Two group comparisons

Keegan Korthauer

January 24, 2023

Reminders

- Intro Assignment due today at 11:59pm
- Project groups posted to Canvas last week
- Project Proposal Lightning Talks in class Tuesday Jan 31 (Slides due Monday Jan 30 11:59pm)

Today's learning objectives

- Understand how and when to carry out a t-test for comparing two population means
- Identify when alternative approaches (e.g. nonparametric) are more appropriate
- Avoid common pitfalls in interpretation of hypothesis tests and p-values

Central dogma of statistics

We want to understand a **population** (e.g. all individuals with a certain disease) but we can only study a **random sample** from it

Image source: Josh Akey's Lecture notes

Hypothesis Testing in Genomics

- Retina presents a model system for investigating regulatory networks underlying neuronal differentiation
- Nrl transcription factor is known to be important for Rod development

What happens if you delete Nrl?

Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors

Masayuki Akimoto*[†], Hong Cheng[‡], Dongxiao Zhu^{§†}, Joseph A. Brzezinski^{||}, Ritu Khanna*, Elena Filippova*, Edwin C. T. Oh[‡], Yuezhou Jing[‡], Jose-Luis Linares*, Matthew Brooks*, Sepideh Zareparsi*, Alan J. Mears*.**, Alfred Hero^{§†††‡‡}, Tom Glaser^{||§§}, and Anand Swaroop*[‡]†††

Akimoto et al. (2006)

Why a Hypothesis Test?

From the Akimoto et al. (2006) paper:

"we hypothesized that Nrl is the ideal transcription factor to gain insights into gene expression changes ..."

Biological question

Is the expression level of gene A affected by knockout of the Nrl gene?

We can use **statistical inference** to answer this biological question!

Statistical inference

- Let's observe and study a random sample to make conclusions about a population: measure gene expression on a random sample of mice
- Experimental design:
 - 5 developmental stages (E16, P2, P6, P10, 4Weeks)
 - 2 genotypes: Wild type (WT), Nrl Knockout (NrlKO)
 - 3-4 replicates for each combination

Reading in / exploring the data

- Data obtained from the Gene Expression Omnibus (GEO) repository (accession GSE4051)
- Load directly into R session using GEOquery package see code below (which also refactors some of the metadata for convenience)
- Practice with this in Seminars 4 and 5 (Review lecture 3 for general principles)

```
1 # load libraries
 2 library(GEOquery)
 3 library(gridExtra)
 4 library(tidyverse)
   theme set(theme bw(base size = 20))
   # download and read in dataset
   eset <- getGEO("GSE4051", getGPL = FALSE)[[1]]</pre>
10 # recode time points
   pData(eset) <- pData(eset) %>%
     mutate(sample id = geo accession) %>%
12
     mutate(dev stage = case when(
13
       grepl("E16", title) ~ "E16",
14
15
       grepl("P2", title) ~ "P2",
       grepl("P6", title) ~ "P6",
16
       grepl("P10", title) ~ "P10",
17
       grepl("4 weeks", title) ~ "4_weeks"
18
```

```
ExpressionSet (storageMode: lockedEnvironment)
assayData: 45101 features, 39 samples
  element names: exprs
protocolData: none
phenoData
  sampleNames: GSM92610 GSM92611 ... GSM92648 (39 total)
  varLabels: title geo_accession ... genotype (39 total)
  varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
  pubMedIds: 16505381
Annotation: GPL1261
```

Two example genes: Irs4 and Nrl

(i) Biological questions

- 1. Is the expression level of gene *Irs4* truly different in NrlKO compared to WT?
- 2. Is the expression level of gene Nrl truly different in NrlKO compared to WT?

We can't answer these questions in general; we can *only* study these genes in collected data (gene expression values from a random sample of mice)

Extract the two genes of interest

```
1 # function to convert to tidy format
  toLongerMeta <- function(expset) {</pre>
       stopifnot(class(expset) == "ExpressionSet")
 4
       expressionMatrix <- exprs(expset) %>%
 6
      as.data.frame() %>%
      rownames to column("gene") %>%
      pivot longer(cols = !gene,
8
                  values to = "Expression",
9
10
                  names to = "sample id") %>%
      left join(pData(expset) %>% select(sample id, dev s
11
              by = "sample id")
12
     return(expressionMatrix)
13
14 }
15
16 # convert to tidy format and extract two genes
17 twoGenes <- toLongerMeta(eset) %>%
     filter(gene %in% c("1422248_at", "1450946_at")) %>%
```

What do you notice?

```
# A tibble: 78 \times 5
  gene sample id Expression dev stage genotype
  <chr> <chr>
                     <dbl> <fct>
                                   <fct>
1 Irs4
       GSM92610
                     7.71 4 weeks
                                   NrlKO
2 Irs4 GSM92611
                      7.77 4 weeks
                                   NrlKO
 3 Irs4 GSM92612
                      7.73 4 weeks
                                   NrlKO
4 Irs4 GSM92613
                      7.57 4 weeks
                                   NrlKO
5 Irs4 GSM92614
                      7.95 E16
                                   NrlKO
6 Irs4 GSM92615
                      7.52 E16
                                   NrlKO
7 Irs4 GSM92616
                      8.08 E16
                                   NrlKO
8 Irs4 GSM92617
                     7.71 P10
                                   NrlKO
 9 Irs4 GSM92618
                     7.87 P10
                                   NrlKO
10 Irs4 GSM92619
                      7.75 P10
                                   NrlKO
# ... with 68 more rows
```

Visualizing *Irs4* and *Nrl* genes in our sample

Code

Output

```
irsLim <- filter(twoGenes, gene == "Irs4") %>%
ggplot(aes(y = Expression, x = genotype, colour = genotype)) +
geom_jitter(size = 2, alpha = 0.8, width = 0.2) +
labs(title = "Irs4 gene") +
theme(legend.position = "none")

nrlLim <- filter(twoGenes, gene == "Nrl") %>%
ggplot(aes(y = Expression, x = genotype, colour = genotype)) +
geom_jitter(size = 2, alpha = 0.8, width = 0.2) +
labs(title = "Nrl gene") +
theme(legend.position = "none")

grid.arrange(irsLim + ylim(5, 13), nrlLim + ylim(5, 13), ncol = 2)
```

Formulating our hypotheses

- Experimental design: (ignoring developmental time for now)
 - 2 conditions: WT vs NrlKO
 - observe the expression of many genes in a random sample of ~20 mice from each condition
- Biological hypothesis: for some genes, the expression levels are different between conditions
- Statistical hypotheses: (for each gene $g=1,\ldots,G$)
 - \blacksquare H₀ (null hypothesis): the expression level of gene g is the *same* in both conditions
 - \blacksquare H_A (alternative hypothesis): the expression level of gene g is different between conditions

How might we test H₀?

Notation¹

Random variables and estimates (we can observe):

- Y_i : expression of gene g in the WT sample i
- Z_i : expression of gene g in NrlKO sample i
- $Y_1, Y_2, \ldots, Y_{n_Y}$: a random sample of size n_Y WT mice
- $Z_1, Z_2, \ldots, Z_{n_Z}$: a random sample of size n_Z NrlKO mice
- $\bar{Y} = \frac{\sum_{i=1}^{n_Y} Y_i}{n_Y}$: sample mean of gene g expression from WT mice
- $\bar{Z} = \frac{\sum_{i=1}^{n_Z} Z_i}{n_Z}$: sample mean of gene g expression from NrlKO mice

Notation¹

Population parameters (unknown/unobservable):

 $\mu_Y = E[Y]$: the (population) expected expression of gene g in WT mice

 $\mu_Z = E[Z]$: the (population) expected expression of gene g in NrlKO mice

Is there enough evidence to reject H₀?

$$H_0: \mu_Y = \mu_Z$$

Statistical Inference: random samples are used to learn about the population

What we observe: sample averages: Y vs Z

This code uses tidy data wrangling functions to calculate:

- the mean expression of each gene per genotype group
- the difference in mean expression of each gene in Nrl KO vs WT groups

Is the difference between \bar{Y} and \bar{Z} enough to reject H₀?

- The sample means, \bar{Y} vs \bar{Z} , by themselves are not enough to make conclusions about the population
- What is a "large" difference? "Large" relative to what?

Consider this artificial version of Nrl

What can we use to interpret the size of the mean difference? $\frac{\bar{Y} - \bar{Z}}{??}$

"Large" difference relative to what?

"Large" relative to the **observed variation**:

$$\frac{\bar{Y} - \bar{Z}}{\sqrt{Var(\bar{Y} - \bar{Z})}}$$

Quantifying observed variation

- Recall that if $Var(Y_i) = \sigma_Y^2$, then $Var(\bar{Y}) = \frac{\sigma_Y^2}{n_Y}$
- Assume that the random variables within each group are *independent and identically distributed* (iid), and that the groups are independent. More specifically, that
 - 1. $Y_1, Y_2, ..., Y_{n_y}$ are iid,
 - 2. $Z_1, Z_2, \ldots, Z_{n_Z}$ are iid, and
 - 3. Y, Z are independent. Then, it follows that

$$Var(\bar{Z} - \bar{Y}) = \frac{\sigma_Z^2}{n_Z} + \frac{\sigma_Y^2}{n_Y}$$

• If we also assume equal population variances: $\sigma_Z^2 = \sigma_Y^2 = \sigma^2$, then

$$Var(\bar{Z} - \bar{Y}) = \frac{\sigma_Z^2}{n_Z} + \frac{\sigma_Y^2}{n_Y} = \sigma^2 \left[\frac{1}{n_Z} + \frac{1}{n_Y} \right]$$

Reflect

But how can we calculate population variance σ if it is **unknown**?

...using the sample variances (combined, somehow)!

Combining sample variances

Plug these sample variances into your chosen formula for the variance of the difference of sample means:

Assuming equal variance of Y's and Z's

$$Var(\bar{Z}_n - \bar{Y}_n) = \hat{\sigma}_{pooled}^2 \left[\frac{1}{n_Y} + \frac{1}{n_Z} \right]$$

$$\hat{\sigma}_{\text{pooled}}^2 = S_Y^2 \frac{n_Y - 1}{n_Y + n_Z - 2} + S_Z^2 \frac{n_Z - 1}{n_Y + n_Z - 2}$$

Assuming unequal variance of Y's and Z's (Welch's t-test)

$$Var(\bar{Z}_n - \bar{Y}_n) = \hat{\sigma}_{\bar{Z}_n - \bar{Y}_n}^2 = \frac{S_Y^2}{n_Y} + \frac{S_Z^2}{n_Z}$$

Recall: the 'hat' (^) is used to distinguish an 'estimate' from a 'parameter'

Test Statistic

```
'Manual' calculation of T = \frac{\bar{Z}_n - \bar{Y}_n}{\sqrt{\hat{V}_{ar}^{\hat{}}(\bar{Z}_n - \bar{Y}_n)}} (for illustration):
```

Pooled variances t-statistics

```
1 ## compute sample variance of each gene/genotype
 2 theVars <- twoGenes %>%
     group by (gene, genotype) %>%
     summarize(groupVar = var(Expression))
 6 ## compute sample size in each group
 7 nY <- with(twoGenes, sum(genotype == "WT" & gene == "Nrl"))</pre>
   nZ <- with(twoGenes, sum(genotype == "NrlKO" & gene == "Nrl"))</pre>
   ## assuming unequal true variance
   s2DiffWelch <- theVars %>%
       mutate(s2Welch = groupVar / ifelse(genotype == "WT", nY, nZ)) %>%
12
       group by (gene) %>%
13
       summarize(s2Welch = sum(s2Welch))
14
   meanExp$s2DiffWelch <- s2DiffWelch$s2Welch</pre>
16
   ## assuming equal true variance
18 s2Pooled <- theVars %>%
```

Can we now say whether the observed differences are 'big'?

What to do with this statistic?

- ullet The test statistic T is a **random variable** because it's based on our **random sample**
- ullet We need a measure of its **uncertainty** to determine how extreme our observed T is:
 - If we were to repeat the experiment many times, what's the probability of observing a value of T as extreme as the one we observed?
- We need a probability distribution!
- However, this is unknown to us so we need to make more assumptions

Null distribution assumptions

- If we know how our statistic behaves when the *null hypothesis is true*, then we can evaluate how extreme our observed data is
 - The **null distribution** is the probability distribution of T under H₀
- Let's assume that Y_i and Z_i follow (unknown) probability distributions called F and G:

$$(Y_i \sim F, \text{ and } Z_i \sim G)$$

Depending on the assumptions we make about F and G, theory tells us specific null
distributions for our test statistic

Willing to assume that F and G are normal distributions?

2-sample *t***-test** (equal variances):

Welch's 2-sample t-test (unequal variances):

$$T \sim t_{n_Y + n_Z - 2}$$

$$T \sim t_{< something ugly>}$$

Unwilling to assume that F and G are normal distributions?

But you feel that n_Y and n_Z are large enough?

Then the t-distributions above (or even a normal distribution) are decent approximations

Student's t-distribution

Summary: $T = \frac{\bar{Z}_n - \bar{Y}_n}{\sqrt{\hat{Var}(\bar{Z}_n - \bar{Y}_n)}}$ is a **random variable**, and under certain assumptions, we can

prove that T follows a t-distribution

Recall that the *t*-distribution has one parameter: df = degrees of freedom

Hypothesis testing: Step 1

1. Formulate your hypothesis as a statistical hypothesis

In our example:

$$H_0: \mu_Y = \mu_Z \text{ vs } H_A: \mu_Y \neq \mu_Z$$

Hypothesis testing: Step 2

2a. Define a test statistic

In our example: 2-sample *t*-test

2b. Compute the observed value for the test statistic

For our two example genes:

This code uses a shortcut to computing the t-statistic using the t. test function

Hypothesis testing: Step 3

3. Compute the p-value

p-value: Probability of observing a test statistic at least as extreme as that observed, under the *null sampling distribution*

For our two example genes:

The t.test function also computes the p-value for us

In other words, assuming that H₀ is true:

For *Irs4*, the probability of seeing a test statistic as extreme as that observed (t = -0.53) is pretty high (p = 0.6).

But for *Nrl*, the probability of seeing a test statistic as extreme as that observed (t = -16.8) is extremely low $(p = 6.76 \times 10^{-19})$

Hypothesis Testing: Step 4

4. Make a decision about significance of results

- The decision should be based on a pre-specified significance level (α)
- α is often set at 0.05. However, this value is arbitrary and may depend on the study.

Irs4

Using $\alpha=0.05$, since the p-value for the Irs4 test is greater than 0.05, we conclude that there is **not enough evidence** in the data to claim that Irs4 has differential expression in WT compared to NrlKO models.

We do not reject H₀!

Nrl

Using $\alpha=0.05$, since the p-value for the Nrl test is much less than 0.05, we conclude that there is **significant** evidence in the data to claim that *Nrl* has differential expression in WT compared to NrlKO models.

We reject $H_0!$

t.test function in R

Assuming equal variances

Not assuming equal variances

```
1 twoGenes %>% filter(gene == "Nrl") %>%
2 t.test(Expression ~ genotype,
3 var.equal=FALSE, data = .)
```

Welch Two Sample t-test

```
○ Tip
```

Check out ?t. test for more options, including how to specify one-sided tests

Interpreting p-values

Which of the following are true? (select all that apply)

- a. If the effect size is very small, but the sample size is large enough, it is possible to have a statistically significant p-value
- b. A study may show a relatively large magnitude of association (effect size), but a statistically insignificant p-value if the sample size is small
- c. A very small p-value indicates there is a very small chance the finding is a false positive

Common p-value pitfalls

Lesson

Valid inference using p-values depends on accurate assumptions about null sampling distribution

Laution

A p-value is **NOT**:

- The probability that the null hypothesis is true
- The probability that the finding is a "fluke"
- A measure of the size or importance of observed effects

Preview: "Genome-wide" testing of differential expression

- In genomics, we often perform thousands of statistical tests (e.g., a *t*-test per gene)
- The distribution of p-values across all tests provides good diagnostics/insights
- Is it mostly uniform (flat)? If not, is the departure from uniform expected based on biological knowledge?
- We will revisit these topics in greater detail in later lectures

Different kinds of *t*-tests:

- One sample or two samples
- One-sided or two sided
- Paired or unpaired
- Equal variance or unequal variance

Types of Errors in Hypothesis Testing

Actual Situation "Truth" Decision H₀ True H₀ False **Correct Decision Incorrect Decision** Do Not 1-α Type II Error Reject H₀ **Correct Decision Incorrect Decision** 1-B Reject H₀ Type I Error α

 $\alpha = P(\text{Type I Error}), \ \beta = P(\text{Type II Error}), \ \text{Power} = 1 - \beta$

H₀: "Innocent until proven guilty"

- The default state is $H_0 \rightarrow$ we only reject if we have enough evidence
- If H_0 : Innocent and H_A : Guilty, then
 - Type I Error (α) : Wrongfully convict innocent (*False Positive*)
 - Type II Error (β) : Fail to convict criminal (*False Negative*)

Willing to assume that F and G are normal distributions?

2-sample *t***-test** (equal variances):

Welch's 2-sample *t***-test** (unequal variances):

$$T \sim t_{n_Y + n_Z - 2}$$

$$T \sim t_{< something ugly>}$$

Unwilling to assume that F and G are normal distributions?

But you feel that n_Y and n_Z are large enough?

Then the t-distributions above (or even a normal distribution) are decent approximations

What if we aren't comfortable assuming the underlying data generating process is normal **AND** we aren't sure our sample is large enough to invoke the CLT?

What are alternatives to the t-test?

- First, one could use the t test statistic but use a **permutation approach** to compute its p-value; we'll revisit this topic later
- Alternatively, there are *non-parametric* tests that are available:
 - Wilcoxon rank sum test, aka Mann Whitney, uses ranks to test differences in population means
 - Kolmogorov-Smirnov test uses the empirical CDF to test differences in population cumulative distributions

Wilcoxon rank sum test

Rank all data, ignoring the grouping variable

Test statistic = sum of the ranks for one group (optionally, subtract the minimum possible which is $\frac{n_Y(n_Y+1)}{2}$)

(Alternative but equivalent formulation based on the number of y_i, z_i pairs for which $y_i \ge z_i$)

The null distribution of such statistics can be worked out or approximated

wilcox.test function in R

```
Irs4 Nrl
```

```
data: Expression by genotype W = 160, p-value = 0.4115 alternative hypothesis: true location shift is not equal to 0
```

Kolmogorov-Smirnov test (two sample)

Null hypothesis: F = G, i.e. the distributions are the same

Estimate each CDF with the empirical CDF (ECDF)

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I[x_i \le x]$$

Test statistic is the maximum of the absolute difference between the ECDFs¹

$$max|\hat{F}(x) - \hat{G}(x)|$$

Null distribution does not depend on F, G (!)

Kolmogorov-Smirnov test (two sample)

ks.test function in R

```
Irs4 Nrl
```

Discussion

- 1. What test(s) might be appropriate if your sample size is just barely large enough to invoke CLT, but you also have suspected outliers?
- 2. If more than one test is appropriate (e.g. *t*-test, Wilcoxon, and KS), which should we report?
- 3. What is generally more important for results interpretation: the effect size or the p-value?
- 4. What should you do if methods that are equally appropriate and defensible give very different answers?