

Objectives of This Unit

- Analog signals for analog data and digital data
- Explain why modulation is needed
- Describe the difference between AM, FM, PM
- Analyze ASK, FSK, PSK

Transmission Approaches

- Two primary transmission approaches
 - Baseband: supports frequency = 0
 - Passband: does not support frequency = 0

Baseband Systems

- Baseband system: Send signals without frequency shifting (modulation)
 - Baseband analog or digital
 - Voice on copper cable in landlines
 - Ethernet

Passband Systems

- Passband system: Shift signal to a higher frequency to transmit it
 - AM/FM radio, Cellular Telephone Signals, Satellite

Passband Transmission

- We need modulation which shift the frequency components of signals
- Why?
 - Medium characteristics
 - Different medium support different frequencies
 - Wireless radio wave transmissions
 - Antenna sizes are smaller as f_c increases
 - Multiplexing
 - Support different applications over the same medium

Modulation

- Modulation is the process of shifting the frequency to higher frequency band
 - By carrying the signal over a carrier
 - Carrier has higher frequency & can be transmitted over medium
- The output (modulated) signal is a passband analog signal
 - Analog signals for analog data (e.g. radio broadcast)
 - Analog signals for of digital data (e.g. DSL)
- Receiver demodulates the signal: from analog signal, get back the data

Carrier Signal

Carrier signal is a sinusoidal signal

A $\cos(2\pi f_c t + \varphi)$

- 1. Amplitude (A): height of wave
- 2. Frequency (f_c) : repetitions per second (Hertz)
 - Wavelength proportional to the inverse of frequency
- 3. Phase (φ): wave direction (degrees) or the point at which the wave begins

Modulation

- Impressing data on a carrier wave (sinusoid)
- The original data signal is called the baseband signal
- Modulation moves the spectrum (frequency contents) of the signal to a region around f_c
 - We say that the modulated signal is a passband signal

Analog & Digital Modulation

Analog modulation: when the data is analog

Digital modulation: when the data is digital

 In both cases, the output of the modulation is analog passpand signal

Analog Modulation

 Analog Modulation: means that the data to be modulated is analog (e.g radio broadcast signal)

 Modulation: The amplitude, frequency or phase of the carrier changes as a function of the baseband analog data

Analog Modulation Schemes

- Amplitude modulation (AM)
 - Amplitude of the signal is changed based on the data
 - Low bandwidth requirement
 - Susceptible to noise
- Frequency modulation (FM)
 - Amplitude is fixed
 - Frequency of the carrier wave varies according to the data
 - High bandwidth requirement
 - Insensitive to noise
- Phase modulation (PM)
 - Phase varies according to the data
 - Like frequency modulation
 - Receivers more expensive

Example: Amplitude Modulation (1/2)

- Let the analog data be m (t)
- Let carrier signal be $c(t) = cos(2\pi f_c t)$
- The modulated signal is:

$$m(t) c(t) = m(t) cos(2\pi f_c t)$$

Note that the **amplitude** of the **modulated signal** is function of the analog data (message)

Therefore, this is amplitude modulation

Digital Modulation

- Analog transmission of a digital data (bits)
- Modem (modulation/demodulation): Devices used to transmit a bits over an analog channel
- Digital Modulation Schemes:
 - Amplitude Shift Keying (ASK)
 - The carrier's amplitude changes following the digital baseband data
 - Frequency Shift Keying (FSK)
 - The carrier's frequency changes following the digital baseband data
 - Phase Shift Keying (PSK)
 - The carrier's phase changes following the digital baseband data
- Output of modulation at transmitter is a passband signal

Binary ASK or On-Off Keying

 Today: RF-ID tags, television remotes

Modulated (Passband) signal

BFSK: Binary Frequency Shift Keying

- Binary means: '1' or '0'
- FSK means: frequency change based on the data
 - Use two different frequencies to represent "0" and "1"
- Signals (symbols) are given by:
 - $s_i(t) = A \cos(2\pi f_i t), 0 \le t \le T_s \text{ for } i$ =1,2
 - Send $s_1(t)$ if the bit is zero, send $s_2(t)$ if the bit is one
- Bluetooth

BPSK: Binary Phase Shift Keying

- PSK means: Use two different phases to represent "0" and "1"
- Signals are given by:
 - $s_i(t) = A \cos(2\pi f_c t + \varphi_i)$, $0 \le t \le T_s$ for i=1,2
 - Send $s_1(t)$ if the bit is zero, send $s_2(t)$ if the bit is one
- It is common to assume that $\varphi_1 = 0$ and $\varphi_2 = \pi$

Baseband

0

$$\varphi_1(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_c t)$$

Digital Modulation

- Output of modulation are symbols
 - Each symbol is continuous-time signals lasting for T_s seconds ($s_i(t)$ in previous slide)
 - Symbol rate = $1/T_s$
- Binary modulation (binary ASK, BPSK, BPSK):
 One bit per symbol
 - Symbol rate = bit rate = $1/T_s$
- M-Ary modulation: k bits per symbol

Question

Q_BPSK

A BPSK signal has rate of 10Ksymbols/sec. What is the bit rate?

A 10kbps

B 20kbps

C None of the above

M-Ary Modulation

- Instead of modulating bit by bit, represent multiple bits with one symbol
- M different symbols, each represents K= log₂(M) bits
 - Number of different symbols is $2^k = M$
- Note in binary case, we have M = 2, and $K = log_2(2) = 1$
 - Means one bit for each symbol
- Symbol rate is = bit rate / K
 - Symbol rate is also called baud

M-Ary Modulation: QPSK

- Quadrature phase Shift Keying (QPSK) uses 4 symbols with 4 different phases
 - Each symbol carries 2 bits

Graphical representation

M-Ary Modulation: QAM

- Quadrature Amplitude Modulation (QAM) uses both amplitude and phase of a carrier to encode information
 - Example: 16-QAM, means you have
 16 different symbols
 - Each symbol represents log₂(16) = 4
 bits

- QPSK and QAM are common in wireless networks
 - Cable television, modems, cellular, WiFi

Question

Q_QAM

The bit rate of 16Mbps. The bits are modulated with 16-QAM. What is the baud rate (symbol rate)

A 16Mbps

B 8Mbps

C 4Mbps

Signal Constellation

- Constellation: graphical representation of signals used for communications
- Shows the "distance" between signals
 - Larger the distance, easier it is for the receiver to distinguish between the signals

 $\varphi_1(t) \propto \cos(2\pi f_c t)$

 $\varphi_2(t) \propto \sin(2\pi f_c t)$

Key Takeaways

Modulation shifts signal to higher frequency band

Analogy modulation: AM, FM, PM

Digital modulation: ASK, FSK, PSK, QAM...