

Enabling Technologies for 5G Networks

Professor Chien-Chao Tseng

Department of Computer Science
National Yang Ming Chiao Tung University
cctseng@cs.nctu.edu.tw

NYCU CS Syllabus

Evolution from 1G to 4G

Digital, **Packet Switching only** (all IP, greater bandwidth, Improved support for mobility

5G

3G

Digital, **Circuit and Packet Switching** (IP core, greater roaming capability)

2G

Digital, **Circuit Switching** (greater capacity, less power consumption, better quality, greater roaming capability, more secure)

16

Analog, **Circuit Switching** (No autonomic roaming)

Credited to: JC Chen

More and more applications

Lower and lower latency

Credited to: JC Chen

More and more data transmitted

Growth of mobile data traffic

Source: Emm procedure 1. initial attach - part 2. call flow of initial attach | netmanias

Not Just Smartphones Anymore

Source: Ericsson mobility report, June 2016

All Propriety Hardware

High cost
Limits innovation
Not flexible

Source: Flexi Network Server from Nokia Siemens Networks

Network Function Virtualization (NFV) – Core Network

5G Service Based Architecture

One size fits it all!

5G Services and Network Slicing

Slices tailored to applications!

5G Network Slicing

Enable service providers to build virtual end-to-end networks tailored to application requirements
 eMBB: enhanced Mobile Broadband

mMTC: massive Machine Type Communications
URLLC: Ultra Reliable Low Latency Communications

Syllabus 11

5G Multi-Access Edge Computing

- Bringing computing near users
- Offloading traffic from transport networks and core

Source: Juniper

5G MEC-Cloud Architecture

• 5G MEC-Cloud Architecture

Source: Aaron Yi Ding (TU Delft), MEC and Cloud Security, Wiley 5G Ref http://homepage.tudelft.nl/8e79t/files/pre-print-book2019.pdf

NYCU CS Syllabus 13

SDN/NFV/Cloud/MEC/Network Slicing for 5G

European Telecommunications Standards Institute ETSI NFV-MANO Reference Architecture

Open Networking Foundation (ONF) and Exemplar Platforms

Professor Chien-Chao Tseng

Department of Computer Science
National Yang Ming Chiao Tung University
cctseng@cs.nctu.edu.tw

ONF – Operator Led Consortium

With 13+ additional operators at 'Innovator' level

Collaborating to Address a Common Problem

Operators need cloud-like economics and agility

Incumbent vendors have not been providing open tools & cloud-like building blocks

Source: Timon Sloane, VP Marketing & Ecosystem, Open Networking Foundation

Operator Led - Curated Open Source Community

Partners committed to disaggregation, open source and SDN/NFV/Cloudification

Collaborators

Central Office Re-architected as a Datacenter (CORD)

Large number of COs

SDN + NFV + Cloud

Open Source Software

Commodity Hardware (Servers, White-Box Switches, I/O Blades)

Evolved over 40-50 years

300+ Types of equipment Huge source of CAPEX/OPEX

Traditional Residential Access

Optical Network Terminologies

Authorization NAT

Physical Connect DHCP

VolP Point

Firewall

Parental

Control

VPN

GRE Tunneling

MPLS Tunneling

Q-in-Q Termination

Devices to be Virtualized

Acronyms

- CPE Customer Premises Equipment
- ONU Optical Network Unit
- OLT Optical Line Termination
- ETH AGG Ethernet Aggregate Switch
- BNG Broadband Network Gateway

Residential CORD (R-CORD) -

Disaggregated Residential Access

+ the ability to introduce other edge-compute services per subscriber

Telco Central Office – After (R-CORD)

vCPE+ vOLT + vBNG (+ CDN, ...)

CORD – Next Generation Edge Cloud Platform

Source: Open Networking Foundation

(((H)))

Stratum & P4

National Chiao Tung University

OpenFlow

Migrating to

INFRASTRUCTURE

Trellis

NSTO OMPUTER CIENCE

National Chiao Tung University

SEBA Built on CORD — SDN Enabled Broadband Access

https://wiki.opencord.org/display/CORD/SEBA

SD-Fabric

Cloud Managed Edge Cloud Fabric as a Service

Control APIs

- Network slicing and QoS management
- Path selection (redirecting)
- Access control (blocking)

Telemetry APIs

- Monitor queue, path, latency and packet drops

Cloud Platform 1

Public Cloud

API

SD-Fabric 5

Internet

Access

Devices Compute Nodes

https://opennetworking.org/sd-fabric/

- 1 Cloud-managed network fabric as a service Integrated with CI/CD, logging, monitoring, alert
- 2 API driven
 Programmable throughout the stack
 Visible throughout the network
- 3 Tighter Integration of servers and networks
- 4 Initially focus on 5G workload
- One big router. One big UPF

Source: Charles Chan, ONF

ONF Mobile Projects

- Aether
 - SD-RAN
 - SD-CORE
 - SD-Fabric

https://opennetworking.or g/onf-mobile-projects/

Aether

- First open source enterprise 5G/LTE Edge-Cloud-as-a-Service Platform
 - Delivers mobile connectivity and edge cloud services for distributed enterprise network
 - with provisioning and management from a central cloud
 - Connected-Edge platform for enabling enterprise digital transformation

Aether Connected Edges

NYCL

Aether Software Architecture

Aether Architecture and Subprojects

O-RAN Software Architecture

Mission: "Open and Intelligent Software for the Radio Access Networks"

SD-RAN

Non-RT-RIC

A1

- ONF exemplar platform for 3G
 - Consistent with O-RAN archi
 - Cloud-native
 - Built on ONF's operator-app
 - ONOS
 - Aether
- Near RT-RIC
 - μONOS RIC
- xAPPs
 - Handover
 - Load Balancing

Developing

Near RT-RIC and

exemplar xAPPs

SON Apps

xApp API

HONOS RIC

Near Real-Time RIC

RRM Apps

xApps

https://opennetworking.org/sd-ran/

User Plane

SD-CORE

• A 4G/5G disaggregated mobile core optimized for public cloud deployment

