Lecture 1 Practical: Dilemma or Trilemma?

Summer School in International Finance

August 26, 2021

Review of Two Stage Least Squares

Consider the model

$$y_t = \beta x_t + \epsilon_t,$$

with x_t endogenous, i.e. $\mathbb{E}[x_t \epsilon_t] \neq 0$. Then OLS is inconsistent $(\hat{\beta}^{OLS} \not\xrightarrow{p} \beta)$.

Suppose there exists a variable ('instrument variable', IV) \mathcal{Z}_t such that

$$\mathbb{E}[\mathcal{Z}_t x_t] = \Psi \neq 0$$
 (relevance) $\mathbb{E}[\mathcal{Z}_t \epsilon_t] = 0$ (validity),

and consider the system of equations

$$y_t = \beta x_t + \epsilon_t$$

$$x_t = \mathcal{Z}_t \pi + e_t,$$

where $x_t = \mathcal{Z}_t \pi + e_t$ is a *projection*, i.e. $\mathbb{E}[\mathcal{Z}_t e_t] = 0$ by definition.

Then β can be identified by TSLS, i.e. $\hat{\beta}^{TSLS} = (\hat{x}'\hat{x})^{-1}\hat{x}'y$, where $\hat{x} = \mathcal{Z}\hat{\pi}$, $\hat{\pi} = (\mathcal{Z}'\mathcal{Z})^{-1}\mathcal{Z}'x$, and y, x, \mathcal{Z} are the stacked $T \times 1$ vectors of y_t, x_t, \mathcal{Z}_t , respectively.

Review of Two Stage Least Squares

	TSLS	Proxy SVAR
Structural relationship	$egin{aligned} y_t &= eta x_t + \epsilon_t \ \mathbb{E}[x_t \epsilon_t] eq 0 \end{aligned}$	
Identifying Moments	$egin{aligned} \mathbb{E}[\mathcal{Z}_t x_t] &= \Psi eq 0 \ \mathbb{E}[\mathcal{Z}_t \epsilon_t] &= 0 \end{aligned}$	
Estimator	$\hat{\beta}^{TSLS} = (\hat{x}'\hat{x})^{-1}\hat{x}'y$ $\hat{x} = \mathcal{Z}\hat{\pi}, \ \hat{\pi} = (\mathcal{Z}'\mathcal{Z})^{-1}\mathcal{Z}'x$	

Suppose you have a three-variable, one-lag VAR,

$$\underbrace{\begin{bmatrix} y_{1t} \\ y_{2t} \\ y_{3t} \end{bmatrix}}_{y_t} = \underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \\ y_{3,t-1} \end{bmatrix}}_{y_{t-1}} + \underbrace{\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}}_{B} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \end{bmatrix}}_{\varepsilon_{t}},$$

so that the reduced-form residuals u_t are given by $u_t = B\varepsilon_t$.

Task 1 (see board)

1. Show that

$$u_{it} = \zeta_i u_{1t} + \nu_{it},$$

for
$$\zeta_i = \frac{b_{i1}}{b_{11}}$$
, $\nu_{it} = (b_{i2} - \frac{b_{i1}b_{12}}{b_{11}})\varepsilon_{2t} + (b_{i3} - \frac{b_{i1}b_{13}}{b_{11}})\varepsilon_{3t}$ and $i = 2, 3$.

2. Show that

$$\mathbb{E}[u_{1t}\nu_{it}] = (b_{i2} - \frac{b_{i1}b_{12}}{b_{11}})b_{12} + (b_{i3} - \frac{b_{i1}b_{13}}{b_{11}})b_{13} \neq 0 \ (\textit{typically}) \ .$$

Note: these derivations do not depend on the lag structure.

Takeaway: relationship between reduced-form residuals is an endogenous linear regression!

	TSLS	Proxy SVAR
Structural relationship	$y_t = \beta x_t + \epsilon_t$ $\mathbb{E}[x_t \epsilon_t] \neq 0$	$u_{it} = \zeta_i u_{1t} + \nu_{it}$ $\mathbb{E}[u_{1t}\nu_{it}] \neq 0$
Identifying Moments	$\mathbb{E}[\mathcal{Z}_t x_t] = \Psi eq 0 \ \mathbb{E}[\mathcal{Z}_t \epsilon_t] = 0$	
Estimator	$\hat{\beta}^{TSLS} = (\hat{x}'\hat{x})^{-1}\hat{x}'y$ $\hat{x} = \mathcal{Z}\hat{\pi}, \ \hat{\pi} = (\mathcal{Z}'\mathcal{Z})^{-1}\mathcal{Z}'x$	

Suppose you have a variable Z_t such that

$$\mathbb{E}\left[Z_{t}\varepsilon_{1t}\right]=\Phi.$$

$$\mathbb{E}\left[Z_{t}\varepsilon_{it}\right]=0.$$

Task 2 (see board)

1. Show that

$$\mathbb{E}[Z_t u_{1t}] = b_{11} \Phi \neq 0$$

2. Show that

$$\mathbb{E}[Z_t \nu_{it}] = 0$$
, for $i \neq 1$.

⇒ exactly the relevance and validity conditions of TSLS!

To identify ζ_i , consider

$$u_{it} = \zeta_i u_{1t} + \nu_{it}$$

$$u_{1t}=Z_t\xi+r_t,$$

where $\mathbb{E}[Z_t r_t] = 0$ by definition.

Estimate ζ by $\hat{\zeta}_i^{TSLS} = (\hat{u}_1'\hat{u}_1)^{-1}\hat{u}_1'u_i$, where $\hat{x} = \mathcal{Z}\hat{\pi}$, $\hat{\pi} = (\mathcal{Z}'\mathcal{Z})^{-1}\mathcal{Z}'x$, $\hat{u}_1 = Z\hat{\xi}$, $\hat{\xi} = (Z'\mathcal{Z})^{-1}\mathcal{Z}'u_1$ and u_i , u_1 , and Z are the stacked $T \times 1$ vectors of u_{1t} , u_{1t} and Z_t , respectively.

	TSLS	Proxy SVAR
Structural relationship	$egin{aligned} y_t &= eta x_t + \epsilon_t \ \mathbb{E}[x_t \epsilon_t] eq 0 \end{aligned}$	$egin{aligned} u_{it} &= \zeta_i u_{1t} + u_{it} \ \mathbb{E}[u_{1t} u_{it}] &\neq 0 \end{aligned}$
Identifying Moments	$\mathbb{E}[\mathcal{Z}_t x_t] = \Psi eq 0 \ \mathbb{E}[\mathcal{Z}_t \epsilon_t] = 0$	$\mathbb{E}[Z_tarepsilon_{1t}] = \Phi eq 0 \ \mathbb{E}\left[Z_tarepsilon_{it} ight] = 0 ext{ for } i eq 1$
Estimator	$\hat{\beta}^{TSLS} = (\hat{x}'\hat{x})^{-1}\hat{x}'y$ $\hat{x} = \mathcal{Z}\hat{\pi}, \ \hat{\pi} = (\mathcal{Z}'\mathcal{Z})^{-1}\mathcal{Z}'x$	$\hat{\zeta}_{i}^{TSLS} = (\hat{u}_{1}'\hat{u}_{1})^{-1}\hat{u}_{1}'u_{i}$ $\hat{u}_{1} = Z\hat{\xi}, \ \hat{\xi} = (Z'Z)^{-1}Z'u_{1}$

- Note that we do not observe u_{it} ; we instead use the plug-in reduced form residuals $\tilde{u}_{ti} = y_t \hat{A}^{OLS}y_{t-1}$
 - ► This is valid by the CMT, since $\hat{A}^{OLS} \stackrel{p}{\rightarrow} A$
- Note that $\zeta_i = \frac{b_{i1}}{b_{11}}$ identifies the first column of B up to scale. b_{11} can be separately identified, but this is beyond the scope of this introduction
- ightharpoonup Once you have ζ_i , IRFs (and their confidence intervals) can be computed as they would be using Choleski identification

Task 3

Complete the code in reduced_form.m in the ProblemSet folder (see reduced_form.m for detailed instructions)

Task 4

Complete the code in ivsuar.m in the ProblemSet folder (see ivsuar.m for detailed instructions)

Check your code by running the file rey_replication.m in the ProblemSet folder.

Solutions can be found in the Solutions folder (you can also replace addpath('ProblemSet') in the file rey_replication.m with addpath('Solutions') to run the suggested answer).