ESP32-S3-WROOM-2

Datasheet

2.4 GHz Wi-Fi (802.11 b/g/n) and Bluetooth® 5 (LE) module
Built around ESP32-S3R8V SoC, Xtensa® dual-core 32-bit LX7 microprocessor
Flash up to 32 MB (Octal), 8 MB PSRAM (Octal)
33 GPIOs, rich set of peripherals
On-board PCB antenna

ESP32-S3-WROOM-2

1 Module Overview

Note:

Check the link or the QR code to make sure that you use the latest version of this document: https://www.espressif.com/documentation/esp32-s3-wroom-2_datasheet_en.pdf

1.1 Features

CPU and On-Chip Memory

- ESP32-S3R8V SoC embedded, Xtensa[®] dual-core 32-bit LX7 microprocessor (with single precision FPU), up to 240 MHz
- 384 KB ROM
- 512 KB SRAM
- 16 KB SRAM in RTC
- 8 MB PSRAM

Wi-Fi

- 802.11 b/g/n
- Bit rate: 802.11n up to 150 Mbps
- A-MPDU and A-MSDU aggregation
- 0.4 μ s guard interval support
- Center frequency range of operating channel: 2412 ~ 2484 MHz

Bluetooth

- Bluetooth LE: Bluetooth 5, Bluetooth mesh
- Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
- Advertising extensions
- Multiple advertisement sets
- Channel selection algorithm #2
- Internal co-existence mechanism between Wi-Fi and Bluetooth to share the same antenna

Peripherals

 GPIO, SPI, LCD interface, Camera interface, UART, I2C, I2S, remote control, pulse counter, LED PWM, USB 1.1 OTG, USB Serial/JTAG controller, MCPWM, SDIO host, GDMA, TWAI[®] controller (compatible with ISO 11898-1), ADC, touch sensor, temperature sensor, timers and watchdogs

Integrated Components on Module

- 40 MHz crystal oscillator
- Up to 32 MB Octal SPI flash

Antenna Options

• On-board PCB antenna

Operating Conditions

- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating ambient temperature: −40 ~ 65 °C

Certification

- RF certification: See certificates for ESP32-S3-WROOM-2
- Green certification: RoHS/REACH

Test

HTOL/HTSL/uHAST/TCT/ESD

1.2 Description

ESP32-S3-WROOM-2 is a powerful, generic Wi-Fi + Bluetooth LE MCU module that has a rich set of peripherals. It provides acceleration for neural network computing and signal processing workloads. It is an ideal choice for a wide variety of application scenarios related to Al and Artificial Intelligence of Things (AloT), such as wake word detection and speech commands recognition, face detection and recognition, smart home, smart appliances, smart control panel, smart speaker, etc.

ESP32-S3-WROOM-2 comes with a PCB antenna. It has ESP32-S3R8V SoC embedded. A selection of module variants are available for customers with flash memory of 16/32 MB and PSRAM memory of 8 MB. Please note that for R8 series modules (8-line PSRAM embedded), if the PSRAM ECC function is enabled, the maximum ambient temperature can be improved to 85 °C, while the usable size of PSRAM will be reduced by 1/16.

The series comparison for ESP32-S3-WROOM-2 is as follows:

Ordering Code	Flash ¹	PSRAM	Ambient Temp. ² (°C)	Size ³ (mm)
ESP32-S3-WROOM-2-N16R8V	16 MB (Octal SPI)	8 MB (Octal SPI)	− 40 ~ 65	18 × 25.5 × 3.1
ESP32-S3-WROOM-2-N32R8V	32 MB (Octal SPI)	8 MB (Octal SPI)	− 40 ~ 65	10 x 20.0 x 0.1

Table 1: ESP32-S3-WROOM-2 Series Comparison

At the core of the modules is an ESP32-S3R8V, an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. You can power off the CPU and make use of the low-power co-processor to constantly monitor the peripherals for changes or crossing of thresholds.

ESP32-S3R8V integrates a rich set of peripherals including SPI, LCD interface, Camera interface, UART, I2C, I2S, remote control, pulse counter, LED PWM, USB Serial/JTAG controller, MCPWM, SDIO host, GDMA, TWAI[®] controller (compatible with ISO 11898-1), ADC, touch sensor, temperature sensor, timers and watchdogs, as well as up to 45 GPIOs. It also includes a full-speed USB 1.1 On-The-Go (OTG) interface to enable USB communication.

Note:

* For more information on ESP32-S3, please refer to ESP32-S3 Series Datasheet.

1.3 Applications

- Generic Low-power IoT Sensor Hub
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Over-the-top (OTT) Devices

- USB Devices
- Speech Recognition
- Image Recognition
- Mesh Network

¹ This module uses flash integrated in the chip's package.

² Ambient temperature specifies the recommended temperature range of the environment immediately outside the Espressif module.

³ For details, refer to Section 7.1 *Physical Dimensions*.

- Home Automation
- Smart Building
- Industrial Automation
- Smart Agriculture
- Audio Applications

- Health Care Applications
- Wi-Fi-enabled Toys
- Wearable Electronics
- Retail & Catering Applications

Contents

1	Module Overview	2
1.1	Features	2
1.2	Description	3
1.3	Applications	3
2	Block Diagram	8
3	Pin Definitions	9
3.1	Pin Layout	9
3.2	Pin Description	9
3.3	Strapping Pins	11
4	Electrical Characteristics	14
4.1	Absolute Maximum Ratings	14
4.2	Recommended Operating Conditions	14
4.3	DC Characteristics (3.3 V, 25 °C)	14
4.4	Current Consumption Characteristics	15
4.5	Wi-Fi RF Characteristics	16
	4.5.1 Wi-Fi RF Standards	16
	4.5.2 Wi-Fi RF Transmitter (TX) Specifications	16
4.0	4.5.3 Wi-Fi RF Receiver (RX) Specifications	17
4.6	Bluetooth LE Radio	18
	4.6.1 Bluetooth LE RF Transmitter (TX) Specifications4.6.2 Bluetooth LE RF Receiver (RX) Specifications	18 20
5	Module Schematics	23
6	Peripheral Schematics	24
7	Physical Dimensions and PCB Land Pattern	25
7.1	Physical Dimensions	25
7.2	Recommended PCB Land Pattern	26
8	Product Handling	27
8.1	Storage Conditions	27
8.2	Electrostatic Discharge (ESD)	27
8.3	Reflow Profile	27
8.4	Ultrasonic Vibration	28
9	Related Documentation and Resources	29
Re	vision History	30

List of Tables

1	ESP32-S3-WROOM-2 Series Comparison	3
2	Pin Definitions	S
3	JTAG Signal Source Selection	11
4	Strapping Pins	12
5	The Default Value for VDD_SPI Voltage	12
6	Parameter Descriptions of Setup and Hold Times for the Strapping Pin	13
7	Absolute Maximum Ratings	14
8	Recommended Operating Conditions	14
9	DC Characteristics (3.3 V, 25 °C)	14
10	Current Consumption Depending on RF Modes	15
11	Current Consumption Depending on Work Modes	15
12	Wi-Fi RF Standards	16
13	TX Power with Spectral Mask and EVM Meeting 802.11 Standards	16
14	TX EVM Test	16
15	RX Sensitivity	17
16	Maximum RX Level	18
17	RX Adjacent Channel Rejection	18
18	Bluetooth LE Frequency	18
19	Transmitter Characteristics - Bluetooth LE 1 Mbps	18
20	Transmitter Characteristics - Bluetooth LE 2 Mbps	19
21	Transmitter Characteristics - Bluetooth LE 125 Kbps	19
22	Transmitter Characteristics - Bluetooth LE 500 Kbps	20
23	Receiver Characteristics - Bluetooth LE 1 Mbps	20
24	Receiver Characteristics - Bluetooth LE 2 Mbps	21
25	Receiver Characteristics - Bluetooth LE 125 Kbps	21
26	Receiver Characteristics - Bluetooth LE 500 Kbps	22

List of Figures

1	ESP32-S3-WROOM-2 Block Diagram	8
2	Pin Layout (Top View)	9
3	Setup and Hold Times for the Strapping Pin	13
4	ESP32-S3-WROOM-2 Schematics	23
5	Peripheral Schematics	24
6	ESP32-S3-WROOM-2 Physical Dimensions	25
7	ESP32-S3-WROOM-2 Recommended PCB Land Pattern	26
8	Reflow Profile	27

Block Diagram 2

Figure 1: ESP32-S3-WROOM-2 Block Diagram

3 Pin Definitions

3.1 Pin Layout

The pin diagram below shows the approximate location of pins on the module. For the actual diagram drawn to scale, please refer to Figure 7.1 *Physical Dimensions*.

Figure 2: Pin Layout (Top View)

3.2 Pin Description

The module has 41 pins. See pin definitions in Table 2.

For explanations of pin names and function names, as well as configurations of peripheral pins, please refer to ESP32-S3 Series Datasheet.

Table 2: Pin Definitions

Name	No.	Type ¹	Function
GND	1	Р	GND

Cont'd on next page

Table 2 - cont'd from previous page

Manaa	lable 2 – contro from previous page				
Name	No.	Type ¹	Function		
3V3	2	Р	Power supply		
			High: on, enables the chip.		
EN	3	l	Low: off, the chip powers off.		
	_		Note: Do not leave the EN pin floating.		
104	4	I/O/T	RTC_GPIO4, GPIO4 , TOUCH4, ADC1_CH3		
105	5	I/O/T	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4		
106	6	I/O/T	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5		
107	7	I/O/T	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6		
IO15	8	I/O/T	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P		
IO16	9	I/O/T	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N		
IO17	10	I/O/T	RTC_GPIO17, GPIO17 , U1TXD, ADC2_CH6		
IO18	11	I/O/T	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, CLK_OUT3		
IO8	12	I/O/T	RTC_GPIO8, GPIO8 , TOUCH8, ADC1_CH7, SUBSPICS1		
IO19	13	I/O/T	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-		
IO20	14	I/O/T	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+		
IO3	15	I/O/T	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2		
IO46	16	I/O/T	GPIO46		
109	17	I/O/T	RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD		
1010	10	I/O/T	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4,		
IO10	18	I/O/T	SUBSPICS0		
IO11	10	I/O/T	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5,		
1011	19	1/0/1	SUBSPID		
IO12	20	I/O/T	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6,		
1012	20	1/0/1	SUBSPICLK		
IO13	21	L/O/T	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7,		
1013	21	I/O/T	SUBSPIQ		
IO14	00	L/O/T	RTC_GPIO14, GPIO14 , TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS,		
1014	22	I/O/T	SUBSPIWP		
IO21	23	I/O/T	RTC_GPIO21, GPIO21		
IO47	24	I/O/T	SPICLK_P_DIFF, GPIO47 ² , SUBSPICLK_P_DIFF		
IO48	25	I/O/T	SPICLK_N_DIFF, GPIO48 ? SUBSPICLK_N_DIFF		
IO45	26	I/O/T	GPIO45		
IO0	27	I/O/T	RTC_GPIO0, GPIO0		
NC	28	-	NC		
NC	29	-	NC		
NC	30	-	NC		
IO38	31	I/O/T	GPIO38, FSPIWP, SUBSPIWP		
IO39	32	I/O/T	MTCK, GPIO39, CLK_OUT3, SUBSPICS1		
IO40	33	I/O/T	MTDO, GPIO40, CLK_OUT2		
IO41	34	I/O/T	MTDI, GPIO41, CLK_OUT1		
IO42	35	I/O/T	MTMS, GPIO42		
RXD0	36	I/O/T	U0RXD, GPIO44, CLK_OUT2		
			Cont'd on novt nogo		

Cont'd on next page

Function Name No. Type 1 TXD0 I/O/T U0TXD, GPIO43, CLK_OUT1 37 102 38 I/O/T RTC GPIO2, GPIO2, TOUCH2, ADC1 CH1 101 39 I/O/T RTC GPIO1, GPIO1, TOUCH1, ADC1 CH0 **GND** 40 Ρ **GND EPAD** 41 Ρ **GND**

Table 2 – cont'd from previous page

3.3 Strapping Pins

Note:

The content below is excerpted from Section Strapping Pins in <u>ESP32-S3 Series Datasheet</u>. For the strapping pin mapping between the chip and modules, please refer to Chapter 5 <u>Module Schematics</u>.

ESP32-S3 has four strapping pins:

- GPI00
- GPIO45
- GPIO46
- GPIO3

Software can read the values of corresponding bits from register "GPIO_STRAPPING".

During the chip's system reset (power-on-reset, RTC watchdog reset, brownout reset, analog super watchdog reset, and crystal clock glitch detection reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down.

GPIO0, GPIO45 and GPIO46 are connected to the chip's internal weak pull-up/pull-down during the chip reset. Consequently, if they are unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of these strapping pins.

GPIO3 is floating by default. Its strapping value can be configured to determine the source of the JTAG signal inside the CPU, as shown in Table 4. In this case, the strapping value is controlled by the external circuit that cannot be in a high impedance state. Table 3 shows more configuration combinations of EFUSE_DIS_USB_JTAG, EFUSE_DIS_PAD_JTAG, and EFUSE_STRAP_JTAG_SEL that determine the JTAG signal source.

Table 3: JTAG Signal Source Selection

EFUSE_STRAP_JTAG_SEL	EFUSE_DIS_USB_JTAG	EFUSE_DIS_PAD_JTAG	JTAG Signal Source
1	0	0	Refer to Table 4
0	0	0	USB Serial/JTAG controller
don't care	0	1	USB Serial/JTAG controller
don't care	1	0	On-chip JTAG pins
don't care	1	1	N/A

¹ P: power supply; I: input; O: output; T: high impedance. Bold font is the default function of the pin.

² As the VDD_SPI voltage of the ESP32-S3R8V chip has been set to 1.8 V, the working voltage for GPIO47 and GPIO48 would also be 1.8 V, which is different from other GPIOs.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32-S3.

After reset, the strapping pins work as normal-function pins.

Refer to Table 4 for a detailed configuration of the strapping pins.

Table 4: Strapping Pins

VDD_SPI Voltage					
Pin	Default	3.3 V	1.8 V		
GPIO45	Pull-down	0	1		
		Booting Mode ¹			
Pin	Default	SPI Boot	Download Boot		
GPIO0	Pull-up	1	0		
GPIO46 Pull-down Don't care 0					
Enabling/Disabling ROM Messages Print During Booting ² ³					
Pin	Default	Enabled	Disabled		
GPIO46	Pull-down	See the fourth note	See the fourth note		
		JTAG Signal Selection			
Pin	Default	EFUSE_DIS_USB_JTAG = 0, EFUS	SE_DIS_PAD_JTAG = 0,		
EFUSE_STRAP_JTAG_SEL=1					
GPIO3	N/A	0: JTAG signal from on-chip JTA	AG pins		
GI 100	IN/A	1: JTAG signal from USB Serial/JTAG controller			

Note:

- 1. The strapping combination of GPIO46 = 1 and GPIO0 = 0 is invalid and will trigger unexpected behavior.
- 2. By default, the ROM boot messages are printed over UARTO (U0TXD pin) and USB Serial/JTAG controller together. The ROM code printing can be disabled through configuration register and eFuse. For detailed information, please refer to Chapter Chip Boot Control in ESP32-S3 Technical Reference Manual.

VDD_SPI voltage is determined either by the strapping value of GPIO45 or by EFUSE_VDD_SPI_TIEH. When EFUSE_VDD_SPI_FORCE is 0, VDD_SPI voltage is determined by the strapping value of GPIO45; when EFUSE_VDD_SPI_FORCE is 1, VDD_SPI voltage is determined by EFUSE_VDD_SPI_TIEH. The VDD_SPI voltage of the ESP32-S3R8V chip has been set to 1.8 V by eFuse VDD_SPI_TIEH and VDD_SPI_FORCE, and is no longer controlled by GPIO45. Please refer to the following table for default configurations:

Table 5: The Default Value for VDD_SPI Voltage

Chip Variant	EFUSE_VDD_SPI_FORCE	EFUSE_VDD_SPI_TIEH	VDD_SPI Voltage
ESP32-S3	0	0	Determined by GPIO45
ESP32-S3R2	1	1	Force to 3.3 V
ESP32-S3R8	1	1	Force to 3.3 V
ESP32-S3R8V	1	0	Force to 1.8 V
ESP32-S3FN8	1	1	Force to 3.3 V
ESP32-S3FH4R2	1	1	Force to 3.3 V

Figure 3 shows the setup and hold times for the strapping pin before and after the CHIP_PU signal goes high. Details about the parameters are listed in Table 6.

Figure 3: Setup and Hold Times for the Strapping Pin

Table 6: Parameter Descriptions of Setup and Hold Times for the Strapping Pin

Parameter	Description	Min (ms)
t_{SU}	Setup time before CHIP_PU goes from low to high	0
t_{HD}	Hold time after CHIP_PU goes high	3

Electrical Characteristics

Absolute Maximum Ratings 4.1

Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 7: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD33	Power supply voltage	-0.3	3.6	V
T_{STORE}	Storage temperature	-40	105	°C

Recommended Operating Conditions

Table 8: Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
VDD33	Power supply voltage	3.0	3.3	3.6	V
I_{VDD}	Current delivered by external power supply	0.5	_	_	А
T_A	Operating ambient temperature	-40		65	°C

4.3 DC Characteristics (3.3 V, 25 °C)

Table 9: DC Characteristics (3.3 V, 25 °C)

Symbol	Parameter	Min	Тур	Max	Unit	
C_{IN}	Pin capacitance		2	_	рF	
V_{IH}	High-level input voltage	0.75 × VDD ¹	_	VDD ¹ + 0.3	V	
V_{IL}	Low-level input voltage	-0.3	_	$0.25 \times VDD^1$	V	
$ I_{IH} $	High-level input current	_	_	50	nA	
$ I_{IL} $	Low-level input current	_	_	50	nA	
V_{OH}^2	High-level output voltage	$0.8 \times VDD^1$	_	_	V	
V_{OL}^2	Low-level output voltage	_	_	$0.1 \times VDD^1$	V	
1	High-level source current (VDD 1 = 3.3 V, V $_{OH}$ >=		40		mA	
$ _{OH}$	2.64 V, PAD_DRIVER = 3)	_	40	_	IIIA	
1.	Low-level sink current (VDD 1 = 3.3 V, V $_{OL}$ =		00	28		mA
$ I_{OL} $	0.495 V, PAD_DRIVER = 3)		20		IIIA	
R_{PU}	Internal weak pull-up resistor	_	45	_	kΩ	
R_{PD}	Internal weak pull-down resistor	_	45	_	kΩ	
V	Chip reset release voltage (EN voltage is within	$0.75 \times VDD^1$		VDD ¹ + 0.3	V	
V_{IH_nRST}	the specified range)	0.75 x VDD	_	VDD + 0.3	v	

Cont'd on next page

Table 9 - cont'd from previous page

Symbol	Parameter	Min	Тур	Max	Unit
\/	Chip reset voltage (EN voltage is within the	-0.3		0.25 × VDD ¹	\/
V_{IL_nRST}	specified range)	-0.3		0.23 x VDD	V

¹ VDD is the I/O voltage for pins of a particular power domain.

4.4 Current Consumption Characteristics

With the use of advanced power-management technologies, the module can switch between different power modes. For details on different power modes, please refer to Section Low Power Management in ESP32-S3 Series Datasheet.

Table 10: Current Consumption Depending on RF Modes

Work mode	Des	cription	Peak (mA)
		802.11b, 1 Mbps, @20.5 dBm	355
	TX	802.11g, 54 Mbps, @18 dBm	297
Active (RF working)	1^	802.11n, HT20, MCS 7, @17.5 dBm	286
		802.11n, HT40, MCS 7, @17 dBm	285
	RX	802.11b/g/n, HT20	95
		802.11n, HT40	97

¹ The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 100% duty cycle.

Table 11: Current Consumption Depending on Work Modes

Work mode	Description	Typ ²	Unit
Light-sleep		1	μA
Deep-sleep	RTC memory and RTC peripherals are powered on.	8	μA
Deep-sieep	RTC memory is powered on. RTC peripherals are powered off.	7	μ A
Power off	CHIP_PU is set to low level. The chip is powered off.	1	μΑ

 $^{^1}$ Please refer to the current consumption of the chip, and add corresponding PSRAM consumption values, e.g., 140 μA for 8 MB 8-line PSRAM (3.3 V), 200 μA for 8 MB 8-line PSRAM (1.8 V) and 40 μA for 2 MB 4-line PSRAM (3.3 V).

 $^{^{2}}$ V_{OH} and V_{OL} are measured using high-impedance load.

² The current consumption figures for in RX mode are for cases when the peripherals are disabled and the CPU idle.

² Please refer to ESP32-S3 Series Datasheet if there are any inconsistencies.

Wi-Fi RF Characteristics 4.5

4.5.1 Wi-Fi RF Standards

Table 12: Wi-Fi RF Standards

Name		Description	
Center frequency range of operating channel ¹		2412 ~ 2484 MHz	
Wi-Fi wireless standard		IEEE 802.11b/g/n	
		11b: 1, 2, 5.5 and 11 Mbps	
Data rate	20 MHz	11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps	
Data Tale		11n: MCS0-7, 72.2 Mbps (Max)	
40 MHz		11n: MCS0-7, 150 Mbps (Max)	
Antenna type		PCB antenna	

¹ Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software.

4.5.2 Wi-Fi RF Transmitter (TX) Specifications

Target TX power is configurable based on device or certification requirements. The default characteristics are provided in Table 13.

Table 13: TX Power with Spectral Mask and EVM Meeting 802.11 Standards

Rate	Min	Тур	Max
nate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	20.5	_
802.11b, 11 Mbps	_	20.5	
802.11g, 6 Mbps	_	20.0	_
802.11g, 54 Mbps	_	18.0	
802.11n, HT20, MCS 0	_	19.0	_
802.11n, HT20, MCS 7	_	17.5	_
802.11n, HT40, MCS 0	_	18.5	_
802.11n, HT40, MCS 7		17.0	_

Table 14: TX EVM Test

Data	Min	Тур	SL ¹
Rate	(dB)	(dB)	(dB)
802.11b, 1 Mbps, @20.5 dBm	_	-24.5	-10
802.11b, 11 Mbps, @20.5 dBm	_	-24.5	-10
802.11g, 6 Mbps, @20 dBm	_	-23.0	-5
802.11g, 54 Mbps, @18 dBm	_	-29.5	-25
802.11n, HT20, MCS 0, @19 dBm		-24.0	-5
802.11n, HT20, MCS 7, @17.5 dBm	_	-30.5	-27

Cont'd on next page

Table 14 - cont'd from previous page

Rate	Min (dB)	Typ (dB)	SL ¹ (dB)
802.11n, HT40, MCS 0, @18.5 dBm		-25.0	-5
802.11n, HT40, MCS 7, @17 dBm	_	-30.0	-27

¹ SL stands for standard limit value.

4.5.3 Wi-Fi RF Receiver (RX) Specifications

Table 15: RX Sensitivity

Rate	Min	Тур	Max
	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	-98.2	
802.11b, 2 Mbps	_	-95.6	
802.11b, 5.5 Mbps	_	-92.8	_
802.11b, 11 Mbps		-88.5	_
802.11g, 6 Mbps	_	-93.0	_
802.11g, 9 Mbps	_	-92.0	_
802.11g, 12 Mbps	_	-90.8	_
802.11g, 18 Mbps	_	-88.5	_
802.11g, 24 Mbps	_	-85.5	_
802.11g, 36 Mbps	_	-82.2	_
802.11g, 48 Mbps	_	-78.0	_
802.11g, 54 Mbps	_	-76.2	_
802.11n, HT20, MCS 0	_	-93.0	_
802.11n, HT20, MCS 1	_	-90.6	_
802.11n, HT20, MCS 2	_	-88.4	_
802.11n, HT20, MCS 3	_	-84.8	_
802.11n, HT20, MCS 4	_	-81.6	_
802.11n, HT20, MCS 5	_	-77.4	_
802.11n, HT20, MCS 6		-75.6	_
802.11n, HT20, MCS 7	_	-74.2	_
802.11n, HT40, MCS 0		-90.0	_
802.11n, HT40, MCS 1	_	-87.5	_
802.11n, HT40, MCS 2	_	-85.0	_
802.11n, HT40, MCS 3	_	-82.0	_
802.11n, HT40, MCS 4	_	-78.5	_
802.11n, HT40, MCS 5	_	-74.4	_
802.11n, HT40, MCS 6	_	-72.5	_
802.11n, HT40, MCS 7		-71.2	

Table 16: Maximum RX Level

Rate	Min	Тур	Max
nate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	5	_
802.11b, 11 Mbps	_	5	
802.11g, 6 Mbps	_	5	_
802.11g, 54 Mbps	_	0	
802.11n, HT20, MCS 0		5	_
802.11n, HT20, MCS 7		0	
802.11n, HT40, MCS 0		5	_
802.11n, HT40, MCS 7	_	0	_

Table 17: RX Adjacent Channel Rejection

Rate	Min	Тур	Max
nate	(dB)	(dB)	(dB)
802.11b, 1 Mbps		35	_
802.11b, 11 Mbps	_	35	
802.11g, 6 Mbps	_	31	_
802.11g, 54 Mbps		14	_
802.11n, HT20, MCS 0	_	31	_
802.11n, HT20, MCS 7		13	_
802.11n, HT40, MCS 0	_	19	_
802.11n, HT40, MCS 7		8	_

4.6 Bluetooth LE Radio

Table 18: Bluetooth LE Frequency

Parameter	Min	Typ	Max
	(MHz)	(MHz)	(MHz)
Center frequency of operating channel	2402	_	2480

4.6.1 Bluetooth LE RF Transmitter (TX) Specifications

Table 19: Transmitter Characteristics - Bluetooth LE 1 Mbps

Parameter	Parameter Description		Тур	Max	Unit
RF transmit power	RF power control range	-24.00	0	21.00	dBm
ni transmit power	Gain control step		3.00		dB
	$ \text{Max} _{n=0,\;1,\;2,\;k}$	_	2.50	_	kHz
Carrier frequency offset and drift	$Max f_0 - f_n $		2.00		kHz
Carrier frequency offset and drift	$ \operatorname{Max} f_{n-} f_{n-5} $	_	1.40	_	kHz

Cont'd on next page

Table 19 - cont'd from previous page

Parameter	Parameter Description		Тур	Max	Unit
	$ f_1-f_0 $	_	1.00		kHz
	$\Delta f1_{\text{avg}}$	_	249.00	_	kHz
Modulation characteristics	Min Δ $f2_{\rm max}$ (for at least		198.00	_	kHz
	99.9% of all Δ $f2_{\text{max}}$)	_			KI IZ
	$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	_	0.86		_
	±2 MHz offset	_	-37.00	_	dBm
In-band spurious emissions	±3 MHz offset	_	-42.00	_	dBm
	>±3 MHz offset	_	-44.00	_	dBm

Table 20: Transmitter Characteristics - Bluetooth LE 2 Mbps

Parameter	Description	Min	Тур	Max	Unit
RF transmit power	RF power control range	-24.00	0	21.00	dBm
ni transmit power	Gain control step	_	3.00		dB
		_	2.50		kHz
Carrier frequency offset and drift	$ Max f_0 - f_n $	_	2.00		kHz
Carrier frequency offset and drift	$ \operatorname{Max} f_{n-1} f_{n-5} $		1.40	_	kHz
	$ f_1-f_0 $	_	1.00		kHz
	$\Delta f1_{avg}$	_	499.00		kHz
Modulation characteristics	Min Δ $f2_{\rm max}$ (for at least		416.00		kHz
IVIOGUIATION CHARACTERISTICS	99.9% of all Δ $f2_{\text{max}}$)	_	410.00	_	KI IZ
	$\Delta f 2_{\rm avg}/\Delta f 1_{\rm avg}$	_	0.89	_	_
	±4 MHz offset	_	-42.00		dBm
In-band spurious emissions	±5 MHz offset	_	-44.00	_	dBm
	>±5 MHz offset	_	-47.00	_	dBm

Table 21: Transmitter Characteristics - Bluetooth LE 125 Kbps

Parameter	Description	Min	Тур	Max	Unit
RF transmit power	RF power control range	-24.00	0	21.00	dBm
ni transmit power	Gain control step	_	3.00	_	dB
		_	0.80		kHz
Carrier frequency offset and drift	$ Max f_0 - f_n $	_	1.00	_	kHz
Camer frequency offset and drift	$ f_n - f_{n-3} $	_	0.30	_	kHz
	$ f_0 - f_3 $	_	1.00	_	kHz
	$\Delta f1_{avg}$	_	248.00		kHz
Modulation characteristics	Min $\Delta f1_{\text{max}}$ (for at least		222.00		kHz
	99.9% of all $\Delta f1_{\text{max}}$)		222.00	_	KΠZ
	±2 MHz offset	_	-37.00	_	dBm
In-band spurious emissions	±3 MHz offset	_	-42.00		dBm
	>±3 MHz offset	_	-44.00	_	dBm

Table 22: Transmitter Characteristics - Bluetooth LE 500 Kbps

Parameter	Description	Min	Тур	Max	Unit
DE transmit navver	RF power control range	-24.00	0	21.00	dBm
RF transmit power	Gain control step	_	3.00	_	dB
	$ Max _{n=0,\ 1,\ 2,\k}$	_	0.80		kHz
Carrier frequency offset and drift	$Max \left f_0 - f_n \right $		1.00	_	kHz
Carrier frequency offset and drift	$ f_n - f_{n-3} $	_	0.85	_	kHz
	$ f_0 - f_3 $	_	0.34	_	kHz
	$\Delta~f2_{ ext{avg}}$		213.00		kHz
Modulation characteristics	Min Δ $f2_{\rm max}$ (for at least		196.00		kHz
	99.9% of all Δ $f2_{ m max}$)	_	190.00	_	K M
	±2 MHz offset	_	-37.00		dBm
In-band spurious emissions	±3 MHz offset	_	-42.00	_	dBm
	>±3 MHz offset	_	-44.00	_	dBm

4.6.2 Bluetooth LE RF Receiver (RX) Specifications

Table 23: Receiver Characteristics - Bluetooth LE 1 Mbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-96.5		dBm
Maximum received signal @30.8% PER	_	_	8	_	dBm
Co-channel C/I	F = F0 MHz	_	9	_	dB
	F = F0 + 1 MHz	_	-3	_	dB
	F = F0 – 1 MHz	_	-3	_	dB
	F = F0 + 2 MHz	_	-28	_	dB
Adjacent channel calcutivity C/I	F = F0 – 2 MHz	_	-30	_	dB
Adjacent channel selectivity C/I	F = F0 + 3 MHz	_	-31	_	dB
	F = F0 – 3 MHz	_	-33	_	dB
	F > F0 + 3 MHz	_	-32	_	dB
	F > F0 – 3 MHz	_	-36	_	dB
Image frequency	_	_	-32	_	dB
Adjacent channel to image frequency	$F = F_{image} + 1 \text{ MHz}$	_	-39	_	dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$	_	-31	_	dB
	30 MHz ~ 2000 MHz	_	-9	_	dBm
	2003 MHz ~ 2399 MHz	_	-18	_	dBm
Out-of-band blocking performance	2484 MHz ~ 2997 MHz	_	-15	_	dBm
	3000 MHz ~ 12.75 GHz	_	- 5	_	dBm
Intermodulation	_	_	-29	_	dBm

Table 24: Receiver Characteristics - Bluetooth LE 2 Mbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-92.5		dBm
Maximum received signal @30.8% PER	_	_	3	_	dBm
Co-channel C/I	F = F0 MHz	_	10	_	dB
	F = F0 + 2 MHz	_	-8	_	dB
	F = F0 - 2 MHz	_	-5	_	dB
	F = F0 + 4 MHz	_	-31	_	dB
Adjacent channel calcativity C/I	F = F0 – 4 MHz	_	-33	_	dB
Adjacent channel selectivity C/I	F = F0 + 6 MHz	_	-37	_	dB
	F = F0 – 6 MHz	_	-37	_	dB
	F > F0 + 6 MHz	_	-40	_	dB
	F > F0 – 6 MHz	_	-40	_	dB
Image frequency	_	_	-31		dB
Adjacent channel to image frequency	$F = F_{image} + 2 \text{ MHz}$	_	-37	_	dB
Adjacent channel to image frequency	$F = F_{image} - 2 \text{ MHz}$	_	-8	_	dB
	30 MHz ~ 2000 MHz	_	-15	_	dBm
Out-of-band blocking performance	2003 MHz ~ 2399 MHz	_	-19	_	dBm
	2484 MHz ~ 2997 MHz	_	-15	_	dBm
	3000 MHz ~ 12.75 GHz	_	-6	_	dBm
Intermodulation	_	_	-29	_	dBm

Table 25: Receiver Characteristics - Bluetooth LE 125 Kbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-103.5	_	dBm
Maximum received signal @30.8% PER	_	_	8	_	dBm
Co-channel C/I	F = F0 MHz	_	6	_	dB
	F = F0 + 1 MHz	_	-6	_	dB
	F = F0 – 1 MHz	_	- 5	_	dB
	F = F0 + 2 MHz	_	-32	_	dB
Adjacent channel selectivity C/I	F = F0 – 2 MHz	_	-39	_	dB
Adjacent channel selectivity C/1	F = F0 + 3 MHz	_	-35	_	dB
	F = F0 – 3 MHz	_	-45	_	dB
	F > F0 + 3 MHz	_	-35	_	dB
	F > F0 – 3 MHz	_	-48	_	dB
Image frequency	_	_	-35	_	dB
Adia and about all to impact from the	$F = F_{image} + 1 \text{ MHz}$	_	-49	_	dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$		-32		dB

Table 26: Receiver Characteristics - Bluetooth LE 500 Kbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-100	_	dBm
Maximum received signal @30.8% PER	_	_	8	_	dBm
Co-channel C/I	F = F0 MHz	_	4	_	dB
	F = F0 + 1 MHz	_	-5	_	dB
	F = F0 – 1 MHz	_	-5	_	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	_	-28	_	dB
	F = F0 – 2 MHz		-36	_	dB
	F = F0 + 3 MHz	_	-36	_	dB
	F = F0 - 3 MHz	_	-38	_	dB
	F > F0 + 3 MHz		-37	_	dB
	F > F0 – 3 MHz	_	-41	_	dB
Image frequency	_		-37		dB
Adjacent channel to image frequency	$F = F_{image} + 1 \text{ MHz}$	_	-44		dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$		-28		dB

5 Module Schematics

This is the reference design of the module.

S

Module Schematics

Figure 4: ESP32-S3-WROOM-2 Schematics

6 Peripheral Schematics

This is the typical application circuit of the module connected with peripheral components (for example, power supply, antenna, reset button, JTAG interface, and UART interface).

Figure 5: Peripheral Schematics

- Soldering the EPAD to the ground of the base board is not a must, however, it can optimize thermal performance. If you choose to solder it, please apply the correct amount of soldering paste.
- To ensure that the power supply to the ESP32-S3 chip is stable during power-up, it is advised to add an RC delay circuit at the EN pin. The recommended setting for the RC delay circuit is usually R = 10 kΩ and C = 1 μF. However, specific parameters should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing of the chip. For ESP32-S3's power-up and reset sequence timing diagram, please refer to Section Power Scheme in ESP32-S3 Series Datasheet.

7.1 Physical Dimensions

Figure 6: ESP32-S3-WROOM-2 Physical Dimensions

Note:

For information about tape, reel, and product marking, please refer to Espressif Module Package Information.

7.2 Recommended PCB Land Pattern

Figure 7: ESP32-S3-WROOM-2 Recommended PCB Land Pattern

8 Product Handling

8.1 Storage Conditions

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric environment of < 40 °C and /90%RH. The module is rated at the moisture sensitivity level (MSL) of 3.

After unpacking, the module must be soldered within 168 hours with the factory conditions 25±5 °C and /60%RH. If the above conditions are not met, the module needs to be baked.

8.2 Electrostatic Discharge (ESD)

Human body model (HBM): ±2000 V

• Charged-device model (CDM): ±500 V

8.3 Reflow Profile

Solder the module in a single reflow.

Figure 8: Reflow Profile

Ultrasonic Vibration 8.4

Avoid exposing Espressif modules to vibration from ultrasonic equipment, such as ultrasonic welders or ultrasonic cleaners. This vibration may induce resonance in the in-module crystal and lead to its malfunction or even failure. As a consequence, the module may stop working or its performance may deteriorate.

9 Related Documentation and Resources

Related Documentation

- ESP32-S3 Series Datasheet Specifications of the ESP32-S3 hardware.
- ESP32-S3 Technical Reference Manual Detailed information on how to use the ESP32-S3 memory and peripherals.
- ESP32-S3 Hardware Design Guidelines Guidelines on how to integrate the ESP32-S3 into your hardware product.
- Certificates
 - https://espressif.com/en/support/documents/certificates
- Documentation Updates and Update Notification Subscription https://espressif.com/en/support/download/documents

Developer Zone

- ESP-IDF Programming Guide for ESP32-S3 Extensive documentation for the ESP-IDF development framework.
- ESP-IDF and other development frameworks on GitHub.
 - https://github.com/espressif
- ESP32 BBS Forum Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.
 - https://esp32.com/
- The ESP Journal Best Practices, Articles, and Notes from Espressif folks.
 - https://blog.espressif.com/
- See the tabs SDKs and Demos, Apps, Tools, AT Firmware.
 https://espressif.com/en/support/download/sdks-demos

Products

- ESP32-S3 Series SoCs Browse through all ESP32-S3 SoCs.
 - https://espressif.com/en/products/socs?id=ESP32-S3
- ESP32-S3 Series Modules Browse through all ESP32-S3-based modules.
 - https://espressif.com/en/products/modules?id=ESP32-S3
- ESP32-S3 Series DevKits Browse through all ESP32-S3-based devkits.
 - https://espressif.com/en/products/devkits?id=ESP32-S3
- ESP Product Selector Find an Espressif hardware product suitable for your needs by comparing or applying filters. https://products.espressif.com/#/product-selector?language=en

Contact Us

- See the tabs Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples (Online stores), Become Our Supplier, Comments & Suggestions.
 - https://espressif.com/en/contact-us/sales-questions

Revision History

Date	Version	Release notes
2022-08-01	v1.0	 Add certification and test information Update Table 1 and Table 11 and add note Update note in Table 2 Update BLE RF power control range in Table 19 Other minor updates
2022-05-09	v0.7	Update pin definitions table
2021-12-31	v0.6	Overall update for chip revision 1
2021-07-13	v0.1	Preliminary release, for chip revision 0

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2022 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.