ПЛАНИМЕТРИЯ

Треугольник

Треугольник — фигура, состоящая из трёх точек, не лежащих на одной прямой, и трёх отрезков, которые их попарно соединяют

Продолжение таблицы

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону

Высоты треугольника пересекаются в одной точке, которая называется **ортоцентром.** Положение ортоцентра R зависит от вида треугольника

тупоугольный (вне области треугольника)

Окончание таблицы

прямоугольный (R совпадает с C)

Высоты треугольника обратно пропорциональны его сторонам.

То есть наибольшая высота проведена к наименьшей стороне, а наименьшая высота — к наибольшей стороне

Медиана треугольника — это отрезок, соединяющий вершину с **серединой** противоположной стороны.

Свойство медианы треугольника

Точка пересечения медиан делит каждую медиану в отношении 2:1, считая от вершины треугольника.

$$BG:GM = 2:1; GC:GN = 2:1; AG:GK = 2:1$$

Задача.

a) GM = 3 cm, BM - ?Pewehue.

$$GM=3$$
 см, тогда $BG=6$ см;

$$BM = 6 + 3 = 9$$
 (cm).

б)
$$AG = 12$$
 см, $AK - ?$

Решение.

$$AG = 12$$
 cm, $GK = 6$ cm,

$$AK = 12 + 6 = 18$$
 (cm).

Медианы пересекаются в одной точке, она называется **центром**, или **центром масс**

Медиану можно вычислить по формуле:

$$m_a^2 = \frac{2b^2 + 2c^2 - a^2}{4}$$

$$m_c = \frac{1}{2} \, c$$

Медиана, проведённая к гипотенузе прямоугольного треугольника, равна её половине

Биссектриса угла треугольника — отрезок, соединяющий вершину треугольника с точкой противоположной стороны и делящий угол пополам

Эта точка является центром вписанной в треугольник окружности.

Точка O — центр вписанной окружности, AM, CK и BN — биссектрисы

Свойство биссектрисы треугольника

Биссектриса угла треугольника делит его противоположную сторону на отрезки, пропорциональные прилежащим сторонам

$$rac{BD}{DC}=rac{AB}{AC}$$
 ; AD — биссектриса

$$m_a \geq L_a \geq h_a,$$
 где m — медиана,

L — биссектриса,

h — высота

Окончание таблицы

Задача.

$$BD = 6$$
 см, $DC = 8$ см, AD — биссектриса;

$$P_{\Delta ABC} = 35$$
 cm.

$$AB - ?AC - ?$$

Решение.

$$AB + AC = P_{\triangle ABC} - BC =$$

= 35 - (6 + 8) = 21 (cm).

По свойству биссектрисы:

$$\frac{AB}{AC} = \frac{BD}{DC} = \frac{6}{8} = \frac{3}{4};$$

$$\begin{vmatrix} AB = 3x \\ AC = 4x \end{vmatrix} 21$$

$$7x = 21$$
; $x = 3$; $AB =$

$$= 3 \cdot 3 = 9$$
 (cm);

$$AC = 4 \cdot 3 = 12$$
 (cm).

Ответ: 12 см

Серединный перпендикуляр — прямая, проходящая через середину отрезка перпендикулярно к нему.

Три серединных перпендикуляра в треугольнике пересекаются в одной точке.

Эта точка — центр окружности, описанной около данного треугольника

Средняя линия треугольника — отрезок, соединяющий середины двух его сторон. Средняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне, а её длина равна половине третьей стороны

Задача.

Средняя линия равностороннего треугольника равна 2,5 см.

Найти: его периметр.

Решение.

По теореме о средней линии m = 0.5a, тогда

a=2m=5 cm.

P = 3a = 15 cm.

Ответ: 15 см

Свойства сторон и углов треугольника

Сумма углов треугольника равна 180° $/A + /B + /C = 180^{\circ}$

Внешний угол треугольника

Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника. $\angle 4$ — внешний (при вершине C)

Свойства внешнего угла треугольника

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним

Внешний угол треугольника больше любого внутреннего угла, не смежного с ним

$$\angle 4 = \angle 1 + \angle 2$$

 $\angle 4 > \angle 1$, $\angle 4 > \angle 2$

Неравенство треугольника

a < b+c a > |b-c|

Равнобедренный треугольник

 $\triangle ABC$ — равнобедренный (AB = BC) AC — основание, AB и BC — боковые стороны

Свойства

Если в $\triangle ABC$ AB = BC,
то $\angle A = \angle C$ (углы при основании равны)

Признаки

Если в $\triangle ABC$ $\angle A = \angle C$,
то AB = BC(равнобедренный треугольник)

Если $\triangle ABC$ — равнобедренный и BD — медиана, проведённая к основанию, то BD — высота и биссектриса

Если в треугольнике совпадают:

- а) высота и медиана или
- б) высота и биссектриса или
- в) медиана и биссектриса, то **треугольник** является **равнобедренным**

Равенство треугольников

$$\triangle ABC = \triangle A_1 B_1 C_1 \Leftrightarrow$$

$$AB = A_1 B_1$$

$$AC = A_1 C_1$$

$$BC = B_1 C_1$$

$$\angle A = \angle A_1$$

$$AC = A_1C$$

$$\angle B = \angle B_1$$

$$BC = B_1C_1$$

$$\angle C = \angle C_1$$

Свойства равных треугольников

- 1. У равных треугольников равны соответствующие элементы (стороны, углы, медианы, высоты и др.).
- 2. У равных треугольников против равных сторон лежат равные углы, против равных углов — равные стороны

Признаки равенства треугольников		
По двум сторонам и углу между ними		
По стороне и двум прилежащим углам		
По трём сторонам		

Признаки равенства прямоугольных треугольников		
По двум катетам	По гипотенузе и катету	
По катету и острому углу	По гипотенузе и острому углу	

Подобие треугольников

Подобные треугольники — это треугольники, у которых соответствующие углы равны, а соответствующие стороны пропорциональны.

$$\angle A = \angle A_1; \ \angle B = \angle B_1; \ \angle C = \angle C_1;$$

$$\frac{AB}{A_1B_1} = \frac{AC}{A_1C_1} = \frac{BC}{B_1C_1} \Leftrightarrow \triangle ABC \sim \triangle A_1B_1C_1$$

Свойства подобных треугольников

$$\frac{P}{P_1} = \frac{AB}{A_1B_1} = k$$
 Отношение периметров равно отношению соответственных сторон и равно коэффициенту подобия
$$\frac{S_{\triangle ABC}}{S_{\triangle A_1B_1C_1}} = \left(\frac{AB}{A_1B_1}\right)^2 = k^2$$
 Отношение площадей подобных треугольников равно квадрату коэффициента подобия

Признаки подобия треугольников

Если $\angle A = \angle A_1$ и $\angle B = \angle B_1$, то $\triangle ABC \sim \triangle A_1B_1C_1$ — по двум равным vглам

Если
$$\angle A = \angle A_1$$
 и $\frac{AB}{A_1B_1} = \frac{AC}{A_1C_1}$,

то $\triangle ABC$ ~ $\triangle A_1B_1C_1$ — по двум пропорциональным сторонам и углу между ними

Если
$$\frac{AB}{A_1B_1}=\frac{AC}{A_1C_1}=\frac{BC}{B_1C_1}$$
, то ΔABC ~ ~ $\Delta A_1B_1C_1$ — по трём пропорциональным сторонам

Если $PQ \parallel AC$, то $\triangle PBQ \sim \triangle ABC$. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному

Задача.

 $\triangle ABC \sim \triangle A_1B_1C_1$; AB:BC:AC =

$$A_1C_1 - A_1B_1 = 35$$
 cm.

 $H \ a \ u \ m \ u : A_1 B_1; \ B_1 C_1 \ \ \ A_1 C_1.$ Решение.

$$\triangle ABC \sim \triangle A_1B_1C_1 \Leftrightarrow$$

$$\Leftrightarrow A_1B_1:B_1C_1:A_1C_1=2:6:7; A_1B_1=\\=2x;\ B_1C_1=6x;\ A_1C_1=7x;\\7x-2x=35;\ x=7;$$

$$7x - 2x = 35; x = 7;$$

$$A_1B_1=14;\ B_1C_1=42$$
 и $A_1C_1=49.$ Ответ: 14; 42; 49.

Соотношение между элементами прямоугольного треугольника

$$\angle C = 90^{\circ}, \ a, \ b$$
 — катеты, c — гипотенуза, $\angle A = \alpha$ — теорема Пифагора

$$\angle B = 90^{\circ} - \alpha; \ c > a; \ c > b$$

$$\sin \alpha = \frac{a}{c}$$
 $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$ $\cot \alpha = \frac{b}{a}$ $\cot \alpha = \frac{b}{a}$ $\cot \alpha = \frac{b}{a}$

$$\Delta ACD \sim \Delta ABC$$

$$\Delta CBD \sim \Delta ABC$$

$$\Delta ACD \sim \Delta CBD$$

$$CD - \text{BLICOTA},$$

$$AB = c$$

$$h^2 = a_c \cdot b_c$$

$$a^2 = c \cdot a_c$$

$$b^2 = c \cdot b_c$$

Задача.

$$a_{c} = 9; b_{c} = 16; a, b, c, h - ?$$

Peweehue.

$$h^2 = 9 \cdot 16$$
; $h = \sqrt{9 \cdot 16} = 3 \cdot 4 = 12$; $c = 9 + 16 = 25$;

$$a^2 = a_c \cdot c$$
; $a = \sqrt{9 \cdot 25} = 3 \cdot 5 = 15$;
 $b^2 = b_c \cdot c$; $b = \sqrt{16 \cdot 25} = 4 \cdot 5 = 20$.

$$b^2 = b_c \cdot c; \ b = \sqrt{16 \cdot 25} = 4 \cdot 5 = 20$$

Omsem: 15; 20; 25; 12

Решение прямоугольных треугольников		
Дано	Найти	Решение
у в с х х с — гипотенуза; а — острый угол	x, y, β	$\beta = 90^{\circ} - \alpha;$ $x = c \cos \alpha;$ $y = c \sin \alpha$

Пример 1.

Дано: c=2, $\alpha=20^{\circ}$.

Найти: β , x, y.

Решение.

$$\beta = 90^{\circ} - 20^{\circ} = 70^{\circ}; \ x = c \cos 20^{\circ} = 2 \cdot 0,9397 \approx 1,88;$$

 $y = c \sin 20^{\circ} = 2 \cdot 0.3420 \approx 0.68.$

Omsem: 70°; 1,88; 0,68

$$x$$
, α , β

$$x=\sqrt{a^2+b^2}$$
 ; $\lg lpha=rac{a}{b}$; $\lg eta=rac{b}{a}$ или $eta=90^\circ-lpha$

$$a$$
 — катет; b — катет

Пример 2.

Дано: a = 11, b = 60.

Найти: c, α , β .

Решение.

$$tg \alpha = \frac{a}{b} = \frac{11}{60} \approx 0.833.$$

По таблице Брадиса $\alpha \approx 10^{\circ}$; $\beta = 90^{\circ} - 10^{\circ} = 80^{\circ}$;

$$c = \sqrt{11^2 + 60^2} = \sqrt{3721} = 61$$
.

Omsem: c = 61; $\alpha = 10^{\circ}$; $\beta = 80^{\circ}$

$$c$$
 — гипотенуза; a — катет

$$x$$
, α , β

$$x=\sqrt{c^2-a^2}$$
; $\sin lpha=rac{a}{c}$; $\cos eta=rac{a}{c}$ или $eta=90^\circ-lpha$

Окончание таблицы

Пример 3.

Дано: a = 84, c = 85. Найти: x, α , β .

Решение.

$$x = \sqrt{85^2 - 84^2} = 13$$
; $\sin \alpha = \frac{a}{c} = \frac{84}{85} \approx 0,9882$;

$$\alpha \approx 81^{\circ}$$
; $\beta = 90^{\circ} - 81^{\circ} = 9^{\circ}$.

Omsem: x = 0.9882; $\alpha = 81^{\circ}$; $\beta = 9^{\circ}$.

a — катет; α — острый угол, противолежащий a

 x, y, β

 $\beta = 90^{\circ} - \alpha;$ $x = a \operatorname{ctg} \alpha;$

 $y = \frac{a}{\sin \alpha}$

Пример 4.

 \mathcal{L} ано: a = 9, $\alpha = 68^\circ$. Найти: β , x, y.

Решение.

$$\beta = 90^{\circ} - 68^{\circ} = 22^{\circ}; \ y = \frac{a}{\sin \alpha} = \frac{9}{\sin 68^{\circ}} \approx \frac{9}{0,9277} \approx 9,71;$$

 $x = a \text{ tg } 22^{\circ} \approx 9 \cdot 0.4040 \approx 3.64.$

Omsem: 22° ; 3,64; 9,71.

Соотношения между сторонами и углами в произвольном треугольнике

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

Теорема косинусов

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma;$$

 $b^{2} = a^{2} + c^{2} - 2c\cos\beta;$
 $a^{2} = b^{2} + c^{2} - 2c\cos\alpha$

R — радиус окружности, описанной около треугольника со сторонами a, b, c

Продолжение таблицы

Задача 1.

Дано: ДАВС,

$$\angle A = \angle C = 67^{\circ}30'$$
, $AC = 10\sqrt{2}$.

Найти: R.

Решение.

$$\angle B = 180^{\circ} - (67^{\circ}30' + 67^{\circ}30') = 45^{\circ};$$

$$R = \frac{AC}{2\sin \angle B} = \frac{10\sqrt{2}}{2 \cdot \sin 45^{\circ}} = \frac{10\sqrt{2}}{2 \cdot \frac{\sqrt{2}}{2}} = 10$$

Ответ: 10.

Задача 2.

Дано: a = 8, c = 13, $\gamma = 120^{\circ}$.

Найти: b.

Решение.

Пусть b = x, по теореме косинусов:

$$c^2 = a^2 + b^2 - 2ab\cos 120^\circ;$$

$$\cos 120^\circ = -\frac{1}{2};$$

$$8^2 + x^2 - 2 \cdot 8 \cdot x \cdot \left(-\frac{1}{2}\right) = 13^2$$
;

$$x^2 + 8x - 105 = 0$$
; $x = b = 15$.

Ответ: 15.

Следствия из теоремы косинусов

1. Косинус угла можно вычислить по формуле:

$$\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab}.$$

2. Определение вида треугольника по теореме косинусов: если $a^2+b^2 < c^2$, γ — тупой угол, треугольник тупоугольный; если $a^2+b^2 > c^2$, γ — острый угол, тре-

угольник остроугольный; если $a^2+b^2=c^2$, $\gamma=90^\circ$, то треугольник прямоугольный.

3. Если a, b и c — стороны треугольника, то медиана,

проведённая к стороне a, равна: $m_a = \frac{1}{2} \sqrt{2(c^2 + b^2) - a^2}$

Окончание таблицы

Задача 3.

Дано: a = 5, $b = 5\sqrt{3}$; c = 10.

Найти: α. Решение.

$$\cos\alpha = \frac{b^2 + c^2 - a^2}{2bc} = \frac{10^2 + \left(5\sqrt{3}\right)^2 - 5^2}{2 \cdot 10 \cdot 5\sqrt{3}} = \frac{\sqrt{3}}{2}$$

$$\angle\alpha = 30^\circ.$$

Ответ: 30°.

Параллелограмм, прямоугольник, ромб, квадрат

Параллелограмм		
A D	Параллелограмм — четырёх- угольник, у которого противо- положные стороны попарно параллельны. $AB \parallel CD$ и $BC \parallel AD \Leftrightarrow$ ABCD — параллелограмм	

	Свойства	Признаки
	Если $ABCD$ — параллелограмм, то $AB = CD$; $AD = BC$; $\angle A = \angle C$; $\angle B = \angle D$	Если $ABCD$ — четырёхугольник и $BC \parallel AD$; $BC = AD$, то $ABCD$ — параллелограмм. Если $ABCD$ — четырёхугольник и $AB = DC$ и AD — BC , то $ABCD$ — параллелограмм
$\begin{array}{ c c } \hline B & C \\ \hline A & D \\ \hline \end{array}$	Если $ABCD$ — параллелограмм, BD — диагональ, то $\triangle ABD = \triangle CDB$	_

Свойства квадрата

Вокруг квадрата можно описать окружность:

$$R = \frac{a\sqrt{2}}{2} = \frac{d}{2}$$

Окончание таблицы

В квадрат можно вписать окружность

Диагональ в $\sqrt{2}\,$ раз больше стороны, т. е. $d = a\sqrt{2}$ и $a = \frac{d\sqrt{2}}{2}$

 \boldsymbol{C}

D

Прямоугольник — параллелограмм, у которого все углы прямые

Свойства	Признаки
1. Все свойства параллело-	1. Если <i>ABCD</i> — параллело-
грамма.	грамм и $\angle A = 90^{\circ}$, то $ABCD$ —
2. Если <i>ABCD</i> — прямо-	прямоугольник.
угольник, то $AC = BD$	2. Если <i>АВСО</i> — паралле-
(диагонали равны)	лограмм и $AC = BD$, то
	ABCD — прямоугольник
	Вокруг любого прямо-
R a	угольника можно описать
	окружность:
R^{O}	$R = \frac{d}{d} = \frac{\sqrt{a^2 + b^2}}{}$
0	2 2

Свойства	Признаки
1. Все свойства	Если <i>АВСО</i> — четырёх-
параллелограмма.	угольник и $AB = AD = BC =$
2. Если <i>ABCD</i> — ромб, <i>AC</i>	=CD, то $ABCD$ — ромб
и <i>BD</i> — диагонали, то:	
a) $AC \perp BD$;	
б) диагонали являются	
биссектрисами углов	
a d_1 a r a a a a	В любой ромб можно вписать окружность: $r = \frac{h}{2} = \frac{a \sin \alpha}{2} = \frac{d_1 d_2}{4a}$

Трапеция

Прямоугольная трапеция

Прямоугольная трапеция — это трапеция, у которой одна боковая сторона перпендикулярна основаниям:

$$AB \perp AD$$
; $AB \perp BC$; $AB = h$

Свойства

Разность квадратов диагоналей равна разности квадратов оснований:

$$BD^2 - AC^2 =$$
$$= AD^2 - BC^2$$

Сумма квадратов диагоналей равна сумме квадратов оснований и удвоенного квадрата высоты:

$$AC^2 + BD^2 =$$
$$= AD^2 + BC^2 + 2AB^2$$

Равнобокая трапеция

Равнобокая трапеция — трапеция с равными боковыми сторонами

Свойства

- 1. $\angle A = \angle D$; $\angle B = \angle C$; углы при основании равны.
- 2. AC = BD; диагонали равны. Высота, проведённая из вершины тупого угла, делит большее основание на отрезки

$$m$$
 и n длиной $m=\dfrac{a+b}{2}$

(равен средней линии $n = \frac{b-a}{2}$)

Если диагонали равнобокой трапеции взаимно перпендикулярны, то высота равна средней линии: $h = \frac{a+b}{2}$

Трапеция и окружность

Если около трапеции описана окружность, эта трапеция равнобокая.

Обратно: около равнобокой трапеции можно описать окружность

 $\angle AOB = \angle COD = 90^{\circ}$ $\triangle AOB$ и $\triangle COD$ — прямоугольные

Если в трапецию вписана окружность, то:

- 1) сумма оснований равна сумме боковых сторон: AB+CD = BC+AD;
- 2) радиус окружности равен половине высоты: $r = \frac{h}{2}$;
- 3) если соединить центр окружности с вершинами трапеции, треугольники, прилежащие к боковым сторонам, будут прямоугольными

Задача.

В трапецию вписана окружность, AB = CD = 8 см.

Найти: среднюю линию трапеции. Решение. В трапецию вписана окружность, значит,

$$AB + CD = BC + AD = 8 + 8 = 16$$

Средняя линия составит: $\frac{BC + AD}{2} = \frac{16}{2} = 8$ (см). *Ответ*: 8 см **ТЕОМЕТРИЯ**

Окружность и круг

Окружность — множество точек плоскости, расстояние от которых до данной точки (центра окружности) одинаково. О — центр окружности. Радиус окружности — расстояние от центра до точки на окружности. ОА, ОС, ОД — радиусы.

Обозначается R или r.

Хорда — отрезок, соединяющий две точки на окружности. MN, CD — хорды.

Диаметр — хорда, проходящая через центр (обозначается D или d). D = 2R, CD = 2OA

Круг — множество точек плоскости, расстояние до которых от данной точки (центра круга) не превышает данного расстояния (радиуса круга)

Окружность, хорды и дуги

Дуга окружности — часть окружности, ограниченная двумя её точками. $\cup AB$, $\cup BC$, $\cup AC$

Свойства

Равные дуги стягивают равные хорды. Если $\cup AB = \cup CD$, то AB = CD. Равные хорды стягивают равные дуги. Если AB = CD, то $\cup AB = \cup CD$

C C C C C C C C C C	Параллельные хорды отсекают от окружности равные дуги. Если $AB \parallel CD$, то $\cup AC = \cup BD$
$A \bigcup_{D}^{C} M$	CD — диаметр, AB — хорда. Если $CD \perp AB$, то $AM = MB$; если $AM = MB$, то $CD \perp AB$
	Если хорды AB и CD пересекаются в точке S , то $AS \cdot SB = CS \cdot SD$
$A \overbrace{O \ D}^{B} C$	$egin{aligned} ext{Если} \ AB & - ext{ хорда, } AC & - ext{ диаметр,} \ BD ot AC, \ ext{ то } AB^2 = AD \cdot AC; \ BD^2 = AD \cdot DC \end{aligned}$

Окончание таблицы

d < r; две общие точки; MN — секущая

Взаимное расположение двух окружностей

 OO_1 — расстояние между центрами, R и r — радиусы окружностей (R > r)

Окружности не имеют общих точек

Окружности лежат одна вне другой $R \! + \! r < OO_{\scriptscriptstyle 1} \label{eq:resolvent}$

Одна окружность лежит внутри другой $OO_1 < R - r$

Окружности касаются (одна общая точка)

Касаются внешне $OO_1 = R + r$

Касаются внутренне $OO_1 = R - r$

Окружности пересекаются (две общие точки)

Углы в окружности

Центральный угол — плоский угол с вершиной в центре окружности. $\angle AOB$ — центральный угол.

 $\angle AOB = \cup AB$.

Центральный угол измеряется дугой, на которую он опирается

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают её.

∠ABC — вписанный.

Вписанный угол равен половине дуги, на которую он опирается, и половине центрального угла, опирающегося на ту же дугу:

$$\angle ABC = \frac{1}{2} \cup AC; \ \angle ABC = \frac{1}{2} \angle AOC$$

Вписанные углы, опирающиеся на одну и ту же дугу, равны между собой.

$$\angle ACB = \angle ADB = \angle AEB$$

Вписанные углы, которые опираются на диаметр, прямые.

$$\angle ACB = \angle ADB = \angle AEB = 90^{\circ}$$

Окружность, вписанная в треугольник, и окружность, описанная около треугольника

Вписанная окружность

Окружность называется вписанной в треугольник, если она касается всех его сторон.
Центр этой окружности — точка пересечения биссектрис углов

треугольника.
$$r = \frac{2S}{a+b+c} \text{ или } r = \frac{S}{p} \,,$$

где
$$p=\frac{a+b+c}{2}$$
,

S — площадь треугольника,

р — полупериметр,

a, b, c — длины сторон

Равносторонний треугольник

$$r = \frac{a\sqrt{3}}{6}$$

Точка O — центр вписанной и описанной окружности, точка пересечения биссектрис, медиан, высот

Равнобедренный треугольник

AB = BC BD — высота, медиана, биссектриса, высота. OD = r

Прямоугольный треугольник

a и b — катеты, c — гипотенуза $r = \frac{a+b+c}{2}$, a+b=2R+2r, R — радиус описанной окружности

Описанная окружность

Окружность называется **описанной** около треугольника, если она проходит через все **его вершины**.

Центр этой окружности — точка пересечения серединных перпендикуляров к сторонам треугольника.

$$OA = OB = OC = R$$

В произвольном треугольнике: $R = \frac{abc}{4S}$; $R = \frac{a}{2\sin A}$.

B равностороннем треугольнике: $R = \frac{a\sqrt{3}}{3}$.

В прямоугольном треугольнике: $R=\frac{c}{2}$, где c — гипотенуза треугольника

Многоугольник. Сумма углов выпуклого многоугольника

Окончание таблицы

Сумма внешних углов n-угольника (по одному при вершине)

$$\beta_1 + \beta_2 + \beta_3 + \dots + \beta_n = 360^\circ$$

Выпуклый многоугольник лежит в одной полуплоскости относительно любой прямой, содержащей сторону

Невыпуклый многоугольник.

Прямая, содержащая сторону многоугольника, делит его плоскость на части.

Вписанные и описанные многоугольники

Вписанный многоугольник

Все вершины лежат на окружности

Описанный многоугольник

Все стороны — касательные к окружности.

$$S = \frac{P \cdot r}{2} ,$$

где P — периметр, r — радиус окружности

Правильные многоугольники. Вписанная окружность и описанная окружность правильного многоугольника

Внешний угол правильного $n\text{-угольника равен }\beta_{\scriptscriptstyle n}=\frac{360^\circ}{n}\,.$

Периметр правильного n-угольника со стороной a: $P_n = a \cdot n$.

Площадь правильного n-угольника

со стороной
$$a$$
: $S_n = \frac{na^2}{4 \lg \left(\frac{180^\circ}{n}\right)}$

Площадь правильных

- a) треугольника $S_3 = \frac{a^2\sqrt{3}}{4}$;
- б) четырёхугольника (квадрата) $S_{\scriptscriptstyle A}=a^2;$
- в) шестиугольника $S_6=rac{3a^2\sqrt{3}}{2}$

Вписанные и описанные окружности правильного многоугольника

Вписанная окружность касается всех сторон правильного многоугольника.

Описанная окружность проходит через все **вершины** правильного треугольника

R — радиус описанной окружности, r — радиус вписанной окружности,

a — сторона правильного многоугольника, \boldsymbol{S}_{n} — площадь, \boldsymbol{P}_{n} — периметр

Связь между $P_{\scriptscriptstyle n}$, R, r, $S_{\scriptscriptstyle n}$ и a

Количество сторон много- угольника	R	r	S
n	$\frac{a}{2\sin\frac{180^{\circ}}{n}}$	$\frac{a}{2}\operatorname{ctg}rac{180^{\circ}}{n}$	$rac{1}{2}P_n r$
3	$\frac{a\sqrt{3}}{3}$	$\frac{a\sqrt{3}}{6}$	$\frac{a^2\sqrt{3}}{4}$
4	$\frac{a\sqrt{2}}{2}$	$\frac{a}{2}$	a^2
6	а	$\frac{a\sqrt{3}}{2}$	$\frac{3a^2\sqrt{3}}{2}$

Зависимость стороны $a_{_n}$ правильного n-угольника от R и r

Количество сторон многоугольника	Зависимость a_n от R и n	Зависимость a_n от r и n
n	$a_n = 2R\sin\frac{180^\circ}{n}$	$a_n = 2r \operatorname{tg} \frac{180^{\circ}}{n}$
3	$a_3 = R\sqrt{3}$	$a_3 = 2r\sqrt{3}$
4	$a_4^{}=R\sqrt{2}$	$a_4 = 2r$
6	$a_6^{}=R$	$a_6 = \frac{2}{3} r \sqrt{3}$

ПРЯМЫЕ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ

Пересекающиеся, параллельные и скрещивающиеся прямые

Пересекающиеся прямые		
<i>a b</i>	Пересекающиеся прямые — две прямые, имеющие только одну общую точку	
Признаки	Свойства	
Если одна точка принадлежит данной прямой, а другая ей не принадлежит, то данная прямая и прямая, проходящая через эти точки, пересекаются В А	Через точку вне данной прямой можно провести бесконечно много прямых, пересекающих данную прямую $a_1 a_2 a_3$	
	А l Через две пересекающие- ся прямые можно провести плоскость, и при этом толь- ко одну	

Свойства Признаки Через точку вне данной пря-Если две прямые параллельны третьей прямой, то они мой можно провести пряпараллельны. мую, параллельную данной Если $a \parallel c$ и $b \parallel c$, то $a \parallel b$ прямой, и при этом только одну MЧерез две параллельные a прямые можно провести плоскость, и при этом только одну α Все прямые, пересекающие две данные параллельные прямые, лежат с ними в одной плоскости. $a \parallel b$; $m_1 \cap a; m_1 \cap b; m_2 \cap a;$ α $m_{2} \cap b$; $a, b, m_1, m_2 \subset \alpha$

Окончание таблицы

Признаки

Если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещивающиеся

Свойства

1. Через точку вне данной прямой можно провести бесконечно много скрещивающихся прямых.

2. Для любых двух скрещивающихся прямых в пространстве существует третья прямая, которая является скрещивающейся для каждой из данных двух прямых

Перпендикулярные прямые

Перпендикулярные прямые — две прямые, которые пересекаются под углом 90°

Существование и единственность

Через каждую точку прямой можно провести перпендикулярную ей прямую, и при этом только одну

Перпендикулярность и параллельность

Две прямые, перпендикулярные третьей, параллельны между собой

Через каждую точку, не лежащую на данной прямой, можно провести перпендикулярную ей прямую, и при этом только одну

Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой прямой

Параллельность прямой и плоскости, признаки и свойства

Прямая и плоскость **параллельны**, если они не имеют общих точек.

 $a \parallel \alpha$

Если $a \parallel b$ и $b \subset \alpha$, то $a \parallel b$. Если прямая, не принадлежащая плоскости, параллельна какой-либо прямой в этой плоскости, то она параллельна всей плоскости

Свойство

Если $a \parallel \alpha$, β проходит через a, β пересекает α по b, то $a \parallel b$.

Если через прямую, параллельную плоскости, провести вторую плоскость, которая пересекает первую, то прямая пересечения плоскостей будет параллельна первой прямой

Параллельность плоскостей, признаки и свойства

Параллельность плоскостей		
β	Две плоскости называют параллельными, если они не имеют общих точек. $\alpha \parallel \beta$	
Признаки	Свойства	
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны	Если две различные плоскости параллельны третьей, то они параллельны между собой	
Прямые обоих плоскостей пересекаются. Если $a \parallel a_1$; $b \parallel b_1$ ($a \subset \alpha, \ b \subset \alpha, \ a_1 \subset \beta, \ b_1 \subset \beta$), то $\alpha \parallel \beta$	Если α β и γ β, то α γ α β	
ββγ	Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны. Если $\alpha \parallel \beta$ и плоскость γ пересекает плоскость α по прямой a , плоскость γ пересекает плоскость β по прямой b , то $a \parallel b$	
α A C β B D	Отрезки параллельных прямых, заключённых между параллельными плоскостями, равны. Если $AB \parallel CD$ и $\alpha \parallel \beta$, $(A \in \alpha, C \in \alpha, B \in \beta, D \in \beta)$, то $AB = CD$	

Перпендикулярность прямой и плоскости, признаки и свойства; перпендикуляр и наклонная; теорема о трёх перпендикулярах

Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости: $m \perp \alpha \Leftrightarrow m \perp x$, x — любая прямая плоскости α

Признак перпендикулярности прямой и плоскости

Если $a \perp m$ и $b \perp m$ (a и b лежат в плоскости α и пересекаются), то $a \perp \alpha$. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости

Свойства перпендикулярных прямой и плоскости

Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой. Если $a \parallel b$ и $a \perp \alpha$, то $\alpha \perp b$

Если прямые перпендикулярны одной и той же плоскости, то они параллельны. Если $a\perp \alpha$ и $b\perp \alpha$, то $a\parallel b$

Две различные пло-

скости, перпендикулярные одной и той

Если прямая перпендикулярна одной из двух параллельных плоскостей, то она перпендикулярна и второй.

Если $\alpha \perp a$ и $\beta \perp a$, то $\alpha \parallel \beta$

лельны.

же прямой, парал-

и второи. Если $\alpha \parallel \beta$ и $a \perp \alpha$, то $a \perp \beta$

Перпендикуляр и наклонная

На плоскости	В пространстве
$egin{array}{c c} \bullet A & & & & & & & & & & & & & & & & & &$	A O $AO \perp \alpha, O \in \alpha$ $AO -$ перпендикуляр из точки A на плоскость α
$egin{array}{c c} A & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	$A \circ A \circ B$ $AO - $ расстояние от точки A до плоскости α ; $AB - $ наклонная
АВ — наклонная Перпендикуляр короч	

OB — проекция наклонной AB на прямую a $AB > AC \Leftrightarrow$ A

AO < AB

Если из одной точки к одной прямой (плоскости) проведены две наклонные, то:

- равные наклонные имеют равные проекции;
- если проекции наклонных равны, то равны и сами наклонные;
- бо́льшая наклонная имеет бо́льшую проекцию;
- из двух наклонных больше та, у которой проекция больше

Если прямая на плоскости перпендикулярна проекции наклонной на эту плоскость, то она перпендикулярна и наклонной.

Обратно: если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции прямой

Перпендикулярность плоскостей, признаки и свойства

Две пересекающиеся плоскости называют перпендикулярными, если третья плоскость, перпендикулярная прямой их пересечения, пересекает эти плоскости по перпендикулярным прямым

Признак перпендикулярно- сти плоскостей	Свойство	
Если прямая, лежащая в од-	Если прямая, лежащая в од-	
ной плоскости, перпендику-	ной из двух перпендикуляр-	
лярна другой плоскости, то	ных плоскостей, перпендику-	
эти плоскости перпендику-	лярна линии их пересечения,	
лярны	то она перпендикулярна	
	и другой плоскости	

Признак перпендикулярно- сти плоскостей	Свойство
Если $b \perp \alpha$ и β проходит через b , то $\beta \perp \alpha$	Если $\beta \perp \alpha$, β пересекает α по a и $b \perp a$ (b лежит в β), то $b \perp \alpha$

Параллельное проектирование. Изображение пространственных фигур

При параллельном проектировании параллельность отрезков сохраняется.

Если $AB \parallel CD$ ($AB \rightarrow A_1B_1$; $CD \rightarrow C_1D_1$), то $A_1B_1 \parallel C_1D_1$

При параллельном проектировании отношение отрезков одной прямой или параллельных прямых сохраняется.

$$\frac{AC}{CB} = \frac{A_1C_1}{C_1B_1}$$

$$A \qquad C \qquad B_1$$

Следствие

Если C — середина AB, $AB \to A_1C_1;\ C \to C_1$, то C_1 — середина A_1B_1 . Середина отрезка проектируется в середину отрезка

МНОГОГРАННИКИ

Призма, её основания, боковые рёбра, высота, боковая поверхность; прямая призма; правильная призма

Призма

Призма — многогранник, состоящий из плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников. ABCDE и $A_1B_1C_1D_1E_1$ — основания призмы; AA_1 , BB_1 , CC_1 , ... — боковые рёбра; $ABB_{1}A_{1}$, $BB_{1}C_{1}C$, ... — боковые грани; AD_{1} — диагональ призмы (отрезок, соединяющий две вершины мы, не принадлежащие одной грани; $A_{\scriptscriptstyle 1}M\perp$ (ABC), $A_{\scriptscriptstyle 1}M$ = H — высота)

Окончание таблицы

Свойства	Формулы
 Основания призмы равны. Основания призмы лежат в параллельных плоскостях. Боковые рёбра параллельны и равны. Боковые грани — параллелограммы 	Боковая поверхность — сумма площадей боковых граней или $S_{\text{бок}} = P_{\bot} \cdot l,$ где l — длина бокового ребра; P_{\bot} — сечение плоскостью, перпендикулярной к её боковым граням. Полная поверхность — сумма боковой поверхности и площадей оснований: $S = S_{\text{бок}} + 2S_{\text{осн}} \cdot$ Объём призмы $V = S_{\text{осн}} \cdot H_{\text{призмы}}$

$$S_{\text{полн}} = S_{\text{бок}} + 2S_{\text{осн}}$$
.

 $S_{_{\Pi O \Pi H}}=S_{_{\delta O \mathbf{K}}}+2S_{_{\mathrm{OCH}}}.$ Объём: $V=S_{_{\mathrm{OCH}}}\cdot H=S_{_{\mathrm{OCH}}}\cdot AA_{\underline{1}}$

Правильная призма

Прямая призма называется правильной, если её основания — правильные многоугольники

треугольная

<u>чгольная</u>

пяти-*<u>чгольная</u>*

угольная

Площадь боковой поверхности правильной призмы

 $S_{\text{for}} = S_{\text{rp}} \cdot n = aln$

 $S_{\rm rn}$ — площадь грани;

n — количество граней;

a — сторона основания;

l — длина бокового ребра

Параллелепипед; куб; симметрии в кубе, в параллелепипеде

Параллелепипед — призма, в основании которой лежит параллелограмм

Окончание таблицы

Свойства:

- 1. Все грани параллелограммы.
- 2. Противолежащие грани параллельны и равны.
- 3. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

$$O$$
 — середина A_1C , BD_1 , AC_1 и B_1D .

4. Точка O — центр симметрии параллелепипеда

Сумма квадратов всех диагоналей параллелепипеда равна сумме квадратов его рёбер.

$$d_1^2+d_2^2+d_3^2+d_4^2=4a^2+4b^2+4c^2.$$
 Существует три вида параллелепипедов.

- 1. Прямой все боковые грани перпендикулярны плоскостям оснований, основания параллелограммы.
- 2. Прямоугольный все боковые грани и основания прямоугольники.
- 3. Наклонный боковые грани не перпендикулярны основаниям, все шесть граней параллелограммы

Виды параллелепипедов

Наклонный	Прямой	Прямоуголь- ный		
$A_1 \xrightarrow{B} D_1$ $A D_1$ $A D$ $A D$	l=h b a 1 . Боковые	l = h a		
 Боковые рёбра не перпендикулярны плоскостям основания. Высота не совпадает с боковым ребром. Все боковые грани — параллелограммы 	рёбра перпендикулярны основаниям. 2. Боковое ребро совпадает с высотой. 3. В основаниях — параллелограммы. 4. Все боковые грани — прямоугольники	 Боковые рёбра перпендикулярны основаниям. Боковое ребро совпадает с высотой. Оба основания и боковые грани — прямоугольники 		
Площадь боковой	поверхности парал	лелепипеда		
$S_{60\kappa} = 2(S_{AA_1D_1D} + S_{AA_1B_1B})$	$S_{ ext{for}} = 2(a+b) \cdot l$	$S_{ ext{for}} = 2(a+b) \cdot l$		
Площадь полной 1	оверхности парал	пелепипеда		
$S_{_{\mathrm{ПОЛН}}} = \\ = 2(S_{_{AA_{1}D_{1}D}} + S_{_{AA_{1}B_{1}B}} + S_{_{ABCD}})$	$S_{_{ m IIOJH}} = \ = 2(a+b) \cdot l + 2S_{_{ m OCH}}$	$S_{_{ m IIOJH}}= \ = 2(ab+al+bl)$		
Объём параллелепипеда				
1. Произведение площади основания $S_{\text{осн}} \text{ на высоту } h\text{:}$ $V = S_{\text{осн}} \cdot h$	Произведение площади основания $S_{\text{осн}}$ на длину бокового ребра l : $V = S_{\text{осн}} \cdot l$	Произведение трёх измерений: $V = abl$		

Окончание таблицы

Наклонный	Прямой	Прямоуголь- ный
2. Произведение площади перпендикулярного сечения S_{\wedge} на длину бокового ребра l : $V = S_{\wedge} \cdot l$		

Куб

 ${\bf Ky6}$ — прямоугольный параллелепипед, у которого все рёбра равны.

Свойство:

Все боковые грани — квадраты.

Формулы

- 1. Диагональ: $d = a\sqrt{3}$.
- 2. Площадь: $S_{\text{бок}} = 4a^2$; $S_{\text{полн}} = 6a^2$.
- 3. Объём: $V = a^3$ или $V = \frac{d^3}{3\sqrt{3}}$

Пирамида, её основание, боковые рёбра, высота, боковая поверхность; треугольная пирамида; правильная пирамида

Пирамида

Пирамидой называется многогранник, который состоит из плоского многоугольника (основания пирамиды), точки, не лежащей в плоскости основания (вершины пирамиды), и всех отрезков, соединяющих вершину пирамиды с вершинами основания

ABCD — основание пирамиды; S — вершина пирамиды; SA, SB, SC, SD — боковые рёбра; $\triangle ASB$, $\triangle BSC$, $\triangle CSD$, $\triangle ASD$ — боковые грани

Высота пирамиды — перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

SO — высота пирамиды;

$$SO = H (SO \perp (ABCD)).$$

$$V_{\text{пир}} = \frac{1}{3} S_{\text{осн}} \cdot H;$$

$$\begin{split} S_{_{\rm fok. \Pi UD}} &= S_{_{\Delta ASB}} + S_{_{^{\triangle}BSC}} + S_{_{^{\triangle}CSD}} + S_{_{^{\triangle}ASD}};\\ S_{_{\rm полн. \Pi UD}} &= S_{_{\rm fok}} + S_{_{\rm och}} \end{split}$$

Правильная пирамида

Пирамида называется **правильной**, если её основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника

Некоторые виды правильных пирамид

Треугольная

 ΔABC — правильный; O — точка пересечения медиан (высот и биссектрис), центр вписанной и описанной окружностей

Четырёхугольная

ABCD — квадрат;

O — точка пересечения диагоналей

Окончание таблицы

Шестиугольная

ABCDEF — правильный шестиугольник; O — точка пересечения диагоналей AD, BE и FC

SO — высота правильной пирамиды ($SO \perp (ABC)$; O — центр основания). SM — апофема правильной пирамилы (высота боков

SM — апофема правильной пирамиды (высота боковой грани, $SM \perp BC$)

Свойства

1. Боковые рёбра равны, одинаково наклонены к плоскости основания. SA = SB = SC = ...;

$$\angle SAO = \angle SBO = \angle SCO = ...$$

2. Боковые грани — равные друг другу равнобедренные треугольники.

$$\Delta ASB = \Delta BSC = ...$$

Апофемы равны и наклонены к плоскости основания под одним углом

Формулы

Площадь боковой поверхности:

$$S_{\text{бок}} = \frac{1}{2} P_{\text{осн}} \cdot SM = \frac{1}{2} P_{\text{осн}} \cdot l,$$

где l — апофема

или
$$S_{
m for} = {S_{
m och} \over \cos \phi}$$
 , где ϕ —

угол наклона боковой грани к плоскости основания, $\phi = \angle SMO$.

Площадь полной поверхности:

$$S_{ ext{полн}} = S_{ ext{бок}} + S_{ ext{осн}}$$
 .
 Объём: $V_{ ext{пир}} = rac{1}{3} \, S_{ ext{осн}} \cdot H$, $H = SO, \, H$ — высота пирамиды

Положение высоты в некоторых видах пирамид

- 1. Если в пирамиде:
- а) все **боковые рёбра** равны или
- б) все боковые рёбра составляют одинаковые углы с плоскостью основания или
- в) боковые рёбра составляют одинаковые углы с высотой пирамиды, то высота проходит через центр окружности, описанной около основания

Примечание: высота пирамиды может располагаться внутри пирамиды, на боковой грани или вне пирамиды, в зависимости от размещения центра описанной окружности. Около такой пирамиды можно описать конус

- 2. Если в пирамиде:
- а) все д**вугранные углы** при основании равны

или

- б) все высоты боковых граней равны или
- в) высота составляет одинаковые углы с плоскостями боковых граней, то высота проходит через центр окружности, вписанной в основание

В такую пирамиду можно вписать конус.

Площадь боковой поверхности пирамиды, в которой все двугранные углы при основании равны α , можно вы-

числять по формуле: $S_{\text{бок}} = \frac{S_{\text{осн}}}{\cos \alpha}$

Окончание таблицы

3. Если одна боковая грань пирамиды перпендикулярна плоскости основания, то высотой пирамиды является высота этой грани. Если в SABC (SAC) \bot (ABC) и SO \bot AC ($O \in AC$), то SO — высота пирамиды, SO \bot (ABC)

4. Если две смежные боковые грани перпендикулярны плоскости основания, то высотой пирамиды является их общее боковое ребро. Если $(SAB) \perp (ABC)$ и $(SAC) \perp (ABC)$, то SA — высота пирамиды $(SA \perp (ABC))$

Усечённая пирамида

Образование усечённой пирамиды

Если задана пирамида SABC и проведена плоскость $A_1B_1C_1$, параллельная основанию пирамиды $((A_1B_1C_1)\parallel(ABC))$, то эта плоскость отсекает от заданной пирамиды пирамиду $SA_1B_1C_1$, подобную данной. (С коэффициентом подобия $k=\frac{SA_1}{SA}=\frac{A_1B_1}{AB}$)

Другая часть заданной пирамиды — многогранник $ABCA_1B_1C_1$ — называется усечённой пирамидой. Грани ABC и $A_1B_1C_1$ — основания ((ABC) \parallel ($A_1B_1C_1$)). Трапеции ABB_1A_1 , BCC_1B_1 , ACC_1A_1 — боковые грани

Высотой усечённой пирамиды называется расстояние между плоскостями её оснований.

$$A_1O\perp (ABC)$$
; $A_1O=H$ — высота.
$$V_{\mathrm{yceq.\, nup}}=\frac{1}{3}H\left(S_1+S_2+\sqrt{S_1S_2}\right)$$
,

где $S_{\scriptscriptstyle 1}$, $S_{\scriptscriptstyle 2}$ — площади оснований

Площадь поверхности усечённой пирамиды равна сумме площадей оснований и боковой поверхности:

$$S_{\text{полн}} = S_1 + S_2 + S_{\text{бок}}.$$

Правильная усечённая пирамида — усечённая пирамида, являющаяся частью правильной пирамиды.

Апофема — высота боковой грани.

 $MN\perp AD$ и $MN\perp A_1D_1;$ MN — апофема

Площадь боковой поверхности правильной усечённой пирамиды

$$S_{\text{бок}} = \frac{1}{2} (P_1 + P_2) \cdot l,$$

где P_1 и P_2 — периметры оснований; l — апофема

$$S_{ ext{for}} = rac{S_1 - S_2}{\cos \phi}$$

где S_1 и S_2 — площади оснований; ϕ — угол наклона боковой грани к бо́льшему основанию

Сечения куба, призмы, пирамиды

Представления о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр)

в) двумя пересекающимися

прямыми

Правильный выпуклый многогранник — выпуклый многогранник, грани которого являются правильными многоугольниками с одинаковым количеством сторон и к каждой вершине сходится одинаковое количество рёбер

№	Многогранник	Многоугольник	Число гра- ней	Число вер- шин	Число рёбер
1	Правильный тетраэдр (четырёхгран-		4	4	6

Окончание таблицы

	Окончание таолице				
№	Многогранник	Многоугольник	Число гра- ней	Число вер- шин	Число рёбер
2	Гексаэдр (шестигран- ник), куб		6	8	12
3	Октаэдр (восьмигранник)		8	6	12
4	Икосаэдр (двадцатигран- ник)		20	12	30
5	Додекаэдр (двенад- цатигранник)		12	20	30

ТЕОМЕТРИЯ

Площадь поверхности, объём, радиусы вписанной и описанной сфер

ной					<u>/5)</u>
Радиус вписанной сферы	$\frac{1}{4}H = \frac{a\sqrt{6}}{12}$	$\frac{a\sqrt{6}}{6}$	$\frac{a\sqrt{3}\left(3+\sqrt{5}\right)}{12}$	<i>α</i> <i>α</i>	$a\sqrt{10\left(25+11\sqrt{5}\right)}$
Радиус описан- ной сферы	$\frac{3}{4}H = \frac{a\sqrt{6}}{4}$	$\frac{a\sqrt{2}}{2}$	$\frac{a\sqrt{2(5+\sqrt{5})}}{4}$	$\frac{a\sqrt{3}}{2}$	$\overline{a\sqrt{3}\left(1+\sqrt{5}\right)}$
Объём	$\frac{a^3\sqrt{2}}{12}$	$\frac{a^2\sqrt{2}}{3}$	$\frac{5a^3\left(3+\sqrt{5}\right)}{12}$	a^3	$\overline{a^3 \left(15 + 7\sqrt{5}\right)}$
Площадь поверх- ности	$a^2\sqrt{3}$	$2a^2\sqrt{3}$	$5a^2\sqrt{3}$	$4a^2$	
Тип много- гранника	Правильный тетраэдр	Правильный октаэдр	Правильный икосаэдр	Правильный гексаэдр	Правильный

ТЕЛА И ПОВЕРХНОСТИ ВРАЩЕНИЯ

Цилиндр. Основание, высота, боковая поверхность, образующая, развёртка

Цилиндр (круговой цилиндр) — тело, состоящее из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие окружностей, лежащих в основаниях этих цилиндров.

Основания цилиндра — круги.

Образующие — отрезки, соединяющие точки окружностей. AA_1 , BB_1 — образующие

Развёртка цилиндра

Развёртка цилиндра — **прямоугольник** со сторонами $2\pi R$ и H (боковая поверхность) и два круга радиусами R (основания цилиндра)

Свойства

- 1. Основания цилиндра равны и параллельны: $AO = O_1A_1 = R;$ $(AOB) \parallel (A_1O_1B_1).$
- 2. Образующие цилиндра равны и параллельны

$AA_1 \parallel BB_1$; $AA_1 = BB_1$

Формулы

Площадь основания: $S_{\text{och}} = \pi R^2$.

Площадь боковой поверхности:

 $S_{\text{бок}} = 2\pi RH$.

Площадь полной поверхности:

$$S_{_{\mathrm{ПОЛН}}}=S_{_{\mathrm{ÕOK}}}\!+\!2S_{_{\mathrm{OCH}}};$$

$$S_{\text{полн}} = 2\pi R(H+R)$$

Окончание таблицы

3. Высота цилиндра равна образующей: $H_{\rm och} = AA_1 = = OO_1$

При вращении прямоугольника около его стороны как оси образуется цилиндр Объём: $V = S_{\text{осн}} \cdot H; \ V = \pi R^2 H; \\ OMM_1O_1 - \text{прямо-} \\ \text{угольник;} \\ OO_1 - \text{ось цилиндра;} \\ R_{\text{пил}} = OM = O_1M_1;$

 $H_{_{_{\text{TMM}}}} = MM_{_{1}} = OO_{_{1}}$

Сечение цилиндра плоскостями

Осевое сечение

ABCD — осевое сечение (сечение, проходящее через ось OO_1); ABCD — прямоугольник; $AD = d_{_{\rm OCH}} = 2R;$ $AB = CD = H_{_{\rm ЦИЛ}};$ AB и CD — образующие

Сечение плоскостью, параллельной оси

 $(KLMN) \parallel OO_1;$ KLMN — прямоугольник; KL и MN — образующие; $KL = H_{\text{цил}}, KN$ — хорда; OA — расстояние от основания высоты до хорды NK

Сечение плоскостью, параллельной основанию

Плоскость, параллельная основанию, пересекает боковую поверхность цилиндра по окружности, равной окружности основания:

$$R_{
m ceu} = R_{
m och}$$

Касательная плоскость

Касательная плоскость — плоскость, проходящая через образующую и перпендикулярная плоскости осевого сечения, проходящего через эту образующую.

 α — касательная плоскость, AB — образующая, α проходит через AB: $\alpha \perp (AOO,B)$

Конус. Основание, высота, боковая поверхность, образующая, развёртка

Конус (круговой конус) — тело, состоящее из круга, точки, не лежащей в плоскости этого круга, и всех отрезков, соединяющих заданную точку с точками окружности основания.

Основание конуса — круг, т. S — вершина конуса.

SA и SB — образующие (отрезки, соединяющие вершину с точками окружности основания)

Свойства

- Образующие конуса равны:
 SA = SB = ...
- 2. $H_{\text{кон}} = SO$, $SO \perp (AOB)$ При вращении прямоугольного треугольника около его катета как оси образуется конус.

 ΔAOS — прямоугольный.

SO — ось симметрии, AS — образующая.

$$R_{\text{кон}} = AO;$$

$$H_{\text{KOH}} = SO; AS = l$$

Формулы

Площадь основания:

$$S_{
m och}=\pi R^2$$
 .

Площадь боковой поверхности:

$$S_{\text{бок}} = \pi R l$$
.

Площадь полной поверхности:

$$S_{_{
m HOJH}} = S_{_{
m 50K}} + S_{_{
m OCH}};$$
 $S_{_{
m HOJH}} = \pi R(l+R).$

Объём:

$$V_{\text{кон}} = \frac{1}{3} S_{\text{осн}} \cdot H;$$

$$V_{_{
m KOH}}=\,rac{1}{3}\,\pi R^2\!\cdot\! H$$

Сечение конуса плоскостями

Осевое сечение

 ΔSAB — осевое сечение (проходит через ось SO); ΔSAB — равнобедренный; SA = SB = l — образующие

Сечение, проходящее через вершину

 ΔASC — равнобедренный; AS = SC = l — образующие; AC — хорда, OA = OC = R; OD — расстояние от основания высоты до хорды AC; $OD^2 = AO^2 - AD^2$

Сечение плоскостью, параллельной основанию

Плоскость, параллельная основанию, пересекает конус по кругу, а боковую поверхность — по окружности с центром на оси конуса.

$$\frac{r_{\text{ceq}}}{R_{\text{koh}}} = \frac{SO_1}{SO}$$

Касательная плоскость

Касательная плоскость — это плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, содержащему эту образующую. α — касательная плоскость; SA — образующая, α проходит через SA; $\alpha \perp (SAO)$

Усечённый конус

Усечённый конус — часть конуса, заключённая между его основанием и секущей плоскостью, параллельной основанию. Основания — круги с центрами O и O_1 . l — образующая, $AA_1 = l$; OA = R и $O_1A_1 = r$ — радиусы

Развёртка усечённого конуса

оснований

Два круга — верхнее и нижнее основания радиусами r и R; часть кольца — боковая поверхность

Свойства

Осевое сечение равнобокая трапеция. MKNT — осевое сечение. $MT \parallel KN$ и MK = TN. MT = 2r; KN = 2R. $OO_1 \perp KN$. $OO_1^1 = H$

Формулы

Площадь боковой поверхности:

$$S_{ ext{for}} = \pi (R+r)l.$$

Площадь полной поверхности:

$$\boldsymbol{S}_{\text{полн}} = \boldsymbol{S}_{\text{бок}} + \boldsymbol{S}_{1\text{осн}} + \boldsymbol{S}_{2\text{осн}}$$

Объём:
$$V_{\text{ус.кон}} = \frac{1}{3} \pi H(R^2 + Rr + r^2);$$

R и r — радиусы нижнего и верхнего оснований; l — образующая

При вращении прямоугольной трапеции около оси, проходящей через меньшую боковую сторону, перпендикулярную основаниям, образуется усечённый конус

Шар и сфера, их сечения

Шар

Шар — тело, состоящее из всех точек пространства, находящихся на расстоянии, не большем данного (R) от данной точки (O).

O — центр шара; OB — радиус шара; OB = R. Шар получается при вращении полукруга вокругего диаметра.

Объём шара:

$$V_{_{
m III}}=\,rac{4}{3}\,\pi R^3$$

Сфера

от данной точки (O).

О — центр сферы;

ОА — радиус сферы;

AO = R.

При вращении полуокружности вокруг её диаметра получаем сферу.

Площадь поверхности сферы:

$$S_{
m co} = 4\pi R^2$$

Сечение шара плоскостью

 $O_1 - \text{ центр шара;} \\ O_1 - \text{ центр круга сечения;} \\ OO_1 \perp \beta$

Всякое сечение шара плоскостью есть круг. Центр этого круга — основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Из $\triangle OO_1A$:

$$R_{
m ceu} = \sqrt{R_{
m mapa}^2 - OO_1^2}$$

Большой круг

Касательная плоскость к шару — это плоскость, проходящая через точку сферы, перпендикулярная к радиусу, проведённому в эту точку. $OA \perp \alpha$

Касательная к шару — это прямая, лежащая в касательной плоскости и проходящая через точку касания.

$$OA \perp \alpha$$
; $OA \perp a$; $a \in \alpha$

Большой круг — сечение шара, проходящее через центр.

$$R_{
m cey} = R_{
m mapa}$$

 $\begin{aligned} OO_1 \perp \alpha & \text{ и } OO_2 \perp \beta; \\ r_1 & \text{ и } r_2 & \text{— радиусы кругов} \\ & \text{сечения.} \end{aligned}$

$$\begin{aligned} OO_1 &= OO_2 \Leftrightarrow r_1 = r_2;\\ OO_1 &< OO_2 \Leftrightarrow r_1 > r_2;\\ OO_1 &> OO_2 \Leftrightarrow r_1 < r_2 \end{aligned}$$

Части шара

Шаровой сегмент — часть шара, которую отсекает секущая плоскость. Плоскость делит шар на два сегмента: $AB = H_1$ высота меньшего сегмента:

 $BC = H_2$ — высота большего сегмента

Основные формулы Площадь боковой

поверхности:

 $S_{\text{бок}} = 2\pi RH$. Площадь полной

поверхности:

$$S_{\text{полн}} = \pi H (4R - H)$$
.
Объём:

$$V_{ ext{cerm}} = \pi H^2 igg(R - rac{H}{3} igg)$$

Шаровой сек**тор** — тело, ограниченное сферической поверхностью шарового сегмента и боковой поверхностью конуса, которое имеет обшее основание с сегментом и вершину в центре конуса

Основные формулы

Площадь полной поверхности:

$$S_{\mbox{\scriptsize полн}} =$$

$$= \pi R \Big(2H + \sqrt{H(2R-H)} \Big).$$

Объём:
$$V_{\text{сек}} = \frac{2}{3} \pi R^2 H$$

Шаровой слой часть шара между двумя параллельными секущими плоскостями. *H* — расстояние между секущими плоскостями;

 $R_{\scriptscriptstyle 1}$ и $R_{\scriptscriptstyle 2}$ — радиусы оснований

Основные формулы Площадь боковой

поверхности:

$$S_{_{
m for}} = 2\pi RH; \ R \longrightarrow {
m pадиуc\ mapa}. \ \Pi$$
лощадь полной поверхности:

$$S_{ ext{полн}} = \ = \pi (2RH + R_1^2 + R_2^2).$$

Объём:

$$=\frac{\pi H}{6}(3R_1^2+3R_2^2+H^2)$$

ИЗМЕРЕНИЕ ГЕОМЕТРИЧЕСКИХ ВЕЛИЧИН

Величина угла, градусная мера угла, соответствие между величиной угла и длиной дуги окружности

Дуга

Дуга — часть окружности между двумя точками.

Градусная мера дуги — градусная мера соответствующего центрального угла.

Длина дуги 1°:
$$l_{1^{\circ}} = \frac{\pi R}{180^{\circ}}$$
.

Длина дуги
$$n^{\circ}$$
: $l_{n^{\circ}} = \frac{\pi R n^{\circ}}{180^{\circ}}$.

Угол между прямыми в пространстве; угол между прямой и плоскостью, угол между плоскостями

Угол между прямой и плоскостью

Угол между прямой и пересекающей её плоскостью — это угол между прямой и её проекцией на плоскость. $\angle ABO$ — угол между прямой AB и плоскостью α :

BO — проекция AB на α , $AO \perp \alpha$

Особые случаи

Угол между плоскостями (двугранный угол)

Углом между плоскостями α и β , пересекающимися по прямой c, называется угол между прямыми, по которым третья плоскость γ , перпендикулярная их линии пересечения, пересекает плоскости α и β .

 $\angle ABC$ — угол между плоскостями α и β , т. е. $AB \perp c$; $BC \perp c$, $AB \subset \alpha$; $BC \subset \beta$

Угол между параллельными плоскостями равен 0° .

$$\angle(\alpha; \beta) = 0 \Leftrightarrow \alpha \parallel \beta$$

Окончание таблицы

Двугранный угол — фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. α и β — грани двугранного угла, c — ребро двугранного угла. $AM \perp c$, $BM \perp c$, $AM \subset \alpha$, $MB \subset \beta$. $\angle AMB = \varphi$ — линейный угол двугранного угла

Свойства

Плоскость линейного угла перпендикулярна каждой грани двугранного угла. $(AMB) \perp \alpha$ и $(AMB) \perp \beta$

Угол между скрещивающимися прямыми

Угол между скрещивающимися прямыми — это угол между прямыми, которые пересекаются и параллельны данным скрещивающимся.

$$a \parallel a_1; b \parallel b_1; \angle(a; b) = \angle(a_1; b_1) = \varphi;$$

 $0^{\circ} < \varphi < 90^{\circ}$

Если угол между скрещивающимися прямыми равен 90°, то они называются перпендикулярными

Длина отрезка, ломаной, окружности, периметр многоугольника

Отрезок — часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя её точками — кондами отрезка

Длина отрезка равна сумме длин частей, на которые отрезок разбивается любой его точкой: AB = AK + KB

Ломаная — геометрическая фигура, состоящая из точек, не лежащих на одной прямой (вершин), соединённых отрезками (звеньями).

Длина ломаной равна сумме длин её звеньев

Многоугольник — простая замкнутая ломаная, соседние звенья которой не лежат на одной прямой.

Многоугольник называется выпуклым, если каждая из его диагоналей лежит внутри многоугольника

Число диагоналей выпуклого многоугольника:

$$n_d = \frac{n(n-3)}{2},$$

n — число сторон многоугольника.

Периметр многоугольника равен сумме длин его сторон:

$$P_n = A_1 A_2 + A_2 A_3 + \dots + A_{n-1} A_n$$

Окружность — фигура, состоящая из всех точек плоскости, равноудалённых от данной точки (центра).

OA = R — радиус;

MN = D = 2R — диаметр;

CD — хорда;

 $\cup AN$, $\cup AM$ — дуги

Длина окружности:

$$C=2\pi R$$
,

где R — радиус; число π — отношение длины окружности κ диаметру:

$$\pi = \frac{C}{2R} \approx 3,14$$

Расстояние от точки до прямой, от точки до плоскости; расстояние между прямыми, расстояние между плоскостями

Расстояние в пространстве

Расстояние от	Расстояние от точки до плоскости (г — расстояние)			
α A_1	Расстояние от точки до плоскости — это длина перпендикуляра, опущенного из этой точки на плоскость			
	Способы построения			
α K P	Провести $KP \perp \alpha; P \in \alpha.$ $KP = \rho(K; \alpha),$ где ρ — расстояние от точки до плоскости			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$AB \perp \alpha$. Провести $CD \parallel AB \Rightarrow CD \perp \alpha$. $CD = \rho(C; \alpha)$			
β N γ A B	Провести $\beta \perp \alpha$ через точку M (β пересекает α по AB). Провести $MN \perp AB \Rightarrow MN \perp \alpha$. $MN = \rho(N; \alpha)$			

Частные случаи нахождения расстояния от точки до плоскости (до прямой)

SO — расстояние от точки до плоскости многоугольника; OA = R — радиус описанной окружности; SA — расстояние от точки до вершины многоугольника

Свойство точки, равноудалённой от всех вершин многоугольника

Если точка вне плоскости многоугольника равноудалена от всех его вершин. основание перпендикуляра, проведённого из этой точки к плоскости многоугольника, является центром окружности, описанной около многоугольника

SO — расстояние от точки до плоскости многоугольника: AO = r — радиус окружности, вписанной в много-**УГОЛЬНИК**

Свойство точки, равноудалённой от сторон много**угольника**

Если точка вне плоскости многоугольника равноудалена от его сторон, то основание перпендикуляра, проведённого из этой точки к плоскости многоугольника, является центром окружности, вписанной в многоугольник. SA — расстояние от точки

до стороны многоугольника

Расстояние между параллельными прямой и плоскостью

Выбрать на прямой а произвольную точку A и найти расстояние от этой точки до плоскости а.

 $a \parallel \alpha, A \in a$;

 $\rho(a; \alpha) = \rho(A; \alpha) = AA_1$

Расстояние между параллельными плоскостями

Выбрать в плоскости произвольную точку A и найти расстояние от точки A до плоскости β .

$$\alpha \parallel \beta, A \in \alpha$$

 $\rho(\alpha; \beta) = \rho(A; \beta) = AB$

Расстояние между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми — это длина общего перпендикуляра к этим прямым.

$$AB \perp a; AB \perp b;$$
 $ho(a; b) = AB;$ прямые a и b скрещиваются

Способы вычисления расстояния между скрещивающимися прямыми

 $\rho(a; b) = \rho(a; \beta)$

Провести через прямую b плоскость $\beta \parallel a$

 $\rho(a; b) = \rho(\alpha; \beta)$

Провести через a и b параллельные плоскости α и β

Провести $\alpha \perp a$, спроектировать a и b на эту плоскость: $a \to A$, $b \to b_1$

Площадь треугольника, параллелограмма, трапеции, круга, сектора

Площадь треугольника

$$S = \frac{1}{2} a h_a = \frac{1}{2} b h_b = \frac{1}{2} c h_c$$

$$S = \frac{1}{2} ab \sin \gamma = \frac{1}{2} bc \sin \alpha = \frac{1}{2} ac \sin \beta$$

Формула Герона:

$$S=\sqrt{p(p-a)(p-b)(p-c)}$$
 , где $p=rac{a+b+c}{2}$

или

или
$$S = \frac{1}{4}\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}$$

Окончание таблицы

Нахождение площади через радиусы вписанной и описанной окружностей r и R.

$$S=p\cdot r$$
, где $p=rac{a+b+c}{2}$; $S=rac{a+b+c}{2}\, r$,

где r — радиус вписанной окружности;

$$S = \frac{abc}{4R}$$
 или

$$S = 2R^2 \sin \alpha \sin \beta \sin \gamma = \frac{1}{2} ab \sin \gamma,$$

где R — радиус описанной окружности

Площадь равностороннего треугольника:

$$S = \frac{a^2 \sqrt{3}}{4}$$

Площадь прямоугольного треугольника:

$$S = \frac{1}{2}ab; S = \frac{1}{2}ch_c;$$

$$S = \frac{1}{2} ac \sin \alpha = \frac{1}{2} bc \sin \beta.$$

Следствие:
$$h_c = \frac{ab}{c}$$

Дополнительные формулы для площади треугольника

Через медианы треугольника $m_1^{}, m_2^{}, m_3^{}$:

$$S = \frac{1}{3}\sqrt{(m_1 + m_2 + m_3)(-m_1 + m_2 + m_3)(m_1 - m_2 + m_3)(m_1 + m_2 - m_3)}$$

Через высоты треугольника $h_1,\ h_2,\ h_3$:

$$S = \sqrt{\left(\frac{1}{h_1} + \frac{1}{h_2} + \frac{1}{h_3}\right) \left(-\frac{1}{h_1} + \frac{1}{h_2} + \frac{1}{h_3}\right) \left(\frac{1}{h_1} - \frac{1}{h_2} + \frac{1}{h_3}\right) \left(\frac{1}{h_1} + \frac{1}{h_2} - \frac{1}{h_3}\right)}$$

Нахождение высоты произвольного треугольника методом площадей

Метод площадей заключается в нахождении площади различными способами. Далее из этого равенства находят различные элементы треугольника, например высоту

$$S=rac{1}{2}\,ah_a$$
 или $S=\sqrt{p(p-a)(p-b)(p-c)}$, где $p=rac{a+b+c}{2}$ \Rightarrow $h_a=rac{2S}{a}$

Площадь четырёхугольника

Площадь любого выпуклого четырёхугольника равна половине произведения диагоналей на синус угла между ними:

$$S = \frac{1}{2} d_1 d_2 \sin \alpha$$

Окончание таблицы

Площадь трапеции:
$$S_{\text{тр}} = \frac{a+b}{2} \cdot h \text{ или}$$

$$S_{\text{тр}} = m \cdot h,$$
 где $m = \frac{a+b}{2}$ — средняя линия трапеции,

 $S_{_{\mathrm{TP}}} = CD \cdot MN$

В равнобокой трапеции с взаимно перпендикулярными диагоналями площадь равна квадрату высоты: $S_{\rm rp} = h^2$

Площадь круга и его частей

Круг — фигура, состоящая из всех точек плоскости, расстояние от которых до данной точки не больше данного. Точка O — центр круга, данное расстояние R — радиус круга

Площадь круга:

$$S=\pi R^2$$
 или $S=rac{\pi D^2}{4}$, где D — диаметр

Круговой сектор — часть круга, лежащая внутри соответствующего центрального угла

Площадь кругового сектора:

$$S_{ ext{cert}} = rac{\pi R^2 \cdot n^\circ}{360^\circ}$$
 ,

где n° — градусная мера соответствующего центрального угла.

$$S_{ ext{cekt}} = rac{lpha R^2}{2}$$
 ,

где α — радианная мера соответствующего центрального угла

Круговой сегмент — общая часть круга и полуплоскости

Окончание таблицы

Площадь сегмента, не равного полукругу, вычисляется по формуле:

$$S_{ ext{cerm}} = rac{\pi R^2}{360^\circ} \cdot n^\circ \pm S_{_{\!arprime}}$$
 ,

где n° — градусная мера соответствующего центрального угла;

 $S_{_{\Delta}}$ — площадь треугольника с вершиной в центре круга; «+», если $n^{\circ} > 180^{\circ}$; «-», если $n^{\circ} < 180^{\circ}$

Площадь поверхности конуса, цилиндра, сферы

Вид тела вращения	Боковая поверхность	Полная поверхность
Цилиндр	$S_{ extsf{for}} = 2\pi RH$	$S_{_{ m IIOJH}}=S_{_{ m f GOK}}\!+\!2S_{_{ m OCH}}$
$\left(\begin{array}{c} R \nearrow O_1 \end{array}\right)$		$S_{_{ m IIOJH}}=2\pi R(H+R)$
H	$R - ext{радиус основания;} \ L - ext{образующая;} \ H - ext{высота;} \ L = H$	
Конус	$S_{ extsf{for}} = \pi R L$	$S_{_{ m IIOJH}} = S_{_{ m OOK}} + S_{_{ m OCH}}$
		$S_{_{ exttt{IOJH}}}=\pi R(L\!+\!R)$
L	R- радиус основания; $L-$ образующая;	
R	H — высота	
Усечённый конус	$S_{ ext{for}} = \pi(R+r)L$	$S_{\scriptscriptstyle{\Pi \text{ОЛН}}} = S_{\scriptscriptstyle{\text{\footnotesize for}}} + S_{\scriptscriptstyle{\text{\tiny OCH}}_1} + S_{\scriptscriptstyle{\text{\tiny OCH}}_2}$
	R и r — радиусы большего и меньшего оснований;	
L H	L -	пего основании; образующая; — высота

Объём куба, прямоугольного параллелепипеда, пирамиды, призмы, цилиндра, конуса, шара

Продолжение таблицы

$$V = \frac{1}{3} S_{\text{och}} \cdot H$$

Правильная пирамида

$$V = \frac{1}{3} S_{\text{och}} \cdot H$$

 $S_{_{
m och}}$ — площадь основания; H — высота;

l — апофема;

а — сторона основания;

 α — угол наклона боковой грани

Правильная усечённая пирамида

$$V = rac{1}{3} H(S_{ ext{och}_1} + \sqrt{S_{ ext{och}_1} \cdot S_{ ext{och}_2}} + S_{ ext{och}_2})$$

КООРДИНАТЫ И ВЕКТОРЫ

Координаты на прямой, декартовы координаты на плоскости и в пространстве

Координаты середины отрезка

 $C(x_C; y_C)$ — середина отрез-ка AR

$$y \wedge A(x_1; y_1) \\ C \times B(x_2; y_2) \\ C \times X$$

$$x_C = \frac{x_1 + x_2}{2}$$
; $y_C = \frac{y_1 + y_2}{2}$

 $C(x_{_{\scriptstyle C}};\,y_{_{\scriptstyle C}};\,z_{_{\scriptstyle C}})$ — середина отрезка AB

$$x_{c}=\frac{x_{1}+x_{2}}{2}\,;\,\,y_{c}=\frac{y_{1}+y_{2}}{2}\,;\,\,$$

$$z_{c}=\frac{z_{1}+z_{2}}{2}$$

Координаты точки, делящей отрезок в заданном отношении

Даны точки $A(x_1; y_1)$,

 $B(x_2; y_2)$. Точка $C(x_C; y_C)$ делит отрезок AB в отношении m:n, считая от точки A.

Тогда координаты точки C:

$$x_C = \frac{nx_1 + mx_2}{m+n}$$
; $y_C = \frac{ny_1 + my}{m+n}$

 $A(x_1; y_1; z_1), C(x_C; y_C; z_C),$ $B(x_2; y_2; z_2).$

Точка $C(x_C; y_C; z_C)$ делит отрезок AB в отношении m:n, считая от точки A.

$$x_{C} = \frac{nx_{1} + mx_{2}}{m + n}; \ y_{C} = \frac{ny_{1} + my_{2}}{m + n}$$

$$| x_{C} = \frac{nx_{1} + mx_{2}}{m + n}; \ y_{C} = \frac{ny_{1} + my_{2}}{m + n};$$

$$z_{C} = \frac{nz_{1} + mz_{2}}{m + n};$$

Формула расстояния между двумя точками; уравнение сферы

Формула расстояния между точками

 $A(x_1; y_1), B(x_2; y_2)$

Расстояние d между точками A и B:

$$d_{AB} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$A(x_1; y_1; z_1), B(x_2; y_2; z_2)$$
 $A(x_1; y_1; z_1)$
 $A(x_1; y_1; z_1)$
 $A(x_2; y_2; z_2)$

Расстояние d между точками A и B:

$$d_{AB} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Уравнение сферы с центром в начале координат с центром в произвольной точке x x $x^2 + y^2 + z^2 = R^2$. x Центр сферы O(0; 0; 0) $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$. Центр сферы $O_1(a; b; c)$, радиус R

Вектор, модуль вектора, равенство векторов, сложение векторов и умножение вектора на число

Векторы на плоскости	Векторы в пространстве
\overline{a} A B	Вектором называется направленный отрезок: $\overline{AB} = \overline{a}$ Длина этого отрезка называется длиной (модулем, абсолютной величиной) вектора: $ \overline{a} = AB$
Координаты вектора на плоскости	Координаты вектора в пространстве
$A_2(x_2;y_2)$ \overline{a} $A_1(x_1;y_1)$ $\overline{a}(a_1;a_2),$ где $a_1=x_2-x_1;a_2=y_2-y_1.$ $ \overline{a} =\sqrt{a_1^2+a_2^2}$	$A_1(x_1;y_1;z_1)$ \overline{a} $A_2(x_2;y_2;z_2)$ $\overline{a}(a_1;a_2;a_3),$ где $a_1=x_2-x_1;a_2=y_2-y_1;$ $a_3=z_2-z_1.$ $ \overline{a} =\sqrt{a_1^2+a_2^2+a_3^2}$

В координатах

$$egin{aligned} ar{a}(a_1;\,a_2) &= ar{b}(b_1;\,b_2) \Leftrightarrow egin{cases} a_1 &= b_1 \\ a_2 &= b_2 \end{cases} \ \ ar{a}(a_1;\,a_2;\,a_3) &= ar{b}(b_1;\,b_2;\,b_3) \Leftrightarrow egin{cases} a_1 &= b_1 \\ a_2 &= b_2 \\ a_2 &= b_2 \end{cases} \end{aligned}$$

Противоположные векторы

Противоположные векторы — векторы, имеющие одинаковую длину и противоположное направление. Векторы \overline{AO} и \overline{CO} ; \overline{BC} и \overline{DA} — противоположные. $|\overline{a}| = |\overline{c}|$; $\overline{a} = -\overline{c}$

Операции над векторами

Сумма векторов		
На плоскости	В пространстве	
$\overline{a}(a_1; a_2) + \overline{b}(b_1; b_2) =$ $= \overline{c}(a_1 + b_1; a_2 + b_2)$	$\overline{a}(a_1; a_2; a_3) + \overline{b}(b_1; b_2; b_3) =$ $= \overline{c}(a_1 + b_1; a_2 + b_2; a_3 + b_3)$	

Правило треугольника

Правило параллелограмма

Правило параллелепипеда

Окончание таблицы

$$\frac{\bar{a}(2; 1)}{\bar{b}(2; 0)} + \frac{\bar{b}(2; 0)}{\bar{c}(0; -2)} \\
\underline{\bar{d}(-1; -2)} \\
\underline{\bar{m}(3; -3)}$$

Правило многоугольника

Пусть даны векторы \overline{a} ; \overline{b} ; \overline{c} ; \overline{d} .

- а) от произвольной точки строим вектор \overline{a} ;
- б) от конца вектора \overline{a} строим вектор \overline{b} ;
- в) от конца вектора \overline{b} строим вектор \overline{c} ;
- г) от конца вектора \bar{c} строим вектор d;
- д) вектор-сумма \overline{m} его начало совпадает с началом вектора \overline{d} , конец с концом вектора \overline{d}

Разность векторов

$$\overline{a}(a_1; a_2) - \overline{b}(b_1; b_2) =$$

$$= \overline{c}(a_1 - b_1; a_2 - b_2)$$

$$(b_1; b_2) = \overline{a}(a_1; a_2; a_3) - \overline{b}(b_1; b_2; b_3) =$$
 $a_2 - b_2) = \overline{c}(a_1 - b_1; a_2 - b_2; a_3 - b_3)$
 $\overline{AC} - \overline{AB} = \overline{BC}$

Умножение вектора на число

$$\lambda \cdot (\overline{a_1;\, a_2}) = (\overline{\lambda a_1;\, \lambda a_2})$$

$$\lambda \cdot (a_1; a_2; a_3) = (\overline{\lambda a_1; \lambda a_2; \lambda a_3})$$

При $\lambda > 0$ вектор $\lambda \overline{a}$ одинаково направлен с вектором \overline{a} . При $\lambda < 0$ вектор $\lambda \overline{a}$ противоположно направлен с вектором \overline{a} .

 $|\lambda \overline{a}| = |\lambda| \cdot |\overline{a}|$

Векторы \overline{a} и $\lambda \overline{a}$ коллинеарны

Если
$$\overline{a}$$
 и \overline{b} коллинеарны, то $\overline{b}=\lambda\overline{a}$

ightarrow Если $\overline{b}=\lambda\overline{a},$ то \overline{a} и \overline{b} — коллинеарны

Свойства действий над векторами

Для любых векторов \overline{a} , \overline{b} и \overline{c} и любых чисел γ и μ :

1)
$$\overline{a} + b = \overline{b} + \overline{a}$$
:

2)
$$\overline{a} + (\overline{b} + \overline{c}) = (a + b) + \overline{c}$$
;

3)
$$\overline{a} + 0 = \overline{a}$$
;

4)
$$\overline{a} - \overline{b} = \overline{a} + (-1) \cdot \overline{b}$$
;

5)
$$(\lambda + \mu)\overline{a} = \lambda \overline{a} + \mu \overline{a}$$
;

6)
$$\lambda(\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{a}$$
;

7)
$$0 \cdot \overline{a} = \overline{0}$$
;

8)
$$\lambda \cdot \overline{0} = \overline{0}$$
;

9)
$$|\lambda \overline{a}| = |\lambda| \cdot |\overline{a}|$$
;

10)
$$\lambda > 0 \Rightarrow \lambda \overline{a} \uparrow \uparrow \overline{a}$$
;

11)
$$\lambda < 0 \Rightarrow \lambda \overline{a} \uparrow \downarrow \overline{a}$$
;

Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам

Коллинеарные векторы

Ненулевые векторы называют коллинеарными, если они лежат на одной прямой или на параллельных прямых. Коллинеарные векторы направлены одинаково или противоположно

Условие коллинеарности векторов

 \overline{a} коллинеарно \overline{b}

$$\begin{aligned} & \overline{a}(a_1;\ a_2);\\ & \overline{b}(b_1;\ b_2) \Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} \end{aligned}$$

 \overline{a} коллинеарно \overline{b}

$$\overline{a}(a_1; a_2; a_3);$$

$$\bar{b}(b_1; b_2; b_3) \Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$$

Разложение вектора на плоскости: по двум неколлинеарным векторам

 \overline{m} — произвольный вектор плоскости; \overline{a} и \overline{b} — неколлинеарные векторы. Всегда существует разложение: $\overline{m} = \lambda \overline{a} + \mu \overline{b}$, где λ и μ — единственные числа

Векторы $\overline{a}(a_1;\ a_2)$ и $\overline{b}(b_1;\ b_2)$ неколлинеарны, если $\frac{a_1}{b_1} \neq \frac{a_2}{b_2}$

Компланарные векторы. Разложение по трём некомпланарным векторам

В пространстве: по трём неколлинеарным векторам

 \overline{m} — произвольный вектор пространства; \overline{a} , \overline{b} и \overline{c} — некомпланарные (т. е. не параллельные одной плоскости) векторы.

Всегда существует разложение: $\overline{m}=\lambda\overline{a}+\mu\overline{b}+\nu\overline{c}$, где λ , μ и ν — единственные числа

Условие компланарности векторов

Векторы \overline{a} , \overline{b} и \overline{c} — компланарны, если $\overline{c}=\lambda\overline{a}+\mu\overline{b}$, где $\lambda^2+\mu^2\neq 0$

Координаты вектора; скалярное произведение векторов, угол между векторами

Скалярное произведение векторов на плоскости	Скалярное произведение векторов в пространстве
$\overline{a}(a_1; a_2); \overline{b}(b_1; b_2)$ $\overline{a} \cdot \overline{b} = a_1 \cdot b_1 + a_2 \cdot b_2$	
\overline{a} ϕ \overline{b}	Теорема о скалярном произведении векторов $\overline{a}\cdot\overline{b}= \overline{a} \cdot \overline{b} \cos\phi,$ где ϕ — угол между векторами

Следствия из теоремы о скалярном произведении

Численное значение скалярного произведения характеризует величину угла между векторами:

 $\overline{a}\cdot\overline{b}>0\Leftrightarrow 0^\circ\le \phi<90^\circ$ Угол между векторами — острый

Условие перпендикулярности векторов

 $\overline{a}\cdot\overline{b}=0\Leftrightarrow\overline{a}\perp\overline{b}$ Угол между векторами 90° (векторы перпендикулярны)

 $\overline{a}\cdot\overline{b}<0\Leftrightarrow 90^\circ<\phi<180^\circ$ Угол между векторами — тупой

Косинус угла между векторами вычисляется по формуле:

$$\cos \varphi = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}| \cdot |\overline{b}|}$$