تمرین سری ششم اصول سیستمهای مخابراتی

و $f_{\Delta}=60\,kHz$ با پارامترهای پیام زیر توسط مدولاسیون f با پارامترهای - ۱ با $f_{\Delta}=60\,kHz$ و - ارسال شود. پهنای باند سیگنال + و + ارسال شود. پهنای باند سیگنال + و + ارسال شود. پهنای باند سیگنال + و ارسال شود.

$$x(t) = \Lambda(\frac{t}{1000}) - \Lambda(\frac{t}{2500})\cos(7000\pi t)$$
 : $x(t) = 1000 \operatorname{sinc}(10000 t)$

۲- فرض کنید یک سیگنال $f_{c1} = 10kHz$ باند باریک با پارامترهای $f_{\Delta 1} = 25Hz$ و $f_{\Delta 1} = 25Hz$ و $f_{\Delta 1} = 25kHz$ و $f_{\Delta 2} = 25kHz$ باند با پارامترهای $f_{\Delta 1} = 25kHz$ و $f_{\Delta 2} = 25kHz$ باند با پارامترهای $f_{\Delta 1} = 25kHz$ و $f_{\Delta 2} = 25kHz$ بسازیم. اگر برای این کار از چند برابر کننده استفاده نماییم، بلوک دیاگرام سیستم مورد نظر، مکان و مقدار فرکانس نوسانسازمحلی، و فرکانس مرکزی و پهنای باند فیلتر مورد استفاده را بیابید. فرض کنید پهنای باند سیگنال پیام $f_{\Delta 1} = 25Hz$ است.

 $f_{c1} = 20kHz$ و $f_{\Delta 1} = 15Hz$ و $f_{\Delta 2} = 15Hz$ و $f_{\Delta 2} = 15Hz$ و $f_{\Delta 3} = 15Hz$ و $f_{\Delta 4} = 15Hz$ و $f_{\Delta 5} = 15Hz$ بسازیم. اگر برای این کار از دو برابر کننده استفاده نماییم، تعداد دو برابر کنندههای مورد نیاز، بلوک دیاگرام سیستم مورد نظر، مکان و مقدار فرکانس نوسانسازمحلی، و فرکانس مرکزی و پهنای باند فیلتر مورد استفاده را بیابید. فرض کنید پهنای باند سیگنال پیام $f_{\Delta 5} = 15Hz$ است.

۴ - فرض کنید یک سیگنال $f_{c1} = 50kHz$ باند باریک با پارامترهای $f_{\Delta 1} = 100\,Hz$ و $f_{\Delta 1} = 50\,kHz$ و $f_{\Delta 2} = 50\,kHz$ بهن باند با پارامترهای $f_{\Delta 3} = 50\,kHz$ و $f_{\Delta 4} = 50\,kHz$ بهن باند با پارامترهای $f_{\Delta 5} = 50\,kHz$ بسازیم. اگر برای این کار از سه برابر کننده استفاده نماییم و بخواهیم که در هیچ کجای سیستم فرکانس سیگنالهای مورد استفاده از ۳۰ مگاهرتز بیشتر نشود ، تعداد سه برابر کننده های مورد نیاز، بلوک دیاگرام سیستم مورد نظر، مکان و مقدار فرکانس نوسانسازهای کننده های مورد نیاز، بلوک دیاگرام سیستم مورد نظر، مکان و مقدار فرکانس نوسانسازهای

محلی، و فرکانس مرکزی و پهنای باند فیلترهای مورد استفاده را بیابید. فرض کنید پهنای باند سیگنال پیام W = 5kHz است.

و با داریم. میخواهیم با پارامترهای $f_{c1} = 20\,MHz$ و $f_{c1} = 20\,MHz$ و داریم. میخواهیم با پارامترهای $f_{\Delta} = 60\,kHz$ داریم. میخواهیم با پارامترهای $f_{\Delta} = 60\,kHz$ استفاده از این سیگنال و دو سیستم غیر خطی زیر، یک سیگنال با پارامترهای باند فیلترهای و بهنای باند فیلترهای باند فیلترهای باند فیلترهای باند فیلترهای مورد استفاده، و مکان و فرکانس نوسان ساز مورد استفاده را بیابید. فرض کنید پهنای باند سیگنال پیام W = 5kHz است.

$$x(t) \Rightarrow y(t) = x(t) + x^{2}(t) \Rightarrow y(t)$$

$$x(t) \Rightarrow y(t) = x(t) + x^{3}(t) \Rightarrow y(t)$$

FM و توسط مدولاسیون W = 5kHz باند W = 5kHz و خرض کنید قرار است یک سیگنال پیام با پهنای باند بهنای باند باید بدون اعوجاج از سیستم با پاسخ فرکانسی زیر عبور نماید

$$H(f) = \begin{cases} fe^{-j5\pi f^2} & 0 < |f| < 10MHz \\ 3e^{-j10\pi f} & 10MHz < |f| < 10.1MHz \\ 10e^{-j(20\pi f + \frac{\pi}{10})} & 10.1MHz < |f| < 50MHz \\ 12e^{-j30\pi f} & 50MHz < |f| < 50.5MHz \\ 0 & O.W. \end{cases}$$

- می $f_{c1}=50kHz$ و $f_{\Delta 1}=100\,Hz$ و بدین منظور ابتدا یک سیگنال f باند باریک با پارامترهای $f_{\Delta 1}=50kHz$ و بدین منظوب است سازیم و سپس از روی آن یک سیگنال f پهن باند با f بهن باند با f

بلوک دیاگرام سیستم مورد نظر، فرکانس مرکزی و پهنای باند فیلترهای مورد استفاده، و مکان و فرکانس نوسان ساز مورد استفاده در صورتی که بخواهیم حداقل فرکانس حامل را داشته باشیم.

را به صورت بدون اعوجاج از سیستم $x_1(t) = 1000 \sin c^2(1000t)$ انتقال با پاسخ فرکانسی زیر عبور دهیم.

$$H(f) = \begin{cases} fe^{-j5\pi f^2} & 0 < |f| < 1MHz \\ 3e^{-j10\pi f} & 1MHz < |f| < 5MHz \\ 10e^{-j(20\pi f + \frac{\pi}{10})} & 5MHz < |f| < 20MHz \\ 12e^{-j30\pi f} & 20MHz < |f| < 50MHz \\ 0 & O.W. \end{cases}$$

بدین منظور سیستمی به صورت زیر طراحی می کنیم.

مطلوب است طراحی مدولاتور FM مورد نیاز و رسم بلوک دیاگرام آن اگر بخواهیم پهنای باند سیگنال های $BW_{FM}=300kHz$ تولیدی FM باشد. مطلوب است بدست آوردن کلیه سیگنالهای موجود، یعنی x(t) بر y(t) و y(t) و y(t) و y(t) و y(t) بر حسب y(t) و y(t) بر حسب y(t) بر حسب y(t) بر حسب y(t) موجود، یعنی y(t) بر حسب y(t) و y(t) بر حسب y(t) بر حسب y(t) بر حسب y(t) بر حسب y(t) موجود، یعنی y(t) بر حسب y(t) بر حسب