Université de Reims-Champagne-Ardennes Département de Mathématiques et Informatique Licence, Minf0401, ANNEE 2020-2021

EPREUVE en TEMPS LIMITE (Durée 1h)

Exercice 1. Soient $x_1, x_2, ..., x_k$ les modalités d'une variable X. L'observation d'un échantillon de taille n de la variable X donne les effectifs observés suivants de ces modalités $n_1, n_2, ..., n_k$. On pose

$$g(a) = \frac{1}{n} \sum_{i=1}^{n} n_i (x_i - a)^2$$

- 1) Déterminer la valeur a₀ de a pour laquelle la fonction g atteint son minimum.
- 2) Calculer $g(a_0)$, comparer à la variance Var(X) et commenter.

Exercice 2. L'étude de la durée de vie de 500 ampoules électriques d'une marque ALPHA donne les résultats présentés dans le tableau suivant.

Classes des durées de vie en heures	Nombre d'appareils
[0,1200[59
[1200,1800[91
[1800,2600[127
[2600,3600[103
[3600,4800[77
[4800,7200[43

- 1) Déterminer la distribution des fréquences relatives et calculer la durée de vie moyenne des ampoules électriques ALPHA.
- 2) Calculer la variance et le coefficient de variation.
- 3) Construire l'histogramme de cette distribution statistique et le polygone statistique. Déterminer la classe modale et une approximation graphique du mode.
- 4) En utilisant la méthode d'interpolation linéaire, déterminer la médiane, le premier et le troisième quartiles. Construire le box-plot et commenter.
- 5) Calculer le coefficient d'asymétrie et de coefficient d'aplatissement de Fisher de cette distribution. Commenter le résultat.