18AIC301J: DEEP LEARNING TECHNIQUES

B. Tech in ARTIFICIAL INTELLIGENCE, 5th semester

Faculty: **Dr. Athira Nambiar**

Section: A, slot:D

Venue: TP 804

Academic Year: 2022-22

UNIT-3

One hot representation of words, Distributed representation of words

SVD for learning word Representations, Continuous bag of words model, Skip-gram model, Hierarchical Softmax

Implement skip gram model to predict words within a certain range before and after the current word

Introduction to Convolution Neural Networks, Kernel filters

The convolution operation with Filters, padding and stride, Multiple Filters, Max pooling and non-linearities

Implement LeNet for image classification

Classic CNNs architecture- The

ImageNet challenge, Understanding Alex Net architecture

ZFNet, The intuition behind GoogleNet, Average pooling, Residual CNN-ResNet architecture

Implement ResNet for detecting Objects.

UNIT-3

One hot representation of words, Distributed representation of words

SVD for learning word Representations, Continuous bag of words model, Skip-gram model, Hierarchical Softmax

Implement skip gram model to predict words within a certain range before and after the current word

Introduction to Convolution Neural Networks, Kernel filters

The convolution operation with Filters, padding and stride, Multiple Filters, Max pooling and non-linearities

Implement LeNet for image classification

Classic CNNs architecture- The

ImageNet challenge, Understanding Alex Net architecture

ZFNet, The intuition behind GoogleNet, Average pooling, Residual CNN-ResNet architecture

Implement ResNet for detecting Objects.

Fully Connected Neural Network

Fully connected Neural Networks

Input:

- 2D image
- · Vector of pixel values

Fully Connected Neural Network

Input:

- 2D image
- · Vector of pixel values

Fully Connected:

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

Fully connected Neural Networks

32x32x3 image -> stretch to 3072 x 1

How can we use spatial structure in the input to inform the architecture of the network?

Using Spatial Structure

Input: 2D image. Array of pixel values

Using Spatial Structure

Connect patch in input layer to a single neuron in subsequent layer.

Use a sliding window to define connections.

How can we weight the patch to detect particular features?

Feature Extraction with Convolution

- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy" operation is **convolution**

- 1) Apply a set of weights a filter to extract local features
 - 2) Use multiple filters to extract different features
 - 3) **Spatially share** parameters of each filter

CONVOLUTION LAYER

Stanford cs231n: https://www.youtube.com/watch?v=bNb2fEVKeEo&t=2949s

Convolution Layer

Convolution Layer

Stanford cs231n: https://www.youtube.com/watch?v=bNb2fEVKeEo&t=2949s

Convolutional Kernel filters

CONVOLUTION LAYER

The Convolution Operation

Suppose we want to compute the convolution of a 5x5 image and a 3x3 filter:

1	1	1	0	0					
0	1	1	1	0		1	0		
0	0,	1	1	1	\otimes	0	1		
0	0	1	1	0		1	0		
0	1	1	0	0		filter			

image

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs...

CONVOLUTION LAYER

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

1,	1,0	1,	0	0							
0,0	1,	1,0	1	0		1	0	1	4		
0,1	0,0	1,	1	1	\otimes	0	1	0			
0	0	1	1	0		1	0	1			
0	1	1	0	0	filter				feature map		

Convolution Layer

Stanford cs231n: https://www.youtube.com/watch?v=bNb2fEVKeEo&t=2949s

Learning Resources

- Charu C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018.
- Eugene Charniak, Introduction to Deep Learning, MIT Press, 2018.
- Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.
- Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.
- Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.
- https://www.youtube.com/watch?v=uapdILWYTzE&t=2172s
- https://www.youtube.com/watch?v=bNb2fEVKeEo&t=2949s

Thank you