Report on Network Simulator 2 Project

—Submitted by— Bishal Basak Papan Montaser Majid Taseen

Student ID: 1505043

1505055

Section: A

Level:3 Term:II Course: CSE 322 - Computer Networks Sessional

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology

> (BUET) Dhaka 1000

January 13, 2019

Contents

1	Performed Tasks	2
	1.1 Given Tasks	2
	1.2 Topologies Under Simulation	3
	1.3 Parameters Being Varied	3
	1.4 Modifications Made	4
	1.5 Additional Task Done	6
2	Results with Graphs	7
	2.1 Metrics Analyzed	7
	Wireless 802.11(mobile)	8
	Wireless 802.15.4(static)	29
	Wireless 802.11new(static)	50
	Wireless 802.11new(mobile)	71
	Wireless 802.11new(static) modified queue	92
	Wireless 802.11new(mobile) modified queue 1	13
	Satellite Topology	.34
3	Summary 1	36

Chapter 1

Performed Tasks

1.1 Given Tasks

We are instructed to do the following tasks using NS2 simulator:

- Write tcl files of the given topologies
- Vary different parameters using shell script and run simulation of the tcl file & generate trace file accordingly
- Write awk file to analyze the trace file
- Do some modification in mechanisms or protocols provided
- Perform some additional tasks

1.2 Topologies Under Simulation

- Wireless 802.11 (mobile) Grid Topology
- Wireless 802.15.4 (static) Grid Topology

1.3 Parameters Being Varied

- 1. Number of nodes
- 2. Number of flow
- 3. Number of packets per second
- 4. Velocity (Only for mobile topology)
- 5. Coverage Area (Only for static topology)

1.4 Modifications Made

described below:

We have basically modified the 802.11 Medium Access Control(MAC) layer protocol and introduced a new MAC layer protocol 802.11new by changing the values of some parameters. To perform this, we had to modify some files. The files along with directories and changes performed in them are

- ns-allinone-2.35\dei80211mr-1.1.4\src\InitTCL.cc file; the CWMin_ is set to 16 and useShortPreamble_ is set to true as parameters of our proposed protocol 802.11new and added to the existing initTCL.cc code. Thus we are using shorter contention window size then given 802.11 protocol and 72 bit preamble in place of 144 bit preamble.
- In ns-allinone-2.35\ns-2.35\tcl\lib\ns-default.tcl file; CWMin_ is set to 15, SlotTime_ is set to 0.000009 (9μs), PreambleLength_ is set to 72, PLCPDataRate_ is set to 2.0e6 (2 Mbps), BeaconInterval_ is set to 0.09(90ms), MaxChannelTime_ is set to 0.009(9ms), MinChannelTime_ is set to 0.003(3ms), ChannelTime_ is set to 0.10(100ms).
- In ns-allinone-2.35\ns-2.35\tcl\lan\ns-mac.tcl file; slotTime_ is set to $9\mu s$, short interframe space, denoted by sifs_ is set to $10\mu s$, Point Coordination

Function(PCF) interframe space, denoted by pifs_ is set to $19\mu s$, Distribution Coordination Function(DCF) interframe space, denoted by difs_ is set to $28\mu s$. These are done according to the formula $pifs = sifs + slot_time$ and $difs = sifs + 2 * slot_time$.

• In ns-allinone-2.35\ns-2.35\mac\ directory; we have added mac-802_11new.h, mac-802_11new.cc, mac-timersnew.h, mac-timersnew.cc files.

We have also made some modification in the **interface queue**, which is basically a drop-tail queue. We have modified it in a way such that when a packet arrives, a random position of the queue is evicted. We have done this by modifying some portion of the code in ns-allinone-2.35\ns-2.35\queue\queue.h file.

1.5 Additional Task Done

As an additional task, we have written a tcl file for a satellite network topology which is a combination of a orbital satellite, some geo satellites and some wired nodes. We have used the parameters for the proposed teledisc satellite. We have written an awk file to analyze the obtained trace file from the tcl file and varied the position of a satellite using shell script to measure different metrics.

Chapter 2

Results with Graphs

2.1 Metrics Analyzed

For each parameter under variation, 5 (five) sets of data were generated. The metrics that were observed are listed below:

- 1. Network throughput
- 2. End-to- end delay
- 3. Packet delivery ratio (total no. of packets delivered to end destination / total no. of packets sen
- 4. Packet drop ratio

 (total no. of packets dropped / total no of packets sent)
- 5. Total energy consumption

In Satellite network, which is implemented as additional task, we have measured change of end-to-end delay with respect to satellite position and plotted graph of it.

We have used **gnuplot** tool to plot all the graphs.

Wireless 802.11(mobile)

Throughput vs Node

flow:20 packets/sec:200 velocity:5

Throughput vs Packets

nodes:70 flow:20 velocity:5

Throughput vs Flow

nodes:70 packets/sec:200 velocity:5

Throughput vs Velocity

nodes:70 flow:20 packets/sec:200

Delay vs Node

flow:20 packets/sec:200 velocity:5

Delay vs Packets

nodes:70 flow:20 velocity:5

Delay vs Flow

nodes:70 packets/sec:200 velocity:5

Delay vs Velocity nodes:70 flow:20 packets/sec:200

Delivery-Ratio vs Node

flow:20 packets/sec:200 velocity 5

Delivery-Ratio vs Packets

nodes:70 flow:20 velocity:5

Delivery-Ratio vs Flow

nodes:70 packets/sec:200 velocity:5

Delivery-Ratio vs Velocity

nodes:70 flow:20 packets/sec:200

Drop-Ratio vs Node

flow:20 packets/sec:200 velocity:5

Drop-Ratio vs Packets

nodes:70 flow:20 velocity:5

Drop-Ratio vs Flow

nodes:70 packets/sec:200 velocity:5

Drop-Ratio vs Velocity

nodes:70 flow:20 packets/sec:200

Energy vs Node

flow:20 packets/sec:200 velocity:5

Energy vs Packets

nodes:70 flow:20 velocity:5

Energy vs Flow

Energy vs Velocity nodes:70 flow:20 packets/sec:200

Wireless 802.15.4(static)

Throughput vs Node

flow:20 packets/sec:200 coverage area:100 X 175

Throughput vs Packets

nodes:70 flow:20 coverage area:100 X 175

Throughput vs Flow

nodes:70 packets/sec:200 coverage area:100 X 175

Throughput vs Coverage-area

nodes:70 flow:20 packets/sec:200

Delay vs Node flow:20 packets/sec:200 coverage area:100 X 175

Delay vs Packets nodes:70 flow:20 coverage area:100 X 175

Delay vs Flow nodes:70 packets/sec:200 coverage area:100 X 175

Delay vs Coverage-area

nodes:70 flow:20 packets/sec:200

Delivery-Ratio vs Node

Delivery-Ratio vs Packets

nodes:70 flow:20 coverage area:100 X 175

Delivery-Ratio vs Flow

nodes:70 packets/sec:200 coverage area:100 X 175

Delivery-Ratio vs Coverage-area

nodes:70 flow:20 packets/sec:200

Drop-Ratio vs Node

Drop-Ratio vs Packets

nodes:70 flow:20 coverage area:100 X 175

Drop-Ratio vs Flow

nodes:70 packets/sec:200 coverage area:100 X 175

Drop-Ratio vs Coverage-area

nodes:70 flow:20 packets/sec:200

Energy vs Node

Energy vs Packets

nodes:70 flow:20 coverage area:100 X 175

Energy vs Flow nodes:70 packets/sec:200 coverage area:100 X 175

Energy vs Coverage-area

nodes:70 flow:20 packets/sec:200

Wireless 802.11new(static)

Throughput vs Node

Throughput vs Packets

nodes:50 flow:20 coverage area:100 X 175

Throughput vs Flow

nodes:50 packets/sec:200 coverage area:100 X 175

Throughput vs Coverage-area

nodes:50 flow:20 packets/sec:200

Delay vs Node flow:20 packets/sec:200 coverage area:100 X 175

Delay vs Packets nodes:50 flow:20 coverage area:100 X 175

Delay vs Flow nodes:50 packets/sec:200 coverage area:100 X 175

Delay vs Coverage-area

coverage-area

Delivery-Ratio vs Node

Delivery-Ratio vs Packets

nodes:50 flow:20 coverage area:100 X 175

Delivery-Ratio vs Flow

nodes:50 packets/sec:200 coverage area:100 X 175

Delivery-Ratio vs Coverage-area

nodes:50 flow:20 packets/sec:200

Drop-Ratio vs Node

Drop-Ratio vs Packets

nodes:50 flow:20 coverage area:100 X 175

Drop-Ratio vs Flow

nodes:50 packets/sec:200 coverage area:100 X 175

Drop-Ratio vs Coverage-area

nodes:50 flow:20 packets/sec:200

Energy vs Node flow:20 packets/sec:200 coverage area:100 X 175

Energy vs Packets

nodes:50 flow:20 coverage area:100 X 175

Energy vs Flow nodes:50 packets/sec:200 coverage area:100 X 175

Energy vs Coverage-area

nodes:50 flow:20 packets/sec:200

Wireless 802.11new(mobile)

Throughput vs Node

flow:20 packets/sec:200 velocity:5

Throughput vs Packets

nodes:70 flow:20 velocity:5

Throughput vs Flow

nodes:70 packets/sec:200 velocity:5

Throughput vs Velocity

nodes:70 flow:20 packets/sec:200

Delay vs Node

flow:20 packets/sec:200 velocity:5

Delay vs Packets nodes:70 flow:20 velocity:5

Delay vs Flow

nodes:70 packets/sec:200 velocity:5

Delay vs Velocity nodes:70 flow:20 packets/sec:200

Delivery-Ratio vs Node

flow:20 packets/sec:200 velocity 5

Delivery-Ratio vs Packets

nodes:70 flow:20 velocity:5

Delivery-Ratio vs Flow

nodes:70 packets/sec:200 velocity:5

Delivery-Ratio vs Velocity

nodes:70 flow:20 packets/sec:200

Drop-Ratio vs Node

flow:20 packets/sec:200 velocity:5

Drop-Ratio vs Packets

nodes:70 flow:20 velocity:5

Drop-Ratio vs Flow

Drop-Ratio vs Velocity

nodes:70 flow:20 packets/sec:200

Energy vs Node

flow:20 packets/sec:200 velocity:5

Energy vs Packets

nodes:70 flow:20 velocity:5

Energy vs Flow nodes:70 packets/sec:200 velocity:5

Energy vs Velocity

nodes:70 flow:20 packets/sec:200

Wireless 802.11new(static) modified queue

Throughput vs Node

flow:20 packets/sec:200 coverage area:100 X 175

Throughput vs Packets

nodes:50 flow:20 coverage area:100 X 175

Throughput vs Flow

nodes:50 packets/sec:200 coverage area:100 X 175

Throughput vs Coverage-area

nodes:50 flow:20 packets/sec:200

Delay vs Node flow:20 packets/sec:200 coverage area:100 X 175

Delay vs Packets nodes:50 flow:20 coverage area:100 X 175

Delay vs Flow nodes:50 packets/sec:200 coverage area:100 X 175

Delay vs Coverage-area

nodes:50 flow:20 packets/sec:200

Delivery-Ratio vs Node

flow:20 packets/sec:200 coverage area:100 X 175

Delivery-Ratio vs Packets

nodes:50 flow:20 coverage area:100 X 175

Delivery-Ratio vs Flow

nodes:50 packets/sec:200 coverage area:100 X 175

Delivery-Ratio vs Coverage-area

nodes:50 flow:20 packets/sec:200

Drop-Ratio vs Node

flow:20 packets/sec:200 coverage area:100 X 175

Drop-Ratio vs Packets

nodes:50 flow:20 coverage area:100 X 175

Drop-Ratio vs Flow nodes:50 packets/sec:200 coverage area:100 X 175

Drop-Ratio vs Coverage-area

nodes:50 flow:20 packets/sec:200

Energy vs Node flow:20 packets/sec:200 coverage area:100 X 175

Energy vs Packets

nodes:50 flow:20 coverage area:100 X 175

Energy vs Flow nodes:50 packets/sec:200 coverage area:100 X 175

Energy vs Coverage-area

nodes:50 flow:20 packets/sec:200

Wireless 802.11new(mobile) modified queue

Throughput vs Node

flow:20 packets/sec:200 velocity:5

Throughput vs Packets

nodes:70 flow:20 velocity:5

Throughput vs Flow

nodes:70 packets/sec:200 velocity:5

Throughput vs Velocity

nodes:70 flow:20 packets/sec:200

Delay vs Node

Delay vs Packets nodes:70 flow:20 velocity:5

Delay vs Flow

nodes:70 packets/sec:200 velocity:5

Delay vs Velocity nodes:70 flow:20 packets/sec:200

Delivery-Ratio vs Node

flow:20 packets/sec:200 velocity 5

Delivery-Ratio vs Packets

nodes:70 flow:20 velocity:5

Delivery-Ratio vs Flow

nodes:70 packets/sec:200 velocity:5

Delivery-Ratio vs Velocity

nodes:70 flow:20 packets/sec:200

Drop-Ratio vs Node

flow:20 packets/sec:200 velocity:5

Drop-Ratio vs Packets

nodes:70 flow:20 velocity:5

Drop-Ratio vs Flow nodes:70 packets/sec:200 velocity:5

Drop-Ratio vs Velocity

nodes:70 flow:20 packets/sec:200

Energy vs Node

flow:20 packets/sec:200 velocity:5

Energy vs Packets

nodes:70 flow:20 velocity:5

Energy vs Flow nodes:70 packets/sec:200 velocity:5

Energy vs Velocity nodes:70 flow:20 packets/sec:200

Satellite Topology

Chapter 3

Summary

After analyzing the generated graphs, we can observe that:

- For higher no. of static nodes, the original protocol shows less throughput than the modified one, but for lower number of static nodes, the original one shows higher throughput.
- In case of the modified protocol, there is no significant change in throughput when flow is varied. For lower flow count, modified protocol shows higher throughput but for higher flow count, the original one shows higher throughput.
- After varying different parameters, the end-to-end delay is usually less in the modified protocol in all cases than the original protocol. That's might be because we have decreased channel time and slot time both.

- The modified protocol usually consumes more energy than the original protocol. Sometimes there is significant difference between the two.
- The delivery ratio in modified protocol is higher than the original protocol, in case of varying different parameters
- In case of static nodes, there is no change in outputs when no. of packets are varied, for both the modified and original protocol.
- The Energy consumption varies almost nearly linear with no. of nodes.
- If we use the modified MAC protocol with queue having random eviction, the characteristics change drastically. The drop ratio increases and as a result delivery ratio and throughput decreases. Moreover, average energy consumption also decreases.

References

- http://profiles.murdoch.edu.au/myprofile/ david-murray/files/2015/05/Measuring_the_ reliability_of_80211_wifi.pdf
- http://www.isi.edu/nsnam/ns/index.html
- http://www.researchgate.net/publication/ 220405926_IEEE_80211b_Ad_Hoc_Networks_ Performance_Measurements
- http: //csie.nqu.edu.tw/smallko/ns2_old/mac2.pdf