Ordenes parciales

Clase 10

IIC 1253

Prof. Cristian Riveros

¿en qué se parecen estas relaciones?

- **u** subconjunto: $A \subseteq B$
- menor o igual: $n \le m$
- divide a: a | b

Outline

Ordenes parciales

Outline

Ordenes parciales

Ordenes parciales

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

Decimos que R es un orden parcial si R cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 3. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

Ejemplos

- subconjunto: $A \subseteq B$
- menor o igual: $\mathbf{n} \leq \mathbf{m}$
- divide a: **a** | **b**

¿cómo comparamos el 6 con el 9 en la relación "divide a"?

Ordenes parciales

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

Decimos que R es un orden parcial si R cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 3. Transitiva: $\forall a, b, c \in A$. $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$.

Un orden parcial sobre A los denotaremos como (\mathbf{A}, \leq) .

Ordenes totales

Sea A un conjunto y (A, \leq) un orden parcial.

Definición

Decimos que un orden parcial (A, \leq) es un orden total si \leq cumple ser:

Conexo: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

¿cuál de los ordenes parciales anteriores son totales?

Outline

Ordenes parciales

Ejemplos de ordenes parciales

Definición

Se define la relación \leq_2 entre pares en $\mathbb{N} \times \mathbb{N}$ como:

$$(i,j) \leq_2 (i',j')$$
 si, y solo si, $i < i' \lor (i = i' \land j \leq j')$

- $(2,100) \leq_2 (3,5)$?
- $(2,5) \leq_2 (2,100)$?
- $(2,5) \leq_2 (2,3)$?

Ejemplos de ordenes parciales

Definición

Se define la relación \leq_2 entre pares en $\mathbb{N} \times \mathbb{N}$ como:

$$(i,j) \leq_2 (i',j')$$
 si, y solo si, $i < i' \lor (i = i' \land j \leq j')$

; qué propiedades cumple \leq_2 ?

- 1. j es \leq_2 refleja?
- 2. i es \leq_2 anti-simétrica?
- 3. j es \leq_2 transitiva?

Orden lexicográfico

En general, si (A, \leq) es un orden parcial, entonces siempre podemos definir un orden parcial sobre $A \times A$.

Definición

Sea (A, \leq) un orden parcial.

Se define la relación \leq_2 entre pares en $A \times A$ como:

$$(a,b) \leq_2 (a',b')$$
 si, y solo si, $(a \neq a' \rightarrow a \leq a') \land (a = a' \rightarrow b \leq b')$

Demuestre que \leq_2 es un **orden parcial**.

- La relación \leq_2 se conoce como el **orden lexicográfico** en $A \times A$.
- Para todo k, es posible definir \leq_k sobre A^k . (¿cómo?)

Alfabetos, letras y palabras

Definiciones

- Un alfabeto Σ es un conjunto finito de elementos.
- Un elemento $a \in \Sigma$ lo llamaremos una letra o símbolo.
- Una palabra w sobre Σ es una secuencia finita de letras en Σ .

- $\Sigma = \{a, b, c\}$ es un alfabeto con tres letras.
- aa, abbca, o acaabaa son palabras.

Alfabetos, letras y palabras

Definiciones

■ El largo |w| de una palabra w sobre Σ es el número de letras.

$$|w| \stackrel{\mathsf{def}}{\equiv} \# \mathsf{de} \mathsf{letras} \mathsf{en} w$$

■ Denotaremos ϵ como la palabra vacía de largo 0.

$$|\epsilon| \stackrel{\mathsf{def}}{\equiv} 0$$

■ Denotaremos por Σ^* como el conjunto de todas las palabras sobre Σ .

- $\Sigma = \{a, b\}$ es un alfabeto con dos letras.

Concatenación de palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$:

$$u \cdot v \stackrel{\text{def}}{\equiv} u \text{ concatenado con } v$$

 $u \cdot v$ corresponde a la secuencia u seguido de la secuencia v.

- aab·bab = aabbab
- bc · aabbc = bcaabbc
- $\epsilon \cdot abaca = abaca$

Concatenación de palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$:

$$u \cdot v \stackrel{\text{def}}{\equiv} u \text{ concatenado con } v$$

 $u \cdot v$ corresponde a la secuencia u seguido de la secuencia v.

Propiedades

- La concatenación · es asociativa: $(u \cdot v) \cdot w = u \cdot (v \cdot w)$
- La concatenación · **NO es conmutativa**: $u \cdot v \neq v \cdot u$
- $|u\cdot v|=|u|+|v|$
- $\epsilon \cdot u = u \cdot \epsilon = u$

¿por qué nos podría interesar trabajar con palabras?

Relaciones entre palabras

Definición

Sea Σ un alfabeto. Se definen las siguientes relaciones entre palabras en Σ^* :

$$\mathbf{u} \leq_{\mathbf{p}} \mathbf{v}$$
 si, y solo si, $\exists w \in \Sigma^*$. $u \cdot w = v$ $\mathbf{u} \leq_{\mathbf{s}} \mathbf{v}$ si, y solo si, $\exists w \in \Sigma^*$. $w \cdot u = v$ $\mathbf{u} \leq_{\mathbf{i}} \mathbf{v}$ si, y solo si, $\exists w_1, w_2 \in \Sigma^*$. $w_1 \cdot u \cdot w_2 = v$

- aaab ≤_p aaabba? ✓
- bab \leq_p abbab ? \times
- bab ≤s baab? ×
- cba ≤i aabbcbaaa? ✓

Relaciones entre palabras

Definición

Sea Σ un alfabeto. Se definen las siguientes relaciones entre palabras en Σ^* :

$$\mathbf{u} \leq_{\mathbf{p}} \mathbf{v}$$
 si, y solo si, $\exists w \in \Sigma^*$. $u \cdot w = v$

$$\mathbf{u} \leq_{\mathbf{s}} \mathbf{v}$$
 si, y solo si, $\exists w \in \Sigma^*$. $w \cdot u = v$

$$\mathbf{u} \leq_{\mathbf{i}} \mathbf{v}$$
 si, y solo si, $\exists w_1, w_2 \in \Sigma^*$. $w_1 \cdot u \cdot w_2 = v$

¿qué propiedades cumple \leq_p , \leq_s o \leq_i ?

- 1. j es \leq_p , \leq_s o \leq_i refleja?
- 2. j es \leq_p , \leq_s o \leq_i anti-simétrica?
- 3. j es \leq_{D} , \leq_{s} o \leq_{i} transitiva?

