

Nanosecond inference for a graph neural network based $au o 3\mu$ detection at CMS

Hyeon-Seo Yun¹, Mia Liu¹, hls4ml project ²

¹Purdue University ²https://github.com/fastmachinelearning/hls4ml

Need for low-latency in L1 Trigger

- ▶ Role of Trigger: Detect events that contains interesting data (decays of τ s into 3 μ s in our case).
- ► We keep those events, and discard the uninteresting ones.
- ► Machine Learning (ML) use case in particle physics: L1 Trigger, the first stage of real-time data processing and filtering
- ▶ Due to low latency requirements, field programmable gate arrays (FPGAs) are used in Triggers
- ▶ CERN CMS L1 Trigger requirements: high input data rates (\approx 40 TB/s) into smaller output data rates (\approx 0.75 TB/s), with fixed algorithm latency of less than 12.5 μ s
- ► High Level Synthesis (HLS) Compiler named hls4ml is used to rapidly prototype ML models in FPGAs

Quest for Observing $au o 3\mu$

- Decays of τ into 3 μ is predicted to be extremely rare in the Standard Model of particles physics.
- ► New physical phenomena could enhance the probability significantly.
- ► Observing these decays at the LHC could be a sign of the existence of physics beyond the standard model

Usage of Graph Neural Networks (GNN) in Filtering Task

- ► Proton-proton collisions give data that can easily be formed as a graph.
- ► Graphs can easily connect the signals particles leave while traversing the CMS detector.
- ► Ideal for GNN, a Neural Network (NN) type that is optimized for graph based data (permutation invariant data).
- ▶ Good for μ detection from τ decay, as they have low transverse momentum (p_t) signature that makes it difficult for conventional ML Trigger algorithms to perform well.
- ► Task: Classification of events as Signal or Background in real-time using GNN.
- Performance quantified in a receiver operating characteristic (ROC) curve of signal efficiency versus Trigger Rate (kHz).

Summary

- ► hls4ml: compiler based on HLS for porting fully-connected NNs to an FPGA from conventional training frameworks such as Keras and PyTorch
- ► Focus on real-time event reconstruction and filtering at the LHC in FPGAs, with many other applications to real-time detector systems in the physical sciences
- ► Implemented a GCN model in HLS code, but too much resources
- ► In the progress of implementing QAT to optimize GNN for low bit, low latency inference

GNN Design

Graph Building

- ► **Nodes Designation**: hits from Station 1 endcap detectors from CMS
- **Edge Designation:** edge between two nodes if $dR = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 1$
- ▶ Node features: z and η coordinate, and bend angle
- **Edge features:** Δz , $\Delta \eta$, $\Delta \phi$ and bend angle difference.
- ► Bend Angle: Angular difference of particles between hit signatures as they enter and exit the detector.

GNN Architecture

- ► **Type:** 8 Graph Convolution (GCN) Layers with residual connections in-between the layers.
- ▶ MLP block: $128 \rightarrow 256 \rightarrow 128$ node fully-connected layers

FPGA Implementation via hls4ml

- ► hls4ml is a pythonic compiler that translates Keras or PyTorch NN models into High Level Synthesis (HLS) code.
- ► FPGA can use HLS to generate said NN models for use in L1 Trigger.
- ► hls4ml supports normal fully-connected Neural Networks (NN), but no GNNs currently.
- ► We have custom hard-coded our GNN model into hls4ml, but resources are overloaded. Our GNN model needs to be more lightweight

Quantization Aware Training (QAT)

Quantization of GNN is necessary to meet the FPGA latency constraints

- Typical NNs have their trainable parameters represented in a 32-bit system.
- ▶ Quantization decreases the 32-bit representation to a more manageable number, typically 4 or 8 bits.
- ► hls4ml uses arbituary precision fixed (ap-fixed) quantization method for faster inference.
- ► Simply quantizing our pre-trained GNN greatly decreases performance.
- ► QAT is a specialized method of training NNs that maintains performance with quantization.
- $ilde{ au}$ Using Brevitas, we demonstrated QAT on fully-connected NN with non $au o 3\mu$ data, for testing purposes.

To demonstrate QAT, we use Higgs KAggle data as a benchmark (https://www.kaggle.com/competitions/higgs-boson/data)

