Assignment 6 Report Cache Implementation in Processor

April 13, 2025

Summary

This report discusses the integration of level-1 caches into a processor's memory system. Specifically, two caches are introduced:

- L1 Instruction Cache (L1i): Located between the Instruction Fetch (IF) stage and main memory.
- L1 Data Cache (L1d): Located between the Memory Access (MA) stage and main memory.

These caches are designed using a direct-mapped architecture, with size-dependent latency and basic handling for cache hits and misses. A Java-based simulation model was extended with an event-driven mechanism to emulate memory behavior through cache lines.

Cache Implementation Highlights

The Cache class features:

- Dynamic initialization based on cache size.
- Latency setup using logarithmic logic.
- Handling of read/write cache operations.
- Cache miss delegation to main memory using events.

Example logic used for indexing and tag matching:

```
int indexBits = (int)(Math.log(noOfLines) / Math.log(2));
String addressString = toBinary(address, 32);
int cacheAddress = Integer.parseInt(addressString.substring((32 - indexBits), 32), 2);
   Currently, cache hits are checked via:
if (actualCache[cacheAddress].getTag() == address)
```

This can be improved by comparing only tag bits, excluding the index bits from the address.

IPC Values for Different Cache Parameters

Table 1: IPC Values for Various Cache Sizes

Program	No Cache	L1i=16B	L1i=128B	L1i=512B	L1i=1024B	L1d=16B	L1d=128B	L1d=512B	L1d=1024B
descending	0.009	0.015	0.017	0.018	0.017	0.016	0.018	0.020	0.017
evenorodd	0.012	0.013	0.014	0.015	0.014	0.014	0.015	0.016	0.014
fibonacci	0.011	0.012	0.015	0.017	0.014	0.013	0.015	0.018	0.014
palindrome	0.016	0.016	0.017	0.019	0.012	0.015	0.018	0.019	0.012
prime	0.012	0.014	0.015	0.016	0.013	0.014	0.016	0.017	0.013

Graphs and Observations

Figure 1: IPC with L1i = 1024B

Conclusion

Integrating caches in the processor improves performance by reducing memory latency. As observed from the IPC values, increasing the cache size improves IPC until a point, beyond which there is no significant gain. This helps identify an optimal cache configuration. The current direct-mapped model could be enhanced further by experimenting with set-associative and fully-associative caches.

Figure 2: IPC with L1d = 1024B