Market Segmentation of Electronic Vehicles in India

Dataset Details: EV_cars_India

Dataset Details:

1] Brands and models of EVs in India with their attributes

2] State wise distribution of 2,3,4 wheeler EV s and passenger cars in India

31 Electric Vehicle Charging Stations In INDIA Analysis

Imports

importing the dependencies
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import numpy as np
import warnings
warnings.filterwarnings("ignore")

Fetching Datasets

fetching dataset - 1
df1=pd.read_csv('/content/EV_cars_India_2023 (3).csv')
df1

	Car_name	Car_price	Batter_cap	Drive_range	Power	Charge_time	transmission	Boot_space	Top_speed
0	MG Comet EV	7.98 lakh	17.3 kWh	230 km/full charge	41.42 Bhp	7 Hours	Automatic	NaN	NaN
1	Tata Tiago EV	8.69 - 11.99 lakh	19.2 KWh	250 km/full charge	60.34 - 73.75 Bhp	58 Min(10-80%)	240 L (Liters)	Automatic	NaN
2	Tata Tigor EV	12.49 - 13.75 lakh	26 kWh	315 km/full charge	73.75 Bhp	7.5h	316 L (Liters)	Automatic	NaN

3	MG ZS EV	23.38 - 27.40 lakh	50.3 kWh	461 km/full charge	174.33 Bhp	8.5 to 9 Hours	Automatic	NaN	NaN
4	BYD Atto 3	33.99 - 34.49 lakh	60.48 kWh	521 km/full charge	201.15 Bhp	9.5-10 Hours	440L L (Liters)	Automatic	NaN
5	Hyundai Kona Electric	23.84 - 24.03 lakh	39.2kWh	452 km/full charge	134.1 Bhp	6.16 Hours	Automatic	NaN	NaN
6	Mahindra XUV400 EV	15.99 - 18.99 lakh	34.5 kWh	375 s km/full charge	50min	Automatic	NaN	NaN	NaN
7	Tata Nexon EV Max	16.49 - 19.54 lakh	40.5 kWh	453 km/full charge	141.04 Bhp	15 Hours	350 L (Liters)	Automatic	NaN
8	Mercedes- Benz EQS	1.59 - 2.4 lakh	17.3 kWh	230 km/full charge	41.42 Bhp	7 Hours	Automatic	NaN	NaN
9	Audi e-tron GT	1.7 cr	19.2 KWh	250 km/full charge	60.34 - 73.75 Bhp	58 Min(10-80%)	240 L (Liters)	Automatic	NaN
10	BMW i4	73.90 - 77.50 lakh	26 kWh	315 km/full charge	73.75 Bhp	7.5h	316 L (Liters)	Automatic	NaN
11	BYD E6	29.15 lakh	50.3 kWh	461 km/full charge	174.33 Bhp	8.5 to 9 Hours	Automatic	NaN	NaN
12	Porsche Taycan	1.53 - 2.3 lakh	60.48 kWh	521 km/full charge	201.15 Bhp	9.5-10 Hours	440L L (Liters)	Automatic	NaN
13	Audi RS e- tron GT	1.9 cr	39.2kWh	452 km/full charge	134.1 Bhp	6.16 Hours	Automatic	NaN	NaN
14	Mahindra E Verito	9.13 - 9.46 lakh	34.5 kWh	375 s km/full charge	50min	Automatic	NaN	NaN	NaN
15	Strom Motors R3	4.50 lakh	40.5 kWh	453 km/full charge	141.04 Bhp	15 Hours	350 L (Liters)	Automatic	NaN
16	Tata Nexon EV Prime	14.49 - 17.19 lakh	71.7 kWh	415 km/full charge	93.87 Bhp	1.5H	580 L (Liters)	Automatic	NaN
4=	Hyundai	44.051.11	00 0 1 14/1	320 km/full	50 00 DI	40.511	0451 (1.11)	A ((*	

Automatic

NaN

Nan

NaN

315 L (Liters)

Automatic

18 Min

```
1/
                                                                56.22 Bnp
                                                                             10.5 Hours
                        44.95 lakn
                                     29.2 KVVN
             IONIQ 5
                                                       charge
                           60.95 -
                                                   708 km/full
                                                                 225.86 -
      18
              Kia EV6
                                     77.4 kWh
                                                                                (0-80\%)
                        65.95 lakh
                                                       charge 320.55 Bhp
df1.shape
     (30, 9)
df1.columns
     Index(['Car_name', 'Car_price', 'Batter_cap', 'Drive_range', 'Power',
             'Charge time', 'transmission', 'Boot space', 'Top speed'],
           dtype='object')
df1.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 30 entries, 0 to 29
     Data columns (total 9 columns):
                         Non-Null Count Dtype
          Column
      0
          Car_name
                         30 non-null
                                          object
          Car_price
                                          object
                         30 non-null
      1
                         27 non-null
                                          object
          Batter cap
          Drive_range
                                          object
                         30 non-null
      4
          Power
                         30 non-null
                                          object
      5
          Charge time
                         30 non-null
                                          object
          transmission
                                          object
                         28 non-null
      7
          Boot_space
                         12 non-null
                                          object
          Top_speed
                                          object
                         6 non-null
     dtypes: object(9)
     memory usage: 2.2+ KB
```

finding null values in the dataset

```
# finding null values in the dataset
df1.isnull().sum()
     Car_name
                      0
     Car_price
     Batter_cap
     Drive_range
     Power
     Charge_time
     transmission
                      2
     Boot_space
                     18
                     24
     Top_speed
     dtype: int64
```

df1.describe()

	Car_name	Car_price	Batter_cap	Drive_range	Power	Charge_time	transmission	Boot_space	Top_speed
count	30	30	27	30	30	30	28	12	6
unique	30	29	16	18	18	14	12	2	4
top	MG Comet EV	1.9 cr	17.3 kWh	230 km/full charge	41.42 Bhp	Automatic	Automatic	Automatic	200kmph
freq	1	2	2	2	2	7	12	10	3

```
def charge(dataframe):
    sbn.countplot(x=dataframe['Power'])
    plt.title('Count Plot of a Power')
    plt.xlabel('Power')
    plt.ylabel('Count')
charge
```

```
charge
def charge(dataframe)
<no docstring>
```

```
df2 = pd.read_csv("/content/EV Stats-1 (1).csv")
```

```
df2.shape
```

(30, 10)

df2.columns

df2.describe()

	S1. No	Two Wheelers (Category L1 & L2 as per Central Motor Vehicles Rules	Two Wheelers (Category L2 (CMVR))	Two Wheelers (Max power not exceeding 250 Watts)	Three Wheelers (Category L5 slow speed as per CMVR)	Three Wheelers (Category L5 as per CMVR)	Passenger Cars (Category M1 as per CMVR)	Buses	Total in state
count	30.000000	30.000000	30.000000	30.000000	30.000000	30.000000	30.000000	30.000000	30.000000
mean	15.500000	918.300000	468.966667	3751.266667	12.966667	24.000000	3519.033333	0.900000	8695.433333
std	8.803408	1482.441466	625.711098	4383.917198	30.737468	41.484521	4860.187299	3.835856	9911.814513
min	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	6.000000
25%	8.250000	19.000000	18.500000	65.000000	0.000000	0.000000	222.250000	0.000000	589.500000

df2.info()

/clace 'nandae cono frama DataErama's

```
\Ciass panuas.core.name.pacarrame /
     RangeIndex: 30 entries, 0 to 29
     Data columns (total 10 columns):
          Column
                                                                               Non-Null Count Dtype
          S1. No
                                                                               30 non-null
                                                                                               int64
      1
          State
                                                                               30 non-null
                                                                                               object
          Two Wheelers (Category L1 & L2 as per Central Motor Vehicles Rules 30 non-null
                                                                                               int64
          Two Wheelers (Category L2 (CMVR))
                                                                               30 non-null
                                                                                               int64
          Two Wheelers (Max power not exceeding 250 Watts)
                                                                               30 non-null
                                                                                               int64
          Three Wheelers (Category L5 slow speed as per CMVR)
                                                                               30 non-null
                                                                                               int64
          Three Wheelers (Category L5 as per CMVR)
                                                                               30 non-null
                                                                                               int64
          Passenger Cars (Category M1 as per CMVR)
                                                                               30 non-null
                                                                                               int64
      8
          Buses
                                                                               30 non-null
                                                                                               int64
          Total in state
                                                                               30 non-null
                                                                                               int64
     dtypes: int64(9), object(1)
     memory usage: 2.5+ KB
# finding null values in the dataset
df2.isnull().sum()
     S1. No
                                                                            0
     State
     Two Wheelers (Category L1 & L2 as per Central Motor Vehicles Rules
     Two Wheelers (Category L2 (CMVR))
     Two Wheelers (Max power not exceeding 250 Watts)
     Three Wheelers (Category L5 slow speed as per CMVR)
     Three Wheelers (Category L5 as per CMVR)
                                                                            0
     Passenger Cars (Category M1 as per CMVR)
     Buses
                                                                            0
     Total in state
     dtype: int64
```

Performing Exploratory Data Analysis(EDA)

Data Description and analysis for both datasets

getting a statistical summary of the datasets
d1 = df1.describe()
d2 = df2.describe()
display('<<< DATASET 1 >>>', d1, '<<< DATASET 2 >>>', d2)

'<<< DATASET 1 >>>'

	Car_name	e Car_price	Batter_cap	Drive_range	Power	Charge_time	transmission	Boot_space	Top_speed
count	30	0 30	27	30	30	30	28	12	6
unique	30	0 29	16	18	18	14	12	2	4
top	MG Come E\	1 U cr	17.3 kWh	230 km/full charge		Automatic	Automatic	Automatic	200kmph
freq		1 2	2	2	2	7	12	10	3
'<<< DA	ATASET 2 >>>	. '							
	Sl. No	Two Wheelers (Category L1 & L2 as per Central Motor Vehicles Rules	Two Wheelers (Category L2 (CMVR))	Two Wheelers (Max power not exceeding 250 Watts)	Three Wheelers (Category L5 slow speed as per CMVR)	Wheelers (Category L5 as per	Passenger Cars (Category M1 as per CMVR)	Buses	Total in state
count	30.000000	30.000000	30.000000	30.000000	30.00000	30.00000	30.000000	30.000000	30.000000
mean	15.500000	918.300000	468.966667	3751.266667	12.96666	7 24.000000	3519.033333	0.900000	8695.433333
std	8.803408	1482.441466	625.711098	4383.917198	30.737468	8 41.484521	4860.187299	3.835856	9911.814513
min	1.000000	0.000000	0.000000	0.000000	0.00000	0.000000	1.000000	0.000000	6.000000
050/	0.050000	40 000000	40 500000	<u> </u>	0 00000	0 000000	000 050000	0.00000	F00 F00000

checking the shape (# of rows and columns) of the datasets

print('DF1 Shape: ', df1.shape)
print('DF2 Shape: ', df2.shape)

DF1 Shape: (30, 9)

```
DF2 Shape: (30, 10)
# checking the info (columns, datatypes, nulls) of the datasets
print(' <<< DATASET 1 >>> ')
print(df1.info())
print('\n <<< DATASET 2 >>>')
print(df2.info())
      <<< DATASET 1 >>>
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 30 entries, 0 to 29
     Data columns (total 9 columns):
      #
          Column
                         Non-Null Count Dtype
     - - -
          Car name
                         30 non-null
                                         object
      1
          Car_price
                         30 non-null
                                         object
                         27 non-null
      2
          Batter_cap
                                         object
      3
          Drive range
                         30 non-null
                                         object
                                         object
      4
          Power
                         30 non-null
      5
                         30 non-null
                                         object
          Charge time
          transmission 28 non-null
                                         object
      7
          Boot_space
                         12 non-null
                                         object
      8
          Top speed
                         6 non-null
                                         object
     dtypes: object(9)
     memory usage: 2.2+ KB
     None
      <<< DATASET 2 >>>
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 30 entries, 0 to 29
     Data columns (total 10 columns):
      #
          Column
                                                                                Non-Null Count
                                                                                                Dtype
          S1. No
      0
                                                                                30 non-null
                                                                                                 int64
      1
          State
                                                                                30 non-null
                                                                                                 object
      2
          Two Wheelers (Category L1 & L2 as per Central Motor Vehicles Rules
                                                                                30 non-null
                                                                                                 int64
          Two Wheelers (Category L2 (CMVR))
      3
                                                                                30 non-null
                                                                                                 int64
          Two Wheelers (Max power not exceeding 250 Watts)
                                                                                30 non-null
                                                                                                 int64
          Three Wheelers (Category L5 slow speed as per CMVR)
                                                                                                 int64
                                                                                30 non-null
                                                                                                 int64
      6
          Three Wheelers (Category L5 as per CMVR)
                                                                                30 non-null
                                                                                                 in+61
          Daccongon Cane (Catogony M1 ac non CMI/D)
                                                                                20 non-nu11
```

```
8 Buses
9 Total in state
dtypes: int64(9), object(1)
memory usage: 2.5+ KB
None
```

Analysis of 2 Wheeler EVs

UttarPradesh, Gujrat, Haryana are among the top states with the majority of EV 2W vehicles, while the remaining states have less number.

```
# Sum the three columns to get the total number of two-wheeler vehicles
df2['Total Two Wheelers'] = df2[['Two Wheelers (Category L1 & L2 as per Central Motor Vehicles Rules',
                               'Two Wheelers (Category L2 (CMVR))',
                               'Two Wheelers (Max power not exceeding 250 Watts)']].sum(axis=1)
# Create a barplot using seaborn
plt.figure(figsize=(10, 6))
sns.set(style="whitegrid") # Optional: Set the style of the plot
# Plot the total number of two-wheeler vehicles using sns.barplot
sns.barplot(x="Total Two Wheelers", y="State", data=df2, orient="h")
# Customize plot labels and appearance
plt.xlabel("Total Number of Two-Wheeler Vehicles")
plt.ylabel("State")
plt.title("Total Number of Two-Wheeler Vehicles in Each State (Sum of Categories)")
# Show the plot
plt.tight_layout()
plt.show()
```


OBSERVATION

UttarPradesh, Gujrat, Haryana are among the top states with the majority of EV 2W vehicles, while the remaining states have less number.

Analysis of 3 wheeler EV s

UttarPradesh, Chattisgarh, Haryana are among the top states with the majority of EV 3W vehicles, while the remaining states have less **number**

OBSERVATION

UttarPradesh, Chattisgarh, Haryana are among the top states with the majority of EV 3W vehicles, while the remaining states have less number

Analysis of Buses

Delhi, Goa, Maharashtra, Kerela and Karnataka are among the only states with EV buses in India.

```
# 4 wheelers data visualization from dataset 1
plt.figure(figsize=(6, 6))
sns.barplot(data=df2, y=df2['State'].sort_values(ascending=True), x='Buses', palette='viridis')
plt.ylabel('State', fontsize=14, family='serif')
plt.xlabel('Number of EV: Buses', family='serif', fontsize=14, labelpad=10)
plt.xticks(family='serif')
plt.yticks(family='serif')
plt.title(label='Statewise Electric Vehicles buses in india', weight=200, family='serif', size=15, pad=12)
plt.show()
```

Statewise Electric Vehicles buses in india

Analysis of Passenger Cars

```
# Sum the three columns to get the total number of two-wheeler vehicles
df2['Total Passenger cars'] = df2[['Passenger Cars (Category M1 as per CMVR)']].sum(axis=1)
# Create a barplot using seaborn
plt.figure(figsize=(10, 6))
sns.set(style="whitegrid") # Optional: Set the style of the plot
# Plot the total number of two-wheeler vehicles using sns.barplot
sns.barplot(x="Total Passenger cars", y="State", data=df2, orient="h")
# Customize plot labels and appearance
plt.xlabel("Total Number of Passenger cars")
plt.ylabel("State")
plt.title("Total Number of passenger cars in Each State (Sum of Categories)")
# Show the plot
plt.tight_layout()
plt.show()
```


Brand wise EV analysis

```
# brand-wise count of EV models
sns.catplot(data=df1, x= 'Car_name', kind='count',palette='magma', height=6, aspect=2)
sns.despine(right=False, top=False)
plt.tick_params(axis='x', rotation=40)
plt.xlabel('Car_name',family='serif', size=12)
plt.ylabel('Count', family='serif', size=20)
plt.xticks(family='serif')
plt.yticks(family='serif')
plt.title('Number of EV Models Manufactured by a Car name', family='serif', size=15)
```

plt.show()

ANALYSIS OF DISTRIBUTION OF DIFFERNT CAR PRICE IN EV

```
from matplotlib import cm
dataset = df1['Car_price'].value_counts()
plt.show()
# Calculate the percentage of each price
total_count = len(df1) # Total count of records
percentages = (dataset / total_count) * 100
# Define a custom color palette using the "magma" colormap
colors = cm.magma r(percentages / 100) # Map colors to percentages
plt.figure(figsize=(5,5))
plt.pie(dataset, labels=dataset.index, autopct='%1.1f%%', colors=colors)
plt.title('Distribution of Car-price')
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()
                                       istribution of Car-price
                     1.02 - 1.2 lakh
                                                                 74.50 lakh
                    52.50 lakh
                                                                     4.50 lakh
                      1.2 cr
                                                                        7.98 lakh
       60.95 - 65.95 lakh
                                   3.3%
                                                                           1.9 cr
                                  3.3%
                                                             6.7%
              44.95 lakh
                                  3.3%
                                                             2 30%
```


EV available in india

```
from matplotlib import cm
dataset = df1['Car_name'].value_counts()

plt.figure(figsize=(5,5))
plt.pie(dataset, labels=dataset.index, autopct='%1.1f%%', colors=colors)
plt.title('Different types of EV IN INDIA')
plt.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()
```


Electric Vehicles of Different Battery Capacity in India

```
dataset = df1['Batter_cap'].value_counts()

# Calculate the percentage of each body style
total_count = len(df1)  # Total count of records
percentages = (dataset / total_count) * 100

# Define a custom color palette using the "magma" colormap
colors = cm.viridis_r(percentages / 100)  # Map colors to percentages

plt.figure(figsize=(5,5))
plt.pie(dataset, labels=dataset.index, autopct='%1.1f%%', colors=colors)
plt.title('Electric Vehicles of Different Battery Capacity in India')
plt.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.

plt.show()

Electric Vehicles of Different Battery Capacity in India
50.3 kWh
60.48 kWh
26 kWh
```


Power vs. Drive_range

```
# Categorical plot: Power vs. Drive_range
plt.figure(figsize=(10, 6))
custom_palette = sns.color_palette("Set1")
sns.countplot(data=df1, x='Power', hue='Drive_range', palette=custom_palette)
plt.title('Power vs. Drive_range')
plt.xlabel('Power')
plt.ylabel('Count')
plt.legend(title='Drive_range', loc='upper right')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()
```


Power vs. Drive_range

```
# Categorical plot: Power vs. Charge_time
plt.figure(figsize=(10, 6))
custom_palette = sns.color_palette("Set1")
sns.countplot(data=df1, x='Power', hue='Charge_time', palette=custom_palette)
plt.title('Power vs. Charge_time')
plt.xlabel('Power')
plt.ylabel('Count')
plt.legend(title='Charge_time', loc='upper right')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()
```


Car_price Comparison

```
# plotting the price from dataset 2
plt.plot(df1['Car_price'], color='c')
plt.xlabel('Number of Samples', family='serif', size=12)
plt.ylabel('Car_price', family='serif', size=12)
plt.title('Car_price Comparison', family='serif', size=15, pad=12);
```

Car_price Comparison

Car_price Distribution

```
plt.figure(figsize=(8, 6))
sns.boxplot(data=df1, y='Car_price', color='c')
plt.ylabel('Car_price', family='serif', size=12)
plt.title ('Car_price Distribution', family='serif', size=15, pad=12)
    Text(0.5, 1.0, 'Car_price Distribution')
```

Car_price Distribution

Importing another dataset for analysis of electric charging stations in (INDIA).

df3 = pd.read_csv("/content/electric_vehicle_charging_station_list (2).csv")
df3.head()

	no	region	address	aux addres	latitude	longitude	type	power	service
0	1	NDMC	Prithviraj Market, Rabindra Nagar, New Delhi	Electric Vehicle Charger, Prithviraj Market, R	28.600725	77.226252	DC-001	15 kW	Self Service
1	2	NDMC	Prithviraj Market, Rabindra Nagar, New Delhi	Electric Vehicle Charger, Prithviraj Market, R	28.600725	77.226252	DC-001	15 kW	Self Service
2	3	NDMC	Outside RWA Park, Jor Bagh Market, Jor Bagh Co	Electric Vehicle Charger, Outside RWA Park, Jo	28.588303	77.217697	DC-001	15 kW	Self Service
_			Opposite Dory Pharmacy.	Electric Vehicle Charger.	00 500054		DO 004	15	Self

print('DF3 Shape: ', df3.shape)

DF3 Shape: (202, 9)

d3 = df3.describe()

```
display('<<< DATASET 3 >>>', d3, '<<< DATASET 3 >>>')
   '<<< DATASET 3 >>>'
```

	no	latitude	longitude
count	202.000000	202.000000	202.000000
mean	101.500000	25.960987	78.418002
std	58.456537	5.616108	3.097664
min	1.000000	8.481051	76.277781
25%	51.250000	28.535516	77.212996
50%	101.500000	28.580286	77.226252
75%	151.750000	28.617783	77.375216
max	202.000000	28.642892	88.509064
'<<< DA	TASET 3 >>>	•	

Scatter plot for Latitude and Longitude Charging Station in INDIA

```
# Scatter plot for Latitude and Longitude
plt.figure(figsize=(10, 6))
plt.scatter(df3['longitude'], df3['latitude'], alpha=0.5)
plt.title('Scatter Plot of Latitude vs Longitude')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.grid(True)
plt.show()

# Pie chart for 'type' column
type_counts = df3['type'].value_counts()
plt.figure(figsize=(8, 8))
plt.pie(type_counts, labels=type_counts.index, autopct='%1.1f%%', startangle=140)
nlt title('Distribution of Types')
```

```
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()

# Basic Analysis
print("Basic Analysis:")
print("Total number of data points:", len(df3))
print("Unique types:", df3['type'].nunique())
print("\nTypes Distribution:")
print(type_counts)
```


Longitude

state_grouped = df2.groupby('State').sum()

State			
Andaman & Nicobar islands	82	274	0.299270
Andhra Pradesh	9492	28477	0.333322
Assam	1875	5627	0.333215
Bihar	3171	9516	0.333228
Chandigarh	2500	7529	0.332049
Chhattisgarh	4234	12706	0.333228
Dadra and Nagar Haveli	816	2478	0.329298
Delhi	19381	58127	0.333425
Goa	514	1547	0.332256
Gujarat	31267	93808	0.333308
Haryana	23589	70775	0.333296
Himachal Pradesh	98	303	0.323432
Jammu & Kashmir	438	1324	0.330816
Jharkhand	1710	5141	0.332620
Karnataka	13386	40168	0.333250
Kerala	11202	33618	0.333214
Madhya Pradesh	6461	19397	0.333093
Maharashtra	34013	102052	0.333291
Manipur	52	172	0.302326
Meghalaya	6	35	0.171429
Nagaland	24	90	0.266667
Odisha	3863	11608	0.332788
Punjab	6538	19634	0.332994
Rajasthan	15763	47310	0.333185
Tamil Nadu	16746	50260	0.333187
Telangana	9034	27125	0.333051
Tripura	81	267	0.303371
Uttar Pradesh	26209	78652	0.333227
Uttarkhand	4178	12560	0.332643
West Bengal	14140	42447	0.333121

```
# Add additional analysis
state_grouped['Total Vehicles'] = state_grouped.sum(axis=1)
state_grouped['Average Vehicles'] = state_grouped['Total in state'] / state_grouped['Total Vehicles']
# Visual representation with diagrams and graphs
plt.figure(figsize=(12, 6))
```

```
# Bar plot for average vehicles per state
plt.subplot(1, 3, 3)
state_grouped['Average Vehicles'].sort_values(ascending=False).plot(kind='bar', color='Yellow')
plt.title('Average Vehicles per State')
plt.xlabel('State')
plt.ylabel('Average Vehicles')

plt.tight_layout()
plt.show()
```


Anc

State

```
state_grouped = df2.groupby('State').sum()

# Add additional analysis
state_grouped['Total Vehicles'] = state_grouped.sum(axis=1)
state_grouped['Average Vehicles'] = state_grouped['Total in state'] / state_grouped['Total Vehicles']

# Visual representation with diagrams and graphs
plt.figure(figsize=(12, 6))

# Bar plot for total vehicles per state
plt.subplot(1, 3, 1)
state_grouped['Total in state'].sort_values(ascending=False).plot(kind='bar', color='red')
plt.title('Total Vehicles per State')
plt.xlabel('State')
plt.ylabel('Total Vehicles')

Text(0, 0.5, 'Total Vehicles')
```


Charging Stations Sanctioned

```
# charging stations sanctioned visualization from dataset
plt.figure(figsize=(6, 6))
sns.barplot(data=df3)
plt.ylabel('State', fontsize=14, family='serif')
plt.xlabel('Number of Charging Stati"ons', family='serif', fontsize=14, labelpad=10)
plt.xticks(family='serif')
plt.yticks(family='serif')
plt.title(label='Number of Charging Stations Sanctioned in India', weight=200, family='serif', size=15, pad=12)
plt.show()
```

Number of Charging Stations Sanctioned in India

Number of Charging Stati"ons

OBSERVATION

Observation: Maharashtra, Gujarat, Karnataka, Kerala, Uttar Pradesh, Rajasthan, and Andhra Pradhesh are among the top states with the majority of EV charging stations sanctioned while the remaining states have less number of the same.

Retail Outlets For Charging EVs In INDIA

```
# retail outlets visualization from dataset - 2
plt.figure(figsize=(6, 8))
sns.pointplot(data=df3, color='orange')
plt.xlabel('Number of Retail Outlets for Charging EVs', family='serif', size=12, labelpad=10)
plt.ylabel('State/Ut', family='serif', size=12)
plt.tick_params(direction='inout')
plt.xticks(family='serif', size=10)
plt.yticks(family='serif', size=10)
plt.title(label='Available Retail Outlets for Charging EVs in India', weight=200, family='serif', size=15, pad=12)
plt.show()
```

Available Retail Outlets for Charging EVs in India

Number of Retail Outlets for Charging EVs

```
# brand-wise count of EV models
sns.catplot(data=df3, palette='viridis', height=6, aspect=2)
sns.despine(right=False, top=False)
plt.tick_params(axis='x', rotation=40)
plt.xlabel('Brand',family='serif', size=12)
plt.ylabel('Count', family='serif', size=12)
plt.xticks(family='serif')
plt.yticks(family='serif')
plt.title('Number of EV Models Manufactured by a Brand', family='serif', size=15)
plt.show()
```


*Conclusion *

Based on the above analysis and visualizations, it would be really helpful for any company which is looking to open up an EV startup in India. In this report the analysis of different datasets related to EV have been done on

1] Brands and models of EVs in India with their attributes

2] State wise distribution of 2,3,4 wheeler EV s and passenger cars in India

- 3] Electric Vehicle Charging Stations In INDIA Analysis.
- -The study concludes that understanding the different segments in the Indian EV market is crucial for EV manufactures and marketers to effectively target their customers and promote adoption of EV in India. We have came up with conclusions are as follows related to EV
 - UttarPradesh, Gujrat, Haryana are among the top states with the majority of EV 2W vehicles, while the remaining states have less number
 - UttarPradesh, Chattisgarh, Haryana are among the top states with the majority of EV 3W vehicles, while the remaining states have less number
 - Delhi, Goa, Maharashtra, Kerela and Karnataka are among the only states with EV buses in India .
 - Maharashtra, Gujarat, Karnataka, Kerala, Uttar Pradesh, Rajasthan, and Andhra Pradhesh are among the top states with the majority of EV charging stations sanctioned while the remaining states have less number of the same.

Start coding or generate with AI.