

Exercise 14.1

5. In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number mangoes. The following was the distribution of mangoes according to the number of boxes.

| Number of mangoes | 50 - 52 | 53 - 55 | 56 - 58 | 59-61 | 62 - 64 |
|-------------------|---------|---------|---------|-------|---------|
| Number of boxes   | 12      | 14      | 8       | 6     | 10      |

Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?

Ans. Since value of number of mangoes and number of boxes are large numerically. So we use step-deviation method.

| No. of mangoes | No. of boxes $(f_i)$ | Class Marks $(x_i)$ | $u_i = \frac{x_i - a}{h}$ | $f_i u_i$           |
|----------------|----------------------|---------------------|---------------------------|---------------------|
| 50 - 52        | 15                   | 51                  | - 2                       | - 30                |
| 53 - 55        | 110                  | 54                  | -1                        | - 110               |
| 56 - 58        | 135                  | 57                  | 0                         | 0                   |
| 59 - 61        | 115                  | 60                  | 1                         | 115                 |
| 62 - 64        | 25                   | 63                  | 2                         | 50                  |
|                | $\sum f_i = 400$     |                     |                           | $\sum f_i u_i = 25$ |

From given data, Assume mean (a) = 57, Width of the class (h) = 3

$$\bar{u} = \frac{\sum f_i u_i}{\sum f_i} = \frac{25}{400} = 0.0625$$
 (approx.)

Using formula, Mean 
$$(\bar{x}) = a + h\bar{u} = 57 + 3 \ (0.0625)$$
  
= 57 + 0.1875 = 57.1875 = 57.19 (approx.)

Hence mean number of mangoes kept in a packing box is 57.19.

### 6. The table below shows the daily expenditure on food of 25 households in a locality:

| Daily expenditure | 100 - 150 | 150 - 200 | 200 - 250 | 250 - 300 | 300 - 350 |
|-------------------|-----------|-----------|-----------|-----------|-----------|
| (in Rs.)          |           |           |           |           |           |
| Number of         | А         | 5         | 12        | 2         | 2         |
| households        | 7         | ,         | 12        | 4         | -         |

### Find the mean daily expenditure on food by a suitable method.

#### Ans.

| Daily<br>expenditure | No. of households $\left(f_{i}\right)$ | Class Marks $(x_i)$ | $u_i = \frac{x_i - a}{h}$ | $f_i u_i$           |
|----------------------|----------------------------------------|---------------------|---------------------------|---------------------|
| 100 - 150            | 4                                      | 125                 | - 2                       | -8                  |
| 150 - 200            | 5                                      | 175                 | -1                        | -5                  |
| 200 - 250            | 12                                     | 225                 | 0                         | 0                   |
| 250 - 300            | 2                                      | 275                 | 1                         | 2                   |
| 300 - 350            | 2                                      | 325                 | 2                         | 4                   |
|                      | $\sum f_i = 25$                        |                     |                           | $\sum f_i u_i = -7$ |

From given data, Assume mean (a) = 225, Width of the class (h) = 50

$$u = \frac{\sum f_i u_i}{\sum f_i} = \frac{-7}{25} = -0.28$$

Using formula, Mean 
$$(\bar{x}) = a + h\bar{u} = 225 + 50$$
 (-0.28) = 225 - 14 = 211

Hence mean daily expenditure on food is Rs. 211.

# 7. To find out the concentration of SO<sup>2</sup> in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:

| 0 | Concentration<br>of SO <sup>2</sup> (in<br>opm) |   | 0.04 - 0.08 | 0.08 - 0.12 | 0.12 - 0.16 | 0.16 - 0.20 | 0.20 - 0.24 |
|---|-------------------------------------------------|---|-------------|-------------|-------------|-------------|-------------|
| F | requency                                        | 4 | 9           | 9           | 2           | 4           | 2           |

Find the mean concentration of SO<sup>2</sup> in the air. Ans.

| Concentration<br>of SO <sup>2</sup> (in<br>ppm) | Frequency $(f_i)$ | Class Marks $(x_i)$ | $u_i = \frac{x_i - a}{h}$ | $f_i u_i$           |
|-------------------------------------------------|-------------------|---------------------|---------------------------|---------------------|
| 0.00 - 0.04                                     | 4                 | 0.02                | - 2                       | -8                  |
| 0.04 - 0.08                                     | 9                 | 0.06                | -1                        | - 9                 |
| 0.08 - 0.12                                     | 9                 | 0.10                | 0                         | 0                   |
| 0.12 - 0.16                                     | 2                 | 0.14                | 1                         | 2                   |
| 0.16 - 0.20                                     | 4                 | 0.18                | 2                         | 8                   |
| 0.20 - 0.24                                     | 2                 | 0.20                | 3                         | 6                   |
|                                                 | $\sum f_i = 30$   |                     |                           | $\sum f_i u_i = -1$ |

From given data, Assume mean (a) = 0.10, Width of the class (h) = 0.04

$$\bar{u} = \frac{\sum f_i u_i}{\sum f_i} = \frac{-1}{30} = -0.033$$
 (approx.)

Using formula, Mean 
$$(\bar{x}) = a + h\bar{u} = 0.10 + 0.04$$
 (-0.033) = 0.10 - 0.0013 = 0.0987 (approx.)

Hence mean concentration of SO<sup>2</sup> in air is 0.0987 ppm.

## 8. A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.

| Number of days     | 0-6 | 6-10 | 10-14 | 14-20 | 20 - 28 | 28 - 38 | 38-40 |
|--------------------|-----|------|-------|-------|---------|---------|-------|
| Number of students | 11  | 10   | 7     | 4     | 4       | 3       | 1     |

### Ans.

| Number of days | No. of students $(f_i)$ | Class Marks $(x_i)$ | $d_i = x_i - a$ | $f_i d_i$             |
|----------------|-------------------------|---------------------|-----------------|-----------------------|
| 0-6            | 11                      | 3                   | -14             | - 154                 |
| 6 - 10         | 10                      | 8                   | - 9             | - 90                  |
| 10 - 14        | 7                       | 12                  | -5              | - 35                  |
| 14 - 20        | 4                       | 17                  | 0               | 0                     |
| 20 - 28        | 4                       | 24                  | 7               | 28                    |
| 28 - 38        | 3                       | 33                  | 16              | 48                    |
| 38 - 40        | 1                       | 39                  | 22              | 22                    |
|                | $\sum f_i = 40$         |                     |                 | $\sum f_i d_i = -181$ |

From given data, Assume mean (a) = 17

$$(\bar{x}) = a + \frac{\sum f_i d_i}{\sum f_i} = 17 + \frac{(-181)}{40} = 17 - 4.52 = 12.48$$

Hence mean 12.48 number of days a student was absent.

## 9. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.

| Literacy rate<br>(in percentage) | 45 - 55 | 55 - 65 | 65 - 75 | 75 - 85 | 85 - 95 |
|----------------------------------|---------|---------|---------|---------|---------|
| Number of cities                 | 3       | 10      | 11      | 8       | 3       |

#### Ans.

| Literacy rate<br>(in %) | No. of cities $(f_i)$ | Class Marks $(x_i)$ | $u_i = \frac{x_i - a}{h}$ | $f_i u_i$           |
|-------------------------|-----------------------|---------------------|---------------------------|---------------------|
| 45 - 55                 | 3                     | 50                  | - 2                       | - 6                 |
| 55 - 65                 | 10                    | 60                  | -1                        | - 10                |
| 65 - 75                 | 11                    | 70                  | 0                         | 0                   |
| 75 - 85                 | 8                     | 80                  | 1                         | 8                   |
| 85 - 95                 | 3                     | 90                  | 2                         | 6                   |
|                         | $\sum f_i = 35$       |                     |                           | $\sum f_i u_i = -2$ |

From given data, Assume mean (a) = 70, Width of the class (h) = 10

$$\vec{u} = \frac{\sum f_i u_i}{\sum f_i} = \frac{-2}{35} = -0.057$$

Using formula, Mean  $(\bar{x}) = a + h\bar{u} = 70 + 10$  (-0.057) = 70 - 0.57 = 69.43

Hence mean literacy rate is 69.43%.

\*\*\*\*\*\*\*\*\* FND \*\*\*\*\*\*\*