

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07D 513/04, A01N 43/90, C07D 231/12,
249/08, 487/04, 231/16, 249/10 // (C07D
513/04, 277:00, 249:00) (C07D 487/04,
249:00, 237:00)

(11) International Publication Number:

WO 96/31517

(43) International Publication Date:

10 October 1996 (10.10.96)

(21) International Application Number:

PCT

PCT/US96/03803

(22) International Filing Date:

20 March 1996 (20.03.96)

(30) Priority Data:

08/416,415

4 April 1995 (04.04.95)

US

(60) Parent Application or Grant

(63) Related by Continuation US

Filed on

08/416,415 (CIP) 4 April 1995 (04.04.95)

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PETERSEN, Wallace, Christian [US/US]; 413 Topsfield Road, Hockessin, DE 19707-9716 (US). PIFFERITTI, Michael, Anthony [US/US]; 1700 North Union Street, Wilmington, DE 19806-2502 (US). STEVENSON, Thomas, Martin [US/US]; 103 Iroquois Court, Newark, DE 19702-1908 (US). TSENG, Chi-Ping [US/US]; 1103 Artwin Road, Wilmington, DE 19803-2701 (US).

- (74) Agent: GREGORY, Theodore, C.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).
- (81) Designated States: AL, AU, BB, BG, BR, CA, CN, CZ, EE, GE, HU, IS, JP, KP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

(I)

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HERBICIDAL HETEROARYL-SUBSTITUTED ANILIDES

(57) Abstract

Compounds of formula and their -oxides and agriculturally-suitable salts, are disclosed which are useful for controlling undesired vegetation. In said formula, Q is (Q-1), (Q-2), (Q-3), T is O or S; X is a single bond, O, S, or NR5; Y is O, S, NR6, -CH=CH-, or -CH=N-, where the -CH=N- can be attached in either possible orientation; Z is CH or N; W is CH or N; V is CH, CCH3 or N, provided that V is CH or CCH₃ when W is CH; n is 0 or 1; and R1-R6 are as defined in the disclosure. Also disclosed are compositions containing the compounds of formula (I) and a method for controlling undesired vegetation which involves contacting vegetation the or its environment with an effective amount of a compound of formula (I).

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary '	NO	Norway
BF	Burkina Paso	12	Ireland .	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP.	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	K2	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ.	Uzbekistan
GA	abon	MR	Mauritania	VN	Viet Nam

15

20

1

TITLE HERBICIDAL HETEROARYL-SUBSTITUTED ANILIDES BACKGROUND OF THE INVENTION

This invention relates to certain heteroaryl-substituted anilides, their N-oxides,

agriculturally-suitable salts of the anilides and compositions, and methods of their use for
controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

WO 93/11097 discloses anilides of Formula i as herbicides:

wherein

Q is, among others, Q-1

. Q-1

R is, among others, C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy, C₁-C₂ haloalkylthio, halogen, cyano, or nitro;

Y is NR⁷C(O)XR³;

25 X is a single bond, O, S or NR⁴;

 R^1 is, among others, H, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio, C_2 - C_3 alkylthioalkyl, halogen, NO₂, CN, NHR⁵ or NR⁵R⁶; and

R³ is, among others, C₁-C₅ alkyl optionally substituted with C₁-C₂ alkoxy, OH, 1-3 halogen, or C₁-C₂ alkylthio; CH₂(C₃-C₄ cycloalkyl); C₃-C₄ cycloalkyl optionally substituted with 1-3 CH₃'s; C₂-C₄ alkenyl; or C₂-C₄ haloalkenyl.

The heteroaryl-substituted anilides of the present invention are not disclosed therein.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I, geometric isomers, stereoisomers, N-oxides, and agriculturally suitable salts thereof as well as agricultural compositions containing them and their use for controlling undesirable vegetation:

10

5

T

wherein

Q is

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Q-1

Q-2

Q-3

15

25

T is O or S;

X is a single bond, O, S, or NR⁵;

Y is O, S, NR⁶, -CH=CH-, or -CH=N-, where the -CH=N- can be attached in either possible orientation;

20 Z is CH or N;

W is CH or N:

V is CH, CCH3 or N, provided that V is CH or CCH3 when W is CH;

R¹ is C₁-C₅ alkyl optionally substituted with C₁-C₂ alkoxy, OH, 1-7 halogen, or C₁-C₂ alkylthio; CH₂(C₃-C₄ cycloalkyl); C₃-C₆ cycloalkyl optionally substituted with 1-3 halogen or 1-4 methyl groups; C₂-C₄ alkenyl; C₂-C₄ haloalkenyl; or phenyl optionally substituted with C₁-C₄ alkyl, C₁-C₄

96/31517 PCT/US96/03803

3

haloalkyl, C₁-C₄ alkoxy, 1-2 halogen, nitro, or cyano; provided that when X is O, S, or NR^5 , then R^1 is other than C_2 alkenyl and C_2 haloalkenyl; R^2 is H, halogen, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, C_1 - C_2 alkylthio, C_2 - C_3 alkoxyalkyl, C_2 - C_3 alkylthioalkyl, cyano, nitro, NH(C_1 - C_2 alkyl), or N(C_1 - C_2 alkyl)₂; R³ is H, halogen, C₁-C₂ alkyl, C₁-C₂ alkoxy, C₁-C₂ alkylthio, C₂-C₃ alkoxyalkyl, C_2 - C_3 alkylthioalkyl, cyano, nitro, NH(C_1 - C_2 alkyl), or N(C_1 - C_2 alkyl)₂; R^4 is C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkylthio, C_1 - C_4 alkylsulfonyl, C₁-C₄ haloalkylsulfonyl, halogen, cyano, or nitro; R⁵ is H, CH₃, or OCH₃;

R6 is H or CH3; and 10 n is 0 or 1.

5

30

35

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl or pentyl isomers. The term "1-4 15 methyl groups" indicates that one to four of the available positions for that substituent may be methyl. "Alkenyl" includes straight-chain or branched alkenes such as vinyl, 1-propenyl, 2-propenyl, and the different butenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH3OCH2, 20 CH₃OCH₂CH₂ and CH₃CH₂OCH₂. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio and butylthio isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" include CH3SCH2, CH3SCH2CH2 and CH3CH2SCH2. Examples of "alkylsulfonyl" include $CH_3S(O)_2$, $CH_3CH_2S(O)_2$, $CH_3CH_2CH_2S(O)_2$, $(CH_3)_2CHS(O)_2$ and the different butylsulfonyl isomers. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. One skilled in the art will appreciate that not all nitrogen containing heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen containing heterocycles which can form N-oxides.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. The term "1-7 halogen" indicates that one to seven of the available positions for that substituent may be halogen which are independently selected; the terms "1-3 halogen" and "1-2 halogen" are defined analogously. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different.

W 96/31517 PCT/US96/03803

4

Examples of "haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and CF₃CCl₂. The terms "haloalkenyl", "haloalkoxy", and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkenyl" include (Cl)₂C=CHCH₂ and CF₃CH=CHCH₂. Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF₃CH₂O. Examples of "haloalkylthio" include CCl₃S, CF₃S, CCl₃CH₂S and ClCH₂CH₂CH₂S. Examples of "haloalkylsulfonyl" include CF₃S(O)₂, CCl₃S(O)₂, CF₃CH₂S(O)₂ and CF₃CF₂S(O)₂.

The total number of carbon atoms in a substituent group is indicated by the " C_i - C_j " prefix where i and j are numbers from 1 to 5. For example, C_1 - C_3 alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C_2 alkoxyalkyl designates CH_3OCH_2 ; and C_3 alkoxyalkyl designates, for example, $CH_3CH(OCH_3)$, $CH_3OCH_2CH_2$ or $CH_3CH_2OCH_2$.

10

15

20

25

30

When a group contains a substituent which can be hydrogen, for example R² or R⁵, then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I, N-oxides and agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia, or triethylamine) or inorganic bases (e.g., hydrides, hydroxides, or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group.

Preferred compounds for reasons of better activity and/or ease of synthesis are:

Preferred 1. Compounds of Formula I above, and N-oxides and
agriculturally-suitable salts thereof, wherein:

10

15

20

25

30

35

 R^1 is C_1 - C_4 alkyl optionally substituted with methoxy or 1-3 halogen; C₃-C₄ cycloalkyl optionally substituted with one methyl group; C₂-C₄ alkenyl; or C₂-C₄ haloalkenyl; R² is chlorine, bromine, C₁-C₂ alkyl, C₁-C₂ alkoxy, cyano, nitro, $NH(C_1-C_2 \text{ alkyl})$, or $N(C_1-C_2 \text{ alkyl})_2$; and R³ is H. Preferred 2: Compounds of Preferred 1 wherein: X is a single bond; and R^4 is C_1 - C_2 haloalkyl, C_1 - C_2 haloalkoxy, C_1 - C_2 haloalkylthio, chlorine, or bromine. Preferred 3: Compounds of Preferred 2 wherein: Q is Q-1. Preferred 4: Compounds of Preferred 2 wherein: Q is O-2. Preferred 5: Compounds of Preferred 2 wherein: Q is Q-3. Most preferred are compounds of Preferred 2 selected from the group: 3-methyl-N-[4-methyl-2-[2-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6yl]phenyl]butanamide: N-[4-methyl-2-[2-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6yl]phenyl]cyclopropanecarboxamide; 2-methyl-N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1yl]phenyl]propanamide; N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1yl]phenyl]cyclopropanecarboxamide: 3-methyl-N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1yl]phenyl]butanamide; 2-methyl-N-[4-methyl-2-[[3-(trifluoromethyl)-1H-pyrazol-1yl]methyl]phenyl]propanamide; and 2,2-dimethyl-N-[4-methyl-2-[3-(trifluoromethyl)-1,2,4-triazolo[4,3-b]pyridazin-

This invention also relates to herbicidal compositions comprising herbicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

6-yl]phenyl]propanamide.

10

15

6

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-34. The definitions of Q, T, X, Y, Z, W, V, R¹-R⁶ and n in the compounds of Formulae 1-48 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-Ic are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-Ic are as defined above for Formula I.

$$R^2$$
 R^3
 R^3

Scheme 1 illustrates the preparation of compounds of Formula Ia where T = O whereby substituted phenyl compounds of Formula 1a wherein X^2 is trialkyltin (e.g., Me₃Sn), trialkylsilyl (e.g., Me₃Si), or a boronic acid derivative (e.g., B(OH)₂) are coupled with heterocycles of Formula 2a wherein X^1 is chlorine, bromine, iodine or trifluoromethylsulfonyloxy (OTf). The coupling is carried out by methods known in the art: for example, see Tsuji, J., Organic Synthesis with Palladium Compounds,

- Springer-Verlag, Berlin (1980); Negishi, E., Acc. Chem. Res. (1982), 15, 340; Stille, J. K., Angew. Chem. (1986), 98, 504; Yamamoto, A. and Yamagi, A., Chem. Pharm. Bull. (1982), 30, 1731 and 2003; Dondoni et al., Synthesis (1987), 185; Dondoni et al., Synthesis (1987), 693; Hoshino et al., Bull. Chem. Soc. Jpn. (1988), 61, 3008; Sato, M. et al., Chem. Lett. (1989), 1405; Miyaura et al., Synthetic Commun. (1981), 11, 513;
- Siddiqui and Sniekus, Tetrahedron Lett. (1988), 29, 5463; Sharp at al., Tetrahedron Lett. (1987), 28, 5093; Hatanaka et al., Chem. Lett. (1989), 1711; Bailey, T. R., Tetrahedron Lett. (1986), 27, 4407; Echavarren, A. M. and Stille, J. K., J. Am. Chem. Soc. (1987), 109, 5478; and Ali et al., Tetrahedron Lett. (1992), 48, 8117. The coupling of 1a and 2a is carried out by heating the mixture in the presence of a transition metal catalyst such as tetrakis(triphenylphosphine) palladium(0) or bis(triphenylphosphine)-palladium (II) dichloride in a solvent such as toluene, acetonitrile, glyme, or

tetrahydrofuran optionally in the presence of an aqueous inorganic base such as sodium hydrogen carbonate or an organic base such as triethylamine. One skilled in the art will recognize that when 2a contains more than one reactive substituent, then the stoichiometric ratios of reagents will need to be adjusted to minimize bis-coupling.

SCHEME 1

la: X² = trialkyltin, trialkylsilyl, or a boronic acid derivative

2a: $X^1 = CI$, Br, I, or OTf

1b: $X^2 = CI$, Br, I, or OTf

5

15

20

2b: X¹ = trialkyltin, trialkylsilyl, or a boronic acid derivative

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{Q}
 \mathbb{R}^3
 \mathbb{R}^1

Ia(T=0)

Conversely, the anilides of Formula Ia where T=O can be prepared by reversing the reactivity of the two substrates. Substituted phenyl compounds of Formula 1b wherein X^2 is chlorine, bromine, iodine or trifluoromethylsulfonyloxy (OTf) can be coupled with heteroaromatic compounds of Formula 2b wherein X^1 is trialkyltin (e.g., Me₃Sn), trialkylsilyl (e.g., Me₃Si), or a boronic acid derivative (e.g., B(OH)₂). The procedure for conducting the coupling is the same as those described and referenced above.

By methods also reported in the above cited literature, compounds of Formula 1a and 2b are prepared by treating the corresponding halide (i.e., wherein X^1 and X^2 is bromine or iodine) with a metalating agent such as n-butyllithium followed by quenching with a trialkyltin halide, trialkylsilyl halide, boron trichloride, or trialkyl borate.

Some compounds of Formula 1a can also be prepared from the corresponding ortho-unsubstituted compound (i.e., wherein X^2 is hydrogen) by treatment with a base such as n-butyllithium followed by quenching with a trialkyltin halide, trialkylsilyl halide, or trialkyl borate as reported in the same literature references. This preparation requires

that -NHC(=O)XR¹ is an *ortho*-metalation directing group known in the art (e.g., trimethylacetylamido): see for example, Fuhrer, W., J. Org. Chem. (1979), 44, 1133.

Anilides and heteroaromatics of Formulae 1 and 2 wherein X¹ and X² are chlorine, bromine, iodine, OTf, and hydrogen are either known or readily prepared by procedures and techniques well known in the art, for example: D. E. Pereira, et al., *Tetrahedron* (1987), 43, 4931-4936; K. Senga, et al., *J. Med. Chem.* (1981), 24, 610-613; T. Novinson, et al., *J. Med. Chem.* (1976), 19, 512-516; Makisumi, K., *Chem. Pharm. Bull.* (1959), 7, 907, 909; Sirakawa, *Yakugaku Zasshi* (1959), 79, 903, 907; J. J. Kaminski, et al., *J. Med. Chem.* (1987), 30, 2047-2051; E. S. Hand, et al., *J. Org. Chem.* (1980), 45, 3738-3745; Finkelstein, B. L., *J. Org. Chem.* (1992), 57, 5538-5540; Tschitschibabin, D. R. P. 464,481; C. Sablayrolles, et al., *J. Med. Chem.* (1984), 27, 206-212; Vercek et al., *Tetrahedron Lett.* (1974), 4539; and S. Polanc, et al., *J. Org. Chem.* (1974), 39, 2143-2147.

Compounds of Formula Ia can also be prepared by one skilled in the art from anilines of Formula 3 by treatment with an appropriate acyl chloride or acid anhydride (T = O, X = direct bond), chloroformate (T = O, X = O), chlorothiolformates (T = O, X = S), carbamoyl chloride $(T = O, X = NR^5)$, isothiocyanate (T = S, X = NH), isocyanate (T = O, X = NH) or xanthyl chlorides (T = S, X = S) under conditions well known in the literature, for example: Sandler, R. S. and Karo, W., Organic Functional Group Preparations, 2nd Edition, Vol. I, p 274 and Vol. II, pp 152, 260, Academic Press (Scheme 2).

SCHEME 2

Alternatively, anilines of Formula 3 can be converted into the corresponding isocyanate by treatment with phosgene or known phosgene equivalents (e.g., ClC(=O)OCCl₃), and then condensed with an appropriate alcohol or amine of Formula 4 to afford anilides of Formula Ia (Scheme 3). These techniques are well known in the literature. For example, see Sandler, R. S. and Karo, W., Organic Functional Group Preparations, 2nd Edition, Vol. II, 152, 260, Academic Press;

Lehman, G. and Teichman, H. in *Preparative Organic Chemistry*, 472, Hilgetag, G. and Martini, A., Eds., John Wiley & Sons, New York, (1972); Eckert, H. and Forster, B., *Angew. Chem., Int. Ed.* (1987), 26, 894; Babad, H. and Zeiler, A. G., *Chem. Rev.* (1973), 73, 75.

SCHEME 3

5

10

15

20

In some cases, it is desirable to perform the palladium coupling reaction on an *N*-protected form of the aniline, for example the 2,2-dimethylpropanamide. Upon completion of the coupling reaction, the *N*-protecting group can be removed, for example by treatment of the 2,2-dimethylpropanamide with acid, to liberate the amino group.

Anilines of Formula 3 are readily prepared by palladium catalyzed coupling of an ortho-substituted nitrophenyl compound of Formula 5a, wherein X^2 is as defined above, with a heteroaromatic compound of Formula 2a, wherein X^1 is as defined above, followed by catalytic or chemical reduction of the nitro group (Scheme 4). As described for Scheme 1, the reactivity of the substrates can be reversed, i.e., the coupling is carried out using an ortho-substituted nitrophenyl compound of Formula 5b and a heteroaromatic compound of Formula 2b.

Reduction of nitro groups to amino groups is well documented in the chemical literature. See for example, Ohme, R. and Zubek, A. R. and Zubek, A. in *Preparative Organic Chemistry*, 557, Hilgetag, G. and Martini, A., Eds., John Wiley & Sons, New York: (1972).

SCHEME 4

$$R^2$$
 R^3
 NO_2
+ $Q = 1$
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^4
 R^3
 R^4
 R^4
 R^4

5a: $X^2 = \text{trialkyltin}$, trialkylsilyl, or 2a: $X^1 = CI$, Br, I, or OTf a boronic acid derivative

3

5b: $X^2 = CI$, Br, I, or OTf

2b: X1 = trialkyltin, trialkylsilyl, or a boronic acid derivative

In other cases, it is advantageous to prepare compounds of Formula 3, not by the cross-coupling methods described above, but rather by elaboration of a ortho-substituted nitrophenyl compound of Formula 6, under any of a number of ring closure methodologies (Scheme 5). Subsequent reduction of the nitro compounds of Formula 7 provides compounds of Formula 3.

SCHEME 5

$$R^2$$
 R^3
 NO_2
 R^3
 R^3

10

5

wherein

 X^3 can be any of a number of heterocycle building blocks, including, but not limited to those shown below:

 $X^3 = COCH_2NH_2$, $COCH_2$ -halogen,

15

Compounds of Formula 6 are well known in the art or may be made by simple functional group interconversions on ortho-substituted nitrophenyl compounds.

Numerous methods for conversion of these X³ substituents into Q-1 heterocycles are well known in the literature and can be applied by those skilled in the art for the preparation compounds of Formula 7. For example, see Katritzky, A. R. and Rees, C. W., Comprehensive Heterocyclic Chemistry, Vol. 6, pp. 992-993, Pergamon Press, London (1984); Flament et al., Helv. Chim. Acta. (1977), 60, 1872-1882; Kasuga et al., Yakugaku Zasshi (1974), 94, 952-962; E. Abignente, et al., J. Heterocycl. Chem. (1986), 23, 1031-1034; O. Chavignon, et al., J. Heterocycl. Chem. (1992), 29, 691-697; Buchan et al., J. Org. Chem. (1977), 42, 2448-2451; Allen et al. J. Org. Chem. (1959), 24, 796-801; Balicki, R., Pol. J. Chem. (1983), 57, 1251-1261; J. P. Dusza, et al., U.S.

4178449; D. W. Hansen Jr., et al., World Patent Publication WO 91/08211; M. L. Bode, et al., J. Chem. Soc., Perkin Trans. 1 (1993), 1809-1813; I. Anitha, et al., J. Indian Chem. Soc. (1989), 66, 460-462; Y. Tominaga, et al., J. Heterocycl. Chem. (1989), 26, 477-487; S. Branko, et al., J. Heterocycl. Chem. (1993), 30, 1577; M. Mukoyama, Jpn. Kokai Tokkyo Koho JP 06 16667; Y.Tominaga, et al., Heterocycles (1988), 27,

2345-2348; P. L. Anderson, et al., J. Heterocycl. Chem. (1981), 18, 1149-1152; F.
 Compernolle, et al., J. Heterocycl. Chem. (1986), 23, 541-544; L. F. Miller, et al., J.
 Org. Chem. (1973), 38, 1955-1957; R. Faure, et al., Tetrahedron (1976), 32, 341-348;
 A. Terada, Eur. Pat. Appl. EP-A-353,047; Reid, D. H., J. Chem. Soc., Perkin Trans. 1 (1979), 2334-2339; J. C. Brindley, et al; J. Chem. Soc., Perkin Trans. 1 (1986),

1255-1259; R. L. Harris, et al., Aust. J. Chem. (1986), 39, 887-892; J. P. Henichart, et al., J. Heterocycl. Chem. (1986), 23, 1531-1533; I. A. Mazur, et al., Chem. Heterocycl. Compd. (1970), 6, 474-476; I. A. Mazur, et al., Khim. Geterotsikl. Soedin. (1970), 512-514; Meakins, G. D., J. Chem. Soc., Perkin Trans. 1 (1989), 643-648; and E. Campaigne, et al., J. Heterocycl. Chem. (1978), 15, 401-411.

25. One skilled in the art will recognize that these same ring closure methodologies can be used to elaborate an *ortho*-substituted aniline of Formula 8, or a derivative thereof, into compounds of Formula 3 (Scheme 6). This strategy is illustrated in Examples 1 and 2.

SCHEME 6

$$R^2$$
 R^3
 NH_2
 $ring$
 $ring$
 R^2
 R^3
 NH_2
 R^3
 R^3
 NH_2
 R^3
 R^3

10

15

20.

25

30

wherein

X³ is as previously defined in Scheme 5.

Compounds of Formula 8 are well known in the art (see for example, H. Gunter, et al., *Liebigs Ann. Chem.* (1987), 765-770) or may be made by simple functional group interconversions on *ortho*-substituted anilines or a derivative thereof.

In some instances, it may be necessary, or more convenient, to introduce the desired substituents after the coupling reaction was performed. This can be accomplished by electrophilic substitution (Scheme 7), or nucleophilic substitution and functional group modifications (Schemes 8 and 9) using procedures well documented in the literature.

SCHEME 7

Ia
$$(R^2 = H)$$
 Electrophilic Substitution R_3 R_3 R_4 R_4 R_5 R_4 R_5 R_6 R_7 R_8 R_8

Variation of the substituent R4 on the heterocycle Q-1 of compounds of Formula Ia may be achieved by one of three ways. First, one skilled in the art may simply select the appropriate heteroaromatic compound of Formula 2a,b for the palladium coupling in Schemes 1 and 4 to give examples with a variety of values for R4. Alternatively, it may at times be convenient to vary R4 by performing various functional group transformations on compounds of Formula 9, which can be prepared by the same methods for the preparation of the aryl-substituted heterocycles of Formula Ia, as shown in Scheme 8. Alternatively, it may at times be convenient to vary R4 by performing various functional group transformations on compounds of Formula 10, which can be prepared by the same methods for the preparation of the ortho-substituted nitrophenyl compounds of Formula 7, and then converting the product to compounds of Formula Ia (using methods discussed previously) as shown in Scheme 9. Methods to perform these transformations are well known in the literature. Some examples include conversion of chloro to bromo (L. J. Street, et al., J. Med. Chem. (1992), 35, 295-304), bromo to trifluoromethyl (J. Wrobel, et al., J. Med. Chem. (1989), 32(11), 2493-2500), cyano (Ellis, G. P., T. M. Romney-Alexander, Chem. Rev. (1987), 87, 779-794), aldehyde to

diffuoromethyl (Middleton, W. J., J. Org. Chem. (1975), 40, 574-578), thiol to trifluoromethylthio (Popov, V. I., Boiko, V. N., Yagupolskii, L. M., J. Fluor. Chem. (1982), 21, 365-369) and amino to a variety of substituents via the diazonium salts. Electrophilic aromatic substitution or metallation chemistry are also useful methods for incorporating certain substituents.

10

Ia $(R^4 = Br, SCHF_2, SCF_3, OCH_2CF_3$ $CF_3, CHF_2, CN)$

As shown in Scheme 10, compounds of Formula Ia where T = S can be prepared by one skilled in the art from compounds of Formula Ia where T = O by treatment with P_2S_5 or Lawesson's reagent under conditions well known in the literature, for example: T. P. Sychera, et al., J. Gen. Chem. U.S.S.R. (1962), 32, 2839; K. Yoshino, et al., J. Heterocycl. Chem. (1989), 26, 1039-1043; E. C. Taylor Jr., et al., J. Amer. Chem. Soc. (1953), 75, 1904; and O. P. Goel, et al., Synthesis-Stuttgart (1987), 2, 162-164.

SCHEME 10

$$R^2$$
 R^3
 R^3

Alternatively, anilines of Formula 3 can be converted into the corresponding isothiocyanate by treatment with thiophosgene or known thiophosgene equivalents (e.g., 1,1'-thiocarbonyldiimidazole) and then condensed with an appropriate alcohol or amine of Formula 4 or a Grignard-reagent to afford compounds of Formula Ia where T = S (Scheme 11). These techniques are well known in the literature. For example, see Y. M. Zhang, et al., Tetrahedron Lett. (1987), 28, 3815-3816; Ares, J. J., Synthetic Commun. (1991), 21, 625-623; S. Roy, et al., Indian. J. Chem. B (1994), 33, 291-292; J. Garin, et al., J. Heterocycl. Chem. (1991), 28, 359-363; and I. Sircar, et al., J. Med. Chem. (1985), 28, 1405.

SCHEME 11

$$R^2$$
 R^3
 NH_2
 R^3
 R^2
 R^3
 R^3

As shown in Scheme 12, compounds of Formula Ib can be prepared by one skilled in the art from anilines of Formula 11 by treatment with an appropriate acyl chloride or acid anhydride (T = O, X = direct bond), chloroformate (T = O, X = O),

chlorothiolformates (T = O, X = S), carbamoyl chloride (T = O, X = NR^5), isothiocyanate (T = S, X = NH) isocyanate (T = O, X = NH), or xanthyl chlorides (T = S, X = S) as described for Scheme 2.

SCHEME 12

Alternatively, anilines of Formula 11 can be converted into the corresponding isocyanate and then condensed with an appropriate alcohol or amine to afford anilides of Formula Ib (Scheme 13). These techniques were described for Scheme 3.

10

15

5

SCHEME 13

Anilines of Formula 11 can be prepared by the reduction of compounds of Formula 12 by methods well documented in the literature (Scheme 14). See for example, Ohme, R. and Zubek, A. R. and Zubek, A. in *Preparative Organic Chemistry*, 557; Hilgetag, G. and Martini, A. Eds., John Wiley & Sons, New York: (1972).

SCHEME 14

$$R^2$$
 R^3
 R^3

Many compounds of Formula 12 can be prepared by the introduction of the Q-2 substituent by displacement of an appropriate leaving group (X⁵) by the appropriate heterocycle of Formula 14 (Scheme 15).

5

10

15

20

SCHEME 15

$$R^2$$
 R^3
 $(CH_2)_n$
 X^5
 R^4
 R^4
 R^4
 R^4
 R^4

 $X^5 = CI, Br, I, OTY$

In other cases, it is advantageous to prepare compounds of Formulae Ib, 11, or 12 by elaboration of an appropriate substituent, X⁶ ortho to the amido, amino or nitro group, respectively. This strategy is illustrated in Scheme 16 for the preparation of compounds of Formula 12.

SCHEME 16

wherein X^6 can be any number of substituents useful in the synthesis of nitrogen heterocycles, including, but not limited to those shown below:

 $X^3 = NO_2$, NH_2 , $NHNH_2$, X^5 , CH_2X^5 , CHO, CO_2H , COCI, CN; and $X^5 = CI$, Br, I, OTf.

Compounds of Formula 15 are well known in the art or may be made by simple functional group interconversions on *ortho*-substituted nitrobenzenes.

Some of the numerous methods for conversion of these X⁶ substituents into the 5-membered nitrogen heterocycles of Q-2 shown in Scheme 16 and the direct displacement reactions of Scheme 15 are illustrated below.

Scheme 17 shows a direct displacement reaction with an appropriately substituted pyrrole of Formula 14. For example, see: Katritzky, A. R. and Rees, C. E., Eds., Comprehensive Heterocyclic Chemistry, Vol. 4, p. 235 ff., Pergamon Press, London (1984); Smith, L. R., Chem. Heterocycl. Compd. (1972), 25-2, 127; Santaniello, E., Farachi, C., Ponti, F., Synthesis (1979), 617; Jones, R. A. and Bean, G. P., The Chemistry of Pyrroles, Academic Press, London, 1977, Chapter 4, pp. 205-11; Rubottom, G. M. and Chabala, J. C., Org. Synth. (1974), 54, 60.

SCHEME 17

R2

R3

NO₂ + R4

R4

R2

R3

NO₂

$$(CH_2)_n$$
 13
 14
 $X^5 = CI, Br, I, OTT$

10

The synthesis of the pyrrole ring system by ring construction is illustrated in Scheme 18 by one of the best procedures. This procedure and others are extensively reviewed in the literature: Katritzky, A. R. and Rees, C. E., Eds., Vol. 4, pp. 313-352, derivatives, pp 353-368, Pergamon, (1984); Kiedy, J. S., Huang, S., J. Heterocycl.

15 Chem. (1987), 24, 1137; Hamdan, A., Wasley, J. W. F., Synth. Commun. (1983), 13, 741; Josey, A. D., Org. Synth. Coll. Vol. V (1973), 716.

SCHEME 18

$$R^2$$
 R^3
 NO_2 + CH_3O
 OCH_3
 R^2
 R^3
 NO_2
 R_4
 R_4
 R_4

10

15

Scheme 19 shows an alkylation reaction of an imidazole by compounds of Formula 13.

SCHEME 19

R²

$$R^3$$
 NO_2 + HN
 R^4
 $(CH_2)_n$
 NO_2
 13
 18
 NO_2
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

The reactions of Scheme 19 can be run by the methods of Ginda, W. C. and Mathre, D. J., J. Org. Chem. (1980), 45, 3172; Mathias, L. R. and Burkett, D., Tetrahedron Lett. (1979), 4709; Dorr, H. J. M. and Metzger, J., Bull. Soc. Chim. Fr. (1976), 1861; A. F. Pozharskii, et al., Zh. Obshch. Khim (1963), 33, 1005; (1964), 34, 1371; (Chem. Abstr. 59: 7515; 61: 1849; 65: 88955; 65: 13684).

The preparation of imidazole compounds of Formula 19 (wherein n=0) by ring construction methods are well known in the literature. An illustrative example is shown in Scheme 20.

$$R^{2}$$
 R^{3}
 NO_{2}
 R^{4}
 NIH_{2}
 R^{4}
 R^{4}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}

The method of Scheme 20 and many others are taught and reviewed in Katritzky, A. R. and Boulton, A. J., Advances in Heterocyclic Chemistry, Vol. 12,

pp 166-183, Academic, New York, 1970; Bacon, R. G. R. and Hamilton, S. D., J. Chem. Soc. Perkin Trans. I (1974), 1970, and Katritzky, A. R. and Rees, C. E., Comprehensive Heterocyclic Chemistry Vol. 5, pp 457-482, Pergamon, London, 1984.

Pyrazole compounds of Formula 23 can be prepared by direct displacement 5 reactions as shown in Scheme 21.

SCHEME 21

$$R^2$$
 R^3
 NO_2 +
 R^4
 R^4
 R^4
 R^4
 $R^5 = CI, Br, I, OTF$
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

N-alkylation and N-arylation are taught by Dorr, H. J. M., Elguero, J., Espada, M.
and Hassanaly, P., An Quim. (1978), 74, 1137; Khan, M. A. and Lynch, B. M., J.
Heterocycl. Chem. (1970), 7, 1237; Elguero, J., Espada, M., Mathier, D. and
Lun, R. P. T., An Quim, (1979), 75, 729; Guida, W. C. and Mathre, D. J., J. Org. Chem.
(1980), 45, 3172; J. Elguero, et al., Bull. Chem. Soc. Fr. (1970), 1121; (1968), 707,
5019; (1967), 1966, 619, 775, 2833, 3727; Khan, M. A., Rec. Chem. Prog. (1970), 31,
43.

A synthesis of an N-aryl pyrazole by a ring construction method is illustrated in Example 3. Numerous other methods are reviewed in Katritzky, A. R. and Rees, C. E., Comprehensive Heterocyclic Chemistry, Vol. 5, p 272 ff.

The preparations of the 2-substituted-1,2,3-triazoles of this invention are reviewed by Katritzky, A. R. and Rees, C. E., Comprehensive Heterocyclic Chemistry, Vol. 5, p 690 ff., Pergamon, London, 1984; and Elderfield, R. E., Ed. Heterocyclic Compounds, Vol. 7, p 384, John Wiley & Sons, New York, 1961. One of the various syntheses is illustrated in Scheme 22.

WO 96/31517 PCT/US96/03803

20 SCHEME 22

This procedure and others are taught by Coles, R. F. and Hamilton, C. F., J. Am. Chem. Soc. (1946), 68, 1179; Riebsomer, J. L., J. Org. Chem. (1948), 13, 815; Stolle, R., Ber. (1926), 59, 1742; Finley, K. T., Chem. Heterocycl. Compd. (1980), 39, 1; Carboni, R. A., Kauer, J. C., Hatcher, W. R., Harder, R. J., J. Amer. Chem. Soc. (1967), 89, 2626.

The preparation of the 1-substituted -1,2,4-triazoles of Formula 28 by direct displacement reactions on compounds of Formula 13 are reviewed and taught in Schofield, K., Grimmett, M. R. and Keene, B. R., Heteroaromatic Nitrogen Compounds: The Azoles, pp 735-757, Cambridge University, Cambridge, 1976; Potts, K. T., Chem. Rev. (1961), 61, 87; Kahn, M. A. and Polya, J. B., J. Chem. Soc. (C) (1970), 85.

Alternatively, the 1,2,4-triazole compounds of Formula 28 can be prepared by ring construction methods well known in the literature. An illustrative example is given in Scheme 23.

The method of Scheme 23 and many others are taught and reviewed in Katritzky, A. R. and Rees, C. E., Comprehensive Heterocyclic Chemistry, Vol. 5, p 762 ff., Pergamon, London, 1984; K. Matsumoto, et al., Synthesis (1975), 609;

Huisgen, R., Grashey, R., Aufderhaar, E., Kung, Z., Chem. Ber. (1965), 98, 642, Grundman, C. and Ratz, R., J. Org. Chem. (1956), 21, 1037.

The preparation of the 2-substituted tetrazoles of Formula 33 by direct displacement on a compound of Formula 13 is reviewed and taught by Katritzky, A. R. and Rees, C. E., Comprehensive Heterocyclic Chemistry, Vol. 5, p 817 ff.; Pergamon, London, 1984; general alkylation - Butler, R. N., Garvin, V. C., and McEvoy, T. M., J. Chem. Res. (S) (1981), 174; benzylation - Doderhack, D., Chem. Ber. (1975), 108, 887; with activated aryl halides - Komecke, A., Lepom, P., and Lippmann, E., Z. Chem. (1978), 81, 214.

The preparation of 2-substituted tetrazoles of Formula 33 by ring construction methods are well known in the literature. Illustrative examples are shown in Scheme 24.

SCHEME 24

$$R^4$$
CHO + R^3
 $(CH_2)_n$
 $NHNH_2$
 R^3
 R^3
 R^4

ArN₃
 R^4

ArN₃
 R^2
 R^3
 R^3
 R^4

ArN₁
 R^2
 R^3
 R^4

ArN₁
 R^2
 R^3
 R^4

ArN₁
 R^4

ArN₁
 R^4
 R^4

$$R^4CH = NNHSO_2Ar + R^3$$

$$NO_2$$

$$NO_2$$

$$NO_2$$

$$NO_2$$

$$R^3$$

$$NO_2$$

$$R^4$$

U. Saha, et al., J. Inst. Chem (India) (1980), 52, 196; Baldwin, J. E., J. Heterocycl. Chem. (1968), 5, 565; Hong, S.-Y. and Baldwin, J. E., Tetrahedron (1968), 24, 3787; Ito, S., Tanaka, Y., Kakehi, A. and Kondo, K., Bull. Chem. Soc. Jpn. (1976), 49, 1920.

Variation of the substituent R⁴ on the heterocycle Q-2 of compounds of Formula Ib may be achieved by one of two ways. First, one skilled in the art may simply select the appropriate heteroaromatic compound of Formula 14, in Scheme 15 to give examples with a variety of values for R⁴. Alternatively, it may at times be convenient to vary R⁴ by performing various functional group transformations on compounds of Formula 37, which can be prepared by the same methods for the preparation of the aryl-substituted heterocycles of Formula Ib, as shown in Scheme 25. Methods to perform these transformations are well known in the literature and were described in the discussion for Schemes 8 and 9.

15

10

37 (X⁴ = H, Br, Cl, SCH₃, SO₂CH₃, SH, OH, CHO, NH₂)

SCHEME 25

nucleophilic substitution and/or functional group modifications

Ib $(R^4 = Br, SCHF_2, SCF_3, CHF_2, CN)$

15

Scheme 26 illustrates the preparation of compounds of Formula Ic (Formula I where Q is Q-3) whereby an appropriately substituted pyridazine of Formula 38 is reacted with a suitably substituted condensing agent such as hydrazides, anhydrides, orthoesters, \(\beta \)-dicarbonyl compounds and others. Much work has been published with regard to cyclizations of this type. For example see: Katritzky, A. R. and Rees, C. W., Comprehensive Heterocyclic Chemistry, Vol. 5, pp 607-668; Vol. 4, 443-495, Pergamon, London (1984); Pollak, A., Stanovnik, V. and Tisler, M., Tetrahedron (1968), 2623; L. M. Berbel, M. L. Zamura, Tetrahedron (1965), 287; Stanovnik, B., Tisler, M., Tetrahedron (1967), 2739; Fraser, M., J. Org. Chem. (1971), 3087; 10 F. D. Popp, et al., J. Heterocyclic Chem. (1981), 443; Thompson, R. D., Castle, R. N., J. Heterocyclic Chem. (1981), 1523-1527; J. D. Albright, et al., J. Med. Chem. (1981), 592-600; Legraverend, M., Bisagn, C., Lhoste, J. M., J. Heterocyclic Chem. (1981), 893-898; Pollak, A., Tisler, M., Tetrahedron (1966), 2073-2079; Letsinger, R. L., Lasco, R., J. Org. Chem. (1956), 764; Ohsaua, A., Abe, Y., Igeta, H., Chem. Lett. (1979), 241.

SCHEME 26

The substituent R⁴ may often be incorporated by selection of the proper condensing agent. However, it may at times be necessary or convenient to introduce the 20 desired substituents after the cyclization has occurred. This strategy is shown in Scheme 27. Numerous methods for such transformations are known to those skilled in the art. For example: Stanovnik, B., Tisler, M., Tetrahedron, (1967), 387-395; Kobe, J., Stanovnik, B., Tisler, M., Tetrahedron, (1968), 239-245, and methods discussed in 25 Schemes 8 and 9. Compounds of Formula 39 can be prepared by the same methods shown in Scheme 26.

15

24

SCHEME 27

39 (X⁴ = H, Br, Cl, SCH₃, SO₂CH₃, SH, OH, CHO, NH₂)

Ic (R⁴ = Br, Cl, haloalkykhio, haloalkoxy, haloalkyl, CN, NO₂)

The arylpyridazines of Formula 38 can be prepared by palladium-catalyzed coupling of an arylboronic acid of Formula 40 with a pyridazine of Formula 41 as shown in Scheme 28. The pyridazines of Formula 41 are commercially available or can be prepared by methods known in the art. One skilled in the art will notice that for $X^7 = NHNH_2$, compounds of Formula 38b can be prepared by nucleophilic displacement of chlorine as shown in Scheme 28. The coupling is carried out by methods known in the literature as discussed for Scheme 1. The coupling is carried out by heating the mixture of 40 and 41 in the presence of a transition metal catalyst such as tetrakis(triphenylphosphine)palladium (0) or bis(triphenylphosphine)palladium (II) dichloride in a solvent such as toluene, acetonitrile, glyme or tetrahydrofuran optionally in the presence of bases such as aqueous sodium carbonate or triethylamine. One skilled in the art will recognize that when X^7 is chlorine, the stoichiometric ratios of reagents will need adjustment in order to avoid bis-coupling.

25 SCHEME 28

The requisite boronic acid can be prepared according to literature cited for Scheme 1 as shown in Scheme 29. This involves treating a bromide or iodide of Formula 42 with a metallating agent such as butyllithium followed by quenching with a trialkyl borate and, finally, treating with dilute acid to give the desired boronic acids of Formula 40. One skilled in the art will further note that when $X^8 = H$, this constitutes an ortho-metallation for which there is ample precedent. As an example, see Fuhrer, W., J. Org. Chem. (1979), 1138.

10

SCHEME 29 R^{2} X^{8} X^{8} X^{8} X^{1} X^{1} X^{1} X^{1} X^{1} X^{2} X^{1} X^{2} X^{1} X^{2} X^{1} X^{2} X^{1} X^{2} X^{2} X^{3} X^{4} X^{1} X^{1} X^{2} X^{3} X^{4} X^{1} X^{2} X^{3} X^{4} X^{5} X^{7} X^{1} X^{1} X^{1} X^{2} X^{3} X^{4} X^{5} X^{7} X^{1} X^{1} X^{2} X^{3} X^{4} X^{5} X^{7} X

The anilides of Formula 42 are either known or readily prepared by procedures and techniques well known in the art, for example: Houben-Weyl, Methoden der Organische

Chemie, IVth Ed., Eugen Muller, Ed., George Thieme Verlag; I. J. Turchi, The

Chemistry of Heterocyclic Compounds, Vol. 45, pp 36-43, J. Wiley & Sons, New York,

(1986); L. S. Wittenbrook, G. L. Smith, R. J. Timmons, J. Org. Chem. (1973), 465-471;

P. Reynard, et al., Bull. Soc. Chim. Fr. (1962), 1735-1738.

Compounds of Formula Ic can also be prepared by coupling of the boronic acids of Formula 40 with a heterocycle of Formula 43 as depicted in Scheme 30. One skilled in the art will recognize that the heterocycles of Formula 43 can be prepared according to procedures previously referenced for ring annulation as described for Scheme 26. This is also true with respect to the variation of substituent R⁴.

SCHEME 30

$$R^2$$
 R^3
 NH
 XR^1
 NH
 XR^1
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

 $X^1 = CI, Br, I, OTf$

Another method for the preparation of Ic, especially where Z = CH and W = N or
CH, is described in Scheme 31. For example, a suitably substituted N-aminopyrrole (44a) or N-aminoimidazole (44b) can be condensed with a β-dicarbonyl compound of Formula 45 to give the desired products. Several methods for this transformation are known in the art. For example, see Flitsch, W.; Krämer, V. Liebigs Ann. Chem. (1970) 735, 35; Blewith, H. L., Chem. Heterocyclic Compd. (1977) 30, 117; Maury, G., Chem. Heterocyclic Compd. (1977) 30, 179; Coppola, G. M.; Hardtmann, G. E.; Huegi, B. S. J; Heterocyclic Chem. (1974) 11, 51; Golubusuma, G. M.; Posntarck, G. N.; Chuguk, V. A. Khim. Geterotsikl. Soedin. (1974) 846; Brückner, R.; Lavergne J.- P.; Vailfont, P., Liebigs Ann. Chem. (1979), 639; A. A. Tomaswin, et al., Ukr. Khim. (1988), 54, 612.

V 96/31517 PCT/US96/03803

27 SCHEME 31

$$R^2$$
 R^3
 R^4
 R^4

Numerous methods for the preparation of the required N-aminoheterocycles of Formula 44a and 44b and β -dicarbonyl compounds (45) or their equivalents (for example, compounds of Formula 46) are well known in the literature. For example, see:

$$R^2$$
 NH
 XR^1
 $X^9, X^{10} =$ alkyl or together form a ring

Stetter, H., Jones, F., Chem. Ber. (1981), 564; M. Somei, et al., Chem. Pharm, Bull.
(1978), 2522; Somei, M., Natsume, M., Tetrahedron Lett. (1974), 461;
Schweitzer, E. L., Kopey, C. M., J. Org. Chem. (1972), 1561; Perveev, F. Y.,
Ershova, V., Zh. Org. Khim. (1961), 3554; Sitte, A., Paul, H., Hilgetag, G., Z. Chem. (1967), 341; R. N. Neylor, et al., J. Chem. Soc. (1961), 4845; Frohlisch, B., Chem. Ber. (1971), 3610; Sherif, J. E., Rene, L., Synthesis (1988), 138; J. T. Gupton, et al., J. Org.
Chem. (1980), 4522; Tsuge, O., Limune, T., Horie, M., Heterocycles (1976), 13;
Kreutzenberger, A., Kreutzenberger, E., Tetrahedron (1976), 2603.

Compounds of Formula Ic can also be prepared by one skilled in the art from anilines of Formula 47 by treatment with an appropriate acyl halide or acid anhydride (T = O, X = direct bond), chloroformates (T = O, X = O), chlorothiolformates (T = O, X = O)

X = S), carbamoyl chlorides (T = O, $X = NR^5$), isothiocyanates, (T = S, X = NH), isocyanates (T = O, X = NH) or xanthyl chlorides (T = S, X = S). Treatment of compounds such as amides (X = bond, T = O) with Lawesson's reagent will give thioamides (X = bond, T = S). This is illustrated in Scheme 32 and is well known to those skilled in the art. For example: Sandler, R. S., Karo, W., Organic Functional Group Preparations, 2nd Ed., Vol. 1, p 274 and Vol. 2, pp 152, 260, Academic.

SCHEME 32

Alternatively, compounds of Formula 47 can be converted to compounds of Formula Ic by first treating the anilines with thiophosgene or phosgene (or a phosgene equivalent such as triphosgene) followed by condensation with an appropriate alcohol, thiol, or amine, as shown in Scheme 33. These techniques are also well known in the literature. For example, see Sandler, R. S., Karo, W., Organic Functional Group

15 Preparation, 2nd Ed., Vol. 2, pp 152, 260, Academic; Lehman, G., Teichman, H., Preparative Organic Chemistry, p 472, John Wiley & Sons, New York, (1972); Eckert, H., Forster, B., Angew. Chem. Int. Ed. Eng. (1987), 894; Babed, H., Zeiler, A. G., Chem. Rev. (1973), 75.

SCHEME 33

$$R^2$$
 R^3
 NH_2
 $\frac{1. C(T)Cl_2}{2. R^1 XH}$
 R^2
 R^3
 Q_3
 NH
 XR^1

Anilines of Formula 47 are readily prepared by palladium-catalyzed coupling of an ortho-substituted nitrophenyl compound of Formula 48 with a heterocycle of Formula 43 (described previously), followed by catalytic hydrogenation or chemical reduction of the

20

25

30

nitro group as shown in Scheme 34. Reduction of nitro groups is well documented in the literature. See for example, Ohme, R., Zubek, A. R. in Preparative Organic Chemistry, 557, Hilgetag, G. and Martini, A., Eds. John Wiley & Sons, New York (1972).

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of 10 protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of 15 a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated.

10

20

25

30

35

PCT/US96/03803

¹H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, p = pentet, m = multiplet, p = pentet, m = multiplet, p = pentet.

EXAMPLE 1

Step A: Preparation of 1-(2-amino-5-methylphenyl)-2-[[5-(trifluoromethyl)-4H-1.2.4-triazol-3-yllthiolethanone

0.33 g (0.0144 mol) of sodium was dissolved under nitrogen in 50 mL of methanol, 2.55 g (0.0151 mol) of 5-(trifluoromethyl)-4H-1,2,4-triazole-3(2H)-thione hydrate (purchased from Lancaster) was added, and the mixture was stirred at room temperature for 1 h, after which 2.52 g (0.0137 mol) of 1-(2-amino-5-methylphenyl)-2-chloroethanone was added. After stirring overnight, the reaction mixture was evaporated to dryness. The crude product was washed with water and purified by recrystallization from chloroform to yield 2.40 g of the title compound of Step A as a powder melting at 205°C (dec.). ¹H NMR (Me₂SO-d₆): δ 2.20 (s,3H), 4.98 (s,2H), 6.71-7.61 (m,4H).

15 Step B: Preparation of 4-methyl-2-[2-(trifluoromethyl)thiazolo[3.2-b][1.2.4]triazol-6-yl]benzenamine

1.30 g (0.0041 mol) of the title compound of Step A was dissolved under nitrogen in 5 mL of concentrated sulfuric acid. The reaction mixture was stirred at about 100°C for 2 h. After cooling to about 0°C, 1N sodium hydroxide was added slowly until the reaction mixture reached pH 7. The crude product was filtered and washed with hexane to yield 1.0 g of the title compound of Step B as a powder melting at 132-133°C. 1 H NMR (CDCl₃): δ 2.31 (s,3H), 6.78-7.29 (m,4H).

Step C: Preparation of 3-methyl-N-[4-methyl-2-[2-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-yllphenyl]butanamide

0.50 g (0.0017 mol) of the title compound of Step B was added to 50 mL of diethyl ether, and the suspension was cooled under nitrogen to about 0°C. 0.25 mL (0.0020 mol) of isovaleryl chloride was added, followed by 0.30 mL (0.0022 mol) of triethylamine, and the mixture was stirred at room temperature for about 4 h. The reaction mixture was filtered and the filtrate was evaporated to dryness. Water was added and the mixture was extracted with diethyl ether (3 x 25 mL), dried (MgSO₄), and evaporated to dryness. The crude product was chromatographed on silica gel eluting with ethyl acetate/hexane (2:8, and then 3:7) mixture to yield 0.04 g of the title compound of Step C, a compound of the invention, as a powder melting at 177-178°C. ¹H NMR (Me₂SO-d₆): δ 0.79 (d,6H), 1.9 (m,1H), 1.97 (d,2H), 2.34 (s,3H), 7.3-7.7 (m,4H), 9.3 (s,1H).

15

20

25

30

31

EXAMPLE 2

Step A: Preparation of 1-[(5-methyl-2-nitrophenyl)methyl]-3-(trifluoromethyl) 1H-pyrazole

5.65 g (0.030 mol) of 5-methyl-2-nitrobenzyl chloride (purchased from Aldrich Chemical Company), 5.0 g (0.036 mol) of 3-(trifluoromethyl)pyrazole (purchased from Maybridge), and 12.4 g (0.090 mol) of potassium carbonate were added to 25 mL acetonitrile. The reaction mixture was stirred under nitrogen overnight, and then was evaporated to dryness. The crude product was purified by recrystallization from methanol. The solid was washed with water, dissolved in ethyl acetate, dried (MgSO₄), and evaporated to dryness to yield 6.26 g of the title compound of Step A as a powder. Water was added to the mother liquor to yield after filtration an additional 1.2 g of the title compound of Step A as a solid melting at 70-71.5°C. ¹H NMR (CDCl₃): δ 2.38 (s,3H), 5.76 (s,2H), 6.60-8.07 (m,5H).

Step B: Preparation of 4-methyl-2-[[3-(trifluoromethyl)-1H-pyrazol-1-yllmethyl]benzenamine

3.2 g (0.011 mol) of the title compound of Step A was added to a solution of 15 mL acetic acid and 6 mL water. The mixture was warmed to about 65°C, the heat was shut off, and 2.1 g (0.037 mol) of iron was added in portions maintaining the temperature below 91°C. The mixture was warmed to about 75°C for 15 min., gravity filtered onto about 100 g of ice, and then extracted with methylene chloride (3 x 50 mL). The organic extracts were washed with saturated aqueous sodium bicarbonate, dried (MgSO₄), and evaporated to dryness to yield 1.8 g of the title compound of Step B as an oil. ¹H NMR (CDCl₃): δ 2.25 (s,3H), 5.0 (br s,2H), 5.22 (s,2H), 6.49-7.40 (m,5H).

Step C: Preparation of 2-methyl-N-[4-methyl-2-[[3-(trifluoromethyl)-1H-pyrazol-1-yl]methyl]propanamide

0.55 g (0.0022 mol) of the title compound of Step B was dissolved under nitrogen in 50 mL of diethyl ether. The solution was cooled to about 0°C, 0.27 mL (0.0026 mol) of isobutyryl chloride was added followed by 0.39 mL (0.0028 mol) of triethylamine. The reaction mixture was stirred over 3 days and was then filtered. The filtrate was evaporated to dryness, the resulting residue was suspended in water, and the crude product was then filtered and washed with hexane to yield 0.36 g of the title compound of Step C, a compound of the invention, as a powder melting at 125-125.5°C. 1 H NMR (CDCl₃): δ 1.31 (d,6H), 2.32 (s,3H), 2.7 (m,1H), 5.21 (s,2H), 6.52-7.8 (m,5H), 9.3 (br s,1H).

32

EXAMPLE 3

Step A: Preparation of (5-methyl-2-nitrophenyl)hydrazine

1-Fluoro-5-methyl-2-nitrobenzene (Aldrich, 20 g, 129 mmol) was treated with hydrazine hydrate (7.0 g, 140 mmol) in DMF (100 mL) at 25°C for 3 h. The mixture was drowned in water (1000 mL) and the precipitated product filtered. The filtrate was extracted with ethyl acetate and the combined product purified by flash chromatography to give 8.38 g of the title compound of Step A as a solid melting at 128-130°C. IR (mineral oil) 3320, 3330 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.38 (s,3H), 3.75 (s,2H), 6.5 (d,1H), 7.38 (s,1H), 8.0 (d,1H), 8.9 (br s,1H).

Step B: Preparation of 2.2.2-trifluoroethanone (5-methyl-2-nitrophenyl)hydrazone
 The title compound of Step A (3.0 g, 18 mmol) in dioxane (30 mL) was heated at reflux with trifluoroacetaldehyde hydrate (3.0 g, 26 mmol) and a catalytic amount of p-toluenesulfonic acid (0.1 g) for 20 h. The product was isolated by evaporation of the solvent and recrystallization from methanol/water to give 3.87 g of the title compound of

 Step B as a solid melting at 159-160°C. IR (mineral oil) 3368, 1612 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.44 (s,3H), 6.8 (d,1H), 7.25 (s,1H), 7.65 (s,1H), 8.1 (d,1H), 11.15 (br s,1H).

Step C: Preparation of 2.2.2-trifluoro-N-(5-methyl-2-nitrophenyl)ethanehydrazonoyl bromide

A DMF solution (35 mL) of the title compound of Step B (3.8 g, 15.4 mmol) was treated with N-bromosuccinimide (2.9 g, 16.3 mmol) at 25°C for 3 h. The reaction mixture was drowned in water (250 mL) and extracted with ethyl acetate. The product, isolated by evaporation of the solvent, was slurried with hexane and purified to give 4.2 g of the title compound of Step C as a solid melting at 135-139°C. IR (mineral oil) 3264, 1618 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.46 (s,3H), 6.9 (d,1H), 7.6 (s,1H), 8.15 (d,1H), 11.3 (s,1H).

Step D: Preparation of 5-butoxy-4.5-dihydro-1-(5-methyl-2-nitrophenyl)-1H-pyrazole

A benzene (75 mL) and toluene (30 mL) solution of the title compound of Step C (4.0 g, 12.25 mmol), butyl vinyl ether (6.5 g, 6.5 mmol), and triethylamine (1.3 g, 13 mmol) was heated at 90°C for 12 h. Isolation by flash chromatography (1-chlorobutane) gave 2.3 g of the title compound of Step D as an oil. ¹H NMR (300 MHz, CDCl₃): δ 0.76 (t,3H), 1.05 (p,2H), 1.3 (p,2H), 2.43 (s,3H), 3.0-3.25 (m,4H), 5.8 (d,1H), 7.05 (d,1H), 7.4 (s,1H), 7.8 (d,1H).

15

20

25

30

35

Step E: Preparation of 1-(5-methyl-2-nitrophenyl)-3-(trifluoromethyl)-1H-pyrazole

An ethyl acetate solution (25 mL) of the title compound of Step D (2.3 g, 6.7 mmol) was treated with a catalytic amount of p-toluenesulfonic acid (<0.1 g) at 25°C for 1 h. Flash chromatography gave 1.69 g of the title compound of Step E as a crystalline solid melting at 84-86°C. ¹H NMR (300 MHz, CDCl₃): δ 2.52 (s,3H), 6.7 (d,1H), 7.4 (m,2H), 7.7 (s,1H), 7.95 (d,1H).

Alternatively, the title compound of Step E can be prepared directly from 1-fluoro-5-methyl-2-nitrobenzene. A solution of 1-fluoro-5-methyl-2-nitrobenzene (6.04 g, 39 mmol) and 3-(trifluoromethyl)pyrazole (5.05 g, 37.1 mmol) and potassium carbonate (5.63 g, 40.8 mmol) was heated in dimethyl sulfoxide (30 mL) at 50 °C for 18 h. The cooled mixture was diluted with water (100 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with water (2 x 50 mL) and saturated aqueous NaCl (2 x 50 mL). The organic layer was dried over magnesium sulfate and evaporated. The resulting yellow solid was triturated with hexane to give 9.5 g of the title compound of Step E melting at 84-86 °C. ¹H NMR (300 MHz, CDCl₃): δ 2.52 (s,3H), 6.75 (s,1H), 7.4 (m,2H), 7.72 (s,1H), 7.95 (d,1H).

Step F: Preparation of 4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1yllbenzenamine

An ethanol solution (250 mL) of the title compound of Step E (1.65 g, 6.1 mmol) and palladium catalyst (10% Pd/C, 0.5 g) was pressurized to 3.45 x 10⁵ Pa with hydrogen in a Paar hydrogenation apparatus at 25°C for 5 h. The reaction mixture was filtered through Celite[®] and the solvent was evaporated to give, after crystallization from 1-chlorobutane, 0.77 g of the title compound of Step F as a solid melting at 66-68°C. IR (mineral oil) 3469, 3365 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.28 (s,3H), 4.36 (br s,2H), 6.7 (d,1H), 6.76 (d,1H), 7.02 (d,2H), 7.75 (s,1H).

Step G: Preparation of 2-methyl-N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-yllphenyllpropanamide

To a benzene solution (30 mL) at 25°C was added the title compound of Step F (0.75 g, 3.14 mmol), pyridine (0.5 g, 6.3 mmol), and isobutyryl chloride (2.0 g, 19 mmol). The mixture was stirred at 25°C for 18 h. Water (100 mL) was added to the mixture and the products were extracted by the addition of ethyl acetate. The product was a mixture of the mono- and bis-acylated aniline. A brief treatment of the mixture with dilute sodium hydroxide in methanol and reisolation by drowning in water and ethyl acetate extraction gave 0.58 g of the title compound of Step G, a compound of the

10

25

invention, as a solid melting at 99-100°C. ^{1}H NMR (300 MHz, CDCl₃): δ 1.2 (d,6H), 2.38 (s,3H), 2.5 (p,1H), 6.8 (s,1H), 7.2 (s,1H), 7.3 (m,1H), 7.8 (s,1H), 8.3 (d,1H).

EXAMPLE 4

Step A: Preparation of N-(2-borono-4-methylphenyl)-2,2-dimethylpropanamide

A solution of 72.4 g N-(4-methylphenyl)-2,2-dimethylpropanamide in 1000 mL of
dry THF was cooled to -70°C under nitrogen and 480 mL of 2.5M n-BuLi in hexanes
was added dropwise over 1 h while maintaining the temperature below -60°C. Stirring
was continued at -70°C for 1 h, and then the reaction was allowed to warm to room
temperature with stirring overnight.

The reaction mixture was then cooled to -10°C and 200 mL of trimethyl borate was added dropwise while maintaining the temperature below 0°C. Stirring was continued at 0°C for 2.5 h, 50 mL of water was added dropwise over 0.5 h, and then concentrated HCl was added to acidify the reaction. The solvents were removed *in vacuo*, 200 mL of water was added to form a slurry which was shaken (or stirred) thoroughly with ether. The white precipitate was collected by filtration, washed well with a 1:1 ether/hexane mixture, and then suspended in acetone and stirred for 20 min. While stirring, 600 mL of water was added slowly in portions (more water may be necessary if precipitation is not complete). The white solid was collected by filtration, washed with water, and then dried in a vacuum oven to yield 56.8 g of the title compound of Step A as a white powder. ¹H NMR (CDCl₃): δ 1.03 (s,9H), 2.40 (s,3H), 7.20 (d,1H), 7.80 (s,1H), 7.96 (d,1H), 9.8 (s,1H).

Step B: Preparation of N-[2-(6-chloro-3-pyridazinyl)-4-methylphenyl]-2.2-dimethylpropanamide

To a stirred mixture of 8.4 g (0.056 mol) of 3,6-dichloropyridazine, 0.3 g of tetrakis(triphenylphosphine)palladium (0), and 6.6 g (0.028 mol) of the title compound of Step A was added 110 mL of a 1 molar aqueous solution of sodium carbonate. The resulting mixture was heated at reflux for 4 h. After cooling to room temperature, the reaction mixture was poured into 200 mL of saturated aqueous NaCl and extracted three times with 50 mL portions of ethyl acetate. The combined extracts were washed once with water and then dried over anhydrous magnesium sulfate. The solution was filtered and evaporated to dryness. The crude product was purified by chromatography on silica gel using 20% ethyl acetate/hexane as eluent to afford 4.42 g (52%) of the title compound of Step B as a white solid melting at 144-148°C. ¹H NMR (CDCl₃): δ 1.31 (s,9H), 2.39 (s,3H), 7.26-734 (m,2H), 7.35(s,1H), 7.63-7.66 (m,1H), 7.86-7.89 (m,1H),

35 8.46-8.49 (m,1H), 11.59 (br s,1H).

10

15

20

25

30

Step C: Preparation of N-[2-(6-hydrazino-3-pyridazinyl)-4-methylphenyl]-2.2-dimethylpropanamide

A solution of the title compound of Step B (1.0 g, 3.3 mmol) and hydrazine monohydrate (0.5 mL, 9.9 mmol) in 20 mL of n-butanol was heated at reflux for 4 h. After cooling to room temperature, the butanol was removed under vacuum and the residue so obtained was taken up in 80 mL diethyl ether. The organic solution was washed successively with 40 mL portions each of water and saturated aqueous NaCl, and then was dried over anhydrous magnesium sulfate. The solution was filtered and evaporated to dryness. The crude product was purified by chromatography on silica gel eluting with 5% methanol-dichloromethane to give 0.68 g (68%) of the title compound of Step C as a white solid melting at 153-156°C. 1 H NMR (CDCl₃): δ 1.30 (s,9H), 2.37 (s,3H), 4.00 (br s,2H), 6.27 (s,1H), 7.21-7.24 (m,2H), 7.30 (s,1H), 7.68-7.70 (m,1H), 8.44-8.46 (m,1H), 11.83 (br s,1H).

Step D: Preparation of 2,2-dimethyl-N-[4-methyl-2-[3-(trifluoromethyl)-1,2,4-triazolo[4,3-b]pyridazin-6-yl]phenyl]propanamide

A stirred solution of the title compound of Step C (0.68 g, 2.3 mmol) and 0.5 mL (3.6 mmol) of trifluoroacetic anhydride in 20 mL of pyridine was heated at reflux for 5 h. The dark solution was allowed to cool to room temperature. The volatiles were removed under reduced pressure and the residue was purified by chromatography on silica gel eluting with 50% ethyl acetate/hexane to afford 0.8 g (94%) of the title compound of Step D, a compound of the invention, as an oil. 1 H NMR (CDCl₃): δ 1.18 (s,9H), 2.42 (s,3H), 7.29 (s,1H), 7.37-7.40 (m,1H), 7.55-7.59 (m,1H), 7.90-7.93 (m,1H), 8.31-8.34 (m,1H), 8.77 (br s,1H).

EXAMPLE 5

Preparation of N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-yllphenyllcyclopropanecarboxamide

To a solution of the title compound of Step F in Example 3 (0.75 g, 3.1 mmol) and pyridine (0.49 g, 6.2 mmol) in benzene (30 mL) was added cyclopropanecarbonyl chloride (0.42 g, 4.0 mmol). The mixture was stirred at 25 °C for 18 h. The reaction mixture was diluted with ethyl acetate (25 mL) and treated with 1N aqueous hydrochloric acid (10 mL). The organic layer was further washed with water and saturated aqueous NaCl (10 mL each), dried over magnesium sulfate and the solvent was then evaporated. The solid residue was triturated with hexane to give 0.72 g of the title compound of Example 5, a compound of the invention, as a solid melting at 106-107 °C. IR (mineral oil) 3300, 1674 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.9 (m,2H), 1.0

10

20

(m,2H), 1.4 (m,1H), 2.4 (s,3H), 6.77 (s,1H), 7.14 (s,1H), 7.2 (d,1H), 7.85 (s,1H), 8.3 (d,1H), 9.7 (s,1H).

EXAMPLE 6

Preparation of 3-methyl-*N*-[4-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yllphenyllbutanamide

To a solution of the title compound of Step F in Example 3 (0.75 g, 3.1 mmol) and pyridine (0.49 g, 6.2 mmol) in benzene (30 mL) was added isovaleryl chloride (0.48 g, 4.0 mmol). The mixture was stirred at 25 °C for 18 h. The reaction mixture was then diluted with ethyl acetate (25 mL) and treated with 1N aqueous hydrochloric acid (10 mL). The organic layer was further washed with water and saturated aqueous NaCl (10 mL each), dried over magnesium sulfate and the solvent was then evaporated. The solid residue was triturated with hexane to give 0.86 g of the title compound of Example 6, a compound of the invention, as a solid melting at 102-103 °C. IR (mineral oil) 3280, 1682 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.92 (d,6H), 2.1 (m,1H), 2.2

15 (d,2H), 2.38 (s,3H), 6.8 (s,1H), 7.15 (s,1H), 7.2 (d,1H), 7.8 (s,1H), 8.23 (d,1H), 9.5 (s,1H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 11 can be prepared. The following abbreviations are used in the Tables which follow: Me = methyl, $C_6H_5 = phenyl$ and CN = cyano.

I-Me-cyclopropyl	CI	CF ₃	C ₆ H ₅	Br	CF ₃
CH ₂ CHCl ₂	NO ₂	CF ₃	1-Me-cyclopropyl	СН3	CF ₃
C(CH ₃) ₂ Br	СН3	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂
C(CH ₃) ₃	Н	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	CF ₃	CH ₃	SCF ₃
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	Cl	SCF ₃
CH(CH ₃) ₂	Br	Cl	CF ₃	CH ₂ CH ₃	CI
cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	Cl	осн ₂ сн ₃	СН3	Br
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃
OCH ₃	CH ₂ CH ₃	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	CH ₃	CF ₂ Cl
cyclopropyl	CH ₃	CF ₂ Cl	СH ₂ СH(СH ₃) ₂	OCH ₃	CF ₂ Cl
cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃
cyclopropyl	CH ₂ CH ₃	NO ₂	CH(CH ₃) ₂	CH ₃	NO ₂
cyclopropyl	СH ₂ СH ₃	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
•					
$T = S, R^3 = H, Y$	_	_			
XR ¹	\mathbb{R}^2	R ⁴	, XR ¹	<u>R</u> 2	R ⁴
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	H	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Вг
CH(CH ₃) ₂	H ·	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl
$CH=C(CH_3)_2$	Br	CF ₂ Cl	CH(CH ₃) ₂	СН3	CF ₃
•					
$T = 0$, $R^3 = H$, $Y = 1$				_	
XR ¹	R ²	<u>R</u> 4	, XR ¹	R ²	<u>R</u> 4
C(CH ₃) ₃	CH ₃	CF ₃	осн ₃	CH ₃	CF ₃

C(CH ₃) ₃	н	CF ₃	осн3	Н	CF ₃
CH(CH ₃) ₂	CH ₃	CF ₃	осн(сн ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	CH ₃	
$CH_2CH(CH_3)_2$	Ci	CF ₃	CF ₃	Cl	CF ₃ CF ₃
1-Me-cyclopropy	i Ci	CF ₃	C ₆ H ₅	Br	CF ₃
CH ₂ CHCl ₂	NO ₂	CF ₃	1-Me-cyclopropy		CF ₃
C(CH ₃) ₂ Br	CH ₃	SCF ₃	СH(СН ₃₎₂	CH ₃	SCHF ₂
C(CH ₃) ₃	Н	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	CF ₃	CH ₃	SCF ₃
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	Cl	SCF ₃
CH(CH ₃) ₂	Br	CI	CF ₃	CH ₂ CH ₃	Cl
cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CI	осн ₂ сн ₃	CH ₃	Br
CH ₂ CF ₃	Br	Br	осн(сн ₃₎₂	CH ₃	OCH ₂ CF ₃
осн ₃	СН2СН3	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	CH ₃	CF ₂ Cl
cyclopropyl	CH ₃	CF ₂ Cl	CH ₂ CH(CH ₃) ₂	OCH ₃	CF ₂ Cl
cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃
cyclopropyl	CH ₂ CH ₃	NO ₂	CH(CH ₃) ₂	CH ₃	NO ₂
cyclopropyl	СН ₂ СН ₃	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	СН3	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
_				- <u>Z</u> <u>J</u>	3
$T = S$, $R^3 = H$, Y	= S, W = N,	Z = CH,			
XIR I	R ²	R^4	XR ¹	\mathbb{R}^2	<u>R</u> 4
C(CH ₃) ₃	H	CF ₃	СН3	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	Н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	сн ₃	SCF ₃	cyclobutyl	Н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br 2
CH(CH ₃) ₂	Н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	СН3	OCF ₃	C ₆ H ₅	CN	OCF ₃
ОСН(СН ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl
CH=C(CH ₃) ₂	Br	CF ₂ CI	СH(СН ₃) ₂	СН3	CF ₃
					-

•					
$T = O$, $R^3 = H$,	Y = S, W = C	CH, Z=N,			
XR ¹	\mathbb{R}^2	\mathbb{R}^4	XR ¹	\mathbb{R}^2	\mathbb{R}^4
C(CH ₃) ₃	CH ₃	CF ₃	осн ₃	CH ₃	CF ₃
C(CH ₃) ₃	Н	CF ₃	осн ₃	н	CF ₃
CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	Cl	CF ₃	CF ₃	CI	CF ₃
1-Me-cyclopropyl	Cl	CF ₃	C ₆ H ₅	Br	CF ₃
CH ₂ CHCl ₂	NO ₂	CF ₃	1-Me-cyclopropyl	CH ₃	CF ₃
C(CH ₃) ₂ Br	CH ₃	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂
C(CH ₃) ₃	H	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃
$CH(CH_3)_2$	СН3	SCF ₃	CF ₃	CH ₃	SCF ₃
$CH(CH_3)_2$	Br	SCF ₃	CF ₃	Cl	SCF ₃
CH(CH ₃) ₂	Br	CI	CF ₃	CH ₂ CH ₃	a Š
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	Cl	OCH ₂ CH ₃	CH ₃	Br
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃
OCH ₃	CH ₂ CH ₃	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	CH ₃	CF ₂ Cl
cyclopropyl	CH ₃	CF ₂ Cl	СН ₂ СН(СН ₃) ₂	осн ₃	CF ₂ CI
cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃
cyclopropyl	CH ₂ CH ₃	NO ₂	CH(CH ₃) ₂	CH ₃	NO ₂
cyclopropyl	CH ₂ CH ₃	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
_ 3					
$T = S, R^3 = H, Y$	_		•	•	
XR ¹	\mathbb{R}^2	R ⁴	XR ¹	\mathbb{R}^2	<u>R</u> 4
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	H	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	СН3	SCF ₃	cyclobutyl	Н	NO ₂
CH ₂ CF ₃	СН3	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	Н	Br	OCH ₂ CH ₃	NO ₂	Br

CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	СН3	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Ci
$CH=C(CH_3)_2$	Br	CF ₂ CI	CH(CH ₃) ₂	CH ₃	CF ₃
_					•
$T = 0, R^3 = H,$		H, Z = CH,			
XR ¹	$\underline{\mathbf{R}}^{2}$	\mathbb{R}^4	XR ¹	\mathbf{R}^2	<u>R</u> 4
C(CH ₃) ₃	CH ₃	CF ₃	осн ₃	СН3	CF ₃
C(CH ₃) ₃	H	CF ₃	осн ₃	Н	CF ₃
CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	Cl	CF ₃	CF ₃	CI	CF ₃
1-Me-cyclopropyl	CI	CF ₃	C ₆ H ₅	Br	CF ₃
CH ₂ CHCl ₂	NO_2	CF ₃	1-Me-cyclopropyl	CH ₃	CF ₃
C(CH ₃) ₂ Br	CH ₃	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂
C(CH ₃) ₃	H	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	CF ₃	СН3	SCF ₃
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	CI	SCF ₃
CH(CH ₃) ₂	Br	Cl	CF ₃	CH ₂ CH ₃	CI
cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	Cl	OCH ₂ CH ₃	CH ₃	Br
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃
OCH ₃	CH_2CH_3	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	CH ₃	CF ₂ Cl
cyclopropyl	CH ₃	CF ₂ Cl	CH ₂ CH(CH ₃) ₂	OCH ₃	CF ₂ Cl
cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃
cyclopropyl	CH ₂ CH ₃	NO ₂	CH(CH ₃) ₂	CH ₃	NO ₂
cyclopropyl	CH ₂ CH ₃	OCHF ₂	СH(СН ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
$T = S$, $R^3 = H$, Y :		•			
XR ¹	<u>R</u> ²	<u>R</u> 4	. XR ¹	R ²	R ⁴
C(CH ₃) ₃	H,	CF ₃	СН3	CH ₃	CF ₃
cyclopropyl	СН3	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Ci	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃

			•						
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃				
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	H	NO_2				
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br				
CH(CH ₃) ₂	Н	Br	OCH ₂ CH ₃	NO ₂	Br				
CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	CH ₃	CF ₃				
cyclopropyi	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃				
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl				
$CH=C(CH_3)_2$	Br	CF ₂ Cl	CH(CH ₃) ₂	СН3	CF ₃				
$T = O, R^3 = H, Y = O, W = N, Z = CH,$									
XR ¹	R ²	R^4	XR ¹	R ²	\mathbb{R}^4				
C(CH ₃) ₃	CH ₃	CF ₃	OCH ₃	CH ₃	CF ₃				
C(CH ₃) ₃	Н	CF ₃	OCH ₃	Н	CF ₃				
CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃				
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃				
$CH_2CH(CH_3)_2$	Cl	CF ₃	CF ₃	Cl	CF ₃				
1-Me-cyclopropyl	Ci	CF ₃	C ₆ H ₅	Br	CF ₃				
CH ₂ CHCl ₂	NO ₂	CF ₃	1-Me-cyclopropyl	CH ₃	CF ₃				
C(CH ₃) ₂ Br	CH ₃	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂				
C(CH ₃) ₃	H	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃				
CH(CH ₃) ₂	CH ₃	SCF ₃	CF ₃	CH ₃	SCF ₃				
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	Cl	SCF ₃				
$CH(CH_3)_2$	Br	CI	CF ₃	CH ₂ CH ₃	Cl				
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃				
cyclopropyl	CH ₃	Cl	OCH ₂ CH ₃	CH ₃	Br				
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃				
OCH ₃	CH ₂ CH ₃	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃				
cyclobutyl	Br	OCF ₃	CH(CH ₃) ₂	CH ₃	CF ₂ CI				
cyclopropyl	CH ₃	CF ₂ Cl	СH ₂ CH(СH ₃) ₂	OCH ₃	CF ₂ CI				
cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃				
cyclopropyl	CH ₂ CH ₃	NO ₂	CH(CH ₃) ₂	CH ₃	NO ₂				
cyclopropyl	CH ₂ CH ₃	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂				
cyclopentyl	сн ₃	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃				

$T = S$, $R^3 = H$, Y	′ = O, W = N,	Z = CH,					
XR I	R ²	\mathbb{R}^4	XR ¹	\mathbb{R}^2	<u>R</u> 4		
C(CH ₃) ₃	Н	CF ₃	СН3	CH ₃	CF ₃		
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃		
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃		
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н .	SCF ₃		
· CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃		
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO ₂		
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	СН3	Br		
CH(CH ₃) ₂	H	Br	осн ₂ сн ₃	NO ₂	Br		
CH ₂ CH(CH ₃) ₂	CN	Cì	1-Me-cyclopropyl	CH ₃	CF ₃		
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃		
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl		
$CH=C(CH_3)_2$	Br	CF ₂ Cl	CH(CH ₃) ₂	CH ₃	CF ₃		
$T = 0$, $R^3 = H$, $Y = 0$, $W = N$, $Z = N$,							
XR ¹	R ²	R ⁴	, XR ¹	\mathbb{R}^2	<u>R</u> 4		
C(CH ₃) ₃	CH ₃	CF ₃	OCH ₃	CH ₃	CF ₃		
C(CH ₃) ₃	H	CF ₃	OCH ₃	H	CF ₃		
CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃		
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃		
CH ₂ CH(CH ₃) ₂	CI	CF ₃	CF ₃	Cl	CF ₃		
1-Me-cyclopropyl	Cl	CF ₃	C ₆ H ₅	Br	CF ₃		
CH ₂ CHCl ₂	NO ₂	CF ₃	1-Me-cyclopropyi	CH ₃	CF ₃		
C(CH ₃) ₂ Br	CH ₃	SCF ₃	CH(CH ₃) ₂	CH ₃	SCHF ₂		
C(CH ₃) ₃	Н	SCF ₃	CH=C(CH ₃) ₂	SCH ₃	SCF ₃		
CH(CH ₃) ₂	CH ₃	SCF ₃	CF ₃	CH ₃	SCF ₃		
CH(CH ₃) ₂	Br	SCF ₃	CF ₃	Cl	SCF ₃		
CH(CH ₃) ₂	Br	Cl	CF ₃	CH ₂ CH ₃	CI		
cyclopropyl	СН3	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃		
cyclopropyl	CH ₃	Cl	OCH ₂ CH ₃	CH ₃	Br		
CH ₂ CF ₃	Br	Br	OCH(CH ₃) ₂	CH ₃	OCH ₂ CF ₃		
OCH ₃	CH ₂ CH ₃	OCF ₃	CH(CH ₃) ₂	CH ₃	OCF ₃		
cyclobutyl	Br	OCF ₃	СH(СН ₃) ₂	CH ₃	CF ₂ CI		
cyclopropyl	CH ₃	CF ₂ Ci	СH ₂ СH(СH ₃) ₂	осн ₃	CF ₂ CI		
cyclopropyl	CH ₂ CH ₃	CF ₃	СH(СH ₃) ₂	CH ₂ CH ₃	CF ₃		

cyclopropyl	CH ₂ CH ₃	NO ₂	CH(CH ₃) ₂	CH ₃	NO ₂
cyclopropyl	CH ₂ CH ₃	OCHF ₂	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
•					
$T = 0, R^3 = H, T$				_	
XR ¹	R ²	R ⁴	XR ¹	\mathbb{R}^2	<u>R</u> 4
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	Н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	H	NO_2
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	H	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ C1
$CH=C(CH_3)_2$	Br	CF ₂ CI	CH(CH ₃) ₂	CH ₃	CF ₃
		•			
$T = 0$, $R^3 = H$, Y	' = O, $W = CH$	L = CH			
XR ¹	\mathbb{R}^2	R ⁴	_ XR ¹	<u>R</u> 2	R ⁴
C(CH ₃) ₃	H	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	СН3	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	H	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br ·
CH(CH ₃) ₂	H-	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl
CH=C(CH ₃) ₂	Br	CF ₂ Cl	CH(CH ₃) ₂	СН3	CF ₃
				-	

$T = 0$, $R^3 = H$,	Y = NH, W =	N, Z=N			
. XR ¹	\mathbb{R}^2	R ⁴	XR^1	R ²	R ⁴
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	Н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	СН3	Br
CH(CH ₃) ₂	Н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	СН3	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl
CH=C(CH ₃) ₂	Br	CF ₂ CI	СН(СН3)2	CH ₃	CF ₃
2					_
$T = 0$, $R^3 = H$, Y					
XR ¹	R ²	R ⁴	XR ¹	\mathbb{R}^2	R ⁴
$C(CH_3)_3$	Н	CF ₃	СН3	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	H	SCF ₃
СH(СН ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO_2
CH ₂ CF ₃	CH ₃	NO_2	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	Н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl
CH=C(CH ₃) ₂	Br	CF ₂ Cl	CH(CH ₃) ₂	CH ₃	CF ₃
T-0 n3 n v	\T. T. O				
$T = O, R^3 = H, Y$	$= NH, W = C$ \mathbb{R}^2		1	2	4
	_	R ⁴	XR ^I	R ²	<u>R</u> 4
C(CH ₃) ₃	H ~:	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃

CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO_2
CH ₂ CF ₃	CH ₃	NO_2	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	Н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
$CH=C(CH_3)_2$	Br	CF ₂ Cl	CH(CH ₃) ₂	CH ₃	CF ₃
$T=0, R^3=H, Y$					
XR ¹	\mathbb{R}^2	\mathbb{R}^4	, XR ¹	\mathbb{R}^2	R^4
C(CH ₃) ₃	H	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	H	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO_2
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	H	Br	осн ₂ сн ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
CH=C(CH ₃) ₂	Br	CF ₂ CI	CH(CH ₃) ₂	CH ₃	CF ₃
•					
$T = 0, R^3 = H, Y$				_	à
XR ¹	R ²	R ⁴	XIR ¹	R^2	R ⁴
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	CI	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	H	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	Н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃

OCH(CH ₃) ₂	СН3	CF ₃	C(CH ₃) ₃	NO.	CE CI
CH=C(CH ₃) ₂	Br			NO ₂	CF ₂ CI
011-0(0113/2	D.	CF ₂ Cl	CH(CH ₃) ₂	CH ₃	CF ₃
$T = 0$, $R^3 = H$,	Y = NCH ₃ ,	W = N, Z = CH			
XR ¹	R^2	R ⁴	XR ¹	\mathbb{R}^2	<u>R</u> 4
C(CH ₃) ₃	Н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyi	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	СН3	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	СН3	SCF ₃	cyclobutyl	н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br .
CH(CH ₃) ₂	Н	Br	осн ₂ сн ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl
$CH=C(CH_3)_2$	Br	CF ₂ CI	CH(CH ₃) ₂	CH ₃	CF ₃
_					-
$T = 0, R^3 = H, Y$					
XXR ^I	\mathbb{R}^2	\mathbb{R}^4	, XR ¹	\mathbb{R}^2	\mathbb{R}^4
C(CH ₃) ₃	H	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	СH ₂ СH(СH ₃) ₂	СН3	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	H	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	СН3	Br
CH(CH ₃) ₂	Н	Br .	осн ₂ сн ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	СН3	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Ct
$CH=C(CH_3)_2$	Br	CF ₂ Cl	СH(СН ₃) ₂	CH ₃	CF ₃
- 3					
$T = 0$, $R^3 = H$, Y			_	2	<u> </u>
XR ¹	R ²	R ⁴	XR ¹	<u>R</u> ²	R ⁴
C(CH ₃) ₃	Н	CF ₃	СН3	CH ₃	CF ₃

cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	СН3	CF ₃
CF ₃	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	Н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO_2
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br
CH(CH ₃) ₂	H	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
$CH=C(CH_3)_2$	Br	CF ₂ Cl	СН(СН3)2	CH ₃	CF ₃
$T = 0$, $R^3 = H$,	V - CU-N	W-N 7-N			
XR ¹	R ²	R^4	XR ¹ .	<u>R</u> ²	<u>R</u> 4
C(CH ₃) ₃	H	CF ₃	CH ₃	_	
cyclopropyl	CH ₃	_	_	CH ₃	CF ₃
CF ₃	_	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	Н	SCF ₃
	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	CH ₃	Br -
CH(CH ₃) ₂	H	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	Cl	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ CI
CH=C(CH ₃) ₂	Br	CF ₂ Cl	CH(CH ₃) ₂	CH ₃	CF ₃
$T = 0$, $R^3 = H$, Y	/ = -CH=N-,	W = N, Z = CH			
XR ¹	\mathbb{R}^2	R ⁴	XR ¹	\mathbb{R}^2	\mathbb{R}^4
C(CH ₃) ₃	н	CF ₃	CH ₃	CH ₃	CF ₃
cyclopropyl	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
CF ₃	СН3	CF ₃	C ₆ H ₅	Cl	CF ₃
CH(CH ₃) ₂	CH ₃	SCHF ₂	cyclobutyl	Н	SCF ₃
CH(CH ₃) ₂	CH ₃	SCF ₃	C(CH ₃) ₃	SCH ₃	SCF ₃
cyclopropyl	CH ₃	SCF ₃	cyclobutyl	Н	NO ₂
CH ₂ CF ₃	CH ₃	NO ₂	C(CH ₃) ₃	СН3	Br

4	•
Δ	ж

CU/CU \	••	_	1		
СH(СH ₃) ₂	н	Br	OCH ₂ CH ₃	NO ₂	Br
CH ₂ CH(CH ₃) ₂	CN	CI	1-Me-cyclopropyl	CH ₃	CF ₃
cyclopropyl	СН3	OCF ₃	C ₆ H ₅	CN	OCF ₃
OCH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	NO ₂	CF ₂ Cl
$CH=C(CH_3)_2$	Br	CF ₂ C1	CH(CH ₃) ₂	CH ₃	CF ₃

$T = 0, R^3 = H,$	n = 0				
XR ¹	\mathbb{R}^2	R^4	XR ¹	R^2	R^4
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Ci	C(CH ₃) ₃	Br	Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	СН3	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	осн(сн ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	СН3	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
1-Me-cyclopropyi	CH ₃	OCF ₃	OCH ₂ CH ₃	СН3	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	СН3	CF ₃	cycl butyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cycl butyl	CH ₃	OCF ₃

2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyi	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ F	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CH ₂ CH ₂ CI	CH ₂ CH ₃	CF ₃	CF ₃	Br	Br
C(CH ₃) ₃	CH ₂ CH ₃	CF ₃	CCl ₂ CH ₃	CH ₃	Br
C(CH ₃) ₂ Br	CH ₃	Br	CHCl ₂	CH ₃	C1
CHCICH ₃	H	CF ₃	CH(CH ₃) ₂	Н	CF ₃
СН(СН3)2	NO ₂	Br	CH ₂ CH(CH ₃) ₂	NO ₂	Br
NHCH ₃	CH ₃	CF ₃	N(CH ₃) ₂	CH ₃	CF ₃
NHCH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
$T = S, R^3 = H, n =$	0		$T = 0$, $R^4 = CF_3$,	n = 0	
XR ¹	R^2	R ⁴	XR ¹	\mathbb{R}^2	R ³
CH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	H	3-CH ₃
			cyclopropyl	Н	5-Br
			CH ₂ CH(CH ₃) ₂	н	6-CN
$T = 0$, $R^3 = H$, $n =$					
XR ¹	\mathbb{R}^2	R ⁴	XR ¹	\mathbb{R}^2	<u>R</u> 4
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	l		
	,	. OCF3	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂ OCH(CH ₃) ₂	CH ₃ Br	OCF ₃ Br
CH ₂ CH(CH ₃) ₂ CH ₂ CH(CH ₃) ₂	•	•		_	_
	Br	Br	осн(сн ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br Br	Br NO ₂	осн(сн ₃) ₂ осн(сн ₃) ₂	Br Br	Br NO ₂
CH ₂ CH(CH ₃) ₂ cyclopropyl cyclopropyl cyclopropyl	Br Br CH ₃	Br NO ₂ CF ₃	OCH(CH ₃) ₂ OCH(CH ₃) ₂ OCH ₂ CH(CH ₃) ₂	Br Br CH ₃	Br NO ₂ CF ₃
CH ₂ CH(CH ₃) ₂ cyclopropyl cyclopropyl	Br Br CH ₃	Br NO ₂ CF ₃ OCF ₃	OCH(CH ₃) ₂ OCH(CH ₃) ₂ OCH ₂ CH(CH ₃) ₂ OCH ₂ CH(CH ₃) ₂	Br Br CH ₃	Br NO ₂ CF ₃ OCF ₃
CH ₂ CH(CH ₃) ₂ cyclopropyl cyclopropyl cyclopropyl	Br Br CH ₃ CH ₃ Br	Br NO ₂ CF ₃ OCF ₃ Br	OCH(CH ₃) ₂ OCH(CH ₃) ₂ OCH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃ CH ₃	Br Br CH ₃ CH ₃ Br	Br NO ₂ CF ₃ OCF ₃ Br
CH ₂ CH(CH ₃) ₂ cyclopropyl cyclopropyl cyclopropyl cyclopropyl	Br Br CH ₃ CH ₃ Br	Br NO ₂ CF ₃ OCF ₃ Br	OCH(CH ₃) ₂ OCH(CH ₃) ₂ OCH ₂ CH(CH ₃) ₂	Br Br CH ₃ CH ₃ Br	Br NO ₂ CF ₃ OCF ₃ Br CN
CH ₂ CH(CH ₃) ₂ cyclopropyl cyclopropyl cyclopropyl cyclopropyl 1-Me-cyclopropyl	Br Br CH ₃ CH ₃ Br	Br NO ₂ CF ₃ OCF ₃ Br	OCH(CH ₃) ₂ OCH(CH ₃) ₂ OCH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃ CH ₃	Br Br CH ₃ CH ₃ Br	

I-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
СН3	CH ₃	CF ₃	CF ₃	СН3	CF ₃
ÇH₂F	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CH ₂ CH ₂ CI	CH ₂ CH ₃	CF ₃	CF ₃	Br	Br
C(CH ₃) ₃	CH ₂ CH ₃	CF ₃	CCI ₂ CH ₃	CH ₃	Br
C(CH ₃) ₂ Br	CH ₃	Br	CHCl ₂	CH ₃	Cl
CHCICH ₃	H	CF ₃	CH(CH ₃) ₂	н	CF ₃
CH(CH ₃) ₂	NO ₂	Br	CH ₂ CH(CH ₃) ₂	NO ₂	Br
NHCH ₃	CH ₃	CF ₃	N(CH ₃) ₂	CH ₃	CF ₃
NHCH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	CH ₃	OCHF ₂
cyclopentyl	CH ₃	CF ₃	cyclopentyl	СН ₂ СН ₃	CF ₃
$T = S, R^3 = H, n =$	1	٠	$T = 0$, $R^4 = CF_3$,	n = 0	
XR ¹	\mathbb{R}^2	R ⁴	XR ¹	R ²	\mathbb{R}^3
CH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	H	3-CH ₃
		-	cyclopropyl	Н	5-Br
			CH ₂ CH(CH ₃) ₂	Н	6-CN

CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	СН3	OCF ₃	ОСН(СН ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO_2	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	•	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	_	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	СН3	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br ·
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br :	Br	cyclobutyl	Br	. Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CHCl ₂	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ SCH ₃	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
(CH ₂) ₄ CH ₃	CH ₃	CF ₃	CF ₃	Br	Br
CH ₂ CH ₂ CI	CH ₃	CF ₃	CH(CH ₃) ₂	СН ₂ СН ₃	CF ₃
CH ₂ CH ₂ CF ₃	CH ₂ CH ₃	CF ₃	CHPCH ₃	CH ₃	Br
Ph	CH ₃	Br	CH(CH ₃)SCH ₃	CH ₃	Cl
C(CH ₃) ₃	Н	CF ₃	CF ₃	Н	CF ₃
C(CH ₃) ₃	NO ₂	Br	СН ₂ ОСН ₃	OCH ₃	Br
N(CH ₃)CH(CH ₃) ₂	CH ₃	CF ₃	N(CH ₃)OCH ₃	CH ₃	CF ₃
cyclopentyl	CH ₃	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
$T = S, R^3 = H, n =$			$T = 0, R^4 = CF_3,$	n = 0	
XR ¹	\mathbb{R}^2	. R ⁴	XR ¹	<u>R</u> ²	<u>R</u> ³
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	Н	3-Br
			cyclopropyl	Н	5-CN
			CH ₂ CH(CH ₃) ₂	н	6-NO ₂
					-

$T = 0$, $R^3 = H$,	n = 1				
XR I	R ²	<u>R</u> 4	XR ¹	<u>R</u> 2	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	СН3	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	СН3	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	СН3	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	осн(сн ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclo prop yl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	СН3	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	СН3	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CHCI ₂	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH₂SCH₃	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
(CH ₂) ₄ CH ₃	CH ₃	CF ₃	CF ₃	Br	Br
CH ₂ CH ₂ CI	CH ₃	CF ₃	СH(СH ₃) ₂	CH ₂ CH ₃	CF ₃
CH ₂ CH ₂ CF ₃	CH ₂ CH ₃	CF ₃	СНРСН3	СН3	Br
Ph	CH ₃	Br	CH(CH ₃)SCH ₃	CH ₃	Cl
C(CH ₃) ₃	Н	CF ₃	CF ₃	н	CF ₃
C(CH ₃) ₃	NO ₂	Br	CH ₂ OCH ₃	OCH ₃	Br
N(CH ₃)CH(CH ₃) ₂	CH ₃	CF ₃	N(CH ₃)OCH ₃	СН3	CF ₃
cyclopentyl	СН3	CF ₃	cyclopentyl	CH ₂ CH ₃	CF ₃
T. C. D	_		4		
$T = S$, $R^3 = H$, $n = 0$ XR^1		_4	$T = 0$, $R^4 = CF_3$, n	_	2
	R ²	<u>R</u> ⁴	XR ¹	R ²	\mathbb{R}^3
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	H	3-Br

cyclopropyl	н	5-CN
СH ₂ СH(СH ₃) ₂	Н	6-NO ₂

$T = 0$, $R^3 = H$, t	n = 0				
XR ¹	R^2	\mathbb{R}^4	XR ¹	R^2	\mathbb{R}^4
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br ·
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	СН3	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	осн(сн ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	осн(сн ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO_2	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
I-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
l-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclo pro pyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	СН3	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₂ CH ₂ Br	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃

4	2	4	
:		4	,

•					
$(CH_2)_2CH_3$	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CHBrCH(CH ₃	•	CF ₃	CF ₃	Br	Br
CH=C(CH ₂ Cl)	2 CH ₃	CF ₃	cyclopropyl	CH ₂ CH ₃	CF ₃
C(CH ₃) ₂ CH ₂ C	CH ₂ CH ₃	CF ₃	C(CH ₃) ₂ OCH ₃	CH ₃	Br
$CH_2C(CH_3)=C$:H ₂ CH ₃	Cl	CH ₂ CHF ₂	Br	Br
C(CH ₃) ₂ OCH ₃	SCH ₃	Br	CF ₃	СН2СН3	Br
NHCH ₂ CH ₃	Br	CF ₃	N(CH ₃)CH ₂ CH ₃	Br Br	CF ₃
1					3
$T = S, R^3 = H,$	· ·		$T = 0, R^4 = CF_3$, n = 0	
XR^1	R ²	R ⁴	XR ¹	\mathbb{R}^2	R ³
C(CH ₃) ₃	CH ₃	CF ₃	CH(CH ₃) ₂	Н	3-F
			CH(CH ₃) ₂	H	5-SCF ₃
			CH(CH ₃) ₂	Н	6-C1
$T = 0$, $R^3 = H$	n=1				
XR ¹	\mathbb{R}^2	R ⁴	XR ¹	<u>R</u> ²	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	OCF ₃
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	Br Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	Br	Br [°]	OCH(CH ₃) ₂	Br	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	Br
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	NO ₂
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃ OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
1-Me-cyclopropyl		OCF ₃	OCH ₂ CH ₃	CH ₃	
i-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br .	OCF ₃ Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
		-	• • •		 3

•					
CH ₂ CH ₂ Br	CH ₃	CF ₃	CF ₃	СН3	CF ₃
(CH ₂) ₂ CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CHBrCH(CH ₃) ₂	CH ₃	CF ₃	CF ₃	Br	Br
CH=C(CH ₂ Cl) ₂	CH ₃	CF ₃	cyclopropyl	CH ₂ CH ₃	CF ₃
C(CH ₃) ₂ CH ₂ CI	CH ₂ CH ₃	CF ₃	C(CH ₃) ₂ OCH ₃	СН3	Br
$CH_2C(CH_3)=CH_2$	CH ₃	Cl	CH ₂ CHF ₂	Br	Br
C(CH ₃) ₂ OCH ₃	SCH ₃	Br	CF ₃	CH ₂ CH ₃	Br
NHCH ₂ CH ₃	Br	CF ₃	N(CH ₃)CH ₂ CH ₃	Br	CF ₃
$T = S$, $R^3 = H$, $n = 0$	0		$T = 0, R^4 = CF_3,$	n = 0	
XR ¹	R^2	\mathbb{R}^4	XR ¹	R ²	\mathbb{R}^3
C(CH ₃) ₃	CH ₃	CF ₃	CH(CH ₃) ₂	Н	3-F
			CH(CH ₃) ₂	Н	5-SCF ₃
			CH(CH ₃) ₂	Н	6-C1

$T = 0$, $R^3 = H$,	n = 0				
<u>XR</u> 1	R ²	\mathbb{R}^4	XR ¹	\mathbb{R}^2	\mathbb{R}^4
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	СН3	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
СH(СH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	CI
$CH_2CH(CH_3)_2$	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
$CH_2CH(CH_3)_2$	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	ОСН(СН ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cycl propyl	СН3	CF ₃	осн ₂ сн(сн ₃) ₂	СН3	CF ₃

cyclopropyl	CH ₃	OCF ₃	осн ₂ сн(сн ₃) ₂	СН3	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
I-Me-cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
I-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br .	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₂ -cyclopropyl	CH ₃	CF ₃	CF ₃	СН3	CF ₃
CH ₂ OCH ₃	CH ₃	CF ₃	CF ₃	СН3	OCF ₃
$C(CH_3)=CH_2$	CH ₃	CF ₃	CF ₃	Br	Br
C(CH ₃) ₂ Br	СН3	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃
1-Me-cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃)CH ₂ CH ₃	CH ₃	Br
$CH=C(CH_3)_2$	CH ₃	Br	CH ₂ SCH ₃	CH ₂ SCH ₃	Br
CH(CH ₃) ₂	CH ₂ OCH ₃	CF ₃	N(CH ₃)OCH ₃	CH ₃	CF ₃
$T = S, R^3 = H, n =$	_	4	$T = 0$, $R^4 = CF_3$,	n = 0	
XR ¹	R ²	R ⁴	, XR ¹	<u>R</u> ²	\mathbb{R}^3
cyclopropyl	CH ₃	CF ₃	CH(CH ₃) ₂	H	3-CH ₂ OCH ₃
cyclobutyl	CH ₃	CF ₃	CH(CH ₃) ₂	Н	5-N(CH ₃) ₂
			CH(CH ₃) ₂	Н	6-CH ₂ SCH ₃
$T = 0$, $R^3 = H$, n	- 1				
XR^1	R ²	R ⁴		_2	4
CH(CH ₃) ₂	CH ₃	•	XR ¹	R ²	<u>R</u> 4
CH(CH ₃) ₂	CH ₃	CF ₃ OCF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	Br
CH ₂ CH(CH ₃) ₂	CH ₃		C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	•	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃ Br	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br NO-	OCH(CH ₃) ₂	Br	Br
cyclopropyl		NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cheichtobai	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃

cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	осн ₂ сн ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₂ -cyclopropyl	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ OCH ₃	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
$C(CH_3)=CH_2$	CH ₃	CF ₃	CF ₃	Br	Br
C(CH ₃) ₂ Br	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃
1-Me-cyclopropyl	CH ₂ CH ₃	CF ₃	CH(CH ₃)CH ₂ CH ₃	CH ₃	Br
$CH=C(CH_3)_2$	CH ₃	Br	CH ₂ SCH ₃	CH ₂ SCH ₃	Br
CH(CH ₃) ₂	CH ₂ OCH ₃	CF ₃	N(CH ₃)OCH ₃	CH ₃	CF ₃
T 0 D3			•		
$T = S, R^3 = H, n = 0$			$T = 0$, $R^4 = CF_3$, n	= 0	
XR ¹	\mathbb{R}^2	R ⁴	XR ¹	<u>R</u> ²	\mathbb{R}^3
cyclopropy)	CH ₃	CF ₃	CH(CH ₃) ₂	H	3-CH ₂ OCH ₃
cyclobutyl	CH ₃	CF ₃	CH(CH ₃) ₂	Н	5-N(CH ₃) ₂
		!	CH(CH ₃) ₂	н	6-CH ₂ SCH ₃

58 <u>TABLE 6</u>

$T = O, R^3 = H,$	n = 0				
XR ¹	R ²	R^4	XR ¹	\mathbb{R}^2	R^4
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
СH(СH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
СH(СН ₃) ₂	Br	Cì	C(CH ₃) ₃	Br	Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF₃	OCH(CH ₃) ₂	СН3	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	СН3	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	осн(сн ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclo propyl	СН3	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
l-Me-cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	СН3	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	осн ₂ сн ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	осн ₂ сн ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	СН3	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CF ₃	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CF ₃	Br	Br	СH(СH ₃) ₂	CH ₃	OCHF ₂

XR1 R2 R4 XR1 R2 R4 CH(CH3)2 CH3 CF3 C(CH3)3 CH3 CF3 CH(CH3)2 CH3 OCF3 C(CH3)3 CH3 OCF3 CH(CH3)2 Br Br C(CH3)3 Br Br CH(CH3)2 Br CI C(CH3)3 Br CI CH2CH(CH3)2 CH3 CF3 OCH(CH3)2 CH3 CF3 CH2CH(CH3)2 CH3 OCF3 OCH(CH3)2 CH3 OCF3 CH2CH(CH3)2 Br Br OCH(CH3)2 Br Br CH2CH(CH3)2 Br NO2 OCH(CH3)2 Br NO2 cyclopropyl CH3 CF3 OCH2CH(CH3)2 CH3 CF3 cyclopropyl CH3 OCF3 OCH2CH(CH3)2 CH3 OCF3 cyclopropyl Br Br OCH2CH(CH3)2 CH3 OCF3 cyclopropyl Br Br OCH2CH(CH3)2 Br Br	$T = \Omega$, $R^3 = H$,	n = 1				
CH(CH ₃) ₂ CH ₃ CF ₃ C(CH ₃) ₃ CH ₃ CF ₃ CH(CH ₃) ₂ CH ₃ OCF ₃ C(CH ₃) ₃ CH ₃ OCF ₃ CH(CH ₃) ₂ Br Br C(CH ₃) ₃ Br Br CH ₂ CH(CH ₃) ₂ CH ₃ CF ₃ OCH(CH ₃) ₂ CH ₃ CF ₃ CH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ OCH(CH ₃) ₂ CH ₃ OCF ₃ CH ₂ CH(CH ₃) ₂ Br Br OCH(CH ₃) ₂ Br Br CH ₂ CH(CH ₃) ₂ Br NO ₂ OCH(CH ₃) ₂ Br NO ₂ cyclopropyl CH ₃ CF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ CF ₃ cyclopropyl CH ₃ OCF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ cyclopropyl CH ₃ OCF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ cyclopropyl Br Br OCH ₂ CH(CH ₃) ₂ Br Br	XR ¹	R ²	<u>R</u> 4	XR ¹	R^2	R ⁴
CH(CH ₃) ₂ CH ₃ OCF ₃ C(CH ₃) ₃ CH ₃ OCF ₃ CH(CH ₃) ₂ Br Br C(CH ₃) ₃ Br Br CH(CH ₃) ₂ Br CI C(CH ₃) ₃ Br CI CH ₂ CH(CH ₃) ₂ CH ₃ CF ₃ OCH(CH ₃) ₂ CH ₃ OCF ₃ CH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ OCH(CH ₃) ₂ Br Br CH ₂ CH(CH ₃) ₂ Br NO ₂ OCH(CH ₃) ₂ Br NO ₂ CH ₂ CH(CH ₃) ₂ Br NO ₂ OCH ₂ CH(CH ₃) ₂ CH ₃ CF ₃ cyclopropyl CH ₃ OCF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ cyclopropyl CH ₃ OCF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ cyclopropyl Br Br OCH ₂ CH(CH ₃) ₂ Br Br		CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	
CH(CH ₃) ₂ Br Br C(CH ₃) ₃ Br Br CH(CH ₃) ₂ Br Cl C(CH ₃) ₃ Br Cl CH ₂ CH(CH ₃) ₂ CH ₃ CF ₃ OCH(CH ₃) ₂ CH ₃ CF ₃ CH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ OCH(CH ₃) ₂ CH ₃ OCF ₃ CH ₂ CH(CH ₃) ₂ Br Br OCH(CH ₃) ₂ Br Br CH ₂ CH(CH ₃) ₂ Br NO ₂ OCH(CH ₃) ₂ Br NO ₂ cyclopropyl CH ₃ CF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ CF ₃ cyclopropyl CH ₃ OCF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ cyclopropyl Br Br Br OCH ₂ CH(CH ₃) ₂ Br Br	CH(CH ₃) ₂	CH ₃	OCF ₃	· · ·	_	_
CH(CH ₃) ₂ Br CI C(CH ₃) ₃ Br CI CH ₂ CH(CH ₃) ₂ CH ₃ CF ₃ OCH(CH ₃) ₂ CH ₃ CF ₃ CH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ OCH(CH ₃) ₂ CH ₃ OCF ₃ CH ₂ CH(CH ₃) ₂ Br Br OCH(CH ₃) ₂ Br Br CH ₂ CH(CH ₃) ₂ Br NO ₂ OCH(CH ₃) ₂ Br NO ₂ cyclopropyl CH ₃ CF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ CF ₃ cyclopropyl CH ₃ OCF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ cyclopropyl Br Br Br OCH ₂ CH(CH ₃) ₂ Br Br		Br	Br	C(CH ₃) ₃	_	-
CH2CH(CH3)2 CH3 CF3 OCH(CH3)2 CH3 CF3 CH2CH(CH3)2 CH3 OCF3 OCH(CH3)2 CH3 OCF3 CH2CH(CH3)2 Br Br OCH(CH3)2 Br Br CH2CH(CH3)2 Br NO2 OCH(CH3)2 Br NO2 cyclopropyl CH3 CF3 OCH2CH(CH3)2 CH3 CF3 cyclopropyl CH3 OCF3 OCH2CH(CH3)2 CH3 OCF3 cyclopropyl Br Br OCH2CH(CH3)2 Br Br	СH(СH ₃) ₂	Br	CI .	i i	Br	Cl
CH2CH(CH3)2 CH3 OCF3 OCH(CH3)2 CH3 OCF3 CH2CH(CH3)2 Br Br OCH(CH3)2 Br Br CH2CH(CH3)2 Br NO2 OCH(CH3)2 Br NO2 cyclopropyl CH3 CF3 OCH2CH(CH3)2 CH3 CF3 cyclopropyl CH3 OCF3 OCH2CH(CH3)2 CH3 OCF3 cyclopropyl Br Br OCH2CH(CH3)2 Br Br	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃		CH ₃	CF ₃
CH2CH(CH3)2 Br Br OCH(CH3)2 Br Br CH2CH(CH3)2 Br NO2 OCH(CH3)2 Br NO2 cyclopropyl CH3 CF3 OCH2CH(CH3)2 CH3 CF3 cyclopropyl CH3 OCF3 OCH2CH(CH3)2 CH3 OCF3 cyclopropyl Br Br OCH2CH(CH3)2 Br Br	CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃		-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ CH(CH ₃) ₂	Br	Br		-	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ CH(CH ₃) ₂	Br	NO ₂		Br	NO ₂
cyclopropyl CH ₃ OCF ₃ OCH ₂ CH(CH ₃) ₂ CH ₃ OCF ₃ cyclopropyl Br Br OCH ₂ CH(CH ₃) ₂ Br Br	cyclopropyl	CH ₃	CF ₃	1	СН3	-
cyclopropyl Br Br OCH ₂ CH(CH ₃) ₂ Br Br	cyclo pro pył	СН3	OCF ₃		_	-
· · · · · · · · · · · · · · · · · · ·	cyclo pro pyl	Br	Br	1	Br	•
cyclopropyl Br CN $OCH_2CH(CH_3)_2$ Br CN	cyclopropyl	Br	CN		. Br	CN
i-Me-cyclopropyi CH ₃ CF ₃ OCH ₂ CH ₃ CH ₃ CF ₃	l-Me-cyclopropyl	CH ₃	CF ₃	осн ₂ сн ₃	CH ₃	CF ₃
1-Me-cyclopropyl CH ₃ OCF ₃ OCH ₂ CH ₃ CH ₃ OCF ₃	1-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	-	=
1-Me-cyclopropyl Br Br OCH ₂ CH ₃ Br Br	1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	-
1-Me-cyclopropyl Br SCF ₃ OCH ₂ CH ₃ Br SCF ₃	1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl CH ₃ CF ₃ cyclobutyl CH ₃ CF ₃		CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl CH ₃ OCF ₃ cyclobutyl CH ₃ OCF ₃	2-Me-cyclopropyi	CH ₃	OCF ₃	cyclobutyl	CH ₃	
2-Me-cyclopropyl Br Br cyclobutyl Br Br	2-Me-cyclopropyl	Br	Br	cyclobutyi	Br	Br
2-Me-cyclopropyl Br CF ₃ cyclobutyl Br CF ₃		Br	CF ₃	cyclobutyl	Br	CF ₃
CF ₃ CH ₃ CF ₃ CF ₃ CH ₃ OCF ₃	•	CH ₃	CF ₃	CF ₃	СН3	•
CF ₃ Br Br CH(CH ₃) ₂ CH ₃ OCHF ₂	CF ₃	Br	Br	СH(СН ₃) ₂	_	-

$$R^2$$
 R^3
 $(CH_2)_n$
 N
 N
 R^4

$T = O, R^3 = H,$	n = 0				
XR ¹	R ²	R ⁴	XR ¹	\mathbb{R}^2	\mathbb{R}^4
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
СH(СH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	СН3	OCF ₃
СH(СH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	осн(сн ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	СН3	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	СН3	OCF ₃	cyclobutyl	СН3	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CF ₃	CH ₃	CF ₃	CF ₃	СН3	OCF ₃
CF ₃	Br	Br	CH(CH ₃) ₂	CH ₃	OCHF ₂

$T = O$, $R^3 = H$, t	1 = l				
XR ¹	${\tt R}^2$	R ⁴	XR ¹	\mathbb{R}^2	\mathbb{R}^4
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	СН3	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
СH(СH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	осн(сн ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	·CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	осн ₂ сн ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	осн ₂ сн ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CF ₃	CH ₃	CF ₃	CF ₃	СН3	OCF ₃
CF ₃	Br	Br	СН(СН ₃)2	CH ₃	OCHF ₂

$T = O, R^3 = H$					
XR ¹	R ²	R ⁴	XR ¹	<u>R</u> ²	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	Cl
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	СН3	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
$CH_2CH(CH_3)_2$	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	СН3	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
I-Me-cyclopropyl	CH ₃	OCF ₃	осн ₂ сн ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	сн3	CF ₃	cyclobutyl	СН3	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	СН3	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₃	СН3	CF ₃	CF ₃	СН3	CF ₃
CH ₂ F	CH ₃	CF ₃	CF ₃	СН3	OCF ₃
CH ₂ CH ₂ CI	CH ₂ CH ₃	CF ₃	CF ₃	Br	Br
CCI ₂ CH ₃	CH ₃	Br	C(CH ₃) ₂	СН ₂ СН ₃	CF ₃
CHCI ₂	CH ₃	Cl	C(CH ₃) ₂ Br	CH ₃	Br
				-	

4	e	~
r	٦	4

CH(CH ₃) ₂	Н	CF ₃	СНСІСН3	Н	CF ₃
$CH_2CH(CH_3)_2$	NO ₂	Br	CH(CH ₃) ₂	NO ₂	Br
N(CH ₃) ₂	CH ₃	CF ₃	NHCH ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCHF ₂	NHCH(CH ₃) ₂	CH ₃	CF ₃
$T = S$, $R^3 = H$			$T = 0$, $R^4 = CF_3$		
XR ¹	R ²	R ⁴	XR ¹	<u>R</u> 2	R ³
CH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	Н	3-CH ₃
•			cyclopropyl	Н	5-Br
			CH ₂ CH(CH ₃) ₂	Н	6-CN

$T = 0, R^3 = H$					
XR ¹	R ²	R ⁴	XR ¹	\mathbb{R}^2	R ⁴
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	СН3	OCF ₃
CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	CI	C(CH ₃) ₃	Br	Ci
$CH_2CH(CH_3)_2$	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
$CH_2CH(CH_3)_2$	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br -
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	СН3	CF ₃	OCH ₂ CH ₃	СН3	CF ₃
1-Me-cycl propyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₂

I-Me-cyclopropyl	Br	Br	осн ₂ сн ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CHCl ₂	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
CH ₂ SCH ₃	CH ₃	CF ₃	CF ₃	Br	Br
(CH ₂) ₄ CH ₃	CH ₃	CF ₃	CH ₂ CH ₂ Cl	СН3	CF ₃
CH(CH ₃) ₂	CH ₂ CH ₃	°CF ₃	CH ₂ CH ₂ CF ₃	CH ₂ CH ₃	CF ₃
CHFCH ₃	CH ₃	Br	Ph	CH ₃	Br
CH(CH ₃)SCH ₃	CH ₃	Cl	C(CH ₃) ₃	Н	CF ₃
CF ₃	Н	CF ₃	C(CH ₃) ₃	NO ₂	Br
CH ₂ OCH ₃	OCH ₃	Br	N(CH ₃)CH(CH ₃) ₂	CH ₃	CF ₃
N(CH ₃)OCH ₃	CH ₃	CF ₃	СH(СН ₃) ₂	CH ₃	OCHF ₂
$T = S$, $R^3 = H$					
XR ¹	R ²	_4	$T = 0, R^4 = CF_3$	2	•
		R ⁴	, XR¹	R ²	\mathbb{R}^3
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	CH(CH ₃) ₂	H	3-Br
			cyclopropyl	н	5-CN
			CH ₂ CH(CH ₃) ₂	Н	6-NO ₂

$T = 0, R^3 = H$					
XR ¹	R ²	R ⁴	XR ¹	\mathbb{R}^2	\mathbb{R}^4
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃

CH(CH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
СH(СН ₃) ₂	Br	CI	C(CH ₃) ₃	Br	CI
CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	OCH(CH ₃) ₂	CH ₃	OCF ₃
$CH_2CH(CH_3)_2$	Br	Br	OCH(CH ₃) ₂	Br	Br
CH ₂ CH(CH ₃) ₂	Br	NO_2	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	СН3	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclopropyl	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	CH ₃	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
СН3	CH ₃	CF ₃	CF ₃	CH ₃	CF ₃
CH ₂ CH ₂ Br	CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃
(CH2)2CH3	CH ₃	CF ₃	CF ₃	Br	Br
CHBrCH(CH ₃) ₂	CH ₃	CF ₃	CH=C(CH ₂ Cl) ₂	CH ₃	CF ₃
cyclopropyl	CH ₂ CH ₃	CF ₃	C(CH ₃) ₂ CH ₂ Cl	CH ₂ CH ₃	CF ₃
C(CH ₃) ₂ OCH ₃	CH ₃	Br	CH ₂ C(CH ₃)=CH ₂	CH ₃	Cl
CH ₂ CHF ₂	Br	Br	C(CH ₃) ₂ OCH ₃	SCH ₃	Br
CF ₃	CH ₂ CH ₃	Br	NHCH ₂ CH ₃	Br	CF ₃
N(CH ₃)CH ₂ CH ₃	Br	CF ₃	СН(СН3)2	СН3	OCHF ₂
$T = S, R^3 = H$			$T = 0$, $R^4 = CF_3$	·	
XR ¹	R ²	<u>R</u> 4	XR ¹	\mathbb{R}^2	\mathbb{R}^3
C(CH ₃) ₃	CH ₃	CF ₃	CH(CH ₃) ₂	Н	3-F
			CH(CH ₃) ₂	Н	5-SCF ₃
			CH(CH ₃) ₂	Н	6-CI
					٠.

 $T = 0, R^3 = H$

66 Table (1

1 - 0, K - H					
XR ¹	\mathbb{R}^2	R^4	XR ¹	R ²	\mathbb{R}^4
CH(CH ₃) ₂	CH ₃	CF ₃	C(CH ₃) ₃	CH ₃	CF ₃
CH(CH ₃) ₂	CH ₃	OCF ₃	C(CH ₃) ₃	CH ₃	OCF ₃
СH(СH ₃) ₂	Br	Br	C(CH ₃) ₃	Br	Br
CH(CH ₃) ₂	Br	Cl	C(CH ₃) ₃	Br	CI
$CH_2CH(CH_3)_2$	CH ₃	CF ₃	OCH(CH ₃) ₂	CH ₃	CF ₃
CH ₂ CH(CH ₃) ₂	CH ₃	OCF ₃	ОСН(СН ₃) ₂	CH ₃	OCF ₃
CH ₂ CH(CH ₃) ₂	Br	Br	OCH(CH ₃) ₂	Br	Br
$CH_2CH(CH_3)_2$	Br	NO ₂	OCH(CH ₃) ₂	Br	NO ₂
cyclopropyl	CH ₃	CF ₃	OCH ₂ CH(CH ₃) ₂	СН3	CF ₃
cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH(CH ₃) ₂	СН3	OCF ₃
cyclopropyl	Br	Br	OCH ₂ CH(CH ₃) ₂	Br	Br
cyclopropyl	Br	CN	OCH ₂ CH(CH ₃) ₂	Br	CN
1-Me-cyclopropyl	CH ₃	CF ₃	OCH ₂ CH ₃	CH ₃	CF ₃
1-Me-cyclopropyl	CH ₃	OCF ₃	OCH ₂ CH ₃	CH ₃	OCF ₃
1-Me-cyclopropyi	Br	Br	OCH ₂ CH ₃	Br	Br
1-Me-cyclopropyl	Br	SCF ₃	OCH ₂ CH ₃	Br	SCF ₃
2-Me-cyclopropyl	CH ₃	CF ₃	cyclobutyl	СН3	CF ₃
2-Me-cyclopropyl	CH ₃	OCF ₃	cyclobutyl	CH ₃	OCF ₃
2-Me-cyclopropyl	Br	Br ·	cyclobutyl	Br	Br
2-Me-cyclopropyl	Br	CF ₃	cyclobutyl	Br	CF ₃
CH ₃	CH ₃	CF ₃	CF ₃	СН3	CF ₃
CH ₂ -cyclopropyl	CH ₃	CF ₃	CF ₃	СН3	OCF ₃
CH ₂ OCH ₃	CH ₃	CF ₃	CF ₃	Br	Br
$C(CH_3)=CH_2$	CH ₃	CF ₃	CH ₂ CH(CH ₃) ₂	СН ₂ СН ₃	CF ₃
C(CH ₃) ₂ Br	CH ₃	CF ₃	CH(CH ₃)CH ₂ CH ₂	CH ₃	Br
				-	

10

15-

20

I-Me-cyclopropyl	сн ₂ сн ₃	CF ₃	CH ₂ SCH ₃	CH ₂ SCH ₃	Br
CH=C(CH ₃) ₂	CH ₃	Br	N(CH ₃)OCH ₃	CH ₃	CF ₃
CH(CH ₃) ₂	СН ₂ ОСН ₃	CF ₃	CH(CH ₃) ₂	CH ₃	OCHF ₂
$T = S$, $R^3 = H$			$T = 0, R^4 = CF_3$		
XR ¹	R ²	R ⁴	XR ¹	R^2	\mathbb{R}^3
cyclopropyl	CH ₃	CF ₃	CH(CH ₃) ₂	H	3-CH ₂ OCH ₃
cyclobutyl	CH ₃	CF ₃	CH(CH ₃) ₂	Н	5-N(CH ₃) ₂
			CH(CH ₃) ₂	Н	6-CH ₂ SCH ₃

Formulation/Utility

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

15

20

25

	Weight Percent		
	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5–90	0–94	1–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	40-95	0–15
Dusts Granules and Pellets	1–25 0.01 –99	70-99 5-99.99	0-5 0-15
High Strength Compositions	90-99	0_10	0.2

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, N,N-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, N,N-dimethylformamide, dimethyl sulfoxide, N-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the

active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught

U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361,

10 Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed.,

15 Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-D.

	Example A	
20	High Strength Concentrate	
	Compound 4	98.5%
•	silica aerogel	0.5%
	synthetic amorphous fine silica	1.0%.
	Example B	
25	Wettable Powder	
	Compound 41	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
30	montmorillonite (calcined)	23.0%.
	Example C	
	Granule	
	Compound 4	10.0%
	attapulgite granules (low volatile matter,	
35	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.

15

20

25

30

35

70

Example D

Extruded Pellet

Compound 41	25.0%
anhydrous sodium sulfate	10.0%
crude calcium ligninsulfonate	5.0%
sodium alkylnaphthalenesulfonate	1.0%
calcium/magnesium bentonite	59.0%

Test results indicate that the compounds of the present invention are highly active preemergent and postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where 10 complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Some of the compounds are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops which include but are not limited to barley, cotton, wheat, rape, sugar beets, corn (maize), soybeans, rice, oats, peanuts, vegetables, tomato, potato, and plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea, forests such as eucalyptus and conifers, e.g., loblolly pine, and turf species, e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass. Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides or fungicides. Compounds of this invention can also be used in combination with commercial herbicide safeners such as benoxacor, dichlormid and furilazole to increase safety to certain crops. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, bifenox, bromacil, bromoxynil, bromoxynil octanoate, butachlor, butralin, butylate, chlomethoxyfen, chloramben, chlorbromuron, chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clomazone, clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its

15

20

25

30

dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1Himidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid (AC 263,222), difenzoquat metilsulfate, diflufenican, dimepiperate, dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethofumesate, ethyl $\alpha, 2\text{-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1}\textit{H-1,2,4-triazol-1-yl]-}$ 4-fluorobenzenepropanoate (F8426), fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, fluridone, flurochloridone, fluroxypyr, fomesafen, fosamine-ammonium, glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium, glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox (AC 299 263). imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isoxaben, isoxaflutole (RPA 201772), lactofen, lenacil, linuron, maleic hydrazide, MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, mecoprop, mecoprop-P, mefenacet, mefluidide, metam-sodium, methabenzthiazuron, methyl [[2chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4-a]pyridazin-1ylidene)amino]phenyl]thioacetate (KIH 9201), methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyl [[[1-[5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2-methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-4-carboxylate (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, napropamide, naptalam, neburon, nicosulfuron, norflurazon, oryzalin, oxadiazon, 3-oxetanyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoate (CGA 277476), oxyfluorfen, paraquat dichloride, pebulate, pendimethalin, perfluidone, phenmedipham, picloram, picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propyzamide, prosulfuron, pyrazolynate, pyrazosulfuron-ethyl, pyridate, pyrithiobac, pyrithiobac-sodium, quinclorac, quizalofop-ethyl, quizalofop-P-ethyl,

quizalofop-P-tefuryl, rimsulfuron, sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone, sulfometuron-methyl, TCA, TCA-sodium, tebuthiuron,

35

terbacil, terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390), thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trifluralin, triflusulfuron-methyl, and vernolate.

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds.

Preferred for better control of undesired vegetation (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds are mixtures of a compound of this invention with a 10 herbicide selected from the group atrazine, chlorimuron-ethyl, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, norflurazon, and pyrithiobac. Specifically preferred mixtures (compound numbers refer to compounds in Index Tables A-D) are selected from the group: compound 1 and atrazine; compound 1 and chlorimuron-ethyl; compound 1 and imazaquin; compound 1 and imazethapyr; 15 compound 1 and norflurazon; compound 1 and pyrithiobac; compound 4 and atrazine; compound 4 and chlorimuron-ethyl; compound 4 and imazaquin; compound 4 and imazethapyr; compound 4 and norflurazon; compound 4 and pyrithiobac; compound 40 and atrazine; compound 40 and chlorimuron-ethyl; compound 40 and imazaquin; compound 40 and imazethapyr; compound 40 and norflurazon; compound 40 and 20 pyrithiobac; compound 41 and atrazine; compound 41 and chlorimuron-ethyl; compound 41 and imazaquin; compound 41 and imazethapyr; compound 41 and norflurazon; compound 41 and pyrithiobac; compound 42 and atrazine; compound 42 and chlorimuron-ethyl; compound 42 and imazaquin; compound 42 and imazethapyr; compound 42 and norflurazon; compound 42 and pyrithiobac; compound 46 and 25 atrazine; compound 46 and chlorimuron-ethyl; compound 46 and imazaquin; compound 46 and imazethapyr; compound 46 and norflurazon; compound 46 and pyrithiobac; compound 133 and atrazine; compound 133 and chlorimuron-ethyl; compound 133 and imazaquin; compound 133 and imazethapyr; compound 133 and 30 norflurazon; and compound 133 and pyrithiobac.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range of 0.004 to 1.0 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-D for compound descriptions. The following abbreviations are used in the Index Tables which follow: n = normal, i = iso, Pr = propyl, i - Pr = isopropyl, Pr = butyl, Pr = propyl, and Pr = normal. The abbreviation "dec" indicates that the compound appeared to decompose on melting. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

INDEX TABLE A

10

<u>C</u> n	npd No.	X	¥	Z	$\underline{\mathbf{w}}$	<u>R</u> 1	<u>R</u> 2	<u>R</u> 4	m.p. (°C)
1	Ex. 1	bond	S	N	N	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	177-178
2		0	S	N	N	CH(CH ₃) ₂	CH ₃	CF ₃	149-150
3		bond	S	N	N	CH(CH ₃) ₂	CH ₃	CF ₃	197-198
4		bond	S	N	N	cyclopropyl	CH ₃	CF ₃	200-201
5		bond	S	N	N	CF ₃	CH ₃	CF ₃	64 (dec)
6		bond	S .	N	N	C(CH ₃) ₃	СН3	CF ₃	168-170
7		bond	S	N	N	cyclobutyl	CH ₃	CF ₃	200-201
8		bond	S	N	N	cyclopentyl	CH ₃	CF ₃	179-182
9		bond	S	N	N	1-CH ₃ -cyclopropyl	CH ₃	CF ₃	152-155
10		bond	S .	N	N	2-CH ₃ -cyclopropyl	CH ₃	CF ₃	180-184
11		bond	S	N	N	CF ₂ Cl	CH ₃	CF ₃	104-106
12		bond	S	N	N	cyclopentyl	CH ₂ CH ₃	CF ₃	167-170
13		bond	S	N	N	cyclobutyl	CH ₂ CH ₃	CF ₃	176-178
14		bond	S	N	N	сусіо рго руі	CH ₂ CH ₃	CF ₃	184-186
15		bond	S	N	N	1-CH ₃ -cyclopropyl	CH ₂ CH ₃	CF ₃	139-142
16		bond	S	N	N	1-CH ₃ -cyclopropyl	Cl	CF ₃	150-153
17		bond	S	N	N	cyclopentyl	Cl	CF ₃	178-181

18	bond	S	N	N	cyclobutyl	, CI	CF ₃	185-188
19	bond	S	N	N	cyclopropyl	Cl	CF ₃	195-198
20	bond	S	N.	N	CF ₂ CI	CH ₂ CH ₃	CF ₃	123-125
21	bond	S	N	N	CF ₂ Cl	Cı	CF ₃	103-109
22	bond	S	N	N	2-CH ₃ -cyclopropyl	СН2СН3	CF ₃	167-170
23	bond	S	N	N	2-CH ₃ -cyclopropyl	Cl	CF ₃	180-182
24	bond	S	·N	, N	CF ₂ CF ₃	СН3	CF ₃	126-129
25	bond	S	N	N	CF ₂ CF ₃	CH ₂ CH ₃	CF ₃	145-147
26	bond	S	N	N	CF ₂ CF ₃	CI	CF ₃	118-120
27	bond	S	N	N	CF ₂ CF ₃	Br	CF ₃	94-100 (dec)
28	bond	S	N	N	cyclopentyl	Br	CF ₃	181-183
29	bond	S	N	N	cyclobutyl	Br	CF ₃	187-190
30	bond	S	N	N	cyclopropyl	Br	CF ₃	200-202
31	bond	S	N	N	2-CH ₃ -cyclopropyl	Br	CF ₃	185-187
32	bond	S	N	N	1-CH ₃ -cyclopropyl	Br	CF ₃	165-168
33	bond	S	N	N	CF ₂ Cl	Br	CF ₃	156-159
34	bond	S	N	N	CH(CH ₃) ₂	CH ₂ CH ₃	CF ₃	154-157
35	bond	S	N	N	CH(CH ₃) ₂	Cl	CF ₃	189-192
36	bond	S	N	N	CH(CH ₃) ₂	Br	CF ₃	188-190
37	bond	S	N	N	cyclo pro pyl	осн ₃	CF ₃	189-193
38	bond	S	N	N	CH(CH ₃) ₂	осн ₃	CF ₃	173-175
39	bond	S	N	N	CF ₂ CF ₃	OCH ₃	CF ₃	112-115

INDEX TABLE B

Cmpd No.	I	X	Z	$\underline{\mathbf{w}}$	<u>v</u>	<u>R1</u>	<u>R²</u>	R ⁴	D	m.p. (°C)
40 Ex. 3	0	bond	CH	N	CH	CH(CH ₃) ₂				
41 Ex. 5	0	bond	CH	N	CH	cyclopropyl	_	•		

40° E., 4										
42 Ex. (CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	0	102-103
43	C					2-CH ₃ -cyclopropy	-	CF ₃	0	122-123
44	C					$CH=C(CH_3)_2$	CH ₃	CF ₃	0	90-91
45	0		СН			CH(CH ₃) ₂	CH ₃	CF ₃	0	63-65
46 Ex. 2				_		CH(CH ₃) ₂	CH ₃	CF ₃	1	125-125.5
47	0				CH	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	1	125-125.5
48	0				CH	CF ₃	CH ₃	CF ₃	1	158-160
49	0	_	CH		CH	CH(CH ₃) ₂	CH ₃	CF ₃	1	123-123.5
50	0			N	CH	cyclopropyl	CH ₃	CF ₃	1	145-145.5
51	0		CH	N	CH .	C(CH ₃) ₃	CH ₃	CF ₃	1	122-123
52	0	bond	CH	Ŋ	CCH ₃	cyclopropyl	СН3	CF ₃	1	137-138
53	0	bond	CH	N	CCH ₃	$CH(CH_3)_2$	CH ₃	CF ₃	1	112-113
54	0	0	CH	N	CCH ₃	CH(CH ₃) ₂	CH ₃	CF ₃	1	101-102
55	.0	bond	CH	N	CCH ₃	CF ₃	CH ₃	CF ₃	1	120-121
56	0	bond	CH	N	CH	CF ₃	CI	CF ₃	1	114-115
57	0	0	CH	N	CH	CH(CH ₃) ₂	Cl	CF ₃	1	127-129
58	0	bond	CH	N	CH	CH(CH ₃) ₂	Cl	CF ₃	1	132-133
59	0	bond	CH	N	CH	cyclopropyl	Cl	CF ₃	1	150-151
60	0	bond	CH	N	CH	CH(CH ₃) ₂	CH ₃	Br	1	130-132
61	0	bond	CH	N	CH	cyclopropyl	CH ₃	Br	1	126 (dec)
62	0	0	CH	N	CH	CH(CH ₃) ₂	СН3	Br	1	90 (dec)
63	0	bond	CH	N	CH	CF ₃	CH ₃	Br	1	188-189
64	0	bond	CH	N	CH	CH(CH ₃) ₂	Н	CF ₃	1	111-113
65	0	bond	CH	N	CH	cyclopropyl	н	CF ₃	1	146-147
66	0	0	CH	N	CH	CH(CH ₃) ₂	н	CF ₃	1	143-144
67	0	bond	CH	N	CH	CF ₃	H	CF ₃	1	102-103
68	0	bond	CH	N	CH	CF ₂ CI	СН3	CF ₃	1	136-137
69	0	bond	CH	N	CH	CH(CH ₃) ₂	CH ₃	CF ₂ Cl	1	126-127
70	0	bond	CH	N	CH	CH ₂ CI	CH ₃	CF ₃	1	106-107
71	0	bond	CH	N	CH	CHCl ₂	СН3	CF ₃	1	108-109
72	0	bond	CH	N	CH	CCI ₃	СН3	CF ₃	1	114-115
73	0	bond	CH	Ň	CH	cyclopropyl	CH ₃	CF ₂ Cl	1	138-139
74	0	bond	CH	N	CH	1-CH ₃ -cyclopropyl	CH ₃	CF ₃	1	162-163
75	0	bond	CH	N	СН	cyclobutyl	СН3	CF ₃	1	135-136
76	0	bond	CH	N	CH	CHCICH ₃	СН3	CF ₃	1	121-122
77	S	bond	CH	N	CH	CH(CH ₃) ₂	CH ₃	CF ₃	1	117-118
							-	-		

78 -	C) bond	I CH	I N	CH	2-CH ₃ -cyclopropy	CH ₃	CF ₃	1	132-134
79	C	bond	CH	l N	СН	2,2,3,3-tetra-CH ₃ -		CF ₃	1	161-162
						cyclopropyl				
80	O	bond	СН	N	CH	2,2-diCl-1-CH ₃ -	СН3	CF ₃	1	oil*
						сусіо ргор уі				
81	O	bond	CH	N	CH	cyclopentyl	CH ₃	CF ₃	1	128-129
82	0	bond	CH	N	CH	2,4-diF-Ph	CH ₃	CF ₃	1	96-98
83	0	bond	N	N	CH	CH(CH ₃) ₂	CH ₃	Br	1	164-165
84	0	bond	N	N	CH	cyclo pro pyl	CH ₃	Br	1	164-166
85	0	bond	CH	N	CH	4-CH ₃ -Ph	CH ₃	CF ₃	1	374**
86	0	bond	CH	N	CH	4-n-Pr-Ph	CH ₃	CF ₃	1	402**
87	0	bond	CH	N	CH	3-NO ₂ -Ph	CH ₃	CF ₃	1	405**
88	0	bond	CH	N	CH	$C(CH_3)=CH_2$	CH ₃	CF ₃	1	324**
89	0	bond	CH	N	CH	$CH=C(CH_3)_2$	CH ₃	CF ₃	1	338**
· 90	0	bond	CH	N	CH	CH=CHCH ₃	CH ₃	CF ₃	1	324**
91	0	0	CH	N	CH	CH ₂ CH(CH ₃) ₂	CH ₃	CF ₃	1	356**
92	0	0	CH	N	CH	CH ₂ CH ₃	CH ₃	CF ₃	1	328**
93	0	bond	CH	N	CH	2-Cl-Ph	CH ₃	CF ₃	1	394**
94	0	bond	CH	N	CH	2-F-Ph	CH ₃	CF ₃	1	378**
95	0	bond	CH	N	CH	2,4-diCl-Ph	СН3	CF ₃	1	428**
96	0	bond	CH	N	CH	2-CH ₃ O-Ph	CH ₃	CF ₃	1	390**
97	0	bond	CH	N	CH	2-CF ₃ -Ph	СН3	CF ₃	1	428**
98	0	bond	CH	N	CH	2-CH ₃ -Ph	CH ₃	CF ₃	i	374**
99	0	bond	CH	N	CH	3-Br-Ph	CH ₃	CF ₃	1	438**
100	0	bond	CH	N	CH	3-Cl-Ph	CH ₃	CF ₃	1	394**
101	0	bond	CH	N	CH	3,4-diCl-Ph	СН3	CF ₃	1	428**
102	0	bond	CH	N	CH	3-CH ₃ O-Ph	СН3	CF ₃	1	390**
103	0	bond	CH	N	CH	4-Cl-Ph	СН3	CF ₃	1	394**
104	0	bond	CH	N	CH	4-CH ₃ O-Ph	CH ₃	CF ₃	1	390**
105	0	bond	CH	N	CH	4-CH ₃ CH ₂ O-Ph	CH ₃	CF ₃	1	404**
106	0	bond	CH	N	CH	4-n-BuO-Ph	СН3	CF ₃	1	432**
107	0	0	CH	N	CH	CH ₂ CCI ₃	СН3	CF ₃	1	430**
108	0	bond	CH	N	CH	4-NO ₂ -Ph	CH ₃	CF ₃	1	405**
109	0	bond	CH	N	CH	2,5-diF-Ph	CH ₃	CF ₃	1	396**
110	0	bond	CH	N	CH	CH ₂ CH ₂ SCH ₃	CH ₃	CF ₃	1 .	358**
111	0	bond	CH	N	CH	3-F-Ph	CH ₃	CF ₃	ı	378**

112	0	bond	CH	N	CH	CF ₂ CF ₃	СН3	CF ₃	1	104-106
113	0	bond	CH	N	CH	cyclobutyl	CH ₃	CF ₂ CF ₃	1	134
114	0	bond	CH	N	CH	cyclopropyl	CH ₃	CF ₂ CF ₃	1	131-133
115	0	bond	CH	N	CH	cyclobutyl	CH ₃	CF ₂ Cl	1	125-127
116	0	bond	CH	N	CH	CF ₂ CF ₂ CF ₃	CH ₃	CF ₃	1	oil*
117	0	bond	CH	N	CH	CH ₃	CH ₃	CF ₃	1	298**
118	0	NH	CH	N	CH	2,4-diCl-Ph	CH ₃	CF ₃	1	443**
119	0	NH	CH	N	CH	2-CH ₃ O-Ph	СН3	CF ₃	1	405**
120	0	NH	CH	N	CH	3-CH ₃ O-Ph	CH ₃	CF ₃	1	405**
121	0	NH	CH	N	CH	4-Cl-Ph	CH ₃	CF ₃	1	409**
122	0	NH	CH	N	CH	4-CH ₃ -Ph	CH ₃	CF ₃	1	389**
123	0	NH	CH	N	CH	4-i-Pr-Ph	СН3	CF ₃	1	417**
124	0	NH	CH	N	CH	4-n-BuO-Ph	СН3	CF ₃	1	447**
125	0	NH	CH	N	CH	cyclohexyl	СН3	CF ₃	1	381**
126	0	NH	CH	N	CH	2-NO ₂ -Ph	CH ₃	CF ₃	1	420**
127	0	NH	CH	N	CH	4-NO ₂ -Ph	CH ₃	CF ₃	1	420**
128	0	NH	CH	N	CH	2,5-diF-Ph	CH ₃	CF ₃	1	411**
129	0	NH	CH	N	CH	3-CH ₃ CH ₂ -Ph	СН3	CF ₃	1	403**
130	0	bond	CH	N	CH	CH=CH ₂	CH ₃	CF ₃	1	310**
131	0	bond	CH	N	CH	CH=CHCF3	СН3	CF ₃	1	378**
132	0	bond	CH	N	CH	CCI=CCI ₂	CH ₃	CF ₃	1	412**

^{*} See Index Table D for ¹H NMR data.

^{**} Protonated parent molecular ion (m/e) measured by mass spectrometry using atmospheric pressure chemical ionization in the positive ion mode (APCI+). The ion shown corresponds to the M+H+ ion calculated from the integral values of the atomic weights of the most abundant isotope of each element present.

WO 96/31517

78 INDEX TABLE C

$$\mathbb{R}^2$$
 \mathbb{R}^2
 \mathbb{R}^1
 \mathbb{R}^4
 \mathbb{R}^4

<u>Cmpd No.</u> X Z <u>W</u> R¹ R² R⁴ <u>m.p.(°C)</u>
133 Ex. 4 bond N N C(CH₃)₃ CH₃ CF₃ oil*

5

INDEX TABLE D

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ⁴
80	δ 1.5 (d,1H), 1.8 (s,3H), 2.3 (s,3H), 2.4 (d,1H), 5.2 (d,1H), 5.3 (d,1H),
	6.5-7.7 (m,5H), 9.8 (br s,1H).
116	δ 2.35 (s,3H), 5.2 (s,2H), 6.5-7.8 (m,5H), 11.1 (br s,1H).
133	δ 1.18 (s,9H), 2.42 (s,3H), 7.29 (s,1H), 7.37-7.40 (m,1H), 7.55-7.59
	(m,1H), 7.90-7.93 (m,1H), 8.31-8.34 (m,1H), 8.77 (br s,1H).

^a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (m)-multiplet, (br s)-broad singlet.

10

15

20

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

Seeds of barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), crabgrass (Digitaria spp.), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), morningglory (Ipomoea spp.), sorghum (Sorghum bicolor), velvetleaf (Abutilon theophrasti), and wild oat (Avena fatua) were planted into a sandy loam soil and sprayed preemergence (PRE) or treated by soil drench (PDRN) with test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant. At the same time, these crop and weed species were also sprayed postemergence (POST) or sprayed to runoff (STRO) with test chemicals formulated in the same manner.

^{*}See Index Table D for 1H NMR data.

Plants ranged in height from two to eighteen cm and were in the two to three leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately eleven days, after which all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 10 scale where 0 is no effect and 10 is complete control. A dash (-) response means no test results.

IABLE A	₹												Ŭ	QMP.	COMPOUND					•					
Rate	Rate 2000 g/ha 85 86	82	98	87	88	83	90	91	22 9	3 9	4	Š	9	9	8 99	100	101	102	103	104	88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	106 1	07 1	80	6
PDRN																							:	•	3
Barn	Barnyardgrass	7	7	7	10	c	8 10	9 10	9	4	0	7	0		0	_	0	9	4	œ	c	_	c	~	u
Cock	Cocklebur	0	0	0	7	1	4	0	0	0	0	0		9	0	Ü	-	• •	0	0		, ,	٠ ,	n c	٠
Crab	Crabgrass	10	٣	7	10	10	10	10 10 10 10 10		7	7	~	.,			(4	-	7	~	~ ~			, ,	, _"	, r
Дом	Downy brome	m	0	0	7	m	7	0	۳	0	-	н	0		~	-	0		0	0		• •	, ,	, -	n c
Gian	Giant foxtail	10	9	7	10	10	10	10 10 10 10 10	0	7 1	10	œ		~		(4	-	7	, ,	• •	· -	· c	> ~	+ a	٥, د
Morn	Morningglory	m	~	-	Ŋ	4	10	1	10	-	7	-	0	_	1	-	0	· ਜ			٠	• •	• -	-	٠ ،
Sorghum	hum	-	-	0	m	m	7	0	0	•	0	0	0	_	0	0	0	0		· c		, ,	• •	• •	•
Velv	Velvetleaf	7	-	0	o	-	0	~	0	-	-	-	6	_	1	-	· ·	• •	, -	, -		, ,		> -	٠,
Wild	Wild oats	2	0	0	9	4	0	~	Ð	0	-H	-0			0		•	, ,	• •	٠,	•		٠ ،	٠.	٦ (
TABLE A	E A	COMPOUND	POC	Ð												1	•	1	•	•	•	•	>	4	>
Rate	Rate 2000 g/ha 110 111	110	111	-																					
PDRN																									
Barny	Barnyardgrass	0		7																					
Cock]	Cocklebur	-	_	0																					
Crab	Crabgrass	10	٠,	60																					
Down	Downy brome	7	"	~																					
Giant	Giant foxtail	10	10	6																					
Morn	Morningglory	က	4	₹																					
Sorghum	mnu	7	J	C																					
Velve	Velvetleaf	m	-																						
Wild	Wild oats	2	4																						

COMPOUND

TABLE A

Rate 1000 g/ha 40 133

Barnyardgrass

POST

Cocklebur Crabgrass Giant foxtail Morningglory

Velvetleaf

Sorghum

Wild oats

Downy brome

TABLE A	COME	COMPOUND
Rate 2000 g/ha 40 133	40	133
PRE		
Barnyardgrass	10	10
Cocklebur	7	3
Crabgrass	10	10
Downy brome	10	4
Giant foxtail	6	10
Morningglory	10	10
Sorghum	6	S
Velvetleaf	10	10
Wild oats	10	6

Sorghum Velvetleaf Wild oats

					-																			
TABLE A								•				_	COME	COMPOUND	_					٠				
Rate 1000 g/ha 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 100	la 8!	5 86	ò	7 81	88	96	91	92	93	94	95	96	97 9	80	9 10	0 101	102	103	104	105	106	107	108	90
STRO																						2		601
Barnyardgrass	•••	ю го		ω.	ις.	9	~	9	4	4	Ŋ	-	۳	~	•	•	m	4	m	-	0	. M	4	~
Cocklebur	. •	رم دم	<u>.</u>		.43	4	~	7	8	~	٣	0	0	-	_	~	7	~	-	. 0	0	•	' '	
Crabgrass		ک 4	_	e	7	9	9	9	4	Ŋ	S	(4	7	m m	_	- T	4	ı.	•		0	4	, ru	· -
Downy brome	••	2	•••	~	2	7	7	0	0	7	7	0	+	-		_	-	-	-	•	0	•	۰ ۵	۰ -
Giant foxtail	υ,	εc.		٠-	7 7	7	e	9	4	9	S	0	۳	7	_	~	m	4	S	-	0	· •	1	۱۸
Morningglory	1-7	ω.	-	(2)	2	7	m	~	ស	m	4	0	н	m		~	m	m	~	•	0	4	, 0	. "
Sorghum	.4	E.	-		м	4	~	4	~	7	m	0	7	-	_	-	m	m	· m	0	0	' "	٠ -	۱
Velvetleaf	•	4		~	9	7	S	4	m	m	m	-	~	7		0	4	7	•	• •	• •	۳ ا	٠ <	٠ ,
Wild oats	14	2	***	(۳)	7	m	7	m	~	7	8	0	-	7		0	' '	. (4)	~	• •	· c	, ,	,	•
TABLE A	Ö	COMPOUND	S C													•	1	,	1	•	•	4	4	-
Rate 1000 g/ha 110 111	a 11	10 1	11																					
STRO																								
Barnyardgrass		m	4																					
Cocklebur		7	М																					
Crabgrass		4	4																,					
Downy brome		П	-																					
Giant foxtail		4	4																		٠			
Morningglory		۳	4																					

Wild oats

-											
	45		80	0	10	-	10	7	7	0	~
ON.	44		Q	0	10	7	10	7	-	Ŋ	α
COMPOUND	43		6	0	10	~	10	-	-	7	r.
ខ្ល	42		9 10	0	10 10 10 10	٣	10 10 10 10 10	7 10	4	10	7
	41		9	7	10	7	10	7	7	10 10	10 7
TABLE A	Rate 800 g/ha 41 42 43 44 45	PRE	Barnyardgrass	Cocklebur	Crabgrass	Downy brome	Giant foxtail	Morningglory	Sorghum	Velvetleaf	Wild oats
H	α;	Δ,	ă	ŭ	ű	ă	Ö	ž	Š	Š	3

WO 96/31517 PCT/US96/03803

84

TEST B

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), rape (Brassica napus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

20

15

																					•						
TABLE B												8	COMPOUND	Ş													
Rate 2000 g/ha	7	М	4	S	9	46	47 48	8 49	9 50	51	52	53	54	55	56	57	58	59 6	60 61	1 62	63	99	65	99	67	ď	9
POSTEMERGENCE																								}	;	3	3
Barley	®	σ	9	9	0	6	7	m	ص ص	7	6 0	00	m	4	4	~	7	y	•	20	-	C	-	-	c	ď	r
Barnyardgrass	œ	σ	6	6	0	0	6	~ 6	о О	8	6	0	Ŋ	0	~	4	.							. ~	· -	1 0	٠ ،
Bedstraw	6	9	σ	ō	0	6	o	6	80	9	0	10	S	Ø	10	. 4	0				· cc		4	, ,	٠ ٧	۰ σ	٠ ٥
Blackgrass	0	9	0	6	σ	ώ	0	~ ~	ω σ	0	9	Ø	Ċ	σ	7	~	0			_) ac	•	٠ -	-	• •	٠ ٥	۰ ،
Chickweed	Ð	σ	Q	6	0	0	80	67	5	8	O	Q	9	0	10	m		. on	. თ				1 10	ł M	•	٠ ٥	,
Cocklebur	80	-	Q	∞	œ	σ	~	9	8 0	7	7	9	m	9	9	ĸ	7	. œ	. m				• m	• -	۱ ۲		,00
Corn	7	0	σ	7	9	∞	7	9	9	9	∞	&	~	9	~	-	9	_	9	8	9	-	-	~	-	, ,	00
Cotton	0	0	9	10 1	10 1	10	9 10	0 10	10	9	10	10	10	10	10	0	8	10	œ	· · ·	9	•	9	~	9	0) (
Crabgrass	0	0	0	6	6	0	0,	7	6	&	0	Ø	c	Q	0	9	6	6,	о О	9		•	~ ~		۰ ،	C	6
Downy brome	œ	0	6	c	0	σ	<u>ھ</u>	9	.0	9	O	0	-	4	4	-	9	-	,,	. ~						α	٠ ٥
Giant foxtail	0	6	6	6	0	O	6	9	0	9	0	O	4	6 0	σ	Ŋ	. თ	0,					4	• -	, -	σ	٠ ٥
Lambsquarter	σ	6	9	0	O	σ	6	6	9	0	O	Q	9	0	0	0	0						· (c	, ,	• ~	0	۰ ۵
Morningglory	Ø	9	10	10	8	20	8 10	8	10	∞	9	10	10	6	10	6			_	-		, (, ,	٠,	י ר	•	٥ ١
Nutsedge	9	6	σ	7	æ	œ	9	9	6	m	4	9	-		-								٠ ،	۰ ،	n c	h i	ו ח
Rape	6	9	10	6	9 1	10 1	10 1(9	10	9	Q	Q	7	0	10	8		9 10	-			4	ο α	, ,	4	10	σ
Rice	80	0	0	9	9	0	9	5	6	· œ	Q	œ	~	4	m	m						0	•		, ,		٠ ٥
Sorghum	&	0	6	ស	6	c	۳ س	5	œ	4	7	7		m	~	m	~	ru G	ري در	_		• •	· c	٠ ,	• •		, ,
Soybean	c	6	6	6	6	0	6	6	0	0	æ	σ	9	σ	7	4					(~	,	ο α	. 4	ט כ	٠ ٥	٠ ٥
Sugar beet	10	10	10 1	10 1	10 1	10 1	10 3	9	10	10	10	10	10	10	6	9		-) · C	σ	, ,	י ר	۰ ٥	۰ ٥
Velvetleaf	80	œ	œ	7	&	6	ω	8	6	∞	∞	o	~	Q	6	0	œ					· ~	٠ -		- ر	٠ ٥	٠ ٥
Wheat	7	σ	6	9	6	œ	4	~	0	7	4	7	~	m	4	2	ú	. 6			-		٠ <	• •	٠ ,	, ,	, n
Wild buckwheat	œ	6	9	10	6	σ	9	8	9	∞	Q	8	7	9	10	9	æ	. 2	·			, ~	ο α	, a	y c	n 0	י ר
Wild oat	6	6	6	0	D	0	8	9	9	80	Q	.0	-	4	00	-	6	7	~		_	• •	• •	· c	•	, ,	٠ ،

133		ſ	` '	, c	,	x	ח ע	n	•	۰ ۰	, -	٠ ،	7	7	, ע	> 1	x 0	œ	œ	σ	7	ø	· ·	, 0	י ר
116 133		r	۰ ،	9 µ	n .		• •	٠, ٢	· «	· <	• •	۰ د	n 6	n 0	• •	> (-	~	œ	œ	7	0	, r	, ,
115		٥	0 0	n 0	٠ ٥	n a	• a	4	, c	9	, ,	٠ ٥	h 0	n a	.	• •	27	ו עם	7	œ	10	œ	00		. 0
114 115	!	~	• 0	0	۰ ۵	, ,	י ע	· -	10	α	v	~ α	ο σ	, ,	٠ ،	•	0 (٠,	۰ م	σ	10	œ	4	7	•
113		-	1 4	, 4	, ,	, "	, ,) -	Ŋ	~	~		- α	, ~	, ,	•	* (۰,	- '	ø	9	٣	~	m	4
112		-	1 0	, α	ď		00	, ru	Ø	8	-	_	• 00	, ,			•	,	າ (עכ	œ	80	-	m	~
84		-	· 00	4	ا	۰ ۵	~	ស	Ŋ	S	0	7	•	4		α	•	> <	,	•	9	٣	-	7	0
83		0		-	· ~	. 4	7	-	m	4	0	9	~	m	•	ď	, ,	•	•	*	4	0	-	7	7
82		~	0		•	ı,	S	m	Q	m	-	φ	00	00	H	10	~	, ,	4 L	0	9	٣	~	m	m
81		4	0	o	~	9	7	-	10	9	7	œ	Q	9	-	0		٠ ،	• 0	0 1	-	9	6	7	0
80		-	m	m	m	m	e	8	10	~	+	8	7	m	0	4	-	· c	v	•	d,	9	0	٣	-
79		0	-	0	~	0	7	7	~	7	7	0	9	-	0	20	0	0			*	~	0	~	0
77		00	0	0	Q	9	9	00	10	0	9	Q	0	Ð	m	80	7	7	σ	۰ ۵	0	σ	c	7	6
16		~	O	4	m	n	Ŋ	2	80	m	=	4	4	ø	ୂଳ	œ	4	~	ľ	•	,	m	0	7	-
75		80	Q	œ	œ	9	œ	4	10	9	9	0	80	\oint{\omega}	6	9	0	7	٠	, ,	2	œ	S	7	9
74		9	0	00	0	8	4	9	Ð	œ	7	0	0	œ	œ	9	7	9	Q	•	•	^	m	0	7
73		6	0	6	6	9	æ	0	10	Q	O	0	0	6	1	0	æ	σ	0	0	•	œ	œ	6	6
72		2	Q	7	Q	8	7	3	10	9	٣	O)	0	0	н	Q	6	4	œ	ò	•	D.	m	9	m
71		-	S	9	0	m	4	7	10	٣	-	7	m	٣	1	9	Н	7	~	4	۱ ۱	_	0	9	0
70		0	Н	7	7	7	7	7	9	7	-	н	4	7	t	8	0	0	٣	7	•	-	7	4	0
Rate 2000 g/ha	POSTEMERGENCE	Barley	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy brome	Giant foxtail	Lambsquarter	Morningglory	Nutsedge	Rape	Rice	Sorghum	Soybean	Sugar beet	Volumethee	TPATTACTAC	Wheat	Wild buckwheat	Wild oat
						_	-	_	•	_	-	•	-	~	_	14	14	U)	V)	Ŋ	2	• ;	≤ (3	

34 35 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 0 10 10 S 10 10 ~ 10 COMPOUND 9 12 13 14 15 16 17 18 1 œ Rate 1000 g/ha POSTEMERGENCE Wild buckwheat Barnyardgrass Giant foxtail Lambsquarter Morningglory Downy brome Blackgrass Sugar beet Velvetleaf Chickweed Cocklebur Crabgrass Bedstraw Soybean Nutsedge TABLE B Wild oat Sorghum Barley Cotton Wheat Corn Rape Rice

36 37 38 39 40 78 118 119 120 121 122 123 124 125 126 127 128 129 COMPOUND Rate 1000 g/ha Wild buckwheat POSTEMERGENCE Barnyardgrass Giant foxtail Lambsquarter Morningglory Downy brome Blackgrass Sugar beet Velvetleaf Chickweed Cocklebur Crabgrass Bedstraw Nutsedge Soybean Sorghum Barley Cotton Corn Rape Rice

NCE Fass	TABLE B									COME	COMPOUND	_								
AMERGENCE Sample Solve Sampl	Rate 1000 g/ha	36					78	118	119	120	121	122		124	125		ç		6	
Figure 1	Preemergence														797		/ 7 7		129	
Hyardgrass 9 10 9 9 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0	Barley	Ŋ	_	9	0	9	9	0	0	0	0	0	c	c	•	c	•	•	•	
Haraw 9 9 10 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Barnyardgrass	σ			Q	0	10	0	0	0	• •	• •	· c	•	•	> 0	> 0	> (o (
Name of Streams	Bedstraw	Q	Q	10		œ	0	0	•	• •	· c	•	•	•	>	> (o (0	0	
Hebur 1 8 10 10 9 10 9 0 0 0 0 0 0 0 0 0 0 0 0 0	Blackgrass	7	10		Q	10	10	0	0	• •	• •	· c	,	•	, ,	- 0	5 (0	0	
Tebux	Chickweed	0	10		0	10	0	0	0	0	0	· •	· c	> c	-		0 0	0 0	0 (
On 6 9 10 6 0 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cocklebur	-	80	0	Ŋ	7	~	0	0	0	• •	• •	· c	> <	> <	> 0	-	o	o (
on 6 9 10 6 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Corn	7	10	10	00	Ŋ	7	0	0	. 0	• •	• •	• •	•	•	> 0	- 0	5 (5 (
grass 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0	Cotton	9	Q	10	9	0	2	0	0	•	0	•	• •	· -	۰ د	> <	> 0	-	.	
y brome 4 5 4 9 4 0 </td <td>Crabgrass</td> <td>10</td> <td>10</td> <td></td> <td>10</td> <td>10</td> <td>10</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>· c</td> <td>· c</td> <td>• •</td> <td>, ,</td> <td>•</td> <td>> 0</td> <td>-</td> <td>5 (</td> <td></td>	Crabgrass	10	10		10	10	10	0	0	0	0	· c	· c	• •	, ,	•	> 0	-	5 (
E foxtail 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0	Downy brome	4	2	ß	4	9	4	0	0	C	• •	· c	•	•	> 0	-	-	5	.	
Aguarter 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0	Giant foxtail	10	10	10	10		10	0	• •	• •	· c	•	> 0	- (-	0 (0	0	0	
ingglory 10 10 10 10 6 10 0 0 0 0 0 0 0 0 0 0 0	Lambsquarter	10	10	10	10		10		· -	•	•	> <	> 0	> (-	0	0	0	0	
edge 4 6 8 2 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Morningglory		10	10	10		10	• •	• •	•	•	> 0	> 0	-		0	0	0	0	
9 10 9 6 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nutsedge	4	9	œ	~		ی ا		· -	•	- 0	>	> (0 (0	0	0	0	0	
4 2 8 2 3 4 0	ape		10	σ	¥	•		•	•	> (، د		>	0	0	0	0	0	0	
num 7 10 10 4 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ice		,	٠ ،	•	٠ ،	h •	-	>	>	0	0	0	0	0	0	0	0	0	
Pan 7 10 10 4 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				x 0	7	~	4	0	0	0	0	0	0	0	0	0	0	0	0	
an 8 10 9 6 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orgnum			10	4	9	2	0	0	0	0	0	0	0	0	0	0	c		
c beet 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0	oybean		10	σ	9	-	œ	0	0	0	0	0	0	c	0	٠ ,		, ,		
tleaf 8 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0	Sugar beet						2	0	0	0	c	-	• •		,	•	,	>	>	
buckwheat 9 9 10 10 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	elvetleaf						9	•	•	•	•	•	> -	>	>	>	0	0	0	
buckwheat 9 9 10 10 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	leat.						,	> 1	>	>	>	>	0	0	0	0	0	0	0	
Oat 8 7 4 6 10 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 1	n (7	'n	4	0	0	0	0	0	0	0	0	0	0	0	0	
oat 8 7 4 6 10 8 0 0 0 0 0 0 0 0 0 0 0	id buckwheat	0			20	7	~	0	0	0	0	0	0	0	0	0	0	0	_	
	ild oat	œ	7	4		9	&	0	0	0	0	0	0	c	-	_		, ,	· •	

63 62 61 9 59 28 57 26 9 55 0 54 23 22 51 0 0 0 43 44 45 46 47 48 49 50 COMPOUND 42 41 ស ~ œ Rate 400 g/ha Wild buckwheat POSTEMERGENCE Barnyardgrass Giant foxtail Lambsquarter Morningglory Downy brome Blackgrass Sugar beet Velvetleaf Chickweed Crabgrass Cocklebur Bedstraw Nutsedge Wild oat Barley Soybean Sorghum Cotton Wheat Corn Rice Rape

94 104 œ m 0 92 91 90 83 88 82 84 83 82 81 75 76 77 79 80 COMPOUND 74 73 72 71 70 69 **6**8 67 -99 9 ស 64 Rate 400 g/ha Wild buckwheat POSTEMERGENCE Barnyardgrass Giant foxtail Lambsquarter Morningglory Downy brome Blackgrass Velvetleaf Sugar beet Chickweed Cocklebur Crabgrass Bedstraw Nutsedge Soybean Sorghum Cotton Barley Corn Rape Rice

	123	3	c	, -	1 1	۰ ۳	י ע) (r	, ,	. 0	• •	•	۳ ۱	α	• •	• <	v	, v		1 00	y ve	, ru	, ,	,	۰,
	132		-	• •	, -	. د	•	• •		· 'A	0	O	· c	4	, ,	• •	· c	•		, ~	I M	0		٠,	1 C
	131	1	C	• •		· c	~ ~	,	0	0	0	0	0	,	۳,	, ,	۰ ،		0	•	ľ	~ ~	· c	۰ ۳	, c
	130) 	0	4	· •	· ~	۰ ۵	7	~	10	~	0	4	,	ır	0	• •	m	0	7	v	-	0	, ,,,	
_	117		0	• •		0	0	0	0	4	0	0	0	0	~ ~	0	0	0	0	~	~	4	0	0	
COMPOUND	116		0	~	ı,	0	m	m	-	7	~	0	7	ø	-	0	Ŋ	0		S	ហ	•	0	m	0
S S S S	115		7	0	7	0	m	4	-	7	9	8	œ	0	7	-	œ	©	m	c	0	&	m	~	. ب
	114		-	7	80	~	m	m	4	ø	m	=	7	0	-	0	9	m	-	0	9	9	0	9	+
	113		0	4	m	7	7	-	-		~	~	ស	æ	-	0	4	7	П	Ŋ	9	9	-	7	-
	112		0	Ŋ	ľ	7	m	₹.	m	O	71	0	m	ß	7	0	&	0	m	7	9	~	0	7	0
	111		0	0	4	-	7	4	~	10	7	7	-	ហ	v	ì	7	-	0	4	6	ß	7	٣	7
	110		0	0	-	7	0	-	0	4	7	0	-	4	8	0	0	0	0	М	m	0	0	7	0
TABLE B	Rate 400 g/ha	POSTEMERGENCE	Barley	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy brome	Glant foxtail	Lambsquarter	Morningglory	Nutsedge	Rape	Rice	Sorghum	Soybean	Sugar beet	Velvetleaf	Wheat	Wild buckwheat	Wild oat

104 94 92 91 90 89 82 84 82 83 75 76 77 79 80 81 COMPOUND 0 Ŋ 10 10 10 10 10 10 0 74 m 0 73 9 10 10 10 4 10 10 72 Ŋ 71 0 20 69 10 10 10 10 10 **68** 10 œ S 0 67 0 0 0 99 65 64 Rate 400 g/ha Barnyardgrass Wild buckwheat PREEMERGENCE Giant foxtail Lambsquarter Morningglory Downy brome Blackgrass Sugar beet Velvetleaf Chickweed Cocklebur Crabgrass Bedstraw Nutsedge TABLE B Wild oat Barley Soybean Sorghum Cotton Wheat Corn Rape Rice

	_		•																						
	133		N	9	N	m	Ψ	-	9	~	Q	~	0	9	9	•	7	· •	0	7	0	S	(*)	4	• 1
	132		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
	131		0	0	0	0	0	0	0	0	0	0	0	m	7	0	0	0	0	0	~	0	0	~	•
	130		0	9	m	9	0	0	7	4	O	N	8	,	9	0	7	m	0	~	00	-	-	m	•
	117		0	-	0	0	0	0	7	0	m	0	7	0	0	0	0	0	0	0	0	0	0	0	c
	116		0	0	Н	-	Ŋ	0	0	0	7	0	9	8	-	0	0	0	0	0	4	7	0	-	c
COMPOUND	115		ī	0	0	σ.	7	0	0	9	10	m	10	10	9	0	σ	S	0	4	0	10	7	0	ď
O	114		0	Q	10	ß	Ŋ	0	7	4	ø	7	10	0	~	0	6	-	0	S	10	4	0	10	~
	113		0	9	œ	80	-	0	0	-	7	7	0	9	1	0	4	0	0	0	σ	7	0	7	4
	112		0	Q	7	10	7	٥.	٣	7	7	-	10	10	9	ı	10	-	0	7	10	10	0	10	9
	111		0	-	0	7	-	0	0	~~	-	-	٣	9	-	0	~	0	0	0	Q	0	0	0	Ä
	110		0	0	0	0	0	0	0	7	m	ò	-	7	1	0	0	н	0	7	0	0	0	0	0
a s	400 g/ha	PREEMERGENCE	λe	Barnyardgrass	raw	Blackgrass	смеед	ebur		Ę	ırass	Downy brome	foxtail:	Lambsquarter	Morningglory	dge			mn	an	Sugar beet	Velvetleaf		buckwheat	oat
TABLE	Rate	PREEN	Barley	Barny	Bedstraw	Black	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy	Giant	Lambs	Morní	Nutsedge	Rape	Rice	Sorghum	Soybean	Sugar	Velve	Wheat	Wild	Wild

23 24 25 26 27 28 29 30 31 32 33 34 35 10 11 12 13 14 15 16 17 18 19 20 21 22 COMPOUND 00 σ œ Rate 200 g/ha Wild buckwheat POSTEMERGENCE Barnyardgrass Giant foxtail Lambsquarter Morningglory Downy brome Blackgrass Velvetleaf Sugar beet Crabgrass Chickweed Cocklebur Bedstraw Nutsedge Wild oat Soybean Sorghum Barley Cotton Corn Rice Rape

TABLE B									ຽ	COMPOUND	QNS							
Rate 200 g/ha	36	37	38	39	40	78	118	119	120	120 121	122	123	124	125	126	127	128	120
POSTEMERGENCE											1		, })		į	9	691
Barley	7	4	4	7	7	~	0	0	0	0	0	0	0	0	c	c	•	c
Barnyardgrass	S	0	7	7	σ	œ	0	0	0	0	0	0	0	• •	• •	•	>	•
Bedstraw	S	80	œ	6 0	9	9	0	0	0	0	0	0	0	0	• •	• •	•	· c
Blackgrass	Ŋ	7	80	9	80	9	0	0	0	0	0	0	0	0	•	• •	· c	· c
Chickweed	m	00	S	7	7	9	0	0	0	0	0	•	0	0	0	1	· c	· c
Cocklebur	0	m	0	œ	0	4	0	0	0	0	0	0	0	0	0	0	0	• •
Corn	4	∞	0	4	4	~	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	œ	10	6	10	7	0	0	0	0	0	0	0		7	0	0	+	
Crabgrass	Ŋ	00	œ	0	0	7	0	0	0	0	0	0	0	0	0	0	0	
Downy brome	~	М	7	m	7	7	0	0	0	0	0	0	0	0	0	0	C	
Giant foxtail	œ	Q	6	9	Q	7	0	0	0	0	0	0	0	0	0	0	• •	, ,
Lambsquarter	9	7	7	7	9	œ	0	0	0	0	0	0	0	0	0	0	• •	, ,
Morningglory	80	80	9	0	1	7	0	0	0	0	0	0	٦	0	•	· c	• •	, ,
Nutsedge	0	7	٣	m	1	0	0	0	0	0	0	0	0	0	0	• •	• •	· c
Rape	7	œ	m	S	9	7	0	0	0	0	0	0	0	0	0	0	• •	· c
Rice	4	S	œ	m	0	1	0	0	0	0	0	0	0	0	0	0		, ,
Sorghum	m	9	∞	m	-	8	0	0	0	0	0	0	0	0	•	•	• •	· c
Soybean	80	O	0	Q	0	7	0	0	0	0	0	0	7	m	0	•	, ~	, ,
Sugar beet	®	9	9	Ø	9	S.	0	0	0	0	0	0	0	-	•			, ,
Velvetleaf	-	9	5	σ	S	ß	0	0	0	0	0	0	0	•	· c		•	, ,
Wheat	9	9	9	М	9	0	0	0	0	0	0	0	c	· c		•	•	•
Wild buckwheat	9	7	80	80	7	7	0	0	0	0	0	0	0		• •	· -	> <	-
Wild oat	9	7	∞	2	4	7	0	0	0	0	0	0	0	0		· c	· -	,

IABLE B								ŭ	COMPOUND										
Rate 200 g/ha	36	37	38	39	40	78	118		120	119 120 121	122	123	124	125	126	127	128	129	
PREEMERGENCE																		ì	
Barley	m	7	m	0	4	0	0	0	0	0	0	0	0	0	0	0	C	c	
Barnyardgrass	7	9	ຸ ຄ	Q	œ	c	0	0	0	0	0	0	· 0	0	0	0	0		
Bedstraw	σ	7	œ	œ	4	7	0	0	0	0	0	0	0	0	0	0	0		
Blackgrass	9	ξ.	9	7	0	S	0	0	0	0	0	0	0	0	0	0	0		
Chickweed	æ	9	0	Q	9	S	0	0	•	0	0	0	0	0	0	0	0		
Cocklebur	0	m	0	7	0	0	0	0	0		0	0	0	0	0	0	0	0	
Corn	4	7	.	4	7	4	0	0	0	0	0	0	0	0	0	0	0	0	
Cotton	m	m	9	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Crabgrass	10	10	10	10	10	Q	0	0	0	0	0	0	0	0	0	0	0	· c	
Downy brome	m	٣	S	٣	7	г	0	0	0	0	0	0	0	0	•	0) c	
Giant foxtail	σ	10	10	6	10	10	0	0	0	0	0	0	0	0	0	0	0		
Lambsquarter	D	10	10	10	σ	10	0	0	0	0	0	0	0	0	0	0			
Morningglory	m	10	10	10	1	7	0	0	0	0	0	0	0	0	0	0	0		
Nutsedge	0	7	2	7	0	0	0	0	0	0	0	0	0	0	0	0	0		
Rape	7	7	C.	0	80	4	0	0	0	0	0	0	0	0	0	0	0		
Rice	0	7	m	-	0	٣	0	0	0	0	0	0	0	0	0	0	· c		
Sorghum	٣	ß	9	٣	0	0	0	0	0	0	0	0	0	0	0	0			
Soybean	ß	Q	0	٣	0	ß	0	0	0	0	0	0	0	0	0	0	0) · c	
Sugar beet	10	10	10	10	6	10	0	0	0	0	0	0	0	0	0	• •	•		
Velvetleaf	ហ	10	10	10	-	9	0	0	0		0	0	0	0	0	• •	· c	, ,	
Wheat	-	0	4	0	ß	-	0	0	0	0	0	0	0	0	•	•	· c	, ,	
Wild buckwheat	4	6	6	80	4	0	0	0	0	0	0	0	0			· c	•	,	
Wild oat	4	~	4	7	9	6	0	0	0	0	0	C	•	· c		• •	, ,		

88 89 90 91 92 94 104 110 111 117 130 131 132 COMPOUND 82 45 1 41 42 43 Rate 100 g/ha POSTEMERGENCE Wild buckwheat Barnyardgrass Giant foxtail Lambsquarter Morningglory **Downy** brome Blackgrass Velvetleaf Sugar beet Chickweed Cocklebur Crabgrass Bedstraw Nutsedge Wild oat Barley Sorghum Soybean Cotton Wheat Corn Rape Rice

Mate 100 g/ha 1 41 42 43 44 45 86 89 90 91 91 91 91 111 111 111 111 111 111	TABLE B									႘	COMPOUND	25									
MEMCENCE Sylvardycass 7 6 4 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			41	42	43	44	45	85	88	83						110		117	130		132
Fyyardgrass 7 6 4 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PREEMERGENCE																	į			1
Vardgrass 7 6 4 1 3 1 0 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0	Barley	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
traw	Barnyardgrass	7	9	4	7	m	-	0	0	0	m	0	٣	0	0	0	0	0	~ ~	· c	•
kgrass 4 3 1 0 2 0 0 1 0 <td>Bedstraw</td> <td>6</td> <td>7</td> <td>0</td> <td>١.</td> <td>0</td> <td></td> <td>• •</td> <td>· c</td>	Bedstraw	6	7	0	١.	0	0	0	0	0	0	0	0	0	0	0	0	0		• •	· c
tweed 7 6 3 0 <td>Blackgrass</td> <td>4</td> <td>m</td> <td>1</td> <td>0</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>· c</td> <td>, (~</td> <td>• •</td> <td>• •</td>	Blackgrass	4	m	1	0	7	0	0	0	0	-	0	0	0	0	0	0	· c	, (~	• •	• •
lebur	Chickweed	7	9	0	m	0	0	0	0	0	'n	0	0	0	0	0	0	•	, ,	· c	• •
3 4 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Cocklebur	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0
Day Strass	Corn	m	4	7	-	0	0	0	0	0	-	0	7	0	0	0	0	0	0	0	0
Fresholm 1 9 9 8 9 5 1 2 1 6 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cotton	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fowelland Company Co	Crabgrass	7	9	6	®	0	S	-	~	1	9	-	7	0	0	0	0	-	'n	0	0
: foxtail 7 9 8 7 6 5 1 3 1 7 2 4 2 2 0 0 0 1 5 0 0 1 5 0 squarter 9 9 8 4 4 0 0 0 2 8 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Downy brome	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	• •	• •
Aguarter 9 9 8 4 4 0 0 0 2 8 0 7 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Giant foxtail	7	σ	∞	7	9	Ŋ	+	٣	-	7	7	4	~	~	0	0	-	ı ın		• •
lugglory - 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	Lambsquarter	σ	D	œ	4	4	0	0	0	~	∞	0	7	0	0	0	m	0	1	0	
adge	Morningglory	ı	0	-	0	0	0	0	0	0	-	0	~	0	0	0	0	0	σ	0	0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nutsedge	ı	0	0	0	0	1	0	0	0	0	1	0	1	0	ı	•	0	0	0	• •
4 0	Rape	7	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	•
tunn 2 0	Rice	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
tabel 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sorghum	73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
tleaf 10 6 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0	Soybean	m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ttleaf 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sugar beet	10	9	0	0	0	0	0	0	0	S	0	0	0	0	0	0	0	7	0	0
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Velvetleaf	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	• •
buckwheat 3 0	Wheat	4	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
oat 44311000020000000000	Wild buckwheat	m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0
	Wild oat	4	4	٣	-	-	0	0	0	0	7	0	0	0	0	0	0	0	~	0	0

25

30

TEST C

The compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application), to water that covered the soil surface (flood application), and to plants that were in the one-to-four leaf stage (postemergence application). A sandy loam soil was used for the preemergence and postemergence tests, while a silt loam soil was used in the flood test. Water depth was approximately 2.5 cm for the flood test and was maintained at this level for the duration of the test.

Plant species in the preemergence and postemergence tests consisted of 10 barnyardgrass (Echinochloa crus-galli), barley (Hordeum vulgare), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), johnsongrass (Sorghum halepense), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), 15 ryegrass (Lolium multiflorum), soybean (Glycine max), speedwell (Veronica persica), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and wild oat (Avena fatua). All plant species were planted one day before application of the compound for the preemergence portion of this test. Plantings of these species were adjusted to produce plants of appropriate size 20 for the postemergence portion of the test. Plant species in the flood test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa), barnyardgrass (Echinochloa crus-galli) and late watergrass (Echinochloa oryzicola) grown to the 2 leaf stage for testing.

All plant species were grown using normal greenhouse practices. Visual evaluations of injury expressed on treated plants, when compared to untreated controls, were recorded approximately fourteen to twenty one days after application of the test compound. Plant response this ratings, summarized in Table C, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

PCT/US96/03803

106

TABLE C		C	OMPO	UND	TABLE	с		C	OMPO	UND
Rate 1000 g/ha	2	2 4	6 4	7 4	Rate:	1000 g/ha	:	2 46	5 4	7 48
POSTEMERGENCE					PREEMI	ERGENCE				
Barley Igri	80	65	5 6	0 3	Barley	/ Igri	90	95	5 8:	5 50
Barnyardgr Floo	d 95	95	5 9	5 90	Barnya	rdgrass	95	100	100	100
Barnyardgrass	90	90) 9(90	Bedstr	aw		100		
Bedstraw	65	90	90	65	Blackg	rass	95	100	100	100
Blackgrass	70	95	65	95	Chickw	eed	100	100	95	100
Chickweed	95	90	90	90	Cockle	bur	40	90	35	25
Cocklebur	60	90	75	70	Corn		60	90	70	40
Corn	80	85	35	50	Cotton		75	95	35	90
Cotton	70	90	90	100	Crabgr	ass	100	100	100	95
Crabgrass	90	90	85	90	Downy :	Brome	100	100	75	50
Downy Brome	80	95	20	50	Giant	foxtail	100	100	100	100
Duck salad	95	100	95	95	Italn 1	Ryegrass	100	100	95	90
Giant foxtail	90	90	90	90	Johnson	ngrass	90	90	90	80
Italn Ryegrass	85	90	80	75	Lambsq	arter	100	100	95	100
Johnsongrass	80	90	50	70	Morning	glory	100	100	100	85
Lambsquarter	100	100	95	95	Rape		100	100	100	100
Morningglory	95	90	90	90	Redroot	Pigweed	90	100	80	100
Rape .	100	95	85	100	Soybean		75	100	90	70
Redroot Pigweed	90	90	70	90	Speedwe	11	100	100	100	100
Rice Japonica	80	95	85	90	Sugar b	eet	100	100	100	100
Soybean	60	90	90	90	Velvetl	eaf	100	100	100	100
Speedwell	90	100	100	100	Wheat		95	95	95	60
Sugar beet	90	95	100	100	Wild bu	ckwheat	100	95	25	100
Umbrella sedge	90	90	90	90	Wild oa	t	90	95	90	80
Velvetleaf	50	90	80	· 85						
Watergrass 2	90	95	80	90	•					
Wheat	70	65	10	35						
Wild buckwheat	90	95	25	90						
Wild oat	85	90	80	70						

		115	65	95	90	95	5	3 6	0 4	20	06	80	35	90	90	90	20	95	09	95	00	95	08	55	0	5	0	5	0	0	. 0
		14	0	90	80	85	25	}	, K	40	70	45	0	90	9	20	30	5	0	0	00	2	Ñ	0	ñ.	Ñ.	0	S	0	0	20
		12 1	10	85	85	09	09	2	30	\$	95	22	0	90	0.0	. 0		5	0	0	0 1(0	0	S	6 0	5	5	9	2	5 10	9
		77 1	,	90	95	1	,	1	90	20	8	000	ı	2	0	1	0	,	0	1	20	5 7	8	6	- 7	6	9	7 0	-	7	-
		74	32	95	90	09	9	20	1	. 0	7	02	0	2,	72	5	0	ľΩ	8 0	0	8	20	9	0		6	9	9		•	
		73	82	8	95	06	95	06		35 . 70	0		0	5	0	Ñ	8 0	5	5 5	0 10	8 0	5 7	6 0	0 10	ō O	5 10	ĕ	9			75
		71	10	70 J	30	20	35	000	0.00	35 85	00 10	5	0	0	0 10	9	0	6 0	8 0	- 10	6	6	0 10	01 -	0 10	9	9	100	6	9.	100
		ტ	2	 8	5	55	55	0	. S	10 25	0 10	т 0	0	2	0	0	5	8	9		ă	~ 0	9	•	4	7	4	۲ ۲	<u>'</u>	30	25
		œ :	. · <u>o</u>	2	Š	0	Ñ	0	8 0	5 80	0 10	0	7 0	5	D D	9	ão so	10	æ	10	8	<u>8</u>	9	•	9	100	80	100	70	30	90
	•		v	0	iù ev	6	0	0 10	8	0 65	0 10	8	4	œ œ		ğ C	ãö C	100	86	100	8	ے ج	6	<u>'</u>	100	100	8	100	င္သ	100	90
	,	₽ -j () 	5	®	•		0 5	0 10	0 10	0 10	m O	ğ	9	~	_	<u>4</u>	8	100	96	6	9	95	9	100	9	100	9	0	100	0
	٠	р (р (າ (ວ (ж Э	0	4	m 0	Š	1	20	Ŏ 10	ĕ	_	<u>.</u>	<u>8</u>	<u>۾</u>	<u>۾</u>	100	ស	95	6	20	2	100	100	65	22	80	10	2	30
g		0 4	er (^	ה ה	ō O		9		20	<u></u>	ອ :	። -	9	2	2	20	100	8	100	6	09	6	100	100	0/	9	75	10	5 (80
COMPOUNT		ה ה	, i	, i	<u> </u>	<u></u>		9	7.	32	100	5	0	' :	2 :	9	20	100	100	100	95	9 1	65	100	907	9	9 6	2 .	מַלָּ		2
Ö		n ŭ	6 6	'n (5	6	9	9,	20	70	95	ָה מ	S.	י נ	ט נ	S (8	100	95	8	9	3 6	2 6	? ?	3 8	2 6	2 6	5	9 6	ָ י	ų U
	ù	iā	7	5 6	2	× 3	2,	8	8	2	ה ה	ני	Ç.	' 8	א ה	υ .	3 5	100	3	100	2 9	6 6	מ מ	3 5	3 8	3 8	0 6	ה	0, 0	, פ	Ų.
	Ą	, _~	íà	í è	ร์ เ	6	80	8	2	ន	201	2 (ָר כי מי	ח פ		9 6	2 5	y 8	y 6	ر د	2 0		2 2	9	5	2		5 5	2 6	2	.
	4		ď	, 6		2 (8	75	9	9 6	0 5	ם כ	0 0	, ,	2 5	7 0	ט פ	ה	מ פ	2 6	3	ה ה		3 6	2	3 6	2	· c	, ע	2
	46	65	90	2 6	9 6	א פ	0,0	9	80	20	2 6	2 6	9 6		2 6	2 5	2 2	3 6	2 4	ח פ	9 6	8	2 6	2	6	6	2 6	, 4	95	2)
	42	0	80	20	, L	י נ	3 (9	35	2 6	9 6	3 -	۶ د	6	, <u>r</u>	3 5	, L	ָר ק	3 6	2 6	3 6	20	, K	. 5	85	202	2 0	10	15	25) }
	23	75	90	6	8 6	2 6	2 4	0	90	0 0		3 2	8	75	ď	6	6	2	2	8 6	202	85	95	95	80	09	06	80	85	65	1
ÇE	9	90	95	95	5	100		9	9	6	95	90		95	95	95	001	20	6	06	95	70	00	00	00	40	95	90	95	95	
RGE	~	80	85	80	9	70	ď	3 6	0 0	202	80	75	90	90	85	70	001	06	06	70	70	20	90	90	90 1	40	80	65	80	85	
~	/ha	Barley Igri	Barnyardgr Flood	Barnyardgrass	Bedstraw	8				Ę	Crabgrass	ě	Duck salad	Giant foxtail	100					Redroot Pigweed		Soybean	Speedwel1		edge	Velvetleaf	Watergrass 2	Wheat	kwheat	Wild oat	

TABLE C	COMPOUND
Rate 500 g/ha	133
POSTEMERGENCE	
Barley Igri	35
Barnyardgr Flo	od 25
Barnyardgrass	45
Bedstraw	40
Blackgrass	65
Chickweed	70
Cocklebur	80
Corn	20
Cotton	100
Crabgrass	30
Downy Brome	10
Duck salad	35
Giant foxtail	55
Italn Ryegrass	40
Johnsongrass	10
Lambsquarter	95
Morningglory	60
Rape	90
Redroot Pigweed	80
Rice Japonica	40
Soybean	90
Speedwell	95
Sugar beet	95
Umbrella sedge	50
Velvetleaf	60
Watergrass 2	25
Wheat	10
Wild buckwheat	85
Wild oat	50

TABLE C										Š	COMPOUND	Ð				•						
Rate 500 g/ha	7	9	23	42	46	47	48	52	53	55	28	61	63	68	69	71	73	7.4	77 1	113		
PREEMERGENCE												!	;	}	}	•		•				CTT
Barley Igri	75	95	35	40	90	70	35	65	65	30	70	10	c	,	ı		1		S		ļ	
Barnyardgrass	90	100	95	100	100	95	100	100	100	100	100	100	80 1	100 1	100		. 6	, 6		•		2 6
Bedstraw	100	100	80	90	100	100	95	100	100	100		95						4	•	יי הליני די הליני		99
Blackgrass	90	100	80	100	95	65	90	100	95	100	40	30	, 6		ı)	•	4	•		99
Chickweed	100	100	95	75	100	95	95	100		100	100	95	0				۱ ا	- ' '	95	יי פון		001
Cocklebur	20	90	30	20	80	25	10	35		0	75			30			06				n 0	ט א ס
Corn	9	95	.60	70	82	65	35	90	82	40	70									35	. 65	} =
Cotton	40	9	40	20	90	10	70	30	20	40	35	20	70 1	-		-						100
Crabgrass	95	100	100	100	100	90	90	100	100	100	100	100		1001	100	25 1						100
Downy Brome	82	90	45	35	90	20	35	65	65	45	40	0	0		•	ı						2
Giant foxtail	100	100	100	100	100	95	100	100	92	85	1001	100		1001	100	25 10	100 10	100				3 5
Italn Ryegrass		95	92	100	100	82	75	95	95	52	95	45	0									9 4
Johnsongrass	80	100	82	75	90	70	9	95	90	80	90					_						י ה ה
Lambsquarter	100	100	100	100	100	95	100	100	100		_							•	•			2 :
Morningglory	75	100	100	80	100							•				•			_			92
Rape	95	20	100		100	06								7 00	201	22 1(1001	20				100
Redroot Pigweed	90	100	100		100						•										45 10	100
Soybean	r.	G	a				3 4									80 10	100 100		95 10	100 100		100
Speedwell		2 5						9						40 10	100	20 10	100 8	85	90	0	75 (65
The state of the s		3						100	80	100.	100	100	100	,	,	•	,	1	90 10	100	95	85
andar peer	001	100	100	20	100	100	100	100	100	100	1001	1001	100	ı	1		ı			-	•	
Velvetleaf	100	100	100	100	100	100	96	100	100	100 1	100			1001	100	100	•					2 9
Wheat	82	92	9	65	95	90	45	75									-	-		7		100
Wild buckwheat	8	100	75	20	8	c		100			•		,	ı	ı	ı		1	35		25	65
Wild oat	6	001	ď		2	, (3 1		3			2			ı		1	20 100		35	0
		}	3	2	8	?	65	95	92	9		20	0	ı	,			ا و	95 2	25 6	65 9	95

TABLE C.	COMPOUNI
Rate 500 g/ha	133
PREEMERGENCE	
Barley Igri	35
Barnyardgrass	95
Bedstraw	25
Blackgrass	55
Chickweed	90
Cocklebur	65
Corn	65
Cotton	30
Crabgrass	100
Downy Brome	40
Giant foxtail	90
Italn Ryegrass	90
Johnsongrass	60
Lambsquarter	100
Morningglory	100
Rape	95
Redroot Pigweed	60
Soybean	90
Speedwell	95
Sugar beet	95
Velvetleaf	40
Wheat	15
Wild buckwheat	100
Wild oat	85

		•																												
	35	70	95	90	80	70	75	10	80	20	90	9	95	90	90	90	80	90	90	80	95	90	100	90	95	20	95	70	90	90
	34	65	95	.06	80	9	20	20	75	70	90	75	9	90	90	80	95	80	55	70.	95	85	100	90	40	20	95	20	70	80
	32	0	85	20	65	40	0	20	10	30	30	40	90	20	20	09	0	70	80	•	52	70	0	80	95	20	82	0	80	82
	31	1	70	ı	ı	•	ı	ı	1	ı	1	ı	52	ı	•	•	ı	ı	•	,	52	•	1	ı	20	•	65	•	1	•
	30	20	90	9	45	65	65	9	35	90	9	0	95	80	90	90	95	85	95	90	65	85	100	90	95	35	95	0	80	82
	53	20	90	65	40	45	40	10	35	82	75	0	90	9	45	70	9	70	0	90	70	9	9	75	95	30	90	10	30	40
	56	45	82	100	80	75	100	95	20	70	75	30	60	82	65	90	100	100	100	100	9	90	1	100	95	80	90	10	95	82
										1																			1	1
	24	70	95	90	82	70	85	95	65	100	82	0	90	70	82	40	95	90	80	80	75	80	100	95	95	80	95	10	35	45
										80																				
	22	1	82	•	•	1	•	٠	ı	•	•	•	95	ı	1	•	1	,	1		82	ı	•	•	95	1	90	ŧ	1	1
	18	35	90	82	92	20	80	0	45	70	80	10	9	90	80	90	35	70	30	100	80	90	100	100	80	40	90	35	70	20
										80																				
										80																				
	6	9	90	90	90	9	80	75	20	70	82	\$	90	90	90	90	75	80	90	80	80	90	100	90	82	80	90	40	100	70
										20																				
£	7	65	92	80	40	92	9	35	75	20	65	20	90	80	75	90	0	20	20	70	90	22	65	80	82	92	95	9	30	90
COMPOUND	9	90	90	95	82	92	92	90	90	90	90	20	•	90	95	95	100	40	70	90	92	20	100	92	92	•	90	90	90	92
8								•		55																				
	ო	98	92	90	52	90	65	0	70	45	90	20	100	8	92	90	92	70	32	90	90	70	100	92	95	35	92	90	92	82
CE	~	65	82	80	9	65	80	40	40	20	20	20	75	80	65	9	95	90	80	70	65	40	82	90	90	40	75	9	80	70
RGEN	-	65		90	25	82	80	35	75	20	80	45	20	90	80	70	75.	70	45	9	82	90	75	82	92	30	90	65	80	80
TABLE C POSTEMERGENCE	Rate 250 g/ha	Barley Igri	Barnyardgr Flood	Barnyardgrass	Bedstraw	Blackgrass	Chickweed	Cocklebur	Corn	Cotton	Crabgrass	Downy Brome	Duck salad	Giant foxtail	Italn Ryegrass	Johnsongrass	Lambsquarter	Morningglory	Rape	Redroot Pigweed	Rice Japonica	Soybean	Speedwell	Sugar beet	Umbrella sedge	Velvetleaf	Watergrass 2	Wheat	Wild buckwheat	Wild oat
						•																		•						

TABLE C POSTEMERGENCE

TABLE C			COMP	OUND	
Rate 250 g/ha	77	112	114	115	133
POSTEMERGENCE					
Barley Igri	-	0	0	60	0
Barnyardgr Floor	a 90	80	80	95	20
Barnyardgrass	75	70	80	80	25
Bedstraw	-	50	65	90	10
Blackgrass	-	60	10	50	30
Chickweed	-	30	40	90	70
Cocklebur	80	25	55	40	50
Corn	30	30	30	10	10
Cotton	90	95	60	90	70
Crabgrass	70	20	40	70	20
Downy Brome	-	0	0	25	10
Duck salad	95	65	65	90	30
Giant foxtail	90	40	40	90	30
Italn Ryegrass	-	25	50	80	0
Johnsongrass	30	30	30	40	10
Lambsquarter	-	95	95	95	90
Morningglory	80	90	70	60	60
Rape	-	70	90	90	90
Redroot Pigweed	80	90	100	90	80
Rice Japonica	80	50	70	90	40
Soybean	80	70	75	80	90
Speedwell	-	95	-	65	90
Sugar beet	-	70	95	90	65
Umbrella sedge	85	90	95	95	20
Velvetleaf	80	95	35	40	60
Watergrass 2	90	65	85	85	20
Wheat	-	15	0	0	0
Wild buckwheat	-	10	70	0	30
Wild oat	-	15	20	75	10

TABLE C PREEMER	ERGENCE	េ						COM	COMPOUND	0			•									
Rate 250 g/ha	7	7	m	4	9	7	æ	<u>.</u>	10	14	18	23	24	36	29	30 3	32 3	34	35 3	36 39	9	0
Barley Igri	90	70	100	70	90	90	70	70	80	20	75	35	0	30	0	10	0	70	65 5	20	6	0.
Barnyardgrass	90	90	90	100	95	92	90	92	95	95	90	90	06	9	95	90	0	95	90 9	6 06	.6	0
Bedstraw	100	95	100	100	95	100	20	96	100	82	90	80 1	1001	100	85 9	95	0 10	100 1	100	95 100	0	S
Blackgrass	70	75	100	100	100	92	70	20	90	85	95	20	95	95	35	9 0/	65 9	95 (808	80 90	0 95	2
Chickweed	75	95	100	100	ı	98	82	92	95 1	1001	100	95	95	. 56	7.07	70 1	10 10	100 1	100 100	95	5 100	0
Cocklebur	30	10	20	80	82	0	30	45	70	40	30	30	0	0	20	09	0		20 3	30 40	0 20	0
Corn	80	30	70	90	90	90	70	75	80	75	65	20	20	60	35	20	0	75	75 7	70 55	5 60	0
Cotton	20	10	9	35	30	0	30	0	20	20	20	1	0	20	30	55 1	10 3	30 8	80 5	50 50	0	0
Crabgrass	100	9	100	100	100	100	95	100	100	1001	1001	1001	100 1	100 1	100 10	100 3	30 10	100 10	100 100	0 100	0 100	0
Downy Brome	9	82	100	100	90	20	65	90	70	20	45	30	30	10	0	10	0	95	85 7	70 70	0 85	S
Giant foxtail	100	95	100	100	100	98	95	100	100	1001	100	06	85 1(100	95 10	100 2	20 10	100 10	100 100	0 100	0 100	0
Italn Ryegrass	100	90	100	100	95	95	95	95	90	95	85	82	95	85	35 6	65	0	95 10	100	90 90	95	5
Johnsongrass	95	80	100	100	100	92	80	95	100	90	06	82	70	80	95 9	90 1	10 9	95	90	90 90	0 80	_
Lambsquarter	95	100	100	100	100	20	70	95	100	95 1	1001	1001	100 1	100	95 10	100 9	90 10	100 10	100 100	0 95	5 100	
Morningglory	100	35	100	100	82	75	20	100	100	90 1	1001	100	. 05	70 1(100 10	100	0 10	100 10	100 100	0 100	09 0	0
Rape	9	20	45	95	20	0	0	9	98	10	25 1	100	0	100	15 3	30 2	20	0 10	100	85 10	06 0	0
Redroot Pigweed	75	90	90	90	90	70	06	100	100	1001	1001	100	90 10	100 1	100 100		0 10	100 10	100 100	0 100	06 0	0
Soybean	80	35	90	90	90	82	20	75	20	09	35	09	10	15	40	45 3	30 7	70	8 06	85 40	0 10	
Speedwell	75	100	100	100	100	80	100	95	100 1	1001	1001	1001	100 1	100	80 10	100 6	60 10	100 10	100 100	0 100	0 100	_
Sugar beet	100	95	100	100	100	100	82	100	100	95 1	1001	1001	100 10	100 1	100 10	100 5	50 10	100 10	100 100	0 100	0 100	0
Velvetleaf	100	75	100	100	100	92	90	100	100.	90 1	1001	1001	100 1	100 10	100 10	100 4	40 100		100 100	0 100	09 0	0
Wheat	90	70	100	100	95	95	82	80	90	65	9	35	0	0	0	35	0	85 9	9 06	60 20	95	5
Wild buckwheat	90	90	100	100	100	20	20	100	80	40	40	70	90	95	25 9	9 06	65 3	30 10	100 100	0 100	0 40	
Wild oat	100	80	100	92	92	92	90	82	80	82	70	09	0 .	75 (45 7	70 4	45 9	95 9	8 06	85 75	90	_

TABLE C PREEME	ERGENCE	бі					8	COMPOUND	ğ								٠					
Rate 250 g/ha	41	42	46	47	48	49	20	51	22	23	52	28	61	63	89	69	71	73	74	77 1	112,114	14
Barley Igri	55	10	90	52	0	30	95	70	20	9	30	40	0	0		ı		•		20	10	20
Barnyardgrass	95	100	100	90	90	65	100	90	100	95	95	100	90	45	95 1	100	10 1	100	90	95		. 6
Bedstraw	10	9	100	100	95	0	100	20	90	20	95	100	80	0	1	•	`•	ı		90	. 08	0
Blackgrass	95	90	95	9	82	20	100	9	100	95	95	25	20	10	•	•	•	1	•	95	•	80
Chickweed	45	65	100	95	90	30	100	35	9	82	100	100	95	1		ı	ı	ı		40	95	30
Cocklebur	100	10	20	10	0	10	90	20	20	20	0	65	0	80	10	40	0	90	20	0	0	0
Corn	75	25	80	20	20	20	80	92	80	70	30	9	35	0	40	80	0	85	55	55	35	45
Cotton	0	0	20	0	90	0	100	0	20	10	40	30	10	70	82	95	0	100	20	20	. 02	10
Crabgrass	100	100	100	80	90	9	100	80	100	100	100	100	90	30 1	1001	100	0	100	90 1	100	35	40
Downy Brome	70	10	20	0	32	10	70	20	20	9	10	30	0	0	ı	ı		1	,	45	0	30
Giant foxtail	100	100	100	95	100	100	100	100	85	90	85	100	100	65 1	1001	100	10 1	100	85 1	1001	1.001	100
Italn Ryegrass	9	20	80	20	9	30	95	80	90	82	20	75	30	0	•	•	1		•	85	6	80
Johnsongrass	90	40	80	22	35	70	90	65	90	90	9	65	30	20	40	70	10	06	20	20	30	30
Lambsquarter	100	92	100	95	100	100	100	90	100	100	100	100	100	65	,	1	•	1.	-	100	100	95
Morningglory	82	40	100	92	30	20	100	20	100	100	80	100	20	20	70 1	100	0 1	100	20	80	. 09	20
Rape	9	35	100	92	90	0	100	70	90	20	0	100	90	95	,	1	ı	1		06	45	10
Redroot Pigweed	100	70	95	\$	92	75	100	80	90	90	100	100 1	100	80 1	1001	100	0 1	100	9	90	100	95
Soybean	20	0	92	40	40	10	100	40	40	70	20	90	30	09	20	95	0	95	20	65	0	40
Speedwell	100	9	100	100	100	100	100	95	100	80	100	100	100	10	1	•	ı	1	1	90 1	100	95
Sugar beet	100	9	100	100	100	90	100	100	100	100	100	1001	100	40	ı	1	,	,	-	100	100 1	100
Velvetleaf	80	32	100	90	90	0	100	20	100	100	100	95	9	75 1	1001	100	0 1	100	80 1		06	90
Wheat	75	0	80	80	30	0	90	40	35	09	20	30	10	0	ı	,	,	,	•	20		25
Wild buckwheat	25	10	70	0	95	9	100	40	82	25	95	35	95	10	ı	ı	ı	ı	1	. 20		30
Wild oat	75	30	06	20	20	20	92	9	80	90	35	9	20	0	1	ŧ	,	1	1	06	10	30

TABLE C	COMPOUND
Rate 250 g/ha	115 133
PREEMERGENCE	
Barley Igri	60 0
Barnyardgrass	95 90
Bedstraw	95 10
Blackgrass	95 10
Chickweed	80 25
Cocklebur	0 35
Corn	0 10
Cotton	40 20
Crabgrass	100 90
Downy Brome	80 0
Giant foxtail	100 30
Italn Ryegrass	90 40
Johnsongrass	50 30
Lambsquarter	95 100
Morningglory	75 50
Rape	90 70
Redroot.Pigweed	100 30
Soybean	50 65
Speedwell	40 65
Sugar beet	100 95
Velvetleaf	90 30
Wheat	40 10
Wild buckwheat	0 35
Wild oat	70 10

TABLE C POSTEMERGENCE	RGEN	<u> </u>				Ü	COMPOUND	ONE					٠.								
Rate 125 g/ha	1	7	٣		ø				10	14				2	5 26	28	29	30	31	32	3.4
	22	55	70		80														•	0	20
poo		75	82		75														65	70	90
grass	70	70	90		82														. 1	10	80
	45	20	20	82	9	30	20	80	9	80	90	1	85 65	10	- 70	-	40	45	,	9	80
m	75	20	90		9														1	40	40
	22	80	65		80														1	0	40
lebur	25	ı	0		20														•	0	0
	9	40	9		20														•	10	0,
	40	1	35		90														1	10	70
	20	40	90		82														,	0	80
a)	32	45	20		10														•	0	55
	20	70	92		ı														50	85	45
	90	20	90		90														ı	30	20
88	20	65	80		8														•	20	80
	20	9	80		20														1	20	80
	75	92	90		100														,	0	6
Ingglory	09	82	9		40														ı	20	20
	40	80	10		65														ı	80	35
eg-	9	20	80		90														1	•	202
ponica	70	09	82		80														20	40	6
	40	ı	70		•														1	9	85
	20	82	90		100														1	0	09
	80	90	95		92														ı	80	70
edge	90	90	80		92														20	95	35
	22	25	30		40														•	35	40
grass 2	90	70	92		75														65	70	5
	20	35	35		40							9	0						1	0	30
kwheat	9	80	90		65							9	5 35						1	80	40
Wild oat	70	9	80		82						รร		0 45						•	80	20

TABLE C POSTEMERGENCE	CEN	Ä						Ö	COMPOUND	Q.											
Rate 125 g/ha	35	36	37	38	39	40	41	42	46		48 49	9	5	3	2	u	C				
Barley Igri	70	40	45	22	40	35	0	0	09			0 45			ה ה	2	ם ה מ		٠ ټ		69
Barnyardgr Flood	95	85	82	80	80	82	80	35	20			. r			7 0	2 7	2 4	טיי			و. ا
Barnyardgrass	90	70	90	90	75	80	6		80	_				_	3	0 0	n (-	82
Bedstraw	80	45	9	20	85	20	10	20 8	85				•		8 6	2 6	2 6		י קר		06
Blackgrass	09	4.5	75	65	20	70	20	10							8 8	2 6	2 ;				09
Chickweed	55	40	9	65	40	90			06						2	2 6					82
Cocklebur	0	20	35	0	80	10	45	10 5	_					9 6	ה מ פ	2 2	9 6	•			06
Corn	70	20	20	20	40	25	20	10 3	35					20	20	2 6		י סכ	001	7 95	0 2
Cotton	40	20	90	82	90	35	10	0	9	55 9	95 90	95		90	6	, g	. ע		,		
Crabgrass	,	20	90	90	20	90	40	40 8	80	35 5				7,	A	, K			4		n .
Downy Brome	40	30	35	30	20	15	0	0	30	0	0	0		0	. •	; c			• •	בכ שני	n .
	90	75	20	20	70	35	0	0	90 7	75 7	75 -		70	1) 1		. מ	֝֟֝֝֟ ֓֞֓֓֞֞֓֓֓֓֓֓֞֩֞֩֞֩֓֓֓֓֓֓֓֓֡			n .
	70	20	90	90	70	80	25	30 9	90	55 4	40 25	90		9	5	0					n
88	80	75	90	95	90	80	10	0 7	70 2		0		Ç	, 4	3						
Johnsongrass	80	70	85	90	40	20	35 1	10 3	35 2	25	, ,		3	3 6	٠,						_
Lambsquarter	70	09	85	65	95	0		_		90			,								_
Morningglory	80	70	80	80	08								ָרָ י					90			_
	80	20	95	2	2								20	80				40 100	0 70	0 0	_
oot Pigweed				2									\$	90	80		70	8 06	80 100	95	
			2 K	2 6									80	80	80	06	80	90 7	70 90	09 (_
				2 6									25	70	22	20	30 2	25 2	20 65	5 70	_
			•		•					80 60	20	90	82	9	70	55	80 4	40 4	40 75	90	_
. 4		•	-1		_				95 100		2 100		100	100	40 1	100 10	100 100		-	_	_
9				7						90 95	5 95	100	90	100	90	100	80	95 9			
								35 80		90 80		100	100	82	06						_
				45				10 9(9 0	60 40	40	Ç,	65	20	0						
Jrass 2	_			90		82	80 2	20 70	9	5 75	5 20	95	40	70	75						
	9	0		65	25	25	0	10 10	0	0	10	15	20	10							_
Duckwheat	- '		80	92		••	50	0 95	ı.	0 75	40	80	25	80	90					ה ה	
B DEC DITM	08	 0	82	95	92	09	15 2	20 65		0	15	70	40	80			-			80	

			COMP	OUND			
71	. 73	74	77	112	114	115	133
0	70	0	-	0	0	40	0
d 0	95	75	85	75	80	80	20
10	95	80	40	60	40	70	10
30	85	20	-	50	60	90	10
10	95	70	-	50	10	50	20
40	90	50	-	25	40	80	50
40	80	50	70	20	55	30	50
0	70	40	20	20	20	0	0
80	95	90	90	95	60	70	50
20	70	40	50	15	40	50	10
0	40	0	-	0	0	10	10
0	90	70	95	35	45	90	20
10	80	20	75	35	35	75	10
0	95	30	-	25	10	65	0
35	50	20	20	25	20	30	0
0	95	90	-	95	95	90	90
20	70	45	80	85	40	40	50
40	95	70	-	70	75	90	80
45	70	60	75	90	100	80	60
0	85	30	70	40	60	85	40
35	90	80	80	70	65	60	80
40	100	60	-	95	70	60	-
10	70	90	-	70	90	85	65
0	85	85	80	85	95	95	0
20	75	25	80	90	35	35	35
0	95	65	75	50	75	70	10
20	70	30	-	10	0	0	.0
0	80	0	-	0	40	0	30
10	95	30	-	15	10	65	0
	00 00 00 00 00 00 00 00 00 00 00 00 00	0 70 10 95 10 95 30 85 10 95 40 90 40 80 0 70 80 95 20 70 0 40 0 95 35 50 0 95 20 70 40 95 45 70 0 85 35 90 40 100 10 70 0 85 20 75 0 95 20 70 0 80	71 73 74 0 70 0 10 95 75 10 95 80 30 85 20 10 95 70 40 90 50 40 80 50 0 70 40 80 95 90 20 70 40 0 40 0 0 95 30 35 50 20 0 95 30 35 50 20 0 95 90 20 70 45 40 95 70 45 70 60 0 85 30 35 90 80 40 100 60 10 70 90 0 85 85 20 75 25 0 95 65 20 70 30 0 80 0	71 73 74 77 0 70 0 - 10 95 75 85 10 95 80 40 30 85 20 - 10 95 70 - 40 90 50 - 40 80 50 70 0 70 40 20 80 95 90 90 20 70 40 50 0 40 0 - 0 90 70 95 10 80 20 75 0 95 30 - 35 50 20 20 0 95 90 - 20 70 45 80 40 95 70 - 45 70 60 75 0 85 30 70 35 90 80 80 40 100 60 - 10 70 90 - 0 85 85 80 20 75 25 80 0 95 65 75 20 70 30 - 0 80 0 -	71 73 74 77 112 0 70 0 - 0 10 95 75 85 75 10 95 80 40 60 30 85 20 - 50 10 95 70 - 50 40 90 50 - 25 40 80 50 70 20 0 70 40 20 20 80 95 90 90 95 20 70 40 50 15 0 40 0 - 0 0 90 70 95 35 10 80 20 75 35 0 95 30 - 25 35 50 20 20 25 0 95 90 - 95 20 70 45 80 85 40 95 70 - 70 45 70 60 75 90 0 85 30 70 40 35 90 80 80 70 40 100 60 - 95 10 70 90 - 70 0 85 85 80 85 20 75 25 80 90 0 95 65 75 50 20 70 30 - 10 0 80 0 - 0	0 70 0 - 0 0 10 95 75 85 75 80 10 95 80 40 60 40 30 85 20 - 50 60 10 95 70 - 50 10 40 90 50 - 25 40 40 80 50 70 20 55 0 70 40 20 20 20 80 95 90 90 95 60 20 70 40 50 15 40 0 40 0 - 0 0 0 90 70 95 35 45 10 80 20 75 35 35 0 95 30 - 25 10 35 50 20 20 25 20 0 95 90 - 95 95 20 70 45 80 85 40 40 95 70 - 70 75 45 70 60 75 90 100 0 85 30 70 40 60 35 90 80 80 70 65 40 100 60 - 95 70 10 70 90 - 70 90 0 85 85 80 85 95 20 75 25 80 90 35 0 95 65 75 50 75 20 70 30 - 10 0 0 80 0 - 0 40	71 73 74 77 112 114 115 0 70 0 - 0 0 40 10 95 75 85 75 80 80 10 95 80 40 60 40 70 30 85 20 - 50 60 90 10 95 70 - 50 10 50 40 90 50 - 25 40 80 40 80 50 70 20 55 30 0 70 40 20 20 20 0 80 95 90 95 60 70 20 70 40 50 15 40 50 10 80 20 75 35 35 75 0 95 30 - 25 10 65 35 50 20 20 25 20 30 0

TABLE C											ပ	COMPOUND	ę Q									
Rate 125 g/ha	-	7	m	4	9	7	c	0	10	14	18	23	24	56	53	30	32	34	35	36	37	38
PREEMERGENCE																						
Barley Igri	90	70	100	70	80	82	70	40	70	20	65	35	0	0	0	0	0	09	65	6	70	. 06
Barnyardgrass	90	80	90	100	95	82	90	90	90	90	90	75	70	20	90	80	0	95	90	90		100
Bedstraw	06	90	100	100	35	90	20	0	0	70	35	20	92	100	09	82	0	82	100	90 1	100 1	100
Blackgrass	70	65	100	100	90	95	70	9	80	65	82	55	9	82	35	45	9	80	80	65	65 1	100
Chickweed	75	95	95	100	100	70	75	92	95	10	95	90	82	90	20	9	0	95	100	95	95	95
Cocklebur	20	10	30	65	70	0	20	35	40	30	20	20	0	0	10	30	0	0	20	20	20	20
Corn	75	30	70	90	80	80	70	20	70	9	22	40	40	20	25	40	0	70	65	9	75	75
Cotton	20	0	20		20	0	30	0		10	20	20	0	0	, 10	0	0	1	35	30	20	70
Crabgrass	90	20	100	100	95	100	90	100	100	100	100	100	70	90	95	95	20 1	100	100		100	100
Downy Brome	20	82	80	100		20	40	9	40	20	10	0	0	10	0	10	0	90	80			95
Giant foxtail	100	80	100	100	100	80	90	92	75	90	100	90	65	90	75	95	10	90	100	1001	1001	100
Italn Ryegrass	90	75	100		95	95	90	90	90	90	80	82	95	9	35	30	0	90	100		95	95
Johnsongrass	90	9	100	100	95	95	70	90	90	90		20	20	09	90	80	0		90		100	100
Lambsquarter		100	100	100	100	30	9	92	100	95		100	92	100	90	95	85 1	100	100		95 1	100
Morningglory	100	20	100	100	70	30	40	20		70	82	9	20	70	65	90	0	90 1		90 1		100
Rape	30	20	45	95	30	0	0	. 65	35	0	0	92	0	80	0	ı	1	0,	95	65 1		40
Redroot Pigweed	70	90	90	80	90	45	20	90	80	20	98	75	•		100	100	-	100	1001			100
Soybean	80	10	8	90	75	40	40	20	40	40	30	40	0	10	20	10	0	6	90		90	90
Speedwell	75	95	100	100	95	70	65	90	95	100	100	95	100	100	30	100	60 1	100	100	1001		100
Sugar beet	92	1	100	100	100	30	70	100	65	82	82	100	100	100	20]	100	50 1	1001	1001	1001	1001	100
Velvetleaf	80	9	100	100	100	95	80	100	80	80	100	20	90	20	80	70	35 1	1001	100	85 1	1001	100
Wheat	90	9	100	100	90	90	75	20	90	20	52	0	0	0	0	35	0	20	80			95
Wild buckwheat	80	80	100	100	95	10	20	0	9	20	10	20	90	90	15	9	9	30 1	100	30 1	1001	100
Wild oat	90	9	100	95	80	8	90	80	80	82	9	20	35	10	25	0	45	06	85	75		85

TABLE C										S	COMPOUND	Ð	•									
Rate 125 g/ha	39	40	41	42	9 - 4	47	48	49	20	51	. 52	53	55	58	61	63	89	69	71	73	74	77
PREEMERGENCE																;)	}	!	2	•	:
Barley Igri	0	80	10	10	65	35	0	10	90	35	30	9	30	10	0	0	•	1	1		,	4
Barnyardgrass	82	90	90	90	95	80	70	30		8	95	90	70	90	20	45	75	95	0	100	85	90
Bedstraw	90	20	2	0	95	0	75	0	100	0	70	10	•	20	10	0	•	ı	•		٠	10
Blackgrass	55	95	80	70	70	20	70	25		9	90	85	70	.22	10	0	ı	ı		1	1	85
Chickweed	1	100	10	65	95	35	80	0	95	35	20	10	90	95	82	0	1	ı	ŀ	•	•	40
Cocklebur	30	10	2	0		0	0	0	80	20	0	10	0	70	0	70	0	35	0	80	0	0
Corn	40	40	20	20		35	10	10	80	45	70	20	30	45	0	0	25	70	0	. 8	40	40
Cotton	20	0	0	0	25	0	30	0	90	0	0	0	20	0	•	10	40	40	0	95	20	0
Crabgrass	100	100		-	100	65	20	30	100	9	100	100	90	100	75	20	30	85	0	100	30	95
Downy Brome	9	82	40	10		0	30	10	9	20	30	35	10	10	0	0	•	,		•	•	40
Giant foxtail	95	90	100	100	100	95	95	9	100	90	55	75		100	90	55	85	80	0	100	20	06
Italn Ryegrass	90	95	20		80	40	9	30	80	75	85	80		20	10	0	•	•		ı	•	65
Johnsongrass	70	20	40	10		20	30	10	80	20	70	75	\$	20	10	20	20	09	0	80	35	20
Lambsquarter	1	100		95	100	95	100	\$	100	30	95			100	100	40	1	1	1	•	•	95
Morningglory	80	40	35	20		90	15	0	100	20	95	100			40	•	20	75	0	100	20	70
Rape	0	9	40	10	100	40	35	0	100	35	30	20	0	70	9	90	•	ı	ı	•	1	20
Redroot Pigweed	100	90	90	40	90	20	95	9	100	80	82		100	90	90	٠,	100	95	0	100	30	30
Soybean	30	10	10	0	90	10	20	0	95	30	20	45	10	90	20		10	95		95	35	45
Speedwell	100	100	80	20	90	100	100	0	100	30	100	80		100	95	0	i		1		, ,	20
Sugar beet	100	80	100	0		95	100	80	100	65		100	100		100	•	1	,		,		1001
Velvetleaf	100	30	20	0	100	90	80	0	100	30			70	65	30	55	20	75	0	100	20	2
Wheat	0	90	45	0	70	25	0	0	80	10	30	35	20	20	0	0	,	ı		•	, ,	2
Wild buckwheat	90	40	20	0	65	0	90	0	100	25	35	20	70	25	65	10	•				•	2 5
Wild oat	9	80	35	10	65	35	10	0	95	10	70	20	20	15	0	0	•	1		•		70

TABLE C		СОМ	POUN	b
Rate 125 g/ha	112	114	115	133
PREEMERGENCE				
Barley Igri	10	15	40	O
Barnyardgrass	90	80	90	40
Bedstraw	35	0	90	10
Blackgrass	85	35	75	0
Chickweed	95	30	70	0
Cocklebur	0	0	0	20
Corn	20	20	0	0
Cotton	0	0	30	10
Crabgrass	25	30	85	30
Downy Brome	0	20	65	0
Giant foxtail	90	100	100	20
Italn Ryegrass	30	70	80	0
Johnsongrass	25	10	35	20
Lambsquarter	100	95	95	95
Morningglory	60	70	70	30
Rape	25	0	90	70
Redroot Pigweed	100	80	50	10
Soybean	0	20	40	35
Speedwell	100	60	40	60
Sugar beet	95	95	100	90
Velvetleaf	80	50	60	15
Wheat	0	0	25	0
Wild buckwheat	70	30	0	20
Wild oat	10	20	70	10

TABLE C POSTEMERGENCE	EMERG	ENC	ш					Ŭ	COMPOUNT	OND C													
Rate 62 g/ha		Ä	m	4		7	∞		10		18	22	23	24	25	26	28	29	30	31	2	4	5
Barley Igri	m	2	50	01		20	35		35	_		•				10					0	5	0
Barnyardgr Flood			75	82		80	9		70	75		70				70	09				0	<u></u>	0
Barnyardgrass	S											ı											0
Bedstraw			45									ı	70										0
Blackgrass	2											ı											0
Chickweed	40			30	80	10	10	40	20	40	20	1		85	•	90	1	\$	65	ı	0	30	35
Cocklebur	7		0									1	20										0
Corn	4											ı											
Cotton	m		52									ı	1										0
Crabgrass	4											ı											0
Downy Brome	7											ı	10										0
Duck salad	Ö											25											Š
Giant foxtail												ı											'n
Italn Ryegrass												ı	65										0
Johnsongrass	7																						0
Lambsquarter	9																						0
Morningglory	4												09										0
Rape																							0
Redroot Pigweed	_																						0
Rice Japonica	4												65	•									, iù
Soybean	m																						0
Speedwell	4												95										0
Sugar beet																							0
Umbrella sedge																						10	Ŋ
	7											ı	25										0
Watergrass 2	ū		80	000		65	20					80	70								0	50	ιŅ
Wheat		0	10	2		40	0					ı	20								0	0	0
Wild buckwheat		0	08	2		20	35					ı	30				,	. 08		- 7	т 0	. 0	0
Wild oat	m	~ o	80	22		20	35	45	20			ı	35				1	35 (٦ ،	9	. 0	

TABLE C POSTEMERGENCE

TABLE C		COM	POUN	D
Rate 62 g/ha	112	114	115	133
POSTEMERGENCE				
Barley Igri	0	0	20	
Barnyardgr Floo	d 65	50	75	20
Barnyardgrass	50	0	65	10
Bedstraw	30	40	90	10
Blackgrass	-	0	45	0
Chickweed	25	40	60	35
Cocklebur	10	40	30	40
Corn	15	0	0	.0
Cotton	95	50	70	40
Crabgrass	10	40	40	10
Downy Brome	0	0	0	10
Duck salad	35	30	90	20
Giant foxtail	10	30	60	0
Italn Ryegrass	25	0	35	0
Johnsongrass	20	20	20	0
Lambsquarter	95	70	90	90
Morningglory	85	40	40	50
Rape	50	65	80	10
Redroot Pigweed	85	90	80	60
Rice Japonica	25	35	80	40
Soybean	70	60	60	70
Speedwell	85	55	45	25
Sugar beet	70	70	80	60
Umbrella sedge	80	90	95	0
Velvetleaf	50	20	30	35
Watergrass 2	40	40	70	10
Wheat	10	0	0	0
Wild buckwheat	0	35	0	30
Wild oat	15	10	60	0

TABLE C POSTEMERGENCE	ERGE	NCE						S	COMPOUND	_											
Rate 31 g/ha	-	m		1 7		Ø	10	14	18	22	24	25	26 2	28 29	2		ç	;	;	,	
Barley Igri	0	-	0		20	m	25	10	10							10	32	4	32	36	37
Barnyardgr Flood	d 40	65	-	75			20	9	9	45		· •	, ,		·	۱ ;	0 1	30	30	10	9 .
Barnyardgrass	30	20	25		_		35	40	30	} '		•	-			<u>գ</u>	52	80	82	65	Ċ C1
Bedstraw	ı	30	09 (20			20	20	20	ı) Q	יטיר		י ו ני גי	30	1	0	9 9	۶ و ز	30	35
Blackgrass	30	20	02 (-	25	20	35	25	20	•	50	' '	25	; ;		1	,	9 9	2 6	, 30 10	9 9
Chickweed	40	20	30			30	30	30	20	,	9	1 60		3 2	2 4	1 1	ה כ	2 .	2 5		30
Cocklebur	10		20			40	20	25	0	,	202) VC 1	·	י י		•		3 6	ي د		40
Corn	25				25		10	20	50	1						•	.	٠ ;	0		30
Cotton	30	20	35	0		-	9	40	9		06		202	9		1 1	> <	0 0	30	9 9	30
Crabgrass	25	25				25	30	30	20	,,		ا ب			-			2 6	ה ה		2 (
Downy Brome	10	0				0	0		0				0					מי			.
Duck salad	10	9				30	30		30	40	90 30		~					0,			5
Giant foxtail	52	40	45		20	55	9		40						ה ק	2		0 6		000	9 (
Italn Ryegrass	20	10				10	10		40	1						1		ם יו			09
Johnsongrass	10	35				10	10	20	20	ı		7)					02
Lambsquarter	9	85	65	0		40	3		· •					; ;		•					<u> </u>
Morningglory	40	35		20		40	9	7, 5	2 4							•					2
Rape	35	0		•		2	2 5		2 6		הפ					•					0
Redroot Pigweed	35	45		, ,	•	2 5	2 6									1		0		30 8	2
Rice Japonica	25	70		2 6		2 6	2 5	ָב מ		1						ı			80		20
Soybean	30			, נ ה		י ר	ה ה				30 10	20			20	30		. 02			S
Speedwel1	40	2 2		ָרָ בְּרָ	3 5	2 \$	ָרָ יָ	2 6			د	7	' -		70	•		80		7 07	0
Sugar beet	50	20	2 2	2 6	2 6	9 4	G (2 6	06 6			- 95		65	90	1	0	ı		6	95
Umbrella sedue	9	4		9 6	2 5	ה ה	2 5	2 :			- 06				35	1	09	40	80 7	70 6	0
Velvetleaf	2		·	9 6	2 6	0 4	0 :	ر و			4				80	20	70	•			Ñ
Watergrass 2	2 5	ָרָ עָ	<u>י</u>	2 1	2 :	9	35	30		'n	35	. 25		20	10	•	-		35 2		35
Wheat	,	3 9	9	ח מ	45	ر د	52	30	6	•	5 40			•	25	30		•			30
Wild buckwhear	, f	•	•	2 .	ع . د ا	0 9	0	0	20		0		-	0	0	•				0	
Wild oat	} ~	2	ָר בּ	3 6	ט י	.	20	0	20	<u>آ</u> ا		Q	-	30	40	•	70 2	20 4	•	m	ري ري
)	2	7	7	ָ ר	9	ئ	4 0	32	- 40	ا 0	20	•	35	30		9 09		50 3	4	0

TABLE C			c	OMPO	UND		
Rate 31 g/ha	38	39	40	41	4.9	9 50	51
POSTEMERGENCE							
Barley Igri	10	30) 0	0	20	30	20
Barnyardgr Floo	d 30	60	55	40	15	65	10
Barnyardgrass	35	40	20	20	C	90	30
Bedstraw	40	80	0	0	20	50	25
Blackgrass	40	35	40	0	10	30	10
Chickweed	55	35	85	30	. 0	30	40
Cocklebur	0	75	0	30	30	80	40
Corn	30	10	10	0	. 0	10	20
Cotton	85	90	25	0	90	90	80
Crabgrass	50	25	45	20	20	70	20
Downy Brome	0	0	0	0	0	0	0
Duck salad	25	40	20	0	0	70	10
Giant foxtail	70	35	45	10	15	70	20
Italn Ryegrass	60	40	10	0	0	0	0
Johnsongrass	40	30	0	15	0	20	35
Lambsquarter	50	95	0	0	20	80	70
Morningglory	80	70	30	25	70	90	35
Rape	0	65	30	0	10	65	20
Redroot Pigweed	60	80	-	20	45	75	35
Rice Japonica	20	50	-	0	0	50	10
Soybean	70	60	. 0	0	40	90	50
Speedwell	50	70	100	10	55	100	50
Sugar beet	45	90	70	0	60	65	55
Umbrella sedge	0	80	40	40	0	100	10
Velvetleaf	40	35	30	10	20	60	45
Watergrass 2	20	70	45	30	0	65	0
Wheat	0	10	0	0	0	10	0
Nild buckwheat	20	20	0	10	0	0	0
Vild oat	45	30	0	15	10	50	0

TABLE C											S	COMPOSIND	Ę										
Rate 3	31 g/ha	-	m	4	7	∞	O	10	14	18	24	26	29	2	3		'n	ž					
PREEMERGENCE	ENCE									}	•) I	ì	2	7		n n		· ·	38	9	4 0	4
Barley Igri	gri	20	85	10	9	30	25	4 0	25	10	0	0	0	-	-	ç	•	c				٠.	
Barnyardgrass	grass	80	20	90	70	40	65	80	65	65	6	20	. 6	. 6	• •	, ,	۶ د	 ט		היים			٠ ;
Bedstraw		20	95	70	10	0	0	0	0	10	30	20	35	25	0	10					, ,		≅ `
Blackgrass	88	25	80	90	9	20	20	20	30	30	25	10	0	0	10					•			,
Chickweed	יט	0	95	20	20	0	10	0	0	70	10	0	0		0						_		2 6
Cocklebur	H	0	0	15	0	0	10	10	10	20	0	•	0	10	0		10						<i>-</i>
Corn		9	20	80	40	20	9	22	45	20	10	0	0		0	0				45 2 25 25			,
Cotton		10	10	0	0	0	0	0	10	10	0	0	0		0)
Crabgrass	m	70	75	100	9	65	92	82	80	70	40	20	80	80				•					-
Downy Brome	эше	22		32	10	0	10	0	5.	0	0	10	0										, (
Giant foxtail	ktail	45		100	20	92	20	55	65	70	20	20			0		Ī		_		, ה ה		o c
Italn Ryegrass	egrass	45	82	70	75	10	20	82	82	20	35	0											•
Johnsongrass	rass			90	80	30	75	40	04	9	20	30	40	30		09							
Lambsquarter	rter			100	20	9	90	90	95	35	95	95				•					_		
Morningglory	lory	20	20	40	0	20	20	0	20	30	30								9				- 0
Rape		0	0	10	0	0	10	0	0	0	0	0	0	10	0)
Redroot Pigweed	igweed	20	75	30	0	20	40	09	30	20		09	95	30	1				_	-			
soybean		22		20	10	0	30	20	0	10	0	0	0	0	0								
Speedwel1		20	06	100	10	20	40	09	90	75 1		85	,	1		20 100			_				
Sugar beet	نڌ	20	30	100	10	10	10	25	25	10 1	100	85 ,	20	09	_		-			٠			
Velvetleaf	ij	20	20	35	25	20	20	0	10										7	-			_
Wheat		40	90	80	80	0	10	20	0			, ,	, ,									••	_
Wild buckwheat	wheat	0	90	65	0	10	0	_			, -	, ,										0	_
Wild oat		20	06	0,0	G	5	• •	, 6			2 (>	>				85 0	20	40	. 30	10		_
)	2	>	2	> #	2	9	4	0	0	0	0	20 7	70 60		45	. 65	20	25	•	_

TABLE C	С	OMPOU	JND
Rate 31 g/ha	49	50	51
PREEMERGENCE			
Barley Igri	10	65	C
Barnyardgrass	0	90	45
Bedstraw	0	80	0
Blackgrass	10	50	20
Chickweed	0	70	0
Cocklebur	0	65	0
Corn	0	55	10
Cotton	0	10	0
Crabgrass	0	80	20
Downy Brome	10	0	0
Giant foxtail	20	100	35
Italn Ryegrass	20	60	0
Johnsongrass	0	30	10
Lambsquarter	20	100	0
Morningglory	0	90	0
Rape	0	95	0
Redroot Pigweed	15	100	50
Soybean	0	75	10
Speedwell	0	95	0
Sugar beet	10	100	0
Velvetleaf	0	90	0
Wheat	0	20	0
Wild buckwheat	0	10	0
Wild oat	0	70	0

TABLE C	COM	POUND	TABLE C	COM	IPOUND
Rate 16 g/ha	37	38	Rate 16 g/ha	37	38
POSTEMERGENCE			PREEMERGENCE		
Barley Igri	40	10	Barley Igri	20	0
Barnyardgr Floo	d 0	0	Barnyardgrass	40	50
Barnyardgrass	20	20	Bedstraw	0	25
Bedstraw	65	40	Blackgrass	10	10
Blackgrass	30	30	Chickweed	90	90
Chickweed	40	40	Cocklebur	0	0
Cocklebur	10	0	Corn	0	10
Corn	20	20	Cotton	0	0
Cotton	70	85	Crabgrass	40	40
Crabgrass	40	30	Downy Brome	30	20
Downy Brome	0	0	Giant foxtail	60	90
Duck salad	35	20	Italn Ryegrass	0	60
Giant foxtail	50	40	Johnsongrass	30	50
Italn Ryegrass	0	0	Lambsquarter	95	90
Johnsongrass	20	20	Morningglory	10	30
Lambsquarter	65	45	Rape	10	0
Morningglory	60	70	Redroot Pigweed	100	90
Rape	20	0	Soybean	0	20
Redroot Pigweed	50	40	Speedwell	90	95
Rice Japonica	25	0	Sugar beet	95	100
Soybean	70	60	Velvetleaf	10	30
Speedwell	50	35	Wheat	0	0
Sugar beet	60	40	Wild buckwheat	0	30
Umbrella sedge	0	0	Wild oat	25	0
Velvetleaf	30	30			
Watergrass 2	20	10			
Wheat	0	0			
Wild buckwheat	35	10			
Wild oat	20	20			

TEST D

10

15

20

Seeds of barnyardgrass (Echinochloa crus-galli), bindweed (Convolvulus arvensis), black nightshade (Solanum ptycanthum dunal), cassia (Cassia obtusifolia), cocklebur (Xanthium strumarium), common ragweed (Ambrosia artemisiifolia), com (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria spp.), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberii), green foxtail (Setaria viridis), jimsonweed (Datura stramonium), johnsongrass (Sorghum halepense), lambsquarter (Chenopodium album), morningglory (Ipomoea spp.), pigweed (Amaranthus retroflexus), prickly sida (Sida spinosa), shattercane (Sorghum vulgare), signalgrass (Brachiaria platyphylla), smartweed (Polygonum pensylvanicum), soybean (Glycine max), sunflower (Helianthus annuus), velvetleaf (Abutilon theophrasti), wild proso (Panicum miliaceum), woolly cupgrass (Eriochloa villosa), yellow foxtail (Setaria lutescens) and purple nutsedge (Cyperus rotundus) tubers were planted into a sandy loam or clay loam soil. These crops and weeds were grown in the greenhouse until the plants ranged in height from two to eighteen cm (one to four leaf stage), then treated postemergence with the test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant. Pots receiving preemergence treatments were planted immediately prior to test chemical application. Pots treated in this fashion were placed in the greenhouse and maintained according to routine greenhouse procedures.

Treated plants and untreated controls were maintained in the greenhouse approximately 14-21 days after application of the test compound. Visual evaluations of plant injury responses were then recorded. Plant response ratings, summarized in Table D, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

TABLE D	COMPOUND	TABLE D	COMPOUND
Rate 560 g/h	a 41 42	Rate 280 g/ha	41 42
PREEMERGENCE		PREEMERGENCE	
SANDY LOAM SO	[L	SANDY LOAM SOI	L .
Barnyardgrass	100 100	Barnyardgrass	100 100
Bindweed	100 50	Bindweed	100 40
Blk Nightshade	100 80	Blk Nightshade	100 80
Cassia	80 10	Cassia	10 0
Cocklebur	70 10	Cocklebur	50 0
Corn	90 60	Corn	80 40
Cotton	40 0	Cotton	10 0
Crabgrass	100 100	Crabgrass	100 100
Fall Panicum	100 100	Fall Panicum	100 95
Giant Foxtail	100 100	Giant Foxtail	100 100
Green Foxtail	100 100	Green Foxtail	100 100
Jimsonweed	100 20	Jimsonweed	90 0
Johnson Grass	100 90	Johnson Grass	90 60
Lambsquarter	100 100	Lambsquarter	100 100
Morningglory	90 100	Morningglory	50 100
Nutsedge	95 50	Nutsedge	90 30
Pigweed	100 100	Pigweed	100 85
Prickly Sida	100 0	Prickly Sida	50 0
Ragweed	100 80	Ragweed	100 50
Shattercane	95 100	Shattercane	90 70
Signalgrass	100 100	Signalgrass	100 100
Smartweed	100 30	Smartweed	100 0
Soybean	30 0	Soybean	10 0
Sunflower	90 10	Sunflower	70 20
/elvetleaf	100 100	Velvetleaf	100 100
Vild Proso	100 95	Wild Proso	90 85
oolly cupgrass	85 100	Woolly cupgrass	70 80
ellow Foxtail	100 95	Yellow Foxtail	100 100

TABLE D			UND	TABLE D		COM	IPOUI	MD.
Rate 140 g/ha	41	42	73	Rate 70 g/ha	4	4 41	4:	2 73
PREEMERGENCE				PREEMERGENCE				
SANDY LOAM SOI	L			SANDY LOAM SOI	L			
Barnyardgrass	95	50	100	Barnyardgrass	85	80	10	100
Bindweed	100	10	100	Bindweed	20	100	C	80
Blk Nightshade	95	50	95	Blk Nightshade	100	50	10	95
Cassia	0	0	80	Cassia	20	0	0	80
Cocklebur	30	0	40	Cocklebur	50	0	0	20
Corn	80	20	70	Corn	70	60	10	50
Cotton	10	0	90	Cotton	30	0	0	10
Crabgrass	100 1	00	100	Crabgrass	100	100	100	100
Fall Panicum	100	90	100	Fall Panicum	100	95	50	100
Giant Foxtail	100 1	.00	100	Giant Foxtail	100	100	100	100
Green Foxtail	100 1	.00	100	Green Foxtail	100	100	100	100
Jimsonweed	50	0	100	Jimsonweed	100	10	0	100
Johnson Grass	95	30	80	Johnson Grass	100	80	10	50
Lambsquarter	100 1	00	100	Lambsquarter	100	100	100	100
Morningglory	50	20	100	Morningglory	50	40	0	70
Nutsedge	80	30	90	Nutsedge	70	60	10	70
Pigweed	100	40	100	Pigweed	100	100	-	85
Prickly Sida	10	0	100	Prickly Sida	100	0	0	100
Ragweed	95	0	100	Ragweed	100	100	0	100
Shattercane	90	30	90	Shattercane	50	50	10	60
Signalgrass	100 1	00 :	100	Signalgrass	95	95	95	80
Smartweed	95	0	80	Smartweed	20	100	0	40
Soybean	0	0	95	Soybean	50	0	0	70
Sunflower	30 1	LO	70	Sunflower	70	10	0	50
Velvetleaf	100 10	00 1	100	Velvetleaf	100	100	0	100
Wild Proso	80 4	10 1	100	Wild Proso	90	40	10	100
Woolly cupgrass	40 5	0	70	Woolly cupgrass	90	10	10	70
Yellow Foxtail	100 8	0 1	.00	Yellow Foxtail	90	90	50	

TABLE D	COM	POUND	TABLE D	co	MPOUND
Rate 35 g/ha	4 42	2 73	Rate 17 g/ha	4	73
PREEMERGENCE			SANDY LOAM SOI	٠	
SANDY LOAM SOI	L		PREEMERGENCE		
Barnyardgrass	50 10	90	Barnyardgrass	30	30
Bindweed	10 0	0	Bindweed	10	0
Blk Nightshade	95 10	95	Blk Nightshade	40	80
Cassia	0 0	60	Cassia	0	0
Cocklebur	20 0	10	Cocklebur	0	0
Corn	60 10	40	Corn	40	5
Cotton	10 o	-	Cotton	0	0
Crabgrass	100 100	100	Crabgrass	100	40
Fall Panicum	100 10	100	Fall Panicum	70	60
Giant Foxtail	100 00	100	Giant Foxtail	90	60
Green Foxtail	100 00	100	Green Foxtail	60	50
Jimsonweed	80 0	100	Jimsonweed	10	70
Johnson Grass	50 10	20	Johnson Grass	30	0
Lambsquarter	100 180	100	Lambsquarter	50 :	100
Morningglory	20 0	50	Morningglory	_	0
Nutsedge	40 0	50	Nutsedge	10	10
Pigweed	90 1 0	80	Pigweed	40	70
Prickly Siđa	80 0	70	Prickly Sida	10	40
Ragweed	100 0	50	Ragweed	40	30
Shattercane	50 10	50	Shattercane	30	0
Signalgrass	95 60	70	Signalgrass	70	50
Smartweed	30 0	40	Smartweed	0	0
Soybean	40 0	50	Soybean	10	20
Sunflower	20 0	50	Sunflower	0	30
/elvetleaf	100 0	100	Velvetleaf	0	0.
Vild Proso	90 10	70	Wild Proso	30 . :	30
oolly cupgrass	90 10	50	Woolly cupgrass	30	0
ellow Foxtail	60 20	90	Yellow Foxtail	40 5	50

TABLE D	CON	1POUND	TABLE D	COMPOUND
Rate 8 g/ha	4	73	Rate 560 g/ha	41
PREEMERGENCE			PREEMERGENCE	
SANDY LOAM SOIL			CLAY LOAM SOIL	•
Barnyardgrass	10	0	Barnyardgrass	100
Bindweed	0	0	Bindweed	100
Blk Nightshade	0	0	Blk Nightshade	100
Cassia	0	0	Cassia	0
Cocklebur	0	0	Cocklebur	5
Corn	10	0	Corn	100
Cotton	0	0	Cotton	10
Crabgrass	10	0	Crabgrass	100
Fall Panicum	10	50	Fall Panicum	100
Giant Foxtail	30	0	Giant Foxtail	100
Green Foxtail	0	0	Green Foxtail	100
Jimsonweed	0	30	Jimsonweed	100
Johnson Grass	10	0	Johnson Grass	100
Lambsquarter	0	50	Lambsquarter	100
Morningglory	0	0	Morningglory	70
Nutsedge	0	0	Nutsedge	10
Pigweed	0	30	Pigweed	100
Prickly Sida	0	0	Prickly Sida	30
Ragweed	0	0	Ragweed	100
Shattercane	0	0	Shattercane	90
Signalgrass	0	30	Signalgrass	100
Smartweed	0	0	Smartweed	100
Soybean	0	0.	Soybean	0
Sunflower	0	0	Sunflower	90
Velvetleaf	0	0	Velvetleaf	95
Wild Proso	10	0	Wild Proso	100
Woolly cupgrass	10	0	Woolly cupgrass	60
Yellow Foxtail	0	20	Yellow Foxtail	100

TABLE D	COMPOUND		
Rate 280 g/ha		TABLE D	COMPOUND
PREEMERGENCE	41	Rate 140 g/ha	41
CLAY LOAM SOIL		PREEMERGENCE	
		CLAY LOAM SOIL	•
Barnyardgrass Bindweed	70	Barnyardgrass	60
	100	Bindweed	80
Blk Nightshade		Blk Nightshade	100
Cassia	0	Cassia	0
Cocklebur	0	Cocklebur	0
Corn	70	Corn	60
Cotton	0	Cotton	-
Crabgrass	100	Crabgrass	100
Fall Panicum	100	Fall Panicum	90
Giant Foxtail	100	Giant Foxtail	100
Green Foxtail	100	Green Foxtail	100
Jimsonweed	80	Jimsonweed	80
Johnson Grass	60	Johnson Grass	55
Lambsquarter	100	Lambsquarter	100
Morningglory	70	Morningglory	5
Nutsedge	0	Nutsedge	0
Pigweed	100	Pigweed	100
Prickly Sida	30	Prickly Sida	10
Ragweed	90	Ragweed	90
Shattercane	80	Shattercane	20
Signalgrass	100	Signalgrass	100
Smartweed	100	Smartweed	100
Soybean	0	Soybean	0
Sunflower	80	Sunflower	40
Velvetleaf	70	Velvetleaf	0
Wild Proso	70	Wild Proso	20
Woolly cupgrass	50	Woolly cupgrass	40
Yellow Foxtail	100	Yellow Foxtail	-

TABLE D	COMPOUND	TABLE D	COMPOUND
Rate 70 g/ha	41	Rate 35 g/ha	41
PREEMERGENCE		PREEMERGENCE	
CLAY LOAM SOIL	•	CLAY LOAM SOIL	,
Barnyardgrass	30	Barnyardgrass	20
Bindweed	80	Bindweed	20
Blk Nightshade	100	Blk Nightshade	80
Cassia	0	Cassia	0
Cocklebur	0	Cocklebur	0
Corn	50	Corn	10
Cotton	0	Cotton	-
Crabgrass	100	Crabgrass	100
Fall Panicum	90	Fall Panicum	70
Giant Foxtail	100	Giant Foxtail	80
Green Foxtail	100	Green Foxtail	70
Jimsonweed	40	Jimsonweed	0
Johnson Grass	20	Johnson Grass	20
Lambsquarter	100	Lambsquarter	100
Morningglory	5	Morningglory	0
Nutsedge	0	Nutsedge	0
Pigweed	100	Pigweed	100
Prickly Sida	0	Prickly Sida	0
Ragweed	45	Ragweed	40
Shattercane	10	Shattercane	10
Signalgrass	90	Signalgrass	70
Smartweed	100	Smartweed	0
Soybean	0	Soybean	0
Sunflower	40	Sunflower	0
Velvetleaf	0	Velvetleaf	0 .
Wild Proso	20	Wild Proso	0
Woolly cupgrass	0	Woolly cupgrass	0
Yellow Foxtail	100	Yellow Foxtail	70

W 96/31517 PCT/US96/03803

140

TEST E

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for 5 the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test. Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include american black nightshade (Solanum americanum), arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), corn (Zea mays), cotton (Gossypium hirsutum), eastern black nightshade (Solanum ptycanthum), fall panicum (Panicum dichotomiflorum), field bindweed (Convolvulus arvensis), Florida beggarweed (Desmodium purpureum), giant foxtail (Setaria faberii), hairy beggarticks (Bidens pilosa), ivyleaf morningglory (Ipomoea hederacea), johnsongrass (Sorghum halepense), $la dysthumb \ (\textit{Polygonum persicaria}), \ large \ crabgrass \ (\textit{Digitaria sanguinalis}), \ purple$ nutsedge (Cyperus rotundus), redroot pigweed (Amaranthus retroflexus), soybean (Glycine max), surinam grass (Brachiaria decumbens), velvetleaf (Abutilon theophrasti) and wild poinsettia (Euphorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 14 to 21 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table E, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

•			
TABLE E	COMPOUND	TABLE E	COMPOUND
Rate 280 g/ha	41	Rate 280 g/ha	41
POSTEMERGENCE		Preemergence	
Arrowleaf Sida	35	Arrowleaf Sida	75
Barnyardgrass	30	Barnyardgrass	95
Cocklebur	25	Cocklebur	20
Common Ragweed	35	Common Ragweed	90
Corn	0	Corn	65
Cotton	40	Cotton	-
Estrn Blknight	40	Fall Panicum	95
Fall Panicum	35	Field Bindweed	95
Field Bindweed	30	Fl Beggarweed	0
Fl Beggarweed	25	Giant Foxtail	100
Giant Foxtail	25	Hairy Beggartic	80
Hairy Beggartic	45	Ivyleaf Mrnglry	60
Ivyleaf Mrnglry	25	Johnsongrass	85
Johnsongrass	15	Ladysthumb	100
Ladysthumb	55	Lambsquarters	100
Lambsquarters	15	Large Crabgrass	100
Large Crabgrass	80	Purple Nutsedge	-
Purple Nutsedge	0	Redroot Pigweed	100
Redroot Pigweed	45	Soybean	-
Soybean	20	Surinam Grass	100
Surinam Grass	25	Velvetleaf	25
Velvetleaf	20	Wild Poinsettia	0
Wild Poinsettia	20		

TABLE E	COMPOUND	TABLE E COMPOUND
Rate 140 g/ha	41	Rate 140 g/ha 41
POSTEMERGENCE		PREEMERGENCE
Arrowleaf Sida	20	Arrowleaf Sida 30
Barnyardgrass	20	Barnyardgrass 85
Cocklebur	-	Cocklebur 0
Common Ragweed	20	Common Ragweed 90
Corn	0	Corn 50
Cotton	35	Cotton -
Estrn Blknight	20	Fall Panicum -
Fall Panicum	30 .	Field Bindweed 55
Field Bindweed	25	Fl Beggarweed 0
Fl Beggarweed	15	Giant Foxtail 100
Giant Foxtail	15	Hairy Beggartic 65
Hairy Beggartic	35	Ivyleaf Mrnglry 10
Ivyleaf Mrnglry	15	Johnsongrass 65
Johnsongrass	10	Ladysthumb 85
Ladysthumb	25	Lambsquarters 95
Lambsquarters	0	Large Crabgrass 100
Large Crabgrass	50	Purple Nutsedge 45
Purple Nutsedge	0	Redroot Pigweed 100
Redroot Pigweed	35	Soybean 0
Soybean	15	Surinam Grass 100
Surinam Grass	20	Velvetleaf 0
Velvetleaf	15	Wild Poinsettia 0
Wild Poinsettia	15	,

TABLE E	COMPOUND	TABLE E COMPOUND
Rate 70 g/ha	41	Rate 70 g/ha 41
Postemergence		Preemergence
Arrowleaf Sida	10	Arrowleaf Sida 15
Barnyardgrass	10	Barnyardgrass 75
Cocklebur	10	Cocklebur 0
Common Ragweed	15	Common Ragweed 45
Corn	0	Corn 0
Cotton	30	Cotton 0
Estrn Blknight	10	Fall Panicum 80
Fall Panicum	10	Field Bindweed 0
Field Bindweed	10	Fl Beggarweed -
Fl Beggarweed	0	Giant Foxtail 90
Giant Foxtail	10	Hairy Beggartic 25
Hairy Beggartic	30	Ivyleaf Mrnglry 0
Ivyleaf Mrnglry	0	Johnsongrass 15
Johnsongrass	0	Ladysthumb 55
Ladysthumb	0	Lambsquarters 85
Lambsquarters	0	Large Crabgrass 100
Large Crabgrass	25	Purple Nutsedge 40
Purple Nutsedge	0	Redroot Pigweed 100
Redroot Pigweed	25	Soybean 0
Soybean	0	Surinam Grass 55
Surinam Grass	15	Volvetleaf 0
Velvetleaf	10	Wild Poinsettia 0
Wild Poinsettia	10	

•			
TABLE E	COMPOUND	TABLE E	COMPOUND
Rate 35 g/ha	41	Rate 35 g/ha	41
POSTEMERGENCE		PREEMERGENCE	
Arrowleaf Sida	0	Arrowleaf Sida	0
Barnyardgrass	0	Barnyardgrass	65
Cocklebur	0	Cocklebur	0
Common Ragweed	10	Common Ragweed	30
Corn	0	Corn	0
Cotton	10	Cotton	0
Estrn Blknight	0	Fall Panicum	60
Fall Panicum	0	Field Bindweed	0-
Field Bindweed	0	Fl Beggarweed	-
Fl Beggarweed	0	Giant Foxtail	90
Giant Foxtail	0	Hairy Beggartic	0
Hairy Beggartic	25	Ivyleaf Mrnglry	0
Ivyleaf Mrnglry	0	Johnsongrass	15
Johnsongrass	0	Ladysthumb	-
Ladysthumb	0	Lambsquarters	20
Lambsquarters	0	Large Crabgrass	95
Large Crabgrass	10	Purple Nutsedge	35
Purple Nutsedge	0	Redroot Pigweed	95
Redroot Pigweed	15	Soybean	0
Soybean	0	Surinam Grass	15
Surinam Grass	10	Velvetleaf	0
Velvetleaf	0	Wild Poinsettia	0
Wild Poinsettia	· 0		

TABLE E	COMPOUND	TABLE E	COMPOUND
Rate 17 g/ha	41	Rate 17 g/ha	41
POSTEMERGENCE		PREEMERGENCE	
Arrowleaf Sida	0	Arrowleaf Sida	0
Barnyardgrass	0	Barnyardgrass	35
Cocklebur	0	Cocklebur	-
Common Ragweed	5	Common Ragweed	10
Corn	0	Corn	0
Cotton	0	Cotton	-
Estrn Blknight	0	Fall Panicum	50
Fall Panicum	0	Field Bindweed	-
Field Bindweed	. 0	Fl Beggarweed	0
Fl Beggarweed	0	Giant Foxtail	70
Giant Foxtail	0	Hairy Beggartic	0
Hairy Beggartic	15	Ivyleaf Mrnglry	0
Ivyleaf Mrnglry	• 0	Johnsongrass	0
Johnsongrass	0	Ladysthumb	-
Ladysthumb	0	Lambsquarters	-
Lambsquarters	0	Large Crabgrass	65
Large Crabgrass	0	Purple Nutsedge	-
Purple Nutsedge	0	Redroot Pigweed	65
Redroot Pigweed	10	Soybean	-
Soybean	0	Surinam Grass	10
Surinam Grass	10	Velvetleaf	0
Velvetleaf	0	Wild Poinsettia	0
Wild Poinsettia	0		

TEST F

15

Plastic pots were partially filled with silt loam soil. The soil was then saturated with water. Rice (Oryza sativa) seed or seedlings at the 2.0 to 3.5 leaf stage; seeds tubers or plant parts selected from barnyardgrass (Echinochloa crus-galli), duck salad (Heteranthera limosa), early watergrass (Echinochloa oryzoides), junglerice (Echinochloa colonum), late watergrass (Echinochloa oryzicola), redstem (Ammania spp.), rice flatsedge (Cyperus iria), smallflower flatsedge (Cyperus difformis) and tighthead sprangletop (Leptochloa fasicularis), were planted into this soil. Plantings and waterings of these crops and weed species were adjusted to produce plants of appropriate size for the test. At the two leaf stage, water levels were raised to 3 cm above the soil surface and maintained at this level throughout the test. Chemical treatments were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied directly to the paddy water, by pipette, or to the plant foliage, by an air-pressure assisted, calibrated belt conveyer spray system.

Treated plants and controls were maintained in a greenhouse for approximately 21 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table F, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

TABLE F	COMPOUND	TABLE F	COMPOUNI
Rate 90 g/ha	69	Rate 375 g/ha	30
PD/TA		PD/TA	
barnyardgrass	55	barnyardgrass	55
ducksalad	100	ducksalad	90
early watergrass	68	early watergrass	60
junglerice	•	junglerice	-
late watergrass	35	late watergrass	50
redstem	98	redstem	100
rice flatsedge	95	rice flatsedge	100
smallflower flatsedge	95	smallflower flatsedge	95
tighthead sprangletop	43	tighthead sprangletop	75
2 LF direct seeded indica	a rice -	2 LF direct seeded indic	a rice 65
2 LF transp. indica rice	30	2 LF transp. indica rice	
2 LF transp. japonica ric	ce 45	2 LF transp. japonica ri	

0 0 0												
IABLE F					O	COMPOUND						
Rate 64 g/ha	Q	11	22	24	25	25 30 41	41	42	43	44	9	73
PD/TA							!		}	;	3	?
barnyardgrass	35	45	30	6	20	20	65	35	0	20	30	43
ducksalad	90	0	33	30	35	15	89	9	45	9	93	8
early watergrass	1	•	•	30	20	15	•	•	ı	1	35	1
junglerice	1	ł	68	45	ſ	•	•	70	0	0	•	,
late watergrass	20	20	23	35	10	25	0	20	10	0	20	20
redst m	9	75	0	65	45	45	28	45	35	0	85	
rice flatsedge	65	85	75	75 100	100	20	53	!	•		80	9
smallflow r flatsedge	98	80	82	100	55	80	23	80	9	70	80	3
tighthead sprangletop	1	ı	20	30	0	15	•	35	75	0	20	13
2 LF direct seeded indica rice	9	35	20	35	15	20	13	20	25	25	•	78
2 LF transp. indica rice	10	10	30	.10	0	0	0	10	10	10	18	13
2 LF transp. japonica rice	ı	•	,	ı	1	٠ ١	1)

TABLE F

TABLE F					8	COMPOUND	Q.						
Rate 250 g/ha	9	11	20	21	22	22 24 25	25	30	41	42	4 3	44	69
PD/TA													
barnyardgrass	90	65	45	9	45	82	40	45	90	80	35	35	100
ducksalad	86	45	25	0	90	82	30	82	83	95	82	85	100
early watergrass	•	ı	ı	1	•	70	35	55	1	ı	٠	•	95
junglerice	1	1	9	70	83	83 100	٠	1	•	100	30	82	ı
late watergrass	100	82	28	20	48	80	25	40	100	9	20	15	90
redstem	80	92	100	95	95	82	95	100	90	82	80	9	100
rice flatsedge	82	86	82	0	100	0 100 100	95	90	88	•	1	ı	100
smallflower flatsedge	86	95	82	28	90	95	82	90	93	90	82	95	100
tighthead sprangletop	ı	ı	9	75	75	65	20	30	1	90	80	20	06
2 LF direct seeded indica rice	95	75	09	65	75	20	35	9	38	9	40	9	1
2 LF transp. indica rice	20	32	40	45	43	45	10	10	13	30	20	20	75
2 LF transp. japonica rice	, 1	ı	•	ı	ı	•	•	ı	i	•	ı	1	88

TABLE F

TABLE F			COME	COMPOUND	_		
Rate 32 g/ha	22	25	41	44	69	73	
PD/TA							
barnyardgrass	35	15	Ŋ	10	23	20	
ducksalad	0	0	48	35	82	70	
early watergrass	'	20	1	ı	25		
junglerice	80	1	ı	0	•	ı	
lat watergrass	2	10	0	0	18	0	
redstem	0	35	13	0	65	78	
rice flatsedge	18	100	73	1	65	45	
smallfl wer flatsedge	75	30	18	80	65	88	
tighthead sprangletop	53	20	1	0	0	0	
2 LF direct seeded indica rice	30	10	0	20	1	13	
2 LF transp. indica rice	20	10	0	0	10	0	
2 LF transp. japonica rice	1	•	•		5		

TABLE F

TABLE F COMPOUND	Rate 8 g/ha 73		barnyardgrass	ducksalad 30	early watergrass	junglerice -	late watergrass 0	redstem	rice flatsedge	smallflower flatsedge 20	tighthead sprangletop 0	2 LF direct seeded indica rice 0	2 LF transp. indica rice 0	2 LF transp. japonica rice
COMPOUND	22 73		20 0	0 58	1	73 -	8 0	10 18	0 38	65 78	33 0	15 0	10 0	1
TABLE F	Rate 16 g/ha	PD/TA	barnyardgrass	ducksalad	early watergrass	junglerice	late watergrass	redstem	rice flatsedge	smallfl wer flatsedge	tighth ad sprangletop	2 LF direct seeded indica rice	2 LF transp. indica rice	2 LF transp. japonica rice

	43		9	100	١	100	40	100	1	98	95	45	15	
_	42		85	100	ı	100 100	85	100 100	•	. 95	100	80	20	
COMPOUND	21		70	25	ı	65 100	65	100 100	73	83	95	85	75	
COMI	20		65	89	1	65	9	100	100	90	85	73	55	
	11		100	85	ı	1	100	86	98 100	98	ı	95	65	
	0		98	100	1	,	100	65	98	100	'	100	90	(
TABLE F	Rate 1000 g/ha	PD/TA	barnyardgrass	ducksalad	early watergrass	junglerice	late watergrass	redstem	rice flatsedge	smallflower flatsedge	tighthead sprangletop	2 LF direct seeded indica rice	2 LF transp. indica rice	2 LF transp. Japonica rice

TABLE F				ខ្ជ	COMPOUND	ð					
Rate 500 g/ha	0	9 11		21	25	30	20 21 25 30 41 42	42	43	44	
PD/TA											
barnyardgrass	95	100	95 100 63	65	45	65	95	85	45	40	
ducksalad	100	90	55	0	95	95	88	100		98 100	
early watergrass	•	'	,	1	40	65	1	•	1	,	
jungl rice	1	•	9	75	•	1	•	- 100	85	85 100	
late watergrass	100	100 100	55	9	55		80 100	75	30	20	
redstem	20	95	50 95 100	98	95	95	95	90	90 100	80	
rice flatsedge	100	100	100 100 100	73	100	73 100 100	93	1	ı	•	
smallflower flatsedge	98	98	90	65	90	95	95	95	95	95	
tighth ad sprangletop	1	•	80	93	65	65 100	1	95	85	80	
2 LF direct seeded indica rice	95	85	63	89	40	70	9	70	45	70	
2 LF transp. indica rice	70	50	45	28	25	40	30	45	25	40	
2 LF transp. japonica rice	•	1	,	(ı						

15

20

TEST G

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea), alfalfa (Medicago sativa), bermudagrass (Cynodon dactylon), broadleaf signalgrass (Brachiaria platyphylla), common purslane (Portulaca oleracea), common ragweed (Ambrosia elatior), cotton (Gossypium hirsutum), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), guineagrass (Panicum maximum), itchgrass (Rottboellia exaltata), johnsongrass (Sorghum halepense), large crabgrass (Digitaria sanguinalis), peanuts (Arachis hypogaea), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), surinam grass (Brachiaria decumbens) and Texas panicum (Panicum Texas) were planted into greenhouse pots or flats containing greenhouse planting medium. Plant species were grown in separate pots or individual compartments. Test chemicals were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied preemergence and postemergence to the plants. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to twenty cm).

Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table G, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

TABLE G	COM	POUND	TABLE G		COM	POUND
Rate 250 g/ha	50	73	Rate 250 g/ha	:	3 50	73
POSTEMERGENCE			PREEMERGENCE			
Alexandergrass	0	40	Alexandergrass	100	100	100
Alfalfa Var.	50	-	Alfalfa Var.		- 95	
Bermudagrass	10	40	Bermudagrass	100	99	100
Brdlf Sgnlgrass	10	70	Brdlf Sgnlgrass	100		
Cmn Purslane	50	15	Cmn Purslane		100	
Cmn Ragweed	65	50	Cmn Ragweed	100		100
Cotton	-	90	Cotton	35		100
Dallisgrass	0	30	Dallisgrass	100	100	
Goosegrass	5	50	Goosegrass	100		100
Guineagrass	5	65	Guineagrass	100	100	100
Itchgrass	5	20	Itchgrass	90	53	75
Johnson grass	0	20	Johnson grass	100	83	80
Large Crabgrass	0	40	Large Crabgrass			100
Peanuts	10	50	Peanuts	35	50	30
Pit Morninglory	30	75	Pit Morninglory			100
Purple Nutsedge	20	75	Purple Nutsedge	75	65	80
Sandbur	0	20		100	95	35
Sourgrass	0	20			100	
Surinam grass	-	35	Surinam grass	90	40	
Texas Panicum	5	_	Texas Panicum		100	-
					-00	_

ABLE G	(COME	DANO	TABLE G		COM	l
late 125 g/ha	3	35	46	Rate 125 g/ha	3	35	,
STEMERGENCE				PREEMERGENCE			
Alexandergrass	10	0	75	Alexandergrass	80	10	
Alfalfa Var.	10	-	20	Alfalfa Var.	100	-	
Bermudagrass	0	5	100	Bermudagrass	100	80	:
Brdlf Sgnlgrass	30	60	100	Brdlf Sgnlgrass	90	100	
Cmm Purslane	35	98	20	Cmn Purslane	88	0	
Cmn Ragweed	10	0	0	Cmn Ragweed	93	0	
Cotton	-	35	-	Cotton	5	0	
Dallisgrass	0	15	98	Dallisgrass	100	0	
Goosegrass	5	60	95	Goosegrass	94	_	
nineagrass	20	75	80	Guineagrass	100	_	
tchgrass	30	50	95	Itchgrass	88	60	
ohnson grass	70	65	100	Johnson grass	95	35	
arge Crabgrass	5	40	85	Large Crabgrass	94	70	
eanuts	10	35	40	Peanuts	25	0	
it Morninglory	20	90	0	Pit Morninglory	95	80	
urple Nutsedge	20	20	10	Purple Nutsedge	50	0	10
andbur	0	35	98	Sandbur	85	20	
ourgrass	10	20	100	Sourgrass	100	100	10
urinam grass	-	15	-	Surinam grass	60	5	
exas Panicum	5	-	100	Texas Panicum	98	-	9

TABLE G	CO	MPOUND	TABLE G		COME	POUND
Rate 64 g/ha	3	35	Rate 64 g/ha	3	35	5 50
POSTEMERGENCE		•	PREEMERGENCE			
Alexandergrass	0	0	Alexandergrass	40	10	70
Alfalfa Var.	-	-	Alfalfa Var.	_	_	_
Bermudagrass	40	0	Bermudagrass	93	85	100
Brdlf Sgnlgrass	75	10	Brdlf Sgnlgrass	78	10	100
Cmn Purslane	30	98	Cmn Purslane	65	0	100
Cmn Ragweed	10	0	Cmn Ragweed	85	0	50
Cotton	15	20	Cotton	5	0	10
Dallisgrass	65	0 *	Dallisgrass	53	-	100
Goosegrass	50	10	Goosegrass	94	-	100
Guineagrass	25	10	Guineagrass	100	_	90
Itchgrass	20	10	Itchgrass	63	30	35
Johnson grass	20	10	Johnson grass	73	20	60
Large Crabgrass	10	10	Large Crabgrass	94	10	100
Peanuts	10	20	Peanuts	15	0	10
Pit Morninglory	60	70	Pit Morninglory	28	65	80
Purple Nutsedge	35	5	Purple Nutsedge	30	0	50
Sandbur	5	0	Sandbur	13	0	50
Sourgrass	15	10	Sourgrass 1	00	100	100
Surinam grass	10	10	Surinam grass	20	0	30
Texas Panicum	-	-	Texas Panicum	-	-	_

PCT/US96/03803

		•			
TABLE G	COMPOUND	TABLE G	(COMP	OUND
Rate 32 g/ha	35	Rate 32 g/ha	3	35	50
POSTEMERGENCE		PREEMERGENCE			
Alexandergrass	0	Alexandergrass	0	5	20
Alfalfa Var.	-	Alfalfa Var.	_	_	-
Bermudagrass	0	Bermudagrass	0	0	100
Brdlf Sgnlgrass	0	Brdlf Sgnlgrass	30	0	75
Cmn Purslane	30	Cmn Purslane	60	0	80
Cmn Ragweed	0	Cmn Ragweed	20	0	50
Cotton	0	Cotton	0	0	0
Dallisgrass	0	Dallisgrass	10	0	0
Goosegrass	0	Goosegrass	65	_	95
Guineagrass	10	Guineagrass	65	_	100
Itchgrass	0	Itchgrass	35	50	35
Johnson grass	0	Johnson grass	40	0	65
Large Crabgrass	0	Large Crabgrass	20	0	90
Peanuts	10	Peanuts	0	0	0
Pit Morninglory	10	Pit Morninglory	0	0	75
Purple Nutsedge	0	Purple Nutsedge	0	0	10
Sandbur	0	Sandbur	0	0	0
Sourgrass	0	Sourgrass	90	0 :	100
Surinam grass	0	Surinam grass	0	0	10
Texas Panicum	-	Texas Panicum	-	_	_

TEST H

5

30

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were in the one-to four leaf stage (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal 10 greenhouse practices. Crop and weed species include annual bluegrass (Poa annua), black nightshade (Solanum nigrum), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), deadnettle (Lamium amplexicaule), downy brome (Bromus tectorum), field violet (Viola arvensis), galium (Galium aparine), green foxtail (Setaria viridis), 15 jointed goatgrass (Aegilops cylindrica), kochia (Kochia scoparia), lambsquarters (Chenopodium album), littleseed canarygrass (Phalaris minor), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), ryegrass (Lolium multiflorum), scentless chamomile (Matricaria inodora), speedwell (Veronica persica), spring barley (Hordeum vulgare cv. 'Klages'), spring wheat (Triticum aestivum cv. 'ERA'), sugar beet (Beta 20 vulgaris cv. 'US1'), sunflower (Helianthus annuus cv. 'Russian Giant'), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), windgrass (Apera spica-venti), winter barley (Hordeum vulgare cv. 'Igri') and winter wheat (Triticum aestivum cv. 'Talent'). Wild oat was treated at two growth stages. The first stage (1) was when the plant had two to three leaves. The second stage (2) was 25 when the plant had approximately four leaves or in the initial stages of tillering.

Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table H, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

TABLE H COMPOUND	TABLE H COMPOUND
Rate 250 g/ha 69	Rate 250 g/ha 69
POSTEMERGENCE	PREEMERGENCE
Annual Bluegrass 70	Annual Bluegrass100
Blackgrass 40	Blackgrass 100
Blk Nightshade 75	Blk Nightshade 95
Chickweed 65	Chickweed 65
Deadnettle 75	Deadnettle 100
Downy brome 0	Downy brome 30
Field violet 65	Field violet 80
Galium 70	Galium 100
Jointed Goatgra 20	Green foxtail 100
Kochia 75	Jointed Goatgra 75
Lambsquarters 95	Kochia 80
LS Canarygrass 15	Lambsquarters 70
Rape 65	LS Canarygrass 100
Redroot Pigweed 75	Rape 100
Ryegrass 20	Redroot Pigweed 40
Scentless Chamon 40	Ryegrass 50
Speedwell 70	Speedwell 100
Spring Barley 20	Spring Barley 40
Sugar beet 85	Sugar beet 100
Sunflower 20	Sunflower 30
Wheat (Spring) 10	Wheat (Spring) 20
Wheat (Winter) 10	Wheat (Winter) 20
Wild buckwheat 15	Wild buckwheat 20
Wild mustard 100	Wild mustard 100
Wild oat (1) 25	Wild oat (1) 75
Wild oat (2) 15	Windgrass 70
Winter Barley 20	Winter Barley 40

TABLE H				COM	POUND)	
Rate 125 g/ha	47	48	58	61	L 68	69	77
POSTEMERGENCE							
Annual Bluegrass	; -	-	30	-	- 60	60	40
Blackgrass	-	_	25	-	. 35	30	25
Blk Nightshade	65	80	70	100	100	75	65
Chickweed	25	35	30	100	65	35	20
Deadnettle	70	85	50	100	75	65	55
Downy brome	-	-	5	-	15	10	0
Field violet	40	80	65	100	75	65	65
Galium	40	65	55	100	70	60	55
Jointed Goatgra	-	-	10	-	20	20	20
Kochia	35	85	80	100	75	75	70
Lambsquarters	65	90	60	100	100	100	75
LS Canarygrass	-	-	10	-	20	10	10
Rape	-	-	65		75	65	60
Redroot Pigweed	20	85	75	100	75	65	70
Ryegrass	-	-	5	_	20	5	10
Scentless Chamon	15	35	30	100	55	20	45
Speedwell	70	100	55	100	100	65	55
Spring Barley	0	0	5	80	20	20	30
Sugar beet	-	-	75	-	100	75	70
Sunflower	-	-	20	-	40	10	25
Wheat (Spring)	0	0	25	75	20	10	0
Wheat (Winter)	0	0	10	65	20	10	5
Wild buckwheat	25	30	45	100	60	30	30
Wild mustard	-	-	65	-	100	85	50
Wild oat (1)	-	-	10	-	30	15	10
Wild oat (2)	-	-	10	-	20	10	10
Winter Barley	0	0	25	70	30	20	25

TABLE H	COMPOUND
Rate 125 g/ha	68 69
PREEMERGENCE	•
Annual Bluegras	ss 85 100
Blackgrass	100 100
Blk Nightshade	90 75
Chickweed	75 75
Deadnettle	100 100
Downy brome	20 20
Field violet	80 85
Galium	100 100
Green foxtail	100 100
Jointed Goatgra	30 75
Kochia	60 70
Lambsquarters	. 85 70
LS Canarygrass	40 80
Rape	65 85
Redroot Pigweed	50 85
Ryegrass	40 30
Speedwell	95 85
Spring Barley	40 15
Sugar beet	100 100
Sunflower	30 20
Wheat (Spring)	40 10
Wheat (Winter)	20 10
Wild buckwheat	100 85
Wild mustard	100 100
Wild oat (1)	10 30
Vindgrass	30 40
Winter Barley	35 10

TABLE H			C	OMP	DUND		
Rate 62 g/ha	47	48	58	61	L 68	69	77
POSTEMERGENCE							
Annual Bluegrass	3 -	-	10	-	- 20	30	20
Blackgrass	-	-	10	-	20	20	10
Blk Nightshade	65	65	50	35	70	65	55
Chickweed	20	20	50	20	55	35	45
Deadnettle	70	65	30	70	50	40	30
Downy brome	-	-	0	_	10	20	10
Field violet	30	70	60	20	60	55	50
Galium	65	35	35	65	60	65	50
Jointed Goatgra	-	-	0	-	20	10	15
Kochia	35	70	75	40	75	70	55
Lambsquarters	40	85	60	60	80	75	60
LS Canarygrass	-	-	5	-	10	20	10
Rape	-	-	50	· _	75	55	35
Redroot Pigweed	10	75	65	25	75	65	75
Ryegrass	-	-	5	-	10	0	10
Scentless Chamon	0	30	10	10	35	20	30
Speedwell	60	90	50	70	75	55	45
Spring Barley	0	0	10	0	20	10	10
Sugar beet	-	-	65	-	100	70	50
Sunflower	-	-	10	-	30	20	15
Wheat (Spring)	0	0	10	0	15	10	0
Wheat (Winter)	0	. 0	10	0	15	0	0
Wild buckwheat	20	70	65	30	30	10	20
Wild mustard	-		30	-	100	55	30
Wild oat (1)	-	-	10	-	20	10	10
Wild oat (2)	-	-	0	-	15	10	0
Vinter Barley	0	0	10	0	20	25	10

TABLE H	СОМРОТ	JND
Rate 62 g/ha	68 6	59
PREEMERGENCE		
Annual Bluegras	ss 75 8	35
Blackgrass	100 8	15
Blk Nightshade	30 8	15
Chickweed	40 5	0
Deadnettle	80 10	0
Downy brome	10 1	0
Field violet	60 4	0
Galium .	80 10	0
Green foxtail	100 10	0
Jointed Goatgra	20 2	0
Kochia	85 3	0
Lambsquarters	70 7	0
LS Canarygrass	20 80	0
Rape	50 80	0
Redroot Pigweed	70 60)
Ryegrass	30 50)
Speedwell	100 60)
Spring Barley	10 20)
Sugar beet	100 80)
Sunflower	35 20)
Wheat (Spring)	0 10)
Wheat (Winter)	10 10	
Wild buckwheat	40 100	
Wild mustard	100 100	
Wild oat (1)	20 20	
Windgrass	20 30	
Winter Barley	20 50	

	OMPOUND	TABLE H CO	MPOUND
Rate 31 g/ha	68	Rate 31 g/ha	68
POSTEMERGENCE		PREEMERGENCE	
Annual Bluegrass	10	Annual Bluegrass	20
Blackgrass	15	Blackgrass	85
Blk Nightshade	50	Blk Nightshade	30
Chickweed	30	Chickweed	50
Deadnettle	40	Deadnettle	60
Downy brome	10	Downy brome	10
Field violet	60	Field violet	40
Galium .	50	Galium 1	100
Jointed Goatgra	15	Green foxtail	85
Kochia	70	Jointed Goatgra	10
Lambsquarters	100	Kochia	85
LS Canarygrass	0	Lambsquarters	70
Rape	60	LS Canarygrass	10
Redroot Pigweed	70	Rape	35
Ryegrass	10	Redroot Pigweed	70
Scentless Chamon	30	Ryegrass	10
Speedwell	60	Speedwell	75
Spring Barley	10	Spring Barley	10
Sugar beet	85	Sugar beet	60
Sunflower	15	Sunflower	20
Wheat (Spring)	10	Wheat (Spring)	0
Wheat (Winter)	. 10	Wheat (Winter)	0
Wild buckwheat	65	Wild buckwheat	40
Wild mustard	65	Wild mustard 1	00
Wild oat (1)	10	Wild oat (1)	10
Wild oat (2)	10	Windgrass	10
Winter Barley	10	Winter Barley	10

10

15

20

25

TEST I

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were grown for various periods of time before treatment (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test, and 13 days after the last postemergence planting.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include alexandergrass (Brachiaria plantaginea), american black nightshade (Solanum americanum), apple-of-Peru (Nicandra physaloides), arrowleaf sida (Sida rhombifolia), brazilian sicklepod (Cassia tora Brazilian), brazilian signalgrass (Brachiaria decumbens), capim-colchao (Digitaria horizontalis), cristalina soybean (Glycine max Cristalina), florida beggarweed (Desmodium purpureum), hairy beggarticks (Bidens pilosa), slender amaranth (Amaranthus viridis), southern sandbur (Cenchrus echinatus), tall morningglory (Ipomoea purpurea), tropical spiderwort (Commelina benghalensis), W20 Soybean (Glycine max W20), W4-4 Soybean (Glycine max W4-4) and wild poinsettia (Eupohorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 13 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table I, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

WO 96/31517

PCT/US96/03803

TABLE I	COMPOUND	TABLE I COMPOUN	ID
Rate 560 g/ha	41 42	Rate 280 g/ha 41 42	!
PREEMERGENCE		PREEMERGENCE	
Alexandergrass	100 100	Alexandergrass 100 100	
Apple-of-Peru	50 30	Apple-of-Peru 10 20	
Arrowleaf Sida	80 65	Arrowleaf Sida 70 60	
B. Signalgrass	100 100	B. Signalgrass 100 100	
Bl. Nightshade	100 70	Bl. Nightshade 100 60	
Braz Sicklepod	55 100	Braz Sicklepod 40 70	
Capim-Colchao	100 100	Capim-Colchao 100 70	
Crist. Soybean	40 50	Crist. Soybean 40 50	
Fl. Beggarweed	100 60	F1. Beggarweed 100 60	
H. Beggarticks	100 25	H. Beggarticks 75 25	
Morningglory	100 100	Morningglory - 60	
Sl. Amaranth	100 100	Sl. Amaranth 100 100	
Southern Sandur	100 100	Southern Sandur 90 85	
Tr. Spiderwort	100 75	Tr. Spiderwort 100 20	
Wld Pointsettia	50 50	Wld Pointsettia 0 50	
W20 Soybean	15 50	W20 Soybean 15 40	
W4-4 Soybean	25 50	W4-4 Soybean 25 40	

WO 96/31517 PCT/US96/03803

TABLE I	COM	POUND	TABLE I	CO	(POUND
Rate 140 g/ha	41	42	Rate 70 g/ha	41	42
PREEMERGENCE			PREEMERGENCE		
Alexandergrass	100	100	Alexandergrass	80	50
Apple-of-Peru	0	10	Apple-of-Peru	0	0
Arrowleaf Sida	70	50	Arrowleaf Sida	60	50
B. Signalgrass	85	85	B. Signalgrass	70	65
Bl. Nightshade	85	60	Bl. Nightshade	75	20
Braz Sicklepod	40	30	Braz Sicklepod	0	10
Capim-Colchao	100	70	Capim-Colchao	100	70
Crist. Soybean	25	30	Crist. Soybean	10	25
Fl. Beggarweed	100	60	Fl. Beggarweed	100	
H. Beggarticks	70	20	H. Beggarticks	-	20
Morningglory	70	60	Morningglory	60	50
Sl. Amaranth	100	100	Sl. Amaranth	100	20
Southern Sandur	80	80	Southern Sandur	55	50
Tr. Spiderwort	55	20	Tr. Spiderwort	55	0
Wld Pointsettia	0	45	Wld Pointsettia	0	45
W20 Soybean	15	25	W20 Soybean	10	20
W4-4 Soybean	20	40	W4-4 Soybean	20	15

TABLE I	COMPOUND
Rate 35 g/ha	42
PREEMERGENCE	
Alexandergrass	45
Apple-of-Peru	0
Arrowleaf Sida	50
B. Signalgrass	50
Bl. Nightshade	20
Braz Sicklepod	0
Capim-Colchao	70
Crist. Soybean	25
Fl. Beggarweed	-
H. Beggarticks	20
Morningglory	40
Sl. Amaranth	15
Southern Sandur	40
Tr. Spiderwort	0
Wld Pointsettia	0
W20 Soybean	15
W4-4 Soybean	10

PCT/US96/03803

172

CLAIMS

What is claimed is:

1. A compound selected from Formula I, N-oxides and agriculturally-suitable salts thereof,

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3

5

wherein

Q is

is
$$(CH_2)_n$$
 $(CH_2)_n$ (CH_2)

10 T is O or S;

X is a single bond, O, S, or NR⁵;

Y is O, S, NR⁶, -CH=CH-, or -CH=N-, where the -CH=N- can be attached in either possible orientation;

Z is CH or N;

15 W is CH or N;

20

V is CH, CCH₃ or N, provided that V is CH or CCH₃ when W is CH;

- R^1 is C_1 - C_5 alkyl optionally substituted with C_1 - C_2 alkoxy, OH, 1-7 halogen, or C_1 - C_2 alkylthio; $CH_2(C_3$ - C_4 cycloalkyl); C_3 - C_6 cycloalkyl optionally substituted with 1-3 halogen or 1-4 methyl groups; C_2 - C_4 alkenyl; C_2 - C_4 haloalkenyl; or phenyl optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, 1-2 halogen, nitro, or cyano; provided that when X is O, S, or NR⁵, then R¹ is other than C_2 alkenyl and C_2 haloalkenyl;
- R^2 is H, halogen, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, C_1 - C_2 alkylthio, C_2 - C_3 alkoxyalkyl, C_2 - C_3 alkylthioalkyl, cyano, nitro, $NH(C_1$ - C_2 alkyl), or $N(C_1$ - C_2 alkyl)₂;
- 25 R³ is H, halogen, C₁-C₂ alkyl, C₁-C₂ alkoxy, C₁-C₂ alkylthio, C₂-C₃ alkoxyalkyl, C₂-C₃ alkylthioalkyl, cyano, nitro, NH(C₁-C₂ alkyl), or N(C₁-C₂ alkyl)₂;

 R^4 is C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkylthio, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylsulfonyl, halogen, cyano, or nitro;

R⁵ is H, CH₃, or OCH₃;

R⁶ is H or CH₃; and

- 5 n is 0 or 1.
 - 2. A compound of Claim 1 wherein:
 - R^1 is C_1 - C_4 alkyl optionally substituted with methoxy or 1-3 halogen; C_3 - C_4 cycloalkyl optionally substituted with one methyl group; C_2 - C_4 alkenyl; or C_2 - C_4 haloalkenyl;
- 10 R² is chlorine, bromine, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, cyano, nitro, NH(C_1 - C_2 alkyl), or N(C_1 - C_2 alkyl)₂; and

R³ is H.

3. A compound of Claim 2 wherein:

X is a single bond; and

- 15 R⁴ is C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy, C₁-C₂ haloalkylthio, chlorine, or bromine.
 - 4. A compound of Claim 3 wherein:

Q is Q-1.

- 5. A compound of Claim 3 wherein:
- 20 Q is Q-2.
 - 6. A compound of Claim 3 wherein:

Q is Q-3.

- 7. The compound of Claim 3 which is selected from the group:
 - 3-methyl-N-[4-methyl-2-[2-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)thiazolo[3,2-b][1,2,4]triazol-6-(trifluoromethyl)triazolo[3,2-b][1,2-
- 25 yl]phenyl]butanamide;

yl]phenyl]cyclopropanecarboxamide;

 $\hbox{2-methyl-} \hbox{$N$-[4-methyl-2-[3-(trifluoromethyl)-1$$H$-pyrazol-1-}$

yl]phenyl]propanamide:

30 N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-

yl]phenyl]cyclopropanecarboxamide;

3-methyl-N-[4-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-

yl]phenyl]butanamide;

2-methyl-N-[4-methyl-2-[[3-(trifluoromethyl)-1H-pyrazol-1-

35 yl]methyl]phenyl]propanamide; and

2,2-dimethyl-*N*-[4-methyl-2-[3-(trifluoromethyl)-1,2,4-triazolo[4,3-*b*]pyridazin-

6-yl]phenyl]propanamide.

- 8. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 9. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.

Inte onal Application No

PCT/US 96/03803 A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C07D513/04 A01N43/90 C07D231/12 C07D249/08 C07D487/04 C07D231/16 C07D249/10 //(C07D513/04,277:00,249:00), (C97D487/04,249:00,237:00) According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO.A.93 11097 (DU PONT) 10 June 1993 1-9 cited in the application see meaning of Q-1 (page 2) EP,A,0 244 698 (SCHERING AGROCHEMICALS 1-9 A LTD) 4 November 1987 see abstract US,A,4 810 282 (RORER MORRIS P) 7 March 1-9 A 1989 see formula I (column 2) EP,A,0 353 902 (DU PONT) 7 February 1990 A 1-9 see formula I (page 4) -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. * Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of periods relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed nber of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 94.08.96 26 July 1996 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. S313 Patentiaan 2 NL - 2230 HV Rijewijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Pate (+ 31-70) 340-3016 Steendijk, M

Int ional Application No PCT/US 96/03803

		PC1/US 96/03803		
	nion) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
A	DATABASE WPI Section Ch, Week 9019 Derwent Publications Ltd., London, GB; Class C02, AN 90-144329 XP002009476 & JP,A,02 091 062 (KUMIAI CHEM IND KK), 30 March 1990 see abstract		1-7	
A	US,A,4 236 015 (LUBER EDWARD J JR ET AL) 25 November 1980 see abstract		1-7	
P,Y	WO,A,95 09846 (DU PONT ; DENES LUCIAN RADU (US)) 13 April 1995 see formula I (page 1)		1-9	
		•		
	•			
	·			
			·	

Information on patent family members

In tional Application No PCT/US 96/03803

		101/00	50,0000
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9311097	10-06-93	AT-T- 138365	15-06-96
MO-W-3311031	20 00 75	AU-B- 3226993	28-06-93
		DE-D- 69211015	27-06-96
	•	EP-A- 0619804	19-10-94
		ZA-A- 9209220	27-05-94
FD 4 0044000	04 11 07	AU-B- 574 0 16	23-06-88
EP-A-0244098	64-11-87		10-12-87
			10-12-87
			15-09-91
		SU-A- 1678212	
		US-A- 4795483	03-01-89
US-A-4810282	07-03-89	AU-B- 551920	15-05-86
		AU-B- 1021083	14-07-83
		CA-A- 1239929	02-08-88
		DE-A- 3374564	23-12-87
		EP-A- 0083975	20-07-83
		GB-A,B 2112783	27-07-83
		US-A- 4511392	16-04-85
		US-A- 4606755	19-08-86
		US-A- 4695311	22- 0 9-87
EP-A-0353902	07-02-90	AU-B- 617508	28-11-91
EI V 030330F	0, 02 70	AU-B- 3967789	19-02-90
		DE-T- 68906324	21-10-93
	•	EP-A- 0440659	14-68-91
		ES-T- 2055073	16-08-94
		JP-T- 3506033	26-12-91
		WO-A- 9801030	08-02-90
		US-A- 5127936	0 7- 0 7-92
		WO-A- 9012012	18-10-90
UC A 4226015	25-11-80	AU-B- 521807	29-04-82
US-A-4236015	C3-T1-00	AU-B- 3233178	19-67-79
		BE-A- 8626 0 8	03-07-78
		CA-A- 1149385	05-07-73 05-07-83
			03-04-84
	•		13-05-83
			30-12-83
		CH-A- 640229 DE-A- 2800480	13-07-78

Information on patent family members

Inter onal Application No PCT/US 96/03803

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A-4236015		DE-C- 28587	66 95-94-99
		FR-A.B 23768	
	•	GB-A- 15794	
		GB-A- 15794	
		JP-B- 10308	
		JP-C- 15459	
		JP-A- 611714	
		JP-C- 14502	
		JP-A- 530873	
		JP-B- 620591	
		LU-A- 788	
		NL-A- 78001	
		SE-B- 4363	59 03-12-84
		SE-A- 780013	38 98-97-78
		SE-B- 46047	77 16-10-89
		SE-A- 830094	15 21-02-83
		US-A- 422572	24 30-09-80
		US-A- 42294!	52 21-10-80
		US-A- 419850	38 15-04-80
		US-A- 419176	66 04-03-80
		US-A- 419176	57 04-03-80
		US-A- 417294	
		US-A- 416009	
		US-A- 420075	
	************	US-A- 419746	93 68-64-86
WO-A-9509846	13-04-95	AU-B- 783449	01-05-95
		CA-A- 217332	
		EP-A- 072244	