1

This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Which of the following statements are true for all lines and planes in 3-space?

I. two lines parallel to a third line are parallel,

II. two planes perpendicular to a third plane are parallel,

III. two lines perpendicular to a plane are parallel.

- 1. I and III only
- **2.** all of them
- **3.** I only
- 4. I and II only
- 5. II and III only
- **6.** none of them
- **7.** II only
- 8. III only

002 10.0 points

Determine all unit vectors \mathbf{v} orthogonal to

$$a = 3i + j + 4k$$
, $b = 3i + 2j + 6k$.

1.
$$\mathbf{v} = \pm \left(\frac{2}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{3}{7}\mathbf{k}\right)$$

2.
$$\mathbf{v} = \frac{2}{7}\mathbf{i} - \frac{3}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}$$

3.
$$\mathbf{v} = 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$$

4.
$$\mathbf{v} = \pm \left(\frac{2}{7}\mathbf{i} - \frac{3}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}\right)$$

5.
$$\mathbf{v} = -\frac{2}{7}\mathbf{i} - \frac{6}{7}\mathbf{j} + \frac{3}{7}\mathbf{k}$$

6.
$$\mathbf{v} = -2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}$$

003 10.0 points

Which of the following surfaces is the graph of

$$6x + 4y + 3z = 12$$

in the first octant?

004 10.0 points

Find parametric equations for the line passing through the point P(3, -2, 3) and perpendicular to the plane

$$x + 3y - 2z = 6.$$

1.
$$x = 3 - t$$
, $y = 2 - 3t$, $z = 3 - 2t$

2.
$$x = 3 + t$$
, $y = -2 + 3t$, $z = 3 - 2t$

3.
$$x = 1 - 3t$$
, $y = -3 + 2t$, $z = -2 + 3t$

4.
$$x = 1 + 3t$$
, $y = 3 + 2t$, $z = 2 - 3t$

5.
$$x = -3 + t$$
, $y = 2 + 3t$, $z = -3 - 2t$

6.
$$x = 1 + 3t$$
, $y = 3 - 2t$, $z = -2 + 3t$

005 10.0 points

Find parametric equations for the line through the point P(5, 5, 4) that is parallel to the plane x + y + z = 3 and perpendicular to the line

$$x = 3 + t$$
, $y = 4 - t$, $z = 3t$.

1.
$$x = 5 + 4t$$
, $y = 5 + 2t$, $z = 4 + t$

2.
$$x = 5 - 4t$$
, $y = 5 + 2t$, $z = 4 + t$

3.
$$x = 5 - 4t$$
, $y = 5 + 2t$, $z = 4 - 2t$

4.
$$x = 5 + 4t$$
, $y = 5 - 2t$, $z = 4 - 2t$

5.
$$x = 5 + t$$
, $y = 5 + t$, $z = 4 - 2t$

006 10.0 points

Find an equation for the plane passing through the points

$$Q(-2, -1, -1),$$
 $R(0, -2, -1),$ $S(-5, -1, -3).$

1.
$$2x - 4y + 3z + 5 = 0$$

2.
$$2x + 4y - 3z + 5 = 0$$

3.
$$2x + 3y - 4z - 5 = 0$$

4.
$$2x + 4y - 3z - 5 = 0$$

5.
$$2x - 3y - 4z - 5 = 0$$

6.
$$2x - 3y - 4z + 5 = 0$$

007 10.0 points

Find an equation for the plane passing through the point P(-1, -1, -1) and parallel to the plane

$$3x + 2y + z = 4$$
.

1.
$$x + 3y + 2z = -6$$

2.
$$2x + y + 3z = -10$$

3.
$$x + 3y + 2z = -10$$

4.
$$3x + 2y + z = -10$$

5.
$$3x + 2y + z = -6$$

6.
$$2x + y + 3z = -6$$

008 10.0 points

Determine as a linear relation in x, y, z the plane given in vector form by

$$\mathbf{x} = \mathbf{a} + u \mathbf{b} + v \mathbf{c}$$

when

$$\mathbf{a} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}, \quad \mathbf{b} = 2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$$

and

$$\mathbf{c} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}.$$

1.
$$7x + 4y + 5z - 13 = 0$$

2.
$$3x + 4y - 5z - 13 = 0$$

3.
$$7x - 4y - 5z - 13 = 0$$

4.
$$3x - 4y + 5z + 13 = 0$$

$$\mathbf{5.} \ 3x - 4y - 5z + 13 = 0$$

6.
$$7x + 4y + 5z + 13 = 0$$

009 10.0 points

Describe the motion of a particle with position P(x, y) when

$$x = 5\sin t \,, \quad y = 4\cos t$$

as t varies in the interval $0 \le t \le 2\pi$.

1. Moves once counterclockwise along the ellipse

$$\frac{x^2}{25} + \frac{y^2}{16} = 1,$$

starting and ending at (0, 4).

2. Moves along the line

$$\frac{x}{5} + \frac{y}{4} = 1,$$

starting at (0, 4) and ending at (5, 0).

3. Moves along the line

$$\frac{x}{5} + \frac{y}{4} = 1,$$

starting at (5, 0) and ending at (0, 4).

4. Moves once clockwise along the ellipse

$$(5x)^2 + (4y)^2 = 1,$$

starting and ending at (0, 4).

5. Moves once counterclockwise along the ellipse

$$(5x)^2 + (4y)^2 = 1,$$

starting and ending at (0, 4).

6. Moves once clockwise along the ellipse

$$\frac{x^2}{25} + \frac{y^2}{16} = 1,$$

starting and ending at (0, 4).

010 10.0 points

For which one of the following surfaces is

$$\mathbf{\Phi}(u, v) = u \cos v \, \mathbf{i} + u^2 \, \mathbf{j} + u \sin v \, \mathbf{k}$$

a parametrization?

2.

6.

011 10.0 points

Which of the following is a parametrization of the surface

5.

- **1.** $\Phi = (u, u + v, v)$
- **2.** $\Phi = (\cos u \sin v, 3\cos u \sin v, \cos v)$
- 3. $\Phi = (u, u \cos v, u \sin v)$
- **4.** $\Phi = (u, \cos v, \sin v)$
- **5.** $\Phi = (u, v^3, v)$

01210.0 points

Express the graph of

$$z = y^2 - x^2, \quad x^2 + y^2 \le 9,$$

shown in

as a surface parametrized in terms of cylindrical polar coordinates.

1. For
$$0 \le r \le 3$$
, $0 \le \theta \le 2\pi$,

$$\Phi(r, \theta) = (r \cos \theta, r \sin \theta, -r^2 \sin 2\theta)$$

2. For
$$0 \le r \le 3$$
, $0 \le \theta \le 2\pi$,

$$\Phi(r, \theta) = (r \cos \theta, r \sin \theta, -r^2 \cos 2\theta)$$

3. For
$$0 \le r \le 0$$
, $0 \le \theta \le 2\pi$,

$$\Phi(r, \theta) = (r \cos \theta, r \sin \theta, r^2 \cos 2\theta)$$

4. For
$$0 \le r \le 3$$
, $0 \le \theta \le 2\pi$,

$$\Phi(r, \theta) = (r \cos \theta, r \sin \theta, r^2 \cos 2\theta)$$

5. For
$$0 \le r \le 0$$
, $0 \le \theta \le 2\pi$,

$$\Phi(r, \theta) = (r \cos \theta, r \sin \theta, r^2 \sin 2\theta)$$

6. For
$$0 \le r \le 0$$
, $0 \le \theta \le 2\pi$,
$$\Phi(r, \theta) = (r \cos \theta, r \sin \theta, -r^2 \sin 2\theta)$$

013 10.0 points

The surface S shown in

consists of the portion of the sphere

$$x^2 + y^2 + z^2 = 25$$

where

$$y^2 + z^2 \ge 9$$

Use spherical polar coordinates (ρ, θ, ϕ) to describe S.

1.
$$S = \text{all points } P(3, \theta, \phi)$$
 with $0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi, \ \sin^2 \phi \cos^2 \theta \le \frac{2}{5}$.

2.
$$S = \text{all points } P(3, \theta, \phi) \}$$
 with $0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi, \ \sin^2 \phi \sin^2 \theta \le \frac{16}{25}.$

3.
$$S = \text{all points } P(3, \theta, \phi) \}$$
 with $0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi, \ \cos^2 \phi \cos^2 \theta \le \frac{2}{5}.$

$$0 \le \theta \le 2\pi, \ \ 0 \le \phi \le \pi, \ \sin^2 \phi \cos^2 \theta \le \frac{16}{25}.$$

4. $S = \text{all points } P(5, \theta, \phi) \text{ with }$

5. $S = \text{all points } P(5, \theta, \phi) \}$ with $0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi, \ \cos^2 \phi \sin^2 \theta \le \frac{2}{5}.$

6.
$$S = \text{all points } P(5, \theta, \phi) \}$$
 with $0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi, \ \cos^2 \phi \sin^2 \theta \le \frac{16}{25}.$

014 10.0 points

The solid W shown in

consists of all points enclosed by the sphere

$$x^2 + y^2 + z^2 = 1$$

and the cone

$$z^2 = 3(x^2 + y^2), \quad z > 0.$$

Describe W as a set of points $\{(\rho, \theta, \phi)\}\$ in spherical polar coordinates.

1.
$$0 \le \rho \le 4, \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{3}$$

2.
$$0 \le \rho \le 1, \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{3}$$

3.
$$0 \le \rho \le 4, \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{6}$$

4.
$$0 \le \rho \le 4, \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{4}$$

5.
$$0 \le \rho \le 1, \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{6}$$

6.
$$0 \le \rho \le 1, \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{4}$$

015 10.0 points

The solid W shown in

that lies above the xy-plane, below the cone

$$z^2 = 9x^2 + 9y^2$$

and within the cylinder

$$x^2 + y^2 = 1$$
.

Describe W as a set of points $\{(r, \theta, z)\}$ in cylindrical coordinates.

1.
$$0 \le r \le 1$$
, $0 \le \theta \le \pi$, $0 \le z \le 3r$

2.
$$0 \le r \le 3$$
, $0 \le \theta \le 2\pi$, $0 \le z \le 9r$

3.
$$0 \le r \le 1$$
, $0 \le \theta \le 2\pi$, $0 \le z \le 3r$

4.
$$0 \le r \le 1$$
, $0 \le \theta \le 2\pi$, $0 \le z \le 9r$

5.
$$0 \le r \le 3$$
, $0 \le \theta \le \pi$, $0 \le z \le 9r$

6.
$$0 \le r \le 3$$
, $0 \le \theta \le \pi$, $0 \le z \le 3r$

016 10.0 points

The solid W shown in

is bounded by the paraboloid

$$z = 11 - x^2 - y^2$$

and the plane z=2. Describe W as a set of points $\{(r, \theta, z)\}$ in cylindrical coordinates.

1.
$$0 \le r \le 9$$
, $0 \le \theta \le \pi$, $2 \le z \le 11 - r^2$

2.
$$0 \le r \le 3$$
, $0 \le \theta \le \pi$, $2 \le z \le 11 - r^2$

3.
$$0 \le r \le 3$$
, $0 \le \theta \le 2\pi$, $2 \le z \le 11 - r^2$

4.
$$0 \le r \le 3$$
, $0 \le \theta \le 2\pi$, $2 \le z \le 11 - r$

5.
$$0 \le r \le 9$$
, $0 \le \theta \le 2\pi$, $2 \le z \le 11 - r$

6.
$$0 \le r \le 9$$
, $0 \le \theta \le \pi$, $2 \le z \le 11 - r$