

LISTING OF THE CLAIMS
(including amendments, if any)

1. (currently amended) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

identifying R unique n-grams $T_{1\dots R}$ in the string;

for every unique n-gram T_S :

if a frequency of T_S in a set of n-gram statistics is not greater than a first threshold:

clustering the string with a cluster associated with T_S ;

otherwise:

for every other n-gram T_V in the string $T_{1\dots R}$, except S:

if concluding that the frequency of n-gram T_V is greater than the first threshold, **and in response**:

if the frequency of an n-gram pair T_S-T_V is not greater than a second threshold:

clustering the string with a cluster associated with the n-gram pair

T_S-T_V ;

otherwise:

for every other n-gram T_X in the string $T_{1\dots R}$, except S and V:

clustering the string with a cluster associated with an n-gram

triple $T_S-T_V-T_X$;

otherwise:

do nothing,

where $T_{1\dots R}$ is a set of n-grams, R is the number of elements in $T_{1\dots R}$, and T_S , T_V , and T_X are members of $T_{1\dots R}$.

2. (original) The method of claim 1 further including compiling n-gram statistics.

3. (original) The method of claim 1 further including compiling n-gram pair statistics.

4. (currently amended) A method implemented in a computer system, for clustering a plurality of strings, each string including a plurality of characters, the method including:

identifying unique n-grams in each string; and

~~clustering each string with zero or more clusters associated with low frequency n-grams from that string; and~~

concluding that (a) none of the unique n-grams are low frequency n-grams and that

(b) one or more pairs of high frequency n-grams from the string are low frequency pairs and, in response, clustering each string with ~~zero~~ one or more

clusters associated with low-frequency pairs of high frequency n-grams from that string.

5. (currently amended) A The method ~~of claim 4 further including~~ implemented in a computer system, for clustering a plurality of strings, each string including a plurality of characters, the method including:

identifying unique n-grams in each string; and

concluding that (a) none of the unique n-grams are low frequency n-grams and that

(b) no pairs of high frequency n-grams from the string are low frequency pairs and, in response, where a string does not include any low frequency pairs of high frequency n-grams, associating that string with clusters associated with triples of n-grams including the pair.

1 6. (previously presented) A method implemented in a computer system, for clustering a string,
2 the string including a plurality of characters, the method including:
3 identifying R unique n-grams $T_{1\dots R}$ in the string;
4 for every unique n-gram T_S :
5 if a frequency of T_S in a set of n-gram statistics is not greater than a first threshold:
6 clustering the string with a cluster associated with T_S ;
7 otherwise:
8 for i = 1 to Y:
9 for every unique set of i n-grams T_U in the string $T_{1\dots R}$, except S:
10 if the frequency of the n-gram set T_S-T_U is not greater than a second
11 threshold:
12 clustering the string with a cluster associated with the n-gram set
13 T_S-T_U ;
14 if the string has not been associated with a cluster with this value of T_S :
15 for every unique set of Y+1 n-grams T_{UY} in the string $T_{1\dots R}$, except S:
16 clustering the string with a cluster associated with the Y+2 n-gram
17 group T_S-T_{UY} ,
18 where $T_{1\dots R}$ is a set of n-grams, R is the number of elements in $T_{1\dots R}$, T_S and T_U are
19 members of $T_{1\dots R}$, T_{UY} is a subset of $T_{1\dots R}$, and i and Y are integers.

7. (original) The method of claim 6 where Y = 1.
 8. (original) The method of claim 6 further including compiling n-gram statistics.
 9. (original) The method of claim 6 further including compiling n-gram group statistics.
 10. **(currently amended)** A computer program, stored on a tangible storage medium, for use in clustering a string, the program including executable instructions that cause a computer to:
 - identify R unique n-grams $T_{1\dots R}$ in the string;
 - for every unique n-gram T_S :
 - if a frequency of T_S in a set of n-gram statistics is not greater than a first threshold:
 - cluster the string with a cluster associated with T_S ;
 - otherwise:
 - for every other n-gram T_V in the string $T_{1\dots R}$, except S:
 - if concluding that** the frequency of n-gram T_V is greater than the first threshold, **and in response:**
 - if the frequency of an n-gram pair T_S-T_V is not greater than a second threshold:
 - cluster the string with a cluster associated with the n-gram pair T_S-T_V ;
 - otherwise
 - for every other n-gram T_X in the string $T_{1\dots R}$, except S and V:
 - cluster the string with a cluster associated with an n-gram triple $T_S-T_V-T_X$;
- otherwise:**
- do nothing,**
- where $T_{1\dots R}$ is a set of n-grams, R is the number of elements in $T_{1\dots R}$, and T_S , T_V , and T_X are members of $T_{1\dots R}$.

11. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram statistics.

12. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram pair statistics.