Ferienkurs zur Theoretischen Physik II 21. März - 24. März 2016

PHILIPP LANDGRAF, FRANZ ZIMMA

 $\ddot{\mathbf{U}} \text{BUNGSBLATT 2} \\ \text{Magnetostatik im Vakuum, Felder in Polarisierbarer Materie}$

Aufgabe 2.1: Gemischte Magnetostatik.....

Wir betrachten im Folgenden stromerzeugende (bzw. stromdurchflossene) Objekte mit Zentrum (bzw. Schwerpunkt) bei $\vec{0}$. Wir interessieren uns für verschiedene physikalische Größen im gesamten Raum. Wählen Sie für jedes Problem ein geeignetes Koordinatensystem. Alle angegebenen Größen sind zeitlich konstant.

- (a) Eine homogen mit Q geladene (unendlich dünne) Kreisscheibe mit Radius R rotiert mit konstanter Winkelgeschwindigkeit $\vec{\omega} = \omega \hat{e}_z$.
 - i. Geben Sie die Stromdichte $\vec{j}(\vec{r})$ an
 - ii. Berechnen Sie das zugehörige magnetische Dipolmoment \vec{m} .

Hinweis: Für die Geschwindigkeit bei starrer Rotation gilt $\vec{v} = \vec{\omega} \times \vec{r}$.

- (b) Ein unendlich langer Vollzylinder mit Radius R_i ist in z-Richtung orientiert. Konzentrisch dazu liegt ein (unendlich dünner) Zylindermantel mit Radius $R_a > R_i$. Ein konstanter Strom I fließt über den Vollzylinder (in z-Richtung) und über den Zylindermantel wieder zurück.
 - i. Geben Sie die Stromdichte $\vec{j}(\vec{r})$ an
 - ii. Berechnen Sie das \vec{B} -Feld dieser Anordnung im gesamten Raum.
- (c) Eine gerade (sehr dicht gewickelte) Spule kreisförmigen Querschnitts (Radius R) der Länge L mit N Windungen ist in z-Richtung entlang ihrer Symmetrieachse orientiert und wird von einem Strom I durchflossen. Die Drahtdicke ist vernachlässigbar.
 - i. Geben Sie die Stromdichte $\vec{j}(\vec{r})$ an
 - ii. Nun geht $L \to \infty$, während wir das Verhältnis $\frac{N}{L}$ konstant halten. Welchen Wert erwarten Sie für das Wegintegral $\int_{-L/2}^{L/2} \mathrm{d}z \, B_z(z)$? Geben Sie einen Rechenweg und eine Erklärung.

 $\mathit{Hinweis:}$ Gehen Sie davon aus, dass das Magnetfeld (mit zunehmendem L) im Außenraum der Spule verschwindet und ansonsten konstant ist.

- (d) Ein stromdurchflossener, zylindrischer Draht mit Radius R und unendlicher Länge ist entlang seiner Symmetrieachse (in z-Richtung) orientiert.
 - i. Geben Sie die Stromdichte $\vec{j}(\vec{r})$ an
 - ii. Berechnen Sie anschließend das (stetige) Vektorpotential \vec{A} und das \vec{B} -Feld dieser Anordnung im gesamten Raum.

 $\mathit{Hinweis}\colon \mathsf{Da}$ die Funktion $A(\rho)$ nur vom Radius ρ abhängt, gilt für den Laplaceoperator in Zylinderkoordinaten:

$$\triangle A(\rho) = A''(\rho) + \frac{1}{\rho}A'(\rho) = \frac{1}{\rho}\frac{\mathrm{d}}{\mathrm{d}\rho}\left[\rho A'(\rho)\right]$$

Aufgabe 2.2: Plattenkondensator mit eingeschobenem Dielektrikum.....

In einem rechteckigen Plattenkondensator (Plattenabstand a und Fläche $b \cdot c$) ist um eine Strecke x (mit 0 < x < b) ein Dielektrikum der relativen Dielektrizitätskonstante $\epsilon > 1$ eingeschoben. Der restliche Raum zwischen den Platten ist leer. Die Ladungen auf der unteren und oberen Platte sind Q und -Q. Alle Felder zwischen den Platten können als (stückweise) homogen angenommen werden.

- (a) Welche Beziehung gilt zwischen den elektrischen Feldern E_1 und E_2 ? Welche Beziehung gilt zwischen den dielektrischen Verschiebungen D_1 und D_2 . Begründen Sie ihre Aussagen.
- (b) Welcher Zusammenhang besteht zwischen D_1, D_2 und den Flächenladungsdichten σ_1, σ_2 ? Begründen Sie ihre Aussagen.
- (c) Berechnen Sie in Abhängigkeit von Q und x das elektrische Feld \vec{E} und die dielektrische Verschiebung \vec{D} im gesamten Raum zwischen den Platten.
- (d) Berechnen Sie in Abhängigkeit von Q und x die elektrostatische Feldenergie

$$W(x) = \frac{1}{2} \int dV \, \vec{E} \cdot \vec{D}.$$

(e) Mit welcher Kraft $\vec{F} \sim \hat{e}_x$ wird das Dielektrikum in den Kondensator hineingezogen?

Aufgabe 2.3: Punktladung vor Dielektrikum.....

Sei der Rechte Halbraum (x > 0) von einem Dielektrikum mit einem dielektrischen Medium mit $\varepsilon_r > 1$ gefüllt. Im Linken Halbraum (x < 0) befinde sich eine Punktladung der Ladung q an der Stelle $-a\hat{e}_x$.

- (a) Berechnen sie das Elektrische Feld im ganzen Raum.
- (b) Berechnen Sie die auf der Grenzfläche influenzierte Polarisationsflächenladungsdichte.