# Modeling Count Data

Readings GH Chapter 6-8

September 23, 2019

► The variables couples and women\_alone code the intervention:

- ► The variables couples and women\_alone code the intervention:
  - control no counselling (both 0)

- The variables couples and women\_alone code the intervention:
  - control no counselling (both 0)
  - the couple was counselled together (couple=1, women\_alone=0)

- The variables couples and women\_alone code the intervention:
  - control no counselling (both 0)
  - the couple was counselled together (couple=1, women\_alone=0)
  - only the woman was counselled (couple=0, women\_alone=1)

- The variables couples and women\_alone code the intervention:
  - control no counselling (both 0)
  - the couple was counselled together (couple=1, women\_alone=0)
  - only the woman was counselled (couple=0, women\_alone=1)
- bs\_hiv indicates whether the member reporting sex acts was HIV-positive at "baseline" (the beginning of the study)

- The variables couples and women\_alone code the intervention:
  - control no counselling (both 0)
  - the couple was counselled together (couple=1, women\_alone=0)
  - only the woman was counselled (couple=0, women\_alone=1)
- bs\_hiv indicates whether the member reporting sex acts was HIV-positive at "baseline" (the beginning of the study)
- bupacts number of unprotected sex acts reported at "baseline"

- The variables couples and women\_alone code the intervention:
  - control no counselling (both 0)
  - the couple was counselled together (couple=1, women\_alone=0)
  - only the woman was counselled (couple=0, women\_alone=1)
- bs\_hiv indicates whether the member reporting sex acts was HIV-positive at "baseline" (the beginning of the study)
- bupacts number of unprotected sex acts reported at "baseline"
- fupacts number of unprotected sex acts reported at the end of the study

- The variables couples and women\_alone code the intervention:
  - control no counselling (both 0)
  - the couple was counselled together (couple=1, women\_alone=0)
  - only the woman was counselled (couple=0, women\_alone=1)
- bs\_hiv indicates whether the member reporting sex acts was HIV-positive at "baseline" (the beginning of the study)
- bupacts number of unprotected sex acts reported at "baseline"
- fupacts number of unprotected sex acts reported at the end of the study
- ▶ sex factor with levels "woman" and "man". This is the member of the couple that reports sex acts to the researcher

Data, Design & balance halance x-variables

## sex couples

| ## | sex '       | couples |       |      |     | ${\tt women\_alone}$ |       |      |      |     |      |   |
|----|-------------|---------|-------|------|-----|----------------------|-------|------|------|-----|------|---|
| ## | woman:217   | Mir     | ı.    | :0.  | 00  | 000                  | Min.  |      | :0.0 | 000 | )    |   |
| ## | man :217    | 1st     | t Qu  | :0.  | 00  | 000                  | 1st ( | Ųu.  | :0.0 | 000 | )    |   |
| ## |             | Med     | dian  | :0.  | 00  | 000                  | Media | an   | :0.0 | 000 | )    |   |
| ## |             | Mea     | an    | :0.  | 37  | 334                  | Mean  |      | :0.3 | 364 | ر جا | m |
| ## |             | 3rc     | d Qu. | :1.  | 00  | 000                  | 3rd ( | Ųu.  | :1.0 | 000 | )    | • |
| ## |             | Max     | ζ.    | :1.  | 00  | 000                  | Max.  |      | :1.0 | 000 | )    |   |
| ## | bs_hiv      |         | ł     | oupa | .ct | s                    |       | f    | upac | cts |      |   |
| ## | negative:33 | 7       | Min.  | •    | :   | 0.00                 | ) M:  | in.  | :    | (   | 0.00 |   |
| ## | positive: 9 | 7       | 1st   | Qu.  | :   | 5.00                 | 1 :   | st ( | Qu.: | (   | 0.00 |   |
| ## |             |         | Medi  | ian  | :   | 15.00                | ) Me  | edia | an : |     | 5.00 |   |
| ## |             |         | Mear  | 1    | :   | 25.91                | . Me  | ean  | :    | 16  | 5.49 |   |
| ## |             |         | 3rd   | Qu.  | :   | 36.00                | ) 31  | rd ( | Qu.: | 21  | 1.00 |   |
| ## |             |         | Max.  | •    | :3  | 300.00               | ) Ma  | ax.  | :    | 200 | 0.00 |   |
|    | Pop 3       | l is    | (     | 01   | h   | X                    | •     | 5    | X    |     |      |   |

margina (

Response fupacts - Counts number of unprotected sex acts reported at the end of the study  $\lambda : = \beta x$ 

$$Y_i \mid \lambda_i \sim P(\lambda_i)$$

$$p(y_i) = \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!} \qquad y_i = 0, 1, \dots, \qquad \lambda_i > 0$$

Used for counts with no upper limit

Response fupacts - Counts number of unprotected sex acts reported at the end of the study

$$Y_i \mid \lambda_i \sim P(\lambda_i)$$

$$p(y_i) = \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!} \qquad y_i = 0, 1, \dots, \qquad \lambda_i > 0$$

- Used for counts with no upper limit
- $ightharpoonup E(Y_i) = V(Y_i) = \lambda_i$

Response fupacts - Counts number of unprotected sex acts reported at the end of the study

$$Y_i \mid \lambda_i \sim P(\lambda_i)$$

$$p(y_i) = \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!} \qquad y_i = 0, 1, \dots, \qquad \lambda_i > 0$$

- Used for counts with no upper limit
- $ightharpoonup E(Y_i) = V(Y_i) = \lambda_i$
- How to build in covariates into the mean?

Response fupacts - Counts number of unprotected sex acts reported at the end of the study

$$Y_i \mid \lambda_i \sim P(\lambda_i)$$

$$p(y_i) = \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!} \qquad y_i = 0, 1, \dots, \qquad \lambda_i > 0$$

Log trans

- Used for counts with no upper limit
- $ightharpoonup E(Y_i) = V(Y_i) = \lambda_i$
- ► How to build in covariates into the mean?

$$\lambda_{i} > 0 \Leftrightarrow \underbrace{\log(\lambda_{i}) = \eta_{i} \in \mathbb{R}}_{i}$$

$$\lambda_{i} > 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$$

Response fupacts - Counts number of unprotected sex acts reported at the end of the study

The end of the study
$$Y_{i} \mid \lambda_{i} \sim P(\lambda_{i})$$

$$p(y_{i}) = \begin{cases} y_{i} \\ y_{i}! \end{cases} \qquad y_{i} = 0, 1, \dots, \qquad \lambda_{i} > 0 \end{cases} \quad y_{i} = 0, 1, \dots, \quad \lambda_{i} > 0$$

- Used for counts with no upper limit
- $ightharpoonup E(Y_i) = V(Y_i) = \lambda_i$
- ► How to build in covariates into the mean?
- $\lambda_i > 0 \Leftrightarrow \log(\lambda_i) = \eta_i \in \mathbb{R}$
- log link

#### Generalized Linear Model

► Canonical Link function for Poisson data is the log link

$$\log(\lambda_i) = \eta_i = \beta_0 + X_1 \beta_1 + \dots + X_p \beta_p$$
$$\lambda = \exp(\beta_0 + X_1 \beta_1 + \dots + X_p \beta_p)$$

$$\lambda^* = \exp(\beta_0 + X_1 \beta_1 + \dots (X_j + 1)\beta_j + \dots X_p \beta_p)$$

$$\lambda^* = \exp(\beta_j) \exp(\beta_0 + X_1 \beta_1 + \dots X_j \beta_j + \dots X_p \beta_p)$$

$$\lambda^* = \exp(\beta_j) \lambda$$

$$\lambda^* / \lambda = \exp(\beta_j)$$

#### Generalized Linear Model

► Canonical Link function for Poisson data is the log link

$$\log(\lambda_i) = \eta_i = \beta_0 + X_1 \beta_1 + \dots X_p \beta_p$$
$$\lambda = \exp(\beta_0 + X_1 \beta_1 + \dots X_p \beta_p)$$

▶ Holding all other X's fixed a 1 unit change in  $X_j$ 

$$\lambda^* = \exp(\beta_0 + X_1 \beta_1 + \dots (X_j + 1)\beta_j + \dots X_p \beta_p)$$

$$\lambda^* = \exp(\beta_j) \exp(\beta_0 + X_1 \beta_1 + \dots X_j \beta_j + \dots X_p \beta_p)$$

$$\lambda^* = \exp(\beta_j) \lambda$$

$$\lambda^* / \lambda = \exp(\beta_j)$$

#### Generalized Linear Model

Canonical Link function for Poisson data is the log link

$$\log(\lambda_i) = \eta_i = \beta_0 + X_1 \beta_1 + \dots X_p \beta_p$$
$$\lambda = \exp(\beta_0 + X_1 \beta_1 + \dots X_p \beta_p)$$

▶ Holding all other X's fixed a 1 unit change in  $X_j$ 

$$\lambda^* = \exp(\beta_0 + X_1\beta_1 + \dots (X_j + 1)\beta_j + \dots X_p\beta_p)$$
 $\lambda^* = \exp(\beta_j) \exp(\beta_0 + X_1\beta_1 + \dots X_j\beta_j + \dots X_p\beta_p)$ 
 $\lambda^* = \exp(\beta_j)\lambda$ 
 $\lambda^*/\lambda = \exp(\beta_j)$ 
 $\lambda^*/\lambda = \exp(\beta_j)$ 
 $\lambda^*/\lambda = \exp(\beta_j)$ 

 $\triangleright$  exp( $\beta_i$ ) is called a "relative risk" (risk relative to some baseline)

#### Model

```
hiv.glm = glm(fupacts ~ bs_hiv + log(bupacts +1) + sex +
              couples + women alone, data=hiv,
             family=poisson(link="log"))
                   Estimate Std. Error z value Pr(>|z|)
##
                   1.10334
                               0.04706 \quad 23.445 \quad < 2e-16 **
## (Intercept)
                               0.03543 -11.445 < 2e-16 **
## bs_hivpositive -0.40556
## log(bupacts + 1) 0.66456
                               0.01217 54.596 < 2e-16 **
                    -0.08181
                               0.02368 -3.454 0.000551 **
## sexman
## couples
                   -0.30894
                               0.02799 - 11.038 < 2e - 16 *
## women alone
                   -0.50952
                               0.03031 - 16.810
                                                < 2e-16 **
##
   (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 13298.6
##
                              on 433
                                      degrees of freedom
## Residual deviance: 9184.3
                              on 428
                                      degrees of freedom
```

##

## AIC: 10521

# Model Choice and Model Checking pseudo-count: X; = X; +1

#### 2 Questions:

1. Is my Model good enough? (no alternative models in mind)

# Model Choice and Model Checking

#### 2 Questions:

- 900 duess of Sit.
- 1. Is my Model good enough? (no alternative models in mind)
- 2. Which Model is best? (comparison among a subset of models)



# Model Choice and Model Checking

#### 2 Questions:

- 1. Is my Model good enough? (no alternative models in mind)
- 2. Which Model is best? (comparison among a subset of models)
  - Note that 2 does not imply 1.

# Over-Dispersion, Goodness of Fit or Lack of Fit? 1: $(94) \times (91) = 31$

• deviance is -2 log(likelihood) evaluated at the MLE of the parameters in that model  $\hat{\lambda}_i = \exp(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$ 

$$\frac{-2\sum_{i}(y_{i}\log(\hat{\lambda}_{i})-\hat{\lambda}_{i}-\log(y_{i}!))}{\log(\hat{\lambda}_{i})} = \mathbb{E}(\log(y_{i}!)) =$$

▶ deviance is -2 log(likelihood) evaluated at the MLE of the parameters in that model  $\hat{\lambda}_i = \exp(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$ 

$$-2\sum_{i}(y_{i}\log(\hat{\lambda}_{i})-\hat{\lambda}_{i}-\log(y_{i}!))$$

smaller is better (larger likelihood)

▶ deviance is -2 log(likelihood) evaluated at the MLE of the parameters in that model  $\hat{\lambda}_i = \exp(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$ 

$$-2\sum_{i}(y_{i}\log(\hat{\lambda}_{i})-\hat{\lambda}_{i}-\log(y_{i}!))$$

- smaller is better (larger likelihood)
- ▶ null deviance is the deviance under the "Null" model, that is a model with just an intercept or  $\lambda_i = \lambda$  and  $\hat{\lambda} = \bar{Y}$

▶ deviance is -2 log(likelihood) evaluated at the MLE of the parameters in that model  $\hat{\lambda}_i = \exp(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$ 

$$-2\sum_{i}(y_{i}\log(\hat{\lambda}_{i})-\hat{\lambda}_{i}-\log(y_{i}!))$$

- smaller is better (larger likelihood)
- ▶ null deviance is the deviance under the "Null" model, that is a model with just an intercept or  $\lambda_i = \lambda$  and  $\hat{\lambda} = \bar{Y}$
- rightharpoonup saturated model deviance is the deviance of a model where each observation has its own unique  $\lambda_i$  and the MLE of  $\hat{\lambda}_i = y_i$ ,



▶ deviance is -2 log(likelihood) evaluated at the MLE of the parameters in that model  $\hat{\lambda}_i = \exp(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$ 

$$-2\sum_{i}(y_{i}\log(\hat{\lambda}_{i})-\hat{\lambda}_{i}-\log(y_{i}!))$$

- smaller is better (larger likelihood)
- ▶ null deviance is the deviance under the "Null" model, that is a model with just an intercept or  $\lambda_i = \lambda$  and  $\hat{\lambda} = \bar{Y}$
- rightharpoonup saturated model deviance is the deviance of a model where each observation has its own unique  $\lambda_i$  and the MLE of  $\hat{\lambda}_i = y_i$ ,
- ► the change in deviance has a Chi-squared distribution with degrees of freedom equal to the change in number of parameters in the models.

#### Residual Deviance

the residual deviance is the change in the deviance between the given model and the saturated model. Substituting the expressions for deviance, we have

$$D = -2\sum_{i} \left( y_{i} \log(\hat{\lambda}_{i}) - \hat{\lambda}_{i} - \log(y_{i}!) \right) -$$

$$-2\sum_{i} \left( y_{i} \log(y_{i}) - y_{i} - \log(y_{i}!) \right)$$

$$=2\sum_{i} \left( y_{i} (\log(y_{i}) - \log(\hat{\lambda}_{i})) - (y_{i} - \hat{\lambda}_{i})) \right)$$

$$=2\sum_{i} \left( y_{i} (\log(y_{i}/\hat{\lambda}_{i}) - (y_{i} - \hat{\lambda}_{i})) \right) =$$

$$\sum_{i} d_{i}$$

This has a Chi-squared distribution with n-p degrees of freedom. (p is the number of parameters in the linear predictor)

#### Test in R for lack of fit or overdispersion

## Residual deviance: 9184.3 on 428 degrees of freedom

Estimate of overdispersion: Residual Deviance/ Residual df = 21.46

Overdispersion if *significantly* greater than 1.

Formal Test

```
## [1] 0
```

The above p-value suggests that a residual deviance as large or larger than what we observed under the model in hiv.glm is highly unlikely!

Suggests that the model is not adequate or lack of fit.

#### Diagnostics Plots









# Standardized Residuals



# Binned Residuals library(arm)



# Overdispersed Poisson - QuasiLikelihood

```
hiv.glmod = glm(fupacts ~ bs_hiv + log(bupacts +1) + sex +
            couples + women alone, data=hiv,
            family=quasipoisson(link="log"))
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.10334
                            0.24820 4.445 1.12e-05 **
## bs_hivpositive -0.40556 0.18689 -2.170 0.03055 *
## log(bupacts + 1) 0.66456 0.06420 10.352 < 2e-16 **
                 -0.08181 0.12491 -0.655 0.51283
## sexman
          ## couples
## women_alone -0.50952 0.15986 -3.187 0.00154 **
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for quasipoisson family taken to 1
##
      Null deviance: 13298.6
                           on 433
                                  degrees of freedom
##
## Residual deviance: 9184.3
                                  degrees of freedom
                           on 428
## AIC: NA
```

#### Negative Binomial Distribution

➤ The formulation of the negative binomial distribution as a gamma mixture of Poissons can be used to model count data with overdispersion.

$$p(y \mid \mu, \theta) = \frac{\Gamma(y + \theta)}{y!\Gamma(\theta)} \left(\frac{\theta}{\theta + \mu}\right)^{\theta} \left(\frac{\mu}{\theta + \mu}\right)^{y}$$

$$E(Y) = \chi$$

$$Var(Y) \neq \chi$$

$$Var(Y) > \chi$$

#### Negative Binomial Distribution

➤ The formulation of the negative binomial distribution as a gamma mixture of Poissons can be used to model count data with overdispersion.

$$p(y \mid \mu, \theta) = \frac{\Gamma(y + \theta)}{y! \Gamma(\theta)} \left(\frac{\theta}{\theta + \mu}\right)^{\theta} \left(\frac{\mu}{\theta + \mu}\right)^{y}$$

The negative binomial distribution has two parameters:

#### Negative Binomial Distribution

► The formulation of the negative binomial distribution as a gamma mixture of Poissons can be used to model count data with overdispersion.

$$p(y \mid \mu, \theta) = \frac{\Gamma(y + \theta)}{y! \Gamma(\theta)} \left(\frac{\theta}{\theta + \mu}\right)^{\theta} \left(\frac{\mu}{\theta + \mu}\right)^{y}$$

- ► The negative binomial distribution has two parameters:
  - $\mu$  is the mean or expected value of the distribution  $\mu_i = \exp(\mathbf{x}_i^T \beta)$

### Negative Binomial Distribution

► The formulation of the negative binomial distribution as a gamma mixture of Poissons can be used to model count data with overdispersion.

$$p(y \mid \mu, \theta) = \frac{\Gamma(y + \theta)}{y! \Gamma(\theta)} \left(\frac{\theta}{\theta + \mu}\right)^{\theta} \left(\frac{\mu}{\theta + \mu}\right)^{y}$$

- ► The negative binomial distribution has two parameters:
  - ▶ μ is the mean or expected value of the distribution  $μ_i = \exp(\mathbf{x}_i^T β)$
  - ▶ a is the over dispersion parameter  $V(Y) = \mu + \mu^2/\theta$

### Negative Binomial Distribution

► The formulation of the negative binomial distribution as a gamma mixture of Poissons can be used to model count data with overdispersion.

$$p(y \mid \mu, \theta) = \frac{\Gamma(y + \theta)}{y! \Gamma(\theta)} \left(\frac{\theta}{\theta + \mu}\right)^{\theta} \left(\frac{\mu}{\theta + \mu}\right)^{y}$$

- ► The negative binomial distribution has two parameters:
  - ▶ μ is the mean or expected value of the distribution  $μ_i = \exp(\mathbf{x}_i^T β)$
  - a is the over dispersion parameter  $V(Y) = \mu + \mu^2/\theta$
- ▶ When  $\theta \to \infty$  the negative binomial distribution is the same as a Poisson distribution

### Negative Binomial Distribution

► The formulation of the negative binomial distribution as a gamma mixture of Poissons can be used to model count data with overdispersion.

$$p(y \mid \mu, \theta) = \frac{\Gamma(y + \theta)}{y! \Gamma(\theta)} \left(\frac{\theta}{\theta + \mu}\right)^{\theta} \left(\frac{\mu}{\theta + \mu}\right)^{y}$$

- ► The negative binomial distribution has two parameters:
  - ▶ μ is the mean or expected value of the distribution  $μ_i = \exp(\mathbf{x}_i^T β)$
  - a is the over dispersion parameter  $V(Y) = \mu + \mu^2/\theta$
- ▶ When  $\theta \to \infty$  the negative binomial distribution is the same as a Poisson distribution
- Same interpretation of  $\beta$  in terms of relative risks as in Poisson model.

#### Review of Mixtures

$$Y \mid \lambda \sim \mathsf{Poi}(\lambda)$$
 $p(y \mid \lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$ 
 $\lambda \mid \mu, \theta \sim \mathsf{Gamma}(\theta, \theta/\mu)$ 
 $p(\lambda \mid \mu, \theta) = \frac{(\theta/\mu)^{\theta}}{\Gamma(\theta)} \lambda^{\theta-1} e^{-\lambda \theta/\mu}$ 
 $p(Y \mid \mu, \theta) = \int p(Y \mid \lambda) p(\lambda \mid \theta, \theta/\mu) d\lambda$ 
 $= \frac{\Gamma(y + \theta)}{y! \Gamma(\theta)} \left(\frac{\theta}{\theta + \mu}\right)^{\theta} \left(\frac{\mu}{\theta + \mu}\right)^y$ 
 $Y \mid \mu, \theta \sim \mathsf{NegBin}(\mu, \theta)$ 

# Iterated Expectations Review

▶ expectation  $E[Y] = E_{\lambda}[E_{Y}[Y \mid \lambda]]$ 

## Iterated Expectations Review

- ▶ expectation  $E[Y] = E_{\lambda}[E_{Y}[Y \mid \lambda]]$
- variance

$$Var[Y] = Var_{\lambda}[E_{Y}[Y \mid \lambda]] + E_{\lambda}[Var_{Y}[Y \mid \lambda]]$$

Variance(Expected Value) + Expected Value(Variance)

### Iterated Expectations Review

- ▶ expectation  $E[Y] = E_{\lambda}[E_{Y}[Y \mid \lambda]]$
- variance

$$Var[Y] = Var_{\lambda}[E_{Y}[Y \mid \lambda]] + E_{\lambda}[Var_{Y}[Y \mid \lambda]]$$

Variance(Expected Value) + Expected Value(Variance)

 You should be able to derive the mean and variance of the NegBin using the above expressions (HW)

# Fitting the Negative Binomial Model in R

associated summary and plot functions available

# Model Summary (subset)

## Coefficients:

```
##
                 Estimate Std. Error z value Pr(>|z|)
                            0.24261
## (Intercept)
                  1.25829
                                     5.186 2.14e-07 **
## bs hivpositive -0.51314
                            0.18384 -2.791 0.005251 **
## log(bupacts + 1) 0.61832 0.06470 9.557 < 2e-16 **
                 0.05974 0.14917 0.400 0.688796
## sexman
                ## couples
## women_alone -0.64007 0.18901 -3.386 0.000708 **
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for Negative Binomial(0.4358) fam:
##
##
      Null deviance: 603.09 on 433
                                degrees of freedom
## Residual deviance: 487.97 on 428
                                 degrees of freedom
## AIC: 2953.3
##
```

|                     | RR   | 2.5  | 97.5 |
|---------------------|------|------|------|
| (Intercept)         | 3.52 | 2.21 | 5.69 |
| bs_hivpositive      | 0.60 | 0.42 | 0.88 |
| $\log(bupacts + 1)$ | 1.86 | 1.64 | 2.10 |
| sexman              | 1.06 | 0.79 | 1.43 |
| couples             | 0.69 | 0.48 | 1.01 |
| women_alone         | 0.53 | 0.36 | 0.77 |

ightharpoonup 1 = no change

|                     | RR   | 2.5  | 97.5 |
|---------------------|------|------|------|
| (Intercept)         | 3.52 | 2.21 | 5.69 |
| bs_hivpositive      | 0.60 | 0.42 | 0.88 |
| $\log(bupacts + 1)$ | 1.86 | 1.64 | 2.10 |
| sexman              | 1.06 | 0.79 | 1.43 |
| couples             | 0.69 | 0.48 | 1.01 |
| women_alone         | 0.53 | 0.36 | 0.77 |

- ightharpoonup 1 = no change
- ► Values less than 1 imply decrease

|                  | RR   | 2.5  | 97.5 |
|------------------|------|------|------|
| (Intercept)      | 3.52 | 2.21 | 5.69 |
| bs_hivpositive   | 0.60 | 0.42 | 0.88 |
| log(bupacts + 1) | 1.86 | 1.64 | 2.10 |
| sexman           | 1.06 | 0.79 | 1.43 |
| couples          | 0.69 | 0.48 | 1.01 |
| women_alone      | 0.53 | 0.36 | 0.77 |
|                  |      |      |      |

- ightharpoonup 1 = no change
- ► Values less than 1 imply decrease
- ► Values greater than 1 imply increase

|                     | RR   | 2.5  | 97.5 |
|---------------------|------|------|------|
| (Intercept)         | 3.52 | 2.21 | 5.69 |
| bs_hivpositive      | 0.60 | 0.42 | 0.88 |
| $\log(bupacts + 1)$ | 1.86 | 1.64 | 2.10 |
| sexman              | 1.06 | 0.79 | 1.43 |
| couples             | 0.69 | 0.48 | 1.01 |
| women_alone         | 0.53 | 0.36 | 0.77 |

- ightharpoonup 1 = no change
- Values less than 1 imply decrease
- Values greater than 1 imply increase
- ► to obtain percent increase RR 1 or Cl 1 and multiply by 100%

|                     | RR   | 2.5  | 97.5 |
|---------------------|------|------|------|
| (Intercept)         | 3.52 | 2.21 | 5.69 |
| bs_hivpositive      | 0.60 | 0.42 | 0.88 |
| $\log(bupacts + 1)$ | 1.86 | 1.64 | 2.10 |
| sexman              | 1.06 | 0.79 | 1.43 |
| couples             | 0.69 | 0.48 | 1.01 |
| women_alone         | 0.53 | 0.36 | 0.77 |

- ightharpoonup 1 = no change
- ► Values less than 1 imply decrease
- Values greater than 1 imply increase
- ▶ to obtain percent increase RR 1 or Cl 1 and multiply by 100%
- to obtain percent decrease 1 RR or 1 Cl and multiply by 100%

The intervention had a significant impact on reducing the number of unprotected sex acts:

In couples where only the woman took part in the counseling sessions, we estimated a significant decrease in unprotected sex acts of 47%; 95% CI: (23, 64)

The intervention had a significant impact on reducing the number of unprotected sex acts:

- In couples where only the woman took part in the counseling sessions, we estimated a significant decrease in unprotected sex acts of 47%; 95% CI: (23, 64)
- When both partners were counseled unprotected acts are expected to decrease by 31% (although p.value > .05)

The intervention had a significant impact on reducing the number of unprotected sex acts:

- In couples where only the woman took part in the counseling sessions, we estimated a significant decrease in unprotected sex acts of 47%; 95% CI: (23, 64)
- When both partners were counseled unprotected acts are expected to decrease by 31% (although p.value > .05)
- ► There is no evidence to suggest that the sex of the partner who reports to the researcher has an effect on the number of unprotected acts.

The intervention had a significant impact on reducing the number of unprotected sex acts:

- In couples where only the woman took part in the counseling sessions, we estimated a significant decrease in unprotected sex acts of 47%; 95% CI: (23, 64)
- When both partners were counseled unprotected acts are expected to decrease by 31% (although p.value > .05)
- ► There is no evidence to suggest that the sex of the partner who reports to the researcher has an effect on the number of unprotected acts.
- ► There is evidence to suggest that if the partner who reports is HIV positive there is a significant reduction of unprotected acts of 40%; 95% CI: (12, 58)