Soft Computing Applications (IT 60108)

Spring, 2015-2016

Practice Sheet - I

(Fuzzy Logic)

- **1**. Suppose A is a fuzzy set defined over a universe of discourse X. If Core(A) denotes the core of the fuzzy set A, then Core(A) is a crisp set. What about the Support(A)?
- **2.** For a singleton fuzzy set A, how many crossover point(s) is(are) possible?
- A crisp set A defined over $X = \{1,2,3,5,7\}$ is $A = \{1,3,7\}$. What would be it's equivalent fuzzy set?
- **4.** A fuzzy set is given by $B = \{(1,0.1), (2,0.2), (3,0.3), (4,0.9), (0,0.0)\}$. What is the crisp set that can be concluded from it?
- 5. A membership function $\mu(x)$ is defined as $\mu(x) = \frac{x}{1-x} \ \forall \ x \in R$, R is the set of all real numbers. Check whether $\mu(x)$ can qualify as a member function.
- **6.** $\forall x \in R$, the membership function is defined as $\mu(x) = \frac{x}{1+x^2}$. Determine whether $\mu(x)$ is open left, open right or closed.
- **7.** A membership function is graphically shown as follows:

Let this membership function be denoted as Cup. Define Cup(x:a,b,c)

8.

$$\mu(x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, a \le x < b \\ \frac{c-x}{c-b}, b \le x \le c \\ 0, x > c \end{cases}$$

Redefine $\mu(x)$ when $\mu(x) = \alpha$ and $0 < \alpha < 1$.

9. Composition of two fuzzy relations R and S is

 $R^{\circ}S = \{\{(x,z)|(x,y) \in R \text{ and } (y,z) \in S\}\}$. Let $T = R^{\circ}S$, then T can be defined with two rules:

Rule 1: $T(x,z) = max\{min\{R(x,b),S(y,z)\}\forall y \in Y\}$ (Max-min composition)

<u>Rule 2:</u> $T(x,y) = max\{\{R(x,y)^{\circ}S(y,z)\}\forall y \in Y\}$ (Max-product also called max-dot composition)

- (a) Interpret the physical implication of the above mentioned two relations.
- (b) Also check if $R^{\circ}S = S^{\circ}R$ according to each rule.
- **10.** Three fuzzy sets are given as follows:

$$A = \left\{ \frac{0.5}{Winter}, \frac{0.33}{Spring}, \frac{0.52}{Summer}, \frac{0.25}{Fall} \right\}$$

$$B = \left\{ \frac{0.10}{Winter}, \frac{0.55}{Spring}, \frac{0.90}{Summer}, \frac{0.20}{Fall} \right\}$$

$$C = \left\{ \frac{0.22}{High}, \frac{0.55}{Medium}, \frac{0.44}{Low} \right\}$$

Derive the following relations:

- (a) If x is A or y is B then z is C.
- (b) If x is A and y is $\sim B$ then z is C.
- **11.** Zadeh's max-min rule is defined as:

$$R = \bar{A} \cup (A \cap B) = \int_{X \times Y} (1 - \mu_A(x)) \cup (\mu_A(x) \cap \mu_B(y)) | (x, y)$$
 so that

$$R'_{MM} = (A \times B) \cup (\bar{A} \times Y)$$
 is equivalent to R_{MM} .

- **12.** Verify the following (according to Zadeh's max-min rule)
 - (a) If x is A then y is $B \equiv (A \times B) \cup (\bar{A} \times Y)$
 - (b) If x is A then y is B else z is $C \equiv (A \times B) \cup (\bar{A} \times C)$ (Verify with the fuzzy sets in Question 10)
- 13. What is the minimum and maximum number of crossover points possible for a fuzzy set?
- **14.** Decide whether the following fuzzy sets are closed or open?
 - (a) $\mu_A(x) = \frac{x}{1+x}$
 - (b) $\mu_A(x) = 2^{-x}$
 - (c) $\mu_A(x) = \frac{x}{1+x^2}$
 - (d) $\mu_{A\cap B}$ and $\mu_{A\cup B}$ for μ_A and μ_B with the following MFs:

- **15.** For grading system, draw membership functions for the following:
 - (a) Crisp grading.
 - (b) Fuzzy grading with trapezoidal MF.
 - (c) Fuzzy grading with gaussian MF.

(You can make a reasonable assumption, if any.)

16. What is the physical representation of the fuzzy set $A \leftarrow B$, where A and B are two fuzzy sets defined over a universe of discourse X.

- **17.** Give an <u>example</u> where you must follow Soft computing methods instead of Hard computing. Justify your answer.
- **18.** What are the three characteristics that Hard computing must obey?
- **19.** Why Soft computing is preferable than Hard computing to solve some problems? Give examples for each which you should consider for solving:
 - (a) Using Soft computing only.
 - (b) Using Hard computing only.
 - (c) Using both, Soft and Hard computing.
- **20.** For the following fuzzy set *A* defined over a universe of discourse, draw the graph.

$$X = \{10, 15, 20, 25, 30, 35, 40, 45, 50\}$$

 $A = \{(15,0.5), (20,0.4), (25,0.3), (30,0.6), (35,0.8)\}$

- **21.** Given two fuzzy sets A and B, defined over the universe of discourses X and Y respectively. Draw the graphs for the following:
 - (a) $A \times B$
 - (b) $R: A \rightarrow B$

Given,

$$A = \{(20,0.2), (25,0.4), (30,0.6), (35,0.6), (40,07), (45,0.8), (50,0.8)\}$$

$$B = \{(1,0.8), (2,0.8), (3,0.6), (4,0.4)\}$$

$$X = \{10, 15, 20, 25, 30, 35, 40, 45, 50\}$$

$$Y = \{1, 2, 3, 4\}$$

- (c) If x is A then y is B. What rule says if x = 40?
- **22.** Prove (or disprove) the validity of the following:
 - (a) $P \to Q \equiv \sim P \cup Q$
 - (b) If $P \rightarrow Q$ then $Q \rightarrow P$ (Contrapositive)
 - (c) If $P \to Q$ then $\sim Q \to \sim P$ (Contranegative)
 - (d) If P and $P \rightarrow Q$ then

Р	Q	$P \rightarrow Q$	$P \to Q \equiv \sim P \cup Q$
F	F	Т	1 4 4 - 1 3 4
F	Т	Т	$P, P \rightarrow Q \equiv Q$

Т	F	F	
Т	Т	Т	

Modus Ponens (MP): $P, P \rightarrow Q \Rightarrow Q$

Modus Tollens (MT): $P \rightarrow Q$, $\sim Q \Rightarrow \sim P$

Hypothetical Syllogism (HS): $P \rightarrow Q$, $Q \rightarrow R \equiv P \rightarrow R$

Constructive Dilemma (CD): $P \cup Q, P \rightarrow R, Q \rightarrow S \equiv R \cup S$

23. What will be the output fuzzy set in the following cases:

- (a) If x is A then y is B

(c)

24. State true or false:

- (a) If $\lambda \leq \infty$ then $A_{\alpha} \subseteq A_{\lambda}$ where $\alpha, \lambda \in [0,1]$ and A_{α}, A_{λ} denotes $\alpha and \lambda cuts$ of the fuzzy set A.
- (b) If A_{α} denotes the α cut of a fuzzy set, then A_0 is the universe of discourse of fuzzy set
- (c) If A_{α} denotes the α cut of a fuzzy set, then $A_1 = Support(A)$ or $A_1 = Core(A)$.
- (d) For any two fuzzy sets A and B defined over a universe of discourse X,

$$A \oplus B = (\bar{A} \cap B) \cup (A \cap \bar{B})$$

$$A - B = A \cap \bar{B}$$

$$\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$$

What is
$$\mu_{A-B}(x)$$
?

- **25.** What is the output of the fuzzy element p: x is F
 - (a) a fuzzy set.
 - (b) a fuzzy rule.
 - (c) $\mu_F(x)$, the membership value of x.
 - (d) p is a rule matrix.
- **26.** Given two fuzzy sets A and B, defined over the universe of discourses X and Y respectively, and a rule R: If x is A then y is B. How would you calculate the following:
 - (a) x is A given that y is B
 - (b) y is B' given that x is A
 - (c) $x ext{ is } A' ext{ given that } y ext{ is } B'$
 - (d) $x ext{ is } A' ext{ given that } y ext{ is } B$
- 27. How you can obtain the crisp value of a fuzzy set A whose membership function is defined as $\mu_A(x)=rac{1}{1+x^2}$
- **28.** Two fuzzy sets A and B are defined over a universe of discourse X with membership functions $\mu_A(x)$ and $\mu_B(x)$, respectively as shown below

Assume that $a_1 = b_2$ and $a_2 = b_3$

Draw the plot of membership functions of $A \cup B$, $A \cap B$ and \bar{B} .

29. Consider three sets as stated below (In the context of courses offered among students)

 $S = \{s_1, s_2, s_3, s_4\}$ is a set of students

 $C = \{c_1, c_2, c_3\}$ is a set of courses

 $P = \{p_1, p_2, p_3, p_4\}$ denotes a set of level of popularity

Two relations are given below:

		C ₁	C_2	C ₃
$R_1 =$	S ₁	0.1	0.2	0.3
	S ₂	0.2	0.3	0.1
	S_3	0.2	0.3	0.1
	S ₄	0.3	0.1	0.2

		p_1	p_2	p ₃	p_4
$R_2 =$	C ₁	0.4	0.3	0.2	0.5
	C_2	0.1	0.3	0.5	0.7
	C ₃	0.2	0.4	0.2 0.5 0.6	0.8

- (a) Find R_1 o R_2 .
- (b) What are the physical implementation of R_1 , R_2 and R_1 o R_2 ?
- **30.** The membership distribution functions for the fuzzy sets A_1 A_2 , B_1 B_2 , C_1 C_2 are shown in the graphs below:

The above fuzzy system is subjected to the satisfaction of the following rules for two fuzzy inputs $x = \alpha$ and $y = \beta$.

 $\mathsf{R}_{1:}$ IF x is A_1 AND y is B_1 THEN z is \mathcal{C}_1

 R_2 : IF x is A_2 AND y is B_2 THEN z is C_2

- (a) Calculate the fuzzy output.
- (b) Also, show how the fuzzy output can be defuzzified into its crisp value using center of sum (COS) method.

- **31.** The *support* of Fuzzy set A is the set of all points x in X (is the universe of discourse) such that
 - (a) $\mu_A(x) > 0$
 - (b) $\mu_A(x) = 1$
 - (c) $\mu_A(x) = 0.5$
 - (d) $\mu_A(x) \neq 1$
- **32.** Takugi-Sugeno approach to FLC design is computationally more expensive compared to Mamdani approach because;
 - (a) Mamdani approach considers a less number of rules in fuzzy rule base.
 - (b) Searching a rule in Mamdani approach is simple and hence less time consuming.
 - (c) Takagi-Sugeno approach consider a large number of rules in fuzzy rule base.
 - (d) Computation of each rule in Takagi-Sugeno approach is more time consuming.
- **33.** A membership function μ_x is defined as $\mu_x = [x]$. The membership function is with
 - (a) Discrete values over a discrete domain of universe of discourse.
 - (b) Discrete values of a continuous domain of universe of discourse.
 - (c) Continuous values of a discrete domain of universe of discourse.
 - (d) Continuous values of a continuous domain of universe of discourse.
- **34.** Figure below shows the membership function $\mu_A(x)$ of a fuzzy set A defined on a universe of discourse X.

(a) Mark the core, crossover point(s) and support of the fuzzy set A.

- (b) With parameters given in Fig above, formulate $\mu_A(x)$ as a generalized bell MF.
- **35.** The membership functions of two fuzzy sets *A* and *B* is shown in figure below. Draw graphically the fuzzy sets for the following.
 - (a) Intersection of A and B
 - (b) Union of A and B
 - (c) Compliment of A and B

There are two inputs I_1 and I_2 and an output O of a process. It is required to develop a fuzzy logic controller (FLC) based on the *Mamdani approach*. The inputs and output are expressed using three linguistic terms namely L (low), M (medium) and H (high). The membership function distributions of the above inputs and output are shown in Figure. The rule-base of the fuzzy logic controller is shown in Table below:

<u>Table</u>

		l ₂		
		L	М	Н
	L	L	L	М
I ₁	M	L	М	Н
	Н	М	Н	Н

Suppose, at any instant, inputs to the fuzzy logic controller are $I_1 = 1.5$ and $I_2 = 25$.

- (a) Obtain the *fuzzified* values of the input.
- (b) Compute rule strengths of the rules corresponding to the given inputs.
- (c) Decide the fuzzy output for the given inputs.
- (d) Defuzzyfying the output using Center of Sum (COS) method.