RSA

Кевролетин В.В.

28 декабря 2011 г.

Задание8.1

Условие

Доказать, что a^{-1} mod m существует тогда и только тогда, когда нод(a,m)=1.

Решение

Необходимость

От противного, допустим HOД(a,m) = d > 1

$$a * a^{-1} = 1 (mod m)$$

 $a * a^{-1} = q * m$
 $a * a^{-1} = 1 + q * m$
 $a * a^{-1} - q * m = 1$

Левая часть делится на d>1, тогда и правая часть должна делиться на d, но справа стоит 1. Противоречие.

Достаточность

Запишем линейное представление НОД:

$$GCD(a, m) = a * x + m * y$$

$$a * x + m * y = 1$$

$$a * x = 1 - m * y$$

$$a * x = 1 \pmod{m}$$

T.e. $x = a^{-1} (mod \ m)$

Задание8.2

Условие

Кольцо классов вычетов по mod m (Z_m) является полем тогда и только тогда, когда m - простое.

Необходимость

Пусть поле содержит m элементов. Тогда каждый ненулевой элемент x_i имеет обратный, т.е. (по результатам предыдущего упражнения) $GCD(x_i, m) = 1$. Таким образом, функция Эйлера $\phi(m) = m - 1 \Rightarrow m$ - простое

Достаточность

Коммутативное и ассоциативное кольцо R с единицей называется полем, если каждый ненулевой элемент $a \in R$ обладает обратным, то есть существует такой элемент a^{-1} , что $a^{-1}a=aa^{-1}=1$.

Выполнение этого условия вытекает из результата предущего упражнения - $HOД(x_i,m)=1\Rightarrow$ существует обратный элемент. $HOД(x_i,m)=1$ для любого ненулевого x_i по определению т.к. m - простое.

Задание8.3

Условие

Предположим, что найден эффективный способ решения задачи нахождения d по e. Означает ли это, что можно решать эффективно задачу факторизации (нахождения p и q по n).

Решение

$$Ed = 1(mod (p-1)(q-1))$$
$$Ed - 1 = s(p-1)(q-1)$$

Возьмём произвольное целове число $X \neq 0$, тогда по малой теореме Ферма:

$$X^{Ed-1} = 1 \pmod{N}$$

Ed-1 (т.к. (р - 1)(q - 1) четно) значит можем взять квадратный корень:

$$Y_1 = X^{(Ed-1)/2} = 1 \pmod{N}$$

 $Y_1^2 = 1 \pmod{N}$
 $Y_1^2 - 1 = k * N$
 $(Y_1 - 1)(Y_1 + 1) = k * N$

Посчитаем $HOД(Y_1-1, N)$, $HOД(Y_1+1, N)$ - если получили число отлично от 1 - задача решена. Если же не повезло возьмём квадратный корень еще раз $Y_2 = X^{(Ed-1)/4}$. И повторим процедуру. Если не повезло второй раз - выберем другое число X

Задание8.4

Условие

Показать, что заданный алгоритм осуществляет возведение в степень с использованием метода последовательного возведения в квадрат.

Рассмотрим 2-ичное разложение числа n:

$$n = m_k \cdot 2^k + m_{k-1} \cdot 2^{k-1} + \dots + m_1 \cdot 2 + m_0$$

Подставим в x^n :

$$x^{n} = x^{((\dots((m_{k}\cdot 2 + m_{k-1})\cdot 2 + m_{k-2})\cdot 2 + \dots)\cdot 2 + m_{1})\cdot 2 + m_{0}} = ((\dots(((x^{m_{k}})^{2}\cdot x^{m_{k-1}})^{2}\dots)^{2}\cdot x^{m_{1}})^{2}\cdot x^{m_{0}}$$

Основываясь на полученном выражении, можно последовательно возводить в степень:

$$(1)x^{m_k*2}$$

$$(2)x^{m_k*2+m_{k-1}}$$

$$(3)x^{(m_k*2+m_{k-1})*2}$$

$$(4)x^{(m_k*2+m_{k-1})*2+m_{k-2}}$$

..

Запишем этот алгоритм в виде процедуры на языке программирования Перл:

```
1
     sub fast_pow {
2
         my (\$a, \$b, \$m) = @;
3
         my \ \$x = 1;
4
         my $i = length(sprintf("%b", $b));
         while (--\$i >= 0) {
5
              \$x = (\$x * \$x);

\$x = (\$x * \$a) \text{ if } (\$b >> \$i) \& 1;
6
7
8
9
         x
     }
10
```

Строки 4,5 задают цикл от самого значимого бита числа n до менее значимого. В цикле выбирается соответствующая цифра двоичного разложения числа n и производится последовательное возведение в степень. Шагам 1,3 приведённого выше примера соответствует бя строка в коде. Шагам 2,4 - 7я строка.

Задание8.5

Условие

Исполнить WITNESS при a=7, p=561.

Решение

 $7^{561} =$

 $1258926710444010346040811055571922352586996256959051397931288\\ 4530107726283868706896588439519692285292566768381347082887948\\ 2180768646778503348838717973418979614170849967957673857542754\\ 2032971340819910096785140243971960661565521618577157286771524\\ 8415652974420284636170565645107253002715340489762118126124207$

 $4945632975657389418376887366978217840940043289483339781564980\\ 5005956208316004132717850784019511788620727027104603147026941\\ 914248546139189929207719822537564097221755952007$

Задание 8.6

Условие

Найти количество составных натуральных чисел а, не превосходящих 561 таких, что $a^{560}=1 mod 561$.

Решение

 $561=3*11*17\Rightarrow$ вместо проверки равенства $a^{560}=1 (mod 561)$ можно проверить, выполняются ли одновременно

$$\begin{array}{lcl} a^{560} & = & 1 (mod \ 3) \\ a^{560} & = & 1 (mod \ 11) \\ a^{560} & = & 1 (mod \ 17) \end{array}$$

Малая теорема Ферма: Если р — простое число, и целое а не делится на р, то $a^{p-1} \equiv 1 (mod \ p)$, т.е.

$$\begin{array}{rcl} a^2 & = & 1 (mod \ 3) \\ a^{10} & = & 1 (mod \ 11) \\ a^{16} & = & 1 (mod \ 17) \end{array}$$

Тогда, т.к. 2|560, 10|560, 16|560, получается, что первая система равенств выполняется для всех чисел, не кратных 3,11 или 17. Перебором получим результат: 320

```
my a=0; for (1..560) { ++$a if $_%3 && $_%1 && $_%17 } print $a
```

Задание8.7

Условие

Инвариант цикла в EXTENDED EUCLID.

Решение

На каждой итерации цикла х и у получают значения такие, что

$$a \cdot x + b \cdot y = g$$

Мы нашли решение (x_1, y_1) задачи для пары (b% a, a), такое что

$$(b\%a) \cdot x_1 + a \cdot y_1 = g,$$

на предыдущей итерации цикла. Покажем, что решение (x,y) для нашей пары (a,b) вычисляются корректно:

$$b\%a = b - \left\lfloor \frac{b}{a} \right\rfloor \cdot a$$

Подставим это в приведённое выше выражение с x_1 и y_1 и получим:

$$g = (b\%a) \cdot x_1 + a \cdot y_1 =$$

$$\left(b - \left\lfloor \frac{b}{a} \right\rfloor \cdot a\right) x_1 + a \cdot y_1$$

$$g = b \cdot x_1 + a \cdot \left\lfloor \frac{b}{a} \right\rfloor \cdot x_1$$

Сравнивая это с исходным выражением над неизвестными х и у, получаем требуемые выражения:

$$\begin{cases} x = y_1 - \left\lfloor \frac{b}{a} \right\rfloor x_1 \\ x = x_1 \end{cases}$$

Задание8.8

Условие

Найти нод(560,1769) с использованием расширенного алгоритма Евклида.

Решение

```
1 = 477*560 + -151*1769
sub ext_gcd {
    my ($a, $b) = @_;

    if ($a == 0) {
        return ($b, 0, 1)
    }
    my ($d, $x1, $y1) = ext_gcd($b % $a, $a);
        ($d, $y1 - int($b / $a) * $x1, $x1)
}

my ($a, $b) = (560, 1769);
printf "%d = %d*$a + %d*$b", ext_gcd($a, $b);
```

Задание8.9

Условие

Доказать, что если n - простое (>2), то n делит 2^n-2 . Доказать, что составное число 341 делит $2^{341}-2$.

$$2^{n} - 2 = x \pmod{n}$$
$$2^{n} = 2 + x \pmod{n}$$
$$2^{n-1} = \frac{2+x}{2} \pmod{n}$$

Основываясь, на малой теореме Ферма(т.к. n - простое):

$$\frac{2+x}{2} = 1 \pmod{n}$$
$$x/2 = 0 \pmod{n}$$
$$x = 0 \pmod{n}$$

ч.т.д

В уравнении $2^{341}-2=x (mod\ 341)$ найдём х. Т.к. $341=11^*31,$ то вместо $2^{341}=x+2 (mod\ 341)$ мы можем решать

$$2^{341} = x + 2 \pmod{11}$$

 $2^{341} = x + 2 \pmod{31}$

По малой теорема Ферма:

$$2^{10} = 1 \pmod{11} \mid *43$$
$$2^{340} = 1 \pmod{11} \mid *2$$
$$2^{341} = 2 \pmod{11}$$
$$2^{341} = 0 + 2 \pmod{11}$$

Для 2го уравнения:

$$2^{30} = 1 \pmod{31} \mid *11$$

 $2^{330} = 1 \pmod{31} \mid *2$

т.к. $2^{11} = 2048 = 2 \pmod{31}$

$$2^{341} = 2 \pmod{31}$$

$$2^{341} = 0 + 2 \pmod{31}$$

Таким образом $\mathbf{x}=0,$ т.е. $2^{341}-2=0 (mod~341)$ ч.т.д.

Задание8.10

Условие

Уравнение ах=b mod m, нод(a,m)=d>1, имеет решение тогда и только тогда, когда d|b. Если условие выполняется, то имеется ровно d решений по mod m.

Необходимость

$$a * x = b \pmod{m}$$
$$a * x = b + q * m$$
$$a * x - q * m = b$$

Левая часть делится на d, правая так же должна делиться на d.

Достаточность

$$a*x - q*m = b|/d$$

$$a'*x - q'*m = b'|/d$$

$$a'*x = b'(mod m')$$

т.к. НОД(a', m') = 1 \Rightarrow существует $a'^{-1} \mod m$

$$x = b' * a'^{-1} \pmod{m'}$$

Покажем, что таких решений будет d штук. $m=m'd\Rightarrow x=a'^{-1}b'+m'*q,q=0,...,d-1$ - разные значения по mod m

Задание8.11

Условие

Решить систему $x=2 \mod 3$, $x=3 \mod 5$, $x=2 \mod 7$.

Решение

x = 23

Задание 8.12

Условие

Шесть профессоров начинают читать лекции по своим курсам в ПН, ВТ, СР, ЧТ, ПТ, СБ и читают их далее через 2, 3, 4, 1, 6, 5 дней соответственно. Лекции не читаются по ВС (отменяются). Когда в первый раз все лекции выпадут на ВС и будут отменены.

Решение

Пусть х - количество прошедших дней с первого воскресенья

$$\begin{cases} x &= 0 \pmod{7} \\ x-1 &= 0 \pmod{2} \\ x-2 &= 0 \pmod{3} \\ x-3 &= 0 \pmod{4} \\ x-4 &= 0 \pmod{1} \\ x-5 &= 0 \pmod{6} \\ x-6 &= 0 \pmod{5} \end{cases}$$

5-е сравнение можно выбросить, т.к. $x \neq 0$

$$\begin{cases} x = 0 \pmod{7} \\ x = 1 \pmod{2} \\ x = 2 \pmod{3} \\ x = 3 \pmod{4} \\ x = 5 \pmod{6} \\ x = 1 \pmod{5} \end{cases}$$

2е сравнение избыточно, т.к. оно включено в 4е. Аналогично 3е учтено в 6м.

$$\begin{cases} x = 0 \pmod{7} \\ x = 3 \pmod{4} \\ x = 5 \pmod{6} \\ x = 1 \pmod{5} \end{cases}$$

Рассмотрим 2е и 3е сравнения:

$$\begin{cases} x = 3 \pmod{4} \\ x = 5 \pmod{6} \end{cases}$$

$$\begin{cases} x = -1 \pmod{4} \\ x = -1 \pmod{6} \end{cases}$$

Тогда их можно заменить одним:

$$\{ x = -1 \pmod{12}$$

В итоге имеем:

$$\begin{cases} x = 0 \pmod{7} \\ x = 11 \pmod{12} \\ x = 1 \pmod{5} \end{cases}$$

Решим полученнуюл систему сравнений, используя греко-китайскую теорему:

$$M_1 = 5 * 7 = 35, M_1^{-1} \pmod{12} = 11 \pmod{12}$$

$$M_2 = 12 * 7 = 84, M_2^{-1} \pmod{5} = 4 \pmod{5}$$

$$M_3 = 12 * 5 = 60, M_3^{-1} \pmod{7} = 2 \pmod{7}$$

$$M = 12 * 5 * 7 = 420$$

$$x = 35 * 11 * 11 + 84 * 4 * 1 + 60 * 2 * 0 \pmod{420} = 371 \pmod{420}$$

Т.е. через 371 день после первого воскресенья

Задание 8.13

Условие

Найти (678*973) mod 1813 (с использованием греко-китайской теоремы).

$$1813 = 7^{2} * 37,678 = 2 * 3 * 113,973 = 7 * 139$$

$$678 * 973 (mod 1813) = 2 * 3 * 113 * 7 * 139 (mod 7^{2} * 37)$$

$$= 94242 (mod 7^{2} * 37)$$

Вычислим:

$$94242 = 1 \pmod{7}$$

 $94242 = 11 \pmod{37}$

 $37^{-1} = 4 \pmod{7}$

Используем формулу для решения:

$$x = (m_2^{-1} \mod m_1)(a_1 - a_2)m_2 + a_2 \mod (m_1 * m_2)$$
$$x = 4 * (1 - 3) * 37 + 3 = -293 = 225 \pmod{259}$$
$$7 * 225 = 1575 \pmod{1813}$$

Ответ:

$$678 * 973 = 1575 \pmod{1813}$$

Задание8.14

Условие

Вычислить первые 20 простых чисел Мерсенна.

Задание 8.15

Условие

Как повлияет на работу RSA тот факт, что одно из чисел (например, р) не является простым, а представляется в виде произведения двух простых: $p = p_1 * p_2$.

Решение

Используя каноническое разложение $n=\prod_{i=1}^k p_i^{\alpha_i}$ числа n, функция Эйлера может быть вычислена по формуле

$$\varphi(n) = \prod_{i=1}^{k} p_i^{\alpha_i - 1} \left(p_i - 1 \right)$$

Таким образом, мы можем посчитать функцию Эйлера, если в каноническом разложении п присутствуют 3 числа. В алгоритме, кроме как в вычислении функции Эйлера делители числа п участия не принимают, так что всё остаётся, как и прежде. Единственно что изменится - чем больше делителей имеет число n, тем, потенциально, проще его факторизовать, значит криптостойкость снижается.

Задание8.16

Условие

Как повлияет на работу RSA тот факт, что шифруемое число не является взаимно простым, например, с р.

Решение

Значит шифруемое число не взаимно простое с N, а значит мы не получим взаимно однозначного отображение при шифровании(по результатам предущих заданий) и потом не сможем расшифровать криптотекст.

Задание8.17

Условие

Сгенерировать RSA и провести шифрование/дешифрование (Mathematica, Scheme, Sage).

Задание 8.18

Условие

Пусть $\mathbf{n}(=\mathbf{p}\mathbf{q})$ и $\phi(n)$ известны, а р и \mathbf{q} – неизвестны. Выразить р и \mathbf{q} через \mathbf{n} и $\phi(n)$. Рассмотреть случай $\mathbf{n}{=}2993$ и $\phi(n)=2880$.

Задание 8.19

Условие

p,q,e,d,n — параметры RSA. Доказать, что имеется r+s+rs неподвижных точек $x,\ 1\le x\le n-1,$ где $r=\gcd(p-1,e-1),s=\gcd(q-1,e-1).$ (Из-за этого выбираются p и q, для которых r и s малы.)