Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное учреждение науки

Хабаровский Федеральный исследовательский центр

Вычислительный центр Дальневосточного отделения

Российской академии наук

ВЦ ДВО РАН

И.И. Потапов

Библиотека для моделирования русловых процессов. Решения задачи об эволюции донной поверхности в канале с песчаным дном Часть V.

Препринт № 236 А

УДК 532.54

Потапов И.И. Библиотека для моделирования русловых процессов.

Решения задачи об эволюции донной поверхности в канале с песчаным дном.

Часть V: препринт № 236. – Хабаровск: Вычислительный центр ДВО РАН,

2022. - 31 c.

В настоящей работе предложен алгоритм решения задачи о движении

донной поверхности при различных физико-механических и

гранулометрических параметрах донного материала с помощью метода

контрольных объемов.

Библиогр. 3 назв.

Работа выполнена при частичной поддержке гранта РФФИ № 18-05-00530

Ответственный редактор докт. физ.-мат. наук

Намм Р.В.

© Потапов И.И.

© Вычислительный центр ДВО РАН

Введение

В работе для плановой математической модели задачи донных деформаций предложен контрольно — объемный алгоритм расчета. И приведен пример его реализации.

Рис.1. Глобальная (X,Y,Z) и местная (x,y,z) системы координат.

1. Геометрические зависимости.

Приведем точные формулы для локальных характеристик поверхности дна, не считая уклон поверхности дна малым. Пусть X,Y,Z - неподвижная декартова система координат с осью Z, направленной вертикально вверх и ортами \vec{i} , \vec{j} , \vec{k} . Поверхность дна в этой системе координат определяется уравнением $Z = \zeta(X,Y)$, где ζ - достаточно гладкая функция переменных X,Y. Вектор нормали $\vec{n} = (n_X, n_Y, n_Z)$ к поверхности дна имеет компоненты

$$n_X = -\frac{\partial \zeta}{\partial X} \cos \gamma, \qquad n_Y = -\frac{\partial \zeta}{\partial Y} \cos \gamma, \qquad n_Z = \cos \gamma,$$
 (1)

где γ - угол между нормалью \vec{n} к дну и осью Z . Тригонометрические функции угла γ имеют вид

$$\cos \gamma = \frac{1}{\sqrt{1 + \tan^2 \gamma}}, \quad \tan \gamma = \sqrt{\left(\frac{\partial \zeta}{\partial X}\right)^2 + \left(\frac{\partial \zeta}{\partial Y}\right)^2}. \tag{2}$$

Проекцию единичного вектора \vec{k} направленного вертикально вверх, на касательную плоскость поверхности $Z=\zeta$ назовем вектором уклона \vec{J} (рис.1), который можно разложить по векторам \vec{k} и \vec{n} : $\vec{J}=\vec{k}-\vec{n}\cos\gamma$. Отсюда несложно выписать его компоненты по осям X,Y,Z и определить длину $|\vec{J}|=J=\sin\gamma$.

Наряду с абсолютной системой координат введем локальную криволинейную ортогональную систему координат x, y, z. Ось z ортогональна касательной плоскости к поверхности $Z = \zeta$, оси x, y - внутренние координаты этой поверхности.

В локальной системе координат поверхность дна определяется уравнением z=0. Вектор уклона \vec{J} в локальной системе координат имеет компоненты $J_x=\frac{\partial \, \zeta}{\partial \, x}, \quad J_y=\frac{\partial \, \zeta}{\partial \, y}$ или, в векторной форме,

$$\vec{J} = \nabla \zeta$$
, $|\nabla \zeta| = \sin \gamma$, $\nabla \zeta = (\partial / \partial x, \partial / \partial y)$.

Касательную плоскость перпендикулярную нормали (1) донной поверхности $Z=\zeta\big(X,Y\big),$ в точке $\big(X_0,Y_0,Z_0\big)$ определим как

$$n_X(X - X_0) + n_Y(Y - Y_0) + n_Z(Z - Z_0) + D = 0$$
(3)

Проекция радиус вектора придонной скорости $\vec{V} = \vec{i} \, V_X + \vec{j} V_Y + \vec{k} V_Z$ на касательную плоскость (3) определенную нормалью (1): определяется выражением $\vec{V}_\zeta = \vec{V} - \frac{\vec{V} \cdot \vec{n} + D}{\vec{n} \cdot \vec{n}} \vec{n}$, или

$$\vec{V}_{\zeta} = \vec{i} V_X + \vec{j} V_Y + \vec{k} V_Z - \left(-\vec{i} \frac{\partial \zeta}{\partial X} - \vec{j} \frac{\partial \zeta}{\partial Y} + \vec{k} \right) \left(-V_X \frac{\partial \zeta}{\partial X} - V_Y \frac{\partial \zeta}{\partial Y} + V_Z \right) \cos^2 \gamma, (4)$$

что позволяет получить направление ортов локальной системы координат для осей x и y.

$$\vec{e}_{x} = \frac{\vec{V}_{\zeta}}{|\vec{V}_{\zeta}|} \qquad \vec{e}_{y} = \vec{n} \times \vec{e}_{x} = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ -\frac{\partial \zeta}{\partial X} \cos \gamma & -\frac{\partial \zeta}{\partial Y} \cos \gamma & \cos \gamma \\ \frac{V_{\zeta X}}{|\vec{V}_{\zeta}|} & \frac{V_{\zeta Y}}{|\vec{V}_{\zeta}|} & \frac{V_{\zeta Z}}{|\vec{V}_{\zeta}|} \end{pmatrix}. \tag{5}$$

При малых уклонах дна

$$\left| \frac{\partial \zeta}{\partial X} \right| <<1, \ \left| \frac{\partial \zeta}{\partial Y} \right| <<1, \ \cos \gamma ->1, \ \vec{n} \approx \vec{k} \ \text{if } V_Z \approx 0 \ , \tag{6}$$

получим

$$\vec{V}_{\zeta} \approx \vec{i} V_X + \vec{j} V_Y, \qquad \vec{e}_x = \left(\frac{V_X}{|\vec{V}|}, \frac{V_X}{|\vec{V}|}, 0\right),$$
 (7)

$$\vec{e}_{y} = \vec{n} \times \vec{e}_{x} = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & 1 \\ \frac{V_{X}}{|\vec{V}_{\zeta}|} & \frac{V_{Y}}{|\vec{V}_{\zeta}|} & \frac{V_{Z}}{|\vec{V}_{\zeta}|} \end{pmatrix} = \begin{pmatrix} -\frac{V_{Y}}{|\vec{V}_{\zeta}|} & \frac{V_{X}}{|\vec{V}_{\zeta}|} & 0 \end{pmatrix}$$
(8)

Следовательно, в предположении малых уклонов дна (5) получаем следующее матричное преобразование

$$\begin{pmatrix}
\vec{e}_x \\
\vec{e}_y \\
\vec{n}
\end{pmatrix} = \begin{pmatrix}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\vec{i} \\
\vec{j} \\
\vec{k}
\end{pmatrix}, \qquad \cos \alpha = \frac{V_X}{|\vec{V}|}, \quad \sin \alpha = \frac{V_Y}{|\vec{V}|}, \quad (9)$$

которое будем использовать в данной работе.

2. Определяющие уравнения

Рассмотрим задачу эволюции донной поверхности $\zeta = \zeta(t,x,y)$ в канале с песчаным дном. Математическая модель задачи, является не замкнутой и требует определения придонных касательных напряжений $\vec{T} = (T_X, T_Y)$, придонного давления P и отметок уровня свободной поверхности потока η определяемых из решения внешней задачи гидродинамики.

Расчет изменения донной поверхности выполняется с использованием уравнения Экснера

$$(1-\varepsilon)\rho_s \frac{\partial \zeta}{\partial t} + \frac{\partial G_x}{\partial x} + \frac{\partial G_y}{\partial y} = 0$$
 (10)

и уравнений расхода влекомых наносов [1]

$$G_{x} = a - b \frac{\partial \zeta}{\partial x} - \frac{c}{s} \frac{\partial p}{\partial x}, \qquad G_{y} = -d \left(\frac{\partial \zeta}{\partial y} + \frac{1}{s} \frac{\partial p}{\partial y} \right). \tag{11}$$

Здесь

$$\begin{split} a &= G_0 A, \quad b = G_0 B, \quad c = G_0 C, \quad d = G_0 D, \\ A &= \max(0, 1 - \Xi), \quad B = \frac{1}{\cos \gamma \tan \varphi} \left(\frac{\Xi}{2} + A\right), \\ C &= \frac{A}{\cos \gamma \tan \varphi}, \quad D = \frac{4}{5} \frac{1}{\cos \gamma \tan \varphi}, \quad F_a = \left(\rho_s - \rho_w\right) g \tan \varphi \\ \Xi &= \sqrt{\frac{T_*}{|T|}}, \quad G_0 = G_1 \frac{T^{3/2}}{\cos \gamma}, \quad G_1 = \frac{4}{3} \frac{1}{F_a \kappa \sqrt{\rho_w} \left(1 - \varepsilon\right)}, \\ T_* &= T_0 \max \left(0, 1 + \frac{1}{\tan \varphi} \left(\frac{\partial \zeta}{\partial X} + \frac{\partial \zeta}{\partial Y}\right)\right), \quad T_0 = \frac{9}{8} \frac{\kappa^2}{c_x} \tan \varphi \left(\rho_s - \rho_w\right) g \, d_{50}, \\ s &= f \, \rho_b, \quad \rho_b = \frac{\rho_s - \rho}{\rho}, \qquad p = \frac{\rho \, g \, \eta + P}{\rho \, g}. \end{split}$$

где $\rho_{\rm s}$ - плотность песка, $\rho_{\rm w}$ - плотность жидкости, ε - пористость донного материала, d_{50} - средний диаметр донных частиц, f - концентрации влекомых частиц в активном придонном слое, φ - угол внутреннего трения

наносов; κ - коэффициент Кармана для водогрунтовой смеси $0.2 \le \kappa \le 0.41$, P - придонное давление (из которого вычтено гидростатическая составляющая).

3. Преобразование координат

Согласно определению (9) локальная система координат (x, y, z) связанна с декартовой глобальной системой координат X,Y,Z через поле придонной скорости гидродинамического потока $\vec{V} = (V_X, V_Y, V_Z)$

$$\cos \alpha = \frac{V_X}{|\vec{V}|}, \quad \sin \alpha = \frac{V_Y}{|\vec{V}|}$$
 (12)

Полагая, что в придонном слое справедливы условия $|V_Z| << |\vec{V}|$, $|\vec{V}||\vec{T}$, в уравнениях (12), вектор скоростей $|\vec{V}|$ можно заменить вектором придонных касательных напряжений $|\vec{T}| = (T_X, T_Y)$

$$\cos \alpha = \frac{T_X}{\sqrt{T_X^2 + T_Y^2}}, \qquad \sin \alpha = \frac{T_X}{\sqrt{T_X^2 + T_Y^2}}, \tag{13}$$

из которых следует условие $T_x = \sqrt{T_X^2 + T_Y^2}$, $T_y = 0$, необходимое [1] для вывода уравнений (11). Используя выражения (9), (13) получим

$$\begin{pmatrix}
\frac{\partial \zeta}{\partial x} \\
\frac{\partial \zeta}{\partial y}
\end{pmatrix} = J_k \begin{pmatrix}
\frac{\partial \zeta}{\partial X} \\
\frac{\partial \zeta}{\partial Y}
\end{pmatrix}, \quad
\begin{pmatrix}
\frac{\partial p}{\partial x} \\
\frac{\partial p}{\partial y}
\end{pmatrix} = J_k \begin{pmatrix}
\frac{\partial p}{\partial X} \\
\frac{\partial p}{\partial Y}
\end{pmatrix}, \quad
\begin{pmatrix}
G_x \\
G_y
\end{pmatrix} = J_k \begin{pmatrix}G_X \\
G_y
\end{pmatrix}, \quad (14)$$

где
$$J_k = egin{pmatrix} \cos lpha & \sin lpha \\ -\sin lpha & \cos lpha \end{pmatrix}$$
 - матрица Якоби.

С учетом (14) выражения (11) в декартовой системе координат примут вид

$$G_X = a\cos\alpha - \left(d(\sin\alpha)^2 + b(\cos\alpha)^2\right)\frac{\partial\zeta}{\partial X} + \cos\alpha\sin\alpha(d-b)\frac{\partial\zeta}{\partial Y} - \frac{1}{s}\left(c(\cos\alpha)^2 + d(\sin\alpha)^2\right)\frac{\partial p}{\partial X} + \frac{1}{s}(d-c)\cos\alpha\sin\alpha\frac{\partial p}{\partial Y},$$

$$G_{Y} = a \sin \alpha + (\cos \alpha \sin \alpha (d - b)) \frac{\partial \zeta}{\partial X} - (d(\cos \alpha)^{2} + b(\sin \alpha)^{2}) \frac{\partial \zeta}{\partial Y} - \frac{1}{s} (d - c) \cos \alpha \sin \alpha \frac{\partial p}{\partial X} - \frac{1}{s} (c(\sin \alpha)^{2} + d(\cos \alpha)^{2}) \frac{\partial p}{\partial Y}.$$

Выполняя подстановку данных уравнений, в уравнение Экснера (10) получим уравнение донных деформаций вида

$$(1-\varepsilon)\rho_{s}\frac{\partial\zeta}{\partial t} + \frac{\partial(a\cos\alpha)}{\partial X} + \frac{\partial(a\sin\alpha)}{\partial Y} - \frac{\partial}{\partial Y}\left(S_{xx}\frac{\partial\zeta}{\partial X}\right) - \frac{\partial}{\partial X}\left(S_{xy}\frac{\partial\zeta}{\partial Y}\right) - \frac{\partial}{\partial Y}\left(S_{yx}\frac{\partial\zeta}{\partial X}\right) - \frac{\partial}{\partial Y}\left(S_{yy}\frac{\partial\zeta}{\partial Y}\right) - \frac{\partial$$

Вводя обозначения $X_i = \begin{pmatrix} X,Y \end{pmatrix}$, $S_{ij} = \begin{pmatrix} S_{xx} & S_{xy} \\ S_{yx} & S_{yy} \end{pmatrix}$, $H_{ij} = \begin{pmatrix} H_{xx} & H_{xy} \\ H_{yx} & H_{yy} \end{pmatrix}$ из

уравнения (15) получим

$$(1-\varepsilon)\rho_{s}\frac{\partial\zeta}{\partial t} + \frac{\partial(a\cos\alpha)}{\partial X} + \frac{\partial(a\sin\alpha)}{\partial Y} - \frac{\partial}{\partial X_{i}}\left(S_{ij}\frac{\partial\zeta}{\partial X_{j}}\right) - \frac{\partial}{\partial X_{i}}\left(H_{ij}\frac{\partial p}{\partial X_{j}}\right) = 0,(16)$$

$$(1 - \varepsilon)\rho_{s} \frac{\partial \zeta}{\partial t} + \frac{\partial G_{i}}{\partial X_{i}} = 0$$

$$G_{i} = G_{i}^{0} - S_{ij} \frac{\partial \zeta}{\partial X_{i}} - H_{ij} \frac{\partial p}{\partial X_{i}}, \qquad G_{i}^{0} = (a\cos\alpha \quad a\sin\alpha)$$
(16)

где S_{ij} , H_{ij} - компоненты гравитационно-диффузионного и напорного тензоров, определяемых по формулам

$$S_{ij} = \begin{pmatrix} d(\sin \alpha)^2 + b_p(\cos \alpha)^2 & -\cos \alpha \sin \alpha (d - b_p) \\ -\cos \alpha \sin \alpha (d - b_p) & d(\cos \alpha)^2 + b_p(\sin \alpha)^2 \end{pmatrix}, \tag{17}$$

$$H_{ij} = \frac{1}{s} \begin{pmatrix} d(\sin \alpha)^2 + c(\cos \alpha)^2 & -\cos \alpha \sin \alpha (d - c) \\ -\cos \alpha \sin \alpha (d - c) & d(\cos \alpha)^2 + c(\sin \alpha)^2 \end{pmatrix}.$$
(18)

Рис. 2. Расчетная область

4. Математическая постановка задачи.

Рассмотрим задачу об эволюции дна песчаного речного русла, геометрия которого схематично представлена на рис 2. Для моделирования деформаций дна русла будем использовать уравнение (15)

$$(1-\varepsilon)\rho_{s}\frac{\partial\zeta}{\partial t} + \frac{\partial(a\cos\alpha)}{\partial X} + \frac{\partial(a\sin\alpha)}{\partial Y} - \frac{\partial}{\partial X}\left(S_{xx}\frac{\partial\zeta}{\partial X}\right) - \frac{\partial}{\partial X}\left(S_{xy}\frac{\partial\zeta}{\partial Y}\right) - \frac{\partial}{\partial Y}\left(S_{yx}\frac{\partial\zeta}{\partial X}\right) - \frac{\partial}{\partial Y}\left(S_{yy}\frac{\partial\zeta}{\partial Y}\right) - \frac{\partial$$

$$S_{ij} = \begin{pmatrix} d(\sin \alpha)^2 + b_p(\cos \alpha)^2 & -\cos \alpha \sin \alpha (d - b_p) \\ -\cos \alpha \sin \alpha (d - b_p) & d(\cos \alpha)^2 + b_p(\sin \alpha)^2 \end{pmatrix},$$
(17)

$$H_{ij} = \frac{1}{s} \begin{pmatrix} d(\sin \alpha)^2 + c(\cos \alpha)^2 & -\cos \alpha \sin \alpha (d - c) \\ -\cos \alpha \sin \alpha (d - c) & d(\cos \alpha)^2 + c(\sin \alpha)^2 \end{pmatrix}.$$
(18)

замыкаемое, начальными

$$\zeta(0, X_i) = \zeta_0(X_i), \qquad X_i \in \Omega, \tag{20}$$

и граничными условиями

$$\zeta(t, X_i) = \zeta_d(t, X_i), \qquad 0 \le t \le T, \quad X_i \in \Gamma_{\zeta}$$
 (21)

$$\frac{\partial \zeta(t, X_i)}{\partial X_i} = 0, \qquad 0 \le t \le T, \quad X_i \in \Gamma_q . \tag{22}$$

Рис. 3. Дискретизация расчетной области

5. Дискретизация расчетной области.

Рассмотрим (см. рис. 2) расчетную область длинной L и высотой H, разобьем ее на $i\max, j\max$ прямоугольников по осям X и Y соответственно получив дискретную расчетную область (см. рис. 3.).

Для удобства программирования расчетных алгоритмов на си подобных языках программирования (C, C++, C#, ...) повернем систему координат, в котором расположена дискретная расчетная область на 90 градусов по часовой стрелке. Введем следующие обозначения, необходимые для решения задачи (19)-(22): $i \max, j \max$ - количество контрольных объемов по осям i, j в расчетной области, $N_x = i \max + 1$, $N_y = j \max + 1$ - количество узлов по осям i, j в расчетной области.

Определим массивы данных связанных с узлами расчетной области: x_{ij}, x_{ij} i=0,..i max, j=0...j max - опорные координаты узлов расчетной области \square , $x_{ij}=i\,dx$, $y_{ij}=j\,dy$, L, H - длина и высота расчетной области.

Определим массивы данных связанные с интервалами расчетной области: $T_{X\,ij}, T_{Y\,ij}$ i=0,..M - значения касательных придонных напряжений.

Если придонное давление P_{ij} определено на контрольных объемах сетки, тогда $p_{ij} = \frac{P_{ij}}{\rho_{...}g}$, i=0,...N-1 - придонный напор.

6. Метод решения задачи

Для решения задачи (3)-(6) используется неявный дискретный аналог задачи, получаемый с использованием метода контрольных объемов [2].

Рассмотрим пример получения дискретного аналога, для случая когда $\eta = const$, P = const. Согласно методу контрольных объемов [2] для вторых

производных $\frac{\partial}{\partial X_i} \left(S_{ij} \frac{\partial \zeta}{\partial X_j} \right)$ мы получаем следующее контрольно объемное

приближение (см. рис.4)

Рис.4. Дискретный аналог и символьные обозначения индексов Введем обозначения для интервалов между узлами контрольных объемов

$$\delta e = de + dw_{+}, \ \delta w = dw + de_{-}, \ \delta n = dn + ds_{+}, \ \delta s = ds + dn_{-}.$$
 (23)

Определим безразмерные координаты границ контрольного объема

$$f_e = \frac{de}{\delta e}, \quad f_n = \frac{dn}{\delta n}, \quad f_w = \frac{dw}{\delta w}, \quad f_s = \frac{ds}{\delta s}, \quad k_e = \frac{h_e}{\delta e}, \quad k_w = \frac{h_w}{\delta w}, \quad k_n = \frac{h_n}{\delta n}, \quad k_s = \frac{h_s}{\delta s}.$$
 (24)

Для интерполяции функции для смешанных производных использовать функции формы

$$N_1 = (1 - f_x)(1 - f_y), \quad N_2 = f_x(1 - f_y), \quad N_3 = f_x f_y, \quad N_4 = (1 - f_x)f_y.$$
 (25)

При вычислении контрольно объемных интегралов будем использовать следующую интерполяцию диффузионных членов

$$S_{xx}^{e} = \frac{S_{xx}^{E} S_{xx}^{P}}{f_{e} S_{xx}^{P} + (1 - f_{e}) S_{xx}^{E}}, \quad S_{xx}^{w} = \frac{S_{xx}^{W} S_{xx}^{P}}{f_{w} S_{xx}^{P} + (1 - f_{w}) S_{xx}^{W}},$$
 (26)

$$S_{yy}^{n} = \frac{S_{yy}^{N} S_{yy}^{P}}{f_{n} S_{yy}^{P} + (1 - f_{n}) S_{yy}^{N}}, \quad S_{yy}^{s} = \frac{S_{yy}^{S} S_{yy}^{P}}{f_{s} S_{yy}^{P} + (1 - f_{s}) S_{yy}^{S}},$$
(27)

$$S_{xy}^{e} = \frac{S_{xy}^{E} S_{xy}^{P}}{f_{e} S_{xy}^{P} + (1 - f_{e}) S_{xy}^{E}}, \quad S_{xy}^{w} = \frac{S_{xy}^{W} S_{xy}^{P}}{f_{w} S_{xy}^{P} + (1 - f_{w}) S_{xy}^{W}},$$
(28)

$$S_{yx}^{n} = \frac{S_{yx}^{N} S_{yx}^{P}}{f_{n} S_{yx}^{P} + (1 - f_{n}) S_{yx}^{N}}, \quad S_{yx}^{s} = \frac{S_{yx}^{S} S_{yx}^{P}}{f_{s} S_{yx}^{P} + (1 - f_{s}) S_{yx}^{S}}.$$
 (29)

где
$$S_{ij}^{k} =$$

$$\begin{pmatrix} d^{k}(\sin \alpha)_{k}^{2} + b^{k}(\cos \alpha)_{k}^{2} & -(\cos \alpha \sin \alpha)_{k}(d^{k} - b^{k}) \\ -(\cos \alpha \sin \alpha)_{k}(d^{k} - b^{k}) & d^{k}(\cos \alpha)_{k}^{2} + b^{k}(\sin \alpha)_{k}^{2} \end{pmatrix},$$

$$(\cos \alpha)_k = \frac{T_X^k}{\sqrt{(T_X^k)^2 + (T_Y^k)^2}}, \quad (\sin \alpha)_k = \frac{T_Y^k}{\sqrt{(T_X^k)^2 + (T_Y^k)^2}},$$

k = P, E, W, N, S.

Диффузионные интегралы контрольно – объемного дискретного аналога позволяют получить алгебраические выражения

$$\int_{x_{w}y_{s}}^{x_{e}y_{n}} \frac{\partial}{\partial X} \left(S_{xx} \frac{\partial \zeta}{\partial X} \right) dx dy = \left(S_{xx} \frac{\partial \zeta}{\partial X} \right)_{e} h_{e} - \left(S_{xx} \frac{\partial \zeta}{\partial X} \right)_{w} h_{w} =$$

$$= h_{e} S_{xx}^{e} \frac{\zeta_{E} - \zeta_{P}}{\delta e} - h_{w} S_{xx}^{w} \frac{\zeta_{P} - \zeta_{W}}{\delta w} = A_{E}^{XX} \zeta_{E} + A_{P}^{XX} \zeta_{P} + A_{W}^{XX} \zeta_{W},$$
(30)

где $A_E^{XX} = k_e S_{xx}^e$, $A_P^{XX} = -(k_e S_{xx}^e + k_w S_{xx}^w)$, $A_W^{XX} = k_w S_{xx}^w$.

$$\int_{x_{w}y_{s}}^{x_{e}y_{n}} \frac{\partial}{\partial Y} \left(S_{yy} \frac{\partial \zeta}{\partial Y} \right) dx dy = \left(S_{yy} \frac{\partial \zeta}{\partial Y} \right)_{n} h_{n} - \left(S_{yy} \frac{\partial \zeta}{\partial X} \right)_{s} h_{n} =$$

$$= h_{n} S_{yy}^{n} \frac{\zeta_{N} - \zeta_{P}}{\delta n} - h_{s} S_{yy}^{s} \frac{\zeta_{P} - \zeta_{s}}{\delta s} = A_{N}^{YY} \zeta_{N} + A_{P}^{YY} \zeta_{P} + A_{S}^{YY} \zeta_{S}, \tag{31}$$

где
$$A_N^{YY} = k_n S_w^n$$
, $A_P^{YY} = -(k_n S_w^n + k_s S_w^s)$, $A_S^{YY} = k_s S_w^s \zeta_S$.

Используя интерполяции искомой функции, в точках опорной сетки

$$(f_{e}, f_{n}): \quad \zeta_{en} = N_{1} \zeta_{P} + N_{2} \zeta_{E} + N_{3} \zeta_{EN} + N_{4} \zeta_{N},$$

$$(f_{e}, f_{n-}): \quad \zeta_{es} = N_{1} \zeta_{S} + N_{2} \zeta_{ES} + N_{3} \zeta_{E} + N_{4} \zeta_{P},$$

$$(f_{e-}, f_{n}): \quad \zeta_{wn} = N_{1} \zeta_{W} + N_{2} \zeta_{P} + N_{3} \zeta_{N} + N_{4} \zeta_{WN},$$

$$(f_{e-}, f_{n-}): \quad \zeta_{ws} = N_{1} \zeta_{WS} + N_{2} \zeta_{S} + N_{3} \zeta_{P} + N_{4} \zeta_{W}.$$

$$(32)$$

где $f_{n-} = 1 - f_s$, $f_{e-} = 1 - f_w$, вычислим интегралы контрольно – объемного дискретного аналога для смешанных производных

$$\int_{x_{w}y_{s}}^{x_{e}y_{h}} \frac{\partial}{\partial X} \left(S_{xy} \frac{\partial \zeta}{\partial Y} \right) dx dy = \left(\frac{\partial \zeta}{\partial Y} \right)_{e} S_{xy}^{e} h_{e} - \left(\frac{\partial \zeta}{\partial Y} \right)_{w} S_{xy}^{w} h_{w} =$$

$$= \frac{\zeta_{en} - \zeta_{es}}{h_{e}} S_{xy}^{e} h_{e} - \frac{\zeta_{wn} - \zeta_{ws}}{h_{w}} S_{xy}^{w} h_{w} = \left(\zeta_{en} - \zeta_{es} \right) S_{xy}^{e} - \left(\zeta_{wn} - \zeta_{ws} \right) S_{xy}^{w} =$$

$$= A_{p}^{XY} \zeta_{p} + A_{EX}^{XY} \zeta_{E} + A_{W}^{XY} \zeta_{W} + A_{N}^{XY} \zeta_{N} + A_{S}^{XY} \zeta_{S} +$$

$$A_{EN}^{XY} \zeta_{EN} + A_{ES}^{XY} \zeta_{ES} + A_{WN}^{XY} \zeta_{WN} + A_{WS}^{XY} \zeta_{WS}$$
The
$$A_{p}^{XY} = \left[\left(1 - f_{e} \right) \left(1 - f_{n} \right) - \left(1 - f_{e} \right) \left(1 - f_{s} \right) \right] S_{xy}^{e} - \left[\left(1 - f_{w} \right) \left(1 - f_{n} \right) - \left(1 - f_{s} \right) \right] S_{xy}^{w},$$

$$A_{E}^{XY} = f_{e} \left[\left(1 - f_{n} \right) - \left(1 - f_{s} \right) \right] S_{xy}^{e}, \quad A_{W}^{XY} = -f_{w} \left[\left(1 - f_{n} \right) S_{xy}^{e} - \left(1 - f_{s} \right) S_{xy}^{w} \right],$$

$$A_{N}^{XY} = f_{n} \left[\left(1 - f_{e} \right) S_{xy}^{e} - \left(1 - f_{w} \right) S_{xy}^{w} \right], \quad A_{S}^{XY} = f_{s} \left[- \left(1 - f_{e} \right) S_{xy}^{e} + \left(1 - f_{w} \right) S_{xy}^{w} \right],$$

$$A_{EN}^{XY} = f_{e} f_{n} S_{xy}^{e}, \quad A_{ES}^{XY} = -f_{e} f_{s} S_{xy}^{e}, \quad A_{WN}^{XY} = -f_{w} f_{n} S_{xy}^{w}, \quad A_{WS}^{XY} = f_{w} f_{s} S_{xy}^{w}.$$

$$\int_{x_{w}}^{x_{w}} \frac{\partial}{\partial Y} \left(S_{yx} \frac{\partial \zeta}{\partial X} \right) dx dy = \left(\frac{\partial \zeta}{\partial Y} \right)_{n} S_{yx}^{n} h_{n} - \left(\frac{\partial \zeta}{\partial Y} \right)_{s} S_{yx}^{s} h_{s} =$$

$$= \frac{\zeta_{en} - \zeta_{wn}}{h_{n}} S_{yx}^{n} h_{n} - \frac{\zeta_{es} - \zeta_{ws}}{h_{s}} S_{yx}^{s} h_{s} = \left(\zeta_{en} - \zeta_{wn} \right) S_{yx}^{n} - \left(\zeta_{es} - \zeta_{ws} \right) S_{yx}^{s} =$$

$$= A_{P}^{YX} \zeta_{p} + A_{E}^{YX} \zeta_{E} + A_{W}^{YX} \zeta_{W} + A_{N}^{YX} \zeta_{N} + A_{S}^{YX} \zeta_{S} + A_{WS}^{YX} \zeta_{WS}.$$
(34)
$$= A_{PN}^{YX} \zeta_{p} + A_{E}^{YX} \zeta_{E} + A_{W}^{YX} \zeta_{W} + A_{N}^{YX} \zeta_{W} + A_{WS}^{YX} \zeta_{WS}.$$

Где

$$\begin{split} A_{P}^{YX} &= \left[(1 - f_{e})(1 - f_{n}) - (1 - f_{w})(1 - f_{n}) \right] S_{yx}^{n} - \left[- (1 - f_{w})(1 - f_{s}) + (1 - f_{e})(1 - f_{s}) \right] S_{yx}^{s} \,, \\ A_{E}^{YX} &= f_{e} \left[(1 - f_{n}) S_{yx}^{n} - (1 - f_{s}) S_{yx}^{s} \right] \,, \qquad A_{W}^{YX} = f_{w} \left[- (1 - f_{n}) S_{yx}^{n} + (1 - f_{s}) S_{yx}^{s} \right] \,, \\ A_{N}^{YX} &= f_{n} \left[- (1 - f_{s}) + (1 - f_{e}) \right] S_{yx}^{n} \,, \qquad A_{S}^{YX} = -f_{s} \left[(1 - f_{e}) - (1 - f_{w}) \right] S_{yx}^{s} \,, \\ A_{EN}^{YX} &= f_{e} f_{n} S_{yx}^{n} \,, \qquad A_{ES}^{YX} = -f_{e} f_{s} S_{yx}^{s} \,, \qquad A_{WN}^{YX} = -f_{w} f_{n} S_{yx}^{n} \,, \qquad A_{WS}^{YX} = f_{w} f_{s} S_{yx}^{s} \,. \end{split}$$

Согласно методу контрольных объемов нестационарный член уравнения (19)

$$\int_{x_w}^{x_e} \int_{y_s}^{y_n} \left((1 - \varepsilon) \rho_s \frac{\partial \zeta}{\partial t} \right) dx dy = (1 - \varepsilon) \rho_s \frac{\zeta_P - \zeta_P^0}{\Delta t} = A_P^0 \zeta_P - A_P^0 \zeta_P^0, \tag{35}$$
где $A_P^0 = \frac{(1 - \varepsilon) \rho_s}{\Delta t} V_P$, $V_P = \frac{h_e + h_w}{2} \frac{h_n + h_s}{2}$,

Правая часть уравнения (19)

$$S_{PC} = \int_{x_{w}y_{s}}^{x_{e}y_{n}} \left(\frac{\partial (a\cos\alpha)}{\partial X} + \frac{\partial (a\sin\alpha)}{\partial Y} \right) dx dy =$$

$$= (a\cos\alpha)_{e} h_{e} - (a\cos\alpha)_{w} h_{w} + (a\sin\alpha)_{n} h_{n} - (a\sin\alpha)_{s} h_{s}$$

$$a_{e} = \frac{a_{E} + a_{P}}{2}, \quad a_{w} = \frac{a_{W} + a_{P}}{2}, \quad a_{n} = \frac{a_{N} + a_{P}}{2}, \quad a_{s} = \frac{a_{S} + a_{P}}{2}$$

$$\text{где } (\cos\alpha)_{e} = \frac{T_{X}^{E} + T_{X}^{P}}{\sqrt{\left(T_{X}^{E} + T_{X}^{P}\right)^{2} + \left(T_{Y}^{E} + T_{Y}^{P}\right)^{2}}}, \quad (\cos\alpha)_{w} = \frac{T_{X}^{W} + T_{X}^{P}}{\sqrt{\left(T_{X}^{W} + T_{X}^{P}\right)^{2} + \left(T_{Y}^{W} + T_{Y}^{P}\right)^{2}}}$$

$$(\sin\alpha)_{n} = \frac{T_{Y}^{N} + T_{Y}^{P}}{\sqrt{\left(T_{X}^{N} + T_{X}^{P}\right)^{2} + \left(T_{Y}^{N} + T_{Y}^{P}\right)^{2}}}, \quad (\sin\alpha)_{s} = \frac{T_{Y}^{S} + T_{Y}^{P}}{\sqrt{\left(T_{X}^{S} + T_{Y}^{P}\right)^{2} + \left(T_{Y}^{S} + T_{Y}^{P}\right)^{2}}}$$

С учетом введенных обозначений дискретный аналог задачи для расчета эволюции уровня донной поверхности имеет вид:

Библиографические ссылки.

- 1. Петров А.Г., Потапов И.И. Избранные разделы русловой динамики. М.: Ленанд, 2019. 244 с.
- 2. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости.// М.: Энергоатомиздат. 1984. 124 с.
- 3. Потапов И.И., Бондаренко Б.В. Математическое моделирование эволюции берегового склона в каналах с песчаным руслом//Вычислительные технологии 2013. Т.18, № 4, С. 25-36.

Научное издание

Потапов Игорь Иванович

Библиотека для моделирования русловых процессов. Решения задачи об эволюции донной поверхности в канале с песчаным дном Часть V.

Препринт № 236 А

Утверждено к печати ученым советом Вычислительного центра ДВО РАН от 26.06.2022

Подписано в печать 12.12.20. Формат 60x84 $\frac{1}{16}$ Бумага писчая. Гарнитура «Times New Roman». Печать цифровая. Усл. печ. л. 0.64. Тираж 50 экз. Заказ 346.

Издательство ВЦ ДВО РАН 680000, Хабаровск, ул. Ким Ю Чена, 65.