3.1 Set Definitions and Operations

3.1.1 Common Sets

Common sets we will see in this chapter:

N, the set of natural numbers These numbers are "counting

numbers". This set contains 0 and

positive integers.

 \mathbb{Z} , the set of integers This set contains all integers:

positive, negative, and zero.

Q, the set of rational numbers This set contains all numbers that can

be characterized as ratios, such as $\frac{1}{2}$,

 $\frac{-17}{4}$, or even $\frac{3}{1}$.

 \mathbb{R} , the set of all real numbers These can be thought of as decimal

numbers with possibly unending

strings of digits after the decimal point.

Question 1

For the following numbers, which set(s) do they belong to?

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
10				
-5				
12/6				
π				
2.40				

Question 2

Give examples for each of the following types of sets:

- a. List three numbers that are in the set of all integers, \mathbb{Z} , but are NOT in the set of natural numbers, \mathbb{N} .
- b. List three numbers that are in the set of rational numbers, \mathbb{Q} , but are NOT in the set of integers, \mathbb{Z} .
- c. List three numbers that are in the set of all real numbers \mathbb{R} , but are NOT in the set of rational numbers, \mathbb{Q} .

Writing out sets

When we are building a discrete (finite) set, we usually give the set a capital letter as its identifier. Then, the elements of the set are written within curly-braces, like this:

$$A = \{2, 4, 6, 8\}$$

The elements here are 2, 4, 6, and 8. The index of the element 2 is 1 - it is at position 1 of the set - so $A_1 = 2$.

Question 3

Create sets that meet the following criteria. Give the sets any letter identifier that you want.

- a. All elements of the set are odd integers.
- b. All elements of the set are fractions such that, when divided, they result in an infinite string of numbers to the right of the decimal place (e.g., 3.3333333...)
- c. Create two sets of integers, where the two sets have exactly two elements in common.
- d. Create two sets of natural numbers, where the two sets have NO elements in common.
- e. Create a set that is empty.

3.1.2 Subsets

Subsets	and	existence	within	sets:
Dubbcib	ana	CAISICHC	** 1 0 1 1 1 1 1 1	acua.

x exists in A The notation $x \in A$ means "x is an element of A"

which means that x is one of the member elements

of A.

A is a subset of B A is a subset of B (written as $A \subseteq B$) if

every element in A is also an element in B.

Formally, this means that for every x, if $x \in A$,

then $x \in B$.

A is equal to B (written A = B) means that

A and B have exactly the same members. This is

expressed formally by saying, $A \subseteq B$ and $B \subseteq A$.

An Empty set A set that contains no elements is called an empty

set, and it is denoted by $\{\}$ or \emptyset .

The Universal set For any given discussion, all the sets will be subsets

of a larger set called the universal set (or universe) We commonly use the letter U to denote this set.

Question 4

Given these sets: $U = \{1, 2, 3, 4, 5, 6\}$ $A = \{1, 1, 2, 2, 2, 4, 4\}$ $B = \{2, 2\}$ $C = \{1, 2, 4, 5, 6\}$ $D = \{6, 5, 4, 2, 1\}$ $E = \{1, 4\}$

- a. Which of these statements are true? Mark with a \checkmark
- b. Fill in the blanks with either \subseteq (is a subset of), or $\not\subseteq$ (is not a subset of), or = (is equal to) for the following:

Question 5

Question 6