Optimal Macro-Financial Stabilization in a New Keynesian Preferred Habitat Model

Rupal Kamdar Indiana University Walker Ray

September 2024 Midwest Macro

Motivation

Motivation

Bernanke: "QE works in practice but not in theory"

- By now the gap between practice and theory is small
- But what do we mean by QE works?
 - Obvious: reduce long-term yields
 - · Less obvious: stimulate the economy
 - · Even less obvious: improve social welfare
 - · Reis: "QE's original sin"
- Especially relevant today now that central banks are implementing QT while increasing short rates
- Question: what is the optimal QE policy, and how does this interact with short rate policy?

Our Model

- This paper: develops a tractable general equilibrium model with market segmentation, nominal frictions, and household heterogeneity
- Arbitrageurs with imperfect risk-bearing capacity absorb supply and demand shocks in bond markets
- · Clientele investors introduce a degree of market segmentation
 - Bonds of different maturities traded by specialized investors (eg pension funds, MMMF)
 - · Arbitrageurs (eg hedge funds, broker-dealers) partly overcome segmentation
- · Households have differentiated access to asset markets
 - Households borrow with bonds of different maturities (eg mortgages)
 - $\boldsymbol{\cdot}$ Introduces imperfect risk-sharing, consumption and labor dispersion across households
- Formally: embed a Vayanos-Vila model in a New Keynesian model, where households are heterogeneous in access to financial markets

Findings: Policy Transmission

- Key mechanisms of conventional monetary policy:
 - · Changes in the short rate affect required rates of return of all assets
 - · Interaction of arbitrageurs and investor clienteles leads to portfolio rebalancing
 - · Implies variation in risk premia, imperfect transmission to households
- Key mechanisms of balance sheet policy:
 - · Imperfect arbitrage breaks QE neutrality
 - · Central bank asset purchases induce portfolio rebalancing and hence reduce risk premia
 - Vice versa for central bank asset sales (QT)
- Thus, short rate and balance sheet policies are substitutes when targeting aggregate borrowing rates
 - · A fall in aggregate borrowing rates is stimulative for the usual NK reasons

Findings: Welfare Consequences

- If the policymaker only cares about macroeconomic stabilization, conventional and unconventional policies are essentially equivalent
 - Nominal rigidities ⇒ welfare losses due to inflation volatility
 - · Policy stabilizes inflation by keeping aggregate borrowing rates at some "natural" rate
 - Triumphalist view: even with short rate constraints, QE is equally effective
- However, both policies imply variation in risk premia
 - Excess fluctuations in risk premia lead to dispersion in borrowing rates
- · Social welfare depends not only on macroeconomic fluctuations:
 - \cdot Imperfect risk sharing \implies welfare losses from consumption dispersion
 - \cdot Labor market inefficiencies \implies welfare losses from labor dispersion

Findings: Optimal Policy

- · Hence, when policy is unconstrained we derive an **optimal separation result**:
 - Conventional policy targets macroeconomic stability
 - Unconventional policy targets financial stability
- However, when policy constraints bind, policy must balance trade-offs:
 - Balance sheet constraints: short rate must be less reactive in order to minimize financial disruptions (at the cost of macroeconomic stability)
 - Short rate constraints: QE must be used to offset macroeconomic shocks (at the cost of financial stability)
- · With full commitment, forward guidance is welfare-improving (short rate and QE)
 - Policymaker uses the entire expected path of borrowing rates to minimize macroeconomic volatility
 - · But reduces short-run fluctuations to keep risk premia volatility low
 - However, dynamics are complicated and suffer from time-inconsistency
- · General message: implementation matters for welfare

Related Literature

- · Preferred habitat models
 - Vayanos & Vila (2009, 2021), Ray, Droste, & Gorodnichenko (2024), Greenwood & Vayanos (2014), Greenwood et al (2016), King (2019, 2021), Kekre, Lenel, & Mainardi (2024), ...
- · Empirical evidence: QE and preferred habitat
 - Krishnamurthy & Vissing-Jorgensen (2012), D'Amico & King (2013), Li & Wei (2013), Cahill et al. (2013),
 King (2019), Fieldhouse et al (2018), Di Maggio et al (2020), Gali, Debortoli, & Gambetti (2020), ...
- Macroeconomic QE models
 - Andres, Lopez-Salido, & Nelson (2004), Gertler & Karadi (2011), Curdia & Woodford (2011), Chen et al (2012), Gertler & Karadi (2013), Sims & Wu (2020), Karadi & Nakov (2020), Iovino and Sergeyev (2023), Carlstrom et al (2017), Ippolito et al (2018), ...
- Market segmentation, macro-prudential monetary policy
 - · Cui & Sterk (2021), Auclert (2016), Collard et al (2017), Kaplan et al (2017), Debortoli & Gali (2017) , ...
- International
 - · Itskhoki & Mukhin (2022), Greenwood et al (2023), Gourinchas, Ray, & Vayanos (2022), ...

Set-Up

Model Set-Up

· Continuous time New Keynesian model with embedded Vayanos-Vila bond markets

Agents:

- Firms: monopolistic competitors produce using labor, face nominal pricing frictions
- · Households: supply differentiated labor, consume, save via bond markets
- Arbitrageurs: imperfect risk-bearing capacity, conduct bond carry trades
- Habitat funds: buys and sell bonds of a specific maturity

Policymakers:

- · Central bank: conducts short rate and balance sheet (QE) policy
- · Government: optimal subsidies, otherwise passive

· Bond markets:

- Continuum of zero coupon bonds with maturity 0 $\leq \tau \leq \mathit{T} \leq \infty$
- Bond price $P_t^{(au)}$ with yield to maturity $y_t^{(au)} = -\log P_t^{(au)}/ au$
- · Nominal short rate: in equilibrium, $i_t = \lim_{\tau \to 0} y_t^{(\tau)}$

Firms

- · Continuum of intermediate goods $j \in [0,1]$ (and CES final good with elasticity ϵ)
- · Linear production in differentiated labor $Y_t(j) = e^{Z_t}L_t(j)$:

$$\mathrm{d} z_t = -\kappa_z z_t \, \mathrm{d} t + \sigma_z \, \mathrm{d} B_{t,z} \,, \quad L_t(j) = \left[\int_{h \in \mathcal{H}} L_t(j,h)^{\frac{\epsilon_W - 1}{\epsilon_W}} \, \mathrm{d} h \right]^{\frac{\epsilon_W}{\epsilon_W - 1}}$$

• Face costs $\Theta(\pi_t(j)) = \frac{\theta}{2} \pi_t(j)^2 P_t Y_t$ when setting prices $\frac{dP_t(j)}{P_t(j)} = \pi_t(j) dt$. Maximizes:

$$egin{aligned} U_0 &\equiv \max \mathbb{E}_0 \int_0^\infty e^{-
ho t} Q_t^{\mathcal{H}} rac{\mathcal{F}_t}{P_t} \, \mathrm{d}t \ \end{aligned}$$
 s.t. $\mathcal{F}_t = (1 + au^y) P_t(j) Y_t(j) - \mathcal{W}_t L_t(j) - \Theta(\pi_t(j)) - \mathcal{T}_t$

- · Take as given CES demand, wage index, price index, au^y subsidy, taxes \mathcal{T}_t
- Profits are discounted by HH sector real SDF $Q_t^{\mathcal{H}}$

Key takeaway: inefficiencies due to pricing frictions, differentiated labor

9

Households

- · Continuum of HH members $h \in \mathcal{H}$, differentiated by access to bond markets τ
- Mass $\eta(\tau)$ of each $h=(i,\tau)$ HH where $\int_0^T \eta(\tau) d\tau = 1$ (otherwise identical)
- · A au-type HH chooses consumption and labor $C_t(au)$, $N_t(au)$ in order to solve

$$\begin{split} V_0(\tau) &\equiv \mathsf{max} \, \mathbb{E}_0 \int_0^\infty e^{-\rho t} \left(\frac{C_t(\tau)^{1-\varsigma} - 1}{1-\varsigma} - \frac{N_t(\tau)^{1+\varphi}}{1+\varphi} \right) \mathrm{d}t \\ \text{s.t. } \mathrm{d}A_t(\tau) &= \left[(1+\tau^{\mathsf{w}}) \mathcal{W}_t(\tau) N_t(\tau) - P_t C_t(\tau) \right] \mathrm{d}t + A_t(\tau) \frac{\mathrm{d}P_t^{(\tau)}}{P_t^{(\tau)}} + \mathrm{d}F_t\left(\tau\right) \end{split}$$

- $A_t(\tau)$ nominal savings earn $\frac{\mathrm{d}P_t^{(\tau)}}{P_t^{(\tau)}}$
- \cdot $\mathcal{W}_{t}(au)$ is nominal (differentiated) wage (baseline: set frictionlessly)
- \cdot Take as given CES labor demand, au^{w} labor subsidy, transfers $\mathrm{d}F_{t}\left(au
 ight)$

Key takeaway: consumption/labor choices differ when bond returns not equalized

Arbitrageurs

Mean-variance optimization

$$\max \mathbb{E}_t d\omega_t - \frac{a}{2} \operatorname{Var}_t d\omega_t$$
s.t.
$$d\omega_t = \omega_t i_t dt + \int_0^T X_t^{(\tau)} \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} - i_t dt \right) d\tau$$

- · Arbitrageurs invest $X_t^{(\tau)}$ in bond carry trade of maturity τ
- · Remainder of wealth ω_t invested at the short rate
- Risk-return trade-off governed by a
 - · Formally: risk aversion coefficient
 - More generally: proxies for any limits to risk-bearing capacity or intermediation frictions
 - Arbitrageurs transfer gains/losses to HHs, so a represents any frictions which hinder ability to trade on behalf of HHs

Key takeaway: risk averse arbitrageurs' holdings increase with expected return

Preferred Habitat Funds

· Habitat bond demand (exogenous) for maturity au:

$$Z_t^{(\tau)} = -\alpha(\tau) \log P_t^{(\tau)} - \beta_t^{(\tau)}$$

- $\alpha(\tau)$: demand elasticity for τ fund
- $\cdot \beta_t^{(\tau)}$: additional time-varying ("noise") demand factor
 - · Noise demand $\beta_t^{(\tau)} = \theta(\tau)\beta_t$ follows a factor structure across habitat funds, eg

$$\mathrm{d}\beta_t = -\kappa_\beta \left(\beta_t - \bar{\beta}\right) \mathrm{d}t + \sigma_\beta \, \mathrm{d}B_{\beta,t}$$

- $\theta(\tau)$: mapping from demand factor β_t to τ -habitat demand
- · $Z_t^{(\tau)}$ financed at the short rate (zero-cost position)
- · Habitat funds also transfer gains/losses to HHs

Key takeaway: habitat funds introduce noise; price movements require portfolio rebalancing

Government'

- · Central bank chooses policy rate i_t and bond holdings $S_t^{(\tau)}$
- Potentially subject to costs:

$$Y_t \Psi_t^S \equiv Y_t \int_0^T \frac{\psi^{(\tau)}}{2} \left(S_t^{(\tau)} \right)^2 d\tau , \quad Y_t \Psi_t^i \equiv Y_t \frac{\psi^i}{2} \left(i_t - \overline{i}_t \right)^2$$

- In the background: fiscal authority chooses production/labor subsidies τ^y, τ^w , balances the budget period by period
- · Optimal policy: maximize social welfare

$$\max \mathbb{E}_0 \int_0^\infty e^{-\rho t} \left(\int_0^T \eta(\tau) u\left(C_t(\tau), N_t(\tau) \right) d\tau \right) dt$$

Key takeaway: policy attempts to undo frictions:

- 1. Nominal pricing frictions \implies deadweight loss
- 2. Differentiated labor \implies production inefficiencies
- 3. Market segmentation \implies consumption dispersion, imperfect risk-sharing

Equilibrium

Equilibrium Overview

• Equilibrium bond price dynamics and arbitrageur optimality conditions:

$$\frac{\mathrm{d}P_t^{(\tau)}}{P_t^{(\tau)}} \equiv \mu_t^{(\tau)} \, \mathrm{d}t + \boldsymbol{\sigma}_t^{(\tau)} \, \mathrm{d}\boldsymbol{B}_t, \ \mu_t^{(\tau)} - i_t = \boldsymbol{\sigma}_t^{(\tau)} \boldsymbol{\Lambda}_t, \ \boldsymbol{\Lambda}_t^{\top} = a \int_0^{\tau} X_t^{(\tau)} \boldsymbol{\sigma}_t^{(\tau)} \, \mathrm{d}\tau$$

- · Term premia depend on risk aversion a and equilibrium holdings $X_t^{(\tau)}$
- · Approximation around "small risk, low risk bearing capacity" (nonzero premia)
- The first-best allocation obtained when $\theta = 0$ and a = 0. Output gap $X_t \equiv \frac{Y_t}{Y_t^n}$ and inflation evolve according to (linearized)

$$dx_t = \varsigma^{-1} (\tilde{\mu}_t - \pi_t - r_t^n) dt$$
$$d\pi_t = (\rho \pi_t - \delta x_t) dt$$

 $r_t^n \equiv -\kappa_z z_t$ is the usual natural rate and $\tilde{\mu}_t$ is the effective borrowing rate:

$$\tilde{\mu}_t = \int_0^T \eta(\tau) \mu_t^{(\tau)} \, \mathrm{d}\tau$$

• Up to first-order, our model is the same as Ray, Droste, & Gorodnichenko (2024) details

Social Welfare

· Per-period social welfare loss (second-order expansion relative to first-best):

$$\begin{split} \mathcal{L}_{t} &\equiv (\varsigma + \varphi) x_{t}^{2} + \theta \pi_{t}^{2} \\ &+ \frac{\varsigma}{\varphi} \left(\varphi + \varsigma \left[\frac{\varphi \epsilon_{w}}{1 + \varphi \epsilon_{w}} \right]^{2} \right) \mathbb{V} \mathsf{ar}_{\tau} \, c_{t}(\tau) + \epsilon_{w} \, \mathbb{V} \mathsf{ar}_{\tau} \, w_{t}(\tau) \\ &+ \int_{0}^{\tau} \psi^{(\tau)} \left(S_{t}^{(\tau)} \right)^{2} \mathrm{d}\tau + \psi^{i} \left(i_{t} - \overline{i}_{t} \right)^{2} \end{split}$$

- First line: losses from nominal rigidities (same as in textbook RANK)
- Next line: losses also depends on consumption and wage dispersion across HHs
- Final line: losses from policy frictions (when $\psi^i > 0, \psi^{(\tau)} > 0$)

Aggregate and Welfare Consequences: Simple Policy Rules

• In order to better understand the model, simplify to a version of the model which only includes natural rate shocks r_t^n

$$\mathrm{d}r_t^n = -\kappa_z r_t^n \,\mathrm{d}t + \sigma_r \,\mathrm{d}B_{z,t}$$

Consider policy rules which implement

$$i_t = \chi_i r_t^n$$

$$S_t^{(\tau)} = \chi_S^{(\tau)} r_t^n$$

- · Simple policy rules: function of natural state variables only
 - Time-consistent: policymaker seeks to minimize unconditional social welfare loss
- · We will examine the outcome of these policies in different versions of the model

Risk Neutral Arbitrageur

Benchmark: Risk Neutral Arbitrageur ("Standard Model")

- Consider the benchmark case of a risk neutral arbitrageur: a = 0
- · The expectations hypothesis holds: $\mu_t^{(\tau)} = i_t \implies$ model collapses to RANK

$$\mathbb{V}\operatorname{ar}_{\tau} c_t(\tau) = 0, \ \ \mathbb{V}\operatorname{ar}_{\tau} w_t(\tau) = 0$$

- Recover the standard QE neutrality result: balance sheet policies do not affect bond prices (and therefore have no aggregate effects)
- · Divine coincidence holds: conventional policy can achieve first-best

$$\chi_i = 1 \implies \mu_t^{(\tau)} = r_t^n \implies x_t = \pi_t = 0$$

• 'Woodford-ian' equivalence: the role of policy on aggregate dynamics and welfare is fully summarized by policy rate i_t

Imperfect Arbitrage

Imperfect Arbitrage

· Now assume a > 0 and the central bank continues to implement $i_t = r_t^n$

Proposition (Imperfect Arbitrage and Ad-hoc Policy)

Assume risk aversion a>0 and price elasticities $\alpha(au)>0$

Bond markets: bond carry trade return $\mu_t^{(au)} - i_t$

- Decreases with the short rate i_t
- Decreases with QE shocks $S_t^{(QE)}$

Aggregate dynamics: output gaps x_t and inflation π_t

- Not identically zero: \mathbb{V} ar $x_t \neq 0$ and inflation \mathbb{V} ar $\pi_t \neq 0$;
- QE increases the output gap and inflation

Dispersion: consumption and wage dispersion $\mathbb{V}ar_{\tau} c_t(\tau) \neq 0$, $\mathbb{V}ar_{\tau} w_t(\tau) \neq 0$

Imperfect Arbitrage Intuition: Policy Pass-Through

- Consider a fall in the natural rate inducing a cut in the policy rate:
 - When $\downarrow i_t$, bond arbitrageurs want to invest more in the BCT
 - $\cdot \implies$ bond prices increase $\uparrow P_t^{(\tau)}$
 - · As $\uparrow P_t^{(\tau)}$, price-elastic habitat bond investors ($\alpha(\tau) > 0$) reduce their holdings: $\downarrow Z_t^{(\tau)}$
 - · Bond arbitrageurs increase their holdings $\uparrow X_t^{(au)}$, which requires a larger BCT return

- · Now consider a QE shock
 - QE purchases: $\uparrow S_t^{(\tau)}$
 - \cdot Bond arbitrageurs reduce holdings $\downarrow \chi_{\rm t}^{(au)}$, reducing risk exposure and pushing down yields

Imperfect Arbitrage Intuition: Aggregate Effects

- Therefore, a shock to the natural rate does not fully pass through to the effective borrowing rate $\tilde{\mu}_t \neq i_t$
 - Thus aggregate borrowing demand changes, and hence $x_t \neq 0$
 - Through the NKPC, $\pi_t \neq 0$
- On the other hand, a QE shock stimulates the economy
 - \cdot QE reduces borrowing rates $\downarrow ilde{\mu}_t$ and therefore stimulates aggregate consumption $\uparrow x_t$
 - Through the NKPC, inflation $\uparrow \pi_t$
- · Additionally, in general $\mu_t^{(au)}
 eq \mu_t^{(au')}$
 - · Hence individual Euler equations differ
 - $\cdot \implies c_t(\tau) \neq c_t(\tau'), n_t^{(\tau)} \neq n_t(\tau') \text{ and therefore } \mathbb{V}\mathsf{ar}_\tau \ c_t(\tau) \neq 0, \mathbb{V}\mathsf{ar}_\tau \ w_t(\tau) \neq 0$

Optimal Policy

Imperfect Arbitrage and Macroeconomic Stabilization

- · Can conventional policy alone close the output gap?
- Yes but the short rate must react more than one-for-one with the natural rate:

$$\exists \chi_i^n > 1: i_t = \chi_i^n r_t^n \implies \tilde{\mu}_t = r_t^n$$

- However, this does not achieve first-best since $\mathbb{V}ar_{\tau} c_t(\tau) \neq 0$, $\mathbb{V}ar_{\tau} w_t(\tau) \neq 0$
- In fact, relative to the policy $i_t = r_t^n$, in general we have $\uparrow \mathbb{V} \mathsf{ar}_\tau \, c_t(\tau), \uparrow \mathbb{V} \mathsf{ar}_\tau \, w_t(\tau)$
 - Short rate is more volatile, hence ↑ term premia volatility
 - This implies higher dispersion across borrowing rates $\mu_t^{(\tau)}$ and therefore an increase in consumption/labor dispersion
- Optimal short rate policy: if $\psi^{(\tau)} \to \infty$, then optimal policy implements

$$i_t = \chi_i^* r_t^n, \ \chi_i^* < \chi_i^n \implies \frac{\partial \tilde{\mu}_t}{\partial r_t^n} < 1$$

Imperfect Arbitrage and Macro-Financial Stabilization

· With access to frictionless balance sheet policies, we obtain the following

Proposition (Optimal Policy Separation Principle)

Assume risk aversion a>0 and price elasticities $\alpha(\tau)>0$, and policy costs $\psi^i=\psi^{(\tau)}=0$. Suppose the central bank implements short rate and balance sheet policy according to

$$i_t = r_t^n$$

$$S_t^{(\tau)} = \alpha(\tau) \log P_t^{(\tau)}$$

Then first-best is achieved:

- Macroeconomic stabilization: $x_t = \pi_t = 0 \ \forall t$
- Financial stabilization: $\mu_t^{(\tau)} = \tilde{\mu}_t \ \forall \tau$
- · Consumption and wage equalization: \mathbb{V} ar $_{\tau}$ $c_t(\tau) = 0$, \mathbb{V} ar $_{\tau}$ $w_t(\tau) = 0$ $\forall t$

Optimal Policy Separation Principle: Intuition

- The results follow naturally from our findings regarding ad-hoc policy
- QE policy stabilizes shocks to bond markets by offsetting all habitat portfolio rebalancing shocks:

$$S_t^{(\tau)} = -Z_t^{(\tau)} \implies \boldsymbol{\sigma}_t^{(\tau)} \boldsymbol{\Lambda}_t = 0$$

- · This equalizes borrowing rates across HHs: $\mu_t^{(au)} = ilde{\mu}_t$
- Hence the model collapses to a standard RANK model, in which case divine coincidence implies $i_t = r_t^n$ is optimal

Separation principle for optimal policy:

- Optimal balance sheet policy stabilizes financial markets
- Optimal short rate policy stabilizes macroeconomic aggregates

Separation Principle with Balance Sheet Constraints

- When the central bank faces balance sheet constraints ($\Psi^{(\tau)}>0$), policy can no longer achieve first-best
- However, as long as $\Psi^{(\tau)}<\infty$, optimal policy implies the central bank still uses balance sheet tools
- · Let $\Psi^{(\tau)} = a \cdot \boldsymbol{\sigma}^{(\tau)} \left[\boldsymbol{\sigma}^{(\tau)} \right]^{\top}$
 - $\cdot \implies$ same friction a as arbitrageurs, except policymaker cannot net out positions
- Even with "large" balance sheet costs, the central bank still uses QE to (partially) stabilize term premia
- Intuition:
 - The central bank faces holding costs which imply it is worse than private arbitrageurs at financial intermediation
 - But the central bank internalizes the social benefits of minimizing fluctuations in term premia
 - $\boldsymbol{\cdot}$ Nevertheless, non-negligible balance sheet costs imply that optimal policy is less reactive

Financial Stabilization Policy with Short Rate Constraints

· Suppose that short rate policy is constrained, and implements

$$i_t = \tilde{\chi}_i r_t^n, \quad 0 < \tilde{\chi}_i < 1$$

- · Formally: assume costs ψ^i ($i_t \tilde{\chi}_i r_t^n$) and take $\psi^i \to \infty$
- If the central bank continues to implement the balance sheet policy derived above, then borrowing rates are still equalized $\mu_t^{(\tau)} = \tilde{\mu}_t$
- · However, $\tilde{\mu}_t \neq r_t^n$ and hence this policy does not achieve macroeconomic stabilization

$$X_t \neq 0, \pi_t \neq 0$$

Macroeconomic Stabilization with Short Rate Constraints

- · Can balance sheet policy alone close the output gap?
- Yes but must sacrifice equalizing borrowing rates:

$$\mu_t^{(\tau)} = i_t + \sigma_t^{(\tau)} \lambda_t$$

$$\lambda_t \equiv a \int_0^T \left[\alpha(\tau) \log P_t^{(\tau)} - S_t^{(\tau)} \right] \sigma_t^{(\tau)} d\tau$$

 \cdot Hence, can always choose $\left\{S_t^{(au)}
ight\}$ such that

$$\lambda_t^* = \frac{r_t^n - i_t}{\int_0^T \eta(\tau) \sigma_t^{(\tau)} d\tau} \implies \tilde{\mu}_t = r_t^n$$

• However, because $\sigma_t^{(\tau)} \neq \sigma_t^{(\tau')}$ this necessitates

$$\mu_t^{(\tau)} = i_t + \sigma_t^{(\tau)} \left(\frac{r_t^n - i_t}{\int_0^T \eta(\tau') \sigma_t^{(\tau')} d\tau'} \right) \neq r_t^n \quad \text{(unless } i_t = r_t^n)$$

Stabilization with Short Rate Constraints: Intuition

- Balance sheet policy works by affecting term premia through changes in the market price of risk
- Although arbitrage is imperfect in this model, arbitrageurs still enforce tight restrictions between between market price of risk and term premia across maturities
- Hence, while in principle the central bank has a continuum of policy tools $\{S_t^{(\tau)}\}$, in practice it can only manipulate λ_t
- Related to localization results in Vayanos & Vila (2021) and Ray, Droste, & Gorodnichenko (2024)
 - In the one-factor model considered here, the effects of QE are fully global
 - Even with more complicated risk structure, localization is not strong enough to allow balance sheet policy alone to achieve first-best

Extensions Overview

- · "Noise" Demand Shocks details
 - Optimal separation principle still holds with stochastic habitat demand $\beta_t^{(\tau)}$, but QE must be more reactive
 - Additional result: if noise demand dynamics are such that $\uparrow \uparrow \beta_t^{(\tau)}$ in response to $\uparrow r_t^n$, then it is optimal to expand the balance sheet $\uparrow S_t^{(\tau)}$ while hiking rates $\uparrow i_t$
- · Cost-Push Shocks details
 - Adding shocks to NKPC (eg, wage rigidity in labor markets) breaks divine coincidence but unfortunately, our separation principle still holds
 - Despite multiple policy instruments, (un)conventional policy only affects aggregate outcomes through changes in effective borrowing rate $\tilde{\mu}_t$
- Nonzero First-Best Term Premia details
 - When first-best BCT returns are $\nu^{(\tau)} \neq 0$
 - · Our results hold when $\nu^{(\tau)}$ is achievable but optimal short rate policy is a function of $\nu^{(\tau)}$

History-Dependent Policy

Monetary Policy with Commitment

- · When policy frictions bind, simple policy rules fail to achieve first-best
- Instead suppose the policymaker chooses policy tools \mathbf{u}_t as a function of entire history of predetermined and nonpredetermined variables $\mathbf{Y}_t \equiv \begin{bmatrix} \mathbf{y}_t^\top & \mathbf{x}_t^\top \end{bmatrix}^\top$
- · Minimizes conditional social loss

$$\begin{split} \mathcal{W}_0 &= \frac{1}{2} \mathbb{E}_0 \int_0^\infty e^{-\rho t} \mathcal{L}_t \, \mathrm{d}t \\ &= \frac{1}{2} \mathbb{E}_0 \int_0^\infty e^{-\rho t} \left(\mathbf{Y}_t^\top \mathbf{R} \mathbf{Y}_t + \mathbf{u}_t^\top \mathbf{Q} \mathbf{u}_t \right) \, \mathrm{d}t \,, \ \mathbf{y}_0 \ \text{given} \end{split}$$

• By setting policy in a history-dependent manner, full commitment policies can improve on simple policy rules

Characterizing Optimal Policy with Commitment

Theorem (Optimal Policy with Commitment)

Given y_0 , the policymaker minimizes W_0 by choosing $u_t = FY_t$, which induce equilibrium dynamics $dY_t = -\Upsilon(F)Y_t dt + S(F) dB_t$. Necessary conditions are given by

$$\boldsymbol{y}_{0}^{\top}\left(\partial_{i}P_{11}-\partial_{i}P_{12}P_{22}^{-1}P_{21}-P_{12}P_{22}^{-1}\partial_{i}P_{21}+P_{12}\left(P_{22}^{-1}\partial_{i}P_{22}P_{22}^{-1}\right)P_{21}\right)\boldsymbol{y}_{0}=0$$

where $\rho P = R + F^{\top}QF - P\Upsilon - \Upsilon^{\top}P$. Dynamics are given by $\mathbf{q}_0 = \begin{bmatrix} \mathbf{y}_0 & \mathbf{0} \end{bmatrix}^{\top}$ and

$$\mathrm{d}q_t = -\begin{bmatrix} I & 0 \\ P_{21} & P_{22} \end{bmatrix} \boldsymbol{\Upsilon} \begin{bmatrix} I & 0 \\ -P_{22}^{-1}P_{21} & P_{22}^{-1} \end{bmatrix} q_t \, \mathrm{d}t + \begin{bmatrix} I & 0 \\ P_{21} & P_{22} \end{bmatrix} S \, \mathrm{d}B_t \equiv -\boldsymbol{\Gamma}q_t \, \mathrm{d}t + \boldsymbol{\sigma} \, \mathrm{d}B_t$$

Bond prices are affine in $\mathbf{A}(\tau)^{\top}\mathbf{q}_t$ with $\mathbf{A}(\tau) = \left[\mathbf{I} - e^{-\mathbf{M}\tau}\right]\mathbf{M}^{-1}\mathbf{e}_i$ and

$$\mathbf{e}_i^{\top} \mathbf{q}_t = i_t, \ \ \mathbf{M} = \mathbf{\Gamma}^{\top} - \int_0^{\tau} \left[-\alpha(\tau) \mathbf{A}(\tau) + \mathbf{\Theta}(\tau) \right] \mathbf{A}(\tau)^{\top} d\tau \, \tilde{\mathbf{\Sigma}}$$

Monetary Policy with Commitment: Intuition

- Policymaker chooses tools i_t , $\left\{S_t^{(\tau)}\right\}$ which:
 - Directly affect optimality conditions of arbitrageurs
 - · Indirectly affect HHs through changes in equilibrium borrowing rates
 - · Indirectly affect firms through changes in marginal costs
- Trade-off: more aggressive policy reactions to shocks:
 - Greater pass-through to HHs
 - · Larger and more volatile term premia
- · Commitment partially relaxes this link:
 - · HH decisions depend on entire expected path of borrowing rates $\int_0^\infty \mu_t^{(au)} \,\mathrm{d} au$
 - \cdot Arbitrageur risk compensation depends on volatility of short-run fluctuations $\mathrm{d}i_t$, $\mathrm{d}\mathsf{S}_t^{(au)}$
- · Characterizing dynamics of optimal policy with commitment is difficult
 - Ongoing work studies optimal policy numerically
 - \cdot Suffers from time inconsistency; simple rules may be more practical

Concluding Remarks

- This paper develops a tractable general equilibrium model with market segmentation, nominal frictions, and household heterogeneity
- We find that optimal short rate and balance sheet policy is characterized by a sharp optimal separation result:
 - Conventional policy targets macroeconomic stability
 - Unconventional policy targets financial stability
- Optimal policy removes excess volatility of risk premia and hence improves risk-sharing across households, while reducing excess macroeconomic volatility
 - Policy constraints on either the short rate or balance sheets imply trade-offs between these two policy objectives
- When considering social welfare, cannot abstract from the policy tools used to conduct monetary policy

Thank You!

Equilibrium Details

Aggregation

- · Firms, arbitrageurs, and funds transfer profits equally to HHs
- · Symmetric firm equilibrium $Y_t(j) = Y_t, P_t(j) = P_t, \pi_t(j) = \pi_t, \frac{dP_t}{P_t} = \pi_t dt$
- Clearing in production and goods markets:

$$Y_{t} = Z_{t}L_{t} \equiv Z_{t} \left[\int_{0}^{T} \eta(\tau)N_{t}(\tau)^{\frac{\epsilon_{W}-1}{\epsilon_{W}}} d\tau \right]^{\frac{\epsilon_{W}}{\epsilon_{W}-1}}$$

$$C_{t} \equiv \int_{0}^{T} \eta(\tau)C_{t}(\tau) d\tau = Y_{t} \left(1 - \frac{\theta}{2}\pi_{t}^{2} - \Psi_{t}^{S} - \Psi_{t}^{i} \right)$$

Bond market clearing implies

$$X_t^{(\tau)} + Z_t^{(\tau)} + \eta(\tau) A_t(\tau) + S_t^{(\tau)} = 0$$

Optimality Conditions

• Equilibrium bond price dynamics:

$$\frac{\mathrm{d}P_t^{(\tau)}}{P_t^{(\tau)}} \equiv \mu_t^{(\tau)} \, \mathrm{d}t + \boldsymbol{\sigma}_t^{(\tau)} \, \mathrm{d}\mathsf{B}_t$$

- · B_t collects innovations to risk factors (technology, noise demand, ...)
- Arbitrageur optimality conditions:

$$\mu_t^{(\tau)} - i_t = \boldsymbol{\sigma}_t^{(\tau)} \boldsymbol{\Lambda}_t, \ \boldsymbol{\Lambda}_t^{\top} = a \int_0^1 X_t^{(\tau)} \boldsymbol{\sigma}_t^{(\tau)} d\tau$$

- \cdot Term premia depend on risk aversion a and equilibrium holdings $X_t^{(au)}$
- HH optimality conditions (log-linearized) :

$$w_t = \varsigma c_t(\tau) + \phi n_t(\tau) + \frac{1}{\epsilon_W} \left(n_t(\tau) - \ell_t \right), \ \mathbb{E}_t \, \mathrm{d} c_t(\tau) = \varsigma^{-1} \left(\mu_t^{(\tau)} - \pi_t - \rho \right) \mathrm{d} t$$

Firm optimality conditions (log-linearized):

$$\mathbb{E}_t \, \mathrm{d}\pi_t = (\rho \pi_t - \delta_w W_t) \, \mathrm{d}t$$

Simplifying Assumptions

- Tractability assumption: a "head of HH" sets transfers such that in equilibrium, wealth is equalized: across τ HH groups, $A_t(\tau) \equiv A_t$
 - · Pros: clear focus on the role market segmentation plays on consumption dispersion
 - · Cons: ignores the impact of market segmentation on wealth inequality
- Approximation: around a limiting case: risk $\hat{\sigma}_t^{(\tau)} \equiv \hat{h}^{\frac{1}{2}} \cdot \sigma_t^{(\tau)} \to \mathbf{0}$ but arbitrageur risk aversion $\hat{a} \equiv a/\hat{h} \to \infty$ such that $\hat{a}^{\frac{1}{2}} \cdot \hat{\sigma}_t^{(\tau)} \equiv a^{\frac{1}{2}} \cdot \sigma_t^{(\tau)}$ remains non-zero and bounded
 - · Pros: clear focus on the idea of "imperfect arbitrage"
 - · Cons: less realistic risk premia (particularly in first-best)
- Allows us to derive simple first-order approximations of dynamics and second-order approximations for welfare

Aggregate Dynamics

• The first-best (natural) allocation obtained when $\theta = 0$ and a = 0. Output gap:

$$X_t \equiv \frac{Y_t}{Y_t^n}$$

Output gap evolves according to modified aggregate Euler equation:

$$dx_t = \varsigma^{-1} \left(\tilde{\mu}_t - \pi_t - r_t^n \right) dt$$

 $r_t^n \equiv -\kappa_z z_t$ is the usual natural rate and $\tilde{\mu}_t$ is the effective borrowing rate:

$$ilde{\mu}_t = \int_0^{\mathsf{T}} \eta(\tau) \mu_t^{(\tau)} \,\mathrm{d} au$$

· We recover a standard NKPC:

$$\mathrm{d}\pi_t = (\rho \pi_t - \delta x_t) \,\mathrm{d}t$$

Extensions

Extensions: "Noise" Demand Shocks

- · We obtain identical results when allowing for shocks to habitat demand $\beta_t^{(\tau)}$
- Optimal separation principle still holds with $\psi^{(\tau)}=0$, but QE must be more reactive:

$$S_t^{(\tau)} = \alpha(\tau) \log P_t^{(\tau)} + \beta_t^{(\tau)}$$

- Optimal short rate policy still implements $i_t = r_t^n$
- Additional result: if noise demand dynamics are such that $\uparrow \uparrow \beta_t^{(\tau)}$ in response to $\uparrow r_t^n$, then it is optimal to expand the balance sheet $\uparrow S_t^{(\tau)}$ while hiking rates $\uparrow i_t$
- · Intuition:
 - Suppose during a hiking cycle and in the absence of QE we have an increase in term premia
 - Then the optimal balance sheet policy is to conduct additional QE purchases in order to offset spike in term premia
 - $\cdot \implies$ conventional and unconventional policy seem to be at odds with one another
 - · Otherwise, short rate policy and balance sheet policy tend to be reinforcing

Extensions: Cost-Push Shocks

- · What if divine coincidence does not hold? Eg, wage rigidity in labor markets
- \cdot More generally, introduce exogenous cost-push shocks u_t in NKPC:

$$\mathrm{d}\pi_t = (\rho \pi_t - \delta x_t - u_t) \,\mathrm{d}t$$

- · Unfortunately, our separation principle still holds:
 - · Optimal QE stabilizes term premia
 - · Short rate policy must contend with the output gap/inflation trade-offs
- Intuition: despite multiple policy instruments, (un)conventional policy only affects aggregate outcomes through changes in effective borrowing rate $\tilde{\mu}_t$
 - Take any feasible path $\{x_t, \pi_t, \tilde{\mu}_t\}_t$ from an implementation implying policies $\left\{\hat{l}_t, \hat{S}_t^{(\tau)}\right\}_t$
 - · Can also be achieved with $i_t = \tilde{\mu}_t, \mathsf{S}_t^{(\tau)} = \alpha(\tau) \log P_t^{(\tau)} + \beta_t^{(\tau)}$
 - · This guarantees $\mathbb{V}\mathsf{ar}_{ au}\,c_t(au)=\mathbb{V}\mathsf{ar}_{ au}\,w_t(au)=0$ and hence strictly dominates

Extensions: Non-Zero First-Best Carry Trade Returns

- Our approximation approach implies that in the first-best, expected carry trade returns are zero
- This simplifies our analytical results but of course is an extreme assumption
- · Suppose instead that first-best BCT returns are $u^{(au)} \neq 0$
- Our separation principle still holds when $\nu^{(\tau)}$ is achievable but optimal short rate policy is a function of $\nu^{(\tau)}$
- Intuition: combination of previous results
 - Aggregate outcomes through changes in effective borrowing rate $ilde{\mu}_t$ (as before)
 - · Optimal QE policy guarantees $\mu_t^{(\tau)} i_t \equiv \nu^{(\tau)}$ and hence $\tilde{\mu}_t = i_t + \int_0^{\tau} \eta(\tau) \nu^{(\tau)} d\tau \equiv i_t + \tilde{\nu}$
 - Thus, optimal short rate policy implements $i_t = r_t^n ilde{
 u}$