

带权路径长度

结点的权: 有某种现实含义的数值(如: 表示结点的重要性等)

结点的带权路径长度: 从树的根到该结点的路径长度(经过的边数)与该结点上权值的乘积

<mark>树的带权路径长度</mark>:树中所有<mark>叶结点</mark>的带权路径长度之和(WPL, Weighted Path Length)

$$WPL = \sum_{i=1}^{n} w_i l_i$$

哈夫曼树的定义

都是哈夫曼树

WPL=1*1+2*3+3*5+3*4=34

在含有n个带权叶结点的二叉树中,其中<mark>带权路径长度(WPL)最小的二叉树</mark>称为哈夫曼树,也称最优二叉树

哈夫曼树的构造

给定n个权值分别为 $w_1, w_2,..., w_n$ 的结点,构造哈夫曼树的算法描述如下:

- 1)将这n个结点分别作为n棵仅含一个结点的二叉树,构成森林F。
- 2)构造一个新结点,从F中选取两棵根结点权值最小的树作为新结点的左、右子树,并且将新
- 结点的权值置为左、右子树上根结点的权值之和。
- 3)从F中删除刚才选出的两棵树,同时将新得到的树加入F中。
- 4) 重复步骤2) 和3), 直至F中只剩下一棵树为止。

- 1)每个初始结点最终都成为叶结点,且权值越小的结点到根结点的路径长度越大
- 2)哈夫曼树的结点总数为2n-1
- 3)哈夫曼树中不存在度为1的结点。
- 4)哈夫曼树并不唯一,但WPL必然相同且为最优

WPL_{min}=1*7+2*3+3*2+4*1+4*2=31

哈夫曼树的构造

WPL=1*7+3*(1+2+2+3)=31

电报——点、划两个信号(二进制0/1)

固定长度编码——每个字符用相等长度的二进制位表示

A--0100 0001

B - -01000010

C - -01000011

D - -01000100

ASCII编码

假设,100题中有80题选C,10题选A,8题选B,2题选D 所有答案的二进制长度=80*2+10*2+8*2+2*2=200 bit

WPL= 80*2+10*2+8*2+2*2=200

固定长度编码——每个字符用相等长度的二进制位表示

A--00 B--01 每个字符用长度为 C--10 2的二进制表示 D--11 100个选择题 老渣

假设,100题中有80题选C,10题选A,8题选B,2题选D 所有答案的二进制长度=80*2+10*2+8*2+2*2=200 bit

C——0 A——10 B——111 D——110

可变长度编码——允许对不同字符用不等 长的二进制位表示

WPL= 80*1+10*2+2*3+8*3=130

可变长度编码——允许对不同字符用不等长的二进制位表示 若没有一个编码是另一个编码的前缀,则称这样的编码为 前缀编码

WPL= 80*1+10*2+2*3+8*3=130

CAAABD: 0101010111110

CAAABD: 0111111110

固定长度编码——每个字符用相等长度的二进制位表示 可变长度编码——允许对不同字符用不等长的二进制位表示 若没有一个编码是另一个编码的前缀,则称这样的编码为前缀编码

有哈夫曼树得到<mark>哈夫曼编码</mark>——字符集中的每个字符作为一个叶子结点,各个字符出现的频度作为结点 的权值,根据之前介绍的方法构造哈夫曼树

哈夫曼树不唯 因此哈夫 曼编码不唯一 用于数据压缩 0 A - -00B - -01110 D - -010

英文字母频次

英文字母使用频率表:(%)

A 8.19	B 1.47	C 3.83	D 3.91	E 12.25	F 2.26	G 1.71
H 4.57	I 7.10	J 0.14	K 0.41	L 3.77	M 3.34	N 7.06
O 7.26	P 2.89	Q 0.09	R 6.85	S 6.36	T 9.41	
U 2.58	V 1.09	W 1.59	X 0.21	Y 1.58	Z 0.08	

试试设计哈夫曼编码,并计算<mark>数据压缩率</mark>

知识回顾与重要考点

结点的权:某种特定含义的数值

结点的带权路径长度 = 根到结点路径长度*结点的权值

树的带权路径长度(WPL) = 树中所有叶子结点的带权路径长度之和

哈夫曼树(最优二叉树):在含有给定的n个带权叶结点的二叉树中,WPL 最小的二叉树

每次选两个根节点权值最小的树合并,并将二者权值之和作为新的根节点的权值

哈夫曼树不唯一, 但WPL必然都是最小值

将字符频次作为字符结点权值,构造哈夫曼树,即可得哈夫曼编码,可用于数据压缩

前缀编码——没有一个编码是另一个编码的前缀

固定长度编码——每个字符用相等长度的二进制位表示

可变长度编码——允许对不同字符用不等长的二进制位表示

哈夫曼树

概念

构造哈夫曼树

哈夫曼编码

结局

可变长度编码——允许对不同字符用不等长的二进制位表示

若没有一个编码是另一个编码的前缀,则称这样的编码为 前缀编码

哈夫曼编码

C - - 0

A - -10

B——111

D - -110

100道选择题

老渣

WPL= 80*1+10*2+2*3+8*3=130 bit