Due no later than 9:00pm on Tuesday 9/7.

As you read the following OLI pages and complete the interactive activities, capture the screenshots of the completed activities and replace the respective screenshots in the document.

- Page 7 Arithmetic expressions and simple algorithms
- Page 8 Integer divisions and related algorithms
- Page 9 Assignment statements
- Page 10 Type casting
- When you are ready to submit the assignment, save the document in PDF format and submit the PDF file on Cougar Courses as the proof for your work.

Page 7 Arithmetic expressions and simple algorithms

Hotspot Arithmetic expression

LBD evaluate arithmetic expressions

Predict the expected result of the following arithmetic expressions.

LBD convert math divisions

Convert the expressions into C++ arithmetic expressions $\frac{3+5}{4*2}$ $(3+5)/(4*2) \checkmark$ Correct. It's best practice to add spaces between digits and operators so your code is more readable. $\frac{5*6}{4+2}$ $5*6/(4+2) \checkmark$ Correct. Adding parentheses to the fraction give us an appropriate conversion expression. $\frac{2+4}{3/5}$ $(2+4)/(3/5) \checkmark$ Correct. This would give us the correct response.

Checkpoint conversion

Checkpoint discount & tip

MR simple problem

Describe a simple problem that you can apply the above 3-step algorithm pattern to solve.

A simple problem that I can add a 3-step algorithm pattern to solve is grocery shopping by getting the groceries prices, add them up and add tax.

Page 8 Integer divisions and related algorithms

LBD evaluate integer divisions

21 / 4 evaluates to 5 🔻
Correct! When both operands are integers, the / operator calculates the quotient and ignores the remainder. * This is called floor division.
5 % 9 evaluates to 5
✓ Correct! The modulo operator % returns the remainder from the division, which is 5.
13 / 5 evaluates to 2
Correct! The answer is 2 since we are returning the integer quotient, also called the "floor".
2*5/3 evaluates to 3
✓ Correct.
11 % (4 + 1) evaluates to [1
✓ Correct! The remainder of 11 divided by 5 is 1.
22 % 6 evaluates to 4 🔻
✓ Correct! When you divide 22 by 6 you get a remainder of 4
4 / 5 evaluates to o
Correct! 4 / 5 evaluates to o.
3 % 9 evaluates to 3
Correct! 3 % 9 evaluates to 3
(12 - 2) / 5 evaluates to 2
✓ Correct! 10 / 5 evaluates to the quotient, which is 2.
(4 + 6) % 5 evaluates to o
Correct! 10 % 5 evaluates to 0 because there is the remainder when 10 is divided by 5.

LBD algorithms with integer divisions

The following code segment has completed steps 1 & 2 of an algorithm that is designed to help a vet convert a puppy's weight in ounces only into pounds and ounces.

```
//Step 1: Declare variables
int weight; //to store the weight of a new born puppy

//Step 2: Collect user input
cout << "How many ounces does the puppy weigh? ";
cin >> weight;
```

Choose the right expressions for the following statement to show the weight in its corresponding pounds and remaining ounces.

```
cout << "The puppy weighs " << \boxed{\hspace{-3.5cm}\text{weight / 16 } \checkmark} << " lb. " << \boxed{\hspace{-3.5cm}\text{weight % 16 } \checkmark} << " oz.\n";
```

Correct, this will determine how many pounds the puppy weighs.

Correct, the remaining ounces is the remainder portion of the weight divided by the number of ounces per pound.

```
//Step 1: Declare variables
int tacos; //to store the number of tacos
int guests; //to store the number guests in the party

//Step 2: Collect user input
cout << "How many tacos in the tray? ";
cin >> tacos;
cout << "How many guests in the party? ";
cin >> guests;
```

Given the above code segment. Choose the right expressions for the following statements.

```
\label{eq:cout} $$\operatorname{cout} << \operatorname{``Each guest should get''} << \operatorname{``tacos/guests $$\checkmark$} << \operatorname{``tacos.\n''};$$$ $$\operatorname{cout} << \operatorname{``After that, there would be '` tacos % guests $$\checkmark$ << ``tacos left.\n'';$$$}
```

- Correct, the quotient of this division will help us know how many tacos each guest should get.
- Correct, the will generate the remaining tacos after all guests get their equal share.

The following code segment has completed steps 1 & 2 of an algorithm that is designed to convert a person's height in inches only into feet and inches.

```
//Step 1: Declare varaibles
int height; //to store the height in inches only

//Step 2: Collect user input
cout << "How tall are you in inches? ";
cin >> height;
```

Use the following space to complete Step 3 and enter output statement(s) along with the appropriate expressions to display the person's height in feet and remaining inches. As a reminder, there are 12 inches in a foot.

```
cout << "You are " << height / 12 << " feet and " << height % 12 << " inches. \n;
```

Resubmit

Thank you for your response. Your output statement should look similar to this.

Cout << "You are " << height / 12 << " feet and " << height % 12 << "inches.\n";

Describe another problem that could be solved using integer divisions.

Converting pounds into grams

Resubmit

Thanks for sharing.

Page 9 Assignment statements

Hotspot simple assignments

Checkpoint named constants

In the following space, define a named constant to store the number of seconds per minute.

LBD bank balance

In a banking software, the variable bank_balance is used to track how much money a customer has in their account.

```
double bank_balance;
```

Complete the assignment statement to set bank_balance initial value if a customer opens the account with \$400

```
bank_balance = 400 v;
```

✓ Correct. This allows the value 400 be assigned to the variable on the LHS of =.

```
double deposit;
cout << "Enter the deposit amount:t";
cin >> deposit;
```

Suppose the customer has come back to deposit \$80.26 to their account. The above code allows the program to collect the deposit amount.

Complete the following assignment statement to increase the bank_balance variable accordingly

```
bank_balance = bank_balance + deposit > ;
```

Correct. This will allow the compiler to perform 400 + 80.26 before updating the balance.

```
double withdrawal;
cout << "Enter the withdrawal amount:t";
cin >> withdrawal;
```

Suppose the customer has come to withdraw \$50 from the account instead of making a deposit. The above code allows the program to collect the deposit amount.

Complete the following assignment statement to increase the bank_balance variable accordingly

```
bank_balance = bank_balance - withdrawal >;
```

Correct! This would allow the compiler to perform 400 - 50 before storing 350 to bank_balance.

LBD give changes

Checkpoint updated algorithm pattern

What questions and/or tips for others do you have regarding the above program?

What's the best way to go about evaluating code?

//

Resubmit

✓ Thanks for sharing.

The above code segment has completed the first two steps needed to convert weight in ounces only into the corresponding
pounds and leftover_ounces. For example, a weight of 50 ounces would be converted into 3 pounds and 2 leftover ounces
while a weight of 40 ounces would be converted into 2 pounds and 8 leftover ounces.
In the following space, create an assignment statement to update the values of pounds based on weight and OZ_PER_LB .
cout << pounds = weight / OZ_PER_LB;
Resubmit
Thanks for sharing. Your assignment statement should look like this,
V
pounds = weight / oz_per_lb;
In the following space, create an assignment statement to update the values of leftover_ounces based on weight and
In the following space, create an assignment statement to update the values of leftover_ounces based on weight and OZ_PER_LB.
OZ_PER_LB.
OZ_PER_LB.
OZ_PER_LB.
OZ_PER_LB . cout << leftover_ounces = weight % OZ_PER_LB; Resubmit
OZ_PER_LB . cout << leftover_ounces = weight % OZ_PER_LB; Resubmit
OZ_PER_LB . cout << leftover_ounces = weight % OZ_PER_LB; Resubmit
OZ_PER_LB . cout << leftover_ounces = weight % OZ_PER_LB; Resubmit Thanks for sharing. Your assignment statement should look like this,

Page 10 Type casting

LBD implicit type casting

Checkpoint Performance stat

Run the program by entering the same number for the goals attempted and goals made. What does the program show as the goal percentage? 100% Correct. The program works well when the team has made goal for all their attempts.

Run the program by entering 5 as the goals attempted and 2 as the goals made. What does the program show as the goal percentage? 0% Correct. The program does not works well when the team couldn't made goal for all their attempts. 2 / 5 is an integer division. It returns 0 not 0.4.

Why do you think the program does not work well when the team couldn't make all of their goal attempts?

Because it's run as an integer not a double

Describe another problem that you think could be solved using the similar approach of explicit type casting.

How many times it took to write a new program and successfully run it

