Funkcja logiczna	IEEE distinctive- shape	IEEE rectangular- shape	Wyrażenie algebraiczne	tabelka zerojedynkowa
NOT		1_ o	$Y = \overline{A}$	A Y 0 1 1 0
AND		&	Y = A • B	A B Y 0 0 0 0 1 0 1 0 0 1 1 1
OR		≥1	Y = A + B	A B Y 0 0 0 0 1 1 1 0 1 1 1 1
NAND		& o	$Y = \overline{A \bullet B}$	A B Y 0 0 1 0 1 1 1 0 1 1 1 0

NOR	≥1 0—	$Y = \overline{A + B}$	A 0 0 1 1 1	B 0 1 0 1 1	1 0 0
XOR	=1	$Y = A \oplus B$ $(Y = A\overline{B} + \overline{A}B)$	0 0 1 1	B 0 1 0 1 1	Y 0 1 1 0
XNOR	=1 0-	$Y = \overline{A \oplus B}$ $(Y = \overline{AB} + AB)$	A 0 0 1 1 1	B 0 1 0 1 1	1 0 0

Każdej sieci przełączającej odpowiada wyrażenie algebry Boole'a lub zbiór takich wyrażeń. Rodzaj wyrażeń zależy od budowy sieci i od elementów podstawowych z których jest ona zbudowana. Jedną z klas opisujących sieci zerojedynkowe są alternatywne wyrażenia normalne (postać normalna sumy).

Alternatywne wyrażenia normalne.

Alternatywne wyrażenie normalne jest dowolną sumą iloczynów zmiennych lub ich negacji o tej własności, że w żadnym iloczynie nie występują wielokrotnie te same czynniki, a w sumie nie ma powtarzających się składników. Pojęcie "iloczynu" może oznaczać tylko jeden czynnik (zmienną lub jej negację), "suma" może zawierać tylko jeden składnik, tzn. pojedyncze iloczyny.

Przykłady alternatywnych wyrażeń normalnych:

$$X_1 \overline{X_2} + X_2 X_3$$
, $X_1 \overline{X_2} \overline{X_3} + X_2 X_4$, $X_1 + X_2 + X_4$, $X_1 \overline{X_3}$, X_3 , $\overline{X_2}$

poniższe wyrażenia nie są wyrażeniami normalnymi:

$$X_1\overline{X_2} + X_2X_4 + X_2X_4$$
 (występują dwa jednakowe składniki w sumie), $\overline{X_1X_2} + X_2X_3X_3$ (powtarzają się czynniki w iloczynie).

Postać wyrażeń normalnych wynika bezpośrednio z tożsamości logicznych w algebrze Boole'a. Iloczyny, które nie są tożsamościowo równe zeru, mogą mieć co najwyżej n czynników (n - liczba zmiennych). Iloczyn różny od wartości stałej, który zawiera dokładnie n czynników jest nazywany iloczynem pełnym. Cechą charakterystyczną iloczynu pełnego jest to, że jest równy 1 dla tylko jednego ciągu wartości zmiennych. Np. dla n = 4:

 $\mathbf{X}_1\mathbf{X}_2\mathbf{X}_3\mathbf{X}_4$ jest iloczynem pełnym, który jest równy 1, gdy: $\mathbf{X}_1=\mathbf{X}_2=\mathbf{X}_4=1 \wedge \mathbf{X}_3=0$.

Jeśli oznaczymy ciąg zmiennych jednym symbolem $X = X_1, X_2, X_3, X_4$, można stwierdzić że iloczyn jest równy jeden, gdy: x = 1101.

Jeśli znamy postać ciągu zerojedynkowego możemy zapisać iloczyn,

np. gdy x = 0110 iloczyn ma postać $X_1X_2X_3X_4$.

Iloczyn, zawierający n-1 czynników jest równy 1 dla dwóch różnych wartości ciągu x. Np. dla n=4

iloczyn $X_2X_3X_4$ jest równy 1 gdy $X_2=X_4=1 \land X_3=0$, wartość zmiennej x_1 nie ma znaczenia ponieważ nie występuje ona w iloczynie.

Ciąg zmiennych można zapisać: x = -101.

Kreska oznacza, że wartości zmiennych w określonym miejscu ciągu x są bez znaczenia (mogą przyjmować wartość 0 lub 1). Zatem po podstawieniu 0 lub 1 do ciągu x= -101 otrzymamy dwie kombinacje dla których iloczyn jest równy 1: 0101 i 1101.

Iloczynom zawierającym n-2 czynniki odpowiadają ciągi z dwiema kreskami (cztery kombinacje zmiennych wejściowych dają wartość ciągu = 1).

Np. iloczynowi X_2X_3 (dla n=4) będzie odpowiadał ciąg -10- (kombinacje: 0100, 0101, 1100, 1101).

Uogólniając powyższe można stwierdzić, że dowolnemu alternatywnemu wyrażeniu normalnemu, odpowiada zbiór wszystkich ciągów, odpowiadających składnikom wyrażenia.

Np. wyrażeniu:

$$X_1X_2 + X_1X_2X_4 + X_1X_3X_4 + X_1$$
 odpowiada zbiór ciągów:

$$10 - -$$
, $11 - 1$, $1 - 0$ 0, $0 - - -$.

Oczywiście mając zbiór ciągów można zapisać odpowiadające mu wyrażenie alternatywne:

Np. zbiorowi:

1 - 0 -, 0 - 1 1, 1 0 0 0, 0 - 1 - odpowiada wyrażenie $X_1 X_3 + X_1 X_3 X_4 + X_1 X_2 X_3 X_4 + X_1 X_3$.

Tablicę zerojedynkową wyrażenia $W = X_1 \overline{X_3} + X_4 + X_1 \overline{X_2} \overline{X_4} + \overline{X_1} X_3$ i wszystkich jego składników przedstawiono poniżej:

X ₁	X ₂	X ₃	X ₄	$X_1\overline{X_3}$	X_4	$X_1 \overline{X_2} \overline{X_4}$	$\overline{\mathbf{X}}_{1}\mathbf{X}_{3}$	w
				ciągi				
				1 – 0 –	1	100-	0 – 1 –	
0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	1
0	0	1	0	0	0	0	1	1
0	0	1	1	0	1	0	1	1
0	1	0	0	0	0	0	0	0
0	1	0	1	0	1	0	0	1
0	1	1	0	0	0	0	1	1
0	1	1	1	0	1	0	1	1
1	0	0	0	1	0	1	0	1
1	0	0	1	1	1	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	0	1	0	0	1
1	1	0	0	1	0	0	0	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	0	0	0
1	1	1	1	0	1	0	0	1

Zamiast zapisu w tabelkach zerojedynkowych stosuje się zapis w tzw. Tabelach Karnaugh'a. Krawędzie tabel Karnaugh'a opisane są przy pomocy kodu Graya (refleksyjnego), co pozwala na łatwe znajdywanie 1 dla określonego iloczynu zmiennych, kombinacje, w których tylko jedna zmienna ma inną wartość są swoimi sąsiadami.

Przykład zapisu funkcji zerojedynkowej w tabelce zerojedynkowej i w tabeli Karnaugh'a:

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X ₄	F
			0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	0 0 0 0 1 1 1 0 0 0 1 1 1	0	1	1
0 0 0 0 0 0 0 1 1 1 1 1	1	0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1	0 1 1 0 1 1 1 0 1
1	1	1	1	1

X_3 X_4	X ₂ 00	01	11	10
X₃ X₄ 00	0	1	1	1
01	0	1	1	1
11	1	1	1	0
10	1	1	1	0

F

Koniunkcyjne wyrażenia normalne.

Koniunkcyjne wyrażenie normalne jest dowolnym iloczynem sum zmiennych lub ich negacji o tej własności, że w żadnej sumie nie występują jednakowe składniki, a w iloczynie nie ma powtarzających się czynników.

Przykłady koniunkcyjnych wyrażeń normalnych:

$$(x_1 + \overline{x_2})(x_2 + x_3), (x_1 + \overline{x_2} + \overline{x_3})(x_2 + x_4), x_1 + x_2 + x_4, x_1\overline{x_3}, x_3, \overline{x_2}$$

poniższe wyrażenia nie są wyrażeniami normalnymi:

$$(x_1 + \overline{x_2})(x_2 + x_4)(x_2 + x_4)$$
 (występują dwa jednakowe czynniki w iloczynie),

$$(X_1 + X_2)(X_2 + X_3 + X_3)$$
 (powtarzają się składniki sumy).

Sumy, które nie są tożsamościowo równe 1, mogą mieć co najwyżej n składników

(n - liczba zmiennych). Suma różna od wartości stałej, która zawiera dokładnie n składników jest nazywana sumą pełną. Cechą charakterystyczną sumy pełnej jest to, że jest równa 0 dla tylko jednego ciągu wartości zmiennych.

Np. dla n = 4:

$$x_1 + x_2 + \overline{x_3} + x_4$$
 jest sumą pełną, który jest równy 0, gdy: $x_1 = x_2 = x_4 = 0 \land x_3 = 1$.

Jeśli oznaczymy ciąg zmiennych jednym symbolem $x = x_1, x_2, x_3, x_4$, można stwierdzić że suma jest równa 0, gdy: x = 0 0 1 0.

Jeśli znamy postać ciągu zerojedynkowego możemy zapisać sumę,

np. gdy x = 0 1 1 0 suma ma postać $X_1 + \overline{X_2} + \overline{X_3} + X_4$.

Podobnie jak w przypadku wyrażeń alternatywnych można stwierdzić, że dowolnemu koniunkcyjnemu wyrażeniu normalnemu, odpowiada zbiór wszystkich ciągów, odpowiadających czynnikom iloczynu.

Np. wyrażeniu:

$$(x_1 + \overline{x_2})(x_1 + x_2 + x_4)(x_1 + \overline{x_3} + \overline{x_4})\overline{x_1}$$
 odpowiada zbiór ciągów:

$$01 - -, 00 - 0, 0 - 11, 1 - - -$$

Oczywiście mając zbiór ciągów można zapisać odpowiadające mu wyrażenie koniunkcyjne:

Np. zbiorowi:

$$0 - 1 -$$
, $1 - 0 0$, $0 1 1 1$, $1 - 0 -$ odpowiada wyrażenie

$$(x_1 + \overline{x_3})(\overline{x_1} + x_3 + x_4)(x_1 + \overline{x_2} + \overline{x_3} + \overline{x_4})(\overline{x_1} + x_3)$$

Tabelę zerojedynkową wyrażenia $W = (X_1 + \overline{X_3})X_4(X_1 + \overline{X_2} + \overline{X_4})(\overline{X_1} + \overline{X_3})$ i wszystkich jego składników przedstawiono poniżej:

ν.	X_1 X_2 X_3 X_4	Y _o	, v	$X_1 + \overline{X_3}$	X_4	$X_1 + \overline{X_2} + \overline{X_4}$	$\overline{\mathbf{X}}_1 + \mathbf{X}_3$	w
^ 1		^ 4		••				
				0 – 1 –	0	0 1 1 –	1 – 0 –	
0	0	0	0	1	0	1	1	0
0	0	0	1	1	1	1	1	1
0	0	1	0	0	0	1	1	0
0	0	1	1	0	1	1	1	0
0	1	0	0	1	0	1	1	0
0	1	0	1	1	1	1	1	1
0	1	1	0	0	0	0	1	0
0	1	1	1	0	1	0	1	0
1	0	0	0	1	0	1	0	0
1	0	0	1	1	1	1	0	0
1	0	1	0	1	0	1	1	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	0	1	0	0
1	1	0	1	1	1	1	0	0
1	1	1	0	1	0	1	1	0
1	1	1	1	1	1	1	1	1

W przypadku wyrażeń alternatywnych normalnych stanem aktywnym w sieci opisanej takimi wyrażeniami są jedynki. Jeśli sieć jest opisana przy pomocy wyrażeń koniunkcyjnych stanem aktywnym jest zero.