DS3 Göttingen 2019

August 5th - 16th 2019

Statistical Sensor Data and Information Fusion

Prof. Dr.-Ing. Marcus Baum Fabian Sigges

Lecturer: Marcus Baum

Room: 3.115, Institut für Informatik

Tel: +49 551 39 172024

marcus.baum@cs.uni-goettingen.de E-Mail:

Since 2019 2015 - 2019		rg-august-universität tingen
2017 - 2019	Visiting Professor, Chair of Sensor Technology	UNIVERSITÄT PASSAU
2013/14	Postdoc / Assistant Research Prof. Peter Willett, Yaakov Bar-Shalom	UCONN UNIVERSITY OF CONNECTICUT
2013 2007	DrIng. , Institute of Anthropomatics and Robotics DiplInform.	Karlsruhe Institute of Technology

Tutor: Fabian Sigges

Room: 3.102, Institut für Informatik

Tel: +49 551 39 26039

E-Mail: fabian.sigges@cs.uni-goettingen.de

Since 2016 Research Assistant
Institute of Computer Science

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

2016 MSc Angwandte Informatik
Institute of Computer Science

2014 BSc Angwandte Informatik
Institute of Computer Science

Data Fusion Lab

Head

Marcus Baum

Assistance and Administration

- Tina Bockler
- Gunnar Krull

PhD Candidates

- Jaya Shradha Fowdur
 DLR, Institute of Communications and Navigation
- Hauke Kaulbersch
 Valeo Schalter und Sensoren GmbH
- Nils Kornfeld
 DLR, Institute of Transportation Systems
- Claudia Malzer
 Max-Planck-Institute for Dynamics and Self-Organization
- Simon Ollander
 Bosch Car & Multimedia, Hildesheim
- Fabian Sigges
- Kolja Thormann
- Shishan Yang

Schedule

Part 1: 14:00 - 15:30

- Motivation and applications: Autonomous vehicles
- Theory: Kalman filter

Part 2: 16:00 - 17:30

- Exercises (in Python)
- Tutor: Fabian Sigges

Motivation: Environmental Perception

Intelligent vehicles require map of the environment:

- Static objects
 (e.g., road boundaries)
- Moving objects (e.g., vehicles)

Sensor Fusion:

- Each Sensors has strengths and weaknesses
- → Combine different sensors

Illustration by Per Thorneus, Popill Agentur Source: [Granström2012]

Source: https://www.youtube.com/watch?v=YtAwOl08dQQ

Sensors for Intelligent Vehicles

Radar

Smartmicro Altimeter

- Measures velocity
- Weather and light independent
- Low resolution
- No color information

Camera

Mobileeye

- Color available
- High resolution and long range
- Weather and light dependent
- No velocity

Laser-Scanner

Valeo SCALA

- Light independent
- High resolution and long range
- Weather dependent (snow/rain)
- No color information

Ultra Sound

Valeo

- Weather and light independent
- Small and cheap
- Low resolution and range
- No color information available

Laser Sensors (1)

LIDAR (Light Detection And Ranging)

Source: HESAI, http://www.hesaitech.com/en/autonomous_driving.html

https://de.wikipedia.org/wiki/Lidar

Laser Scanners (2)

Automotive Radar

- NuScenes dataset
 [Caesar et al, 2019]
- Extended object tracker
 [Kaulbersch et al, 2018]

Sensorfusion: Concepts

Achievement: Reliability, Accuracy Completeness Complementary Competitive **Fusion: Fusion Fusion** S **Sensors:** S S

Fusion-Level

Low-Level-Fusion

Object-Level-Fusion

Low-Level-Fusion

Learning Outcome

After the lecture you will be in the position to...

- fuse noisy measurements and state estimates,
- predict future states based on the current state estimate,
- explain the basic concept of the Kalman filter

for the special case of scalar systems.

Ultrasonic Distance Sensor

- Speaker sends out sound waves
- Microphone measures time-of-flight
- Distance can be calculated based on the speed of sound

[1] https://www.valeo.de

[2] https://www.parrot.com/de/drohnen/parrot-bebop-2

[3] http://arcbotics.com/products/sparki

Measurement Error

Measurement error *e* is (often) Gaussian distributed:

- Mean E[e] = 0
- Variance $Var[e] = E[(e E[e])^2] = E[e^2] = \sigma^2$
- larger variance → larger mean square error
- \Rightarrow A measurement \hat{y} is unbiased, i.e., $E[\hat{y} x] = 0$

Key idea:

Combine, i.e., fuse, multiple measurements to reduce the error

Update: Fusion of Two Noisy Measurements

Meas. / Estimate

Error Covariance

$$\hat{y}_1$$
 $\sigma_1^2 = E[e_1^2] = E[(y_1 - x)^2]$

$$\hat{y}_2$$
 $\sigma_2^2 = E[e_2^2] = E[(y_2 - x)^2]$

$$\hat{x} = (1 - \alpha)\hat{y}_1 + \alpha\hat{y}_2$$
 $\sigma_x^2 = E[(\hat{x} - x)^2] = (1 - \alpha)\sigma_1^2$

Linear estimator

Variance decreases

Can be applied recursively

Time Update: Prediction of an Estimate

 \hat{x}_{old}

 σ_{old}^2

Discrete-time Motion Model:

$$x_{\mathsf{new}} = x_{\mathsf{old}} + T \cdot (v + e_v)$$

with velocity v and zero-mean noise e_v with variance σ_v^2

$$\hat{x}_{\text{new}} = \hat{x}_{\text{old}} + T \cdot v$$

$$\sigma_{\rm new}^2 = \sigma_{\rm old}^2 + T^2 \sigma_v^2$$

Variance increases

Next measurement: fusion with prediction

(One-dimensional) Kalman Filter

- Alternating measurement and time updates
- Recursive filter
- Optimal for linear systems with (white) Gaussian noise, otherwise <u>best linear estimator</u>

Numerical Example

- Time interval T=1s
- Velocity $v = -0.3 \frac{\text{m}}{\text{s}}$
- Meas. noise $\sigma_e = 0.3$ m
- System noise $\sigma_v = 0.05$ m

Derivation: Linear Transformation

Given is a scalar random variable x with $E[x] = \mu_x$ and $Var[x] = \sigma_x^2$

Multiplication with a constant a:

$$\mathrm{E}[a \cdot x] = a\mu \text{ and } \mathrm{Var}[a \cdot x] = a^2 \sigma_x^2$$

• Sum of x and constant b:

$$\mathrm{E}[x+b] = \mu + b \text{ and } \mathrm{Var}[x+b] = \sigma_x^2$$

• Sum of x and (independent) random variable z with $\mathrm{E}[z] = \mu_z$ and $\mathrm{Var}[z] = \sigma_z^2$:

$$E[x+z] = \mu_x + \mu_z$$
 and $Var[x+z] = \sigma_x^2 + \sigma_z^2$

Derivation: Update Step

$$\hat{x} = (1 - \alpha)\hat{y}_1 + \alpha\hat{y}_2$$
 $\sigma_x^2 = E[(\hat{x} - x)^2] = (1 - \alpha)\sigma_1^2$

$$\alpha = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$

Unbiased:

• $E[\hat{x}] = E[(1-\alpha)(x+e_1) + \alpha(x+e_2)] = (1-\alpha)E[x] + \alpha E[x] = E[x]$

Minimum Mean Squared Error, i.e., $Var[\hat{x} - x] = E[(\hat{x} - x)^2]$:

• For arbitrary β :

$$Var[\hat{x} - x] = E[(\hat{x} - x)^2] = Var[(1 - \beta)(x + e_1) + \beta(x + e_2) - x] = Var[(1 - \beta)e_1 + \beta e_2] = (1 - \beta)^2 \sigma_1^2 + \beta^2 \sigma_2^2$$

Derivative w.r.t. β shall be zero:

$$-2(1-\beta)\sigma_1^2 + 2\beta\sigma_2^2 = 0 \to \sigma_1^2 = \beta(\sigma_1^2 + \sigma_2^2) \to \beta = \alpha$$

• $Var[\hat{x} - x]$ results from substituting α

Derivation: Prediction Step

Discrete-time Motion Model:

$$x_{\mathsf{new}} = x_{\mathsf{old}} + T \cdot (v + e_v)$$

with speed v and zero-mean noise e_v with variance σ_v^2

$$\hat{x}_{\mathsf{new}} = \hat{x}_{\mathsf{old}} + T \cdot v$$
 $\sigma_{\mathsf{new}}^2 = \sigma_{\mathsf{old}}^2 + T^2 \sigma_v^2$

Unbiased:

• $E[\hat{x}_{new}] = E[\hat{x}_{old} + T \cdot v] = E[x_{old}] + T \cdot v = E[x_{new}]$

Mean Squared Error:

• $\mathrm{E}[(x_{\mathsf{new}} - \hat{x}_{\mathsf{new}})^2] = \mathrm{E}[(x_{\mathsf{old}} + T \cdot (v + e_v) - \hat{x}_{\mathsf{old}} - T \cdot v)^2]$ = $\sigma_{\mathsf{old}}^2 + T^2 \sigma_v^2$

Discovery of Ceres

- On January 1, 1800, Giuseppe Piazzi, discovered Ceres in Palermo
- He recorded its position
- Over 42 days, Piazzi collected 19 measurements
- On February 12, the object disappeared
- Total motion covered an arc of 3°
- C. F. Gauss (24 years)
 predicted the Ceres orbit in 1801
- Ceres was rediscovered by Franz
 X. von Zach on 31 December
- Gauss used the method of least squares (developed in 1795 with 18 years)

<u>Source:</u>
https://solarsystem.nasa.gov/missions/dawn/science/ceres/

XXX

Rudolf E. Kalman (1930 - 2016)

- Born in Budapest,1930
- Emigrated to the US in 1943
- BA (1953) and MA (1954) from MIT
- PhD, 1957, Columbia University, NYC
- Professor at Stanford University (1964-1971), University of Florida (1971-1992) and ETH (since 1973)

- First publication of the Kalman Filter in 1960
- First implementation by Stanley F. Schmidt (NASA Ames Research Center)
- Used for trajectory estimation in the Apollo Program
- Many co-inventors and related works
 (e.g., Swerling, Bucy, Schmidt, Stratonovich, Gauss, ...)

State Space Model

- State vector $oldsymbol{x}_k \in \mathbb{R}^{m_x}$ for $k \in \mathbb{Z}$
- ullet Observations/Measurements: $oldsymbol{y}_k \in \mathbb{R}^{m_y}$

Linear Dynamic Systems (1)

State vector at discrete time k ∈ N₀:

$$x_k \in \mathbb{R}^n$$

with initial mean $E[x_0] = \hat{x}_0$ and covariance $Cov[x_0] = \mathbf{C}_0^{xx}$

· Process model:

$$x_{k+1} = \mathbf{A}_k x_k + \mathbf{B}_k u_k + w_k$$

- State transition matrix $\mathbf{A}_k \in \mathbb{R}^{n \times n}$
- Control input $u_k \in \mathbb{R}^p$
- Control input matrix $\mathbf{B}_k \in \mathbb{R}^{n \times p}$
- Zero-mean white process noise $w_k \in \mathbb{R}^n$:

*
$$\mathrm{E}[w_k] = \mathbf{0}_n$$

*
$$\mathrm{E}[w_k w_k^T] = \mathbf{C}_k^{ww}$$

*
$$\mathrm{E}[w_k w_l^T] = \mathbf{0}_{n \times n} \text{ for } k \neq l$$

Linear Dynamic Systems (2)

Measurement model:

$$y_k = \mathbf{H}_k x_k + v_k$$

- Measurement matrix $\mathbf{H}_k \in \mathbb{R}^{m \times n}$
- Zero-mean white measurement noise $v_k \in \mathbb{R}^m$ with

*
$$E[v_k] = \mathbf{0}_n$$

* $E[v_k v_k^T] = \mathbf{C}_k^{vv}$
* $E[v_k v_l^T] = \mathbf{0}_{m \times m}$ for $k \neq l$

Initial state, and all noise vectors mutually uncorrelated

Kalman Filter Formulas

- Recursively calculate estimate \hat{x}_k and error covariance \mathbf{C}_k^{xx} for time k
- Time update:

$$\hat{x}_{k+1|k} = \mathbf{A}_k \hat{x}_k + \mathbf{B} u_k$$
$$\mathbf{C}_{k+1|k}^{xx} = \mathbf{A}_k \mathbf{C}_k^{xx} \mathbf{A}_k^T + \mathbf{C}_k^{ww}$$

Measurement update:

$$\hat{x}_{k+1} = \hat{x}_{k+1|k} + \mathbf{K}_{k+1}(y_{k+1} - \mathbf{H}\hat{x}_{k+1|k})$$
$$\mathbf{C}_{k+1}^{xx} = \mathbf{C}_{k+1|k}^{xx} - \mathbf{K}_{k+1}\mathbf{H}\mathbf{C}_{k+1|k}^{xx}$$

with Kalman gain

$$\mathbf{K}_{k+1} = \mathbf{C}_{k+1|k}^{xx} \mathbf{H}^T (\mathbf{H} \mathbf{C}_{k+1|k}^{xx} \mathbf{H}^T + \mathbf{C}_{k+1}^{vv})^{-1}$$

Data Science Building Blocks

