- 一、选择题(每题2分,共20分) (1) 八进制数 (573.4) 8 转换成十六进制是 () $^{\circ}$ A, (17C.4) $_{16}$ B, (16B.4) $_{16}$ C, (17B.8) $_{16}$ D, (16B.5) $_{16}$ (2) 典型格雷码 1100 对应的二进制码是()。 A, 1000 B, 1101 C, 1010 D, 1001 (3) 逻辑函数 $F(A,B,C)=\sum m(0,1,3,4,5)$ 的反函数是()。 $\mathbf{A}_{\searrow} \ \overline{\mathbf{F}} = \mathbf{A}\mathbf{B} + \mathbf{B}\overline{\mathbf{C}} \qquad \mathbf{B}_{\searrow} \ \overline{\mathbf{F}} = \mathbf{B} + \overline{\mathbf{A}}\mathbf{C} \qquad \mathbf{C}_{\searrow} \ \overline{\mathbf{F}} = \overline{\mathbf{B}} + \mathbf{A}\mathbf{C} \qquad \mathbf{D}_{\searrow} \ \overline{\mathbf{F}} = \mathbf{A}\mathbf{B} + \overline{\mathbf{B}}\mathbf{C}$ (4) 下列各组输入取值中,使函数 $F(A,B,C,D)=\sum m(0,1,3,4,6,12)$ 的值为 1 的是 ()。 C、0101 B₂ 1001 D₂ 1100 A 1101 (5) 右图是多路选择器构成的函数发生器, 其输出 Y 的 表达式为()。 $A \cdot Y = \overline{A} \overline{B}$ B Y = A + BC, Y=AB D, Y=B (6) 总线结构可以采用()实现。 A、TS 门 B、CMOS 门 C、传输门 D、OC 门 (7) 右图中 Y 的状态是 ()。 A、高电平 B、低电平 C、高阻态 D、不确定 (8) 逻辑函数 $F_1 = A\overline{C} + \overline{AB} + \overline{BC} + \overline{AC} + \overline{AC} + \overline{AC}$ 的关系是()。 $A \times F_1 = \overline{F_2}$ $B \times F_1 = F_2$ $C \times F_1 = F_2'$ $D \times 没有关系$ (9) 以下哪个选项不是组合电路的特点? ()。 A、由逻辑门组成 B、信号单向传输 C、无反馈回路 D、输出由输入和历史状态决定 (10) 组合电路中的险象是由()引起的。 A、电路未达到最简 B、电路有多个输出 C、电路中的时延 D、使用了不同类型的逻辑门
- 二、简答题(每题8分,共24分)
- (1) X = -0110, Y = +0101, 用补码计算X Y。
- (2) A, B_1, B_2, \dots, B_n 是逻辑变量,证明 $A(B_1 \oplus B_2 \oplus \dots \oplus B_n) = (AB_1) \oplus (AB_2) \oplus \dots \oplus (AB_n)$ 。
- (3) 用两个半加器和尽可能简单的门电路实现一个全加器,画出逻辑电路图。

- 三、逻辑代数 (24 分)。已知逻辑函数 $F(A, B, C, D) = \sum m(1, 5, 6, 7, 10, 11, 14, 15)$,回答下列问题:
- (1) 求F的最简与-或表达式和最简或-与表达式;
- (2) 求F的反函数F的最简与-或表达式;
- (3) 求F的对偶式F′的最简与-或表达式;
- (4) 如果按照F的最简与-或表达式实现F,电路中是否存在险象?若存在险象,用增加冗余项的办法消除。

四、组合电路分析与设计(32分)

(1) 分析下图所示的组合逻辑电路。写出输出表达式,列出真值表,说明电路的逻辑功能。

- (2) 用与非门设计一个组合电路,该电路的输入为 1 位十进制数的 2421 码,当输入的数字为素数时,输出 F 为 1,否则 F 为 0。写出完整的设计过程,求出输出表达式,画出逻辑电路图。
- (3) 用四位二进制加法器和适当的门电路,将余三码转换为 2421 码,写出设计过程,画出逻辑电路图。四位二进制加法器逻辑符号如下:

