Linear algebra stuff

Weronika Jakimowicz

March 15, 2023

Abstract

We do cool stuff in linear algebra

1 Matrices and linear equations

1.1 Elementary definitions and results

Let $A = [a_{i,j}]$ where $a_{i,j}$ are the entries of A. The matrix A can be explicitly written as:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix}$$

and consider the following system of linear equations:

$$\begin{cases}
a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = 0 \\
a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = 0 \\
\vdots \\
a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = 0
\end{cases}$$
(1)

Proposition 1.1. The equations in Equation (1) have a unique solution \iff A is row equivalent to the identity matrix I_n .

2 Invertible matrices

Definition 2.1. An $n \times n$ matrix B is invertible if there is some matrix C such that $B \cdot C = I$, where I is the identity matrix.

Fact 2.2. Let A be an $n \times n$ matrix. Then the following statements are equivalent:

- 1. A is invertible
- 2. A is row equivalent to the identity matrix I_n

3 Conclusion

Theorem 3.1. A is row equivalent to the identity matrix I_n	\iff	The equations
in 1 have a unique solution.		

Proof. The theorem follows from Proposition 1.1 and fact 2.2. \Box

Contents

1	Matrices and linear equations 1.1 Elementary definitions and results	1
2	Invertible matrices	1
3	Conclusion	2

That's

all,

folks!