G. Little Artem and Graph

time limit per test: 12 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Little Artem is given a graph, constructed as follows: start with some k-clique, then add new vertices one by one, connecting them to k already existing vertices that form a k-clique.

Artem wants to count the number of spanning trees in this graph modulo $10^9 \pm 7$.

Input

First line of the input contains two integers n and k ($1 \le n \le 10\ 000,\ 1 \le k \le min(n,5)$) — the total size of the graph and the size of the initial clique, respectively.

Next n - k lines describe k+1-th, k+2-th, ..., i-th, ..., n-th vertices by listing k distinct vertex indices $1 \le a_{ij} < i$ it is connected to. It is guaranteed that those vertices form a k-clique.

Output

Output a single integer — the number of spanning trees in the given graph modulo $10^9 + 7$.

Examples

input	
3 2 1 2	
output	
3	

input		
4 3 1 2 3		
output		
16		