Programación 3 - Curso 2011 1er Modulo – Viernes 20 de Mayo

Ejercicio 1

Sea el siguiente algoritmo:

```
public void sumatorias (int n) {
   for (int i = 1; i < n; i++)
      for (int j = n; j > i; j--) {
        int k = n
        while (k > 1) {
            Operacion();
            K = k /2;
        }
   }
}
```

a.- Calcular el T(n) y el O(n). Considere Operación de tiempo constante. (vale 2 puntos, 1 punto el T(n) y 1 punto el O(n))

Calculo del T(n):

$$\begin{split} &\sum_{i=1}^{n} \left(\sum_{j=i}^{n} \left(c + \sum_{k=1}^{Log_{2}(n)} d \right) \right) = \\ &= \sum_{i=1}^{n} \left(\sum_{j=i}^{n} \left(c + d * Log_{2}(n) \right) \right) = \\ &= \sum_{i=1}^{n} \left(c * (n-i+1) + d * (n-i+1) * Log_{2}(n) \right) = \\ &= \sum_{i=1}^{n} \left(c * n - i * c + c + (d * n - i * d + d) * Log_{2}(n) \right) = \\ &= \sum_{i=1}^{n} \left(c * n - i * c + c + d * n * Log_{2}(n) - i * d * Log_{2}(n) + d * Log_{2}(n) \right) = \\ &= cn^{2} - c \sum_{i=1}^{n} i + cn + dn^{2} Log_{2}(n) - dLog_{2}(n) \sum_{i=1}^{n} i + dn Log_{2}(n) = \\ &= cn^{2} - c \frac{n(n+1)}{2} + cn + dn^{2} Log_{2}(n) - dLog_{2}(n) \frac{n(n+1)}{2} + dn Log_{2}(n) = \\ &= cn^{2} - \frac{c}{2} n^{2} - \frac{c}{2} n + cn + dn^{2} Log_{2}(n) - \frac{d}{2} Log_{2}(n) n^{2} - \frac{d}{2} Log_{2}(n) n + dn Log_{2}(n) = \\ &= \frac{c}{2} n^{2} + \frac{c}{2} n + \frac{d}{2} Log_{2}(n) n^{2} + \frac{d}{2} Log_{2}(n) n \end{split}$$

Calculo del O(n):

$$\begin{split} T(n) &= \frac{c}{2}n^2 + \frac{c}{2}n + \frac{d}{2}Log_2(n)n^2 + \frac{d}{2}Log_2(n)n - es_-O(n^2Log_2(n)) \\ &\frac{d}{2}Log_2(n)n^2 <= dn^2Log_2(n), \forall n_0 \\ &\frac{d}{2}Log_2(n)n <= dn^2Log_2(n), \forall n_0 \\ &\frac{c}{2}n^2 <= cn^2Log_2(n), \forall n_0 \\ &\frac{c}{2}n <= cn^2Log_2(n), \forall n_0 \\ &\frac{c}{2}n^2 + \frac{c}{2}n + \frac{d}{2}Log_2(n)n^2 + \frac{d}{2}Log_2(n)n <= (2d + 2c)n^2Log_2(n), \forall n_0 \therefore es_-O(n^2Log_2(n)) \end{split}$$

b.- Resolver la siguiente recurrencia y Calcular el O(n). (vale 2 puntos, 1 punto la recurrencia y 1 punto el O(n))

$$T(n) = \begin{cases} 1 & \text{si } n = 1 \\ 16 \ T(n/2) + n^4 & \text{si } n \ge 2 \end{cases}$$

Resolución de la recurrencia:

$$\begin{split} &=16T\left(\frac{n}{2}\right)+n^4=\\ &=16\left(16T\left(\frac{n}{2/2}\right)+\left(\frac{n}{2}\right)^4\right)+n^4=16^2\left(T\left(\frac{n}{2^2}\right)+\left(\frac{n}{2}\right)^4\right)+n^4=16^2T\left(\frac{n}{2^2}\right)+16\left(\frac{n}{2}\right)^4+n^4=16^2T\left(\frac{n}{2^2}\right)+2n^4=\\ &=16^2T\left(\frac{n}{2^2}\right)+2n^4=16^2\left(16T\left(\frac{n}{2^3}\right)+\left(\frac{n}{2^2}\right)^4\right)+2n^4=16^3T\left(\frac{n}{2^3}\right)+16^2\left(\frac{n}{2^2}\right)^4+2n^4=16^3T\left(\frac{n}{2^3}\right)+3n^4=\\ &=16^iT\left(\frac{n}{2^i}\right)+in^4=\\ &\frac{n}{2^i}=1\rightarrow i=Log_2(n)\\ &=16^{Log_2(n)}T\left(\frac{n}{2^{Log_2(n)}}\right)+Log_2(n)n^4=\\ &=n^4T\left(\frac{n}{n}\right)+Log_2(n)n^4=\\ &=n^4+Log_2(n)n^4 \end{split}$$

Calculo del O(n):

$$T(n) = n^{4} + Log_{2}(n)n^{4} - es_{-}O(n^{4}Log_{2}(n))$$

$$Log_{2}(n)n^{4} \le n^{4}Log_{2}(n), \forall n_{0}$$

$$n^{4} \le n^{4}Log_{2}(n), \forall n_{0}$$

$$n^{4} + n^{4}Log_{2}(n) \le 2n^{4}Log_{2}(n), \forall n_{0} : es_{-}O(n^{4}Log_{2}(n))$$

Ejercicio 2

Sea la siguiente expresión en formato prefijo: + 3 * + 5 6 - 1 2

a.- Representarla en el árbol binario correspondiente. (vale 0,5 puntos)

Solución:

Solución:

Preorden: +3*+56-12Indorden: 3+5+6*1-2Posorden: 356+12-*+

Ejercicio 3

Una cola circular es una estructura en la cual, además de poder agregarse y eliminarse elementos como en una cola común, existe la operación rotación, la cual consiste en devolver el tope y encolarlo a la vez.

Para esta implementación cuenta con las clases ListaGenerica<T> y NodoGenerico<T> que se muestran en los siguientes Diagramas de Clase.

- a.- Defina usando JAVA la clase ColaCircular e implemente dos constructores, uno para crear una cola vacía y otro para crearla con un único elemento. (vale 1 punto, 0,5 puntos cada operación)
- b.- Implemente las operaciones poner (T elem), sacar() y rotar().(vale 1 punto, 0,33 puntos cada operación)

Solucion:

Se podrían realizar distintos diseños. Seria posible implementar una cola circular a partir de una lista, o se podría definir la cola circular a partir de una cola. A continuación mostramos una solución donde se implementa la cola circular extiendo la clase cola, la cual a su vez se implementa a partir de una lista.

```
public class ColaCircular<T> extends ColaGenerica<T> {
     public ColaCircular() {
            super();
     public ColaCircular(T dato) {
            super();
           this.getDatos().agregar(dato);
      }
     public void rotar(){
            T dato = this.sacar();
           this.poner(dato);
      }
}
public class ColaGenerica<T> {
     private ListaGenerica<T> datos;
     public ListaGenerica<T> getDatos() {
            return datos;
      }
     public ColaGenerica() {
            this.datos = new ListaEnlazadaGenerica<T>();
     public void poner(T dato) {
```

```
datos.agregar(dato, datos.tamanio());
}

public T sacar() {
    T x = datos.elemento(0);
    datos.eliminar(0);
    return x;
}

public T tope() {
    return datos.elemento(0);
}

public boolean esVacia() {
    return datos.tamanio() == 0;
}
```

c.- Puede afirmar que la operación rotar () es de orden lineal? Justifique. (vale 1 punto)

Solucion:

Dado que la operación rotar, invoca a las operaciones sacar (de orden constante) y la operación poner (de orden lineal por recorrer toda la lista hasta llegar al final de la misma), podemos concluir que es de orden lineal.

Ejercicio 4

a.- Mencione la cantidad mínima y máxima de nodos en un árbol binario completo de altura h. Justifique su respuesta (vale 1 punto)

Solución:

Un árbol completo de altura h = 1, en donde el nivel h se va ocupando de izquierda a derecha. La siguiente tabla muestra la delación:

Н	N
0	1
1	3
2	7
I	2 ⁱ⁺¹ -1

Por lo tanto, un arbol completo de altura h de cantidad minima, tendra el nivel h-1 lleno y un nodo mas, lo cual se traduce como: $2^{h-1+1}-1+1=2^h$.

Por su parte, la cantidad máxima de un arbol completo se corresponde con la cantidad de nodos de un arbol lleno: 2^{h-1}

b.- Plantee la función de Tiempo de ejecución del recorrido PreOrden para los Árboles Generales. Plantear solo la recurrencia? (vale 1 punto)

Solución:

Considerando k el grado, la recurrencia utilizando n es:

$$T(n) = \begin{cases} 1 & \text{si } n = 1 \\ C + kT(n-1/k) & \text{si } n \ge 2 \end{cases}$$

Considerando k el grado, la recurrencia utilizando h es:

$$T(h) = \begin{cases} 1 & \text{si } n = 1 \\ C + kT(h-1) & \text{si } n \ge 2 \end{cases}$$

c.- Formalmente se dice que f(n) es O(g(n)) si \exists c, \exists n0, tal que \forall n \ge n0, se cumple f(n) \le c g(n). ¿Qué valores de c y $\mathbf{n_0}$ elige en esta definición para mostrar que $2n^2 - 3n$ es $O(n^2)$? (vale 0,5 puntos)

- (a) $n_0 = 2$, c = 1
- (b) $n_0 = 3$, c = 2
- (c) (a) y (b)

(d) Ninguna de las anteriores

Solución:

Si consideramos: $n_0 = 2$, c = 1

N	T(n)	O(n)
	2*n ² – 3*n	C* n ²
2	$2*2^2 - 3*2 = 8 - 6 = 2$	$1*2^2 = 4$
3	$2*3^2 - 3*3 = 18 - 9 = 9$	$1*3^2 = 9$
4	$2*4^2 - 3*4 = 32 - 12 = 20$	$1*4^2 = 16$

Vemos que para n=4 no se verifica la desigualdad. Si consideramos: $n_0=3,\,c=2$

N	T(n)	O(n)
	2*n ² – 3*n	C* n ²
3	$2*3^2 - 3*3 = 18 - 9 = 9$	$2* 3^2 = 18$
4	$2*4^2 - 3*4 = 32 - 12 = 20$	$2*4^2 = 32$
5	$2*5^2 - 3*5 = 50 - 15 = 35$	$2*5^2 = 50$

Podemos ver que O(n) siempre acotará a T(n), por lo cual, la respuesta correcta es (b)