Dimensionnement d'un arbre de transmission composite MQ13 – A17

Quentin Gras – IM04 MIT Clément Castellan – IM05 MIT

Contexte

BMW utilise des arbres de transmission en carbone/epoxy sur les M3 depuis 2014 Pourquoi ne pas étendre l'utilisation de composite au reste de la gamme série 3 six cylindres ?

Objectif:

- Réduction de poids
- Utilisation d'un arbre unique (2 actuellement)
- Déformation en torsion équivalente
- Conservation de la conception véhicule actuelle
- Recyclabilité

Cahier des charges

Couple maximal admissible	2400 N.m (maximum admissible origine)
Fréquence rotation de l'arbre	4.47 Hz-37.99 Hz
Poids	<10 Kg
Diamètre extérieur	60 mm
Longueur	1275 mm
Déformation angulaire maximum	4.5 ° (=125% de l'arbre d'origine acier)
Résistance à température à long terme	70 °C
Résistance chimique	Huile, carburants routiers
Capacité de production	60/jour
Coût estimé	<500€
Recyclable	oui

Critère de prédimensionnement

• Résistance couple avec critère de Tsai-Wu

$$N_{xy} = \frac{C \times D_{ext} \times H \times 16}{\pi \times (D_{ext}^4 - D_{int}^4)}$$

• Déformation en torsion

$$\gamma_{xy} = \frac{L \times C \times D_{ext}}{I_g \times G} < 4,5^{\circ}$$

Procédé de fabrication

- Enroulement filamentaire
 - Automatisation
 - Respect de l'angle de pose

Code de calcul matlab pour multi-couche 0,125mm

Choix de matériau

Matrice

PA6 pour résistance chimique + température long terme

Renfort

Fibre de carbone [+/-45°] de 0.125mm jusqu'à tenir le CDC Dimensionnement à la raideur (tenue mécanique assurée)

Composite	T300/PA6 - TVf=60%	IM6/PA6 - TVf=60%
Epaisseur	15mm	8,5mm
Poids	4,3kg	2,7kg

Solution hybride

- Simplifier la production
- Diminuer le coût global
- Diminuer l'épaisseur
- Prévoir manque de rigidité axiale

Moule perdu acier

Composite	Acier - IM6/PA6	IM6/PA6
Epaisseur carbone	4mm	8,5mm
Epaisseur acier	2mm	X
Poids	4,5kg	2,7kg

Fréquence propre – Abaqus

L'arbre en rotation = éviter les fréquence de rotations 5Hz-38Hz

Carbone

Ajout de couche proche 0°:[[45°;-45°]*8+[10°;-10°]*2]s

- 1^{er} fréquence propre: 38,021Hz
- Perte de rigidité : -30% par rapport acier
- Augmentation épaisseur : 8,5mm -> 10mm

- Acier-Carbone
 - 1^{er} fréquence propre sans modification: 45,7Hz

Intégration insert transmission

- Carbone
 - Vissage : Risque de matage
 - Collage: Dimensionnement plus complexe
- Acier-carbone
 - Soudage
 - Collage

Déformation et couplage : acier-carbone

- Diminution kxy par ajout de couches sens tube
 - Impact très faible sur kxy
 - Augmentation déformation εx, ε y
- Diminution déformation εx, εy avec les couches 45°
 - Diminution notable εx, εy, kx et ky
 - Rigidité conservée
 - Fréquence propre peu impactée

Acier+[45/-45]x9+[-45/45]x7

Estimation prix

Matière

Composite	Acier - IM6/PA6	IM6/PA6
Prix	110€	215€

- Fabrication
 - Machine identique
 - Complexité du moule réduite

Choix final

Pour son compromis coût performance:

	Acier-IM6/PA6	Acier origine
Epaisseur acier	2mm	5mm
Epaisseur carbone	4mm	x
Déformée angulaire	4.5°	3.6°
Masse	4.5Kg	>10kg
Première fréquence propre	45.7Hz	NC
Coefficient de sécurité CFRP	3.5 - 10.9	х
Coefficient de sécurité Acier	2.38	1

Ouverture

• Choix du critère limitant: rigidité en torsion (-25%)

Adhérence composite/acier avec matrice TP

Annexe - Contraintes

Annexe – Critère résistance

Annexe – Analyse vibratoire

