装订线

(答题不得超过此线)

湖

考试中心填写: 切

诚信应考,考试作弊将带来严重后果!

___年__月__日 考 试 用

湖南大学课程考试试卷

课程名称: <u>高等数学 A2</u>; 课程编码: <u>GE03026</u>; 试卷编号: <u>A</u>; 考试时间: 120 分钟

题 号	1-3	4-7	8-9	10-11	12-13	14		总分
应得分	18	24	16	16	20	6		100
实得分								
	李	孟	于	₽Z.	袁	黄		
组长	永	纯	红	林	朝	超		
	群	军	香		晖	群		

- 一、计算题 I (每小题 6 分, 共 42 分)
- 1. 求与向量 a=(1,0,1), b=(2,-1,3) 平行,且经过点 $p_0=(3,-1,4)$ 的平面 π 的方程。

2. 求极限
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 + y^2}{1 - \sqrt{1 + x^2 + y^2}}$$

3. 求 $f(x,y) = \sqrt{x^2 + y^2}$ 在点 O(0,0) 处沿从点 O(0,0) 到点 $A(1,\sqrt{3})$ 的方向的方向导数。

4. 求曲线 $\Gamma: \begin{cases} x^2+y^2+z^2=50 \\ x^2+y^2-z^2=0 \end{cases}$ 在点 $M_0(3,4,5)$ 处的切线方程和法平面方程。

5. 设方程 $z + \ln(x + 2y - z) = 2$ 确定了隐函数关系 z = z(x,y),求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

6. 讨论级数 $\sum_{n=1}^{\infty} \frac{n+2}{n \cdot 3^n}$ 的敛散性。

7. 将函数 $f(x) = \arctan(2x)$ 展开成关于 x 的幂级数,并指出收敛域。

- 二、计算题 II (每小题 8 分,共 32 分)
- 8. 计算二重积分 $I = \iint_D |x^2 + y^2 4| dxdy$, 其中 $D = \{(x,y) \mid 0 \le x \le 2, 0 \le y \le 2\}$ 。

10. 计算曲面积分 $I = \iint_{\Sigma} x dy dz + y dx dz + z dx dy$,其中 Σ 为曲面 $z = 4 - x^2 - y^2$ 在 xoy 面上方部分的下侧。

11. 求幂级数 $\sum_{n=0}^{\infty} \frac{n^2 + 1}{n!} x^n$ 的收敛半径,收敛域及其和函数。

- 三、应用题(每小题10分,共20分)
- 12. 求由旋转抛物面 $x^2 + y^2 = 3z$ 与球面 $x^2 + y^2 + z^2 = 4$ 所围成的立体的体积。

13. 设椭球面 $x^2 + 3y^2 + z^2 = 1$ 第一卦限上的点的切平面 π ,求使切平面 π 与三个坐标面所围成的四面体体积最小的切点坐标。

四、证明题(6分)

14. 设函数 f(x) 在[a,b]上连续,证明: $2\int_a^b dx \int_a^x (x-y)f(y)dy = \int_a^b (b-y)^2 f(y)dy$.