Segon control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica		10/12/2018	Tardor 2018
NOM (en MAJÚSCULES):	COGNOMS (en MAJÚSCULES):	GRUP:	DNI:

Test (3 punts). Preguntes de resposta múltiple (una o més respostes correctes).

Valen la mitat si hi ha un error i 0 si hi ha més d'un error a la resposta.
1. El temps de propagació extrem a extrem entre dos dispositius A i B és de 5 ms. A transmet dades cap a B. En el cam entre els dos dispositius hi ha dos routers amb una memòria de la cua de sortida de cada router de 1MB (1*10 ⁶ bytes). L velocitat de transmissió de tots els enllaços és de 10 Mbps, la mida del paquet de dades és de 10.000 bits. Per tal d simplificar es considera que els paquets de confirmació són molt petits i que no experimenten congestió en la direcció B a Pels routers i els enllaços passa també tràfic d'altres usuaris en la direcció A a B. Es tracta de fer una estimació del RTT ("round trip time") mínim i màxim. RTT mínim 13ms. RTT màxim 801ms. RTT mínim 10ms i RTT màxim 800ms.
 2. Sobre el protocol TCP. □ El número de seqüència inicial del servidor el fixa el client durant la fase d'establiment de la connexió (<i>Three Wa Handshaking</i>). □ El camp <i>awnd</i> de la capçalera indica el nombre d'octets que han arribat correctament i estan pendents de confirmar. □ El receptor sempre que rep un segment envia una confirmació (ACK). Nota: el receptor no fa "delayed ack". □ El protocol utilitza confirmacions acumulades indicant el número de seqüència del primer octet que espera rebre.
 3. Sobre el protocol TCP. Si no hi ha pèrdues, la finestra anunciada pel receptor limita la finestra de transmissió. La recepció d'una confirmació duplicada implica sempre que s'ha perdut un segment. Si no hi ha pèrdues des de l'inici de la connexió el protocol està sempre en l'estat "Slow Start". Durant la fase de "Slow Start" la recepció d'una confirmació no duplicada fa que la finestra de congestió s'incrementi e 1 MSS si no se supera el valor del ssthres.
4. Sobre el següent fragment d'una captura de tràfic TCP: 12:30:37.069541 IP 147.83.34.125.17788 > 147.83.32.82.80: S 3473661146:3473661146(0) win 5840 <mss 0,nop,="" 1460,="" 296476754="" 7="" sack0k,="" timestamp="" wscale=""> 12:30:37.070021 IP 147.83.32.82.80 > 147.83.34.125.17788: S 544373216:544373216(0) ack 3473661147 win 5792 <mss 1460,="" 1824770623="" 2="" 296476754,nop,="" sack0k,="" timestamp="" wscale=""> 12:30:37.070038 IP 147.83.34.125.17788 > 147.83.32.82.80: . ack 1 win 46 <nop, 1824770623="" 296476754="" nop,="" timestamp=""> □ La mida del camp de dades del segment del client (MSS) és de 1500 octets. □ L'espai disponible a la cua de recepció del client un cop establerta la connexió és de 5888 octets. □ L'espai disponible a la cua de recepció del client un cop establerta la connexió és de 747520 octets. □ El RTT és d'uns 0'480ms.</nop,></mss></mss>
 5. Marca les afirmacions que són correctes. En xarxes locals CSMA/CD la distància màxima extrem a extrem és un paràmetre important pel rendiment ja qui determina la probabilitat de col·lisió. Cada port d'un commutador Ethernet és un domini de col·lisió. Tots els ports d'un commutador Ethernet han de tenir la mateixa velocitat de transmissió quan no s'activa el control de flux. Quan actua el control de flux, un commutador Ethernet pot limitar la velocitat de transferència d'alguns ports.
 6. Marca les afirmacions que són correctes sobre un commutador Ethernet amb VLAN. □ Les trames Ethernet es retransmeten per tots els ports de la mateixa VLAN. □ Un port en mode "trunk" permet intercanviar trames Ethernet entre VLANs (Passar trames d'una VLAN a una altra). □ Les trames de broadcast es retransmeten per tots els ports de la mateixa VLAN. □ El paquets IP de broadcast es retransmeten per tots els ports de totes les VLAN.
7. Marca les afirmacions que són correctes. □ Les xarxes Wireless LAN (WLAN) utilitzen CSMA/CA (Collision Avoidance) i no CSMA/CD (Collision Detection).

En WLAN una estació després de transmetre una trama cal esperar la confirmació de l'estació receptora.

En una WLAN en mode infraestructura totes les trames passen sempre per l'AP (Access Point).

☐ La capçalera de la trama 802.11 (WLAN) té fins a quatre camps d'adreces MAC.

Segon control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica			Tardor 2018
NOM (en MAJÚSCULES):	COGNOMS (en MAJÚSCULES):	GRUP:	DNI:

P1 (4 puntos) Considerar el sistema de la figura. Un host C_1 está conectado a una LAN FastEthernet. La LAN está conectada a un router R_1 que se conecta a Internet a 40 Mbps en ambos sentidos a través de un router R_{ISP} . El host C_1 establece una conexión TCP con el servidor S que está en Internet para descargarse un fichero de gran tamaño. La velocidad conseguida en Internet es superior a las demás y se puede considerar infinita. En cambio, Internet introduce una latencia de ida y vuelta (RTT) de 100ms, mientras las redes internas se pueden aproximar a 0 s.

Contestar a las siguientes preguntas, <u>JUSTIFICAR</u> las respuestas.

a) Con los datos de que se dispone, determinar la velocidad que podría conseguir el host C₁ para su descarga.

vef = 40 Mbps (el enlace más lento)

b) Para la transmisión de S a C₁, suponer que no ha habido pérdidas y hace rato que se ha empezado a transmitir. Suponer que el Window Scale Factor no se ha activado y que el buffer de recepción de C₁ es de 200 kbytes (2x10⁵). Determinar la velocidad efectiva que se consigue en la descarga.

El máximo awnd representable con Window Scale desactivado es 64 kbytes Si no ha habido perdidas, wnd = awnd = 64 kbytes \rightarrow wnd / RTT = 64 k x 8 / 0,1 = 5.12 Mbps vef = min (wnd / RTT, enlace_mas_lento) = min (5,12 Mbps, 40 Mbps) = 5,12 Mbps

c) Si fuera posible usar el Window Scale Factor, determinar cual sería el valor más apropiado para aprovechar al máximo el tamaño del buffer de recepción y cual sería la velocidad efectiva en este caso.

Para poder representar el tamaño máximo del buffer se necesitaría un Window Scale de $2 \rightarrow 64$ kbytes x $2^2 = 256$ kbytes Si no ha habido perdidas, wnd = awnd = 200 kbytes \rightarrow wnd / RTT = 200 k x 8 / 0,1 = 16 Mbps vef = min (wnd / RTT, enlace mas lento) = min (16 Mbps, 40 Mbps) = 16 Mbps

d) Determinar qué efecto tendría si el buffer de recepción de C₁ fuera de 1 Mbytes y un Window Scale Factor suficiente para anunciar este tamaño.

Si no ha habido perdidas, wnd = awnd = 1 Mbytes \Rightarrow wnd / RTT = 1 M x 8 / 0,1 = 80 Mbps vef = min (wnd / RTT, enlace_mas_lento) = min (80 Mbps, 40 Mbps) = 40 Mbps Ya que es el enlace entre R_{ISP} y R_1 el que limitaría la velocidad en este caso, el TCP se adaptaría a esta velocidad con perdidas en el router R_{ISP} .

e) Volviendo al caso del punto c), suponer que el MSS es de 1460 bytes y no hay pérdidas. Indicar la evolución de la ventana de transmisión del servidor S a partir del primer segmento de datos enviado y hasta los 10 RTT.

La ventana de transmisión wnd máxima la impone la awnd que es de 200 kbytes / 1460 bytes = 136,99 MSS La evolución por RTT sería en MSS:

1 (t=0 RTT), 2 (1), 4 (2), 8 (3), 16 (4), 32 (5), 64 (6), 128 (7), 136 (8), 136 (9), 136 (10)

f) Suponer ahora que realmente se pierden todos los segmentos de la ventana cuando esta vale 8 MSS pasados 3 RTT. Al saltar el temporizador RTO, el servidor S vuelve a retransmitir todos los segmentos perdidos y todos los siguientes, ahora sin más perdidas. Indicar cual serían la evolución de la ventana de transmisión a partir de las perdidas y hasta la recepción de 10 acks nuevos.

ack	SS o CA	cwnd	awnd	ssthresh	wnd
1	SS	1	136	4	1
2	SS	2	136	4	2
3	SS	3	136	4	3
4	SS	4	136	4	4
5	CA	4 + 1/4	136	4	4 + 1/4
6	CA	4 + 2/4	136	4	4 + 2/4
7	CA	4 + 3/4	136	4	4 + 3/4
8	CA	5	136	4	5
9	CA	5 + 1/5	136	4	5 + 1/5
10	CA	5 + 2/5	136	4	5 + 2/5

Segon control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica			Tardor 2018
NOM (en MAJÚSCULES):	COGNOMS (en MAJÚSCULES):	GRUP:	DNI:

Problema 2 (3 puntos)

Tenemos la configuración de la figura con 3 VLANs, donde un único Router da acceso a Internet a 50 Mbps.

VLAN1 tiene dos máquinas (H1 y H2) conectadas al switch C1 y un servidor S1 conectado al switch C2. Por su parte, la VLAN2 es similar, pero con H3 y H4 conectadas a C2 y S2 a C2. La VLAN3 tiene *m* hubs conectados al conmutador C1. Cada hub tiene un número *n* de máquinas, igual para cada hub. Además, tiene el servidor S3 conectado a C2 como todos los demás servidores.

Todos los ports son de 100 Mbps excepto los dos trunks (C1-C2 y C2-R) y el port de S3, que son de 1 Gbps. Consideramos que los hubs tienen una eficiencia del 80%, mientras que la de los conmutadores es del 100%.

- a) Si H1 envía un mensaje de broadcast, ¿qué máquinas lo recibirán?
 H2, S1, R
- b) Si H1 envía un mensaje a S1, ¿qué máquinas y dispositivos atravesará? C1, C2
- Si H3 envía un mensaje a S1, ¿qué máquinas y dispositivos atravesará?
 C2, R, C2
- d) Si una de las máquinas de la VLAN3 (no S3) envía un mensaje a S1, ¿qué máquinas y dispositivos atravesará?
 Hub, C1, C2, R, C2
- e) Si S1 envía datos a su máxima capacidad a la vez a S2 y S3, ¿a qué velocidad podrán recibirlos? La limitación está en la velocidad de salida de S1. Por tanto, S2 y S3 recibirán a 50 Mbps
- f) Si H3 envía datos a su máxima capacidad a S1, ¿a qué velocidad podrá recibirlos?

 Aunque pase por el Router sólo intervienen dos máquinas de la misma capacidad, por lo que la velocidad sería la máxima: 100 Mbps

Segon control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica		10/12/18	Tardor 2018
NOM (en MAJÚSCULES):	COGNOMS (en MAJÚSCULES):	GRUP:	DNI:

g) Si H1 y H2 envían datos a su máxima capacidad a la vez a S2 y S3, ¿a qué velocidad podrán recibirlos?

H1 y H2 inyectan 200 Mbps que atraviesan los trunks C1-C2 y C2-R y se distribuyen entre S2 y S3, por lo que recibirán a 100 Mbps cada uno.

- h) Si S1, S2 y S3 quieren enviar datos a su máxima capacidad a la vez a H1, H2, H3 y H4, ¿a qué velocidad podrán recibirlos?
 - Los 3 servidores pueden enviar hasta 1200 Mbps que C2 repartirá entre 3 ports de salida (H3, H4 y C1), dando 400 Mbps a cada uno. H3 y H4 sólo admiten 100 Mbps, por lo que dejaran el resto para C1 (1000 Mbps). C1 repartirá entre H1 y H2, y de nuevo sólo aceptarán los 100 Mbps de su capacidad. Por tanto, todos recibirán a 100 Mbps.
- i) Si H1, H2, H3 y H4 quieren enviar datos a su máxima capacidad a una máquina en Internet (más allá del Router), ¿a qué velocidad podrán transmitir? En este caso la limitación viene dada por el enlace de salida a Internet a 50 Mbps. Será TCP quien regule la velocidad, repartiendo entre todos los que envían, por lo que cada máquina podrá enviar hasta a un máximo de 50/4 = 12,5 Mbps.

Queremos optimizar el número de máquinas y hubs de la VLAN3 de manera que se aproveche al máximo el port C1-C2 cuando todas las máquinas de la VLAN3 envíen datos a su servidor S3, y nadie más envíe.

- j) ¿Cuánto valen m (número de hubs) y n (número de máquinas por hub) forzando que tanto m como n sean mayor o igual a 2? ¿Cuál sería la velocidad máxima que las máquinas podrían alcanzar? El port C1-C2 va a 1000 Mbps, por lo que aceptaría hasta 10 ports a 100 Mbps. Cada hub dispondría del 80% de los 100 Mbps. Como la capacidad de las máquinas es de 100 Mbps, no ganamos nada aumentando el número de máquinas, por lo que ponemos el número mínimo exigido de 2 por hub. La velocidad máxima será por tanto de 40 Mbps. También se puede plantear que, como cada hub sólo podrá enviar como máximo a 80 Mbps, podríamos aumentar el número de hubs para no quedarnos en 800 Mbps. En este caso, al repartir los 1.000 Mbps en hubs a 80 Mbps nos daría para 12,5 hubs. Si ponemos 12, nos quedaría un poco de ancho de banda del port por usar; si ponemos 13, entonces tendríamos que frenar a los hubs, quedándose las máquinas a 76,92 / 2 = 38,46 Mbps.
- k) ¿Qué dispositivo(s) tendría(n) que hacer control de flujo y cómo lo haría(n)?
 El CSMA/CD de los hubs limitará la velocidad de las máquinas.
 En el caso de poner 13 hubs, C1 tendría que frenar algo a los hubs con tramas de Jabber.

Supongamos que en la VLAN3 tenemos 5 máquinas por hub y 20 hubs conectados a C1. Todas las máquinas envían a la vez datos a su servidor S3.

- I) ¿A qué velocidad enviará cada máquina? Los 20 hubs podrían generar hasta 80*20=1600 Mbps, que el port C1-C2 no puede soportar. Por tanto, limitará a 1000/20=50 Mbps por hub. Como estamos por debajo del límite que nos daría la eficiencia (80 Mbps), estos 50 Mbps se repartirán entre las 5 máquinas de cada hub, dando 10 Mbps.
- m) ¿Qué dispositivo(s) tendría(n) que hacer control de flujo y cómo lo haría(n)?
 C1 tendría que frenar a los 20 ports con hub. Lo hará con tramas de Jabber.
 Después, el CSMA/CD de los hubs limitará la velocidad de las máquinas.