Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-225. Вариант 12

- 1. Пусть $z = \frac{3}{2} + \frac{3\sqrt{3}i}{2}$. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\frac{\sqrt{3}}{2} \frac{i}{2}}$ имеет аргумент $\frac{5\pi}{12}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-2-2i) + y(13+4i) = 178-49i \\ x(7+9i) + y(-5-5i) = -199+57i \end{cases}$$

- 3. Найти корни многочлена $-4x^6-40x^5-180x^4-480x^3-796x^2-760x-300$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-2-i, x_2=-1+2i, x_3=-1$.
- 4. Даны 3 комплексных числа: 1-27i, 24+21i, 7-19i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \frac{1}{2} + \frac{\sqrt{3}i}{2}, z_2 = -1$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 5 - 3i| < 2\\ |arg(z + 4 + 5i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-9, 0, 7), b = (-1, -10, -1), c = (3, -9, -4). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-4, -7, -4) и плоскость P: 4x 30y 18z + 354 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-5, -13, 3), $M_1(-3, 3, 11)$, $M_2(0, 1, 11)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 6x + 6y + 10z + 200 = 0 \\ -13x + 17y - 390 = 0 \end{cases} \qquad L_2: \begin{cases} 19x - 11y + 10z + 4082 = 0 \\ 15x + 4y + 13z + 2629 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.