Brief overview

Biological Rationale

Resources & Timeline

Brief overview

Biological Rationale

Resources & Timeline

Our ongoing scallop experiment...

Suite of physiological measurements

- growth/survivorship
- respiration rate
- clearance rate
- biodepositon
- excretion

genetic variation

- allele frequency
- putatively adaptive loci

gene expression

- enriched functions/pathways
- differentially-expressed genes

Environmental sensor

Mitochondrial dysfunction & alternative pathways

Brief overview

Biological Rationale

Resources & Timeline

Mitochondria under normal/optimal conditions

'Power house' of the cell

- electropositive gradient drives ATP synthesis (+) intermembrane space vs (-) inner matrix
- main source of metabolically-produced CO2
 - high HCO3- in mitochondria acts as a buffer, inner mitochondrial pH typically > cytosol

pCO2 рН HCO3-

> efficient ETC / high ATP synthesis

 Δ Ψm = mitochondrial membrane potential ETC = electron transport chain OXPHOS = oxidative phosphorylation

Mitochondria under normal/optimal conditions

*p*CO2 pH HCO3-

pCO2

pH HCO3-

ROS

OXPHOS

efficient ETC / high ATP synthesis

ΔΨm = mitochondrial membrane potential ETC = electron transport chain OXPHOS = oxidative phosphorylation

proton leak

Mitochondrial dysfunction under OA conditions

Several routes to <u>decrease ATP</u>

- overloads bicarbonate buffer in matrix
 - proton leak
 - lower membrane potential (ΔΨm)
 - decreased efficiency of OXPHOS

ΔΨm = mitochondrial membrane potential ETC = electron transport chain OXPHOS = oxidative phosphorylation

decreased ΔΨm (or $\Delta p / \Delta pH$) proton leak hypercapnia/acidosis pCO2 T ROS

Mitochondrial dysfunction under OA conditions

Several routes to <u>decrease ATP</u>

- overloads bicarbonate buffer in matrix
 - proton leak
 - lower membrane potential (ΔΨm)
 - decreased efficiency of OXPHOS
- increased production of free radicals
 - damage to mitochondrial membrane proteins
 - electron slip, superoxide byproduct (O2-)

ΔΨm = mitochondrial membrane potential ETC = electron transport chain OXPHOS = oxidative phosphorylation

Mitochondrial dysfunction under OA conditions

Several routes to <u>decrease ATP</u>

- overloads bicarbonate buffer in matrix
 - proton leak
 - lower membrane potential (ΔΨm)
 - decreased efficiency of OXPHOS
- increased production of free radicals
 - damage to mitochondrial membrane proteins
 - electron slip, superoxide byproduct (O2-)
- mitochondrial recycling and potential cell death
 - dysfunction signals for mitophagy, can be precursor to apoptosis

Mitochondrial dysfunction under OA conditions

...targets for flow cytometry!

mitochondrial membrane potential (ΔΨm)

- probe = JC-10

mitochondrial production of free radicals

- probe = DCHF-DA

mitophagy & lysosomal content

- probe = MitoTracker (Green or Deep Red)
- probe = LysoTracker Red DND-99

hemocyte status / mortality / cytomorphology

- probe = syber green and propidium iodide

preliminary results in adult oysters...

significant decrease in membrane potential for immature granular and mature agranular cells, 'recovery' after 8 days of exposure

- hypothesized effect persisted albeit a low sample size!
- animals were also starved throughout this trial, confounding timepoint comparison

NOAA DFO grant

Colorimetric assays

- NAD/NADH ratio
 - marker of reverse electron transport (dysfunction)
 - optimum level mitochondrial respiration
- Lipid peroxidation
 - a damage signal necessary to infer oxidative stress (coupled with DCFH-DA)

a priori genes of interest (qPCR or TagSeq)

- mitochondrial complexes I and III
 - major components that change activity/concentration under dysfunction
- uncoupling proteins
 - regulate the proton gradient and cell resp.
- alternative oxidase (AOX, view figure →)
 - of growing interest as an adaptive response
- mitophagy pathway
 - FOXO, pink-1 parkin, etc.
- carbonic anhydrase etc.
 - acid-base regulatory proteins

Future directions (with preserved tissues!)

Colorimetric assays

- NAD/NADH ratio
 - marker of reverse electron transport (dysfunction)
 - optimum level mitochondrial respiration
- Lipid peroxidation
 - a damage signal necessary to infer oxidative stress (coupled with DCFH-DA)

a priori genes of interest (qPCR or Tag

- mitochondrial complexes I and III
 - major components that change activity/concentration under dysfunction
- uncoupling proteins
 - regulate the proton gradient and cell resp.
- alternative oxidase (AOX, view figure →)
 - of growing interest as an adaptive response
- mitophagy pathway
 - FOXO, pink-1 parkin, etc.
- carbonic anhydrase etc.
 - acid-base regulatory proteins

Future directions (with preserved tissues!)

constitutive gene frontloading of our acclimatized cohort

Brief overview

Biological Rationale

Resources & Timeline

Proposed experiment

About treatments

 $pCO2_{HISTORY}$: N = 3 $pCO2_{EXPOSURE}$: N = 3

 $pCO2_{HISTORY} \times pCO2_{EXPOSURE}$: N = 9

tank replication: N = 3

total tanks: N = 9

Low

Mod

Sev

Proposed experiment

Number of F2s

Low pCO2

'Moderate' pCO2

'Severe' pCO2

Timepoint 1: April 4th

* ron * Wog * Sen

5 per treatment; total = 15

x LOW Mod X Sev

5 per treatment; total = 15

x LOW X Mod X Sev

5 per treatment; total = 15

Timepoint 2: April 18th

x LOW X Mod X Sev

5 per treatment; total = 15

* ron * Wog * Sen

5 per treatment; total = 15

x Low x Mod x Sev

5 per treatment; total = 15

x LOW x Mod x Sev

5 per treatment; total = 15

x LOW x Mod x Sev

5 per treatment; total = 15

x Low x Mod x Sev

5 per treatment; total = 15

same day: hemolymph

45 animals at each time point (90 total)

future analysis: gill tissue x2 per individual!

Hemolymph probes

- **SYBR green** = live cells
- JC-10 + CCCP = mitochondrial membrane potential with and without depolarizing (control)
- **MitoSox Green** = mitochondrial free radicals

same day: hemolymph

45 animals at each time point (90 total)

45 animals at each time point (90 total)

Future analysis of gill tissue!

Gene frontloading

- TagSeq (N=64 samples max)

Colorimetric assays with tissue homogenate

- NAD/NADH Quantification
- Lipid peroxidation (MDA)
- ADP/ATP
- corrected for Total protein

future analysis: