

Gender Prediction Based on Profile Photo

CE9010 Project -- Group 10:

Chen Zitong, Jin Ye, Xiao Fengtong

Outline

Part I. Problem Description

Part II. Data Acquisition

Part III. Data Exploration

Part IV. Data Preprocessing

Part V & VI. Data Analysis and Result Analysis

i. SVM

ii. Logistic Regression

iii. Neural Network

iv. Boosting

v. Test on additional dataset

Part VII. Future Work

Github Repository:

https://github.com/FengtongX/CE9010_project

Python Notebook running on Google Colaboratory

Part I. Problem Description

We aim to learn a binary-classification model to predict males and females based on their frontal face images.

Part II. Data Acquisition

Part 1:

We downloaded* 946 photos from MIVIA LAB with 255*383 pixels, then we resize the photo into 76*144 = 8664 pixels to save computational cost.

Further, we load the images and save it as .mat file on Google Drive to run on Colab notebook.

dataset.shape = 8665 * 946 (label added)

First 9 sample images

^{*}Llnk:http://mivia.unisa.it/datasets/video-analysis-datasets/gender-recognition-dataset

Part II. Data Acquisition

Part 2:

Scrape profile photo found online without copyright through our own scraper, further resized to 76*144 while keep face in the center.

add_test_data.shape = 8665 * 37

Part III. Data Exploration

• Mean & Variance

Data compression using T-sne

Reduced to 3

Part IV. Data Preprocessing

Splitting dataset

```
train,test = train_test_split(dataset.T,test_size=0.3, random_state=42)
```

We split the dataset into 70% training set (622) and 30% testing set (384)

Normalization: Z - score

```
x_train -= x_train.mean(axis=0)
x train /= np.std(x train,axis=0)
```

Part IV. Data Preprocessing

Principal Component Analysis

o First 207 principal components explain over 95% of variance.

Visualize the images associated with the first several principal components

Part IV. Data Preprocessing

Principal Component Analysis(PCA)

From reconstruction: most of variance are maintained after dimension reduction.

Part V & VI. Data Analysis and Result Analysis

1. Support Vector Machines(SVM) - Model Selection & Result Analysis

a. Hyperparameters:

C(controls the margin hardness): [1, 5, 10, 50]

Gamma(controls the size of radial basis function kernel): [0.0001, 0.0005, 0.001, 0.005]

b. Use the original training data with 8664 features:

C = 10, gamma = 0.0001

c. Use dimension-reduced data with 207 fundamental components (PCA):

C = 5, gamma = 0.0001

d. Result:

	Training error	CV error	Running time
Original Data	0.0004	0.1406	21.98
After feature selection	0.0174	0.1451	0.51
%change	+4250%	+3.2%	-97.7%

Part V & VI. Data Analysis and Result Analysis

• 1. Support Vector Machines(SVM) - Result Analysis

In the first several samples, most of them are classified correctly.

Confusion Matrix

2. Logistic regression - Model Selection

- a. On original data:
 - select best regularization factor 100
- b. Use random forest to select features:
 - 1400 pixels are being selected
- c. On data after feature selection:
 - Select best regularization factor 20
- d. On data after PCA:
 - Select best regularization factor 1000

Logistic regression - Result analysis

a. Result:

	Training error	CV error	Running time
Original Data	0.0064	0.1617	7.8
After feature selection	0.0193	0.1466	0.69
After PCA	0.0816	0.1662	0.08

Logistic regression - Decision Boundary

3. Neural Network -- Model Selection:

- a. 3 main hyperparameters:
 - Number of layers
 - Number of neurons at each layer
 - Regularization coefficient
- b. Fix lambda = 0, train a high-complexity model

At #neutron = 22, training error = 0, then we select value of regularization coefficient based on this high-complexity model.

C. Fix model architecture (1 Layer with 22 neutrons, find regularization coefficient (x-axis value is reversed)

We select regularization coefficient to be 0.01

• 3. Neural Network -- Result Analysis:

Best NN model: 1 hidden layer with 22 neutrons with regularization coefficient = 0.01

	Training error	CV error	Running time
After feature selection	0.042	0.1690	208.19

4. Simple Boosting on voting:

We ensemble 3 algorithm together with simple voting method:

On testing dataset - predicting:

	Training error	CV error	Running time
Boosting	0.0	0.1690	0.8974

Test on additional dataset

Predicted Labels(Female:1; Male:-1)

Part VII. Future Work

I. Noise filtering using PCA

II. Be able to deal with different images

- A. Not a front face:
 - be able to rotate the face or identify elements of face to classify gender
- B. Face image not of the same size:
 - be able to adjust parameters according to different face size
- C. Not a face image:
 - be able to identify the location of a face on an image

Thank you.