

Server Administration

Directory Systemen

Directory Service

- Software voor het bijhouden, beheren en toegankelijk maken van informatie in een 'Direcotory'
- Bij ons meer concreet: gebruiker- en computer accounts, groepen, printers en andere gedeelde bronnen in ons netwerk

Vroeger

Doel: beheren wie wat mag doen op het netwerk

Oplossing:

- Elke server regelt dit zelf voor zichzelf
- Nadelen:
 - Elke gebruiker had gebruikersnaam + wachtwoord per server
 - Moeilijk te beheren door administrators

- Verzameling van standaarden ontworpen door ISO/ITU
- Model voor protocollen en informatie in een directory service die onafhankelijk is van een applicatie of netwerkplatform
- Oorspronkelijk uit 1988
- Nadien verschillende aanpassingen/uitbreidingen (=verbeteringen)
- Definieert specificaties voor gedistribueerde directory gebaseerd op hiërarchie
- Men noemt het geheel een DIT (Directory Information Tree)

- Gebruikt model voor Directory Server Agents (DSA's)
- DSA's bewaren elk een stuk van de "Directory Information Base" (DIB)
- DSA's werken samen => transparantie voor gebruikers
- X.500 bepaalt:
 - Hoe informatie opgeslagen wordt in DS
 - De nodige **protocollen** om data op te vragen (door de clients)
- In X.500 1988 vooral aandacht voor protocollen voor gedistribueerde DS

- 2 belangrijke protocollen:
- **DAP** (Directory Access Protocol): laat toe dat gebruikers en applicaties **de DS** kunnen **bevragen**
- DSP (Directory Service Protocol): zorgt voor doorgeven van aanvragen aan andere DSA's (indien geen antwoord gevonden wordt op de lokal DSA)

DSA en DUA

DSA = Directory Server Agent

Lightweight Directory Access Protocol

- Is een standaard gepubliceerd door IETF (Internet Engineering Task Force)
- LDAP v2 en v3
- Is een open standaard voor DS
- Ideaal voor client-applications en (web)-servers vanwege LDAP over TCP/IP
- Bedoeling: clients in DS laten zoeken
- Gemaakt voor DS, gebaseerd op X.500
- Is dus zéér aantrekkelijk alternatief voor DAP

LDAP

- Communicatie tussen clients en servers
- Vraag gestuurd vanuit de clients (server kan antwoorden)
- Geen exacte mapping met DAP
- Mogelijke operaties: zoeken, wijzigen, toevoegen, verwijderen, ...
- Uitbreidbaar
- Authenticatie

Vergelijking AD met databank

<u>User ID</u>	Logon	First Name	Last Name	<u>Domain</u>
5-2882-234-23	WILL	Mark	Willems	Odisee
S-2322-321-99	BEKA	Joke	Bekaert	Odisee
S-2332-233-23	ROTT	Koert	Rottiers	Odisee

- Primary key: User-id, een intern nummer voor het systeem om gebruikers te identificeren voor beveiligingsdoeleinden. (GUID's) = Globally Unique Identifiers
- Naast GUID worden logon, voornaam, familienaam en domein gebruikt om de entiteit (*hier persoon*) te beschrijven. Lijst=tabel en kolommen=attributen
- In Active Directory definieert dit een klasse van een object
- Eerst worden attributen aangemaakt, daarna klassen op basis van beschikbare attributen
- Naast een klasse voor gebruikers kunnen ook klassen aangemaakt worden voor printers, mappen, etc...

Schema

- Definieert de **inhoud** van de Directory Service
 - Alle object klassen
 - Alle mogelijke attributen die objecten kunnen en/of moeten bevatten
- Definieert de **structuur** van de Directory Service

Schema elementen en termen

- Attribuut: Soort gegeven gebruikt om objecten (die instanties zijn van klassen) te beschrijven
- Klasse: Definieert een soort object en zijn attributen
- **Object**: Een data item in de Directory Service met een unieke Object Identifier (OID)
- DIT Directory Information Tree: De inhoud van de Directory met zijn boomstructuur

Attributen

Eigenschappen van een klasse

Aan een klasse definitie kunnen we altijd een attribuut toevoegen

- Op die manier kunnen we de DS naar wens aanpassen
- Bv: een "nieuw veld" met het aantal afgedrukte pagina's van een gebruiker binnen het bedrijf.

→ Active Directory = "Extensible Architecture"

Klassen

Voorbeelden: Gebruiker, Print-wachtrij, Groep 3 soorten klassen

- Structural Classes
 - Enkel hiervan kunnen objecten gemaakt worden
- Abstract Classes
 - Template voor andere klassen (overerving)
- Auxiliary Classes
 - Wordt toegevoegd aan een andere klasse om attributen toe te voegen

Global Catalog

Een globale lijst met (bepaalde) **gegevens** van **elk object** van **elk domein** in het Active Directory Domain Services forest

- Wordt bijgehouden op Global Catalog Domain Controllers
- Ieder domein binnen de "enterprise" zal exact hetzelfde **schema** hebben (replicatie)
- Wordt beheerd door de Schema Master
 (één enkele server bevat write-enabled kopie van het Directory Schema)
- De eerste domein controller is altijd een Global Catalog server
- DNS bevat gegevens van de Global Catalog servers

Global Catalog

<u>Alle</u> attributen bijhouden van alle domeinen op alle servers is onmogelijk (miljoenen)...

Oplossing:

- We markeren welke attributen we wensen door te geven aan de andere domeinen (gegevens die frequent opgevraagd worden)
- Deze worden gekopieerd naar de Global Catalog(s) van ieder domein
- Je kan dus zelf bepalen hoeveel data er tussen de domeinen getransporteerd wordt

Meerdere domeinen

single-domein structuur werkt voor kleine bedrijven

problemen stellen zich bij grotere bedrijven, meerdere domeinen

(Servers moesten gebruikers authenticeren op andere domeincontrollers via trust relation ships)

- Eerste oplossing: DS vergroten zodat 1 domein volstaat. (bij overgang van NT naar winzk is dit het geval, van ca 1000 naar ca 1 miljoen) (SAM: ca 40MB, Active Directory: 70TB)
- Maar nood voor verschillende gescheiden domeinen blijft (domein is beveiligings- en replicatiegrens)

OPLOSSING:

- We zorgen voor een structuur in de Directory Service
- Maakt het makkelijk om objecten terug te vinden in de volledige organisatie + makkelijkere replicatie
- Gerealiseerd op basis van DNS !!!!

Meerdere domeinen

- DNS aanziet het volledige internet als een contiguous namespace
- Startpunt: root-domein
- Wordt verder opgesplitst in top-level en second-level domeinen (enz...)
- DNS zorgt voor hiërarchische bevraging
- DNS-structuur wordt gebruikt om de verschillende domeinen in het bedrijf aan elkaar te koppelen (trusts)
- Adhv een distinguished naam kan dan makkelijk gebruik gemaakt worden van eender welk object in de organisatie.
- Vanwege de structuur kunnen we nu makkelijk de vertrouwensrelaties beheren (de "domain naming master" is verantwoordelijk en controleert iedere server op correcte namespace volgens DNS bij het koppelen)

Voorbeeld .com Winners.com Production.winners.com Sales.winners.com Research.production.winners.com

Directory van het bedrijf Winners Hiërarchisch opgebouwd volgens de DNS structuur

Active Directory Objecten

Bepaalde objecten in Active Directory liggen voor de hand:

- Gebruikers
- Computers
- Groepen

Andere niet:

- Organisational Units
- Sites
- Shares
-

Objecten

Alles (bestanden, mappen, gebruikers, printers, Active Directory onderdelen,...) kan eigenlijk aanzien worden als een object

- Maakt het eenvoudig voor het besturingssysteem om beveiliging te voorzien want 'alles' wordt op eenzelfde manier bekeken
- Objecten kunnen we bekijken als containers: een object bevat altijd iets
 - Bestand bevat data
 - Groep bevat andere gebruikers
 - Printers bevatten een plaats in de AD
 - Gebruikers bevatten een plaats in de AD

Leaf objects

DACL

Discretionary Access Control List (ook afgekort als ACL)

- Een sterk en toch simpel beveiligingsmodel
- Van toepassing op alle objecten:
 - Methoden: aanmaken, verwijderen, ...
 - Eigenschappen: min. een naam en een type
 - Collections: indien eigenschap of attribuut meerdere waarden bevat.
- OS benadert alles op dezelfde manier en alles heeft een DACL => beveiligingsreferentiemodel

DACL en ACE

- DACL is lijst van Access Control Entries (ACEs)
- ACE = <account, toegangsrechten> paar
- ACE = Access Control Entry
- Maar DACL is ook meer dan dat
- Toegang toestaan of weigeren

DACL

- Gegevens account = Acces Token
- Resource waar je toegang probeert toe te krijgen heeft DACL

Beheer

Beheer in windows 2003/2008/2012:

3 belangrijke tools om delen van de Active Directory te beheren

- Active Directory Users and Computers
- Active Directory Domains and Trusts
- Active Directory Sites and Services

Logische structuur AD

- Active Directory is gestoeld op X.500/LDAP en bepaalt hoe info intern in directory opgeslagen en aangesproken wordt
- "Daarboven" kan een eigen logische structuur gelegd worden om een volledige "enterprise" te beheren
- Dit zorgt ervoor dat AD gestructureerd en makkelijk implementeerbaar is voor grote en kleine bedrijven
- In tegenstelling tot vroegere versies van Windows die NETBIOS gebruiken om computers te vinden, is Active Directory volledig geïntegreerd met DNS en TCP/IP

Een Active Directory-omgeving moet dus voorzien zijn van een DNS-server en deze moet de speciale SRV-records ondersteunen.

Domeinen

Is een basiseenheid binnen AD

Geeft je volgende voordelen:

- Domein geeft mogelijkheid om objecten te beheren binnen departement of locatie. Daarbinnen is dus alle info beschikbaar
- Domeinen bepalen beveiligingsgrens => groep beheerders heeft volledige controle over alle bronnen binnen het domein
- Eventueel groepsbeleid (zie later) op domeinniveau

Domeinen

- Domeinobjecten kunnen beschikbaar gemaakt worden naar andere domeinen toe (publiceren in Active Directory)
- Domeinnamen volgens DNS-structuur => laat oneindig aantal child-domeinen toe
- Domeinen zorgen dat je replicatie kan beheersen (replicatiegrens)

- Binnen het domein moet altijd minstens één domeincontroller staan
- Het eerste domein dat opgezet wordt in een enterprise is het "ROOTdomein". Deze server zal bijgevolg standaard alle FSMO-rollen op zich nemen (FSMO: Zie later)

Domain functional Level:

Is een manier die aangeeft welke functionaliteiten beschikbaar zijn afhankelijk van de soorten domein controllers die moeten samenwerken in datzelfde domein

Windows 2000 mixed (default): DC's= NT,2000,3,8(R2),12(R2)

• Windows 2000 native: $DC's = 2000,3,8(R_2),12(R_2)$

• Windows 2003 interim: DC's = NT en 2003

• Windows server 2003: $DC's = 2003,2008(R_2),2012(R_2)$

• Windows server 2008 DC's = $2008(R_2)$, $2012(R_2)$

• Windows server 2008R2 DC's = 2008 R2, 2012 (R2)

• Windows server 2012 DC's = 2012 (R2)

• Windows server DC's = 2012 R2

Hoe meer eenheid in de soorten DC's, hoe meer (nieuwe) functionaliteiten

Trees en Forests

- In domein zitten o.a. gebruikers en computers
- Om verschillende domeinen samen te nemen, organiseren we ze volgens een logische structuur:
 - (DNS-structuur)
 - Domein-tree
 - Domein-forest

Tree

Mogelijkheid: 1 domein met alle objecten erin

- Niet interessant indien verschillende afdelingen geografisch verspreid en onafhankelijkheid gewenst is
- In dat geval by gescheiden domeinen (geografisch) als oplossing Hier is top-domein een pointer naar de verschillende sub-domeinen (vb)
- Eventueel splitsing volgens functies

 Hier zal de administratie en de support zich in het top-domein bevinden (vb)
- In beide gevallen: Alle domeinen **eenzelfde schema** en **eenzelfde GC** (in elk domein min 1 GC). Tussen de domeinen ligt een **transitieve tweewegs-relatie**
- We maken dus een tree vanaf het root-domein
- De onderliggende domeinen zijn child-domeinen

Een eenvoudige domeinstructuur gesplitst in sub-domeinen volgens geografische ligging

Domein opgesplitst in subdomeinen volgens functie

Forest

- In bepaalde gevallen is één tree geen goede oplossing
- Bv verschillende afdelingen met totaal verschillende benamingen en de ADstructuur moet bedrijfsstructuur weerspiegelen
- In dit geval: meerdere trees samennemen (vb)
- Zelfde schema, zelfde GC en configuratie blijft belangrijk
- Eén domein zal root-domein zijn, alle andere child-domeinen
- De structuur bestaat uit meerdere trees \rightarrow forest
- Onder deze trees kunnen weer nieuwe child-domeinen geplaatst worden

Forest-structuur (vb 2 trees)

Opzetten DC

- Na het opzetten van de eerste domeincontroller voor het eerste domein kunnen nieuwe servers gepromoveerd worden tot domeincontroller
- Hun functie wordt bepaald tijdens deze promovering ==>
 - Nieuwe domeincontroller in bestaand domein
 - Nieuwe domeincontroller voor child-domein
 - Nieuwe root-domeincontroller voor een nieuwe tree in een forest

Beslissingsboom nieuwe domeincontroller

Niveaus

- Combinatie van trees en forests geeft je bedrijf grote flexibiliteit in ontwerp van AD
- Domeinen bepalen eerste niveau van structuur in de Active Directory
- Een volgend niveau is dat van Organisational Units (OU)

Trust relaties

Trust relaties	Definitie
One-way trust	Authenticatiebevoegdheid van het ene domein wordt door een ander domein erkend, maar niet vice-versa. Domein A zal bijvoorbeeld domein B vertrouwen, maar domein B vertrouwt domein A niet.
Two-way trust	Authenticatiebevoegdheid tussen 2 domeinen wordt wederzijds erkend. Domein A vertrouwt domein B en B vertrouwt A.
Transitive trust	Authenticatiebevoegdheid kan impliciet worden overgeërfd tussen domeinen. Zo zal wanneer A B vertrouwt en B vertrouwt C, A ook C vertrouwen.
Two-way transitive trust	Authenticatiebevoegdheid wordt in 2 richtingen overgeërfd. A vertrouwt B en alle domeinen die B vertrouwt en B vertrouwt A en alle domeinen die A vertrouwt.
Inter-forest trust	Een trustrelatie tussen verschillende forests.

Forest functional Level

Is een manier die aangeeft welke functionaliteiten beschikbaar zijn afhankelijk van de soorten domein controllers die moeten samenwerken in eenzelfde forest

• Windows 2000 native: DC's = 2000,3,8(R2)

• Windows server 2003: DC's = 2003,2008(R2),2012 (R2)

• Windows server 2008: DC's = 2008(R2), 2012 (R2)

• Windows server 2008R2: DC's= 2008 R2, 2012 (R2)

• Windows server 2012: DC's= 2012 (R2)

• Windows server 2012 R2: DC's= 2012 R2

- Hoe meer eenheid in de soorten DC's binnen de forest, hoe meer functionaliteiten binnen die forest
- Windows Server 2012 vereist een Windows Server 2003-forestfunctionaliteitsniveau

Organisational Units

- OU's bepalen tweede niveau in de hiërarchie
- Met OU kan je een domein verder opdelen in logische eenheden
- OU is een container waarin gebruikers, computers en andere objecten kunnen zitten
- Met OU's is het mogelijk om bevoegdheden te delegeren naar bepaalde gebruikers of groepen. De gedelegeerde gebruikers kunnen volledig of gedeeltelijk de objecten beheren.
- OU's kunnen gebruikt worden om groepsbeleid op toe te passen.
- Binnen OU's kunnen andere OU's geplaatst worden

Structuur

Er zijn dus twee mogelijkheden om gebruikers, computers en andere objecten te beheren in een gestructureerde omgeving:

- Adhv domeinen opsplitsen (trees, forests)
- Door domein op te delen adhv OU's

Domein met structuur adhv Organisational

Units

(4 vb-en)

Keuzeregels

Wanneer splits je op in domeinen en wanneer gebruik je OU's

- Gebruik **opdeling adhv domeinen** indien bronnen moeten kunnen beheerd worden door **compleet verschillende administrators**. Administrators wensen dus volledig onafhankelijk te werken van elkaar
- Gebruik **aparte domeinen** bij netwerken waarbij delen ervan **gekoppeld zijn met trage verbindingen** (kan ook adhv sites)
- Gebruik **OU's** om de **interne structuur** van je organisatie te implementeren tot op micro-niveau (bv lokalen, doelgroepen,...)
- Gebruik OU's indien je beheersrechten wil delegeren naar bepaalde gebruikers, groepen
- Gebruik **OU's** als je weet dat je organisatie zal **wijzigen** in de **nabije toekomst** (fusionering van afdelingen, nieuwe afdelingen,...)

Algemeen: in de meeste gevallen zal een single domein volstaan met daarin een opdeling adhv OU's. Dit houdt het beheer overzichtelijk!

Installatie van eerste domein

Vereisten:

- Geïnstalleerde Windows 2012 R2 server
- Correct functionerende DNS-server met forward-lookup zone. Moet "Service"-records (SRV) ondersteunen en moet in staat zijn om dynamische updates toe te laten en incrementele zone transfers (kan ook samen met AD geïnstalleerd worden)
- De toekomstige domeincontroller moet een vast ip-adres krijgen. Vaste computernaam. Correcte dns-instellingen bij TCP/IP settings
- NTFS-partitie min 1GB
- Correcte tijd en tijdszone (DC zal funtioneren als ntp-server voor de clients)

Naam van het domein

Verschillende mogelijkheden:

- De echte internet domeinnaam: => interne en externe entiteiten zijn dezelfde.
 Praktisch maar risicovol (Active Directory bereikbaar door publiek netwerk indien niet beveiligd, via DNS zijn alle records te bevragen)
 vb: winner.be
- Een subdomein onder internet domeinnaam: vb AD.winner.be => maakt splitsing tussen intern en extern makkelijker <=> naamschema complexer
- Totaal andere interne naam: voorbeeld .local gebruiken (niet geregistreerd op internet) vb winner.local
 Dit garandeert veiligheid door scheiding van "echte" DNS-structuur (internet). Levert andere nadelen op...

Installatie

Na de installatie (zie verder) is de server omgevormd tot een domeincontroller die (eventueel een deel van) de Active Directory bevat.

- Active Directory Users en Computers: om gebruikers, groepen, computers en OU's te beheren (ook Grouppolicies)
- Active Directory Domains en Trusts: om de verschillende domeinen onderling te beheren en vertrouwensrelaties in te stellen.
- Active Directory Sites en Services: om replicatie tussen de sites in te stellen en services (vb schema master, GC,...) die werken op de verschillende domeinen en hun controllers.

Integratie met andere systemen

Integratie met op Unix gebaseerde systemen (Unix, Linux, Mac OS X or Java and Unix-based programs) is onder andere mogelijk met LDAP

Third party systemen:

- Fox Technologies and the product **FoxT ServerControl** (software) implements AD Bridging capabilities that allows Unix-like systems to join Active Directory and enables the use of the Kerberos for authentication of users
- **Centrify DirectControl** (Centrify) Active Directory-compatible centralized authentication and access control
- **Centrify Express** (Centrify) A suite of free Active Directory-compliant services for centralized authentication, monitoring, file-sharing and remote access
- **UNAB** (Computer Associates)
- **TrustBroker** (CyberSafe Limited) An implementation of Kerberos
- **PowerBroker Identity Services,** formerly Likewise (BeyondTrust, formerly Likewise Software) Allows a non-Windows client to join Active Directory
- Quest Authentication Services (Now part of Dell) (Formerly, Quest, Vintela) AD authentication, Group Policy management, User/Group Migration tools, Auditing and Reporting
- ADmitMac (Thursby Software Systems)
- Samba Can act as a domain controller

Andere Directory systemen

- NIS: Network Information Service afkomstig van SUN/UNIX
- eDirectory: Novell
- Red Hat Directory Service
- Open Directory: Mac OS X Server
- OpenLDAP

•

Bronnen

- LDAP https://tools.ietf.org/rfc/rfc4511.txt (Inleiding)
- Global Catalog https://technet.microsoft.com/en-us/library/cc728188(WS.10).aspx
- Active Directory https://en.wikipedia.org/wiki/Active_Directory
- DACL https://msdn.microsoft.com/en-us/library/cc246052.aspx
- Functional Levels https://technet.microsoft.com/en-us/library/understanding-active-directory-functional-levels(v=ws.10).aspx
- Active Directory Schema Terminologie https://msdn.microsoft.com/en-us/library/windows/desktop/ms675087(v=vs.85).aspx
- Soorten klassen https://msdn.microsoft.com/en-us/library/ms677964(v=vs.85).aspx