Project Prometheus

Purdue University
AAE 450 Spacecraft Senior Design
Spring 2013

Project ManagerRachel Bodien

Assistant Project Manager

Bruno Prentice

Attitude Control

Team Leader: Brian Foss
Jim Behmer*
Ching Hao Chua*
Anurag Nandi
Kenneth Roush
Collin York*

Power and Thermal Control

Team Leader: Jeff Xie
Yu Huang
Hannah Kraus*
Eric Meier
Trym Erik Nielsen

Communications

Team Leader: Kaitie Schoenfeldt Victor Gandarillas Allison Shultz

Human Factors

Team Leader: Aaron Driver
Elizabeth Marandola
Pritesh Patel
Matthew Schenk
Sarah St. Clair*
Seth Trey

* Indicates Vehicle Team Leader

Mission Design

Team Leader: Cassandra Strode
Nick Kowalczyk
Randy Eckman
Thomas Just
Curtis Langlois
Mitch Sangalis
Joshua Wolf

Aerodynamics

Team Leader: Kilian Cooley
Joe Graham
Aniket Patel
Austen Wildberger

Structures

Team Leader: Jeremy Lakoskey
Christopher Riemer
Darren Shandler
Ryan Tedjasukmana
Yuming Zou

Propulsion

Team Leader: Bhuvi Nirudhoddi
Nick Edwards
Braxton Felts
Simon Hufnagel*
Junsik Kang
Christian Lysholm
Wayne Masteller
Eric Nelson*
Taddese Tessem

Special Thanks

Instructor: Dr. James Longuski Teaching Assistant: Mr. Peter Edelman

Acknowledgements

Dr. Chan Choi

Dr. Steven Collicott

Dr. David Filmer

Dr. Michael Grant

Dr. Stephen Heister

Dr. Kathleen Howell

Dr. Inseok Hwang

Dr. David Minton

Dr. Cary A. Mitchell

Dr. Timothee Pourpoint

Mr. Blake Rogers

Mr. Sarag Saikia

Dr. Boris Yendler

1 Foreword	
2.1 Mission Requirements	
2.2 Mission Overview	
2.3 Vehicle Overview	
Cycler Vehicle	
Phobos Hab	
Mars Builders	
Pods	11
Hoppers	
Crew Transfer Vehicle	
Mars Satellites	
3 Cycler	
3.1 Cycler Vehicle Spin Up Propulsion System	16
3.2 Artificial Gravity for Cycler Vehicles	
3.3 S1L1	
3.4 Cyclers Inserted into S1L1 Trajectory	23
3.5 Cycler Station Keeping	31
Control Moment Gyroscopes	
Attitude Thrusters	31
Orbit Orientation	32
3.6 Cycler Main Engine Propulsion System	33
Engine Considerations	
Specific Engine Specifications	
Propellant Considerations	
Conclusions	
3.7 Power Generation System for Cycler Vehicle	
Spiral Up and Insertion to S1L1 Power Stage	
3.8 Habitation Module Outer Hull Design	
3.9 Cycler Hab Structural Design	44
3.10 Internal Structure: Cycler Habitation Module	46
3.11 Cycler Hab Mass Distribution	49
3.12 Cycler Hab Layout	50
3.13 Atmosphere Supply Upkeep on the Cyclers	54
3.14 Cycler Atmosphere Maintenance:	57
3.15 Carbon Dioxide Removal	58
3.16 Cycler Hab Food Subsystem	
3.17 Cycler Hab Water Subsystem	62

3.18 Tethers	63
3.19 Crawler Design for the Cyclers	65
3.20 Cycler Vehicle Docking Station	68
3.21 Cycler Vehicles Communication Configuration	69
Overview	
Cycler Communication Stages	
Cycler Communication Specifications	
3.33 Cycler Assembly Sequence	
3.34 Cycler Assembly and Timeline	
· · · · · · · · · · · · · · · · · · ·	
3.35 Cycler Shielding Assembly in LEO Introduction	
Mission Requirements	
Launches	81
Design Selection	
Temperature and Pressure Regulation	
Heating Requirements	
4.1 Stickney Topography and Geometry	
4.2 Phobos Landing Sequence	
4.3 Phobos Hab Allowable Drop Height	
4.4 Phobos Hab Hovering Engines	90
4.5 Phobos Landing Site Schematics	92
4.6 Phobos Hab Transit Attitude Control	93
4.7 Phobos Hab, Propellant for the Pods Vehicle: Hyperbolic Approach Around Mars	94
4.8 Phobos Hab Aeroshell Capsule	97
4.9 Thruster for Phobos Hab Post Aerocapture	99
4.10 Phobos Hab Communication with Mars Satellites	101
4.11 Phobos Hab Structural Analysis	104
4.12 Phobos Hab Stilts	107
4.13 Phobos Hab Tent	110
4.14 Internal Structure: Phobos Hab	111
4.15 Phobos Hab Mass Distribution	113
4.16 Phobos Hab Interior Layout	115
4.17 Habitable Area of the Phobos Hab	118
4.18 Phobos Hab Artificial Gravity	120
4.19 Acceleration Effects on Human Body	121

4.20 Phobos Hab Waste Management	122
4.21 Atmosphere Supply Upkeep on the Phobos Hab	123
4.22 Phobos Hab Carbon Dioxide Removal	124
4.23 Water Storage on the Phobos Hab	
4.24 Food Storage on the Phobos Hab	126
4.25 Crew Necessities on the Phobos Hab	127
4.26 Phobos Hab Thermal Control System Main Body	128
4.27 Phobos Hab Power	131
4.28 Hovering of Nuclear Reactors	133
4.29 ARM 2106 Overview	136
4.30 Phobos Hab Robotic Arm Structure	137
4.31 ARM 2106 Filling the Regolith Shield	139
4.32 ARM 2106 Handling the Crew Transfer Vehicle 5 Pods and Hoppers	
5.1 Hopper Overview	143
5.2 Hopper Vehicle Configuration & Mission	146
5.3 Hoppers Power and Thermal	153
5.4 Pods Main Structure	
5.5 Phobos Pod Hovering System	156
5.6 Pods Hovering Advantages	
5.7 Pods Forward Propulsion	
5.8 Pod Attitude Control	163
5.9 Pod Atmosphere Maintenance	164
5.10 Pods Power and Thermal	166
5.11 Phobos Crew Radiation Discussion	168
5.12 Phobos Refueling Station	169
5.13 Refeuling Station Aeroshell	170
5.14 Rocket Design for Landing the Refueling Station on Phobos	171
5.15 Pods and Hoppers Communications	174
6 Mars Builders	175

6.1 Mars Atmospheric Model	175
6.2 Mars Landing Site	
6.3 Mars Builders Aeroshell	180
6.4 Internal Structure: Mars Entry Vehicle	183
6.5 Propulsion-assisted Mars Cargo Entry, Descent, and Landing and Rocket Design	
6.6 Attitude Control System for Mars Builders Entry Vehicle	189
6.7 Maintenance Station	
6.8 Maintenance Station Stilts	195
6.9 Communication Tower in Maintenance Station	
6.10 Power Supply for Mars Builders	
6.11 Builder Sizing	
Overall Sizing	
Constraints	205
Work Cycle	206
Operation and Sensing	
Human Factors	
Habitat Manipulation: Long Distance	
Down the Ramp	
Structure	
Blade	
Power	
Batteries	
Motors Maintenance and Repair	
•	
6.12 Mars Builder Battery	
Mars Builder Charging Process	211
6.13 Builder Thermal Control	212
6.14 Mars Builders Communications	213
6.15 Sand Ramp Final Architecture	217
6.16 Sand Ramp Risk Assessment	219
6.17 Mars Hab Base	
7 Crew Transfer Vehicle	222
7.1 Crew Transfer Vehicle Mission Profile and Attitude Control	222
7.2 Crew Return Vehicle Mission Profile and Attitude Control	224
7.3 Crew Transfer Vehicle Maneuvers (Low Earth Orbit to Cycler)	226
7.4 Stabilizing the Crew Return Vehicle	228
7.5 Rendezvous and Docking the Crew Return Capsule with the Cycler	230
7.6 Docking the Maintenance Station and fuel ring with Phobos	231

7.7 Crew Transfer Vehicle Human Factors	232
7.8 Docking System	233
7.9 Crew Transfer Vehicle Structural Design	235
7.10 Crew Transfer Vehicle Intermediate Transfer Legs	238
7.11 Crew Transfer Vehicle Aerocapture (Aerocapture Manifest)	
7.12 Crew Transfer Vehicle Propulsion Systems	
Crew Transfer Vehicle	
LEO to Cycler One Transfer	
Cycler One to Phobos Transfer	254
Phobos to Cycler Two Transfer	
Cycler Two to Earth Transfer	257
7.13 Rocket Design for Landing the Return Vehicle Rocket Boosters on Phobos	258
7.14 Crew Transfer Vehicle Power and Thermal	
Crew Transfer Vehicle Power System	
Crew Transfer Vehicle Thermal Control System	260
7.15 Attitude Control System for Crew Transfer Vehicle Entry Vehicle	
Aerocapture	
Re-entry at Earth	
7.16 Crew Transfer Vehicle Communication Configuration	
Overview	
Crew Transfer Vehicle Communication Stages	
8 Communication Satellites	
8.1 Communication Satellites Overview	
Satellite Design	
8.2 Launch Plan	269
8.3 Heliocentric Satellite Trajectory Analysis	
8.4 Propulsion Systems for the Helio Communication Satellites	
Introduction	
Propellant and Tank Sizing	
Orbit Insertion into Helio Elliptical Orbit	276
Propulsion Engine Sizing	
Propulsion System for Helio Satellites Station Keeping	278
8.5 Helio Satellite Communications and Link Design	280
8.6 Mars Satellites	285
8.7 Mars Satellite Orbit Design and Geometry	286
8.8 Mars Satellites Injection Orbit	287
8.9 Mars Satellites LEO to Martian Elliptical Orbit	288
8.10 Mars Satellite Circular Orbit Insertion	291
8.11 Mars Satellite Station Keeping Thrusters (Arciets)	293

8.12 Mars Satellites Communications	295
8.13 Power Generation System of the Helio and Mars Satellites	297
8.14 Earth's Ground Stations	
8.15 Satellite Truss	305
9 Launch and Cargo	
9.1 Total Mission Timeline	306
9.2 Crew Specifications	308
9.3 Mission Segments for Crew A	309
9.4 Launch Vehicle Choice	310
9.5 Mission Launch Vehicle Breakdown	312
9.6 Falcon XX Custom Fairing	313
9.7 Falcon XX Custom Fairing Feasibility Analysis	314
9.8 Relay Satellites Launch and Transfer	
9.9 Cargo Mission Trajectory Design	319
Contents of Cargo Missions	
Propulsion System	
Low-Thrust Trajectory Analysis with MALTO	
Circular Spiral Out	
Low Thrust Transfer	
9.10 Phobos Rendezvous	
Introduction	
Equations of Motion	
Two-Impulse Rendezvous	
Fuel Requirements	
9.11 Mars Builders Trajectory from Earth to Mars	
Hyperbolic Approach Around Mars	
Entry Into the Atmosphere:	
Trajectory Inside the Atmosphere	
9.12 Mars Builders Earth-Mars Transit Propulsion System	332
9.13 Cargo Vehicles Communication Configuration	333
Overview	333
Mars Builder Cargo	
Phobos Hab/Phobos Hab Propellant Cargo	
Pod Fueling Station Cargo/Mars Hab/Miscellaneous Cargo	
Cargo Communication Specifications	
9.14 Cargo Transport Power and Thermal	
9.15 Communication Relay Power Design	338
9 16 Trajectory Selection for Aerocanture	330

9.17 Trajectory Selection for Mars and Earth Entry Vehicles – Main Body	342
9.18 Ballute System	347
Material	347
Inflation Gas	
Helium Tanks	
Tether Tubes	
10 Mission Risk Analysis	
Probability of Successful Launches and Positioning	352
Probability of Successful Crew Launch	352
Probability of Successful Crew Docking with Cycler One	352
Probability of Successful Crew Transit to Phobos	353
Probability of Successful Crew Landing on Phobos	353
Probability of Successful Phobos Operation	353
Probability of Successful Crew Launch at Phobos	353
Probability of Successful Crew Docking with Cycler Two	353
Probability of Successful Crew Transit to Earth	353
Probability of Successful Crew Landing on Earth	353
11 Mission Cost Analysis	
11.1 Cost Models Introduction	355
11.2 Unmanned Spacecraft Subsystem Cost Model	356
11.3 Advanced Missions Cost Model	
Using the Federation of American Scientists Cost Tool	
Advanced Mission Cost Model Scaled to the Apollo Program	359
11.4 Cost Considerations	360
11.5 Potential Cost Savings	
12 Appendix	362
12.1 Mission Storyboard	362
12.2 Long-Arm Centrifuge for Artificial Gravity	366
Motivation	366
Equations of Motion	
Constraints	
Coriolis Forces	
Radial Forces during Tangential Locomotion	
Tangential Forces during Radial Locomotion	
Gravitational Gradient	
Sizing	
Volume	
Mass	
Power	373

Conclusion	374
12.3 Cycler Counterweight Tether Length and Mass Constraint	376
12.4 Cycler Spin-Up Maneuver Moment of Inertia Calculations Spin-Up Maneuver Spin-Up Code User Guide	377
12.5 S1L1 options	382
12.6 Cycler Flyby Options	384
12.7 Description of MALTO Iterative Processes	387
12.8 CMG Design	389
12.9 Mars Satellite Environmental Forces Analysis	392
12.10 Cycler Orientation Comparison	395
12.11 Solar power VS Nuclear power source for cycler vehicle	397
12.12 Nuclear Reactor Code Description	398
12.13 Backup Reactor Flywheel Power Switching System	403
12.14 Optimizing the nuclear fission reactor cycle	406
12.15 Radiator Sizing Tool	408
12.16 Cycler Hab Structure	410
12.17 Cycler Hab Structural Analysis	412
12.18 Cycler Hab Detailed Mass Breakdown	414
12.19 Initial Compressed Air Storage for Phobos Hab and the Cyclers	416
12.20 Initial Oxygen Requirement Analysis for the Entire Mission	417
12.21 O2_N2_calc User Guide	418
12.22 Liquid Oxygen on the Phobos Hab	419
12.23 Safety Concerns Over Long-Term Liquid Oxygen Storage	420
12.24 Cycler Hab Food Subsystem	421
12.25 Cycler Hab Water Subsystem	422
12.26 Code User Guide	423
12.27 Cycler Waste Creation User Guide	424
12.28 Crew Necessities for the Cycler Vehicle	425
12.29 Tether system	427
12.30 Pressure Analysis	428
12.31 Guide to Link Budget Analysis	130

12.32 Communication Routes Diagram	439
12.33 User Guide: dish_mass	440
12.34 Satellite Truss	441
12.35 User Guide: Cycler_Launch_Vehicles xlsx	442
12.36 Cycler Counter-Weight	443
12.37 marseclipse.m User's Guide	447
12.38 Phobos Hab Rendezvous	448
12.39 Phobos Hab Hovering and Landing	450
12.40 User Guide: habprop.m,	452
12.41 Propulsion Analysis for Phobos Hab Post Aerocapture	453
12.42 Phobos Hab Structural Analysis	457
12.43 Phobos Hab Volume Savings	460
12.44 User Guide: Phobos_Hab_Launch_Vehicles.xlsx	462
12.45 Code to compute the amount of lights needed in the Phobos Hab	463
12.46 Phobos Hab Artificial Gravity	464
12.47 User Guide: HabCentrifuge.m	467
12.48 User Guide: artificialgrav.m	468
12.49 User Guide: habprelim.m	469
12.50 Acceleration Limits for Sustained Maneuvers	470
12.51 Human Factors: Atmosphere	471
12.52 Initial Phobos Hab Water Storage	472
12.53 Initial Power Analysis for Cycler	473
12.54 Initial Phobos Hab Food Storage	476
12.55 Crew Necessities for the Entire Mission	478
12.56 Plant Growth for Food Production	479
12.57 Crew Necessities for the Phobos Hab	482
12.58 Heat Production from Astronauts Analysis	487
12.59 Phobos Hab Active Thermal Control Design Analysis	488
12.60 Phobos Hab Power Supply Design Study	490
12.61 Analysis and Code User Guide for the Hovering of the Nuclear Reactor System and and Thrusters for the Propulsion System	0 0
12.62 Phobos Regolith Burying - Conveyor Belt	494
12.63 Conveyor Belt Sizing User Guide	497
12.64 Filling the Regolith Shield	498

12.65 Phobos Hab Radiation Shielding	502
12.66 Regolith Shield Structure	504
12.67 Phobos Hab External Force Analysis	505
12.68 Phobos Hab Robotic Arm	506
12.69 The Hopper	508
12.70 User Guide: spring_sizing.m	511
12.71 User Guide: spring_horz.m	512
12.72 Lithium Ion Battery Sizing Tool	513
12.73 Radioisotope Thermoelectric Generator Sizing Tool	514
12.74 Phase Change Material Sizing Tool	515
12.75 Pod Hovering Thruster Design	516
12.76 Analysis and Code User Guide for Pods Forward Propulsion	519
12.77 Hopper Attitude Control Analysis	521
12.78 MATLAB & Excel User Guides for Hopper Attitude Control	529
12.79 Pod Attitude Control	531
12.80 User Guide: pod_moment2.m	536
12.81 Pod Atmospheric Composition and Carbon Molecular Sieve Sizing User Guide	537
12.82 Phobos Crew Radiation Analysis	538
12.83 Phobos Refueling Station Design	539
12.84 Analysis and Code User Guide for Phobos EDL Rockets	541
12.85 Design Process for Mars Builder Aeroshell Structure	546
Previous Mars Design 1	
Previous Mars Entry Aeroshell Design 2 Previous Mars Aeroshell Entry Design 3	
12.86 Mars Entry Vehicle	
12.87 Thermal Protective System for Entry Vehicles	
12.88 Appendix, Mars Entry Vehicle EDL Trajectory Analysis	
12.89 Mars Entry Vehicle Structures	
12.90 Analysis and Code User Guide for Mars EDL Rockets	
12.91 Preliminary Attitude Control Analysis for Entry Vehicles	
12.92 Maintenance Station, Time and Power Saved	574
12.93 Beam Selection	
12.94 Mars Builders_Tank Tracks and Wheels Analysis	
12.95 Mass of Ramp Calculation	
12.06 Maintenance Station's Wall Thickness Calculation	581

12.97 Maintenance Station's Stilt Angles Calculations	582
12.98 Power supply for Mars Builders	583
12.99 Builder Mass Breakdown	588
12.100 Gearbox Design	589
12.101 Mars Builder Internal Battery Selection Analysis	591
12.102 Potential Cave Entry Architectures	593
12.103 Ramp Construction Algorithm	596
12.104 Ramp Risk And Tracked Vehicle Traction and Load Assessment	598
12.105 Builder Traction and Load Calculation	599
12.106 DozerCalcs xlsx User Guide	601
12.107 Alternate Cave Entry Design: Crane	603
12.108 Alternate Cave Entry Design: Structural Ramp	604
12.109 User guide: ramp.m	607
12.110 User guide: ramp_analysis.m	608
12.111 Crew Transfer Vehicle Mission Profile and Attitude Control	609
12.112 User Guide: Non_grav_forces_crew_transfer.m	615
12.113 User Guide: Grav_grad_crew_trans_vehicle.m	616
12.114 Crew Return Vehicle Mission Profile and Attitude Control	617
12.115 User Guide: Non_grav_forces_return_vehicle.m	623
12.116 User Guide: Grav_grad_return_vehicle.m	624
12.117 User Guide: Rendezvous_docking_spin.m	625
12.118 Crew Necessities for the Crew Transfer Vehicle	626
12.119 Code to compute the mass and volume of O2 and N2 needed in the Crew Capsule	627
12.120 Stabilizing the Crew Return Vehicle	628
12.121 Crew Rendezvous with Cycler using Hohmann Transfer	630
12.122 Crew Departure from Cycler using a Hyperbolic Transfer	633
12.123 Crew Transfer Vehicle Structure	635
12.124 Lambert Transfer Code Walkthrough	636
12.125 Analysis for Stage One, the Propulsion System for LEO to Cycler One	641
12.126 Crew Transfer Vehicle Propulsion Code User Guide	647
12.127 Analysis for Stage Two, the Propulsion System for Cycler One to Mars Aerocapture	648
12.128 Analysis for the Capsule Skirt and the Donut Tank, the propulsion system for Phobos to Aero-capture to Phobos, and Cycler Two to Earth	•
12.129 Communications Overview	654

Antenna specifications	
12.130 Satellite Volume and Mass Tables	666
12.131 Satellite Packaging Volume Calculations	667
12.132 Solar Power Sizing Matlab Code	
12.133 Helio Sat Preliminary Torque Analysis	670
12.134 User's Guide for Mesh Dish Analysis	674
12.135 Mars Satellite Propellant Mass Estimation	677
12.136 Mars Satellites Sensors	679
12.137 marsrelay.m User's Guide	682
12.138 Mars Satellite Orbit Design Options	683
12.139 sunsync.m User's Guide	684
12.140 Mars Satellites Eclipse Time	685
12.141 Mars Satellite Propellant Mass	687
12.142 Arcjets: Station Keeping Engines	689
12.143 User Guide: Cycler_Launches.m	691
12.144 User Guide: Cargo_Crew_Vehicles_xlsx	692
12.145User Guide: Earth_Mars_Hohmann.m	693
12.146 Falcon XX Custom Fairing Feasibility	694
12.147 User Guide for CustomFalconXX.m	699
12.148 Equations of Motion for Elliptical Spiral Including Determination of Thi Constant Radius at Periapsis	
12.149 Cargo Mission Trajectories	708
12.150 Elliptical Spiral Code	711
12.151 Circular Spiral Code	712
12.152 Hohmann Transfer Flight	713
12.153 Aerodynamic Analysis of the Aeroshell	714
12.154 Equations of Motion	716
12.155 Software User Guide	720
12.156 Random Density Variations in the Martian Atmosphere	730
12.157 Detailed description of Ballute Code and User Guide	733
12.158 Details and assumptions about Kapton material	735
12.159 Inflation gas details	736
12 160 Sizing and Prossurization of Halium tanks	737

12.161 Dual use Tether Tubes Specifications	738
12.162 Ballute deployment and detachment details	739
12.163 Propellant Mass Calculator Code User Guides	740
12.164 Orbital Maintenance	741
12.165 Mars Builders Attachment to Mars Hab	745
12.166 Risk Assessment	747
12.167 Detailed Analysis of the Unmanned Spacecraft Subsystem Cost Model	749
12.168 Detailed Analysis of the Federation of American Scientists Cost Tool	757
12.169 Detailed Analysis of Advanced Mission Cost Model Scaled to the Apollo Program	760

1 Foreword

This report represents the culmination of an intensive spacecraft design course, AAE 450, undertaken by seniors during a single semester. The students perform a feasibility study for a specified mission goal, subject to certain constraints.

The entire class works as a single team to achieve this goal. They elect a Project Manager and an Assistant Project Manager and organize into specialized groups to study (in this case) aerodynamics, attitude control, communications, human factors, mission design, power and thermal control, propulsion, and structures.

At the end of the semester the students deliver a formal presentation of their results. Besides this report, the class provides an appendix, which contains detailed analyses of their methods and trades studies.

The quality of the work in this report is consistent with the high standards of the aerospace industry. The students who participated in this study have demonstrated that they have mastered the fundamentals of astronautics, have learned to work efficiently as a team, and have discovered innovative ways to achieve the goals of this project.

In this particular project, the students were challenged to minimize the cost of a human mission to Phobos that prepares a Martian cave for a permanent colony on Mars, subject to a number of requirements. The most important requirement is to protect the crew from space radiation. NASA has known for some time that shielding with an areal density of 100 to 200 g/cm² is necessary to reduce space radiation to the level of Earth background levels. Some scientists believe that even greater protection is needed ranging from 300 to 500 g/cm². In this report, the requirement is set to 200 g/cm² which amounts to a shield wall 2 meters thick (if water is used for the shield). The resulting impact on the mass of the spacecraft strongly indicates that the concept of a Cycler vehicle which, once placed in orbit around the Sun, provides a safe haven that Mars-bound astronauts can use over and over again for succeeding crews. Thus, the use of a Cycler vehicle is one of the requirements in this design. The Phobos crew is returned to Earth after preparing the Martian cave. Succeeding crews are then enabled to use the Cycler vehicle

multiple times to establish a human colony on Mars. The details of the "One-Way Mission to Mars," in which astronauts live out their lives on Mars, are provided in last year's AAE 450 report, Project Olympus (2012). The current design provides a "prequel" to the prior design and is intended to resolve the problem of how to prepare Martian caves for the human colony – a daunting task that the present design team undertook.

I believe this design team rose to the occasion to produce an important feasibility study. The leadership of the Project Manager and Assistant Project Manager as well as the outstanding cooperation of the team members were key elements in the success of their project. They have every right to feel proud of their accomplishment and I am proud of them.

James M. Jongueli.

Professor of Aeronautics and Astronautics Purdue University

April 4, 2013

2 Mission Summary

2.1 Mission Requirements

In order to make the most use of every opportunity to travel to Mars, two Cycler Vehicles shall be used. Our two Cycler Vehicles shall provide an artificial gravity field of 0.38 Earth g's, equivalent to the gravity on Mars. The Cycler Vehicles shall also provide shielding against space radiation. This shielding protecting the crew Habitation Module shall have an areal density of 200 g/cm² and must be water. A trajectory correction maneuver of 100 m/s should be budgeted for every synodic period of the Cycler Vehicles.

Crew A shall land on Phobos to prepare the landing site for Crew 1 remotely. Crew A shall consist of eight middle aged people, four men and four women. The construction equipment shall be tele-operated by all members of Crew A. The preparation of the cave entrance ramp shall be completed within a year. Telecommunications with the Mars Builders shall be continuous during the entire time Crew A is on Phobos.

Continuous, uninterrupted, High Definition two way video communications shall be maintained between each of the astronauts and Earth.

During the landing of the Mars Builders and Maintenance Station on Mars, the landing vehicle shall hover for at least 30 seconds. The error for landing is to be less than six km with a probability of 99%.

The Phobos Hab shall provide each crew member with private quarters, each having a volume of 15 m³. The crew common area for the Phobos Hab shall also have a volume of 15 m³. There shall be a centrifuge in the Phobos Hab that provides 0.38 g's of artificial gravity to allow for using a toilet and shower as well as exercise. All crew members of Crew A shall be able to use these services for one hour per day. On each Cycler Vehicle, the crew private quarters shall have a volume of 30 m³. The crew common area for the Habitation Module shall also have a volume of 30 m³.

The Phobos Hab shall have a radiation shielding with an areal density of 200 g/cm². Crew A shall not employ in situ propellant production to return to Earth. During Crew A's stay on Phobos, they shall explore the moon with two tele-operated, robotic vehicles and two pressurized crewed vehicles. Each crewed vehicle shall be able to carry four crew members and fly a three hour mission on Phobos every day. Spacesuits for Crew A shall only be used as a safety precaution whilst in these crewed vehicles. The crewed vehicles shall be designed to allow the crew to control them inside in a "shirt-sleeve" environment. The crewed vehicles shall also have similar science instruments to the Mars rovers: lights, stereoscopic cameras, microscopes, telescopes and geologist' tools. The crewed vehicles shall also have robotic fingers, hands and arms to pick up a small boulder or a dime. They shall be faster, safer, stronger and more dexterous than crew members in space suits. The robotic vehicles shall be able to explore Phobos for 12 hours each day. The crew members shall not be subjected to direct exposure to space radiation for an accumulated period exceeding two months.

Cargo flights may be launched as early as 2020, and they can use electrical propulsion but must take less than one synodic period, 2 1/7 years, to reach Mars. Crew A shall be launched by 2030, but no later than 2040. Crew A shall employ a ballute aerocapture at Mars to reach Phobos. All technologies shall be space rated before the first human flight.

Project Prometheus's main mission goal of preparing the Martian lava tubes shall have a 90% probability of success. Crew A's safe return to Earth in good health shall have a probability greater than 95%.

4.2 Phobos Landing Sequence

The Phobos Hab, Pods, Hoppers, and reactors are packaged as shown in Fig. 4.2.1. There are two Pods, two Hoppers, and two reactors. The second reactor is there as a backup.

4.2.1: Phobos Hab, Pods, Hoppers, and reactors packaged for transit

The landing sequence is as follows:

- 1) The cargo vehicle enters orbit around Mars and approaches Phobos by using an aerocapture maneuver. The aeroshell is shown in the launch vehicle fairing (Fig. 4.2.1).
- 2) The aeroshell is jettisoned.
- 3) The Phobos Hab lands in Stickney Crater with the Pods, Hoppers, and reactors attached.
- 4) The reactors start up.
- 5) The Phobos Hab arm removes the reactors and places them nearby.

The power and communications systems are housed in the reactors. The reactors are connected to the Phobos Hab by a cable. The final separation on Phobos between the reactors and the Phobos Hab will be approximately 50 m.

The reactors do not operate during descent or landing. This is to prevent damage from shock and vibrations. The reactors cannot be turned on for descent, turned off for landing, and then turned on again after landing. The reactors generate minimal power after landing until the crew arrives, and then run near capacity for the crew. There is an arm for regolith collection and a radiator on top of the hab. They are shown folded near the top of the fairing in Fig. 4.2.1.

Originally, the tent that holds the regolith was to lay flat on the side of the Phobos Hab in transit. This poses a problem for the propulsion team because the thrusters must be open to space and they cannot be mounted to the tent material. To solve this problem, the tent is rolled up underneath the Phobos Hab over the stilts in transit.

4.5 Phobos Landing Site Schematics

Figure 4.2.1 in the previous section shows the Phobos Hab with the tent deployed and the Crew Transfer Vehicle berthed alongside the Pods. Although this is a rudimentary schematic, it should serve as a good reference to visualize the overall configuration of the Phobos portion of the mission.

The Crew Return Vehicle berths underneath the Phobos Hab. The advantages of this are the following:

- 1) There is no radiation protection on the Crew Return Vehicle. If the Crew Return Vehicle docks on the top, it exposes the crew in the Phobos Hab to radiation.
- 2) There is also risk of damaging the heat shield when piling regolith on top of the hab.

The disadvantages to berthing underneath the Phobos Hab are the following:

- 1) The Crew Vehicle is 2.7 m in length and there is only a 5 m clearance beneath the hab.
- 2) Another problem posed by docking beneath the Phobos Hab is the pods acting as obstacles.

We mitigate the disadvantages by using the arm at the top of the Phobos Hab to berth the spacecraft to the Phobos Hab on the underside instead of risking impact by docking.

In addition to berthing the Crew Return Vehicle, the arm also collects regolith. One of the primary mission objectives that the Pods accomplish is the collection of regolith. The following factors influenced the design:

- 1) Pods use much less propellant if they do not need to reach the height of the roof of Phobos Hab on every pass. Despite the low gravity on Phobos, this yields major savings on propellant mass.
- 2) A conveyor belt (one of the designs considered) is not necessary because the arm can dump the regolith into the tent.
- 3) It is possible for the arm to have dual functionality: to berth the Crew Return Vehicle, and to place the regolith in the tent around the Phobos Hab to protect the crew against radiation.

The pods collect regolith and leave it near the arm manipulator, which then places the regolith in the tent. The radiator on top of the Phobos Hab will be tall enough to avoid most of the regolith. One option was to dock the Crew Return Vehicle on top of the Phobos Hab. This would expose the crew to radiation since the Crew Transfer Vehicle would not have any shielding. In addition, the regolith would damage the exterior of the Crew Vehicle. We placed the radiator on top of the Phobos Hab with the Crew Return Vehicle docking port underneath. The radiator does not risk the lives of the crew if scratched by the regolith. The radiator is also designed to mount higher than the Crew Return.

4.10 Phobos Hab Communication with Mars Satellites

In order to communicate with the Mars Satellites on its way to Phobos, the Phobos Hab is equipped with an omnidirectional antenna. We chose an omnidirectional antenna because the power requirements for an uncrewed vehicle with no HDTV feeds is much lower than the power required for higher data rates. An omnidirectional antenna is also much lighter than a dish antenna. We also chose to use the same frequency so that we wouldn't have to add another antenna to the satellite.

After the landing phase is complete, the Phobos Hab has full HD capability with the Mars Satellites by way of the dish antenna located on the reactors (Fig. 4.10.1). When the crew arrives from the Cycler Vehicle, the Crew Transfer Vehicle approaches the Phobos Hab. The arm will capture the Crew Transfer Vehicle and berth it to the underside near the Pods. The Hoppers sit in their charging stations until the crew arrives and begins to operate them.

4.10.1: Phobos landing site schematic

The Phobos Hab communications architecture is similar to the Mars Builders communications architecture (Fig. 4.10.2). The reactors have a dish to communicate with the Mars Satellites as well as three 130 deg beamwidth dish antennas for communicating with the Pods and Hoppers.

4.10.2: Phobos communcations systems on top of reactor

The antenna specifications for the Mars Satellite uplink and local communications dishes on Phobos are listed in Table 4.10.1.

4.10.1: Phobos Hab/reactors communications antennas

Link	Frequency, GHz	Power, W	Transmit Beamwidth, deg	Transmit Antenna Diameter, m	Data Rate, Mbps	Margin, dB
Phobos Cargo [Autonomous TM] Uplink (to Mars Satellites)	1.4	0.602	360	0.0417	0.0002	3.0114
Phobos Tower [Crewed] Uplink (to Mars Satellites)	1.4	584	15	15	110.1125	3.0053
Phobos Tower Downlink (to Pods, Hoppers)	0.7	30.4	130	0.2308	88.135	3.006

We chose a 130 deg beamwidth antenna for three reasons, the first two being common to the Mars Builders tower:

- Overlapping transmission areas guarantee consistent signal strength in all directions
- The antennas are not all transmitting from the same point there is some space between them where they mount at the top of the tower.
- The large beamwidth ensures that the signal will reach relays outside the crater (Fig. 4.10.3).

4.10.3: Chart showing visibility of sky from Phobos landing site with obstuctions; by Randy Eckman

The Phobos tower is not as tall as the Mars tower because the feasible communications range is much smaller, due to the size of Stickney Crater and the height of the edges of the crater. The height of the Phobos tower is low enough that the Pods and Hoppers are able to communicate before they first deploy.

4.12 Phobos Hab Stilts

Nomenclature

= Vertical distance from ground to Phobos Hab, m

= Length of each stilt, m 1

= Density of material, kg/m³

= Total mass of stilts, kg

= Stilt angle, deg

= Number of stilts n

 F_s = Side force, N

= Smallest distance supporting point and force acting point, m

M = Moment produced by side force, Nm

Based on the mission, we want Phobos Hab to stand on Phobos, and leave enough space to allow Pods and Crew Return Vehicle to exit. Therefore we need to design a stilts system for Phobos Hab. According to the dimensions of Pods and Crew Return Vehicle, we decide to use five stilts to support Phobos Hab. There are several reasons. First of all, five stilts can make five 72 deg angles exist between every two stilts as shown in Fig 4.12.1, which means that the distance between every two stilts is about 3.5 m. It is wide enough for Pods and Crew Return Vehicle's exiting. Secondly, five stilts have more stable effect to Phobos Hab than four stilts.

Figure 4.12.1: Five stilts design gives 72 deg angles between every two stilts to leave enough space for vehicles (by Yuming Zou).

The required distance between ground and Phobos Hab is set as 5 m. At the beginning of our design, we assume that all stilts have 0 deg stilt angle with vertical direction. Then, by using Equation 1, we find the minimum total area for five stilts with a safety factor 3.

$$\sigma = F/A$$
 Equation 1

In order to avoid bucking, we choose hollow cylinder as the basic shape of stilts, then use Equations 2 and 3 to find out the specific values for radius and thickness required.

$$F = \pi^2 EI/(KL)^2$$
 Equation 2
$$I = 2\pi r^3 t$$
 Equation 3

The stilts system is attached on bottom of Phobos Hab, so we want to minimize its total mass. One way to achieve this purpose is to choose suitable material. We repeat the same calculation under required constrains for four different materials (steel, aluminum, bronze, and magnesium alloy). We find that Aluminum has lowest mass, see Table 4.12.1. So, we use Al 7075-T6 as material of stilts.

Table 4.12.1: Mass and properties comparisons

	Yield Stress, MPa [1]	Density, kg/m ³ [1]	Total Mass, kg
Steel	700	7850	29.2
Aluminum	480	2800	15.5
Bronze	690	8800	33.2
Magnesium Alloy	280	1830	17.0

The Fig 4.12.2 shows a 10 deg stilt angle for each stilt. The using of stilt angle is to keep Phobos Hab more stable under some uncertain reason, like self vibration, and unsteady landing level.

Figure 4.12.2: There is a 10 deg stilt angle for each stilt (by Victor Gandarillas).

Based on our calculations from Equation 4, 10 deg stilt angles make the stilts about 2 percent longer and heavier than stilts without angles. On the other hand, angles help Phobos Hab to stay stable under maximum 200 N side force.

$$M = F_s \times L$$
 Equation 4

Furthermore, at the bottom of each stilt, there is a U-shape plane to avoid vibrations and make the system stable.

During transporting process, in order to save more volume, we design the stilts to keep folding up and closely attached on Phobos Hab base. Once we hover the Phobos Hab to desired location and prepare for landing, we adjust the orientation of the stilts so that each stilt is 10 deg away from the vertical axis.

Table 4.12.2: Dimensions of stilts

Dimensions	Values
Height, m	2
Number of Stilts	5
Safety Factor	3
Radius of Each Stilt, m	0.073
Thickness, m	0.01
Angle, deg	10
Material	Al 7075-T6
Total Mass of Stilts, kg	15.5

Reference

[1] Barry J. Goodno, James A. Gere; Mechanics of Materials 7th Edition. Quebecor World. Toronto, Canada. 2009.

5.15 Pods and Hoppers Communications

The Pods and Hoppers will have full HD capability with the Phobos Hab. Phobos measures $26.8 \times 22.4 \times 18.4$ km [1], so the range set for the Pods and Hoppers is 44 km; longer than the Phobos Hab dishes in order to reach communication relays scattered around the surface.

The Pods and Hoppers all have navigation and communications systems. There are ten relays, each with a range of 14 km all around Phobos. After being delivered by the Pods and Hoppers, they provide even coverage over the surface of Phobos for communication and navigation. The relays can determine their relative positions to establish a network of surface reference locations and enable the Pods and Hoppers to determine their own positions from those relative positions. The relays transmit in the GPS standard L2 frequency at 4800 bps. The Pods and Hoppers do not transmit in L2 since they only act as receivers.

Antenna specifications for the Pods, Hoppers, and relays are listed in Table 5.15.1.

5.15.1: Antenna specifications for Pods, Hoppers and Phobos relays

			Transmit	Transmit	Data	
	Frequency,	Power,	Beamwidth,	Antenna	Rate,	Margin,
Link	GHz	W	deg	Diameter, m	Mbps	dB
Phobos Pods, Hoppers						
Uplink (to Tower)	0.7	34.7	360	0.0833	22.135	3.0029
Phobos Relay Uplink (to						
Tower)	0.7	3.4	180	0.1667	44.135	3.0579
Phobos Relays						
Downlink (to Pods,						
Hoppers)	0.7	1.5	180	0.1667	88.135	30.0787
Relays (Nav)	1.5754	0.00041	180	0.0741	0.0048	3.0387

References

[1] Phobos: Overview. (2012, April 24). Retrieved February 28, 2013, from Solar System Exploration: http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mar Phobos

6.14 Mars Builders Communications

In order to place the Mars Hab in the lava tube safely for future crews, we designed teleoperated builders to land on Mars. The astronauts on Phobos operate the Mars Builders remotely to set up the Mars landing site for future crews, fulfilling their main mission objective.

Since the Mars Builders require continuous two-way communication with Phobos, we designed a dish antenna to communicate with the Mars Satellites mounted on top of a cell phone tower, which relays data to and from the Mars Builders (Fig. 6.14.1). The Mars builders will also have continuous HDTV capability for the crew to have a detailed view during normal operations and in case of repair.

6.14.1: Schematic of Mars tower with Mars Satellite uplink dish antenna and local communications dish antennas

The Mars Entry Vehicle delivers the Mars Builders and communications tower to the surface. After the Mars Builders are deployed, the tower will extend to a height of 24 m and the astronauts will be able to control and guide the Mars Builders to the lava tube (Fig. 6.14.2). The signal will be transmitted from dish antennas on the tower with 130 deg beamwidth.

6.14.2: Top-down view schematic of Mars communications tower and Mars Builders; note difference in coverage of 120 deg vs 130 deg beamwidth

The beamwidth of the cell phone tower antennas was chosen based on power requirements. An omnidirectional antenna requires more power than a 120 deg beamwidth antenna, and the relationship is not linear. That is, three 120 deg beamwidth antennas will consume less power than one 360 deg beamwidth antenna. We chose a 130 deg beamwidth antenna for three reasons:

- Overlapping transmission areas guarantee consistent signal strength in all directions
- The antennas are not all transmitting from the same point there is some space between them where they mount at the top of the tower.

In addition to communicating horizontally with the Mars Builders, the tower must communicate with the Mars Builders before they roll off the pad. To accomplish this, a 50 deg beamwidth antenna points down from the top of the tower at the platform where the Mars Builders sit until they roll out (Fig. 6.14.3).

6.14.3: Diagram showing area swept out by antenna beamwidths for communications tower at Mars landing site ensuring successful signal transmission to and from Mars Builders during initial roll out

The height of the Mars tower is based on [1]. The complete range should be accessible in case the entry vehicle lands up to 20 km from its intended target.

In case signals cannot reach the Mars Builders inside the lava tube, there is a relay that can establish a connection between the Builders inside the lava tube and the communications tower. The Mars builders deliver the relay to the point where the signal becomes weak near the entry point of the lava tube and continue to communicate with the tower through the relay after going down the ramp to deliver the Mars Hab.

Since the Mars Science Laboratory landed within 20 km of its target [2-3], and precision pinpoint landing is expected to be developed in some the near future, we assumed that the entry vehicle delivering the Mars Builders to the surface, landing within 20 km of the lava tube and Mars Hab. Communications hardware specifications for all vehicles landing on Mars are listed in Table 6.14.1.

6.14.1: Mars communications tower, Mars Entry Vehicle, Mars Builders, and relay communications specifications

Link	Frequency, GHz	Power, W	Transmit Beamwidth, deg	Transmit Antenna Diameter, m	Data Rate, Mbps	Margin, dB
Mars Tower Uplink	<u> </u>		4.08	2 101110 1011, 111	1.1000	
(to Mars)	20.9	12.6	15	1	22.135	3.001
Mars Entry Vehicle	20.9	12.0	15	1	22.133	3.001
Uplink [TM] (to						
Mars Satellites)	20.9	0.066	360	0.0028	0.0002	3.0995
Mars Tower	20.9	0.000	500	0.0020	0.0002	5.0775
Downlink (to						
Builders)	0.7	7	130	0.2308	44.135	3.4671
Mars Tower	0.7	,	150	0.2300		3.1071
Downlink (to						
Builders - short		1.34E-				
range)	0.7	06	50	0.6	44.135	3.003
G ,						
Mars Builders Uplink	0.7	1.4	260	0.0022	22 125	2 1002
(to Tower)	0.7	14	360	0.0833	22.135	3.1093
Mars Relay Uplink	0.7	66.1	100	0.0022	44 125	2 1006
(to Tower)	0.7	66.1	180	0.0833	44.135	3.1986
Mars Relay						
Downlink (to	0.7	0.00064	100	0.1667	44 125	2.0570
Builders)	0.7	0.00064	180	0.1667	44.135	3.0578

The crew lives in the Phobos Hab, and traverses Phobos in the Pods. The crew also remotely pilots the Hoppers. The purpose of the Pods and Hoppers is for the crew to collect regolith for radiation shielding and to perform any science missions added during development.

References

- [1] Rajaraman, R. (2010). CS 6710: Wireless Networks. Retrieved February 28, 2013, from Northwestern University College of Computer Science: https://docs.google.com/viewer?a=v&q=cache: UVIsqO6tuUJ:www.ccs.neu.edu/home/rraj/ Courses/6710/S10/Lectures/AntennasPropagation.pdf+&hl=en&gl=us&pid=bl&srcid=ADG EESjl1MljUD0vPNj ZXtPIySP8dX2GTczYKV2 RwPRw7rSQtezi7tqKEcAy2XrhXztIIIH N9XniAG7AkQ BpZF-RP NSl8
- [2] Entry, Descent, and Landing. (n.d.). Retrieved February 28, 2013, from Jet Propulsion Laboratory, California Institute of Technology: http://mars.jpl.nasa.gov/msl/mission/timeline/edl/
- [3] Webster, G. (2012, June 11). NASA Mars Rover Team Aims for Landing Closer to Prime Science Site. Retrieved February 28, 2013, from NASA/JPL: http://www.nasa.gov/mission_pages/msl/news/msl20120611.html

8.12 Mars Satellites Communications

There are three communications satellites in orbit around Mars, which serve as relays between Mars, Phobos, and the Helio satellite. The Mars Satellites are necessary to maintain communication between all three points in space when direct line of site is unavailable (e.g. when Phobos is on the other side of Mars from Mars Builders/Hab). Figure 8.12.1 shows the link schematic for Helio, Mars, and Phobos.

8.12.1: Link schematic for Helio-Mars-Phobos communications links

The Mars satellites each have three dish antennas to communicate with Mars, Phobos, and the Helio satellite. The dish specifications are shown in Table 8.12.1.

8.12.1: Mars Satellite Antenna specifications

Link	Frequency, GHz	Power, W	Transmit Beamwidth, deg	Transmit Antenna Diameter, m	Data Rate, Mbps	Margin, dB
Mars Satellite Crosslink	60	47000	15	0.35	110.135	3.6175
Mars Satellite Downlink (to Phobos Hab crewed)	1.4	129	15	1	110.1125	3.0254
Mars Satellite Downlink (to Mars)	1.4	5.6	15	1	44.135	3.0305

The reason for such a narrow beamwidth is that the power requirements for such a high data rate at such a high frequency are much greater if we want to send a signal over a wider area. We chose the pointing error for the satellites based on the Attitude Control team's ability to provide 5 arcseconds accuracy. A tighter pointing error also results in a lower power requirement, so the largest pointing error for an interplanetary mission we found was a good starting point for designing these dishes. These pointing errors also apply to vehicles operating within the vicinity of Mars and Phobos.

12.129 Communications Overview

Nomenclature

P	= power, W
G	= gain, dB
θ	= beamwidth, deg
D	= dish diameter, m
F	= frequency, GHz
$L_{ heta}$	= pointing loss, dB
L_s	= propagation loss, dB
η	= efficiency
$el\theta$	= pointing error
implem_loss	s = implementation loss, dB
margin	= signal margin, dB
$\frac{E_b}{N_0}$	= energy per bit to noise power spectral density ratio, dB-Hz

We require continuous (uninterrupted) 2-way video (HDTV) communications must be maintained between each of the astronauts and Earth. In order to ensure that uncrewed vehicles would reach their intended targets, we also used a 200 bps data rate for telemetry.

= required energy per bit to noise power spectral density ratio, dB-Hz

This section presents an overview of our algorithm and preliminary analysis. The sections following contain the resulting communications design for the Mars Satellites, Pods and Hoppers, and Phobos Hab.

The algorithm we used was provided by Professor Filmer. Using frequency, power, pointing errors, propagation path length, data rate, and bit error rate as inputs, the algorithm calculates the signal margin. A margin of 3 dB is required for the signal to be detected at the receiver.

The algorithm uses power in dB, and converts it by Equation 1.

$$P = 10\log_{10}(P)$$
 Equation 1

Peak transmit antenna gain is calculated as follows.

$$G = 44.3 - 20\log(\theta)$$
 Equation 2

Dish diameter is calculated in Equation 3.

$$D = 21/(f_{GHz}\theta)$$
 Equation 3

Pointing loss is calculated from pointing error:

$$L_{\theta} = -12(el\theta)^2$$
 Equation 4

Frequency and propagation length are input to equation 5 to determine pace propagation loss .

$$L_s = 147.55 - 20 \log S - 20 \log f$$
 Equation 5

Peak receive antenna gain is calculated from equation 6.

$$G = -159.59 + 20logD + 20logf + 10log\eta$$
 Equation 6

Using power, line loss, transmit antenna gain, receiver pointing loss, propagation and polarization loss, receiver gain, system noise temperature, and bit rate, energy per bit to noise power spectral density ratio is calculated.

$$E_b/N_o = P + L_l + G_t + L_{pr} + L_s + L_a + G_r + 228.6 - 10logT - 10logR$$
 Equation 7

Equivalent isotropic radiated power can also be determined by equation 8.

$$EIRP = P + L_l + G_t$$
 Equation 8

Finally, margin is calculated.

$$margin = \frac{E_b}{N_0} - \frac{E_b}{N_0} + implem_loss$$
 Equation 9

We chose polarization and propagation loss based on Fig. 12.129.1. We chose the most conservative value of -0.6 dB for transmissions that traveled through an atmosphere.

12.129.1: Polarization and propagation loss vs. frequency for various gases

Omnidirectional antennas were given a transmitting and receiving pointing error of zero. Pointing error and beamwidth are directly proportional to power; an increase in pointing error or beamwidth will increase power. The relationship is nonlinear, so adding antennas to cover a wider area will require less power than a single antenna to cover the same area.

The margin peaks in the frequency range (Fig. 12.129.2) and drops off for higher frequencies. We considered this relationship when selecting short range frequencies, but kept with convention for satellite frequencies for longer range transmissions.

12.129.2: Frequency selection based on location of peak margin

For smaller transmitter and receiver dish sizes, higher frequencies yield higher margin (Fig. 12.129.2).

12.129.3: Frequency vs margin plot showing margin increasing with frequency for dishes of 1 m (transmitter) and 10 m (receiver)

The relationship between frequency and beamwidth is inversely proportional (Fig. 12.129.4), so for higher frequencies and longer ranges, (e.g. Mars and Helio Satellites), more precise attitude control is required.

12.129.4: Plot showing inverse relationship between frequency and transmitter beamwidth

References

[5] Filmer, D. (n.d.). Untitled. Unpublished manuscript, Purdue University, West Lafayette, IN. Link Budget Calculations

Antenna specifications

12.129.1: Antenna specifications for Mars Satellites, Mars Builders, Phobos Hab, Phobos Pods, Phobos Hoppers, and corresponding relay systems

noppers, and corresponding re	Frequency, GHz	Power, W	Transmitter Line Loss, dB	Transmit Beamwidth, deg	Transmit Antenna Diameter, m
Mars Satellite Crosslink	60	47000	-1	1	0.35
Mars Satellite Downlink (to Phobos Hab crewed)	1.4	129	-1	15	1
Mars Satellite Downlink (to Mars)	1.4	5.6	-1	15	1
Mars Tower Uplink (to Mars) Mars Entry Vehicle Uplink [TM] (to Mars	20.9	12.6	-1	15	1
Satellites)	20.9	0.066	-1	360	0.0028
Mars Tower Downlink (to Builders)	0.7	7	-1	130	0.2308
Mars Tower Downlink (to Builders - short range)	0.7	1.34E-06	-1	50	0.6
Mars Builders Uplink (to Tower)	0.7	14	-1	360	0.0833
Mars Relay Uplink (to Tower)	0.7	66.1	-1	180	0.0833
Mars Relay Downlink (to Builders) Phobos Cargo	0.7	0.00064	-1	180	0.1667
[Autonomous TM] Uplink (to Mars Satellites)	1.4	0.602	-1	360	0.0417
Phobos Tower [Crewed] Uplink (to Mars Satellites)	1.4	584	-1	1	15
Phobos Tower Downlink (to Pods, Hoppers)	0.7	30.4	-1	130	0.2308
Phobos Pods, Hoppers Uplink (to Tower)	0.7	34.7	-1	360	0.0833
Phobos Relay Uplink (to Tower)	0.7	3.4	-1	180	0.1667
Phobos Relays Downlink (to Pods, Hoppers)	0.7	1.5	-1	180	0.1667
Relays (Nav)	1.5754	0.00041	-1	180	0.0741

12.129.2: Antenna specifications for Mars Satellites, Mars Builders, Phobos Hab, Phobos Pods, Phobos Hoppers, and corresponding relay systems (continued)

		Transmit			
	Peak Transmit	Antenna	Receiver	Receiver	
	Antenna Gain,	Pointing Error,	Beamwidth,	Antenna	
	dB	deg	deg	Diameter, m	
Mars Satellite Crosslink	53.4186	0.02	0.35	1	
Mars Satellite Downlink (to					
Phobos Hab crewed)	20.7782	1.15	15	1	
Mars Satellite Downlink (to					
Mars)	20.7782	1.15	15	1	
Mars Tower Uplink (to					
Mars)	20.7782	1.15	15	1	
Mars Entry Vehicle Uplink					
[TM] (to Mars Satellites)	-6.8261	0	15	1	
Mars Tower Downlink (to					
Builders)	2.0211	0	360	0.2308	
Mars Tower Downlink (to					
Builders - short range)	10.3206	0	360	0.2308	
Mars Builders Uplink (to					
Tower)	-6.8261	0	130	0.2308	
Mars Relay Uplink (to					
Tower)	-0.8055	0	130	0.2308	
Mars Relay Downlink (to					
Builders)	-0.8055	0	360	0.2308	
Phobos Cargo					
[Autonomous TM] Uplink	6.0261	1 15	1.5	1	
(to Mars Satellites)	-6.8261	1.15	15	1	
Phobos Tower [Crewed]	20 5502	1.15	1.7	4	
Uplink (to Mars Satellites)	20.7782	1.15	15	1	
Phobos Tower Downlink		•	2.60	0.0000	
(to Pods, Hoppers)	2.0211	0	360	0.0833	
Phobos Pods, Hoppers		_			
Uplink (to Tower)	-6.8261	0	0.2308	0.2308	
Phobos Relay Uplink (to					
Tower)	-0.8055	0	180	0.1667	
Phobos Relays Downlink					
(to Pods, Hoppers)	-0.8055	0	180	0.1667	
Relays (Nav)	0.0741	0	180	0.0741	

12.129.3: Antenna specifications for Mars Satellites, Mars Builders, Phobos Hab, Phobos Pods, Phobos Hoppers, and corresponding relay systems (continued)

rs, and corresponding relay system	Receiver	Transmit	
	Antenna	Antenna	Transmit
	Pointing Error,	Pointing Loss,	Antenna Gain,
	deg	dB	dB
Mars Satellite Crosslink	0.02	-0.0392	53.3795
Mars Satellite Downlink (to			
Phobos Hab crewed)	1.15	-0.0705	20.7076
Mars Satellite Downlink (to			
Mars)	1.15	-0.0705	20.7076
Mars Tower Uplink (to			
Mars)	1.15	-0.0705	20.7076
Mars Entry Vehicle Uplink			
[TM] (to Mars Satellites)	1.15	-0.00012245	-0.68262
Mars Tower Downlink (to	•		0.0011
Builders)	0	0	2.0211
Mars Tower Downlink (to	•		40.000
Builders - short range)	0	0	10.3206
Mars Builders Uplink (to	•		6.00.64
Tower)	0	0	-6.8261
Mars Relay Uplink (to Tower)	0	0	-0.8055
*	U	U	-0.8033
Mars Relay Downlink (to Builders)	0	0	-0.8055
Phobos Cargo	U	U	-0.8033
[Autonomous TM] Uplink			
(to Mars Satellites)	1.15	-0.00012245	-6.8262
Phobos Tower [Crewed]			
Uplink (to Mars Satellites)	1.15	-0.0705	20.7076
Phobos Tower Downlink			
(to Pods, Hoppers)	0	0	2.0211
Phobos Pods, Hoppers			
Uplink (to Tower)	0	0	-6.8261
Phobos Relay Uplink (to			
Tower)	0	0	-0.8055
Phobos Relays Downlink			
(to Pods, Hoppers)	0	0	-0.8055
Relays (Nav)	0	0	-0.8055

12.129.4: Antenna specifications for Mars Satellites, Mars Builders, Phobos Hab, Phobos Pods, Phobos Hoppers, and corresponding relay systems (continued)

	Equivalent Isentropic Radiated Power, dBW	Propagation Path Length, km	Space Loss, dB	Propagation and Polarization Loss, dB
Mars Satellite Crosslink	99.1004	2822000	257.0240	0
Mars Satellite Downlink (to			-	
Phobos Hab crewed)	40.8135	8212	173.6620	0
Mars Satellite Downlink (to	• • • • • • • • • • • • • • • • • • • •	2.7.2	-	0.06
Mars)	27.1895	2512	163.3730	-0.06
Mars Tower Uplink (to	20.7112	2512	106 0520	0.6
Mars)	30.7113	2512	186.8530	-0.6
Mars Entry Vehicle Uplink [TM] (to Mars Satellites)	-19.6307	2512	186.8530	-0.6
Mars Tower Downlink (to	-19.0307	2312	100.0550	-0.0
Builders)	9.4721	20	115.3730	-0.6
Mars Tower Downlink (to	7.4721	20	113.5750	-0.0
Builders - short range)	-49.4084	0.024	-56.9562	-0.6
Mars Builders Uplink (to	17.1001	0.021	50.7502	0.0
Tower)	3.6352	20	115.3730	-0.6
Mars Relay Uplink (to	3.036 2	20	-	0.0
Tower)	16.3966	44	122.2210	-0.6
Mars Relay Downlink (to				
Builders)	-33.7437	0.145	-72.5793	-0.6
Phobos Cargo				
[Autonomous TM] Uplink		0-1-	-	
(to Mars Satellites)	-10.0102	8212	173.6620	0
Phobos Tower [Crewed]	4= 2=10	0010	-	
Uplink (to Mars Satellites)	47.3718	8212	173.6620	0
Phobos Tower Downlink	15.0400	10	100 0010	0
(to Pods, Hoppers)	15.8499	10	122.2210	0
Phobos Pods, Hoppers	7.5772	10	122 2210	0
Uplink (to Tower)	7.5772	10	122.2210	0
Phobos Relay Uplink (to	2.5002	1 /	112 2750	^
Tower)	3.5093	14	112.2750	0
Phobos Relays Downlink	-0.0445	1 <i>A</i>	112 2750	Λ
(to Pods, Hoppers)	-0.0443	14	112.2750	0
Relays (Nav)	-35.6776	14	119.3210	0

12.129.5: Antenna specifications for Mars Satellites, Mars Builders, Phobos Hab, Phobos Pods, Phobos Hoppers, and corresponding relay systems (continued)

Hoppers, and correspondi	ng relay systems (co	Receiver		System	
	Peak Receiver	Antenna	Receiver	Noise	Data
	Antenna Gain,	Pointing Loss,	Antenna Gain,	Temperature,	Rate,
	dB	dB	dBi	K	Mbps
Mars Satellite Crosslink	53.3767	-0.0392	53.3375	682	110.1350
Mars Satellite Downlink (to					
Phobos Hab crewed)	20.7362	-0.0705	20.6657	135	110.1350
Mars Satellite Downlink (to					
Mars)	20.7362	-0.0705	20.6657	135	44.1350
Mars Tower Uplink (to					
Mars)	44.2166	-0.0705	44.146	614	22.1350
Mars Entry Vehicle Uplink					
[TM] (to Mars Satellites)	44.2166	-0.0705	44.1460	614	0.0002
Mars Tower Downlink (to	6.0600		6.0600	40.5	4440.00
Builders)	-6.8680	0	-6.8680	135	44.1350
Mars Tower Downlink (to					
Builders - short range)	-6.8680	0	-6.8680	135	44.1350
Mars Builders Uplink (to					
Tower)	1.9791	0	1.9791	614	22.1350
Mars Relay Uplink (to	-0.8474	0	-0.8474	614	44.1350
Tower)	-0.84/4	0	-0.8474	014	44.1330
Mars Relay Downlink (to Builders)	-6.8680	0	-6.8680	135	44.1350
Phobos Cargo	-0.0000	U	-0.0000	133	44.1330
[Autonomous TM] Uplink					
(to Mars Satellites)	20.7362	-0.0705	20.6657	614	0.0002
Phobos Tower [Crewed]					*****
Uplink (to Mars Satellites)	20.7362	20.73	20.6657	614	110.1350
Phobos Tower Downlink					
(to Pods, Hoppers)	-6.8680	0	-6.8680	135	88.1350
Phobos Pods, Hoppers					
Uplink (to Tower)	1.9791	0	1.9791	614	22.1350
Phobos Relay Uplink (to					
Tower)	-0.8474	0	-0.8474	614	44.1350
Phobos Relays Downlink					
(to Pods, Hoppers)	-0.8474	0	-0.08474	135	88.1350
Relays (Nav)	-0.8474	0	-0.8474	135	0.0048

12.129.6: Antenna specifications for Mars Satellites, Mars Builders, Phobos Hab, Phobos Pods, Phobos Hoppers, and corresponding relay systems (continued)

Hoppers, and correspondi	ng i ciay sysi	Carrier				
		Signal-to-	Bit	Required		
	Eb/N0,	noise	Error	Eb/N0,	Implementation	Margin,
	dB	RatiodB-Hz	Rate,	dB	Loss, dB	dB
Mars Satellite Crosslink	15.2175	95.6368	0.00001	9.6	-2	3.6175
Mars Satellite Downlink						
(to Phobos Hab crewed)	14.6254	95.0438	0.00001	9.6	-2	3.0254
Mars Satellite Downlink						
(to Mars)	14.6605	91.1084	0.00001	9.6	-2	3.0305
Mars Tower Uplink (to	4.4.604.0	00.040	0.00004	0.6		2 0040
Mars)	14.6010	88.0518	0.00001	9.6	-2	3.0010
Mars Entry Vehicle						
Uplink [TM] (to Mars Satellites)	14.6995	37.7098	0.00001	9.6	-2	3.0995
Mars Tower Downlink	14.0773	37.7076	0.00001	7.0	-2	3.0773
(to Builders)	17.4671	93.9282	0.00001	12	-2	3.4671
Mars Tower Downlink	17.4071	73.7202	0.00001	12	2	3.4071
(to Builders - short						
range)	17.0030	93.4641	0.00001	12	-2	3.0030
Mars Builders Uplink (to						
Tower)	17.1093	90.5601	0.00001	12	-2	3.1093
Mars Relay Uplink (to						
Tower)	17.1986	93.6464	0.00001	12	-2	3.1986
Mars Relay Downlink						
(to Builders)	17.0578	93.5057	0.00001	12	-2	3.0578
Phobos Cargo						
[Autonomous TM]						
Uplink (to Mars Satellites)	14.6114	95.0237	0.00001	9.6	-2	3.0114
Phobos Tower [Crewed]	14.0114	73.0237	0.00001	7.0	-2	3.0114
Uplink (to Mars						
Satellites)	14.6053	95.0237	0.00001	9.6	-2	3.0053
Phobos Tower Downlink						
(to Pods, Hoppers)	14.6060	94.0575	0.00001	9.6	-2	3.0060
Phobos Pods, Hoppers						
Uplink (to Tower)	14.6029	88.0537	0.00001	9.6	-2	3.0029
Phobos Relay Uplink (to						
Tower)	14.6579	91.1057	0.00001	9.6	-2	3.0579
Phobos Relays Downlink						
(to Pods, Hoppers)	14.6787	94.1302	0.00001	9.6	-2	30.0787
Relays (Nav)	14.6387	51.4511	0.00001	9.6	-2	3.0387

Antenna Dimensions

12.129.7: Antenna dimensions for Phobos tower, Phobos Pods/Hoppers, Phobos relays, Mars Satellites, Mars tower, Mars builders, and Phobos Hab TM communications

	Mass,		Volume,
	kg	Depth, m	m^3
Phobos Tower Uplink Antenna (to Mars Satellites)	15.3171	0.6599	0.0057
Phobos Tower Downlink Antenna (to Pods, Hoppers)	10.9038	0.0207	0.004
Phobos Pods Uplink Antenna (to Phobos Tower)	0.1219	0.8034	0.00004515
Phobos Relay Downlink Antenna (to Pods [NAV])	2.1934	0.0008127	17.532
Phobos Relay Uplink Antenna (to Relay)	1.8446	0.00068346	0.0443
Phobos Relay Downlink Antenna (to Pods)	2.1503	0.00079675	5.4657
Mars Satellite Downlink Antenna (to Mars)	39.0999	2.068	0.0145
Mars Satellite Downlink Antenna (to Phobos)	39.0999	2.068	0.0145
Mars Satellite Crosslink Antenna (to Mars Satellite)	39.0999	2.068	0.0145
Mars Satellite Crosslink Antenna (to Helio satellite)	554.891	2.0898	0.2451
Mars Tower Uplink Antenna (to Mars Satellite)	1.5483	0.6637	0.00057367
Mars Builder Uplink Antenna (to Tower)	0.6886	4.8779	0.00025515
Mars Tower Downlink Antenna (to Builders)	10.9038	0.0207	0.004
Mars Tower Downlink Antenna (to Builders, initial roll-			
out)	0.0245	9.0929E-06	2.262
Phobos Hab TM Uplink Antenna (to Mars Satellite)	1.0871	0.0234	0.00040281

12.166 Risk Assessment

Table 12.166.1: Historical launch vehicle statistics by year since the first orbital spacecraft launch.[1]

Year	LV Failures	Total Launches	Success Rate [%]
1957	1	3	66.67
1958	22	28	21.43
1959	12	25	52
1960	20	41	51.22
1961	19	53	64.15
1962	17	83	79.52
1963	17	71	76.06
1964	16	102	84.31
1965	16	132	87.88
1966	17	138	87.68
1967	18	142	87.32
1968	11	131	91.6
1969	20	126	84.13
1970	13	125	89.6
1971	16	135	88.15
1972	6	115	94.78
1973	8	117	93.16
1974	9	113	92.04
1975	8	132	93.94
1976	6	132	95.45
1977	9	131	93.13
1978	5	128	96.09
1979	6	111	94.59
1980	7	109	93.58
1981	8	127	93.7
1982	9	129	93.02
1983	2	129	98.45
1984	3	129	97.67
1985	4	126	96.83
1986	8	110	92.73
1987	6	114	94.74
1988	7	121	94.21
1989	1	102	99.02
1990	8	121	93.39
1991	5	91	94.51
1992	4	97	95.88
1993	5	83	93.98

1994	5	93	94.62
1995	7	80	91.25
1996	7	78	91.03
1997	4	90	95.56
1998	5	83	93.98
1999	8	78	89.74
2000	4	85	95.29
2001	1	59	98.31
2002	4	65	93.85
2003	3	64	95.31
2004	2	56	96.43
2005	2	53	96.23

Figure 12.166.1: Historical launch vehicle statistics by year since the first orbital spacecraft launch.[1]

References

[1] Astronautix, (n.d.), "Launch Vehicle Launch Log". Retrieved January 23 rd 2013, from http://www.astronautix.com/data/index.htm

12.167 Detailed Analysis of the Unmanned Spacecraft Subsystem Cost Model

The Unmanned Spacecraft Subsystem Cost Model requires inputs for each subsystem, or vehicle in our case, and uses constants provided through linear regression of past space missions to complete the model and provide a total mission cost. The inputs for each vehicle can be seen below in tables 12.167.1 – 12.167.7.

		Table 12.167	.1: Cyclei	Vehicle	Subsyst	em Cost			
		Cycl	er Vehicle	Subsyste	em Cost				
TC	OTAL COST:	\$ 79,249	mil						
		A	Attitude C	Control/C	OM				
Paran	neters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	-	-	-	b_0	9.674
X_1 N	Mass	8265.4	kg	16.06	13.6	48.1	1.9	b_1	0.2428
X_2 I	Data Rate	22157.5	kbps	60.63	149	600	0	b_2	0.0064
X_3 F	Pointing	144	arcsec	327	302	900	5	b_3	-0.004
Y	\$ 2,158	million							
			Pro	pulsion					
Paran	neters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	-	-	-	b_0	-12.8
X_1 N	Mass	1432000	kg	72.9	59	220.1	7.4	b_1	0.05376
X_2 I	Ln Isp	9.567805	-	6.1	1	8.2	5.4	b_2	3.202
Y	\$ 77,002	million							
		Struc	tures/Me	chanical l	Build Up)			
Paran	neters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	=	-	-	b_0	1.833
X_1 N	Mass	464000	kg	136	71	337	14	b_1	0.01
Y	\$ 4,642	million							
			Th	ermal					
Paran	neters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	-	-	-	b_0	1.817
X_1 F	Redundancy	0.8	-	0.8	0.4	1	0	b_1	1.068
X_2 A	Active/Passive	1	-	0.1	0.3	1	0	b_2	4.255
<u>Y</u> :	\$ 7	million							
_			P	ower	~ -				
Paran				Avg	Std	Max	Min		fficients
•	Constant	1	_	-	-	-	-	b_0	5.08
X_1 F	Rad Dosage	4000	krads	349	972	4000	5	b_1	0.002
X_2 A	AMTEC	200	ordinal	21.9	58.5	200	0	b_2	0.1579
X_3 A	Adv Si	10500	ordinal	2038	3198	10500	0	b_3	0.001
X_4	GsAs/HT	4600	ordinal	304	1110	4600	0	b_4	0.002
X_5	GaAs	7900	ordinal	553	1900	7900	0	b_5	0.0022
Y	\$ 82	million							

Table	12.167	'.2: I	Phobos	Hab	Subsy	stem	Cost

		T	able 12.167							
			Phobos H		le Subsy	stem C	Cost			
	FOTAL COST	:	\$ 2,043	million	G 4 1					
Don	ameters			Attitude		l Std	Max	Min	200	fficients
	Constant		1		Avg	- -	Max	IVIIII		9.674
X_0	Mass		400	1.0	16.06	13.6	48.1	1.9	b ₀	
X_1				kg					b ₁	0.2428
X_2	Data Rate		111000	kbps	60.63	149	600	0	b ₂	0.0064
X_3 Y	Pointing \$	601	54000 million	arcsec	327	302	900	5	b_3	-0.004
	J .	001	ШШОП	Propi	ulsion					
Par	ameters			Пор	Avg	Std	Max	Min	coe	fficients
X_0	Constant		1	_	-	_	_	_	b_0	-12.8
X_1	Mass		25000	kg	72.9	59	220.1	7.4	b ₁	0.05376
X_2	Ln Isp		6.884405	-	6.1	1	8.2	5.4	b_2	3.202
Y	•	353	million				0.2		02	3.202
				ıres/Mecl						
Par	ameters				Avg	Std	Max	Min	coe	fficients
X_0	Constant		1	-	-	-	-	-	b_0	1.833
X_1	Mass		71.28	kg	136	71	337	14	b_1	0.01
Y	\$	3	million							
				The	rmal					
Par	ameters				Avg	Std	Max	Min	coe	fficients
X_0	Constant		1	-	-	-	-	-	b_0	1.817
X_1	Redundancy		0.8	-	0.8	0.4	1	0	b_1	1.068
X_2	Active/Passive	•	1	-	0.1	0.3	1	0	b_2	4.255
Y	\$	7	million							
				Pov	wer					
	ameters				Avg	Std	Max	Min		fficients
X_0	Constant		1	-	-	-	-	-	b_0	5.08
X_1	Rad Dosage		4000	krads	349	972	4000	5	b_1	0.002
X_2	AMTEC		200	ordinal	21.9	58.5	200	0	b_2	0.1579
X_3	Adv Si		10500	ordinal	2038	3198	10500	0	b_3	0.001
X_4	GsAs/HT		4600	ordinal	304	1110	4600	0	b_4	0.002
X_5	GaAs		7900	ordinal	553	1900	7900	0	b_5	0.0022
Y	\$	82	million							

Table 12	2.167.3:	Mars	Builders	Subsys	stem Cost

		Tal	ole 12.167.	3: Mars F	Builders	Subsys	tem Cost	,		
			Mars \$	Builders	Subsyst	em Cos	<u>t </u>			
ŗ	TOTAL CO	ST:	1,807	million						
				Attitude	e Contro	ol				
Par	ameters				Avg	Std	Max	Min	coe	efficients
X_0	Constant		1	-	-	-	-	-	b_0	9.674
X_1	Mass		15.3	kg	16.06	13.6	48.1	1.9	b_1	0.2428
X_2	Data Rate		91000	kbps	60.63	149	600	0	b_2	0.0064
X_3	Pointing		54000	arcsec	327	302	900	5	b_3	-0.004
Y	\$	380	million							
				Prop	ulsion					
Par	ameters				Avg	Std	Max	Min	coe	fficients
X_0	Constant		1	-	-	-	-	-	b_0	-12.8
\mathbf{X}_1	Mass		24800	kg	72.9	59	220.1	7.4	b_1	0.05376
X_2	Ln Isp		5.71373	-	6.1	1	8.2	5.4	b_2	3.202
Y	\$	1,339	million							
			Struct	ures/Mec	hanical l	Build U	p			
Par	ameters				Avg	Std	Max	Min	coe	fficients
X_0	Constant		1	-	-	-	-	-	b_0	1.833
X_1	Mass		99250	kg	136	71	337	14	b_1	0.01
Y	\$	994	million							
				The	rmal					
Par	ameters				Avg	Std	Max	Min	coe	fficients
X_0	Constant		1	-	-	-	-	-	b_0	1.817
X_1	Redundand	су	0.8	-	0.8	0.4	1	0	b_1	1.068
X_2	Active/Pas	sive	1	-	0.1	0.3	1	0	b_2	4.255
Y	\$	7	million							
				Po	wer	G. 3	3.6	3.71		
	ameters				Avg	Std	Max	Min		fficients
X_0	Constant		1	-	-	-	-	-	b_0	5.08
X_1	Rad Dosag	ge	4000	krads	349	972	4000	5	b_1	0.002
X_2	AMTEC		200	ordinal	21.9	58.5	200	0	b_2	0.1579
X_3	Adv Si		10500	ordinal	2038	3198	10500	0	b_3	0.001
X_4	GsAs/HT		4600	ordinal	304	1110	4600	0	b_4	0.002
X_5	GaAs		7900	ordinal	553	1900	7900	0	b_5	0.0022
Y	\$	82	million							

	Ta	ble 12.167.4: Po	ds and H	oppers S	Subsyst	em Cost			
		Pods and I	Hoppers S	Subsyste	m Cost				
7	TOTAL COST:	\$ 6,708	million						
		·	ttitude C	ontrol					
Par	ameters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	-	-	-	b_0	9.674
X_1	Mass	15.3	kg	16.06	13.6	48.1	1.9	b_1	0.2428
X_2	Data Rate	223000	kbps	60.63	149	600	0	b_2	0.0064
X_3	Pointing	5400	arcsec	327	302	900	5	b_3	-0.004
Y	1419.0	million							
			Propuls	ion					
Par	ameters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	-	-	-	b_0	-12.8
X_1	Mass	96706.178	kg	72.9	59	220.1	7.4	b_1	0.05376
X_2	Ln Isp	5.669880923	-	6.1	1	8.2	5.4	b_2	3.202
Y	5204.3	million							
		Structure	s/Mechai	nical Bu	ild Up				
Par	ameters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	-	-	-	b_0	1.833
X_1	Mass	3920	kg	136	71	337	14	b_1	0.01
Y	41.033	million							
n	4		Therm		C4 1		3.4.		ee ·
	ameters			Avg	Std	Max	Min		fficients
X_0	Constant	1	-	-	-	-	-	b_0	1.817
X_1	Redundancy	0.8	-	0.8	0.4	1	0	b ₁	1.068
X_2	Active/Passive \$	0	-	0.1	0.3	1	0	b_2	4.255
Y	3	million							
			Powe	r					
Par	ameters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	-	-	-	b_0	5.08
X_1	Rad Dosage	4000	krads	349	972	4000	5	b_1	0.002
X_2	AMTEC	200	ordinal	21.9	58.5	200	0	b_2	0.1579
X_3	Adv Si	10500	ordinal	2038	3198	10500	0	b_3	0.001
X_4	GsAs/HT	4600	ordinal	304	1110	4600	0	b_4	0.002
X_5	GaAs	7900	ordinal	553	1900	7900	0	b_5	0.0022
Y	\$ 82	million							

		Crew Tra	ınsfer Veh	icle Sub	system	Cost			
7	TOTAL COST:	\$ 5,131			- -				
			Attitude	Contro	l			_	
Par	ameters			Avg	Std	Max	Min	coe	efficients
X_0	Constant	1	-	-	-	-	-	b_0	9.674
X_1	Mass		kg	16.06	13.6	48.1	1.9	b_1	0.2428
X_2	Data Rate		kbps	60.63	149	600	0	b_2	0.0064
X_3	Pointing		arcsec	327	302	900	5	b_3	-0.004
Y	\$ 1	0 million							
			Prop	ulsion					
Par	ameters			Avg	Std	Max	Min	coe	efficients
X_0	Constant	1	-	-	-	-	-	b_0	-12.8
X_1	Mass	93500	kg	72.9	59	220.1	7.4	b_1	0.05376
X_2	Ln Isp	5.940171	-	6.1	1	8.2	5.4	b_2	3.202
Y	\$ 5,033								
n.		Struct	tures/Mec			=	3.41		ee• •
	ameters			Avg	Std	Max	Min		efficients
X_0	Constant	1		-	-	-	-	b_0	1.833
X_1	Mass	6600	kg	136	71	337	14	b_1	0.01
Y	\$ 6	8 million	The	rmal					
Par	ameters		THE	Avg	Std	Max	Min	coe	efficients
X_0	Constant	1	_	-	_	_	_	b_0	1.817
X_1	Redundancy	0.8		0.8	0.4	1	0	b_1	1.068
X_2	Active/Passive	1		0.1	0.3	1	0	b_2	4.255
Y								- 2	
			Po	wer					
Par	ameters			Avg	Std	Max	Min	coe	efficients
X_0	Constant	1	-	-	-	-	-	b_0	5.08
X_1	Rad Dosage	4000	krads	349	972	4000	5	b_1	0.002
X_2	AMTEC	200	ordinal	21.9	58.5	200	0	b_2	0.1579
X_3	Adv Si	10500	ordinal	2038	3198	10500	0	b_3	0.001
X_4	GsAs/HT	4600	ordinal	304	1110	4600	0	b_4	0.002
X_5	GaAs	7900	ordinal	553	1900	7900	0	b_5	0.0022
Y	\$ 8:	2 million							

Table 12.167.6: Communication Satellites Subsystem Co	st
---	----

	1 abio	e 12.167.6: Con					Cost		
-	TOTAL COST:	\$ 1,804	million	intes Sui	osystem	Cost			
-	IOTAL COST.	Ψ 1,004	Attitude	Control					
Par	ameters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	-	-	-	b_0	9.674
\mathbf{X}_1	Mass	165	kg	16.06	13.6	48.1	1.9	b_1	0.2428
X_2	Data Rate	225000	kbps	60.63	149	600	0	b_2	0.0064
X_3	Pointing	414	arcsec	327	302	900	5	b_3	-0.004
Y	\$ 1,48	8 million							
			Propu						
	ameters			Avg	Std	Max	Min		fficients
X_0	Constant	1	-	-	-	-	-	b_0	-12.8
X_1	Mass	5818	kg	72.9	59	220.1	7.4	b_1	0.05376
X_2	Ln Isp		-	6.1	1	8.2	5.4	b_2	3.202
Y	\$ 30		7. 7. 1						
Dar	ameters	Structu	res/Mech	anical B Avg	suna Op Std) Max	Min	coo	fficients
X ₀	Constant	1		Avg	Stu	Max	141111	b ₀	1.833
	Mass	20000	1-0	136	71	227	11		0.01
X_1 Y	\$ 20		kg	130	71	337	14	b_1	0.01
	Ψ 20	2 111111011	Ther	mal					
Par	ameters			Avg	Std	Max	Min	coe	fficients
X_0	Constant	1	-	-	-	-	-	b_0	1.817
X_1	Redundancy	0.8	-	0.8	0.4	1	0	b_1	1.068
X_2	Active/Passive	0	-	0.1	0.3	1	0	b_2	4.255
Y	\$	3 million							
			Pov						
	ameters			Avg	Std	Max	Min		fficients
X_0	Constant	1	-	-	-	-	-	b_0	5.08
X_1	Rad Dosage	349	krads	349	972	4000	5	b_1	0.002
X_2	AMTEC	21.9	ordinal		58.5	200	0	b_2	0.1579
X_3	Adv Si	2038	ordinal	2038	3198	10500	0	b_3	0.001
X_4	GsAs/HT	304	ordinal	304	1110	4600	0	b_4	0.002
X_5	GaAs	553	ordinal	553	1900	7900	0	b_5	0.0022
Y	\$ 1	3 million							

Table 12.167.7: Entr	Descent and Land	ling Subsystem Cost

		2.167.7: Enti Entry Desce					m Cost		
,	TOTAL COST:	\$ 308	million	munig S	ubsysie	em Cost			
-			Attitude	e Contro	ol				
Par	ameters			Avg	Std	Max	Min	coe	efficients
X_0	Constant	1	-	-	-	-	-	b_0	9.674
X_1	Mass	72.94	kg	16.06	13.6	48.1	1.9	b_1	0.2428
X_2	Data Rate		kbps	60.63	149	600	0	b_2	0.0064
X_3	Pointing	7.2	arcsec	327	302	900	5	b_3	-0.004
Y	\$ 27	7 million							
			Prop	ulsion					
Par	ameters			Avg	Std	Max	Min	coe	efficients
X_0	Constant	1	-	-	-	-	-	b_0	-12.8
X_1	Mass	4970	kg	72.9	59	220.1	7.4	b_1	0.05376
X_2	Ln Isp	5.75149	-	6.1	1	8.2	5.4	b_2	3.202
Y	\$ 273								
_		Struct	ures/Mec				3.51		
	ameters			Avg	Std	Max	Min		efficients
X_0	Constant	1	-	-	-	-	-	b_0	1.833
\mathbf{X}_1	Mass	121679	kg	136	71	337	14	b_1	0.01
Y	\$ 1,219	million	T						
Par	ameters		1 ne	rmal Avg	Std	Max	Min	coc	efficients
X ₀	Constant	1				-		b ₀	1.817
X_0 X_1	Redundancy	0.8		0.8	0.4	1	0	b_0	1.068
X_1 X_2	Active/Passive	0.8	-	0.3	0.4	1	0	b_1	4.255
Л 2 Y	\$		-	0.1	0.3	1	U	υ_2	4.233
	Ψ .		Po	wer					
Par	ameters			Avg	Std	Max	Min	coe	efficients
X_0	Constant	1	-	-	-	-	-	b_0	5.08
X_1	Rad Dosage		krads	349	972	4000	5	b_1	0.002
X_2	AMTEC		ordinal	21.9	58.5	200	0	b_2	0.1579
X_3	Adv Si		ordinal	2038	3198	10500	0	b_3	0.001
X_4	GsAs/HT		ordinal	304	1110	4600	0	b_4	0.002
X_5	GaAs		ordinal	553	1900	7900	0	b ₅	0.0022
Y	_	5 million						-	

12.168 Detailed Analysis of the Federation of American Scientists Cost Tool

The Federation of American Scientists made an online tool which has different coefficients for different types of space vehicles. Table 12.168.1 contains the inputs used with their online tool and the outputs obtained for each vehicle.

Table 12.168.1: List of Inputs and Outputs for the Federation of American Scientists AMCM Cost Tool

Cycler	input	units
Quantity	2	-
Dry Weight	4248307	lbs
Mission Type	Manned Habitat	-
IOC Year	2022	-
Block Number	1	-
Difficulty	Very High	-
	Output	
Cost	\$ 197,185	million
Phobos Hab	input	units
Quantity	1	-
Dry Weight	180779	lbs
Mission Type	Manned Habitat	-
IOC Year	2025	-
Block Number	1	-
Difficulty	High	-
	Output	
Cost	\$ 10,911	million
Mars Builder	input	units
Quantity	2	-
Dry Weight	2425	lbs
Mission Type	Lunar Rover	-
IOC Year	2025	-
Block Number	1	-
Difficulty	Low	-
	Output	
Cost	\$ 424	million
Mars Sat	input	units
Quantity	3	-
Dry Weight	15652	lbs
Mission Type	Communication	-
IOC Year	2024	-
Block Number	1	-
Difficulty	Low	

	Output	
Cost	\$ 2,567	million
Helio Sat	input	units
Quantity	2	-
Dry Weight	15873	lbs
Mission Type	Communication	-
IOC Year	2024	-
Block Number	1	-
Difficulty	Low	-
	Output	
Cost	\$ 2,036	million
Crew Transfer	input	units
Quantity	1	-
Dry Weight	123458	lbs
Mission Type	Manned Reentry	-
IOC Year	2030	-
Block Number	1	-
Difficulty	Average	-
	Output	
Cost	\$ 10,420	million
Mars Hab	input	units
Quantity	1	-
Dry Weight	187393	lbs
Mission Type	Manned Habitat	-
IOC Year	2026	-
Block Number	1	-
Difficulty	High	_
	Output	
Cost	\$ 11,255	million
Repair Station	input	units
Quantity	1	-
Dry Weight	11023	lbs
Mission Type	Planetary Lander	-
IOC Year	2025	-
Block Number	1	-
Difficulty	Low	-
	Output	
Cost	\$ 3,037	million
Pod	input	units
Quantity	2	-
Dry Weight	3527	lbs
Mission Type	Lunar Rover	

IOC Year		2026	-
Block Number		1	-
Difficulty		Average	-
	Output		
Cost	\$	849	million
Hopper	input		units
Quantity		2	-
Dry Weight		1323	lbs
Mission Type	Lunar Rover		-
IOC Year	2026		-
Block Number	1		-
Difficulty	Average		-
		Output	
Cost		447	
Total Cost:	\$	239,131	million

12.169 Detailed Analysis of Advanced Mission Cost Model Scaled to the Apollo Program

As stated previously, we use the Apollo Program to scale our AMCM constants. We do this by putting in the know inputs and adjusting the cost model's constants until we get the desired output. The result of this is seen below in table 12.169.1:

Table 12.169.1: AMCM constants scaled to Apollo Program

System Cost	\$ 20,447 ^a	million	Apollo Cost	\$ 20,444 ^a million
Constants		Inputs		
α	2	Q	11	-
β	2	M	291,447	lbs
Ξ	1	S	1	-
δ	2	IOC	1968	-
3	4	В	2	-
φ	2.6	D	4	-
Υ	2.2			

^aIn 1969 US dollars

Using the constants obtained, we can apply the AMCM o our mission inputs and obtain our system cost, which we see in table 12.169.2 below:

Table 12.169.2: Apollo Scaled AMCM Applied to Project Prometheus

System Cost	\$ 125,959°	million		
Constants		Inputs		
α	2	Q	18	-
β	2	M	9,024,450	lbs
Ξ	1	S	1	-
δ	2	IOC	2022	-
ε	4	В	1	-
ф	2.6	D	3	-
Υ	2.2			

^aIn 1969 US dollars