科目名	量子力学	対象	2AM	学部研究科	先進工学部	学 科 専 政 科		学籍 番号	評点
2021	年 9月 9日 2時隙	(木)	担当	田村 隆治	学年	氏名		
試験時間	60 ∌	注意事項		用具以外持治					

以下の各問いに答えなさい。 <u>導出過程を必ず記すこと</u>。必要に応じ、次の数値、公式、関係式を用いよ。 $h=2\pi\hbar=6.626\times10^{-34}$ Js, $c=3.00\times10^{8}$ m/s, $m_e=9.11\times10^{-31}$ kg, $m_p=1.67\times10^{-27}$ kg, $k_B=1.38\times10^{-23}$ J/K, $N_A=6.02\times10^{-23}$ /mol, $E_n=(n+1/2)\hbar\omega$, $1~{\rm eV}=1.60\times10^{-19}$ J, $1~{\rm nm}=10^{-9}$ m, $1~{\rm pm}=10^{-12}$ m, $\hat{p}_x=-i\hbar\frac{d}{dx}$

 $\lambda_m T = 2.90 \times 10^{-3} \text{ m} \cdot \text{K}, \quad \int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}, \quad \int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$

- 1 以下の問いに答えなさい。
 - (1) 太陽光スペクトルのピーク波長は約500 nm である。太陽の表面温度(K)を推定せよ。
 - (2) 金属セシウムに波長 500nm の光を当てたとき、出てくる光電子の運動エネルギーの最大値は何eVか。 ただし、セシウムの仕事関数を 1.38 eV とする。
 - (3) 速度10⁶ m/s で運動する自由電子のド・ブロイ波長(nm)を求めよ。
- 2 一次元調和振動子に関する以下の問いに答えなさい。
 - (1) 質量mの粒子がx軸上で $F = -m\omega^2 x$ の復元力を受けて運動する系の(時間に依存しない) Schrödinger 方程式をかけ。
 - (2) 基底状態の固有関数は $\Psi_0 = A \exp(-ax^2)$ の形で表される。aを求めよ。
 - (3) Ψοのエネルギー固有値を求めなさい。
 - (4) Ψοを規格化せよ。
 - (5) Ψoの位置の期待値(x)及び位置二乗の期待値(x²)を求めなさい。
- 3 多数の N_2 分子からなる系において、並進に関する以下の問いに答えよ。ただし、温度を 300K、 N_2 分子の質量を 4.6×10^{-26} kg とする。
 - (1) 一分子の運動エネルギー (J) の平均値を求めよ。
 - (2) 二乗平均速度 $\sqrt{(v^2)}$ (m/s)を求めよ。
- 4 N2分子の回転について以下の問いに答えよ。ただし結合距離を 110pm、N の原子量を 14 とする。
 - (1) 換算質量(kg)を求めよ。
 - (2) 合成慣性モーメントI (kg·m²)を求めよ。
 - (3) N_2 分子の回転のエネルギー固有値は $E_l = l(l+1)\hbar^2/2I$ で与えられるが、多数の N_2 分子からなる系において、l=lの状態をとる N_2 分子の数を N_l 、l=0 の状態をとる N_2 分子の数を N_0 としたとき、 N_l/N_0 はどのような式で表されるか。多重度を考慮すること。
 - (4) 室温(300K)において第 10 励起状態にある分子数 N_{10} と基底状態にある分子数 N_0 の比 N_{10}/N_0 を求めよ。
- $\int \int (1-z) v v v = -\frac{\hbar^2}{2m} \nabla^2 \frac{ze^2}{4\pi\epsilon_0 r}$ で与えられる一電子固有状態 $|nlm\rangle$ について、以下の定理を用いて位

置の逆数の期待値 $\left(\frac{1}{r}\right)$ を求めよ。結果をボーア半径 $a_0 = \frac{4\pi\epsilon_0\hbar^2}{me^2}$ を用いて表しなさい。ただし、状態 $|nlm\rangle$ のエ

ネルギー固有値は $E_n = -\frac{me^4Z^2}{32\pi^2\epsilon_0^2\hbar^2}\frac{1}{n^2}$ で与えられる。

ヘルマン - ファインマンの定理: $\frac{dE(\lambda)}{d\lambda} = \left\langle \Psi_{\lambda} \middle| \frac{dR(\lambda)}{d\lambda} \middle| \Psi_{\lambda} \right\rangle$