Inlever 1 Lial 2

Boris van Boxtel en Lotte Gritter

November 2022

(a). Lemma 7.3.2. De kern van een lineaire afbeelding $A: V \to W$ is een lineaire deelruimte van V.

De kern van A is de verzameling van alle elementen in A waarvoor geldt dat $A(\mathbf{x}) = 0$. We gaan bewijzen dat $\ker(A)$ een lineaire deelruimte van V is door te laten zien dat $\ker(A)$ niet leeg is, en dat optelling en scalaire vermenigvuldiging gedefiniëerd zijn.

Bewijs.

- 1. De kern van A bevat de nulvector.
- 2. Stel \mathbf{x} , \mathbf{y} in $\ker(A)$. Dan geldt dat $A(\mathbf{x}+\mathbf{y}) = A(\mathbf{x}) + A(\mathbf{y}) = \mathbf{0} + \mathbf{0} = \mathbf{0}$. Dus x + y zit in $\ker(A)$.
- 3. Stel λ in \mathbb{R} en \mathbf{x} in $\ker(A)$. Vanwege lineairiteit geldt dat $A(\lambda \mathbf{x}) = \lambda A(\mathbf{x}) = \lambda \mathbf{0} = \mathbf{0}$.

(b). Lemma 7.3.5. Zij V, W een tweetal vectorruimten en $A: V \to W$ een lineaire afbeelding. Dan is A(V) een lineaire deelruimte van W. Het bewijs hiervoor lijkt op het bewijs bij (a).

Bewijs.

1. A(V) is niet leeg, want $\mathbf{0} = A(0) \in A(V)$.

2.

(c). Laat V een vectorruimte zijn van dimensie n en B een basis van V. (hier moet nog tekst).

We gaan bewijzen dat f_B een isomorfisme geeft tussen V en \mathbb{R}_n , in andere woorden dat f_B een bijectieve lineare functie is.

het bewijs hiervoor bestaat uit drie delen, het eerste dat de functie linear is, het tweede het bewijs dat f_B injectief is, en het derde dat f_B surjectief is.

Bewijs.

1. Neem aan:

$$f_B(\mathbf{x}) = f_B(\mathbf{y}) \tag{1}$$

met $\mathbf{x}, \mathbf{y} \in V$. Gegeven is dat B een basis is van V. Met de definitie van f_B gegeven in het dictaat, kunnen we dit ook schrijven als:

 \Box (d). Bewijs.