Answer Key

- a. Is it Onto? yes, every domain element has an input 1. Is it One-to-one? yes, every domain element has max 1 input
 - b. Is it Onto? yes, every domain element has an input Is it One-to-one? yes, every domain element has max 1 input
 - c. Is it Onto? no, the bottom domain element doesn't have an input Is it One-to-one? no, one element has 2 inputs
- 2. Multiple solutions, but here are some examples:

a. Example:

b. Example:

3. a. Write out all edges for both graphs.

b. For each edge from G, write out what edge in H corresponds to Example: $\{2,5\} \rightarrow \{d, c\}$ it.

Let's split up G into two subgraphs to see it more clearly...

$$\{1,5\} \to \{b,c\}$$

$$\{2,4\} \to \{d,e\}$$

$$\{2,5\} \rightarrow \{a,c\}$$

 $\{4,6\} \rightarrow \{e,f\}$

$$\{2,6\} \to \{d,f\}$$

$$\{3,5\} \to \{a,c\}$$

a. Finish the adjacency matrix:

		a	b	c	d	e
-	a	0	1	0	0	1
	b	1	0	1	0	0
	С	0	1	0	1	1
	d	0	0	1	0	1
	е	1	0	1	1	0

b. Fill out the degrees of each:

a	b	c	d	e
2	2	3	2	3

5. Example:

- 6.
- 1, 2, 4, 1
- 1, 3, 5, 1
- 2, 3, 4, 2

- 1, 3, 4, 1
- 1, 2, 3, 5, 1 (unbounded).

- b.
 - a, b, e, a
 - a, e, d, a a, b, c, d, a (unbounded)
- d, e, c, d b, c, e, b