明 細 書

ナノカーボン材料の製造方法、及び配線構造の製造方法

5 技術分野

本発明は、カーボンナノチューブ等のナノカーボン材料の製造方法、及びナノカーボン材料を配線に用いた配線構造の製造方法に関する。

背景技術

- 近年、いわゆるカーボンナノチューブ等のナノカーボン材料が注目されている。これらのナノカーボン材料は従来の炭素材料であるグラファイトやダイヤモンドと異なる物性を有しているため、電極の電子放出源、伝導性膜、電池電極等への応用が期待されている。また、ナノカーボン材料は配線用途としても適していると考えられる。上記カーボンナノチューブ等のナノカーボンの製造(合成)方法としては、気相合成法やアーク放電法が知られている。
 - 一方、上記ナノカーボン材料とは異なるが、新規なカーボン材料としてダイヤモンドライクカーボン(DLC)やカーボン膜が研究されている。従来、このDLCやカーボン膜は蒸着法(CVD、PVD)によって一般に製造されてきたが、最近、電解析出による製造方法が提案されている(ハオ・ウオン(Hao Wang)、
- 外4名、「デポジション・オブ・ダイヤモンドライク・カーボン・フィルムズ・バイ・エレクトリシス・オブ・メタノール・ソリューション (Deposition of Diamond-like carbon films by electrolysis of methanol solution)」, (米国), アプライド・フィジックス・レターズ (Applied Physics Letters), 1996年8月19日,69(8), p. 1074-1076、及び、ヨシカツ・ナンバ(Yoshikatsu Namba)、「アテンプト・トウ・グロー・ダイヤモンド・フェーズ・カーボン・フィルムズ・フロム・アン・オーガニック・ソリューション (Attempt to grow diamond phase carbon films from an organic solution)」, (米国), ジャーナル・オブ・バキューム・サイエンス・テクノロジー (Journal of vacuum science

technology), 1992年9/10月, A10 (5), p. 3368-3370

10

15

20

25

しかしながら、カーボンナノチューブ等のナノカーボン材料を電気化学的に製造する技術については、全く検討されていない。そして、カーボンナノチューブを気相合成するには約550℃の温度が必要とされるため、製造コストが大となったり、カーボンナノチューブの応用分野が制限されるという問題がある。例えばカーボンナノチューブを回路基板上に直接形成させて配線に用いようとする場合、回路基板の耐熱温度が低いために上記気相合成法を適用することは困難である。

本発明は上記の課題を解決するためになされたものであり、装置が簡易で、低温で製造が可能なナノカーボン材料の製造方法、及び配線構造の製造方法の提供を目的とする。

発明の開示

本発明者らは種々検討した結果、所定の陰極及び電解液を用いることで、ナノカーボン材料を電気分解によって、装置が簡易で、従来より低温(例えば常温)で製造できることを見出した。つまり、上記した目的を達成するために、本発明のナノカーボン材料の製造方法は、触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させることを特徴とする。

また、本発明のナノカーボン材料の製造方法は、触媒金属のイオンを含む電解液中で半導体を陰極として電気分解し、該半導体の表面に前記触媒金属を不均一に形成させる工程と、前記触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させる工程とを有することを特徴とする。

さらに、本発明のナノカーボン材料の製造方法は、半導体の表面に形成された 触媒金属をエッチングし、該半導体の表面に前記触媒金属を不均一に形成させる 工程と、前記触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む 電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を 形成させる工程とを有することを特徴とする。

本発明の配線構造の製造方法は、配線形成位置の両端にそれぞれ突状に形成さ

れた触媒金属を陰極及び/又は陽極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属間にナノカーボン材料を配線として形成させることを特徴とする。

5 図面の簡単な説明

図1は、本発明のナノカーボン材料の製造に用いて好適な電解装置の構成を示す図である。

図2は、ナノカーボン材料が電析する態様を模式的に示す図である。

図3は、ナノカーボン材料が電析する態様を模式的に示す別の図である。

- 10 図4(a)は、本発明の配線構造の製造方法を行う態様を示す工程図である。
 - 図4(b)は、図4(a)に続く図である。
 - 図5は、本発明の配線構造の製造方法を行う態様を示す別の図である。
 - 図6は、Niが不均一に形成された半導体基板のSEM像を示す図である。
 - 図7は、電析後の基板表面のSEM像を示す図である。
- 15 図8は、図7の部分拡大SEM像を示す図である。
 - 図9は、図8の部分拡大SEM像を示す図である。
 - 図10は、図9の部分拡大SEM像を示す図である。
 - 図11は、電析後の基板表面の別の場所のSEM像を示す図である。
 - 図12は、図11の部分拡大SEM像を示す図である。
- 20 図 1 3 は、電析物の T E M 像を示す図である。
 - 図14は、電析物の別の測定領域のTEM像を示す図である。
 - 図15は、図14の部分拡大TEM像を示す図である。
 - 図16は、電析後の別の基板表面のSEM像を示す図である。
 - 図17は、比較例における電析後の基板表面のSEM像を示す図である。
- 25 図18は、図17の部分拡大SEM像を示す図である。

発明を実施するための最良の形態

以下、本発明に係るナノカーボン材料の製造方法の実施の形態について説明する。

10

15

20

25

本発明に係るナノカーボン材料の製造方法は、触媒金属が不均一に形成された 半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触 媒金属の表面にナノカーボン材料を形成させるものである。

本発明により製造されるナノカーボン材料とは、0.1 nm程度~数100 nmのサイズの構造体からなるカーボン材料をいい、例えばカーボンナノチューブ(直径が0.1 nm~数10 nmの管状繊維状物が例示される)、カーボンナノワイヤー(直径が数100 nmの中実の繊維状物が例示される)、カーボンオニオン(直径が数 nm~数100 nmでタマネギ状に黒鉛層が数10~数100層積層した球状微粒子が例示される)、カーボンナノワイヤーの放射状集合体(カーボンナノワイヤが多数放射状に束ねられ、花のように拡がったもの)が挙げられる。特に、本発明は、カーボンナノチューブやカーボンナノワイヤー等、細長く繊維状の材料の製造に適している。

陰極に用いる半導体としては、シリコンが入手しやすく好ましいが、この他に ゲルマニウム等の半導体や、高抵抗の金属を用いることができる。又、シリコン を用いる場合は、不純物がドーピングされたものを用いると、電気抵抗が低くな るので好ましい。

この半導体の表面には触媒金属が不均一に形成しているが、ここでいう不均一形成とは半導体表面に例えば島状、粒状に分散して形成することをいい、触媒金属の形成部分が半導体に比べて導電性が高いために、電流がこの触媒金属の形成部分に集中し、電解液中の有機溶媒の炭素原子がこの形成部分を核として電析するものと考えられる。触媒金属は導電性を有するものであれば何でもよいが、例えばNi、Co、Fe、Al、Cu、Znを例示することができる。好ましくはNi、Co、Feがよく、特にNiが最も好ましく、次にCo、Feの順で好ましい。触媒金属は、半導体の表面に数nm~数10nm、好ましくは10nm程度の厚みで形成させるのが好ましい。なお、複数種類の触媒金属(例えばNiとFe)やこれらの合金を1つの半導体上に形成させてもよい。

半導体表面に不均一形成された個々の島状(又は粒状)の触媒金属の大きさは、その表面に主に形成されるナノカーボン材料の種類を決めると考えられる。例えば、個々の触媒金属の大きさ(径)を0.1~数10nm、好ましくは0.1

10

15

20

25

 $\sim 10\,\mathrm{nm}$ 、より好ましくは $0.1\sim 0.5\,\mathrm{nm}$ とすると、主にカーボンナノチューブが製造される。これは、いわゆるエッジ効果により触媒金属の縁部に電解電流が集中して該縁部に炭素が電析し、一方で触媒金属の中心部には電析し難くなり、管状のカーボンナノチューブが成長することが考えられる。また、例えば、個々の触媒金属の大きさ(径)を数 $100\,\mathrm{nm}$ 、好ましくは $100\sim 200\,\mathrm{nm}$ mとすると、主にカーボンナノワイヤーが製造される。このようにすると、径が大きくなるためにエッジ効果は生じず触媒金属の表面全体に電解電流が流れ、触媒金属の表面全体に炭素が電析し、中実のカーボンカーボンナノワイヤーが成長することが考えられる。なお、種々の大きさ(径)の触媒金属が半導体表面に存在する場合、その径に応じて各種のナノカーボン材料が形成される。

半導体表面に触媒金属を不均一に形成させる方法としては、例えば触媒金属のイオンを含む電解液中で半導体を陰極として電気分解し、半導体の表面に前記触媒金属を不均一に電析させる方法がある。この場合、電解液中の触媒金属イオン濃度を低くしたり、低電流密度で電解することにより、触媒金属を不均一形成させることができる。この場合、溶液中に溶解している金属イオンが全て基板表面(片面)に堆積したとすると、その膜厚が10nm程度になるような分量だけ、金属イオンを電解液に溶解すればよい。従って、電解液の量に応じて濃度が異なるので、上記条件に沿うよう適宜調整する。電解液としては、例えば上記触媒金属の硝酸塩(硝酸ニッケル、硝酸コバルト、硝酸第1鉄等)をアルコール(例えばエチルアルコール)に溶解したものを用いることができる。

半導体表面に触媒金属を不均一に形成させる他の方法としては、半導体の表面に触媒金属を形成し、この触媒金属をエッチングする方法がある。この場合、例えば半導体の表面にNi等の触媒金属をスパッタリングにより所定厚み形成し、これをエッチングガス(例えばアンモニアガス)中に置くことで、Niが部分的にエッチング除去される。

不均一に形成された個々の触媒金属の大きさ(径)を制御する方法としては、 上記電析の場合は、電解液中の金属イオンの量を多くすることで触媒金属を大き な粒とすることができる。上記エッチングの場合は、エッチング温度が高く、時 間が長い方が触媒金属が小さな粒となる。なお、いずれの場合も通常、触媒金属

25

の大きさはかなり広範囲に分布し、大きい粒の粒径は数 μ m、小さい粒の粒径は数nmであることが多い。

電解液に含まれる有機溶媒としては特に制限はないが、アルコール、ニトリル、ベンゼン、キシレンを例示することができ、好ましくはメタノールやエタノール等のアルコールや、メタンにトリルやエタンニトリル (アセトニトリル) 等の脂肪族ニトリルがよい。電解液は有機溶媒単体であってもよく、又、複数種類の有機溶媒を混合したものであってもよく、さらに、有機溶媒に水、電導助剤等を加えたものでもよい。

本発明は上記電解液を電気分解するものであり、陽極としては特に制限されないが、例えばカーボン電極、各種の不溶性陽極等を用いることができる。又、電解条件も特に制限されないが、例えば1~数10mA/cm²、好ましくは2~6mA/cm²の電流密度で直流電解すればよい。電解電圧(陰極と陽極間の電圧)は、電極間距離、電解液の電気電導度に応じて変化するが、好ましくは0.1 k V ~数10k V、より好ましくは0.1~5 k V とする。電解電圧をこのように高くすることで、有機溶媒中の炭素原子がアニオンとなって電析し易くなる可能性がある。又、交番電解してもよく、この場合は陰極と陽極のいずれか、好ましくは両方に上記半導体を用いればよい。なお、電解温度も特に制限はなく、電解液が沸騰しない温度、例えば室温~50℃程度とすればよい。電解による発熱を防止するため、適宜電解液を冷却してもよい。電解時間は電解条件によって変化するが、例えば1~10時間程度電解すればよい。

電気分解を行うには、例えば図1に示す電解装置を用いることができる。この図において、電解装置10は、電解槽2、マグネチックスターラ3、半導体基板からなる陰極4、陽極6、温度計7、DC電源8を備えている。電解槽2内には有機溶媒を含む電解液が入っている。陰極4のうち陽極6との対向面には触媒金属4aが不均一に形成されている。そして、電解により、有機溶媒中の炭素原子が触媒金属4a上に電析し、陽極6側へ成長してゆく。

ところで、電析したナノカーボン材料は、例えば触媒金属から機械的方法で剥いで回収してもよい。又、触媒金属を内包したナノカーボン材料や、触媒金属が 底部に形成されたナノカーボン材料を得ることができる。また、半導体上に電析

したままで使用してもよい。

図2、3に、ナノカーボン材料が電析する態様を模式的に示す。図2において、半導体基板40の表面に触媒金属40aが島状に形成され、既に述べたエッジ効果により触媒金属40aの縁部から陽極側(図の上方向)に向かってナノカーボン材料が成長し、管状のカーボンナノチューブが形成されている。又、図3においては、半導体基板41の表面に触媒金属41aが島状に形成され、この場合は触媒金属40aの表面全体(側面を含む)にナノカーボン材料が電析し、触媒金属を内包したカーボンオニオンが形成されている。

次に、本発明の配線構造の製造方法の一実施形態について説明する。本発明の 10 配線構造の製造方法は、上記ナノカーボン材料の製造方法と同様な手順により行 われるが、陰極及び陽極として、配線形成位置の両端にそれぞれ突状に形成され た触媒金属を用いる点が上記方法と異なっている。そして、本発明の配線構造の 製造方法においては、陰極及び陽極となる触媒金属間にナノカーボン材料を配線 として形成させるものであるが、これについて図4を参照して説明する。

15 図4において、2つの回路基板100、101の表面にはそれぞれ配線パターン200、201が形成されている(図4(a))。いま、配線パターン200の端部(右端)と、配線パターン201の端部(左端)とを配線して接続したいとする。この場合、まず配線形成位置の両端となる、配線パターン200の端部(右端)と配線パターン201の端部(左端)とに、それぞれ触媒金属からなる突部200a、201aを予め形成しておく。次に、少なくとも突部200a、201aを含む上記配線形成位置が、有機溶媒を含む電解液に浸漬(又は接触)するようにする。この場合、各回路基板100、101全体を上記電解液に浸漬してもよく、又、上記配線形成位置のみが電解液に浸漬されるような電解セルを用いてもよい。

25 そして、この状態で突部200a、201aをそれぞれ陰極, 陽極 (いずれが 陰極であってもよいがこの実施形態では仮に突部200aを陰極とする)として 電気分解すると、突部200aに電析したナノカーボン材料が、突部201a側 に向かって成長し、やがてナノカーボン材料は突部201aに接続する。このようにして、突部200a、201a間にナノカーボン材料が配線300として形

15

20

25

成される(図4(b))。なお、電気分解は直流電解でもよく、又、交番電解でもよい。なお、実際には、突部200aが配線パターン200と導通し、突部201aが配線パターン201と導通しているので、電源を各配線パターン200、201に接続して電解すればよい。なお、直流電解を行う場合、アノード側の突部には、不溶性の金属やカーボン材料を電極として形成するのが好ましい。

突部200a、201aの大きさ(径)は、上記したナノカーボン材料の製造方法における触媒金属の大きさ(径)と同等でよく、径を制御することにより、ナノカーボン材料の種類も変化する点についても、上記したナノカーボン材料の製造方法の場合と同様である。突部200a、201aの高さは、例えば数nm~数10nmとすればよい。要は、突部200a、201aに電流が集中すればよい。

次に、本発明の配線構造の製造方法の他の実施形態について、図5を参照して説明する。図5において、配線パターン210には突部210aが形成され、配線パターン211には突部211aが形成されている。いま、配線パターン210、211を対向させ、突部210aと突部211aの間を配線したいとする。なお、この図において、配線パターン210は配線パターン211の上側に位置し、突部210aは突部211aの延長線上にあるものとする。

そして、少なくとも突部210aと突部211aの間に上記電解液を満たした状態で、電源を各配線パターン210、211に接続して電解すると、上記図4の場合と同様に、突部210aと突部211aの間にナノカーボン材料が配線301として形成される。なお、突部210aが突部211aの延長線からある程度ずれていても、ナノカーボン材料が配線として形成される。

以上のように、本発明の配線構造の製造方法によれば、ナノカーボン材料を用いて常温等の低温で配線ができ、また、従来は極めて困難であった微細な配線を簡易に行うことができる。すなわち、配線形成位置における突状部に電流が集中するので、配線したい部分に選択的にナノカーボン材料を電析させて配線として形成できる。

(実施例)

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限

定されるものではない。

<実施例1>

1. 半導体基板表面への触媒金属の形成

p型のシリコン結晶からなる半導体基板(抵抗率:0.50cm、電極面積 $50mm^2$)の表面に、スパッタリングによって厚み30nmのNiを形成した後、アンモニアガス雰囲気(13.33kPa、800C)に $10分間置いた。これにより、Niが部分的にエッチング除去されて粒状のNiが残存した半導体基板が得られた。Niが不均一に形成された半導体基板をSEM(走査型電子顕微鏡)で撮影した像を図6に示す。図の白い部分が粒状のNiであり、<math>0.1\sim0$. 5μ m程度の大きさ(径)の粒状Niが主に見られるが、さらに倍率を高くした SEM 像で数 10nm粒径の粒状Niも確認した(不図示)。このエッチング法により作製した半導体基板を基板 1 とする。

2. 電気分解による陰極への電析・

前記図1に示した電解装置を準備した。陰極には上記基板1を用いた。陽極に は $5 \,\mathrm{mm}$ 外径のカーボン棒を用いた。そして、電解液としてメタンニトリル (純度 99.5 vol%, 試薬特級) $50 \,\mathrm{mL}$ を用い、電流密度 $4 \,\mathrm{mA/cm^2}$ 、電極間距離 $5 \,\mathrm{mm}$ 、電解電圧 $1 \,\mathrm{kV}$ 、電解液量 $50 \,\mathrm{mL}$ で電解を行い、陰極表面に電析物を得た。電解は室温で行ったが、電解後も液温度は $2 \,\mathrm{cm}$ $3 \,\mathrm{cm}$ しか上昇しなかった

20 < 実施例 2 >

この実施例では、下記の電解液により上記半導体基板へのNiの不均一析出と、ナノカーボン材料の電析とを同時に行った。

まず、硝酸Ni4.4×10⁻²mgをエタノール(純度 99.5 vol%,試薬特級)2.5mLに溶かした後、これをエタノール50mLに溶かして電解液を作製した。この電解液中で、上記電解装置を用い、上記半導体基板を陰極とし、上記力ーボン棒を陽極として、上記実施例1と同一の電解条件で電解し、陰極表面に電析物を得た。電解時間は8時間とした。この電解では、初期にNiが半導体基板上に粒状に析出し、次にNi粒上にナノカーボン材料が電析したものと考えられる。

<比較例>

15

20

基板として、Niを形成させずに上記半導体基板を用いたことと、電解液としてエタノールを用いたことの他は、上記実施例1とまったく同様にして電解を行い、陰極表面に電析物を得た。

5 各実施例及び比較例で得られた電析物の同定を次の方法で行った。まず、電析物が得られた陰極のSEM(走査型電子顕微鏡:日本電子製 JSM-5600 (電子線15kV)) 測定を行い、また、電析物のTEM (透過型電子顕微鏡:日本電子製JEM-2010F(電子線200kV)) 測定を行った。また、上記SEM測定と同じ測定領域におけるEDS(Energy dispersive spectroscopy:エネルギー分散型X線分光 装置、オックスフォード製 Link ISIS (電子線15kV))測定を行った。結果は図7~図18、及び表1にまとめた通りである。

まず、図7は、実施例2における電析後の基板表面のSEM像であり、図8は図7の部分拡大SEM像であり、図9は図8の部分拡大SEM像であり、図10は図9の部分拡大SEM像である。各図中、白い部分が析出物を示し、黒い部分はアモルファス的カーボン膜の堆積物を示す。この析出物は半導体基板の所定部分を核としてスパイク状(針状)に成長していることがわかる。

図11は、実施例2における電析後の基板表面の別の場所のSEM像であり、図12は図11の部分拡大SEM像である。各図中、白い部分が析出物を示し、この析出物は繊維状に成長していることがわかる。さらに、上記各図7,11の測定試料と同一の測定領域について、EDXにより元素分析を行ったところ、各図の白い部分が炭素であることが判明した。以上の図7~図12より、実施例2においては直径約100nmで繊維状の炭素構造物が生成していることがわかり、これはカーボンナノワイヤであるということができる。

図13は、実施例2における電析物のTEM像である。この図において、直径 が10~20nm程度で、黒鉛層が多数積層したタマネギ状の炭素構造体が生成していることがわかる。また、上記EDX分析の結果からこの構造体の組成は炭素であり、これらのことから、この析出物はカーボンオニオンであると同定することができる。

図14は、実施例2における電析物のうち、図13と別の測定領域におけるT

EM像であり、図15は図14の部分拡大TEM像である。図15によれば、この繊維状の析出物は、黒鉛層が多数積層しており、また芯部は空洞であることがわかる。そして、図15によれば、各黒鉛層の層間隔はおよそ0.33 \sim 0.36 nmで、外径約30nm、内径約2nmであると読み取れた。通常、カーボンナノチューブの層間隔は0.34nmといわれており、これより、この析出物はカーボンナノチューブであると同定することができる。

図16は、実施例1における電析後の基板表面のSEM像であり、図の中央部やや右よりの部分には、Niを核としてスパイク状の電析物が見られる。この電析物もEDXによれば炭素からなることが判明したので、カーボンナノワイヤであると考えられる。

図17は、比較例における電析後の基板表面のSEM像である。図の白い部分と黒い部分は、いずれもアモルファス的カーボン膜であり、膜厚の相違(膜表面の凹凸)により、白い部分と黒い部分が撮影されたと考えられる。また、図18は、図17の部分拡大SEM像である。膜状物が基板表面のほぼ全面に析出したが、カーボンナノチューブやカーボンナノワイヤー等の繊維状の炭素材料は見られなかった。なお、この膜状物のラマン分光を行ったところ、ダイヤモンド的カーボンに見られるようなシャープな信号は観測されなかったため、これはアモルファス構造のカーボン膜であると考えられる。

以上の結果を表1にまとめる。

20

25

10

15

表 1

	触媒金属の	電解液	電析物		
	形成状態	电浒仪	カーホンナノチューフ	カーホンナノワイヤ	カーホンオニオン
実施例1	不均一(エッチング法)	メタンニトリル	未確認	あり	未確認
実施例2	不均一(電解法)	エタノール	あり	あり	・あり
比較例	なし	メタンニトリル	なし	なし	なし

表1から明らかなように、実施例1、2の場合、カーボンナノチューブ、カーボンナノワイヤーや、カーボンオニオンが得られた。一方、比較例の場合、アモルファス構造の炭素膜層が得られたが、カーボンナノチューブやカーボンナノワイヤーが得られなかった。

WO 2005/003409 PCT/JP2003/016831

12

本発明のナノカーボン材料の製造方法によれば、電気分解法という簡易な方法により、装置が簡易で、かつ従来より低温(例えば常温)でナノカーボン材料を製造することができ、特にカーボンナノチューブやカーボンナノワイヤー等の繊維状のナノカーボン材料の製造に適している。

5

10

15

20

請求の範囲

- 1. 触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させることを特徴とするナノカーボン材料の製造方法。
- 2. 触媒金属のイオンを含む電解液中で半導体を陰極として電気分解し、該半導体の表面に前記触媒金属を不均一に形成させる工程と、前記触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させる工程とを有することを特徴とするナノカーボン材料の製造方法。
- 3. 半導体の表面に形成された触媒金属をエッチングし、該半導体の表面に前記触媒金属を不均一に形成させる工程と、前記触媒金属が不均一に形成された半導体を陰極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金属の表面にナノカーボン材料を形成させる工程とを有することを特徴とするナノカーボン材料の製造方法。
- 4. 配線形成位置の両端にそれぞれ突状に形成された触媒金属を陰極及び/又は 陽極とし、有機溶媒を含む電解液中で電気分解することにより、前記触媒金 属間にナノカーボン材料を配線として形成させることを特徴とする配線構造 の製造方法。

図3

図4 (a)

図 7

図8

図 9

図10

0.5 μ m

図11

図12

図13

図14

20nm

図15

図16

図17

50 μ m

図18

 $10 \mu \text{ m}$

特許協力条約に基づく国際出願願書 原本(出願用) - 印刷日時 2003年12月24日 (24.12.2003) 水曜日 13時36分54秒

	7,7,2,7			
VIII-5-1	不利にならない開示又は新規 性喪失の例外に関する申立て 不利にならない開示又は新規性 喪失の例外に関する申立て(規 則4.17(v)及び51の2.1(a)(v))	本国際出願に関し、		
		横道 治男は、 本国際出願の請求項に記載された対象が以下のよう に開示されたことを申し立てる。		
VIII-5-1	開示の種類	その他:講演会		
(i) VIII-5-1 (ii)	開示の日付:	2003年03月29日(29.03.2003)		
VIII-5-1 (iii)	開示の名称:	「液相中における室温でのナノカーボンの合成」		
VIII-5-1	開示の場所:	第50回応用物理学関係連合講演会		
(iv) VIII-5-1	開示の種類	その他: シンポジウム		
(i) VIII-5-1 (ii)	開示の日付:	2003年01月08日 (08.01.2003)		
VIII-5-1	開示の名称:	「電気化学法によるナノカーポンの合成」		
(iii) VIII-5-1 (iv)	開示の場所:	第24回フラーレン・ナノチューブ総合シンポジウ ム		
VIII-5-1 (v)	本申立ては、次の指定国のため になされたものである。:	すべての指定国		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/16831

A. CLASS Int.	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl7 C25B1/00, C01B31/02, H01L21/60, H01L23/52			
According to	International Patent Classification (IPC) or to both nat	tional classification and IPC		
B. FIELDS	SEARCHED			
Minimum do	ocumentation searched (classification system followed by	by classification symbols)		
Int.	Cl ⁷ C25B1/00, C01B31/02, H01L2	1/60, H01L23/52		
Documentati	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched	
l Titer	yo Shinan Koho 1922-1996 Jitsuyo Shinan Koho 1971-2004	Toroku Titaura Chinan Kah	o 1994–2004	
Electronic d	ata base consulted during the international search (name	e of data base and, where practicable, sear	rch terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
A	Haruo YOKOMICHI, "Ekisochu ni okeru Shitsuon deno Nano Carbon no Gosei", 2003 Nen Shunki Dai 50 Kai Oyo Butsurigaku Kankei Rengo Koenkai Koen Yokoshu, 27 March, 2003 (27.03.03), No.2, page 1030		1-4	
A	Haruo YOKOMICHI, Electrochemical Deposition of Nanosize-Carbons, Dai 24 Kai Fullerene Nanotube Sogo Symposium Koen Yoshishu, 08 January, 2003 (08.01.03), page 36		1-4	
A	JP 10-167714 A (Osaka Gas Co., Ltd.), 23 June, 1998 (23.06.98), Full text (Family: none)		1-4	
	er documents are listed in the continuation of Box C.	See patent family annex.		
* Specia	categories of cited documents:	"T" later document published after the inte	ernational filing date or	
conside	ent defining the general state of the art which is not ered to be of particular relevance	priority date and not in conflict with t understand the principle or theory und	lerlying the invention	
date	"E" earlier document but published on or after the international filing "X" document of particular relevance; the claimed invention cannot be			
	"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone			
cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is				
"O" docum means	"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such			
"P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed				
Date of the actual completion of the international search 05 April, 2004 (05.04.04) Date of mailing of the international search report 20 April, 2004 (20.04.04)				
	nailing address of the ISA/	Authorized officer		
Japanese Patent Office				
Facsimile N	o.	Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/16831

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 03/000590 A1 (Japan Science and Technology Corp.), 03 January, 2003 (03.01.03), Full text & JP 2003-012312 A	1-4
A	JP 2003-115259 A (Sony Corp.), 18 April, 2003 (18.04.03), Full text (Family: none)	1-4
E,A	WO 04/000728 A1 (Honda Motor Co., Ltd.), 31 December, 2003 (31.12.03), Full text & JP 2004-026532 A	1-4
E,A	JP 2004-071654 A (Semiconductor Energy Laboratory Co., Ltd.), 04 March, 2004 (04.03.04), Full text (Family: none)	1-4

	HAVING THE		10021
A. 発明の原	属する分野の分類(国際特許分類(IPC))		
Int. Cl' C 2 5 B 1 / 0 0 C 0 1 B 3 1 / 0 2 H 0 1 L 2 1 / 6 0 H 0 1 L 2 3 / 5 2			
B. 調査を行	テった分野	,	
調査を行った	最小限资料(国際特許分類(IPC))		
Int. Cl' C 2	5B1/00、C01B31/02、H01L2	21/60、H01L23/52	
最小限資料以外	外の資料で調査を行った分野に含まれるもの		
	日本国実用新案公報	1922-1996年	•
}	日本国公開実用新案公報 日本国登録実用新案公報		i
	日本国実用新案登録公報		
国際調査で使	用した電子データベース (データベースの名称、	調査に使用した用語)	
C. 関連す	ると認められる文献		
引用文献の			関連する
カテゴリー*			請求の範囲の番号
A	横道 治男、液相中における室温での	ワナノカーボンの合成、2003年	1-4
ļ	春季第50回応用物理学関係連合講演会	会講演予稿集、2003.03.27、	
	No. 2, p. 1030		
A	Haruo Yokomichi, Electrochemical	Denosition of Nanosiza-Carh	1-4
	ons、第24回フラーレン・ナノチューブ総合シンポ	シ [*] ウム 謙 演 要 旨 生 2003 01 08	1-4
·	p. 36		
A	JP 10-167714 A (大阪	灰瓦斯株式会社)1998.06.23、	1-4
	全文 (ファミリーなし)		
X C欄の続	きにも文献が列挙されている。		 ¢/T ≠ , ≠> 077 ·
* 引用文献	のカテゴリー 連のある文献ではなく、一般的技術水準を示す	の日の後に公表された文献	من المامل المامل
もの	産、2000 大阪ではなく、一般的技術が存在が、	「T」国際出願日又は優先日後に公表で 出願と矛盾するものではなく、	
	願日前の出願または特許であるが、国際出願日	の理解のために引用するもの	
	公表されたもの 主張に疑義を提起する文献又は他の文献の発行	「X」特に関連のある文献であって、	当該文献のみで発明
「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以			
文献(理由を付す) トの文献との 当業者にとって自則である組合せに			
「O」 口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」 国際出願日前で、かつ優先権の主張の基礎となる出願 「&」 同一パテントファミリー文献			
国際調査を完	了した日 05.04.2004	国際調査報告の発送日 20.4	4. 2004
国際調査機関の名称及びあて先		特許庁審査官(権限のある職員)	4E 8617
日本国特許庁 (ISA/JP) 加藤 浩一 L			
	郵便番号100-8915 都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3423

	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO 03/000590 A1 (科学技術振興事業団)、2003.0 1.03、全文 & JP2003-012312 A	
A	JP 2003-115259 A (ソニー株式会社) 2003.04.1 8、全文 (ファミリーなし)	1-4
E, A	WO 04/000728 A1 (本田技研工業株式会社) 2003.1 2.31、全文 & JP 2004-026532 A	1-4
E, A	JP 2004-071654 A (株式会社半導体エネルギー研究所) 2004.03.04、全文 (ファミリーなし)	1-4