JP2003130823A

Publication Title:

METHOD OF EVALUATING INTRAMOLECULAR DOMAIN MOTION OF RRF, AND DESIGN AND SCREENING METHOD FOR RRF INHIBITOR BASED THEREON

Abstract:

Abstract of JP 2003130823

(A) PROBLEM TO BE SOLVED: To provide an intramolecular domain motion evaluating method for a RRF, and design and a screening method for an RRF inhibitor based thereon. SOLUTION: Horizontal-rotational motion of a domain II of a &beta sheet structure linked to a domain I of a &alpha helix structure of the RRF (ribosome regeneration factor) is measured based on a nuclear magnetic relaxation time in NMR, using the domain I of the &alpha helix structure of the RRF (ribosome regeneration factor) as a rotation axis, and a intermolecular domain motion is evaluated based on a rotational diffusion tensor found by a resulting spectral density function, and based on a difference between effective rotation correlation times in the domain I and the domain II.

Courtesy of http://v3.espacenet.com

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-130823 (P2003-130823A)

(43)公開日 平成15年5月8日(2003.5.8)

(51) Int.Cl. ⁷		識別記号	FΙ		テーマコード(参考)
G01N	24/08		G01N	33/15	Z
	33/15			24/08	510L
G01R	33/465				510Q
					510D

審査請求 未請求 請求項の数3 OL (全 8 頁)

		1	
(21)出願番号	特願2001-325896(P2001-325896)	(71)出願人	501413703
			小林 祐次
(22)出願日	平成13年10月24日(2001.10.24)		大阪府吹田市青山台4-25-6
		(72)発明者	小林 祐次
			大阪府吹田市青山台4-25-6
		(74)代理人	100093230
			弁理士 西澤 利夫

(54) 【発明の名称】 RRFの分子内ドメイン運動の評価方法とこれに基づくRRF阻害剤の設計とスクリーニング方法

(57)【要約】

【課題】 RRFの分子内ドメイン運動の評価方法とこれに基づくRRF阻害剤の設計とスクリーニング方法を提供する。

【解決手段】 RRF(リボソーム再生因子)のαヘリックス構造のドメインIを回転軸として、これに連結するβシート構造のドメインIIの水平回転の動きを、NMRで核磁気緩和時間を測定し、得られるスペクトル密度関数によって求められる回転拡散テンソルと、ドメインIとドメインIIの実効回転相関時間の差異とからRRFの分子内ドメイン運動を評価する。

【特許請求の範囲】

【請求項1】 RRF(リボソーム再生因子)のαヘリックス構造のドメインIを回転軸として、これに連結するβシート構造のドメインIIの水平回転の動きを、NMRで核磁気緩和時間を測定し、得られるスペクトル密度関数によって求められる回転拡散テンソルと、ドメインIとドメインIIの実効回転相関時間の差異とから評価することを特徴とするRRFの分子内ドメイン運動の評価方法。

【請求項2】 RRF(リボソーム再生因子)の α ヘリックス構造のドメイン I を回転軸として、これに連結する β シート構造のドメイン IIの水平回転の動きを、NM Rで核磁気緩和時間を測定し、 $J(\omega_x)/J(0)$ (ここで、 $J(\omega_x)$ はスペクトル密度関数であり、

【数1】

$$J(\omega) = \frac{2}{5} \sum_{j=1}^{5} A_j \frac{\tau_j}{1 + (\omega \tau_j)^2}$$

と定義される。相関時間では回転拡散テンソルの主値に依存し、係数Aは回転拡散テンソルの主軸系に対する「N-Hベクトルの向きに依存する。)を観測値とフィットすることでRRF分子の各ドメインについて回転拡散テンソルを算出し、RRFの立体構造データを用いてドメインの相対配置をドメインごとに算出された回転拡散テンソルの主軸系に座標変換することでドメインIおよびドメインIIの配置を求め、スペクトル密度関数を次式

【数2】

$$J(\omega) = \frac{2}{5} S_f^2 \sum_{j=1}^5 A_j \left[\frac{S_S^2 \tau_j}{1 + (\omega \tau_j)^2} + \frac{(1 - S_S^2) \tau_j^e}{1 + (\omega \tau_j^e)^2} \right]$$

$$(z=\tau, \tau_j^e = \tau_j \tau_S / \tau_j \tau_S \quad \text{The})$$

で表される拡張モデルフリー関数に当てはめ局所的な速い運動に関するオーダーパラメータ S^2 ,の値を一般的に 2次構造領域で観測される値に固定しドメイン運動に関するオーダーパラメータ S^2 ,の値は残基ごとに求め、求められた S^2 ,の大きさから各ドメインの運動を評価することを特徴とするRRFの分子内ドメイン運動の評価方法。

【請求項3】 RRF(リボソーム再生因子)のαへリックス構造のドメイン I を回転軸として、これに連結するβシート構造のドメインIIの水平回転の動きの阻害の評価からRRF阻害剤の分子設計もしくはスクリーニングを行うことを特徴とするRRFの分子内ドメイン運動の評価に基づくRRF阻害剤の設計とスクリーニング方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この出願の発明は、RRF (リボソーム再生因子)の分子内ドメイン運動の評価方法とこれに基づくRRF阻害剤の設計とスクリーニング方法に関するものである。

[0002]

【従来の技術と発明の課題】リボソーム再生因子(RRF)は伸長因子G(EF-G)とともにリボソーム再生過程において中心的な役割を果たす分子量21kDaのタンパク質であり、タンパク質の生合成装置であるリボソームに作用して、使用済みリボソームを分解・再生する役割を果たしていることが知られている。タンパク質生合成の終結反応後には、70Sリボソーム、脱アシル化RNA、およびmRNAからなるポストターミネーションコンプレックスが残っている。RRFは次のタンパク質生合成サイクルにむけてそれを解離・再生するために必須である。

【0003】そして、このRRFは古細菌を除く全ての生物に存在するが、バクテリアの生存には必須である。このことから、RRFの作用を阻害する薬剤は新しい抗菌剤、抗生物質になる可能性がある。特に、RRFについては、ヒトなどの真核生物に副作用を及ぼさず、バクテリア(原核細菌)にのみ自殺的に働く薬剤を設計し、スクリーニングするための標的分子になることが注目されている。

【0004】以上のようなRRFについては、その構造 の解明が大きな課題であったが、最近、Thermotoga mar itima (高度好熱菌)、Escherichia coli (大腸菌)、 Thermus thermophilus (好熱菌) 、およびAquifex aeol icus (高度好熱菌) 由来RRFの立体構造がX線結晶構 造解析法およびNMR法によって決定された。その結果 RRFはαヘリックスバンドルからなるドメインΙと、 β/α/βサンドイッチのβシート構造からなるドメイ ンIIからなっていることが判明した。また、大腸菌RF Fを除き、ドメインの配置はL字型であった。大腸菌R RFの結晶構造ではドメイン間の角度が広がっていた(o pen L-shape)が、これはおそらく結晶化の際に界面活性 剤がドメインを接続している領域に結合してしまってい るためである。特徴的なL字型によってRRFはtRN Aとその形状およびサイズが非常に似たものとなってい る。このことはRRFがtRNAのミミックとしてリボ ソームのA部位に結合することを示唆している。そし て、EF-GはGTP依存的にRRFをA部位からP部 位に動かして脱アシル化 t R N A を脱離させるものと考 えられている。このような機構については、RRFのド メインIとドメインIIをつなぐヒンジ領域の役割が注目 されている。たとえば梶らはT. maritima RRFが大腸 菌RRFを阻害することを報告した。彼らはRRFの働 きにドメインの配置が変化することが必須であると仮定 し、T. maritima RRFの阻害活性の原因として、その 50 ヒンジ領域は常温で十分な可動性を持たないことを示唆 10

3

している。また中村らは大腸菌の系で活性を持たないT. thermophilus RRFのヒンジ領域に変異を導入する実験をおこなったところ、ヒンジ領域の可動性を変化させるような変異によってT. thermophilus RRFが活性を獲得することを示している。

【0005】このような状況において、この出願の発明者らは、先にA. aeolicus RRFの立体構造をNMRによって決定した。そこで得られた立体構造の集団は全て特徴的なL字型構造をとっていたが、一方でドメイン間の角度とのゆらぎには分布があることが見出されている。このような角度のゆらぎは結晶構造間においてもみられている。しかし、これまでのところ実際にドメインの配置が揺らいでいるという直接の証拠は報告されていない。

【0006】また、ドメインの配置についての評価方法 も確立されていないし、この配置のゆらぎについての有 意性が判断されていないのが実情である。さらには、R RFの作用を阻害する薬剤の開発と、この構造のゆらぎ についての関連も提示されていない。

【0007】そこで、この出願の発明は、以上のとおりの事情に鑑みてなされたものであって、二つのドメイン間の配置とそのゆらぎについての評価方法と、この評価の有意性の観点からのRRF阻害剤の設計とスクリーニングのための方法を提供することを課題としている。

[0008]

【課題を解決するための手段】この出願の発明は、上記の課題を解決するものとして、第1には、RRFの α へリックス構造のドメイン I を回転軸として、これに連結する β シート構造のドメイン IIの水平回転の動きを、NMRによる核磁気緩和時間を測定し、スペクトル密度関 30数により求められる回転拡散テンソルと、ドメイン I とドメイン IIの実効回転相関時間の差異とから評価することを特徴とする RRFの分子内ドメイン運動の評価方法を提供する。

【0009】また、この出願の発明は、第2には、RRF(リボソーム再生因子)の α ヘリックス構造のドメイン I を回転軸として、これに連結する β シート構造のドメインIIの水平回転の動きを、NMRによる核磁気緩和時間を測定し、 $J(\omega_N)/J(0)$ (ここで、J

(ωκ) はスペクトル密度関数であり、

[0010]

【数3】

$$J(\omega) = \frac{2}{5} \sum_{j=1}^{5} A_{j} \frac{\tau_{j}}{1 + (\omega \tau_{j})^{2}}$$

【0011】と定義される。相関時間 τ」は回転拡散テンソルの主値に依存し、係数A」は回転拡散テンソルの主軸系に対する"N-Hベクトルの向きに依存する。)を観測値とフィットすることでRRF分子の各ドメインについて回転拡散テンソルを算出し、RRFの立 50

体構造データを用いてドメインの相対配置をドメインごとに算出された回転拡散テンソルの主軸系に座標変換することでドメインIおよびドメインIIの配置を求め、スペクトル密度関数を次式

[0012]

【数4】

$$J(\omega) = \frac{2}{5} S_f^2 \sum_{j=1}^5 A_j \left[\frac{S_s^2 \tau_j}{1 + (\omega \tau_j)^2} + \frac{(1 - S_s^2) \tau_j^e}{1 + (\omega \tau_j^e)^2} \right]$$

$$\tau_j^e = \tau_j \tau_s / \tau_j \tau_s$$

【0013】で表される拡張モデルフリー関数に当てはめ局所的な速い運動に関するオーダーパラメータ S^2 ,の値を一般的に2次構造領域で観測される値に固定しドメイン運動に関するオーダーパラメータ S^2 sの値は残基ごとに求め、求められた S^2 sの大きさから各ドメインの運動を評価することを特徴とするRRFの分子内ドメイン運動の評価方法を提供する。

【0014】さらに、この出願の発明は、第3には、RRFの α ヘリックス構造のドメインIを回転軸として、これに連結する β シート構造のドメインIIの水平回転の動きの阻害の評価からRRF阻害剤の分子設計もしくはスクリーニングを行うことを特徴とするRRFの分子内ドメイン運動の評価に基づくRRF阻害剤の設計とスクリーニング方法をも提供する。

[0015]

【発明の実施の形態】この出願の発明は上記のとおりの 特徴をもつものであるが、以下にその実施の形態につい て説明する。

【0016】この出願の発明の特徴は、発明者によるNMRでの立体構造の解析によりドメインIとドメインIIの間の角度がはっきりと求められたことと、溶液中のゆらぎの解析から、実際にRRFが機能する際には、ドメインIIが水平に回転し得ることが明らかにされたことに基づいている。

【0017】RRFには、リボソームでmRNAの塩基配列情報を基にタンパク質の翻訳が完了した後に、リボソームをmRNAから外して次の翻訳に使えるようにする働きがあるが、この作用において、ドメインIを回転軸としてドメインIIが水平に回転し、リボソームをmRNAから外すことが判明したのである。このことから、RRF阻害剤を、ドメインIIの水平回転の評価を踏まえて開発することが可能になったのである。

【0018】たとえば、発明者は、好熱細菌Aquifex ae olicusのRRFについてNMRによる溶液中の立体構造を解明し、これを報告している(Biochemistry vol. 40, No. 8, pp2387-2396)が、この報告において示されている構造は、たとえば図1にも他の細菌との比較として例示したように、 α ヘリックス構造のドメイン I と β シー

5

ト構造のドメインIIとの間の垂直方向の角度(θ)と、ドメインIIの水平方向の回転角度(ϕ)との関係を有している。この図1より、好熱細菌においては、垂直方向の角度(θ)はほぼ一定であっても、水平回転角度(ϕ)には変化(差異)があり、ゆらぎがあることがわかる。

【0019】このようなゆらぎについては、この出願の発明によって、NMRの測定から導いて評価することが可能となる。NMR測定では、「Hー」「NーHSQCスペクトルが観察されることになる。HSQCは、タンパ 10ク質を構成するアミノ酸一つについて一個のシグナルを与え、シグナルの位置は対応するタンパク質の各部分の構造や環境を反映している。

【0020】そこで、「Nの緩和時間の具体的な算出方法について例示説明すると、緩和時間は「Hー」「N H SQC法を応用した2D-NMR法を用いて測定することができる。後述のT」およびT2測定に用いられるパルス系列中にはパラメータとして待ち時間Tがある。つまりT時間分だけ縦(T1)あるいは横(T2)緩和した磁化を測定することができる。従って観測された2Dスペ20クトル上でのピーク強度のTに対する変化が、「Nの緩和の様子を示すことになる。ピーク強度Iは、exp(-T/T1)あるいは exp(-T/T2)に比例するので、数点の異なるTについてIを測定し、非線型最小自乗法によってT1あるいはT2を求めることができる。

【0021】そして、このHSQCのスペクトルからのスペクトル密度関数により求められる回転拡散テンソルと、ドメインIおよびドメインIIの実効回転相関時間の差異とから、ドメインIIの回転運動やその大きさが評価されることになる。

【0022】ここで回転拡散テンソルについて説明する と以下のとおりである。すなわちまず、球状物体の回転 拡散は等方的でありその大きさを一つの回転拡散係数で 表すことができる。しかし一般的には回転が3次元的な 現象であり角速度がベクトル量になることに対応して、 回転拡散の大きさを記述するためには2階のテンソル量 Dが必要となる。これを回転拡散テンソルという。回転 拡散テンソルは対称テンソルなので、適当な座標系で対 角化できる。そのような座標系のx,y,z軸を主軸と 呼び、残った3つの対角成分 (Dxx, Dyy, Dz z) を主値という。後述の表1のτc, effは実効回 転相関時間であり、0.5/(Dxx+Dyy+Dz z) に等しい。Nは独立な観測値の数である。またEは フィッティングの平均残差である。Fはフィッティング の有意さを検定するF検定でもちいられる統計量であ り、N、Eから計算される。パラメータ数を増やしたこ とによる残差の減少が偶然起こる確立pをF値から計算 することができる。

【0023】回転拡散テンソルの求め方としては、前記の数式などに登場するAjは、回転拡散テンソルの主軸 50

系におけるN-Hベクトルの向きに依存している。また τ j は回転拡散テンソルの主値に依存する。つまり、理論的には回転拡散テンソルをパラメータとして計算することによって、観測データを再現することができる。 従って、Simplex 法やPowell法などの最適化アルゴリズムを使用して、回転拡散テンソルの主軸および主値を変化させ、観測データともっとも適合する値を求めることができる。

【0024】また、ドメインの配置の決定方法に関連して、回転拡散テンソルをそれぞれのドメインに属するデータのみを使って求めることができる。回転拡散テンソルは本来分子全体について一つだけ定義されているものであるから、使用した座標データが正しければ、どちらのドメインのデータを用いても同じ主軸を与えるはずである。もし使用したドメインによって得られた主軸の向きが異なっていれば、それは使用した座標データにおいて、ドメインの配置が実際と異なっていることを示している。その場合、得られた主軸の向きを一致させるようにドメインの配置を決定することができる。

【0025】そして、ドメインIIの運動の範囲については、ドメイン運動を、制限された円錐内での自由拡散(diffusion in cone)とみなすと、前記数式におけるオーダーパラメータ S_s^2 は円錐の頂角の1/2であるcone semiangle θ によって $S_s^2 = \{(0.5\cos\theta \ (1+\cos\theta))$ と表せる。この式に従い、 S_s^2 から θ を求めることができる。

【0026】RRF阻害剤は、本来的なRRFの回転運動を阻害、たとえば停止、縮小等の働きの有無により、実際に阻害効果を有するかどうかが評価されることになる。このことにより、HSQCスペクトルによる構造解析の結果との対応から、RRF阻害剤の分子設計が可能となり、またRRF阻害剤のスクリーニングが可能となる

【0027】そこで以下に実施例を示し、さらに詳しく この出願の発明について説明する。もちろん、以下の例 によって発明が限定されることはない。

[0028]

40

R

流し、T. maritima RRFを含む通りぬけ画分を集めてセントリプラスを用いて濃縮した。その後Superdex 75 pgカラムによるゲルろ過をおこない精製RRFを得た。NMR測定用試料は10%重水を含む10mM HEPESバッファー(pH7.4,50mM NaC1)に溶解し、タンパク質濃度は0.5mMとした。(NMR測定)NMR実権にはバリアン社製INOVA600を用いた。測定温度は30℃とし、標準メタノール及びグリコールで校正した。 Hおよび Nの観測中心は4.76および119.0pmとした。1Hの化学シフトはDSSによって校正した。 Nの化学シフトは磁気回転比に従って間接的に校正した。

【0029】主鎖¹⁵ Nの緩和データはHSQCタイプの パルス系列を用いて測定した。緩和時間T は(3) 0, 108, 204, 420, 720, 1050ms) の6点をサンプルした。T_ιρはスピンロック磁場強 度を2. 4kHzとし、(12, 24, 36, 48, 6 0,72ms)の6点をサンプルした。 ¹⁵ N-(H) NOEは3.5秒間アミド Hを飽和した場合として いない場合について測定した2スペクトルから求めた。 NOE (Nuclear Overhauser Effect)とは、磁気的な相互 作用がある2つの核スピンのうち、片方の核スピンの遷 移を飽和させると、もう片方の核スピン由来のNMRシグ ナルの強度が変化する現象であり、核間ベクトルの距 離、およびその方向揺らぎを表すスペクトル密度関数に 依存する。ここでは、その距離が固定されている H-1°N についてNOEを測定し、その方向揺らぎに関する情報を 得ている。装置のドリフトの影響を抑えるため、データ はインターリーブモードで測定した。全ての実権は再現 性を確認するため2回おこなった。データはNmrPipe を 用いて処理し、PIPP及び自作プログラムを用いて解 析した。TιおよびTιρの値はピーク強度を指数関数に 非線型最小自乗法でフィットすることによって求めた。 誤差はモンテカルロ法によって算出した。緩和時間下。

の値は T_1 、 $T_1\rho$ 、化学シフト及びスピンロック磁 場強度から計算した。ピークの帰属は文献に従った。

(緩和時間の解析)スペクトル密度関数を T_1 , T_2 , N O E 値から求めた。 16 Nの C S A 値としては 170pp mを用いた。RRF分子は非等方的な形状をしているため、スペクトル密度関数の値は回転拡散テンソルの主軸系に対する 16 N $^{-1}$ Hスペクトルの向きとその揺らぎに依存する。分子内運動が無い非対称的な分子の場合スペクトル密度関数は次のようになる。

[0030]

【数5】

$$J(\omega) = \frac{2}{5} \sum_{j=1}^{5} A_j \frac{\tau_j}{1 + (\omega \tau_j)^2}$$

【0031】ここで相関時間 τ ,は回転拡散テンソルの主値に依存し、係数 A,は回転拡散テンソルの主軸系に対する 10 N $^{-1}$ H 11 H 11 M $^{-1}$ H 11 M $^{-1}$ H 11 M $^{-1}$ H $^{-1}$ M $^{-1}$ M $^{-1}$ M $^{-1}$ H $^{-1}$ M $^{-1}$ M $^{-1}$ M $^{-1}$ H $^{-1}$ M $^{-1}$ M $^{-1}$ H $^{-1}$ M $^{-1}$ M $^{-1}$ M $^{-1}$ M $^{-1}$ H $^{-1}$ M $^{-1}$ M

【0032】次に各ドメインの運動を見積もるため、スペクトル密度関数を以下のようなモデルに当てはめた。 【0033】

【数6】

$$J(\omega) = \frac{2}{5} S_f^2 \sum_{j=1}^5 A_j \left[\frac{S_s^2 \tau_j}{1 + (\omega \tau_j)^2} + \frac{(1 - S_s^2) \tau_j^e}{1 + (\omega \tau_j^e)^2} \right]$$

(cer.
$$\tau_j^e = \tau_j \tau_s / \tau_j \tau_s$$
 ras)

【0034】この解析においては先に求めたドメインの相対配置に会わせて変換した座標を用いた。分子全体の回転拡散に関する相関時間は分子全体で一組のパラメータを使用した。それぞれのドメインは全体として τ sで表されるタイムスケールで運動していると考えた。局所的な速い運動に関するオーダーパラメータ S^2 rの値は一般的に2次構造領域で観測される値である0.85に固定した。ドメイン運動に関するオーダーパラメータ S^2 sの値は残基ごとに求めた。

(結果) 「Hー」 NHSQCスペクトル上ではほとんど全てのピークが期待通り観測されていた。大腸菌RRFについては92残基のピークを、またT. maritima RRFについては71残基のピークを解析に用いた。得られたスペクトル密度関数のグラフを図3に示す。スペクトル密度関数はA. aeolicus RRFの際に観測されたのと同様に明確な二峰性の分布を示していた。これは大腸菌RRFおよびT. maritima RRFが溶液中において2ドメイン構造をとっており、さらに各ドメインが固有の運動性を持っていることを示している。

(ドメインの配置)表1は求められた回転拡散テンソルである。

[0035]

【表1】

【0036】大腸菌RRFの場合完全非対称モデルが軸 対称モデルに対して統計的に有意であることがF検定の 結果示された。よってドメインの相対配置を各ドメイン の主軸を一致させることで求めることができた。数学的 には4通りの解が存在するが、立体的な制限からそのう ちの1つのみが可能な配置である(図4)。この配置は 大腸菌RRFのR132G変異体の結晶構造に似てお り、報告されている大腸菌RRFの結晶構造である1E K8 (図5) とは大きく異なっている。つまり大腸菌R RFは他のRRFと同様に溶液中ではtRNAをミミッ クする特徴的なL字型構造をとっている。ドメインIお よびドメインIIの実効回転相関時間はそれぞれ17.7 ns及び13.0nsであった。両者の比が1ではない ということは、溶液中で2つのドメインが一体となって 振舞っているのではなく、ドメインごとにナノ秒オーダ 一の時間スケールで運動していることを示唆している。 一方T. maritima RRFの場合、ドメインIについては F検定の結果から完全非対称モデルの有意性を示すこと ができなかった。従ってドメインの相対配置は1軸につ いてのみ決定できた。RRFのドメインIはヘリックス バンドルであるため、『N-Hベクトルの角度分布が 狭い。よってドメインIの回転拡散テンソルの非対称性 を決定することが容易ではない。T. maritima RRFで は大腸菌RRFに比べて解析に用いることができたデー タが少なく、またT. maritima RRFの結晶構造はその 温度因子が大きいといった困難があったため、ドメイン Iの回転拡散テンソルを完全非対称モデルで決定するこ とができなかったと考えられる。ドメインIおよびドメ インIIの実効回転相関時間の比は1.26であった。こ の値は大腸菌RRFのそれに比べて小さく、このことは 大腸菌RRFと比べてT. maritima RRFのほうがドメ インどうしの束縛が大きいことを示唆している。

(ドメインの運動)各ドメインでの実効回転相関時間の違いは、それぞれのドメインが運動していると仮定すれば説明できる。Clore らによって導入された拡張スペクトル密度関数に分子の非等方性による補正を加えたものでドメイン運動を解釈することを試みた。その結果は図6に示している。このモデルでは分子全体の実効回転相関時間として20ns程度の値が、またドメイン運動の50

相関時間として2ns程度の値が得られた。ドメイン運動に関するオーダーパラメータ S^2 sの平均値はドメインIについては大腸菌RRF、T. maritima RRFともに0.9であった。これはドメインIが分子全体に対してほとんど固定されていることを示している。ドメインIIの S^2 sの平均値はドメインIより小さかった。これはドメインIIがドメインIよりフレキシブルであることを示している。またドメインIの場合と異なり、ドメインIIでは大腸菌RRFの S^2 sはT. maritima RRFの S^2 sより0.1小さい値を示した。つまり大腸菌RRFのドメインIIはT. maritima RRFのドメインIIに比べて動きやすいということを示している。

【0037】ドメインIIが円錐状の領域を拡散運動しているとすると、その範囲は大腸菌RRFで28度、T.maritima RRFで22度となる。前記の式(2)のスペクトル密度関数は度運動の異方性を考慮していないので、運動の向きについての情報を得ることは困難である。さらに、式(2)では分子全体の回転拡散とドメイン運動が独立と仮定しているが、両者のタイムスケールはそれほど大きく異なっていないので、この仮定は厳密ではない部分もある。しかしながら、見積もられたドメイン運動の範囲は、A. aeolicus RRFの溶液構造や結品構造間においてもみられているドメイン配置の揺らぎとよく一致している。

【0038】RRFのドメイン運動は生物学的に重要な意味を持つものである。興味深いことにT. maritima RRFは大腸菌のリボソームに結合することができるが、結合した大腸菌のリボソームをリサイクルすることはできない。この事実は、ドメインIIの運動性がRRFのリボソームリサイクル活性に重要であることを示唆している。したがって、RRFはtRNAミミックとしてリボソームのA部位に結合すると考えられる。

【0039】以上より、ドメインIIの動きはリボソーム結合後に起こる現象に必要なものであると考えられ、この出願の発明であるRRFの分子内ドメイン運動の評価方法によりドメインIIの運動性を把握することは、RRF阻害剤の設計に大いに役立つものと期待される。

[0040]

【発明の効果】以上詳しく説明したとおり、この出願の

11

発明によって、RRFのドメインIとドメインIIの構造において、ドメインIIの回転運動としてのゆらぎを適切に評価することが可能とされ、またこれによって、RRF阻害剤の分子設計とスクリーニングが効果的に進められることになる。

【図面の簡単な説明】

【図1】細菌RRFについてのドメインIとドメインII との間の垂直方向の角度(θ)と、ドメインIIの水平方 向の回転角度(Φ)との関係を例示した図である。

【図2】この出願の発明の実施例において、この出願の*10 る補正を加えた結果を例示した図である。

* 発明であるRRFの分子内ドメイン運動の評価方法の手順について示した流れ図である。

【図3】スペクトル密度関数の結果を例示した図である。

【図4】ドメインの相対配置として可能なものを例示した図である。

【図5】報告されている大腸菌RRFの結晶構造である 1EK8について示した図である。

【図6】拡張スペクトル密度関数に分子の非等方性による補正を加えた結果を例示した図である

【図6】

