• Scalar projection

- o comp $_{\vec{a}}\vec{b}$ (the component of \vec{b} on \vec{a}).
- \circ comp_{\vec{a}} $\vec{b} = \vec{b} \cos \theta$ This is obvious geometrically.
- o comp $_{\vec{a}}\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$ Derive this easily using $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

• Vector projection

- o $\operatorname{proj}_{\vec{a}}\vec{b}$ (the projection of \vec{b} onto \vec{a}).
- o proj_{\vec{a}} \vec{b} is the vector component of \vec{b} in the direction of \vec{a}

$$\circ \quad \operatorname{proj}_{\vec{a}} \vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right) \left(\frac{\vec{a}}{|\vec{a}|}\right)$$

•
$$\hat{a} = \left(\frac{\vec{a}}{|\vec{a}|}\right)$$
 gives direction

$$\circ \quad \operatorname{proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

• Vector rejection

- o $\operatorname{proj}_{\vec{a}}^{\perp}\vec{b}$ (the orthogonal projection of \vec{b} onto \vec{a}).
- o $\operatorname{proj}_{\vec{a}}^{\perp} \vec{b}$ is the vector component of \vec{b} orthogonal to \vec{a}
- $\circ |\operatorname{proj}_{\vec{a}}^{\perp} \vec{b}| = \vec{b} \sin \theta$ This is obvious geometrically.
- o $\operatorname{proj}_{\vec{a}}\vec{b} + \operatorname{proj}_{\vec{a}}^{\perp}\vec{b} = \vec{b}$ Draw a right triangle. This is also geometrically obvious.
- \circ $\operatorname{proj}_{\vec{a}}^{\perp}\vec{b} = \vec{b} \operatorname{proj}_{\vec{a}}\vec{b}$

• Gram-Schmidt Process

- o Produce an orthogonal basis from any basis.
- o Steps:
 - Let $S = {\vec{v_1}, \vec{v_2}, ..., \vec{v_n}}$ be any basis for V.
 - Let $\vec{u}_1 = \vec{v}_1$.
 - $\vec{u}_2 = \operatorname{proj}_{\vec{v}_1}^{\perp} \vec{v}_2 = \vec{v}_2 \operatorname{proj}_{\vec{v}_1} \vec{v}_2$
 - $\vec{u}_k = \vec{v}_k (\operatorname{proj}_{\vec{v}_1} \vec{v}_k + \operatorname{proj}_{\vec{v}_2} \vec{v}_k + \dots + \operatorname{proj}_{\vec{v}_{k-1}} \vec{v}_k)$
 - Then $S' = {\vec{u}_1, \vec{u}_2, ..., \vec{u}_n}$ is an orthogonal basis.