1) Definitions & Properties Linear Dependence - If we have pivot vars, we p	Matrix A is orthogonal ⇔ columns of A are perpendicular	3) The transformations performed by an orthogonal matrix can be interpreted as a	10) Jordan Normal Form A matrix is in Jordan Normal Form if it is of	6) H _u preserves Euclidian length and angles between vectors as it is orthogonal. Because of	16) Condition Numbers Condition numbers are the measure of	18) Iterative Techniques for computing Eigenvectors and Eigenvalues	These look like rings at a height k, around the parts of the graph which assume that value.
are linearly independent, else we're not.		change of basis or a series of rotations and reflections. Orthogonal transformations don't	this form:	this any rotations and reflections are		It's O(n ⁴) to get eigenvectors, (Solve CP; GE for EVecs). Need numerical methods:	Like contour maps, the surface is steep where level curves are close.
For a matrix R'''' n = rows, m = cols. Rows are across the matrix, cols are down the matrix.	Computational Techniques 1) Vector Norms Computing size on a vector.	change the norm	, , , , , , , , , , , , , , , , , , ,	preserve the aforementioned things).	1) Calculating Condition Numbers:	The Dominant Eigenvalue of A is the	19.2) Partial Derivatives
N. 1. (4) N. 1. (4)	Properties: For vector x, y in Rn, scalar k	5) All eigenvalues have modulus 1	$\begin{bmatrix} 0 & \cdots & J_{k_n}(\lambda_n) \end{bmatrix}$ Each $J_{k_n}(\lambda_n)$ is a Jordan block of size k_n with a	 7) The orthogonal projection Q on the hyperplane P is given by: Q = I - uu^T with Q² = Q 	$\kappa(P) = \max_{\epsilon} \frac{\ s(d) - s(d + \epsilon)\ }{\ \epsilon\ }$	eigenvalue with the largest modulus, a dominant eigenvector is an eigenvector of a	For a function of two variables, the partial derivatives are denoted by
	1) x > 0. (for non-zero x) 2) kx = k x	Properties of Symmetric Matrices: Defined by A ^T = A.	diagonal (not always unique) coefficient λ_i :	and Q = Q ^T 14) Application of the OR Decomposition to	2) Relative Condition Number: $ d s(d) - s(d + \epsilon) $	dominant eigenvalue. Power Iteration Theorem:	$f_{x}(x, y) = \lim_{h \to 0} f(x+h, y) - f(x,y)/h$
k ⁿ det(A) det(A) = 0 ⇔ No Inverse.	3) $\ \mathbf{x} + \mathbf{y}\ \le \ \mathbf{x}\ + \ \mathbf{y}\ $ $L_n \text{ norm is } \ \mathbf{v}\ _p = (\sum_{i=1}^n v_i ^p)^{1/p}$	 If A is a real symmetric matrix, then all its 	[^{λ_i} 0]	Symmetric Matrices If A is symmetric, so are all the A, If A is	$ s(d) $ $ \epsilon $	Let A ∈ R ⁿⁿ be a diagonalisable matrix with	$f_v(x, y) = \lim_{h\to 0} f(x, y+h) - f(x, y)/h$ (AKA just differentiate with respect to 1 and
Else, det(A ⁻¹) = 1/det(A).	$L_1 = \text{Sum of absolute vector elems}$	Eigenvalues are real. 2) If A is a real symmetric matrix, then for	$[0 \cdots \lambda_i]$ Even if $A \in \mathbb{R}^{nn}$, a JNF might not be in \mathbb{R}^{nn} but	symmetric, the algorithm converges, under	 Condition Numbers on Square Matrices: Let A be a non-singular matrix. The Condition 	eigenvalues of distinct modulus. Let \(\lambda\) ∈ R be the dominant eigenvalue.	treat the other as a constant). Geometrically, the partial derivatives of a 2
Dets only exist for Sq Matrices, we get them by getting REF and multiplying by lead diag.	L ₂ = Euclidean Norm L _m = Max absolute vector entry.	each Eigenvalue the algebraic multiplicity and geometric multiplicity are equal.	rather in C ⁿⁿ .	certain conditions, to a diagonal matrix, hence the eigenvectors of A are in effect the columns		We consider the sequence (x,) defined by	valued functions are tangent lines that are
REF ops have effects on the det:	Any two vector norms $\ \cdot\ _a$ and $\ \cdot\ _b$ in \mathbb{R}^n are	If A is an n by n real symmetric matrix.	Blocks in JNF and Multiplicities of Eigenvalues: The algebraic multiplicity of an	of Q [~] _k for large enough k.	4) Condition Numbers of a Linear Equation:	$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k / \ \mathbf{A}\mathbf{x}_k\ \text{ and } \mathbf{x}_0 \in \mathbf{R}^n \setminus \{0\}.$	constant to the dimension which they "ignore" (as seen by T, and T, which are tangents to C,
2) Adding/subbing rows does nothing		eigenvectors for distinct eigenvalues are orthogonal.	eigenvalue λ is the sum of the sizes of blocks	The LII Decomposition:	Ax = b = Condition Number of Coeff Mat A. Big norm!= ill conditioned, we might just be	Then, as $k \rightarrow infinity$, $x_k \rightarrow v$, and $ Ax_k \rightarrow \lambda $. Thi convergence to v is not rigorous - if λ is	and C2 (both curves are in the range) at r.
	$L_1, L_2, L_\infty : \mathbb{R}^n \to \mathbb{R}$ are equivalent as below: $\ L\ x\ _{\infty} \le \ x\ _2 \le \ x\ _1$	6.1) Spectral Theorem If A is a real, symmetric matrix then it can be	with λ on the diagonal. The geometric multiplicity of λ is the number of blocks with λ	A non-singular matrix $A \in \mathbb{R}^{nn}$ can be factorised as $A = LU$	working with big numbers!! 5.1) The Pseudoinverse of a Matrix:	negative then we oscillate between v and -v. Power Iteration Limitations	They represent the rate of change of z, with respect to x or y, when the other is fixed. The
4) Multiplying by scalar also increases det by a	$2. \ x\ _2 \le \sqrt{n} \ x\ _{\infty}$	diagonalised like so:	on the diagonal. 11) Cholesky Decomposition	L is a lower triangular matrix	$Ax = b \Leftrightarrow A^{T}Ax = A^{T}b \Leftrightarrow x = (A^{T}A)^{-1}A^{T}b.$	1. x ₀ is chosen at random, it's possible for it to	higher derivatives are computed as imagined Clairaut's Theorem: Suppose f is defined on a
Trace - sum of diag elems.	2) Matrix Norms (MN):	A = QDQ ¹ = QDQ ² where: Q is an orthogonal matrix	A matrix A^{nn} is lower triangular $\forall i < j$, $A_{ij} = 0$	U is an upper triangular matrix We can do this if and only if A can be	The matrix $(A^{T}A)^{-1}A^{T}$ is known as the pseudo inverse of A, and denoted A^{T} .	be such that $\alpha 1 = = \alpha p = 0$. In this case, the iteration yields second dominant eigenvalue	disk D that contains the point (a, b). If the functions fxy and fyx are both continuous on D
Rank of invertible matrices - nxn matrix is invertible ⇔ rank is n ⇔ cols are	1) A > 0 2) kA = k A 3) A + B < A + B	D is the diagonal eigenvalue matrix. 7) Singular Value Decomposition		reduced to its row echelon form without	5.2) Cond Numbers of Non-Square Matrices:	and eigenvector. We need to make sure there	Sthen $fxy(a, b) = fyx(a, b)$
lin indep, rows too Singular - A square matrix is non-singular if	Sub-Multiplicative:	A is real symmetric matrix.	These matrices exhibit useful properties. The equation Ax = b can easily be solved on them,	Properties of the LU Decomposition:	Compute the Pseudoinverse of A. Then to compute the condition number of a non squar	a non zero component in the corresponding eeigenspace - usually happens in computers du	19.3) Directional Derivatives eFor a function $z = f(x, y)$, the partial derivatives
the columns are linearly indep, ie: if rk(A) = n,	MNs, where	Positive Definite: A is positive definite iff: $\forall x \in \mathbb{R}^n - \{0\}, x^T A x > 0$.	by first getting x, and then x, with direct	Uniqueness of the LU Deomposition when A is non singular: If A = LU and the diagonal	matrix A: k(A) = A [†] A	to floating point error. 2. Eigenvalues might not have distinct	fx and fy, represent the rates of change in z in
Vector Space - a set U =/= Ø is a vector space if	4) AB ≤ A B Computing the Norms;	Positive Semi-Definite iff:	substitution and so on, on lower triangular matrices. For upper triangular we get x, first,	elements of L are all one, the decomposition is	, containing of a 1 in	modulus, in which case the power iteration wi	^{ll} of unit vectors i and j. (calculated in the same
	L, = max absolute column sum (add up abs values of each entry)	$\forall x \in \mathbb{R}^n - \{0\}, x^t Ax \ge 0.$ Theorem: Positive Definiteness in Terms of	and go backwards.	s. 2) Let $A \in \mathbb{R}^{nn}$ be a symmetric positive definite	we can use this Rule of Thumb to guide us: For a condition number x(A), you lose about		way as before). The rate of change of an arbitrary unit vector
2) For all u∈ U and c∈ R, cu∈ U	L ₂ = Largest singular value of A (on a square	Eigenvalues: 1) Positive definite ⇔ all eigenvalues are	Let A ∈ R ⁿⁿ be a symmetric matrix.	~matrix with distinct eigenvalues	log10(x(A)) significant figures in accuracy. If	Convergence might be slow if dominant eve isn't too dominant.	^C can be found with basic trig. Our tangent line represents the rate of change
Generating set: Our vector subspace X is a	matrix, this is the biggest eigen. Else A ^T A/AA ^T) _w = Maximum absolute row sum	strictly positive 2) Positive semi definite ⇔ eigenvalues are nor	If A is positive definite, all its diagonal selements are strictly positive.	$A = O_AO^T$. Suppose $O^T = LU$ with unit lower	we have an accurate implementation to 12 dp, if the condition number is 1,000,000 then we'	Il Finds the smallest eigenvalue and its	of z at a specific point, the direction of which
		negative	2) If A is positive semi-definite, all its diagona elements are non-negative.	al triangular L and the diagonal elements of U are positive. Then A, > A	elose about 6 dp in precision. 17) Iterative Solutions to Linear Equations		depends on the variable we diff with respect to. (e.g, how much do we move in x and y as we
	the vector norms if	Properties of A^TA and AA^T Take arbritrary $A \in \mathbb{R}^{mn}$	3) If A is positive definite then max (A., A.) >	15) Fixed Points	$A \in \mathbb{R}^{nn}$ and $b \in \mathbb{R}^{n}$. We want to solve $Ax = b$.	yields the eigenvalue 1/\(\lambda\), where \(\lambda\) = smallest	progress?) Theorem: If f is a differentiable function of x
basis is one with as many Os, as possible, get (Compatible:	1) $A^{T}A \in R^{nn}$ and $AA^{T} \in R^{mm}$ are both symmetric	$ A_{ij} $. If A is positive semi definite then max (A_{ij})	Numbers: Let $(a_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ be a sequence of real	Gaussian Elimination O(n³) is too expensive. We can approx. the solution with iteration.	eigenvalue of A. Inverse Power Iteration Theorem:	and y , then f has a directional derivative in the direction of a unit vector $\mathbf{u} = a$, b :
pivot columns span as our simple basis.	norms if	and positive-semi definite. This gives rise to SVD - a more general				tlet A = R ⁿⁿ he a diagonalicable non-cingular	$D_{u}f(x, y) = f_{x}(x, y)a + f_{y}(x, y)b$
M1) Finding Basis: get the REF and take	$\forall A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}. Ax _{b} = A x _{a}$	decomposition than spectral, which takes more work to get into but still exhibits useful	mxm matrices in the upper left corner of A	converge to its limit I, $\lim_{n\to\infty} a_n = 1$ if and only if	M ∈ R ^m and c ∈ R ⁿ . Let II.II be a consistent norm on R ⁿⁿ , if IIMI < 1 then the sequence (x _i)	Let A e A be the eigenvalue with the smallest	If the unit vector \mathbf{u} makes an angle θ with the positive x-axis, then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$
original vector of each pivot column. Span of	$\ \cdot\ : \mathbb{R}^n \to \mathbb{R}$, the subordinate matrix norm $\ A\ :$	properties.	are also positive definite. Same holds for semi- definite.	The steps we take to show a sequence of real	defined by x _{k-1} = Mx _k + c converges for any	modulus. We consider the sequence (x,)	θ and the formula becomes $D_u f(x, y) =$
M2) Change of Basis Matrix	$\mathbb{R}^{m \times n} \to \mathbb{R}$ is: $\forall A \in \mathbb{R}^{m \times n}$. $ A = \max\{ Ax \mid x \in \mathbb{R}^{m \times n}, x = 1\}$	8) SVD Definition; Take arbritrary A ∈ R ^{mn} . SVD of A is any	We can quickly notice non-positive-semi	numbers converges: 1) Find the limit l	starting point x ₀ . So, to solve Ax+b we solve the equation	defined by $x_{k+1} = A^{-1}x_k \mid A^{-1}x_k \mid A^{-1}x_k \mid A$ and $x_0 \in R^n \setminus \{0\}$. Then,	$f_x(x, y) \cos \theta + f_y(x, y) \sin \theta$ 20) The Gradient Vector
We just represent each basis vector in terms of the other basis, and each representation is	A vector norm is compatible with its	decomposition of the form:	definite matrices - if we have a symmetric matrix with a negative diagonal element, it	 Take e > 0 Find N ∈ N such that a_n - l < e for n > N, 	$x = Mx + c$, Where $M = -G^{-1}R$, $c = G^{-1}b$.	$x_k \longrightarrow v$ and $ A^{-1}x_k \longrightarrow \left \frac{1}{2}\right $	$D_{ij}f(x,y) = \langle f_{x}(x,y), f_{y}(x,y) \rangle . u$
Fuclidean norm: magnitude of vector: root of	x ⁿ , Ax <= A x , For p = 1, 2 and infinity the	$A = USV^1$ $U \in R^{mm}$ and $V \in R^{nn}$ are orthogonal.	cannot be PSD. Also: if we see a matrix element $ A_{ij}\rangle$ max (A_{ij}, A_{ij}) then it's not PSD	the value of N will usually depend on e, in an	This is in the form required for our Theorem, solution to the equation, thanks to fixed point	A 18.2) Shifts	The first vector in the dot product is the gradient vector, denoted as grad f or ∇f .
sum of squares.	MN is subordinate to the vector nom. Thus the matrix norm is also compatible with the	$S \in R^{mn}$ is a diagonal matrix, $S = diag(\sigma_1, \sigma_2, \sigma_3,$	(e.g if the 3rd element in the first row = 3, 1st in	inversely proportional relationship 2) Cauchy Sequence: Let (a,), ∈ R ^N a	theory would be when $x_{k-1} = x_k$ 2) Choosing Efficient Choices of Splitting:	Let $A \in \mathbb{R}^{nn}$ and $s \in \mathbb{R}$. The matrix A-sI is the shifted matrix and with the following	It is given by this formula: $\nabla f(x,y) = \langle f_y(x,y), f_y(x,y) \rangle$
	vector norm. 3) Complex Linear Maps	(σ_1) , (σ_2) where (σ_3) = min(m, n). (σ_4) = (σ_3) = (σ_4) = (σ_4) = 0 (We write largest first)	1 st row = 2, 3 rd in 3 rd row = 1, then we violate rule 3 as above).	sequence of real numbers. Then (a,) is said to	1. We want G-1Rx and G-1b to be easy to	property: Let $A \in \mathbb{R}^{nn}$ and $s \in \mathbb{R}$, $\lambda \in \mathbb{R}$ is an eigenvalue of A	$a = \partial f/\partial x \mathbf{i} + \partial f/\partial y \mathbf{j}$
Angle between vectors	Compley Num * Conjugate > 0 Compley	The state of 1 1 1 10 and 1 10	Cholesky Decomposition any decomposition	be a Cauchy sequence if and only if: $\forall e > 0$, $\exists N \in \mathbb{N}$ such that $\forall n$, $m > N$, $ a_n - a_m < e$	compute 2. We want M is small (for fast convergence	if and only if λ-s is an eigenvalue of A-sI with	A Tangent Plane: The tangent plane to a surface at a given point is a flat plane that locally
Contract the contract of the c		the singular values of A NOTE for symmetric matrices, singular values	of a real square matrix A^{nn} of the form $A = LL^{T}$, where L is a lower triangular matrix.	This gives rise to the Cauchy Test: Let $(a_n)_{n\in\mathbb{N}}\in$	to a solution). We'll assume A has no Os on it's diagonal (if it	the same eigenvectors. Thanks to the shifted matrix, it is possible to focus on a particular	approximates the surface at that point, and is parallel to the plane spanned by the partial
Orthonormal: orthogonal \(^1\) u &\(^2\) magnitudes \(^1\)	If a vector, scalar or matrix = its conjugate, then its real.	are simply the absolute values of the eigenvalues.	If A is not positive semi-definite then it doesn't have a Cholesky Decomposition. If A is notified a composition of the positive semi-definite then it always has a	R ^N a sequence of real numbers. Then (a _n) is	does we can do a change of basis to achieve it):	eigenvalue of the matrix A. Theorem of Shifts: $A \in \mathbb{R}^{nn}$ is a diagonalisable	derivatives of the surface at that point. We
are 1. Orthogonal Matrix: $A \in \mathbb{R}^{n \times n}$ is invertible with	Standard Inner Product (u, v): Of two vectors	Useful Properties of SVD:	is positive selli defilite then it always has a	sequence	3) The ADLU Split We can write A = D + L + U, where D is the	matrix with eigenvalues of distinct modulus	The gradient vector $\nabla F(x_0, y_0, z_0)$ gives the
$A^{-1} = A^{T}$	u, v e c = u v. The inner product is <u>conjugate</u> symmetric: <u, y> = < u, v ></u, 	1) SVD: A = USV ¹ If U = [u u land V = [v v l then	Cholesky Decomposition. Also there exists a version of L with strictly positive diagonal	3) Metric Spaces: A metric space is a tuple (S, d) where S is a non-empty set and	diagonal of A, L, U are the lower and upper triangle parts of A respectively.	and s ∈ R. Suppose that the shifted matrix A - sI is non-singular (it is non-singular as long as	SUE() is orthogonal to the level surface s
	y> = < u, v > Standard Norm on u; √ u ^r u	$\mathbf{A} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\mathrm{T}} + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^{\mathrm{T}} + \cdots + \sigma_r \mathbf{u}_r \mathbf{v}_r^{\mathrm{T}}$	elements. 12) QR Decomposition	d is a metric over S. d: $S \times S \rightarrow R$ is such that: $\forall x, y \in S, d(x, y) \ge 0$ (positivity)	4) The Jacobi Method: 1) Let R = L+U	is not an eigenvalue of A), then by performing inverse power iterations, we can find the	of f through P.
Cauchy Schwarz inequality: $u, v \in \mathbb{R} \text{ n }, u \cdot v \leq u v $	SIP > 0; if it is 0 then u = 0. Complex	 2) rk A = num singular positive values in S 3) For A∈R^m A , = largest singular value of A. 	QR decomposition is a matrix factorisation method, decomposing our matrix A into an	$\forall x, y \in S, d(x, y) = 0 \iff x = y \text{ (reflexivity)}$	 We want to solve, for some b ∈ Rⁿ 	eigenvalue of A that it the closest to s.	If we consider a topographical map of a hill and let $f(x, y)$ represent the height above sea level
Triangle inequality:	of a real matrix can be complex. This means	The positive singular values of A = positive	orthogonal matrix Q and an upper triangular matrix R such that A = OR.	$\forall x, y \in S, d(x, y) = d(y, x) \text{ (symmetry)}$ $\forall x, y, z \in S, d(x, y) \le d(x, z) + d(z, y) \text{ (tri. ineq.)}$	Ax = b $Ax = b \Leftrightarrow (D+R)x = b \Leftrightarrow x = -D^{-1}Rx + D^{-1}b$	Thus we can use the Inverse Power Method and Shifts to discover all eigenvalues.	at a point with coordinates (x, y) then a curve of steepest ascent can be drawn as shown in
$u \perp v \Leftrightarrow u + v ^2 = u ^2 + v ^2$	our eigenvectors are complex too. 4) Least Squares Method	square roots of the eigenvalues of AA^{T} or $A^{T}A$		4) Metric in a normed Vector Space V is a vector space equipped with the norm . .	$\Leftrightarrow x = Mx + c. (M = -D^{-1}R, c = D^{-1}b)$	18.3) Rayleigh Quotient Let $A \in \mathbb{R}^{nn}$ and $x \in \mathbb{R}^{n} \setminus \{0\}$. Rayleigh quotient	the figure by making it perpendicular to all of
3) Linear Maps A map from one vector subspace to another is o	Endomorphism: A linear map where the	5) The span of the first r columns of U = im(A). The span of the last m-r columns is ker(A),	a,, a _n are the vector columns of A: [a _r a _n]. Assume they're linearly independent.	Let d be the function d: $\begin{cases} V * V \to \mathbb{R} \\ (x, y) \to x - y \end{cases}$	This splitting is good as x ^{k+1} is easily computed as:	$R(A, x)$ is given by: $x^{L}Ax / x^{L}x$, where we apply i	tMaxima and Minima:
linear if:		where r is the rank 6) The Principal Axes and First Principal Axis	We apply GS process constructing an	d is a metric space.	D ⁻¹ = reciprocal of each diag element as diags, I	on each x in our sequence of power iteration. When using an iterative technique to find the	
For all $u \in V$ and $c \in R$, $f(cu) = cf(u)$	C. D ^D \ D ^D . Ciminative (lear(6)=(0)) 6	of a Collection of Samples: Assume $A \in \mathbb{R}^{mn}$ represents m samples of n dimensional data.	orthonormal basis (e_1e_n) s.t span $\{e_1,e_n\}$ = span $\{a_1,,a_n\}$.	but generalised to a metric space (S, d).	= the combination of the upper and lower triangle matrices, so: $Mx = -D^{-1}Rx =$	EVal/EVec of a matrix the Rayleigh quotient monitors the convergence to the eigenvalue as	
A basis change matrix from u to v is a linear man. Evample: (man from 2 dimensions to 3)	surjective (im(f) = R ⁿ)	The principal axes of A are the columns of V.	2) Selecting Q and R: Set Q = $[e_1,, e_n]$. It is	5) Convergence in a Metric Space: Convergence in a metric space. Let (S, d) be a	$\left[\sum_{j\neq 1} a_{1,j} x_{j}\right] \left[-\frac{1}{a_{1,i}} \sum_{j\neq 1} a_{1,j} x_{j}\right]$	it gives access to an approximation of the eigenvalue (rather than the modulus).	$Q(\mathbf{x}_{p}, x_n) = b_{11}x_1^2 + b_{12}x_1x_2 + \cdots + b_{ij}x_ix_j + \cdots + b_{nn}x_n^2$
/ Y \ [0 1]	Projection of a Subspace: Let U ⊂ R [™] be an n dimensional subspace	i.e., v_i for $1 \le i \le r$. The first (principal) axis of the collection of m samples is defined as: $w(1)$:	semi orthogonal (e.g $Q^TQ = I$). We then set R	metric space and (a _n) a sequence in S. Then a _n	$-D^{-1}$ $\left \sum_{j\neq 2} a_{2,j} x_j \right = \left -\frac{1}{a_{2,2}} \sum_{j\neq 2} a_{2,j} x_j \right $	18.4) Deflation	We can write this more conveniently with matrices: $Q(x) = x^T Ax$, where x is a column
(y + x/ [1 1]	generated by an ordered basis (u,,,u,). Let U =		semi orthogonal (e.g. $\mathbf{Q}, \mathbf{Q} = 1$). We then set R = $\begin{bmatrix} e_1 a_1 & e_1 a_2 & \cdots & e_1 a_n \\ 0 & e_2 a_2 & \cdots & e_2 a_n \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	is said to converge to a limit $l \in S$ iff : $\forall e > 0$, $\exists N \in N$ such that $\forall n > N$, $d(a_{n'}, l) < e$	$\left[\sum_{j\neq n} a_{n,j} x_j\right] \left[-\frac{1}{\alpha-1} \sum_{j\neq n} a_{n,j} x_j\right]$	We can use the power method to get the max eigenvalue. But it's a problem to get the next	vector with elements x, 1 <= i <= n, and A is a
maps		7) The Principal Axes of a Singular Value	$\begin{bmatrix} 0 & \cdots & 0 & e_n a_n \end{bmatrix}$ 13) OR Algorithm	 6) Cauchy Sequence in a Metric Space: Let (S, d) be a metric space and (a) a sequence in S. 	(This makes sense as -D-1 is the negative of the	eigenvalue, as we have to perform a shift - but we don't actually know what to shift by.	symm. matrix with a _{ij} = b _{ij} + b _{ji} / 2 Notex _i x _i = x _i x _i . Eg:
For an f: $\mathbb{R}^n \to \mathbb{R}^m$ linear map, the Image Space: frefers to the set of points mapped to in \mathbb{R}^m .	following endomorphism:	Decomposition Assume $A \in \mathbb{R}^{mn}$ represents m samples of n dimensional data. Assume we	Efficiently finds the eigenvalues of a matrix.	(a_n) is a Cauchy sequence if $f: \forall e > 0, \exists N \in N$	reciprocal of each diagonal element, and we multiply this by L+U, which is a matrix of	Instead we can deflate our matrix into an A ⁽ⁿ⁻	$Q(x_1,x_2) = x_1^2 - ax_1x_2 + bx_2x_1 - cx_1x_2 + 5x_2^2$ is
The Kernel/Null space is the set of points in		have the following singular value decomposition for A: $A = USV^T$, where $V = [v_{\nu}]$.	We start with our matrix A Use GS method to get the QR	such that vn, m > N, d(a,, a,) < e	alamants assent the diagonal)	$^{1)(n-1)}$ matrix, removing the dominant eigenvector. Let λ_p , λ_n be the eigenvalues of	expressed as
Rank Nullity Theorem: For linear map $f:R^n \rightarrow i$	im(A) \(^1\) ker(A ^T)	v, Then, v, is the first (principal) axis of A. It	"decomposition: A = QR. 3) Compute the product RQ, set A = RQ.	7) Cauchy Test on a Metric Space. Let (S, d) be a metric space and (a,) a sequence in S: if (a,) is	Since $X' = IVIX' + c$, to solve $Ax = b$ we have $(k+1) 1 (x - 1) (k+1) (k+1$	A ordered according to their magnitude with	$\mathbf{x} = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & 1^T \\ \mathbf{x} = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & 1^T \\ \mathbf{x} & \mathbf{x} & \mathbf{x} \end{bmatrix}^T$
\mathbb{R}^{m} with Mat $\mathbb{A} \in \mathbb{R}^{mn}$: dim(im(f)) + dim(ker(f)) = \mathbb{I}	Unique Vector Decomposition: Let $A \in \mathbb{R}^{mn}$ For	corresponds to the column vector of V associated with the largest singular value of A.	4) Repeat steps 2-3, until A converges to a diagonal matrix D, whose diagonal entries are	convergent, then it is a Cauchy sequence. 8) Complete Space: Let (S, d) be a metric	$x_i^{(k+1)} = \frac{1}{a_{i,i}} \left(b_i - \sum_{j \neq i} a_{i,j} x_j^{(k)} \right)$	λ, being the dominant one. Define H as a non- singular matrix such that:	$n = \nu_1, n_2, n_3,$ $n = \begin{bmatrix} \frac{1}{2} & 5 & 0 \\ -\frac{\epsilon}{2} & 0 & 0 \end{bmatrix}$
FR(A) + GIM(RET(A)) = N 4) Eigenvalues and Eigenvectors Eigenvalues = solutions to the Char. Polynomial (CP) (A-\lambda).	all vectors $b \in \mathbb{R}^m$, there exists unique $b_i \in \text{im}(A)$ and unique $b_i \in \text{ker}(A^T)$ such that $b = b_i$		the eigenvalues of A.	space. Then it is said to be a complete space if and only if every Cauchy sequence in S	5) Gauss-Seidel Method: Reuse the ADLU splitting, but do A = (D+L) + U.	$Hx_1 = \alpha e_1$ where $\alpha \in \mathbb{R} \setminus \{0\}$ and $e1=[1,0,,0]^T$ is	And then $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{Q}(\mathbf{x}_1, \mathbf{x}_2)$
= solutions to the Char. Polynomial (CP) (A-AI). I Spectrum: set of EigVals of a Mat. Tr(A) = sum I	o _k .	The columns of OS , i.e., $\sigma_i u_i$ for $1 \le i \le i$, are the	Properties of the QR Decomposition 1) For $k \in N$, A_k is similar to A .	converges to a value in S.	Then $Ax = b \Leftrightarrow (D+L)x = b - Ux \Leftrightarrow x = Mx + c$,	the first vector in the standard basis. We ther have:	
of eigenvalues.	Let $A \in \mathbb{R}^{mn}$ and $b \in \mathbb{R}^m$ Suppose $A v = b$ has no	principal components or scores of A. 9) Generalised Eigenvectors	2) For $k \in N$, we have $A_k = Q_k^T A Q_k$ from above. So, A_k and A have the same eigenvalues and v i	9) Completeness of L1, L2 and L. Norms: For any k > 0, R ^k equipped with any of the three	D+L is a lower triangle matrix with a diagonal	$HAH^{-1}e_1 = HA \times 1/\alpha = H \lambda_1/\alpha \times 1 = \lambda_1e_1$	$\nabla f(\mathbf{x}^{(k)})$ is a gradient of an n-dimensional function $f(\mathbf{x})$ at iteration k.
Multiplicity (AM) of an eigenvalue = num times			So, A_k and A have the same eigenvalues and v i an eigenvector of A_i if and only if Q_i v is an	ismetrics induced by L1, L2 or L∞ is complete. The space (C[a, b], · ∞) is complete.	D, U is an upper triangle matrix. And then $x^{k+1} = Mx^k + c \Leftrightarrow (D+L)x^{k+1} = -Ux^k + b$	The first column of $HAH^{-1}is[\lambda_{1}, 0,, 0]^{T}$ and so	The Gradient Descent Formula: Gradient descent* at iteration $k + 1$:
of the eigenspace of eigenvalue.	AX - D , OF equivalently AX - D , is illiffillised.	Generalised Eigenvector: A nonzero vector $V \in C^n$ of rank m associated with eigenvalue λ	eigenvector of A	10) Only Cauchy Sequences Converge in	$\forall i \in [1, n] \sum a_{i,i} x_i^{(k+1)} = -\sum a_{i,i} x_i^{(k)} + b_i$	HAH ¹ = $[\lambda_1 b^T, 0 B]$, where Bis an (n-1) by (n-1) matrix with eigenvalues λ_2	$\underline{x}^{(k+1)} = \underline{x}^{(k)} - \alpha \nabla f(\underline{x}^k), \ \alpha > 0$ is a fixed step size. (AKA, to compute the next point, we take the
1 (- Old (- Hill (- Dilli of Macrix.	AX-DIZ IS IIIIIIIIIIISEU WIIEII	when $(A - \lambda I)^m v = 0$ and $(A - \lambda I)^{m-1} v = 0$	3) The sequence (A) converges to an upper triangular matrix under certain conditions.	complete metric space and (a _n) a sequence in S	So the ith element of v(n+1) can be computed	, ^hr	current point and subtract the gradient and
eigenvectors.	r) Lincon Dormondon	Any eigenvector associated with its eigenvalue is a generalised eigenvalue of rank 1.	L) (if A is summetric) The eigenvalues of an	The A Delet Lat Charles and a second control of the	thanks to A. x b and the K elements of x	They also have the property: Let λ, be the second dominant eigenvector of	some step size). Steepest Descent is a faster version - as we
	We have a set of points (y,, a), y a real number, and a is a real vector of dimension n	An eigenvector of A associated with λ and multiplied by the matrix A - λI , results in the	upper triangular matrix are simply its diagona	ll S → S a function from S to itself n ∈ S is a fived	for k < i. As the update is computed with more recent quantities, the convergence is faster	A with $\lambda_2 = /= \lambda_1$.	minimise what we have left. $x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^k)$
Cayley Hamilton Theorem Take CP of A; take A as lambda, we get the 0 matrix. We find	We want to find the model of best fit with	zero vector.	findable, and from this, we can converge it to	12) Company tion, I at (C d) has a matrix and a	with the GS method.	An eigenvector x_2 of A corresponding to eigenvalue x_2 is: $x_2 = H^1 [\beta z_2]$	$\mathbf{x} = \mathbf{x} - a_k V(\mathbf{x})$ $\mathbf{a}_k = \operatorname{argmin} \mathbf{f}(\mathbf{x}^{(k)} - a \nabla f(\mathbf{x}^k))$
inverses this way: A = $\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ CP: x^2 -2x+3= 0.	parameters $s_0 \in \mathbb{R}$ and $s \in \mathbb{R}^n$, so the sum of the errors squared is minimized:	associated with \(\lambda\) then when you multiply it by	an upper triangle matrix, from which	and $f: S \rightarrow S$. f is called a contraction of S (or a contracting map) if there exists $0 \le \alpha < 1$	converge as A is strictly row diagonally	With $\beta = \mathbf{b}^{T} \mathbf{z}_2 / \lambda_2 - \lambda_1$ and \mathbf{z}_2 is a dominant	Graphically, we compute the gradient at our
Then: $-A^2+2A=3I \Leftrightarrow A^*1/3(-A+2I)=I$	$\sum_{k=1}^{m} (s_{k} + s * a_{k} - y_{k})^{2}$	A - λI , the result will be another eigenvector associated with λ .	5) 2) $A^n = Q_1 Q_n R_1 R_n$	called the contraction constants.t:	dominant - AKA: $\forall i, a_{ij} > \sum_{j \neq i} a_{ij} $ 1) Influence of the Condition Number on	eigenvector of B	point, then go the opposite direction by step size a, and repeat.
A ⁻¹ =1/3(-A+2I) = I. So A ⁻¹ =1/3(2I-A) The Rank of a Matrix = Rank of its Transpose. A ⁻ TA and A have the same nullspace, easily		If A has a generalized eigenvector of rank 2	13.2) Householder Maps Suppose we have a hyper-plane P going	$\forall x, y \in S$, $d(f(x), f(y)) \le \alpha d(x, y)$. 13) The Fixed-Point Theorem: Let (S, d) a	Convergence: These techniques converge	19) Functions of Several Variables Functions of N Variables are rules which	For quadratic functions of the form $f(x) = 1/2x^{T}Qx - b^{T}x$ where
provable	The sum of the squared errors is this:	associated with λ , then when you multiply it by	through the origin with unit normal $u \in \mathbb{R}^m$ i.e.	.,complete metric space and f a contraction of S Then f has a unique fixed point. This leads to		assign to each ordered tuple of real numbers (x_1, x_2, x_n) a unique real number denoted by	Q ⁿⁿ is real symmetric positive definite matrix,
Orthogonal transformations do not change the	$\sum_{i=1}^{m} (s_0 + s * a_i - y_i)^2 = Az - y ^2,$	a rank 1 generalized eigenvector and another eigenvector associated with λ . This pattern	defined by $H_u = I - 2uu^T$ induces reflection wrt	the theorem:	2) IFFEGUCIDIE: A matrix is irreducible if it can	$t_{f(x_1, x_2 \dots x_n)}$.	b ⁿ is a real vector, and x ⁿ is a real vector the gradient of the function is:
which are perpendicular to each other	Matrices	continues for higher-rank generalized	P. Properties of a Householder Matrix:	Equations. Differential Equations have unique	where A and A. are block matrices	Range = set of values f takes, domain = set of values taken by params. The graph of f is the	$\nabla f(x) = Ox - b$, Hessian = $\nabla^2 f(x) = O$.
Transpose - Write the rows as columns. $(AB)^T = \frac{1}{100}$	1) Orthogonal Matrix transformations	eigenvectors. Example:	1) H _u is involutory. H _u = H _u -1u. 2) H _v is orthogonal H ^T u = H-1u.	solutions: there exists a unique function x: $(t_0 - d, t_0 + d)$ satisfying: $dx/dt = f(x(t), (t))$ with	3) If A is weakly row diagonally dominant and	set of all points (x, y, z) in \mathbb{R}^{n+1} . 19.1) Level Contours	With this, the optimal step size a at iteration k is: $a_k = (g^k)^T (g^k) / ((g^k)^T) H g^k$
B'A' For a matrix to be diagonalisable the number	preserve Euclidean length of vectors.	Take A = $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ CP: $(1-\lambda)^3$,	3) H. preserves the euclidian length of	$x(t_n) = x_n$.	irreducible, Jacobi and G-S still converge.	The level curves of a function on two variables	$g^k = \nabla f(x)$ and $H = Q = \nabla^2 f(x)$.
(Die de selie et le metriese ere el como encore)	2) Orthogonal transformations preserve the	$\lambda_1 = 1$ (with AM = 3). We end up with two	vectors: $ H_u(x) = x $. 4) The eigenvalues are only 1 or -1.	$d: \begin{cases} \frac{dx}{dt} = \dot{x}(t) = f(x, t) \\ x(t_0) = x_0 \end{cases}$		are the curves with equation $f(x, y) = k$, where k is a constant (in the range of	f
An Eigenvector scales a matrix by its	magnitude of the angle between vectors	linearly indep EVecs: $(0, 1, -1)^T$, $(1, 0, 0)^T$. There is one more EVec $v_3 = (0, 0, 1)^T$. We compute	to the hyperplane P reflects across - e.g any	$x(t_0) = x_0$ Where d = min(a,b/(B+bc)) with B =		f) A level curve $f(x, y) = k$ is the set of all points in the domain of f at which f takes on a given	5
associated Eigenvalue.	$\forall u, v \in \mathbb{R}^n$, $QuQv = uv$	3	vectors in the hyperplane P.	$\sup\{ f(x, t) : x-x_0 \le b, t-t_0 \le a\} > 0$		value k .	