Lane-Keeping Using Reinforcement Learning

Ahmed Wael - Maha Ezzat - Nadine Amr

The Problem and Its Importance

• Self Driving Car Task:

- Detecting lane.
- Following the lane.
- Maximizing the speed without collision.

• Our Objective:

Training a simulated autonomous vehicle using a reinforcement learning algorithm.

Learning Approach

Reinforcement Learning

Q-Learning

- model-free
- off-policy
 - epsilon-greedy policy

Q-Learning

$$Q^*(s,a) = R(s,a) + \gamma \max_{a'} Q(s',a')$$
$$Q(s,a) = (1-\alpha)Q(s,a) + \alpha Q^*(s,a)$$

Q-Learning

Hyper-Parameters to Tune:

- E: exploration rate
- y: discount rate
- α: learning rate

The Open Racing Car Simulator TORCS

Uses

- ordinary car racing game
- AI racing game
- research platform
 - human-assisted algorithmic generation of tracks
 - developing intelligent control systems for different car components
 - developing complex driving agents

SCR - Plugin

TORCS Sensors

- Angle
- CurLapTime
- Damage
- distFromStartLine
- distRaced
- Fuel
- Gear
- lastLapTime

- racePos
- rpm
- speedX
- speedY
- track
- trackPos
- wheelSpinVel

TORCS Control Actions

- Accel
- Brake
- Gear
- Steering
- Meta

Adapted Methodology

States

- Sensors Used:
 - Speed
 - Angle
 - Track Position
 - Track
- Discretized to 11 Bits
 - 4 bits: speed sensor
 - 3 bits: number of sensor with maximum reading
 - 4 bits: average of 5 distance sensors

Action Selection

Steer	Acceleration(1)	Neutral(0)	Brake(-1)
0.5(Left)	0	1	2
0.1(Left)	3	4	5
0	6	7	8
-0.1(Right)	9	10	11
-0.5(Right)	12	13	14

Reward Function

The car is out of track: It takes reward = -1.

If the car is stuck : It takes reward = -2, and
 meta control action = 1 so the episode restart.

If the car is neither stuck or out of track: It
takes reward as a combination of the track
position, the angle, and the distance travelled.
These three factors add to 1.

Q-Table Update

If the current state does not exist in the table,
 we create it in the Q-table with initial values =
 0 for all actions.

 The Q-values of the previous state are updated using the current state, the previous state, the action, and the reward.

Progress So Far

• Scenario 1

- \Box Learning Rate = 0.01
- \Box Epsilon = 0.2
- \Box Discount Rate = 0.99
- □ Reward
 - TrackPos<=0.75
 Reward = Rspeed+RtrackPos+Rangle
 - # 0.75<TrackPos<0.98
 Reward = 0.5*(Rspeed+RtrackPos+Rangle)
 - #TrackPos<=0.98 Reward = -1.5
 - #Stuck
 Reward = -2

Rspeed=numpy.power((speed /float(160)), 4) *0.05

• Scenario 2

- \Box Learning Rate = 0.5
- \Box Epsilon = 0.2
- \Box Discount Rate = 0.9
- ☐ Reward
 - TrackPos<=0.75 Reward = Rspeed+RtrackPos+Rangle
 - # 0.75<TrackPos<0.98
 Reward = 0.5*(Rspeed+RtrackPos+Rangle)
 - #TrackPos<=0.98Reward = -1.5
 - #StuckReward = -2

Rspeed=numpy.power((speed/float(160)),4)*0.05

Rtrackpos=numpy.power(1/(float(numpy.abs(trackpos))+1),4)*0.8
Rangle=numpy.power((1/((float(numpy.abs(angle))/40)+1)),4)*0.1

 $\label{eq:Rtrackpos} Rtrackpos = numpy.power(1/(float(numpy.abs(trackpos)) +1),4)*0.7 \\ Rangle = numpy.power((1/((float(numpy.abs(angle)) /40)+1)),4)*0.2 \\$

Results

Measurement Results	Q-Learning Algorithm Scenario 1	Q-Learning Algorithm Scenario 2	Q-Learning Algorithm Reference
Training Episodes	1800	1800	1500
Number of Episodes to Complete one lap		232	1200
Number of Episodes to Build the Model			1500
Maximum Speed of the Car	90 km/h	120 km/h	160 km/h
Time to Complete One Lap		3:02:06	1:24:09

Future Work

Future Work

- More Models with different hyper-parameters.
- We suggest that a Continuous model will be build to compare the results and enhance the performance.
- Deep RL Methods as DDPG (Deep Deterministic Policy Gradients).

Questions

References

- K. Ibrahim, M. Ali, K. Mohamed, R. El Sayed and M. Farghaly, Lane Keeping Assistance of Autonomous Vehicles using Reinforcement Learning and Deep Learning on ROS. Cairo, 2018.
- A. Davies, P. Martineau, M. Molteni, A. Watercutter, M. Simon, E. Pao and L. Mallonee, "What Is a Self-Driving Car? The Complete WIRED Guide", WIRED. [Online].
 Available:https://www.wired.com/story/guide-self-driving-cars/. [Accessed: 18- Oct- 2018].
- Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.
- http://webee.technion.ac.il/shimkin/LCS11/ch4_RL1.pdf
- https://pdfs.semanticscholar.org/89b2/6da4e6ac2994dccd0eba0eae9649f442a75c.pdf

Thank You