

Global United Technology Services Co., Ltd.

Report No.: GTS201611000003E05

FCC REPORT

Applicant: SHENZHEN GIEC DIGITAL CO., LTD

Address of Applicant: No.1 Building, Factory, No.7 District, Dayang Development

Areas, FuYong Street, Baoan, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: TM101W635L, GK-MER1027, TM101W638L

FCC ID: 2AHYK-TM101W638L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.407:2016

January 10, 2017 Date of sample receipt:

Date of Test: January 10-13, 2017

Date of report issued: January 16, 2017

PASS * Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	January 16, 2017	Original

Prepared By:	Tiger Chen	Date:	January 16, 2017	
	Project Engineer			
Check By:	Andy W	Date:	January 16, 2017	

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
-	4.1	Measurement Uncertainty	
5		IERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2 5.3	GENERAL DESCRIPTION OF EUT TEST MODE	
	5.4 5.5	DESCRIPTION OF SUPPORT UNITS	7
	5.6	TEST FACILITY	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6 7.6.	BAND EDGES 1 Radiated Emission Method	
	7.0.°	SPURIOUS EMISSION	
		1 Radiated Emission Method	
	7.7.	FREQUENCY STABILITY	
8	TES	T SETUP PHOTO	
9	FUT	CONSTRUCTIONAL DETAILS	46

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)(4)	Pass
Spurious Emission	15.205/15.209/15.407(b)(4)	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

modeli omoniamity							
Test Item	Frequency Range	Measurement Uncertainty	Notes				
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)				
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)				
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)				
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)				
Note (1): The measurement u	incertainty is for coverage factor of	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

5 General Information

5.1 Client Information

Applicant:	SHENZHEN GIEC DIGITAL CO., LTD
Address of Applicant:	No.1 Building, Factory, No.7 District, Dayang Development Areas, FuYong Street, Baoan, Shenzhen, China
Manufacturer:	SHENZHEN GIEC DIGITAL CO., LTD
Address of Manufacturer/ Factory:	No.1 Building,Factory,No.7 District,Dayang Development Areas,FuYongStreet,Baoan,Shenzhen,China

5.2 General Description of EUT

Product Name:	Tablet PC
Model No.:	TM101W635L, GK-MER1027, TM101W638L
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 5745MHz ~ 5825MHz
	802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 5755MHz ~ 5795MHz 802.11ac(HT80): 5775MHz
Channel numbers:	802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 6
	802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 2
	802.11ac(HT80): 1
Channel bandwidth:	802.11a/802.11n(HT20)/802.11ac(HT20) : 20MHz
	802.11n(HT40)/802.11ac(HT40): 40MHz
	802.11ac(HT80): 80MHz
Modulation technology:	802.11a/802.11n(H20)/802.11n(H40)/802.11ac(HT20)/802.11ac(HT40) /802.11ac(HT80):
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna gain:	2.0dBi
Power supply:	Quick Charger:
	Model:A68-502000
	Input: AC 100-240V, 50/60Hz, 0.35A
	Output: DC 5V, 2A
	or
	DC 3.7V 6000mAh Li-ion Battery for TM101W635L and GK-MER1027
	DC 3.7V 6800mAh Li-ion Battery for TM101W638L and GK-MEV1027

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation Frequency each of channel @ 5.8G Band							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency						Frequency	
149	5745MHz	153	5765MHz	155	5775MHz	157	5785MHz
161	161 5805MHz 165 5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Charmor GGC Bolow.						
		Frequency (MHz)				
		5.8G Band				
Test channel	802.11a 802.11n(HT20) 802.11ac(HT20)	802.11n(HT40) 802.11ac(HT40)	802.11ac(HT80)			
Lowest channel	5745	5755				
Middle channel	5785		5775			
Highest channel	5825	5795				

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, the duty cycle>98%, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6Mbps
802.11n(HT20)	6.5Mbps
802.11n(HT40)	13Mbps
802.11ac(HT20)	6.5Mbps
802.11ac(HT40)	13.5Mbps
802.11ac(HT80)	29.3Mbps

5.4 Description of Support Units

None.

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 29 2016	June. 28 2017
4	Spectrum analyzer	Agilent	E4447A	GTS516	June. 29 2016	June. 28 2017
5	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 29 2016	June. 28 2017
6	BiConiLog Antenna	SCHWARZBECK MESS- ELEKTRONIK	VULB9163	GTS214	June. 29 2016	June. 28 2017
7	Double -ridged waveguide horn	SCHWARZBECK MESS- ELEKTRONIK	9120D-829	GTS208	June. 29 2016	June. 28 2017
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 29 2016	June. 28 2017
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
10	Coaxial Cable	GTS	N/A	GTS213	June. 29 2016	June. 28 2017
11	Coaxial Cable	GTS	N/A	GTS211	June. 29 2016	June. 28 2017
12	Coaxial cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017
13	Coaxial Cable	GTS	N/A	GTS212	June. 29 2016	June. 28 2017
14	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 29 2016	June. 28 2017
15	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June. 29 2016	June. 28 2017
16	Amplifier (18-40GHz)	MITEQ	AMF-6F-18004000-29- 8P	GTS534	June. 29 2016	June. 28 2017
17	Band filter	Amindeon	82346	GTS219	June. 29 2016	June. 28 2017
18	Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	June. 29 2016	June. 28 2017
19	D.C. Power Supply	Instek	PS-3030	GTS232	June. 29 2016	June. 28 2017
20	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	June. 29 2016	June. 28 2017
21	Splitter	Agilent	11636B	GTS237	June. 29 2016	June. 28 2017
22	Power Meter	Anritsu	ML2495A	GTS540	June. 29 2016	June. 28 2017
23	Power Sensor	Anritsu	MA2411B	GTS541	June. 29 2016	June. 28 2017

Con	Conducted Emission:						
Item Test Equipment		Manufacturer Model No.		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 16 2014	May 15 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 29 2016	June 28 2017	
3	Pulse Limiter	R&S	ESH3-Z2	GTS224	June 29 2016	June 28 2017	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 29 2016	June 28 2017	
5	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 29 2016	June 28 2017	
6	Coaxial Cable	GTS	N/A	GTS227	June 29 2016	June 28 2017	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Thermo meter	KTJ	TA328	GTS233	June 29 2016	June 28 2017	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is Integral antenna. The best case gain of the antenna is 2.0Bi.

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	,				
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto				
Limit:	Frequency range (MHz)	Limit (c	lBuV)			
		Quasi-peak	Average			
	0.15-0.5	66 to 56* 56	56 to 46*			
	0.5-5 5-30	46				
	5-30 60 50 * Decreases with the logarithm of the frequency.					
Test setup:	Reference Plane					
Took proceeds use.	LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark: EU.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details	3				
Test mode:	Refer to section 5.3 for details	3				
Test results:	Pass					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2016 LINE

Job No. : 0003

Test mode : WiFi(5.8G) mode

Test Engineer: Boy

001	Freq	Řead	LISN Factor					Remark
	MHz	dBuV	dB	dB	dBuV	dBu₹	dB	
1 2 3 4 5 6	0. 233 0. 546 0. 716 6. 252	39. 02 38. 66 38. 71 38. 44	0. 43 0. 34 0. 28	0.12 0.11 0.13 0.16	39. 57 39. 11 39. 12 38. 81	62.35 56.00 56.00 60.00	-22.78 -16.89 -16.88 -21.19	QP QP QP QP

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2016 NEUTRAL

Job No. : 0003

Test mode : WiFi(5.8G) mode

Test Engineer: Boy

	Freq		LISN Factor					Remark
	MHz	dBu₹	dB	dB	dBuV	dBu₹	dB	
1	0.151	42.44	0.41	0.12	42.97	65.96	-22.99	QP
2	0.244	42.07	0.42	0.11	42.60	61.95	-19.35	QP
2 3	0.720	39.24	0.24	0.13	39.61	56.00	-16.39	QP
	0.963							
	12.253							
6	16.398	40.53	0.25	0.22	41.00	60.00	-19.00	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)		
Test Method:	ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01		
Limit:	30dBm		
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

5.8G Band

Test CH	Peak Output Power (dBm)	Limit(dBm)	Result
Test Off	802.11a (HT20)	Limit(abin)	Nesuit
Lowest	8.72		
Middle	9.89	30	Pass
Highest	11.88		

Test CH	Peak Output Power (dBm)	Limit(dBm)	Result	
1631 011	802.11n (HT20)	Limit(dDm)	Nesuit	
Lowest	9.22			
Middle	9.92	30	Pass	
Highest	10.11			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test CH	Peak Output Power (dBm)	Limit(dBm)	Result
1631 011	802.11ac (HT20)	Limit(dDin)	Result
Lowest	8.87		
Middle	9.89	30	Pass
Highest	10.13		

Test CH	Peak Output Power (dBm)	Limit(dBm)	Result	
Test Off	802.11n (HT40)	Limit(abin)	Nesult	
Lowest	8.93	20	Daga	
Highest	11.52	30	Pass	

Test CH	Peak Output Power (dBm)	Limit(dBm)	Result	
1631 011	802.11ac (HT40)	Limit(dDin)	Nesuit	
Lowest	8.88	20	Pass	
Highest	10.35	30	rass	

Test CH	Peak Output Power (dBm)	Limit(dBm)	Result
Test On	802.11ac (HT80)	Limit(dDin)	Nesuit
Middle	10.07	30	

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)	
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v01	
Limit:	>500KHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data

	5.8G Band							
Toot	Channel Bandwidth (MHz)						l imit	
Test CH	802.11a	802.11n(H T20)	802.11ac(HT20)	802.11n(H T40)	802.11ac(HT40)	802.11ac(HT80)	Limit (KHz)	Result
Lowest	13.862	12.037	13.241	35.164	33.851	N/A		
Middle	13.875	13.154	12.607	N/A	N/A	75.045	>500	Pass
Highest	15.186	11.759	13.235	33.920	33.836	N/A		

Test plot as follows:

Test mode: 802.11a @ 5.8G Band

Test mode: 802.11n(HT20) @ 5.8G Band

Test mode: 802.11ac(HT20) @ 5.8G Band

Test mode: 802.11n(HT40) @ 5.8G Band

Test mode: 802.11ac(HT40) @ 5.8G Band

Test mode: 802.11ac(HT80) @ 5.8G Band

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)			
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v01			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement Data

Test				
mode	Channel	Measured PSD (dBm)	Limit (dBm)	Result
	Lowest	-2.50		
802.11a (HT20)	Middle	-2.15		
	Highest	-0.66		
	Lowest	-3.24		
802.11n (HT20)	Middle	-3.73		
	Highest	-1.05		
	Lowest	-2.61		
802.11a c(HT20)	Middle	-3.45	30	Pass
	Highest	-2.04		
802.11n	Lowest	-5.58		
(HT40)	Highest	-5.44		
802.11a	Lowest	-5.19		
c(HT40)	Highest	-4.86		
802.11a c(HT80)	Middle	-9.95		

Test plot as follows:

Test mode: 802.11a @ 5.8G Band

Test mode: 802.11n(HT20) @ 5.8G Band

Test mode: 802.11ac(HT20) @ 5.8G Band

Test mode: 802.11n(HT40) @ 5.8G Band

Test mode: 802.11ac(HT40) @ 5.8G Band

Test mode: 802.11ac(HT80) @ 5.8G Band

7.6 Band edges

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 20					
Test Frequency Range:	30MHz to 40GH		ase is repo	rted		
Test site:	Measurement D		- 1			
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
·		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	3MHz	RMS	
Limit:	more above of dBm/MHz at above or belo dBm/MHz at above or belo	or below the bar 25 MHz above on the bard edge.	nd edge inc or below the ge increasir r below the ge increasir	reasing line e band edge ng linearly to band edge,	e, and from 25 MHz o a level of 15.6 , and from 5 MHz	
Test setup:	Tum Tables <150cm;	7 11 1 1		est Antennae Im 4m >	mplifier _(*)	
Test Procedure:	the ground at determine the 2. The EUT was antenna, which tower. 3. The antennal ground to det horizontal and measurement 4. For each sus and then the and the rotal to the maximum. 5. The test-recession Specified Baran the limit specified Baran the	t a 3 meter came position of the set 3 meters a ch was mounted the maximum to the	ber. The tall highest race way from the don the top of	ble was rotadiation. The interferer of a variable of the field the antenna was arrange hts from 1 regrees to 360 ak Detect Full d Mode. The mode was stopped an stopped and station.	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find	

	 have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Test mode:		802.1	1a(HT20)	Te	st channel:		Lowest		
Peak value	e:	•		· · · · · · · · · · · · · · · · · · ·		•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	43.52	32.53	9.83	32.29	53.59	68.20	-14.61	Horizontal	
5725.00	43.16	32.53	9.83	32.29	53.23	68.20	-14.97	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	33.17	32.53	9.83	32.29	43.24	54.00	-10.76	Horizontal	
5725.00	33.24	32.53	9.83	32.29	43.31	54.00	-10.69	Vertical	
Test mode:		802.1	1a(HT20)	Test channel:			Highest		
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	40.16	32.70	9.99	32.22	50.63	68.20	-17.57	Horizontal	
5850.00	43.81	32.70	9.99	32.22	54.28	68.20	-13.92	Vertical	
RMS value:							•		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	31.90	32.70	9.99	32.22	42.37	54.00	-11.63	Horizontal	
5850.00	33.52	32.70	9.99	32.22	43.99	54.00	-10.01	Vertical	

Test mode:		802.1	1n(HT20)	Tes	st channel:	L	_owest		
Peak value	9 :								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	40.01	32.53	9.83	32.29	50.08	68.20	-18.12	Horizontal	
5725.00	45.89	32.53	9.83	32.29	55.96	68.20	-12.24	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	31.12	32.53	9.83	32.29	41.19	54.00	-12.81	Horizontal	
5725.00	35.01	32.53	9.83	32.29	45.08	54.00	-8.92	Vertical	
Test mode:		802.1	1n(HT20)	Tes	Test channel:		Highest		
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	42.73	32.70	9.99	32.22	53.20	68.20	-15.00	Horizontal	
5850.00	41.84	32.70	9.99	32.22	52.31	68.20	-15.89	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	31.23	32.70	9.99	32.22	41.70	54.00	-12.30	Horizontal	
5850.00	31.70	32.70	9.99	32.22	42.17	54.00	-11.83	Vertical	

Test mode:		802.1	1ac(HT20)	Te	st channel:		Lowest		
Peak value	e :	<u>'</u>	,	<u> </u>		<u> </u>			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	42.46	32.53	9.83	32.29	52.53	68.20	-15.67	Horizontal	
5725.00	44.26	32.53	9.83	32.29	54.33	68.20	-13.87	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	34.84	32.53	9.83	32.29	44.91	54.00	-9.09	Horizontal	
5725.00	31.88	32.53	9.83	32.29	41.95	54.00	-12.05	Vertical	
Test mode:		802.1	1ac(HT20)	Test channel:			Highest		
Peak value:						_	_		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.85	32.70	9.99	32.22	52.32	68.20	-15.88	Horizontal	
5850.00	42.91	32.70	9.99	32.22	53.38	68.20	-14.82	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	31.08	32.70	9.99	32.22	41.55	54.00	-12.45	Horizontal	
5850.00	30.11	32.70	9.99	32.22	40.58	54.00	-13.42	Vertical	

Test mode:		802.1	1n(HT40)	Tes	st channel:		Lowest		
Peak value	e:	•		•		· ·			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	44.99	32.53	9.83	32.29	55.06	68.20	-13.14	Horizontal	
5725.00	45.06	32.53	9.83	32.29	55.13	68.20	-13.07	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	32.94	32.53	9.83	32.29	43.01	54.00	-10.99	Horizontal	
5725.00	35.16	32.53	9.83	32.29	45.23	54.00	-8.77	Vertical	
Test mode:		802.1	1n(HT40)	Test channel:			Highest		
Peak value:						_	_		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.30	32.70	9.99	32.22	51.77	68.20	-16.43	Horizontal	
5850.00	40.35	32.70	9.99	32.22	50.82	68.20	-17.38	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	32.53	32.70	9.99	32.22	43.00	54.00	-11.00	Horizontal	
5850.00	34.46	32.70	9.99	32.22	44.93	54.00	-9.07	Vertical	

Test mode:		802.1	1ac(HT40)	Te	st channel:	L	owest		
Peak value	9 :					<u>.</u>			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	43.59	32.53	9.83	32.29	53.66	68.20	-14.54	Horizontal	
5725.00	40.50	32.53	9.83	32.29	50.57	68.20	-17.63	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	35.54	32.53	9.83	32.29	45.61	54.00	-8.39	Horizontal	
5725.00	31.90	32.53	9.83	32.29	41.97	54.00	-12.03	Vertical	
Test mode:		802.1	1ac(HT40)	Test channel:		ŀ	Highest		
Peak value:						_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	44.46	32.70	9.99	32.22	54.93	68.20	-13.27	Horizontal	
5850.00	45.62	32.70	9.99	32.22	56.09	68.20	-12.11	Vertical	
RMS value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	33.91	32.70	9.99	32.22	44.38	54.00	-9.62	Horizontal	
5850.00	34.32	32.70	9.99	32.22	44.79	54.00	-9.21	Vertical	

Test mode:	de: 802.11ac(HT80)		1ac(HT80)	Te	Test channel:			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5725.00	45.08	32.53	9.83	32.29	55.15	68.20	-13.05	Horizontal
5725.00	42.89	32.53	9.83	32.29	52.96	68.20	-15.24	Vertical
5850.00	43.32	32.53	9.83	32.29	53.39	68.20	-14.81	Horizontal
5850.00	40.21	32.53	9.83	32.29	50.28	68.20	-17.92	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5725.00	32.96	32.53	9.83	32.29	43.03	54.00	-10.97	Horizontal
5725.00	31.09	32.53	9.83	32.29	41.16	54.00	-12.84	Vertical
5850.00	31.16	32.70	9.99	32.22	41.63	54.00	-12.37	Horizontal
5850.00	34.95	32.70	9.99	32.22	45.42	54.00	-8.58	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)				
Test Method:	ANSI C63.10:20	ANSI C63.10:2013				
Test Frequency Range:	30MHz to 40GHz	30MHz to 40GHz				
Test site:	Measurement Di	stance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	30MHz-1GHz	Quasi-pea	ık 120KHz	300KHz	Quasi-peak Value	
	Al 4011	Peak	1MHz	3MHz	Peak Value	
	Above 1GHz	Peak	1MHz	3MHz	RMS Value	
Limit:	Frequer	су	Limit (dBuV	/m @3m)	Remark	
	30MHz-88		40.0		Quasi-peak Value	
	88MHz-216		43.		Quasi-peak Value	
	216MHz-96		46.0		Quasi-peak Value	
	Above 960 Above 100		54.0 74.0		Quasi-peak Value Peak Value	
	Above 100		54.0		Average Value	
	480 < 80 cm >	EUT+	za Turn Table√	Test Antenna+/		
	#d		Rece	iver↓ Pre	amplifier↓	
	Above 1GHz					

	Test Antenna. Compared to the content of the con
Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
36.51	50.29	14.73	0.62	30.06	35.58	40.00	-4.42	Vertical
71.83	52.44	10.32	0.96	29.84	33.88	40.00	-6.12	Vertical
239.99	50.23	14.09	2.07	29.56	36.83	46.00	-9.17	Vertical
287.99	51.76	14.84	2.31	29.92	38.99	46.00	-7.01	Vertical
383.93	49.51	16.68	2.78	29.57	39.40	46.00	-6.60	Vertical
499.43	46.08	18.58	3.30	29.30	38.66	46.00	-7.34	Vertical
60.28	50.90	14.69	0.86	29.92	36.53	40.00	-3.47	Horizontal
76.78	47.44	10.08	1.00	29.82	28.70	40.00	-11.30	Horizontal
96.10	48.80	14.90	1.16	29.72	35.14	43.50	-8.36	Horizontal
153.74	54.57	10.42	1.59	29.39	37.19	43.50	-6.31	Horizontal
191.75	54.52	12.56	1.80	29.23	39.65	43.50	-3.85	Horizontal
268.49	53.91	14.34	2.21	29.79	40.67	46.00	-5.33	Horizontal

Above 1GHz:

802.11a(HT20) 5745MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	31.44	39.85	14.98	34.6	51.67	74	-22.33	Vertical
17235.00	33.59	45.51	18.98	33.95	64.13	74	-9.87	Vertical
11490.00	31.92	39.85	14.98	34.6	52.15	74	-21.85	Horizontal
17235.00	33.99	45.51	18.98	33.95	64.53	74	-9.47	Horizontal
11490.00	20.77	39.85	14.98	34.6	41.00	54	-13.00	Vertical
17235.00	20.45	45.51	18.98	33.95	50.99	54	-3.01	Vertical
11490.00	18.53	39.85	14.98	34.6	38.76	54	-15.24	Horizontal
17235.00	19.89	45.51	18.98	33.95	50.43	54	-3.57	Horizontal

802.11a(HT20) 5785MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	35.00	39.76	14.99	34.75	55.00	74	-19.00	Vertical
17355.00	31.86	46.19	18.98	34.45	62.58	74	-11.42	Vertical
11570.00	35.38	39.76	14.99	34.75	55.38	74	-18.62	Horizontal
17355.00	31.82	46.19	18.98	34.45	62.54	74	-11.46	Horizontal
11570.00	20.25	39.76	14.99	34.75	40.25	54	-13.75	Vertical
17355.00	17.47	46.19	18.98	34.45	48.19	54	-5.81	Vertical
11570.00	18.31	39.76	14.99	34.75	38.31	54	-15.69	Horizontal
17355.00	19.96	46.19	18.98	34.45	50.68	54	-3.32	Horizontal

802.11a(HT20) 5825MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	34.86	39.61	14.99	34.86	54.60	74	-19.40	Vertical
17475.00	33.43	46.78	18.97	34.95	64.23	74	-9.77	Vertical
11650.00	34.53	39.61	14.99	34.86	54.27	74	-19.73	Horizontal
17475.00	35.82	46.78	18.97	34.95	66.62	74	-7.38	Horizontal
11650.00	18.67	39.61	14.99	34.86	38.41	54	-15.59	Vertical
17475.00	17.26	46.78	18.97	34.95	48.06	54	-5.94	Vertical
11650.00	19.33	39.61	14.99	34.86	39.07	54	-14.93	Horizontal
17475.00	17.47	46.78	18.97	34.95	48.27	54	-5.73	Horizontal

802.11n(HT20) 5745MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	34.76	39.85	14.98	34.6	54.99	74	-19.01	Vertical
17235.00	33.60	45.51	18.98	33.95	64.14	74	-9.86	Vertical
11490.00	31.91	39.85	14.98	34.6	52.14	74	-21.86	Horizontal
17235.00	33.29	45.51	18.98	33.95	63.83	74	-10.17	Horizontal
11490.00	19.09	39.85	14.98	34.6	39.32	54	-14.68	Vertical
17235.00	19.55	45.51	18.98	33.95	50.09	54	-3.91	Vertical
11490.00	18.24	39.85	14.98	34.6	38.47	54	-15.53	Horizontal
17235.00	17.91	45.51	18.98	33.95	48.45	54	-5.55	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

802.11n(HT20) 5785MHz

Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	polarization
(1411 12)	(dBuV)	(dB/m)	(dB)	(dB)	(aBa v/iii)	(aBa v/iii)	(dB)	
11570.00	34.26	39.76	14.99	34.75	54.26	74	-19.74	Vertical
17355.00	32.28	46.19	18.98	34.45	63.00	74	-11.00	Vertical
11570.00	33.75	39.76	14.99	34.75	53.75	74	-20.25	Horizontal
17355.00	31.70	46.19	18.98	34.45	62.42	74	-11.58	Horizontal
11570.00	19.74	39.76	14.99	34.75	39.74	54	-14.26	Vertical
17355.00	18.32	46.19	18.98	34.45	49.04	54	-4.96	Vertical
11570.00	17.46	39.76	14.99	34.75	37.46	54	-16.54	Horizontal
17355.00	18.52	46.19	18.98	34.45	49.24	54	-4.76	Horizontal

802.11n(HT20) 5825MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	33.05	39.61	14.99	34.86	52.79	74	-21.21	Vertical
17475.00	33.93	46.78	18.97	34.95	64.73	74	-9.27	Vertical
11650.00	34.04	39.61	14.99	34.86	53.78	74	-20.22	Horizontal
17475.00	32.32	46.78	18.97	34.95	63.12	74	-10.88	Horizontal
11650.00	18.23	39.61	14.99	34.86	37.97	54	-16.03	Vertical
17475.00	17.45	46.78	18.97	34.95	48.25	54	-5.75	Vertical
11650.00	17.14	39.61	14.99	34.86	36.88	54	-17.12	Horizontal
17475.00	17.77	46.78	18.97	34.95	48.57	54	-5.43	Horizontal

802.11ac(HT20) 5745MHz

••=									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11490.00	31.18	39.85	14.98	34.6	51.41	74	-22.59	Vertical	
17235.00	34.39	45.51	18.98	33.95	64.93	74	-9.07	Vertical	
11490.00	34.82	39.85	14.98	34.6	55.05	74	-18.95	Horizontal	
17235.00	33.11	45.51	18.98	33.95	63.65	74	-10.35	Horizontal	
11490.00	19.15	39.85	14.98	34.6	39.38	54	-14.62	Vertical	
17235.00	19.93	45.51	18.98	33.95	50.47	54	-3.53	Vertical	
11490.00	17.53	39.85	14.98	34.6	37.76	54	-16.24	Horizontal	
17235.00	18.57	45.51	18.98	33.95	49.11	54	-4.89	Horizontal	

802.11ac(HT20) 5785MHz

	552:: 145(25)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	35.57	39.76	14.99	34.75	55.57	74	-18.43	Vertical			
17355.00	30.83	46.19	18.98	34.45	61.55	74	-12.45	Vertical			
11570.00	33.36	39.76	14.99	34.75	53.36	74	-20.64	Horizontal			
17355.00	34.95	46.19	18.98	34.45	65.67	74	-8.33	Horizontal			
11570.00	20.99	39.76	14.99	34.75	40.99	54	-13.01	Vertical			
17355.00	18.09	46.19	18.98	34.45	48.81	54	-5.19	Vertical			
11570.00	17.20	39.76	14.99	34.75	37.20	54	-16.80	Horizontal			
17355.00	19.71	46.19	18.98	34.45	50.43	54	-3.57	Horizontal			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

802.11ac(HT20) 5825MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	35.89	39.61	14.99	34.86	55.63	74	-18.37	Vertical
17475.00	32.17	46.78	18.97	34.95	62.97	74	-11.03	Vertical
11650.00	33.00	39.61	14.99	34.86	52.74	74	-21.26	Horizontal
17475.00	31.11	46.78	18.97	34.95	61.91	74	-12.09	Horizontal
11650.00	18.37	39.61	14.99	34.86	38.11	54	-15.89	Vertical
17475.00	19.89	46.78	18.97	34.95	50.69	54	-3.31	Vertical
11650.00	20.45	39.61	14.99	34.86	40.19	54	-13.81	Horizontal
17475.00	19.54	46.78	18.97	34.95	50.34	54	-3.66	Horizontal

802.11n(HT40) 5755MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	34.58	39.85	14.98	34.63	54.78	74	-19.22	Vertical
17265.00	30.78	45.51	18.98	34.09	61.18	74	-12.82	Vertical
11510.00	34.48	39.85	14.98	34.63	54.68	74	-19.32	Horizontal
17265.00	30.42	45.51	18.98	34.09	60.82	74	-13.18	Horizontal
11510.00	19.73	39.85	14.98	34.63	39.93	54	-14.07	Vertical
17265.00	18.35	45.51	18.98	34.09	48.75	54	-5.25	Vertical
11510.00	18.01	39.85	14.98	34.63	38.21	54	-15.79	Horizontal
17265.00	20.19	45.51	18.98	34.09	50.59	54	-3.41	Horizontal

802.11n(HT40) 5795MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	32.27	39.71	14.99	34.78	52.19	74	-21.81	Vertical
17385.00	32.41	46.49	18.98	34.59	63.29	74	-10.71	Vertical
11590.00	35.91	39.71	14.99	34.78	55.83	74	-18.17	Horizontal
17385.00	30.94	46.49	18.98	34.59	61.82	74	-12.18	Horizontal
11590.00	17.09	39.71	14.99	34.78	37.01	54	-16.99	Vertical
17385.00	17.20	46.49	18.98	34.59	48.08	54	-5.92	Vertical
11590.00	18.94	39.71	14.99	34.78	38.86	54	-15.14	Horizontal
17385.00	18.00	46.49	18.98	34.59	48.88	54	-5.12	Horizontal

802.11ac(HT40) 5755MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	35.21	39.85	14.98	34.63	55.41	74	-18.59	Vertical
17265.00	32.57	45.51	18.98	34.09	62.97	74	-11.03	Vertical
11510.00	35.69	39.85	14.98	34.63	55.89	74	-18.11	Horizontal
17265.00	33.35	45.51	18.98	34.09	63.75	74	-10.25	Horizontal
11510.00	17.27	39.85	14.98	34.63	37.47	54	-16.53	Vertical
17265.00	18.01	45.51	18.98	34.09	48.41	54	-5.59	Vertical
11510.00	20.59	39.85	14.98	34.63	40.79	54	-13.21	Horizontal
17265.00	17.75	45.51	18.98	34.09	48.15	54	-5.85	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

802.11ac(HT40) 5795MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	34.42	39.71	14.99	34.78	54.34	74	-19.66	Vertical
17385.00	30.67	46.49	18.98	34.59	61.55	74	-12.45	Vertical
11590.00	35.09	39.71	14.99	34.78	50.01	74	-18.99	Horizontal
17385.00	30.38	46.49	18.98	34.59	61.26	74	-12.74	Horizontal
11590.00	25.08	39.71	14.99	34.78	45.00	54	-9.00	Vertical
17385.00	19.67	46.49	18.98	34.59	51.55	54	-3.45	Vertical
11590.00	25.98	39.71	14.99	34.78	49.90	54	-8.10	Horizontal
17385.00	18.84	46.49	18.98	34.59	51.72	54	-4.28	Horizontal

802.11ac(HT80) 5775MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	35.28	39.76	14.98	34.72	55.30	74	-18.70	Vertical
17325.00	31.94	46.19	18.98	34.31	62.80	74	-11.20	Vertical
11550.00	35.45	39.76	14.98	34.72	53.47	74	-18.53	Horizontal
17325.00	32.78	46.19	18.98	34.31	65.64	74	-10.36	Horizontal
11550.00	28.30	39.76	14.98	34.72	48.32	54	-5.68	Vertical
17325.00	19.37	46.19	18.98	34.31	50.23	54	-3.77	Vertical
11550.00	25.80	39.76	14.98	34.72	45.82	54	-8.18	Horizontal
17325.00	18.98	46.19	18.98	34.31	49.84	54	-4.16	Horizontal

Note:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)				
Test Method:	ANSI C63.10:2013, FCC Part 2.1055				
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.				
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector			
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				
Test results: Pass					

Measurement data:

Frequency stability versus Temp.								
Power Supply: DC 3.7V								
Tomp	Operating	0 minute	2 minute	5 minute	10 minute			
Temp. (°C) Frequency		Measured	Measured	Measured	Measured			
(0)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)			
	5745	5746.6219	5742.7991	5744.1919	5746.3187			
-30	5785	5786.7605	5784.0631	5784.0362	5785.4040			
	5825	5825.3175	5824.4566	5824.4206	5825.0999			
	5745	5745.9900	5744.8768	5744.2749	5745.2766			
-20	5785	5785.9406	5784.1197	5784.6012	5785.4381			
	5825	5825.7406	5824.6014	5824.4517	5825.0328			
	5745	5745.8794	5744.0510	5744.9149	5745.1961			
-10	5785	5785.5381	5784.0615	5784.3190	5785.8923			
	5825	5825.9918	5824.0952	5824.6506	5825.1095			
	5745	5745.5177	5744.6749	5744.6569	5745.8575			
0	5785	5785.7363	5784.9707	5784.2302	5785.0016			
	5825	5825.2832	5824.5286	5824.5841	5825.4018			
	5745	5745.6031	5744.8874	5744.4925	5745.3318			
10	5785	5785.3017	5784.1809	5784.0413	5785.1598			
	5825	5825.0624	5824.4468	5824.4758	5825.9061			
	5745	5745.2524	5744.5808	5744.0093	5745.2117			
20	5785	5785.9619	5784.2638	5784.3581	5785.6485			
	5825	5825.0119	5824.7212	5824.6311	5825.7793			
	5745	5745.6899	5744.5481	5744.7002	5745.2286			
30	5785	5785.6801	5784.6160	5784.6765	5785.7716			
	5825	5825.9674	5824.7350	5824.0895	5825.1277			
	5745	5745.2072	5744.3710	5744.4636	5745.5607			
40	5785	5785.9607	5784.0357	5784.8532	5785.2336			
	5825	5825.2801	5824.4411	5824.3960	5825.7163			
	5745	5745.5414	5744.6776	5744.0309	5745.2675			
50	5785	5785.7691	5784.9856	5784.8828	5785.5669			
	5825	5825.2306	5824.2152	5824.6881	5825.1660			
		Frequenc	cy stability versus Vo	oltage				
			emperature: 25°C					
Power	Operating	0 minute	2 minute	5 minute	10 minute			
Supply		Measured	Measured	Measured	Measured			
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)			
3.3	5745	5746.5014	5745.3093	5742.6745	5743.5095			
	5785	5785.6009	5785.0262	5784.7516	5783.9085			
	5825	5825.6362	5825.2830	5824.5035	5823.0503			
	5745	5745.0572	5745.2584	5744.0572	5743.9416			
3.7	5785	5785.5240	5785.7454	5784.9756	5784.6174			
	5825	5825.3379	5825.1665	5824.7631	5824.9744			
	5745	5745.3882	5745.5426	5744.7889	5744.4086			
4.1	5785	5785.8361	5785.9629	5784.6750	5784.8338			
	5825	5825.1710	5825.5863	5824.6682	5824.3227			

Note: The worst case is FL=5742.6745MHz, FH=5825.9918MHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201611000003E01

-----END-----