

EXPERIMENT-10

Student Name: Samuel UID: 24MAI10018

Branch: ME-AIML Section: 24MAI-1

Semester: 2nd Date:

Subject Name: ML Lab Subject Code: 24CSH-667

AIM - Case Study on application of AI (Early Disease Detection using AI).

Software Required -

Python

• IDE

Theory -

What is Artificial Intelligence (AI)?

Artificial Intelligence (AI) is a branch of computer science focused on creating systems capable of performing tasks that normally require human intelligence. These tasks include learning, reasoning, problem-solving, perception, and natural language understanding.

What is Machine Learning (ML)?

Machine Learning is a subfield of AI that enables computers to learn patterns from data and make predictions or decisions without being explicitly programmed. ML involves algorithms that improve automatically through experience.

Types of Machine Learning:

- Supervised Learning: Learns from labelled data (e.g., regression, classification).
- Unsupervised Learning: Identifies patterns in unlabelled data (e.g., clustering, dimensionality reduction).
- Reinforcement Learning: Learns from interactions with an environment to maximize reward.

ML Workflow (Pipeline)

- 1. Data Collection: Gather historical or real-time data (e.g., sensors, logs).
- 2. Data Preprocessing: Clean and normalize data for analysis.
- 3. Feature Selection: Choose relevant variables for model training.

- 4. Model Selection: Choose algorithm (Random Forest, SVM, etc.).
- 5. Model Training: Feed data to algorithm to learn relationships.
- 6. Model Evaluation: Use metrics like accuracy, precision, recall.
- 7. Deployment: Integrate into real-time system or dashboard.
- 8. Monitoring: Track performance and retrain as needed.

Application: Early Disease Detection using AI

Problem:

In healthcare, delayed or inaccurate diagnosis of diseases such as breast cancer can lead to life-threatening consequences, prolonged treatment, and higher medical costs. Traditional diagnostic methods often rely heavily on manual interpretation and are prone to human error.

AI-Based Solution:

Machine Learning (ML) is increasingly being used to analyze medical data (like cell nucleus measurements, tissue density, and more) to predict the likelihood of diseases, such as whether a tumor is malignant (cancerous) or benign (non-cancerous).

How It Works:

- Medical Data Collection: Patient test results (e.g., biopsies, imaging, measurements) are collected.
- Feature Extraction: Key measurements (e.g., mean radius, texture, perimeter) are extracted from cells.
- Model Training: ML algorithms are trained on labelled patient records to learn patterns between features and outcomes.
- Disease Prediction: The trained model predicts whether new patient data indicates a malignant or benign tumor.
- Decision Support: Doctors use these predictions as decision-support tools for faster and more accurate diagnoses.

Real-World Applications:

- Radiology: AI tools analyze mammograms, CT scans, and MRIs to detect abnormalities.
- Pathology: ML assists in detecting cancerous cells in tissue samples.
- Preventive Healthcare: Early prediction models help flag high-risk patients before symptoms worsen.
- Clinical Decision Support Systems (CDSS): AI assists doctors by highlighting potential diagnosis or treatment pathways.

CODE -

Install required libraries

!pip install scikit-learn matplotlib seaborn

Import necessary modules

```
from sklearn.datasets import load_breast_cancer
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
```

Load the built-in breast cancer dataset

```
data = load_breast_cancer()

df = pd.DataFrame(data.data, columns=data.feature_names)

df['target'] = data.target
```

Show dataset shape and preview

```
print("Dataset shape:", df.shape)
df.head()
```

Visualizing target distribution

```
sns.countplot(x='target', data=df)
plt.title("Target Class Distribution (0 = Malignant, 1 = Benign)")
plt.show()
```

Correlation heatmap

```
plt.figure(figsize=(10,8))
sns.heatmap(df.corr(), cmap='coolwarm', linewidths=0.5)
```



```
plt.title("Feature Correlation Heatmap")
plt.show()
# Splitting features and target
X = df.drop('target', axis=1)
y = df['target']
# Splitting dataset
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
# Training a Random Forest Classifier
model = RandomForestClassifier(n estimators=100, random state=42)
model.fit(X_train, y_train)
# Predictions
y_pred = model.predict(X_test)
# Evaluation
print("Classification Report:\n", classification report(y test,
y pred))
print("Confusion Matrix:\n", confusion matrix(y test, y pred))
# Feature Importance
feature_importance = pd.Series(model.feature_importances_,
index=X.columns)
feature importance.sort values().plot(kind='barh', figsize=(8,6),
title="Feature Importance")
plt.tight_layout()
plt.show()
```


Output -

Classification	Report:			
	precision	recall	f1-score	support
0	0.98	0.93	0.95	43
1	0.96	0.99	0.97	71
accuracy			0.96	114
macro avg	0.97	0.96	0.96	114
weighted avg	0.97	0.96	0.96	114
Confusion Matr	ix:			
[[40 3]				
[1 70]]				

Learning Outcomes -

- Understand core concepts of AI and ML.
- Differentiate between types of machine learning.
- Apply Random Forest for classification tasks.
- Analyze sensor data for predictive maintenance.