Automatische Balkonbewässerung

Pflichtenheft

Automatische Balkonbewässerung

Autor: Dzaid Abiyyu Siregar, Zul Fahmi Nur Vagala, Johannes Berg

Letzte Änderung: . 22 Mai 2025

Dateiname: Pflichtenheft_Automatische_Balkonbewässerung.docx

Version: 1.3

© htw-Berlin Seite 1 von 23

Automatische Balkonbewässerung

Inhaltsverzeichnis

1	Vorh	Vorhandene Dokumente		
2	Über	blick	7	
3	Haup	otziele	8	
4	Anna	hmen und Abgrenzungen	9	
5	Work	flow	10	
6	Funk	tionalität	11	
	6.1	Überblick	11	
	6.2	Statusanzeige	12	
	6.3	Manuelle Bewässerung starten	12	
	6.4	Verlauf anzeigen	14	
	6.5	Zeitplan verwalten (als Backup)	16	
	6.6	Benachrichtigungen aktivieren/deaktivieren	18	
	6.7	Erfassung und Veröffentlichung der Bodenfeuchtigkeit	20	
	6.8	Automatische Auslösung der Bewässerung bei Trockenheit	21	
	6.9	MQTT Publish – Sensor- & Statusdaten senden	22	
	6.10	MQTT Subscribe – Steuerungsbefehle empfangen	23	

Automatische Balkonbewässerung

Tabellenverzeichnis

Tabelle 1: Vorhandene Dokumente	6
Tabelle 2: Hauptziele	8
Tabelle 3: Annahmen und Abgrenzungen	
Tabelle 4: Statusanzeige	
Tabelle 5: Manuelle Bewässerung starten	12
Tabelle 6: Verlauf anzeigen	
Tabelle 7: Zeitplan verwalten	16
Tabelle 8: Benachrichtigungen aktivieren/deaktivieren	18
Tabelle 9: Erfassung und Veröffentlichung der Bodefeuchtigkeit	20
Tabelle 10: Automatische Auslösung der Bewässerung bei Trockenheit	
Tabelle 11: MQTT Publish - Sensor- & Statusdaten senden	
Tabelle 12: MQTT Subscribe - Steuerungsbefehle empfangen	23

Automatische Balkonbewässerung

Abbildungsverzeichnis

Abbildung 1: Workflow	. 10
Abbildung 2: Use-Case-Diagramm	
Abbildung 3: Hauptmenü	
Abbildung 4: Verlauf anzeigen	
Abbildung 5: Zeitplan verwalten	. 17
Abbildung 6: Benachrichtigungen aktivieren	

Automatische Balkonbewässerung

Copyright

© Mohammad Abuosba

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Version Historie

Version:	Datum:	Verantwortlich	Änderung
1.0	16.05.2025	Johannes Berg	Überblick, Ziele, Annahmen und Abgrenzungen
1.1	22.05.2025	Zul Fahmi Nur Vagala	Funktionalität
1.2	22.05.2025	Dzaid Abiyyu Siregar	Workflow & Funktionalität
1.3	23.05.2025	Dzaid & Zul & Johannes	Abgabe

© htw-Berlin Seite 5 von 23

Automatische Balkonbewässerung

1 Vorhandene Dokumente

Tabelle 1: Vorhandene Dokumente

Dokument	Autor	Datum
Lastenheft	Dzaid Abiyyu Siregar, Zul Fahmi Nur Vagala, Johannes Berg	25.04.2025

© htw-Berlin Seite 6 von 23

Automatische Balkonbewässerung

2 Überblick

Das Projekt "Automatische Bewässerung für Balkonpflanzen" hat das Ziel, eine intelligente und kostengünstige Lösung zur automatisierten Pflanzenbewässerung zu entwickeln. Der Fokus liegt auf der Anwendung in einem Balkonumfeld, wobei mehrere Pflanzen in einem gemeinsamen Pflanzkasten untergebracht sind.

Das System erkennt mithilfe von Bodenfeuchtesensoren, wann die Pflanzen Wasser benötigen. Eine Steuereinheit (Microcontroller) wertet die Sensorwerte aus und aktiviert bei Bedarf eine Pumpe, um Wasser aus einem externen Behälter gezielt zu den Pflanzen zu leiten. Jede Pflanze kann individuell versorgt werden. Die Benutzer können über eine App den aktuellen Zustand der Pflanzen überwachen (z. B. Feuchtigkeitswerte) und grundlegende Einstellungen vornehmen.

Die gesamte Technik ist platzsparend im oder am Pflanzkasten untergebracht. Dabei wird darauf geachtet, dass Schläuche und Kabel ordentlich verlegt und ggf. verkleidet werden. Das System ist modular aufgebaut, sodass es zukünftig problemlos erweitert oder an andere Pflanzkästen angeschlossen werden kann.

Ziel ist es, die Pflanzenpflege zu erleichtern, den Wasserverbrauch zu optimieren und die Bedienung auch für technisch weniger erfahrene Nutzer möglichst einfach zu gestalten.

© htw-Berlin Seite 7 von 23

Automatische Balkonbewässerung

3 Hauptziele Tabelle 2: Hauptziele

#	Ziel	Beschreibung der Implementation
1	Automatisierte Bewässerung	Feuchtigkeitssensoren erkennen den Bedarf, Pumpen und Ventile reagieren automatisch
2	Einfache Bedienung	Intuitive App-Oberfläche (siehe GUI-Skizze) für Android und IOS Einfache Inbetriebnahme und automatisierte Abläufe
3	Kostengünstiges System	Verwendung günstiger Komponente, wie z.B. Microcontroller, einfache Sensoren und 3D-gedruckte Teile
4	Zuverlässige Erkennung	Pro Pflanze ein Sensor zur genauen Feuchtigkeitsmessung
5	Anzeige der Daten über App	Entwicklung einer App, um Zustandsdaten grafisch darzustellen
6	Modularität und Erweiterbarkeit	Microcontroller erlaubt Anbindung weiterer Pflanzkästen oder Sensoren

Seite 8 von 23 © htw-Berlin

4 Annahmen und Abgrenzungen *Tabelle 3: Annahmen und Abgrenzungen*

#	Annahmen (fachliche und technische Annahmen)	
1	Nutzer hat Zugriff zu WLAN oder Bluetooth (App-Kommunikation)	
2	System wird in einem geschützten Außenbereich installiert	
3	Dauerhafte Stromversorgung (z.B. über USB (evtl. Solar))	
4	Pflanzen haben ähnlichen Wasserbedarf	
5	Nutzer befüllt Wasserbehälter regelmäßig (manuell)	

#	Abgrenzungen (Was ist in dieser Lösung nicht enthalten bzw. abgedeckt)	
1	Gehäuse schützt vor Spritzwasser, aber nicht vor starkem Regen oder direktem UV-Licht	
2	Keine Düngung o.ä.	
3	System trifft Entscheidungen rein regelbasiert, keine Bilderkennung oder anderes KI-gestütztes Monitoring	
4	Keine autonome Wasserbefüllung	,
5	App verfügt über keine Datenweiterleitung in z.B. Cloud	

Seite 9 von 23 © htw-Berlin

5 Workflow

Abbildung 1: Workflow

© htw-Berlin Seite 10 von 23

6 Funktionalität

6.1 Überblick

Abbildung 2: Use-Case-Diagramm

© htw-Berlin Seite 11 von 23

6.2 Statusanzeige *Tabelle 4: Statusanzeige*

Zweck/Ziel	Anzeige von aktuellen Sensorwerten: Bodenfeuchtigkeit, Wasserstand, letzte Bewässerung.
Akteur/Auslöser	Benutzer beim Öffnen der App
Berechtigung	Keine Anmeldung nötig
Vorbedingung	 Sensorwerte müssen empfangbar sein Verbindung zum Mikrocontroller besteht
Daten-Input	Werte der Sensoren (z. B. Bodenfeuchtigkeit: 45 %, Wasserstand: 75 %)
Verarbeitungsschritte	 App empfängt Sensorwerte vom Mikrocontroller Werte werden visuell in der Startansicht angezeigt
Ergebnis	Live-Status der Pflanzenpflege ist sichtbar
Plausibilitäten	 Feuchtigkeit: 0–100 % Wasserstand: 0–100 % Letzte Bewässerung: heutiges Datum ≤ aktuelles Datum
Fehlerhandling	Bei fehlender Verbindung: Anzeige "Keine Verbindung"
Folgeprozess	 Möglichkeit zur manuellen Bewässerung Trigger für automatische Benachrichtigung bei kritischen Werten
Out of Scope	Historische Datenanalyse GPS-/Standortinformationen
Test Cases	 Sensorwert < 10 % → Warnmeldung Verbindung unterbrochen → Offline-Anzeige erscheint

6.3 Manuelle Bewässerung starten

Tabelle 5: Manuelle Bewässerung starten				
Zweck/Ziel	Direktes Auslösen der Pumpe durch den Nutzer			
Akteur/Auslöser	Benutzer klickt auf "Jetzt bewässern"			
Berechtigung	Nutzer mit App-Zugriff			
Vorbedingung	Verbindung zur Pumpe via Mikrocontroller			
Daten-Input	Buttonklick + voreingestellte Menge (z. B. 150 ml)			
Verarbeitungsschritte	 Klicksignal → Mikrocontroller Pumpe wird aktiviert Protokollierung im Verlauf 			
Ergebnis	Pumpe läuft und Pflanzen werden bewässert			
Plausibilitäten	 Max. Menge: 300 ml Mindestintervall: 30 Min. Abstand zwischen 2 Bewässerungen 			
Fehlerhandling	 Kein Wasser: Push-Benachrichtigung Timeout: Hinweis "Pumpenfehler" 			
Folgeprozess	Eintrag im Verlauf, ggf. Statusaktualisierung			
Out of Scope	Teilweise Zonenbewässerung Mengenregelung durch Benutzer			
Test Cases	 Bewässerung erfolgreich → Protokolleintrag erscheint Kein Wasser → App zeigt Warnmeldung 			

Seite 12 von 23 © htw-Berlin

Abbildung 3: Hauptmenü

© htw-Berlin Seite 13 von 23

Automatische Balkonbewässerung

6.4 Verlauf anzeigenTabelle 6: Verlauf anzeigen

Zweck/Ziel	Tägliche Protokollierung von Sensorwerten und Aktionen
Akteur/Auslöser	Benutzer navigiert zu "Verlauf"
Berechtigung	Alle Benutzer
Vorbedingung	Mindestens 1 Eintrag im Verlauf vorhanden
Daten-Input	Tagesauswahl in den letzten 7 Tagen (Mo–So)
Verarbeitungsschritte	Datenabruf aus interner Datenbank Anzeige als Liste chronologisch
Ergebnis	Tagesansicht mit Ereignissen
Plausibilitäten	Einträge sortiert nach Zeit
Fehlerhandling	Keine Daten: Anzeige "Keine Ereignisse vorhanden"
Folgeprozess	ggf. Verweis auf die direkt folgenden Prozesse bzw. Funktionen im Workflow
Out of Scope	Exportfunktion Statistik oder Diagramm
Test Cases	 Klick auf Freitag → zeigt 5 Aktionen korrekt Kein Eintrag → "Keine Daten" wird angezeigt

Seite 14 von 23 © htw-Berlin

Abbildung 4: Verlauf anzeigen

© htw-Berlin Seite 15 von 23

Tabelle 7: Zeitplan verwalten

6.5 Zeitplan verwalten (als Backup)

Zweck/Ziel	Festlegen einer täglichen Uhrzeit für automatische Bewässerung		
Akteur/Auslöser	Benutzer aktiviert Zeitfunktion		
Berechtigung	Alle Benutzer		
Vorbedingung	App ist mit System verbunden		
Daten-Input	Uhrzeit (z. B. 08:00)		
Verarbeitungsschritte	Auswahlzeit in UI Speicherung im Mikrocontroller Auslösung zur definierten Zeit		
Ergebnis	Bewässerung erfolgt automatisch zur festgelegten Uhrzeit		
Plausibilitäten	Gültige Uhrzeitformate (hh:mm) Nur eine aktive Zeit erlaubt		
Fehlerhandling	 Keine Speicherung möglich → Fehlermeldung System nicht erreichbar → Warnung 		
Folgeprozess	Automatische Pumpe + Eintrag im Verlauf		
Out of Scope	Mehrere Zeiten Wochenplan		
Test Cases	 Zeit auf 08:00 gesetzt → Bewässerung erfolgt korrekt Uhrzeit fehlerhaft → Speicherung verweigert 		

© htw-Berlin Seite 16 von 23

Abbildung 5: Zeitplan verwalten

© htw-Berlin Seite 17 von 23

6.6 Benachrichtigungen aktivieren/deaktivieren *Tabelle 8: Benachrichtigungen aktivieren/deaktivieren*

Zweck/Ziel	Nutzer erhält Push-Nachrichten bei Ereignissen
Akteur/Auslöser	Benutzer schaltet Benachrichtigungen-Einstellung ein
Berechtigung	Alle Benutzer
Vorbedingung	 Benachrichtigungen sind im Gerät und in der App erlaubt WLAN-/Bluetooth-Verbindung besteht (?)
Daten-Input	Fehlercodes, Sensordaten, Pumpenstatus
Verarbeitungsschritte	 Sensor meldet kritischen Zustand oder Systemereignis Mikrocontroller analysiert Daten Ereignis wird als Push-Nachricht übermittelt
Beanchrichtigungstypen	 Kategorie: Nachricht (Beispieltext) Feuchtigkeit: "Achtung! Bodenfeuchtigkeit unter 20 %. Gießen empfohlen." Wasserstand: "Wassertank fast leer. Bitte nachfüllen." Sensorfehler: "Fehler: Bodenfeuchtesensor nicht erreichbar." Pumpenfehler: "Warnung: Pumpe konnte nicht aktiviert werden." Automatische Aktion: "Automatische Bewässerung wurde um 08:00 Uhr erfolgreich durchgeführt." Manuelle Aktion: "Manuelle Bewässerung wurde ausgeführt (150 ml)." System online/offline: "Verbindung zum Bewässerungssystem wiederhergestellt." oder "Verbindung verloren."
Ergebnis	 Der Nutzer wird zeitnah über den Zustand des Systems informiert Möglichkeit, über App oder manuell zu reagieren
Plausibilitäten	 Max. eine Benachrichtigung pro Ereignis alle 5 Minuten Nur bei tatsächlichem Problem (z. B. Schwellenwert unterschritten)
Fehlerhandling	Push fehlgeschlagen → App zeigt Hinweis
Folgeprozess	Je nach Typ: Nutzer kann System prüfen, Wasser auffüllen, manuell starten etc.
Out of Scope	E-Mail-Versand Fehlerbehebung direkt in App
Test Cases	 Sensorwert < 20 % → Push-Benachrichtigung innerhalb 30 Sekunden Tank leer → Nutzer erhält Warnmeldung mit Aufforderung zum Nachfüllen Pumpe reagiert nicht → App zeigt "Pumpenfehler" Manuelle Aktion → Push bestätigt erfolgreiche Ausführung System offline → App meldet Verbindungsfehler

Seite 18 von 23 © htw-Berlin

Abbildung 6: Benachrichtigungen aktivieren

© htw-Berlin Seite 19 von 23

6.7 Erfassung und Veröffentlichung der Bodenfeuchtigkeit Tabelle 9: Erfassung und Veröffentlichung der Bodefeuchtigkeit

Zweck/Ziel	Automatisches Erfassen der Bodenfeuchte und Veröffentlichung per MQTT, um die aktuellen Messwerte der Pflanze für die App/Dashboard bereitzustellen.
Akteur/Auslöser	ESP und MQTT
Vorbedingung	WLAN- und MQTT-Verbindung aktiv, Sensor korrekt angeschlossen
Daten-Input	Analogsignal vom Bodenfeuchtigkeitssensor
Verarbeitungsschritte	Sensorwert einlesen Zeitstempel erzeugen JSON-Nachricht erzeugen MQTT-Nachricht an einem bestimmtenTopic senden
Ergebnis	Feuchtigkeitswert im MQTT-Broker verfügbar, App kann anzeigen
Plausibilitäten	Gültiger Wertebereich (z. B. 0–4095), ungewöhnliche Werte werden gekennzeichnet
Fehlerhandling	0 oder ungültige Werte → als Fehler kennzeichnen MQTT offline → reconnect-Mechanismus Fallback: Retry nach Zeitintervall
Folgeprozess	Nächster Erfassungszyklus wird gestartet (z. B. alle 3 Min.)
Test Cases	- Sensor liefert gültigen Wert → MQTT publiziert - Sensor fehlt → Fehlerstatus - MQTT nicht erreichbar → reconnect - JSON-Format korrekt

Seite 20 von 23 © htw-Berlin

6.8 Automatische Auslösung der Bewässerung bei Trockenheit *Tabelle 10: Automatische Auslösung der Bewässerung bei Trockenheit*

Zweck/Ziel	Automatische Bewässerung, wenn der Boden zu trocken ist
Akteur/Auslöser	ESP und Wasserpumpen
Vorbedingung	- Sensorwert unter Grenzwert - Kein aktiver Sperrzeit-Timer - Stromversorgung verfügbar
Daten-Input	Letzter Sensorwert, Schwellwert, Systemzeit
Verarbeitungsschritte	Vergleich mit Schwellenwert Aktivierung Relais (Pumpe) Einstellbare Deaktivierungszeit MQTT-Statusnachricht
Ergebnis	Pflanze wird gegossen
Plausibilitäten	Relais-Zeitfenster z. B. 10s Vermeidung von Dauerbetrieb
Fehlerhandling	Relaisausfall → Fehlerausgabe Fehlerhafte Messung → keine Auslösung Sperrzeit → automatische Blockade
Folgeprozess	Neue Sperrzeit startet System wartet auf nächsten Sensorzyklus
Test Cases	- Sensorwert unter Grenzwert → Pumpe aktiv - Sperrzeit aktiv → keine Pumpe - MQTT sendet Statusmeldung - Pumpe läuft maximal x Sekunden

Seite 21 von 23 © htw-Berlin

6.9 MQTT Publish – Sensor- & Statusdaten senden *Tabelle 11: MQTT Publish - Sensor- & Statusdaten senden*

Zweck/Ziel	Der ESP sendet Sensorwerte und Statusmeldungen über MQTT an spezifische Topics, damit externe Systeme (App, Dashboard) Daten empfangen können.
Akteur/Auslöser	Intern: nach Messung, nach Pumpenvorgang, bei Fehlern
Berechtigung	ESP32 besitzt Publish-Rechte (MQTT-Login mit Schreibzugriff)
Vorbedingung	Aktive WLAN- & MQTT-Verbindung, gültiger Topic-Name
Daten-Input	Sensordaten, Systemstatus, Zeitstempel
Verarbeitungsschritte	JSON-Nachricht erzeugen Verbindung zur MQTT bestimmen. Nachricht an festgelegtes Topic senden:
Ergebnis	Daten im Broker verfügbar für alle Subscriber (z. B. App)
Plausibilitäten	Nachrichten müssen gültiges JSON enthalten Topics müssen existieren bzw. zulässig sein MQTT-Verbindung muss richtig konfiguriert sein
Fehlerhandling	Kein Brokerkontakt → reconnect Fehlerhafte Daten → verworfen und geloggt
Folgeprozess	Nächster Erfassungszyklus wird gestartet (z. B. alle 3 Min.)
Test Cases	- Wert publiziert erfolgreich - JSON lesbar im MQTT-Viewer - Fehlerfall: Nachricht nicht gesendet - Reconnect funktioniert korrekt

Seite 22 von 23 © htw-Berlin

6.10 MQTT Subscribe – Steuerungsbefehle empfangen *Tabelle 12: MQTT Subscribe - Steuerungsbefehle empfangen*

	ŭ i ŭ
Zweck/Ziel	Der ESP empfängt Steuerbefehle (z. B. zur manuellen Pumpensteuerung) über ein MQTT-Topic und führt die gewünschten Aktionen aus.
Akteur/Auslöser	Nutzer sendet MQTT-Befehl an bestimmtes Topic
Berechtigung	MQTT-Client des ESP ist mit Leseberechtigung verbunden
Vorbedingung	WLAN- & MQTT-Verbindung aktiv, Topic korrekt abonniert
Daten-Input	MQTT-Nachricht (JSON-Datei) von ESP
Verarbeitungsschritte	ESP ist Subscriber von einem bestimmten Topic Nachricht wird empfangen Inhalt geprüft und interpretiert Pumpe aktiviert oder deaktiviert Rückmeldung über Status-Topic
Ergebnis	Steuerbefehl wird ausgeführt, Status wird rückgemeldet
Plausibilitäten	Nur vordefinierte Nachricht akzeptiert (bei Pumpensteurung nur "on" und "off")
Fehlerhandling	Ungültiger Inhalt → ignorieren & loggen Verbindungsabbruch → automatisch neuverbinden
Folgeprozess	Zustand bleibt bestehen bis neuer Befehl oder nächste automatische Aktion
Test Cases	 - "on": Pumpe läuft - "off": Pumpe stoppt - Falscher Befehl → ignoriert - Neuverbinden nach Trennung - Kontrolle über App sichtbar

Seite 23 von 23 © htw-Berlin