

Escola Politécnica de Pernambuco Especialização em Ciência de Dados e Analytics

Estatística Computacional

Aula 1.1 - Estatística Descritiva - PARTE II

Prof. Dr. Rodrigo Lins Rodrigues

rodrigolins.rodrigues@ufrpe.br

- Localizam-se geralmente no centro de uma distribuição;
- Indica a posição dos dados em relação ao eixo dos valores assumidos pela variável;
- As principais são:
 - ✓ Média;
 - ✓ Moda;
 - ✓ Mediana;
- A média pode ser: **aritmética**, geométrica, quadrática, cúbica, etc.

Média aritmética:

- É a mais utilizada entre as medidas de tendência central;
- É a soma do total de valores dividida pelo número total de observações:

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

- Quando se refere a **população** a média é representada por μ ;
- Quando se refere a amostra a média é representada por \overline{X}

Vantagens da média aritmética:

- √ É a medida de tendência central mais conhecida e de maior uso;
- ✓ Seus cálculos são fáceis;
- ✓ Serve para fazer comparações entre dois ou mais fenômenos;
- √ É sempre possível encontrar a média aritmética em dados numéricos;
- ✓ Seu valor é único;

Desvantagens da média aritmética:

- ✓ É fortemente influenciada por valores extremos, nem sempre representando a verdade;
- ✓ Não pode ser aplicada para variáveis qualitativas;

Exemplo 1:

✓ Calcular a média aritmética para os dados referente às notas dos alunos da especialização em Ciência dos Dados.

Notas									
5,7	6,5	6,9	8,3	8,0	4,2	6,3	7,4	5,8	6,9

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\bar{X} = \frac{5,7+6,5+...+6,9}{10} = 6,6$$

Exemplo 2:

✓ Calcular a média salarial dos alunos desta turma.

Salário					
R\$ 2.000,00	R\$ 1.800,00	R\$ 2.100,00	R\$ 18.500,00		

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\bar{X} = \frac{2000 + 1800 + 2100 + 18.500}{4} = 6.100,00$$

Qual o problema com o exemplo 2?

Média aritmética ponderada:

✓ Na média ponderada as observações tem pesos diferenciados (p_i) ;

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i p_i}{\sum_{i=1}^{n} p_i}$$

✓É muito utilizada em provas de concurso público, onde as matérias tem pesos diferentes.

• Exemplo 1:

✓ Na tabela abaixo é mostrado as notas de um aluno e seus respectivos pesos por bimestre.

Período	Nota	Peso
1º Bimestre	4,5	1
2º Bimestre	7,0	2
3º Bimestre	5,5	3
4º Bimestre	6,5	4

$$\bar{X} = \frac{4,5*1+7,0*2+5,5*3+6,5*4}{1+2+3+4} = 6,1$$

Média aritmética para dados discretos agrupados:

- ✓ Quando os valores discretos de x_i se repetem os dados são agrupados em uma tabela de frequência;
- ✓ Utiliza-se o mesmo critério da média ponderada, onde os pesos passam a ser representados por frequências absolutas (F_i) ;

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i F_i}{\sum_{i=1}^{n} F_i}$$

• Exemplo:

✓ A tabela representa uma pesquisa de satisfação com 66 entrevistados, onde avaliou o desempenho de uma seguradora de saúde, por meio das notas atribuídas variando de 5 a 10.

Notas	Número de entrevistados
5	24
6	26
7	5
8	7
9	3
10	1

• Exemplo:

✓ A média aritmética é calculada a partir da equação:

$$\bar{X} = \frac{5 * 24 + 6 * 26 + 7 * 5 + 8 * 7 + 9 * 3 + 10 * 1}{66}$$

$$\bar{X}$$
 = 6,12

- Média aritmética para dados contínuos agrupados:
 - ✓ Cada classe não tem um único valor definido e sim um conjunto de valores pertencentes a classe;
 - ✓ Para que a média possa ser calculada assume-se que x_i é o ponto central da classe:

$$\bar{X} = \frac{\sum_{i=1}^k x_i F_i}{\sum_{i=1}^k F_i}$$

• Exemplo:

✓ A tabela apresenta as classes de salários pagos aos funcionários de uma empresa e suas respectivas frequências:

Classe	$\boldsymbol{F_i}$	$F_{ri}(\%)$
1 3	240	17,14
3 5	480	34,29
5 7	320	22,86
7 9	150	10,71
9 11	130	9,29
11 13	80	5,71
Soma	1.400	100

• Exemplo:

✓ Considerando x_i o ponto médio da classe e aplicando a equação:

$$\bar{X} = \frac{2 * 240 + 4 * 480 + 6 * 320 + 8 * 150 + 10 * 130 + 12 * 80}{1.400}$$

$$\bar{X} = 5,557$$

Mediana:

- ✓ É o valor médio para um conjunto de dados;
- ✓ Não depende de todos os valores da série, podendo, como a moda, não se alterar com a mudança de alguns elementos;
- ✓É muito empregada em pesquisas onde não interessam valores extremos, pois **não é influenciada por esses** valores;

Mediana para dados não agrupados:

- ✓ As observações devem ser colocadas em ordem crescente;
- ✓ Pode ser calculada da seguinte forma:

$$Md(x) = \begin{cases} \frac{x_n + x_{(n/2)} + 1}{2}, \text{ se } n \text{ for par} \\ \frac{x_{(n+1)}}{2}, \text{ se } n \text{ for impar} \end{cases}$$

em que n é o número total de observações.

• Exemplo:

- ✓ A tabela apresenta a produção mensal de livros relacionados com Data Science no mundo.
- ✓ Para o cálculo da mediana as observações devem ser ordenadas:

Mês	Produção (unidades)
Jan	210
Fev	180
Mar	203
Abr	195
Mai	208
Jun	230
Jul	185
Ago	190
Set	200
Out	182
Nov	205
Dez	196

Solução:

$$Md(x) = \frac{x_{\frac{n}{2}} + x_{(\frac{n}{2})+1}}{2} \implies Md(x) = \frac{x_{\frac{12}{2}} + x_{(\frac{12}{2})+1}}{2}$$

Mês	Produção (unidades)
Jan	210
Fev	180
Mar	203
Abr	195
Mai	208
Jun	230
Jul	185
Ago	190
Set	200
Out	182
Nov	205
Dez	196

$$Md = \frac{196 + 200}{2} = 198$$

Mediana para dados grupados em classes:

✓ Passo 1: Calcular a posição da mediana por meio da seguinte equação.

$$Pos(Md) = n/2$$

✓ Passo 2: Identificar a classe mediana a partir da coluna de frequência acumulada;

Mediana para dados grupados em classes:

✓ Passo 3: Calcular a mediana pela seguinte equação:

$$Md = LI_{Md} + \frac{\left(\frac{n}{2} - F_{ac(Md-1)}\right)}{F_{Md}} x A_{Md}$$

Em que:

 $LI_{Md} =$ limite inferior da classe mediana $F_{Md} =$ frequência absoluta da classe mediana $F_{ac(Md-1)} =$ frequência acumulada da classe anterior à classe mediana $A_{Md} =$ amplitude da classe mediana n = número total de observações

• Exemplo:

Considere os dados da tabela referente a salários pagos a funcionários.

Classe	$\boldsymbol{F_i}$	$F_{ri}(\%)$
1 3	240	17,14
3 5	480	34,29
5 7	320	22,86
7 9	150	10,71
9 11	130	9,29
11 13	80	5,71
Soma	1.400	100

Solução:

✓ Passo 1: Calcular a posição da mediana.

$$Pos(Md) = \frac{n}{2} = \frac{1.400}{2} = 700$$

✓ Passo 2: Identificação da classe mediana;

3 5	480	34,29
•		

• Solução:

✓ Passo 3: Calculando a mediana.

$$Md = LI_{Md} + \frac{\left(\frac{n}{2} - F_{ac(Md-1)}\right)}{F_{Md}} x A_{Md}$$

$$LI_{Md} = 3$$

 $F_{Md} = 480$
 $F_{ac(Md-1)} = 240$
 $A_{Md} = 2$
 $n = 1.400$

Logo

$$Md = 3 + \frac{(700 - 240)}{480}x^2 =$$
4.916

Moda:

- ✓ A moda (M_0) é a observação que ocorre com maior frequência no conjunto de dados;
- √ É a única medida de posição que também pode ser utilizada para variáveis qualitativas;

✓ Em uma única série pode-se ter mais de uma moda.

Vantagens da Moda:

- ✓ A moda **não depende de todos os valores da série**, não se alterando com a modificação de alguns deles;
- ✓ A moda **não é influenciada** por valores extremos;
- ✓ A moda sempre tem existência real;

Desvantagem da Moda:

- ✓ A moda não é aplicável a um número pequeno de dados observados, ao contrário da média, que pode ser aplicada a uma amostra de tamanho pequena;
- ✓ A moda nem sempre pode ser calculada, como no caso de se ter uma série amodal;

Moda para dados qualitativos:

✓ Uma emissora de TV entrevistou 500 telespectadores buscando analisar suas preferencias por categoria de interesse.

Categorias de interesse	Fi
Filmes	71
Novelas	46
Jornalismo	90
Humor	98
Esporte	120
Shows	35
Variedades	40

- Moda para dados agrupados em classes:
 - ✓ Passo 1: Identificar a classe modal, que é a com maior frequência absoluta;
 - ✓ **Passo 2:** Calcular a moda (M_o) :

$$M_o = LI_{Mo} + \frac{F_{Mo} - F_{Mo-1}}{2F_{Mo} - (F_{Mo-1} + F_{Mo+1})} xA_{Mo}$$

- $\checkmark LI_{Mo}$ = limite inferior da classe modal
- $\checkmark F_{Mo}$ = frequência absoluta da classe modal
- $\checkmark F_{Mo-1}$ = Frequência absoluta da classe anterior à classe modal;
- $\checkmark F_{Mo+1}$ = Frequência absoluta da classe posterior à classe modal;
- $\checkmark A_{Mo}$ = Frequência absoluta da classe anterior à classe modal;

• Exemplo:

✓ Conjunto de dados contínuos com 200 observações agrupadas em classes.

Classe	Fi
01 10	21
10 20	36
20 30	58
30 40	24
40 50	19
Soma	200

Solução:

- √ Passo 1: Verifica-se que a classe modal é a terceira (20 | --30);
- ✓ Passo 2: Calculando a moda:

$$M_o = LI_{Mo} + \frac{F_{Mo} - F_{Mo-1}}{2F_{Mo} - (F_{Mo-1} + F_{Mo+1})} xA_{Mo}$$

$$\checkmark LI_{Mo} = 20$$
, $F_{Mo} = 58$, $F_{Mo-1} = 36$, $F_{Mo+1} = 24$, $A_{Mo} = 10$

$$M_o = 20 + \frac{58 - 36}{2x58 - (36 + 24)}x10 = 23,9$$

Agora é com vocês!

 Quais as diferenças entre as medidas: média, mediana e moda?

• Quais as limitações em utilizar apenas medidas de tendência central no estudo de uma determinada variável ?

• Na tabela de dados que construímos, calcule a média, moda e mediana para a variável "Idade".

Medida de dispersão

Medidas de dispersão

- São utilizadas para caracterizar a variabilidade dos dados;
- As medidas de dispersão mais comuns são:
 - **✓** Amplitude;
 - ✓ Desvio médio;
 - ✓ Variância;
 - ✓ Desvio padrão;
 - ✓ Erro padrão;
 - ✓ Coeficiente de Variação (CV).
- Quanto menor os valores menor a dispersão dos dados.

Amplitude total;

- √ É a medida de dispersão ou variabilidade mais simples;
- ✓ É representada pela diferença entre o maior e o menor valor de um conjunto de observações:

$$A = x_{max} - x_{min}$$

Desvio Médio;

✓ Considera a soma dos desvios absolutos de todas as observações dividido pelo tamanho da população (N) ou da amostra (n):

$$D_m = \frac{\sum_{i=1}^{N} |x_i - \mu|}{N}$$
 (para a população)

$$D_m = \frac{\sum_{i=1}^{N} |x_i - \bar{x}|}{n}$$
 (para amostras)

Exemplo do desvio médio;

✓ A tabela apresenta as instâncias percorridas (em km) por um veículo para entrega de 10 encomendas ao longo do dia:

$$D_m = \frac{|12,4 - 19,62| + |22,6 - 19,62| + \dots + |20,4 - 19,62|}{10}$$

$$D_m = 4,98$$

Variância;

✓ É baseada na média dos desvios quadrados;

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

(Para a população)

$$S^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}{n-1}$$
 (Para a amostra)

Exemplo da variância;

✓ Considerando os dados do exemplo anterior...

$$S^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}{n-1}$$

$$S^{2} = \frac{(12,4-19,62)^{2} + (22,6-19,62)^{2} + \dots + (20,4-19,62)^{2}}{9-1}$$

$$S^2$$
=41,94

Desvio Padrão;

- ✓ Como a variância considera a média dos desvios quadrados, seu valor tende a ser grande e de difícil interpretação;
- ✓ Para resolver este problema extrai-se a raiz quadrada para obter o desvio padrão:

$$\sigma = \sqrt{\sigma^2}$$

(Para a população)

$$S = \sqrt{S^2}$$

(Para a amostra)

Exemplo do desvio padrão:

✓ Considere novamente os dados do exemplo anterior

$$S^{2} = \frac{(12,4-19,62)^{2} + (22,6-19,62)^{2} + \dots + (20,4-19,62)^{2}}{9-1}$$

$$S^{2} = 41,94$$

Logo:
$$\sqrt{41,94} = 6,476$$

Coeficiente de Variação (CV);

- ✓ É uma medida de dispersão relativa que fornece variação dos dados em relação a média;
- ✓ Pode ser calculado como:

$$CV = \frac{\sigma}{\mu} \times 100 \, (\%)$$

(Para a população)

$$CV = \frac{S}{\bar{X}} \times 100 \, (\%)$$

(Para a amostra)

- Exemplo Coeficiente de Variação (CV);
 - ✓ Calculando o CV para os dados da tabela abaixo

$$CV = \frac{S}{\overline{X}} \times 100 \text{ (\%)}$$
 $CV = \frac{15,364}{127,4} \times 100 \text{ (\%)} = 12,06\%$

Agora é com vocês!

 Qual a importância de utilizar as medidas de dispersão?

• Cite três tipos de medidas de dispersão e fale sobre cada uma delas?

...O que você entende por Correlação?

...olhe pra essa imagem e pense um pouco mais!

"É uma técnica estatística capaz de avaliar a existência de **relação entre duas variáveis...**Essa relação pode ser expressa através de uma **força** e **direção**"

- Mede o grau da correlação (positiva ou negativa) entre duas variáveis de escala métrica;
 - ✓ P > 0,4 Significa uma correlação positiva entre as duas variáveis.
 - ✓ -0,4 < 0 > 0,4 : Significa que as duas variáveis não dependem linearmente uma da outra.
 - ✓ P < -0,4 Significa uma correlação negativa entre as duas variáveis - Isto é, se uma aumenta, a outra sempre diminui.

Coeficiente de correlação de Pearson

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \times \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

• Representação gráfica para a correlação;

• Exemplo:

✓ A tabela abaixo mostra duas variáveis relacionadas a profissionais de Data Science:

Profissional	Tempo de Experiência (anos)	Salário
1	0,1	R\$ 1.290,00
2	0,8	R\$ 2.330,00
3	0,6	R\$ 1.800,00
4	3	R\$ 3.452,00
5	5,1	R\$ 5.890,00
6	7,4	R\$ 6.730,00
7	8,6	R\$ 8.600,00

• Exemplo:

- Inicialmente é necessário calcular a média de cada uma das variáveis:
 - ✓ Média do Tempo de Experiência (anos) = 3,66;
 - ✓ Média do salário = 4298,86.
- Em seguida aplica os somatórios:

$$r = \frac{((0,1-3,66)*(1290-4298,86)) + ... + ((8,6-3,66)*(8600-4298,86))}{((0,1-3,66)^2*(1290-4298,86)^2) + ... + ((8,6-3,66)^2*(8600-4298,86)^2)}$$

$$r = 0.990774749$$

• Exemplo:

- ✓ Este valor indica uma correlação forte e positiva entre as duas variáveis;
- ✓ Podemos ver a relação visualmente através do gráfico de dispersão:

r = 0.990774749

Agora é com vocês!

• Quais são os valores do intervalo do coeficiente de correlação de Pearson ?

 Qual o melhor gráfico pra representar a força e o sentido da correlação ?

 Qual a natureza das variáveis que são utilizadas para calcular a correlação ?

Exercício

- Será entregue uma folha contendo dez questões abertas (Obs: fazer em grupo);
- Utilize ao máximo sua criatividade e seu poder de argumentação;

Dúvidas

Contatos:

- ✓ Email: rodrigo.linsrodrigues@ufrpe.br
- ✓ Facebook: /rodrigomuribec