Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Shoet 4 of 26

Sheet 1 of 26

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Short 3 of 26

Sheet 2 of 26

Fig. 2A

Fig.2B

CELLULAR METABOLISM Sheet 3 of 26

Fig.3B

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Sheet 4 of 26

Sheet 5 of 26

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Sheet 6 of 26

Fig. 7

Fig. 8

Applicant: MARANAS, Costas D., et al. Attorney Docket No. P05468US1

Filed: January 10, 2002 Title: METHOD & SYSTEM FOR MODELING

CELLULAR METABOLISM Sheet 7 of 26

MODEL PREDICTIONS OF MAXIMUM THEORETICAL YIELDS OF AMINO ACIDS FOR GROWTH ON GLUCOSE AND ACETATE

 		laximum The mol / per 10			Maximum Theoretical Yield (mmol / per 10 mmol Acetate)			
 	Palsson '93	Modified Keasling '97	Universa I Model	% Increase	Palsson '93	Modified Keasling '97	Universal Model	% Increase
Alanine	20.00	20.00	20.00	-	3.93	5.29	5.29	-
Arginine	7.74	9.26	10.07	8.75%	1.51	2.43	2.65	9.05%
Asparagine	15.60	18.18	19.23	5.77%	3.24	4.66	4.91	5.45%
Aspartate	18.20	20.00	20.00	-	3.82	5.29	5.29	-
Cysteine	9.75	11.49	11.90	3.57%	1.81	3.29	3.42	3.80%
Glutamate	10.00	13.33	13.33	-	2.68	3.65	3.65	-
Glutamine	10.00	13.33	13.33	-	2.50	3.46	3.46	-
Glycine	20.00	35.33	35.33	-	3.94	9.00	9.00	-
Histidine	7.30	9.77	9.80	0.23%	1.37	2.43	2.54	4.53%
Isoleucine	7.34	8.00	8.07	0.91%	1.44	2.13	2.13	-
Leucine	6.67	8.00	8.00	-	1.59	2.18	2.18	-
Lysine	7.84	8.45	8.45	-	1.55	2.18	2.18	<u></u>
Methionine	5.74	7.04	7.19	2.16%	1.11	1.81	1.85	2.46%
Phenylalanine	5.29	5.76	5.76	-	1.00	1.47	1.47	-
Proline	10.00	10.91	10.91	-	2.10	2.90	2.90	_
Serine	20.00	23.04	23.04	-	3.94	5.87	5.87	-
Threonine	12.30	15.00	15.00	-	2.50	3.91	3.91	-
Tryptophan	4.14	4.67	4.73	1.28%	0.76	1.17	1.19	1.32%
Tyrosine	5.48	6.03	6.03	- 1	1.03	1.54	1.54	-
Valine	10.00	10.00	10.00	-	1.96	2.67	2.67	-

Palsson '93:

E coli model proposed by Palsson (1993)

Modified Keasling '97.

Modified Keasling (1997) E. coli model as described in text

Universal Model:

Modified Keasling (1997) E. coli model augmented with non-E coli reactions

compiled by the Kyoto Encyclopedia of Genes and Genomes

% Increase:

Between the modified Keasling (1997) model and the Universal model

Fig. 9

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Short 8 of 26

Sheet 8 of 26

Fig. 10B

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Sheet 9 of 26

Fig. 11A

Fig. 11B

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Sheet 10 of 26

MODIFICATIONS TO THE PRAMANIK AND KEASLING MODEL*

Enzymes	Reactions
Reactions assumed irreversible	
Phosphofructokinase	Fructose-1,6-bisphosphate → Fructose-6-phosphate + Pi
Citrate Synthase	Acetyl-CoA + Oxaloacetate → CoA + Citrate
2-Ketoglutarate Dehydrogenase	2-Ketoglutarate + NAD + CoA → Succinyl-CoA + CO2 + NADH
PRSCAIM Synthetase	RCAIM + ATP + Aspartate → ADP + Pi + PRSCAIM
Glycerol Kinase	Glycerol + ATP → Glycerol-3-phosphate + ADP
Reactions removed from model	
Unknown Pathway	5'-methylthioadenosine → Adenosine + Methionine
Cystathionase	Homocysteine + Adenosine ←→ s-Adenosyl-homocystine
Sulfotransferase	Adenosine-3,5-diphosphate + sulfite ←→ 3-Phosphoadenylylsulfate
Reactions modified	, , , , , , , , , , , , , , , , , , , ,
Fructose-1,6-bisphosphate Aldolase	Fructose-1,6-bisphosphate → Fructose-6-phosphate + Pi
Isocitrate Dehydrogenase	Isocitrate + NADP ←→ CO2 + NADPH + 2-Ketoglutarate
Succinate Thiokinase	Succinyl-CoA + ADP + Pi ←→ ATP + CoA + Succinate
Prephenate Dehydrogenase	Prephenate + NAD → CO2 + NADH + para-Hydroxy phenyl pyruvate
Hol Dehydrogenase	Histidinol + 3 NAD → 3 NADH + Histidine
RCAIM Synthetase	AIR + CO2 + ATP \rightarrow 5-p-Ribosyl-4-carboxy-5-aminoimidazole + ADP + Pi
GTP Cyclohydrolase	GTP → D6RP5P + Formate + Ppi
3,4-Dihydroxy-2-Butanone-4-Phosphate	Ribulose-5-phosphate → DB4P + Formate
Synthase	
H2Neopterin Triphosphate	$AHTD \rightarrow PPi + Pi + DHP$
Pyrophosphatase	
CoA Synthase	OIVAL + METTHF + NADPH + ALA + CTP + 4 ATP + CYS →
	THF + NADP + AMP + 2 PPi + 2 ADP + CO2 + CoA + CDP

MODIFICATIONS BASED ON INFORMATION BY KARP (1999)

Fig. 12

Sheet 11 of 26

Fig. 13

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Sheet 12 of 26

GENES SELECTED FOR REMOVAL BY KNOCKOUT STUDY

Enzymes	Genes	Reactions				
3,5-ADP Phosphatase	AP ^e	35ADP → AMP + Pi				
Acetate Kinase	ackA	AC + ATP → ACTP + ADP				
CDP Kinase	ndk ^a	CDP + ATP → CTP + ADP				
CMP Kinase	ndk ^b	CMP + ATP → CDP + ADP				
F0F1-ATPase	unc	ADP + Pi + $H_{ext} \rightarrow ATP$				
Formate THF Ligase	FTL ^c	THF + FORMATE + ATP → ADP + Pi + FTHF				
Fumarase	fumAB	$FUM \rightarrow MAL$				
Glyceraldehyde Kinase	GK⁴	GLAL + ATP → ADP + T3P1				
Glycine Cleavage System	gcvHTP	GLY + THF + NAD \rightarrow METTHF + NADH + CO2 + NH3				
Malate Dehydrogenase	mdh	$MAL + NAD \rightarrow NADH + OA$				
Methenyl THF Cyclohydrolase	foID ^f	$METHF \rightarrow FTHF$				
Methylene THF Dehydrogenase	folD ^g	METTHF + NADP → METHF + NADPH				
NADH Dehydrogenase I	ndh	NADH + Q \rightarrow NAD + QH2 + 4 H _{ext}				
PEP Synthase	pps	PYR + ATP → PEP + AMP + Pi				
Phosphatidate Phosphatase	dgkA	$DGR + Pi \rightarrow PA$				
Phosphotransacetylase	pta	ACTP + COA → ACCOA + Pi				
Pyrophosphatase	ppa	PPi → 2 Pi				
Succinate Dehydrogenase	sdhABCD	SUCC + FAD → FADH2 + FUM				
Succinate Thiokinase	sucCD	SUCCOA + GDP + Pi → GTP + COA + SUCC				
a,b Same gene responsible for t f,g Same gene responsible for t						
f,g Same gene responsible for two intracellular reactions c,d,e No gene has been assigned to these intracellular reactions						

Fig. 14

CELLULAR METABOLISM Sheet 13 of 26

MODEL SELECTIONS OF ENZYMATIC REACTIONS THAT WILL ENHANCE THE AMINO ACID PRODUCTION CAPABILITIES OF ESCHERICHIA COLI

Amino Acid	Substrate	EC#	Enyzme	Reaction Catalyzed
Arginine	Glucose:	2.7.1.90	6-Phosphofructokinase (pyrophosphate)	Fructose-6-P + PPi → Fructose-1,6-Bisphosphate + Pi
		2.7.2.2	Carbamate kinase	ATP + NH3 + CO2 → ADP + Carbamoyl Phosphate
	Acetate:	2.7.2.2	Carbamate kinase	ATP + NH3 + CO2 → ADP + Carbamoyl Phosphate
		2.7.2.12	Acetate kinase (pyrophosphate)	Acetate + PPi → Pi + Acetyl-Phosphate
Asparagine	Glucose/ Acetate:	6.3.1.4	Aspartate—ammonia ligase (ADP-forming)	ATP + NH3 + L-Aspartate → Pi + ADP + L-Asparagine
Cysteine	Glucose/ Acetate:	2.7.7.5	Sulfate adenylyltransferase (ADP)	Sulfate + ADP → Pi + Adenylyl-Sulfate
Histidine	Glucose:	1.4.1.10	Glycine dehydrogenase	NAD + glycine → glyoxylate + NADH + NH3
		2.7.1.90	6-Phosphofructokinase (pyrophosphate)	Fructose-6-P + PPi → Fructose-1,6-Bisphosphate + Pi
	Acetate:	1.4.1.10	Glycine dehydrogenase	NAD + glycine → glyoxylate + NADH + NH3
		4.1.1.38	Phosphoenolpyruvate carboxykinase (pyrophosphate)	PPi + Oxaloacetate → CO2 + Pi + PEP
Isoleucine	Glucose:	many		
Methionine	Glucose:	2.7.7.5	Sulfate adenylyltransferase (ADP)	Sulfate + ADP → Pi + Adenylyl-Sulfate
	Acetate:	1.4.1.10	Glycine dehydrogenase	NAD + glycine → glyoxylate + NADH + NH3
		2.7.7.5	Sulfate adenylyltransferase (ADP)	Sulfate + ADP → Pi + Adenylyl-Sulfate
		2.7.9.1	Pyruvate,phosphate dikinase	Pyruvate + Pi + ATP → AMP + PPi + PEP
		4.1.1.38	Phosphoenolpyruvate carboxykinase (pyrophosphate)	PPi + Oxaloacetate → CO2 + Pi + PEP
Tryptophan	Glucose:	2.7.1.90	6-Phosphofructokinase (pyrophosphate)	Fructose-6-P + Ppi → Fructose-1,6-Bisphosphate + Pi
		2.7.9.1	Pyruvate,phosphate dikinase	Pyruvate + Pi + ATP → AMP + PPi + PEP
	Acetate:	2.7.9.1	Pyruvate,phosphate dikinase	Pyruvate + Pi + ATP → AMP + PPi + PEP
		4.1.1.38	Phosphoenolpyruvate carboxykinase (pyrophosphate)	PPi + Oxaloacetate → CO2 + Pi + PEP

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Sheet 14 of 26

Fig. 16

Applicant: MARANAS, Costas D., et al. Attorney Docket No. P05468US1 Filed: January 10, 2002 Title: METHOD & SYSTEM FOR MODELING CELLULAR METABOLISM
Sheet 15 of 26 ARG 2.43 FUM 2.65 ARGSUCC PPi 2.43 2 Pi AMP 2.65 ATP ASP CITR ATP 2.43 2.65 ADP NH3 AKG ORN CAP CO2 2.43 2 ADP 2 ATP 7.29 2.43 2.65 7.95 2.65 Pi GLUGSAL 2.43 2.43 ATP ADP 2.65 NH3 Pi 2.65 GLUP 5.13 7.57 4.70 SUCC MAL ACCOA 2.43 2.70 10.00 2.05 GLX 2.43 10.00 AC2.65 ATP PPi --SUCCOA OA 7.57 10.00 2.65 ADP 7.35 CIT 2.70 ACCOA 10.00 2.05 7.57 10.00 7.35 AKG 5.14 4.71 ICIT

Fig. 17

Applicant: MARANAS, Costas D., et al. Attorney Docket No. P05468US1 Filed: January 10, 2002

Fig. 18

Applicant: MARANAS, Costas D., et al. Attorney Docket No. P05468US1 Filed: January 10, 2002

Title: METHOD & SYSTEM FOR MODELING CELLULAR METABOLISM

Fig. 19

Fig. 20

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Short 10 of 26

Sheet 19 of 26

Fig. 21

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Short 20 of 26

Sheet 20 of 26

EVOLUTION OF MINIMAL REACTION SETS FOR CASE (I) UNDER DECREASING GROWTH REQUIREMENTS.

Target % Maximum Growth Rate	Minimal Reaction Set (# Reactions)	Key Features
100%	234	The glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways are all operating in their forward directions, optimally generating the energy cofactors ATP, NADH, and NADPH required for cell growth. All available glucose is oxidized into the cell's only secreted byproduct, carbon dioxide.
90%	229	The fluxes through two TCA cycle reactions 2-ketoglutarate dehydrogenase and succinate dehydrogenase are zero while succinyl-CoA synthetase operates in its reverse direction suggesting a less demanding energetic state under the submaximal growth demands. Acetate is now secreted as a byproduct along with carbon dioxide.
80%	228	Fluxes through two additional TCA cycle reactions, fumarase and malate dehydrogenase, are eliminated while a reaction secreting fumarate is added.
70%	226	The pentose phosphate pathway operates solely for nucleotide biosynthesis with the reaction fluxes through ribulose phosphate 3-epimerase, transketolase I, transketolase II, and transaldolase B all operating in reverse. Fluxes through glucose-6-phosphate dehydrogenase, lactonase, and 6-phosphogluconate dehydrogenase are absent in this case, replaced by pyridine nucleotide transhydrogenase which meets the cellular NADPH needs. In addition, formate is now secreted along with acetate, fumarate, and carbon dioxide.
60%, 50%, 40%	225	Acetate is no longer secreted as a metabolic byproduct, but is converted to acetyl-CoA by acetyl-CoA synthetase.
30%, 20%, 10%, 1%	224	Three glycolytic reactions, phosphoglycerate mutase, enolase, and pyruvate kinase are eliminated, but both serine deaminase and phosphoenolpyruvate synthase are added to supply the cell with phosphoenolpyruvate.

Applicant: MARANAS, Costas D., et al. Attorney Docket No. P05468US1

Filed: January 10, 2002 Title: METHOD & SYSTEM FOR MODELING

CELLULAR METABOLISM Sheet 21 of 26

METABOLITES UPTAKEN OR SECRETED AT EACH TARGET GROWTH RATE ON AN OPTIMALLY ENGINEERED MEDIUM.

U – DENOTES METABOLITE UPTAKE

DEMOTES METAROLITE SECRETION

			Perce	ntage o	f 100%	Biom	ass Ge	enerati	on Re	quire	d		
Metabolite	100%	99.5%	99%	98%	97%	96%	95%	90%	85%	1		60%	10%
Acetate												S	S
Acetaldehyde													U
Adenine				U	U	U	U	U	U			U	
Adenosine										U	U		U
Alanine						<u> </u>				U	U		
Arginine	U	U	U	U	U	U	U	U	U	U	U	U	U
Asparagine									U	U		U	U
Aspartate									U	U	U	U	U
Carbon dioxide	S	S	S	S	S	S	S	S	S	S	S	S	S
Cysteine	U	U	U	U	U	U_	U	U	U	U	U	U	U
D-Alanine								U	U			υ	U
Thymidine		U	U	U	U_	U	U	U	U	U	U	U	U
Ethanol	U	U	U	U	U	U	U	U		U		U	<u> </u>
Glycerol										ļ	U		
Glycerol-3-phosphate	U	U	U	U	U	U	U	U	U	U		U	U
Glutamine								ļ	U	U	U	U	U
Glutamate										ļ	S	U	U
Glycine	İ					U	U	U	U	U	U	U	U
Guanine				U	U	U	U		U	U		ļ	
Guanosine								U			U	U	U
Histidine		U	U	U	U	U	U	U	U	U	U	U	U
Isoleucine	U	U	U	U	U	U	U	U	U	U	U	U	U
Leucine							U	U	U	U	U	U	U
Lysine	U	U	U	U	U	U	U	U	U	U	U	U	U
Meso-diaminopimelate		U	U	U	U	U	U	U	U	U	U	U	U
Methionine	U	U	U	U	U	U	U	U	U	U	U	U_	U
Mannitol										<u> </u>		U	U
Ammonia	U	U	U	U	U_	U	U	U					
Oxygen	U	U	U	U	U	U	U	U	U	U	U	U	U
Phenylalanine			U	U	U	U	U_	U	U	U	U	U	U
Phosphate	U	U	U	´U	U	U	U	U	U	U	U	υ	U
Proline					U	U	U	U	U	U	U	U	U
Putrescine	U	U	U	U	U	U	U	U	U	U	U_	U	U
Pyruvate								ļ	ļ	U	U	U	U
Ribose								<u> </u>		ļ	ļ	U	U
Serine	ļ		<u> </u>					U	U	U	U	U	U
Spermidine	U	U	U	U	U	U	U	U	U	U	U	U	U
Threonine	ļ	U	U	U	U	U	U	U	U	U	U	U	U
Tryptophan		U	U	U	U	U	U	U	U	U	U	U	U
Tyrosine	ļ		U	U	U	U	U	U	U	U	U	U	U
Uracil						U	U	U	U	U_		U	
Uridine		-	ļ	-	-		ļ	-	-	-	U	υ	U
Valine			<u> </u>	1,			U	U	U	U	U		U
# Metabolites Uptaken	12	17	19	21	22	24	26	28	29	31	29	34	34

Applicant: MARANAS, Costas D., et al.
Attorney Docket No. P05468US1
Filed: January 10, 2002
Title: METHOD & SYSTEM FOR MODELING
CELLULAR METABOLISM
Sheet 22 of 26

Fig. 24

Applicant: MARANAS, Costas D., et al. Attorney Docket No. P05468US1

Filed: January 10, 2002 Title: METHOD & SYSTEM FOR MODELING CELLULAR METABOLISM

Sheet 23 of 26

Fig. 25

CELLULAR METABOLISM Sheet 24 of 26

EVOLUTION OF MINIMAL REACTION SETS FOR CASE (II) UNDER DECREASING GROWTH REQUIREMENTS.

Target % Maximum Growth Rate	Minimal Reaction Set (# Reactions)	Key Features
100%	201	The organic material transported into the cell includes ethanol and glycerol-3-phosphate which fuel glycolysis, the TCA cycle, and PPP. The flux directions of the glycolysis pathway are split with all reaction fluxes preceding glyceraldehyde-3-phosphate (G3P) dehydrogenase operating in reverse, and all fluxes following and including G3P dehydrogenase operate in their forward directions. Putrescine, spermidine, and five amino acids are transported into the network eliminating the need for biosynthetic pathways for these components.
90%	132	While the PPP and TCA cycle reactions are still functional, the network no longer utilizes the five glycolytic reactions from glyceraldehyde-3-phosphate dehydrogenase to pyruvate kinase. Consequently, the TCA cycle is completely fueled by imported ethanol and acetate rather than flux from the glycolysis pathway.
80%	125	This network tolerates the complete elimination of the TCA cycle and glyoxylate shunt. As a result, the function of the pentose phosphate pathway reactions is no longer restricted to nucleotide biosynthesis, but now includes the formation of cellular NADPH. Most of this NADPH is subsequently converted to NADH by pyridine nucleotide transhydrogenase to replace the cellular reducing power lost from the inactivity of the TCA cycle.
70%	124	A slightly less efficient set of internal metabolic reactions enables the growth demands to be met with the importation of one less metabolite (i.e. one less transport reaction) than its 80% counterpart.
60% 50%, 40% 30%, 20%	123	Neither the TCA cycle nor PPP are utilized for reducing power. Most of the cellular reducing capabilities are now generated from the uptake of ethanol and its subsequent conversion into acetyl-CoA.
10%, 1%	122	This minimal network is comprised mostly of cell envelope and membrane lipid biosynthetic reactions, along with a number of transport and salvage pathway reactions. Here, the three core metabolic routes, glycolysis, the TCA cycle, and the pentose phosphate pathway are almost completely dismantled with only one glycolytic and 4 PPP reactions remaining.

CELLULAR METABOLISM Sheet 25 of 26

FUNCTIONAL CLASSIFICATION OF MINIMAL NETWORKREACTIONS FOR GROWTH ON AN OPTIMALLY ENGINEERED MEDIUM.

Functional Classification # rxns					
ALA Isomerization	1				
Alternative Carbon Source	7				
Anaplerotic Reactions	1				
Cell Envelope					
Biosynthesis	29				
EMP Pathway	5				
Membrane Lipid					
Biosynthesis	16				
Pentose Phosphate					
Pathway	4				
Pyrimidine Biosynthesis	1				
Respiration	5				
Salvage Pathways	17				
Transport	36				
	122				

Fig. 27

CELLULAR METABOLISM Sheet 26 of 26

COMPARISON OF MINIMAL METABOLIC GENE/REACTION SETS BASED ON FUNCTIONAL CLASSIFICATION *

Metabolic Function	Essential Gene Set ⁺ Ref. (2)	Minimal Gene Set Ref. (5)	Minimal Reaction Set	
	# Genes	# Genes	# Reactions	
Amino acid biosynthesis	0	0	1	
Biosynthesis of cofactors, prosthetic groups, and carriers	4	3	0	
Cell envelope	2	11	29	
Central intermediary metabolism	7	7	1	
Energy metabolism	31	32	21	
Fatty acid and phospholipid metabolism	5	7	16	
Purines, pyrimidines, nucleosides, and nucleotides	17	14	18	
Transport and binding proteins	17	25	36	
	83	99	122	

Fig. 28