Chapter1 regular language(正则语言)

1.1 finite automaton(有穷自动机)

1.1.1 Formal definition of a finite automaton(有穷自动机的形式化定义)

A (deterministic) finite automaton is a 5-tuple (Q, Σ , δ , q_0 , F), where

- 1.Q is finite set called states(状态集)
- $2.\Sigma$ is finite set called *alphabet*(字母表)
- $3.\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*(转移函数)
- 4.q₀∈Q is the <u>start state</u>(起始状态)
- 5.F⊆Q is the set of *accept states*(接受状态集)

1.1.3 Formal definition of computation(计算的形式化定义)

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a finite automaton and let $w=w_1w_2.....w_n$ be a string with $w_i\in\Sigma$ for all $i\in[n]$. Then M accepts w if a sequence of states $r_0,r_1,.....,r_n$ in Q exists with:

$$1.r_0=q_0;$$

$$2.\delta(r_i,w_{i+1}) = r_{i+1} \text{ for } i=0,.....n-1;$$

 $3.r_n \in F$;

We say M recognizes A if A={w|M accepts w};

Definition of regular language

A language is called *regular* if some finite automaton recognizes it.

1.1.5 Regular operation(正则运算)

Let A and B be languages. We define the regular operations **union**(并),**concatenation**(连接),and **star**(星号) as follows:

1.Union: $A \cup B = \{x | x \in A \text{ or } x \in B\};$

2.Concatenation:A \circ B = {xy| x \in A and y \in B};

3.Star: $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ and each } x_i \in A\};$

(Union)Theorem[正则语言在并运算下封闭]

The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A1 \cup A2$.

Proof:[构造一个有穷自动机识别A1∪A2]

1.assume without generality $\Sigma_1 = \Sigma_2$:[我们可以不失一般性的假设 $\Sigma_1 = \Sigma_2$,后面都假设它们相同]

- Let $a \in \Sigma_2$ - Σ_1 ;
- We add $\delta_1(r,a)=r_{trap}$, where r_{trap} is a new state with $\delta_1(r_{trap},w)=r_{trap}$ for every w.

2.We construct M = (Q, Σ , δ ,q₀,F) to recognize A₁ \cup A₂:

- $Q = Q_1 \times Q_2 = \{(r_1,r_2) | r_1 \in Q_1, r_2 \in Q_2\};$
- $\bullet \quad \Sigma = \Sigma_1 = \Sigma_2;$
- For each $(r_1,r_2)\in Q$ and $a\in \Sigma$ we let $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a));$

- $q_0 = (q_1, q_2);$
- $F = (F \times Q_2) \cup (Q_1 \times F) = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\};$

1.2 Nondeterminism(非确定性)

1.2.1 Nondeterministic finite automaton(非确定型有穷自动机)

Formal definition of nondeterministic finite automaton

A nondeterministic finite automaton(NFA) is a 5-tuple($Q, \Sigma, \delta, q_0, F$), where

- 1.Q is a finite set of states;
- $2.\Sigma$ is a finite alphabet;
- $3.\delta: Q \times \Sigma \epsilon \longrightarrow P(Q)$ is the transition function, where $\Sigma \epsilon = \Sigma \cup \epsilon$;

 $4.q_0 \in Q$ is the start state;

 $5.F \subseteq Q$ is the set of accept states;

Formal definition of computation for an NFA

Let N = (Q, Σ , δ ,q₀,F) be an NFA and let w = y₁y₂...y_m be a string with y_i $\in \Sigma \epsilon$ for all i

 \in [m]. Then N accepts w if a sequence of states $r_0,\!r_1,\!\ldots,\!r_m$ in Q exists with:

- $r_0 = q_0$;
- $r_{i+1} \in \delta(r_i, y_{i+1})$ for i = 0, ..., m-1;
- $r_m \in F$;

1.2.2 Equivalence of NFAs and DFAs(NFA与DFA的等价性)

(DFA~NFA)Theorem

Every NFA has an equivalent DFA, i.e., they recognize the same language.

Proof:[证明的主要想法是抽象化DFA, DFA的每一个新状态都是Q的一个子集]

Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We construct a DFA $M = (Q', \Sigma', \delta', q_0', F')$ recognizing the same A.

First assume N has no ϵ arrows:

$$1.Q' = P(Q);$$

$$2.\Sigma' = \Sigma;$$

$$3.\delta'(R,a) = \{q \in Q | q \in \delta(r,a) \text{ for some } r \in R\}, \text{ let } R \in Q' \text{ and } a \in \Sigma;$$

$$4.q_0' = \{q_0\};$$

5.F' = {
$$R \in Q' \mid R \cap F \neq \emptyset$$
};

Now we allow ϵ arrows:

For every $R \in Q'$, i.e., $R \subseteq Q$ let

 $E(R) = \{ q \in Q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ and more } \epsilon \text{ arrows} \};$

$$1.Q' = P(Q);$$

- 2. Let $R \in Q'$ and $a \in \Sigma$. Then we define $\delta'(R,a) = \{q \in Q \mid q \in E(\delta(r,a)), \text{for some } r \in R\};$
- 3. $q_0' = E(\{q_0\});$
- 4. $F' = \{R \in Q' \mid R \cap F \neq \emptyset\};$

(NFA~regular language)Corollary

A language is regular if and on if some nondeterministic finite automaton recognizes it.

1.2.3 Closure under the regular operation

Closure union:

For $i \in [2]$ let $N_i = (Q_i, \Sigma_i, \delta i, q_i, F_i)$ recognize A_i . We construct an $N = (Q, Sigma, \delta, Q_0, F)$ to recognize $A_1 \cup A_2$:

1.Q =
$$\{q_0\} \cup Q_1 \cup Q_2$$
;

 $2.q_0$ is the start state;

3.F =
$$F_1 \cup F_2$$
;

4.For any $\mathsf{q} \in \mathsf{Q}$ and any $\mathsf{a} \in \Sigma \epsilon$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 \ \delta_2(q,a) & q \in Q_2 \ \{q_1,q_2\} & q = q_0 and a = \epsilon \ \emptyset & q = q_0 and a
eq \epsilon \end{cases}$$

Closure concatenation:

For $i \in [2]$ let $N_i = (Q_i, \Sigma_i, \delta i, q_i, F_i)$ recognize A_i . We construct an $N = (Q, Sigma, \delta, Q_0, F)$ to recognize $A_1 \circ A_2$:

construct N=(Q, Σ , δ ,q₀,F) to recognize A₁ \circ A₂:

$$1.Q = Q_1 \cup Q_2$$

$$2.\Sigma = \Sigma_1 + \Sigma_2$$

$$3.q_0 = q_1$$

$$4.F = F_2$$

$$5.\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 and q
otin F_1 \ \delta_2(q,a) & q \in Q_2 \ \{q_2\} \cup \delta_1(q,a) & q \in F_1 and a = \epsilon \ q_1 & q = q_0 and a = \epsilon \ \delta_1(q,a) & q \in Q_1 and a
otin F_1 & q \in Q_2 \end{cases}$$

Closure star:

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 , construct $N = (Q, \Sigma, \delta, q_0, F)$ recognizes A_1^* .

$$1.Q = Q_1 \cup \{q_0\}$$

$$2.F = F_1 \cup \{q_0\}$$

$$3.\delta(q,a) = egin{cases} \{q_1\} & q = q_0 and a = \epsilon \ \delta_1(q,a) & q \in Q_1 and a
eq \epsilon \ \{q_1\} & q \in F_1 and a = \epsilon \ \emptyset & q = q_0 and a
eq \epsilon \end{cases}$$

1.3 Regular expressions(正则表达式)

1.3.1 Definition of regular expression

R is a regular expression if R is

1.a for some a in the alphabet Σ

 $2.\epsilon$

3.0

4.($R_1 \cup R_2$), where R_1 and R_2 are regular expressions

 $5.R_1$ ° R_2 , where R_1 and R_2 are regular expressions

 $6.R_1^*$, where R_1 are regular expressions

regular expression R	language $L(R)$
а	{a}
ε	$\{arepsilon\}$
Ø	Ø
$(R_1 \cup R_2)$	$L(R_1) \cup L(R_2)$
$(R_1 \circ R_2)$	$L(R_1)\circ L(R_2)$
(R_1^*)	$L(R_1)^*$

1.3.2 Equivalence with finite automata(与有穷自动机的等价性)

Theorem: A language is regular if and only if some regular expression describes it

Definition of a generalized nondeterministic finite automaton(广义非确定型有穷自动机的定义**)**

A GNFA is a 5-tuple(Q, Σ , δ ,q_{start},q_{accept}),where

- 1.Q is the finite set of states
- $2.\Sigma$ is the input alphabet
- $3.\delta: (Q-\{q_{accept}\}) \times (Q-\{q_{start}\}) \rightarrow R$ is transition function

[GNFA的特点:任意 $q\in Q$ -{ q_{accept} , q_{start} },q有到除起始状态外所有其他状态的箭头, q_{start} 只出不进, q_{accept} 只进不出]

A GNFA accept a string w in Σ^* if $w=w_1w_2\cdots w_k$, where w_i is in Σ^* , and a sequence of states q_0, q_1, \cdots, q_k exists such that:

$$1.q_0 = q_{\text{start}}$$

$$2.q_k = q_{accept}$$

3.for each i, $w_i \in L(R_i)$, where $R_i = \delta(q_{i-1}, q_i)$

1.4 Nonregular languages(非正则语言)

Pumping Lemma(泵引理)

If A is a regular language, then there is a number p(the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces,s=xyz,satisfying that:

- 1.for each $i \ge 0$, $xy^iz \in A$
- 2.|y|>0
- $3.|xy| \le p$

[注意]

- 1.若A中没有长度大于p的字符串,则A是正则语言,因为A中元素都是有限长,可以通过穷举构造有穷自动机
- 2.|y|>0为了限制条件1
- 3.条件3是在证明语言的非正则性时有时可用

Proof:

由于A是正则语言,存在有穷自动机 $M(Q,\Sigma,\delta,q_0,F)$ 识别A,取 $p=|Q|<\infty$;

1.若 $s \in A$, $|s| \ge p$,则计算s时遍历的状态数n = |s| + 1 > |Q|: $q_0, q_1, \cdots, q_n \in F$,由鸽巢原理,必存在 $q_i = q_j (i \le j)$,取x满足 $\delta(q_0, x)$ 依次遍历, q_0, q_1, \cdots, q_i ,y满足 $\delta(q_i, y)$ 依次遍历, q_{i+1}, q_{i+2}, \cdots , q_i, z 满足 $\delta(q_i, y)$ 依次遍历 $q_{j+1}, q_{j+2}, \cdots, q_n;$ 则y > 0,满足条件2

2.y_i: q_i→q_j,满足条件1

3.由于一共有p个状态,则|xy|≤p

[我们常用pumping lemma证明一个语言是非正则的,用反证法,假设一共语言是正则的,设泵长度是p,找到一个不满足pumping lemma的字符串]