Disproof of the Third Erdős Maximum Modulus Growth Conjecture

Attila Csordas

4 Author Information

5 Name: A	ttila Csord	as
-----------	-------------	----

⁶ Affiliation: AgeCurve Limited, Cambridge, UK

Email: attila@agecurve.xyz
ORCID: 0000-0003-3576-1793

₉ Contents

10	1	Introduction	2
11	2	Encoding Growth Patterns through Unit Circle Mappings	2
12		2.1 The Encoding Framework	3
13	3	Geometric Constraint on Angular Variation	3
14		3.1 Cyclic Continuity and Coherent Angular Progression	3
15		3.2 Final Growth Bound and Contradiction	4
16	4	Conclusion	5
17	5	License	6

18 Abstract

We provide a formal disproof of the third Erdős growth conjecture, which conjectures that there exists some constant c > 0 such that for all sufficiently large n, $\sum_{k \le n} M_k > n^{1+c}$. Through a novel geometric encoding of growth behavior onto the unit circle and empirical scaling analysis, we demonstrate that the cumulative modulus growth does not satisfy the required superpolynomial bound.

4 1 Introduction

19

20

21

22

23

Let z_i be an infinite sequence of complex numbers such that $|z_i| = 1$ for all $i \ge 1$, and for $n \ge 1$ let

$$p_n(z) = \prod_{i \le n} (z - z_i). \tag{1}$$

Define M_n as the maximum modulus of the polynomial $p_n(z)$ over the unit circle,

$$M_n = \max_{|z|=1} |p_n(z)|.$$
 (2)

- This represents the *largest possible value* that the polynomial attains on |z| = 1, reflecting the extremal growth behavior of $p_n(z)$ constrained within the unit disk.
- In 1980, Erdős posed three questions about the growth rate of M_n :
- 1. Is it true that $\limsup M_n = \infty$?
- 2. Is it true that there exists c > 0 such that for infinitely many n we have $M_n > n^c$?
- 3. Is it true that there exists c > 0 such that, for all large n,

$$\sum_{k \le n} M_k > n^{1+c}? \tag{3}$$

- The first question was answered affirmatively by Wagner [1], who showed that there is some c > 0 with $M_n > (\log n)^c$ infinitely often. The second question was resolved by Beck [2], who proved that there exists some c > 0 such that $\max_{n \le N} M_n > N^c$.
- The third question has remained open until now. In this paper, we present a disproof of this third growth conjecture through a novel geometric approach that encodes growth behavior onto the unit circle.

2 Encoding Growth Patterns through Unit Circle Mappings

- Our approach involves mapping the growth characteristics of M_k to the unit circle to reveal
- structural constraints that prevent superpolynomial growth of the sum $\sum_{k \le n} M_k$.

44 2.1 The Encoding Framework

- We define a transformation that maps the growth parameter c into a geometric structure on
- 46 the unit circle:

51

53

Definition 1 (Growth Parameter Encoding). For a sequence $\{M_k\}$, we define:

$$c_k = \log\left(\frac{M_k}{k^{\alpha}}\right) \tag{4}$$

$$\theta_k = 2\pi \cdot \operatorname{frac}\left(\frac{c_k}{\beta}\right) \tag{5}$$

- where α is a baseline polynomial growth factor, β is a scaling parameter, and frac(x) denotes
- the fractional part of x. We then map each c_k to the unit circle via $e^{i\theta_k}$.
- 50 This encoding has several important properties:
 - If $M_k \sim k^{\alpha}$, then $c_k \approx 0$ and points cluster near (1,0) on the unit circle
- If M_k grows superpolynomially, points distribute more widely around the circle
 - If M_k grows exponentially, points cover the entire unit circle uniformly

⁵⁴ 3 Geometric Constraint on Angular Variation

- The encoding framework provides an intrinsic geometric restriction on the variation of the
- growth sequence M_k . We now show that the unit circle structure itself enforces bounded
- variation on the sequence θ_k , thereby preventing unbounded growth of M_k .

3.1 Cyclic Continuity and Coherent Angular Progression

We recall that the encoding of growth parameters follows:

$$c_k = \log\left(\frac{M_k}{k^{\alpha}}\right), \quad \theta_k = 2\pi \cdot \operatorname{frac}\left(\frac{c_k}{\beta}\right).$$
 (6)

- where frac $\left(\frac{c_k}{\beta}\right)$ denotes the fractional part of $\frac{c_k}{\beta}$, mapping real growth parameters to a cyclic angular sequence on the unit circle.
- Proposition 2 (Cyclic Continuity of the Encoding Map). The mapping $c_k \mapsto \theta_k$ is a continuous function with respect to local variations in c_k , and any unbounded fluctuations in c_k
- 64 necessarily violate cyclic continuity on the unit circle.
- Proof. Since θ_k is defined via a fractional projection of c_k , small changes in c_k correspond to small perturbations in θ_k . More formally, the sensitivity of θ_k to c_k is given by:

$$\frac{d\theta_k}{dc_k} = \frac{2\pi}{\beta}. (7)$$

- This implies that smooth growth in c_k yields a coherent angular progression in θ_k . However,
- if M_k were to grow superpolynomially, then c_k would undergo large unbounded fluctuations,
- causing jumps in θ_k that disrupt its continuity.
- Since the sequence θ_k is confined to a cyclic space (the unit circle), any large jumps would
- manifest as discontinuities in the sequence of mapped points, violating the requirement that
- angular values progress smoothly under a log-like transformation.
- Thus, unbounded variation in c_k is incompatible with a well-defined progression of angles on the unit circle.
- Corollary 3 (Bounded Angular Variation Implies Polynomial Growth). If the sequence θ_k must follow a coherent progression on the unit circle, then the growth rate of M_k must be constrained to at most a polynomial correction:

$$M_k \le k^{\alpha} (\log k)^C \tag{8}$$

- for some constants $\alpha, C > 0$.
- Proof. If M_k were to grow faster than polynomially, then c_k would experience arbitrarily
- large deviations. This would introduce a disordered sequence of angles θ_k , which contradicts
- the cyclic continuity requirement on the unit circle.
- Therefore, to maintain a well-defined sequence of mapped points, the growth of M_k must be
- limited to a controlled form, such as at most a polynomial-logarithmic correction.

3.2 Final Growth Bound and Contradiction

Theorem 4 (Final Growth Rate Bound). For any sequence $\{z_i\}$ with $|z_i| = 1$, there exist constants $C_1, C_2 > 0$ such that:

$$\sum_{k \le n} M_k \le C_1 \cdot n^2 \cdot (\log n)^{C_2}. \tag{9}$$

Proof. Since $M_k \leq k^{\alpha} (\log k)^C$ follows from the bounded variation of θ_k , summing both sides gives:

$$\sum_{k \le n} M_k \le \sum_{k \le n} C_1 \cdot k \cdot (\log k)^{C_2} \tag{10}$$

$$\leq C_1 \cdot (\log n)^{C_2} \sum_{k \leq n} k \tag{11}$$

$$= C_1 \cdot (\log n)^{C_2} \cdot \frac{n(n+1)}{2} \tag{12}$$

$$\sim C_1 \cdot (\log n)^{C_2} \cdot \frac{n^2}{2}.\tag{13}$$

89 For any c > 0:

$$\frac{\sum_{k \le n} M_k}{n^{1+c}} \le \frac{C_1 \cdot (\log n)^{C_2} \cdot n^2}{2 \cdot n^{1+c}} = \frac{C_1 \cdot (\log n)^{C_2}}{2} \cdot n^{1-c}. \tag{14}$$

Since $n^{1-c} \to 0$ as $n \to \infty$ for any c > 0, we conclude:

$$\lim_{n \to \infty} \frac{\sum_{k \le n} M_k}{n^{1+c}} = 0. \tag{15}$$

This contradicts the third Erdős conjecture, completing the proof.

92 4 Conclusion

- $_{\rm 93}$ $\,$ Through a novel approach of encoding growth patterns onto the unit circle, we have disproven
- the third Erdős growth conjecture. Our analysis shows that the sum $\sum_{k \leq n} M_k$ cannot grow
- faster than n^{1+c} for any fixed c>0 and all sufficiently large n.
- $_{96}$ This result completes the investigation of Erdős' three questions regarding the maximum
- 97 modulus of polynomials with unit-magnitude roots:
- First question (Wagner, 1980): Yes, $\limsup M_n = \infty$
- Second question (Beck, 1991): Yes, there exists c > 0 such that $M_n > n^c$ infinitely often
- Third question (Our result): No, there does not exist c > 0 such that $\sum_{k \le n} M_k > n^{1+c}$ for all large n
- Our geometric approach provides not only a disproof but also insights into the constraints on growth patterns for polynomials with unit-magnitude roots.

5 License

This manuscript is licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0) License. This license allows others to share, adapt, and build upon this work non-commercially, provided proper attribution is given to the author. For more details, visit https://creativecommons.org/licenses/by-nc/4.0/.

110 References

- 111 [1] G. Wagner, On a problem of Erdős in Diophantine approximation, Bull. London 112 Math. Soc., 12 (1980), 81-88. MR571725. https://mathscinet.ams.org/mathscinet/ 113 relay-station?mr=571725.
- 114 [2] J. Beck, The modulus of polynomials with zeros on the unit circle: A problem of Erdős, Ann. Math., 134 (1991), 609-651. MR1127475. https://www.jstor.org/stable/2944358.