CLAIMS

The listing of claims below replaces all prior versions, and listings, of claims:

1	1.	(Cancelled)		
1.	2.	(Previously Presented) An apparatus for use in a wellbore, comprising:		
2		an element formed of a superplastic material to perform a predetermined		
3	downhole task; and			
4		a component including a seal engageable with the element.		
1	3.	(Previously Presented) An apparatus for use in a wellbore, comprising:		
2		an element formed of a superplastic material to perform a predetermined		
3	downhole task; and			
4		a component including an anchor actuatable by the element.		
1	4.	(Cancelled)		
1	5.	(Previously Presented) An apparatus for use in a wellbore, comprising:		
2		an element formed of a superplastic material to perform a predetermined		
3	downhole task,			
4		wherein the element includes a sand screen.		
1	6.	(Previously Presented) An apparatus for use in a wellbore, comprising:		
2		an element formed of a superplastic material to perform a predetermined		
3	downhole task; and			
4		a shock absorber including the element.		
1	7.	(Previously Presented) An apparatus for use in a wellbore, comprising:		
2		an element formed of a superplastic material to perform a predetermined		
3	downhole task; and			
4		a releasable connector mechanism including the element.		

1	8.	(Previously Presented) An apparatus for use in a wellbore, comprising:	
2		an element formed of a superplastic material to perform a predetermined	
3	downhole task; and		
4		an explosive component including the element.	
1	9.	(Original) The apparatus of claim 8, wherein the explosive component	
2	includes a shaped charge.		
1	10.	(Previously Presented) An apparatus for use in a wellbore, comprising:	
2		an element formed of a superplastic material to perform a predetermined	
3	downhole task; and		
4		a weak point connector including the element.	
1	11.	(Previously Presented) An apparatus for use in a wellbore, comprising:	
2		an element formed of a superplastic material to perform a predetermined	
3	downhole task; and		
4		a heating device to heat the element to a temperature sufficient to cause	
5	the element to exhibit superplastic behavior.		
1	12 2	6 (Cancelled)	
1	27.	(Previously Presented) The apparatus of claim 2, wherein the element is	
2	adapted to translate the seal into engagement with a downhole structure.		
1	28. `	(Previously Presented) The apparatus of claim 27, comprising a packer.	
1	29.	(Previously Presented) The apparatus of claim 27, comprising a patch.	

1 2

- 1 (Previously Presented) The apparatus of claim 27, further comprising a 30. 2 heating device to heat the superplastic material to a temperature such that the element 3 exhibits superplastic behavior. 1 (Previously Presented) The apparatus of claim 30, further comprising a 31. 2 piston adapted to cause translation of the element. 1 32. (Previously Presented) The apparatus of claim 30, wherein the heating 2 device comprises a propellant. 1 33. (Previously Presented) The apparatus of claim 2, further comprising a 2 conduit, wherein the element comprises a plug to block fluid flow in a bore of the 3 conduit. 1 34. (Currently Amended) The apparatus of claim 33, further comprising An 2 apparatus for use in a wellbore, comprising: 3 an element formed of a superplastic material to perform a predetermined 4 downhole task; 5 a component including a seal engageable with the element; 6 a conduit, wherein the element comprises a plug to block fluid flow in a 7 bore of the conduit; and 8 a port to communicate fluid pressure to deform the plug inwardly to 9 enable movement of the plug.
 - 35. (Previously Presented) The apparatus of claim 3, wherein the component comprises a packer including the anchor.

1	36.	(Previously Presented) The apparatus of claim 35, wherein the packer		
2	further comprises a seal,			
3		wherein the element comprises one or more sleeves attached to the anchor		
4	and the seal,	the one or more sleeves adapted to translate the anchor and seal into		
5	engagement with a downhole structure.			
1	37.	(Previously Presented) An apparatus for use in a wellbore, comprising:		
2		an element formed of a superplastic material to perform a predetermined		
3	downhole task,			
4		wherein the element is selected from the group consisting of a casing, a		
5	liner, a tubing, and a pipe; and			
6		a heating device to heat the element to a temperature such that the element		
7	exhibits superplastic behavior.			
1	38.	(Previously Presented) The apparatus of claim 5, further comprising a		
2	heating devic	e to heat the sand screen to a temperature such that the sand screen exhibits		
3	superplastic behavior.			
1	39.	(Previously Presented) The apparatus of claim 11, wherein the heating		
2	device comprises a propellant.			
1	40.	(Previously Presented) An apparatus for use in a wellbore, comprising:		
2		an element formed of a superplastic material to perform a predetermined		
3	downhole task; and			
4		a fishing tool for a downhole conduit structure, the fishing tool comprising		
5	the element.			
1	41.	(Previously Presented) The apparatus of claim 40, wherein the element is		
2	adapted to expand to engage an inner well of the conduit structure.			

42. (Previously Presented) An apparatus for use in a wellbore, comprising: 1 2 an element formed of a superplastic material to perform a predetermined 3 downhole task; 4 a junction seal assembly comprising the element; and 5 a heating device to heat the element to a temperature such that the element 6 exhibits superplasticity. (Previously Presented) The apparatus of claim 42, wherein the element 1 43. 2 comprises one of a tubing and pipe to be inserted into a lateral wellbore. 1 44. (New) The apparatus of claim 2, wherein the superplastic material 2 exhibits elongation to failure in excess of 200%. 1 45. (New) The apparatus of claim 2, wherein the superplastic material has a 2 fine equi-axed grain structure that remains stable during deformation. 1 46. (New) The apparatus of claim 45, wherein a grain size of the fine 2 equi-axed grain structure is in a range of 2 to 10 micrometers. 1 47. (New) The apparatus of claim 3, wherein the superplastic material 2 exhibits elongation to failure in excess of 200%. 1 48. (New) The apparatus of claim 3, wherein the superplastic material has a 2 fine equi-axed grain structure that remains stable during formation. 49. (New) The apparatus of claim 48, wherein a grain size of the fine 1 2 equi-axed grain structure is in a range of 2 to 10 micrometers.