Monads and their applications II

Dr. Daniel Schäppi's course lecture notes

by Nicola Di Vittorio Matteo Durante This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

2-Monads and Their 2-Categories of Algebras

0.1 Introduction

These notes will focus on 2-dimensional monad theory, which can be viewed as the study of algebraic structures on 2-categories. Like in the one-dimensional case, after defining a 2-monad we concern ourselves with the categories of algebras it defines, however the higher dimension allows to relax the definitions and observe how different coherence conditions lead to different (and generally less well-behaved) objects.

One may ask why we are keen to better understand 2-monads. One answer is that, similarly to the 1-dimensional case, this allows us to better understand other 2-categories, perhaps with additional structure (i.e. monoidal, braided, some kinds of limits, etc) by relating them to 2-categories of algebras.

We now start recalling some relevant definitions and facts which we will need later on. In order to carry out our project we shall work with \mathcal{V} -cosmos and presentability conditions.

Definition 0.1.1. A cosmos \mathcal{V} is a complete, cocomplete symmetric monoidal closed category.

Definition 0.1.2. An object c in a \mathcal{V} -category \mathcal{C} is κ -presentable if $\mathcal{C}(c, -) : \mathcal{C} \to \mathcal{V}$ preserves κ -filtered colimits. This is equivalent to saying that the functor $\mathcal{C}(c, -) : \mathcal{C}_0 \to \mathcal{V}_0$ is κ -accessible, where \mathcal{C}_0 and \mathcal{V}_0 are the underlying categories.

Theorem 0.1.3. Let V be a lfp cosmos. Then V-Cat is a lfp cosmos and a lfp 2-category.

By studying monads in this setting we achieve a great level of generality since our results will not depend on the underlying enrichment, thus unifying many contexts.

But what is a 2-monad?

Definition 0.1.4. A 2-monad is a monad in the 2-category 2-**CAT** of locally small 2-categories, 2-functors and (strict) 2-natural transformations.

We will often construct them using presentations, that is via colimit constructions and free 2-monads on 2-endofunctors. This is achieved through the following results.

Theorem 0.1.5. Let \mathcal{V} be a lfp cosmos, \mathcal{C} a locally κ -presentable \mathcal{V} -category. Then the forgetful functor

$$\mathcal{V} - \mathsf{Mnd}_{\kappa}(\mathcal{C}) \to \mathcal{V} - \mathbf{CAT}_{\kappa}(\mathcal{C}, \mathcal{C})$$

is monadic. Moreover, it preserves colimits.

Corollary 0.1.6. In the above situation, the functor

$$(-)$$
-Alg: $\mathcal{V} - \mathsf{Mnd}_{\kappa}(\mathcal{C}) \to \mathcal{V} - \mathbf{CAT}/\mathcal{C}$

sends colimits to limits.

0.1. Introduction 2

Remark 0.1.7. In general, $\mathcal{V} - \mathsf{Mnd}_{\kappa}(\mathcal{C})$ is not a \mathcal{V} -category. This is because monads are monoids in a monoidal \mathcal{V} -category of endofunctors, but monoids in general do not define a \mathcal{V} -category: for example, consider $\mathsf{Mon}(\mathbf{Ab}) = \mathbf{Ring}$, which is not even additive.

This has to do with the non-existence of a "diagonal" \mathcal{V} -functor $\mathcal{V} \to \mathcal{V} \otimes \mathcal{V}$. In particular, if \mathcal{V} is cartesian then this problem does not arise and indeed for $\mathcal{V} = \mathbf{Cat}$ we expect the monadic adjunction 0.1.5 to be enriched.

Unfortunately, we can't apply the theorem above to show the corollary. Instead, we use it to give a presentation of a 2-monad whose algebras are 2-monads with rank κ .

Given a monoidal 2-category \mathcal{M} (i.e. the associator $(A \otimes B) \otimes C \to A \otimes (B \otimes C)$ is 2-natural, satisfies the pentagon axioms, etc), we have a 2-category $\mathsf{Mon}(\mathcal{M})$ of monoids $(M, \mu \colon M \otimes M \to M, \eta \colon I \to M)$ in \mathcal{M} with 1-cells the monoid morphisms and 2-cells the 2-cells $\alpha \colon f \Rightarrow g \colon M \to N$ in \mathcal{M} s.t.

$$M\otimes M\xrightarrow{\mu_M} M \xrightarrow{g} N = M\otimes M \xrightarrow{f\otimes f} N\otimes N \xrightarrow{\mu_N} N ,$$

$$I\xrightarrow{\eta_M} M \xrightarrow{g} N = \mathrm{id}_{\eta_N}$$

hold.

If $-\otimes$ – preserves κ -filtered colimits in each variable, then the 2-functors $FM=M\otimes M$, $GM=(M\otimes M)\otimes M+M+M$ are κ -accessible and we have two natural ways to go from F-algebras to G-algebras.

The coequalizer of the resulting pair of maps on the free monads $TG \rightrightarrows TF$ gives us a presentation of a 2-monad T as a coequalizer. It has T-Alg $\cong \mathsf{Mon}(\mathcal{M})$ by construction if \mathcal{M} is locally κ -presentable as a 2-category.

Let \mathcal{K} be a locally κ -presentable 2-category, i.e. $\mathcal{V} - \mathbf{Cat}$ and specifically \mathbf{Cat} , and let $\mathcal{M} = [\mathcal{K}, \mathcal{K}]_{\kappa}$. Then the category of κ -accessible endofunctors on \mathcal{K} , that is \mathcal{M} , is itself locally κ -presentable.

Notice that the composition preserves κ -filtered colimits in each varible. Indeed, for F^* it's clear and for F_* is too since F is κ -accessible.

Monoids in \mathcal{M} are 2-monads!

To show that $2-\mathsf{Mnd}_{\kappa}(\mathcal{K}) \to 2-\mathsf{Mnd}(\mathcal{K})$ preserves colimits we need the following proposition.

Proposition 0.1.8. Let F be a strong monoidal 2-adjoint $\mathcal{M} \to \mathcal{M}'$. Then the right 2-adjoint inherits a lax monoidal structure s.t. unit and counit are monoidal. Both 2-functors lift to the 2-categories of monoids, so $\mathsf{Mon}(F) \colon \mathsf{Mon}(\mathcal{M}) \to \mathsf{Mon}(\mathcal{M}')$ is a left 2-adjoint.

Proof. Exercise.
$$\Box$$

We can now prove what we stated earlier.

Theorem 0.1.9. Let \mathcal{K} be a locally κ -presentable 2-category. Then the forgetful 2-functor

$$2 - \mathsf{Mnd}_{\kappa}(\mathfrak{K}) \to [\mathfrak{K}, \mathfrak{K}]_{\kappa}$$

is 2-monadic and κ -accessible. In particular, $2-\mathsf{Mnd}_{\kappa}(\mathcal{K})$ is a locally κ -presentable 2-category. Moreover, the inclusion

$$2-\mathsf{Mnd}_{\kappa}(\mathcal{K}) \to 2-\mathsf{Mnd}(\mathcal{K})$$

preserves colimits and in fact it is a left adjoint.

0.1. Introduction 3

Proof. We have $2 - \mathsf{Mnd}_{\kappa}(\mathcal{K}) = \mathsf{Mon}([\mathcal{K}, \mathcal{K}]_{\kappa})$, so the above discussion shows that there is a κ -accessible 2-monad on $[\mathcal{K}, \mathcal{K}]_{\kappa}$ with T-Alg $\cong 2 - \mathsf{Mnd}_{\kappa}(\mathcal{K})$.

For the second part, recall that left Kan extensions along the inclusion $J: \mathcal{K}_{\kappa} \to \mathcal{K}$ of κ -presentable objects gives an equivalence of 2-categories $[\mathcal{K}_{\kappa}, \mathcal{K}] \to [\mathcal{K}, \mathcal{K}]_{\kappa}$ (this is true for a general lfp cosmos —-missing bit, it was 11:23—-).

It follows that the inclusion $[\mathcal{K}, \mathcal{K}]_{\kappa} \to [\mathcal{K}, \mathcal{K}]$ is, up to equivalence, given by the left Kan extension along J. (Check and finish this proof)

This will allows us to write presentations of 2-monads for 2-categories such as \mathbb{R} -linear categories, simplicial categories, etc, which has two important consequences: firstly, when constructing a 2-monad from free monads we may also use weighted colimits; secondly, since 2-monads with rank κ are algebras for a 2-monad with rank κ , any general theorem we prove about algebras gives a corresponding 2-monad with rank κ .

As we mentioned earlier, we may be interested in less strict definitions compared to the 1-dimensional case. Here we start considering them by specifying new classes of morphisms of algebras.

Definition 0.1.10. Let T be a 2-monad, (A, a), (B, b) two T-algebras.

A lax T-morphism is a pair (f, \overline{f}) where $f: A \to B$ is a 1-cell and $\overline{f}: b \cdot Tf \to f \cdot a$ is a 2-cell such that the equations

hold.

A lax T-morphism is a pseudo T-morphism if \overline{f} is an isomorphism and it is strict if $\overline{f} = \mathrm{id}$. A colax or oplax T-morphism is a lax T-morphism with the direction of \overline{f} reversed and the equations adapted.

A 2-cell between lax/pseudo/strict T-morphisms $\alpha: (f, \overline{f}) \Rightarrow (g, \overline{g})$ is a 2-cell $\alpha: f \Rightarrow g$ s.t.

$$TA \xrightarrow{a} A \qquad = \qquad TA \xrightarrow{a} A$$

$$Tf \left(\Longrightarrow f \right) \stackrel{\alpha}{\Rightarrow} f \left(\Longrightarrow \right)^{g} \qquad \left(\Longrightarrow \left(\Longrightarrow \right) \Longrightarrow f \right)^{g}$$

$$TB \xrightarrow{b} B \qquad TB \xrightarrow{b} B$$

We write T-Alg_S, T-Alg_P and T-Alg_L for the 2-categories of T-algebras, strict/pseudo/lax T-morphisms and 2-cells as above.

(Other missing bit)

0.2 Presentations of 2-Monads

We have defined two 2-categories T-Alg $_P$, T-Alg $_L$ of pseudo and lax morphisms respectively for a 2-monad T. We want to understand how to describe them when T is given by a presentation.

We remember that in a complete 2-category \mathcal{K} we have a 2-endofunctor $\langle A,B\rangle \colon \mathcal{K} \to \mathcal{K}$ for each pair of objects A,B in \mathcal{K} given by the right Kan extension of $B\colon *\to \mathcal{K}$ along $A\colon *\to \mathcal{K}$. In particular, $\langle A,B\rangle C=B^{\mathcal{K}(C,A)}$ and, if A=B, this defines a 2-monad, just like in the 1-dimensional case. Moreover, the 2-monad morphisms $T\Rightarrow \langle A,B\rangle$ are in natural bijection with T-algebra structures on A.

Now we can form for any pair of 1-cells $f, g: A \to B$ in \mathcal{K} the (iso???) comma object

$$\begin{cases} \{f,g\}_{p/l} & \xrightarrow{c} < A, A > \\ d \downarrow & \downarrow < A, f > \\ < B, B > \xrightarrow{\langle g,B \rangle} < A, B > \end{cases}$$

in $[\mathcal{K},\mathcal{K}]$. If f=g, then this is again a 2-monad and 2-monad morphisms $T\to\{f,f\}_{p/l}$ correspond to (pseudo) lax T-morphism structures on the 1-cell f. More precisely, such a morphism corresponds to a T-algebra structure on A and one on B, namely $c\cdot\gamma$ and $d\cdot\gamma$ and a (invertible) 2-cell $\overline{f}: Tf\cdot b\Rightarrow f\cdot a$ corresponding to $\lambda\cdot\gamma$ s.t. (f,\overline{f}) is a lax (pseudo) T-morphism.

$$[\rho, \rho] \longrightarrow \{f, f\}$$

$$\downarrow \qquad \qquad \downarrow \{f, \rho\}_{l}$$

$$\{g, g\}_{l} \xrightarrow{\{\rho, g\}_{l}} \{f, g\}_{l}$$

which inherits a 2-monad structure for which a 2-monad morphism $T \Rightarrow [\rho, \rho]$ exists if and only if ρ is a T-transformation between (f, \overline{f}) and (g, \overline{g}) .

These facts can be used to identify T-Alg $_P$ and T-Alg $_S$ is T is given as a (weighted) colimit of free monads.

Example 0.2.1. Let's consider the 2-monad of monads in a monoidal 2-category M as above, i.e. locally κ -presentable with $-\otimes -$ preserving κ -filtered colimits in each variable. As we saw, we define $FM = M \otimes M + I$, $GM = (M \otimes M) \otimes M + M + M$. Let's write T(F), T(G) for the free 2-monads on these 2-endofunctors.

There is a natural 2-functor T(F)-Alg_S $\to T(G)$ -Alg_S sending (M, p, u) to $(M, p \cdot (p \otimes u), p \cdot (u \otimes M))$ and there is another two functor mapping it to $(M, p \cdot (M \otimes p), \mathrm{id}_M, \mathrm{id}_M)$. These correspond to 2-monad morphisms and the 2-monad for monoids is exactly its coequalizer.

A relevant question: what would happen if we considered lax/pseudo T-morphisms in this case? The simple existence of $\{f,f\}_l$ tells us that this is some kind of equalizer, however there is a problem: what is T(F)-Alg $_l$ and what does the 2-functor T(F)-Alg $_l$ \to T(G)-Alg $_l$ look like?

From $T(F) \rightsquigarrow \{f, f\}_l$ we get a morphism $T \to T(F) \to \{f, f\}_l$, which is however hard to analyze. This requires a bit of a detour.

Theorem 0.2.2 (doctrinal adjunction). Let $(f, \overline{f}): (A, a) \to (B, b)$ be a pseudo T-morphism s.t. f is a left adjoint to $u: B \to A$ with unit η and counit ϵ . Then there exists a unique lax T-morphism structure \overline{u} on u s.t. η and ϵ are T-transformations.

Proof. We shall prove uniqueness. For this, we observe that the equality

implies that (is the \overline{f} inverted???)

$$TA \xrightarrow{Tf} TB \xrightarrow{b} B \qquad = \qquad TA \xrightarrow{Tf} TB$$

$$\downarrow a \xrightarrow{\overline{f}^{-1}} \downarrow b$$

$$TA \xrightarrow{a} A \qquad A$$

$$A \xrightarrow{f} B$$

and

$$TB \xrightarrow{b} B = draw$$

$$Tu \downarrow \xrightarrow{\overline{u}} \downarrow u$$

$$TA \xrightarrow{a} A$$

by the triangle identities for $Tf \dashv Tu$.

For existance, (u, \overline{u}) is a lax T-morphism with the desired properties by exercise 13.4 from the previous course.

We now study a kind of limit existing in T-Alg_l.

Definition 0.2.3. Given a 2-category \mathcal{K} and an arrow $f: A \to B$ in it, it colar limit is the universal 2-cell

$$A \xrightarrow{p} A \xrightarrow{q} B$$

in \mathcal{K} . This means that for each $a\colon X\to A,\ b\colon X\to B$ and $\alpha\colon f\cdot a\to b$ there exists a unique 1-cell $t\colon X\to C$ s.t.

holds. The 2-dimensional universal property asserts that for all $a': A \to A$, $b': X \to B$,

0.2. PRESENTATIONS OF 2-MONADS $\alpha' : b' \to f \cdot a'$ and 2-cells $\gamma : a \Rightarrow a', \delta : b \Rightarrow b'$ with

$$A \xrightarrow{\beta} B = A \xrightarrow{\alpha'} B \xrightarrow{\beta} B$$

there exists a unique 2-cell ϕ : $t \Rightarrow t'$ s.t. $p \cdot \phi = \gamma$, $q \cdot \phi = \delta$. Notice that this is precisely the comma object

in \mathcal{K} . This is a weighted limit in the enriched sense, hence defined via an isomorphism of categories and not just an equivalence.

The pseudo limit of f is the analogous construction with λ and α invertible. The lax limit has the direction of λ reversed.

We can now state the following.

Proposition 0.2.4. Let \mathcal{K} be a 2-category with colax limits of arrows and T a 2-monad on it. For any 1-cell $(f, \overline{f}): (A, a) \leadsto (B, b)$ in T-Alg_l there exists a unique T-algebra structure on the colax limit of f s.t. the projections are strict 2-morphisms. The 2-cell

is a T-transformation and (G, λ) is a colar limit in T-Alg_l. Moreover, p and q jointly detect strict morphisms, that is a 1-cell $t \colon X \to C$ is strict if and only if pt and qt are strict. In particular, the colar limit of (f, \overline{f}) exists and it is strictly presented by the forgetful 2-functor $U_l \colon T$ -Alg $_l \to \mathcal{K}$.

Proof. There exists a unique 1-cell $c: TC \to C$ s.t. the equation

holds. Note that the direction of λ is important! Since $p \cdot c = a \cdot Tp$, $q \cdot c = b \cdot Tq$, so if we can show that (C, c) is a T-algebra then p and q are strict T-morphisms. Similarly, the above equation then says that λ is a T-transformation.

Applying T to the above equation and whiskering the result on the right with \overline{f} gives

Notice that the diagram on the right reduces to

$$T^{2}C \xrightarrow{Tc} TC \xrightarrow{c} C \xrightarrow{p} \lambda / f$$

and applying the axioms for a lax T-morphism and the 2-naturality of $\mu \colon T^2 \Rightarrow T$, we find that the left hand side above is

$$= \qquad T^2C \xrightarrow{\mu_C} TC \xrightarrow{c} C \xrightarrow{p} \bigwedge_{M} f$$

so from the 1-dimensional universal property it follows that $c \cdot \mu_C = c \cdot Tc$. The unit axiom is left as an exercise. To show that (C, c) is a T-algebra, p, q are strict morphisms and λ is a

T-transformation we have to check the universal properties. Consider a 2-cell

in T-Alg_l. This is a 2-cell α : $h \Rightarrow fg$ in $\mathcal K$ subject to the axiom for a T-transformation. In particular, there exists a unique 1-cell t: $X \to C$ s.t. $\alpha = \lambda t$. The composite $\lambda \cdot c \cdot Tt$ corresponds to the 2-cell

and the composite $\lambda \cdot t \cdot x$ corresponds to the 2-cell

in \mathcal{K} . Since α is a 2-cell in T-Alg_l, comparing the first of these with $\bar{g} \colon a \cdot Tg \Rightarrow g \cdot x$, we get the 2-cell $\alpha \cdot x$ compared with $\bar{h} \colon b \cdot Th \Rightarrow h \cdot x$. In other words, \bar{g} and \bar{h} satisfy the defining equations for 2-cells in the 2-dimensional universal property of the colax limit of f. Thus there exists a unique 2-cell $\bar{t} \colon c \cdot Tt \Rightarrow t \cdot x$ s.t. $p \cdot \bar{t} = \bar{g}$ and $q \cdot \bar{t} = \bar{h}$. If we can show that (t, \bar{t}) is a lax T-morphism, then these last equations show $p \cdot (t, \bar{t}) = (g, \bar{g})$ and $q \cdot (t, \bar{t}) = (h, \bar{h})$ as 1-cells in T-Alg $_l$. Conversely, the equations also show that (t, \bar{t}) is unique. As a diagram, the equation $p\bar{t} = \bar{g}$ looks like

0.2. Presentations of 2-Monads

in \mathcal{K} . Applying T to this equation and composing with Tg we get

9

Using the fact that (g, \bar{g}) is a lax T-morphism and the 2-naturality of $\mu \colon T^2 \Rightarrow T$ we find that the above 2-cell is equal to

A similar argument shows that the equality

holds. From the uniqueness part of the 2-dimensional universal property it follows that the equation

holds. The unit axiom is again left as an exercise. It remains to check the 2-dimensional universal property, so consider γ, δ 2-cells in T-Alg $_l$ s.t.

0.2. Presentations of 2-Monads

holds. The data of a T-transformation is just a 2-cell in $\mathcal K$ which is compared and whiskered as in $\mathcal K$. From the universal property of φ in $\mathcal K$ it follows that there is a unique 2-cell $\varphi \colon t \Rightarrow t'$ with $p\varphi = \gamma$, $q\varphi = \delta$. It only remains to check that φ is a T-transformation, i.e. that the equation

10

holds. After whiskering with $p: C \to A$, the equation becomes

which holds since γ is a T-transformation. The equation also holds after whiskering with q since δ is a T-transformation. Therefore φ is indeed a T-transformation, which concludes the proof of the 2-dimensional universal property. Finally, if q and h are strict T-morphisms, then the equation $p \cdot \bar{t} = \bar{g}$ and $q \cdot \bar{t} = \bar{h}$ implies that $\bar{t} = 1$, i.e. (t, \bar{t}) is a strict T-morphism.

In any 2-category \mathcal{K} with colax limits of arrows, we get for each $f: A \to B$ with colax limit (C_f, p_f, q_f, X) a unique 1-cell $r_f: A \to C_f$ s.t.

holds. In particular, $q_f r_f = f$ and $p_f r_f = id_f$.

Proposition 0.2.5. In the above situation, there exists a unique 2-cell η_f : $\mathrm{id}_{C_f} \Rightarrow r_f \cdot p_f$ s.t. $p_f \eta_f = 1, q_f \eta_f = \lambda$. This 2-cell exhibits r_f as right adjoint of p_f with colimit the identity $p_f r_f = \mathrm{id}_A$.

Proof. Taking $\gamma = 1_{p_f} : p_f \Rightarrow p_f r_f p_f$ and $\delta = \lambda : q_f \Rightarrow f p_f = q_f r_f p_f$ we have

so there exists a unique 2-cell η_f : $\mathrm{id}_{C_f} \Rightarrow r_f \cdot p_f$ with $p_f \cdot \eta_f = 1$, $q_f \eta_f = \lambda$ by the 2-dimensional universal property. It remains to show that the triangle identities hold. Since $\epsilon = 1$ these become $p_f \eta_f = 1$ and $\eta_f r_f = 1$. So one of these we already checked. For the second it suffices to check that it holds after whiskering with p_f and η_f , where we get $p_f \eta_f r_f = 1$ and $q_f \eta_f r_f = \lambda r_f = 1$ (by def of r_f) and $p_f \eta_f = 1$ by definition.

A right adjoint r with counit the identity is sometimes called a RARI (Right Adjoint Right Inverse). The corresponding left adjoint is called a LALI (Left Adjoint Left Inverse). The dual concepts (with unit the identity) are called RALI and LARI. For T-Alg $_p$ we can work instead with pseudolimits of arrows, which is the universal

Proposition 0.2.6. The forgetful 2-functor $U_p: T\operatorname{\mathsf{-Alg}}_p \to \mathcal{K}$ creates pseudolimits of arrows.

Proof. The same construction¹ as in the case of T-Alg_l works, we just have to observe that \bar{t} is an isomorphism, which follows from $p\bar{t}=\bar{g}$ and $q\bar{t}=\bar{h}$ and the fact that those are isomorphisms, since f and g are pseudomorphisms and p,q jointly detect isos.

Proposition 0.2.7. If K has pseudolimits of arrows and (f, \bar{f}) : $A \rightsquigarrow B$ is a pseudo T-morphism, then there exists a unique r_f : $A \rightsquigarrow P_f$ such that

and an invertible $\eta_f \colon 1 \Rightarrow r_f p_f$ s.t. $(r_f, p_f, \eta_f, 1)$ is an adjoint equivalence.

Proof. Existence of η_f and triangle identities follow as before. Moreover, η_f is invertible since both $p_f \eta_f = 1$ and $q_f \eta_f = \lambda$ are invertible and p_f, q_f jointly detect isos.

¹In part p_f, q_f strict!

0.2. Presentations of 2-Monads

12

In particular, we can replace (up to equivalence) a pseudo T-morphism by a strict T-morphism

of path-spaces. With this at hand we can prove the following theorem, which is useful for constructing 2-monads via presentations. Specifically, for identifying the pseudo and lax T-morphisms of such 2-monads.

Theorem 0.2.8. Let S and T be 2-monads on a 2-category with colax limits of arrows. Let $F_s \colon T\operatorname{-Alg}_s \to S\operatorname{-Alg}_s$ be a (strict) 2-functor such that the triangle

$$T\operatorname{-Alg}_s \xrightarrow{F_s} S\operatorname{-Alg}_s$$
 $U_t \swarrow U_s$

commutes. Then there exists a unique 2-functor $F_l \colon T\operatorname{\mathsf{-Alg}}_l \to S\operatorname{\mathsf{-Alg}}_l$ s.t. the diagram

$$T - \mathsf{Alg}_s \xrightarrow{F_s} S - \mathsf{Alg}_s$$

$$J \downarrow \qquad \qquad \downarrow J$$

$$T - \mathsf{Alg}_l \xrightarrow{F_l} S - \mathsf{Alg}_l$$

$$U_l \qquad \qquad \mathcal{K}$$

commutes.

Proof. For the existence note that F_s is induced by a (unique) 2-monad morphism $\varphi \colon S \to T$ s.t. the semantics 1-functor

$$(-)$$
-Alg: 2- Mnd $(\mathfrak{K})^{\mathrm{op}} \to 2$ -Cat $/\mathfrak{K}$

is full and faithful. This can be used to define F_l as follows. We send

$$TA \xrightarrow{a} A$$

$$Tf \downarrow \xrightarrow{\bar{f}} \downarrow f$$

$$TB \xrightarrow{b} B$$

to

$$SA \xrightarrow{\varphi_A} TA \xrightarrow{a} A$$

$$Sf \downarrow \qquad Tf \downarrow \xrightarrow{\bar{f}} \downarrow f$$

$$SB \xrightarrow{\varphi_B} TB \xrightarrow{b} B$$

and we let F_l be the identity on 2-cells. The interesting part is the converse. Since the inclusions J are bijective on objects, F_l is uniquely determined on 0-cells. The two 2-functors $U_l: T$ -Alg $\to \mathcal{K}$ and $U_l: S$ -Alg $_l \to \mathcal{K}$ are both injective on 2-cells, so F_l is also uniquely determined on 2-cells.

It remains to show uniqueness on 1-cells. So let $(f, \bar{f}): (A, a) \leadsto (B, b)$ be a 1-cell in T-Alg_l. Since we have colax limits of arrows in \mathcal{K} , we can factor (f, \bar{f}) as follows

It follows that $F_l(f, \bar{f}) = F_l(q_f) \circ F_l(r_f)$. Since the square in the diagram commutes, $F_l(q_f) = F_s(q_f)$, so it only remains to show that $F_l(r_f)$ is uniquely determined. We also know that $(r_f, p_f, \eta_f, 1)$ is an adjunction, so since F_l is a 2-functor it follows that $(F_l(r_f), F_l(p_f), F_l(\eta_f), 1)$ is an adjunction in S-Alg_s. Since p_f is also strict, we have $F_l(p_f) = F_s(p_f)$. To summarize: $F_l(r_f)$ is a lax T-morphism structure on $U_lF_l(r_f) = U_l(r_f)$ so that η_f and 1 make it a right adjoint of $F_l(p_f)$ in S-Alg_l. From the uniqueness part of doctrinal adjunction it follows that $F_l(r_f)$ is uniquely determined by $F_s(p_f), \eta_f, 1$.

Remark 0.2.9. There is an analogous statement for T-Alg $_p$ using the pseudolimit of arrows (assuming they exist in \mathcal{K}). Why is this useful? When dealing with monads given by presentations, we will (by construction) have a 2-functor F_s : T(G)-Alg $_s \to T(F)$ -Alg $_s$, so a corresponding monad morphism $T(F) \to T(G)$, whenever T(F), T(G) are free 2-monads on endofunctors F, G. So this corresponds to a 2-natural $F \to T(G)$, but it is in general hard to describe this explicitly. If we want to figure out what happens on lax morphisms from the definition, we would need to understand this instead. Usually it is easy to guess a 2-functor F_l that makes everything commute. This assumes that we have a description of T(F)-Alg $_l$ purely in terms of F, which is indeed possible as we will see next.

Definition 0.2.10. Let $F: \mathcal{K} \to \mathcal{K}$ be a 2-functor. An F-algebra is a pair (A, a) with $a: FA \to A$ a 1-cell in \mathcal{K} with no axioms. Strict morphisms $f: (A, a) \to (B, b)$ are 1-cells $f: A \to B$ s.t. bFf = fa. A lax F-morphism is a pair (f, \bar{f}) of a 1-cell $f: A \to B$ and a 2-cell

$$FA \xrightarrow{a} A$$

$$Ff \downarrow \xrightarrow{\bar{f}} \downarrow f$$

$$FB \xrightarrow{b} B$$

subject to no axioms. An F-transformation $\rho:(f,\bar{f})\Rightarrow(g,\bar{g})$ is a 2-cell $\rho:f\Rightarrow g$ s.t. the equation

$$\begin{array}{cccc} FA & \xrightarrow{a} & A & & & FA & \xrightarrow{a} & A \\ Ff \downarrow & \stackrel{\bar{f}}{\Rightarrow} & f \left(\stackrel{\rho}{\Rightarrow} \right)^g & = & Ff \left(\stackrel{F\rho}{\Rightarrow} \right)^{Fg} & \downarrow g \\ FB & \xrightarrow{b} & B & & FB & \xrightarrow{b} & B \end{array}$$

holds. We write F-Alg for the resulting 2-category. A pseudo F-morphism is an (f, \bar{f}) s.t. \bar{f} is invertible and we write F-Alg $_p$ for the corresponding 2-category.

As in the 1-dimensional case, we can relate F-algebras and T(F)-algebras.

Proposition 0.2.11. Let \mathcal{K} be a locally presentable 2-category, F a κ -accessible 2-endofunctor on \mathcal{K} , T(F) the free κ -accessible monad on F with universal 2-natural transformation $\psi \colon F \to T(F)$. We can then construct isomorphisms of categories

$$\psi^* \colon T(F)\operatorname{-Alg}_L \to F\operatorname{-Alg}_L$$

$$\psi^* \colon T(F)\operatorname{-Alg}_P \to F\operatorname{-Alg}_P$$

by whiskering with ψ .

Proof. It is clear that $FA \xrightarrow{\psi_a} T(F)A \xrightarrow{a} A$ is a F-algebra for any T(F)-algebra (A, a) and, for any lax T(T)-morphism (f, \overline{f}) , the 2-cell

$$FA \xrightarrow{\psi_a} T(F)A \xrightarrow{a} A$$

$$Ff \downarrow \qquad T(F)f \xrightarrow{\overline{f}} f \downarrow$$

$$FB \xrightarrow{\psi_b} T(F)B \xrightarrow{b} B$$

is a lax F-morphism. Since composition of 1-cells in both F-Alg_L and T(F)-Alg_L is defined by attaching these 2-cells, this defines a functor on the underlying 1-categories.

Since ψ is 2-natural, the axiom for a T(F)-transformation turns into the axiom for a F-transformation, hence we can extend this to a 2-functor by acting as the identity on 2-cells.

It remains to show that this defines an isomorphism of 2-categories, or equivalently that it is a bijection on 0, 1 and 2-cells, which follows from the universal property of ψ .

Since ψ^* preserves the underlying 0, 1 and 2-cells we only need to check the bijection for a fixed underlying cell. In this case, the claim follows from the existence of the 2-monads A, A >, $\{f, f\}_L$ and $[\rho, \rho]$. Namely, whiskering with ψ gives a bijection between 2-monad morphisms $T(F) \to A, A >$ and mere 2-natural transformations $F \Rightarrow A, A >$. By adjunction, this corresponds to $a: FA \to A$, subject to no axioms. The bijection on 1 and 2-cells follows analogously, as proof concerning T(F)-Alg $_P$ and F-Alg $_P$.

We can use this to identify T-Alg_L when T is given via a presentation through the following procedure. We start with various (accessible) 2-endofunctors F, G... on \mathcal{K} and we construct 2-functors F-Alg_S $\to G$ -Alg_S, etc. These are induced by monad morphisms $T(G) \to T(F)$ and if we want to know what happens on lax and pseudo morphisms we use 0.2.8.

Taking limits, we obtain new categories which are of the form T-Alg_S for the corresponding category of monads. We can then iterate this by considering 2-functors T-Alg_L $\to W$ -Alg_S for a 2-endofunctor W on \mathcal{K} .

To do this we need one more ingredient in order to identify the 2-category $(W \odot D)$ -Alg_{S/L/P} for any small diagram $D: \mathcal{A}^{\mathrm{op}} \to 2 \operatorname{\mathsf{Mnd}}_{\kappa}(\mathcal{K})$ and any weight $W: \mathcal{A}^{\mathrm{op}} \to \operatorname{\mathbf{Cat}}$.

For T-Alg_L, this comes from the corresponding limit of 2-categories $\{W, D$ -Alg_L $\}$. To show it we first need to turn (-)-Alg_L into a 2-functor.

$$\mathbb{C} \underbrace{\bigvee_{G}^{F}}_{G} \mathbb{D}$$

s.t.

$$\mathfrak{C} \xrightarrow{F} \mathfrak{D} \xrightarrow{U^{\mathcal{D}}} \mathfrak{K} = \mathrm{id}_{U^{\mathfrak{C}}}$$

0.2. Presentations of 2-Monads

We now need to extend (-)-Alg_L to a 2-functor.

Recall that a monad modification $\alpha \colon \phi \Rightarrow \psi$ between monad morphisms is a modification subject to two axioms.

15

The datum of a modification of 2-monads consists of a 2-cell α_A for each 0-cell $A \in \mathcal{K}$ and the axioms state that the equations

$$SSA \xrightarrow{\varphi_{A}} STA \xrightarrow{\psi_{TA}} TTA \xrightarrow{\mu_{A}^{T}} A = SSA \xrightarrow{\mu_{A}^{S}} SA \xrightarrow{\alpha_{A} \downarrow \downarrow} TA$$

$$A \xrightarrow{\eta_{A}^{S}} SA \xrightarrow{\psi_{A}} TA = 1_{\eta_{A}^{T}}$$

hold, plus the modification axioms.

We want to finish extending (-)-Alg_L to a 2-functor $2-\mathsf{Mnd}_\kappa(\mathcal{K})^{\mathrm{coop}} \to 2-\mathbf{CAT}/\mathcal{K}$, where the target has the 2-cells specified above, hence we have to define a 2-natural transformation $\alpha^* \colon \psi^* \Rightarrow \phi^*$ s.t. $U_L \alpha^* = 1$. Giving a 2-natural transformation means giving a 1-cell in S-Alg_L for each 0-cell in T-Alg_L, i.e. for each T-algebra we have to specify a lax S-morphism.

We do it as follows: given $(A, a) \in T$ -Alg_L, we let $(\alpha^*)_{(A,a)}$ be the lax S-morphism

$$SA \xrightarrow{\psi_A} TA \xrightarrow{a} A$$

$$\parallel \xrightarrow{\alpha_A} \parallel /\!\!/ \parallel$$

$$SA \xrightarrow{\phi_A} TA \xrightarrow{a} A$$

with the identity as underlying 1-cell.

Proposition 0.2.12. The assignment $\alpha \mapsto \alpha^*$ is well-defined and thus (-)-Alg_L gives a 2-functor

$$2 - \mathsf{Mnd}_{\kappa}(\mathcal{K})^{\mathrm{coop}} \to 2 - \mathbf{CAT}/\mathcal{K}$$

Proof. There are a few things to check. We leave some as exercises.

We start with one of the lax morphism axioms. We want to show that

$$(1) \qquad SSA \xrightarrow{S\psi_A} STA \xrightarrow{Sa} SA \xrightarrow{\psi_A} TA \xrightarrow{a} A$$

$$\parallel \xrightarrow{S\alpha_A} \parallel \qquad \parallel \xrightarrow{\alpha_A} \parallel \qquad \parallel$$

$$SSA \xrightarrow{S\phi_A} STA \xrightarrow{Sa} SA \xrightarrow{\phi_A} TA \xrightarrow{a} A$$

(2)
$$SSA \xrightarrow{\mu_A^S} SA \xrightarrow{\psi_A} TA \xrightarrow{a} A$$

$$\parallel \qquad \parallel \xrightarrow{\alpha_A} \parallel \qquad \parallel$$

$$SSA \xrightarrow{\mu_A^S} SA \xrightarrow{\psi_A} TA \xrightarrow{a} A$$

Using a modification axiom,

$$(1) \qquad = \qquad SSA \xrightarrow{S\psi_A} STA \xrightarrow{Sa} TTA \xrightarrow{Ta} TA \xrightarrow{a} A$$

$$\parallel \xrightarrow{S\alpha_A} \parallel \xrightarrow{\alpha_{TA}} \parallel \qquad \parallel \qquad \parallel$$

$$SSA \xrightarrow{S\phi_A} STA \xrightarrow{Sa} TTA \xrightarrow{Ta} TA \xrightarrow{a} A$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$TA$$

and now we apply a monad modification axiom to find that this is equal to

$$SSA \xrightarrow{\mu_A^S} SA \xrightarrow{\psi_A} TA \xrightarrow{a} A ,$$

which we can rewrite as (2). We leave the second axiom as an exercise.

Next we check the 2-naturality of α^* . For the 1-cell axiom, we need to consider a 1-cell $(f, \overline{f}: (A, a) \to (B, b)$ in T-Alg_L. Then we have

which shows the 1-cell part of the 2-naturality condition. We leave the 2-cell part of 2-naturality as an exercise.

By construction, we have $U^L\alpha^*_{(A,a)}=1_A$, so this really is a 2-cell in 2-CAT/ \mathcal{K} . This shows that this assignment extends to a 2-functor if we can prove that composition and whiskering operations for monad modifications turn into the corresponding operations in 2-CAT/ \mathcal{K} , which follows from the definition of composition and whiskering for modifications.

Remark 0.2.13. For T-Alg_p we only have 2-naturality for invertible modifications.

Next we want to check that (-)-Alg_l turns weighted colimits into weighted limits. For this we use the following characterization of $\langle A, A \rangle$, $\{f, f\}_l$ and $[\rho, \rho]$.

Proposition 0.2.14. Let \mathcal{K} be complete and $A \in \mathcal{K}$. Then there is an isomorphism of categories

$$\mathsf{Mnd}(\mathcal{K})^{\mathrm{co}}(T,\langle A,A\rangle) \to 2\text{-}\mathbf{CAT}/\mathcal{K}(\mathbb{1} \xrightarrow{A} \mathcal{K}, T\text{-}\mathsf{Alg}_{l} \xrightarrow{U_{l}} \mathcal{K})$$

which is 2-natural in T.

Proposition 0.2.15. The 2-category 2-CAT/ \mathcal{K} is complete as a Cat-enriched category.

Proof. For completeness we need conical limits and powers by $2 = \{0 \to 1\}$. We start with the latter. It is given by the pullback in 2-CAT

$$\begin{array}{ccc} 2 \pitchfork U & \longrightarrow & \mathcal{C}^2 \\ V \downarrow & \downarrow & \downarrow U^2 \\ \mathcal{K} & \xrightarrow{\vdash_{\mathrm{id}} \neg} & \mathcal{K}^2 \\ \end{array}$$

where $\lceil \text{id} \rceil$ classifies the identity 2-cell on $\text{id}_{\mathcal{K}}$. Note that there is a 2-dimensional aspect to this, which follows from the 2-dimensional universal property of \mathcal{C}^2 . We also have copowers by 2 given by $\mathcal{C} \times 2 \xrightarrow{\text{pr}} \mathcal{C} \xrightarrow{U} \mathcal{K}$, so we only need to check the 1-dimensional universal property for conical limits. Conical limits are classical: products are given by "wide" pullbacks

while equalizer are computed as in 2-CAT.

Now we have a 2-functor between complete 2-categories and we want to show that it preserves limits. The strategy is as follows.

Let \mathcal{C}, \mathcal{D} be complete \mathcal{V} -categories, $F \colon \mathcal{C} \to \mathcal{D}$ a \mathcal{V} -functor, $D \colon \mathcal{A} \to \mathcal{C}$ a diagram and $\mathcal{W} \colon \mathcal{A} \to \mathcal{V}$ a weight. We get the comparison morphism $\bar{F} \colon F\{\mathcal{W}, \mathcal{D}\} \to \{\mathcal{W}, F \mathcal{D}\}$ in \mathcal{D} . We want to show that this is an iso. We will construct a new functor $G \colon \mathcal{D} \to \mathcal{E}$ s.t. both G and GF preserve weighted limits and G reflects isomorphisms. Then the comparison morphism $\bar{GF} \colon GF\{\mathcal{W}, \mathcal{D}\} \xrightarrow{\cong} \{\mathcal{W}, GF\}$ factors as $GF\{\mathcal{W}, \mathcal{D}\} \xrightarrow{G(\bar{F})} G\{\mathcal{W}, F \mathcal{D}\} \xrightarrow{\bar{G}} \{\mathcal{W}' GF \mathcal{D}\}$ so $G(\bar{F})$ is invertible hence also \bar{F} is an isomorphism.

We want to construct such a functor G in our setting. For this we use the constructions $(A, A), \{f, f\}_l$ and $[\rho, \rho]$.

Proposition 0.2.16. Let K be complete. Then there is an isomorphism of categories, 2-natural in T.

$$2\text{-}\operatorname{Mnd}(\mathcal{K})^{\operatorname{co}}(T,\langle A,A\rangle) \to 2\text{-}\operatorname{\mathbf{CAT}}/\mathcal{K}(\mathbbm{1} \xrightarrow{A} \mathcal{K}, T\text{-}\operatorname{\mathsf{Alg}}_{l} \xrightarrow{U_{l}} \mathcal{K})$$

Proof. From Exercise 1.3 we know that there is a natural bijection between monad morphisms $T \to \langle A, A \rangle$ and T--Alg structures $a: TA \to A$ on A. This gives the bijection on objects. Since this is constructed from the general theory of strict actions of strict monoidal categories, we know from Exercise 1.2 that monad modifications

$$T \underbrace{\varphi \Downarrow \langle A, A \rangle}_{a_2}$$

0.2. Presentations of 2-Monads

correspond to lax T-morphisms (id_A, φ): $(A, a_2) \to (A, a_1)$ (note the reversal of direction, omitted in the Exercise). This corresponds precisely to a 2-cell

18

in 2-CAT/ \mathcal{K} .

Proposition 0.2.17. Let \mathcal{K} be a complete 2-category and $f: A \to B$ a 1-cell in \mathcal{K} . Then there is an isomorphism of categories

$$2\text{-}\operatorname{Mnd}(\mathfrak{K})^{\operatorname{co}}(T,\{f,f\}_l) \to 2\text{-}\operatorname{\mathbf{CAT}}/\mathfrak{K}(2 \xrightarrow{f} \mathfrak{K}, T\operatorname{-}\operatorname{\mathsf{Alg}}_l \xrightarrow{U_l} \mathfrak{K})$$

which is 2-natural in T.

Proof. We already know this bijection on objects. From Exercise 1.4 we know that this bijection arises from the strict action $[\mathcal{K}, \mathcal{K}] \times \operatorname{Colax}[2, \mathcal{K}] \to \operatorname{Colax}[2, \mathcal{K}]$ of 2-categories. Using Exercise 1.2 here we find that monad modifications

$$T \underbrace{\overbrace{\xi \Downarrow \{f, f\}_{l}}^{\bar{f}_{1}}}_{f_{2}}$$

correspond to lax T-morphisms in $Colax[2, \mathcal{K}]$, which are the identity on objects, that is to pairs of 2-cells ξ_A, ξ_B s.t.

$$TA \xrightarrow{a_2} A$$

$$Tf \downarrow \xrightarrow{a_1} \downarrow f$$

$$TB \xrightarrow{\bar{f_1}} B$$

$$TA \xrightarrow{\bar{f_2}} A$$

$$Tf \downarrow \xrightarrow{\bar{f_2}} \downarrow f$$

$$TB \xrightarrow{f_1} B$$

$$TB \xrightarrow{b_1} B$$

holds and $(\mathrm{id}_A, \xi_A) \colon (A, a_2) \to (A, a_1), (\mathrm{id}_B, \xi_B) \colon (B, b_2) \to (B, b_1)$ are lax T-morphisms (exercise). This is precisely a 2-cell

in 2-CAT/ \mathcal{K} .

Proposition 0.2.18. If \mathcal{K} is complete and $A \underbrace{\downarrow \rho}_{q} B$ 2-cell in \mathcal{K} , there is an iso of categories

$$2\text{-}\operatorname{Mnd}(\mathcal{K})^{\operatorname{co}}(T,[\rho,\rho]) \longrightarrow 2\text{-}\operatorname{\mathbf{CAT}}/\mathcal{K}\left(\begin{array}{cc} 0 & \xrightarrow{\downarrow} & 1 & \xrightarrow{\rho} \mathcal{K}, T\operatorname{-Alg}_l \xrightarrow{U_l} \mathcal{K} \end{array}\right)$$

that is 2-natural in T.

Proof. One uses the action of $[\mathcal{K}, \mathcal{K}]$ on

$$\operatorname{Colax}\left[\begin{array}{cccc} 0 & & \\ & & \end{array}\right], \mathcal{K}$$

which has objects the 2-cells A $\bigoplus_{q}^{f} B$, morphisms the quadruples (a,ϕ,ψ,b) such that

$$\begin{array}{ccc}
A & \xrightarrow{a} & A' \\
f\left(\stackrel{\rho}{\Rightarrow} \right)^g & \xrightarrow{\psi} & \downarrow g' \\
B & \xrightarrow{b} & B'
\end{array} =
\begin{array}{ccc}
A & \xrightarrow{a} & A' \\
f\downarrow & \stackrel{\varphi}{\Longrightarrow} f' \left(\stackrel{\rho'}{\Rightarrow} \right)^{g'} \\
B & \xrightarrow{b} & B'
\end{array}$$

holds. The 2-cells are pairs of 2-cells subject to two axioms spelled out in the exercises. The construction is then analogous to the previous two propositions. That is we have to analyze what exactly a T-algebra in

$$\operatorname{Colax} \left[\begin{array}{c} 0 & & \\ & \downarrow & 1 \end{array}, \mathcal{K} \right]$$

is and what a lax T-morphism is, whose 1-cell part is the identity.

The existence of adjoints is due to the completeness assumption. With this at hand we can now prove that (-)-Alg_l turns colimits into limits.

Theorem 0.2.19. Let \mathcal{K} be a locally κ -presentable 2-category. Then the 2-functor

$$(-)$$
-Alg_I: 2-Mnd _{κ} $(\mathfrak{K})^{\operatorname{coop}} \to 2$ -CAT/ \mathfrak{K}

turns weighted colimits into limits.

Proof. We already know that the inclusion 2- $\mathsf{Mnd}_{\kappa}(\mathcal{K}) \to 2$ - $\mathsf{Mnd}(\mathcal{K})$ preserves weighted colimits, so it suffices to prove the claim for diagrams in the latter 2-category, which happen to have a colimit. So let $D \colon \mathcal{A} \to 2$ - $\mathsf{Mnd}(\mathcal{K})^{\mathrm{co}}$ be a diagram, $\mathcal{W} \colon \mathcal{A}^{\mathrm{op}} \to \mathbf{CAT}$ a weight such that $\mathcal{W} \odot_{\mathcal{A}} D$ exists in 2- $\mathsf{Mnd}(\mathcal{K})^{\mathrm{co}}$. We have a comparison morphism $L \colon \mathcal{W} \odot_{\mathcal{A}} D$ - $\mathsf{Alg}_l \to \{\mathcal{W}, D\text{-}\mathsf{Alg}_l\}$ in 2- CAT/\mathcal{K} . The represented 2-functor 2- $\mathsf{CAT}/\mathcal{K}(\mathbbm{1} \xrightarrow{\mathcal{A}} \mathcal{K}, -)$ preserves weighted limits (as homs do) and the composite 2- $\mathsf{CAT}/\mathcal{K}(\mathbbm{1} \xrightarrow{\mathcal{A}} \mathcal{K}, -) \circ (-)$ - Alg_l also preserves weighted limits, since it is represented by $\langle A, A \rangle$ by the first Proposition above. So in the commuting diagram

$$2\text{-}\mathbf{CAT}/\mathcal{K}(\mathbb{1} \xrightarrow{A} \mathcal{K}, \mathcal{W} \odot_{\mathcal{A}} D \text{-}\mathsf{Alg}_{l}) \xrightarrow{2\text{-}\mathbf{CAT}/\mathcal{K}(\mathbb{1} \xrightarrow{A} \mathcal{K}, L)} 2\text{-}\mathbf{CAT}/\mathcal{K}(\mathbb{1} \xrightarrow{A} \mathcal{K}, \{\mathcal{W}, D \text{-}\mathsf{Alg}_{l}\})$$

$$\cong \underbrace{\qquad \qquad \cong \qquad \qquad \qquad \cong \qquad \qquad \qquad = (\mathcal{W}, 2\text{-}\mathbf{CAT}/\mathcal{K}(\mathbb{1} \xrightarrow{A} \mathcal{K}, D \text{-}\mathsf{Alg}_{l}))$$

both arrows labelled "comparison" are isomorphisms (compare with the discussion above for F = (-)-Alg_l, G = 2-CAT/ $\mathcal{K}(\mathbb{1} \xrightarrow{A} \mathcal{K}, -)$). Upshot: for each $A \in \mathcal{K}$, 2-CAT/ $\mathcal{K}(\mathbb{1} \xrightarrow{A} \mathcal{K}, L)$ is an isomorphism. Using the same argument applied to $(0 \to 1) \xrightarrow{f} \mathcal{K}$ and

$$0 \xrightarrow{\psi} 1 \xrightarrow{\rho} \mathfrak{K}$$

and the propositions about $\{f, f\}_l$ and $[\rho, \rho]$ we find that for all 1-cells f and all 2-cells ρ the 2-functors 2-CAT/ $\mathcal{K}(f, L)$ and 2-CAT/ $\mathcal{K}(\rho, L)$ are isomorphisms. Since the 2-functors 2-CAT/ $\mathcal{K}(A, -)$, 2-CAT/ $\mathcal{K}(f, -)$ and 2-CAT/ $\mathcal{K}(\rho, -)$ jointly detect isomorphisms, we find that L is an isomorphism.

We can do the same construction for (-)-Alg_p and (-)-Alg_s. On the other hand, once we know that a 2-category is of the form T-Alg_l it has subcategories T-Alg_p and T-Alg_s. We would like to be able to identify these in terms of the categories D_i -Alg_p, D_i -Alg_s when forming limits. To do this we will use the 2-monads $\{f, f\}_p$ and $\{f, f\}_s$. We have 2-monads morphisms $\{f, f\}_s \to \{f, f\}_p \to \{f, f\}_l$ defined by the requirement that the 2-cell \bar{f} is either an identity or an isomorphism. A factorization of $T \to \{f, f\}_l$ through one of these is unique, if it exists, which it does if and only if the lax morphism corresponding to φ is strict resp. pseudo.

Lemma 0.2.20. Given a diagram $D: \mathcal{A} \to 2 - \mathsf{Mnd}_{\kappa}(\mathcal{K})$ and a weight $W: \mathcal{A}^{\mathrm{op}} \to \mathbf{Cat}$, let $\mathcal{K}_i: D_i \to W \odot_{\mathcal{A}} D$ jointly "codetect" identities and isomorphisms. A 2-cell $W \odot_{\mathcal{A}} D$ —worphism if and only if each $\alpha \mathcal{K}_i$ is. Then a lax $W \odot_{\mathcal{A}} D$ -morphism (f, \overline{f}) is pseudo (strict) if and only if $(\mathcal{K}_i)^*(f, \overline{f})$ is.

Proof. This follows from the existence of the classifiers $\{f, f\}_S$, $\{f, f\}_P$, which are defined by the universal requirement that a certain 2-cell is an identity (an isomorphism).

Lemma 0.2.21. The morphisms $\coprod_{i\in\mathcal{A}}\coprod_{w\in W_i}D_i\to W\odot_{\mathcal{A}}D$ jointly codetect isomorphisms and identities.

Proof. Applying $2 - \mathsf{Mnd}_{\kappa}(-T)$, this translates to a statement about weighted limits in \mathbf{Cat} , namely that for any $D' \colon \mathcal{A}^{\mathrm{op}} \to \mathbf{Cat}$ the functor

$$\{W, D'\} \to \Pi_{i \in \mathcal{A}}\{W_i, D_i'\} \to \Pi_{i \in \mathcal{A}}\Pi_{w \in W_i}D_i$$

detects isomorphisms and identities, where the first is the canonical map we get from the characterization of weighted limits in terms of powers, products and equalizers and the second is a product of functors $\{W_i, D_i'\} = \operatorname{Fun}(W_i, D_i') \to \operatorname{Fun}(\operatorname{Ob} W_i, D_i')$. The latter functors detect isomorphisms and identities because a natural transformation is an isomorphism (an identity) if and only if all of its components are.

The first functor is the equalizer in the standard presentation of $\{W, D'\}$ in \mathbf{Cat} , hence a (not necessarily full) inclusion of subcategories, thus it detects identities (using injectivity on objects). It also detects isomorphisms: if Ff = Gf and f is an isomorphism then $(Ff)^{-1} = (Gf)^{-1}$, so the inverse of an isomorphism lies in the equalizer.

Remark 0.2.22. In practice once can do much better than the morphism in the above lemma: for example, for the cocomma object

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ \downarrow & \swarrow & \downarrow \\ C & \longrightarrow & D \end{array},$$

the canonical arrow $B+C \to D$ codetects identities and isomorphisms. Identifying such a subset of objects with this property is easy once the 2-dimensional universal property is understood.

Summarizing, a lax $W \odot_{\mathcal{A}} D$ -morphism consists of certain 2-cells involving the categories D_i -Alg_L and it will be pseudo (strict) if and only if all of the constituents are.

We now have almost all the ingredients necessary to identify $T\operatorname{\mathsf{-Alg}}_{S/P/L}$ when T is given by a presentation.

Example 0.2.23. Consider a locally κ -presentable monoidal 2-category \mathcal{K} such that for all objects x both $x \otimes -$ and $- \otimes x$ preserve κ -filtered colimits. Monoidal here means exactly the 1-categorical definition, replacing functors and natural transformations with their 2-dimensional counterparts. Examples of this are $[\mathcal{K}, \mathcal{K}]_{\kappa}$ with $\otimes = \circ$, $\mathcal{V} - \mathbf{Cat}$ for a lfp cosmos \mathcal{V} .

We now present a complete characterization of the 2-category of monoids on K.

Let $F: \mathcal{K} \to \mathcal{K}$ be the 2-endofunctor $M \mapsto M \otimes M + I$. Then T-Alg_L has as objects the triples $(M,p\colon M \otimes M \to M,u\colon I \to M)$ subject to no axioms; morphisms $(M,p,u) \to (M',p',u')$ are 1-cells $f\colon M \to M'$ with 2-cells

$$\begin{array}{ccc}
M \otimes M + I & \xrightarrow{p+u} & M \\
f \otimes f + I \downarrow & & \xrightarrow{\overline{f}} & \downarrow f \\
M' \otimes M' + I & \xrightarrow{p'+u'} & M'
\end{array}$$

subject to no axioms. This amounts to a pair of 2-cells $\overline{f_2}$: $\underline{p'} \cdot f \otimes f \Rightarrow f \cdot p$ and $\overline{f_0}$: $u' \to f \cdot u$ by the universal property of the coproduct. The 2-cells $(f, \overline{f_2}, \overline{f_0}) \Rightarrow (g, \overline{g_2}, \overline{g_0})$ are 2-cells $\phi \colon f \Rightarrow g$ s.t.

and

$$I \xrightarrow{\overline{f_0}} f \xrightarrow{\phi} g = I \xrightarrow{\overline{g_0}} g$$

$$M'$$

$$I \xrightarrow{\overline{g_0}} f \xrightarrow{\phi} g$$

$$M'$$

$$M'$$

$$M'$$

hold.

Let $G: \mathcal{K} \to \mathcal{K}$ be the 2-endofunctor $GM = M \otimes (M \otimes M) + M + M$. The 2-category G-Alg_L has objects $(M, p_{\alpha}: M \otimes (M \otimes M) \to M, p_{\lambda}: M \to M, p_{\rho}: M \to M)$ and 1-cells are the quadruples $(f, \overline{f_{\alpha}}: p'_{\alpha} \cdot (f \otimes (f \otimes f)) \Rightarrow f \cdot p_{\alpha}, \overline{f_{\lambda}}: p'_{\lambda} \cdot f \Rightarrow f \cdot p_{\lambda}, \overline{f_{\rho}}: p'_{\rho} \cdot f \Rightarrow f \cdot p_{\rho})$. The 2-cells are 2-cells $\phi: f \Rightarrow g$ s.t.

and the other axioms hold. The pseudo/strict versions of these are the ones where $\overline{f_0}$, $\overline{f_2}$ (respectively $\overline{f_\alpha}$, $\overline{f_\lambda}$, $\overline{f_\rho}$) are isomorphisms/identities.

Next we construct two 2-functors $\psi_i \colon F\operatorname{-Alg}_L \to G\operatorname{-Alg}_L$, which send (M,p,u) to $(M,p\cdot M\otimes p, p\cdot u\otimes \cdot \lambda_M^{-1}, p\cdot M\otimes u\cdot \rho_M^{-1})$ and $(M,p\cdot p\otimes M\cdot \alpha_{M,M,M},\operatorname{id}_M,\operatorname{id}_M)$ respectively. On 1-cells, ψ_1 sends $(f,\overline{f_2},\overline{f_0})$ to

and

$$M \xrightarrow{\rho_{M}^{-1}} M \otimes I \xrightarrow{M \otimes u} M \otimes M \xrightarrow{p} M$$

$$f \downarrow \qquad \qquad \downarrow I \otimes f \qquad \downarrow f \qquad \downarrow f \qquad \downarrow f$$

$$M' \xrightarrow{\rho_{M'}^{-1}} M' \otimes I \xrightarrow{M' \otimes u'} M' \otimes M' \xrightarrow{p'} M'$$

The 2-functor ψ_2 sends $(f, \overline{f_2}, \overline{f_0})$ to

 1_f and 1_f .

On 2-cells both ψ_1 and ψ_2 act as the identity. The axioms hold because the α , λ , ρ parts are built from $\overline{f_0}$ and $\overline{f_2}$.

From the construction we see that the ψ_i restrict to 2-functors $F\operatorname{-Alg}_S\to G\operatorname{-Alg}_S$ and these restrictions are induced by 2-monad morphisms $\hat{\psi}_i\colon T(G)\to T(F)$, the free 2-monads on G and F respectively, by full faithfullness of the 1-functor $(-)\operatorname{-Alg}_S$. In other words, $\psi_i=(\hat{\psi}_i)^*$ is a strict morphism. Since there is a unique extension of $(\hat{\psi}_i)^*$ to a 2-functor on $T(F)\operatorname{-Alg}_L$ compatible with U_L , we have $\psi_i=(\hat{\psi}_i)^*$ on all of $F\operatorname{-Alg}_L\cong T(F)\operatorname{-Alg}_L$.

Now let Mon be the coequalizer of $\hat{\psi}_1$ and $\hat{\psi}_2$ in $2 - \mathsf{Mnd}_{\kappa}(\mathfrak{K})$. Then $\mathsf{Mon}\text{-}\mathsf{Alg}_L$ is the coequalizer of the ψ_i , so the objects are precisely the monoids in \mathfrak{K} , the 1-cells are the triples $(f, \overline{f_2}, \overline{f_0})$ subject to three axioms, namely that the 2-cells depicted above are equal. The 2-cell axioms remain the same: compatibility with $\overline{f_2}$ and $\overline{f_0}$. The pseudo/strict morphisms are the ones where $\overline{f_2}$, $\overline{f_0}$ are invertible/identities, since $T(F) \to \mathsf{Mon}$ codetects isomorphisms/identities.

We can spell out what this means for κ -accessible monads.

Lax morphisms $(T, \mu^T, \eta^T) \to (S, \mu^S, \eta^S)$ are triples $(f, \overline{f_2}, \overline{f_0})$ where $f: T \to S$ is 2-natural and $\overline{f_0}$, $\overline{f_2}$ are modifications

0.2. Presentations of 2-Monads such that -diagrams- hold.

$$T^{3} \xrightarrow{T\mu^{T}} T^{2} \xrightarrow{\mu^{T}} T$$

$$Tf^{2} \downarrow \xrightarrow{T\overline{f_{2}}} \downarrow Tf$$

$$TS^{2} \xrightarrow{T\mu^{S}} TS \xrightarrow{\overline{f_{2}}} \downarrow f$$

$$fS^{2} \downarrow \qquad \downarrow fS \qquad \downarrow f$$

$$S^{3} \xrightarrow{S\mu^{S}} S^{2} \xrightarrow{\mu^{S}} S$$

$$T^{3} \xrightarrow{\mu^{T}T} T^{2} \xrightarrow{\mu^{T}} T$$

$$T^{2} f \downarrow \qquad \downarrow Tf$$

$$f^{2} f \downarrow \qquad \downarrow Tf$$

$$f^{2}$$

$$T^{2} \xrightarrow{\mu^{T}} T$$

$$T \xrightarrow{\eta^{T}T} \downarrow^{fT} \downarrow^{fT}$$

$$T \xrightarrow{\eta^{S}T} \downarrow^{Sf} \downarrow^{Sf} \downarrow^{Sf}$$

$$S \xrightarrow{\eta^{S}S} S^{2} \xrightarrow{\mu^{S}} S$$

$$= 1_{f}$$

and

$$T \xrightarrow{T\eta^{T}} T^{2} \xrightarrow{\mu^{T}} T$$

$$f \downarrow \qquad \qquad \downarrow^{fT} \qquad \downarrow^{fT} \qquad \downarrow^{fT} \qquad \qquad = \qquad 1_{f}$$

$$S \xrightarrow{S\overline{f_{0}}} \searrow \searrow^{S\overline{f_{0}}} \searrow \searrow^{Sf} \qquad \downarrow^{Sf} \qquad \downarrow^{Sf$$

hold.

Monad modifications between these are required to be compatible with $\overline{f_0}$ and $\overline{f_2}$.

It is somewhat surprising that these are really the lax morphisms if you try to recognize them without the machinery we built.

Next we want to describe the 2-monad for pseudomonoids in \mathcal{K} , which are "monoids up to coherent isomorphism", like monoidal \mathcal{V} -categories. Instead of forming the equalizer above, we form the iso-inserter and then we use an equifier to impose the coherence laws. An equifier universally makes two 2-cells equal.

Since this diagram will involve 2-cells, we need to know that all these 2-cells in $2 - \mathbf{CAT}/\mathcal{K}$ come from 2-monad modifications. More precisely, we use the following.

Proposition 0.2.24. Let \mathcal{K} be a locally κ -presentable 2-category. Then the 2-functor

$$(-)$$
-Alg_L: $2 - \mathsf{Mnd}_{\kappa}(\mathcal{K})^{\mathrm{coop}} \to 2 - \mathbf{CAT}/\mathcal{K}$

is locally fully faithful: any 2-cell $\alpha \colon \phi^* \Rightarrow \psi^*$ comes from a unique monad modification $\psi \Rightarrow \phi \colon S \to T$.

Proof. We reduce this to the fact that the semantics-structure adjunction is fully faithful in the 1-categorical case.

By the universal property of powers, α corresponds to a unique 2-functor

$$T\operatorname{-Alg}_L \xrightarrow{\ulcorner \alpha \urcorner} [2] \pitchfork S\operatorname{-Alg}_L \cong (S\odot[2])\operatorname{-Alg}_L$$

and $\lceil \alpha \rceil$ sends strict T-morphisms to strict $(S \odot [2])$ -morphisms. The inclusion $\{0,1\} \to [2]$ induces $[2] \pitchfork S$ -Alg_L $\xrightarrow{(\pi_1,\pi_2)} S$ -Alg_L $\times S$ -Alg_L and we have $\pi_1 \lceil \alpha \rceil = \phi^*$, $\pi_2 \lceil \alpha \rceil = \psi^*$, thus the composite $(\pi_1,\pi_2) \lceil \alpha \rceil$ sends strict T-morphisms to strict S + S-morphisms.

Since this inclusion codetects identities it follows that (π_1, π_2) detects strict morphisms, so $\lceil \alpha \rceil$ does indeed send strict T-morphisms to strict $S \odot [2]$ -morphisms. The restriction to strict morphisms comes from a 2-monad morphism γ . Moreover, by the uniqueness of the extension to lax morphisms we must have $\lceil \alpha \rceil = \gamma^*$ on all of T-Alg $_L$. Thus, $\gamma \colon S \odot [2] \to T$ gives the desired 2-cell $\beta \colon \psi \Rightarrow \phi \colon S \to T$ woth $\beta^* = \alpha$ by construction.

This shows that (-)-Alg_L is full on 2-cells. Faithfullness again follows from the existence of $S \odot [2]$ and faithfulness of (-)-Alg_L on 1-cells: if β , β' induce the same 2-cell, then the corresponding $\lceil \beta \rceil, \lceil \beta' \rceil$: $S \odot [2] \to T$ induce the same 1-cell on T-Alg_L $\to S \odot [2]$ -Alg_L, so they are in particular equal on T-Alg_S, hence $\lceil \beta \rceil = \lceil \beta' \rceil$, so $\beta = \beta'$ by universal property of $S \odot [2]$.

Remark 0.2.25. This argument would be simpler if (-)-Alg_L were fully faithful on 1-cells, but we don't know if this is true.

With this proposition in hand, we can now complete the construction of the 2-monad for pseudomonoids. Namely, instead of forming the coequalizer of $\hat{\psi}_1$ and $\hat{\psi}_2$ above, we form the co-iso-inserter T_1 in $2-\mathsf{Mnd}_\kappa(\mathcal{K})$ instead.

Then T_1 -Alg_L has objects (M, p, u, l), where l is an identity-on-objects isomorphism between $\psi_1(M, p, u)$ and $\psi(M, p, u)$. This amounts to giving invertible 2-cells

$$\begin{array}{cccc} M \otimes (M \otimes M) & \xrightarrow{M \otimes p} & M \otimes M \\ \alpha_{M,M,M} \downarrow & \xrightarrow{\alpha^M} & \downarrow p \\ (M \otimes M) \otimes M & \xrightarrow{p \otimes M} & M \otimes M & \xrightarrow{p} & M \end{array}$$

$$M \xrightarrow{\lambda_M^{-1}} I \otimes M \xrightarrow{u \otimes M} M \otimes M \xrightarrow{p} M$$

$$\parallel \qquad \parallel$$

$$M \xrightarrow{\text{id}_M} M$$

and

$$\begin{array}{ccccc}
M & \xrightarrow{\rho_M^{-1}} & M \otimes I & \xrightarrow{M \otimes u} & M \otimes M & \xrightarrow{p} & M \\
\parallel & & & & & & \parallel \\
M & & & & & & M
\end{array}$$

subject to no axioms since l is a 2-cell in G-Alg $_P$.

A 1-cell in T_1 -Alg_L is a 1-cell $(f, \overline{f_0}, \overline{f_2})$ in F-Alg_L and that the resulting "naturality square"

in $G\operatorname{\mathsf{-Alg}}_L$ coming from l and l' commute (see the exercises). This means that the equations

and

hold and the same goes for the one related to ρ^M , $\rho^{M'}$.

Note that these equations say precisely that $(f, \overline{f_0}, \overline{f_2})$ is a lax monoidal morphism between (pre-)pseudomonoids $(M, p, u, \alpha^M, \lambda^M, \rho^M)$ and $(M', p', u', \alpha^{M'}, \lambda^{M'}, \rho^{M'})$, thus we already have the correct 1-cells in T_1 -Alg_L.

The 2-functor T_1 -Alg_L $\to F$ -Alg_L is fully faithful on 2-cells: a priori we need to impose the equation

$$l' \cdot \psi_1 \left(\bullet \underbrace{\downarrow \phi}_{g} \bullet \right) = \psi_2 \left(\bullet \underbrace{\downarrow \phi}_{g} \bullet \right) \cdot l,$$

but both ψ_1 and ψ_2 act as the identity on 2-cells and whiskering with l, l' does not affect the 2-cell because l, l' have identities as 1-cell components.

It follows that we already have the correct 2-cells in T_1 -Alg as well. Since $T(F) \to T_1$ codetects identities and isomorphisms, the pseudo/strict T_1 -morphisms are the $(f, \overline{f_0}, \overline{f_2})$ s.t. $\overline{f_0}, \overline{f_2}$ are invertible/identities.

Our T_1 -Alg_L contains the 2-category of pseudomonoids and lax monoidal morphisms as a full 2-subcategory on those objects, for which the pentagon and unit triangle laws hold. We can use an equifier to describe this full 2-subcategory.

For this we consider a new 2-endofunctor $H: \mathcal{K} \to \mathcal{K}$ which sends M to $M \otimes (M \otimes (M \otimes M)) + M \otimes M$. We construct a 2-functor $\kappa_1: T_1$ -Alg_L $\to H$ -Alg_L by sending (M, p, u) to

$$M \otimes (M \otimes (M \otimes M)) \xrightarrow{M \otimes (M \otimes p)} M \otimes (M \otimes M) \xrightarrow{M \otimes p} M \otimes M \xrightarrow{p} M,$$

$$M \otimes M \xrightarrow{M \otimes \lambda_M^{-1}} M \otimes (I \otimes M) \xrightarrow{M \otimes p} M \otimes M \xrightarrow{p} M$$

and a 2-functor $\kappa_2 \colon T_1\operatorname{\mathsf{-Alg}}_L \to H\operatorname{\mathsf{-Alg}}_L$ by sending (M,p,u) to

$$M\otimes M\xrightarrow{\rho_M^{-1}}(M\otimes I)\otimes M\xrightarrow{(M\otimes u)\otimes M}(M\otimes M)\otimes M\xrightarrow{p\otimes M}M\otimes M\xrightarrow{p}M.$$

We extend this to 1-cells using the evident pastings of $\overline{f_0}$ and $\overline{f_2}$ and we let both 2-functors act as the identity on 2-cells.

Both restrict to 2-functors on strict morphisms, so by our general results they are induced by 2-monad morphisms

$$T(H) \xrightarrow{\widehat{\kappa_1}} T_1$$

There are two ways of changing brackets in a word of four letters and they correspond to the two composites in MacLane's pentagon law. These and the cells in the unit triangle induce 2-cells $\beta_1, \beta_2 \colon \kappa_1 \Rightarrow \kappa_2$ in $2 - \mathbf{CAT}/\mathcal{K}$. We shall explain this for the associator and leave the unit law as an exercise. To make things more readable, we will simply write the tensor product in \mathcal{K} as a concatenation, i.e. $M \otimes M$ will be MM. We construct two 2-natural transformations $\beta_1, \beta_2 \colon \kappa_1 \to \kappa_2$ on 2- \mathbf{Cat}/\mathcal{K} with component at $(M, p, u, \alpha, \lambda, \rho) \in T_1$ - \mathbf{Alg}_l resp. given by

$$M(M(MM)) \xrightarrow{M(Mp)} M(MM) \xrightarrow{Mp} MM \xrightarrow{p} MM$$

$$\downarrow M(MMM) \xrightarrow{QM} MM \xrightarrow{pM} MM \xrightarrow{p} MM$$

$$\downarrow M(M(MM)) \xrightarrow{Q(MM)p} MM \xrightarrow{pM} MM \xrightarrow{p} MM$$

$$\downarrow M(MM)p \xrightarrow{p(MM)} M(MM) \xrightarrow{pM} MM \xrightarrow{p} MM$$

$$\downarrow M(MM)p \xrightarrow{p(MM)} M(MM) \xrightarrow{p} MMM \xrightarrow{p} MM$$

$$\downarrow M(MM)p \xrightarrow{p} MMM \xrightarrow{p} MM \xrightarrow{p} MM$$

$$\downarrow M(MM)p \xrightarrow{p} MMM \xrightarrow{p} MMM \xrightarrow{p} MM$$

$$\downarrow M(MM)p \xrightarrow{p} MMM \xrightarrow{p} MMM \xrightarrow{p} MM$$

$$\downarrow M(MM)p \xrightarrow{p} MMMM \xrightarrow{p} MMM \xrightarrow{p} MMM \xrightarrow{p} MM$$

which has the correct codomain since the pentagon law holds in \mathcal{K} . In **Cat** these correspond precisely to the two composites in the pentagon law (involving two respectively three instances of the associator). A similar construction allows us to translate the unit axiom into two diagrams involving the second component of κ_1, κ_2 (exercise). These β_i are 2-natural since they are built from 2-natural transformations in \mathcal{K} on 2-cells α, λ, ρ which are by definition compatible with all $(f, \overline{f_0}, \overline{f_2})$ in T_1 -Alg_l. Now we use the Proposition ensuring that (-)-Alg_l is fully faithful on 2-cells: the β_i are $(\hat{\beta}_i)^*$ for unique monad modifications $\widehat{\beta}_i \colon \widehat{\kappa_2} \Rightarrow \widehat{\kappa_1}$. Let **PsMon** be the coequifier

$$T(H)$$

$$\overbrace{\|\widehat{\beta_1}\|\widehat{\beta_2}\|}^{\widehat{\kappa_1}} T_1 \longrightarrow \mathbf{PsMon}$$

in 2-Mnd $_{\kappa}(\mathcal{K})$. Then \mathbf{PsMon} -Alg $_l$ is the equifier of β_1 and β_2 , so it is the full sub-2-category of T_1 -Alg $_l$ consisting of objects where β_1 and β_2 agree. Similarly for the unit law. Since an equifier does not affect 1- and 2-cells, our previous work shows that \mathbf{PsMon} -Alg $_l$ is isomorphic to the 2-category of pseudomonoids, lax monoidal morphisms (in the usual sense) and monoidal 2-cells. We have also shown that \mathbf{PsMon} -Alg $_p$ has as 1-cells the strong monoidal morphisms and \mathbf{PsMon} -Alg $_l$ has as 1-cells the strict monoidal morphisms.

Our next example concerns categories with colimits of a given shape. This construction only works for conical colimits and only if the forgetful functor $V \colon \mathcal{V} \to \mathbf{Set}$ is conservative (e.g. $\mathbf{Set}, \mathbf{Mod}_R$ but not $\mathbf{sSet}, \mathbf{dgMod}_R, \mathbf{Cat}$). We also assume that \mathcal{V} is a lfp cosmos so that \mathcal{V} - \mathbf{Cat} is a lfp 2-category.

Let \mathcal{D} be a κ -presentable (ordinary) category. We will show that the 2-category of small \mathcal{V} -categories with chosen \mathcal{D} -colimits and \mathcal{V} -functors which preserve \mathcal{D} -colimits is $T_{\mathcal{D}}$ -Alg_p for a suitable κ -accessible 2-monad $T_{\mathcal{D}}$ on \mathcal{V} -Cat.

Our assumptions imply that $\mathcal{C} \in \mathcal{V}$ -Cat has chosen \mathcal{D} -colimits iff the diagonal \mathcal{V} -functor $\Delta \colon \mathcal{C} \to [\mathcal{D}, \mathcal{C}]$ has a (chosen) left adjoint.

So we start with the free 2-monad on the κ -accessible endo-2-functor $F := [\mathcal{D}, -]$. The objects of F-Alg_l already have a 1-cell $l : [\mathcal{D}, \mathcal{C}] \to \mathcal{C}$. We need to *insert* a unit and a counit and impose the triangle identities using an equifier.

There is a slight problem: note that the unit goes from $id_{[\mathcal{D},\mathcal{C}]} \Rightarrow \Delta l$, so a priori this is a 2-cell $FC \rightrightarrows FC$ and doesn't need to live in H-Alg_l. But F is a right 2-adjoint, so we can find

0.2. PRESENTATIONS OF 2-MONADS a suitable H, namely $H = [\mathfrak{D}, -] \otimes \mathfrak{D}$: to give

$$[\mathcal{D}, \mathcal{C}] \underbrace{\downarrow \eta}_{\Delta l} [\mathcal{D}, \mathcal{C}]$$

is equivalent to giving

$$[\mathcal{D},\mathfrak{C}] \otimes \overbrace{\mathcal{D} \hspace{0.1cm} \psi \hspace{0.1cm} \eta}^{(\mathrm{id})^{\#}} \hspace{0.1cm} \mathfrak{C}$$

in \mathcal{V} -Cat. Thus our second endo-2-functor G sends \mathcal{C} to $\mathcal{C}+[\mathcal{D},\mathcal{C}]\otimes\mathcal{D}$ (the first term being for the counit). We form the inserter of the two 2-functors F-Alg $_l$ $\to G$ -Alg $_l$ sending $(\mathcal{C},l\colon [\mathcal{D},\mathcal{C}]\to \mathcal{C})$ to $(l\Delta\colon \mathcal{C}\to\mathcal{C},\mathrm{id}^\#\colon [\mathcal{D},\mathcal{C}]\otimes\mathcal{D}\to\mathcal{C})$ resp. (id: $\mathcal{C}\to\mathcal{C},(\Delta l)^\#\colon [\mathcal{D},\mathcal{C}]\otimes\mathcal{D}\to\mathcal{C})$. Here we really need to be able to give in non-invertible 2-cells. The 1-cells in F-Alg $_l$ are pairs (F,λ) consisting of a \mathcal{V} -functor $f\colon \mathcal{C}\to\mathcal{C}'$ and a 2-cell

$$[\mathcal{D}, \mathcal{C}] \xrightarrow{l} \mathcal{C}$$

$$[\mathcal{D}, f] \downarrow \Longrightarrow \downarrow f$$

$$[\mathcal{D}, \mathcal{C}'] \xrightarrow{l'} \mathcal{C}'$$

and the two 2-functors send this to

$$\begin{pmatrix} \mathcal{C} & \stackrel{\Delta}{\longrightarrow} [\mathcal{D}, \mathcal{C}] & \stackrel{l}{\longrightarrow} \mathcal{C} \\ f \middle\downarrow & = & [\stackrel{D}{\mathcal{D}}, f] & \stackrel{\lambda}{\Longrightarrow} & \downarrow f , \ 1_{\mathrm{id}} \# \\ \mathcal{C}' & \stackrel{\Delta}{\longrightarrow} [\mathcal{D}, \mathcal{C}'] & \stackrel{l}{\longrightarrow} \mathcal{C}' \end{pmatrix}$$

and

$$\begin{pmatrix} 1_{\mathrm{id}_{\mathcal{C}}}, \begin{pmatrix} [\mathcal{D}, \mathcal{C}] & \xrightarrow{l} & \mathcal{C} & \xrightarrow{\Delta} & [\mathcal{D}, \mathcal{C}] \\ [\mathcal{D}, f] \downarrow & \xrightarrow{\lambda} & f \downarrow & = & \downarrow [\mathcal{D}, f] \\ [\mathcal{D}, \mathcal{C}'] & \xrightarrow{l'} & \mathcal{C}' & \xrightarrow{\Delta} & [\mathcal{D}, \mathcal{C}'] \end{pmatrix}^{\#} \end{pmatrix}$$

respectively. Both act as the identity on 2-cells. Using the adjunction $-\otimes \mathcal{D} \dashv [\mathcal{D}, -]$, we find that the coinserter T_1 of the resulting 2-monad morphism has T_1 -Alg_l given by quadruples $(\mathfrak{C}, l, \eta, \epsilon)$, where $\eta \colon \mathrm{id} \Rightarrow \Delta l, \epsilon \colon l\Delta \Rightarrow \mathrm{id}$ (subject to no axioms) and 1-cells are (f, λ) s.t.

$$[\mathcal{D}, \mathcal{C}] \xrightarrow{l} \mathcal{C} \xrightarrow{c \mapsto \Delta_{c}} [\mathcal{D}, \mathcal{C}]$$

$$[\mathcal{D}, f] \downarrow \Longrightarrow \downarrow f \qquad \downarrow [\mathcal{D}, f]$$

$$[\mathcal{D}, \mathcal{C}'] \xrightarrow{l'} \mathcal{C}' \xrightarrow{c' \mapsto \Delta_{c'}} [\mathcal{D}, \mathcal{C}']$$

$$[\mathcal{D}, \mathcal{C}'] \xrightarrow{id_{[\mathcal{D}, \mathcal{C}']}} [\mathcal{D}, \mathcal{C}']$$

$$[\mathcal{D}, \mathcal{C}'] \xrightarrow{id_{[\mathcal{D}, \mathcal{C}']}} [\mathcal{D}, \mathcal{C}']$$

and

We now impose the triangle identities using an equifier in the same manner as before (using the necessary 2-adjunction for the one, where the target is not \mathcal{C}). This is isomorphic to $T_{\mathbb{D}}$ -Alg_l where $T_{\mathbb{D}}$ denotes the corresponding coequifier in 2- $\mathsf{Mnd}_{\kappa}(\mathcal{V}\text{-}\mathbf{Cat})$. Since this is a coequifier, the 1-cells and 2-cells are the same as in T_1 -Alg_l. However, now $l \dashv \Delta$ with unit η and counit ϵ , so the above coequifier say that λ is the mate of 1_c. So each f has a unique lax morphism structure. The pseudo T_1 -morphism are the ones where λ is invertible, so the same is true for $T_{\mathcal{D}}$. The components of λ are precisely the colimit comparison morphisms, so the pseudo $T_{\mathcal{D}}$ -morphisms are exactly the \mathcal{D} -colimits preserving \mathcal{V} -functors. One can also check that this works for 2-cells, meaning all V-natural transformations are $T_{\mathcal{D}}$ -transformations. In T_1 there is a condition which becomes automatic when λ is the mate of $1_{\mathbb{C}}$.

Remark 0.2.26. The free objects for $T_{\mathcal{D}}$ should correspond to the \mathcal{D} -colimits closure in the diagram category $[\mathcal{C}, \mathcal{V}]$ of the representables. For this we need to understand "how free" $T_{\mathcal{D}}(\mathcal{C})$ actually is in $T_{\mathcal{D}}$ -Alg_n (as opposed to $T_{\mathcal{D}}$ -Alg_s).

Remark 0.2.27. If we want to get the 2-monad for categories with colimits of shape $\{\mathcal{D}_i\}_{i\in I}$ for some set of ordinary categories, we simply take the coproduct $\coprod T_{\mathcal{D}_i}$ in 2- $\mathsf{Mnd}(\mathcal{V}\text{-}\mathbf{Cat})$ (all \mathcal{D}_i are κ -presentable). E.g. given shapes for binary coproducts, initial object and coequalizers we get finitely cocomplete categories in the case $\mathcal{V} = \mathbf{Set}$. Our final example concerns 2categories of 2-functors. Let \mathcal{K} be a cocomplete 2-category and \mathcal{A} a small 2-category. Then $[\mathcal{A}, \mathcal{K}]$, the 2-category of (strict) 2-functors, (strict) 2-natural transformations and modifications is the 2-category of algebras for the 2-monad

$$T \colon [\operatorname{Ob} \mathcal{A}, \mathcal{K}] \longrightarrow [\operatorname{Ob} \mathcal{A}, \mathcal{K}]$$
$$(X_a)_{a \in \mathcal{A}} \mapsto \left(\sum_{a \in \mathcal{A}} \mathcal{A}(a, b) \odot X_a \right)_{b \in \mathcal{A}}$$

by definition in our case if $\mathcal{K} = \mathbf{Cat}$, and in general it follows from the adjunction defining the copower:

$$(\mathcal{A}(a,b)\odot X_a\to X_b) \leftrightsquigarrow (\mathcal{A}(a,b)\to \mathcal{K}(X_a,X_b)).$$

The coproduct of T^2 at $c \in \mathcal{A}$ is

$$\begin{split} \left(T^2(X_a)_{a\in\mathcal{A}}\right)_c &= \sum_b \mathcal{A}(b,c)\odot (T(X_a)_{a\in\mathcal{A}})_b \\ &= \sum_b \mathcal{A}(b,c)\odot \left(\sum_a \mathcal{A}(a,b)\odot X_a\right) \\ &\cong \sum_{a,b} (\mathcal{A}(b,c)\times\mathcal{A}(a,b))\odot X_a. \end{split}$$

0.3. Limits and colimits in T-Alg_p

The unit and multiplication are given by the identities resp. composition in \mathcal{A} . To give a lax T-morphism $(F_a)_{a\in\mathcal{A}}\to (G_a)_{a\in\mathcal{A}}$ amounts to giving a pair (f,\overline{f}) whose f is simply a morphism of collections, i.e. a 1-cell $f_a\colon F_a\to G_a$ for each $a\in\mathcal{A}$ and \overline{f} is a 2-cell

30

$$\sum_{a} \mathcal{A}(a,b) \odot F_{a} \xrightarrow{\varphi_{b}} F_{b}$$

$$\sum_{a} \mathcal{A}(a,b) \odot f_{a} \downarrow \Longrightarrow \qquad \downarrow f_{b}$$

$$\sum_{a} \mathcal{A}(a,b) \odot G_{a} \xrightarrow{\gamma_{b}} G_{b}$$

for each $b \in \mathcal{A}$. Here φ and γ encode the algebraic structure of F and G. By the universal property of coproducts, to give $\overline{f_b}$ is equivalent to giving a 2-cell for each component $a \in \mathcal{A}$, which by universal property of copower corresponds to a 2-cell

$$\begin{array}{ccc}
\mathcal{A}(a,b) & \xrightarrow{F_{a,b}} & \mathcal{K}(F_a, F_b) \\
G_{a,b} \downarrow & \xrightarrow{\overline{f_{a,b}}} & \downarrow \mathcal{K}(F_a, f_b) \\
\mathcal{K}(G_a, G_b)_{\overline{\mathcal{K}(f_a, G_b)}} & \mathcal{K}(F_a, G_b)
\end{array}$$

in Cat. So this is simply a natural transformation in Cat, which has components

$$\begin{array}{ccc}
F_a & \xrightarrow{F_{\psi}} & F_b \\
f_a \downarrow & \xrightarrow{f_{\psi}} & \downarrow f_b \\
G_a & \xrightarrow{G_{\psi}} & G_b
\end{array}$$

for each $\psi \colon a \to b$ in \mathcal{A} . So the data of a lax T-morphism corresponds bijectively to the data of a lax natural transformation $F \Rightarrow G$. In fact, (f, \overline{f}) satisfies the axioms of a lax T-morphism if and only if (f_a, f_ψ) form a lax natural transformation. The naturality of $\overline{f_{a,b}}$ is precisely the compatibility of f_ψ with 2-cells and the two axioms for a T-morphism correspond to the pasting and identity axioms for a lax natural transformation. This follows since the axioms for T-morphisms can be checked componentwise. Similarly, one can check that T-transformations are the modifications. Finally, a 2-cell out of a coproduct is invertible if and only if its components are and

$$\mathcal{A}(a,b) \odot X \Downarrow Y$$

is an isomorphism if and only if

$$\mathcal{A}(a,b) \qquad \Downarrow \quad \mathcal{K}(X,Y)$$

is an isomorphism, so the pseudo T-morphism are precisely the (f_a, f_{ψ}) s.t. each f_{ψ} is an isomorphism. Thus the pseudo T-morphisms are precisely the pseudonatural transformations.

0.3 Limits and colimits in T-Alg_n

Recall that for a 1-monad T on a complete category, T-Alg is always complete. The enriched version of this also works. In particular, T-Alg $_s$ is complete if $\mathcal K$ is. What about T-Alg $_p$ and T-Alg $_l$? We start with some positive results.

31

Proposition 0.3.1. If \mathcal{K} has products and $T: \mathcal{K} \to \mathcal{K}$ is a 2-monad, then the products in T-Alg_s are products in T-Alg_p.

Proof. We already know that products exist in T-Alg_s, so this amounts to checking the universal property. This is similar to the case we saw involving the colax limit of an arrow. In the next few propositions we will see more examples of this kind, so we have this as an exercise.

Remark 0.3.2. We actually only proved existence of products in T-Alg_s if \mathcal{K} is complete. It is true in general if \mathcal{K} has products (exercise). The same remains true in the following propositions.

Proposition 0.3.3. If \mathcal{K} has (iso-)inserters, then T-Alg_p has (iso-)inserters. The universal 1-cell is a strict T-morphism and it detects strict T-morphisms.

Proof. We do the inserter case; the iso-inserter is similar. Let $(f, \overline{f}), (g, \overline{g}) \colon (A, a) \leadsto (B, b)$ be two pseudo T-morphisms and let

be the inserter in \mathcal{K} . We have $a \cdot Tp \colon TI \to A$ and a 2-cell

$$fa \cdot Tp \xrightarrow{\overline{f}^{-1} \cdot Tp} b \cdot Tf \cdot Tp \xrightarrow{\underline{b} \cdot T\lambda} b \cdot Tg \cdot Tp \xrightarrow{\overline{g} \cdot Tp} ga \cdot Tp$$

and so from the universal property we get a unique $i: TI \to I$ s.t. $p \cdot i = a \cdot Tp$ and the equation

holds. As in the proof of the "colax limit of an arrow", we use the axioms for (f, \overline{f}) and (g, \overline{g}) and the 2-naturality of η and μ to show that (I, i) is a T-algebra. By construction, $p: (I, i) \to (A, a)$ is a strict T-morphism and λ a T-transformation. It remains to check the universal property, so consider

32

holds. We have a unique 1-cell $h: X \to I$ s.t. ph = q and $\lambda h = \mu$ from the universal property of (I, p, λ) in \mathcal{K} . Thus \overline{q} can be seen as a 2-cell

$$p \cdot i \cdot Th = a \cdot Tp \cdot Th = a \cdot Tq \xrightarrow{\overline{q}} q \cdot x = p \cdot h \cdot x$$

in \mathcal{K} . Plugging this into (*) and using $ph=q, \lambda h=\mu$, we find that $(\lambda hx)\cdot (f\overline{q})\cdot (\overline{f}\cdot Tp\cdot Th)=(g\overline{q})\cdot (\overline{g}\cdot Tp\cdot Th)\cdot (b\cdot T\lambda\cdot Th)$ holds. Using the definition of i in terms of \overline{f}^{-1} , we find that the equation holds if and only if $(\lambda\cdot h\cdot x)\cdot (f\cdot \overline{q})=(g\cdot \overline{q})\cdot (\lambda\cdot i\cdot Th)$ holds. From the 2-dimensionality of the universal property of (I,p,λ) it follows that there exists a unique $\overline{h}\colon i\cdot Th\Rightarrow x\cdot h$ s.t. $p\overline{h}=\overline{q}$. Using the uniqueness part of the 2-dimensional universal property plus the fact that (q,\overline{q}) is a pseudo T-morphism, it follows that (h,\overline{h}) is a pseudo T-morphism. This (h,\overline{h}) is clearly the unique 1-cell with $p\cdot (h,\overline{h})=(q,\overline{q})$, so this shows the 1-dimensional universal property. Checking the 2-dimensional universal property is left as an exercise.