Конечные разности.

 $\Delta y_i = y_{i+1} - y_i, i = 0,1, ... n - 1$ - конечные разности первого порядка;

 $\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i = y_{i+2} - 2y_{i+1} + y_i, i = 0,1, ... n-2$ - конечные разности второго порядка;

 $\Delta^3 y_i = \Delta^2 y_{i+1} - \Delta^2 y_i = y_{i+3} - 3y_{i+2} + 3y_{i+1} - y_i$, i=0,1,...n-3 - конечные разности третьего порядка;

 $\Delta^k y_i = y_{i+k} - k y_{i+k-1} + \frac{k(k-1)}{2!} y_{i+k-2} - \dots + (-1)^k y_i, i = 0,1,\dots n-k$ — конечные разности k-го порядка.

Таблица 1. Таблица конечных разностей:

$$y_0$$
 Δy_0
 y_1
 $\Delta^2 y_0$
 Δy_1
 $\Delta^n y_0$
 y_2
 \dots
 y_{n-1}
 $\Delta^2 y_{n-2}$
 Δy_{n-1}

Первая интерполяционная формула Ньютона.

$$P_n(x) = P_n(x_0 + th) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

Здесь $t = \frac{x-x_0}{h}$, $h = x_{i+1} - x_i$.

Вторая интерполяционная формула Ньютона.

$$P_n(x) = P_n(x_0 + th) = y_n + t\Delta y_{n-1} + \frac{t(t+1)}{2!}\Delta^2 y_{n-2} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!}\Delta^n y_0$$
 Здесь $t = \frac{x-x_n}{h}, h = x_{i+1} - x_i$.

Первая и вторая интерполяционные формулы Гаусса

Основным недостатком интерполяционных формул Ньютона является то, что они используют лишь односторонние значения функции. На практике часто оказывается полезным использовать формулы, в которых присутствуют как последующие, так и предыдущие значения функции по отношению к ее начальному значению у₀.

Рассмотрим 2n+1 равноотстоящих узлов x_{-n} , x_{-n+1} , ..., x_{-1} , x_0 , x_1 , x_2 , ..., x_n , в которых заданы значения некоторой функции $y_i = f(x_i)$, i = -n, ..., n.

Первая интерполяционная формула Гаусса (для интерполирования вперед) применяется при $x > x_0$:

$$\begin{split} P_{2n}(x) &= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^3 y_{-1} \\ &\quad + \frac{(t+1)t(t-1)(t-2)}{4!} \Delta^4 y_{-2} + \cdots \\ &\quad + \frac{(t+n-1)\dots(t+1)t(t-1)\dots(t-n+1)}{(2n-1)!} \Delta^{2n-1} y_{-n+1} \\ &\quad + \frac{(t+n-1)\dots(t+1)t(t-1)\dots(t-n)}{(2n)!} \Delta^{2n} y_{-n} \end{split}$$

Здесь $t=\frac{x-x_0}{h},\,h=x_{i+1}-x_i.$ Разности $\Delta y_0,\,\Delta^2 y_{-1},\,\Delta^3 y_{-1},\,\Delta^4 y_{-2}...$ образуют нижнюю ломаную линию в таблице 2.

Вторая интерполяционная формула Гаусса (для интерполирования назад) применяется при $x < x_0$:

$$\begin{split} P_{2n}(x) &= y_0 + t\Delta y_{-1} + \frac{(t+1)t}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} \\ &\quad + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} + \cdots \\ &\quad + \frac{(t+n-1)\dots(t+1)t(t-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1} y_{-n} \\ &\quad + \frac{(t+n-1)\dots(t+1)t(t-1)\dots(t-n)}{(2n)!}\Delta^{2n} y_{-n} \end{split}$$

Здесь $t=\frac{x-x_0}{h},\,h=x_{i+1}-x_i.$ Разности $\Delta y_{-1},\,\Delta^2 y_{-1},\,\Delta^3 y_{-2},\,\Delta^4 y_{-2}...$ образуют верхнюю ломаную линию в таблице 2.

Таблица 2. Таблица конечных разностей:

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	$\Delta^6 y$
x_{-4}	y_{-4}			Ĭ		Ĭ	
		Δy_{-4}					
x_{-3}	y_{-3}		$\Delta^2 y_{-4}$				
		Δy_{-3}		$\Delta^3 y_{-4}$			
x_{-2}	y_{-2}		$\Delta^2 y_{-3}$		$\Delta^4 y_{-4}$		
		Δy_{-2}		$\Delta^3 y_{-3}$		$\Delta^5 y_{-4}$	
x_{-1}	y_{-1}		$\Delta^2 y_{-2}$		$\Delta^4 y_{-3}$		$\Delta^6 y_{-4}$
		Δy_{-1}		$\Delta^3 y_{-2}$		$\Delta^5 y_{-3}$	\
x_0	y ₀		$\Delta^2 y_{-1}$		$\Delta^4 y_{-2}$		$\Delta^6 y_{-3}$
		Δy_0	/	$\Delta^3 y_{-1}$	7	$\Delta^{5}y_{-2}$	7
x_1	y_1		$\Delta^2 y_0$		$\Delta^4 y_{-1}$		$\Delta^6 y_{-2}$
		Δy_1		$\Delta^3 y_0$		$\Delta^5 y_{-1}$	
x_2	y_2		$\Delta^2 y_1$		$\Delta^4 y_0$		
		Δy_2	-	$\Delta^3 y_1$			
x_3	y_3		$\Delta^2 y_2$				
		Δy_3					
r ₄	y_4						

Задание:

1. Для таблично заданной функции вычислите значения конечных разностей, составьте интерполяционные формулы Ньютона, Гаусса. Вычислите для контроля значения интерполяционных многочленов соответственно в точках 0.1 и 0.8, сопоставьте полученные значения с табличными.

Найти значения в точках 0,453 и 0,541 с помощью интерполяционной формулы Ньютона и интерполяционной формулы Гаусса

Выяснить, для какой функции составлена эта таблица.

		0.1	0.0	0.2	0.4	0.5	0.6	0.7	0.0	0.0	1
X	U	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
У	2	2,105	2,221	2,349	2,491	2,648	2,822	3,013	3,225	3,459	3,718

2. Возьмите любой многочлен степени $n \ge 4$, вычислите его значения в n+5 равноотстоящих узлах. Постройте таблицу конечных разностей, соответствующую вычисленным значениям.