

GENE EXPRESSION FOR

PREDICTING ENDOMETRIOSIS

■ Often dismissed as 'women's troubles', endometriosis affects one woman in 10 of reproductive age, yet a lack of research and funding means sufferers can live in severe pain, unable to work or socialise.

Sarah Boseley, Jessica Glenza and Helen Davidson

The Guardian

Agenda

1	Problem Statement
2	Visualizations & EDA [1] [2] [3]
3	Modeling & Findings
4	Training Details
5	Results & Inferences [1] [2]
6	Next Steps

Problem Statement

Data Source:

~28k genes, 408 samples (115 patients, 53 controls)
 from Turku dataset

Motivation:

 Identify most predictive gene features to better understand and detect endometriosis

Key Question:

 Can we maintain or improve endometriosis prediction accuracy using Random Forest or XGBoost after drastically reducing features from over 28k genes to a small, most-predictive subset - and what does this subset reveal about the disease?

Goal:

 Reveal top predictive genes to inspire therapeutic targets and insights into disease biology

Visualization & EDA [1]

- Data Integrity: No missing values; duplicates averaged
- Class Imbalance: More diseased than healthy samples
- **Data Structure:** Transposed so samples = rows, genes = columns; labels derived from sample names

Healthy Control (disease colum = 0)	Disease (disease colum = 1)			
CP: peritoneum samples from healthy control CE: endometrium sample from healthy control	PeLR: red peritoneal endometriotic lesion DiEIn: intestinal endometriotic lesions PeLW: white peritoneal endometriotic lesion REV: deep rectovaginal endometriotic lesions DiEB: deep endometriotic lesions in the bladder PE: endometrium sample from endometriosis patient SuL: sacrouterine ligament endometriotic lesions PeLB: black peritoneal endometriotic lesion OMA: ovarian endometrioma samples PP: peritoneum samples from patients			

Visualization & EDA [2]

Visualization & EDA [3]

Modeling Overview

Training Details

Problems

HIGHLY DIMENSIONAL

The features of this data set are all the known genes – That's over 28,000 columns!

IMBALANCED

Dataset contains 62 health samples in data set vs 330 endometriosis

OVERFITTING

Original data set only had 400 observations which is significantly less than the number of features which can lead to overfitting.

Solutions

RFE

Recursive Feature Elimination! Its, more computationally expensive compared to PCA but maintains the interpretability of our findings!

CUSTOM SCORER & SMOTE

Resampled data set using SMOTE and optimized for model macro average f1-score using a custom scorer while fine tuning model parameters.

HYPERPARAMETER TUNING

Used GridSearchCV to explore the best number of estimators, best max depth, the minimum samples need to split or be considered a leaf in the tree.

Results & Inferences [1]

Model	Train Macro F1 Score	Train PC- Recall AUC	Test Macro F1 Score	Test PC-Recall AUC	Minority Class (0) Recall	Minority Class (0) Precision	Minority Class (0) F1 Score
Baseline RF (28k+ features)	1.00	1.00	0.73	0.99	0.33	1.00	0.50
Improved Baseline RF (Top 5 Predictors)	1.00	1.00	0.71	0.99	0.56	0.45	0.50
Fine-tuned RF w/ RFE 1	0.91	0.98	0.64	0.95	0.22	0.67	0.33
Fine-tuned XGBoost w/ RFE 2	1.00	1.00	0.80	0.99	0.89	0.53	0.67

Results & Inferences [2]

Top 1 & 2:

Top 3 & 4:

Top 5 & 6:

Next Steps

Limitations:

- Highly-dimensional, noisy data
- Relatively small dataset, only ~15% healthy samples

Potential steps:

Other models to try: SVM

Thank you!

