PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-020318

(43) Date of publication of application: 26.01.1999

(51)Int.Cl.

B41M 5/30

(21)Application number : **09-178141**

(71)Applicant: MITSUBISHI PAPER MILLS LTD

(22)Date of filing:

03.07.1997

(72)Inventor: MIURA TAKETOSHI

KUBOTA KIYOKO

(54) THERMAL RECORDING MATERIAL

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a thermal recording material having excellent plasticizer resistance and oil resistance.

SOLUTION: In the thermal recording material comprising an electron donative dye precursor and electron acceptive compound on a support, as the acceptive compound, at least one type of a compound represented by a formula, where Z denotes any of C, N, O and S, the Z and N form a heterocycle via bivalent bond group, and the heterocycle may have a substituent.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-20318

(43)公開日 平成11年(1999)1月26日

(51) IntCL⁶

識別記号

PΙ

B41M 5/30

B41M 5/18

108

審査請求 未請求 請求項の数2 OL (全 7 頁)

(21)出題番号

特局平9-178141

(71)出願人 000005980

三菱製紙株式会社

(22)出顧日

平成9年(1997)7月3日

東京都千代田区丸の内3丁目4番2号

(72)発明者 三浦 偉俊

東京都千代田区丸の内3丁目4番2号三菱

製紙株式会社内

(72)発明者 久保田 聖子

東京都千代田区丸の内3丁目4番2号三菱

复紙株式会社内

(54) 【発明の名称】 感熱記録材料

(57)【要約】

【課題】耐可塑剤性、耐油性に優れた感熱記録材料を提 供することである。

【解決手段】支持体上に電子供与性染料前駆体と電子受 容性化合物を含有する感熱記録層を設けた感熱記録材料 において、該電子受容性化合物として、一般式(1)で 表される化合物の少なくとも1種を含有することを特徴 とする感熱記録材料により達成された。

【化1】

(式(1)中、ZはC、N、O、S、のいずれかを表 し、ZとNは2個の連結基を介して複素環を形成し、該 複素環は置換基を有していてもよい。)

【特許請求の範囲】

【請求項1】 支持体上に電子供与性染料前駆体と電子 受容性化合物を含有する感熱記録層を設けた感熱記録材 料において、該電子受容性化合物として、一般式(1) で表される化合物を少なくとも1種含有することを特徴 とする感熱記録材料。

【化1】

(式(1)中、ZはC、N、O、S、のいずれかを表 し、ZとNは2個の連結基を介して複素環を形成し、該 複素環は置換基を有していてもよい。)

【請求項2】 請求項1記載の化合物で、かつpKaが 2以上12以下の化合物を少なくとも1種含有する感熱 記録材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、加熱によって得ら れた発色画像の消失のない、記録画像の保存安定性に優 20 れた感熱記録材料に関するものである。

[0002]

【従来の技術】感熱記録材料は一般に、支持体上に電子 供与性の通常無色ないし淡色の染料前駆体と電子受容性 化合物とを主成分とする感熱記録層を設けたものであ り、熱ヘッド、熱ペン、レーザー光等で加熱することに より、染料前駆体と電子受容性化合物とが瞬時反応し記 録画像が得られるもので、特公昭43-4160号公 報、同45-14039号公報等に開示されており、広 く実用化されている。

【0003】これらの感熱記録システムはファクシミ リ、プリンター、ラベル等広範囲に使用されている。し かし、一般にこのような感熱記録材料は、可塑剤および 油等の接触により発色体が変質、退色してしまう欠点を 有しているために、ラベル類、伝票類等の分野において は特に商品価値を著しく損ねてきた。

【0004】通常無色ないし淡色のいわゆるロイコ染料 を使用する感熱記録システムにおいて、この消色現象を 改良すべく、数多くの電子受容性化合物が開示されてき た。例えば、特開昭62-169681号公報に見られ 40 きる。 るような特定のサリチル酸誘導体の金属塩を電子受容性 化合物として用いるもの、特開平5-147357号公 報に見られるようなスルホニル尿素誘導体を電子受容性 化合物として用いるもの、特開平7-214916号公 報、および同7-290832号公報に見られるような Nー置換安息香酸誘導体の金属塩を電子受容性化合物と して用いるもの等が知られている。

【0005】前述のサリチル酸誘導体の金属塩を用いる ものは、耐油性(例えば、サラダ油を発色面に接触させ た場合の一定時間後の画像濃度の残像率)、耐可塑剤性 50 2

(例えば、可塑剤を含有したラップフィルムを発色面に 接触させた場合の一定時間後の画像濃度の残像率)はあ る程度改良されるが、長時間の試験では消色は避けられ ない。

【0006】一方、スルホニル尿素誘導体を用いるもの は、印字画像の耐油性、耐可塑剤性は改良されるが、未 発色部(以下「地肌」と言う)の白色度が著しく損なわ れてしまう。また、発色感度が低かったり、意図する色 調を呈さない等の問題点がある。

10 【0007】さらに、N-置換安息香酸誘導体の金属塩 を用いるものは、印字画像の耐油性、耐可塑剤性は改良 され、地肌の白色度も良好であるが、高温高湿雰囲気下 で保存した場合に地肌の白色度が損なわれてきてしま

[0008]

【発明が解決しようとする課題】本発明の目的は、耐油 件、耐可塑剤性等の発色画像の長期保存性に優れた感熱 記録材料を提供することである。

[0009]

【課題を解決するための手段】本発明が解決しようとす る課題は、支持体上に電子供与性染料前駆体と電子受容 性化合物を含有する感熱記録層を設けた感熱記録材料に おいて、該電子受容性化合物として、一般式(1)で表 される化合物の少なくとも1種を含有することを特徴と する感熱記録材料により達成された。

[0010]

【化2】

30

【0011】(式(1)中、ZはC、N、O、S、のい ずれかを表し、ZとNは2価の連結基を介して複素環を 形成し、該複素環は置換基を有していてもよい。) 【0012】本発明の化合物はOrg.synth.5巻107

0、特開平9-3051号公報、USP4, 610.9 54('86)、特開昭60-147735号公報、An n. 1818 (1979), J.chem.soc. 121 2542 (1922)、Synlett 553 (1993)、特開昭5 7-128331号公報等の方法に従って容易に合成で

[0013]

【発明の実施の形態】一般式(1)で表される化合物の 具体例としては、以下に示す(2)~(12)を挙げた が、本発明はこれに限定されるものではない。

[0014]

【化3】

3

N-N || >-SH N-N R= H . 4-OH . 3-CO₂H (2-1) (2-2) (2-3)

*【0015】(式 (2) 中Rは水素原子、水酸基、また はカルボキシル基を表す。)

【0016】 【化4】

【0017】(式(3)中、Rはメルカプト基、アミノ ※【0018】 基、またはジブチルアミノ基等のアルキルアミノ基を表 【化5】 す。) ※

【0019】(式(4)中、Rはメルカプト基、トリメ チルシリルメチル基、メチルチオ基等のアルキルチオ 基、2-チアジアゾリル基等のアリールチオ基を表す。 また、式(5)中Rはメチル基等のアルキル基、フェニ★ ★ル基等のアリール基を表す。) 【0020】

【化6】

HS N SH N SH N SH SH (6-1) (6-2) (6-3)

[0021]

☆ ☆【化7】

【0022】(式(7)中R1、R2は水素原子、あるいはメチル基等のアルキル基を表す。式(8)中Rはメチルオキシ基、エチルオキシ基等のアルコキシ基を表す。式(9)中Rはメチル基等のアルキル基、あるいはフェニル基等のアリール基を表す。)

◆【0023】 【化8】

【0024】(式(10)中R1、R2は水素原子、ある いはメルカアト基を表す。)

[0025]

【化9】

[0026] 【化10】

【0027】一般式(1)で表される化合物の好ましい 20 使用量は電子供与性染料前駆体に対し50重量%以上1 000重量%以下であり、より好ましくは100重量% 以上500重量%以下である。これらの化合物は単独で も、または2種以上を併用し混合しても用いることがで きる。所望の効果を阻害しない範囲でフェノール類また は有機酸からなる従来既知の電子受容性化合物と併用す ることもできる。

【0028】本発明に係わる通常無色ないし淡色の電子 供与性染料前駆体としては、一般に感圧記録紙や感熱記 制限されるものではない。具体的な例としては、例えば 下記に挙げるものがあるが、本発明はこれに限定される ものではない。

【0029】(1)トリアリールメタン系化合物 3. 3-ビス (p-ジメチルアミノフェニル) -6-ジ メチルアミノフタリド (クリスタルバイオレットラクト ン)、3,3-ビス(p-ジメチルアミノフェニル)フ タリド、3-(p-ジメチルアミノフェニル)-3-(1, 2-ジメチルインドール-3-イル) フタリド、 3-(p-ジメチルアミノフェニル)-3-(2-メチ 40 ピルスピロベンゾピラン等。 ルインドールー3ーイル) フタリド、3ー(pージメチ ルアミノフェニル) -3-(2-フェニルインドールー 3ーイル) フタリド、3, 3ーピス(1, 2ージメチル インドールー3ーイル) -5-ジメチルアミノフタリ ド、3、3ービス(1、2ージメチルインドールー3ー イル) -6-ジメチルアミノフタリド、3、3-ビス (9-エチルカルバゾール-3-イル) -5-ジメチル アミノフタリド、3,3ーピス(2-フェニルインドー ルー3ーイル) ー5ージメチルアミノフタリド、3ーp

-2-イル)-6-ジメチルアミノフタリド等。 【0030】(2) ジフェニルメタン系化合物 4.4 - ピス (ジメチルアミノフェニル) ベンズヒド リルベンジルエーテル、N-クロロフェニルロイコオー ラミン、N-2, 4, 5-トリクロロフェニルロイコオ

6

【0031】(3)キサンテン系化合物

ーラミン等。

ローダミンBアニリノラクタム、ローダミンB-p-ク ロロアニリノラクタム、3ージエチルアミノー7ージベ 10 ンジルアミノフルオラン、3ージエチルアミノー7ーオ クチルアミノフルオラン、3ージエチルアミノー7ーフ ェニルフルオラン、3ージエチルアミノー7ークロロフ ルオラン、3ージエチルアミノー6ークロロー7ーメチ ルフルオラン、3ージエチルアミノー7ー(3,4ージ クロロアニリノ) フルオラン、3ージエチルアミノー7 - (2-クロロアニリノ)フルオラン、

【0032】3ージエチルアミノー6ーメチルー7ーア ニリノフルオラン、3-(N-エチル-N-トリル)ア ミノー6ーメチルー7ーアニリノフルオラン、3ーピペ リジノー6ーメチルー7ーアニリノフルオラン、3ー (N-エチル-N-トリル) アミノー6-メチルー7-フェネチルフルオラン、3ージエチルアミノー7ー(4 ーニトロアニリノ)フルオラン、3ージブチルアミノー 6-メチルー7-アニリノフルオラン、3-(N-メチ ルーNープロピル) アミノー6ーメチルー7ーアニリノ フルオラン、3-(N-エチル-N-イソアミル)アミ ノー6-メチルー7-アニリノフルオラン、3-(N-メチルーNーシクロヘキシル) アミノー6ーメチルー7 -アニリノフルオラン、3-(N-エチル-N-テトラ **録紙等に用いられる公知な化合物に代表されるが、特に 30 ヒドロフリル) アミノー6ーメチルー7ーアニリノフル** オラン等。

> 【0033】(4)チアジン系化合物 ベンゾイルロイコメチレンブルー、p-ニトロベンゾイ ルロイコメチレンブル一等。

【0034】(5)スピロ系化合物

3-メチルスピロジナフトピラン、3-エチルスピロジ ナフトピラン、3,3 - - ジクロロスピロジナフトピラ ン、3-ベンジルスピロジナフトピラン、3-メチルナ フトー (3-メトキシベンゾ) スピロピラン、3-プロ

【0035】前記通常無色ないし淡色の電子供与性染料 前駆体はそれぞれ1種または2種以上を混合して使用し てもよい。

【0036】本発明の感熱記録材料の製造方法の具体例 としては、本発明の化合物と染料前駆体を主成分として これらを支持体上に塗布して感熱記録層を形成する方法 が挙げられる。

【0037】本発明の化合物と電子供与性染料前駆体を 感熱記録層に含有させるための塗液作製方法としては、

ージメチルアミノフェニルー3ー(1-メチルピロール 50 各々の化合物を分散媒に分散してから混合する方法、各

々の化合物を混ぜ合わせてから分散媒に分散する方法、 各々の化合物を加熱溶解し均一化した後冷却し、分散媒 に分散する方法等が挙げられるが、特定されるものでは ない。分散時には、必要なら分散剤を用いてもよい。水 が分散媒の場合の分散剤としては、ポリビニルアルコー ル等の水溶性高分子や各種の界面活性剤が挙げられる。 【0038】また、感熱記録層の強度を向上する等の目 的でバインダーを感熱記録層中に添加することも可能で ある。バインダーの具体例としては、デンプン類、ヒド ロキシエチルセルロース、メチルセルロース、カルボキ 10 シメチルセルロース、ゼラチン、カゼイン、ポリビニル アルコール、変性ポリビニルアルコール、ポリアクリル 酸ソーダ、アクリル酸アミド/アクリル酸エステル共重 合体、アクリル酸アミド/アクリル酸エステル/メタク リル酸三元共重合体、スチレン/無水マレイン酸共重合 体のアルカリ塩、エチレン/無水マレイン酸共重合体の アルカリ塩等の水溶性高分子、ポリ酢酸ビニル、ポリウ レタン、ポリアクリル酸エステル、スチレン/ブタジエ ン共重合体、アクリロニトリル/ブタジエン共重合体、 アクリル酸メチル/ブタジエン共重合体、エチレン/酢 20 酸ビニル共重合体、エチレン/塩化ビニル共重合体、ポ リ塩化ビニル、エチレン/塩化ビニリデン共重合体、ポ リ塩化ビニリデン等のラテックス等が挙げられるがこれ らに限定されるものではない。

【0039】また、感熱記録層の発色感度を調節するた めの添加剤として、熱可融性物質を感熱記録材料中に含 有させることもできる。60℃~200℃の融点を有す るものが好ましく、特に80℃~180℃の融点を有す るものが好ましい。一般の感熱記録紙に用いられている 増感剤を使用することもできる。これらの化合物として 30 は、N-ヒドロキシメチルステアリン酸アミド、ベヘン 酸アミド、ステアリン酸アミド、パルミチン酸アミド等 のワックス類、2-ベンジルオキシナフタレン等のナフ トール誘導体、p-ベンジルビフェニル、4-アリルオ キシビフェニル等のビフェニル誘導体、1,2-ビス (3-メチルフェノキシ) エタン、2, 2 - ビス (4 ーメトキシフェノキシ) ジエチルエーテル、ピス (4-メトキシフェニル) エーテル等のポリエーテル化合物、 炭酸ジフェニル、シュウ酸ジベンジル、シュウ酸ビス (p-メチルベンジル) エステル等の炭酸またはシュウ 酸ジエステル誘導体等が挙げられ、2種以上併用して添 加することもできる。

【0040】本発明の感熱記録材料に用いられる支持体 としては、紙、各種不織布、織布、ポリエチレンテレフ タレートやポリプロピレン等の合成樹脂フィルム、ポリ エチレン、ポリプロピレン等の合成樹脂をラミネートし た紙、合成紙、金属箔、ガラス等、あるいはこれらを組 み合わせた複合シートを目的に応じて任意に用いること ができるが、これらに限定されるものではなく、またこ れらは不透明、半透明あるいは透明のいずれであっても 50 トリウム等の分散剤、さらに界面活性剤、蛍光染料等を

8

よい。地肌を白色その他の特定の色に見せるために、白 色顔料や有色染顔料や気泡を支持体中又は表面に含有さ せても良い。特にフィルム類等に水性塗布を行なう場合 で、支持体の親水性が小さく感熱記録層の塗布困難な場 合は、コロナ放電等による表面の親水化処理やバインダ ーに用いるのと同様の水溶性高分子類を、支持体表面に 塗布する等の易接着処理をしてもよい。

【0041】本発明の感熱記録材料の層構成は、感熱記 **録層のみであっても良い。必要に応じて、感熱記録層上** に保護層を設けることも又、感熱記録層と支持体の間に 水溶性高分子や白色ないし有色染顔料や中空粒子のいず れか一つ以上を含む中間層を設けることもできる。この 場合、保護層および/または中間層は2層ないしは3層 以上の複数の層から構成されていてもよい。感熱記録層 も各成分を一層ずつに含有させたり層別に配合比率を変 化させたりして2層以上の多層にしてもよい。更に、感 熱記録層中および/または他の層および/または感熱記 録層が設けられている面と反対側の面に、電気的、光学 的、磁気的に情報が記録可能な材料を含んでも良い。ま た、感熱記録層が設けられている面と反対側の面にブロ ッキング防止、カール防止、帯電防止を目的としてバッ クコート層を設けることもできる。

【0042】なお、本発明における上記各層を支持体上 に塗布し、本発明の感熱記録材料を製造する方法は特に 制限されるものではなく、従来の方法により製造するこ とができる。例えば、エアーナイフコーター、ブレード コーター、バーコーター、カーテンコーター等の塗抹装 置、平版、凸版、凹版、フレキソ、グラビア、スクリー ン、ホットメルト等の方式による各種印刷機等を用いる ことができる。さらに通常の乾燥工程の他、UV照射・ EB照射により各層を支持体に保持させることができ

【0043】感熱記録層は、各成分を微粉砕して得られ る各々の分散液を混合し、支持体上に塗布乾燥する方 法、各成分を溶媒に溶解して得られる各々の溶液を混合 し、支持体上に塗布乾燥する方法等により得ることがで きる。乾燥条件は水等の分散媒ないし溶媒によっても異 なる。この他に各成分を混合し加熱して可融分を溶融し 熱時塗布する方法もある。

【0044】また、感熱記録層および/または保護層お よび/または中間層には、ケイソウ土、タルク、カオリ ン、焼成カオリン、炭酸カルシウム、炭酸マグネシウ ム、酸化チタン、酸化亜鉛、酸化ケイ素、水酸化アルミ ニウム、尿素ーホルマリン樹脂等の顔料、その他に、ヘ ッド摩耗防止、スティッキング防止等の目的でステアリ ン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸金属 塩、パラフィン、酸化パラフィン、ポリエチレン、酸化 ポリエチレン、ステアリン酸アミド、カスターワックス 等のワックス類を、また、ジオクチルスルホこはく酸ナ

(

含有させることもできる。

[0045]

【実施例】以下実施例によって本発明を更に詳しく説明 する。実施例中の部数や百分率は重量基準である。

【0046】実施例1

(A)
 恩熱塗液の作製

3-ジブチルアミノ-6-メチル-7-アニリノフルオ ラン20部を1.25% ポリビニルアルコール水溶液8 0部と共にペイントコンディショナーで平均粒径が1. 5μm以下になるまで粉砕し、染料前駆体分散液 (A 液)を得た。次いで、例示化合物 (3-3) 20部を 1.25%ポリビニルアルコール水溶液80部と共にペ イントコンディショナーで平均粒径が1.5µm以下に なるまで粉砕し電子受容性化合物分散液(B液)を得 た。 更に、ベンジルオキシナフタレン20部と1.25 %ポリビニルアルコール水溶液80部を同様に平均粒径 が1.5 μm以下になるまで粉砕し増感剤分散液(C 液)を得た。上記A液35部、B液70部、およびC液 70部に、30%炭酸カルシウム100部、40%ステ アリン酸亜鉛水分散液10部、および10%ポリビニル 20 アルコール水溶液57部を添加、よく混合し、感熱塗液 を作製した。

【0047】(B) 感熱記録材料の作製

(A) で作製した感熱塗液を上質紙に、固形分塗抹量 3.4g/m²となる様に塗抹乾燥後、スーパーカレンダ ーで処理して感熱記録材料を得た。

【0048】実施例2

実施例1で用いた例示化合物(3-3)の代わりに、例 示化合物(2-1)を使用した他は、実施例1と同様に して感熱記録材料を得た。

【0049】実施例3

実施例1で用いた例示化合物(3-3)の代わりに、例 示化合物(3-1)を使用した他は、実施例1と同様に して感熱記録材料を得た。

【0050】実施例4

実施例1で用いた例示化合物(3-3)の代わりに、例 示化合物(4-1)を使用した他は、実施例1と同様に して感熱記録材料を得た。

【0051】比較例1

実施例1で用いた例示化合物(3-3)の代わりに、 2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)を使用した他は、実施例1と同様にして感熱記録材料を得た。

【0052】比較例2

実施例1で用いた例示化合物(3-3)の代わりに、4

10

ーヒドロキシ安息香酸ペンジルエステルを使用した他は、実施例1と同様にして感熱記録材料を得た。

【0053】比較例3

実施例1で用いた例示化合物 (3-3)の代わりに、4 -イソプロビルオキシー4 ーヒドロキシジフェニルス ルホンを使用した他は、実施例1と同様にして感熱記録 材料を得た。

【0054】試験1(地肌の白色度)

実施例1~4および比較例1~3で得た感熱記録材料 10 を、ハンター白色度計によって、ブルーフィルターを用 い、白色度測定を行った。

【0055】試験2(発色試験)

実施例1~4および比較例1~3で得た感熱記録材料を、TDK製印字ヘッドLH4409付き大倉電気製感熱ファクシミリ印字試験機TH-PMDを用いて印加パルス1.2ミリ秒で印加電圧20.5ポルトの条件で印字し、マクベス濃度計(RD-918)を用いて発色画像濃度の濃度測定を行った。

【0056】試験3(耐可塑剤性試験-画像安定性)

) 芯材(160mmφ)上に、感熱記録材料の印字面が上 になるように巻き付け、その上からポリ塩化ビニリデン 製ラップフィルム〔三井東圧化学(株)製〕を3重に巻 き付けて、40℃で24時間放置した後の画像残像率を 数1によって求めた。数値が大きいほど保存安定性が優 れていることを示している。

[0057]

【数1】A=(C/B)×100

A: 画像残存率 (%)

B:試験前の画像濃度

30 C:試験後の画像濃度

【0058】試験4(耐可塑剤性試験-地肌安定性) 芯材(160mmφ)上に、感熱記録材料の印字面が上 になるように巻き付け、その上からボリ塩化ビニリデン 製ラップフィルム〔三井東圧化学(株)製〕を3重に巻 き付けて、40℃で24時間放置した後の地肌の白色度 を試験1と同様の方法で測定した。

【0059】試験5(耐油性試験)

発色した感熱記録材料の画像部に食用サラダ油を塗り、 室温で24時間放置した後の画像残存率を前述の数1に 40 よって求めた。試験3と同様に、数値が大きいほど耐油 性が優れていることを示している。

【0060】実施例1~4及び比較例1~3の試験1~5の結果を表1に示した。

[0061]

【表1】

11					12
	(試験1) 地創部 白色度%	(試験2) 印字部 発色過度	(試験3) 耐可塑剤性 残像率%	(試験4) 耐可塑剤性 地肌白色度%	(試験 5) 耐油性 残像率%
実施例1	82.0	1. 29	70	80.9	70
実施例2	82.3	1.35	75	79.1	7 8
実施例3	81.3	1. 33	77	78.3	7 6
実施例4	82.7	1.30	6 9	80.2	68
比較例1	82.0	1.40	6	80.3	9
比較何2	79.3	1.44	4	77.3	8
比較例3	81.2	1.41	9	79. 2	1 3

[0062]

*耐可塑剤性、耐油性に優れた感熱記録材料を提供するこ

【発明の効果】表1から明らかなように、本発明により*10 とが可能になった。