425 Applied 3D Algebra

HW₃

Joey Domino

1.

<u>a.</u> We are finding an arbitrary axis rotation. We are rotating left around the up axis by pi/5. This means our rotation, or theta, will be negative.

Find new forward vector r^

R =
$$(-3, 3, 2)$$
 <- forward vector
V = $(9, 13, -6)$ <- up vector
 θ = -PI/5 <- negative rotation

First, normalize forward vector

Applying Rodriguez formula

$$R_{\hat{\mathbf{r}},\theta}(\mathbf{v}) = \mathbf{v}\cos\theta + [1-\cos\theta](\mathbf{v}\cdot\hat{\mathbf{r}}) \hat{\mathbf{r}} + [\hat{\mathbf{r}}\times\mathbf{v}]\sin\theta$$

Don't forget to set your calculator to rad!

$$\begin{aligned} \cos\theta &= 0.809 \\ 1 - \cos\theta &= 0.191 \\ \sin\theta &= -0.5878 \\ v.\text{dot}(r^{\wedge}) &= (9^* - 0.6396) + (13^* 0.6396) + (-6^* 0.4264) \\ &= -5.7564 + 8.3148 - 2.5584 \\ &= 0 \\ (1-\cos\theta)(v.\text{dot}(r^{\wedge}) &= 0 \\ r^{\wedge}.\text{cross}(v) &= ((0.6396^* -6 - 0.4264^* 13), (0.4264^* 9 - -0.6396^* -6), \\ &(-0.6396^* 13 - 0.6396^* 9)) \end{aligned}$$

$$= (-3.8376 - 5.5432), (3.8376 - 3.8376), (-8.3148 - 5.7564) \\ &= (-9.3808, 0, -14.0712) \end{aligned}$$

Now let's break the equation into its pieces

$$v(\cos \theta) = (9*0.809, 13*0.809, -6*0.809)$$

= (7.281, 10.517, -4.854)

This is multiplying by 0, so we get an empty vector

$$(1-\cos\theta)(v.dot(r^{\wedge}))r^{\wedge} = (0, 0, 0)$$

$$r^{coss}(v)(sin\theta) = (-9.3808 * -0.5878, 0 * -0.5878, -14.0712 * -0.5878)$$

= (5.514, 0, 8.2711)

Now lets put it together

$$Rr^{+}$$
, theta(v) = (7.281, 10.517, -4.854) + (0, 0, 0) + (5.514, 0, 8.2711)
= (1.767, 10.517, 3.4171)

We can check if this is right by getting the inverse rotation. This should be equal to the negative version of our solution.

OR we can set R $^{^{\prime}}$ to any of the base axes to find that is equals the previous matrix $r^{^{\prime}}(x,theta)$, $r^{^{\prime}}(y,theta)$, $r^{^{\prime}}(z,theta)$

I'll do this later if I have time.

b.

To find the left axis, we must find the cross product of v and r

```
R = (-3, 3, 2) <- forward vector

V = (9, 13, -6) <- up vector

left axis (newR) = v x r

= ((13*2 - -6*3), (-6*-3 - 9*2), (9*3 - 13*-3))

newR = (44, 0, 66) <- forward vector

R = (44, 0, 66) <- forward vector

V = (9, 13, -6) <- up vector

\theta = PI/8 <- positive rotation

First, normalize forward vector

|r| = sqrt(1936 + 0 + 4356)

|r| = 79.322

r^ = r/|r|
```

= (44/79.322, 0, 66/79.322)

= (0.5547, 0, 0.8321)

Applying Rodriguez formula

$$R_{\hat{\mathbf{r}},\theta}(\mathbf{v}) = \mathbf{v}\cos\theta + [1-\cos\theta](\mathbf{v}\cdot\hat{\mathbf{r}})\hat{\mathbf{r}} + [\hat{\mathbf{r}}\times\mathbf{v}]\sin\theta$$

Don't forget to set your calculator to rad!

$$\begin{aligned} \cos\theta &= 0.9240 \\ 1 - \cos\theta &= 0.0760 \\ \sin\theta &= 0.3825 \\ v.\text{dot}(r^{\mbox{$^{\circ}$}}) = (9^{\mbox{$^{\circ}$}}0.5547) + (13^{\mbox{$^{\circ}$}}0) + (-6^{\mbox{$^{\circ}$}}0.8321) \\ &= 4.9923 + 0 - 4.9926 \\ &= -.0003 \\ (1-\cos\theta)(v.\text{dot}(r^{\mbox{$^{\circ}$}}) = .0000228 \text{ (I stop at 4 decimal places. This is 0)} \\ &= 0 \\ r^{\mbox{$^{\circ}$}}.cross(v) = ((0^{\mbox{$^{\circ}$}} - 6 - 0.8321^{\mbox{$^{\circ}$}}13), -(0.5547^{\mbox{$^{\circ}$}} - 6 - 0.8321^{\mbox{$^{\circ}$}}9), \\ &(0.5547^{\mbox{$^{\circ}$}}13 - 0^{\mbox{$^{\circ}$}}9)) \\ &= (-10.8173), -(3.3282 - 7.4889), (7.2111) \\ &= (-10.8173, 10.8171, 7.2111) \end{aligned}$$

Now let's break the equation into its pieces

$$v(\cos \theta) = (9*0.9240, 13*0.9240, -6*0.9240)$$

= (8.316, 12.012, -5.544)

This is multiplying by 0, so we get an empty vector $(1-\cos\theta)(v.dot(r^{\lambda}))r^{\lambda} = (0, 0, 0)$

$$r^{coss}(v)(sin\theta) = (-10.8173 * 0.3825, 10.8171 * 0.3825, 7.2111 * 0.3825)$$

= (-4.1376, 4.1375, 2.7582)

Now lets put it together

$$Rr^{+}$$
, theta(v) = (8.316, 12.012, -5.544) + (0, 0, 0) + (-4.1376, 4.1375, 2.7582)
= (4.1784, 16.1495, 2.7858)

We can check if this is right by getting the inverse rotation. This should be equal to the negative version of our solution.

OR we can set R $^$ to any of the base axes to find that is equals the previous matrix $r^(x,theta)$, $r^(y,theta)$, $r^(z,theta)$ I'll do this later if I have time.

2.

a.

Spawn 6 enemies on the ground (y=0) evenly distributed around a circle of 11 radius centered on the player. First enemy spawns in front of player

Player position = (-4, 0, 3)Player facing = (4, 0, 5)

We need to do 3 things to fully complete this task

We want 6 enemies spawned evenly around the player, that means we need

Lets first get the vector from the player to the looking point

With our vector found, lets translate this in a matrix

$$P'=TtP = \begin{pmatrix} 1 & 0 & 0 & 8 & -4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

```
4
0
5
1
```

Now lets normalize this translated vector

```
Sqrt(16 + 25)
6.4031
V^ = 4/6.4031, 0, 5/6.4031
V^ = .6247, 0, .7809
```

Now let's find the first enemy spawn by multiplying the normalized vector by the radius

```
Enemy1 = (11*.6247, 0, 11*.7809)
= (6.8717, 0, 8.5899)
```

Now let's find the vector from the player to the new enemy

```
PE = (6.8717+4, 0, 8.5899-3)
PE = (10.8717, 0, 5.5899)
```

This will act as our baseline for all other enemy spawns

From here we can divide up the circle around the player and move to each spot to place a new enemy by rotating about the y axis. This will evenly distribute the remaining 5 enemies around the player

We will use the same θ and the newest created enemy to process the next spawn to save on processing time

Enemy2

```
\theta = 1pi/3 = 1.0472

cos(\theta) = 0.5

sin(\theta) = 0.866
```

$$Ry \theta = \begin{pmatrix} 0.5 & 0 & 0.866 & 0 \\ 0 & 1 & 0 & 0 \\ -0.866 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 10.8717 \\ 0 \\ 5.5899 \\ 0 \end{pmatrix}$$

Enemy2 = (10.2767, 0, -6.6202, 0)

Enemy3

$$\theta = 1pi/3 = 1.0472$$

 $cos(\theta) = 0.5$
 $sin(\theta) = 0.866$

$$Ry \theta = \begin{pmatrix} 0.5 & 0 & 0.866 & 0 \\ 0 & 1 & 0 & 0 \\ -0.866 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 10.2767 \\ 0 \\ -6.6202 \\ 0 \end{pmatrix}$$

Enemy3 = (-0.5949, 0, -12.21, 0)

Enemy4

$$\theta = 1pi/3 = 1.0472$$

 $cos(\theta) = 0.5$
 $sin(\theta) = 0.866$

Ry
$$\theta = \begin{pmatrix} 0.5 & 0 & 0.866 & 0 \\ 0 & 1 & 0 & 0 \\ -0.866 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -0.5949 \\ 0 \\ -12.21 \\ 0 \end{pmatrix}$$

Enemy4 = (-10.872, 0, -5.5898, 0)

Enemy5

$$\theta = 1pi/3 = 1.0472$$

 $cos(\theta) = 0.5$
 $sin(\theta) = 0.866$

$$Ry \theta = \begin{pmatrix} 0.5 & 0 & 0.866 & 0 \\ 0 & 1 & 0 & 0 \\ -0.866 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -10.872 \\ 0 \\ -5.5898 \\ 0 \end{pmatrix}$$

Enemy5= (-10.277, 0, 6.62053, 0)

Enemy6

$$\theta = 1pi/3 = 1.0472$$

 $cos(\theta) = 0.5$
 $sin(\theta) = 0.866$

$$\text{Ry } \theta = \begin{pmatrix} 0.5 & 0 & & 0.866 & 0 \\ 0 & 1 & & 0 & & 0 \\ -0.866 & 0 & & 0.5 & & 0 \\ 0 & 0 & & 0 & & 1 \end{pmatrix} \begin{pmatrix} -10.277 \\ 0 \\ 6.62053 \\ 0 \end{pmatrix}$$

Enemy6= (0.59505, 0, 12.2104, 0)

3.

Given a triangle game object (TGO)

P1 = (-1, 0, -1)

P2 = (0, 0, 2)

P3 = (1, 0, -1)

Starting at world space, compute new values for each point of the TGO after each movement

Remember W = TRS

World = Translation * rotation * scale

GO RIGHT TO LEFT

SCALE

ROTATE

TRANSLATE

- 1. Move forward 8, rotate along y by -2pi/4
- 2. Move forward 8, rotate along y by 1pi/4
- 3. Move forward 5, rotate y -3pi/4
- 4. Move forward 7, rotate y -2pi/4

b. Matrix calculations

Get our starting position in the world.

Starting World Initial Position

Multiply them together.

We're multiplying by an identity, so initial position does not change

World Starting position

Step 1: Move forward 8 and rotate by -2pi/4 radian

$$\theta = -2pi/4 = -1.57$$

$$cos(\theta) = 0.001$$

$$sin(\theta) = -1$$

Translation T =
$$\begin{pmatrix} 0 \\ 0 \\ 8 \end{pmatrix}$$

We are rotating on the Y axis. We need to negate X's sin call

Rotation =
$$\begin{pmatrix} \cos(1.57) & \sin(1.57) \\ 0 & 1 & 0 \\ -\sin(1.57) & 0 & \cos(1.57) \end{pmatrix}$$

Rotation =
$$\begin{pmatrix} 0.001 & 0 & & -1 & 0 \\ 0 & 1 & & 0 & 0 \\ 1 & 0 & & 0.001 & 0 \\ 0 & 0 & & 0 & 1 \end{pmatrix}$$

Scale = no change

Put them together

Reconstruct the world matrix. Multiply them together

WiWstep
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0.001 & 8 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}$$

Apply to all points to get proper transform and rotation

I'm going to round these up/down as they're basically the int value.

Step 2: Move forward 8, rotate on y by 1pi/4

$$\theta = 1pi/4 = 0.785$$

 $cos(\theta) = 0.707$
 $sin(\theta) = 0.707$

Translation T =
$$\begin{bmatrix} 0 \\ 0 \\ 8 \end{bmatrix}$$

We are rotating on the Y axis. We need to negate X's sin call

Scale = no change Put them together

Reconstruct the world matrix. Multiply them together

WiWstep
$$\begin{pmatrix} 0.001 & 0 & & -1 & 0 \\ 0 & 1 & & 0 & 0 \\ 1 & 0 & & 0.001 & 8 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.7071 & 0 & & 0.7071 & 0 \\ 0 & 1 & & 0 & & 0 \\ -0.7071 & 0 & & 0.7071 & 8 \\ 0 & 0 & & 0 & 1 \end{pmatrix}$$

Multiply against current position to get new position

Step 3: Move forward 5, rotate y axis -3pi/4

$$\theta = -3pi/4 = -2.355$$

 $cos(\theta) = -0.706$
 $sin(\theta) = -0.708$

We are rotating on the Y axis. We need to negate X's sin call

Scale = no change

New WiWstep. Multiply by original placement

Step 4: Move forward 7, rotate on y by -2pi/4

$$\theta = -2pi/4 = -1.57$$

$$cos(\theta) = 0.001$$

$$sin(\theta) = -1$$

We are rotating on the Y axis. We need to negate X's sin call

Scale = no change

We know the flow by now. Let's compact things. Get WiWstep

Get the new position.

$$\begin{pmatrix} -1 & 0 & 0.0004 & -18.5355 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0.0004 & 0 & -1 & 11.5257 & -1 & 2 & -1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$