kd education academy (9582701166

Time: 5 Hour

Science NEET

Total Marks: 800

kd 700+ neet ch-1 some basic concepts of chemistry

*	SECTION - A			[800]		
1.	•	1 gram of sodium hydroxide was treated with $25~\mathrm{mL}$ of $0.75\mathrm{MHCl}$ solution, the mass of sodium hydroxide left unreacted is equal to				
	(A) 250mg	(B) 0 mg	(C) 200mg	(D) 750mg		
2.	Then, the empirical fo (Given atomic masses	rmula of X is : of $A=64; B=40; C=3$				
_	(A) ABC_3	(B) AB ₂ C ₂	(C) ABC ₄	(D) A_2BC_2		
3.	The highest number of (A) 4 u of helium	of helium atoms is in	(B) 4 g of helium			
	(C) 2.271098 L of heliu	m at STP	(D) 4 mol of helium			
4.	The right option for	the mass of CO_2 pro	oduced by heating $20g$	of 20% pure		
	limestone is g (Atomic mass of ${\it Ca}=4$	$(0) \Big[CaCO_3 \stackrel{1200K}{\longrightarrow} CaO + C_3 \Big]$	CO_2		
	(A) 1.32	(B) 1.12	(C) 1.76	(D) 2.64		
5.	In one molal solution	that contains 0.5 mole	of a solute, there is			
	(A) $500g$ of solvent	(B) $100mL$ of solvent	(C) $1000g$ of solvent	(D) $500mL$ of solvent		
6.	solution according to $CaCO_{3(s)} + 2HCl_{(aq)} ightarrow 1$ [Calculate upto second	the following reaction $CaCl_{2(aq)}+CO_{2(g)}+2H_{2}$ d place of decimal poi	$O_{(l)}$ nt]			
	(A) 1.32	(B) 3.65	(C) 9.50	(D) 1.25		
7.		nt option for the emp	a.) carbon and remaining irical formula of this c			
	(A) CH		(B) CH ₂			
	(C) CH ₃		(D) CH ₄			
8.	Which one of the followard (A) $1g$ of $Li(s)$ [Atomic (B) $1g$ of $Ag(s)$ [Atomic	c mass of $Li=7 brace$	umber of atoms?			
	(C) $1a$ of $Ma(s)$ [Atom	•				

	(D) $1g$ of $O_2(g)$ [Atomi	ic mass of $O=16 brace$			
9.		queous solution of $ m Na$ that molecular mass $ m c$	${ m OH}$ is $1.28~{ m g/cm^3}.$ The rof ${ m NaOH}=40~{ m gmol^{-1}}$]	molality of the	
	(A) 1.20	(B) 1.56	(C) 1.67	(D) 1.32	
10.	_	mixture is passed th	llic acid is treated with rough KOH pellets. W		
11					
11.	-	ins $85.7\%C$. If $42mg$ oular formula of the cor		ains 3.01 × 10 ²⁰	
	(A) C_3H_6	(B) C_6H_{12}	(C) $C_{12}H_{24}$	(D) C_2H_4	
12.	• •	$_2$ weighs $10g$ and 0.05 re	form two compounds X_3Y_2 weighs \S		
	(A) 40,30	(B) 60,40	(C) 20,30	(D) 30,20	
13.	$AgNO_3$ is mixed	the precipitate forme with $50\ mL$ of 5.8 = $16, Na = 23, Cl = 35.5)$ (B) 7	7 ~	9% solution of ? g (D) 28	
14.	4. If Avogadro number N_A , is changed from $6.022 \times 10^{23} \ mol^{-1}$ to $6.022 \times 10^{20} \ mol^{-1}$, this would change (A) the mass of one mole of carbon (B) the ratio of chemical species to each other in a balanced equation (C) the ratio of elements to each other in a compound				
	(D) the definition of n	nass in units of grams.			
15.	the molar ratio of the	two gases in the mixt	es in the ratio of $1:4$ ure?	(w/w). What is	
	(A) 16:1	(B) 2:1	(C) 1:4	(D) 4:1	
16.	left in excessand how	s burnt with $0.56~g~O_2$ much? (At. $wt.~Mg=2$		ich reactant is	
	(A) Mg , 0.16 g (C) Mg , 0.44 g		(B) O_2 , 0.16 g (D) O_2 , 0.28 g		
17		$J_{\star \star \star}$ is mixed with 11 $^{\circ}$		at STD the	
17.	moles of $HCl_{(q)}$ former	(6)	2 litres of $Cl_{2(g)}$, each	at S.I.F, the	
	(0)	(B) $2\ mol\ ext{of}\ HCl_{(g)}$	(C) $0.5\ mol\ of\ HCl_{(g)}$	(D) $1.5\ mol\ of\ HCl_{(g)}$	

18.	10~mL of $0.1~M$ solutio	on of $AgNO_3,$ which of	$0.05M$ solution of chloosing the following will be the element other than choosing (C) XCl_4	he formula of
19.	$6.02 imes 10^{20}$ molecules concentration of solut (A) 0.001		nt in $100mL$ of its	solution. The
20.	The normality of 4% (\imath			
	(A) 0.1	(B) 1	(C) 0.05	(D) 0.01
21.	How much volume of converting into NO	•	red to oxidise $16g~Fe^-$	$^{+2}$ if HNO_3 is
	(A) 16	(B) 19.05	(C) 38.1	(D) 32
22.	The number of ions p	resent in $2L$ of a solut	ion of $1.6MK_4[Fe(CN)]$	$_{6}]$ is
	(A) $4.8 imes 10^{22}$		(B) 4.8×10^{23}	
	(C) $9.6 imes10^{24}$		(D) $9.6 imes10^{22}$	
23.	3. An aqueous solution of glucose is 10% in strength. The volume in which $1g-mole$ of it is dissolved will be L			
	(A) 18	(B) 9	(C) 0.9	(D) 1.8
24.	The molality of $1M$ so	lution of $NaCl$ (specifi	c gravity $1.0585g/ml$) is	5
	(A) 1.0585	(B) 1	(C) 0.10	(D) 0.0585
25.			to dilute $10ml$ of $10NH$	HCl to make it
	decinormal? n (A) 990	(B) 1010	(C) 100	(D) 1000
26.	Which is the correct o	ption for $0.1M,500ml$	of $AgCl$?	
	(A) $0.05 mole \text{of} AgCl$		(B) $0.1 mole$ of total ior	าร
	(C) $0.05 N_A$ number of	Cl^- ions	(D) All of the above	
27.	1 gram equivalent of su			
	(A) $1L$ of $0.5 M H_2 SO_4$	×/	(B) $49gm$ of H_2SO_4	
	(C) $0.5mol$ of H_2gas		(D) All of the above	
28.	Volume of 0.6 M NaO	H required to neutralize	ze $30cm^3$ of $0.4~M~HCl$	is cm^3
	(A) 30	(B) 20	(C) 50	(D) 45
29.	The solution of sulphuthis solution is 1.71. Its		by weight H_2SO_4 . Spec	cific gravity of
	(A) 18	(B) 27.9	(C) 1	(D) 10

30.	$Ba(OH)_2$ solution. Molecular mass of the acid is				
	(A) 100	(B) 150		(C) 120	(D) 200
31.	What is the concentra $0.1 \; M \; NaCl$ are mixed			f equal volumes of	$0.1\;MAgNO_3$ and
	(A) 0.1	(B) 0.2		(C) 0.05	(D) 0.25
32.	The conversion of oxy of ozone that can begm	_			
	(A) 14.4			(B) 96	
	(C) 640			(D) 64	
33.	At $400K,1mol$ of a hy with $72g$ of water vap			0 1	2g of a gas along
	(A) CH_4	(B) $C_3 E$	H_8	(C) C_2H_4	(D) C_4H_{10}
34.	Consider the following	g data			_
	Element		Atomic mas	ss	
	A		12.01		
	В		35.5		
	\overline{A} and \overline{B} combine to f				
	of A to give $1 mole$ of A		weight of one		
	(A) 154	(B) 74		(C) 47.5	(D) 166
35.	For the reaction $2Al+$ heated then which of				213g of MnO are
	(A) Al is present in ex	cess			
	(B) MnO is present as	limiting	g reagent		
	(C) $54 g$ of Al is requir	ed			
	(D) $159g$ of MnO is re	quired			
36.	In the complete comb	ustion c	of $C_4 H_{10}$ the ${\sf n}_{\sf I}$	umber of oxygen mo	oles required is
	(A) $\frac{17}{2}O_2$	(B) 6O ₂		(C) $\frac{13}{2}O_2$	(D) $rac{5}{2}O_2$
37.	The mass of N_2F_4 pro F_2 is $0.5\ mole.$ What is $2NH_3+5F_2\ o \ N_2F_4+$	the per	_	n of $2.0\;mole$ of NH	T_3 and $8.0\ mole\ $ of
	(A) 79.0	(B) 71.2	2	(C) 84.6	(D) 50
38.	Which statement is fa $CS_2+3O_2 ightarrow 2SO_2+O_2$		he balanced e	quation given below	?

	(A) One mole of CS_2 will produce one mole of CO_2					
	(B) The reaction of $16g$ of oxygen produces $7.33g$ of CO_2					
		ne mole of O_2 will prod				
		-	·			
	(D) 31x molecules of 0	xygen requires three r	notecutes of OS_2			
39.	$3O_2+2N_2 ightarrow 2N_2O_3$	here allowed to reac	t. When $3molO_2$ rema	ins unreacted		
		ples of N_2O_3 would have		ms am cactea,		
	(A) 6	(B) 3	(C) 4	(D) 12		
40.	In the reaction $H_2 + C$ of Excess reagent Left		combines with $64g$ of	O_2 . Find mass		
	(A) 32	(B) 48	(C) 16	(D) None		
<i>1</i> 1	The mass of $M_{a_0}N_a$ n	roduced if $48 am$ of M_c	metal is reacted with	21 am NH. 025		
41.	is	Toduced if 46 gill of 1/1 g	Thetai is reacted with	54 <i>9111</i> 113 9a3		
	$Mg+NH_3 o Mg_3N_2+$	H_2	40			
		(B) $\frac{100}{3}$ gm	(C) $\frac{400}{3}$ gm	(D) $\frac{150}{3}$ gm		
42.	Volume of air requi	red to completely bu	rn 10 litres of C_2H_4	is L		
		• •	emperature and press			
	(A) 15	(B) 150	(C) 100	(D) 200		
1 2		(a) is mixed with 119	litman of Cl. (a) each			
4 5.	moles of $HCl(g)$ form		$litres$ of $Cl_2(g)$, each	at S.I.F., the		
	(A) $1 \ mol \ of \ HCl(g)$	(B) $2 \ mol \ \text{of} \ HCl \ (g)$	(C) $0.5 \ mol$ of	(D) 1.5 <i>mol</i> of		
			$HCl\left(g ight)$	$HCl\left(g ight)$		
44.		the change in volun	vapours of phosphorune when $100mL$ of	` -/ -		
	(A) +50	(B) 500	(C) +75	(D) -500		
45.	In alkaline condition I	$KMnO_4,$ reacts as follows:	ws:			
	$2KMnO_4 + 2KOH ightarrow 2K_2MnO_4 + H_2O + O$					
	Therefore its equivale	nt weight will be				
	(A) 31.5	(B) 52.7	(C) 72.0	(D) 158.0		
46.	In acidic medium po	tassium dichromate a	cts as an oxidant acc	ording to the		
	equation, $Cr_2O_7^{2-}+14$	$H^+ + 6e^- ightarrow 2Cr^{3+} + 7H_0$	$_{2}O$. What is the equiva	lent weight of		
	$K_2Cr_2O_7$? (mol. Wt. =	= M)				
	(A) M	(B) $M/2$	(C) $M/3$	(D) $M/6$		
47.	_		are heated in a clos he equilibrium numbe			

	nitrogen, hydrogen ai	nd ammonia are respe	ctively	
	(A) 1,2,2			
	(B) 2,2,1			
	(C) 1,1,2			
	(D) 2,1,2			
48.	$100gCaCO_3$ reacts w weight of CO_2 will be		n completion of reaction	on how much
	(A) 5.5	(B) 11	(C) 22	(D) 33
49.	$Ca(OH)_2 + H_3PO_4 ightarrow C$ above reaction is	$CaHPO_4 + 2H_2O$ the e	quivalent weight of <i>I</i>	H_3PO_4 in the
	(A) 21	(B) 27	(C) 38	(D) 49
50.	If $1\frac{1}{2}$ moles of oxyger the reaction is		form Al_2O_3 the weight	of Al used in
	(A) 27	(B) 54	(C) 49.5	(D) 31
51.	2.76g of silver carbo g	nate on being strong	lly heated yield a resi	due weighing
	(A) 2.16	(B) 2.48	(C) 2.64	(D) 2.32
52.	•	1,N atoms are presents 108 . Its molecular fo	nt in $9:1:3.5$ by weig ormula is	ıht. Molecular
	(A) $C_2H_6N_2$	(B) C_3H_4N	(C) $C_6H_8N_2$	(D) $C_9H_{12}N_3$
53.	In a compound the raformula is	atio of masses of H,C	,O and N is $1:3:4:7$.	The empirical
	(A) $HC_3O_4N_7$	(B) H_4CON_2	(C) $HC_4O_2N_2$	(D) None of these
54.	Determine the empiri $70.6\%C, 4.2\%H, 11.8\%R$		used in making bullet	proof vests, is
	(A) $C_7H_5NO_2$	(B) $C_7H_5N_2O$	(C) C_7H_9NO	(D) C_7H_5NO
55.	A compound contains is 92 . The formula of		5% nitrogen and its mo	lecular weight
	(A) N_2O	(B) NO_2	(C) N_2O_4	(D) N_2O_5
56.	$3.0 \; \mathrm{molal} \; NaOH \; \mathrm{soluti}$ is :-	ion has a density of 1.1	$10 \; g/ml.$ The molarity σ	of the solution
	(A) 2.94	(B) 3.25	(C) 3.64	(D) 1.25
57.	•	of a compound containt Y (atomic mass $20)$ i	ning 50% of element X	(atomic mass
	(A) XY	(B) X_2Y	(C) XY ₃	(D) X_2Y_3

58.	A hydrocarbon contains STP . Then the hydro		. 488 ml	of the h	ydrocarbon w	reight $1.68g$	at
	(A) Alkane	(B) Alkene		(C) Alky	ne	(D) Arene	
59.	The percentage of P_2	$_{2}O_{5}$ in diammoni	um hyd	rogen pł	nosphate (NH)	$(4)_2HPO_4$ is	
	(A) 23.48	(B) 46.96		(C) 53.7	8	(D) 714	
60.	In which of the follow	ving pairs of cor	npound	ls the rat	io of C,H and	O is same	
	(A) Acetic acid and m	nethyl alcohol			ose and acetic	acid	
	(C) Fructose and suc	rose		(D) All o	f these	3	
61.	A compound $(60 g)$ formula is	on analysis gav	ve $C=$			Its empir	ical
	(A) $C_2H_2O_2$	(B) C_2H_2O		(C) CH_2	O_2	(D) CH_2O	
62.	A $400mg$ iron capsu percentage of iron p		•			$(COO)_2 Fe. \ \ ext{T}$	Γhe
	(A) 33	(B) 25		(C) 14		(D) 8	
63.	The mass of carbon		de of K_{a}		$_{6}]$ is $_{\mathrm{g}}$		
	(A) 1.8	(B) 18		(C) 3.6		(D) 36	
64.	$N_2H_4 + IO_3^- + 2H^+ + 6$ The equivalent masse			spectivel			
	(A) 8 and 35.6			(B) 8 and			
	(C) 8 and 53.5			(D) 16 aı			
65.	74.5 g of a metallic c metal is	hloride contains	35.5g	of chlorir	ne. The equiva	alent mass	of
	(A) 19.5	(B) 35.5		(C) 39		(D) 74.5	
66.	The equivalent $H_3PO_4+Ca(OH)_2 ightarrow 0$	weight of $CaHPO_4 + 2H_2O$	H_3PO_4	_i in	following	reaction	is
	(A) 98	(B) 49		(C) 32.6	6	(D) 40	
67.	The equivalent weight $H_3PO_4+Ca(OH)_2 ightarrow 0$		ollowing	g reactio	n is		
	(A) 98	(B) 49		(C) 32.6	6	(D) 40	
68.	The precentage of Se = $78.4amu$). Then, the more than one Se at	e minimum mol	-		-		
	(A) $1.568 imes 10^4~amu$. ,	$3 imes10^7~amu$		
				(C) 1.568	$8 imes10^3amu$		
	(D) $1.568 imes 10^6~amu$						

69.	At $NTP, 5.6 lite$ of a Q	gas weight $8gram$. The	vapour density of gas is	S :-	
	(A) 32	(B) 40	(C) 16	(D) 8	
70.	If 0.05 mole of XY_2 v then atomic masses of	veighs $5g$ while $3.011 imes$ of X and Y are respecti	form two compounds 10^{23} molecules of X_2Y_1 ively :	T_3 weighs $85g$,	
	(A) 20,30	(B) 30,40	(C) 40,30	(D) 80,60	
71.	Equivalent weights of masses of X and Y :-	f X_2Y and X_2Y_3 are 38	and 18 respectively. Fin	nd the atomic	
	(A) 30,8	(B) 30,16	(C) 10,16	(D) None	
72.	$(I)0.5\ mole\ ext{of}\ O_3 \qquad (II)$ $(IV)5.6\ litre\ ext{of}\ CO_2\ ext{at}$ (A) $II < IV < III < I$	$0.5\ gm$ atom of oxyger	er of increasing masses $(III)3.011 imes 10^{23} \; ext{mole}$ (B) $II < I < IV < III$		
	(C) $IV < II < III < I$		(D) $I < II < III < IV$		
73.	12_C 98.8 13_C 1.18 14_C 0.02 From above data wh	12 13.1 14.1 at is the molecular ma	Atomic mass (u) iss of CH_4 containing a viven that atomic mass $(C)\ 16.125$	•	
74.	M is the molecular w is converted into $K_2 M$		equivalent weight of K	MnO_4 when it	
	(A) M	(B) $M/3$	(C) $M/5$	(D) $M/7$	
75.	The mass of $112\ cm^3$	of CH_4 gas at STP is	g		
	(A) 0.16	(B) 0.8	(C) 0.08	(D) 1.6	
76.	The volume occupied by $4.4g$ of CO_2 at STP is L				
	(A) 22.4	(B) 2.24	(C) 0.224	(D) 0.1	
77.		24) on reacting comp at STP would be	letely with acid gives $^{ m h}$ $^{ m L}$	nydrogen gas,	
	(A) 22.4	(B) 11.2	(C) 44.8	(D) 6.1	
78.			he with $80g$ of bromine bromine the equivale	_	
	(A) 10	(B) 20	(C) 40	(D) 80	

79.	The number of gra $(COOH)_2.2H_2O$ is	am atoms of oxyge	n present in 0.3 gr	am mole of
	(A) 0.6	(B) 1.8	(C) 1.2	(D) 3.6
80.	The element whose a	atom has mass of 10.8	$6 imes 10^{-26}~kg$ is	
	(A) Boron	(B) Calcium	(C) Silver	(D) Zinc
81.		ular weight of 194. If it nitrogen in one molecu	contains 28.9% by mas le of caffeine is	s of nitrogen,
	(A) 4	(B) 6	(C) 2	(D) 3
82.	Equivalent weight of o	crystalline oxalic acid is		
	(A) 30	(B) 63	(C) 53	(D) 45
83.	The vapour density of STP will be L	f a gas is 11.2. The volu	ume occupied by $11.2g$	of the gas at
	(A) 11.2	(B) 22.4	(C) 1	(D) 44.8
84.	One litre of a gas at S	STP weight $1.16g$ it can	possible be	
	(A) C_2H_2	(B) <i>CO</i>	(C) O_2	(D) CH_4
85.	7.5 grams of a gas occ	cupy 5.8 litres of volum	e at STP the gas is	
	(A) <i>NO</i>	(B) N_2O	(C) CO	(D) <i>CO</i> ₂
86.	74.5g of a metallic characteristic the metal is	lloride contain $35.5g$ o	f chlorine. The equival	ent weight of
	(A) 19.5	(B) 35.5	(C) 39	(D) 78
87.	Sulphur forms the ch SCl_2 is $g/mole$	nlorides S_2Cl_2 and SCl_2 .	The equivalent mass	of sulphur in
	(A) 8	(B) 16	(C) 64.8	(D) 32
88.	'A' sample of $[Cu(NH)]$ of $[Cu(NH_3)_4]SO_4$ in g		10 ²⁴ ammonia molecul	es. The moles
	(A) $6 imes10^{23}$	(B) 4	(C) 3	(D) 1
89.	At STP the moles of σ	oxygen in $2.8L$ of CO_2 (gas is	
	(A) 1	(B) 0.5	(C) 0.25	(D) 0.125
90.	Which of the following	g has minimum numbe	er of atoms	
	(A) 12 g He		(B) 1.8 g water	
	(C) $22 g CO_2$		(D) $2.45g$ sulphuric aci	d
91.	•	um phosphate, $(NH_4)_3$ noles of oxygen atoms	$_3PO_4$, contains $6moles$ in the sample is	of hydrogen
	(A) 1	(B) 2	(C) 4	(D) 6
92.	Number of atoms in 2	$24g$ of He is $\mathrm{N_A}$		

	(A) 1	(B) 2	(C) 4	(D) 6	
93.	93 . The number of moles of a gas in $1m^3$ of volume at NTP is				
	(A) 4.46	(B) 0.446	(C) 1.46	(D) 44.6	
94.	How many moles of M	$(g_3[PO_4]_2$ will contain 0	0.50mole of oxygen aton	ns ?	
	(A) 6.025	(B) 0.625	(C) 0.0625	(D) 625	
95.	Which sample contains	s the largest number o	of atoms ?		
	(A) $1mg$ of C_4H_{10}		(B) $1 mg$ of N_2		
	(C) $1mg$ of Na		(D) $1 ml$ of H_2O		
96.	Which of the following	յ contain maximum nu	mber of carbon atoms	?	
	(A) $15gm$ ethane, C_2H_6	3	(B) $40.2gm$ sodium oxa	late, $Na_2C_2O_4$	
	(C) $72gm$ glucose, C_6H	$I_{12}O_6$	(D) $35gm$ pentene, $C_5 E$	I_{10}	
97.	Calculate the number	of atoms of oxygen pr	resent in $176g$ of CO_2		
	(A) 2.408×10^{26}	(B) 4.816×10^{23}	(C) 1.204×10^{22}	(D) 4.816×10^{24}	
98.	Which of the following	has the smallest num	nber of molecules		
	(A) $22.4 \times 10^3 mL$ of CC	$O_2\ gas$ at STP			
	(B) $22g$ of CO_2gas				
	(C) $11.2L$ of CO_2gas at STP				
	(D) $0.1 mole $ of $CO_2 gas$	V			
99.	$8 g O_2$ has same number				
	(A) 14g CO	(B) 7g CO	(C) $11g CO_2$	(D) $22gCO_2$	
100.	How many protons are				
	(A) 1	(B) 1.2	(C) 1.1	(D) 11	
101.	The weight of a molecule of the compound $C_{60}H_{122}$ is				
	(A) $1.4 \times 10^{-21} g$		(B) $1.09 \times 10^{-21} g$		
	(C) $5.025 \times 10^{23} g$		(D) $16.023 imes 10^{23} g$		
102.	Find number of electro	ons present in $34g$ of I	$NH_3(g)$ N_A		
	(A) 2	(B) 1	(C) 20	(D) 10	
103.	The largest number of				
	(A) $25g$ of CO_2	(B) $46g$ of C_2H_5OH	(C) $36g$ of H_2O	(D) $54g$ of N_2O_5	
104.	How many H -atoms a	are present in $0.046g$ o			
	(A) $6 imes 10^{20}$		(B) 1.2×10^{21}		
	(C) 3×10^{21}		(D) 3.6×10^{21}		
105.	The number of sodium	n atoms in 2 moles of	sodium ferrocyanide is		

	(A) $12 imes10^{23}$		(B) $26 imes 10^{23}$		
	(C) $34 imes 10^{23}$		(D) $48 imes 10^{23}$		
106.	2g of oxygen contains	number of atoms equ	ual to that in		
	(A) $0.5g$ of hydrogen	(B) $4g$ of sulphur	(C) $7g$ of nitrogen	(D) $2.3g$ of sodium	
107.	The number of moles	of sodium oxide in 620	$0g$ of it is moles	5	
	(A) 1	(B) 10	(C) 18	(D) 100	
108.	The largest number o	f molecules is in			
	(A) $34g$ of water		(B) $28g$ of CO_2		
	(C) $46 g$ of CH_3OH		(D) $54g$ of N_2O_5		
109.	The number of molecular	ules in $4.25g$ of ammo	nia are		
	(A) $0.5 imes 10^{23}$	(B) $1.5 imes 10^{23}$	(C) $3.5 imes 10^{23}$	(D) 1.8×10^{32}	
110.	Volume of a gas at STP is $1.12 imes 10^{-7} cc$. Calculate the number of molecules in it				
	(A) $3.01 imes 10^{20}$		(B) $3.01 imes 10^{12}$		
	(C) $3.01 imes 10^{23}$		(D) $3.01 imes 10^{24}$		
111.	How many mole of he	lium gas occupy 22.4 <i>I</i>	C at 0^oC at 1 atm. pressu	ure	
	(A) 0.11	(B) 0.9	(C) 1	(D) 1.11	
112.	Which of the following	g has least mass	/		
	(A) $2 g$ atom of nitrogen		(B) $3 imes 10^{23}$ atoms of C		
	(C) 1 mole of S		(D) $7.0 g$ of Ag		
113.	Among the following multiple proportions i		, the one that illustrat	es the law of	
	(A) NH_3 and NCl_3		(B) H_2S and SO_2		
	(C) CuO and Cu_2O		(D) CS_2 and $FeSO_4$		
114.	If the density of a significant figures is	gm	nl, the mass of $15m$	d solution in	
	(A) 4.7	(B) 4680×10^{-3}	(C) 4.680	(D) 46.80	
115.		•	largest amount of ener		
	(A) Electron volt	(B) Erg	(C) Joule	(D) Calorie	
116.	A sample was weighted (ii) $4.0g$. How would the	_	balances. The result's v le be reported g	vere (i) 3.929 <i>g</i>	
	(A) 3.929	(B) 3	(C) 3.9	(D) 3.93	
117.	Given $P = 0.0030 m$, Q respectively	= 2.40m , $R = 3000m$, S	Significant figures in <i>P</i>	, Q and R are	

	(A) 2,3,4	(B) 2,3,1	(C) 4,2,1	(D) $4,2,3$
118.	solution at $32^{\circ}\mathrm{C}$ is $2\times$ [Given density of the s	$10^{-1} m M$. Its molality will solution $= 1.25 m \ g/mL$.]	lining $\mathbf{x}g$ of anhyd. Cust be $ imes 10^{-3}~\mathrm{m}$ (near	arest integer).
	(A) 160	(B) 164	(C) 167	(D) 168
119.	percent of solute in the (Given : Molar mass in water : 18)	I by adding 1 mole ethne solution is (In ${ m gmol}^{-1}$ Ethyl alcohol :	46,	ter. The mass
	(A) 20	(B) 22	(C) 30	(D) 35
120.	,	ous solution of ureaulue of x is (integral (B) 73	is $4.44~\mathrm{m}$. Mole fractioger answer) (C) 74	n of urea in (D) 80
121.	Molality (m) of 3M aqu	ueous solution of $ m NaCl$	is:	
	(Given : Density $\mathrm{gmol}^{-1}: \mathrm{Na} - 23, \mathrm{Cl} - 35$		$=1.25~\mathrm{g~mL^{-1}}$, Molar	mass in
	(A) 2.90 m	(B) 2.79 m	(C) 1.90 m	(D) 3.85 m
122.	_	ation of the solution is	ar) of NaOH is $1.12~\mathrm{g}$ m $3~\mathrm{m}$ ($3~\mathrm{molal}$). Then x is	$\mathrm{nL}^{-1}.$ while in
	(A) 3.5	(B) 3.0	(C) 3.8	(D) 2.8
123.	water is :	an aqueous solution ${ m Ta}:23$ and ${ m Cl}:35.5{ m gmol}^{-1}$	containing $5.85\mathrm{g}$ of N_{\odot}	aCl in 500 mL
	(A) 20	(B) 0.2	(C) 2	(D) 4
124.	The molarity of $1 L$ o (specific gravity $1.54 g$ (Molar mass of H_3PO_4 (A) 9	$ m cm^{-3})$ is $ m M.$	$ m H_{3}PO_{4})$ having 70% pu $ m (C)~11$	rity by weight (D) 12
425				
125.		solution is	and has a density of 1 M (nearest integer	- ,
	(A) 4	(B) 3	(C) 2	(D) 1
126				
120.	Volume of 3 M NaOH 84 g ofNaOH is		nol^{-1}) which can be p	repared from

	(A) 8	(B) 7	(C) 9	(D) 10
127.	The quantity which ch	anges with temperatu		
	(A) Molarity		(B) Mass percentage	
	(C) Molality		(D) Mole fraction	
128.	oxygen (in ${ m g}$) required [Molar mass of glucos	d for the complete conse in $\mathrm{gmol}^{-1}=180$]	es CO_2 and water. The abustion of $900~\mathrm{g}$ of glue	cose is:
	(A) 480	(B) 960	(C) 800	(D) 32
129.	complete combustion	is:	iired to produce 11 g	$\mathrm{CO}_2(\mathrm{~g})$ after
	(Given molar mass of	_		
	(A) 0.75	(B) 0.25	(C) 0.35	(D) 0.5
130.	•	otal number of cark	on gives $40~\mathrm{mL}$ of $\mathrm{CO_2}($	/
	(A) 20	(B) 14	(C) 30	(D) 13
131.	Consider the following $3\mathrm{PbCl_2} + 2(\mathrm{NH_4})_3\mathrm{PO_4} - 1$ If $72\mathrm{mmol}$ of $\mathrm{PbCl_2}$ is reformed is mmol. (A) 24	$ ightarrow \mathrm{Pb_3(PO_4)}_2 + 6\mathrm{NH_4Cl}$ nixed with $50\mathrm{mmol}$ of(N	${ m NH_4)_3PO_4}$, then amount (C) 25	of $\mathrm{Pb_3}(\mathrm{PO_4})_2$
132			1M $NaOH$ solution, th	
132.			is millimolar. (Nearest	•
	(A) 24	(B) 23	(C) 22	(D) 25
133.	Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R) Assertion (A) : At $10^{\circ}C$, the density of a $5M$ solution of KCl [atomic masses of K and Cl are 39 and $35.5gmol^{-1}$]. The solution is cooled to $-21^{\circ}C$. The molality of the solution will remain unchanged. Reason (R) : The molality of a solution does not change with temperature as mass remains unaffected with temperature. In the light of the above statements, choose the correct answer from the options given below (A) Both (A) and (R) are true and (R) is the correct explanation of (A) (B) Both (A) and (R) are true but (R) is not the correct explanation of (A) (C) (A) is true but (R) is false			

	(D) (A) is false but (B)	c) is true		
134.	•	A(MW=90) was used y of the solution in M hearest integer)		•
	(A) 1	(B) 2	(C) 3	(D) 4
135.	gave $2.64 g$ of CO_2 are compound is	n of $1.80g$ of an oxygnd $1.08g$ of H_2O . The p	percentage of oxygen i	n the organic
	(A) 51.63	(B) 63.53	(C) 53.33	(D) 50.33
136.	The number of signif	cant figures in 50000.02	$20 imes 10^{-3}$ is	
	(A) 5	(B) 8	(C) 2	(D) 10
137.	glucose in blood is	of glucose $({ m C_6H_{12}O_6})$ in $ imes 10^{-3}{ m M}$. (Nearest in of ${ m C}=12, { m H}=1, { m O}=16{ m u}$	teger)	ne molarity of (D) 11
138.	The unit of the	van der Waals o	gas equation paran	neter $^{\prime}a^{\prime}$ in
	$\left(\mathrm{P}+rac{\mathrm{a}\mathrm{n}^2}{\mathrm{V}^2} ight)\left(\mathrm{V}-\mathrm{n}\mathrm{b} ight)=\mathrm{n}^2$	RT is:		
	(A) $kg m s^{-2}$	(B) $dm^3 \text{ mol}^{-1}$	(C) $kg m s^{-1}$	(D) atm dm 6 mol $^{-2}$
139.	HCl molecules in the integer) ($N_A = 6.022 imes$		ete reaction is×:	10^{21} . (Nearest
	(A) 226	(B) 235	(C) 462	(D) 521
140.	_	e solution prepared $0~\mathrm{mL}$ of water in $\mathrm{mol}\mathrm{L}$ $,\mathrm{C}:12.0,\mathrm{O}:16.0]$ (B) 2		
141.	(Round off to the Nea [Given : Atomic mass	es: $H:1.0u, O:16.0u]$		
	(A) 64	(B) 52	(C) 44	(D) 62
142.	_	aseous hydrocarbon with ${\mathfrak p}$ and ${\mathfrak p}$ is	•	
	(A) 13	(B) 10	(C) 8	(D) 5

143.	value of x is (R Atomic masses in u C	sound off to the Near $: 12.0; O: 16.0; H: 1.0]$	es $x imes 10^{22}$ molecules est Integer). [Use: N_A	$=6.023 imes 10^{23};$
	(A) 24	(B) 22	(C) 20	(D) 18
144.	integer)	-	$ imes 10^{23}.$ The value of ${f x}$ is	(Nearest
	[Given : $N_A = 6.02 imes 10$	$ m p^{23} mol^{-1}$, Atomic mass	of $\mathrm{Na} = 23.0\mathrm{u}]$	
	(A) 6	(B) 8	(C) 2	(D) 34
145.	The ratio of number $\ldots \times 10^{-1}$	of water molecules	in Mohr's salt and p	otash alum is
	(A) 5	(B) 3	(C) 4	(D) 1
146.	A solution of two com	nponents containing n_1	moles of the $1^{ m st}$ com	ponent and n_2
	moles of the $2^{ m nd}$ com	ponent is prepared. M	M_1 and M_2 are the mole	ecular weights
	of component 1 and 2	lpha respectively. If d is the	e density of the solutio	n in gmL^{-1},C_2
	•		f the $2^{ m nd}$ component, t	
	expressed as			_
	(A) $C_2=rac{1000x_2}{M_1+x_2(M_2-M_1)}$		(B) $C_2 = rac{dx_2}{M_2 + x_2(M_2 - M_1)}$	
	(C) $C_2=rac{dx_1}{M_2+x_2(M_2-M_1)}$		(D) $C_2 = rac{1000 dx_2}{M_1 + x_2 (M_2 - M_1)}$	
147.	$6.023 imes 10^{22}$ molecules	are present in $10g$ o	f a substance $'x'$. The	molarity of a
	solution containing $5g$ of substance $'x'$ in $2L$ solution is $ imes 10^{-3}$			
	(A) 20	(B) 25	(C) 22	(D) 18
148.	A $20.0mL$ solution cor	ntaining $0.2g$ impure H	I_2O_2 reacts completely	with $0.316g$ of
	$KMnO_4$ in acid solu	ution. The purity of	$H_2O_2($ in $\%)$ is	(mol. wt. of
	$H_2O_2=34; \ mol. \ wt. \ of$	$^{c}KMnO_{4}=158)$		
	(A) 90	(B) 95	(C) 85	(D) 80
149.	organic compound' X'	$^{\prime}$ are $4:1$ and $3:4$ resp	H' and ${}'C \\& O'$ of a sample of H' and H' of a sample of of a sampl	oles of oxygen
150.		_	${ m quired}$ to ${ m quantitative}_3$ is ${ m ^M}\left[{ m Co(NH_3)}_6 ight]{ m Cl}_3$	
	$ m M_{AgNO_3} = 169.87~g/mol$	[00(1,110/6]01	0 [0 0 (220)6] 0.3	
	(A) 32.06	(B) 38.25	(C) 26.92	(D) 24.34

151.	$A+2B+3C \rightleftharpoons AB_2C_3$ Reaction of $6.0g$ of A , 6.0×10^{23} atoms of B , and $0.036mol$ of C yields $4.8g$ of compound AB_2C_3 . If the atomic mass of A and C are 60 and $80amu$, respectively, the atomic mass of B is				
	(A) 50	(B) 60	(C) 70		(D) 40
152.	H = 1, N = 14, O = 16, S	lution along with the vn solution gives ano	format ther pro Given	tion of a precipic ecipitate X . The \vdots Atomic	tate. Passing
153.	To check the principle compounds (P_mQ_n) we correct option(s) is(are	ere analyzed and their			•
	Compound	Weight $\%$ of P		Weight $\%$ of Q	
	1	50		50	
	2	44.4		55.6	
	3	40	V	60	
(A) If empirical formula of compound 3 is P_3Q_4 , then the empirical formula compound 2 is P_3Q_5 . (B) If empirical formula of compound 3 is P_3Q_2 and atomic weight of elem is 20 , then the atomic weight of Q is 45 . (C) If empirical formula of compound 2 is PQ , then the empirical formula compound 1 is P_5Q_4 . (D) If atomic weight of P and Q are 70 and 35 , respectively, then the emplormula of compound 1 is P_2Q .				of element P ormula of the	
	(A) A,B	(B) A,C	(C) A ,	D	(D) <i>B</i> , <i>C</i>
154.	The mole fraction of us 0.05 . If the density of (Given data : Morespectively) (A) 2.50	of the solution is $1.2gc$	m^{-3} , th	e molarity of ure er are $60gmol^{-1}$ a	ea solution is.
155.	In neutral or faintly alkaline solution, 8 moles of permanganate anion quantitatively oxidize thiosulphate anions to produce X moles of a sulphur containing product. The magnitude of X is				
	(A) 5	(B) 6	(C) 8		(D) 9

156.	Given that the abundances of isotopes ${}^{54}\mathrm{Fe}, {}^{56}\mathrm{Fe}$ and ${}^{57}\mathrm{Fe}$ are $5\%, 90\%$ and 5% , respectively, the atomic mass of Fe is				
	(A) 55.85	(B) 55.95	(C) 55.75	(D) 56.05	
157.	•	•	ihydrate is made up of ely neutralise $10\ ml$ of t		
	(A) 40	(B) 20	(C) 10	(D) 4	
158.	•	roduced at STP by the dide. The molecular material $^{\circ}$	ne action of $4.12mg$ of ass of alcohol is	alcohol, with	
	(A) 16	(B) 41.2	(C) 82.4	(D) 156	
159.	The weight of 1×10^{22} (A) 41.59	molecules of $CuSO_4.5I$ (B) 415.9	H_2O isg (C) 4.159	(D) None of these	
160.	One calorie is equal to	0	20V		
	(A) 0.4184 <i>Joule</i>	(B) 4.184 <i>Joule</i>	(C) 41.84 Joule	(D) 418.4 Joule	
161.	The number of signification	cant figures in $6.02 imes 10$	\mathcal{O}^{23} is		
	(A) 23	(B) 3	(C) 4	(D) 26	
162.		alcohol contains 0.002 number of significant	g of water. The amount figures is	of pure ethyl	
	(A) 81.4 <i>g</i>	(B) 71.40 g	(C) 81.398 <i>g</i>	(D) 81 g	
163.			ning 20% by mole of S roduce enough H_2SO_4		
	(A) 96	(B) 64	(C) 128	(D) 32	
164.	The moles of H^+ from $\sqrt{5}$ = 2.23)	n H_2O alone in a $1l$, \surd	$\overline{5} imes 10^{-7}~M~HCL$ solution	on at 25^oC is (
	(A) 10^{-7}	(B) $6.85 imes 10^{-8}$	(C) $3.85 imes 10^{-8}$	(D) 10^{-8}	
165.	The number of ions present in $2.0~L$ of a solution of $0.8~M~K_4[Fe(CN)_6]$ is				
	(A) $4.8 imes 10^{22}$	(B) $4.8 imes 10^{24}$	(C) $9.6 imes10^{24}$	(D) $9.6 imes 10^{22}$	
166.			t oxygen. The CO_2 for on producing Na_2CO_3		
	(A) C_3H_8	(B) $C_{12}H_{26}$	(C) C_6H_{14}	(D) C_2H_6	
167.	-	ition containing 13% by of the solution are re	y mass of H_2SO_4 is $1.$ espectively :-	09gm/ml . The	

	(A) $14.45 M, 28.90 N$	(B) $1.445 M, 2.89 N$	(C) $1.09 M, 2.18 N$	(D) None
168.	titrated solution wher	indicator. Methyl or a further $25ml$ of 0.2	requires $300ml$ of 0.1 ange is then added to $2N$ HCl is required. The $OH=40,Na_2CO_3=106$ (C) 1.5	to the above ne amount of
169	$150gCaCO_3$ sample v	was taken On its co	omnlete decomnositio	n 56 a CaO is
109.	•	y of sample is (B) 37.33		(D) 75
170.	One and a half mole of weight of aluminium r $Al=27$)		a aluminium to form A ion is gms (Ato	
	(A) 27	(B) 81	(C) 108	(D) 54
171.	$20mL$ of CO_2 gas are evolved is	e passed over excess of (B) 20	of red hot coke. the v	volume of <i>CO</i>
172.	$18 L$ mixture of N_2 and pressure then what w	d H_2 gives maximum 6 ill be ratio of N_2 and H	·/	perature and
	(A) 1:5	(B) 1:1	(C) 1:2	(D) (A) and (B) both
173.		to the reaction	oduced assuming that	
	(A) 3	(B) 4.5	(C) 5	(D) 6
174.	If $0.5 mol$ of $CaBr_2$ is no moles of $Ca_3(PO_4)_2$ obtains	otained will be		
	(A) 0.5	(B) 0.2	(C) 0.7	(D) 0.1
175.	When $1L$ of CO_2 is he $1.8L$. What will be the	eated with graphite, the number of moles of $C_{ m c}$	_	s collected is
	(A) 0.0357	(B) 0.0714	(C) 0.0803	(D) 14
176.	What volume of CO_2 $20gKHCO_3$ L $2KHCO_3(s) ightarrow K_2O(s)$ -	[Atomic weight of $K=$	•	nposition of
	(A) 44.8	(B) 4.48	(C) 22.4	

	(D) None of the above			
177.	_	cure of ethane and provent of C_2H_6 in the initial	pane are burnt to prod al mixture is	duce total $11L$
	(A) 10	(B) 20	(C) 80	(D) 60
178.	How many moles of $6.5\ g$ of PbO and $3.2\ g$	` '	be formed from a rea	ction between
	(A) 0.011	(B) 0.029	(C) 0.044	(D) 0.333
179.	$^{200}X:90\%$ $^{199}X:$		mposition: e naturally occurring (C) 199	element X is (D) 200
120		g has maximum numb		(5) 200
100.	(A) $16 gm$ of O_2	(B) $16gm$ of NO_2	(C) $7gm$ of N_2	(D) $2gm$ of H_2
181.	Molarity of liquid HC (A) 36.5	with density equal to (B) 18.25	1.17g/cc is (C) 32.05	(D) 4.65
182.	haemoglobin is appr		weight. The molecul number of iron aton globin is	•
	(A) 6	(B) 1	(C) 4	(D) 2
183.	The total number of the Avogadro's numb		$.2gm$ of N_3^- ion is	$\mathrm{N_A}$ (N_A is
	(A) 1.6	(B) 3.2	(C) 2.1	(D) 4.2
184.	CalculateM Mola	rity of a $63\%~w/wHNO_3$	solution if density is 5	.4~g/mL
	(A) 54	(B) 12	(C) 10	(D) 8
185.	Arrange the follow $O=16, Cu=63, N=14$ I . one atom of oxyge II . one atom of nitrog III . 1×10^{-10} mole of IV . 1×10^{-10} mole of IV . I	n gen oxygen	f increasing mass ($^{\prime}$	atomic mass:
	(C) $III < II < IV < I$		(D) $IV < II < III < I$	
186.		nlorides S_2Cl_2 and SCl_2	2. The equivalent mass	of sulphur in

	(A) 8	(B) 16	(C) 64.8	(D) 32	
187.	Which has the maximu	um number of molecul	es among the following	g ?	
	(A) $44 g CO_2$	(B) $48 g O_3$	(C) 8 g H ₂	(D) $64 g SO_2$	
188.	volume of $0.1 N NaOH$ is ml	H required to complet	dihydrate is made up tely neutralise $10ml$ of	this solution	
	(A) 20	(B) 40	(C) 10	(D) 4	
189.		is known, the weight oretical weight oretical weight	d from its impure san	•	
190.	Assertion : The norma	llity of $0.3M$ aqueous s	olution of H_3PO_3 is eq	ual to $0.6N.$	
	Reason : Equivalent w	eight of $H_3PO_3=rac{Molecu}{}$	$\frac{lar\ weight\ of\ H_3PO_3}{3}$		
	(A) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.				
		and Reason are correct	but Reason is not a co	orrect explanation of	
the Assertion. (C) If the Assertion is correct but Reason is incorrect.					
		on and Reason are inc			
191.			on on the basis of fol	lowing data :	
	$70ml$ of $rac{M}{60}$ solution evolved was removed	of $KBrO_3$ was added by boiling and excess of $NaAsO_2$. The reacti $ ightarrow SeO_4^{2-} + Br_2 + H_2O$	d to SeO_3^{2-} solution. s of $KBrO_3$ was back	The bromine	
	(A) 1.6×10^{-3}		(C) $2.5 imes 10^{-3}$	(D) None of these	
192.	A compound possesse	es 8% sulphur by mass.	The least molecular m	ass is	
	(A) 200	(B) 400	(C) 155	(D) 355	
193.		t of $BaSO_4$ precipitate $M)$ will correspond to	d on mixing equal volւ M	ımes of $BaCl_2$	
	(A) 0.5	(B) 1	(C) 1.5	(D) 2	
194.	Normality of $2M$ sulpl	huric acid is			
	(A) 2N	(B) 4N	(C) $\frac{N}{2}$	(D) $\frac{N}{4}$	

195.	An aqueous solution of oxalic acid dihydrate contains its $6.3g$ in $250ml$. The volume of $0.1NNaOH$ required to completely neutralize $10ml$ of this solution				
	(A) 4	(B) 20	(C) 2	(D) 40	
196.	Density of a $2.05M$ so	olution of acetic acid in	n water is $1.02g/mL$. T	he molality of	
	the solution is	$\mathrm{mol}\ \mathrm{kg}^{-1}$			
	(A) 2.28	(B) 0.44	(C) 1.14	(D) 3.28	
197.	How many moles of roxygen atoms ?	nagnesium phosphate,	$Mg_3(PO_4)_2$ will contai	n 0.25 mole of	
	(A) $1.25 imes 10^{-2}$	(B) 2.5×10^{-2}	(C) 0.02	(D) 3.125×10^{-2}	
198.		6, in place of $1/12$, masunit, the mass of one m			
	(B) Increase two fold(C) Remain unchange	d			
	(D) Be a function of the	ne molecular mass of t	he substance		
199.	=	is obtained on comple hat will be the equivale	2	etal oxide into	
	(A) 18.66	(B) 37.32	(C) 9.33	(D) 2.91	
200.		g is Loschmidt number	22	(5)	
	(A) $6 imes 10^{23}$	(B) 2.69×10^{19}	(C) 3×10^{23}	(D) None of these	
(A) 6 × 10 ⁻⁶ (B) 2.69 × 10 ⁻⁶ (C) 3 × 10 ⁻⁶ (D) Notice of these Life is like riding a bicycle. To keep your balance, you must keep moving					