- ¹ MPMICE: A hybrid MPM-CFD model for simulating
- coupled problems in porous media. Application to
- earthquake-induced submarine landslides
- Quoc Anh Tran^{a,b}, Gustav Grimstad^a, Seyed Ali Ghoreishian Amiri^a
 - $^aNorwegian\ University\ of\ Science\ and\ Technology,\ ,\ Trondheim,\ 7034,\ Norway$ $^bquoc.a.tran@ntnu.no$

5 Abstract

- 6 In this paper, we describe a soil-fluid-structure interaction model that com-
- ⁷ bines soil mechanics (saturated sediments), fluid mechanics (seawater or air),
- 8 and solid mechanics (structures). The formulation combines the Material
- 9 Point Method, which models large deformation of the porous media and the
- structure, with the Implicit Continuous-fluid Eulerian, which models com-
- 11 plex fluid flows. We validate the model and simulate the whole process of
- earthquake-induced submarine landslides. We show that this model captures
- complex interactions between saturated sediment, seawater, and structure,
- so we can use the model to estimate the impact of potential submarine land-
- slides on offshore structures.
- 16 Keywords:
- 17 Material Point Method, MPMICE, submarine landslide.

18 Nomenclature

\sim 1	. 11
(Lonoral	variables
Cuula	variabics

General variables		
<u>Variable</u>	Dimensions	Description
V	$[L^3]$	Representative volume
n		Porosity
σ	$[ML^{-1}t^{-2}]$	Total stress tensor
Δt	[t]	Time increment
\boldsymbol{b}	$[ML^1t^{-2}]$	Body force
c_v	$[L^2t^{-2}T^{-1}]$	Constant volume specific heat
f_d	$[MLt^{-2}]$	Drag forces in momentum exchange term
f^{int}	$[MLt^{-2}]$	Internal forces
f^{ext}	$[MLt^{-2}]$	External forces
q_{fs}	$[MLt^{-2}]$	Heat exchange term
q_{fs} S		Weighting function
∇S		Gradient of weighting function
Solid phase		
<u>Variable</u>	Dimensions	Description
m_s	[M]	Solid mass
0	[MI-3]	Solid doneity

Variable	Dimensions	Description
$\overline{m_s}$	$\overline{[M]}$	Solid mass
$ ho_s$	$[ML^{-3}]$	Solid density
ϕ_s		Solid volume fraction
$\overline{ ho}_s$	$[ML^{-3}]$	Bulk Solid density
$oldsymbol{x}_s$	[L]	Solid Position vector
$oldsymbol{U}_s$	$[Lt^{-1}]$	Solid Velocity vector
$oldsymbol{a}_s$	$[Lt^{-2}]$	Solid Acceleration vector
$oldsymbol{\sigma}'$	$[ML^{-1}t^{-2}]$	Effective Stress tensor
ϵ		Strain tensor
e_s	$[L^2t^{-2}]$	Solid Internal energy per unit mass
T_s	[T]	Solid Temperature
$oldsymbol{F}_s$		Solid Deformation gradient
V_s	$[L^3]$	Solid Volume

Fluid phase		
<u>Variable</u>	Dimensions	Description
m_f	[M]	Fluid mass
$ ho_f$	$[ML^{-3}]$	Fluid density
ϕ_f		Fluid volume fraction
$\overline{ ho}_f$	$[ML^{-3}]$	Bulk Fluid density
$ec{m{U}}_f$	$[Lt^{-1}]$	Fluid Velocity vector
$oldsymbol{\sigma}_f$	$[ML^{-1}t^{-2}]$	Fluid stress tensor
$p_f^{"}$	$[ML^{-1}t^{-2}]$	Fluid isotropic pressure
$oldsymbol{ au}_f$	$[ML^{-1}t^{-2}]$	Fluid shear stress tensor
e_f	$[L^2t^{-2}]$	Fluid Internal energy per unit mass
$\widetilde{T_f}$	[T]	Fluid Temperature
v_f	$[L^3/M]$	Fluid Specific volume $\frac{1}{\rho_f}$
α_f	[1/T]	Thermal expansion
μ	$[ML^{-1}t^{-1}]$	Fluid vicousity
V_f	$[L^3]$	Fluid Volume
Superscript		
<u>Variable</u>	Dimensions	Description
n		Current time step
L		Lagrangian values
n+1		Next time step
Subscript		
c		Cell-centered quantity
p		Particle quantity
i		Node quantity
FC		Cell face quantity
L, R		Left and Right cell faces