Aufwonderel

Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft

Tentamen (deel 2) EE2M21, 13.30-15.30, Woensdag 27 januari 2016 Naam: Studienummer:

Opmerking: Voor de korte antwoord vragen volstaat het antwoord.Bij de open vragen is duidelijke uitleg vereist. Het gebruik van de rekenmachine is niet toegestaan. Een onbeschreven formuleblad wel.

Korte antwoord vragen

(2)	1. Beschouw de vectoren $\begin{bmatrix} 1-i \\ i \end{bmatrix}$ en $\begin{bmatrix} z \\ 2 \end{bmatrix}$ in \mathbb{C}^2 .	Ð
	(a) Deze vectoren zijn lineair afhankelijk in \mathbb{C}^2 als $z = \dots$	z = -2 - 21
	(b) Deze vectoren zijn orthogonaal als $z = \dots$	$z = / + \ell'$

2. Beschouw de vectorruimte $M_{4\times 4}(\mathbb{R})$ van alle reële 4×4 matrices en de deelruimte W van alle symmetrische 4×4 matrices. Dan:

(a) $\dim(M_{4\times 4}(\mathbb{R})) = 1/6$ (b) $\dim(W) = 1/6$

3. Beschouw de vectorruimte $C([0, 2\pi], \mathbb{R})$ van alle continue functies $f : [0, 2\pi] \to \mathbb{R}$. Beschouw de stelsels $S_1 = \{\sin^2(x), \cos^2(x), \cos(2x)\}$ en $S_2 = \operatorname{Span}\{\sin(x), \cos(x), \cos(3x)\}$.

(a) Bepaal dim(Span(S_1)).

(b) Bepaal $\dim(\operatorname{Span}(S_2))$. $\dim(\operatorname{Span}(S_2))$

(2)

 $\dim(\operatorname{Span}(S_1)) = \boxed{2}$ $\dim(\operatorname{Span}(S_2)) = \boxed{3}$

4. (a) Geef de orthogonale familie functies op [-1,1] die gebruikt wordt bij het bepalen van de Fourrierreeks op het interval [-1,1].

(b) Do bijbehorende formules van av en h van die Fourriereeks op [-1, 1] van f zi

(b) De bijbehorende formules van a_0 , a_k en b_k van die Fourriereeks op [-1,1] van f zijn: $a_0 = \langle f, i \rangle = \frac{1}{2} \int f(x) dx \qquad \text{of} \qquad a_0 = \langle f, k \rangle = \int f(x) dx$ $a_0 = \langle f, cosn \pi \rangle = \int f(x) co$

5. Beschouw de matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Het stelsel X' = AX heeft als basisoplossingen

$$X_1(t) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{3t} \text{ en } X_2(t) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^t.$$

Bepaal de matrix e^{At} .

6. Beschouw het lineaire stelsel: (2)

$$\begin{cases} x'_1 = 3x_1 - 2x_2 \\ x'_2 = 2x_1 + 3x_2 \end{cases}$$

Bepaal de stabiliteit en het type van het evenwichtspunt.

Stabiliteit:

- 7. Laat f de functie op [0,1] zijn met $f(x)=1-x+x^2$. Laat g de even uitbreiding zijn van (2) f tot het interval [-1,1]. Dan:
 - (a) Een formule van g(x) met $x \in [-1, 0]$ luidt:
 - (b) De cosinusreeks van f op [0, 1] is gelijk aan de Fourrierreeks van g op [-1,1] (juist/onjuist).

g(x)=f(-x)=1+x+x2

- 8. Stel dat X_1, X_2 particuliere oplossingen zijn van het (niet-homogene) lineaire stelsel (2)X' = AX + G en dat X_3 een particuliere oplossing is van het (niet-homogene) lineaire stelsel X' = AX + H (dus de twee stelsels hebben dezelfde matrix A). Dan geldt:
 - (a) $X_1 + X_3$ is een particuliere oplossing van het stelsel X' = AX + G + H. (juist/onjuist)

(b) $X_1 - X_2 + X_3$ is een particuliere oplossing van het stelsel X' = AX + H. (juist/onjuist)

inist

wist

Antwoord Wel.

Open vragen

Tentamen (deel 2) EE2M21, 13.30-15.30, Woensdag 27 januari 2016 Naam: Studienummer:

9. Beschouw de vectorruimte $Pol_3(\mathbb{R},\mathbb{R})$ (alle polynomen op \mathbb{R} van graad tenhoogste 3) en beschouw $V = \{ p \in Pol_3(\mathbb{R}, \mathbb{R}) : p(1) = 0 \}.$

(a) Toon aan dat V een lineaire deelruimte is van $Pol_3(\mathbb{R}, \mathbb{R})$.

nied te kritisch

(3)

P=0 EV (pex)=0 allex > pen=0)

Als $p, g \in V$ dan (p+g)(i) = p(i)+g(i) = 0+0=0 $\Rightarrow p+g \in V$

Als per en cer den (cp)(1) = c p(1)) = c o = o

Dus Vis deelruimte.

(3)

(b) Bepaal een basis van V.

PM= ax + bx+cx+deV = a+ 6+c+d = 0 genfl: p=ax + bx + cx - a - 6 - c = a(x - 1) + b(x - 1) + c(x - 1) bans: (x-1, x-1, x-15) wat my betreft:

(2)

(c) Bepaal de dimensie van V.

andito ourd volstact, als geen basis by (6) clan moed er uilleg by!!

- 10. Beschouw de lineaire deelruimte $Pol_1([0,2],\mathbb{R})$ van $C([0,2],\mathbb{R})$ (de vectorruimte van alle continue functies op [0,2]) met het standaard inwendig product).
 - (a) Bepaal een orthogonale basis voor de deelruimte $Pol_1([0,2],\mathbb{R})$.

(3)

Basis Pol, ([o,2], R):
$$11, \times 1$$

Gramschmidt:

 $w_1 = 1$
 $w_2 = \times -\frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} = \times -\frac{\sqrt{3} \times dx}{\sqrt{3} \cdot 1} = \times -1$

orthogonale basis: $\times 11, \times 11$

(b) Bepaal de beste lineaire benadering van de functie $f(x) = 3x^2$ op het interval [0, 2].

formule of met bans (1, x): 1 part (rest niets) dus tenhoops & 2 punter

Andwoord formulier.

Tentamen (deel 2) EE2M21, 13.30-15.30, Woensdag 27 januari 2016 Naam: Studienummer:

(3) Gegeven is de $n \times n$ matrix A met eigenvector $\mathbf{v} \neq \mathbf{0}$ bij de eigenwaarde $\lambda \in \mathbb{R}$. (Dus $A\mathbf{v} = \lambda v$). We weten dat $X_1(t) = \mathbf{v}e^{\lambda t}$ een oplossing is van het lineaire stelsel X' = AX.

Toon aan: $X_2(t) = \mathbf{v}te^{\lambda t} + \mathbf{b}e^{\lambda t}$ is ook een oplossing van dit lineaire stelsel als en slechts als $(A - \lambda I)\mathbf{b} = \mathbf{v}$.

ried Je streng

$$X_{2}$$
 is oplossing \Rightarrow X_{2}^{2} = A X_{2}
 $X_{2}(t) = (v t e^{\lambda t} + 6 e^{\lambda t})' = v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A v t e^{\lambda t} + A 6 e^{\lambda t} = \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A v t e^{\lambda t} + A 6 e^{\lambda t} = \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} + \lambda v t e^{\lambda t} + \lambda 6 e^{\lambda t}$
 $AX_{2} = A x_{2} \Rightarrow v e^{\lambda t} \Rightarrow (A - \lambda f) = V$

(4) (b) Bepaal de algemene reële oplossing van het stelsel X' = AX met $A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$ en $X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$.

 $\det (A-\lambda I) = \begin{vmatrix} -\lambda & 1 \\ -1 & 2-\lambda \end{vmatrix} = \lambda^{2} - 2\lambda + 1 = (\lambda-1)^{2} = 0$ $\implies \lambda = 1 \quad \text{a.m.} (\lambda = 1) = 2$ $\text{basis } E_{g} = \text{Nal}(A-I) : \quad -1 \quad |0 \text{ is } 1 \quad -1|0 \Rightarrow \lambda = x[1]$ $= 1 \quad |0 \text{ is } 0 \quad |0 \quad |0 \Rightarrow \lambda = x[1]$ $\text{oplossing } 1 : \quad X_{1}(1) = [1]e^{t}$ $\text{gegeneral is serola eigens each } b : (A-\lambda I)b = v \Rightarrow -1 \quad |1| \Rightarrow b \neq 0$ $\text{get} t \quad X_{2}(t) = [1]te^{\lambda t} = [0]e^{t}$ $\text{Dus } X(1) = c_{1}[1]e^{t} + c_{2}(1]te^{\lambda t} = [1]e^{t}$

gehozen b'
moed Yd vorm

[]+c[i]
voor een CER

12. Beschouw het niet lineaire autonome stelel differentiaalvergelijkingen:

$$\frac{dx}{dt} = (2-y)(2x-y)$$
 en $\frac{dy}{dt} = (2+x)(x-2y)$.

(a) Bepaal de vier evenwichtsoplossingen.

(2)

(3)

$$\frac{dx}{dt} = (2-y)(2x-y) = 0 \implies y = 2 \text{ of } 2x = y$$

$$\frac{dy}{dt} = (2+x)(x-2y) = 0 \implies x = -2 \text{ of } x = 2y$$

$$geeft(-2,2), (4,2), (-2,-4) \text{ en } (0,0)$$

$$0$$

$$0$$

$$0$$

(b) Bepaal bij ieder evenwichtspunt: de linearisering van het stelsel in het evenwichtspunt en klassificeer het evenwichtspunt van de linearisering naar type en stabiliteit.

F =
$$\begin{bmatrix} 4x - 2y - 2xy + y^2 \\ 2x - 4y + x^2 - 2xy \end{bmatrix}$$
 $\Rightarrow y = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{bmatrix} + \begin{bmatrix} 4 - 2y & -2 - 2x + 2y \\ 2 + 2x - 2y & -4 - 2x \end{bmatrix}$

in \bigcirc $A = \begin{bmatrix} 0 & 6 \\ -6 & 0 \end{bmatrix}$ $\Rightarrow \lambda = \pm 6i \Rightarrow \text{ stabiel centrum}$

in \bigcirc $A = \begin{bmatrix} 0 & -6 \\ 6 & -12 \end{bmatrix}$ $\Rightarrow \lambda = -6(2x) + \Rightarrow \text{ pastabiel (one niver)}$

knooppant

in \bigcirc $A = \begin{bmatrix} 6 & -6 \\ 6 & -12 \end{bmatrix}$ $\Rightarrow \lambda = 6(2x) \Rightarrow \text{ instablel (one niver)}$

in \bigcirc $A = \begin{bmatrix} 12 & -6 \\ 6 & 0 \end{bmatrix}$ $\Rightarrow \lambda = 6(2x) \Rightarrow \text{ instablel (one niver)}$

in \bigcirc $A = \begin{bmatrix} 4 & -2 \\ 6 & 0 \end{bmatrix}$ $\Rightarrow \lambda = 6(2x) \Rightarrow \text{ instablel (one niver)}$

in \bigcirc \Rightarrow \Rightarrow instablel 2a delptint.

(c) Classificeer nu de evenwichtspunten van het oorspronkelijke stelsel naar type en stabiliteit, voor zover dit mogelijk is.

and woord vel.

Tentamen (deel 1) EE2M21, 13.30-15.30, Woensdag 9 december 2015 Naam: Studienummer:

(4) 13. (a) Bepaal de Fourrierreeks van de functie f(x) = x op het interval [-2, 2].

 $f(x) = x \circ p \left[-2, 2 \right] \text{ is one wen functive } \Rightarrow a_0 = 0 & a_n = 0 & (n \geq 1) \text{ }$ $\int_{0}^{2} \frac{1}{2} \int_{0}^{2} x & \text{sen} \left(\frac{n \pi x}{2} \right) dx = -\frac{1}{2} \cos(n \pi) = -\frac{1}{2} \cos(n \pi) = -\frac{1}{2} \cos(n \pi) + \frac{1}{2} \cos(n \pi) + \frac{1}$

(b) (BONUSVRAAG) Beschouw de warmtevergelijking met gegeven rand- en beginvoorwaarden.

$$\begin{cases} u_{x,x} = 4u_t & 0 < x < 2, & t > 0 & (1) \\ u(0,t) = 0 \text{ en } u(2,t) = 0, & t > 0 & (2) \\ u(x,0) = x, & 0 < x < 2 & (3) \end{cases}$$

Bepaal de oplossing.

(Hint: maak gebruik van opgave 13a)

Stel
$$\mu(x,t)$$
 is oplossing (1) die voldoet aan ② met $\mu(x,t)\neq 0$

en $\mu(x,t) = X(x) T(t)$ (scheiden Veriabelen)

(ashl niet aan ③ voldoen)

② $\Rightarrow X(0) = 0$ en $X(2) = 0$

① $\Rightarrow X''(x) T(t) = 4 X(x) T'(t) \Rightarrow \frac{X''}{X} = \frac{4T'}{T} \Rightarrow \frac{X''}{X} = \frac{4T'}{X} \Rightarrow \frac{X''}{X} = \frac{4T'$

(b) (Vervolg)

Ver welke
$$\lambda$$
 heeft $X = \lambda X$, $\lambda(0) = 0$ en $\lambda(2) = 0$ een niet triviale oplossing:

 $\lambda > 0 \Rightarrow \lambda = u^{2} \Rightarrow \lambda = c$, $Cosh(un + c_{kin}h(un)) \Rightarrow c_{i} = c_{kin} = 0$
 $\lambda(0) = 0 \Rightarrow \lambda(2) = 0$
 $\lambda(0) = 0 \Rightarrow \lambda(2) = 0$
 $\lambda(0) = \lambda(2) = 0$
 $\lambda(0) = 0 \Rightarrow \lambda(2) = 0$
 $\lambda(0) = \lambda(2) = 0$
 $\lambda(0) = 0 \Rightarrow \lambda(2) = 0$
 $\lambda(0) = \lambda(2) \Rightarrow \lambda(2) = 0$
 $\lambda(0) = 0 \Rightarrow \lambda(2) = 0$
 $\lambda(0) = \lambda(2) \Rightarrow \lambda(2) = \lambda(2) = 0$
 $\lambda(0) = \lambda(2) \Rightarrow \lambda(2) = \lambda(2) = \lambda(2)$
 $\lambda(0) = \lambda(2) \Rightarrow \lambda(2) = \lambda(2) = \lambda(2)$
 $\lambda(0) = \lambda(2) \Rightarrow \lambda(2) = \lambda(2)$

Normering: Voor korte antwoord resp. open vragen zijn 20 resp. 34 punten te halen. Als voor deze delen K resp. O punten gehaald zijn, dan:

Tentamencijfer =
$$\frac{6 + K + O}{6}$$

Met de bonusvraag kunt u uw cijfer maximaal één punt ophogen.