Teoría de grafos

Clase 19

IIC 1253

Prof. Sebastián Bugedo

Outline

Obertura

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Epílogo

Tercer Acto: Aplicaciones Algoritmos, grafos y números

Playlist Tercer Acto

DiscretiWawos #3

Además sigan en instagram:

@orquesta_tamen

Dividir para conquistar

- Muchos algoritmos conocidos y usados en la práctica se basan en dividir el input en instancias más pequeñas para resolverlas recursivamente.
- Típicamente, existe un umbral n_0 desde el cual se resuelve recursivamente el problema (es decir, para inputs de tamaño $n \ge n_0$).
- Se divide el input por una constante b y se aproxima a un entero (usando [] o []), haciendo a₁ y a₂ llamadas recursivas para cada caso.
- Además, en general se hace un procesamiento adicional antes o después de las llamadas recursivas, que llamaremos f(n).

Dividir para conquistar: un ejemplo

Ejercicio

¿Cómo ordenamos dos listas ya ordenadas en una?

$$L_1 = \{4, 7, 17, 23\}$$

 $L_2 = \{1, 9, 10, 15\}$

¿Cómo podemos ocupar esta técnica para ordenar una lista? ¿Cuál es la complejidad de este algoritmo?

Dividir para conquistar: un ejemplo

Ejercicio

¿Cómo ordenamos dos listas ya ordenadas en una? ¿Cuál es la complejidad de este algoritmo?

Recorremos ambas, comparando el primer elemento. En cada paso ponemos el menor de ellos en una nueva lista y avanzamos. Si alguna de las listas se acaba, ponemos lo que quede de la otra al final.

En el peor caso, recorremos ambas listas comparando uno por uno sus elementos, con lo que hacemos n-1 comparaciones.

Dividir para conquistar: un ejemplo

Ejercicio

1

2

3

6

7

¿Cómo podemos ocupar esta técnica para ordenar una lista?

```
Suponiendo que tenemos un método Combinar que implementa el
procedimiento visto anteriormente:
input: Arreglo A[0, ..., n-1], largo n
output: Arreglo ordenado
MergeSort(A, n):
   if n < 1 then
        return A
   else
        m \leftarrow \lfloor n/2 \rfloor
       A_1 \leftarrow \text{MergeSort}(A[0...m-1], m)
       A_2 \leftarrow \text{MergeSort}(A[m \dots n-1], n-m)
        return Combinar (A_1, A_2)
```

¿Cómo obtenemos la complejidad? ¿Habrá algún método adicional?

Teorema Maestro

Teorema

Si $a_1, a_2, b, c, c_0, d \in \mathbb{R}^+$ y b > 1, entonces para una recurrencia de la forma

$$T(n) = \begin{cases} c_0 & 0 \le n < \frac{b}{b-1} \\ a_1 \cdot T\left(\left\lceil \frac{n}{b}\right\rceil\right) + a_2 \cdot T\left(\left\lfloor \frac{n}{b}\right\rfloor\right) + c \cdot n^d & n \ge \frac{b}{b-1} \end{cases}$$

se cumple que

$$T(n) \in \begin{cases} \Theta(n^d) & a_1 + a_2 < b^d \\ \Theta(n^d \cdot log(n)) & a_1 + a_2 = b^d \\ \Theta(n^{log_b(a_1 + a_2)}) & a_1 + a_2 > b^d \end{cases}.$$

Teorema Maestro

Ejercicio

¿Cuál es la complejidad de MergeSort?

Como vimos antes, el peor caso es que Combinar tenga que comparar todos los elementos. En tal caso, se hacen n-1 comparaciones, a la que sumamos la comparación que se hace para verificar el tamaño de la lista. Entonces, la ecuación de recurrencia para MergeSort es:

$$T(n) = \begin{cases} 1 & n < 2 \\ T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + n & n \ge 2 \end{cases}$$

Aplicamos el teorema maestro:

$$a_1 = 1, a_2 = 1, b = 2, c = 1, d = 1, c_0 = 1$$

 $a_1 + a_2 = 2, b^d = 2^1 = 2 \rightarrow \text{Entramos en el segundo caso: } a_1 + a_2 = b^d$

Por lo tanto,
$$T(n) \in \Theta(n \cdot \log(n))$$
.

¿Por qué aprender grafos?

- Problemas de conectividad
- Optimización
- Bases de datos
- Redes sociales
- Manejo de concurrencia
- En general, todo lo que se representa con relaciones binarias!

Redes

Motivación

Una línea aérea tiene una lista de vuelos entre ciudades del mundo, y desea saber cuáles son los posibles viajes que se pueden realizar combinando vuelos. La lista de vuelos es la siguiente:

Origen	Destino
Stgo	BsAs
Stgo	Miami
Stgo	Londres
BsAs	Stgo
Miami	Stgo
Miami	Londres
Londres	Stgo
Londres	Paris
Frankfurt	Paris
Frankfurt	Moscu
Paris	Moscu
Moscu	Frankfurt

Objetivos de la clase

- □ Conocer definiciones básicas de grafos
- □ Aplicar nociones básicas de isomorfismo y subgrafos

Outline

Obertura

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Epílogo

Definición

Un grafo G = (V, E) es un par donde V es un conjunto, cuyos elementos llamaremos vértices o nodos, y E es una relación binaria sobre V (es decir, $E \subseteq V \times V$), cuyos elementos llamaremos aristas.

Esta definición es bastante general.

Los grafos así definidos son llamados grafos dirigidos.

Si un grafo es dirigido, las aristas se dibujan con flechas.

Ejemplo

G = (V, E), donde $V = \{1, 2, 3, 4\}$ y $E = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3), (4, 4)\}$.

Dado un grafo G = (V, E):

Definición

Un rulo (o loop) es una arista $(x, y) \in E$ tal que x = y. Es decir, es una arista que conecta un vértice con sí mismo.

Definición

Dos aristas $(x, y) \in E$ y $(z, w) \in E$ son paralelas si x = w e y = z. Es decir, si conectan a los mismos vértices.

El ejemplo anterior tiene rulos y aristas paralelas.

Definición

Un grafo G = (V, E) es no dirigido si toda arista tiene una arista paralela.

¿Cómo se expresa esto en términos de la relación E?

Definición (alternativa)

Un grafo G = (V, E) es no dirigido si E es simétrica.

Si un grafo es no dirigido, se dibuja con trazos en lugar de flechas.

Ejemplo

G = (V, E), donde $V = \{1, 2, 3, 4\}$ y $E = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}.$

Ejemplo

G = (V, E), donde $V = \{1, 2, 3, 4\}$ y $E = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}.$

Definición

Un grafo no dirigido G = (V, E) es simple si no tiene rulos.

¿Cómo se expresa esto en términos de la relación E?

Definición (alternativa)

Un grafo no dirigido G = (V, E) es simple si E es irrefleja.

Ejemplo

G = (V, E), donde $V = \{1, 2, 3, 4\}$ y $E = \{(1, 2), (1, 4), (2, 1), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)\}$.

De ahora en adelante (a menos que se explicite otra cosa), cuando hablemos de grafos estaremos refiriéndonos a grafos simples, no dirigidos, no vacíos y finitos.

- $V \neq \emptyset$ y |V| = n, con $n \in \mathbb{N}$.
- E es simétrica e irrefleja.

Una pequeña definición:

Definición

Dado un grafo G = (V, E), dos vértices $x, y \in V$ son adyacentes o vecinos si $(x, y) \in E$.

Outline

Obertura

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Epílogo

Definición

Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son isomorfos si existe una función biyectiva $f: V_1 \to V_2$ tal que $(x, y) \in E_1$ si y sólo si $(f(x), f(y)) \in E_2$.

En tal caso:

- Diremos que f es un isomorfismo entre G_1 y G_2 .
- Escribiremos $G_1 \cong G_2$.

Dos grafos son isomorfos cuando tienen "la misma forma"

Teorema

≅ es una relación de equivalencia.

Ejercicio

Demuestre el teorema.

Teorema

≅ es una relación de equivalencia.

Demostración:

- Refleja: Sea G(V, E) tomemos la función $f: V \to V$ dada por f(x) = x. Luego, de manera trivial podemos inferir que $G \cong G$.
- Simétrica: Sean G₁(V₁, E₁) y G₂(V₂, E₂) tales que G₁ ≅ G₂. Por definición existe f: V₁ → V₂ biyectiva tal que todo (u, v) ∈ E₁ si y sólo si (f(u), f(v)) ∈ E₂ (*). Además, como f es biyectiva, sabemos que es invertible. Ahora mostraremos que f⁻¹ cumple la definición de isomorfismo.
 - (⇒) Sea $(u_2, v_2) \in E_2$ como f es biyectiva podemos expresarlo como $(f(u_1), f(v_1)) \in E_2$ con $u_1, v_1 \in V_1$. Luego, por (*) obtenemos $(u_1, v_1) \in E_1$. Como f^{-1} es inversa obtenemos que $(f^{-1}(u_2), f^{-1}(v_2)) \in E_1$.
 - (\Leftarrow) Sea $(f^{-1}(u_2), f^{-1}(v_2)) \in E_1$, podemos reescribirlo como $(u_1, v_1) \in E_1$ con $u_1, v_1 \in V_1$. Luego por (*) obtenemos $(f(u_1), f(v_1)) \in E_2$ lo que es equivalente a $(u_1), f(v_1)) \in E_2$

Teorema

≅ es una relación de equivalencia.

■ Transitiva: Sean $G_1(V_1, E_1)$, $G_2(V_2, E_2)$ y $G_3(V_3, E_3)$ tales que $G_1 \cong G_2$ y $G_2 \cong G_3$. Por definición, sabemos que existen $f: V_1 \to V_2$ y $g: V_2 \to V_3$ biyectivas tales que

$$(u_1, v_1) \in E_1$$
 si y sólo si $(f(u_1), f(v_1)) \in E_2$ (i) $(u_2, v_2) \in E_2$ si y sólo si $(g(u_2), g(v_2)) \in E_3$ (ii)

Sea $u_1, v_1 \in V_1$ tales que $(u_1, v_1) \in E_1$, por (i) sabemos que $(f(u_1), f(v_1)) \in E_2$. Luego, si aplicamos (ii) obtenemos $(g(f(u_1)), g(f(v_1))) \in E_3$. Por lo tanto, podemos utilizar $g \circ f$ como función biyectiva y concluimos que $G_1 \cong G_3$.

El concepto de isomorfismo nos permite concentrarnos en la estructura subyacente de los grafos.

- Podemos independizarnos de los nombres de los vértices.
- No importa cómo dibujemos los grafos.

Definiremos familias de grafos a partir de isomorfismos

Clases de grafos

Definición (informal)

Un camino es un grafo cuyos vértices pueden dibujarse en una línea tal que dos vértices son adyacentes si y sólo si aparecen consecutivos en la línea.

Ejemplo

Clases de grafos

Definición (formal)

Considere un grafo
$$G_n^P = (V_n^P, E_n^P)$$
, donde $V_n^P = \{v_1, ..., v_n\}$ y $E_n^P = \{(v_i, v_j) \mid i \in \{1, ..., n-1\} \land j = i+1\}$.

Un camino (de n vértices) es un grafo isomorfo a G_n^P .

Llamaremos P_n a la clase de equivalencia $\left[G_n^P\right]_{\cong}$ Los caminos con n vértices.

Observación:

 \blacksquare Asumimos que G_n^P es no dirigido, a pesar de su definición

Definición (informal)

Un ciclo es un grafo cuyos vértices pueden dibujarse en un círculo tal que dos vértices son adyacentes si y sólo si aparecen consecutivos en él.

Definición (formal)

Considere un grafo
$$G_n^C = (V_n^C, E_n^C)$$
, donde $V_n^C = \{v_1, ..., v_n\}$ y $E_n^C = \{(v_i, v_j) \mid i \in \{1, ..., n-1\} \land j = i+1\} \cup \{(v_n, v_1)\}$.

Un ciclo (de n vértices) es un grafo isomorfo a G_n^C .

Llamaremos C_n a la clase de equivalencia $\left[G_n^C\right]_{\cong}$ Los ciclos con n vértices.

Observación:

Asumimos que G_n^C es no dirigido, a pesar de su definición

Definición

Un grafo completo es un grafo en el que todos los pares de vértices son adyacentes.

Llamaremos K_n a la clase de equivalencia de los grafos completos de n vértices.

Definición

Un grafo G = (V, E) se dice **bipartito** si V se puede particionar en dos conjuntos no vacíos V_1 y V_2 tales que para toda arista $(x, y) \in E$, $x \in V_1$ e $y \in V_2$, o $x \in V_2$ e $y \in V_1$.

Es decir:

- $V = V_1 \cup V_2$
- $V_1 \cap V_2 = \emptyset$
- Cada arista une a dos vértices en conjuntos distintos de la partición.

Definición

Un grafo G = (V, E) se dice **bipartito** si V se puede particionar en dos conjuntos no vacíos V_1 y V_2 tales que para toda arista $(x, y) \in E$, $x \in V_1$ e $y \in V_2$, o $x \in V_2$ e $y \in V_1$.

Definición

Un grafo bipartito completo es un grafo bipartito en que cada vértice es adyacente a todos los de la otra partición.

Llamaremos $K_{n,m}$ a la clase de los grafos bipartitos completos, donde $n \ y \ m$ son los tamaños de las particiones.

Ejemplo 5

Dado un grafo $G = (V_G, E_G)$:

Definición

Un grafo $H = (V_H, E_H)$ es un subgrafo de G (denotado como $H \subseteq G$) si $V_H \subseteq V_G$, $E_H \subseteq E_G$ y E_H sólo contiene aristas entre vértices de V_H .

Dado un grafo $G = (V_G, E_G)$:

Definición

Un clique en G es un conjunto de vértices $K \subseteq V_G$ tal que $\forall v_1, v_2 \in K, (v_1, v_2) \in E_G$.

Definición

Un conjunto independiente en G es un conjunto de vértices $K \subseteq V_G$ tal que $\forall u, v \in K$, $(u, v) \notin E_G$.

Definición

El **complemento** de G es el grafo $\overline{G} = (V_G, \overline{E_G})$, donde $(u, v) \in E_G \Leftrightarrow (u, v) \notin \overline{E_G}$.

Definición

Un grafo G se dice autocomplementario si $G \cong \overline{G}$.

Teorema

Dado un grafo G = (V, E), un conjunto $V' \subseteq V$ es un clique en G si y sólo si es un conjunto independiente en \overline{G} .

Ejercicio

Demuestre el teorema.

Ejercicio

¿Es cierto que en un conjunto cualquiera de 6 personas, siempre hay 3 que se conocen mutuamente o 3 que se desconocen mutuamente? Demuestre usando grafos.

Teorema

Dado un grafo G = (V, E), un conjunto $V' \subseteq V$ es un clique en G si y sólo si es un conjunto independiente en \overline{G} .

Demostración:

- (⇒) Sea $V' \subseteq V$ un clique en G. Por definición sabemos que para todo par de vértices $u, v \in V'$ ocurre que $(u, v) \in E$. Por otro lado, por definición de \overline{G} sabemos que para todo $u, v \in V'$ ocurre que $(u, v) \notin \overline{E}$, y por lo tanto V' es un conjunto independiente en \overline{G} .
- (\Leftarrow) Sea $V' \subseteq V$ un conjunto independiente en \overline{G} . Por definición sabemos que para todo par de vértices $u, v \in V'$ ocurre que $(u, v) \notin \overline{E}$. Por otro lado, por definición de \overline{G} sabemos que para todo $u, v \notin V'$ ocurre que $(u, v) \in E$, y por lo tanto V' es un clique en G.

Ejercicio

¿Es cierto que en un conjunto cualquiera de 6 personas, siempre hay 3 que se conocen mutuamente o 3 que se desconocen mutuamente?

Demostración:

Sea G(V,E) con |V|=6, buscamos demostrar que G tiene un clique o un conjunto independiente de tamaño 3. Por el teorema anterior, esto es equivalente a mostrar que G tiene un clique o que \overline{G} lo tiene. Por contradicción, suponemos que ni G ni \overline{G} tiene el clique. Sea $v \in V$ tenemos 2 casos:

■ v tiene por lo menos 3 vecinos: Sean $x,y,z \in V$ los vecinos de v tales que $(v,x),(v,y),(v,z) \in E$. Una observación importante es que no pueden existir aristas entre x,y,z dado que de otra manera de generaría un clique de tamaño 3, contradiciendo nuestra hipótesis. Luego, x,y,z forman un conjunto independiente en G y por el teorema anterior estos vértices mismos forman un clique en G.

Ejercicio

¿Es cierto que en un conjunto cualquiera de 6 personas, siempre hay 3 que se conocen mutuamente o 3 que se desconocen mutuamente?

■ v tiene menos de 3 vecinos: En este caso v no es adyacente con por lo menos 3 vertices de G. Sean x,y,z estos vértices tales que $(v,x),(v,y),(v,z) \notin E$. Luego, x,y,z son vecinos de v en \overline{G} y podemos aplicar el mismo razonamiento del caso anterior para concluir que x,y,z forman un clique de tamaño 3 en G.

Como en ambos casos llegamos a que G o \overline{G} cuentan con un clique, esto contradice nuestra hipótesis y por ende G debe ser tal que tiene un clique de tamaño 3 o un conjunto independiente de tamaño 3.

Outline

Obertura

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Epílogo

Representación matricial

Dado un grafo G = (V, E), como E es una relación binaria podemos representarla en una matriz.

Ejemplo

$$G = (V, E), \text{ donde } V = \{1, 2, 3, 4\} \text{ y } E = \{(1, 2), (1, 4), (2, 1), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)\}.$$

$$M_G = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Llamaremos a M_G la matriz de adyacencia de G.

Representación matricial

- Si el grafo es simple, la diagonal sólo contiene ceros.
- Si el grafo es no dirigido, entonces $M_G = M_G^T$.
- ¿Cómo puedo obtener $M_{\overline{G}}$?

Estas construcciones solo necesitan operar con los bits en la matriz

Representación matricial

También podemos usar una matriz de incidencia A_G .

- Etiquetamos las aristas de G.
- Cada fila de la matriz representará a un vértice, y cada columna a una arista.
- Cada posición de la matriz tendrá un 1 si la arista de la columna incide en el vértice de la fila.

Ejemplo

$$G=(V,E), \ \text{donde} \ V=\{1,2,3,4\} \ \text{y} \ E=\{(1,2),(1,4),(2,1),\\ (2,3),(2,4),(3,2),(3,4),(4,1),(4,2),(4,3)\}.$$

$$A_G = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Outline

Obertura

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Epílogo

Objetivos de la clase

- □ Conocer definiciones básicas de grafos
- □ Aplicar nociones básicas de isomorfismo y subgrafos