PSALTer results panel

Wave operator

	⁰ ⁺ <i>h</i> [⊥]	o <u>⁺</u> _h ∥	${}^{0^{+}}_{\bullet}\mathcal{A}_{a}{}^{\parallel}$	°. As ^{⊥t}	${}^{0^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\!\mathcal{A}_{S}{}^{\parallel}$	°. As th	^{0⁻} Æa [∥]
⁰ . h [⊥] †	Θ	Θ	0	0	$\frac{i a \cdot k}{0}$	$-\frac{i a \cdot k}{4 \sqrt{2}}$	Θ
[⊙] * <i>h</i> †	0	Θ	$\frac{i a \cdot k}{2 \sqrt{2}}$	0	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	Θ
^{0⁺} Æa [∥] †	0	$-\frac{i a \cdot k}{2 \sqrt{2}}$	$-\frac{a}{0}$	0	0	0	Θ
^{0⁺} ∕S/s ^{⊥t} †	Θ	Θ	0	0	$\frac{a}{0}$	$-\frac{a_{\stackrel{\circ}{0}}}{2\sqrt{2}}$	0
${}^{0^{\scriptscriptstyle +}}_{\scriptscriptstyle \bullet}\mathcal{A}_{\scriptscriptstyle S}{}^{\parallel}$ †	$-\frac{1}{4} i a \cdot k$	$\frac{i a \cdot k}{4 \sqrt{3}}$	0	$\frac{a}{0}$	0	$-\frac{a_{\stackrel{\bullet}{0}}}{2\sqrt{2}}$	Θ
${}^{0^{\scriptscriptstyle +}}_{}\mathcal{A}_{S}{}^{\perp h}$ †	$\frac{i a \cdot k}{4 \sqrt{2}}$	$-\frac{i a \cdot k}{4 \sqrt{6}}$	0	$-\frac{a_{\stackrel{.}{0}}}{2\sqrt{2}}$	$-\frac{a_{\stackrel{\circ}{0}}}{2\sqrt{2}}$	$\frac{a}{0}$	Θ
^{0⁻} - <i>Я</i> а [∥] †	0	0	0	0	0	0	$-\frac{a}{0}$

$-\frac{u}{\frac{\theta}{2}}$	${}^{1^{+}}_{\bullet}\mathcal{A}_{a}{}^{\parallel}_{\alpha\beta}$	${}^{1^{+}}_{\bullet}\mathcal{R}_{a}{}^{\perp}{}_{\alpha\beta}$	${}^{1^{\scriptscriptstyle +}}_{}\mathcal{A}_{\operatorname{S}}{}^{\perp}{}_{\alpha\beta}$	$^{1}_{\bullet}h^{\perp}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{a}{}^{\parallel}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{a}{}^{\perp}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{S}{}^{\perpt}{}_{\alpha}$	${}^{1^{-}}_{\bullet}\mathcal{A}_{S}{}^{\parallelt}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{S}{}^{\mathtt{lh}}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{S}{}^{\parallelh}{}_{\alpha}$
${}^{1^{+}}_{\bullet}\mathcal{A}_{a}{}^{\parallel}\uparrow^{\alpha\beta}$	$ \frac{1}{4} \left(-a \cdot -c \cdot k^2 \right) $	$-\frac{a_{\stackrel{\circ}{0}}}{2\sqrt{2}}$	0	Θ	0	0	Θ	0	0	Θ
$^{1^{+}}_{\bullet}\mathcal{A}_{a}^{\perp}\dagger^{\alpha\beta}$	$-\frac{a_{\stackrel{\circ}{0}}}{2\sqrt{2}}$	Θ	0	Θ	Θ	0	0	0	0	Θ
${}^{1^{+}}_{\bullet}\mathcal{A}_{S}{}^{\perp}\dagger^{\alpha\beta}$	0	0	$\frac{a}{0}$	Θ	Θ	0	Θ	0	Θ	0
$\frac{1}{\bullet}h^{\perp}\uparrow^{\alpha}$	0	0	0	Θ	$\frac{i a. k}{4 \sqrt{2}}$	Θ	$-\frac{i a \cdot k}{4 \sqrt{6}}$	$\frac{1}{4} i \sqrt{\frac{5}{6}} a_{0} k$	$-\frac{ia.k}{4\sqrt{3}}$	$-\frac{ia.k}{4\sqrt{6}}$
${}^{1}\mathcal{A}_{a}{}^{\parallel}\dagger^{\alpha}$	0	0	0	$-\frac{i a \cdot k}{4 \sqrt{2}}$	$\frac{1}{4} \left(-a \cdot -c \cdot k^2 \right)$	$\frac{a_{\stackrel{\bullet}{0}}}{2\sqrt{2}}$	0	0	Θ	0
$^{1}_{\cdot}\mathcal{R}_{a}^{\perp}\dagger^{\alpha}$	0	0	0	Θ	$\frac{a_{\stackrel{\circ}{0}}}{2\sqrt{2}}$	0	0	0	0	0
${}^{1}_{\bullet}\mathcal{A}_{S}{}^{\mathtt{t}}\dagger^{\alpha}$	Θ	0	0	$\frac{i a \cdot k}{4 \sqrt{6}}$	Θ	0	$-\frac{a}{0}$	$\frac{\sqrt{5} \ a_{\stackrel{\circ}{0}}}{6}$	$-\frac{a_{\stackrel{\circ}{0}}}{6\sqrt{2}}$	$-\frac{a}{6}$
${}^{1^{-}}_{\bullet}\mathcal{A}_{S}{}^{\parallelt}\dagger^{\alpha}$	0	0	0	$-\frac{1}{4} i \sqrt{\frac{5}{6}} a_{0} k$	Θ	0	$\frac{\sqrt{5} \ a_{0}}{6}$	$\frac{a}{0}$ 3	$-\frac{1}{6} \sqrt{\frac{5}{2}} a_{0}$	$-\frac{\sqrt{5} \ a_{\stackrel{\circ}{\theta}}}{6}$
1 - \mathcal{A}_{s} $^{\perp h}$ $^{\alpha}$	0	0	0	$\frac{i a \cdot k}{4 \sqrt{3}}$	Θ	0	$-\frac{a_{\stackrel{\circ}{0}}}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} a_{0}$	$\frac{a}{0}$ 3	$\frac{a_{\frac{1}{0}}}{6\sqrt{2}}$
-				ia.k			<i>a</i> .	√E a	<i>a</i> .	E a

$\frac{5 a}{12}$	$2^{+}_{\bullet}h^{\parallel}_{\alpha\beta}$	$^{2^{+}}\mathcal{A}_{a}^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\bullet}\mathcal{A}_{S}^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\cdot}\mathcal{A}_{S}^{\perp}{}_{\alpha\beta}$	$^{2^{-}}\mathcal{A}_{a}^{\parallel}_{\alpha\beta\chi}$	$^{2^{-}}\mathcal{A}_{S}^{\parallel}_{\alpha\beta\chi}$	
$ \begin{array}{ccc} 2^{+}_{h} \parallel & \uparrow^{\alpha\beta} \\ 2^{+}_{\bullet} \mathcal{A}_{a} \parallel & \uparrow^{\alpha\beta} \\ 2^{+}_{\bullet} \mathcal{A}_{s} \parallel & \uparrow^{\alpha\beta} \\ 2^{+}_{\bullet} \mathcal{A}_{s} \perp & \uparrow^{\alpha\beta} \end{array} $	0	$-\frac{i a \cdot k}{4 \sqrt{2}}$	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	Θ	Θ	
${}^{2^{+}}_{\bullet}\mathcal{A}_{a}^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i a \cdot k}{4 \sqrt{2}}$	$\frac{a}{0}$	0	0	0	Θ	
${}^{2^{+}}_{\bullet}\mathcal{A}_{S}^{\parallel}\uparrow^{\alpha\beta}$	$\frac{i a \cdot k}{4 \sqrt{3}}$	0	$-\frac{a}{\frac{0}{2}}$	Θ	Θ	Θ	
${}^{2^{+}}_{\bullet}\mathcal{A}_{S}^{\perp}\dagger^{\alpha\beta}$	$-\frac{i a \cdot k}{4 \sqrt{6}}$	0	0	$\frac{a}{\frac{\theta}{\theta}}$	0	0	
${}^{2^{-}}\mathcal{A}_{a}^{\parallel} \uparrow^{\alpha\beta\chi}$ ${}^{2^{-}}\mathcal{A}_{s}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0	0	$\frac{a}{\frac{0}{4}}$	0	
${}^{2^{-}}_{\bullet}\mathcal{A}_{S}^{\parallel} \dagger^{\alpha\beta\chi}$	0	0	Θ	Θ	Θ	$\frac{a}{\frac{\theta}{4}}$	3- As α,
						$^{3}\mathcal{A}_{s}^{\parallel}$ † $^{\alpha\beta\chi}$	$-\frac{a}{\frac{\theta}{2}}$

Saturated propagator

	${\stackrel{0^+}{\cdot}}\mathcal{T}^\perp$	$\overset{0^+}{\boldsymbol{\cdot}}\mathcal{T}^\parallel$	⁰⁺ Wa [∥]	°Ws ^{1t}	^{0⁺} Ws [∥]	^{0⁺} Ws ^{⊥h}	0 ${}^{-}W_{a}{}^{\parallel}$
${\stackrel{0^+}{\cdot}}\mathcal{T}^\perp$ †	$-\frac{36 k^2}{a_{\cdot 0} (16+3 k^2)^2}$	$\frac{4 \sqrt{3}}{16 a + 3 a k^2}$	$\frac{2 i \sqrt{6} k}{16 a.+3 a. k^2}$	$-\frac{72 i k}{a \cdot \left(16+3 k^2\right)^2}$	$\frac{8 i k (19+3 k^2)}{a_0 (16+3 k^2)^2}$	$-\frac{4 i \sqrt{2} k (10+3 k^2)}{a_0 (16+3 k^2)^2}$	0
^{0⁺} ∵″†	$\frac{4 \sqrt{3}}{16 a + 3 a k^2}$	$\frac{4}{a_{\stackrel{\bullet}{0}} k^2}$	$\frac{2i\sqrt{2}}{a \cdot k}$	$\frac{8 i \sqrt{3}}{16 a. k+3 a. k^3}$	$-\frac{8 i}{\sqrt{3} \left(16 a_{\cdot k} + 3 a_{\cdot k} k^{3}\right)}$	$-\frac{8 i \sqrt{\frac{2}{3}}}{16 a. k+3 a. k^{3}}$	0
⁰ ⁺Wa †	$-\frac{2 i \sqrt{6} k}{16 a.+3 a. k^2}$	$-\frac{2i\sqrt{2}}{a \cdot k}$	0	$\frac{4 \sqrt{6}}{16 a +3 a k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16 a_{0} + 3 a_{0} k^{2}}$	$-\frac{8}{\sqrt{3}\left(16a_{0}+3a_{0}k^{2}\right)}$	0
^{0⁺} Ws ^{⊥t} †	$\frac{72 i k}{a \cdot \left(16+3 k^2\right)^2}$	$-\frac{8 i \sqrt{3}}{16 a \cdot k + 3 a \cdot k^3}$	$\frac{4 \sqrt{6}}{16 a + 3 a k^2}$	$-\frac{144}{a_{0}\left(16+3 k^{2}\right)^{2}}$	$\frac{16(19+3 k^2)}{a_{0}(16+3 k^2)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	0
⁰⁺ Ws †	$-\frac{8 i k (19+3 k^2)}{a_{0} (16+3 k^2)^2}$	$\frac{8i}{\sqrt{3}\left(16a.k+3a.k^3\right)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16 a_{0} + 3 a_{0} k^{2}}$	$\frac{16\left(19+3k^2\right)}{a_0\left(16+3k^2\right)^2}$	$-\frac{16(35+6k^2)}{3a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	0
⁰⁺ Ws ^{⊥h} †	$\frac{4 i \sqrt{2} k \left(10+3 k^2\right)}{a \cdot \left(16+3 k^2\right)^2}$	$\frac{8 i \sqrt{\frac{2}{3}}}{16 a_0 k + 3 a_0 k^3}$	$-\frac{8}{\sqrt{3}\left(16a_{0}+3a_{0}k^{2}\right)}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{32 \left(13+3 k^2\right)}{3 a_0 \left(16+3 k^2\right)^2}$	0
⁰⁻ Wa [∥] †	0	0	0	0	0	0	$-\frac{2}{a}$

0	а αр	αμ	з ир	-, α	α	α	3 α	³ a	9 α	α
$^{1^{+}}_{\cdot}W_{a}^{\parallel}\dagger^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_{\stackrel{\bullet}{0}}}$	0	0	0	0	0	0	0	Θ
$\dot{W}_{a}^{\perp} \uparrow^{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_{\stackrel{\circ}{0}}}$	$\frac{2\left(a + c \cdot k^2\right)}{a \cdot 2}$	0	0	0	0	0	0	0	0
$^{1^{+}}_{\bullet}W_{S}^{\perp}\dagger^{\alpha\beta}$	Θ	0	$\frac{4}{a}$	0	0	Θ	Θ	0	0	Θ
$^{1}_{ullet}\mathcal{T}^{\perp}$ † lpha	Θ	0	Θ	$\frac{2 k^{2} \left(a_{0} + c_{4} k^{2}\right)}{a_{0}^{2} \left(2 + k^{2}\right)^{2}}$	$\frac{2 i \sqrt{2} k}{2 a + a \cdot k^2}$	$\frac{i k (4+k^2) \left(a \cdot + c \cdot k^2\right)}{a \cdot \left(2+k^2\right)^2}$	$-\frac{i\left(2c_{4}k^{5}+a_{6}k\left(6+5k^{2}\right)\right)}{\sqrt{6}a_{6}^{2}\left(2+k^{2}\right)^{2}}$	$\frac{i \sqrt{\frac{5}{6}} k}{2 a + a \cdot k^2}$	$\frac{i k \left(c_{4} k^{4}-2 a_{0} (3+k^{2})\right)}{\sqrt{3} a_{0}^{2} (2+k^{2})^{2}}$	$\frac{i \sqrt{\frac{2}{3}} k}{2 a \cdot a \cdot k^2}$
¹⁻wa [∥] † ^α	Θ	0	Θ	$-\frac{2i\sqrt{2}k}{2a\cdot a\cdot a\cdot k^2}$	0	$\frac{\sqrt{2} \left(4+k^2\right)}{a_{0}\left(2+k^2\right)}$	$-\frac{2 k^2}{\sqrt{3} \left(2 a + a \cdot k^2\right)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	0
1 $^{-}$ W_{a} $^{\perp}$ $^{\alpha}$	Θ	0	0	$-\frac{i k (4+k^2) (a_0+c_1 k^2)}{a_0^2 (2+k^2)^2}$	$\frac{\sqrt{2} \left(4+k^2\right)}{a_{0}\left(2+k^2\right)}$	$\frac{(4+k^2)^2 \left(a_0 + c_1 k^2\right)}{2 a_0^2 (2+k^2)^2}$	$\frac{k^2 \left(a_{\stackrel{.}{0}} \left(-2+k^2\right)-2 c_{\stackrel{.}{4}} k^2 \left(4+k^2\right)\right)}{2 \sqrt{6} a_{\stackrel{.}{0}}^2 \left(2+k^2\right)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a. +2 a. k^2}$	$\frac{10 a_0 k^2 + 4 \left(a_0 + c_1\right) k^4 + c_1 k^6}{2 \sqrt{3} a_0^2 \left(2 + k^2\right)^2} .$	$-\frac{k^2}{\sqrt{6}\left(2a_{\stackrel{.}{\Theta}} + a_{\stackrel{.}{\Theta}}k^2\right)}$
¹⁻Ws ^{⊥t} † ^α	0	0	Θ	$\frac{i\left(2c_{4}k^{5}\!+\!a_{\stackrel{\circ}{0}}k\left(6\!+\!5k^{2}\right)\right)}{\sqrt{6}a_{\stackrel{\circ}{0}}^{2}\left(2\!+\!k^{2}\right)^{2}}\;\;-$	$-\frac{2 k^2}{\sqrt{3} \left(2 a + a k^2\right)}$	$\frac{k^{2} \left(a_{\stackrel{.}{0}} \left(-2+k^{2}\right)-2 c_{\stackrel{.}{4}} k^{2} \left(4+k^{2}\right)\right)}{2 \sqrt{6} a_{\stackrel{.}{0}}^{2} \left(2+k^{2}\right)^{2}}$	$\frac{4 c_{.} k^{6} - a_{.0} (76 + 52 k^{2} + 3 k^{4})}{12 a_{.0}^{2} (2 + k^{2})^{2}}$	$\frac{\sqrt{5} \left(10+3 k^2\right)}{12 a_0 \left(2+k^2\right)}$	$\frac{-c_{\cdot k}^{6} + a_{\cdot 0}^{2} (-2+k^{2})}{3 \sqrt{2} a_{\cdot 0}^{2} (2+k^{2})^{2}}$	$\frac{1}{-2 a \cdot -\frac{8 a \cdot }{0} - \frac{\theta}{2+3 k^2}}$
1 w_{s} $^{\parallel t}$ $^{\alpha}$	Θ	0	0	$-\frac{i\sqrt{\frac{5}{6}}k}{2a_0+a_0k^2}$	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_{0} (2+k^2)}$	$\frac{1}{12 a}$	$-\frac{\sqrt{\frac{5}{2}}}{6 a_0+3 a_0 k^2}$	$-\frac{\sqrt{5}}{6 a}_{0}$
¹-ws ^{1h} †	Θ	0	0	$\frac{i k \left(-c_{\frac{4}{4}} k^4 + 2 a_{\frac{6}{6}} (3 + k^2)\right)}{\sqrt{3} a_{\frac{6}{6}}^2 (2 + k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a + a k^2}$	$\frac{10 a_{\circ} k^2 + 4 \left(a_{\circ} + c_{4}\right) k^4 + c_{4} k^6}{2 \sqrt{3} a_{\circ}^{2} (2 + k^2)^2}$	$\frac{-c_{\frac{1}{4}}k^{6}+a_{\frac{0}{6}}(-2+k^{2})}{3\sqrt{2}a_{\frac{0}{6}}^{2}(2+k^{2})^{2}}$	$-\frac{\sqrt{\frac{5}{2}}}{6 a.+3 a. k^2}$	$\frac{c_{\cdot k}^{6} + 4 a_{\cdot 0}^{2} \left(17 + 14 k^{2} + 3 k^{4}\right)}{6 a_{\cdot 0}^{2} \left(2 + k^{2}\right)^{2}}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_{0} (2+k^2)}$
1 W_{s} $^{\parallel h}$ \dagger^{α}	Θ	0	0	$-\frac{i\sqrt{\frac{2}{3}}k}{2a\cdot +a\cdot k^2}$	0	$-\frac{k^2}{\sqrt{6}\left(2a_{\stackrel{.}{0}}+a_{\stackrel{.}{0}}k^2\right)}$	$\frac{1}{-2 a \cdot -\frac{8 a \cdot \theta}{2 + 3 k^2}}$	$-\frac{\sqrt{5}}{6 a}_{0}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_{0} (2+k^2)}$	$\frac{5}{3 a}$

3 a .	$\mathcal{T}^{\parallel}_{\alpha\beta}$	$^{2^{+}}W_{a}^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\cdot}W_{s}^{\parallel}_{\alpha\beta}$	${\stackrel{2^{\scriptscriptstyle +}}{\cdot}} {\mathcal W}_{{\mathsf S}^{^{\perp}} \alpha\beta}$	${}^{2^{-}}_{\bullet}W_{a}{}^{\parallel}{}_{\alpha\beta\chi}$	$^{2}W_{s}\ _{\alpha\beta\chi}$	
$ \begin{array}{c} \stackrel{2^{+}}{\cdot} \mathcal{T}^{\parallel} + \alpha^{\beta} \\ \stackrel{2^{+}}{\cdot} w_{a}^{\parallel} + \alpha^{\beta} \\ \stackrel{2^{+}}{\cdot} w_{s}^{\parallel} + \alpha^{\beta} \\ \stackrel{2^{+}}{\cdot} w_{s}^{\perp} + \alpha^{\beta} \end{array} $	$-\frac{8}{a_{0} k^{2}}$	$-\frac{4i\sqrt{2}}{a.k\atop 0}k$	$\frac{4i}{\sqrt{3} a.k}$	$\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$	0	0	
$^{2^{+}}W_{a}^{\parallel}\dagger^{\alpha\beta}$	$\frac{4i\sqrt{2}}{a.k}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_{0}}$	$\frac{4}{\sqrt{3} \ a_{0}}$	0	Θ	
$^{2^{+}}W_{S}^{\parallel}\dagger^{\alpha\beta}$	$-\frac{4i}{\sqrt{3}}a_{0}k$	$\frac{2\sqrt{\frac{2}{3}}}{a_{0}}$	$-\frac{8}{3 a_{\bullet}}$	$-\frac{2\sqrt{2}}{3a_{\stackrel{\circ}{0}}}$	0	Θ	
$^{2^{+}}_{\bullet}W_{S}^{\perp}\dagger^{\alpha\beta}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	$\frac{4}{\sqrt{3}}a_{\stackrel{\circ}{0}}$	$-\frac{2\sqrt{2}}{3a_{\bullet}}$	$\frac{8}{3a_{\bullet}}$	0	0	
$2^{-}W_{a}^{\parallel} + \alpha^{\beta \chi}$ $2^{-}W_{s}^{\parallel} + \alpha^{\beta \chi}$	0	0	0	0	$\frac{4}{a}$	0	
2 $\mathcal{W}_{S}^{\parallel}$ $\dagger^{\alpha\beta\chi}$	0	0	Θ	Θ	0	$\frac{4}{a}$	3-W _s "
						$3^{-}W_{S}^{\parallel} \uparrow^{\alpha\beta\chi}$	$-\frac{2}{a}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k \cdot \mathcal{W}_{S}^{\parallel} + 2 k \cdot \mathcal{W}_{S}^{\perp h} - 6 i \cdot \mathcal{T}^{\perp} = 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}_{ \beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$k \stackrel{0^+}{\cdot} \mathcal{W}_{S}^{\perp t} + 2 i \stackrel{0^+}{\cdot} \mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \tau^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} w^{\alpha\beta\chi}$	1
$6 k \cdot 1 \cdot W_a^{\perp \alpha} + 2 k \cdot 1 \cdot W_s^{\parallel h^{\alpha}} + k \cdot 1 \cdot W_s^{\parallel t^{\alpha}} + 3 k \cdot 1 \cdot W_s^{\perp t^{\alpha}} + 12 i \cdot 1 \cdot T^{\perp \alpha} = 0$	$ \begin{vmatrix} 4 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \mathcal{W}^{\alpha \beta}_{\beta} = 4 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + 2 \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta} + \partial_{\delta} \partial^{\delta} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi}_{\chi} $	3
$k \stackrel{1}{\cdot} \mathcal{W}_{S}^{\perp h^{\alpha}} - 6 i \stackrel{1}{\cdot} \mathcal{T}^{\perp^{\alpha}} = k \left(3 \stackrel{1}{\cdot} \mathcal{W}_{a}^{\perp^{\alpha}} + \stackrel{1}{\cdot} \mathcal{W}_{S}^{\perp t^{\alpha}} \right)$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta}$	3
Total expected gauge generators:		8

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: $\left| -\frac{p^2}{a_0} > 0 \right|$ Polarisations: 2

Unitarity conditions