

Dysphagia detection with Machine learning and Esophageal manometry

Prepared By:

Shankey Raheja

Albee Philip Neeramplackel

What is Dysphagia?

Dysphagia is a medical term for swallowing related problems.

How is Dysphagia Detected?

https://www.canterbury.ac.nz/rosecentre/research/publications/

https://www.health.harvard.edu/diseases-and-conditions/endoscopy

https://www.fmc-cares.com/esophageal-manometry-test/

X-RAY ENDOSCOPY MANOMETRY

Limitations of Dysphagia detection Methods:

Time Consuming, exhaustive evaluation, costly, low detection rate.

What Happens when food is swallowed?

What are we trying to achieve in this Research?

The main goal of this research is to combine the potential of an existing method for dysphagia detection i.e. Esophageal manometry and Machine learning with the following objectives

- To improve the Detection rate of Dysphagia
- To improve the efficiency of the detection process in terms of Time & resources required

What is Esophageal Manometry?

How does a Manometry Record of Patient Look like?

- Sensors record the pressure readings at intervals of 1 millisecond.
- Every second, 1000 readings are recorded by sensors.
- In this sample, there are close to 370,000 recordings, which means the length of the manometry session is 370 seconds(6 minutes)

Data Ethics

 Data collected for this research is composed of pressure readings from the patient's throat and do not contain any form of personal information on Patients such as name, age, or gender.

• It requires consent for anyone else to use it and responsible authority has issued consent only for this particular research.

 Any form of data collected during this research has been handled with complete integrity.

Constraints in Data collection

Limited data availability

 Restriction to access important features such as patient's age, gender, height, or weight

 Limited data availability for different categories of patients such as Stroke, Parkinson's, Huntington disease

Delays in data collection due to manometry system failure

Data Quality

Noise Sources:

Sensors Calibration

 Patient experiencing cough or sneeze during manometry session

 Patient failing to comply with the guidelines of medical practitioner

Examples of Noise

Data Preprocessing & Sampling

Step.01

Transforming raw data into suitable format for plotting & Visualization

Step.02

Extracting swallow samples from the raw data

Step.03

Evaluating features of a Sample

Exploratory Data Analysis

DENSITY PLOTS

CORRELATION MATRIX

	Sensor1_max	Sensor2_max	Sensor3_min	Latency	UES_Duration
Sensor1_max	1	-0.0346022	-0.038871	0.149575	0.0296155
Sensor2_max	-0.0346022	1	-0.124292	0.0283056	0.056447
Sensor3_min	-0.038871	-0.124292	1	-0.0584012	0.063469
Latency	0.149575	0.0283056	-0.0584012	1	0.316552
UES_Duration	0.0296155	0.056447	0.063469	0.316552	1

Data Modelling

Independent Features

Dependent Variable

	Patient	Sensor1_max	Sensor2_max	Sensor3_min	Latency	UES_Duration	Swallow type
0	Control 2.txt	101.393912	199.782559	-11.066606	0.132	0.624	Healthy
1	Control 2.txt	110.988785	143.783474	-9.734493	0.088	0.544	Healthy
2	Control 3.txt	164.236667	100.936141	-13.469902	0.268	0.812	Healthy
3	Control 3.txt	104.612039	186.672007	-17.383841	0.248	0.988	Healthy
4	Control 5.txt	113.895628	158.551156	-14.614328	0.088	0.644	Healthy
5	HF1-E.txt	137.317464	119.958801	-11.723507	0.309	0.792	Healthy
6	HF10-HL.txt	108.303960	45.131609	-13.014420	0.079	0.716	Healthy

Train and Test Data Composition

Composition	Training data	Testing data	Total	
No of Healthy swallow samples	86	38	124	
No of Unhealthy swallow samples	84	36	120	
Total samples	170	74	244	

Performance of models trained to detect unhealthy patients

The evaluation metrics for classification models are shown below:

S. No		Default Hyperparameters			Hyperparameter tuning with 6 fold cross validation			
	Classification Model	Accuracy	Precision	Recall	Accuracy	Precision	Recall	
1	Logistic Regression	68%	65%	72%	66%	63%	72%	
2	Support Vector Classifier	54%	67%	11%	69%	70%	64%	
3	Random Forest Classifier	69%	68%	69%	61%	58%	69%	
4	XGBoost Classifier	66%	62%	78%	62%	60%	69%	
5	LightGBM Classifier	58%	66%	67%	68%	65%	72%	

Performance of the models trained for screening of patients

Unhealthy

Unhealthy

0.55

1.00

Logistic Regression	Precision	Recall	Random Forest	Precision	Recall	Support Vector	Precision	Recall
Healthy	1.00	0.21	Healthy	1.00	0.21	Healthy	1.00	0.03
Unhealthy	0.55	1.00	Unhealthy	0.55	1.00	Unhealthy	0.51	1.00
XGBoost Classifier	Precision	Recall	LightGBM Classifier	Precision	Recall			
Healthy	1.00	0.24	Healthy	1.00	0.13			

The probability threshold was regulated to achieve 100% recall for the Unhealthy class and 100% precision for the healthy class. These models can facilitate the screening of patients and save the cost and resources by 21-24%.

0.52

1.00

Conclusion

- The best performing models i.e. Logistic regression and LightGBM classifier were able to detect 72% of unhealthy patients.
- Support Vector, Random forest & XGBoost classifiers displayed a detection rate of 64%, 69% & 69% respectively.
- XGBoost, Random forest & Logistic regression has potential to save the cost & resources by 24%, 21% & 21% respectively.
- LightGBM & Support vector classifier displayed a potential to save cost & resources by 13% & 3% respectively.
- Overall, Logistic regression & Light GBM are the best performing models for the detection of unhealthy patients. However, for the screening process, XGBoost performs the best.

Future Work

 This research utilizes data from high-resolution manometry, however, this data can be collected by using advanced techniques like high definition manometry, which has a better spatial resolution.

Sampling process can be improved by collecting samples from different types
of swallows such as "Saliva swallow", "10ml bolus swallow" and "Effortful
swallow"