Architettura degli Elaboratori

La cache - introduzione

Alessandro Checco

checco@di.uniroma1.it

Special thanks and credits:

Andrea Sterbini, Iacopo Masi,

Claudio di Ciccio

[S&PdC]

5.1, 5.3 - 5.4

Esercizio per casa

Esercizio per casa

- Si consideri l'architettura MIPS con pipeline [...]. Il programma a fianco effettua le operazioni di somma o sottrazione indicate nella stringa fornita in input.
- Si supponga che tutte le istruzioni impiegate fanno parte del set supportato dalla CPU in figura, ossia non si fa uso di alcuna pseudoistruzione.
- Si indichino (ignorando hazard che possano concernere la syscall):
- 1) [...]
- 2) [...]
- 3) [...]
- quanti cicli di clock sarebbero necessari per eseguire il programma senza forwarding, spiegando il calcolo effettuato;

```
5) [...]
```

```
.globl main
    .data
    W: .asciiz "+6-5+4+2-8"
5
    .text
    main:
8
                $v0, $zero, $zero # Init: risultato
           and $t0, $t0, $zero
9
                                  # Init: $t0
               $t1, $t0, $t0
                                  # Init: $t1
                $a0, W
11
                                  # Indirizzo stringa
           la
                $t1, 0($a0)
12
    Cycle: lb
                                  # Segno in $t1
           beg $t1, $zero, Exit # Fine stringa? → esci
13
                $t0, 1($a0)
14
                                  # Simbolo num. in $t0
           subi $t0, $t0, '0'
                                  # Val. assoluto num.
           bne $t1, '-', Add
                                  # Non '-'? → somma
           sub $t0, $zero, $t0
                                  # Else → v. opposto
           add $v0, $v0, $t0
                                  # Addizione in $v0
    Add:
           addi $a0, $a0, 2
                                  # Avanza di 2 char.
                Cycle
                                  # Torna a inizio ciclo
           move $a0, $v0
21
    Exit:
                                  # Risultato in $a0
           li $v0, 1
                                  # Imposta stampa num.
           syscall
                                  # Stampa
           li $v0, 10
                                  # Imposta terminazione
24
           syscall
                                  # Termina
```

Esecuzione senza forwarding (ingresso e prima iterazione)

	W/o forwarding							+6																		
7	main:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	2
8	or \$v0, \$zero, \$zero	F	D	X	М	W																				
9	and \$t0, \$t0, \$zero		F	D	X	М	W																			
10	and \$t1, \$t0, \$t0			>	>	F	D	Х	М	W																
11	la Sa0, W						F	D	X	М	W															
12	Cycle: lb \$t1, 0(\$a0)							>	>	F	D	X	М	W												
13	beg \$t1, \$zero, Exit										>	>	F	D	Х	М	W									
14	lb \$t0, 1(\$a0)													F	D	X	М	W								
15	sub \$t0, \$t0, '0'														>	>	F	D	X	М	W					
16	<u>bne</u> \$t1, '-', Add																	F	D	X	М	W				
17	sub \$t0, \$zero, \$t0																									
18	<u>Add</u> : add \$v0, \$v0, \$t0																		>	F	D	Х	М	W		
19	addi \$a0, \$a0, 2																				F	D	X	М	W	
20	j Cycle																					F	D	X	М	W
21	Exit: move \$aθ, \$vθ																									
22	li \$v0, 1																									
23	syscall																									
24	li \$v0, 10																									
25	syscall																									
	CC	I	DH	CH	×	=																				
	Caricamento pipeline	4				4																				
	Pre-ciclo	4	1			7																				
	In ciclo (+)	8	5	1	3	42																				

Esecuzione senza forwarding (seconda iterazione)

	W/o for	warding	-5																	+4			
7	main:	, o	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
8		or \$v0, \$zero, \$zero																					
9		and \$t0, \$t0, \$zero																					
10		and \$t1, \$t0, \$t0																					
11		la \$a0, W																					
12	Cycle:	lb \$t1, 0(\$a0)	>	F	D	Х	М	W												>	F	D	X
13		beg \$t1, \$zero, Exit			>	>	F	D	X	М	W											>	>
14		lb \$t0, 1(\$a0)						F	D	Х	М	W											
15		sub \$t0, \$t0, '0'							>	>	F	D	X	М	W								
16		<u>bne</u> \$t1, '-', Add										F	D	Х	М	W							
17		sub \$t0, \$zero, \$t0											>	F	D	Х	М	W					
18	Add:	add \$v0, \$v0, \$t0	М	W											>	>	F	D	Х	М	W		
19		addi \$a0, \$a0, 2	X	М	W													F	D	Х	М	W	
20		j Cycle	D	Х	М	W													F	D	Х	М	W
21	Exit:	move \$a0, \$v0																					
22		li \$v0, 1																					
23		syscall																					
24		li \$v0, 10																					
25		syscall																					

cc	I	DH	CH	×	=
Caricamento pipeline	4				4
Pre-ciclo	4	3			7
In ciclo (+)	8	5	1	3	42
In ciclo (-)	9	8	0	2	34

Split one stall with the next step because two stalls are necessary at instruction 12 only while entering the cycle. For every other iteration, one stall is sufficient

Esecuzione senza forwarding (uscita dal ciclo e termine)

	W/o for	warding																										
7	main:		73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98
8		or \$v0, \$zero, \$zero																										
9		and \$t0, \$t0, \$zero																										
10		and \$t1, \$t0, \$t0																										
11		la \$a0, W																										
12	Cycle:	lb \$t1, 0(\$a0)												>	F	D	X	М	W									
13		beg \$t1, \$zero, Exit	X	M	W											>	>	F	D	X	М	W						
14		lb \$t0, 1(\$a0)	D	Χ	М	W																						
15		sub \$t0, \$t0, '0'	>	>	F	D	X	М	W																			
16		<u>bne</u> \$t1, '-', Add				F	D	X	М	W																		
17		sub \$t0, \$zero, \$t0					>	F	D	Х	М	W																
18	Add:	add \$v0, \$v0, \$t0							>	>	F	D	Х	М	W													
19		addi \$a0, \$a0, 2										F	D	Χ	М	W												
20		j Cycle											F	D	Х	М	W											
21	Exit:	move \$a0, \$v0																	>	F	D	Х	М	W				
22		li \$v0, 1																			F	D	X	М	W			
23		syscall																				F	D	X	М	W		
24		li \$v0, 10																					F	D	Х	М	W	
25		syscall																						F	D	Χ	М	W

CC	I	DH	CH	×	=
Caricamento pipeline	4				4
Pre-ciclo	4	3			7
In ciclo (+)	8	5	1	3	42
In ciclo (-)	9	8	0	2	34
Uscita ciclo	2	3	0		5
Post-ciclo	5		1		6
TOTALE					98

Split one stall with the next step because two stalls are necessary at instruction 12 only while entering the cycle. For every other iteration, one stall is sufficient

Caching della memoria principale

Argomento

Cosa accade in fase di accesso a memoria?

Argomento

Cosa accade in fase di accesso a memoria?

Problema:

la RAM è molto più lenta del processore (circa 10-100 volte più lenta)

Una memoria più veloce è molto più costosa

1. Principio di località temporale

 «un programma tende ad accedere allo stesso elemento in momenti vicini tra loro»

2. Principio di località spaziale

 «un programma tende ad accedere successivamente elementi di memoria vicini tra loro»

Idea 1:

 mettiamo da parte in una piccola memoria veloce (cache) solo i dati più usati

Idea 2:

 quando memorizziamo un dato mettiamo da parte anche i dati vicini

Argomento

Problema:

la RAM è molto più lenta del processore (circa 10-100 volte più lenta)

Una memoria più veloce è molto più costosa

1. Principio di località temporale

 «un programma tende ad accedere allo stesso elemento in momenti vicini tra loro»

2. Principio di località spaziale

 «un programma tende ad accedere successivamente elementi di memoria vicini tra loro»

Idea 1:

 mettiamo da parte in una piccola memoria veloce (cache) solo i dati più usati

Idea 2:

 quando memorizziamo un dato mettiamo da parte anche i dati vicini

Dimensione della memoria in ciascun livello

Schema e terminologia

La memoria è divisa in **blocchi** di dimensioni uguali

La cache contiene un numero N di linee:

Quando la CPU richiede un indirizzo:

- Il blocco corrispondente è presente → il dato è caricato dalla cache (HIT)
- Altrimenti → dato è preso dalla RAM e il blocco è copiato in cache (MISS)

Le linee contengono:

- 1 bit di **validità**
 - indica se la linea contiene dati validi
- II campo tag
 - distingue quale blocco della memoria è nella linea
- II blocco memorizzato nella linea

# linea	V	Tag	Blocco	Blocco
0	0			Blocco
1	1	0		
2	1	1	←	Blocco
3	0			

Blocco O

Blocco 1

Blocco 2

Blocco 3

6

Performance

Supponiamo che un programma preveda **1** 000 000 di accessi in memoria e che il tempo di accesso sia di **100 ns**

Il tempo totale che il programma impiegherà per l'accesso è 1 000 000 × 100ns = 100 ms

Se si usa una cache con tempo di accesso 1 ns e la percentuale di MISS è il 10%

- il 90% di 1 000 000 accessi (HIT) impiegheranno $1 \text{ ns} \times 1 000 000 \times 90\% = 0.9 \text{ ms}$
- il 10% rimanente (MISS) impiegheranno 100 ns \times 1 000 000 \times 10% = 10 ms

In totale il **tempo di accesso medio** sarà 10ms + 0.9ms / 1000 000 = 10.9 ns con un aumento di velocità di $100ns / 10.9ns \cong 9$ volte circa

Esempio: il processore FastMath

Frequenza di miss	Frequenza di miss	Frequenza di miss
per le istruzioni	per i dati	totale
0,4%	11,4%	3,2%

Direct mapping - Blocchi di 4 word, cache di 2 linee

Direct mapping

	Numero di blocco Indice																Off	set				
		Tag															dic di nea		WOIG	pac/W	Бусе] - -
0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												1	1	0	1						

Il blocco va nella linea ottenuta dal numero di blocco *modulo* il numero N di linee disponibili (ogni N blocchi lo schema si ripete)

Esempio:

Direct mapped cache con:

- Blocco di 4 word = 16 byte
- 8 linee

Indirizzo: $2157 = 0 \times 0000 \ 086D$

- Numero di blocco = $2157 / 16 = 134 = 0 \times 86$
- Offset di blocco = 2157 % 16 = 13 = 0xD
- Indice di linea = $\frac{134}{8}$ % 8 = 6 = 0x6
- Tag = $134 / 8 = 16 = 0 \times 10$

Cache

Esempio di sequenza di accessi

Direct mapped cache				
Con 8 linee	Indice	٧	Tag	Dati
	000	S	10 _{due} HIT	Memoria (10000 _{due})
Sequenza di accessi:	001	N		
•	010	S	10 _{due}	Memoria (10010 _{due})
10110 → 10 110	011	S	00 _{due}	Memoria (00011 _{due})
$11010 \rightarrow 11 \ 010$	100	N	due	oue
$10000 \rightarrow 10\ 000$	100	1.4		
00011 → 00 011	101	N		
10010 → 10 010	110	S	10 HIT	Memoria (10110 _{due})
$10110 \rightarrow 10 \ 110$	444	N.I.	uue	due.
$10000 \rightarrow 10 000$	111	N		

Come determinare HIT/MISS

Cache con:

- blocchi da 1 word
- 1024 linee

Come determinare HIT/MISS

V Tag Indice di linea Offset di blocco parola

Cache con:

- blocchi da 16 word
- 256 linee

Dimensioni della cache

V	Tag	Indice di linea	Offset di blocco	Offset di parola
---	-----	-----------------	------------------	---------------------

Dati:

- Cache (direct mapping) con 2^n linee
- Blocchi di dimensione 2^m word da 4 byte ciascuna, cioè 2^{m+2} byte $(2^{m+5}$ bit)
- 1 bit di validità

Dimensione del campo Tag: 32 - n - m - 2

Dimensione della cache in bit: $2^n \times [2^m \times 32 + (32 - n - m - 2) + 1]$

Dimensioni della cache

V	Tag	Indice di linea	Offset di blocco	Offset di parola
---	-----	-----------------	------------------	---------------------

Dati:

- Cache (direct mapping) con 2ⁿ linee
- Blocchi di dimensione 2^m word da 4 byte ciascuna, cioè 2^{m+2} byte $(2^{m+5}$ bit)
- 1 bit di validità

Dimensione del campo Tag: 32 - n - m - 2

Dimensione della cache in bit: $2^n \times [2^m \times 32 + (32 - n - m - 2) + 1]$

Esempio:

Cache con:

- blocchi da 16 word $\rightarrow m = 4$
- 256 linee $\rightarrow n = 8$

Dimensione del campo Tag: 32 - 8 - 4 - 2 = 18 bit

Dimensione della cache in bit: $256 \times [16 \times 32 + 18 + 1] = 2^8 \times 531 = 2^{10} \times 531/4$

135,936 kbit = 132,75 Kibit