Fonctions trigonométriques

Le radian et le cercle trigonométrique

EXERCICE 1

Convertir en radians les mesures données en degrés :

$$10^{\circ}$$
 ; 59° ; 180° ; 18° ; 72° ; $112,5^{\circ}$

EXERCICE 2

Convertir en degré les mesures données en radians :

$$\frac{\pi}{3}$$
; $\frac{2\pi}{3}$; π ; $\frac{5\pi}{4}$; $\frac{3\pi}{8}$; $\frac{5\pi}{12}$; $\frac{3\pi}{2}$

Exercice 3

Tracer un cercle trigonométrique puis placer les points images des angles en radians suivants :

1)
$$\pi$$
 2) $\frac{\pi}{4}$ 3) $\frac{3\pi}{2}$ 4) $\frac{\pi}{6}$ 5) $-\frac{\pi}{3}$ 6) $-\frac{3\pi}{4}$ 7) $\frac{5\pi}{6}$ 8) $-\frac{3\pi}{2}$

Exercice 4

Utiliser les renseignements portés sur la figure pour déterminer les angles sur $[0; 2\pi]$ repérant les points M, N et P.

Exercice 5

Utiliser les renseignements portés sur la figure pour déterminer les angles sur $[-\pi; \pi]$ repérant les points M, N et P.

Exercice 6

Sur le cercle trigonométrique colorier les arcs décrits par les intervalle I, J et K tels que :

$$I = \left[-\frac{\pi}{4}; \frac{5\pi}{4} \right] \quad ; \quad J = \left[\frac{4\pi}{3}; \frac{13\pi}{6} \right] \quad ; \quad K = \left[-\frac{7\pi}{6}; \frac{5\pi}{4} \right]$$

Angle dans $]-\pi$; π]

Exercice 7

Dans chaque cas, trouver l'angle x dans $]-\pi$; $\pi]$ correspondant à l'angle α donné :

$$1) \ \alpha = \frac{7\pi}{2}$$

$$2) \ \alpha = -\frac{4\pi}{3}$$

$$3) \ \alpha = \frac{35\pi}{6}$$

1)
$$\alpha = \frac{7\pi}{2}$$
 2) $\alpha = -\frac{4\pi}{3}$ 3) $\alpha = \frac{35\pi}{6}$ 4) $\alpha = -\frac{21\pi}{4}$ 5) $\alpha = \frac{202\pi}{3}$

5)
$$\alpha = \frac{202\pi}{3}$$

Lignes trigonométriques

Exercice 8

Trouver les valeurs exactes du cosinus, sinus puis de la tangente des réels donnés. Vous pourrez commencer par placer les points sur le cercle trigonométrique.

1)
$$\frac{\pi}{6}$$

2)
$$\frac{5\pi}{6}$$

3)
$$\frac{7\pi}{6}$$

3)
$$\frac{7\pi}{6}$$
 4) $\frac{11\pi}{6}$

5)
$$\frac{13\pi}{6}$$

EXERCICE 9

Trouver les valeurs exactes du cosinus, sinus puis de la tangente des réels donnés. Vous pourrez commencer par placer les points sur le cercle trigonométrique.

1)
$$\frac{\pi}{4}$$

2)
$$\frac{9\pi}{4}$$

3)
$$\frac{5\pi}{4}$$

4)
$$\frac{81\pi}{4}$$

2)
$$\frac{9\pi}{4}$$
 3) $\frac{5\pi}{4}$ 4) $\frac{81\pi}{4}$ 5) $-\frac{108\pi}{4}$

Exercice 10

Trouver les valeurs exactes du cosinus, sinus puis de la tangente des réels donnés. Vous pourrez commencer par placer les points sur le cercle trigonométrique.

1)
$$\frac{4\pi}{3}$$

$$2) \ \frac{\pi}{3}$$

3)
$$\frac{71\pi}{3}$$

4)
$$\frac{97\pi}{3}$$

1)
$$\frac{4\pi}{3}$$
 2) $\frac{\pi}{3}$ 3) $\frac{71\pi}{3}$ 4) $\frac{97\pi}{3}$ 5) $-\frac{54\pi}{3}$

Relations trigonométriques

Exercice 11

À l'aide de la formule $\sin^2 x + \cos^2 x = 1$:

1) Déterminer
$$\cos x$$
 sachant que : $\sin x = \frac{2}{3}$ et $x \in \left[0; \frac{\pi}{2}\right]$

2) Déterminer
$$\sin x$$
 sachant que : $\cos x = -\frac{1}{5}$ et $x \in [-\pi; 0]$

3) Déterminer
$$\cos x$$
 sachant que : $\sin x = \frac{\sqrt{5}}{3}$ et $x \in \left[\frac{\pi}{2}; \pi\right]$

Exercice 12

Dans chacun des cas suivants, calculer $\cos x$ ou $\sin x$.

1)
$$\sin x = -\frac{1}{4}$$
 et $x \in \left[-\frac{\pi}{2}; 0 \right]$.

1)
$$\sin x = -\frac{1}{4}$$
 et $x \in \left[-\frac{\pi}{2}; 0 \right]$. 2) $\cos x = \frac{3}{5}$ et $x \in \left[\frac{3\pi}{2}; 2\pi \right]$.

3)
$$\cos x = -\frac{1}{3}$$
 et $x \in \left[\frac{\pi}{2}; \pi\right]$.