Regularization

Week 04 - Day 05

Recap on Linear Models

y = b0 + b1*x1 + ... + bn*xn + error

Linear Models

Overfit or underfit?

Linear models = Simple models

Diele of updorf

Low variance

Risk of underfitting

Linear Models can overfit too!

Too many irrelevant features

Correlated features

Too many irrelevant features

Correlated features

What's the name?

Too many irrelevant features

Correlated features

Multicollinearity!

Solution = Regularization!

Smallest Error

(The answer is simple!)

Name of the process to find the smallest error?

Optimization

Error = SUM((real - predicted)**2)

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Regularization

Optimize error

Optimize error + penalty

(penalty for complexity)

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j \right) \right)^2$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j \right) \right)^2$$

$$\sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j \right) \right)^2 + \lambda_2 \sum_{j=1}^{p} \beta_j^2$$

Penalty

What's the penalty?

Sum of coefficients**2!

(beta1**2 + beta2**2 + beta3**2)

We optimize error+penalty

Everything else remains the same!

	RSS
Model 1	
Model 2	
Model 3	

	RSS
Model 1	100
Model 2	90
Model 3	80

Which one is the best?

	RSS
Model 1	100
Model 2	90
Model 3	80

Which one is the best?

	RSS	Penalty for complexity	Total loss
Model 1	100		
Model 2	90		
Model 3	80		

	RSS	Penalty for complexity	Total loss
Model 1	100	5	105
Model 2	90		
Model 3	80		

	RSS	Penalty for complexity	Total loss
Model 1	100	5	105
Model 2	90	10	100
Model 3	80		

	RSS	Penalty for complexity	Total loss
Model 1	100	5	105
Model 2	90	10	100
Model 3	80	50	130

	RSS	Penalty for complexity	Total loss
Model 1	100	5	105
Model 2	90	10	100
Model 3	80	50	130

Results of Regularization

Smaller coefficients (smaller variance)

Coefficients = 0 (less variables)

Different types of penalty

beta1**2 + beta2**2 + beta3**2

|beta1| + |beta2| + |beta3|

Vs.

Ridge

beta1**2 + beta2**2 + beta3**2

Vs.

|beta1| + |beta2| + |beta3|

Lasso

Ridge = smaller coefficients

Lasso = zeroed coefficients

Parameters Tuning

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
Parameter to tune
$$\sum_{i=1}^{n} (y_i - (\beta_0 + \sum_{j=1}^{p} \beta_j x_j))^2$$

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \sum_{j=1}^{p} \beta_j x_j))^2 + \lambda_2 \sum_{j=1}^{p} \beta_j^2$$

Penalty

Goefficients: Normalized or not?

We don't want to penalise the "scale"

Yes!

Elastic Net

Elastic net = lasso + ridge

Parameter 1 = strength of the penalty

Parameter 2 = more lasso vs. more ridge

Practical advices

Play with parameters tuning!

Try all models!

Sklearn has all these models

Summary

- 3 new models (lasso, ridge, elastic net)
- Fight overfitting + multicollinearity
- Optimize error + penalty
- We need to tune the (hyper)parameters