Welcome!

CIS 7000: Special Topics on Mobile and IoT Sensing

Mingmin Zhao

Lecture 2

Objectives of the Upcoming Three Lectures

Learn the fundamentals, applications, and implications of wireless localization and sensing

- 1. What are some motivating applications of localization and location services?
- 2. What are the unifying principles of wireless positioning?
- 3. How do systems like GPS, Wi-Fi positioning, Bluetooth ranging, and acoustic ranging work?
- 4. What is wireless (Wi-Fi) sensing?

What is Wireless Positioning (aka Localization)?

The process of obtaining a human or object's location using wireless signals

Applications:

- Navigation: both outdoors (GPS) and indoors (e.g., inside museum)
- Location based services: Tagging, Reminder, Ads
- Virtual Reality and Motion Capture
- Gestures, writing in the air
- Behavioral Analytics (Health, activities, etc.)
- Locating misplaced items (keys)
- Security (e.g., only want to give WiFi access to customers inside a
 - store)
- Delivery drones
- Contact tracing (Bluetooth, etc.)

What are the different modalities of obtaining location?

- Radio signals: GPS, Cellular, Bluetooth, WiFi
- Ultrasound signals: similar to those used in NEST
- Inertial sensors
- Cameras, LIDAR

Focus of this lecture

We will discuss the localization techniques in increasing order of sophistication

Who performs the localization?

 Device based: A device uses incoming signal from one or more "anchors" to determine its own location

Network based: Anchors
 (or Access points) use the
 signal coming from device
 to determine its location

Device modification? Computation? Communication?

1. Identity-based Localization

Idea: use the identity and known location of anchor objects

Examples:

WiFi indoor localization

Localization by mapping to one of the known locations.

Pros? Cons?

Idea:

- higher received power → closer
- lower received power → farther

We could extract more information about the **exact distance** from the measured received power. Need to understand how the signals propagate.

Wireless Signal are Waves

Channel equation:
$$h = \frac{1}{d} e^{j2\pi \frac{d}{\lambda}}$$

From power to distance

Trilaterațion from distance measurements

Pros? Cons?

Pros: Very simple, no hardware modifications

Pros: Very simple, no hardware modifications

Solution: Fingerprinting

Measure and records RSSI fingerprints at each location

Pros: Works with multipath, No need to know AP locations!

Cons: Changes in environment/movement → change RSSI!

Continuous training is needed. Lots of effort!

3. Phase of the signal

Cons: Cycle Ambiguity

4. Angle of Arrival (AoA)

Triangulation from <u>angular</u> measurements

Triangulation and Trilateration

5. Time-of-Flight (ToF)

Distance = Time of flight \times speed of light

Measure ToF → Get distance → Trilateration

5. Time-of-Flight (ToF)

Measure Time of Flight (ToF) from device to each AP

Challenge:

How do you know when signal was transmitted?

- Techniques to can get accurate ToF:
 - UWB: Ultra-Wide Band (e.g., Apple AirTag)
 - FMCW: Frequency Modulated Carrier Wave

6. Time-Difference-of-Arrival (TDoA)

State-of-the-Art Techniques?

Sophisticated Combinations of these techniques, e.g.,:

- Combine AoA with ToF
- Use circular antennas and combine with inertial sensing
- Perform synthetic aperture radar
- Synthesize measurements from multiple frequencies

• ...

GPS

distance = propagation delay x speed of light

How to Compute the Propagation Delay?

Each satellite has its own code

How to Compute the Propagation Delay?

Code arrives shifted by propagation delay

How to Compute the Propagation Delay?

Spike determines the delay use it to compute distance and localize

Objectives of the Upcoming Three Lectures

Learn the fundamentals, applications, and implications of wireless localization and sensing

- 1. What are some motivating applications of localization and location services?
- 2. What are the unifying principles of wireless positioning?
- 3. How do systems like GPS, Wi-Fi positioning, Bluetooth ranging, and acoustic ranging work?
 next lecture (case studies)
- 4. What is wireless (Wi-Fi) sensing?

Next class

- Mon Sep 11
- Device-based Localization
 - Required: Cricket
 - Optional: RADAR

Lab 0 is out. Due on Sep 17