Technische Universität Berlin

Fakultät II – Institut für Mathematik G. Bärwolff · A. Gündel-vom Hofe · F. Tröltzsch

SS 2012 20.07.2012

Juli – Klausur Analysis 1 für Ingenieure

						gang:				
				en A4 Blatt mit N nrechner und kei				fsmittel	zugelas	sen. Ins-
	_			rift auf A4 Blätter ftet sein. Mit Blei	_					
Ihrer An Skript"	ntwort z gilt nich	ur Aufg nt als B	abe gibt egründu	egründung und/ es keine Punkte. ng. Der entsprech gegebenen Aufga	"Nach den ende Satz	n Satz in de muss zitiert	er Vorles werden	ung / in	n Tutori	um / im
Die Bea	rbeitung	gszeit b	eträgt 9	0 Minuten.						
				von 60 Punkten be	estanden, v	venn in jede	em der l	oeiden T	Ceile der	Klausur
Recher	nteil							7	Verstän	dnisteil
1	2	3	Σ				4	5	6	Σ

Rechenteil:

1. Aufgabe 8 Punkte

Betrachten Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2 e^{-x}$.

- (a) Bestimmen Sie alle lokalen sowie globalen Extrempunkte von f.
- (b) Bestimmen Sie das Monotonieverhalten von f.

2. Aufgabe

- (a) Berechnen Sie das Integral $\int_{0}^{\infty} \frac{1}{2\sqrt{x}} e^{-\sqrt{x}} dx$ mithilfe der Substitutionsregel.
- (b) Berechnen Sie die Stammfunktion von $x \cos(x) + x^2$.
- (c) Berechnen Sie das Integral $\int_0^1 \frac{3x+4}{x^2+3x+2} dx$ mithilfe einer Partialbruchzerlegung.

3. Aufgabe 10 Punkte

Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = e^x \sin(x)$.

- (a) Bestimmen die das Taylorpolynom 3. Grades im Entwicklungspunkt $x_0 = 0$.
- (b) Zeigen Sie, dass sich das Restglied für $x \in [0,1]$ abschätzen lässt durch $|R_3(x)| \leq \frac{e}{6}$.

Verständnisteil:

4. Aufgabe 12 Punkte

Zeigen Sie, dass die folgenden Folgen konvergent sind und berechnen Sie ihre Grenzwerte:

(a)
$$a_n = \frac{2n^4 + \cos(n) + n^2}{3n^4 + n^3 + 7}$$
,

(b)
$$b_n = \sqrt{2n+1} - \sqrt{2n-1}$$
,

(c)
$$c_n = (\frac{1}{4}\sqrt{2} + \frac{1}{4}\sqrt{2}i)^n$$
.

5. Aufgabe 10 Punkte

Gegeben sei für $a \in \mathbb{R}$ die folgende Funktion $f : \mathbb{R} \to \mathbb{R}$:

$$x \mapsto \begin{cases} a\cos(x), & x < \frac{\pi}{2} \\ ax^2 - 1, & x \ge \frac{\pi}{2} \end{cases}.$$

- (a) Bestimmen Sie alle $a \in \mathbb{R}$, so dass f auf ganz \mathbb{R} stetig ist.
- (b) Zeigen Sie, dass kein $a \in \mathbb{R}$ existiert, so dass f auf \mathbb{R} differenzierbar ist.

6. Aufgabe 8 Punkte

- (a) Zeigen Sie, dass $g: \mathbb{R} \to \mathbb{R}$, $x \mapsto \cos(7x) + \sin(-7x) + x^3$ eine Nullstelle in $[0, \frac{\pi}{14}]$ besitzt.
- (b) Zeigen Sie mithilfe des Mittelwertsatzes, dass die Ungleichung

$$\ln(y) < y - 1$$