FCAI fcai.fi

Shooting Methods

Illustration

 $J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(s_0, a_0), a_1)) + \dots + \gamma^H r(f(f(s_0, a_0), a_0)) + \dots + \gamma^H r(f(s_0, a_0), a_0)) + \dots + \gamma^H r(f(s$

Recursively evaluate dynamics

Gradient based approaches are fast

But local minima

And vanishing/exploding gradients

Shooting Methods

Illustration

Gradient based approaches are fast But local minima And vanishing/exploding gradients

$$J(a_{0:H}) = \gamma^0 r(s_0, a_0) + \gamma^1 r(f(s_0, a_0), a_1) + \dots + \gamma^H r(f(f(s_0, a_0), a_0) + \dots +$$

FCAI

fcai.fi

Shooting Methods

Random shooting

FCAI fcai.fi

23