Math 435 10/06/2025 Notes

October 6, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Definition 1. A map $f: X \to Y$ is a continuous function if inverse images of open sets of Y are open in X.

Lemma 1. (Pasting Lemma) If you have an open set $A, B \in X$ with $A \cup B = X$ and a continuous function from $f: A \to Y$ and $g: B \to Y$, and $f|_{A \cap B} = g|_{a \cap b}$, then $h: X \to Y$ is continuous by

 $h \to \begin{cases} f(x) & \text{if } x \in B \\ g(x) & \text{if } x \in A \end{cases} \tag{1}$

Today

- A caution
- An example
- Homeomorphisms

Remark 1. If $f: X \to Y$ is continuous, it is not necessarily the case that the image of an open set is open.

Example 1. Let $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$. $(-1,1) \subseteq dom(f)$ is open in the domain, and has $f((-1,1)) = [0,1) \subseteq im(f)$ which is not open in the image.

Remark 2. Cech-closure spaces are spaces constructed on graphs where the closure of a node is the set of nodes and edges connected to it.

Definition 2. Let X and Y be spaces. X and Y are homeomorphic if there exists a continuous bijection, $f: X \to Y$ such that $f^{-1}: Y \to X$ is continuous. Equivalently, images of open sets are open in the image of f. If X is homeomorphic to Y, we write $X \cong Y$.

Theorem 1. A continuous map is a homeomorphism iff $f: X \to Y$ is a bijection and f is a bijection on $f: \mathcal{U}_x \to \mathcal{U}_y$.