

Árvores AVL

Introdução

- Arvores de altura balanceada ou de altura equilibrada foram introduzidas em 1962 por Adelson-Velskii e Landis, também conhecidas como árvores AVL
- □ Devido ao balanceamento da árvore, as operações de busca, inserção e remoção em uma árvore com n elementos podem ser efetuadas em O(log₂n), mesmo no pior caso
- ☐ Um teorema provado por Adelson-Velskii e Landis garante que a árvore balanceada nunca será 45% mais alta que a correspondente árvore perfeitamente balanceada, independentemente do número de nós existentes

_

Árvore AVL

- ☐ Uma árvore AVL é definida como:
 - Uma árvore vazia é uma árvore AVL
 - Sendo T uma árvore binária de busca cujas subárvores esquerda e direita são L e R, respectivamente, T será uma árvore AVL contanto que:
 - ❖L e R são árvores AVL
 - $| h_L h_R | ≤ 1$, onde h_L e h_R são as alturas das subárvores L e R, respectivamente
- □ A definição de uma árvore binária de altura equilibrada (AVL) requer que cada subárvore seja também de altura equilibrada

- □O fator de balanceamento ou fator de equilíbrio de um nó T em uma árvore binária é definido como sendo h_L h_R onde h_L e h_R são as alturas das subárvores esquerda e direita de T, respectivamente
- □Para qualquer nó T numa árvore AVL, o fator de balanceamento assume o valor -1, 0 ou +1
 - O fator de balanceamento de uma folha é zero

1

7

Inserção Maio

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção Março

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção Novembro

Depois da inserção

Inserção Agosto

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção Abril

Depois da inserção

Inserção Janeiro

Depois da inserção

Inserção Dezembro

Depois da inserção

+1 Maio

-1 Agosto

Março

O Abril

O Dezembro

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção Julho

Depois da inserção

+1 Maio

-1 Agosto

O Abril

O Dezembro

O Julho

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Inserção Fevereiro

Depois da inserção

Inserção Junho

Depois da inserção

Inserção Outubro

Depois da inserção

Inserção Setembro

Depois da inserção

Depois do rebalanceamento

Sem necessidade de rebalanceamento

Rotações

- O processo de rebalanceamento é conduzido utilizando 4 tipos de rotações: LL, RR, LR, RL
 - LL e RR são simétricas entre si assim como LR e RL
- As rotações são caracterizadas pelo ancestral mais próximo A do novo nó inserido Y cujo fator de balanceamento passa a ser +2 ou -2
 - LL: Y inserido na subárvore esquerda da subárvore esquerda de
 - LR: Y inserido na subárvore direita da subárvore esquerda de A
 - RR: Y inserido na subárvore direita da subárvore direita de A
 - RL: Y inserido na subárvore esquerda da subárvore direita de A
- Seja B o filho de A no qual ocorreu a inserção de Y
 - LL (A = +2; B = +1) RR (A = -2; B = -1)
 - LR (A = +2; B = -1) RL (A = -2; B = +1)
- □ C é o filho de B no qual ocorreu a inserção de Y

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

Altura de B_L aumenta para *h*+1

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->LeftNode;
 - pA->LeftNode = pB->RightNode;
 - pB->RightNode = pA;
 - pA = pB;

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

Altura de B_R aumenta para *h*+1

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

- Assumindo pA e pB ponteiros para as subárvores com raízes A e B:
 - pB = pA->RightNode;
 - pA->RightNode = pB->LeftNode;
 - pB->LeftNode = pA;
 - pA = pB;

Rotação LR(a)

Subárvore balanceada

Subárvore desbalanceada após inserção

Subárvore rebalanceada

Rotação LR(b)

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

Rotação LR(c)

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

- Assumindo pA, pB e pC ponteiros para as subárvores com raízes A, B e C:
 - pB = pA->LeftNode;
 - pC = pB->RightNode;
 - pB->RightNode = pC->LeftNode;
 - pC->LeftNode = pB;
 - pA->LeftNode = pC->RightNode;
 - pC->RightNode = pA;
 - pA = pC;

Rotação RL(a)

Subárvore balanceada

Subárvore desbalanceada após inserção

Subárvore rebalanceada

Rotação RL(b)

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

Rotação RL(c)

Subárvore balanceada

Subárvore rebalanceada

Subárvore desbalanceada após inserção

☐ Inserir x=7

- ☐ Inserido x=7
- □ A inserção produz uma árvore desbalanceada...

- ☐ Inserido x=7
- □ A inserção produz uma árvore desbalanceada, cujo balanceamento envolve uma rotação RR

 \square Inserir x=2

 \square Inserido x=2

- \square Inserido x=2
- ☐ Inserir x=1

- \square Inserido x=2
- ☐ Inserido x=1
- □ Ocorre desbalanceamento da subárvore de raiz 4...

- \square Inserido x=2
- ☐ Inserido x=1
- □ Ocorre desbalanceamento da subárvore de raiz 4, que é corrigido por uma rotação LL

 \square Inserir x=3

- \square Inserido x=3
- ☐ Ocorre desbalanceamento da subárvore de raiz 5...

- \square Inserido x=3
- □ Ocorre desbalanceamento da subárvore de raiz 5, que é corrigido por uma rotação LR

☐ Inserir x=6

- ☐ Inserido x=6
- □ Ocorre desbalanceamento da subárvore de raiz 5...

- ☐ Inserido x=6
- □ Ocorre desbalanceamento da subárvore de raiz 5, que é corrigido por uma rotação RL

