ORF 307: Lecture 6

Linear Programming: Chapter 5 Duality

Robert Vanderbei

Feb 28, 2017

Slides last edited on March 1, 2017

Resource Allocation

Given a cache of raw materials and a factory for turning these raw materials into a variety of finished products, how many of each product type should we make so as to maximimze profit?

This is a resource allocation problem:

where

 $c_j = \text{profit per unit of product } j \text{ produced}$ $b_i = \text{units of raw material } i \text{ on hand}$ $a_{ij} = \text{units raw material } i \text{ required to produce one unit of prod } j.$

Closing Up Shop

If we produce one unit less of product j, then we *free up* a_{ij} units of raw material i. Selling these unused raw materials for $y_1, y_2, \ldots y_m$ dollars/unit yields

$$a_{1j}y_1 + a_{2j}y_2 + \cdots + a_{mj}y_m$$
 dollars.

Only interested if this exceeds lost profit on each product j:

$$a_{1j}y_1 + a_{2j}y_2 + \dots + a_{mj}y_m \ge c_j, \quad j = 1, 2, \dots, n.$$

Consider a buyer offering to purchase our entire inventory.

Subject to above constraints, buyer wants to minimize cost:

Duality

Every Problem:

maximize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i$ $i=1,2,\ldots,m$ $x_j \geq 0$ $j=1,2,\ldots,n,$

Has a Dual:

minimize
$$\sum_{i=1}^m b_i y_i$$
 subject to $\sum_{i=1}^m y_i a_{ij} \geq c_j$ $j=1,2,\ldots,n$ $y_i \geq 0$ $i=1,2,\ldots,m.$

Dual of Dual

Primal Problem:

maximize
$$\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i$ $i=1,\ldots,m$ $x_j \geq 0$ $j=1,\ldots,n$

Original problem is called the *primal problem*.

A problem is defined by its data (notation used for the variables is arbitrary).

Dual in "Standard" Form:

-maximize
$$\sum_{i=1}^m -b_i y_i$$
 subject to $\sum_{i=1}^m -a_{ij} y_i \leq -c_j$ $j=1,\ldots,n$ $y_i \geq 0$ $i=1,\ldots,m$

Dual is "negative transpose" of primal.

Theorem Dual of dual is primal.

Weak Duality Theorem

If (x_1, x_2, \ldots, x_n) is feasible for the primal and (y_1, y_2, \ldots, y_m) is feasible for the dual, then

$$\sum_{j} c_j x_j \le \sum_{i} b_i y_i.$$

Proof.

$$\sum_{j} c_{j} x_{j} \leq \sum_{j} \left(\sum_{i} y_{i} a_{ij} \right) x_{j}$$

$$= \sum_{ij} y_{i} a_{ij} x_{j}$$

$$= \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$

$$\leq \sum_{i} b_{i} y_{i}.$$

Gap or No Gap?

An important question:

Is there a gap between the largest primal value and the smallest dual value?

Answer is provided by the Strong Duality Theorem (coming later).

Simplex Method and Duality

A Primal Problem:

Its Dual:

Notes:

- Dual is negative transpose of primal.
- Primal is feasible, dual is not.

Use primal to choose pivot: x_4 enters, w_3 leaves.

Make analogous pivot in dual: z_4 leaves, y_3 enters.

Second Iteration

After First Pivot:

Note: negative transpose property intact.

Again, use primal to pick pivot: x_3 enters, w_2 leaves.

Make analogous pivot in dual: z_3 leaves, y_2 enters.

Third Iteration

After Second Pivot:

Note: negative transpose property intact.

Again, use primal to pick pivot: x_2 enters, w_1 leaves.

Make analogous pivot in dual: z_2 leaves, y_1 enters.

After Third Iteration

Primal:

• Is optimal.

maximize
$$\zeta = 26/5 + -22/5 x_1 + -1/5 w_1 + -4/5 w_2 + -2/5 w_3$$

 $x_2 = 19/10 - -6/5 x_1 - 7/5 w_1 - -9/10 w_2 - -1/5 w_3$
 $x_3 = 9/10 - -6/5 x_1 - 2/5 w_1 - 1/10 w_2 - -1/5 w_3$
 $x_4 = 3/5 - 6/5 x_1 - -2/5 w_1 - 2/5 w_2 - 1/5 w_3$

Dual:

- Negative transpose property remains intact.
- Is optimal.

maximize -ξ	=	-26/5	+	-19/10	Z ₂	+	-9/10	Z ₃	+	-3/5	Z ₄
Z ₁	=	22/5	-	6/5	Z ₂	-	6/5	Z ₃	-	-6/5	Z ₄
y ₁	=	1/5	-	-7/5	Z ₂	-	-2/5	Z ₃	-	2/5	Z ₄
У2	=	4/5	-	9/10	Z ₂	-	-1/10	Z ₃	-	-2/5	Z ₄
V ₃	=	2/5	_	1/5	Z ₂	_	1/5	Z ₃	-	-1/5	Z ₄

Conclusion

Simplex method applied to primal problem (two phases, if necessary), solves both the primal and the dual.

Algebra of a Pivot

A primal pivot:

$$\xrightarrow{\mathsf{pivot}}$$

$d - \frac{bc}{a}$	c/a	
-b/a	1/a	

The corresponding dual pivot:

-d	-b	
-c	-a	

 $\xrightarrow{\mathsf{pivot}}$

$-d + \frac{bc}{a}$	b/a	
-c/a	-1/a	

Strong Duality Theorem

Conclusion on previous slide is the essence of the *strong duality theorem* which we now state:

Theorem. If the primal problem has an optimal solution,

$$x^* = (x_1^*, x_2^*, \dots, x_n^*),$$

then the dual also has an optimal solution,

$$y^* = (y_1^*, y_2^*, \dots, y_m^*),$$

and

$$\sum_{j} c_j x_j^* = \sum_{i} b_i y_i^*.$$

Paraphrase:

If primal has an optimal solution, then there is no duality gap.

Duality Gap

Four possibilities:

- Primal optimal, dual optimal (no gap).
- Primal unbounded, dual infeasible (no gap).
- Primal infeasible, dual unbounded (no gap).
- Primal infeasible, dual infeasible (infinite gap).

Example of *infinite gap*:

maximize
$$2x_1 - x_2$$
 subject to $x_1 - x_2 \le 1$ $-x_1 + x_2 \le -2$ $x_1, x_2 \ge 0$.