Course code: Course Title	Course Structure			Pre-Requisite
SE315: Advanced Data	L	T	P	NIII
Structures	3	1	0	NIL

Course Objective: To study concepts of some advanced data structures like advanced trees and heaps.

S.]	NO	Course Outcomes (CO)
C	01	Understand advanced tree structures and their applications.
C	O2	Apply mergeable heaps (Binomial, Fibonacci, 2-3-4 Heaps) for efficient data management.
C	03	Understand graph theory concepts.
C	O4	Implement graph theory algorithms for efficient utilization of resources.
C	O5	Create efficient techniques for searching and indexing to solve real world problems.

S. NO	Contents	Contact Hours
UNIT 1	Advanced Trees: Definitions Operations on Weight Balanced Trees (Huffman Trees), Height balanced trees- B trees, B+ trees, 2-3 Trees and Red-Black Trees. Augmenting Red-Black Trees to Dynamic Order Statics and Interval Tree and Applications. Operations on Disjoint sets and its union find problem Implementing Sets. Dictionaries, Priority Queues and Concatenable Queues using 2-3 Trees.	8
UNIT 2	Mergeable Heaps: Mergeable Heap Operations, Binomial Trees Implementing Binomial Heaps and its Operations, 2-3-4. Trees and 2-3-4 Heaps. Structure and Potential Function of Fibonacci Heap Implementing Fibonacci Heap.	9
UNIT 3	Graph Theory Definitions: Definitions of Isomorphism Components. Circuits, Fundamental Circuits, Cut-sets. Cut-Vertices Planer and Dual graphs, Spanning Trees, Kuratovski's two Graphs.	8
UNIT 4	Graph Theory Algorithms: Algorithms for Connectedness, Finding all Spanning Trees in a Weighted Graph and Planarity Testing, all pair shortest path algorithms. Min-Cut Max-Flow theorem of Network Flows. Ford-Fulkerson Max Flow Algorithms.	9
UNIT 5	Tries/digital search trees, Multiway tries, Suffix trees and applications, Quadtrees and Octrees and R-trees.	8
	TOTAL	42

REFERENCES		
S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Narsingh Deo, "Graph Theory with Application to Engineering and Computer Science", Reprint Edition, Dover Pubns.	2016
2	Sara Baase, Allen Van Gelder, "Computer Algorithms: Introduction to Design & Analysis", 3 rd Edition, Pearson Education India.	2002
3	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", 4 th Edition, Mit Pr.	2022
4	Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "The Design and	2002

	Analysis of Computer Algorithms", 1st Edition, Pearson India.	
5	Ellis Horowitz, Sartaj Sahni, "Fundamentals of Data Structures", 5 th Edition, Computer Science Press.	1976