

Cours MALG & MOVEX

MALG Sémantique des langages de programmation

Dominique Méry Telecom Nancy, Université de Lorraine (5 mai 2025 at 12:42 A.M.)

Année universitaire 2024-2025

- **1** Software-based system engineering
- 2 Summary on verification techniques Tryptic Pattern Programs as Predicate Transformers
- 3 Introduction to semantics for programming languages
- 4 Operational Semantics
- 6 Denotational Semantics
- 6 Equivalence des deux sémantiques
- **7** Transformateurs de prédicats

Introduction

Définition et propriétés

Construction du wp pour la conditionnelle

Construction du wp pour l'itération

- 8 Logique de Hoare
- 9 Epilogue

- 1 Software-based system engineering
- 2 Summary on verification techniques
- 3 Introduction to semantics for programming languages
- **4** Operational Semantics
- **6** Denotational Semantics
- 6 Equivalence des deux sémantiques
- 7 Transformateurs de prédicats
- 8 Logique de Hoare

Software/System development *ideally* proceeds in three phases according to Dines Børner : :

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

- First, a phase of **domain engineering** \mathcal{D} : an analysis of the application domain leads to a description of that domain.
- ightharpoonup Second, a phase of **requirements engineering** \mathcal{R} : an analysis of the domain description leads to a prescription of requirements to software for that domain. ibloc
- ► Third, a phase of **software/system design** S : an analysis of the requirements prescription leads to software for that domain.

Software/System development *ideally* proceeds in three phases according to Dines Børner : :

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

Pre/Post Specification

- $\triangleright \mathcal{R}$: pre/post.
- $ightharpoonup \mathcal{D}$: integers, reals, . . .
- $ightharpoonup \mathcal{S}$: algorithm, program, . . .

Software/System development *ideally* proceeds in three phases according to Dines Børner : :

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

Pre/Post Specification

- ► R : pre/post.
- $ightharpoonup \mathcal{D}$: integers, reals, . . .
- $ightharpoonup \mathcal{S}$: algorithm, program, . . .
- ► Semantical relationship
- Verification by induction principle

Software/System development ideally proceeds in three phases according to Dines Børner::

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

Software/System development ideally proceeds in three phases according to Dines Børner::

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

Software/System development *ideally* proceeds in three phases according to Dines Børner : :

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

- First, a phase of **domain engineering** \mathcal{D} : an analysis of the application domain leads to a description of that domain.
- ightharpoonup Second, a phase of **requirements engineering** \mathcal{R} : an analysis of the domain description leads to a prescription of requirements to software for that domain.
- ► Third, a phase of **software/system design** S : an analysis of the requirements prescription leads to software for that domain.

J. Piaget. *Logique et Connaissance scientifique*. La Pléiade, encyclopaedia.

If we refer to whom is talking, or more generally to the language users, this investigation is attributed to the **pragmatics**. If we make an abstraction of the language users and if we analyze the

expressions and their meanings only, we are in the area of the **semantics**. Finally, if we make an abstraction of the meanings to analyze the relations between expressions, we are dealing with **syntax**.

These three elements constitute the science of the language or semiotics.

- 1 Software-based system engineering
- 2 Summary on verification techniques Tryptic Pattern Programs as Predicate Transformers

- Transformateurs de prédicats

- Software-based system engineering
- 2 Summary on verification techniques Tryptic Pattern

- 6 Equivalence des deux sémantiques
- Transformateurs de prédicats

- Software-based system engineering
- 2 Summary on verification techniques

Tryptic Pattern

Programs as Predicate Transformers

- 3 Introduction to semantics for programming languages
- **4** Operational Semantics
- Denotational Semantics
- 6 Equivalence des deux sémantiques
- 7 Transformateurs de prédicats

Introduction

Définition et propriétés

Construction du wp pour la conditionnelle

Construction du wp pour l'itération

- 8 Logique de Hoare
- Epilogue

Asserted Program $\{P\}$ S $\{Q\}$

Asserted Program {P} S {Q}

Asserted Program {P} S {Q}

- 1 Software-based system engineering
- 2 Summary on verification techniques
- 3 Introduction to semantics for programming languages
- 4 Operational Semantics
- 6 Denotational Semantics
- Transformateurs de prédicats

Quelques observations

Implicite versus explicite

• Wrting 101 = 5 may have a meaning . . .

Quelques observations

Implicite versus explicite

- Wrting 101 = 5 may have a meaning . . .
- Le code du nombre n est 101 à gauche du symbole = et le code du nombre n est sa représentation en base 10 à droite.
- $n_{10} = 5$ et $n_2 = 101$
- ▶ Vérification : $base(2, 10, 101) = 1.2^2 + 0.2 + 1.2^0 = 5_{10}$


```
int average(int a, int b)
{
  return((a+b)/2);
}
```

- average est une fonction utilisée dans des parties très profondes du code comme la recherche dichotomique.
- ► analyse de l'addition et de la division.
- anticiper les calculs

Example: description of static behaviour

- ► A train moving at absolute speed *spd1*
- ightharpoonup A person walking in this train with relative speed spd2
 - One may compute the absolute speed of the person
- Modelling
 - Syntax. Classical expressions
 - ightharpoonup Type Speed = Float
 - ightharpoonup spd1, spd2: Speed
 - ightharpoonup AbsoluteSpeed = spd1+spd2
 - Semantics
 - If spd1 = 25.6 and spd2 = 24.4 then AbsoluteSpeed = 50.0If spd1 = "val" and spd2 = 24.4 then exception raised
 - Pragmatics
 - What if spd1is given in mph (miles per hour) and spd2 in km/s (kilometers per second)?
 - What if spd1 is a relative speed?

Des sémantiques pour des langages de programmation

- La sémantique décrit le sens des objets définis par la syntaxe.
- La sémantique permet d'éviter l'ambiguïté des éléments d'un langage.
- Exemples
 - L'objet 123 désigne le nombre 123 en base dix.
 - L'objet x+12+8 désigne la somme des valeurs de la variable x et des deux nombres écrits en base dix 12 et 8.
- Styles de sémantique
 - Sémantique Opérationnelle : la sémantique du programme est décrite par une relation de transition qui décrit les différents étas du programme et la relation de transition est définie par des opérations ou des actions.
 - Sémantique Dénotationnelle : la sémantique du programme est une fonction calculant le résultat à partir de la donnée.
 - Sémantique Axiomatique: le programme est caractérisé par des axiomes et des règles d'inférences comme par exemple la logique de HOARE.

Vérification du contrat

Un programme P remplit un contrat (pre,post) :

- P transforme une variable x à partir d'une valeur initiale x_0 et produisant une valeur finale $x_f: x_0 \xrightarrow{P} x_f$
- ightharpoonup x₀ satisfait pre : pre(x_0)
- $ightharpoonup x_f$ satisfait post : post (x_0, x_f)

```
requires pre(x_0)
ensures post(x_0, x_f)
variables X
           \begin{aligned} & \text{begin} \\ & 0: P_0(x_0, x) \\ & \text{instruction}_0 \end{aligned}
           i: P_i(x_0, x)
             instruction_{f-1}
            f: P_f(x_0, x)
```

- $P_f(x_0, x) \Rightarrow post(x_0, x)$
- conditions de vérification pour toutes les paires $\ell \longrightarrow \ell'$ qui vont être traduites avec une sémantique wp.
- $x_0 \xrightarrow{P} x_f$ exprime la relation de calcul de x_0 à x_f sous la forme d'une sémantique opérationnelle ou dénotationnelle.

Principes de l'utilisation des wps

Correction partielle

- (I) $\forall x_0, x_f \in \mathsf{D.pre}(x_0) \land x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- (II) $\forall x_0 \in \mathsf{D.pre}(x_0) \Rightarrow (\forall x_f \in \mathsf{D}.x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f))$
- (III) $\forall x_0 \in \mathsf{D.pre}(x_0) \Rightarrow wlp(P)(\mathsf{post}(x_0, x_f))$

Principes de l'utilisation des wps

Correction partielle

- (I) $\forall x_0, x_f \in \mathsf{D.pre}(x_0) \land x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f)$
- (II) $\forall x_0 \in \mathsf{D.pre}(x_0) \Rightarrow (\forall x_f \in \mathsf{D}.x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \mathsf{post}(x_0, x_f))$
- (III) $\forall x_0 \in \mathsf{D.pre}(x_0) \Rightarrow wlp(P)(\mathsf{post}(x_0, x_f))$

Techniques équivalentes de vérification

- méthode des assertions inductives de Floyd-Hoare (annotation et vérification).
- méthode du calcul wp (calcul de la précondition associée à un programme)
- définition équivalente de sémantiques des langages de programmation:
 - opérationnelle
 - dénotationnelle
 - axiomatique

- 1 Software-based system engineering
- 2 Summary on verification techniques
- 4 Operational Semantics
- 6 Denotational Semantics
- Transformateurs de prédicats

Structural Operational Semantics (SOS) and Natural Semantics (NAT)

- ► Sémantique à petits pas (small steps) :
 - Définition d'une relation notée $\underset{sos}{\longrightarrow}$ sur l'ensemble des configurations de la forme (S,s) où S est une instruction ou un programme ou une instruction et s est un état ou de la forme s où s est un état.
 - Transitions de type $1:(S,s)\longrightarrow (S',s')$
 - Transitions de type 2 : $(S,s) \xrightarrow[sos]{} s'$
- ► Sémantique naturelle ou à grands pas (big step) :
 - Définition d'une relation notée $\underset{\text{nat}}{\longrightarrow}$ sur l'ensemble des configurations de la forme (S,s) où S est une instruction ou un programme ou une instruction et s est un état ou de la forme s où s est un état.
 - Transitions uniquement de ce type : $(S,s) \xrightarrow[\text{nat}]{} s'$

Cadre pour la sémantique opérationnelle

- ▶ Un état s est un élément de $STATES = V \rightarrow \mathbb{Z}$ et STATES est l'ensemble des états.
- ▶ \mathcal{E} est une fonction associant à toute expression arithmétique une fonction permettant de donner la valeur de cette expression en un état donné : $\mathcal{E} \in EXPR \to (STATES \to \mathbb{Z})$:
 - $\mathcal{E}(x)(s) = s(x)$ où $x \in V$ et $s \in STATES$.
 - $\mathcal{E}(constant)(s) = constant$. Tecvhnique
 - $\mathcal{E}(e1 \ op \ e2)(s) = \mathcal{E}(e1)(s) \ \mathbf{op} \ \mathcal{E}(e2)(s).$
- ▶ \mathcal{B} est une fonction associant à toute expression booléenne une fonction permettant de donner la valeur de cette expression en un état donné : $\mathcal{E} \in EXPR \to (STATES \to BOOL)$:
 - $\mathcal{B}(ff)(s) = FALSE$
 - $\mathcal{B}(tt)(s) = TRUE$
 - $\mathcal{B}(e1 \ relop \ e2)(s) = \mathcal{E}(e1)(s) \ \mathbf{relop} \ \mathcal{E}(e2)(s)$.
 - $\mathcal{B}(b1\ bop\ b2)(s) = \mathcal{E}(b1)(s)\ \mathbf{bop}\ \mathcal{E}(b2)(s)$.

Règles de définition selon la syntaxe

- Si $\mathcal{E}(e)(s)$ est la valeur de l'expression e en s, alors $(x := e, s) \xrightarrow{s} s[x \mapsto \mathcal{E}(e)(s)]$
- $\triangleright (skip, s) \xrightarrow{sos} s$
- ightharpoonup Si $(S_1,s) \xrightarrow[sos]{} (S'_1,s')$, alors $(S_1;S_2,s) \xrightarrow[sos]{} (S'_1;S_2,s')$.
- ightharpoonup Si $(S_1,s) \xrightarrow{\operatorname{soc}} s'$, alors $(S_1;S_2,s) \xrightarrow{\operatorname{soc}} (S_2,s')$.
- ▶ Si $\mathcal{B}(b)(s) = TRUE$, alors (if b then S_1 else S_2 fi, s) $\longrightarrow_{\mathsf{enc}} (S_1, s)$.
- ▶ Si $\mathcal{B}(b)(s) = FALSE$, alors (if b then S_1 else S_2 fi, s) $\xrightarrow[sos]{} (S_2, s)$.
- ▶ (while b do S od, s) $\xrightarrow[sos]{}$ (if b then S; while b do S od else skip fi, s)

Règles de définition selon la syntaxe

- ▶ Si $\mathcal{E}(e)(s)$ est la valeur de l'expression e en s, alors $(x := e, s) \xrightarrow{} s[x \mapsto \mathcal{E}(e)(s)]$
- $\triangleright (skip, s) \xrightarrow{pat} s$
- ightharpoonup Si $(S_1,s) \xrightarrow{\text{nat}} s'$ et $(S_2,s') \xrightarrow{\text{nat}} s$ ", alors $(S_1;S_2,s) \xrightarrow{\text{nat}} s$ ".
- ▶ Si $(S_1, s) \xrightarrow{\text{nat}} s'$ et $\mathcal{B}(b)(s) = TRUE$, alors (if b then S_1 else S_2 fi, s) $\xrightarrow{\text{nat}} s'$.
- ► Si $(S_2, s) \xrightarrow{\text{nat}} s'$ et $\mathcal{B}(b)(s) = FALSE$, alors (if b then S_1 else S_2 fi, s) $\xrightarrow{\text{nat}} s'$.
- ▶ Si $(S, s) \xrightarrow{\text{nat}} s'$ et (while b do S od, s') $\xrightarrow{\text{nat}} s$ " et $\mathcal{B}(b)(s) = TRUE$, alors (while b do S od, s) $\xrightarrow{\text{nat}} s$ ".
- ▶ Si $\mathcal{B}(b)(s) = FALSE$, alors (while $b \text{ do } S \text{ od}, s) \xrightarrow{\text{nat}} s$.

Fonctions sémantiques associées aux instructions

Fonction sémantique \mathcal{S}_{sos} :

- \triangleright $S_{sos} \in STATS \rightarrow (STATES \rightarrow STATES)$:
- $\triangleright \ \mathcal{S}_{sos}(S)(s) \stackrel{def}{=} \left\{ \begin{array}{c} s' \ si \ (S,s) \xrightarrow{\star} s' \\ indefinie \ sinon \end{array} \right.$

Fonction sémantique S_{nat} :

- \triangleright $S_{nat} \in STATS \rightarrow (STATES \rightarrow STATES)$:
- $\triangleright \ \mathcal{S}_{nat}(S)(s) \stackrel{def}{=} \left\{ \begin{array}{c} s' \ si \ (S,s) \xrightarrow{nat} s' \\ indefinie \ sinon \end{array} \right.$

Equivalence de deux fonctions sémantiques

Equivalence pour les instructions de STATS

Pour toute instruction S de STATS, pour tout état s de STATES, $\mathcal{S}_{sos}(S)(s) = \mathcal{S}_{nat}(S)(s)$

Preuve

- ▶ Montrons que si $(S,s) \xrightarrow[\text{nat}]{} s'$, alors $(S,s) \xrightarrow[\text{sos}]{} s'$.
- ► Montrons que si $(S,s) \xrightarrow[sos]{\star} s'$., alors $(S,s) \xrightarrow[nat]{} s'$.

- 1 Software-based system engineering
- 2 Summary on verification techniques
- 3 Introduction to semantics for programming languages
- **4** Operational Semantics
- **5** Denotational Semantics
- 6 Equivalence des deux sémantiques
- **7** Transformateurs de prédicats
- 8 Logique de Hoare

Motivations

- ► Fondement des langages de programmation.
- Outils mathématiques permettant de raisonner sur les objets de la programmation.
- Liaison entre les programmes et les spécifications : le raffinement ou l'implémentation.
- Préservation de la sémantique d'un langage de programmation dans un langage de plus bas niveau par compilation : correction du compilateur.

Langage de programmation

Une notation pour des instructions comme par exemple C, PASCAL,SHELL,

- ► Syntaxe : Structure et forme des sentences
- ► Sémantique : Association d'un sens aux sentences comme par exeple des nombres, des fonctions, des actions d'une machine, . . .
- ► Pragmatique : Utilisation effective du langage comme par exemple les domaines d'applications, les performances, . . .

Des éléments spécifiques pour chaque programme d'une machine.

- Un module d'analyse syntaxique : lecture du texte fourni, vérification de la syntaxe, génération de la représentation interne.
- Un module d'évaluation : évaluation du texte fourni en donnée du texte analysé en un texte résultat ; cela définit la sémantique du langage.

La mise en œvre d'un langage est une activité pragmatique.

Interprétation versus compilation

- ► Interprétation : Exécution du programme L'interprète définit le sens par ses actions.
- Compilation : Transformation d'un programme écrit dans un langage L en un texte équivalent d'un langage L2 (langage machine en général).
 - Le compilateur préserve le sens par équivalence.

Spécifications formelles des langages

- ► Syntaxe sous BNF (Backus Naur Form)
 - Correspondance entre la BNF et l'analyseur syntaxique.
 - Générateur d'analysuer à partir de spécification du langage.
- Sémantique :
 - Opérationnelle.
 - Axiomatique
 - Dénotationnelle

Sémantique dénotationnelle

- Le sens d'un programme est un objet mathématique.
- Chaque construction du langage est associée à un objet mathématique par une fonction de valuation. Le sens d'une structure est appelée une dénotation.

$$\mathcal{M}(P) = D \tag{1}$$

 ${\cal P}$ est un programme

 \mathcal{M} est une fonction de valuation.

D est une dénotation ou une valeur sémantique de dénotation.

Fonction de valuation

- Domaine : Structure syntaxique abstraite du langage
- ► Codomaine : Objets des domaines sémantiques.
- Définition structurelle : le sens d'un arbre est défini à partir du sens de ses sous-arbres.

Une fonction de valuation sémantique associe une syntaxe abstraite à des objets d'un domaine sémantique.

Langage des nombres binaires

- ► Syntaxe abstraite :
 - $\bullet \ \, {\rm Domaines \ syntaxiques:} \ \, \begin{array}{l} B \in Nombre-binaire \\ D \in Chiffre-binaire \end{array}$
 - Règles syntaxiques : $\begin{array}{l} B ::= BD|D \\ D ::= 0|1 \end{array}$

Sens des sentences terminales

- Sous-arbre : |
- $\qquad \qquad \begin{array}{c} D \\ \text{Sens} : \mathcal{D}(\begin{array}{c} | \\ | \\ 0 \end{array}) = zero \\ \end{array}$
- $\blacktriangleright \ \, \mathsf{Notation} : \mathcal{D}[\![0]\!] = zero$

Fonction de valuation : $\begin{array}{l} \mathcal{D}[\![0]\!] = zero \\ \mathcal{D}[\![1]\!] = un \end{array}$

Sens des sentences non-terminales

$$\begin{array}{c} B \\ | \\ | \\ D \\ | \\ 1 \\ \end{array}$$
 Sous-arbre :
$$\begin{array}{c} B \\ | \\ D \\ \Delta \\ \end{array}$$
 Sens :
$$\mathcal{B}(\begin{array}{c} | \\ D \\ D \\ \end{array}) = \mathcal{D}(\begin{array}{c} D \\ \Delta \\ \end{array})$$
 Notation :
$$\begin{array}{c} \mathcal{B}[\![D]\!] = \mathcal{D}[\![D]\!] \\ \mathcal{B}[\![D]\!] = \mathcal{D}[\![D]\!] \\ \mathcal{B}[\![BD]\!] = (\mathcal{B}[\![B]\!] \ fois \ deux) \ plus \ \mathcal{D}[\![D]\!] \end{array}$$
 Fonction de valuation :
$$\begin{array}{c} \mathcal{B}[\![D]\!] = \mathcal{D}[\![D]\!] \\ \mathcal{B}[\![BD]\!] = (\mathcal{B}[\![B]\!] \ fois \ deux) \ plus \ \mathcal{D}[\![D]\!] \end{array}$$

Définition de la sémantique

```
Syntaxe abstraite B \in Nombre-binaire \\ D \in Chiffre-binaireB ::= BD|D \\ D ::= 0|1 \\ Domaines sémantiques \\ \textit{Nombres naturels} : \\ Domaine Nat = \mathbb{N} \\ Opérations zero, un deux, trois, ... : Nat \\ plus, fois : Nat <math>\times Nat \rightarrow Nat
```

Définition de la sémantique

```
Fonctions de valuation  \mathcal{B}: Nombre-binaire \to Nat \\ \mathcal{B}\llbracket D \rrbracket = \mathcal{D}\llbracket D \rrbracket \\ \mathcal{B}\llbracket BD \rrbracket = (\mathcal{B}\llbracket B \rrbracket \ fois\ deux)\ plus\ \mathcal{D}\llbracket D \rrbracket \\ \mathcal{D}: Chiffre-binaire \to Nat \\ \mathcal{D}\llbracket 0 \rrbracket = zero \\ \mathcal{D}\llbracket 1 \rrbracket = un
```

Syntaxe et sémantique d'un langage impératif

Syntaxe

```
	au:= bool | nat | int | ... % types de données 	au:= exp[	au] | comm % types des textes de commandes
```

- but nom de type τ dénote un ensemble non vide $[\![\tau]\!]$ de valeurs possibles :
 - $[bool] = \{true, false\} = \mathbb{B}$
 - $[nat] = \{0, 1, 2, 3 \dots\} = \mathbb{N}$
 - $\bullet \hspace{0.2cm} \llbracket \mathtt{int} \rrbracket = \{\ldots -3, -2, -1, 0, 1, 2, 3 \ldots\} = \mathbb{Z}$
- $$\begin{split} & & [\![\exp[\tau]]\!] = \operatorname{States} \longrightarrow [\![\tau]\!] \\ & [\![\operatorname{comm}]\!] = \operatorname{States} \leftrightarrow \operatorname{States} \text{ (fonction partielle)} \\ & \text{où States est l'ensemble des états,} \\ & \text{par exemple States} = \operatorname{Var} \longrightarrow \mathbb{Z} \end{aligned}$$

Syntaxe et sémantique d'un langage impératif

Equations sémantiques

- $\blacktriangleright \ \llbracket \bullet \rrbracket_{\exp[\tau]} : \exp[\tau] \longrightarrow \llbracket \exp(\tau) \rrbracket$
- $\blacktriangleright \ \llbracket \bullet \rrbracket_{\mathtt{comm}} : \mathtt{comm} \longrightarrow \llbracket \mathtt{comm} \rrbracket$
- ightharpoonup [ullet] $_{\exp[au]}$ est noté [ullet]
- ightharpoonup [ullet] comm est noté [ullet]

Instruction d'affectation

Pour tout état $s \in \mathtt{States}$, $[\![I := E]\!](s) = s[I \mapsto [\![E]\!](s)]$

Syntaxe et sémantique d'un langage impératif

Instruction conditionnelle

Pour tout état $s \in States$.

Cond+: [if B then
$$S_1$$
 else S_2 fi](s) = $[S_1](s)$ si $[B](s) = TRUE$

Cond-:
$$[$$
if B then S_1 else S_2 fi $]$ $[s] = [S_2][s]$ si $[B][s] = FALSE$

Instruction conditionnelle

Pour tout état $s \in States$.

$$[\![S_1; S_2]\!](s) = [\![S_2]\!]([\![S_1]\!](s)) = [\![S_2]\!] \circ [\![S_1]\!](s)$$

Application à des démonstrations de propriétés sur les commandes:

- $ightharpoonup C \equiv C'$ si, et seulement si, [C] = [C']
- \blacktriangleright for 0 do C \equiv SKIP
- ightharpoonup (C; C); C \equiv C; (C; C)
- $\blacktriangleright \ \llbracket \texttt{for} \ N \ \texttt{do} \ C \rrbracket = \llbracket C \rrbracket^{\llbracket N \rrbracket}$

Syntaxe et sémantique d'un langage impératif : itération

Observation

```
while B do C \equiv if B then C; while B do C traduite sémantiquement comme suit : [\![\text{while B do C}]\!] \equiv [\![\text{if B then C}; \text{while B do C}]\!]
```

Pour tout $s \in \text{States}$, $W(f)(s) = \sin [\![B]\!](s) \ alors \ f([\![C]\!](s)) \ sinon \ s$:

- \blacktriangleright $W \in (States \rightarrow States) \longrightarrow (States \rightarrow States)$
- (States → States, ⊆) est une structure partielement ordonnée inductive.
- ▶ *W* est continue pour cette structure.
- Le plus petit point fixe de W est noté μW :
 - $\mu W = \bigvee_{i \in \mathbb{N}} W_i$.
 - $W_0 = \bot$ où $graphe(\bot) = \varnothing$.
 - Soit $s \in \mathtt{States}$:

$$W_{i+1}(s) = ext{if } \llbracket B
rbracket(s) ext{ then } W_i(\llbracket C
rbracket(s)) ext{ else } s ext{ end}$$

▶ Soit $s \in \text{States}$: $\mu W(s) = \text{if } \llbracket B \rrbracket(s) \text{ then } \mu W(\llbracket C \rrbracket(s)) \text{ else } s \text{ end}$

Denotational Semantics for iteration

while B do C \equiv if B then C; while B do C Pour tout $s \in$ States, W(f)(s) = si $[\![B]\!](s)$ alors $f([\![C]\!](s))$ sinon s : Pour tout état $s \in$ States, $[\![while B do C]\!](s) = \mu f. W(f)(s)$

- ▶ [while B do C] \equiv [if B then C; while B do C] is a property from the definition of [while B do C].
- ightharpoonup For any statement S, [S] is a partial function from States to States.

Summary

- 1 Software-based system engineering
- 2 Summary on verification techniques
- 3 Introduction to semantics for programming languages
- 4 Operational Semantics
- **5** Denotational Semantics
- 6 Equivalence des deux sémantiques
- **7** Transformateurs de prédicats
- 8 Logique de Hoare

Equivalence des sémantiques opérationnelles et dénotationnelles

Equivalence pour les instructions de STATS

Pour toute instruction S de STATS, pour tout état s de STATES, $\mathcal{S}_{sos}(S)(s) = \mathcal{S}_{nat}(S)(s) = \mathcal{D}(S)(s)$

- La sémantique opérationnelle est une sémantique liée à une fonction d'interprétation et de calcul du programme évalué.
- ► La sémantique dénotationnelle est une expression fonctionnelle du programme;

Summary

- 1 Software-based system engineering
- 2 Summary on verification techniques
- 4 Operational Semantics

- **7** Transformateurs de prédicats
 - Introduction
 - Définition et propriétés
 - Construction du wp pour la conditionnelle

Summary

- Software-based system engineering

- 6 Equivalence des deux sémantiques
- **7** Transformateurs de prédicats

Introduction

- ▶ Un programme P *produit* des résultats à partir de données en accord avec une sémantique :
 - STATES est l'ensemble de tous les états de P : STATES = X → Z où X désigne les variables de P.
 - s_0 et s_f deux états de STATES : $\mathcal{D}(P)(s_0) = s_f$ signifie que P est exécuté à partir d'un état s_0 et produit un état s_f .
 - Pour un état s de P courant, on notera s(X) = x pour distinguer la valeur de la variable X et sa valeur courante en s:

- Un programme P produit des résultats à partir de données en accord avec une sémantique :
 - STATES est l'ensemble de tous les états de P : STATES = X → Z où X désigne les variables de P.
 - s_0 et s_f deux états de STATES : $\mathcal{D}(P)(s_0) = s_f$ signifie que P est exécuté à partir d'un état s_0 et produit un état s_f .
 - Pour un état s de P courant, on notera s(X) = x pour distinguer la valeur de la variable X et sa valeur courante en s :

$$s_0(X) = x_0, s_f(X) = x_f, s'(X) = x'$$

- Un programme P produit des résultats à partir de données en accord avec une sémantique :
 - STATES est l'ensemble de tous les états de P : STATES = X → Z où X désigne les variables de P.
 - s_0 et s_f deux états de STATES : $\mathcal{D}(P)(s_0) = s_f$ signifie que P est exécuté à partir d'un état s_0 et produit un état s_f .
 - Pour un état s de P courant, on notera s(X) = x pour distinguer la valeur de la variable X et sa valeur courante en s :

$$s_0(X) = x_0, \ s_f(X) = x_f, \ s'(X) = x'$$

• $\mathcal{D}(P)(s_0) = s_f$ définit la relation suivante sur l'ensemble des valeurs :

$$x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f$$

- Un programme P produit des résultats à partir de données en accord avec une sémantique :
 - STATES est l'ensemble de tous les états de P : STATES = X → Z où X désigne les variables de P.
 - s_0 et s_f deux états de STATES : $\mathcal{D}(P)(s_0) = s_f$ signifie que P est exécuté à partir d'un état s_0 et produit un état s_f .
 - Pour un état s de P courant, on notera s(X) = x pour distinguer la valeur de la variable X et sa valeur courante en s :

$$s_0(X) = x_0, \ s_f(X) = x_f, \ s'(X) = x'$$

• $\mathcal{D}(P)(s_0) = s_f$ définit la relation suivante sur l'ensemble des valeurs :

$$x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f$$

- Un programme P remplit un contrat (pre,post) :
 - P transforme une variable x à partir d'une valeur initiale x_0 et produisant une valeur finale $x_f: x_0 \xrightarrow{P} x_f$
 - x₀ satisfait pre : pre(x₀)
 - x_f satisfait post : $post(x_0, x_f)$
 - $\operatorname{pre}(x_0) \wedge x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \operatorname{post}(x_0, x_f)$

Summary

- Software-based system engineering

- 6 Equivalence des deux sémantiques
- **7** Transformateurs de prédicats

Définition et propriétés

Opérateur WP

Soit STATES l'ensemble des états sur l'ensemble X des variables. Soit S une instruction de programme sur X. Soit A une partie de STATES. $s \in WP(S)(A)$, si la condition suivante est vérifiée :

$$\left(\begin{array}{l} \forall t \in STATES : \mathcal{D}(S)(s) = t \Rightarrow t \in A \\ \land \\ \exists t \in STATES : \mathcal{D}(S)(s) = t \end{array}\right)$$

- $\blacktriangleright WP(X := X+1)(A) = \{s \in STATES | s[X \mapsto s(X) \oplus 1] \in A\}$
- $WP(X := Y+1)(A) = \{ s \in STATES | s[X \mapsto s(Y) \oplus 1] \in A \}$
- ▶ $WP(while \ X > 0 \ do \ X := X 1 \ od)(A) = \{s \in STATES | (s(X) \le 0) \lor (s(X) \in A \land s(X) < 0)\}$
- ▶ $WP(while \ x > 0 \ do \ x := x+1 \ od)(A) = \{s \in STATES | (s(X) \in A \land s(X) \le 0)\}$
- \blacktriangleright WP(while x > 0 do x := x+1 od)(\varnothing) = \varnothing
- $ightharpoonup WP(while \ x>0 \ do \ x:=x+1 \ od)(STATES)=\{s\in A_{s}\}$

Propriétés

- ▶ WP est une fonction monotone pour l'inclusion d'ensembles de STATES.
- $\blacktriangleright WP(S)(\varnothing) = \varnothing$
- $\blacktriangleright WP(S)(A \cap B) = WP(S)(A) \cap WP(S)(B)$
- $\blacktriangleright WP(S)(A)\cup WP(S)(B)\subseteq WP(S)(A\cup B)$
- ▶ Si S est déterministe, $WP(S)(A \cup B) = WP(S)(A) \cup WP(S)(B)$
- WP est un opérateur avec le profil suivant

pour toute instruction S du langage de programmation, $WP(S) \in \mathcal{P}(STATES) \rightarrow \mathcal{P}(STATES)$

- \triangleright ($\mathcal{P}(STATES), \subseteq$) est un treillis complet.
- $ightharpoonup (Pred, \Rightarrow)$ est une structure où
 - (1) Pred est une extension du langage d'expressions booléennes
 - (2) Pred est une intension introduite comme un langage d'assertions
 - ⇒ est l'implication
 - $s \in A$ correspond une assertion P vraie en s notée P(s).

Définition structurelle des transformateurs de prédicats

- S est une instruction de STATS.
- ► *T* est le type ou les types des variables et *D* est la constante ou les constantes Définie(s).
- P est un prédicat du langage Pred
- X est une variable de programme
- ightharpoonup E(X,D) (resp. B(X,D)) est une expression arithmétique (resp. booléenne) dépendant de X et de D.
- ightharpoonup x est la valeur de X (X contient la valeur x).
- e(x,d) (resp. b(x,d)) est l'expression arithmétique (resp. booléenne) du langage Pred associée à l'expression E(X,D) (resp. B(X,D)) du langage des expressions arithmétiques (resp. booléennes) du langage de programmation Prog
- $lackbox{b}(x,d)$ est l'expression arithmétique du langage Pred associée à l'expression E(X,D) du langage des expressions arithmétiques du langage de programmation Prog

Définition structurelle des transformateurs de prédicats

S	wp(S)(P)
X := E(X,D)	P[e(x,d)/x]
SKIP	P
$S_1; S_2$	$wp(S_1)(wp(S_2)(P))$
IF $B S_1$ ELSE S_2 FI	$(B \Rightarrow wp(S_1)(P)) \land (\neg B \Rightarrow wp(S_2)(P))$
WHILE B DO S OD	$\mu.(\lambda X.(B \Rightarrow wp(S)(X)) \land (\neg B \Rightarrow P))$

- $\blacktriangleright wp(X := X+5)(x \ge 8) \stackrel{def}{=} x+5 \ge 8 \stackrel{\sim}{=} x \ge 3$
- $ightharpoonup wp(WHILE \ x > 1 \ DO \ X := X+1 \ OD)(x=4) = FALSE$
- \blacktriangleright wp(WHILE x > 1 DO X := X+1 OD)(x = 0) = x = 0

Propriétés pour les prédicats

S est une instruction et P et Q sont des prédicats.

- ▶ Loi du miracle exclu : wp(S)(FALSE) = FALSE
- ▶ Distributivité de la conjonction : $wp(S)(P) \wedge wp(S)(Q) = wp(S)(P \wedge Q)$
- ▶ Distributivité de la disjonction : $wp(S)(P) \lor wp(S)(Q) \Rightarrow wp(S)(P \lor Q)$
- ▶ Si S est déterministe, alors $wp(S)(P) \lor wp(S)(Q) = wp(S)(P \lor Q)$

Summary

- Software-based system engineering

- 6 Equivalence des deux sémantiques
- **7** Transformateurs de prédicats

 - Construction du wp pour la conditionnelle

$$S \stackrel{def}{=} = \begin{bmatrix} \text{IF } B_1 & \longrightarrow & \mathbf{S}_1 \\ \square & B_2 & \longrightarrow & \mathbf{S}_2 \\ \dots & & & \\ \square & B_n & \longrightarrow & \mathbf{S}_n \\ \text{FI} \end{bmatrix}$$

$$wp(S)(P) = \begin{bmatrix} (B_1 \lor \dots \lor B_n) \\ \land (B_1 \Rightarrow wp(S_1)(P)) \\ \dots \\ \land (B_n \Rightarrow wp(S_n)(P)) \end{bmatrix}$$

Summary

- Software-based system engineering

- 6 Equivalence des deux sémantiques
- **7** Transformateurs de prédicats

 - Construction du wp pour l'itération

Instruction DO

$$\triangleright S \stackrel{def}{=} = \begin{bmatrix}
DO B_1 \longrightarrow S_1 \\
\Box B_2 \longrightarrow S_2 \\
\dots \\
\Box B_n \longrightarrow S_n \\
OD
\end{bmatrix}$$

$$\triangleright BS \stackrel{def}{=} = \begin{bmatrix}
\operatorname{IF} B_1 & \longrightarrow & \operatorname{S}_1 \\
\square B_2 & \longrightarrow & \operatorname{S}_2 \\
\dots \\
\square B_n & \longrightarrow & \operatorname{S}_n \\
\operatorname{FI}
\end{bmatrix}$$

$$\triangleright B \stackrel{def}{=} (B_1 \vee \ldots \vee B_n)$$

- $T \stackrel{def}{=} = [DO B \longrightarrow BS OD]$
- $\blacktriangleright wp(S)(P) = wp(T)(P)$
- $\blacktriangleright \ wp(T)(P) = \bigvee_{k \in \mathbb{N}} \ W_k \ \text{où}$
 - Une suite d'assertions notées $W_0, \ldots, W_k \ldots$ est définie comme étant
 - $W_0(P) = \neg B \wedge P$
 - $\forall k \in \mathbb{N} : W_{k+1}(P) = W_0(P) \vee wp(BS)(W_k)$
- $\blacktriangleright wp(S)(P) = \exists k \in \mathbb{N} : W_k$

Instruction DO

- ▶ W est un transformateur de prédicats de Pred dans Pred défini par $W(X) = (B \land wp(BS)(X)) \lor (\neg B \land P)$
- W est monotone croissant (Si $P \Rightarrow Q$, alors $W(P) \Rightarrow W(Q)$).
- ▶ W admet un plus petit point-fixe d'après le Théorème de Tarski noté μW et défini par :
 - $F_0 = FALSE$
 - $\forall i \in \mathbb{N} : F_{i+1} = W(F_i)$

© Théorème

$$\forall i \in \mathbb{N} : F_{i+1} = W_i$$

© Théorème

$$\mu W = WP(S)(P)$$

□ Definition

$$WP(S)(P) = \mu \lambda X.((B \land wp(BS)(X)) \lor (\neg B \land P))$$

- ightharpoonup La suite W_k compte le nombre de boucles avant de terminer.
- La méthode de terminaison consiste à définir une borne de terminaison.
- ► En général, il faut une relation bien fondée telle que chaque boucle décroît strictement selon la relation bien fondée :

Summary

- 1 Software-based system engineering
- 2 Summary on verification techniques
- 3 Introduction to semantics for programming languages
- **4** Operational Semantics
- **6** Denotational Semantics
- 6 Equivalence des deux sémantiques
- 7 Transformateurs de prédicats
- 8 Logique de Hoare

Axiomatisation de la Logique de Hoare

☑ Definition(Axiomes et règles d'inférence)

- Axiome d'affectation : $\{P(e/x)\}X := E(X)\{P\}$.
- Axiome du saut : $\{P\}$ **skip** $\{P\}$.
- ▶ Règle de composition : Si $\{P\}$ **S**₁ $\{R\}$ et $\{R\}$ **S**₂ $\{Q\}$, alors $\{P\}$ **S**₁; $\mathbf{S}_2\{Q\}$.
- ▶ Si $\{P \land B\}$ S₁ $\{Q\}$ et $\{P \land \neg B\}$ S₂ $\{Q\}$, alors $\{P\}$ if B then S₁ then S₂ fi $\{Q\}$.
- ▶ Si $\{P \land B\}$ S $\{P\}$, alors $\{P\}$ while B do S od $\{P \land \neg B\}$.
- ▶ Règle de renforcement/affaiblissement : Si $P' \Rightarrow P$, $\{P\}$ **S** $\{Q\}$, $Q \Rightarrow Q'$, alors $\{P'\}$ **S** $\{Q'\}$.

Axiomatisation : la Logique de Hoare

Exemple de preuve $\{x=1\}$ **Z** :=**X**;**X** :=**Y**;**Y** :=**Z** $\{y=1\}$

- (1) $x = 1 \Rightarrow (z = 1)[x/z]$ (propriété logique)
- (2) $\{(z=1)[x/z]\}$ **Z** :=**X** $\{z=1\}$ (axiome d'affectation)
- ▶ (3) $\{x = 1\}$ **Z** :=**X** $\{z = 1\}$ (Règle de renforcement/affaiblissement avec (1) et (2))
- (4) $z = 1 \Rightarrow (z = 1)[y/x]$ (propriété logique)
- (5) $\{(z=1)[y/x]\}$ **X** :=**Y** $\{z=1\}$ (axiome d'affectation)
- ▶ (6) $\{z=1\}$ **X** :=**Y** $\{z=1\}$ (Règle de renforcement/affaiblissement avec (4) et (5))
- (7) $z = 1 \Rightarrow (y = 1)[z/y]$ (propriété logique)
- (8) $\{(z=1)[x/z]\}$ **Y** :=**Z** $\{y=1\}$ (axiome d'affectation)
- (9) $\{z=1\}$ **Y** :=**Z** $\{y=1\}$ (Règle de renforcement/affaiblissement avec (7) et (8))
- (10) $\{x = 1\}$ **Z** :=**X**;**X** :=**Y**; $\{z = 1\}$ (Règle de composition avec 3 et 6)
- $(11) \{x=1\} \mathbf{Z} := \mathbf{X}; \mathbf{X} := \mathbf{Y}; \mathbf{Y} := \mathbf{Z}\{y=1\} \text{ (Règle de composition avec } 11 \text{ et } 9)$

Sémantique des triplets de Hoare

□ Definition

 $\{P\}\mathbf{S}\{Q\} \text{ est défini par } \forall s,t \in STATES: P(s) \land \mathcal{D}(S)(s) = t \Rightarrow Q(t)$

- © Property (Correction du système axiomatique des programmes commentés)
 - S'il existe une preuve construite avec les règles précédentes de {P}S{Q}, alors {P}S{Q} est valide.
 - ▶ Si $\{P'\}$ **S** $\{Q'\}$ est valide et si le langage d'assertions est suffisamment expressif, alors il existe une preuve construite avec les règles précédentes de $\{P\}$ **S** $\{Q\}$.

.....

□ Definition

Un langage d'assertions est la donnée d'un ensemble de prédicats et d'opérateurs de composition comme la disjonction et la conjonction; il est muni d'une relation d'ordre partielle appelée implication. On le notera $(PRED, \Rightarrow, \mathbf{false}, \mathbf{true}, \wedge, \vee) : (PRED, \Rightarrow, \mathbf{false}, \mathbf{true}, \wedge, \vee)$ est un treillis complet.

Introduction de wlp

- ▶ {*P*}**S**{*Q*}
- $\forall s, t \in STATES : P(s) \land \mathcal{D}(S)(s) = t \Rightarrow Q(t)$
- $\forall s \in STATES : P(s) \Rightarrow (\forall t \in STATES : \mathcal{D}(S)(s) = t \Rightarrow Q(t))$

Définition de wlp

$$wlp(S)(Q) \stackrel{def}{=} (\forall t \in STATES : \mathcal{D}(S)(s) = t \Rightarrow Q(t))$$

$$wlp(S)(Q) \equiv \overline{(\exists t \in STATES : \mathcal{D}(S)(s) = t \land \overline{Q}(t))}$$

Lien entre wp et wlp

- $\blacktriangleright loop(S) \equiv (\exists t \in STATES : \mathcal{D}(S)(s) = t \text{ (ensemble des états qui})$ ne permettent pas à S de terminer)
- $\blacktriangleright wp(S)(Q) \equiv wlp(S)(Q) \wedge \overline{loop(S)}$

Définition de wlp

.....

□ Definition

$$WLP(S)(P) = \nu \lambda X.((B \wedge wlp(BS)(X)) \vee (\neg B \wedge P))$$

.....

- © Property
 - ▶ Si $P \Rightarrow Q$, then $wlp(S)(P) \Rightarrow wlp(S)(Q)$.

Axiomatisation de la Logique de Hoare

.....

□ Definitiontriplets de Hoare

$$\{P\}\mathbf{S}\{Q\}\stackrel{def}{=}P\Rightarrow wlp(S)(Q)$$

Axiomatisation de la Logique de Hoare

.....

oxtimes Definitiontriplets de Hoare

$$\{P\}\mathbf{S}\{Q\} \stackrel{def}{=} P \Rightarrow wlp(S)(Q)$$

□ Definition(Axiomes et règles d'inférence)

- Axiome d'affectation : $\{P(e/x)\}X := E(X)\{P\}$.
- Axiome du saut : $\{P\}$ **skip** $\{P\}$.
- ▶ Règle de composition : Si $\{P\}$ S₁ $\{R\}$ et $\{R\}$ S₂ $\{Q\}$, alors $\{P\}$ if B then S₁ then S₂ fi $\{Q\}$.
- ▶ Si $\{P \land B\}$ S₁ $\{Q\}$ et $\{P \land \neg B\}$ S₂ $\{Q\}$, alors $\{P\}$ if B then S₁ then S₂ fi $\{Q\}$.
- ▶ Si $\{P \land B\}$ **S** $\{P\}$, alors $\{P\}$ while **B** do **S** od $\{P \land \neg B\}$.
- ▶ Règle de renforcement/affaiblissement : Si $P' \Rightarrow P$, $\{P\}$ **S** $\{Q\}$, $Q \Rightarrow Q'$, alors $\{P'\}$ **S** $\{Q'\}$.

Vérification

- $ightharpoonup \{P\} \mathbf{S}\{Q\}$
- $\forall s \in STATES.P(s) \Rightarrow wlp(S)(Q)(s)$
- $\forall s \in STATES.P(s) \Rightarrow (\forall t \in STATES : \mathcal{D}(S)(s) = t \Rightarrow Q(t))$
- $\forall s, t \in STATES.P(s) \land \mathcal{D}(S)(s) = t \Rightarrow Q(t)$
- ▶ Correction : Si on a construit une preuve de $\{P\}$ **S** $\{Q\}$ avec les règles de la logique de Hoare, alors $P \Rightarrow wlp(S)(Q)$
- ▶ Complétude sémantique : Si $P \Rightarrow wlp(S)(Q)$, alors on peut construire une preuve de $\{P\}\mathbf{S}\{Q\}$ avec les règles de la logique de Hoare si on peut exprimer wlp(S)(P) dans le langae d'assertions.

Logique de Hoare Correction Totale

.....

oxtimes Definitiontriplets de Hoare Correction Totale

$$[P]\mathbf{S}[Q] \stackrel{def}{=} P \Rightarrow wp(S)(Q)$$

Logique de Hoare Correction Totale

☑ Definitiontriplets de Hoare Correction Totale

$$[P]\mathbf{S}[Q] \stackrel{def}{=} P \Rightarrow wp(S)(Q)$$

☑ Definition(Axiomes et règles d'inférence)

- Axiome d'affectation : [P(e/x)]X := E(X)[P].
- ► Axiome du saut : [P]skip[P].
- ▶ Règle de composition : Si $[P]\mathbf{S}_1[R]$ et $[R]\mathbf{S}_2[Q]$, alors [P] if \mathbf{B} then \mathbf{S}_1 then \mathbf{S}_2 fi[Q].
- ▶ Si $[P \land B]$ S₁[Q] et $[P \land \neg B]$ S₂[Q], alors [P]if B then S₁ then S₂ fi[Q].
- ► Si [P(n+1)]S[P(n)], $P(n+1) \Rightarrow b$, $P(0) \Rightarrow \neg b$, alors $[\exists n \in \mathbb{N}.P(n)]$ while B do S od[P(0)].
- ▶ Règle de renforcement/affaiblissement : Si $P' \Rightarrow P$, $[P]\mathbf{S}[Q]$, $Q \Rightarrow Q'$, alors $[P']\mathbf{S}[Q']$.

Correction

:

Si $[P]\mathbf{S}[Q]$ est dérivé selon les règles ci-dessus, alors $P\wp(S)5Q$).

- ▶ [P(e/x)]**X** :=**E(X)**[P] est valide : wp(X := E)(P)/x = P(e/x).
- ▶ $[\exists n \in \mathbb{N}.P(n)]$ while B do S od[P(0)]: si s est un état de P(n) alors au bout de n boucles on atteint un état s_f tel que P(0) est vrai en s_f .

Complétude

Complétude

:

Si $P\Rightarrow wp(S)(Q)$, alors il existe une preuve de $[P]\mathbf{S}[Q]$ construites avec les règles ci-dessus,

- $P \Rightarrow wp(X := E(X))(Q) : P \Rightarrow Q(e/x) \text{ et } [Q(e/x)] \mathbf{X} := \mathbf{E}(\mathbf{X})[Q]$ constituent une preuve.
- $ightharpoonup P \Rightarrow wp(while)(Q)$:
 - On construit la suite de P(n) en définissant $P(n) = W_n$.
 - On vérifie que cela vérifie la règle du while.

Summary

- Software-based system engineering
- 2 Summary on verification techniques
- 3 Introduction to semantics for programming languages
- **4** Operational Semantics
- **5** Denotational Semantics
- 6 Equivalence des deux sémantiques
- 7 Transformateurs de prédicats
- 8 Logique de Hoare

Conclusion et Perspectives

- ► Trois notions importantes : syntaxe, sémantique et pragmatique
- La sémantique est le fondement des langages de programmation.
- ► La sémantique permet de donner une vue cohérente des programmes et des spécifications.
- ▶ Développement de techniques et d'outils de vérification et de validation de systèmes.