

Sistemas Gráficos e Interacção

Epoca de Recurso	2019-02-05
N.º	Nome
Duração da prova:	45 minutos
Cotação de cada p	ergunta: assinalada com parêntesis rectos
Perguntas de esco	lha múltipla: cada resposta incorrecta desconta 1/3 do valor da pergunta

Parte Teórica 10%

- a. [3.3] Da comparação de uma interface WIMP (*Windows, Icons, Menus, Pointer*) com uma de linha de comandos resulta normalmente que
 - i. A segunda está mais vocacionada do que a primeira para ser usada por utilizadores experientes
 - ii. O esforço de memorização e a carga cognitiva impostos aos utilizadores são menores na segunda do que na primeira
 - iii. A probabilidade de ocorrência de erros de interacção é menor na segunda do que na primeira
 - iv. Todas as anteriores
- b. [3.3] Um sistema gráfico dotado de um frame buffer RGBA de 1024 x 1024 x 32 bits
 - i. Permite a reprodução de imagens compostas por mais do que 1 milhão de píxeis
 - ii. Permite a reprodução de imagens com 1024 níveis de vermelho, 1024 níveis de verde e 32 níveis de azul
 - iii. Permite a reprodução de imagens com 2³² milhões de cores
 - iv. Todas as anteriores
- c. [3.3] A transformação que resulta da composição de uma translação e de uma rotação
 - i. Não depende da ordem pela qual a translação e a rotação são efectuadas
 - ii. É rígida
 - iii. Não preserva as dimensões e os ângulos dos objectos transformados
 - iv. Nenhuma das anteriores

- d. [3.3] Numa árvore CSG (Constructive Solid Geometry)
 - i. Os nós internos designam objectos primitivos
 - ii. As folhas designam operações booleanas ou transformações lineares afins
 - iii. Descer um nível corresponde a dividir o espaço 3D em oito octantes
 - iv. Nenhuma das anteriores
- e. [3.3] O conhecimento do vector normal é necessário ao cálculo
 - i. Das componentes ambiente e difusa de iluminação
 - ii. Das componentes ambiente e especular de iluminação
 - iii. Das componentes difusa e especular de iluminação
 - iv. Das componentes ambiente, difusa e especular de iluminação
- f. [3.3] A técnica de *mipmapping* de mapeamento de texturas
 - i. É suportada pela generalidade das API gráficas
 - ii. Permite que texturas de diferentes níveis de resolução sejam aplicadas de forma adaptativa
 - iii. Reduz os efeitos de discretização que decorrem da interpolação
 - iv. Todas as anteriores

Sistemas Gráficos e Interacção

Épo	ca de Recurso	2019-02-05
N.º _	Nome	
Part	e Teórico-Prática 20%	
Nota	·	posta incorrecta desconta 1/3 do valor da pergunta que algo seja dito em contrário, assuma a posição da câmara
a.		a representada na Figura 1 num rectângulo, de modo a que do na Figura 2. Indique as coordenadas (<i>s, t</i>) de textura rtices do polígono.
	Figura 1	Figura 2
		v3v0
	R	
		v2 v1
	v0:,	
	v1:	
	v2:	
	v3:	
b.		uída por um material amarelo claro (1.0, 1.0, 0.5) iluminada lara (0.0, 1.0, 0.5). Quais as componentes primárias (R, G, B) los efectuados.
	R =	==
	G =	==
	B =	=

Sistemas Gráficos e Interacção

Epoca de Recurso	2019-02-05

N.º _____Nome ____

c. **[4.0]** Determine as componentes da normal unitária do quadrilátero apresentado na Figura 3. A face visível do polígono é a face da frente, assinalada pela semiesfera branca.

Figura 3

Normal: _____, ____, ____

d. [4.0] Pretende-se simular a visão de um utilizador numa bicicleta que está a olhar sempre para o guiador da mesma. A posição do utilizador é dada por mod.x, mod.y e mod.z, a direcção para a qual a bicicleta está orientada é dada por mod.dir, a altura dos olhos do utilizador relativamente à sua posição é dada por A_OLHOS. Relativamente à posição do utilizador, a altura do guiador é dada por A_GUIA e encontra-se à distância de D_GUIA.

Complete a informação seguinte de modo a obter a câmara pretendida, considerando como eixo vertical o eixo dos Z (positivo para cima).

Eye:	 ,,	
Center:	 ·	
l In:		

e. **[5.0]** Considere o objecto ilustrado na Figura 4 e a existência da função caixa() que desenha um cubo com 1 unidade de lado, alinhado com os eixos e centrado na origem.

Considere que:

- As dimensões dos elementos são: elemento A (L_A , A_A e P_A); elementos B e C (L_{BC} , A_{BC} e P_{BC});
- A deslocação do elemento A ao longo do eixo dos X é dada por D_A;
- O valor absoluto do ângulo de rotação em relação à horizontal dos elementos B e C é dada por R_{BC};
- O elemento A desloca-se linearmente sobre o plano XY;
- Os elementos B e C rodam em torno dos eixos assinalados na figura;
- A origem do sistema de eixos está localizada no centro do elemento A.

Figura 4

Sistemas Gráficos e Interacção

Época de Recurso	2019-02-05
N.ºNome	
R _{BC}	$ \begin{array}{c} \left(T(t_x, t_y, t_z)\right) & \left(R(r_x, r_y, r_z) \\ ou \\ R(r, e_x, e_y, e_z)\right) & \left(S(s_x, s_y, s_z)\right) \end{array} $
$\leftarrow \boxed{A} \rightarrow \boxed{\uparrow}_{X}$	caixa()
Figure 4	Figura 5

Construa a árvore de cena do objecto, incluindo os parâmetros das transformações que promovem o movimento e as dimensões dos diversos elementos. Na Figura 5 estão representados exemplos das transformações e da primitiva de desenho.