Note: For the benefit of the students, specially the aspiring ones, the question of JEE(advanced), 2013 are also given in this booklet. Keeping the interest of students studying in class XI, the questions based on topics from class XI have been marked with '*', which can be attempted as a test. For this test the time allocated in Physics, Chemistry & Mathematics and Physics are 22 minutes, 21 minutes and 25 minutes respectively.

JEE(ADVANCED)-2013

CODE

3

PAPER 2

Time: 3 Hours Maximum Marks: 180

INSTRUCTIONS

A. General:

- 1. This booklet is your Question Paper. Do not break the seals of this booklet before being instructed to do so by the invigilators.
- 2. Blank papers, clipboards, log tables, slide rules, calculators, cameras, cellular phones, pagers and electronic gadgets are NOT allowed inside the examination hall.
- 3. Write your name and roll number in the space provided on the back cover of this booklet.
- 4. Answers to the questions and personal details are to be filled on a two-part carbon-less paper, which is provided separately. These parts should only be separated at the end of the examination when instructed by the invigilator. The upper sheet is a machine-gradable Objective Response Sheet (ORS) which will be retained by the invigilator. You will be allowed to take away the bottom sheet at the end of the examination.
- 5. **Using a black ball point pen darken the bubbles on the upper original sheet.** Apply sufficient pressure so that the impression is created on the bottom duplicate sheet.

B. Question Paper Format

- 6. The question paper consists of three parts (Physics, Chemistry and Mathematics). Each part consists of three sections.
 - Section 1 contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE are correct
- 7. **Section 2** contains **4 paragraphs** each describing theory, experiment, data etc. **Eight questions** relate to four paragraphs with two questions on each paragraph. Each question of a paragraph has **ONLY ONE correct answer** among the four choices (A), (B), (C) and (D).
- 8. **Section 3** contains **4 multiple choice questions** relate to four paragraphs with two questions on each paragraph. Each question of a paragraph has **ONLY ONE CORRECT ANSWER** among the four choices (A), (B), (C) and (D).

C. Marking Scheme

- 9. For each question in **Section 1**, you will be awarded **3 marks** if you darken all the bubble(s) corresponding to only the correct answer(s) and **zero mark** if no bubbles are darkened. In all other cases, **minus one** (-1) **mark** will be awarded.
- 10. For each question **Section 2 and 3**, you will be awarded **3 marks** if you darken the bubble corresponding to only the correct answer and **zero mark** if no bubbles are darkened. In all other cases, **minus one** (-1) **mark** will be awarded.

PART - I: PHYSICS

SECTION – 1 (One or more options correct Type)

This section contains **8 multiple choice questions.** Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** are correct.

- *1. Two bodies, each of mass M, are kept fixed with a separation 2L. A particle of mass m is projected from the midpoint of the line joining their centres, perpendicular to the line. The gravitational constant is G. The correct statement(s) is (are)
 - (A) The minimum initial velocity of the mass m to escape the gravitational field of the two bodies is $4\sqrt{\frac{GM}{R}}$
 - (B) The minimum initial velocity of the mass m to escape the gravitational field of the two bodies is $2\sqrt{\frac{GM}{L}}$.
 - (C) The minimum initial velocity of the mass m to escape the gravitational field of the two bodies is $\sqrt{\frac{2GM}{L}}$
 - (D) The energy of the mass m remains constant.

- *2. A particle of mass m is attached to one end of a mass-less spring of force constant k, lying on a frictionless horizontal plane. The other end of the spring is fixed. The particle starts moving horizontally from its equilibrium position at time t=0 with an initial velocity u_0 . When the speed of the particle is 0.5 u_0 . It collides elastically with a rigid wall. After this collision,
 - (A) the speed of the particle when it returns to its equilibrium position is u_0 .
 - (B) the time at which the particle passes through the equilibrium position for the first time is $t = \pi \sqrt{\frac{m}{k}}$.
 - (C) the time at which the maximum compression of the spring occurs is $t=\frac{4\pi}{3}\sqrt{\frac{m}{k}}$.
 - (D) the time at which the particle passes through the equilibrium position for the second time is $t=\frac{5\pi}{3}\sqrt{\frac{m}{k}}.$

- 3. A steady current I flows along an infinitely long hollow cylindrical conductor of radius R. This cylinder is placed coaxially inside an infinite solenoid of radius 2R. The solenoid has n turns per unit length and carries a steady current I. Consider a point P at a distance r from the common axis. The correct statement(s) is (are)
 - (A) In the region $0 \le r \le R$, the magnetic field is non-zero
 - (B) In the region $R \le r \le 2R$, the magnetic field is along the common axis.
 - (C) In the region $R \le r \le 2R$, the magnetic field is tangential to the circle of radius r, centered on the axis.
 - (D) In the region r > 2R, the magnetic field is non-zero.
- *4. Two vehicles, each moving with speed u on the same horizontal straight road, are approaching each other. Wind blows along the road with velocity w. One of these vehicles blows a whistle of frequency f₁. An observer in the other vehicle hears the frequency of the whistle to be f₂. The speed of sound in still air is V. The correct statement(s) is (are)
 - (A) If the wind blows from the observer to the source, $f_2 > f_1$.
 - (B) If the wind blows from the source to the observer, $f_2 > f_1$.
 - (C) If the wind blows from observer to the source, $f_2 < f_1$.
 - (D) If the wind blows from the source to the observer $f_2 < f_1$.

- *5. Using the expression $2d \sin\theta = \lambda$, one calculates the values of d by measuring the corresponding angles θ in the range θ to 90° . The wavelength λ is exactly known and the error in θ is constant for all values of θ . As θ increases from 0° ,
 - (A) the absolute error in d remains constant.
- (B) the absolute error in d increases
- (C) the fractional error in d remains constant.
- (D) the fractional error in d decreases.

6. Two non-conducting spheres of radii R_1 and R_2 and carrying uniform volume charge densities + ρ and $-\rho$, respectively, are placed such that they partially overlap, as shown in the figure. At all points in the overlapping region,

- (A) the electrostatic field is zero
- (B) the electrostatic potential is constant
- (C) the electrostatic field is constant in magnitude
- (D) the electrostatic field has same direction

- *7. The figure shows the variation of specific heat capacity (C) of a solid as a function of temperature (T). The temperature is increased continuously from 0 to 500 K at a constant rate. Ignoring any volume change, the following statement(s) is (are) correct to a reasonable approximation.
 - (A) the rate at which heat is absorbed in the range 0-100 K varies linearly with temperature T.
 - (B) heat absorbed in increasing the temperature from 0-100 K is less than the heat required for increasing the temperature from 400 500 K.
 - (C) there is no change in the rate of heat absorption in range 400 500 K.
 - (D) the rate of heat absorption increases in the range 200 300 K.

- 8. The radius of the orbit of an electron in a Hydrogen-like atom is 4.5 a_0 where a_0 is the Bohr radius. Its orbital angular momentum is $\frac{3h}{2\pi}$. It is given that h is Planck's constant and R is Rydberg constant. The possible wavelength(s), when the atom de-excites, is (are)
 - (A) $\frac{9}{32R}$
- (B) $\frac{9}{16R}$
- (C) $\frac{9}{5R}$
- (D) $\frac{4}{3R}$

$SECTION-2: (Paragraph\ Type)$

This section contains **4 paragraphs** each describing theory, experiment, date etc. **Eight questions** relate to four paragraphs with two questions on each paragraph. Each question of paragraph has **only one correct answer** along the four choice (A), (B), (C) and (D).

Paragraph for Questions 9 to 10

A small block of mass 1 kg is released from rest at the top of a rough track. The track is circular arc of radius 40 m. The block slides along the track without toppling and a frictional force acts on it in the direction opposite to the instantaneous velocity. The work done in overcoming the friction up to the point Q, as shown in the figure, below, is 150 J. (Take the acceleration due to gravity, $g = 10 \text{ m/s}^{-2}$).

Downloaded from @JEEPrep

*9.	The speed of the block wh (A) 5 ms ⁻¹	nen it reaches the point Q is (B) 10 ms ⁻¹	(C) $10\sqrt{3} \text{ ms}^{-1}$	(D) 20 ms ⁻¹			
*10.	The magnitude of the normal (A) 7.5 N	mal reaction that acts on the (B) 8.6 N	e block at the point Q is (C) 11.5 N	(D) 22.5 N			
Paragraph for Questions 11 to 12 A thermal power plant produces electric power of 600 kW at 4000 V, which is to be transported to a place 20 km							
away frecarrying of the d smaller. value. A lower ve	om the power plant for congraph capacity or by using a confirect transmission is the late. In this method, a step-up At the consumers' end, a soltage. It is reasonable to a	nsumers' usage. It can be to mbination of step-up and st rge energy dissipation. In to transformer is used at the tep-down transformer is use	ransported either directly value tep-down transformers at the method using transformer plant side so that the cursed to supply power to the exist purely resistive and the	with a cable of large current the two ends. The drawback ters, the dissipation is much trent is reduced to a smaller consumers at the specified transformers are ideal with			
11.	during transmission is			the power dissipation (in %)			
	(A) 20	(B) 30	(C) 40	(D) 50			
12.	the secondary in the step	o-up transformer is 1:10.	If the power to the consu	rns in the primary to that in imers has to be supplied at in the step-down transformer			
	(A) 200 : 1	(B) 150:1	(C) 100:1	(D) 50:1			

Paragraph for Questions 13 to 14

A point Q is moving in a circular orbit of radius R in the x-y plane with an angular velocity ω. This can be considered as equivalent to a loop carrying a steady current $\frac{Q\omega}{2\pi}$. A uniform magnetic field along the positive z-axis

is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of the orbit remains constant. The application of the magnetic field induces an emf in the orbit. The induced emf is defined as the work done by an induced electric field in moving a unit positive charge around closed loop. It is known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a proportionality constant v.

- 13. The magnitude of the induced electric field in the orbit at any instant of time during the time interval of the magnetic field change, is
 - (A) $\frac{BR}{4}$
- (B) $\frac{BR}{2}$
- (C) BR
- (D) 2BR

14. The change in the magnetic dipole moment associated with the orbit, at the end of time interval of the magnetic field change, is

(A)
$$-\gamma BQR^2$$

(B)
$$-\gamma \frac{BQR^2}{2}$$
 (C) $\gamma \frac{BQR^2}{2}$

(C)
$$\gamma \frac{BQR^2}{2}$$

Paragraph for Questions 15 to 16

The mass of nucleus ${}_{A}^{A}X$ is less than the sum of the masses of (A-Z) number of neutrons and Z number of protons in the nucleus. The energy equivalent to the corresponding mass difference is known as the binding energy of the nucleus. A heavy nucleus of mass M can break into two light nuclei of mass m_1 and m_2 only if $(m_1 + m_2) \le M$. Also two light nuclei of masses m₃ and m₄ can undergo complete fusion and form a heavy nucleus of mass M' only if (m₃ $+ m_4$) > M'. The masses of some neutral atoms are given in the table below:

¹ ₁ H		1.007825 u	² ₁ H	2.014102 u	${}_{1}^{3}H$	3.016050 u	⁴ ₂ He	4.002603 u
⁶ ₃ Li		6.015123 u	⁷ ₃ Li	7.016004 u	$_{30}^{70}$ Zn	69.925325 u	⁸² ₃₄ Se	81.916709 u
152 64 G	id	151.919803 u	²⁰⁶ ₈₂ Pb	205.974455 u	²⁰⁹ ₈₃ Bi	208.980388 u	²¹⁰ ₈₄ Po	209.982876 u

(A) The nucleus ⁶₃Li can emit an alpha particle

The correct statement is

15.

16.

(A) 5319

	d alpha particle can $_{30}^{70}$ Zn and $_{34}^{82}$ Se can		
. ,	5 4		

The kinetic energy (in keV) of the alpha particle, when the nucleus $^{210}_{84} Po~$ at rest undergoes alpha decay, is

(C) 5707

(D) 5818

(B) 5422

SECTION – 3 (Matching List Type)

This section contains **4 multiple choice questions.** Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

17. A right angled prism of refractive index μ_1 is placed in a rectangular block of refractive index μ_2 , which is surrounded by a medium of refractive index μ_3 , as shown in the figure. A ray of light 'e' enters the rectangular block at normal incidence. Depending upon the relationships between μ_1 , μ_2 and μ_3 , it takes one of the four possible paths 'ef', 'eg', 'eh', or 'ei'.

Match the paths in List I with conditions of refractive indices in List II and select the correct answer using the codes given below the lists:

	List I		List II
P.	$e \rightarrow f$	1.	$\mu_1 > \sqrt{2} \mu_2$
Q.	$e \rightarrow g$	2.	$\mu_2 > \mu_1$ and $\mu_2 > \mu_3$
R.	$e \rightarrow h$	3.	$\mu_1 = \mu_2$
S.	$e \rightarrow i$	4.	$\mu_2 < \mu_1 < \sqrt{2} \ \mu_2 \ \text{and} \ \mu_2 > \mu_3$

Codes:

	P	Q	R	S
(A)	2	3	1	4
(B)	1	2	4	3
(C)	4	1	2	3
(D)	2	3	4	1

*18. Match List I with List II and select the correct answer using the codes given below the lists:

	List I		List II
P.	Boltzmann Constant	1.	$[ML^2T^{-1}]$
Q.	Coefficient of viscosity	2.	$[ML^{-1}T^{-1}]$
R.	Plank Constant	3.	$[MLT^{-3}K^{-1}]$
S.	Thermal conductivity	4.	$[ML^2T^{-2}K^{-1}]$

	P	Q	R	S
(A)	3	1	2	4
(B)	3	2	1	4
(C)	4	2	1	3
(D)	4	1	2	3

*19. One mole of mono-atomic ideal gas is taken along two cyclic processes E→F→G→E and E→F→H→E as shown in the PV diagram. The processes involved are purely isochoric, isobaric, isothermal or adiabatic.

Match the paths in List I with the magnitudes of the work done in List II and select the correct answer using the codes given below the lists.

	List I		List II
P.	$G \rightarrow E$	1.	$160 P_0 V_0 \ln 2$
Q.	$G \rightarrow H$	2.	$36 P_0 V_0$
R.	$F \rightarrow H$	3.	$24 P_0 V_0$
S.	$F \rightarrow G$	4.	$31 P_0 V_0$

Couck	•			
	P	Q	R	S
(A)	4	3	2	1
(B)	4	3	1	2
(C)	3	1	2	4
(D)	1	3	2	4

20. Match List I of the nuclear processes with List II containing parent nucleus and one of the end products of each process and then select the correct answer using the codes given below the lists:

	List I		List II
P.	Alpha decay	1.	${}^{15}_{8}O \rightarrow {}^{15}_{7}N +$
Q.	β+ decay	2.	$^{238}_{92}\text{U} \rightarrow^{234}_{90}\text{Th} + \dots$
R.	Fission	3.	$^{185}_{83}$ Bi $\rightarrow ^{184}_{82}$ Pb+
S.	Proton emission	4.	$^{239}_{94}$ Pu \rightarrow^{140}_{57} La +

	P	Q	R	S
(A)	4	2	1	3
(B)	1	3	2	4
(C)	2	1	4	3
(D)	4	3	2.	1

PART - II: CHEMISTRY

SECTION –1 (One or more options correct Type)

This section contains **8 multiple choice questions.** Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** are correct.

- *21. The K_{sp} of Ag_2CrO_4 is 1.1×10^{-12} at 298K. The solubility (in mol/L) of Ag_2CrO_4 in a 0.1M $AgNO_3$ solution is
 - (A) 1.1×10^{-11}

(B) 1.1×10^{-10}

(C) 1.1×10^{-12}

(D) 1.1×10^{-9}

22. In the following reaction, the product(s) formed is(are)

$$\begin{array}{c}
\text{OH} \\
& \xrightarrow{\text{CHCI}_3} \\
\text{CH}_3
\end{array}$$

H₃C CHCl₂

Q

- OH H₃C CHCl₂
- OH CHO CH₃

- (A) P(major)
- (C) R(minor)

- (B) Q(minor)
- (D) S(major)

23. The major product(s) of the following reaction is (are)

24. After completion of the reactions (I and II), the organic compound(s) in the reaction mixtures is(are)

Reaction I:
$$H_{3C}$$

$$CH_{3} \xrightarrow{Br_{2}(1.0 \text{ mol})}$$

$$(1.0 \text{ mol})$$

Reaction II:
$$H_3C$$
 CH_3
 CH_3
 CH_3COOH
 CH_3COOH

- (A) Reaction I: P and Reaction II: P
- (B) Reaction I: U, acetone and Reaction II:Q, acetone
- (C) Reaction I: T, U, acetone and Reaction II: P
- (D) Reaction I: R, acetone and Reaction II: S, acetone

- 25. The correct statement(s) about O_3 is(are)
 - (A) O–O bond lengths are equal.
 - (C) O_3 is diamagnetic in nature.

- (B) Thermal decomposition of O_3 is endothermic.
- (D) O_3 has a bent structure.

*26. In the nuclear transmutation

$${}^{9}_{4}$$
Be + X \longrightarrow ${}^{8}_{4}$ Be + Y

(X, Y) is (are)

- (A) (γ, n)
- (C) (n, D)

- (B) (p, D)
- (D) (γ, p)

- 27. The carbon-based reduction method is NOT used for the extraction of
 - (A) tin from SnO₂

(B) iron from Fe₂O₃

(C) aluminium from Al₂O₃

- (D) magnesium from MgCO₃.CaCO₃
- *28. The thermal dissociation equilibrium of CaCO₃(s) is studied under different conditions.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

For this equilibrium, the correct statement(s) is(are)

- (A) ΔH is dependent on T
- (B) K is independent of the initial amount of CaCO₃
- (C) K is dependent on the pressure of CO₂ at a given T
- (D) ΔH is independent of the catalyst, if any

SECTION-2 (Paragraph Type)

This section contains 4 paragraphs each describing theory, experiment, data etc. Eight questions relate to four paragraphs with two questions on each paragraph. Each question of a paragraph has only one correct answer among the four choices (A), (B), (C) and (D).

Paragraph for Question Nos. 29 and 30

An aqueous solution of a mixture of two inorganic salts, when treated with dilute HCl, gave a precipitate (P) and a filtrate (O). The precipitate P was found to dissolve in hot water. The filtrate (O) remained unchanged, when treated with H₂S in a dilute mineral acid medium. However, it gave a precipitate (R) with H₂S in an ammoniacal medium. The precipitate **R** gave a coloured solution (S), when treated with H_2O_2 in an aqueous NaOH medium.

- The precipitate P contains 29.
 - (A) Pb^{2+}

(B) Hg₂²⁺ (D) Hg²⁺

(C) Ag^+

- 30. The coloured solution **S** contains
 - (A) $Fe_2(SO_4)_3$

(B) CuSO₄

(C) ZnSO₄

(D) Na₂CrO₄

Paragraph for Question Nos. 31 to 32

 ${f P}$ and ${f Q}$ are isomers of dicarboxylic acid $C_4H_4O_4$. Both decolorize Br_2/H_2O . On heating, ${f P}$ forms the cyclic anhydride.

Upon treatment with dilute alkaline KMnO₄, **P** as well as **Q** could produce one or more than one from **S**, **T** and **U**.

- *31. Compounds formed from **P** and **Q** are, respectively
 - (A) Optically active S and optically active pair (T, U)
 - (B) Optically inactive S and optically inactive pair (T, U)
 - (C) Optically active pair (T, U) and optically active S
 - (D) Optically inactive pair (T, U) and optically inactive S

*32. In the following reaction sequences **V** and **W** are, respectively

$$Q \xrightarrow[\Lambda]{H_2/Ni} V$$

$$+V \xrightarrow{AlCl_3(anhydrous)} \xrightarrow{1. Zn-Hg/HCl} W$$

$$(A) \qquad O \qquad (B) \qquad CH_2OH \qquad and \qquad CH_2OH \qquad W \qquad W$$

(C) O (D)
$$HOH_2C$$
 and CH_2OH V W

Paragraph for Question Nos. 33 to 34

A fixed mass 'm' of a gas is subjected to transformation of states from K to L to M to N and back to K as shown in the figure

- *33. The succeeding operations that enable this transformation of states are
 - (A) Heating, cooling, heating, cooling
- (B) Cooling, heating, cooling, heating
- (C) Heating, cooling, cooling, heating
- (D) Cooling, heating, heating, cooling
- *34. The pair of isochoric processes among the transformation of states is
 - (A) K to L and L to M

(B) L to M and N to K

(C) L to M and M to N

(D) M to N and N to K

Paragraph for Question Nos. 35 to 36

The reactions of Cl_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two (different) oxoacids of chlorine, **P** and **Q**, respectively. The Cl_2 gas reacts with SO_2 gas, in presence of charcoal, to give a product **R**. **R** reacts with white phosphorus to give a compound **S**. On hydrolysis, **S** gives an oxoacid of phosphorus, **T**.

- 35. **P** and **Q**, respectively, are the sodium salts of
 - (A) hypochlorus and chloric acids
 - (C) chloric and perchloric acids

- (B) hypochlorus and chlorus acids
- (D) chloric and hypochlorus acids

- 36. **R, S** and **T,** respectively, are
 - (A) SO_2Cl_2 , PCl_5 and H_3PO_4

(B) SO₂Cl₂, PCl₃ and H₃PO₃

(C) SOCl₂, PCl₃ and H₃PO₂

(D) SOCl₂, PCl₅ and H₃PO₄

SECTION – 3: (Matching List Type)

This section contains **4 multiple choice questions. Each question has matching lists.** The codes for the lists have choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

37. The unbalanced chemical reactions given in List – I show missing reagent or condition (?) which are provided in List – II. Match List – I with List – II and select the correct answer using the code given below the lists:

	List – I			List - II
(P)	$PbO_2 + H_2SO_4 \xrightarrow{?} PbSO_4 + O_2 + other product$	(1)	NO	

- (Q) $Na_2S_2O_3 + H_2O \xrightarrow{?} NaHSO_4 + other product$ (2) I_2
- (R) $N_2H_4 \xrightarrow{?} N_2 + \text{other product}$ (3) Warm
- (S) $XeF_2 \xrightarrow{?} Xe + other product$ (4) Cl_2

Codes:

P Q R S
(A) 4 2 3 1
(B) 3 2 1 4
(C) 1 4 2 3
(D) 3 4 2 1

*38. Match the chemical conversions in List – I with appropriate reagents in List – II and select the correct answer using the code given below the lists:

(3) Et-Br

(4) (i) BH₃; (ii) H₂O₂/NaOH

Codes:

S Q R 3 2 (A) 4 1 2 3 4 (B) 1 3 2 4 1 (C) 2 3 4 1 (D)

39. An aqueous solution of X is added slowly to an aqueous solution of Y as shown in List – I. The variation in conductivity of these reactions in List – II. Match List – I with List – II and select the correct answer using the code given below the lists:

		List ·	- I			List - II
(P)	(C_2H)	$(C_2H_5)_3$ N+CH ₃ COOH			(1)	Conductivity decreases and then increases
(Q)) KI(0.	1M)+Ag	gNO_3 (0.0	01M)	(2)	Conductivity decreases and then does not change much
(R)	3	COOH+I	KOH Y		(3)	Conductivity increases and then does not change much
(S)	NaOI x	H + HI			(4)	Conductivity does not change much and then increases
Cod	es:					
	P	Q	R	S		
(A)	3	4	2	1		
(B)	4	3	2	1		
(C)	2	3	4	1		
(D)	1	4	3	2		

40. The standard reduction potential data at 25°C is given below:

$$E^{\circ}(Fe^{3+}, Fe^{2+}) = +0.77V;$$

$$E^{\circ}(Fe^{2+}, Fe) = -0.44V$$

$$E^{\circ}(Cu^{2+},Cu) = +0.34V;$$

$$E^{\circ}\left(Cu^{+},Cu\right) = +0.52V$$

$$E^{\circ} \Big[O_2 \left(g \right) + 4 H^+ + 4 e^- \rightarrow 2 H_2 O \Big] = +1.23 V;$$

$$E^{\circ}[O_{2}(g) + 2H_{2}O + 4e^{-} \rightarrow 4OH^{-}] = +0.40V$$

$$E^{\circ}(Cr^{3+}, Cr) = -0.74V;$$

$$E^{\circ}(Cr^{2+}, Cr) = -0.91V$$

Match E^0 of the redox pair in List – I with the values given in List – II and select the correct answer using the code given below the lists:

(P)
$$E^{\circ}(Fe^{3+},Fe)$$

$${\rm ^{(Q)}}~~E^{\circ} \Big(4H_2O \mathop{\Longrightarrow}\limits_{} 4H^+ + 4OH^- \Big)$$

(R)
$$E^{\circ}\left(Cu^{2+} + Cu \longrightarrow 2Cu^{+}\right)$$

$$(3)$$
 -0.04 V

(S)
$$E^{\circ}\left(Cr^{3+},Cr^{2+}\right)$$

JEE(ADVANCED)2013-Paper 2-PCM-22						

PART - III: MATHEMATICS

SECTION – 1 : (One or more option correct Type)

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.

For $a \in \mathbb{R}$ (the set of all real numbers), $a \neq -1$, $\lim_{n \to \infty} \frac{\left(1^a + 2^a + ... + n^a\right)}{\left(n+1\right)^{a-1} \left[\left(na+1\right) + \left(na+2\right) + ... + \left(na+n\right)\right]} = \frac{1}{60}$. 41.

Then a =

(A) 5

(C) $\frac{-15}{2}$

(D) $\frac{-17}{2}$

Circle(s) touching x-axis at a distance 3 from the origin and having an intercept of length $2\sqrt{7}$ on y-axis is *42.

(A)
$$x^2 + y^2 - 6x + 8y + 9 = 0$$

(B)
$$x^2 + y^2 - 6x + 7y + 9 = 0$$

(D) $x^2 + y^2 - 6x - 7y + 9 = 0$

(A)
$$x^2 + y^2 - 6x + 8y + 9 = 0$$

(C) $x^2 + y^2 - 6x - 8y + 9 = 0$

(D)
$$x^2 + y^2 - 6x - 7y + 9 = 0$$

- Two lines $L_1: x = 5$, $\frac{y}{3-\alpha} = \frac{z}{-2}$ and $L_2: x = \alpha$, $\frac{y}{-1} = \frac{z}{2-\alpha}$ are coplanar. Then α can take value(s) 43.
 - (A) 1

(C) 3

(D) 4

*44. In a triangle PQR, P is the largest angle and $\cos P = \frac{1}{3}$. Further the incircle of the triangle touches the sides

PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)

(A) 16

(B) 18

(C) 24

(D) 22

*45. Let
$$w = \frac{\sqrt{3} + i}{2}$$
 and $P = \{w^n : n = 1, 2, 3, \dots \}$. Further $H_1 = \left\{z \in C : \operatorname{Re} z > \frac{1}{2}\right\}$ and $H_2 = \left\{z \in C : \operatorname{Re} z < \frac{-1}{2}\right\}$, where C is the set of all complex numbers. If $z_1 \in P \cap H_1$, $z_2 \in P \cap H_2$ and O represents the origin, then $\angle z_1$ $Oz_2 = A$

(A) $\frac{\pi}{2}$

(B) $\frac{\pi}{6}$

(C) $\frac{2\pi}{3}$

(D) $\frac{5\pi}{6}$

*46. If
$$3^x = 4^{x-1}$$
, then $x =$

(A)
$$\frac{2\log_3 2}{2\log_3 2 - 1}$$

(C)
$$\frac{1}{1 - \log_4 3}$$

(B)
$$\frac{2}{2 - \log_2 3}$$

(D)
$$\frac{2\log_2 3}{2\log_2 3 - 1}$$

47. Let ω be a complex cube root of unity with $\omega \neq 1$ and $P = [p_{ij}]$ be a $n \times n$ matrix with $p_{ij} = \omega^{i+j}$. Then $P^2 \neq 0$, when n =

- 48. The function f(x) = 2|x| + |x + 2| ||x + 2| 2|x|| has a local minimum or a local maximum at x = x + 1
 - (A) -2

(B) $\frac{-2}{3}$

(C) 2

(D) $\frac{2}{3}$

$\label{eq:SECTION-2: (Paragraph\ Type)} SECTION-2: (Paragraph\ Type)$

This section contains 6 multiple choice questions relating to three paragraphs with two questions on each paragraph. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Questions 49 and 50

Let $f:[0,1] \to \mathbb{R}$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0) = f(1) = 0 and satisfies $f''(x) - 2f'(x) + f(x) \ge e^x$, $x \in [0,1]$.

- 49. Which of the following is true for $0 \le x \le 1$?
 - (A) $0 \le f(x) \le \infty$

(B) $-\frac{1}{2} \le f(x) \le \frac{1}{2}$

 $(C) -\frac{1}{4} \le f(x) \le 1$

 $(D)-\infty \leq f(x) \leq 0$

50. If the function $e^{-x} f(x)$ assumes its minimum in the interval [0, 1] at $x = \frac{1}{4}$, which of the following is true?

(A)
$$f'(x) < f(x), \frac{1}{4} < x < \frac{3}{4}$$

(B)
$$f'(x) > f(x), 0 < x < \frac{1}{4}$$

(C)
$$f'(x) < f(x), 0 < x < \frac{1}{4}$$

(D)
$$f'(x) < f(x), \frac{3}{4} < x < 1$$

Paragraph for Questions 51 and 52

Let PQ be a focal chord of the parabola $y^2 = 4ax$. The tangents to the parabola at P and Q meet at a point lying on the line y = 2x + a, a > 0.

- *51. Length of chord PQ is
 - (A) 7a

(B) 5a

(C) 2a

(D) 3a

- *52. If chord PQ subtends an angle θ at the vertex of $y^2 = 4ax$, then $\tan \theta =$
 - (A) $\frac{2}{3}\sqrt{7}$

(B) $\frac{-2}{3}\sqrt{7}$

(C) $\frac{2}{3}\sqrt{5}$

(D) $\frac{-2}{3}\sqrt{5}$

Paragraph for Questions 53 and 54

Let $S = S_1 \cap S_2 \cap S_3$, where

$$S_1 = \{ z \in C : |z| < 4 \}, S_2 = \left\{ z \in C : Im \left[\frac{z - 1 + \sqrt{3}i}{1 - \sqrt{3}i} \right] > 0 \right\} \text{ and } S_3 = \{ z \in C : Re \ Z > 0 \}.$$

- *53. Area of S =
 - (A) $\frac{10\pi}{3}$

(B) $\frac{20\pi}{3}$

(C) $\frac{16\pi}{3}$

(D) $\frac{32\pi}{3}$

- *54. $\min_{z \in S} |1 3i z| =$
 - $(A) \ \frac{2-\sqrt{3}}{2}$

(B) $\frac{2+\sqrt{3}}{2}$

(C) $\frac{3-\sqrt{3}}{2}$

(D) $\frac{3+\sqrt{3}}{2}$

Paragraph for Questions 55 and 56

A box B_1 contains 1 white ball, 3 red balls and 2 black balls. Another box B_2 contains 2 white balls, 3 red balls and 4 black balls. A third box B_3 contains 3 white balls, 4 red balls and 5 black balls.

55. If 1 ball is drawn from each of the boxes B₁, B₂ and B₃, the probability that all 3 drawn balls are of the same colour is

(A) $\frac{82}{648}$

(B) $\frac{90}{648}$

(C) $\frac{558}{648}$

(D) $\frac{566}{648}$

56. If 2 balls are drawn (without replacement) from a randomly selected box and one of the balls is white and the other ball is red, the probability that these 2 balls are drawn from box B₂ is

(A) $\frac{116}{181}$

(B) $\frac{126}{181}$

(C) $\frac{65}{181}$

(D) $\frac{55}{181}$

SECTION – 3 : (Matching list Type)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

*57. Match List I with List II and select the correct answer using the code given below the lists:

	List – I		List – II		
P.	$\left[\frac{1}{y^2} \left(\frac{\cos\left(\tan^{-1}y\right) + y\sin\left(\tan^{-1}y\right)}{\cot\left(\sin^{-1}y\right) + \tan\left(\sin^{-1}y\right)} \right) + y^4 \right]^{1/2} $ takes value	1.	$\frac{1}{2}\sqrt{\frac{5}{3}}$		
Q.	If $cosx + cosy + cosz = 0 = sinx + siny + sinz$ then	2.	$\sqrt{2}$		
	possible value of $\cos \frac{x-y}{2}$ is				
R.	If $\cos\left(\frac{\pi}{4} - x\right)\cos 2x + \sin x \sin 2x \sec x = \cos x \sin 2x \sec x$	3.	$\frac{1}{2}$		
	$+\cos\left(\frac{\pi}{4}+x\right)\cos 2x$ then possible value of secx is				
S.	If $\cot\left(\sin^{-1}\sqrt{1-x^2}\right) = \sin\left(\tan^{-1}\left(x\sqrt{6}\right)\right)$, $x \neq 0$, then	4.	1		
	possible value of x is				

Codes:

P Q R S
(A) 4 3 1 2
(B) 4 3 2 1
(C) 3 4 2 1
(D) 3 4 1 2

*58. A line L: y = mx + 3 meets y-axis at E(0, 3) and the arc of the parabola $y^2 = 16x$, $0 \le y \le 6$ at the point $F(x_0, y_0)$. The tangent to the parabola at $F(x_0, y_0)$ intersects the y-axis at G(0, y_1). The slope m of the line L is chosen such that the area of the triangle EFG has a local maximum.

Match List I with List II and select the correct answer using the code given below the lists:

List – I			List – II		
P.	m =	1.	1		
			$\frac{-}{2}$		
		_	4		

			$\overline{2}$
Q.	Maximum area of ΔEFG is	2.	4
R.	$y_0 =$	3.	2
S.	$y_1 =$	4.	1

Codes	:			
	P	Q	R	S
(A)	4	1	2	3
(B)	3	4	1	2
(C)	1	3	2	4
(D)	1	3	4	2

59. Match List I with List II and select the correct answer using the code given below the lists:

	List – I		List – II
P.	Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} is 2. Then the volume of the parallelepiped determined by vectors $2(\vec{a} \times \vec{b}), 3(\vec{b} \times \vec{c})$ and $(\vec{c} \times \vec{a})$ is	1.	100
Q.	Volume of parallelepiped determined by vectors \vec{a} , \vec{b} and \vec{c} is 5. Then the volume of the parallelepiped determined by vectors $3(\vec{a} + \vec{b})$, $(\vec{b} + \vec{c})$ and $2(\vec{c} + \vec{a})$ is	2.	30
R.	Area of a triangle with adjacent sides determined by vectors \vec{a} and \vec{b} is 20. Then the area of the triangle with adjacent sides determined by vectors $(2\vec{a}+3\vec{b})$ and $(\vec{a}-\vec{b})$ is	3.	24
S.	Area of a parallelogram with adjacent sides determined by vectors \vec{a} and \vec{b} is 30. Then the area of the parallelogram with adjacent sides determined by vectors $(\vec{a} + \vec{b})$ and \vec{a} is	4.	60

	•			
	P	Q	R	S
(A)	4	2	3	1
(B)	2	3	1	4
(C)	3	4	1	2
(D)	1	4	3	2

60. Consider the lines $L_1: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}$, $L_2: \frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$ and the planes $P_1: 7x + y + 2z = 3$, P_2

: 3x + 5y - 6z = 4. Let ax + by + cz = d be the equation of the plane passing through the point of intersection of lines L_1 and L_2 , and perpendicular to planes P_1 and P_2 .

Match List I with List II and select the correct answer using the code given below the lists:

	List – I		List – II
P.	a =	1.	13
Q.	b =	2.	-3
R.	c =	3.	1
S.	d =	4.	-2

	P	Q	R	S
(A)	3	2	4	1