LOG-IN FEUP: NOME:

Exame final

9 de janeiro de 2012

Duração: Duas horas. Com consulta de formulário e utilização de meios de cálculo. Note que os meios de cálculo não podem ser usados como meios de comunicação ou de consulta da matéria! A violação desta regra implica exclusão imediata.

- 1. (4 valores). O gráfico mostra, no plano xy, quatro superfícies equipotenciais A, B, C e D, produzidas por um sistema de duas cargas pontuais colocadas na origem e no ponto x = 4 mm, no eixo dos x. Em valor absoluto, uma das cargas é quatro vezes maior que a outra. Arbitrando V=0 no infinito, os potenciais das quatro superfícies são $V_{\rm A}=108~{
 m V},$ $V_{\rm B}=162$ V, $V_{\rm C}=216$ V e $V_{\rm D}=216$ V. (a) Diga, justificando, quais são os sinais das duas cargas. (b) Calcule os valores das duas cargas.
- 2.5 -2.5
- 2. (4 valores). No circuito representado no diagrama, a tensão da fonte, em volts, é:

$$V_e = \begin{cases} 0 & t \le 0\\ 5 & t > 0 \end{cases}$$

Calcule a tensão na resistência de $3.4 \text{ k}\Omega$, em função do tempo t.

PERGUNTAS. Cotação: Respostas certas, 0.8, erradas, -0.2, em branco, 0. Cada pergunta tem uma única resposta. Serão avaliadas apenas as respostas que apareçam na caixa de Resposta (e não na folha de exame ou de rascunho).

- 3. Uma onda eletromagnética plana propaga-se no sentido negativo do eixo dos y. No plano y=0, o valor do campo elétrico, em função do tempo t, é dado pela expressão: $E = 42\sin(64 \times 10^8 t)$ (unidades SI). Calcule o comprimento de onda.
 - (A) 34.9 cm
- (C) 42.8 cm
- **(E)** 29.5 cm

- (**B**) 25.5 cm
- (**D**) 55.4 cm

Resposta:

- 4. Liga-se uma fonte de tensão alternada a um indutor e uma resistência em série. Se diminuirmos a indutância L, mantendo a resistência e a fonte iguais, qual das afirmações será correta?
 - (A) O desfasamento entre a corrente e a tensão da fonte aumentará.
 - (B) O fator de potência para a fonte aumentará.
 - (C) O módulo da impedância total aumentará.
 - (**D**) A corrente eficaz diminuirá.
 - (E) A reatância total aumentará.

Resposta:

- 5. Uma partícula com carga negativa desloca-se no sentido positivo do eixo dos y, numa região onde o campo elétrico é nulo, mas existe um campo magnético uniforme, no sentido negativo do eixo dos z. Em que direção e sentido apontará a força magnética sobre a partícula?
 - (A) Sentido positivo do eixo dos y
 - (B) Sentido negativo do eixo dos z
 - (C) Sentido negativo do eixo dos y
 - (**D**) Sentido negativo do eixo dos x
 - (E) Sentido positivo do eixo dos x

Resposta:

- **6.** Quando o sinal de entrada num circuito é $2e^{-2t}$, o sinal de saída é igual a $2e^t + 4e^{-2t}$. Encontre a função de transferência do circuito.
 - (A) $\frac{s}{2s-1}$ (C) $\frac{3s}{s-1}$ (E) $\frac{5s}{2s-1}$ (B) $\frac{3}{s-1}$

Resposta:

	(A) 8089.6(B) 12943.4	(C) 4044.8 (D) 2426.9	(E) 6471.7		C_1			
	Resposta:				C_3			
8.	Se R , L e C representam a resistência, a indutância e a capacidade num circuito, qual das seguintes expressões é uma constante de tempo?				$A \bullet \longrightarrow B$ C_2			
	(A) L/R (B) R/L Resposta:	(C) LR (D) R/C	(E) <i>C/R</i>		(A) $31.2 \ \mu\text{C}$ (C) $20.8 \ \mu\text{C}$ (E) $12.5 \ \mu\text{C}$ (B) $25.0 \ \mu\text{C}$ (D) $6.2 \ \mu\text{C}$			
9.	Calcule o módulo da impedância entre os pontos A e B para uma tensão alternada com 60 Hz. $A \frac{1}{2.3 \mu F} \frac{1.2 k\Omega}{1.2 k\Omega}$			14.	Resposta: Um fio de 10 m de comprimento e 2.5 mm de diâmetro tem uma resistência de 5.0 Ω . Qual será a resistência de um segundo fio, do mesmo material, mas com 9.0 m de			
	(A) 1.66 kΩ (B) 1.2 kΩ Resposta:	(C) $1.7 \text{ k}\Omega$ (D) $1.48 \text{ k}\Omega$	(E) 2.07 kΩ		comprimento e 2.0 mm de diâmetro? (A) $3.516~\Omega$ (C) $4.922~\Omega$ (E) $9.844~\Omega$ (B) $7.031~\Omega$ (D) $2.109~\Omega$			
10	As unidades SI do	fluvo elétrico são:			Resposta:			
10.	(A) N·m/C	(C) N·C/m ² (D) C/(N·m)	(E) N·m²/C	15.	5. Uma carga pontual que se encontra no ponto $(x,y,z) = (4,5,3)$ (distâncias em cm), produz um potencial de 6 kV no ponto $(x,y,z) = (2,6,4)$. Calcule o valor da carga, em unidades de nC.			
11.	Num monitor com de LED diferentes Assim, qual das se	tenologia LED, são que produzem as tr guintes propriedades uzir as imagens ness	ês cores primárias. s da luz é mais im-		(A) 13.33 (C) 16.33 (E) 40.0 (B) 14.91 (D) 2.72 Resposta:			
	 (A) Frequência proporcional à energia do fotão. (B) Polarização da luz. (C) Reflexão da luz. (D) Difração da luz. (E) Refração da luz. Resposta: 			16.	Uma lâmpada produz luz monocromática com comprimento de onda de 400 nm, que atinge uma lâmina metálica produzindo um fluxo de eletrões que saem do metal (efeito fotoelétrico). O que acontecerá se a lâmpada for susbstituida por outra com a mesma intensidade mas com comprimento de onda de 300 nm?			
					(A) Os eletrões extraídos terão maior energia.			
12.	No circuito da figura, $I_1=16.6$ mA, $I_2=3.4$ mA e $I_3=1.8$ mA. Calcule a intensidade da corrente na resistência de 2 k Ω .				(B) Os eletrões extraídos terão maior massa.			
					(\mathbf{C}) Os eletrões extraídos terão menor energia.			
		I_1 , I_2 ,			(D) Serão extraídos menos eletrões do metal.			
		6 kΩ			(E) Serão extraídos mais eletrões do metal. Resposta:			
	$ \begin{array}{c c} & 1 & k\Omega \\ \hline & 4 & k\Omega \\ \hline & 2 & k\Omega \\ \hline & 3 & k\Omega \end{array} $			17.	Uma bobina com 300 espiras quadradas, com arestas de 5 cm, encontra-se numa região onde existe um campo magnético uniforme, com módulo de 0.1 T, perpendicular ao plano das espiras. Calcule o fluxo magnético através da bobina.			
	(A) 11.4 mA (B) 20.0 mA	(C) 3.4 mA (D) 5.2 mA	(E) 8.4 mA		(A) $25.0 \text{ mT} \cdot \text{m}^2$ (C) $0.25 \text{ mT} \cdot \text{m}^2$ (E) $75.0 \text{ mT} \cdot \text{m}^2$ (B) $15.0 \text{ mT} \cdot \text{m}^2$ (D) $7.5 \text{ mT} \cdot \text{m}^2$			
	Resposta:				Resposta:			

7. Se a corrente num fio varia de acordo com a função 13. Três condensadores são ligados como se indica na figura,

onde $C_1=5~\mu{\rm F},~C_2=8~\mu{\rm F}$ e $C_3=2~\mu{\rm F}.$ Se a diferença de potencial aplicada entre os pontos A e B for 12 V qual

será a carga no condensador C_3 ?

 $I = 5 + 7t^4$ onde I é medida em amperes e t em segun-

dos, calcule a carga, em coulombs, que atravessa a seção

transversal do fio entre t=3 s e t=5 s.

Exame Final Resolução

9 de janeiro de 2012 Jaime Villate

Problemas

- 1. (a) Tendo em conta que $V_C > V_B > V_A$ e $V_D > V_B > V_A$, conclui-se que a origem e o ponto (4, 0) são ambos máximos locais da função V(x,y) e, portanto, as duas cargas são positivas.
 - (b) No ponto de sela, os módulos dos campos das duas cargas são iguais:

$$\frac{k q}{d_1^2} = \frac{k (4 q)}{d_2^2} \qquad \Longrightarrow \qquad \frac{d_2^2}{d_1^2} = 4 \qquad \Longrightarrow \qquad d_2 = 2 d_1$$

Assim, a carga que está mais afastada do ponto de sela, que é a que está no ponto (4, 0) é 4q e a outra carga é q. Como $d_1 + d_2 = 4$ mm, concluímos que o ponto de sela está em x = 4/3 mm. Nesse ponto, o potencial do sistema das duas cargas é:

$$\frac{k\,q}{(0.004/3)} + \frac{4\,k\,q}{(0.008/3)} = V_{\rm B} = 162 \qquad \Longrightarrow \qquad q = \frac{162}{9\times 10^9} \left(\frac{3}{0.004} + \frac{12}{0.008}\right)^{-1} = 8\times 10^{-12}$$

A carga na origem é igual a +8 pC e a outra carga é igual a +32 pC.

2. O indutor e a resistência de $3.4~\mathrm{k}\Omega$ estão em série e, portanto, a impedância equivalente é:

$$Z_{\rm eq} = 3400 + 0.412 \, s$$

A tensão nesse sistema é igual à da fonte, que no domínio das frequências é:

$$\widetilde{V}_e = \mathcal{L}\left\{5 u(t)\right\} = \frac{5}{s}$$

Usando a lei de Ohm, a corrente nesse segmento do circuito é:

$$\widetilde{I} = \frac{\widetilde{V}_e}{Z_{\text{eq}}} = \frac{5}{s(3400 + 0.412 \, s)} = \frac{12.136}{s(s + 8252.4)} = \frac{A}{s} + \frac{B}{s + 8252.4}$$

onde A=12.136/8252.4=0.00147 e B=-12.136/8252.4=-0.00147. Consequentemente, a corrente na resistência é a transformada inversa que, em unidades de mA, é:

$$I(t) = 1.47 \left(1 - e^{-8252.4 t} \right)$$

e a tensão, em unidades SI, é:

$$V = RI(t) = \begin{cases} 0 & t \le 0\\ 5(1 - e^{-8252.4t}) & t > 0 \end{cases}$$

Perguntas

3. E	6. C	9. A	12. A	15. C