SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e^+e^- colliders

Abstract

SPheno is a program that accurately calculates the supersymmetric particle spectrum within a high scale theory, such as minimal supergravity, gauge mediated supersymmetry breaking, anomaly mediated supersymmetry breaking, or string effective field theories. An interface exists for an easy implementation of other high scale models. The program solves the renormalization group equations numerically to two-loop order with user-specified boundary conditions. The complete one-loop formulas for the masses are used which are supplemented by two-loop contributions in case of the neutral Higgs bosons and the μ parameter. The obtained masses and mixing matrices are used to calculate decay widths and branching ratios of supersymmetric particles as well as of Higgs bosons, $b \longrightarrow s\gamma$, $\Delta \rho$ and $(g-2)_{\mu}$. Moreover, the production cross sections of all supersymmetric particle as well as Higgs bosons at e^+e^- colliders can be calculated including initial state radiation and longitud

	2. 1 M. nh. of to a tent of the ship of th	7 7 8 8 10 10
3	Decays of supersymmetric particles and Higgs bosons	11
4	Production of supersymmetric particles and Higgs bosons	13
5	Low Energy Constraints	14
6	Details of the Calculation 6.1 to the details of Yen for Sont Sassan S	14 14 14 18
7	A sample example	19
8	Conclusions	28
\mathbf{A}	Switches	29
В	Input files	29

 $n \in \mathbb{R}^{d}$ [4]. Let $n \in \mathbb{R}$ be the $n \in \mathbb{R}$ be the $n \in \mathbb{R}^{d}$ be a simple $n \in \mathbb{R}^{d}$ be the $n \in \mathbb{R}^{d}$ becaution $n \in \mathbb{R}^{d}$ be the $n \in \mathbb{R}^{d}$ becaution $n \in \mathbb{R}^{d}$ be the $n \in \mathbb{R}^{d}$ becaution $n \in \mathbb{R}^{d}$ beca ne to hoto and an []. he done in a to the total and the total and the total and a total an no firm to me [14], o engh of the start of t of the po A SPhenolis to the structure of the structure o the share the spin net p

in p in n too's e then p form in the property of the property It sup with to on the one of the english on the on a_{μ} as M

in the state of th

po h s m n ef de pep.

SPheno he i n the notation of on son in the spiral tent of the spiral of p que to R (2) [24], R p' ton loop so ton R Yen R in R (2) R pp R R 1 2-loop so ton R 1 R 1 R 2 R 1 R 2 R 1 R 2 R 1 R 2 R 1 R 2 R 2 R 1 R 2 R 2 R 2 R 2 R 2 R 2 R 2 R 2 R 2 R 2 R 3 R 2 R 2 R 3 R 2 R 3 R 2 R 3 R 3 R 4 R 2 R 3 R 3 R 4 R 4 R 5 R 5 R 6 R 7 R 6 R 7 R 6 R 7 R 7 R 8 R 7 R 8 R 8 R 9 R 7 R 8 R 9 R 8 R 9 R 8 R 9 R 9 R 1 R 9 R 1 R 9 R 1 R

¹SPheno stands for **S**upersymmetric **Pheno**menology

$$L_{soft,1} \qquad \frac{1}{2} \left(M_1 \tilde{B} \tilde{B} + M_2 \tilde{W}_a \tilde{W}^a + M_3 \tilde{g}_\alpha \tilde{g}^\alpha \right) + h.c. , \qquad \qquad \checkmark 2 \right)$$

the sale that of a selection of the sele

$$L_{soft,2} - M_{H_1}^2 H_{1a}^* H_1^a - M_{H_2}^2 H_{2a}^* H_2^a - M_{\tilde{L},ij}^2 \tilde{L}_{ia}^* \tilde{L}_j^a - M_{\tilde{E},ij}^2 \tilde{E}_i^* \tilde{E}_j - M_{\tilde{Q},ij}^2 \tilde{Q}_{ia}^* \tilde{Q}_j^a - M_{\tilde{U},ij}^2 \tilde{U}_i^* \tilde{U}_j - M_{\tilde{D},ij}^2 \tilde{D}_i^* \tilde{D}_j$$

en the souph of see the the sent for set

$$L_{soft,3} -\epsilon_{ab} \left(A_{ij}^{L} \tilde{L}_{i}^{a} H_{1}^{b} \tilde{E}_{j}^{*} + A_{ij}^{D} \tilde{Q}_{i}^{a} H_{1}^{b} \tilde{D}_{j}^{*} + A_{ij}^{U} \tilde{Q}_{i}^{b} H_{2}^{a} \tilde{U}_{j}^{*} - B\mu H_{1}^{a} H_{2}^{b} \right) + h.c.$$

2.2 Masses and Mixing Matrices

In the same of the consecutive of the consecutive

$$m_W^2 = \frac{1}{4}g^2v_1^2 + v_2^2$$
, $m_Z^2 = \frac{1}{4}g^2 + g'^2$, $v_1^2 + v_2^2$)

$$m_{u_i} = \frac{\mathbf{I}}{\sqrt{2}} Y_{ii}^U v_2, \qquad m_{d_i} = \frac{\mathbf{I}}{\sqrt{2}} Y_{ii}^D v_1, \qquad m_{l_i} = \frac{\mathbf{I}}{\sqrt{2}} Y_{ii}^L v_1$$
 (6)

han etale one one on one on etale.

$$M_{D,\tilde{\chi}^0} = N^*YN^{\dagger}$$
.

$$\begin{pmatrix} h^0 \\ H^0 \end{pmatrix} \quad \begin{pmatrix} -\frac{1}{3} \operatorname{n} \alpha & \operatorname{o}_3 \alpha \\ \operatorname{o}_3 \alpha & \operatorname{s} \operatorname{n} \alpha \end{pmatrix} \begin{pmatrix} H_1^0 \\ H_2^0 \end{pmatrix}$$

It $m_{h^0} < m_{H^0}$. It can be the state of the state

$$m_{A^0}^2 = B \mu \sin \beta + \rho_- \beta$$
, $m_{H^+}^2 = m_{A^0}^2 + m_W^2$ (12)

ett ! .!.

Nith neton in , It in the trans as it in a

holt fin on each et, e 2 2n et;

$$M_{\tilde{l},i}^{2} \qquad \begin{pmatrix} M_{\tilde{L},ii}^{2} - \left(\frac{1}{2} - s_{W}^{2}\right) c_{2\beta} m_{Z}^{2} + m_{l,i}^{2} & \frac{1}{\sqrt{2}} \left(v_{1} A_{ii}^{L})^{*} - \mu Y_{ii}^{L} v_{2}\right) \\ \frac{1}{\sqrt{2}} \left(v_{1} A_{ii}^{L} - \mu Y_{ii}^{L}\right)^{*} v_{2}\right) & M_{\tilde{E},ii}^{2} - s_{W}^{2} c_{2\beta} m_{Z}^{2} + m_{l,i}^{2} \end{pmatrix}$$

$$m_{\tilde{f}}^2 R_{\tilde{f}} M_{\tilde{f}}^2 R_{\tilde{f}}^{\dagger}$$

High scale models

In the same of th

$$|\mu|^2 = \frac{1}{2} \left[- \ln 2\beta \left(M_{H_2}^2 - \ln \beta - M_{H_1}^2 \log \beta \right) - m_Z^2 \right]. \tag{3}$$

Mo or, 'n all regalt he hard perhology perhology applies not $t \sim -1$ and μ and -4 $\pi \beta$.

2.3.1 Minimal Supergravity

$$M_i \ M_{GUT})$$
 $M_{1/2}$ [19)
 $M_{\tilde{j}}^2 \ M_{GUT})$ M_0^2 [20)
 $A_i \ M_{GUT})$ $A_0 Y_i \ M_{GUT})$

2.3.2 Minimal Supergravity including right handed neutrinos

in the bound of the part of the first of the first of the following parts of the following

$$f(x) = \frac{\mathbf{I} + x}{x^2} \left[\mathbf{I} \circ \mathbf{I} + x \right] - 2^{-1} \left(\frac{x}{\mathbf{I} + x} \right) + \frac{\mathbf{I}}{2}^{-1} \left(\frac{2x}{\mathbf{I} + x} \right) \right]$$

$$+ x = -x$$

epp och matto $A \ll M_M$. As in fine eq. 26) see perty with noted and in the solution of A and A and A are in the solution of A and A are in the s

2.3.4 Anomaly Mediated Supersymmetry Breaking

In engh of the last of the shift of the shif

$$M_j^2 \qquad M_0^2 + \frac{1}{2}\dot{\gamma}_j m_{3/2}^2$$

2.3.5 String Effective Field Theories

2.3.5 String Enective Field Theories

of this none of the string of the

It so that Bollows on the son in [] as if a son OI appears to som . The son of the son

$$M_{i} = -g_{i}^{2}m_{3/2} \left\{ \sqrt{-\frac{1}{3}} \ln \theta + \left[b_{i} + s\sqrt{-\frac{1}{3}} \ln \theta g_{s}^{2} \left(C_{i} - \sum_{j} C_{i}^{j} \right) + 2t \log_{3} \theta G_{2} t \right) \left(\delta_{GS} + b_{i} - 2\sum_{j} C_{i}^{j} + n_{j} \right) \right] / 16\pi^{2} \right\}$$

$$M_{j}^{2} = m_{3/2}^{2} \left\{ \left(\mathbf{I} + n_{j} \log_{3}^{2} \theta \right) + 2\sqrt{-s} \ln \theta \left[\sum_{i} \gamma_{j}^{i} g_{i}^{2} - \frac{1}{2s} \sum_{km} \gamma_{j}^{km} \right] + \gamma_{j} + 2t \log_{3} \theta G_{2} t \right\} \sum_{km} \gamma_{j}^{km} n_{j} + n_{k} + n_{m} + 0$$

$$M_{jkm} = m_{3/2} \left[-\sqrt{-\frac{1}{3}} \ln \theta - 2t \log_{3} \theta n_{j} + n_{k} + n_{m} + 0 G_{2} t \right] + \gamma_{j} + \gamma_{k} + \gamma_{m} \right]$$

$$4)$$

 $s \quad \langle S \rangle^{\frac{1}{2}} = t \quad \text{if } \quad \text{$ findia on on

$$A_{e,n} GUT) \qquad Y_{e,nn} GUT) A_{\tilde{E}_n \tilde{L}_n H_1}$$

$$A_{d,n} GUT) \qquad Y_{d,nn} GUT) A_{\tilde{D}_n \tilde{Q}_n H_1}$$

$$A_{u,n} GUT) \qquad Y_{u,nn} GUT) A_{\tilde{U}_n \tilde{Q}_n H_2}$$

$$(6)$$

In sea of the OII she periffection as the last the sea of the order of

$$M_{i} = -g_{i}^{2} m_{3/2} \left\{ \frac{\sqrt{\frac{\ln \theta}{3}} \ln \theta}{2k_{s\bar{s}}^{1/2}} + \frac{1}{16\pi^{2}} \left[2t \log_{3} \theta G_{2} \sqrt{6_{S} + b_{i}} \right) + b_{i} + \frac{\sqrt{-g_{s}^{2} \ln \theta}}{2k_{s\bar{s}}^{1/2}} \left[C_{i} - \sum_{j} C_{i}^{j} \right] \right\}.$$

$$(8)$$

$$M_i^2 \qquad m_{3/2}^2 \bigg\{ \underbrace{{}_{\mathfrak{S}}^{1} \mathbf{n}^2 \theta + \gamma_i + \frac{\sqrt{\underbrace{{}_{\mathfrak{S}}^{1} \mathbf{n} \theta}}{k_{s\overline{s}}^{1/2}} \bigg[\sum_a \gamma_i^a g_a^2 + \frac{\mathbf{I}}{2} \sum_{jk} \gamma_i^{jk} k_s + k_{\overline{s}} \bigg) \bigg] \bigg\}, \qquad \checkmark 9)$$

$$A_{ijk} \qquad m_{3/2} \left\{ \gamma_i + \gamma_j + \gamma_k - \frac{\sqrt{k_s \ln \theta}}{k_{s\bar{s}}^{1/2}} \right\}$$

$$\begin{array}{lll} -tB) \stackrel{\downarrow}{\circ}_{3} \stackrel{\downarrow}{\circ}_{3} \stackrel{\downarrow}{\circ}_{4} \stackrel{\downarrow}{\bullet}_{4} & \stackrel{\downarrow}{\circ}_{4} \stackrel{\downarrow}{\circ}_{4} & \stackrel{\downarrow}{\circ}_{4} \stackrel{\downarrow}{\circ}_{4} & \stackrel{\downarrow}{\circ}_{4} \stackrel{\downarrow}{\circ}_{4} & \stackrel{\downarrow}{\circ}_{4} &$$

In all the parameters $\tilde{\mu}_i$ has each electric poposition of the $\tilde{\mu}_i$ and $\tilde{\mu}_i$ not the parameters $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and $\tilde{\mu}_i$ and $\tilde{\mu}_i$ are $\tilde{\mu}_i$ and

2.3.6 General High Scale Model

Let J of M then M M of the trip of notation of the property of M and M and M of M and M of M and M and

2.3.7 General MSSM at low energies

at the late of the solution of the late o

Decays of supersymmetric particles and Higgs bosons 3

h po h whet the two-sh po the to-sh lt for we of sp ship to per the set the first of the set the formulation of the set of the set

$$\tilde{f}_{i} \longrightarrow f \tilde{\chi}_{k}^{0}, f' \tilde{\chi}_{l}^{\pm}
\tilde{f}_{i} \longrightarrow \tilde{f}_{j} Z^{0}, \tilde{f}'_{j} W^{\pm}
\tilde{f}_{i} \longrightarrow \tilde{f}_{j} h^{0}, H^{0}, A^{0}), \tilde{f}'_{j} W^{\pm}$$

$$4)$$

for the first post of the term of the post of the post

$$\tilde{l}_i \rightarrow l\tilde{G}$$
 $49)$

the form the the perty of the one of the perty of the original form of the tension of the tensio in se, of the no, an in the no, the following seems of the second second

$$\tilde{\chi}_{i}^{0} \longrightarrow Z^{0} \tilde{\chi}_{j}^{0}, W^{\pm} \tilde{\chi}_{k}^{\mp}$$

$$\tilde{\chi}_{i}^{0} \longrightarrow h^{0}, H^{0}, A^{0}) \tilde{\chi}_{j}^{0}, H^{\pm} \tilde{\chi}_{k}^{\mp}$$

$$\tilde{\chi}_{i}^{0} \longrightarrow f \tilde{f}_{j}, f \tilde{f}_{j}$$

$$\tilde{f}_{j}^{0} = \tilde{f}_{j}^{0} = \tilde{f}_{j}^{$$

$$\tilde{\chi}_{k}^{+} \longrightarrow Z^{0} \tilde{\chi}_{s}^{+}, W^{+} \tilde{\chi}_{j}^{0}
\tilde{\chi}_{k}^{+} \longrightarrow h^{0}, H^{0}, A^{0}) \tilde{\chi}_{s}^{+}, H^{+} \tilde{\chi}_{j}^{0}
\tilde{\chi}_{k}^{+} \longrightarrow f \tilde{f}_{i}^{\prime}$$

in jes _lte_tell_bol of the jern of se in a _tell of of n_lt follown_lt jerge jeljuet:

$$\tilde{\chi}_{i}^{0} \longrightarrow f \bar{f} \tilde{\chi}_{j}^{0}, f f' \tilde{\chi}_{k}^{\mp}$$

$$\tilde{\chi}_{i}^{0} \longrightarrow q \bar{q} \tilde{g}$$

$$\tilde{\chi}_{k}^{+} \longrightarrow f \bar{f} \tilde{\chi}_{s}^{+}, f f' \tilde{\chi}_{j}^{0}$$

$$\tilde{\chi}_{k}^{+} \longrightarrow q q' \tilde{g}$$

$$\tilde{g}$$

$$\tilde{g}$$

$$\tilde{\chi}_i^0 \longrightarrow q \bar{q} \tilde{g}$$
 ~ 7

$$\tilde{\chi}_k^+ \longrightarrow f f \tilde{\chi}_s^+, f f' \tilde{\chi}_j^0$$

$$\tilde{\chi}_k^+ \longrightarrow q \, q' \, \tilde{g}$$
 $\searrow 9$

$$\tilde{\chi}_i^0 \longrightarrow \tilde{\chi}_j^0 \gamma \tag{60}$$

e per let [44] at n 'n de pointit if the hat 'n of f m on, in it is not go of the let in the hold of the hold of the let in the hold of the let in the hold of the let in the hold of the

$$\tilde{\chi}_1^0 \longrightarrow Z^0 \ \tilde{G}$$
 (62)

$$\tilde{\chi}_1^0 \longrightarrow h^0 \tilde{G}$$

in sea of the state of the stat

$$\tilde{g} \longrightarrow q \, \tilde{q}_i$$

Let q u, d, c, s, t, b. A sin, in p_s _lte_tlt q p_s p_s p

$$\tilde{g} \rightarrow \tilde{\chi}_i^0 q \bar{q}$$

$$\tilde{g} \longrightarrow \tilde{\chi}_i^{\pm} q' \bar{q}$$
 (66)

$$\tilde{g} \longrightarrow \tilde{\chi}_{i}^{0} q \bar{q}
\tilde{g} \longrightarrow \tilde{\chi}_{j}^{\pm} q' \bar{q}
\tilde{g} \longrightarrow \bar{b} W^{-} \tilde{t}_{1}, b W^{+} \tilde{t}_{1}^{*}$$

$$\tilde{g} \longrightarrow \bar{b} W^{-} \tilde{t}_{1}, b W^{+} \tilde{t}_{1}^{*}$$

$$\tilde{g} \longrightarrow \bar{b} W^{-} \tilde{t}_{1}, b W^{+} \tilde{t}_{1}^{*}$$

$$\tilde{g} \longrightarrow \bar{b} W^{-} \tilde{t}_{1}, b W^{+} \tilde{t}_{1}^{*}$$

he in pin net ton we, in n [4]. In the ton the

$$\tilde{g} \rightarrow \tilde{\chi}_i^0 g$$
 (68)

in so, of fth of o₃ o₃ o₃ and the following series of the series

$$\phi \longrightarrow f\bar{f}$$
 (69)

$$\phi \longrightarrow \tilde{f}_i \, \tilde{f}_i$$

$$\begin{array}{cccc}
\phi & \longrightarrow & \tilde{f}_i \bar{\tilde{f}}_j \\
\phi & \longrightarrow & \tilde{\chi}_k^0 \tilde{\chi}_l^0
\end{array}$$

$$\begin{array}{ccccc}
70 \\
71 \\
71
\end{array}$$

Let ϕ h^0, H^0, A^0 and f $\nu_i, e, \mu, \tau, u, d, c, s, t, b$. Let f no f no f and f are f on f on f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f and f are f and f are f are f are f and f are f are f and f are f are f are f and f are f are f and f are f and f are f are f are f and f are f are f are f and f are f are f are f are f are f and f are f are f are f are f are f and f are f are f are f are f and f are f are f and f are f

4 Production of supersymmetric particles and Higgs bosons

h po h selet Lt foro n soss stons:

he is a set of [2] for find on politicist, [3] for politicist of the inotation of [49] for the inotation of [49] for the inotation of the inotation of [49] for the inotation of the inotation of [49] for the inotation of the in

Low Energy Constraints 5

h stp sinh -t pe h -t s on ten's ten's ten's eto's and slooping to the harmonic part of ha

Details of the Calculation 6

6.1 First rough calculation of SUSY and Higgs boson masses

In a f to f to f and f

Main loop for the calculation of SUSY and Higgs boson masses

f on 18 [6]

$$m_W^2$$
 $m_Z^2 \rho \left(\frac{\mathbf{I}}{2} + \sqrt{\frac{\mathbf{I}}{4} - \frac{\alpha^{\overline{DR}} m_Z)\pi}{\sqrt{2}G_F m_Z^2 \rho \mathbf{I} - \Delta r}} \right)$ (89)

$$\rho = \frac{1}{I - \Delta \rho}$$

$$\Delta \rho = Re \left(\frac{T_{ZZ} m_Z^2}{\rho m_Z^2} - \frac{T_{WW} m_W^2}{m_W^2} \right)$$

$$90)$$

$$\Delta r \qquad \rho \frac{T_{WW}(0)}{m_W^2} - \frac{T_{ZZ}(m_Z^2)}{m_Z^2} + \delta_{VB}$$

$$(92)$$

$$m_{b',\overline{DR}}(m_Z)$$
 $m_{b,\overline{MS}}(m_Z) \left(\mathbf{I} - \frac{\alpha_s}{\pi} - \frac{2 \alpha_s^2}{72\pi^2} + \frac{4g_2^2}{\mathbf{I} 28\pi^2} - \frac{\mathbf{I} g'^2}{\mathbf{II} 2\pi^2} \right)$

The α_s is in the \overline{DR} ships in the property of the prop

$$m_{b,\overline{DR}}(m_Z) = \frac{m_{b',\overline{DR}}(m_Z)}{1 - \frac{\Delta m_{b,\overline{DR}}(m_Z)}{m_{b,\overline{DR}}(m_Z)}}$$
(94)

in the set of the species of the point a_{33} in the set of the

Calculation of the other observables

him as an in an an and a time of a paint to perform a bean and a time to the time and a paint to perform a point to perform a performance of the p

in the second of the second o

$$C_{\zeta}W^{+}) - \frac{K_{ts}K_{tb}x_{tW}}{4 m_{W}^{2}} \left(\frac{2}{4}F_{1}x_{tW}\right) + F_{2}x_{tW}\right) - \frac{K_{ts}K_{tb}}{4 m_{H^{+}}^{2}} \left[\frac{Y_{t}^{2} \otimes {}^{2}\beta}{4} \left(\frac{2}{4}F_{1}x_{tH^{+}}\right) + F_{2}x_{tH^{+}}\right) - \frac{Y_{b}Y_{t} \otimes {}^{3}\beta}{m_{b}} \left(\frac{2}{4}F_{3}x_{tH^{+}}\right) + F_{4}x_{tH^{+}}\right) - \frac{Y_{b}Y_{t} \otimes {}^{3}\beta}{m_{b}} \left(\frac{2}{4}F_{3}x_{tH^{+}}\right) + F_{4}x_{tH^{+}}\right)$$

$$= \frac{100}{4}$$

$$C_{\zeta}(\tilde{\chi}^{+}) \qquad \sum_{i,j=1}^{2} \frac{K_{ts}K_{tb}}{4 m_{\tilde{t}_{i}}^{2}} \left[C_{R,ij}^{2} \left(\frac{2}{2} F_{2} x_{\tilde{\chi}_{j}^{+} \tilde{t}_{i}} \right) + F_{1} x_{\tilde{\chi}_{j}^{+} \tilde{t}_{i}} \right) \right]$$

$$-C_{L,ij}C_{R,ij}\left(\frac{2}{-}F_4x_{\tilde{\chi}_j^+\tilde{t}_i})+F_3x_{\tilde{\chi}_j^+\tilde{t}_i})\right)\right]$$

$$C_{L,ij} = Y_b R_{\tilde{t},i1} U_{j2}$$
 $C_{R,ij} = -g R_{\tilde{t},i1} V_{j1} + Y_t R_{\tilde{t},i2} V_{j2}$
 $C_{R,ij} = 0$

if Y_i and Y_i are property of X_i and X_i and X_i are the X_i and X_i and X_i are property of X_i and X_i

$$BR \ b \ s\gamma) \ 1.2 \ 8+0. \ 82r7^2+0.01 \ r_8^2+1. \ 9 \ r_7+0.161 r_8+0.08 \ r_7 r_8$$

$$(4)$$

$$r_7 \ C_7/C_7 W^+) \ cn \ r_8 \ C_8/C_8 W^+). \ ln \ ds \ r_8 \ r_8 \ r_8 \ r_8 \ r_8 \ r_8 r_9 \ r_8 \ r_$$

```
MSMData en to permote the permote that the permote the permote that the
                                                                                                 complex(dp) :: phase_mu
                                                                                                 real(dp) :: tanb
    -4n \beta
                                                                                                 complex(dp) :: M(3)
    M_1, M_2, M_3
    M_E^2, M_L^2
                                                                                                 complex(dp), dimension(3,3) :: M_E, M_L
                                                                                                 complex(dp), dimension(3,3) :: Me_D, Me_Q, Me_U
     M_D^2, M_O^2, M_U^2
     A_l, A_d, \dot{A}_n
                                                                                                 complex(dp), dimension(3,3) :: A_l, A_d, A_u
                                                                                                 complex(dp) :: mu
     \mu
    B\mu
                                                                                                 complex(dp) :: B
                                                                                                 real(dp) :: M2_H(2)
     M_H^2
    g', g
                                                                                                 real(dp) :: gp, g
    Y_l, Y_d, Y_u
                                                                                                 complex(dp), dimension(3,3) :: Y_1, Y_d, Y_u
                                                                                                 real(dp) :: vevSM(2)
     v_1, v_2
   g', g, g_s
                                                                                                  real(dp) :: gauge(3)
```

7 A sample example

Call ReadingData(kont)

Les Houches. in App in

Bfo with at some the CalculateSpectrum, which p form at we send at persons at the person of the send at loop to the send at the person of the send at loop to the send at the person of the send at loop to th

- ! Call SetGUTScale(2.e16_dp) ! please put the GUT scale
- ! Call SetRGEScale(1.e3_dp**2) ! please put the scale M_EWSB squared

MSSMData en la companion de la Ve to the same CalculateSpectrum h • • t pan tatt doll th as s/th fin th at _o_ten na $e^{\varphi_{\tilde{g}}}$ p) :: • h. $m_{\tilde{\chi}_i^+}$ U, V $m_{\tilde{\chi}^0_i}$ N m_{h^0}, m_{H^0} R_{α} m_{G^0}, m_{A^0} R_{β} m_{G^+}, m_{H^+} R'_{β} $m_{\tilde{\nu}}$ $R_{\tilde{\nu}}$ $m_{\tilde{i}}$ $R_{\tilde{l}}$ $m_{\tilde{u}}$ $R_{\tilde{u}}$ $m_{\tilde{d}}$ $R_{\tilde{d}}$

delta = 1.e-4_dp WriteOut = .False.

 $n_run = 20$

If (kont. Eq. 0) Call CalculateSpectrum(n_run, delta, WriteOut, kont, tanb & vevSM, mC, U, V, mN, N, m60, m602, RS0, mP0, mP02, RP0, m6pm, m6pm2 & , RSpm, m6down, m6down2, RSdown, m6up, m6up2, RSup, m6lepton, m6lepton2 & & , RSlepton, m6neut, m6neut2, RSneut, m6lu, PhaseGlu, gauge, Y_l, Y_d & , Y_u, Mi, A_l, A_d, A_u, M2_E, M2_L, M2_D, M2_Q, M2_U, M2_H, mu, B & , A_l_save, A_u_save, A_d_save, m_GUT)

h m ann of the out of the angle of the angle

- delta: p is _ lt qu' l'atte p ; on on _ lt in a 33 3. f _ lt in esh d' latte delta, _ lt ou h Sugra! e 3 _ lt _ t a _ ton l'oop.
- m_GUT: _t would filt god h _t h h n would a won tong a in post.
- kont : A & I had opo of the period of the
- WriteOut: f -t, 3 -t True. _t n n th -th -th -th -th -th -th -th -th -th ாள் நீ Messages. out.
- n_run p is _ lt n e in e n in f _ t = ton, of _ lt n e n loop. A e n n \ m \ n n _ lt n _ e _ lt n t n _ run p j on del ta he, no_it n e in _ lt n _ run '_t & tn.

No the theps have a sum in part of the theorem in [2]. In part of the property of the propert

If $((L_BR). And. (kont. eq. 0))$ Then

 $epsI = 1.e-5_dp$

 $deltaM = 1.e-3_dp$

CalcTBD = .False.

 $ratioWoM = 0._dp$

Couplings_At_M = . True.

- Call CalculateBR(gauge, mGlu, PhaseGlu, mC, U, V, mN, N, mSneut
- & , m6lepton, RSlepton, m6up, RSup, m6down, RSdown, m60, RS0
 - & , mPO, RPO, mSpm, RSpm, Y_d, A_d, Y_l, A_l, Y_u, A_u, mu, vevSM

& &

&

&

&

- & , Fgmsb, m82 , epsI, deltaM, ratioWbM , CalcTBD, Couplings_At_M
- &, kont, gP_Sl, gT_Sl, BR_Sl, gP_Sn, gT_Sn, BR_Sn, gP_Sd, gT_Sd, BR_Sd &
- &
- & , gP_Su, gT_Su, BR_Su, gP_C, gT_C, BR_C, gP_N, gT_N, BR_N
- & , gP_Glu, gT_Glu, BR_Glu, gP_P0, gT_P0, BR_P0, gP_S0, gT_S0, BR_S0
- & , gP_Spm, gT_Spm, BR_Spm)

End If

Vert 1 state of the state of th

en the original state of the s

₩ Q	\tilde{l}	$ ilde{ u}$	$ ilde{d}$	\tilde{u}	$ ilde{t}_1$
$\tilde{f}_i \longrightarrow f \tilde{\chi}_k^0$	1-4	1-4	1 -4	1 -4	1-4
$\tilde{f}_i \longrightarrow f' \tilde{\chi}_j^{\pm}$	-6	-6	-6	-6	-6
$\tilde{f}_i \longrightarrow f \tilde{g}$	-	-	7	7	7
$\tilde{f}_i \longrightarrow W^{\pm} \tilde{f}'_i$	7	7-8	8-9	8-9	8-9
$\tilde{f}_i \longrightarrow H^{\pm} \tilde{f}_i'$	8	9-10	1 ()-1 1	1 ()-1 1	1 ()-1 1
$\tilde{f}_2 \longrightarrow Z^0 \tilde{f}_1$	9	-	1 2	1 2	-
$\tilde{f}_2 \longrightarrow A^0 \tilde{f}_1$	10	-	1	1	-
$\tilde{f}_2 \longrightarrow h^0 \tilde{f}_1$	11	-	14	14	-
$ \frac{\tilde{f}_{i}}{\tilde{f}_{i}} \rightarrow \tilde{f} \tilde{\chi}_{k}^{0} $ $ \tilde{f}_{i} \rightarrow f' \tilde{\chi}_{j}^{\pm} $ $ \tilde{f}_{i} \rightarrow f'' \tilde{\chi}_{j}^{\pm} $ $ \tilde{f}_{i} \rightarrow W^{\pm} \tilde{f}'_{j} $ $ \tilde{f}_{i} \rightarrow W^{\pm} \tilde{f}'_{j} $ $ \tilde{f}_{i} \rightarrow H^{\pm} \tilde{f}'_{j} $ $ \tilde{f}_{2} \rightarrow A^{0} \tilde{f}_{1} $ $ \tilde{f}_{2} \rightarrow h^{0} \tilde{f}_{1} $ $ \tilde{f}_{2} \rightarrow H^{0} \tilde{f}_{1} $ $ \tilde{f}_{2} \rightarrow \tilde{f}_{1} $	12	-	1	1	-
$l_1 \longrightarrow lG$	1	-	-	-	-
$ \begin{array}{cccc} \hline t_1 \longrightarrow c\tilde{\chi}_{1,2}^0 \\ \tilde{t}_1 \longrightarrow W^+ \bar{b}\tilde{\chi}_1^0 \\ \tilde{t}_1 \longrightarrow \bar{b}e^+ \tilde{\nu}_e \\ \tilde{t}_1 \longrightarrow \bar{b}\mu^+ \tilde{\nu}_\mu \\ \tilde{t}_1 \longrightarrow \bar{b}\nu_e \tilde{e}_{1,2}^+ \\ \tilde{t}_1 \longrightarrow \bar{b}\nu_\mu \tilde{\mu}_{1,2}^+ \\ \tilde{t}_1 \longrightarrow \bar{b}\nu_\mu \tilde{\mu}_{1,2}^+ \\ \tilde{t}_1 \longrightarrow \bar{b}\nu_\tau \tilde{\tau}_{1,2}^+ \end{array} $	-	-	-	-	- 6
$\tilde{t}_1 \longrightarrow W^+ \bar{b} \tilde{\chi}_1^0$	-	-	-	-	7
$\tilde{t}_1 \longrightarrow \bar{b}e^+\tilde{\nu}_e$	-	-	-	-	8
$\tilde{t}_1 \longrightarrow \bar{b}\mu^+\tilde{\nu}_\mu$	-	-	-	-	9
$\tilde{t}_1 \longrightarrow \bar{b}\tau^+\tilde{\nu}_{\tau}$	-	-	-	-	60
$\tilde{t}_1 \longrightarrow \bar{b}\nu_e \tilde{e}_{1,2}^+$	-	-	-	-	61 - 6 2
$\tilde{t}_1 \longrightarrow \bar{b} \nu_{\mu} \tilde{\mu}_{1,2}^+$	-	-	-	-	6 -64
$\tilde{t}_1 \longrightarrow \bar{b}\nu_{\tau}\tilde{\tau}_{1,2}^+$	ı	ı	ı	ı	6 -66

4: Co pon n, j to n to son n s son n s son no po to the to son n n son n s

ıħ or	in w of P_C_BR_C)
$\tilde{\chi}_i^+ \longrightarrow \tilde{l}_{m,k}^+ \nu_m$	1-6
$\tilde{\chi}_i^+ \longrightarrow \tilde{\nu}_m l_m^+$	7-9
$ \tilde{\chi}_{i}^{+} \longrightarrow \tilde{d}_{m,k} u_{m} \tilde{\chi}_{i}^{+} \longrightarrow \tilde{u}_{m,k} \bar{d}_{m} \tilde{\chi}_{i}^{+} \longrightarrow \tilde{\chi}_{j}^{0} W^{+} \tilde{\chi}_{i}^{+} \longrightarrow \tilde{\chi}_{j}^{0} H^{+} \tilde{\chi}_{2}^{+} \longrightarrow \tilde{\chi}_{1}^{+} Z^{0} \tilde{\chi}_{2}^{+} \longrightarrow \tilde{\chi}_{1}^{+} A^{0} $	1 ()-1
$\tilde{\chi}_i^+ \longrightarrow \tilde{u}_{m,k} \bar{d}_m$	I 6-2I
$\tilde{\chi}_i^+ \longrightarrow \tilde{\chi}_i^0 W^+$	22-2
$\tilde{\chi}_i^+ \longrightarrow \tilde{\chi}_i^0 H^+$	26-29
$\tilde{\chi}_2^+ \longrightarrow \tilde{\chi}_1^+ Z^0$	0
$\tilde{\chi}_2^+ \longrightarrow \tilde{\chi}_1^+ A^0$	1
$\tilde{\chi}_2^+ \longrightarrow \tilde{\chi}_1^+ h^0$	2
$\begin{array}{ccc} \tilde{\chi}_{2}^{+} \longrightarrow \tilde{\chi}_{1}^{+} h^{0} \\ \underline{\tilde{\chi}_{2}^{+}} \longrightarrow \tilde{\chi}_{1}^{+} H^{0} \\ \hline \tilde{\chi}_{i}^{+} \longrightarrow \tilde{\chi}_{j}^{0} u_{m} d_{m} \\ \tilde{\chi}_{i}^{+} \longrightarrow \tilde{\chi}_{j}^{0} l_{m}^{+} \nu_{m} \\ \tilde{\chi}_{i}^{+} \longrightarrow \tilde{g} u_{m} \bar{d}_{m} \end{array}$	
$\tilde{\chi}_i^+ \longrightarrow \tilde{\chi}_j^0 u_m d_m$	64-7
$\tilde{\chi}_i^+ \longrightarrow \tilde{\chi}_j^0 l_m^+ \nu_m$	76 -87
$\tilde{\chi}_i^+ \longrightarrow \tilde{g} u_m \bar{d}_m$	88-90
$\tilde{\chi}_2^+ \longrightarrow \tilde{\chi}_1^+ u_m \bar{u}_m$	91 -9
$\tilde{\chi}_2^+$ $\tilde{\chi}_1^+ d_m d_m$	94-96
$ \tilde{\chi}_{2}^{+} \longrightarrow \tilde{\chi}_{1}^{+} l_{m} l_{m}^{+} $ $ \tilde{\chi}_{2}^{+} \longrightarrow \tilde{\chi}_{1}^{+} l_{m} l_{m}^{+} $	97-99
$\tilde{\chi}_2^+ \longrightarrow \tilde{\chi}_1^+ \nu_m \bar{\nu}_m$	100-102

h n = t_3 t_3 t_4 t_5 t_5 t_5 t_5 t_6 t_6

If $((L_CS)$ and (kont. eq. 0)) then

Call CalculateCrossSections(Ecms, Pm, Pp, ISR &

- & , nSup, RSup, mf_u, nSdown, RSdown, mf_d, mglu &
- & , SigSup, SigSdown, m6lepton, R8lepton &
- &, mSneut, RSneut, SigSle, SigSn, mC, U, V, mN, N &
- &, SigC, SigChiO, nSO, RSO, vevSM, nPO, RPO, nSpm &
- & , RSpm, SigSO, SigSP, SigHp)

End If

ff _lt follo in dillibration tong input; n did:

- Ecns: _h , n_t on an n of _h on
- Pm, Pp: d of po's ston of the name in the post ton, sp the in
- ISR: 'o' ye' 'e' 'e' ', 'f . TRUE. _t n'n' te' 3 te t e' e ton' 3 te n'n de 270 un te'n _t n _ _t f on ute 3 ' o n'n [4]

: Co pon n, l to n.t., son n', son ute no pett to the entrone et s. t. en n'n et s. en n'n en son ute et s. et s. en n'n

nh o	n of p_N_BR_N)
$\tilde{\chi}_i^0 \longrightarrow \tilde{l}_{m,k}^+ l_m$	1-12
$\tilde{\chi}_i^0 \longrightarrow \tilde{\nu}_m \nu_m$	1 - 1 8
$ ilde{\chi}^0_i$ $ ightharpoonup ar{ ilde{u}}_{m,k} u_m$	19-0
$ \tilde{\chi}_{i}^{0} \longrightarrow \tilde{\bar{u}}_{m,k} u_{m} \\ \tilde{\chi}_{i}^{0} \longrightarrow \tilde{\bar{d}}_{m,k} \bar{d}_{m} \\ \tilde{\chi}_{i}^{0} \longrightarrow \tilde{\chi}_{j}^{\pm} W^{\mp} $	1 -42
$\tilde{\chi}_i^0 \longrightarrow \tilde{\chi}_i^{\pm} W^{\mp}$	4 -46
$\tilde{\chi}_i^0 \longrightarrow \tilde{\chi}_i^{\pm} H^{\mp}$	47- 0
$\tilde{\chi}_i^0 \longrightarrow \tilde{\chi}_i^0 Z^0$	1 -24+ ·)
$\tilde{\chi}_i^0 \longrightarrow \tilde{\chi}_i^0 A^0$	2 +) 2 +2)
$\tilde{\chi}_i^0 \longrightarrow \tilde{\chi}_i^0 h^0$	26+)- 22+ ')
$ \tilde{\chi}_{i}^{0} \longrightarrow \tilde{\chi}_{j}^{\pm} H^{\mp} $ $ \tilde{\chi}_{i}^{0} \longrightarrow \tilde{\chi}_{j}^{0} Z^{0} $ $ \tilde{\chi}_{i}^{0} \longrightarrow \tilde{\chi}_{j}^{0} A^{0} $ $ \tilde{\chi}_{i}^{0} \longrightarrow \tilde{\chi}_{j}^{0} h^{0} $ $ \tilde{\chi}_{i}^{0} \longrightarrow \tilde{\chi}_{j}^{0} H^{0} $	$(27+^{1})-21+4^{1}$
$\tilde{\chi}_i^0 \longrightarrow \gamma \tilde{G}$	6
$\tilde{\chi}^0_i \longrightarrow Z^0 \tilde{G}$	6 4
$\tilde{\chi}_i^0 \longrightarrow h^0 \tilde{G}$	6
$ \begin{array}{cccc} \widetilde{\chi}_{i}^{0} & \xrightarrow{\gamma} \widetilde{G} \\ \widetilde{\chi}_{i}^{0} & \xrightarrow{Z^{0}} \widetilde{G} \\ \widetilde{\chi}_{i}^{0} & \xrightarrow{h^{0}} \widetilde{G} \\ \widetilde{\chi}_{i}^{0} & \xrightarrow{\gamma} \widetilde{\chi}_{j}^{0} \\ \widetilde{\chi}_{i}^{0} & \xrightarrow{\gamma} \widetilde{\chi}_{j}^{j} q_{m} \vec{q}'_{m} \\ \widetilde{\chi}_{i}^{0} & \xrightarrow{\chi}_{j}^{\pm} l_{m}^{\mp} \nu_{m} \\ \widetilde{\chi}_{i}^{0} & \xrightarrow{\zeta}_{0}^{\pm} l_{m}^{\mp} \nu_{m} \\ \widetilde{\chi}_{i}^{0} & \xrightarrow{\zeta}_{0}^{0} q_{m} \vec{u}_{m} \end{array} $	6 + J
$\tilde{\chi}_i^0 \longrightarrow \tilde{\chi}_j^{\pm} q_m \bar{q}_m'$	69 - 80
$\tilde{\chi}_i^0 \longrightarrow \tilde{\chi}_j^{\pm} l_m^{\mp} \nu_m$	8 1 - 92
$\tilde{\chi}_i^0 \longrightarrow \tilde{G} u_m \bar{u}_m$	9 - 9
$\tilde{\chi}_i^0 \longrightarrow \tilde{G} d_m \bar{d}_m$	96 - 98
$\tilde{\chi}_{i>1}^0 \longrightarrow \tilde{\chi}_1^0 u_m \bar{u}_m$	99 - 101
$\tilde{\chi}_{i>1}^0 \longrightarrow \tilde{\chi}_1^0 d_m d_m$	102 - 104
$\tilde{\chi}_{i>1}^0 \longrightarrow \tilde{\chi}_1^0 l_m^+ l_m^-$	10 -107
$\tilde{\chi}_{i>1}^0 \longrightarrow \tilde{\chi}_1^0 \nu_m \bar{\nu}_m$	108 - 110
$\tilde{\chi}_{i>2}^0 \longrightarrow \tilde{\chi}_2^0 u_m \bar{u}_m$	111 - 11
$\tilde{\chi}_{i>2}^0 \longrightarrow \tilde{\chi}_2^0 d_m \bar{d}_m$	114 - 116
$\tilde{\chi}_{i>2}^{0} \longrightarrow \tilde{\chi}_{2}^{0} l_{m}^{+} l_{m}^{-}$	117 - 119
$\tilde{\chi}_{i>2}^0 \longrightarrow \tilde{\chi}_2^0 \nu_m \bar{\nu}_m$	1 20 - 1 22
$\tilde{\chi}_4^0 \longrightarrow \tilde{\chi}_3^0 u_m \bar{u}_m$	12 -12
$\tilde{\chi}_{4}^{0} \longrightarrow \tilde{\chi}_{3}^{0} d_{m} \bar{d}_{m}$	126 - 128
$\tilde{\chi}_4^0 \longrightarrow \tilde{\chi}_3^0 l_m^+ l_m^-$	129 - 1 1
$\tilde{\chi}_4^0 \longrightarrow \tilde{\chi}_3^0 \nu_m \bar{\nu}_m$	1 2 - 1 4

<u>₩</u> 8	in
$\tilde{g} \longrightarrow \tilde{d}_{m,k} d_m$	1-12
$\tilde{g} \longrightarrow \tilde{u}_{m,k} \bar{u}_m$	1 -24
$\tilde{g} \longrightarrow \tilde{t}_1 \bar{c}$	2 -26
$\tilde{g} \longrightarrow \gamma \tilde{\chi}_j^0$	2 6 + J
$\tilde{g} \longrightarrow \tilde{\chi}_1^0 u_m \bar{u}_m$	I -
$\tilde{g} \longrightarrow \tilde{\chi}_1^0 d_m \bar{d}_m$	4- 6
$\tilde{g} \longrightarrow \tilde{\chi}_2^0 u_m \bar{u}_m$	7- 9
$\tilde{g} \longrightarrow \tilde{\chi}_2^0 d_m \bar{d}_m$	40-42
$\tilde{g} \longrightarrow \tilde{\chi}_3^0 u_m \bar{u}_m$	4 -4
$\tilde{g} \longrightarrow \tilde{\chi}_3^0 d_m \bar{d}_m$	46-48
$\tilde{g} \longrightarrow \tilde{\chi}_4^0 u_m \bar{u}_m$	49- I
$\tilde{g} \longrightarrow \tilde{\chi}_4^0 d_m \bar{d}_m$	2- 4
$\tilde{g} \longrightarrow \tilde{\chi}_i^{\pm} q_m \bar{q}_m'$	-66
$\tilde{g} \longrightarrow \tilde{t}_i W^- \bar{b}$	67-6 8

 γ b .

m o	h^0	H^0	A^0	n o	h^0	H^0	A^0
$\phi \longrightarrow l_m^+ l_m^-$	1 -	1 -	1 -	$H^0 \longrightarrow Z^0 Z^0$	-	6	1
$\phi \longrightarrow d_m \bar{d}_m$	4-6	4-6	4-6	$H^0 \longrightarrow W^+W^-$	-	64	-
$\phi \longrightarrow u_m \bar{u}_m$	7-9	7-9	7-9	$H^0 \longrightarrow h^0 h^0$	-	70	-
$H^0 \longrightarrow \tilde{e}_1^+ \tilde{e}_1^-$	-	10	-	$A^0 \longrightarrow h^0 Z^0$	-	-	6
$\phi \longrightarrow \tilde{e}_1^{\mp} \tilde{e}_2^{\pm}$	-	11-12	11-12	$h^0 \longrightarrow W^+W^{-*}$	70	-	-
$H^0 \longrightarrow \tilde{e}_2^+ \tilde{e}_2^-$	-	1	-	$h^0 \longrightarrow W^{+*}W^-$	71	-	-
$H^0 \longrightarrow \tilde{\mu}_1^+ \tilde{\mu}_1^-$	-	14	-	$h^0 \longrightarrow Z^0 Z^{0*}$	72	-	-
$\phi \longrightarrow \tilde{\mu}_1^{\mp} \tilde{\mu}_2^{\pm}$	-	1 -16	1 -16	$\phi \longrightarrow gg$	80	80	-
$H^0 \longrightarrow \tilde{\mu}_2^+ \tilde{\mu}_2^-$	-	17	-				
$H^0 \longrightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-$	-	18	-				
$\phi \longrightarrow \tilde{\tau}_1^{\mp} \tilde{\tau}_2^{\pm}$	-	1 9-20	1 9-20				
$H^0 \longrightarrow \tilde{\tau}_2^+ \underline{\tilde{\tau}_2}^-$	-	2 1	-				
$H^0 \longrightarrow \tilde{\nu}_m \overline{\tilde{\nu}}_m$	-	$2^{\mathbf{I}} +_{\mathbf{ih}}$	-				
$H^0 \longrightarrow d_1^+ d_1^-$	-	2	-				
$\phi \longrightarrow \tilde{d}_1^{\mp} \tilde{d}_2^{\pm}$	-	26-27	2 -24				
$H^0 \longrightarrow \tilde{d}_2^+ \tilde{d}_2^-$	-	28	-				
$H^0 \longrightarrow \tilde{s}_1^+ \tilde{s}_1^-$	-	29	-				
$\phi \longrightarrow \tilde{s}_1^{\mp} \tilde{s}_2^{\pm}$	-	()- I	27-28				
$H^0 \longrightarrow \tilde{s}_2^+ \tilde{s}_2^-$	-	2	-				
$H^0 \longrightarrow \tilde{b}_1^+ \tilde{b}_1^-$	-		-				
$\phi \longrightarrow \tilde{b}_1^{\mp} \tilde{b}_2^{\pm}$	-	4-	1-2				
$H^0 \longrightarrow \tilde{b}_2^+ \tilde{b}_2^-$	-	6	-				
$H^0 \longrightarrow \tilde{u}_1^+ \tilde{u}_1^-$	-	7	-				
$\phi \longrightarrow \tilde{u}_1^{\mp} \tilde{u}_2^{\pm}$	-	8-9	- 6				
$H^0 \longrightarrow \tilde{u}_2^+ \tilde{u}_2^-$	-	40	-				
$H^0 \longrightarrow \tilde{c}_1^+ \tilde{c}_1^-$	-	41	-				
$\phi \longrightarrow \tilde{c}_1^{\mp} \tilde{c}_2^{\pm}$	-	42-4	9-40				
$H^0 \longrightarrow \tilde{c}_2^+ \tilde{c}_2^-$	-	44	-				
$H^0 \longrightarrow \tilde{t}_1^+ \tilde{t}_1^-$	-	4	-				
$\phi \longrightarrow \tilde{t}_1^{\mp} \tilde{t}_2^{\pm}$	-	46-47	4 -44				
$H^0 \xrightarrow{\tilde{t}_2^+} \tilde{t}_2^-$	-	48	-				
$\phi \longrightarrow \tilde{\chi}_r^0 \tilde{\chi}_s^0 $ $\qquad s$	49- 8	49- 8	46-				
$\phi \longrightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$	9	9	6				
$\phi \longrightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$	60-61	60-61	7- 8				
$ \phi \longrightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \phi \longrightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\pm} \phi \longrightarrow \tilde{\chi}_2^+ \tilde{\chi}_2^- $	6 2	6 2	9				

8: Co spon not to not in some the state of the spon in some that the state of the spon in some that the spon in some the spon in some that the spon in som

nh o	n »
$H^+ \longrightarrow l_m^+ \nu_m$	Ĭ -
$H^+ \longrightarrow u_m \bar{d}_m$	4-6
$H^+ \longrightarrow \tilde{e}_i^+ \tilde{\nu}_e$	7-8
$H^+ \longrightarrow \tilde{\mu}_i^+ \tilde{\nu}_\mu$	9-10
$H^+ \longrightarrow \tilde{\tau}_i^+ \tilde{\nu}_{\tau}$	11-12
$H^+ \longrightarrow \tilde{u}_i \overline{\tilde{d}}_j$	12 + 2 * J - 1) + 1
$H^+ \longrightarrow \tilde{c}_i \overline{\tilde{s}}_j$	16 + 2*(-1) + 1
$H^+ \longrightarrow \tilde{t}_i \overline{\tilde{b}}_j$	(20 + 2*) - 1) + 1
$H^+ \longrightarrow \tilde{\chi}_r^+ \tilde{\chi}_s^0$	24 + 4* $-1) + 3$
$H^+ \longrightarrow h^0 W^+$	4

9: Co pon nyl to n to po dyton o o so ston, en to still state n to po m.

p o , 33	o ten na en te
$e^+e^- \longrightarrow \tilde{u}_i \tilde{u}_j$	p) :: ' (p,6,6)
$e^+ e^- \longrightarrow \tilde{d}_i \tilde{d}_j$	p) :: ' • o n 6,6)
$e^+e^- \longrightarrow \tilde{l}_i \tilde{l}_j$	(c) p) :: 1 (6,6)
$e^+ e^- \longrightarrow \tilde{\nu}_i \tilde{\nu}_j$	p) :: 1 n 5,6)
$e^+e^- \longrightarrow \tilde{\chi}_k^0 \tilde{\chi}_n^0$	(CFQ 4,4)
$e^+e^- \longrightarrow \tilde{\chi}_r^+ \tilde{\chi}_s^-$	p) :: 1,4,4)
$e^+e^- \longrightarrow h^0 Z, H^0 Z$	(C) p) :: (C) 2)
$e^+ e^- \longrightarrow h^0 A^0, H^0 A^0$	(p) :: () (2)
$e^+e^- \rightarrow H^+H^-$	(p) :: * (p

! output according to SUSY Les Houches Accord

- Call LesHouches_Out(HighScaleModel, M_GUT, BRbtosgamma, a_mu, Delta_Rho &
 - &, Ecms, Pm, Pp, ISR, SigSup, SigSdown, SigSle, SigSn, SigChiO
 - & , SigC, SigSO, SigSP, SigHp)

! output according to orginal SPheno style

- Call WriteOutPutO(11, kont, HighScaleModel, M_GUT, BRbtosgamma, a_mu
 - &, Delta_Rho, Ecms, Pm, Pp, ISR, SigSup, SigSdown, SigSle, SigSn &
 - & , SigChiO, SigC, SigSO, SigSP, SigHp)

call closing()! closes the files

8 Conclusions

An perfection. It is we can of the perfect of the property of the perfect of the

Acknowledgments

out then B. Allength, A. Dioust en . If o is so on on the of the so of the solution of the solution of the number of the number of the solution of the solution of the number of the solution of the

An person of resolution of the solution of the

A Switches

In the spp n and the specific that the specific po m. In the specific policy pol

1. h / to a set M_{EWSB} , M_{EWSB} , M_{EWSB} , M_{EWSB} M_{EWSB} M

Call SetRGEScale(1.e3_dp**2)

2. h h h n g, h _ lt | oun e g on _ ton, of _ lt _ h o g is g of _ lt _ h o g of _ lt _ h o

Call SetGUTScale(2.e16_dp)

In n of the stone print g_s with the next g_1 and g_2 in the stant g_2 in the stant g_2 in the stant g_3 in the stant g_2 in the stant g_3 in the st

test = SetStrictUnification(.TRUE.)

B Input files

B.1 Control.in

h st on the nt sa ho h to !:

0 ! ErrorLevel

. True.! Calculation of branching ratios. True.! Calculation of cross sections

h with nho e _h fett_twith nh _h po h en e the fit _h m Control.in no_to _n_t f _k ErrorLevel nh _n h en [-2,2] h _h nh _s o _spon _d_h fo'lo n h he for d_h po h :

-2 o no_to 'n_t, o n'n

-1 o no to nt nt

I to the feet and

2 to ten ne of e enn

A len'n ball a lift e sure to unphrish of enth ball politics on the lift and the sure to t

B.2 CrossSections.in

h st on in for n t a hond to

500. ! c.ms. energy in GeV

l degree of longitudinal polarization of electrons
degree of longitudinal polarization of positrons
rue.
calculation of initial state radiation if .TRUE.

B.3 HighScale.in

in lt son in the inputition of the hold of a son ton. In paragram on the son in the highscale in an in in the hold of the son in the highscale in the high of the

B.3.1 mSUGRA

nSugra

250.	! M_1/2
100.	! M_0
- 100.	! A_0
10.	! tan(beta)
1.	! sign of mu
. TRUE.	! if 2-loop RGEs should be used

B.3.2 mSUGRA including right handed neutrinos

```
In this is on a state of a specific sp
```

nSugra

250 .	! M_1/2
100.	! M_0
-100.	! A_0
10.	! tan(beta)
1.	! sign of mu
1. e14	! m_nu_R
1. e-14 3. e-12 0. 06e-9	! m_nu_i
. TRUE.	! if 2-loop RGEs should be used

B.3.3 GMSB

GMSB

100000.	! Lambda
200000.	! M_M
1	! N_5
0	! N_10
0.	! A0
15.	! tan(beta)
1.	! sign of mu
. TRUE.	! if 2-loop RGEs should be used

B.3.4 AMSB

h in p'm net A^{M} B 3 ne o has a $t^{1/4}$ for the $t^{1/4}$ on $t^{1/4}$ and $t^{$

AMSB ! model 60000. ! M_3/2 450. ! M_0 10. ! tan(beta) 1. ! sign of mu

. TRUE. ! if 2-loop RGEs should be used

B.3.5 String I

If the property of the second second

String_0I

 $! M_3/2$ **180**. **14.0** ! <t> ! g_s^2 0.5 0.9 ! sin^2(theta) ! delta_GS 0. ! n E n L -1 -3 1 - 2 0! n_D n_U n_Q -1 -1 ! n_H1 n_H2 **10**. ! tan(beta) - 1. ! phase(mu) . TRUE. ! if 2-loop RGEs should be used

B.3.6 String II

5. ! tan(beta)
1. ! phase(mu)
. TRUE. ! if 2-loop RGEs should be used

en en

String_OIIb

300. ! M_3/2
14.6 ! <t>
0.5 ! g_s^2
0.9 ! sin^2(theta)
0. ! delta_GS
1. ! tan(beta)
1. ! phase(mu)

. TRUE. ! if 2-loop RGEs should be used

B.3.7 SUGRA

Sugra

480. 300. 300. $! M_1/2_i$ 150. 150. 150. ! MO_E_ii 150. 150. 150. ! MO_L_ii **150. 150. 150.** ! MO_D_ii 150. 150. 150. ! MO_Q_ii 150. 150. 150. ! MO_U_ii **150. 150.** ! MD_H_i 0. 0. 0. ! AO_u_ii 0. 0. 0. ! A0 d ii 0. 0. 0. ! A0_e_ii **10**. ! tan(beta) ! phase(mu) 1.

. TRUE. ! if 2-loop RGEs should be used

B.3.8 MSSM

h in put fit is a form that the state of th

```
MSSM
 99. 13 192. 74 580. 51
                                                                                                                                                                                                                                                                                                                                            ! M<sub>1</sub> M<sub>2</sub> M<sub>3</sub>
                                                                                                                                                                                                                                                                                                                                             ! MEi
  136. 23 136. 23 133. 55
  196. 64 196. 64 195. 75
                                                                                                                                                                                                                                                                                                                                             ! ML i
 519. 53 519. 53 516. 86
                                                                                                                                                                                                                                                                                                                                            ! M_D_i
 539.86 539.86 495.91
                                                                                                                                                                                                                                                                                                                                             ! MQi
 521.66 521.66 424.83
                                                                                                                                                                                                                                                                                                                                             ! MUi
 0. 0. -510.01
                                                                                                                                                                                                                                                                                                                                             ! A_u
 0. 0. -772.66
                                                                                                                                                                                                                                                                                                                                             ! A d
 0. 0. -254.20
                                                                                                                                                                                                                                                                                                                                             ! A e
 10. 454.65
                                                                                                                                                                                                                                                                                                                                             ! tan(beta) Q
                                                                                                                                                                                                                                                                                                                                             ! mu m_A
  352.39 393.63
 in the state of MSM ree is a state of MSSM that is a second of the second of the second of the second of the second of second 
  10.
                                                                                                                                                                                                                                                                                                                                             ! tan(beta)
 352.39 393.63
                                                                                                                                                                                                                                                                                                                                              ! mu m A
In the state of th
                     • m_A to po' in eas of the part of the off
                     h to one of the head of property of the tong in [7].
```

B.4 StandardModel.in

his fil you are the state of th

91. 1876

2. 499. 281(4) 2. 327. 687(d) 1. 94718(54) 256(n) 1. 94411(e) 3. 56154

2. 0.

66907(T*-66907L T*>. 67009(5)1.919.288(m)1-270.6 -14.5199 Td [(3))-519.287(0)2.66958(.)-50

4.20 ! mb(mb)137. 0359998 ! 1. / alpha $! alpha_s(m_Z)$ 0.1172 1. 16639e-5 ! G_F, Fermi constant 0.224 ! s12 of CKM particle data book 1998, 90%, 0.217-0.222 ! s23 of CKM 0. 036-0. 042 0.0413 0.00363 ! s13 of CKM 0. 0018 - 0. 0044 ! phase of CKM 0.-2 Pi ! life time of muon 2. 19709e-6 ! life time of tau 3. 4e-13

C Implementation of SUSY Les Houches Accord

th in the son 2.2.0 SPheno wo fo inputed outstand in the stand of the specific specific in the standard of the specific specific in the standard of the specific in the specific in the standard of the specific in the specif

- In' lo, EXTPAR_It n.t, 1— e no e, It so pon n font e, e no t n SPheno.
- Content no fon a ton on, n'n ann an o in to SPINFO. It is the not on of the nate is on it is the Messages. out for the fon a ton.

h in h p'n n ton que te the lo MDSEL son fo the EXTPAR

n. in the second non new apples, a ann h second not an

h no t sopo. A no sop with the second not apple to the second not apple to the p'-t.

The p'-t.

The Sphere profit the second new the

o It SPheno p is input the loo SPhenoInput he of in in it is on the information of the loo SMNPUTS and the one of the loo smnPUTS and the one of the loo smnPUTS and the loo of the loo of

```
26 : on G on 
      42 : 3 3 4 6 6 3 on 1
      51 : 3 - 5 w 4 of 1 > tonh 233
      52 : 5 -3 w of the contract
                                              \frac{1}{3} - \frac{1}{3} \frac{
                                             3-told of degle 115 833
    1g7(1)2.6J03(i)2.66907(f
                                                                                                                                                                                                                                                                                                                                                                                                                                                           1g121d00000E-04-0ri
Block SPhenoInput
                                                                                                                                       # SPheno specific input
     1 -1
                                                                                                                                                               # error level
                                                                                                                                                             # calculate branching ratios
11
                               1.0000000E-04 # write only branching ratios larger than tth2.66907(i)2.g
12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    # 1
```

```
o the of the the sections of the section of the se
  Block SPhenoCrossSections # cross sections
                                          500.0 0.00 0.00 1 # e+ e- XS, Pe-, Pe+, including ISR
       h RANfon et 'n h; ::
  Format("XS 11 -11 ", F7. 1, " ", F5. 2, " ", F5. 2, " ", A)
       h , o<sub>33 3</sub> ton<sub>3</sub> nf ) h<sub>1</sub> 3 f a th e<sub>3</sub>
                          Sigma [fb]
                                                                                                      2000011 -2000011
                   2.83574498E+02
                                                                                 2
 Format(3x, 1P, e16. 8, 0p, 3x, I2, 3x, 2(i9, 1x), 2x, " # ", A)
  A an p to p
  Block SPhenoCrossSections # cross sections
  XS 11 -11 500.0 0.00 0.00 1 # e+ e- XS, Pe-, Pe+, including ISR
  #
                          Sigma [fb]
                                                                                    NDA
                                                                                                                           ID1
                                                                                                                                                      ID2
                   2.83574498E+02
                                                                                  2
                                                                                                      2000011
                                                                                                                                     -2000011
                                                                                                                                                                               # ~e R-
                                                                                                                                                                                                                           ~e R+
                   7. 79728001E+01
                                                                                                                                                                               \# \sim e_R-
                                                                                  2
                                                                                                      2000011
                                                                                                                                     -1000011
                                                                                                                                                                                                                           \sime_L+
                                                                                 2
                                                                                                                                                                               # ~e L-
                                                                                                                                                                                                                           ~e L+
                   4. 57495061E+01
                                                                                                      1000011
                                                                                                                                    -1000011
                                                                                 2
                                                                                                                                                                               # ~mu R-
                   5. 47916441E+01
                                                                                                      2000013
                                                                                                                                    -2000013
                                                                                                                                                                                                                           ~mu R+
                   6. 00045490E-03
                                                                                                      2000013 -1000013
                                                                                                                                                                               # ~mu_R-
                                                                                                                                                                                                                           ~mu L+
                   1. 90114309E+01
                                                                                 2
                                                                                                      1000013
                                                                                                                                   - 1000013
                                                                                                                                                                               # ~mu_L-
                                                                                                                                                                                                                           ~mu_L+
                                                                                 2
                   5.96228076E+01
                                                                                                      1000015
                                                                                                                                    -1000015
                                                                                                                                                                               # ~tau 1-
                                                                                                                                                                                                                           ~tau 1+
                                                                                 2
                                                                                                                                                                               # ~tau 1-
                                                                                                                                                                                                                           ~tau 2+
                   1. 26426385E+00
                                                                                                      1000015
                                                                                                                                     -2000015
                                                                                  2
                                                                                                                                                                               # ~tau_2-
                                                                                                                                                                                                                           ~tau_2+
                   1. 59684572E+01
                                                                                                      2000015
                                                                                                                                     -2000015
                                                                                 2
                                                                                                                                                                               # ~nu eL
                                                                                                                                                                                                                           ~nu eL*
                   4. 52889205E+02
                                                                                                      1000012
                                                                                                                                     -1000012
                                                                                 2
                                                                                                                                                                               # ~nu muL
                                                                                                                                                                                                                           ~nu muL*
                   1. 36168303E+01
                                                                                                      1000014
                                                                                                                                     -1000014
                   1. 39168830E+01
                                                                                 2
                                                                                                                                                                               # ~nu_tauL
                                                                                                                                                                                                                           ~nu_tauL*
                                                                                                      1000016
                                                                                                                                    - 1000016
                                                                                 2
                                                                                                                                                                               # chi_10 chi_10
                   2. 75869582E+02
                                                                                                      1000022
                                                                                                                                         1000022
                                                                                  2
                                                                                                                                                                               # chi 10 chi 20
                   6.56937491E+01
                                                                                                      1000022
                                                                                                                                         1000023
                                                                                 2
                                                                                                                                                                               # chi_10 chi_30
                   7. 10141133E+00
                                                                                                      1000022
                                                                                                                                         1000025
```

1000035

1000023

23

-1000024

chi_10 chi_40

chi_20 chi_20

chi 1- chi 1+

h0 Z

2

2

2

1000022

1000023

1000024

25

8. 27993814E-01

6. 90281358E+01

1.60903760E+02

2.47077869E+01

Block SPhenoLowEnergy # low energy observables

- 4. 55809155E+00 # BR(b -> s gamma)
- 5. 42193822E-09 # (g-2)_muon 2
- 3 1.97608480E-04 # Delta(rho)

D Sample output

For the first SPheno. out pool on the first spheno. out pool on the first spheno. It is not the fight scale. in Control. in, CrossSections. in an Standard Model. in.

SPheno output file

Version 2.2.2, created: 14.09.2004, 17:14

mSugra input at the GUT scale 2. 4620574378552756E+16

2.50000000000000E+02 M 1/2M01.00000000000000E+02 : -1.00000000000000E+02 tan(beta) at m Z: 10.00000000000000000

sign(mu): 1.00000000000000000

Running masses have been used for the boundary conditions at mZ

Parameters at the scale 4.8442121445544416E+02

3.61098068E-01 6.46530088E-01 1.09487945E+00

Y_e Y_mu Y_tau

2.88425398E-05 5.96372335E-03 1.00306479E-01

Yс Y u Υt

8. 84588597E-06 3. 53835431E-03 8. 92075460E-01

Y d Υs Y b

1. 91353683E-04 3. 28034867E-03 1. 37341541E-01

Gaugino mass parameters

1. 0155024266722937E+02 1. 9167894566112778E+02 5. 8533134393167563E+02

```
mu, B
  3.5775913791766874E+02
                           1.6731090082362174E+04
Slepton mass parameters
A 1
 -2.5344637795775390E+02
                         -2.5344027822464955E+02 -2.5172098902647821E+02
M2 E
  1.8443988295117768E+04
                          1.8441668307344480E+04
                                                     1.7789728306764348E+04
M2 L
  3.8222680589380434E+04
                           3.8221538628557908E+04
                                                     3. 7900699251843856E+04
Squark mass parameters
A d
 -8.5558462724494541E+02
                         -8.5558116731465941E+02 -7.9140619867408907E+02
 -6.8014557244910873E+02
                          -6.8014185758548206E+02
                                                    -4.9696697403034966E+02
  2.7491167922793247E+05
                           2.7490965928240586E+05
                                                     2.7157606836767372E+05
M2U
  2.7715958460406726E+05
                           2.7715762927385850E+05
                                                     1.7637959938821895E+05
\mathbf{M}^2
  2.9720857969470561E+05
                           2.9720661515585968E+05
                                                     2.4639278946889582E+05
Higgs mass parameters
  3. 2551122776108325E+04 -1. 2811756834297138E+05
Masses and mixing matrices
           6. 0453116356737542E+02
Gluino:
                                      1.00000000000000000
Charginos
  1.8029681792857122E+02
                           3.8336666782688877E+02
        -0.91584
                         0.40153
         0.40153
                         0.91584
  V
        -0.97278
                         0.23175
         0.23175
                         0.97278
Neutralinos
 97. 0684422442318606
                                                 3.6506776000040759E+02
                                                                           3.82276404251164
                       1.8069642547695042E+02
  N
   1
       1
                   -0.98582,
                                      0.00000
          (
   1
       2
                    0.05596,
                                      0.00000
   1
       3
                   -0.14856,
                                      0.00000
   1
       4
                    0.05430,
                                      0.00000
                   -0.10355,
                                      0.00000
```

2	2	(-0.94298,	0.00000)
2	3	(0. 27441,	0.00000)
2	4	(-0.15735,	0.00000)
3	1	(0.00000,	0.06043)
3	2	(-0.00000,	-0.09021)
3	3	(-0.00000,	-0.69486)
3	4	(-0.00000,	-0.71090)
4	1	(0. 11737,	0.00000)
4	2	(-0.31546,	0.00000)
4	3	(-0.64792,	0.00000)
4	4	(0.68331,	0.00000)

e-sneutrino mass : 1.8629967789333597E+02 mu-sneutrino mass : 1.8629643037340736E+02 tau-sneutrino mass : 1.8538056982341820E+02

selectron masses

1. 4394583534020416E+02 2. 0249814925123943E+02 R e

0.00009 1.00000 -1.00000 0.00009

smuon masses

1. 4391005493518603E+02 2. 0251437533591726E+02

 $R_{\underline{}}$ mu

 0. 01958
 0. 99981

 -0. 99981
 0. 01958

stau masses

1. 3430774918769018E+02 2. 0648286202975819E+02

R_tau

 0. 28332
 0. 95903

 -0. 95903
 0. 28332

u-squark masses

5. 4818625728877964E+02 5. 6590020431737230E+02

Ru

 0.00006
 1.00000

 -1.00000
 0.00006

c-squark masses

5. 4817448074068113E+02 5. 6590853096426122E+02

R c

 0. 02385
 0. 99972

 -0. 99972
 0. 02385

t-squark masses

3. 9989424629928800E+02 5. 8682205427167264E+02 R_t

 0. 55322
 0. 83304

 -0. 83304
 0. 55322

d-squark masses

5. 4791161728759471E+02 5. 7129911929796879E+02

R d

 0.00058
 1.00000

 -1.00000
 0.00058

s-squark masses

5. 4790724305571359E+02 5. 7129944562180071E+02

 R_s

 0. 00999
 0. 99995

 -0. 99995
 0. 00999

b-squark masses

5. 1564470876393955E+02 5. 4769779167739352E+02

R_b

 0. 94719
 0. 32066

 -0. 32066
 0. 94719

 m_A0 , m_H+

3. 9982837260329677E+02 4. 0811814345802685E+02

m_h0, m_H0

1. 1082357413611736E+02 4. 0020427017852177E+02 R S0

 0. 11369
 0. 99352

 -0. 99352
 0. 11369

Low energy constraints

 10^4 Br(b -> s gamma) : 0.4581123E+01 Delta(a_mu) : 0.5696755E-08 Delta(rho) : 0.2001459E-03

Anti particles are marked with a * in case of (s)neutrinos and (s)quarks in the decay section.

Decay widths (GeV) and branching ratios

Selectron_1

Neutralino 1 e 0.21291502 100.00000000

Total width: 0.21291502

Selectron_2		
Neutralino 1 e	0. 12098066	55. 98037525
Neutralino_2 e	0. 03480167	16. 10348944
Chargino_1 neutrino	0.06033029	
Total width :	0. 21611263	
Total Wilden	01211100	
Smuon 1		
Neutralino_1 mu	0. 21263340	100.00000000
Total width:	0. 21263340	
Smion_2		
Neutralino_1 mu	0. 12115824	55. 99761649
Neutralino_2 mu	0. 03482867	16. 09731436
Chargino_1 neutrino	0.06037630	27. 90506915
Total width:	0. 21636321	
Stau_1		
Neutralino_1 tau	0. 14502344	100.00000000
Total width:	0. 14502344	
Stau_2	0.47022042	70 00044474
Neutralino_1 tau	0. 15977947	
Neutralino_2 tau	0. 04134796	
Chargino_1 neutrino	0. 07135516	26. 18705302
Total width:	0. 27248259	
e-Sneutri no		
Neutralino 1 neutrino	0. 14973207	94. 94284818
_	0. 14973207	1. 34299390
Neutralino_2 neutrino		
Chargino_1 e	0.00585751	3. 71415792
Total width:	0. 15770758	
mu-Sneutri no		
Neutralino_1 neutrino	0. 14972554	94. 94874820
Neutralino_2 neutrino	0. 14372334	
Chargino_1 mu	0.00211302	3. 70962607
Total width:	0. 00384974	J. 10302001
iviai wiulli:	0. 13709090	

tau-Sneutrino

Neutralino_1 neutrino	0. 14788387	96. 53891386
Neutralino_2 neutrino	0. 00149472	0. 97575508
Chargino_1 tau	0.00380717	2. 48533106
Total width:	0. 15318576	
Sdown_1		
Neutralino_1 d-quark	0. 28838606	98. 56429027
Neutralino_2 d-quark	0. 00269444	0. 92090214
Neutralino_3 d-quark	0.00035714	0. 12206173
Neutralino_4 d-quark	0. 00114758	0. 39221887
Total width:	0. 29258676	
Sdown 2		
Neutralino_1 d-quark	0. 12870838	2. 41531292
Neutralino_2 d-quark	1.64327451	30. 83732443
Neutralino_3 d-quark	0.00857068	0. 16083549
Neutralino_4 d-quark	0.08252004	1.54855280
Chargi no_1 u-quark	3. 23407423	60. 68991849
Chargi no_2 u-quark	0. 23170134	4. 34805586
Total width:	5. 32884919	
S-strange_1		
Neutralino_1 s-quark	0. 28839626	98. 33512617
Neutralino_2 s-quark	0.00291737	0. 99474185
Neutralino_3 s-quark	0.00036637	0. 12492215
Neutralino_4 s-quark	0. 00114598	0.39074858
Chargino_1 c-quark	0.00045256	0. 15431122
Total width:	0. 29327899	
S-strange_2		
Neutralino_1 s-quark	0. 12869979	2. 41541244
Neutralino_2 s-quark	1.64305243	30. 83648512
Neutralino_3 s-quark	0.00859993	0. 16140172
Neutralino_4 s-quark	0. 08255413	1.54935962
Chargi no_1 c-quark	3. 23357116	60. 68702822
Chargi no_2 c-quark	0. 23179659	4. 35031288
Total width:	5. 32827402	
Sbottom 1		
Neutralino_1 b-quark	0. 16653332	4. 31243760
Neutralino_2 b-quark	1. 34625440	34. 86172159
Neutralino_3 b-quark	0. 01956140	0. 50654921
	3. 320002 20	0.0001071

```
Neutralino_4 b-quark
Chargino_1 t-quark
                               0.04233574
                                              1.09629870
                               1.72259277
                                             44.60713339
 Stop_1 W
                               0.56442035
                                             14.61585951
Total width:
                               3.86169797
Sbottom 2
 Neutralino_1 b-quark
                               0. 24058254
                                             31.91983477
 Neutralino_2 b-quark
                                             12.37863659
                               0.09329885
 Neutralino_3 b-quark
                                              5.55305967
                               0.04185389
 Neutralino_4 b-quark
                               0.05807690
                                              7.70548478
 Chargino_1 t-quark
                                             16.17495579
                               0.12191203
 Stop_1 W
                                             26.26802841
                               0.19798439
Total width:
                               0.75370860
Sup_1
 Neutralino_1 u-quark
                               1.15420363
                                             98.56401566
 Neutralino_2 u-quark
                               0.01078281
                                              0.92080534
 Neutralino_3 u-quark
                               0.00143143
                                              0.12223802
 Neutralino_4 u-quark
                                              0.39293982
                               0.00460140
Total width:
                               1.17101929
```

Sup_2

Neutralino_1 07(0)2.66907(1)2.66907(4)2.66907(0)-2085.15(0)2.66907(.)2.66907(3)2.66907

Neutralino_4 c-quark	0.06008384	1. 08645601
Chargino_1 s-quark	3. 59645144	65. 03223042
Chargino_2 s-quark	0. 07414186	1. 34065776
Total width:	5. 53026002	1,01000,,0
Total Wilder	0.000000	
Cton 1		
Stop_1 Neutralino_1 t-quark	0. 39786160	19. 42136860
Neutralino_2 t-quark	0. 24313066	11. 86827336
Chargi no_1 b-quark	1. 37082175	66. 91581865
Chargino_2 b-quark	0. 01991200	0. 97199197
c-quark neutralino_1	0. 00040360	0. 01970164
c-quark neutralino_2	0. 01643838	0. 80242915
Total width:	2.04857653	
Stop_2		
Neutralino_1 t-quark	0. 22193261	3. 01781302
Neutralino_2 t-quark	0. 64232737	8. 73429056
Neutralino_3 t-quark	0. 30940040	4. 20718955
Neutralino_4 t-quark	1. 44196179	19.60762341
Chargi no_1 b-quark	1.62955414	22. 15848167
Chargi no_2 b-quark	1.44485203	19. 64692457
Stop_1 Z	1. 39455443	18. 96298387
Stop_1 h0	0. 26950476	3.66469336
Total width:	7. 35408754	
Chargi no_1		
Smuon_1 neutrino	0.00004613	0. 28874351
Stau_1 neutrino	0. 01510357	94. 54518351
Neutralino_1 W	0.00071260	4. 46072016
neutralino_1 e^+ nu	0.00003745	
neutralino_1 mu^+ nu	0. 00003745	0. 23441507
neutralino_1 tau^+ nu	0.00003773	0. 23615356
Total width:	0. 01597497	
Chargi no_2		
Selectron_2 neutrino	0. 13339597	5. 23062736
Smuon_2 neutrino	0. 13343849	5. 23229482
Stau_1 neutrino	0.00064169	0. 02516131
Stau_2 neutrino	0. 14518928	5. 69305830
e-sneutrino e	0. 04987592	1. 95569876
mu-sneutrino mu	0. 04994101	1. 95825114
tau-sneutrino tau	0.06840093	2. 68208833
Neutralino_1 W	0. 16988544	6. 66142664
Neutralino_2 W	0. 73896629	28. 97581836

```
Chargino_1 Z
                                0.60911313
                                              23.88410873
 Chargino_1 h0
                                0.45051419
                                              17.66524071
 neutralino 1 b<sup>*</sup> t
                                0.00030103
                                               0.01180365
 neutralino_2 b^* t
                                               0.00119636
                                0.00003051
 chargino_1 b b^*
                                0.00054500
                                               0.02137000
Total width:
                                2.55028619
Neutralino_1 : stable
Neutralino 2
 Selectron^- 1 e^+
                                0.00066378
                                               3.07448383
 Selectron^+ 1 e^-
                                0.00066378
                                               3.07448383
 Smuon^-1 mu^+
                                0.00069076
                                               3.19948480
 Smuon^+ 1 mu^-
                                0.00069076
                                               3.19948480
 Stau^- 1 tau^+
                                0.00939369
                                              43.50975897
 Stau^+ 1 tau^-
                                0.00939369
                                              43.50975897
 neutralino 1 u u^*
                                0.00000345
                                               0.01599688
 neutralino_1 c c^*
                                0.00000345
                                               0.01597295
 neutralino 1 d d^*
                                0.00000459
                                               0.02123795
                                               0.02123789
 neutralino_1 s s^*
                                0.00000459
 neutralino 1 b b^*
                                0.00000472
                                               0.02186206
 neutralino 1 nu e
                                0.00001768
                                               0.08190096
                      nu e^
 neutralino_1 nu_mu
                      nu_mu
                                0.00001769
                                               0.08192757
 neutralino_1 nu_tau nu_ta
                                0.00001944
                                               0.09003518
 neutralino 1 e^-
                      e^{\Lambda}+
                                0.0000630
                                               0.02919519
 neutralino_1 mu^-
                      mu^+
                                0.0000630
                                               0.02917454
 neutralino_1 tau^-
                      tau^+
                                0.0000514
                                               0.02379866
Total width:
                                0.02158986
Neutralino_3
 Selectron^-_1 e^+
                                0.00245868
                                               0.12468320
                                               0.12468320
 Selectron<sup>+</sup> 1 e<sup>-</sup>
                                0.00245868
 Selectron^- 2 e^+
                                0.00115857
                                               0.05875282
 Selectron^+_2 e^-
                                0.00115857
                                               0.05875282
 Smuon^-_1 mu^+
                                0.00247970
                                               0.12574917
 Smion^+ 1 mi^-
                                0.00247970
                                               0.12574917
Smion^-_2 mi^+
                                0.00120501
                                               0.06110808
 Smuon^+_2 mu^-
                                0.00120501
                                               0.06110808
 Stau^- 1 tau^+
                                0.00993392
                                               0.50376391
 Stau^+ 1 tau^-
                                0.00993392
                                               0.50376391
 Stau^-_2 tau^+
                                0.01297595
                                               0.65802945
 Stau^+_2 tau^-
                                0.01297595
                                               0.65802945
 e-sneutrino nu e^*
                                0.00636550
                                               0.32280417
 e-sneutrino^* nu_e
                                0.00636550
                                               0.32280417
 mu-sneutrino nu mu^*
                                0.00636566
                                               0.32281210
 mu-sneutrino^* nu_mu
                                0.00636566
                                               0.32281210
```

tau-sneutrino^* nu_tau Chargino^+_1 W^- Chargino^+_1 W^- Chargino^+_1 W^- Chargino^+_1 W^- Chargino^1 W^+ Chargino^1 W^+ Chargino^1 W^+ Chargino^1 W^+ Chargino^1 W^- Neutralino_2 Z Chargino_1 No Neutralino_2 DO Neutralino_2 hO Neutralino_2 hO Neutralino_2 photon Condourse Colored Col	tau-sneutrino nu_tau^*	0.00640970	0. 32504561
Chargino^1 W+		0.00640970	0. 32504561
Chargino^1 W+	-		29. 53114356
Neutralino_1 Z	· ·	0. 58233645	
Neutralino_2 Z	•	0. 22153690	
Neutralino_1 h0	_		21. 32417766
Neutralino_2 ho Neutralino_2 photon Total width: Neutralino_4 Selectron^1 e^+ Selectron^+_1 e^- Selectron^+_2 e^+ Selectron^+_2 e^- Sel			
Neutralino_2 photon Total width: Neutralino_4 Selectron^1 e^+			
Neutral ino_4 Selectron^1 e^+	_		
Neutralino_4 Selectron^1 e^+	-		
Selectron^1 e^+ 0.01003487 0.37554208 Selectron^+_1 e^- 0.01003487 0.37554208 Selectron^2 e^+ 0.02565497 0.96010376 Selectron^+_2 e^- 0.02565497 0.96010376 Smuon^1 mu^+ 0.01001475 0.37478909 Smuon^2 mu^+ 0.01001475 0.37478909 Smuon^2 mu^+ 0.02572432 0.96269931 Smuon^2 mu^- 0.02572432 0.96269931 Stau^1 tau^+ 0.00708230 0.26504573 Stau^1 tau^+ 0.00708230 0.26504573 Stau^2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino nu_e^* 0.06696143 2.50594432 m-sneutrino nu_mu^* 0.06696143 2.50594432 m-sneutrino nu_tau^* 0.06696288 2.50599874 mu-sneutrino nu_tau^* 0.06696288 2.50599874 mu-sneutrino nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^1 W+ 0.68286763 25.5554352 Neutralino_2 Z 0.05548528 </td <td></td> <td>_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td> <td></td>		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Selectron^1 e^+ 0.01003487 0.37554208 Selectron^+_1 e^- 0.01003487 0.37554208 Selectron^2 e^+ 0.02565497 0.96010376 Selectron^+_2 e^- 0.02565497 0.96010376 Smuon^1 mu^+ 0.01001475 0.37478909 Smuon^2 mu^+ 0.01001475 0.37478909 Smuon^2 mu^+ 0.02572432 0.96269931 Smuon^2 mu^- 0.02572432 0.96269931 Stau^1 tau^+ 0.00708230 0.26504573 Stau^1 tau^+ 0.00708230 0.26504573 Stau^2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino nu_e^* 0.06696143 2.50594432 m-sneutrino nu_mu^* 0.06696143 2.50594432 m-sneutrino nu_tau^* 0.06696288 2.50599874 mu-sneutrino nu_tau^* 0.06696288 2.50599874 mu-sneutrino nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^1 W+ 0.68286763 25.5554352 Neutralino_2 Z 0.05548528 </td <td></td> <td></td> <td></td>			
Selectron^1 e^+ 0.01003487 0.37554208 Selectron^+_1 e^- 0.01003487 0.37554208 Selectron^2 e^+ 0.02565497 0.96010376 Selectron^+_2 e^- 0.02565497 0.96010376 Smuon^1 mu^+ 0.01001475 0.37478909 Smuon^2 mu^+ 0.01001475 0.37478909 Smuon^2 mu^+ 0.02572432 0.96269931 Smuon^2 mu^- 0.02572432 0.96269931 Stau^1 tau^+ 0.00708230 0.26504573 Stau^1 tau^+ 0.00708230 0.26504573 Stau^2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino nu_e^* 0.06696143 2.50594432 m-sneutrino nu_mu^* 0.06696143 2.50594432 m-sneutrino nu_tau^* 0.06696288 2.50599874 mu-sneutrino nu_tau^* 0.06696288 2.50599874 mu-sneutrino nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^1 W+ 0.68286763 25.5554352 Neutralino_2 Z 0.05548528 </td <td>Neutralino_4</td> <td></td> <td></td>	Neutralino_4		
Selectron^2 e^+ 0.02565497 0.96010376 Selectron^+_2 e^- 0.02565497 0.96010376 Smuon^1 mu^+ 0.01001475 0.37478909 Smuon^2 mu^+ 0.02572432 0.96269931 Smuon^2 mu^- 0.02572432 0.96269931 Smuon^+_2 mu^- 0.02572432 0.96269931 Stau^1 tau^+ 0.00708230 0.26504573 Stau^1 tau^- 0.00708230 0.26504573 Stau^2 tau^- 0.04322619 1.61768406 Stau^2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino^** nu_e 0.06696143 2.50594432 m-sneutrino nu_mu^* 0.06696288 2.50599874 mu-sneutrino nu_tau^* 0.06696288 2.50599874 tau-sneutrino^** nu_tau 0.06696288 2.50599874 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^+_1 W- 0.68286763 2.55543552 Chargino^1 W+ 0.68286763 25.55543352 Neutralino_1 D 0.18248851 6.82939545 Neutralino_2 photon 0.00003496 <td>Selectron^1 e^+</td> <td>0.01003487</td> <td>0. 37554208</td>	Selectron^1 e^+	0.01003487	0. 37554208
Selectron^+_2 e^- Smuon^1 mu^+ Smuon^1 mu^+ Smuon^+_1 mu^- Smuon^+_2 mu^- Smuon^+_2 mu^- Stau^1 tau^+ Stau^2 tau^+ Stau^2 tau^- e-sneutrino nu_e^* snu-sneutrino nu_tau^* tau-sneutrino^* nu_tau characterino nu_tau^* Chargino^1 W+ Snuon^+_1 W- Snuon^+_2 mu^- Snuon^+_2 mu^- Stau^2 tau^+ Stau^2 tau^- Stau^2 Stau^- Stau^2 tau^- Stau^-	Selectron^+_1 e^-	0.01003487	0. 37554208
Smuon^1 mu^+ 0.01001475 0.37478909 Smuon^+_1 mu^- 0.01001475 0.37478909 Smuon^2 mu^+ 0.02572432 0.96269931 Smuon^+_2 mu^- 0.02572432 0.96269931 Stau^1 tau^+ 0.00708230 0.26504573 Stau^1 tau^- 0.00708230 0.26504573 Stau^2 tau^+ 0.04322619 1.61768406 Stau^2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino^* nu_e 0.06696143 2.50594432 mu-sneutrino nu_mu^* 0.06696288 2.50599874 mu-sneutrino nu_tau^* 0.06696288 2.50599874 tau-sneutrino nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^1 W^- 0.68286763 25.55543352 Chargino^1 W^+ 0.68286763 25.55543352 Neutralino_1 Z 0.05548528 2.07646431 Neutralino_2 D 0.05010799 1.87522654 Neutralino_2 photon 0.00003496 0.00130835 Gluino 0.22549273	Selectron^2 e^+	0.02565497	0.96010376
Smuon^+_1 mu^- 0.01001475 0.37478909 Smuon^2 mu^+ 0.02572432 0.96269931 Smuon^+_2 mu^- 0.02572432 0.96269931 Stau^1 tau^+ 0.00708230 0.26504573 Stau^1 tau^- 0.00708230 0.26504573 Stau^2 tau^+ 0.04322619 1.61768406 Stau^+_2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino^* nu_e 0.06696143 2.50594432 mu-sneutrino nu_mx* 0.06696288 2.50599874 mu-sneutrino nu_tau^* 0.06696288 2.50599874 tau-sneutrino nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^+_1 W^- 0.68286763 25.55543352 Chargino^+_1 W^- 0.68286763 25.55543352 Neutralino_1 Z 0.05548528 2.07646431 Neutralino_2 Photon 0.05010799 1.87522654 Neutralino_2 Photon 0.00003496 0.00130835 Total width: 2.67210349 Gluino 0.22549273	Selectron^+_2 e^-	0.02565497	0.96010376
Smuon^2 mu^+ 0.02572432 0.96269931 Smuon^+_2 mu^- 0.02572432 0.96269931 Stau^1 tau^+ 0.00708230 0.26504573 Stau^+_1 tau^- 0.00708230 0.26504573 Stau^+_2 tau^+ 0.04322619 1.61768406 Stau^+_2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino^* nu_e 0.06696143 2.50594432 mu-sneutrino nu_mu^* 0.06696288 2.50599874 mu-sneutrino nu_mu^* 0.06696288 2.50599874 tau-sneutrino nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^1 W+ 0.68286763 25.55543352 Chargino^1 W+ 0.68286763 25.55543352 Neutralino_2 Z 0.05510799 1.87522654 Neutralino_2 h0 0.18248851 6.82939545 Neutralino_2 photon 0.00003496 0.00130835 Total width: 2.67210349 Gluino Sup_1^*	Smuon^1 mu^+	0.01001475	0.37478909
Smuon^+_2 mı^- 0.02572432 0.96269931 Stau^1 tau^+ 0.00708230 0.26504573 Stau^+_1 tau^- 0.00708230 0.26504573 Stau^2 tau^+ 0.04322619 1.61768406 Stau^+_2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino^* nu_e 0.06696143 2.50594432 mu-sneutrino nu_mu^* 0.06696288 2.50599874 mu-sneutrino^* nu_mu 0.06696288 2.50599874 tau-sneutrino nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^+_1 W- 0.68286763 25.55543352 Chargino^1 W+ 0.68286763 25.55543352 Neutralino_1 Z 0.05548528 2.07646431 Neutralino_2 b0 0.18248851 6.82939545 Neutralino_2 h0 0.37208545 13.92481435 Neutralino_2 photon 0.00003496 0.00130835 Total width: 2.67210349 Gluino Sup_1^* u 0.22549273 4.93757980 Sup_2 u^* 0.10927993 2.39288589 Sup_2^* u 0.10927993 2.39288589	Smuon^+_1 mu^-	0.01001475	0.37478909
Stau^1 tau^+ 0.00708230 0.26504573 Stau^+_1 tau^- 0.00708230 0.26504573 Stau^2 tau^+ 0.04322619 1.61768406 Stau^+_2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino^* nu_e 0.06696143 2.50594432 mu-sneutrino nu_mu^* 0.06696288 2.50599874 mu-sneutrino^* nu_mu 0.06696288 2.50599874 tau-sneutrino^* nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^+_1 W- 0.68286763 25.55543352 Chargino^1 W+ 0.68286763 25.55543352 Neutralino_1 Z 0.05548528 2.07646431 Neutralino_2 Z 0.05010799 1.87522654 Neutralino_2 h0 0.18248851 6.82939545 Neutralino_2 photon 0.0003496 0.00130835 Total width: 2.67210349 Gluino 0.22549273 4.93757980 Sup_1^* u 0.22549273 4.93757980 Sup_2^* u 0.10927993 2.39288589	Smuon^2 mu^+	0.02572432	0. 96269931
Stau^1 tau^+ 0.00708230 0.26504573 Stau^+_1 tau^- 0.00708230 0.26504573 Stau^2 tau^+ 0.04322619 1.61768406 Stau^+_2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino^* nu_e 0.06696143 2.50594432 mu-sneutrino nu_mu^* 0.06696288 2.50599874 mu-sneutrino^* nu_mu 0.06696288 2.50599874 tau-sneutrino^* nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^+_1 W- 0.68286763 25.55543352 Chargino^1 W+ 0.68286763 25.55543352 Neutralino_1 Z 0.05548528 2.07646431 Neutralino_2 Z 0.05010799 1.87522654 Neutralino_2 h0 0.18248851 6.82939545 Neutralino_2 photon 0.0003496 0.00130835 Total width: 2.67210349 Gluino 0.22549273 4.93757980 Sup_1^* u 0.22549273 4.93757980 Sup_2^* u 0.10927993 2.39288589	Smuon^+ 2 mu^-	0.02572432	0. 96269931
Stau^+_1 tau^- 0.00708230 0.26504573 Stau^2 tau^+ 0.04322619 1.61768406 Stau^+_2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino^* nu_e 0.06696143 2.50594432 mu-sneutrino nu_mu^* 0.06696288 2.50599874 mu-sneutrino^* nu_mu 0.06696288 2.50599874 tau-sneutrino nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^+_1 W^- 0.68286763 25.55543352 Chargino^1 W^+ 0.68286763 25.55543352 Neutralino_1 Z 0.05548528 2.07646431 Neutralino_2 Z 0.05010799 1.87522654 Neutralino_2 h0 0.18248851 6.82939545 Neutralino_2 photon 0.00003496 0.00130835 Total width: 2.67210349 Gluino Sup_1 u^* 0.22549273 4.93757980 Sup_2 u^* 0.10927993 2.39288589 Sup_2^* u 0.10927993 2.39288589	Stau^1 tau^+	0.00708230	0. 26504573
Stau^2 tau^+ 0.04322619 1.61768406 Stau^+_2 tau^- 0.04322619 1.61768406 e-sneutrino nu_e^* 0.06696143 2.50594432 e-sneutrino^* nu_e 0.06696143 2.50594432 mu-sneutrino nu_mu^* 0.06696288 2.50599874 mu-sneutrino^* nu_mu 0.06696288 2.50599874 tau-sneutrino nu_tau^* 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^+_1 W- 0.68286763 25.55543352 Chargino^1 W+ 0.68286763 25.55543352 Neutralino_1 Z 0.05548528 2.07646431 Neutralino_2 Z 0.05010799 1.87522654 Neutralino_1 h0 0.18248851 6.82939545 Neutralino_2 h0 0.37208545 13.92481435 Neutralino_2 photon 0.00003496 0.00130835 Total width: 2.67210349 Gluino Sup_1 \(^*\) 0.22549273 4.93757980 Sup_2 \(^*\) 0.10927993 2.39288589 Sup_2^*\) 0.10927993 2.39288589		0.00708230	0. 26504573
e-sneutrino nu_e^*		0.04322619	1.61768406
e-sneutrino nu_e^*	_	0.04322619	1.61768406
e-sneutrino^* nu_e mu-sneutrino nu_mu^* nu-sneutrino nu_mu^* nu-sneutrino^* nu_mu sneutrino^* nu_mu sneutrino^* nu_mu sneutrino nu_tau^* tau-sneutrino nu_tau^* tau-sneutrino^* nu_tau chargino^+_1 W- chargino^1 W+ chargino1 W+ chargino_2 Z Neutralino_1 Z Neutralino_1 ho Neutralino_2 ho Neutralino_2 photon Gluino Sup_1 u^* Sup_1^* u Sup_2^* u 0.06696288 2.50599874 2.5059987 2.5059998 2.5059999 2.5059999 2.505999 2.505999 2.505999 2.505	_	0.06696143	2.50594432
mu-sneutrino nu_mu^* mu-sneutrino^* nu_mu tau-sneutrino^* nu_mu tau-sneutrino nu_tau^* tau-sneutrino^* nu_tau tau-sneutrino,* tau-sneut	_	0.06696143	2.50594432
mu-sneutrino^* nu_mu tau-sneutrino nu_tau^* tau-sneutrino nu_tau^* tau-sneutrino^* nu_tau 0.06737263 2.52133329 tau-sneutrino^* nu_tau 0.06737263 2.52133329 Chargino^+_1 W- 0.68286763 25.55543352 Chargino^1 W+ 0.68286763 25.55543352 Neutralino_1 Z 0.05548528 Neutralino_2 Z 0.05010799 1.87522654 Neutralino_1 h0 0.18248851 Neutralino_2 h0 0.37208545 Neutralino_2 photon 0.00003496 0.00130835 Total width: Cluino Sup_1 u^* 0.22549273 4.93757980 Sup_1^* u 0.22549273 4.93757980 Sup_2 u^* 0.10927993 2.39288589 Sup_2^* u 0.10927993 2.39288589	mu-sneutrino nu_mu^*	0.06696288	2.50599874
tau-sneutrino^* nu_tau Chargino^+_1 W- Chargino^1 W+ Chargino^1 W+ Chargino_1 Z Neutralino_1 Z Neutralino_2 Z Neutralino_1 h0 Neutralino_2 h0 Neutralino_2 photon Sup_1 u^* Sup_2 u^* Sup_2^* u O. 06737263 2. 52133329 2. 52133329 2. 52133329 2. 52133329 2. 68286763 2. 55543352 2. 07646431 2. 0. 05548528 2. 07646431 0. 18248851 6. 82939545 13. 92481435 0. 00003496 0. 00130835 2. 67210349 Cluino Sup_1 u^* O. 22549273 O. 22549273 O. 10927993 O. 10927993 O. 10927993 O. 10927993 O. 39288589 O. 10927993 O. 10927993 O. 39288589		0.06696288	2.50599874
tau-sneutrino^* nu_tau Chargino^+_1 W- Chargino^1 W+ Chargino^1 W+ Chargino_1 Z Neutralino_1 Z Neutralino_2 Z Neutralino_1 h0 Neutralino_2 h0 Neutralino_2 photon Sup_1 u^* Sup_2 u^* Sup_2^* u O. 06737263 2. 52133329 2. 52133329 2. 52133329 2. 52133329 2. 68286763 2. 55543352 2. 07646431 2. 0. 05548528 2. 07646431 0. 18248851 6. 82939545 13. 92481435 0. 00003496 0. 00130835 2. 67210349 Cluino Sup_1 u^* O. 22549273 O. 22549273 O. 10927993 O. 10927993 O. 10927993 O. 10927993 O. 39288589 O. 10927993 O. 10927993 O. 39288589	tau-sneutrino nu tau^*	0.06737263	2. 52133329
Chargino^+_1 W-	tau-sneutrino^* nu_tau	0.06737263	2. 52133329
Chargino^1 W+		0.68286763	25. 55543352
Neutralino_1 Z	· ·	0. 68286763	25. 55543352
Neutralino_1 h0 0. 18248851 6. 82939545 Neutralino_2 h0 0. 37208545 13. 92481435 Neutralino_2 photon 0. 00003496 0. 00130835 Total width: 2. 67210349 Gluino 0. 22549273 4. 93757980 Sup_1^* u 0. 22549273 4. 93757980 Sup_2 u^* 0. 10927993 2. 39288589 Sup_2^* u 0. 10927993 2. 39288589		0.05548528	2.07646431
Neutralino_1 h0 0. 18248851 6. 82939545 Neutralino_2 h0 0. 37208545 13. 92481435 Neutralino_2 photon 0. 00003496 0. 00130835 Total width: 2. 67210349 Gluino 0. 22549273 4. 93757980 Sup_1^* u 0. 22549273 4. 93757980 Sup_2 u^* 0. 10927993 2. 39288589 Sup_2^* u 0. 10927993 2. 39288589	_		
Neutralino_2 h0 0. 37208545 13. 92481435 Neutralino_2 photon 0. 00003496 0. 00130835 Total width: 2. 67210349 Gluino 0. 22549273 4. 93757980 Sup_1^* u 0. 22549273 4. 93757980 Sup_2 u^* 0. 10927993 2. 39288589 Sup_2^* u 0. 10927993 2. 39288589	Neutralino 1 h0	0. 18248851	6. 82939545
Total width: 2.67210349 Gluino Sup_1 u^* 0.22549273 4.93757980 Sup_1^* u 0.22549273 4.93757980 Sup_2 u^* 0.10927993 2.39288589 Sup_2^* u 0.10927993 2.39288589		0.37208545	13. 92481435
Total width: 2.67210349 Gluino Sup_1 u^* 0.22549273 4.93757980 Sup_1^* u 0.22549273 4.93757980 Sup_2 u^* 0.10927993 2.39288589 Sup_2^* u 0.10927993 2.39288589	_	0.00003496	0.00130835
Sup_1 u^* 0. 22549273 4. 93757980 Sup_1^* u 0. 22549273 4. 93757980 Sup_2 u^* 0. 10927993 2. 39288589 Sup_2^* u 0. 10927993 2. 39288589		2.67210349	
Sup_1 u^* 0. 22549273 4. 93757980 Sup_1^* u 0. 22549273 4. 93757980 Sup_2 u^* 0. 10927993 2. 39288589 Sup_2^* u 0. 10927993 2. 39288589			
Sup_1 u^* 0. 22549273 4. 93757980 Sup_1^* u 0. 22549273 4. 93757980 Sup_2 u^* 0. 10927993 2. 39288589 Sup_2^* u 0. 10927993 2. 39288589			
Sup_1^* u 0. 22549273 4. 93757980 Sup_2 u^* 0. 10927993 2. 39288589 Sup_2^* u 0. 10927993 2. 39288589	Gluino		
Sup_1^* u 0. 22549273 4. 93757980 Sup_2 u^* 0. 10927993 2. 39288589 Sup_2^* u 0. 10927993 2. 39288589	Sup_1 u^*	0. 22549273	4. 93757980
Sup_2 u^* 0. 10927993 2. 39288589 Sup_2^* u 0. 10927993 2. 39288589	<u>-</u>	0. 22549273	4. 93757980
Sup_2^* u 0. 10927993 2. 39288589	<u>-</u>	0. 10927993	2.39288589
_	<u>-</u>	0. 10927993	2.39288589
	S-charm_1 c^*	0. 22529588	4. 93326946

S-charm_1^* c	0. 22529588	4. 93326946
S-charm_2 c^*	0. 10935220	2.39446832
S-charm_2^* c	0. 10935220	
Stop_1 t^*	0. 23631434	
Stop_1^* t	0. 23631434	5. 17453901
Sdown_1 d^*	0. 22758779	4. 98345500
Sdown_1^* d	0. 22758779	4. 98345500
Sdown_2 d^*	0. 08161707	
Sdown_2^* d Sdown_2^* d	0. 08161707	
_		
S-strange_1 s^*	0. 22761069	
S-strange_1^* s	0. 22761069	4. 98395651
S-strange_2 s^*	0.08162105	1. 78724357
S-strange_2^* s	0. 08162105	1. 78724357
Sbottom_1 b^*	0. 51303196	11. 23378233
Sbottom 1 [*] b	0.51303196	11. 23378233
		
Sbottom_2 b^*	0. 23942646	
Sbottom_2^* b	0. 23942646	
Stop_1 c^*	0.00526030	0. 11518395
Stop_1^* c	0.00526030	0. 11518395
neutralino_2 gluon	0.00021864	0.00478751
neutralino_3 gluon	0. 00032667	0. 00715313
neutralino_4 gluon	0.00032459	
neutralino_1 t t^*	0.00008996	0. 00196988
neutralino_2 t t^*	0.00009543	0.00208969
chargino^+_1 t^* b	0.00067696	0. 01482320
chargino^1 t b^*	0.00067696	0.01482320
chargino^+_2 t^* b	0.00030059	0.00658192
chargino^2 t b^*	0. 00030059	0. 00658192
Total width:	4. 56686756	0.0000102
iocai wiuch .	4. 30000730	
1.0		
h0		
mions	0.00000104	0. 03717403
taus	0.00029367	10. 49412940
s-quark	0.00000127	0.04524099
b-quark	0.00216519	77. 37202572
c-quark	0.00010749	3. 84124361
W+ W*		
	0.00005707	2. 03933591
W+* W-	0.00005707	2. 03933591
Z Z *	0. 00000615	0. 21967100
g g	0.00010946	3. 91166457
Total width:	0.00279842	
НО		
	0.00028046	0. 03480344
mions		
taus	0.07932609	9. 84378583
s-quark	0.00031273	0. 03880696

b-quark	0.54671657	67. 84351804
t-quark t-quark	0. 03547964	4. 40276284
Selectron 1 1	0.00038368	
Smion 1 1	0.00039169	
Smion 1 2	0.00039109	0. 04800340
Smion 1 2 Smion 2 1	0.00001977	
Stau 1 1	0.00461331	0. 57247839
Stau 1 2	0.00404359	0. 50178033
Stau 2 1	0.00404359	0. 50178033
e-Sneutrino	0. 00089263	0. 11076927
mu-Sneutri no	0.00089273	0. 11078183
tau-Sneutrino	0.00092078	0. 11426177
neutralino_1 neutralino_1	0. 01634146	2. 02785540
neutralino_1 neutralino_2	0.04742007	5. 88448299
neutralino_2 neutralino_2	0. 01339966	1.66280004
chargino^+_1 chargino^1	0.03593261	4. 45897405
ZZ	0.00145026	0.17996641
W + W-	0.00310488	0. 38529262
h0 h0	0.00951582	1. 18084312
g g	0.00034176	0.04241034
Total width:	0.80584938	
۸n		
AO	0 00028108	0 09300774
muons	0. 00028106	0. 02300774
muons taus	0. 07950191	6. 50800650
muons taus s-quark	0. 07950191 0. 00031341	6. 50800650 0. 02565593
muons taus s-quark b-quark	0. 07950191 0. 00031341 0. 54815429	6. 50800650 0. 02565593 44. 87177335
muons taus s-quark b-quark t-quark	0. 07950191 0. 00031341 0. 54815429 0. 11221779	6. 50800650 0. 02565593 44. 87177335 9. 18611989
muons taus s-quark b-quark t-quark Smuon 1 2	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049 0. 00594160	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718 0. 48637805
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049 0. 00594160 0. 00594160	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718 0. 48637805 0. 48637805
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_1	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049 0. 00594160 0. 00594160 0. 02505516	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718 0. 48637805 0. 48637805 2. 05100917
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_2	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049 0. 00594160 0. 00594160 0. 02505516 0. 10779205	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718 0. 48637805 0. 48637805 2. 05100917 8. 82383050
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_1 neutralino_2 neutralino_2	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049 0. 00594160 0. 00594160 0. 02505516 0. 10779205 0. 09278079	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718 0. 48637805 0. 48637805 2. 05100917 8. 82383050 7. 59501200
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_1 neutralino_2 neutralino_2 chargino^+_1 chargino^1	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049 0. 00594160 0. 00594160 0. 02505516 0. 10779205 0. 09278079 0. 24090139	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718 0. 48637805 0. 48637805 2. 05100917 8. 82383050 7. 59501200 19. 72012765
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_1 neutralino_2 neutralino_2 chargino^+_1 chargino^1 h0 Z	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049 0. 00594160 0. 00594160 0. 02505516 0. 10779205 0. 09278079 0. 24090139 0. 00267484	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718 0. 48637805 0. 48637805 2. 05100917 8. 82383050 7. 59501200
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_1 neutralino_2 neutralino_2 chargino^+_1 chargino^1	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049 0. 00594160 0. 00594160 0. 02505516 0. 10779205 0. 09278079 0. 24090139	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718 0. 48637805 0. 48637805 2. 05100917 8. 82383050 7. 59501200 19. 72012765
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_1 neutralino_2 neutralino_2 chargino^+_1 chargino^1 h0 Z Total width:	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00002049 0. 00594160 0. 00594160 0. 02505516 0. 10779205 0. 09278079 0. 24090139 0. 00267484	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 00167718 0. 48637805 0. 48637805 2. 05100917 8. 82383050 7. 59501200 19. 72012765
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_1 neutralino_2 neutralino_2 chargino^+_1 chargino^1 h0 Z Total width:	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00594160 0. 00594160 0. 02505516 0. 10779205 0. 09278079 0. 24090139 0. 00267484 1. 22160158	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 48637805 0. 48637805 2. 05100917 8. 82383050 7. 59501200 19. 72012765 0. 21896208
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_1 neutralino_2 neutralino_2 chargino^+_1 chargino^1 h0 Z Total width: H^+ muon neutrino	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00594160 0. 00594160 0. 02505516 0. 10779205 0. 09278079 0. 24090139 0. 00267484 1. 22160158	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 04637805 0. 48637805 2. 05100917 8. 82383050 7. 59501200 19. 72012765 0. 21896208 0. 04230494
muons taus s-quark b-quark t-quark Smuon 1 2 Smuon 2 1 Stau 1 2 Stau 2 1 neutralino_1 neutralino_1 neutralino_2 neutralino_2 chargino^+_1 chargino^1 h0 Z Total width:	0. 07950191 0. 00031341 0. 54815429 0. 11221779 0. 00002049 0. 00594160 0. 00594160 0. 02505516 0. 10779205 0. 09278079 0. 24090139 0. 00267484 1. 22160158	6. 50800650 0. 02565593 44. 87177335 9. 18611989 0. 00167718 0. 48637805 0. 48637805 2. 05100917 8. 82383050 7. 59501200 19. 72012765 0. 21896208

b-quark t-quark 0.43329892 63. 91775887 Selectron_2 Sneutrino 0.00073931 0.10905855 Smuon 1 Sneutrino 0.00005822 0.00858803 Smuon_2 Sneutrino 0.00073338 0.10818334 Stau_1 Sneutrino 0.01538016 2. 26879229 chargino_1 neutralino_1 0. 14190050 20. 93234365 chargino_1 neutralino_2 0.00107290 0. 15826853 h0 W 0.00303784 0.44812476 Total width: 0.67790067

References

- [1] . 33 en B. Zih no, Null. 5 ha. B 70 1974) 9; 5. 4 ten . 4 e. 5 ha. B 70 1974) 9; 5. 4 ten . 4 e. 5 ha.
- [2] # 3. N# 3, \$ 1. R p_t110 1984) 1.
- [] #.2. # en . . . en , p h . . . R p_t117_198) 7 .
- [4] 3. Ltn, Null. 3 May. B 188 1981) 1.

- [7] R. W. . t., Nul. Ang. B 238 1984) 4
- [9] A!ts, Co" & o a ton, In the D in R po 1999, Vol. II, CaR N/ (C/99-1, A A DR 1; . A III n _ts'. [C" Co" & o a ton], . The . 28, 2002) 469.

- [1] Ren all en R. with , Null. 3 hr. B 557 1999) 79; ..., M.A. unit.
- [16] . A. B' $\stackrel{\downarrow}{\circ}$, . So $\stackrel{\downarrow}{\circ}$ and . Z. $\stackrel{\downarrow}{\circ}$, $\stackrel{\downarrow}{\circ}$ R . D 63 2001) 01770; h p-ph/02100 8, Lot ph 1 $\stackrel{\downarrow}{\circ}$ h $\stackrel{\downarrow}{\circ}$ h $\stackrel{\downarrow}{\circ}$. C.
- [18] B. C. A'' and A. Con put to har. Cont. In. 143_2002) 0.
- [19] A. Dio 4., . . n 4 m . Mod at 1 p-ph/0211 1.
- [21] . M nne, Ch p. th. h. . Chih vn. 101 1997) 2 2.
- [22] N. hold on h p-ph/9909499.
- [2] M. Muhr I. A. Dio of an Y. M. In, & X. ch p-ph/0 11167.
- $[24] \quad . \stackrel{\mathcal{M}}{\sim} \stackrel{\text{l. h. al.}}{\sim} \stackrel{\mathcal{M}}{\sim} \stackrel{\mathcal{M}}{\sim} \stackrel{\mathcal{M}}{\sim} h_n, \stackrel{\text{h. h. a. R. .}}{\sim} \cdot D50, 2282 + 994); \text{ Y. Ya. & a. p. h. a. R. . . D 50, } \\ 7 + 994); \stackrel{\text{l. a. p. h. a. .}}{\sim} \cdot D.R. \quad \text{on } \stackrel{\text{l. h. a. .}}{\sim} \cdot D50, 2282 + 994); \text{ Y. Ya. & a. p. h. a. . R. . . D 50, } \\ 1994); \stackrel{\text{l. a. p. h. a. .}}{\sim} \cdot D.R. \quad \text{on } \stackrel{\text{l. h. a. .}}{\sim} \cdot D50, 2282 + 994); \text{ Y. Ya. & a. p. h. a. . R. . . D 50, } \\ 1994); \stackrel{\text{l. a. p. h. a. .}}{\sim} \cdot D.R. \quad \text{on } \stackrel{\text{l. a. .}}{\sim} \cdot D50, 2282 + 994); \text{ Y. Ya. & a. . P. . . D 50, } \\ 1994); \stackrel{\text{l. a. p. h. a. .}}{\sim} \cdot D.R. \quad \text{on } \stackrel{\text{l. a. .}}{\sim} \cdot D.R. \quad \text{$
- [2] D. M. J. J. L. B **491** 1997) .
- [27] A. D. 3 en 3. 10 h, Null. 3 h B 657 200)
- [28] . et al., X rh p-ph/0 1112.
- [0] \$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1

- [] . B'n _tw, M. B.D. N'son, N's. . B 604 2001) 2.
- [4] A. Be It _\tau., \(\bar{\text{h}} \) \(\bar{\text{R}} \) . D 64_2001) 076009.

- [] D. S. sp'en, .D. ; en .M. A. t. h. s. h. s. R. . D 62 2000) 0 010; Z. Che, a. A. S. N. son en S. Son on, (\$\infty\$ 0001 2000) 00 .
- [6] . Po o h, 'n p pe L'ton.
- [7] . I. 14 age an M. d are, h, h, R . D 36 987) 724.
- [9] A. Dio A. an Y. M. In T. R. D 63 2001) 11 00.

- [42] M B_{WM} L_{th} , A_{th} $A_{\text{t$
- [4] A. Be It . Med out on . Po o, Phy. __ttB 465_1999) 187.
- [44] F. J. F. D. J., N.J. S. h. B. 323 J. 989) 267.
- [4] A. Be It . Met out on . 30 8, Z. 34. C 64 1994) 499 [4 4 4 . C 68 199) 18]; . 30 8, F 30 0205 2002) 0 0.
- [46] A. Be It _t/. A. R. . D 43 J 991) 2214.
- [48] A. D. I. tn, N. I. h. B. 456 199) 2; A. B. It t., h. L. ttB 373 1996)

 117; R. A. n. n. en . o'e, h. L. ttB 389 1996) ; A. B. It t., h. L. ttB 389 1996)

 12; A. B. It t., h. L. ttB 402 1997) 0; A. A. h. L. ttB 389 1996)

 12; A. B. It t., h. L. ttB 402 1997) 0; A. A. h. L. ttB . R. D. 57

 1998) 860; F. T. ttB 497 2001) 101; F. en ttB . R. D. 64 2001) 11 004; F. T. L. LtB 497 2001) 101; F. en ttB . R. D. 64 2001) 11 004; F. T. L. LtB . R. D. 65 2002) 07 018.
- [49] A. Dio 1, In.t. 10, 199) 1; M. p. 1, 0, 1, 1, 146, 1998) 20.
- [0] M. p. s, A. Dio M., D. sk n sh p. M. Z ks, Null phys. B 453 199) 17.

- [4] M. D 3 en . 14 a.e., 5 h. _ttB252 1990) 127.
- [] f. 4 1, A. Be Iten . Med outs, Not. 5 hay. B 472 1996) 481.
- [7] B d'n, Bo h Lt A. M. o on . R. of, N. . B 353 1991) 91.
- [8] 3. . Cho, M. M. L. and D. V., Shor, R. . D 54 1996) 29.
- [9] A. . e en en . N. . .,teu. . h. . . . C 7, 1999).
- [60] . I am P. Nat, Phys. R . D 61 2000) 09 008.
- [61] M. D. an . Ke . A. R. D. 42, 1709 1990).
- [62] M. Ce ne, D. e je, . N _ten C. E. en , h. _ttB 499_2001) 141.
- [6] A. . B $\rlap/\!\!/ \, e_3$ _ te'., \hbar p-p $\hbar/02 \rlap/\!/ \, 014$.
- [64] Ih_n , h p-ph/0 102 4.
- [66] . __n, h'o_tt, B. A. n' M, en A. '''n, h. R . D 48 199) 07.
- [67] A. Fo', and O. O. N. M. B253 198) 47.
- [68] S. W. Chen and Let al., Null. Shop. B417 1994) 101.
- [70] . . Ch_t n, B. A. n N, en M. _tnhed, , h n. R . _tt79_1997) 2184; . . Ch_t n, B. A. n N, en M. _tnhed, , Nd/. h n. B510_1998) 61; . Ro-o, A. h n A. en h e e, h n. _ttB424_1998) 67.
- [72] f. Be $-\frac{1}{2}$., h. D 66_2002) 074007.
- [7] M. Ce ne _t., N. h., B 577_2000) 88.
- [74] ff. A $_{5}$ on $_{-}$ tf., $_{2}$ has, $_{3}$. Row. D $\mathbf{46}$. $\mathbf{992}) 94$.

- [7] B. C. A'' ene h, A. Dio te h, . . n t, . so o en s. 'e h, & X' . h p-ph/0406166.
- [77] . # chn cn M. > V 2 the, Con put has. Conn un. 118 1999) 1
- [79] B. C. Alleneck _td., 24., 24., 25. . . C 25. 2002) II .
- [80] up sinh -t sen -t And A) p of p,t t out on the tent found on the Ahm pe h to:// A hm pe/sen/spe/