

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta046

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $\frac{4-3i}{4+3i}$.
- (4p) b) Să se calculeze lungimea segmentului cu capetele în punctele A(3, -2) și C(4, -3).
- (4p) c) Să se calculeze produsul de numere complexe $p = i \cdot i^3 \cdot i^5 \cdot i^7$.
- (4p) d) Să se determine $a,b \in \mathbb{R}$, astfel încât punctele A(3,-2) și C(4,-3) să fie pe dreapta de ecuație x + ay + b = 0.
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele A(3,-2), B(2,2) și C(4,-3).
- (2p) f) Să se determine $a,b \in \mathbf{R}$ astfel încât să avem egalitatea de numere complexe $(5+6i)^2 = a+bi$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze elementul $\hat{2}^{2006}$ în (\mathbf{Z}_8,\cdot) .
- (3p) b) Să se calculeze expresia $E = C_{10}^3 C_{10}^7 + C_8^8$.
- (3p) c) Să se rezolve în mulțimea numerelor reale strict pozitive ecuația $\log_5 x = -2$.
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $16^x 2 = 0$.
- (3p) e) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $3^n > 10$.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^5 + 7x 3$.
- (3p) a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x) dx.$
- (3p) c) Să se calculeze $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$.
- (3p) d) Să se arate că funcția f este strict crescătoare pe \mathbf{R} .
- (3p) e) Să se calculeze $\lim_{n \to \infty} \frac{\ln n + 3}{\ln n 2}.$

SUBIECTUL III (20p)

Pe $M_2(\mathbf{R})$ se consideră legea de compoziție $X * Y = X \cdot Y + X + Y$,

$$X, Y \in M_2(\mathbf{R})$$
 și mulțimea $G = \left\{ A \in M_2(\mathbf{R}) \mid A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, a \neq -1 \right\}.$

- (4p) a) Să se arate că "*" este lege de compoziție pe G.
- (4p) b) Să se arate că legea "*" este asociativă.
- (4p) c) Să se determine elementul neutru $E \in M_2(\mathbf{R})$, în raport cu legea "*".
- (2p) d) Să se determine simetrica matricei $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ în raport cu legea "*".
- (2p) e) Să se determine matricele $X \in G$, care verifică ecuația $X * X = 3I_2$.
- (2p) f) Să se determine $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^n$, pentru $n \in \mathbb{N}^*$.
- (2p) g) Utilizând metoda inducției matematice, să se arate că $\underbrace{I_2 * I_2 * ... * I_2}_{n \text{ ori } I_n} = (2^n 1)I_2, \ \forall n \in \mathbb{N}, \ n \ge 2.$

SUBIECTUL IV (20p)

Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x + \cos x$, $x \in \mathbf{R}$ și șirul $(a_n)_{n \in \mathbf{N}}$, cu $a_0 \in (0,\pi)$ și $a_{n+1} = f(a_n)$, $n \in \mathbf{N}$.

- (4p) a) Să se arate că funcția f este strict crescătoare și bijectivă. Pentru fiecare $n \in \mathbb{N}$, notăm cu b_n unica soluție a ecuației f(x) = n.
- (4p) b) Să se arate că șirul $(b_n)_{n\in\mathbb{N}}$ este strict crescător.
- (4p) c) Să se arate că $\lim_{n\to\infty} b_n = \infty$.
- (2p) d) Să se arate că $\lim_{n\to\infty} \frac{b_n}{n} = 1$.
- (2p) e) Să se arate că dacă $a_0 \in \left(0, \frac{\pi}{2}\right)$ atunci șirul $(a_n)_{n \in \mathbb{N}}$ este strict crescător.
- (2p) f) Să se arate că dacă $a_0 \in \left(\frac{\pi}{2}, \pi\right)$ atunci șirul $(a_n)_{n \in \mathbb{N}}$ este strict descrescător.
- (2p) g) Să se arate că pentru orice $a_0 \in (0, \pi)$ șirul $(a_n)_{n \in \mathbb{N}}$ este convergent și $\lim_{n \to \infty} a_n = \frac{\pi}{2}.$

2