Отчет по модели регрессии цены недвижимости в Калифорнии.

¹Нургалиев И.И.

¹AHO BO «Университет Иннополис», Иннополис, e-mail: i.nurgaliev@innopolis.ru

Ссылка на github	https://github.com/ILDAR9/california

Исходной задачей было создать модель регрессии, позволяющую предсказывать стоимость дома в Калифорнии.

Входные данные

Исходный набор данных содержит 20,640 записей каждая из которых представлена 9 переменными. Зависимая переменная (целевая) median house value (цена дома).

Переменная	кол-во	μ	σ	Min	Max
median house value	20640	206855.816909	115395.615874	14999.00	500001.00
median income	19833	3.866405	1.897745	0.4999	15.0001
housing median age	20640	28.639486	12.585558	1.00	52.00
total rooms	19809	2638.515220	2184.459291	2.00	39320.00
total bedrooms	20640	537.898014	421.247906	1.00	6445.00
population, households	20640	1425.476744	1132.462122	3.00	35682.00
households	20640	499.539680	382.329753	1.00	6082.00
latitude	20640	35.63186	2.135952	32.54	41.95
longitude	20640	119.569704	2.003532	124.35	-114.31

Анализ данных

Цены домов по файлу расположены достаточно равномерно таким образом мы можем использовать kfold с 30% тестовой выборки отбирают по uniform распределению.

- 1) У MedianHouseAge и MedianHouseValue присутсвует достаточно выраженное отклонение от нормального распределения, что будет очень сильно влиять на линейные классификаторы.
- 2) Присутствует выраженный наклон распределения с правым хвостом у Population, TotalBedrooms, TotalRooms и Households.

Присутствует сильная корреляция по критерию Пирсена

Top-2

- 1) Households и TotalBedrooms = 0.979829
- 2) TotalRooms и TotalBedrooms = 0.929979

Стоит заметить что имеются NaN значения в следующих переменных

MedianIncome 0.039099 % TotalRooms 0.040262 %

Таким образом, покрыв NaN значения другими значениями (далее) мы получим меньшую корреляцию.

Предобработка

Переменные Longitude и Latitude достаточно высоко коррелируют, мы можем разложить их на 3 ортогональных вектора представленных как:

X = cos(Latitude) * cos(Longitute) Y = cos(Latitude) * sin(Longitute)

 $Z = \sin(\text{Latitude})$

На графике изображены X Y Z в хорошем разбросе, с концентрацией на одном полушарии

Далее мы покрыли все NaN значения:

- 1) Для MedianIncome мы решили использовать медиану
- 2) Для TotalRooms = TotalBedrooms + mean(TotalRooms TotalBedrooms)

Подобные замены почти не повлияли на само распределение и более того значения корреляции уменьшились лишь на 1 процент.

Таким образом на красном мы получили гораздо меньшим смещением, чем было изначально (на синем).

Так же, помимо Population, мы решили сгладить смещения для TotalRooms и TotalBedrooms при помощи инструменты boxcox что отлично повлияло на производительность моделей.

Значения Longitue и Latitude мы решили оставить как есть, без изменения, для шума (имеет своеобразное распределение), чтобы сделать модель более обобщённой, для исключения переобучения.

На последнем этапе предобработки, мы добавили Pipeline с первым шагом стандартизации данных по всем столбцам, для правильного вычисления дистанции для линейных моделей как SVR, rigid и др. Для DecisionTree и соответственно для AdaBoost мы не проводим стандартизацию данных.

Построение модели

Изучение параметров функции прогнозирования и последующее тестирование модели на одних и тех же данных является методологической ошибкой. Чтобы избежать переобучения, при проведении (контролируемой) оценки модели мы будет удерживать 30% данных как тестовую выборку. Боле того, оценка алгоритма проводится 4 раза по разной обучающей и тестируемой выборке (равномерно распределение выборки).

Как показательную оценку регрессии мы выбрали Mean absolute percentage error (MAPE)

$$M = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$
 , где A_t – актуальное значение, F_t – предсказанное значение. Таким образом чем меньше МАРЕ тел стабильнее и точнее регрессор.

Результаты оценки её качества

Были построенны разные модели с перебором параметров sklearn.model selection.GridSearch Обобщённая оценка качества относительно всех регрессоров, проводилась на заранее определенной выборке тестирования по метрике МАРЕ.

модель	Параметры	Оценка	MAPE
SGDRegressor	alpha = 0.0005; loss = squared_loss; penalty = elasticnet	0.646054	30.4434
Ridge	alpha = 0.5	0. 647674	30.4629
DecisionTreeRegressor	min_samples_leaf = 10	0.750136	14.4293
AdaBoost	loss = square; n_estimators = 350; learning_rate = 1.00; DecisionTreeRegressor(criterion='mse', max_depth=12)	0.830380	13.14

Делая вывод на обощенной оценке MAPE, AdaBoost имеет лучшую производительность. Стоит заметить, что она почти близка к оценке DecisionTree.

Список литературы

1. Pace R. K., Barry R. Sparse spatial autoregressions //Statistics & Probability Letters. – 1997. – T. 33. $- N_{\underline{0}}$. 3. - C. 291-297.