Implicit Neural Networks

Autoencoders: User Manual

Béla J. Szekeres, PhD and Ferenc Izsák, PhD

Contents

Construction of the network	1
User manual for the program	4
Pseudocodes	12
List of Figures	14
List of Tables	14

Construction of the network

Here, we describe a somewhat more general structure, the results of the manuscript can be directly generalized. The neural network is represented as a directed hypergraph. A neuron in a network is a subset of (hyper)vertices, called the inputs of the neuron. We assume that two different neurons have no common input, and that any vertex is the input of a neuron. The edges go from the neurons to the vertices, i.e. to the inputs of other neurons, and have weights. Let there be K neurons in the network, of which N are output neurons, for simplicity let these be the ones with the largest index. We call a neuron input-type (or input neuron) if we write a component of the input vector x to one of the inputs of the neuron, but starting from (1) we reinterpret this.

The operation of the network can be understood as the propagation of electrical stimuli again, similar to the processes in the brain. The weights interpreted on the edges of the graph of the network can be represented as the strength of the synapse corresponding to a given edge. The greater the weight of the edge, the more the stimulus spreads through it. The evaluation of the network for an input vector $x \in \mathbb{R}^L$ is as follows. Let the *i*-th neuron have n_i inputs, denote the value of the *j*-th input by $a_{i[j]}$ and let $n = \sum_{i=1}^{K} n_i$. Then the index i[j] can be thought of as an integer between 1 and n.

Given this input, let the activation function $f_{i[j]}: \mathbb{R} \to \mathbb{R}$. Frequently used examples are $f_{i[j]}(a) = \tanh(a)$ or $f_{i[j]}(a) = a$. If the j-th input of the neuron with index i receives a stimulus of magnitude y_l with the weight $w_{i[j],l}$ and a constant stimulus $b_{i[j]}$ (also called bias) applied to it, the cumulated input $a_{i[j]}$ is

$$a_{i[j]} = \sum_{l} w_{i[j],l} y_l + b_{i[j]} + \hat{x}_{i[j]}, \tag{1}$$

where the operator $: \mathbb{R}^L \to \mathbb{R}^n$ is used to write a vector $x \in \mathbb{R}^L$ to the input of the neurons. We will not optimize this mapping and will usually write input values for only a few neurons, which can be called input neurons. The activation value of the j-th input of the i-th neuron and the activation value of the i-index neuron are given by

$$y_{i[j]} = f_{i[j]}(a_{i[j]}), \quad y_i = \prod_{j=1}^{n_i} y_{i[j]}.$$
 (2)

We call a network cyclic, or implicit, if the directed graph representing the connections of the neurons in the network contains a directed cycle, otherwise it is called feedforward, or acyclic. Figure 1. shows an example of a network structure, and Figure 2. shows the activation value of a neuron in this network.

The formulas in (1)-(2) define the following system of equations.

$$\begin{cases} a(x) = Wy(x) + \hat{x} + b \\ y(x) = f(a(x)) \end{cases}$$
 (3)

Figure 1: Example: an Implicit network with three input neurons (index 1-3) and one output neuron (index 6). We can also include a neuron with index 0, this corresponds to the bias, the bias parameters are only given for the 4 index vertex for simplicity.

Figure 2: Calculation of the activation value of the neuron with index 6 of the implicit neural network shown in Figure 1. The satisfying equations are: $a_{6[1]} = w_{6[1],4}y_4 + w_{6[1],5}y_5 + b_{6[1]}$, $a_{6[2]} = w_{6[2],6}y_6 + w_{6[2],5}y_5 + b_{6[2]}$, $y_{6[1]} = f_{6[1]} \left(a_{6[1]} \right)$, $y_{6[2]} = f_{6[2]} \left(a_{6[2]} \right)$, $y_6 = y_{6[1]}y_{6[2]}$.

Here, summarized $a(x), b \in \mathbb{R}^n$, $y(x) \in \mathbb{R}^K$, $W \in \mathbb{R}^{n \times K}$, $: \mathbb{R}^L \to \mathbb{R}^n$ and $x \in \mathbb{R}^L$. Let the dimension n of the first equation be divided into K disjoint sets corresponding to the inputs of the neurons. The sets themselves correspond to the neurons. The activation values of the neurons are defined in the following line.

$$y_{i[j]} = f_{i[j]}(a_{i[j]}), \quad y_i = \prod_{j=1}^{n_i} y_{i[j]}$$
 (4)

We also have M pairs of training samples (x,t) where $x \in \mathbb{R}^L$ are input and $t \in \mathbb{R}^N$ are target vectors. At the p-th pair of samples, i.e., at the input $x^{(p)}$, the error is defined as

$$\mathcal{E}(p) = \frac{1}{2} \sum_{j=K-N+1}^{K} (y_j(x^{(p)}) - \tilde{t}_j^{(p)})^2, \tag{5}$$

where $\tilde{t}_j^{(p)}$ denotes the corresponding component of p-th target vector $t^{(p)} = (t_1^{(p)}, \dots, t_N^{(p)}) \in \mathbb{R}^N$, which should be compared with the value of $y_j(x^{(p)})$. That is, let the operator $\tilde{t}: \mathbb{R}^N \to \mathbb{R}^K$ defined by the formula $\tilde{t} = (0, \dots, 0, t_1, \dots, t_N)^T \in \mathbb{R}^K$. The average error \mathcal{E} over all pairs of training samples is their average over the entire dataset, i.e.,

$$\mathcal{E} = \frac{1}{M} \sum_{p=1}^{M} \mathcal{E}(p). \tag{6}$$

We investigate the task to determine W and b such that the error given by (6) is minimal.

Solving (3) by a fixed point iteration yields the vector $a = (a_1, \ldots, a_n)^T$ of neuron input values and the vector $y = (y_1, \ldots, y_K)^T$ of activation values. A single step in the fixed point iteration for solving (3) has the form

$$a^{(l)} = Wy^{(l-1)} + b + \hat{x}, \quad y^{(l)} = f(a^{(l)}), \quad l \ge 2 \quad \text{and } a^{(1)} = \hat{x} \in \mathbb{R}^K.$$
 (7)

An important observation is that the iteration in (7) delivers a feedforward neural network of infinite number of layers with K neurons in each layer. In this framework, the fixed point iteration can be interpreted as the

layer-wise computation with the original input. The weights of the edges passing between each two adjacent layers are given by the matrix $W \in \mathbb{R}^{n \times K}$ and $b \in \mathbb{R}^n$ is the bias vector. Such an interpretation is shown in Figure 3, which is the unrolling of the small network shown in Figure 1 focusing only the sixth neuron.

Figure 3: Unrolling of the implicit neural network shown in Figure 1 focusing on the 6th neuron in the l-1-th, l-th and l+1-th layers, $a_{6[1]}^{(l)}=w_{6[1],4}y_4^{(l-1)}+w_{6[1],5}y_5^{(l-1)}+b_{6[1]},$ $a_{6[2]}^{(l)}=w_{6[2],6}y_6^{(l-1)}+w_{6[2],5}y_5^{(l-1)}+b_{6[2]}, y_{6[1]}^{(l)}=f_{6[1]}\left(a_{6[1]}^{(l)}\right), y_{6[2]}^{(l)}=f_{6[2]}\left(a_{6[2]}^{(l)}\right), y_6^{(l)}=y_{6[1]}^{(l)}y_{6[2]}^{(l)}.$

Remark. The algorithms for computing the network and the gradient backpropagation are given in Pseudocodes 1-2 in the Appendix.

User manual for the program

This chapter contains a short user documentation of the implemented programs, we will not go into all the implemented features in detail. The source code is open, free to use, available at https://github.com/szbela87/neural. The programs are under continuous development, as I use some versions for my work.

Structure of the program The source code of the program, which was written in C is contained in the main.cu, kernels.cu and kernels.cu files. The compilation can be done by running first the make clean and then the make command, the code is parallelized by CUDA. On Ubuntu 20.04.2, the packages needed to compile are nvcc and make.

main.cu: it contains some of the source codes, which simulates a neural network. We mostly call the CUDA kernels (included in **kernels.cu**) from these functions. Reads the data from a file and the run parameters: first the simulation parameters from the ./inputs/simulparams.dat file, and then the other parameters stored in this file that are needed for the simulation.

kernels.cu and **kernels.cuh**: it contains the CUDA kernels needed to simulate the neural network.

File with the variable name input_name containing the input-output data pairs: The j-th input-output data pair is located on the j-th line in the file (first the input data, then the output data), of course, in the same order on each line, separated by a space. For example, if you have 3 pieces of input data and 1 piece of output data, and the input data is 1.0, 2.0 and 4.0 and the output data is 3.9, then the corresponding line in the file is $1.0 \ 2.0 \ 4.0 \ 3.9$.

The structure of the computation graph stored in the file graph_datas: Line j of the file describes neuron j. The first number is the number of neighbours of the neuron, followed by ### characters. In the next block we list the neighbours of the neuron separated by; by first giving the identifier of the neighbouring neuron and then the identifier of the corresponding input of the target neuron. This block is also terminated by a sequence of ### characters, followed by the number of inputs to the neuron, also followed by ###. Next, we list the types of activation functions for the inputs, separated by spaces. It is also assumed that there are rows corresponding to input neurons at the beginning of the file and rows corresponding to output neurons at the end of the file.

The structure of the modifiability switches stored in the file logic_datas: Line j of the file describes neuron j, containing ones and zeros. Each switch describes the modifiability of the edges given in graph_datas (1=modifiable). The list of modifiability of weights and the bias values on the inputs are again separated by the ### string.

The structure of the file describing the fixed weights stored in the file fixwb_datas: Line j of the file describes the neuron j, and sets the values of the weights set in logic_datas as unmodifiable in the appropriate order. Again, the list of fixed weights and input distortions is separated by the ### string.

Let's look at these files through an example. Consider the network shown in Figure 4, then the contents of the file graph_datas are given in Code 1.

```
1 10 ### 5 1; 6 1; 7 1; 8 1; 9 1; 10 1; 11 1; 12 1; 13 1; 14 1; ### 1 ### 0
   ### 5 1; 6 1; 7 1; 8 1; 9 1; 10 1; 11 1; 12 1; 13 1; 14 1; ### 1 ### 0
    ### 5 1; 6 1; 7 1; 8 1; 9 1; 10 1; 11 1; 12 1; 13 1; 14 1; ### 1 ### 0
    ### 5 1; 6 1; 7 1; 8 1; 9 1; 10 1; 11 1; 12 1; 13 1; 14 1; ### 1 ### 0
   ### 15 1; 15 2; ### 1 ### 2
   ### 15 1; 15 2; ### 1
   ### 15 1; 15 2; ### 1 ### 2
   ### 15 1; 15 2; ### 1 ### 2
   ### 15 1; 15 2; ### 1
   ### 15 1; 15 2; ### 1 ### 2
   ### 15 1; 15 2; ### 1
   ### 15 1; 15 2; ###
   ### 15 1; 15 2; ### 1 ### 2
   ### 15 1; 15 2; ### 1 ### 2
        ### 2 ### 1 2
 0 ###
```

Code 1: The contents of the file graph_datas

Figure 4: The network in the figure contains 15 neurons. Neurons with index 1-4 are called input, 15 is output and the remaining neurons are hidden. Each of the input neurons are connected to the single input of the hidden neurons and the hidden neurons are also connected to both inputs of the output neuron. The activation function of the input neurons is the identity, the activation function of the first input of the output neuron is tanh. The second input of the output neuron has sigmoid activation function. The activation function of the hidden neurons is the tanh function.

We are investigating the network given in Figure 4 now. Assume that the edges between the hidden neurons and the second input of the output neuron are unmodifiable and have a value of 0.3 each and the bias values on the input neurons are also immutable with values 0.0. Then the contents of the logic_datas file can be seen in Code 2.

```
1 1 1 1 1 1 1 1 1 1 ### 0
2 1 1 1 1 1 1 1 1 1 1 ### 0
  1 1 1 1 1 1 1 1 1 ### 0
  1 1 1 1 1 1 1 1 1 1 ### 0
    0
      ### 1
  1
    0 ### 1
  1 0
      ### 1
  1 0
      ### 1
    0
      ### 1
10 1 0
      ### 1
11 1 0
      ### 1
12 1 0 ### 1
13 1 0 ### 1
14 1 0 ### 1
15 ### 1 1
```

Code 2: The contents of the file logic_datas

With these, also the contents of the fixwb_datas file can be seen in the Code 3

```
1 ### 0.0
2 ### 0.0
3 ### 0.0
4 ### 0.0
5 0.3 ###
6 0.3 ###
8 0.3 ###
9 0.3 ###
10 0.3 ###
11 0.3 ###
12 0.3 ###
13 0.3 ###
14 0.3 ###
15 ###
```

Code 3: The contents of the file fixwb_datas

Figure 5: Almos the same network as in Figure 4. The structure is the same, but there are now two groups with shared weights. The first group is represented by green edges, which are composed of the following edges: $(6 \to 15, 1)$, $(1 \to 13, 1)$, and $(14 \to 15, 1)$. The second group is marked in orange and consists of the following edges: $(5 \to 15, 1)$ and $(14 \to 15, 2)$. There are also two bias groups with shared weights. The first group is marked in orange on the inputs, comprised of the first input of neuron 5, the first input of neuron 15, and the first input of neuron 14. The second group is indicated in turquoise, consisting of the first input of neuron 6 and the second input of neuron 15.

In Figure 5, a network with shared weights and biases is presented. The contents of the files representing this, shared_w_datas and shared_b_datas, can be seen in the text boxes 4 and 5.

```
1 3 ### 6 15 1; 14 15 1; 1 13 1;
2 2 ### 5 15 1; 14 15 2;
```

Code 4: The contents of the file shared_w_datas

```
1 3 ### 5 1; 15 1; 14 1;
2 2 ### 6 1; 15 2;
```

Code 5: The contents of the file shared_b_datas

The parameters of **simulparams.txt** file can be found in Tables 1 and 2 with very brief descriptions. The list of the implemented functions and kernels can be seen in Tables 7-8.

Parameter	Description
seed	random seed
shuffle_num	number of the permutations while shuffing
thread_num	number of parallel threads
tol_fixit	threshold for fixed point iterations
maxiter_grad	number of epochs
maxiter_fix	maximum number of iterations in fixed point iterations
initdx	a multiplication factor for weight initialization
sfreq	frequency per epoch of saving the results to file and validating
input_name	filename of the training dataset file
input_name_valid	filename of the validation dataset file
input_name_test	filename of the testin dataset file
output_name	output file for monitoring the results
predict_name_valid	filename of created predictions by the trained model on the validation set
predict_name_test	filename of created predictions by the trained model on the testing set
test_log	filename for the predictions on the testing set for logging
test_log_final	filename for the predictions on the testing set for logging at the end
learn_num	number of training samples, the samples are the rows of the file
valid_num	number of validation samples
test_num	number of testing samples
mini_batch_size	size of minibatches
neuron_num	number of neurons
input_num	number of input neurons
output_num	number of output neurons
shared_weights_num	number of the shared weight groups
shared_bias_num	number of the shared bias groups
graph_datas	the file containing the hypergraph which represents the network
logic_datas	file of the mutability of the weights
fixwb_datas	file with the immutable weights
shared_w_datas	filename of the shared weight groups
shared_b_datas	filename of the shared bias groups
alpha	parameter of L_2 -regularisation
train_lossfunction_type	type of the loss function
valid_metric_type	type of the loss function type of the first validation metric for choosing the best model
valid_metric_type_2	second validation metric to choose the threshold in classification
range_div	dividing the $[-4, 4]$ interval into this many parts
optimizer	chooser for the optimizer
nesterov	0 or 1 to using Nesterov momentum in SGD
grad_alpha	learning rate in the stochastic gradient descent
adam_alpha	a parameter in Adam/Adamax/RAdam optimizers
adam_beta1	a parameter in stochastic gradient/Adam/Adamax/RAdam optimizers
adam_beta1 adam_beta2	a parameter in Adam/Adamax/RAdam optimizers
adam_eps	a parameter in Adam optimizer
ff_optimization	if true, the the program turns on the PERT optimizer for acyclic networks
clipping	type of gradient clipping
clipping_threshold	type of gradient clipping threshold for gradient clipping
loaddatas	
	if true, then the program loads the saved weights stored in load_backup
load_backup	the program loads the saved weights from this file, if loaddatas is true
save_best_model	the program creates backups of the best weights to this file

Table 1: Description of the parameters in $\boldsymbol{./inputs/simulparams.dat}$ I.

Parameter	Description
lr_scheduler	learning rate scheduler
cyclic_momentum	cyclic momentum for one cycle learning rate scheduler
pcr	identifying the peak in the learning rate scheduler (ratio)
base_momentum	base momentum for one cycle learning rate scheduler
max_momentum	maximal momentum for one cycle learning rate scheduler
div_factor	scaling factor for the learning rates
final_div_factor	scaling factor for the learning rates at the end of the training
step_size	frequency of scaling the learning rate by div_factor using 3rd lr_scheduler
lr_gamma	scaling factor for the 3rd learning rate scheduler
early_stopping	if larger than 0 then early stopping is applied with this evaluation frequency

Table 2: Description of the parameters in ./inputs/simulparams.dat II.

Identifier	Function
0	identity
1	sigmoid
2	tanh
3	Leaky ReLU ($\alpha = 0.1$)
4	SiLU
8	cos
9	arctan

Table 3: Types of the activation functions.

Identifier	Optimizer
1	stochastic gradient descent
2	Adam
3	Adamax

Table 4: Types of the optimizers.

Identifier	Clipping type
0	no clipping
1	simple chunking above a threshold in absolute value

Table 5: Types of the gradient clippings.

Identifier	Function
0	none
1	onecycle learning rate scheduler
2	cosine annealing
3	exponential learning rate decay

Table 6: Types of the activation functions.

Function name	Description
calc_gradient_mb_sum_gpu_w	calculating the gradients for the weights on a minibatch
calc_gradient_mb_sum_gpu_b	calculating the gradients for the bias on a minibatch
calc_gradient_mb_sum_gpu	calculating the gradients on a minibatch
weight_transpose_gpu	transposing the weight matrix
add_bias_bcast	adding the bias to the inputs
calc_grad_help_0_gpu	calculating the help vectors needed by the gradient calculations – 1st part
calc_grad_help_gpu	calculating the help vectors needed by the gradient calculations – 2nd part
calc_neuron_mb_gpu	calculating the activation values
update_weight_gd_h_gpu	updating the weights by Gradient descent with momentum
update_bias_gd_h_gpu	updating the bias by Gradient descent with momentum
update_weight_gd_gpu	updating the weights by Stochastic Gradient descent with momentum
update_bias_gd_gpu	updating the bias by Stochastic Gradient descent with momentum
update_weight_adam_gpu	updating the weights by Adam optimizer
update_bias_adam_gpu	updating the bias by Adam optimizer
update_weight_adamax_gpu	updating the weights by Adamax optimizer
update_bias_adamax_gpu	updating the bias by Adamax optimizer
copy_input_gpu	copying the input data to the inputs of the input neurons
set_zero_gpu	setting all components of a vector to zero
act_fun_gpu	activation functions
act_fun_diff_gpu	derivative of the activation functions
atomicMaxf	atomic maximum function
maxnorm	calculating the max norm of a vector
maxnormDiff	calculating the max norm for the difference between two vectors
calc_gradient_mb_gpu	Calculating the gradients in the network
calc_network_mb_gpu	Calculating the input values in the network
calc_gradient_mb_gpu_ff	gradient calculation for the acyclic case (for back propagation)
calc_network_mb_gpu_ff	calculating the input values in the network for the acyclic case
calc_neuron_mb_gpu_ff	calculating the activation values for the acyclic case
divide_gpu	dividing a vector by a number
l1norm	L_1 -norm of a vector with reduction
l1normdiff	L_1 -norm for the difference between two vectors with reduction
my_atomicAdd	atomic addition function
reg_weight_gpu	L_2 -regularization for the weights
reg_bias_gpu	L_2 -regularization for the weights (we don't use it)
clipping_weight_gpu	gradient clipping for weights
clipping_bias_gpu	gradient clipping for bias

Table 7: Brief description of the kernels implemented in the GPU version in the kernels.cu file.

Kernel name	Description
f_lr_momentum	helper function for the learning rate schedulers
read_parameters	loading the parameter settings
read_data	loading the data
read_graph	loading the graph files
predict	creating predictions on the validation and on the testing sets
rand_range_int	generating random integers
rand_range	generating float numbers
act_fun	activation functions
act_fun_diff	derivative of the activation functions
dmax	maximum of two float numbers
imax	maximum of two integers
allocate_dmatrix	allocating float matrices in LOL representation
allocate_imatrix	allocating integer matrices in LOL representation
deallocate_dmatrix	deallocating float matrices
deallocate_imatrix	deallocating integer matrices
print_progress_bar	display the progress bar
calc_error	calculating the loss function
print_graph	printing the graph to the screen
program_failure	function for exception handling
random_normal	generating random float numbers from a Gaussian distribution
softmax	softmax function
copy_dmatrix	copy float matrix from matrix representation to vector
copy_imatrix	copy integer matrix from matrix representation to vector
initialize_weights	initialize the weights in the network
calc_gradient_mini_batch	calculating the gradient on a minibatch
calc_network_mini_batch	calculating the network on a minibatch
calc_gradient_mini_batch_ff	calculating the gradient on a minibatch for acyclic network
calc_network_mini_batch_ff	calculating the network on a minibatch for acyclic network
make_predictions	creating predictions
make_predictions_ff	creating predictions for acyclic network
save_weight_bias	saving the weights
load_weight_bias	loading the weights
calc_vector_norm	maximum norm of a vector
calc_diff_norm	difference between two vectors
trapz	numerical integration with trapezoidal quadrature
calculate_auc	calculating AUC
calculate_tpr_fpr	calculating FPR and TPR for binary classification
calculate_mcc	calculating MCC

Table 8: Brief description of the methods implemented in the GPU version in the main.cu file.

Pseudocodes

end

Algorithm 1: Network calculation in the more general case

Input: $x \in \mathbb{R}^L$, tol > 0 tolerance threshold, maxiter is the maximum number of iterations and the weight matrix $w \in \mathbb{R}^{n \times K}$, $b \in \mathbb{R}^n$

Output: $a, df \in \mathbb{R}^n, y \in \mathbb{R}^K$ error = ∞ ; $y_i = 0$: i = 1, ..., K; $a_{i[j]} = 0, f'_{i[j]} = 0, j = 1, ..., n_i, i = 1, ..., K$; $a = \hat{x};$ while error > tol do for j = 1 : K do $y_j = 1$; for $k = 1 : n_i \text{ do}$ $y_j = y_j \cdot f_{j[k]}(a_{j[k]});$ $f'_{j[k]} = f'_{j[k]}(a_{j[k]})$ end **for** $k = 1 : n_j$ **do** $\int df_{j[k]} = f'_{j[k]} \prod_{l=1, l \neq k} f_{j[l]}(a_{j[l]})$ endend $a^{(old)} = a; \ a = \hat{x};$ for j = 1 : K dofor k = 1 : K dofor $l = 1 : n_k$ do $\begin{array}{l} \textbf{if} \ \exists j \rightarrow k[l] \ edge \ \textbf{then} \\ \mid \ a_{k[l]} = a_{k[l]} + w_{k[l],j} y_j \end{array}$ end end for $k = 1 : n_i \text{ do}$ $a_{j[k]} = a_{j[k]} + b_{j[k]}$ $\quad \text{end} \quad$ end $error = ||a^{(old)} - a||_{\infty}$

```
Algorithm 2: Gradient calculation in the more general case
```

Input: $x^{(p)} \in \mathbb{R}^L$, $t^{(p)} \in \mathbb{R}^N$, tol > 0 tolerance threshold, maxiter maximum number of iterations, $a, df \in \mathbb{R}^n$, $y \in \mathbb{R}^K$, $w \in \mathbb{R}^{n \times K}$, $b \in \mathbb{R}^n$

Output: $\frac{\partial \mathcal{E}(p)}{\partial b_{i[k]}}$, $k = 1, \ldots, n_i$, $i = 1, \ldots, K$, és $\frac{\partial \mathcal{E}(p)}{\partial w_{j[k],i}} \ \forall i, j = 1, \ldots, K$, $k = 1, \ldots, n_j$ if $\exists i \to j[k]$ edge in the network.

```
error = \infty; d_{j[k]} = 0: j = 1, ..., n_i, i = 1, ..., K;
for i = K - N + 1 : K do
     for j = 1 : n_i \text{ do}
         dh_{i[j]} = (y_i - t_i^{(p)}) df_{i[j]}; d_{i[j]} = dh_{i[j]}
     end
end
while error > tol do
     d^{(old)} = dh; dh_{i[j]} = 0: j = 1, \dots, n_i, i = 1, \dots, K;
     for i = 1 : K do
          for k = 1 : n_i do
               for j = 1 : K do
                    for l=1:n_j do
                         end
               end
          end
     end
     d = d + dh; error = ||dh||
end
for i = 1 : K do
     for j = 1 : K \operatorname{do}
          for k = 1 : n_j \text{ do}
               \begin{array}{l} \textbf{if} \ \exists i \rightarrow j[k] \ edge \ \textbf{then} \\ \Big| \ \frac{\partial \mathcal{E}(p)}{\partial w_{j[k],i}} = d_{j[k]} y_i \end{array}
          \quad \text{end} \quad
     end
     for k = 1 : n_i do
          \frac{\partial \mathcal{E}(p)}{\partial b_{i[k]}} = d_{i[k]}
     end
```

end

List of Figures

1	Example: an Implicit network with three input neurons (index $1-3$) and one output neuron	
	(index 6). We can also include a neuron with index 0, this corresponds to the bias, the bias	
	parameters are only given for the 4 index vertex for simplicity	2
2	Calculation of the activation value of the neuron with index 6 of the implicit neural network	
	shown in Figure 1. The satisfying equations are: $a_{6[1]} = w_{6[1],4}y_4 + w_{6[1],5}y_5 + b_{6[1]}, a_{6[2]} =$	
	$w_{6[2],6}y_6 + w_{6[2],5}y_5 + b_{6[2]}, y_{6[1]} = f_{6[1]}(a_{6[1]}), y_{6[2]} = f_{6[2]}(a_{6[2]}), y_6 = y_{6[1]}y_{6[2]}.$	2
3	Unrolling of the implicit neural network shown in Figure 1 focusing on the 6th neuron in the	
	$l-1-\text{th, }l-\text{th and }l+1-\text{th layers, }a_{6[1]}^{(l)}=w_{6[1],4}y_{4}^{(l-1)}+w_{6[1],5}y_{5}^{(l-1)}+b_{6[1]},a_{6[2]}^{(l)}=w_{6[2],6}y_{6}^{(l-1)}+w_{6[1],6}y_{6}^{(l)}+a_{6[2],6}y_{6}^{(l)}$	
	$w_{6[2],5}y_5^{(l-1)} + b_{6[2]}, y_{6[1]}^{(l)} = f_{6[1]}\left(a_{6[1]}^{(l)}\right), y_{6[2]}^{(l)} = f_{6[2]}\left(a_{6[2]}^{(l)}\right), y_{6}^{(l)} = y_{6[1]}^{(l)}y_{6[2]}^{(l)}. \dots \dots$	3
4	The network in the figure contains 15 neurons. Neurons with index $1-4$ are called input,	
	15 is output and the remaining neurons are hidden. Each of the input neurons are connected	
	to the single input of the hidden neurons and the hidden neurons are also connected to both	
	inputs of the output neuron. The activation function of the input neurons is the identity, the	
	activation function of the first input of the output neuron is $tanh$. The second input of the	
	output neuron has sigmoid activation function. The activation function of the hidden neurons	
	is the $tanh$ function	5
5	Almos the same network as in Figure 4. The structure is the same, but there are now two	
	groups with shared weights. The first group is represented by green edges, which are composed	
	of the following edges: $(6 \rightarrow 15, 1), (1 \rightarrow 13, 1), \text{ and } (14 \rightarrow 15, 1).$ The second group is marked	
	in orange and consists of the following edges: $(5 \rightarrow 15, 1)$ and $(14 \rightarrow 15, 2)$. There are also two	
	bias groups with shared weights. The first group is marked in orange on the inputs, comprised	
	of the first input of neuron 5, the first input of neuron 15, and the first input of neuron 14.	
	The second group is indicated in turquoise, consisting of the first input of neuron 6 and the	
	second input of neuron 15.	7

List of Tables

1	Description of the parameters in ./inputs/simulparams.dat I	8
2	Description of the parameters in ./inputs/simulparams.dat II	9
3	Types of the activation functions	6
4	Types of the optimizers	6
5	Types of the gradient clippings	C

6	Types of the activation functions	G
7	Brief description of the kernels implemented in the GPU version in the $kernels.cu$ file	10
8	Brief description of the methods implemented in the GPU version in the main cu file	11