevail among the human species, cannot, however, be considered as altogether unimportant, or forming an improper addition to this work.

It should be observed, that the diseases of which the members of the Equitable Society are stated to have died, are all certified by gentlemen of the medical profession, and therefore that the present table is so far correct. It contains also an account of all the deaths that have happened in the Society during the course of the last 20 years, among a population exceeding 150,000 persons; so that it is not improbable but that, as to the diseases of which they have died, it gives results not very different from those which take place in general among the inhabitants of this country.

The number of deaths appears to have been much less than they should have been by the *Northampton*, or indeed by any other table of observations, with which I am acquainted. How far this circumstance may have had any effect in changing the proportions of the diseases to each other, I must leave for the investigation of the medical profession, as this may possibly be a question of greater difficulty than it is to ascertain the effect which it has had on the funds of this Society.

POSTSCRIPT.

325

Disease.	10 to 20.	20 to 30.	30 to 40.	40 to 50.	50 to 60.	60 to 70.	70 to 80.	80, &c.	Total.
Angina Pectoris	1	—	5	11	12	9	4	3	44
Apoplexy	—	3	19	38	69	69	38	5	242
Asthma	—	—	—	2	19	19	11	2	53
Atrophy	—	—	3	4	6	11	1	—	25
Cancer	—	—	1	4	10	8	1	1	25
Child Birth	—	—	2	2	—	—	—	—	4
Consumption	—	9	34	31	44	26	5	—	153
Convulsion Fits	—	—	3	4	1	3	—	—	11
Decay (Natural) and Old Age	—	—	—	—	5	72	127	58	262
Diabetes	—	—	—	—	2	2	—	1	6
Dropsey	—	—	7	28	38	41	20	2	137
Dropsey in the Chest	—	—	3	18	34	28	16	—	100
Dysentery	—	—	1	1	2	4	4	—	12
Disease of the Sto- mach and Di- gestive Organs	—	—	—	5	4	8	1	—	26
Diseased Liver	—	—	2	5	24	23	21	4	79
Disease of the Bladder and Uri- nary Passages	—	—	—	—	—	—	15	—	59
Epilepsy	—	—	—	—	2	3	2	2	10
Erysipelas	—	—	—	—	1	2	3	2	10
Fever, General	—	—	6	18	33	33	39	15	146
Bilious	—	—	—	—	4	8	9	2	28

TABLE—*continued.*

Disease.	10 to 30.	30 to 30.	30 to 40.	40 to 50.	50 to 60.	60 to 70.	70 to 80.	80, &c.	Total.
Fever, Nervous	—	3	13	6	8	3	—	—	36
Inflammatory	—	—	—	4	6	2	—	—	15
Putrid	—	2	7	4	7	—	—	—	26
Gout	—	—	1	4	4	6	—	—	26
Inflammation of the Bowels	1	2	11	13	15	25	9	1	77
Inflammation of the Lungs	—	—	9	4	24	22	12	2	73
Inflammation of the Brain	—	3	7	5	5	3	—	—	23
Inflammation of the Chest, and Peripneumony	1	1	1	1	6	7	4	1	22
Palsy	—	1	3	8	26	42	34	2	116
Quincy	—	—	—	1	1	1	—	—	3
Rupture of Blood Vessel	—	—	7	14	13	12	3	—	49
Slain in War	1	1	1	—	—	—	—	—	4
Stone	—	—	—	—	1	2	4	1	8
Suicide	—	1	2	3	7	2	—	—	15
Water on the Brain	—	—	—	1	3	1	—	—	5
	7	37	166	299	458	536	(345 - 82)	82)	1,930
Number assured during the last 20 years	1,494	8,996	33,850	45,429	36,489	19,042	6454 from 70, &c.	427	151,754

THE NEW YORK PUBLIC LIBRARY
REFERENCE DEPARTMENT

**This book is under no circumstances to be
taken from the Building**

Form 410

