

Bachelorarbeit

Tobias Wulf

Winkelmessung durch magnetische Sensor-Arrays und Toleranzkompensation mittels Gauß-Prozess

Tobias Wulf

Winkelmessung durch magnetische Sensor-Arrays und Toleranzkompensation mittels Gauß-Prozess

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung im Studiengang Bachelor of Science Elektro- und Informationstechnik am Department Informations- und Elektrotechnik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Karl-Ragmar Riemschneider

Zweitgutachter: Prof. Dr. Klaus Jünemann

Eingereicht am: TT. Monat Jahr

Tobias Wulf

Thema der Arbeit

Winkelmessung durch magnetische Sensor-Arrays und Toleranzkompensation mittels Gauß-Prozess

Stichworte

Sensor-Array Simulation, Dipol, Magnetfeld, Kugelmagnetapproximation, TMR, TDK TAS2141, AMR, NXP KMZ60, Toleranzkompensation, Gauß-Prozess, Kovarianzmatrix, Regression, Winkelvorhersage

Kurzzusammenfassung

. . .

Tobias Wulf

Title of Thesis

Angular Measurement by Magnetic Sensor Arrays and Tolerance Compensation by Gaussian Process

Keywords

Sensor Array Simulation, Dipole, Magnetic Field, Sperical Magnet Approximation, TMR, TDK TAS2141, AMR, NXP KMZ60, Tolerance Compensation, Gaussian Process, Covariance Matrix, Regression, Angular Prediction

Abstract

. . .

Inhaltsverzeichnis

1	Mo	tivation 0.0.1 17.02.2021	1
	1.1	Stand der Vorarbeiten 0.0.1 19.02.2021	2
	1.2	Zielstellung 0.0.1 19.02.2021	6
2	Gru	ındlagen 0.0.2 19.02.2021	7
	2.1	Magnetische Sensorentypen und mechatronische Anwendung	7
	2.2	Kennfeldmethode zur Charakterisierung von Sensoren	7
	2.3	Prinzip des Sensor-Arrays	8
	2.4	Sensor-Array-Simulation über Dipol-Feldgleichung	8
	2.5	Gauß-Prozesse für Regressionsverfahren	8
3	Soft	tware-Entwicklung für Optimierungsexperimente 0.0.2 19.02.2021	9
	3.1	Aufgabe und Funktionen der Software	9
	3.2	Aufbau und Vorgehen	9
	3.3	Sensor-Array-Simulation	10
	3.4	Gauß-Prozess-Regression	10
4	Erp	robungs- und Optimierungsexperimente 0.0.1 13.01.2021	11
	4.1	Festlegung des Startpunktes	11
	4.2	Festlegung des Verfahrweges ohne Verkippung	12
	4.3	Simulationsdurchführung	12
5	Aus	swertung 0.0.1 13.01.2021	13
	5.1	Gegenüberstellung der GPR-Modelle	13
6	Zus	ammenfassung und Bewertung 0.0.1 13.01.2021	14
A	bbild	lungsverzeichnis	15
\mathbf{T}_{i}	hall	pnyorzajehnis	16

Inhaltsverzeichnis

Glossar	17
Abkürzungen	18
Literatur	19
Anhang	20
A Genutzte Software 0.0.3 08.01.2021	21
B Software-Dokumentation 0.0.4 13.01.2021	22
Selbstständigkeitserklärung	23

1 Motivation 0.0.1 17.02.2021

Magnetische Sensoren erlauben die berührungslose Erfassung von Drehzahlen und Winkelinformationen. In modernen Automobilen werden sie unter anderem in der Motorelektronik und im Bremssystem eingesetzt. Neuentwicklungen in der Halbleitertechnik, auf Basis des TMR-Effekts, ermöglichen den Aufbau komplexerer Sensorstrukturen [7]. Die Arbeitsgruppe Sensorik an der HAW Hamburg erforscht moderne Ansätze der Signalverarbeitung für neugewonnene Sensorstrukturen, verwirklicht als magnetische Sensor-Arrays. Durch den Aufbau von Sensoren als Arrays, bieten sich Möglichkeiten zur Nutzung von Algorithmen und Regressionsverfahren an, die eine Kompensation und Detektion von mechanische Toleranzen zulassen [10].

Das Verarbeiten einer Vielzahl an Messwerten, bedingt durch Sensor-Array-Strukturen, ist hierbei eine der Herausforderungen die es zu bewältigen gilt. Mit Hilfe moderner Algorithmen, die Ansätze des maschinellen Lernens beinhalten, ergeben sich weitere Problemstellungen in Bezug auf Modellabbildung- und Optimierung. Das übergeordnete Ziel bei der Lösung und Bewältigung der einzelnen Etappen ist die Verbesserung der Messgenauigkeit, indem individuelle Abweichungen des Sensors einem geeigneten Modell antrainiert und Modellparameter optimiert werden.

Moderne Regressionsverfahren liefern dabei statistische Ansätze um geeignete Qualitätskriterien zu bilden und somit trainierte Modelle und ihre Messwertgenauigkeit bewerten zu können, sodass eine Erprobung und Bewertung der erstellten Modelle, mit Toleranz-Abweichungen in den Eingangsdaten, während einer Arbeitsphase untersucht werden können. Diese Arbeit konzentriert dabei auf die simulative Abbildung eines Tunnel-Magnetoresistance (TMR)-Sensormodells für die Drehwinkelerfassung.

1.1 Stand der Vorarbeiten 0.0.1 19.02.2021

Einleitend findet, zur Erörterung der Ziele und Inhalte dieser Arbeit, eine kurze Zusammenfassung der Vorarbeiten statt. Für den Inhalt relevante Aspekte der Vorarbeiten werden im Kapitel 2 näher beleuchtet und erklärt.

Aktuell steht kein magnetisches TMR-Sensor-Array als eigenständiges Integrated-Circuit (IC) zur Verfügung. Im Zuge des Forschungsprojekts Signalverarbeitung für Integrated-Sensor-Array (ISAR) sind in der Arbeitsgruppe Sensorik Machbarkeitsstudien [6][9] erbracht worden, die generelle Funktionalitäten und die technische Umsetzung eines magnetischen Sensor-Arrays im Maßstab 1:25 zeigen.

Platinen-Sensor-Array

So ist als erster Ansatz, das in Abbildung 1.1 zu sehende Platinen-Sensor-Array entwickelt worden. Für den Aufbau des Platinen-Sensor-Arrays sind einzelne Winkelsensoren in Sensorbänken angeordnet. Die Messwerterfassung erfolgt über ein Hyperplexing-Verfahren. Eine Steuerung des Hyperplexings und die weitere Messwertverarbeitung erfolgt mit Hilfe eines Mikrocontrollers.

Abbildung 1.1: Platinen-Sensor-Array im Maßstab 1:25 aufgebaut als 8×8 Sensor-Array, dass als Aufsteckmodul für eine Mikrocontroller getriebene Signalverarbeitung bereitsteht [6]. Die einzelnen Sensoren sind in Sensorbänken angeordnet. Die Anordnung erfolgt in eine linke und rechte Sensorbank pro Reihe auf der Platine. Eine Sensorbank besteht jeweils aus einem Multiplexer-IC und vier daneben liegenden Sensor-ICs.

Diese Herangehensweise lässt eine Untersuchung der technischen Machbarkeit auf der Basis von heute zur Verfügung stehenden Technologien und Winkelsensoren zu. So ist das Platinen-Sensor-Array in verschieden Versionen, mit Anisotrope-Magnetoresistance (AMR)-Sensoren der Firma NXP Semiconductors (KMZ60) [3] und TMR-Sensoren der Firma TDK (TAS2141-AAAB) [4] verwirklicht worden. Das Maßstabsmodell des magnetischen Sensor-Arrays kann zu Vergleichs- und weiteren Erprobungsarbeiten genutzt werden, die z.B. Erkenntnisse aus Simulationen und Hardware-Optimierungsarbeiten einbinden.

Simulationsmodell des Sensor-Arrays

Einen weiteren Ansatz, der durch die Arbeitsgruppe Sensorik verfolgt wird, ist die Entwicklung eines Simulationsmodells auf Grundlage von Charakterisierungsdatensätzen. Hierfür wird ein einzelnes Sensor-IC, z.B. der TMR-Sensor TAS2141-AAAB der Firma TDK, nach einer bestimmten Kennfeldmethode [7] charakterisiert. Der so gewonnene Datensatz kann dann, durch geeignete Interpolationsverfahren, in einer Simulation zur Generierung eines magnetischen Sensor-Arrays genutzt werden. In Abbildung 1.2 ist das Kernprinzip des Simulationsansatzes vereinfacht dargestellt. Es wird ein Simulationsmodell aufgebaut, dass Charakterisierungsdatensätze verarbeiten kann und entsprechende Charakteristiken eines einzelnen Sensor-ICs zu einem Sensor-Array interpoliert. Abhängig von weiteren gewählten Eigenschaften des Sensor-Arrays, wie geometrische Anordnung und Größe, produziert das interpolierte Modell Simulationsdatensätze, die das Verhalten des einzelner Sensor-ICs ortsabhängig im Sensor-Array abbilden.

Der Simulationsansatz besitzt ebenfalls den Vorteil Modelle aufzubauen, die sich auf heute zur Verfügung stehenden Technologien beziehen. Weitere Vorteile sind die Manipulationsfähigkeit der Sensor-Array-Geometrie und -Größe. So bieten sich Möglichkeiten magnetische Sensor-Arrays in verschieden Maßstäben und geometrischen Formen zu simulieren. Des weiteren können verschiedene Anwendungsszenarien simuliert werden. Eine Problemstellung die sich dabei ergibt, ist die physikalisch sinnvolle Stimulanz des Simulationsmodell. Für das Platinen-Sensor-Array ist im trivialen Anwendungsfall die Stimulanz ein simpler Permanentmagnet. In der Simulation muss eine entsprechende Stimulierung des Sensor-Arrays über magnetische Feldgleichungen gelöst werden [5][7], wobei weitere Problemstellungen zur richtigen Dimensionierung oder Approximation des zu simulierenden Magnetfeldes auftreten.

Abbildung 1.2: Ansatzdarstellung zur Generierung eines Simulationsmodell des magnetischen Sensor-Arrays. Sensor spezifische Charakteristiken (Kennfelder) werden in einem Charakterisierungsdatensatz gespeichert und im Anschluss das Verhalten des Einzelexemplars zu einem Sensor-Array interpoliert. Die Simulation des interpolierten Sensor-Arrays erzeugt eine höhere Abstraktionsebene, deren Ergebnisse wiederum in Simulationsdatensätze gespeichert sind und zur weiteren Analyse und Evaluierung genutzt werden können. Die Abstraktion der Kennfelder soll hier das Prinzip des Simulationsansatzes veranschaulichen. Im Simulationsmodell werden keine Arrays von Kennfeldern aufgebaut, sondern Charakteristiken des einzelnen Kennfeldes entnommen und interpoliert. Die grau unterlegten Abschnitte kennzeichnen Verfahrensschritte, in denen Datensätze zur Verfügung stehen oder erzeugt werden.

Das Sensor-Array-Modell, ob als Platinen-Modell oder Simulationsmodell, repräsentiert im Kontext nur die erste Hälfte eines modernen, vollwertigen Sensor-ICs. Seine Aufgabe besteht darin eine physikalische Anregung (Magnetfeld) in elektrische, analoge Signale umzuwandeln. Dieser Teil eines Sensor-ICs wird zumeist als Sensorkopf bezeichnet, da eine sinnbildliche darunter liegende Einheit die weitere Signalverarbeitung und -Auswertung übernimmt. Es handelt sich dabei um eine anwendungsspezifische integrierte Schaltung, engl. Application-Specific-Integrated-Circuit (ASIC). Beide Teile zusammen, der Sensorkopf und das Signalverarbeitungs-ASIC, bilden ein vollständiges Sensor-IC mit der Fähigkeit zur modernen Signalverarbeitung. Unterstützend zeigt Abbildung 1.3 die allgemeine Aufbaubeschreibung eines Sensor-IC und Unterteilung in Sensorkopf und ASIC, respektive Signalerzeugung und Signalverarbeitung.

Abbildung 1.3: Veranschaulichung eines vollständigen Sensor-ICs für die Drehwinkelerfassung. Stark vereinfachte Darstellung eines Sensor-IC bestehend aus einem Sensorkopf und ASIC. Zu sehen sind die übergeordneten Aufgaben von Sensorkopf und ASIC. Der Sensorkopf erfasst die physikalische Stimulanz (hier Kugelmagnetfeld) und setzt diese in analoge Signale um. Eine anschließende Signalverarbeitung findet im ASIC statt, der die elektrischen Signal zur entsprechender Winkelausgabe abstrahiert. Dargestellt ist die Signalerzeugung eines einzelnen Punktes auf dem magnetischen Sensor-Arrays.

ASIC - Konzeptionierung der Kernfunktionalität

Derzeitig befinden sich die Forschungsprojektarbeiten für einen tauglichen ASIC in der Konzeptionsphase. Die Kernfunktionalität eines ASIC-Designs wird durch ein mathematisches Modell oder Verfahren abgebildet, dass in der Lage ist vom Sensorkopf erzeugte Messwerte adäquat und ausreichend schnell zu verarbeiten. Dabei muss ein solches Modell oder Verfahren grundlegende Eigenschaften des physikalischen Gesamtsystems in sich vereinigen und diese repräsentativ in den Gesamtkontext der Applikation setzen können. Im Kontext dieser Arbeit ist die Sensorapplikation, durch die Drehwinkelerfassung einer kreisförmigen Sensoranregung dargestellt, wie es in Abbildung 1.3 angedeutet ist.

Erfolgte Vorarbeiten der Arbeitsgruppe Sensorik für ein ASIC-Design, umfassen die Entwicklung eines mathematischen Modells und erste theoretische Simulationen [7][10]. Die Simulation bindet dabei Datensätze ein, die durch das Sensor-Array-Simulationsmodell erzeugt werden. Das mathematische Modell der ASIC-Kernfunktionalität ist auf Grundlage von Gauß-Prozessen für Regressionsverfahren entwickelt [1] worden. Die bisherigen Simulationsarbeiten beschränken sich auf mathematische Simulationen, die auf eine Gültigkeitsprüfung des mathematischen ASIC-Modells abzielen und Ansätze zur Modellqualifizierung und Qualitätskriterien für die Signalverarbeitung mit beinhalten.

1.2 Zielstellung 0.0.1 19.02.2021

- Bezug zu Vorarbeiten
- Verfeinerung des Simulationsmodell des magnetischen Sensor-Arrays
- Skalierung des approximierten Kugelmagnetanregungsfeldes
- Optimierung des mathematischen Model für die ASIC-Kernfunktionalität
- Aufschlüsselung der Modellparameter
- Überführung von Skript basierten Entwürfen in Funktionsmodule
- Modularer Modellaufbau, der Modulerweiterungen zulässt

2 Grundlagen 0.0.2 19.02.2021

- Einleitung Aufgabenfeld
- Einheitskreis
- Bezug zur Drehwinkelerfassung und Sensorapplikation

2.1 Magnetische Sensorentypen und mechatronische Anwendung

- Die Technologie mit der ein Sensorkopf realisiert ist, klassifiziert in der Regel die Sensorbezeichnung. Anhänge in der Bezeichnung wie AMR oder TMR, geben somit Auskunft darüber welche Technologie für die Realisierung des Sensorkopfes die Grundlage bildet.
- Anwendungsfall Winkelmessung
- Aufbau Sensorbrücke TMR (Umriss aus Datenblatt)
- Ausblick TMR Drehzahlmessung und Strommessung

2.2 Kennfeldmethode zur Charakterisierung von Sensoren

- Überleitung von Sensorbrückenschaltung
- Messprinzip für das Erstellen der Sensorbrücken-Kennfelder
- Festlegung von Arbeitsbereich (Plateau TMR), Sättigung (KMZ60)
- Dimensionierung des Stimulus, Dipole Anregung

2.3 Prinzip des Sensor-Arrays

- geometrischer Aufbau
- Brückenausgangsspannungen
- Resultierende Array-Datenformate und Darstellung der Sinoiden

2.4 Sensor-Array-Simulation über Dipol-Feldgleichung

- Erzeugen des Meshgrids
- Normieren des Magnetfeldes
- Erzeugen von Rotationsmomenten (inkl. Verkippung)
- Referenzierung zu Kennfeldern und Gewinnung der Brückenspannungen (interp2 nearest neighbor)

2.5 Gauß-Prozesse für Regressionsverfahren

- Erläuterung des Regressionsverfahren im allg.
- Bedeutung und Kriterien der Kovarianzfunktion, Spiegel der Applikation
- Herleitung der Quadratischen Frobenius Kovarianzfunktion mit Bezug zum Einheitskreis
- Möglichkeiten zur Mittelwertschätzung und -Korrektur
- Optimierungskriterien in der Trainingsphase
- Qualitätskriterien in der Arbeitsphase

3 Software-Entwicklung für Optimierungsexperimente 0.0.2 19.02.2021

3.1 Aufgabe und Funktionen der Software

- Identifizierung der Grundfunktionen
- Datengenerierung
- Datenanalyse
- Sonderfunktion
- Darstellungs- und Plot-Funktionen

Die Software-Entwicklung erfolgt unter dem Gesichtspunkt zur Durchführung von Versuchsreihen zu Parameterfindung und teilweise auf Zwischenergebnissen basieren. Gut strukturierte Archivierung von Ergebnisse. Graphische Unterstützung von Auswertung.

3.2 Aufbau und Vorgehen

- Skriptbasierte Entwurfsarbeit
- Überführen in modularen Aufbau von Kernfunktion
- Parametrierte Steuerung der Software über Zentrale Konfigurierung
- Ausführbare Skripte (Einbindung von Modulen und nutzen der Konfigurierung)
- \bullet Speicherung von Ergebnissen in Datensätzen

• Versionierung der Arbeitsschritte

3.3 Sensor-Array-Simulation

- Zuordnung Datengenerierung
- Nutzung von vorarbeiten
- Darstellung des Modul-Funktionsablaufdiagramm
- Darstellung des Algorithmus für die Simulation mehrere Positionen
- Nutzung des Moduls für eingestellte Konfigurierung

3.4 Gauß-Prozess-Regression

- Zuordnung Datenanalyse
- Nutzung von Vorarbeiten
- Darstellung des Modul-Funktionsablaufdiagramm
- Aufbau der Modell-Engine und Schnittstellen für neue Kovarianzfunktionen
- Darstellung der einzelnen Optimierungsverfahren und Aufzeigen der Unterschiede im vorgehen
- Nutzung des Moduls für eingestellte Konfigurierung

4 Erprobungs- und Optimierungsexperimente 0.0.1 13.01.2021

- Klassifizierung (Diagnose)
- Stabilitätskriterium
- Fehlererkennung Max. Mittelwert, Qualitätsmaß
- Allg. Vorgehen "Batch-Job"
- Konfigurierung der Simulationssoftware

4.1 Festlegung des Startpunktes

- Startpunkt, 1. Position gleich Anlernpunkt für Trainingsphase
- Auswahl des Senortyps
- Konfigurierung des Magneten
- Auswahl des GPR-Modells nach Optimierung
- Konfigurierung des GPR-Modells mit ermittelten Parametern

4.2 Festlegung des Verfahrweges ohne Verkippung

- Vorbetrachtung des Magnetsfeldes
- Aufteilung in Sektoren
- Abfahren in Z-Richtung ohne Versatz
- Festlegen des X-Y-Versatzes, Symmetrie-Sektor

4.3 Simulationsdurchführung

- Festhalten der Ergebnisse
- Position, Winkelfehler (Max, Mittel), Qualitätsmaß (Max, Mittel)
- Drift-Darstellung

5 Auswertung 0.0.1 13.01.2021

5.1 Gegenüberstellung der GPR-Modelle

- Aufwand der Trainingsphase
- Nötige Parameter und zu Speichernde Werte
- Arbeitsphase, Genauigkeit, Fehlererkennung, Stabilität

6 Zusammenfassung und Bewertung 0.0.1 13.01.2021

- Kurzdarstellung der Ergebnisse der Arbeit
- Offene Punkte und Probleme
- Ansätze zur Weiterführung für zukünftige Arbeiten
- Bewertung der Ergebnisse in Bezug auf die Anwendung

Abbildungsverzeichnis

1.1	Platinen-Sensor-Array im Maßstab 1:25	2
1.2	Ansatzdarstellung zur Generierung eines Simulationsmodell des magneti-	
	schen Sensor-Arrays	4
1.3	Veranschaulichung eines vollständigen Sensor-ICs für die Drehwinkelerfas-	
	sung	5

Tabellenverzeichnis

A.1	Genutzte Software																	2	1

Glossar

Arbeitsgruppe Sensorik Die Arbeitsgruppe Sensorik steht unter Leitung von Prof. Dr.Ing. Karl-Ragmar Riemschneider und ist unter dem Department Informations- und
Elektrotechnik Teil der Fakultät Technik un Informatik an der HAW Hambug.

HAW Hamburg Die HAW Hamburg ist die Hochschule für Angewandte Wissenschaften in Hamburg und war die ehemalige Fachhochschule am Berliner Tor.

TMR-Effekt Tunnel Magnetoresistiver-Effekt.

Abkürzungen

AMR Anisotrope-Magnetoresistance.

 ${\bf ASIC} \ \ {\bf Application\text{-}Specific\text{-}Integrated\text{-}Circuit.}$

CPU Prozessorkern.

 ${f HDD}$ Festplattenlaufwerk.

IC Integrated-Circuit.

ISAR Integrated-Sensor-Array.

OS Betriebssystem.

RAM Arbeitsspeicher.

SW Software.

 $\label{temporal_def} \textbf{TMR} \ \ \text{Tunnel-Magnetoresistance}.$

Literatur

- [1] C. E. Rasmussen und C. K. I. Williams. *Gaussian Processes for Machine Learning*. MIT Press, 2006. ISBN: 026218253X. URL: www.gaussianprocess.org/gpml (besucht am 30.10.2020).
- [2] R. Johnson. *MATLAB Style Guidlines 2.0*. Version 2. MATLAB Central File Exchange, 2014. URL: https://de.mathworks.com/matlabcentral/fileexchange/46056-matlab-style-guidelines-2-0 (besucht am 21.09.2020). Online.
- [3] NXP Semiconductors. KMZ60 Angle sensor with integrated amplifier. Datenblatt, 2014.
- [4] TDK. TMR Angle Sensor TAS2141-AAAB. Datenblatt, 2016.
- [5] H. Pape. "Simulation und Auswertung von Permanentmagneten für manetoresistive Sensor-Arrays". Bachelorarbeit HAW Hamburg, 2017.
- [6] T. Mehm. "Schaltungsentwurf und Mikrocontrollersteuerung für ein Tunnel-Magnetoresistives Sensor-Array". Bachelorarbeit HAW Hamburg, 2019.
- [7] T. Schüthe, A. Albounyan und K. Riemschneider. "Two-Dimensional Characterization and Simplified Simulation Procedure for Tunnel Magnetoresistive Angle Sensors". In: Sensors Applications Symposium (SAS). (13. März 2019). IEEE, 2019. DOI: 10.1109/SAS.2019.8706125. URL: https://ieeexplore.ieee.org/document/8706125 (besucht am 05.10.2020). Online.
- [8] Bitbucket. Feature Branch Workflow in Git. Hrsg. von ATLASSIAN. 2020. URL: https://www.atlassian.com/de/git/tutorials/comparing-workflows/feature-branch-workflow (besucht am 10.09.2020). Online.
- [9] J. Ernsting. "Funktionsdemonstrator fürmagnetische Sensor-Arrays aufBasis des MikrocomputersRaspberry PI". Bahchelorarbeit HAW Hamburg, 2020.

[10] T. Schüthe u. a. "Positionserfassung mittels Sensor-Array aus Tunnel-Magnetoresistiven Vortex-Dots und lernender Signalverarbeitung". In: *Tille T. (eds) Automobil-Sensorik*3. Springer Vieweg, Berlin, Heidelberg, 2020. ISBN: 978-3-662-61259-0. URL: https://doi.org/10.1007/978-3-662-61260-6_14.

A Genutzte Software 0.0.3 08.01.2021

Für die Nachvollziehbarkeit der getätigten Entwicklungsarbeiten und die Erstellung der Bachelor-Thesis, ist das dafür jeweilige Betriebssystem (OS) und die verwendete Software (SW) tabellarisch aufgeführt. Es finden sich genutzte Versionen der SW und Angaben zur Minimalanforderung für deren Nutzung. Die Anforderungen sind für Prozessorkern (CPU), Arbeitsspeicher (RAM), Festplattenlaufwerk (HDD) näher aufgeschlüsselt. Die Programmierarbeiten mit MATLAB sind jeweils mit Windows und Linux geschrieben bzw. getestet worden.

Software	Verwendungszweck (Typ)	MinAnforderung	Version	Erscheinungstag
Ubunut Budgie	Linux-Betriebssystem	2 GHz Dual-Core-CPU	18.04 LTS	26.04.2018
	(Laptop OS)	4 GB RAM		
		25 GB freier HDD-Speicher		
Windows 10 Enterprise	Windows-Betriebssystem	1 GHz Core-CPU	1909	12.11.2020
	(Laptop OS)	1 GB RAM		
		32 GB freier HDD-Speicher		
MATLAB	Simulationssoftware	Intel/ AMD x86-64 CPU	2020b	17.09.2020
	(Multi-Paradigmen Programmier-	4 GB RAM		
	Sprache, IDE)	3.5 GB freier HDD-Speicher		
Git	Versionierung	-	2.29	29.10.2020
	(Kommandozeilenprogramm)	-		
		-		
Inkscape	Vektorgrafikzeichenprogramm	1 GHz CPU	0.92.3	11.03.2018
	(Grafikaufbereitung)	256 MB RAM		
		302 MB freier HDD-Speicher		
Texstudio	Textbearbeitung f. LaTeX	-	2.12.6	25.07.2020
	Dokumente (Editor)	_		
		24.7 MB freier HDD Speicher		
wkhtmltopdf	HTML- zu Pdf-Konvertierung	-	0.12.6	11.06.2020
		-		
		-		
JabRef	Literaturverwaltungsprogramm	-	5.1	30.08.2020
	f.BibLaTeX (Editor)	-		
		-		

Tabelle A.1: Genutzte Software zur Erstellung der Thesis und Dokumentation der Ergebnisse, Entwicklungsumgebung für die geschriebene Simulationssoftware zur Generierung und Auswertung der Sensor-Array-Simulation.

B Software-Dokumentation 0.0.4 13.01.2021

Die Software-Dokumentation ist automatisiert mit MATLAB-Skripten erstellt worden. Es ist dafür ein zweistufiger Prozess implementiert, der im ersten Schritt eine in MATLAB integrierte HTML-Dokumentation erstellt und im Anschluss diese zu eigenständigen PDF-Dateien exportiert. Als letzter Schritt sind diese zu einem LaTeX-Manual zusammengefasst im Anhang eingebunden. Mit diesem Verfahren ist es möglich, eine Dokumentation direkt aus geschriebenen M-Dateien zu generieren. Allerdings ist es dafür nötig, eine spezielle Formatierung und einen gewissen Programmierstil einzuhalten [2]. Die Dokumentation enthält neben dem erstellten Quellcode eine Reihe von Arbeitsanweisungen, wie mit der Software umzugehen ist. Zusätzlich sind Beschreibungen für die Erstellung und Pflege des Software-Projektes mit beigefügt. Die geschriebene Software ist mithilfe des Software-Versionierungsprogramms Git erstellt worden, was eine genaue Nachvollziehbarkeit in Bezug auf die einzelnen Arbeitsschritte ermöglicht. Zur Versionierung ist der Git-Feature-Branch-Workflow [8] angewandt worden. Aus stilistischen Gründen ist die gesamte Software-Dokumentation in Englisch verfasst.

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Hiermit versichere ich, dass ich die vorliegene	de Arbeit ohne fremde Hilfe selbständig
verfasst und nur die angegebenen Hilfsmittel	benutzt habe. Wörtlich oder dem Sinn
nach aus anderen Werken entnommene Stellen	sind unter Angabe der Quellen kenntlich
gemacht.	
Ort Datum	Unterschrift im Original