제1장 – 기본적인 프로그램

Outline

- 1.1 Hello Word!
- 1.2 변수
- 1.3 수치형
- 1.4 문자와 문자열
- 1.5 배열
- 1.6 다차원 배열(1)
- 1.7 다차원 배열(2)

• 프로그램 만들기

```
(class 클래스명'부분부터 시작합니다.

Class Print {
    public static void main(String [] args) {
        System.out.println("Hello World !") ;
    }
    }
    문자열을 표시합니다.
```


• 프로그램 만들기

• 문자열 표시하기

• 문자열 표시하기

• 변수의 선언과 대입

• 변수의 선언과 대입

문은 ;로 구분되며, 한 줄로 늘어 쓰는 것도 가능합니다.

변수의 선언과 수치의 대입을 다음과 같이 정리해 볼 수 있습니다.

• 변수의 선언과 대입

a = 2; int 형으로 만들어진 변수 a에 2라는 값을 넣습니다. 이것을 '변수 a에 2를 대입한다'고 합니다.

• 변수를 표시하기

```
((예
class Data {
  public static void main (String [] args) {
     int a;
                                       변수 a, b를 선언하고, 각각 2와
     int b;
                                       3을 대입합니다.
     a = 2;
     b = 3;
     a = b;
     System.out.println(a) ;
                                변수 a에 변수 b의 값을 대입합니다.
                    a의 원래
값은 사라
집니다.
```

3 **▲** a의 값을 표시한다 《〈 실행결과 ■

• 정수형

형의 이름	읽는 법	들어가는 값의 범위	사이즈(비트 수)
byte	바이트	$-128 \sim 127$	8
short	쇼트	-32768~32767	16
int	인트	-2147483648~ 2147483647	32
long	롱	-9223372036854775808~ 9223372036854775807	64

• 정수형

• 실수형

형의 이름	읽는 법	들어가는 값의 대략적인 범위	사이즈(비트 수)
float	플로트	$\pm 3.4 \times 10^{38} \sim \pm 1.4 \times 10^{-45}$	32
double	더블	$\pm 1.8 \times 10^{308} \sim \pm 4.9 \times 10^{-324}$	64

• 실수형

```
float f = 3.4f;
```

```
((예
     class Data {
       public static void main (String [] args) {
         byte a = 127;
short b = 10000;
정수형
                                         변수의 선언과 대입
          <u>float</u> c = 1.2f ; ▼
                                         (초기화)
실수형
          System.out.println(a);
            System.out.println(b);
                                    처리
            System.out.println(c);
            System.out.println(d);
                                                                (( 실행결과
 127
 10000
 1.2
 0.34
```

• 문자

• 문자의 표시

• 문자열

• 문자열의 결합

```
class Fruit {
    public static void main (String[] args) {
        String apple = "사과" ;
        int a = 3 ;

        String fruit = apple + a + "개" ;
        System.out.println(fruit) ;
    }
}

사과3개
```


1.5 배열

• 배열의 개념

1.5 배열

• 배열의 개념

int [] a = { 1, 2, 3, 4 };

1-5 배열

• 배열 요소의 참조와 대입

```
int [] a = new int [4];
int n = 1;
a[0] = 1;
a[1] = 2;
a[2] = 3;
a[3] = 4;
System.out.println(a[n]); a[1]의 값을 돼시
```

```
int [] a = { 1, 2, 3, 4 };
System.out.println(a[4]);
```

1-5 배열

• 배열 요소의 참조와 대입

```
class Number {
   public static void main( String [] args ) {
      int [] a = { 1, 2, 3, 4 } ;
      System.out.println(a[0]) ;
      System.out.println(a[1]) ;
      System.out.println(a[2]) ;
      System.out.println(a[3]) ;
   }
}
```

1.6 다차원 배열(1)

• 다차원 배열이란?

1.6 다차원 배열(1)

• 다차원 배열에 대한 대입, 초기화, 참조

1.6 다차원 배열(1)

• 다차원 배열에 대한 대입, 초기화, 참조

```
a[0][0]=10 a[0][1]=20
a[1][0]=30 a[1][1]=40
a[2][0]=50 a[2][1]=60
```

• 다차원 배열의 요소 수

```
int [][] a = {
      { 10, 20, 30 },
      { 40, 50 } ,
      { 60 }
};
```

배열	값
a[0][0]	10
a[0][1]	20
a[0][2]	30
a[1][0]	40
a[1][1]	50
a[2][0]	60

• 다차원 배열의 요소 수

선언만을 할 경우는 다음과 같이 기술합니다.

```
int [][] a = new int [3][];
a[0] = new int [3];
a[1] = new int [2];
a[2] = new int [1];
```

• 배열의 요소를 구한다

다차원 배열의 요소수를 구하기 위해서는 다음과 같이 기술합니다.

• 배열의 요소를 구한다

```
일차원 배열의 요소수 3
a[0]의 요소수 3
a[1]의 요소수 2
a[2]의 요소수 4
■
```