Time Speed and Distance

0.11	A	Calution
Q.No.	Ans	Solution
1	С	Option C
		Solution:
		Distance of first part of his journey = x
		Distance of first part of his journey = y
		x/30 + y/60 = (x + y)/40
		6x + 2y = 3x + 3y
		x/y = 3:1
2	D	Option D
		Solution:
		Walking + Riding = 7 hours 40 minutes
		Walking + Walking = 8 hours 40 minutes
		So Walking = 4 hours 20 minutes
_		Riding + Riding = 6 hours 40 minutes
3	В	Option B
		Solution:
		Total hours = 10 hours
		Average Speed = 2xy/(x+y) = 2*22*18/(40) = 19.8 kmph
4	Α	Total Journey in Km = 19.8 * 10 = 198 km
4	Α	Option A Solution:
		Distance covered in 10 minutes at 40 kmph = distance covered in 8 minutes at $(40+x)$ kmph. $40*10/60 = 8/60*(40+x)$
		20 * 5 = 80 + 2x
		x = 10 kmph
5	D	Option D
J		Solution:
		3/4 of speed = 4/3 of original time
		4/3 of original time = original time + 18 minutes;
		1/3rd of original time = 18 minutes;
		Thus, original time = 18*3 = 54 minutes.
6	В	Option B
		Solution:
		Assume Total distance = 100 km.
		So speed = $100/[(40/20)+(50/25)+(10/10];$
		speed = $100/[(2)+(2)+(1)]$;
		= 100/[5]
		= 20 kmph.
7	D	Option D
		Solution:
		Total distance = $18*10 = 180$
		Journey traveled by auto = x hours
		30 * x + (10-x)10 = 180
		30x + 100 - 10x = 180
		20x = 80
		x = 4 hours Distance traveled by auto = 4 * 30 = 120 km
8	Α	Distance traveled by auto = 4 * 30 = 120 km Option A
Ü	^	Solution:
		Distance covered in 6 minute = 6*(1000/60) = 100
		She has to cover (500+100) meters in 24 minutes
		Required speed = (600/1000)/(24/60) = 1.5kmph
9	E	Option E
		Solution:
		Let speed of faster rabbit = x
		& speed of slower rabbit = y
		x + y = 60/1.2
		x + y = 50 — (A)
		60/y - 60/x = 1 - (B)
		Solve equations, we get $y = 150$ and 20 bt y cannot be 120 as $x+y = 50$. So $y = 20$ kmph and
		x = 30 kmph
	_	

10	Е	Option E
		Solution:
		3/2 of speed = 2/3 of original time
		2/3 of original time = original time – 40 minutes;
		1/3rd of original time = 40 minutes;
44	С	Thus, original time = 40*3 = 120 minutes = 2 hours Option C
11	C	Solution:
		length of the train = (Difference in speeds * Product of time) / Difference in Time
		S1 = $8 \times 5/18 = 20/9$ m/s
		S2 = 12 * 5/18 = 30/9 m/s
		length of the train = $(10/9)^*$ 9 *10 /1 = 100m
12	D	Option D
		Solution:
		Speed of train B = Speed of train A * Square root of (t1/t2)
		Speed of train B = $80 * Square root of ((39/2)/26/3)$
		Speed of train B = 80 * 3/2 = 120 kmph
13	В	Option B
		Solution: Distance between Stations P and Q = [Relative Speed]/Difference of Speed * d
		Distance = $(200/40) * 80 = 400 \text{ km}$
14	Α	Option A
		Solution:
		Distance = Difference in time *[Product of speeds / Difference in speeds]
		Distance = 45/60 * [(80*120)/40] = 180 km
15	D	Option D
		Solution:
		First train speed = a; Second train speed = b
		Time taken to meet = (Distance (+/-) t(b))/Relative Speed
		If the second train started after the first train then [+t] Time taken to meet = (Distance + t(b))/Relative Speed
		Time taken to meet = $(280 + 1(120))/200 = 2h$
		Time both trains meet at = $6.00 \text{ pm} + 2\text{h} = 8.00 \text{ pm}$
16	В	Option B
		Solution:
		First train speed = a; Second train speed = b
		Time taken to meet = (Distance (+/-) t(b))/Relative Speed
		If the second train started before the first train then [-t]
		Time taken to meet = (Distance – t(b))/Relative Speed Time taken to meet = (280 – 1/120))/200 – 48 minutes
		Time taken to meet = $(280 - 1(120))/200 = 48$ minutes Time both trains meet at = 7.00 pm + 48 minutes = 7:48 pm
17	D	Option D
''		Solution:
		The distance of the point where the two trains meet is "x"
		x/80 - (250 - x)/120 = 1/2
		3x - 2(250 - x) = 1/2 * 240
		3x - 500 + 2x = 120
		5x = 620
18	Α	x = 124 km. Option A
10	A	Solution:
		Speed of slower train = x
		Speed of faster train = x+6
		Relative speed = $2x + 6$
		240/2x + 6 = 8
		240 = 16x - 48
		16x = 192
		x = 12 kmph
19	E	Option E
		Solution:
		d/x = 4 $d/x-4 = 5$
L		W/A 4 = U

		4v – 5v – 20
		4x = 5x - 20
20	+-	x = 20 kmph
20	E	Option E
		Solution:
		d/x = 5
		d/x-5=6
		5x = 6x - 30
		x = 30 kmph
		Reduced speed = $x - 5 = 30 - 5 = 25$ kmph
		d = 150
21	С	Option C
		Solution:
		With 80 km/hr, distance travelled in 1 n half hours (9:30AM – 8AM) is 3/2 * 80 = 120 Km
		Now second train also starts, and at this time distance between both trains is (545-120) = 425
		km
		Relative speed = 80+90 = 170 km/hr (when travelling in opposite direction, add speed)
		So time when they meet = $425/170 = 2.5$ hrs
		So after 9:30 AM they meet after 2.5 hrs, so 12 AM
22	В	Option B
		Solution:
		Speed of bus = 560/8 = 70 km/hr
		So speed of car = 8/7 * 70 = 80 km/hr
		So speed of train = 130 km/hr
		So time taken by train to cover 520 km = 520/130 = 4 hours
23	Α	Option A
		Solution:
		Let total distance be d km, speed = u, and time = t hours
		So case 1:
		30 km with speed u, (d-30) with speed $1 - 1/5 = 4/5$ of u
		If he would have travelled (d-30) by speed u, then time = (d-30)/u
		But now time is = $(d-30)/(4u/5) = 5(d-30)/4u$
		And difference in timings is 45 minutes = 3/4 hour
		So $5(d-30)/4u - (d-30)/u = 3/4$
		Solve $(d-30)/u = 3$
		case 2:
		48 km with speed u, (d-48) with speed $1 - 1/5 = 4/5$ of u
		If he would have travelled (d-48) by speed u, then time = (d-48)/u
		But now time is = $(d-48)/(4u/5) = 5(d-48)/4u$
		And difference in timings is 36 minutes = 3/5 hour
		So $5(d-48)/4u - (d-48)/u = 3/5$
		Solve $(d-48)/4u = 3/5$
		Divide both equations, d = 120 km
24	С	Option C
		Solution:
		Let speeds be x km/hr and y km/hr
		So 225/(x+y) = 3
		And $225/(x/2 + 2y/3) = 5$
		Solve, $x = 30$, $y = 45$
25	D	Option D
23	7	Solution:
		Speed of Bhavna = x km/hr, of priya = (x+10) km/hr
		Distance covered by Priya = 60+12 = 72 km
		And by Bhavna = 60-12 = 48 km
		S0 72/(x+10) = 49/x
		72/(x+10) = 48/x
20	-	Solve, x = 20
26	E	Option E
		Solution:
		Let the speed of the train is s km/hr and its length is a m.
		So
		a/[(s-5)*(5/18)] = 12; [In same direction relative speed is obtained by subtracting. Also
		changing km/hr to m/s]

		Solve 3a = 10s – 50 (i)
		And also
		a/[(s-8)*(5/18)] = 15;
		6a = 25s-200 (ii)
		Solve (i) and (ii)
		s = 20 km/hr
07	_	
27	В	Option B
		Solution:
		Let speed of the 2nd train is s m/sec.
		80 km/hr = (80*5)/18 = 200/9 m/sec.
		Trains are travelling in same direction. So
		(200/9) - s = 150/20
		Solve, s = 265/18 m/sec = 265/18 * 18/5 = 53 km/hr
28	В	1. Option B
20	В	
		Solution:
		When A runs 500 m, B runs 470 m
		So when A runs 200 m, B runs 470/500 * 200 = 188 m
		When B runs 400 m, C runs 280 m
		So when B runs 188 m, C runs, 280/400 * 188 = 131.6 m
		So A will beat C by (200-131.6) = 68.4 m
		, ,
29	Е	Option E
	_	Solution:
		Let speed of the slower train is x km/hr, then speed of faster is (x+10) kmph.
		Let faster train takes t hours to cover the distance 300 km, then slower one takes (t+8) hours.
		Distance is same. So
		x/(x+10) = t/(t+8)
		Solve, $4x = 5t$
30	D	Option D
		Solution:
		Use formula:
		4 AM + (6-4)*(8-4)/[(6-4)+(8-5)]
		gives 4 AM + 8/5
		8/5 hours = 1 3/5 hours = 1 3/5*60 = 1 hour 36 minutes
		So 4 AM + 1 hour 36 minutes = 5:36 AM
31	С	Correct Option: C
		Day Total distance By bus
		Day1 25% of 3000 = 750 km 30% of 750 = 225 km
		Day2 15% of 3000 = 450 km 25% of 450 = 112.5 km
		Day3 20% of 3000 = 600 km 45% of 600 = 270 km
		Day5 18% of 3000 = 540 km 15% of 540 = 81 km
		Day6 12% of 3000 = 360 km 18% of 360 = 64.8 km
		Total = 813.3 km
		Hence, option C is correct.
32	С	Correct Option: C
\ -		The total distance travelled by Ola = 1084.2 km
		Speed = 40 km per hr
		Speed = 40 km per m
		4004.0
		Time = $\frac{1084.2}{40}$ = 27.105 hours = approximately 27 hours
		40 2000 0000
		Day Total distance By Ola
		Day1 25% of 3000 = 750 km 45% of 750 = 337.5 km
		Day2 15% of 3000 = 450 km 35% of 450 = 157.5 km
		Day3 20% of 3000 = 600 km 15% of 600 = 90 km
		Day4 10% of 3000 = 300 km 20% of 300 = 60 km
		Day5 18% of 3000 = 540 km 60% of 540 = 324 km
		Day6 12% of 3000 = 360 km 32% of 360 = 115.2 km
		Total = 1084.2 km
Ī	1	10(d) = 1004.2 KIII

33	С	Correct Option: C
1 2 2		The total distance travelled by Ola = 1084.2 km
		The total distance travelled by Uber = 3000 – 813.3 – 1084.2 = 1102.5 KM
		10010 100
		The reqd. $\% = \frac{1084.2 \times 100}{1102.5} = 98.34\%$
		1102.5
		Hence, option C is correct.
34	Α	Correct Option: A
		The distance travelled by bus = 813.3 km
		The distance travelled by Ola = 1084.2 km
		The distance travelled by Uber = 1102.5 km
		The distance travelled by Ober = 1102.5 km
		The required Ratio = 8133 : 10842 : 11025 = 2711 : 3614 : 3675
		Hence, option A is correct.
35	D	Correct Option: D
		The average speed of bus is 30 km per hour then the average speed of Ola
		30 × 125
		$=\frac{30 \times 125}{100} = 37.5 \text{ km}$
		The total distance travelled by bus = 813.3 km
		The reqd. time = $\frac{813.3}{30} - \frac{813.3}{37.5}$
		30 37.5
		7.5
		$= 813.3 \times \frac{7.5}{30 \times 37.5} = 5.422$ hours = 5.4 hours approximately
		50 × 51.5
		Hence, option D is correct.