Niveau: Première année de PCSI

COLLE 15 = INTÉGRATION ET DÉTERMINANTS

Intégration:

Exercice 1.

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur [a,b] (a< b).

- 1. On suppose que $f(x) \ge 0$ pour tout $x \in [a, b]$, et que $f(x_0) > 0$ en un point $x_0 \in [a, b]$. Montrer que $\int_a^b f(x)dx > 0$. En déduire que : «si f est une fonction continue positive sur [a, b] telle que $\int_a^b f(x)dx = 0$ alors f est identiquement nulle».
- 2. On suppose que $\int_a^b f(x)dx = 0$. Montrer qu'il existe $c \in [a, b]$ tel que f(c) = 0.
- 3. Application : on suppose que f est une fonction continue sur [0,1] telle que $\int_0^1 f(x)dx = \frac{1}{2}$. Montrer qu'il existe $d \in [0,1]$ tel que f(d) = d.

Exercice 2.

Soit f une fonction de classe C^1 sur [0,1] telle que f(0) = 0. Montrer que $2 \int_0^1 f^2(t) dt \le \int_0^1 f'^2(t) dt$.

Exercice 3.

Soient les fonctions définies sur \mathbb{R} ,

$$f(x) = x$$
, $g(x) = x^2$ et $h(x) = e^x$,

Justifier qu'elles sont intégrables sur tout intervalle fermé borné de \mathbb{R} . En utilisant les sommes de Riemann, calculer les intégrales $\int_0^1 f(x)dx$, $\int_1^2 g(x)dx$ et $\int_0^x h(t)dt$.

Exercice 4.

Calculer la limite des suites suivantes :

1.
$$u_n = n \sum_{k=0}^{n-1} \frac{1}{k^2 + n^2}$$

2.
$$v_n = \prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)^{\frac{1}{n}}$$

Déterminant :

Exercice 5.

- 1. Calculer l'aire du parallélogramme construit sur les vecteurs $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.
- 2. Calculer le volume du parallélépipède construit sur les vecteurs

$$\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \vec{v} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \text{ et } \vec{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

3. Montrer que le volume d'un parallélépipède dont les sommets sont des points de \mathbb{R}^3 à coefficients entiers est un nombre entier.

Exercice 6.

Calculer les déterminants des matrices suivantes :

$$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \quad \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}$$

Exercice 7.

Soit $(a_0,...,a_{n-1}) \in \mathbb{C}^n$, $x \in \mathbb{C}$. Calculer

$$\Delta_n = \begin{vmatrix} x & 0 & & a_0 \\ -1 & \ddots & \ddots & \vdots \\ & \ddots & x & a_{n-2} \\ 0 & & -1 & x + a_{n-1} \end{vmatrix}$$

Exercice 8.

Soit a un réel. On note Δ_n le déterminant suivant :

$$\Delta_n = \begin{vmatrix} a & 0 & \cdots & 0 & n-1 \\ 0 & a & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & 2 \\ 0 & \cdots & 0 & a & 1 \\ n-1 & \cdots & 2 & 1 & a \end{vmatrix}$$

- 1. Calculer Δ_n en fonction de Δ_{n-1} .
- 2. Démontrer que : $\forall n \geq 2 \quad \Delta_n = a^n a^{n-2} \sum_{i=1}^{n-1} i^2$.

Exercice 9.

Calculer les déterminants des matrices suivantes :

$$\begin{pmatrix} a & a & b & 0 \\ a & a & 0 & b \\ c & 0 & a & a \\ 0 & c & a & a \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & -4 & 3 & 0 & 0 \\ -3 & 0 & 0 & -3 & -2 \\ 0 & 1 & 7 & 0 & 0 \\ 4 & 0 & 0 & 7 & 1 \end{pmatrix}$$

Exercice 10. Déterminant de Vandermonde Montrer que