

Distributions: Conditions:

Uniforms:
$$(x \sim U(a/b)):$$

$$\frac{1}{4}x(x) = \begin{cases} \frac{1}{4} & \text{as } x \leq b \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o. c.o.c.} \\ 0 & \text{o. c.o.c.} \end{cases}$$

$$V(x) = \begin{cases} \frac{1}{4} & \text{o.$$

Der: nodos notob	<u>6</u>		
1. d K=0	2. 4 x=1	3. 4 (ax+x)=a	*Regla de la
4. d (u(x)+v(x)) = u(x)+			caolena.
$\frac{7}{4} \cdot \frac{du}{dx} = \frac{u(x) \cdot v(y) \cdot v^{2}(x)}{v^{2}(x)}$		6. d ((((x). T(x)) = ((x). T(x)) + ((x). T(x))	a class - or frailing
	¥.	9. d 16 x = 1	$\frac{\partial x}{\partial x} \mathcal{S}(f(x)) = \mathcal{S}_{x}(f(x)) f_{x}(x)$
10. d loga X = 1 = loga e	11. dex= ex	$12. da^{x} = a^{x} \cdot \ln a$	
Integrales Básica	as para Memorizar	* Props: · So cfwdx = c	
$\int x^n dx$	$dx = \frac{x^{n+1}}{n+1} + C, n \neq -1, $	• \$ f(x) dx = -	
$\int \frac{1}{x} dx$	$x = \ln x + C,$	Je fwax= j	findx + States
$\int e^x dx$	$dx = e^x + C,$	of colx = c(b-	s una constable
$\int a^x dx$	$dx = \frac{a^x}{\ln a} + C,$	· findx - Fai	["=F(b)-F(a)
Sumos potable	33		¥5
$\sum_{n=1}^{n} r^{x} = 1 - r^{n+1}$. So, $ Y < 1 \Rightarrow Y^{n+1} = 0$. $\sum_{\chi=1}^{M} \chi$	= <u>n(n+1)</u>	* se hueven soucot
, co			las clts y se poepen se post med som
$\sum_{x=1}^{\infty} x r^{x} = \sum_{x=1}^{\infty} x^{x}$	<u>r)</u> ² ,∑	$\frac{1}{6} = h(n+1)(2n+1)$	(misms osquema
$\int_{x=1}^{x} \chi^2 r^{\chi} = \frac{r}{(1-r)^2}$	+r2		
	- F1 - 5 X3	$= \left[\frac{h(n+1)}{2}\right]$	
· 6= = = = = = x			
			$\Gamma^{1}(z) = \int_{-\infty}^{\infty} \chi^{-2-4} e^{-X}$
			00