Classical Planning

Shiwali Mohan

Computer Science and Engineering University of Michigan

 $May\ 25,\ 2012$

Outline

1 Classical Planning

2 PDDL

3 Planning Graph

• What is a planning problem?

- What is a planning problem?
 - asks if we can reach a goal state from the initial state
 - how?

- What is a planning problem?
 - asks if we can reach a goal state from the initial state
 - how?
- Environment is
 - fully observable
 - deterministic
 - finite
 - static
 - discrete

- What is a planning problem?
 - asks if we can reach a goal state from the initial state
 - how?
- Environment is
 - fully observable
 - deterministic
 - finite
 - static
 - discrete
- Combination of
 - Logic (state and action representation)
 - Search (search for generating a plan)

- What is a planning problem?
 - asks if we can reach a goal state from the initial state
 - how?
- Environment is
 - fully observable
 - deterministic
 - finite
 - static
 - discrete
- Combination of
 - Logic (state and action representation)
 - Search (search for generating a plan)
- State Representation

- What is a planning problem?
 - asks if we can reach a goal state from the initial state
 - how?
- Environment is
 - fully observable
 - deterministic
 - finite
 - static
 - discrete
- Combination of
 - Logic (state and action representation)
 - Search (search for generating a plan)
- State Representation
 - Conjunction of ground, functionless terms (fluents)
 - examples: Poor ^ Unknown; At(Truck1, Melbourne)
 - Close world assumption

- What is a planning problem?
 - asks if we can reach a goal state from the initial state
 - how?
- Environment is
 - fully observable
 - deterministic
 - finite
 - static
 - discrete
- Combination of
 - Logic (state and action representation)
 - Search (search for generating a plan)
- State Representation
 - Conjunction of ground, functionless terms (fluents)
 - examples: Poor ^ Unknown; At(Truck1, Melbourne)
 - Close world assumption
 - fluents that are not mentioned are false
 - objects with unique names are distinct

- What is a planning problem?
 - asks if we can reach a goal state from the initial state
 - how?
- Environment is
 - fully observable
 - deterministic
 - finite
 - static
 - discrete
- Combination of
 - Logic (state and action representation)
 - Search (search for generating a plan)
- State Representation
 - Conjunction of ground, functionless terms (fluents)
 - examples: Poor ^ Unknown; At(Truck1, Melbourne)
 - Close world assumption
 - fluents that are not mentioned are false
 - · objects with unique names are distinct
 - at(Truck1,y)?, -Wealthy?, At(Father(Fred), Sydney), On(blockA, blockB) V On (blockA, blockC)

- Action Representation
 - as action schemas
 - single schema represents a set of ground actions

- Universally quantified
- applicable in states where all the preconditions are satisfied
- delete list: remove fluents that appear as negative literals in effects
- add list: add fluents that appear as positive literals in effects

• What predicates would you use to represent the problem?

Figure: objects: disks - red, green, blue; pegs - A, B, C

- What predicates would you use to represent the problem?
 - clear(), on(), smaller(), disk()

Figure: objects: disks - red, green, blue; pegs - A, B, C

- What predicates would you use to represent the problem?
 - clear(), on(), smaller(), disk()
- What is the initial state?

Figure: objects: disks - red, green, blue; pegs - A, B, C

- What predicates would you use to represent the problem?
 - clear(), on(), smaller(), disk()
- What is the initial state?
 - on(Red, Green), on(Green, Blue), on (Blue, A), clear(Red), disc(Red) ... clear(B), clear(C), smaller(Red, Green) smaller(Red, Blue), smaller(Red, A) ...

Figure: objects: disks - red, green, blue; pegs - A, B, C

- What predicates would you use to represent the problem?
 - clear(), on(), smaller(), disk()
- What is the initial state?
 - on(Red, Green), on(Green, Blue), on(Blue, A), clear(Red), disc(Red) ... clear(B), clear(C), smaller(Red, Green) smaller(Red, Blue), smaller(Red, A) ...
- What is the goal state?

Figure: objects: disks - red, green, blue; pegs - A, B, C

- What predicates would you use to represent the problem?
 - clear(), on(), smaller(), disk()
- What is the initial state?
 - on(Red, Green), on(Green, Blue), on (Blue, A), clear(Red), disc(Red) ... clear(B), clear(C), smaller(Red. Green) smaller(Red, Blue), smaller(Red, A) ...
- What is the goal state?
 - on(Red, Green), on(Green, Blue), on(Blue, C)

Figure: objects: disks - red, green, blue; pegs - A, B, C

- What predicates would you use to represent the problem?
 - clear(), on(), smaller(), disk()
- What is the initial state?
 - on(Red, Green), on(Green, Blue), on(Blue, A), clear(Red), disc(Red) ... clear(B), clear(C), smaller(Red, Green) smaller(Red, Blue), smaller(Red, A) ...
- What is the goal state?
 - on(Red, Green), on(Green, Blue), on(Blue, C)
 - How are actions defined?

Figure: objects: disks - red, green, blue; pegs - A, B, C

- What predicates would you use to represent the problem?
 - clear(), on(), smaller(), disk()
- What is the initial state?
 - on(Red, Green), on(Green, Blue), on(Blue, A), clear(Red), disc(Red) ... clear(B), clear(C), smaller(Red, Green) smaller(Red, Blue), smaller(Red, A) ...
- What is the goal state?
 - on(Red, Green), on(Green, Blue), on(Blue, C)

Figure: objects: disks - red, green, blue; pegs - A, B, C

- How are actions defined?
 - Action(move(disk, source, destination)
 PRECOND: clear(disk) ^ on(disk, source) ^ clear(destination)
 ^smaller(disk,destination)
 EFFECT: on(disk, destination) ^ -on(disk, source) ^
 -clear(destination) ^ clear(source)

Planning Graph Review

- Directed graph
 - organized into levels
 - level S_0 is the initial state that consists of fluents that hold in S_0
 - level A_0 consisting of actions applicable in S_0 .
 - Alternate S_i and A_i until termination
 - persistence actions and mutex

- Uses
 - for generating plans
 - for heuristic estimation

• Mutex actions?

- Mutex actions?
 - Inconsistent effects?

- Mutex actions?
 - Inconsistent effects?
 - one action negates an effect of the other

- Mutex actions?
 - Inconsistent effects?
 - one action negates an effect of the other
 - Interference?

- Mutex actions?
 - Inconsistent effects?
 - one action negates an effect of the other
 - Interference?
 - one of the effects of an action is the negation of a precondition of the other

Search

- Mutex actions?
 - Inconsistent effects?
 - · one action negates an effect of the other
 - Interference?
 - one of the effects of an action is the negation of a precondition of the other

Search

• Competing needs?

- Mutex actions?
 - Inconsistent effects?
 - · one action negates an effect of the other
 - Interference?
 - one of the effects of an action is the negation of a precondition of the other
 - Competing needs?
 - One of the preconditions of one action is mutually exclusive with a precondition of the other

- Mutex actions?
 - Inconsistent effects?
 - one action negates an effect of the other
 - Remove(Spare, Trunk) with LeaveOvernight
 - Interference?
 - one of the effects of an action is the negation of a precondition of the other
 - Remove(Flat, Axle) with LeaveOvernight
 - Competing needs?
 - One of the preconditions of one action is mutually exclusive with a precondition of the other
 - PutOn(Spare, Axle) with Remove(Flat, Axle)

- Mutex literals?
 - Negated literal?

- Mutex literals?
 - Negated literal?
 - Inconsistent support?

- Mutex literals?
 - Negated literal?
 - Inconsistent support?
 - if each possible pair of actions that achieve the two literal is mutex

- Mutex literals?
 - Negated literal?
 - Inconsistent support?
 - · if each possible pair of actions that achieve the two literal is mutex
 - At(Spare, Axle) with At(Flat, Axle) in S2

Extract Solution

- Extract Solution can be formulated as CSP or backward search
- As a CSP
 - variables? values?
 - constraints?
- As backward search
 - Initial state?
 - Goal?
 - Actions?
 - Cost

10/10