

Revisão Probabilidade

Probabilidade a Priori

A probabilidade a priori de ocorrência de um evento (e.g., dois dados de 6 faces somar 11) é dado pela soma das probabilidades das saídas que resultam naquele evento.

$$\begin{split} P(1) &= \frac{1}{6} \\ P(2 \wedge 3) &= \frac{1}{6} \times \frac{1}{6} = \frac{1}{36} \\ P(\text{soma igual a } 11) &= P(5 \wedge 6) + P(6 \wedge 5) = \frac{1}{36} + \frac{1}{36} = \frac{1}{18} \\ P(\text{duplos}) &= P(1 \wedge 1) + P(2 \wedge 2) + P(3 \wedge 3) + P(4 \wedge 4) + P(5 \wedge 5) + P(6 \wedge 6) = 6 \times \frac{1}{36} = \frac{1}{6} \end{split}$$

Probabilidade Condicional

Meningite faz o paciente ter uma rigidez no pescoço em 70% dos casos. A probabilidade a priori de um paciente ter meningite é 1 em 50000 e a probabilidade a priori de um paciente ter rigidez no pescoço é de 1%. Qual é a probabilidade de o paciente ter meningite dado que ele tem rigidez no pescoço?

Para responder a pergunta acima, considere o diagrama de eventos abaixo onde a represente meningite e b rigidez no pescoço. Se o paciente tem rigidez no pescoço, então estamos lidando com os eventos na parte direita do diagrama, em vermelho. A probabilidade de o paciente possuir meningite dado que possui pescoço rígido, P(a|b), é dada por $\frac{P(a,b)}{P(b)}$.

Além que $P(a|b) = \frac{P(a,b)}{P(b)}$, do diagrama acima podemos extrair a seguinte equação:

$$P(b|a) = \frac{P(a,b)}{P(a)}$$

$$P(a,b) = P(b|a)P(a)$$

Igualando os valores de P(a, b) obtemos:

$$P(b|a)P(a) = P(a|b)P(b)$$

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

A equação acima é conhecida como o Teorema de Bayes. Essa talvez seja a equação mais utilizada em IA.

Voltando ao exemplo de diagnóstico da meningite, temos que P(b|a) = 0.7, $P(a) = \frac{1}{50000}$ e P(b) = 0.01, resultando em:

$$P(a|b) = \frac{\frac{1}{50000} \times 0.7}{0.01} = 0.0014$$

Dependência e Independência de Eventos

Um estudo revelou que a probabilidade de selecionar pessoas proficientes em leitura dado que as pessoas possuem braços compridos é maior do que pessoas selecionadas aleatoriamente da população. Esse estudo sugere inicialmente que a proficiência de leitura é dependente do comprimento do braço das pessoas.

O que acontece é que muitas pessoas com braços curtos ainda não foram alfabetizadas (crianças muito novas, por exemplo) e por isso ainda não são proficientes em leitura. Uma vez que passamos a condicionar na idade das pessoas, a relação entre proficiência em leitura e comprimento de braço desaparece.

De uma forma geral, dadas variáveis aleatórias Y (e.g., proficiência em leitura), X (comprimento do braço) e Z (idade), dizemos que Y é condicionalmente independente de X dado Z:

$$P(Y|X,Z) = P(Y|Z)$$

Utilizaremos a independência condicional para construir um algoritmo de classificação.

Classificador Bayesiano Ingênuo (CBI)

No problema da meningite nós tínhamos os *efeitos* e calculamos a probabilidade da *causa*. O CBI utiliza a mesma ideia para classificar objetos em classes distintas. Diferente do problema da meningite, muitas vezes teremos várias evidências (características) e não apenas uma. Por exemplo, podemos utilizar a ocorrência de palavras em um email como evidência de que o email é SPAM ou HAM.

Considere os emails da tabela abaixo onde cada linha representa um email.

SPAM	HAM
offer is secret click secret link secret sports link	play sports today went sports today secret sports event sports is today sports costs money

O CBI usa a fórmula de Bayes e as probabilidades aprendidas a partir de um conjunto de treinamento para, dado um novo objeto com um conjunto de evidências (características), classificar o objeto.

Por exemplo, dada a mensagem "offer click link", nós gostaríamos de calcular a probabilidade dessa mensagem ser um SPAM. De acordo com a fórmula de Bayes nós temos:

$$P(\text{SPAM}|\text{offer, click, link}) = \frac{P(\text{SPAM})P(\text{offer, click, link}|\text{SPAM})}{P(\text{offer, click, link})}$$

Da mesma forma, podemos calcula a probabilidade de a mensagem ser HAM:

$$P(\text{HAM}|\text{offer, click, link}) = \frac{P(\text{HAM})P(\text{offer, click, link}|\text{HAM})}{P(\text{offer, click, link})}$$

Como estamos lidando com um problema de classificação, não precisamos calcular os valores exatos de P(HAM|offer, click, link) e P(SPAM|offer, click, link), basta saber qual dos dois é maior. Por isso, como os dois são divididos por P(offer, click, link), nós podemos remover o denominador sem alterar a relação dos valores P(SPAM|offer, click, link) e P(HAM|offer, click, link).

Então a nossa tarefa passa ser a de calcular P(SPAM)P(offer, click, link|SPAM) e P(HAM)P(offer, click, link|HAM).

O Teorema de Bayes seguido da regra da cadeia nos dá o seguinte resultado.

$$\begin{split} P(\text{SPAM})P(\text{offer, click, link}|\text{SPAM}) &= P(\text{offer, click, link, SPAM}) \\ &= P(\text{offer}|\text{click, link, SPAM})P(\text{click, link, SPAM}) \\ &= P(\text{offer}|\text{click, link, SPAM})P(\text{click}|\text{link, SPAM})P(\text{link, SPAM}) \\ &= P(\text{offer}|\text{click, link, SPAM})P(\text{click}|\text{link, SPAM})P(\text{link}|\text{SPAM})P(\text{SPAM}) \end{split}$$

Alguns valores da equação acima são fáceis de serem estimados. Por exemplo, os seguintes valores são obtidos através da máxima verosimilhança com os dados de treinamento.

$$P(SPAM) = \frac{3}{8}$$
$$P(link|SPAM) = \frac{2}{9}$$

No entanto, quanto mais evidências tivermos, maior a chance de termos uma probabilidade igual a zero. Por exemplo, P(offer|click, link, SPAM) mede a probabilidade da ocorrência da palavra "offer" dado que a mensagem é um SPAM e que contém as palavras "click" e "link". No conjunto de dados acima P(offer|click, link, SPAM) = 0. Uma alternativa para esse problema é coletar mais dados, de forma a diminuar as chances de probabilidades iguais a zero.

Uma outra alternativa é aproximar os valores de probabilidade. O CBI aproxima os valores ao assumir que as características são independentes dada a classe. Com isso temos que:

$$P(SPAM)P(offer, click, link|SPAM) = P(offer|SPAM)P(click|SPAM)P(link|SPAM)P(SPAM)$$

O CBI é "ingênuo" pois os atributos muito provavelmente não são independentes dada a classe. Mas na prática, o algoritmo tende a funcionar muito bem, mesmo que os atributos não sejam independentes.

O algoritmo CBI pode então ser descrito com uma única equação.

$$CBI(X) = \arg \max_{k} P(k) \prod_{x \in X} P(x|k)$$

onde o arg \max considera todas as classes k do problema.

Underflow

Um problema comum durante a implementação do CBI é o underflow. Dado que o CBI realiza a multiplicação de vários números menores que 1, eventualmente, a precisão numérica do computador não será suficiente para armazenar números tão pequenos. Como resultado, as probabilidades de um objeto pertencer a cada uma das k classes será igual a 0. Uma solução é transformar a multiplicação de números,

$$CBI(X) = \arg \max_{k} \left[P(k) \prod_{x \in X} P(x|k) \right]$$

em um somatório de logs

$$CBI(X) = \arg \max_{k} \left[\log P(k) \sum_{x \in X} \log P(x|k) \right]$$

Exemplos

1. Considere a mensagem m = sports e a base de dados exibida na tabela acima. CBI classificaria m como SPAM ou como HAM?

$$P(\text{SPAM}|m) = \alpha(\frac{3}{8} \times \frac{1}{9}) = \alpha(\frac{1}{24})$$
$$P(\text{HAM}|m) = \alpha(\frac{5}{8} \times \frac{5}{15}) = \alpha(\frac{5}{24}),$$

onde $\alpha = \frac{1}{P(\text{sports})}$. Como $\alpha(\frac{1}{24}) < \alpha(\frac{5}{24})$, CBI retorna que a mensagem é um HAM.

Se quisermos calcular os valores exatos das probabilidades, precisamos calcular o valor de $\alpha=\frac{1}{P(\text{sports})}$. O valor de $P(\text{sports})=P(\text{SPAM})P(\text{sports}|\text{SPAM})+P(\text{HAM})P(\text{sports}|\text{HAM})=\frac{3}{8}\times\frac{1}{9}+\frac{5}{8}\times\frac{5}{15}=0.25$ Com isso:

$$P(\text{SPAM}|m) = \frac{1}{6}$$
$$P(\text{HAM}|m) = \frac{5}{6}.$$

2. Como o CBI classificaria a mensagem m = secret is secret?

$$\begin{split} P(\text{SPAM}|m) &= \alpha(\frac{3}{8} \times \frac{1}{3} \times \frac{1}{9} \times \frac{1}{3}) = \alpha(\frac{1}{216}) \\ P(\text{HAM}|m) &= \alpha(\frac{5}{8} \times \frac{1}{15} \times \frac{1}{15} \times \frac{1}{15}) = \alpha(\frac{1}{3375}) \,, \end{split}$$

Classificaria como SPAM.

3. Como o CBI classificaria a mensagem m = today is secret?

$$P(\text{SPAM}|m) = \alpha(\frac{3}{8} \times \frac{0}{9} \times \frac{1}{9} \times \frac{1}{9}) = 0$$

Superadaptação!

Suavização Aditiva

Qual a probabilidade do sol nascer amanhã dado que ele nasceu por M dias? Assumir que é zero seria também uma superadaptação. Uma forma de diminuir a superadaptação é utilizar a suavização aditiva.

$$P(\neg \text{sol}) = \frac{1}{M+2} \,,$$

onde o +2 indica o número de classes (nasceu e não nasceu).

De uma forma geral, a fórmula de máxima verosimilhança é dada por

$$P(X_i) = \frac{\#X_i}{N} \,,$$

onde $\#X_i$ é o número de ocorrências de X_i e N é o número total de ocorrências.

Com suavização aditiva para um inteiro k > 0, a fórmula de máxima verosimilhança passa a ser:

$$P(X_i) = \frac{\#X_i + k}{N + k|X|},$$

onde |X| é o número de classes (e.g., nasceu e não nasceu).

Exemplo 1: Para k = 1:

- 1 mensagem e 1 SPAM, então $P(SPAM) = \frac{2}{3}$.
- 10 mensagens e 6 SPAMs, então $P(\text{SPAM}) = \frac{7}{12}$.
- 100 mensagens e 60 SPAMs, então $P(SPAM) = \frac{61}{102}$.

Exemplo 2: Para k = 1, um dicionário de 12 palavras e a base de treinamento de emails abaixo.

SPAM	$_{ m HAM}$
offer is secret click secret link secret sports link	play sports today went sports today secret sports event sports is today sports costs money

- $P(SPAM) = \frac{3+1}{8+2} = \frac{2}{5}$, $P(HAM) = \frac{5+1}{8+2} = \frac{3}{5}$
- $P(\text{today}|SPAM) = \frac{1}{9+12} = \frac{1}{21}$, $P(\text{today}|HAM) = \frac{3+1}{15+12} = \frac{4}{27}$
- $P(\text{is}|SPAM) = \frac{2}{9+12} = \frac{2}{21}, P(\text{is}|HAM) = \frac{1+1}{15+12} = \frac{2}{27}$
- $P(\text{secret}|SPAM) = \frac{4}{9+12} = \frac{4}{21}$, $P(\text{secret}|HAM) = \frac{1+1}{15+12} = \frac{2}{27}$

Com isso,

$$\begin{split} P(\text{SPAM}|\text{today, is, secret}) &= \alpha(\frac{2}{5} \times \frac{1}{21} \times \frac{2}{21} \times \frac{4}{21}) = \alpha(0.00034) \\ P(\text{HAM}|\text{today, is, secret}) &= \alpha(\frac{3}{5} \times \frac{4}{27} \times \frac{2}{27} \times \frac{2}{27}) = \alpha(0.00048) \end{split}$$