OPENCL

Episode 3 - Building an OpenCL Project

David W. Gohara, Ph.D.

Center for Computational Biology

Washington University School of Medicine, St. Louis
email: sdg0919@gmail.com twitter: iGotchi

THANKYOU

Q&A

- Double-precision arithmetic
- Object Oriented programming
- Global vs local work group sizes
- Classes of scientific problems addressable with OpenCL

Q&A - DOUBLE PRECISION

- Optional in OpenCL
 - #pragma OPENCL EXTENSION cl_khr_fp64 : enable
- Support is implementation and card dependent
 - If implemented it must conform to the IEEE-754 standard
- Performance is reduced relative to single-precision

Q&A-OOPROGRAMS

- OpenCL can be called from almost any programming language
 - Catch: The language must be able to interface with C stubs
- OpenCL does not support passing of "objects" into kernels
 - Structures may be passed in
 - Data layout is extremely important

Q&A-WORK GROUP SIZES

- On the CPU the local group size is always one
 - Synchronization points are no-ops and are too expensive to implement
- Determining local work group size can be trial and error

- Typically the local work group size should be no smaller than the size of a warp (or wavefront)
- Powers of two when possible!
- Max local work group size <= 512
- Dimensioning is really only important for simplifying indexing

Q&A-PROBLEM CLASSES

- FFTs
- BLAS/LAPACK type operations
- Monte Carlo
- PDEs

Q&A-PROBLEM CLASSES

- · Not all algorithms (or implementations) are optimal on a GPU
- Problems often need to be re-factored or data structures modified
- Computations DO NOT need to run in a single kernel or queue call

Q&A-PROBLEM CLASSES

- Each portion of the calculation can be run as a separate kernel
- Each kernel is queued in order, possibly within a loop
- Checks for early exit require data transfers

$$\begin{split} &\mathbf{r}_0 \coloneqq \mathbf{b} - \mathbf{A} \mathbf{x}_0 \\ &\mathbf{p}_0 \coloneqq \mathbf{r}_0 \\ &k \coloneqq 0 \\ &\mathbf{r}_{\mathbf{p}_k}^T \mathbf{r}_k \\ &\alpha_k \coloneqq \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{p}_k^T \mathbf{A} \mathbf{p}_k} \\ &\mathbf{x}_{k+1} \coloneqq \mathbf{x}_k + \alpha_k \mathbf{p}_k \\ &\mathbf{r}_{k+1} \coloneqq \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{p}_k \\ &\mathbf{if} \ \mathbf{r}_{k+1} \ \text{is sufficiently small then exit loop end if} \\ &\beta_k \coloneqq \frac{\mathbf{r}_{k+1}^T \mathbf{r}_{k+1}}{\mathbf{r}_k^T \mathbf{r}_k} \\ &\mathbf{p}_{k+1} \coloneqq \mathbf{r}_{k+1} + \beta_k \mathbf{p}_k \\ &k \coloneqq k+1 \end{split}$$
 end repeat

http://bit.ly/QDB1a

OPENCL EXAMPLE

- Mac OS X Snow Leopard
- Xcode tools installed
- · Simple example to get you familiar with the actual code and tool chain

DISCOVERING DEVICES

CL_DEVICE_TYPE_ALL

DEVICES PROPERTIES

CL_DEVICE_MAX_MEM_ALLOC_SIZE
CL_DEVICE_GLOBAL_MEM_SIZE
CL_DEVICE_QUEUE_PROPERTIES
CL_DEVICE_MAX_WORK_ITEM_SIZES
CL_DEVICE_EXTENSIONS

BUILDING PROGRAMS

MEMORY BUFFERS

MEMORY BUFFERS

EXECUTION/READ

XCODE DEMO

MORE INFORMATION

- MacResearch.org
 - OpenCL http://www.macresearch.org/opencl
 - Amazon Store http://astore.amazon.com/macreseorg-20
- Sparse Matrix-Vector Multiplication http://bit.ly/13rOnM
- Mixed Precision Arithmetic http://bit.ly/4c0eAc

