

Test Cases for Combustion Chemistry in a **Isobaric Reactor**

Simone Venturi, Tiernan Casey

Extreme-Scale Data Science & Analytics (8739)

multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Isobaric 0-D Reactor (Hydrogen-air), 20 state variables (i.e., temperature and 19 species mass fractions)

Some training scenarios

The physical system is implemented in \$WORKSPACE_PATH/ROMNet/romnet/romnet/pinn/system/0DReact.py

Isobaric 0-D Reactor (Hydrogen-air), 20 state variables (i.e., temperature and 19 species mass fractions)

Some training scenarios

The physical system is implen \$WORKSPACE PATH/ROMNet/romnet/romnet/pinn/system/0DReact.py

Run python scrip:

\$WORKSPACE_PATH/ROMNet/romnet/scripts/generating_data/0DReactor/Generate_Data_1_Isobaric.py for generating simulation data

Note: The script needs to be run twice, the second time for generating test data

Run Jupyter Notebook:

\$WORKSPACE_PATH/ROMNet/romnet/scripts/generating_data/0DReactor/Generate_Data_3_Isobaric.ipynb for generating training and test data

Employed PCA for reducing the dimensionality of the state space

10 principal components (η) are sufficient for good accuracy

y

Run python scrip:

\$WORKSPACE_PATH/ROMNet/romnet/scripts/generating_data/0DReactor/Generate_Data_2_Isobaric.py for generating PCA simulation data

Note: The script needs to be run twice, the second time for generating test data

Run Jupyter Notebook:

\$WORKSPACE_PATH/ROMNet/romnet/scripts/generating_data/0DReactor/Generate_Data_4_Isobaric.ipynb for generating PCA training and test data

Test Case 9

After being trained (even with large number of data and large number of neurons, N), the DeepONet generates highly oscillatory predictions

<u>Test Case 9: Data-driven deep operator network (DeepONet) for predicting Principal Components</u>

- 9.1. Copy \$WORKSPACE PATH/ROMNet/romnet/input/0DReact/DeepONet/TestCase9/ROMNet Input.py to \$WORKSPACE PATH/ROMNet/romnet/input/ROMNet Input.py
- 9.2. In \$WORKSPACE PATH/ROMNet/romnet/input/ROMNet Input.py, change: 9.2.1. "self.WORKSPACE_PATH = ..."
- 9.3. Move to \$WORKSPACE PATH/ROMNet/romnet/app/
- 9.4. Run: "python3 ROMNet.py ../input/"
- 9.5. Postprocess results via: \$WORKSPACE PATH/ROMNet/romnet/scripts/postprocessing/0DReact/DeepONet/Predict DeepONet.ipynb

Investigating the issue: a principal component analysis

Aggregation of training scenarios for $\eta_i(t)$, where j represents the scenario index:

$$dim(H_j) = N_t \times N_s$$
No. time No. of instants scenarios

Eigendecomposition of R_{H_i} :

$$\Psi_j = \frac{H_j - C_j}{D_j} A_j$$

(Note: results are shown for j=1 (i.e., for η_1))

A relatively large number of modes needs to be preserved in order to predict η_j with good accuracy

Low energy modes are highly oscillatory and hard to be learnt by the DeepONet's trunk nets

Run Jupyter Notebook:

\$WORKSPACE_PATH/ROMNet/romnet/scripts/generating_data/0DReactor/Generate_Data_5.ipynb for generating PCA data

Test Case 10

Results from the improved structure

Predicted time-dependent principal components for test scenarios

Results from the improved structure

Reconstructed time-dependent temperature and species for test scenarios

Results from the improved structure

<u>Test Case 10: Data-driven improved deep operator network (DeepONet) for predicting Principal Components</u>

- 10.1. Copy \$WORKSPACE_PATH/ROMNet/romnet/input/0DReact/DeepONet/TestCase10/ROMNet_Input.py to \$WORKSPACE_PATH/ROMNet/romnet/input/ROMNet_Input.py
- 10.2. In \$WORKSPACE_PATH/ROMNet/romnet/input/ROMNet_Input.py, change: 10.2.1. "self.WORKSPACE_PATH = ..."
- 10.3. Move to \$WORKSPACE_PATH/ROMNet/romnet/app/
- 10.4. Run: "python3 ROMNet.py ../input/"
- 10.5. Postprocess results via: \$WORKSPACE_PATH/ROMNet/romnet/scripts/postprocessing/0DReact/DeepONet/Predict_DeepONet.ipynb