Review(1.3 Methods of Enumeration)

- Multiplication principle.
- Permutation and combination.
- Sampling with/without replacement.
- Ordered/unordered sample.

Example: Draw r numbers from the set $\{1,2,\cdots,n\}$. Let n=4,r=3.

- Sampling with/without replacement.
- Ordered/unordered sample.

Ordered, with replacement

Unordered, without replacement

n choose r

Ordered, without replacement

Unordered, with replacement

Taking n=4, $\mathbf{r}=3$, possible outcomes are $\{3,3,4\}$, $\{1,2,4\}$, $\{2,2,2\}$, etc. The trick to solve this counting problem is to represent the outcomes in a different way, via an ordered vector (x_1,\ldots,x_n) representing how many times an element in $\{1,\ldots,4\}$ occurs. For example, $\{3,3,4\}$ corresponds to (0,0,2,1)

Now place $\mathbf{r}=3$ balls into n=4 urns, numbered $1,\ldots,4$. Then (0,0,2,1) means that the third urn has 2 balls and the fourth urn has 1 ball. One way to distribute the balls over the urns is to distribute n-1=3 "separators" and $\mathbf{r}=3$ balls over $n-1+\mathbf{r}=6$ positions.

Summary

The number of possibilities to sample with or without replacement in order or unordered r elements from a set of n distinct elements are summarized in the following table:

Sampling	in order	without order
without replacement	$\frac{n!}{(n-r)!}$	$\binom{n}{r}$
with replacement	n^r	$\binom{n+r-1}{r}$

Distinguishable Permutation

Suppose that a set contains n objects or two types, r of one type and n-r of the other type. What is the number of distinguishable permutations of these n objects?_____

Special case : 2 red balls, 2 blue balls, n=4, r=2.

Definition: Each of the ${}_{n}C_{r}$ permutations of n objects, r of one type and n-r of another type, is called a $distinguishable\ permutation$

Binomial Coefficients

Binomial Coefficients: ${}_{n}C_{r}=\binom{n}{r}$

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} b^r a^{n-r}$$

- $\bullet \binom{n}{r} = \binom{n}{n-r}$
- $\bullet \ 0 = \sum_{r=0}^{n} (-1)^r \binom{n}{r}.$
- $2^n = \sum_{r=0}^n \binom{n}{r}$.

Example: What is the coefficient of x^3y^4 in the expansion of $(x+y)^7$.

Multinomial Coefficients

In general, if we have $n = \sum_{i=1}^{r} n_i$ objects with r types, with n_1 objects of type 1, n_2 objects of type 2, and n_r objects of type r. The number of distinguishable permutations of the n objects is

$$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Example: How many ordered arrangements are there of the letters in the word STATISTICS?_____

Example: We have 5 black balls, 6 blue balls, and 7 yellow balls, we put them into 18 boxes (one balls in each box). How many possible arrangements?_____

Example: In how many ways can the set of nucleotides (A,A,G,G,G,C,C,C,T,T,T,T,T,T) be arranged in a sequence of 15 letters?_____

Today's lecture: 2.1 Discrete Random Variables

- Random variable, space.
- Discrete random variable, probability mass function and its properties.
- Bar graph, probability histogram.

Random variable

Definition: Given a random experiment with an outcome space S, a function X that assigns to each element s in S one and only one real number X(s) = x is called a $random\ variable$. The random variable X is discrete if the set of real values it can take is finite or countable, e.g. $\{0,1,2,3,\cdots,\}$.

Example: Paul went to the car dealer and buy a car from Ferrari, Porsche, or BMW.

Random experiment: which car?

Random variable: X gives numbers to the possible outcomes.

Ferrari
$$\Rightarrow X = 1$$

Porsche $\Rightarrow X = 2$
BMW $\Rightarrow X = 3$

Definition: The space (support) of X is the set of real numbers $\{x: X(s) = x, s \in S\}$. In the book, the space of X is denoted by S, same as sample space.

• Space of
$$X = S =$$
 (pick a car)

In many instances, one can think of the space of X as being the outcome space, but \cdots

Example: Wheel of fortune.

One spins a wheel and look at the angle of the pointer. If the angle is within $[0^o, 180^o)$, then one gets 1000 dollars, otherwise he/she gets 0 dollars. Let X be the dollar amount the person gets.

- What is the outcome space ?
- What is the space for *X* ?
- Is X a discrete random variable?

Probability mass function

The probability mass function (p.m.f.) f(x), for a discrete random variable X, is given by

$$f(x) = P(X = x), \quad x \in S$$

Example: Which car?

(Dutcome	Ferrari	Porsche	BMW
	x	1	2	3
	= P(X = x)		$\frac{1}{6}$	$\frac{4}{6}$
		1		
Or $f(x) = \int_{-\infty}^{\infty} f(x) dx$	1/6 if $x =$	2		
Of $f(x) = \{$	4/6 if $x = $	3		
	0 otherw	ise		

Properties of probability mass function

- $0 \le f(x) \le 1$ for all x.
- $\bullet \ \Sigma_{x \in S} f(x) = 1.$
- $P(X \in A) = \sum_{x \in A} f(x)$.

e.g. in the car example, $P(X \in \{1, 2\}) = \underline{\hspace{1cm}}$.

For each of the following, determine the constant c so that f(x) is a p.m.f. for some random variable X.

•
$$f(x) = x/c$$
, $x = 1, 2, \dots, 10$.

•
$$f(x) = c(1/3)^x$$
, $x = 1, 2, 3, \cdots$

Bar graph and probability histogram

Draw a bar graph and a probability histogram for the probability mass function

Bar graph:

Probability histogram

Discrete R.V. Examples

• $Discrete\ Uniform\ example$: Let X be the result of tossing a fair die. The probability mass function of X is:

- Discrete nonuniform example: Roll two dice
 - $-X_1$ number on the first die
 - $-X_2$ number on the second die
 - $-X = X_1 + X_2$ total number of points (a function of random variables is again a random variable)

(X_1, X_2)	X	(X_1,X_2)	X	(X_1,X_2)	X
(1,1)	2	(3,1)	4	(5,1)	6
(1,2)	3	(3,2)	5	(5,2)	7
(1,3)	4	(3,3)	6	(5,3)	8
(1,4)	5	(3,4)	7	(5,4)	9
(1,5)	6	(3,5)	8	(5,5)	10
(1,6)	7	(3,6)	9	(5,6)	11
(2,1)	3	(4,1)	5	(6,1)	7
(2,2)	4	(4,2)	6	(6,2)	8
(2,3)	5	(4,3)	7	(6,3)	9
(2,4)	6	(4,4)	8	(6,4)	10
(2,5)	7	(4,5)	9	(6,5)	11
(2,6)	8	(4,6)	10	(6,6)	12
			Л		_
${\mathcal X}$		2 3	4	5 6	1
P(X =	= x	$\frac{1}{36} \frac{2}{36}$	$\frac{3}{2}$	$\frac{4}{30}$ $\frac{5}{30}$	$\frac{6}{26}$
- ($J \mid \overline{36} \overline{36}$	$\overline{36}$	$\overline{36}$ $\overline{36}$	36