Building Trust

A Dynamic Game of Collusive Price Leadership

Jasmine(Yu) Hao

Faculty of Business and Economics The University of Hong Kong

APIOC 2023

Motivation •0000000

Understanding the Initiation and Coordination of Collusion

Collusion has been a pivotal topic in industrial organization since Bain (1959), posing significant risks to consumer welfare and market fairness. Despite a rich literature on the implementation phase of collusion Harrington Jr and Chang (2009, 2015); Igami and Sugaya (2021), initiation remains understudied, with some exceptions Byrne and De Roos $(2019)^{1}$

The Oligopolistic Challenge: Firms face two primary issues when aiming for collusion:

- ▶ *Incentive Problem* Ensuring collusion is profitable Harrington (2018).
- ▶ Coordination Problem Dealing with multiple equilibria causing uncertainty Harrington (2018).

2/41

Hao (HKU) Dynamic Collusion August 2023 Motivation 0000000

Hao (HKU) August 2023 Dynamic Collusion

Movitation - Background

- Based on price-fixing case in Chile pharmacy retailing in 2006 -2008.
 - 3 chains sell almost every purchase of drugs.
 - Different strategies across time.
 - Rebuild cooperation after change of ownership of Salcobrand(smallest chain).
- ▶ Gradual in collusion. Price Trend
 - Raise price on over 200 drugs during 5 months.
- ▶ Finding: evidence of learning-to-coordinate.

Motivating Example - Coordination

- ▶ If rational: firms actions are explained by market characteristics.
- The two markets are not connected on demand/supply, write as separate decisions.
- Market outcome.
 - Static competition.
 - Price leadership.
- ▶ **Problem**: firms may be uncertain how other firms will respond.
- Firms' learning: firms update their beliefs given meta-game history.

5/41

Hao (HKU) Dynamic Collusion August 2023

Leader's Problem with Trust-Building

$$\tilde{\mathbf{v}}_{im}(a_{imt} = \mathbf{I}, \mathbf{x}^{\text{Compete}}, b) = \underbrace{\left(\mathbf{I} + \beta(\mathbf{I} - \phi_m^{(1)})\right) \pi_{im}(\mathbf{x}_m^{\text{Lead}}) - \left(\mathbf{M}\mathbf{C}_{im}\right)}_{\text{Flow payoff during the period of leading}}$$

$$+\beta \left(\frac{\phi_m^{(1)}}{1-\beta} \underbrace{\left(\pi_{im}(\mathbf{x}_m^{\text{Collude}}) - \pi_{im}(\mathbf{x}_m^{\text{Compete}})\right)}_{\text{Profit Difference s}^{\text{Profit}}}\right) - \left(1 - \phi_m^{(1)} - \beta(1 - \phi_m^{(1)})\right) \frac{\pi_{im}(\mathbf{x}_m^{\text{Compete}})}{1-\beta} \tag{1}$$

Future payoff difference if succesful collude

- $\lor V(\mathbf{x}_m^{\text{Collude}})$ is represented as $\frac{1}{1-\beta}\pi_{im}(\mathbf{x}_m^{\text{Collude}})$. The price leader, firm i, has a single lead opportunity.
- \triangleright Firm *i*'s *belief* about firm *i*''s action, denoted as $\phi_m^{(1)}(h)$, increases with successful coordination (h).
- \triangleright The incentive to lead, $p_{im}^{Lead} = \Lambda(\tilde{\mathbf{v}}_{im}(a_{imt} = \mathbf{I}, \mathbf{x}^{Compete}, b))$, determines whether firm i will initiate a price increase.
 - \diamond As trust $(\phi_m^{(1)}(b))$ increases, so does the leader's incentive to lead due to increasing probability of future payoff and decreasing potential loss from failure.
 - Firms tend to lead in a market with a larger profit difference.

6/41 Hao (HKU) Dynamic Collusion August 2023

Motivating Example - Decision Rule

- ▷ Decision depend on payoff-relevant state variables(?) with relaxed belief.
- Strategy on market *m*:

$$\sigma_{im}(\underbrace{a_{im,t-1}, \quad a_{jm,t-1}, \quad \epsilon_{imt}}_{\text{Payoff related}}, \underbrace{b_t}_{\text{No payoff related}})$$

- $\triangleright h_t$ is a function of history, for example,
 - collusion on the other market:
 - whether other firms have deviated(Fershtman and Pakes (2000))
- ▶ Diffusion of collusion: If firms collude on Eranz, may collude on Folisanin.

7 / 26

August 2023 7 / 41

Model

Motivation

- ▶ Model under the **dynamic game** with **relaxed beliefs**.
 - demand side: simple logit
 - supply side: strategy interaction and belief evolution
- ▶ Issue: under-identification
- ▶ Restriction: each firms' belief about other firms' action is valued by a firm-specific time-varying belief parameter
 - ♦ between 0 and 1
 - ★ 1: rational belief under collusive strategy
 - * 0: competitive belief
 - evolve with signal of others firms' williness to collude

Dynamic Collusion and Counterfactual Experiments

Extending Collusion Models

- ▶ This study builds on Aguirregabiria and Magesan (2020), identifying beliefs as a key non-payoff relevant variable.
- Employing the Trust Building Equilibrium (TBE) framework, it reveals a gradual increase in firms' propensity to raise prices and promote collusion.
- In contrast, the standard MPE framework suggests immediate, uniform collusion, overlooking temporal incentives evolution.
- ▶ The TBE allows for a nuanced understanding of collusion dynamics.

9/41 August 2023

Market Overview

- Oligopolistic retail pharmaceutical distribution market (Data Source: Expert report, court documents).
 - § 92 % of the drugs sales are concentrated Farmacias Ahumada S.A. ("FASA"), Farmacias Cruz Verde S.A. ("Cruz Verde") and Farmacias Salcobrand S.A. ("Salcobrand").
 - § 8 % independent drug stores that do not carry branded drugs.
- Prices not regulated.
- Physicians prescribe on brands.
- Insurance cover very limited, listed price reflects out-of-pocket price.

Hao (HKU) Dynamic Collusion August 2023

Data

- Daily level data, from Jan 1st, 2006, to Dec 31st, 2008.
- 222 brands that the chains were accused of colluding.
- ▶ For each chain, each brand:
 - ♦ Nationwide sales volume (q_{imt});
 - \diamond Nationwide sale-weighted average price (p_{imt}) .
- Among the products:
 - Mostly are prescription drugs;
 - ♦ 70 % of the drugs are treatments for chronic diseases.
- Data source: Competition Tribunal of Chile.

Price Evolution

- ▶ January 2006 December 2006: Loss leadership.
- December 2006 August 2007: Price war.
- ▶ August 2007: Salcobrand 100% ownership sold to Juan Yarur Companies for 130 million dollars.
- November 2007 April 2008: Gradual Price increase.
- ▶ April 2008: FNE investigation started.
- ▶ The Competition Tribunal sentence Farmacias Cruz Verde Salcobrand to pay fines of approximately US\$19 million each.

Coordination Mechanism

August 2023

Price Trend: Weighted Average Price Level from Jan 2006

- Dec 2008

13 / 26 13 / 41

Dynamic Collusion August 2023

Stylized Facts

1. Post-collusion: coordinations happen more frequently.

2. The smallest chain, Salcobrand, is the **price leader**.

```
▶ Price Leader
```

- 3. First collude on more **differentiated** market.
- The collusion on other markets without demand link increase firms' incentive to collude.

Dynamic Game: Identification of Belief

Define the associated conditional choice probabilities(CCPs)(Magnac and Thesmar (2002)):

$$\mathbf{P}_{imt}(a_{imt}, \mathbf{a}_{m,t-1}, \mathbf{h}_t) = \int \sigma_{im}(a_{imt}, \mathbf{a}_{m,t-1}, \mathbf{h}_t) d\epsilon_{imt}. \tag{2}$$

- ▶ Let *h* denote firms' collusion status on the other market.
- $\triangleright \mathbf{P}_{imt}(a_{imt}, \mathbf{a}_{m,t-1}, \mathbf{h}_t) = \Lambda(\mathbf{v}_{it}^{\mathbf{B}_{it}}(a_{im}, \mathbf{a}_{m,t-1}, h_t)),$
 - $\diamond \Lambda(\cdot)$ is the CDF of ϵ_{imt} .
 - \diamond $\mathbf{v}_{::}^{\mathbf{B}_{it}}(a_{im}, \mathbf{a}_{m.t-1}, h_t)$ choice dependent value function

 \triangleright Identify a the **ratio of beliefs** from ratio of $\Lambda^{-1}(\mathbf{P}_{imt}(a_{imt}, \mathbf{a}_{m.t-1}, h))$ across b. (Aguirregabiria and Magesan (2020))

Hao (HKU) Dynamic Collusion August 2023

Dynamic Game: Flow Payoff

$$\Pi_i(\mathbf{x}_{mt}, \mathbf{a}_{mt}) = \sum_{m \in \mathcal{M}} \left[R_{im}(\mathbf{x}_{mt}, \mathbf{a}_{mt}) + A_{im}(\mathbf{x}_{mt}, \mathbf{a}_{mt}) + \epsilon_{imt}(a_{imt}) \right],$$

where

- \triangleright R_{im}($\mathbf{x}_{mt}, \mathbf{a}_{mt}$): estimated profit, level of differentiation;
- \triangleright A_{im} structural cost, unknown to economist;

$$MC_{im} = \gamma_i^{\text{MC,o}}, \ LC_{im} = \gamma_i^{\text{LC,o}} + \gamma_i^{\text{LC,Profit}} z_{im}^{\text{Profit}} + \gamma_i^{\text{LC,Size}} \log(z_m^{\text{Size}}),$$
(3)

- Menu cost
- Leadership cost
- \triangleright $\epsilon_{imt}(a)$ i.i.d across players, markets, states and actions. (Magnac and Thesmar (2002))

16 / 41

Dynamic Collusion

- \triangleright Goal: Estimate **beliefs** \mathbf{B}_{im} , **profit** \mathbf{R}_{im} and **structural cost** \mathbf{F}_{im} .
- The dimensionality of the state is **huge**($2^{(3*200)} \approx 4*10^{180}$).
- Make the following restrictions:
 - The decision of prices is restricted to two price levels: low and high.

Structural Model ŏ•

- \diamond A market manager (i, m) makes a separate decision from other markets.
- Beliefs are biased by a single firm-history-specific parameter $\lambda(h_t) \in [0,1].$
 - * $\lambda(h_t) = 0$, players believe in static competition.
 - * $\lambda(h_t) = I$, players have rational belief in the leadership of prices.
- \diamond b_t is number of colluded markets.

$$h_t \in \{[0, 30], [31, 90], [91, 150], [151, \infty)\}.$$

▶ Price Leadership

Hao (HKU) Dynamic Collusion

Panel A: Estimation of Belief Parameters $\lambda(b)$

History	Estimates	Bootstrap
History 0-30	0.1789	0.153
		(0.089)
History 30-90	0.2930	0.439
		(0.271)
History 90-150	0.5182	0.515
•		(0.170)
History 150+	1.0000	-

18 / 26

Panel B: Estimation of Structural Costs (1000 Chilean Pesos)

		TBE			MPE	
Costs	Cruz Verde	FASA	Salcobrand	Cruz Verde	FASA	Salcobrand
Menu Cost	74.619	96.044	84.711	14.218	1334.256	107.641
Leadership Cost	1602.475	2238.598	1429.974	95804.489	323648.470	4.219
90% Quantile 10% Quantile	3985.463 79.059	5265.212 164.346	3182.917 59.532	225968.155 10971.365	727003.623 52475.795	282.964 227.776
10/0 Quantile	19.059	104.540	39.332	109/1.303	52415.195	221.110

19 / 26 19 / 41

Hao (HKU) Dynamic Collusion August 2023

Panel C: Estimation of Structural Costs Parameters

Panel C: Estimation of Structural Costs Parameters

		TBE			MPE	
Parameter	Cruz Verde	FASA	Salcobrand	Cruz Verde	FASA	Salcobrand
γ^{MC} , o_i	74.6188	96.0439	84.7112	14.2176	1334.2561	107.6409
	(22.8003)	(41.8131)	(38.0040)	(9155.2740)	(2250.9839)	(51.0140)
$\gamma^{\mathrm{LC}}, \mathrm{o}_i$	-213.2839	-242.7637	-218.2709	-5161.4021	-777.7465	-255.3117
	(62.9368)	(137.0481)	(72.3270)	(16489.2515)	(10772.5192)	(76.7080)
γ^{LC} , Size _i	0.0527	-0.5238	-0.4002	13.6036	-91.6494	-0.3254
	(0.8594)	(1.3888)	(0.7702)	(1189.9790)	(906.1534)	(0.4056)
γ^{LC} , Profit _i	8.9545	10.7311	9.1895	486.7926	1423.1862	1.6946
	(1.3819)	(4.2826)	(0.2825)	(1516.7731)	(1864.8742)	(0.8675)

20 / 26

Hao (HKU) Dynamic Collusion August 2023

Prediction of Firms' Price Leadership Probabilities

Table: Prediction of Firms' Price Leadership Probabilities

	Cruz Verde		FA	FASA		brand
	TBE	MPE	TBE	MPE	TBE	MPE
[0-30]	0.0104	0.0069	0.0155	0.0000	0.0316	0.6096
[30-90]	0.0451	0.0058	0.0846	0.0000	0.0375	0.5887
[90-150]	0.0484	0.0061	0.0104	0.0000	0.1101	0.6092
[150+]	0.2898	0.0058	0.2558	0.0000	0.4725	0.6742
All	0.0984	0.0062	0.0916	0.0000	0.1629	0.6204

¹ The table reports the mean probability of Salcobrand initiating a price increase affecting 204 products.

² Under MPE, the probability of FASA leading a price increase essentially hit 0 because I bind the probability of leading to be 1e-6.

Model Prediction - Simulated Path

Figure: Model Prediction - Simulated Path

Dynamic Collusion August 2023 22 / 41

Dynamic Collusion and Counterfactual Experiments

Counterfactual Scenarios

- ▶ Adjustment Friction Scenario: Incorporates increased menu costs, leading to complex inter-firm dynamics and price adjustment hesitancy.
- ▶ Divestiture Scenario: Based on Harrington Jr (2018), it simulates a government-enforced 25% asset divestiture, resulting in a new competitor.

23 / 2

Hao (HKU) Dynamic Collusion August 2023

Mean Predicted Leader Probability in Counterfactual Experiment - Salcobrand

Table: Mean Predicted Leader Probability in Counterfactual Experiment -Salcobrand

	Trust Building Equilibrium			Markov Perfect Equilibrium		
	Model	Adjustment Friction	Divestiture	Model	Adjustment Friction	Divestiture
[0-30]	0.0316	0.0025 (-92.1619 %)	0.0029 (-90.9450%)	0.6096	0.3824 (-37.2706%)	0.4488 (-26.3775%)
[30-90]	0.0375	0.0048 (-87.3246%)	0.0030 (-92.1306%)	0.5887	0.2811 (-52.2456%)	0.4189 (-28.8447%)
[90-150]	0.1101	0.0132 (-88.0339%)	0.0055 (-94.9968%)	0.6092	0.3343 (-45.1228%)	0.4339 (-28.7686%)
[150+]	0.4725	0.1967 (-58.3724%)	0.0562 (-88.1068%)	0.6742	0.4953 (-26.5379%)	0.4462 (-33.8228%)
[AII]	0.1629	0.0543 (-66.6871%)	0.0169 (-89.6400%)	0.6204	0.3733 (-39.8349%)	0.4370 (-29.5723%)

This table presents the average probabilities of Salcobrand initiating price increases, encompassing 204 products.

Hao (HKU) Dynamic Collusion August 2023

² The second line details the percentage decrease in comparison to the model's prediction.

Contribution

- Introduces a dynamic game model for collusion initiation integrating 'higher-order knowledge'.
- Provides empirical evidence that successful collusion increases future collusion likelihood, changing expectations of collusive equilibrium adherence.
- First structural model for **collusion initiation** with learning-to-coordinate.
 - Finding: the gradualism in collusion explained by learning-to-coordinate.
 - Counterfactual: introduce more player to hinder coordination.
- ▶ First **biased-belief equilibrium** framework for dynamic game.
 - Counterfactual analysis.
 - Clear identification results.
 - Can test whether belief is biased.

Thank You

Thank You

Hao (HKU) Dynamic Collusion August 2023

Collusion News

market. The journalists in charge have handed the details to the National Prosecutor.

Hao (HKU) Dynamic Collusion August 2023 27 / 41

Motivation

Definition of Expected Payoff

Given current beliefs, we can represent a firm's best response at time t using solution from a single agent Dynamic Programming(DP) problem following Bellman's principle.

$$V_{it}^{B_{it}}(\mathbf{x}_t) = \max_{a_{it}} \{\pi_{it}^{B_{it}}(a_{it}, \mathbf{x}_t, \epsilon_{it}) + v_{it}^{B_{it}}(a_i, \mathbf{x}_t)\}$$

▶ The current epxected payoff

$$\pi_{it}^{B_{it}}(a_{it},\mathbf{x}_t,\epsilon_{it}) = \sum_{\mathbf{a}_{it}} B_{it}(\mathbf{a}_{-it}|\mathbf{x}_t) \Pi_{it}(a_{it},\mathbf{a}_{-it},\mathbf{x}_t,\epsilon_{it}).$$

And the expected continuation value

$$v_{it}^{B_{it}}(a_i, \mathbf{x}_t) = \sum_{\mathbf{a}_{-it}} \beta B_{it}(\mathbf{a}_{-it}|\mathbf{x}_t) \sum_{\mathbf{x}_{t+1}} f(\mathbf{x}_{t+1}|a_{it}, \mathbf{a}_{-it}) V_{it+1}^{B_{it}}(\mathbf{x}_{t+1}).$$

▶ Equilibrium Strategy

Competition Tribunal Sentence

- ➤ The Competition Tribunal sentence Farmacias Cruz Verde Salcobrand to pay approximately US\$19 million each (Maximum applicable fine).
- Collusive agreement to increase prices of at least 206 pharmaceutical drugs between December 2007 and March 2008.
- ▶ The price in real values before vs. after the break it was 16.4% for SB, 18.6% for CV and of 16.9% for FASA.

▶ Price Trend

Coordination Mechanism

Salcobrand's business manager emailed the CFO at the onset of the conspiracy period, on December 19, 2007, explaining the actions they were undertaking:

[In order to coordinate the price increases] we offered to be the chain that raised its prices first ([every week] on Monday or Tuesday) so that the other two chains would have three or four days to 'detect' these [price] increases and absorb them. Until now, [we have] succeeded in raising the prices of five of the most important products of four pharmaceuticals companies. Due to the good results, we hope to repeat the 'procedure' with more products and with more pharmaceuticals in the coming weeks.

→ Price Trend

1-2-3 Price Increase

Define the coordinated price increase as:

- 1. The increase of price (> 15% or more than 1500 peso) is happened for a certain product for 3 firms.
- 2. The increase is started by one firm, and the other two firms follow within at most 4 days.
- 3. The price levels before and after increases should be reasonably close(< 15%).
- 4. The price level is maintained for at least 3 days.

Number of coordinated price increase

▶ Facts

Hao (HKU) Dynamic Collusion August 2023

31 / 41

Coordinated Price Increase

Figure: Number of Coordinated Price Increase

▶ Facts

Hao (HKU) Dynamic Collusion August 2023

32 / 41

Table: The Coordinated Price Increase Frequency

Time periods	Frequency	Percentage	Monthly average
Jan,2006 - Nov, 2007	24	12.8 $\%$	1.04
Dec,2007 - Apr, 2008	137	72.9%	27.40
May,2008 - Dec, 2008	27	14.4%	3.86
Total	188	100%	5.22

The coordinated price increase is defined by the action such that one firm make a price increase on a certain product, and the other firms follow within a reasonable short time period.

▶ Definition of coordinated price increase

² The table recomputed using the method in the expert report requested by FNE. ?.

Table: The 1-2-3 Price Increase/ Decrease Frequency

Sequence	Jan,2006	Dec,2007	May,2008	Total
	-Nov,2007	-Apr,2008	-Dec,2008	
	1-2-3	Price Increas	se	
SB lead	11	126	10	147
FA lead	12	8	10	30
CV lead	10	0	12	31
Total	32	143	32	188

The table is recomputed according to the method reported in the expert report ?

▶ Definition of coordinated price increase

▶ Facts

 Hao
 (HKU)
 Dynamic Collusion
 August 2023
 34 / 41

 $^{^2}$ Based on the foregoing, the relevance of SB on the subject is highlighted, because of the total increases 1-2-3 accounted for, 75% of them (162 increases) are made in the first movement.

Time Varying Incentive

Estimate a Cox survival (Cox, 1972) model following that of Alé Chilet (2016).

- \triangleright A market is defined as a product j, where three firms compete on.
- ▶ A failure is defined as the market starting to collude.
- Explainatory variables
 - History is the number of drugs that firms have already colluded on.
 - The elasticity is estimated in the first stage with logit demand model.
 - Market size is the daily average quantity sold by three firms before collusion(Oct, 2007).
 - Price dispersion is the average weekly price standard deviation(Jan, 2006 - Oct, 2007).
 - Share dispersion: the median of weekly share dispersion. Reflects the asymmetry of the firms' shares.

Table: Timing of Collusion: Market Characteristics

		rtional Hazard N			Time-varying I			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Cross Elasticity	-0.354	-0.351	-0.3427	-1.0608	-1.5021	-1.3806	-1.3781	
	(0.2572)	(0.2481)	(0.2469)	(6.117)	(6.6812)	(6.4657)	(6.4683)	
Ln Market Size	0.4516***	0.4538***	0.4536***	1.2521	1.1596	1.4032	1.4059	
	(0.0771)	(0.133)	(0.1319)	(2.3947)	(2.3576)	(2.719)	(2.7302)	
Succeed Ratio	-	-	0.9193***	-	0.0003	-	0.0109	
	-	-	(0.0871)	-	(0.0896)	-	(0.0872	
Total Coord Attemp	-	-	-0.0084***	-	-0.0002	-	0.0002	
	-	-	(0.0021)	-	(0.002)	-	(0.0021	
Cross Elasticity * $log(T)$	-	-	- '	0.2045	0.2972	0.2737	0.2732	
• 0()	-	-	-	(1.2488)	(1.3736)	(1.3288)	(1.3293)	
Ln Market Size * $log(T)$	-	-	-	-0.2472	-0.2267	-0.2785	-0.2791	
- , ,	-	-	-	(0.4859)	(0.4743)	(0.5514)	(0.5539)	
Price Dispersion	-	0.1195	0.118	- /	-0.2415	-0.1784	-0.1763	
	-	(0.1169)	(0.1189)	-	(1.3415)	(1.3273)	(1.3239	
Share Dispersion	-	-0.3425	-0.2112	-	7.3582	12.4508	12.4217	
•	-	(3.3214)	(3.3091)	-	(19.5943)	(22,4463)	(22.4248	
Price Dispersion * $log(T)$	-	/	- /	-	0.05	0.0368	0.0363	
	-	-	_	-	(0.2824)	(0.2801)	(0.2794	
Share Dispersion * $log(T)$	-	-	_	-	-1.4203	-2.4906	-2.4843	
	-	-	-	-	(4.1841)	(4.7433)	(4.7401	
Market Share Leader	-	-4.7582***	-4.5848**	-	- ′	-7.8503	-7.9218	
	-	(1.8229)	(1.8172)	-	-	(18.6303)	(18.7535	
Market Share Leader * $log(T)$	-	/	- /	-	-	1.6039	1.6193	
	-	-	-	-	-	(3.9032)	(3.9316	
AIC	70949.5716	70206.827	70060.37	69750.8864	69668.6737	69534.101	69537.02	
Concordance Index	0.5088	0.4912	0.548	0.9749	0.9569	0.9749	0.9567	
N	22398	22376	21984	22398	21984	22376	21984	
log-likelihood	-35472.7858	-35098.4135	-35023.185	-34871.4432	-34824.3368	-34757.0505	-34756.53	

Dynamic Game: Value Function

- \triangleright Choice dependent value function: $\mathbf{v}_{it}^{\mathbf{B}_{it}}(a_{im},\mathbf{x}_t) =$ $\mathbb{E}_{\mathbf{B}_{tt}}\left[\pi_{im}(a_{imt}, \mathbf{a}_{-im}, \mathbf{x}_{mt}) + \beta f(\mathbf{x}_{j,t+1}|\mathbf{a}_{mt}, \mathbf{x}_{mt})\mathbf{V}_{im}(\mathbf{x}_{j,t+1})\right],$
- ▶ Value function:

$$\mathbf{V}_{im}(\mathbf{x}_{jt+1}) = \max_{a_{im}} \{ \mathbf{v}_{it}^{\mathbf{B}_{it}}(a_i, \mathbf{x}_t) + \sum_{m \in \{Folisanin, Eranz\}} \epsilon_{imt}(a_{imt}) \}.$$

Dynamic Collusion 37 / 41 Hao (HKU) August 2023

Dynamic Game Identification

? propse the following assumptions to identify markov perfect equilibrium dynamic game.

Assumption (Identification of MPE Dynamic Game)

- 1. a_{it}, x_{it} have finite supports.
- 2. $\epsilon_{it}(a_i)$ is additive seperable.
- 3. ϵ_{it} is conditionally independent of $\mathbf{x}_t | \mathbf{x}_{t-1}$.
- 4. Firms' private information $(\epsilon_{it}, \dots, \epsilon_{Nt})$ are drawn from T_1EV distribution $G_i(\cdot)$, ϵ_{it} 's are independently distributed over time.

Dynamic Game Best Response

Assumption: Exclusion Restrictions

Assumption (Exclusion Restriction)

The vector of state variables \mathbf{x}_{mt} , h_t satisfy the following conditions:

(A)
$$\pi_{im}(a_{mt}, x_{mt}, h_t) = \pi_{im}(a_{mt}, x_{mt}),$$

(B)
$$\pi_{im}(a_{imt}, a_{-imt}, x_{imt}, x_{-imt}, h_t) = \pi_{im}(a_{imt}, a_{-imt}, x_{imt}, x'_{-imt}, h_t)$$

$$(C) f(\mathbf{x}_{m,t+1}|(a_{imt},a_{-im}),\mathbf{x}_{mt}) = \prod_{i\in\mathcal{I}} f(\mathbf{x}_{im,t+1}|a_{imt}).$$

	Before	After
All drugs	215.5	200.3
By Prescription		
Prescription Drugs	214.4	201.2
Over-the-Counter Drugs	221.0	195.5
By Chronic Disease		
Chronic Disease	165.8	154.0
Non-Chronic Disease	308.1	286.1

¹ For each drug, I compute the average daily sale from 14 days to 7 days before the price increase, and 7 days to 14 days after the price increase.

 $^{^{\}rm 2}$ The daily average were computed using the Dec 2007 - Apr 2008 period.

Consumer Demand Model

Market defined as each brand. Consumers are homogeneous, market size is fixed. Each t, the consumer on the market choose to buy from a firm i. For each consumer who buys drug j, firm i at time t, the utility is

$$u_{imt} = \beta_m - \alpha_m p_{imt} + \xi_{mt}^{(1)} + \xi_{imt}^{(2)}, \tag{4}$$

- $\triangleright \beta_m$ is the utility parameter, α_i is the *price paramters*,
- $\triangleright \xi_{mt}^{(1)}$ is the firm-product fixed effect, and $\xi_{imt}^{(2)}$ is the time-varying demand shock.
- ho $\xi_{imt}^{(2)}$ follows AR(1) process: $\xi_{imt}^{(2)} = \rho_m \xi_{im,t-1}^{(2)} + \epsilon_{imt}$.
- $\triangleright \epsilon_{imt}$ i.i.d across i, m, t.

Parameters: $\{\beta_m, \alpha_m, \rho_m, (\xi_{mt}^{(1)})_{i \in \mathcal{I}}\}_{m \in \mathcal{M}}$ Dynamic Game Estimation

References I

- Aguirregabiria, V. and Magesan, A. (2020). Identification and estimation of dynamic games when players' beliefs are not in equilibrium. *The Review of Economic Studies*, 87(2):582–625.
- Alé Chilet, J. (2016). Gradually rebuilding a relationship: The emergence of collusion in retail pharmacies in Chile.
- Alé Chilet, J. (2018). Collusive price leadership in retail pharmacies in Chile.
- Bain, J. S. (1959). Industrial Organization. John Wiley and Sons, New York.
- Bajari, P., Benkard, C. L., and Levin, J. (2007). Estimating dynamic models of imperfect competition. *Econometrica*, 75(5):1331–1370.
- Byrne, D. P. and De Roos, N. (2019). Learning to coordinate: A study in retail gasoline. *American Economic Review*, 109(2):591–619.

References II

- Ericson, R. and Pakes, A. (1995). Markov-perfect industry dynamics: A framework for empirical work. *The Review of economic studies*, 62(1):53–82.
- Fershtman, C. and Pakes, A. (2000). A dynamic oligopoly with collusion and price wars.
- Harrington, J. (2018). Lectures on collusive practices.
- Harrington Jr, J. E. (2018). A proposal for a structural remedy for illegal collusion. *Antitrust LJ*, 82:335.
- Harrington Jr, J. E. and Chang, M.-H. (2009). Modeling the birth and death of cartels with an application to evaluating competition policy. *Journal of the European Economic Association*, 7(6):1400–1435.
- Harrington Jr, J. E. and Chang, M.-H. (2015). When can i expect a corporate leniency program to result in fewer cartels? *The Journal of Law and Economics*, 58(2):417–449.

References III

- Igami, M. and Sugaya, T. (2021). Measuring the incentive to collude: The vitamin cartels, 1990-1999. *The Review of Economic Studies*.
- Knittel, C. R. and Stango, V. (2003). Price ceilings as focal points for tacit collusion: Evidence from credit cards. *American Economic Review*, 93(5):1703–1729.
- Lewis, M. S. (2015). Odd prices at retail gasoline stations: focal point pricing and tacit collusion. *Journal of Economics & Management Strategy*, 24(3):664–685.
- Magnac, T. and Thesmar, D. (2002). Identifying dynamic discrete decision processes. *Econometrica*, 70(2):801–816.