

Computer Security Project

Cipher Craft Website

Submitted By:

Mohamed Ali Mohamed Ali Ragab

Supervised By:

Prof. Dr. Mahmoud E. Elshishtawy

T.A: AbdelRahman Essam T.A: Razan Allaa

Table of Contents

1. Overview	3
2. Features	8
2.1. Cryptographic Algorithms	8
2.2. User Interface	8
2.3. Interactivity	8
2.4. Accessibility	8
3. System Requirements	9
4. Usage	9
4.1. Accessing the Dashboard	9
4.2. Encrypting/Decrypting Text	9
4.3. Exploring Examples	9
4.4. Switching Tabs	9
4.5. Toggling Dark Mode	10
5. Technical Details	10
5.1. Frontend	10
5.2. Backend	10
5.3. Dependencies	10
6. Example Usage	11
7. Resources	11

1. Overview

CipherCraft Dashboard is a web-based application designed to perform encryption and decryption using various classical cryptographic algorithms. Built with a user-friendly interface and robust backend, it serves as an educational tool for learning about cryptography and a practical utility for applying ciphers. The project supports **six ciphers:** Caesar, Monoalphabetic, Playfair, Transposition, Vigenère, and Rail Fence.

2. Features

2.1. Cryptographic Algorithms

- 1. Caesar Cipher: Shifts letters by a fixed number of positions.
- 2. **Monoalphabetic Cipher**: Substitutes letters using a 26-letter key.
- 3. **Playfair Cipher**: Encrypts letter pairs using a 5x5 grid.
- 4. **Transposition Cipher**: Rearranges letters based on a numeric key.
- 5. **Vigenère Cipher**: Uses a keyword for polyalphabetic substitution.
- 6. **Rail Fence Cipher**: Writes text in a zigzag pattern across rails.

2.2. User Interface

- Tabbed navigation for Tool, Tutorial, and Guide sections.
- Responsive design with light and dark modes (persistent via localStorage).
- Examples panel with pre-filled inputs for quick testing.
- Step-by-step explanation option for algorithm processes.
- Save result feature to download outputs as text files.

2.3. Interactivity

- Dynamic parameter input based on selected algorithm (e.g., shift for Caesar, 26-letter key for Monoalphabetic).
- Client-side validation for inputs (e.g., ensuring Monoalphabetic key has 26 unique letters).
- Hover effects (e.g., logo rotation) and animations for enhanced UX.

2.4. Accessibility

- Clear error messages for invalid inputs.
- Mobile-friendly layout with adjusted logo and icon sizes.

3. System Requirements

- **Browser**: Modern browsers (Chrome, Firefox, Safari, Edge).
- **Backend**: Python 3.8+ with required packages.
- **Internet**: Optional for external resources (e.g., Font Awesome, Google Fonts).

4. Usage

4.1. Accessing the Dashboard

- Open http://localhost:8000 after running the application.
- The dashboard loads with the **Tool** tab active.

4.2. Encrypting/Decrypting Text

- 1. **Select Operation**: Choose **Encrypt** or **Decrypt** from the dropdown.
- 2. **Select Algorithm**: Pick one of the six ciphers.
- 3. **Enter Text**: Input the text to process in the textarea.
- 4. Enter Parameter: Provide the required key (e.g., 3 for Caesar, DKVQFIBJWPESCXHTMYAUOLRGNZ for Monoalphabetic).
- 5. **Optional**: Check **Show step-by-step explanation** for a detailed breakdown.
- 6. **Submit**: Click the **Submit** button to process the text.
- 7. Save Result: Click Save Result to download the output as ciphercraft result.txt.

4.3. Exploring Examples.

- Select an example (e.g., Monoalphabetic Cipher with text if we wish to buy a car).
- Click **Copy** to auto-fill the form with the example's text and key.

4.4. Switching Tabs

- **Tool**: Main interface for encryption/decryption.
- **Tutorial**: Explains how each algorithm works.
- **Guide**: Provides step-by-step usage instructions and external resources.

4.5. Toggling Dark Mode

- Click the **Dark Mode** icon (moon/sun) in the top-right header.
- The mode persists across sessions via localStorage.

5. Technical Details

5.1. Frontend

- HTML: index.html defines the structure with tabs, forms, and an examples panel.
- CSS: style.css uses Poppins font, responsive design, and animations (e.g., logo rotation, fade-in effects).
- **JavaScript**: script.js handles:
 - o Dynamic parameter fields based on algorithm.
 - o Client-side validation (e.g., Monoalphabetic key must be 26 unique letters).
 - o Tab navigation, form submission via Fetch API, and result saving.
 - o Examples panel toggle and copy functionality.

5.2. Backend

- Framework: FastAPI (main.py) for serving the app and processing requests.
- Endpoints:
 - o GET /: Serves index.html.
 - o GET /documentation: Placeholder for documentation page.
 - o POST /process: Handles encryption/decryption with parameters (operation, algorithm, text, param).
- **Ciphers**: Implemented in Python with input validation and error handling.
 - Example: Monoalphabetic Cipher maps each letter using a 26-letter key and preserves case in output.

5.3. Dependencies

- External:
 - o Font Awesome 6.0.0 for icons.
 - o Google Fonts (Poppins) for typography.

- Python:
 - o fastapi: Web framework.
 - o uvicorn: ASGI server.
 - o jinja2: Template rendering.

6. Example Usage

Scenario: Encrypt text using the Monoalphabetic Cipher.

- 1. **Inputs**:
 - o Operation: Encrypt
 - o Algorithm: Monoalphabetic Cipher
 - o Text: if we wish to buy a car
 - o Key: DKVQFIBJWPESCXHTMYAUOLRGNZ
- 2. Steps:
 - Select Encrypt and Monoalphabetic Cipher.
 - Enter the text and key.
 - Click Submit.
- 3. Output: wigfgwjohklzdvda
- 4. **Optional**: Enable **Show step-by-step explanation** to see the process or click **Save Result** to download the output.

7. Resources

- Cryptography Basics:
 - o Wikipedia: Cryptography
 - o Khan Academy: Cryptography
- FastAPI Documentation: fastapi.tiangolo.com
- Font Awesome: fontawesome.com
- Google Fonts: fonts.google.com