Analyse discriminante

Véronique Tremblay

L'analyse discriminante

Date du début du siècle:

Fisher, Ronald A. 1936. "The Use of Multiple Measurements in Taxonomic Problems." Annals of Eugenics 7 (2). Wiley Online Library: 179–88.

Soutien à la section 4.3 de Hastie, Tibshirani, and Friedman (2009)

L'analyse discriminante

Premet de faire de bonnes prédictions lorsque

- \bullet Y est nominale
- X est composé de variables normales multidimensionnelles (de même variance)

Qu'est-ce qu'on veut faire?

©Véronique Tremblay 2021 4

Décomposition de la variance

De vos cours d'analyse de la variance, vous savez (ou vous saurez) que

$$T = B + W$$

οù

- T est la variabilité totale
- *B* est la variabilité intergroupe (*between*)
- W est la variabilité intragroupe (within)

Dans l'exemple

Variance entre les groupes (B)

 498.2045
 60.633902

 60.6339
 7.379439

Variance intra-groupe (W)

507.7955 432.5774 432.5774 998.6206

Variance totale (T)

1006.0000 493.2113 493.2113 1006.0000

Mathématique de l'analyse discriminante

Posons $\mathbf{\tilde{X}}$, le vecteur des variables aléatoires centrées et réduites.

Le score proposé par Fisher est une **combinaison linéaire des variables**, c'est-à-dire

$$\begin{split} Z &= f(\tilde{X}_1, \dots, \tilde{X}_p) = \boldsymbol{\alpha}^\top \mathbf{\tilde{X}} \\ Z &= \alpha_1 \tilde{X}_1 + \dots + \alpha_p \tilde{X}_p \end{split}$$

Mathématique de l'analyse discriminante

$$Z = \alpha^{\top} \tilde{X}$$

On choisit α de façon à maximiser

$$\frac{\alpha^{\top} \mathbf{B} \alpha}{\alpha^{\top} \mathbf{W} \alpha} \quad \text{ou} \quad \frac{\alpha^{\top} \mathbf{B} \alpha}{\alpha^{\top} \mathbf{T} \alpha}$$

Ce qui revient à maximiser $\alpha^{\top} \mathbf{B} \alpha$ sous la contrainte que $\alpha^{\top} \mathbf{T} \alpha = 1$.

Du chapitre sur l'ACP, α est le vecteur propre normé associé à la plus grande valeur propre de ${f T}^{-1}{f B}$

```
vp <- eigen(solve(S) %*% B)</pre>
vp
## eigen() decomposition
## $values
## [1] 5.837920e-01 -3.469447e-18
##
## $vectors
               [,1] \qquad [,2]
##
## [1.] 0.9310380 -0.1208134
## [2,] -0.3649222 0.9926752
```

©Véronique Tremblay 2021

Visualisation et règle de classification

	Moyenne de p	Écart-type de p
QΒ	0.8544327	0.5281928
RB	-0.4551772	0.5265065

©Véronique Tremblay 2021

Théorème de Bayes

$$\mathbb{P}(G=k|X=x) = \frac{f_k(x)\pi_k}{\sum_{l=1}^K f_l(x)\pi_l}$$

Proportion des joueurs à chaque position

QB	RB
0.347567	0.652433

Densités estimées pour un joueur

dQb	dRb
0.2424403	0.471075

En R

Résumé

Références

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer Science & Business Media.

©Véronique Tremblay 2021