IISER Kolkata Problem Sheet III

MA 1101: Mathematics I

Problem 1.

Let $X, Y, Z \neq \emptyset$, let $f: X \to Y$ and let $g: Y \to Z$. Prove that (i) $g \circ f$ is one-one if f, g are one-one.

(ii) $g \circ f$ is onto if f, g are onto.

(iii) $g \circ f$ is bijective if f, g are bijective.

(iv) g is onto if $g \circ f$ is onto. Is f onto if $g \circ f$ is one-one?

(v) f is one-one if $g \circ f$ is one-one. Is g one-one if $g \circ f$ is one-one?

(v) g is one-one if $g \circ f$ is one-one and f is onto.

Problem 2.

Let $W, X, Y, Z \neq \emptyset$ and let $f: W \to X, g: X \to Y, h: Y \to Z$. Show that

$$(h \circ g) \circ f = h \circ (g \circ f).$$

Problem 3.

Check whether the following functions are one-one and/or onto.

(f) $f: \mathbb{R} \to \mathbb{R}, f(x) := x^2 + x$.

 $f: \mathbb{N} \to \mathbb{N}, f(x) := \left\lceil \frac{n+1}{2} \right\rceil$, where $[\cdot]$ denotes the greatest integer function.

(iii) $f: \mathbb{R} \to \mathbb{R}, f(x) := x + [x].$

(iv) $f: \mathbb{R} \to \mathbb{R}, f(x) := x - [x].$

(v) $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}, f(x) := \frac{x+1}{x-1}.$

(vi) $f: (-1,1) \to \mathbb{R}, \ f(x) := \frac{x}{1-|x|}.$