

Email: info@rstudio.com
Web: http://www.rstudio.com

Expert Data Wrangling with R

How to make the most of your data

city	size	amount
New York	large	23
New York	small	14
London	large	> 22
London	small	16
Beijing	large	121
Beijing	small	56

Garrett Grolemund

Data Scientist and Master Instructor November 2014 Email: garrett@rstudio.com

Introduction

Wrangling Munging Cleaming Carpentry Manipulation Iransformation

50-80% of your time?

HELLO

my name is

Garrett

Data Wrangling

Data Wrangling

The practical task of transforming the *layout*, *substance*, and *display* of your data.

Data Manipulation

Changing the variables, values, and units of analysis contained in the data set.

Data Tidying

Changing the layout of tabular data to make it suitable for a particular piece of software (R).

Data Visualization

Transforming the data to a visual format that reveals visual patterns.

Three packages to help you work with the structure of data.

Cheat Sheet

Syntax - Helpful conventions for wrangling

::tbl_df(iris)

Converts data to tbl class. tbl's are easier to examine than data frames. R displays only the data that fits onscreen:

```
Source: local data frame [150 x 5]
   Sepal.Length Sepal.Width Petal.Length
                       3.0
                       3.2
                                    1.3
                                    1.5
                       3.1
Variables not shown: Petal.Width (dbl),
 Species (fctr)
```

:glimpse(iris)

Information dense summary of tbl data.

::View(iris)

View data set in spreadsheet-like display (note capital V).

ш	iris x				
Φ	O D VE	ter		(Q,	
	Sepal.Length	Sepal.Width 1	PetalLength :	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

dplyr::%>%

Passes object on left hand side as first argument (or . argument) of function on righthand side.

```
x \%\% f(y) is the same as f(x, y)
y \gg f(x, ., z) is the same as f(x, y, z)
```

"Piping" with %>% makes code more readable, e.g.

iris %>% group_by(Species) %>% summarise(avg = mean(Sepal.Width)) %>% arrange(avg)

Tidy Data - A foundation for wrangling in R

In a tidy data set:

Tidy data complements R's vectorized operations. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R. M * A

Reshaping Data - Change the layout of a data set

gather(cases, "year", "n", 2:4)

Gather columns into rows.

in its own column

::separate(storms, date, c("y", "m", "d")) Separate one column into several.

tidyr::spread(pollution, size, amount) Spread rows into columns.

::unite(data, col, ..., sep) Unite several columns into one.

::data_frame(a = 1:3, b = 4:6) Combine vectors into data frame (optimized).

dplyr::arrange(mtcars, mpg)

Order rows by values of a column (low to high).

dplyr::arrange(.mtcars, desc(mpg))

Order rows by values of a column (high to low).

dplyr::rename(tb, y = year)

Rename the columns of a data frame.

Subset Observations (Rows)

dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.

dplyr::slice(iris, 10:15)

Select rows by position.

dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

	Logic in R - ?(Comparison, ?base	:::Logic
<	Less than	!=	Not equal to
>	Greater than	%in%	Group membership
==	Equal to	is.na	Is NA
<=	Less than or equal to	!is.na	Is not NA
>=	Greater than or equal to	&, ,!,xor,any,all	Boolean operators

Subset Variables (Columns)

dplyr::select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

Helper functions for select - ?select

select(iris, contains("."))

Select columns whose name contains a character string.

select(iris, ends_with("Length"))

Select columns whose name ends with a character string.

select(iris, everything())

Select every column.

select(iris, matches(".t."))

Select columns whose name matches a regular expression.

select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5. select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string.

select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive select(iris, -Species)

Select all columns except Species.

RStudio* is a trademark of RStudio, Inc. • All rights reserved • info@rstudio.com • 844-448-1212 • rstudio.com devtools::install_github("rstudio/EDAWR") for data sets

Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15

http://www.rstudio.com/resources/cheatsheets/

R Packages with example data sets

EDAWR

nycflights13

Case Study

Explore the spread of TB from 1995 to 2013 in 100 countries.

Your Turn

Open R. Then download the packages that we will use today by running the following code.

EDAWR

```
install.packages("devtools")
devtools::install_github("rstudio/EDAWR")
```


dplyr, tidyr, ggvis, nycflights13

Two mew conventions

Install packages

nycflights13

Arrival, departure, meterological, etc. data for 300,000+ flights that flew in and out of New York City in 2013.

SkyWest

tbl's

1977	2013			OTI	
1978	2013	1	3	848	-2
1979	2013	1	3	850	-5
1980	2013	1	3	850	21
1981	2013	1	3	851	24
1982	2013	1	3	851	111
1983	2013	1	3	851	-4

Just like data frames, but play better with the console window.

```
Source: local data frame [336,776 x 16]
  year month day dep_time dep_delay arr_time
   2013
                                          830
  2013
                       533
                                          850
  2013
                                          923
  2013
                       544
                                         1004
  2013
                                          812
  2013
                       554
                                          740
  2013
                       555
                                          913
  2013
                       557
                                          709
  2013
                                          838
10 2013
                                          753
Variables not shown: arr_delay (dbl), carrier
  (chr), tailnum (chr), flight (int), origin
 (chr), dest (chr), air_time (dbl), distance
  (dbl), hour (dbl), minute (dbl)
```

1986	2013	1	3	853	-5
1987	2013	1	3	854	144
1988	2013	1	3	855	-3
1989	2013	1	3	855	-5
1990	2013	1	3	855	-5
1991	2013	1	3	856	-12
1992	2013	1	3	856	36
1993	2013	1	3	857	-3
1994	2013	1	3	857	-3
1995	2013	1	3	857	-3
1996	2013	1	3	858	-2
1997	2013	1	3	858	-2
1998	2013	1	3	859	39
1999	2013	1	3	859	-1
2000	2013	1	3	900	3
[read	ched get0	ption	n("max.	orint")	
omitte	d 334776	rows	7		

OHILLER 224/10 LOWS 1

tbl

data.frame

```
flights <- tbl_df(flights)
# Can undo with
# flights <- as.data.frame(flights)</pre>
```


View ()

Examine any data set with the View() command (Capital V)

View(flights)
View(iris)
View(mtcars)

glimpse()

Examine values and structure at command line

```
glimpse(flights)
glimpse(iris)
glimpse(mtcars)
```


Ceci n'est pas une pipe.

The pipe 0/50/0

```
dd <- flights$dep_delay
mean(dd, na.rm = TRUE)
dd %>% mean(na.rm = TRUE)
```



```
little_bunny.foo_foo %>%
hop_through(forest) %>%
scoop_up(field.mouse) %>%
bop_on(head)
```

Data Science*

"Music theory is simply an attempt to explain what musicians have been playing intuitively for thousands of years"

- Mike Iverson

Science

The best way to learn about the world is to observe it.

Nature behaves according to natural laws (e.g. $E = MC^2$, F = MA, ...).

Variable - A quantity, quality, or property that you can measure.

Variable - A quantity, quality, or property that you can measure.

Value - The state of a variable when you measure it.

(The value can change from measurement to measurement)

$$f_1 = m_1 \cdot a_1$$

$$f_2 = m_2 \cdot a_2$$

$$f_3 = m_3 \cdot a_3$$

Variable - A quantity, quality, or property that you can measure.

Value - The state of a variable when you measure it.

Observation - The values of several variables measured under similar conditions.

$$f_1 = m_1 \cdot a_1$$

$$f_2 = m_2 \cdot a_2$$

$$f_3 = m_3 \cdot a_3$$

Structure of Natural Laws

Natural laws deal with variables, but they operate on values that appear in the same observation.

\mathbf{f}_1	m_1	a ₁		m ₁ · a ₁
f_2	m_2	a ₂		m ₂ · a ₂
f ₃	m ₃	a3	=	m3 · a3

$$f_1 = m_1 \cdot a_1$$
 $f_2 = m_2 \cdot a_2$
 $f_3 = m_3 \cdot a_3$

- Variables
- Values
- Observations

Data = Laluesapsaciased with variablestems obstateations

3.01	0.98	3.08
2.35	0.91	2.58
5.57	1.01	5.52

$$f_1 = m_1 \cdot a_1$$
 $f_2 = m_2 \cdot a_2$
 $f_3 = m_3 \cdot a_3$

Laws appear as patterns in data.

3.01	0.98	3.08
2.35	0.91	2.58
5.57	1.01	5.52
0.62	1.09	0.56
4.15	0.89	4.69
5.07	1.05	4.84
7.56	0.93	8.12

$$f_1 = m_1 \cdot a_1$$
 $f_2 = m_2 \cdot a_2$
 $f_3 = m_3 \cdot a_3$

Laws appear as patterns in data.

0.62	1.09	0.56
1.30	0.99	1.30
1.63	0.96	1.70
1.72	1.00	1.71
1.82	1.01	1.80
1.95	0.94	2.08
2.11	1.03	2.05

0.62	1.09	0.56
1.30	0.99	1.30
1.63	0.96	1.70
1.72	1.00	1.71
1.82	1.01	1.80
1.95	0.94	2.08
2.11	1.03	2.05

Recap: Data science

Natural laws deal with variables, but operate on values that appear in the same observation.

Data contains values grouped into variables and observations.

Laws appear as patterns in data.

EDAWR

An R package with toy data sets that we will use today.

```
# install.packages("devtools")
# devtools::install_github("rstudio/EDAWR")
library(EDAWR)
?tb
?population
```

Warm up - Identify the variables

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

pollution

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

storms

storm	wind	pressure	date
storm Alberto	wind 10	1007	date 2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Alia	40	1013	1997-01
Arlene	50	1010	1999-06-13
Arvur		100	1996 6-21

cases

pollution

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

- City
- Amount of large particles
- Amount of small particles

Your Turn - Identify the observations

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

pollution

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

storms

cases

pollution

(per storm)

(per country per year)

(per city)