DIGITAL ASSIGNMENT 1

STATISTICS FOR ENGINEERS - MAT2001

Module 1 & 2

Submission Date:

1. Calculate the mean, median and mode from the following data.

	, ,				0			
Marks	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No.of Students	4	12	40	41	27	13	9	4

2. Find the missing frequency from the following frequency distribution if Mean is 38.

Marks	10	20	30	40	50	60	70
No.of	8	11	20	25	?	10	3
Students							

3. Calculate G.M and H.M for the following data

Marks	0-10	10-20	20-30	30-40	40-50
No. of Students	8	12	18	8	6

4. An analysis of monthly wages of workers of two factories A and B yielded the following results:

	Factories		
	A	В	
No. of workers	50	60	
Average monthly wages	Rs.60	Rs.48	

Obtain the average monthly wages of all workers taken together.

5. Following data represent life of two models of refrigerators A and B.

Life (in months)	Refrigerator			
	Model A	Model B		
500-700	5	4		
700-900	11	30		
900-1100	26	12		
1100-1300	10	8		
1300-1500	8	6		

Find the average life of each model. Which model has greater uniformity?

6. For the data given here, give the quartile deviation:

X	351-500	501-650	651-800	801-950	951-1100
F	48	189	88	47	28

^{7.} Calculate A.M., S.D., γ_1 and γ_2 and comment upon the nature of skewness and kurtosis

X	5	6	7	8	9
F	5	10	24	15	6

8. A random variable X has the following probability distribution:

X = x	-2	-1	0	1	2	3
P(x)	0.1	k	0.2	2k	0.3	3k

- (a) Find the value of k, (b) evaluate P(X < 2) and P(-2 < X < 2)
- (b) Find the c.d.f. of X, (d) evaluate the mean of X.
- 9. A discrete R.V X has the probability function as given below:

$X = x_i$	0	1	2	3	4	5	6	7
p_i	0	a	2a	2a	3a	a^2	$2a^2$	$7a^2+a$

- (i) Find the value of 'a'. Write its distribution function and c.d.f.
- (ii) If $P(X \le k) > \frac{1}{2}$, find the least value of k.
- 10. The probability that a person will die in the time interval (t_1, t_2) is given by

 $P(t_1 \leq t \leq t_2) = \int_{t_1}^{t_2} a(t) dt. \text{ The function } a(t) \text{ is determined from long records and can be assumed to be } a(t) = \begin{cases} 3X10^{-9}t^2(100-t)^2, & 0 \leq t \leq 100\\ 0, & \text{otherwise} \end{cases}$

Determine (i) The probability that person will die between the ages 60 and 70 &

- (ii) The probability that he will die between those ages, assuming that he lived up to 60.
- 11. If the density function of a continuous R.V.X is given by

$$f(x) = \begin{cases} ax, & \text{in } 0 \le x \le 1\\ a, & \text{in } 1 \le x \le 2\\ 3a - ax, & \text{in } 2 \le x \le 3\\ 0, & \text{elsewhere} \end{cases}$$

- (i) Find the value of a, (ii) find the c.d.f. of X.
- 12. The joint p.d.f of the R.V(X,Y) is given by $kxye^{-(x^2+y^2)}$; x > 0, y > 0. Find the value of k and prove also that X and Y are independent.
- 13. A gun is aimed at a certain point, say, the origin of the co-ordinate system. Due to the random factors, the actual hit point can be any point (X, Y) in a circle of radius a with center at the origin. If the joint density function of (X, Y) can be assumed as

$$f(x,y) = k$$
, for $x^2 + y^2 \le a^2$ and $= 0$, otherwise,

- (i) Find the value of k and (ii) The marginal density function of X.
- 14. If the joint p.d.f. of a two dimensional continuous R.V.(X,Y) is given by f(x,y) = 3(x+y), in x > 0, y > 0 and $x + y \le 1$ and x = 0, elsewhere, find Var(X), Var(Y) and Cov(X,Y).

- 15. Find the characteristic function of the distribution of a discrete R.V.X, whose probability mass function is given by $P(X = r) = q^r p$; $r = 0,1,2,...,\infty$, where p + q = 1. Hence find the mean and variance of the distribution.
- 16. If the p.d.f of a continuous R.V.~X is given by $f(x) = k(1+x)e^{-2x}$, $in-1 \le x < \infty$, find the value of k, mean and variance of X, by finding the M.G.F. of X.