Problem 1.1 (B1)

$\overline{x}\overline{y}z + \overline{x}yz + x\overline{y}\overline{z} +$	XYZ	

Problem 1.1 (B1) $\overline{g(a/b,c)} = \overline{(\overline{a}+b+c)(a+\overline{b}+c)(a+b+\overline{c})}$

a	b	c	g(a,b,c)
0	0	0	
0	0	1	\circ
0	1	0	
0	1	1	- 1
1	0	0	
1	0	1	(
1	1	0	1
1	1	1	/

$=(\overline{a}+b+\overline{c})+(\overline{a}+\overline{b}+\overline{c})+(\overline{a}+\overline{b}+\overline{c})$

Problem 2.1 (B2)

- □ DNF □ CNF ☑ Both □ Neither \square DNF \square CNF \square Both \square Neither
- \square DNF \square CNF \square Both \square Neither □ DNF □ CNF □ Both □ Neither
- = (abc)+(abc)+(abc)

Problem 2.2 (B2)

a)	
$(ab + bc)(\overline{de + h})$ Your work:	
$(ab + bc)(\overline{den})$	pembrajan's law
$(ab+\overline{bc})((\overline{d}+\overline{e})\overline{h})$	pembrajan's law
(ab+ b+c)((d+e)h)	pambrajan's law
(ab+ btc)((dte)h)	Double complement law
$(ab+b+c)(\bar{d}h+\bar{e}h)$	Distributive law
abdh + abeh + bdh + beh + cdh + ceh	Distributive law

Final answer:

CHÁN+ OBEN+BÁN+BEN+CÁN+ CEN

DNE ()+()+()

((+)(+)		JF	<u>+</u> `)(+	>	
							- 1				

Expressions	Laws of Boolean Algebra
ace + ade + bce + bde	Original Expression
e (ac + ad + bc + bd)	Distributive law
$e(u(\overline{c}+d)+\overline{b}(\overline{c}+d))$	Distributive law
$e((\bar{c}+d)u+\bar{b}(\bar{c}+d)$	Commutative law
e((c+d) n + (c+d) b)	Commutative law
$e(\overline{c}+d)(\alpha+\overline{b})$	Distributive law

Fina	al answer:	
	$\alpha / \overline{z} + \lambda / \alpha / \overline{1} >$	
	e(c+d)(a+b)	

(x+y)(2+x)

Problem 4 (B4)

a) $(AE \cdot AT)(CT + CS)(DT \cdot DW) = 1$

b)

(BEBT BS)+(BEBTBS) = 1

Problem 5.1 (B5)

x	y	f(x,y)
0	0	0
0	1	0
1	0	
1	1	0

$$X = X f y = 1$$

Problem 5.2 (B5)

Original expression: $(\overline{\chi} + \overline{y})(\overline{y} + \overline{z})$

Expressions	Laws of Boolean Algebra
$(\overline{\chi} + \overline{y})(\overline{y} + \overline{z})$	Original Expression
$(\overline{x}\overline{y})(\overline{y}+\overline{z})$	Demorgan's law
(えら)(ララ)	Demorgan's law
(χ Ū) (Ū Z)	Double complement law
(XY)(JZ)	Double complement (aw
(XY)(YZ)	Double complement (aw
x (yy) =	Associative law
XYZ	Idempotent law