

### Техническое описание

# Редукторный электропривод AME 15 QM

# Описание и область применения



Электропривод AME 15 QM предназначен для работы с комбинированным регулирующим клапаном AB-QM  $\rm Д_y = 40-100$  мм, управляющим подачей тепло- и холодоносителя в фэнкойлы, а также центральные вентиляционные установки и кондиционеры.

#### Основные характеристики:

- автоматически ограничивает крайнее верхнее положение штока;
- управляется аналоговым сигналом;
- имеет нижний концевой моментный выключатель, защищающий привод и клапан от перегрузок;
- не требует использования каких-либо инструментов для монтажа, а также ремонта в течение всего срока эксплуатации;
- низкий уровень шума;
- наличие функции самонастройки под конечные положения штока клапана;
- в комплект поставки входит кабель длиной 1,5 м.

## Номенклатура и коды для оформления заказа

| Тип       | Питающее напряже-<br>ние, В пер. тока | Кодовый<br>номер |
|-----------|---------------------------------------|------------------|
| AME 15 QM | 24                                    | 082H3075         |

# **Технические** характеристики

| Питающее напряжение, В пер. тока           | 24                                                                                     |  |
|--------------------------------------------|----------------------------------------------------------------------------------------|--|
| Потребляемая мощность, ВА                  | 4                                                                                      |  |
| Частота тока, Гц                           | 50/60                                                                                  |  |
| Входной управляющий сигнал Ү               | От 0 до 10 В (от 2 до 10 В), Ri = 24 кОм<br>От 0 до 20 мА (от 4 до 20 мА), Ri = 500 Ом |  |
| Выходной сигнал обратной связи Х           | От 0 до 10 В (от 2 до 10 В)                                                            |  |
| Развиваемое усилие, Н                      | 500                                                                                    |  |
| Максимальный ход штока, мм                 | 15                                                                                     |  |
| Время перемещения штока на 1 мм, с         | 11                                                                                     |  |
| Максимальная температура теплоносителя, °С | 120                                                                                    |  |
| Рабочая температура окружающей среды, °С   | От 0 до +55                                                                            |  |
| Температура транспортировки и хранения, °С | От -40 до +70                                                                          |  |
| Класс защиты                               | IP 54                                                                                  |  |
| Масса, кг                                  | 0,8                                                                                    |  |
| С € – маркировка соответствия стандартам   | 73/23/EEC, 2004/108/EEC, EN 60730-1, EN 60730-2-14                                     |  |

**RC.08.V4.50** 05/2009 **251** 



# Настройка переключателей DIP



DIP-переключатели находятся под съемной крышкой. Привод может работать как трехпозиционный, если переключатель (6) поставить в положение «ON».

Для подготовки привода к работе необходимо установить переключатели в требуемое положение.

#### Переключатель 1

Для выбора типа входного управляющего сигнала U/I.

В выключенном положении выбран сигнал по напряжению. В положении «ON» выбран токовый сигнал.

## Переключатель 2

Для выбора диапазона входного управляющего сигнала 0/2.

В выключенном положении выбран диапазон 2–10 В (сигнал по напряжению) или 4–20 мА (токовый сигнал), в положении «ON» – диапазон 0–10 В или 0–20 мА.

#### Переключатель 3

Для выбора направления перемещения штока D/I (прямое или обратное).

В выключенном положении выбрано прямое направление движения штока – при повышении напряжения шток опускается. В положении «ON» выбрано обратное направление движения штока – при повышении напряжения шток поднимается.

#### Переключатель 4

Нормальный или последовательный режим работы.

В выключенном положении электропривод работает в диапазоне 0 (2)–10 В или 0(4)–20 мА, в положении «ON» – 0 (2)–5 (6) В или 0(4)–10 (12) мА, либо 5 (6)–10 В или 10(12)–20 мА.



#### Переключатель 5

Для выбора последовательного диапазона входного сигнала 0–5 B/5–10 B.

В выключенном положении электропривод работает в последовательном диапазоне 0 (2)–5 (6) В или 0 (4)–10 (12) мА, в положении «ON» – 5 (6)–10 (12) В или 10 (12)–20 мА.

#### Переключатель 6

Для выбора пропорционального или трехпозиционного способа управления.

В выключенном положении электропривод работает в нормальном режиме в соответствии с аналоговым управляющим сигналом, в положении «ON» – как трехпозиционный.

Для трехпозиционного способа управления электрические соединения должны быть выполнены в соответствии со схемой на стр. 245.

Если DIP-переключатель (6) установлен на «ON», все функции других DIP-переключателей становятся неактивными.

#### Переключатель 7

Для выбора равнопроцентной (логарифмической) или линейной характеристики регулирования.

В выключенном положении расход регулируемой среды через клапан меняется по логарифмическому закону. В положении «ON» расход теплоносителя через клапан меняется по линейному закону.

#### Переключатель 8

Для ограничения пропускной способности клапана.

Должен быть поставлен в выключенное положение «OFF».

# Переключатель 9 (перезапуск)

При изменении положения данного переключателя электропривод осуществит цикл самонастройки под ход штока клапана.

**252** RC.08.V4.50 05/2009

#### Техническое описание

### Редукторный электропривод AME 15 QM

# Схема электрических соединений

#### Внимание!

Питающее напряжение только 24 В пер. тока!



### Функция автоматической самонастройки

При подводе напряжения электропривод автоматически настроится на величину хода штока клапана. Затем изменив положения переключателя (9), можно снова инициировать функцию самоподстройки.

#### Диагностирующий светодиод

Диагностирующий светодиод расположен под крышкой электропривода. Светодиод обеспечивает индикацию трех рабочих функций: нормальное функционирование электропривода (постоянное свечение); самоподстройка (мигание 1 раз в секунду); неисправность (мигание 3 раза в секунду) – требуется техническая помощь.



Примечание. При использовании данной схемы соединений переключатель 6 должен быть установлен в положение «ON».

| Суммарная длина<br>жил кабеля, м | Рекомендуемое сечение жилы кабеля, мм² |
|----------------------------------|----------------------------------------|
| 0–50                             | 0,75                                   |
| >50                              | 1,5                                    |

SP — фаза питающего напряжения

(24 В пер. тока)

SN — общий (0 B)

Χ

входной управляющий сигнал (0–10 или 2–10 В, 0–20 или 4–20 мА)

 выходной сигнал обратной связи (0–10 или 2–10 В)

# Подготовка к запуску

В процессе подготовки к запуску необходимо завершить монтаж (механической и электрической части), а также выполнить следующие процедуры.

- Перекрыть регулируемую среду, так как при настройках привода могут возникнуть опасные ситуации.
- Подать напряжение. После этого привод начнет выполнять самонастройку.
- Подать управляющий сигнал и проверить правильность направления движения штока клапана в соответствии с технологической задачей.
- Убедиться, что электропривод обеспечивает необходимый ход штока клапана при максимальном управляющем сигнале.

Исполнительный механизм готов к запуску системы.

#### Запуск и тестирование

Электропривод может менять направление перемещения штока клапана (открывать или закрывать клапан в зависимости от его типа)

при изменении соединения клеммы SN с клеммами 1 или 3.

#### **Утилизация**

Перед снятием с эксплуатации электропривод должен быть демонтирован, а его элементы рассортированы по группам материалов.

RC.08.V4.50 05/2009 253



#### Ручное позиционирование



Ручное позиционирование осуществляется вращением рукоятки привода. При этом необходимо следить за направлением перемещения штока привода.

В случае выполнения ручного позиционирования сигналы X и Y будут некорректны, пока шток привода не достигнет своего крайнего положения. Если этого не происходит, нужно установить комплект элементов обратной связи.

Порядок действий при ручном позиционировании:

- отключить подачу питания;
- отрегулировать положение клапана, используя рукоятку ручного позиционирования;
- перевести клапан в полностью закрытое по-
- возобновить подачу напряжения.

#### Монтаж



#### Механическая часть

Электропривод должен устанавливаться на клапане либо горизонтально, либо вертикально сверху. Для крепления электропривода на клапане используется 4-мм торцевой шестигранный ключ (в комплект поставки не входит).

Вокруг клапана с приводом должно быть предусмотрено свободное пространство для их обслуживания.

Во время запуска для индикации крайних положений штока клапана (полностью открыт и полностью закрыт) используются красная и синяя метки на шкале позиционирования (входят в комплект поставки).

#### Электрическая часть

Подключение электрических соединений производится при снятой крышке. В комплект поставки входят 2 кабельных ввода М16 х 1,5. Чтобы обеспечить требуемый класс защиты (IP), необходимо использовать соответствующие кабельные уплотнители.

#### Габаритные размеры



**254** RC.08.V4.50 05/2009