

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 4

Название: Исследование мультиплексоров

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-46Б		А.Д. Ковель
	(Группа)	(Подпись, дата	(И.О. Фамилия)
Преподаватель			А.Ю. Попов
		(Подпись, дата) (И.О. Фамилия)

0. Цель Работы

Цель работы — изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

1. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 – 1 цифровых сигналов:

- а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем.
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика. На вход счетчика подать импульсы генератора с частотой 500 кГц.
- в) снять временную диаграмму сигналов при EN=1 и провести ее анализ.

Вариант 8: 1 0 1 0 1 0 0 1

2. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 – 1 аналоговых сигналов:

- а) на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика. На вход счетчика подать импульсы генератора с частотой 500 кГц;
- b) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора на логическом анализаторе и осциллографе.

3. Исследование ИС ADG408 или ADG508 как коммутатора MUX 8 – 1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных. ФАЛ задается преподавателем. Проверить работу формирователя в статическом и динамическом режимах. Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ.

Вариант 4:

ФАЛ (0 1 2 4 9 11 12 13 15) => (1110 1000 0101 1101)

Построим таблицу истинности:

Набор	X4	X3	X2	X1	f	D
0	0	0	0	0	1	D0 = 1
1	0	0	0	1	1	
2	0	0	1	0	1	D1 = !X1
3	0	0	1	1	0	
4	0	1	0	0	1	D2 = !X1
5	0	1	0	1	0	
6	0	1	1	0	0	D3 = 0
7	0	1	1	1	0	
8	1	0	0	0	0	D4 = X1
9	1	0	0	1	1	
10	1	0	1	0	0	D5 = X1
11	1	0	1	1	1	
12	1	1	0	0	1	D6 = 1
13	1	1	0	1	1	
14	1	1	1	0	0	D7 = X1
15	1	1	1	1	1	

4. Наращивание мультиплексора.

Построить схему мультиплексора MUX 16 — 1 на основе простого мультиплексора MUX 4 — 1 и дешифратора DC 2-4. Исследовать мультиплексор MUX 16 — 1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15 — из таблицы, заданной преподавателем. Провести анализ временной диаграммы сигналов мультиплексора MUX 16 — 1. мультиплексора MUX 16 — 1.

Вариант 8:

D0...D15: (1110 1000 0101 1101)

Вывод: были изучены принципы построения, практического применения и экспериментального исследования мультиплексоров.

Контрольные вопросы

1. Что такое мультиплексор?

Это функциональный узел, имеющий п адресных входов и N=2^n информационных входов. Он выполняет коммутацию на выход того информационного сигнала, адрес которого установлен на адресных входах. Также мультиплексор переключает сигнал с одной из N входных линий на один выход.

2. Какую логическую функцию выполняет мультиплексор?

$$Y = EN * j = 0.2 \land n - 1.Dj * mj (A(n-1), A(n-2), ..., Ai, ..., A0)$$

Где Aj – адресные входы и сигналы, i = 0, 1,..., n – 1; Dj – информационные входы и сигналы, j =0, 1,..., 2^n –1; mj – конституента единицы, номер которой равен числу, образованному двоичным кодом сигналов на адресных входах; EN – вход и сигнал разрешения (стробирования).

3. Каково назначение и использование входа разрешения?

Bxoд EN используется для разрешения работы мультиплексора, стробирования и наращивания числа информационных входов.

4. Какие функции может выполнять мультиплексор?

Мультиплексоры применяются при построении коммутаторовселекторов, постоянных запоминающих устройств ёмкостью в один бит, комбинационных схем, реализующих функции алгебры логики, преобразователей кодов и других узлов.

5. Какие существуют способы наращивания мультиплексоров?

Существует наращивание по пирамидальной схеме соединения мультиплексоров меньшей размерности, а также метод путем выбора мультиплексора группы информационных входов по адресу мультиплексора с помощью дешифратора адреса мультиплексора группы, а затем выбором информационного сигнала мультиплексором группы по адресу информационного сигнала в группе.

6. Поясните методику синтеза формирователя ФАЛ на мультиплексоре?

Реализация ФАЛ п переменных на мультиплексоре с п адресными входами: на адресные входы подаются переменные, на информационные входы — значения ФАЛ на соответствующих наборах переменных. На выходе будет располагаться значения ФАЛ в соответствии с наборами переменных. В этом случае мультиплексор будет являться ПЗУ. Для реализации ФАЛ п + 1 переменными на адресные входы мультиплексора подаются п переменных, на информационных входы n+1-ая переменная (или ее инверсия), константы 0 или 1 (в соответствии со значениями ФАЛ).

7.Почему возникают ложные сигналы на выходе мультиплексора? Как их устранить?

Такие сигналы возникают из-за гонок выходных сигналов. Чтобы их исключить, мы используем вход EN в качестве стробирующего. Для выделения полезного сигнала на вход EN подается сигнал в интервале времени, свободном от действия ложных сигналов.