

planetmath.org

Math for the people, by the people.

divisor theory and exponent valuations

Canonical name DivisorTheoryAndExponentValuations

Date of creation 2013-03-22 17:59:34 Last modified on 2013-03-22 17:59:34

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 7

Author pahio (2872)

Entry type Topic

Classification msc 13A18 Classification msc 12J20 Classification msc 13A05

Synonym divisors and exponents Related topic ExponentValuation2

Related topic ImplicationsOfHavingDivisorTheory

A divisor theory $\mathcal{O}^* \to \mathfrak{D}$ of an integral domain \mathcal{O} determines via its prime divisors a certain set N of exponent valuations on the quotient field of \mathcal{O} . Assume to be known this set of http://planetmath.org/ExponentValuation2exponents $\nu_{\mathfrak{p}}$ corresponding the prime divisors \mathfrak{p} . There is a bijective correspondence between the elements of N and of the set of all prime divisors. The set of the prime divisors determines completely the of the free monoid \mathfrak{D} of all divisors in question. The homomorphism $\mathcal{O}^* \to \mathfrak{D}$ is then defined by the condition

$$\alpha \mapsto \prod_{i} \mathfrak{p}_{i}^{\nu_{\mathfrak{p}_{i}}(\alpha)} = (\alpha),$$
 (1)

since for any element α of \mathcal{O}^* there exists only a finite number of exponents $\nu_{\mathfrak{p}_i}$ which do not vanish on α (corresponding the different prime divisor http://planetmath.org/DivisibilityInRingsfactors of the principal divisor (α)).

One can take the concept of exponent as foundation for divisor theory:

Theorem. Let \mathcal{O} be an integral domain with quotient field K and N a given set of http://planetmath.org/ExponentValuation2exponents of K. The exponents in N determine, as in (1), a divisor theory of \mathcal{O} iff the following three conditions are in :

- For every $\alpha \in \mathcal{O}$ there is at most a finite number of exponents $\nu \in N$ such that $\nu(\alpha) \neq 0$.
- An element $\alpha \in K$ belongs to \mathcal{O} if and only if $\nu(\alpha) \geq 0$ for each $\nu \in N$.
- For any finite set ν_1, \ldots, ν_n of distinct exponents in N and for the arbitrary set k_1, \ldots, k_n of non-negative integers, there exists an element α of \mathcal{O} such that

$$\nu_1(\alpha) = k_1, \ldots, \nu_n(\alpha) = k_n.$$

For the proof of the theorem, we mention only how to construct the divisors when we have the exponent set N fulfilling the three conditions of the theorem. We choose a commutative monoid \mathfrak{D} that allows unique prime factorisation and that may be mapped bijectively onto N. The exponent in

N which corresponds to arbitrary prime element $\mathfrak p$ is denoted by $\nu_{\mathfrak p}$. Then we obtain the homomorphism

$$\alpha \mapsto \prod_{\nu} \mathfrak{p}^{\nu_{\mathfrak{p}}(\alpha)} := (\alpha)$$

which can be seen to satisfy all required properties for a divisor theory $\mathcal{O}^* \to \mathfrak{D}$.

References

[1] S. Borewicz & I. Safarevic: Zahlentheorie. Birkhäuser Verlag. Basel und Stuttgart (1966).