

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 77

A. MECANICĂ

Se consideră accelerația gravitațională g =10 m/s²

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Impulsul unui corp are valoarea $p=8N\cdot s$ iar energia sa cinetică este $E_c=16J$. Masa corpului este:

a. 2 kg

b. 1 ka

c. 4 kg

d. 8 kg

2. Lucrul mecanic efectuat de forța elastică comprimarea unui resort inițial nedeformat are expresia:

 $a. \quad L = -kx$

b. $L = \frac{kx}{2}$

c. $L = -\frac{kx^2}{2}$

d. $L = \frac{kx^2}{2}$

3. Graficele din figura alăturată descriu mișcările a două mobile, I și II. Mobilele au plecat din:

a. același punct în același moment

b. puncte diferite la momente diferite

c. același punct la momente diferite

d. puncte diferite în același moment

4. Daca legea de mişcare a unui mobil are expresia: $x = 3 + 7t + 2t^2$ atunci accelerația lui este:

a. 0

b $7\frac{m}{s^2}$

c. $2\frac{m}{s^2}$

d. $4\frac{m}{s^2}$

5. Un punct material cu masa m=25kg este supus acțiunii unei forțe care variază în timp conform graficului alăturat. Corpul pornește din repaus. Viteza corpului dupa t=10s de la începerea mişcării este:

b. $10\frac{m}{s}$

c. $15\frac{m}{}$

d. $20\frac{m}{a}$

II. Rezolvați următoarele probleme:

1 Pentru sistemul mecanic din figură, în care firul și scripetele sunt ideale, se cunosc: m = M = 2kg,

 $\sin \alpha = 0.6$ și $\mu = 0.25$. Se consideră $\sqrt{3.2} = 1.79$.Determinați:

- **a.** accelerația cu care corpul de masă M urcă pe plan;
- b. forța de tensiune din firul de legătură;
- c. forța ce acționează asupra axului scripetelui din figură.

2. Un corp având viteza $v_0 = 10$ m/s şi masa $m_1 = 50g$, care se deplasează pe direcție orizontală, ciocnește plastic un corp de masă $m_2 = 0.2 kg$, suspendat de un fir cu lungimea $\ell = 80 \, cm$ aflat inițial în repaus. Determinați:

- a. viteza v a corpului format în urma ciocnirii plastice;
- b. valoarea căldurii degajate prin ciocnire;
- c. înălțimea la care urcă corpul format în urma ciocnirii plastice.

15puncte

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

- ♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ◆Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 77

B. ELECTRICITATE ŞI MAGNETISM

Permeabilitatea magnetică a vidului are valoarea $\mu_0 = 4\pi \cdot 10^{-7} \, N / A^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect

15 puncte

- 1. Unitatea de măsură în S.I. a rezistivității electrice a unui conductor este:
- a. Ωm^{-1}
- **b.** Ωm

- c. Ωm^2
- d. $\Omega^{-1}m$
- 2. Dependența rezistivității electrice a unui conductor de temperatură este dată de relația:
- **a.** $\rho = \rho_0 \alpha t$
- **b.** $\rho = \rho_0 (1 \alpha t)$
- $\mathbf{c.}\ \rho = \rho_0 (1 + \alpha t)$
- **d.** $\rho = \frac{\rho_0}{1+\rho_0}$
- 3. Câmpul magnetic generat de un curent ce trece printr-o spiră de rază r are în centrul spirei expresia:
- a. $\frac{\mu I}{2r}$
- b. $\frac{\mu I}{2\pi r}$

c. $\frac{\mu I}{4\pi r}$

- d. $\frac{\mu}{n}$
- 4. Două baterii, având fiecare t.e.m. E şi rezistența interioară r sunt conectate în paralel şi debitează pe un consumator cu rezistența R. Intensitatea curentului electric prin rezistorul R este:
- **a.** $I = \frac{E}{R \perp r}$
- **b.** $I = \frac{E}{R + r/2}$
- $c. I = \frac{2E}{R+r}$
- $d. \quad I = \frac{E}{R + 2r}$

- 5. Unitatea de măsură în S.I. pentru fluxul magnetic este:
- a. Henry
- b. Coulomb
- c. Amper
- d. Weber

II. Rezolvați următoarele probleme:

- 1. Circuitul electric a cărui diagramă este ilustrată în figura alăturată conține o baterie cu t.e.m. E și rezistență internă neglijabilă și trei rezistori având rezistențele electrice $R_1=20\,\Omega$, $R_2=60\,\Omega=R_3$. Știind că intensitatea curentului prin sursă este 2A, determinați:
- a. rezistența electrică echivalentă a circuitului exterior;
- b. valoarea diferenței de potențial electric dintre punctele M și N;
- ${\bf c.}$ puterea electrică disipată în rezistorul cu rezistența $\,R_1\,.$

15 puncte

- 2. O spiră circulară conductoare, cu aria suprafeței $S=10cm^2$ și rezistența electrică $R=1\Omega$, se află într-un câmp magnetic uniform de inducție B=80mT, planul spirei formând unghiul $\alpha=30^\circ$ cu liniile câmpului magnetic. Determinați:
- a. fluxul magnetic prin suprafata spirei;
- **b.** t.e.m. medie indusă în spiră daca aceasta se rotește astfel încat să devină paralelă cu liniile de câmp, durata rotației fiind $\Delta t = 1ms$.
- c. sarcina electrică ce străbate o sectiune transversală a firului spirei în codnițiile de la pct b.

15 puncte

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 77

C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Se consideră: pentru gazul ideal diatomic $C_V = \frac{5}{2}R$, $N_A = 6,023 \cdot 10^{23} \, mol^{-1}$, $R \cong 8,31 \, J \, / (mol \cdot K)$, $k = 1,38 \cdot 10^{-23} \, J \, / K$ și

 $C_p - C_V = R.$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Într-un proces izoterm al gazului ideal:

a. $\Delta U = 0$

b. $L = \nu R \Delta T$

 $\mathbf{c.} Q < L$

d. gazul nu schimbă caldură cu mediul

exterior

2. Un gaz evoluează între două stări de echilibru conform graficului alăturat. Lucrul mecanic efectuat de gaz este:

a. 500 J

b. 500 c

c. 600 J

d. 600 J

 $p(10^{5}N/m^{2})$

3 Un gaz ideal aflat într-o anumită stare, își dublează volumul în diferite transformări. Lucrul mecanic este maxim pentru o destindere:

a. izocoră

b. izotermă

c. adiabatică

d. izobară

4. Exponentul adiabatic γ pentru un gaz ideal diatomic este:

a. 1,2

b. 1,3

c. 1,4

d. 0,8

5. Tinând seama de semnificația simbolurilor unităților de măsură din manuale, unitatea măsură în S.I. a energiei interne este:

a. K

h.

c. Pa

d. kmol

II. Rezolvați următoarele probleme:

1. În corpul de pompă al unei mașini termice se găsește aer care la $T_1=400K$ ocupă volumul $V_1=2l$ și exercită o forță F=10kN asupra pistonului. Gazul suferă o destindere izotermă ca în figura alăturată, ajungând în starea 2 în care volumul este $V_2=2,6l$, apoi o comprimare izobară până în starea 3 de unde revine în starea inițială 1 printr-o incălzire izocoră.

a. Reprezentați grafic în coordonate V-T și p-T succesiunea de transformări 1-2-3-1.

b. Determinați parametrii de stare în stările 1, 2, 3, cunoscând aria suprafeței pistonului $S = 200cm^2$.

c. Calculați randamentul ciclului Carnot care ar funcționa între temperaturile extreme atinse de gaz în ciclul 1-2-3-1.

15puncte

2. Un balon de volum $V=2 \cdot 10^{-3} \, m^3$ conține azot diatomic ($\mu=28 \frac{g}{mol}$) la temperatura T=300 K și presiunea

 $p = 1.38 \cdot 10^4 N / m^2$. Determinați:

a numărul moleculelor de azot din vas;

b. masa azotului din vas cunoscând masa molară a azotului;

c. căldura necesară încălzirii izobare până la temperatura T'=600K dacă pentru azot.

15 puncte

3

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

- ◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ◆Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 77

D.OPTICĂ

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

- 1. O condiție necesară producerii fenomenului de reflexie totală a luminii este:
- **a.** $i < \ell$
- **b.** $n_2 > n_1$
- **c.** $\sin i < \sin \ell$
- d $i > \ell$
- 2. Un copil priveşte o piatră de pe fundul unui pârâu cu apa limpede, perpendicular pe suprafața apei. Adâncimea apei este 80cm. iar indicele de refracție este $n = \frac{4}{3}$. Distanța dintre piatră şi imaginea acesteia observată de copil, este:
- a. 10 cm
- **c**. 40 cm

- 3 Alegeți afirmația falsă referitoare la oglinzile sferice:
- a. pentru un obiect real oglinda convexă formează întotdeauna imagine virtuală, dreaptă si micșorată

b.
$$\frac{1}{x_2} + \frac{1}{x_1} = \frac{2}{R}$$

c.
$$\beta = -\frac{x_2}{x_1}$$

- d. pentru un obiect real oglinda concavă formează întotdeauna imagine reală și răsturnată
- 4. La incidență normală pe o rețea de difracție, condiția de maxim este:

a.
$$l \sin \alpha = k\lambda$$

b.
$$n \sin \alpha = k\lambda l$$

c.
$$\frac{1}{n}\sin\alpha = k\frac{\lambda}{2}$$
 d. $\frac{1}{l}\sin\alpha = k\lambda$

d.
$$\frac{1}{l}\sin\alpha = k\lambda$$

5. Determinați distanța focală a lentilei pentru care este trasat graficul alăturat. S-a notat cu d distanța dintre obiect și lentilă, iar β reprezintă mărirea liniară transversală.

- a. 2 cm
- **b.** 4 m
- **d.** -4 m

II. Rezolvați următoarele probleme:

- 1. Două lentile având distanțele focale $f_1=60cm$, respectiv $f_2=-40cm$, acolate, sunt centrate pe același ax. Un obiect liniar având dimensiunea $y_1 = 13mm$ se află la 10cm înaintea primei lentile, perpendicular pe axa optică principală. Determinați:
- a. convergența lentilei cu distanța focală f₁;
- b. pozitia imaginii finale;
- c. dimensiunea imaginii date de sistemul celor două lentile alipite.

15 puncte

- 2. Un fascicul de lumină monocromatică este incident normal pe un paravan cu două fante aflate la distanța 2l = 0.5mm una de alta. Pe un ecran aflat la D=2.5m se formează N=10 franje de interferență pe o lungime de d=3cm. Determinati:
- a. lungimea de undă a radiatiei:
- b. deplasarea sistemului de franje pe ecran, dacă în fata uneia dintre fante se introduce o lamă de sticlă (n = 1.5) de grosime $e = 10 \mu m$, paralelă cu paravanul;
- **c.** valoarea interfranjei dacă dispozitivul se introduce în apă (n = 4/3).

15 puncte