Time series Analysis and Modeling Final Term Project

Hsueh-Yi Lu

Master of Data Science, The George Washington University

DATS 6313: Time series Analysis and Modeling

Dr. Reza Jafari

April 26, 2022

Content

Abstract	3
Introduction	9
Description of Dataset	10
Stationarity	17
Time series Decomposition	19
Holt-Winters Method	20
Feature Selection	21
Base-Models	25
Multiple Linear Regression	26
ARMA, ARIMA, and SARIMA Model	30
Levenberg Marquardt Algorithm	33
Diagnostic Analysis	35
Deep Learning Model	39
Final Model Selection	40
Forecast Function	40
h-step Ahead Predictions	41
Summary and Conclusion	42
Appendix	43

13

Figure 5


```
Figure 34
                                                                                                                                  36
                                     Figure 35
                                                                                                                                  37
                                                Figure 36
                                                                                                                                  38
Variance of forecast error of ARIMA is 361.58 Figure 37
                                                                                                                                  38
45.09088116733351 Figure 38
                                                                                                                                  39
1000
 600
 400
 200
        5000 10000 15000 20000 25000 30000 35000
                                        Figure 39
                                                                                                                                  40
               h-step ahead prediction
p 1000
                                                                                                                                  41
```

Abstract

Electricity and energy are essential for the development and survival of a country. It matters whether the government can sustain the livelihood of its people and whether the country is strong enough. This report will investigate my country of birth, Taiwan, by tracing the electricity generated in Taiwan under different seasons, time of day, and weather and climate factors through two different data sets to predict the future development of electricity in Taiwan under various aspects. Especially recent days, no matter energy policies of Government or issues about green energy are hot topics of news and discussions. So, for this reason I decided to dive into the Electricity energy of my country, and to find out whether there is a relationship between electricity load and weather. We will use the shallow learning model as our prediction model and the most suitable normal distribution of the original least square to determine the proportion of different features to the predicted coefficients. Therefore, the government of Taiwan can use this prediction for energy and electricity allocation. And it can know more about how to use other energy sources when the electricity cannot meet the needs of the people at certain times.

Introduction

For this final term project, we are going to go through data preprocessing, testing of data stationary, time series decomposition, Holt-Winter method, feature selection, base-models, developing multiple linear regression models, ARMA model determination, LM algorithm,

diagnostic analysis, deep learning model, final model selection, forecast function, h-step prediction, and conclusion of the project.

Description of Dataset

For the dataset used in this project is downloaded from Kaggle, Energy data in Taiwan (Taipower), which contains the electricity load data and the weather data of Taiwan from 2017 to 2021. The dataset includes one time series column, two categorical variables, and eighteen numerical variables. After merging the load dataset and weather dataset, there are 14763 observations for the raw dataset and for this project the target is the load of electricity. The other independent features are 'datetime' (Recorded in format of Year-Month-Date Hour:Minute:Second), 'StnPres' (station pressure), 'SeaPres' (sea-level pressure), 'Temperature', 'Td dew point' (dew point), 'RH' (relative humidity), 'WS' (wind speed), 'WD' (wind direction), 'WSGust' (wind speed gust), 'WDGust' (wind direction gust), 'Precp' (precipitation), 'PrecpHour' (precipitation per hour), 'Sunshine' (sunshine per hour), 'GloblRad' (global solar irradiation on horizontal plane), 'Visb' (visibility), 'UVI' (Ultra-violet index), 'Cloud amount', 'station', and 'area'.

a. Preprocessing

First, I checked on the percentage of the NA value of each variables and decided to drop the 'Visb', 'Sunshine', and 'Cloud amount' columns because the percentage of missing value in these variables is too large.

Figure 1: The amount of NA values in each variable

Next, I check on the distribution of each variables which contains NA value. For exapmle, most values of the 'Precp' column are zero so I decide to fill the missing values with zero.

Figure 2: Histogram of Precp column

Using the same method to check on other variables, I decided to fill the rest of them with the most frequent value of their column.

b. Dependent variable versus time

Due to the reason that the dataset included four areas data using the same time index, so I separate them and reindex the datasets with time.

Figure 3: Time versus load

c. ACF/PACF of the dependent variable

Figure 4: ACF/PACF of load of North

Figure 5: ACF/PACF of load of Central

Figure 6: ACF/PACF of load of South

Figure 7: ACF/PACF of load of East

We can see that these four areas have similar ACF/PACF plots.

d. Correlation matrix

Pearson's correlation coefficient - Load of North

Pearson's correlation coefficient - Load of Central

Figure 8: The Pearson's correlation coefficient plot of load of each area

We can see that there is still no big difference between each area so I decided to use the data of North area as the main dataset for the rest of the project research.

e. Splitting dataset into train (80%) and test (20%)

```
train = df[:int(len(df)*80/100)]
test = df[int(len(df)*80/100):]
```

Stationarity

ADF-test:

For the ADF-test, the p-value of it is close to zero and which means that the data is possible stationary.

```
ADF Statistic: -10.771032
p-value: 0.000000
Critical Values:
    1%: -3.431
    5%: -2.862
    10%: -2.567
Figure 9
```

Figure 9: The result of ADF-test

KPSS-test:

For the KPSS-test, the p-value of it is 0.044856 and which is a little bit lower than 0.05. If the data is stationary the p-value of the KPSS-test should be higher than 0.05 but for now the gap of it is still acceptable. We will be moving on to check on the rolling mean and variance to get the final answer.

KPSS test of load	
Results of KPSS Test:	
Test Statistic	0.485837
p-value	0.044856
Lags Used	92.000000
Critical Value (10%)	0.347000
Critical Value (5%)	0.463000
Critical Value (2.5%)	0.574000
Critical Value (1%)	0.739000 Figure 10

Figure 10: The result of KPSS-test

Rolling mean and variance:

The rolling mean and variance shows that the mean and variance become stationary at the end which means that the data is probably stationary.

Figure 11

Figure 11: Rolling mean and variance of load of North

Time series Decomposition

For checking the strength of trending and seasonality, I fit the data with STL model (Seasonal-Trend decomposition using Loses) of the statsmodels.tsa. By looking at the original data plot, we can see that there are trending and seasonality exist but there is another seasonality exist in the trending which means there are at least two layers of seasonality.

Next, checking on the trending part, we can see that except the original seasonality, the trending is also seasonal with a period of year so if we want to detrend the dataset we should detrend it by years to make the result fit our expectation.

Figure 12: The result of trending and seasonality of the original data

```
The strength of trend for this data set is 0.96
The strength of seasonality for this data set is 0.96
The dependent variable of area of North is highly trend and seasonal.
Figure 13
```

Figure 13: Result of fitting data into STL model

Holt-Winters Method

By fitting the train data into the Holt-Winter model, I used the ets function from the statsmodels.tsa.holtwinters, and make a prediction using the test dataset index.

```
# Holt-Winter Method
import statsmodels.tsa.holtwinters as ets

y_HW = df_test.copy() y_HW: datetime StnPres SeaPres ... area load HW_fit [29521 2020-07-18 10:00:00 1004.4 1007.8 fitted_model = ets.ExponentialSmoothing(df_train['load'], trend_=_'add', seasonal_periods=24, damped_trand=True).fit() y_HW['HW_fit'] = fitted_model.forecast(len(df_test))

Figure 14
```

Figure 14: parameters of fitting Holt-Winter model

Figure 15

Figure 15: Last 100 data versus prediction of Holt-Winter method

Feature Selection

For the feature selection section, first we get the singular values and the condition number of the data to check if there is collinearity exist. As the figure followed, we can notice that the smallest number of SVD is 2.66e + 01 which is not too close to zero, and probably can infer that as the sign of there is no significant collinearity exist. However, the condition number of data is 64299.29 and is way higher than expectation.

```
singular values of Data is [1.10085108e+11 1.07393352e+09 4.57606427e+08 7.04233201e+07 6.34703171e+06 1.11131338e+06 3.24755246e+05 1.27244112e+05 8.85091626e+04 1.28975600e+04 4.61518720e+03 2.24142505e+03 2.14527097e+03 2.66266244e+01]
The condition number of Data is 64299.29
```

Figure 16

Figure 16: SVD and condition number result of the original data

Next, I fit the data into the OLS model (ordinary least square) to perform a backward stepwise regression. I'm going to drop the variables with the highest p-value one by one until there is no variable with a p-value higher than 0.05.

>>> print(model.s	ummary())					
		OLS R	egression	Results			
Dep. Variable:	======	load	======== R-square	ed (uncenter	:======:: ·ed):	 0.9	=== 979
Model:		OLS Adj. R-squared (uncentered): 0.979					
Method:	L	east Squares				1.339e+	+05
Date:	Wed,	04 May 2022	Prob (F-	statistic):		0.	.00
Time:		04:32:12 Log-Likelihood:					+05
No. Observations:		36902	AIC:			4.684e+	+05
Df Residuals:		36889	BIC:			4.685e+	+05
Df Model:		13					
Covariance Type:		nonrobust					
	====== coef 	std err	t	P> t	[0.025	0.975]	
StnPres -4	4.6445	18.949	-2.356	0.018	-81.785	-7.504	
SeaPres 4	4.9155	18.878	2.379	0.017	7.914	81.917	

Figure 17

Temperature	22.7141	1.460	15.560	0.000	19.853	25.575
Td dew point	0.5829	1.532	0.380	0.704	-2.420	3.586
RH	-1.8094	0.350	-5.170	0.000	-2.495	-1.123
WS	-9.0741	1.136	-7.984	0.000	-11.302	-6.847
WD	0.0011	0.013	0.083	0.934	-0.025	0.027
WSGust	13.8920	0.502	27.701	0.000	12.909	14.875
WDGust	0.0544	0.013	4.351	0.000	0.030	0.079
Precp	3.3120	0.485	6.831	0.000	2.362	4.262
PrecpHour	91.8878	2.865	32.071	0.000	86.272	97.504
GloblRad	-52.8786	2.767	-19.109	0.000	-58.302	-47.455
UVI	21.2364	0.943	22.523	0.000	19.388	23.084
========	=======		======	========	=======	======
Omnibus:		812.279	Durbin	-Watson:		0.117
Prob(Omnibus):		0.000	Jarque	-Bera (JB):		425.472
Skew:		0.014	Prob(J	B):		4.07e-93
Kurtosis:		2.475	Cond.	No.		5.39e+04

```
Notes:
[1] R<sup>2</sup> is computed without centering (uncentered) since the model does not contain a constant.
[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[3] The condition number is large, 5.39e+04. This might indicate that there are strong multicollinearity or other numerical problems.
```

Figure 17: model summary of the first OLS model

After dropping 'WD' and 'Td dew point', there is no variable has a p-value larger than 0.05 so this is the final model for the feature selection.

=========		=======	=======	:=======	=======	======
	coef	std err	t	P> t	[0.025	0.975]
StnPres	-44.5004	18.943	-2.349	0.019	-81.628	-7.373
SeaPres	44.7604	18.871	2.372	0.018	7.772	81.749
Temperature	23.2610	0.269	86.402	0.000	22.733	23.789
RH	-1.6795	0.076	-22.033	0.000	-1.829	-1.530
WS	-9.0689	1.133	-8.008	0.000	-11.289	-6.849
WSGust	13.8904	0.501	27.702	0.000	12.908	14.873
WDGust	0.0548	0.010	5.736	0.000	0.036	0.074
Precp	3.3060	0.485	6.822	0.000	2.356	4.256
PrecpHour	91.6654	2.805	32.683	0.000	86.168	97.163
GloblRad	-53.0215	2.741	-19.343	0.000	-58.394	-47.649
UVI	21.2252	0.942	22.528	0.000	19.379	23.072
=========	========	=====	======	:=====	======	======

Figure 18

Figure 18: information of the final model summary

After dropping these features, we perform the SVD and condition number again and we can see that the condition drops, which means the data will perform better for the future prediction.

```
singular values of Data is [1.09380125e+11 1.06837683e+09 2.87918824e+08 6.19952009e+06 6.18792655e+05 3.18331618e+05 1.25258170e+05 8.84896518e+04 1.29570013e+04 2.39158464e+03 2.24117683e+03 2.66433322e+01]
The condition number of Data is 64072.99
```

Figure 19

Figure 19: SVD and condition number result of the data after dropping features

However, after dropping two features there is no more features will be consider not significant for the model but the condition number still shows that there might be some features

should be dropped. So I tried to fit the data into random forest model and perform a feature importance of the dataset. As we can see that except temperature has a significant importance for the random forest model, other features have similar low importance. If we decided to remove more features in the future, we can also take a consider of the result of the random forest model too.

```
Variable: Temperature
                              Importance: 0.59
Variable: WSGust
                              Importance: 0.06
Variable: Td dew point
                             Importance: 0.05
Variable: WS
                             Importance: 0.04
Variable: GloblRad
                             Importance: 0.04
Variable: StnPres
                             Importance: 0.03
Variable: SeaPres
                             Importance: 0.03
Variable: RH
                             Importance: 0.03
Variable: WD
                             Importance: 0.03
Variable: WDGust
                             Importance: 0.03
Variable: UVI
                             Importance: 0.03
Variable: PrecpHour
                             Importance: 0.02
Variable: Precp
                             Importance: 0.01
Variable: Temperature
                              Importance: 0.59
Variable: WSGust
                              Importance: 0.06
Variable: Td dew point
                             Importance: 0.05
```


Figure 20: feature importance generate through random forest model

Base-Models

AFM (Average forecast method):

The MSE of AFM prediction is 35258.

Naïve:

The MSE of Naïve prediction is 47488.

Drift:

The MSE of Drift prediction is 64305.

SES (a = 0.5):

The MSE of SES prediction (with a = 0.5) is 47488.

Figure 21: MSE of h-step prediction of each model versus test data

Multiple Linear Regression

For the multiple linear regression section, I used the OLS model fitted in the feature selection section. The R-square and the adjusted R-square of this model is 0.979, and the AIC is 4.684e+05 and the BIC is 4.685e+0.5.

	OLS R	egression Results	
=======================================		=======================================	=======================================
Dep. Variable:	load	R-squared (uncentered):	0.979
Model:	OLS	Adj. R-squared (uncentered):	0.979
Method:	Least Squares	F-statistic:	1.583e+05
Date:	Wed, 04 May 2022	Prob (F-statistic):	0.00
Time:	06:26:13	Log-Likelihood:	-2.3419e+05
No. Observations:	36902	AIC:	4.684e+05
Df Residuals:	36891	BIC:	4.685e+05
Df Model:	11		
Covariance Type:	nonrobust		
=======================================		=======================================	=======
	coef std err	t P> t [0.025	0.975]

StnPres	-44.5004	18.943	-2.349	0.019	-81.628	-7.373
SeaPres	44.7604	18.871	2.372	0.018	7.772	81.749
Temperature	23.2610	0.269	86.402	0.000	22.733	23.789
RH	-1.6795	0.076	-22.033	0.000	-1.829	-1.530
WS	-9.0689	1.133	-8.008	0.000	-11.289	-6.849
WSGust	13.8904	0.501	27.702	0.000	12.908	14.873
WDGust	0.0548	0.010	5.736	0.000	0.036	0.074
Precp	3.3060	0.485	6.822	0.000	2.356	4.256
PrecpHour	91.6654	2.805	32.683	0.000	86.168	97.163
GloblRad	-53.0215	2.741	-19.343	0.000	-58.394	-47.649
UVI	21.2252	0.942	22.528	0.000	19.379	23.072
Omnibus:	========	======== 812.1	======== 30	:====== :Watson:	========	0.117
Prob(Omnibus):	0.0	00 Jarque-	Bera (JB):		425.384
Skew:		0.0	13 Prob(JE	3):		4.26e-93
Kurtosis:		2.4	75 Cond. N	lo.		5.36e+04

Figure 22: linear model summary

```
AIC of model2 468402.41
BIC of model2 468496.09
Adjusted R-square of model2 0.98
Adjusted R-square of model2 0.98
```

Figure 23

Figure 23: statistic criteria result of the model

Figure 24

Figure 24: the one-step prediction of model

Figure 25

Figure 25: the h-step prediction of model

The MSE of OLS model prediction is 20216.

Mean of residual and variance of residual:

The mean of the residual is -4.99 and the variance of it is 18729.

ACF of residual:

```
array([1. , 0.93931564, 0.84119466, 0.71667633, 0.58525414, 0.46391368, 0.35170343, 0.25611442, 0.17994846, 0.12726441, 0.09486763, 0.07623483, 0.06638405, 0.05922439, 0.06002367, 0.07208657, 0.10177334, 0.15474577, 0.22537861, 0.31257999])
```

Figure 26

Figure 26: first 20 ACF values of the residual

Q-value:

The Q-value with lags 20 will be 6662521.

F-test & T-test:

We can notice that the p-value of the F-test is close to zero, which means that there is a significant difference between our linear regression model and a random model.

	t(model2.f_test) t(model2.t_test)					
	F=array([[4292), p=0.0, df	_denom=3.69	Pe+04, df_num	n=10>
		Test	for Constrai	nts		
=======	coef	std err	======== t 	======= P> t	[0.025	0.975]
c0	44.7604	18.871	2.372	0.018	7.772	81.749
c1	23.2610	0.269	86.402	0.000	22.733	23.789
c2	-1.6795	0.076	-22.033	0.000	-1.829	-1.530
с3	-9.0689	1.133	-8.008	0.000	-11.289	-6.849
c4	13.8904	0.501	27.702	0.000	12.908	14.873
с5	0.0548	0.010	5.736	0.000	0.036	0.074
с6	3.3060	0.485	6.822	0.000	2.356	4.256
с7	91.6654	2.805	32.683	0.000	86.168	97.163
c8	-53.0215	2.741	-19.343	0.000	-58.394	-47.649 Figu

Figure 27: results of F-test & t-test

ARMA, ARIMA, and SARIMA Model

Although we have test the data stationarity in the previous section but we can't one hundred percent sure that the data is stationary, and if the data is not stationary the testing of ARMA model and LM model wouldn't fit. To make sure the data is stationary we should process it again.

For the first sight of the GPAC table of the original data, there is no significant sign for ARMA order, there might be one for the AR (the value for first column is close to 0.8) but not too significant.

Figure 28

Figure 28: GPAC table of original data

First, by observing the ACF/PACF plot that generated in the previous section, through ACF I'll guess that there might be a 24 lags period of the data, and by PACF I'll guess there might be an order of AR. So I tried to make a 24 period difference of the data.

Figure 29: ACF/PACF after 24 period difference

As we can see, the dataset is highly similar to a model with AR order, then I tried to make a 1 period difference.

Figure 30: second time difference, ACF/PACF after 1 period difference

From the new GPAC table, we can't find any ARMA order.

Figure 31: GPAC table after processing

Hence, I'll guess that the original data might be a SARIMA(0,1,0)24 or SARIMA(1,0,0)24 data.

Levenberg Marquardt Algorithm

As I mentioned in the previous section, the model might be SARIMA(0,1,0)24 or SARIMA(1,0,0) 24. By fitting the data into the ARIMA model with the order of (24,1,0) will have a similar result. We can see that except AR L1 and L24, the other coefficient is nearly 0, which pretty fit our expectation.

		SA	RIMAX R	esul	ts		
Dep. Variable	======= :		====== load	==== No.	:======== Observations:	=======	======= 29521
Model:	А	RIMA(24, 1	, 0)	Log	Likelihood		-133058.323
Date:	We	d, 04 May	2022	AIC			266166.647
Time:		09:4	1:34	BIC			266373.967
Sample:			0	HQIC	;		266233.219
		- 2	9521				
Covariance Typ	pe:		opg				
=========	coef	std err	======	==== Z	 P> z	====== [0.025	====== 0.975]
ar.L1	0.1592	0.001	148.	580	0.000	0.157	0.161
ar.L2	0.0440	0.003	14.	652	0.000	0.038	0.050
ar.L3	-0.0293	0.003	-9.	886	0.000	-0.035	-0.023
ar.L4	-0.1626	0.003	-64.	726	0.000	-0.167	-0.158
ar.L5	0.0460	0.003	16.	802	0.000	0.041	0.051
ar.L6	-0.0209	0.004	-5.	048	0.000	-0.029	-0.013
ar.L7	-0.0298	0.004	-7.	548	0.000	-0.038	-0.022
ar.L8	-0.1086	0.004	-29.	570	0.000	-0.116	-0.101
ar.L9	-0.0322	0.004	-7.	310	0.000	-0.041	-0.024
ar.L10	-0.0322	0.005	-6.	054	0.000	-0.043	-0.022
ar.L11	-0.0347	0.006	-6.	094	0.000	-0.046	-0.024
ar.L12	-0.0265	0.006	-4.	273	0.000	-0.039	-0.014
ar.L13	-0.0553	0.006	-9.	869	0.000	-0.066	-0.044
ar.L14	-0.0083	0.005	-1.	533	0.125	-0.019	0.002
ar.L15	-0.0146	0.004	-3.	374	0.001	-0.023	-0.006
ar.L16	-0.1000	0.004	-25.	141	0.000	-0.108	-0.092
ar.L17	-0.0394	0.005	-7.	718	0.000	-0.049	-0.029
ar.L18	-0.0355	0.005	-7.	182	0.000	-0.045	-0.026
ar.L19	0.0117	0.004	3.	322	0.001	0.005	0.019
ar.L20	-0.0994	0.003	-33.	585	0.000	-0.105	-0.094
ar.L21	-0.0009	0.004		211	0.833	-0.009	0.007
ar.L22	0.0080	0.005	1.	769	0.077	-0.001	0.017
ar.L23	0.0840	0.002	51.	365	0.000	0.081	0.087

ar.L24	0.5305	0.001	470.394	0.000	0.528	0.533	
sigma2	481.3905	0.648	743.400	0.000	480.121	482.660	
	:=======:	:======:	=======	========	:=======:	========	
Ljung-Box	(L1) (Q):		68.98	Jarque-Bera	(JB):	120091921.60	
Prob(Q):			0.00	Prob(JB):		0.00	
Heterosked	lasticity (H):		0.58	Skew:		2.69	
Prob(H) (t	wo-sided):		0.00	Kurtosis:		315.42	
=======	:=======:	:=====::	=======	========		========	
Warnings:							
[1] Covari	ance matrix ca	lculated u	sing the o	uter product	of gradients	(complex-step).	

Figure 32

Figure 32: result of fitting data with ARIMA(24,1,0) model

Diagnostic Analysis

a. Diagnostic test: confidence interval, zero/pole cancellation, and chi-square test
 Confidence interval:

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.1592	0.001	148.580	0.000	0.157	0.161
ar.L2	0.0440	0.003	14.652	0.000	0.038	0.050
ar.L3	-0.0293	0.003	-9.886	0.000	-0.035	-0.023
ar.L4	-0.1626	0.003	-64.726	0.000	-0.167	-0.158
ar.L5	0.0460	0.003	16.802	0.000	0.041	0.051
ar.L6	-0.0209	0.004	-5.048	0.000	-0.029	-0.013
ar.L7	-0.0298	0.004	-7.548	0.000	-0.038	-0.022
ar.L8	-0.1086	0.004	-29.570	0.000	-0.116	-0.101
ar.L9	-0.0322	0.004	-7.310	0.000	-0.041	-0.024
ar.L10	-0.0322	0.005	-6.054	0.000	-0.043	-0.022
ar.L11	-0.0347	0.006	-6.094	0.000	-0.046	-0.024
ar.L12	-0.0265	0.006	-4.273	0.000	-0.039	-0.014
ar.L13	-0.0553	0.006	-9.869	0.000	-0.066	-0.044
ar.L14	-0.0083	0.005	-1.533	0.125	-0.019	0.002

ar.L15	-0.0146	0.004	-3.374	0.001	-0 <mark>.</mark> 023	-0.006
ar.L16	-0.1000	0.004	-25.141	0.000	-0.108	-0.092
ar.L17	-0.0394	0.005	-7.718	0.000	-0.049	-0.029
ar.L18	-0.0355	0.005	-7.182	0.000	-0. <mark>045</mark>	-0.026
ar.L19	0.0117	0.004	3.322	0.001	0. <mark>005</mark>	0.019
ar.L20	-0.0994	0.003	-33.585	0.000	-0. <mark>1</mark> 05	-0.094
ar.L21	-0.0009	0.004	-0.211	0.833	-0. <mark>9</mark> 09	0.007
ar.L22	0.0080	0.005	1.769	0.077	-0. <mark>9</mark> 01	0.017
ar.L23	0.0840	0.002	51.365	0.000	0.081	0.087
ar.L24	0.5305	0.001	470.394	0.000	0. <mark>5</mark> 28	0.533
sigma2	481.3905	0.648	743.400	0.000	480.121	482.660 Fig
						118

Figure 33: Confidence interval of the parameters

We can notice that from ar.L2 to ar.L23 are all close to zero which means that they might be unsignificant at all.

zero/pole cancellation:

There is no zero/pole cancellation because there is only AR order exist.

Chi-square test:

```
N = len(df)
lb_stat, pvalue = sm.stats.acorr_ljungbox(errortrain1[1:], lags=[20], return_df=True).iloc[0]
na = 24    na: 24
nb = 0    nb: 0
alfa = 0.01    alfa: 0.01
DOF = N - na - nb    DOF: 36878
chi_critical = chi2.ppf(1 - alfa, DOF)    chi_critical: 37512.73059274517
if lb_stat < chi_critical:
    print('The residual is white.')
if lb_stat > chi_critical:
    print('The residual is not white.')
```

Figure 34

Figure 34: process of chi-square test

Figure 35

Figure 35: Density of residual

b. Estimated variance of the error and the estimated covariance matrix

Covariance matrix:

Figure 36: covariance matrix of model

Estimated variance:

The variance of error is 39989.

- c. It's a bias model.
- d. The variance of residual is 481.53 and the variance of forecast error is 361.58, which means the model performed better at the test set.

Variance of residual is 481.53

Variance of forecast error of ARIMA is 361.58
Figure 37

Figure 37: result of variance of residual and forecast error

Deep Learning Model

For the deep learning section, I fit the data with LSTM model, which is a common deep learning model for time series data. I set the model with epochs = 50, batch size = 1, and verbose = 2.

After fitting the data and model training, the MSE of training data is 46.899 and the MSE of testing data is 45.09.

Figure 38: results of train score and test score

Figure 39

Figure 39: result of LSTM model

Final Model Selection

By comparing the MSE of the testing dataset, we can select the model with the lowest error. The LSTM model has the best performance, and next will be the SARIMA model. The MSE of LSTM is about 45 and the MSE of ARIMA is 361.

Forecast Function

For the forecast function, I'm using the ARIMA(24,1,0) model, which is the best model with a presentable forecast function.

Function:

$$y(t) - 0.16*y(t-1) - 0.5*y(t-24) = e(t)$$

h-step Ahead Predictions

Finally, the SARIMA(1,0,0)24 or ARIMA(24,1,0) model will be the best model for our final term project. Comparing the prediction with the original data, we can see that due to the strongly seasonality and trending makes the prediction highly fit the data.

Figure 40

Figure 40: prediction of best model selected versus test data

Summary and Conclusion

For the final model selected in this project is a SARIMA model, which only fit with time series data but can't predict using other features. Although the original goal of this project is to find out if the weather data is connected to the electricity load, the performance of pure time series prediction using SARIMA model and LSMT is better.

On the other hand, the LSMT deep learning model performed better but the training time takes much longer than traditional time series model like SARIMA. Although the error is smaller than traditional model but if we discuss about efficiency, I will say that traditional model is better for dataset that is too large. However, if you get enough time and ram for training model, deep learning model like LSMT will be a better choice.

Appendix

```
import matplotlib.pyplot as plt
df train P = df raw train P.copy(deep=True)
df train W = df train W.rename(columns={'ObsTime': 'datetime'})
N = df train W[df train W['station'] == '466920 臺北']
S = df train W[df train W['station'] == '467410 臺南']
E = df train W[df train W['station'] == '466990 花蓮']
n = df train P[df train P['area'] == 'north']
c = df train P[df train P['area'] == 'central']
North = pd.merge(N,n, on = 'datetime', how = 'inner')
Central = pd.merge(C,c, on = 'datetime', how = 'inner')
East = pd.merge(E,e, on = 'datetime', how = 'inner')
df_save = df.copy()
print(df.isnull().sum())
df = df.drop(columns=['Visb', 'SunShine', 'Cloud Amount'])
check v = df['Precp'].dropna()
sns.histplot(data = check v)
plt.title('Histogram of Precp')
plt.show()
```

```
df['Precp'] = df['Precp'].fillna(0)
df = df.apply(lambda x:x.fillna(x.value counts().index[0]))
df c = pd.Series(np.array(Central['load']).reshape(len(Central)),
fig, ax = plt.subplots(1,1)
plt.plot(df_n, label = 'North')
plt.plot(df_c, label = 'Central')
plt.plot(df_s, label = 'South')
plt.plot(df e, label = 'East')
plt.legend()
plt.xticks(rotation=30)
plt.xlabel('Time')
plt.ylabel('Load')
plt.show()
    plot pacf(y, ax=plt.gca(), lags=lags)
```

```
lags = 50
ACF PACF Plot(df n, lags)
ACF PACF Plot(df c, lags)
ACF PACF Plot(df s, lags)
ACF PACF Plot(df e, lags)
sns.heatmap(North.corr())
fig.suptitle('Pearson's correlation coefficient - Load of North')
plt.show()
fig = plt.figure()
sns.heatmap(Central.corr())
fig.suptitle('Pearson's correlation coefficient - Load of Central')
plt.show()
fig = plt.figure()
fig.suptitle('Pearson's correlation coefficient - Load of South')
plt.show()
fig = plt.figure()
sns.heatmap(North.corr())
plt.show()
df main = df.copy()
df = df.apply(lambda x:x.fillna(x.value counts().index[0]))
```

```
def kpss test(timeseries):
def difference(dataset,interval=1):
       diff.append(value)
    return diff
def Cal rolling mean var(y):
    Rmean = np.zeros(len(y))
ADF Cal(df['load'])
kpss test(df['load'])
N mean, N var = Cal rolling mean var(df['load'])
fig = plt.figure()
plt.subplot(211)
plt.title('Rolling mean and variance - load of North')
plt.plot(N mean)
plt.ylabel('Rolling mean')
```

```
plt.subplot(212)
plt.plot(N_var)
plt.ylabel('Rolling var')
plt.xlabel('Index')
fig.tight layout(pad=3)
plt.show()
ADF Cal(North['load'])
N_mean, N_var = Cal_rolling_mean_var(North['load'])
fig = plt.figure()
plt.subplot(211)
plt.title('Rolling mean and variance - load of North')
plt.plot(N mean)
plt.ylabel('Rolling mean')
plt.subplot(212)
plt.plot(N var)
plt.ylabel('Rolling var')
plt.xlabel('Index')
fig.tight layout(pad=3)
plt.show()
ADF Cal(Central['load'])
kpss_test(Central['load'])
C mean, C var = Cal rolling mean var(Central['load'])
fig = plt.figure()
plt.subplot(211)
plt.title('Rolling mean and variance - load of Central')
plt.plot(C_mean)
plt.ylabel('Rolling mean')
plt.subplot(212)
plt.plot(C var)
plt.ylabel('Rolling var')
plt.xlabel('Index')
plt.show()
ADF Cal(South['load'])
kpss test(South['load'])
S mean, S var = Cal rolling mean var(South['load'])
fig = plt.figure()
plt.subplot(211)
plt.title('Rolling mean and variance - load of South')
plt.plot(S mean)
plt.ylabel('Rolling mean')
plt.subplot(212)
plt.plot(S var)
plt.ylabel('Rolling var')
plt.xlabel('Index')
fig.tight layout(pad=3)
plt.show()
```

```
ADF Cal(Central['load'])
kpss test(Central['load'])
fig = plt.figure()
plt.subplot(211)
plt.title('Rolling mean and variance - load of Central')
plt.plot(C_mean)
plt.ylabel('Rolling mean')
plt.subplot(212)
plt.plot(C var)
plt.ylabel('Rolling var')
plt.xlabel('Index')
plt.show()
ADF Cal(East['load'])
kpss test(East['load'])
E mean, E var = Cal rolling mean var(East['load'])
fig = plt.figure()
plt.subplot(211)
plt.title('Rolling mean and variance - load of East')
plt.plot(E mean)
plt.ylabel('Rolling mean')
plt.subplot(212)
plt.plot(E_var)
plt.ylabel('Rolling var')
plt.xlabel('Index')
fig.tight layout(pad=3)
plt.show()
STL n = STL(df n)
plt.show()
S = res n.seasonal
S adj = df n.values - S.values
st = np.maximum(0, 1-np.var(np.array(R))/np.var(np.array(T)+np.array(R)))
```

```
ss = np.maximum(0,1-np.var(np.array(R))/np.var(np.array(S)+np.array(R)))
print(f'The strength of seasonality for this data set is {ss:.2f}')
print('The dependent variable of area of North is highly trend and
fig = res de.plot()
plt.show()
STL c = STL(df c)
res c = STL c.fit()
S adj = df c.values - S.values
R = res c.resid
print(f'The strength of trend for this data set is {st:.2f}')
ss = np.maximum(0,1-np.var(np.array(R))/np.var(np.array(S)+np.array(R)))
print(f'The strength of seasonality for this data set is {ss:.2f}')
res s = STL s.fit()
S_adj = df_s.values - S.values
R = res s.resid
st = np.maximum(0,1-np.var(np.array(R))/np.var(np.array(T)+np.array(R)))
print(f'The strength of seasonality for this data set is {ss:.2f}')
```

```
STL e = STL(df e)
R = res e.resid
print('The dependent variable of area of East is highly trend and seasonal.')
df = North.drop(columns=['Visb', 'SunShine', 'Cloud Amount'])
df = df.apply(lambda x:x.fillna(x.value counts().index[0]))
fitted model = ets.ExponentialSmoothing(df train['load'], trend = 'add',
plt.figure()
plt.plot(df train['load'], label='Train')
plt.plot(df_test['load'], label='Test')
plt.plot(y_HW['HW_fit'], label = 'Holt-Winter')
plt.legend(loc='best')
plt.title('Holt-Winter Seasonal forecast')
plt.xlabel('Date')
```

```
plt.show()
plt.figure()
plt.plot(df test['load'].iloc[-100:], label='Test')
plt.plot(y \overline{HW}['HW fit'].iloc[-100:], label = 'Holt-Winter')
plt.title('Holt-Winter Seasonal forecast')
plt.xlabel('Date')
plt.ylabel('load')
plt.show()
print(f'The condition number of Data is {LA.cond(df1):.2f}')
df1 = df1.drop(columns = ['load'])
model = sm.OLS(y train, df1).fit()
print(f'AIC of model1 {model.aic:.2f}')
print(f'BIC of model1 {model.bic:.2f}')
print(f'Adjusted R-square of model1 {model.rsquared adj:.2f}')
R1 = df1.copy()
R1 = R1.drop(columns = ['WD'])
model1 = sm.OLS(y train, R1).fit()
print(f'AIC of model1 {model1.aic:.2f}')
print(f'BIC of model1 {model1.bic:.2f}')
print(f'Adjusted R-square of model1 {model1.rsquared adj:.2f}')
R2 = R1.copy()
model2 = sm.OLS(y train, R2).fit()
model2.summary()
```

```
orint(f'AIC of model2 {model2.aic:.2f}
print(f'Adjusted R-square of model2 {model2.rsquared adj:.2f}')
features = pd.get dummies(df1)
feature list = list(features.columns)
features = np.array(features)
train features, test features, train labels, test labels =
train test split(features, labels, test size = 0.2, random state = 42)
df_train = train.copy()
```

```
a 050.append((0.5* (df train['load'].iloc[i+1])) + (1-0.5) *
R2 = R2.iloc[:29521,:]
predict = model2.predict(R2)
plt.figure()
plt.plot(df train['load'], label='Train')
```

```
plt.plot(predict, label='One-step')
plt.legend(loc='best')
plt.title('One-step prediction of OLS')
plt.xlabel('Date')
plt.ylabel('load')
plt.show()
df test = test.drop(columns = ['datetime', 'station', 'area', 'Td dew
point', 'WD', 'load'])
predictions = model2.predict(df_test)
plt.figure()
plt.plot(test['load'], label='Test')
plt.plot(predictions, label='h-step')
plt.legend(loc='best')
plt.title('h-step prediction of OLS')
plt.xlabel('Date')
plt.ylabel('load')
plt.show()
sum = 0
print(f'AIC of model2 {model2.aic:.2f}')
print(f'BIC of model2 {model2.bic:.2f}')
acf = sm.tsa.stattools.acf(res, nlags=len(res))
Q = len(res) * np.sum(np.square(acf[20:]))
A = np.identity(len(model2.params))
print(model2.f test(A))
```

```
t.append((Va[mid + j + 1]) / Va[mid + j])
                for i in np.arange(k):
   plt.show()
def difference(dataset,interval=1):
       diff.append(value)
    return diff
```

```
d24 = difference(df['load'],interval=24)
def ACF_PACF_Plot(y,lags):
    pacf = sm.tsa.stattools.pacf(y, nlags=lags)
ACF PACF Plot(d24 1, lags)
ry21 24 = np.concatenate((np.reshape(ry11 24,14), acf1 24[:14][1:]))
model = ARIMA(df['load'], order=(24,1,0))
model fit = model.fit()
print(model fit.summary())
residuals = pd.DataFrame(model fit.resid)
residuals.plot()
residuals.plot(kind='kde')
plt.title('Density of residual')
plt.show()
for i in np.arange(len(test)):
```

```
print(f'Variance of forecast error of ARIMA is {np.var(error):.2f}')
plt.figure()
plt.plot(df_train['load'], label='Train')
plt.plot(test['load'], label='Test')
plt.plot(model hat, label='prediction of ARIMA')
plt.legend(loc='best')
plt.title('One-step ahead prediction')
plt.xlabel('t')
plt.show()
plt.figure()
plt.plot(df train['load'][:100], label='Train')
plt.plot(model hat[:100], label='one-step ahead prediction')
plt.legend(loc='best')
plt.title('One-step ahead prediction')
plt.xlabel('t')
plt.ylabel('yt')
plt.show()
N = len(df)
lb_stat, pvalue = sm.stats.acorr_ljungbox(errortrain1[1:], lags=[20],
    num = np.asarray(num)
```

```
X = np.append(X, (d/tel).T)
new seta = new seta.reshape(na+nb,)
SSE new = np.asscalar(SSE new)
```

```
z = cal e(seta end, y=y, na=na)
import matplotlib.pyplot as plt
from keras.layers import LSTM
df LS =df['load']
dataset = df LS.values
dataset = dataset.astype('float32')
dataset = scaler.fit transform(dataset.reshape(-1,1))
train size = int(len(dataset) * 0.8)
test size = len(dataset) - train size
train, test = dataset[0:train size,:], dataset[train size:len(dataset),:]
```

```
dataX.append(a)
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
model.add(Dense(1))
model.compile(loss='mean squared error', optimizer='adam')
model.fit(trainX, trainY, epochs=50, batch size=1, verbose=2)
testPredict = model.predict(testX)
trainPredict = scaler.inverse transform(trainPredict)
trainScore = math.sqrt(mean squared error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
trainPredictPlot = numpy.empty like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look back:len(trainPredict)+look back, :] = trainPredict
testPredictPlot = numpy.empty like(dataset)
testPredictPlot[len(trainPredict)+(look back*2)+1:len(dataset)-1, :] =
testPredict
```

```
# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset), label = 'Data')
plt.plot(trainPredictPlot, label = 'trainPredict')
plt.plot(testPredictPlot, label = 'testPredict')
plt.title('LSTM prediction')
plt.legend()
plt.show()

error = []
for i in np.arange(len(testPredict)):
    error.append(test['load'].iloc[i]- testPredict[i])
print(f'Variance of prediction error of LSTM is {np.var(error):.2f}')

# Forecast Function
# model_fit.seasonalarparams
# h-step prediction of SARIMA
plt.figure()
plt.plot(test['load'], label='Test')
plt.plot(model_hat[len(df_train):], label='prediction of SARIMA')
plt.legend(loc='best')
plt.title('h-step ahead prediction')
plt.xlabel('t')
plt.ylabel('load')
plt.show()
```