Алгоритмы и модели вычислений. Задание 9: сортировки

Сергей Володин, 272 гр. задано 2014.04.10

(каноническое) Задача 38

(Идея обсуждалась с Дашей Решетовой)

- 1. Фиксируем алгоритм $A, n \in \mathbb{N}$ D_A разрешающее дерево. $P = \{(k_i, l_i)\}_{i=1}^m$ путь. $G_A^P(V, E)$ граф, $E = \overline{1, m}$. $(i, j) \in E \Leftrightarrow \exists t \in \overline{1, m} \colon (i, j) = (k_t, l_t)$
 - (a) Обозначим ${\cal A}$ множество корректных алгоритмов нахождения минимума
 - (b) $A \stackrel{\text{def}}{=} [\forall A \in \mathcal{A} \, \forall P \text{путь от корня к листу в } D_A \hookrightarrow |P| \geqslant n-1]$
 - (c) $B\stackrel{\text{\tiny def}}{=} \left[\forall A \in \mathcal{A} \, \forall P$ путь от корня к листу в $D_A \hookrightarrow G_A^P$ связен $\right]$
 - (d) Фиксируем $A \in \mathcal{A}, P$ путь от корня к листу в D_A . Пусть B. Тогда $G_A^P = (V, E)$ связен. Докажем, что $|P| \geqslant n-1$. Действительно, $|V| = n, G_A^P$ связен $\Rightarrow |E| \geqslant n-1$. Но $|E| = |\{(i,j)|\exists t \in \overline{1,m} \colon (i,j) = (k_t,l_t)\}| \leqslant m \ (\leqslant, \text{т.к.}$ сравнение может происходить дважды). Получаем, что $|P| = m \geqslant |E| \geqslant n-1$
 - (е) Пусть $\ \ B \Rightarrow \exists A \in \mathcal{A} \exists P$ путь от корня к листу в $D_A \colon G_A^P$ не связен. Фиксируем вход $a_{i=1}^n \subset \mathbb{R}$, на котором достигается путь P. Пусть $V = V_1 \cup ... \cup V_f$ компоненты связности G_A^P . Пусть на этом пути минимум достигается на элементе с идексом $b \colon b = \arg\min\{a_i\}_{i=1}^n$. Без ограничения общности, $b \in V_1$ (в первой компоненте связности). Рассмотрим другую компоненту связности V_2 (существует, по предположению граф не связен). Пусть c индекс в этой компоненте, элемент с этим индексом a_c минимален. Рассмотрим другой вход $\{a_i'\}_{i=1}^n$, совпадающий с исходным кроме $a_c' = a_b' 1$. Тогда результаты всех сравнений не изменятся: a_c сравнивается только с элементами x с индексами из V_2 , и: было $x \geqslant a_c$, теперь $x \geqslant a_c \geqslant a_b > a_b 1$. Поэтому в разрешающем дереве этому входу соответствует также путь P, значит, A на новом входе вернет ответ a_b' , что неверно, так как $a_c' = a_b' 1 < a_b'$. Значит, $A \notin \mathcal{A}$ противоречие. Значит, $B \blacksquare$
- 2. (а) Утверждение может быть неверно, если в массиве есть повторяющиеся элементы. Пусть это $a_i = a_j$, до текущего шага они не участововали в сравнениях, а на текущем шаге они сравниваются между собой. Тогда $\Delta a = -2$, $\Delta c = 0$ (ни один из них не меньше другого), и $\Delta f = \Delta a + \Delta c = -2$
 - (b) Считаем, что элементы не повторяются (иначе утверждение неверно, см. выше). Пусть $\Delta f < -1 \Leftrightarrow \Delta f \leqslant -2 \Leftrightarrow \Delta a + \Delta c \leqslant -2$. c количество элементов, меньших во всех сравнениях. Значит, $\Delta c \geqslant 0$. Значит, $\Delta a + \Delta c \geqslant \Delta a$. Получаем $\Delta a \leqslant -2$. Очевидно, $\Delta a \geqslant -2$, т.к. за один раз сравниваются два элемента, поэтому количество еще не сравнивающихся элементов не может уменьшиться больше, чем на 2. Получаем $\Delta a = -2$, откуда оба сравнивающихся элемента не сравнивались до этого. Значит, $-2 + \Delta c \leqslant -2$, откуда $\Delta c \leqslant 0$, откуда $\Delta c = 0$. Получаем, что было произведено сравнение элементов, и ни один из них не меньше другого, значит, они равны противоречие.

(каноническое) Задача 39

(каноническое) Задача 40

(Модифицируем алгоритм merge sort. Задачу давал Пименов)

- 1. n размер массива $(a_1, ..., a_n)$.
- 2. Если $n \leq 1$, то нет ни одной пары элементов, и количество инверсий равно 0.
- 3. Разобьем массив X на две части: $A=\overline{1,l}, B=\overline{l+1,n}$. Пусть посчитаны количества инверсий для элементов с индексами из L и из R, и элементы в L и R отсортированы. Тогда осталось посчитать количество инверсий для пар $(i,j)\colon i\in A,\,j\in B$, или наоборот. Очевидно, что сортировка частей не изменила количество инверсий для таких пар, т.к. порядок элементов такой пары в массиве не изменился после сортировки: если изначально $A\ni i_0< j_0\in B$, то $i< l+1\leqslant j$. Обозначим L и R подмассивы с индексами A и B соответственно

Выполним модифицированный алгоритм слияния двух упорядоченных подмассивов L и R. На каждой итерации цикла считаем количество инверсий текущего элемента с последующими из другого множества (так обойдем все возможные пары). Результаты суммируем (каждая пара рассматривается только один раз).

Пусть получены k-1 элементов итогового массива, выбраны первые i элементов из L, j из R. Инверсии для k-1 также посчитаны.

k-й равен L_{i+1} , если $L_{i+1} < R_{j+1}$ или R_{j+1} иначе.

Найдем число инверсий для каждого случая:

- Если добавляем L_{i+1} , то последующими элементами из другого множества (из другой части) могут быть $R_{j+1} < R_{j+2} < \dots$ Но (условие случая) $L_{i+1} < R_{j+1} < \dots \Rightarrow$ инверсий с последующими нет (т.к. "более левый" в исходном массиве элемент меньше правых из другого множества).
- Если добавляем R_{j+1} , то последующими элементами из другого множества будут $L_{i+1} < L_{i+2} < \dots$ Но (условие случая) $R_{j+1} < L_{i+1} < \dots$ Получаем, что число инверсий равно количеству оставшихся элементов из левой части, т.е. |L| i (т.к. "более правый" в исходном массиве элемент меньше такого количества "более левых" из другого множества).

Таким образом, найдено количество инверсий в X, и X отсортирован.

- 4. Значит, сортировку частей и поиск количеств инверсий в них можно делать рекурсивно, $l \stackrel{\text{def}}{=} \lfloor \frac{n}{2} \rfloor$
- 5. Очевидно, что время работы такого алгоритма равно времени работы merge sort, т.е. $T(n) = O\left(n\log n\right)$