Одноранговая аппроксимация положительных матриц с помощью методов тропической математики

Романова Елизавета Юрьевна, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н., проф. Кривулин Н.К. Рецензент: к.ф.-м.н., доц. Алексеева Н.П.

Санкт-Петербург 2018г.

Задача аппроксимации матриц

Постановка задачи

Задача аппроксимации матрицы $A\in\mathbb{R}^{n imes n}$ матрицами $X\in\mathsf{S}\subset\mathbb{R}^{n imes n}$ формулируется как задача оптимизации

$$\min_{\boldsymbol{X} \in \mathsf{S}} \mathrm{d}(\boldsymbol{A}, \boldsymbol{X}),$$

где ${
m d}$ — функция расстояния на множестве матриц, измеряющая величину ошибки аппроксимации.

Различные подходы к измерению ошибки:

- ullet d $_p(m{A},m{X})=(\sum_{i,j}|a_{ij}-x_{ij}|^p)^{1/p},\ p\geq 1$ расстояние Минковского,
- ullet d $_{\infty}(oldsymbol{A},oldsymbol{X})=\max_{i,j}|a_{ij}-x_{ij}|$ расстояние Чебышёва,
- $d_{\log}(\pmb{A}, \pmb{X}) = \max_{i,j} |\log a_{ij} \log x_{ij}|$, где логарифм берется по основанию больше единицы \log -чебышёвское расстояние.

Задача \log -чебышёвской аппроксимации матриц

Возможные подходы к решению задачи \log -чебышёвской аппроксимации матриц:

- применение методов математического программирования,
- применение методов тропической математики.

Подход на основе тропической математики позволяет

- получить полное решение задачи,
- записать решение в компактной векторной форме.

Цель работы: построить полное решение задачи одноранговой log-чебышёвской аппроксимации положительных матриц, используя методы и результаты тропической математики.

Для этого необходимо:

- свести задачу аппроксимации к задаче оптимизации, записанной в компактной форме в терминах идемпотентного полуполя с операцией вычисления максимума в роли сложения;
- получить полное решение задачи тропической оптимизации.

Задача одноранговой аппроксимации матриц

ullet Задача \log -чебышёвской аппроксимации положительной матрицы $oldsymbol{A}=(a_{ij})$ при помощи положительной матрицы $oldsymbol{X}=(x_{ij})$ имеет вид

$$\min_{\boldsymbol{X}} \max_{i,j} |\log a_{ij} - \log x_{ij}|,$$

где логарифм берется по основанию больше единицы.

 В силу свойства монотонности логарифма для целевой функции выполняется равенство

$$\max_{i,j} |\log a_{ij} - \log x_{ij}| = \log \max_{i,j} \max(a_{ij} x_{ij}^{-1}, x_{ij} a_{ij}^{-1}).$$

• Рассматриваемая задача эквивалентна задаче

$$\min_{\mathbf{X}} \max_{i,j} \max(a_{ij} x_{ij}^{-1}, x_{ij} a_{ij}^{-1}).$$

- ullet Любая положительная матрица $oldsymbol{X}$ ранга 1 имеет представление $oldsymbol{X}=oldsymbol{s}oldsymbol{t}^{\mathrm{T}}$, где $oldsymbol{s}=(s_i)$ и $oldsymbol{t}=(t_j)$ положительные векторы.
- ullet Учитывая, что $x_{ij}=s_it_j$, приходим к задаче

$$\min_{s,t} \max_{i,j} \max(s_i^{-1} a_{ij} t_j^{-1}, s_i a_{ij}^{-1} t_j).$$

Приведем необходимые определения тропической математики из работ [Маслов и Колокольцов, 1994; Кривулин, 2009].

Идемпотентное полуполе

Идемпотентное полуполе — алгебраическая система $(\mathbb{X},\oplus,\otimes,\mathbb{O},\mathbb{1}).$

- Операции сложения ⊕ и умножения ⊗ ассоциативны и коммутативны, умножение дистрибутивно относительно сложения. Далее знак умножения ⊗ для краткости опускается.
- Для каждого $x \neq 0$ существует обратный по умножению элемент x^{-1} такой, что $x^{-1}x = 1$.
- Сложение является идемпотентным, то есть $x \oplus x = x$ для всех $x \in \mathbb{X}$.

Примеры

- ullet (max, +)-алгебра: $\mathbb{R}_{\max,+}=(\mathbb{R}\cup\{-\infty\},\max,+,-\infty,0)$,
- ullet max-алгебра: $\mathbb{R}_{\max, \times} = (\mathbb{R}_+, \max, \times, 0, 1)$, где \mathbb{R}_+ множество неотрицательных вещественных чисел.

Матрицы

- ullet $\mathbb{X}^{m imes n}$ множество матриц над \mathbb{X} размера m imes n.
- Сложение и умножение двух матриц и умножение матрицы на число выполняются по стандартным правилам с заменой обычных арифметических операций на операции \oplus и \otimes .
- Матрица называется регулярной по столбцам, если она не имеет нулевых столбцов.
- Для любой ненулевой матрицы ${m A}=(a_{ij})\in {\mathbb X}^{m\times n}$ определена мультипликативно сопряженная матрица ${m A}^-=(a_{ij}^-)\in {\mathbb X}^{n\times m}$ с элементами $a_{ij}^-=a_{ji}^{-1}$, если $a_{ji}\ne {\mathbb O}$, и $a_{ij}^-={\mathbb O}$ иначе.
- $m{\bullet}$ Для любой квадратной матрицы $m{A}\in\mathbb{X}^{n imes n}$ определим матрицу $m{A}^*=m{I}\oplusm{A}\oplus\cdots\oplusm{A}^{n-1}$.
- Квадратная матрица называется неразложимой, если перестановкой строк вместе с такой же перестановкой столбцов ее нельзя привести к блочно-треугольному виду.

Векторы

- ullet \mathbb{X}^n множество векторов-столбцов размера n.
- Вектор называется регулярным, если он не содержит нулей.
- Для любого ненулевого вектора $m{x}=(x_i)\in\mathbb{X}^n$ определен мультипликативно сопряженный вектор-строка $m{x}^-=(x_i^-)$, где $x_i^-=x_i^{-1}$, если $x_i\neq \mathbb{0}$, и $x_i^-=\mathbb{0}$ иначе.

Собственное число и вектор матрицы

- Число $\lambda \in \mathbb{X}$ и ненулевой вектор $x \in \mathbb{X}^n$ называются собственным значением и собственным вектором матрицы $A \in \mathbb{X}^{n \times n}$, если они удовлетворяют равенству $Ax = \lambda x$.
- Любая матрица ${m A}$ порядка n имеет собственное число, которое называется спектральным радиусом и вычисляется по формуле

$$\lambda = \bigoplus_{m=1}^{n} \bigoplus_{1 \le i_1, \dots, i_m \le n} (a_{i_1 i_2} \cdots a_{i_m i_1})^{1/m}.$$

 Для неразложимой матрицы спектральный радиус является единственным собственным числом.

Нахождение собственных векторов

Предположим, что λ — ненулевое собственное число матрицы $A \in \mathbb{X}^{n \times n}$, и введем следующие матрицы:

$$A_{\lambda} = \lambda^{-1} A, \qquad A_{\lambda}^{+} = A_{\lambda} \oplus \cdots \oplus A_{\lambda}^{n}.$$

Собственные векторы матрицы A, соответствующие λ , находятся следующим образом:

- ullet строятся матрицы $oldsymbol{A}_{\lambda}$ и $oldsymbol{A}_{\lambda}^+$;
- ullet из тех столбцов матрицы $m{A}_{\lambda}^+$, у которых диагональный элемент равен числу $\mathbb{1}$, составляется матрица $ar{m{A}}_{\lambda}$;
- ullet все собственные векторы имеют вид $ar{A}_{\lambda}u$, где u- произвольный регулярный вектор.

Все собственные векторы неразложимой матрицы регулярны.

Решение задачи аппроксимации

Задача аппроксимации положительной матрицы $m{A}=(a_{ij})$ при помощи матрицы $m{X}=m{s}m{t}^{\mathrm{T}}$, где $m{s}=(s_i)$, $m{t}=(t_j)$, имеет вид

$$\min_{s,t} \max_{i,j} \max(s_i^{-1} a_{ij} t_j^{-1}, s_i a_{ij}^{-1} t_j).$$

При замене арифметических операций на операции идемпотентного полуполя $\mathbb{R}_{\max, imes}$ получим задачу

$$\min_{\boldsymbol{s},\boldsymbol{t}} \bigoplus_{i,j} (s_i^{-1} a_{ij} t_j^{-1} \oplus s_i a_{ij}^{-1} t_j).$$

В векторном виде задача принимает вид

$$\min_{\boldsymbol{s},\boldsymbol{t}} \boldsymbol{s}^- \boldsymbol{A} (\boldsymbol{t}^-)^{\mathrm{T}} \oplus \boldsymbol{t}^{\mathrm{T}} \boldsymbol{A}^- \boldsymbol{s}.$$

Положив $x=s,\,y=(t^-)^{
m T}$, получим задачу тропической оптимизации в форме

$$\min_{\boldsymbol{x},\boldsymbol{y}} \quad \boldsymbol{x}^{-} \boldsymbol{A} \boldsymbol{y} \oplus \boldsymbol{y}^{-} \boldsymbol{A}^{-} \boldsymbol{x}.$$

Задача тропической оптимизации

Пусть задана ненулевая матрица $A \in \mathbb{X}^{n \times n}$ и требуется найти все регулярные векторы x и y, которые решают задачу

$$\min_{\boldsymbol{x},\boldsymbol{y}} \quad \boldsymbol{x}^{-} \boldsymbol{A} \boldsymbol{y} \oplus \boldsymbol{y}^{-} \boldsymbol{A}^{-} \boldsymbol{x}.$$

Известен следующий результат:

Лемма (Кривулин, 2009)

Пусть A — неразложимая матрица, μ — спектральный радиус матрицы AA^- . Тогда минимум в задаче тропической оптимизации равен $\mu^{1/2}$ и достигается тогда, когда x и $y=\mu^{-1/2}A^-x$ — собственные векторы матриц AA^- и A^-A , соответствующие μ .

Решение задачи тропической оптимизации

Для ненулевой матрицы $A \in \mathbb{X}^{n \times n}$ требуется решить задачу тропической оптимизации в виде

$$\min_{\boldsymbol{x},\boldsymbol{y}} \quad \boldsymbol{x}^{-}\boldsymbol{A}\boldsymbol{y} \oplus \boldsymbol{y}^{-}\boldsymbol{A}^{-}\boldsymbol{x}.$$

Теорема

Пусть A — ненулевая матрица, μ — спектральный радиус матрицы AA^- . Пусть $(AA^-)_\mu=\mu^{-1}AA^-$ и $(A^-A)_\mu=\mu^{-1}A^-A$. Тогда минимум в задаче тропической оптимизации равен $\mu^{1/2}$, а все регулярные решения имеют вид

$$egin{aligned} oldsymbol{x} &= (oldsymbol{A}oldsymbol{A}^-)_\mu^*oldsymbol{v} \oplus \mu^{-1/2}oldsymbol{A}(oldsymbol{A}^-oldsymbol{A})_\mu^*oldsymbol{w}, \ oldsymbol{y} &= \mu^{-1/2}oldsymbol{A}^-(oldsymbol{A}oldsymbol{A}^-)_\mu^*oldsymbol{v} \oplus (oldsymbol{A}^-oldsymbol{A})_\mu^*oldsymbol{w}, \ oldsymbol{v} &\in \mathbb{X}^n. \end{aligned}$$

Решение задачи аппроксимации

Найдем решение задачи однораноговой \log -чебышёвской аппроксимации путем решения эквивалентной задачи оптимизации

$$\min_{oldsymbol{s},oldsymbol{t}} oldsymbol{s}^- oldsymbol{A}(oldsymbol{t}^-)^{\mathrm{T}} \oplus oldsymbol{t}^{\mathrm{T}} oldsymbol{A}^- oldsymbol{s}.$$

Теорема

Пусть A — положительная матрица, μ — спектральный радиус матрицы AA^- . Пусть $(AA^-)_\mu=\mu^{-1}AA^-$ и $(A^-A)_\mu=\mu^{-1}A^-A$. Тогда минимальная погрешность \log -чебышёвской аппроксимации матрицы A равна $\log\mu^{1/2}$, а все аппроксимирующие матрицы имеют вид st^{T} , где

$$egin{aligned} m{s} &= (m{A}m{A}^-)_{\mu}^* m{v} \oplus \mu^{-1/2} m{A} (m{A}^-m{A})_{\mu}^* m{w}, \ m{t}^{\mathrm{T}} &= (\mu^{-1/2}m{A}^- (m{A}m{A}^-)_{\mu}^* m{v} \oplus (m{A}^-m{A})_{\mu}^* m{w})^-, \end{aligned} m{v}, m{w} \in \mathbb{X}^n.$$

В частности, минимальная погрешность достигается, когда s- собственный вектор матрицы AA^- , а $t^{\rm T}=\mu^{1/2}(A^-s)^-$.

Трудоемкость решения: не более, чем $O(n^4)$

Решение задачи тропической оптимизации

Случай регулярной по столбцам матрицы

Для матрицы $oldsymbol{A} \in \mathbb{X}^{n \times n}$ требуется решить задачу тропической оптимизации

$$\min_{\boldsymbol{x},\boldsymbol{y}} \quad \boldsymbol{x}^{-} \boldsymbol{A} \boldsymbol{y} \oplus \boldsymbol{y}^{-} \boldsymbol{A}^{-} \boldsymbol{x}.$$

Теорема

Пусть A — регулярная по столбцам матрица, а μ — спектральный радиус матрицы AA^- . Пусть $(AA^-)_\mu = \mu^{-1}AA^-$.

Тогда минимум в задаче тропической оптимизации равен $\mu^{1/2}$, а все регулярные решения определяются условиями

$$egin{aligned} & oldsymbol{x} = & (oldsymbol{A}oldsymbol{A}^-)_\mu^*oldsymbol{u}, & oldsymbol{u} \in \mathbb{X}^n, \\ & \mu^{-1/2}oldsymbol{A}^-oldsymbol{x} \leq oldsymbol{y} \leq \mu^{1/2}(oldsymbol{x}^-oldsymbol{A})^-. \end{aligned}$$

Предложение

В случае регулярной по столбцам матрицы A множество решений задачи тропической оптимизации, описанное в этой теореме, совпадает с множеством решений, данным предыдущей теоремой.

Решение задачи аппроксимации

Найдем решение задачи однораноговой \log -чебышёвской аппроксимации путем решения эквивалентной задачи оптимизации

$$\min_{\boldsymbol{s},\boldsymbol{t}} \boldsymbol{s}^- \boldsymbol{A} (\boldsymbol{t}^-)^{\mathrm{T}} \oplus \boldsymbol{t}^{\mathrm{T}} \boldsymbol{A}^- \boldsymbol{s}.$$

Теорема

Пусть A — положительная матрица, μ — спектральный радиус матрицы AA^- . Пусть $(AA^-)_\mu = \mu^{-1}AA^-$.

Tогда минимальная погрешность \log -чебышёвской аппроксимации матрицы A равна $\log \mu^{1/2}$, а все аппроксимирующие матрицы имеют вид st^{T} , где

$$\begin{split} & \boldsymbol{s} = & (\boldsymbol{A}\boldsymbol{A}^-)_{\boldsymbol{\mu}}^*\boldsymbol{u}, & \boldsymbol{u} \in \mathbb{X}^n, \\ & \boldsymbol{\mu}^{-1/2}\boldsymbol{s}^-\boldsymbol{A} \leq \boldsymbol{t}^{\mathrm{T}} \leq \boldsymbol{\mu}^{1/2}(\boldsymbol{A}^-\boldsymbol{s})^-. \end{split}$$

Трудоемкость решения: не более, чем $O(n^4)$.

Пусть дана произвольная положительная матрица

$$\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Тогда

 минимальная погрешность одноранговой аппроксимации в log-чебышёвском смысле равна

$$\frac{1}{2}|\log(a_{11}a_{12}^{-1}a_{21}^{-1}a_{22})|,$$

• аппроксимирующая матрица единственна и имеет вид

$$\begin{pmatrix} (a_{11}^3 a_{12} a_{21} a_{22}^{-1})^{1/4} & (a_{11} a_{12}^3 a_{21}^{-1} a_{22})^{1/4} \\ (a_{11} a_{12}^{-1} a_{21}^3 a_{22})^{1/4} & (a_{11}^{-1} a_{12} a_{21} a_{22}^3)^{1/4} \end{pmatrix}.$$

Решение задач в общем виде

Обратно симметрические матрицы

Положительная матрица $m{A} \in \mathbb{X}^{n \times n}$ является обратно симметрической, если $m{A} = m{A}^-$.

При n=3 обратно симметрическую матрицу можно записать в виде

$$\mathbf{A} = \begin{pmatrix} 1 & a^{-1} & b^{-1} \\ a & 1 & c^{-1} \\ b & c & 1 \end{pmatrix}.$$

Тогда

 минимальная погрешность одноранговой аппроксимации в log-чебышёвском смысле равна

$$\frac{1}{3}|\log(ab^{-1}c)|,$$

• аппроксимирующая матрица единственна и имеет вид

$$\begin{pmatrix} 1 & (a^2bc^{-1})^{-1/3} & (ab^2c)^{-1/3} \\ (a^2bc^{-1})^{1/3} & 1 & (a^{-1}bc^2)^{-1/3} \\ (ab^2c)^{1/3} & (a^{-1}bc^2)^{1/3} & 1 \end{pmatrix}.$$

Заключение

Результаты:

- Исследована задача одноранговой аппроксимации положительных матриц с использованием расстояния Чебышёва в логарифмической шкале.
- Осуществлен переход от задачи минимизации \log -чебышёвского расстояния к эквивалентной задаче, которая может быть записана и решена в терминах тропической математики.
- Получены полные решения задачи тропической оптимизации для произвольной и регулярной по столбцам матриц.
- Показано, что в случае регулярной по столбцам матрицы полученные решения эквивалентны.
- Доказаны теоремы, описывающие все множество аппроксимирующих матриц в задачах одноранговой аппроксимации в log-чебышёвском смысле.
- Найден явный вид аппроксимирующей матрицы для произвольной положительной матрицы порядка 2 и обратно симметрической матрицы порядка 3.

Представление результатов на конференциях:

- 7-я Всероссийская научная конференция по проблемам информатики СПИСОК-2017 (Санкт-Петербург, 2017).
- Международная научная конференция по математическому моделированию MATHMODEL'17 (Боровец, Болгария, 2017).

Публикации по теме работы:

- Кривулин Н. К., Романова Е. Ю. Одноранговая аппроксимация положительных матриц с использованием методов тропической математики // Материалы 7-й всероссийской научной конференции по проблемам информатики СПИСОК-2017. СПб: Изд-во ВВМ, 2017. С. 529−535.
- Kpивулин H. K., Poманова E. Ю. Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики // 2017 Proceedings of International Scientific Conference Mathematical Modeling. Borovets, Bulgaria: 2017. Vol. 1/1. P. 33–35.
- Кривулин Н. К., Романова Е. Ю. Одноранговая аппроксимация положительных матриц на основе методов тропической математики // Вестник СПбГУ. Математика. 2018. Т. 5(63). Вып. 2. С. 225−239.