

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Masahisa KOSAKA

Serial No.:10/072,871 Filed: February 12, 2002

Title: OPTICAL MATERIALS HAVING GOOD ULTRAVIOLET ABSORBABILITY AND

METHOD FOR PRODUCING THEM

DECLARATION OF MASAHISA KOSAKA

Masahisa KOSAKA, c/o Hoya Corporation, 7-5, Nakaochiai 2-chome, Shinjyuku-ku, Tokyo, Japan, declares under penalty of perjury under the laws of the United States of America, as follows:

- 1. I graduated from Tokai University, Faculty of Technology, Department of Industrial Chemistry, in March 1986. Since April 1986, I have been employed by Hoya Corporation, the assignee of this application, where I have been engaged in research and development of plastic lenses. I am the named inventor of this patent application and am familiar with the subject matter disclosed in this patent application.
- 2. I have found that optical materials having a yellowness index (YI) falling between about 0.7 and 1.8 and a 400 nm UV transmittance of at most 30 % when the thickness of the optical material is about 1.8 mm are new and have properties that are unexpected as compared with Amagai. To support this statement, I have conducted additional experiments, which I explain below.
- 3. In reproducing the examples of Amagai, U.S. Patent No. 6,201,061, and for the other tests described below, I used the following ultraviolet light absorbents:

SUMISOLVE 340, that is, 2-(2-hydroxy-5-tert-octylphenyl)bezotriazole;

THINUBIN 234, that is, 2-[2-hydroxy-3,5-bis(α , α -dimethylbenzyl)-phenyl]-2H-benzotriazole;

SUMISOLVE 110234, that is, 2-hydroxy-4-methoxybenzophenone; and BIOSORB 910, that is,ethyl-2-cyano-3,3-diphenyl acrylate.

4. I conducted or had conducted under my direction additional experiments as follows:

To prove unexpected results as compared with the disclosed examples of Amagai, we conducted experiments by using same lens monomers described in Example 7 of this patent application with the ultraviolet light absorbents which were used in the examples of Amagai and 2-(2-hydroxy-4-octyloxyphenyl)-benzotriazole.

The physical properties of the plastic lenses we produced herein were measured according to the methods mentioned below.

1. Yellowness Index (YI):

This is measured according to JIS K7103-1977, which describes the yellowness index of plastics and test methods for determining the yellowness index of plastics.

2. Transmittance:

The 400 nm UV transmittance of each plastic lens was measured using a spectrophotometer, Hitachi Model U3410.

5. This section describes the additional experiments we conducted. In each of the Comparative Additional Experiments we conducted, we used a UV absorbent disclosed

Additional Experiment 1

The substance of Additional Experiment 1 is same as that of Example 7 in this patent application.

93.0 parts by weight of bis-(β-epithiopropyl)sulfide, 1.0 part by weight of 2-hydroxyethyl methacrylate, and 0.50 parts by weight of 2-(2-hydroxy-4-octyloxyphenyl)-benzotriazole serving as a UV absorbent were mixed with stirring, to which were added 6.0 parts by weight of n-butyl thioglycolate, and 0.25 parts by weight of N,N-diethanolamine serving as a catalyst, and further stirred under a reduced pressure of 10 mm Hg for 3 hours to prepare a monomer composition for lenses.

Next, the monomer composition was cast into a glass mold for lenses (lens power: 0.00D, lens diameter 80 mm, lens thickness 1.8 mm), which had been previously prepared and equipped with a resin gasket. The mold was put into an electric furnace, and gradually heated therein from

20°C. up to 100°C. over a period of 20 hours and then kept heated at 100°C. for 30 minutes, through which the monomers were polymerized.

After the polymerization, the mold was released, and the lens formed was further heated at 110°C. for 1 hour.

The center (having a thickness of 1.8 mm) of the lens thus obtained had a YI of 1.8. The lens was slightly yellowish, but its 400 nm UV transmittance was 10% and its UV-blocking capability was good. The results are shown in Table 1.

Comparative Additional Experiment 1

The substance of Comparative Additional Experiment 1 is same as that of Comparative Example 8 in this patent application.

A lens was produced in the same manner as in Additional Experiment 1, to which, however, added was 1.00 part by weight of SUMISOLVE 340, that is, 2-(2-hydroxy-5-tert-octylphenyl)-benzotriazole serving as a UV absorbent.

The center (having a thickness of 1.8 mm) of the lens thus obtained had YI of 2.3, and the 400 nm UV transmittance thereof was 7%. Though its UV-blocking capability was good, the lens was yellowish.

Comparative Additional Experiment 2

A lens was produced in the same manner as in additional experiment 1, to which, however added was 0.4 part by weight of BIOSORB 910, that is, ethyl-2-cyano-3,3-diphenyl acrylate, serving as a UV absorbent.

The center (having a thickness of 1.8 mm) of the lens thus obtained had a YI of 1.5, and the 400 nm UV transmittance thereof was 55%.

Comparative Additional Experiment 3

A lens was produced in the same manner as in Additional Experiment 1, to which, however added was 2.5 part by weight of BIOSORB 910, that is,ethyl-2-cyano-3,3-diphenyl acrylate, serving as a UV absorbent.

The center (having a thickness of 1.8 mm) of the lens thus obtained had a YI of 3.7, and the 400 nm UV transmittance thereof was 7%.

Comparative Additional Experiment 4

A lens was produced in the same manner as in Additional Experiment 1, to which, however added was 5.0 part by weight of BIOSORB 910, that is, ethyl-2-cyano-3,3-diphenyl acrylate, serving as a UV absorbent.

The center (having a thickness of 1.8 mm) of the lens thus obtained had a YI of 5.3, and the 400 nm UV transmittance thereof was 0.8%.

Comparative Additional Experiment 5

A lens was produced in the same manner as in Additional Experiment 1, to which, however added was 0.2 part by weight of THINUBIN 234, that is, (2-[2-hydroxy-3,5-bis(α , α -dimethylbenzyl)-phenyl]-2H-benzotriazole, serving as a UV absorbent.

The center (having a thickness of 1.8 mm) of the lens thus obtained had a YI of 2.0 and the 400 nm UV transmittance thereof was 13%.

Comparative Additional Experiment 6

A lens was produced in the same manner as in Additional Experiment 1, to which, however added was 0.4 part by weight of THINUBIN 234, that is, $(2-[2-hydroxy-3,5-bis(\alpha,\alpha-dimethylbenzyl)-phenyl]-2H-benzotriazole, serving as a UV absorbent.$

The center (having a thickness of 1.8 mm) of the lens thus obtained had a YI of 2.7 and the 400 nm UV transmittance thereof was 2.7%.

Comparative Additional Experiment 7

A lens was produced in the same manner as in Additional Experiment 1, to which, however added was 0.4 part by weight of SUMISOLVE 110234, that is, 2-hydroxy-4-methoxybenzophenone, serving as a UV absorbent.

The center (having a thickness of 1.8 mm) of the lens thus obtained had a YI of 2.1 and the 400 nm UV transmittance thereof was 44%.

Comparative Additional Experiment 8

A lens was produced in the same manner as in Additional Experiment 1, to which, however added was 2.5 part by weight of SUMISOLVE 110234, that is, 2-hydroxy-4-methoxybenzophenone, serving as a UV absorbent.

The center (having a thickness of 1.8 mm) of the lens thus obtained had a YI of 6.0 and the 400 nm UV transmittance thereof was 1.5%.

Comparative Additional Experiment 9

A lens was produced in the same manner as in Additional Experiment 1, to which, however added was 5.0 part by weight of SUMISOLVE 110234, that is, 2-hydroxy-4-methoxybenzophenone, serving as a UV absorbent.

The center (having a thickness of 1.8 mm) of the lens thus obtained had a YI of 9.0 and the 400 nm UV transmittance thereof was 0%.

All of results regarding the above Additional Experiment and Comparative Additional Experiments are shown in attached Table 1.

From the above data, tabulated in Table 1, I conclude that all of the present claims in this application, which require a yellowness index (YI) between about 0.7 and 1.8 and a 400 nm UV transmittance of at most 30 % when the monomer is a episulfide monomer and the thickness of the optical material is about 1.8 mm are not anticipated by Amagai, all of whose UV absorbents produce lenses having a YI of 2.1 or more, a 400 nm UV transmittance of 14% or less, or both.

I declare under the penalty of perjury under the laws of the United States of America that the foregoing is true and correct. Executed at Tokyo, Japan, this $\frac{22}{3}$ day of May, 2003

Masahisa Kosaka

		Table 1			
	Starting Monomer	UV Absorbent	Ч	Center Thickness (mm)	Transmittar (%) at 400 nm
Add. Ex 1	bis(β-epithiopropyl) sulfide (93.0)	2-(2-hydroxy-4-octyloxyphenyl)-benzotriazole	1.8	1.8	10
	2-hydroxyethyl methacrylate (1.0)	(0.50)			_
	n-butyl thioglycolate (6.0)				
Comp. Add.	bis(β-epithiopropyl) sulfide (93.0)	2-(2-hydroxy-5-tert-octylphenyl)-benzotriazole	2.3	1.8	\bigcirc
Ex. 1	2-hydroxyethyl methacrylate (1.0)	(1.0)			,
	n-butyl thioglycolate (6.0)				
Comp. Add.	bis(β-epithiopropyl) sulfide (93.0)	ethyl-2-cyano-3,3-diphenyl acrylate (0.4)	(1.5)	1.8	55
Ex. 2	2-hydroxyethyl methacrylate (1.0)				
	n-butyl thioglycolate (6.0)				
Comp. Add.	bis(β-epithiopropyl) sulfide (93.0)	ethyl-2-cyano-3,3-diphenyl acrylate (2.5)	3.7	1.8	/
Ex. 3	2-hydroxyethyl methacrylate (1.0)				
	n-butyl thioglycolate (6.0)				
Comp. Add.	bis(β-epithiopropyl) sulfide (93.0)	ethyl-2-cyano-3,3-diphenyl acrylate (5.0)	5.3	1.8	0.8
Ex. 4	2-hydroxyethyl methacrylate (1.0)		_		
	n-butyl thioglycolate (6.0)				
Comp. Add.	bis(β-epithiopropyl) sulfide (93.0)	2-[2-hydroxy-3,5-bis(α , α	2.0	1.8	14
Ex. 5	2-hydroxyethyl methacrylate (1.0)	-dimethylbenzyl)-phenyl]-2H-benzotriazole			
	n-butyl thioglycolate (6.0)	(0.2))
Comp. Add.	bis(β-epithiopropyl) sulfide (93.0)	2-[2-hydroxy-3,5-bis(α , α	2.6	1.8	N
Ex. 6	2-hydroxyethyl methacrylate (1.0)	-dimethylbenzyl)-phenyl]-2H-benzotriazole			
	n-butyl thioglycolate (6.0)	(0.4)			

Comp. Add.	bis(β-epithiopropyl) sulfide (93.0)	2-hydroxy-4-methoxybenzophenone	2.1	1.8	44
Ex. 7	2-hydroxyethyl methacrylate (1.0)	(0.4)			
	n-butyl thioglycolate (6.0)				
Comp. Add.	bis(β-epithiopropyl) sulfide (93.0)	2-hydroxy-4-methoxybenzophenone	6.0	1.8	1.5
Ex. 8	2-hydroxyethyl methacrylate (1.0)	(2.5)			
	n-butyl thioglycolate (6.0)		1	18 20	
Comp. Add.	bis(β-epithiopropyl) sulfide (93.0)	2-hydroxy-4-methoxybenzophenone	9.0	1.8	0
Ex. 9	2-hydroxyethyl methacrylate (1.0)	(5.0)		-	
	n-butyl thioglycolate (6.0)				