Im DND	er integrals: two types of integrals
	involving as.
1) x-	$\rightarrow \infty$ (see example $\int_{1}^{\infty} \frac{1}{x^{2}}$)
Ano	then example
	$\int_{3}^{\infty} \frac{1}{x} dx$
2	$\lim_{t \to \infty} \int_{3}^{\infty} \frac{1}{x} dx$
	$= \lim_{t \to \infty} \left[\ln x \right]_3^t$
	= 1,m (Int - 1n3)
	$= \infty - \ln 3 = \infty$
	ne say that the i-tegral diverges if (is divergent)
	the answer is ∞ .

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx$$

$$= \lim_{t \to \infty} \left[-\frac{1}{x} \right]^{t}$$

$$=\lim_{t\to\infty}\left(-\frac{1}{t}-\frac{-1}{1}\right)$$

$$=\frac{\left|i\right|_{m}}{t\rightarrow\infty}\left(\frac{-1}{t}+1\right)$$

