Année scolaire : 2024 - 2025

1.Définition:

La fonction $f(x) = \ln(x)$ est continue et strictement croissante sur $]0; +\infty[$, donc c'est une bijection de $]0; +\infty[$ sur \mathbb{R} . Ainsi, f admet une bijection réciproque f^{-1} , qui est continue et strictement croissante de \mathbb{R} vers $]0; +\infty[$.

Cette fonction réciproque est appelée **fonction exponentielle** et est notée :

$$\forall x \in \mathbb{R}, \quad \exp(x) = e^x$$

Elle est caractérisée par la relation :

$$e^x = y \quad \Leftrightarrow \quad x = \ln(y).$$

2. Conséquences de la définition

- (a) Image et ensemble de définition :
 - e^x est définie sur \mathbb{R} et prend ses valeurs dans $]0; +\infty[$.
 - e^x est toujours strictement positive : $e^x > 0$ pour tout $x \in \mathbb{R}$.
- (b) Lien avec le logarithme :
 - $e^{\ln(x)} = x$ pour tout x > 0.
 - $\ln(e^x) = x$ pour tout $x \in \mathbb{R}$.
- $\left(c\right)$ Comportement aux valeurs remarquables :
 - $e^0 = 1$.
 - $e^1 = e \approx 2.718$.
- (d) Monotonie de e^x :
 - La fonction exponentielle est strictement **croissante** sur \mathbb{R} , car sa dérivée est toujours positive.

3. Propriétés fondamentales de la fonction exponentielle

Propriété fondamentale

Pour tout réel a et b, on a: $e^{a+b} = e^a \times e^b$.

Autres propriétés:

$$\bullet \quad e^{-a} = \frac{1}{e^a}$$

$$\bullet \quad e^{a-b} = \frac{e^a}{e^b}$$

•
$$e^{ra} = (e^a)^r$$

•
$$e^a = e^b \Leftrightarrow a = b$$

•
$$e^a < e^b \Leftrightarrow a < b$$

4. Limites

(a) Les limites aux bornes de l'ensemble de définition de e^x :

$$\lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to +\infty} e^x = +\infty$$

(b) Limites Usuelles:

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to -\infty}}} \frac{e^x}{x} = +\infty$$

$$\lim_{\substack{x \to -\infty \\ \lim_{x \to -\infty}}} xe^x = 0$$

Preuve de quelques limites

Exercice d'application

Déterminer les limites suivantes:

Calculer les limites suivantes. a)
$$\lim_{x \to +\infty} \frac{3e^x - 2}{5e^x + 3}$$
; b) $\lim_{x \to -\infty} \frac{\ln(1 + e^x)}{e^x}$ c) $\lim_{x \to +\infty} (x - e^x)$; d) $\lim_{x \to +\infty} \frac{\sin 2x}{1 - e^x}$

6.Limites des composées avec exp

Propriété

Soit \overline{U} une fonction dérivable sur un intervalle I de $\mathbb R$

La fonction $\exp \circ u$ est dérivable sur I et on a: $(\exp \circ u)' = u' \times \exp \circ u$

La fonction $\exp \circ u$ est généralement notée e^u ; sa dérivée est alors $u'e^u$.

Exemple

Calcule la limite suivante

Solution

7.Dérivée

Soit u et v deux fonctions strictement positives

Exemple

Déterminer les limites suivantes:

 \bullet La fonction $x \longmapsto e^{-x^2+x}$ est dérivable sur $\mathbb R$ et sa dérivée est la fonction

2

- La fonction $x \mapsto e^{\cos x}$ est dérivable sur \mathbb{R} et sa dérivée est la fonction
- La fonction $x \longmapsto e^{\frac{1}{x}}$ est dérivable sur \mathbb{R}^* et sa dérivée est la fonction

8. Croissance Comparée de $\ln x \ e^x \ x^{\alpha}$

$$\lim_{\substack{x\to +\infty\\ \lim_{x\to +\infty}}} \frac{e^x}{x^\alpha} = +\infty$$
$$\lim_{\substack{x\to +\infty\\ \underline{x}\to +\infty}} x^\alpha e^{-x} = 0$$

Remarque

Exemple

$$\frac{1}{\text{Détermine: }} \lim_{x \to +\infty} \frac{e^x}{\ln(x^2 + 1)}$$

9. Equation système et Inequation avec exp

a°)Equation

Exemple

Résoudre dans $\mathbb R$ les équations suivantes

a)
$$e^x = -1$$

b)
$$e^{x+1} = 3$$
:

b)
$$e^{x+1} = 3;$$

c) $e^{x^2} = e^{x+2};$

$$d(e^x - 2)(e^{-x} + 1)$$

b°)Système d'inéquations avec exp:

$$\begin{cases} e^x e^y = 10 \\ e^{x-y} = \frac{2}{5} \end{cases}$$
$$\begin{cases} e^{2x} - 7e^{y+1} = -10 \\ x - y = 1 \end{cases}$$

c°)Inéquations avec exp:

$$\overline{\mathbf{a})e^{-x} \ge 2}$$

$$b)e^{x^2-3} \le e^{2x}$$

$$e^{(2)}2e^{2x} - 5e^x + 2 > 0$$

10.Etude le fonction exp

Soit f(x) = exp(x) le domaine

Le Domaine D_f

$$D_f = \mathbb{R}$$

 \bigotimes Limites aux bornes de D_f

$\underline{\operatorname{En}\,}-\infty$

$$\lim_{x \to -\infty} e^x = 0$$

$$x \rightarrow -\infty$$

$$\frac{\operatorname{En} + \infty}{x}$$

$$\frac{\lim_{x \to +\infty} e^x}{\lim_{x \to +\infty} e^x} = +\infty$$

$$\bigotimes$$
 La dérivée de f

$$f'(x) = e^x$$

 $\forall x \in \mathbb{R}, f'(x) > 0, \text{ donc f est croissante sur } [0; +\infty[$

 C_f est au-dessous de sa tangente en J; donc $\forall x \in \mathbb{R}, e^x > x+1$

11.Branche infinie de ln

On a $\lim_{x\to +\infty} e^x = +\infty$ et $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$ Nous avons ainsi une branche parabolique de direction (Oy) au voisinage de $+\infty$.

$$\operatorname{Car} \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

12.Application