第 04 周作业解答

练习 1. 设平面 Σ 过直线 ℓ_1 : $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$, 且平行于直线 ℓ_2 : $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$, 求出 Σ 的点法式方程。

解 1. 设平面的法向量 $\vec{n} = (A, B, C)$ 。 ℓ_1 的方向向量为 $\vec{s}_1 = (1, 0, -1)$, ℓ_2 的方向向量为 $\vec{s}_2 = (2, 1, 1)$ 。 因为 $\vec{n} \perp \vec{s}_1$ 且 $\vec{n} \perp \vec{s}_2$,所以不妨取

$$\vec{n} = \vec{s}_1 \times \vec{s}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & -1 \\ 2 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 0 & -1 \\ 1 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} \vec{k} = (1, -3, 1)$$

2. $M_0(1, 2, 3) \in \ell_1 \subset \Sigma$ 。所以 Σ 的点法式方程为

$$(x-1) - 3(y-2) + (z-3) = 0$$
 \Rightarrow $x - 3y + z + 2 = 0$

练习 2. 与平面 Σ_1 : 4x - y + 2z - 8 = 0 垂直且过原点及点 $M_0(6, -3, 2)$ 的平面方程是什么?

解 1. 设平面的法向量 $\vec{n} = (A, B, C)$ 。 Σ_1 的法向量为 $\vec{n}_1 = (4, -1, 2)$ 。因为 $\vec{n} \perp \vec{n}_1$ 且 $\vec{n} \perp \overrightarrow{OM_0}$,所以不妨取

$$\vec{n} = \vec{n}_1 \times \overrightarrow{OM_0} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & -1 & 2 \\ 6 & -3 & 2 \end{vmatrix} = \begin{vmatrix} -1 & 2 \\ -3 & 2 \end{vmatrix} \vec{i} - \begin{vmatrix} 4 & 2 \\ 6 & 2 \end{vmatrix} \vec{j} + \begin{vmatrix} 4 & -1 \\ 6 & -3 \end{vmatrix} \vec{k} = (4, 4, -6)$$

2. 又因为过原点(0,0,0), 所以点法式方程为

$$4x + 4y - 6z = 0 \qquad \Rightarrow \qquad 2x + 2y - 3z = 0$$

练习 3. 过原点且与直线 ℓ_1 : $\begin{cases} x=1\\ y=-1+t & \text{与 } \ell_2: \frac{x+1}{1}=\frac{y+2}{2}=\frac{z-1}{1} \text{ 都平行的平面方程是什么?} \\ z=2+t \end{cases}$

解 1. 设平面的法向量 $\vec{n} = (A, B, C)$ 。 ℓ_1 的方向向量为 $\vec{s}_1 = (0, 1, 1)$, ℓ_2 的方向向量为 $\vec{s}_2 = (1, 2, 1)$ 。 因为 $\vec{n} \perp \vec{s}_1$ 且 $\vec{n} \perp \vec{s}_2$,所以不妨取

$$ec{n} = ec{s}_1 imes ec{s}_2 = \left| egin{array}{ccc} ec{i} & ec{j} & ec{k} \ 0 & 1 & 1 \ 1 & 2 & 1 \end{array}
ight| = \left| egin{array}{ccc} 1 & 1 \ 2 & 1 \end{array}
ight| ec{i} - \left| egin{array}{ccc} 0 & 1 \ 1 & 1 \end{array}
ight| ec{j} + \left| egin{array}{ccc} 0 & 1 \ 1 & 2 \end{array}
ight| ec{k} = (-1, 1, -1)$$

2. 又因为过原点(0,0,0), 所以点法式方程为

$$-x + y - z = 0$$

练习 4. 设直线 ℓ 过点 $M_0(-1, 2, 3)$,且垂直于直线 $\ell_1: \frac{x}{4} = \frac{y}{5} = \frac{z}{6}$,及平行于平面 $\Sigma: 7x + 8y + 9z + 10 = 0$ 。 求直线 ℓ 的点向式方程。

解 1. ℓ_1 的方向向量是 $\vec{s}_1 = (4, 5, 6)$, Σ 的法向量为 $\vec{n} = (7, 8, 9)$ 。设 ℓ 的方向向量为 \vec{s} ,则 $\vec{s} \perp \vec{s}_1$ 及 $\vec{s} \perp \vec{n}$ 。故不妨取

$$\vec{s} = \vec{s}_1 \times \vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} \vec{i} - \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} \vec{j} + \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} \vec{k} = (-3, 6, -3)$$

2. 所以点法式为

$$\frac{x+1}{-3} = \frac{y-2}{6} = \frac{z-3}{-3}$$
 \Rightarrow $\frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-3}{1}$

练习 5. 设有两直线 ℓ_1 : $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$ 及 ℓ_2 : $\begin{cases} x-y-6=0\\ 2y+z-3=0 \end{cases}$ 。求 ℓ_2 的一个方向向量,及求 ℓ_1 与 ℓ_2 的夹角。

解 1. 设 ℓ_2 的方向向量为 \vec{s}_2 ,则

$$\vec{s}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 0 \\ 0 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 0 \\ 2 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} \vec{k} = (-1, -1, 2)$$

2. ℓ_1 的方向向量 $\vec{s}_1 = (1, -2, 1)$ 。 ℓ_1 与 ℓ_2 的夹角 θ $(0 \le \theta \le \frac{\pi}{2})$ 满足

$$\cos \theta = \frac{|\vec{s}_1 \cdot \vec{s}_2|}{|\vec{s}_1| \cdot |\vec{s}_2|} = \frac{|(-1) \cdot 1 + (-1) \cdot (-2) + 2 \cdot 1|}{\sqrt{1 + 1 + 4} \cdot \sqrt{1 + 4 + 1}} = \frac{3}{6} = \frac{1}{2}$$

所以 $\theta = \frac{\pi}{3}$

练习 6. 求直线 ℓ_1 : $\begin{cases} x+y-z-1=0 \\ x-y+z+1=0 \end{cases}$ 在平面 Σ_1 : x+y+z=0 上的投影直线 ℓ 的方程。

解 1. 设 Σ 为 ℓ 与 ℓ_1 张成的平面,则 ℓ 是 Σ 与 Σ_1 的交线,且 Σ 与 Σ_1 垂直。 2. 先求 Σ 的方程。由于 Σ 是过直线 ℓ_1 的平面,故可设 Σ 的方程为

$$(x+y-z-1) + \lambda (x-y+z+1) = 0$$

其中 λ 待定。其法向量为 $\vec{n} = (1 + \lambda, 1 - \lambda, -1 + \lambda)$ 。

又因为 Σ 与 Σ_1 垂直,所以 $\vec{n} \perp \vec{n}_1 = 0$,其中 $\vec{n}_1 = (1, 1, 1)$ 为 Σ_1 的法向量。所以

$$0 = \vec{n} \cdot \vec{n}_1 = 1 + \lambda + 1 - \lambda + -1 + \lambda = 1 + \lambda \qquad \Rightarrow \qquad \lambda = -1$$

所以 Σ 的方程为

$$2y - 2z - 2 = 0$$
 \Rightarrow $y - z - 1 = 0$

3. 因为 ℓ 是 Σ 与 Σ_1 的交线, 所以 ℓ 的一般方程为

$$\begin{cases} x + y + z = 0 \\ y - z - 1 = 0 \end{cases}$$

练习 7. 1. 建立以点 (1, 3, -2) 为球心,且通过坐标原点的球面方程。

2. 方程 $x^2 + y^2 + z^2 - 2x + 4y + 2z = 0$ 表示什么曲面。

解 1. 球面半径是 (1, 3, -2) 到原点的距离,所以是 $\sqrt{1+9+4} = \sqrt{14}$ 。球面方程是

$$(x-1)^2 + (y-3)^2 + (z+2)^2 = 14$$

2. 方程 $x^2 + y^2 + z^2 - 2x + 4y + 2z = 0$ 可以改写成

$$(x-1)^2 + (y+2)^2 + (z+1)^2 = 6$$

所以这是一个以 (1, -2, -1) 为球心, $R = \sqrt{6}$ 为半径的球面。

练习 8. 将 xoy 坐标面上的抛物线 $y = 5x^2$ 绕 y 轴旋转一周,求所生成的旋转面的方程。

解 y 保持不变,将 x 换成 $\pm \sqrt{x^2 + z^2}$,所以方程是

$$y = 5\left(\pm\sqrt{x^2 + z^2}\right)^2 = 5(x^2 + z^2).$$

练习 9. 将 xoz 坐标面上的圆周 $x^2 + (z-2)^2 = 1$ 绕 x 轴旋转一周,所生成的旋转面是一个环面,求该环面的方程。

解方程是

$$x^2 + (\pm \sqrt{y^2 + z^2} - 2)^2 = 1$$

可进一步整理如下

$$x^{2} + (\pm \sqrt{y^{2} + z^{2}} - 2)^{2} = 1 \quad \Rightarrow \quad x^{2} + y^{2} + z^{2} + 3 = \pm 4\sqrt{y^{2} + z^{2}}$$
$$\Rightarrow \quad (x^{2} + y^{2} + z^{2} + 3)^{2} = 16(y^{2} + z^{2})$$

练习 10. 写出下列旋转曲面的旋转轴:

曲面	$z = 2(x^2 + y^2)$	$\frac{x^2}{36} + \frac{y^2}{9} + \frac{z^2}{36} = 1$	$z^2 = 3(x^2 + y^2)$	$x^2 - \frac{y^2}{4} - \frac{z^2}{4} = 1$
旋转轴	z 轴	y 轴	z 轴	x 轴

练习 11. 求球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 在 xoy 坐标面上的投影曲线方程。

解交线的一般方程是

$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 0 \end{cases}$$
 (1)

现在消去变量 z. 由 (2) 式得 z = -x - y,代入 (1) 式,得

$$x^{2} + y^{2} + (-x - y)^{2} = 1$$
 \Rightarrow $2x^{2} + 2xy + 2y^{2} = 1$

所以投影曲线的方程是

$$\begin{cases} 2x^2 + 2xy + 2y^2 = 1\\ z = 0 \end{cases}$$

练习 12. 分别求母线平行于 x 轴及 y 轴,而且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16 \\ x^2 - y^2 + z^2 = 0 \end{cases}$ (1) 的柱面。

解 1. 母线平行于 x 轴情形。其实就是求曲线到 yoz 坐标面的投影柱面。目标是消去变量 x。由 $(1)-(2)\times 2$ 可得

$$3y^2 - z^2 = 16.$$

这就是曲线到 yoz 坐标面的投影柱面,也就是母线平行于 x 轴而且通过曲线的柱面。

2. 母线平行于 y 轴情形。其实就是求曲线到 xoz 坐标面的投影柱面。目标是消去变量 y。由 (1) + (2) 可得

$$3x^2 + 2z^2 = 16.$$

这就是曲线到 xoz 坐标面的投影柱面,也就是母线平行于 y 轴而且通过曲线的柱面。

练习 13. 化曲线的一般方程
$$\begin{cases} x^2 + y^2 + z^2 = 9 \\ y = z \end{cases}$$
 为参数方程。

解将 (2) 式代入 (1) 式,消去 z 可得

$$x^2 + 2y^2 = 9$$
 \Rightarrow $\left(\frac{x}{3}\right)^2 + \left(\frac{\sqrt{2}y}{3}\right)^2 = 1$

可设

$$\frac{x}{3} = \cos \theta, \qquad \frac{\sqrt{2}y}{3} = \sin \theta$$

其中 $0 \le \theta \le 2\pi$ 。所以参数方程是

$$\begin{cases} x = 3\cos\theta \\ y = \frac{3}{\sqrt{2}}\sin\theta \\ z = \frac{3}{\sqrt{2}}\sin\theta \end{cases} \quad (0 \le \theta \le 2\pi).$$