A NOTE ON SWAN MODULES

ANUPAM SRIVASTAV

Department of Mathematics, Texas A & M University, College Station TX 77843, USA

(Received 1 December 1988; accepted 17 July 1989)

1. Introduction

Swan modules determine a canonical subgroup of the locally free classgroup of a group ring. In fact, this subgroup is contained in the kernel group, i.e. Swan modules are free over maximal orders. In this note we consider Swan modules over certain non-maximal orders. Motivation for studying such Swan modules is provided by Galois module structure problem in Taylor¹⁰ where a certain generalised Swan module is shown to be the obstruction to the freeness of ring of integers over its associated order.

Let G be a group of order n. We set $\Sigma = \Sigma = \Sigma$ g, the sum of all group elements in the group ring ZG. For each integer s relatively prime to n, we define a Swan module

$$\langle s, \Sigma \rangle = s \cdot \mathbf{Z}G + \Sigma \cdot \mathbf{Z}G$$

a two-sided locally free $\mathbb{Z}G$ -ideal. Swan modules were introduced in Swan^7 . We remark that some authors use a different definition of Swan module, for instance see Gruenburg and Linnell⁴.

Each Swan module determines a class of $Cl(\mathbb{Z}G)$, the locally free classgroup of $\mathbb{Z}G$. It is well known that the set of all Swan classes form a finite subgroup $T(\mathbb{Z}G)$ of $Cl(\mathbb{Z}G)$, called the Swan subgroup of $Cl(\mathbb{Z}G)$ (cf. Curtis and Reiner².) The locally free classgroup $Cl(\mathbb{Z}G)$ is defined as the subgroup of elements of zero rank in $K_0(\mathbb{Z}G)$, the Grothendieck group of finitely generated, locally free $\mathbb{Z}G$ -modules.

We now present the Galois module structure problem discussed in Taylor¹⁰. For a number field M, we write \mathcal{O}_M for its ring of integers and for any ring R we write (a, b) R for the right ideal aR + bR. Let K be a quadratic imaginary number field with discriminant less than -4. Moreover, assume that prime 2 splits in K/Q. Let $\mathcal{F} = \lambda \mathcal{O}_K$ denote a non-ramified, principal prime ideal of \mathcal{O}_K , where $\lambda \equiv \pm 1 \mod 4\mathcal{O}_K$. We fix positive integers r > m and let N (respectively, L) denote K ray classifield mod $4\mathcal{P}^{m+r}$ (respectively, $4\mathcal{P}^r$). Let $\Gamma = Gal(N/L)$ and $\mathcal{P} = \{x \in L\Gamma : \mathcal{O}_N \cdot x \subseteq \mathcal{O}_N\}$, the associated order of the extension N/L in $L\Gamma$.

For $s \in \mathbb{Z}$ with (s, λ) $\mathcal{O}_K = \mathcal{O}_K$, we define a locally free \mathcal{R} -ideal, $I_s = (s, \lambda^{-m} \sum_{\Gamma}) \mathcal{R}$. We shall call I_s an elliptic Swan module (the use of 'elliptic' would become clear in Section 3). Taylor¹⁰ showed that \mathcal{O}_N is a free \mathcal{R} -module if, and only if the elliptic Swan module I_2 is \mathcal{R} -free.

In Srivastav⁶ it is shown that $I_s = (s, \sum_{\Gamma}) \mathcal{R}$ and therefore, it is obtained from the Swan module $(s, \sum_{\Gamma}) Z\Gamma$ by an extension of rings. Thus, if \mathcal{P} splits in K/\mathbb{Q} then Γ is cyclic so that $T(Z\Gamma) = 0$ (cf. Swan⁷). In that case $(2, \sum_{\Gamma}) Z\Gamma$ is $Z\Gamma$ -free (since Γ is abelian, the Eichler condition is satisfied) and so I_2 is \mathcal{R} -free. Taylor⁹ had shown that \mathcal{O}_N is \mathcal{R} -free if \mathcal{P} splits in K/\mathbb{Q} without using Swan modules. So in the sequel we assume that \mathcal{P} is inert in K/\mathbb{Q} and set λ equal to an odd rational prime p. In this case Γ is a non-cyclic group of order p^{2m} .

Next, we note that the Z-order $Z\Gamma + Z(p^{-m}\Sigma)$ is contained in \mathcal{A} . More generally, we let G be any abstract group of order p^k . For each integer j, $0 \le j < k$ we consider the Z-order $\Lambda_j = ZG + Z(p^{-j}\Sigma)$. The Swan subgroup T(ZG) maps, by an extension of rings, onto a subgroup $T(\Lambda_j)$, determined by Swan modules $(s, p^{-j}\Sigma) \Lambda_j$ with $p \nmid s$, in the locally free classgroup $Cl(\Lambda_j)$. From Taylor's theorem8 that T(ZG) is a cyclic group of order p^{k-1} , we are able to show that $T(\Lambda_j)$ is a cyclic group of order p^{k-1-j} (cf. Theorem 2).

As a corollary, set $G = \Gamma$ and m = 1 to show that I_2 is \mathcal{R} -free. This led the author to state.

Theorem 1—The elliptic Swan module I_2 is a principal ideal of the associated order \mathcal{A} .

We 6 used transcendental means to show that for $p \equiv \pm 1 \mod 8$ the elliptic Swan module is, indeed, \mathcal{A} -free. The hypothesis $p \equiv \pm 1 \mod 8$ was introduced in Srivastav 6 since in that case we could use the Lubin-Tate formal group law of the Fueter model in describing the local Galois module structure (cf. remark on page 173 of Cassou-Noguès and Taylor 1). We shall employ the technical device of relative Lubin-Tate formal groups in removing this hypothesis in Section 3 to complete the proof of Theorem 1.

2. THE SWAN SUBGROUP

We keep the notation of Section 1. Let G be a group of order n. For each positive integer f that divides n, we define a \mathbb{Z} -order

$$\Delta(f) = \mathbf{Z}G + \mathbf{Z} \cdot f^{-1} \Sigma \qquad ...(2.1)$$

in the group algebra QG. We should note that $\Lambda(f)$ is Z-torsion free and finitely generated as a Z-module.

Let us fix f. For each integer s relatively prime to n, we define a $\Lambda(f)$ -ideal

$$\langle s, f^{-1} \Sigma \rangle_{(f)} = (s, f^{-1} \Sigma) \Lambda_{(f)}.$$
 ...(2.2)

We call this ideal a Swan module of $\Lambda(t)$ in the view of the following,

Lemma 1—With the above notation,

$$\langle s, f^{-1} \Sigma \rangle_{(f)} = (s, \Sigma) \Lambda_{(f)}.$$

PROOF: Clearly, $\langle s, f^{-1} \Sigma \rangle (f) \supseteq (s, \Sigma) \Lambda(f)$. It suffices to show the equality locally at each prime q. If $q \mid s$, then $f \in \mathbb{Z}_q^x$ and we obtain the desired equality. On the other hand, if $q \nmid s$, then $s \in \mathbb{Z}_q^x$ and both ideals equal $\Lambda(f)_q$.

Thus $\langle s, f^{-1} \Sigma \rangle_{(f)}$ is a locally free Λ (f)-ideal obtained from the usual Swan module $\langle s, \Sigma \rangle$ by extension of rings. It, therefore, determines a class, $\langle s, \Sigma \rangle_{(f)}$ in $Cl(\Lambda(f))$. We denote the set of all swan classes in $Cl(\Lambda(f))$ by $T(\Lambda(f))$. The inclusion

$$i: \mathbb{Z}G \longrightarrow \Lambda(f)$$

induces a surjective homomorphism

$$i_{\star}:Cl\left(\mathbb{Z}G\right)\to Cl\left(\Lambda_{(f)}\right)$$

such that $T(\Lambda(f)) = i_*(T(\mathbf{Z}G))$. Hence $T(\Lambda(f))$ is a subgroup of $Cl(\Lambda(f))$ and we shall call $T(\Lambda(f))$, the Swan subgroup of $Cl(\Lambda(f))$.

For convenience we shall write $\Lambda = \Lambda_{(1)} = ZG$. Let ϵ be the augmentation map of QG and we denote its restriction on $\Lambda_{(f)}$ by ϵ_f . Now, we consider a fiber diagram

$$\begin{array}{cccc}
 & \Lambda_{(f)} & \xrightarrow{\epsilon_f} & Z \\
 & \downarrow & & \downarrow & \phi_f \\
 & & \frac{\Lambda_{(f)}}{(f^{-1}\Sigma)} & \xrightarrow{\bar{\epsilon}_f} & Z \\
 & & & \frac{Z}{f^{-1}nZ}
\end{array}$$
...(2.3)

where ϵ_f is induced by ϵ_f and ϕ_f , θ_f are quotient maps.

The inclusion $i: \Lambda \hookrightarrow \Lambda(f)$ induces an isomorphism

$$i': \frac{\Lambda}{(\Sigma)} \stackrel{\rightarrow}{\sim} \frac{\Lambda_{(f)}}{(f^{-1}\Sigma)}$$
 ...(2.4)

The fact that $\Lambda/(\Sigma)$ is a finitely generated free Z-module shows that $\Lambda(f)/(f^{-1}\Sigma)$ is also a Z-order. For f=1, the fiber diagram (2.3) was considered by Ullom¹¹. This fiber diagram allows us to study the relation between the K-theory of $\Lambda(f)$ and that

of Z, $\Lambda(f)/(f^{-1}\Sigma)$ and $Z/f^{-1}nZ$. In particular, there is an exact Mayer-Vietoris sequence of Reiner and Ullom⁵.

$$K_1(Z) \oplus K_1\left(\frac{\Lambda(f)}{(f^{-1}\Sigma)}\right) \to K_1\left(\frac{Z}{f^{-1}nZ}\right) \stackrel{\partial f}{\to} D(\Lambda(f)) \to 0 \quad ...(2.5)$$

where $D\left(\Lambda(f)\right)$ is the kernel group of $\Lambda(f)$. We recall that $D\left(\Lambda(f)\right)$ is a subgroup of $Cl\left(\Lambda(f)\right)$ and for any ring R, $K_1\left(R\right) = \frac{GL\left(R\right)}{GL'\left(R\right)}$, where the general linear group $GL\left(R\right) = \lim_{x \to \infty} GL_n\left(R\right)$ and $GL'\left(R\right) = \text{the commutator subgroup of } GL\left(R\right)$. Moreover, in (2.5) $K_1\left(Z\right)$ (respectively, $K_1\left(\frac{Z}{f^{-1}nZ}\right)$) may be identified with $Z^x = \{\pm 1\}$ (respectively, $\left(\frac{Z}{f^{-1}nZ}\right)^x$) via the determinant map.

For f = 1, in (2.7) of Ullom¹¹ it is shown that $\partial_1 (s \mod n\mathbb{Z}) = [s, \Sigma]$. In exactly the same manner we obtain the following:

Proposition 1—The connecting homomorphism ∂f in (2.5) is given by

$$\partial f$$
 (s mod f^{-1} n **Z**) = [s, Σ](f).

The exact sequence (2.5) may now be rewritten as

$$\mathbf{Z}^{x} \oplus K_{1}\left(\frac{\mathbf{\Lambda}(f)}{(f^{-1}\Sigma)}\right) \to \left(\frac{\mathbf{Z}}{f^{-1} n\mathbf{Z}}\right)^{x} \to T\left(\mathbf{\Lambda}(f)\right) \to 0. \tag{2.6}$$

Next, we note the commutative diagram

$$Z \oplus \frac{\Lambda}{(\Sigma)} \xrightarrow{(\phi_1, -\frac{\epsilon_1}{\epsilon_1})} \qquad \frac{Z}{nZ}$$

$$(id, i') \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \dots (2.7)$$

$$Z \oplus \frac{\Lambda(f)}{(f^{-1}\Sigma)} \xrightarrow{(\phi_f, -\frac{\epsilon_f}{\epsilon_f})} \qquad \frac{Z}{f^{-1}nZ}$$

where πf is the quotient map.

From (2.7) using the functoriality of K_1 and the exactness of (2.6) together with Proposition 1 and Lemma 1 we obtain a commutative diagram with exact rows

$$Z^{x} \oplus K_{1}\left(\frac{\Lambda}{(\Sigma)}\right) \longrightarrow \left(\frac{Z}{nZ}\right)^{x} \stackrel{\partial_{1}}{\to} T(\Lambda) \to 0$$

$$\left(id, i'_{*}\right) \downarrow \qquad \qquad n_{f} \downarrow \qquad \qquad i_{*} \downarrow \qquad \qquad \dots (2.8)$$

$$Z^{x} \oplus K_{1}\left(\frac{\Lambda(f)}{(f^{-1}\Sigma)}\right) \longrightarrow \left(\frac{Z}{f^{-1}nZ}\right)^{x} \stackrel{\partial_{f}}{\to} T(\Lambda(f)) \to 0.$$

In particular, we have

$$\operatorname{Ker} (\partial f) = \pi f \left(\operatorname{Ker} (\partial_1) \right). \tag{2.9}$$

Thus, if $T(\Lambda)$ is explicitly known then $T(\Lambda(f))$ can also be calculated explicitly. For instance, if G is a cyclic group then we known that $T(\Lambda)$ is trivial so that $T(\Lambda(f))$ is also trivial. As another example, we consider the case of p-groups. We remark that only in this section p may equal 2.

Let G be a non-cyclic p-group so that $n = p^k$. It is known that $T(\Lambda)$ is trivial for a dihedral 2-group and that $|T(\Lambda)| = 2$ for a generalized quaternion 2-group or a semidihedral 2-group (cf. Taylor⁸). Ullom conjectured that for a non-cyclic p-group which is not one of these types of 2-groups mentioned above

$$|T(\mathbf{Z}G)| = \begin{cases} p^{k-1}, p \text{ odd} \\ 2^{k-2}, p = 2. \end{cases}$$

Taylor used Fröhlich's hom description for $Cl(\Lambda)$, and introduced a modified version of the *p*-adic logarithm to give a remarkable proof of Ullom's conjecture [cf. (2.5) of Taylor's]. Taylor's theorem can now be generalised to describe $T(\Lambda(f))$.

For convenience we now write Λ_j for $\Lambda_{(p^j)}$ where $0 \le j \le k$. Using (2.8) and so (2.9) we deduce from Taylor's theorem [(2.5) of Taylor⁸].

Theorem 2—Let G be a non-cyclic p-group of order p^k . If p=2, assume that G is not a generalised quaternion, dihedral or semidihedral group. Let $0 \le j < k$ (if $p=2, 0 \le j < k-1$).

- (i) If $p \neq 2$, then $T(\Lambda_j)$ is a cyclic group of order p^{k-j-1} with $[1+p, \Sigma]_{(p^j)}$ as a generator.
- (ii) If p = 2, then $T(\Lambda_j)$ is a cyclic group of order 2^{k-j-2} with [5, Σ]_(2j) as a generator.

Now let us return to the Galois module structure problem of Section 1. We let p be an odd prime, inert in K/\mathbb{Q} and set $G = \Gamma$, then $|G| = p^{2m}$. We also note that $\Lambda_m \subseteq \mathcal{R}$. In case m = 1, we conclude that $T(\Lambda_m) = 0$. Moreover, if m = 2 and p^2 is a Weiferich square, i.e. $2^{p-1} \equiv 1 \mod p^2$, then $[2, \Sigma]_{(p^2)} = 0$. Thus we have,

Corollary 1—Let p be inert in K/Q. If either m = 1 or m = 2 and p^2 is a Weiferich squre then I_2 is a principal \mathcal{R} -ideal.

An example of Wieferich square is 10932.

3. ELLIPTIC SWAN MODULES

As in Taylor¹⁰ and Srivastav⁶ we consider the lattice $\Omega = \mathcal{O}_K$ in C. We fix a primitive 4-division point ψ of \mathbb{C}/Ω such that 2ψ has annihilator 2Ω . We set a complex

number

$$t = \frac{12 \, \mathscr{F}(2\psi)}{\mathscr{F}(\psi) - \mathscr{F}(2\psi)}$$

where \mathcal{F} is the usual Weierstrass \mathcal{F} -function for Ω .

Let

$$\epsilon: y^2 = 4x^3 + tx^2 + 4x$$

be an elliptic curve with the identity of the group law at the origin O=(0:0:1). We know¹ (Chapter XI) that t^2-2^6 is a unit in K(4), the K ray classifield mod 4 \mathcal{O}_K . Moreover, the discriminant of \mathcal{E} is 4 (t^2-2^6) . Thus \mathcal{E} has good reduction at all odd primes. There is an isomorphism [cf. (4.10) Srivastav⁶] called the Fueter model

$$\xi: C/\Omega \xrightarrow{\sim} \epsilon$$

given by

$$\xi(z) = \begin{cases} (T(z):T_1(z):1), z \neq 2\psi \\ (0:1:0), z = 2\psi \end{cases}$$

where T and T_1 are two elliptic functions for Ω . We set

$$D(z) = \frac{T(z)}{T_1(z)}$$

an elliptic function for Ω .

Let $E = \frac{\mathcal{O}_K}{p^m \mathcal{O}_K}$, a finite ring. Then as in Taylor¹⁰, the Galois group Γ and the group of p^m -division points of \mathbb{C}/Ω are both rank one free E-modules. We write both the E-actions exponentially as in Srivastav⁶.

Let γ be an *E*-generator of Γ and α a primitive p^m -division point of \mathbb{C}/Ω . In Srivastav⁶ we defined the resolvent element ρ associated with α and γ by

$$\rho = p^{-m} \sum_{e \in E} \frac{D(\alpha^e + \psi)}{D(p^m \psi)} \gamma^{[e]}.$$

From (5.7) of Srivastav⁶ we know that $p^m P \in \mathcal{O}_L \Gamma$.

Moreover, in (8.1) of Srivastav⁶ we showed that if $p \equiv \pm 1 \mod 8$, then $p \in \mathcal{R}$. We show

Theorem 3—The resolvent element ρ lies in the associated order \mathcal{A} .

From (3.6) and (5.17) of Srivastav⁶ we obtain Theorem 1 as a consequence of

Theorem 3. In order to prove Theorem 3 we need to look at the formal group associated with the Fueter model in some detail.

We fix an embedding of $\overline{\mathbf{Q}}$, a fixed algebraic closure of \mathbf{Q} , in $\overline{\mathbf{Q}}_p$, a fixed algebraic closure of \mathbf{Q}_p , so that it corresponds to \mathcal{P} for K. We write M' for the closure in $\overline{\mathbf{Q}}_p$ of a field $M \subseteq \overline{\mathbf{Q}}$. We note that K(4)' = K' and $t \in K(4)$. We denote by P the maximal ideal of the ring of integers of $\overline{\mathbf{Q}}_p$.

Let \mathscr{E}' denote the elliptic curve \mathscr{E} of the Fueter model (2.3) considered locally at P. This local elliptic curve \mathscr{E}' admits complex multiplication and has good reduction modulo P. Let \mathscr{E}'_0 denote the kernel of reduction of \mathscr{E}' modulo P. For convenience we write (x, y) for a point on \mathscr{E}' with projective coordinates (x : y : 1).

We know¹ (Chapter X) that there is a Lubin-Tate formal group law F' defined over $\mathcal{O}_{K'}$, for a uniformizer $p' \in \{\pm p\}$, where the parameter

$$t = \frac{2x}{y} \text{ on } F' \qquad \dots (3.1)$$

is associated with the point (x, y) on \mathscr{E}_0' . Therefore, for a positive integer s and a primitive p^s -division point σs of C/Ω , $(T(\alpha s), T_1(\alpha s)) \in \mathscr{E}_0'$ and the associated parameter $2D(\alpha s)$ on F' is a primitive p^s -division point for F'.

Next, we note that $\frac{D(\alpha_s)}{D(\psi)} \in K(4\mathcal{P}^s)$ (cf. (5.6) of Srivastav⁶) and in addition, $\left[K'\left(\frac{D(\alpha_s)}{D(\psi)}\right): K'\right] = \left[K(4\mathcal{P}^s)': K'\right].$ Thus we obtain

$$K(4\mathscr{P}^s)' = K'\left(\frac{D(\alpha s)}{D(\psi)}\right). \qquad ...(3.2)$$

Now from (5.5) of Srivastav⁶ and (6.8). Chapter IX of Cassou-Noguès and Taylor¹ we infer that $D(\psi) \in K(8)$ and $D^2(\psi) = (t+8)^{-1} \in K(4)$. This shows that $K'(D(\psi))/K'$ is an unramified extension of degree d, where d/2. Henceforth, we write K'_n for the unique unramified extension of K' of degree n so that

$$K'_{d} = K'(D(\psi)). \tag{3.3}$$

In view of (3.2) we have

$$K'_{\mathfrak{d}}(D(\alpha_{\mathfrak{d}})) = K(4\mathscr{P}^{\mathfrak{d}})'(D(\psi)). \qquad ...(3.4)$$

From local classfield theory as in Taylor¹⁰ there is a relative Lubin-Tate formal group law F'' on $\mathcal{O}_{K'}$, for a uniformizer p'' such that

$$K(4\mathscr{D}^s)' = K'(\omega_s) \qquad ...(3.5)$$

where ω_s is a primitive p^s -division point for F''. Combining (3.4) and (3.5) we obtain

$$K'_{d}(D(\alpha s)) = K'_{d}(\omega s). \qquad ...(3.6)$$

The finite ring E acts on p^m -division points of C/Ω and also on p^m -division points of F'.

Proposition 2—Let α be a primitive p^m -division point of \mathbb{C}/Ω . Then there exists

(i) a formal power series $\theta(X) \in \mathcal{O}_{K'_d}[[X]]$

and

(ii) a primitive p^m -division point ω of F'' such that

$$2D(\alpha e) = \theta(\omega_1 e_1) \forall e \in E.$$

PROOF: We view both F' and F'' as relative Lubin-Tate formal group laws over $\mathcal{O}_{K_d'}$. From (1.2), Chapter I of de Shalit³ we see that F' (respectively, F'') is a relative Lubin-Tate formal group law for $(p')^d$ (respectively, $(p'')^d$). For each positive integer s, let α_s (respectively, ω_s) be a primitive p^s -division point of \mathbb{C}/Ω (respectively, F'').

We know from (1.8), Chapter I of de Shalit³ that $K'(D(\alpha s))$ (respectively, $K'_d(\omega s)$) is the classified for K' to the subgroup $\langle (p')^d \rangle \cdot (1 + \mathcal{P}^s)$ (respectively, $\langle (p'')^d \rangle \cdot (1 + \mathcal{P}^s)$) of $(K')^*$. From (3.6) we deduce that

$$<(p)^{\prime d}>\cdot (1+\mathcal{D}^s)=<(p'')^{d}>\cdot (1+\mathcal{D}^s).$$
 ...(3.7)

Since (3.7) holds for each positive integer s we must have

$$(p')^d = (p'')^d.$$
 ...(3.8)

From (3.8) we conclude that F' and F'' are both relative Lubin-Tate formal group law for $(p')^d$. Hence by (1.5), Chapter I of de Shalit³, F' and F'' are isomorphic formal group laws over $\mathcal{O}_{K'_d}$ and there exists a formal power series $\theta(X) \in \mathcal{O}_{K'_d}[[x]]$ such that

$$\theta\left(\left(F''\left(X,Y\right)\right)=F'\left(\theta\left(X\right),\theta\left(Y\right)\right)\right. ...(3.9)$$

and

$$\theta ([a]_{F'}(X)) = [a]_{F'}(\theta (X)) \forall a \in \mathcal{O}_{K'}. \qquad ...(3.10)$$

In view of (3.10) there exists a primitive p^m -division point ω of F'' such that

$$2D(\alpha) = \theta(\omega). \qquad ...(3.11)$$

Moreover, applying (3.10) on (3.11) we obtain

$$2D(\alpha^e) = \theta(\omega^{[e]}) \ \forall \ e \in E$$

proving the proposition.

Remark: In the case that d=1, from (3.8) we obtain that p'=p'' and then $\theta(X)=X$. Indeed, this is the case for $p\equiv\pm 1 \mod 8$ as seen in (8.2) of Srivastav⁶, which is

$$2D\left(\alpha^{e}\right) = \omega^{\left[e\right]} \ \forall \ e \in E. \tag{3.12}$$

We also note that if d=2 then p'=-p''.

Now we can prove Theorem 3.

Proof of Theorem 3—As in the proof of (8.1) of Srivastav⁶ it suffices to show that $\rho \in \mathcal{H}_q$ whenever q is a prime of \mathcal{O}_L such that $q \mid \mathcal{S}$. For such a prime q of \mathcal{O}_L we fix the embedding of $\overline{\mathbf{Q}}$ in $\overline{\mathbf{Q}}_p$ so that it corresponds to q_N over N where q_N is the unique prime of \mathcal{O}_N with $q = q_N \cap \mathcal{O}_L$.

We write \mathcal{R}' for \mathcal{R}_q . From (3.3) and (3.6) of Srivastav⁶ we note that

$$\mathcal{A}' = \mathcal{O}_L' \cdot 1\mathbf{r} + \sum_{i=0}^{p^{2m}-2} \mathcal{O}_{L'} \cdot \sigma_i \qquad ...(3.13)$$

where

$$\sigma_{\ell} = p^{-m} \cdot \sum_{e \in E} (\omega^{[e]})^{\ell} \gamma^{[e]} - 1r) \in \mathcal{R}' \ \forall \ell \geqslant 0.$$

We set

$$L'' = L'(D(\psi))$$
 ...(3.14)

and

$$\mathcal{F}'' = \mathcal{O}L'' \cdot 1_{\mathbf{F}} + \sum_{i=0}^{p^{2m}-2} \mathcal{O}L'' \cdot \sigma_i \qquad \dots (3.15)$$

an \mathcal{O}_L "-order in L" Γ . Since $\{1_{\mathbf{r}}, \sigma_0, \sigma_1, ..., \sigma_{p^{2m}-2}\}$ forms an L'-basis of L' Γ we deduce that

$$\mathcal{R}' = \mathcal{R}' \cap L'\Gamma. \qquad ...(3.16)$$

Thus in order to prove Theorem 3 it suffices to show that $\rho \in \mathcal{H}''$ since $\rho \in L\Gamma$. We show that $\rho \in \mathcal{H}''$ by proceeding exactly as in the proof of (8.1) of Srivastav⁶ and using Proposition 2 instead of (3.12).

ACKNOWLEDGEMENT

The author is grateful to S. V. Ullom for suggesting the use of relative Lubin-Tate formal groups.

REFERENCES

- 1. Ph. Cassou-Noguès and M. J. Taylor, Rings of Integers and Elliptic Functions, *Progress in Mathematics*, 66 Birkhäuser, Boston, 1987.
- 2. C. W. Curtis and Irving Reiner, Methods of Representation Theory with Application to Finite Groups and Orders, Vol. II, John Wiley & Sons, 1987.
- 3. E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication, Academic Press Inc., Orlando, 1987.
- 4. K. W. Gruenburg and P. A. Linnell, Illinois J. Math. 32 (3) (1988), 361-74.
- 5. Irving Reiner and S. Ullom, J. Algebra 31 (1974), 305-92.
- 6. A. Srivastav, Illinois J. Math. 32 (1988), 462-83.
- 7. R. G. Swan, Ann. Math. 72 (1960), 267-91.
- 8. M. J. Taylor, Classgroups of Group Rings. London Mathematical Society Lecture Note. Series 91, Cambridge University Press, 1984.
- 9. M. J. Taylor, Ann. Math. 121 (1985), 519-35.
- 10, M. J. Taylor, Proc. L.M.S. (3) 51 (1985), 415-31.
- 11. S. Ullom, Illinois J. Math. 20 (1976), 361-71.