* Nework at time t: Nt

Evolving Network: New links at ++1 (People You May Know)

Static Network: Missing links at t (Protein)

* Using the topological Structure

1 Local Measure

2 Chlobal Measure

* Machine Learning

-> Topological Structure

1 Local Measures

@ Common Neighbours (Friend of Friends)

Doesn't account the ratio

Of common friends 4

10 15 1000 900

total friends

* N(u) → Neighbours of u

* M(V) -> Neighbourd of V

6 Jaccard Coefficient

OPreferential Attachment

PT(u,v) = Pu.Pv & degree(u). degree(v)

@ Adamic Adas

$$\star$$
 AA($\omega_1 N$) = $\sum_{x \in N(\omega) \cap N(x)} \frac{1}{|x|} |\log |N(x)|$

- (2) Global Measure
 - 1) Katz link Prediction (Better than Local measures)

Similarity bus u4v == 1 lower weightage to higher

poth length

2 Rooted PageRank

URP + URP = Sim (4.4)

-> Machine Learning
The main trick is to coment ej <u, y=""> to a vector</u,>
1) By User explicit features
a) deg u, deg v
b) Ang pam length, len of shortest path, #paths
c) CC, JC, AA, RA (Local Link prediction)
1 Using Deeplearning
→ Node embedding → PCA, SVD, DeepWolk, Node 2 Vec
ζu, ν>
Or some transformation on vectors
* Hadamard Distance