ÉLECTRONIQUE TOUT LE COURS EN FICHES

IUT · Licence · Écoles d'ingénieurs

Sous la direction d'Yves Granjon Professeur à l'université de Lorraine, directeur du Collégium Lorraine INP

Bruno Estibals
Professeur à l'université Paul Sabatier (Toulouse III)
Chef du département GEII de l'IUT

Serge Weber
Professeur à l'université de Lorraine

Illustration de couverture : Circuit Board © Raimundas - Fotolia.com

DANGER

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que représente pour l'avenir de l'écrit,

particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

5 rue Laromiguière, 75005 Paris www.dunod.com

ISBN 978-2-10-072222-8

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

Table des matières

Avant-propos					
Comment utiliser cet ouvrage ?					
Remerciements					
Chapitr	e 1 Principes généraux de l'électrocinétique	1			
Fiche 1	Généralités et conventions	2			
Fiche 2	Les différents types de générateurs	4			
Fiche 3	Les dipôles passifs linéaires usuels	6			
Fiche 4	Les régimes électriques dans les circuits	8			
Fiche 5	Les lois de Kirchhoff en régime continu	10			
Fiche 6	Le théorème de Millman	12			
Fiche 7	Les ponts diviseurs	14			
Fiche 8	Le principe de superposition	16			
Fiche 9	Les théorèmes de Thévenin et Norton	18			
Fiche 10	Les circuits linéaires en régime sinusoïdal	20			
Fiche 11	Le modèle complexe en régime sinusoïdal	22			
Fiche 12	Le régime sinusoïdal – Méthode	24			
Fiche 13	La puissance électrique	26			
Fiche 14	La puissance en régime sinusoïdal	28			
Fiche 15	La modélisation des quadripôles 1	30			
Fiche 16	La modélisation des quadripôles 2	32			
Fiche 17	Les schémas équivalents	2.4			
Facus	des quadripôles	34			
Focus	AC/DC	36			
QCM		37			
Exercices		39			
Chapitr	e 2 Signaux et systèmes	43			
Fiche 18	La notion de spectre	44			
Fiche 19	Le spectre des signaux périodiques	46			
Fiche 20	Le spectre des signaux non périodiques	48			
Fiche 21	La transformation de Laplace 1	50			
Fiche 22	La transformation de Laplace 2	52			
Fiche 23	La fonction de transfert d'un système	54			
Fiche 24	Les méthodes de résolution des problèmes	56			
Focus	Signaux analogiques et signaux numériques	58			
QCM	5 · · · · · · · · · · · · · · · · · · ·	59			
Exercices		61			
Chapitr	e 3 Les diodes	63			
Fiche 25	La conduction électrique intrinsèque	64			
Fiche 26	La diode à jonction	66			
Fiche 27	Le principe de fonctionnement de la diode	68			
Fiche 28	Les caractéristiques électriques de la diode	70			
Fiche 29	La polarisation de la diode	72			
Fiche 30	La puissance dissipée dans une diode	74			
	. F				

Fiche 32	Le redressement double alternance	78
Fiche 33	Les régulateurs de tension	80
Focus	Les ancêtres des semi-conducteurs	82
QCM		83
Exercices		85
Chapitr	e 4 Les transistors bipolaires	87
Fiche 34	Le transistor bipolaire	88
Fiche 35	La polarisation d'un transistor	90
Fiche 36	L'approche physique de la polarisation	92
Fiche 37	Le fonctionnement en commutation	94
Fiche 38	Les montages à plusieurs transistors	96
Focus	Toute une gamme de transistors	98
QCM		99
Exercices		101
Chapitre	e 5 Les transistors bipolaires en régime dynamique	103
Fiche 39	Les paramètres hybrides du transistor NPN	104
Fiche 40	Le schéma équivalent du transistor	106
Fiche 41	Les amplificateurs	108
Fiche 42	L'amplificateur à émetteur commun	110
Fiche 43	L'amplificateur à collecteur commun	112
Fiche 44	L'amplificateur à base commune	114
Fiche 45	Le montage push-pull	116
Fiche 46	Le montage push-pull à correction de distorsion	118
Fiche 47	L'amplificateur différentiel simple	120
Fiche 48	La réjection du mode commun	122
Fiche 49	Le montage Darlington en régime variable	124
Focus	Les différentes classes d'amplificateurs	126
QCM		127
Exercices		129
Chapitre	e 6 Les amplificateurs opérationnels en régime linéaire	131
Fiche 50	Les caractéristiques de l'amplificateur opérationnel	132
Fiche 51	Le fonctionnement linéaire de l'amplificateur opérationnel	134
Fiche 52	Les additionneurs et les soustracteurs	136
Fiche 53	Les montages évolués	138
Fiche 54	De la théorie à la pratique	140
Fiche 55	Les montages dérivateurs et intégrateurs	142
Fiche 56	L'oscillateur à pont de Wien	144
Focus	Quand l'électronique résout les problèmes de physique	146
QCM		147
Exercices		149
Chapitre	e 7 Les filtres analogiques linéaires	153
Fiche 57	Les diagrammes de Bode	154
Fiche 58	Les diagrammes de Bode asymptotiques	156
Fiche 59	Les différents types de filtres	158
Fiche 60	Le filtre passif passe-bas du premier ordre	160
Fiche 61	Le filtre actif passe-bande	162

Focus QCM Exercices	Musique!	164 165 167
Chapitr	e 8 Les amplificateurs opérationnels en régime non linéaire	171
Fiche 64	Le comparateur Le basculement d'un comparateur Le trigger de Schmitt inverseur Le trigger de Schmitt non inverseur Les montages astables et monostables Le circuit intégré 555	172 174 176 178 180 182 183
Chapitr	e 9 Les transistors à effet de champ	189
Fiche 67 Fiche 68 Fiche 69 Fiche 70 Fiche 71 Focus QCM Exercices	Les transistors à effet de champ à jonction La polarisation des transistors JFET Le schéma équivalent en régime linéaire Les amplificateurs à JFET Les transistors JFET en commutation Le bruit de fond	190 192 194 196 198 200 201 203
Chapitr	e 10 Les circuits logiques combinatoires	207
Fiche 73 Fiche 74 Fiche 75 Fiche 76 Fiche 77 Fiche 78 Fiche 80 Fiche 81 Fiche 82 Fiche 83 Focus QCM Exercices	Les fonctions logiques Les nombres binaires entiers L'algèbre de Boole Les circuits logiques combinatoires Méthode de conception d'un circuit combinatoire Simplification des fonctions logiques Multiplexeur, démultiplexeur Encodeurs et décodeurs Le comparateur L'additionneur Le soustracteur Les caractéristiques technologiques des circuits combinatoires Du cristal de silicium à l'ordinateur	208 210 212 214 216 218 220 222 224 226 230 232 233 235
Chapitr		239
Fiche 85 Fiche 86 Fiche 87	La logique séquentielle La fonction séquentielle synchrone Les registres Les compteurs Les machines à nombre fini d'états L'analyse de machines d'état La synthèse des machines d'état Le graphe d'état pour les systèmes non conditionnés	240 242 244 246 248 250 252 254
	Le graphe d'état pour les systèmes à évolution conditionnelle	254

Fiche 93	Les caractéristiques temporelles des systèmes séquentiels	258
Focus	Fabrication d'un circuit intégré	260
QCM		261
Exercices		263
Chapitre	e 12 Les technologies des circuits numériques	267
Fiche 94	Circuits TTL et CMOS	268
Fiche 95	La classification des circuits numériques	270
Fiche 96	Les circuits PLD	272
Fiche 97	Les circuits FPGA	274
Fiche 98	Mémoires, notions générales	276
Fiche 99	Mémoires RAM et PROM	278
Fiche 100	Les circuits combinatoires à base de RAM	280
Fiche 101	Les machines d'états à base de mémoire et registre	282
Focus	Les nouvelles technologies mémoire	284
QCM		285
Exercices		287
Chapitre	e 13 Éléments d'instrumentation et de mesure	289
Fiche 102	La mesure du courant	290
Fiche 103	La mesure d'une tension	292
Fiche 104	L'oscilloscope	294
Fiche 105	Les sondes de courant et différentielle	296
Fiche 106	La chaîne d'instrumentation	298
	Les capteurs : principes généraux	300
Fiche 108	Les capteurs actifs	302
Fiche 109	Les capteurs passifs	304
Fiche 110	Les convertisseurs analogique-numérique	306
Fiche 111	Les convertisseurs numérique-analogique	308
Focus	Les capteurs solaires photovoltaïques	310
QCM		311
Exercices		313
Chapitre	e 14 Éléments d'électronique de puissance	317
Fiche 112	Les composants en régime de commutation	318
	Introduction à l'électronique de puissance	320
Fiche 114	Les hacheurs série et parallèle	322
	Le hacheur série en conduction continue	324
	Le hacheur série en conduction discontinue	326
	Le hacheur parallèle en conduction continue	328
	Le hacheur parallèle en conduction discontinue	330
	Les hacheurs à accumulation	332
	Les hacheurs à accumulation inductive en conduction continue	334
	Les onduleurs et la structure de pont en H	336
Focus	Les convertisseurs et le photovoltaïque	338
QCM		339
Exercices		341
Corrigés o	des exercices	343
Annexes		429
Index		435

Avant-propos

L'électronique est la discipline qui s'intéresse aux dispositifs électriques construits autour de la technologie des semi-conducteurs. La plupart du temps, les courants et les tensions mis en œuvre restent de faible amplitude, excepté en électronique de puissance.

Le traitement du signal, les automatismes, l'informatique et d'une manière plus générale, une grande partie des appareils que nous utilisons quotidiennement possèdent des systèmes électroniques. Que ce soit pour la commande des processus, le traitement de l'information, le contrôle ou la mesure des phénomènes, l'électronique apporte des solutions simples, fiables et souples à un grand nombre de problèmes techniques.

Cet ouvrage rassemble toutes les notions fondamentales de l'électronique : de la diode à jonction jusqu'aux systèmes logiques, en passant par les montages à transistors et à amplificateurs opérationnels. Il aborde également les bases de l'électronique de puissance qui, traditionnellement, sont plutôt étudiées en électrotechnique mais dont nous avons estimé qu'elles avaient leur place au sein d'un ouvrage consacré à l'électronique.

Il est structuré en cent vingt et une fiches et en quatorze chapitres développant chacun un thème particulier. Chaque fiche aborde un composant, un montage ou un principe. À la fin de chaque chapitre, le lecteur pourra pousser sa réflexion un peu plus loin à l'aide des focus proposés qui mettent en exergue des thématiques particulières. Après un QCM qui lui permettra de tester ses connaissances et de valider ses acquis, il pourra ensuite s'entraîner avec des exercices et des problèmes entièrement corrigés. Les solutions sont présentées dans leurs moindres détails en insistant systématiquement sur les méthodes à assimiler et sur le savoir-faire à acquérir absolument pour être capable de résoudre n'importe quel problème d'électronique. Chaque chapitre propose des exercices de difficultés variées. Il est conseillé de les aborder dans l'ordre, sans chercher à brûler les étapes en négligeant tel ou tel qui paraît trop facile et sans succomber à la tentation de lire trop rapidement la solution. Certains de ces exercices sont de grands classiques ; d'autres sont plus originaux. Ils ont tous vocation à guider l'étudiant vers la maîtrise de l'électronique et des fonctions qu'elle permet de réaliser, et de l'aider à acquérir suffisamment d'aisance pour aborder avec succès des problèmes de plus en plus sophistiqués.

L'électronique n'est pas une discipline extrêmement compliquée pour qui l'aborde avec rigueur et méthode. Elle nécessite toutefois que le lecteur soit familiarisé avec les lois fondamentales de l'électrocinétique, que ce soit en régime continu, sinusoïdal ou transitoire. Ces notions sont rappelées dans le premier chapitre qui rassemble les principaux résultats et théorèmes qu'il est indispensable de connaître.

Les prérequis de mathématiques de l'électronique ne sont pas nombreux : ils concernent l'analyse des fonctions réelles, le calcul différentiel et intégral et les nombres complexes. Le formulaire situé en annexe à la fin de l'ouvrage regroupe toutes les formules de mathématiques utiles à l'électronicien.

Cet ouvrage a été conçu avec le souci constant de rendre l'électronique accessible au plus grand nombre. Nous souhaitons que chaque lecteur puisse y trouver les clés de sa réussite.

Comment utiliser

Les notions essentielles avec des renvois pour naviguer d'une fiche à l'autre

cet ouvrage?

Des exercices en fin de chapitre pour réviser (corrigés en fin d'ouvrage) EXERCICES Les certigés out regroupée en fin d'ouvrage (p. 600). 1.1 Le schéma de la figure ci-descont représent une association de quere révisance. Diterminer la résisance équivaleme du dipolé AB ainsi tome par cette association. A 1-00 A 00 A 1-00 A 00 A 1-00 A 00 I.2 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B I.2 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B I.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.2 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont, déterminer la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont de la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont de la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont de la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont de la tension U inscuranue. A 1-03A R-00 B II.3 Sur le schéma de la figure ci-descont de la tension U inscuranue. A 1-03A R-00 B I

Des focus sur une page à la fin de chaque **chapitre**

Remerciements

Les auteurs tiennent à remercier très sincèrement les personnes suivantes pour leurs relectures et conseils tout au long de la rédaction de cet ouvrage :

- Sylvie Roux, professeur agrégé de physique appliquée, IUT A Paul Sabatier, département GEII, Toulouse
- Frédéric Morancho, professeur des universités, université Paul Sabatier, Toulouse
- Farid Meibody-Tabar, professeur des universités, École nationale supérieure d'électricité et de mécanique de Nancy
- Guy Schneider, professeur agrégé de physique appliquée, CPP La Prépa des INP, Nancy
- Yves Berviller, maître de conférences, université de Lorraine, faculté des sciences et technologies
- Slavisa Jovanovic, maître de conférences, université de Lorraine, faculté des sciences et technologies

Chapitre 1

Principes généraux de l'électrocinétique

Objectifs

Avec les spécificités qui lui sont propres, l'électronique reste un domaine qui s'intègre dans la discipline de l'électricité générale. À cet égard, les lois, les principes fondamentaux, les théorèmes et les méthodes développées pour résoudre les problèmes sont les mêmes. Ce chapitre rassemble les outils génériques de l'électrocinétique qui sont utiles à l'étude des circuits électroniques. Le lecteur y retrouvera tous les théorèmes fondamentaux ainsi que les méthodes qui sont propres à chaque type de régime de fonctionnement des circuits.

Généralités et conventions

1. Définitions et principes fondamentaux

D'une manière générale, tout circuit électrique peut se représenter sous la forme d'un générateur d'énergie alimentant un récepteur chargé de transformer l'énergie électrique reçue en une autre forme exploitable, les deux dispositifs étant reliés par des conducteurs. Tout circuit électrique est le siège d'un transfert de charges entre ces deux éléments (figure 1.1). Il est couramment admis de représenter ce transfert par un flux d'électrons que l'on modélise par un courant électrique traversant les conducteurs.

Figure 1.1

Ce courant électrique (exprimé en ampères) représente la quantité de charges q (en coulombs) traversant une section donnée du conducteur par unité de temps. Les électrons possédant une charge négative, la logique veut que le courant i soit représenté en sens contraire du flux d'électrons. Dans un circuit composé d'une seule boucle, le même courant circule à chaque instant dans tout le circuit.

Générateurs et récepteurs simples possèdent en général deux bornes. Ce sont des **dipôles électriques**. Les dipôles générateurs sont dits **actifs**, ceux qui ne font que consommer de l'énergie sont des **dipôles passifs**.

2. Le générateur de tension parfait

Le dipôle actif le plus simple est le générateur de tension continue parfait qui délivre une tension E constante (en volts) et l'impose au dipôle récepteur qui présente donc à ses bornes la même tension E. Le courant qui apparaît alors dans le circuit dépend de E et de la nature du récepteur. Cette tension E est la différence de potentiel $V_A - V_B$. La flèche symbolisant cette différence de potentiel est dirigée vers le potentiel le plus élevé.

Comme les électrons sont attirés par le point A, correspondant au potentiel le plus élevé, le courant sera naturellement orienté, au sortir du générateur, par une flèche dirigée dans l'autre sens.

Pour un circuit alimenté par un générateur de tension, on considère en général que sa borne B constitue la référence de tension pour l'ensemble du circuit et se trouve donc au potentiel 0 V (on dit aussi à la **masse**). Sa borne A se trouve donc au potentiel $V_{\rm A}=E$.

On assimile donc toute différence de potentiel entre un point X quelconque et cette référence, au potentiel du point X.

Figure 1.2

3. Conventions

Dans un circuit simple composé d'un générateur de tension et d'un dipôle récepteur, compte tenu du fait que la même tension règne aux bornes des deux éléments, et que le même courant circule dans tout le circuit, on note que du côté du générateur, courant et tension sont représentés par des flèches dirigées dans le même sens, alors que du côté du récepteur, elles sont dirigées en sens contraires (figure 1.3). Par convention, nous dirigerons systématiquement les flèches des courants et des tensions dans le même sens pour le générateur (convention générateur), et en sens contraires pour tout récepteur (convention récepteur).

En règle générale, les circuits simples ne comportent qu'un seul générateur. Toutefois, certains peuvent en contenir plusieurs. Dans ce cas, si un générateur est considéré comme appartenant à la partie réceptrice du circuit, c'est la convention récepteur que nous utiliserons.

Le respect des conventions de signes est absolument essentiel dans la résolution d'un problème d'électricité en général et d'électronique en particulier. La plupart des erreurs proviennent du non respect de ces règles élémentaires.

On retiendra notamment qu'en général, on n'utilise la convention générateur que pour le générateur principal du circuit.

Les différents types de générateurs

1. Le générateur de courant continu parfait

Outre le générateur de tension parfait, un circuit peut être alimenté par un générateur de courant parfait (figure 2.1).

Ce dernier impose un courant *I* au dipôle récepteur. La tension qui apparaît alors aux bornes du dipôle récepteur dépend de *I* et de la nature du récepteur.

Les générateurs de courant sont en général des dispositifs complexes utilisés dans des cas bien particuliers.

Figure 2.1

Important

Les générateurs sont dits parfaits au sens où la tension délivrée par un générateur de tension parfait ne dépend pas du reste du circuit. De même, un générateur de courant parfait délivre un courant qui ne dépend pas du reste du circuit.

2. Le générateur de tension réel

Dans la réalité, un générateur de tension n'est jamais parfait. La tension qu'il délivre diminue plus ou moins selon l'intensité du courant qu'on lui soutire. Ce phénomène est dû à la superposition de diverses chutes de potentiel internes qui ne peuvent plus être négligées lorsque le générateur est parcouru par un courant intense.

On considère alors qu'un modèle plus proche de la réalité consiste à associer une résistance en série avec un générateur de tension parfait, ou une résistance en parallèle avec un générateur de courant parfait. Ces résistances sont appelées **résistances internes** des générateurs (figure 2.2).

Si I est le courant qui circule dans le circuit, on a : $V_A - V_B = E - rI$.

Figure 2.2

3. Le générateur de courant réel

De la même manière, un générateur de courant réel sera modélisé par la mise en parallèle d'un générateur de courant parfait et d'une résistance dite interne (figure 2.3).

Dans ce cas, le courant qui alimente le récepteur est plus faible que le courant délivré par le générateur parfait et dépend de la tension qui s'installe aux bornes du récepteur.

Figure 2.3

4. Les autres générateurs

Outre les générateurs continus qui délivrent des tensions ou des courants constants, il est très fréquent d'utiliser des générateurs de signaux variables dans le temps et de formes variées (signaux sinusoïdaux, par exemple, ou autres signaux périodiques, etc.). D'une manière générale, on réserve les lettres majuscules pour nommer les grandeurs continues (V_A, E, I_0) et les lettres minuscules pour les grandeurs variables (v, e_1, i_n) .

Dans tous les cas, lorsqu'il s'agit du générateur principal du circuit, on utilisera la convention générateur pour repérer le sens de la tension à ses bornes et celui du courant qu'il délivre (flèches dirigées dans le même sens).

Les dipôles passifs linéaires usuels

1. Les lois de fonctionnement élémentaires

Trois dipôles passifs sont couramment utilisés dans les circuits électroniques. Ils ont la particularité de posséder un fonctionnement qui s'exprime sous la forme d'une équation différentielle simple, linéaire, à coefficients constants. L'équation de fonctionnement d'un dipôle lie la tension à ses bornes et le courant qui le traverse. En supposant que, dans le cas le plus général, ces deux grandeurs sont variables dans le temps, les lois de fonctionnement des trois dipôles passifs usuels sont présentées sur la figure 3.1.

2. Associations de dipôles

Deux dipôles quelconques sont dits **associés en série** si une des bornes de l'un est reliée à une des bornes de l'autre, l'ensemble formant un nouveau dipôle. Ils sont dits **associés en parallèle** si les paires de bornes sont connectées deux à deux (figure 3.2).

Dans le cas de l'association en série, les deux dipôles sont parcourus par le même courant. La tension totale aux bornes de l'ensemble est égale à la somme des deux différences de potentiel aux bornes de chacun des deux dipôles.

Dans le cas de l'association en parallèle, la même différence de potentiel règne aux bornes de chacun des deux dipôles.

En tenant compte de ces constats, on peut en déduire les règles d'association des différents dipôles.

Figure 3.2

En associant des résistances, on forme un dipôle qui se comporte comme une résistance, dont la valeur est appelée **résistance équivalente**, que l'on note en général $R_{\rm eq}$. Lorsque l'on associe des condensateurs, on forme un condensateur équivalent de capacité $C_{\rm eq}$.

Lorsque deux résistances R_1 et R_2 sont associées en série, on a $R_{eq} = R_1 + R_2$.

Lorsqu'elles sont associées en parallèle, on a $\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}$, soit $R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$.

Lorsque deux condensateurs C_1 et C_2 sont associées en série, on a $\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2}$.

Lorsqu'ils sont associés en parallèle, on a $C_{\text{eq}} = C_1 + C_2$.

Attention

On remarquera que les règles d'associations des résistances et celles d'associations des condensateurs se trouvent inversées.

Les règles qui régissent l'association de bobines sont les mêmes que celles qui concernent les résistances : les inductances s'additionnent lorsque les bobines sont placées en série. Leurs inverses s'ajoutent lorsqu'elles sont placées en parallèle.

L'ensemble des résultats présentés ici se généralisent sans problème à l'association série ou parallèle de n éléments différents.

Il est possible de simplifier les circuits électriques en calculant les valeurs équivalentes d'une combinaison plus ou moins complexe de dipôles. On procède alors de proche en proche en recherchant les associations les plus simples et en réduisant ainsi pas à pas le circuit initial.

Les régimes électriques dans les circuits

Selon la forme de la tension (ou du courant) délivrée par le générateur qui alimente un circuit, on dit que ce circuit fonctionne selon un certain régime.

1. Le régime continu

Lorsqu'un circuit est alimenté par un générateur qui délivre une tension constante, on dit qu'il fonctionne en **régime continu**. Les régimes continus font partie des régimes dits **permanents** ou **établis**. Dans un circuit fonctionnant en régime continu, toutes les tensions et tous les courants dans le circuit sont en général continus.

Rappel

Les grandeurs continues sont notées avec des lettres majuscules (*E* pour une tension, par exemple).

En régime continu, un élément inductif (une bobine) n'a aucun effet. Son équation de fonctionnement montre que, parcourue par un courant constant quelconque, une bobine présente toujours une différence de potentiel nulle à ses bornes :

$$u(t) = L \frac{di}{dt} \implies u(t) = 0 \text{ si } i = C^{\text{te}}.$$

Un condensateur, en régime continu, n'est parcouru par aucun courant :

$$u(t) = \frac{1}{C} \int i(t) dt \implies i(t) = 0 \text{ si } u(t) = C^{\text{te}}.$$

Remarque

Si aucun courant ne peut traverser un condensateur en régime continu, tout condensateur qui se voit imposer une tension U présente bel et bien une charge emmagasinée Q telle que Q = CU. Un condensateur parfait possède en outre la propriété de conserver cette charge emmagasinée, une fois l'alimentation U coupée. Ceci, bien évidemment, à condition qu'il soit isolé, c'est-à-dire que ses deux bornes ne soient reliées à aucun autre circuit.

2. Le régime sinusoïdal

Lorsqu'un circuit est alimenté par un générateur qui délivre une tension sinusoïdale $e(t) = E_0 \cos \omega t$, le régime sera dit **sinusoïdal** ou **harmonique**.

Les régimes sinusoïdaux font également partie des régimes dits permanents ou établis. Dans un circuit fonctionnant en régime sinusoïdal, tensions et courants sont tous sinusoïdaux, de même pulsation ω que la source de tension, mais présentant *a priori* des déphasages.

3. Le régime transitoire

Les régimes transitoires correspondent en général au passage d'un régime permanent à un autre régime permanent. Ces changements de régime sont la plupart du temps dus à l'ouverture ou à la fermeture d'un interrupteur dans le circuit ou encore à la présence de composants agissant comme des interrupteurs.

Dans le circuit représenté sur la figure 4.1.a, le dipôle AB est alimenté par un générateur parfait de tension constante E par l'intermédiaire d'un interrupteur K. Lorsqu'on ferme l'interrupteur, tout se passe comme si on passait brusquement d'un régime permanent e(t) = 0 à un autre régime permanent e(t) = E. Le dipôle est en quelque sorte alimenté par la tension e(t) (figure 4.1.b).

Il suffit de considérer que l'instant t=0 correspond à l'instant de fermeture de l'interrupteur. Comme un interrupteur n'est pas un élément linéaire, on préfère utiliser le modèle représenté sur la figure 4.1.b, dans lequel le circuit est linéaire (schéma sans interrupteur), mais dans lequel la forme de la tension d'alimentation n'est pas constante mais se présente sous la forme d'un **échelon** (figure 4.1.c).

Important

Les régimes transitoires peuvent intervenir aussi bien à l'ouverture qu'à la fermeture d'interrupteurs, ou encore au basculement de commutateurs. D'une manière générale, le régime transitoire conduit toujours le système vers un régime permanent.

Les problèmes à résoudre sont en général toujours les mêmes : il s'agit de déterminer tensions et courants dans le circuit. Comme celui-ci n'est pas alimenté par une tension constante ou sinusoïdale, tous les courants et toutes les tensions dans le circuit seront *a priori* variables.

La résolution des problèmes d'électricité en régime transitoire se traduit en général par des équations différentielles. Les plus simples, comme par exemple les équations différentielles linéaires à coefficients constants d'ordre peu élevé se résolvent directement avec une relative facilité. Pour les autres, des outils plus performants seront nécessaires comme la transformée de Laplace, voire des méthodes numériques.

Les lois de Kirchhoff en régime continu

1. Définitions

- **Réseau électrique :** toute association simple ou complexe de dipôles interconnectés, alimentée par un générateur.
- Branche : partie dipolaire d'un réseau parcourue par un même courant.
- Nœud d'un réseau : tout point du réseau commun à plus de deux branches.
- Maille d'un réseau : tout chemin constituant une boucle et formé de plusieurs branches.

Sur le circuit de la figure 5.1, l'association de R_1 , R_2 , R_3 , R_4 et R_5 formant le dipôle AC constitue un réseau électrique alimenté par le générateur de tension E. A, B, C et D sont les nœuds de ce réseau. Le schéma montre trois mailles. Il en existe d'autres, par exemple, en partant du point A, on peut définir une maille qui comprend R_2 , R_3 et R_5 , qui passe par D, puis C et qui rejoint A en incluant R_1 .

Figure 5.1

2. La loi des nœuds

La somme des courants se dirigeant vers un nœud est égale à la somme des courants qui sortent de ce nœud.

Ou encore : la somme algébrique des courants dirigés vers un nœud d'un circuit est nulle (en comptant positivement les courants dirigés vers le nœud et en comptant négativement ceux qui en sortent).

Cette loi exprime le fait qu'il ne peut pas y avoir accumulation de charges en un point quelconque d'un conducteur du réseau. Dans l'exemple de la figure 5.1, on pourra écrire entre autres équations : $I_0 = I_1 + I_2$ et $I_2 = I_3 + I_4$.

3. La loi des mailles

La somme algébrique des différences de potentiel le long d'une maille, obtenue en parcourant la maille dans un sens donné, est nulle. Les différences de potentiel orientées dans le même sens que le sens de parcours de la maille sont comptées positivement. Les différences de potentiel orientées dans le sens opposé au sens de parcours de la maille sont comptées négativement.

Ainsi, dans l'exemple de la figure 5.1 :

Maille 1 :
$$E - E_1 = 0$$

Maille 2 :
$$E_1 - E_2 - E_4 = 0$$

Maille 3 :
$$E_4 - E_3 - E_5 = 0$$

Note

Les lois de Kirchhoff sont présentées ici en régime continu (lettres majuscules pour les tensions et les courants). En réalité, elles restent valables quel que soit le régime.

4. La loi des nœuds généralisée

Dans un dispositif électrique quelconque, la somme algébrique des courants entrant (ou sortant négativement) dans une surface fermée est nulle : $\sum_{i=1}^{n} I_i = 0$ (figure 5.2).

Figure 5.2

D'un point de vue pratique, cela signifie que dans un circuit complexe, on peut définir arbitrairement un contour fermé et appliquer la loi des nœuds aux bornes de ce contour.

Remarque

Il est assez rare d'utiliser les lois de Kirchhoff pour résoudre entièrement un problème d'électricité. En effet, elles génèrent beaucoup d'équations et beaucoup d'inconnues et on leur préfère des théorèmes plus puissants.

Le théorème de Millman

Le théorème de Millman permet d'exprimer le potentiel en un nœud quelconque d'un réseau en fonction des potentiels aux nœuds voisins. Il est une conséquence de la loi des nœuds et peut donc être utilisé à sa place. L'avantage réside dans le fait qu'on exprime des relations sans courant, uniquement à l'aide de tensions. En utilisant à la fois le théorème de Millman et la loi des mailles, on dispose de deux outils qui permettent de résoudre pratiquement n'importe quel problème d'électrocinétique.

Considérons un nœud quelconque d'un circuit (figure 6.1). Ce nœud est relié à n points du circuit par l'intermédiaire de n branches possédant chacune une résistance R_i . Soient V_i les tensions aux n points voisins du nœud X.

Figure 6.1

Le potentiel $V_{\rm X}$ s'exprime en fonction des potentiels aux nœuds voisins de la manière suivante :

$$V_{X} = \frac{\frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} + \dots + \frac{V_{n}}{R_{n}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{n}}} = \frac{\sum_{i=1}^{n} \frac{V_{i}}{R_{i}}}{\sum_{i=1}^{n} \frac{1}{R_{i}}}$$

On peut définir également la **conductance** d'un dipôle résistif par l'inverse de sa résistance. Soit :

$$G_i = \frac{1}{R_i}$$
 unité : siemens (S).

Ainsi, le théorème de Millman peut aussi s'écrire :

$$V_{X} = \frac{\sum_{i=1}^{n} G_{i} V_{i}}{\sum_{i=1}^{n} G_{i}}.$$

Ce qui revient à dire que le potentiel en un nœud quelconque d'un circuit est la moyenne des potentiels aux nœuds voisins, pondérée par les conductances des différentes branches.

Exemple

O Dunod. Toute reproduction non autorisée est un délit

On considère le circuit de la figure 6.2 dans lequel on cherche à calculer le potentiel au point A. L'application du théorème de Millman en ce point est immédiate.

Attention : même si la résistance R_3 est reliée à la masse et qu'elle ne correspond à aucun terme au numérateur, elle est néanmoins présente au dénominateur.

Figure 6.2

$$V_{\rm A} = \frac{\frac{E_1}{R_1} + \frac{0}{R_3} + \frac{E_2}{R_2}}{\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_2}} = \frac{\frac{10}{10} + \frac{5}{5}}{\frac{1}{10} + \frac{1}{20} + \frac{1}{5}} = 5,7 \,\text{V}$$

Le théorème de Millman est un outil extrêmement intéressant, surtout si on le compare aux lois de Kirchhoff :

- Comme il découle de la loi des nœuds mais ne met en équation que des tensions, il permet de limiter le nombre de variables introduites dans les équations.
- Il permet de cibler le calcul d'un potentiel particulier ou d'une différence de potentiels donnée en n'écrivant qu'une seule ligne de calcul. Ne pas oublier que bien souvent, on cherche la valeur d'une tension particulière et que la connaissance de toutes les grandeurs électriques, courants ou tensions, en tout point du circuit, ne sert pas à grand chose.
- Il s'applique tout aussi bien en régime continu qu'en régime variable.
- Dans le cas de circuits plus complexes que celui qui est présenté dans l'exemple précédent, il suffit souvent d'appliquer plusieurs fois le théorème de Millman pour obtenir les grandeurs recherchées. Peu d'équations seront générées avec, par conséquent, moins de risque d'erreur de calculs.
- Si c'est un courant qui est recherché, par exemple dans une résistance, penser à utiliser le théorème de Millman pour trouver d'abord la tension aux bornes de cette résistance.

Les ponts diviseurs

1. Le pont diviseur de tension

Le circuit de la figure 7.1 représente un pont de deux résistances placées en série et alimentées par un générateur de tension parfait. Les deux résistances sont ainsi parcourues par le même courant.

Figure 7.1

On s'intéresse au potentiel V_A au point A, point commun aux deux résistances R_1 et R_2 , autrement dit, à la tension aux bornes de R_2 .

Par simple application de la loi d'Ohm, on peut écrire : $I = \frac{E}{R_1 + R_2}$.

D'où :
$$V_{\rm A} = \frac{R_2}{R_1 + R_2} E$$
.

Le principe du pont diviseur de tension

Le potentiel au point commun de deux résistances est égal à la tension qui règne aux bornes de l'ensemble multiplié par la résistance connectée au potentiel le plus bas et divisé par la somme des deux résistances.

Le potentiel au point A est donc égal à une fraction de la tension E, d'où la dénomination de pont diviseur de tension.

Important

Le principe du pont diviseur de tension ne peut s'appliquer que si les deux résistances sont parcourues par le même courant.

2. Le pont diviseur de courant

Le circuit de la figure 7.2 représente un pont de deux résistances placées en parallèle et alimentées par un générateur de courant parfait. Les trois dipôles sont ainsi soumis à la même différence de potentiel U.

Figure 7.2

On s'intéresse aux valeurs des deux courants I_1 et I_2 qui parcourent respectivement les deux résistances R_1 et R_2 .

Si on considère que la source de courant alimente l'association en parallèle des deux résistances, on obtient, par une simple application de la loi d'Ohm :

$$U = \frac{R_1 R_2}{R_1 + R_2} I.$$

Par conséquent :

$$\begin{cases} I_1 = \frac{U}{R_1} = \frac{R_2}{R_1 + R_2} I \\ I_2 = \frac{U}{R_2} = \frac{R_1}{R_1 + R_2} I \end{cases}$$

Le principe du pont diviseur de courant

Lorsqu'une source de courant *I* alimente deux résistances associées en parallèle, chacune des résistances est parcourue par le courant *I* multiplié par la valeur de l'autre résistance et divisé par la somme des deux.

Les principes du pont diviseur de tension ou de courant sont *a priori* très simples mais restent d'une utilité capitale dans bon nombre d'applications. Ils permettent en effet d'avoir un accès immédiat à une grandeur électrique donnée en faisant le minimum de calculs.

Il convient toutefois de bien retenir les conditions dans lesquelles s'appliquent ces principes, en particulier le fait que le diviseur de tension est caractérisé par la circulation du même courant dans les deux résistances.

Le principe de superposition

Dans un circuit linéaire possédant plusieurs générateurs de tension, et à condition que ces sources soient indépendantes, tout potentiel en un point quelconque (ou tout courant dans une branche du circuit) est égal à la somme des potentiels (ou des courants) créés séparément par chaque générateur, les autres générateurs étant éteints, c'est-à-dire court-circuités. Si le circuit contient des générateurs de courant, le principe reste valable si les sources sont indépendantes : on effectue les calculs avec chaque source prise séparément en remplaçant les générateurs de courant par des circuits ouverts.

Le principe de superposition étant une conséquence directe de la linéarité des composants du circuit, il est généralisable à tout régime de fonctionnement et à tout circuit contenant uniquement des composants linéaires. Dès lors qu'un circuit contient des éléments non linéaires, par exemple des diodes, ce principe ne peut plus s'appliquer. Il ne s'applique pas non plus au calcul des puissances.

Exemple

Dans le circuit de la figure 8.1, on cherche à calculer le courant I dans la résistance R_3 .

Figure 8.1

D'après le principe de superposition, ce courant est la somme de trois courants I_1 , I_2 et I_3 correspondant respectivement aux contributions de chaque générateur E_1 , E_2 et I_0 . On calcule alors successivement chaque courant en ne laissant subsister, à chaque fois, qu'un seul des trois générateurs. Avec E_1 seul, (figure 8.2), on a :

$$I_1 = \frac{E_1}{R_1 + R_2} = \frac{10}{15} = 0,66 \text{ A}.$$

Pour calculer I_2 , il suffit de court-circuiter E_1 , de laisser I_0 éteinte (en circuit ouvert) et de « rallumer » E_2 pour obtenir :

$$I_2 = -\frac{E_2}{R_1 + R_2} = -\frac{20}{15} = -1,33 \text{ A}.$$

Figure 8.2

Pour le calcul de I_3 (figure 8.3), le circuit est un simple pont diviseur de courant :

$$I_3 = \frac{R_1}{R_1 + R_2} I_0 = 0,066 \,\text{A}.$$

Figure 8.3

Au final, on fait la somme algébrique des trois courants calculés indépendamment : $I = I_1 + I_2 + I_3 = 0.66 - 1.33 + 0.066 = -0.6$ A.

O Dunod. Toute reproduction non autorisée est un délit

Rappel

Lorsqu'on annule un générateur de tension, on le court-circuite, et lorsqu'on annule un générateur de courant, on le remplace par un circuit ouvert.

Le principe de superposition ne s'applique pas aux puissances électriques. Cela signifie que la puissance consommée par un dipôle n'est pas égale à la somme des puissances qu'il consomme en provenance de chacun des générateurs. En effet, la puissance étant le produit de la tension et du courant, ce n'est pas une forme linéaire. Or, le principe de superposition est une conséquence directe de la linéarité des circuits.

On pourra utiliser le principe de superposition pour déterminer courants et tensions dans les dipôles qui nous intéressent mais on ne fera le calcul des puissances qu'à la fin, une fois reconstituées les grandeurs électriques totales.

D'une manière générale, le principe de superposition ne s'applique pas non plus en présence de dipôles non linéaires (diode par exemple).

Les théorèmes de Thévenin et Norton

Les théorèmes de Thévenin et de Norton sont sans doute les théorèmes les plus puissants et les plus importants de l'électrocinétique. Leur maîtrise permet bien souvent de résoudre des problèmes complexes en un minimum de temps et en manipulant très peu d'équation.

3. Le théorème de Thévenin

En régime continu, tout réseau linéaire dipolaire est équivalent à un générateur de tension dit **de Thévenin**, de force électromotrice E_0 et de résistance interne r (figure 9.1).

La résistance r est égale à la résistance équivalente du réseau lorsque tous ses générateurs sont éteints.

La tension E_0 est égale à la tension à vide du réseau (lorsque I=0 dans le circuit de la figure 9.1).

Figure 9.1

Remarque

Puisqu'il s'agit de déterminer un générateur de tension équivalent à un dipôle, nous employons bien évidemment la convention générateur.

4. Le théorème de Norton

Le théorème de Norton propose un autre dipôle simple équivalent à tout réseau dipolaire.

En régime continu, tout réseau linéaire dipolaire est équivalent à un générateur de courant dit **de Norton**, de courant I et de résistance interne r (figure 9.2) égale à la résistance interne du générateur de Thévenin.

La résistance r est égale à la résistance équivalente du réseau lorsque tous ses générateurs sont éteints.

On utilise volontiers le terme de **conductance interne** g pour qualifier 1 / r.

Le courant *I* est égal au courant de court-circuit du dipôle (courant circulant dans le dipôle lorsque l'on court-circuite ses deux bornes).

Figure 9.2

5. L'équivalence Thévenin - Norton

Un générateur de tension de Thévenin, de force électromotrice E et de résistance interne r est équivalent à un générateur de Norton, de courant $I_0 = \frac{E}{R}$ et de même résistance interne r (figure 9.3).

Figure 9.3

Les théorèmes de Thévenin et de Norton sont utiles lorsque l'on recherche une grandeur électrique particulière, par exemple le courant dans une résistance placée dans un circuit complexe. On considère alors que cette résistance est alimentée par le reste du circuit que l'on isole ainsi et dont on cherche l'équivalent de Thévenin ou de Norton.

Pour ce faire, on peut invoquer directement l'un des deux théorèmes ou encore effectuer des transformations Thévenin – Norton et Norton – Thévenin successives jusqu'à réduire le circuit à sa plus simple expression.

Les circuits linéaires en régime sinusoïdal

Le régime sinusoïdal constitue, après le régime continu, le régime électrique le plus couramment utilisé. Les électriciens ont introduit des modèles théoriques très intéressants qui permettent d'utiliser en régime sinusoïdal les mêmes lois et théorèmes qu'en régime continu. Ce chapitre est consacré à une première approche simple grâce à laquelle nous allons introduire la notion d'impédance réelle et celle de valeur efficace, deux concepts essentiels en électronique.

1. Définitions et principes fondamentaux

L'étude des circuits linéaires en régime sinusoïdal correspond à l'étude des réseaux électriques composés uniquement d'éléments linéaires (résistances, condensateurs et auto-inductances, notamment), alimentés par des sources de tension ou de courant sinusoïdales. Pour une source de tension, on considérera en général :

$$e(t) = E_0 \cos \omega t$$

Très souvent, on parle également de signal sinusoïdal.

La tension E_0 représente l'**amplitude** de la tension sinusoïdale (en volts), ω est sa **pulsation** en radians par seconde. On définit à partir de ces grandeurs, les paramètres suivants :

$$f = \frac{\omega}{2\pi}$$
 : fréquence du signal en hertz (Hz)

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$
: période en secondes.

Le régime sinusoïdal fait partie (avec le régime continu) des **régimes permanents** (par opposition aux régimes variables ou transitoires).

Pour diverses raisons, l'énergie électrique est fournie sous la forme d'un signal sinusoïdal. Ceci confère à l'étude des circuits en régime sinusoïdal un intérêt primordial.

Propriété fondamentale

Dans un circuit linéaire fonctionnant en régime sinusoïdal, tous les courants et toutes les tensions dans le circuit sont sinusoïdaux, de même pulsation que la source d'alimentation du circuit.

Ces grandeurs électriques possèdent des amplitudes qui dépendent bien évidemment des éléments du circuit, mais aussi de la pulsation ω de la source. De plus, toutes ces grandeurs présentent la plupart du temps des déphasages par rapport à la source principale.