Reg. No.					

Question Paper Code: 20159

B.E. / B.TECH. DEGREE EXAMINATIONS, NOVEMBER / DECEMBER 2023

Seventh Semester

B.Tech. – Information Technology

19IT701 - EMBEDDED SYSTEMS PROGRAMMING

(Regulations: Mepco – R2019)

Duration: 3 I	Hours				Max.: 100 Marks
			Answer ALL Quest	ions	
BTL, CO		P	$ART A - (10 \times 2 = 20)$	Marks)	
R, CO1 1	١.	Consider the follow:	ing the assembly langu	age instructions:	
		MOVLW 0x41			
		MOVWF TXREG			
		MOVFF PORTB, T	XREG		
		How many bits are t	ransferred serially via	the TX pin? Justif	y your answer.
		A) 8 B) 10	C) 2	D) 11	
U, CO1 2	2.	Highlight the differe	ences between C and en	mbedded C.	
A, CO2 3	3.	mini	mum number of po	ort lines are rec	quired to interface
		32 switches in a mat	trix format. Justify you	r answer.	
A, CO2 4	١.	What is the resolution	on of 10 bit ADC? Ass	ume V_{ref} as 5 V.	
R, CO3 5	5.	The CPU allocation	on for a process ma	y change when	it changes its state
		from	Justify your answer.		
U, CO3 6	5.	Compare General P	rurpose Operating Syst	tem (GPOS) and F	Real Time Operating
		System (RTOS).			
R, CO4 7	7.	Identify the tool fi	om the following that	at places the code	e and data at fixed
		memory locations. J	ustify your answer.		
		A) Linker B) II	DE C) Locator	D) Mem	ory card reader
U, CO4 8	3.	Outline the various	debugging tools req	uired at the time	of development of
		embedded system.			
R, CO5 9).	Summarize the featu	res of Arduino develo	pment board.	
U, CO5 10	0.	is not a	sensor. Justify your ans	swer.	
		A) Screw jack	B) DC motor	C) Barometer	D) Speaker

PART B $-(5 \times 16 = 80 \text{ Marks})$

A, CO1	11. a) i.	Assume that a push button is connected to INTO and a LED is	
		connected to RB7. Write an assembly language for the following	
		A) When push button is pressed, LED should glow and a byte 55	
		should be sent on PORT C.	
		B) When push button is not pressed, LED should turn off.	(8 Marks)
A, CO1	11. a) ii.	Write in detail about timer programming in PIC.	(8 Marks)
		OR	
A, CO1	11. b) i.	Write an assembly language program to read a byte from PORT A	
		at an interval of 5 sec. If the byte is greater than 7Fh, send FFh on	
		PORT B else send 00h on PORT B.	(8 Marks)
U,CO1	11. b) ii.	With examples, explain the data types in embedded C.	(8 Marks)
A, CO2	12. a) i.	Interface a 16 x 2 LCD module with PIC microcontroller. Write	
		an application program to display the character "WELCOME" in	
		the Line-I and Date as 01.01.2023 in the Line-II of the display	
		unit.	(12 Marks)
U, CO2	12. a) ii.	Discuss the necessity of relay in an embedded systems	
		development.	(4 Marks)
		OR	
A, CO2	12. b) i.	Create an embedded system that measures the temperature and	
		displays it in LCD module using PIC microcontroller. Discuss the	
		functionality of the system in detail.	(12 Marks)
U, CO2	12. b) ii.	Write the applications of PWM.	(4 Marks)
U, CO3	13. a) i.	With an example, explain how semaphores resolve the shared data	
		problem.	(8 Marks)
U, CO3	13. a) ii.	Discuss the various function calls supported by RTOS for	
		memory management in an embedded system.	(8 Marks)
		OR	
U, CO3	13. b) i.	Suggest suitable techniques to improve the scheduling of	
		tasks/process for hard real time systems.	(8 Marks)
U, CO3	13. b) ii.	Summarize how the RTOS establishes the communications	
		among the process/task.	(8 Marks)

U, CO4	14. a) i.	Point out the various hardware testing tools available in a	
		laboratory. Discuss their functionalities in detail.	(8 Marks)
U, CO4	14. a) ii.	What is an Instruction Set Simulator (ISS)? Explain the various	
		debugging parameters obtained from ISS.	(8 Marks)
		OR	
U, CO4	14. b) i.	Enumerate the sequence of steps involved in getting the	
		embedded software onto the target system.	(8 Marks)
U, CO4	14. b) ii.	Discuss how the target system is debugged on the host system.	(8 Marks)
A, CO5	15. a)	Develop an embedded system with the following hardware	
		components:	
		A) Soil moisture sensor B) Arduino development board	
		C) LCD module	
		Above system should measure the soil moisture and display in the	
		LCD module.	
		With a suitable interface diagram, explain the functionality of the	
		system. Write application software for the above system. Assume	
		necessary details.	(16 Marks)
		OR	
A, CO5	15. b)	Create a smart parking system for a shopping mall. System uses	
		proximity sensors, buzzers, Arduino development board and	
		LEDs for indications. Develop the block diagram and application	
		software for the system and explain. Assume necessary details.	(16 Marks)

