Final Exam: Question 1

- 1. You are required to make a user-agent that will crawl the WWW (your familiar domain) to produce dataset of a particular website.
 - the web site can be as simple as a list of webpages and what other pages they link to
 - the output does not need to be in XHTML (or HTML) form a multi-stage approach (e.g. produce the xhtml or html in csv format)

Step 1: Data Scraping – crawl the trading date and closing price of the following **Index and Stocks**

- Maybank –MBB
- RHB
- KLCI Kuala Lumpur Composite Index
- DJI Dow Jone Index

```
    SNP - S&P 500 Index

import requests
import bs4
import json
import datetime
import pandas as pd
page = requests.get("https://finance.yahoo.com/quote/MBBM.KL/history?period1=1425945600&period2=1583798400&interval=1d&filter
from bs4 import BeautifulSoup
soup = BeautifulSoup(page.content, 'html.parser')
#print(soup.prettify())
listScript = soup.find all("script")
for script in listScript:
    txtScript = script.string
    if type(txtScript) is bs4.element.NavigableString and txtScript.find('HistoricalPriceStore') != -1:
       MBB = pd.DataFrame(columns=['date','close'])
        txtInfo = txtScript[txtScript.find('HistoricalPriceStore'):txtScript.find('}],"isPending":false,"firstTradeDate":')]
        txtInfo = "{\"" + txtInfo + "}]}}"
        objJson = json.loads(txtInfo)
        for price in objJson['HistoricalPriceStore']['prices']:
            txtDate = ""
            txtClose = ""
            for attr, val in price.items():
                if attr == "date" and val != None:
                    txtDate = datetime.datetime.fromtimestamp(val).strftime('%Y-%m-%d')
                if attr == "close" and val != None:
                    txtClose = str(val)
            if txtDate != "" and txtClose != "":
                MBB = MBB.append({"date":txtDate, "close":txtClose}, ignore index=True)
        print(MBB)
```

Step 1: Data Scraping – crawl the trading date and closing price of the following Index and Stocks

MB	В		CIM	В		RHB		
	date	close		date	close		date	close
0	2020-03-09	8.239999771118164	0	2020-03-09	4.199999809265137	0	2020-03-09	5.46999979019165
1	2020-03-06	8.5	1	2020-03-06	4.440000057220459	1	2020-03-06	5.699999809265137
2	2020-03-05	8.529999732971191	2	2020-03-05	4.5	2	2020-03-05	5.710000038146973
3	2020-03-04	8.470000267028809	3	2020-03-04	4.539999961853027	3	2020-03-04	5.710000038146973
4	2020-03-03	8.40999984741211	4	2020-03-03	4.5	4	2020-03-03	5.639999866485596
1237	2015-03-16	9.09000015258789	1238	2015-03-16	5.909999847412109	1238	2015-03-16	7.265110015869141
1238	2015-03-13	9.100000381469727	1239	2015-03-13	5.920000076293945	1239	2015-03-13	7.199659824371338
1239	2015-03-12	9.119999885559082	1240	2015-03-12	5.849999904632568	1240	2015-03-12	7.237060070037842
1240	2015-03-11	9.09000015258789	1241	2015-03-11	5.800000190734863	1241	2015-03-11	7.349259853363037
1241	2015-03-10	9.229999542236328	1242	2015-03-10	5.949999809265137	1242	2015-03-10	7.386660099029541
[1242	rows x 2 co	lumns]	[1243	rows x 2 co	lumns]	[1243	rows x 2 co	lumns]

KLC	I		DJI			SNF		
	date	close		date	close		date	close
0	2020-03-09	1424.1600341796875	0	2020-03-09	23851.01953125	0	2020-03-09	2746.56005859375
1	2020-03-06	1483.0999755859375	1	2020-03-06	25864.779296875	1	2020-03-06	2972.3701171875
2	2020-03-05	1491.030029296875	2	2020-03-05	26121.279296875	2	2020-03-05	3023.93994140625
3	2020-03-04	1489.949951171875	3	2020-03-04	27090.859375	3	2020-03-04	3130.1201171875
4	2020-03-03	1478.6400146484375	4	2020-03-03	25917.41015625	4	2020-03-03	3003.3701171875
1221	2015-03-16	1780.5400390625	1254	2015-03-16	17977.419921875	1254	2015-03-16	2081.18994140625
1222		1781.75	1255	2015-03-13	17749.310546875	1255	2015-03-13	2053.39990234375
1223	2015-03-12	1786.8699951171875	1256	2015-03-12	17895.220703125	1256	2015-03-12	2065.949951171875
1224	2015-03-11	1778.1600341796875	1257	2015-03-11	17635.390625	1257	2015-03-11	2040.239990234375
1225		1789.72998046875	1258	2015-03-10	17662.939453125	1258	2015-03-10	2044.1600341796875
[1226 rows x 2 columns]			[1259	rows x 2 co	olumns]	[1259	rows x 2 co	lumns]

Step 2: Data Preprocessing

1. Using the following code to create new attributes as follows:

Type of index

```
MBB['Type_of_Index'] = 'Malaysia Stock'
CIMB['Type_of_Index'] = 'Malaysia Stock'
RHB['Type_of_Index'] = 'Malaysia Stock'
KLCI['Type_of_Index'] = 'Malaysia Index'
DJI['Type_of_Index'] = 'US Index'
SNP['Type_of_Index'] = 'US Index'
```

Sector

```
MBB['Sector'] = 'Financial'
CIMB['Sector'] = 'Financial'
RHB['Sector'] = 'Financial'
KLCI['Sector'] = 'Top 30 Malaysia stock by Market Cap'
DJI['Sector'] = 'Top 30 US stock by Market Cap'
SNP['Sector'] = 'Top 500 US stock by Market Cap'
```

Market Board

```
MBB['Market board'] = 'Main Board'
CIMB['Market board'] = 'Main Board'
RHB['Market board'] = 'Main Board'
KLCI['Market board'] = 'Kuala Lumpur Composite Index'
DJI['Market board'] = 'US Stock Excahnge'
SNP['Market board'] = 'US Stock Excahnge'
```

Country

```
MBB['Country'] = 'MY'
CIMB['Country'] = 'MY'
RHB['Country'] = 'MY'
KLCI['Country'] = 'MY'
DJI['Country'] = 'US'
SNP['Country'] = 'US'
```

Month/ Year Column

```
MBB['Month_Year'] = pd.to_datetime(MBB['date']).dt.to_period('M')
CIMB['Month_Year'] = pd.to_datetime(CIMB['date']).dt.to_period('M')
RHB['Month_Year'] = pd.to_datetime(RHB['date']).dt.to_period('M')
KLCI['Month_Year'] = pd.to_datetime(KLCI['date']).dt.to_period('M')
DJI['Month_Year'] = pd.to_datetime(DJI['date']).dt.to_period('M')
SNP['Month_Year'] = pd.to_datetime(SNP['date']).dt.to_period('M')
```

Name of stock and index

```
MBB['Name of Stock/ Index'] = 'MBB'
CIMB['Name of Stock/ Index'] = 'CIMB'
RHB['Name of Stock/ Index'] = 'RHB'
KLCI['Name of Stock/ Index'] = 'KLCI'
DJI['Name of Stock/ Index'] = 'DJI'
SNP['Name of Stock/ Index'] = 'SNP'
```

Index type

```
MBB['Index_Type'] = 'Stock'
CIMB['Index_Type'] = 'Stock'
RHB['Index_Type'] = 'Stock'
KLCI['Index_Type'] = 'Stock'
DJI['Index_Type'] = 'Index'
SNP['Index_Type'] = 'index'
```

Monthly average of close price

```
MBB['Monthly_Average'] = MBB['close'].groupby(MBB['Month_Year']).transform('mean')
CIMB['Monthly_Average'] = CIMB['close'].groupby(CIMB['Month_Year']).transform('mean')
RHB['Monthly_Average'] = RHB['close'].groupby(RHB['Month_Year']).transform('mean')
KLCI['Monthly_Average'] = KLCI['close'].groupby(KLCI['Month_Year']).transform('mean')
DJI['Monthly_Average'] = DJI['close'].groupby(DJI['Month_Year']).transform('mean')
SNP['Monthly_Average'] = SNP['close'].groupby(SNP['Month_Year']).transform('mean')
```

Step 2: Data Preprocessing

2. Data Cleaning:

Formatted date

```
MBB['date'] = pd.to_datetime(MBB.date)
CIMB['date'] = pd.to_datetime(CIMB.date)
RHB['date'] = pd.to_datetime(RHB.date)
KLCI['date'] = pd.to_datetime(KLCI.date)
DJI['date'] = pd.to_datetime(DJI.date)
SNP['date'] = pd.to_datetime(SNP.date)
```

Convert the data type (close price) to float

```
MBB['close'] = MBB['close'].astype(float)
CIMB['close'] = CIMB['close'].astype(float)
RHB['close'] = RHB['close'].astype(float)
KLCI['close'] = KLCI['close'].astype(float)
DJI['close'] = DJI['close'].astype(float)
SNP['close'] = SNP['close'].astype(float)
```

3. Data Integration and rename the column name

4. Check if data is cleaned

```
print(DF)
DF.isnull().sum()

Trading_Date 0
Closing_Index/Price 0
Type_of_Index 0
Sector 0
Market board 0
Month_Year 0
Name of Stock/ Index 0
Monthly_Average 0
Country 0
Index_Type 0
dtype: int64
```


Step 2 : Data Preprocessing Data frame in pandas post data preprocessing

| print(DF)

	Trading_Date	Closing_Index/Price	Type_of_Index	Sector	Market board	Month_Year	Name of Stock/ Index	Monthly_Average	Country	Index_Type
0	2020-03-09	8.240000	Malaysia Stock	Financial	Main Board	2020-03	MBB	8.423333	MY	Stock
1	2020-03-06	8.500000	Malaysia Stock	Financial	Main Board	2020-03	MBB	8.423333	MY	Stock
2	2020-03-05	8.530000	Malaysia Stock	Financial	Main Board	2020-03	MBB	8.423333	MY	Stock
3	2020-03-04	8.470000	Malaysia Stock	Financial	Main Board	2020-03	MBB	8.423333	MY	Stock
4	2020-03-03	8.410000	Malaysia Stock	Financial	Main Board	2020-03	MBB	8.423333	MY	Stock
7467	2015-03-16	2081.189941	US Index	Top 500 US stock by Market Cap	US Stock Excahnge	2015-03	SNP	2074.022484	US	index
7468	2015-03-13	2053.399902	US Index	Top 500 US stock by Market Cap	US Stock Excahnge	2015-03	SNP	2074.022484	US	index
7469	2015-03-12	2065.949951	US Index	Top 500 US stock by Market Cap	US Stock Excahnge	2015-03	SNP	2074.022484	US	index
7470	2015-03-11	2040.239990	US Index	Top 500 US stock by Market Cap	US Stock Excahnge	2015-03	SNP	2074.022484	US	index
7471	2015-03-10	2044.160034	US Index	Top 500 US stock by Market Cap	US Stock Excahnge	2015-03	SNP	2074.022484	US	index

7472 rows × 10 columns

Final Exam: Question 2

Draw snowflake schema diagram for the above dataset. Justify your attributes to be selected in the respective dimensions.

Index and Name of Stock/ Index dimension

Index dimension table contains Type_of_Index, Index_Type, Country and Name_of_stock/_index_key, the reason that I selected the attributes is because if I read the attributes (dataset) from this schema, only these attributes will be read, I will have a glance of what type_of_index,Index_type, Country and Name_of_stock/_index being stored in this disk. Sector and Market Board attribute are not important attribute to be read so I store it in a separate dimension namely Name of Stock/ Index dimension with the given key to retrieve the data only when it needed. In addition, it requires low disk storage and it will be faster when it is queried.

Trading Date Dimension

Trading date dimension store the day, month and year data. The reason is to ensure data storage and integrity issue when the format of the date is changed, one the date format is changed in this dimension, trading date will be consistent / standardized across all the reads.

Sample of SQL queries

```
# SELECT Index.Trading_ID, Type_of_Index, Country, Name of stock/ index
# from Index_key.Index
# join Name of stock/ index
# on Name_of_stock/_index_key.Trading_ID = Index.Trading_ID limit 3;

DF[['Trading_Date', 'Type_of_Index', 'Country','Name of Stock/ Index','Sector','Market board']].head(3)
```

	Trading_Date	Type_of_Index	Country	Name of Stock/ Index	Sector	Market board
0	2020-03-09	Malaysia Stock	MY	MBB	Financial	Main Board
1	2020-03-06	Malaysia Stock	MY	MBB	Financial	Main Board
2	2020-03-05	Malaysia Stock	MY	MBB	Financial	Main Board

```
# SELECT index.Trading_ID, Type_of_Index, Country
# from Index_key.index
# join Name of Stock/ Index where Market board = "Main Board"
# on Name_of_stock/_index_key.Trading_ID = index.Trading_ID limit 3;
DF[DF['Market board']== 'Main Board']
```

	Trading_Date	Closing_Index/Price	Type_of_Index	Sector	Market board	Month_Year	Name of Stock/ Index	Monthly_Average	Country	Index_Type
0	2020-03-09	8.24000	Malaysia Stock	Financial	Main Board	2020-03	MBB	8.423333	MY	Stock
1	2020-03-06	8.50000	Malaysia Stock	Financial	Main Board	2020-03	MBB	8.423333	MY	Stock
2	2020-03-05	8.53000	Malaysia Stock	Financial	Main Board	2020-03	MBB	8.423333	MY	Stock