1. Short Answers [24 Points]

(a) [12 Pts] Is the relation $\{(a,b) \mid a/b \ge 2\}$ over the set of positive reals (i) reflexive, (ii) anti-reflexive, (iii) symmetric, (iv) anti-symmetric, and (v) transitive? Is it (i) an equivalence relation, (ii) a partial order, or (iii) a strict partial order? Justify

your answers.

i) No. $1/1 \ge 2$ ii) Yes. $a/a \ne 2$ so $(a/a) \ne R$ iii) No. $a/1 \ge 2$ but $a \ne 2$.

iv) Yes. Suppose $a/b \ge 2$, then $a/a \le \frac{1}{a} \le 2$

(1) (es. suppose $\frac{a}{b} \ge \frac{1}{a}$ (v) (es. suppose $\frac{a}{b} \ge 2a$ and $\frac{b}{a} \ge 2a$ then

(azab and $\frac{b}{a} \ge 2a$ then

(azab and $\frac{b}{a} \ge 2a$ $\frac{a}{a} \ge 4 > a$

111) SPO

(b) [4 Pts] Give an inductive definition for a_i of the sequence $5, 11, 23, 47, 95, \ldots$ where a_0 is the first term.

$$a_0 = 5$$

$$a_n = 2a_{n-1} + 1$$
or
$$a_{n+1} = 2a_n + 1$$

(c) [8 Pts] If A is countable and $A \cup B$ is uncountable, prove that B is uncountable.

Reflexive: a 2a fer all a symm: if a 2b then bra Transitive: if a 2b and b 2c, then a 2c

2. Equivalence Relations [20 Points]

Define the relation \approx on the set of real numbers, where $a \approx b$ if and only if a = n/2 + b for some integer n.

(a) [8 pts] Prove that \approx is an equivalence relation.

R:
$$a = 2 + a$$
, true when $n = 0$. Done.

S: if
$$a \approx b$$
, then $\alpha = \frac{a}{3} + b$ and $b = \frac{a}{3} + a$
so $b \approx a \checkmark$

T:
$$\alpha = \frac{n}{2} + b$$
 and $b = \frac{m}{2} + c$, $n_{e}m \in \mathbb{N}$

$$\alpha = \frac{n}{2} + \frac{m}{2} + C$$

$$\alpha = \frac{n+m}{2} + C$$

(b) [4 pts] List 3 elements of the equivalence class containing 1/2. Then, formally define the equivalence class using set builder notation.

$$\frac{1}{2} = \frac{1}{2} + b \quad n=1, \ b \text{ has to be } 0$$

$$\left\{ \frac{1}{2} + \frac{1}{2} \mid n \in \mathbb{Z} \right\} \quad \frac{1}{2} = \frac{1}{2} + b \quad n=-1, \ b \text{ has to be } 1$$

(c) [8 pts] Describe the equivalence classes formally. How many equivalence classes are there, and how many elements in each equivalence class? If infinite, state whether countable or uncountable. Justify your answer.

$$[10] \approx 10, 16, 6, 25, 10$$
 $[2] + [1] \cap E = 23$
 $[0, 1a] \Rightarrow \infty \text{ many}$
 $[0, 1a] \Rightarrow \infty \text{ many}$

4. Mathematical Induction [18 Points]

Prove the statement below, by mathematical induction, for all positive integers n.

$$1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1$$

(a) [6 Pts] State the base case and prove it.

(b) [4 Pts] State what you assume and what you prove in the inductive step.

(a) [4 Pts] State what you assume and what you prove in the inductive step.

Assume
$$(\cdot)! + \partial \cdot \partial \cdot + \cdots + n \cdot n! = (n+1)! - 1$$

Prove $(\cdot)! + 2 \cdot 2! + \cdots + (n+1)(n+1)! = (n+2)! - 1$

(c) [8 Pts] Now, prove the inductive step.
$$= (n+1)! - 1 + (n+1)(n+1)!$$

$$= (n+1)! (1+(n+1)) - 1$$

$$= (n+2)! - 1$$

$$= (n+2)! - 1$$

5. Strong Induction [18 Points]

Let P(n) be the statement that a postage of n cents can be formed using just 3-cent and 11-cent stamps. Prove that P(n) is true for all $n \ge 21$, using the steps below.

- (a) Prove P(n) for all $n \ge 21$ by regular induction.
 - i. [3 Pts] Prove P(21) to complete the basis step.

ii. [6 Pts] Prove
$$P(k) \rightarrow P(k+1)$$
 for all $k \ge 21$.

- (b) Now, prove P(n) for all $n \ge 21$ by strong induction.
 - i. [3 Pts] Prove that P(21), P(22) and P(23) to complete the basis step.

$$P(21) = 7 \cdot 34$$

$$P(22) = 2 \cdot 1/4$$

ii. [6 Pts] Prove that for all $k \geq 23$, if P(j) is true for $21 \leq j \leq k$, then P(k+1) is true.

6. Structural Induction [24 Points]

Consider this inductive definition for a set of integers S.

Base Case: $5 \in S$.

Inductive Step: if m is in S and n is in S, then mn is in S.

Let $A = \{5^i \mid i \in \mathbb{Z}^+\}$. We prove that A = S.

(a) [12 Pts] Prove that $A \subseteq S$ using mathematical induction. In other words, prove that for all $i \in \mathbb{Z}^+$, $5^i \in S$. Prove the basis and inductive steps clearly.

Bose: i=1, $5' \in 5$ V

Assume $5^k \in S$, prove $5^{k+1} \in S$

- ·5 tes, ses
- 5 € 5, 5 € 5 50, 5^k 5 = 5^{k+1} € 5 (Def of 5) /

(b) [12 Pts] Prove that $S \subseteq A$ using structural induction. In other words, prove that for all $x \in S$, $x = 5^i$ for some $i \in \mathbb{Z}^+$. Prove the basis and inductive steps clearly.

Base: 5=5' 6 A V

Inductive: Assume n,m & A
Prove m.n & A

- Since $n \in A$ so $m = 5^{*} \longrightarrow pos$, int. $m \cdot n = 5^{*} \cdot 5^{*} = 5^{*} \times 5^{*}$ • 5 y+x ∈ A V