

第1章.資料庫概述

80 1 **03**

1-1導論

編撰: 黃三益

何謂資料庫

- 其實是電子資料庫
- ▶ 日常生活天天可以接觸到
 - 。上網看新聞,上臉書
 - 。 逛街買東西結帳
- **☎** 資料是透過資料庫應用系統來存取的

範例:電子報

1 - 1 何 謂 資 料 庫

範例:大賣場

商品交易系統

收銀員

何謂資料庫 (Cont.)

- **資料庫是一堆相關資料的組織**

第1章.資料庫概述

80 6 **03**

1-2範例資料庫應用系統

範例資料庫應用系統

- ☞ 中山網路書店(http://www.mis.nsysu.edu.tw/db-book/)
 - 。**會員:**會員的資訊包括會員編號、身分證ID、姓名、 生日、電話、住址、電子郵件信箱
 - 。**商品:**對於網路書店所販賣的商品(包括書籍,CD或其他商品),必須記載其商品編號、商品名稱、商品 種類、創作者及定價
 - 。**購物車:**會員每次登入系統後,系統會自動產生一部 (虛擬)購物車給該會員
 - o **交易**:當會員結帳後,會產生一筆交易

範例資料庫應用系統(Cont.)

使用者介面

- 。 瀏覽商品
- 。將商品放入購物車
- 。結帳

管理者介面

- 。商品資料的增刪修改
- 。會員資料的增刪修改
- 。商品瀏覽和購買的統計

同時顯示相對 應的資料庫資 料變化 🐸 BookStore - Mozilla Firefox

中山網路書店使用者介面

使

用

者

操

作

副

🦖 開始 🏻 😇 🝳 🦷 🤌 🧑 收件匣 - Th... 🛛 🚳 BookStore - ... 🧀 資料庫的核... 🔂 🗀 New Chapters 🕍 第一章 資... 🖠 🕮 第二章

a

| 🚞 😨 🖑 🤘 🗓 🗎 🗑 上午 09:19

_ B ×

資

料

庫

追

蹤

副

中山網路書店使用者介面 (瀏覽商品)

中山網路書店使用者介面(放入購物車)

中山網路書店使用者介面(送出結帳)

中山網路書店管理者介面(商品維護)

料

庫

追

副

中山網路書店管理者介面(會員維護)

中山網路書店管理者介面 (統計資訊)

第1章.資料庫概述

80 16 CS

1-3資料模式

資料模式

- **資料庫應用系統必須對資料庫有清楚的認知**
 - 如何將資料庫描述給資料庫應用系統?
- ≤ 描述資料庫的方式就稱為資料模式 (Data model)

資料模式一:檔案模式

最簡單的模式

- 。 資料庫被視為一串字元
- 。 資料庫應用系統必須很小心的計算哪一個字元要存在哪一個位置

此如若商品有三項資料(或稱欄位)

- 。編號(pNo):1-5個字元
- 。 名稱 (pName): 6-24個字元
- 。 定價 (unitPrice): 25-32個字元

資料庫應用系統便必須非常小心的存取資料,它的計算方式是:

- 。 第一個商品存放位置:1-32
- 。 第二個商品存放位置:33-64
- 。 第三個商品存放位置:65-96
- O ...

資料模式二:實體關係模式

- 實體關係模式裡有兩種資料:實體和關係
- 每個實體可以有一些屬性值
- **寅體和實體間可能存在著某種關係**
- 每個關係也可以有一些屬性值
- ★ 在第二、三章詳細說明

資料模式三:關聯模式

很常用

- **鰯聯模式裡將資料表達成數個關聯**
- 一個關聯就好像一個表格
- 表格的每一列就存著一筆資料的相關屬性值
- ☎ 在第四、五章詳細說明

商品

pNo	pName	unitPrice
p0001 p0002 p0003 p0004 p0005	SKB自動鉛筆 龍騎士 天龍八部 倚天屠龍記 飛利浦省電燈泡	50 300 500 100 100
poocs	76/1/11 E 5/22/C	100

tNo	date	pNo
t0001	2003-10-02	p0002
t0001	2003-10-02	p0003
t0002	2003-10-02	p0002
t0002	2003-10-02	p0004
t0003	2003-10-03	p0001
t0003	2003-10-03	p0005

交易

資料模式四:網路模式

現在少用

- **資料組織被視為一個網路**
- 資料和資料間若存在某種關係,則用一個連結(link)
 來表示

圖 1-10 用網路模式表達商品和交易

資料模式五:階層模式

現在少用

» 將各個資料組織成一個階層

。 資料間有上下關係

資料模式六:物件導向模式

- ☎ 在組織上類似網路模式,但加上繼承的相關概念
- ☎ 在第十三章詳細說明

圖 1-12 用物件導向模式表達商品和交易

第1章.資料庫概述

24 6

1-4資料庫系統

資料庫系統邏輯架構

- ☎ 欲採用高階資料模式,必須在檔案系統上再加上一個軟體模組
- ∞ 此軟體模組便被稱為資料庫管理系統(簡稱DBMS)
- ≈ 資料庫應用系統與DBMS溝通已取得所需的資料,架構如下圖

∞ 好處

- 。程式資料獨立性
- 。 容易撰寫資料庫應用系統

% 作法

- 。 先定義資料 (稱為綱目)
- 。 再新增、刪除、修改資料庫裡的資料

資料庫系統邏輯架構 (Cont.)

資料庫系統實體架構

≥ 主機型架構 (Mainframe 或 Host base)

- 。 應用系統的程式是集中放在大型主機上,使用者透過使用終端機 連上主機
- 。 主機價格昂貴,維護成本高,環境封閉

≈ 檔案伺服器架構 (File server)

- 。 資料庫應用系統及資料庫管理系統等移往前端,後端只剩下處理 檔案儲存及分享的工作
- 。 使用人數多時,容易造成網路塞車,資料流量大,系統的表現不 佳,也容易造成資料的不一致

≤ 主從式架構 (Client / Server)

- 。 資料庫管理系統被搬回後端伺服端,前端客戶端則只放應用程式
- 系統是建構在區域網路(LAN)的環境之下,且改版需求時,數量 龐大的使用者端的程式都要修改,常造成維護上的一大負擔

檔案伺服器架構

資料庫系統實體架構 (Cont)

≤ 三層式架構 (3-tier 或 N-tier)

- 展示層 (Presentation tier)
 - 負責處理使用者輸入的資料
 - 在Web的環境下,展示層即是使用者端的瀏覽器
- 商業邏輯層 (Business logic tier)
 - 負責整個應用系統的作業,包括企業之商業法則 (Business Rules),資料處理,和網站網頁程式等
 - 很多廠商把負責此層工作的主機稱為應用伺服器
- 資料服務層 (Data service tier)
 - 處理商業邏輯層傳來的資料處理需求,並將結果傳回
 - 資料服務層一般由DBMS來執行

資料庫系統人員

第1章.資料庫概述

80 31 **03**

1-5資料庫管理系統

資料庫架構

- 三層式資料架構 (由下而上)
 - 。 實體層 (內部綱目
 - 概念層(概念綱目
 - (外部綱目 。 外部層

32

DBMS的功能

知包括

- 。 定義內部綱目
- 。 定義概念綱目
- 。 定義外部綱目
- 更新資料:包括新增,修改,刪除。
- 。 查詢資料
- 。 處理資料庫交易 (Transaction management)
- 。 訂定使用者的資料使用權限
- 。 訂定資料庫完整限制
- 這些功能大都透過DBMS所提供的資料庫語言來達成, 目前最廣泛使用的資料庫語言稱為SQL

DBMS的功能(Cont.)

か 附屬功能

- 。 匯出
- 。 監督效能
- 。 資料庫應用系統開發
 - 應用系統開發環境
 (Visual Studio.NET, Eclipse, Netbeans, Zend, MS ACCESS, MS SQL SERVER)
 - 遠端資料庫連線介面
 - ODBC
 - JDBC

DBMS的分類

- ☎ 依使用者個數區分:可分為個人用或多用戶
- ∞ 依DBMS系統架構區分: 可分成集中式和分散式
- ∞ 依資料模式區分:目前還在使用的DBMS,有
 - 。關聯式
 - 。階層式
 - 。物件導向式
 - 。物件關聯式
- ☎ 依價格區分:從數千元到佰萬元不等
- ☎ 依用途區分:可分成一般用途和特殊用途

DBMS的演進

1960s	檔案系統,一般是透過COBOL程式來存取
1970	階層式DBMS (如IBM IMS)
1980	關聯式DBMS,在大型主機上執行
	(如IBM DB2)
1985	記錄式DBMS,在早期PC上執行
	(如dBase)。關聯式DBMS,在工作站上執行 (如Oracle、Sybase、Informix)
1990	物件導向DBMS (如Gemstore, Objectstore)
1995	個人用DBMS (如微軟Access, Foxpro)
2000	加入物件,分析,和XML功能的DBMS
	(如微軟SQL Server 2000, Oracle 8)
2005	加入資料探勘(Data mining)功能的DBMS (如微軟SQL Server 2005, Oracle 11g)
2010年後	加入雲端運算(Cloud Computing)功能的 NoSQL DBMS(Google Cloud BigTable, MongoDB, Neo4j)

36

本章節講述到此結束..謝謝!

80 37 CB