Riemann Surfaces

Winter semester 2017/2018 Dr. A. Haydys

1st exercise sheet

Exercise 1 (2P). Decide whether Σ is a Riemann Surface, where

- $\Sigma = \{(x, y) \in \mathbb{C}^2 \mid y^3 + 3y + 1 = x\},\$
- $\Sigma = \{(x,y) \in \mathbb{C}^2 \mid x^2 + y^2 = 1\},\$
- $\Sigma = \{(x, y) \in \mathbb{C}^2 \mid x^2 + y^2 = 0\},\$
- $\Sigma = \{(x, y) \in \mathbb{C}^2 \mid y^2 = x(x 1)^2\}.$

Exercise 2 (2P). Show that

- 1. \mathbb{H} (the upper half-plane) and D (the unit disc in \mathbb{C}) are biholomorphic,
- 2. \mathbb{H} and \mathbb{C} are not biholomorphic.

Exercise 3 (2P). Define an equivalence relation on $\mathbb{C}^{n+1} \setminus \{0\}$ as follows: $(z_0, \ldots, z_n) \sim (z'_0, \ldots, z'_n)$ iff there is $\lambda \in \mathbb{C} \setminus \{0\}$ such that $z'_j = \lambda z_j$ for all $j \in \{0, \ldots, n\}$.

- 1. Show that the *projective space* $\mathbb{C}P^n := \mathbb{C}^{n+1} \setminus \{0\} / \sim$ is a complex manifold of dimension n.
- 2. Decide for which $\lambda \in \mathbb{C}$ the set $\Sigma_n = \{[x:y:z] \in \mathbb{C}P^2 \mid y^2z = x(x-z)(x-\lambda z)\}$ is a Riemann surface.

Exercise 4 (4P). Prove the implicit function theorem for holomorphic functions: Let $F: \mathbb{C}^2 \to \mathbb{C}$ be a holomorphic function s.t. at some point $(z_0, w_0) \in \mathbb{C}$ we have $F(z_0, w_0) = 0$ and $\frac{\partial F}{\partial w}(z_0, w_0) \neq 0$. Then there is a disc $D_1 \subset \mathbb{C}$ centered at z_0 and a disc $D_2 \subset \mathbb{C}$ centered at w_0 such that

$$\{(z, w) \mid F(z, w) = 0\} \cap (D_1 \times D_2) = \{(z, \phi(z)) \mid z \in D_1\},\$$

where $\phi: D_1 \to D_2$ is a holomorphic function with $\phi(z_0) = w_0$.

Return: Friday, 2018/11/02, at 10 am before the lecture.