

Departamento de Engenharia Informática e de Sistemas

Investigação Operacional 2018/2019

Data: 07/01/2019 Exame – Época Normal Duração: 2 horas

Nota: Apresente todos os cálculos que efectuar e justifique convenientemente as suas respostas.

1. Considere o seguinte problema:

"O Sr. Faustino herdou, do seu falecido patrão, uma quinta de 100 hectares no interior alentejano e está a estudar uma forma de dividir a sua propriedade nas seguintes atividades produtivas:

Arrendamento – destinar certa área a uma empresa agrícola local para plantação de girassóis, a qual se encarrega da atividade e paga 30.000€/hectare/ano pelo arrendamento da terra;

Anualmente, a disponibilidade de adubos é de cerca de 15.000 Kg, havendo nesse período 12.750.000 litros de água para consumo pelas atividades referidas.

De forma a respeitar a vontade do antigo proprietário, o Sr. Faustino pretende que a área a arrendar não seja inferior a metade da área a plantar de soja, e que a área destinada à pecuária não seja superior a 25% da área das outras duas atividades."

Sabendo que o Sr. Faustino pretende obter o máximo rendimento anual da sua quinta, **formule o problema em termos de um modelo de programação linear**, indicando o significado das variáveis de decisão e da função objetivo.

2. Considere o seguinte problema de programação linear:

```
Minimizar z = x_1 + x_2

sujeito a

-3x_1 - 3x_2 \le 6

-4x_1 + 4x_2 \le 2

x_1 \ge -1, x_2 \ge 0
```

- a) Reformule-o de modo a que todas as variáveis tenham restrição de não-negatividade;
- b) Resolva o problema reformulado pelo método dual do Simplex;
- c) Comente a seguinte afirmação: "Em termos gráficos, na resolução de qualquer problema o método dual do Simplex move-se apenas dentro da região admissível."

Cotações: 1-3.5 valores 2-5.5 valores 3-5.5 valores 4-5.5 valores

Departamento de Engenharia Informática e de Sistemas

3. Considere agora o seguinte problema de programação linear:

Maximizar
$$z = x_1 + 2x_2$$

sujeito a
 $-x_1 + x_2 \le 2$
 $x_1 + 3x_2 \le 12$
 $-x_1 + 2x_2 \ge 1$
 $x_1 \ge 0$, $x_2 \ge 0$

- a) Resolva-o pelo método gráfico;
- **b)** Resolva-o pelo **método Simplex** com a **técnica do "Grande M**" e indique, em cada iteração, a solução básica correspondente;
- c) Formule o problema dual correspondente ao problema acima apresentado.
- 4. Determinada indústria de pasta de papel possui três unidades fabris (F1, F2 e F3), onde se produz pasta de excelente qualidade para exportação. A pasta produzida nestas unidades é armazenada em contentores que são transportados, por camião, para três empresas de exportação (E1, E2 e E3). Estas últimas, localizadas no litoral, enviam os contentores para vários países por via marítima.

Sabe-se que **F1**, **F2** e **F3**, conseguem produzir mensalmente, **100**, **20** e **40** contentores de pasta, respetivamente. Por outro lado, **E1**, **E2** e **E3** precisam de **80**, **30** e **50** contentores desse produto, respetivamente, por mês.

A tabela com os custos de transporte, por contentor, de cada uma das origens para cada um dos destinos, é a seguinte:

	E1	E2	E3
F1	1	9	3
F2	4	7	2
F3	8	5	4

(Valores em centenas de euros)

- a) Obtenha uma solução básica admissível inicial para o problema, usando o método do Canto Noroeste;
- b) Partindo da solução obtida em a), resolva o problema pelo método dos transportes;
- c) Explique o que acontece quando numa dada solução básica o nº de variáveis básicas é inferior a **m+n-1** (onde **m** é o nº de linhas e **n** é o nº de colunas do quadro).

Cotações: 1-3.5 valores 2-5.5 valores 3-5.5 valores 4-5.5 valores