Math 262a Problem Set 2

Lev Kruglyak

Due: Wednesday, September 20

Problem 1. Let N be a smooth manifold of dimension n=2m and suppose $\omega \in \Omega^2(N)$.

- **a.** Prove that ω is non-degenerate at each point of N if and only if $\omega^{\wedge m} \in \Omega^{2m}(N)$ is everywhere nonzero.
- **b.** Now assume that ω is a symplectic form. Prove that the subspace $\mathfrak{X}^{\omega}(N) \subset \mathfrak{X}(N)$ of symplectic vector fields is closed under the Lie bracket of vector fields.
- **c.** Define a Lie algebra structure on $\Omega^0(N)$ by transport from the Lie bracket on $\mathfrak{X}^{\omega}(N)$ via the symplectic gradient map $f \mapsto \zeta_f$. Prove the formula:

$$\{f,g\} = \zeta_f \cdot g = \omega \left(\zeta_f, \zeta_g\right), \quad f,g \in \Omega^0(N).$$

d. A *Hamiltonian vector field* is a symplectic gradient of a function. Is the subspace of Hamiltonian vector fields invariant under the Lie bracket?

Problem 2. Let V be a real symplectic vector space, and suppose A is an affine space over V. Feel free to work with the model spaces.

- **a.** Define the space of affine polynomial functions on A and prove that it is closed under the Poisson bracket on smooth functions.
- **b.** Prove that the space of affine linear functions is also invariant. Do you recognize the resulting Lie algebra?
- **c.** Prove that the space of affine quadratic functions is also invariant. Do you recognize the resulting Lie algebra?
- **d.** Does the pattern continue?

Problem 3. An almost symplectic structure on a smooth manifold N is a section of $\operatorname{Symp}(TN) \to N$. An almost complex structure on a smooth manifold N is a section I of $\operatorname{End}(TN) \to TN$ such that $I^2 = -1$.

- **a.** Prove that an almost symplectic manifold admits an almost complex structure.
- **b.** Prove that S^4 does not admit an almost symplectic structure.

Problem 4. Let (M,g) be a Riemannian manifold and suppose $V:M\to\mathbb{R}$ is a smooth potential function. Fix some mass m>0. Now let $\mathcal{F}=C^{\infty}(\mathbb{R},M)$ be the infinite dimensional manifold of particle trajectories. Consider the Lagrangian:

 $L = \left\{ \frac{m}{2} \langle \dot{x}, \dot{x} \rangle - V(x) \right\} |dt|$

where $x: \mathcal{F} \times \mathbb{R} \to M$ is the evaluation map. Compute the Euler-Lagrange equations, the symplectic form, and the Hamiltonian.

Problem 5. Define the notion of a symmetry of a general mechanical system. Does a symmetry have to preserve the direction of time or can a symmetry reverse time flow?