Quantum Fourier Transform

Dr. Ashwini Kumar Malviya
School of Computing
IIIT Una (H.P.)

Contents

- 1) Fourier Analysis
- 2) Discrete Fourier Transform
- 3) Quantum Fourier Transform
- 4) Example
- 5) Applications and Open Problems

Fourier Analysis

- A mathematical tool
- time-domain signal to a frequency-domain signal
- and vice versa
- 4 classes

Time-Domain	Periodic	Aperiodic
Continuous	Fourier Series (FS)	Fourier Transform (FT)
Discrete	Discrete Fourier Discrete Time Fourie	
	Transform (DFT)	Transform (DTFT)

FreqDomain	Periodic	Aperiodic
Continuous	DTFT	FT
Discrete	DFT	FS

Discrete Fourier Transform (DFT)

• discrete, periodic time-domain signal to frequency-domain signal.

$$\bullet \quad x_0,x_1,\dots,x_{\{N-1\}} \longmapsto y_0,y_1,\dots,y_{\{N-1\}}$$

DFT

$$y_k = \sum_{n=0}^{N-1} x_n \cdot e^{-2\pi i \frac{k}{N}n}$$

Inverse DFT (IDFT)

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} y_k \cdot e^{2\pi \iota \frac{k}{N}n}$$

Quantum Fourier Transform (QFT)

QFT = Inverse DFT

$$\begin{split} |j\rangle &\to \frac{1}{2^{n/2}} \sum_{k=0}^{2^{n}-1} e^{2\pi \iota \frac{k}{2^{n}} j} \cdot |k\rangle \\ &= \frac{1}{2^{n/2}} \sum_{k_{1}=0}^{1} \sum_{k_{2}=0}^{1} \cdots \sum_{k_{n}=0}^{1} e^{2\pi \iota j (\sum_{l=1}^{n} k_{l} 2^{-l})} \cdot |k_{1} k_{2} \cdots k_{n}\rangle \\ &= \frac{1}{2^{n/2}} \sum_{k_{1}=0}^{1} \sum_{k_{2}=0}^{1} \cdots \sum_{k_{n}=0}^{1} e^{2\pi \iota j (\sum_{l=1}^{n} k_{l} 2^{-l})} \cdot |k_{1} k_{2} \cdots k_{n}\rangle \\ &= \frac{1}{2^{n/2}} \sum_{k_{1}=0}^{1} \sum_{k_{2}=0}^{1} \cdots \sum_{k_{n}=0}^{1} \prod_{l=1}^{n} e^{2\pi \iota j (\sum_{l=1}^{n} k_{l} 2^{-l})} \cdot |k_{l}\rangle \\ &= \frac{1}{2^{n/2}} \prod_{l=1}^{n} \left[\sum_{k_{l}=0}^{1} e^{2\pi \iota j k_{l} 2^{-l}} \cdot |k_{l}\rangle \right] \\ &= \frac{1}{2^{n/2}} \prod_{l=1}^{n} \left[|0\rangle + e^{2\pi \iota j 2^{-l}} \cdot |1\rangle \right] \\ &= \frac{(|0\rangle + e^{2\pi \iota j/2} \cdot |1\rangle)(|0\rangle + e^{2\pi \iota j/2^{2}} \cdot |1\rangle) \cdots (|0\rangle + e^{2\pi \iota j/2^{n}} \cdot |1\rangle)}{2^{n/2}} \\ &= \frac{(|0\rangle + e^{2\pi \iota 0.j} n \cdot |1\rangle)(|0\rangle + e^{2\pi \iota 0.j} n - 1^{j} n \cdot |1\rangle) \cdots (|0\rangle + e^{2\pi \iota 0.j} j^{j} 2^{-j} n \cdot |1\rangle)}{2^{n/2}} \end{split}$$

Quantum Fourier Transform (QFT)

$$\frac{(|0\rangle + e^{2\pi \iota j/2} \cdot |1\rangle)(|0\rangle + e^{2\pi \iota j/2^2} \cdot |1\rangle) \cdots (|0\rangle + e^{2\pi \iota j/2^n} \cdot |1\rangle)}{2^{n/2}}$$

Phase	State
1	$ 00\cdots 0\rangle$
$e^{\frac{2\pi \iota j}{2^n}}$	$ 00\cdots 1\rangle$
$e^{\frac{2\pi \iota j}{2^{n-1}}}$	0 ··· 10}
$e^{\frac{2\pi \iota j}{2}}$	10 ··· 0}
$e^{\frac{2\pi i j}{2} + \frac{2\pi i j}{2^2} + \frac{2\pi i j}{2^3} + \dots + \frac{2\pi i j}{2^n}}$	11 ··· 1>

$$\mathbf{H}|j_{k}\rangle = \begin{cases} \frac{|0\rangle + |1\rangle}{\sqrt{2}}, j_{k} = 0\\ \frac{|0\rangle - |1\rangle}{\sqrt{2}}, j_{k} = 1 \end{cases} = \frac{|0\rangle + e^{\frac{2\pi i j_{k}}{2}}|1\rangle}{\sqrt{2}} \qquad \mathbf{R}_{i}|j_{k}\rangle = e^{\frac{2\pi i j_{k}}{2^{i}}}|j_{k}\rangle$$

Quantum Fourier Transform (QFT)

$$\frac{(|0\rangle + e^{2\pi\iota j/2}\cdot|1\rangle)(|0\rangle + e^{2\pi\iota j/2^2}\cdot|1\rangle)\cdots(|0\rangle + e^{2\pi\iota j/2^n}\cdot|1\rangle)}{2^{n/2}}$$

Example

• QFT on $j = |01\rangle$

$$|01\rangle \rightarrow \frac{1}{2^{n/2}} \sum_{k=0}^{2^{n}-1} e^{2\pi \iota \frac{k}{2^{n}} j} \cdot |k\rangle$$

$$= \frac{(|0\rangle + e^{2\pi \iota j/2} \cdot |1\rangle)(|0\rangle + e^{2\pi \iota j/2^{2}} \cdot |1\rangle)}{2^{n/2}}$$

$$= \frac{(|0\rangle + e^{2\pi \iota 1/2} \cdot |1\rangle)(|0\rangle + e^{2\pi \iota 1/2^{2}} \cdot |1\rangle)}{2^{2/2}}$$

$$= \frac{|00\rangle + \iota |01\rangle - |10\rangle - \iota |11\rangle}{2}$$

Applications and Open Problems

Applications

- Quantum phase estimation
- Quantum period finding
- Quantum algorithms
- Optimization problems

Open Problems

- Efficiency and Resource Optimization
- Noise
- Limited applications
- Parallelization