Úvod do databázových systémov

http://www.dcs.fmph.uniba.sk/~plachetk
/TEACHING/DB1

Tomáš Plachetka
Fakulta matematiky, fyziky a informatiky,
Univerzita Komenského, Bratislava
Zima 2022–2023

Cieľ a metodológia navrhovania databáz

Produktom logického návrhu relačnej databázy sú relácie, atribúty a funkčné závislosti (atribúty a funkčné závislosti sú dôležitejšie než relácie)

Na overenie kvality návrhu, resp. automatické generovanie vhodnej organizácie dát slúži normalizácia (formálne metódy)

L'ubovol'ná relačná databáza sa dá reprezentovat' jedinou tabuľkou. To však vedie k problémom:

redundancia, riziko nekonzistencie, anomálie pri vynechávaní a modifikácii dát, potreba NULL hodnôt, plytvanie pamäťou

Motivácia normalizácie (T. Conolly and C. Begg)

Príklad:

Staff Branch

staffNo	sName	position	salary	branchNo	bAddress
SL21	John White	Manager	30000	B005	22 Deer Rd, London
SG37	Ann Beech	Assistant	12000	B003	163 Main St, Glasgow
SG14	David Ford	Supervisor	18000	B003	163 Main St, Glasgow
SA9	Mary Howe	Assistant	9000	B007	16 Argyll St, Aberdeen
SG5	Susan Brand	Manager	24000	B003	163 Main St, Glasgow
SL41	Julie Lee	Assistant	9000	B005	22 Deer Rd, London

Staff

staffNo	sName	position	salary	branchNo
SL21	John White	Manager	30000	B005
SG37	Ann Beech	Assistant	12000	B003
SG14	David Ford	Supervisor	18000	B003
SA9	Mary Howe	Assistant	9000	B007
SG5	Susan Brand	Manager	24000	B003
SL41	Julie Lee	Assistant	9000	B005

Branch

branchNo bAddress	
B005	22 Deer Rd, London
B007	16 Argyll St, Aberdeen
B003	163 Main St, Glasgow

Funkčné závislosti (functional dependencies)

Definícia. V relácii r platí funkčná závislosť $X \to Y$ (t.j. množina atribútov Y funkčne závisí od množiny atribútov X), ak pre každú populáciu relácie r platí

$$\forall X \ \forall Y_1 \ \forall Z_1 \ \forall Y_2 \ \forall Z_2 \ (r(X, Y_1, Z_1) \land r(X, Y_2, Z_2) \Longrightarrow Y_1 = Y_2)$$

kde X je inštancia X, Y₁ a Y₂ sú inštancie Y

Inými slovami, $\mathbf{X} \to \mathbf{Y}$ v relácii r hovorí, že ak sa v r ľubovoľné dva riadky zhodujú na množine atribútov \mathbf{X} , tak potom sa zhodujú aj na množine atribútov \mathbf{Y} (pre ľubovoľné naplnenie r)

Funkčné závislosti (functional dependencies)

Bar	Adresa	Pivo	Vyrobca	Cena
Janeway	Voyager	Bud	A.B.	3
Janeway	Voyager	WickedAle	Pete's	2
Spock	Enterprise	Bud	A.B.	3

Platí (vždy, nielen pre toto konkrétne naplnenie r):

Bar → Adresa

Bar, Pivo → Cena

Ale neplatí napríklad

Bar → Pivo

Pivo → Cena (hoci toto v tejto konkrétnej populácii databázy náhodou platí)

Vlastnosti funkčných závislostí (Armstrongove axiómy)

(A1)
$$X \subseteq Y \Rightarrow Y \rightarrow X$$

reflexívnosť

(A2)
$$\forall Z (X \rightarrow Y \Rightarrow XZ \rightarrow YZ)$$

rozšírenie (augmentation)

(A3)
$$(X \rightarrow Y) \land (Y \rightarrow Z) \Rightarrow X \rightarrow Z$$

tranzitívnosť

Tvrdenia A1, A2, A3 sa v skutočnosti dajú dokázať z definície funkčnej závislosti v relačnom kalkule, napríklad:

(A1)
$$\forall X \ \forall Y \ \forall Z_1 \ \forall Z_2 \ ((X \subseteq Y \land r(Y, Z_1) \land r(Y, Z_2)) \Rightarrow X = X)$$

Prečo sa nazývajú "axiómy"? Lebo zakrátko dokážeme, že akékoľvek platné vlastnosti funkčných závislostí vieme vyjadriť len pomocou A1, A2, A3

Ďalšie vlastnosti funkčných závislostí

(B1)
$$(X \rightarrow Y) \land (X \rightarrow Z) \Rightarrow X \rightarrow YZ$$
 union rule

(B2)
$$(X \rightarrow Y) \land (WY \rightarrow Z) \Rightarrow WX \rightarrow WZ$$
 pseudotransivity

(B3)
$$(X \rightarrow Y) \land (Z \subseteq Y) \Rightarrow X \rightarrow Z$$
 decomposition

(B4)
$$(X \to Y) \land (X \subseteq Z) \Rightarrow Z \to Y$$
 left-hand side simplification

Dôkaz B1 (z Armstrongovych axióm):

$$X \rightarrow Y \Rightarrow X \rightarrow XY$$
 podľa (A2)

$$X \rightarrow Z \Rightarrow XY \rightarrow YZ$$
 podľa (A2)

Takže
$$(X \rightarrow Y) \land (X \rightarrow Z) \Rightarrow X \rightarrow YZ$$
 podľa (A3)

Dôkazy B2, B3 a B4 sa dajú urobiť podobným spôsobom s použitím Armstrongovych axióm

Uzáver množiny atribútov

Definícia. Nech **X** je množina atribútov a F množina funkčných závislostí. Potom uzáverom množiny atribútov **X** vzhľadom na F rozumieme množinu **X**⁺ všetkých atribútov Y takých, že **X** → Y je logickým dôsledkom funkčných závislostí F

Výpočet uzáveru:

$$X^+ := X;$$

repeat
for each $U \rightarrow V \in F$ do
if $U \in X^+$ then $X^+ := X^+ \cup V;$
while niečo sa pridalo do $X^+;$

Optimalizácia: každá závislosť sa použije najviac raz, po použití ju možno vynechať. (Teda uzáver sa počíta v lineárnom čase.)

Výpočet uzáveru množiny atribútov

Príklad:

Nech $X = \{BD\}$. Potom X^+ sa počíta takto:

$$X^{(0)} = \{BD\},\$$
 $X^{(1)} = \{BDEG\},\$
 $X^{(2)} = \{BCDEG\},\$
 $X^{(3)} = \{ABCDEG\},\$
 $X^{(4)} = \{ABCDEG\},\$
 $X^{(3)} = X^{(4)} = X^{(4)}$

Úplnosť Armstrongovych axióm

Veta. Funkčná závislosť $\mathbf{X} \to \mathbf{Y}$ sa dá odvodiť z danej množiny funkčných závislostí F pomocou Armstrongovych axióm práve vtedy, keď $\mathbf{X} \to \mathbf{Y}$ je logickým dôsledkom F

Dôkaz:

- ⇒ Keďže Armstrongove axiómy sú pravdivé formuly, ktoré sa dajú dokázať z definície funkčnej závislosti, dajú sa z nich odvodiť len platné závislosti
- ← Ostáva dokázať, že ak nejaká funkčná závislosť platí (t.j. je dôsledkom F), tak sa dá odvodiť z F len s použitím Armstrongovych axióm. Toto dokážeme sporom

Úplnosť Armstrongovych axióm

Predpokladajme, že X → Y platí a nedá sa odvodiť z F pomocou Armstrongovych axióm. Skonštruujme dvojriadkovú reláciu r:

	C	ostatné atribúty
r _o :	1 1 1	0 0 0
r ₁ :	1 1 1	11 1

kde \mathbf{C} je množina atribútov podobná \mathbf{X}^+ až na to, že tu uzáver robíme len s použitím Armstrongovych axióm, teda nie predošlým algoritmom (zatiaľ sme nedokázali, že $\mathbf{C} = \mathbf{X}^+$, takže ich považujeme za rôzne). Platí $\mathbf{X} \in \mathbf{C}$ (podľa A1) a $\mathbf{Y} \notin \mathbf{C}$ (lebo predpokladáme, že $\mathbf{X} \to \mathbf{Y}$ sa nedá odvodiť). Teda $\mathbf{X} \to \mathbf{Y}$ nie je splnená v r (pre \mathbf{X} sú v r rôzne \mathbf{Y}).

Úplnosť Armstrongovych axióm

Teraz dokážeme, že v r je splnená *každá* funkčná závislosť, ktorá je dôsledkom F (spor s tvrdením, že $X \rightarrow Y$ nie je splnená v r).

Nech niektorá funkčná závislosť **S** \rightarrow **T** je dôsledkom F, ale nie je splnená v r. Sú dve možnosti: 1.**S** ⊆ **C** a 2.**S** ⊈ **C**.

1.Ak $S \subseteq C$, tak sa dá odvodiť $C \rightarrow S$ (podľa A1) a tiež $C \rightarrow T$ (podľa A3). Takže ak $S \subseteq C$, tak aj $T \subseteq C$ (C podľa definície obsahuje všetky odvoditeľné atribúty). Lenže v tom prípade závislosť **S**→**T** je splnená v r, lebo riadky r₀ a r₁ sa zhodujú na **T**.

2.Ak $\mathbf{S} \not\subseteq \mathbf{C}$, tak potom riadky \mathbf{r}_0 a \mathbf{r}_1 v r majú rôzne hodnoty na \mathbf{S} , takže funkčná závislosť $S \rightarrow T$ je splnená triviálne (v takom prípade nezáleží na tom, či sa riadky r₀ a r₁ zhodujú na **T**).

Takže v r je splnená každá závislosť, ktorá je dôsledkom F. QED

Uzáver množiny funkčných závislostí

Definícia. Označme F+ je množinu všetkých funkčných závislostí, ktoré sú dôsledkom funkčných závislostí z F (t.j. ktoré sa dajú odvodiť z F použitím Armstrongovych axióm). Množinu F+ budeme nazývať uzáverom množiny funkčných závislostí F

Množina F+ môže byť rozsiahla, t.j. F+ môže obsahovať exponenciálne veľa funkčných závislostí vzhľadom na počet atribútov a počet funkčných závislostí v F

Pokrytie množiny funkčných závislostí

Definícia. Hovoríme, že množina funkčných závislostí G pokrýva množinu funkčných závislostí F, ak G⁺⊇ F⁺

Testovanie pokrytia priamo podľa tejto definície má exponenciálnu časovú zložitosť (lebo uzávery G+, resp. F+ môžu obsahovať exponenciálne veľa funkčných závislostí vzhľadom na |G| a |F|)

Stačí však testovať, či každú funkčnú závislosť z F možno odvodiť z G. Testovanie pokrytia je teda polynomiálne v čase

Príklad:

 $\{AB \rightarrow AC, B \rightarrow A, C \rightarrow B\}$ pokrýva $\{AB \rightarrow C, C \rightarrow A\}$, ale nie naopak

Minimálne pokrytie množiny funkčných závislostí

Definícia. Funkčná závislosť sa nazýva kanonická, ak má na pravej strane práve jeden atribút

Definícia. Minimálne pokrytie množiny funkčných závislostí F je množina kanonických funkčných závislostí G taká, že G a F sa navzájom pokrývajú; a zároveň po vynechaní ľubovoľnej z funkčných závislostí z G alebo po vynechaní ľubovoľného atribútu na ľavej strane ľubovoľnej funkčnej závislosti z G prestane G pokrývať F

(Nejaké) minimálne pokrytie sa dá vypočítať v polynomiálnom čase vzhľadom na počet atribútov a vstupných funkčných závislostí

Minimálne pokrytie množiny funkčných závislostí

Príklad:

$$AB \rightarrow C$$
, $D \rightarrow E$, $CG \rightarrow B$, $C \rightarrow A$, $D \rightarrow G$, $CG \rightarrow D$, $BC \rightarrow D$, $BE \rightarrow C$, $CE \rightarrow A$, $ACD \rightarrow B$, $CE \rightarrow G$

Minimálne pokrytia (vždy existuje aspoň jedno minimálne pokrytie, no môže ich existovať viac ako jedno):

AB
$$\rightarrow$$
 C, C \rightarrow A, BC \rightarrow D, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CE \rightarrow G, CD \rightarrow B, CG \rightarrow D

AB
$$\rightarrow$$
 C, C \rightarrow A, BC \rightarrow D, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CE \rightarrow G, CG \rightarrow B

Výpočet minimálneho pokrytia množiny funkč. závislostí

- Algoritmus výpočtu minimálneho pokrytia množiny funkčných závislostí F:
- Nahraď v F každú funkčnú závislosť X→Y množinou {X→A | A∈Y, A je jednoduchý atribút}
- 2. Vynechaj postupne všetky redundantné atribúty na ľavých stranách **X**→A (každý atribút z **X** treba testovať práve raz)
- Vynechaj všetky redundantné závislosti X→A (po vynechaní redundantnej funkčnej závislosti opakuj tento krok, kým žiadna funkčná závislosť nie je redundantná, každú závislosť treba testovať práve raz)

Krok 1 je triviálny

- V kroku 2, pre každý atribút $B \in X$ sa vypočíta uzáver $(X-B)^+$ s použitím F. Ak $A \in (X-B)^+$, tak odstráň B z X
- V kroku 3 sa vypočíta uzáver X^+ , ale len s použitím závislostí $F \{X \rightarrow A\}$. Ak $A \in X^+$, tak závislosť $X \rightarrow A$ je redundantná

Výpočet minimálneho pokrytia množiny funkč. závislostí

F:

```
AB \rightarrow C \quad ACD \rightarrow B
                                                CG \rightarrow BD \quad C \rightarrow A
      D \rightarrow EG \quad CE \rightarrow AG \quad BC \rightarrow D \quad BE \rightarrow C
Krok 1:
      AB \rightarrow C \quad ACD \rightarrow B
                                           CG \rightarrow B \qquad CG \rightarrow D
                                                                         CE \rightarrow A
      C \rightarrow A \qquad D \rightarrow E
                                                  D \rightarrow G
```

Krok 2:

- Závislosť ACD \rightarrow B sa nahradí CD \rightarrow B, lebo B \in {CD}+ (keďže platí $C \rightarrow A$ a $ACD \rightarrow B$)
- Závislosť CE → A sa nahradí C → A, lebo A∈{C}+ (keďže platí $C \rightarrow A$
- Žiadna ľavá strana sa už nedá skrátiť

 $CE \rightarrow G \quad BC \rightarrow D \quad BE \rightarrow C$

Výpočet minimálneho pokrytia množiny funkč. závislostí

Krok 3:

$$AB \rightarrow C, CD \rightarrow B, CG \rightarrow B, CG \rightarrow D, C \rightarrow A, D \rightarrow E, D \rightarrow G,$$

$$C \rightarrow A, CE \rightarrow G, BC \rightarrow D, BE \rightarrow C$$

- Závislosť C → A je redundantná, lebo C → A je tam dvakrát
- Závislosť CG → B je redundantná, lebo CG → D, CD → B, takže B∈{CG}+, aj keď k výpočtu uzáveru nepoužijeme závislosť CG → B

Minimálne pokrytie:

(Iné minimálne pokrytie dostaneme, ak v kroku 3 vynecháme $CD \rightarrow B$, $CG \rightarrow D$, $C \rightarrow A$.)

Nadkľúče a kľúče

Definícia. Nech r je relácia nad množinou atribútov **U**. Potom množinu atribútov **K** takú, že $K \rightarrow U$, nazývame nadkľúč relácie r (superkey, candidate key). Minimálny nadkľúč v zmysle množinovej inklúzie sa nazýva kľúč (key)

Príklad: Nech v r(A, B, C, D, E, F, G, H) platia funkčné závislosti

 $A \rightarrow B$, ABCD $\rightarrow E$, EF $\rightarrow GH$, ACDF $\rightarrow EG$

Jediným kľúčom je ACDF, lebo ACDF nie sú na pravej strane žiadnej závislosti (takže musia patriť do každého kľúča) a všetky ostatné atribúty patria do uzáveru {ACDF}+

Výpočet všetkých kľúčov

Treba prehľadať všetky množiny atribútov. Pre nájdenie všetkých kľúčov neexistuje lepší algoritmus ako exponenciálny v čase, lebo kľúčov môže byť exponenciálne veľa

Algoritmus zhora nadol:

Generuj lexikograficky zostupne (počínajúc celou množinou atribútov) všetky podmnožiny atribútov. Ak niektorá podmnožina nie je nadkľúčom, tak ju ďalej neredukuj. Ak niektorá podmnožina je nadkľúčom (v jej uzávere sú všetky atribúty), ale po odobratí ľubovoľného atribútu nadkľúčom nie je, tak je kľúčom

Praktický tip:

Atribúty, ktoré nie sú na pravej strane žiadnej funkčnej závislosti, musia byť v každom kľúči

Výpočet všetkých kľúčov zhora nadol: príklad

 $\{G \rightarrow F, F \rightarrow A, AC \rightarrow E, F \rightarrow H, AH \rightarrow F, E \rightarrow G, H \rightarrow D, BF \rightarrow G\}$ Atribúty B a C musia byť v každom kľúči, lebo nie sú na žiadnej pravej strane

Prehľadávanie do hĺbky (backtrack): V ľavej vetve sa odstráni 1 atribút, v pravej vetve je ten atribút v každej podmnožine (je podčiarknutý)

- Pred prehľadávaním stromu vypočítaj uzáver z množiny podčiarknutých atribútov a vynechaj nepodčiarknuté atribúty uzáveru—ak sú podčiarknuté atribúty nadkľúčom, tak to je kľúč (ukonči vetvu)
- V ľavej vetve over, či uzáver naďalej obsahuje ten atribút, ktorý sa v tej vetve vynecháva. Ak nie, ukonči vetvu
- Po nájdení nejakého kľúča neprehľadávaj podstromy, ktoré ten kľúč obsahujú

Dekompozícia relačnej schémy

Definícia. Množinu atribútov relácie r spolu s množinou funkčných závislostí, ktoré platia v r nazývame relačná schéma

Definícia. Dekompozícia relačnej schémy $(r(\mathbf{U}), F)$ je množina $(r_1, F_1), ..., (r_n, F_n)$, kde každá z relácií $r_1, ..., r_n$ je projekciou r na nejakej podmnožine atribútov r, pričom zjednotenie atribútov $r_1, ..., r_n$ je \mathbf{U} , a zároveň F pokrýva všetky $F_1, ..., F_n$ (t.j. dekompozíciou nevznikajú žiadne nové funkčné závislosti)

Definícia. Dekompozícia $(r_1, F_1), ..., (r_n, F_n)$ relačnej schémy (r, F) je bezstratová (spája sa bezstratovo), ak platí

 $r = \Pi_{r_1}(r) \bowtie \Pi_{r_2}(r) \bowtie ... \bowtie \Pi_{r_n}(r)$ pre každú populáciu relácie r

Normalizácia (Lee Mark)

Identifikácia funkčných závislostí (Lee Mark)

Normalizácia (Lee Mark)

FLT-SCHEDULE

BAD

flt#	weekdax	airline	dtime	from	atime	to
DL242	MO WE FR	DELTA	10:40	ATL	12:30	BOS
SK912	SA SU	SAS	12:00	CPH	15:30	JFK
AA242	MO FR	AA	08:00	CHI	10:10	ATL

Attributes must be defined over domains with atomic values (1NF)

FLT-SCHEDULE

BETTER

flt#	weekday	airline	dtime	from	atime	to
DL242	МО	DELTA	10:40	ATL	12:30	BOS
DL242	WE	DELTA	10:40	ATL	12:30	BOS
DL242	FR	DELTA	10:40	ATL	12:30	BOS
SK912	SA	SAS	12:00	CPH	15:30	JFK
SK912	SU	SAS	12:00	CPH	15:30	JFK
AA242	MO	AA	08:00	CHI	10:10	ATL
AA242	FR	AA	08:00	CHI	10:10	ATL

Normalizácia (Lee Mark): Redundancy of Fact

BAD

FLIGHTS

flt#	date	airline	plane#
DL242	10/23/00	Delta	k-yo-33297
DL242	10/24/00	Delta	t-up-73356
DL242	10/25/00	Delta	o-ge-98722
AA121	10/24/00	American	p-rw-84663
AA121	10/25/00	American	q-yg-98237
AA411	10/22/00	American	h-fe-65748

- redundancy: airline name repeated for same flight
- inconsistency: when airline name for a flight changes, it must (perhaps) be changed in many places

Normalizácia (Lee Mark): Fact Clutter

	F LIGH	TS		
	flt#	date	airline	plane#
	DL242	10/23/00	Dela	k-yo-33297
BAD	DL 242	10/24/00	Delt a	t-up-73356
DAD	DL242	10/25/00	Delta	o-ge-98722
	AA121	10/24/00	American	p-rw-84663
	AA121	10/25/00	American	q-yg-98237
	AA411	10/22/00	American	h-fe-65748

- **insertion anomalies:** how do we represent that SK912 is flown by Scandinavian without there being a date and a plane assigned?
- **deletion anomalies:** when we cancel AA411 on 10/22/00, we lose information that AA411 is flown by American (in other weeks)
- **update anomalies:** if DL242 is flown by Sabena, we must change it everywhere

Normalizácia (Lee Mark): Information Loss

DATE-AIRLINE-PLANE

BAD

date	airline	plane#
10/23/00	Delta	k-yo-33297
10/24/00	Delta	t-up-73356
10/25/00	Delta	o-ge-98722
10/24/00	American	p-rw-84663
10/25/00	American	q-yg-98237
10/22/00	American	h-fe-65748

FLIGHTS, original

flt#	date	airline	plane#
DL242	10/23/00	Delta	k-yo-33297
DL242	10/24/00	Delta	t-up-73356
DL242	10/25/00	Delta	o-ge-98722
AA121	10/24/00	American	p-rw-84663
AA121	10/25/00	American	q-yg-98237
AA411	10/22/00	American	h-fe-65748

FLIGHTS-AIRLINE		
flt#	airline	
DL242	Delta	
AA121	American	
AA411	American	

Information loss (= false information): we polluted the database with false facts; we can't find the true facts

FLIGHTS, joined			
flt#	date	airline	plane#
DL242	10/23/00	Delta	k-yo-33297
DL242	10/24/00	Delta	t-up-73356
DL242	10/25/00	Delta	o-ge-98722
AA121	10/24/00	American	p-rw-84663
AA121	10/25/00	American	q-yg-98237
AA121	10/22/00	American	h-fe-65748
AA411	10/24/00	American	p-rw-84663
AA411	10/25/00	American	q-yg-98237
AA411	10/22/00	American	h-fe-65748
1	I		1

Normalizácia (Lee Mark): Dependency Loss

BAD

FLIGHTS-AIRLINE

flt#	airline
DL242	Delta
AA121	American
AA411	American

DATE-AIRLINE-PLANE

DATE ATTEMENTED TO THE			
date	airline	plane#	
10/23/00	Delta	k-yo-33297	
10/24/00	Delta	t-up-73356	
10/25/00	Delta	o-ge-98722	
10/24/00	American	p-rw-84663	
10/25/00	American	q-yg-98237	
10/22/00	American	h-fe-65748	

 dependency loss: we lost the fact that (flt#, date) → plane#

Normalizácia (Lee Mark): Good Database Design

GOOD

FLIGHTS-AIRLINE

T EIGITIO / III IEII IE		
flt#	airline	
DL242	Delta	
AA121	American	
AA411	American	

FLIGHTS-DATE-PLANE

flt#	date	plane#
DL242	10/23/00	k-yo-33297
DL242	10/24/00	t-up-73356
DL242	10/25/00	o-ge-98722
AA121	10/24/00	p-rw-84663
AA121	10/25/00	q-yg-98237
AA411	10/22/00	h-fe-65748

- no redundancy of FACT (!)
- no inconsistency
- no insertion, deletion or update anomalies
- no information loss
- no dependency loss

Redundancia: anomálie pri vkladaní

student

Snumber	Sname	Pnumber	Pname
s1	tamara	p1	tomas
s2	jozef	p2	jan

Ako pridáme profesora, ktorý (momentálne) nemá žiadnych študentov? Toto sa nedá bez použitia NULLs

Redundancia: anomálie pri vynechávaní

student

Snumber	Sname	Pnumber	Pname
s1	tamara	p1	tomas
s1	tamara	p2	jan
s2	jozef	p2	jan

Keď vynecháme študenta, máme zmazať riadok alebo nahradiť údaje o študentovi NULL hodnotami?

Ak zmažeme riadok, stratíme (občas) kompletnú informáciu o niektorom profesorovi

Ak nahradíme údaje o študentovi NULL hodnotami, tak niekedy vzniknú duplikáty (hoci v skutočnosti to nie sú doslova duplikáty, lebo hodnoty NULL sú navzájom neporovnateľné)

Redundancia: anomálie pri modifikácii

student

Snumber	Sname	Pnumber	Pname
s3	peter	p1	tamas
s1	tamara	p1	tamas
s2	jozef	p2	tamas
s2	jozef	p1	tamas

Ak zmeníme meno profesora (napríklad chceme odstrániť preklep a premenovať profesora tamas na tomas), tak musíme zmenu urobiť vo veľa riadkoch

A čo je horšie, niekedy nesmieme tú zmenu urobiť. Napríklad Tamas môže byť správne meno profesora s Pnumber=2, takže pri opravovaní preklepov v Pname sa musíme dívať tiež na pNumber

Úloha funkčných závislostí pri odstraňovaní redundancie

Uvažujme r(A, B, C)

- Ak v r neplatí žiadna funkčná závislosť, tak v r nie je žiadna redundancia vzhľadom na funkčné závislosti
- Ak v r(A, B, C) platí A → B (ale neplatí A → C), tak niektoré riadky môžu mať rovnakú hodnotu A. Lenže potom budú mať aj rovnakú hodnotu B (ale rôzne hodnoty v C). Toto je problém
- Tento problém sa dá odstrániť dekompozíciou do $r_1(A, B)$ a $r_2(A, C)$. V r_1 už závislosť $A \to B$ nevadí, keďže do r_1 nikdy nepridávame duplikát už existujúceho riadku. V r_2 atribút B nie je

Cieľom normalizácie je nájdenie "správnej" dekompozície