DATA ANALYTICS

Lecture No: 04

Central Tendency and Dispersion

The Empirical Rule... If the histogram is bell shaped

 Approximately 68% of all observations fall within one standard deviation of the mean.

• Approximately 95% of all observations fall within **two** standard deviations of the mean.

 Approximately 99.7% of all observations fall within **three** standard deviations of the mean.

Empirical Rule

• Data are normally distributed (or approximately normal)

Distance from the Mean	Percentage of Values Falling Within Distance			
$\mu \pm 1\sigma$	68			
$\mu \pm 2 \sigma$	95			
$\mu \pm 3 \sigma$	99.7			

- A more general interpretation of the standard deviation is derived from Chebychev's Theorem, which applies to all shapes of histograms (not just the bell shaped).
- The proportion of observations in any sample that lie within \mathbf{k} standard deviations of the mean is at least.

$$1 - \frac{1}{k^2} for k > 1$$

For k=2 (for instance), the theorem states that atleast 34 of all observations lie within 2 standard deviations of the mean. This is a "lower bound" compared to Empirical Rule's approximation (95%)

Coefficient of variation

- Ratio of the standard deviation to the mean, expressed as a percentage
- Measurement of <u>relative</u> dispersion.

Coefficient of Variation =
$$\frac{\sigma}{\mu}$$
 (100)

Coefficient of Variation

$$\mu_{1} = 29$$

$$\sigma_{1} = 4.6$$

$$C.V._{1} = \frac{\sigma_{1}}{\mu_{1}}(100)$$

$$= \frac{4.6}{29}(100)$$

$$= 15.86$$

$$\mu_{2} = 84$$

$$\sigma_{2} = 10$$

$$C.V._{2} = \frac{\sigma_{2}}{\mu_{2}}(100)$$

$$= \frac{10}{84}(100)$$

$$= 11.90$$

Variation and Standard deviation of Grouped Data

Population
$$\sigma^{2} = \frac{\sum f(M - \mu)^{2}}{N}$$

$$\sigma = \sqrt{\sigma^{2}}$$
Sample
$$S^{2} = \frac{\sum f(M - \overline{X})^{2}}{n - 1}$$

$$S = \sqrt{S^{2}}$$

Population Variation and standard deviation of Grouped data (μ = 43)

Class Interval	f	M	fM	M – μ	$(M-\mu)^2$	$f\left(M-\mu\right)^2$	
20-under 30	6	25	150	-18	324	1944	
30-under 40	18	35	630	-8	64	1152	
40-under 50	11	45	495	2	4	44	
50-under 60	11	55	605	12	144	1584	
60-under 70	3	65	195	22	484	1452	
70-under 80	1	75	<u>75</u>	32	1024	<u>1024</u>	
	50		2150			7200	

$$\sigma^{2} = \frac{\sum f(M - \mu)^{2}}{N} = \frac{7200}{50} = 144$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{144} = 12$$

Measures of Shape

- Skewness
 - Absence of Symmetry
 - o Extreme values in one side of a distribution
- Kurtosis
 - Peakness of the distribution
 - **Leptokurtic:** high and thin.
 - Mesokurtic: normal shape
 - **Platykurtic**: flat and spread out.
- Box and whisker plots:
 - Graphic display of a distribution.
 - o Reveals skewness.

SKEWNESS

SKEWNESS..

- The skewness of a distribution is measured by comparing the relative positions of the mean, median, and mode.
- Distribution is *symmetrical*:
 - Mean = Median = Mode
- Distribution is skewed right:
 - Median lies between mode and mean, and mode is less than mean
- Distribution is *skewed left:*
 - Median lies between mode and mean, and mode is greater than mean

SKEWNESS...

Coefficient of Skewness...

Summary measure of the skewness.

$$S = \frac{3(\mu - M_d)}{\sigma}$$

- If S < 0, the distribution is <u>negatively skewed</u> (Skewed to the left)
- If S = 0, the distribution is <u>symmetric</u> (Not skewed)
- If S > 0, the distribution is <u>positively skewed</u> (Skewed to the right)

Coefficient of skewness

$$\mu_{1} = 23 \qquad \mu_{2} = 26 \qquad \mu_{3} = 29$$

$$M_{d_{1}} = 26 \qquad M_{d_{2}} = 26 \qquad M_{d_{3}} = 26$$

$$\sigma_{1} = 12.3 \qquad \sigma_{2} = 12.3 \qquad \sigma_{3} = 12.3$$

$$S_{1} = \frac{3(\mu_{1} - M_{d_{1}})}{\sigma_{1}} \qquad S_{2} = \frac{3(\mu_{2} - M_{d_{2}})}{\sigma_{2}} \qquad S_{3} = \frac{3(\mu_{3} - M_{d_{3}})}{\sigma_{3}}$$

$$= \frac{3(23 - 26)}{12.3} \qquad = \frac{3(26 - 26)}{12.3} \qquad = \frac{3(29 - 26)}{12.3}$$

$$= -0.73 \qquad = 0 \qquad = +0.73$$

KURTOSIS

- Peakedness of the distribution
 - o Leptokurtic: high and thin
 - o Mesokurtic: normal in shape
 - o Platykurtic: flat and spread out.

Box and Whisker Plot

- ☐ Five specific values are used:
 - Median, Q₂
 - First Quartile, Q₁
 - Third Quartile, Q₃
 - Minimum value in the data set.
 - Maximum value in the data set.

Box and Whisker plot

Skewness: Box and whisker plots, and coefficient of skewness

Introduction to Probability – Learning Objectives

- Comprehend the different ways of assigning probability.
- Understand and apply marginal, union, joint and conditional probabilities.
- Solve problems using the laws of probability including the laws of addition, multiplication and conditional probability.
- Revise probabilities using Baye's Rule.

Probability

- Probability is the numerical measure of the likelihood that an event will occur.
- The probability of an event must be in between 0 and 1, inclusively
 - \circ 0 ≤ P(A) ≤ 1 for any event A.
- The sum of the probabilities of all mutually exclusive and collectively exhaustive events is 1
 - \circ P(A) + P(B) + P(C) = 1
 - A, B, and C are mutually exclusive and collectively exhaustive.

Range of Probability

Methods of assigning Probabilities

- Classical method of assigning probability (rules and laws)
- Relative frequency of occurrence (Cumulated historical data)
- Subjective probability (Personal intuition or reasoning)

Classical Probability

- Number of outcomes leading to the event divided by the total number of outcomes possible.
- Each outcome is equally likely.
- Determined a priori before performing the experiments.
- Applicable to game of chance.
- Objective everyone correctly using the method assigns an identical probability.

Classical Probability

$$P(E) = \frac{n_e}{N}$$

Where:

N = total number of outcomes

 n_e = number of outcomes in E

Relative frequency Probability

- Based on historical data.
- Computed after the experiment is performed.
- Number of times an event occurred divided by the number of trials
- Objective everyone correctly using the method assigns an identical probability

Relative frequency Probability

$$P(E) = \frac{n_e}{N}$$

Where:

 $N = \text{total number of trials}$
 $\mathbf{n}_e = \text{number of outcomes}$

producing E

Subjective Probability

- Comes from a person intuition or reasoning.
- Subjective different individual may (correctly) assign different numeric probabilities to the same event.
- Degree of belief
- Useful for unique (single-trial) experiments.
 - New product Introduction.
 - Initial public offering of common stock
 - Site selection decisions.
 - Sporting events.

Probability Terminology

- Experiments.
- Events
- Elementary events
- Sample space
- Unions and intersections.
- Mutually exclusive events
- Independent events
- Collectively exhaustive events
- Complementary events.