

LCD модуль MC1368C на базе чипа HT1621

16 разрядный, 7 сегментный LCD, с 10 отдельно стоящими символами

Выводы LCD модуля:

VCC (+,V_{CC}, V_{DD}) плюс питания чипа; VLCD (+,V_{LCD}) (подкл к V_{CC} через R≈47кОм) плюс питания дисплея; GND (- V_{CC} V_{CC}) (анкл. Ground) общий (минус питания)

 GND (-, Vss, Vee)
 (англ. GrouND)
 общий (минус питания);

 DATA (DAT, I/0)
 линия данных,
 ин

DATA(DAT, I/0)линия данных,интерфейс 3-WireWD(CLK, SCLK)(англ. Write Data)линия тактирования,интерфейс 3-WireCS(СЕ)(англ. Chip Selection)линия разрешения,интерфейс 3-Wire

Чип НТ1621 снабжён:

- интерфейсом 3-Wire; (3-провода) линия разрешения $\overline{\text{CS}}$, линия тактирования WD, линия данных DATA

- регистрами данных; 32 полубайтных регистра

- RC-генератором; 256кГц

- программируемым генератором тонального сигнала; 2кГц / 4кГц

Питание чипа: (V_{CC}) 2,4 ... 5,2 В постоянного тока Питание дисплея: (V_{LCD}) В 2,4 ... 5,2 постоянного тока Потребляемый ток: 150 при питании от V_{CC} = 3,0в мкА 300 при питании от $V_{CC} = 5,0$ в

Регистры LCD модуля:

номер	номер регистры										
разряда	старший полубайт					младший полубайт					примечание
(слева на право)	адрес	данные			адрес данные			ные			
1	0 = 000000	h	g	f	е	1 = 000001	d	С	b	а	
2	2 = 000010	h	g	f	е	3 = 000011	d	С	b	а	
3	4 = 000100	h	g	f	e	5 = 000101	d	С	b	а	
4	6 = 000110	h	g	f	е	7 = 000111	d	С	b	а	<u>e</u>
5	8 = 001000	h	g	f	е	9 = 001001	d	С	b	а	, l
6	10 = 001010	h	g	f	е	11 = 001011	d	С	b	а	'l b l ^a
7	12 = 001100	h	g	f	е	13 = 001101	d	С	b	а	
8	14 = 001110	h	g	f	e	15 = 001111	d	С	b	а	g c
9	16 = 010000	h	g	f	е	17 = 010001	d	С	b	а	<u>'</u> '
10	18 = 010010	h	g	f	е	19 = 010011	d	С	b	а	
11	20 = 010100	h	g	f	e	21 = 010101	d	С	b	а	Каждый регистр вмещает 4 бита = ½ байта данных.
12	22 = 010110	h	g	f	е	23 = 010111	d	С	b	а	Каждый знак занимает 2 регистра = 8 бит = 1 байт данных.
13	24 = 011000	h	g	f	е	25 = 011001	d	С	b	а	Каждый бит данных отвечает за свой сегмент в знаке.
14	26 = 011010	h	g	f	е	27 = 011011	d	С	b	а	Бит «h» отвечает за отдельно стоящие на LCD символы.
15	28 = 011100	h	g	f	е	29 = 011101	d	С	b	а	
16	30 = 011110	h	g	f	е	31 = 011111	d	С	b	а	

Команды LCD модуля:

команда	название	описание	примечание	
0000 000aX	SYS OFF/ON	вкл/выкл системы	a=1 – подключить, a=0 – отключить	контроллер к основному таймеру
0000 001aX	LCD OFF/ON	вкл/выкл LCD	а=1 – подключить, а=0 – отключить	драйвер LCD к основному таймеру
0000 01abX	TIMER OFF/ON	вкл/выкл таймер	a=1 – подключить, a=0 – отключить	b=0 – основной таймер, b=1 – сторожевой WDT
0000 100aX	TONE OFF/ON	вкл/выкл тональный сигнал	a=1 – подключить, a=0 – отключить	делитель тонального сигнала к основному таймеру
0000 11bXX	CLR TIMER/WDT	сброс таймеров	сбросить:	b=0 – основной таймер, b=1 – сторожевой WDT
0001 abXXX	GENERATOR	тип генератора для основного таймера	основной таймер работает от:	ab=01 — кварцевого генератора (32кГц); ab=10 — внутренней RC-цепи (256кГц); ab=11 — внешнего генератора (256кГц)
0010 abXcX	BIAS	режим работы	$c=1-V_{LCD} \times 1/3$, $c=0-V_{LCD} \times 1/2$,	ab=00 – мультиплекс 1:2; ab=01 – мультиплекс 1:3; ab=10 – мультиплекс 1:4.
01aX XXXXX	TONE 2kHz/4kHz	делитель тонального сигнала	а=1 — сигнал 2кГц, а=0 — сигнал 4кГц	<u> </u>
100X aXXXX	IRQ OFF/ON	вкл/выкл выход прерываний	a=1 – подключить, a=0 – отключить	выход прерываний IRQ
101X XabcX	FWDT 1/128	делитель с таймера на WDT	abc=000 – частота WDT = 1 Γ μ, abc=001 – частота WDT = 2 Γ μ, abc=010 – частота WDT = 4 Γ μ, abc=011 – частота WDT = 8 Γ μ, abc=100 – частота WDT = 16 Γ μ, abc=101 – частота WDT = 32 Γ μ, abc=110 – частота WDT = 64 Γ μ, abc=111 – частота WDT = 128 Γ μ,	сброс флага WDT каждые 4 секунды; сброс флага WDT каждые 2 секунды; сброс флага WDT каждые 1 секунды; сброс флага WDT каждые 1/2 секунды; сброс флага WDT каждые 1/4 секунды; сброс флага WDT каждые 1/4 секунды; сброс флага WDT каждые 1/45 секунды; сброс флага WDT каждые 1/45 секунды;
1110 0000X	TEST MODE	тестовый режим		
1110 0011X	NORMAL MODE	нормальный режим		

X – бит может принимать любое значение, от данного бита результат команды не зависит. мультиплекс 1:2, 1:3, 1:4 – количество старших бит в одном регистре.

Префикс (заголовок пакета):

3 первых бита отправляемые в модуль (заголовок пакета), указывающие на совершаемые действия (команда/чтение/запись):

100 - передача команд в модуль

101 - запись данных в регистр

110 - чтение данных из регистра

Общение с LCD модулем:

На самом деле интерфейс 3-Wire не документирован и переводится просто как 3 провода. Правила передачи данных указывает производитель модуля.

Отправка команд:

прижимаем линию $\overline{\text{CS}}$ (разрешаем работу модуля на шине); отправляем 12 бит (3 бита префикса «100» и 9 бит команды), понимаем линию $\overline{\text{CS}}$ (запрещаем работу модуля на шине).

старшим битом вперёд, в режиме mode=3;

Запись данных в регистр:

прижимаем линию $\overline{\text{CS}}$ (разрешаем работу модуля на шине);

отправляем 13 бит (3 бита префикса «101», 6 бит адреса регистра и 4 бита данных), старшим битом вперёд, в режиме mode=3;

понимаем линию $\overline{\text{CS}}$ (запрещаем работу модуля на шине).

Чтение данных из регистра:

прижимаем линию $\overline{\text{CS}}$ (разрешаем работу модуля на шине);

отправляем 9 бит (3 бита префикса «110» и 6 бит адреса регистра), старшим битом вперёд, в режиме mode=3; читаем 4 бита (4 бита данных), старшим битом вперёд, в режиме mode=3;

понимаем линию CS (запрещаем работу модуля на шине).

Пример чтения данных из регистра с адресом 27 (011011), модуль ответил значением 3 (0011):

Примечание:

Чтение данных из регистров модуля MC1368C невозможно, т.к. в нём отсутствует выход линии тактирования RD;

Для записи данных в регистры документирована пакетная передача - передача нескольких полубайт после отправки адреса регистра, при этом каждый отправленный полубайт запишется в регистр с инкрементом его адреса. (например: 1 № полубайт в регистр 5, 2 № в регистр 6, 3 № в регистр 7 и т.д.)

Режимы передачи данных: (данные режимы справедливы и для интерфейса SPI)

Стартовые пакеты: (после подачи питания)

100 0000 00010 - включаем систему (подключаем основной таймер к контроллеру)

100 0010 10010 - выбираем режим работы (в этой команде V_{LCD} x 1/3, мультиплекс 1:4)

101 ... - устанавливаем регистры в определенные значения до включения LCD (например, сбрасываем все разряды в цифру 0)

100 0000 00110 - включаем LCD (подключаем основной таймер к драйверу LCD)