Álgebra Geométrica para Ciência da Computação

Fernando Náufel

06/05/2023 19:57

Índice

Prefácio			3	
1		ndução Referências	4	
2	O produto externo			
	2.1	Vetores em \mathbb{R}^2	5	
	2.2	Retas em \mathbb{R}^2	7	
	2.3	Bivetores em \mathbb{R}^2	10	
	2.4	O produto externo	12	
	2.5	O espaço vetorial $G(2)$	12	
	2.6	Vetores e retas em \mathbb{R}^3		
	2.7	Trivetores e paralelepípedos em \mathbb{R}^3	14	
	2.8	O espaço vetorial $G(3)$	14	
	2.9	Representando objetos geométricos	14	
	2.10	Resolvendo problemas	14	
	2.11	Resumo	14	
	2.12	Exercícios	14	
Re	Referências			

Prefácio

???

1 Introdução

???

1.1 Referências

???

Livros em português e em inglês

Sites

Playlists

???

2 O produto externo

2.1 Vetores em \mathbb{R}^2

- Por enquanto, vamos trabalhar no espaço vetorial \mathbb{R}^2 .
- Os elementos de \mathbb{R}^2 são vetores com duas coordenadas; por exemplo:

$$\mathbf{v} = (-1, 3)$$

$$\mathbf{w} = \left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$$

🛕 Notação: vetores em negrito

Você deve estar acostumado a escrever nomes de vetores como \vec{v} , \vec{w} etc. Neste livro, como na maioria dos livros sobre álgebra geométrica, nomes de vetores serão escritos em negrito: \mathbf{v} , \mathbf{w} .

• Usando a base canônica de \mathbb{R}^2 , com $\mathbf{e}_1=(1,0)$ e $\mathbf{e}_2=(0,1)$, os vetores do exemplo acima podem ser escritos como

$$\mathbf{v} = -1\mathbf{e}_1 + 3\mathbf{e}_2$$
$$\mathbf{w} = \frac{1}{2}\mathbf{e}_1 + \frac{\sqrt{2}}{2}\mathbf{e}_2$$

- Tecnicamente, estamos escrevendo cada vetor como uma combinação linear dos vetores da base $\{e_1, e_2\}$.
- Nesta seção e na próxima, para lembrar que estamos trabalhando com \mathbf{e}_1 e com \mathbf{e}_2 , vamos rotular os eixos x e y dos nossos gráficos com os nomes destes dois vetores, como na Figura 2.1.
- Mas você deve se lembrar que \mathbf{e}_1 e \mathbf{e}_2 representam os dois vetores unitários da figura, e não os eixos orientados (que são infinitos).

Figura 2.1: Vetores da base canônica e eixos

• Nas seções posteriores, não vamos mais mostrar os eixos nas figuras.

🛕 Notação: vetores como combinações lineares dos vetores da base

Como na maioria dos livros sobre álgebra geométrica, em vez de escrevermos

$$\mathbf{v} = (x, y)$$

vamos escrever

$$\mathbf{v} = x\mathbf{e}_1 + y\mathbf{e}_2$$

Se uma das coordenadas for zero, podemos omitir o vetor da base correspondente. Por exemplo, vamos escrever o vetor

$$u = (0, 3)$$

como

$$\mathbf{u} = 3\mathbf{e}_2$$

- Para acompanhar o restante deste capítulo, você deve revisar os seguintes tópicos sobre vetores, especialmente em \mathbb{R}^2 e em \mathbb{R}^3 :
 - Adição de vetores,
 - Multiplicação de vetor por escalar (nossos escalares vão ser números reais),
 - Vetor nulo,
 - Vetor inverso (para a adição),
 - Dependência e independência linear,
 - Módulo (norma) de um vetor,
 - Produto vetorial,
 - Subespaços vetoriais.

2.2 Retas em \mathbb{R}^2

- Por enquanto, só temos vetores.
- Cada vetor (diferente de **0**, o vetor nulo) indica uma direção.
- Mas apenas uma direção não basta para definir uma reta. Por exemplo, todas as retas da Figura 2.2 têm a mesma direção: a direção dada pelo vetor $\mathbf{v} = \mathbf{e}_1 + 2\mathbf{e}_2$.
- Vamos combinar que todas as nossas retas de interesse passam pela origem ou seja, pelo ponto O=(0,0).
- Fazendo isto, cada vetor determina uma única reta.
- Chamamos as retas que passam pela origem de retas homogêneas. Na Figura 2.2, só há uma reta homogênea (a reta r).

Figura 2.2: Retas e vetores

- Mas, além de uma direção, um vetor também um sentido.
- Na Figura 2.2, o vetor ${\bf w}=-{\bf e}_1-2{\bf e}_2$ tem a mesma direção da reta r, mas seu sentido é oposto ao sentido do vetor ${\bf v}.$
- Então, qual dos dois vetores \mathbf{v} e \mathbf{w} representa a reta r?
- Vamos decidir esta questão do seguinte modo: nossas retas também vão ter um sentido.
 Ou seja, vamos trabalhar com retas orientadas.
- Na Figura 2.2, então, os vetores \mathbf{v} e \mathbf{w} representam duas retas r e r', ambas com a mesma direção, mas com sentidos opostos.
- Mas, além de direção e sentido, um vetor também tem um comprimento (ou magnitude, ou módulo, ou norma).

Figura 2.3: Vetores de magnitudes diferentes

- Na Figura 2.3, os 3 vetores $\mathbf{v}_1,\mathbf{v}_2$ e \mathbf{v}_3 têm a mesma direção e sentido que a reta r.
- De novo, vamos combinar que cada um destes vetores define uma reta diferente, todas as retas com a mesma direção e sentido, mas cada reta com uma magnitude (ou peso) diferente.
- Você pode imaginar o peso de uma reta como a velocidade com que um ponto percorre a reta, ou como a velocidade com que a reta avança na direção e no sentido especificados pelo vetor.

Resumindo: vetores = retas homogêneas orientadas e com peso

Um vetor

$$\mathbf{v} = a\mathbf{e}_1 + b\mathbf{e}_2$$

(com $a, b \in \mathbb{R}$, e com pelo menos um dentre a e b diferente de zero) representa uma reta homogênea orientada, com a direção e o sentido de \mathbf{v} , e com peso igual à norma de \mathbf{v} :

$$||\mathbf{v}|| = \sqrt{a^2 + b^2}$$

2.3 Bivetores em \mathbb{R}^2

- Acabamos de ver que vetores em \mathbb{R}^2 correspondem a comprimentos orientados.
- Agora, vamos definir objetos em \mathbb{R}^2 que correspondem a áreas orientadas.
- Uma área orientada vai ser construída a partir de dois vetores linearmente independentes (isto é, não paralelos).
- Por exemplo, a Figura 2.4 mostra a área orientada definida pelos vetores $\mathbf{v} = \mathbf{e}_1 + 2\mathbf{e}_2$ e $\mathbf{w} = 3\mathbf{e}_1 \mathbf{e}_2$ (nesta ordem). A orientação, indicada na figura pelo círculo com os raios, é no sentido horário.
- A orientação depende da ordem dos vetores. A Figura 2.5 mostra a área orientada definida pelos mesmos vetores $\mathbf{w} = 3\mathbf{e}_1 \mathbf{e}_2$ e $\mathbf{v} = \mathbf{e}_1 + 2\mathbf{e}_2$, na ordem inversa da Figura 2.4. A orientação, agora, é no sentido anti-horário.
- Estas áreas orientadas são chamadas bivetores.
- Um bivetor em \mathbb{R}^2 tem, além da orientação, um peso. O valor absoluto do peso é a área correspondente ao bivetor isto é, a área do paralelogramo definido pelos vetores.
- A área do paralelogramo definido pelos vetores v e w é

$$||\mathbf{v}|| \, ||\mathbf{w}|| \, \mathrm{sen} \, \theta$$

onde θ é o ângulo entre \mathbf{v} e \mathbf{w} .

- Esta área também pode ser calculada através de um determinante específico, usado no cálculo do produto vetorial **v** × **w**. Você vai relembrar isto no exercício ???.
- No exemplo da Figura 2.4, o peso do bivetor é -7, se convencionarmos que a orientação no sentido horário corresponde a áreas negativas.

Figura 2.4: Área orientada definida por v e w (nesta ordem)

- No exemplo da Figura 2.5, o peso do bivetor é 7, se convencionarmos que a orientação no sentido anti-horário corresponde a áreas positivas.
- Em \mathbb{R}^2 , a atitude (ou direção) de todo bivetor é a mesma, pois todos os bivetores estão no mesmo plano.
- Então, assim como fizemos com os vetores (que associamos a retas orientadas e com peso na Seção 2.2), vamos associar a cada bivetor um plano (ou uma parte do plano) orientado e com peso.
- A forma e a posição da área correspondente a um bivetor não são importantes. As figuras mostram paralelogramos, mas os mesmos bivetores poderiam ser mostrados como círculos, triângulos etc. com a mesma área, em qualquer posição do plano.
- As figuras parecem diferenciar o plano (que é infinito) e bivetores (que têm, associados a eles, áreas finitas). Mais adiante, vamos ver que, em algumas aplicações, podemos interpretar um bivetor como representando o plano no qual ele está contido; em outras aplicações, podemos interpretar um bivetor como uma porção finita do plano.

Figura 2.5: Área orientada definida por w e v (nesta ordem)

Resumindo: bivetores = áreas orientadas e com peso

Um bivetor definido pelos vetores \mathbf{v} e \mathbf{w} representa uma área orientada e com peso no plano que contém \mathbf{v} e \mathbf{w} .

O valor absoluto do peso do bivetor é dado por

$$||\mathbf{v}|| \, ||\mathbf{w}|| \sin \theta$$

onde θ é o ângulo entre \mathbf{v} e \mathbf{w} .

O sinal do peso depende da orientação do bivetor, segundo a convenção adotada.

2.4 O produto externo

2.5 O espaço vetorial G(2)

2.6 Vetores e retas em \mathbb{R}^3

- Agora, vamos trabalhar em \mathbb{R}^3 .
- Tudo que falamos acima sobre vetores e retas em \mathbb{R}^2 se aplica a vetores e retas em \mathbb{R}^3 , com as seguintes alterações:

Figura 2.6: Vetor e reta em \mathbb{R}^3

- A base canônica agora é $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$, onde os vetores correspondem aos eixos x,y e z, respectivamente.
- Logo, um vetor em \mathbb{R}^3 é escrito como $\mathbf{v}=x\mathbf{e}_1+y\mathbf{e}_2+z\mathbf{e}_3,$ com $x,y,z\in\mathbb{R}.$
- Cada vetor $\mathbf{v} = a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3$ (com $a,b,c \in \mathbb{R}$, e com pelo menos um dentre a,b e c diferente de zero) representa uma reta homogênea orientada, com a direção e o sentido de \mathbf{v} , e com peso igual à norma de \mathbf{v} :

$$||\mathbf{v}|| = \sqrt{a^2 + b^2 + c^2}$$

• A Figura 2.6 mostra um exemplo.

- 2.7 Trivetores e paralelepípedos em \mathbb{R}^3
- ${\bf 2.8~O~espaço~vetorial}~G(3)$
- 2.9 Representando objetos geométricos
- 2.10 Resolvendo problemas
- 2.11 Resumo
- 2.12 Exercícios

Referências