Model and Cost Function

Model Representation

Housing Prices (Portland, OR)

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
	1534	315
	852	178

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

Training s	et	of
housing p	ric	es
(Portland	, 0	R)

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232 m= 4=	1
1534	315	
852	178	
	l J	

Notation:

> m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

Training set of housing prices (Portland, OR)

Size in feet
$$\rightarrow$$
 2104

315

178

- x's = "input" variable / features

How do we represent h?

$$h_{\underline{e}}(x) = \Theta_0 + \Theta_1 x$$

Shorthand: $h(x)$

How do we represent h?

$$h_{e}(x) = \Theta_{0} + \Theta_{1} \times Shorthand: h(x)$$

How do we represent h?

$$h_{\mathbf{g}}(x) = \Theta_0 + \Theta_1 x$$

Shorthand: $h(x)$

Linear regression with one variable. (x)
Univariate linear regression.

Lone variable

Cost Function: How to choose θ s?

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
	

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460 7
1416	232 m= 47
1534	315
852	178
	l)

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Consider the plot below of $h_{ heta}(x)= heta_0+ heta_1x$. What are $heta_0$ and $heta_1$?

How to find a good fit?

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

x, y

Indrev Ng

Andrew Ng

22 / 0-12

□ ♦ \$ndrev.*Ng

