Data III, Integers I

Recap: CPU and Memory

a. How does the CPU find its data in memory?

Logical Operators

AND (&&), OR (||), NOT (!)

&& (AND)	F	Т
F	F	F
T	F	Т

(OR)	F	Т
F	F	T
Т	T	T

! (NOT)	
F	Т
Т	F

Bitwise Operators

• Apply the given operation (AND, OR, NOT, XOR) to *each bit* of a value separately

$$\circ$$
 Ex: 0xA | 0x3 = 0b1010 | 0b0011 = 0b1011 = 0xB

& (AND)	0	1
0	0	0
1	0	1

(OR)	0	1
0	0	1
1	1	1

^ (XOR)	0	1
0	0	1
1	1	0

~ (NOT)	
0	1
1	0

Bitmasks

We can use binary bitwise operators (&, |, ^) along with a specially chosen **bitmask** in order to read or write to particular bits in a piece of data

Useful operations - for any bit *b* (answer with 0, 1, *b*, or $\sim b$):

Numerical Encoding Design Example

- Encode a standard deck of playing cards
 - 4 suits, 13 cards each = 52 total
- Operations to implement:
 - Which card is of higher value?
 - o Are they the same suit?
- First: how to represent?

Naive Approach

- Binary encoding of 52 cards only 6 bits needed
 - \circ 2⁶ = 64 >= 52
 - Fits in one byte
- Just count cards in binary
- **Problem:** hard to compare value & suit

Binary	Suit & Value
000000	Ace of Clubs
000001	Ace of Diamonds
000010	Ace of Hearts
000011	Ace of Spades
110010	King of Hearts
110011	King of Spades

Better Approach: Fields

- Separate binary encodings of suit (2 bits) and value (4 btis)
 - $^{\circ}$ Still fits in one byte, easier to do comparisons \Box

Compare Card Suits

```
#define SUIT_MASK = 0x30 // 0b00110000

int same_suit(char card1, char card2) {
    return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
}
```

Compare Card Suits (pt 2)

Compare Card Suits: Equivalent Technique

Compare Card Values

Compare Card Values

Integers

Encoding Integers

- The hardware supports two flavors of integers
 - Unsigned only non-negative numbers
 - Signed positive and negative numbers
- By default, C ints are signed
 - Java only supports signed
- Reminder: we cannot represent all integers in a finite number of bits!
 - \circ If our data type is w bits wide, we have 2^w different encodings
 - Unsigned values: $0 \dots 2^w 1$ ex: w=4, $2^4 -> 16$ possible values for unsigned from 0 to 15
 - \circ Signed values: $-2^{w-1} \dots 2^{w-1} 1$ ex: w=4, $2^4 \rightarrow 16$ possible values for signed, from -8 to +7

Unsigned Integers

Just like the binary->base 10 conversion from day 1

$$b_7^{\dagger}b_6^{\dagger}b_5^{\dagger}b_4^{\dagger}b_3^{\dagger}b_2^{\dagger}b_0^{\dagger} = b_7^{*2^7} + b_6^{*2^6} + \dots + b_1^{*2^1} + b_0^{*2^0}$$

- Arithmetic: just add like "normal"
 - If sum exceeds 1 bit, carry over to the next

$$Ex: 4+5 = 9$$

How do we represent signed integers?

- Historically, different machines did this different ways
 - Sign and magnitude
 - 1's complement
 - 2's complement

Sign and Magnitude

Not used in practice for integers!

- Designate highest-order (most-significant) bit to represent sign
 - Sign = 0: positive number
 - 0x7F = 0b011111111 = positive 0b11111111 = 127
 - Sign = 1: negative number
 - 0xFF = 0b11111111 = negative 0b1111111 = -127
- Benefits:
 - Positive numbers have the same encoding as their unsigned equivalents
 - \circ 0x00 = 0
 - Easy to tell the sign of a number

Sign and Magnitude (pt 2)

• Drawbacks?

Sign and Magnitude (pt 2)

Not used in practice for integers!

- Drawbacks:
 - Two representations of 0 (bad for checking equality)

$$0x00 = 0b0000000 = positive 0b0000000 = "positive" 0$$

$$0x80 = 0b\underline{1}000000 = positive 0b0000000 = "negative" 0$$

Sign and Magnitude (pt 3)

Not used in practice for integers!

- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Negative numbers increment in the wrong direction

One's Complement

Flip bits:

- To get the 1's complement of a binary number, you invert all the bits (turn 1's into 0's and 0's into 1's).
- Example: The 1's complement of 0101 (which is +5) is 1010 (representing -5 in 1's complement).
- One challenge with 1's complement is that it has two representations for zero: positive zero (0000) and negative zero (1111)

Two's Complement

- To get the 2's complement of a binary number, you first find the
 1's complement (invert all the bits) and then add 1 to the result.
- Example:
 - Start with the binary number 0101 (+5).
 - Invert all the bits to get 1010 (1's complement of 5).
 - Add 1: 1010 + 1 = 1011 (which is -5 in 2's complement).
 - So the 2's complement of 0101 is 1011

Advantages of 2's Complement:

- •. There's only one representation for zero.
- It simplifies arithmetic operations, especially addition and subtraction, since both can use the same circuitry.
- It allows for easy detection of overflow during operations.

Two's Complement Negatives

- Accomplished with one neat mathematical trick!
 - Most-significant bit has negative weight
- 4-bit example:
 - o 1010, unsigned:

$$1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10$$

1010₂ two's complement:

$$-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6$$

- -1 is represented as 11..11₂
 - MSB makes it "super negative," need to add as much positive value as possible to get to -1
- Easy trick to negate: just flip the bits and add 1!

Polling Question

Take the 4-bit number encoding x = 0b1011

Which of the following numbers is **NOT** a valid interpretation of x using any of the number representation schemes discussed today? (Unsigned, Sign and Magnitude, or 2's Complement)

- A) -4
- B) -5
- C) 11
- D) -3
- E) We're lost...

Summary

- Bitwise operators allow for fine-grained manipulations of data
 - Bitwise AND (&), OR (|), and NOT (~) are *different* than logical AND (&&), OR (||), and NOT (!)
 - Useful for bitmasks
- Choice of encoding scheme is important
 - Tradeoffs based on size requirements and desired operations
- Integers are represented using **unsigned** and **two's complement** representations
 - Sign and Magnitude no longer used for integers
 - Limited by fixed bit width