FIG.1A

PARAM	ETER	CORAL	TORAL		
SOURCE GAS (sccm)	TMCTS	5.0	1.0		
	O ₂	250	0~200		
	CO ₂	5000			
POWER (w)	HF	600	300		
	LF	400	200		
PRESSU	RE (torr)	4	1		

FIG.1B

FIG.1C

FIG.2A

FILM		COMPOSITION (at %)									
TYPE		Н	С	0	Si						
ESL3(S	iC)	39.0	19.7	20.3	21.0						
CORA	ŗ	32.0	16.1	33.7	18.2						
	150	11	15	48	26						
TORAL	50	20	18	35	27						
÷	0	20	21	35	24						

FIG.2B

FIG.3

FIG.4A

FIG.4B

FIG.4D

FIG.5A

FIG.5B

FIG.6A

FIG.6B

FIG.7

FIG.8

FIG.9

WESTERMAN, HATTORI, DANIELS & ADRIAN, LLP Title: Silicon Oxycarbide, Growth Method of Silicon... Inventor: Tamotsu OWADA et al. Attorney Docket: 032060

SOURCE GASES: TMCTS:1ml/min, CO2: 5000sccm

SPECIFIC DIELECTRIC CONSTANT			3.0			3.2			3.3					3.2						2.85				
YOUNG MODULUS (GPa)			23.6			24.7			30.1					23.4						17.3				
HARDNESS (GPa)			4.0			3.5			4.4					3.6						2.0				
REFRACTIVE INDEX	1.446	1.452	1.456	1.470	1.459	1.461	1.457	1.459	1.459	1.453	1.451	1.451	1.450	1.448	1.450	1.404	1.437	1.462	1.427	1.424	1.422	1.433	1.420	1.417
NESS	13.48	7.11	5.01	4.69	3.21	2.99	3.27	3.29	5.09	3.39	4.76	4.64	2.78	2.86	8.33	60.9	3.51	1.80	9.58	3.69	3.96	2.95	4.55	4.76
DEPOSITION NON- RATE UNIFO (nm/min) (%)	363	333	312	270	425	402	516	529	909	424	298	368	212	385	370	68	088	699	225	649	999	08/	702	793
LF(W)	200	200	200	200	270	300	330	370	400	200	200	200	200	200	200	0	200	400	200	200	200	300	200	200
HF(W)	300	300	300	300	400	450	200	550	009	400	450	200	220	009	300	009	009	009	009	800	006	006	1100	1200
PRESSURE (torr)	4.0	3.7	3.5	3.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	5.0	5.0
SAMPLE No.	_	2	က	4	2	9	7	œ	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24

FIG.10

FIG.11

FILM		SPECIFIC DIELECTRIC			
1 121	Н	С	0	Si	CONSTANT
SiOC-A	20	21	35	24	3.0
SiOC-A:POX	25	18	35	22	3.1
SiOC-B	27	18	34	21	2.85
CORAL	32	16	34	18	2.9

FIG.12

