Дополнение неограниченного языка Дика как группа

Алфавит для слов $\mathscr{U}=\{(_1,)_1,(_2,)_2,\dots,(_n,)_n\}$. Пусть B_i это скобка типа i, а B_i' другая того же типа. Будем порождать \mathscr{U}^* конкатенацией "·" с дополнительным условием:

$$B_i \cdot B_i' = E$$

И для двух комбинаций скобок:

$$B_{i_1}B_{i_2}\dots B_{i_n}B_{i_1} \cdot B_{i_1}^{\prime}B_{j_1}B_{j_2}\dots B_{j_n} = B_{i_1}B_{i_2}\dots B_{i_n} \cdot E \cdot B_{j_1}B_{j_2}\dots B_{j_n}$$

Покажем, что для любой комбинации скобок существует обратная комбинация. Пусть слово $A=B_{i_1}B_{i_2}\dots B_{i_{n-1}}B_{i_n}$. Тогда, чтобы получить обратный элемент, достаточно взять зеркальный образ $\overline{A}=B_{i_n}B_{i_{n-1}}\dots B_{i_2}B_{i_1}$ и заменить все скобки на другие того же типа $\overline{A}'=B_{i_n}'B_{i_{n-1}}'\dots B_{i_2}'B_{i_1}'$:

$$A \cdot \overline{A}' = B_{i_1} B_{i_2} \dots B_{i_{n-1}} B_{i_n} \cdot B_{i_n}' B_{i_{n-1}}' \dots B_{i_2}' B_{i_1}' = E = \overline{A}' \cdot A$$

Тогда \mathscr{U}^* будет *группой* порождённой подмножеством \mathscr{U} , т.е. $\mathscr{U}^* = \langle \mathscr{U} \rangle$.

•	(1	$)_1$	(2	$)_{2}$	 $\binom{n}{n}$	$)_n$	
(1	(1(1	E	(1(2	$(1)_2$	 (1(n	$(1)_n$	
$)_1$	E	$)_{1})_{1}$	$)_1(_2$	$)_1)_2$	 $)_{1}(_{n}$	$)_{1})_{n}$	
(2	$(_{2}(_{1}$	$(2)_1$	$(_{2}(_{2}$	E	 (2(n	$(2)_n$	
$)_2$	$)_{2}(_{1}$	$)_{2})_{1}$	E	$)_{2})_{2}$	 $)_{2}(_{n}$	$)_{2})_{n}$	
$\binom{n}{n}$	(n(1	$(n)_1$	$\binom{n}{2}$	$(n)_2$	 (n(n))	E	
$)_n$	$)_{n}(_{1}$	$)_{n})_{1}$	$)_{n}(_{2}$	$)_{n})_{2}$	 E	$)_n)_n$	
	$\ \dots \ $				 		