Schriftliche Prüfung aus Maß- und Wahrscheinlichkeitstheorie 2 - VO Doz. Grill

28. November 2019

zweistündig ohne Unterlagen

- 1. (a) Definieren Sie das Produkt von zwei sigmaendlichen Maßräumen..
 - (b) Formulieren und beweisen Sie den Satz von Fubini für nichtnegative messbare Funktionen.
- 2. (a) Definieren Sie: p-fach integrierbare Funktion, p-Norm, \mathcal{L}_p, L_p .
 - (b) Formulieren und beweisen Sie die Ungleichung von Minkowski.
- 3.~X und Y seien unabhängig gammaverteilt mit den Dichten

$$f_X(x) = \frac{\lambda^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-\lambda x} [x > 0]$$

und

$$f_Y(x) = \frac{\lambda^{\beta} x^{\beta - 1}}{\Gamma(\beta)} e^{-\lambda x} [x > 0].$$

Bestimmen Sie die Verteilungen von S = X + Y und Q = X/Y.

- 4. (a) Definieren Sie: schwache Konvergenz von Wahrscheinlichkeitsmaßen, Konvergenz in Verteilung, charakteristische Funktion.
 - (b) Formulieren und beweisen Sie den zentralen Grenzwertsatz.
 - (c) Ein fairer Würfel wird 1000 mal geworfen. Bestimmen Sie näherungsweise die Wahrscheinlichkeit, dass die Summe der Augenzahlen mehr als 3600 beträgt.

The distribution function of the normal distribution:

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

	0	1	2	3	4	5	6	7	8	9
-0.0	.500	.504	.508	.512	.516	.520	.524	.528	.532	.536
0.1	.540	.544	.548	.552	.556	.560	.564	.567	.571	.575
0.2	.579	.583	.587	.591	.595	.599	.603	.606	.610	.614
0.3	.618	.622	.626	.629	.633	.637	.641	.644	.648	.652
0.4	.655	.659	.663	.666	.670	.674	.677	.681	.684	.688
0.5	.691	.695	.698	.702	.705	.709	.712	.716	.719	.722
0.6	.726	.729	.732	.736	.739	.742	.745	.749	.752	.755
0.7	.758	.761	.764	.767	.770	.773	.776	.779	.782	.785
0.8	.788	.791	.794	.797	.800	.802	.805	.808	.811	.813
0.9	.816	.819	.821	.824	.826	.829	.831	.834	.836	.839
1.0	.841	.844	.846	.848	.851	.853	.855	.858	.860	.862
1.1	.864	.867	.869	.871	.873	.875	.877	.879	.881	.883
1.2	.885	.887	.889	.891	.893	.894	.896	.898	.900	.901
1.3	.903	.905	.907	.908	.910	.911	.913	.915	.916	.918
1.4	.919	.921	.922	.924	.925	.926	.928	.929	.931	.932
1.5	.933	.934	.936	.937	.938	.939	.941	.942	.943	.944
1.6	.945	.946	.947	.948	.949	.951	.952	.953	.954	.954
1.7	.955	.956	.957	.958	.959	.960	.961	.962	.962	.963
1.8	.964	.965	.966	.966	.967	.968	.969	.969	.970	.971
1.9	.971	.972	.973	.973	.974	.974	.975	.976	.976	.977
2.0	.977	.978	.978	.979	.979	.980	.980	.981	.981	.982
2.1	.982	.983	.983	.983	.984	.984	.985	.985	.985	.986
2.2	.986	.986	.987	.987	.987	.988	.988	.988	.989	.989
2.3	.989	.990	.990	.990	.990	.991	.991	.991	.991	.992
2.4	.992	.992	.992	.992	.993	.993	.993	.993	.993	.994
2.5	.994	.994	.994	.994	.994	.995	.995	.995	.995	.995
2.6	.995	.995	.996	.996	.996	.996	.996	.996	.996	.996
2.7	.997	.997	.997	.997	.997	.997	.997	.997	.997	.997
2.8	.997	.998	.998	.998	.998	.998	.998	.998	.998	.998
2.9	.998	.998	.998	.998	.998	.998	.998	.999	.999	.999