Rapid Clock Synchronisation for Ubiquitous Sensing Services Involving Multiple Smartphones

<u>Chu Luo</u>, Henri Koski, Mikko Korhonen, Jorge Goncalves, Theodoros Anagnostopoulos, Shin'ichi Konomi, Simon Klakegg and Vassilis Kostakos chu.luo@unimelb.edu.au

Smartphone Sensors and Apps

http://funf.org/about.html

Sensing with Multiple Phones

Phone Clock Has Drift

Challenge:

To synchronise clock on phones

Related Work

Clock Synchronisation:

- 1. Network Time Protocol (NTP)
- 2. Precision Time Protocol (PTP)
- 3. GPS Clock Synchronisation

Network Time Protocol (NTP)

A stratum model

Network Time Protocol (NTP)

NTP can be inaccurate:

To make use of NTP

Collect many samples, do:

- 1. Linear Programming; or
- 2. Linear Regression(fitting)

Error can be minimised: 10-100 ms

Precision Time Protocol (PTP)

GPS

$$\begin{split} & \rho_{_{_{_{\!\!\mathit{H}}}}}^{\,1} = \sqrt{(X_{1}\cdot U_{_{\!\!\mathit{X}}})^{2} + (Y_{1}\cdot U_{_{\!\!\mathit{T}}})^{2} + (Z_{1}\cdot U_{_{\!\!\mathit{T}}})^{2} + \varepsilon(dT_{_{\!\!\mathit{H}}})} \\ & \rho_{_{_{_{\!\!\mathit{H}}}}}^{\,2} = \sqrt{(X_{2}\cdot U_{_{\!\!\mathit{X}}})^{2} + (Y_{2}\cdot U_{_{\!\!\mathit{T}}})^{2} + (Z_{2}\cdot U_{_{\!\!\mathit{T}}})^{2} + \varepsilon(dT_{_{\!\!\mathit{H}}})} \\ & \rho_{_{_{\!\!\mathit{H}}}}^{\,3} = \sqrt{(X_{3}\cdot U_{_{\!\!\mathit{X}}})^{2} + (Y_{3}\cdot U_{_{\!\!\mathit{T}}})^{2} + (Z_{3}\cdot U_{_{\!\!\mathit{T}}})^{2} + \varepsilon(dT_{_{\!\!\mathit{H}}})} \\ & \rho_{_{_{\!\!\mathit{H}}}}^{\,4} = \sqrt{(X_{4}\cdot U_{_{\!\!\mathit{N}}})^{2} + (Y_{4}\cdot U_{_{\!\!\mathit{T}}})^{2} + (Z_{4}\cdot U_{_{\!\!\mathit{T}}})^{2} + \varepsilon(dT_{_{\!\!\mathit{H}}})} \end{split}$$

NTP as the base for ubi-sensing

Reasons:

- 1. Available anywhere on Internet
- 2. PTP needs LAN infrastructure
- 3. GPS is restricted by signals, power-hungry and hurts location privacy.

Phone Clock Drift

How large can this drift be?

Study 1

Running for 9 days:

- 1. 3 identical phones
- 2. Connected to WiFi
- 3. Collecting NTP sample per minute

Rapid Clock Synchronisation

Using the median of several NTP Samples

Maximum Error of NTP Median

Study 2: measure pair-wise synchronisation difference

Take-away Points

- 1. Clock drift may be 150ms per day
- 2. NTP is most available and flexible
- 3. Using NTP median is a rapid way:
 - a) Mean accuracy 12ms, 10 samples
 - b) Worse case, <100ms, 97 samples

<40ms, 157 samples

Rapid Clock Synchronisation for Ubiquitous Sensing Services Involving Multiple Smartphones

<u>Chu Luo</u>, Henri Koski, Mikko Korhonen, Jorge Goncalves, Theodoros Anagnostopoulos, Shin'Ichi Konomi, Simon Klakegg and Vassilis Kostakos. chu.luo@unimelb.edu.au

