MATHEMATICS-II

UNIT-4: VECTOR SPACES

Vector Spaces

Vector space is a nonempty set of objects that satisfies several axioms. These objects are called vectors. In this chapter, we mainly work with two operations: addition of two objects and multiplication between a scalar and an object.

6.1 Tutorial : Real Vector Spaces

Definition

Let V be a nonempty set of objects on which two operations are defined: addition and multiplication by a scalar. Addition is a rule that associates with each pair of objects u and v in V an object u + v; scalar multiplication is a rule that associates with each scalar k and each object u an object ku. Then V is called vector space if for all objects u, v, w in V and all scalars k and m, the following axioms are satisfied:

- (1) V is closed under addition, i.e. $u, v \in V \Rightarrow u + v \in V$;
- (2) u + v = v + u;
- (3) u + (v + w) = (u + v) + w;
- (4) There is an object $0 \in V$, called the zero for V, such that u + 0 = 0 for all $u \in V$;
- (5) For each $u \in V$, there is an object $-u \in V$, called the negative of u, such that u + (-u) = 0;
- (6) V is closed under scalar multiplication, i.e. $u \in V \Rightarrow ku \in V$ for every scalar k;
- (7) k(u+v) = ku + kv;
- (8) (k+m)u = ku + mu;
- $(9) \ k(mu) = (km)u;$
- (10) 1u = u.

Remark. In the above definition, scalars may be real numbers or complex numbers. Vector spaces in which the scalars are real numbers are called *real vector spaces*, and those in which the scalars are complex numbers are called *complex vector spaces*. We will discuss real vector spaces only. Complex vector spaces are beyond the scope of this book.

Examples of Standard Vector Spaces

(1) The set $\mathbb{R}^n = \{(u_1, u_2, \dots, u_n) \mid u_1, u_2, \dots u_n \in \mathbb{R}\}$ is a vector space under the operations defined as follows:

If $u = (u_1, u_2, \dots, u_n)$ and $v = (v_1, v_2, \dots, v_n)$ are in \mathbb{R}^n and k is any scalar, then

$$u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$
 and $ku = (ku_1, ku_2, \dots, ku_n)$.

These operations on \mathbb{R}^n are called the standard operations.

(2) The set $M_{22} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$ is a vector space with the operations defined as follows:

If
$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$$
 and $B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$ are in M_{22} and k is any scalar, then

$$A + B = \begin{bmatrix} a_1 + b_1 & a_2 + b_2 \\ a_3 + b_3 & a_4 + b_4 \end{bmatrix} \quad \text{and} \quad kA = \begin{bmatrix} ka_1 & ka_2 \\ ka_3 & ka_4 \end{bmatrix}$$

These operations are standard matrix addition and scalar multiplication.

(3) The set $P_n = \{a_0 + a_1x + \ldots + a_nx^n \mid a_0, a_1, \ldots, a_n \in \mathbb{R}\}$ is a vector space under the operations defined as follows:

If $p(x) = a_0 + a_1 x + \ldots + a_n x^n$ and $q(x) = b_0 + b_1 x + \ldots + b_n x^n$ are in P_n and k is any scalar, then

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

and

$$kp(x) = ka_0 + ka_1x + \ldots + ka_nx^n.$$

Note: It is worth checking that above are vector spaces.

Solved Examples

Example 6.1.1. Check whether the set $V = \mathbb{R}^2$ is a vector space under the operations

$$(u_1, u_2) + (v_1, v_2) = (u_1 + u_2 - 1, v_1 + v_2 - 1)$$
 and $k(u_1, u_2) = (ku_1, ku_2)$.

Solution. Let $u = (u_1, u_2)$, $v = (v_1, v_2)$, $w = (w_1, w_2)$ be in V and k, m be any scalars.

Axiom 1. Observe that

$$u + v = (u_1, u_2) + (v_1, v_2) = (u_1 + v_1 - 1, u_2 + v_2 - 1) \in V$$

because $u_1 + v_1 - 1$, $u_2 + v_2 - 1 \in \mathbb{R}$.

Axiom 2. Observe that

$$u+v = (u_1, u_2) + (v_1, v_2)$$

$$= (u_1 + v_1 - 1, u_2 + v_2 - 1)$$

$$= (v_1 + u_1 - 1, v_2 + u_2 - 1) \quad (\because u_i, v_i, 1 \in \mathbb{R})$$

$$= (v_1, v_2) + (u_1, u_2)$$

$$= v + u$$
.

Axiom 3. Observe that

$$u + (v + w) = (u_1, u_2) + [(v_1, v_2) + (w_1, w_2)]$$

$$= (u_1, u_2) + (v_1 + w_1 - 1, v_2 + w_2 - 1)$$

$$= [u_1 + (v_1 + w_1 - 1) - 1, u_2 + (v_2 + w_2 - 1) - 1]$$

$$= [(u_1 + v_1 - 1) + w_1 - 1, (u_2 + v_2 - 1) + w_2 - 1] \quad (\because u_i, v_i, w_i, 1 \in \mathbb{R})$$

$$= (u_1 + v_1 - 1, u_2 + v_2 - 1) + (w_1, w_2)$$

$$= [(u_1, u_2) + (v_1, v_2)] + (w_1, w_2)$$

$$= (u + v) + w.$$

Axiom 4. For any $u = (u_1, u_2) \in V$, let 0 = (1, 1). Then $0 \in V$. Also,

$$u + 0 = (u_1, u_2) + (1, 1) = (u_1 + 1 - 1, u_2 + 1 - 1) = (u_1, u_2) = u.$$

Thus (1,1) is the zero of V.

Axiom 5. For any $u = (u_1, u_2) \in V$, let $-u = (-u_1 + 2, -u_2 + 2) \in V$. Then,

$$u + (-u) = (u_1, u_2) + (-u_1 + 2, -u_2 + 2) = (u_1 - u_1 + 2 - 1, u_2 - u_2 + 2 - 1) = (1, 1) = 0.$$

Axiom 6. Observe that

$$ku = k(u_1, u_2) = (ku_1, ku_2) \in V$$

because $ku_1, ku_2 \in \mathbb{R}$.

Axiom 7. Observe that

$$k(u+v) = k[(u_1, u_2) + (v_1, v_2)]$$

= $k(u_1 + v_1 - 1, u_2 + v_2 - 1)$
= $(ku_1 + kv_1 - k, ku_2 + kv_2 - k)$

and

$$ku + kv = k(u_1, u_2) + k(v_1, v_2)$$

$$= (ku_1, ku_2) + (kv_1, kv_2)$$

$$= (ku_1 + kv_1 - 1, ku_2 + kv_2 - 1)$$

Thus

$$k(u+v) \neq ku + kv$$
 if $k \neq 1$.

Hence V is not a vector space.

Example 6.1.2. Show that the set of all pairs of real numbers of the form (1, y) is a not vector space with the standard operations.

Solution. Let $V = \{(1, y) \mid y \in \mathbb{R}\}$ and let $u = (1, y_1)$ and $v = (1, y_1)$ in V. Then

$$u + v = (1, y_1) + (1, y_2) = (1 + 1, y_1 + y_2) = (2, y_1 + y_2).$$

Since the first coordinate in not 1, $u + v \notin V$. Thus V is not a vector space.

Example 6.1.3. Show that the set of all 2×2 matrices of the form $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix}$ is a vector space under the operations

$$\left[\begin{array}{cc} a & 1 \\ 1 & b \end{array}\right] + \left[\begin{array}{cc} c & 1 \\ 1 & d \end{array}\right] = \left[\begin{array}{cc} a+c & 1 \\ 1 & b+d \end{array}\right] \quad \text{and} \quad k \left[\begin{array}{cc} a & 1 \\ 1 & b \end{array}\right] = \left[\begin{array}{cc} ka & 1 \\ 1 & kb \end{array}\right]$$

[GTU- May 2012, June 2013]

Solution. Let $V = \left\{ A \in M_{22} \mid A = \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} \right\}$. We verify all the axioms for the vector space. For that, let $A_1 = \begin{bmatrix} a_1 & 1 \\ 1 & b_1 \end{bmatrix}$, $A_2 = \begin{bmatrix} a_2 & 1 \\ 1 & b_2 \end{bmatrix}$, $A_3 = \begin{bmatrix} a_3 & 1 \\ 1 & b_3 \end{bmatrix}$ in V and k, m be any scalars.

Axiom 1. Observe that

$$A_1 + A_2 = \begin{bmatrix} a_1 & 1 \\ 1 & b_1 \end{bmatrix} + \begin{bmatrix} a_2 & 1 \\ 1 & b_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & 1 \\ 1 & b_1 + b_2 \end{bmatrix}$$

which is of the form given in V because $a_1 + a_2$, $b_1 + b_2 \in \mathbb{R}$. Thus $A_1 + A_2 \in V$.

Axiom 2. Observe that

$$A_{1} + A_{2} = \begin{bmatrix} a_{1} & 1 \\ 1 & b_{1} \end{bmatrix} + \begin{bmatrix} a_{2} & 1 \\ 1 & b_{2} \end{bmatrix}$$

$$= \begin{bmatrix} a_{1} + a_{2} & 1 \\ 1 & b_{1} + b_{2} \end{bmatrix}$$

$$= \begin{bmatrix} a_{2} + a_{1} & 1 \\ 1 & b_{2} + b_{1} \end{bmatrix}$$

$$= \begin{bmatrix} a_{2} & 1 \\ 1 & b_{2} \end{bmatrix} + \begin{bmatrix} a_{1} & 1 \\ 1 & b_{1} \end{bmatrix}$$

$$= A_{2} + A_{1}.$$

Axiom 3. Observe that

$$A_{1} + (A_{2} + A_{3}) = \begin{bmatrix} a_{1} & 1 \\ 1 & b_{1} \end{bmatrix} + \begin{bmatrix} a_{2} & 1 \\ 1 & b_{2} \end{bmatrix} + \begin{bmatrix} a_{3} & 1 \\ 1 & b_{3} \end{bmatrix}$$

$$= \begin{bmatrix} a_{1} & 1 \\ 1 & b_{1} \end{bmatrix} + \begin{bmatrix} a_{2} + a_{3} & 1 \\ 1 & b_{2} + b_{3} \end{bmatrix}$$

$$= \begin{bmatrix} a_{1} + (a_{2} + a_{3}) & 1 \\ 1 & b_{1} + (b_{2} + b_{3}) \end{bmatrix}$$

$$= \begin{bmatrix} (a_{1} + a_{2}) + a_{3} & 1 \\ 1 & (b_{1} + b_{2}) + b_{3} \end{bmatrix} \quad (\because a_{i}, b_{i} \in \mathbb{R})$$

$$= \begin{bmatrix} a_{1} + a_{2} & 1 \\ 1 & b_{1} + b_{2} \end{bmatrix} + \begin{bmatrix} a_{3} & 1 \\ 1 & b_{3} \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} a_{1} & 1 \\ 1 & b_{1} \end{bmatrix} + \begin{bmatrix} a_{2} & 1 \\ 1 & b_{2} \end{bmatrix} + \begin{bmatrix} a_{3} & 1 \\ 1 & b_{3} \end{bmatrix}$$

$$= (A_{1} + A_{2}) + A_{3}.$$

Axiom 4. For any
$$A = \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} \in V$$
, let $0 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Then $0 \in V$. Also

$$A+0=\left[\begin{array}{cc}a&1\\1&b\end{array}\right]+\left[\begin{array}{cc}0&1\\1&0\end{array}\right]=\left[\begin{array}{cc}a+0&1\\1&b+0\end{array}\right]=\left[\begin{array}{cc}a&1\\1&b\end{array}\right]=A.$$

Axiom 5. For any $A = \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} \in V$, let $-A = \begin{bmatrix} -a & 1 \\ 1 & -b \end{bmatrix}$. Then $-A \in V$. Also

$$A+(-A)=\left[\begin{array}{cc}a&1\\1&b\end{array}\right]+\left[\begin{array}{cc}-a&1\\1&-b\end{array}\right]=\left[\begin{array}{cc}a-a&1\\1&b-b\end{array}\right]=\left[\begin{array}{cc}0&1\\1&0\end{array}\right]=0.$$

Axiom 6. Observe that

$$kA_1 = k \left[\begin{array}{cc} a_1 & 1 \\ 1 & b_1 \end{array} \right] = \left[\begin{array}{cc} ka_1 & 1 \\ 1 & kb_1 \end{array} \right]$$

which is of the form given in V because $ka_1, ka_2 \in \mathbb{R}$. Thus $kA_1 \in V$.

Axiom 7. Observe that

$$k(A_{1} + A_{2}) = k \begin{bmatrix} a_{1} + a_{2} & 1 \\ 1 & b_{1} + b_{2} \end{bmatrix}$$

$$= \begin{bmatrix} k(a_{1} + a_{2}) & 1 \\ 1 & k(b_{1} + b_{2}) \end{bmatrix}$$

$$= \begin{bmatrix} ka_{1} + ka_{2} & 1 \\ 1 & kb_{1} + kb_{2} \end{bmatrix} \quad (\because k, a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R})$$

$$= \begin{bmatrix} ka_{1} & 1 \\ 1 & kb_{1} \end{bmatrix} + \begin{bmatrix} ka_{2} & 1 \\ 1 & kb_{2} \end{bmatrix}$$

$$= k \begin{bmatrix} a_{1} & 1 \\ 1 & b_{1} \end{bmatrix} + k \begin{bmatrix} a_{2} & 1 \\ 1 & b_{2} \end{bmatrix}$$

$$= kA_{1} + kA_{2}.$$

Axiom 8. Observe that

$$(k+m)A_{1} = (k+m)\begin{bmatrix} a_{1} & 1 \\ 1 & b_{1} \end{bmatrix}$$

$$= \begin{bmatrix} (k+m)a_{1} & 1 \\ 1 & (k+m)b_{1} \end{bmatrix}$$

$$= \begin{bmatrix} ka_{1} + ma_{1} & 1 \\ 1 & kb_{1} + mb_{1} \end{bmatrix} \quad (\because k, m, a_{1}, b_{1} \in \mathbb{R})$$

$$= \begin{bmatrix} ka_{1} & 1 \\ 1 & kb_{1} \end{bmatrix} + \begin{bmatrix} ma_{1} & 1 \\ 1 & mb_{1} \end{bmatrix}$$

$$= k \begin{bmatrix} a_{1} & 1 \\ 1 & b_{1} \end{bmatrix} + m \begin{bmatrix} a_{1} & 1 \\ 1 & b_{1} \end{bmatrix}$$

$$= kA_{1} + mA_{1}.$$

Axiom 9. Observe that

$$(km)A_1 = (km) \begin{bmatrix} a_1 & 1 \\ 1 & b_1 \end{bmatrix}$$

$$= \begin{bmatrix} (km)a_1 & 1 \\ 1 & (km)b_1 \end{bmatrix}$$

$$= \begin{bmatrix} k(ma_1) & 1 \\ 1 & k(mb_1) \end{bmatrix} \quad (\because k, m, a_1, b_1 \in \mathbb{R})$$

$$= k \begin{bmatrix} ma_1 & 1 \\ 1 & mb_1 \end{bmatrix}$$

$$= k \left(m \begin{bmatrix} a_1 & 1 \\ 1 & b_1 \end{bmatrix} \right)$$

$$= k(mA_1).$$

Axiom 10. Observe that

$$1A_1 = 1 \begin{bmatrix} a_1 & 1 \\ 1 & b_1 \end{bmatrix} = \begin{bmatrix} 1a_1 & 1 \\ 1 & 1b_1 \end{bmatrix} = \begin{bmatrix} a_1 & 1 \\ 1 & b_1 \end{bmatrix} = A_1.$$

Hence V is a vector space.

Exercises

Exercise 6.1.1. Show that the set of all pairs of real numbers of the form (1, y) is a vector space under the operations

$$(1, y_1) + (1, y_2) = (1, y_1 + y_2)$$
 and $k(1, y) = (1, ky)$.

Remark. You must have observed that the same set was shown as not forming a vector space in Example 6.1.2. In fact, a set along with operations will make a vector space.

Exercise 6.1.2. Show that the set of all triples of real numbers (u_1, u_2, u_3) is not a vector space with the operations

$$(u_1, u_2, u_3) + (v_1, v_2, v_3) = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$
 and $k(u_1, u_2, u_3) = (0, 0, 0)$.

Exercise 6.1.3. Show that the set $V = \mathbb{R}^3$ is not a vector space under the operations

$$(u_1, u_2, u_3) + (v_1, v_2, v_3) = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$
 and $k(u_1, u_2, u_3) = (u_1, u_2, ku_3)$.

Exercise 6.1.4. Determine whether the set of all 2×2 matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ is a vector space under the standard matrix addition and scalar multiplication.

Exercise 6.1.5. Show that the set of polynomials of the form a + bx $(a, b \in \mathbb{R})$ is a vector space under the operations

$$(a_0 + a_1x) + (b_0 + b_1x) = (a_0 + b_0) + (a_1 + b_1)x$$
 and $k(a_0 + a_1x) = (ka_0) + (ka_1)x$.

Exercise 6.1.6. Check whether $V = \mathbb{R}^2$ is a vector space with respect to the operations

$$(u_1, u_2) + (v_1, v_2) = (u_1 + v_1 - 2, u_2 + v_2 - 3)$$
 and $\alpha(u_1, u_2) = (\alpha u_1 + 2\alpha - 2, \alpha u_2 - 3\alpha + 3)$.

Clearly mention the axioms which are failed to be hold.

Exercise 6.1.7. Check whether the set $V = \mathbb{R}^+$ is a vector space under the operations

$$x + y = xy$$
, and $kx = x^k$.

Exercise 6.1.8. Check whether the set $V = \mathbb{R}^2$ is a vector space under the operations

$$(x,y) + (x'y') = (x + x', 2y + y')$$
 and $\alpha(x,y) = (\alpha x, \alpha y)$.

Exercise 6.1.9. Why \mathbb{R}^2 is not a vector space with the following operations? Justify.

(a)
$$(x,y) + (x',y') = (x+x',y+y')$$
 and $k(x,y) = (k^2x,k^2y)$

(b)
$$(x,y) + (x',y') = (x+x',y+y')$$
 and $k(x,y) = (2kx,2ky)$

(c)
$$(x,y) + (x',y') = (y+y',x+x')$$
 and $k(x,y) = (kx,ky)$

Answers

6.1.4 yes 6.1.6 no 6.1.7 yes 6.1.8 no

6.2 Tutorial: Subspaces

Definition

Let V be a vector space and W be any subset of V. Then W is called a *subspace* of V if W itself is a vector space under the dadition and scalar multiplication defined on V.

Necessary and Sufficient Conditions for Subspace

Let W be a subset of a vector space V. Then W is a subspace of V if and only if

- (1) W is nonempty;
- (2) W is closed under addition: $u, v \in W \Rightarrow u + v \in W$;
- (3) W is closed scalar multiplication: $u \in W \Rightarrow ku \in W$ for every scalar k.

Remark. We will use these for checking subspaces.

Solved Examples

Example 6.2.1. Determine whether the following sets are subspaces of \mathbb{R}^3 .

- (a) all vectors of the form (a, b, 0);
- (b) all vectors of the form (a, b, 1);
- (c) all vectors of the form (a, b, c), where c = a + b;

Solution. (a) Let $W = \{(a, b, 0) : a, b \in \mathbb{R}\}.$

- Observe that $0 = (0,0,0) \in W$ since the third component of 0 is 0. So W is nonempty.
- For any $u = (a, b, 0), v = (c, d, 0) \in W$,

$$u + v = (a, b, 0) + (c, d, 0) = (a + c, b + d, 0) \in W$$

because the third component of u + v is 0 and $a + c, b + d \in \mathbb{R}$.

• For any $u = (a, b, 0) \in W$ and for any scalar k,

$$ku = k(a,b,0) = (ka,kb,0) \in W$$

because the third component of ku is 0 and $ka, kb \in \mathbb{R}$.

Thus W is a subspace of \mathbb{R}^3 .

(b) Let $W = \{(a, b, 1) : a, b \in \mathbb{R}\}$. If we take $u = (2, 3, 1), v = (-1, 2, 1) \in W$, then

$$u + v = (2,3,1) + (-1,2,1) = (1,5,2) \notin W$$

because the third component is not 1. Thus W is not a subspace of \mathbb{R}^3 .

- (c) Let $W=\{(a,b,c)\in\mathbb{R}^3:c=a+b\}.$
- Observe that $0 = (0, 0, 0) \in W$ since 0 = 0 + 0.

• Let $u = (a_1, b_1, c_1), v = (a_2, b_2, c_2) \in W$. Then $c_1 = a_1 + b_1$ and $c_2 = a_2 + b_2$. Now

$$u + v = (a_1, b_1, c_1) + (a_2, b_2, c_2) = (a_1 + a_2, b_1 + b_2, c_1 + c_2).$$

Since $c_1 + c_2 = (a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2)$, we get $u + v \in W$.

• Let $u=(a,b,c)\in W$ and k be any scalar. Then c=a+b. Now

$$ku = k(a, b, c) = (ka, kb, kc).$$

Since kc = k(a + b) = ka + kb, we get $ku \in W$.

Thus W is a subspace of \mathbb{R}^3 .

Example 6.2.2. Show that the set $W = \left\{ \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$ is a subspace of M_{22} .

Solution. We verify all the conditions for the subspace.

• Observe that $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in W$ because 0 = -0.

• Let
$$A_1 = \begin{bmatrix} a_1 & b_1 \\ c_1 & -a_1 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} a_2 & b_2 \\ c_2 & -a_2 \end{bmatrix} \in W$. Then
$$A_1 + A_2 = \begin{bmatrix} a_1 & b_1 \\ c_1 & -a_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ c_2 & -a_2 \end{bmatrix}$$

$$= \begin{bmatrix} c_1 & -a_1 \end{bmatrix} \begin{bmatrix} c_2 & -a_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & -a_1 - a_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & -(a_1 + a_2) \end{bmatrix} \in W$$

because it of the form given in W.

• Let $A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \in W$ and k be any scalar. Then

$$kA = k \begin{bmatrix} a & b \\ c & -a \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & -ka \end{bmatrix} \in W$$

because it of the form given in W.

Thus W is a subspace.

Example 6.2.3. Check whether the set $W = \{A \in M_{22} \mid \det(A) = 0\}$ is a subspace of M_{22} .

Solution. Consider the following matrices:

$$A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$.

Since $det(A_1) = 0$ and $det(A_2) = 0$, we have $A_1, A_2 \in W$. Now

$$A_1 + A_2 = \left[\begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right].$$

So, $det(A_1 + A_2) = -1 \neq 0$. Thus $A_1 + A_2 \notin W$. Hence W is a not a subspace of M_{22} .

Example 6.2.4. Check whether the set

$$W = \{a_0 + a_1x + a_2x^2 + a_3x^3, \text{ where } a_0 + a_1 + a_2 + a_3 = 0; a_i \in \mathbb{R}, i = 0, 1, 2, 3\}$$

is a subspace of P_3 .

[GTU, May 2012]

Solution. We verify all the conditions for the subspace.

- Observe that $0 = 0 + 0x + 0x^2 + 0x^3 \in W$ since 0 + 0 + 0 + 0 = 0. Thus W is nonempty.
- Let $p(x), q(x) \in W$. Then

$$p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$
, where $a_0 + a_1 + a_2 + a_3 = 0$.

and

$$q(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$
, where $b_0 + b_1 + b_2 + b_3 = 0$.

Now

$$p(x) + q(x) = (a_0 + a_1x + a_2x^2 + a_3x^3) + (b_0 + b_1x + b_2x^2 + b_3x^3)$$

= $(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + (a_3 + b_3)x^3$.

Observe that

$$(a_0 + b_0) + (a_1 + b_1) + (a_2 + b_2) + (a_3 + b_3)$$

$$= (a_0 + a_1 + a_2 + a_3) + (b_0 + b_1 + b_2 + b_3)$$

$$= 0 + 0 = 0.$$

Thus $p(x) + q(x) \in W$.

• Let $p(x) \in W$ and k be any scalar. Then

$$p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$
, where $a_0 + a_1 + a_2 + a_3 = 0$.

Now

$$kp(x) = k(a_0 + a_1x + a_2x^2 + a_3x^3) = ka_0 + ka_1x + ka_2x^2 + ka_3x^3.$$

Observe that

$$ka_0 + ka_1 + ka_2 + ka_3 = k(a_0 + a_1 + a_2 + a_3) = k(0) = 0.$$

Thus $kp(x) \in W$.

Hence W is a subspace of P_3

Exercises

Exercise 6.2.1. Determine whether the following sets are subspaces of \mathbb{R}^3 .

- (a) all vectors of the form (a, 0, 0)
- (b) all vectors of the form (a, 1, 1)
- (c) all vectors of the form (a, b, c), where b = a + c + 1

[GTU, June 2013]

Exercise 6.2.2. Show that $V = \{(x, y) \mid x = 3y\}$ is a subspace of \mathbb{R}^2 . State all possible subspaces of \mathbb{R}^2 . [GTU, June 2009]

Exercise 6.2.3. Check whether $W = \{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = 0; a, b, c \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 . [GTU, July 2011]

Exercise 6.2.4. Check whether $W = \{A \in M_{22} \mid \det(A) \neq 0\}$ is a subspace of M_{22} .

Exercise 6.2.5. Check whether $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} \mid a+b+c+d=1 \right\}$ is a subspace of M_{22} .

Exercise 6.2.6. Check whether $W = \{A \in M_n(\mathbb{R}) \mid tr(A) = 0\}$ is a subspace of $M_n(\mathbb{R})$.

Exercise 6.2.7. Show that the set of all $n \times n$ symmetric matrices is a subspace of $M_n(\mathbb{R})$.

Exercise 6.2.8. Check whether $W = \{a_0 + a_1x + a_2x^2 + a_3x^3 \in P_3 \mid a_0 = 0\}$ is a subspace of P_3 .

Exercise 6.2.9. Check whether the set

$$W = \{a_0 + a_1x + a_2x^2 + a_3x^3 \in P_3 \mid a_i's \text{ are integers for } i = 0, 1, 2, 3\}$$

is a subspace of P_3 .

Exercise 6.2.10. Determine which of the following sets are subspaces of P_n ?

- (a) $W = \{p(x) \in P_n \mid \deg p(x) \le 2\}$
- (b) $W = \{p(x) \in P_n \mid \deg p(x) \ge 2\}$
- (c) $W = \{p(x) \in P_n \mid p(x) = a_0 + a_1 x^2 + a_2 x^4 + \dots + a_n x^{2n}\}\$

Exercise 6.2.11. Check whether $W=\{f\in F(-\infty,\infty)\mid f(x)\leq 0, \forall x\}$ is a subspace of $F(-\infty,\infty)$. [GTU, June 2010]

Exercise 6.2.12. Check whether $W = \{ f \in F(-\infty, \infty) \mid f(0) = 1 \}$ is a subspace of $F(-\infty, \infty)$.

Answers

- **6.2.1** (a) yes (b) no (c) no **6.2.2** origin, a line through origin, \mathbb{R}^2 **6.2.3** yes
- 6.2.4 no 6.2.5 no 6.2.6 yes 6.2.7 yes 6.2.8 yes 6.2.9 no
- **6.2.10** (a) yes (b) no (c) yes **6.2.11** no **6.2.12** no

6.3 Tutorial: Linear Dependence & Independence

Definition

The vectors v_1, v_2, \ldots, v_n are said to be linear dependent if there exist scalars k_1, k_2, \ldots, k_n , not all zero such that

$$k_1v_1 + k_2 + \dots + k_nv_n = 0$$

and linearly independent if

$$k_1v_1 + k_2 + \dots + k_nv_n = 0 \quad \Rightarrow \quad k_1 = k_2 = \dots = k_n = 0.$$

Theorems on Linear Dependence & Independence

- (1) Let $S = \{v_1, v_2, \dots, v_n\}$ be a set of n vectors. Then S is linearly dependent if and only if one of the vectors in S can be expressed as a linear combination of the other vectors in S.
- (2) A set of two vectors is linearly dependent if and only if one vector is a scalar multiple of the other.
- (3) A set containing zero vector is linearly dependent.
- (4) If v_1, v_2, \dots, v_k are vectors in \mathbb{R}^n and k > n, then the vectors are linearly dependent.

Solved Examples

Example 6.3.1. Prove that the set of vectors $\{(1,2,2),(2,1,2),(2,2,1)\}$ is linearly independent in \mathbb{R}^3 . [GTU, July 2011]

Solution. Let $v_1 = (1, 2, 2), v_2 = (2, 1, 2), v_3 = (2, 2, 1)$. Suppose that

$$k_1v_1 + k_2 + \dots + k_nv_n = 0$$

$$\Rightarrow k_1(1,2,2) + k_2(2,1,2) + k_3(2,2,1) = (0,0,0)$$

$$\Rightarrow (k_1 + 2k_2 + 2k_3, 2k_1 + k_2 + 2k_3, 2k_1 + 2k_2 + k_3) = (0,0,0)$$

Comparing the corresponding coefficients, we obtain

$$k_1 + 2k_2 + 2k_3 = 0$$

$$2k_1 + k_2 + 2k_3 = 0$$

$$2k_1 + 2k_2 + k_3 = 0$$

The coefficient matrix of the system is

$$A = \left[\begin{array}{rrr} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{array} \right]$$

Observe that

$$\det(A) = \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix} = 1(1-4) - 2(2-4) + 2(4-2) = -3 + 4 + 4 = 5 \neq 0.$$

Therefore, the system has only the trivial solution (see Remark in Tutorial 1.5).

$$k_1 = 0, \quad k_2 = 0, \quad k_3 = 0.$$

Hence v_1, v_2, v_3 are linearly independent.

Example 6.3.2. Determine whether the vectors (-2,0,1), (3,2,5), (6,-1,1), (7,0,-2) are linearly independent or dependent in \mathbb{R}^3 .

Solution. Here the number of vectors is 4 and the vector space is \mathbb{R}^3 . Since 4 > 3, the vectors are linearly dependent.

Example 6.3.3. Show that $S = \{2x^2 - x + 7, x^2 + 4x + 2, x^2 - 2x + 4\}$ is linearly dependent in P_2 .

Solution. Let $p_1(x) = 2x^2 - x + 7$, $p_2(x) = x^2 + 4x + 2$, $p_3(x) = x^2 - 2x + 4$. Suppose

$$k_1(2x^2 - x + 7) + k_2(x^2 + 4x + 2) + k_3(x^2 - 2x + 4) = 0x^2 + 0x + 0$$

$$\Rightarrow (2k_1 + k_2 + k_3)x^2 + (-k_1 + 4k_2 - 2k_3)x + (7k_1 + 2k_2 + 4k_3) = 0x^2 + 0x + 0$$

Equating the corresponding coefficients of x^2 , x, 1 on both sides, we get

$$2k_1 + k_2 + k_3 = 0$$
$$-k_1 + 4k_2 - 2k_3 = 0$$
$$7k_1 + 2k_2 + 4k_3 = 0$$

The coefficient matrix of the system is

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ -1 & 4 & -2 \\ 7 & 2 & 4 \end{array} \right]$$

Observe that

$$\det(A) = 2(16+4) - 1(-4+14) + 1(-2-28) = 40 - 10 - 30 = 0.$$

Consequently, the system will have a nontrivial solution. Thus there exist k_1 , k_2 , k_3 , not all zero such that $k_1p_1(x) + k_2p_2(x) + k_3p_3(x) = 0$. Hence $p_1(x)$, $p_2(x)$, $p_3(x)$ are linearly dependent.

Example 6.3.4. Determine whether the following vectors are linearly dependent or independent:

(i)
$$A_1 = \begin{bmatrix} 1 & 5 \\ -3 & 2 \end{bmatrix}$$
; $A_2 = \begin{bmatrix} -1 & -5 \\ 3 & -2 \end{bmatrix}$ in M_{22}

(ii)
$$p_1 = 1 - x^2$$
; $p_2 = 6 + 3x - 4x^2$ in P_2

Solution. It is known that two vectors are linearly dependent if and only if one is a scalar multiple of the other.

- (i) Observe that $A_1 = -A_2$. Thus A_1 and A_2 are linearly dependent.
- (ii) Since $p_1 \neq kp_2$ for any value of k, p_1 and p_2 are linearly independent.

Exercises

Exercise 6.3.1. Show that the set of vectors $\{(2,1,1),(1,2,2),(1,1,1)\}$ is linearly dependent in \mathbb{R}^3 . [GTU, July 2011]

Exercise 6.3.2. Check whether the vectors (0,0,2,2), (3,3,0,0), (1,1,0,-1) are linearly independent in \mathbb{R}^4 or not.

Exercise 6.3.3. Check whether $S = \{(2,2,2), (-1,3,4), (0,0,1), (3,0,0)\}$ is linearly dependent or independent in \mathbb{R}^3 .

Exercise 6.3.4. Show that $S = \{1 - t - t^3, -2 + 3t + t^2 + 2t^3, 1 + t^2 + 5t^3\}$ is linearly independent in P_3 . [GTU, June 2010]

Exercise 6.3.5. Show that the set $S = \{1, x, e^x\}$ is linearly independent in $C^2(-\infty, \infty)$.

Exercise 6.3.6. Show that the set $S = \{e^x, xe^x, x^2e^x\}$ in $C^2(-\infty, \infty)$ is linearly independent. [GTU, June 2010]

Answers

6.3.2 yes **6.3.3** linearly dependent

XXXXXXX

6.4 Tutorial: Basis and Dimension

Basis

Let $S = \{v_1, v_2, \dots, v_n\}$ be a set of vectors in a vector space V. Then S is called a basis for V if it satisfies the following conditions:

- (1) S is linearly independent;
- (2) S spans V.

Some Standard Bases

- (1) The set $\{(1,0,0),(0,1,0),(0,0,1)\}$ is the standard basis for \mathbb{R}^3 .
- (2) The set $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is the standard basis for M_{22} .
- (3) The set $\{1, x, x^2, \dots, x^n\}$ is the standard basis for P_n .

Basis for span(S)

Let $S = \{v_1, v_2, \dots, v_n\}$ be a linearly independent set in vector space V. Then S is a basis for the subspace span(S) since the set S spans span(S) by definition of span(S).

Dimension

Let V be a vector space and S be any basis for V. Then the number of vectors in S is called the dimension of V. It is denoted by $\dim(V)$.

Finite Dimensional Vector Space

A nonzero vector space V is called *finite-dimensional* if it contains a finite set of vectors $\{v_1, v_2, \ldots, v_n\}$ that forms a basis. If no such set exists, then V is called *infinite-dimensional*.

For example, the vector spaces \mathbb{R}^3 , M_{22} and P_n are finite-dimensional while $F(-\infty, \infty)$, $C(-\infty, \infty)$, $C^n(-\infty, \infty)$ are infinite-dimensional.

Theorems on Basis and Dimension

- (1) Let V be a vector space with $\dim(V) = n$.
 - (a) If a set has more than n vectors, then it is linearly dependent.
 - (b) If a set has fewer than n vectors, then it does not span V.
- (2) All bases for a finite dimensional vector space have the same number of vectors.
- (3) If $S = \{v_1, v_2, \dots v_n\}$ is a basis for a vector space V, then every vector $v \in V$ can be uniquely represented in the form

$$v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n.$$

(4) Plus/Minus Theorem: Let S be a nonempty subset of a vector space V and v be any vector in V.

- (a) If S is linearly independent and $v \notin \text{Span}(S)$, then the set $S \cup \{v\}$ is also linearly independent.
- (b) If $v \in S$ and it can be expressed as a linear combination of other vectors in S, then S and $S \{v\}$ span the same space, i.e.,

$$\operatorname{span}(S) = \operatorname{span}(S - \{v\}).$$

- (5) Let V be a vector space with $\dim(V) = n$. Then a set S in V with exactly n vectors is a basis for V if either S is linearly independent or S spans V.
- (6) Let V be a finite dimensional vector space and S be a finite subset of V.
 - (a) If S spans V but it is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
 - (b) If S is linearly independent but it is not a basis for V, then S can be extended to a basis for V by inserting appropriate vectors into S.
- (7) Let W be a subspace of a finite-dimensional vector space V. Then $\dim(W) \leq \dim(V)$. Further, if $\dim(W) = \dim(V)$, then W = V.

Coordinate Vector Relative to a Basis

Let $S = \{v_1, v_2, \dots, v_n\}$ be a basis for a vector space V and

$$v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n$$

be the representation of a vector v in terms of the basis S. Then the scalars k_1, k_2, \ldots, k_n are called the *coordinates* of v relative to the basis S and the vector

$$(v)_S = (k_1, k_2, \dots, k_n)$$

is called the coordinate vector of v relative to S.

Solved Examples

Example 6.4.1. Show that $S = \{(1,3,4), (-1,0,1), (4,1,2)\}$ forms a basis for \mathbb{R}^3 .

Solution. Since S has 3 vectors and $\dim(\mathbb{R}^3) = 3$, it is enough to show that S is linearly independent. Suppose that

$$k_1(1,3,4) + k_2(-1,0,1) + k_3(4,1,2) = (0,0,0)$$

 $(3k_1 - k_2 + 4k_3, 3k_1 + k_3, 4k_1 + k_2 + 2k_3) = (0,0,0)$

Comparing the corresponding components on both sides, we get

$$3k_1 - k_2 + 4k_3 = 0$$

$$3k_1 + 0k_2 + k_3 = 0$$

$$4k_1 + k_2 + 2k_3 = 0$$

The coefficient matrix of the system is

$$A = \left[\begin{array}{ccc} 3 & -1 & 4 \\ 3 & 0 & 4 \\ 4 & 1 & 2 \end{array} \right]$$

Observe that

$$\det(A) = 3(0-4) + 1(6-16) + 4(3-0) = -12 - 10 + 12 = -10 \neq 0.$$

Therefore, the system has only the trivial solution

$$k_1 = 0$$
, $k_2 = 0$, $k_3 = 0$.

Thus S is linearly independent and hence forms a basis for \mathbb{R}^3 .

Example 6.4.2. Check whether the set $S = \{(2, 2, 2), (1, -1, -1), (0, 1, 1)\}$ forms a basis for \mathbb{R}^3 or not.

Solution. Since S has 3 vectors and $\dim(\mathbb{R}^3) = 3$, it is enough to check whether S is linearly independent or not. Suppose that

$$k_1(2,2,2) + k_2(1,-1,-1) + k_3(0,1,1) = (0,0,0)$$

 $(2k_1 + k_2, 2k_1 - k_2 + k_3, 2k_1 - k_2 + k_3) = (0,0,0)$

Comparing the corresponding components on both sides, we get

$$2k_1 + k_2 + 0k_3 = 0$$
$$2k_1 - k_2 + k_3 = 0$$
$$2k_1 - k_2 + k_3 = 0$$

The coefficient matrix of the system is

$$A = \left[\begin{array}{rrr} 2 & 1 & 0 \\ 2 & -1 & 1 \\ 2 & -1 & 1 \end{array} \right]$$

Observe that

$$\det(A) = 2(-1+1) - 1(2-2) = 0 - 0 = 0.$$

Consequently, the system will have a nontrivial solution. Thus S is linearly dependent and hence does not form a basis for \mathbb{R}^3 .

Example 6.4.3. Check whether the following polynomials form a basis for P_2 or not.

$$p_1(x) = 5 + x^2$$
, $p_2(x) = 5 - x + 2x^2$, $p_3(x) = -x + x^2$

Solution. Since the number of polynomials is 3 and $\dim(P_2) = 3$, it is enough to check whether the polynomials are linearly independent or not. Suppose that

$$k_1 p_1(x) + k_2 p_2(x) + k_3 p_3(x) = 0$$

$$\Rightarrow k_1(5+x^2) + k_2(5-x+2x^2) + k_3(-x+x^2) = 0 + 0x + 0x^2$$

$$\Rightarrow (5k_1 + 5k_2) + (-k_2 - k_3)x + (k_1 + 2k_2 + k_3)x^2 = 0 + 0x + 0x^2$$

Comparing the corresponding coefficients of 1, x and x^2 on both sides, we get

$$5k_1 + 5k_2 + 0k_3 = 0$$
$$0k_1 - k_2 - k_3 = 0$$
$$k_1 + 2k_2 + k_3 = 0$$

The coefficient matrix of the system is

$$A = \left[\begin{array}{ccc} 5 & 5 & 0 \\ 0 & -1 & -1 \\ 1 & 2 & 1 \end{array} \right]$$

Observe that

$$\det(A) = 5(-1+2) - 5(0+1) = 5 - 5 = 0.$$

Consequently, the system will have a nontrivial solution. Thus $p_1(x)$, $p_2(x)$, $p_3(x)$ are linearly dependent and hence do not form a basis for P_2 .

Example 6.4.4. Show that
$$S = \left\{ \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 2 \end{bmatrix} \right\}$$
 is a basis for M_{22} .

Solution. Since the number of vectors in S is 4 and $\dim(M_{22}) = 4$, it is enough to show that S is linearly independent. Suppose that

$$k_{1} \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix} + k_{2} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} + k_{3} \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} + k_{4} \begin{bmatrix} 0 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} k_{1} & 2k_{1} - k_{2} + 2k_{3} \\ k_{1} - k_{2} + 3k_{3} - k_{4} & -2k_{1} + k_{3} + 2k_{4} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Comparing the corresponding entries in both matrices, we obtain

$$k_1 = 0$$

$$2k_1 - k_2 + 2k_3 = 0$$

$$k_1 - k_2 + 3k_3 - k_4 = 0$$

$$-2k_1 + k_3 + 2k_4 = 0$$

The coefficient matrix of the system is

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 2 & 0 \\ 1 & -1 & 3 & -1 \\ -2 & 0 & 1 & 2 \end{bmatrix}$$

Observe that

$$\det(A) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 2 & 0 \\ 1 & -1 & 3 & -1 \\ -2 & 0 & 1 & 2 \end{vmatrix} = 1 \begin{vmatrix} -1 & 2 & 0 \\ -1 & 3 & -1 \\ 0 & 1 & 2 \end{vmatrix} = -1(6+1) - 2(-2+0) = -3 \neq 0.$$

Therefore, the system has only the trivial solution

$$k_1 = 0$$
, $k_2 = 0$, $k_3 = 0$ $k_4 = 0$.

Thus S is linearly independent and hence forms a basis for M_{22} .

Example 6.4.5. Find the coordinate vector of p relative to the basis $S = \{p_1, p_2, p_3\}$, where $p = 2 - x + x^2$, $p_1 = 1 + x$, $p_2 = 1 + x^2$, $p_3 = x + x^2$. [GTU, May 2012]

Solution. To find the coordinate vector of p relative to the basis $S = \{p_1, p_2, p_3\}$, we have to find k_1, k_2, k_3 such that

$$p = k_1 p_1 + k_2 p_2 + k_3 p_3$$

$$\Rightarrow 2 - x + x^2 = k_1 (1 + x) + k_2 (1 + x^2) + k_3 (x + x^2)$$

$$\Rightarrow 2 - x + x^2 = (k_1 + k_2) + (k_1 + k_3)x + (k_2 + k_3)x^2$$

Comparing the corresponding coefficients of 1, x and x^2 on both sides, we get

$$k_1 + k_2 = 2$$

 $k_1 + k_3 = -1$
 $k_2 + k_3 = 1$

The augmented matrix of the system is

$$\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{array}\right]$$

Applying $R_2 \to R_2 - R_1$, we obtain

$$\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & -1 & 1 & -3 \\
0 & 1 & 1 & 1
\end{array}\right]$$

Applying $R_3 \to R_3 + R_2$, we obtain

$$\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & -1 & 1 & -3 \\
0 & 0 & 2 & -2
\end{array} \right]$$

Applying $R_2 \to (-1)R_2$ and $R_3 \to \frac{1}{2}R_3$, we obtain

$$\left[\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 1 & -1
\end{array} \right]$$

The system corresponds to the last matrix is

$$k_1 + k_2 = 2$$
 $k_2 - k_3 = 3$ $k_3 = -1$

Using back substitution, we obtain

$$k_1 = 0, \quad k_2 = 2, \quad k_3 = -1.$$

Thus the coordinate vector of p relative to S is $(p)_S = (0, 2, -1)$.

Exercises

Exercise 6.4.1. Show that $S = \{(3, 1, -4), (2, 5, 6), (1, 4, 8)\}$ is a basis for \mathbb{R}^3 .

Exercise 6.4.2. Show that $S = \{(1, 6, 4), (2, 4, -1), (-1, 2, 5)\}$ is not a basis for \mathbb{R}^3 .

Exercise 6.4.3. Let $v_1 = 1 - 3x + 2x^2$, $v_2 = 1 - x + 4x^2$, $v_3 = 1 - 7x$. Show that the set $S = \{v_1, v_2, v_3\}$ is a basis for P_2 . [GTU, June 2013]

Exercise 6.4.4. Check whether the following vectors form a basis for M_{22} :

$$\begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

Exercise 6.4.5. Find a standard basis vector that can be added to the set $S = \{(1,0,3), (2,1,4)\}$ to produce a basis of \mathbb{R}^3 . [GTU, May 2012]

Exercise 6.4.6. Determine the dimension and basis for the solution space of the following system.

$$x_1 - 3x_2 + x_3 = 0$$

$$2x_1 - 6x_2 + 2x_3 = 0$$

$$3x_1 - 9x_2 + 3x_3 = 0$$

Exercise 6.4.7. Find basis and dimension of

$$W = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_1 + a_2 = 0, \ a_2 + a_3 = 0, \ a_3 + a_4 = 0\}.$$

[GTU, June 2010]

Exercise 6.4.8. Find the dimension of the subspace

$$W = \{(a, b, c, d) \in \mathbb{R}^4 \mid d = a + b, \ c = a - b\}.$$

Exercise 6.4.9. If $v_1 = (1, 2, 1)$, $v_2 = (2, 9, 0)$, $v_3 = (3, 3, 4)$, show that $S = \{v_1, v_2, v_3\}$ is a basis for \mathbb{R}^3 . Find the coordinate vector of v = (5, -1, 9) w.r.t. S.

Exercise 6.4.10. Find the coordinate vector of $p = 4 - 3x + x^2$ relative to the standard basis $p_1 = 1, p_2 = x, p_3 = x^2$ of P_2 .

Answers

6.4.4 yes **6.4.5** (1,0,0)

6.4.6 $\{(3,1,0),(-1,0,1)\}$, 2-dimensional **6.4.7** $\{(-1,1,-1,1)\}$, 1-dimensional

6.4.8 2-dimensional **6.4.9** (1, -1, 2) **6.4.10** (4, -3, 1)

XXXXXXX