Financial Econometrics

R Commands Used in Lecture 5

Prof. Hamed Ghoddusi 2019

Package: Multivariate Time Series (MTS)

MTS is General package for:

- Analyzing multivariate linear time series
- Estimating multivariate volatility models
- Handling factor models and constrained factor models
- Asymptotic principal component analysis, and principal volatility component analysis

Commands: Multivariate Time Series Analysis

```
> require(MTS) ### Package used. You need to install it.
> da=read.table("q-gdpun.txt",header=T)
> head(da)
> xt = da[,4:5]
> MTSplot(xt) #### Plot multiple time series on a page
> tdx=da[,1]+da[,2]/12
> MTSplot(xt,tdx) ## with actual calendar date
> ccm(xt)
> rt=diffM(xt) ### differencing all series
> ccm(rt) ### Cross-correlation matrices
> mq(rt,lag=10)
```

VAR Model

 Estimates a VAR by OLS per equation. The model is of the following form

$$y_t = A_1 y_{t-1} + ... + A_p y_{t-p} + u_t$$

Where:

- y_t is a K×1 vector of endogenous variables.
- u_t assigns a spherical disturbance term of the same dimension.
- The coefficient matrices $A_1,...,A_p$ are of dimension $K\times K$.
- No seasonality or trend term can be included in the model.

Commands: VAR Model

Estimates A Vector Autoregressive Model Of Order p.

Estimation of a Vector Autoregressive model (VAR) by computing OLS per equation.

Usage

VAR(y, p = 1, exogen = NULL)

Arguments

y Endogenous variable for the VAR model.

P lag-order for the autoregressive model.

Exogen Exogenous variable for the VAR model.

Examples

- > library(LPTime)
- > data(EyeTrack.sample)
- > head(VAR(y = EyeTrack.sample, p = 2))

Commands: Fitting and Predicting using a VAR Model

```
data("mts-examples",package="MTS")
> head(qgdp)
> gdp=log(da[,3:5]) ## pick up the GDP series
> zt=cbind(gdp$ca,gdp$us)
> MTSplot(zt)
> gt=diffM(zt)
> VARorder(gt) ### Order specification
> m1=VAR(gt,3) ### Fit a VAR(3) model
> MTSdiag(m1) ### Model checking
> VARpred(m1,4) ### prediction. 1-step to 4-step forecasts.
```

Commands: Co-integration and Pairs Trading

```
> da=read.table("d-bhp0206.txt",header=T) ### Loading dataset 1
> da1=read.table("d-vale0206.txt",header=T) ### Loading dataset 2
> bhp=log(da$adjclose)
> vale=log(da1$adjclose)
> m1=lm(bhp~vale)
> wt=bhp-0.717*vale
> plot(wt,type='l')
> abline(h=c(1.82)
> abline(h=c(1.85),col="red")
> abline(h=c(1.79),col="blue")
```

Commands: Multivariate Volatility Modeling

```
da=read.table("d-ibmbaml3a-0110.txt",header=T)
> rtn = log(da[,2:3]+1)
> cor(rtn)
> m2=EWMAvol(rtn) ## Use default discounting rate 0.96
> names(m2)
> Sigma.t = m2$Sigma.t
> MCHdiag(rt,Sigma.t) ### Model checking
> rho=Sigma.t[,2]/sqrt(Sigma.t[,1]*Sigma.t[,4])
> ts.plot(rho)
> mean(rho)
> m3=EWMAvol(rtn,-0.1) ## -0.1 means estimating lambda
```

```
m4=dccPre(rtn)
> names(m4)
> sresi=m4$sresi
> m5=dccFit(sresi,ub=c(0.981,0.01899))
> names(m5)
> ts.plot(m5$rho.t[,2])
> apply(m5$rho.t,2,mean)
```

Commands: Two Dimensional Multivariate Volatility Modeling

```
da=read.table("m-mcd3dx6614.txt",header=T)
> rt = log(da[,c(3,6)]+1)
> mm = BEKK11(rt) ### This will take a while to complete.
> names(mm)
> S.t = mm$Sigma.t
> MCHdiag(rt,S.t) ### Model checking
> rho.t = S.t[,2]/sqrt(S.t[,1]*S.t[,4])
> ts.plot(rho.t)
> mean(rho.t)
```

Command: Johansen Procedure For VAR

Conducts the Johansen procedure on a given data set.

• The "trace" or "eigen" statistics are reported and the matrix of eigenvectors as well as the loading matrix.

Usage

```
> ca.jo(x, type = c("eigen", "trace"), ecdet = c("none", "const", "trend"), K = 2, spec=c("longrun", "transitory"), season = NULL, dumvar = NULL)
```

Arguments

x Data matrix to be investigated for cointegration.

Type The test to be conducted, either eigen or trace.

Ecdet. Character, none for no intercept in cointegration, const for constant term in cointegration and trend for trend variable in cointegration.

K The lag order of the series (levels) in the VAR.

Spec Determines the specification of the VECM, see details below.

Season If seasonal dummies should be included, the data frequency must be set accordingly, *i.e* 4 for quarterly data.

Dumvar If dummy variables should be included, a matrix with row dimension equal to x can be provided.

Command: Finding the Relationship Between Variables

```
> plot(bhp,type='l')
> da=read.table("d-bhp0206.txt",header=T)
                                                        > plot(vale,type='l')
> da1=read.table("d-vale0206.txt",header=T)
                                                        > m1=lm(bhp~vale)
> head(da)
                                                        > summary(m1)
 Mon day year open high low close volume adjclose
      1 2002 11.80 11.92 11.55 11.60 156700
                                              8.39
       9 2002 12.25 12.65 12.25 12.60 142000
                                              9.12
> head(da1)
                                                       Call:
                                                       lm(formula = bhp ~ vale)
 Mon day year open high low close volume adjclose
     1 2002 27.60 27.60 27.10 27.16 2307600
                                               1.89
                                                       Residuals:
                                                            Min
                                                                            Median
                                                                                                 Max
       9 2002 27.05 27.55 27.05 27.30 2534400
                                               1.90
                                                       -0.151818 -0.028265 0.003121 0.029803 0.147105
> dim(da)
                                                       Coefficients:
                                                                  Estimate Std. Error t value Pr(>|t|)
[1] 946 9
                                                                            0.003662
                                                                                      497.7
                                                       (Intercept) 1.822648
                                                                                             <2e-16 ***
                                                                                      304.4
                                                                                             <2e-16 ***
                                                                  0.716664
                                                                            0.002354
                                                       vale
> bhp=log(da[,9])
                                                       Residual standard error: 0.04421 on 944 degrees of freedom
                                                       Multiple R-squared: 0.9899,
                                                                                    Adjusted R-squared: 0.9899
> vale=log(da1[,9])
                                                       F-statistic: 9.266e+04 on 1 and 944 DF, p-value: < 2.2e-16
```

Command: Cointegration Tests

```
> library(urca)
> help(ca.jo) # Johansen's co-integration test
> bhp1=ts(bhp,frequency=252,start=c(2002,127))
> vale1=ts(vale,frequency=252,start=c(2002,127))
> plot(bhp1,type='l')
> plot(vale1,type='l')
> x=cbind(bhp,vale)
> m1=ar(x)
> m1$order
[1] 2
> m2=ca.jo(x, K=2)
> summary(m2)
```

Command: Johansen Procedure

Test type: maximal eigenvalue statistic (lambda max), with linear trend

Eigenvalues (lambda):

[1] 0.0406019854 0.0000101517

Values of test statistic and critical values of test:

```
r <= 1 | 0.01 6.50 8.18 11.65
r = 0 | 39.13 12.91 14.90 19.19
```

Eigenvectors, normalised to first column: (These are the cointegration relations)

```
bhp.12 vale.12
bhp.12 1.000000 1.000000
vale.12 -0.717784 2.668019
```

Weights W: (This is the loading matrix)

```
bhp.12 vale.12
bhp.d -0.06272119 -2.179372e-05
vale.d 0.03303036 -3.274248e-05
```

Command: Johansen Procedure

```
> wt=bhp-0.718*vale
> acf(wt)
> pacf(wt)
> m4=arima(wt,order=c(2,0,0))
> m4
Call:
arima(x = wt, order = c(2, 0, 0))
Coefficients:
               ar2 intercept
        ar1
                      1.820
     0.8050
            0.1215
                       0.008
s.e. 0.0323 0.0325
sigma^2 estimated as 0.000333: log likelihood = 2444.26, aic = -4880.52
> tsdiag(m4)
> plot(wt,type='l')
```