- * Today's topic | Subset Overidentification Test (C-test)

 | Endogeneity Test.
 - => We will use the firm of J test to check a form of E(Ziui)=0.
- 1 Test of over-identifying restrictions: : (- test.

Revist J-test: N. g(6) 2-1 g(6) 20

when J-test reject the null hypothesis that $E(u_i z_i) = 0$, we don't know which of the J-moment conditions are violated.

(i.e., Rejection of J-test implies $E(u_i z_i) \neq 0$,

We don't know which the problem is on).

Worse yet, we know from the construction of the test there is a K-dimension directions (Corresponding to the F.O.C.) for which the test does not have power.

(Prof. Ichimura said "The result could be contaminated by some of K so that we cannot clarify the credibility of J-test.")

It to overcome this problem, use C-test.

C-test: to distinguish "Moment conditions" we are conflident about.

and those we are not.

J-IVs.

J1 (ZK) > confident IVs

J-J1 > Not confident IVs.

Note < C-test>

- @ Estimate B optimally using JI IVs.
- a Test the rest of the moment conditions using the estimated residual.

Let J= Ji+J1. Where Ji ≥ K.

- O $Z_{1,i}$: $J_{1} \times 1$ vector we are confident about. $: E(Z_{1,i}U_{i}) = 0$. Thus, we can estimate β optimally using J_{1} IVs.
- □ Test Ho: E { Z_i ν_i} = 0 , given a three model T_i = X_i β + ν_i

 T_i x_i
 - · Moment condition: $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} Z_{i} (Y_i X_i' \hat{\beta}_{gmm})$ where $\hat{\beta}$ is the optimal GMM using Z_{i} as Z_{i} .

= 1 = Z; (XB+1, -X; Pgmm)

= 一点之心 - (一点之心). 「不(食-1)

→ Need to study the joint distribution of (THE Billi)

(Note) < Asymptotic property of GMM.>

BGMM = (** ZWZ'*) - * ZWZ'Y.

I When $W = \Omega^{-1}$, it is optimal

= (4,80-18,4),4,80-18,1 where 5-120-1

IN(B-B) = N(K, & J-1 & K) - 1 K, & J-1 & NI

= (** 5-1 2/x) ** 20-1 / 8/11.

-d>(G'Ω-G)-G'Ω-1·N(O, E(u, z.z.))

where G = E(Z; X') and $\Omega = E(N; Z; Z')$

Therefore,
$$\overline{M(\widehat{\beta}-\beta)} = \left(\frac{1}{N} \frac{1}{N} \frac{1}{N}$$

⇒ Following the above note,

when we use Zi to get B, IN(B-B) = IN AZINI + OP(1).

Thus, the joint distribution of (IN SELECULIE) is as follows:

$$\left(\frac{\sqrt{N}(\hat{\beta}-\beta)}{\sqrt{N}}\right) = \left(\frac{1}{\sqrt{N}}\sum_{i=1}^{N}AZ_{i,i}U_{i}\right) + op(1) = \frac{1}{\sqrt{N}}\sum_{i=1}^{N}\left(AZ_{i,i}\right)U_{i} + op(1)$$

$$\left(\frac{1}{\sqrt{N}}\sum_{i=1}^{N}Z_{i,i}U_{i}\right) = \frac{1}{\sqrt{N}}\sum_{i=1}^{N}\left(AZ_{i,i}\right)U_{i} + op(1)$$

under the null hypothesis that E(U,Zi)=0 and maintaining the assumption E(U; Zi;)=0.

-> (point) Using this joint distribution, check E(U, Zzi) =0.

where
$$\Sigma = \left\{ \begin{array}{ll} A E(Z_{ii} Z_{ii}' u_i^+) A' & A E(Z_{ii} Z_{ii}' u_i^+) \\ E(Z_{ii} Z_{ii}' u_i^+) A' & E(Z_{ii} Z_{ii}' u_i^+) \end{array} \right\}$$

and AE(Zizi'uit)A' = (G'Q'G) from step 0

→ Now, we get the joint distribution of IN(B-B) could then let's go back to

$$= \begin{bmatrix} -\frac{1}{N} \sum_{i=1}^{N} Z_{ii} N_{i}' & I \end{bmatrix} \begin{pmatrix} IN(\hat{\beta} - \beta) \\ \frac{1}{N} \sum_{i=1}^{N} Z_{ii} N_{i} \end{pmatrix}$$

$$\downarrow P \qquad \qquad \downarrow d \quad B_{y} \text{ (A)}$$

by continuous mapping theorem,

$$\longrightarrow [-E(Z_{2}, \%') \mid I] \cdot N(0, \Sigma) = N(0, H\Sigma H')$$

J+× (K+J+)

 $=(J-J_1)\times(k+J-J_1)$

J.x (k+J.) · (k+J.) × (k+J.) · (k+J.) × J.

= Jex Je

= (J-J,)x(J-J,)

Thus, we get the moment condition for C- test such that I Zi Zi ili

C-test

where Qi = yi - Ni Famm such that Bangm is the optimal GMM

(HZH')" is constructed as (ASA')".

 $\hat{H} = \left[-\frac{1}{N} \sum_{k=1}^{N} Z_{2k} \chi_{k}^{2} \right] I$ $(J-J_{1}) \times (K+J-J_{1})$

 $\hat{\Sigma} = \begin{pmatrix} (\hat{G}'\hat{\Omega}^{-1}\hat{G})^{-1} & \hat{A} E(Z_{1i}Z_{2i}U_{i}^{*}) \\ \hat{E}(Z_{2i}Z_{1i}U_{i}^{*})\hat{A}' & \hat{E}(Z_{2i}Z_{2i}U_{i}^{*}) \end{pmatrix}$

G = / & Zin

Q = 1/2 ZiZiZiû:

A = (G' G - G) - G' Q-1

全(といるがい)= 一芸をはるがん

全(Zz: Zz: Vz) = 大芸Zz Zz: Qi

and use $\chi_{(J-J_1)}^{\prime}$

Typically, $J_1=k$ is the case of "optimal GMM = IV" so there is no need to estimate Ω under Homoskedesticky.

À É(ZIZIZIZIZI)À

= (6/2-16)-16/2-162-16(6/2-16)

= (6/6-16)-1

- 1 Endogeneity Test.
 - The test of overidentifying restrictions can be used to test enabgeneity of regressors.
 - · It there is no endogeneity, one cam use all regressors as IV.
 - (Note) < Endogeneity Test>.

 © Estimate & using reliable IVs.

 © Test endogeneity of the Variables you are concerned about.
 - · Test of Endogeneity Using 2SLS. [Telser's Method].

 Under Homoskedasticity,

(B) - Yi = Ni Bi + N2 B2 + Ui and when E(X2 Ui) +0,

- Valid IV Additional IV

 (-: E(Mi: U:)=0) (E(Z::Ui) should be Zero).
 - · Endogeneity: Ui, Vi correlated. (This implies Mai, Ui correlated such that E(Mi) +0)

Thus, Let's think of Ui as two pates.

Vi = Vi'd + Ei

Not correlated part with Vi

correlated part

=) In face, we can guess vi by the above reduced form. Thus, $\alpha = (V_i V_i)^{-1} E(V_i U_i)$

From (8),

yi = Ni Bi+ Ni Bz+ Vid+ Ei where Ei is not correlated with

Ho: d=0 is the test of Enchageneity. reject the null: \exists Enchageneity.

⇒ The idea is to include estimated Va, Va = X2i - X1/√√21 - Z2/√√22

in the regression of y; on X1i & X2i.

: Bi& Be obtained in this way is the 25LS.

 $\Upsilon = \%\beta_1 + \%_2\beta_2 + \Im\alpha + \widehat{\xi}$ where $\widehat{\xi}$: ols residuel from the regression including $\widehat{\varphi}$.

(1) = 47 - A(AA), A+7

1/22 = Ni Til + Zi Tiz + Vi and let Ni = Zii then Zi=(Zii Zii)

 $\chi_{2x} = (\chi_{1x} \chi_{2x})'(\Gamma_{2x}) + \chi_{2x} = (Z_{1x} Z_{2x})'(\Gamma_{2x}) + \chi_{2x}$ $\Gamma_{2x} = (\chi_{1x} \chi_{2x})'(\Gamma_{2x}) + \chi_{2x}$

1/2 = 1/2 - 1/2 = 1/2

(1 = (I- Z(Z/Z) Z') X = (I-Pz) X

Thus. N= MB+ KB+ (I-P2) x. Q+ &

Multiplying * Pz,

* PZ T = * PZ * 18, + * PZ 1/2 /2+ * PZ (I-PZ) * Q+ * PZ £

= (*/P2*/1 */P2 */2) (B) + */P2(I-P2)*/2 Q+ */P2\(\hat{R}_2\) = 0 by orthogonality.

8

= *PZ[*1 *2](\$1) + *PZ\$ = *PZ*(\$1) + *PZ\$

o check it!

*=[X1 /2] = [Z1 /2] Since Min = 3;

 $\mathscr{K}Pz = (\mathscr{Z}_1)^{Pz} = (\mathscr{Z}_1^{Pz})^{Pz} = (\mathscr{Z}_1^{Pz})^{Pz}$

\(\hat{\xi}\) is orthogonal to \(\pi_1\), \(\pi_2\), and \(\frac{1}{\pi_1}\) from \(\frac{\pi_2}{\pi_1}\)

i.e., Z'\(\hat{\x}=0\), \(\hat{\si}\(\hat{\x}=0\), \(\hat{\si}\(\hat{\x}=\)).

Thus, \(\hat{\x}'\(\hat{\x}=0\).

Therefore, $\chi' P_{\overline{z}} = [\chi_1 \chi_2]' P_{\overline{z}} = [\chi_1 \chi_2]' P_{\overline{z}} = [\chi_1' \chi_2]' P_{\overline{z}}$

 $= \# \mathbb{P}_{z} \# \left(\frac{\widehat{\beta}_{1}}{\widehat{\beta}_{2}} \right) + \binom{\circ}{\circ} = \# \mathbb{P}_{z} \# \cdot \widehat{\beta}_{z}$ Therefore, $\widehat{\beta} = (\# \mathbb{P}_{z} \#)^{-1} \# \mathbb{P}_{z} \mathbb{T} = \widehat{\beta}_{z} \mathbb{S} \mathbb{L}_{z}$.