Testing

Contents

Data	2
Raw Data	2
Cleaning The Data	2
Daily Data	2
Plots	3
Total	3
Per Day	10
Time Series Analysis	13

Data

Raw Data

```
#political shocks
raw_truths <- read.csv(here("data/political_data", "trump_all_truths.csv"))
raw_tweets <- read.csv(here("data/political_data", "tweets.csv"))

#market prices
raw_ONEQ <- read.csv(here("data/market_data", "ONEQ.csv"))
raw_SMI <- read.csv(here("data/market_data", "SMI.csv"))
raw_SPY <- read.csv(here("data/market_data", "SPY.csv"))
raw_VTHR <- read.csv(here("data/market_data", "VTHR.csv"))
raw_VTI <- read.csv(here("data/market_data", "VTI.csv"))
raw_VGK <- read.csv(here("data/market_data", "VGK.csv"))
raw_DAX <- read.csv(here("data/market_data", "DAX.csv"))
raw_ASHR <- read.csv(here("data/market_data", "ASHR.csv"))

raw_SPYy <- read.csv(here("data/market_data", "Spyqyahoo.csv")) #yahoo</pre>
```

Cleaning The Data

```
#political shocks
truths <- 1
tweets <- 1

#market prices #only cleaning dates for the time being
raw_ONEQ$timestamp = as.POSIXct(raw_ONEQ$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_SMI$timestamp = as.POSIXct(raw_SMI$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_SPY$timestamp = as.POSIXct(raw_SPY$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_VTHR$timestamp = as.POSIXct(raw_VTHR$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_VTI$timestamp = as.POSIXct(raw_VTI$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_VGK$timestamp = as.POSIXct(raw_VGK$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "UCT")
raw_DAX$timestamp = as.POSIXct(raw_DAX$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "UCT")
raw_ASHR$timestamp = as.POSIXct(raw_ASHR$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "UCT") #fix time.</pre>
```

Daily Data

Plots

Total

SPY Price Over Time


```
#ONEQ
ggplot(raw_ONEQ, aes(x = timestamp, y = close)) +
  geom_point(color = "blue", size = 0.01) +
  geom_line(aes(group=1), color="blue", linewidth=0.05) +
  labs(title = "ONEQ Price Over Time",
```

ONEQ Price Over Time

SMI Price Over Time

VTHR Price Over Time

ASHR Price Over Time

Per Day

SPY alpha Price April 9th

6.275 6.250 6.200 Fine April 9th 6.275 6.200 Time

Warning: Removed 3 rows containing missing values or values outside the scale range
('geom_point()').

Time Series Analysis

acf(log(day_SPY_0409\$close))

Series log(day_SPY_0409\$close)

pacf(log(day_SPY_0409\$close))

Series log(day_SPY_0409\$close)

acf(log(raw_SPY\$close))

Series log(raw_SPY\$close)

pacf(log(raw_SPY\$close))

Series log(raw_SPY\$close)

Looks like an AR(1) process. ACF looks a bit odd though, all equal to 1?