WO 00/59114 PCT/US00/08562

WHAT IS CLAIMED IS:

1 1	L	A	method	comprising
-----	---	---	--------	------------

- 2 providing a DC voltage signal;
- 3 utilizing a first switching circuit (104) to switch said DC voltage signal so as to
- 4 produce relative to a reference voltage a positive pulse width modulated voltage signal for
- 5 about one half of a fundamental output period;
- 6 utilizing a second switching circuit (204) to switch said DC voltage signal
- 7 so as to produce relative to said reference voltage a negative pulse width modulated
- voltage signal for about one half of said fundamental output period. 8
- 1 2. The method as described in claim 1 and further comprising:
- 2 reversing the polarity of said DC voltage signal after switching said DC
- 3 voltage signal for about one half of said fundamental output period.
- 1 3. The method as described in claim 2 and further comprising utilizing said first
- 2 switching circuit (104) to reverse the polarity of said DC voltage signal.
- 1 4. The method as described in claim 2 and further comprising utilizing said second 2
 - switching circuit (204) to reverse the polarity of said DC voltage signal.
- 1 5. The method as described in claim 1 and further comprising:
- 2 utilizing a two switch network (SW11, SW12) as said first switching circuit;
- 3 electrically coupling said two switch network in parallel with said DC voltage
- 4 signal;
- 5 utilizing a two switch network (SW21, SW22) as said second switching circuit;
- 6 electrically coupling said two switch network of said second switching circuit in
- 7 parallel with said DC voltage signal;
- 8 configuring an output (108) between said two switch network of said first
- 9 switching circuit and said two switch network of said second switching circuit.
- 1 6. An apparatus comprising:
- 2 an input (108) to receive a DC voltage signal;
- 3 a first switching circuit (104) configured to modulate said DC voltage signal so as
- 4 to produce relative to a reference voltage a positive pulse width modulated voltage signal
- 5 for about one half of a fundamental output period;

WO 00/59114 PCT/US00/08562

a second switching circuit (204) configured to modulate said DC voltage signal so as to produce relative to said reference signal a negative pulse width modulated voltage signal for about one half of said fundamental output period.

- 7. The apparatus as described in claim 6 and further comprising a circuit operable to reverse the polarity of said DC voltage signal.
- 8. The apparatus as described in claim 7 wherein said first switching circuit (104) is operable to reverse the polarity of said DC voltage signal.
- 9. The apparatus as described in claim 7 wherein said second switching circuit (204) is operable to reverse the polarity of said DC voltage signal.
- 10. The apparatus as described in claim 6 wherein said first switching circuit comprises a two switch network in parallel with said DC voltage signal and wherein said second switching circuit comprises a two switch network in parallel with said DC voltage signal; and further comprising an output (108) electrically coupled between said two switch network of said first switching circuit and said two switch network of said second switching circuit.
- 11. An apparatus for providing a pulse width modulated voltage signal, said apparatus comprising:

an input (107) to receive a DC voltage signal;

a first switching circuit (104) electrically coupled to said input so as to be electrically coupled to said DC voltage signal during operation;

a second switching circuit (204) electrically coupled to said input so as to be electrically coupled to said DC voltage signal during operation;

wherein said first switching circuit (104) is operable to produce a positive pulse width modulated output signal relative to a reference voltage; and

wherein said first switching circuit (104) is operable to reverse the polarity of said DC voltage signal applied to a load during operation.

- 12. The apparatus as described in claim 11 wherein said second switching circuit (204) is operable to produce a negative pulse width modulated output signal relative to said reference voltage.
- 13. The apparatus as described in claim 12 wherein said second switching circuit (204) is operable to reverse the polarity of said DC voltage signal.
- 14. The apparatus as described in claim 11 wherein said first switching circuit comprises a first switch and a second switch, said first switch and second switch operable

WO 00/59114 PCT/US00/08562

to reverse said polarity of said DC voltage signal when said first switch is placed in a 3 4 conducting state and said second switch is placed in a non-conducting state. 1 15. The apparatus as described in claim 11 wherein said input is electrically 2 coupled in parallel with said first switching circuit and said second switching circuit. 1 16. A method of providing a pulse width modulated output voltage signal, said 2 method comprising: 3 providing a DC voltage signal; providing a first switching circuit (104) electrically coupled to said DC voltage 4 5 signal; 6 providing a second switching circuit (204) electrically coupled to said DC voltage 7 signal; 8 operating said first switching circuit (104) to produce a positive pulse width 9 modulated output signal relative to a reference voltage; operating said first switching circuit to reverse the polarity of said positive 10 11 pulse width modulated output signal once during a fundamental output period. 1 17. The method as described in claim 16 and further comprising: 2 operating said second switching circuit to produce a negative pulse width 3 modulated output signal relative to said reference voltage. 1 18. The method as described in claim 17 and further comprising: 2 operating said second switching circuit (204) to reverse the polarity of said 3 output signal. 1 19. The method as described in claim 16 wherein said first switching circuit 2 (104) comprises a first switch and a second switch, said method further comprising: 3 reversing the polarity of said positive pulse width modulated output signal by maintaining said first switch in a non-conducting state while maintaining said second 4 5 switch in a conducting state. 20. The method as described in claim 16 and further comprising: 1 2 electrically coupling said DC voltage signal in parallel with said first switching 3 circuit; and 4 electrically coupling said DC voltage signal in parallel with said second 5 switching circuit.

WO 00/59114 PCT/US00/08562

1	21. An apparatus to generate a pulse width modulated voltage signal, said
2	apparatus comprising:
3	a DC voltage source (102);
4	a first switching circuit (104) comprising a first switch and a second switch
5	configured in a series circuit, said first switching circuit electrically coupled in parallel
6	with said DC voltage source;
7	a second switching circuit (204) comprising a third switch and a fourth switch
8	configured in a series circuit, said second switching circuit electrically coupled in parallel
9	with said DC voltage source;
10	an output (108) comprising a first electrical junction coupling said first
11	switch with said second switch and a second electrical junction coupling said third switch
12	with said fourth switch;
13	said second switching circuit (204) operable to maintain said third switch in a
14	conducting state while said fourth switch is maintained in a non-conducting state so as to
15	establish a first polarity of an output signal;
16	said first switching circuit operable to switch said first switch and said second
17	switch at a modulation frequency;
18	said first switching circuit operable to maintain said second switch in a conducting
19	state while maintaining said first switch in a non-conducting state so as to establish a
20	second polarity of said output signal, said second polarity being the reverse polarity of
21	said first polarity; and
22	said second switching circuit operable to switch said third switch and said
23	fourth switch at said modulation frequency.
1	22. The apparatus as described in claim 21 wherein said first switching circuit
2	and said second switching circuit are configured as part of an application specific
3	integrated circuit.
1	23. The apparatus as described in claim 21 wherein said first switching circuit
2	(104) is operable to produce a positive pulse width modulated output signal during about
3	one half cycle of a fundamental output period; and
4	wherein said second switching circuit (204) is operable to produce a
5	negative pulse width modulated output signal during the other half cycle of said
6	fundamental output period.

WO 00/59114 PCT/US00/08562

1	24. The apparatus as described in claim 21 and further comprising a motor
2	electrically coupled to said output.
1	25. The apparatus as described in claim 21 and further comprising a
2	microprocessor electrically coupled to said first switching circuit and to said second
3	switching circuit, said microprocessor operable to control said first switching circuit and
4	said second switching circuit.
1	26. A method of generating a pulse width modulated voltage signal, said
2	method comprising:
3	providing a DC voltage source (102);
4	electrically coupling said DC voltage source in parallel with a first switching
5	circuit (104) comprising a first switch and a second switch configured in a series circuit;
6	electrically coupling said DC voltage source in parallel with a second switching
7	circuit (204) comprising a third switch and a fourth switch configured in a series circuit;
8	establishing an output (108) comprising a first electrical junction coupling said
9	first switch and said second switch and a second electrical junction coupling said third
10	switch and said fourth switch;
11	maintaining said third switch in a conducting state while maintaining said
12	fourth switch in a non-conducting state so as to establish a first polarity of an output
13	signal;
14	switching said first switch and said second switch at a modulation frequency; then
15	maintaining said second switch in a conducting state while maintaining said first
16	switch in a non-conducting state so as to establish a second polarity of said output signal,
17	said second polarity being the reverse polarity of said first polarity;
18	switching said third switch and said fourth switch at said modulation
19	frequency.
1	27. The method as described in claim 26 and further comprising:
_	
2	configuring said first switching circuit and said second switching circuit as
3	part of an application specific integrated circuit.
1	28. The method as described in claim 26 and further comprising:
2	utilizing said first switching circuit to produce a positive pulse width modulated
3	output signal during about one half cycle of a fundamental output period; and

451

2

utilizing said second switching circuit to produce a negative pulse wi	idth
modulated output signal during the other half cycle of said fundamental output period	od.

- 29. The method as described in claim 26 and further comprising powering a motor with said output signal.
- 1 30. The method as described in claim 26 and further comprising controlling 2 said first switching circuit and said second switching circuit with a processor.