Лабораторная работа № 3.3.4. Эффект Холла в полупроводниках.



# Содержание

| 1 | Теория и вводные                       | 2 |
|---|----------------------------------------|---|
|   | 1.1 Цель работы и используемые приборы | 2 |
|   | 1.2 Экспериментальная установка        | 2 |
| 2 | Ход работы.                            | 3 |
| 3 | Обработка результатов.                 | 5 |
|   | 3.1 Градуировка электромагнита         | 5 |
|   | 3.2 Измерение ЭДС Холла                | 6 |
| 4 | Вывол.                                 | 8 |

#### 1 Теория и вводные

#### 1.1 Цель работы и используемые приборы.

**Цель работы:** измерение подвижности и концентрации носителей заряда в полупроводниках.

**В работе испольщуются:** электромагнит с источником питания, амперметр, милиамперметр, милливеберметр, реостат, цифровой вольтметр, источник питания (1.5B), образцы легированного германия.

#### 1.2 Экспериментальная установка.



Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках.

Схема установки для измерения ЭДС Холла представлена на рисунке (1.2).

В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора  $R_1$  источника питания электромагнита. Ток питания электромагнита измеряется амперметром  $A_1$ . Разьём  $K_1$  позволяет менять направление тока в обмолках электромагнита.

Градуировка магнита проводится при помощи милливебермелра.

Образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания ( $\simeq 1,5$  В). При замыкании ключа

 $K_2$  вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом  $R_2$  и измеряется миллиамперметром  $A_2$ .

В образце с током, помещённом в зазор электромагнита, между контаклами 3 и 4 возникает разность потенциалов ( $U_{34}$ , которая измеряется с помощью цифрового вольтметра.

Иногда контакты 3 и 4 вследствие неточности поднайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при друтом — их разности. В этом случае ЭДО Холла  $\varepsilon_x$  может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре. Знак измеряемого напряжения высвечивается на цифровом табло вольтметра.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение  $U_0$  остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$\varepsilon_x = U_{34} \pm U_0 \tag{1}$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку  $\varepsilon_x$  можно определить характер проводимости — электронный или дырочный. Для этого необходимо зналь направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение  $U_{35}$  между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле

$$\sigma = \frac{IL_{35}}{U_{35}a \ l} \tag{2}$$

Где  $L_{35}$  – расстояние между контактами 3 и 5, a – толщина образца, l – его ширина.

### 2 Ход работы.

В работе предлагается исследовать зависимость ЭДС Холла от величины магнитного поля при различных токах через образец для определения константы Холла; определиль знак носителей заряда и проводимость материала образца.

- 1. Подготовим приборы к работе.
- 2. Проверим работу цепи питания образца. Ток через образец не должен превышать 1 мА.
- 3. Проверим раболу цепи магнита. Определите диапазон изменения тока через магнит.
- 4. Прокалибруем электромагнит определите связь между индукцией В магнитного поля в зазоре электромагнита и током  $I_m$  через обмотки магнита. Для этого с помощью милливеберметра снимем зависимость магнитного потока,  $\Phi$  пронизывающего пробную катушку, находящуюся в зазоре, от тока  $I_m$  ( $\Phi = \text{BSN}$ ). Значение SN (произведение площади сечения контура катушки на число токов в ней) указано на держателе катушки.
- 5. Продевед измерение ЭДС Холла. Для этого втавим образец в зазор выключенного электромагнита и определим напряжение  $U_0$  между холловскими контактами 3 и 4при минимальном токе через образец ( $\simeq 0.2$ мА). Это напряжение  $U_0$  вызвано несовершенством контактов 3, 4 и при фиксированном токе через образец остается неизменным. Значение  $U_0$  с учетом значка следует принять за нулевое.

Включим электромагнит и снимем зависимость напряжения  $U_{34}$  от тока  $I_m$  через обмотки магнита при фиксированном токе через образец.

Проведем измерения  $U_{34}=f\left(I_{m}\right)$  при постоянном токе через образец для 6-8 его значений в интервале 0.2-1 мА. При каждом новом значении тока через образец величина  $U_{0}$  будет иметь свое значение.

При максимальном токе через образец ( $\simeq 1$  мА)  $U = f(I_m)$  при другом направлении магнитного поля.

6. Определим знак носителей в образце. Для этого необходимо знать направление тока через образец, направление магнитного поля и знак ЭДС Холла.

Направление тока в образце показано знаками «+» и «-» на рисунке (1.2). Направление тока в обмотках электромагнита при установке разъёма  $K_1$  в положение I показано стрелкой на торце магнита.

Сфотографируем образец. Укажем на рисунке направления тока, магнитного поля и отклонение носителей. По знаку  $(\pm)$  на клеммах цифрового вольтметра определите характер проводимости.

- 7. Для определение удельной проводимости удалим держатель с образцом из зазора. Подлкючим к клеммам « $H_x$ » и « $L_x$ » вольтметра поленциальные концы 3 и 5. Измерим падение напряжения между ними при токе через образец 1 мА.
- 8. Запишем характеристики приборов и параметры образца  $L_{35}$ , a, l, указанные на держателе.

## 3 Обработка результатов.

#### 3.1 Градуировка электромагнита.

Таблица 1: Зависимость индукции магнитного поля в зазоре электромагнита В от силы тока  $I_m$ .

| $\phi$ , | мВб   | 6.5    | 6.3    | 5.8    | 4.8    | 3.7    | 1.9    |
|----------|-------|--------|--------|--------|--------|--------|--------|
| $I_{i}$  | m, A  | 1.58   | 1.41   | 1.15   | 0.88   | 0.66   | 0.32   |
| В,       | , мТл | 866.67 | 840.00 | 773.33 | 640.00 | 493.33 | 253.33 |



Рис. 2: Зависимость индукции магнитного поля в зазоре эектромагнита В от силы тока  $I_m$ 

# 3.2 Измерение ЭДС Холла.

Таблица 2: Рассчет величины ЭДС Холла.

| $I=0.3~\mathrm{mA}$  |        |        |        |        |        |         |
|----------------------|--------|--------|--------|--------|--------|---------|
| $I_m$ , A            | 0.31   | 0.60   | 0.88   | 1.03   | 1.22   | 1.57    |
| В, мТл               | 247.77 | 448.39 | 642.09 | 745.86 | 877.30 | 1119.42 |
| $\varepsilon_x$ , MB | -0.04  | -0.07  | -0.10  | -0.12  | -0.13  | -0.14   |
| I = 0.4 мА           |        |        |        |        |        |         |
| $I_m$ , A            | 0.30   | 0.60   | 0.81   | 1.06   | 1.27   | 1.57    |
| В, мТл               | 240.85 | 448.39 | 593.66 | 766.61 | 911.89 | 1119.42 |
| $\varepsilon_x$ , MB | -0.05  | -0.09  | -0.12  | -0.15  | -0.17  | -0.18   |
| I=0.5 м $A$          |        |        |        |        |        |         |
| $I_m$ , A            | 0.33   | 0.60   | 0.74   | 0.93   | 1.31   | 1.57    |
| В, мТл               | 261.60 | 448.39 | 545.24 | 676.68 | 939.56 | 1119.42 |
| $\varepsilon_x$ , мВ | -0.06  | -0.12  | -0.14  | -0.17  | -0.21  | -0.23   |
| I = 0.6  MA          |        |        |        |        |        |         |
| $I_m, A$             | 0.22   | 0.40   | 0.61   | 0.95   | 1.36   | 1.56    |
| В, мТл               | 185.51 | 310.03 | 455.30 | 690.51 | 974.15 | 1112.51 |
| $\varepsilon_x$ , мВ | -0.05  | -0.09  | -0.14  | -0.21  | -0.26  | -0.28   |
| $I=0.7~\mathrm{mA}$  |        |        |        |        |        |         |
| $I_m, A$             | 0.27   | 0.61   | 0.90   | 1.20   | 1.37   | 1.57    |
| В, мТл               | 220.09 | 455.30 | 655.92 | 863.46 | 981.07 | 1119.42 |
| $\varepsilon_x$ , MB | -0.07  | -0.16  | -0.23  | -0.28  | -0.30  | -0.32   |
| I = 0.8  mA          |        |        |        |        |        |         |
| $I_m, A$             | 0.30   | 0.60   | 0.72   | 1.05   | 1.25   | 1.57    |
| В, мТл               | 240.85 | 448.39 | 531.40 | 759.69 | 898.05 | 1119.42 |
| $\varepsilon_x$ , мВ | -0.09  | -0.19  | -0.22  | -0.30  | -0.33  | -0.37   |
| I = 0.9  MA          |        |        |        |        |        |         |
| $I_m$ , A            | 0.33   | 0.60   | 0.81   | 1.07   | 1.37   | 1.56    |
| В, мТл               | 261.60 | 448.39 | 593.66 | 773.53 | 981.07 | 1112.51 |
| $\varepsilon_x$ , MB | -0.18  | -0.27  | -0.34  | -0.41  | -0.46  | -0.48   |
| I = 1  MA            |        |        |        |        |        |         |
| $I_m, A$             | 0.33   | 0.60   | 0.76   | 1.06   | 1.32   | 1.57    |
| В, мТл               | 261.60 | 448.39 | 559.07 | 766.61 | 946.48 | 1119.42 |
| $\varepsilon_x$ , MB | -0.19  | -0.30  | -0.36  | -0.45  | -0.50  | -0.53   |



Рис. 3: Зависимость величины ЭДС Холла  $\varepsilon_x$  от индукции поля в зазоре электромагнита.



Рис. 4: Зависимость коэффициента  $k=\vartriangle \varepsilon_x/\vartriangle B$  от силы тока I.

$$\varepsilon_x = -R_x \frac{IB}{a} \Rightarrow k = -R_x \frac{I}{a} \Rightarrow R_x = -a \frac{k}{I}$$

Отсюда очевидно, что  $R_x = 0.83$ см<sup>3</sup>/Кл.

$$\sigma = \frac{IL_{35}}{U_{35}al}$$

И в конечном итоге  $\sigma=701.11\mathrm{Om/m}$ 

## 4 Вывод.

В результате эксперимента мы измерили постоянную Холла, которая оказалась  $R_x=0.83 {\rm cm}^3/{\rm K}$ л, из которой мы получили удельную проводимость легированного германия:  $\sigma=701.11{\rm Om/m}$