- Finding the coordinates of vectors of β' in β and vice versa: We have the rotation matrix (R) which expresses the transformation from β' to β . Therefore, we can write $R = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ b'_{1\beta} & b'_{2\beta} & b'_{3\beta} \\ \vdots & \vdots & \vdots \end{pmatrix}$. Taking each column of R, we found the vectors of β' in β and taking R⁻¹, we found the vectors of β in β' .
- Plotting the vectors from beta and beta' in standard basis:
 -Vectors form beta (blue) & vectors from beta' (green)

Plotting the coordinate systems (O, beta) and (O', beta') & their basic vectors originating from O and O':

• \vec{x}_{β} plot (magenta arrow):

• \vec{y}_{β} , plot (red arrow):

• $\overrightarrow{OZ}_{\beta}$ plot (black arrow):

-In order to find OZ in beta basis, I used the alibi representation.

Therefore,
$$\overrightarrow{O'Z}_{\beta'}$$
 (which is $\vec{Z}'_{\beta'}$) = \vec{x}_{β}

$$\overrightarrow{O'Z}_{\beta'} = \overrightarrow{OZ}_{\beta'} - \overrightarrow{OO'}_{\beta'} => \vec{x}_{\beta} = \overrightarrow{OZ}_{\beta'} - \overrightarrow{OO'}_{\beta'}$$

$$R^{-1}(\overrightarrow{OZ}_{\beta} - \overrightarrow{OO'}_{\beta}) = \vec{x}_{\beta} = > \overrightarrow{OZ}_{\beta} = R\vec{x}_{\beta} + \overrightarrow{OO'}_{\beta}$$

$$\overrightarrow{OZ}_{\beta} = R\vec{x}_{\beta} - \overrightarrow{O'O}_{\beta} => \overrightarrow{OZ}_{\beta} = R\vec{x}_{\beta} - R\overrightarrow{O'O}_{\beta},$$