Lecture 12

- Frequency Response

Outline

- Frequency response
- Transfer function
- Bode plots (or diagram)
- Resonance

Frequency Response

Case 1: $\omega = 2\pi \times 3000$

$$\mathbf{Z}_{eq} = 468.2 \angle - 62.1^{\circ}\Omega$$

$$V_1 = 2.34 \angle -62.1$$
°V

Case 2:
$$\omega = 2\pi \times 455000$$

$$\mathbf{Z}_{eq} = 3.5 \angle -89.8^{\circ}\Omega$$

$$V_2 = 17.5 \angle -89.8$$
° mV

Frequency Response

- When a linear, time invariant (LTI) circuit is excited by a sinusoid, it's
 output is a sinusoid at the same frequency.
 - Only the <u>magnitude</u> and <u>phase</u> of the output differ from the input.
- The "Frequency Response" is a characterization of the input-output response for sinusoidal inputs at <u>all</u> frequencies.
 - Significant for applications, esp. in communications and control systems.

Outline

- Frequency response
- Transfer function
- Bode plots (or diagram)
- Resonance

Transfer Function

• The transfer function $H(\omega)$ is the frequency-dependent ratio of a forced function $Y(\omega)$ to the forcing function $X(\omega)$.

$$H(\omega) = \frac{Y(\omega)}{X(\omega)}$$

$$H(\omega) = \text{Voltage gain} = \frac{V_o(\omega)}{V_i(\omega)}$$

$$H(\omega) = \text{Current gain} = \frac{I_o(\omega)}{I_i(\omega)}$$

$$H(\omega) = \text{Transfer impedance} = \frac{V_o(\omega)}{I_i(\omega)}$$

$$H(\omega) = \text{Transfer admittance} = \frac{I_o(\omega)}{V_i(\omega)}$$

Transfer Function – Voltage Gain

- Complex quantity
- Both magnitude and phase are function of frequency

$$\mathbf{H}(f) = \frac{\mathbf{V}_{\text{out}}}{\mathbf{V}_{\text{in}}} = \frac{V_{out}}{V_{in}} \angle (\theta_{out} - \theta_{in})$$

$$\mathbf{H}(\mathbf{f}) = H(f) \angle \theta$$

Example

$$H = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}}, \qquad \phi = -\tan^{-1}\frac{\omega}{\omega_0}$$

ω/ω_0	H	$oldsymbol{\phi}$	$oldsymbol{\omega}/oldsymbol{\omega}_0$	H	$\boldsymbol{\phi}$
0	1	0	10	0.1	-84°
1	0.71	-45°	20	0.05	-87°
2	0.45	-63°	100	0.01	-89°
3	0.32	-72°	∞	0	-90°

Exercise

• Obtain the transfer function V_0/V_s of the RL circuit.

Assuming $v_s = V_m \cos \omega t$.

Outline

- Frequency response
- Transfer function
- Bode plots (or diagram)
- Resonance

Bode Plots

Plotting the frequency response, magnitude or phase, on plots with

- Frequency X in log scale
- Y scale in dB (for magnitude) or degree (for phase)

Bel and Decibel (dB)

- A bel (symbol B) is a unit of measure of ratios of power levels, i.e. relative power levels.
 - The name was coined in the early 20th century in honor of Alexander Graham Bell, a telecommunication pioneer.
 - Definition of bel:

Ratio with a unit of B = $log_{10}(P_1/P_2)$ where P_1 and P_2 are power levels.

 One bel is too large for everyday use, so the decibel (dB), equal to 0.1B, is more commonly used.

Ratio with a unit of dB =
$$10 \log_{10}(P_1/P_2)$$

used to measure electric power, gain or loss of amplifiers, etc.

dB for Power

 To express a power in terms of decibels, one starts by choosing a reference power, P_{reference}, and write

Power P in decibels = $10 \log_{10}(P/P_{reference})$

 Exercise: Express a power of 50 mW in decibels relative to 1 watt and 1mW.

$$P(dB) =$$

Decibel Scale

- The transfer function includes an expression of gain, which is typically expressed in log form.
 - in bels, or more commonly decibels

$$G_{dB} = 10\log_{10} \frac{P_2}{P_1}$$

dB for Voltage or Current

 We can similarly relate the reference voltage or current to the reference power, as

$$P_{\text{reference}} = (V_{\text{reference}})^2 / R \text{ or } P_{\text{reference}} = (I_{\text{reference}})^2 R$$

Hence,

Voltage, V in decibels =
$$20\log_{10}(V/V_{\text{reference}})$$

Current, I, in decibels = $20\log_{10}(I/I_{\text{reference}})$

Question: How many decibels larger is the voltage of a 9-volt transistor battery than that of a 1.5-volt AA battery?

Question: The voltage gain of an amplifier with input = 0.2 mV and output = 0.5 V is ?

[Source: Berkeley]

Summary

If G is defined as the power gain,

$$G = \frac{P}{P_0},$$

then the corresponding gain in dB is defined as

$$G [dB] = 10 \log G = 10 \log \left(\frac{P}{P_0}\right) \qquad (dB).$$

$$G [dB] = 10 \log \left(\frac{\frac{1}{2} |\mathbf{V}|^2 / R}{\frac{1}{2} |\mathbf{V}_0|^2 / R} \right) = 20 \log \left(\frac{|\mathbf{V}|}{|\mathbf{V}_0|} \right)$$

$\frac{P}{P_0}$	dB	
10 ^N	10 <i>N</i> dB	
10^{3}	30 dB	
100	20 dB	
10	10 dB	
4	$\simeq 6 \text{ dB}$	
2	$\simeq 3 \text{ dB}$	
1	0 dB	
0.5	$\simeq -3 \text{ dB}$	
0.25	$\simeq -6 \text{ dB}$	
0.1	-10 dB	
10^{-N}	-10N dB	

$\left \frac{\mathbf{V}}{\mathbf{V}_0} \right \text{ or } \left \frac{\mathbf{I}}{\mathbf{I}_0} \right $	dB
10^{N}	20 <i>N</i> dB
10^{3}	60 dB
100	40 dB
10	20 dB
4	$\simeq 12 \text{ dB}$
2	$\simeq 6 \mathrm{dB}$
1	0 dB
0.5	$\simeq -6 \mathrm{dB}$
0.25	$\simeq -12 \text{ dB}$
0.1	-20 dB
10^{-N}	-20N dB

Bode Plots

Plotting the frequency response, magnitude or phase, on plots with

- Frequency X in log scale
- Y scale in dB (for magnitude) or degree (for phase)

Bode Plots

 Bode plot is particularly useful for displaying transfer function-- a general form is displayed as:

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

In constructing a Bode plot, we plot each factor separately and then add them graphically. The factors can be considered one at a time and then combined additively because of the logarithms involved. It is this mathematical convenience of the logarithm that makes Bode plots a powerful engineering tool.

Constant term K

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

K>0

K<0

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

$$(j\omega)^{-1}$$

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

In general:

25

$$1+j\omega/z_1$$

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

Simple pole/zero: For the simple zero $(1 + j\omega/z_1)$, the magnitude is $20 \log_{10} |1 + j\omega/z_1|$ and the phase is $\tan^{-1} \omega/z_1$. We notice that

$$H_{\text{dB}} = 20 \log_{10} \left| 1 + \frac{j\omega}{z_1} \right| \quad \Rightarrow \quad 20 \log_{10} 1 = 0$$

$$\text{as } \omega \to 0$$

$$H_{\text{dB}} = 20 \log_{10} \left| 1 + \frac{j\omega}{z_1} \right| \quad \Rightarrow \quad 20 \log_{10} \frac{\omega}{z_1}$$

$$\text{as } \omega \to \infty$$

$1/(1+j\omega/p_1)$

$1/[1+2j\zeta_1\omega/\omega_n + (j\omega/\omega_n)^2]$

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1)[1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2]\cdots}{(1 + j\omega/p_1)[1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2]\cdots}$$

Magnitude:

$$H_{\rm dB} = -20 \log_{10} \left| 1 + \frac{j2\zeta_2\omega}{\omega_n} + \left(\frac{j\omega}{\omega_n} \right)^2 \right| \implies 0$$

and

$$H_{\rm dB} = -20 \log_{10} \left| 1 + \frac{j2\zeta_2 \omega}{\omega_n} + \left(\frac{j\omega}{\omega_n} \right)^2 \right| \qquad \Rightarrow \qquad -40 \log_{10} \frac{\omega}{\omega_n}$$
as $\omega \to \infty$

the phase is $-\tan^{-1}(2\zeta_2\omega/\omega_n)/(1-\omega^2/\omega_n^2)$.

TABLE 14.3

Summary of Bode straight-line magnitude and phase plots.

Factor	Magnitude	Phase	
	20 log ₁₀ K		
K		09	
	ω	ω	
	20N dB/decade _	90N°	
$(j\omega)^N$			
	1 ω	ω	
1			
$\frac{1}{(j\omega)^N}$	1 ω	ω	
	-20N dB/decade	-90N°	
/ · \ N	20N dB/decade	90N°	
$\left(1+\frac{j\omega}{z}\right)^N$		0°	
	z w	$\frac{z}{10}$ z $10z$ ω	
	p	$\frac{p}{10}$ p $10p$	
$\frac{1}{\left(1+j\omega/p\right)^{N}}$	ω	0° ω	
(1 - 10/p)	−20N dB/decade	-90N°	
	40N dB/decade	180N°	
$[2j\omega\zeta (j\omega)^2]^N$			
$\left[1 + \frac{2j\omega\zeta}{\omega_n} + \left(\frac{j\omega}{\omega_n}\right)^2\right]^N$		0°	
	ω_n	$\frac{\omega_n}{10}$ ω_n $10\omega_n$ ω	
	ω_k	$\frac{\omega_k}{10}$ ω_k $10\omega_k$	
1	ω	0° ω	
$\frac{1}{\left[1+2j\omega\zeta/\omega_k+(j\omega/\omega_k)^2\right]^N}$			
	−40N dB/decade		
		-180N°	

Example--Standard Form

$$\mathbf{H}(\omega) = \frac{200j\omega}{(j\omega + 2)(j\omega + 10)}$$

$$\mathbf{H}(\omega) = \frac{10j\omega}{(1+j\omega/2)(1+j\omega/10)}$$

Example - Magnitude

$$\mathbf{H}(\omega) = \frac{10j\omega}{(1+j\omega/2)(1+j\omega/10)}$$

$$= \frac{10|j\omega|}{|1+j\omega/2||1+j\omega/10|} /90^{\circ} - \tan^{-1}\omega/2 - \tan^{-1}\omega/10$$

$$H_{\text{dB}} = 20 \log_{10} 10 + 20 \log_{10} |j\omega| - 20 \log_{10} \left| 1 + \frac{j\omega}{2} \right| - 20 \log_{10} \left| 1 + \frac{j\omega}{10} \right|$$

Example - Phase

$$\mathbf{H}(\omega) = \frac{10j\omega}{(1+j\omega/2)(1+j\omega/10)}$$

$$= \frac{10|j\omega|}{|1+j\omega/2||1+j\omega/10|} / 90^{\circ} - \tan^{-1}\omega/2 - \tan^{-1}\omega/10$$

$$\phi = 90^{\circ} - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{10}$$

Exercises

- $H(\omega) = K$
- $H(\omega) = (j\omega)^N$
- $H(\omega) = 1/(j\omega)^N$

Exercises

•
$$\mathbf{H}(\omega) = \frac{(20 + j4\omega)^2}{j40\omega(100 + j2\omega)}$$

•
$$\mathbf{H}(\omega) = \frac{(j10\omega + 30)^2}{(300 - 3\omega^2 + j90\omega)}$$

Obtain the transfer function

Outline

- Frequency response
- Transfer function
- Bode plots (or diagram)
- Resonance

Series Resonance

 A series resonant circuit consists of an inductor and capacitor in series.

$$H(\omega) = \frac{V}{I} = \mathbf{Z} = R + j\left(\omega L - \frac{1}{\omega C}\right) \qquad \mathbf{V}_s = V_m \angle \theta \stackrel{+}{\longrightarrow} \boxed{\mathbf{I}} \boxed{\mathbf{I}} \boxed{\mathbf{I}}$$

- Resonance occurs when the imaginary part of Z is zero.
- The value of ω that satisfies this is called the resonant frequency.

$$\omega_0 = \frac{1}{\sqrt{LC}} \text{ rad/s}$$

Series Resonance

- At resonance:
 - The impedance is purely resistive
 - The voltage V_s and the current I are in phase
 - The magnitude of the transfer function is minimum
 - The inductor and capacitor voltages can be much more than the source

$$\mathbf{V}_{s} = V_{m} \underline{\wedge \theta} + \mathbf{V}_{m} \underline{\wedge \theta} + \mathbf{$$

$$H(\omega) = \frac{V}{I} = \mathbf{Z} = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

Half-Power Frequencies

the current magnitude:

$$I = |\mathbf{I}| = \frac{V_m}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$$

$$\mathbf{V}_{s} = V_{m} \angle \theta \qquad \frac{1}{j \omega C}$$

$$P(\omega_1) = P(\omega_2) = \frac{1}{2}P(\omega_0)$$

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_0 = \sqrt{\omega_1 \omega_2}$$

Bandwidth

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

 Bandwidth: the difference between the two half-power frequencies

$$B = \omega_2 - \omega_1 = \frac{R}{L}$$

Quality Factor Q

 Quality factor Q: measure the "sharpness" of the resonance.

The smaller the *B*, the higher the *Q*.

$$Q = \frac{\omega_0}{B}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$B = \omega_2 - \omega_1 = \frac{R}{L}$$

Amplitude **↑**

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

)

Quality Factor Q

$$Q = \frac{\omega_0}{B}$$

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

[Source: Georgia State U]

Approximation of Half-Power Frequencies

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\frac{R}{L} = B \qquad B = \frac{\omega_0}{Q}$$

$$\omega_1 = -\frac{\omega_0}{2Q} + \omega_0 \sqrt{1 + \frac{1}{4Q^2}}$$

$$\omega_2 = \frac{\omega_0}{2Q} + \omega_0 \sqrt{1 + \frac{1}{4Q^2}}$$

• For high-Q ($Q \ge 10$) circuits, half-power frequencies can be approximated as

$$\omega_1 \simeq \omega_0 - \frac{B}{2}, \qquad \omega_2 \simeq \omega_0 + \frac{B}{2}$$

Example

In the circuit, $R=2\Omega$, $L=1 \mathrm{mH}$ and $C=0.4 \mu \mathrm{F}$

- Find resonant frequency ω_0 .
- Calculate Q and bandwidth B.
- Find half-power frequencies.
- Determine the amplitude of the current at ω_0 , ω_1 and ω_2 .

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-3} \times 0.4 \times 10^{-6}}} = 50 \text{ krad/s}$$

$$B = \omega_2 - \omega_1 = 2 \text{ krad/s}$$

$$Q = \frac{\omega_0}{B} = \frac{50}{2} = 25$$

At
$$\omega = \omega_0$$
,

$$I = \frac{V_m}{R} = \frac{20}{2} = 10 \text{ A}$$

At
$$\omega = \omega_1, \omega_2$$
,

$$I = \frac{V_m}{\sqrt{2}R} = \frac{10}{\sqrt{2}} = 7.071 \text{ A}$$

Parallel resonance

RLC Circuit

$$\mathbf{H} = \frac{\mathbf{V}_{\mathsf{R}}}{\mathbf{V}_{\mathsf{s}}}$$

$$\mathbf{I} = \frac{\mathbf{V}_{\mathbf{R}}}{\mathbf{I}_{\mathbf{s}}}$$

Resonant Frequency, ω_0

 $\frac{1}{\sqrt{LC}}$

 $\frac{1}{\sqrt{LC}}$

Bandwidth, B

 $\frac{R}{I}$

 $\frac{1}{RC}$

Quality Factor, Q

$$\frac{\omega_0}{R} = \frac{\omega_0 L}{R}$$

$$\frac{\omega_0}{B} = \frac{R}{\omega_0 L}$$

Lower Half-Power Frequency, ω_1

$$\left[-\frac{1}{2Q} + \sqrt{1 + \frac{1}{4Q^2}} \right] \omega_0$$

$$\left[-\frac{1}{2Q} + \sqrt{1 + \frac{1}{4Q^2}}\right]\omega_0$$

Upper Half-Power Frequency, ω_2

$$\left[\frac{1}{2Q} + \sqrt{1 + \frac{1}{4Q^2}}\right] \omega_0$$

$$\left[\frac{1}{2Q} + \sqrt{1 + \frac{1}{4Q^2}}\right]\omega_0$$

Notes: (1) The expression for Q of the series RLC circuit is the inverse of that for Q of the parallel circuit. (2) For $Q \ge 10$, $\omega_1 \simeq \omega_0 - \frac{B}{2}$, and $\omega_2 \simeq \omega_0 + \frac{B}{2}$. [Source: Berkeley]