Software Architecture

Distributed Architecture

logical view layered architecture가

Client-server

Multitier

Proxy

Dispatcher (Load Balancer

P₂P

Broker

Service-oriented archite

Microservice architect

deployment view

Multi-tiers Architecture Style

Eunmi Choi Kookmin University

One-tier Architectures

- Mainframe-based and dumb-terminal interaction
- Concern: efficient use of the CPU and of the system
- Monolithic information system
 - Presentation, application logic, and resource management layers merge into a single tier
- Dumb terminals : the clients
- The entire presentation layer resides in the main-frame

Two-tier Architectures

- Consider two groups: large computers (mainframes and servers) and small computers (PCs and workstations)
- Presentation layer: the client and the PC
 - Presentation layer can utilize the computational power available in a PC
 - Tailor the presentation layer for different purposes without increasing the complexity of the system
 - Administration purposes and ordinary users
- Application logic layer and Resource management layer

Two-tiered Client-Server Architectures

Alternative client-server organizations (a) – (e).

Two-tier Architectures (Cont'd)

- Client/server architecture
 - Client: corresponds to the presentation layer and the actual client software
 - Server: encompasses the application logic and resource management layers
- ▶ Depending on complexity of the client
 - Thin clients with only minimal functionality
 - · Easier to port, install, and maintain
 - Fat clients with a wide range of functionality
 - Mode sophisticated and richer functionality
 - · Large pieces of code requiring considerable resources on the client machine

가

가

Three-tier Architectures

- ▶ Three-tier architectures
 - Introduce an additional tier between the clients and the servers.
 - Additional tier is where the application logic implementing integration resides.
- Abstract level based on a clear separation
 - Presentation layer: resides at the client
 - Application logic layer:
 - · resides at the middle tier
 - Middleware: abstractions and infrastructure to collectively support the development of the application logic
 - Resource management layer:
 - Composed of all servers that the 3-tier architecture tries to integrate.

Application Layering

- Application Layering
 - User-Interface Level
 - Processing Level
 - Data Level
- Ex) Internet search engine

2-Tier vs. 3-Tier Client/Server

가

2-tier client/server system

- the application logic is either busied inside the user interface on the client or within the Database on the server (or both)
- Ex) file server, database server with stored procedures

3-tier client/server system

- the application logic lives in the middle-tier
- In theory, 3-tier systems are more scalable, robust, and flexible.
- The can integrate data from multiple sources on heterogeneous systems

Ex) TP Monitors, Distributed Objects, and the Web

TP Monitors

2-Tier vs. 3-Tier Client/Server

• 3-Tier Client/Server

Modern Architectures

- Vertical Distribution
 - Placing logically different components on different machines
- 3-Tier Architecture

Multi-tiers Architecture Style

- Synapsis
 - The front-end tier in a multi-tier architecture
 - the user interface presentation tier.
 - The middle tier
 - manages business logic and execution.
 - The back-end tier
 - usually handles database management.
 - Multi-tier architecture is gaining popularity in enterprise applications.

Multi-tiers Architecture Style

Three-tier architecture

Multi-tiers Architecture Style

- The advantage of multi-tier over the two-tier architecture
 - The enhancement of reusability and scalability by adding the middle tier.
 - Any business related changes are made only to the middle tier.
 - Can be portable and nonproprietary design and implementation.
 - provide multithreading supports for scalability.
 - Multi-tier architecture also reduces traffic on the network.
 - Its main disadvantage is testability due to the general lack of testing tools.
 - Adding multiple servers in the system makes the server reliability and availability even more critical.

가 () 가