C.I.D.E.

CENTRO INTERDIPARTIMENTALE DI DOCUMENTAZIONE ECONOMICA

Università degli Studi di Verona

Manuale di Stata

...ovvero una informale introduzione a Stata con l'aggiunta di casi applicati

Autore: NICOLA TOMMASI

 $\begin{array}{c} 3 \ \text{dicembre} \ 2018 \\ \text{rev.} \ 0.20 \end{array}$

Info

Sito web: http://www.stata.com/

Forum: https://www.statalist.org/forums/

dott. Nicola Tommasi

e-mail: nicola.tommasi@gmail.com - nicola.tommasi@univr.it

Tel.: 045 802 80 48 (p.s.: la mail è lo strumento migliore e con probabilità di successo

più elevata per contattarmi).

sito: https://sites.google.com/site/nicolatommasi/

La versione più aggiornata del manuale la potete trovare qui: http://cide.univr.it/statamanual.pdf

- ... altrimenti cercate nella sezione download di http://cide.univr.it
- ... altrimenti cercate qui, nel mio sito, dove troverete anche altre cosette...
- ... e anche qui, su GitHub (https://github.com/NicolaTommasi8).

Figura 1: II Incontro degli Utenti di Stata, Milano, 10-11 ottobre 2005

Indice

In	afo	iii
	Indice	\mathbf{v}
\mathbf{R}	ingraziamenti	vii
Li	ista delle modifiche	ix
In	atroduzione	xi
Ι	Manuale	1
1	Descrizione di Stata 1.1 La disposizione delle finestre	3 3 5
2	Convenzioni Tipografiche	9
3	La Filosofia del Programma 3.1 Schema di funzionamento	11 12
4	Organizzare il Lavoro 4.1 Organizzazione per cartelle di lavoro 4.2 Interazione diretta VS files .do 4.3 Registrazione dell'output 4.4 Aggiornare il programma 4.5 Aggiungere comandi 4.6 Fare ricerche 4.7 Cura dei dati 4.8 Intestazione file .do	21 21 23 24
5	Alcuni Concetti di Base 5.1 L'input dei dati	29

INDICE

		5.1.1 Caricamento dei dati in formato proprietario	29
		5.1.2 Caricamento dei dati in formato testo	29
		5.1.3 Caricamento dei dati in altri formati proprietari (StatTransfer)	30
	5.2	Regole per denominare le variabili	30
	5.3	Il qualificatore in	31
	5.4	Il qualificatore if	32
	5.5	Operatori di relazione	33
	5.6	Operatori logici	34
	5.7	Caratteri jolly e sequenze	34
	5.8	L'espressione by	35
	5.9	Dati missing	36
6	Il C	Caricamento dei Dati	39
	6.1	Dati in formato proprietario (.dta)	39
	6.2	Dati in formato testo	43
		6.2.1 Formato testo delimitato	43
		6.2.2 Formato testo non delimitato	44
	6.3	Altri tipi di formati	47
	6.4	Esportazione dei dati	48
	6.5	Cambiare temporaneamente dataset	49
7	Ges	tione delle Variabili	53
	7.1	Descrizione di variabili e di valori	53
	7.2	Controllo delle variabili chiave	62
	7.3	Rinominare variabili	63
	7.4	Ordinare variabili	65
	7.5		66
	7.6	Gestire il formato delle variabili	67
8	Cre	are Variabili	71
	8.1	Il comando generate	71
			71
		8.1.2 Funzioni di distribuzione di probabilità e funzioni di densità	73
		8.1.3 Funzioni di generazione di numeri random	75
		9	75
		1 0	78
			79
		1	80
			80
	8.2		83
	8.3		85
	8.4		88
	8.5	Creare variabili dummy	92

vi

INDICE

9	Ana	lisi Quantitativa 99
	9.1	summarize e tabulate
		9.1.1 Qualcosa di più avanzato
	9.2	Analisi della correlazione
	9.3	Analisi outliers
10	Tras	iformare Dataset 117
	10.1	Aggiungere osservazioni
	10.2	Aggiungere variabili
	10.3	Collassare un dataset
	10.4	reshape di un dataset
	10.5	Contrarre un dataset
11	Lave	orare con Date e Orari
	11.1	La teoria
	11.2	Visualizzazione delle date e delle ore
	11.3	Ricavare date da variabili stringa
	11.4	Visualizzazione delle ore
	11.5	Operazioni con date e ore
12	Mad	eros e Cicli 143
	12.1	Macros
	12.2	I cicli
13	Cat	turare Informazioni dagli Output 151
14	Esp	ortazione dell'output 158
	14.1	arraytex e arrayxls
	14.2	fretex e frexls
	14.3	mrtabtex e mrtabxls
	14.4	tabletex e tablexls
	14.5	tabstattex e tabstatxls
	14.6	tabtex e tabxls
15	Maj	157
II	Ca	asi Applicati 165
16	Dat	aset di Grandi Dimensioni 167
1 7	Da :	Stringa a Numerica 171
		Fondere variabili stringa con numeriche
		Da stringa a numerica categorica
	11.2	Da bringa a numerica caregorica

INDICE		INDICE

18	3 Liste di Files e Directory	175
19	Previsioni Multiple	181
	19.1 Introduzione	181
	19.2 La stima del modello	181
20	reshape su molte Variabili	193
21	Importare dati .xml dal GME	197
	21.1 Accesso ai files .zip	197
	21.2 Leggere dati in formato .xml	200
III	I Appendici	205
A	spmap: Visualization of spatial data	207
	A.1 Syntax	207
	A.1.1 basemap_options	207
	A.1.2 polygon_suboptions	208
	A.1.3 line_suboptions	209
	A.1.4 point_suboptions	209
	A.1.5 diagram_suboptions	210
	A.1.6 arrow_suboptions	211
	A.1.7 label_suboptions	212
	A.1.8 scalebar_suboptions	213
	A.1.9 graph_options	213
	A.2 description	213
	A.3 Spatial data format	214
	A.4 Color lists	219
	A.5 Choropleth maps	
	A.6 Options for drawing the base map	
	A.7 Option polygon() suboptions	
	A.8 Option line() suboptions	
	A.9 Option point() suboptions	228
	A.10 Option diagram() suboptions	
	A.11 Option arrow() suboptions	232
	A.12 Option label() suboptions	
	A.13 Option scalebar() suboptions	
	A.14 Graph options	
	A.15 Acknowledgments	263
В	Lista pacchetti aggiuntivi	267

viii

INDICE	INDICE
IV Indici	303
Indice Analitico	305
Elenco delle figure	309
Elenco delle tabelle	311

Ringraziamenti

Molto del materiale utilizzato in questo documento proviene da esperienze personali. Prima e poi nel corso della stesura alcune persone mi hanno aiutato attraverso suggerimenti, insegnamenti e correzioni; altre hanno contribuito in altre forme. Vorrei ringraziare sinceramente ciascuno di loro. Naturalmente tutti gli errori che troverete sono miei.

Li elenco in ordine rigorosamente sparso

Fede che mi ha fatto scoprire Stata quando ancora non sapevo accendere un PC Raffa con cui gli scambi di dritte hanno contribuito ad ampliare le mie conoscenze Piera che mi dato i primissimi rudimenti

Lista delle modifiche

rev. 0.01

- Prima stesura

rev. 0.02

- Aggiunti esempi di output per illustrare meglio i comandi
- Aggiornamenti dei nuovi comandi installati (adoupdate)
- Controllo delle variabili chiave (duplicates report)

rev. 0.03

- Aggiunti esempi di output per illustrare meglio i comandi
- Conversione del testo in L^AT_EX (così lo imparo)
- Creata la sezione con i casi applicati

rev. 0.04

- Indice analitico
- Mappe (comando spmap, ex tmap
- Ulteriori esempi

rev. 0.06

- Correzioni varie
- Date e ore
- Ulteriori casi applicati

rev. 0.08

- Correzioni varie
- completamento Date e ore

- caso ${\rm GME}$

rev. 0.09

- rivista la parte del reshape
- ${\hspace{0.3mm}\text{-}\hspace{0.15mm}}$ rivista la parte del ${\tt merge}$ alla luce della nuova versione del comando
- rivista la parte della organizzazione del lavoro
- link ad altri miei materiali
- correzioni varie

$rev. \ 0.10$

- correzioni varie (thanks Fabio Ciaponi)

Introduzione

Questo è un tentativo di produrre un manuale che integri le mie esperienze nell'uso di Stata. È un work in progress in cui di volta in volta aggiungo nuovi capitoli, integrazioni o riscrivo delle parti. In un certo senso è una collezione delle mie esperienze di Stata, organizzate per assomigliare ad un manuale, con tutti i pro e i contro di una tale genesi. Non è completo come vorrei ma il tempo è un fattore limitante. Se qualcuno vuole aggiungere capitoli o pezzi non ha che da contattarmi, sicuramente troveremo il modo di inglobare i contributi che verranno proposti. Naturalmente siete pregati di segnalarmi tutti gli errori che troverete (e ce ne saranno).

Questo documento non è protetto in alcun modo contro la duplicazione. La offro gratuitamente a chi ne ha bisogno senza restrizioni, eccetto quelle imposte dalla vostra onestà. Distribuitela e duplicatela liberamente, basta che:

- il documento rimanga intatto
- non lo facciate pagare

Il fatto che sia liberamente distribuibile non altera né indebolisce in alcun modo il diritto d'autore (copyright), che rimane mio, ai sensi delle leggi vigenti.

Parte I Manuale

Capitolo 1

Descrizione di Stata

Software statistico per la gestione, l'analisi e la rappresentazione grafica di dati

Piattaforme supportate

- Windows (versioni 32 e 64 bit)
- Linux (versioni 32 e 64 bit)
- Macintosh
- Unix, AIX, Solaris Sparc

Versioni (in senso crescente di capacità e potenza)

- Small Stata
- Stata/IC
- Stata/SE
- Stata/MP

La versione SE è adatta alla gestione di database di grandi dimensioni. La versione MP è ottimizzata per sfruttare le architetture multiprocessore attraverso l'esecuzione in parallelo dei comandi di elaborazione (parallelizzazione del codice). Per farsi un'idea si veda l'ottimo documento reperibile qui:

Stata/MP Performance Report

(http://www.stata.com/statamp/report.pdf)

Questa versione, magari in abbinamento con sistemi operativi a 64bit, è particolarmente indicata per situazioni in cui si devono elaborare grandi quantità di dati (dataset di svariati GB) in tempi che non siano geologici.

1.1 La disposizione delle finestre

Stata si compone di diverse finestre che si possono spostare ed ancorare a proprio piacimento (vedi Figura 1.1). In particolare:

1. Stata Results: finestra in cui Stata presenta l'output dei comandi impartiti

- 2. **Review**: registra lo storico dei comandi impartiti dalla Stata Command. Cliccando con il mouse su uno di essi, questo viene rinviato alla Stata Command
- 3. Variables: quando un dataset è caricato qui c'è l'elenco delle variabili che lo compongono
- 4. Stata Command: finestra in cui si scrivono i comandi che Stata deve eseguire

A partire dalla versione 8 è possibile eseguire i comandi anche tramite la barra delle funzioni dove sotto 'Data', 'Graphics' e 'Statistics' sono raggruppati i comandi maggiormente usati. Dato che ho imparato ad usare Stata alla vecchia maniera (ovvero da riga di comando) non tratterò questa possibilità. Però risulta molto utile quando si devono fare i grafici; prima costruisco il grafico tramite 'Graphics' e poi copio il comando generato nel file .do.

Figura 1.1: Le finestre di Stata

Come già accennato i riquadri che compongono la schermata del programma si possono spostare. Quella presentata in figura 1.1 è la disposizione che personalmente ritengo più efficiente ... ma naturalmente dipende dai gusti.

Per salvare la disposizione: 'Prefs -> Save Windowing Preferences'

Trucco: Il riquadro 'Variables' prevede 32 caratteri per il nome delle variabili. Se a causa di questo spazio riservato al nome delle variabili, il label non è visibile si può intervenire per restringerlo:

set varlabelpos #

con 8 <= # <= 32, dove #è il numero di caratteri riservati alla visualizzazione del nome delle variabili. Quelle con nome più lungo di #verranno abbreviate e comparirà il simbolo \sim nel nome a segnalare che quello visualizzato non è il vero nome ma la sua abbreviazione.

1.2 Limiti di Stata

Con il comando chelp limits possiamo vedere le potenzialità e le limitazioni della versione di Stata che stiamo utilizzando:

. chelp limits

help limits

Maximum size limits

	Small	Stata/IC	Stata/MP and Stata/SE
# of observations (1) abou # of variables width of a dataset	t 1,000 99 200	2,147,483,647 2,047 24,564	
value of matsize	40	800	11,000
<pre># characters in a command # options for a command</pre>	8,697 70	165,216 70	1,081,527 70
# of elements in a numlist	1,600	1,600	1,600
# of unique time-series operators in	100	100	100
a command # seasonal suboperators per time-seri	100 es	100	100
operator	8	8	8
	n 50 256 244 5 8,681 64 3,500 135,600	800 300 512 244 5 165,200 64 3,500 135,600	800 300 512 244 5 1,081,511 64 3,500 135,600
length of a variable name length of ado-command name	32 32	32 32	32 32
length of a global macro name	32	32	32
length of a local macro name	31	31	31
length of a string variable	244	244	244
adjust # of variables in by() option anova	7	7	7

<pre># of variables in one anova term # of terms in the repeated() opt</pre>		8 4	8 4
char length of one characteristic	8,681	67,784	67,784
<pre>constraint # of constraints</pre>	1,999	1,999	1,999
encode and decode # of unique values	1000	65,536	65,536
_estimates hold # of stored estimation results	300	300	300
estimates store # of stored estimation results	300	300	300
grmeanby # of unique values in varlist	_N/2	_N/2	_N/2
<pre>graph twoway # of variables in a plot # of styles in an option's style</pre>	100 list 20	100 20	100 20
<pre>impute # of variables in varlist</pre>	31	31	31
infile record length without dictionary record length with a dictionary		none 524,275	none 524,275
infix record length with a dictionary	524,275	524,275	524,275
label length of dataset label length of variable label length of value label string length of name of value label # of codings within one value label	80 80 32,000 32	80 80 32,000 32 65,536	80 80 32,000 32 65,536
label language # of different languages	100	100	100
manova # of variables in single manova	term 8	8	8
matrix (2) dimension of single matrix	40 x 40	800 x 800	11,000x11,000
maximize options iterate() maximum	16,000	16,000	16,000
mlogit # of outcomes	20	50	50
net (also see usersite) # of description lines in .pkg f	ile 100	100	100
nlogit and nlogittree # of levels in model	8	8	8
notes			

<pre>length of one note # of notes attached to _dta # of notes attached to each variable</pre>	8,681 9,999 9,999	67,784 9,999 9,999	67,784 9,999 9,999
numlist # of elements in the numeric list	1,600	1,600	1,600
ologit and oprobit # of outcomes	20	50	50
reg3, sureg, and other system estimate # of equations	ors 40	800	11,000
set adosize memory ado-files may consume	500K	500K	500k
set scrollbufsize memory for Results window buffer	500K	500K	500k
<pre>stcox # of variables in strata() option</pre>	5	5	5
stcurve # of curves plotted on the same gr	raph 10	10	10
<pre>table and tabdisp # of by variables # of margins, i.e., sum of rows, columns, supercolumns, and</pre>	4	4	4
by groups	3,000	3,000	3,000
<pre>tabulate (3) # of rows in one-way table # of rows & cols in two-way table</pre>	500 160x20	3,000 300x20	12,000 1,200x80
<pre>tabulate, summarize (see tabsum) # of cells (rows X cols)</pre>	375	375	375
<pre>xt estimation commands (e.g., xtgee, xtgls, xtpoisson, xtprobit, xtreg with mle option, and xtpcse when neither option hetonly nor option independent are specified)</pre>			
<pre># of time periods within panel # of integration points accepted by intpoints(#)</pre>	40 40 195	800 800 195	11,000 11,000 195

Notes

- (1) 2,147,483,647 is a theoretical maximum; memory availability will certainly impose a smaller maximum.
- (2) In Mata, matrix is limited by the amount of memory on your computer.
- (3) For Stata/IC for the Macintosh, limits are 2,000 for the number of rows for a one-way table and 180 for number of rows for a two-way table.

Per sapere quale versione del programma stiamo usando:

. about

Stata/SE 10.0 for Windows Born 25 Jul 2007 Copyright (C) 1985-2007

Total physical memory: 2096624 KB Available physical memory: 1447220 KB 2096624 KB

Single-user Stata for Windows perpetual license:
 Serial number: 81910515957
 Licensed to: C.I.D.E.

Univeristy of Verona

8

Capitolo 2

Convenzioni Tipografiche

Per quanto possibile si cercherà di seguire le seguenti convenzioni tipografiche in accordo con i manuali stessi di Stata. Quando verranno spiegati i comandi, essi saranno rappresentati in questo modo:

```
command [varlist][=exp][if][in][weight][, options]
```

dove tutto ciò che è racchiuso tra [] rappresenta parti opzionali del comando e quindi non indispensabili per la sua esecuzione.

Quindi ad esempio:

- se il comando presenta varname significa che il nome di una variabile è necessario
- se il comando presenta [varname] significa che il nome di una variabile non è necessario
- se il comando presenta varlist significa che una lista di variabili è necessaria
- se il comando presenta [varlist] significa che una lista di variabili non è necessaria

Tra parentesi $\{\ \}$ saranno indicati liste di parametri tra i quali è indispensabile scegliere. Per esempio in

```
tsset [panelvar ] timevar [, \underline{\underline{f}}ormat(%fmt) {\underline{\underline{d}}aily | \underline{\underline{w}}eekly | \underline{\underline{m}}onthly | \underline{\underline{q}}uarterly | \underline{\underline{h}}alfyearly | yearly | generic } ]
```

la parte {daily | weekly ... generic } indica una lista di opzioni tra le quali scegliere.

Taluni comandi, se non viene specificata una variabile o una lista di variabili, si applicano a tutte le variabili del dataset.

Spesso e volentieri le *options* sono molto numerose, per cui mi limiterò a trattare quelle che secondo me sono più importanti.

Porzioni di files .do o output di Stata saranno indicati con il seguente layout:

. use auto (1978 Automobile Data)

. summ

Variable	Obs	Mean	Std. Dev.	Min	Max
make	0				
price	74	6165.257	2949.496	3291	15906
mpg	74	21.2973	5.785503	12	41
rep78	69	3.405797	.9899323	1	5
headroom	74	2.993243	.8459948	1.5	5
	 74	 13.75676	4.277404	 5	23
weight	74	3019.459	777.1936	1760	4840
length	74	187.9324	22.26634	142	233
turn	74	39.64865	4.399354	31	51
displacement	74	197.2973	91.83722	79	425
gear_ratio	 74	3.014865	.4562871	2.19	3.89
foreign	74	.2972973	.4601885	0	1

Capitolo 3

La Filosofia del Programma

Stata è progettato per gestire efficacemente grandi quantità di dati, perciò tiene tutti i dati nella memoria RAM (vedi opzione set mem)

Stata considera il trattamento dei dati come un esperimento scientifico, perciò assicura:

- a. la riproducibilità tramite l'uso dei files .do
- b. la misurabilità tramite l'uso dei files .log o .smcl

Stata si compone di una serie di comandi che sono:

- compilati nell'eseguibile del programma
- presenti in forma di file di testo con estensione .ado
- scritti da terzi con la possibilità di renderli disponibili all'interno del programma
- definiti dall'utente e inseriti direttamente all'interno di files .do

Per vedere dove sono salvati i comandi scritti nei files .ado basta dare il comando.

```
. sysdir
STATA: C:\eureka\Stata10\

UPDATES: C:\eureka\Stata10\ado\updates\
BASE: C:\eureka\Stata10\ado\base\
SITE: C:\eureka\Stata10\ado\site\
PLUS: c:\ado\stbplus\

PERSONAL: c:\ado\personal\
```

I comandi scritti da terzi solitamente si installano nella directory indicata in PLUS

Stata si usa essenzialmente da riga di comando

Gli input e gli output vengono dati in forma testuale

Di seguito si farà rifermento a variabili e osservazioni e in particolare

ciò che in Excel viene chiamato -colonna corrisponde a variabile in Stata -riga corrisponde a osservazione in Stata

ciò che in informatica viene chiamato -campo corrisponde a variabile in Stata -record corrisponde a osservazione in Stata

3.1 Schema di funzionamento

Questo è lo schema di funzionamento del programma. Capitelo bene e sarete più efficienti e produttivi nel vostro lavoro.

```
do file
| #delimit;
| set more off;
| clear;
| set mem 150m;
| capture log close;
| lista dei comandi da eseguire;
| capture log close;
| exit;
                   Ι
                Stata
|do <do file>
                  log file
```


Il do file è un semplice file di testo nel quale viene scritta la sequenza dei comandi che devono essere eseguiti dal programma. Questo file viene passato a Stata per l'esecuzione tramite il comando do <do_file> da impartire dalla finestra Command. Se ci sono degli errori l'esecuzione si blocca in corrispondenza dell'errore stesso, altrimenti Stata esegue il do file e registra gli output dei comandi nel log file.

Capitolo 4

Organizzare il Lavoro

Dato che il metodo migliore di passare i comandi a Stata è la riga di comando, conviene dotarsi di un buon editor di testo. Quello integrato nel programma non è sufficientemente potente (si possono creare al massimo file di 32k), per cui consiglio di dotarsi uno dei seguenti editor gratuiti:

Notepad++ -> http://notepad-plus.sourceforge.net/it/site.htm

NoteTab Light -> http://www.notetab.com/

PSPad -> http://www.pspad.com/

RJ TextEd -> http://www.rj-texted.se

Tra i quatto indicati io preferisco l'ultimo. Sul sito spiegano anche come integrare il controllo e l'evidenziazione della sintassi dei comandi di Stata.

Utilizzando editor esterni si perde la possibilità di far girare porzioni di codice; c'è però un tentativo di integrare gli editor esterni; vedi a tal proposito:

http://fmwww.bc.edu/repec/bocode/t/textEditors.html

4.1 Organizzazione per cartelle di lavoro

La maniera più semplice ed efficiente di usare Stata è quella di organizzare il proprio lavoro in directory e poi far lavorare il programma sempre all'interno di questa directory. Se si usano i percorsi relativi la posizione di tale directory di lavoro sarà ininfluente e sarà possibile far girare i propri programmi anche su altri computer senza dover cambiare i percorsi.

In basso a sinistra, Stata mostra la directory dove attualmente sta' puntando. In alternativa è possibile visualizzarla tramite il comando:

pwd

in questo esempio Stata punta alla cartella C:\projects\CorsoStata\esempi e se impartite il comando di esecuzione di un file .do o di caricamento di un dataset senza specificare il percorso, questo verrà ricercato in questa cartella:

```
. pwd
C:\projects\CorsoStata\esempi
```

Il principio guida che ispira ogni elaborazione di dati dovrebbe essere la replicazione con il minimo sforzo di tutti i passaggi di preparazione dei dati, di analisi e di ottenimento dei risultati riportati nella stesura finale dei lavori. Servono quindi delle regole e degli schemi di lavoro standard che dovrebbero incentivare il senso di responsabilità e di rendicontazione del proprio lavoro. Da un po' di tempo cerco di adottare questa organizzazione per tutti i progetti che direttamente o indirettamente seguo¹. Innanzitutto si crea una cartella con il nome del progetto e questa al suo interno conterrà almeno le seguenti cartelle e file:

- 1. una cartella data e la suo interno altre due cartelle
 - la cartella raw data
 - la cartella out dta
- 2. una cartella metadata
- 3. una cartella docs
- 4. una cartella graphs
- 5. un file di testo readme.txt
- 6. un file master.do
- 7. un file import.do
- 8. un file cleaning.do
- 9. un file results.do

Ed ecco qual è la funzione di ciascuna cartella e di ciascun file:

• cartella data: Contiene al suo interno la cartella raw_data in cui verranno messi tutti i file di partenza dei dati nel loro formato originale. Se questi file sono in un formato direttamente caricabile da Stata (.dta, .xls, .xlsx, .csv, tutti i dati in formato testo delimitato e non delimitato) si lasciano come sono altrimenti, oltre al file in formato originale, bisogna inserire anche la sua conversione in un formato importabile da Stata. La cartella out_dta invece ha la funzione di raccogliere tutti i file in formato .dta prodotti durante l'elaborazione dei dati. Conterrà anche tutti i file di dati che eventualmente dovessero essere prodotti in un formato diverso dal .dta.

¹L'ispirazione viene da qui: Ball Richard and Medeiros Norm. 2011. Teaching Students to Document Their Empirical Research.

- cartella metadata: Contiene tutti i file che servono da documentazione per i dati contenuti nella cartella row_data. Solitamente sono file di documentazione forniti assieme ai dati come la definizione delle variabili, gli schemi di codifica dei valori o i metodi di campionamento e di raccolta dei dati. Se il file è unico deve avere lo stesso nome del relativo raw file, altrimenti si crea una cartella sempre con il nome del relativo raw file e al suo interno si inseriscono tutti i file di documentazione.
- cartella docs: Contiene tutta la documentazione relativa al progetto come paper di riferimento o istruzioni su come organizzare l'elaborazione dei dati
- cartella graphs: È una cartella opzionale, nel senso che se non vengono prodotti grafici che debbano essere salvati si può evitare di crearla. Se invece si producono grafici e questi devono essere salvati come file (.gph, .eps, .eps ...) questa è la cartella che li conterrà. Se i grafici sono molti, si possono organizzare in sottocartelle della principale.
- file readme.txt: Questo file contiene una panoramica di tutto il materiale che è stato assemblato nella cartella del progetto. In particolare dovrà contenere:
 - la lista di tutti i file contenuti nella cartella data con descrizione della loro posizione all'interno della cartella, del loro contenuto e del loro formato
 - la fonte dei dati ed eventualmente le istruzioni per riottenere gli stessi dati
 - la lista in ordine di esecuzione di tutti i .do files contenuti nella cartella e una breve descrizione della loro funzione
 - una referenza (e-mail, numero di telefono...) per contattare l'autore del lavoro in caso di necessità di ulteriori informazioni
- file master.do: Contiene la sequenza di lancio dei do-file. I tre do-file indicati sono caldamente consigliati ma non obbligatori, ovvero se le operazioni da compiere non sono molte il do-file potrebbe essere unico e quindi diventerebbe inutile anche il master.do. D'altra parte, se il progetto di ricerca fosse particolarmente complesso, è consigliabile aumentare il numero di do-file in aggiunta a quelli consigliati
- file import.do: Lo scopo di import.do è di importare i dati da ciascun file della cartella row_data in formato .dta e salvarli nella cartella out_dta. Se tutti i dati fossero già in formato Stata questo do-file non deve essere creato. Ciascun .dta file creato avrà lo stesso nome del corrispondente file in row_data. Per esempio se in row_data c'è il file unaid.txt, il corrispondente file in out_dta si chiamerà unaid.dta.
- file cleaning.do: Lo scopo di cleaning.do è di processare i dati al fine di arrivare al dataset finale da usare per le analisi. Quindi carica i dataset presenti in out_dta e applica procedure di pulizia dei dati, di merge e di append, quindi salva il file così prodotto sempre in out_dta con il prefisso clean_ o final_. É consigliabile in questa fase anche condurre delle analisi di esplorazione dei dati e di sperimentazione per verificare preventivamente le analisi che si intendono effettuare in results.do.

• file results.do: Contiene i comandi per generare per generare le variabili necessarie, per generare tabelle e figure, regressioni e tutti i risultati pubblicati nel report finale della ricerca.

Utili in questo contesto sono i comandi:

```
mkdir directoryname
```

per creare delle cartelle; in *directoryname* va indicato il percorso e il nome della directory da creare. Se in tale percorso ci fossero degli spazi bianchi, è necessario racchiudere il tutto tra virgolette.

Per esempio per creare la cartella pippo all'interno dell'attuale cartella di lavoro:

```
mkdir pippo
```

Per creare la cartella pippo nella cartella superiore all'attuale cartella di lavoro

```
mkdir ..\pippo

O

mkdir../pippo
```

Per create la cartella pippo nella cartella pluto contenuta nell'attuale cartella di lavoro

```
mkdir pluto/pippo
```

Per create la cartella pippo attraverso un percorso assoluto (sistema caldamente sconsigliato!!)

```
mkdir c:/projects/pippo
```

Per spostarsi tra le cartelle²

```
cd [''][drive:][path]['']
```

Per vedere la lista di file e cartelle relativi alla posizione corrente o per vedere il contenuto di altre cartelle, si usa il comando dir

```
dir pippo
dir ..\pippo
dir pluto\pippo
```

Per cancellare files

```
erase ['']filename.ext ['']
```

Attenzione che bisogna specificare anche l'estensione del file da cancellare

Nota1: Stata è in grado di eseguire anche comandi DOS, purchè siano preceduti dal simbolo '!'. Per esempio

```
!del *.txt
```

 $^{^{2}}$ 'cd ...' serve per salire di un livello nella struttura delle directory, cd .../.. di due e così via.

cancella tutti i files con estensione .txt nella cartella corrente.

Nota2: già detto, ma meglio ribadirlo; se nel percorso, il nome di un file o di una directory hanno degli spazi bianchi, l'intero percorso deve essere racchiuso tra virgolette.

Nota3: Stata è case sensitive per i comandi e per i nomi delle variabili (ma anche per gli scalar e per le macro), ma non per i nomi dei files e dei percorsi³

4.2 Interazione diretta VS files .do

Stata accetta i comandi in due modi:

- a. Interazione diretta tramite l'inserimento dei comandi nella finestra 'Stata Command' o ricorrendo a 'Statistics' nella barra delle funzioni.
- b. Attraverso dei files di semplice testo con estensione .do che contengono la serie di comandi da passare al programma per l'esecuzione.

Personalmente caldeggio l'adozione del secondo sistema perché consente di ottenere 2 importantissimi requisiti:

- I. Si documentano tutti i passaggi che vengono fatti nella elaborazione dei dati
- II. Si ha la riproducibilità dei risultati.

Per i files .do sono possibili due soluzioni per delimitare la fine di un comando. Di default Stata esegue un comando quando trova un invio a capo. Oppure si può scegliere il carattere ; come delimitatore di fine comando. Data l'impostazione di default, per utilizzare il ; bisogna dare il comando

```
#delimit ;
```

per ritornare alla situazione di default si usa il comando

```
#delimit cr
```

È inoltre possibile inserire commenti usando il carattere * se si vuole fare un commento su una sola riga, con /* all'inizio e */ alla fine per commenti disposti su più righe. Se state lavorando con il delimitatore cr è possibile suddividere un comando su più righe usando ///.

Se state lavorando con il delimitatore ;, esso va messo anche alla fine di ciascuna riga commentata con *. Se invece state usando /* e */ va messo solo dopo */.

Segue un esempio di quanto appena detto

```
/**** #delimit cr ****/
gen int y = real(substr(date,1,2))
gen int m = real(substr(date,3,2))
gen int d = real(substr(date,5,2))
summ y m d
```

 $^{^3{\}rm Ci}$ ò vale per i SO Windows, non per i sistemi Unix/Linux. Per i Mac e per gli altri sistemi, semplicemente non lo so'.

```
recode y (90=1990) (91=1991) (92=1992) (93=1993) ///
(94=1994) (95=1995) (96=1996) (97=1997) (98=1998) ///
(99=1999) (00=2000) (01=2001) (02=2002) ///
(03=2003) (04=2004) /*serve per usare la funzione mdy*/
gen new_data = mdy(m,d,y)
format new_data %d
#delimit;
gen int y = real(substr(date,1,2));
gen int m = real(substr(date,3,2));
gen int d = real(substr(date,5,2));
summ y m d;
*Commento: le tre righe seguenti hanno l'invio a capo;
recode y (90=1990) (91=1991) (92=1992) (93=1993)
        (94=1994) (95=1995) (96=1996) (97=1997)
        (98=1998) (99=1999) (00=2000) (01=2001)
        (02=2002) (03=2003) (04=2004) /*serve per usare la funzione mdy*/;
gen new_data = mdy(m,d,y);
/**************
questo è un commento su + righe
bla bla bla
bla bla bla
format new_data %d;
#delimit cr
```

È possibile dare l'invio a capo senza esecuzione del comando anche in modo cr se si ha l'accortezza di usare i caratteri /* alla fine della riga e */ all'inizio della successiva come mostrato nell'esempio seguente

```
use mydata, clear
regress lnwage educ complete age age2 /*
    */ exp exp2 tenure tenure2 /*
    */ reg1-reg3 female
predict e, resid
summarize e, detail
```

Attenzione: il comando #delimit non può essere usato nell'interazione diretta e quindi non si possono inserire comandi nella finestra 'Command' terminando il comando con ;

4.3 Registrazione dell'output

Stata registra gli output dell'esecuzione dei comandi in due tipi di file:

- file .smcl (tipo di default nel programma)
- file .log

I files .smcl sono in formato proprietario di Stata e "abbelliscono" l'output con formattazioni di vario tipo (colori, grassetto, corsivo...), ma possono essere visualizzati solo con l'apposito editor integrato nel programma⁴.

⁴Attraverso 'File -> Log -> View' o apposita icona.

I files .log sono dei semplici file di testo senza nessun tipo di formattazione e possono essere visualizzati con qualsiasi editor di testo.

Si può scegliere il tipo di log attraverso il comando

```
set logtype text|smcl [, permanently]
```

Si indica al programma di iniziare la registrazione tramite il comando

```
log using filename [, append replace [text|smcl] name(logname)]
```

La registrazione può essere sospesa tramite:

```
log off [logname]
ripresa con
log on [logname]
e infine chiusa con
```

log close [logname]

A partire dalla versione 10 è possibile aprire più files di log contemporaneamente.

4.4 Aggiornare il programma

Il corpo principale del programma di aggiorna tramite il comando update all

```
. update all

> update ado
(contacting http://www.stata.com)
ado-files already up to date

> update executable
(contacting http://www.stata.com)
executable already up to date
```

in questo modo verranno prima aggiornati i files .ado di base del programma e poi l'eseguibile .exe. In quest'ultimo caso verrà richiesto il riavvio del programma.

Se non si possiede una connessione ad internet, sul sito di Stata è possibile scaricare gli archivi compressi degli aggiornamenti da installare all'indirizzo

```
http://www.stata.com/support/updates/
```

Sul sito vengono fornite tutte le istruzioni per portare a termine questa procedura

4.5 Aggiungere comandi

Come accennato in precedenza è possibile aggiungere nuovi comandi scritti da terze parti. Per fare ciò è necessario conoscere il nome del nuovo comando e dare il comando

```
ssc <u>inst</u>all pkgname [, all replace]
```

```
. ssc inst bitobit checking bitobit consistency and verifying not already installed... installing into c:\ackled complete.
```

Di recente ad ssc è stata aggiunta la possibilità di vedere i comandi aggiuntivi (packages) più scaricati negli ultimi tre mesi:

```
ssc whatshot [, n(\#)]
```

dove # specifica il numero di packages da visualizzare (n(10) è il valore di default). Specificando n(.) verrà visualizzato l'intero elenco.

. ssc whatshot, n(12)

Top 12 packages at SSC

Rank	Oct2007 # hits	Package	Author(s)
	# HIUS		Author (5)
1	1214.0	outreg	John Luke Gallup
2	911.1	estout	Ben Jann
3	847.6	xtabond2	David Roodman
4	830.8	outreg2	Roy Wada
5	788.6	ivreg2	Mark E Schaffer, Christopher F Baum,
			Steven Stillman
6	667.8	psmatch2	Edwin Leuven, Barbara Sianesi
7	508.2	gllamm	Sophia Rabe-Hesketh
8	320.3	xtivreg2	Mark E Schaffer
9	315.3	overid	Christopher F Baum, Mark E Schaffer,
			Steven Stillman, Vince Wiggins
10	266.0	tabout	Ian Watson
11	251.0	ranktest	Mark E Schaffer, Frank Kleibergen
12	246.4	metan	Mike Bradburn, Ross Harris, Jonathan
			Sterne, Doug Altman, Roger Harbord,
			Thomas Steichen, Jon Deeks

(Click on package name for description)

Siete curiosi di vedere tutti i pacchetti disponibili? Andate in Appendice B (pag. 267). Esiste anche la possibilità di installare i nuovi comandi attraverso la funzione di ricerca. In questo caso vengono fornite direttamente le indicazioni da seguire⁵.

Non è raro (anzi) che questi nuovi comandi vengano corretti per dei bugs, oppure migliorati con l'aggiunta di nuove funzioni. Per controllare gli update di tutti i nuovi comandi installati si usa il comando

```
adoupdate [pkglist][, options]
```

 $^{^5 {\}rm In}$ pratica la procedura vi dirà cosa cliccare per procedere automaticamente all'installazione.

```
(output omitted)
[96] sjlatex at http://www.stata-journal.com/production:
    installed package is up to date

[97] hotdeck at http://fmwww.bc.edu/repec/bocode/h:
    installed package is up to date

Packages to be updated are...

[90] examples -- 'EXAMPLES': module to show examples from on-line help files

Installing updates...
[90] examples
Cleaning up... Done
```

il quale si occupa del controllo delle nuove versioni e quindi della loro installazione.

4.6 Fare ricerche

Stata dispone di 2 comandi per cercare informazioni e di un comando per ottenere l'help dei comandi

Per ottenere l'help basta digitare :

```
help [command\_or\_topic\_name][, options]
```

Per fare ricerche si possono usare indifferentemente:

```
search word [word ...][, search_options]
oppure
findit word [word ...]
```

Personalmente preferisco il secondo. Entrambi i comandi effettuano una ricerca sui comandi e sulla documentazione locale e su tutte le risorse di Stata disponibili in rete. Un esempio (findit fornisce lo stesso risultato):

```
. search maps, all

Keyword search

Keywords: maps
Search: (1) Official help files, FAQs, Examples, SJs, and STBs
(2) Web resources from Stata and from other users

Search of official help files, FAQs, Examples, SJs, and STBs

Web resources from Stata and other users

(contacting http://www.stata.com)

9 packages found (Stata Journal and STB listed first)
```

```
labutil from http://fmwww.bc.edu/RePEc/bocode/1
    'LABUTIL': modules for managing value and variable labels / labcopy copies
    value labels, or swaps them around. labdel deletes / them. lablog defines
    value labels for values which are base 10 / logarithms containing the
    antilogged values. labcd defines value / labels in which decimal points
mca from http://fmwww.bc.edu/RePEc/bocode/m
    'MCA': module to perform multiple correspondence analysis / The command
    mca produces numerical results as well as graphical / representations for
    multiple correspondence analyses (MCA). mca / actually conducts an
    adjusted simple correspondence analysis on \/ the Burt matrix constructed
mif2dta from http://fmwww.bc.edu/RePEc/bocode/m
    'MIF2DTA': module convert MapInfo Interchange Format boundary files to
    Stata boundary files / This is a program that converts MapInfo Interchange
    / Format boundary files into Stata boundary files to be used / with the
    latest release of the -tmap- package. / KW: maps / KW: MapInfo /
shp2dta from http://fmwww.bc.edu/RePEc/bocode/s
    SHP2DTA: module to converts shape boundary files to Stata datasets /
    shp2dta reads a shape (.shp) and dbase (.dbf) file from disk and /
    converts them into Stata datasets. The shape and dbase files / must have
    the same name and be saved in the same directory. The / user-written
spmap from http://fmwww.bc.edu/RePEc/bocode/s
     SPMAP': module to visualize spatial data / spmap is aimed at visualizing
    several kinds of spatial data, and \!\!\!/ is particularly suited for drawing
    thematic maps and displaying / the results of spatial data analyses.
   Proper specification of / spmap options and suboptions, combined with the
tmap from http://fmwww.bc.edu/RePEc/bocode/t
    'TMAP': module for simple thematic mapping / This is a revised version of
    the package published in The / Stata Journal 4(4):361-378 (2004) for
    carrying out simple / thematic mapping. This new release should be
    considered as a / beta version: comments and problem reports to the author
triplot from http://fmwww.bc.edu/RePEc/bocode/t
    'TRIPLOT': module to generate triangular plots / triplot produces a
    triangular plot of the three variables / leftvar, rightvar and botvar,
    which are plotted on the left, / right and bottom sides of an equilateral
    triangle. Each should / have values between 0 and some maximum value
usmaps from http://fmwww.bc.edu/RePEc/bocode/u
    'USMAPS': module to provide US state map coordinates for tmap / This
    package contains several Stata datafiles with US state / geocode
    coordinates for use with Pisati's tmap package (Stata / Journal, 4:4,
    2004). A do-file illustrates their usage. / KW: maps / KW: states / KW:
usmaps2 from http://fmwww.bc.edu/RePEc/bocode/u
     USMAPS2': module to provide US county map coordinates for tmap / This
    package contains contains several Stata datafiles with US / county geocode
    coordinates for use with Pisati's tmap package / (Stata Journal, 4:4,
    2004). A do-file illustrates their usage. / KW: maps / KW: counties / KW:
```

4.7 Cura dei dati

(end of search)

Alcune considerazioni riguardanti la cura e la sicurezza dei dati e dei programmi:

1. Adibire **una cartella per ciascun progetto** e racchiudere tutti i progetti in una cartella. Personalmente ho una cartella *projects* all'interno della quale ci sono

G:\projects

<dir>

<dir>

<dir>

<dir>

le cartelle con i vari progetti in corso di svolgimento. Man mano che i progetti terminano vengono spostati nella cartella ended_progects

```
dir
<dir>
        8/25/07 8:16
        8/25/07 8:16
<dir>
<dir>
        2/19/04 18:11
                       ABI
<dir>
        6/02/05 8:28
                       banche
        5/01/05 11:46
<dir>
                       bank_efficiency
        6/14/07 20:23 BEI
<dir>
        5/05/07 9:19
<dir>
                       comune
<dir>
        6/17/06 16:44
                       conti_intergenerazionali
<dir>
        8/04/07 10:35
                      coorti
        3/11/04 22:16
                       ended_projects
<dir>
<dir>
        5/14/05 9:28
                      ESEV
        5/12/07 11:53
<dir>
                      gerosa
<dir>
        8/13/04 7:55
                       instrumental_variables
<dir>
        3/25/07 10:13
                      isee
        8/01/07 17:41
<dir>
                       ISMEA
<dir>
        5/01/05 10:17
                       ISTAT
        6/18/05 8:25 medici
<dir>
        5/21/06 8:33
<dir>
                      oculisti
<dir>
        8/25/07 8:26 popolazione
```

provincia

shape

s cuore

silc

scale_equivalenza

6/20/06 11:50

6/02/07 8:54

5/01/07 10:25

<dir> 11/20/04 11:41

8/11/07

6/23/07 10:14 scale2000

2. All'interno di ciascuna cartella di progetto stabilire un **ordine di cartelle** che rifletta lo svolgimento logico del lavoro. Per esempio la lettura di dati in formato testo e il salvataggio di questi in formato Stata deve precedere le elaborazioni su questi dati.

```
cd conti_intergenerazionali
G:\projects\conti_intergenerazionali
         6/17/06 16:44
  <dir>
         6/17/06 16:44
  <dir>
  <dir>
         6/24/06 15:52 00_docs
  <dir>
         4/25/06 8:18
                        01_original_data
         6/02/06 9:29 02_final_data
  <dir>
         6/02/06 9:29 03_source
  <dir>
         6/02/06 9:29 04_separazioni
  <dir>
  <dir>
         6/04/06 11:39
                        05_disoccupazione
  <dir>
          6/02/06
                  9:29
                        06_povertà
  <dir>
          6/25/06
                  9:13
                        99_GA
         8/30/05
                  8:50
                        master.do
```

3. Ci dovrebbe sempre essere un file **master.do** che si occupa di lanciare tutti i files .do nell'ordine corretto.

master.do di conti_intergenerazionali

```
#delimit;
clear;
set mem 250m;
set more off;
capture log close;
```

```
cd 02_final_data;
     do read.do /** che lancia, nell'ordine -panel_link.do
                                              -panel_a.do
                                             -panel_h.do
               ****/;
     cd ..;
     cd 03_source;
     do master.do;
     cd ..;
     cd 04_separazioni;
     do master.do;
     cd ..;
     cd 05_disoccupazione;
     do master.do;
     cd ..;
     cd 99_GA;
     do master.do;
     cd ..;
master.do di 03_source
     clear
     do rela.do
     do coppie.do
     do rela_by_wave.do
     do hids.do
     do sons.do
     do occupati.do
```

- 4. Usare sempre **percorsi relativi**.
- 5. I files di dati di partenza devono rimanere inalterati. Se i dati di partenza vengono in qualsiasi modo modificati vanno salvati con un altro nome. Altrimenti si inficia il principio di riproducibilità
- 6. Dare ai files di log lo stesso nome del file do che li genera.
- 7. Fare un **backup** giornaliero dei propri progetti (sia files di dati che files .do). Un backup fatto male (o non fatto) può far piangere anche un uomo grande e grosso.
- 8. I dati sensibili vanno protetti. Si possono separare gli identificativi personali dal resto dei dati e poi i files con questi dati andrebbero criptati.

4.8 Intestazione file .do

Naturalmente questa è solo un'indicazione per nulla vincolante; ciascuno faccia come meglio crede, ma io consiglio di iniziare i files .do così:

```
#delimit;
version 10;
clear;
set mem 250m;
set more off;
capture log close;
log using panel.log, replace;
```

Cosa faccio con questo incipit?

version 10; definisco la versione di Stata che sto' usando e quindi tutti i comandi successivi verranno eseguiti secondo quella versione. Ciò è importante per conservare la compatibilità in relazione alle successive versioni di Stata. In altre parole Stata 99 sarà in grado di eseguire questo file .do

#delimit; definisco il delimitatore di fine comando

clear; elimino eventuali dati in memoria

set mem 250m; assegno un adeguato quantitativo di memoria

set more off; disabilito lo stop nello scorrimento qualora l'output di un comando ecceda la lunghezza della schermata della finestra dei risultati del programma

capture log close; chiudo un eventuale file di log aperto

log using xxxxxx.log, replace; avvio la registrazione degli output. Con replace sovrascrivo un eventuale file di log con lo stesso nome. Possibilmente assegnare al file xxxxxx.log lo stesso nome del file .do.

Se vengono usati dei comandi aggiuntivi non presenti nella distribuzione ufficiale per non bloccare l'esecuzione del file .do, è utile inserire sempre all'inizio il comando which:

```
capture which mmerge;
if _rc ssc install mmerge;
```

capture which verifica che il comando mmerge sia installato. Nel caso in cui non lo fosse, Stata accede all'archivio ssc e lo installa. Questo metodo funziona solo se il comando risiede nell'archivio ssc, altimenti bisognerà procedere con una installazione manuale.

P.S.: Il nome del file .do dovrebbe essere breve (non più di otto lettere diciamo) e non deve contenere spazi bianchi.

Capitolo 5

Alcuni Concetti di Base

5.1 L'input dei dati

5.1.1 Caricamento dei dati in formato proprietario

Vale la regola generale che la realise più recente legge i dati scritti nelle realise precedenti, ma le precedenti non leggono quelle più recenti. Inoltre bisogna tener presente anche la versione del programma secondo il presente schema

Dati letti da Dati salvati da	StataMP	StataSE	Intercooled	Small
StataMP	SI	SI	NO	NO
StataSE	SI	SI	NO	NO
Intercooled	SI	SI	SI	SI(?)
Small	SI	SI	SI	SI

Il comando per caricare i dati in formato proprietario di Stata (estensione .dta) è use filename [, clear]

L'opzione clear è necessaria per pulire la memoria dall'eventuale presenza di altri dati, in quanto non ci possono essere 2 database contemporaneamente in memoria. Questo argomento viene trattato in forma maggiormente estesa e dettagliata nel capitolo 6.1 alla pagina 39.

5.1.2 Caricamento dei dati in formato testo

Esistono diversi comandi in Stata per caricare dati in formato testo (ASCII). Val la pena di ricordare che questo formato sarebbe da preferire quando i dati saranno utilizzati anche con altri programmi¹.

¹I dati in formato testo sono leggeri in termini di dimensione del file, molto raramente si danneggiano e sono utilizzabili anche su piattaforme diverse da quelle Microsoft.

La prima cosa da sapere è se i dati sono delimitati o non delimitati. I dati sono delimitati se ciascuna variabile è separata da un certo carattere, di solito

```
- '.'
- ',' <sup>2</sup>
- ';'
- '|'
- '<tab>'
```

Qui viene fatta solo un'introduzione ai dati in formato testo. La trattazione per esteso verrà fatta nel capitolo 6.2 alla pagina 43.

5.1.3 Caricamento dei dati in altri formati proprietari (StatTransfer)

È possibile convertire dataset da altri formati al formato di Stata attraverso il programma commerciale StatTransfer, consigliato dalla stessa Stata Corp. Questo programma è usabile anche direttamente all'interno di Stata tramite appositi comandi che vedremo più avanti (inputst e outputst) nel capitolo 6.3 alla pagina 47.

5.2 Regole per denominare le variabili

Esistono due metodi per nominare le variabili: assegnare un nome evocativo o assegnare un codice. Per esempio possiamo chiamare redd la variabile che contiene l'informazione sul reddito o age la variabile che contiene l'informazione sull'età. In questa maniera il nome della variabile ci aiuta a richiamare il suo contenuto informativo. Se però abbiamo centinaia di variabili, assegnare a ciascuna un nome evocativo può diventare problematico. In questo contesto meglio ricorrere ad una nomenclatura di tipo sistematico. Per esempio assegnare d01 d02 d03 d04 d05 alle risposte delle domande da 1 a 5 o nomi del tipo score_10 score_11 ... o ancora 14a_rc d14b_rc d14c_rc d14d_rc d14e rc d14f rc.

Quelle che seguono sono regole (e consigli) cui sono sottoposti i nomi che intendiamo assegnare alle variabili:

- 1. Ogni variabile deve avere il suo nome
- 2. Il nome di ciascuna variabile deve essere univoco
- 3. Il nome delle variabili è case sensitive per cui redd è diverso da REDD o da Redd
- 4. Il nome può contenere lettere (sia maiuscole che minuscole), numeri e il carattere underscore (_). Non può contenere:
 - (a) spazi
 - (b) trattini (-)

 $^{^2\}mathrm{I}$ caratteri '.' e ',' non sono consigliati in quanto possono generare confusione in relazione alla sintassi numerica europea e anglosassone.

- 5. Il nome non può iniziare con un numero
- 6. La lunghezza non può superare i 32 caratteri anche se per motivi di praticità è consigliabile non superare la decina di caratteri
- 7. Possibilmente usare solo lettere minuscole (sempre per motivi di praticità)
- 8. Meglio non usare lettere accentate

5.3 Il qualificatore in

Buona parte dei comandi di Stata supportano l'uso del qualificatore in che, assieme al qualificatore if, consente di restringere l'insieme delle osservazioni su cui applicare il comando. Si noti che questo qualificatore risente dell'ordinamento dei dati, nel senso che fa riferimento alla posizione assoluta dell'osservazione. Un piccolo esempio può aiutare la comprensione di questo concetto. Supponiamo di avere 10 osservazioni per 2 variabili come segue:

```
sex
        age
         45
         22
3.
         11
    1
         36
    2
         88
6.
         47
8.
    2
         18
         17
```

se eseguo i seguenti comandi

. list sex age in 2/6

. summ age in 2/6

Stata mostra le osservazione dalla 2. alla 6. ed esegue il comando summ sulle osservazioni 2.-6.

Se adesso ordino le il dataset in base alla variabile age

e rieseguo gli stessi comandi

. list sex age in 2/6

	+		+
	-	sex	age
	1.		
2.	-	2	17
3.	-	2	18
4.	-	2	22
5.	-	1	36
6.		1	45 l
	+		+

. summ age in 2/6

Variable	0bs	Mean	Std. Dev.	Min	Max
+					
age	5	27.6	12.34099	17	45

Stata mostra ancora le osservazione dalla 2. alla 6. ed esegue il comando summ sulle osservazioni 2.-6. ma con risultati differenti perchè il comando sort ha cambiato la posizione delle osservazioni. Da questo esempio si evidenzia che va posta attenzione nell'uso del qualificatore *in* in quanto il comando associato non viene sempre applicato alle stesse osservazioni, ma dipende dall'ordinamento delle osservazioni (sort)

5.4 Il qualificatore *if*

La quasi totalità dei comandi di Stata supporta l'uso del qualificatore *if.* Esso ha la funzione di selezionare le osservazioni su cui applicare il comando vincolando la scelta al verificarsi della condizione specificata nell' *if.* Anche in questo caso un esempio aiuta la comprensione. Sempre facendo riferimento al dataset appena usato:

32

. list sex age if sex==1

	+		+
	-	sex	age
	1.		
1.		1	11
5.		1	36 l
6.		1	45 l
7.	-	1	47 I
	+		+

. summ sex age if sex==1

Variable	Obs	Mean	Std. Dev.	Min	Max
sex	4	1	0	1	1
age	1 4	34.75	16.54035	11	47

I comandi vengono eseguiti solo sulle osservazioni che assumono valore 1 nella variabile sex. Il risultato in questo caso è invariante rispetto all'ordinamento:

- . sort age
- . list sex age if sex==1

	+-			+
	1	sex	age	I
	1.			
1.	1	1	11	
5.	-	1	36	
6.	-	1	45	1
7.	-	1	47	1
	+			+

. summ sex age if sex==1

Variable	l Obs	Mean	Std. Dev.	Min	Max
sex	l 4	 1	0	 1	1
age	I 4	34.75	16.54035	11	47

5.5 Operatori di relazione

Gli operatori relazionali in Stata restituiscono sempre una risposta vero/falso. Nel caso sia verificata la relazione, viene eseguito il comando, altrimenti no. Gli operatori di relazioni contemplati nella sintassi di Stata sono:

- > (strettamente maggiore di)
- < (strettamente minore di)
- >= (strettamente maggiore di o uguale a)
- <= (strettamente minore di o uguale a)
- **==** (uguale a)
- ~= o != (diverso da)

Si noti che la relazione di uguaglianza esige l'uso doppio del segno di uguaglianza. Le relazioni si applicano indifferentemente a dati numerici e a dati in formato stringa. Ed ora alcuni esempi:

- -8 > 4 restituisce vero
- 8 < 4 restituisce falso
- "nicola" > "beda" restituisce vero perché 'nicola' in ordine alfabetico è successivo a 'beda'
- "nicola" > "Beda" restituisce falso perché le lettere maiuscole sono ordinate prima delle lettere minuscole

Per i dati missing (indicati con il simbolo '.'), vale la relazione:

- . > # ovvero un dato numerico missing è sempre maggiore di una dato numerico non missing.
- "" > "stringa" ovvero un dato stringa missing è sempre maggiore di una dato stringa non missing.

Si ricorda anche che all'interno della stessa variabile non possono essere presenti contemporaneamente dati stringa e numerici. In tal caso i secondi vengono convertiti nei primi.

5.6 Operatori logici

Gli operatori logici in Stata sono:

```
- & (and)
- | (or)
- ~ o ! (not)
```

Gli operatori logici vengono usati per stabilire delle relazioni tra due o più espressioni e restituiscono 1 se sono verificate, 0 se non sono verificate.

& richiede che entrambe le relazioni siano verificate

I richiede che almeno una delle relazioni sia verificata

Ritornando agli esempi precedenti

8 > 4 & 8 < 4 è una relazione non vera (e quindi restituisce 0)

 $8 > 4 \mid 8 < 4$ è una relazione vera (e quindi restituisce 1)

5.7 Caratteri jolly e sequenze

In Stata è possibile usare i caratteri jolly per indicare gruppi di variabili. Come è prassi in informatica il carattere * serve ad indicare qualsiasi carattere e per un numero qualsiasi di volte. Per esempio, avendo la seguente lista di variabili:

34

```
redd95
spesa1995
redd96
spesa1996
redd97
spesa1997
redd1998
age
risc
sesso
```

- * indica tutte le variabili
- *95 indica redd95 e spesa95
- r* indica redd95, redd96, redd97 e risc

Il carattere ? invece serve per indicare un qualsiasi carattere per una sola volta; nel nostro esempio:

- ? indica nessuna variabile perché non c'è nessuna variabile di un solo carattere, qualsiasi esso sia
- ????95 indica solo redd95, ma non spesa95 (solo 4 caratteri prima di 95)
- redd?? indica redd95, redd96, redd97 ma non redd1998 (solo 2 caratteri dopo redd)

Con il simbolo – si indica una successione contigua di variabili; sempre nel nostro caso, redd96-risc indica redd96, spesa1996, redd97, spesa1997, redd1998, age, risc.

Si faccia attenzione che il simbolo – dipende da come sono disposte le variabili. Se la variabile redd97 venisse spostata all'inizio della lista, non rientrerebbe più nell'elenco.

5.8 L'espressione by

Molti comandi hanno la caratteristica di essere byable, ovvero supportano l'uso del prefisso by. In sostanza il by serve per ripetere un comando più volte in base ad una certa variabile (categorica). Supponiamo di avere l'età (age) di N individui e di sapere per ciascuno di essi se risiede nelle macro regioni nord, centro o sud+isole (macro3). Volendo conoscere l'età media per ciascuna delle macro regioni (nord=1, centro=2, sud+isole=3):

. summ age if macro3==1

age |

Variable	Obs		Std. Dev.	Min	Max	
age	12251	55.90948	15.82015	19	101	
. summ age if macro3==2						
Variable	Obs	Mean	Std. Dev.	Min	Max	
age	5253	56.56958	16.03001	19	98	
. summ age if macro3==3						
Variable	0bs	Mean	Std. Dev.	Min	Max	

55.96738

oppure, ricorrendo al by e all'uso di una sola riga di comando al posto delle 3 precedenti:

15.69984

	Variable	0bs	Mean	Std. Dev.	Min	Max	
	age	5253	56.56958	16.03001	19	98	
>							
	Variable	0bs	Mean	Std. Dev.	Min	Max	
	age	9995	55.96738	15.69984	21	102	

Per l'esecuzione tramite by bisogna che il dataset sia preventivamente ordinato in base alla variabile categorica, da cui l'uso dell'opzione sort. Alternativamente si può ricorrere alla variazione di questo comando:

```
bysort macro3: summ age
```

che da' il medesimo risultato del precedente.

Vedremo in seguito che by rientra anche tra le opzioni di molti comandi, per cui esso può assumere la duplice natura di prefisso e di opzione.

5.9 Dati missing

Stata identifica con il simbolo '.' un dato missing numerico. Questa è la sua rappresentazione generale ma c'è la posibilità di definire un sistema di identificazione di valori missing di diversa natura. Per esempio un dato missing per mancata risposta è concettualmente diverso da un dato missing dovuto al fatto che quella domanda non può essere posta. Un dato missing sull'occupazione di un neonato non è una mancata risposta ma una domanda che non può essere posta. In Stata possiamo definire diversi missing secondo la struttura .a, .b, .c,z e vale l'ordinamento:

```
tutti i numeri non missing < . < .a < .b < ... < .z
```

Poi a ciascuno di questi diversi missing possiamo assegnare una sua label:

Quanto esposto precedentemente si riferisce a dati numerici. Per le variabili stringa non esiste nessun metodo di codifica e il dato missing corrisponde ad una cella vuota (nessun simbolo e nessuno spazio). Nel caso si debba fare riferimento ad un dato missing stringa si usano le doppie vigolette come segue:

```
        storage
        display
        value

        variable name
        type
        format
        label
        variable label

        ------q01
        int
        %8.0g
        q01 età
```

q03 str29 %29s q03 comune di residenza

. summ q01 if q03==""

Variable	l Obs	Mean Mean	Std. Dev	. Min	Max
q01	12	49.75	29.19877	1	90

Capitolo 6

Il Caricamento dei Dati

6.1 Dati in formato proprietario (.dta)

Caricare i dati in formato Stata (.dta) è un'operazione semplice e come vedremo ci sono diverse utili opzioni. Ma prima di caricare un dataset bisogna porre attenzione alla sua dimensione. Come già accennato Stata mantiene tutti i dati nella memoria RAM per cui bisogna allocarne un quantitativo adeguato, il quale, sarà sottratto alla memoria di sistema. Se per esempio dobbiamo caricare un file di dati di 88MB dobbiamo dedicare al programma questo quantitativo aumentato in funzione della eventuale creazione di nuove variabili. Se possibile consiglio di allocare un quantitativo di RAM all'incirca doppio rispetto al dataset di partenza se si dovranno creare molte nuove variabili, altrimenti un incremento del 50% può essere sufficiente dato che un certo quantitativo di RAM viene comunque utilizzato per le elaborazioni. Stata è impostato con una allocazione di default di circa 1.5MB.

Nel momento in cui avviate il programma vi viene fornita l'informazione circa l'attuale allocazione di RAM.

```
Notes:
```

- 1. (/m# option or -set memory-) 10.00 MB allocated to data
- 2. (/v# option or -set maxvar-) 5000 maximum variables

Il comando per allocare un diverso quantitativo di memoria è:

$$\underline{\text{set mem}}$$
ory $\#[b|k|m|g][$, $\underline{\text{perm}}$ anently]

. set mem 250m

Current memory allocation

settable	current value	description	memory usage (1M = 1024k)
set maxvar set memory set matsize	5000 250M 400	max. variables allowed max. data space max. RHS vars in models	1.909M 250.000M 1.254M
			253.163M

e va eseguito *prima* di caricare il dataset, ovvero con nessun dataset in memoria¹. Inoltre bisogna tener presenti le seguenti limitazioni:

- il quantitativo di RAM dedicato non deve superare la RAM totale del computer e tenete presente che un certo quantitativo serve anche per il normale funzionamento del sistema operativo.
- attualmente Windows ha problemi ad allocare quantitativi superiori ai 950MB².

Se volete allocare in maniera permanente un certo quantitativo di RAM in maniera che ad ogni avvio questo sia a disposizione di Stata:

set mem #m, perm

Se il quantitativo di memoria non è sufficiente, Stata non carica i dati:

```
. use istat03, clear
(Indagine sui Consumi delle Famiglie - Anno 2003)
no room to add more observations
   An attempt was made to increase the number of observations beyond what is currently possible.
   You have the following alternatives:
```

- Store your variables more efficiently; see help compress.
 (Think of Stata's data area as the area of a rectangle; Stata can trade off width and length.)
- 2. Drop some variables or observations; see help drop.
- Increase the amount of memory allocated to the data area using the set memory command; see help memory.
 r(901);
- . set mem 5m

Current memory allocation

settable	current value	description	memory usage (1M = 1024k)
set maxvar set memory set matsize	5000 5M 400	max. variables allowed max. data space max. RHS vars in models	1.909M 5.000M 1.254M
			8 163M

```
. use istat03, clear
(Indagine sui Consumi delle Famiglie - Anno 2003)
```

. desc, short

Contains data from istat03.dta

obs: 2,000 Indagine sui Consumi delle
Famiglie - Anno 2003

vars: 551 23 Nov 2006 09:13

size: 2,800,000 (46.6% of memory free)

Sorted by:

¹Ricordo che ci può essere un solo dataset in memoria.

²Il problema per la versione italiana dovrebbe essere risolto con il prossimo rilascio del service pack 3 di Windows XP.

Allocato un quantitativo adeguato di RAM, siamo pronti per caricare il nostro dataset. Abbiamo già visto l'uso di base del comando use nella sezione 5.1.1 (pagina 29). Si noti anche che il file di dati può essere caricato da un indirizzo internet. Una versione più evoluta del comando use, è questa:

```
use [varlist][if][in] using filename [, clear nolabel]
dove:
```

- in varlist possiamo mettere l'elenco delle variabili da caricare nel caso non le si voglia tutte
- in if possiamo specificare di voler caricare solo quelle osservazioni che rispondono a certi criteri
- in *in* possiamo specificare di voler caricare solo un range di osservazioni

E adesso proviamo ad usare i comandi appena visti:

- . clear
- . set mem 15m

Current memory allocation

settable	current value	description	memory usage (1M = 1024k)
set maxvar set memory set matsize	5000 15M 400	max. variables allowed max. data space max. RHS vars in models	1.909M 15.000M 1.254M
			18.163M

```
. use carica, clear
```

. desc, short

```
Contains data from carica.dta
```

obs: 1,761 80

vars: 18 Oct 2006 10:30

size: 294,087 (98.1% of memory free)

Sorted by:

. use hhnr persnr sex using carica, clear

. desc, short

Contains data from carica.dta

obs: 1,761

vars: 18 Oct 2006 10:30

size: 22,893 (99.9% of memory free)

Sorted by:

. use if sex==2 using carica, clear

. desc, short

Contains data from carica.dta

898 obs: vars: 80

size:

149,966 (99.0% of memory free)

18 Oct 2006 10:30

Sorted by:

```
. use in 8/80 using carica, clear
. desc, short

Contains data from carica.dta
obs: 73
vars: 80 18 Oct 2006 10:30
size: 12,191 (99.8% of memory free)

Sorted by:
```

Ed ecco anche un esempio di dati caricati da internet

È possibile migliorare l'uso della memoria attraverso un processo che ottimizzi il quantitativo di memoria occupato da ciascuna variabile. Per esempio se una variabile può assumere solo valori interi 1 o 2, è inutile sprecare memoria per i decimali. Il comando deputato a ciò in Stata è:

```
compress [varlist]
      . use istat_long, clear
      . desc, short
      Contains data from istat_long.dta
       obs:
                    46,280
                                                    26 Mar 2004 17:54
       vars:
                        1.3
                2,406,560 (95.4% of memory free)
      size:
      Sorted by: anno fam_id
      . compress
      sons_head was float now byte
      sons_head_00_18 was float now byte
      sons_head_00_05 was float now byte
      sons_head_06_14 was float now byte
      sons_head_15_18 was float now byte
      sons_head_19_oo was float now byte
      nc was float now byte
      couple was float now byte
      parents was float now byte
      relatives was float now byte
      hhtype was float now byte
      . desc, short
      Contains data from istat_long.dta
                    46,280
       obs:
                                                    26 Mar 2004 17:54
       vars:
                        13
                   879,320 (98.3% of memory free)
       size:
```

42

```
Sorted by: anno fam_id
```

Come si può notare dalla riga intestata size: la dimensione del dataset si è ridotta di un fattore 3 (non male vero?).

6.2 Dati in formato testo

Spesso i dataset vengono forniti in formato testo. Questa scelta è dettata dal fatto che il formato testo è multi piattaforma e che può essere letto da tutti i programmi di analisi statistica. Per l'utilizzo in Stata si distingue tra dati in formato testo delimitato e non delimitato.

6.2.1 Formato testo delimitato

Questi dataset sono caratterizzati dal fatto che ciascuna variabile è divisa dalle altre da un determinato carattere o da tabulazione. Naturalmente non tutti i caratteri sono adatti a fungere da divisori e in generale i più utilizzati sono:

- ',' - ';' - '|' - <spazio> - <tabulazione>
- Il comando deputato alla lettura di questi dati è:

insheet [varlist] using filename [, options] tra le opzioni più importanti:

- tab per indicare che i dati sono divisi da tabulazione
- comma per indicare che i dati sono divisi da virgola
- delimiter("char") per specificare tra "" quale carattere fa da divisore (per es. "|")
- clear da aggiungere sempre per pulire eventuali altri dati in memoria

per esempio il comando

```
insheet using dati.txt, tab clear
```

legge le variabili contenute nel file dati.txt dove una tabulazione funge da divisore.

```
insheet var1 var2 var10 dati.txt, delim("|")
```

legge tutte le variabili var1, var2 e var10 nel file dati.txt dove il carattere '|' funge da divisore.

Nel caso in cui il divisore sia uno spazio (caso abbastanza raro in realtà) si può usare il comando:

quest'ultimo comando prevede anche l'uso del file dictionary che sarà trattato per esteso per i dati in formato testo non delimitato.

6.2.2 Formato testo non delimitato

Per capire come Stata può acquisire questo tipo di dati ci serviamo del seguente schema:

I casi 1. e 2. sono tipici dei file di testo delimitati e lo using fa riferimento al file che contiene i dati (filename).

Nei casi 3. e 4. il procedimento da seguire si snoda nelle seguenti fasi:

- a. Si impartisce il comando senza la lista delle variabili e lo using fa riferimento al file dictionary (filename).
- b. Il file dictionary deve avere estensione .dct, altrimenti va indicato completo di nuova estensione nel comando (es.: infile using filename.txt)
- c. Nel file dictionary si indicano il file che contiene i dati e le variabili da leggere (che possono essere indicate in varie maniere)
- d. Le indicazioni contenute nel file dictionary vengono usate per leggere i dati in formato non delimitato.

Adesso analizziamo la struttura di un file dictionary. Anche questo è un semplice file di testo che inizia con la riga:

```
infile dictionary using data.ext oppure
```

infix dictionary using data.ext

a seconda del comando che vogliamo utilizzare e dove data.ext è il file contenente i dati.

Le varianti e le opzioni all'interno dei file dictionary sono molte. In questa sezione tratteremo solo i casi classici. Per i casi di salti di variabili, di salti di righe o di osservazioni distribuite su 2 o più righe si rimanda ad una prossima versione più completa ed approfondita sull'argomento.

 $Costruzione\ del\ dictionary\ per\ il\ comando\ {\tt infile}$

È un tipo di dictionary poco usato in verità. La struttura è:

```
infile dictionary using datafile.ext {
nomevar tipo&lenght "label"
...
...
}
```

La parte "più difficile" da costruire è quella centrale in quanto bisogna porre attenzione alla lunghezza delle singole variabili che solitamente sono indicate nella documentazione che accompagna i dati. Per esempio:

```
infile dictionary var1 %1f "label della var1" var2 %4f "label della var2" var3 %4.2f "label della var3" str12 var4 %12s }
```

dove:

var1 è numerica ed occupa uno spazio, quindi è un intero 0-9

var2 è numerica, occupa 4 spazi senza decimali (0-9999)

var3 è numerica, occupa 4 spazi per la parte intera, più uno spazio per il simbolo decimale, più 2 decimali

var4 è stringa (e questo deve essere specificato prima del nome della variabile) ed occupa 12 spazi.

Data la lunghezza delle singole variabili possiamo ricostruire la struttura del database:

```
      1
      1234
      4321.11
      asdfghjklpoi

      1
      5678
      7456.22
      qwertyuioplk

      2
      9101
      9874.33
      mnbvcxzasdfr

      5
      1121
      4256.44
      yhnbgtrfvcde

      9
      3141
      9632.55
      plmqazxdryjn
```

Un po' complicato vero?? Solo le prime volte, poi ci si fa l'abitudine. Per fortuna nella maggior parte dei casi i dati sono in formato testo delimitato.

Costruzione del dictionary per il comando infix La struttura è:

```
infix dictionary using datafile.ext \{
```

```
nomevar inizio-fine
...
...
}
```

Anche in questo caso la colonna di inizio e quella di fine delle variabili vengono fornite con la documentazione che accompagna i dati. Riprendendo l'esempio precedente il file dictionary sarebbe:

Quello che segue è un estratto dalla documentazione che accompagna il database sui consumi delle famiglie italiane distribuito da ISTAT:

INIZIO	FINE	AMPIEZZA	VARIABILE	CONTENUTO
1429	1429	1	P_7101	Possesso di televisore
1430	1437	8	C_{-7101}	Acquisto televisore
1438	1438	1	P_7102	Possesso di videoregistratore
1439	1446	8	C_{-7102}	Acquisto videoregistratore

Mentre questo è estratto dai Living Standard della World Bank:

VARIABLE	CODE	RT	FROM	LENGTH	TYPE
1 Source of water	Q01	8	9	1	QLN
2 Water piped to house?	Q02	8	10	1	QLN
3 Amount paid water (Rs.)	Q03	8	11	6	QNT
4 Sanitation system	Q04	8	17	1	QLN
5 Garbage disposal	Q05	8	18	1	QLN
6 Amount pd. garbage (Rs.)	Q06	8	19	6	QNT
7 Type of toilet	Q07	8	25	1	QLN

A questo punto, come esercizio sarebbe simpatico provare a costruire il dictionary per questi due esempi. Per i dati ISTAT, per prima cosa da Stata si impartisce il comando:

```
{\tt infix\ using\ istat\_rid.dct,\ clear}
```

come abbiamo visto questo comando richiama il file dictionary <code>istat_rid.dct</code> che ha la seguente struttura:

il quale chiama a sua volta il file dei dati istat_rid.dat ottenendo questo output:

```
. infix using istat_rid.dct, clear;
infix dictionary using istat_rid.dat {
```

```
p_7101 1429-1429
c_7101 1430-1437
p_7102 1438-1438
c_7102 1439-1446}
(88 observations read)
```

Per il file della World Bank invece il dictionary ha la seguente struttura:

```
dictionary using RT008.DAT {
                     S02C1_01 %1f
                                   "1 Source of water"
 _column( 9) byte
                                   "2 Water piped to house?"
 _column( 10) byte
                     S02C1_02 %1f
 _column( 11) long
                     S02C1_03 %6f "3 Amount paid water (Rs.)"
 _column( 17) byte
                     S02C1_04 %1f
                                   "4 Sanitation system"
 _column( 18) byte
                     S02C1_05 %1f "5 Garbage disposal"
                                   "6 Amount pd. garbage (Rs.)"
                     S02C1_06 %6f
 _column( 19) long
                                   "7 Type of toilet"
 _column(25) byte
                     S02C1_07 %1f
```

in questo caso usiamo il comando infile ottenendo:

```
. infile using ZO2C1, clear
dictionary using RT008.DAT { }
 _column( 9) byte
                      S02C1_01 %1f "1 Source of water"
  _column( 10) byte
                      S02C1_02 %1f "2 Water piped to house?"
                      S02C1_03 %6f "3 Amount paid water (Rs.)"
  _column( 11) long
  _column( 17) byte
                                   "4 Sanitation system"
                      S02C1_04 %1f
                      S02C1_05 %1f "5 Garbage disposal"
  _column( 18) byte
  _column( 19) long
                      S02C1_06 %6f "6 Amount pd. garbage (Rs.)"
  _column( 25) byte
                      S02C1_07 %1f "7 Type of toilet"
(3373 observations read)
```

6.3 Altri tipi di formati

Per la lettura di dati salvati in altri tipi di formati proprietari (SPSS, SAS, excel, access, ...) si ricorre, almeno per Stata, al programma StatTransfer³, pacchetto commerciale che di solito si acquista in abbinamento con Stata. Questo programma può essere usato in maniera indipendente o chiamato direttamente da Stata attraverso i comandi:

```
inputst [filetype] infilename.ext [switches]
per importare dati, e

outputst [filetype] infilename.ext [switches]
per esportare dati. Per esempio:
    inputst database.xls /y
    inputst database.xls /tdati /y
```

Nel primo caso si importano i dati del file excel database.xls, lo switch /y serve a pulire eventuali dati già in memoria; nel secondo caso si leggono i dati dal file database.xls contenuti nel foglio dati. Alla stessa maniera:

```
outputst database.sav /y
```

³Sito web: www.stattransfer.com

esporta gli stessi dati in formato SPSS.

Per i dati contenuti in un file excel potete anche copiarli e incollarli direttamente nel 'Data editor' (e viceversa).

6.4 Esportazione dei dati

Poco fa abbiamo visto un esempio di esportazione dei dati. Se i dati devono essere usati da altri utenti che non usano Stata è consigliabile l'esportazione in formato testo delimitato. Il comando che consiglio di usare è:

```
outsheet \lceil \mathit{varlist} \rceil using \lceil \mathit{filename} \rceil \lceil \mathit{if} \rceil \lceil \mathit{in} \rceil \lceil, options \rceil
```

dove in filename va specificato il nome del file di output e dove le opzioni principali sono:

comma per avere i dati separati da ',' al posto della tabulazione che è l'opzione di default delimiter("char") per scegliere un delimitatore alternativo a ',' e alla tabulazione; per esempio ';', tipico dei files .csv

nolabel per esportare il valore numerico e non il label eventualmente assegnato alle variabili categoriche

replace per sovrascrivere il file di output già eventualmente creato

Una valida alternativa al formato testo puro è il formato XML. Si definisce come un file di testo strutturato ed ha il vantaggio della portabilità tra le applicazioni che lo supportano. Esistono 2 versioni del comando. Questa salva il dataset in memoria nel formato XML:

```
\underline{\mathtt{xmlsav}}e filename [if][in][, xmlsave\_options]
```

Questa salva il sottoinsieme delle variabili specificate:

```
xmlsave [varlist] using filename [if][in][, xmlsave_options]
```

le possibili *xmlsave options* sono:

doctype(dta) salva il file XML usando le specifiche determinate da Stata per i files .dta
 doctype(excel) salva il file XML usando le specifiche determinate per i files Excel
 dtd include il DTD (Document Type Definition) nel file XML. Questa opzione è usata
 raramente ed inoltre aumenta la dimensione finale del file

<u>legible</u> fa in modo che il file XML visivamente più leggibile. Attenzione che anche questa opzione aumenta la dimensione finale del file

replace sovrascrive un eventuale filename già esistente

Per inciso, per leggere i dati salvati in XML si usa il comando

```
xmluse filename [ , xmluse_options]
```

che qui non viene trattato

Tutti sappiamo che excel è il formato più diffuso per salvare dati (purtroppo!), ma per favore evitate di esportare i dati in tale formato, poiché excel ha il brutto vizio (ma non è il solo) di "interpretare" i dati come in questo caso:

```
01.11.5 P / 01.24 S
01.11.5 P / 01.24 S
01.11.5 P / 01.21 S
01.11.5 P / 01.2 S
1:11:05 PM
1:11:05 PM
1:11:05 PM
```

Gli ultimi tre casi sono stati interpretati da excel come delle ore, invece sono codici ateco (per la precisione codice 01.11.05).

6.5 Cambiare temporaneamente dataset

Come abbiamo già detto Stata consente l'utilizzo di un solo dataset alla volta. Può allora risultare scomodo salvare il dataset sul quale si sta' lavorando per dedicarsi temporaneamente ad un altro e poi riprendere il primo. In questi casi possiamo ricorrere all'accoppiata di comandi

preserve

restore

Con preserve iberniamo il dataset sul quale stiamo lavorando; possiamo quindi fare dei cambiamenti su questo dataset o passare ad utilizzarne un altro. In seguito con il comando restore ritorniamo ad utilizzare il dataset precedentemente ibernato. Nell'esempio che segue si parte con un dataset e dopo il comando preserve si prendono solo alcune variabili, si salva il dataset e poi si torna a quello di partenza:

```
. desc, short;
Contains data
 obs:
              92,033
 vars:
                  41
size:
         28,162,098 (91.0% of memory free)
Sorted by:
    Note: dataset has changed since last saved
. keep tot_att cciaa ateco_11 for_giu prov anno;
. gen flag_test=0;
 save tot_veneto, replace;
file tot_veneto.dta saved
. desc, short;
Contains data from tot_veneto.dta
 obs:
             92,033
                                               26 Nov 2007 18:00
 vars:
          7,914,838 (97.5% of memory free)
size:
Sorted by:
. restore;
. desc, short;
```

```
Contains data
obs: 92,033
vars: 41
size: 28,162,098 (91.0% of memory free)
Sorted by:
Note: dataset has changed since last saved
```

Nell'esempio seguente invece, dal dataset di partenza di volta in volta si selezionano le osservazioni relative ad un dato anno, si esportano e poi si ripristina ogni volta il dataset di partenza:

. tab anno;

 anno	l 	Freq.	Percent	Cum.
2001 2003 2005	į :	16,062 23,464 49,067	18.13 26.49 55.38	18.13 44.62 100.00
 Total	+ 	 38.593	100.00	

- . preserve;
- . keep if anno==2001;
 (72531 observations deleted)
- . tab anno;

Cum.	Percent	Freq.	anno
100.00	100.00	16,062	2001
	100.00	16.062	Total

- . keep denom loc prov ateco_11 ric_ven tot_att
- > pos_fn roe roi ros rot effic ac_ric
 > tot_c_pers rapp_ind mat_pc mat_ric cp_rv;
- . outputst interm_2001.xls /y;
- . restore;
- . tab anno;

anno	Freq.	Percent	Cum.
2001 2003 2005	16,062 23,464 49.067	18.13 26.49 55.38	18.13 44.62 100.00
Total	88,593	100.00	

- . preserve;
- . keep if anno==2003;
 (65129 observations deleted)
- . tab anno;

	Freq.		Cum.
2003	•	100.00	100.00
Total	•	100.00	

50

- . outputst interm_2003.xls /y;
- . restore;
- . tab anno;

anno	l 	Freq.	Percent	Cum.
2001 2003 2005	 	16,062 23,464 49,067	18.13 26.49 55.38	18.13 44.62 100.00
Total	·+	88,593	100.00	

- . preserve;
- . keep if anno==2005;
 (39526 observations deleted)
- . tab anno;

Cum.	Percent	1	anno
100.00	100.00	49,067	2005
	100.00	49.067	

- . outputst interm_2005.xls /y;
- . restore;
- . tab anno;

Cum.	Percent	Freq.	anno	
18.13 44.62 100.00	18.13 26.49 55.38	16,062 23,464 49,067	2001 2003 2005	
	100.00	88,593	Total	

Capitolo 7

Gestione delle Variabili

7.1 Descrizione di variabili e di valori

Bene, adesso abbiamo caricato il database in Stata ma per renderlo intellegibile occorre:

- a. Descrivere il dataset (questo non è così indispensabile!)
- b. Descrivere le variabili (questo invece sì)
- c. Descrivere i valori delle variabili categoriche (e anche questo)

Per prima cosa diamo una prima occhiata al dataset sfruttando l'output di due comandi:

U.S. life expectancy, 1900-1999

```
\underline{\mathtt{describe}} \ [\mathit{varlist}][, \mathit{memory\_options}]
```

che descrive il dataset senza troncare i nomi troppo lunghi delle variabili.

Contains data from C:/Programmi/Stata9/ado/base/u/uslifeexp.dta

. desc, full

vars: size:	10 4,200 (99.9% of	memory free)	30 Mar 2005 04:31 (_dta has notes)
variable name	storage type	display format	value label	variable label
year	int	%9.0g		Year
le	float	%9.0g		life expectancy
le_male	float	%9.0g		Life expectancy, males
le_female	float	%9.0g		Life expectancy, females
le_w	float	%9.0g		Life expectancy, whites
le_wmale	float	%9.0g		Life expectancy, white males
le_wfemale	float	%9.0g		Life expectancy, white females
le_b	float	%9.0g		Life expectancy, blacks
le_bmale	float	%9.0g		Life expectancy, black males
le_bfemale	float	%9.0g		Life expectancy, black females
Control have no				

Sorted by: year

Opzioni interessanti del comando sono:

short per avere delle informazioni più limitate, in sostanza numero di variabili, numero di osservazioni e spazio occupato (la prima parte dell'output precedente)
detail per avere informazioni più dettagliate
fullnames per non abbreviare il nome delle variabili

Il secondo comando che prendiamo in esame è:

```
codebook [varlist][if][in][, options] tra le opzioni + utili:
```

notes per visualizzare le note associate alle variabili tabulate(#) per visualizzare i valori delle variabili categoriche problems detail per riportare eventuali problemi del dataset (doppioni, variabili missing, variabili senza label...)

compact per avere un report compatto delle variabili

type: label: range: nique values: tabulation:	3	Numeric 2 3	Label Clinton Bush Perot	units: missing .:			
nique values:	3 Freq. 5 5	2	Clinton Bush				
tabulation:	5 5	2	Clinton Bush				
					Famil		1COM
		(int)					
range: nique values:	[1,5] 5						
tabulation:	Freq. 3 3 3 3 3	1 2 3 4	<15k 15-30k 30-50k 50-75k				
					(ur	nlabe	eled
	type: label: range: nique values: tabulation:	type: numeric label: inc2 range: [1,5] nique values: 5 tabulation: Freq. 3 3 3 3 3 3	type: numeric (int) label: inc2 range: [1,5] lique values: 5 tabulation: Freq. Numeric 3 1 3 2 3 3 4 3 5	type: numeric (int) label: inc2 range: [1,5] nique values: 5 tabulation: Freq. Numeric Label 3 1 <15k 3 2 15-30k 3 3 30-50k 3 4 50-75k 3 5 75k+	type: numeric (int) label: inc2 range: [1,5]	type: numeric (int) label: inc2 range: [1,5]	type: numeric (int) label: inc2 range: [1,5]

 $^{^1\}mathrm{Attenzione}$ che questa opzione su grandi moli di dati può comportare lunghi tempi di esecuzione. Per esempio su circa 4 milioni di osservazioni con un AMD 4000+ ha impiegato circa 25 minuti.

range: [16,59] units: 1 unique values: 14 missing .: 0/15

mean: 33.3333 std. dev: 13.1674

percentiles: 10% 25% 50% 75% 90% 18 20 36 42 48

pfrac (unlabeled)

type: numeric (double)

range: [2.08,12.3] units: .01 unique values: 14 missing .: 0/15

mean: 6.73333 std. dev: 3.25956

percentiles: 10% 25% 50% 75% 90% 2.52 3.6 6.3 8.4 11.4

pop (unlabeled)

type: numeric (double)

range: [32219,190527] units: 1 unique values: 14 missing .: 0/15

mean: 104299 std. dev: 50490.5

percentiles: 10% 25% 50% 75% 90% 39035 55764 97587 130116 176586

Infine un comando per avere una analisi alternativa delle variabili:

 $\underline{\mathtt{ins}}\mathtt{pect} \ [\mathit{varlist}\][\mathit{if}\][\mathit{in}\]$

. inspect

ca	ndi	dat: Candidate voted for, 1992			Number of Observations			
						Total	Integers	Nonintegers
	#	#	#		Negative	-	_	_
	#	#	#		Zero	-	-	-
	#	#	#		Positive	15	15	-
	#	#	#					
	#	#	#		Total	15	15	-
	#	#	#		Missing	-		
+-					•			
2				4		15		
	(3	unio	ue val	ues)				

candidat is labeled and all values are documented in the label.

inc: Family Income Number of Observations

Total Integers Nonintegers

| # # # # # Negative - - - -

inc is labeled and all values are documented in the label.

	ac:						Nui	mber of Obs	ervations
							Total	Integers	Nonintegers
l	#					Negative	-	_	-
	#		#			Zero	-	-	-
l	#		#			Positive	15	15	-
l	#		#	#					
l	#		#	#		Total	15	15	-
ı	#	•	#	#	#	Missing	-		
+-									
16		2		7	59		15		
	(14	uni	que '	value	es)				
pf	rac	:					Nu	mber of Obs	ervations
							Total	Integers	Noninteger
	#					Negative	-	-	-
	#					Zero	-	-	-
	#		#	#	#	Positive	15	1	14
	#	#	#	#	#				
	#	#	#	#	#	Total	15	1	14
	#	#	#	#	#	Missing	-		
-									
2.	80			_	12.3		15		
	(14	uni	que v	value	es)				
oc	p:	_					Nu	mber of Obs	ervations
							Total	Integers	Noninteger
	#					Negative	-	-	-
	#					Zero	-	-	-
	#		#	#	#	Positive	15	15	-
	#	#	#	#	#				
	#	#		#	#	Total	15	15	-
•	#	#	#	#	#	Missing	-		
 -	219				190527		15		

Non sempre i dataset sono provvisti di label (descrizione) delle variabili e di label (descrizione) dei valori delle categoriche e quindi bisogna provvedere attraverso il comando label.

<u>label variable varname "label"</u>

per associare una etichetta di descrizione alla variabile e

 $\underline{\mathtt{la}}\mathtt{bel}$ $\underline{\mathtt{da}}\mathtt{ta}$ "label"

per associare un titolo al dataset.

Infine vediamo l'associazione delle etichette alle variabili categoriche che si compie in due fasi:

- a. Definizione di un "oggetto" label che associa a ciascun valore della variabile categorica la sua descrizione
- b. Associazione di tale oggetto alla variabile di pertinenza
- a. definizione dell'oggetto label

label define
$$nome_oggetto$$
 #1 " $desc$ 1" [#2 " $desc$ 2" ...#n " $desc$ n"][, add modify nofix]

b. associazione

A partire dall'aggiornamento del 25 febbraio 2008 la sintassi di label values si è arricchita con la possibilità di specificare *varlist* al posto di *varname*. Di conseguenza è possibile eseguire label values contemporaneamente su più variabili. La nuova sintassi è la seguente:

Se viene specificato . invece di $nome_oggetto$, si azzera l'associazione tra le variabili specificate in varlist e la descrizione dei valori contenuta in $nome_oggetto$.

In seguito si potranno aggiungere ad una label già esistente dei nuovi valori con il comando

<u>la</u>bel <u>define</u> $nome_oggetto$ $\#_t$ "desc t" $[\#_z$ "desc z"]...[, add] oppure modificare le descrizioni di valori già esistenti con

<u>label define</u> $nome_oggetto$ $\#_i$ "desc i" [$\#_j$ "desc j"]...[, modify] Ecco un esempio di quanto esposto:

. tab q06, miss

Prenotazione	Freq.	Percent	Cum.
1	94	48.45	48.45
2	80	41.24	89.69
3	3	1.55	91.24
.a	17	8.76	100.00
Total	194	100.00	

- ** DEFINIZIONE DELL'OGGETTO LABEL IMPO **
- . label define impo 1 "Molto importante"
 - 2 "Importante"
 - 3 "Poco importante"
 - 4 "Per nulla importante";
- ** AGGIUNTA DI UNA NUOVA SPECIFICAZIONE ALL'OGGETTO LABEL impo **

- . label define impo .a "Non risponde", add;
- *ASSOCIAZIONE ALLA VARIABILE q06 DELL'OGGETTO LABEL impo **
- . label values q06 impo;
- . tab q06, miss

Prenotazione	Freq.	Percent	Cum.
Molto importante Importante	94 80	48.45 41.24	48.45 89.69
Poco importante	3 17	1.55 8.76	91.24 100.00
Non risponde		0.76	100.00
Total	194	100.00	

La panoramica sul comando label si conclude con:

label dir per avere la lista degli oggetti label
label list nome_oggetto per vedere i valori delle label
label drop nome_oggetto | _all per eliminare una label o per eliminarle tutte

```
. label dir

impo
ulss
cod_com
epd1
epd2

. label list impo

impo:

1 Molto importante
2 Importante
3 Poco importante
4 Per nulla importante
.a Non risponde
```

Naturalmente, una volta definito un oggetto label lo si può associare a più variabili usando il comando label values.

```
label values q06 q08 q11 q17 q23 impo
```

Per manipolare le labels possiamo ricorrere al comando

```
labvalch valuelabelname, [ \{\underline{\underline{f}}rom(numlist) \underline{\underline{t}}o(numlist) \mid \underline{\underline{s}}wap(\#1 \#2) \} delete(numlist) \underline{\underline{l}}ist ]
```

che consente operazioni di copia/trasferimento e cancellazione delle value labels. Una volta specificato un set di valori label possiamo convertire label attraverso questo procedimento:

from(numlist) qui si specificano i valori numerici da trasferire to(numlist) qui si specificano i valori numerici che assumeranno le nuove label

in from() e to() ci devono essere gli stessi numeri. Se per esempio abbiamo il set di valori denominato rating e che assume i valori 1 "poor" 2 "fair" 3 "OK" 4 "good" 5 "excellent" e vogliamo invertirne l'ordine

labvalch rating, from (1/5) to (5/1)

Con swap(#1 #2) specifico 2 valori della label che voglio vengano scambiati mentre con delete(numlist) indico la lista delle label che desidero eliminare

Potrebbero tornare utili anche i comandi labelbook e numlabel. labelbook produce un rapporto di descrizione delle label:

```
\begin{tabular}{ll} labelbook & [lblname-list] & [labelbook\_options] \\ labelbook\_options: \\ \end{tabular}
```

alpha ordina le label in ordine alfabetico anziché in base alla numerazione assegnata length(#) controlla se ci sono label uguali fino alla lunghezza specificata in #; il valore di default è length(12) dato che questa lunghezza è quella tipicamente usata nell'output dei comandi (tabulate per esempio)

problems descrive potenziali problemi delle label come per esempio:

- 1. buchi nei valori mappati (per esempio esistono i valori 1 e 3 ma non il valore 2)
- 2. le descrizioni contengono spazi all'inizio o alla fine
- 3. stesse descrizioni associate a valori diversi
- 4. label identiche fino alla lunghezza di 12 caratteri
- 5. valori di una label non usati da nessuna variabile

detail produce un rapporto dettagliato sulle variabili e sulle label

. desc d02 d03 d07 d10_1

variable name	storage type	display format	value label	variable label
d02	byte	%12.0g	D02	Sesso
d03	byte	%23.0g	D03	Istruzione
d07	byte	%12.0g	D07	Tipo di ricovero
d10_1	byte	%25.0g	D10	Medici

. labelbook DO2 DO3 DO7 D10, problems detail

value label DO2

```
values labels
range: [1,2] string length: [7,12]
N: 3 unique at full length: yes
gaps: no unique at length 12: yes
missing .*: 1 null string: no
leading/trailing blanks: no
numeric -> numeric: no
```

definition

1 Maschio 2 Femmina .a Non risponde

variables: d02

```
value label DO3
      values
                                                 labels
       range: [1,5]
                                         string length: [6,23]
                               unique at full length: yes
          N: 6
                                unique at length 12: yes
null string: no
        gaps: no
  missing .*: 1
                              leading/trailing blanks: no
                                 numeric -> numeric: no
  definition
               Nessun titolo
               Licenza elementare
               Licenza media inferiore
           3
             Diploma media superiore
           4
          5 Laurea
          .a Non risponde
   variables: d03
value label D07
      values
                                                 labels
                               string length: [7,:
unique at full length: yes
unique at length 12: yes
       range: [1,2]
                                         string length: [7,12]
        N: 3
 gaps: no
missing .*: 1
                                          null string: no
                              leading/trailing blanks: no
                                 numeric -> numeric: no
  definition
               Urgente
           1
           2
               {\tt Programmato}
          .a
               Non risponde
   variables: d07
value label D10
      values
                                                 labels
                             string length: [10,25]
unique at full length: yes
unique at length 12: yes
       range: [1,6]
N: 7
       gaps: no
 missing .*: 1
                                           null string: no
                              leading/trailing blanks: no
                                     numeric -> numeric: no
  definition
               Per nulla soddisfatto
               Poco soddisfatto
               Soddisfatto
           3
               Più che Soddisfatto
           5
               Completamente Soddisfatto
           6
              Non saprei
          .a Non risponde
   variables: d10_1 d10_2 d10_3 d10_4 d10_5 d10_6
```

 ${\tt no~potential~problems~in~dataset~C:/Projects/s_cuore/sodd_paz_2008/data/mother.dta}$

numlabel aggiunge come prefisso numerico il valore della label

 $\begin{tabular}{ll} numlabel & [lblname-list] & [\ , \ \{add|remove\} & numlabel_options] \\ numlabel_options: \end{tabular}$

add aggiunge il prefisso numerico alle label

remove rimuove il prefisso numerico alle label

mask(str) maschera di formattazione per l'aggiunta del valore numerico; di default la maschera è "#."

force forza l'aggiunta o la rimozione del valore numerico

 $\underline{\mathtt{detail}}\,$ visualizza esempio di label con e senza il prefisso numerico

- . numlabel D10, add
- . tab d10_1, miss

Medici	Freq.	Percent	Cum.
1. Per nulla soddisfatto	2	0.14	0.14
Poco soddisfatto 	4	0.29	0.43
3. Soddisfatto	208	14.97	15.41
4. Più che Soddisfatto	356	25.63	41.04
5. Completamente Soddisfatto	747	53.78	94.82
6. Non saprei	5	0.36	95.18
.a. Non risponde	67	4.82	100.00
Total	1 389	100 00	

- . numlabel D10, remove
- . numlabel D10, add mask([#.])
- . tab d10_1, miss

Medici	Freq.	Percent	Cum.
[1.]Per nulla soddisfatto	l 2	0.14	0.14
[2.]Poco soddisfatto	4	0.29	0.43
[3.]Soddisfatto	208	14.97	15.41
[4.]Più che Soddisfatto	356	25.63	41.04
[5.] Completamente Soddisfatto	747	53.78	94.82
[6.]Non saprei	1 5	0.36	95.18
[.a.]Non risponde	l 67	4.82	100.00
Total	l 1380	100.00	

Utili comandi aggiuntivi sono le labutil (ssc inst labutil) che consentono tra l'altro di utilizzare una variabile per creare il label define per un'altra (labmask).

È anche possibile inserire delle note al dataset o a singole variabili con

se non viene specificata nessuna *varname* la nota viene riferita all'intero dataset, altrimenti alla variabile specificata. Poi visualizzarle si usa il comando

```
note: Valori espressi in Euro
note y1: escluso da capitale finanziario.
note y1: y1 = (y1 + yt + ym + yca)
note y2: y2 = (y1 + yt + ym + yc)
note yl: yl = (yl1 + yl2)
note yt: yt = (ytp + yta)
note ytp: ytp = (ytp1 + ytp2)
notes
_dta:
      Valori espressi in Euro
y1:
  1. escluso da capitale finanziario.
  2. y1 = (y1 + yt + ym + yca)
  1. y2 = (y1 + yt + ym + yc)
  1. y1 = (y11 + y12)
yt:
    1. yt = (ytp + yta)
  1. ytp = (ytp1 + ytp2)
codebook y1, all
у1
                                                     Reddito disponibile netto
                   type: numeric (float)
                 range: [0,418846.53]
                                                        units: .01
         unique values: 2910
                                                    missing .: 6/7147
                   mean:
                             24801
               std. dev:
                             18549
           percentiles:
                                           25%
                                                     50%
                                                                75%
                                                                           90%
                                10%
                            8263.31
                                       13427.9
                                                 21174.7
                                                            31865.4
                                                                      43950.5
  1. escluso da capitale finanziario.
  2. y1 = (y1 + yt + ym + yca)
```

7.2 Controllo delle variabili chiave

Cosa sono le variabili chiave? È quella variabile o quell'insieme di variabili che permettono di identificare in maniera univoca ciascuna osservazione del dataset. Sapere quali sono le variabili chiave è fondamentale per applicare correttamente una serie di comandi (merge per esempio) e per interpretare i risultati delle analisi. Stata dispone di un set di istruzioni dedicate alla gestione delle variabili chiave. Il principale è:

```
duplicates \underline{r}eport [varlist][if][in]
```

che controlla se le variabili specificate in varlist sono delle variabili chiave.

. duplicates report idcode

Duplicates in terms of idcode

copies	observations	surplus
1	2246	0

in questo caso la variabile **idcode** è variabili chiave perché non ci sono doppioni, mentre nel caso seguente

. duplicates report fam_id

Duplicates in terms of fam_id

copies	observations	surplus
1 2 3 4 5 6 7	6303 14646 18846 23956 8330 2022	7323 12564 17967 6664 1685 510
8 9 10 11 12	112 27 20 11	98 24 18 10 11

fam_id non è variabile chiave perché ci sono osservazioni doppie (14646), triple (18846) e così via.

Se siamo sicuri che ci siano effettivamente delle osservazioni ripetute (il che vuol dire che tutte le variabili dell'osservazione hanno valori uguali e non solo per le variabili chiave), possiamo ricorrere a questo comando per eliminarle:

duplicates drop varlist[if][in], force quindi ritornando all'esempio precedente:

duplicates drop fam_id, force

Duplicates in terms of fam_id
(46874 observations deleted)

7.3 Rinominare variabili

Il comando di Stata per cambiare il nome ad una variabile è:

rename old_varname new_varname

ma molto più potente e ricco di funzioni è il comando aggiuntivo renvars² nella versione:

²Come si fa ad installarlo? Dovreste essere in grado di farlo!

```
renvars \lceil varlist \rceil \setminus newvarlist \lceil, display test
che rinomina le variabili della lista prima del simbolo \ con le corrispondenti che lo
seguono. Le opzioni
display serve per vedere ciascun cambiamento
test serve per testare la modifica senza eseguirla
Ma ancora più interessante è la versione:
renvars [varlist], transformation_option [, display test symbol(string)]
con transformation_option che possono essere una tra:
upper per convertire i nomi in maiuscolo
lower per convertire i nomi in minuscolo
prefix(str) per assegnare il prefisso str al nome delle variabili
postfix(str) per assegnare str come finale del nome delle variabili
subst (str1 str2) per sostituire tutte le ricorrenze str1 con str2 (str2 può anche essere
     vuoto)
trim(#) per prendere solo i primi # caratteri del nome
trimend(#) per prendere solo gli ultimi # caratteri del nome
Ecco alcuni esempi con le opzioni appena viste:
Esempi di rename classico:
                TM1
     rename c2
     rename c3
                TM2
     rename c4 TM3
     rename c5
                TM4
     rename c6
               TM5
     rename c7
                TM6
     rename c8 TM7
     rename c9 TM8
     rename c10 TM9
Esempi di renvars:
      . renvars c2-c10 TM1-TM9 , display test;
     specification would result in the following renames:
                                    c2 -> TM1
                                    c3 -> TM2
                                    c4 -> TM3
                                    c5 -> TM4
                                    c6 -> TM5
                                    c7 -> TM6
                                    c8 -> TM7
                                   c9 -> TM8
                                   c10 -> TM9
      . renvars c2-c10, upper test;
      specification would result in the following renames:
                                    c2 -> C2
                                    c3 -> C3
                                    c4 -> C4
                                    c5 -> C5
```

```
c6 -> C6
                                 c7 -> C7
                                 c8 -> C8
                                 c9 -> C9
                                c10 -> C10
. renvars c2-c10, prefix(tax_) test;
specification would result in the following renames:
                                 c2 -> tax_c2
                                 c3 -> tax_c3
                                 c4 -> tax_c4
                                 c5 \rightarrow tax_c5
                                 c6 -> tax_c6
                                 c7 -> tax_c7
                                 c8 -> tax_c8
                                 c9 -> tax_c9
                                c10 -> tax_c10
. renvars c2-c10, postfix(t) test;
specification would result in the following renames:
                                 c2 -> c2t
                                 c3 -> c3t
                                 c4 -> c4t
                                 c5 -> c5t
                                 c6 -> c6t
                                 c7 -> c7t
                                 c8 -> c8t
                                 c9 -> c9t
                                c10 -> c10t
```

7.4 Ordinare variabili

Per ordinare le osservazioni in base ai valori di una o più variabili si usa il comando

```
\underline{so}rt varlist[in][, stable]
```

Alternativamente si può usare il più sofisticato

```
gsort [+|-] varname[ [+|-] varname ...] [, generate(newvar) mfirst]
```

il segno + (ordinamento crescente) si può omettere per ordinare in senso crescente. Da notare che si può anche combinare un ordinamento in senso crescente per una variabile con l'ordinamento in senso decrescente (-) di un'altra³. Questo comando funziona anche con variabili stringa.

ESEMPIO opzione stable

Invece per spostare le variabili all'inizio della lista si usa:

 $order \ varlist$

```
. desc, simple
balance id var1

. order id

. desc, simple
id balance var1
```

 $^{^3{\}rm Come}$ vengono ordinati i valori missing?

Per spostare varname1 al posto di varname2:

```
move varname1 varname2

. desc, simple
id balance var1

. move var1 balance

. desc, simple
id var1 balance
```

Per ordinare in senso alfabetico in base al nome della variabile:

```
\begin{array}{cccc} \text{aorder} & \left[ \textit{varlist} \right] \\ & \text{. desc, simple} \\ & \text{id} & \text{var1} & \text{balance} \\ & \text{. aorder} \\ & \text{. desc, simple} \\ & \text{balance} & \text{id} & \text{var1} \end{array}
```

7.5 Prendere o scartare osservazioni o variabili

La coppia di comandi keep e drop serve per tenere (keep) variabili o osservazioni, oppure a cancellare (drop) variabili o osservazioni.

Per tenere variabili, scartando le altre:

```
keep varlist
```

Per tenere osservazioni, scartando le altre:

```
{\tt keep\ if\ } conditione
```

Per eliminare variabili, tenendo le altre:

```
drop varlist
```

Per eliminare osservazioni, tenendo le altre

```
drop if condizione
```

Esiste anche un comando per estrarre da un database un campione casuale di una determinata numerosità. Prima di analizzarlo però vediamo come sia possibile creare "un campione casuale sempre uguale". In genere per produrre un campione casuale si genera un numero casuale detto seme e sulla base di questo si genera l'algoritmo per l'estrazione del campione. Fissando il valore di questo seme, il campione casuale estratto sarà, di conseguenza, sempre uguale. Il comando:

```
set seed #
```

serve proprio a questo.

Il comando per estrarre il campione casuale è invece:

```
sample \# [if][in][, count by(groupvars)
```

dove # è la percentuale delle osservazioni del dataset di partenza che deve avere il campione casuale. Se invece vogliamo avere l'estrazione di un determinato numero di osservazioni, occorre usare l'opzione count e # sarà il numero di osservazioni da estrarre. Ecco gli esempi per i due casi:

```
. use ita_82-06, clear
. desc, short
Contains data from ita_82-06.dta
  obs:
           1,636,402
 vars:
                                                 4 Jul 2007 13:19
        121,093,748 (53.8% of memory free)
size:
Sorted by:
            dataset has changed since last saved
     Note:
. set seed 74638928
. summ pop_2006
    Variable |
                      Obs
                                 Mean
                                          Std. Dev.
                                                           Min
                                                                      Max
                 1636402
                             35.90298
                                                                    23722
    pop_2006 |
                                          219.7405
  sample 20
(1309122 observations deleted)
. summ pop_2006
    Variable |
                      Nbs
                                 Mean
                                          Std. Dev.
                                                           Min
                                                                      Max
    pop_2006 |
                   327280
                             35.03108
                                          203.4676
                                                             0
                                                                    23329
 sample 2380, count
(324900 observations deleted)
 summ pop_2006
    Variable |
                      Obs
                                 Mean
                                          Std. Dev.
                                                           Min
                                                                      Max
    pop_2006 |
                     2380
                             38.21765
                                          181.8105
                                                                     6615
```

7.6 Gestire il formato delle variabili

Stata salva le variabili in diversi formati numerici a seconda delle necessità. L'obiettivo è di minimizzare lo spazio di memoria occupato da ciascuna variabile. Per esempio è inutile sprecare spazio per i decimali per una variabile che può assumere solo valori interi o dedicare 100 caratteri per una variabile stringa quando al massimo arriva a 70. Segue lo schema delle classi di variabili supportate in Stata:

Stringa

str# con massimo 244 caratteri di lunghezza

Numeriche

byte numeri interi tra -127 e 100;

int numeri interi tra -32 740 e 32 740;

long numeri interi tra -2 147 483 647 e 2 147 483 620;

float numeri reali con 8 cifre decimali di accuratezza compresi tra $-1.70141173319*10^38$ e $1.70141173319*10^36$;

double numeri reali con 17 cifre decimali di accuratezza compresi tra $-8.9884656743*10^307$ e $8.9884656743*10^307$.

Passando da byte a int, a long e a float la quantità di memoria occupata da una variabile aumenta. Il modo più semplice per ottimizzare lo spazio occupato da ciascuna variabile è il comando compress, che abbiamo già visto, altrimenti se vogliamo forzare una certa variabile ad avere un certo formato possiamo usare:

recast $type \ varlist[$, force]

dove type può assumere i valori -byte -int -long -float -double -str#

Discorso diverso è il formato con cui una variabile viene visualizzata e che è indipendente dal formato con cui viene salvata/trattata. In questo caso dobbiamo far ricorso al comando:

format %fmt varlist

dove %fmt può assumere le seguenti forme:

umerical		
%fmt	Description	Example
justified		
%#.#g	general	%9.0g
%#.#f	fixed	%9.2f
%#.#e	exponential	%10.7e
%21x	hexadecimal	%21x
%16H	binary, hilo	%16H
%16L	binary, lohi	%16L
%8H	binary, hilo	%8H
%8L	binary, lohi	%8L
justified with	commas	
%#.#gc	general	%9.0gc
	%fmt justified %#.#g %#.#f %#.#e %21x %16H %16L %8H %8L justified with	%fmt Description justified %#.#g general %#.#f fixed %#.#e exponential %21x hexadecimal %16H binary, hilo %16L binary, lohi %8H binary, hilo %8L binary, lohi justified with commas

	%#.#fc	fixed	%9.2fc
right	justified with %0#.#f	leading zeros fixed	%09.2f
left	justified		
	%-#.#g	general	%-9.0g
	%-#.#f	fixed	%-9.2f
	%-#.#e	exponential	%-10.7e
left	justified with c	ommas	
	%-#.#gc	general	%-9.0gc
	%-#.#fc 	fixed	%-9.2fc

You may substitute comma (,) for period (.) in any of the above formats to make comma the decimal point. In %9,2fc, 1000.03 is 1.000,03. Or you can set dp comma.

	date %fmt	Description	Example
right	justified		
	%tc	date/time	%tc
	%tC	date/time	%tC
	%td	date	%td
	%tw	week	%tw
	%tm	month	%tm
	%tq	quarter	%tq
	%th	halfyear	%th
	%ty	year	%ty
	%tg	generic	%tg
left j	ustified		
	%-tc	date/time	%-tc
	%-tC	date/time	%-tC
	%-td	date	%-td
	etc.		

There are lots of variations allowed. See Formatting date and time values in [D] dates and times.

	string %fmt 	Description	Example
right	justified %#s	string	%15s
left	justified %-#s	string	%-20s
cente	red %~#s 	string	%~12s

The centered format is for use with display only.

Aggiungo che si può modificare come Stata rappresenta il simbolo decimale con il comando

 $\underline{\mathtt{se}}\mathtt{t}$ dp {comma|period} [, permanently]

- . di 123.79 123.79
- . set dp comma
- . di 123.79 123456,79

Capitolo 8

Creare Variabili

8.1 Il comando generate

Il comando più usato per creare nuove variabili è:

```
\texttt{generate} \ \left[ \ \texttt{type} \ \right] \ \textit{newvarname} \texttt{=} exp \big[ \ \textit{if} \ \big] \big[ \ \textit{in} \ \big]
```

che funziona anche con variabili stringa. Per esempio

```
gen nome_compl = nome + " " + cognome
```

unisce il dato stringa contenuto nella variabile nome con uno spazio e con il contenuto della variabile stringa cognome.

Oltre a creare variabili attraverso una espressione algebrica si può ricorrere ad una serie di funzioni già predisposte. Segue una panoramica divisa per tipo delle principali

8.1.1 Funzioni matematiche

abs(x) ritorna il valore assoluto di ciascun valore della variabile x:

```
. gen var2=abs(var1)
```

. clist var1 var2

	var1	var2
1.	4	.4
2.	.8	.8
3.	-1.1	1.1
4.	1.3	1.3
5.	-1.6	1.6
6.	1.9	1.9

ceil(x) arrotonda all'intero superiore

floor(x) arrotonda all'intero inferiore

int(x) tiene l'intero del numero

round(x,#) arrotonda in base a #: 1 all'intero, 0.1 al primo decimale, 0.01 al centesimo

[.] gen var2=ceil(var1)

- . gen var3=floor(var1)
- . genvar4=int(var1)
- . gen var4=int(var1)
- . gen var5=round(var1,0.1)
- . clist

	var1	var2	var3	var4	var5
1.	4	0	-1	0	4
2.	.8123	1	0	0	.8
3.	-1.1	-1	-2	-1	-1.1
4.	1.3	2	1	1	1.3
5.	-1.6876	-1	-2	-1	-1.7
6.	1.9	2	1	1	1.9

 $\exp(x)$ ritorna il valore esponenziale di x. È la funzione inversa di $\ln(x)$. $\ln(x)$ ritorna il logaritmo naturale di x

- . gen var2=exp(var1)
- . gen var3=ln(var2)
- . clist

var3	var2	var1	
4	.67032	4	1.
.8123	2.253084	.8123	2.
-1.1	.3328711	-1.1	3.
1.3	3.669297	1.3	4.
-1.6876	.1849629	-1.6876	5.
1.9	6.685894	1.9	6.

 $\log 10(x)$ ritorna il logaritmo in base 10 di x

- . gen var2=log10(var1)
 (3 missing values generated)
- . clist

```
var1 var2
1. -.4 .
2. .8123 -.0902835
3. -1.1 .
4. 1.3 .1139433
5. -1.6876 .
6. 1.9 .2787536
```

 $\max(x1,x2,...,xn)$ ritorna il valore massimo tra i valori di x1, x2, ..., xn. I valori missing vengono ignorati.

- . gen var4=max(var1,var2,var3)
- . clist

	var1	var2	var3	var4
1.	4	•	2	2
2.	.8123	0902835	0	.8123
3.	-1.1		-3	-1.1

```
    4.
    1.3
    .1139433
    1.31
    1.31

    5.
    -1.6876
    .
    -2.01
    -1.6876

    6.
    1.9
    .2787536
    1.5
    1.9
```

 $\min(x1,x2,...,xn)$ ritorna il valore minimo tra i valori di $x1,\ x2,\ ...,\ xn.$ I valori missing vengono ignorati.

```
. gen var4=min(var1,var2,var3)
```

. clist

	var1	var2	var3	var4
1.	4		2	4
2.	.8123	0902835	0	0902835
3.	-1.1		-3	-3
4.	1.3	.1139433	1.31	.1139433
5.	-1.6876		-2.01	-2.01
6	1 9	2787536	1.5	2787536

sum(x) ritorna la somma incrementale dei valori di x

```
. gen var3=sum(var1)
```

- . gen var4=sum(var2)
- . clist

```
var1
                    var2
                                var3
                                           var4
                                              0
1.
                                -.4
         - . 4
2.
       .8123 -.0902835
                               .4123 - .0902835
3.
        -1.1
                             -.6877
                                      -.0902835
4.
         1.3
                .1139433
                            .6122999
                                       .0236598
5.
     -1.6876
                            -1.0753
                                       .0236598
                .2787536
                            .8246999
                                       .3024134
         1.9
```

8.1.2 Funzioni di distribuzione di probabilità e funzioni di densità

betaden(a,b,x) ritorna la pdf di una distribuzione beta.

```
. gen var2=betaden(0.1,0.2,var1)
```

. clist

```
var1
                    var2
1.
                .2351207
           .4
2.
        .8123
                .3148833
3.
          . 1
                 .591932
                 .269264
4.
           .3
        .6876
                .2433855
5.
                .4751683
           .9
```

binomial(n,k,p) ritorna le probabilità di una binomiale.

```
. gen var3=binomial(var1,var2,var0)
  (1 missing value generated)
```

. clist

```
    var0
    var1
    var2
    var3

    1.
    .01
    .4
    .2351207
    1

    2.
    2.2
    .8123
    .3148833
    .
```

```
    3.
    .4
    3.1
    -.591932
    0

    4.
    .6
    .3
    .269264
    1

    5.
    .8
    .6876
    .2433855
    1

    6.
    .99
    .9
    -.4751683
    0
```

chi2(n,x) ritorna la cumulata di una distribuzione chi-quadrato con n gradi di libertà.

```
. gen var2 = chi2(5,var1)
. clist
     var1     var2
```

```
.0046704
1.
         . 4
2.
       .8123
               .0237578
3.
                .315428
        3.1
               .0023569
4.
          .3
5.
       .6876
               .0163577
               .0297784
        .9
```

F(n1,n2,f) ritorna la cumulata di una distribuzione F.

```
. gen var2=F(3,4,var1)
```

. clist

```
var1 var2
1. .4 .238771
2. .8123 .4500666
3. 3.1 .8485015
4. .3 .1751056
5. .6876 .3948669
6. .9 .4849114
```

Fden(n1,n2,f) ritorna la pdf di una distribuzione F.

```
. gen var2=Fden(3,4,var1)
```

. clist

```
        var1
        var2

        1.
        .4
        .6149665

        2.
        .8123
        .4152625

        3.
        3.1
        .0639784

        4.
        .3
        .6557035

        5.
        .6876
        .4711343

        6.
        .9
        .3799204
```

gammaden(a,b,g,x) ritorna la pdf di una distribuzione Gamma.

```
. gen var2=gammaden(1,2,0.25,var1)
```

. clist

```
var1
                   var2
               .4638717
1.
         . 4
               .3774575
2.
       .8123
3.
         3.1
               .1202542
          .3
                .487655
       .6876
               .4017412
5.
               .3612637
          .9
```

normalden(x,m,s) ritorna la normale con media m e deviazione standard s.

```
. gen var2=normalden(var1,2,1.5)
. clist
         var1
                    var2
               .1505752
        .8123 .1943922
 3.
         3.1
               .2032553
 4.
          .3 .1399282
 5.
        .6876
                .1813806
 6.
                .2032553
          .9
```

8.1.3 Funzioni di generazione di numeri random

uniform() ritorna numeri random uniformemente distribuiti nell'intervallo [0,1)

invnormal(uniform()) ritorna numeri random normalmente distribuiti con media 0 e deviazione standard 1.

8.1.4 Funzioni stringa

abbrev(s,n) ritorna la stringa s abbreviata a n caratteri.

```
. gen var2=abbrev(var1,5)
. clist
                          var2
               var1
          io sono
 1.
                         io ~o
 2.
            tu sei
                         tu ~i
 3.
           egli eʻ
                        egl~´
 4.
                        noi~o
          noi siamo
          voi siete
                         voi~e
 5.
                         egl~
            egli eʻ
```

length(s) ritorna la lunghezza della stringa s.

```
    var1
    var2

    1.
    io sono
    7

    2.
    tu sei
    6

    3.
    egli e´
    7

    4.
    noi siamo
    9

    5.
    voi siete
    9

    6.
    egli e´
    7
```

lower(s), upper(s) ritornano s in lettere minuscole o maiuscole.

```
gen var2=lower(var1)
```

- . gen var3=upper(var1)
- . clist

	var1	var2	var3
1.	Io Sono	io sono	IO SONO
2.	Tu Sei	tu sei	TU SEI
3.	Egli E´	egli e´	EGLI E´
4.	Noi Siamo	noi siamo	NOI SIAMO
5.	Voi Siete	voi siete	VOI SIETE
6.	Egli E´	egli e´	EGLI E´

ltrim(s) rtrim(s), trim(s) ritornano s senza spazi iniziali, senza spazi finali o senza spazi all'inizio e alla fine

- . gen var2=ltrim(var1)
- . gen var3=rtrim(var1)
- . gen var4=trim(var1)
- . clist

	var1	var2	var3	var4
1.	Io Sono	Io Sono	Io Sono	Io Sono
2.	Tu Sei	Tu Sei	Tu Sei	Tu Sei
3.	Egli E´	Egli E´	Egli E´	Egli E´
4.	Noi Siamo	Noi Siamo	Noi Siamo	Noi Siamo
5.	Voi Siete	Voi Siete	Voi Siete	Voi Siete
6.	Egli E´	Egli E´	Egli E´	Egli E´

reverse(s) ritorna s invertita.

- . gen var2=reverse(var1)
- . clist

```
var1
                            var2
1.
            Io Sono
                        onoS oI
2.
            Tu Sei
                         ieS uT
                         'E ilgE
3.
            Egli E´
          Noi Siamo omaiS ioN
4.
          Voi Siete
Egli E'
                      eteiS ioV
'E ilgE
5.
```

strmatch(s1,s2) ritorna 1 se in s1 viene trovato s2, altrimenti ritorna 0.

- . gen var2=strmatch(var1,"*E'*")
- . clist

	var1	var2
1.	Io Sono	0
2.	Tu Sei	0
3.	Egli E´	1
4.	Noi Siamo	0
5.	Voi Siete	0
6.	Egli E´	1

subinstr(s1,s2,s3,n) in s1 viene sostituito s2 con s3 per le prime n volte che s2 viene trovato. Con il simbolo '.' si sostituiscono tutte le occorrenze di s2 con s.

```
. gen var2=subinstr(var1, "o", "0", .)
. clist
                var1
                            var2
 1.
             Io Sono
                         IO SOnO
              Tu Sei
                          Tu Sei
 3.
             Egli E'
                         Egli E´
 4.
           Noi Siamo
                       NOi SiamO
           Voi Siete
                       V0i Siete
 5.
             Egli E'
                         Egli E'
```

subinword(s1,s2,s3,n) in s1 viene sostituita la parola s2 con la parola s3 per le prime n volte che viene trovata. Una parola viene identificata con uno spazio bianco. con il simbolo ": si sostituiscono tutte le occorenze di s2 con s3.

```
. gen var2=subinword(var1,"E'","&",.)
. clist
                            var2
                var1
 1.
             Io Sono
                         Io Sono
 2.
              Tu Sei
                         Tu Sei
 З.
             Egli E'
                         Egli &
 4.
           Noi Siamo
                      Noi Siamo
                      Voi Siete
           Voi Siete
 5.
             Egli E'
                          Egli &
```

substr(s,n1,n2) ritorna la stringa di s che parte dalla posizione n1 fino alla posizione n2. Se n1 è un valore negativo vuol dire che si parte a contare dalla fine della stringa s.

```
. gen var2=substr(var1,3,3)
. clist
                var1
                             var2
 1.
             Io Sono
                              So
 2.
              Tu Sei
                              Se
 3.
             Egli E'
 4.
           Noi Siamo
                              i S
           Voi Siete
                              i S
 5.
             Egli E'
                              li
```

word(s,n) ritorna la n-esima parola all'interno della stringa s.

```
3. Egli E' Egli
4. Noi Siamo Noi
5. Voi Siete Voi
6. Egli E' Egli
```

wordcount(s) conta il numero di parole all'interno della stringa s.

```
. gen var2=wordcount(var1)
. clist
                           var2
               var1
            Io Sono
 1.
 2.
             Tu Sei
 З.
            Egli E'
 4.
          Noi Siamo
          Voi Siete
 5.
 6.
            Egli E´
```

8.1.5 Funzioni di programmazione

inlist(z,a,b,...) ritorna 1 se il contenuto di z è presente in uno degli argomenti successivi, altrimenti ritorna 0. Gli argomenti possono essere numerici o stringa. Se sono numerici possono essere in un numero tra 2 e 255, se sono stringa tra 2 e 10.

```
. gen cod_com=.;
(395 missing values generated)
. replace cod_com=2 if inlist(q03,"affi");
(0 real changes made)
. replace cod_com=2 if inlist(q03,"gazzo v.se");
(0 real changes made)
. replace cod_com=6 if inlist(q03,"bardolino","cisano bardolino");
(2 real changes made)
   (output omitted)
. replace cod_com=96 if inlist(q03,"alpo villafranca","s.ambrogio di villa vr",
> "villafranca","villafranca di vr");
(2 real changes made)
. replace cod_com=97 if inlist(q03,"zevio","zevio vr");
(2 real changes made)
```

cond(x,a,b,c) o cond(x,a,b) ritorna a se x è vero, b se x è falso e c se x è missing. Se c non è specificato allora in x viene messo valore missing.

78

. clist var2 var1 1. 1 1 2. 1 2 3. 2 1 4. 2 2 2 3 5. 3 6. 1

- . gen ris = cond(var1==1 & var2==2,"YES","NO")
- . tab ris

Cum.	Percent	Freq.	ris
71.43 100.00	71.43 28.57	5 2	NO YES
	100.00	7	Total

. clist

	var1	var2	ris
1.	1	1	NO
2.	1	2	YES
3.	2	1	NO
4.	2	2	NO
5.	2	3	NO
6.	1	3	NO
7.	1	2	YES

inrange(z,a,b) ritorna 1 se a < z < b, altrimenti ritorna 0.

. clist

	var1	
1.		
2.	0	
3.	1	
4.	2	
5.	3	
6.	4	
7.	5	
8.	6	

. gen check=inrange(var1,2,5)

. clist

var1	check
	0
0	0
1	0
2	1
3	1
4	1
5	1
6	0
	0 1 2 3 4 5

8.1.6 Funzioni data

 $\operatorname{mdy}(M,D,Y)$ ritorna la data in formato codificato a partire dai valori di M (mese), D (giorno) e Y (anno). Il valore codificato di una data è un intero che identifica il giorno a partire dalla data del 01 gennaio 1960 (01 gennaio 1960=0, 01 gennaio 1960=1 e così via).

. summ month day year

Variable	Obs	Mean	Std. Dev.	Min	Max
month	1652	9.214891	3.134451	1	12
day	1652	16.77421	8.470449	1	31
vear l	1651	2005.998	.0491769	2005	2006

. clist month day year in 1/7

	month	day	year
1.			
2.	9	8	2006
3.	10	29	2006
4.	11	28	2006
5.	12	3	2006
6.	10	10	2006
7.	10	26	2006

. gen comp = mdy(month,day,year)
(690 missing values generated)

. clist month day year comp in 1/7

	month	day	year	comp
1.		•		
2.	9	8	2006	17052
3.	10	29	2006	17103
4.	11	28	2006	17133
5.	12	3	2006	17138
6.	10	10	2006	17084
7.	10	26	2006	17100

. format comp %dd/N/CY

. clist month day year comp in 1/7

	month	day	year	comp
1.				
2.	9	8	2006	8/09/2006
3.	10	29	2006	29/10/2006
4.	11	28	2006	28/11/2006
5.	12	3	2006	3/12/2006
6.	10	10	2006	10/10/2006
7.	10	26	2006	26/10/2006

8.1.7 Funzioni per serie temporali

. . .

8.1.8 Funzioni matriciali

 $\mathtt{diag}(\mathtt{v})$ ritorna la matrice quadrata diagonale costruita a partire dal vettore $\mathtt{v}.$

. matrix list Y

Y[1,4]
c1 c2 c3 c4
r1 1 2 3 4

. matrix Ydiag=diag(Y)

```
. matrix list Ydiag
symmetric Ydiag[4,4]
   c1 \quad c2 \quad c3 \quad c4
c2
    0
        2
сЗ
    0
        0
            3
   0 0 0
. matrix list X
X[4,1]
   c1
r1
    1
r2 2
r3 3
. matrix Xdiag=diag(X)
. matrix list Xdiag
symmetric Xdiag[4,4]
   r1 r2 r3 r4
   1
r2
    0
        2
r3
    0
        0
            3
    0 0 0
```

inv(M) ritorna l'inversa della matrice M.

```
. matrix list X
X[4,4]
      c1
            c2
                  сЗ
                         c4
           .2
                  .3
     . 1
                        .4
r1
            .6
                        .8
r2
      .5
                  .7
r3
      .9
          .094
                 .11
                        .12
     .13
           .14
                 .15
. matrix Xinv = inv(X)
. matrix list Xinv
Xinv[4,4]
                        r2
           r1
c1 2.697e+13 -4.046e+13 1.233951
c2 3.641e+15 -5.462e+15 -.08328654
                                         1.349e+14
                                         1.821e+16
c3 -7.364e+15 1.105e+16 -3.5352798 -3.682e+16
   3.695e+15 -5.543e+15 2.3846154
                                         1.848e+16
```

colsof(M) ritorna uno scalare con il numero di righe della matrice M; rowsof(M) ritorna uno scalare con il numero di colonne della matrice M.

```
. matrix list Y
Y[2,4]
      c1 c2 c3 c4
r1 1 2 3 4
r2 5 6 7 8
```

```
. local Ycol = colsof(Y)
. local Yrow = rowsof(Y)
. di "La matrice Y ha `Ycol´ colonne e `Yrow´ righe!"
La matrice Y ha 4 colonne e 2 righe!
```

nullmat() serve per eseguire operazioni di uinione per riga o per colonna di matrici. La
sua particolarità risiede nel fatto che riesce a lavorare anche con matrici non esistenti.
La funzione nullmat() informa Stata che se la matrice non esiste deve essere creata
con l'elemento indicato successivamente alla funzione. Nell'esempio che segue la matrice
G non esiste; a questa matrice inesistente viene aggiunto lo scalare 1, generando in tal
modo la matrice G. La funzione nullmat() funziona sia con l'operatore di unione , che
con l'operatore \.
nullmat()

82

```
. matrix list G
matrix G not found
r(111);
. matrix G = (nullmat(G),1)
. matrix list G
symmetric G[1,1]
. matrix G = (nullmat(G),2)
. matrix list G
G[1,2]
    c1 c2
. matrix G = (nullmat(G),3)
. matrix list G
G[1,3]
    c1 c2 c3
. matrix G = (nullmat(G),4)
. matrix list G
G[1,4]
    c1 c2 c3 c4
    1
        2
```

trace(M) ritorna la traccia della matrice M.

Tutte le funzioni viste precedentemente funzionano anche con il comando replace.

8.2 Lavorare con osservazioni indicizzate

Per indicizzare le osservazioni Stata usa la notazione varname[_n] per indicare la corrente osservazione di varname varname[_N] per indicare l'ultima osservazione di varname Per esempio il comando

$$gen y = x[_n]$$

genera una variabile y uguale alla corrispondente osservazione di x, ovvero è equivalente a scrivere:

Se invece eseguo:

gen
$$y = x[_n-1]$$

la variabile y assume il valore della osservazione precedente di x. Conseguentemente con

gen
$$y = x[_n+1]$$

la variabile y assume il valore della osservazione successiva di x. Con

gen
$$y = x[N]$$

genero una variabile che assume l'ultimo valore di x, ovvero una costante

уЗ

3

у4

6

6

4.	4	4	3	5	6
		5	4	6	6
6.	6	6	5		6

Utile per creare velocemente una variabile chiave o indice è il comando

che crea una successione con passo 1 dalla prima all'ultima osservazione, secondo l'ordinamento corrente delle osservazioni

Infine con la costruzione:

gen
$$y = x[_N-_n+1]$$

genero y in ordine inverso di x.

- . gen ID = $_n$
- . gen $y = ID[_N-_n+1]$
- . clist nquest nord eta ID y

	nquest	nord	eta	ID	У
1.	34	1	59	1	10
2.	34	2	58	2	9
3.	34	3	31	3	8
4.	34	4	29	4	7
5.	173	1	54	5	6
6.	173	2	52	6	5
7.	173	3	27	7	4
8.	173	4	24	8	3
9.	375	1	77	9	2
10.	375	2	76	10	1

Naturalmente possiamo ricorrere anche al prefisso by. Per esempio

```
sort fam_id age
bysort fam_id: gen old = age[_N]
```

genera una variabile con l'età più alta per ciascun fam_id

- . sort nquest eta
- . by sort nquest: gen old = eta [_N]
- . clist nquest eta old

	nquest	eta	old
1.	34	29	59
2.	34	31	59
3.	34	58	59
4.	34	59	59
5.	173	24	54
6.	173	27	54
7.	173	52	54
8.	173	54	54
9.	375	76	77
10.	375	77	77

8.3 Estensione del comando generate

Il comando generate prevede una versione potenziata (egen) che va usata solo in abbinamento con una serie di funzioni specificatamente previste. Utenti di Stata hanno ulteriormente potenziato questo comando creando numerose funzioni aggiuntive. Per farsi un'idea si veda egenodo oppure egenmore con

```
ssc desc egenodd ssc desc egenmore
```

Ritornando al comando egen, la sua sintassi generale è:

```
egen [type] newvarname = fcn(arguments) [if][in][, options] dove le principali funzioni fcn(arguments) sono:
```

anycount(varlist), values(integer numlist) ritorna il numero di volte che i valori
in values() sono presenti nelle variabili indicate in varlist.

. clist q1a_a q2a_a q2b_a q2c_a q3a_a

	q1a_a	q2a_a	q2b_a	q2c_a	q3a_a
1.	0	1	1	1	4
2.	0	1	1	0	1
3.	0	1	1	1	0
4.	0	1	1	1	2
5.	0	1	1	1	4
6.	0	0	0	0	1
7.	0	1	1	1	2
8.	0	1	0	1	1
9.	0	0	1	0	1
10.	0	1	1	0	0

- . egen es0 = anycount(q1a_a q2a_a q2b_a q2c_a q3a_a), values(0)
- . egen es1 = anycount(q1a_a q2a_a q2b_a q2c_a q3a_a), values(2/4)
- . clist q1a_a q2a_a q2b_a q2c_a q3a_a es es1

	q1a_a	q2a_a	q2b_a	q2c_a	q3a_a	es0	es1
1.	0	1	1	1	4	1	1
2.	0	1	1	0	1	2	0
3.	0	1	1	1	0	2	0
4.	0	1	1	1	2	1	1
5.	0	1	1	1	4	1	1
6.	0	0	0	0	1	4	0
7.	0	1	1	1	2	1	1
8.	0	1	0	1	1	2	0
9.	0	0	1	0	1	3	0
10.	0	1	1	0	0	3	0

cut(varname), at(#,#,ldots,#) crea una nuova variabile codificata in base agli intervalli identificati da at() in varname

```
. egen cat_age=cut(age), at(17,19,21,23,25) (109938 missing values generated) \label{eq:cut_age}
```

. tab age cat_age

		cat	_age		
Age ind	17	19	21	23	Total
	+				
17	2,044	0	0	0	2,044

	18	2,199	0	0	0	1	2,199
	19	0	2,270	0	0	i	2,270
	20	I 0	2,388	0	0	1	2,388
	21	1 0	0	2,477	0	-	2,477
	22	l 0	0	2,546	0	-	2,546
	23	l 0	0	0	2,593	-	2,593
	24	1 0	0	0	2,696	1	2,696
•		+				-+-	
	Total	1 4.243	4,658	5.023	5,289	- 1	19.213

 $\max(exp)$ ritorna una variabile (costante) con il valore massimo assunto dalle variabili elencate in exp.

. clist foreign price

```
foreign
                price
1. Foreign
                4,499
2. Foreign
                6,229
3. Domestic
                4,934
                3,667
4. Domestic
5. Domestic
                4,172
6. Foreign
                8,129
7. Foreign
                4,589
8. Domestic
                3,984
                5,079
9. Foreign
10. Domestic
                6,486
```

. egen es = max(price), by(foreign)

. clist foreign price es

```
\quad \hbox{foreign} \quad
                  price
     Foreign
                  4,499
                                8129
                  6,229
                                8129
2. Foreign
                  4,934
3. Domestic
                                6486
                                6486
4. Domestic
                  3,667
5. Domestic
                  4,172
                                6486
6. Foreign
                  8,129
                                8129
7. Foreign
                  4,589
                                8129
                  3,984
8. Domestic
                                6486
                  5,079
                                8129
9. Foreign
                  6,486
10. Domestic
                                6486
```

mean(exp) ritorna una variabile (costante) con il valore medio delle variabili elencate in exp.

. clist foreign price

```
price
    foreign
                4,499
1. Foreign
2. Foreign
                6,229
3. Domestic
                4,934
4. Domestic
                3,667
5. Domestic
                4,172
                8,129
6. Foreign
   Foreign
                4,589
8. Domestic
                3,984
                5,079
9. Foreign
10. Domestic
                6,486
```

- . egen es0=mean(price)
- . egen es1=mean(price), by(foreign)
- . clist foreign price es?

```
{\tt foreign}
                  price
                                es0
                                            es1
 1. Foreign
                  4,499
                             5176.8
                                           5705
                  6,229
                             5176.8
                                           5705
2. Foreign
3. Domestic
                  4,934
                             5176.8
                                         4648.6
                  3,667
                             5176.8
                                         4648.6
4. Domestic
5. Domestic
                  4,172
                             5176.8
                                         4648.6
6. Foreign7. Foreign
                  8,129
                             5176.8
                                           5705
                  4,589
                             5176.8
                                           5705
8. Domestic
                             5176.8
                  3,984
                                         4648.6
                  5,079
                             5176.8
                                           5705
9. Foreign
{\tt 10.\ Domestic}
                             5176.8
                                         4648.6
                  6,486
```

median(exp) ritorna una variabile (costante) con il valore mediano delle variabili elencate in exp.

. clist q3?_a

	q3a_a	q3b_a	q3c_a	q3d_a
1.	4	1	0	0
2.	1	0	0	0
3.	0	0	0	0
4.	2	0	0	0
5.	4	4	3	1
6.	1	0	0	0
7.	2	2	0	0
8.	1	0	0	0
9.	1	0	0	0
10.	0	1	0	0

- . egen es0=median(q3a_a)
- . egen es2=median(q3a_a-q3d_a)
- . clist q3?_a es?

	q3a_a	q3b_a	q3c_a	q3d_a	es1	es0	es2
1.	4	1	0	0	1	1	1
2.	1	0	0	0	0	1	1
3.	0	0	0	0	0	1	1
4.	2	0	0	0	1	1	1
5.	4	4	3	1	1	1	1
6.	1	0	0	0	0	1	1
7.	2	2	0	0	1	1	1
8.	1	0	0	0	0	1	1
9.	1	0	0	0	0	1	1
10.	0	1	0	0	0	1	1

 $\min(exp)$ ritorna una variabile (costante) con il valore minimo delle variabili elencate in exp.

. clist foreign length

foreign length 1. Foreign 149 2. Foreign 170 3. Domestic 198 4.

Domestic 179 5. Domestic 179 6. Foreign 184 7. Foreign 165 8. Domestic 163 9. Foreign 170 10. Domestic 182

- . egen es0=min(length)
- . egen es1=min(length), by(foreign)
- . clist foreign length es?

foreign length es0 es1 1. Foreign 149 149 149 2. Foreign 170 149 149 3. Domestic 198 149 163 4. Domestic 179 149 163 5. Domestic 179 149 163 6.

Foreign 184 149 149 7. Foreign 165 149 149 8. Domestic 163 149 163 9. Foreign 170 149 149 10. Domestic 182 149 163

- mode(varname) [, minmode maxmode nummode(integer) missing] ritorna una variabile (costante) con il valore della moda delle variabili elencate in varname. Se esistono più valori modali, con l'opzione minmode si sceglie il minore, con maxmode il maggiore, con nummode(integer) la moda n-esima espressa da integer.
- rowmax(varlist) ritorna il valore massimo per ciascuna osservazione tra i valori delle variabili elencate in varlist.
- rowmean(varlist) ritorna il valore medio per ciascuna osservazione dei valori delle variabili elencate in varlist.
- rowmin(varlist) ritorna il valore minimo per ciascuna osservazione tra i valori delle variabili elencate in varlist.
- rowmiss (varlist) ritorna il numero di valori missing per ciascuna osservazione tra i valori delle variabili elencate in varlist.
- rownonmiss(varlist) ritorna il numero di valori non missing per ciascuna osservazione tra i valori delle variabili elencate in varlist.
- rowsd(varlist) ritorna la deviazione standard per ciascuna osservazione dei i valori delle variabili elencate in varlist.
- sum(exp) conta quante osservazioni rispondono al criterio exp.

8.4 Sostituire valori in una variabile

Il comando principale per sostituire dei valori secondo una certa funzione è

```
replace oldvar = exp[if][in]
```

che può essere usato anche con variabili stringa avendo l'accortezza di racchiudere il valore da sostituire tra virgolette:

```
replace str_var = "stringa" if....
```

Se i valori da considerare sono molti e sono relativi ad una stessa variabile, anziché ricorrere ad una lunga serie di replace condizionati, è possibile usare la funzione inlist che abbiamo visto tra le funzioni di programmazione del comando generate

```
. gen macro1=1 if inlist(regione,1,2,3,7,4,5,6,8);
(43456 missing values generated)
. replace macro1=2 if inlist(regione,9,10,11,12);
(13891 real changes made)
. replace macro1=3 if inlist(regione,13,14,15,16,17,18,19,20);
(29565 real changes made)
. tab regione macro1, miss nolab;
Regione | macro1
Regione | 1 2 3 | Total
```

1	4,714	0	0	4,714
2	1,526	0	0	1,526
3	8,166	0	0	8,166
4	3,705	0	0	3,705
5	1 4,994	0	0	1 4,994
6	1 2,029	0	0	1 2,029
7	1 2,322	0	0	1 2,322
8	3,968	0	0	3,968
9	1 0	4,236	0	4,236
10	1 0	2,265	0	1 2,265
11	1 0	2,931	0	1 2,931
12	1 0	4,459	0	4,459
13	1 0	0	2,653	1 2,653
14	1 0	0	1,972	1,972
15	1 0	0	6,018	6,018
16	1 0	0	4,963	4,963
17	1 0	0	2,225	1 2,225
18	1 0	0	3,454	3,454
19	1 0	0	5,426	5,426
20	0	0	2,854	1 2,854
Total	31,424	13,891	29,565	74,880

Altro importante comando è recode che consente di ricodificare i valori di una variabile (o più variabili) secondo certi criteri (*erule*) e che prevede numerose possibilità:

recode varlist (erule) [(erule) ...][if][in][, options]

Almeno una regola di ricodifica deve essere definita e può assumere le seguenti forme

Regola	Esempio	Esito
(# = #)	(8 = 4)	Trasforma tutti i valori 8 in 4
$\#_1 \#_2 = \#)$	$(8\ 7=4)$	Trasforma tutti i valori 8 e 7 in 4
$\#_1 / \#_2 = \#)$	(1/8=4)	Trasforma tutti i valori da 1 a 8 (compresi) in 4
nonmissing = $\#$	(nonmissing = 4)	Trasforma tutti i valori non missing in 4
missing = #	(missing=9)	Trasforma tutti i valori missing in 9
$\#/\max$	5/max=5	Trasforma tutti i valori superiori a 5 in 5
$\min/\#$	$\min/8=8$	Trasforma tutti i valori inferiori a 8 in 8

Le variabili a cui applicare la trasformazione possono essere più di una. Se non viene specificata nessuna opzione del tipo **generate** o **prefix**, la sostituzione avviene direttamente nelle variabili di *varlist*. Se invece si vogliono creare nuove variabili che contengano la ricodifica si ricorrerà all'opzione

generate(newvar) quando si tratta di una sola variabile
prefix(string) quando si tratta di più variabili che prenderanno lo stesso nome delle
variabili specificate in varlist con l'aggiunta del prefisso specificato in string

Per esempio:

```
recode var1 var2 var3 (1/5=1) (6 8=2) (7=3) (.=9), prefix(rec_)
```

nelle variabili var1, var2 e var3 ricodifica i valori da 1 a 5 in 1, i 6 e gli 8 in 2, il 7 in 3 e tutti i valori missing in 9, creando tre nuove variabili (rec_var1, rec_var2 e rec_var3) con le ricodifiche

. recode regione ($\min/8=1$) (9/12=2) (13/ $\max=5$), gen(\max cro2); (70166 differences between regione and \max cro2)

. tab regione macro2, miss nolab;

	RECODE of	regione (F	legione)	
Regione	1	2	5	Total
1	4,714	0	0	4,714
2	1,526	0	0	1,526
3	8,166	0	0	8,166
4	3,705	0	0	3,705
5	4,994	0	0	4,994
6	2,029	0	0	2,029
7	2,322	0	0	2,322
8	3,968	0	0	3,968
9	0	4,236	0	4,236
10	0	2,265	0	2,265
11	0	2,931	0	2,931
12	0	4,459	0	4,459
13	0	0	2,653	2,653
14	0	0	1,972	1,972
15	0	0	6,018	6,018
16	0	0	4,963	4,963
17	0	0	2,225	2,225
18	0	0	3,454	3,454
19	0	0	5,426	5,426
20	0	0	2,854	2,854
Total	 31,424	13,891	29,565	74,880

Si ricordi che recode funziona solo per variabili numeriche.

Infine vediamo i comandi

```
encode varname[if][in], generate(newvarname) [label(name) noextend]
```

che trasforma variabili stringa in variabili numeriche, assegnando ai valori creati il label definito in name e

```
<u>dec</u>ode varname[if][in], generate(newvarname) [maxlength(#)] che, viceversa, trasforma variabili numeriche in variabili stringa
```

Comandi similari ai precedenti ma che si applicano quando le variabili sia stringa che non, contengono caratteri numerici, sono:

```
destring [varlist], {generate(newvarlist)|replace} [destring_options]
```

che converte variabili numeriche stringa in numeriche pure. Con l'opzione ignore ("chars") si possono specificare caratteri non numerici da rimuovere.

Nell'esempio che segue abbiamo la variabile stringa balance che contiene sia dati numerici che stringa. Per poterla rendere numerica per prima cosa si provvederà a convertire i dati stringa in missing (.a e .b) e poi si applicherà il comando destring

90

```
. desc balance;
storage display value
variable name type format label variable label
balance str8 %9s
```

tab balance,	miss;			
balance	1	Freq.	Percent	Cum.
	+			
1112.99	1	1	6.67	6.67
1397.99	1	1	6.67	13.33
16.11	1	1	6.67	20.00
2177.22	1	1	6.67	26.67
2371.62	1	1	6.67	33.33
2517.15	1	1	6.67	40.00
273.91	1	1	6.67	46.67
2751.6	1	1	6.67	53.33
INS Paid	1	4	26.67	80.00
NULL	1	3	20.00	100.00
	+			
Total	1	15	100.00	

. destring balance, replace;

balance contains non-numeric characters; no replace

- . replace balance =".a" if balance=="INS Paid";
 (4 real changes made)
- . replace balance =".b" if balance=="NULL";
 (3 real changes made)
- . destring balance, replace;

balance has all characters numeric; replaced as double

(7 missing values generated)

. summ balance;

Variable	Obs	Mean	Std. Dev.	. Min	Max
+					
balance	8	1577.324	1044.511	16.11	2751.6

. desc balance;

storage display value
variable name type format label variable label
------balance double %10.0g

Il comando tostring, viceversa converte variabili numeriche in variabili stringa tostring varlist, {generate(newvarlist)|replace} [tostring_options]

. desc eta

variable name	0	display format	value label	variable label
eta	int	%10.0g		

. summ eta

Variable	0bs	Mean	Std. Dev.	Min	Max
	74880	41.71912	 22 . 25459		102
eta	74000	41./1912	22.25459	U	102

. tostring eta, replace eta was int now str3

. desc eta

eta	str3	%9s					
. summ eta							
Variable						Min	
•							
. destring eta, eta has all cha	-		replace	d as	int		
variable name	type		labe	1			
eta							
. summ eta							
Variable						Min	
•		80 41.					102

8.5 Creare variabili dummy

Le variabili dummy sono variabili che assumo valori 0 e 1. In particolare 1 quando la caratteristica in esame è presente, 0 quando è assente. Vediamo adesso due metodi per creare questo tipo di variabili. Il primo sistema si basa sulla tecnica del replace; si crea una variabile ponedola pari a 0 e poi si sotituisce il valore 1 secondo un certo criterio:

- . gen nord=0
 . replace nord=1 if ripgeo==1 | ripgeo==2
 (61098 real changes made)
- . tab nord, miss

nord	Freq.	Percent	Cum.
0 1	78,925 61,098	56.37 43.63	56.37 100.00
Total	140,023	100.00	

Oppure in maniera meno pedante

- . gen north = ripgeo<=2
- . tab nord, miss

Cum.	Percent	Freq.	nord
56.37 100.00	56.37 43.63	78,925 61,098	0 1
	100.00	140,023	Total

Con il secondo metodo si sfrutta l'opzione gen del comando tabulate

. tab ripgeo, miss gen(ripgeo_)

ripgeo	Freq.	Percent	Cum.
1 2 3 4 5	26,768 37,206	22.99 20.65 19.12 26.57 10.68	22.99 43.63 62.75 89.32 100.00
Total	140,023	100.00	

- . tab1 ripgeo_*
- -> tabulation of ripgeo_1

ripgeo== 1.0000	Freq.	Percent	Cum.
0 1	107,835 32,188	77.01 22.99	77.01 100.00
Total	140,023	100.00	

-> tabulation of ripgeo_2

ripgeo== 2.0000	Freq.	Percent	Cum.
0 1	111,113 28,910	79.35 20.65	79.35 100.00
Total	140 023	100 00	

-> tabulation of ripgeo_3

ripgeo== 3.0000	Freq.	Percent	Cum.
0 1	113,255 26,768	80.88 19.12	80.88 100.00
Total	140,023	100.00	

-> tabulation of ripgeo_4

ripgeo== 4.0000	 	Freq.	Percent	Cum.
0	 	102,817 37,206	73.43 26.57	73.43 100.00
Total	-+- 	140,023	100.00	

-> tabulation of ripgeo_5

	ripgeo== 5.0000	Percent	Cum.
,	0 1	89.32 10.68	
140,023	Total	100.00)

. summ ripgeo_*

Variable	0bs	Mean	Std. Dev.	Min	Max
ripgeo_1	140023	.2298765	.4207548	0	1
ripgeo_2	140023	.2064661	.4047703	0	1
ripgeo_3	140023	.1911686	.3932229	0	1
ripgeo_4	140023	.2657135	.441714	0	1
ripgeo_5	140023	.1067753	.3088285	0	1

Si noti che la media delle variabili dummy corrisponde alla percentuale di valori 1.

Capitolo 9

Analisi Quantitativa

9.1 summarize e tabulate

Per prima cosa è bene distinguere le analisi da condurre su variabili continue e quelle su variabili discrete. Per le prime il comando essenziale è:

```
\underline{\mathtt{summarize}} \ \left[ \ \mathit{varlist} \ \right] \left[ \ \mathit{if} \ \right] \left[ \ \mathit{in} \ \right] \left[ \ \mathit{weight} \ \right] \left[ \ \mathsf{,} \ \ \mathsf{detail} \ \right]
```

dove \mathtt{detail} produce un output con un numero maggiore di informazioni. Inoltre questo comando supporta l'uso dei pesi ($[\mathit{weight}]$) che possono essere uno tra $\mathtt{aweight}$, $\mathtt{fweight}$ e $\mathtt{iweight}$ e servono per produrre delle statistiche pesate.

	${\tt summ}$	y1	уt,	detail
--	--------------	----	-----	--------

		Reddito disponib	ile	netto	
	Percentiles	Smallest			
1%	3600	0			
5%	12050	0			
10%	17000	0		0bs	8001
25%	27200	0		Sum of Wgt.	8001
50%	42600			Mean	51212.38
		Largest		Std. Dev.	38811.92
75%	65964	557239.3			
90%	92000	630000.8		Variance	1.51e+09
95%	114100	764335.5		Skewness	4.342934
99%	188500	800000		Kurtosis	52.93251
	Reddito	da pensioni e al	tri	trasferimenti	
	Percentiles	Smallest			
1%	0	0			
5%	0	0			
10%	0	0		0bs	8001
25%	0	0		Sum of Wgt.	8001
= 00/	2242				
50%	8840			Mean	12683.57
		Largest		Std. Dev.	15618.38
75%	22100	127850			
90%	32500	139300		Variance	2.44e+08
95%	41223	150800		Skewness	1.624059
99%	65000	169000		Kurtosis	7.892386

. summ y1 yt [aweight=pesofit]

Variable	Obs	Weight		Std. Dev.	Min	Max
y1	8001	8001	49152.49		0	800000
vt I	8001	8001	11932.83	14946.91	0	169000

Un comando aggiuntivo simile ma che offre una gamma più ampia di possibilità è fsum.

. fsum y1 yt, f(10.3) s(n abspct miss mean median sum)

Variable	•	Missing				
y1	8001	0			42600.000	4.098e+08
yt	8001	0	0.000	12683.571	8840.000	1.015e+08

. fsum y1 yt, f(10.3) s(n miss mean median sum) uselabel

Variable		Missing		Median	Sum
+					
Reddito disponibile netto	8001	0	51212.3	42600.0	4.098e+08
Reddito da pens e altri trasf	8001	0	12683.5	8840.0	1.015e+08

Per le variabili discrete il comando principale è tabulate che analizzeremo nel caso di analisi di una sola variabile e nel caso di incrocio tra due variabili. Nel caso si voglia analizzare la distribuzione di frequenza di una sola variabile discreta il comando è:

 $\underline{\mathtt{ta}} \mathtt{bulate} \ \ varname \big[\ if \ \big] \big[\ in \ \big] \big[\ weight \ \big] \big[\ , \ \ tabulate_options \ \big]$

tra le *tabulate_options* più importanti:

missing per includere anche le osservazioni missing

nolabel per visualizzare i codici numerici al posto delle etichette dei valori

sort per ordinare in senso discendente in base alla frequenza delle diverse specificazioni della variabile

sum (var) per fare il sum di una variabile continua per ciascuna specificazione di varname

. tab d09a

Chiarezza della segnaletica	 Freq.	Percent	Cum.
Per nulla soddisfatto	12	0.55	0.55
Poco soddisfatto	l 46	2.11	2.67
Soddisfatto	733	33.70	36.37
Più che Soddisfatto	563	25.89	62.25
Completamente Soddisfatto	795	36.55	98.80
Non saprei	J 26	1.20	100.00
Total	2,175	100.00	

. tab d09a, miss

segnaletica	1	Frea.	Percent	Cum.
	+-			

Per nulla soddisfatto		12	0.51	0.51
Poco soddisfatto	1	46	1.96	2.48
Soddisfatto	1	733	31.31	33.79
Più che Soddisfatto	1	563	24.05	57.84
Completamente Soddisfatto	1	795	33.96	91.80
Non saprei	1	26	1.11	92.91
Non risponde	1	166	7.09	100.00
m	-+			
Total	- 1	2.341	100 00	

. tab d09a, miss nolab

Chiarezza della			
segnaletica	Freq.	Percent	Cum.
1	12	0.51	0.51
2	1 46	1.96	2.48
3	733	31.31	33.79
4	563	24.05	57.84
5	795	33.96	91.80
6	1 26	1.11	92.91
.a	166	7.09	100.00
Total	2,341	100.00	

. tab d09a, miss nolab sort

Chiarezza della segnaletica	 Freq.	Percent	Cum.
5	795	33.96	33.96
3	733	31.31	65.27
4	563	24.05	89.32
.a	166	7.09	96.41
2	l 46	1.96	98.38
6	l 26	1.11	99.49
1	12	0.51	100.00
Total	+ l 2.341	100.00	

. tab d09a, miss nolab sum(d01)

Chiarezza				
della		Sur	mmary of Età	
${\tt segnaletica}$	1	Mean	Std. Dev.	Freq.
	+-			
1		51.363636	21.795746	11
2		48.369565	18.587162	46
3	1	51.283727	19.146486	719
4	1	51.70991	18.997164	555
5	1	53.497409	18.69334	772
6	1	42.375	17.392683	24
.a	1	63.362416	15.511641	149
	+-			
Total	1	52.776801	18.965238	2276

Sempre nel caso di analisi di frequenza univariata segnalo il comando aggiuntivo fre che consente, tra l'altro, di di esportare i risultati anche in Tex:

$$\texttt{fre} \ \left[\ varlist \ \right] \left[\ if \ \right] \left[\ in \ \right] \left[\ weight \ \right] \left[\ , \ options \right]$$

Tra le options citiamo:

format(#) che indica il numero di decimali (2 è il valore di default) nomissing omette dalla tabella il conteggio dei valori missing nolabel omette il label delle variabili novalue omette il valore numerico delle label

noname omette il nome della variabile

notitle omette il titolo con il nome e la descrizione della variabile

nowrap non manda a capo l'intestazione di riga

width(#) specifica la larghezza della colonna delle descrizioni

include include tutti i valori possibili della variabile, quindi comprende anche quelli a frequenza zero

include (numlist) include solo i valori specificati in numlist ascending visualizza i valori in ordine ascendente di frequenza descending visualizza i valori in ordine discendente di frequenza

. fre d09a

d09a -- Chiarezza della segnaletica

			 	Freq.	Percent	Valid	Cum.
Valid	1	Per nulla soddisfatto	1	12	0.51	0.55	0.55
	2	Poco soddisfatto		46	1.96	2.11	2.67
	3	Soddisfatto		733	31.31	33.70	36.37
	4	Più che Soddisfatto	1	563	24.05	25.89	62.25
	5	Completamente Soddisfatto	1	795	33.96	36.55	98.80
	6	Non saprei	1	26	1.11	1.20	100.00
	To	tal	1	2175	92.91	100.00	
Missing	ς.a	Non risponde	1	166	7.09		
Total		_	1	2341	100.00		

[.] fre d09a, nomissing

d09a -- Chiarezza della segnaletica

	l	Freq.	Percent	Cum.
1 Per nulla soddisfatto		12	0.55	0.55
2 Poco soddisfatto	1	46	2.11	2.67
3 Soddisfatto	1	733	33.70	36.37
4 Più che Soddisfatto	1	563	25.89	62.25
5 Completamente Soddisfatto		795	36.55	98.80
6 Non saprei	1	26	1.20	100.00
Total	l	2175	100.00	

[.] fre d09a, nolabel

d09a

		 	Freq.	Percent	Valid	Cum.
Valid	1 2 3 4		12 46 733 563	0.51 1.96 31.31 24.05	0.55 2.11 33.70 25.89	0.55 2.67 36.37 62.25

	5	1	795	33.96	36.55	98.80
	6	1	26	1.11	1.20	100.00
	Total	1	2175	92.91	100.00	
Missing	.a	1	166	7.09		
Total		1	2341	100.00		

. fre d09a, novalue

d09a -- Chiarezza della segnaletica

		 -+	Freq.	Percent	Valid	Cum.
Valid	Per nulla soddisfatto	İ	12	0.51	0.55	0.55
	Poco soddisfatto		46	1.96	2.11	2.67
	Soddisfatto	1	733	31.31	33.70	36.37
	Più che Soddisfatto	1	563	24.05	25.89	62.25
	Completamente Soddisfatto	1	795	33.96	36.55	98.80
	Non saprei		26	1.11	1.20	100.00
	Total		2175	92.91	100.00	
Missing	Non risponde	1	166	7.09		
Total		1	2341	100.00		

. fre d09a, noname

Chiarezza della segnaletica

				Freq.	Percent	Valid	Cum.
Valid	1	Per nulla soddisfatto	1	12	0.51	0.55	0.55
	2	Poco soddisfatto	1	46	1.96	2.11	2.67
	3	Soddisfatto	1	733	31.31	33.70	36.37
	4	Più che Soddisfatto		563	24.05	25.89	62.25
	5	Completamente Soddisfatto		795	33.96	36.55	98.80
	6	Non saprei	1	26	1.11	1.20	100.00
	To	tal	1	2175	92.91	100.00	
Missing	.a	Non risponde	1	166	7.09		
Total		-	I	2341	100.00		

. fre d09a, notitle

			 	Freq.	Percent	Valid	Cum.
Valid	1	Per nulla soddisfatto	i	12	0.51	0.55	0.55
	2	Poco soddisfatto	1	46	1.96	2.11	2.67
	3	Soddisfatto	1	733	31.31	33.70	36.37
	4	Più che Soddisfatto	1	563	24.05	25.89	62.25
	5	Completamente Soddisfatto	1	795	33.96	36.55	98.80
	6	Non saprei	1	26	1.11	1.20	100.00
	То	tal	1	2175	92.91	100.00	
Missing	.a	Non risponde	1	166	7.09		
Total		-	1	2341	100.00		

. fre d09a, ascending

d09a -- Chiarezza della segnaletica

 		Freq.	Percent	Valid	Cum.
Per nulla soddisfatto Non saprei	 	12 26	0.51 1.11	0.55 1.20	0.55 1.75

2	Poco soddisfatto	1	46	1.96	2.11	3.86
4	Più che Soddisfatto	1	563	24.05	25.89	29.75
3	Soddisfatto	1	733	31.31	33.70	63.45
5	Completamente Soddisfatto	1	795	33.96	36.55	100.00
To	tal	1	2175	92.91	100.00	
Missing .a	Non risponde	1	166	7.09		
Total		1	2341	100.00		

. fre d09a, descending

d09a -- Chiarezza della segnaletica

			I	Freq.	Percent	Valid	Cum.
Valid	 5	Completamente Soddisfatto	-+ 	795	33.96	36.55	36.55
	3	Soddisfatto	1	733	31.31	33.70	70.25
	4	Più che Soddisfatto	1	563	24.05	25.89	96.14
	2	Poco soddisfatto	1	46	1.96	2.11	98.25
	6	Non saprei	1	26	1.11	1.20	99.45
	1	Per nulla soddisfatto		12	0.51	0.55	100.00
	To	tal	1	2175	92.91	100.00	
Missing	.a	Non risponde	1	166	7.09		
Total		-	1	2341	100.00		

. fre d11_3, include

d11_3 -- Chiarezza informazioni ricevute dal personale di segreteria

				Freq.	Percent	Valid	Cum.
Valid	1	Per nulla soddisfatto	i	0	0.00	0.00	0.00
	2	Poco soddisfatto	1	3	0.60	0.66	0.66
	3	Soddisfatto	1	202	40.64	44.69	45.35
	4	Più che soddisfatto	1	111	22.33	24.56	69.91
	5	Completamente soddisfatto	1	135	27.16	29.87	99.78
	6	Non saprei	1	1	0.20	0.22	100.00
	To	tal	1	452	90.95	100.00	
Missing	. a	Non risponde	1	45	9.05		
Total		-	1	497	100.00		

Con la sintassi

fre [varlist] using filename [if][in][weight][, options export_opts] possiamo esportare la tabella prodotta da fre. Tra le export_opts:

tab che esporta in formato delimitato da tabulazione (da indicare nell'estensione di filename)

tex che esporta in formato Tex (da indicare nell'estensione di *filename*) pre(strlist) testo da visulizzare prima della tabella

pro (sortion) teste da visariazare prima della tase.

post(strlist) testo da visulizzare dopo la tabella

replace sovrascrive filename se già esistente

append aggiunge il risultato di fre al filename già esistente

. fre d09a using tables.tex, pre(Testo Iniziale) post(Testo Finale) (output written to tables.tex)

E questo è il risultato importato in LaTex:

Testo Iniziale d09a — Chiarezza della segnaletica

			Freq.	Percent	Valid	Cum.
Valid	1	Per nulla soddisfatto	12	0.51	0.55	0.55
	2	Poco soddisfatto	46	1.96	2.11	2.67
	3	Soddisfatto	733	31.31	33.70	36.37
	4	Più che Soddisfatto	563	24.05	25.89	62.25
	5	Completamente Soddisfatto	795	33.96	36.55	98.80
	6	Non saprei	26	1.11	1.20	100.00
	Total		2175	92.91	100.00	
Missing	.a	Non risponde	166	7.09		
Total			2341	100.00		

Testo Finale

Se le variabili sono molte, anziché fare un tab per ciascuna, si può ricorrere al comando tab1 varlist[if][in][weight][, $tab1_options[$

che produce la distribuzione di frequenza per ciascuna variabile specificata in varlist.

Nel caso di incrocio tra due variabili discrete il comando è:

 $\underline{\mathtt{ta}}$ bulate $varname1 \ varname2 \ [if][in][weight][, options]$

Le opzioni più importanti sono:

chi
2 per calcolare il χ^2 di Pearson

exact [(#)] riporta il test esatto di Fisher

gamma riporta il test gamma di Goodman e Kruskal

taub riporta il test tau-b (τ) di Kendall

V riporta la V di Cramer

column riporta la frequenza relativa per colonna

row riporta la frequenza relativa per riga

cell riporta la frequenza relativa per ciascuna cella

sum(var) per fare il sum di una variabile continua per ciascuna combinazione di varname1 e varname2

. tab a10 a11

	1	a11		
a10	0	1	2	Total
	+			+
0	9	3	1	13
1	1 2	6	0	l 8
2	1	2	2	J 5
	+			+
Total	12	11	3	l 26

. tab a10 a11, column

+-			+
1	Key		1
-			١
	fre	equency	1
	${\tt column}$	percentage	
+-			+

	I	a11		
a10	0	1	2	Total
0	9	3	1	13
	75.00	27.27	33.33	50.00
1	2 16.67	6 54.55	0.00	8 30.77
2	1	2	2	5
	8.33	18.18	66.67	19.23
Total	12	11	3	26
	100.00	100.00	100.00	100.00

. tab a10 a11, row

+	-+
Key	-
	-
frequency	-
row percentage	-
+	-+

		a11	I	
Total	2	1	0	a10
13 100.00	1 7.69	3 23.08	9 69.23	0
100.00	0.00	6 75.00	2 2 25.00	1
5 100.00	2 40.00	2 40.00	1 20.00	2
26 100.00	3 11.54	11 42.31	12 46.15	Total

. tab a10 a11, column row

0	9	3	1	13
	69.23	23.08	7.69	100.00
	75.00	27.27	33.33	50.00
1	2	6	0	8
	25.00	75.00	0.00	100.00
	16.67	54.55	0.00	30.77
2	1 1 20.00 8.33	2 40.00 18.18	2 40.00 66.67	5 100.00 19.23
Total	12	11	3	26
	46.15	42.31	11.54	100.00
	100.00	100.00	100.00	100.00

. tab a10 a11, column row cell

+
Key
frequency
row percentage
column percentage
cell percentage
L

	l	a11		
a10	l 0	1	2	Total
0	9 69.23 75.00 34.62	3 23.08 27.27 11.54	1 7.69 33.33 3.85	13 100.00 50.00 50.00
1	2 25.00 16.67 7.69	6 75.00 54.55 23.08	0 0.00 0.00 0.00	8 100.00 30.77 30.77
2	1 20.00 8.33 3.85	2 40.00 18.18 7.69	2 40.00 66.67 7.69	5 100.00 19.23 19.23
Total	12 46.15 100.00 46.15	11 42.31 100.00 42.31	3 11.54 100.00 11.54	26 100.00 100.00

. tab a10 a11, column row cell nofreq

++
Key
row percentage
column percentage
cell percentage
++
l a11
-40 0 4

Total

0	69.23 75.00 34.62	23.08 27.27 11.54	7.69 33.33 3.85	50.00
1	25.00	75.00	0.00	100.00
	16.67	54.55	0.00	30.77
	7.69	23.08	0.00	30.77
2	20.00	40.00	40.00	100.00
	8.33	18.18	66.67	19.23
	3.85	7.69	7.69	19.23
Total	46.15	42.31	11.54	100.00
	100.00	100.00	100.00	100.00
	46.15	42.31	11.54	100.00

. tab a10 a11, chi2

	l	a11		
a10	0	1	2	Total
0	9	3	1	13
1	1 2	6	0	1 8
2	1	2	2	5
Total	12	11	3	26

Pearson chi2(4) = 10.7803 Pr = 0.029

. tab a10 a11, sum(pain)

Means, Standard Deviations and Frequencies of pain

	l	a11		
a10	l 0	1	2	Total
0	91.975309 5.4582514 9	87.962962 12.525694 3	77.777779 0 1	89.957265 7.9006867 13
1	93.055557 9.8209251 2	65.74074 15.180667 6	0	72.569444 18.392012 8
2	77.77779 0 1	40.277777 5.8925556 2	50 3.9283722 2	51.666666 15.78697 5
Total	90.972223 6.9191447	67.171716 20.631174 11	59.25926 16.276293 3	77.24359 19.657864 26

Di nuovo, se vogliamo incrociare a coppie più di 2 variabili il comando da usare è:

$$\verb"tab2" \textit{varlist} \ \big[\textit{if} \, \big] \big[\textit{in} \, \big] \big[\textit{weight} \, \big] \big[\textit{, options} \big]$$

che restituisce le distribuzioni di frequenza per ciascuna coppia delle variabili specificate in varlist.

- . tab2 s1 s2 s3 s4
- -> tabulation of s1 by s2

	I		s2			
s1	0	1	2	3	4	Total
 0	+ l 2	 8	 1	2	3	+ l 16
1	1	1	2	1	0	5
2	l 0	0	3	0	0	3
3	1 0	0	1	0	0	1
4	1	0	0	0	0	1
 Total	+ 4	 9	7	3	3	+ 26

-> tabulation of s1 by s3

		s3		
Total	2	1	0	s1
16	0	0	16	0
J 5	1	1	3	1
J 3	1	1	1	2
1	0	0	1	3
1	0	0	1	4
+ 26	2	2	22	Total

-> tabulation of s1 by s4

	1		s4		
s1	1	0	1	4	Total
 0	·+	13	0	3	16
1	1	3	0	2	J 5
2	1	1	1	1] 3
3	1	1	0	0	1
4	1	1	0	0	1
 Total	·+	19	1	6	26

-> tabulation of s2 by s3

		1	s3		
	s2	0	1	2	Total
•	0	3	1	0	+4
	1	9	0	0	J 9
	2	1 4	1	2	7
	3] 3	0	0	J 3
	4] 3	0	0] 3
•	Total	+ l 22	2	2	+ l 26

-> tabulation of s2 by s4

		s4		
s2	0	1	4	Total
0	1 2	0	2	4
1	1 8	0	1	1 9
2	1 5	1	1	7
3	1 2	0	1	1 3
4	1 2	0	1] 3
	4			+

Total |

Total	19	1	6	l 26
-> tabulatio	on of s3 by			
		s4		
s3	0	1	4	Total
	+			+
0	18	0	4	22
1	1 0	0	2	2
2	1	1	0] 2

9.1.1 Qualcosa di più avanzato

19

Per produrre tabelle di statistiche più evolute possiamo ricorre al comando table

table rowvar [colvar [supercolvar]] [if][in][weight][, options]

dove in rowvar [colvar [supercolvar]] inseriamo variabili categoriche (fino ad un massimo di 3).

6 |

26

Tra le options inseriamo contents (clist) dove clist può essere scelto tra

```
mean varname media di varname
sd varname deviazione standard di varname
sum varname sommatoria di varname
n varname numero di casi (missing esclusi) di varname
max varname valore massimo di varname
min varname valore minimo di varname
median varname mediana di varname
p1 varname 1° percentile di varname
p2 varname 2° percentile di varname
...
...
p98 varname 98° percentile di varname
p99 varname 98° percentile di varname
iqr varname range interquartile (p75-p25) di varname
```

si tenga presente che al massimo si possono inserire 5 statistiche in clist.

Numero di component i	İ	mean(w_cl~h)	mean(w_ho~e)	mean(w_tr~i)	mean(w_ed~r)
2	0.328	0.137	0.154	0.243	0.138
3	0.357	0.142	0.151	0.219	0.130
4	0.373	0.139	0.139	0.217	0.132
5	0.393	0.133	0.133	0.209	0.132
6	0.416	0.123	0.129	0.198	0.134

7 8	0.433 0.527	0.107 0.072	0.130 0.091	0.203 0.171	0.128 0.139
9	0.378	0.116	0.150	0.215	0.141
Total	0.366	0.139	0.144	0.220	0.132

. table fsize, c(mean w_food iqr w_food sd w_food n w_food) format(%5.3f) row col

Numero di component i	 mean(w_food)	iqr(w_food)	sd(w_food)	N(w_food)
2	0.328	0.159	0.117	1,175
3	0.357	0.154	0.108	3,603
4	0.373	0.145	0.105	4,699
5	0.393	0.149	0.107	1,115
6	0.416	0.137	0.103	162
7	0.433	0.132	0.109	26
8	0.527	0.111	0.078	2
9	0.378	0.248	0.176	2
Total	0.366	0.151	0.109	10,784

. table fsize nch05, c(mean w_food mean w_cloth mean w_house mean w_trasporti mean w_eduricr) format(%5.3f) row col;

Numero di	 !				
component			-	•	
i	0	1	2	3	Total
					0.328
2					
					0.137
	0.154				0.154
	0.243				0.243
	0.138				0.138
3	I I 0 363	0.344			0.357
o l		0.166			0.142
		0.149			0.151
	0.102				0.219
	0.129				0.130
	0.123	0.131			0.150
4	0.373	0.377	0.365		0.373
	0.134	0.152	0.162		0.139
	0.138	0.140	0.142		0.139
			0.198		0.217
			0.133		0.132
5	0.392	0.397	0.394	0.357	0.393
	0.130	0.139	0.152	0.184	0.133
	0.134	0.135	0.116	0.155	0.133
	0.215	0.191	0.197	0.136	0.209
	0.129	0.139	0.141	0.168	0.132
6			0.460		0.416
			0.124		0.123
			0.119		0.129
			0.168		0.198
	0.132	0.140	0.130		0.134
7	l 0.415	0.439	0.459	0.522	0.433
1	0.410	0.439	0.409	0.022	0.433

```
0.105 0.108 0.106 0.122 0.107
     0.119
             0.126 0.161 0.173
                                 0.130
      0.240
             0.186
                   0.146 0.022
                                 0.203
     0.120
             0.140 0.128 0.161
                                 0.128
   8 | 0.582
             0.471
                                 0.527
      0.083
             0.061
                                 0.072
      0.075
             0.107
                                 0.091
     0.161
             0.181
                                 0.171
     1 0.099
             0.180
                                 0.139
     0.254
                                 0.378
             0.502
       0.117
             0.115
     0.181
             0.119
                                 0.150
     | 0.313
                                 0.215
             0.117
     0.135
             0.147
                                 0.141
Total | 0.366
             0.363 0.372 0.371 0.366
     | 0.133
             0.157
                    0.159
                          0.178
                                0.139
             0.144
                    0.138
                          0.157
     0.144
                                 0.144
                    0.197
     0.225
             0.202
                          0.126
                                 0.220
     | 0.131 0.133 0.134
                          0.168
                                0.132
```

Se invece abbiamo variabili continue di cui vogliamo avere ulteriori statistiche oltre a quelle fornite da summarize possiamo ricorrere a:

```
tabstat varlist[if][in][weight][, options]
```

dove in *varlist* inseriamo la liste delle variabili continue e tra le *options* in *statistics*() possiamo scegliere tra:

```
mean
n
sum
max
min
sd
variance
cv coefficiente di variazione (sd/mean)
semean errore standard della media (sd/sqrt(n))
skewness (indice di simmetria o indice di Pearson)
kurtosis (indice di curtosi o di appiattimento)
p1
p5
p10
p25
median
p50
p75
p90
p95
p99
```

```
\begin{array}{l} \texttt{range} = \max \text{-} \min \\ \texttt{iqr} = \text{p75 - p25} \\ \texttt{q} \text{ equivalente a p25 p50 p75} \end{array}
```

. tabstat tax_1-tax_8 if nfigli==1,
 by(prof_nmr) stats(sum mean cv p1 p99) col(stat) long notot;

prof_nmr	variable	sum	mean	cv	p1	p99
6	tax_1	81598.11	799.9815	1.965136	0	5761.707
	tax_2	-18165.78	-178.0959	-1.018802	-565.1445	0
	tax_3		0		0	0
	tax_4		0	•	0	0
	tax_5		306.4097	1.099732	0	1039.958
	tax_6		533.5573	1.099732	0	1810.899
	tax_7		7.969212	1.099732	0	27.04759
	tax_8	1013.78 +	9.939017	1.099732	0	33.73313
7	tax_1	221761.5	2174.132	1.409285	0	8196.94
	tax_2		-210.7069			0
	tax_3			-1.678715	-220.315	0
	tax_4		0		0	0
	tax_5		362.6776	1.034861	0	1113.488
	tax_6		631.5376	1.034861	0	1938.939
	tax_7		9.432646	1.034861	0	28.96
	tax_8	1199.946 +	11.76418 	1.034861	0 	36.11824
8	tax_1	383905.5	3763.779	1.378702	0	13930.61
	tax_2		-17.31372		-58.87674	0
	tax_3		-39.38464	-1.64311	-201.7244	0
	tax_4		0	·	0	0
	tax_5		512.6779	1.008443	0	1556.057
	tax_6		892.7361	1.008443	0	2709.592
	tax_7		13.33391	1.008443	0	40.47047
	tax_8	1696.234 +	16.62974	1.008443	0	50.47383
9	tax_1	335143.8	3285.724	1.336498	0	12298.62
	tax_2		-17.36189			0
	tax_3		-41.08936	-1.643618		0
	tax_4		0		0	0
	tax_5		494.1653	1.049721	0	1543.804
	tax_6		860.4997	1.049721	0	2688.256
	tax_7		12.85242	1.049721	0	40.15179
	tax_8	1034.963 	16.02925 	1.049721		50.07639
10	tax_1	221761.5	2174.132	1.409285	0	8196.94
	tax_2		-210.7069			0
	tax_3	-4326.881		-1.678715	-220.315	0
	tax_4		0		0	0
	tax_5		362.6776	1.034861	0	1113.488
	tax_6		631.5376	1.034861	0	1938.939
	tax_7		9.432646	1.034861	0	28.96
	tax_8	1199.946	11.76418	1.034861	0	36.11824
						

9.2 Analisi della correlazione

Per l'analisi della correlazione abbiamo a disposizione due comandi. Il primo è:

$$\underline{\mathtt{cor}}\mathtt{relate}\ \big[\ \mathit{varlist}\ \big]\big[\ \mathit{if}\ \big]\big[\ \mathit{in}\ \big]\big[\ \mathit{weight}\ \big]\big[\ ,\ \ \mathit{correlate_options}\big]$$

che visualizza la matrice delle correlazioni o la matrice delle covarianze a seconda dell'opzione scelta. Le due opzioni più importanti sono means che visualizza la media, la deviazione standard, il minimo e il massimo delle variabili scelte e covariance che invece visualizza la matrice delle covarianze. Attenzione che correlate considera solo le osservazioni contemporaneamente valide per tutte le osservazioni.

. corr basale q2a q2b q2c q3a q3b q3c q3d, means (obs=153)

Variable	Me	ean Sto	d. Dev.	М	in	Max		
basale	.72549	902 .9	9193483		0	3		
q2a	.52287	758 .5	629453		0	2		
q2b	.24183	301 .4	1870176		0	2		
q2c	.03267	797 .1	L783809		0	1		
q3a	.67973	386 1.	.004291		0	5		
q3b	.17647	706 .5	862195		0	3		
q3c	.07189	954 .3	3461171		0	3		
q3d	.06535	595 .3	3378181		0	3		
	basale	q2a	q2b	q2c	q3a	q3b	q3c	q3d
	1.0000 -0.1149	1.0000						
-	0.0317		1.0000					
q2c	-0.0653	0.1563	0.2113	1.0000				
q3a	-0.2312	0.1585	0.1190	0.0588	1.0000			
q3b	-0.0804	0.1571	0.1030	0.0703	0.3313	1.0000		
q3c	-0.1030	0.0759	0.0133	0.1748	0.1045	0.0019	1.0000	
q3d	-0.1537	0.0613	0.1032	0.2918	0.3142	0.0743	0.1846	1.0000

Qui un esempio di matrice delle correlazioni

. corr basale q2a q2b q2c q3a q3b q3c q3d, covariance (obs=153) $\,$

	basale	q2a	q2b	q2c	q3a	q3b	q3c	q3d
q2a q2b q2c q3a q3b	+	.089826 .015695 .089611 .051858	.018361 .058222 .029412	.010535 .007353		.343653	.119797	
q3d	04773	.011653	.016985	.017587	.106596	.014706	.021586	.114121

Il secondo comando è:

che analizza le correlazioni indipendentemente per ciascuna coppia di variabili, per cui la numerosità fa' riferimento al numero di osservazioni valido per ciascuna coppia di variabili. Le opzioni principali sono:

obs visualizza il numero di osservazioni per ciascuna coppia di variabili sig visualizza il livello di significatività della correlazione star(#) visualizza con * i livelli di significatività inferiori al valore # bonferroni usa il metodo di Bonferroni per correggere il livello di significatività

sidak usa il metodo di Sidak per correggere il livello di significatività

pwcorr	basale	g2a	a2b	a2c	αЗа	a3b	a3c	a3d.	star(0.05)	obs s	sig

	valsalva	q2a	q2b	q2c	q3a	q3b	q3c	q3d
valsalva	1.0000							
	 153							
q2a	 0.0507	1.0000						
1	0.5338							
	153	162						
q2b	l 0.0218	0.3270*	1.0000					
-	0.7895	0.0000						
	153	162	162					
q2c	I 0.0246	0.1559*	0.2148*	1.0000				
-	0.7631	0.0476	0.0061					
	153	162	162	162				
q3a	 -0.1235	0.1642*	0.1228	0.0602	1.0000			
-	0.1283	0.0368	0.1195	0.4464				
	153	162	162	162	162			
q3b	l 0.0031	0.1102	0.0830	0.0606	0.3190*	1.0000		
-	0.9694	0.1628	0.2939	0.4433	0.0000			
	153	162	162	162	162	162		
q3c	I -0.1163	0.0779	0.0189	0.1766*	0.1055	-0.0031	1.0000	
-	0.1522	0.3245	0.8115	0.0246	0.1814	0.9683		
	153	162	162	162	162	162	162	
q3d	l -0.1587	0.0634	0.1078	0.2932*	0.3117*	0.0640	0.1864*	1.0000
•	0.0501	0.4232	0.1723	0.0002	0.0001	0.4182	0.0175	
	153	162	162	162	162	162	162	162
	I							

9.3 Analisi outliers

Tralasciando tutta la teoria attinente al problema dei dati anomali (o outliers), vediamo come Stata ci permette di identificarli. Il comando ufficiale è:

hadimvo
$$varlist[if][in]$$
, generate($newvar1 [newvar2]$) [p(#)]

dove la nuova variabile generata newvar1 (o le nuove variabili generate nel caso di analisi multivariata) sono delle dummy che identificato con 1 i valori candidati ad essere outliers. Il secondo comando, che va aggiunto tramite ssc, è:

grubbs
$$varlist[if][in][, options]$$

dove tra le opzioni teniamo presenti:

drop che elimina le osservazioni identificate come outliers generate(newvar1 ...) che crea variabili dummy per identificare i valori outliers log che visualizza il log delle iterazioni Come sempre segue l'esempio di utilizzo dei due comandi. Notate la differenza nei tempi di esecuzione tra i due comandi e il fatto che restituiscono il medesimo risultato.

```
. local st = "$S_TIME";
. hadimvo isee, gen(flag_isee);
                                           13239
Beginning number of observations:
              Initially accepted:
             Expand to (n+k+1)/2:
                                            6620
                Expand, p = .05:
                                           13226
              Outliers remaining:
                                              13
 elapse `st´;
Elapsed time was 24 minutes, 33 seconds.
. list id isee if flag_isee==1, sep(0);
                      isee |
          6874
                   63867.1
13227. I
13228. |
          6875
                  64486.92
13229. |
          6876
                  67414.06
13230. |
          6877
                  72366.19
13231. | 13234
                  73208.93
                 73449.813
13232. | 13235
13233. |
         13236
                 77971.492
13234. |
         13237
                 78410.148
13235. |
         13238
                 84195.203
13236. | 13239
                 88253.977
                  93771.63
13237. I
          6878
13238. |
          6880
                 127160.35
13239. | 6879
                 127160.35
. drop flag_isee;
. local st = "$S_TIME";
. grubbs isee, gen(flag_isee) log;
Variable: isee (0/1 variable recording which observations are outliers: flag_isee).
Iteration = 1. T-value: 10.7325 so 127160.35 is an outlier
Iteration = 2. T-value: 7.5214 so 93771.63 is an outlier
Iteration = 3. T-value: 6.9903 so 88253.977 is an outlier
Iteration = 4. T-value: 6.6000 so 84195.203 is an outlier
Iteration = 5. T-value: 6.0350 so 78410.148 is an outlier
Iteration = 6. \text{ T-value: } 5.9999 \text{ so } 77971.492 \text{ is an outlier}
Iteration = 7. T-value: 5.5568 so 73449.813 is an outlier
Iteration = 8. T-value: 5.5394 so 73208.93 is an outlier
Iteration = 9. T-value: 5.4617 so 72366.19 is an outlier
Iteration = 10. T-value: 4.9720 so 67414.06 is an outlier
Iteration = 11. T-value: 4.6833 so 64486.92 is an outlier
Iteration = 12. T-value: 4.6252 so 63867.1 is an outlier
12 outliers. No more outliers
 elapse `st´;
Elapsed time was 6 seconds.
. list id isee if flag_isee==1, sep(0);
            id
                    isee |
```

```
6874
                63867.1 |
 2. |
       6875
               64486.92
 3.
       6876
               67414.06
       6877
               72366.19
               73208.93
 5.
     13234
 6.
     13235
              73449.813
     13236
              77971.492
      13237
              78410.148
9. | 13238
              84195.203
10. | 13239
              88253.977
       6878
               93771.63
11.
12.
       6879
              127160.35
13.
       6880
              127160.35
```

Infine vi presento un metodo grafico che si basa sull'utilizzo dei boxplot. Data la comlessità della sintassi dei grafici, in questo caso mi astengo dal fornirvi la descrizione dettagliata del comando. Impartiamo il seguente comando:

graph box isee, marker(1, mlabel(isee))
e otteniamo questa figura

Figura 9.1: Box Plot

La scatola centrale si chiama box e la linea al suo interno identifica la mediana della variabile. All'interno del box vi stanno tutti i valori compresi tra il 25° e il 75° percentile

e si definisce tale intervallo come range interquartile (iqr = valore della variabile al 75° percentile - valore della variaile al 25° percentile). I valori compresi tra il 75° percentile e + $\frac{3}{2}$ (iqr) si definiscono valori adiacenti superiori e graficamente sono rappresentati dal segmento superiore che parte dal box centrale. In maniera analoga i valori compresi tra il 25° percentile e - $\frac{3}{2}$ (iqr) si definiscono valori adiacenti inferiori e graficamente sono rappresentati dal segmento inferiore che parte dal box centrale. I valori che inferiormente e superiormente sono oltre i valori adiacenti sono potenziali outliers e graficamente sono rappresentati con dei punti. Vediamo adesso come identificare questi valori come segue:

```
. gen flag_isee = 0
```

[.] summ isee, detail

	isee							
	Percentiles	Smallest						
1%	0	0						
5%	1455.6	0						
10%	5429	0	Obs	13239				
25%	11021.11	0	Sum of Wgt.	13239				
50%	17076.28		Mean	17837.32				
		Largest	Std. Dev.	10186.18				
75%	23550.96	88253.98						
90%	30706.24	93771.63	Variance	1.04e+08				
95%	36165.33	127160.4	Skewness	.8533689				
99%	46270.08	127160.4	Kurtosis	6.205226				

```
. replace flag_isee=1 if isee > r(p75)+3/2*(r(p75)-r(p25)) (289 real changes made)
```

[.] list id isee if flag_isee==1, sep(0)

	l id		İ
			ı
12951.	6716	42386.39	I
12952.	13117	42388.102	١
12953.	13116	42388.102	١
12954.	13118	42401.871	١
12955.	13119	42405.672	i

(output omitted)

```
13226. | 13233
                 62853.719
                   63867.1 I
13227. I
         6874
13228.
          6875
                  64486.92
13229. |
          6876
                  67414.06
13230. |
          6877
                  72366.19
13231. |
        13234
                  73208.93
13232. I
        13235
                 73449.813
                 77971.492
13233. I
        13236
13234. I
        13237
                 78410.148
13235. |
         13238
                 84195.203
13236. | 13239
                 88253.977
                  93771.63
13237. I
         6878
13238. |
          6879
                 127160.35
13239. I
          6880
                 127160.35
```

[.] replace flag_isee=1 if isee < r(p25)-3/2*(r(p75)-r(p25)) (0 real changes made)

+----+

Come si vede con questo metodo i valori indiziati di essere outliers sono assai più numerosi (289).

Capitolo 10

Trasformare Dataset

10.1 Aggiungere osservazioni

In genere quando si aggiungono osservazioni provenienti da un altro dataset si richiede che le variabili abbiano lo stesso nome, mentre non è richiesto che siano nello stesso ordine di posizione; vedi **secondo** dove la disposizione delle variabili è c, b, a. Graficamente ciò che vogliamo ottenere è:

Il primo passo è caricare il primo dataset, poi si aggiungono le osservazioni del secondo dataset tramite il comando:

append using filename [, options]

dove in *filename* specifichiamo il dataset da aggiungere e dove tra le *options* c'è keep(varlist) dove è possibile specificare le variabili da prendere nel dataset che viene aggiunto.

Si tenga presente che se una variabile è presente in uno solo dei due dataset, nel dataset unione (risultato) per quella variabile ci saranno delle osservazioni missing in corrispondenza delle osservazioni del dataset in cui non era presente.

In conclusione il comando append serve essenzialmente per aggiungere osservazioni, e solo indirettamente per aggiungere variabili.

10.2 Aggiungere variabili

Condizione necessaria per aggiungere ad un dataset (\mathtt{master}) variabili provenienti da un altro dataset (\mathtt{slave}) è che in entrambi siano presenti una o più variabili che permettano di stabilire una relazione tra le osservazioni del primo e del secondo dataset. In altre parole ci devono essere delle variabili chiave che mi permettano di assegnare ciascun valore X_{ij} proveniente dal dataset \mathtt{slave} ad una determinata osservazione del dataset \mathtt{master}

Noto che spesso gli utilizzatori alle prime armi hanno difficoltà

- ad individuare le variabili chiave
- a selezionare le variabili da inserire nelle match-variable(s) per il merge dei dati

Ho già discusso altrove le problematiche relative all'individuazione delle variabili chiave (7.2 Controllo delle variabili chiave). Vi rimando a quella sezione se ancora aveste dei dubbi in merito alla questione.

Invece il discorso relativo al secondo punto è più complesso e per affrontarlo parto da un altro punto di vista. Quanto dovete fare un merge vi troverete in una delle seguenti situazioni:

- 1. match 1:1 ad ogni osservazione del master corrisponde una e una sola osservazione dello slave
- 2. match 1:n ad ogni osservazione del master corrispondono n osservazioni dello slave
- 3. match n:1 ad n osservazioni del master corrispondono 1 sola osservazione dello slave
- 4. match n:n ad n osservazioni del master corrispondono n osservazioni dello slave

Il caso 1. è il più semplice; master e slave hanno lo stesso insieme di variabili chiave ed è il caso presentato nella prima rappresentazione grafica che segue. Quindi nelle match-variable(s) vanno indicate queste variabili chiave. I casi 2. e 3. sono speculari e sono caratterizzati dal fatto di avere un insieme di variabili chiave diverso tra master e slave. In questo caso le match-variable(s) corrispondono alle variabili chiave del dataset 1 (il master nel caso 2. e lo slave nel caso 3.). Rimane vero però che le variabili match-variable(s) devono essere presenti in entrambi i dataset. Infine il caso n:n è un caso limite che qui non tratteremo.

In Stata il comando che permettere di compiere questa operazione è merge . Nelle versioni precedenti di Stata tale comando prevedeva che i dataset master e slave fossero già ordinati in base alle variabili chiave per cui non era molto agevole da usare¹. Qui si farà ricorso al comando mmerge, che permette di superare questa limitazione e che in più ha delle opzioni assai utili.

Anche in questo caso diamo una rappresentazione grafica del problema da risolvere:

+-				-+		+-			+		+-					+
master			-	slave					risultato				o			
- 	id	a	 Ъ	-। 		- 	id	d	 		- 	id	a	 Ъ	 d	 _merge
	1	10	11	-	+		1	18	1	=	-	1	10	11	18	3
	2	12	13				3	19	- 1			2	12	13		1
	3	14	15				4	20	- 1			3	14	15	19	3
	5	16	17			+-			+			4			20	2
++									-	5	16	17		1		
											+-					+

 $^{^1\}mathrm{Questa}$ limitazione non è più presente nella versione attuale del comando \mathtt{merge}

master è il dataset attualmente in memoria, al quale vogliamo aggiungere la variabile d presente nel dataset slave. La variabile che ci permette di raccordare i due dataset è id. Con essa possiamo assegnare il valore 18 che troviamo in corrispondenza di id=1 in slave all'osservazione sempre con id=1 in master.

Quando associamo le osservazioni si possono presentare 3 casi.

- osservazione presente in entrambi i dataset (_merge=3)
- osservazione presente solo nel dataset slave (_merge=2)
- osservazione presente solo nel dataset master (merge=1)

Si può intuire dal dataset risultato cosa succede in termini di creazione di dati missing per i casi di _merge=1 e _merge=2.

Quello mostrato è il caso più semplice in cui id è variabile chiave per entrambi i dataset. Ma se non fosse così, come mostrato di seguito?

m	aster		-+ -1			sl	ave					r	isul	tato	
 f_id 	p_id	a	 			f_id	b			 	f_id	p_id	a	b	_merge
1	1	18	İ	+	İ	1	18	i	=	i	1	1	18	18	3
1	2	13	1		-	2	19			-	1	2	13	18	3
1	3	15			-	3	20			-	1	3	15	18	3
1 2	1	17			+-			+		-	2	1	17	19	3
1 2	2	16								-	2	2	16	19	3
3	1	20	1								3	1	20	20	3

In questo caso l'informazione contenuta in b si "spalma" su tutti i p_id che hanno lo stesso f_id di master. Consiglio, per comodità, di usare sempre come master il dataset che ha il numero maggiore di variabili chiave.

Come accennato in precedenza il comando mmerge non prevede che i due dataset siano preventivamente ordinati; questa è la sua sintassi:

```
mmerge match-variable(s) using filename [, options]
```

dove in match-variable(s) vanno indicate la/le variabile/i che servono da raccordo tra i due dataset, in filename il percorso e il nome del dataset che funge da slave. Tra le principali options citiamo:

ukeep(varlist) dove in varlist vengono indicate le variabili che vogliamo aggiungere dal dataset filename. Se non viene indicato nulla, verranno aggiunte tutte le variabili di filename.

udrop(varlist) dove in varlist vengono indicate le variabili che non vogliamo aggiungere dal dataset filename.

update Piccola spiegazione. Di default il dataset master è inviolabile ossia nel dataset risultante dal merge saranno tenuti i valori delle variabili del dataset master anche se queste stesse sono presenti nello slave ed hanno valori diversi. Se viene specificata questa opzione verrà preso il valore del dataset using nel caso in cui nel master vi siano valori missing.

replace deve essere specificata anche l'opzione update. Con questa opzione i valori non missing del master saranno sostituiti con i corrispondenti valori non missing dello slave quando non corrispondenti. Comunque un valore non missing del master non verrà mai sostituito con un valore missing dello slave.

uname(stub) specifica il prefisso da aggiungere alle variabili importate dal dataset slave.

Alcune di queste opzioni sono un po' complicate quindi vediamo alcuni esempi.

- . use master, clear
- . clist

	mat	corso	fac
1.	VR0001	M50	M
2.	VR0002		E
3.	VR0003	S07	S
4.	VR0004	L12	L
5.	VR0005	L08	L
6.	VR0006	S33	S
7.	VR0007	E07	E
8	VROOOR	COO	G

- . use SLAVE, clear
- . clist

	mat	corso	fac	disab	partime
1.	VR0001	M50	M	1	PT
2.	VR0002	E01	E	0	
3.	VR0003	•	S	0	
4.	VR0004	L12	L	0	PT
5.	VR0005	L08	L	0	
6.	VR0006	S33	S	1	
7.	VR0007	E07	E	0	
8.	VR0008	G08	G	0	PT

Opzione ukeep (varlist)

- . use MASTER, clear
- . mmerge mat using SLAVE, ukeep(disab)

```
merge specs | matching type | auto | mv's on match vars | none | unmatched obs from | both | master | file | MASTER.dta | obs | 8 | vars | 3 | match vars | mat (key) | match vars | mat (key) | using | file | SLAVE.dta
```

```
obs |
                                2 (selection via udrop/ukeep)
                     vars |
               match vars | mat (key)
                   file | MASTER.dta
     result
                     obs |
                                6 (including _merge)
                    vars |
                   _merge | 8 obs both in master and using data
      . clist
                mat corso
                                    fac disab
                                    fac disab

M 1
E 0
S 0
L 0
L 0
S 1
E 0
G 0
             VR0001
                         M50
                                                      both in master and using data
       1.
             VR0002
                                                      both in master and using data
       2.
                         S07
       3.
             VR0003
                                                      both in master and using data
                         L12
L08
             VR0004
                                                      both in master and using data
             VR0005
       5.
                                                      both in master and using data
                          S33
E07
G02
             VR0006
                                                      both in master and using data
       6.
             VR.0007
                          E07
       7.
                                                      both in master and using data
             VR0008
                         G02
                                                      both in master and using data
Opzione udrop(varlist)
      . use MASTER, clear
      . mmerge mat using SLAVE, udrop(disab)
      merge specs
            matching type | auto
       mv's on match vars | none
       unmatched obs from | both
                  file | MASTER.dta
       master
                     obs |
                                8
                                3
                    vars |
              match vars | mat (key)
       using
                   file | SLAVE.dta
                     obs |
                                8
                                4 (selection via udrop/ukeep)
                     vars |
              match vars | mat (key)
              common vars | corso fac
                    file | MASTER.dta
      result
                     obs |
                                8
                    vars |
                               6 (including _merge)
                   _merge | 8 obs both in master and using data (code==3)
      . clist
                mat
                         corso
                                     fac
                                           partime
                                                                             _merge
                                                       both in master and using data
             VR0001
                          M50
        1.
             VR0002
        2.
                                       Ε
                                                       both in master and using data
             VR0003
                          S07
       З.
                                      S
                                                       both in master and using data
             VR0004
                          L12
                                     L
                                              PT
                                                       both in master and using data
                                     L
S
             VR0005
                          L08
       5.
                                                       both in master and using data
```

both in master and using data

both in master and using data $% \left(1\right) =\left(1\right) \left(1\right)$

both in master and using data

PT

S E G

S33

E07

G02

VR0006

VR0007

VR0008

6.

7.

8.

Opzione update (Prestate attenzione a cosa succede alla variabile corso)

```
. use MASTER, clear
```

. mmerge mat using ${\tt SLAVE}$

merge specs matching typ mv's on match var unmatched obs fro	s none
master fil ob var match var	•
using fil ob var match var	e SLAVE.dta 5 8 5 5 6 mat (key)
	s corso fac
result fil ob var	
_merg	8 obs both in master and using data (code==3)

[.] drop _merge

. clist

	mat	corso	fac	disab	partime
1.	VR0001	M50	M	1	PT
2.	VR0002		E	0	
3.	VR0003	S07	S	0	
4.	VR0004	L12	L	0	PT
5.	VR0005	L08	L	0	
6.	VR0006	S33	S	1	
7.	VR0007	E07	E	0	
8.	VR0008	G02	G	0	PT

[.] use MASTER, clear

. mmerge mat using SLAVE, update

	common vars	corso			
result	file obs vars		R.dta B	ding _merg	
	_merge	l :	l obs in	both, mis	ter agrees with using data (code==3) sing in master data updated (code==4) ter disagrees with using data (code==5)
. clist					
mat	corso	fac	disab	partime	_merge
VR0001	M50	M	1	PT	in both, master agrees with using data
VR0002	E01	E	0		in both, missing in master data updated
VR0003	S07	S	0		in both, master disagrees with using data
VR0004	L12	L	0	PT	in both, master agrees with using data
VR0005	L08	L	0		in both, master agrees with using data
VR0006	S33	S	1		in both, master agrees with using data
VR0007	E07	E	0		in both, master agrees with using data
VR0008	G02	G	0	PT	in both, master disagrees with using data

Opzione replace

- . use MASTER, clear
- . mmerge mat using SLAVE, update replace

mv's or	ecs atching type a match vars and obs from	none				
master	file obs vars match vars	3 mat (3 (key)			
using	file obs vars match vars	SLAVE. 8	dta 3 5 (key)			
	common vars	•	fac			
result	obs		l.dta			
	_merge	1 1	obs in	both,	mis	ter agrees with using data (code==3) sing in master data updated (code==4) ter disagrees with using data (code==5)
. clist						
mat VR0001 VR0002 VR0003 VR0004 VR0005 VR0006	corso M50 E01 L12 L08 S33	fac M E S L L S	disab 1 0 0 0 0	part	ime PT PT	_merge in both, master agrees with using data in both, missing in master data updated in both, master disagrees with using data in both, master agrees with using data in both, master agrees with using data in both, master agrees with using data

VR0007	E07	E	0		in both, master agrees with using dat
VR0008	G08	G	0	PT	in both, master disagrees with using dat

Opzione uname (stub)

- . use MASTER, clear
- . mmerge mat using SLAVE, ukeep(corso fac disab) uname(chk_)

```
merge specs
      matching type | auto
  mv's on match vars | none
 unmatched obs from | both
                file | MASTER.dta
 master
                obs I
                            8
                vars |
          match vars | mat
                            (key)
                file | SLAVE.dta
 using
                obs I
                vars |
                            4 (selection via udrop/ukeep)
          match vars | mat (key)
                file | MASTER.dta
result
                obs l
                vars |
                            8 (including _merge)
              _merge |
                            8 obs both in master and using data
```

- . drop _merge
- . clist

	mat	corso	fac	chk_corso	chk_fac	chk_di~b
1.	VR0001	M50	M	M50	M	1
2.	VR0002		E	E01	E	0
3.	VR0003	S07	S		S	0
4.	VR0004	L12	L	L12	L	0
5.	VR0005	L08	L	L08	L	0
6.	VR0006	S33	S	S33	S	1
7.	VR0007	E07	E	E07	E	0
8.	VR0008	G02	G	G08	G	0

In conclusione il comando mmerge serve essenzialmente per aggiungere variabili, e solo indirettamente per aggiungere osservazioni.

Come detto, il comando mmerge è un comando aggiunto, quindi non rientra nella dotazione standard di Stata. Il suo utilizzo al posto del comando merge standard di Stata aveva senso fino ad un paio di realese fa del programma. A partire dalla 11 questo comando funziona in maniera egeregia e si può tranquillamente usare al posto di mmerge; questa è la sua sintassi:

```
merge \{1:1 \mid m:1 \mid 1:m \mid m:m\} varlist using filename [, options]
```

rammentato che in *varlist* vanno indicate la/le variabile/i che servono da raccordo tra i due dataset ed avendo già spiegato il significato di 1:1, m:1, 1:m e m:m, passiamo ad analizzare le opzioni del comando:

keepusing(varlist) vengono indicate le variabili che vogliamo aggiungere dal dataset filename. Se non viene indicato nulla, verranno aggiunte tutte le variabili di filename.

generate (newvar) nome della variabile che descrive l'esito del merging. Se non viene specificato nulla viene creata di default la variabile _merge.

nogenerate non viene creata la variabile _merge.

nolabel non copia i label values dallo using filename.

nonotes non copia le note dallo using filename.

update come già spiegato per il comando mmerge, di default il dataset master è inviolabile ossia nel dataset risultante dal merge saranno tenuti i valori delle variabili del dataset master anche se queste stesse sono presenti nello slave ed hanno valori diversi. Se viene specificata questa opzione verrà preso il valore del dataset using nel caso in cui nel master vi siano valori missing.

replace deve essere specificata anche l'opzione update. Con questa opzione i valori non missing del master saranno sostituiti con i corrispondenti valori non missing dello slave quando non corrispondenti. Comunque un valore non missing del master non verrà mai sostituito con un valore missing dello slave.

noreport sopprime la visualizzazione dell'output dell'operazione di merge

force consente il merge anche quando una stessa variabile è stringa in un database e numerica nell'altro

assert(results) specifica che risultati del merge devono verificarsi. In caso contrario viene generato un messaggio di errore.

keep(results) specifica quali risultati del merge devono essere presi e di conseguenza quali debbano essere scartati. In altre parole si selezionano le osservazioni che rispettano certi risultati del merge.

10.3 Collassare un dataset

Collassare un dataset vuol dire ridurre il numero delle sue osservazioni, trasformando le informazioni contenute nelle righe che si vanno ad eliminare secondo una certa funzione. È il caso per esempio di un dataset con informazioni sugli individui che viene collassato in un dataset che contenga informazioni aggregate per singola famiglia di appartenenza. Il comando da usare è:

```
collapse clist [if][in][weight][, options]
```

dove in clist si elencano le variabili che verranno collassate con la funzione da applicare secondo lo schema

```
(stat) varlist
```

o

(stat) $new_var=varname$

Le funzioni applicabili in stat sono:

- mean (opzione di default)
- sd

- sum
- count
- max
- min
- iqr
- median
- p1, p2,....p50, ..., p98, p99

Infine in by vanno le variabili che faranno da variabili chiave per il dataset collassato. Se ne deduce che questo tipo di trattamento è applicabile solo a variabili numeriche; le variabili che non vengono specificate in *clist* o in by verranno cancellate.

. list;

	+			+
	gpa	hour	year	number
1.	3.2	30	1	3
2.	3.5	34	1	2
3.	1 2.8	28	1	9
4.	1 2.1	30	1	4 I
5.	3.8	29	2	3
6.	1 2.5	30	2	4
7.	1 2.9	35	2	5 I
8.	3.7	30	3	4
9.	1 2.2	35	3	2
10.	3.3	33	3	3
11.	3.4	32	4	5 I
12.	1 2.9	31	4	2 I
	+			+

- . collapse (count) n_gpa=gpa (mean) gpa (min) mingpa=gpa (max) maxgpa=gpa (mean) meangpa=gpa, by(year);
- . list;

-	+					+
	year	n_gpa	gpa	mingpa	maxgpa	meangpa
1.	1	4	2.9	2.1	3.5	2.9
2.	1 2	3	3.066667	2.5	3.8	3.066667
3.	3	3	3.066667	2.2	3.7	3.066667
4.	4	2	3.15	2.9	3.4	3.15
_	L					

10.4 reshape di un dataset

Prima di spiegare il **reshape**, occorre introdurre il concetto di wide form e di long form. Si considerino i seguenti esempi di dataset:

wide form: long form:

id sex inc80 inc81 id year sex inc

1	0	5000	5500		1	80	0	5000
2	1	2000	2200		1	81	0	5500
3	0	3000	2000		2	80	1	2000
					2	81	1	2200
					3	80	0	3000
					3	81	0	2000

I due dataset sono identici, contengono le stesse informazioni, quello che cambia è l'organizzazione delle informazioni. In Stata esiste il comando reshape per trasformare un dataset in wide form in un dataset in long form e viceversa. Ma capirne il meccanismo non è semplicissimo per cui cercherò di frazionare il procedimento e dare delle linee guida. Innanzitutto si noti che il passaggio da un form all'altro comporta un cambiamento delle variabili chiave (id in wide, id e year in long) e in particolare nel passaggio

- da long a wide: una variabile chiave viene perduta e i suoi valori andranno a far parte del nome di un certo gruppo di variabili
- da wide a long: si genera una nuova variabile chiave i cui valori discendono da una parte del nome di un certo gruppo di variabili

Quindi la prima informazione che dobbiamo conoscere è quali sono le variabili chiave del dataset di partenza e quali saranno le variabili chiave del dataset risultante dall'applicazione del comando reshape.

Per applicare il comando dobbiamo definire tre elementi ma il loro contenuto è funzione del tipo di reshape, per cui :

- da long a wide
 - a. elemento i: variabile (o variabili) che saranno le variabili chiave nel dataset finale (nel nostro esempio id)
 - b. elemento j: variabile appartenente al gruppo delle variabili chiave del datasset di partenza, che verrà eliminata e i cui valori andranno ad aggiungersi al nome delle nuove variabili del gruppo X_{ii} ; nel nostro esempio year
 - c. elemento X_{ij} : gruppo di variabili il cui valore cambia in funzione delle variabili degli elementi i e j.
- da wide a long
 - a. elemento i: variabile (o variabili) che sono le variabili chiave nel dataset di partenza (nel nostro esempio id)
 - b. elemento j: variabile chiave (year nel nostro esempio) che si aggiungerà alle variabili appartenenti all'elemento i e i cui valori sono presi dal nome delle variabili del gruppo X_{ij} ; nel nostro esempio inc80 e inc81.

c. elemento X_{ij} : gruppo di variabili il cui valore cambia in funzione delle variabili degli elementi i e j.

le rimanenti variabili non rientrano in nessuno dei precedenti elementi e sono quelle variabili che non sono variabili chiave e che non sono funzione delle variabili degli elementi i e j.

```
La sintassi per il passaggio nelle due forme è: per passare da wide a long reshape long stubnames@, i(varlist) j(varname) per passare da long a wide reshape wide stubnames, i(varlist) j(varname) in stubnames vanno le variabili dell'elemento X<sub>ij</sub>
```

Nel nostro esempio sarà:

```
reshape long inc@, i(id) j(year)
reshape wide inc, i(id) j(year)
```

In conclusione il passaggio da wide a long, ha come effetto l'incremento del numero di osservazioni e la diminuzione del numero di variabili, il passaggio da long a wide la diminuzione del numero di osservazione e l'incremento del numero di variabili. Il tutto viene documentato dall'output del comando.

Si tenga presente che tutte le variabili che apparterebbero al gruppo X_{ij} vanno indicate, pena un messaggio di errore. Nel caso non si volessero trasformare alcune variabili è bene cancellarle (drop) prima del reshape.

Esempio di reshape long

```
. desc rela* sesso* eta* statociv* titstu* conprof* ateco* posprof* presenza*, simple
            sesso11
                                      conprof7
                                                   posprof5
rela1
                         statociv9
rela2
            sesso12
                         statociv10
                                      conprof8
                                                   posprof6
rela3
            eta1
                         statociv11
                                      conprof9
                                                   posprof7
                         statociv12
                                      conprof10
rela4
            eta2
                                                   posprof8
rela5
            eta3
                         titstu1
                                      conprof11
                                                  posprof9
                                                   posprof10
rela6
            eta4
                         titstu2
                                      conprof12
rela7
            eta5
                         titstu3
                                      ateco1
                                                   posprof11
rela8
            eta6
                         titstu4
                                      ateco2
                                                   posprof12
                         titstu5
rela9
            eta7
                                      ateco3
                                                   presenza1
rela10
            eta8
                         titstu6
                                      ateco4
                                                   presenza2
rela11
            eta9
                         titstu7
                                      ateco5
                                                   presenza3
                                                   presenza4
rela12
            eta10
                         titstu8
                                      ateco6
sesso1
            eta11
                         titstu9
                                      ateco7
                                                   presenza5
sesso2
            eta12
                         titstu10
                                      ateco8
                                                   presenza6
            statociv1
                         titstu11
                                      ateco9
sesso3
                                                  presenza7
                                      ateco10
            statociv2
                         titstu12
                                                   {\tt presenza8}
sesso4
                                                   presenza9
sesso5
            statociv3
                         conprof1
                                      ateco11
                                                   presenza10
sesso6
            statociv4
                         conprof2
                                      ateco12
sesso7
            {\tt statociv5}
                         conprof3
                                      posprof1
                                                   presenza11
sesso8
            statociv6
                         conprof4
                                      posprof2
                                                   presenza12
sesso9
            statociv7
                         conprof5
                                      posprof3
sesso10
            statociv8
                         conprof6
                                      posprof4
```

[.] clist $\,$ ID rela1 sesso1 eta1 rela2 sesso2 rela3 sesso3 in 1/10

```
rela1
                                   eta1 rela2
                                                 sesso2 rela3
         5546
                                     62
 1.
                   1
2.
        4530
                                     71
                                                                       2
                              1
                    1
                                                                       2
3.
        6419
                                     51
                                                      2
                                                             3
                    1
                              1
 4.
        23864
                    1
                              1
                                     69
                                             5
                                                      2
 5.
        5622
                                     62
6.
        8877
                                     42
                                             2
                                                             3
                                                                       2
                                     70
7.
        3867
                    1
                              1
8.
        16369
                                     40
                                             2
                                                             3
                                                                       2
                              1
                                                      2
                    1
        10748
                                             2
                                                      2
9.
                    1
                              1
                                     64
                                                             3
                                                                       2
10.
        17607
                    1
                              1
                                     40
                                             2
                                                      2
```

. reshape long rela@ sesso@ eta@ statociv@ titstu@ conprof@ ateco@ posprof@ pres > enza@, i(ID) j(pers_id) (note: j = 1 2 3 4 5 6 7 8 9 10 11 12)

```
wide
                                                long
Number of obs.
                                      10
                                           ->
                                                  120
Number of variables
                                           ->
                                     117
                                                   19
j variable (12 values)
                                           ->
                                                pers_id
xij variables:
                 rela1 rela2 ... rela12
                                                rela
              sesso1 sesso2 ... sesso12
                                           ->
                                                sesso
                   eta1 eta2 ... eta12
                                           ->
                                                eta
     \verb|statociv1| statociv2| \dots statociv12|
                                           ->
                                                statociv
          titstu1 titstu2 ... titstu12
                                                titstu
        conprof1 conprof2 ... conprof12
                                                conprof
              ateco1 ateco2 ... ateco12
                                           ->
                                                ateco
        posprof1 posprof2 ... posprof12
                                           ->
                                                posprof
     presenza1 presenza2 ... presenza12
                                                presenza
```

. drop if rela==. & sesso==. (93 observations deleted)

. clist $\,$ ID pers_id rela sesso rela eta in 1/20 $\,$

	ID	pers_id	rela	sesso	rela	eta
1.	3867	1 1	1	1	1	70
2.	3867	2	2	2	2	72
3.	4530	1	1	1	1	71
4.	4530	2	2	2	2	69
5.	4530	3	3	2	3	35
6.	5546	1	1	2	1	62
7.	5622	1	1	1	1	62
8.	5622	2	5	2	5	76
9.	6419	1	1	1	1	51
10.	6419	2	2	2	2	49
11.	6419	3	3	2	3	29
12.	6419	4	4	2	4	85
13.	8877	1	1	1	1	42
14.	8877	2	2	2	2	37
15.	8877	3	3	2	3	15
16.	10748	1	1	1	1	64
17.	10748	2	2	2	2	64
18.	16369	1	1	1	1	40
19.	16369	2	2	2	2	33
20.	16369	3	3	2	3	12

Esempio di reshape wide

. clist nquest nord ireg anasc sesso eta staciv $% \left(1\right) =\left(1\right) \left(1\right$

```
nquest
                        ireg
                               anasc
  1.
          34
                                1943
                                                 59
                                                           1
  2.
          34
                          8
                                1944
                                                 58
                                                           1
  3.
                                1971
                                                           2
          34
                   3
                          8
                                                 31
  4.
          34
                   4
                          8
                                1973
                                                 29
                                                           2
  5.
         173
                                1948
                          18
  6.
         173
                   2
                          18
                                1950
                                            2
                                                 52
  7.
         173
                         18
                                1975
                                                 27
  8.
                   4
                         18
                                1978
                                                 24
                                                           2
         173
                                            1
  9.
         375
                   1
                         16
                                1925
                                            2
                                                 77
                                                           4
 10.
         375
                   2
                         16
                                1926
                                            1
                                                 76
                                                           1
. reshape wide ireg anasc sesso eta , i(nquest) j(nord)
(note: j = 1 2 3 4)
staciv not constant within nquest
Type "reshape error" for a listing of the problem observations.
r(9);
** Ooops! ho dimenticato staciv. Adesso rimedio.
 reshape wide ireg anasc sesso eta staciv, i(nquest) j(nord)
(note: j = 1 2 3 4)
Data
                                     long
                                             ->
                                                  wide
Number of obs.
                                       10
                                             ->
                                                      3
Number of variables
                                        7
                                             ->
                                                      21
j variable (4 values)
                                                   (dropped)
                                     nord
xij variables:
                                     ireg
                                             ->
                                                  ireg1 ireg2 ... ireg4
                                    anasc
                                             ->
                                                   anasc1 anasc2 ... anasc4
                                    sesso
                                             ->
                                                   sesso1 sesso2 ... sesso4
                                      eta
                                                  eta1 eta2 ... eta4
                                                  staciv1 staciv2 ... staciv4
                                   staciv
. clist nquest anasc1 anasc2 anasc3 anasc4
                                 anasc2
                                            anasc3
                                                       anasc4
           nquest
                      anasc1
  1.
                        1943
                                              1971
                                                         1973
                34
                                   1944
  2.
               173
                         1948
                                   1950
                                              1975
                                                         1978
```

10.5 Contrarre un dataset

375

1925

1926

La contrazione consiste nella sostituzione del dataset corrente con un nuovo dataset costituito da tutte le possibili combinazioni tra un gruppo di variabili a cui è possibile aggiungere anche nuove variabili con le frequenze e le percentuali di ciascuna combinazione. Per spiegare il fenomeno ricorriamo ad un piccolo esempio. Abbiamo un dataset che tra le altre variabili contiene le variabili dummy higher_edu_M_1 e higher_edu_F_1 dove il valore 1 significa che il soggetto è laureato, 0 non laureato:

З.

0	4,310	88.59	88.59
1	500	10.28	98.87
. !	55	1.13	100.00
Total	4.865	100.00	

-> tabulation of higher_edu_F_1

(mean) higher_edu_ F_1	Freq.	Percent	Cum.
0 1 .	4,387 443 35	90.17 9.11 0.72	90.17 99.28 100.00
Total	4,865	100.00	

e questa è la frequenza combinata delle due variabili:

. tab higher_edu_M_l higher_edu_F_l, miss

(mean) higher_edu _M_1		higher_edu_F_l 1	.	Total
0 1	4,082 269 36	209 229 5	19 2 14	4,310 500 55
Total	4,387	443	35	4,865

Quello che si vuole ottenere è un nuovo dataset che in questo caso sarà costituito da 9 osservazioni, ovvero da tutte le possibili combinazioni delle due variabili. Questo è possibile tramite il comando

contract
$$varlist [if][in][weight][$$
, $options]$

dove le possibili options sono:

<u>freq(newvar)</u> nome della variabile che contiene le frequenze della combinazione. Il nome di default è <u>freq</u>

<u>cfreq(newvar)</u> nome della variabile che contiene le frequenze cumulate della combinazione

percent(newvar) nome della variabile che contiene le percentuali della combinazione
cpercent(newvar) nome della variabile che contiene le percentuali cumulate della combinazione

float fa in modo che le variabili delle percentuali siano in formato float

<u>format</u>(format) formato di visualizzazione per le variabili delle percentuali: di default è format(%8.2f)

zero include anche le combinazioni con frequenza zero nomiss cancella le osservazioni con valori missing

Applichiamo il comando al nostro piccolo esempio

. contract higher_edu_M_l higher_edu_F_l, freq(_freq) cfreq(_cfreq)

percent(_perc) cpercent(_cperc);

. clist;

	highe~M_l	highe~F_l	_freq	_cfreq	_perc	_cperc
1.	0	0	4082	4082	83.91	83.91
2.	0	1	209	4291	4.30	88.20
3.	0		19	4310	0.39	88.59
4.	1	0	269	4579	5.53	94.12
5.	1	1	229	4808	4.71	98.83
6.	1		2	4810	0.04	98.87
7.		0	36	4846	0.74	99.61
8.		1	5	4851	0.10	99.71
9.			14	4865	0.29	100.00

oppure volendo escludere le osservazioni missing otterremo un dataset con 4 osservazioni

. tab higher_edu_M_l higher_edu_F_l;

(mean)			
higher_edu	(mean) higher	_edu_F_1	
_M_1	0	1	Total
0	4,082	209	4,291
1	269	229	498
Total	4,351	438	4,789

. clist;

	highe~M_l	highe~F_l	_freq	_cfreq	_perc	_cperc
1.	0	0	4082	4082	85.24	85.24
2.	0	1	209	4291	4.36	89.60
3.	1	0	269	4560	5.62	95.22
4.	1	1	229	4789	4.78	100.00

Per un'applicazione pratica di contract vi rimando al capitolo 19 a pagina 181.

Capitolo 11

Lavorare con Date e Orari

11.1 La teoria

Vi siete mai chiesti come vengono trattate le date e gli orari dai software? Ebbene bisogna scindere ciò che viene rappresentato a video da quello che il programma elabora. Prendiamo ad esempio le seguenti visualizzazioni di una data:

. desc data_in data_out

```
storage display
                                  value
variable name type
                      format
                                  label
                                             variable label
data_in
                      dD_m_Y
               long
               long
                      %dD_m_Y
data out
. clist data_in data_out in 1
      data_in
               data_out
 1. 01 Jan 06 22 Feb 06
. format data_in data_out %td
. clist data_in data_out in 1
      data_in data_out
  1. 01jan2006 22feb2006
. format data_in data_out %tdddMonthYY
. clist data_in data_out in 1
          data_in
                        data_out
        1January06 22February06
. format data_in data_out %tdDD/NN/CCYY
. clist data_in data_out in 1
        data_in
                  data_out
  1. 01/01/2006 22/02/2006
```

Come vedete ci sono diverse visualizzazioni della stessa informazione che in realtà è un numero intero:

. summ data_in data_out in 1

Variable	Obs	Mean	Std. Dev.	Min	Max
data in	 1	16802		16802	16802
data_out	1	16854		16854	16854

Infatti il meccanismo si basa sull'assegnazione alla data del 01/01/1960 del valore 0, al 02/01/1960 del valore 1 e così via. Quindi il calcolo dei giorni tra due date si riduce ad una differenza tra due numeri interi. La stessa logica si applica ai dati rigurdanti le ore. In questo caso si ragiona in termine di millisecondi (ms) a partire dalle ore 0, 0 minuti, 0 secondi e 0 millisecondi del 1 gennaio 1960. Per i calcoli si considerino le seguenti equivalenze:

- 1 secondo = 1000 ms
- 1 minuto = $60 \text{sec} \times 1000 \text{ms} = 60000 \text{ms}$
- 1 ora = $60 \text{min} \times 60 \text{sec} \times 1000 \text{ms} = 3600000 \text{ms}$
- 1 giorno = 24h × 60min × 60sec × 1000ms = 86400000ms

E per date e ore antecedenti il primo gennaio 1960? Ovviamente si ricorre a numeri interi negativi!

In Stata sono possibili diversi sistemi di misura e a partire dalla versione 10 è stata introdotta anche la possibilità di usare la misura basata sulle ore. A seconda del formato che associamo al dato avremo le seguenti interpretazioni:

Formato	Rappresenta	Valore -1	Valore 0	Valore 1
%tc	orario	31 Dicembre 1959 23:59:59:999	1 Gennaio 1960 00:00:00:000	1 Gennaio 1960 00:00:00:001
%tC	orario	31 Dicembre 1959 23:59:59:999	1 Gennaio 1960 00:00:00:000	1 Gennaio 1960 00:00:00:001
%td	giorni	31 Dicembre 1959	1 Gennaio 1960	2 Gennaio 1960
%tw	settimane	1959 settimana 52	1960 settimana 1	1960 settimana 2
%tm	mesi	1959 dicembre	1960 gennaio	1960 febbraio
%tq	quadrimestri	1959 quarto quadrimestre	1960 primo quadrimestre	1960 secondo quadrimestre

%th	semestri	1959 secondo semestre	1960 primo semestre	1960 secondo semestre
%ty	anni	1 ac	0	1 dc
%tg	generico	-1	0	1

Vediamo adesso a cosa corripondono i valori di var1 in formato %tc e %tC:

- . gen double var2 = var1
- . format var2 %tc
- . gen double var3 = var1
- . format var3 %tC
- . clist

```
var2
              var1
           -100000
                   31dec1959 23:58:20 31dec1959 23:58:20
1.
2.
                   01jan1960 00:00:00 01jan1960 00:00:00
3.
              100 01jan1960 00:00:00 01jan1960 00:00:00
              1000
                   01jan1960 00:00:01
                                       01jan1960 00:00:01
                   01jan1960 00:00:10
             10000
                                       01jan1960 00:00:10
            100000
                   01jan1960 00:01:40
6.
                                       01jan1960 00:01:40
                                       02jan1960 03:46:40
7.
         100000000
                   02jan1960 03:46:40
      100000000000
                   03mar1963 09:46:40
                                       03mar1963 09:46:40
```

A questo punto spieghiamo la differenza tra %tc e %tC. Le due configurazioni sono uguali eccetto per il fatto che %tC tiene conto anche dei secondi inseriti in seguito a correzioni astronomiche per la sincronizzazione con la rotazione della terra (standard GMT). Invece %tc si basa sull'orologio atomico (standard UTC).

Per completare il quadro vediamo i valori dei rimanenti %t per diversi valori di var1:

- . gen var4 = var1
- . format var4 %td
- . gen var5 = var1
- . gen var5 = var1
- . format var5 %tw
- . gen var6 = var1
- . format var6 %tm
- . gen var7 = var1
- . format var7 %tq
- . gen var8 = var1
- . format var8 %th

```
. gen var9 = var1
. format var9 %ty
. gen var10 = var1
. format var10 %tg
. clist var1-var5, noobs
           var1
                               var2
                                                   var3
                                                               var4
                                                                        var5
            -10 31dec1959 23:58:20
                                     31dec1959 23:58:20
                                                         22dec1959
                                                                     1959w43
             0 01jan1960 00:00:00 01jan1960 00:00:00
                                                        01jan1960
            10 01jan1960 00:00:00 01jan1960 00:00:00
                                                         11jan1960
                                                                    1960w11
            100 01jan1960 00:00:01 01jan1960 00:00:01
                                                                     1961w49
                                                         10apr1960
            200 01jan1960 00:00:10
                                     01jan1960 00:00:10
                                                         19jul1960
                                                                     1963w45
                01jan1960 00:01:40
                                     01jan1960 00:01:40
                                                         15may1961
                02jan1960 03:46:40 02jan1960 03:46:40
           800
                                                         11mar1962
                                                                    1975w21
           1000
                03mar1963 09:46:40 03mar1963 09:46:40 27sep1962
. clist var1 var6-var10, noobs
           var1
                    var6
                            var7
                                    var8
                                          var9
                                                    var10
                  1959m3
                          1957q3
            -10
                                  1955h1
                                           -10
                                                       -10
                  1960m1
                          1960q1
                                  1960h1
             0
                                             0
                                                        0
             10
                1960m11
                          1962q3
                                  1965h1
                                            10
                                                       10
            100
                  1968m5
                          1985q1
                                  2010h1
                                          0100
                                                       100
                          2010q1
            200
                  1976m9
                                  2060h1
                                          0200
                                                      200
                          2085q1
                                  2210h1
            500
                  2001m9
                                          0500
                                                      500
                          2160q1
           800
                                          0800
                                                      800
                  2026m9
                                  2360h1
           1000
                  2043m5
                          2210q1
                                  2460h1
                                          1000
                                                     1000
```

11.2 Visualizzazione delle date e delle ore

Le possibilità di visualizzazione sono ampie e si basano sul concatenamento di diversi codici. Partiamo dalla seguente lista di codici:

Codice	Rappresenta	Visualizza
CC	secolo - 1	01-99
СС	secolo -1	1-99
YY	anno a due cifre	00-99
уу	anno a due cifre	0-99
JJJ	giorno dell'anno	001-366
jjj	giorno dell'anno	1-366
Mon	mese	Jan, Feb,, Dec
Month	mese	January, February,, December
mon	mese	jan, feb,, dec
month	mese	january, february,, december
NN	mese	01-12
nn	mese	1-12
DD	giorno del mese	01-31
dd	giorno del mese	1-31

Codice	Rappresenta	Visualizza
DAYNAME	giorno della settimana	Sunday, Monday, (allineato?)
Dayname	giorno della settimana	Sunday, Monday, (non allineato?)
Day	giorno della settimana	Sun, Mon,
Da	giorno della settimana	Su, mo,
day	giorno della settimana	sun, mon,
da	giorno della settimana	su, mo,
h	semestre	1-2
q	quadrimestre	1-4
WW	settimana	01-52
ww	settimana	1-52
НН	ora	00-23
Hh	ora	00-12
hH	ora	0-23
hh	ora	0-12
MM	minuti	00-59
mm	minuti	0-59
SS	secondi	00-60
SS	secondi	0-60
.s	decimi	.09
.ss	centesimi	.0099
.sss	millesimi	.000999
am	visualizza am o pm	am o pm
a.m.	visualizza a.m. o p.m.	a.m. o p.m.
AM	visualizza AM o PM	AM o PM
A.M.	visualizza A.M. o P.M.	A.M. o P.M.
	visualizza un punto	
,	visualizza una virgola	$ \;,\;$
:	visualizza i due punti	:
_	visualizza un trattino	_
_	visualizza uno spazio	
/	visualizza la barra inclinata a dx	/
\	visualizza la barra inclinata a sx	
!tc	visualizza il carattere c	c
+	separatore della sintassi ¹	

The maximum length of a format specifier is 48 characters; the example shown above is 34 characters.

¹Serve solo a separare i vari codici affinché siano più leggibili, ma non ha nessun effetto su quanto visualizzato

11.3 Ricavare date da variabili stringa

```
. desc data_nascita
             storage display
                                  value
variable name type format
                                  label
                                             variable label
data_nascita str10 %10s
. list data_nascita in 1/8, sep(0)
     | data_nas~a |
  1. | 30/05/1982 |
  2. | 17/12/1982
  3. | 22/02/1982
  4. | 28/08/1981
 5. | 14/02/1982 |
 6. | 22/06/1982 |
 7. | 02/07/1982 |
  8. | 18/10/1982 |
. gen double da_nas = date(data_nascita,"DMY")
. format da_nas %tdDD/NN/CCYY
. list da_nas in 1/8, sep(0)
     | data_nas~a |
  1. | 30/05/1982 |
  2. | 17/12/1982
 3. | 22/02/1982 |
  4. | 28/08/1981
 5. | 14/02/1982
  6. | 22/06/1982
  7. | 02/07/1982
  8. | 18/10/1982 |
. format da_nas %tdDD-NN-CCYY
. list da_nas in 1/8, sep(0)
          da_nas |
 1. | 30-05-1982 |
  2. | 17-12-1982 |
 3. | 22-02-1982 |
  4. | 28-08-1981
 5. | 14-02-1982
 6. | 22-06-1982 |
  7. | 02-07-1982 |
```

TO BE CONTINUED...

8. | 18-10-1982 |

140

- 11.4 Visualizzazione delle ore
- 11.5 Operazioni con date e ore

Capitolo 12

Macros e Cicli

12.1 Macros

In Stata esistono due tipi di macros: local e global. La distinzione tra le due è attinente alla programmazione per cui in questa sede le possiamo considerare come equivalenti. La loro funzione è quella di un contenitore in cui inserire numeri o stringhe da richiamare in un secondo momento. I modi per assegnare un contenuto sono diversi e comunque prevedono l'assegnazione di un nome. Per evitare problemi meglio scegliere nomi diversi da quelli assegnati alle variabili.

```
local A 2+2
local A = 2+2
local B "hello world"
local B = "hello world"

global A 2+2
global A = 2+2
global B "hello world"
global B = "hello world"
```

Si vede che è possibile assegnare il contenuto alla macro sia con il segno = che senza. La differenza è sostanziale quando si assegnano valori o espressioni numeriche. Vediamo un esempio:

```
. local A 2+2
. local B = 2+2
. di `A'
4
. di `B'
4
. di "`A'"
2+2
. di "`B'"
4
```

Con local A 2+2 sto' assegnano ad A 2+2, che sarà interpretato come operazione algebrica se lo uso direttamente (di `A'), come stringa se lo uso con " (di "`A'"). Con

12.1. Macros e Cicli

local B = 2+2 invece sarà sempre interpretato come operazione algebrica. È importante essere a conoscenza di questa differenza nel momento in cui si richiamano le macros create perché sono diversi i contenuti di A. Stesso discorso vale per le global.

Vediamo ora come richiamare le macros:

- le local si richiamano con l'espressione `local_name'
- le global si richiamano con l'espressione \$local_name

il simbolo $\dot{}$ si ottiene premendo ALT + 96 sul tastierino numerico

Adesso vediamo qualche uso pratico. Per esempio possiamo definire una lista di variabili da utilizzare successivamente in diverse situazioni:

local list = "inc2001 inc2000 inc1999 inc1998 inc1997 inc1996 inc1995"
. di "`list'

inc2001 inc2000 inc1999 inc1998 inc1997 inc1996 inc1995

. summ `list'

Variable	Obs	Mean	Std. Dev.	Min	Max
inc2001	1460	32961.99	44469.03	0	480000
inc2000	1476	32833.82	44145.67	0	600000
inc1999	1393	31891.78	41724.69	0	480000
inc1998	1400	31550.77	40743.81	0	410000
inc1997	1369	31438.15	37784.66	0	350000
inc1996	1364	32373.4	40198.93	0	600000
inc1995	1413	30598.08	36889.4	0	360000

. regress inc2002 `list'

Source	SS	df	MS	Number of obs =	1328
+				F(7, 1320) = 7	745.90
Model	2.2244e+12	7	3.1777e+11	Prob > F = 0	0.0000
Residual	5.6234e+11	1320	426018392	R-squared = 0	0.7982
+				Adj R-squared = 0	0.7971
Total	2.7867e+12	1327	2.1000e+09	Root MSE =	20640

inc2002	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
inc2001 inc2000 inc1999 inc1998 inc1997 inc1996 inc1995 cons	.8007813 .1072529 .0850962 0983748 .1441902 1652574 .0531481 3392.282	.0340487 .0472282 .0556251 .0463245 .0399267 .0452349 .0438402 755.4408	23.52 2.27 1.53 -2.12 3.61 -3.65 1.21 4.49	0.000 0.023 0.126 0.034 0.000 0.000 0.226 0.000	.7339858 .0146023 024027 1892526 .0658633 2539975 0328559 1910.286	.8675769 .1999035 .1942195 0074971 .222517 0765173 .1391521 4874.278

Vedremo tra poco come utilizzare le local all'interno dei cicli e successivamente come usarle per catturare e riutilizzare l'output dei comandi.

Vediamo però anche come utilizzare un altro oggetto chiamato scalar. Esso serve per assegnare valori numerici scalari e si costruisce così:

12. Macros e Cicli 12.2. I cicli

```
scalar [define] scalar_name =exp
. scalar w=5
. scalar q=3
. scalar t=w+q
. di t
8
```

12.2 I cicli

I cicli sono delle procedure che permettono di compiere azioni ripetitive in maniera più veloce ed efficiente usando poche righe di codice. I metodi di implementazione sono diversi a seconda del contesto in cui si vogliono utilizzare. Analizziamo adesso il metodo foreach la cui sintassi generale è:

```
foreach lname {in|of listtype} list {
      commands referring to `lname'
}
```

in pratica succederà che di volta in volta tutti gli oggetti specificati in *list* verranno assegnati a *lname* e quindi eseguiti in base alla lista di comandi specificata tra le due parentesi graffe (*commands referring to `lname'*).

Sono possibili le seguenti costruzioni di foreach:

 $I\ costruzione$

```
foreach lname in any_list {
          .... lista di comandi
}
```

È la costruzione più generale e in any_list possiamo inserire una qualsiasi lista: nomi di variabili, stringhe e numeri.

II costruzione

```
foreach lname of local lmacname {
    .... lista di comandi
}
```

previa specificazione del contenuto di una local *lmacname*, possiamo utilizzare il suo contenuto in questo tipo di ciclo.

III costruzione

```
foreach lname of global gmacname {
     .... lista di comandi
}
```

12.2. I cicli 12. Macros e Cicli

previa specificazione del contenuto di una global gmacname, possiamo utilizzare il suo contenuto in questo tipo di ciclo.

IV costruzione

```
foreach lname of varlist varlist { .... lista di comandi }
```

utilizzeremo questa costruzione solo quando faremo riferimento ad una serie di variabili già esistenti.

$V\ costruzione$

```
foreach lname of newvarlist newvarlist { .... lista di comandi }
```

costruzione poco usata dove in newvarlist si indica una lista di nuove variabili che verranno create all'interno del ciclo

$VI\ costruzione$

```
foreach lname of numlist numlist { .... lista di comandi }
```

che consente di sfruttare le proprietà delle numlist di Stata (che vedremo tra poco).

Per capire meglio vediamo alcuni esempi. Per la prima costruzione:

```
. foreach obj in var1 var2 var8 var10 {
2. summ `obj'
3. gen `obj'_10 = `obj' / 10
4. summ `obj'_10
5. }
```

Variable	l Obs	Mean	Std. Dev.	Min	Max
var1	888	. 4868541	.2868169	.0003254	.9990993
Variable		Mean	Std. Dev.	Min	Max
var1_10	1	.0486854	.0286817	.0000325	.0999099
Variable	Obs	Mean	Std. Dev.	Min	Max
var2	888	.4839523	.2927765	.004523	.9999023
Variable	Obs	Mean	Std. Dev.	Min	Max
var2_10	888	.0483952	.0292776	.0004523	.0999902
Variable	Obs	Mean	Std. Dev.	Min	Max

12. Macros e Cicli 12.2. I cicli

.9985623	.0005486	.2916573	.4880482	888	var8
Max	Min	Std. Dev.	Mean	0bs	Variable
.0998562	.0000549	.0291657	.0488048	888	var8_10
Max	Min	Std. Dev.	Mean	0bs	Variable
.9995353	.003708	.2783813	.5048937	888	var10
Max	Min	Std. Dev.	Mean	0bs	Variable
.0999535	.0003708	.0278381	.0504894	 888	var10_10

quello che accade è che ad ogni ciclo in obj viene sostituita in sequenza var1, var2, var8 e infine var10 in questa maniera:

```
primo ciclo (`obj´ = var1):
summ 'obj' 10 = 'obj' / 10
summ 'obj' 10
                                    summ var1
                                 gen var1_10 = var1 / 10
                                    summ var1_10
secondo ciclo (`obj´ = var2):
summ 'obj'
gen 'obj'_10 = 'obj' / 10
summ 'obj'_10
                                   summ var2
                                   gen var2_10 = var2 / 10
                                    summ var2_10
terzo ciclo (`obj' = var8):
summ 'obj' summ var8
gen 'obj'_10 = 'obj' / 10 gen var8_10 = var8 / 10
summ 'obj'_10 summ var8_10
quarto e ultimo ciclo (`obj´ = var10):
summ `obj´_10 = `obj´ / 10
summ `obj´_10
                                   summ var10
                                    gen var10_10 = var10 / 10
                                    drop var10_10
```

Vediamo ora un esempio per la seconda costruzione. Per prima cosa dobbiamo definire la local e poi rifacciamo lo stesso ciclo:

```
local lista = "var1 var2 var8 var10"
. foreach obj of local lista {
  2. summ `obj'
  3. gen `obj'_10 = `obj' / 10
  4. summ `obj'_10
  5. }
  (output omitted) ... tanto è uguale al precedente
```

Si noti che la local all'interno del ciclo foreach viene richiamata SENZA l'uso degli apostrofi.

Per la terza costruzione definiamo la global

```
. global lista = "var1 var2 var8 var10"
. foreach obj of global lista {
  2. summ `obj'
  3. gen `obj'_10 = `obj' / 10
  4. summ `obj'_10
  5. }
```

12.2. I cicli 12. Macros e Cicli

```
(output omitted) ... idem come sopra
```

Anche qui è da notare che la global viene richiamata senza il simbolo \$ davanti.

Per la quarta costruzione possiamo sfruttare le possibilità offerte da Stata in merito alla selezione delle variabili su cui eseguire i comandi:

```
. foreach obj of varlist var? {
 2. summ `obj'
 3. gen obj'_10 = obj' / 10
 4. summ `obj'_10
    Variable |
                      Obs
                                  Mean
                                          Std. Dev.
                                                            Min
                                                                       Max
        var1 |
                      888
                              .4868541
                                           .2868169
                                                       .0003254
                                                                  .9990993
    Variable |
                      Obs
                                  Mean
                                          Std. Dev.
                                                            Min
                                                                       Max
    var1_10 |
                      888
                              .0486854
                                           .0286817
                                                       .0000325
                                                                  .0999099
    Variable |
                      0bs
                                  Mean
                                          Std. Dev.
                                                            Min
                                                                       Max
                              .4839523
                                           . 2927765
                                                        .004523
                                                                  .9999023
        var2 |
                      888
    Variable |
                      0bs
                                  Mean
                                           Std. Dev.
                                                            Min
                                                                        Max
    var2_10 |
                              .0483952
                                           .0292776
                                                       .0004523
                                                                  .0999902
                      888
    Variable |
                      Obs
                                  Mean
                                          Std. Dev.
                                                            Min
                                                                       Max
        var8 |
                                           .2916573
                                                       .0005486
                                                                  .9985623
                      888
                              .4880482
    Variable |
                      Obs
                                  Mean
                                          Std. Dev.
                                                            Min
                                                                       Max
    var8_10 |
                      888
                              .0488048
                                           .0291657
                                                       .0000549
                                                                  .0998562
```

Notare che var10 non viene considerata perchè non rientra in var?. Tralasciando la quinta costruzione, vediamo un esempio della sesta, annidandola però all'interno di un altro ciclo (ebbene sì, i cicli possono essere inseriti all'interno di altri cicli):

```
. foreach obj of varlist var1? {
 2. foreach expo of numlist 2/4 6 {
 3. gen `obj'_`expo' = `obj'^(`expo')
 4. }
 5. summ `obj'_*
 6. }
    Variable |
                      0bs
                                  {\tt Mean}
                                           Std. Dev.
                                                                   .9990708
     var10 2 |
                      888
                              .3323266
                                            .286364
                                                       .0000137
                              .2448896
     var10_3 |
                      888
                                           .2705386
                                                       5.10e-08
                                                                   .9986064
     var10_4 |
                      888
                              .1923529
                                           .2533452
                                                       1.89e-10
                                                                   .9981424
     var10_6 |
                      888
                              .1330797
                                            .224473
                                                       2.60e-15
                                                                   .9972148
    Variable |
                      Obs
                                  Mean
                                           Std. Dev.
                                                            Min
     var11_2 |
                      888
                              .3293853
                                           .2923062
                                                       1.48e-06
                                                                   .9904835
     var11_3
                      888
                              .2443889
                                           .2775777
                                                       1.80e-09
                                                                   .9857593
     var11_4 |
                      888
                              .1938413
                                           .2602036
                                                       2.19e-12
                                                                   .9810576
     var11_6 |
                                            .229854
                      888
                              .1366885
                                                       3.24e-18
                                                                   .9717214
```

Mean

Variable |

Obs

Max

Max

Max

Std. Dev.

 ${\tt Min}$

12. Macros e Cicli 12.2. I cicli

```
var12_2 | 888 .341181 .3057852 9.02e-07 .9987798 var12_3 | 888 .2591221 .2929291 8.56e-10 .9981703 var12_4 | 888 .2098038 .2770279 8.13e-13 .997561 var12 6 | 888 .1528551 .2492659 7.33e-19 .9963439
```

In pratica per ciascuna variabile il cui nome inizia var1# viene costruita una variabile con la sua trasformazione al quadrato, al cubo, alla quarta e alla sesta. Anche in questo caso esaminiamo la successione delle operazioni:

```
primo loop del ciclo principale (`obj' = var10)
  primo loop del ciclo annidato (`expo´ = 2)
    gen `obj'_`expo' = `obj'^(`expo')
                                           gen var10_2 = var10^(2)
    secondo loop ciclo annidato (`expo' = 3)
    gen `obj'_`expo' = `obj'^(`expo')
                                           gen var10_3 = var10^(3)
    terzo loop ciclo annidato ('expo' = 4)
    gen `obj'_`expo' = `obj'^(`expo')
                                           gen var10_4 = var10^(4)
    quarto loop ciclo annidato ('expo' = 6)
    gen `obj'_`expo' = `obj'^(`expo')
                                          gen var10_6 = var10^(6)
  chiusura loop del ciclo annidato
                                           summ var10_*
summ `obj'_*
secondo loop del ciclo principale (`obj´ = var11)
  primo loop del ciclo annidato (`expo' = 2)
    gen `obj'_`expo' = `obj'^(`expo')
                                          gen var11_2 = var11^(2)
    secondo loop ciclo annidato (`expo´ = 3)
                                           gen var11_3 = var11^(3)
    gen `obj'_`expo' = `obj'^(`expo')
    terzo loop ciclo annidato ('expo' = 4)
    gen `obj'_`expo' = `obj'^(`expo')
                                           gen var11_4 = var11^(4)
    quarto loop ciclo annidato (`expo' = 6)
    gen `obj'_`expo' = `obj'^(`expo')
                                           gen var11_6 = var11^(6)
  chiusura loop del ciclo annidato
summ `obj *
                                           summ var11 *
terzo loop del ciclo principale ('obj' = var12)
  primo loop del ciclo annidato (`expo' = 2)
    gen `obj'_`expo' = `obj'^(`expo')
                                           gen var12_2 = var12^2(2)
    secondo loop ciclo annidato (`expo' = 3)
gen `obj'_`expo' = `obj'^(`expo') ge.
                                           gen var12_3 = var12^(3)
    terzo loop ciclo annidato ('expo' = 4)
                                           gen var12_4 = var12^4
    gen `obj'_`expo' = `obj'^(`expo')
    quarto loop ciclo annidato (`expo' = 6)
    gen `obj'_`expo' = `obj'^(`expo')
                                           gen var12_6 = var12^6
  chiusura loop del ciclo annidato
summ `obj'_*
                                           summ var12 *
```

Infine esiste un'altra costruzione da usare però solo con serie numeriche:

```
forvalues lname = range {
    commands referring to `lname'
```

12.2. I cicli 12. Macros e Cicli

- $\#_1$ ($\#_t$) to $\#_2$: lname assume valori da $\#_1$ a $\#_2$ con passo pari a $\#_t$ - $\#_1$

} dove range può assumere le seguenti configurazioni: $- \ \#_1(\#_d)\#_2 \colon \mathit{lname} \ \mathrm{assume} \ \mathrm{valori} \ \mathrm{da} \ \#_1 \ \mathrm{a} \ \#_2 \ \mathrm{con} \ \mathrm{passo} \ \mathrm{pari} \ \mathrm{a} \ \#_d \\ - \ \#_1/\#_2 \colon \mathit{lname} \ \mathrm{assume} \ \mathrm{valori} \ \mathrm{da} \ \#_1 \ \mathrm{a} \ \#_2 \ \mathrm{con} \ \mathrm{passo} \ \mathrm{pari} \ \mathrm{a} \ 1$

Un esempio:

```
forvalues n = 1(1)90 {
replace var`n' = var`n' + alvar`n'
}
```

- $\#_1$ ($\#_t$) : $\#_2$: idem come sopra

che esegue il replace su sulle 90 variabili var1, var2,, var90.

Capitolo 13

Catturare Informazioni dagli Output

Ogni volta che eseguite un comando, Stata salva parte dell'output del comando e altri valori che vengono calcolati durante l'esecuzione in particolari local che possono essere richiamate ed utilizzate. Il comando per vedere l'elenco dei risultati salvati è return list:

. summ price

Variable	0bs	Mean	Std. Dev.	Min	Max
+					
price	74	6165.257	2949.496	3291	15906

. return list

scalars:

r(N) = 74 r(sum_w) = 74 r(mean) = 6165.256756756757 r(Var) = 8699525.974268789 r(sd) = 2949.495884768919 r(min) = 3291 r(max) = 15906 r(sum) = 456229

. summ price, detail

		Price		
	Percentiles	Smallest		
1%	3291	3291		
5%	3748	3299		
10%	3895	3667	Obs	74
25%	4195	3748	Sum of Wgt.	74
50%	5006.5		Mean	6165.257
		Largest	Std. Dev.	2949.496
75%	6342	13466		
90%	11385	13594	Variance	8699526
95%	13466	14500	Skewness	1.653434
99%	15906	15906	Kurtosis	4.819188

. return list

```
scalars:
```

```
r(N) = 74
   r(sum_w) = 74
    r(mean) = 6165.256756756757
    r(Var) = 8699525.97426879
r(sd) = 2949.49588476892
r(skewness) = 1.653433511704859
r(kurtosis) = 4.819187528464004
    r(sum) = 456229
     r(min) = 3291
     r(max) = 15906
      r(p1) = 3291
     r(p5) =
               3748
     r(p10) = 3895
     r(p25) = 4195
     r(p50) =
               5006.5
     r(p75) = 6342
     r(p90) = 11385
     r(p95) = 13466

r(p99) = 15906
```

Invece nel caso di una regressione si deve usare ereturn list:

. regress price mpg rep78 weight length foreign

Source	SS	df		MS		Number of obs	=	69
+						F(5, 63)	=	15.90
Model	321789308	5	643	57861.7		Prob > F	=	0.0000
Residual	255007650	63	404	7740.48		R-squared	=	0.5579
+						Adj R-squared	=	0.5228
Total	576796959	68	848	2308.22		Root MSE	=	2011.9
price	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
+								
mpg	-26.01325	75.48	927	-0.34	0.732	-176.8665		124.84
rep78	244.4242	318.	787	0.77	0.446	-392.6208	8	81.4691
weight	6.006738	1.03	725	5.79	0.000	3.93396	8	.079516
length	-102.2199	34.74	826	-2.94	0.005	-171.6587	-3	2.78102
foreign	3303.213	813.5	921	4.06	0.000	1677.379	4	929.047
_cons	5896.438	5390.	534	1.09	0.278	-4875.684	1	6668.56

. ereturn list

```
scalars:
```

```
e(N) = 69
e(df_m) = 5
e(df_r) = 63
   e(F) = 15.8997005734978
  e(r2) = .5578900919500578
e(rmse) = 2011.899719996595
 e(mss) = 321789308.4202555
 e(rss) = 255007650.4493099
e(r2_a) = .5228020040095862

e(11) = -619.6398259855126

e(11_0) = -647.7986144493904
```

macros:

e(cmdline) : "regress price mpg rep78 weight length foreign" e(title) : "Linear regression"

e(vce) : "ols" e(depvar) : "price"

Ritornando al primo esempio, tutti gli r() sono dei risultati che possiamo richiamare all'interno dei comandi o che possiamo salvare in local. Infatti bisogna tener presente che i valori salvati in r() cambiano dopo l'esecuzione del comando e contengono solo quelli relativi all'ultimo comando eseguito.

Se per esempio voglio costruire una variabile (var3) che sia la moltiplicazione di una variabile (var2) per la media di un'altra (var1), dovrò fare:

```
. summ var2
    Variable |
                    Obs
                               Mean
                                       Std. Dev.
                                                       Min
                                                                 Max
       var2 |
                     88
                           .5022995
                                       .2882645
                                                 .0057233
                                                             .9844069
. summ var1
    Variable |
                               Mean
                                       Std. Dev.
                                                                 Max
       var1 |
                     88
                          .4676347
                                       .2849623 .0369273 .9763668
. return list
scalars:
                 r(N) = 88
             r(sum_w) = 88
              r(mean) = .4676347244530916
               r(Var) = .0812035311082154
                r(sd) =
                        .284962332788415
               r(min) = .0369273088872433
               r(max) = .9763667583465576
               r(sum) = 41.15185575187206
. gen var3 = var2 * r(mean)
. summ var3
    Variable |
                               Mean
                                       Std. Dev.
                                                                 Max
       var3 |
                          .2348927
                                       .1348025
                                                 .0026764 .4603429
```

Oppure se voglio salvare in una local la sommatoria di una variabile

```
. summ var1

Variable | Obs Mean Std. Dev. Min Max

var1 | 88 .4676347 .2849623 .0369273 .9763668

. return list
```

scalars:

r(N) = 88r(sum_w) = 88 r(mean) = .4676347244530916 r(Var) = .0812035311082154 r(sd) = .284962332788415 r(min) = .0369273088872433 r(max) = .9763667583465576r(sum) = 41.15185575187206. local sommatoria_var1 = r(sum)

. di `sommatoria_var1' 41.151856

Capitolo 14

Esportazione dell'output

L'esportazione dei risultati prodotti in Stata è un argomento molto sentito dagli utenti e nel corso del tempo sono stati sviluppati molti comandi che cercano di dare una risposta a questo problema. Stata 14 prima e Stata 15 poi, hanno introdotto una serie di comandi che vanno in questa direzione come per esempio

Personalmente dividerei questo tipo di comandi in due categorie. Quelli che esportano un singolo output (export singolo) e quelli che consentono di produrre un documento unico con tutti i vari risultati (export completo). Senza la pretesa di essere esaustivo vi segnalo alcuni di questi comandi.

- · export singolo
 - export excel
 - estout
 - _ ...
- export completo
 - texdoc
 - weaver
 - markdoc
 - ...

Vi rimando agli help dei singoli comandi se volete vedere cosa fanno e come lo fanno. Nelle sezioni successive invece vi illustrerò alcuni comandi che ho creato io con lo scopo di esportare in Latex e in Microsoft Excel gli output di alcuni comandi di Stata. Per quanto possibile ho cercato riprodurre la sintassi del comando Stata tralasciando quelle opzioni che o non sono riuscito a riprogrammare o che non hanno nessuna attinenza con l'output. Alcune parti sono ancora incomplete e ci possono essere degli errori per cui faccio affidamento sul feedback degli utenti. Lo spunto per scrivere questi comandi è nato dalla "fatica" di dover produrre report statistici per varie ricerche e quindi al

momento mi sono concentrato solo su quegli output che sono funzionali alla soluzione di questo problema. Io li uso in abbinamento ai pacchetti weaver o texdoc per produrre dei report finali. Questo è un esempio dove tutte le tabelle sono state prodotte con uno dei comandi che vi presento più sotto.

Al momento sono in fase più o meno avanzata i seguenti comandi:

- arraytex e arrayxls: non esiste in Stata ma serve per esportare le statistiche descrittive delle domande di tipo array (chiamate anche batterie di item) fretex e frexls: esportazione dell'output del comando fre. Si tenga presente che fre è un sostituto del comando tabulate oneway mrtabtex e mrtabxls: esportano l'output del comando table tabstattex e tabstatxls: esportano l'output del comando tabstat ed è da considerarsi anche come sostituto anche del comando summarize tabtex e tabxls: esportano l'output del comando tabulate twoway
- 14.1 arraytex e arrayxls
- 14.2 fretex e frexls
- 14.3 mrtabtex e mrtabxls
- 14.4 tabletex e tablexls
- 14.5 tabstattex e tabstatxls
- 14.6 tabtex e tabxls

Capitolo 15

Mappe

Ora anche in Stata è possibile rappresentare i dati su base geografica (georeferenziazione) grazie all'ottimo lavoro di Maurizio Pisati tramite il comando spmap. Per prima cosa bisogna procurarsi i dati geografici che in genere vi verranno forniti in uno dei due formati che sono standard di fatto: shape file e MapInfo Interchange Format. Per poterli utilizzare con spmap occorre convertirli in database di Stata. Gli shape file vengono convertiti attraverso il comando

dove:

shpfilename è il file con estensione .shp

database (filename) è il nome del nuovo dataset di Stata che conterrà le informazioni del .dbf file.

coordinates (*filename*) è il nome del nuovo dataset di Stata che conterrà le informazioni dello .shp file ovvero le coordinate per disegnare i confini degli oggetti da rappresentare.

replace sovrascrive i file specificati in database (filename) e in coordinates (filename). genid (newvarname) specifica il nome di una nuova variabile in database (filename) che sarà un identificativo delle diverse aree geografiche. I valori assunti da questa variabile corrispondono a quelli della variabile _ID presente nel file coordinates (filename).

gencentroids(stub) genera le variabili x_stub e y_stub in database(filename) che contengono le coordinate dei centroidi delle aree geografiche.

I files MapInfo sono solitamente due con lo stesso nome ma uno con estensione .mif che contiene le coordinate dei poligoni da disegnare e l'altro con estensione .mid che contiene i dati riferiti alle aree geografiche. Il comando per convertire questo tipo di dati è

```
mif2dta rootname, genid(newvarname) [gencentroids(stub)] dove:
```

rootname è il nome comune dei due files .mif e .mid

genid(newvarname) specifica il nome di una nuova variabile che sarà un identificativo delle diverse aree geografiche.

gencentroids (stub) genera le variabili x_stub e y_stub in che contengono le coordinate dei centroidi delle aree geografiche.

Il comando genera due database .dta: rootname-Database.dta e rootname-Coordinates.dta.

Bene! Ora abbiamo i files in formato Stata e pronti ad essere utilizzati con il comando spmap per la rappresentazione geografica. spmap è veramente ricco di opzioni per cui ho riportato l'help del comando in Appendice (pag. 207) assieme ad alcuni esempi grafici. Qui si discuterà di alcuni aspetti inerenti l'utilizzo. Le coordinate dei centroidi non sempre sono corrette nel posizionare gli elementi che si vogliono rappresentare al centro dell'area geografica per cui bisogna correggerli. Questa operazione non è difficile dato che si basano su coordinate cartesiane, comunque bisogna investirci un po' di tempo. Ecco un esempio pratico in cui si riportano le iniziali dei comuni della provincia di Verona, prima senza e poi con la correzione delle coordinate dei centroidi.

```
. local PR "vr";
. /*** conversione shape file nel formato voluto da Stata per il comando spmap***/;
. shp2dta using `PR'_comuni.shp, database(`PR') coordinates(`PR'_coord)
> replace genid(ID) gencentroids(c);
. use `PR'.dta, clear;
. rename ID _ID;
. spmap sup using "`PR'_coord", id(_ID) fcolor(Blues2) clnumber(98) ocolor(white ..)
> label(label(nom_com_abb) x(x_c) y(y_c) size(1.5) )
> legenda(off) title("`sch'", size(*0.8));
. graph export map_pre.png, replace;
(note: file map_pre.png written in PNG format)
```

e questa è la mappa risultante.

OK, adesso la serie di correzioni delle coordinate e il relativo risultato

```
. replace y_c=y_c + 1100 if cod_com==30;
(1 real change made)
. replace x_c=x_c - 800 if cod_com==30;
(1 real change made)
. replace y_c=y_c - 400 if cod_com==36;
(1 real change made)
. replace x_c=x_c + 1000 if cod_com==36;
(1 real change made)
   (output omitted)
. replace y_c=y_c + 400 if cod_com==10;
(1 real change made)
. replace y_c=y_c - 600 if cod_com==56;
(1 real change made)
```


Figura 15.1: Mappa pre correzione

```
. replace x_c=x_c + 400 if cod_com==26;
(1 real change made)
. replace y_c=y_c - 1800 if cod_com==38;
(1 real change made)
. spmap sup using "`PR'_coord", id(_ID) fcolor(Blues2) clnumber(98) ocolor(white ..)
> label(label(nom_com_abb) x(x_c) y(y_c) size(1.5) )
> legenda(off) title("`sch'", size(*0.8));
. graph export map_post.png, replace;
(note: file map_post.png not found)
(file map_post.png written in PNG format)
```


Figura 15.2: Mappa post correzione

Altro problema. Quando si rappresentano dati continui attraverso una choropleth map usando una delle combinazioni di colori previste dal programma, se c'è del testo da rappresentare ci può essere un problema di visualizzazione. Ovvero se il testo è di colore chiaro sarà difficilmente leggibile nelle aree più chiare, viceversa se il testo è di colore scuro sarà difficilmente leggibile nelle aree più scure. Potete apprezzare quanto appena detto nella figura prodotta da questo codice

Figura 15.3: Mappa con colori predefiniti

```
. local tit : variable label pedia_od;
. spmap pedia_odp using coord_ulss.dta, id(_ID) fcolor(Blues2) ocolor(black ..)
> clmethod(unique) label(label(pedia_odpstr) x(x_c) y(y_c) size(1.8) length(14))
> legenda(off) note("Da fuori regione `pedia_odpFP'%", size(*0.50));
. graph export graph/ric_tot/pedia_od0.png, replace;

(file graph/ric_tot/pedia_od0.png written in PNG format)
```

le scritte in colore nero nelle aree più scure non si leggono molto bene usando la lista di colori Blues2. Questo accade perché il meccanismo di assegnazione dei colori attribuisce la tonalità più chiara ai valori minori e la tonalità più scura ai valori più elevati. Come ovviare? Ricorrendo ad un trucchetto che ci consenta di determinare le tonalità più chiara e più scura! Nel codice che segue determino quanti colori diversi mi servono. Per esempio sulle 22 aree da rappresentare ce ne sono 4 con valore assegnato pari a uno e che quindi avranno colore uguale. Scelgo come colore di base navy (ocal rgb navy) e poi

stabilisco che il colore più chiaro sarà di una intesità pari allo 0.01 di navy (local inty =0.01), mentre quello più scuro di 0.75 (local INTY =0.75). Entro questo intervallo determino le tonalità di colore necessarie per coprire gli altri valori attraverso uno passo pari a local step = (`INTY'-`inty') / `ncl'. Posso vedere la serie di tonalità nella local colors

```
. local tit : variable label pedia_od;
. tab pedia_od;
```

Pediatria	Freq.	Percent	Cum.
0	1	4.55	4.55
1	4	18.18	22.73
2	2	9.09	31.82
3	1	4.55	36.36
4	2	9.09	45.45
5	1	4.55	50.00
6	2	9.09	59.09
7	1	4.55	63.64
9	1	4.55	68.18
10	2	9.09	77.27
11	1	4.55	81.82
59	1	4.55	86.36
234	1	4.55	90.91
526	1	4.55	95.45
1022	1	4.55	100.00
Total	22	100.00	

```
. local colors = "";
. local rgb navy;
. local ncl = r(r) - 2;
. local INTY =0.75;
. local inty =0.01;
. local step = (`INTY'-`inty') / `ncl';
. local step = round(`step',0.01);
. forvalues c = 0(1)`ncl';
   local x = `inty' + `step'*`c';
   local x = round('x',0.01);
   local colors = "`colors'" + "`rgb'*`x' ";
. di "`colors'";
navy*.01 navy*.07 navy*.13 navy*.19 navy*.25 navy*.31 navy*.37 navy*.43 navy*.49 navy*.55
> navy*.61 navy*.67 navy*.73 navy*.79
   spmap pedia_odp using coord_ulss.dta, id(_ID) fcolor(white `colors') ocolor(black ..) clmethod(unique)
       label(label(pedia_odpstr) x(x_c) y(y_c) size(1.8) length(14)) legenda(off) split note("Da fuori regione `pedia_odpFP'%", size(*0.50));
 graph export graph/ric_tot/pedia_od1.png, replace;
(file graph/ric_tot/pedia_od1.png written in PNG format)
```

e questo è il risultato:

In particolare le aree con numrosità pari a zero saranno bianche fcolor(white ..., mentre la successiva parte da un valore navy*.01, per passare ad un navy*.07, quindi a un navy*.13 e così via.

Figura 15.4: Mappa con colori assegnati

Parte II Casi Applicati

Dataset di Grandi Dimensioni

Se la RAM a disposizione sul vostro computer è insufficiente a contenere una dataset di grandi dimensioni, la soluzione migliore è quella di spezzare il caricamento in n parti selezionando le sole variabili di interesse. Attraverso il comando compress e codificando per quanto possibile le variabili stringa in categoriche si riesce a recuperare ulteriori risorse.

Nel caso in esame abbiamo 2 file di dati, uno in formato testo e il suo corrispettivo in formato Stata:

Per caricare il file 2002.asc servono circa 1400 MB di RAM. Questo file si compone di 256141 righe (una di intestazione, le altre di dati) e di 684 variabili. La strategia per bypassare il collo di bottiglia della RAM consiste nello spezzare il file in 2, mantenendo la prima linea di intestazione per entrambi. Purtroppo l'opzione *varlist* del comando insheet non funziona molto bene.

Oppure bisogna ricorrere al programma StatTransfer che converte i dati in maniera sequenziale senza problemi di RAM.

Per caricare invece il file 2002.dta abbiamo un maggior numero di possibilità. La prima è:

- I. caricare la prima metà delle osservazioni e selezionare le variabili di interesse
- II. salvare il file
- III. caricare la seconda metà delle osservazioni e selezionare le variabili di interesse
- IV. salvare il file
- V. unire i due dataset

```
. set mem 740m

Current memory allocation
```

```
current
                                                          memory usage
                                                          (1M = 1024k)
   settable
                              description
                   value
               5000
                                                             1.909M
                              max. variables allowed
   set maxvar
    set memory
                      740M
                               max. data space
                                                            740.000M
   set matsize
                      400
                              max. RHS vars in models
                                                             1.254M
                                                            743.163M
. use 2002.dta in 1/128070
. desc, short
Contains data from 2002.dta
        128,070
 obs:
 vars:
                669
                                            22 May 2006 18:49
size: 718,856,910 (7.4% of memory free)
Sorted by:
. keep h01 h03 h08 h12
. save tmp1, replace
(note: file tmp1.dta not found)
file tmp1.dta saved
. use 2002.dta in 128071/256140
. desc, short
Contains data from 2002.dta
 obs: 128,070
 vars:
                669
                                            22 May 2006 18:49
size: 718,856,910 (7.4% of memory free)
Sorted by:
. keep h01 h03 h08 h12
. save tmp2, replace
(note: file tmp2.dta not found)
file tmp2.dta saved
 compress
h08 was str40 now str33
h12 was str15 now str14
. append using tmp1
h08 was str33 now str40
h12 was str14 now str15
. desc, short
Contains data from tmp2.dta
 obs: 256,140
 vars:
                 4
                                            30 Aug 2007 15:17
        35,347,320 (95.4% of memory free)
 size:
Sorted by:
    Note: dataset has changed since last saved
```

La seconda strategia invece consiste nel leggere direttamente tutte le osservazioni per le sole variabili di interesse:

. set mem 740m

Current memory allocation

settable	current value	description	memory usage (1M = 1024k)
set maxvar set memory set matsize	5000 740M 400	max. variables allowed max. data space max. RHS vars in models	1.909M 740.000M 1.254M
			743.163M

- . use h01 h03 h08 h12 using 2002.dta, clear $\,$
- . desc, short

Contains data from 2002.dta

obs: 256,140

vars: 4
size: 35,347,320 (95.4% of memory free)
Sorted by: 22 May 2006 18:49

Da Stringa a Numerica

17.1 Fondere variabili stringa con numeriche

Se ci si trova con due variabili che contengono la stessa informazione ma in una espressa in forma numerica e nell'altra espressa come stringa, possiamo ridurle in maniera semplice in una sola, utilizzando l'informazione della variabile stringa per costruire il label define per la variabile numerica. Se per esempio abbiamo due variabili con questi possibili valori:

cod_reg	regione
1	Piemonte
2	Valle d'Aosta
3	Lombardia
4	Trentino-Alto Adige
5	Veneto
6	Friuli-Venezia Giulia
7	Liguria
8	Emilia-Romagna
9	Toscana
10	Umbria
11	Marche
12	Lazio
13	Abruzzo
14	Molise
15	Campania
16	Puglia
17	Basilicata
18	Calabria
19	Sicilia
20	Sardegna

e vogliamo assegnare come label dei valori di cod_reg la descrizione contenuta nella variabile regione, possiamo, in maniera pedante, fare:

label define cod_reg 1 "Piemonte"
2 "Valle d'Aosta"
.....
20 "Sardegna";
label values cod_reg cod_reg;

oppure installare il comando labutil

ssc inst labutil

e poi

- . tab1 regione cod_reg
- -> tabulation of regione

regione	Freq.	Percent	Cum.
Abruzzo	61,610	3.76	3.76
Basilicata	26,462	1.62	5.38
Calabria	82,618	5.05	10.43
Campania	111,302	6.80	17.23
Emilia-Romagna	68,882	4.21	21.44
Friuli-Venezia Giulia	44,238	2.70	24.14
Lazio	76,356	4.66	28.80
Liguria	47,470	2.90	31.70
Lombardia	312,696	19.10	50.81
Marche	49,692	3.04	53.84
Molise	27,472	1.68	55.52
Piemonte	243,612	14.88	70.41
Puglia	52,116	3.18	73.59
Sardegna	76,154	4.65	78.24
Sicilia	78,780	4.81	83.06
Toscana	57,974	3.54	86.60
Trentino-Alto Adige	68,478	4.18	90.78
Umbria	18,584	1.14	91.92
Valle d'Aosta	14,948	0.91	92.83
Veneto	117,362	7.17	100.00
Total	1,636,806	100.00	

-> tabulation of cod_reg

cod_reg	I	Freq.	Percent	Cum.
	+-	040 040		44.00
1	ı	243,612	14.88	14.88
2	ı	14,948	0.91	15.80
3		312,696	19.10	34.90
4		68,478	4.18	39.08
5		117,362	7.17	46.25
6		44,238	2.70	48.96
7		47,470	2.90	51.86
8		68,882	4.21	56.07
9		57,974	3.54	59.61
10		18,584	1.14	60.74
11		49,692	3.04	63.78
12		76,356	4.66	68.44
13		61,610	3.76	72.21
14		27,472	1.68	73.89
15		111,302	6.80	80.69
16	1	52,116	3.18	83.87

17	1	26,462	1.62	85.49
18		82,618	5.05	90.53
19		78,780	4.81	95.35
20	1	76,154	4.65	100.00
	-+-			
Total	ı	1 636 806	100 00	

- . labmask cod_reg, values(regione)
- . tab cod_reg

cod_reg	Freq.	Percent	Cum.
Piemonte	243,612	14.88	14.88
Valle d'Aosta	14,948	0.91	15.80
Lombardia	312,696	19.10	34.90
Trentino-Alto Adige	68,478	4.18	39.08
Veneto	117,362	7.17	46.25
Friuli-Venezia Giulia	44,238	2.70	48.96
Liguria	47,470	2.90	51.86
Emilia-Romagna	68,882	4.21	56.07
Toscana	57,974	3.54	59.61
Umbria	18,584	1.14	60.74
Marche	49,692	3.04	63.78
Lazio	76,356	4.66	68.44
Abruzzo	61,610	3.76	72.21
Molise	27,472	1.68	73.89
Campania	111,302	6.80	80.69
Puglia	52,116	3.18	83.87
Basilicata	26,462	1.62	85.49
Calabria	82,618	5.05	90.53
Sicilia	78,780	4.81	95.35
Sardegna	76,154	4.65	100.00
Total	1,636,806	100.00	

. desc, short

```
Contains data from ita_82-06.dta obs: 1,709,390
```

vars: 34 4 Jul 2007 13:19

size: 162,392,050 (38.1% of memory free)

Sorted by:

Note: dataset has changed since last saved

- . drop regione
- . desc, short

Contains data from ita_82-06.dta

obs: 1,709,390

vars: 33 4 Jul 2007 13:19

size: 126,494,860 (51.7% of memory free)

Sorted by:

Note: dataset has changed since last saved

semplice, veloce e pulito!. Inoltre eliminando la variabile stringa regione abbiamo ridotto il dataset di quasi 36Mb, senza perdere nessuna informazione dato che il contenuto della variabile regione è stato trasferito nella label di cod_reg.

In questo caso il vantaggio nell'utilizzo di labmask è relativo; costruire un label define per venti specificazioni non comporta un eccessivo spreco di tempo, ma pensate se dovete

fare la stessa cosa per il label delle provincie italiane (più di cento) o dei comuni italiani che sono più di ottomila!!! (io l'ho fatto e ottomila comuni sono tanti).

17.2 Da stringa a numerica categorica

Supponiamo di avere una variabile stringa (basale) che assume le seguenti specificazioni:

```
NO SHUNT
<10
>10 SINGLE SPIKES
>10 SHOWER O CURTAIN
```

e che vogliamo trasformarla in una variabile numerica categorica con queste assegnazioni:

```
0 per "NO SHUNT"
1 per "<10"
2 per ">10 SINGLE SPIKES"
3 per ">10 SHOWER O CURTAIN"
```

Invece di ricorrere alla costruzione

```
replace basale="0" if basale=="NO SHUNT";
replace basale="1" if basale=="<10";
replace basale="2" if basale==">10 SINGLE SPIKES";
        replace basale="3" if basale==">10 SHOWER O CURTAIN";
        destring basale valsalva, replace;
        label define shunt 0 "no shunt"
                                 1 "<10"
2 ">10 SINGLE SPIKES"
                                 3 ">10 SHOWER O CURTAIN";
        label values basale shunt;
possiamo fare:
```

```
label define shunt 0 "no shunt"
                   1 "<10"
                   2 ">10 SINGLE SPIKES"
                   3 ">10 SHOWER O CURTAIN";
encode basale, gen(basale_n) label(shunt);
```

dove in gen() si mette la nuova variabile numerica che verrà creata e i cui valori corrispondono a quelli definiti in label define. Notare che è obbligatorio creare una nuova variabile perché al momento il comando encode non prevede l'opzione replace.

Liste di Files e Directory

Il problema da risolvere è l'acquisizione e la riunione in un unico dataset delle informazioni contenute in un elevato numero di files. In questo caso abbiamo le venti regioni italiane

```
. dir, wide
                            <dir> ..
 <dir>
                                                     <dir> abruzzo
  <dir> basilicata
                            <dir> calabria
                                                     <dir> campania
 <dir> emilia_romagna
                            <dir> friuli
                                                     <dir> lazio
  <dir> liguria
                            <dir> lombardia
                                                     <dir> marche
  <dir> molise
                            <dir> piemonte
                                                     <dir> puglia
 <dir> sardegna
                            <dir> sicilia
                                                     <dir> toscana
                            <dir> umbria
  <dir> trentino
                                                     <dir> vda
  <dir> veneto
```

All'interno di ciascuna regione abbiamo un cartella per ciascuna provincia di quella regione:

```
cd abruzzo
G:\projects\popolazione\pop_res\com_82-01\abruzzo
. dir
         7/04/07 10:36
 <dir>
  <dir>
         7/04/07 10:36
  <dir>
          7/04/07 10:35 chieti
          7/04/07 10:36
  <dir>
                        laquila
          7/04/07 10:36
                         pescara
  <dir>
          7/04/07 10:36
```

All'interno di ciascuna cartella delle provincie, una cartella dati che contiene 2 tipi di dati:

- una serie di files con estensione .TXT, con dati in formato testo delimitati da virgola. Per ogni comune della provincia c'è un file che contiene i dati inerenti alle femmine (* F.TXT) e un file con i dati inerenti i maschi (* M.TXT).
- una serie di files con estensione .csv, con dati in formato testo delimitati da virgola.
 In questo caso c'è un unico file per ciascun anno dal dal 1992 al 2001 con i dati sia dei maschi che delle femmine.

[.] cd chieti/dati

G:\projects\popolazione\pop_res\com_82-01\abruzzo\chieti\dati

```
. dir, wide
 <dir>
                            <dir> ...
                                                       4.2k 069001_F.TXT
                            4.2k 069002 F.TXT
                                                       4.2k 069002_M.TXT
  4.2k 069001_M.TXT
  3.8k 069003_F.TXT
                            3.8k 069003_M.TXT
                                                      3.7k 069004_F.TXT
  3.7k 069004_M.TXT
                            4.3k 069005_F.TXT
                                                       4.3k 069005_M.TXT
  3.7k 069006_F.TXT
                            3.6k 069006_M.TXT
                                                       3.5k 069007_F.TXT
  3.5k 069007_M.TXT
                            4.3k 069008_F.TXT
                                                      4.3k 069008_M.TXT
  3.5k 069009_F.TXT
                            3.5k 069009_M.TXT
                                                       3.8k 069010_F.TXT
  3.8k 069010 M.TXT
                            3.5k 069011 F.TXT
                                                      3.5k 069011_M.TXT
  3.6k 069012_F.TXT
                            3.6k 069012_M.TXT
                                                      3.8k 069013_F.TXT
  3.7k 069013_M.TXT
                            3.7k 069014_F.TXT
                                                       3.7k 069014_M.TXT
  4.3k 069015_F.TXT
                            4.3k 069015_M.TXT
                                                      4.2k 069016_F.TXT
  4.2k 069016_M.TXT
                            4.3k 069017_F.TXT
                                                      4.3k 069017_M.TXT
  4.3k 069018_F.TXT
                            4.3k 069018_M.TXT
                                                      3.5k 069019_F.TXT
  3.5k 069019_M.TXT
                            4.2k 069020_F.TXT
                                                      4.2k 069020_M.TXT
  3.7k 069021_F.TXT
                            3.7k 069021_M.TXT
                                                      5.2k 069022_F.TXT
  5.1k 069022_M.TXT
                            3.5k 069023_F.TXT
                                                      3.5k 069023_M.TXT
  3.7k 069024 F.TXT
                            3.6k 069024 M.TXT
                                                       3.5k 069025_F.TXT
  3.5k 069025_M.TXT
                            3.5k 069026_F.TXT
                                                      3.5k 069026_M.TXT
  4.3k 069027_F.TXT
                            4.3k 069027_M.TXT
                                                       4.3k 069028_F.TXT
  4.3k 069028_M.TXT
                            3.5k 069029_F.TXT
                                                       3.5k 069029_M.TXT
  4.0k 069030_F.TXT
                            3.9k 069030_M.TXT
                                                       4.0k 069031_F.TXT
  3.9k 069031 M.TXT
                            3.7k 069032 F.TXT
                                                       3.6k 069032 M.TXT
  4.3k 069033_F.TXT
                            4.3k 069033_M.TXT
                                                       3.5k 069034_F.TXT
  3.5k 069034_M.TXT
                            4.9k 069035_F.TXT
                                                       4.9k 069035_M.TXT
  3.7k 069036_F.TXT
                            3.7k 069036_M.TXT
                                                       4.1k 069037_F.TXT
  4.0k 069037_M.TXT
                            3.8k 069038_F.TXT
                                                      3.8k 069038_M.TXT
  3.5k 069039 F.TXT
                            3.5k 069039 M.TXT
                                                       4.0k 069040 F.TXT
  4.0k 069040_M.TXT
                            4.3k 069041_F.TXT
                                                       4.3k 069041 M.TXT
  3.7k 069042_F.TXT
                            3.7k 069042_M.TXT
                                                       4.3k 069043_F.TXT
  4.3k 069043_M.TXT
                            3.5k 069044_F.TXT
                                                      3.5k 069044_M.TXT
                            3.8k 069045_M.TXT
                                                      5.1k 069046_F.TXT
  3.8k 069045_F.TXT
  5.1k 069046_M.TXT
                            3.5k 069047_F.TXT
                                                       3.5k 069047_M.TXT
                                                       3.6k 069049_F.TXT
  3.5k 069048 F.TXT
                            3.5k 069048 M.TXT
  3.6k 069049_M.TXT
                            4.3k 069050_F.TXT
                                                       4.3k 069050_M.TXT
  3.7k 069051_F.TXT
                            3.7k 069051_M.TXT
                                                      3.5k 069052_F.TXT
  3.5k 069052_M.TXT
                            3.5k 069053_F.TXT
                                                      3.5k 069053_M.TXT
  3.6k 069054_F.TXT
                            3.6k 069054_M.TXT
                                                       4.1k 069055_F.TXT
                                                      4.0k 069056_M.TXT
  4.1k 069055_M.TXT
                            4.0k 069056_F.TXT
                            4.3k 069057_M.TXT
  4.3k 069057_F.TXT
                                                      5.1k 069058_F.TXT
  5.0k 069058_M.TXT
                            4.3k 069059_F.TXT
                                                      4.3k 069059_M.TXT
                                                      3.8k 069061_F.TXT
  3.9k 069060_F.TXT
                            3.8k 069060_M.TXT
  3.8k 069061_M.TXT
                            3.7k 069062_F.TXT
                                                       3.7k 069062_M.TXT
  3.5k 069063 F.TXT
                            3.5k 069063 M.TXT
                                                       3.5k 069064 F.TXT
  3.5k 069064_M.TXT
                            3.9k 069065_F.TXT
                                                      3.9k 069065_M.TXT
  3.8k 069066_F.TXT
                            3.7k 069066_M.TXT
                                                      3.6k 069067_F.TXT
  3.6k 069067_M.TXT
                            4.2k 069068_F.TXT
                                                       4.2k 069068_M.TXT
  3.7k 069069_F.TXT
                            3.6k 069069_M.TXT
                                                       3.6k 069070_F.TXT
  3.6k 069070_M.TXT
                            3.9k 069071_F.TXT
                                                       3.9k 069071_M.TXT
                            4.3k 069072_M.TXT
                                                       4.0k 069073_F.TXT
  4.3k 069072_F.TXT
  4.0k 069073_M.TXT
                            4.2k 069074_F.TXT
                                                       4.2k 069074_M.TXT
  3.9k 069075_F.TXT
                            3.8k 069075_M.TXT
                                                       4.1k 069076_F.TXT
  4.1k 069076_M.TXT
                            3.5k 069077_F.TXT
                                                       3.5k 069077_M.TXT
                                                       3.8k 069079_F.TXT
  3.5k 069078_F.TXT
                            3.5k 069078_M.TXT
                            3.5k 069080_F.TXT
                                                       3.5k 069080_M.TXT
  3.7k 069079_M.TXT
  4.3k 069081 F.TXT
                            4.3k 069081_M.TXT
                                                       3.6k 069082 F.TXI
  3.5k 069082_M.TXT
                            4.7k 069083_F.TXT
                                                       4.7k 069083_M.TXT
  3.7k 069084_F.TXT
                            3.7k 069084_M.TXT
                                                       4.2k 069085_F.TXT
  4.2k 069085_M.TXT
                            4.3k 069086_F.TXT
                                                       4.3k 069086_M.TXT
  4.3k 069087_F.TXT
                            4.3k 069087_M.TXT
                                                       4.1k 069088_F.TXT
  4.0k 069088_M.TXT
                            3.5k 069089_F.TXT
                                                       3.5k 069089 M.TXT
  4.3k 069090_F.TXT
                            4.3k 069090_M.TXT
                                                       4.3k 069091_F.TXT
                            4.1k 069092_F.TXT
                                                       4.0k 069092_M.TXT
  4.3k 069091_M.TXT
```

```
3.8k 069093 F.TXT
                           3.8k 069093 M.TXT
                                                     4.2k 069094 F.TXT
 4.2k 069094_M.TXT
                           4.0k 069095_F.TXT
                                                     3.9k 069095_M.TXT
                                                     3.5k 069097_F.TXT
 3.6k 069096_F.TXT
                           3.5k 069096 M.TXT
3.5k 069097_M.TXT
                           3.9k 069098_F.TXT
                                                     3.9k 069098_M.TXT
                                                     3.6k 069100_F.TXT
5.1k 069099 F.TXT
                           5.0k 069099 M.TXT
3.6k 069100_M.TXT
                           4.2k 069101_F.TXT
                                                     4.1k 069101_M.TXT
 3.9k 069102_F.TXT
                           3.8k 069102_M.TXT
                                                     3.5k 069103_F.TXT
3.5k 069103_M.TXT
                           3.5k 069104_F.TXT
                                                     3.5k 069104_M.TXT
59.2k ch1992.csv
                          59.2k ch1993.csv
                                                    59.2k ch1994.csv
59.2k ch1995.csv
                          59.2k ch1996.csv
                                                    59.2k ch1997.csv
59.1k ch1998.csv
                          59.1k ch1999.csv
                                                    59.1k ch2000.csv
59.0k ch2001.csv
```

per un totale di 16172 files .TXT e 1030 files .csv. Usare il comando insheet scrivendo il nome di tutti i files .TXT e .csv è la soluzione adottata da chi dispone di molto tempo ed è veloce nella digitazione. Io che non ho il primo e sono scarso nella seconda preferisco agire così.

Per prima cosa acquisisco all'interno di una local i nomi di tutti i files in formato .TXT:

```
. local files: dir . files "*.txt"
"069001_f.txt" "069001_m.txt" "069002_f.txt" "069002_m.txt" "069003_f.txt" "0690
> 03 m.txt" "069004 f.txt" "069004 m.txt" "069005 f.txt" "069005 m.txt" "069006
> f.txt" "069006_m.txt" "069007_f.txt" "069007_m.txt" "069008_f.txt" "069008_m.t
> xt" "069009_f.txt" "069009_m.txt" "069010_f.txt" "069010_m.txt" "069011_f.txt"
> "069011_m.txt" "069012_f.txt" "069012_m.txt" "069013_f.txt" "069013_m.txt" "0
> 69014_f.txt" "069014_m.txt" "069015_f.txt" "069015_m.txt" "069016_f.txt" "0690
> 16_m.txt" "069017_f.txt" "069017_m.txt" "069018_f.txt" "069018_m.txt" "069019_
> f.txt" "069019_m.txt" "069020_f.txt" "069020_m.txt" "069021_f.txt" "069021_m.t
> xt" "069022_f.txt" "069022_m.txt" "069023_f.txt" "069023_m.txt" "069024_f.txt"
> "069024_m.txt" "069025_f.txt" "069025_m.txt" "069026_f.txt" "069026_m.txt" "0
> 69027_f.txt" "069027_m.txt" "069028_f.txt" "069028_m.txt" "069029_f.txt" "0690
> 29_m.txt" "069030_f.txt" "069030_m.txt" "069031_f.txt" "069031_m.txt" "069032_
> f.txt" "069032_m.txt" "069033_f.txt" "069033_m.txt" "069034_f.txt" "069034_m.t
> xt" "069035_f.txt" "069035_m.txt" "069036_f.txt" "069036_m.txt" "069037_f.txt"
> "069037_m.txt" "069038_f.txt" "069038_m.txt" "069039_f.txt" "069039_m.txt" "0
> 69040_f.txt" "069040_m.txt" "069041_f.txt" "069041_m.txt" "069042_f.txt" "0690
> 42_m.txt" "069043_f.txt" "069043_m.txt" "069044_f.txt" "069044_m.txt" "069045_
> f.txt" "069045_m.txt" "069046_f.txt" "069046_m.txt" "069047_f.txt" "069047_m.t
> xt" "069048_f.txt" "069048_m.txt" "069049_f.txt" "069049_m.txt" "069050_f.txt"
> "069050_m.txt" "069051_f.txt" "069051_m.txt" "069052_f.txt" "069052_m.txt" "0
> 69053_f.txt" "069053_m.txt" "069054_f.txt" "069054_m.txt" "069055_f.txt" "0690
> 55_m.txt" "069056_f.txt" "069056_m.txt" "069057_f.txt" "069057_m.txt" "069058_
> f.txt" "069058_m.txt" "069059_f.txt" "069059_m.txt" "069060_f.txt" "069060_m.t
> xt" "069061_f.txt" "069061_m.txt" "069062_f.txt" "069062_m.txt" "069063_f.txt"
> "069063_m.txt" "069064_f.txt" "069064_m.txt" "069065_f.txt" "069065_m.txt" "0
> 69066_f.txt" "069066_m.txt" "069067_f.txt" "069067_m.txt" "069068_f.txt" "0690
> 68_m.txt" "069069_f.txt" "069069_m.txt" "069070_f.txt" "069070_m.txt" "069071_
> f.txt" "069071_m.txt" "069072_f.txt" "069072_m.txt" "069073_f.txt" "069073_m.t
> xt" "069074_f.txt" "069074_m.txt" "069075_f.txt" "069075_m.txt" "069076_f.txt"
> "069076_m.txt" "069077_f.txt" "069077_m.txt" "069078_f.txt" "069078_m.txt" "0
> 69079_f.txt" "069079_m.txt" "069080_f.txt" "069080_m.txt" "069081_f.txt" "0690
> 81_m.txt" "069082_f.txt" "069082_m.txt" "069083_f.txt" "069083_m.txt" "069084_
> f.txt" "069084_m.txt" "069085_f.txt" "069085_m.txt" "069086_f.txt" "069086_m.t
> xt" "069087_f.txt" "069087_m.txt" "069088_f.txt" "069088_m.txt" "069089_f.txt"
> "069089_m.txt" "069090_f.txt" "069090_m.txt" "069091_f.txt" "069091_m.txt" "0
> 69092_f.txt" "069092_m.txt" "069093_f.txt" "069093_m.txt" "069094_f.txt" "0690
> 94_m.txt" "069095_f.txt" "069095_m.txt" "069096_f.txt" "069096_m.txt" "069097_
> f.txt" "069097_m.txt" "069098_f.txt" "069098_m.txt" "069099_f.txt" "069099_m.t
> xt" "069100_f.txt" "069100_m.txt" "069101_f.txt" "069101_m.txt" "069102_f.txt"
  "069102_m.txt" "069103_f.txt" "069103_m.txt" "069104_f.txt" "069104_m.txt"
```

La costruzione local files: dir . files "*.txt" rientra nelle funzioni estese delle macro di Stata ([P] \mathbf{macro})¹.

A questo punto per poter fare l'append dei dati devo partire con il primo file, salvarlo e poi fare l'append dei successivi file. Per fare ciò, estraggo dalla local che ho chiamato files il suo primo elemento, lo assegno alla local che chiamerò primo e contestualmente lo tolgo dalla local files per non leggere due volte lo stesso file di dati `'

```
. local primo : word 1 of `files' /* primo elemento di `files' */
 di "`primo'"
069001_f.txt
. local files : list files - primo /* tolgo da `files' il suo primo elemento */
```

Anche la costruzione local primo: word 1 of `files' appartiene alle funzioni estese delle macro di Stata. A questo punto leggo i dati del primo file (quello indicato dalla local primo), genero la variabile sex, le assegno valore 2 e lo salvo in un file temporaneo:

```
insheet using `primo', clear
(14 vars, 87 obs)
. gen sex=2
. save temp, replace
(note: file temp.dta not found)
file temp.dta saved
```

Ora posso leggere e fare l'append in sequenza di tutti gli altri file indicati nella local files. Devo però distinguere i files con dati riferiti alle femmine dai files con dati riferiti ai maschi. Come? Se nel nome del file c'è _m saranno dati riferiti a maschi e quindi assegnerò valore uno alla variabile sex, se c'è f saranno dati riferiti alle femmine e quindi assegnerò valore due alla variabile sex. La costruzione local meccia = strmatch("`f'", "*_m*") mi permette di distinguere tra le 2 possibilità e quindi di agire di conseguenza sul valore da assegnare alla variabile sex.

```
foreach f in `files' {;
   insheet using dati/`f', clear;
   local meccia = strmatch("`f'","*_m*");
   if `meccia'==1 {; /* se trova _m nel nome del file */
      gen sex=1;
                    /* assegna a sex il valore 1 */
   else if `meccia'==0 {; /* altrimenti */
      gen sex=2; /* assegna a sex il valore 2 */
   };
   append using temp;
   save temp, replace;
}:
    Variable |
                     Obs
                                Mean
                                        Std. Dev.
                                                         Min
          v1 I
                       0
          ٧2
                   18096
                             69052.5
                                         30.02166
                                                       69001
                                                                  69104
          v3 I
```

Max

¹Notare la particolare sintassi usata per fare il display della local files!!

v4	18096	43.14943	25.40616	0	99
v5	18096	40.94828	437.5124		29005
v6 v7 v8 v9 v10	18096 18096 18096 18096 18096	41.16534 41.30836 41.46795 41.58709 41.66225	441.2414 444.0427 446.7315 449.089 450.6736	0 0 0 0	29067 29125 29183 29241 29273
v11	18096	41.75696	452.6105	0	29311
v12	18096	41.91943	455.5657	0	29404
v13	18096	42.05449	458.2125	0	29479
v14	18096	42.1408	460.1403	0	29603
sex	18096	1.5	.5000138	0	2

Bene, risolto il problema dei files; ma vorrei potermi muovere anche tra le venti cartelle delle regioni e tra le cartelle delle provincie sfruttando lo stesso meccanismo. No problem, basta sfruttare la funzione dir . dirs:

```
. local regioni : dir . dirs "*";

. di `"`regioni'"';
"abruzzo" "basilicata" "calabria" "campania" "emilia_romagna" "friuli" "lazio"
"liguria" "lombardia" "marche" "molise" "piemonte" "puglia" "sardegna" "sicilia"
"toscana" "trentino" "umbria" "vda" "veneto"
```

Adesso facciamo in modo di entrare in ciascuna cartella delle regione e lanciare il file prov.do in questo modo:

```
foreach regio in `regioni' {;
cd `regio';
do prov.do;
cd ..;
};
```

Il file prov.do a sua volta raccoglie l'elenco delle cartelle delle provincie e lancia il file read.do che si occupa di leggere i dati dai files .TXT e .csv.

```
local diry : dir . dirs "*";
di `"`diry'"';
"chieti" "laquila" "pescara" "teramo"

foreach prv in `diry' {;
cd `prv';
do read.do;
cd ..;
};
```

Previsioni Multiple

19.1 Introduzione

Spiego brevemente il contesto e il problema che si vuole risolvere. Si vuole stimare attraverso un modello probit la probabilità di separazione di un gruppo di coppie in base ad un ridotto numero di variabili esplicative. In realtà le variabili esplicative sarebbero molto più numerose ma in questo esempio utilizziamo solo quelle necessarie per produrre un insieme di probabilità di separazione data da tutte le possibili combinazioni delle variabili esplicative. Per fare ciò ricorreremo al comando contract, ad un ciclo foreach, a matrici e al comando aggiuntivo prchange implementato da J. Scott Long e Jeremy Freese.

19.2 La stima del modello

Come già detto stimiamo un versione ridotta del modello. Vediamo una descrizione delle variabili utilizzate e il risultato della stima probit:

```
. summ separazione higher_edu_M_1 higher_edu_F_1
> du_dip_M du_self_M du_nw_F du_dip_F;
```

Variable	Obs	Mean	Std. Dev.	Min	Max
separazione	4865	.0341213	. 1815593	0	1
higher_e~M_l	4810	.1039501	.3052275	0	1
higher_e~F_l	4830	.0917184	.2886579	0	1
du_dip_M	4845	.580805	.4934783	0	1
du_self_M	4845	.2637771	.4407253	0	1
du_nw_F	4859	.5330315	.4989591	0	1
du dip F	4859	.370035	.4828634	0	1

. probit separazione sons_M_l higher_edu_M_l higher_edu_F_l du_dip_M
> du_self_M du_nw_F du_dip_F;

```
Iteration 0: log likelihood = -721.19595
Iteration 1: log likelihood = -702.70504
Iteration 2: log likelihood = -702.3606
Iteration 3: log likelihood = -702.36044
```

Probit regress		1		LR cl Prob	er of obs hi2(7) > chi2 do R2	= 4789 = 37.67 = 0.0000 = 0.0261
separazione	Coef.	Std. Err.	z	P> z	[95% Co	nf. Interval]
sons_M_l higher_e-M_l higher_e-F_l du_dip_M du_self_M du_nw_F du_dip_F _cons	.3278412 1637689 .0943842 .2067016 1692472 .0184736	.0385635 .1107032 .1314967 .1120967 .1204811 .1189374 .1186803 .1491936	-3.79 2.96 -1.25 0.84 1.72 -1.42 0.16 -11.35	0.000 0.003 0.213 0.400 0.086 0.155 0.876 0.000	221788 .110866 421497 125321 029437 402360 214135 -1.98588	9 .5448156 8 .0939599 4 .3140898 1 .4428402 1 .0638657 5 .2510828

La combinazione delle dummy du_dip_M e du_self_M individua questi tre profili occupazionali per l'uomo:

- 1. No Working (NW) se du_dip_M==0 & du_self_M==0
- 2. Employed (E) se du_dip_M==1 & du_self_M==0
- 3. Self-Employed (SE) se du_dip_M==0 & du_self_M==1

La combinazione delle dummy du_nw_F e du_dip_F individua questi tre profili occupazionali per la donna:

- 1. No Working (NW) se du_nw_F==1 & du_dip_F==0
- 2. Employed (E) se du nw F==0 & du dip F==1
- 3. Self-Employed (SE) se du nw F==0 & du dip F==0

Ora modifichiamo il dataset in modo da ottenere una osservazione per ciascuna possibile combinazione dei valori delle nostre variabili esplicative. Dato che

- sons_M_1 assume 4 valori diversi (0,1,2,3)
- higher_edu_M_1 assume 2 valori (0,1)
- higher_edu_F_1 assume 2 valori (0,1)
- du_dip_M assume 2 valori (0,1)
- du self Massume 2 valori (0,1)
- du nw F assume 2 valori (0,1)
- du_dip_F assume 2 valori (0,1)

. clist

Alla fine devo ottenere un dataset con $4 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 256$ osservazioni. Si tenga presente anche che nel dataset non esistono tutte queste combinazioni ($_{freq} = 0$). Posso ottenere quanto mi prefiggo tramite il comando contract come segue

```
. contract sons_M_l higher_edu_M_l higher_edu_F_l du_dip_M
> du_self_M du_nw_F du_dip_F, nomiss zero;
```

	sons_M_1	highe~M_l	highe~F_l	du_dip_M	du_sel~M	du_dip_F	du_nw_F	_freq
1.	0	0	0	0	0	0	0	8
2.	0	0	0	0	0	1	0	26
3.	0	0	0	0	0	0	1	105
4.	0	0	0	0	0	1	1	0
5.	0	0	0	0	1	0	0	39
6. 7.	0	0	0	0	1 1	1	0 1	77 60
8.	0	0	0	0	1	1	1	0
9.	0	0	0	1	0	0	0	31
10.	0	0	0	1	0	1	0	222
11.	0	0	0	1	0	0	1	162
12.	0	0	0	1	0	1	1	0
13.	0	0	0	1	1	0	0	0
14.	0	0	0	1	1	1	0	0
15.	0	0	0	1	1	0	1	0
16.	0	0	0	1	1	1	1	0
17.	0	0	1	0	0	0	0	1
18.	0	0	1	0	0	1	0	1
19.	0	0	1	0	0	0	1	0
20.	0	0	1	0	0	1	1	0
21.	0	0	1	0	1	0	0	7
22.	0	0	1	0	1	1	0	7
23.	0	0	1	0	1	0	1	3
24.	0	0	1	0	1	1	1	0
25.	0	0	1 1	1	0	0 1	0	4
26. 27.	0	0	1	1 1	0	0	0 1	22 10
28.	0	0	1	1	0	1	1	0
29.	0	0	1	1	1	0	0	0
30.	0	0	1	1	1	1	0	0
31.	0	0	1	1	1	0	1	0
32.	0	0	1	1	1	1	1	0
33.	0	1	0	0	0	0	0	1
34.	0	1	0	0	0	1	0	2
35.	0	1	0	0	0	0	1	1
36.	0	1	0	0	0	1	1	0
37.	0	1	0	0	1	0	0	4
38.	0	1	0	0	1	1	0	3
39.	0	1	0	0	1	0	1	8
40.	0	1	0	0	1	1	1	0
41.	0	1	0	1	0	0	0	2
42. 43.	0	1 1	0	1 1	0	1 0	0 1	15 8
43. 44.	0	1	0	1	0	1	1	0
45.	0	1	0	1	1	0	0	0
46.	0	1	0	1	1	1	0	0
47.	0	1	0	1	1	0	1	0
48.	0	1	0	1	1	1	1	0
49.	0	1	1	0	0	0	0	0
50.	0	1	1	0	0	1	0	0
51.	0	1	1	0	0	0	1	0
52.	0	1	1	0	0	1	1	0
53.	0	1	1	0	1	0	0	1
54.	0	1	1	0	1	1	0	8
55.	0	1	1	0	1	0	1	1
56.	0	1	1	0	1	1	1	0
57.	0	1	1	1	0	0	0	6
58. 59.	0	1 1	1 1	1 1	0	1 0	0 1	13 8
60.	0	1	1	1	0	1	1	0
61.	0	1	1	1	1	0	0	0
62.	0	1	1	1	1	1	0	0
63.	0	1	1	1	1	0	1	0
64.	0	1	1	1	1	1	1	0

65.	1	0	0	0	0	0	0	20
66.	1	0	0	0	0	1	0	57
67.	1	0	0	0	0	0	1	180
68.	1	0	0	0	0	1	1	0
69.	1	0	0	0	1	0	0	73
70.	1	0	0	0	1	1	0	89
71. 72.	1 1	0	0 0	0 0	1	0	1	167
72. 73.	1	0 0	0	1	1 0	1 0	1 0	0 33
74.	1	0	0	1	0	1	0	335
75.	1	Ö	Ö	1	0	0	1	405
76.	1	Ō	Ö	1	Ö	1	1	0
77.	1	0	0	1	1	0	0	0
78.	1	0	0	1	1	1	0	0
79.	1	0	0	1	1	0	1	0
80.	1	0	0	1	1	1	1	0
81.	1	0	1	0	0	0	0	0
82.	1	0	1	0	0	1	0	1
83.	1	0	1	0	0	0	1	3
84. 85.	1 1	0 0	1 1	0 0	0 1	1 0	1 0	0 6
86.	1	0	1	0	1	1	0	12
87.	1	0	1	0	1	0	1	7
88.	1	Ö	1	0	1	1	1	0
89.	1	Ō	1	1	0	0	0	2
90.	1	0	1	1	0	1	0	33
91.	1	0	1	1	0	0	1	10
92.	1	0	1	1	0	1	1	0
93.	1	0	1	1	1	0	0	0
94.	1	0	1	1	1	1	0	0
95.	1	0	1	1	1	0	1	0
96.	1	0	1	1	1	1	1	0
97. 98.	1 1	1 1	0 0	0 0	0 0	0 1	0 0	0 1
99.	1	1	0	0	0	0	1	0
100.	1	1	0	0	0	1	1	0
101.	1	1	Ö	Ö	1	0	0	3
102.	1	1	0	0	1	1	0	14
103.	1	1	0	0	1	0	1	11
104.	1	1	0	0	1	1	1	0
105.	1	1	0	1	0	0	0	4
106.	1	1	0	1	0	1	0	31
107.	1	1	0	1	0	0	1	20
108.	1 1	1 1	0	1 1	0 1	1	1	0
109. 110.	1	1	0 0	1	1	0 1	0 0	0
111.	1	1	Ö	1	1	0	1	0
112.	1	1	0	1	1	1	1	0
113.	1	1	1	0	0	0	0	1
114.	1	1	1	0	0	1	0	0
115.	1	1	1	0	0	0	1	1
116.	1	1	1	0	0	1	1	0
117.	1	1	1	0	1	0	0	6
118.	1	1	1	0	1	1	0	9
119.	1	1	1	0	1	0	1	8
120. 121.	1 1	1 1	1 1	0 1	1 0	1 0	1 0	0 4
121.	1	1	1	1	0	1	0	40
123.	1	1	1	1	0	0	1	17
124.	1	1	1	1	0	1	1	0
125.	1	1	1	1	1	0	0	Ō
126.	1	1	1	1	1	1	0	0
127.	1	1	1	1	1	0	1	0
128.	1	1	1	1	1	1	1	0
129.	2	0	0	0	0	0	0	16

130.	2	0	0	0	0	1	0	54
131.	2	0	Ö	Ö	Ö	0	1	174
132.	2	0	Ö	Ö	Ö	1	1	0
133.	2	0	0	0	1	0	0	72
134.	2	0	0	0	1	1	0	84
135.	2	0	0	0	1	0	1	232
136.	2	0	0	0	1	1	1	0
137.	2	0	0	1	0	0	0	39
138.	2	0	0	1	0	1	0	302
139.	2	0	0	1	0	0	1	521
140.	2	0	0	1	0	1	1	0
141.	2	0	0	1	1	0	0	0
142.	2	0	0	1	1	1	0	0
143.	2	0	0	1	1	0	1	0
144.	2	0	0	1	1	1	1	0
145.	2	0	1	0	0	0	0	0
146.	2	0	1	0	0	1	0	2
147.	2	0	1	0	0	0	1	1
148.	2	0	1	0	0	1	1	0
149.	2	0	1	0	1	0	0	4
150.	2	0	1	0	1	1	0	14
151.	2 2	0	1	0	1	0	1	4
152.	2	0	1 1	0	1 0	1 0	1 0	0
153. 154.	2	0	1	1 1	0	1	0	1 33
154. 155.	2	0	1	1	0	0	1	8
156.	2	0	1	1	0	1	1	0
157.	2	0	1	1	1	0	0	0
158.	2	0	1	1	1	1	0	0
159.	2	0	1	1	1	0	1	Ö
160.	2	0	1	1	1	1	1	0
161.	2	1	0	0	0	0	0	0
162.	2	1	Ö	Ö	Ö	1	Ö	6
163.	2	1	0	0	0	0	1	3
164.	2	1	0	0	0	1	1	0
165.	2	1	0	0	1	0	0	6
166.	2	1	0	0	1	1	0	13
167.	2	1	0	0	1	0	1	7
168.	2	1	0	0	1	1	1	0
169.	2	1	0	1	0	0	0	3
170.	2	1	0	1	0	1	0	44
171.	2	1	0	1	0	0	1	29
172.	2	1	0	1	0	1	1	0
173.	2	1	0	1	1	0	0	0
174.	2	1	0	1	1	1	0	0
175.	2	1	0	1	1	0	1	0
176.	2	1	0	1	1	1	1	0
177.	2	1 1	1	0 0	0 0	0 1	0 0	0
178. 179.	2 2	1	1 1	0	0	0	1	1
180.	2	1	1	0	0	1	1	0
181.	2	1	1	0	1	0	0	7
182.	2	1	1	0	1	1	0	11
183.	2	1	1	Ö	1	Ō	1	7
184.	2	1	1	0	1	1	1	0
185.	2	1	1	1	Ō	Ō	0	5
186.	2	1	1	1	0	1	0	39
187.	2	1	1	1	0	0	1	5
188.	2	1	1	1	0	1	1	0
189.	2	1	1	1	1	0	0	0
190.	2	1	1	1	1	1	0	0
191.	2	1	1	1	1	0	1	0
192.	2	1	1	1	1	1	1	0
193.	3	0	0	0	0	0	0	6
194.	3	0	0	0	0	1	0	17

195.	3	0	0	0	0	0	1	50
196.	3	0	0	0	0	1	1	0
197.	3	0	0	0	1	0	0	38
198.	3	0	0	0	1	1	0	24
199.	3	0	0	0	1	0	1	102
200.	3	Ō	Ö	Ö	1	1	1	0
201.	3	Ō	Ö	1	0	0	0	5
202.	3	Ö	Ö	1	Ö	1	Ö	71
203.	3	0	0	1	0	0	1	186
204.	3	0	0	1	0	1	1	0
205.	3	0	0	1	1	0	0	0
206.	3	0	0	1	1	1	0	0
207.	3	0	0	1	1	0	1	0
208.	3	0	0	1	1	1	1	0
209.	3	0	1	0	0	0	0	0
210.	3	0	1	0	0	1	0	1
211.	3	0	1	0	0	0	1	0
212.	3	0	1	0	0	1	1	0
213.	3	0	1	0	1	0	0	1
214.	3	0	1	0	1	1	0	1
215.	3	0	1	0	1	0	1	3
216.	3	0	1	0	1	1	1	0
217.	3	0	1	1	0	0	0	0
218.	3	0	1	1	0	1	0	6
219.	3	0	1	1	0	0	1	1
220.	3	0	1	1	0	1	1	0
221.	3	0	1	1	1	0	0	0
222.	3	0	1	1	1	1	0	0
223.	3	0	1	1	1	0	1	0
224.	3	0	1	1	1	1	1	0
225.	3	1	0	0	0	0	0	0
226.	3	1	0	0	0	1	0	2
227.	3	1	0	0	0	0	1	2
228.	3	1	0	0	0	1	1	0
229.	3	1	0	0	1	0	0	0
230.	3	1	0	0	1	1	0	2
231.	3	1	0	0	1	0	1	4
232.	3	1	0	0	1	1	1	0
233.	3	1	0	1	0	0	0	0
234.	3	1	0	1	0	1	0	9
235.	3	1	0	1	0	0	1	11
236.	3	1	0	1	0	1 0	1	0
237.	3	1 1	0	1 1	1		0 0	
238. 239.	3 3	1	0 0	1	1 1	1 0	1	0
240.	3	1	0	1	1	1	1	0
241.	3	1	1	0	0	0	0	0
242.	3	1	1	0	0	1	0	0
243.	3	1	1	0	0	0	1	0
244.	3	1	1	Ö	Ö	1	1	0
245.	3	1	1	Ö	1	0	0	3
246.	3	1	1	Ö	1	1	Ö	3
247.	3	1	1	0	1	0	1	0
248.	3	1	1	Ö	1	1	1	0
249.	3	1	1	1	0	0	0	3
250.	3	1	1	1	Ö	1	Ö	17
251.	3	1	1	1	Ö	0	1	5
252.	3	1	1	1	Ö	1	1	Ō
253.	3	1	1	1	1	0	0	0
254.	3	1	1	1	1	1	0	0
255.	3	1	1	1	1	0	1	0
256.	3	1	1	1	1	1	1	0

OK, il dataset è nella forma adatta ai nostri scopi. Adesso voglio calcolare la probabilità associata a ciascuna delle 256 combinazioni ed aggiungerla come nuova variabile. Pos-

siamo fare questo con il comando **prchange**, passandogli come parametri i valori in base ai quali calcolare le probabilità. In pratica si dovrebbe applicare il comando per le 256 combinazioni, partendo dalla prima combinazione:

per finire con l'ultima combinazione

nella return list del comando troviamo il vettore r(predval) che come secondo elemento contiene la probabilità stimata che ci interessa. A questo punto diventa più semplice usare le matrici. Per prima cosa trasformiamo il dataset in una matrice che chiameremo comb:

Determiniamo il numero di righe della matrice comb e costruiamo un ciclo foreach per passare i parametri al comando. Questi parametri vengono passati a prchange attraverso delle local (local sons_M_1 ...local du_dip_F) i cui valori vengono prelevati dalla matrice comb:

```
local r_comb = rowsof(comb);
foreach riga of numlist 1/`r_comb';
**set trace on;
local sons_M_1
                    = comb['riga',1];
local higher_edu_M_1 = comb[`riga',2];
local higher_edu_F_1 = comb[`riga',3];
local du_dip_M
                   = comb[`riga',4];
                    = comb[`riga',5];
local du_self_M
                    = comb[`riga',6];
local du_nw_F
local du_dip_F
                    = comb['riga',7];
prchange, x(sons_M_1 = sons_M_1'
            higher_edu_M_l = `higher_edu_M_l'
            higher_edu_F_1 = `higher_edu_F_1'
            du_dip_M
                         =`du_dip_M'
            du_self_M
                          =`du_self_M'
                           = du_nw_F
            du_nw_F
                           =`du_dip_F');
            du_dip_F
matrix pred = r(predval);
matrix comb_pr`riga' = comb[`riga',1...] , pred[1,2];
matrix drop pred;
qui mat comb_pr= (nullmat(comb_pr) comb_pr`riga');
```

al termine di ogni esecuzione di prchange il valore di pred[1,2], ovvero il secondo valore del vettore r(predval) viene aggiunto come nuovo elemento al vettore riga dei valori delle variabili matrix comb_pr'riga' = comb['riga',1...] , pred[1,2];. Infine tutte le righe vengono combinate assieme per ottenere la matrice finale comb_pr;

. matrix list comb_pr;

comb_	pr[256,8]							
	$sons_M_1$	$high~_M_l$	high~_F_l	du_dip_M	du_self_M	du_nw_F	du_dip_F	c8
r1	0	0	0	0	0	1	0	.03125083
r2	1	0	0	0	0	1	0	.02227251
r3	2	0	0	0	0	1	0	.01557578
r4	3	0	0	0	0	1	0	.0106863
r5	0	0	0	0	0	0	1	.0469672
r6	1	0	0	0	0	0	1	.03428787
r7	2	0	0	0	0	0	1	.02456796
r8	3	0	0	0	0	0	1	.01727403
						0		
r9	0	0	0	0	0		0	.04518275
r10	1	0	0	0	0	0	0	.03290772
r11	2	0	0	0	0	0	0	.02352309
r12	3	0	0	0	0	0	0	.01649973
r13	0	0	1	0	0	1	0	.02135735
r14	1	0	1	0	0	1	0	.01490165
r15	2	0	1	0	0	1	0	.01020022
r16	3	0	1	0	0	1	0	.00684864
r17	0	0	1	0	0	0	1	.03297465
r18	1	0	1	0	0	0	1	.02357369
r19	2	0	1	0	0	0	1	.01653719
r20	3	0	1	0	0	0	1	.01138162
r21	0	0	1	0	0	0	0	.03163838
r22	1	0	1	0	0	0	0	.02256464
r23	2	0	1	0	0	0	0	.01579133
r24	3	0	1	0	0	0	0	.01084198
	0	0	0		0			
r25				1		1	0	.03850239
r26	1	0	0	1	0	1	0	.0277755
r27	2	0	0	1	0	1	0	.01966359
r28	3	0	0	1	0	1	0	.01365868
r29	0	0	0	1	0	0	1	.05698306
r30	1	0	0	1	0	0	1	.04209995
r31	2	0	0	1	0	0	1	.03053238
r32	3	0	0	1	0	0	1	.02173155
r33	0	0	0	1	0	0	0	.05490045
r34	1	0	0	1	0	0	0	.04046682
r35	2	0	0	1	0	0	0	.02927882
r36	3	0	0	1	0	0	0	.02078969
r37	0	0	1	1	0	1	0	.02667329
r38	1	0	1	1	0	1	0	.01884039
r39	2	0	1	1	0	1	0	.01305687
r40	3	0	1	1	0	1	0	.00887669
r41	0	0	1	1	0	0	1	.04054608
r42	1	0	1	1	0	0	1	.02933957
r43	2	0	1	1	0	0	1	.02083529
r44	3	0	1	1	0	0	1	.01451788
		0						
r45	0		1	1	0	0	0	.03896226
r46	1	0	1	1	0	0	0	.02812697
r47	2	0	1	1	0	0	0	.01992651
r48	3	0	1	1	0	0	0	.01385122
r49	0	0	0	0	1	1	0	.04885904
r50	1	0	0	0	1	1	0	.03575507
r51	2	0	0	0	1	1	0	.02568178
r52	3	0	0	0	1	1	0	.0181017
r53	0	0	0	0	1	0	1	.0710117
r54	1	0	0	0	1	0	1	.05320916

r55	2	0	0	0	1	0	1	.03914384
r56	3	0	0	0	1	0	1	.02826582
r57	0	0	0	0	1	0	0	.06853762
r58	1	0	0	0	1	0	0	.05123693
r59	2	0	0	0	1	0	0	.03760492
r60	3	0	0	0	1	0	0	.0270904
r61 r62	0 1	0	1 1	0 0	1 1	1 1	0 0	.03439569
r63	2	0	1	0	1	1	0	.02464971
r64	3	0	1	0	1	1	0	.01196023
r65	0	0	1	0	1	0	1	.05133273
r66	1	0	1	0	1	0	1	.03767958
r67	2	Ö	1	Ö	1	0	1	.02714735
r68	3	Ö	1	Ö	1	0	1	.01919419
r69	0	Ö	1	Ö	1	0	0	.04941624
r70	1	Ö	1	Ō	1	0	0	.03618798
r71	2	Ö	1	Ō	1	0	0	.02601101
r72	3	0	1	0	1	0	0	.01834679
r73	0	1	0	0	0	1	0	.06240681
r74	1	1	0	0	0	1	0	.04637326
r75	2	1	0	0	0	1	0	.03382808
r76	3	1	0	0	0	1	0	.02421956
r77	0	1	0	0	0	0	1	.08896469
r78	1	1	0	0	0	0	1	.06767102
r79	2	1	0	0	0	0	1	.05054738
r80	3	1	0	0	0	0	1	.03706785
r81	0	1	0	0	0	0	0	.08602732
r82	1	1	0	0	0	0	0	.06528763
r83	2	1	0	0	0	0	0	.0486544
r84	3	1	0	0	0	0	0	.03559617
r85	0	1	1	0	0	1	0	.04469279
r86	1	1	1	0	0	1	0	.03252943
r87	2	1	1	0	0	1	0	.0232372
r88	3	1	1	0	0	1	0	.01628823
r89	0	1	1	0	0	0	1	.06540354
r90	1	1	1	0	0	0	1	.04874634
r91	2	1	1	0	0 0	0 0	1 1	.03566756
r92 r93	3 0	1 1	1 1	0 0	0	0	0	.02561526
r94	1	1	1	0	0	0	0	.04690768
r95	2	1	1	0	0	0	0	.03424177
r96	3	1	1	0	0	0	0	.02453301
r97	0	1	0	1	0	1	0	.07486377
r98	1	1	Ö	1	0	1	0	.05629028
r99	2	1	Ö	1	0	1	0	.0415562
r100	3	1	0	1	0	1	0	.03011463
r101	0	1	0	1	0	0	1	.10514402
r102	1	1	0	1	0	0	1	.08090958
r103	2	1	0	1	0	0	1	.06115075
r104	3	1	0	1	0	0	1	.0453811
r105	0	1	0	1	0	0	0	.10182033
r106	1	1	0	1	0	0	0	.07817525
r107	2	1	0	1	0	0	0	.05894887
r108	3	1	0	1	0	0	0	.04364548
r109	0	1	1	1	0	1	0	.05432799
r110	1	1	1	1	0	1	0	.04001869
r111	2	1	1	1	0	1	0	.02893543
r112	3	1	1	1	0	1	0	.02053213
r113	0	1	1	1	0	0	1	.07830834
r114	1	1	1	1	0	0	1	.0590559
r115	2 3	1 1	1	1 1	0	0	1 1	.04372974
r116 r117	0	1	1 1	1	0 0	0 0	0	.03178672
r117	1	1	1	1	0	0	0	.07564123
r119	2	1	1	1	0	0	0	.04204545
1110	2	-	4	•	J	•	v	.01201010

r120	3	1	1	1	0	0	0	.0304905
r121	0	1	0	0	1	1	0	.09205978
r122	1	1	0	0	1	1	0	.07018927
r123	2	1	0	0	1	1	0	.05255296
r124	3	1	0	0	1	1	0	.03863135
r125	0	1	0	0	1	0	1	.12704809
r126	1	1	0	0	1	0	1	.09910604
r127	2	1	0	0	1	0	1	.07594781
r128	3	1	0	0	1	0	1	.05715961
r129	0	1	0	0	1	0	0	.12324235
r130	1	1	0	0	1	0	0	.09592332
r131	2	1	0	0	1	0	0	.07334241
r132	3	1	0	0	1	0	0	.05507191
r133	0	1	1	0	1	1	0	.06785662
r134	1	1	1	0	1	1	0	.05069501
r135	2	1	1	0	1	1	0	.03718279
r136	3	1	1	0	1	1	0	.02676854
r137	0	1	1	0	1	0	1	.09607838
r138	1	1	1	0	1	0	1	.07346918
r139	2	1	1	0	1	0	1	.05517336
r140	3	1	1	0	1	0	1	.04068058
r141	0	1	1	0	1	0	0	.09296776
r142	1	1	1	0	1	0	0	.07092933
r143	2	1	1	0	1	0	0	.05314341
r144	3	1	1	0	1	0	0	.03909247
r145	0	1	1	1	1	1	1	.08393377
r146	0	0	0	1	1	0	1	.08473428
r147	0	0	1	1	0	1	1	.02783366
r148	0	0	0	0	0	1	1	.03257362
r149	0	1	0	0	0	1	1	.06470847
r150	0	1	1	0	1	1	1	.07031184
r151	0	0	1	1	1	1	0	.04222742
r152	0	1	1	1	1	0	0	.10966442
r153	0	1	0	1	1	1	0	.10864002
r154	0	1	1	1	0	1	1	.05639349
r155	0 0	0 1	1 0	1 1	1 0	1 1	1 1	.04391757
r156	0	1	1	1	1	1	0	.08112232
r157 r158	0	1	0	1	1	1	1	.11212215
r159	0	0	0	1	0	1	1	.04007105
r160	0	0	0	1	1	1	1	.0613959
r161	0	0	1	0	1	1	1	.03582672
r162	0	0	0	Ö	1	1	1	.05075834
r163	0	1	0	1	1	0	1	.14776383
r164	0	1	Ö	0	1	1	1	.09514806
r165	Ö	1	1	1	1	Ō	1	.11316993
r166	0	0	0	1	1	1	0	.05918708
r167	0	0	0	1	1	0	0	.08190262
r168	0	1	0	1	1	0	0	.14354074
r169	0	0	1	1	1	0	1	.06206314
r170	0	0	1	1	1	0	0	.0598355
r171	0	0	1	0	0	1	1	.02232083
r172	0	1	1	0	0	1	1	.04646172
r173	1	0	0	1	1	1	0	.04383302
r174	1	0	1	1	1	1	0	.03063037
r175	1	0	0	0	1	1	1	.0372321
r176	1	0	0	1	1	0	1	.06424052
r177	1	0	0	1	1	1	1	.04557462
r178	1	0	1	1	1	1	1	.03193149
r179	1	1	0	1	1	1	1	.08667391
r180	1	1	1	1	1	1	0	.06132231
r181	1	1	1	0	0	1	1	.03389654
r182	1	1	0	1	0	1	1	.05841413
r183	1	0	1	0	1	1	1	.02573625
r184	1	1	0	0	1	1	1	.07270885

190

r185	1	0	1	1	1	0	1	.04610165
r186	1	0	0	0	0	1	1	.02327058
r187	1	0	1	1	1	0	0	.04434379
r188	1	1	0	1	1	0	1	.11657615
r189	1	0	1	1	0	1	1	.01970707
r190	1	0	1	0	0	1	1	.01561142
r191	1	0	0	1	0	1	1	.02897554
r192	1	1	0	1	1	0	0	.11299532
r193 r194	1 1	1 1	1 1	1 1	0 1	1 0	1 1	.04163717 .08754214
r194 r195	1	1	0	0	0	1	1	.04819519
r196	1	1	0	1	1	1	0	.08379353
r197	1	0	0	1	1	0	0	.06195188
r198	1	1	1	1	1	1	1	.0635929
r199	1	1	1	0	1	1	1	.05265072
r200	1	1	1	1	1	0	0	.08464009
r201	2	1	0	0	1	1	1	.0545651
r202	2	0	0	1	1	0	0	.04601374
r203	2	1	1	1	1	0	1	.06651596
r204	2	1	1	0	1	1	1	.03870767
r205	2	0	1	0	0	1	1	.01071203
r206	2	0	0	1	1	1	1	.03321049
r207	2	1	1	0	0	1	1	.02427141
r208	2	1	1	1	1	0	0	.0641643
r209	2	0	1	1	0	1	1	.01369051
r210	2	0	1	0	1	1	1	.01814223
r211	2	1	1	1	1	1	0	.04551652
r212	2	1	1	1	1	1	1	.04731152
r213	2	0	1	1	1	1	1	.02278574
r214	2	0	0	0	0	1	1	.01631292
r215	2	0	1	1	1	1	0	.02180528
r216	2	1	0	1	0	1	1	.04322468
r217	2	0	1	1	1	0	0	.03226015
r218 r219	2 2	1 1	0	1	1 1	1	1 0	.06581173
r219 r220	2	1	0 0	1 0	0	1 1	1	.06347949
r221	2	0	0	0	1	1	1	.03523976
r222	2	1	0	1	1	0	0	.0873974
r223	2	1	0	1	1	0	1	.09036943
r224	2	1	1	1	0	1	1	.03017682
r225	2	0	0	1	1	0	1	.04782438
r226	2	0	0	1	1	1	0	.03186632
r227	2	0	0	1	0	1	1	.0205622
r228	2	0	1	1	1	0	1	.03361796
r229	3	0	1	1	1	1	0	.0152314
r230	3	1	1	1	1	0	0	.04776399
r231	3	0	0	1	1	0	0	.03354997
r232	3	1	1	0	1	1	1	.02793236
r233	3	0	1	1	1	0	0	.02303382
r234	3	1	0	0	0	1	1	.02529023
r235	3	1	0	1	1	0	1	.06881309
r236	3	1	1	1	1	1	0	.03316559
r237	3	0	1	0	1	1	1	.01254771
r238	3	1	1	1	0	1	1	.02146415
r239	3	0	0	0	0	1	1	.01121921
r240	3	1	1	0	0	1	1	.01705406
r241	3 3	1	0	1	1	1	0	.04722175
r242	3	0 1	0 0	1 0	1 1	1 1	0 1	.02273657
r243 r244	3	0	0	1	1	1	1	.04020426
r244 r245	3	0	1	1	1	0	1	.02375207
r245 r246	3	1	0	1	1	0	0	.06639852
r247	3	1	1	1	1	0	1	.04962935
r248	3	0	0	1	0	1	1	.01431736
r249	3	0	1	1	1	1	1	.01595458
	•	•	•	-	-	•	•	. 0 2 0 0 0 1 0 0

r250	3	1	0	1	0	1	1	.03139766
r251	3	0	0	0	1	1	1	.01893949
r252	3	1	0	1	1	1	1	.04907022
r253	3	0	0	1	1	0	1	.03495214
r254	3	0	1	0	0	1	1	.00720989
r255	3	0	1	1	0	1	1	.00933016
r256	3	1	1	1	1	1	1	.0345546

192

reshape su molte Variabili

Per l'esecuzione dei comandi reshape long e reshape wide è necessario specificare tutte le variabili che abbiamo definito del gruppo X_{ij} (vedi capitolo 10.4 pagina 127). Purtroppo per specificare questa lista di variabili non possiamo fare ricorso ai caratteri jolly e alle sequenze di variabili (vedi capitolo 5.7 pagina 34). Come fare nel caso in cui le variabili del gruppo X_{ij} siano molto numerose? Cerchiamo di spiegarlo tramite un caso applicato.

Abbiamo il seguente dataset:

```
. desc, short

Contains data from dta/ts.dta
obs: 800
vars: 3,511 24 May 2008 10:27
size: 22,450,400 (85.7% of memory free)

Sorted by:
Note: dataset has changed since last saved
```

di cui dobbiamo fare un reshape long sul gruppo di 3500 variabili X_{ij} . Le variabili riguardano indici relativi ad una serie di titoli bond e si presentano in gruppi di 8, dove per ciascun titolo si riportano 8 indici:

. desc DE000WLB8FC4_DM-DE000WLB8FC4_MV, fullnames

variable name	storage type	display format	value label	variable label	
DE000WLB8FC4_DM DE000WLB8FC4_IBOX DE000WLB8FC4_SP DE000WLB8FC4_SWSP DE000WLB8FC4_RI DE000WLB8FC4_AC DE000WLB8FC4_RYIB DE000WLB8FC4_MV	double double double double	%10.0g %10.0g %10.0g %10.0g %10.0g %10.0g %10.0g %10.0g			

La prima parte del nome della variabile è l'identificativo del titolo, la seconda parte, quella dopo l'"__", è l'indice relativo al titolo. In particolare

DM Duration - ModifiedIBOX iBoxx End-Of-Day Mid Price

```
SP Spread Over Benchmark Curve
SWSP Spread Over Swap Curve
RI Total Return Index
AC Accrued Interest
RYIB IBoxx - Yield
MV Market Value (Capital)
```

e rappresentano l'elemento j. Teoricamente si dovrebbe fare il **reshape** scrivendo circa 440 variabili!. Con questo pezzo di codice però riesco ad ottenere la lista che mi serve:

```
preserve;
keep *_AC;
renvars , postsub(_AC _);
ds *_;
di "`r(varlist)'";
restore;
```

Analizziamolo. Con keep *_AC prendo una sola occorrenza tra le 8 di ciascun titolo, quindi elimino la parte terminale AC del nome delle variabili. Con il comando ds ottengo la lista delle variabili che vengono salvare nella local r(varlist)

Ok ci siamo; la variabile data è l'elemento \mathtt{i} , indichiamo con tipo l'elemento \mathtt{j} e aggiungiamo l'opzione string dato che l'identificativo \mathtt{X}_{ij} non è numerico:

```
. reshape long "`r(varlist)'" , i(data) j(tipo) string;
(note: j = AC DM IBOX MV RI RYIB SP SWSP)
(note: ES0312342001_DM not found)
(note: ES0312298005_DM not found)
(note: DE000LBW6062_DM not found)
(note: ES0312342001_IBOX not found)
(note: ES0312298005_IBOX not found)
(note: ES0370148001_IBOX not found)
(note: DE000LBW6062_IBOX not found)
(note: DE000LBW3DR8_IBOX not found)
(note: DE000HBE0D55_IB0X not found)
(note: DE000WLB6EG2_IB0X not found)
(note: XS0282598167_IBOX not found)
(note: DE000NWB2846_IBOX not found)
(note: DE000DHY1149_IBOX not found)
(note: DE000MHB3018_IBOX not found)
(note: DE000LBW6062_MV not found)
(note: DE000LBW6062_RI not found)
(note: ES0312342001_RYIB not found)
(note: ES0312298005 RYIB not found)
(note: ES0370148001_RYIB not found)
(note: DE000LBW6062_RYIB not found)
(note: DE000LBW3DR8_RYIB not found)
(note: DE000HBE0D55_RYIB not found)
(note: DE000WLB6EG2_RYIB not found)
(note: XS0282598167_RYIB not found)
(note: DE000NWB2846_RYIB not found)
```

```
(note: DE000DHY1149_RYIB not found)
  (note: DE000MHB3018_RYIB not found)
  (note: DE000LBW6062_SP not found)
  (note: DE000LBW6062_SWSP not found)
Data
                                                                                                                                                                                          wide
                                                                                                                                                                                                                                                            long
Number of obs.
                                                                                                                                                                                               800
                                                                                                                                                                                                                                                                6400
Number of variables
                                                                                                                                                                                                                                                                  447
                                                                                                                                                                                          3511
j variable (8 values)
                                                                                                                                                                                                                                ->
                                                                                                                                                                                                                                                          tipo
xij variables:
DE000WLB8FC4_AC DE000WLB8FC4_DM ... DE000WLB8FC4_SWSP->DE000WLB8FC4_
XS0308936037_AC XS0308936037_DM ... XS0308936037_SWSP->XS0308936037_
            (output omitted)
\tt XS0241183804\_AC \ XS0241183804\_DM \ \dots \ XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804\_SWSP->XS0241183804
XS0169374443_AC XS0169374443_DM ... XS0169374443_SWSP->XS0169374443_
```

Importare dati .xml dal GME

Il GME (Gestore Mercati Elettrici) mette a disposizione nella sezione download del suo sito (http://www.mercatoelettrico.org/), diversi database. Nel nostro caso ci interessano i database relativi ai prices, scaricabili in formato .xml con un file di dati per ciascun giorno dell'anno. Sempre sul sito indicano una procedura che passando da Access consente di importare i dati in Excel. Il nostro obiettivo è creare un database in Stata che comprenda tutti i singoli database giornalieri. I problemi da risolvere sono molteplici:

- Creare una procedura che automatizzi l'accesso a files contenuti in 365 (o 366) archivi in formato .zip
- Caricare in Stata un file di dati in formato .xml
- Riunire i 365 (o 366) file giornalieri in un unico file
- Ripetere i punti precedenti per n anni (2004-2011 nel nostro caso)

21.1 Accesso ai files .zip

Per ogni anno di interesse (dal 2004 al 2011) è stata creata una cartella. All'interno di questa cartella sono stati scaricati i files .zip giornalieri che hanno una struttura del tipo <aaaammgg>OfferteFree_Pubbliche.zip dove <> rappresenta la data in formato anno a quattro cifre, mese a due e giorno a 2. Questo archivio contiene a sua volta altri files .zip (da tre a cinque) anche questi con una nomenclatura definita. Per esempio il file 20100101OfferteFree_Pubbliche.zip contiene i seguenti files:

20100101MGPOffertePubbliche.zip 20100101MI1OffertePubbliche.zip 20100101MI2OffertePubbliche.zip 20100101MSDOffertePubbliche.zip Tutti iniziano con l'indicazione della data e ciò che cambia è la parte finale del nome. Il file .xml da caricare è contenuto nel file <aaaammgg>MGPOffertePubbliche.zip ed ha lo stesso nome dello zipfile che lo contiene (<aaaammgg>MGPOffertePubbliche.xml). Quindi la prima procedura dovrebbe:

- 1. entrare nella cartella di ciascun anno
- 2. creare l'elenco dei file. zip da processare
- 3. estrarre da ciascun file .zip gli n file .zip contenuti
- 4. estrarre dal <aaaammgg>MGPOffertePubbliche.zip il file <aaaammgg>MGPOffertePubbliche.xml

Vediamo come è possibile fare ciò, premettendo che questo codice si inserisce in una procedura che automatizza il processo per tutti gli anni presi in considerazione. Qui per semplicità espositiva ci si limita al solo anno 2010 per cui si definisce la local Y:

```
local Y = 2010;
```

Tramite local list: si inseriscono nella local list tutti i files .zip contenuti nella cartella data/2010, si determina il loro numero (local quanti :) e per sicurezza vengono ordinati in senso alfabetico crescente (local list: list sort list)¹;

```
local list : dir "data/`Y´" files "*.zip";
local quanti : list sizeof list;
local list : list sort list;
```

il risultato di queste operazioni è il seguente:

```
di `list´;

201001010ffertefree_pubbliche.zip20100102offertefree_pubbliche.zip...
> zip20100105offertefree_pubbliche.zip20100106offertefree_pubbliche.zip...
> iche.zip20100109offertefree_pubbliche.zip20100110offertefree_pubbliche.zip...
> pubbliche.zip20100113offertefree_pubbliche.zip20100114offertefree_pubbliche.zip...
> free_pubbliche.zip20100117offertefree_pubbliche.zip20100118offertefree_pubbliche.zip...
> fertefree_pubbliche.zip20100121offertefree_pubbliche.zip...
> 124offertefree_pubbliche.zip20100125offertefree_pubbliche.zip...
> 20100128offertefree_pubbliche.zip20100129offertefree_pubbliche.zip...
> e.zip20100201offertefree_pubbliche.zip20100202offertefree_pubbliche.zip...
> bliche.zip20100205offertefree_pubbliche.zip20100206offertefree_pubbliche.zip...
> e_pubbliche.zip20100209offertefree_pubbliche.zip20100210offertefree_pubbliche.zip...
```

Nella local list ci sono tutti i files .zip da aprire i quali a loro volta conterranno il file <aaaammgg>MGPOffertePubbliche.zip da aprire ulteriormente per accedere a <aaaammgg>MGPOffertePubbliche.xml. Tutto ciò viene eseguito all'interno di un ciclo foreach

¹Questo ordinamento viene fatto per avere lo stesso comportamento in ambiente Linux e Windows. Non ne ho capito il motivo ma, lo stesso comando, genera un lista ordinata in senso alfabetico crescente in Windows ma non in Linux.

```
1. local id_file = 1;
2. foreach file of local list {;
       local id_time : piece 1 8 of "`file'";
       qui unzipfile data/`Y´/`file´, replace;
4.
        qui unzipfile `id_time´mgpoffertepubbliche.zip , replace;
5.
6.
       shell erase *ubbliche.zip;
       global xml_file "`id_time'MGPOffertePubbliche";
local xml_file = "$xml_file";
8.
       qui include read_xml2.do;
10.
        if `id_file´==1 qui save temp_xml, replace;
11.
        else {;
12.
           qui append using temp_xml;
           qui save temp_xml, replace;
13.
14.
15. capture erase `xml_file'.xml;
16. local id_file `++id_file';
17. };
```

Vediamo in dettaglio riga per riga

```
1. local id_file = 1;
```

Si inizializza la local id_file al valore 1. Questo servirà in seguito (righe 10.-14.) per sapere se i dati caricati sono il primo giorno dell'anno e quindi da salvare subito o se devono essere aggiunti a un database già esistente tramite un append.

2. foreach file of local list {;

Si inizia il ciclo per ciascun file dell'anno contenuto in list.

```
3. local id_time : piece 1 8 of "`file'";
```

Dal nome del file si estraggono le prime otto lettere corrispondenti alla data e vengono assegnate alla local id_time

qui unzipfile data/`Y´/`file´, replace;

Si estrae il contenuto del file .zip indicato nella local 'file'

qui unzipfile `id_time´mgpoffertepubbliche.zip , replace;

Si estrae il contenuto del file 'id_time' mgpofferte pubbliche.zip, dove 'id_time' indica la data di riferimento ricavata alla riga 3.

```
6. shell erase *ubbliche.zip;
7. global xml_file "`id_time`MGPOffertePubbliche";
8. local xml_file = "$xml_file";
```

Vengono cancellati i files .zip estratti da 'file' e il cui nome termina in *ubbliche.zip (6.) e si assegna alla global e alla local xml_file il nome del file .xml da caricare in Stata (righe 7. e 8.).

qui include read_xml2.do;

Viene mandato il esecuzione il do-file read_xml2 che si occupa di caricare in Stata il contenuto del file .xml. Vedremo tra poco il suo funzionamento.

```
10. if `id_file'==1 qui save temp_xml, replace;
11. else {;
12. qui append using temp_xml;
```

```
13. qui save temp_xml, replace;
14. };
```

Al termine dell'esecuzione di read_xml2.do viene verificato se questo è il primo file di dati caricato. In caso affermativo viene salvato il file temp_xml.dta (riga 10.), altrimenti viene fatto un append con il file temp_xml.dta (che quindi esiste) e poi risalvato con lo stesso nome (righe 11. - 13.).

```
15. capture erase `xml_file'.xml;
16. local id_file `++id_file';
```

Prima di iniziare il ciclo successivo viene cancellato il file .xml appena letto (15.) e incrementato il contatore id_file utilizzato per discriminare quale azione debba essere eseguita nelle righe 10.-14.

21.2 Leggere dati in formato .xml

Stata ha la possibilità di caricare dati in formato .xml tramite il comando xmluse. Sono previsti due tipi di doctype xml leggibili: dta ed excel. In questo caso il comando non funziona non essendo gli .xml in nessuno dei due formati. Usando xmluse si ottiene questo messaggio di errore:

```
. xmluse 20100222MGPOffertePubbliche.xml, clear
unrecognizable XML doctype
r(198);
```

I file .xml sono in sostanza dei file di dati in formato testo con in più tutta un serie di informazioni racchiusa in tag. Se si riesce a ripulire il file da tutti i tag si ottiene un semplice file di testo e con un po' di lavoro si può ricostruire il database.

Analizziamo i file .xml del nostro caso. Iniziano con un preambolo in cui viene descritto il file, le variabili che contiene e il loro tipo. Ne riporto una parte:

```
<?xml version="1.0" standalone="yes"?>
<NewDataSet>
<xs:schema id="NewDataSet" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"</pre>
          xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
  <xs:element name="NewDataSet" msdata:IsDataSet="true" msdata:UseCurrentLocale="true">
    <xs:complexType>
       <xs:choice minOccurs="0" maxOccurs="unbounded">
         <xs:element name="OfferteOperatori" msdata:CaseSensitive="False" msdata:Locale="it-IT">
            <xs:complexType>
              <xs:sequence>
                 <xs:element name="PURPOSE_CD" type="xs:string" minOccurs="0" />
                <xs:element name="TYPE_CD" type="xs:string" minOccurs="0" />
<xs:element name="STATUS_CD" type="xs:string" minOccurs="0" />
<xs:element name="STATUS_CD" type="xs:string" minOccurs="0" />
<xs:element name="marker_cD" type="xs:string" minOccurs="0" />
                 <xs:element name="UNIT_REFERENCE_NO" type="xs:string" minOccurs="0" />
                 <xs:element name="MARKET_PARTECIPANT_XREF_NO" type="xs:string" min0ccurs="0" />
                 <xs:element name="INTERVAL_NO" type="xs:decimal" minOccurs="0" />
    </xs:complexType>
  </xs:element>
</xs:schema>
```

Tutta questa parte non serve e verrà eliminata. Inizia poi l'informazione che si vuole caricare come nell'esempio che segue:

```
<OfferteOperatori>
   <PURPOSE_CD>BID</PURPOSE_CD>
   <TYPE_CD>REG</TYPE_CD>
   <STATUS_CD>ACC</STATUS_CD>
   <MARKET_CD>MGP</MARKET_CD>
   <UNIT_REFERENCE_NO>UC_DPO012_CNOR</UNIT_REFERENCE_NO>
   <INTERVAL_NO>1</INTERVAL_NO>
    <BID_OFFER_DATE_DT>20100101</BID_OFFER_DATE_DT>
   <TRANSACTION_REFERENCE_NO>93650573761067</TRANSACTION_REFERENCE_NO>
   <QUANTITY NO>0.157</QUANTITY NO>
   <AWARDED_QUANTITY_NO>0.157</AWARDED_QUANTITY_NO>
   <ENERGY_PRICE_NO>0.00</ENERGY_PRICE_NO>
   <MERIT_ORDER_NO>294/MERIT_ORDER_NO>
   <PARTIAL_QTY_ACCEPTED_IN>N</PARTIAL_QTY_ACCEPTED_IN>
   <ADJ_QUANTITY_NO>0.157</ADJ_QUANTITY_NO>
   <GRID_SUPPLY_POINT_NO>PSR_CNOR</GRID_SUPPLY_POINT_NO>
   <ZONE_CD>CNOR</ZONE_CD>
   <AWARDED_PRICE_NO>53.57</AWARDED_PRICE_NO>
   <OPERATORE>Bilateralista
   <SUBMITTED DT>20091231091204624/SUBMITTED DT>
   <BILATERAL IN>true</BILATERAL IN>
 </OfferteOperatori>
```

Tutto ciò che è racchiuso tra i tag < e > non serve come dato e va cancellato. Ci serve però come informazione per identificare le variabili. Infatti quella precedente è una singola osservazione ripartita però su più righe, per cui uno dei problemi da risolvere sarà anche come riportare tutte queste variabili riferite ad una sola osservazione su una sola riga. Inoltre il numero di variabili per singola osservazione non è costante, ovvero può accadere che per esempio in una certa osservazione manchi il dato relativo a <ZONE_CD> per cui questa riga manca all'interno dei tag <OfferteOperatori> e </OfferteOperatori>. Questo fatto, considerando anche che il numero di righe del preambolo non è costante nei diversi file .xml, comporta l'impossibilità di usare il comando infile per la lettura dei dati nella forma

come abbiamo visto nel capitolo precedente è il file read_xml2.do che si occupa di leggere i file .xml. Con il comando

```
infix str var1 1-150 using `xml_file'.xml, clear;
```

si carica l'intero contenuto del file .xml nella variabile stringa var1. Ora questa andrà pulita dalle informazioni non pertinenti. Per prima cosa si eliminano tutte le righe relative al preambolo:

```
drop if strmatch(var1,"<?xml*") | strmatch(var1,"<*NewDataSet>*") | strmatch(var1,"<*xs:*");
Si considera il tag <OfferteOperatori> come inizio osservazione e gli viene assegnato
un codice 0 per poi poter ricostruire le osservazioni nel database finale mettendo tutta
```

l'informazione contenuta nei singoli <OfferteOperatori> - </OfferteOperatori> sulla medesima riga

```
drop if inlist(var1,"</OfferteOperatori>");
replace var_id=0 if strmatch(var1,"<OfferteOperatori>*")
```

Ora viene creata una variabile che numera tutte le righe che sono rimaste dopo l'opera di pulizia (id) e una variabile stringa che verrà popolata con l'informazione relativa al nome della variabile desunto dai singoli tag:

```
gen id=_n;
gen var_id_str = "";
    replace var_id_str="purpose_cd" if strmatch(var1,"<PURPOSE_CD>*");
    replace var_id_str="type_cd" if strmatch(var1,"<TYPE_CD>*");
```

Si assegna un numero identificativo crescente a tutte le occorrenze pari a 0 della variabile var_id. Questo sarà l'identificativo delle osservazioni del database finale. Tutte le righe che appartenevano ad uno stesso gruppo di righe contenute nei tag <OfferteOperatori> prendono lo stesso valore (ciclo forvalues)

```
egen id_group = group(id var_id) if var_id==0;
qui count;
forvalues i=1(1)`r(N)´ {;
if id_group[`i´]==. qui replace id_group = id_group[`i´-1] in `i´;
}:
```

il risultato dei comandi precedenti sarà il seguente:

var1	 id	var_id_str	id_group
<offerteoperatori></offerteoperatori>	1	inizio_obs	1
<purpose_cd>BID</purpose_cd>	2	purpose_cd	1
<status_cd>ACC</status_cd>	3	status_cd	1
<pre><unit_reference_no>UC_DP0012_CNOR</unit_reference_no></pre>	4	unit_reference_no	1
<pre><interval_no>1</interval_no></pre>	5	interval_no	1
<pre><bid_offer_date_dt>20100101</bid_offer_date_dt></pre>	6	bid_offer_date_dt	1
<quantity_no>0.157</quantity_no>	7	quantity_no	1
<pre><awarded_quantity_no>0.157</awarded_quantity_no></pre>	8	awarded_quantity_no	1
<pre><energy_price_no>0.00</energy_price_no></pre>	9	energy_price_no	1
<pre><merit_order_no>294</merit_order_no></pre>	10	merit_order_no	1
<pre><partial_qty_accepted_in>N</partial_qty_accepted_in></pre>	11	partial_qty_accepted_in	1
<zone_cd>CNOR</zone_cd>	12	zone_cd	1
<pre><awarded_price_no>53.57</awarded_price_no></pre>	13	awarded_price_no	1
<pre><operatore>Bilateralista</operatore></pre>	14	operatore	1
<offerteoperatori></offerteoperatori>	15	inizio_obs	2 2
<purpose_cd>BID</purpose_cd>	16	purpose_cd	2
<status_cd>ACC</status_cd>	17	status_cd	2
<pre><unit_reference_no>UC_DP0012_CNOR</unit_reference_no></pre>	18	unit_reference_no	2
<pre><interval_no>2</interval_no></pre>	19	interval_no	2
<pre><bid_offer_date_dt>20100101</bid_offer_date_dt></pre>	20	bid_offer_date_dt	2 2
<quantity_no>0.144</quantity_no>	21	quantity_no	2
<pre><awarded_quantity_no>0.144</awarded_quantity_no></pre>	22	awarded_quantity_no	2 2
<pre><energy_price_no>0.00</energy_price_no></pre> /ENERGY_PRICE_NO>	23	energy_price_no	
<pre><merit_order_no>294</merit_order_no></pre>	24	merit_order_no	2
<pre><partial_qty_accepted_in>N</partial_qty_accepted_in></pre>	25	partial_qty_accepted_in	2
<zone_cd>CNOR</zone_cd>	26	zone_cd	2
<pre><awarded_price_no>48.00</awarded_price_no></pre>	27	awarded_price_no	2
<pre><operatore>Bilateralista</operatore></pre>	28	operatore	2
<offerteoperatori></offerteoperatori>	29	inizio_obs	3

```
        <PURPOSE_CD>BID</PURPOSE_CD>
        30
        purpose_cd
        3

        <STATUS_CD>ACC</STATUS_CD>
        31
        status_cd
        3

        <UNIT_REFERENCE_NO>UC_DP0012_CNOR</UNIT_REFERENCE_NO>
        32
        unit_reference_no
        3

        <INTERVAL_NO>3
        33
        interval_no
        3
```

Di nuovo si impone un po' di pulitura. Si elimina la riga che identifica l'inizio dell'osservazione e sopratutto si crea la variabile $\tt var2$ pulita da tutto quello racchiuso tra i simboli < e >.

```
drop if var_id==0;
gen var2 = regexr(var1,"<[^<>]+>","");
replace var2 = regexr(var2,"<[^<>]+>","");
```

Finalmente con un reshape wide si riportano le righe che appartengono alla stessa osservazione su una sola riga e si pulisce il nome delle variabili che risulta dopo il reshape (renvars):

```
drop var1 id var_id;
reshape wide var2, i(id_group) j(var_id_str) string;
renvars, presub(var2);
rename id_group id;
```

E questo sarà il risultato finale:

Variable	Obs	Mean	Std. Dev.	Min	Max
id	45375	22688	13098.78	1	45375
awarded_pr~o	45375	20.35459	21.63082	0	115
awarded_qu~o	45375	27.71044	137.3443	0	5817.424
bid_offer_~t	45375	18263	0	18263	18263
energy_pri~o	45375	37.18588	177.5324	0	3000
interval no	+ l 45375	12.66969	6.874062	1	24
merit_orde~o	•	395.2345	350.7231	0	1224
operatore	45375	78.35423	49.34221	2	210
partial_qt~n	45375	.0039229	.0625105	0	1
purpose_cd	45375	1.705543	.4558034	1	2
quantity_no	+ l 45375	79.44589	580.1227	.001	10000
status cd		1.705499	1.125442	1	5
unit_refer~o					
zone_cd	37727	9.52037	4.232601	1	17

Nota finale: caricando per intero un singolo file .xml e trasformando in numeriche tutte le variabili possibili, si ottiene un dataset in Stata della dimensione di circa 4-5mb. Moltiplicando questo valore per 365 si ha un database annuale di circa 1.6 GB. Quindi l'uso di Stata a 64bit è si rende di fatto necessario.

Parte III Appendici

Appendice A

spmap: Visualization of spatial data

Autore: Maurizio Pisati Department of Sociology and Social Research University of Milano Bicocca - Italy maurizio.pisati@unimib.it

A.1 Syntax

A.1.1 basemap_options

Main

id(idvar) base map polygon identifier¹

Cartogram

¹Required option

area(areavar) draw base map polygons with area proportional to variable areavar split split multipart base map polygons

map(backgroundmap) draw background map defined in Stata dataset backgroundmap

mfcolor(colorstyle) fill color of the background map

mocolor(colorstyle) outline color of the background map

mosize(linewidthstyle) outline thickness of the background map

mopattern(linepatternstyle) outline pattern of the background map

Choropleth map

clmethod(method) attribute classification method, where method is one of the following:
 quantile, boxplot, eqint, stdev, kmeans, custom, unique
 clnumber(#) number of classes
 clbreaks(numlist) custom class breaks
 eirange(min, max) attribute range for eqint classification method
 kmiter(#) number of iterations for kmeans classification method
 ndfcolor(colorstyle) fill color of empty (no data) base map polygons
 ndocolor(colorstyle) outline color of empty (no data) base map polygons
 ndsize(linewidthstyle) outline thickness of empty (no data) base map polygons
 ndlabel(string) legend label of empty (no data) base map polygons

Format

fcolor(colorlist) fill color of base map polygons
ocolor(colorlist) outline color of base map polygons
osize(linewidthstyle_list) outline thickness of base map polygons

Legend

legenda(on|off) display/hide base map legend
legtitle(string) base map legend title
leglabel(string) single-key base map legend label

<u>regrader</u>(string) single-key base map legend laber

<u>lego</u>rder(hilo|lohi) base map legend order

<u>legs</u>tyle(0|1|2|3) base map legend style

<u>legjunction</u>(string) string connecting lower and upper class limits in base map legend labels when legstyle(2)

legcount display number of base map polygons belonging to each class

A.1.2 polygon suboptions

Main

 $\underline{\mathtt{data}}(polygon)$ Stata dataset defining one or more supplementary polygons to be superimposed onto the base map^2

select(command) keep/drop specified records of dataset polygon

²Required when option polygon() is specified

by (byvar_pl) group supplementary polygons by variable byvar_pl

Format

fcolor(colorlist) fill color of supplementary polygons
ocolor(colorlist) outline color of supplementary polygons
osize(linewidthstyle_list) outline thickness of supplementary polygons

Legend

legenda(on|off) display/hide supplementary-polygon legend
legtitle(string) supplementary-polygon legend title
leglabel(string) single-key supplementary-polygon legend label
legshow(numlist) display only selected keys of supplementary-polygon legend
legcount display number of supplementary polygons belonging to each group

A.1.3 line suboptions

Main

data(line) Stata dataset defining one or more polylines to be superimposed onto the base map³
 select(command) keep/drop specified records of dataset line
 by(byvar_ln) group polylines by variable byvar_ln

Format

```
color(colorlist) polyline color
size(linewidthstyle_list) polyline thickness
pattern(linepatternstyle list) polyline pattern
```

Legend

legenda(on|off) display/hide polyline legend
legtitle(string) polyline legend title
leglabel(string) single-key polyline legend label
legshow(numlist) display only selected keys of polyline legend
legcount display number of polylines belonging to each group

A.1.4 point suboptions

Main

<u>data(point)</u> Stata dataset defining one or more points to be superimposed onto the base map

select(command) keep/drop specified records of dataset point

³Required when option line() is specified

```
by (byvar_pn) group points by variable byvar_pn

xcoord(xvar_pn) variable containing the x-coordinate of points<sup>4</sup>

ycoord(yvar_pn) variable containing the y-coordinate of points<sup>5</sup>
```

Proportional size

Deviation

<u>dev</u>iation($devvar_pn$) draw point markers as deviations from given reference value of variable $devvar_pn$

```
<u>refv</u>al(mean|median|#) reference value of variable devvar_pn
```

 $\underline{\mathtt{refweight}}(weightvar_pn)$ compute reference value of variable $devvar_pn$ weighting observations by variable $weightvar_pn$

dmax(#) absolute value of maximum deviation

Format

```
size(markersizestyle_list) size of point markers
shape(symbolstyle_list) shape of point markers
fcolor(colorlist) fill color of point markers
ocolor(colorlist) outline color of point markers
osize(linewidthstyle_list) outline thickness of point markers
```

Legend

```
legenda(on|off) display/hide point legend
legtitle(string) point legend title
leglabel(string) single-key point legend label
legshow(numlist) display only selected keys of point legend
legcount display number of points belonging to each group
```

A.1.5 diagram_suboptions

Main

data(diagram) Stata dataset defining one or more diagrams to be superimposed onto the base map at given reference points
 select(command) keep/drop specified records of dataset diagram
 by(byvar_dg) group diagrams by variable byvar_dg

⁴Required when option point() is specified

⁵Required when option point() is specified

xcoord(xvar_dg) variable containing the x-coordinate of diagram reference points⁶
ycoord(yvar_dg) variable containing the y-coordinate of diagram reference points⁷
variables(diagvar_dg) variable or variables to be represented by diagrams⁸
type(frect|pie) diagram type

Proportional size

<u>proportional(propvar_dg)</u> draw diagrams with area proportional to variable $propvar_dg$

prange(min, max) reference range of variable propvar_dg

Framed-rectangle chart

range (min, max) reference range of variable diagvar_dg

refval(mean|median|#) reference value of variable diagvar_dg

<u>refweight(weightvar_dg)</u> compute the reference value of variable <u>diagvar_dg</u> weighting observations by variable <u>weightvar_dg</u>

<u>refc</u>olor(colorstyle) color of the line representing the reference value of variable diagvar dq

<u>refsize</u>(linewidthstyle) thickness of the line representing the reference value of variable diagvar_dg

Format

size(#) diagram size
fcolor(colorlist) fill color of the diagrams
ocolor(colorlist) outline color of the diagrams
osize(linewidthstyle_list) outline thickness of the diagrams

Legend

legenda(on|off) display/hide diagram legend
legtitle(string) diagram legend title
legshow(numlist) display only selected keys of diagram legend
legcount display number of diagrams belonging to each group

A.1.6 arrow_suboptions

Main

<u>data(arrow)</u> Stata dataset defining one or more arrows to be superimposed onto the base map⁹

select(command) keep/drop specified records of dataset arrow

⁶Required when option diagram() is specified

⁷Required when option diagram() is specified

⁸Required when option diagram() is specified

⁹Required when option arrow() is specified

by (byvar_ar) group arrows by variable byvar_ar

Format

<u>direction(directionstyle_list)</u> arrow direction, where <u>directionstyle</u> is one of the following: 1 (monodirectional arrow), 2 (bidirectional arrow)

hsize(markersizestyle list) arrowhead size

hangle(anglestyle list) arrowhead angle

hbarbsize (markersizestyle list) size of filled portion of arrowhead

hfcolor(colorlist) arrowhead fill color

hocolor(colorlist) arrowhead outline color

<u>hosize</u>(linewidthstyle_list) arrowhead outline thickness

lcolor(colorlist) arrow shaft line color

lsize(linewidthstyle list) arrow shaft line thickness

<u>lpa</u>ttern(linepatternstyle_list) arrow shaft line pattern

Legend

legenda(on|off) display/hide arrow legend

legtitle(string) arrow legend title

<u>leglabel(string)</u> single-key arrow legend label

<u>legs</u>how(numlist) display only selected keys of arrow legend

legcount display number of arrows belonging to each group

A.1.7 label_suboptions

Main

<u>data(label)</u> Stata dataset defining one or more labels to be superimposed onto the base map at given reference points

select(command) keep/drop specified records of dataset label

by (byvar_lb) group labels by variable byvar_lb

xcoord(xvar lb) variable containing the x-coordinate of label reference points¹⁰

ycoord(yvar lb) variable containing the y-coordinate of label reference points¹¹

<u>label(labvar_lb)</u> variable containing the labels 12

Format

<u>length(lengthstyle_list)</u> maximum number of label characters, where *lengthstyle* is any integer>0

size(textsizestyle_list) label size

color(colorlist) label color

position (clockpos list) position of labels relative to their reference point

gap (relativesize list) gap between labels and their reference point

angle(anglestyle_list) label angle

 $^{^{10}\}mathrm{Required}$ when option label() is specified

¹¹Required when option label() is specified

¹²Required when option label() is specified

A.1.8 scalebar_suboptions

Main

```
units(#) scale bar extent<sup>13</sup>
scale(#) ratio of scale bar units to map units
xpos(#) scale bar horizontal position relative to plot region center
ypos(#) scale bar vertical position relative to plot region center
```

Format

```
size(#) scale bar height multiplier
fcolor(colorstyle) fill color of scale bar
ocolor(colorstyle) outline color of scale bar
osize(linewidthstyle) outline thickness of scale bar
label(string) scale bar label
tcolor(colorstyle) color of scale bar text
tsize(textsizestyle) size of scale bar text
```

A.1.9 graph_options

Main

A.2 description

spmap is aimed at visualizing several kinds of spatial data, and is particularly suited for drawing thematic maps and displaying the results of spatial data analyses.

spmap functioning rests on three basic principles:

- First, a base map representing a given region of interest R made up of N polygons is drawn.
- Second, at the user's choice, one or more kinds of additional spatial objects may be superimposed onto the base map. In the current version of spmap, six different kinds of spatial objects can be superimposed onto the base map: polygons (via option polygon()), polylines (via option line()), points (via option point()), diagrams (via option diagram()), arrows (via option arrow()), and labels (via option label()).

¹³Required when option scalebar() is specified

- Third, at the user's choice, one or more additional map elements may be added, such as a scale bar (via option scalebar()), a title, a subtitle, a note, and a caption (via title_options).

Proper specification of spmap options and suboptions, combined with the availability of properly formatted spatial data, allows the user to draw several kinds of maps, including choropleth maps, proportional symbol maps, pin maps, pie chart maps, and noncontiguous area cartograms.

While providing sensible defaults for most options and supoptions, spmap gives the user full control over the formatting of almost every map element, thus allowing the production of highly customized maps.

A.3 Spatial data format

spmap requires that the spatial data to be visualized be arranged into properly formatted Stata datasets. Such datasets can be classified into nine categories: master, basemap, backgroundmap, polygon, line, point, diagram, arrow, label.

The master dataset is the dataset that resides in memory when spmap is invoked. At the minimum, it must contain variable idvar, a numeric variable that uniquely identifies the polygon or polygons making up the base map. If a choropleth map is to be drawn, then the master dataset should contain also variable attribute, a numeric variable expressing the values of the feature to be represented. Additionally, if a noncontiguous area cartogram is to be drawn - i.e., if the polygons making up the base map are to be drawn with area proportional to the values of a given numeric variable areavar - then the master dataset should contain also variable areavar.

A basemap dataset is a Stata dataset that contains the definition of the polygon or polygons making up the base map. A basemap dataset is required to have the following structure:

_ID	_X	_Y	_EMBEDDED
1			0
1	10	30	0
1	10	50	0
1	30	50	0
1	30	30	0
1	10	30	0
2	•		0
2	10	10	0
2	10	30	0
2	18	30	0
2	18	10	0

2	10	10	0
2	•	•	0
2	22	10	0
2	22	30	0
2	30	30	0
2	30	10	0
2	22	10	0
3	•		1
3	15	35	1
3	15	45	1
3	25	45	1
3	25	35	1
3	15	35	1

_ID is required and is a numeric variable that uniquely identifies the polygons making up the base map. _X is required and is a numeric variable that contains the x-coordinate of the nodes of the base map polygons. _Y is required and is a numeric variable that contains the y-coordinate of the nodes of the base map polygons. Finally, _EMBEDDED is optional and is an indicator variable taking value 1 if the corresponding polygon is completely enclosed in another polygon, and value 0 otherwise. The following should be noticed:

- Both simple and multipart polygons are allowed. In the example above, polygons 1 and 3 are simple (i.e., they consist of a single area), while polygon 2 is multipart (i.e., it consists of two distinct areas).
- The first record of each simple polygon or of each part of a multipart polygon must contain missing x- and y-coordinates.
- The non-missing coordinates of each simple polygon or of each part of a multipart polygon must be ordered so as to correspond to consecutive nodes.
- Each simple polygon or each part of a multipart polygon must be "closed", i.e., the last pair of non-missing coordinates must be equal to the first pair.
- A basemap dataset is always required to be sorted by variable _ID.

A backgroundmap dataset is a Stata dataset that contains the definition of the polygon or polygons making up the background map (a map that can be optionally drawn as background of a noncontiguous area cartogram). A backgroundmap dataset has exactly the same structure as a basemap dataset, except for variable _EMBEDDED that is never used.

A *polygon* dataset is a Stata dataset that contains the definition of one or more supplementary polygons to be superimposed onto the base map. A *polygon* dataset is required to have the following structure:

_ID	_X	_Y	byvar_pl
1			1
1	20	40	1
1	20	42	1
1	25	42	1
1	25	40	1
1	20	40	1
2	•		1
2	11	20	1
2	11	25	1
2	13	25	1
2	13	20	1
2	11	20	1
3	•		2
3	25	25	2
3	25	35	2
3	30	35	2
3	30	25	2
3	25	25	2

Variables _ID, _X, and _Y are defined exactly in the same way as in a basemap dataset, with the sole exception that only simple polygons are allowed. In turn, byvar_pl is a placeholder denoting an optional variable that can be specified to distinguish different kinds of supplementary polygons.

A *line* dataset is a Stata dataset that contains the definition of one or more polylines to be superimposed onto the base map. A *line* dataset is required to have the following structure:

_ID	_X	_Y	byvar_ln
1			1
1	11	30	1
1	12	33	1
1	15	33	1
1	16	35	1
1	18	40	1
1	25	38	1
1	25	42	1
2	•		2
2	12	20	2
2	18	15	2

		2
27	28	2
27	25	2
28	27	2
29	25	2
	27 27 28	27 28 27 25 28 27

_ID is required and is a numeric variable that uniquely identifies the polylines. _X is required and is a numeric variable that contains the x-coordinate of the nodes of the polylines. _Y is required and is a numeric variable that contains the y-coordinate of the nodes of the polylines. Finally, byvar_ln is a placeholder denoting an optional variable that can be specified to distinguish different kinds of polylines. The following should be noticed:

- The first record of each polyline must contain missing x- and y-coordinates.
- The non-missing coordinates of each polyline must be ordered so as to correspond to consecutive nodes.

A *point* dataset is a Stata dataset that contains the definition of one or more points to be superimposed onto the base map. A *point* dataset is required to have the following structure:

xvar_pn	yvar_pn	byvar_pn	propvar_pn	devvar_pn	weightvar_pn
11 20 25 25 15	30 34 40 45 20	1 1 1 2 2	100 110 90 200 50	30 25 40 10 70	1000 1500 1230 950 600

xvar_pn is a placeholder denoting a required numeric variable that contains the x-coordinate of the points. yvar_pn is a placeholder denoting a required numeric variable that contains the y-coordinate of the points. byvar_pn is a placeholder denoting an optional variable that can be specified to distinguish different kinds of points. propvar_pn is a placeholder denoting an optional variable that, when specified, requests that the point markers be drawn with size proportional to propvar_pn. devvar_pn is a placeholder denoting an optional variable that, when specified, requests that the point markers be drawn as deviations from a given reference value of devvar_pn. Finally, weightvar_pn is a placeholder denoting an optional variable that, when specified, requests that the reference value of devvar_pn be computed weighting observations by variable weightvar_pn. It is important to note that the required and optional variables making up a point dataset can either reside in an external dataset or be part of the master dataset.

A diagram dataset is a Stata dataset that contains the definition of one or more diagrams to be superimposed onto the base map at given reference points. A diagram dataset is required to have the following structure:

xvar_dg	yvar_dg	byvar_dg	diagvar_dg	propvar_dg	weightvar_dg
 15	30	1		30	1000
18	40	1		25	1500
20	45	1		40	1230
25	45	2		10	950
15	20	2	• • •	70	600

xvar_dg is a placeholder denoting a required numeric variable that contains the x-coordinate of the diagram reference points. yvar_dg is a placeholder denoting a required numeric variable that contains the y-coordinate of the diagram reference points. byvar_dg is a placeholder denoting an optional variable that can be specified to distinguish different groups of diagrams. diagvar_dg is a placeholder denoting one or more variables to be represented by the diagrams. propvar_dg is a placeholder denoting an optional variable that, when specified, requests that the diagrams be drawn with area proportional to propvar_dg. Finally, weightvar_dg is a placeholder denoting an optional variable that, when specified, requests that the reference value of the diagrams be computed weighting observations by variable weightvar_dg (this applies only to framed-rectangle charts). It is important to note that the required and optional variables making up a diagram dataset can either reside in an external dataset or be part of the master dataset.

An *arrow* dataset is a Stata dataset that contains the definition of one or more arrows to be superimposed onto the base map. An *arrow* dataset is required to have the following structure:

_ID	_X1	_Y1	_X2	_Y2	byvar_ar
1	11	30	18	30	1
2	15	40	15	45	1
3	15	40	25	40	1
4	20	35	28	45	2
5	17	20	20	11	2

_ID is required and is a numeric variable that uniquely identifies the arrows. _X1 is required and is a numeric variable that contains the x-coordinate of the starting point of the arrows. _Y1 is required and is a numeric variable that contains the y-coordinate of the starting point of the arrows. _X2 is required and is a numeric variable that

contains the x-coordinate of the ending point of the arrows. _Y2 is required and is a numeric variable that contains the y-coordinate of the ending point of the arrows. Finally, byvar_ar is a placeholder denoting an optional variable that can be specified to distinguish different kinds of arrows.

A *label* dataset is a Stata dataset that contains the definition of one or more labels to be superimposed onto the base map at given reference points. A *label* dataset is required to have the following structure:

lb.	labvar_	byvar_lb	yvar_lb	xvar_lb
gh KL	IJ Mnop	1 1 1 2 2	33 37 43 48 22	11 20 25 25 15

xvar_lb is a placeholder denoting a required numeric variable that contains the x-coordinate of the label reference points. yvar_lb is a placeholder denoting a required numeric variable that contains the y-coordinate of the label reference points. byvar_lb is a placeholder denoting an optional variable that can be specified to distinguish different kinds of labels. Finally, labvar_lb is a placeholder denoting the variable that contains the labels. It is important to note that the required and optional variables making up a label dataset can either reside in an external dataset or be part of the master dataset.

A.4 Color lists

Some spmap options and suboptions request the user to specify a list of one or more colors. When the list includes only one color, the user is required to specify a standard *colorstyle*. On the other hand, when the list includes two or more colors, the user can either specify a standard *colorstyle list*, or specify the name of a predefined color scheme.

The following table lists the predefined color schemes available in the current version of spmap, indicating the name of each scheme, the maximum number of different colors it allows, its type, and its source.

NAME	MAXCOL	TYPE	SOURCE
Blues	9	Sequential	Brewer
Blues2	99	Sequential	Custom
BuGn	9	Sequential	Brewer
BuPu	9	Sequential	Brewer
GnBu		Sequential	Brewer

Greens	9	Sequential	Brewer
Greens2	99	Sequential	Custom
Greys	9	Sequential	Brewer
Greys2	99	Sequential	Brewer
Heat	16	Sequential	Custom
OrRd	9	Sequential	Brewer
Oranges	9	Sequential	Brewer
PuBu	9	Sequential	Brewer
PuBuGn	9	Sequential	Brewer
PuRd	9	Sequential	Brewer
Purples	9	Sequential	Brewer
Rainbow	99	Sequential	Custom
RdPu	9	Sequential	Brewer
Reds	9	Sequential	Brewer
Reds2	99	Sequential	Custom
Terrain	16	Sequential	Custom
Topological	16	Sequential	Custom
YlGn	9	Sequential	Brewer
YlGnBu	9	Sequential	Brewer
YlOrBr	9	Sequential	Brewer
YlOrRd	9	Sequential	Brewer
${ t BrBG}$	11	Diverging	Brewer
BuRd	11	Diverging	Custom
BuYlRd	11	Diverging	Custom
PRGn	11	Diverging	Brewer
PiYG	11	Diverging	Brewer
PuOr	11	Diverging	Brewer
RdBu	11	Diverging	Brewer
RdGy	11	Diverging	Brewer
RdYlBu	11	Diverging	Brewer
RdYlGn	11	Diverging	Brewer
Spectral	11	Diverging	Brewer
Accent	8	Qualitative	Brewer
Dark2	8	Qualitative	Brewer
Paired	12	Qualitative	Brewer
Pastel1	9	Qualitative	Brewer
Pastel2	8	Qualitative	Brewer
Set1	9	Qualitative	Brewer
Set2	8	Qualitative	Brewer
Set3	12	Qualitative	Brewer

Following Brewer (1999), sequential schemes are typically used to represent ordered data, so that higher data values are represented by darker colors; in turn, diverging schemes

are used when there is a meaningful midpoint in the data, to emphasize progressive divergence from this midpoint in the two opposite directions; finally, *qualitative schemes* are generally used to represent unordered, categorical data.

The color schemes whose source is indicated as "Brewer" were designed by Dr. Cynthia A. Brewer, Department of Geography, The Pennsylvania State University, University Park, Pennsylvania, USA (Brewer et al. 2003). These color schemes are used with Dr. Brewer's permission and are taken from the ColorBrewer map design tool available at ColorBrewer.org.

A.5 Choropleth maps

A choropleth map can be defined as a map in which each subarea (e.g., each census tract) of a given region of interest (e.g., a city) is colored or shaded with an intensity proportional to the value taken on by a given quantitative variable in that subarea (Slocum et al. 2005). Since choropleth maps are one of the most popular means for representing the spatial distribution of quantitative variables, it is worth noting the way spmap can be used to draw this kind of map.

In spmap, a choropleth map is a base map whose constituent polygons are colored according to the values taken on by attribute, a numeric variable that must be contained in the *master* dataset and specified immediately after the main command (see syntax diagram above). To draw the desired choropleth map, spmap first groups the values taken on by variable attribute into k classes defined by a given set of class breaks, and then assigns a different color to each class. The current version of spmap offers six methods for determining class breaks:

- Quantiles: class breaks correspond to quantiles of the distribution of variable attribute, so that each class includes approximately the same number of polygons.
- Boxplot: the distribution of variable attribute is divided into 6 classes defined as follows: [min, p25 1.5*iqr], (p25 1.5*iqr, p25], (p25, p50], (p50, p75], (p75, p75 + 1.5*iqr] and (p75 + 1.5*iqr, max], where iqr = interquartile range.
- *Equal intervals*: class breaks correspond to values that divide the distribution of variable *attribute* into k equal-width intervals.
- Standard deviates: the distribution of variable attribute is divided into k classes $(2 \le k \le 9)$ whose width is defined as a fraction p of its standard deviation sd. Following the suggestions of Evans (1977), this proportion p varies with k as follows:

k	р
 2	inf
3	1.2

4	1.0
5	0.8
6	0.8
7	0.8
8	0.6
9	0.6

Class intervals are centered on the arithmetic mean m, which is a class midpoint if k is odd and a class boundary if k is even; the lowest and highest classes are open-ended (Evans 1977).

- k-means: the distribution of variable attribute is divided into k classes using k-means partition cluster analysis. The clustering procedure is applied several times to variable attribute, and the solution that maximizes the goodness-of-variance fit (Armstrong et al. 2003) is used.
- Custom: class breaks are specified by the user.

Alternatively, spmap allows the user to leave the values of variable attribute ungrouped. In this case, attribute is treated as a categorical variable and a different color is assigned to each of its values.

A.6 Options for drawing the base map

Main

id(idvar) specifies the name of a numeric variable that uniquely identifies the polygon or polygons making up the base map. idvar must be contained in the master dataset, and its values must correspond to the values taken on by variable _ID contained in the basemap dataset.

Cartogram

- area(areavar) requests that the polygons making up the base map be drawn with area proportional to the values taken on by numeric variable areavar, so that a non-contiguous area cartogram (Olson 1976) is obtained. areavar must be contained in the master dataset.
- split requests that, before drawing a noncontiguous area cartogram, all multipart base map polygons be split into their constituent parts, each of which will then be treated as a distinct simple polygon.
- map(backgroundmap) requests that, when drawing a noncontiguous area cartogram, the polygons making up the base map be superimposed onto a background map defined in Stata dataset backgroundmap.

- mfcolor(colorstyle) specifies the fill color of the background map. The default is
 mfcolor(none).
- mocolor(colorstyle) specifies the outline color of the background map. The default is mocolor(black).
- mosize(linewidthstyle) specifies the outline thickness of the background map. The default is mosize(thin).
- mopattern(linepatternstyle) specifies the outline pattern of the background map. The default is mopattern(solid).

Choropleth map

- clmethod(method) specifies the method to be used for classifying variable attribute and representing its spatial distribution as a choropleth map.
 - clmethod(quantile) is the default and requests that the quantiles method be used
 - clmethod(boxplot) requests that the boxplot method be used.
 - clmethod(egint) requests that the equal intervals method be used.
 - clmethod(stdev) requests that the standard deviates method be used.
 - clmethod(kmeans) requests that the k-means method be used.
 - clmethod(custom) requests that class breaks be specified by the user with option clbreaks(numlist).
 - clmethod(unique) requests that each value of variable attribute be treated as a distinct class.
- clnumber(#) specifies the number of classes k in which variable attribute is to be divided. When the quantiles, equal intervals, standard deviates, or k-means classification method is chosen, the default is clnumber(4). When the boxplot classification method is chosen, this option is inactive and k=6. When the custom classification method is chosen, this option is inactive and k equals the number of elements of numlist specified in option clbreaks(numlist) minus 1. When the unique classification method is chosen, this option is inactive and k equals the number of different values taken on by variable attribute.
- clbreaks(numlist) is required when option clmethod(custom) is specified. It defines the custom class breaks to be used for classifying variable attribute. numlist should be specified so that the first element is the minimum value of variable attribute to be considered; the second to kth elements are the class breaks; and the last element is the maximum value of variable attribute to be considered. For example, suppose we want to group the values of variable attribute into the following four classes: [10,15], (15,20], (20,25] and (25,50]; for this we must specify clbreaks(10 15 20 25 50).
- eirange (min, max) specifies the range of values (minimum and maximum) to be considered in the calculation of class breaks when option clmethod(eqint) is specified. This option overrides the default range [min(attribute), max(attribute)].
- kmiter(#) specifies the number of times the clustering procedure is applied when
 option clmethod(kmeans) is specified. The default is kmiter(20).

ndfcolor(colorstyle) specifies the fill color of the empty (no data) polygons of the choropleth map. The default is ndfcolor(white).

ndocolor(colorstyle) specifies the outline color of the empty (no data) polygons of the choropleth map. The default is ndocolor(black).

ndsize(linewidthstyle) specifies the outline thickness of the empty (no data) polygons of the choropleth map. The default is ndsize(thin).

ndlabel(string) specifies the legend label to be attached to the empty (no data) polygons of the choropleth map. The default is ndlabel(No data).

Format

fcolor(colorlist) specifies the list of fill colors of the base map polygons. When no choropleth map is drawn, the list should include only one element. On the other hand, when a choropleth map is drawn, the list should be either composed of k elements, or represented by the name of a predefined color scheme. The default fill color is none. When a choropleth map is drawn, the default argument is a color scheme that depends on the classification method specified in option clmethod(method):

Classification method	Default color scheme
quantile boxplot eqint stdev kmeans custom unique	Greys BuRd Greys BuRd Greys Greys Paired

ocolor(colorlist) specifies the list of outline colors of the base map polygons. When no choropleth map is drawn, the list should include only one element. On the other hand, when a choropleth map is drawn, the list should be either composed of k elements, or represented by the name of a predefined color scheme. The default outline color is black, the default specification is ocolor(black ...).

osize(linewidthstyle_list) specifies the list of outline thicknesses of the base map polygons. When no choropleth map is drawn, the list should include only one element. On the other hand, when a choropleth map is drawn, the list should be composed of k elements. The default outline thickness is thin, the default specification is osize(thin ...).

Legend

legenda(on|off) specifies whether the base map legend should be displayed or hidden.
legenda(on) requests that the base map legend be displayed. This is the default
when a choropleth map is drawn.

224

- legenda(off) requests that the base map legend be hidden. This is the default when no choropleth map is drawn.
- legtitle(string) specifies the title of the base map legend. When a choropleth map is drawn, option legtitle(varlab) requests that the label of variable attribute be used as the legend title.
- leglabel(string) specifies the label to be attached to the single key of the base map legend when no choropleth map is drawn. This option is required when option legenda(on) is specified and no choropleth map is drawn.
- legorder(hilo|lohi) specifies the display order of the keys of the base map legend when a choropleth map is drawn.
 - legorder(hilo) is the default and requests that the keys of the base map legend be displayed in descending order of variable *attribute*.
 - legorder(lohi) requests that the keys of the base map legend be displayed
 in ascending order of variable attribute. This is the default when option
 clmethod(unique) is specified.
- legstyle(0|1|2|3) specifies the way the keys of the base map legend are labelled when a choropleth map is drawn.
 - legstyle(0) requests that the keys of the base map legend not be labelled.
 - legstyle(1) is the default and requests that the keys of the base map legend be labelled using the standard mathematical notation for value intervals (e.g.: (20,35]).
 - legstyle(2) requests that the keys of the base map legend be labelled using the notation ll&ul, where ll denotes the lower limit of the class interval, ul denotes the upper limit of the class interval, and & denotes a string that separates the two values. For example, if ll=20, ul=35, and &=" ", then the resulting label will be "20 35".
 - legstyle(3) requests that only the first and last keys of the base map legend be labelled; the first key is labelled with the lower limit of the corresponding class interval, the last key is labelled with the upper limit of the corresponding class interval.
- legjunction(string) specifies the string to be used as separator when option legstyle(2)
 is specified. The default is legjunction(" ").
- legcount requests that, when a choropleth map is drawn, the number of base map polygons belonging to each class of variable *attribute* be displayed in the legend.

A.7 Option polygon() suboptions

Main

data(polygon) requests that one or more supplementary polygons defined in Stata dataset polygon be superimposed onto the base map.

- select(command) requests that a given subset of records of dataset polygon be selected using Stata commands keep or drop.
- by (byvar_pl) indicates that the supplementary polygons defined in dataset polygon belong to kpl different groups specified by variable byvar_pl.

Format

- fcolor(colorlist) specifies the list of fill colors of the supplementary polygons. When suboption by(byvar_pl) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_pl) is specified, the list should be either composed of kpl elements, or represented by the name of a predefined color scheme. The default fill color is none, the default specification is fcolor(none ...).
- ocolor(colorlist) specifies the list of outline colors of the supplementary polygons. When suboption by(byvar_pl) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_pl) is specified, the list should be either composed of kpl elements, or represented by the name of a predefined color scheme. The default outline color is black, the default specification is ocolor(black ...).
- osize(linewidthstyle_list) specifies the list of outline thicknesses of the supplementary polygons. When suboption by(byvar_pl) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_pl) is specified, the list should be composed of kpl elements. The default outline thickness is thin, the default specification is osize(thin ...).

Legend

- legenda(on|off) specifies whether the supplementary-polygon legend should be displayed or hidden.
 - legenda(on) requests that the supplementary-polygon legend be displayed.legenda(off) is the default and requests that the supplementary-polygon legend be hidden.
- legtitle(string) specifies the title of the supplementary-polygon legend. When suboption by(byvar_pl) is specified, suboption legtitle(varlab) requests that the label of variable byvar_pl be used as the legend title.
- leglabel(string) specifies the label to be attached to the single key of the supplementary-polygon legend when suboption by(byvar_pl) is not specified. This suboption is required when suboption legenda(on) is specified and suboption by(byvar_pl) is not specified.
- legshow(numlist) requests that, when suboption by(byvar_pl) is specified, only the keys included in numlist be displayed in the supplementary-polygon legend.
- legcount requests that the number of supplementary polygons be displayed in the legend.

A.8 Option line() suboptions

Main

- data(line) requests that one or more polylines defined in Stata dataset line be superimposed onto the base map.
- select(command) requests that a given subset of records of dataset line be selected using Stata commands keep or drop.
- by (byvar_ln) indicates that the polylines defined in dataset line belong to kln different groups specified by variable byvar ln.

Format

- color(colorlist) specifies the list of polyline colors. When suboption by(byvar_ln) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_ln) is specified, the list should be either composed of kln elements, or represented by the name of a predefined color scheme. The default color is black, the default specification is color(black ...).
- size(linewidthstyle_list) specifies the list of polyline thicknesses. When suboption by(byvar_ln) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_ln) is specified, the list should be composed of kln elements. The default thickness is thin, the default specification is size(thin ...).
- pattern(linepatternstyle_list) specifies the list of polyline patterns. When suboption by(byvar_ln) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_ln) is specified, the list should be composed of kln elements. The default pattern is solid, the default specification is pattern(solid ...).

Legend

- legenda(on|off) specifies whether the polyline legend should be displayed or hidden.
 - legenda(on) requests that the polyline legend be displayed.
 - legenda(off) is the default and requests that the polyline legend be hidden.
- legtitle(string) specifies the title of the polyline legend. When suboption by(byvar_ln)
 is specified, suboption legtitle(varlab) requests that the label of variable (byvar ln) be used as the legend title.
- leglabel(string) specifies the label to be attached to the single key of the polyline
 legend when suboption by(byvar_ln) is not specified. This suboption is required when suboption legenda(on) is specified and suboption by(byvar_ln) is not
 specified.
- legshow(numlist) requests that, when suboption by(byvar_ln) is specified, only the keys included in numlist be displayed in the polyline legend.
- legcount requests that the number of polylines be displayed in the legend.

A.9 Option point() suboptions

Main

- data(point) requests that one or more points defined in Stata dataset point be superimposed onto the base map.
- select(command) requests that a given subset of records of dataset point be selected using Stata commands keep or drop.
- by $(byvar_pn)$ indicates that the points defined in dataset *point* belong to kpn different groups specified by variable $byvar_pn$.
- xcoord(xvar_pn) specifies the name of the variable containing the x-coordinate of each point.
- ycoord(yvar_pn) specifies the name of the variable containing the y-coordinate of each point.

Proportional size

- proportional (propvar_pn) requests that the point markers be drawn with size proportional to the values taken on by numeric variable propvar_pn.
- prange (min, max) requests that variable propvar_pn specified in suboption proportional (propvar_pn be normalized based on range [min, max]. This suboption overrides the default normalization based on range [0, max(propvar_pn)].
- psize(relative|absolute) specifies the reference system for drawing the point markers.
 - psize(relative) is the default and requests that the point markers be drawn using relative minimum and maximum reference values. This is the best choice when there is no need to compare the map at hand with other maps of the same kind.
 - psize(absolute) requests that the point markers be drawn using absolute minimum and maximum reference values. This is the best choice when the map at hand is to be compared with other maps of the same kind.

Deviation

- deviation(devvar_pn) requests that the point markers be drawn as deviations from a reference value of numeric variable devvar_pn specified in option refval(). When this suboption is specified, in the first place the values of variable devvar_pn are re-expressed as deviations from the chosen reference value. Then, points associated with positive deviations are represented by solid markers, whereas points associated with negative deviations are represented by hollow markers of the same shape; in both cases, markers are drawn with size proportional to the absolute value of the deviation. This suboption is incompatible with suboption proportional (propvar_pn).
- refval(mean|median|#) specifies the reference value of variable $devvar_pn$ for computing deviations.

- refval(mean) is the default and requests that the arithmetic mean of variable devvar pn be taken as the reference value.
- refval(median) requests that the median of variable devvar_pn be taken as the reference value.
- refval(#) requests that an arbitrary real value #be taken as the reference value.
- refweight(weightvar_pn) requests that the reference value of variable devvar_pn be computed weighting observations by values of variable weightvar_pn.
- dmax(#) requests that the point markers be drawn using value #as the maximum absolute deviation of reference.

Format

- size(markersizestyle_list) specifies the list of point marker sizes. When suboption by(byvar_pn) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_pn) is specified, the list should be composed of kpn elements. The default size is *1, the default specification is size(*1 ...).
- shape(symbolstyle_list) specifies the list of point marker shapes. When suboption
 by(byvar_pn) is not specified, the list should include only one element. On the
 other hand, when suboption by(byvar_pn) is specified, the list should be composed of kpn elements. The default shape is o, the default specification is shape(o
 ...). When suboption deviation(devvar_pn) is specified, this suboption accepts
 only solid symbolstyles written in short form: O D T S o d t s.
- fcolor(colorlist) specifies the list of fill colors of the point markers. When suboption by (byvar_pn) is not specified, the list should include only one element. On the other hand, when suboption by (byvar_pn) is specified, the list should be either composed of kpn elements, or represented by the name of a predefined color scheme. The default fill color is black, the default specification is fcolor(black ...).
- ocolor(colorlist) specifies the list of outline colors of the point markers. When suboption by(byvar_pn) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_pn) is specified, the list should be either composed of kpn elements, or represented by the name of a predefined color scheme. The default outline color is none, the default specification is ocolor(none...).
- osize(linewidthstyle_list) specifies the list of outline thicknesses of the point markers. When suboption by(byvar_pn) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_pn) is specified, the list should be composed of kpl elements. The default outline thickness is thin, the default specification is osize(thin ...).

Legend

legenda(on|off) specifies whether the point legend should be displayed or hidden.

legenda(on) requests that the point legend be displayed.

legenda(off) is the default and requests that the point legend be hidden.

- legtitle(string) specifies the title of the point legend. When suboption by(byvar_pn)
 is specified, suboption legtitle(varlab) requests that the label of variable byvar_pn be used as the legend title.
- leglabel(string) specifies the label to be attached to the single key of the point legend when suboption by(byvar_pn) is not specified. This suboption is required when suboption legenda(on) is specified and suboption by(byvar_pn) is not specified.
- legshow(numlist) requests that, when suboption by(byvar_pn) is specified, only the keys included in numlist be displayed in the point legend.
- legcount requests that the number of points be displayed in the legend.

A.10 Option diagram() suboptions

Main

- data(diagram) requests that one or more diagrams defined in Stata dataset diagram be superimposed onto the base map at given reference points.
- select(command) requests that a given subset of records of dataset diagram be selected using Stata commands keep or drop.
- by (byvar_dg) indicates that the diagrams defined in dataset diagram belong to kdg different groups specified by variable byvar_dg. This option is active only when just one variable is specified in suboption variables (diagvar_dg).
- $xcoord(xvar_dg)$ specifies the name of the variable containing the x-coordinate of each diagram reference point.
- $ycoord(yvar_dg)$ specifies the name of the variable containing the y-coordinate of each diagram reference point.
- variables (diagvar_dg) specifies the list of variables to be represented by the diagrams. type(frect|pie) specifies the type of diagram to be used.
 - type(frect) is the default when only one variable is specified in suboption variables(diagvar_d) and requests that framed-rectangle charts (Cleveland and McGill 1984; Cleveland 1994) be used.
 - type(pie) is the default (and the only possibility) when two or more variables are specified in suboption variables(diagvar_dg) and requests that pie charts be used. When option type(pie) is specified, the variables specified in suboption variables(diagvar_dg) are rescaled so that they sum to 1 within each observation.

Proportional size

- proportional (propuar_dg) requests that the diagrams be drawn with size proportional to the values taken on by numeric variable propuar_dg.
- prange (min, max) requests that variable $propvar_dg$ specified in suboption proportional ($propvar_dg$ be normalized based on range [min, max]. This suboption overrides the default normalization based on range [0, $max(propvar_dg)$].

Framed-rectangle chart

- range(min, max) requests that variable diagvar_dg specified in suboption variables(diagvar_dg) be normalized based on range [min, max]. This suboption overrides the default normalization based on range [0, max(diagvar_dg)].
- refval(mean|median|#) specifies the reference value of variable $diagvar_dg$ for drawing the reference line.
 - refval(mean) is the default and requests that the arithmetic mean of variable diagvar dg be taken as the reference value.
 - refval(median) requests that the median of variable $diagvar_dg$ be taken as the reference value.
 - refval(#) requests that an arbitrary real value #be taken as the reference value.
- refweight(weightvar_dg) requests that the reference value of variable diagvar_dg be computed weighting observations by values of variable weightvar_dg.
- refcolor(colorstyle) specifies the color of the reference line. The default is refcolor(black).
- refsize(linewidthstyle) specifies the thickness of the reference line. The default is refsize(medium).

Format

- size(#) specifies a multiplier that affects the size of the diagrams. For example,
 size(1.5) requests that the default size of all the diagrams be increased by 50%.
 The default is size(1).
- fcolor(colorlist) specifies the list of fill colors of the diagrams. When just one variable is specified in suboption variables(diagvar_dg) and suboption by(byvar_dg) is not specified, the list should include only one element. When just one variable is specified in suboption variables(diagvar_dg) and suboption by(byvar_dg) is specified, the list should be either composed of kdg elements, or represented by the name of a predefined color scheme. Finally, when J>1 variables are specified in suboption variables(diagvar_dg), the list should be either composed of J elements, or represented by the name of a predefined color scheme. The default fill color is black, the default specification when J=1 is fcolor(black ...), and the default specification when J>1 is fcolor(red blue orange green lime navy sienna ltblue cranberry emerald eggshell magenta olive brown yellow dkgreen).
- ocolor(colorlist) specifies the list of outline colors of the diagrams. When just one variable is specified in suboption variables(diagvar_dg) and suboption by(byvar_dg) is not specified, the list should include only one element. When just one variable is specified in suboption variables(diagvar_dg) and suboption by(byvar_dg) is specified, the list should be either composed of kdg elements, or represented by the name of a predefined color scheme. Finally, when J>1 variables are specified in suboption variables(diagvar_dg), the list should be either composed of J elements, or represented by the name of a predefined color scheme. The default fill color is black, the default specification is ocolor(black . . .).
- osize(linewidthstyle_list) specifies the list of outline thicknesses of the diagrams. When just one variable is specified in suboption variables(diagvar_dg) and suboption by(byvar_dg) is not specified, the list should include only one element. When

just one variable is specified in suboption $variables(diagvar_dg)$ and suboption $by(byvar_dg)$ is specified, the list should be composed of kdg elements. Finally, when J>1 variables are specified in suboption $variables(diagvar_dg)$, the list should be composed of J elements. The default outline thickness is thin, the default specification is osize(thin ...).

Legend

- legenda(on|off) specifies whether the diagram legend should be displayed or hidden.
 - legenda(on) requests that the diagram legend be displayed.
 - legenda(off) is the default and requests that the point diagram be hidden.
- legtitle(string) specifies the title of the diagram legend. When just one variable
 is specified in suboption variables(diagvar_dg), suboption legtitle(varlab)
 requests that the label of variable diagvar_dq be used as the legend title.
- legshow(numlist) requests that only the keys included in numlist be displayed in the diagram legend.
- legcount requests that the number of diagrams be displayed in the legend.

A.11 Option arrow() suboptions

Main

- data(arrow) requests that one or more arrows defined in Stata dataset arrow be superimposed onto the base map.
- select(command) requests that a given subset of records of dataset arrow be selected using Stata commands keep or drop.
- by (byvar_ar) indicates that the arrows defined in dataset arrow belong to kar different groups specified by variable byvar_ar.

Format

- direction(directionstyle_list) specifies the list of arrow directions, where directionstyle is one of the following: 1 (monodirectional arrow), 2 (bidirectional arrow). When suboption by(byvar_ar) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_ar) is specified, the list should be composed of kar elements. The default direction is 1, the default specification is direction(1 ...).
- hsize(markersizestyle_list) specifies the list of arrowhead sizes. When suboption by(byvar_ar) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_ar) is specified, the list should be composed of kar elements. The default size is 1.5, the default specification is hsize(1.5 ...).
- hangle (anglestyle_list) specifies the list of arrowhead angles. When suboption by (byvar_ar) is not specified, the list should include only one element. On the other hand, when suboption by (byvar_ar) is specified, the list should be composed of kar elements. The default angle is 28.64, the default specification is hangle (28.64 ...).

- hbarbsize(markersizestyle_list) specifies the list of sizes of the filled portion of arrowheads. When suboption by(byvar_ar) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_ar) is specified, the list should be composed of kar elements. The default size is 1.5, the default specification is hbarbsize(1.5 ...).
- hfcolor(colorlist) specifies the list of arrowhead fill colors. When suboption by (byvar_ar) is not specified, the list should include only one element. On the other hand, when suboption by (byvar_ar) is specified, the list should be either composed of kar elements, or represented by the name of a predefined color scheme. The default fill color is black, the default specification is hfcolor(black ...).
- hocolor(colorlist) specifies the list of arrowhead outline colors. When suboption by (byvar_ar) is not specified, the list should include only one element. On the other hand, when suboption by (byvar_ar) is specified, the list should be either composed of kar elements, or represented by the name of a predefined color scheme. The default outline color is black, the default specification is hocolor(black ...).
- hosize(linewidthstyle_list) specifies the list of arrowhead outline thicknesses. When suboption by(byvar_ar) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_ar) is specified, the list should be composed of kar elements. The default outline thickness is thin, the default specification is hosize(thin ...).
- lcolor(colorlist) specifies the list of arrow shaft line colors. When suboption by(byvar_ar)
 is not specified, the list should include only one element. On the other hand, when
 suboption by(byvar_ar) is specified, the list should be either composed of kar
 elements, or represented by the name of a predefined color scheme. The default
 color is black, the default specification is lcolor(black ...).
- lsize(linewidthstyle_list) specifies the list of arrow shaft line thicknesses. When suboption by(byvar_ar) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_ar) is specified, the list should be composed of kar elements. The default thickness is thin, the default specification is lsize(thin ...).
- lpattern(linepatternstyle_list) specifies the list of arrow shaft line patterns. When suboption by(byvar_ar) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_ar) is specified, the list should be composed of kar elements. The default pattern is solid, the default specification is lpattern(solid ...).

Legend

- legenda(on|off) specifies whether the arrow legend should be displayed or hidden.
 - legenda(on) requests that the arrow legend be displayed.
 - legenda(off) is the default and requests that the arrow legend be hidden.
- legtitle(string) specifies the title of the arrow legend. When suboption by(byvar_ar)
 is specified, suboption legtitle(varlab) requests that the label of variable byvar_ar be used as the legend title.

- leglabel(string) specifies the label to be attached to the single key of the arrow legend when suboption by(byvar_ar) is not specified. This suboption is required when suboption legenda(on) is specified and suboption by(byvar_ar) is not specified.
- legshow(numlist) requests that, when suboption by(byvar_ar) is specified, only the keys included in numlist be displayed in the arrow legend.
- legcount requests that the number of arrows be displayed in the legend.

A.12 Option label() suboptions

Main

- data(label) requests that one or more labels defined in Stata dataset label be superimposed onto the base map at given reference points.
- select(command) requests that a given subset of records of dataset label be selected using Stata commands keep or drop.
- by (byvar_lb) indicates that the labels defined in dataset label belong to klb different groups specified by variable byvar lb.
- xcoord(xvar_lb) specifies the name of the variable containing the x-coordinate of each label reference point.
- ycoord(yvar_lb) specifies the name of the variable containing the y-coordinate of each label reference point.
- label(labvar_lb) specifies the name of the variable containing the labels.

Format

- length(lengthstyle_list) specifies the list of label lengths, where lengthstyle is any integer greater than 0 indicating the maximum number of characters of the labels.
 When suboption by(byvar_lb) is not specified, the list should include only one
 element. On the other hand, when suboption by(byvar_lb) is specified, the list
 should be composed of klb elements. The default label length is 12, the default
 specification is length(12 ...).
- size(textsizestyle_list) specifies the list of label sizes. When suboption by(byvar_lb) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_lb) is specified, the list should be composed of klb elements. The default label size is *1, the default specification is size(*1 ...).
- color(colorlist) specifies the list of label colors. When suboption by (byvar_lb) is not specified, the list should include only one element. On the other hand, when suboption by (byvar_lb) is specified, the list should be either composed of klb elements, or represented by the name of a predefined color scheme. The default label color is black, the default specification is color(black ...).
- position(clockpos_list) specifies the list of label positions relative to their reference point. When suboption by(byvar_lb) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_lb) is specified, the list should be composed of klb elements. The default label position is 0, the default specification is position(0 ...).

- gap(relativesize_list) specifies the list of gaps between labels and their reference point. When suboption by(byvar_lb) is not specified, the list should include only one element. On the other hand, when suboption by(byvar_lb) is specified, the list should be composed of klb elements. The default label gap is *1, the default specification is gap(*1 ...).
- angle(anglestyle_list) specifies the list of label angles. When suboption by(byvar_lb) is
 not specified, the list should include only one element. On the other hand, when suboption by(byvar_lb) is specified, the list should be composed of klb elements. The
 default label angle is horizontal, the default specification is angle(horizontal
 ...).

A.13 Option scalebar() suboptions

Main

- units(#) specifies the length of the scale bar expressed in arbitrary units.
- scale(#) specifies the ratio of scale bar units to map units. For example, suppose map coordinates are expressed in meters: if the scale bar length is to be expressed in meters too, then the ratio of scale bar units to map units will be 1; if, on the other hand, the scale bar length is to be expressed in kilometers, then the ratio of scale bar units to map units will be 1/1000. The default is scale(1).
- xpos(#) specifies the distance of the scale bar from the center of the plot region on the horizontal axis, expressed as percentage of half the total width of the plot region. Positive values request that the distance be computed from the center to the right, whereas negative values request that the distance be computed from the center to the left. The default is xpos(0).
- ypos(#) specifies the distance of the scale bar from the center of the plot region on the vertical axis, expressed as percentage of half the total height of the plot region. Positive values request that the distance be computed from the center to the top, whereas negative values request that the distance be computed from the center to the bottom. The default is ypos(-110).

Format

size(#) specifies a multiplier that affects the height of the scale bar. For example,
size(1.5) requests that the default height of the scale bar be increased by 50%.
The default is size(1).

fcolor(colorstyle) specifies the fill color of the scale bar. The default is fcolor(black).
ocolor(colorstyle) specifies the outline color of the scale bar. The default is ocolor(black).
osize(linewidthstyle) specifies the outline thickness of the scale bar. The default is
osize(vthin).

label(string) specifies the descriptive label of the scale bar. The default is label(Units). tcolor(colorstyle) specifies the color of the scale bar text. The default is tcolor(black). tsize(textsizestyle) specifies the size of the scale bar text. The default is tsize(*1).

A.14 Graph options

Main

- polyfirst requests that the supplementary polygons specified in option polygon() be drawn before the base map. By default, the base map is drawn before any other spatial object.
- gsize(#) specifies the length (in inches) of the shortest side of the graph available area (the length of the longest side is set internally by spmap to minimize the amount of blank space around the map). The default ranges from 1 to 4, depending on the aspect ratio of the map. Alternatively, the height and width of the graph available area can be set using the standard xsize() and ysize() options.
- freestyle requests that, when drawing the graph, all the formatting presets and restrictions built in spmap be ignored. By default, spmap presets the values of some graph options and restricts the use of some others, so as to produce a "nice" graph automatically. By specifying option freestyle, the user loses this feature but gains full control over most of the graph formatting options.
- twoway_options include all the options documented in [G] twoway_options, except for
 axis_options, aspect_option, scheme_option, by_option, and advanced_options.
 These include added_line_options, added_text_options, title_options, legend_options,
 and region_options, as well as options nodraw, name(), and saving().

spmap relig1 using "Italy-RegionsCoordinates.dta", id(id);

Figura A.1: Choropleth maps

spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
 title("Pct. Catholics without reservations", size(*0.8))
 subtitle("Italy, 1994-98" " ", size(*0.8));

Figura A.2: Choropleth maps

spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
 title("Pct. Catholics without reservations", size(*0.8))
 subtitle("Italy, 1994-98" " ", size(*0.8))
 legstyle(2) legend(region(lcolor(black)));

Figura A.3: Choropleth maps

```
spmap relig1m using "Italy-RegionsCoordinates.dta", id(id)
    ndfcolor(red)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    legstyle(2) legend(region(lcolor(black)));
```


Figura A.4: Choropleth maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clmethod(eqint) clnumber(5) eirange(20 70)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    legstyle(2) legend(region(lcolor(black)));
```


Figura A.5: Choropleth maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clnumber(20) fcolor(Reds2) ocolor(none ..)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    legstyle(3);
```


Figura A.6: Choropleth maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clnumber(20) fcolor(Reds2) ocolor(none ..)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    legstyle(3) legend(ring(1) position(3));
```


Figura A.7: Choropleth maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clnumber(20) fcolor(Reds2) ocolor(none ..)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    legstyle(3) legend(ring(1) position(3))
    plotregion(margin(vlarge));
```


Figura A.8: Choropleth maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clnumber(20) fcolor(Reds2) ocolor(none ..)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    legstyle(3) legend(ring(1) position(3))
    plotregion(icolor(stone)) graphregion(icolor(stone));
```


Figura A.9: Choropleth maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clnumber(20) fcolor(Greens2) ocolor(white ..) osize(medthin ..)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    legstyle(3) legend(ring(1) position(3))
    plotregion(icolor(stone)) graphregion(icolor(stone));
```


Figura A.10: Choropleth maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clnumber(20) fcolor(Greens2) ocolor(white ..) osize(thin ..)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    legstyle(3) legend(ring(1) position(3))
    plotregion(icolor(stone)) graphregion(icolor(stone))
    polygon(data("Italy-Highlights.dta") ocolor(white)
    osize(medthick));
```


Figura A.11: Choropleth maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clnumber(20) fcolor(Greens2) ocolor(white ..) osize(medthin ..)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    legstyle(3) legend(ring(1) position(3))
    plotregion(icolor(stone)) graphregion(icolor(stone))
    scalebar(units(500) scale(1/1000) xpos(-100) label(Kilometers));
```


Figura A.12: Choropleth maps

Figura A.13: Proportional symbol maps

```
spmap using "Italy-OutlineCoordinates.dta", id(id)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    point(data("Italy-RegionsData.dta") xcoord(xcoord)
    ycoord(ycoord) proportional(relig1) fcolor(red) size(*1.5)
    shape(s));
```


Figura A.14: Proportional symbol maps

```
spmap using "Italy-OutlineCoordinates.dta", id(id)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    point(data("Italy-RegionsData.dta") xcoord(xcoord)
    ycoord(ycoord) proportional(relig1) fcolor(red)
    ocolor(white) size(*3))
    label(data("Italy-RegionsData.dta") xcoord(xcoord)
    ycoord(ycoord) label(relig1) color(white) size(*0.7));
```


Figura A.15: Proportional symbol maps

```
spmap using "Italy-OutlineCoordinates.dta", id(id)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8))
    point(data("Italy-RegionsData.dta") xcoord(xcoord)
    ycoord(ycoord) deviation(relig1) fcolor(red) dmax(30)
    legenda(on) leglabel(Deviation from the mean));
```


Figura A.16: Proportional symbol maps

252

```
spmap using "Italy-OutlineCoordinates.dta", id(id) fcolor(white)
      title("Catholics without reservations", size(*0.9) box bexpand
      span margin(medsmall) fcolor(sand)) subtitle(" ")
      point(data("Italy-RegionsData.dta") xcoord(xcoord)
      {\tt ycoord(ycoord)\ proportional(relig1)\ prange(0\ 70)}
      psize(absolute) fcolor(red) ocolor(white) size(*0.6))
      plotregion(margin(medium) color(stone))
      graphregion(fcolor(stone) lcolor(black))
      name(g1, replace) nodraw;
span margin(medsmall) fcolor(sand)) subtitle(" ")
      point(data("Italy-RegionsData.dta") xcoord(xcoord)
      ycoord(ycoord) proportional(relig2) prange(0 70)
      psize(absolute) fcolor(green) ocolor(white) size(*0.6))
      plotregion(margin(medium) color(stone))
      graphregion(fcolor(stone) lcolor(black))
      name(g2, replace) nodraw;
spmap using "Italy-OutlineCoordinates.dta", id(id) fcolor(white)
      title("Other", size(*0.9) box bexpand
      span margin(medsmall) fcolor(sand) subtitle(" ")
      point(data("Italy-RegionsData.dta") xcoord(xcoord)
      ycoord(ycoord) proportional(relig3) prange(0 70)
      psize(absolute) fcolor(blue) ocolor(white) size(*0.6))
     plotregion(margin(medium) color(stone))
graphregion(fcolor(stone) lcolor(black))
      name(g3, replace) nodraw;
graph combine g1 g2 g3, rows(1) title("Religious orientation")
      subtitle("Italy, 1994-98" " ") xsize(5) ysize(2.6)
      plotregion(margin(medsmall) style(none))
      graphregion(margin(zero) style(none))
      scheme(s1mono);
```

Religious orientation Italy, 1994-98

Figura A.17: Proportional symbol maps

spmap using "Italy-RegionsCoordinates.dta", id(id) fcolor(stone)
 title("Pct. Catholics without reservations", size(*0.8))
 subtitle("Italy, 1994-98" " ", size(*0.8))
 diagram(variable(relig1) range(0 100) refweight(pop98)
 xcoord(xcoord) ycoord(ycoord) fcolor(red));

Figura A.18: Other maps

```
spmap using "Italy-RegionsCoordinates.dta", id(id) fcolor(stone)
    diagram(variable(relig1 relig2 relig3) proportional(fortell)
    xcoord(xcoord) ycoord(ycoord) legenda(on))
    legend(title("Religious orientation", size(*0.5) bexpand
    justification(left)))
    note(" "
    "NOTE: Chart size proportional to number of fortune tellers
    per million population",
    size(*0.75));
```


NOTE: Chart size proportional to number of fortune tellers per million population

Figura A.19: Other maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clmethod(stdev) clnumber(5)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8)) area(pop98)
    note(" "
    "NOTE: Region size proportional to population", size(*0.75));
```


NOTE: Region size proportional to population

Figura A.20: Other maps

```
spmap relig1 using "Italy-RegionsCoordinates.dta", id(id)
    clmethod(stdev) clnumber(5)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Italy, 1994-98" " ", size(*0.8)) area(pop98)
    map("Italy-OutlineCoordinates.dta") mfcolor(stone)
    note(" "
    "NOTE: Region size proportional to population", size(*0.75));
```


NOTE: Region size proportional to population

Figura A.21: Other maps

Figura A.22: Other maps

Figura A.23: Other maps

Main lakes and rivers

Figura A.24: Other maps

```
use "Italy-RegionsData.dta", clear;
spmap relig1 using "Italy-RegionsCoordinates.dta" if zone==1,
    id(id) fcolor(Blues2) ocolor(white ..) osize(medthin ..)
    title("Pct. Catholics without reservations", size(*0.8))
    subtitle("Northern Italy, 1994-98" " ", size(*0.8))
    polygon(data("Italy-OutlineCoordinates.dta") fcolor(gs12)
    ocolor(white) osize(medthin)) polyfirst;
```


Figura A.25: Other maps

Figura A.26: Other maps

A.15 Acknowledgments

I wish to thank Nick Cox, Ian Evans, and Vince Wiggins for helping set up tmap (Pisati 2004), the predecessor of spmap. I also thank Kevin Crow, Bill Gould, Friedrich Huebler, and Scott Merryman for promoting tmap by making available to the Stata community several helpful resources related to the program. The development of spmap benefitted from suggestions by Joao Pedro Azevedo, Kit Baum, Daniele Checchi, Kevin Crow, David Drukker, Friedrich Huebler, Laszlo Kardos, Ulrich Kohler, Scott Merryman, Derek Wagner, the participants in the 1st Italian Stata Users Group Meeting, and the participants in the 3rd German Stata Users Group Meeting: many thanks to all of them.

264

Bibliografia

- [1] Armstrong, M.P., Xiao, N. and D.A. Bennett. 2003. Using genetic algorithms to create multicriteria class intervals for choropleth maps. Annals of the Association of American Geographers 93: 595-623.
- [2] Brewer, C.A. 1999. Color use guidelines for data representation. Proceedings of the Section on Statistical Graphics, American Statistical Association. Alexandria VA, 55-60.
- [3] Brewer, C.A., Hatchard, G.W. and M.A. Harrower. 2003. ColorBrewer in print: A catalog of color schemes for maps. Cartography and Geographic Information Science 52: 5-32.
- [4] Cleveland, W.S. 1994. The Elements of Graphing Data. Summit: Hobart Press.
- [5] Cleveland, W.S. and R. McGill. 1984. Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association 79: 531-554.
- [6] Evans, I.S. 1977. The selection of class intervals. Transactions of the Institute of British Geographers 2: 98-124.
- [7] Olson, J.M. 1976. Noncontiguous area cartograms. The Professional Geographer 28: 371-380.
- [8] Pisati, M. 2004. Simple thematic mapping. The Stata Journal 4: 361-378.
- [9] Slocum, T.A., McMaster, R.B., Kessler, F.C and H.H. Howard. 2005. Thematic Cartography and Geographic Visualization. 2nd ed. Upper Saddle River: Pearson Prentice Hall.

Appendice B

Lista pacchetti aggiuntivi

. ssc whatshot, n(.)

Packages at SSC

	Jan 2015		
Rank	# hits	Package	Author(s)
1	21197.8	qcount	Alfonso Miranda
2	14291.2	outreg2	Roy Wada
3	12605.6	estout	Ben Jann
4	3739.6	psmatch2	Barbara Sianesi, Edwin Leuven
5	3281.5	outreg	John Luke Gallup
6	3183.0	winsor	Nicholas J. Cox
7	2757.6	ivreg2	Steven Stillman, Mark E Schaffer, Christopher F Baum
8	2531.0	use13	Sergiy Radyakin
9	2371.0	regsave	Julian Reif
10	2342.3	egenmore	Nicholas J. Cox
11	2327.3	tabout	Ian Watson
12	2246.7	fre	Ben Jann
13	2028.7	ranktest	Frank Kleibergen, Mark E Schaffer
14	2017.7	strgroup	Julian Reif
15	1742.3	xttest3	Christopher F Baum
16	1703.3	carryforward	David Kantor
17	1646.7	spmap	Maurizio Pisati
18	1642.0	shp2dta	Kevin Crow
19	1620.7	xtabond2	David Roodman
20	1610.0	unique	Tony Brady
21	1503.3	bcuse	Christopher F Baum
22	1378.7	xtivreg2	Mark E Schaffer
23	1369.3	tscollap	Christopher F Baum
24	1336.7	survwgt	Nick Winter
25	1208.7	distinct	Nicholas J. Cox, Gary Longton
26	1198.8	parmest	Roger Newson
27	1181.7	tableplot	Nicholas J. Cox
28	1117.8	catplot	Nicholas J. Cox
29	1059.0	_gwtmean	David Kantor
30	1039.7	mdesc	Rose Anne Medeiros, Dan Blanchette
31	953.7	diff	Juan M. Villa
32	947.0	coefplot	Ben Jann
33	925.6	metan	Jon Deeks, Thomas Steichen, Ross Harris, Roger Harbord, Jonathan Sterne, Doug Altman, Mike Bradburn
34	887.7	whitetst	Christopher F Baum, Nicholas J. Cox

35	872.3	fitstat	J. Scott Long, Jeremy Freese
36	846.8	logout	Roy Wada
37	797.2	rd	Austin Nichols
38	785.7	xml_tab	Michael Lokshin, Zurab Sajaia
39	778.7	mif2dta	Maurizio Pisati
40	759.0	xttest2	Christopher F Baum
41	745.3	xtivreg28	Mark E Schaffer
42	729.7	xtcsd	R. E. De Hoyos, Vasilis Sarafidis
43			•
	701.5	ineqdeco	Stephen P. Jenkins
44	687.3	oaxaca	Ben Jann
45	662.8	outtex	Antoine Terracol
46	662.7	xtoverid	Steven Stillman, Mark E Schaffer
47	642.2	gllamm	Sophia Rabe-Hesketh
48	637.0	winsor2	Lian Yu-jun
49	616.7	overid	Mark E Schaffer, Christopher F Baum,
			Vince Wiggins, Steven Stillman
50	594.7	usespss	Sergiy Radyakin
51	581.3	egranger	Mark E Schaffer
52	566.4	wbopendata	Joao Pedro Azevedo
53	563.3	reclink	Michael Blasnik
54	548.7	synth	Jens Hainmueller, Alberto Abadie,
			Alexis Diamond
55	535.0	sutex	Antoine Terracol
56	503.1		Joao Pedro Azevedo
57	498.0	grqreg ginidesc	Roger Aliaga, Silvia Montoya
		-	•
58	497.7	nsplit	Dan Blanchette
59	486.0	xtscc	Daniel Hoechle
60	466.7	kpss	Christopher F Baum
61	452.7	strip	P.T.Seed
62	447.7	confirmdir	Dan Blanchette
63	429.0	quantiles	Rafael Guerreiro Osorio
64	420.3	glcurve	Stephen P. Jenkins, Philippe Van Kerm
65	419.3	outtable	Christopher F Baum, Joao Pedro Azevedo
66	419.2	fsum	Fred Wolfe
67	412.5	latab	Ian Watson
	412.0		
68	411.3	extremes	Nicholas J. Cox
		extremes mmerge	Nicholas J. Cox Jeroen Weesie
68	411.3	mmerge	
68 69	411.3 409.0	mmerge ainequal	Jeroen Weesie Joao Pedro Azevedo
68 69 70	411.3 409.0 408.3 404.3	mmerge	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm
68 69 70 71 72	411.3 409.0 408.3 404.3 395.7	mmerge ainequal dummieslab mfx2	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams
68 69 70 71 72 73	411.3 409.0 408.3 404.3 395.7 393.7	mmerge ainequal dummieslab mfx2 corrtex	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc
68 69 70 71 72	411.3 409.0 408.3 404.3 395.7	mmerge ainequal dummieslab mfx2	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr,
68 69 70 71 72 73 74	411.3 409.0 408.3 404.3 395.7 393.7 384.7	mmerge ainequal dummieslab mfx2 corrtex nnmatch	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker
68 69 70 71 72 73 74	411.3 409.0 408.3 404.3 395.7 393.7 384.7	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum
68 69 70 71 72 73 74 75	411.3 409.0 408.3 404.3 395.7 393.7 384.7	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner
68 69 70 71 72 73 74	411.3 409.0 408.3 404.3 395.7 393.7 384.7	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer,
68 69 70 71 72 73 74 75 76 77	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum
68 69 70 71 72 73 74 75 76 77	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox
68 69 70 71 72 73 74 75 76 77	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox
68 69 70 71 72 73 74 75 76 77 78 79 80	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3 366.3 366.3	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo
68 69 70 71 72 73 74 75 76 77 78 79 80 81	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3 366.3 366.0 363.3 356.7	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82	411.3 409.0 408.3 404.3 395.7 395.7 384.7 379.3 376.0 366.3 366.3 366.0 363.3 356.7 348.2	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette
68 69 70 71 72 73 74 75 76 77 78 79 80 81	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3 366.3 366.0 363.3 356.7	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82	411.3 409.0 408.3 404.3 395.7 395.7 384.7 379.3 376.0 366.3 366.3 366.0 363.3 356.7 348.2	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83	411.3 409.0 408.3 404.3 395.7 384.7 379.3 376.0 366.3 366.3 366.0 363.3 356.7 348.2 346.7	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir svmatf	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger
68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84	411.3 409.0 408.3 404.3 395.7 384.7 379.3 376.0 366.3 366.3 366.0 363.3 356.7 348.2 346.7 344.6	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir svmatf labutil	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox
68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3 366.3 366.0 363.3 356.7 348.2 346.7 344.6 338.8	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir swmatf labutil freduse	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox David M. Drukker
68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3 366.0 363.3 356.7 348.2 346.7 344.6 338.8 338.5	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir symatf labutil freduse hprescott	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox David M. Drukker Christopher F Baum
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3 366.3 366.3 366.6 338.8 338.5 333.7	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir svmatf labutil freduse hprescott jb somersd	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox David M. Drukker Christopher F Baum Gregorio Impavido, J. Sky David
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89	411.3 409.0 408.3 404.3 395.7 384.7 379.3 376.0 366.3 366.3 366.7 348.2 346.7 344.6 338.8 338.8 333.7 333.5 333.7	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir svmatf labutil freduse hprescott jb somersd csipolate	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox David M. Drukker Christopher F Baum Gregorio Impavido, J. Sky David Roger Newson Nicholas J. Cox
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	411.3 409.0 408.3 404.3 395.7 384.7 379.3 376.0 366.3 366.0 363.3 356.7 348.2 346.7 344.6 338.8 338.5 333.7 333.5 333.0 329.3	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir svmatf labutil freduse hprescott jb somersd csipolate bpagan	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox David M. Drukker Christopher F Baum Gregorio Impavido, J. Sky David Roger Newson Nicholas J. Cox Vince Wiggins, Christopher F Baum
68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91	411.3 409.0 408.3 404.3 395.7 384.7 379.3 376.0 366.3 366.3 366.7 348.2 346.7 344.6 338.8 338.5 333.7 333.5 333.7 333.7 333.8	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir svmatf labutil freduse hprescott jb somersd csipolate bpagan inequal7	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox David M. Drukker Christopher F Baum Gregorio Impavido, J. Sky David Roger Newson Nicholas J. Cox Vince Wiggins, Christopher F Baum Philippe Van Kerm
68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3 366.3 366.3 356.7 348.2 346.7 344.6 338.8 338.5 333.7 333.5 333.7 333.5 333.7 333.5	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir svmatf labutil freduse hprescott jb somersd csipolate bpagan inequal7 lambda	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox David M. Drukker Christopher F Baum Gregorio Impavido, J. Sky David Roger Newson Nicholas J. Cox Vince Wiggins, Christopher F Baum Philippe Van Kerm Nicholas J. Cox
68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 99 90 91 92 93	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3 366.3 366.3 356.7 348.2 346.7 344.6 338.8 338.5 333.7 333.5 333.7 333.5 333.5 3329.3 329.3 325.3	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir swmatf labutil freduse hprescott jb somersd csipolate bpagan inequal7 lambda mat2txt	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox David M. Drukker Christopher F Baum Gregorio Impavido, J. Sky David Roger Newson Nicholas J. Cox Vince Wiggins, Christopher F Baum Philippe Van Kerm Nicholas J. Cox Michael Blasnik, Ben Jann
68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92	411.3 409.0 408.3 404.3 395.7 393.7 384.7 379.3 376.0 366.3 366.3 366.3 356.7 348.2 346.7 344.6 338.8 338.5 333.7 333.5 333.7 333.5 333.7 333.5	mmerge ainequal dummieslab mfx2 corrtex nnmatch dmariano binscatter ivendog tsspell scat3 apoverty center tmpdir svmatf labutil freduse hprescott jb somersd csipolate bpagan inequal7 lambda	Jeroen Weesie Joao Pedro Azevedo Nicholas J. Cox, Philippe Van Kerm Richard Williams Nicolas Couderc Guido W. Imbens, Jane Leber Herr, Alberto Abadie, David M. Drukker Christopher F Baum Michael Stepner Steven Stillman, Mark E Schaffer, Christopher F Baum Nicholas J. Cox Nicholas J. Cox Joao Pedro Azevedo Ben Jann Dan Blanchette Jan Brogger Nicholas J. Cox David M. Drukker Christopher F Baum Gregorio Impavido, J. Sky David Roger Newson Nicholas J. Cox Vince Wiggins, Christopher F Baum Philippe Van Kerm Nicholas J. Cox

96	319.0	sencode	Roger Newson
97	318.7	xtfmb	Daniel Hoechle
98	315.0	labellist	Daniel Klein
99	307.0	libjson	Erik Lindsley
100	307.0	xtwest	Damiaan Persyn
101	305.7	batplot	Adrian Mander
102	301.3	armadiag	Sune Karlsson
103	300.8	sppack	Hua Peng, Ingmar Prucha, Rafal
			Raciborski, David M. Drukker
104	299.7	metaninf	Thomas Steichen
105	299.7	shortdir	Dan Blanchette
106	297.3	metabias	Ross J Harris, Thomas Steichen, Robert
			M Harbord, Jonathan AC Sterne
107	292.3	xsmle	Gordon Hughes, Andrea Piano Mortari,
			Federico Belotti
108	292.0	insheetjson	Erik Lindsley
109	289.0	xtbalance	Lian Yujun
110	285.7	omodel	Rory Wolfe
111	283.3	weakiv	Keith Finlay, Leandro Magnusson, Mark E
			Schaffer
112	281.0	cmp	David Roodman
113	274.4	gologit2	Richard Williams
114	274.3	chewfile	Roy Wada
115	272.3	nmissing	Nicholas J. Cox
116	270.5	usesas	Dan Blanchette
117	270.3	cmogram	Christopher Robert
118	270.3	revrs	Kyle C. Longest
119	270.3	sxpose	Nicholas J. Cox
120	267.0	hoi	Joao Pedro Azevedo, Samuel Franco,
			Eliana Rubiano, Alejandro Hoyos
121	263.7	tab3way	Philip Ryan
122	258.3	metafunnel	Jonathan Sterne
123	257.7	glst	Rino Bellocco, Nicola Orsini, Sander
			Greenland
124	256.0	geodist	Robert Picard
125	255.5	savasas	Dan Blanchette
126	250.3	mkprofile	Dan Blanchette
127	248.9	mixlogit	Arne Risa Hole
128	247.2	metareg	Julian Higgins, Roger Harbord
129	242.3	fastgini	Zurab Sajaia
130	242.3	gcause	Patrick Joly
131	242.3	zscore06	Jef Leroy
132	237.3	tabstatmat	Austin Nichols
133	235.8	fs	Nicholas J. Cox
134	234.5	kountry	Rafal Raciborski
135	234.3	charlson	Vicki Stagg
136	231.8	saswrapper	Dan Blanchette
137	229.7	geocode3	Stefan Bernhard
138	229.7	povdeco	Stephen P. Jenkins
139	227.5	margeff	Tamas Bartus
140	227.0	matsave	Marc-Andreas Muendler
141	223.0	abar	David Roodman
142	221.3	levinlin	Christopher F Baum, Fabian Bornhorst
143	221.3	tuples	Nicholas J. Cox, Joseph N. Luchman
144	219.7	reg2hdfe	Paulo Guimaraes
145	216.3	ttesttable	Florian Chavez Juarez
146	215.0	xtfisher	Scott Merryman
147	214.0	cem	Giuseppe Porro, Gary King, Stefano
			Iacus, Matthew Blackwell
148	214.0	sumdist	Stephen P. Jenkins
149	212.0	varprod	Emad Abd Elmessih Shehata
150	210.0	tolower	Nicholas J. Cox
151	209.5	runmlwin	Chris Charlton, George Leckie
152	209.4	reghdfe	Sergio Correia
153	208.8	kdens	Ben Jann

```
154
       207.2
                 a2reg
                               Amine Ouazad
155
       203.2
                 onespell
                               Christopher F Baum
       202.7
                               Emad Abd Elmessih Shehata
156
                 chowreg
157
       197.0
                 spwmatrix
                               P. Wilner Jeanty
158
       196.3
                 sutex2
                               Francesco Scervini
159
       194.3
                 ice
                               Patrick Royston
160
       190.0
                 ebalance
                               Jens Hainmueller, Yiqing Xu
161
       190.0
                               J.M.C. Santos Silva, P.M.D.C Parente,
                 qreg2
                                  J.A.F. Machado
       189.8
                               Steven Stillman, Mark E Schaffer,
162
                 ivreg29
                                 Christopher F Baum
163
       189.3
                hte
                               Jennie E. Brand, Ben Jann, Yu Xie
164
       189.3
                 ivhettest
                               Mark E Schaffer
165
       189.3
                xtsur
                               Minh Cong Nguyen
                               Adrian Mander
       186.7
                mmodes
166
                               Timothy Neal
167
       185.7
                 xtpedroni
168
       184.0
                 xtgraph
                               Paul Seed
       181.8
169
                               Nick Winter
                 svr
170
       180.7
                 appendfile
                               Julian Reif
       180.3
                 stcascoh
                               Enzo Coviello
171
       178.7
                               Piotr Lewandowski
172
                pescadf
173
       176.7
                 zandrews
                               Christopher F Baum
174
       176.3
                 regwls
                               Dany Bahar
                               Enzo Coviello
175
       176.0
                 stcompet
                               Markus Eberhardt
176
                 multipurt
       175.7
                               Markus Eberhardt
177
       175.7
                 xtmg
178
       174.0
                 coldiag2
                               John Hendrickx
179
       174.0
                 groups
                               Nicholas J. Cox
                               Muhammad Rashid Ansari
180
       173.0
                hhi
                               Eric Booth
181
       173.0
                 usepackage
       171.7
                               Vince Wiggins, Christopher F Baum
182
                 tsmktim
183
       171.2
                 todate
                               Nicholas J. Cox
184
       170.0
                 ftest
                               Maarten L. Buis
                               Sergiy Radyakin
185
       169.8
                 savespss
186
       168.7
                               Federico Belotti, Partha Deb
                 tpm
                               David Vincent
       167.7
187
                blp
188
       167.7
                 rbounds
                               Markus Gangl
189
       167.3
                 ciplot
                               Nicholas J. Cox
190
       167.3
                 ttable2
                               Xuan Zhang, Chuntao Li
191
       167.2
                xtpmg
                               Edward F. Blackburne III, Mark W. Frank
       167.0
                               Robert Picard
192
                 geonear
193
       166.3
                 factortest
                               Joan Pedro Azevedo
194
       166.3
                 texsave
                               Julian Reif
195
       165.3
                use13save12
                               Lars Angquist
                               David Roodman
196
       163.5
                newev2
197
       163.0
                 traveltime3
                               Stefan Bernhard
198
       162.7
                 ipshin
                               Fabian Bornhorst, Christopher F Baum
199
       162.3
                 clemao_io
                               Christopher F Baum
       160.7
                 cdfplot
                               Adrian Mander
200
201
       160.2
                midas
                               Ben Dwamena
202
       158.8
                               Stephen P. Jenkins
                 ineqdec0
203
       157.2
                 oparallel
                               Maarten L. Buis
204
       156.8
                 adoedit
                               Dan Blanchette
                               Austin Nichols
205
       156.0
                 vincenty
206
       155.8
                mvsumm
                               Christopher F Baum, Nicholas J. Cox
                 combomarginsplot Nick Winter
207
       154.0
208
       152.8
                 ghk2
                               David Roodman
209
       152.7
                 nearmrg
                               Eric Booth
210
       152.0
                               Jean-Benoit Hardouin
                 msp
211
       150.7
                 eclplot
                               Roger Newson
212
       150.5
                diagt
                               Paul Seed
                               Steven Stillman, Mark E Schaffer,
213
       150.3
                 ivreg28
                                  Christopher F Baum
214
       149.7
                 xtcd
                               Markus Eberhardt
215
       149.3
                 sfpanel
                               Vincenzo Atella, Giuseppe Ilardi,
```

			Silvio Daidone, Federico Belotti
216	148.0	bygap	Roger Newson
217	148.0	rcsgen	Paul Lambert
218	148.0	strdist	Michael Barker
219	147.3	ascii	Adrian Mander
220	147.3	elapse	Fred Zimmerman
221	145.9	sq	Magdalena Luniak, Christian
221	140.0	54	Brzinsky-Fay, Ulrich Kohler
222	145.0	cusum6	Christopher F Baum
223	144.3	kwallis2	Herve M. Caci
224	144.0	stripplot	Nicholas J. Cox
225	142.7	aaplot	Nicholas J. Cox
226	140.0	r2reg3	Emad Abd Elmessih Shehata
227	138.3	r2sem	Emad Abd Elmessih Shehata
228	138.2	r2nlsur	Emad Abd Elmessih Shehata
229	137.7	egen_inequal	Zurab Sajaia, Michael Lokshin
230	137.4	splagvar	P. Wilner Jeanty
231	137.3	oglm	Richard Williams
232	137.3	todummy	Daniel Klein
233	137.0	pv	Kevin Macdonald
234	134.7	est2tex	Marc-Andreas Muendler
235	134.3	savesome	Nicholas J. Cox
236	134.3	xtdolshm	Diallo Ibrahima Amadou
237	133.7	xtpqml	Tim Simcoe
238	133.3	avar	Christopher F Baum, Mark E Schaffer
239	131.1	gammafit	Nicholas J. Cox, Stephen P. Jenkins
240	130.9	xtlsdvc	Giovanni S.F. Bruno
241	130.3		Gregorio Impavido, J. Sky David
242	130.3	jb6 xtmrho	Lars E. Kroll
243	129.0	rollreg	Christopher F Baum
244	129.0	weakivtest	Su Wang, Carolin E. Pflueger, Jose Luis
244	129.0	weakivtest	Montiel Olea
245	128.2	mrtab	Ben Jann, Hilde Schaeper
246	127.7		
247		nnest	Gregorio Impavido f Gabriel Rossman
248	126.3 125.7	graphexportpd surface	Adrian Mander
249		mlt	Katja Moehring, Alexander Schmidt
250	125.1 124.3	mlowess	
251	124.3	r2var	Nicholas J. Cox
201	123.7	IZVal	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
252			
	102 7	ridgereg	
	123.7	ridgereg	Emad Abd Elmessih Shehata
253	123.0	rsource	Emad Abd Elmessih Shehata Roger Newson
253 254	123.0 122.2	rsource nbercycles	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum
253 254 255	123.0 122.2 122.0	rsource nbercycles cibar	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt
253 254 255 256	123.0 122.2 122.0 121.2	rsource nbercycles cibar tabplot	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox
253 254 255 256 257	123.0 122.2 122.0 121.2 121.0	rsource nbercycles cibar tabplot charlist	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox
253 254 255 256 257 258	123.0 122.2 122.0 121.2 121.0 121.0	rsource nbercycles cibar tabplot charlist vreverse	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox
253 254 255 256 257 258 259	123.0 122.2 122.0 121.2 121.0 121.0 120.9	rsource nbercycles cibar tabplot charlist vreverse fmm	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb
253 254 255 256 257 258 259 260	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson
253 254 255 256 257 258 259 260 261	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney
253 254 255 256 257 258 259 260 261 262	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit cntrade	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang
253 254 255 256 257 258 259 260 261 262 263	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit cntrade lars	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander
253 254 255 256 257 258 259 260 261 262 263 264	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0 119.0	rsource nbercycles cibar tabplot charlist vreverse fmm xsymat firthlogit cntrade lars seq	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox
253 254 255 256 257 258 259 260 261 262 263 264 265	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0 119.0 119.0	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit cntrade lars seq chaid	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman
253 254 255 256 257 258 259 260 261 262 263 264 265 266	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0 119.0 119.0 118.0	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit cntrade lars seq chaid ivregress2	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0 119.0 118.0 118.0 117.7	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit cntrade lars seq chaid ivregress2 outsum	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada Kerry L. Papps
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268	123.0 122.2 122.0 121.2 121.0 120.9 120.7 120.3 119.0 119.0 119.0 118.0 117.7 116.2	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit cntrade lars seq chaid ivregress2 outsum listtab	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada Kerry L. Papps Roger Newson
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0 119.0 118.0 117.7 116.2 116.0	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit cntrade lars seq chaid ivregress2 outsum listtab baplot	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada Kerry L. Papps Roger Newson Paul Seed
253 254 255 256 257 258 259 260 261 262 263 264 265 266 266 267 268 269 270	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0 119.0 119.0 118.0 117.7 116.2 116.0 116.0	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit cntrade lars seq chaid ivregress2 outsum listtab baplot cfout	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada Kerry L. Papps Roger Newson Paul Seed Ryan Knight, Matthew White
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271	123.0 122.2 122.0 121.2 121.0 120.9 120.7 120.3 119.0 119.0 119.0 117.7 116.2 116.0 115.7	rsource nbercycles cibar tabplot charlist vreverse fmm xsymat firthlogit cntrade lars seq chaid ivregress2 outsum listtab baplot cfout byvar	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada Royery L. Papps Roger Newson Paul Seed Ryan Knight, Matthew White Patrick Royston
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0 119.0 118.0 117.7 116.2 116.0 115.7 115.5	rsource nbercycles cibar tabplot charlist vreverse fmm xsymat firthlogit cntrade lars seq chaid ivregress2 outsum listtab baplot cfout byvar metatrim	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada Kerry L. Papps Roger Newson Paul Seed Ryan Knight, Matthew White Patrick Royston Thomas Steichen
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273	123.0 122.2 122.0 121.2 121.0 121.0 120.7 120.3 119.0 119.0 118.0 117.7 116.2 116.0 115.7 115.5 115.0	rsource nbercycles cibar tabplot charlist vreverse fmm xsymat firthlogit cntrade lars seq chaid ivregress2 outsum listtab baplot cfout byvar metatrim wtp	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada Kerry L. Papps Roger Newson Paul Seed Ryan Knight, Matthew White Patrick Royston Thomas Steichen Arne Risa Hole
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274	123.0 122.2 122.0 121.2 121.0 121.0 120.9 120.7 120.3 119.0 119.0 118.0 117.7 116.2 116.0 115.7 115.5 115.0 112.8	rsource nbercycles cibar tabplot charlist vreverse fmm xsvmat firthlogit cntrade lars seq chaid ivregress2 outsum listtab baplot cfout byvar metatrim wtp sdecode	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada Kerry L. Papps Roger Newson Paul Seed Ryan Knight, Matthew White Patrick Royston Thomas Steichen Arne Risa Hole Roger Newson
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273	123.0 122.2 122.0 121.2 121.0 121.0 120.7 120.3 119.0 119.0 118.0 117.7 116.2 116.0 115.7 115.5 115.0	rsource nbercycles cibar tabplot charlist vreverse fmm xsymat firthlogit cntrade lars seq chaid ivregress2 outsum listtab baplot cfout byvar metatrim wtp	Emad Abd Elmessih Shehata Roger Newson Christopher F Baum Alexander Staudt Nicholas J. Cox Nicholas J. Cox Nicholas J. Cox Partha Deb Roger Newson Joseph Coveney Chuntao Li, Xuan Zhang Adrian Mander Nicholas J. Cox Joseph N. Luchman Roy Wada Kerry L. Papps Roger Newson Paul Seed Ryan Knight, Matthew White Patrick Royston Thomas Steichen Arne Risa Hole

077	444 7		March E Calcade Com Charleton by E Danie
277	111.7	actest	Mark E Schaffer, Christopher F Baum
278	111.7 111.3	senspec	Roger Newson
279		armaroots	Sune Karlsson
280	111.3	dups	Thomas Steichen, Nicholas J. Cox
281	110.3	poverty	Philippe Van Kerm
282	110.3	ptrend	Patrick Royston
283	110.1	lognfit	Stephen P. Jenkins
284	110.0	mvprobit	Stephen P. Jenkins, Lorenzo Cappellari
285	107.7	mean2	Roy Wada
286	107.7	uselab	Daniel Klein
287	107.0	dmexogxt	Christopher F Baum, Steven Stillman
288	106.8	sfcross	Vincenzo Atella, Federico Belotti,
		_	Giuseppe Ilardi, Silvio Daidone
289	106.7	svylorenz	Stephen P. Jenkins
290	106.6	labutil2	Daniel Klein
291	106.0	descsave	Roger Newson
292	106.0	makematrix	Nicholas J. Cox
293	105.7	cltest	Jeph Herrin
294	105.7	descogini	Alejandro Lopez-Feldman
295	105.4	mim	John B. Carlin, Patrick Royston, John
			C. Galati
296	105.3	mediation	Raymond Hicks, Dustin Tingley
297	104.3	mimstack	Patrick Royston, John C. Galati, John
			B. Carlin
298	104.0	labvars	Daniel Klein
299	103.0	_peers	Amine Ouazad
300	102.4	stpm2	Paul Lambert
301	101.7	ivreg2h	Mark E Schaffer, Christopher F Baum
302	101.0	ci2	Paul Seed
303	100.7	labvalpool	Daniel Klein
304	100.3	labmv	Daniel Klein
305	99.3	coldiag	Joseph Harkness
306	99.3	khb	Ulrich Kohler, Kristian Karlson
307	99.3	labmm	Daniel Klein
308	99.3	labrec	Daniel Klein
309	99.3	repest	Francesco Avvisati, François Keslair
310	99.3	rev	Daniel Klein
311	99.2	stselpre	Enzo Coviello
312	99.0	bidensity	Christopher F Baum, John Luke Gallup
313	99.0	labvalch3	Daniel Klein
314	99.0	matmap	Nicholas J. Cox
315	98.5	isko	John Hendrickx
316	98.4	listtex	Roger Newson
317	98.0	labvalcl	Daniel Klein
318	98.0	mimrgns	Daniel Klein
319	98.0	regcheck	Mehmet Mehmetoglu
320	96.7	statsmat	Christopher F Baum, Nicholas J. Cox
321	96.7	xtcips	Maximo Sangiacomo
322	96.3	radar	Adrian Mander
323	96.3	spregdpd	Sahra Khaleel A. Mickaiel, Emad Abd
020	50.0	sprogapa	Elmessih Shehata
324	96.2	akdensity	Philippe Van Kerm
325	96.0	txtlabdef	Daniel Klein
326	95.0	hnblogit	Joseph Hilbe
		_	-
327 328	94.7 94.3	renvarlab	Joe Canner Fred Wolfe
		corrtab	
329	94.3	metacum	Ross Harris, Jonathan Sterne
330	93.7	ghansen	Jorge Eduardo Perez Perez
331	93.7	mcenter	Jeffrey S. Simons
332	93.3	fmlogit	Maarten L. Buis
333	93.0	stockquote	Nikos Askitas
334	92.9	spautoreg	Emad Abd Elmessih Shehata
335	92.8	johans	Ken Heinecke, Charles Morris, Patrick
			Joly
336	92.7	addplot	Ben Jann

007	00.7		37: 3 77: .
337	92.7	full_palette	Nick Winter
338	92.0	dsginideco	Philippe Van Kerm, Stephen P. Jenkins
339	92.0	fagan	Ben Dwamena
340	91.8	metandi	Roger Harbord
341	91.0	spmon	Thomas Plümper, Eric Neumayer
342	90.7	sum2	Roy Wada
343	90.0	ineqfac	Stephen P. Jenkins
344	89.3	curvefit	Liu Wei
345	89.3	quandl	Felix Leung
346	89.2	-	
		bioprobit	Zurab Sajaia
347	88.3	heterogi	Iain Buchan, Julian Higgins, Nicola
			Orsini, Matteo Bottai
348	88.3	percom	Muhammad Rashid Ansari
349	87.8	varlag	Patrick Joly
350	87.0	mvcorr	Christopher F Baum, Nicholas J. Cox
351	86.8	paretofit	Philippe Van Kerm, Stephen P. Jenkins
352	86.0	kernreg2	Isaias H. Salgado-Ugarte, Nicholas J.
		Ŭ	Cox, Toru Taniuchi, Makoto Shimizu
353	85.7	ivactest	Christopher F Baum, Mark E Schaffer
354	85.1	paramed	Richard Emsley, Hanhua Liu
355	85.0	ivvif	David Roodman
356			
	83.8	distplot	Nicholas J. Cox
357	83.7	rmse	Roy Wada
358	83.3	dataout	Roy Wada
359	83.0	hadrilm	Christopher F Baum
360	83.0	stcmd	Roger Newson
361	82.3	robreg	Ben Jann
362	81.6	boxtid	Patrick Royston
363	81.3	copydesc	Nicholas J. Cox
364	81.3	csti	Philip M Jones
365	81.0	chaidforest	Joseph N. Luchman
366			Ben Jann
	81.0	gsample	
367	81.0	semipar	Nicolas Debarsy, Vincenzo Verardi
368	80.5	xtvar	Ulrich Glogowsky, Tobias Cagala
369	80.4	postrcspline	Maarten L. Buis
370	80.3	plotmatrix	Adrian Mander
371	80.3	spweight	Emad Abd Elmessih Shehata
372	80.3	lclogit	Daniele Pacifico, Hong il Yoo
373	80.2	mylabels	Nicholas J. Cox, Scott Merryman
374	80.0	wntstmvq	Christopher F Baum, Richard Sperling
375	79.9	switchr	Fred Zimmerman
376	79.1	clrbound	Victor Chernozhukov, Adam M. Rosen,
0.0		ollbound	Sokbae Lee, Wooyoung Kim
377	79.0	contcolc	Patrick Royston, Eileen Wright
		centcalc	• •
378	78.9	betafit	Nicholas J. Cox, Stephen P. Jenkins,
			Maarten L. Buis
379	78.8	mahapick	David Kantor
380	78.7	mcmccqreg	Matthew Baker
381	78.3	bigtab	Paul H. Bern
382	78.3	designplot	Nicholas J. Cox
383	78.3	odkmeta	Matthew White
384	78.3	tabexport	Nicholas J. Cox
385	78.1	spmlreg	P. Wilner Jeanty
386	78.0	bayesmixedlog	v
387	78.0	texdoc	Ben Jann
388	77.7	chinafin	Cheng Pan, Chuntao Li, Xuan Zhang
389	77.7	indeplist	Maarten L. Buis
390	77.0	hausman	Jeroen Weesie
391	77.0	spweightxt	Emad Abd Elmessih Shehata
392	76.7	findname	Nicholas J. Cox
393	76.7	kernreg1	Xavi Ramos, Makoto Shimizu, Toru
			Taniuchi, Isaias H. Salgado-Ugarte
394	76.0	xls2dta	Daniel Klein
395	75.3	estout1	Ben Jann
396	75.0	datacheck	Krishnan Bhaskaran
550		advaonoon	I I I I I I I I I I I I I I I I I I

```
397
        74.8
                 vececm
                                Patrick Joly
398
        74.3
                 cleanchars
                                Lars Angquist
399
        74.3
                                Adam Ozimek, Daniel Miles
                 geocode
400
        74.3
                                Nicholas J. Cox
                 isvar
401
        74.0
                 mundlak
                                Francisco (Paco) Perales
                 matodd
402
        73.7
                                Nicholas J. Cox
403
        73.7
                 catenate
                                Nicholas J. Cox
404
        73.7
                 vallist
                                Patrick Joly
                                Nicholas J. Cox
405
        73.5
                 qpfit
                                Nicholas J. Cox
406
                 matvsort
        73.3
                                Stephen P. Jenkins
407
        73.1
                 gb2fit
408
        73.0
                 filelist
                                Robert Picard
409
        72.7
                 domin
                                Joseph N. Luchman
410
        72.7
                 itsa
                                Ariel Linden
                 sspecialreg
                                Christopher F Baum
411
        72.6
                                Zhiqiang Wang, Nicholas J. Cox
412
        72.3
                 bcoeff
413
        72.3
                 byhist
                                Austin Nichols
        72.3
414
                 iccvar
                                Eric C. Hedberg
415
        72.3
                 lrdrop1
                                Zhiqiang Wang
                                Stephen P. Jenkins
Nicholas J. Cox
                 xfrac
416
        72.3
        72.0
                 spineplot
417
418
        72.0
                 tablecol
                                Nick Winter
419
        72.0
                 vselect
                                Charles Lindsey
420
        71.3
                 vecar
                                Christopher F Baum
421
        71.0
                                Ivan Fernandez-Val, Amanda Kowalski,
                 cqiv
                                  Victor Chernozhukov, Sukjin Han
422
        71.0
                 xttrans2
                                Nicholas J. Cox
423
        70.5
                 svygei_svyatk
                                Stephen P. Jenkins, Martin Biewen
424
        70.3
                 difd
                                Laura Gibbons
                                Marco Ventura, Barbara Guardabascio
425
        70.3
                 doseresponse2
426
        70.3
                 omninorm
                                Christopher F Baum, Nicholas J. Cox
427
        70.0
                 mss
                                J.M.C. Santos Silva, J.A.F. Machado
428
        69.7
                 panelauto
                                Christopher F Baum
        69.7
                                Mark E Schaffer
429
                 ivreset
430
        69.7
                 sparkline
                                Nicholas J. Cox
                                Robert Parham, Timothy Erickson, Colin
431
        69.7
                 xtewreg
                                  Jiang, Toni Whited
432
        69.3
                 estwrite
                                Ben Jann
433
        69.3
                 ivreg2hdfe
                                Dany Bahar
434
        69.3
                 _gclsort
                                Philippe Van Kerm
                                Philippe Van Kerm
435
        69.0
                 inequal2
436
        68.9
                 stcoxgof
                                Enzo Coviello
437
        68.7
                 ccmatch
                                Daniel E. Cook
                                Stephen P. Jenkins
438
        68.6
                 smfit
439
                 goprobit
                                Stefan Boes
        68.3
440
                                Emad Abd Elmessih Shehata
        68.3
                 reset
441
        68.0
                 krippalpha
                                Mona Krewel, Alexander Staudt
442
        68.0
                 nlcheck
                                Ben Jann
443
                                Maurizio Pisati
        68.0
                 spgrid
444
        67.7
                                Nicholas J. Cox
                 fbar
445
        67.7
                                Jean-Benoit Hardouin
                 genscore
446
        67.7
                 movestay
                                Zurab Sajaia, Michael Lokshin
447
        67.3
                 fgtest
                                Emad Abd Elmessih Shehata
448
                                Giovanni Cerulli
        67.3
                 ivtreatreg
449
        67.0
                 metaeff
                                Evangelos Kontopantelis, David Reeves
                                Nicholas Oulton
                 pantest2
450
        67.0
451
        67.0
                 venndiag
                                Jens M. Lauritsen
452
        66.8
                 mfpigen
                                Patrick Royston
453
        66.5
                                Yang Yang, Sam Schulhofer-Wohl
                 apc
454
        66.3
                 genicv
                                Daniel Klein
                                Andrew Shephard
455
        66.3
                 matwrite
456
        65.8
                 dfl
                                Joao Pedro Azevedo
457
        65.7
                 pvenn
                                Jan Ostermann, Wenfeng Gong
458
        65.6
                                Maarten L. Buis
                 seqlogit
459
        65.3
                 hangroot
                                Maarten L. Buis
```

	CF 0	14 . 1 . 1 + 0	War and War and the second
460	65.0	dtobit2	Vince Wiggins
461	65.0	hbar	Nicholas J. Cox
462	65.0	mgof	Ben Jann
463	65.0	pyramid	Jens M. Lauritsen
464	64.9	raschtestv7	Jean-Benoit Hardouin
465	64.7	crossfold	Ben Daniels
466	64.7	dqd fairlie	Iliana Reggio, Ricardo Mora
467	64.7		Ben Jann Thisians Hans
468 469	64.7 64.5	xtile2	Zhiqiang Wang
470		hotdeck	Adrian Mander, David Clayton Rense Corten
471	64.3 64.3	netplot table1	Phil Clayton
472	64.3	xtpattern	Nicholas J. Cox
473	64.0	-	Michael Stepner, Robert Picard
474	64.0	mergepoly stpm	• •
475	63.8	metaan	Patrick Royston David Reeves, Evangelos Kontopantelis
476	63.8	_	Patrick Joly, Christopher F Baum
477	63.8	vecar6	Ian White
478	63.7	mvmeta mvtobit	Mikkel Barslund
479	63.3		Nicholas J. Cox
480	63.2	multencode	Sahra Khaleel A. Mickaiel, Emad Abd
400	03.2	spregsarxt	Elmessih Shehata
481	62.7	utest	Jo Thori Lind, Halvor Mehlum
482	62.3	cf3	Thomas Steichen
483	62.3	ingap	Roger Newson
484	62.1	icdpic	Turner M. Osler, David R. Hahn, David
101	02.1	icupic	E. Clark
485	62.0	levels	Nicholas J. Cox
486	62.0	sbbq	Philippe Bracke
487	61.7	graph3d	Davud Rostam-Afschar, Robin Jessen
488	61.7	iia	Jeroen Weesie
489	61.7	lookforit	Dan Blanchette
490	61.3	dirlist	Morten Andersen
491	61.3	nharvey	Christopher F Baum, Fabian Bornhorst
492	61.3	weakiv10	Keith Finlay, Leandro Magnusson, Mark E
102	01.0	""	Schaffer
493	61.2	stpepemori	Enzo Coviello
494	60.5	raschtest	Jean-Benoit Hardouin
495	60.4	bspline	Roger Newson
496	60.3	mkest	Roy Wada
			· ·
497		bgtest	Vince Wiggins, Christopher F Baum
497 498	60.0	bgtest seg	Vince Wiggins, Christopher F Baum Sean F. Reardon
498	60.0 60.0	seg	Sean F. Reardon
498 499	60.0 60.0 60.0	seg soepren	Sean F. Reardon Ulrich Kohler
498 499 500	60.0 60.0 60.0	seg soepren stpiece	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen
498 499	60.0 60.0 60.0	seg soepren	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia
498 499 500 501	60.0 60.0 60.0 59.9	seg soepren stpiece doseresponse	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen
498 499 500 501 502	60.0 60.0 60.0 59.9 59.7 59.7	seg soepren stpiece doseresponse estsave lgraph	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak
498 499 500 501 502 503	60.0 60.0 60.0 59.9 59.7 59.7	seg soepren stpiece doseresponse estsave lgraph shapley2	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez
498 499 500 501 502 503 504 505	60.0 60.0 60.0 60.0 59.9 59.7 59.7 59.7	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata
498 499 500 501 502 503 504 505 506	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.7 59.7	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen
498 499 500 501 502 503 504 505 506 507	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.7 59.3	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo
498 499 500 501 502 503 504 505 506	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.7 59.7	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen
498 499 500 501 502 503 504 505 506 507	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.7 59.3	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra
498 499 500 501 502 503 504 505 506 507 508	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.7 59.3 59.3	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
498 499 500 501 502 503 504 505 506 507 508	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.3 59.3 59.0	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander
498 499 500 501 502 503 504 505 506 507 508	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.3 59.3 59.0	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander Emad Abd Elmessih Shehata, Sahra
498 499 500 501 502 503 504 505 506 507 508	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.7 59.3 59.3 59.0	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr spregfext	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
498 499 500 501 502 503 504 505 506 507 508 509 510	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.7 59.3 59.3 59.0	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr spregfext frm	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Joaquim J. S. Ramalho
498 499 500 501 502 503 504 505 506 507 508 509 510	60.0 60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.3 59.3 59.0 59.0	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr spregfext frm graphlog	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Joaquim J. S. Ramalho Martin Rune Hansen
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513	60.0 60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.3 59.3 59.0 59.0 59.0	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr spregfext frm graphlog oaxaca8	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Joaquim J. S. Ramalho Martin Rune Hansen Ben Jann
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514	60.0 60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.3 59.3 59.0 59.0 59.0 58.8 58.8 58.4	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr spregfext frm graphlog oaxaca8 alorenz	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Joaquim J. S. Ramalho Martin Rune Hansen Ben Jann Joao Pedro Azevedo, Samuel Franco
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515	60.0 60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.3 59.3 59.0 59.0 59.0 58.8 58.8 58.4 58.3	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr spregfext frm graphlog oaxaca8 alorenz denton	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Joaquim J. S. Ramalho Martin Rune Hansen Ben Jann Joao Pedro Azevedo, Samuel Franco Sylvia Hristakeva, Christopher F Baum
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.3 59.3 59.0 59.0 59.0 58.8 58.8 58.4 58.3 58.3	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr spregfext frm graphlog oaxaca8 alorenz denton gpscore2	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Joaquim J. S. Ramalho Martin Rune Hansen Ben Jann Joao Pedro Azevedo, Samuel Franco Sylvia Hristakeva, Christopher F Baum Marco Ventura, Barbara Guardabascio
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517	60.0 60.0 60.0 59.9 59.7 59.7 59.7 59.3 59.0 59.0 59.0 58.9 58.8 58.8 58.4 58.3 58.3	seg soepren stpiece doseresponse estsave lgraph shapley2 spgmmxt cf2 imbalance lmcol matpwcorr spregfext frm graphlog oaxaca8 alorenz denton gpscore2 parallel	Sean F. Reardon Ulrich Kohler Jesper B. Sorensen Alessandra Mattei, Michela Bia Michael Blasnik Timothy Mak Florian Chavez Juarez Emad Abd Elmessih Shehata Thomas Steichen Shenyang Guo Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Adrian Mander Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Joaquim J. S. Ramalho Martin Rune Hansen Ben Jann Joao Pedro Azevedo, Samuel Franco Sylvia Hristakeva, Christopher F Baum Marco Ventura, Barbara Guardabascio George Vega Yon

520	58.0	ipf	Adrian Mander
521	58.0	lmhmss2	Sahra Khaleel A. Mickaiel, Emad Abd
			Elmessih Shehata
522	58.0	spregdhp	Sahra Khaleel A. Mickaiel, Emad Abd
			Elmessih Shehata
523	57.7	eqprhistogram	Nicholas J. Cox
524	57.3	drarea	Adrian Mander
525	57.3	kr20	Herve M. Caci
526	57.3	ttab	Federico Belotti
527	57.0	semean	Christopher F Baum
528	56.7	ralloc	Philip Ryan
529	56.3	btobit	David Vncent
530	56.3	diagtest	Aurelio Tobias
531	56.0	haif	Roger Newson
532	56.0	sampsi_mcc	Adrian Mander
533	55.7	strparse	Michael Blasnik, Nicholas J. Cox
534	55.7	worldstat	Damian Clarke
535	55.5	capass	Max Loeffler
536	55.5	tabform	Le Dang Trung
537	55.3	combineplot	Nicholas J. Cox
538	55.3	concindc	Zhuo (Adam) Chen
539	55.3	dfsummary	Maximo Sangiacomo
540	55.3	intgph	Bennet Zelner, Dan Blanchette
541	55.3	qll	Christopher F Baum
542	55.3	spkde	Maurizio Pisati
543	55.3	tablemat	Amadou Bassirou Diallo
544	55.0	cpigen	Austin Nichols
545	54.8	nearstat	P. Wilner Jeanty
546	54.7	allpossible	Nicholas J. Cox
547	54.7	doubleb	Alejandro Lopez-Feldman
548	54.7	fitstat_ers	Christian Gregory
549	54.3	asciiplot	Svend Juul, Michael Blasnik, Nicholas J. Cox
550	54.3	decompose	Ben Jann
551	54.2	mfpi	Patrick Royston
552	54.2	loevh	Jean-Benoit Hardouin
553	54.2	markdoc	E.F. Haghish
554	54.0	dfgls	Richard Sperling, Christopher F Baum
	54.0	dta2sav	Dirk Enzmann
555		inteff3	Katja Sonderhof, Thomas Cornelissen
555 556			J
556	54.0		Maciei Jakubowski
556 557	54.0 54.0	pisareg	Maciej Jakubowski R. E. De Hovos
556 557 558	54.0 54.0 54.0	pisareg svyselmlog	R. E. De Hoyos
556 557 558 559	54.0 54.0 54.0 53.9	pisareg svyselmlog weaver	R. E. De Hoyos E.F. Haghish
556 557 558 559 560	54.0 54.0 54.0 53.9 53.7	pisareg svyselmlog weaver markov	R. E. De Hoyos E.F. Haghish Nicholas J. Cox
556 557 558 559	54.0 54.0 54.0 53.9	pisareg svyselmlog weaver	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan
556 557 558 559 560 561	54.0 54.0 54.0 53.9 53.7 53.7	pisareg svyselmlog weaver markov tab2way	R. E. De Hoyos E.F. Haghish Nicholas J. Cox
556 557 558 559 560 561 562	54.0 54.0 54.0 53.9 53.7 53.7	pisareg svyselmlog weaver markov tab2way csvconvert	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero
556 557 558 559 560 561 562 563	54.0 54.0 54.0 53.9 53.7 53.7 53.3 53.3	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols
556 557 558 559 560 561 562 563 564	54.0 54.0 54.0 53.9 53.7 53.7 53.3 53.3	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert
556 557 558 559 560 561 562 563 564 565	54.0 54.0 54.0 53.9 53.7 53.7 53.3 53.3 53.3	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins
556 557 558 559 560 561 562 563 564 565 566	54.0 54.0 54.0 53.9 53.7 53.7 53.3 53.3 53.3 53.3	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes
556 557 558 559 560 561 562 563 564 565 566	54.0 54.0 54.0 53.9 53.7 53.7 53.3 53.3 53.3 53.3 53.3	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda
556 557 558 559 560 561 562 563 564 565 566 567 568	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.3 53.3 53.0 53.0	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari
556 557 558 559 560 561 562 563 564 565 566 567 568 569	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.3 53.0 53.0 52.7 52.7	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.3 53.0 52.7 52.7	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.3 53.0 52.7 52.7 52.7 52.3	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm ineqrbd	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.0 53.0 52.7 52.7 52.7 52.3 52.3	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm ineqrbd rc_spline	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio William D. Dupont, W. Dale Plummer, Jr.
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.0 52.7 52.7 52.7 52.3 52.3 52.2	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm ineqrbd rc_spline duncan	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio William D. Dupont, W. Dale Plummer, Jr. Ben Jann Dan Blanchette John Hendrickx
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.0 52.7 52.7 52.7 52.3 52.2 51.7	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm ineqrbd rc_spline duncan etime	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio William D. Dupont, W. Dale Plummer, Jr. Ben Jann Dan Blanchette
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575	54.0 54.0 54.0 53.9 53.7 53.7 53.3 53.3 53.3 53.0 52.7 52.7 52.7 52.7 52.3 52.2 51.7 51.7	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm ineqrbd rc_spline duncan etime perturb	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio William D. Dupont, W. Dale Plummer, Jr. Ben Jann Dan Blanchette John Hendrickx
556 557 558 559 560 561 562 563 564 565 566 567 568 570 571 572 573 574 575	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.0 52.7 52.7 52.7 52.3 52.2 51.7 51.6	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm ineqrbd rc_spline duncan etime perturb qsim spregsdmxt	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio William D. Dupont, W. Dale Plummer, Jr. Ben Jann Dan Blanchette John Hendrickx Fred Wolfe
556 557 558 559 560 561 562 563 564 565 566 567 568 570 571 572 573 574 575	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.0 52.7 52.7 52.7 52.3 52.2 51.7 51.6	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm ineqrbd rc_spline duncan etime perturb qsim	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio William D. Dupont, W. Dale Plummer, Jr. Ben Jann Dan Blanchette John Hendrickx Fred Wolfe Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Austin Nichols
556 557 558 559 560 561 562 563 564 565 566 567 570 571 572 573 574 575 576 577	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.0 53.0 52.7 52.7 52.7 52.7 52.7 51.7 51.5 51.5	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm ineqrbd rc_spline duncan etime perturb qsim spregsdmxt	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio William D. Dupont, W. Dale Plummer, Jr. Ben Jann Dan Blanchette John Hendrickx Fred Wolfe Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Austin Nichols Nicholas J. Cox
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577	54.0 54.0 54.0 53.9 53.7 53.3 53.3 53.3 53.0 53.0 52.7 52.7 52.7 52.7 52.7 51.7 51.5	pisareg svyselmlog weaver markov tab2way csvconvert ddf2dct grstest2 pgmhaz8 poi2hdfe ssm digdis ipdmetan norm ineqrbd rc_spline duncan etime perturb qsim spregsdmxt	R. E. De Hoyos E.F. Haghish Nicholas J. Cox Philip Ryan Alberto A. Gaggero Austin Nichols Markus Ibert Stephen P. Jenkins Paulo Guimaraes Sophia Rabe-Hesketh, Alfonso Miranda Ben Jann David Fisher Chiara Mussida, Muhammad Rashid Ansari Stephen P. Jenkins, Carlo V. Fiorio William D. Dupont, W. Dale Plummer, Jr. Ben Jann Dan Blanchette John Hendrickx Fred Wolfe Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel Austin Nichols

581	50.8	regoprob	Stefan Boes
582	50.7	madfuller	Christopher F Baum
583	50.7	xrigls	Eileen Wright, Patrick Royston
584	50.5	synlight	E.F. Haghish
585	50.3	lstrfun	Dan Blanchette
586	50.3	touch	Ari Friedman
587	50.2	cart	Wim van Putten
588	50.0	moss	Nicholas J. Cox, Robert Picard
589	49.9	regoprob2	Udo Schneider, Christian Pfarr, Andreas Schmid
590	49.7	radiusmatch	Martin Huber, Andreas Steinmayr, Michael Lechner
591	49.7	samplepps	Stephen P. Jenkins
592	49.5	adecomp	Viviane Sanfelice, Joao Pedro Azevedo,
		-	Minh Cong Nguyen
593	49.0	checkfor2	Amadou Bassirou Diallo, Jean-Benoit Hardouin
594	49.0	concord	Nicholas J. Cox, Thomas Steichen
595	49.0	gpreg	Johannes F. Schmieder
596	48.7	movavg	George Vega Yon
597	48.7	partgam	Jens M. Lauritsen, Svend Kreiner
598	48.5	psiduse	Ulrich Kohler
599	48.3	usesome	Daniel Klein
600	48.0	icc23	Luis C.Orozco, Paul F. Visintainer
601	48.0	optifact	Paul Millar
602	48.0	pctrim	Michael Barker
603	48.0	ketchup	E.F. Haghish
604	47.7	strrec	Daniel Klein
605	47.7	xcontract	Roger Newson
606	47.6	piaactools	Maciej Jakubowski, Artur Pokropek
607	47.3	fese	Austin Nichols
608	47.3	mvfiles	Lars Angquist
609	47.3	num2words	Eric Booth
610	47.3	spweightcs	Emad Abd Elmessih Shehata
611	47.0	grubbs	Nicolas Couderc
612	47.0	xbrcspline	Nicola Orsini
613	46.8	hshaz	Stephen P. Jenkins
614	46.7	cohend	David Tannenbaum
615	46.7	hireg	Paul H. Bern
616	46.7	rdcv	Boris Kaiser
617	46.7	renames	Nicholas J. Cox
618	46.6	mmsel	Sami Souabni
619	46.3		Jean-Benoit Hardouin
620	46.3	geekel2d pcorr2	Richard Williams
		-	
621 622	46.2 46.2	xriml rowsort	Patrick Royston Nicholas J. Cox
623	46.2	eba	Gregorio Impavido
624	46.0	gausshermite	Jean-Benoit Hardouin
625	46.0	0	Ben Jann
		jmpierce	
626 627	46.0	paverage	P. Wilner Jeanty
627 628	46.0	regdis	Roy Wada
628	46.0	suchowtest	Diallo Ibrahima Amadou
629	45.9	spregsemxt	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
630	45.7	listutil	Nicholas J. Cox
631	45.7	arimafit	Christopher F Baum
632	45.7	corr_svy	Nick Winter
633	45.7	tabmult	Minh Nguyen
634	45.7	twoway_parea	Sergiy Radyakin
635	45.5	hplogit	Joseph Hilbe
636	45.5	tabhbar	Nicholas J. Cox
637	45.3	grstest	Rajesh Tharyan
638	45.3	jmpierce2	Ben Jann
639	45.3	orth_out	Joe Long
640	45.3	workdays	Bill Rising

641	45.0	ctreatreg	Giovanni Cerulli
642	45.0	dftol	Ignacio López de Ullibarri
643	45.0	punaf	Roger Newson
644	45.0	xtregre2	Scott Merryman
645	45.0	xtsemipar	Vincenzo Verardi, François Libois
646	44.8	tfr2	Bruno SCHOUMAKER
647	44.8	eventstudy	Xin Xu, Xuan Zhang, Chuntao Li
648	44.7		Emad Abd Elmessih Shehata
		xtregdhp	
649	44.3	landemets	Ignacio López de Ullibarri
650	44.3	matsort	Paul Millar
651	44.3	scatter3d	Thomas Roca
652	44.3	vioplot	Nick Winter, Austin Nichols
653	44.2	hcavar	Jean-Benoit Hardouin
654	44.2	spregsem	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
655	44.0	centroid	D. H. Judson
656	44.0	cndnmb3	Michael Blasnik
657	44.0	rowranks	Nicholas J. Cox
658	43.7	ivgmm0	David M. Drukker, Christopher F Baum
659	43.7	labsumm	Thomas Steichen
660	43.7	lomackinlay	Christopher F Baum
661	43.7	oddsrisk	Joseph Hilbe
662			Derek Wolfson
	43.3	tex3pt	
663	43.0	censornb	Joseph Hilbe
664	43.0	gs2slsarxt	Emad Abd Elmessih Shehata
665	43.0	pcmodel	Jean-François Hamel
666	43.0	scdensity	Joerg Luedicke
667	43.0	ssi	Philip M Jones
668	43.0	xtab	Tony Brady
669	42.7	gammasym	Jean-Benoit Hardouin
670	42.7	meoprobit	Thomas Cornelissen
671	42.7	sensatt	Tommaso Nannicini
672	42.7	spregrext	Emad Abd Elmessih Shehata, Sahra
		. 0	Khaleel A. Mickaiel
673	42.7	svret	Julian Reif
674	42.6	rtfutil	Roger Newson
675	42.3	cipolate	Nicholas J. Cox
676	42.3	matnames	Austin Nichols
677	42.3		Nicholas J. Cox
		pairplot	
678	42.3	plotbeta	Adrian Mander
679	42.3	twfe	Nikolas Mittag
680	42.3	gformula	Rhian Daniel
681	42.0	adjacent	Nicholas J. Cox
682	42.0	devcon	Ben Jann
683	42.0	povimp	Hai-Anh H. Dang, Minh Cong Nguyen
684	42.0	treatrew	Giovanni Cerulli
685	42.0	white	Jeroen Weesie
686	41.9	modeldiag	Nicholas J. Cox
687	41.8	pisatools	Maciej Jakubowski, Artur Pokropek
688	41.7	anketest	P. Wilner Jeanty
689	41.7	chunky	David Elliott
690	41.7	fitmacro	John Hendrickx
691	41.7	smhsiao	Nick Winter
692	41.3	gologit29	Richard Williams
693	41.3		Jean-François Hamel
		pcmtest	
694	41.3	rcd	Nikos Askitas, Dan Blanchette
695	41.3	rcspline	Nicholas J. Cox
696	41.2	stmixed	Michael J. Crowther
697	41.1	tobithetm	Emad Abd Elmessih Shehata
698	41.0	dummies	Nicholas J. Cox
699	41.0	gs2sls	Emad Abd Elmessih Shehata
700	41.0	spregsdm	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
701	41.0	wtpcikr	P. Wilner Jeanty
	41.0	- I	•
702	41.0	xcollapse	Roger Newson

700	40.0		T 1 TT: 31
703	40.9	rnd	Joseph Hilbe
704	40.7	fraclogit	Daniel A. Powers
705	40.7	fren	Liu Wei
706	40.7	ineq	Nicholas J. Cox
707	40.7	mergeall	Ryan Knight
708	40.7	mgen	Ben Jann
709	40.7	stkerhaz	Enzo Coviello
710	40.5	clogithet	Arne Risa Hole
711	40.5	triprobit	Antoine Terracol
712	40.3	corsp	Daniel Klein
713	40.3	ipfweight	Michael Bergmann
714	40.3	plausexog	Damian Clarke
715	40.3	stlda	Ignacio López de Ullibarri
716	40.3	xtregfem	Emad Abd Elmessih Shehata
717	40.2	wdireshape	P. Wilner Jeanty
718	40.0	checkrob	Mikkel Barslund
719	40.0	metaprop	Marc Arbyn, Marc Aerts, Victoria
110	10.0	mcouprop	Nyawira Nyaga
720	40.0	mm_regress	Christophe Croux, Vincenzo Verardi
721	39.7	mpovline	Joao Pedro Azevedo, Viviane Sanfelice
722	39.7	-	Xuan Zhang, Chuntao Li, Dongliang Cui
		psemail	
723	39.5	spmstardhxt	Emad Abd Elmessih Shehata, Sahra
704	20. 2		Khaleel A. Mickaiel
724	39.3	qic	James Cui
725	39.3	quine	Matthew Baker
726	39.3	spcs2xt	Emad Abd Elmessih Shehata
727	39.3	spregsacxt	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
728	39.3	_gprod	Philip Ryan
729	39.2	dpplot	Nicholas J. Cox
730	39.0	dyads	John-Paul Ferguson
731	39.0	lookfor_all	Dan Blanchette, Michael Lokshin, Zurab
700	20. 7	1. (1.)	Sajaia
732	38.7	bihist	Austin Nichols
733	38.7	gs3sls	Emad Abd Elmessih Shehata
734			Emily Oster
	38.7	psacalc	•
735	38.7	sortl	Dirk Enzmann
735 736	38.7 38.7	-	Dirk Enzmann Emad Abd Elmessih Shehata
735 736 737	38.7 38.7 38.5	sortl	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx
735 736	38.7 38.7	sortl spglsxt	Dirk Enzmann Emad Abd Elmessih Shehata
735 736 737	38.7 38.7 38.5	sortl spglsxt isco	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx
735 736 737 738	38.7 38.7 38.5 38.5	sortl spglsxt isco concindex	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo
735 736 737 738 739	38.7 38.7 38.5 38.5 38.3	sortl spglsxt isco concindex beamplot	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox
735 736 737 738 739 740	38.7 38.7 38.5 38.5 38.3	sortl spglsxt isco concindex beamplot gologit	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu
735 736 737 738 739 740 741	38.7 38.7 38.5 38.5 38.3 38.3	sortl spglsxt isco concindex beamplot gologit reformat	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady
735 736 737 738 739 740 741 742	38.7 38.7 38.5 38.5 38.3 38.3 38.3	sortl spglsxt isco concindex beamplot gologit reformat statplot	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth
735 736 737 738 739 740 741 742 743	38.7 38.5 38.5 38.3 38.3 38.3 38.3 38.3	sort1 spglsxt isco concindex beamplot gologit reformat statplot checkreg3	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum
735 736 737 738 739 740 741 742 743	38.7 38.5 38.5 38.3 38.3 38.3 38.3 38.0 38.0	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox
735 736 737 738 739 740 741 742 743 744 745	38.7 38.5 38.5 38.3 38.3 38.3 38.3 38.0 38.0	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols
735 736 737 738 739 740 741 742 743 744 745 746 747	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes
735 736 737 738 739 740 741 742 743 744 745 746	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0	sort1 spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist fastcd	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising Nick Winter
735 736 737 738 739 740 741 742 743 744 745 746 747 748 750 751 752 753 754 755	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.7 37.7	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist fastcd fastxtile	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising Nick Winter Michael Stepner
735 736 737 738 739 740 741 742 743 744 745 746 747 748 750 751 752 753 754 755 756	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.7 37.7 37.7	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist fastcd fastxtile funnelcompar	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising Nick Winter Michael Stepner Sylvia Forni, Rosa Gini
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.7 37.7 37.7 37.7	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist fastcd fastxtile funnelcompar rhausman	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising Nick Winter Michael Stepner Sylvia Forni, Rosa Gini Boris Kaiser
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757	38.7 38.7 38.5 38.5 38.3 38.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.7 37.7 37.7 37.7 37.7	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist fastcd fastxtile funnelcompar rhausman rocmic	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising Nick Winter Michael Stepner Sylvia Forni, Rosa Gini Boris Kaiser Robert Froud
735 736 737 738 739 740 741 742 743 744 745 746 747 748 750 751 752 753 754 755 756 757 758 759	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.7 37.7 37.7 37.7 37.7	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist fastcd fastxtile funnelcompar rhausman rocmic xpredict	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising Nick Winter Michael Stepner Sylvia Forni, Rosa Gini Boris Kaiser Robert Froud Patrick Royston
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.7 37.7 37.7 37.7 37.7 37.7	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist fastcd fastxtile funnelcompar rhausman rocmic xpredict xtregsam	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising Nick Winter Michael Stepner Sylvia Forni, Rosa Gini Boris Kaiser Robert Froud Patrick Royston Emad Abd Elmessih Shehata
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 756 757 758 759 760 761	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist fastcd fastxtile funnelcompar rhausman rocmic xpredict xtregsam segregation	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising Nick Winter Michael Stepner Sylvia Forni, Rosa Gini Boris Kaiser Robert Froud Patrick Royston Emad Abd Elmessih Shehata Carlos Gradin
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760	38.7 38.7 38.5 38.5 38.3 38.3 38.3 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.7 37.7 37.7 37.7 37.7 37.7	sortl spglsxt isco concindex beamplot gologit reformat statplot checkreg3 corrtable hmap keyplot mvport powercal readreplace spwmatfill tabcount mycd10 sphdist fastcd fastxtile funnelcompar rhausman rocmic xpredict xtregsam	Dirk Enzmann Emad Abd Elmessih Shehata John Hendrickx Amadou Bassirou Diallo Nicholas J. Cox Vincent Kang Fu Tony Brady Nicholas J. Cox, Eric Booth Christopher F Baum Nicholas J. Cox Austin Nichols Nicholas J. Cox Alberto Dorantes Roger Newson Matthew White, Ryan Knight P. Wilner Jeanty Nicholas J. Cox Joe Canner Bill Rising Nick Winter Michael Stepner Sylvia Forni, Rosa Gini Boris Kaiser Robert Froud Patrick Royston Emad Abd Elmessih Shehata

704	07.0		7 77
764	37.3	dpredict	J. Katriak
765	37.3	emh	Joseph Coveney
766	37.3	hplot	Nicholas J. Cox
767	37.3	xtnptimevar	Diallo Ibrahima Amadou
768	37.2	confa	Stanislav Kolenikov
769	37.0	autorename	Julian Reif
770	37.0	detect	Jean-Benoit Hardouin
771	37.0	krls	Chad Hazlett, Jens Hainmueller, Jeremy Ferwerda
772	37.0	sf36v2	Monica Daigl
773	37.0	traveltime	Adam Ozimek, Daniel Miles
774	37.0	xtcsi	Maximo Sangiacomo
775	36.7	adjmean	Joanne M. Garrett
776	36.7	cochran	Ben Jann
777	36.7	difwithpar	Laura Gibbons
778	36.7	find	Austin Nichols
779	36.7	frontier_teci	Scott Merryman
780	36.7	glcurve7	Philippe Van Kerm, Stephen P. Jenkins
781	36.7	leebounds	Harald Tauchmann
782	36.7	rollstat	Maximo Sangiacomo, Demian Panigo
783	36.3	gs2slsxt	Emad Abd Elmessih Shehata
784	36.3	lmhwaldxt	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
785	36.3	soepuse	Ulrich Kohler
786	36.3	spsurv	Stephen P. Jenkins
787	36.2	stjm	Michael J. Crowther
788	36.0	dsconcat	Roger Newson
789	36.0	lmnad	Emad Abd Elmessih Shehata, Sahra
103	30.0	Illinau	Khaleel A. Mickaiel
790	36.0	loocv	Manuel Barron
791	36.0	mcmclinear	Sam Schulhofer-Wohl
791 792	36.0	mcmclinear	Jose Maria Sanchez Saez
793	36.0	mlogitroc	Leif E. Peterson
794	36.0	-	Adrian Mander
795		overlay	
	35.7	epiweek	Tim Chu
796	35.7	evhistplot	Henrik Stovring
797	35.7	jarowinkler	James Feigenbaum
798	35.5	intext	Roger Newson
799	35.3	iop	Isidro Soloaga, Florian Chavez Juarez
800	35.3	more_clarify	Javier Marquez Pena
801	35.3	rwg	Muhammad Rashid Ansari
802	35.0	cid	Patrick Royston
803	35.0	ivreg210	Steven Stillman, Mark E Schaffer,
			Christopher F Baum
804	34.9	dirtools	Roy Wada, Ulrich Kohler
805	34.8	sptobitsac	Sahra Khaleel A. Mickaiel, Emad Abd
			Elmessih Shehata
806	34.7	codebookout	Kishor K. Das
807	34.7	histbox	Philip B. Ender
808	34.7	integrate	Adrian Mander
809	34.7	ldecomp	Maarten L. Buis
810	34.7	paran	Alexis Dinno
811	34.5	CA	Mehmet Mehmetoglu
812	34.4	cluster	D. H. Judson
813	34.3	distrate	Enzo Coviello
814	34.3	gdecomp	Tamas Bartus
815	34.3	hansen2	Nicholas J. Cox
816	34.3	ipdforest	Evangelos Kontopantelis, David Reeves
817	34.3	metagen	Pantelis Bagos
818	34.3	tddens	Austin Nichols
819	34.3	trimmean	Nicholas J. Cox
820	34.3	xtregam	Emad Abd Elmessih Shehata
821	34.0	bme	Daniel A. Powers, Paul T. von Hippel
822	34.0	calibrate	John D'Souza
823	34.0	dmout	Michael Barker

824	34.0	lincheck	Alex Gamma
825	34.0	lmnadxt	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
826	34.0	log2html	Christopher F Baum, Bill Rising, Nicholas J. Cox
827	34.0	spxttobit	Emad Abd Elmessih Shehata
828	34.0	vmatch	Guy D. van Melle
829	33.8	spregsac	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
830	33.8	mtreatreg	Partha Deb
831	33.7	zoib	Maarten L. Buis
832	33.7	anogi	Ben Jann
833	33.7	expandby	Nicholas J. Cox
834	33.7	expgen	Roger Newson
835	33.7	meta_lr	Aijing Shang
836	33.7	mktab	Nick Winter
837	33.6	runmplus	Rich Jones
838	33.6	xtreghet	Emad Abd Elmessih Shehata
839	33.3	bsopm	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
840	33.3	lmcovreg3	Emad Abd Elmessih Shehata
841	33.3	powersim	Joerg Luedicke
842	33.3	xgroup	Roger Newson
843	33.2	usagelog	Dan Blanchette
844	33.1	fodstr	William Gould
845	33.0	crossplot	Nicholas J. Cox
846	33.0	des2	Daniel Klein
847	33.0	lmhwald	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
848	33.0	oaxaca9	Ben Jann
849	33.0	regcoef	Mehmet Mehmetoglu
850	33.0	sskapp	Jan Brogger
851	33.0	xtregwhm	Emad Abd Elmessih Shehata
852	32.8	hlm	Sean F. Reardon
853	32.7	fvregen	Roger Newson
854	32.7	misum	Daniel Klein
855	32.7	outfix	Gero Lipsmeier
856	32.7	panels	Ben Jann
857	32.7	prepar	Laura Gibbons
858	32.7	quickicc	Eric C. Hedberg
859	32.7	spgmm	Emad Abd Elmessih Shehata
860	32.7	xtidt	Emad Abd Elmessih Shehata
861	32.7	xtpatternvar	Nicholas J. Cox
862	32.5	goelevation	Chamara Anuranga, J.V. Jayanthan
863	32.5	kalpha	Daniel Klein
864	32.5	triplot	Nicholas J. Cox
865	32.4	spmstarxt	Emad Abd Elmessih Shehata
866	32.3	diagreg2	Emad Abd Elmessih Shehata
867	32.3	fdta	Liu Wei
868	32.3	graphbinary	Adrian Mander
869	32.3	imvol	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
870	32.3	nopomatch	Nopo, Hugo, Hoyos, Alejandro, Atal, Juan Pablo
871	32.3	project	Robert Picard
872	32.3	robjb	Catherine Vermandele, Vincenzo Verardi, Wouter Gelade
873	32.3	shapley	Stanislav Kolenikov
874	32.3	theilr2	Emad Abd Elmessih Shehata
875	32.3	xtarsim	Giovanni S.F. Bruno
876	32.2	panelunit	Christopher F Baum
877	32.1	hapipf	Adrian Mander
878	32.0	distmatch	Roy Wada
879	32.0	gengroup	Jean-Benoit Hardouin
880	32.0	geocodeopen	Michael L. Anderson

881	32.0	gvselect	Simon Sheather, Charles Lindsey
882	32.0	gzsave	Henrik Stovring
883	32.0	lmasem	Emad Abd Elmessih Shehata
884	32.0	reset2	Emad Abd Elmessih Shehata
885	32.0	sptobitsar	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
886	32.0	tsgraph	Christopher F Baum, Nicholas J. Cox
887	32.0	writekml	Gabi Huiber
888	31.8	matrixof	Nicholas J. Cox
889	31.7	iccconf	Paul F. Visintainer
890	31.7	lmareg3	Emad Abd Elmessih Shehata
891	31.7	maketex	Antoine Terracol
892	31.7	randomtag	Robert Picard
893	31.7	sampsi_reg	Adrian Mander
894	31.6	dirifit	Nicholas J. Cox, Maarten L. Buis, Stephen P. Jenkins
895	31.3	bicdrop1	Paul Millar
896	31.3	colelms	Zhiqiang Wang, Mark S Pearce
897	31.3	fsx	Gabriel Rossman, Nicholas J. Cox
898	31.3	\mathtt{gmap}	Thomas Roca
899	31.3	keepvar	P. Wilner Jeanty
900	31.3	lmavonxt	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
901	31.3	pwcorr2	Christopher F Baum
		-	-
902	31.3	robumeta	Eric C. Hedberg
903	31.3	scls	J.M.C. Santos Silva
904	31.3	scores	Dirk Enzmann
905	31.3	sf36	Philip Ryan
906	31.3	smcl2do	Bill Rising
907	31.3	sptobitsem	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
908	31.2	grcompare	Jun Xu
909	31.2	spmstardxt	Emad Abd Elmessih Shehata, Sahra
303	31.2	spinstaruxt	Khaleel A. Mickaiel
910	31.2	weibullfit	Stephen P. Jenkins, Nicholas J. Cox
911	31.0	archqq	Sune Karlsson
912	31.0	cortesti	Herve M. Caci
913	31.0	lmhreg3	Emad Abd Elmessih Shehata
914	31.0	lxpct_2	Margaret M. Weden
		-	•
915	31.0	ordplot	Nicholas J. Cox
916	31.0	sparl	Nicholas J. Cox
917	31.0	spregsar	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
918	31.0	usexmlex	Sergiy Radyakin
919	31.0	xtregrem	Emad Abd Elmessih Shehata
920	30.9	poparms	Ashley Holland, David M. Drukker, Matias D. Cattaneo
921	30.9	switch oprobi	t Christian Gregory
922	30.8	stcompadj	Enzo Coviello
		1 3	
923	30.8		t6 Joseph Harkness
924	30.7	equation	Liu Wei
925	30.7	fmmlc	Joerg Luedicke
926		- IIIII - U	
320	30.7	lmnsem	Emad Abd Elmessih Shehata
927			Emad Abd Elmessih Shehata
927	30.7 30.7	lmnsem	Emad Abd Elmessih Shehata Philippe Van Kerm
927 928	30.7 30.7 30.7	lmnsem mca mcl	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx
927 928 929	30.7 30.7 30.7 30.7	lmnsem mca mcl probexog-tobe	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum
927 928 929 930	30.7 30.7 30.7 30.7 30.7	<pre>lmnsem mca mcl probexog-tobe proprcspline</pre>	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum Maarten L. Buis
927 928 929 930 931	30.7 30.7 30.7 30.7 30.7 30.7	lmnsem mca mcl probexog-tobe proprcspline runparscale	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum Maarten L. Buis Laura Gibbons
927 928 929 930 931 932	30.7 30.7 30.7 30.7 30.7 30.7 30.7	lmnsem mca mcl probexog-tobe proprcspline runparscale sls	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum Maarten L. Buis Laura Gibbons Michael Barker
927 928 929 930 931 932 933	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	lmnsem mca mcl probexog-tobe proprcspline runparscale sls svvarlbl	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum Maarten L. Buis Laura Gibbons Michael Barker Desmond E. Williams
927 928 929 930 931 932	30.7 30.7 30.7 30.7 30.7 30.7 30.7	lmnsem mca mcl probexog-tobe proprcspline runparscale sls	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum Maarten L. Buis Laura Gibbons Michael Barker
927 928 929 930 931 932 933	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	lmnsem mca mcl probexog-tobe proprcspline runparscale sls svvarlbl	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum Maarten L. Buis Laura Gibbons Michael Barker Desmond E. Williams
927 928 929 930 931 932 933 934	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	lmnsem mca mcl probexog-tobe proprcspline runparscale sls svvarlbl traces xtregbem	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum Maarten L. Buis Laura Gibbons Michael Barker Desmond E. Williams Jean-Benoit Hardouin Emad Abd Elmessih Shehata
927 928 929 930 931 932 933 934 935	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	lmnsem mca mcl probexog-tobe proprcspline runparscale sls svvarlbl traces	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum Maarten L. Buis Laura Gibbons Michael Barker Desmond E. Williams Jean-Benoit Hardouin Emad Abd Elmessih Shehata Emad Abd Elmessih Shehata, Sahra
927 928 929 930 931 932 933 934 935	30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	lmnsem mca mcl probexog-tobe proprcspline runparscale sls svvarlbl traces xtregbem	Emad Abd Elmessih Shehata Philippe Van Kerm John Hendrickx exog Christopher F Baum Maarten L. Buis Laura Gibbons Michael Barker Desmond E. Williams Jean-Benoit Hardouin Emad Abd Elmessih Shehata

000	20.0	. 11	T. CC A
938	30.3	addnotes	Jeff Arnold
939	30.3	archlm	Christopher F Baum, Vince Wiggins
940	30.3	changemean	Samuel Franco, Joao Pedro Azevedo
941	30.3	ctabstat	Nicholas J. Cox
942	30.3	d3network	Sabrina Vogel, Sebastian Pink
943	30.3	factmerg	Roger Newson
944	30.3	lmhgl	Emad Abd Elmessih Shehata
945	30.3	probitiv	Jonah B. Gelbach
946	30.3	xtregbn	Emad Abd Elmessih Shehata
947	30.2	scsomersd	Roger Newson
948	30.1	episens	Rino Bellocco, Sander Greenland, Nicola Orsini
949	30.0	ashell	Nikos Askitas
950	30.0	bayerhanck	Christoph Hanck, Christian Bayer
951	30.0	bpmedian	Roger Newson
952	30.0	centpow	Z. P. Neal
953	30.0	gs3slsar	Emad Abd Elmessih Shehata
954	30.0	historaj	
955		invcdf	Rajesh Tharyan Ben Jann
	30.0		
956	30.0	lmhlmxt	Emad Abd Elmessih Shehata
957	30.0	lmndh	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
958	30.0	lmnwhitext	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
959	30.0	ocratio	Rory Wolfe
960	30.0	pam	Emad Abd Elmessih Shehata, Sahra
		_	Khaleel A. Mickaiel
961	30.0	plssas	Adrian Mander
962	30.0	reshape8	Bill Rising
963	30.0	tabletutorial	
964	30.0	tomode	Nicholas J. Cox, Fred Wolfe
965	30.0	xtregmle	Emad Abd Elmessih Shehata
966	30.0	xtregwem	Emad Abd Elmessih Shehata
967	30.0	spautoc	Nicholas J. Cox
968	29.9	outdat	Ulrich Kohler
969	29.8	skdecomp	Bernardo Atuesta, Joao Pedro Azevedo, Andres Castaneda, Viviane Sanfelice
970	29.7	avplot3	Christopher F Baum
971	29.7	benford	Nikos Askitas
972	29.7	cctable	Peter Makary, Gilles Desve
973	29.7	ci_marg_mu	Sophia Rabe-Hesketh
974	29.7	collapse2	David Roodman
975	29.7	durbinh	Christopher F Baum, Vince Wiggins
976	29.7	hummels	Muhammad Rashid Ansari
977	29.7	lmalb	Emad Abd Elmessih Shehata
978	29.7		Adrian Mander
979	29.7	metagraph	Rense Corten
980	29.7	pajek2stata	
		reffadjust	Tom Palmer, Corrie Macdonald-Wallis
981	29.7	samplesize	Adrian Mander
982	29.7	spearman2	Christopher F Baum
983	29.7	varlocal	Viviane Sanfelice
984	29.7	xbalance	Mark Fredrickson, Jake Bowers, Ben Hansen
985	29.6	ckvar	Bill Rising
986	29.5	sptobitsarxt	Emad Abd Elmessih Shehata, Sahra
		-	Khaleel A. Mickaiel
987	29.3	adjprop	Joanne M. Garrett
988	29.3	apcd	Louis Chauvel
989	29.3	autofmt	Roy Wada
990	29.3	calibest	John D'Souza
991	29.3	gets	Damian Clarke
992	29.3	harmby	Roger Newson
993	29.3	hash	Andrew Maurer
994	29.3	lmfreg	Sahra Khaleel A. Mickaiel, Emad Abd
		•	Elmessih Shehata

995	29.3	lmhsem	Emad Abd Elmessih Shehata
996	29.3	metamiss	Julian Higgins, Ian White
997	29.3	ordvar	Mike Lacy
998	29.3	rolling2	Christopher F Baum
999	29.3	scoregof	Richard Chiburis
1000	29.3	spmstarh	Emad Abd Elmessih Shehata, Sahra
1000	23.0	БРШБССЕТТ	Khaleel A. Mickaiel
1001	29.3	sptobitsacxt	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
1002	29.2	partpred	Paul Lambert
1003	29.2	stgenreg	Paul Lambert, Michael J. Crowther
1004	29.0	circular	Nicholas J. Cox
1004	29.0		Roy Wada
		anymatch	v
1006	29.0	fracirf	Christopher F Baum
1007	29.0	ghxt	Emad Abd Elmessih Shehata
1008	29.0	group1d	Nicholas J. Cox
1009	29.0	jonter	Joseph Coveney
1010	29.0	lmabxt	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
1011	29.0	medoid	D. H. Judson
1012	29.0	mergemany	Damian Clarke
1013	29.0	mod11	George Vega Yon
1014	29.0	moreobs	Nicholas J. Cox
1015	29.0	nearest	Nicholas J. Cox
1016	29.0	nwind	Helmut Farbmacher
1017	29.0	overfit	Marcel Bilger
1018	29.0	ppschromy	Jonathan Mendelson
1019	29.0	selectvars	Nicholas J. Cox
1020	29.0	svytabs	Michael Blasnik
1021	29.0	xtine	Christine Cook
1021	28.9	dthaz	Alexis Dinno
1023	28.8	crtest	Joao Pedro Azevedo
1024	28.8	leftalign	Robert Picard
1025	28.8	mcmcstats	Sam Schulhofer-Wohl
1026	28.7	barplot2	Nicholas J. Cox
1027	28.7	intcens	Jamie Griffin
1028	28.7	labelmiss	Stanislav Kolenikov
1029	28.7	lmeg	Emad Abd Elmessih Shehata
1030	28.7	lmhhp2	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
1031	28.7	lrplot	Jan Brogger
1032	28.7	pre	Paul Millar
1033	28.7	qqvalue	Roger Newson
1034	28.7	riigen	Lars E. Kroll
1035	28.7	rmfiles	Lars Angquist
1036	28.7	sslope	Jeffrey S. Simons
1037	28.7	svybsamp2	R. E. De Hoyos
1038	28.7	swboot	Joanne M. Garrett
1039	28.7	urcovar	Christopher F Baum
1040	28.5	bking	Martha Lopez, Christopher F Baum
1041	28.5	cihplot	Nicholas J. Cox
1042	28.3	bitobit	Daniel Lawson
1043	28.3	cpcorr	Nicholas J. Cox
1044	28.3	findval	Stanislav Kolenikov
1045	28.3	lmnreg3	Emad Abd Elmessih Shehata
1045	28.3	9	Leif E. Peterson
		probcalc	
1047	28.3	rdpower	Eric C. Hedberg
1048	28.3	title	Jan Brogger
1049	28.3	turnbull	Joao Pedro Azevedo
1050	28.2	python	James Fiedler
1051	28.2	bcii	Robert Froud
1052	28.2	sptobitsemxt	Khaleel A. Mickaiel
1053	28.1	sptobitmstard	lhxt Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel

1054	28.1	sptobitsdmxt	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
1055	28.0	codebook2	Paul H. Bern
1056	28.0	dataframe	Andrew Maurer
1057	28.0	ds3	Nicholas J. Cox
1058	28.0	gnpoisson	Joseph Hilbe
1059	28.0	lmadurhxt	Emad Abd Elmessih Shehata, Sahra
1000	20.0	ImaauInio	Khaleel A. Mickaiel
1060	28.0	lmgc	Emad Abd Elmessih Shehata
1061	28.0	•	Emad Abd Elmessih Shehata
1062		lmngr	
	28.0	median	Mario Cleves
1063	28.0	rdci	Joseph Coveney
1064	28.0	varcase	John R. Gleason
1065	28.0	xtmixed_corr	Roberto G. Gutierrez
1066	27.9	spmstard	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
1067	27.8	drdecomp	Andres Castaneda, Joao Pedro Azevedo,
			Viviane Sanfelice
1068	27.7	sptobitmstarh	Emad Abd Elmessih Shehata, Sahra
		-	Khaleel A. Mickaiel
1069	27.7	alsmle	Emad Abd Elmessih Shehata
1070	27.7	butterworth	Christopher F Baum, Martha Lopez
1071	27.7	ellipticity	Catherine Vermandele, Vincenzo Verardi
1072	27.7	estrat	Jeremy Ferwerda
1073	27.7	holsti	Mona Krewel, Alexander Staudt, Julia
1073	21.1	HOISCI	
1071	07.7	1	Partheymüller
1074	27.7	levene	Herve M. Caci
1075	27.7	lmabg	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
1076	27.7	lmadurmxt	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
1077	27.7	sbri	Nicola Orsini
1078	27.7	slideplot	Nicholas J. Cox
1079	27.7	tabhplot	Nicholas J. Cox
1080	27.7	texify	Roy Wada
1081	27.7	treatoprobit	Christian Gregory
1082	27.3	addtxt	Gary Longton
1083	27.3	agrm	Alejandro Ecker
1084	27.3	classplot	Lars E. Kroll
1085	27.3	dfao	Richard Sperling
1086	27.3	dotex	Roger Newson
1087	27.3		Ben Jann
		eret2	
1088	27.3	fmiss	Florian Chavez Juarez
1089	27.3	ftrans	Liu Wei
1090	27.3	kitchensink	Francisco (Paco) Perales
1091	27.3	levpredict	Christopher F Baum
1092	27.3	listsome	Robert Picard
1093	27.3	lmabgnl	Emad Abd Elmessih Shehata, Sahra
			Khaleel A. Mickaiel
1094	27.3	lmcovsem	Emad Abd Elmessih Shehata
1095	27.3	lmhhpxt	Sahra Khaleel A. Mickaiel, Emad Abd
			Elmessih Shehata
1096	27.3	personage	Nicholas J. Cox
1097	27.3	ridge2sls	Sahra Khaleel A. Mickaiel, Emad Abd
			Elmessih Shehata
1098	27.3	sbrowni	Herve M. Caci
1099	27.3	stexpect	Enzo Coviello
1100	27.3	xglm	Roger Newson
1100		•	Emad Abd Elmessih Shehata
	27.2	logithetm	
1102	27.2	punafcc	Roger Newson Christopher F Baum
1100	07 0		
1103	27.2	staticfc	-
1104	27.1	spmstar	Emad Abd Elmessih Shehata
1104 1105	27.1 27.0	spmstar cb2html	Emad Abd Elmessih Shehata Phil Bardsley
1104 1105 1106	27.1 27.0 27.0	spmstar cb2html genhwcci	Emad Abd Elmessih Shehata Phil Bardsley James Cui
1104 1105	27.1 27.0	spmstar cb2html	Emad Abd Elmessih Shehata Phil Bardsley

1108	27.0	grfreq	Jan Brogger
1109	27.0	idonepsu	Joshua H. Sarver
1110	27.0	irr	Maximo Sangiacomo
1111	27.0	lmabg2	Emad Abd Elmessih Shehata, Sahra
		•	Khaleel A. Mickaiel
1112	27.0	lmabp2	Sahra Khaleel A. Mickaiel, Emad Abd
		1	Elmessih Shehata
1113	27.0	lmcovxt	Emad Abd Elmessih Shehata
1114	27.0	lmhhp	Emad Abd Elmessih Shehata, Sahra
		•	Khaleel A. Mickaiel
1115	27.0	lmnjbnl	Emad Abd Elmessih Shehata, Sahra
	2		Khaleel A. Mickaiel
1116	27.0	locpr	Austin Nichols
1117	27.0	mrdum	Lee E. Sieswerda
1118	27.0		Leif E. Peterson
		mulogit	Nicholas J. Cox
1119	27.0	parplot	
1120	27.0	pem	Sahra Khaleel A. Mickaiel, Emad Abd
			Elmessih Shehata
1121	27.0	pieplot	Nicholas J. Cox
1122	27.0	progres	Philippe van Kerm, Andreas Peichl
1123	27.0	recap	Matthias an der Heiden
1124	27.0	shufflevar	Gabriel Rossman
1125	26.8	psidtools	Ulrich Kohler
1126	26.8	regaxis	Roger Newson
1127	26.8	fastcollapse	Andrew Maurer
1128	26.7	eaalogit	Arne Risa Hole
1129	26.7	gs2s1sar	Emad Abd Elmessih Shehata
1130	26.7	hodgesl	Shenyang Guo
1131	26.7	ksi	Muhammad Rashid Ansari
1132	26.7	lmhcw	Sahra Khaleel A. Mickaiel, Emad Abd
4400	06.7	17	Elmessih Shehata
1133	26.7	modlpr	Vince Wiggins, Christopher F Baum
1134	26.7	polyspline	Roger Newson
1135	26.7	sampicc	Paul F. Visintainer
1136	26.7	sptobitmstarh	
			Elmessih Shehata
1137	26.7	stns	Isabelle Urmès, Michel Grzebyk
1138	26.7	stockcapit	Diallo Ibrahima Amadou
1139	26.6	cquad	Francesco Bartolucci
1140	26.5	complogit	Glenn Hoetker
1141	26.5	tobitiv	Jonah B. Gelbach
1142	26.4	sptobitmstard	dxt Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
1143	26.4	spmstardh	Sahra Khaleel A. Mickaiel, Emad Abd
1110	20.1	Бршоваган	Elmessih Shehata
1144	26.3	alphawgt	Ben Jann
1145	26.3	avg_effect	Christopher Robert
1146	26.3	betacoef	Christopher F Baum
1140	26.3	cfitzrw	<u>-</u>
			Christopher F Baum, Martha Lopez
1148	26.3	clv	Jean-Benoit Hardouin
1149	26.3	domdiag	Nicholas J. Cox
1150	26.3	emailme	Ed Gerrish
1151	26.3	er	Carlos Gradin
1152	26.3	geivars	Stephen P. Jenkins
1153	26.3	glmdeco	Boris Kaiser
1154	26.3	lmhlrxt	Emad Abd Elmessih Shehata
1155	26.3	lmndp	Emad Abd Elmessih Shehata, Sahra
	-	•	Khaleel A. Mickaiel
1156	26.3	lmnjb	Emad Abd Elmessih Shehata
1157	26.3	lmsrd	Emad Abd Elmessih Shehata
1158	26.3	png2rtf	Austin Nichols
1159	26.3	pspline	Ben Jann, Roberto G. Gutierrez
1160	26.3	raewma	Brent McSharry
1161			•
	26.3	running	Datrick Royeton Dotor Cogioni
1101	26.3	running	Patrick Royston, Peter Sasieni, Nicholas J. Cox

1162	26.3	tmpm	Alan Cook
1163	26.3	sptobitmstar	Sahra Khaleel A. Mickaiel, Emad Abd
		-	Elmessih Shehata
1164	26.1	smileplot	Roger Newson
1165	26.0	b1x2	Jonah Gelbach
1166	26.0	eperiod	Juan M. Villa
1167	26.0	genspec	Damian Clarke
1168	26.0	lmabpgxt	Emad Abd Elmessih Shehata, Sahra
		10	Khaleel A. Mickaiel
1169	26.0	lmavon	Emad Abd Elmessih Shehata
1170	26.0	mvtest	David E. Moore
1171	26.0	slist	Svend Juul, John Luke Gallup, Jens M.
	20.0	51150	Lauritsen
1172	26.0	str2d	Patrick Royston
1173	25.8	spike	Joao Pedro Azevedo
1174	25.7	desmat	John Hendrickx
1175	25.7	sptobitsdm	Emad Abd Elmessih Shehata, Sahra
1110	20.1	БРООБІОВИМ	Khaleel A. Mickaiel
1176	25.7	cal	Chamara Anuranga
1177	25.7		Fred Wolfe
1178	25.7	dmerge	Anders Alexandersson
		ellip	
1179	25.7	genass	Neil Shephard
1180	25.7	himap	Thomas Roca
1181	25.7	isopoverty	Samuel Franco, Joao Pedro Azevedo
1182	25.7	logitcprplot	
1183	25.7	r2o	Mike Lacy
1184	25.7	ralpha	Eric Booth
1185	25.7	sdtest	Bill Sribney
1186	25.7	spell	Nicholas J. Cox, Richard Goldstein
1187	25.7	splitvallabel	s Nick Winter, Ben Jann
1188	25.7	stpm2cif	Sally R. Hinchliffe, Paul Lambert
1189	25.7	studysi	Abdel G. Babiker
1190	25.7	summdate	Nicholas J. Cox
1191	25.7	tryem	Al Feiveson
1192	25.7	xcorplot	Nicholas J. Cox, Aurelio Tobias
1193	25.6	sptobitmstarx	
		1	Elmessih Shehata
1194	25.5	regpar	Roger Newson
1195	25.3	bandplot	Nicholas J. Cox
1196	25.3	bugwrite	Al Feiveson, James Fiedler
1197	25.3	expl	K. Chamara Anuranga
1198	25.3	gsreg	Pablo Gluzmann, Demian Panigo
1199	25.3		Christopher F Baum, Richard Sperling
1200	25.3	hegy4 kaputil	David Harrison
		lmadw	Emad Abd Elmessih Shehata
1201	25.3 25.3		
1202		lmngry	Emad Abd Elmessih Shehata
1203	25.3	lmnwhite	Emad Abd Elmessih Shehata
1204	25.3	lmnwhitenl	Emad Abd Elmessih Shehata, Sahra
4005	05.0		Khaleel A. Mickaiel
1205	25.3	matin4-matout	
1206		meloreg2	Emad Abd Elmessih Shehata
1207	25.3	0	
	25.3	mstore	Michael Blasnik
1208	25.3 25.3	0	Michael Blasnik Nicola Orsini
1209	25.3 25.3 25.3	mstore p2ci pwcorrw	Michael Blasnik Nicola Orsini Nicholas J. Cox
	25.3 25.3	mstore p2ci	Michael Blasnik Nicola Orsini
1209	25.3 25.3 25.3	mstore p2ci pwcorrw	Michael Blasnik Nicola Orsini Nicholas J. Cox
1209 1210	25.3 25.3 25.3 25.3	mstore p2ci pwcorrw sampsi_rho	Michael Blasnik Nicola Orsini Nicholas J. Cox Adrian Mander
1209 1210 1211	25.3 25.3 25.3 25.3 25.3	mstore p2ci pwcorrw sampsi_rho truecrypt	Michael Blasnik Nicola Orsini Nicholas J. Cox Adrian Mander Matthew White
1209 1210 1211 1212	25.3 25.3 25.3 25.3 25.3 25.3	mstore p2ci pwcorrw sampsi_rho truecrypt univstat	Michael Blasnik Nicola Orsini Nicholas J. Cox Adrian Mander Matthew White Nicholas J. Cox
1209 1210 1211 1212 1213	25.3 25.3 25.3 25.3 25.3 25.3 25.3	mstore p2ci pwcorrw sampsi_rho truecrypt univstat estparm	Michael Blasnik Nicola Orsini Nicholas J. Cox Adrian Mander Matthew White Nicholas J. Cox Roger Newson
1209 1210 1211 1212 1213 1214	25.3 25.3 25.3 25.3 25.3 25.3 25.2 25.0 25.0	mstore p2ci pwcorrw sampsi_rho truecrypt univstat estparm apch boxpanel	Michael Blasnik Nicola Orsini Nicholas J. Cox Adrian Mander Matthew White Nicholas J. Cox Roger Newson Louis Chauvel Brent McSharry
1209 1210 1211 1212 1213 1214 1215 1216	25.3 25.3 25.3 25.3 25.3 25.3 25.2 25.0 25.0 25.0	mstore p2ci pwcorrw sampsi_rho truecrypt univstat estparm apch boxpanel bugsdat	Michael Blasnik Nicola Orsini Nicholas J. Cox Adrian Mander Matthew White Nicholas J. Cox Roger Newson Louis Chauvel Brent McSharry Adrian Mander
1209 1210 1211 1212 1213 1214 1215 1216 1217	25.3 25.3 25.3 25.3 25.3 25.3 25.2 25.0 25.0 25.0	mstore p2ci pwcorrw sampsi_rho truecrypt univstat estparm apch boxpanel bugsdat cpr	Michael Blasnik Nicola Orsini Nicholas J. Cox Adrian Mander Matthew White Nicholas J. Cox Roger Newson Louis Chauvel Brent McSharry Adrian Mander Nicholas J. Cox
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218	25.3 25.3 25.3 25.3 25.3 25.3 25.2 25.0 25.0 25.0 25.0	mstore p2ci pwcorrw sampsi_rho truecrypt univstat estparm apch boxpanel bugsdat cpr diagreg	Michael Blasnik Nicola Orsini Nicholas J. Cox Adrian Mander Matthew White Nicholas J. Cox Roger Newson Louis Chauvel Brent McSharry Adrian Mander Nicholas J. Cox Emad Abd Elmessih Shehata
1209 1210 1211 1212 1213 1214 1215 1216 1217	25.3 25.3 25.3 25.3 25.3 25.3 25.2 25.0 25.0 25.0	mstore p2ci pwcorrw sampsi_rho truecrypt univstat estparm apch boxpanel bugsdat cpr	Michael Blasnik Nicola Orsini Nicholas J. Cox Adrian Mander Matthew White Nicholas J. Cox Roger Newson Louis Chauvel Brent McSharry Adrian Mander Nicholas J. Cox

1	221	25.0	gamet	Nicola Orsini, Nicola Nante, Debora
			_	Rizzuto
	222	25.0	grcomb	Alex Gamma
1	223	25.0	group_id	Robert Picard
1	224	25.0	hildasetup	Francisco (Paco) Perales
1	225	25.0	lmhcwnl	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
1	226	25.0	pathof	Michael Barker
1	227	25.0	ppssampford	Jonathan Mendelson
	228	25.0	ssizebi	Abdel G. Babiker
	229	25.0	stcstat2	Patrick Royston
				•
	230	25.0	switch	Rodrigo Martell
1	231	24.7	sptobitmstardh	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
1	232	24.7	bic	Paul Millar
1	233	24.7	birthsim	Stephen Cranney
1	234	24.7	cfby	Ryan Knight
	235	24.7	datesum	Gary Longton
	236	24.7	effects	Michael Hills
	237	24.7	egfr	Phil Clayton
	238	24.7	erepost	Ben Jann
1	239	24.7	fracdydx	Patrick Royston
1	240	24.7	hetprob	William Gould
1	241	24.7	icomp	Stanislav Kolenikov
1	242	24.7	lablist	Roger Newson
	243	24.7	lmadurh2	Sahra Khaleel A. Mickaiel, Emad Abd
	240	24.1	Imaduliiz	Elmessih Shehata
4	044	04.7	1 JO	
1.	244	24.7	lmadw2	Emad Abd Elmessih Shehata, Sahra
				Khaleel A. Mickaiel
1	245	24.7	lmhharv	Emad Abd Elmessih Shehata
1	246	24.7	predxcon	Joanne M. Garrett
1	247	24.7	rocss	Matteo Bottai, Nicola Orsini
1	248	24.5	singleb	Alejandro Lopez-Feldman
1	249	24.5	variog	Nicholas J. Cox
	250	24.3	blinding	Jiefeng Chen
	251	24.3	-	_
			bmjcip	Roger Newson
	252	24.3	contour	Adrian Mander
	253	24.3	cprplots	Ben Jann
1	254	24.3	dataplink	Daniel E. Cook
1	255	24.3	explist	Roger Newson
1	256	24.3	finddup	Fred Wolfe
1	257	24.3	hetred	Nikolaos A. Patsopoulos
	258	24.3	lmadurh	Emad Abd Elmessih Shehata
	259	24.3	lmadwnl	Emad Abd Elmessih Shehata, Sahra
1.	200	24.0	Illiadwiii	-
4	000	04.0		Khaleel A. Mickaiel
	260	24.3	onemode	Zachary Neal
	261	24.3	pchipolate	Nicholas J. Cox
1	262	24.3	valtovar	Johannes N. Blumenberg
1	263	24.2	sptobitmstard	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
1	264	24.0	adjust	Kenneth Higbee
	265	24.0	cstable	Gilles Desve, Peter Makary
	266	24.0	firstdigit	Nicholas J. Cox
			-	
	267	24.0	genstack	Gregorio Impavido
	268	24.0	gentrun	Hung-Jen Wang
	269	24.0	hbox	Nicholas J. Cox
	270	24.0	hlpedit	Daniel Klein
1	271	24.0	lmabpnl	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
1	272	24.0	lmadurmnl	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
1	273	24.0	lmaz	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
1	274	24.0	lmfreg2	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel

4075	04.0		W. 1. W
1275	24.0	log2do2	Nick Winter
1276	24.0	lrutil	Jan Brogger
1277	24.0	mehetprob	Thomas Cornelissen
1278	24.0	metaprop_one	Marc Arbyn, Marc Aerts, Victoria
1070	04.0		Nyawira Nyaga
1279	24.0	outfixt	Austin Nichols
1280 1281	24.0	predxcat	Joanne M. Garrett
1282	24.0 24.0	subsetplot valuesof	Nicholas J. Cox Ben Jann
1283	23.8	isa	Masataka Harada
1284	23.8		
1285	23.7	itsp_ado	Christopher F Baum
1286	23.7	bnormpdf dissim	Gary Longton Nicholas J. Cox
1287	23.7	ghistcum	Christopher F Baum, Nicholas J. Cox
1288	23.7	lmabp	Emad Abd Elmessih Shehata
1289	23.7	lmanlsur	Emad Abd Elmessih Shehata
1290	23.7	lmcovvar	Emad Abd Elmessih Shehata, Sahra
1230	20.1	Imcovvai	Khaleel A. Mickaiel
1291	23.7	lmhnlsur	Emad Abd Elmessih Shehata
1292	23.7	lmngryxt	Emad Abd Elmessih Shehata, Sahra
1202	2011	Imigi y n o	Khaleel A. Mickaiel
1293	23.7	lmnnlsur	Emad Abd Elmessih Shehata
1294	23.7	mdepriv	Maria Noel Pi Alperin, Philippe Van Kerm
1295	23.7	pindex	Muhammad Rashid Ansari, Chiara Mussida
1296	23.7	qap	William Simpson
1297	23.7	reorder	Nicholas J. Cox
1298	23.7	sixplot	Peter Lachenbruch
1299	23.7	sizefx	Matthew Openshaw
1300	23.7	sknor	Evangelos Kontopantelis
1301	23.7	umeta	Ben Dwamena
1302	23.4	treatoprobits	sim Christian Gregory
1303	23.3	catgraph	Nick Winter
1304	23.3	epiconf	Zhiqiang Wang
1305	23.3	ewma	Nicholas J. Cox
1306	23.3	genfreq	Nicholas J. Cox
1307	23.3	glmcorr	Nicholas J. Cox
1308	23.3	ivcheck	Anirban Basu
1309	23.3	lmavonnl	Sahra Khaleel A. Mickaiel, Emad Abd
			Elmessih Shehata
1310	23.3	lmcovnlsur	Emad Abd Elmessih Shehata
1311	23.3	lmharch	Sahra Khaleel A. Mickaiel, Emad Abd
			Elmessih Shehata
1312	23.3	lmhhpnl	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel
1313	23.3	nbstrat	Joseph Hilbe, Roberto Martinez-Espineira
1314	23.3	normtest	Herve M. Caci
1315	23.3	oglm9	Richard Williams
1316	23.3	qqplot3	Ariel Linden
1317	23.3	rasprt	Brent McSharry
1318	23.3	roblpr	Christopher F Baum, Vince Wiggins
1319 1320	23.3 23.3	skprobit smithwelch	Diallo Ibrahima Amadou Ben Jann
1321	23.3	split	Nicholas J. Cox
1322	23.3	stjmgraph	Michael J. Crowther
1323	23.3	xdatelist	Roger Newson
1324	23.3	xsampsi	Jan Brogger
1325	23.3	_gslope	Jeroen Weesie
1326	23.2	gnbstrat	Joseph Hilbe
1327	23.2	grnote	Michael Blasnik
1328	23.0	ccweight	Roger Newson
1329	23.0	crm	Adrian Mander
1330	23.0	dsearch	Ulrich Kohler
1331	23.0	eofplot	Nicholas J. Cox
1332	23.0	excelsave	Lars Angquist
1333	23.0	linkplot	Nicholas J. Cox
1334	23.0	lmalbnl	Emad Abd Elmessih Shehata, Sahra Khaleel A. Mickaiel

```
1335
         23.0
                  majority
                                Nicholas J. Cox
1336
         23.0
                  mivif
                                Daniel Klein
         23.0
1337
                 pciplot
                                Patrick Royston
1338
         23.0
                                Kevin McKinney
                 rfregk
1339
         23.0
                                Enzo Coviello, Karri Seppa, Arun Pokhrel, Paul Dickman
                  stnet
1340
         23.0
                  _gsoundex
                                Michael Blasnik
1341
         22.8
                  survsim
                                Michael J. Crowther
1342
         22.8
                                Daniel A. Powers
                  ie_rate
                                Damian Clarke
1343
         22.7
                  arrowplot
                  blist
                                Adrian Mander
1344
         22.7
         22.7
                                Thomas Steichen, Jens M. Lauritsen
1345
                  csjl
1346
         22.7
                  ftocci
                                Nicola Orsini
                 gpreset
1347
         22.7
                                Roger Newson
1348
         22.7
                  insob
                                Bas Straathof
1349
         22.7
                  labmatch
                                Austin Nichols
                                Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
         22.7
1350
                  lmalb2
1351
         22.7
                  medcouple
                                Catherine Vermandele, Vincenzo Verardi, Wouter Gelade
         22.7
1352
                  mlcoint
                                Ken Heinecke
1353
         22.7
                 oeratio
                                Brent McSharry
                                Christopher F Baum
1354
         22.7
                  orse
1355
         22.7
                                Tobias Gummer, Joss Rossmann
                  parseuas
1356
         22.7
                  richness
                                Andreas Peichl, Thilo Schaefer
                 spdir
1357
         22.7
                                Thomas Plümper, Eric Neumayer
1358
         22.5
                  bipolate
                                Joe Canner
                                Nikos Askitas
1359
         22.5
                 gzipuse
                                Ariel Linden
1360
         22.3
                  alignedpairs
1361
         22.3
                  dlist
                                Nicholas J. Cox
1362
         22.3
                  prosperity
                                Oscar Barriga Cabanillas
                  qqplot2
1363
         22.3
                                Nicholas J. Cox
1364
         22.3
                                Zachary Neal
                  scm
                                Jean-Benoit Hardouin
         22.3
1365
                  simirt
1366
         22.3
                  strdate
                                Roger Newson
1367
         22.2
                                Sean Higgins
                  ceq
                  hallt-skewt
         22.2
                                Scott Merryman, Rajesh Tharyan
1368
1369
         22.2
                  stpm2illd
                                Paul Lambert, Sally R. Hinchliffe, David A. Scott
1370
         22.2
                  testcase
                                James Fiedler
                                Sergiy Radyakin
1371
         22.2
                  use10
1372
         22.1
                 heckprob2
                                Jerzy Mycielski
1373
         22.1
                  surveybias
                                Kai Arzheimer
1374
         22.0
                  alignedranks
                                Ariel Linden
                                David Kantor
1375
         22.0
                  assertky
1376
         22.0
                  avplots4
                                Ben Jann
1377
         22.0
                  chardef
                                Roger Newson
1378
                                Phil Bardsley
         22.0
                  checkvar
1379
         22.0
                  cquantile
                                Nicholas J. Cox
                                Michael J. Crowther
1380
         22.0
                  extfunnel
1381
         22.0
                  gphudak
                                Vince Wiggins, Christopher F Baum
1382
         22.0
                  grlogit
                                Jan Brogger
         22.0
                                Roger Newson
1383
                  invcise
1384
         22.0
                  kernel
                                Florian Chavez Juarez
1385
         22.0
                  1gamma2
                                Joseph Hilbe
1386
         22.0
                  1rmatx
                                Jan Brogger
1387
         22.0
                                Matt Hurst
                  mog
1388
         22.0
                  onewplot
                                Nicholas J. Cox
1389
         22.0
                 predcalc
                                Joanne M. Garrett
                                Muhammad Rashid Ansari
1390
         22.0
                 rca
1391
         22.0
                  rctable
                                Adrien Bouguen
1392
         22.0
                  repsample
                                Evangelos Kontopantelis
1393
         22.0
                  rewrite
                                Rosa Gini
                                Paul Lambert
1394
         22.0
                  stpm2cm
1395
         22.0
                 swapval
                                Nicholas J. Cox
         22.0
1396
                  twofold
                                Cathy Welch
1397
         22.0
                  xtvc
                                Nicola Orsini, Matteo Bottai
1398
         21.9
                  dologx
                                Roger Newson
1399
         21.8
                  cpoisson
                                Joseph Hilbe
```

```
1400
         21.8
                  sortrows
                                Jeff Arnold
                 ptvtools
1401
         21.8
                                Mark Franklin, Lorenzo De Sio
                                Bill Sribney
1402
         21.7
                  canon
1403
         21.7
                  combine
                                Philip M Jones
1404
                  countmatch
                                Nicholas J. Cox
         21.7
1405
         21.7
                  {\tt cuentacot}
                                George Vega Yon
1406
         21.7
                  flower
                                Nicholas J. Cox, Thomas Steichen
1407
         21.7
                  lomodrs
                                Tairi Room, Christopher F Baum
                                Nikos Askitas
1408
         21.7
                 mail
1409
                 moments2
                                Dirk Enzmann
         21.7
1410
                  obsdiff
                                Eric Booth
         21.7
1411
         21.7
                  outfix2
                                Nicholas J. Cox
1412
         21.7
                  petpoisson
                                Alfonso Miranda
                                Tim McGuire
1413
         21.7
                 ridder
                                Carlos Gradin
1414
         21.7
                 rq
                                George Leckie
                  runmixregls
1415
         21.7
1416
         21.7
                  sepscatter
                                Nicholas J. Cox
         21.7
1417
                  sf36fr
                                Jean-Benoit Hardouin
1418
         21.7
                  sheafcoef
                                Maarten L. Buis
                                C. P. Nelson
                  strsrcs
1419
         21.7
                                Richard Ryall, Jason Ferris
1420
         21.7
                  tabxml
1421
         21.7
                  tkdensity
                                Nicholas J. Cox
1422
         21.7
                                David C. Elliott
                  tknz
1423
         21.7
                  truernd
                                Sergiy Radyakin
                                Thomas Steichen
1424
                  violin
         21.7
1425
         21.7
                                Nicholas J. Cox
                  wbull
1426
         21.4
                  ellip7
                                Anders Alexandersson
1427
         21.3
                  backrasch
                                Jean-Benoit Hardouin
1428
         21.3
                  barplot
                                Nicholas J. Cox
1429
                  cgroup
                                Roger Newson
         21.3
                  civplot
                                Nicholas J. Cox
1430
         21.3
1431
         21.3
                  dotemplate
                                Andres Castaneda
1432
         21.3
                  keeporder
                                James Feigenbaum
1433
                  lmabpxt
                                Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
         21.3
1434
         21.3
                 matamatrix
                                Timothy Mak
                                Joseph N. Luchman
                 miinc
1435
         21.3
1436
         21.3
                  npseries
                                Boris Kaiser
1437
         21.3
                  obsofint
                                Ronnie Babigumira, Maarten L. Buis
1438
         21.3
                 oprobpr
                                Nick Winter
1439
         21.3
                 palette_all
                                Adrian Mander
                  pgamma
                                Nicholas J. Cox
1440
         21.3
                  prodvars
1441
         21.3
                                Roger Newson
                  r2c
1442
         21.3
                                Joseph N. Luchman
                 rcentile
                                Roger Newson
1443
         21.3
1444
                                Phil Clayton
         21.3
                  rsort
1445
                                Marco G. Ercolani
         21.3
                  save9
                                William Gould, Antoine Terracol
1446
         21.3
                  setrngseed
1447
         21.3
                  tablepc
                                Nicholas J. Cox
1448
                                Ben Jann
         21.3
                  wgttest
1449
         21.2
                  gb2lfit
                                Stephen P. Jenkins
                  alignedsets
                                Ariel Linden
1450
         21.0
1451
         21.0
                  alignmicro
                                Jinjing Li
1452
         21.0
                  bynote
                                Roger Newson
                  casefat
                                Azra Ghani, Jamie Griffin
1453
         21.0
1454
         21.0
                  cleanlog
                                Lee E. Sieswerda
                                Nicholas J. Cox
1455
         21.0
                  cpyxplot
1456
         21.0
                  cureregr
                                Allen Buxton
                                J.M.C. Santos Silva
1457
         21.0
                  flex
1458
         21.0
                  fprank
                                Mamoun BenMamoun
                                Joseph Hilbe
1459
         21.0
                  glgamma2
                  grouplabs
                                Sergiy Radyakin
1460
         21.0
                                Gregorio Impavido
1461
         21.0
                  gwhet
1462
         21.0
                  hdquantile
                                Nicholas J. Cox
1463
         21.0
                  katego
                                Andres L Gonzalez Rangel
                  labelsof
1464
         21.0
                                Ben Jann
```

```
1465
         21.0
                  longplot
                                Zhiqiang Wang, Nicholas J. Cox
                  missingplot
1466
         21.0
                                Nicholas J. Cox
1467
                                Carlos Gradin
         21.0
                  povtime
1468
         21.0
                                Nicholas J. Cox, Maarten L. Buis
                  genv
                  raschcvt
1469
         21.0
                                Fred Wolfe
1470
         21.0
                  regpred
                                Joanne M. Garrett
1471
         21.0
                  sampsi_fleming Adrian Mander
                  textbarplot
1472
         21.0
                                Nicholas J. Cox
1473
         21.0
                  trellis
                                Adrian Mander
                                Aurelio Tobias
1474
         21.0
                  tsplot
1475
                                Aliaksandr Amialchuk
         21.0
                 ueve
1476
         20.9
                  ellip6
                                Anders Alexandersson
1477
         20.9
                  spellutil
                                Edwin Leuven
1478
         20.8
                  cnbreg
                                Joseph Hilbe
                                Austin Nichols
1479
         20.8
                 gbgfit
                                Ulrich Kohler
1480
         20.8
                 mkdat.
1481
         20.7
                  airnet
                                Zachary Neal
         20.7
1482
                                Sophia Rabe-Hesketh
                  cme
1483
         20.7
                  cnsrsig
                                Christopher F Baum, Vince Wiggins
1484
                  dummies2
                                Daniel Klein
         20.7
1485
         20.7
                  elife
                                Liu Wei
1486
         20.7
                  gconc
                                Zurab Sajaia, Stanislav Kolenikov
1487
         20.7
                                Nicola Orsini, Matteo Bottai
                  grby
1488
         20.7
                  hoishapley
                                Alejandro Hoyos Suarez
                                Seth Lirette
1489
         20.7
                  hue
1490
         20.7
                                Stanislav Kolenikov
                  kdmany
1491
         20.7
                  listmiss
                                Paul Millar
1492
         20.7
                  lmadurm
                                Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
1493
         20.7
                  longshape
                                Nicholas J. Cox
1494
                  lookfor_val
                                Daniel Klein
         20.7
         20.7
1495
                  mmsrm
                                Jean-Benoit Hardouin
1496
         20.7
                  mol
                                Joao Pedro Azevedo
1497
         20.7
                  multibar
                                Fred Wolfe
         20.7
                                Sune Karlsson
1498
                 newsimpact
1499
         20.7
                                Ari Friedman
                  openall
                                Bill Sribney
1500
         20.7
                 orthog
1501
         20.7
                  pdplot
                                Nicholas J. Cox
1502
         20.7
                 pwmc
                                Daniel Klein
1503
         20.7
                  setpoisson
                                Alfonso Miranda
1504
                                Mark Lunt
         20.7
                  soreg
1505
         20.7
                  stata2pajek
                                Gabriel Rossman
1506
         20.7
                  summout
                                Andres L Gonzalez Rangel
1507
         20.7
                  tomata
                                William Gould
         20.7
                                Nicola Orsini, Matteo Bottai
1508
                  unitab
1509
                  vallab
                                Nicholas J. Cox
         20.7
                                Joseph Coveney
1510
                  vanelteren
         20.7
1511
         20.5
                  cisd
                                Morten Frydenberg, Svend Juul
1512
         20.5
                  electool
                                Antonio M. Jaime-Castillo
                                Joseph Hilbe
1513
         20.5
                  ivglog
1514
         20.5
                                Jonathan Bartlett
                 pvw
                  affiliationexposure Kayo Fujimoto
1515
         20.3
1516
         20.3
                  avplot2
                                Nicholas J. Cox
1517
         20.3
                  bpass
                                Eduard Pelz
                                Nicholas J. Cox
1518
         20.3
                  cibplot
1519
         20.3
                  factext
                                Roger Newson
                  fieller
1520
         20.3
                                Joseph Coveney
1521
         20.3
                 hl
                                Catherine Vermandele, Vincenzo Verardi, Wouter Gelade
1522
         20.3
                  lrchg
                                Jan Brogger
1523
         20.3
                  mbsens
                                Eric Overby, Hemang C Subramanian
                                Nicholas J. Cox
1524
         20.3
                 mypkg
1525
         20.3
                  tabcond
                                Nicholas J. Cox
1526
         20.3
                  unemp
                                Carlos Gradin
1527
         20.3
                  xb2pi
                                Nicola Orsini
1528
         20.3
                  zinb
                                Jesper Sorensen
1529
         20.3
                  lmoments
                                Nicholas J. Cox
```

```
1530
         20.2
                  r2_mz
                                Dirk Enzmann
                 pweibull
1531
         20.2
                                Nicholas J. Cox
1532
         20.2
                                Roger Newson
                  xrewide
1533
         20.1
                  dagumfit
                                Stephen P. Jenkins
                  addinby
                                Roger Newson
1534
         20.0
1535
         20.0
                  ccmpre
                                Mike Lacy
1536
         20.0
                  chiplot
                                Thomas Steichen
1537
         20.0
                  ciform
                                Roger Newson
                                Nicholas J. Cox
1538
         20.0
                  diptest
1539
                                Roger Newson
         20.0
                  dolog
1540
                                William Buchanan
         20.0
                  email
1541
         20.0
                  {\tt fndmtch}
                                Desmond E. Williams, Nicholas J. Cox
1542
         20.0
                  gevfit
                                David Roodman, Scott Merryman
                                John Carlin
1543
         20.0
                 gmci
                 melt
                                Johannes N. Blumenberg
1544
         20.0
                                Maarten L. Buis
1545
         20.0
                 pcorrmat
1546
         20.0
                  povguide
                                David Kantor
1547
         20.0
                                Fred Wolfe
                  pwcorrs
                                Ben Dwamena
1548
         20.0
                  quadas
1549
                  recast2
                                Fred Wolfe
         20.0
         20.0
                                David T. Robinson, Dan Blanchette
1550
                  rii
1551
         20.0
                  skewplot
                                Nicholas J. Cox
1552
         20.0
                  tihtest
                                Federico Belotti
1553
         20.0
                  tpvar
                                Nicholas J. Cox
1554
                  adjksm
                                Isaias H. Salgado-Ugarte, Makoto Shimizu
         19.9
         19.8
1555
                                Nicholas J. Cox
                  ciw
1556
         19.8
                  sproper
                                Austin Nichols
1557
         19.8
                  contrast
                                Patrick Royston
1558
         19.7
                  acplot
                                Nicholas J. Cox
                                Jens M. Lauritsen
1559
         19.7
                  cflpois
1560
         19.7
                                Austin Nichols
                  dagfit
1561
         19.7
                  doubmass
                                Nicholas J. Cox
1562
         19.7
                  mi_twoway
                                Jean-François Hamel
1563
         19.7
                  nnipolate
                                Nicholas J. Cox
1564
         19.7
                  raschpower
                                Myriam Blanchin, Jean-Benoit Hardouin
                                John Hendrickx
1565
         19.7
                 rc2
1566
         19.7
                  rtmci
                                Ariel Linden
1567
         19.7
                  sreweight
                                Daniele Pacifico
1568
         19.7
                  starjas
                                Enzo Coviello
1569
         19.7
                  summvl
                                Jeroen Weesie
1570
         19.6
                                David M. Drukker
                 mqgamma
                                Nicholas J. Cox, Stephen P. Jenkins
1571
         19.5
                  {\tt invgammafit}
1572
         19.4
                  cvxhull
                                R. Allan Reese
                  bsens
                                Hemang C Subramanian, Eric Overby
1573
         19.3
1574
         19.3
                                Jeroen Weesie
                  bvs
                  dta2ddi
1575
         19.3
                                Minh Cong Nguyen
1576
         19.3
                  gsum
                                Eric C. Hedberg
1577
         19.3
                  irscharities
                                Billy Buchanan
1578
         19.3
                                Christian Gregory
                  margintegrate
1579
         19.3
                 metatrend
                                Pantelis Bagos
                                David E. Moore
1580
         19.3
                 mvsamp1i
1581
         19.3
                  pairdata
                                Richard J Williamson
1582
         19.3
                  paragr
                                Roy Wada
                                Jean Ries
1583
         19.3
                  seldum
1584
         19.3
                  spseudor2
                                P. Wilner Jeanty
1585
                                Ariel Linden
         19.3
                  svysampsi
1586
         19.3
                  wridit
                                Roger Newson
1587
         19.3
                  writepsfrag
                                Rvan Kessler
1588
         19.3
                  zmap
                                Nicholas J. Cox
1589
         19.2
                                Thomas Steichen
                  nct
1590
         19.2
                  stjm11
                                Michael J. Crowther
                                Maarten L. Buis
1591
         19.2
                  asl_norm
1592
         19.2
                  hglogit
                                Joseph Hilbe
1593
         19.2
                  ivgauss2
                                Joseph Hilbe
                  smvcir
1594
         19.2
                                Charles Lindsey
```

```
1595
         19.1
                  rfl
                                 Dankwart Plattner
                  backup
1596
         19.0
                                 Andres Castaneda
1597
         19.0
                  cns
                                 Matthew Openshaw
1598
         19.0
                  confall
                                Zhiqiang Wang
                                 Vince Wiggins
1599
         19.0
                  grand2
1600
         19.0
                  hist3
                                Ulrich Kohler, Steffen Kuehnel
                                 Roger Newson
1601
         19.0
                  inccat
1602
         19.0
                  kwstat
                                 Florian Chavez Juarez
1603
         19.0
                  logpred
                                 Joanne M. Garrett
                                 Nicholas J. Cox
1604
         19.0
                  mdensity
                                Hong Il Yoo
1605
         19.0
                  pagetrend
1606
         19.0
                  stmix
                                Paul Lambert, Michael J. Crowther
1607
         19.0
                  sunflower
                                 W. Dale Plummer Jr., William D. Dupont
                                 Joel Middleton, John Ternovski
1608
         19.0
                  xvalols
1609
         18.8
                  cprplot2
                                 Ben Jann
                                Andrew Maurer
1610
         18.8
                  fastsample
1611
         18.8
                  hnbclg
                                 Joseph Hilbe
1612
         18.8
                                 Roger Newson
                  margprev
1613
         18.8
                  gsa
                                 Masataka Harada
                  blogit2
                                 Nicholas J. Cox
1614
         18.7
         18.7
                                Nicholas J. Cox
1615
                  chaos
1616
         18.7
                  conddens
                                 Nikolas Mittag
                  {\tt confnd}
1617
         18.7
                                 Zhiqiang Wang
         18.7
1618
                  couliari
                                 Jorge Eduardo Perez Perez
1619
         18.7
                  creplace
                                 Roger Newson
         18.7
                                 Nicholas J. Cox
1620
                  devnplot
1621
         18.7
                  frcount
                                 Minh Cong Nguyen, Hoa Bao Nguyen
1622
         18.7
                  gen_tail
                                 David Kantor
         18.7
                  hcnbreg
1623
                                 Joseph Hilbe
                                 Jean-Benoit Hardouin
1624
         18.7
                  imputemok
         18.7
                                 John C. Galati, John B. Carlin
1625
                  inorm
1626
         18.7
                  keyby
                                 Roger Newson
1627
         18.7
                  labsort
                                Ross Odell
         18.7
                                Adrian Sayers
1628
                  nysiis
1629
                                 Neal Caren
         18.7
                  nvtimes
1630
         18.7
                                Maximo Sangiacomo
                  pvvar
1631
         18.7
                  qn
                                 Catherine Vermandele, Wouter Gelade, Vincenzo Verardi
1632
         18.7
                  recode2
                                 John Hendrickx
1633
         18.7
                  renfiles
                                 Lars Angquist
1634
                  saveresults
                                Ben Jann
         18.7
1635
         18.7
                                Maarten I. Buis
                  simpplot
1636
         18.7
                  spechist
                                 Alfonso Sanchez-Penalver
1637
         18.7
                                 Nicholas J. Cox
                  sqr
         18.7
                  stsurvdiff
                                Patrick Royston
1638
1639
                                Philippe Van Kerm
         18.7
                  wdiscrim
1640
         18.7
                                Minh Cong Nguyen
                  xtmis
1641
         18.7
                  ztnbp
                                 Helmut Farbmacher
1642
         18.6
                  efetch_tools
                                Daniel E. Cook
         18.6
                                 Maarten L. Buis
1643
                  propensing
1644
         18.5
                  geneigen
                                 Christopher F Baum
                  givgauss2
1645
         18.5
                                 Joseph Hilbe
1646
         18.4
                  lcmc
                                 Alfonso Miranda, Sophia Rabe-Hesketh
1647
         18.4
                                 Aspen Chen
         18.3
                  autolog
                                 Ian Watson
1648
1649
         18.3
                  cddens
                                Nikolas Mittag
1650
         18.3
                  clstop_lbt
                                Dirk Enzmann
1651
         18.3
                  eclpci
                                 Nicola Orsini
1652
         18.3
                  fitint
                                Neville Verlander, André Charlett
1653
         18.3
                  ifin
                                 Ari Friedman
1654
         18.3
                  marglmean
                                 Roger Newson
1655
         18.3
                                 Bill Sribney
                  {\tt mlogpred}
1656
                                 Frederike Maria-Sophie Barthel, Patrick Royston, Daniel Bratton, Babak Chood
         18.3
                  nstage
1657
         18.3
                  pascal
                                 Amadou Bassirou Diallo
1658
         18.3
                                 Joseph Hilbe
                  poisml
1659
         18.3
                  ppplot
                                 Nicholas J. Cox
```

```
1660
         18.3
                  regen
                                Daniel Klein
1661
         18.3
                  relrank
                                Ben Jann
1662
         18.3
                                Enzo Coviello
                  stquant
1663
         18.3
                  stsurvimpute
                                Patrick Royston
                                Malte Hoffmann
1664
         18.3
                  surloads
1665
         18.3
                  usd
                                Nikos Askitas
1666
         18.3
                  varlabdef
                                Roger Newson
1667
         18.3
                  xtmod
                                Daniel Seifert
                                Jesper Sorensen
1668
         18.3
                  zip
1669
                  gumbelfit
                                Nicholas J. Cox, Stephen P. Jenkins
         18.3
1670
                                Paulo Guimaraes
         18.2
                  groupcl
1671
         18.2
                  pbreg
                                Adrian Sayers
1672
         18.2
                  cpoissone
                                Joseph Hilbe
                                Ben Jann
1673
         18.2
                 marktouse
                                Eric Zbinden
1674
         18.2
                  zb_qrm
1675
                                Ulrich Kohler
         18.0
                  biplot
1676
         18.0
                  bystore
                                David Harrison
1677
         18.0
                                Monica Daigl
                  dash
1678
         18.0
                  digits
                                Richard J. Atkins
                                Adrian Mander
1679
         18.0
                  gipf
1680
         18.0
                                Rodrigo Martell
                  git
1681
         18.0
                  group_twoway
                                Aguinaldo Nogueira Maciente, Lucas Ferreira Mation
1682
         18.0
                                Nicholas J. Cox
                  istdize
1683
         18.0
                                Mario Cleves
1684
                  nstagebin
                                Daniel Bratton
         18.0
1685
         18.0
                  outseries
                                Christopher F Baum
1686
         18.0
                  prolist
                                Chamara Anuranga
                  qweibull
1687
         18.0
                                Nicholas J. Cox
1688
         18.0
                 regresby
                                Nicholas J. Cox
1689
                                Mark Chatfield
         18.0
                  skilmack
                                Eric Neumayer, Thomas Plümper
1690
         18.0
                  spundir
1691
         18.0
                  strgen
                                Nicholas J. Cox
1692
         18.0
                                Michael Stepner
                  vam
1693
         17.9
                  invgaussfit
                                Nicholas J. Cox, Stephen P. Jenkins
1694
         17.9
                  rrlogit
                                Ben Jann
         17.8
                                Joseph Hilbe, Dean Judson
1695
                  cenpois
1696
         17.8
                  collapseunique David Kantor
1697
         17.8
                  zicen
                                Marcelo Coca Perraillon
1698
         17.8
                  charutil
                                Nicholas J. Cox
1699
         17.7
                  cdreg
                                Nikolas Mittag
         17.7
1700
                                Adrian Mander
                  clump
1701
         17.7
                  codci
                                Mamoun BenMamoun
1702
         17.7
                  deci
                                Liu Wei
1703
         17.7
                  ebrowse
                                Markus H. Hahn
1704
                  effcon
                                Al Feiveson
         17.7
                 hlp2winpdf
                                P. Wilner Jeanty
1705
         17.7
                                Joseph Hilbe
1706
         17.7
                  hnbreg1
1707
         17.7
                  intterms
                                Vince Wiggins
1708
         17.7
                  kdbox
                                Philip B. Ender
1709
         17.7
                  labgen
                                Nicholas J. Cox
1710
         17.7
                                Nathaniel Beck
                  leanout
1711
         17.7
                  minap
                                Stephen Soldz
1712
         17.7
                  mrprobit
                                Nikolas Mittag
1713
         17.7
                                Nicholas J. Cox
                 msplot
1714
         17.7
                 npinfo
                                Sabrina Vogel, Sebastian Pink
                 parmhet
                                Roger Newson
1715
         17.7
1716
         17.7
                 parmparse
                                Roger Newson
1717
         17.7
                  payper
                                Maximo Sangiacomo
1718
         17.7
                  rct_minim
                                Philip Ryan
1719
         17.7
                                Roger Newson
                 rglm
1720
         17.7
                  stcstat
                                William Gould
                  svypxcat
1721
         17.7
                                Joanne M. Garrett
1722
         17.7
                  tabone
                                Roy Wada
1723
         17.7
                  tex2col
                                Santiago Garriga
1724
         17.7
                  whotdeck
                                Adrian Mander
```

```
Daniel C. Schneider
1725
         17.5
                  copycode
1726
         17.3
                                 Louis Chauvel
                  abg
1727
         17.3
                                 Paul Walsh, Carl Mitchell
                  bronch
1728
         17.3
                  cbarplot
                                 Nicholas J. Cox
                                Daniel Klein
1729
                  chm
         17.3
1730
         17.3
                  clustpop
                                Paul Millar
                  confsvy
1731
         17.3
                                 Zhiqiang Wang
                                 Bill Sribney
1732
         17.3
                  datmat
         17.3
                                 Jean-Benoit Hardouin
1733
                  delta
                  diffpi
                                 Nicola Orsini
1734
         17.3
1735
         17.3
                  doub2flt
                                Fred Wolfe
1736
         17.3
                  ds5
                                 Nicholas J. Cox
1737
         17.3
                  episensrri
                                 Rino Bellocco, Nicola Orsini, Sander Greenland
         17.3
                                 Nicholas J. Cox
1738
                  favplots
                                 Zhiqiang Wang
1739
         17.3
                 gby
                                Roger Newson
1740
         17.3
                  gsgroup
1741
         17.3
                  hlp2html
                                 P. Wilner Jeanty
1742
         17.3
                  imputeitems
                                 Jean-Benoit Hardouin
1743
         17.3
                  iquantile
                                 Nicholas J. Cox
                  lincom2
                                 Jan Brogger
1744
         17.3
         17.3
1745
                  ovbd
                                 Joseph Coveney
1746
         17.3
                  rel_clust
                                Dirk Enzmann
1747
         17.3
                  sampsi_sccs
                                Philip Ryan
                                 Nicholas J. Cox
1748
         17.3
                  sbplot
                  smwoodbury
                                 Sam Schulhofer-Wohl
1749
         17.3
1750
         17.3
                  statsbyfast
                                Michael Blasnik
1751
         17.3
                  wclogit
                                 Adrian Mander
1752
         17.3
                  weathr
                                 Neal Caren
1753
         17.2
                  dsweight
                                Roger Newson
1754
         17.2
                                Christopher F Baum
                  tosql
         17.1
                  switchoprobitsim Christian Gregory
1755
1756
         17.1
                  jnsn
                                 Joseph Coveney
1757
         17.0
                  cistat
                                 Nicholas J. Cox
1758
         17.0
                                 Philippe Van Kerm
                  coranal
1759
         17.0
                  discrepancy
                                Brendan Halpin
1760
         17.0
                 enlarge
                                Stanislav Kolenikov
1761
         17.0
                  erate
                                Pavel Luengas Sierra, Damian Clarke
1762
         17.0
                  far5
                                 Abdel G. Babiker
1763
         17.0
                  fedit
                                 Nicholas J. Cox
1764
         17.0
                  fixsort
                                Nicholas J. Cox
                 gdsum
1765
         17.0
                                Daniel Klein
1766
         17.0
                  grexport
                                Lars E. Kroll
1767
         17.0
                  groupdist
                                Lutz Bornmann, Adam Ozimek
         17.0
                                 Christopher F Baum
1768
                  hlp2pdf
1769
         17.0
                                 Roger Newson
                  insingap
         17.0
1770
                                Nicola Orsini, Debora Rizzuto
                  kapprevi
                                 Nicholas J. Cox
1771
         17.0
                  ljs
1772
         17.0
                  mapch
                                 Ward Vanlaar
1773
         17.0
                                David Kantor
                  mark_changes
1774
         17.0
                 nonparmde
                                 John Ternovski, Joel Middleton
                                 Johann Blauth, Monica Daigl
1775
         17.0
                  odi
1776
         17.0
                 pbeta
                                 Nicholas J. Cox
                 primes
1777
         17.0
                                 Stanislav Kolenikov
1778
         17.0
                 raschfit
                                 Jean-Benoit Hardouin
1779
         17.0
                  scenttest
                                Roger Newson
         17.0
                                Mamoun BenMamoun
1780
                  sratio
1781
         17.0
                  stak
                                 Thomas Steichen
1782
         17.0
                  stat2data
                                P. Wilner Jeanty
1783
         17.0
                  supclust
                                Ben Jann
1784
                                 Daniel Klein
         17.0
                  tfv
1785
         17.0
                  tpoisson
                                 Joseph Hilbe
         17.0
1786
                  use10save9
                                 Lars Angquist
1787
         16.9
                  mcqscore
                                 E. Paul Wileyto
                  st2openbugs
1788
         16.8
                                 Ignacio López de Ullibarri
                                 Bear F. Braumoeller
1789
         16.8
                  mlboolean
```

```
1790
         16.7
                 betaprior
                                Adrian Mander
1791
         16.7
                 buckley
                                James Cui
1792
         16.7
                                Christopher F Baum
                 cmaxuse
1793
         16.7
                 convert_top_lines David Kantor
                                Michael Blasnik
1794
         16.7
                 dashln
1795
         16.7
                 esli
                                Nicola Orsini
1796
         16.7
                                Nikos Askitas
                 grep
1797
         16.7
                 histplot
                                Nicholas J. Cox
                 hutchens
                                Stephen P. Jenkins
1798
         16.7
1799
                 imputerasch
                                Jean-Benoit Hardouin
         16.7
1800
         16.7
                                Nicholas J. Cox
                 moments
1801
         16.7
                 mvsktest
                                Stanislav Kolenikov
1802
         16.7
                 polar
                                Joe Canner
1803
         16.7
                 qgamma
                                Nicholas J. Cox
1804
                                Valerio Filoso
         16.7
                 reganat
1805
         16.7
                 romantoarabic Nicholas J. Cox
1806
         16.7
                 scoregrp
                                Paulo Guimaraes
1807
         16.7
                 sdline
                                Nicholas J. Cox
1808
         16.7
                 simsum
                                Ian White
                 stgtcalc
1809
         16.7
                                Peter Sasieni, Patrick Royston
                                Ben Jann
1810
         16.7
                 tr
1811
         16.7
                 trimplot
                                Nicholas J. Cox
1812
         16.7
                 varlab
                                Patrick Joly
1813
         16.7
                 ztpflex
                                Helmut Farbmacher
                 frontierhtail Diallo Ibrahima Amadou
1814
         16.5
                 validly
1815
         16.5
                                Kenneth Macdonald
1816
         16.5
                 metapow
                                Sally R. Hinchliffe, Michael J. Crowther
1817
         16.4
                 stbtcalc
                                Peter Sasieni, Patrick Royston
1818
         16.4
                 stgit
                                Matthew White
                 allcross
                                Kenneth Higbee
1819
         16.3
                                Jean-Benoit Hardouin
1820
         16.3
                 biplotvlab
1821
         16.3
                                Nicholas J. Cox
                 cij
1822
         16.3
                 crater
                                Leah W. McGuire
1823
         16.3
                                Vince Wiggins
                 grand
1824
         16.3
                  ifwins
                                Dan Blanchette
                 igencox
                                Rafal Raciborski
1825
         16.3
1826
         16.3
                 metadata
                                Nikos Askitas
1827
         16.3
                 miparallel
                                Timothy Mak
1828
         16.3
                 mira
                                Rodrigo Alfaro
1829
         16.3
                 mtad
                                Timothy Simcoe
                                David E. Moore
1830
         16.3
                 mvsampsi
1831
         16.3
                 nicedates
                                Nicholas J. Cox
1832
         16.3
                 pwcov
                                Christopher F Baum
1833
                                Zhiqiang Wang
         16.3
                 pwploti
1834
         16.3
                                Nicholas J. Cox
                 abeta
                 regintfe
                                Paulo Guimaraes
1835
         16.3
                                Nicholas J. Cox
1836
         16.3
                 safedrop
1837
         16.3
                 sdlim
                                Ulrich Kohler
1838
         16.3
                 shuffle
                                Ben Jann
1839
         16.3
                 simon2stage
                                Adrian Mander
                                Rosa Gini
1840
         16.3
                 spec_stand
1841
         16.3
                 sssplot
                                Nicholas J. Cox
1842
         16.3
                 stcoxplt
                                Joanne M. Garrett
1843
                 t2way5
                                Nicholas J. Cox
         16.3
1844
         16.3
                 uniquestrata
                                Ari Friedman
1845
                                Eric Booth
         16.3
                 writeinput
                 zcq
1846
         16.3
                                Johann Blauth, Monica Daigl
1847
         16.3
                 zipsave
                                Henrik Stovring
                 gmmcovearn
1848
         16.2
                                Olive Sweetman, Aedin Doris, Donal O'Neill
1849
                                Daniel Bratton
         16.2
                 nstagebinopt
1850
         16.1
                 meresc
                                Ulrich Kohler, Dirk Enzmann
1851
         16.0
                 allsubsets
                                Thomas A. Trikalinos
                                David Elliott
1852
         16.0
                 chunkv8
1853
         16.0
                 clustsens
                                Paul Millar
1854
                                Nick Winter
         16.0
                 dashgph
```

```
1855
         16.0
                  doubletofloat David Kantor
1856
         16.0
                  factref
                                 Roger Newson
1857
         16.0
                  fractileplot
                                Nicholas J. Cox
1858
         16.0
                  freplace
                                Liu Wei
                                 Jan Brogger
1859
         16.0
                  genvars
1860
         16.0
                  gphepssj
                                Roger Newson
1861
         16.0
                  himatrix
                                 Ulrich Kohler
1862
         16.0
                  labcenswdi
                                P. Wilner Jeanty
1863
         16.0
                  ltable2
                                Mario Cleves
                                 Ariel Linden
1864
         16.0
                 mmws
                 panelthin
                                Nicholas J. Cox
1865
         16.0
1866
         16.0
                 powerq
                                 Tiago V Pereira, Nikolaos A Patsopoulos
1867
         16.0
                  reffect
                                 Michael W Gruszczynski
1868
         16.0
                 reswage
                                 John Reynolds
                  rhsbsample
                                 Philippe Van Kerm
1869
         16.0
                                Eric Neumayer, Thomas Plümper
1870
         16.0
                  spspc
1871
         16.0
                  stack
                                 William Gould
1872
         16.0
                  stcband
                                 Enzo Coviello
1873
         16.0
                  subsave
                                Roger Newson
                                 Ben Daniels
1874
         16.0
                  ttestplus
1875
                                Ulrich Kohler
         16.0
                  _gapport
1876
         15.8
                  trpois0
                                 Joseph Hilbe
1877
         15.8
                                 Nicholas J. Cox
                  examples
                                 Sam Brilleman
1878
         15.7
                  devr2
1879
                  distan
                                 Jose Maria Sanchez Saez
         15.7
                  fracdiff
1880
         15.7
                                 Christopher F Baum
1881
         15.7
                  gpfobl
                                Herve M. Caci
1882
         15.7
                  hapblock
                                 Adrian Mander
1883
         15.7
                  hgclg
                                 Joseph Hilbe
                                Paul Millar
1884
         15.7
                 hotvalue
                                Eric Booth
         15.7
1885
                 mac unab
1886
         15.7
                  makehlp
                                 Adrian Mander
1887
         15.7
                  seast
                                 Mark S. Pearce, Richard Feltbower
         15.7
                                 Nicholas J. Cox, Jan Brogger
1888
                  showgph
1889
         15.7
                  stcumh
                                 Kim Lyngby Mikkelsen
         15.7
                  survtime
                                Allen Buxton
1890
1891
         15.7
                  svypxcon
                                 Joanne M. Garrett
1892
         15.7
                  swblock
                                 Adrian Mander
1893
         15.7
                  tgmixed
                                 Christopher F Baum
1894
                  vartyp
                                 Paul H. Bern
         15.7
                  weeklyclaims
1895
         15.7
                                Nikos Askitas
1896
         15.4
                  roman
                                Nicholas J. Cox
                 ggtax
1897
         15.3
                                 Andres L Gonzalez Rangel
                                 Nicholas J. Cox
1898
         15.3
                  irrepro
1899
                                Michael Blasnik
         15.3
                  lms
                                Tony Brady
1900
         15.3
                  longch
1901
         15.3
                  muxyplot
                                Nicholas J. Cox
1902
         15.3
                  ncf
                                 Thomas Steichen
1903
         15.3
                 postrri
                                 Sander Greenland, Rino Bellocco, Nicola Orsini
1904
         15.3
                 preparation
                                 Johannes N. Blumenberg
1905
                 ranova
                                 Joseph Hilbe
         15.3
1906
         15.3
                  regtable
                                 John Ternovski
1907
         15.3
                  sbplot5
                                 Nicholas J. Cox
         15.3
                                 Nicholas J. Cox
1908
                  sliceplot
1909
         15.3
                  surrog
                                Malte Hoffmann
1910
                                Nicholas J. Cox
         15.3
                  taba
1911
         15.2
                  hpclg
                                 Joseph Hilbe
1912
         15.2
                  storecmd
                                Nicholas J. Cox
1913
         15.1
                  lfsum
                                 Fred Wolfe
                                Nicholas J. Cox
1914
         15.0
                  bkrosenblatt
1915
         15.0
                                Austin Nichols
                  cnormp
1916
         15.0
                  for211
                                Patrick Royston
1917
         15.0
                  ftree
                                Liu Wei
                  gprefscode
1918
         15.0
                                 Jan Brogger
1919
         15.0
                  hsmode
                                 Nicholas J. Cox
```

```
1920
         15.0
                  joinvars
                                Daniel Klein
                  labellacking
1921
         15.0
                                Nicholas J. Cox, Robert Picard
1922
                                Zhiqiang Wang
         15.0
                  lrseq
1923
         15.0
                 mequate
                                Leah McGuire
                 mi_mvncat
1924
         15.0
                                Daniel Klein
1925
         15.0
                 mstdize
                                Nicholas J. Cox
1926
         15.0
                  nbfit
                                Nicholas J. Cox, Roberto G. Gutierrez
1927
         15.0
                  rmanova
                                George M. Hoffman
                                Adrian Mander
1928
         15.0
                 simpute
1929
                                Roger Newson
         15.0
                  textpad
1930
                                Roger Newson
         15.0
                  tfinsert
1931
         14.9
                  margdistfit
                                Maarten L. Buis
1932
         14.8
                                Nigel Smeeton, Nicholas J. Cox
                  nruns
                 qog
simuped
1933
         14.8
                                Christoph Thewes
                                James Cui
1934
         14.8
                  cm2in
                                Ulrich Kohler
1935
         14.8
1936
         14.7
                  dep4asm
                                Daniel Klein
1937
         14.7
                  ds2
                                Nicholas J. Cox
1938
         14.7
                  faam
                                Monica Daigl, Johann Blauth
                                Maximo Sangiacomo
1939
                  fvfix
         14.7
                 {\tt hlpdir}
1940
         14.7
                                Nicholas J. Cox
1941
         14.7
                  lisrelinput
                                Paul Millar
1942
         14.7
                  lprplot
                                Bill Sribney
                                Bill Sribney
1943
         14.7
                 reglike
                 rensheet
                                Austin Nichols
1944
         14.7
1945
         14.7
                                Ben Jann
                  rrreg
1946
         14.7
                  sigcoef
                                Jun Xu
1947
         14.7
                  smgfit
                                Austin Nichols
                                Jan Brogger
1948
         14.7
                  spaces
                                Nicholas J. Cox
1949
         14.7
                  stbget
                                John Antonakis, Nicolas Bastardoz
1950
         14.7
                  swain
1951
         14.7
                  symmetry
                                Mario Cleves
1952
         14.7
                  tex_equal
                                Santiago Garriga
         14.7
                  umbrella
                                William D. Dupont, W. Dale Plummer, Jr.
1953
1954
         14.7
                  vlc
                                Austin Nichols
1955
         14.7
                  witch
                                Thomas Steichen
1956
         14.5
                  sortlistby
                                Ben Jann
1957
         14.5
                  williams
                                Joseph Hilbe
1958
         14.4
                  trinary
                                David Kantor
1959
         14.3
                  dbmscopybatch
                                Amadou Bassirou Diallo
                                George Vega Yon
1960
         14.3
                  doparser
1961
         14.3
                  dta2html
                                P. Wilner Jeanty
1962
         14.3
                  dta2kml
                                Benjamin Daniels
         14.3
                                Kerry L. Papps
1963
                  eitc
1964
         14.3
                  floattolong
                                David Kantor
                                Nicholas J. Cox
1965
         14.3
                  kaplansky
1966
         14.3
                  linequate
                                Leah McGuire
1967
         14.3
                  mfilegr
                                Philip Ryan
1968
         14.3
                                Nicholas J. Cox
                 muxplot
1969
         14.3
                 pcmdif
                                Jean-Francois Hamel-Broza
1970
         14.3
                                Nicholas J. Cox
                  pexp
1971
         14.3
                 phenotype
                                James Cui
1972
         14.3
                  pnrcheck
                                Nicola Orsini
1973
                 probitmiss
                                Donal O'Neill
         14.3
1974
         14.3
                 rsoort
                                Jean-Benoit Hardouin
1975
                  shuffle8
         14.3
                                Ben Jann
                                Evangelos Kontopantelis
1976
         14.3
                  skbim
1977
         14.3
                  slideviewer
                                Eric Booth
1978
         14.3
                  soepdo
                                Tim Stegmann
1979
         14.3
                  sortobs
                                Julian Reif
1980
         14.3
                                Nicholas J. Cox
                 sto
                                Fred Wolfe, Philip Price
                 nproc
1981
         14.1
1982
         14.1
                  rpnfcn
                                Henrik Stovring
1983
         14.0
                  disjoint
                                Nicholas J. Cox
1984
         14.0
                  forfile
                                Jan Brogger
```

```
1985
         14.0
                  fractal
                                 Paul Millar
1986
         14.0
                  lbpower
                                 Amado David Quezada Sanchez
1987
                                 James Fiedler, Alan H. Feiveson
         14.0
                  parttau
1988
         14.0
                  {\tt popsim}
                                 Stephen Cranney
                                 Nicholas J. Cox
1989
         14.0
                  shownear
1990
         14.0
                  spagg
                                 Thomas Plümper, Eric Neumayer
1991
         14.0
                                 Nicholas J. Cox, Christopher F Baum
                  torats
1992
         14.0
                                 William Gould
                  tpred
                                 Javier Lazaro, Javier Zamora, Victor Abraira, Alexander Zlotnik
1993
         13.8
                  kappa2
                                 Nicholas J. Cox
1994
         13.8
                  qexp
                                 Roger Newson
1995
         13.8
                  qrowname
1996
         13.8
                  tarow
                                 Allen Buxton
1997
         13.8
                  cureregr8
                                 Allen Buxton
1998
         13.7
                  epsigr
                                 Henrik Stovring
                  {\tt getf\bar{i}lename2}
                                 Jeff Arnold
1999
         13.7
2000
         13.7
                                 Nicholas J. Cox
                  lstack
2001
         13.7
                  mnthplot
                                 Nicholas J. Cox
2002
         13.7
                  profhap
                                 Adrian Mander
2003
         13.7
                  shorth
                                 Nicholas J. Cox
                                 Nicholas J. Cox
2004
                  tablab
         13.7
2005
         13.7
                                 Peter Lachenbruch
                  tolerance
2006
         13.7
                  wosaddress
                                 Lutz Bornmann, Adam Ozimek
2007
         13.7
                  wosload
                                 Lutz Bornmann, Adam Ozimek
         13.7
                                 Alexander Koplenig
2008
                  zipffit
                  nbinreg
                                 Joseph Hilbe
2009
         13.5
                                 Nicholas J. Cox
2010
                  diplot
         13.3
2011
         13.3
                  fvprevar
                                 Roger Newson
2012
         13.3
                  labup
                                 Roy Wada
                  printgph
                                 Jan Brogger
2013
         13.3
                  pvfix
                                 Maximo Sangiacomo
2014
         13.3
                                 Adrian Mander
2015
         13.3
                  qhapipf
2016
         13.3
                  readlog
                                 Jan Brogger
2017
         13.3
                  scenreg
                                 Maarten L. Buis
2018
         13.3
                                 Tony Brady, Nicholas J. Cox
                  spikeplt
2019
         13.3
                  tdpd
                                 Sylvain Weber
2020
         13.2
                  psbayes
                                 Nicholas J. Cox
2021
         13.0
                  filei
                                 Nicholas J. Cox
2022
         13.0
                  mkstrsn
                                 William Gould
2023
         13.0
                  normalizepath George Vega Yon
2024
         13.0
                                 Frauke Kreuter
                  ranvar
                                 Ulrich Kohler
2025
         13.0
                  rgroup
2026
         13.0
                  vtokenize
                                 Bill Rising
2027
         12.8
                  trnbin0
                                 Joseph Hilbe
                                 Daniel Klein
2028
         12.7
                  filtertrace
2029
                                 Arnelyn Abdon
         12.7
                  fpref
                                 Maximo Sangiacomo
2030
         12.7
                  fvvar
                                 Nicholas J. Cox
2031
         12.7
                  loopplot
2032
         12.7
                  mkbilogn
                                 Stephen P. Jenkins
                                 Fred Wolfe
2033
         12.7
                  ndbci
2034
         12.7
                  tabmerge
                                 Nicholas J. Cox
                                 Michael S. Hanson, Christopher F Baum
2035
         12.7
                  tslist
2036
         12.7
                  vlgen
                                 James Fiedler
2037
         12.5
                  fiskfit
                                 Maarten L. Buis, Stephen P. Jenkins
                  valcuofon
                                 George Vega Yon
2038
         12.5
2039
         12.5
                  ztg
                                 Joseph Hilbe
                  feldti
2040
                                 Herve M. Caci
         12.3
                                 Patrick Royston
2041
         12.3
                  tgraph
2042
         12.3
                  vplplot
                                 Nicholas J. Cox
2043
         12.3
                                 Fred Wolfe
                  _grpos
2044
                                 Abdelkrim Araar, Paolo Verme
         12.2
                  subsim_1
                                 Roger Newson
2045
         12.0
                  msdirb
                  prwe
2046
         12.0
                                 Monica Daigl
2047
         12.0
                  qogbook
                                 Richard Svensson
2048
         12.0
                  vlist
                                 David E. Moore
                                 Joe Canner
2049
         12.0
                  vmerge
```

2050	12.0	wtd	Henrik Stovring
2051	11.8	viewresults	Ben Jann
2052	11.4	adolist	Ben Jann, Stefan Wehrli
2053	11.3	textgph	Nick Winter
2054	11.3	torumm	Fred Wolfe
2055	11.3	varsearch	Jeff Arnold
2056	11.3	vcf	Daniel E. Cook
2057	11.3	_gvreldif	Stanislav Kolenikov
2058	11.3	m_stats	Pietro Tebaldi
2059	11.0	tcod	Mamoun BenMamoun
2060	11.0	_grmedf	Stanislav Kolenikov
2061	10.8	quantil2	Nicholas J. Cox
2062	10.7	vclose	Nicholas J. Cox
2063	10.6	nlcorr	Kristian Bernt Karlson, Ulrich Kohler
2064	10.3	fview	Ben Jann
2065	10.3	adodev	Roger Newson
2066	10.2	callsado	Daniel Klein
2067	10.0	qlognorm	Nicholas J. Cox
2068	10.0	_grprod	Philip Ryan
2069	9.9	subsim_2	Paolo Verme, Abdelkrim Araar
2070	9.8	addtex	Guy D. van Melle
2071	9.5	adotype	Nicholas J. Cox
2072	9.4	neoclassical	Samuel R. Lucas
2073	9.3	excelcol	Sergiy Radyakin
2074	9.3	vorter	Daniel Klein
2075	8.4	ldtest	Stephen Donald, Garry Barrett
2076	8.1	spmstarhxt	Sahra Khaleel A. Mickaiel, Emad Abd Elmessih Shehata
2077	4.6	reweight2	James Browne
2078	1.0	percat	Mehmet Mehmetoglu
2079	0.4	ginireg	Mark E Schaffer
2080	0.3	divcat	Dirk Enzmann

(Click on package name for description)

Parte IV

Indici

Indice analitico

*, 34 ==, 33 ?, 34 &, 34 _N, 83	decode, 90 delimit, 19 delimitatori fine comando, 19 describe, 53 destring, 90
_n, 83 , 34 >, 33 <, 33 ; 34 ~=, 33 >=, 33	diag, 80 dictionary, 44, 45 dir, 18 directory di lavoro, 15 drop, 66 duplicates report, 62
abbrev, 75 about, 7 abs, 71 adoupdate, 22 aorder, 66 append, 117	egen, 85 egenmore, 85 egenodd, 85 encode, 90 erase, 18 ereturn list, 152 excel, 48
betaden, 73 binomial, 73 box, 113 by, 35, 84 bysort, 36, 84	exp, 72 F, 74 Fden, 74 findit, 23 finestra Review, 3
ceil, 71 chi2, 74 codebook, 54 collapse, 126 colsof, 81 compress, 42 cond, 78 contract, 132 correlate, 109 dati missing, 34, 36	finestra Stata Command, 3 finestra Stata Results, 3 finestra Variables, 3 floor, 71 foreach, 145 format, 68 forvalues, 149 fre, 97 fsum, 96 Funioni di probabilita', 73 Funzioni di densita', 73
uan missing, 34, 30	runzioni di delisita, 15

Funzioni matematiche, 71	ltrim, 76
Funzioni random, 75	
Funzioni stringa, 75	macros, 143
_	$\max, 72, 86$
gammaden, 74	mdy, 79
generate, 71	mean, 86
global, 143	median, 87
GME, 195	merge, 119
grubbs, 111	mif2dta, 155
gsort, 65	$\min, 73, 87$
1 1 00	mkdir, 18
help, 23	mmerge, 120
if, 32	mode, 88
in, 31	move, 66
infile, 43	normalden, 74
inlist, 78, 88	notes, 61
inputst, 47	nullmat, 82
inrange, 79	numlabel, 61
insheet, 43	
inspect, 55	operatori di relazione, 33
int, 71	operatori logici, 34
inv, 81	order, 65
invnormal, 75	outliers, 111
keep, 66	outputst, 47
ксер, oo	outsheet, 48
label data, 56	preserve, 49
label define, 57	pwcorr, 110
label dir, 58	pwd, 15
label drop, 58	pwd, 19
label list, 58	r(), 153
label values, 57	recast, 68
label variable, 56	recode, 89
labelbook, 59	rename, 63
labutil, 61	renvars, 63
labvalch, 58	replace, 88
lenght, 75	reshape, 127
limits, 5	restore, 49
ln, 72	reverse, 76
local, 143, 151	round, 71
$\log, 21$	rowmax, 88
$\log 10, 72$	rowmean, 88
long form, 127	rowmin, 88
lower, 76	rowmiss, 88
/ · · -	

306

rownomiss, 88 rowsd, 88 rowsof, 81 rtrim, 76	XML, 48 xmlsave, 48 xmluse, 48
sample, 66 scalar, 144 search, 23 separatori, 30 set dp, 70 set memory, 39 set seed, 66 set varlabelpos, 4 shp2dta, 155 SO supportati, 3 sort, 65 spmap, 205 ssc, 21 strmatch, 76 subinstr, 77 subinword, 77 substr, 77 substr, 77 sum, 73, 88 summarize, 95 sysdir, 11	
tab2, 104 table, 106 tabstat, 108 tabulate, 96 tipo variabili, 67 tostring, 91 trace, 82 trim, 76	
uniform, 75 update, 21 upper, 76 use, 29, 41	
versioni, 3	
wide form, 127 word, 77 wordcount, 78	

Elenco delle figure

1	II Incontro degli Utenti di Stata, Milano,	10-11	ottobre	2005				iii
1.1	Le finestre di Stata							4
9.1	Box Plot							 113
15.2 15.3	Mappa pre correzione							160 161
A.1 A.2 A.3 A.4	Choropleth maps							238 239
A.5 A.6 A.7	Choropleth maps						 	 241242243
	Choropleth maps							$245 \\ 246$
A.12 A.13	Choropleth maps							$248 \\ 249$
A.15 A.16 A.17	Proportional symbol maps				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		 $251 \\ 252 \\ 253$
A.19 A.20	Other maps							$255 \\ 256$
A.22	Other maps							258

ELENCO DELLE FIGURE

A.24 Other maps																	260
A.25 Other maps									 								261
A.26 Other maps									 								262

Elenco delle tabelle