Data Analysis in R Hypothesis Testing

Ken Stiller

5th December 2024

Syllabus: Data Analysis in R

- 1. Introduction
- 2. Causality & Basics of Statistics
- 3. Sampling & Measurement
- 4. Prediction
- 5. Multivariate Regression
- 6. Probability & Uncertainty
- 7. Hypothesis Testing
- 8. Assumptions & Limits of OLS
- 9. Interactions & Non-Linear Effects

Plan for Today

- ► Accuracy
 - ► Standard Errors
 - ► Confidence Intervals
- ► Hypothesis Testing
 - ▶ What is a hypothesis?
 - ▶ p-values
 - ► Type I and Type II errors
 - ▶ One and two-sided tests

Table of Contents

Statistical Inference

Recap: Statistical Inference

Overview

- \blacktriangleright What we want to know: parameter $\theta \leadsto$ unobservable
- ► What you do observe: data
- ▶ We use data to compute an estimate of the parameter $(\hat{\theta})$
- ▶ But how good is $\hat{\theta}$ an estimate of θ ?
- ► Ideally, we want to know the estimation error = $\hat{\theta} \theta$
- ▶ The problem remains unchanged: θ is unknown

Recap: Central Limit Theorem

Hypothesis Testing

Confidence Intervals

Overview

- ▶ We know the standard error and are aware of the Central Limit Theorem
- ▶ Thus, we can calculate specific ranges around the sample mean of which, if repeated over and over again, a certain share will contain the population mean. In other words, we can quantify how confident we are in our estimate.
- ► This is called a confidence interval

Confidence Intervals II

- ▶ An *m*-percent confidence interval establishes a boundary around the sample mean in which the true mean will lie *m* out of 100 times under repeated sampling
- ightharpoonup Common values for m are 95 and 99 (sometimes 90)
- ▶ m is specified by choosing a significance level $\alpha: m = (1 \alpha) * 100$
- ► Common significance levels are therefore 0.05 and 0.01 (sometimes 0.1)

Confidence Intervals: Defining Boundaries

- ▶ In order to provide an interval estimate of the population mean μ we need to identify a lower bound (LB) and an upper bound (UB) such that $P(LB \le \mu \le UB)$
- ▶ Recall last week on probability: We can use our knowledge of the normal distribution to find this boundary
- ► After z-transformation of any normal distribution

$$z = \frac{x_i - \overline{x}}{s_x}$$

- ▶ Probability between -1 and 1 is 0.68
- ► Probability between -1.96 and 1.96 is 0.95
- ▶ Probability between -3 and 3 is 0.997
- ▶ $z_{\alpha/2}$ is the value associated with $(1 \alpha) * 100\%$ coverage in the standard normal distribution

Overview

Example: Critical Values of Normal Distribution

- ▶ The lower and upper critical values, $-z_{\alpha/2}$ and $z_{\alpha/2}$, shown on horizontal axis
- \blacktriangleright Area under the density curve between these critical values (in blue) equals $1-\alpha$

Confidence Intervals: Overview

- \triangleright CI: boundaries in which μ will lie m-times out of a 100
- \blacktriangleright $(1-\alpha)*100\%$ confidence intervals:

$$CI_{\alpha} = [\overline{X} - z_{\alpha/2} * SE, \overline{X} + z_{\alpha/2} * SE]$$

Hypothesis Testing

where $z_{\alpha/2}$ is the critical value and α reflects our chosen significance level

- $ightharpoonup P(Z > z_{\alpha/2}) = \alpha/2 \text{ and } Z \sim \mathcal{N}(0,1)$
 - 1. $\alpha = 0.01$ gives $z_{\alpha/2} = 2.58$
 - 2. $\alpha = 0.05$ gives $z_{\alpha/2} = 1.96$
 - 3. $\alpha = 0.10$ gives $z_{\alpha/2} = 1.64$

Example: Confidence Intervals & Standard Error for Sample Mean

- ► How often do German people attend some form of religious worship?
- ► Take a random sample of 100 people from the German population and record how many times they attended a form of religious worship last year
 - ▶ Distribution is extremely skewed
 - ► Some went a lot, most went infrequently or not at all
- ► From that sample we get a sample mean and a sample standard deviation

Example: Confidence Intervals & Standard Error for Sample Mean II

Example: Confidence Intervals & Standard Error for Sample Mean III

► From the *sd* and *mean* of the sample we can calculate the standard error for the sample mean:

$$\frac{s}{\sqrt{n}} = \frac{20}{\sqrt{100}}$$

where s = sample standard deviation

► From this we can calculate any confidence interval

$$\mathrm{CI}_{\alpha} = \left[\bar{X} - z_{\alpha/2} \times \text{ standard error, } \bar{X} + z_{\alpha/2} \times \text{ standard error } \right]$$

▶ Usually, we are interested in a 95% CI:

$$[8.5 - 1.96 \times 2, 8.5 + 1.96 \times 2] = [4.58, 12.42]$$

▶ In 95 out of a 100 times will the true mean lie within confidence intervals computed in this way

Example: Confidence Intervals & Standard Error for Sample Mean IV

- ► Suppose we know that the population mean for religious worship attendance in Germany is actually 6 times per year
 - ▶ Our particular sample is off by 2.5
 - ► The mean of all the possible sample means is equal to the population mean so the centre of the sampling distribution is 6

Example: Confidence Intervals & Standard Error for Sample Mean

Example: Confidence Intervals & Standard Error for Sample Mean II

Example: Confidence Intervals & Standard Error for Sample Mean VII

- ▶ Of the 7 samples, all the confidence intervals around the sample mean enclosed the actual true population mean apart from one
- ▶ If we repeated this lots of times, we would expect 95% of the confidence intervals to enclose the actual population mean
 - ▶ 95% because that's the level we set
 - ▶ If we had set 99%, the confidence intervals would be larger

Statistical Hypothesis Testing: Overview

- 1. Construct a null hypothesis (H_0) and its alternative (H_1)
- 2. Pick a test statistic T
- 3. Figure out the sampling distribution of T under H_0 (reference distribution)
 - ► For hypothesis tests regarding the mean, if sample size large, use the normal distribution
 - ► For other test statistics, you need to use other distributions
- 4. Is the observed value of T likely to occur under H_0 ?
 - ▶ **Yes** Retain H_0
 - ▶ No Reject H_0

What is a Hypothesis?

- ► Hypotheses = testable statements about the world
- ightharpoonup Hypotheses = falsifiable
 - ► We test hypotheses by attempting to see if they could be false, rather than 'proving' them to be true
- ► Hypotheses come from:
 - ► Theory
 - ► Past empirical work
 - ► Common sense (?)
 - ► Anecdotal observations

Null and Alternative Hypotheses

- ► We choose between two conflicting statements, doing the following:
 - 1. The null hypothesis (H_0) is directly tested
 - ▶ This is a statement that the parameter we are interested in has a value similar to no effect (i.e., usually 0 for coefficients)
 - e.g. regarding ideology, old people are the same as young people
 - 2. Alternative (H_1) contradicts the null hypothesis
 - ▶ This is a statement that the parameter falls into a different set of values than those predicted by (H_0)
 - e.g. regarding ideology, old people are more right-wing than young people
- ▶ Note that we actually 'test' the null hypothesis!

Hypothesis Testing: Test Statistic

► In any statistical hypothesis test, a test statistic is computed from the data in order to test the null hypothesis.

Hypothesis Testing

$$T = \frac{\text{sample estimate - parameter value } under H_0}{\text{standard error}}$$

- \triangleright The larger T, the more the data contradict the null hypothesis
- \triangleright For a given estimate, T becomes larger as the standard error decreases

Statistical Hypothesis Testing: Overview II

- \blacktriangleright Hypotheses H_0 : $\mu = \mu_0$ and H_1 : $\mu \neq \mu_0$
- Test statistic:

z-score =
$$\frac{\bar{X} - \mu_0}{\text{standard error}} = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

▶ Under the null, by the central limit theorem

z-score
$$\stackrel{\text{approx.}}{\sim} \mathcal{N}(0,1)$$

- ▶ Is Z_{obs} unusual under the null?
 - ightharpoonup Reject the null when $|Z_{obs}| > z_{\alpha/2}$
 - ightharpoonup Retain the null when $|Z_{obs}| \leq z_{\alpha/2}$

Example: Exam Scores

- ➤ Suppose there's a standardised exam with marks ranging from 0-100
- ▶ Suppose further we know test scores are normally distributed with mean $\mu=88$ and standard deviation $\sigma=5$
- Now, in five tests cohorts receive test scores of $\overline{X} = 95$ $H_0: \mu = 88 \ H_1: \mu \neq 88$

Example: Exam Scores II

▶ We know that the standard deviation of test in the population is 5. The sample size is 5 so we calculate the standard error as:

$$SE = \frac{5}{\sqrt{5}}$$

Hypothesis Testing

Assuming H_0 was true, we know that the sampling distribution is

$$\mathcal{N}(88, (\frac{5}{\sqrt{5}})^2)$$

▶ Based on sampling distribution, how many standard deviations away is the observed mean from the hypothesized mean?

$$z = \frac{X - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{95 - 88}{\frac{5}{\sqrt{5}}} = 5.82$$

▶ What is the probability of observing a z-value of more than 5.82 or below -5.82?

Example: Exam Scores III

The probability is smaller than 0.00001. What do we make of this?

p-Value

- ▶ Ok, so what's a p-value then?
- ▶ A p-value indicates the probability, under H_0 , of observing a value of the test statistic at least as extreme as its observed value
- ightharpoonup A smaller p-value presents stronger evidence against H_0
- ▶ The level of the test: $Pr(rejection|H_0) = \alpha$
- ightharpoonup A p-value less than α conventionally indicates statistical significance
 - \triangleright Conventional values of α : 0.05 & 0.01

p-Value II

- ▶ A p-value is an arbitrary threshold that our test must meet
 - ▶ we might want to be 99% confident that we are correctly rejecting the null hypothesis
 - ▶ or we might make the judgement that p-values of e.g. 0.05 and below are **probably** good evidence the null hypothesis can be rejected
- ▶ Keep in mind: the p-value is **not** the probability that H_0 (H_1) is true (false)

Type I and Type II Errors

- ► Concern false rejection if the null is true (type I error)
- ► Two types of errors:

Reject
$$H_0$$
 Retain H_0
 H_0 is true Type I error Correct
 H_0 is false Correct Type II error

- ▶ Type I error occurs when we reject H_0 even though it is true
 - ▶ Happens 5% of the time if we choose $\alpha = 0.05$
- ▶ Type II error occurs when we do not reject H_0 even though it is false
 - ▶ If $\alpha = 0.05$, sometimes a real difference won't be detected

Type I and Type II Errors

- ▶ There's a trade-off between the two types of error
 - ▶ What probability do you want to minimize? False positive or false negative?

One- or Two-Sided (Tailed) Tests

In the example above, we were interested in the difference to the true value

Hypothesis Testing

- ightharpoonup one-sided alternative hypothesis: $H_1: \mu > \mu_0$ or $\mu < \mu_0$
- ightharpoonup one-sided p-value= $\Pr(Z > Z_{obs})$ or $\Pr(Z < Z_{obs})$
- ► Convention is to use two-tailed tests
 - ▶ making it even more difficult to find results just due to chance
 - ▶ normally don't have very strong prior information about the difference

Significance Tests and CIs

- ▶ Note that our significance test looks similar to the CIs
- ▶ We could use a CI around the difference between the two sample means to 'test' the hypothesis that they are the same
- ▶ A 95% CI would just be 1.96 * SE
- ▶ You can see this on first view if the 95% CI encloses zero
- ► CIs and significance tests are doing the same job, just presenting the information in a slightly different way

Binary Variables and Proportions

- ▶ We have been working with continuous variables and means
- ► This works for binary variables too, where the mean is just the proportion:
 - Population mean = μ = population proportion = π
 - ▶ Population standard deviation = $\sigma = \sqrt{\pi(1-\pi)}$
 - ightharpoonup Sample proportion = P
 - ► Standard deviation $(P) = \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}$
 - ► Standard error $(P) = \frac{\sqrt{P(1-P)}}{\sqrt{n}} = \sqrt{\frac{P(1-P)}{n}}$

Key Take Aways

- ► Knowing the shape of the sampling distribution, we can work out:
 - ranges around a sample mean that will enclose the population mean X% of the time
 - ▶ the probability that a null hypothesis about the population mean is 'true', given a particular sample mean
 - the probability that population means for different groups are different, given two sample means
 - ▶ all of the above for proportions
- ▶ Note that this allows us to make a **probabilistic** statement. Not more, not less.
- ► In expectation, a (non-negligible) share will be false positives!

- ▶ What if OLS assumptions are violated?
- ▶ When do we care?
- ▶ What can we do?
- ▶ What do we actually do?