2.2 Machine-Dependent Assembler Features (SIC/XE Assembler)

Instruction Formats, Addressing Modes, and Program Relocation

SIC/XE Assembly Program(fig.2.5)

5	COPY	START	0	COPY FILE FROM INPUT TO OUTPUT
10	FIRST	STL	RETADR	SAVE RETURN ADDRESS
12		LDB	#LENGTH	ESTABLISH BASE REGISTER
13		BASE	LENGTH	
15	CLOOP	+JSUB	RDREC	READ INPUT RECORD
20		LDA	LENGTH	TEST FOR EOF (LENGTH = 0)
25		COMP	#0	extended format
30		JEQ	ENDFIL	EXIT IF EOF FOUND
35		+JSUB	WRREC	WRITE OUTPUT RECORD
40		J	CLOOP	LOOP
45	ENDFIL	LDA	EOF	INSERT END OF FILE MARKER
50		STA	BUFFER	
55		LDA	#3	SET LENGTH = 3
60		STA	LENGTH	immediate addressing
65		+JSUB	WRREC	WRITE EOF
70		J	@RETADR	RETURN TO CALLER
80	EOF	BYTE	C'EOF'	in dire at a delugacia a
95	RETADR	RESW	1	indirect addressing
100	LENGTH	RESW	1 1 1 1 1 1	LENGTH OF RECORD
105	BUFFER	RESB	4096	4096-BYTE BUFFER AREA
110	ran matanapa o			

SIC/XE Assembly Program

115		GIIDDOIII	TATE TO DEAD I	DECORD TAMO DIFFEED
115		SUBROU'	TINE TO READ F	RECORD INTO BUFFER
120				
125	RDREC	CLEAR	X	CLEAR LOOP COUNTER
130		CLEAR	A	CLEAR A TO ZERO
132		CLEAR	S	CLEAR S TO ZERO
133		+LDT	#4096	
135	RLOOP	TD	INPUT	TEST INPUT DEVICE
140		JEQ	RLOOP	LOOP UNTIL READY
145		RD	INPUT	READ CHARACTER INTO REGISTER A
150		COMPR	A,S	TEST FOR END OF RECORD (X'00')
155		JEQ	EXIT	EXIT LOOP IF EOR
160		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
165		TIXR	T	LOOP UNLESS MAX LENGTH
170		JLT	RLOOP	HAS BEEN REACHED
175	EXIT	STX	LENGTH	SAVE RECORD LENGTH
180		RSUB		RETURN TO CALLER
185	INPUT	BYTE	X'F1'	CODE FOR INPUT DEVICE
195				

SIC/XE Assembly Program

	TIME TO SERVE			
200		SUBROUTI	NE TO WRITE RECO	ORD FROM BUFFER
205	a bird are			
210	WRREC	CLEAR	X	CLEAR LOOP COUNTER
212		LDT	LENGTH	
215	WLOOP	TD	OUTPUT	TEST OUTPUT DEVICE
220		JEQ	WLOOP	LOOP UNTIL READY
225		LDCH	BUFFER, X	GET CHARACTER FROM BUFFER
230		WD	OUTPUT	WRITE CHARACTER
235		TIXR	T	LOOP UNTIL ALL CHARACTERS
240		JLT	WLOOP	HAVE BEEN WRITTEN
245		RSUB		RETURN TO CALLER
250	OUTPUT	BYTE	X'05'	CODE FOR OUTPUT DEVICE
255		END	FIRST	

Benefits of SIC/XE Addressing Modes

- Register-to-register instructions
 - Shorter than register-to-memory instructions
 - No memory reference
- Immediate addressing mode
 - No memory reference. The operand is already present as part of the instruction
- Indirect addressing mode
 - Avoids the needs for another instruction
- Relative addressing mode
 - Shorten than the extended instruction
 - Easy program relocation

Considering Instruction Formats

- START directive specifies a beginning program address of 0: a relocatable program.
- Register-to-register instructions: simply convert the mnemonic name to their number equivalents
 - OPTAB: for opcodes
 - SYMTAB: preloaded with register names and their values

Considering Instruction Formats

COMPR A,S

1010 0000 0000 0100 → A004

• CLEAR X 1011 0100 0001 0000 → B410

Mnemonic	Number	Special u	ise		
A	0	Accumul	ator: 115eo	d for arithmet	ic operations
X	1	Ir Mne	emonic	Number	Special use
L	2	L	В	3	Base register; used for addressing
PC	8	P	S	4	General working register—no special use
alies restrance			T	5	General working register—no special use
SW	9	S	F	6	Floating-point accumulator (48 bits)

Considering Addressing Modes

- PC or base relative addressing
 - Calculate displacement
 - Displacement must be small enough to fit in the 12-bit field (-2048..2047 for PC relative mode, 0..4095 for base relative mode)
- Extended instruction format (4-byte)
 - 20-bit field for direct addressing

How Assembler Recognizes the Addressing Mode

Extended format: +op m

Indirect addressing: op @m

Immediate addressing: op #c

Index addressing: op m,X

Relative addressing: op m

- 1st choice: PC relative (arbitrarily chosen)
- 2nd choice: base relative (if displacement is invalid in PC relative mode)
- 3rd choice: error message (if displacement is invalid in both relative modes)

SIC/XE Assembly with Object Code(fig.2.6)

Line	Loc	Sou	arce stater	nent	Object code
5	0000	COPY	START	0	
10	0000	FIRST	STL	RETADR	17202D
12	0003		LDB	#LENGTH	69202D
13			BASE	LENGTH	
15	0006	CLOOP	+JSUB	RDREC	4B101036
20	000A		LDA	LENGTH	032026
25	000D		COMP	#0	290000
30	0010		JEQ	ENDFIL	332007
35	0013		+JSUB	WRREC	4B10105D
40	0017		J	CLOOP	3F2FEC
45	001A	ENDFIL	LDA	EOF	032010
50	001D		STA	BUFFER	0F2016
55	0020		LDA	#3	010003
60	0023		STA	LENGTH	0F200D
65	0026		+JSUB	WRREC	4B10105D
70	002A		J	@RETADR	3E2003
80	002D	EOF	BYTE	C'EOF'	454F46
95	0030	RETADR	RESW	1	
100	0033	LENGTH	RESW	1	
105	0036	BUFFER	RESB	4096	

SIC/XE Assembly with Object Code

110					
115			SUBROUT	FINE TO READ RE	ECORD INTO BUFFER
120		7117 mm 41			
125	1036	RDREC	CLEAR	X	B410
130	1038		CLEAR	A	B400
132	103A		CLEAR	S	B440
133	103C		+LDT	#4096	75101000
135	1040	RLOOP	TD	INPUT	E32019
140	1043		JEQ	RLOOP	332FFA
145	1046		RD	INPUT	DB2013
150	1049		COMPR	A,S	A004
155	104B		JEQ	EXIT	332008
160	104E		STCH	BUFFER, X	57C003
165	1051		TIXR	T	B850
170	1053		JLT	RLOOP	3B2FEA
175	1056	EXIT	STX	LENGTH	134000
180	1059		RSUB		4F0000
185	105C	INPUT	BYTE	X'F1'	F1
105					

SIC/XE Assembly with Object Code

195		mangra m			
200			SUBROUT	TINE TO WRITE	RECORD FROM BUFFER
205					
210	105D	WRREC	CLEAR	X	B410
212	105F		LDT	LENGTH	774000
215	1062	WLOOP	TD	OUTPUT	E32011
220	1065		JEQ	WLOOP	332FFA
225	1068		LDCH	BUFFER, X	53C003
230	106B		WD	OUTPUT	DF2008
235	106E		TIXR	T	B850
240	1070		JLT	WLOOP	3B2FEF
245	1073		RSUB		4F0000
250	1076	OUTPUT	BYTE	X'05'	05
255			END	FIRST	

SIC/XE Instruction Set

Mnemonic	Format	Opcode	Effect	Notes
ADD m	3/4	18	$A \leftarrow (A) + (mm+2)$	
ADDF m	3/4	58	$F \leftarrow (F) + (mm+5)$	XF
ADDR r1,r2	2	90	$r2 \leftarrow (r2) + (r1)$	X
AND m	3/4	40	$A \leftarrow (A) \& (mm+2)$	1931
CLEAR r1	2	B4	$r1 \leftarrow 0$	X X: only for XE
COMP m	3/4	28	(A): (mm+2)	С
COMPF m	3/4	88	(F): (mm+5)	XFC
COMPR r1,r2	2	A0	(r1): (r2)	X C/ C: set CC
DIV m	3/4	24	$A \leftarrow (A) / (mm+2)$	
DIVF m	3/4	64	$F \leftarrow (F) / (mm+5)$	XF / F. flooting point
DIVR r1,r2	2	9C	$r2 \leftarrow (r2) / (r1)$	x / F: floating-point
FIX	1	C4	$A \leftarrow (F)$ [convert to integer]	XF
FLOAT	1	C0	$F \leftarrow (A)$ [convert to floating]	X F P: privileged
HIO	1	F4	Halt I/O channel number (A)	P X

MUL m	3/4	20	$A \leftarrow (A) * (mm+2)$	
			information beginning at address m (see Section 6.2.1)	for interrupt
LPS m	3/4	D0	Load processor status from	PX
LDX m	3/4	04	$X \leftarrow (mm+2)$	
LDT m	3/4	74	$T \leftarrow (mm+2)$	Χ
LDS m	3/4	6C	$S \leftarrow (mm+2)$	X
LDL m	3/4	08	$L \leftarrow (mm+2)$	
LDF m	3/4	70	$F \leftarrow (mm+5)$	XF
LDCH m	3/4	50	A [rightmost byte] \leftarrow (m)	
LDB m	3/4	68	$B \leftarrow (mm+2)$	X
LDA m	3/4	00	$A \leftarrow (mm+2)$	
JSUB m	3/4	48	$L \leftarrow (PC); PC \leftarrow m$	
JLT m	3/4	38	$PC \leftarrow m \text{ if } CC \text{ set to } <$	
JGT m	3/4	34	$PC \leftarrow m \text{ if } CC \text{ set to } >$	
JEQ m	3/4	30	$PC \leftarrow m \text{ if } CC \text{ set to} =$	
J m	3/4	3C	PC ← m	

Mnemonic	Format	Opcode	Effect	Notes
MULF m	3/4	60	$F \leftarrow (F) * (mm+5)$	ΧF
MULR r1, r2	2	98	$r2 \leftarrow (r2) * (r1)$	X
NORM	1	C8	$F \leftarrow (F)$ [normalized]	ΧF
OR m	3/4	44	$A \leftarrow (A) \mid (mm+2)$	
RD m	3/4	D8	A [rightmost byte] ← data from device specified by (m)	P
RMO r1,r2	2	AC	$r2 \leftarrow (r1)$	X
RSUB	3/4	4C	$PC \leftarrow (L)$	
SHIFTL r1,n	2	A4	$r1 \leftarrow (r1)$; left circular shift n bits. {In assembled instruction, $r2 = n-1$ }	X
SHIFTR r1,n	2	A8	$r1 \leftarrow (r1)$; right shift n bits, with vacated bit positions set equal to leftmost bit of $(r1)$. {In assembled instruction, $r2 = n-1$ }	X
SIO	1	F0	Start I/O channel number (A); address of channel program is given by (S)	PX

SSK m	3/4	EC	Protection key for address m	PX
Set Storage Ke	ey for memory	protection	\leftarrow (A) (see Section 6.2.4)	
STA m	3/4	0C	$mm+2 \leftarrow (A)$	
STB m	3/4	78	$mm+2 \leftarrow (B)$	X
STCH m	3/4	54	$m \leftarrow (A)$ [rightmost byte]	
STF m	3/4	80	$m.m+5 \leftarrow (F)$	XF
STI m	3/4	D4	Interval timer value \leftarrow (mm+2) (see Section 6.2.1)	PX
STL m	3/4	14	$mm+2 \leftarrow (L)$	
STS m	3/4	7C	$mm+2 \leftarrow (S)$	X
STSW m	3/4	E8	$mm+2 \leftarrow (SW)$	P
STT m	3/4	84	$mm+2 \leftarrow (T)$	X
STX m	3/4	10	$mm+2 \leftarrow (X)$	
SUB m	3/4	1C	$A \leftarrow (A) - (mm+2)$	
SUBF m	3/4	5C	$F \leftarrow (F) - (mm+5)$	ΧF

Mnemonic	Format	Opcode	Effect		Notes	
SUBR r1,r2	2	94	$r2 \leftarrow (r2) - (r1)$	X		
SVC n	2	B0	Generate SVC interrupt. {In assembled instruction, $r1 = n$ }	X		
TD m	3/4	E0	Test device specified by (m)	P	C	
TIO	1	F8	Test I/O channel number (A)	PΧ	C	
TIX m	3/4	2C	$X \leftarrow (X) + 1; (X): (mm+2)$		C	
TIXR r1	2	B8	$X \leftarrow (X) + 1; (X): (r1)$	X	C	
WD m	3/4	DC	Device specified by $(m) \leftarrow (A)$ [rightmost byte]	P		

Immediate Addressing Mode

Immediate Addressing Mode

```
LDA #3
---- --ni xbpe ---- ---- 0000 0001 0000 0000 0000 0011 → 010003
+LDT #4096
---- --ni xbpe ---- ---- 0111 0101 0001 0000 0001 0000 0000 0000
→ 75101000
```

Extended Format

Extended Format

+JSUB RDREC

```
---- --ni xbpe ---- ---- ---- 0100 1011 0001 0000 0001 0000 0011 0110

→ 4B101036
```


PC is advanced after each instruction is fetched and before it is executed. That is, PC contains the address of the next instruction.

$$disp = (0030)_{16} - (0003)_{16} = (002D)_{16}$$

STL RETADR

```
---- -- ni xbpe ---- ---- ---- 0001 0111 0010 ----
```

```
disp=RETADR-PC=0030-0003=002D
0001 0111 0010 0000 0010 1101 → 17202D
```


$$disp = (0006)_{16} - (001A)_{16} = (-14)_{16} = (FEC)_{16}$$

J CLOOP
---- --ni xbpe ---- ---0011 1111 0010 ---- ----

```
disp=CLOOP-PC=006-01A=FEC=(-14) 16
0011 1111 0010 1111 1110 1100 → 3F2FEC
```

J CLOOP

$$0000\ 0001\ 0100 = (14)_{16} = (20)_{10}$$

+ 1111 1110 1100=
$$(-14)_{16} = (-20)_{10}$$

0000 0000 0000=
$$(0)_{16}$$
 = $(0)_{10}$

_			
Decimal	Signed- magnitude	Signed-1's complement	Signed-2's complement
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	1000	1111	Х
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	Х	Х	1000

0011 1111 0010 1111 1110 1100 → 3F2FEC

Base Relative Addressing Mode

- PC relative is no longer applicable
- BASE directive explicitly informs the assembler that the base register will contain the address of LENGTH (use NOBASE to invalidate)
- LDB loads the address of LENGTH into base register during execution disp = (0036)₁₆-(0033)₁₆ = (0003)₁₆

Base Relative Addressing Mode

STCH BUFFER,X

```
---- -- ni xbpe ---- ---- 0101 0111 1bp0 ----
```

BUFFER-PC=0036-1051

→ PC-relative fails

BUFFER-BASE=0036-0033=003

0101 0111 1100 0000 0000 0011 → 57C003

Immediate + PC Relative Addressing Mode

$$disp = (0033)_{16} - (0006)_{16} = (002D)_{16}$$

Indirect + PC Relative Addressing Mode

$$disp = (0030)_{16} - (002D)_{16} = (0003)_{16}$$

Why Program Relocation

To increase the productivity of the machine

 Want to load and run several programs at the same time (multiprogramming)

Must be able to load programs into memory wherever there is room

 Actual starting address of the program is not known until load time

Absolute Program

- Program with starting address specified at assembly time
- In the example of SIC assembly program

 The address may be invalid if the program is loaded into some where else.

Relocatable Program

What Needs to be Relocated

- Need to be modified:
 - The address portion of those instructions that use absolute (direct) addresses.
- Need not be modified:
 - Register-to-register instructions (no memory references)
 - PC or base-relative addressing (relative displacement remains the same regardless of different starting addresses)

How to Relocate Addresses

For Assembler

- For an address label, its address is assigned relative to the start of the program (that's why START 0)
- Produce a modification record to store the starting location and the length of the address field to be modified.

For loader

 For each modification record, add the actual beginning address of the program to the address field at load time.

Format of Modification Record

Modification record:

Col. 1	M
Col. 2–7	Starting location of the address field to be modified, relative to the beginning of the program (hexadecimal)
Col. 8–9	Length of the address field to be modified, in half- bytes (hexadecimal)

- One modification record for each address to be modified
- The length is stored in half-bytes (20 bits = 5 half-bytes)
- The starting location is the location of the byte containing the leftmost bits of the address field to be modified.
- If the field contains an odd number of half-bytes, the starting location begins in the middle of the first byte.

Relocatable Object Program

