CSE216 Programming Abstraction

Instructor: Zhoulai Fu

State University of New York, Korea

Agenda

Practice on lambda calculus syntax and semantics

Lambda calculus syntax summary

```
    TERM::= Var  //Variables
    | lambda Var. TERM  // Definition/Abstraction
    | TERM TERM  // Application
```

Var ::= x | y | z ...

Lambda calculus semantics summary

 (λ x.M)N -> M with bound occurrences of x substituted by N

Sometimes written M [x->N]

Something to say later, called "capture-avoiding"

Draw parse trees

λ x. x λ y

Draw parse trees

λ x. λ y. x y λ z. z y

Draw parse trees

λ x. λ y. x y z

beta-reduction

• $(\lambda x.xx)(\lambda y.yx)z$

beta-reduction

• $(\lambda x.xx)(\lambda y.yx)z$

beta-reduction

Someone thinks the lambda expression ((λ x. λ y. y) y) (λ x. x a) reduces to a. Can you spot the issue?