Competitive Programming and Contests

12/06/2018

Increasing subarray

You are given an array A[0..n-1] of positive integers. We use A[i:j] to denote the subarray of A of size j-i+1, i.e., elements $A[i]A[i+1], \ldots, A[j-1], A[j]$.

We say that A[i:j] is strictly increasing subarray iff A[k] < A[k+1] for any $i \le k < j$.

The goal is to report the length of the longest subarray of A such that it is possible to change at most one element to obtain a strictly increasing subarray.

We point out that there exist

- 1. A $\Theta(n^2)$ time solution. If you find and implement this solution, your grade will be 22;
- 2. A $\Theta(n)$ time solution. If you find and implement this solution, your grade will be 30.

Input. The first line contains the value of n. The next line consists in n integers, separated by a space.

Output. The number of length of the longest subarray.

Example

Input

Output

4

The subarray 2, 1, 4, 5 is the subarray of that length.

Input

5 // n 1 2 3 4 1 // A

Output

5

The subarray 1, 2, 3, 4, 1 is the subarray of that length.