Rappel de cours:

- Une fonction dérivable est continue, par contre le réciproque n'est pas vraie
- Une fonction est dérivable sur un intervalle si elle est dérivable en tout point de cette intervalle
- Une fonction est dérivable en un point a si $\exists l, \lim_{x \to a} \frac{f(x) f(a)}{x a} = l$ ou $\exists l, \lim_{h \to 0} \frac{f(a + h) f(a)}{h}$
- une fonction est dérivable sur un intervalle donn si elle est un assemblage de fonctions connues et drivables sur cette intervalle.

La fonction $f(x) = |x - \pi| sin(x)$ est égale à

$$f(x) = \begin{cases} (x - \pi)sin(x) & x \ge \pi \\ (\pi - x)sin(x) & x < \pi \end{cases}$$

Les deux parties sont un assemblage fonctions dérivables sur leur intervalle. Il reste à démontrer si la fonction est dérivable en π .

$$\exists l, \lim_{x \to \pi} \frac{f(x) - f(\pi)}{x - \pi} = l$$

$$\begin{cases} \lim_{x \to \pi^+} \frac{(x - \pi)sin(x) - (\pi - \pi)sin(\pi)}{x - \pi} \\ \lim_{x \to \pi^-} \frac{(\pi - x)sin(x) - (\pi - \pi)sin(\pi)}{x - \pi} \end{cases}$$

$$\begin{cases} \lim_{x \to \pi^+} \frac{(x - \pi)sin(x)}{x - \pi} \\ \lim_{x \to \pi^-} \frac{-(x - \pi)sin(x)}{x - \pi} \end{cases}$$

$$\begin{cases} \lim_{x \to \pi^+} sin(x) \\ \lim_{x \to \pi^-} -sin(x) \end{cases}$$

La fonction sinus est impaire, sin(-x) = -sin(x). Donc

$$\begin{cases} \lim_{x \to \pi^+} \sin(x) \\ \lim_{x \to \pi^-} \sin(-x) \end{cases}$$

on a $\lim_{x\to\pi^-} \sin(-x) = \lim_{x\to\pi^+} \sin(x)$. La valeur l existe donc la fonction f est dérivable.

La proposition est Vraie.

Exo 2

Comme f est dérivable, on peut écrire son développement limité d'ordre 1 en x_0 ; $f(x_0 + h) = f(x_0) + hf'(x_0) + h\epsilon(h)$.

En remplaçant h par 3h on a $f(x_0 + 3h) = f(x_0) + 3hf'(x_0) + 3h\epsilon(3h)$. En soustrayant les 2 formules on a $f(x_0 + 3h) - f(x_0 + h) = 2hf'(x_0) + 3h\epsilon(3h) - h\epsilon(h)$, soit $\frac{f(x_0 + 3h) - f(x_0 + h)}{h} = 2f'(x_0) + 3\epsilon(3h) - \epsilon(h)$.

$$\frac{f(x_0+3h) - f(x_0+h)}{h} = 2f'(x_0) + 2\epsilon(h)$$

$$\lim_{h \to 0} \frac{f(x_0 + 3h) - f(x_0 + h)}{h} = 2f'(x_0)$$

La proposition est Vraie.

Comme f est dérivable, on peut écrire son développement limité d'ordre 1 en x_0 est $f(x) - f(x_0) = f'(x_0)(x - x_0)$ $(x_0) + (x - x_0)\epsilon(x - x_0).$

Donc lorsque $x_0 = 0$; $f(x) - f(0) = f'(0)(x - 0) + (x - 0)\epsilon(x - 0)$ On prend $f(x) = e^{\sin(2x)}$. On a $f(0) = e^{\sin(2.0)} = 1$, $f'(x) = 2\cos(2x)e^{\sin(2x)}$, donc f'(0) = 2. Donc $f(x) = 1 + 2x + x\epsilon(x) \neq 1 + 3x + x\epsilon(x).$

La proposition est Fausse.

Exo 4

Soit $f(x) = (x-1)^3$, la fonction est dérivable $f'(x) = 3(x-1)^2$ et f'(1) = 0. Le point 1 n'est pas un extremum de la fonction sur l'intervalle [-2,3]. En effet, f(-2) = -27 < f(1) = 0 donc 1 n'est pas un minimum local et f(3) = 8 > f(1) = 0 donc 1 n'est pas un maximum local.

La proposition est Fausse.

Exo 5

Soit f(x) = |x|, la fonction est définie et continue en 0 mais pas dérivable en 0. En effet, si f(x) est dérivable en a alors, $\exists l, \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$

$$\left\{ \begin{array}{l} \lim_{x \to 0^+} \frac{x-0}{x-0} = 1 \\ \lim_{x \to 0^-} \frac{-x-0}{x-0} = -1 \end{array} \right.$$

La proposition est Fausse.

Exo 6

La fonction $tan^3(x)$ est dérivable sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ car c'est un asssemblage de fonctions dérivable sur cette intervalle.

$$(\tan^3(x))' = 3(\tan(x))'\tan^2(x) = 3(1+\tan^2(x))\tan^2(x) = 3(\tan^2(x)+\tan^4(x))$$

La fonction g nest pas la fonction nulle sur I (puisque $g(\pi/4) = 2$) donc :

$$(tan^3(x))' = 3g(x) \neq g(x)$$

La proposition est Fausse.

Calculons la dériv'ee de $h(x) = \frac{x}{\sqrt{1+x^2}}$.

$$f(x) = x$$
 $f'(x) = 1$
 $g(x) = \sqrt{1+x^2}$ $g'(x) = \frac{x}{\sqrt{1+x^2}}$

$$h'(x) = \frac{1.\sqrt{1+x^2} - x.\frac{x}{\sqrt{1+x^2}}}{1+x^2} = \frac{\frac{1}{\sqrt{1+x^2}}}{1+x^2} = \frac{1}{(1+x^2)\sqrt{1+x^2}}.$$

La fonction h n'a pas de maximum ou minimum si sa dérivée ne peux pas être nulle; $\forall x \in \mathbb{R}, h'(x) \neq 0$.

$$\frac{1}{(1+x^2)\sqrt{1+x^2}} = 0$$
$$1 = 0$$

OU La fonction $h(x) = \frac{x}{\sqrt{1+x^2}}$ est strictement croissante. Donc le maximum de h(x), si il existe, est la limite quand $X \to +\infty$ et le minimum de h(x), si il existe, est la limite quand $X \to -\infty$. Remarquons que, $\forall x \in \mathbb{R}, x^2 < 1 + x^2$ donc $\forall x \in \mathbb{R}, |x| < \sqrt{1+x^2}$ et $\forall x \in \mathbb{R}, \frac{|x|}{\sqrt{1+x^2}} < 1$.

Lorsque $x \to +\infty$, h(x) s'approche arbitrairement près de la valeur 1 mais sans jamais atteindre cette valeur. Donc, f(x) n'admet pas de maximum.

Lorsque $x \to -\infty$, h(x) s'approche arbitrairement près de la valeur -1 mais sans jamais atteindre cette valeur. Donc, f(x) n'admet pas de minimum.

La proposition est Vraie.

Exo 8

On a $\lim_{x\to+\infty} x + 2sin(x) = +\infty$ et $\lim_{x\to-\infty} x + 2sin(x) = -\infty$. Donc la fonction n'a pas de minima ou de maxima sur \mathbb{R} .

La proposition est Fausse.

Maintenant si la question est : est-ce que la fonction f: x+2sin(x) admet une infinité de maxima et minima locaux sur \mathbb{R} , alors: f'(x)=1+2cos(x) et f'(x)=0 lorsque $x=\frac{2\pi}{3}+2k\pi$ ou $x=\frac{4\pi}{3}+2k\pi$. Pour que les points soit des maximas ou des minimas il faut que $\lim_{x\to\frac{2\pi}{3})+}f'(x)=-\lim_{x\to\frac{2\pi}{3})-}f'(x)$. (ie changement du signe de la dérivée).

$$\lim_{x \to (\frac{2\pi}{3})^+} f'(x) = \lim_{x \to (\frac{2\pi}{3})^+} 1 + 2\cos(x) = 0^-$$

$$\lim_{x \to (\frac{2\pi}{3})^{-}} f'(x) = \lim_{x \to (\frac{2\pi}{3})^{-}} 1 + 2\cos(x) = 0^{+}$$

Donc $x = \frac{2\pi}{3}$ est un minima, de même pour $x = \frac{2\pi}{3} + 2k\pi$.

$$\lim_{x \to (\frac{4\pi}{3})+} f'(x) = \lim_{x \to (\frac{4\pi}{3})+} 1 + 2\cos(x) = 0^+$$

$$\lim_{x \to (\frac{4\pi}{3})^{-}} f'(x) == \lim_{x \to (\frac{4\pi}{3})^{-}} 1 + 2\cos(x) = 0^{-}$$

Donc $x = \frac{4\pi}{3}$ est un maxima, de même pour $x = \frac{4\pi}{3} + 2k\pi$

Donc il existe une infinité de maxima et minima locaux sur \mathbb{R} . La proposition est Vraie.

Une fonction est born'ee sur un intervalle [a, b] si il existe deux valeurs m et M tel que $\forall x \in [a, b], m \le f(x) \le M$. Si on peut identifier une fonction qui tend vers la valeur M sans jamais l'atteindre entre [a, b] alors la proposition est fausse.

Soit la fonction

$$f: \mathbb{R} \to \mathbb{R}, \left\{ \begin{array}{ll} M*x & x \in [0,1[\\ 0 & x = 1 \end{array} \right.$$

La fonction est bornée car $\forall x \in [0,1], f(x) < M$ et la fonction n'admet pas de maximum sur [0,1[car f tend vers la valeur M sans jamais l'atteindre.

La proposition est Fausse.

Exo 10

Preuve par l'absurde.

Admettons que la fonction f n'a pas de valeur maximale sur l'intervalle [0,1], donc $\exists c \in [0,1], f(c) = +\infty$ [1].

La fonction f est continue sur l'intervalle [0,1], donc $\forall x_0 \in [0,1], \forall \epsilon > 0, \exists \eta > 0$ tel que $(\forall x \in [0,1] \cap]x_0 - \eta, x_0 + \eta[,|f(x) - f(x_0)| < \epsilon)$ [2].

Au point c, la proposition [2] est fausse, la fonction f admet une valeur maximale sur l'intervalle [0,1].

On peut également utiliser le théorème de Bolzano-Weierstrass.

La proposition est Vraie.

Exo 11

Preuve par l'absurde.

Soit une fonction f périodique de période p et continue.

Admettons que la fonction f n'a pas de valeur maximale sur l'intervalle [0, p], donc $\exists c \in [0, p], f(c) = +\infty$ [1].

La fonction f est continue sur \mathbb{R} donc également sur l'intervalle [0, p], donc $\forall x_0 \in [0, p], \forall \epsilon > 0, \exists \eta > 0$ tel que $(\forall x \in [0, p] \cap]x_0 - \eta, x_0 + \eta[, |f(x) - f(x_0)| < \epsilon)$ [2].

Au point c, la proposition [2] est fausse, la fonction f admet une valeur maximale sur l'intervalle [0,p]. Comme la fonction est périodique, on a $\forall x \in \mathbb{R}, f(x) = f(x\%p)$, et $x\%p \in [0,p]$, donc la valeur maximale sur l'intervalle [0,p] est également la valeur maximale de la fonction f sur \mathbb{R} .

On peut également utiliser le théorème de Bolzano-Weierstrass.

La proposition est Vraie.

Exo 12

Montrons:

$$\forall x, y \in [-1, 1], |x^{2013} - y^{2013}| \le 2013|x - y|$$

 $|x-y| \ge 0$, donc

$$\begin{aligned} &\forall x,y \in [-1,1], \frac{|x^{2013} - y^{2013}|}{|x - y|} \leq 2013 \\ &\forall x,y \in [-1,1], \left| \frac{x^{2013} - y^{2013}}{x - y} \right| \leq 2013 \\ &\forall x,y \in [-1,1], \left| \sum_{k=0}^{2012} x^k . y^{2012 - k} \right| \leq 2013 \end{aligned}$$

On a $x, y \in [-1, 1]$, donc $x^m, y^m \in [-1, 1]$ et $x^m.y^m \in [-1, 1]$. Donc $\sum_{k=0}^{2012} x^k.y^{2012-k} \in [-2013, 2013]$ et $|\sum_{k=0}^{2012} x^k.y^{2012-k}| \le 2013$.

Ou alors

Rappel de cours: Théorème des accroissements finis

Soit [a;b] un segment de \mathbb{R} et soit $f:[a;b] \mapsto \mathbb{R}$ une fonction continue sur [a;b] et drivable sur [a;b]. Il existe (au moins) un point $c \in [a;b]$ tel que:

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Soit $f:[-1;1]\mapsto \mathbb{R}\,x^{2013}$, est un
r fonction continue sur [-1,1] et dérivable sur]-1,1[. $f'(x)=2013x^{2012}$.
Donc, par le théorème des accroissements finis, $\exists c\in[-1;1]$ tel que $f'(c)=\frac{f(b)-f(a)}{b-a}$. On a $-1\leq c\leq 1$, donc
c<|1| et $c^{2012}<|1|$. $\frac{f(b)-f(a)}{b-a}=f'(c)=2013c^{2012}\leq |2013|$.

La proposition est Vraie.

Exo 13

Partie 1:
$$\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} - \sqrt{n}$$
?

$$\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} - \sqrt{n}$$

$$\frac{1}{2} < (n+1) - \sqrt{n}\sqrt{n+1}$$

$$-\frac{1}{2} < n - \sqrt{n(n+1)}$$

$$-\frac{1}{2} < n - \sqrt{n(n+1)} \cdot \frac{n + \sqrt{n(n+1)}}{n + \sqrt{n(n+1)}}$$

$$-\frac{1}{2} < \frac{-n}{n + \sqrt{n(n+1)}}$$

On a n > 0 et $n(n+1) > n^2$, donc $\sqrt{n(n+1)} > n$, $n + \sqrt{n(n+1)} > 2n$ et $\frac{1}{n+\sqrt{n(n+1)}} < \frac{1}{2n}$. Donc, $\frac{-n}{n+\sqrt{n(n+1)}} > \frac{-n}{2n} = \frac{-1}{2}$.

Partie $2:\sqrt{n+1}-\sqrt{n}<\frac{1}{2\sqrt{n}}$?

$$\sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}}$$
$$\sqrt{n+1}\sqrt{n} - n < \frac{1}{2}$$

$$\sqrt{(n+1)n} - n < \frac{1}{2}$$
$$-\frac{1}{2} < n - \sqrt{n(n+1)}$$

Vrai car partie 1 est vraie.

La proposition est Vraie.

Exo 14

Prenons la valeur $x=-\frac{\pi}{2},$ on a $\cos(-\frac{\pi}{2})-1=-1\nleq -\frac{\pi}{2}.$

La proposition est Fausse.

Exo 15

La fonction ln est strictement croissante, donc $\frac{ln\,a}{ln\,b} < 1$ car a < b. Pour que l'égalité soit vraie, il faut que $\frac{a-b}{c.ln(c)} < 0$ car $e^{\frac{a-b}{c.ln(c)}} < 1$.

On a a - b < 0 car a < b, donc il faut que c.ln(c) soit positif. Ceci est vrai lorsque c > 1.

La proposition est Vraie.

Exo 16

Rappel de cours

La fonction f est de classe \mathbb{C}^1 sur l'intervalle I si la fonction est dérivable sur I et que sa dérivé est continue sur I.

$$f: \mathbb{R} \to \mathbb{R}, \left\{ \begin{array}{ll} x^2 sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{array} \right.$$

La fonction f est dérivable sur $\mathbb R$ car c'est un assemblage de fonctions dérivables. Calculons la dérivée de f.

$$\begin{array}{ll} h(x)=x^2 & h'(x)=2x \\ g(x)=\sin(\frac{1}{x}) & g'(x)=-\frac{1}{x^2}cos(\frac{1}{x}) \end{array}$$

Donc,

$$f': \mathbb{R} \to \mathbb{R}, \left\{ \begin{array}{l} (x^2)(-\frac{1}{x^2}cos(\frac{1}{x})) + 2x.sin(\frac{1}{x}) = 2x.sin(\frac{1}{x}) - cos(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{array} \right.$$

Il faut maintenant vérifier que la dérivée f'(x) est continue sur \mathbb{R} . Pour $x \neq 0$, la fonction est continue car c'est un assemblage de fonctions continues, pour x=0, la fonction est également continue. Il reste à vérifier que la fonction est continue en 0; $\lim_{x\to 0} 2x.\sin(\frac{1}{x}) - \cos(\frac{1}{x}) = 0$?

La fonction $cos(\frac{1}{x})$ n'a pas de limite en 0.

La proposition est Fausse.