遥感图像智能解译技术挑战赛说明材料

businiaoo

西安交通大学

目 录

1	队伍介绍	. 2
2	数据分析	. 2
	2.1 图像数量与正负样本比例	. 2
	2.2 图像直方图统计	. 2
3	算法介绍	. 4
	3.1 整体框架	. 4
	3.2 数据增强	. 4
	3.3 特征提取网络	. 4
	3.4 特征融合网络	. 5
	3.5 预测模块	. 6
	3.6 防止过拟合	. 6
	3.7 同分布化处理	. 7
4	实验细节	. 8
	4.1 详细配置	. 8
	4.2 模型复杂度	. 8
	4.3 实验结果	. 8
	4.3.1 val 集结果	. 9
	4.3.2 Test 集结果	. 9
5	其他尝试	. 9
6	参考文献	10

1 队伍介绍

用户名: GoodGoodStudy 团队名: GoodGoodStudy

单位: 西安交通大学

详情信息:

姓名: businiaoo 研究生二年级

研究方向:弱小目标检测、变化检测 联系方式: a1182693164@stu.xjtu.edu.cn

2 数据分析

2.1 图像数量与正负样本比例

数据集	图像数量	尺寸	正样本比例	负样本比例
train	6000		22.48%	77.52%
val	2000	512*512*3	24.37%	75.63%
test	2000			

2.2 图像直方图统计

统计 train/image1 下的所有图像的直方图,如下图中的左上角的图;统计 train/image2 下的所有图像的直方图,如下图中的右上角的图。其他图像同理。

可以发现, val 与 train 的数据直方图基本一致,但是 test 的直方图非常奇怪,有大量尖峰。进一步,通过查看图像发现,编号为 9601-10000 的图像色彩不对劲。于是将 test 集的前 1600 张图像与后 400 张图像分别统计其直方图,如下。

可以看出,test 中前 1600 张图像与 train&val 的直方图基本一致,但是后 400 张图像的直方图是不连续的均匀分布,与 train 的直方图分布相差甚远,进一步查看图像,其分辨率也较训练集的图像低;这成为决赛阶段的研究重点,如何使得算法能自动适应这种不同于训练集分布及分辨率的数据,详细讨论将在第 3 节算法介绍中展开。

3 算法介绍

3.1 整体框架

如上图,整个网络由三部分构成:

- 1. 两个共享参数的特征提取模块(backbone),用来提取双时像影像的多尺度特征;
- 2. 特征融合模块,融合提取到的多尺度特征;
- 3. 预测模块,根据融合之后的特征进行变化预测,并与变化标签计算损失,进行 反向传播。

3.2 数据增强

为了提高泛化性能,在数据输入端采用了数据增强,主要包括以下几种增强手段:

- 1. 随机直方图均衡化
- 2. 随机颜色抖动(HSV 空间)
- 3. 随机上下左右翻转
- 4. 随机旋转
- 5. 随机多尺度([0.5-1.5])
- 6. 随机交换双时像图像顺序
- 7. 归一化

3.3 特征提取网络

特征提取网络用来提取双时像影像的多尺度特征,输入为两个图像,对每个图像输出4个尺度的特征。

这里主要采用了两种特征提取网络: Efficientnetv2_s 和 CSwin Transformer tiny。

1. Efficientnetv2[1]

Efficientnetv2 是在 Fused-MBConv 与 MBConv 两种基本模块的基础上,使用 NAS 搜索,得到的网络架构,相比于 Efficientnetv1 在训练速度有 6 倍以上提升,参数量上

进一步下降,具体的参数量与计算量分析将在第4节实验细节展开。

Table 4. EfficientNetV2-S architecture – MBConv and Fused-MBConv blocks are described in Figure 2.

Stage	Operator	Stride	#Channels	#Layers
0	Conv3x3	2	24	1
1	Fused-MBConv1, k3x3	1	24	2
2	Fused-MBConv4, k3x3	2	48	4
3	Fused-MBConv4, k3x3	2	64	4
4	MBConv4, k3x3, SE0.25	2	128	6
5	MBConv6, k3x3, SE0.25	1	160	9
6	MBConv6, k3x3, SE0.25	2	256	15
7	Conv1x1 & Pooling & FC	-	1280	1

上表[1]为 EfficientNetv2_s 的结构,本次比赛采用前 6 个 stage,未使用第 7 个 stage(黄色区域),分别输出 stage3、stage4、stage5、stage6 的特征,构成四个尺度的多尺度特征。

2. CSwin Transformer[2]

Transformer 的结构近来在很多视觉任务上已经超越了 CNN,本次比赛也使用了 CSwin Transformer tiny 模型,它是 Swin Transformer[3]的进阶版,通过引入十字交叉状的自注意力机制和 LePE,大大减少了计算量,同时在语义分割任务上取得了 SOTA。

上图[2]为 CSwin 的整体结构图,输出 stage1、stage2、stage3、stage4 的特征,作为后续多尺度特征融合的输入。

3.4 特征融合网络

特征融合网络是对多尺度特征进行融合,输入为8个(每张图4个)多尺度特征,输出为1个融合之后的变化检测特征。

本次比赛借鉴 FPN[4]与 Deeplabv2[5],提出如上图所示的特征融合网络。首先,

最左侧为 8 个输入特征, a 和 b 表示一张图像, a1 表示尺度最小的特征图, a4 表示尺度最大的特征图。两个同一尺度的特征进行级联,最顶层的特征通过 ASPP[5]模块,增大感受野; 然后与 FPN[4]一样自上而下进行特征融合; 最后将初步融合的 4 个尺度的特征都 resize 到同一大小,然后级联形成最终的输出特征图。通过这种多尺度融合的方式,增强了模型对不同尺度建筑物的感知能力。

ASPP[5]模块的结构如上图,利用不同膨胀因子(6,12,18,24)的空洞卷积融合多尺度信息。不做池化损失信息的情况下,保证了低计算量,加大了感受野,让每个卷积输出都包含较大范围的信息。

3.5 预测模块

通过预测模块得到最终的变化区域预测,输入为经过多尺度融合之后的特征,输出为变化预测。得到变化预测之后,进一步与真实标签计算 loss。

如上图,这一部分的实现非常简单,得到融合之后的特征之后,通过一个 1*1 的 卷积层和 sigmoid 激活层便可得到变化预测。

在与真值标签计算 loss 的时候采用 dice 与 bce 的混合 loss。dice 是针对交并比优化的损失函数,本次比赛采用 miou 作为指标,这个 loss 很合适。

3.6 防止过拟合

本次比赛采用了 dropout 与 dropblock[6]防止过拟合。具体来说,在预测模块的最

后一层之前使用 dropout, drop 率设置为 0.2; 对特征融合网络的输入与输出部分使用 dropblock, block size 设置为 7*7, drop 率设置为 0.15, step 设置为 30。比赛前期使用 serenert50 对 dropblock 做消融实验如下表。

模型	是否使用 dropblock	miou	OA
Seresnet50	否	0.8137	0.9230
Seresnet50	是	0.8215	0.9274

3.7 同分布化处理

这一部分是 test 集发布之后,才意识到的问题。在实际中确实存在,输入图像与训练时的图像的分布不同。在本次比赛中采用直方图巴氏系数[0,1]作为衡量图像分布相关性的指标。

当输入图像直方图与参考直方图的巴氏系数小于 0.7 的时候,认为输入图像与训练 图像同分布,此时不需要处理;反之,将输入图像的直方图通过直方图匹配的方式, 与参考直方图进行匹配。

具体而言,参考直方图采用 val 集的平均直方图; 巴氏系数的阈值选定过程如下: 1. 假设 val 集有 n 张图像,统计 val 集的平均直方图,得到参考直方图; 2. 遍历每一张 val 集的图像,分别与参考直方图计算巴氏系数,得到 n 个巴氏系数; 3. 对得到的 n 个巴氏系数排序,取 1%处的最大值,作为巴氏系数阈值。

测试集 image1 同分布化之前与之后的平均直方图如上图,可以看出,有明显改进。

4 实验细节

4.1 详细配置

本次比赛采用 adamw 作为优化器,权重衰减设置为 0.01; 采用 Onecycle 学习率衰减策略,最大学习率为 0.0035,最小为 0.0035/500; epoch 设置为 150; batch size 为 16; EfficientNetv2_s 训练尺寸为 512; CSwin Transformer tiny 训练尺寸为 448; 采用 SWA[7] 模型融合策略,额外训练 50 个 epoch,平均权重。

4.2 模型复杂度

本次比赛采用了两种模型, EfficientNetv2 与 CSwin。

下表为它们的训练复杂度。FLOPs 是输入 1 对图像计算的。参数量和 FLOPs 都是使用 thop (一个 python 包)统计出来的。显卡为单块 RTX3090。

模型	训练尺寸	参数量/M	FLOPs/G	训练速度/epoch
EfficientNetv2_s	512	27.536	38.537	7分20秒
CSwin_t	448	41.523	52.183	9分33秒

下表为它们的预测复杂度。经过测试,efficientNetv2_s 在 352 的输入尺度下,有更好的表现,因此 efficientnetv2_s 测试时采用 352 输入。速度测试是在 8bs 下测试的,此时 Efficientnet 占用显存 1654M,CSwin 占用显存 2240M。

模型	测试尺寸	参数量/M	FLOPs/G	测试速度/秒
EfficientNetv2_s	352	27.536	18.219	51 对图像
CSwin_t	448	41.523	52.183	29 对图像

下表为模型集成的测试效率, 4×EfficientNetv2_s 表示 4 个 EfficientNetv2_s 模型集成。

模型	测试尺寸	测试速度/秒
EfficientNetv2_s+CSwin	448	21 对图像
4×EfficientNetv2_s	352	25 对图像

4.3 实验结果

- a. 使用 TTA 之后,指标变差,所以以下测试结果均没有进行测试时增强(TTA)
- b. Self-training: 使用集成模型对 val 或 test 进行预测,保存预测结果;将 val 或 test 的图像以及对它们的预测结果加入训练集;对单模型进行微调。

4.3.1 val 集结果

模型	miou	OA
EfficientNetv2_s	0.8976	0.9599
CSwin_t	0.8962	0.9596
CSwin_t+ EfficientNetv2_s	0.9065	0.9638
Val 集使用 Self-training 结果如下	表	
模型	miou	OA
EfficientNetv2_s	0.9009	0.9613
CSwin_t	0.9056	0.9634
CSwin_t+ EfficientNetv2_s	0.9074	0.9641

可以看出,使用 self-training 之后,单模型的指标变得很高,但是集成之后的 miou 只有 0.09%升高。这种方式 self-training,类似于模型蒸馏的意思,使用集成模型的预测结果加到训练集中,让单个小模型去学习集成模型的结果,从而在单模型上有明显的指标提升,但对集成模型的指标提升作用不大。

4.3.2 Test 集结果

模型	miou	OA
EfficientNetv2_s+CSwin_t	0.8523	0.9423
EfficientNetv2_s +CSwin_t +同分布化处理	0.8655	0.9480
4×EfficientNetv2_s +同分布化处理+self-training	0.8663	0.9483

5 其他尝试

除了上文中提到的方法,在比赛的过程中还尝试了其他方法,对指标没有提升或者是提升效果没有上文中的方法大。

- 1. PPM[8]/SPP[9]模块(有提升,但不如 ASPP)
- 2. Cutout、随机平移像素数据增强(没有提升)
- 3. FaPN[10],特征对齐金字塔(指标降低)
- 4. Focal loss[11] / topk loss(均不如 bce+dice)
- 5. CSwin_b / EfficientNetv2_m (没有提升,且模型太大)

6 参考文献

- [1] EfficientNetV2: Smaller Models and Faster Training, 2021
- [2] CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows, 2021
- [3] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, 2021
- [4] Feature Pyramid Networks for Object Detection, 2017
- [5] DeepLab v2: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, 2017
- [6] DropBlock: A regularization method for convolutional networks, 2018
- [7] Averaging Weights Leads to Wider Optima and Better Generalization, 2018
- [8] Pyramid Scene Parsing Network, 2018
- [9] Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, 2017
- [10] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction, 2021
- [11] Focal Loss for Dense Object Detection, 2017