Stack
Introduction
Push Operation
Pop Operation
Stack :: Complete C++ Code
Application of Stack
Acknowledgement & Questions

Data Structures & Algorithms Stack

Dr. Iftikhar Ahmad

ia@uetpeshawar.edu.pk

Department of CS & IT University of Engineering & Technology, Peshawar

- Stack
 - Motivation
- 2 Introduction
 - Introduction
 - Operations on Stack
 - Representation of Stack
- Push Operation
 - Definition
 - Push :: C++ Code
- Pop Operation
 - Definition
 - Pop :: C++ Code
- Stack :: Complete C++ Code
- 6 Application of Stack
 - Evaluating Mathematical Equations
 - Evaluating Postfix Notation
 - Converting Infix to Postfix notation
- Acknowledgement & Questions
 - Acknowledgement
 - Questions

- 1 Stack
 - Motivation
- 2 Introduction
 - Introduction
 - Operations on Stack
 - Representation of Stack
- Push Operation
 - Definition
 - Push :: C++ Code
- Day O sandian
 - Definition
 - Pop :: C++ Code
 - Stack ·· Complete C++ Code
- Application of Stack
- 6 Application of Stack
 - Evaluating Mathematical Equations
 Factories Destrict Newscars
 - Evaluating Postfix Notation
 - Converting Infix to Postfix notation
- Acknowledgement & Questions
 - Acknowledgement

Motivation

- Consider a 4-player game of cards, in which each player is has 10 cards to start with.
- Upon her turn a player retrieves the top most card from the deck (the remaining cards) and can replace it with one of her cards. The extra card is placed (upside down) in a separate deck.
- The winning player must have the following combination;
 - · Have two combinations of cards from the following two;
 - Three cards of consecutive ranks of same suit
 - 2 Three cards of the same ranks of different suits
 - Have one combination of cards from the following two;
 - Four cards of consecutive ranks of same suit
 Four cards of the same ranks of different suits
- Which data structure will be ideal to represent the deck allowing only RETRIEVAL and REMOVING of the top most element. INSERTION should also be allowed at top.
- Some possibilities;
 - Arrays.
 - Linked List

Motivation

- Problems with using Arrays for deck.
- Problems with using LINKED LIST for *deck*.

Solution

- Based on the requirement, we need a data structure that;
 - Allows Insertion at top location.
 - Allows Deletion at top location.
 - Does not allow access to other locations other than top.
 - i.e., the data structure works based on the principle of LIFO -Last In First Out.
- STACK is the data structure that fulfils all the requirements.

- Stack
 - Motivation
- 2 Introduction
 - Introduction
 - Operations on Stack
 - Representation of Stack
- Push Operation
 - Definition
 - Push :: C++ Code
- Pon Operation
 - Definition
 - Pop :: C++ Code
 - Pop :: C++ Code
- 5 Stack :: Complete C++ Code
- 6 Application of Stack
 - Evaluating Mathematical Equations
 - Evaluating Postfix Notation
 - Converting Infix to Postfix notation
- Acknowledgement & Questions
 - Acknowledgement

Introduction

Stack :: Definition

Stack is a data structure that works on the principle of LIFO - Last In First Out.

Informal Examples

- Stack of plates.
- Stack of books.
- Deck of cards.

Operations on Stack

Permissible Operations on Stack

- Push Inserting a new element.
- Pop Removing the top most element.

Representation of Stack

```
struct myStack{
  private:
    int stack[N];
    int top = -1;
};
```

- - Motivation
- - Introduction
 - Operations on Stack
 - Representation of Stack
- Push Operation
 - Definition
 - Push :: C++ Code
- - Definition
 - Pop :: C++ Code
- - Evaluating Mathematical Equations
 - Evaluating Postfix Notation
 - Converting Infix to Postfix notation
- - Acknowledgement

Push :: Definition

- \bullet ${\rm P}{\mbox{USH}}$ operation is defined as inserting element at the top of a stack.
- ullet A variable Top is used to keep track of elements added so far.

Push Operation :: C++ Code

```
/*
   Insert the value at the top
   and increments the top
* /
bool push(int value){
   if(isFull())
     return false:
    //First increments the value of
       top
    //then store value at the top
       position
    stack[++top] = value;
    return true;
 }
```

- 1) Stack
 - Motivation
- 2 Introduction
 - Introduction
 - Operations on Stack
 - Representation of Stack
- 3 Push Operation
 - Definition
 - Push :: C++ Code
- 4 Pop Operation
 - Definition
 - Pop :: C++ Code
- Stack :: Complete C++ Code
- Application of Stack
 - Evaluating Mathematical Equations
 - Evaluating Postfix Notation
 - Converting Infix to Postfix notation
- Acknowledgement & Questions
 - Acknowledgement

Pop :: Definition

- POP operation refers to removing the top most element from the stack.
- \bullet The variable Top is decremented and the top most element is returned.

Selection Sort :: C++ Code

```
/ *
  Removes the top most element
 * and decrements the top
 * /
int pop(){
   if (isEmpty())
     return -1;
   //returns the top most element
   //and decrements the value of top
   return stack[top--];
}
```

- 1 Stack
 - Motivation
- 2 Introduction
 - Introduction
 - Operations on Stack
 - Representation of Stack
- 3 Push Operation
 - Definition
 - Push :: C++ Code
- Pop Operation
 - Definition
 - Pop :: C++ Code
- 5 Stack :: Complete C++ Code
- 6 Application of Stack
 - Evaluating Mathematical Equations
 - Evaluating Postfix Notation
 - Converting Infix to Postfix notation
- Acknowledgement & Questions
 - Acknowledgement

Stack :: C++ Code

```
const int N = 5;
struct myStack{
private:
        int stack[N];
        int top = -1;
public:
         // Checks if the stack is
            empty
        bool isEmpty(){
                 return (top==-1);
        }
         // Checks if the stack is full
        bool isFull(){
                 return (top==N-1);
        }
```

Stack :: C++ Code (cont...)

};

```
// Insert the value at the top
bool push(int value){
        if(isFull())
                return false:
        stack[++top] = value;
        return true:
int pop(){
        if (isEmpty())
                return -1:
        return stack[top --];
7
```

- Stack
- Motivation
- 2 Introduction
 - Introduction
 - Operations on Stack
 - Representation of Stack
- Push Operation
 - Definition
 - Push :: C++ Code
- Pon Operation
 - Definition
 - Pop :: C++ Code
 - Pop :: C++ Code
- 5 Stack :: Complete C++ Code
- 6 Application of Stack
 - Evaluating Mathematical Equations
 - Evaluating Postfix Notation
 - Converting Infix to Postfix notation
- Acknowledgement & Questions
 - Acknowledgement

Application of Stack

- Function Calls.
- Evaluating Mathematical Equations
 - Converting from prefix to postfix notation.
 - Evaluating postfix expressions.
- Conversion from decimal to binary.

Evaluating Mathematical Equations

- Mathematical equations can be represented in different forms;
 - Infix Notation
 - Operators is written in between operands.
 - e.g., A + B
 - For enforcing precedence of an operation, () are used.
 - Postfix Notation
 - Operands precedes operators.
 - e.g., AB+
 - Equation is evaluated from left to right, without the need of precedence operators such as ().
 - Also called as RPN Reverse Polish Notation.
 - Prefix Notation
 - Operators precedes operands.
 - e.g., +AB
 - Also called as PN Polish Notation.

Basic Idea

Evaluating Postfix Notation

- Scan the expression from left to right
 - If an operand is encountered : Push it onto stack.
 - If an operator is encountered: Pop the required number of operands, perform the operation and push the result back onto stack.
- After the expression is scanned, the result is stored at top of the stack.

Stack

Expression

Example

Comments

Infix to Postfix Conversion

- 1. Initialize an empty stack of operators.
- While no error has occurred and the end of the infix expression has not been reached, do the following:
 - a. Get the next input token (constant, variable, arithmetic operator, left parenthesis, right parenthesis) in the infix expression.
 b. If token is
 - o. Il loken is
 - i. a left parenthesis: Push it onto the stack.
 - ii. a right parenthesis: Pop and display stack elements until a left parenthesis is encountered, but do not display it. (It is an error if the stack becomes empty with no left parenthesis found.)
 - iii. an operator: If the stack is empty or token has a higher priority than the top stack element, push token onto the stack. Otherwise, pop and display the top stack element; then repeat the comparison of token with the new top stack item. Note: A left parenthesis in the stack is assumed to have a lower priority than that of operators.
 - iv. an operand: Display it.
- When the end of the infix expression is reached, pop and display stack items until the stack is empty.

Figure: Prefix to Postfix Algorithm ¹

Example

Expression	Stack	Output	Comments	Expression	Stack	Output	Comments
7 * 8 - (2+3)	\sqcup	7	Display 7	2+3)	(7 8 * 2	Display 2
* 8 - (2+3)	*	7	Push *	+3)	(7 8 * 2	Push +
8 - (2+3)	*	7.8	Display 8	3)	(7 8 * 2 3	Display 3
- (2+3)	\sqcup	7 8 *	Pop & Display *)	Id	7 8 * 2 3 +	Pop & Display +
	-	78*	Push -				
(2+3)		78*	Push (-	7 8 * 2 3 +	Pop (
					\Box	7 8 * 2 3 + -	Pop & Display -

- 1) Stack
 - Motivation
- 2 Introduction
 - Introduction
 - Operations on Stack
 - Representation of Stack
- 3 Push Operation
 - Definition
 - Push :: C++ Code
- Pon Operation
 - Definition
 - Pop :: C++ Code
- 5 Stack :: Complete C++ Code
- Application of Stack
 - Evaluating Mathematical Equations
 - Evaluating Postfix Notation
 - Converting Infix to Postfix notation
- Acknowledgement & Questions
 - Acknowledgement

Acknowledgement

Source Acknowledgement

The material (including figures and examples) presented in this lecture is adopted from the following book;

• Nyhoff, Larry. *ADTs, Data Structures, and Problem Solving with C++*. [Chapter 7]

Questions

Questions?