3. Quotients and Products of Groups

3.1 Cosets

H is a subgroup of G and $a,b\in G$,

define an equivalence relation on $G: a \sim b$ if a = bh for some $h \in H$:

1.
$$\forall a \in G, a = a \cdot 1, 1 \in H \rightarrow a \sim a$$

2.
$$a \sim b \rightarrow a = bh$$
 for some $h \in H \rightarrow b = ah^{-1}$, $h^{-1} \in H \rightarrow b \sim a$

3.
$$a\sim b,\,b\sim c o a=bh_1,\,b=ch_2$$
 for some $h_1,h_2\in H$ $o a=(ch_2)h_1=c(h_2h_1),\,\,h_1h_2\in H o a\sim c$

Under this equivalence relation, an equivalence class is:

$$[g]=\{x\in G|x=gh ext{ for some } h\in H\}=\{gh\in G|h\in H\}=gH$$

such equivalence class is called a left coset of H in G.

Cor. Two left cosets of H in G are either equal or disjoint. And G is a partition of its distinct left cosets.

Example:
$$\mathbb{Z}^+$$
, $H=3\mathbb{Z}$. Partition: $3\mathbb{Z}$, $1+3\mathbb{Z}$, $2+3\mathbb{Z}$.

H is a subgroup of G and $a,b\in G$. The the following are equivalent:

1.
$$aH = bH$$

2. a=bh for some $h\in H$

3.
$$b^{-1}a \in H$$

4.
$$a \in bH$$

We can construct right cosets in a similar way, starting from defining $a \sim b$ if a = hb for some $h \in H$:

$$Hg = \{hg \in G | h \in H\}$$

H is a subgroup of G. Define the index of H in G to be the number of left cosets, denoted by [G:H].

Lagrange's Theorem. H is a subgroup of a finite group G. Then $[G:H]=rac{|G|}{|H|}$.

Cor. |H| divides |G|.

Example:
$$G=K_4
ightarrow |H|=1,2,4$$

Cor. If $x \in G$, then |x| divides |G|, since |x| = | < x > | is the order of the cyclic subgroup generated by x.

Cor. A group of prime order is cyclic, since for any non-identity element $x \in G$, |x| divides |G| and $|x| \neq 1$, so |x| = |G|, so |x| = |G|.

Remark. If $|G| \neq 1$ or prime, then we can find a non-cyclic group G.

Prop. H is a subgroup of G and K is a subgroup of H. Then [G:K]=[G:H][H:K].

Prop. Any subgroup of index 2 is normal.

3.2 Quotient Groups

We wish to define a group structure on the quotient space.

$$\forall g \in G, gH = Hg \iff \forall g \in G, gHg^{-1} = H \iff H$$
 is a normal subgroup of G

N is a normal subgroup of G. We define the quotient group of G by N to be the set of all cosets of N in G, with composition given by (aN)(bN)=abN. The quotient group is denoted by G/N.

Examples:
$$K_4 = \{1, a, b, c\}$$
, $N = \{1, a\} = \langle a \rangle$.

$$K_4/N = \{N, bN\} = \langle bN \rangle$$
 cyclic group of order 2, identity element is N

$$S_3 = \{id, (12), (13), (23), (123), (132)\}, H = \{id, (123), (132)\} = <(123)>,$$

$$S_3/H=\{H,(12)H\}=<(12)H>$$
 — cyclic group of order 2

3.3 Integers modulo n

Guotient group $\mathbb{Z}/n\mathbb{Z}$:

Elements are of form $k + n\mathbb{Z}$

Denote $\bar{k} = k + n\mathbb{Z}$,

$$\overline{k_1} = \overline{k_2} \iff (-k_1) + k_2 \in n\mathbb{Z} \iff n|k_1 - k_2$$

so
$$\mathbb{Z}/n\mathbb{Z}=\{ar{0},ar{1},...,\overline{k-1}\}.$$
 The composition is $ar{a}+ar{b}=\overline{a+b}$

If $\bar{a} = \bar{b}$, we say "a is congruent to b module n", denoted by $a \equiv b \pmod{n}$.

We can define another composition — multiplication: $\bar{a}\bar{b}=\overline{ab}$. Well-defined since $\bar{a}=\bar{a'}, \bar{b}=\bar{b'}\to \overline{ab}=\overline{a'b'}$, but not a group since some elements (e.g. $\bar{0}$) have no inverse.

An element $\bar{a}\in\mathbb{Z}/n\mathbb{Z}$ is called a unit if there exists $\bar{b}\in\mathbb{Z}/n\mathbb{Z}$ s.t. $\bar{a}\bar{b}=1$.

Prop. If \bar{a}, \bar{c} are both units of $\mathbb{Z}/n\mathbb{Z}$, then $\bar{a}\bar{c}$ is also a unit.

The set of all units in $\mathbb{Z}/n\mathbb{Z}$ with multiplication form a group, and denote it by $(\mathbb{Z}/n\mathbb{Z})^{\times}$, called the group of units.

Examples:
$$\mathbb{Z}/3\mathbb{Z}=\{ar{0},ar{1},ar{2}\},(\mathbb{Z}/3\mathbb{Z})^{ imes}=\{ar{1},ar{2}\}\ \ (2^2=4\equiv 1\ (\mathrm{mod}\ 3))$$

$$\mathbb{Z}/4\mathbb{Z}=\{\bar{0},\bar{1},\bar{2},\bar{3}\},(\mathbb{Z}/4\mathbb{Z})^{\times}=\{\bar{1},\bar{3}\}\ \ (3^2=9\equiv 1\ (\text{mod}\ 4))$$

 $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$. The followings are equivalent:

- 1. \bar{a} is a unit
- 2. gcd(a, n) = 1, i.e., relatively prime
- 3. \bar{a} is a generator for $\mathbb{Z}/n\mathbb{Z}$
- 4. $f_a: \mathbb{Z}/n\mathbb{Z} o \mathbb{Z}/n\mathbb{Z}, f_a(\bar{x}) = \overline{ax}$ is a automorphism.

The Eulers's phi function is $\phi(n) = \#\{k \in \mathbb{N} | 1 \le k \le n, \gcd(k, n) = 1\}.$

Examples:
$$\phi(1) = 1$$
, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(4) = 2$

Fermat's Little Theorem: $n \geq 2$, $\gcd(a,n) = 1$. Then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Pf.
$$\gcd(a,n)=1 \to \bar{a}$$
 is a unit, i.e., $\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times} \to \bar{a}|(\mathbb{Z}/n\mathbb{Z})^{\times} = \phi(n), \, \bar{a}^{\phi(n)}=\bar{1} \to a^{\bar{\phi}(n)}=\bar{1} \to a^{\phi(n)}\equiv 1 \pmod{n}$

Cor. p is a prime. $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Cor.
$$Aut(\mathbb{Z}/n\mathbb{Z})\cong (\mathbb{Z}/n\mathbb{Z})^{ imes}$$

3.4 First Isomorphism Theorem

Lemma. f:G o G' is a homomorphism. $a,b\in G$.

Then $f(a)=f(b)\iff aN=bN$, where $N=\ker(f)$. (Recall: $\ker(f)=\{g\in G|f(g)=1'\}$)

First Isomorphism Theorem. $f:G\to G'$ is a surjective homomorphism. Then there is a unique homomorphism $F:G/N\to G'$ $(N=\ker(f))$ such that F is an isomorphism and $f=F\circ\pi$ where $\pi:G\to G/N, \pi(g)=gN$ is the quotient map.

Cor. $f:G\to G'$ is a homomorphism. Then $G/\ker(f)\cong \operatorname{Im}(f)$. (force it to be surjective)

Pf. Follows from First Isomorphism Theorem. $Im(f)=\{f(g)\in G'|g\in G\}=G' \text{ for surjective homomorphism } f.$

Cor. If G is a finite group. $f:G \to G'$ is a homomorphism. Then $|G|=|\ker(f)|\cdot|\operatorname{Im}(f)|$.

Pf. Follows from previous cor. and Lagrange's Theorem.

Cor. f:G o G' is a homomorphism. $\gcd(|G|,|G'|)=1$. Then f is a trivial map, i.e., $\forall g\in G$, f(g)=1'.

Pf. By previous cor., $|\operatorname{Im}(f)|$ divides |G|. $\operatorname{Im}(f)$ is a subgroup of G, so $|\operatorname{Im}(f)|$ divides |G|. $\gcd(|G|,|G'|)=1$, so $|\operatorname{Im}(f)|=1$. $\operatorname{Im}(f)=\{1'\}$.

Example: G=< a> is a cyclic group of order n. $f:\mathbb{Z}\to G, k\mapsto a^k$ is a surjective homomorphism.

$$\ker(f)=\{k\in\mathbb{Z}|a^k=1\}=\{k\in\mathbb{Z}|n|k\}=n\mathbb{Z}.$$

By First Isomorphism Theorem, $\mathbb{Z}/n\mathbb{Z} \cong G = \langle a \rangle$.

So if $G_1=< a>$ and $G_2=< b>$ are both cyclic groups of order n, then $G_1\cong \mathbb{Z}/n\mathbb{Z}\cong G_2$.

Remark: $\pi:G\to G/N$. The quotient map defined by $\pi(g)=gN$ is a homomorphism.

$$\pi(ab)=abN=(aN)(bN)=\pi(a)\pi(b)$$
. $\ker(\pi)=N$.

So any normal subgroup N of G is the kernel of some homomorphism defined on G.

So "kernel" \iff "normal subgroup".

3.5 Product Groups

G and G' are groups. Define their product group to be $G \times G'$, the set of all ordered pairs (g,g') where $g \in G$, $g' \in G'$, with law of composition $(g_1,g_1')(g_2,g_2')=(g_1g_2,g_1'g_2')$.

Properties:

- $|G \times G'| = |G| \cdot |G'|$
- $\text{ We can identify } G \text{ with } \{(g,1') \in G \times G' | g \in G\}. \ i_1:G \to G \times G', i_1(g) = (g,1').$ $G' \text{ with } \{(1,g') \in G \times G' | g' \in G'\}. \ i_2:G \to G \times G', i_2(g') = (1,g').$
- Under this identification, G and G' are normal subgroups in $G \times G'$.

 ${\it G}$ is a group. ${\it H}$ and ${\it K}$ are its subgroups. Then

$$G=H imes K$$
 if $f:H imes K o G, f(h,k)=hk$ is an isomorphism.
$$G=H imes K$$

 $H\cap K=\{1\}$, HK=G , and H,K are normal subgroups of G .

Example: $K_4 = \{1, a, b, c\} \cong < a > imes < b > \cong \mathbb{Z}/r\mathbb{Z} imes \mathbb{Z}/s\mathbb{Z}$

Prop. If r and s are relatively prime positive integers, then a cyclic group of order rs is isomorphic to the product of a cyclic group of order r and a cyclic group of order s.

Pf.
$$G=< x>$$
 is a cyclic group of order rs , $H=< x^s>$, $K=< x^r>$

Lemma. If H and K are subgroups of G, with |H| and |K| relatively prime, then $H\cap K=\{1\}$. (Pf. since $|H\cap K|$ divides both |H| and |K|.)

Chinese Reminder Theorem. If $\gcd(r,s)=1$, then $f:\mathbb{Z}/rs\mathbb{Z} o \mathbb{Z}/r\mathbb{Z} imes \mathbb{Z}/s\mathbb{Z}$ is an isomorphism.

In practice, it implies that the system of congruence equations

$$\begin{cases} x \equiv a \pmod{r} \\ x \equiv b \pmod{s} \end{cases}$$

has a unique solution up to congruence mod rs.

Remark. This can be generalized to: $\mathbb{Z}/r_1...r_n\mathbb{Z}=\mathbb{Z}/r_1\mathbb{Z} imes... imes\mathbb{Z}/r_n\mathbb{Z}$

If $\gcd(r,s) \neq 1$, $\mathbb{Z}/rs\mathbb{Z}$ is not isomorphic to $\mathbb{Z}/r\mathbb{Z} \times \mathbb{Z}/s\mathbb{Z}$.

Idea: Suppose
$$(g,g') \in G \times G'$$
. $|g| = m$. $|g'| = n$.

 $(g,g')^k=(1,1')\iff (g^k,g'^k)=(1,1')\iff |g| \text{ divides } k, |g'| \text{ divides } k\iff k \text{ is a common multiple of } m,n$

So
$$|(g,g')| = lcm(mn)$$
.