Chemistry Grade 10Th

Anonymous

May 26, 2023

1 Basic Theory

1.1 Atom

The smallest particle of matter, no independent existence.

1.1.1 Constituents of Atom

Table 1: Constituents of Atom

Constituent	Mass	Charge
Protons	$1.672*10^{-}27kg$	+1e
Neutrons	$1.674*10^{-}27kg$	+1e
Electrons	$9.10*10^{-}31kg$	0e

1.1.2 Properties

 Atomic Radius: distance between center of nucleus of atom and its outermost shell

Period - decreases; Inert gases have bigger atomic raidus than halogens

 $\textit{Group} \downarrow \textit{-increases}$

• Nuclear Charge: positive charge present in the nucleus of atom, equal to number of protons, i.e., the atomic number

always increases

 Valency: combining capacity of atom or the number of electrons lost, gained or shared by the atom

Period - increases till 4, then decreases

 $Group \downarrow$ - $remains\ same$

• Metallic Character: tendency of losing valence electrons

Period - decreases

Group ↓ - *increases*

• Non-Metallic Character: tendency of gaining valence electrons

Period - increases

Group ↓ - *decreases*

• Chemical Reactivity: tendency of losing or gaining electrons

Period - decreases then increases

Group ↓ - *increases*

• Ionization Potential: The energy required to <u>remove</u> an electron from a <u>neutral isolated gaseous</u> atom and convert it into a positively charged gaseous ion

Unit: $kJmol^-1$

Period - increases; He is the highest, Cs is the lowest, Fr is not determined correctly as it is radioactive

Group \downarrow - *decreases*

• Electron Affinity: The amount of energy <u>released</u> while converting a <u>neutral isolated gaseous</u> atom into a negatively charged gaseous ion by addition of electron

Unit: $kJmol^-1$

Period - increases; Cl is highest, this property has a number of exceptions in both, periods and groups

Group ↓ - *decreases*

• Electronegativity: tendency of an atom in a <u>molecule</u> to attract the shared pair of electrons towards itself

Unit: none (dimensionless property) \vec{Period} - increases; \vec{F} is highest with 4.0, \vec{C} is lowest with 0.7

Group ↓ - *decreases*

1.2 Molecule

made of atoms, has independent existence, takes part in all reactions

1.2.1 Atomicity

number of atoms in a molecule

1.2.2 Caused by

Covalent bond (sharing of electrons) between two atoms

1.2.3 Properties

• Electrical Conductor: only polar covalent molecules as electrolytes

• Magnetic: depends on atoms

• Solubility: depends on atoms, refer solubility section

1.3 The Periodic Table

The periodic table has 18 Groups and 7 Periods. Elements of period 3 are called typical elements as they represent the general properties of their groups

 G_1 Alkali Metals: $H^1, Li^3, Na^{11}, K^{19}$

 G_2 Alkaline Earth Metals: Be^4, Mg^{12}, Ca^{20}

 G_3 - G_{12} : Transition elements, properties change periodically

 G_{13} Boron Family: $B^5(Metalloid), Al^{13}$ G_{14} Carbon Family: $C^6, Si^{14}(Metalloid)$

 G_{14} Carbon Family. C^{γ} , S^{γ} (Metant G_{15} Nitrogen Family: N^{7} , P^{15}

 G_{16} Oxygen Family or chalcogen: O^8, S^{16}

 G_{17} Halogen: F^9 , Cl^{17}

 G_{18} Halogen: He^2 , Ne^{10} , Ae^{18} , Kr^{36}

1.3.1 Finding the group and period of an element

Period: Number of shells

Group: if (number of valence electrons) < 2 then (number of valence electrons + 10) else (number of valence electrons)

1.3.2 Periodicity

properties that reappear at regular intervals or have a gradual variation

1.3.3 Comparison of Alkali and Halogens

Alkali:

- · shining white solid metal
- · posses one valence electron
- · forms positive ion
- · good conductors of electricity
- · react vigorously with water and acid
- · reducing agents

Halogens:

- · colored diatomic non metals
- posses seven valence electrons
- form negative ion
- · non conductors of electricity
- · generally do not react with dilute acids and water
- · oxidizing agents

1.4 Chemical Bonding

A chemical bond may be defined as the force of attraction between any two atoms in a molecule to maintain stability

1.4.1 Stability

electron arrangement of closest inert gas as they are stable and nonreactive

1.4.2 Electrovalent Bond | Ionic Bond

The chemical compounds formed as a result of the transfer of electrons from one atom of an element to another atom of another element

- $\bullet\,$ Ion: charged particle formed due to gain or loss of one or more e^-
 - Atom lose e^- to form electropositive element (cation)
 - Atom gain e^- to form electronegative element (anion)
- Electrovalency: The number of electrons, an atom of an element loses or gains to form an electrovalent bond is called its electrovalency
- Conditions:
 - Low Ionization Potential: easily lose e^- , cations form easily
 - High electron affinity: anion forms easily
 - Large electronegativity difference
- The metals of $G_{1,2,13}$ combine with $G_{15,16,17}$. CsF is the most ionic compound
- Bonds between metals and non-metals and ionic except hydrogen

1.4.3 Electron Dot symbol | Lewis Symbol

Generally, the valence e^- of first element is marked by a '.' while that of second element by 'x'.

1.4.4 Covalent Bond | Molecular Bond

The chemical bond that is formed by mutual sharing of one or more pairs of electrons

- Types: Single, Double, Triple
- Covalency: number of electrons in formation of shared pair
- Non-polar compounds: Shared pair is equally distributed, formed in similar atoms (H-H, Cl-Cl, O=O) or when electronegativity difference between dissimilar atoms is little (CH_4, CCl_4) . Do not ionize in waster due to lack of charge separation
- Polar Compound | Dipole molecule: Shared pair is not equally distributed, fractional charges develop (HCl, H_2O). Ionise in water or solution. It has both slight positive and slight negative charge, hence known as a dipole molecule

- Ionization: The fractional charges in solution are converted to complete charges and ions are produced
- Conditions:
 - four or more e^- in valence shell except H, He, B, Al, etc
 - High electronegativity
 - High electron affinity
 - High Ionization Potential
- Hydrogen can combine with G_{14-17} with covalent bond

1.4.5 Coordinate Bond | Dative Bond | Co-Ionic Bond

The bond formed by sharing of a pair of electrons, provided entirely by one of the atoms but shared by both

Conditions:

- One compound has lone pair: a pair of e^- not shared by any other atom
- One compound is short of pair

1.4.6 Elements with more than one type of bond

- Ammonium Chloride (NH_4Cl) has all three bonds
- Electrovalent and Covalent: NaOH, CaCO₃
- Covalent and Coordinate: H_2SO_4

1.4.7 Formation of Hydroxl (OH^-) Ion

$$H_2O \to H^+ + OH^- \tag{1}$$

1.4.8 Self Ionization of water

Eq:
$$H_2O \to H^+ + OH^-$$

 $H^+ + H_2O \rightleftharpoons H_3O^+$
 $H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$

2 Acids, Bases and Salts