А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Лекция 9

Считается, что классический функциональный анализ стоит на «трех китах» — на трех фундаментальных теоремах. Это теорема Хана—Банаха, теорема Банаха об обратном операторе и теорема Банаха—Штейнгауза. Наша ближайшая цель — познакомиться с первым из этих «китов».

9.1. Теорема Хана-Банаха

Чтобы понятия сопряженного пространства и сопряженного оператора были содержательными, хотелось бы, чтобы на каждом нормированном пространстве имелось достаточно много (в каком-либо разумном смысле) ограниченных линейных функционалов. Мы уже видели, что сопряженные пространства к гильбертову пространству и к пространствам L^p довольно обширны. А что происходит в общем случае? Если задуматься, то совершенно непонятно, почему на произвольном нормированном пространстве вообще должны существовать ограниченные линейные функционалы (кроме нулевого). На самом деле они действительно существуют, и их «достаточно много». Это, а также многое другое, следует из теоремы Хана—Банаха, которую нам предстоит доказать.

Пусть X — векторное пространство (как обычно, над полем $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$).

Определение 9.1. Функция $p: X \to \mathbb{R}$ называется *сублинейным функционалом*, если

- (i) $p(x+y) \le p(x) + p(y)$ $(x, y \in X)$;
- (ii) $p(\lambda x) = \lambda p(x)$ $(x \in X, \lambda \geqslant 0)$.

Например, всякая полунорма является сублинейным функционалом. Отличие этих двух понятий в том, что, во-первых, сублинейный функционал (в отличие от полунормы) может принимать и отрицательные значения, а во-вторых, в условии (іі) из определения сублинейного функционала речь идет только о неотрицательных (а не о произвольных) скалярах. Вот другой пример: если $\mathbb{K} = \mathbb{R}$, то любой линейный функционал является сублинейным.

Мы обсудим теорему Хана–Банаха в двух вариантах. Первый вариант относится только к векторным пространствам над \mathbb{R} .

Теорема 9.1 (Хан, Банах). Пусть X — векторное пространство над \mathbb{R} , $p: X \to \mathbb{R}$ — сублинейный функционал, $X_0 \subseteq X$ — векторное подпространство и $f_0: X_0 \to \mathbb{R}$ — линейный функционал, удовлетворяющий условию $f_0(x) \leqslant p(x)$ для всех $x \in X_0$. Тогда существует линейный функционал $f: X \to \mathbb{R}$, продолжающий f_0 и такой, что $f(x) \leqslant p(x)$ для всех $x \in X$.

Доказательство. Рассмотрим сначала случай, когда $X = X_0 \oplus \mathbb{R} y$ для некоторого $y \in X \setminus X_0$. Тогда задать линейный функционал f на X, продолжающий f_0 — это все

Лекция 9 59

равно, что задать число c=f(y). Пусть f — такой функционал. Мы хотим добиться того, чтобы

$$f(\pm \lambda y + x) \leqslant p(\pm \lambda y + x)$$
 для всех $\lambda > 0$ и $x \in X_0$. (9.1)

Вынося λ из обеих частей неравенства и сокращая на λ , видим, что условие (9.1) эквивалентно следующему:

$$f(\pm y + \lambda^{-1}x) \leqslant p(\pm y + \lambda^{-1}x) \quad \text{для всех } \lambda > 0 \text{ и } x \in X_0$$

$$\iff f(\pm y + x) \leqslant p(\pm y + x) \quad \text{для всех } x \in X_0$$

$$\iff \pm c + f_0(x) \leqslant p(\pm y + x) \quad \text{для всех } x \in X_0$$

$$\iff f_0(x) - p(-y + x) \leqslant c \leqslant p(y + x) - f_0(x) \quad \text{для всех } x \in X_0.$$

$$(9.2)$$

Итак, наша задача свелась к нахождению числа $c \in \mathbb{R}$, удовлетворяющего (9.2). Ясно, что такое c существует тогда и только тогда, когда

$$f_0(x_1) - p(-y + x_1) \leqslant p(y + x_2) - f_0(x_2)$$
 для всех $x_1, x_2 \in X_0$,

или, что эквивалентно,

$$f_0(x_1 + x_2) \le p(y + x_2) + p(-y + x_1)$$
 для всех $x_1, x_2 \in X_0$. (9.3)

Но из условия следует, что для любых $x_1, x_2 \in X_0$ справедливы неравенства

$$f_0(x_1 + x_2) \le p(x_1 + x_2) \le p(y + x_2) + p(-y + x_1).$$

Это доказывает (9.3), а вместе с ним и существование функционала f с требуемыми свойствами.

Общий случай сводится к предыдущему при помощи леммы Цорна. А именно, рассмотрим множество M, состоящее из пар (Z,g), где $Z \supseteq X_0$ — векторное подпространство в X, а $g: Z \to \mathbb{R}$ — линейный функционал, продолжающий f_0 и удовлетворяющий неравенству $g(x) \leqslant p(x)$ для всех $x \in Z$. Введем отношение порядка на M, полагая $(Z_1,g_1)\leqslant (Z_2,g_2)$, если $Z_1\subseteq Z_2$ и $g_2|_{Z_1}=g_1$. Очевидно, любое линейно упорядоченное подмножество $\{(Z_\alpha,g_\alpha)\}\subset M$ имеет верхнюю грань (Z,g), где $Z=\bigcup_\alpha Z_\alpha$, а функционал g однозначно определяется из условия $g|_{Z_\alpha}=g_\alpha$ для всех α . Поэтому в M есть максимальный элемент (Z,f).

Мы утверждаем, что Z = X. В самом деле, если это не так, то зафиксируем $y \in X \setminus Z$ и, пользуясь уже разобранным частным случаем нашей теоремы, продолжим f до функционала h на пространстве $Z_1 = Z \oplus \mathbb{R} y$, удовлетворяющего условию $h(x) \leqslant p(x)$ для всех $x \in Z_1$. Но существование такого продолжения противоречит максимальности элемента (Z, f) в множестве M. Следовательно, Z = X, и f — искомый функционал. \square

В таком виде, как мы ее доказали, пользоваться теоремой Хана-Банаха не всегда удобно. Во-первых, пока не совсем понятно, какое отношение она имеет к ограниченным линейным функционалам на нормированных пространствах. А во-вторых, в ней ничего не говорится о векторных пространствах над С. Чтобы сформулировать и доказать вторую разновидность теоремы Хана-Банаха, в большей степени применимую к задачам классического функционального анализа, нам понадобится следующая лемма.

Лемма 9.2. Пусть X — векторное пространство над \mathbb{C} .

(і) Отображение

$$\alpha \colon \operatorname{Hom}_{\mathbb{C}}(X,\mathbb{C}) \to \operatorname{Hom}_{\mathbb{R}}(X,\mathbb{R}), \quad \alpha(f) = \operatorname{Re} f,$$

является биекцией, и обратное к нему задается формулой

$$\alpha^{-1}(g)(x) = g(x) - ig(ix) \qquad (x \in X).$$

(ii) Пусть $\|\cdot\|$ — полунорма на $X, g \in \operatorname{Hom}_{\mathbb{R}}(X,\mathbb{R})$ и $\tilde{g} = \alpha^{-1}(g)$. Тогда

$$|g(x)| \le ||x|| \quad \forall x \in X \iff |\tilde{g}(x)| \le ||x|| \quad \forall x \in X.$$

Доказательство. (i) Для любого $z \in \mathbb{C}$ справедливо равенство $\operatorname{Im} z = -\operatorname{Re}(iz)$. Поэтому для любого $f \in \operatorname{Hom}_{\mathbb{C}}(X,\mathbb{C})$ имеем

$$f(x) = \operatorname{Re} f(x) - i \operatorname{Re} f(ix) \qquad (x \in X). \tag{9.4}$$

Зафиксируем теперь $g \in \operatorname{Hom}_{\mathbb{R}}(X,\mathbb{R})$ и рассмотрим отображение

$$\tilde{g} \colon X \to \mathbb{C}, \quad \tilde{g}(x) = g(x) - ig(ix) \qquad (x \in X).$$

Очевидно, $\tilde{g} - \mathbb{R}$ -линейный функционал на X. Далее,

$$\tilde{g}(ix) = g(ix) + ig(x) = i\tilde{g}(x),$$

откуда следует, что \tilde{g} \mathbb{C} -линеен. Ясно, наконец, что $\operatorname{Re} \tilde{g} = g$. Отсюда и из (9.4) следует утверждение (i).

(іі) Импликация (\iff) очевидна. Для доказательства обратного утверждения зафиксируем произвольный $x\in X$ и представим $\tilde{g}(x)$ в виде $\tilde{g}(x)=re^{i\varphi}$, где $r\geqslant 0$. Положим $y=e^{-i\varphi}x$. Тогда $\tilde{g}(y)=r\in\mathbb{R}$, поэтому $\tilde{g}(y)=g(y)$. Отсюда

$$|\tilde{g}(x)| = r = \tilde{g}(y) = g(y) \le ||y|| = ||x||,$$

как и требовалось.

Теорема 9.3 (Хан, Банах). Пусть X — векторное пространство над полем \mathbb{K} (где $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$), $\|\cdot\|$ — полунорма на X, $X_0 \subseteq X$ — векторное подпространство u $f_0 \colon X_0 \to \mathbb{K}$ — линейный функционал, удовлетворяющий условию $|f_0(x)| \leqslant \|x\|$ для всех $x \in X_0$. Тогда существует линейный функционал $f \colon X \to \mathbb{K}$, продолжающий f_0 u такой, что $|f(x)| \leqslant \|x\|$ для всех $x \in X$.

Доказательство. Случай 1: $\mathbb{K} = \mathbb{R}$. Из теоремы 9.1 следует, что существует линейный функционал $f: X \to \mathbb{R}$, продолжающий f_0 и такой, что $f(x) \leqslant \|x\|$ для всех $x \in X$. Заменяя x на -x, получаем

$$-f(x) = f(-x) \le ||-x|| = ||x||,$$

откуда окончательно следует, что $-\|x\| \leqslant f(x) \leqslant \|x\|$, т.е. $|f(x)| \leqslant \|x\|$ для всех $x \in X$. Cлучай 2: $\mathbb{K} = \mathbb{C}$. Из уже разобранного случая 1 следует, что существует \mathbb{R} -линейный функционал $g: X \to \mathbb{R}$, продолжающий $\operatorname{Re} f_0$ и такой, что $|g(x)| \leqslant \|x\|$ для всех $x \in X$. Применяя лемму 9.2, видим, что функционал $f = \alpha^{-1}(g)$ — искомый. Лекция 9

Выведем теперь несколько важных следствий из теоремы Хана-Банаха.

Следствие 9.4. Пусть X — нормированное пространство, $X_0 \subseteq X$ — векторное подпространство. Тогда для любого $f_0 \in X_0^*$ существует $f \in X^*$, продолжающий f_0 и такой, что $||f|| = ||f_0||$.

Доказательство. Домножим норму в X на число $||f_0||$ и применим теорему 9.3.

Иначе говоря, любой ограниченный линейный функционал, заданный на подпространстве нормированного пространства, продолжается на все пространство с сохранением нормы. Естественно поинтересоваться: а можно ли таким же образом продолжать линейные операторы? В контексте линейной алгебры ответ утвердителен:

Упражнение 9.1. Пусть X и Y — векторные пространства (над любым полем) и $X_0 \subset X$ — векторное подпространство. Тогда любой линейный оператор $T_0 \colon X_0 \to Y$ продолжается до линейного оператора $T \colon X \to Y$.

Но в контексте функционального анализа это уже не так:

Упражнение 9.2. Если X и Y — нормированные пространства и $X_0 \subseteq X$ — векторное подпространство, то, вообще говоря, не всякий ограниченный линейный оператор $T_0 \colon X_0 \to Y$ продолжается до ограниченного линейного оператора $T \colon X \to Y$.

Замечание 9.1 (для знакомых с основами гомологической алгебры). Упражнение 9.1 утверждает попросту, что все векторные пространства (т.е. все модули над полем) инъективны, а упражнение 9.2 состоит в том, что в категории нормированных пространств уже не все объекты инъективны. Тем не менее, из следствия 9.4 вытекает, что основное поле \mathbb{K} — инъективное нормированное пространство. См. по этому поводу также задачи из листка 6.

Следствие 9.5. Пусть X — нормированное пространство. Тогда для любого ненулевого $x \in X$ найдется такой $f \in X^*$, что ||f|| = 1 и f(x) = ||x||.

Доказательство. Зададим функционал $f_0: \mathbb{K}x \to \mathbb{K}$ формулой $f_0(\lambda x) = \lambda ||x||$ и продолжим его на X с сохранением нормы (см. следствие 9.4).

Следствие 9.6. Пусть X — нормированное пространство и $x_1, x_2 \in X$ — различные векторы. Тогда существует такой $f \in X^*$, что $f(x_1) \neq f(x_2)$.

Следствие 9.6 обычно выражают фразой «ограниченные линейные функционалы разделяют точки пространства X», или «на любом нормированном пространстве имеется достаточно много ограниченных линейных функционалов».

Следствие 9.7. Пусть X — нормированное пространство, $X_0 \subset X$ — векторное подпространство $u \ x \in X \setminus \overline{X_0}$. Тогда существует такой $f \in X^*$, что ||f|| = 1, $f|_{X_0} = 0 \ u \ f(x) = \rho(x, X_0)$.

Доказательство. Применим следствие 9.5 к вектору $x+\overline{X_0}\in X/\overline{X_0}$ и получим такой функционал $g\in (X/\overline{X_0})^*,$ что $\|g\|=1$ и

$$g(x + \overline{X_0}) = ||x + \overline{X_0}||^{\wedge} = \rho(x, \overline{X_0}) = \rho(x, X_0).$$

Остается положить $f=g\circ Q$, где $Q\colon X\to X/\overline{X_0}$ — факторотображение. Равенство $\|f\|=1$ следует тогда из коизометричности Q, а остальные требуемые свойства f очевидны.

Следствие 9.8. Пусть X — нормированное пространство. Для любого $x \in X$ справедливо равенство

$$||x|| = \sup_{f \in X^*, ||f|| \le 1} |f(x)|, \tag{9.5}$$

nричем эта верхняя грань достигается на некотором f.

Доказательство. Это просто переформулировка следствия 9.5.

Теперь мы можем выполнить обещание, данное в начале лекции 8.

Следствие 9.9. Пусть $T: X \to Y$ — ограниченный линейный оператор между нормированными пространствами. Тогда $||T^*|| = ||T||$.

Доказательство. Из определения оператора T^* и равенства (9.5) получаем:

$$||T^*|| = \sup_{\|f\| \leqslant 1} ||T^*(f)|| = \sup_{\|f\| \leqslant 1} \sup_{\|x\| \leqslant 1} |T^*(f)(x)| = \sup_{\|x\| \leqslant 1} \sup_{\|f\| \leqslant 1} |f(Tx)| = \sup_{\|x\| \leqslant 1} ||Tx|| = ||T||. \quad \Box$$

Следствие 9.10. Если $S, T \in \mathcal{B}(X,Y)$ и $S \neq T$, то и $S^* \neq T^*$.

9.2. Отделение выпуклых множеств

Обсудим теперь одно важное геометрическое следствие теоремы Хана–Банаха. Прежде чем его формулировать, дадим несколько определений.

Пусть X — векторное пространство (как обычно, над полем $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$).

Определение 9.2. Непустое подмножество $S \subseteq X$ называется

- выпуклым, если для любых $x,y \in S$ отрезок $[x,y] = \{tx + (1-t)y : t \in [0,1]\}$ содержится в S;
- закругленным (или сбалансированным), если $\lambda S \subset S$ для любого $\lambda \in \mathbb{K}, |\lambda| \leq 1$;
- абсолютно выпуклым, если оно выпукло и закруглено;
- поглощающим, если для любого $x \in X$ найдется такое C > 0, что $x \in \lambda S$ для любого $\lambda \in \mathbb{K}, \ |\lambda| \geqslant C$.

Замечание 9.2. Обратите внимание, что если подмножество $S \subseteq X$ — закругленное или поглощающее, то $0 \in S$.

Пример 9.1. Если $\|\cdot\|$ — полунорма на X, то шары

$$\mathbb{B}_{r,X} = \{ x \in X : ||x|| \leqslant r \}, \quad \mathbb{B}_{r,X}^{\circ} = \{ x \in X : ||x|| < r \}$$

являются абсолютно выпуклыми поглощающими множествами (проверьте!).

В дальнейшем мы будем часто использовать следующие простейшие свойства выпуклых и закругленных множеств. Их доказательство — несложное упражнение.

Предложение 9.11. Справедливы следующие утверждения:

Лекция 9

- (i) сумма любого семейства выпуклых множеств выпуклое множество;
- (ii) пересечение любого семейства выпуклых множеств выпуклое множество;
- (iii) образ и прообраз выпуклого множества при линейном отображении— выпуклые множества;
- (iv) аналогичные утверждения справедливы для закругленных множеств;
- (v) замыкание \overline{S} и внутренность Int(S) выпуклого множества S в нормированном пространстве выпуклые множества;
- (vi) замыкание \overline{S} закругленного множества S в нормированном пространстве закругленное множество; если же $0 \in \text{Int}(S)$, то u Int(S) закруглено.

 ${
m C}$ каждым поглощающим множеством можно связать одну важную функцию — его функционал Минковского.

Определение 9.3. Пусть X — векторное пространство и $S \subseteq X$ — поглощающее множество. Функционалом Минковского множества S называется функция

$$p_S \colon X \to [0, +\infty); \quad p_S(x) = \inf\{\lambda \geqslant 0 : x \in \lambda S\}.$$

Перечислим простейшие свойства функционала Минковского:

Предложение 9.12. Пусть S — поглощающее множество в векторном пространстве X. Тогда:

- (i) $p_S(\lambda x) = \lambda p_S(x)$ dar $\sec x \in X$, $\lambda \geqslant 0$;
- (ii) если S выпукло, то $p_S(x+y) \leqslant p_S(x) + p_S(y)$ для всех $x,y \in X$;
- (iii) если S закруглено, то $p_S(\lambda x) = |\lambda| p_S(x)$ для всех $x \in X$, $\lambda \in \mathbb{K}$;
- (iv) если S абсолютно выпукло, то p_S полунорма;
- (v) если S выпукло, то $\{x: p_S(x) < 1\} \subseteq S \subseteq \{x: p_S(x) \le 1\}$.

Доказательство. Мы докажем только утверждение (ii); остальные утверждения докажите сами в качестве упражнения.

Нетрудно проверить (проверьте!), что для любого выпуклого множества S и любых $\alpha, \beta \geqslant 0$ справедливо равенство

$$\alpha S + \beta S = (\alpha + \beta)S. \tag{9.6}$$

Возьмем теперь $x,y\in X$, зафиксируем $\varepsilon>0$ и подберем $\alpha,\beta>0$ так, чтобы

$$x \in \alpha S$$
, $y \in \beta S$, $\alpha \leqslant p_S(x) + \varepsilon$, $\beta \leqslant p_S(y) + \varepsilon$.

Из (9.6) заключаем, что $x + y \in (\alpha + \beta)S$, откуда

$$p_S(x+y) \leqslant \alpha + \beta \leqslant p_S(x) + p_S(y) + 2\varepsilon.$$

В силу произвольности $\varepsilon > 0$ это завершает доказательство п. (ii).

Пусть теперь X — нормированное пространство над \mathbb{R} .

Определение 9.4. Говорят, что множества $A, B \subset X$ разделены гиперплоскостью (соответственно, строго разделены гиперплоскостью), если существуют такие $f \in X^*$ и $c \in \mathbb{R}$, что для любых $a \in A$ и $b \in B$ справедливо неравенство $f(a) \leqslant c \leqslant f(b)$ (соответственно, f(a) < c < f(b)).

С геометрической точки зрения это означает, что множества A и B лежат в разных замкнутых (соответственно, открытых) полупространствах, на которые гиперплоскость $\{x: f(x) = c\}$ разбивает пространство X.

Теорема 9.13. Пусть X — нормированное пространство над \mathbb{R} , и пусть $A, B \subset X$ — выпуклые непересекающиеся подмножества.

- (i) Если Int $A \neq \emptyset$, то A и B разделены гиперплоскостью.
- (ii) Если A и В открыты, то они строго разделены гиперплоскостью.
- (iii) Eсли A замкнуто, а B компактно, то они строго разделены гиперплоскостью.

Доказательство. (i) Поскольку $\operatorname{Int} A \neq \varnothing$, то и $\operatorname{Int} (B-A) \neq \varnothing$ (объясните, почему). Зафиксируем произвольный $y \in \operatorname{Int} (B-A)$ и положим M=A-B+y. Из предложения 9.11 следует, что M выпукло. Далее, $0 \in \operatorname{Int} M$ (почему?), поэтому M поглощающее. Наконец, $y \notin M$ (т.к. $A \cap B = \varnothing$), откуда $p_M(y) \geqslant 1$.

Рассмотрим линейный функционал $f_0: \mathbb{R}y \to \mathbb{R}$, однозначно определенный условием $f_0(y) = p_M(y)$. Ясно, что $f_0(z) \leqslant p_M(z)$ для всех $z \in \mathbb{R}y$. Из теоремы 9.1 следует, что существует линейный функционал $f\colon X \to \mathbb{R}$, продолжающий f_0 и удовлетворяющий условию $f(x) \leqslant p_M(x)$ для всех $x \in X$. В частности, $f(x) \leqslant 1$ для всех $x \in M$. Отсюда с учетом того, что $0 \in \operatorname{Int} M$, следует, что f переводит некоторую окрестность нуля в ограниченное множество (обоснуйте!). Следовательно, f ограничен.

Наконец, заметим, что условие $f(x) \leq 1$ для всех $x \in M$ равносильно тому, что $f(a) - f(b) + p_M(y) \leq 1$ для всех $a \in A$, $b \in B$. Отсюда и из неравенства $p_M(y) \geq 1$ заключаем, что $f(a) \leq f(b)$. С учетом произвольности $a \in A$ и $b \in B$ это доказывает утверждение (i): в качестве константы $c \in \mathbb{R}$, фигурирующей в определении 9.4, можно взять, например, $\sup f(A)$.

(іі) Предположим теперь, что A и B открыты. Из п. (і) следует, что существуют такие $f \in X^*$ и $c \in \mathbb{R}$, что

$$\sup f(A) \leqslant c \leqslant \inf f(B). \tag{9.7}$$

Воспользуемся тем несложным утверждением (докажите eго!), что любой ненулевой ограниченный линейный функционал — открытое отображение X на \mathbb{R} . Из него следует, что f(A) и f(B) — открытые подмножества \mathbb{R} , откуда с учетом (9.7) получаем строгие неравенства f(a) < c < f(b) для всех $a \in A$, $b \in B$.

(ііі) Наконец, предположим, что A замкнуто, а B компактно. Нетрудно проверить (проверьте!), что существует такое $\varepsilon > 0$, что $A \cap (B + \mathbb{B}_{\varepsilon}^{\circ}) = \emptyset$. Отсюда следует, что

$$(A + \mathbb{B}_{\varepsilon/2}^{\circ}) \cap (B + \mathbb{B}_{\varepsilon/2}^{\circ}) = \varnothing.$$

Поскольку множества $(A + \mathbb{B}_{\varepsilon/2}^{\circ})$ и $(B + \mathbb{B}_{\varepsilon/2}^{\circ})$ открыты и выпуклы, они строго разделены гиперплоскостью в силу п. (ii). Следовательно, A и B тем более строго разделены гиперплоскостью.

Замечание 9.3. Можно показать, что в конечномерном нормированном пространстве любые два выпуклых непересекающихся множества разделены гиперплоскостью. В бесконечномерном случае это уже, вообще говоря, не так, даже если эти множества замкнуты (см. задачи из листка 7).

Лекция 9 65

Замечание 9.4. Мы получили теорему 9.13 о разделении выпуклых множеств как следствие теоремы Хана—Банаха. На самом деле, если немного переформулировать п. (i) теоремы 9.13 (а именно, вместо нормированных пространств рассматривать произвольные векторные пространства, а вместо внутренности — так называемую «линейную внутренность»), то полученное утверждение окажется в сущности эквивалентным теореме Хана—Банаха (см. соответствующую задачу из листка 7).

О ряде других эквивалентных формулировок теоремы Хана—Банаха и об их приложениях можно прочитать в книге R. Holmes, "Geometric Functional Analysis and its applications" (Springer, 1975).