Project Title Project Subtitle Document Title

Author

Department Institution

DRAFT 00:28 GMT - 22nd of February, 2019

Outline

- 1 A section
- 2 Another section

DRAFT: NOTES

Write sections

Outline

- A section
 - Subsection
 - Another subsection
- 2 Another section

A section

"Movement of a motile cell or organism, or part of one, in a direction corresponding to a gradient of increasing or decreasing concentration of a particular substance."

- Directed movement of cells tends to be in response to signalling molecules, released by other cells in minuscule amounts
 - E.g. Development of tissue and organs, Immune system cell response to pathogens

Do cells respond in a similar way to electrical fields?

Subsection

E.g. E. Coli 'run and tumble' motion

Figure: E. Coli chemotaxis

- Cell swims in a direction and randomly change direction after 'tumbling' at random times
 - Direction chosen is biased towards positive nutrient gradients

THINGS TO TALK ABOUT:

- CELLS AND STUFF
- E.COLI AND RUN-AND-TUMBLE

Another subsection

But not all motile cells have flagella..

Source: Wikipedia entries, Neutrophil, and Chaos (genus), https://en.wikipedia.org/wiki/File:Neutrophils.jpg https://en.wikipedia.org/wiki/File:Chaos_carolinense.jpg

Differently named frame

But not all motile cells have flagella..

(b) Amoeba

Outline

- A section
- 2 Another section
 - Yet another subsection

Yet another subsection

Let $\{r_1, ..., r_n\}$ be positions of nodes on cell surface and let $\mathcal{N}_i(t)$ denote the neighbouring nodes of node i at time t.

Assume inertial terms are small enough to be inconsequential compared to dissipative terms in equation of motion:

$$\eta \frac{d\mathbf{r}_i}{dt} = \mathbf{B}_i(t) + \sum_{j \in \mathcal{N}_i(t)} \mathbf{F}_{ij}(t),$$

where η is a drag coefficient, \mathbf{F}_{ij} denotes the force on node i from node j and $\mathbf{B}_{i}(t)$ is the sum of other forces on node i at time t.

References

Buzsáki, G., C. A. Anastassiou, and C. Koch 2012. The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. *Nature Reviews Neuroscience*, 13(6):407–420.

Niedermeyer, E.

1972. The generalized epilepsies: a clinical electroencephalographic study. Charles C. Thomas Publisher.

Thank you for your time!

Backup slide

Backup stuff