ASP Assignment 2

- 1. Let $\Omega = \{1, 2, 3\}$, $\mathcal{F}_1 = \{\{1\}, \{2, 3\}, \Omega, \emptyset\}$ and $\mathcal{F}_2 = \{\{1, 2\}, \{3\}, \Omega, \emptyset\}$. Show that:
 - (a) \mathcal{F}_1 and \mathcal{F}_2 are both σ -fields.
 - (b) $\mathcal{F}_1 \cup \mathcal{F}_2$ is not a σ -field.
- 2. Let $\Omega = \{1, 2, 3, 4, 5\}$ and $\mathcal{U} := \{\{1, 2, 3\}, \{3, 4, 5\}\}$. Determine $\sigma(\mathcal{U})$.
- 3. Let $\mathcal{B}(\mathbb{R})$ be the Borel σ -field. Show that
 - (a) $\emptyset \in \mathcal{B}(\mathbb{R}), \mathbb{R} \in \mathcal{B}(\mathbb{R}),$
 - (b) $\{c\} \in \mathcal{B}(\mathbb{R}), \forall c \in \mathbb{R},$
 - (c) For all $a \in \mathbb{R}, b \in \mathbb{R}$ with a < b,

$$[a,b], [a,b), (a,b) \in \mathcal{B}(\mathbb{R}),$$

- (d) $\mathbb{N} \in \mathcal{B}(\mathbb{R})$, $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$, where \mathbb{N} is the set of all natural numbers and \mathbb{Q} the set of all rational numbers.
- 4. Let e_1, e_2, \ldots be a sequence of independent, identically distributed random variables each with zero mean and variance σ_e^2 . Let $Y_1 = \theta_0 + e_1$, and then for t > 1 define Y_t recursively by $Y_t = \theta_0 + Y_{t-1} + e_t$. Here θ_0 is a constant. The process $\{Y_t : t = 1, 2, \ldots\}$ is called a random walk with drift.
 - (a) Show that Y_t may be rewritten as $Y_t = t\theta_0 + e_t + e_{t-1} + \cdots + e_1$.
 - (b) Find the mean function for $\{Y_t\}$.
 - (c) Find the autocovariance function for $\{Y_t\}$.
 - (d) Does $\{Y_t\}$ have independent and stationary increments? Explain.
- 5. Suppose that ξ, η are uncorrelated random variables with $\mathbb{E}(\xi) = \mathbb{E}(\xi) = 0$ and $\operatorname{Var}(\xi) = \operatorname{Var}(\eta) = \sigma^2$. Let $\lambda > 0$ be a constant. Define

$$X_n := \xi \cos(\lambda n) + \eta \sin(\lambda n).$$

Find $\mathbb{E}(X_n)$ and $Cov(X_n, X_m)$.

6. Suppose that ξ, η are independent random variables and $\xi, \eta \sim N(0, 1)$. Let $\theta > 0$ be a constant. Define

1

$$X_t := \xi \cos(\theta t) + \eta \sin(\theta t), \quad t \in \mathbb{R}.$$

Determine the finite-dimensional distributions of the process $\{X_t : t \in \mathbb{R}\}$.