THE STABLE MARRIAGE PROBLE -match n men and n women - every person has preference list of n people of opposite sex - find pairing such that nobody can realistically hope to benefit by switching partners · THE STABLE MARRIAGE ALGORITHM -> every morning -every man proposes to the most preferred woman on his list who has not yet rejected him -> every afternoon - each woman collects all the proposals she received - to the man she likes the best among these: "maybe come back -to other inever" Devery evening - each rejected man crosses off woman who rejected him from his list - loop is repeated until every woman has man = Cale-Shapley algorithm THE RESIDENCT MATCH -application of the algorithm (National Residency Matching Program) - graduates and hospitals submit their preference list - in 2012, Nobel Prize in economic was won for extending the stable marriage algorithm PROPERTIES OF THE ALGORITHM SUNSA => The algorithm always halts (ends) - on each day that the algorithm doesn't halt, at least one man must eliminate some woman from his list -since each list has in elements and there are in lists, it must terminate in at most no interactions => STABILITY - - + + o sas -pairing is unstable if there is man and woman who prefer each other to their current partner = rogue couple >)

Note 4: STABLE MARRIGE

NOLE 4: STABLE MARRIGE - pairing of n men and n women is stable if it has no rogue couples - the stable pairings always exist -in The Roommates Problem, there doesn't have to be stable pairing -you have In people, any person can be paired with (2n-1) people => ANALTSIS -prove that the algorithm always outputs stable pairing reach man begins with his first choice as a possibility - as the algorithm proceeds, his options can only get worse over time Luoman's options can only get better over time (lemma 1) - If man M proposes to woman W on kth day, then on every subseauent day W has someone on string whom she likes at least as much as M - proceed by induction on day j, j Zk phase case: j=k -on day k, W receives at least one proposal (from M)
- at the end of day k, she will therefore have on string M or better man (she chooses the best) - suppose the claim is true for j=k - inductive step - we prove the claim for ; +1 - by hypothesis, on day j. Whad Mon string whom she likes at least as much as M (M' may be M) - according to algorithm, M' proposes to Wagain on day (j+1) - ak the end of day (j+1), W will have on string either M'or someone better than M' -in both cases, she likes this person at least as much as M

	De-proof by induction of boulong zones all - (Compat)
	21-prove hase case) squar pos pos sobienos.
	- prove inductive step my Managers
swan	- since W = => P(j) => P(j+1) anso * W senie
	-> 7 (P(j)=>P(j+1)) doesn't hold, therefore P(j)=>P(j+1) holds
(6 6 5	=> well-ordering principle
	- Any non-empty set of natural numbers contains
1	Ignos sugar a la smallest " element a cas-
	-If SEIN and Sto, then Shas a smallest element
	- we can use alternate approach to prove the previous lemma
	- Suppose that on jet day for j > k is the first counterexample
w Om Gn	- for a given man M the optimal woman for 70089 - the highest
le Paining	- Suppose that the jth day for j > k is the first counterexample
9	where W has either nobody or has M* interfior to M on
	- each man is paired with his option grind sign
	- on day (j-1), she has M' on string and likes M'at least as
120 15	made manare semuch as Med 21 man vet manare lamisseg-
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
lamite astumil.	since she said "maybe" the previous day
	- so W has choice of at least one man on ith day
19	-more over her best choice is at least as good as M'
100	- Paccording to the algorithm, she will choose him over M*
	- this contradicts our initial assumption
واواه	(lemma?) -> The stable marriage algorithm always terminates with a pairing.
	- suppose there is man Mlett unpaired
	-he must have proposed to all n woman on his list
	- by lemma 1, each of n woman has had someone on string
	since M proposed to her sold was
f rejected	-when alsorithm terminates, in women have in men on string
0999	Dassed M snot including Mar some and ed
	- so there must be at least (n+1) men
Charle	-contradiction since there are only n men
	M* likes W* of least as much as his uptimal we
	- Flerefore of least as much as W

	(lemma 3) -> The pairing produced by the algorithm is always stable.
. *	- consider any couple (M, W) in the pairing
	- suppose M prefers W* to W
	-since W* occurs before W in M's list, M must have
Had (1+)	
	- by lemma 1, W* likes her final partner at least as
	much as M and therefore prefers him to M
	-> no man M can be involved in rogue couple
Inamale	-pairing is stable ?
a cassad	· OPTIMALITY
ola mara da	- there can be multiple stable pairing
	- for a given man M, the optimal woman for M is the highest woman
our le example	on M's preference list that M is paired with in any stable pairing
na H e	-male (female) optimal pairing
	- each man is paired with his optimal woman
Cleart as	(woman) (her) (man)
	-pessimal woman for man is the lowest ranked woman whom he is
n the day	ever paired with in some stable pairing
	- The pairing output by the Stable marriage algorithm is male optimal
	a PROOF and trad to be estade and Work -
i h	- suppose that pairing is not male optimal
*M 1940.	- there exists a day on which some man was rejected by his
	optimal woman W* in favor of M*
- January s	- by definition of optimal woman, there must be a stable
	pairing Tin which Mand Ware paired
	-suppose T= { (M, W*) (M*, W')}
20173	- we will show that (M*, W*) is rogue couple
	- W* prefers M* to M
29132	- since day k was the first day when some man got rejected
	by his optimal woman, before day k, M* hasn't been
	yet been rejected by his optimal woman
9	-since he proposed to W* on day k, this implies that
	M* likes W* at least as much as his optimal woman
	- therefore at least as much as W

	- therefore (M*, W*) form a rogue couple in T
	-not stable
	- this implies that pairing is male optimal
	- It pairing is male optimal, then it is also temale pessional
	- PROOF
S-11-11-11-11-11-11-11-11-11-11-11-11-11	-let T= {, (M, W) } be male optimal pairing output by algorithm
	- suppose there is stable pairing S= { (M*, W) (M, W') }
_	such that M* is lower on W's list than M
	-M is not her pessimal man
	- S can't be stable because (M, W) is roque couple in S
	-by assumption, W prefers M to M* (lower on her list)
	- M prefers W to Win S because W is his partner in male
	optimal pairing T (contradiction)
	Op Cimal Pairing 1 (Con Vacil (Closs)