

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

A NONLINEAR PROGRAMING MODEL FOR OPTIMIZED SORTIE ALLOCATION

by

Klaus Paul Wirths

March 1989

Thesis Advisor:

Alan R. Washburn

Approved for public release; distribution is unlimited

security classification of this page

security classificatio	n of this	page					·	
				REPORT DOCUM	IENTATION PAGE			
la Report Security	Classifi	cation Unc	classified		1b Restrictive Markings			
2a Security Classif					3 Distribution Availability of Report			
2b Declassification	Downg	rading Sche	dule		Approved for public release	Approved for public release; distribution is unlimited.		
4 Performing Orga	anization	Report Nu	ımber(s)		5 Monitoring Organization Report Nu	ımber(:	s)	
oa Name of Perfor				6b Office Symbol	7a Name of Monitoring Organization			
Naval Postgraduate School (if applicable) 55					Naval Postgraduate School			
6c Address (city. s Monterey, CA					7b Address (city, state, and ZIP code) Monterey. CA 93943-5000			
8a Name of Fundi	ng Spons	soring Orga	nization	86 Office Symbol (if applicable)	9 Procurement Instrument Identificati	on Nur	mber	
8c Address (city, s	tate. and	ZIP code;			10 Source of Funding Numbers			
		· · · · · · · · · · · · · · · · · · ·			Program Element No Project No 1	ask N	o Work Unit Accession No	
11 Title (include se CATION	curity cle	assification)	A NON	LINEAR PROGRAM	MING MODEL FOR OPTIMIZ	ZED S	SORTIE ALLO-	
12 Personal Author	or(s) Kla	aus Paul '	Wirths					
13a Type of Report Master's Thesis			13b Time (From	Covered To	14 Date of Report (year, month, day) March 1989		15 Page Count 70	
16 Supplementary sition of the D	16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.							
17 Cosati Codes	7				verse if necessary and identify by block nu	mber)		
Field Gro	up	Subgroup		y Attack, nonlinear pr	ograming, optimization, global o	ptimz	ation. sortie allocation,	
1	<u></u>	10208.227	-	•				
		<u> </u>						
The United to achieve a miconstraining the optimization is weapons than	l States aximum e consus s comp is curre	Air Force on value of umption co oared. An ently the c	te uses a reference of weapon increase. The	ed targets in a multi-peous. Alternate objective in the worth of dest	ig model to assess the utilization of ceriod. Theater-Level conflict. The effunctions are introduced. Their troyed targets is gained if the most further improved if all time period myopic approach.	mean odel c	ent model is modified by ing and influence on the can more flexibly utilize	
20 Distribution A: unclassified un			ci e as report	DTIC users	21 Abstract Security Classification Unclassified			
22a Name of Resp	onsible				22b Telephone (include Area code)		Office Symbol	
Alan R. Washi					(408) 646-3127	55W		

DD FORM 1473.84 MAR

83 APR edition may be used until exhausted All other editions are obsolete security classification of this page

Approved for public release; distribution is unlimited.

A Nonlinear Programing Model for Optimized Sortie Allocation

by

Klaus Paul Wirths
Captain, German Air Force
Dipl.-Ing., Armed Forces University Hamburg, W. Germany, 1979

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL March 1989

Author:	Yklaus Wirths
Approved by:	Hall wirths
	Alan R. Washburn, Thesis Advisor
	Les A Bi
	Gerald G. Brown, Second Reader
	Peter Purdue, Chairman, Department of Operations Analysis
	K.T. Marlh
_	Kneale T. Marshall, Dean of Information and Policy Sciences

ABSTRACT

The United States Air Force uses a nonlinear programming model to assess the utilization of weapons and sorties needed to achieve a maximum value of destroyed targets in a multi-period, Theater-Level conflict. The current model is modified by constraining the consumption of weapons. Alternate objective functions are introduced. Their meaning and influence on the optimization is compared. An increase in the worth of destroyed targets is gained if the model can more flexibly utilize weapons than is currently the case. The optimization can be further improved if all time periods are considered simultaneously while assigning sorties to targets, rather than the current myopic approach.

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	BASIC STRUCTURE OF HEAVY ATTACK	3
	A. THE ORIGINAL RAND - MODEL	
	B. THE ROLE OF SELECTOR	5
	C. DETERMINATION OF $\overline{E}_{i,j}$ IN HEAVY ATTACK	7
	D. TIME IN HEAVY ATTACK	
	E. THE NONLINEAR MODEL IN HEAVY ATTACK	. 12
	F. TARGET RECONSTITUTION IN HEAVY ATTACK	. 14
Ш	BOUNDS ON WEAPON CONSUMPTION	. 17
	A. INTRODUCTION OF A WEAPON CONSTRAINT	. 17
	B. REVISED MODEL OF HEAVY ATTACK	. 17
IV	LINEAR VERSUS NONLINEAR MODEL	. 20
	A. RAND EQUATION	. 20
	B. LINEAR EQUATION	. 21
	C. WASHBURN EQUATION	. 23
	D. DIVERSITY OF KILLED TARGETS	. 26
v.	ALLOCATION OF SECONDARY WEAPONS	. 29
	A. COST-EFFICIENCY VERSUS KILL-EFFECTIVENESS	. 29
	B. A NONCONVEX CONSTRAINT	. 29
	C. REVISED MODEL	. 31
VI	GLOBAL VERSUS MYOPIC TIME OPTIMIZATION	. 33
	A. TIME-DEPENDENT MILITARY WORTH OF TARGETS	. 33
	B. GLOBAL MODEL	. 33
	C. RESULTS AND COMPARISONS	. 35
VI	. CONCLUSIONS	. 39

APPENDIX	GLOBAL OPTIMIZ	ZATION MODEL	• • • • •	• • • • •	• • • •	• • • •	 41
LIST OF REI	FERENCES					• • • •	 59
INITIAL DIS	TRIBUTION LIST						 60

LIST OF TABLES

Table	1. $E_{IJ,R,W}$ - VALUES
Table	2. B _{1,J,R,W} - VALUES
Table	3. K _{I,J,R,W} - VALUES
Table	4. WEATHER DISTRIBUTION IN HEAVY ATTACK 8
Table	5. EFFECTIVENESS OF THE MOST COST - EFFICIENT TACTIC 8
Table	6. WEAPON LOAD OF THE MOST COST - EFFICIENT TACTIC 9
Table	7. WEAPON TYPE OF THE MOST COST - EFFICIENT TACTIC9
Table	8. $E_{IJ,R,W}$ - VALUES AFTER WEAPON K = 3 IS EXHAUSTED10
Table	9. EFFECTIVENESS OF THE NEXT FEASIBLE COST - EFFICIENT
	TACTIC10
Table	10. NUMBER OF KILLED TARGETS
Table	11. MILITARY WORTH OF KILLED TARGETS

I. INTRODUCTION

In 1988 the United States Air Force purchased over S 2 billion worth of weapons for use in different theaters around the world. The projected need for the quantity of different weapon types is based on an annual Nonnuclear-Weapon Consumables Analysis (NCAA) performed by the Directorate of Plans, USAF [Ref. 1]. Unlike other services, the USAF relies widely on mathematical programming models in order to optimize the allocation of weapons.

In 1974 RAND developed a nonlinear programming model that optimizes the number of different sortie types assigned to several target types by maximizing the military worth of killed targets [Ref. 2: p. 5]. Since each target type was given a different target value, the model attempts to assign sorties to maximum value targets first. To avoid an undesired concentration of sortie allocations to a few or even one target type, a nonlinear objective function was introduced. Within the model only the number of available targets and sorties are constrained. The expenditure of weapons is not considered. The number of targets one sortie is able to destroy is expressed by an effectiveness parameter that depends only on sortie and target type.

The required input data structure for the RAND-model is a simplification of the much more complex data base contained in the Joint Munitions Effectiveness Manual (JMEM) used by USAF. The JMEM data base determines effectiveness as a function of weather and mission profile (tactic) as well as type of aircraft and type of target. In the current operation a model called SELECTOR sorts the JMEM data base so that for each sortie-target type combination, all feasible tactics are ordered from the most to the least cost-effective, including the cost of aircraft attrition. This list is referred to as the Preferred Weapon List.

The data in the Preferred Weapon List must be reduced to input parameters depending only on sortie and target type as mentioned earlier. This is basically done by selecting the most cost-effective tactic from the list feasible for weather situations considered in the model. After the optimization has determined the optimal number of sorties assigned to different targets, the number of remaining targets and the expenditure of weapons is evaluated. This process is repeated in subsequent time periods with a new inventory of sorties and also by recording the remaining number of active targets and weapons available. In this way, tactical changes in a given scenario over time are

considered by optimizing sequentially for discrete time periods. This process is accomplished in one programming model and is called the HEAVY ATTACK model. The USAF interest is mainly in the consumption of weapons utilized over all time periods.

The objectives of this Thesis are to include a weapons constraint in the RAND-model and to investigate alternatives to the currently used objective function. In addition, the RAND-model is expanded so that more available information is included in the optimization in order to gain a higher total military worth of killed targets than is currently achieved. Therefore, the consumption of weapons used by less cost-effective tactics is investigated when other weapons, used by the most cost-effective tactic, are exhausted. As a final consideration, one global optimization over all time periods is compared to the current sequential optimization method. Global optimization achieves a higher overall worth of killed targets. However, gaining a higher military worth of killed targets serves only as an aid in analyzing the predicted need of weapons. The value of the revisions suggested in this Thesis have to be measured on their ability to satisfy the demands of the USAF and simultaneously meet budget constraints.

II. BASIC STRUCTURE OF HEAVY ATTACK

A. THE ORIGINAL RAND - MODEL

In 1974 RAND developed a nonlinear programming model whose objective was to determine the optimal number of sorties of type i assigned to targets of type j by maximizing the total military value of destroyed targets. The relationship between an assigned sortie and a target kill is established by introducing "sortie effectiveness" $\overline{E}_{i,j}$. The parameter $\overline{E}_{i,j}$ defines the average number of kills that one sortie of type i will achieve when it is assigned to targets of type j.

Definition of index

- i sortie type
- j target type

Parameter

- T_j total number of type j targets available at the beginning of a time period
- V, military worth of type j target
- S, total number of type i sorties available
- $\overline{E}_{i,j}$ average number of type j targets killed by one type i sortie

Variables

 $SX_{i,j}$ number of type i sorties as igned to type j targets

Model

Max
$$z = \sum_{j} V_{j} \times f_{j} \left(\sum_{i} \overline{E}_{i,j} \times SX_{i,j} \right)$$

s.t.

$$\sum_{j} SX_{i,j} \leq S_i$$
 $\forall i$

$$f_j \left(\sum_i \overline{E}_{i,J} \times SX_{i,j} \right) \le T_j$$
 $\forall j$

$$\sum_{j \in J} SX_{i,j} \le c \times \sum_{j} SX_{i,j}$$
 $\forall i$

where J is a subset of all targets of type j and 0 < c < 1.

$$0 \le SX_{l,j}$$

 $f_i(\sum \overline{E}_{i,j} \times SX_{i,j})$ is a concave function that approaches 1 for large arguments. The RAND - model (and HEAVY ATTACK) utilizes a specific analytic from that will be examined in detail later. The recipe constraints $\sum SX_{i,j} \leq c \times \sum SX_{i,j}$ limit the number of sorties of type i which are assigned to a list of targets by a fraction of the total number of sorties of type i. Since these constraints are not used by the USAF in their current weapon analysis, this inequality will omitted from now on in the Thesis.

B. THE ROLE OF SELECTOR

Based on the information contained in the JMEM the effectiveness of a sortie depends on sortie type, target type, weapon type, weather and tactics or mission profile.

Definition of index

i sortie type
j target type
k weapon type
w weatherband index
r index for used tactic

Definition of parameter

 $E_{i,j,r,w}$ number of type j targets killed by one type i sortie using tactic r in weatherband w

 $B_{i,j,r,w}$ number of weapons carried by one type i sortie which is assigned to type j target in weatherband w and using tactic r

 $K_{i,j,r,w}$ type of weapon which is loaded on sortie i and will be deployed to target j by using tactic r in weatherband w

The JMEM data have too many subscripts to match the required input data structure of the RAND - model. The number of subscripts of a sortie needs to be reduced so that $E_{i,j}$ depends only on sortie and target type. The first part of the task of reducing the number of subscripts from 4 to 2 is accomplished by the sorting program SELECTOR. The output data of SELECTOR - referred to as Preferred Weapon List - contains for each different sortie - target type combination five distinct items:

- 1. The worst weatherband in which a tactic can be used.
- 2. The types of weapons that can be allocated.
- 3. The relative cost-efficiency of a tactic given by its order on the list.
- 4. The number of targets which can be killed by one sortie.
- 5. The number of weapons that can be carried by one sortie for each weapon type (mixes of weapons are not considered).

The data structure of the Preferred Weapon List, which will be used later for the aggregation of the input data $\overline{E}_{i,j}$ for the RAND - model, is illustrated by the following example:

Subset of data from Preferred Weapon List

i	j	r	w	$K_{i,j,r,w}$	$E_{i,j,r,w}$	3
ı	29	1	4	3	0.137	4
1	29	2	3	1	0.664	6
1	29	3	2	17	1.580	2
1	29	4	5	17	1.600	2

For example, the most cost-efficient and feasible tactic for weatherband w=3 is tactic r=2. Tactic r=1 is more cost-efficient because it is first on the list, but is only feasible in weatherband w=4 or higher. Weatherband w=1 expresses best weather while weatherband w=6 represents the worst weather. Tactic r=3 is feasible (a tactic feasible in w is always feasible in better weatherbands) but less cost-efficient than tactic r=2.

The given data can be represented in the following way:

Table 1. $E_{LJ,R,W}$ - VALUES: Number of targets of type j killed by one sortie of type i using tactic r in weatherband w.

i	j	r	w=1	w= 2	w=3	w = 4	w=5	w = 6
1	29	1	0	0	0	0.137	0.137	0.137
1	29	2	0	0	0.664	0.664	0.664	0.664
1	29	3	0	1.580	1.580	1.580	1.580	1.580
1	29	4	0	0	0	0	1.600	1.600

Table 2. B_{IJRW} - VALUES: Number of weapons that are loaded on one sortie of type i which is assigned to target type j and using tactic r in weatherband w.

i	j	r	w=1	w = 2	w=3	w = 4	w = 5	w = 6
1	29	1	0	0	0	4	4	4
1	29	2	0	0	6	6	6	6
1	29	3	0	2	2	2	2	2
1	29	4	0	0	0	0	2	2

Table 3. $K_{LJ,R,W}$ - VALUES: Type of weapon that is allocated to a sortie of type i which is assigned to a target of type j and using tactic r in weatherband w

_ i	j	r	w= 1	w=2	w = 3	w=4	w= 5	<i>n</i> . = 6
1	29	1	0	0	0	3	3	3
1	29	2	0	0	1	1	1	1
1	29	3	0	17	17	17	17	17
1	29	4	0	0	0	0	17	17

Since HEAVY ATTACK only considers the tactic at the top of the list for each weatherband, and since weapon type is implied by tactics, SELECTOR essentially reduces the number of subscripts from 4 to 3.

C. DETERMINATION OF \overline{E}_{IJ} IN HEAVY ATTACK

An important assumption for HEAVY ATTACK in order to understand the logic behind the aggregation of $\overline{E}_{i,j}$ is that the weather is not known at the time when sorties are assigned to targets. This leads to the condition that the effectiveness of a sortie and the consumption of weapons in a particular weatherband has to be proportional to the probability that this weather will occur.

This probability is represented in HEAVY ATTACK by a given distribution of 6 distinct weatherbands:

 PR_{w} = probability that weatherband w will occur at a certain time in the future, w = 1, 2, ..., 6.

Throughout this Thesis the following distribution is used:

Table 4. WEATHER DISTRIBUTION IN HEAVY ATTACK: Probability that weatherband w occurs when sorties are allocated to targets.

	w=1	w=2	w = 3	w=4	w=5	w=6
PR.	0	0.02	0.14	0.07	0.07	0.70

Since weatherband w=1 will never occur, the effectiveness for any sortie in this weatherband is irrelevant. It is assumed that any weapon which is feasible for a certain sortie - target combination can be used in the weatherband determined by SELECTOR or in any better weather (higher weatherband).

HEAVY ATTACK uses for each weatherband only the top weapon on Preferred Weapon List. This means that the model will allocate the most cost-efficient weapon feasible in each weatherband. Therefore the data set $E_{i,j,r,w}$ can be reduced by the subscript r such that:

 $E_{i,j,w}^{\bullet}$ = the effectiveness of the most cost-efficient tactic in weatherband w.

Table 5. EFFECTIVENESS OF THE MOST COST - EFFICIENT TACTIC: In each weatherband w the first effectiveness value in Table 1 greater than zero is selected.

	<i>M</i> .= J	w = 2	w= 3	w=4	w=5	w = 6
E,	0	1.580	0.664	0.137	0.137	0.137

Applying the same reasoning on the data set $B_{i,j,m}$ and $K_{i,j,m}$ yields:

 $B_{ij,w}^*$ = number of weapons used by the most cost-efficient tactic in weatherband w,

 $K_{i,l,w}^*$ = type of weapon used by the most cost-efficient tactic in weatherband w.

Table 6. WEAPON LOAD OF THE MOST COST - EFFICIENT TACTIC: In each weatherband the first weapon load value in Table 2 greater than zero is selected.

	w=1	w = 2	w = 3	w=4	w = 5	w=6
B	0	2	6	4	4	4

Table 7. WEAPON TYPE OF THE MOST COST - EFFICIENT TACTIC: In each weatherband w the first weapon type in Table 3 not equal to zero is selected.

	w= 1	w = 2	w = 3	w=4	w=5	w=6
K.,.	0	17	1	3	3	3

Since each weatherband will occur with the probability PR_w , the averaged effectivness must be

$$\overline{E}_{i,j} = \sum_{w} PR_w \times E_{i,j,w}^* = 0.240$$

In general the process of obtaining $\overline{E}_{i,j}$ is a little more complicated than described above because HEAVY ATTACK is permitted to use tactics lower than first order when first order weapon types have been exhausted. This can happen because HEAVY ATTACK is actually a model of protracted war. First order tactics are preferred because they represent the most cost-effective tactic. The war may last for several periods (4 in this Thesis), and it is possible that certain tactics may not be feasible in later periods on

account of weapon exhaustion. Suppose for example, that weapon type 3 has been exhausted in a previous time period and is therefore no longer available. The top weapon for weatherband $\dot{w}=4$, 5 or 6 is now weapon type 1. The new effectiveness values $E_{u,t,r,w}$ are:

Table 8. $E_{LJ,R,w}$ - VALUES AFTER WEAPON K=3 IS EXHAUSTED: Number of targets of type j killed by one sortie of type i using tactic r in weatherband w that is applicable.

i	j	r	w=1	w=2	w=3	w=4	w=5	w=6
1	29	1	NΑ	NA	N/A	N/A	NΑ	N/A
1	29	2	0	0	0.664	0.664	0.664	0.664
1	29	3	0	1.580	1.580	1.580	1.580	1.580
1	29	4	0	0	0	0	1.600	1.600

Using the most cost-efficient tactic in each weatherband w gives the following effectiveness values $E_{i,j,w}$:

Table 9. EFFECTIVENESS OF THE NEXT FEASIBLE COST - EFFICIENT TACTIC: In each weatherband w the first applicable effectiveness value in Table 8 greater than zero is selected.

	w=1	w=2	w= 3	w=4	w= 5	w=6
E	0.000	1.580	0.664	0.664	0.664	0.664

which results in the averaged effectiveness:

$$\overline{E}_{i,j} = \sum_{\mathbf{w}} PR_{\mathbf{w}} \times E_{i,j,\mathbf{w}}^* = 0.682.$$

Note that the effectiveness has increased on account of the lack of weapon type k=3! The SELECTOR output is ordered according to cost-effectivness (not effectiveness), so it is quite possible that tactics far down in the Preferred Weapon List may actually be quite effective. These tactics typically have high associated attrition, but attrition is not considered in HEAVY ATTACK once SELECTOR has done its job.

By considering the same logic, it can be observed that the fourth order tactic on the Preferred Weapon List with $E_{h,c,w} = 1.600$ will never be used. This is because the third

order tactic uses the same weapon (in this case weapon type k = 17) in at least the same worst weatherband as tactic r = 4.

D. TIME IN HEAVY ATTACK

Once the effectiveness values $\overline{E}_{i,j}$ are evaluated, the required input data is available in order to optimize the number of sorties assigned to the different target types. For most cases all targets are not killed when the optimization is finished because of the constrained number of sorties in the RAND - model. As in a real war scenario, the outcome of a given attack will influence subsequent target consideration and planning. Only the targets that survived the previous attack will be reconsidered. Weapons are not resupplied and therefore may become exhausted. The current version of HEAVY ATTACK may actually allocate *more* weapons in a given period than are available at the beginning of the period. This is because there is no explicit constraint on weapon usage. The deletion is currently done after each period by computing weapon usage after the optimization for the period is finished. However, a weapon will be deleted in the next period if it is exhausted at the end of the current period.

There is no resupply of targets between periods in HEAVY ATTACK, although there is a facility for reconstituting targets that have already been killed. This will be discussed later. Aircraft are also not resupplied or even directly represented in HEAVY ATTACK: the number of sorties available during each period is a direct input. Each time period represents an attack which changes the input for the following time period.

The fact that the importance of a target will change with time is represented in HEAVY ATTACK by the option of changing the military worth for each target type at the beginning of a new time period. Even though the military worth of a target is known in all future periods, the current sequential time optimization only "sees" the worth of a target for the current time period. Following from this "myopic" way of maximizing the military worth of killed targets it may happen that sorties are assigned in a time period to a target type when its military worth is relatively low. A "global" (or overall) time optimization can be expected to achieve a higher military worth of killed targets. This is discussed later.

E. THE NONLINEAR MODEL IN HEAVY ATTACK

The basic structure of the current model in HEAVY ATTACK for one time period is given by:

Parameter

T_{j}	number of type j targets available at the beginning of a time period
D_{j}	number of dead type j targets at the beginning of a time period
V_j	military worth of type j target during the current time period
c ,	target - parameter for type j target
S,	number of type i sorties available for the current time period
PROP,	proportion of S_i , that can be assigned

Variables

$SX_{i,j}$	number of type i sorties that are assigned to type i targets
$KILL_{j}$	number of type j targets killed in the current time period

Model

$$Max \quad z = \sum_{j} V_{j} \times KILL_{j}$$

s.t.

$$KILL_{j} = f\left(T_{j}, c_{j}, D_{j}, \sum_{i} \overline{E}_{i,j} \times SX_{i,j}\right)$$
 $\forall j$

where:

$$f\left(T_{j}, c_{j}, D_{j}, \sum_{i} \overline{E}_{i,j} \times SX_{i,j}\right) = \left(\frac{T_{j}}{c_{j}} - D_{j}\right) \times \left(1 - e^{-\frac{c_{j}}{T_{j}}} \times \sum_{i} \overline{E}_{i,j} \times SX_{i,j}\right)$$

The above function is the same function as used by RAND [Ref. 2].

$$\sum_{j} SX_{i,j} \leq PROP_i \times S_i$$
 $\forall i$

$$0 \le KILL_j \le T_j - D_j \qquad \forall j$$

$$0 \le SX_{i,j}$$
 $\forall i, j$

The nonlinear function $f(T_j, c_j, D_j, \sum_i \overline{E}_{i,j} \times SX_{i,j})$ is of the same form as in the RAND - model. The number of targets of type j that are killed and the number of sorties of type i are constrained. The consumption of weapons is not considered in the model itself. After the optimal numbers of sorties are determined by the optimization, the consumption of the different weapon types is evaluated by:

{ consumption of weapon }_k =
$$\sum_{i} \sum_{j} SX_{i,j} \times \left(\sum_{w} PR_{w} \times B_{i,j,w}^{*} \right)$$

where the sum is over all $\{i, j, w\}$ such that $k = K_{i,j,w}$.

F. TARGET RECONSTITUTION IN HEAVY ATTACK

The ability to reconstitute killed targets is a common fact in a modern war. HEAVY ATTACK records the number and type of targets as well as the time period when they are destroyed. After each optimization, it determines if targets can be reconstituted and evaluates the maximal number that are possible. A major task in this Thesis has been to determine the conditions under which reconstitution is allowed to happen by analyzing the responsible part of the HEAVY ATTACK source code. HEAVY ATTACK's logic seems to be as outlined below:

Definition of index

j	target type index	$\forall \ j$
p. pp	time period index	$\forall p, pp \in \{1, 2, \dots, n\}$

Parameter

$TIME_p$	length of time period p in days	∀ <i>p</i>
$RECON_j$	minimum number of days a target has to stay dead	∀ <i>j</i>
QTY_{t}	maximum number of targets i that can be reconstituted in 30 days	∀ <i>j</i>

Aggregated parameter

 $PERUP_{j,p}$ index of the last time period considered for reconstitution.

If a target of type j is killed in time period $PERUP_{i,p}$ or earlier, then there is sufficient time available to reconstitute the target so that it once again will be available in period p+1. The parameters $TIME_p$ and $RECON_j$ determine $PERUP_j$ according to the following formula in HEAVY ATTACK:

Let

$$k_{j\bar{p},p} = \begin{cases} 1 & \text{if RECON}_{j} < \sum_{p'=\bar{p}}^{p+1} TIME_{p'} - CEIL\left(0.5 \times TIME_{\bar{p}}\right) \quad \forall \ j, \ \bar{p} \leq p < n \\ 0 & \text{otherwise} \end{cases}$$

where the function CEIL rounds a real number to the next higher integer value.

 $k_{j,\overline{p},p}$ indicates whether targets killed in period \overline{p} are eligible for reconstitution in period p and therefore:

$$PERUP_{j,p} = \sum_{\bar{p}=1}^{p} k_{j,\bar{p},p} \qquad \forall j, p < r$$

Note that always $PERUP_{j,p} \leq p$.

Variables

 $KILL_{j,p}$ number of targets type j killed in time period p $\forall j, p$

 $REBUILD_{j,p}$ maximum number of targets of type j that are reconstituted

as live targets in time period p+1 $\forall j, p < n$

Conditions for Reconstitution

A killed target of type j can be reconstituted if the following 4 conditions are true:

- 1. at least a fraction of target j was destroyed in the previous or the current time period p,
- 2. it has been dead for more than some defined time,

3. the total number of targets being reconstituted has to be less than the total number of targets which exceeds the minimum dead time

$$\sum_{p'=1}^{p} REBUILD_{j,p'} \leq \sum_{p'=1}^{PERUP_{j,p}} KILL_{j,p'} \qquad \forall j, p < n$$

4. the maximum number of targets type j which can be reconstituted at the end of each time period p is given by:

$$REBUILD_{j,p} \le \frac{QTY_j}{30} \times TIME_{p+1} \qquad \forall j, p < n$$

where $\frac{QTY_j}{30}$ represents the reconstitution rate per day.

This leads to the following submodel:

$$\max z = \sum_{j} \sum_{p} REBUILD_{j,p}$$

s.t.

$$\sum_{p'=1}^{p} REBUILD_{j,p'} \leq \sum_{p'=1}^{PERUP_{j,p}} KILL_{j,p'} \qquad \forall j, p < n$$
 (A)

$$REBUILD_{j,p} \le \frac{QTY_j}{30} \times TIME_{p+1} \qquad \forall j, p < n$$
 (B)

The interpretation of (A) is that the number of targets of type j rebuilt in period p or before cannot exceed the total number of targets that are killed during or before period $PERUP_{j,p}$. The interpretation of (B) is that the number of targets of type j rebuilt in period p cannot exceed a certain quantity depending on the length of period p and on the target type. There are no targets reconstituted in the last time period p=n.

III. BOUNDS ON WEAPON CONSUMPTION

A. INTRODUCTION OF A WEAPON CONSTRAINT

A desired improvement for the current HEAVY ATTACK model is to add an additional constraint on the utilization of weapons inside the RAND - model.

Two important facts should be recalled:

- 1. For each sortie target combination { i, j } and each weatherband there is at most one weapon which can be used.
- 2. Averaging over all weatherbands is related to the probability that weatherband w might occur at the time sortie type i is assigned to target type j.

Let the upper bound on weapon consumption be defined as:

 WP_{ν} total number of weapons of type k available

The required constraint for the consumption on weapons is then:

$$\sum_{i} \sum_{l} SX_{l,j} \times \left(\sum_{w} PR_{w} \times B_{l,j,w}^{*} \right) \leq WP_{k}$$
 $\forall k$

where the sum is over all $\{i, j, w\}$ such that $k = K_{i,j,w}^*$

B. REVISED MODEL OF HEAVY ATTACK

Reconstitution can be included in the RAND - model. Instead of considering reconstitution as a computational "bookkeeping" process, it can be part of the optimization. To accomplish this, it is necessary to define a new variable for the number of dead targets such that the time period as an additional dimension is represented by a second subscript:

 $D_{j,p}$ is the total number of targets of type j killed in time periods < p less the number of targets that are reconstituted during this time:

$$D_{j,p} = \sum_{p'=1}^{p-1} (KILL_{j,p'} - REBUILD_{j,p'}) \qquad \forall j. p$$

The military worth of a target is also time dependent:

 $V_{i,p}$ military worth of a target type j in time period p

Embellished Thesis Model (solved sequentially for p = 1, 2, 3,..., n)

$$\operatorname{Max} \quad z_p = \sum_{J} (V_{j,p} \times KILL_{j,p})$$

s.t.

$$KILL_{j,p} = f \left\{ T_j, c_j, D_{j,p}, \sum_{i} SX_{i,j} \times \left(\sum_{w} PR_w \times E_{l,j,w}^* \right) \right\}$$

where : $f\{...\}$ is one of three functions discussed in the next chapter.

$$KILL_{j,p} \leq T_j - D_{j,p}$$
 $\forall j$

$$D_{j,p} = \sum_{p'=1}^{p-1} (KILL_{j,p'} - REBUILD_{j,p'})$$
 $\forall j$

$$\sum_{p'=1}^{p} REBUILD_{j,p'} \leq \sum_{p'=1}^{PERUP_{j,p}} KILL_{j,p'}$$
 $\forall j$

$$\sum_{j} SX_{i,j} \leq PROP_i \times S_i$$
 $\forall i$

$$\sum_{i} \sum_{j} \left\{ SX_{i,j} \times \left(\sum_{w} PR_{w} \times B_{i,j,w}^{*} \right) \right\} \leq WP_{k}$$
 $\forall k$

where the sum is over all $\{i, j, w\}$ such that $k = K_{ij,w}^*$

$$0 \leq SX_{i,j} \qquad \forall i, j$$

$$0 \leq KILL_{j,p} \qquad \forall j$$

$$0 \leq D_{j,p} \qquad \forall j$$

$$0 \leq REBUILD_{j,p} \qquad \forall j$$

where the upper bound on $REBUILD_{j,p}$ is such that:

$$REBUILD_{j,p} \begin{cases} \leq \frac{QTY_j}{30} \times TIME_{p+1} & \text{if } p < n \\ = 0 & \text{if } p = n \end{cases}$$

The model was written in the General Algebraic Modeling System (GAMS) [Ref. 3]. All optimization problems throughout the Thesis are solved with the nonlinear programing solver MINOS - Version 5.0 [Ref. 4]. A database for 2 sortie-, 26 target- and 29 weapon-types was provided [Ref. 5] in order to compare the results by using three different objective functions, each over four time periods.

IV. LINEAR VERSUS NONLINEAR MODEL

In this chapter the derivation of the nonlinear objective function used by RAND is given. In addition two alternatives are represented by introducing the Washburn-Equation and the linear case in which the number of killed targets is proportional to the number of assigned sorties. Each of the three objective functions is used in the model described in the previous chapter for sequentially optimizing sortie assignments over four time periods. In order to compare the effect of the three objective functions, a measurement for the diversity of the allocated kill capability is defined.

A. RAND EQUATION

If K_i represents the total number of killed targets of type j then the objective function used in the RAND - model can be derived from the differential equation:

$$\frac{\mathrm{d}\,K_j}{\mathrm{d}\,X_j} = 1 - c_j \times \frac{K_j}{T_j} \tag{A}$$

where
$$X_j = \sum_i \overline{E}_{i,j} \times SX_{i,j}$$
 and $0 \le c_j \le 1$

The differential equation (A) with the initial condition $K_j(X_j=0)=D_j$ has the solution:

$$K_j = \frac{T_j}{c_j} \times \left\{ 1 - (1 - c_j \times \frac{D_j}{T_j}) \times e^{-\frac{c_j}{T_j} \times X_j} \right\}$$

Instead of bounding K_i by

$$D_j \leq K_j \leq T_j$$

let $KILL_i$ be the number of targets killed in excess of D_i :

$$KILL_j = K_j - D_j$$

so that

$$0 \leq KILL_j \leq T_j - D_j$$

which leads to the final result:

$$KILL_j = \left(\frac{T_j}{c_j} - D_j\right) \times \left(1 - e^{-\frac{c_j}{T_j} \times X_j}\right)$$

B. LINEAR EQUATION

A special case for the differential equation (A) appears when $c_j = 0$:

then

$$\frac{d\,K_j}{d\,X_j}\,=\,1$$

which yields:

$$K_i = X_i + D_i$$

so that

$$D_j \leq K_j \leq T_j$$

or by using

$$KILL_j = K_j - D_j$$

so that

$$0 \leq KILL_j \leq T_j - D_j$$

where the final solution represents the linear case:

$$KILL_j = X_j$$

Figure 1 illustrates the influence of the target parameter c_i , on the function $KILL_i = f(X_i)$.

Figure 1. Influence of the target parameter c on the RAND-Equation: The solution of the differential equation used in the RAND-model is graphically shown for 4 different target parameters c.

The parameter c_j has no direct physical motivation. The model considered in the next section also contains a single parameter, but the parameter can be motivated physically.

C. WASHBURN EQUATION

The Washburn - Equation [Ref. 6: p. 25] defines the differential $\frac{d K_j}{d X_j}$ in the following way:

$$\frac{d K_j}{d X_j} = \text{Probability } \{ \text{ attacking a live target } \}$$

or equivalently:

$$\frac{d K_j}{d X_j} = \frac{\{\text{ number of live targets }\}}{\{\text{ number of targets that look alive }\}}$$

This leads to the differential equation:

$$\frac{\mathrm{d} K_j}{\mathrm{d} X_j} = \frac{T_j - K_j}{T_j - K_j + \alpha_j \times K_j} \tag{B}$$

where α_j is a constant proportion of killed targets, which have the property to appear live to a potential attacker.

The differential equation (B) with the initial condition $K_j(X_j=0)=D_j$ has the solution:

$$K_j = T_j \times \left\{ 1 - \left(1 - \frac{D_j}{T_j}\right) \times e^{\frac{(1-\alpha_j)\times (K_j - D_j) - X_j}{\alpha_j \times T_j}} \right\}.$$

Using KILL, instead of K, such that:

$$KILL_j = K_j - D_j$$

leads to the implicit solution for the Washburn - Equation as:

$$KILL_j = (T_j - D_j) \times \left(1 - e^{\frac{(1-\alpha_j) \times KILL_j - X_j}{\alpha_j \times T_j}}\right).$$

The difference between the two differential equations (A) and (B) for two different target parameters is shown in Figure 2 on page 24. Observe that for target parameter c close to 0 or 1 the Washburn-equation tends to behave similarly to the RAND-equation.

Target parameter α is denoted in the figure by c.

Figure 2. RAND- and Washburn-Diff. Equation with varied parameter c: The two differential equations are shown for 2 different target parameters c. Because the solution of the Washburn-Equation can be given only in an implicit form, the differential equations are shown rather than their solutions.

The influence of the three different objective functions on the RAND-model using the same input data is shown in Figure 3.

The total worth of killed targets decreases with time for each objective function. The main reason for this is that in the first time period sorties are assigned to those target types for which the effectiveness is highest. When all targets are killed, sorties are then assigned in the following time periods to the remaining targets for which the effectiveness is less. As a result, more and more sorties need to be allocated in order to gain the same number of killed targets. The number of reconstituted targets available at the beginning of the second or third period is relatively small or even zero and can therefore be neglected at this point. Since the variation in the number of sorties and in the mag-

nitude of the target values is too small to compensate for this effect, a declining trend in the objective function value over time for all three cases is observed.

Note that the Washburn-Equation always yields a smaller value than the RAND-Equation. This follows from the fact that the Washburn-Equation declines faster than the RAND-Equation for the same target parameter c as shown in Figure 2. The linear equation is larger than either one. The most important difference is not in the absolute level of target value killed, but rather in the influence of the objective function on the distribution of sorties over targets. This subject is taken up in the next section.

Figure 3. Total Military Worth of Killed Targets: represented for each different objective function and each time period by the height of the respective block in the figure.

D. DIVERSITY OF KILLED TARGETS

An important reason for USAF to use a nonlinear objective function is to avoid an undesired concentration of attacking sorties on a few targets. In analysing the effect of the three different objective functions on the optimization, a measurement is needed in order to indicate how many of the allocated sorties are spread over different targets.

In information theory the function

$$h(\mathbf{p}) = \sum_{i} \left(p_i \times \log \frac{1}{p_i} \right)$$

where
$$\mathbf{p} = (p_1, p_2, ..., p_n)$$
 and $\sum_{i} p_i = 1$

is used to express the diversity or "entropy" of the probability distribution $\mathbf{p} = \{p_i\}$. Observe that $h(\mathbf{p}) = 0$ when \mathbf{p} concentrates all probability in one element. The maximum possible value when \mathbf{p} has n elements occurs when they are all equal, in which case $h(\mathbf{p}) = \log \mathbf{n}$. The diversity $h(\mathbf{x})$ of an arbitary set $\{x_j\}$ of nonnegative members can be measured by simply normalizing them so that they sum 1 and then computing entropy:

$$h(\mathbf{x}) = \frac{\sum_{j} X_{j} \times \log \left[\frac{\sum_{j} X_{j}}{X_{j}} \right]}{\sum_{j} X_{j}}$$

The diversity of values h(x) gained from the same input data and model as used in the previous chapter is depicted in Figure 4. Since the number of targets n equals 26, the maximum diversity value will be

$$h(x)_{\text{max}} = 3.26$$

Figure 4 makes it clear that the Linear objective function has a lower diversity value than the other two. This is to be expected, and in fact one of the main reasons for using

a nonlinear objective in the first place was to avoid low diversity values. However, note that:

- 1. The Linear diversity is not 0; that is, several target types are still attacked.
- 2. None of the objective functions achieves complete (3.26) diversity.

The differences emerge most strongly in period 3. Only 4 target types are attacked when the linear model is used, or 6 with the RAND-model. 16 different target types are attacked when the Washburn-equation is used; this is in keeping with the idea that the Washburn-equation is the most "non-linear" of the three (see Figure 2). The three models differ much less in period 1,2 or 4.

Figure 4. Diversity of killed targets for different objective functions: The height of each block illustrates to how many different target types (out of 26) sorties are allocated at different time periods by using each of the three objective functions.

V. ALLOCATION OF SECONDARY WEAPONS

A. COST-EFFICIENCY VERSUS KILL-EFFECTIVENESS

Cost considerations are finished once SELECTOR has established the Preferred Weapon List. Although this list contains different tactics, ordered in terms of cost-efficiency, HEAVY ATTACK only uses the top one on the list which is feasible. The only time at which HEAVY ATTACK may proceed to a succeeding tactic appears, as mentioned before, when a weapon has been exhausted in earlier periods.

As a second revision of HEAVY ATTACK, the model is changed to continue target attacks after the weapon type used by the most cost-effective tactic has been exhausted, using those weapons still on hand.

B. A NONCONVEX CONSTRAINT

The model discussed in the previous chapter requires that only the tactic on the top of SELECTOR's Preferred Weapon List can be used. Once the corresponding weapon type is depleted further attacks by that sortie type in that weatherband against that target type are impossible. The idea in this section is to relax this strict requirement to permit using whatever tactic is highest on SELECTOR's list among those whose weapons have not been exhausted.

Implementing this logic in the existing model requires a modification of the variable SX_{ii} :

 $SX_{i,j,r,w}$ = number of sortles of type i assigned to target of type j which use tactic r in weatherband w

The probability that all sorties of type i assigned to target of type j will attack the target in weatherband w has to be equal to the probability that weatherband w occurs at that time:

$$\sum_{r} SX_{i,j,r,w} = PR_{w} \times \sum_{r} \sum_{w'} SX_{i,j,r,w'}$$

Upon these redefined variables for the number of assigned sorties, it is possible to determine the utilization of each weapon type:

let $WEAP_k$ be the consumption of all weapons of type k

then
$$WEAP_k = \sum_{l} \sum_{j} \sum_{r} \sum_{w} (B_{l,j,r,w} \times SX_{l,j,r,w})$$
 $\forall k$

where the sum is over all $\{i, j, r, w\}$ such that $k = K_{l,j,r,w}$.

In order to assign sorties using less cost-effective tactics, $SX_{i,j,r,w}$ must be 0 unless the weapon types corresponding to all more cost-effective tactics are exhausted. The following constraint will enforce this logic:

$$0 = SX_{i,j,r,w} \times \sum_{r=1}^{r-1} (WP_k - WEAP_k) \quad \forall i, j, r, w \quad (C)$$

where $k = K_{i,i,r',w'}$

The above constraint requires that at least one of the two factors on the right hand side of the equation equals zero, so either no sorties are assigned (first factor zero) or else all more cost-effective weapons are exhausted (second factor zero). The constraint thus enforces the desired logic, but there is a disadvantage in using it. The disadvantage is that the function on the right hand side of (C) is not only nonlinear (products of variables are involved) but nonconvex. Without constraint convexity, there is no guarantee that the locally optimal solutions achieved by the MINOS solver are globally optimal. There is some evidence, however, that globally optimal solutions are actually being attained. For one thing, employing constraint (C) always results in a higher objective function value than when only the most cost-efficient tactic is permitted. In addition, some experiments were performed where the improved model was changed into a linear model by linearizing the objective function at the optimal solution. The nonconvex constraint was then converted into a linear constraint by using integer variables. The optimal solution of this linearized model was identical to the solution gained by the nonlinear model with the nonconvex constraint.

C. REVISED MODEL

The mathematical model is solved sequentially for p = 1, 2,..., n.

$$\operatorname{Max} \quad z_p = \sum_{j} (V_{j,p} \times KILL_{j,p})$$

s.t.

$$KILL_{j,p} = \left(\frac{T_j}{c_j} - D_{j,p}\right) \times \left(1 - e^{-\frac{c_j}{T_j} \times X_j}\right)$$

where
$$X_j = \sum_{i} \sum_{r} \sum_{w} (E_{i,j,r,w} \times SX_{i,j,r,w})$$

$$KILL_{j,p} \leq T_j - D_{j,p}$$
 $\forall j$

$$D_{j,p} = \sum_{p'=1}^{p-1} (KILL_{j,p'} - REBUILD_{j,p'})$$
 $\forall j$

$$\sum_{p'=1}^{p} REBUILD_{j,p'} \leq \sum_{p'=1}^{PERUP_{j,p}} KILL_{j,p'}$$
 $\forall j$

$$\sum_{j} \sum_{r} \sum_{w} SX_{i,j,r,w} \leq PROP_{l} \times S_{i}$$
 $\forall i$

$$WEAP_{k} = \sum_{i} \sum_{j} \sum_{r} \sum_{w} (B_{l,j,r,w} \times SX_{l,j,r,w})$$
 $\forall k$

where the sum is over all $\{i, j, r, w\}$ such that $k = K_{i,j,r,w}$

$$0 = SX_{i,j,r,w} \times \sum_{r=1}^{r-1} (WP_k - WEAP_k)$$
 $\forall i, j, r, w$

where $k = K_{i,j,r',w}$

$$\sum_{r} SX_{i,j,r,w} = PR_{w} \times \sum_{r} \sum_{w'} SX_{i,j,r,w'} \qquad \forall i, j, w$$

$$0 \leq SX_{i,j,r,w} \qquad \forall i, j, r, w$$

$$0 \leq KILL_{j,p} \qquad \forall j$$

$$0 \leq D_{j,p} \qquad \forall j$$

$$0 \leq REBUILD_{j,p} \qquad \forall j$$

where the upper bound on $REBUILD_{j,p}$ is such that:

$$REBUILD_{j,p} \begin{cases} \leq \frac{QTY_j}{30} \times TIME_{p+1} & \text{if } p < n \\ = 0 & \text{if } p = n \end{cases} \qquad \forall j$$

$$0 \leq WEAP_k \leq WP_k \qquad \forall k$$

The introduced relaxation will be used in the further revision of HEAVY ATTACK considered in the next chapter.

VI. GLOBAL VERSUS MYOPIC TIME OPTIMIZATION

A. TIME-DEPENDENT MILITARY WORTH OF TARGETS

When HEAVY ATTACK optimizes the allocation of sorties for each time period, it doesn't take advantage of the fact that the military worth of each target and each time period is known prior to running the optimization. The decision, which target type should be given a high priority to attack, is based on a comparison of military values of different target types restricted to the current time period. Although military worth of a target is given as a function of time, HEAVY ATTACK doesn't recognize the most favorable time for attacking a certain target type. This "myopic view" is caused by restricting the optimization to the time interval covered by one period.

It seems worthwhile to consider an optimization covering all time periods at once. This "global" optimization is expected to spend resources even more effectively than before, so that the total sum of gained military worth of killed targets might become higher compared to sequential time optimization. In addition, it can be expected that the number and type of killed targets in each time period will change.

The third revision for HEAVY ATTACK as presented in this chapter doesn't require major changes to the previously discussed model. A subscript for time is added to the variable SX_{tran} :

 $SX_{i,j,r,w,p}$ number of sorties of type i assigned to target type j by using tactic type r in weatherband w and in time period p

The resources on sorties available needs to be defined as a function of sortie type and time:

 $S_{i,p}$ maximum number of sorties type i available in period p $PROP_{i,p}$ proportion of $S_{i,p}$ that can be assigned

Computing time increases with the number of time periods covered.

B. GLOBAL MODEL

The mathematical model is shown below. The realization of this model in GAMS, including all inputs, is given in the Appendix.

$$\text{Max} \quad z = \sum_{j} \sum_{p} (V_{j,p} \times \textit{KILL}_{j,p})$$

s.t.

$$KILL_{j,p} = \left(\frac{T_j}{c_j} - D_{j,p}\right) \times \left(1 - e^{-\frac{c_j}{T_j} \times X_{j,p}}\right)$$
 $\forall j, p$

where
$$X_{j,p} = \sum_{i} \sum_{r} \sum_{w} (E_{i,j,r,w} \times SX_{i,j,r,w,p})$$

$$KILL_{j,p} \leq T_j - D_{j,p}$$
 $\forall j, p$

$$D_{j,p} = \sum_{p'=1}^{p-1} (KILL_{j,p'} - REBUILD_{j,p'})$$
 $\forall j, p$

$$\sum_{p'=1}^{p} REBUILD_{j,p'} \leq \sum_{p'=1}^{PERUP_{j,p}} KILL_{j,p'}$$
 $\forall j, p$

$$\sum_{i} \sum_{r} \sum_{w} SX_{i,j,r,w,p} \leq PROP_{i,p} \times S_{i,p}$$
 $\forall i, p$

$$WEAP_{k} = \sum_{i} \sum_{j} \sum_{r} \sum_{w} \left(B_{i,j,r,w} \times \sum_{p} SX_{i,j,r,w,p} \right)$$
 $\forall k$

where the sum is over all $\{i, j, r, w\}$ such that $k = K_{i,j,r,w}$

$$0 = SX_{i,j,r,w} \times \sum_{r=1}^{r-1} (WP_k - WEAP_k) \qquad \forall i, j, r, w$$

where $k = K_{i,j,r',w}$

$$\sum_{r} SX_{ij,r,w,p} = PR_{w} \times \sum_{r} \sum_{w'} SX_{ij,r,w',p}$$

$$0 \leq SX_{i,j,r,w,p}$$

$$0 \leq KILL_{j,p}$$

$$0 \leq D_{j,p}$$

$$0 \leq REBUILD_{j,p}$$

$$\forall j, p$$

$$\forall j, p$$

where the upper bound on $REBUILD_{i,p}$ is such that:

$$REBUILD_{j,p} \begin{cases} \leq \frac{QTY_j}{30} \times TIME_{p+1} & \text{if } p < n \\ = 0 & \text{if } p = n \end{cases} \qquad \forall j$$

$$0 \leq WEAP_k \leq WP_k \qquad \forall k$$

C. RESULTS AND COMPARISONS

The above model was too large to be run in GAMS on available computer equipment at reasonable cost with the same size of input data used previously. Therefore the number of target types were reduced from 26 to 13. Other efforts were also made to decrease required computing time.

Table 10. Table 11 and Figure 5 compare the results of the global and myopic sequential optimizations. The global optimization achieves more target value killed; the percentage gain for the global approach is (1358.0 - 1123.0)/1123.0 = 20.9%. Comparing the target values of target type 5 and 27 over all 4 periods shows that the highest target value occurs in period 3. The global optimization realizes this fact by destroying all available targets at that time. While both target types, especially target type 5, have a relatively high target value in the first time period, most of these targets are therefore killed by myopic optimization in the first period.

Table 10. NUMBER OF KILLED TARGETS: The table shows the number of killed targets achieved by sequential and global optimization as well as the respective target value for each time period.

		Time Period		Time Period 2			
Target	Target	Killed 7	Targets	Target	Killed 7	Targets	
Type	Value	Myopic	Global	Value	Myopic	Global	
TG 5	10	17.3	0.5	14	1.2	1.1	
TG 8	10	13.0	13.0	10	0.0	0.0	
TG 10	4	0.0	0.0	7	0.0	0.0	
TG 11	7	0.0	9.6	9	0.0	0.0	
TG 12	7	0.0	0.0	12	0.0	0.0	
TG 13	4	0.0	2.2	5	0.0	0.0	
TG 14	20	2.0	2.0	15	0.0	0.0	
TG 22	2	0.0	0.0	2	0.0	0.0	
TG 24	2	0.0	0.0	7	0.1	0.0	
TG 25	5	0.0	0.0	12	22.3	26.6	
TG 27	4	19 1	0.0	7	1.9	0.0	
TG 29	7	0.0	0.0	7	0.0	0.0	
TG 34	5	8.6	0.0	5	9.4	0.0	
		Time Period :	3		Time Period .	1	
Target	Target	Killed	Targets	Target	Killed Targets		
Type	Value	Myopic	Global	Value	Myopic	Global	
TG 5	18	1.0	18.0	1.0	1.0	2.0	
TG 8	10	0.0	0.0	0.7	0.0	0.0	
TG 10	10	5.4	0.0	3.1	23.6	26.3	
TG 11	10	4.3	0.0	2.1	3.5	0.0	
TG 12	18	0.0	0.0	2.1	0.0	0.0	
TG 13	7	4.0	1.7	1.0	0.0	0.1	
TG 14	10	0.	0.0	0.7	0.0	0.0	
TG 22	2	0.0	0.0	2.0	6.0	6.0	
TG 24	10	2.2	1.5	2.5	0.4	1.3	
TG 25	10	5.5	1.1	0.9	0.0	0.0	
TG 27	8	0.0	21.0	2.0	0.0	0.0	
TG 29	8	0.0	0.0	1.0	0.0	0.0	
TG 34	8	0.0	18.0	0.7	0.0	0.0	

Table 11. MILITARY WORTH OF KILLED TARGETS: gained by sequential and by global optimization is given for each time period and as a total sum.

	Myopic Optimization	Global Optimization
Time Period 1	462.8	251.3
Time Period 2	345.5	333.8
Time Period 3	220.1	674.0
Time Period 4	94.6	98.9
Total Worth of Killed Targets	1123.0	1358.0

Figure 5. Distribution of Military Worth of Killed Targets: The height of each block represents the numerical value given in Table 11 depending on the time period and on the kind of optimization used.

Both the global and the myopic models utilize secondary weapons. Figure 6 shows weapon usage in the global model. Note that weapon type WP7 is used extensively in situations where more cost-effective weapons are exhausted.

Figure 6. Allocation of Secondary Weapons: The height of each block represents the number of weapons utilized by the global optimization. A significant number of weapon type WP7 is used by tactics of order r=3. This is only possible when weapons used by tactics of order r=1 and r=2 are exhausted.

A more detailed report of the solution is given in the SOLVE SUMMARY of GAMS in the Appendix.

VII. CONCLUSIONS

In the first revision of the current HEAVY ATTACK model, a weapon constraint is added and three different objective functions are compared. The objective function best used in the model depends on the priorities of the user:

- 1. Using a linear objective function instead of a nonlinear one has the advantage of simplicity and consequent computational efficiency. A disadvantage is a less dispersed allocation of sorties to different targets.
- 2. Using the Washburn Equation instead of the RAND Equation has the advantage of using a well defined target parameter. The dispersion of attacked target types might be somewhat less influenced due to changes in the input data.

In the second revision the current philosophy of using the most cost-efficient tactic is relaxed such that less cost-efficient tactics can be utilized within a time period. With this revision, tactics not at the top of the Preferred Weapon List (SELECTOR output) can be utilized if all more cost-effective tactics are infeasible due to weapon exhaustion. This revision is particularly important when there is a small number of time periods, since the same capability already exists between time periods.

The third revision replaces sequential optimization (current practice) with global optimization. The comparison between sequential and global optimization by using the same input data shows a qualitative difference in the achieved results. There is a definite indication that sequential time optimization tends to achieve military success in the beginning of the war by sacrificing the potential for later success. Global optimization tends to husband weapons and even targets (in cases where target value increases with time) for later periods in the war. An argument for global optimization can be based on the fact that it is more efficient in killing targets with large military values. On the other hand, it could also be argued that sequential optimization is more likely to imitate what will actually happen, "optimal" or not. In any case, if global optimization is used, then the distribution of the value of destroyed targets seems to be much more time dependent than is recognized by the current method of sequential optimization.

All revisions introduced in this Thesis result in gaining of more military worth. USAF's general objective is to determine their future need of weapons rather than to maximize the military worth of killed targets. With the revisions described above, utilization of weapons plays a more important and direct role in the optimization, especially

when more than one tactic is considered. The developed models are intended to provide the necessary structure to embellish HEAVY ATTACK for this purpose.

APPENDIX GLOBAL OPTIMIZATION MODEL

```
5
   <del>************************</del>
6
7
   * Math. Model: Klaus Wirths
                                                         February 1989
                                                                      *
8
                                                                      *
9
   * File Name : P H C R
                           GAMS
                                                                      *
10
                                                                      *
11
                                                                      *
   * Remark
12
               : This Model is an improved version of the HEAVY ATTACK
13
                model; it contains a subset of a larger database.
14
15
   * Specification:
                     RAND - Equation
16
                     Multi-Weapon Optimization
   *
17
                     Multi-Time Period (Global) Optimization
   4
18
19
     Reference: Dennis M. Coulter, Maj, USAF
20
21
                War, Mobilization & Munitions Division
22
                Directorate of Plans, DCS/P&Q
23
   *
24
25
                Sortie Allocation by a Nonlinear Programming Model
26
   *
                for Determining a Munitions Mix
   *
27
                R. J. Clasen, G. W. Graves and J. Y. Lu
   ÷
                                                                      *
28
                                                         March 1974
                RAND, Santa Monica
29
   30
31
32
   SET
33
        Ι
                                   / AC1 * AC2 /
              aircraft type index
34
35
        Ţ
              target type index
                                    / TG5
36
                                     TG8
37
                                     TG10
38
                                     TG11
39
                                     TG12
40
                                     TG13
41
                                     TG14
42
                                     TG22
43
                                     TG24
44
                                     TG25
45
                                     TG27
46
                                     TG29
47
                                     TG34 /
48
49
        K
                                    / WP1
              weapon type index
50
                                     WP2
51
                                     WP3
52
                                     WP4
```

```
53
                                            WP5
54
                                            WP6
55
                                            WP7
                                            WP8
56
57
                                            WP9
58
                                            WP10
59
                                            WP11
60
                                            WP12
61
                                            WP15
62
                                            WP18
63
                                            WP19
64
                                            WP21
65
                                            WP22
66
                                            WP24
                                            WP25
67
                                            WP27
68
69
                                            WP34
 70
                                            WP42
 71
                                            WP45
 72
                                            WP46
 73
 74
          W
                 weatherband type index / WB1 * WB6 /
 75
                 order of preferred weapon type / OD1 * OD4 /
 76
          R
 77
          P
                 time period index
                                      / PER1 * PER4 /
 78
 79
 80
 81
     ALIAS (J,JP)
 82
     ALIAS (R,RP)
83
84
85
     ALIAS (P,PP)
86
 87
     ALIAS (P, PPP)
88
 89
     ALIAS (W, WPP)
 90
 91
 92
         Definition of TARGET Parameters
 93
 94
     PARAMETERS
 95
          T(J) total number of target type J
 96
 97
 98
          all entries for T(J) has to be nonzero values ***
99
                                          / TG5
100
                                                   18
101
                                            TG8
                                                   13
102
                                            TG10
                                                   29
                                            TG11
                                                   32
103
                                            TG12
                                                    3
104
                                                    4
105
                                            TG13
                                                    2
106
                                            TG14
107
                                            TG22
                                                    6
                                                    3
108
                                            TG24
```

;

;

```
109
                                              TG25
                                                     51
110
                                                     21
                                              TG27
111
                                                      9
                                              TG29
112
                                              TG34
                                                     18
113
114
115
                                                            0 < C < 1
116
           C(J)
                 TARGET parameter
117
118
                                              TG5
                                                      0.2
119
                                              TG8
                                                      0.1
120
                                              TG10
                                                      0.2
121
                                                      0.1
                                              TG11
122
                                              TG12
                                                      0.1
123
                                              TG13
                                                      0.3
124
                                              TG14
                                                      0.1
125
                                              TG22
                                                      0.2
126
                                              TG24
                                                      0.8
127
                                              TG25
                                                      0.3
128
                                                      0.7
                                              TG27
129
                                              TG29
                                                      0.1
130
                                              TG34
                                                      0.2
131
132
133
      TABLE
               V(J,P)
                        value of target type J
134
135
                            PER1
                                   PER2
                                          PER3
                                                PER4
                  TG5
136
                             10
                                    14
                                           18
                                                  1.0
137
                  TG8
                             10
                                                  0.7
                                    10
                                           10
138
                  TG10
                              4
                                     7
                                           10
                                                  3.1
139
                              7
                                     9
                  TG11
                                           10
                                                  2.1
140
                              7
                                    12
                                                  2.1
                  TG12
                                           18
141
                  TG13
                              4
                                     5
                                            7
                                                  1.0
142
                  TG14
                             20
                                    15
                                           10
                                                  0.7
143
                  TG22
                              2
                                     2
                                            2
                                                  2.0
                              2
144
                  TG24
                                     7
                                           10
                                                  2.5
                              5
145
                  TG25
                                    12
                                           10
                                                  0.9
146
                  TG27
                              4
                                     7
                                            8
                                                  2.0
147
                  TG29
                              7
                                     7
                                            8
                                                  1.0
148
                  TG34
                              5
                                     5
                                            8
                                                  0.7
149
150
151
152
         Definition of Sortie numbers
153
154
        . TABLE S(I,P)
                            maximum number of sorties for AC type I
155
156
                           PER1
                                   PER2
                                           PER3
                                                   PER4
157
                    AC1
                           180
                                   200
                                           150
                                                   300
                    AC2
                           180
                                   200
                                                   300
158
                                           150
159
160
161
                  PROP(I,P) proportion of available number of sorties for AC I
162
163
                           PER1
                                   PER2
                                           PER3
                                                   PER4
164
                    AC1
                           0.60
                                   0.50
                                           0.70
                                                   0.70
```

```
AC2
165
                          0.45
                                 0.60
                                         0.70
                                                0.70
166
167
168
     PARAMETER
169
170
     ** Definition of WP numbers
171
172
           WP(K)
                    maximum number of WP k - 100000 represents infinity
173
174
                            / WP1
                                         600
175
                              WP2
                                      100000
176
                              WP3
                                      100000
177
                                      100000
                              WP4
178
                              WP5
                                         600
179
                              WP6
                                      100000
180
                              WP7
                                      100000
181
                              WP8
                                      100000
182
                              WP9
                                      100000
183
                              WP10
                                      100000
184
                              WP11
                                      100000
185
                              WP12
                                         600
186
                              '!P15
                                      100000
187
                              WP18
                                      100000
188
                              WP19
                                      100000
189
                              WP21
                                      100000
190
                              WP22
                                      100000
191
                              WP24
                                      100000
192
                              WP25
                                      100000
193
                              WP27
                                      100000
194
                              WP34
                                      100000
195
                              WP42
                                      100000
196
                              WP45
                                      100000
197
                              WP46
                                         450
                                               /
198
199
200
         Definition of Weatherband Distribution
201
202
           PR(W)
                    probability of weatherband W
203
                   WB1 0.00
204
                   WB2
                        0.02
205
                   WB3
                        0.14
206
                   WB4
                         0.07
207
                   WB5
                         0.07
208
                   WB6
                        0.70
209
210
211
         Parameter definition for Reconstitution
212
213
             TIME(P) length of time period P
                  / PER1
214
                          3
215
                    PER2
                          4
216
                    PER3
                           8
217
                    PER4 15
218
219
220
              RECON(J)
                        number of days a killed target has to stay dead
```

```
221
222
                                         / TG5
223
                                                 35
                                           TG8
224
                                           TG10
                                                 20
225
                                           TG11
226
                                           TG12
                                                 35
227
                                           TG13
                                                 37
228
                                           TG14
                                                 40
229
                                           TG22
                                                 32
230
                                           TG24
                                                 30
231
                                           TG25
                                                  8
232
                                           TG27
                                                 30
233
                                           TG29
                                                 40
                                           TG34
234
                                                 34
235
236
             QTY(J)
237
                       maximum number of targets to be reconst. in 30 days
238
239
                                         / TG5
                                                  2
240
                                           TG8
241
                                           TG10
                                                 10
242
                                                  2
                                           TG11
243
                                                  2
                                           TG12
                                                  2
244
                                           TG13
245
                                           TG14
                                                  0
246
                                           TG22
                                                  7
247
                                           TG24
                                                  2
248
                                           TG25
                                                 20
249
                                           TG27
                                                  0
250
                                           TG29
                                                  0
251
                                           TG34
                                                  3
252
253
254
        PERUP(J,P) upper bound on time periods considered for reconstitution;
255
256
        a killed target must exceed a minimum time > RECON(J) < before it
257
        is allowed to be reconstituted
258
259
260
         LOOP((J,P),
261
         PERUP(J,P) = SUM(PP$(ORD(PP) LE ORD(P)),1$(RECON(J) LT (SUM(PPP$
262
263
         ( (ORD(PPP) LE (ORD(P)+1)) AND (ORD(PPP) GE ORD(PP)) ),TIME(PPP))
264
265
266
                                     - CEIL(0.5 * TIME(PP)) ) )
                                                                            );
267
268
269
     telephologia in interpretation de la proposition de la proposition de la proposition de la proposition de la p
270
271
                                                              *
272
                Begin of aggregated INPUT DATA
273
274
     275
276
```

277	TABLE $E(I,J,R)$	Number	of Targets	s type J	killed by	one Sort	ie type I
278					•		• •
279							
280		OD1	OD2	OD3	OD4		
281	AC1. TG5	. 159	. 156	. 193	. 310		
282	AC1. TG8	. 305	. 418	. 299	. 327		
283	AC1. TG10	.083	. 120	.076	. 276		
284	AC1. TG11	.081	. 092	.077	. 034		
285	AC1. TG12	. 028					
			.010	. 020	044		
286	AC1. TG13	. 216	. 269	. 205	. 208		
287	AC1. TG14	. 386	. 328	. 284	. 292		
288	AC1. TG22	. 343	. 468	. 333	. 305		
289	AC1. TG24	. 273	. 232	. 273	. 218		
290	AC1. TG25	. 134	. 072	. 067	. 042		
291	AC1. TG27	. 933	. 913	. 792	. 741		
292	AC1. TG29	. 137	. 139	. 092	. 117		
293	AC1. TG34	. 298	. 172	. 150	. 428		
294	AC2. TG5	. 247	. 241	. 288	. 282		
295	AC2. TG8	. 262	. 305	. 365	. 418		
296	AC2. TG10	. 083	. 120	. 076	. 276		
297	AC2. TG11	.081	092	.077	. 034		
298	AC2. TG12	. 028	.010	. 020	. 044		
299	AC2. TG13	. 195	. 216				
300				. 260	. 269		
	AC2. TG14	. 685	. 552	. 569	. 388		
301	AC2. TG22	. 251	. 343	. 468	. 350		
302	AC2. TG24	. 205	. 206	. 273	. 138		
303	AC2. TG25	. 134	.072	. 067	. 042		
304	AC2. TG27	. 652	. 933	. 913	. 792		
305	AC2. TG29	. 137	. 064	. 139	. 092		
306	AC2. TG34	. 382	. 367	. 338	. 231		
307							
308							
309							
310	TABLE B(I,J,R,W)	Wa anan 1	and Arran	for oach			
311	1HDIL D(1,5,K,W)	Meabour	.oad Bilay	TOT Each	ser 1	1 W-	
		004 1104	071 170	071 1770	OD4 11D/	004 1105	004 1704
312	101 705	OD1. WB1	OD1. WB2	OD1. WB3	OD1.WB4	OD1. WB5	OD1. WB6
313	AC1. TG5	0	2	2	2	2	2
314	AC1. TG8	0	2	2	2	2	2
315	AC1. TG10	0	2	2	2	2	2 2
316	AC1. TG11	0	2	2	2	2	2
317	AC1. TG12	0	0	0	2	2	2
318	AC1. TG13	0	2		2	2	2
319	AC1. TG14	0	0	6	2 6 2 2 2 6	6	6
320	AC1. TG22	Ŏ	2	2	2	2	ž
321	AC1. TG24	Ŏ	Ō	ō	2	2 2	2
322	AC1. TG25	Ö	2	3	2	2	2
323			2	2	2	2	2
323	AC1. TG27	0	0	0	0	6	0
324	AC1. TG29	0	0	6	6	6	6
325	AC1. TG34	0	6	6	6	6	5
326	AC2. TG5	0	6	6	6	6	6
327	AC2. TG8	0	6	6	6	6	6
328	AC2. TG10	0	2	2	2	2	2
329	AC2. TG11	Ö	2	2 6 2 0 2 6 6 6 6 6 2 2	6 6 2 2 2	<u>-</u>	2
330	AC2. TG12	Ŏ	ō	ก	2	2 2	2
331	AC2. TG13	Ö	6	6	6	6	2 6 2 2 2 6 6 6 6 6 2 2 2 6
332	AC2. TG13	0	0		4	4	4
J.; L	AU2. 1014	U	U	4	4	4	4

333 334 335 336		AC2. TG22 AC2. TG24 AC2. TG25 AC2. TG27	0 0 0	6 6 2 0	6 6 2 0	6 6 2 0	6 6 2 0	6 6 2 6
337 338 339		AC2. TG29 AC2. TG34	0	0	6	6 4	6 4	6
340 341 342 343	+	AC1. TG5 AC1. TG8 AC1. TG10	OD2. WB1 0 0 0	OD2. WB2 2 0 0	OD2. WB3 2 0 0	OD2. WB4 2 0 0	OD2. WB5 2 0 0	OD2. WB6 2 0 0
344 345 346 347 348		AC1. TG11 AC1. TG12 AC1. TG13 AC1. TG14 AC1. TG22	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0
349 350 351 352		AC1. TG24 AC1. TG25 AC1. TG27 AC1. TG29	0 0 0	0 0 0 0	0 6 0 0	0 6 0 0	6 0 0	6 0 0
353 354 355 356		AC1. TG34 AC2. TG5 AC2. TG8 AC2. TG10	0 0 0 0	0 6 2 0	0 6 2 0	2 6 2 0	2 6 2 0	2 6 2 0
357 358 359 360		AC2. TG11 AC2. TG12 AC2. TG13 AC2. TG14	0 0 0	0 0 2 4	0 0 2 0	0 0 2 0	0 0 2 0	0 0 2 0
361 362 363 364 365		AC2. TG22 AC2. TG24 AC2. TG25 AC2. TG27 AC2. TG29	0 0 0 0	2 0 0 0 0	2 0 0 6	2 0 0 6 6	2 0 0 6 6	2 0 0 6 6
366 367 368	+	AC2. TG34	0 OD3. WB1	0 OD3. WB2	OD3. WB3	6 OD3. WB4	6 OD3. WB5	6 OD3. WB6
369 370 371 372		AC1. TG5 AC1. TG8 AC1. TG10 AC1. TG11	0 0 0	0 2 2 2	0 2 2 2	0 2 2 2	0 2 2 2	0 2 2 2 2
373 374 375 376 377		AC1. TG12 AC1. TG13 AC1. TG14 AC1. TG22 AC1. TG24	0 0 0 0	0 2 2 2 0	2 2 2 2 2 0	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2 0
378 379 380 381 382		AC1. TG25 AC1. TG27 AC1. TG29 AC1. TG34 AC2. TG5	0 0 0 0	0 6 0 2	0 0 2 2 0	0 0 2 0	2 2 2 2 0 0 2 0	0 0 2 0
383 384 385 386		AC2. TG8 AC2. TG10 AC2. TG11 AC2. TG12	0 0 0 0	0 2 2 0	0 2 2 2 2	0 0 2 2 2	0 2 2 2 0	0 2 2 2 2
387 388		AC2. TG13 AC2. TG14	0	0 0 0	0	0	0 0	0

389		AC2. TG22	0	0	0	0	0	0
390		AC2. TG24	0	0	0	2	2	2
391		AC2. TG25	0	0	0	0	Ō	Ō
392		AC2. TG27	Ö	0	Ō	Ö	Ö	Ö
393		AC2. TG29	Ö	0	0	Ö	Ō	Ŏ
394		AC2. TG34	Ö	6	6	Ŏ	Ö	Ö
395			-	_	-	•	-	
396	+		OD4.WB1	OD4. WB2	OD4. WB3	OD4. WB4	OD4. WB5	OD4. WB6
397		AC1. TG5	0	6	6	6	6	6
398		AC1. TG8	Ō	6	6	6	6	6
399		AC1. TG10	0	0	2	2	2	2
400		AC1. TG11	0	0	0	Ö	Ō	0
401		AC1. TG12	0	0	0	0	Ó	0
402		AC1. TG13	0	6	6	6	6	6
403		AC1. TG14	0	6	0	0	0	0
404		AC1. TG22	0	6	6	6	6	6
405		AC1. TG24	0	0	0	0	0	0
406		AC1. TG25	0	0	0	0	0	0
407		AC1. TG27	0	0	2	2	2	2
408		AC1. TG29	0	0	0	0	0	0
409		AC1. TG34	0	0	0	0	0	ŋ
410		AC2. TG5	0	0	0	0	0	C
411		AC2. TG8	0	0	0	0	0	0
412		AC2. TG10	0	0	2	2	2	2
413		AC2. TG11	0	0	0	0	0	0
414		AC2. TG12	0	0	0	0	0	0
415		AC2. TG13	0	0	0	0	0	0
416		AC2. TG14	0	6	6	6	6	6
417		AC2. TG22	0	0	0	0	0	0
418		AC2. TG24	0	0	0	0	0	0
419		AC2. TG25	0	0	0	0	0	0
420		AC2. TG27	0	6	0	0	0	0
421		AC2. TG29	0	0	2	2	2	2
422		AC2. TG34	0	0	0	0	0	0
423								
424								

426 TABLE WPTYPE(I,J,R)

428 * For each sortie-target combination the weapon type K of order R 429 * is given if it is possible to use this weapon 430

430					
431		OD1	OD2	OD3	OD4
432	AC1. TG5	5	6	5	4
433	AC1. TG8	5	5	7	3
434	AC1. TG10	5	5	7	18
435	AC1. TG11	5	5	7	5
436	AC1. TG12	5	5	7	5
437	AC1. TG13	5	5	7	3
438	AC1. TG14	3	3	5	3
439	AC1. TG22	5	5	7	3
440	AC1. TG24	5	3	7	3
441	AC1. TG25	24	24	24	24
442	AC1. TG27	3	3	3	7
443	AC1. TG29	3	3	7	7
444	AC1. TG34	3	5	5	3

```
445
            AC2. TG5
                             2
                                      1
                                                2
                                                          1
                                      5
                                                          5
446
            AC2. TG8
                             1
                                                1
447
            AC2. TG10
                             5
                                      5
                                                7
                                                         18
                                      5
                                                          5
5
448
            AC2. TG11
                             5
                                                7
                                      5
                             5
                                                7
449
            AC2. TG12
                                      5
                                                          5
                             1
                                                1
450
            AC2. TG13
                                      12
                                                          1
                                               12
            AC2. TG14
                            12
451
                                      5
                                                5
                             1
                                                          1
452
            AC2. TG22
                                                5
                                                          1
453
            AC2. TG24
                             1
454
            AC2. TG25
                            24
                                      24
                                               24
                                                         24
                                                3
455
                                       3
            AC2. TG27
                             1
                                                          7
                                                3
456
            AC2. TG29
                             3
                                       1
457
            AC2. TG34
                            12
                                                          1
458
     459
460
461
               End of INPUT DATA
462
     463
464
465
466
467
     **
         Definition of Sortie Variable
468
         SX(I,J,R,W,P) describes the number of sorties type I assigned
469
         to a target of type J carrying any weapon feasible for tactic \boldsymbol{R} and weatherband \boldsymbol{W} and in time period \boldsymbol{P}
470
     *
471
472
473
474
         POSITIVE VARIABLES
                               SX(I,J,R,W,P)
                                                                              ;
475
476
     **
         Initial Values for Variables
477
478
                  SX.L(I,J,R,W,P) = 0
                                                                              ;
479
480
     **
         Declaration of variable EXPO(J,P)
481
482
         POSITIVE VARIABLE EXPO(J,P)
483
484
         Declaration of Kill Variable
485
486
         POSITIVE VARIABLE KILL(J,P)
487
488
         Declaration of Variable D(J,P)
489
490
         POSITIVE VARIABLE D(J,P)
491
492
         Declaration of Variable for cumulative weapon consumption
493
494
         POSITIVE VARIABLE WEAP(K)
495
496 **
         Upper bound for variable Weapon Consumption
497
498
                  WEAP. UP(K)
                                = WP(K)
                                                                              ;
499
```

```
501
       Declaration of variable for number of targets been reconstituted
502
503
         POSITIVE VARIABLE REBUILD(J,P)
504
505
     ** Upper bound for variable REBUILD
506
                 REBUILD. UP(J,P) = QTY(J) * TIME(P+1) / 30
507
508
509
510
511
         Variable definition for objective function
512
513
         VARIABLE Z
                                                                            ;
514
515
516
    EQUATIONS
517
518
         KILLVAL
                          maximize the value of destroyed targets
519
         KILLNL(J,P)
                          determines the number of killed targets
520
                          evaluates the values of the exponential terms
         EXPONENT(J,P)
521
                          determines the number of dead targets
         DEADTG(J,P)
                          constraint the number of killed targets
522
         KILLCON(J,P)
         RECCON(J,P)
523
                          constraint the max. number of targets for reconst.
524
         SORTCON(I,P)
                          constraint the number of allocated sorties
525
                          determines the consumption of each weapon type
         WEAPCONSUM(K)
526
         SELECT(I,J,R,W)
                          decides if next weapon on list can be used
527
         DISTR(I,J,W,P)
                          ensures that all weatherbands are covered prop.;
528
529
530
    KILLVAL..
531
532
                 Z = E = SUM((J,P),V(J,P) * KILL(J,P))
                                                                            ;
533
534
535
     KILLNL(J,P)..
536
          KILL(J,P) = E = ( (T(J)/C(J)) - D(J,P) ) * (1 - EXPO(J,P) )
537
538
539
540 EXPONENT(J,P)...
541
542
          EXPO(J,P) = E = EXP(((-C(J))/T(J)) * SUM((I,R,W)$B(I,J,R,W),
543
544
                                    E(I,J,R) * SX(I,J,R,W,P)$E(I,J,R,W)) );
545
546
547
     DEADTG(J,P)..
548
        D(J,P) =E= SUM(PP$(ORD(PP) LT ORD(P)),KILL(J,PP) - REBUILD(J,PP));
549
550
551
552
     KILLCON(J,P)...
553
554
              KILL(J,P) = I = T(J) - D(J,P)
                                                                            ;
555
556
```

```
RECCON(J,P)...
557
558
              SUM(PP$(ORD(PP) LE ORD(P)), REBUILD(J, PP)) =L=
559
560
                               SUM(PP$(ORD(PP) LE PERUP(J,P)),KILL(J,PP) );
561
562
563
564
     SORTCON(I,P)...
565
566
          SUM((J,R,W)\$B(I,J,R,W),
567
568
                         SX(I,J,R,W,P)$B(I,J,R,W)) =L= PROP(I,P) * S(I,P);
569
570
571
    WEAPCONSUM(K)..
572
       WEAP(K) = E = SUM((I,J,R,W,P))((ORD(K) EQ WPTYPE(I,J,R)) AND
573
574
               (B(I,J,R,W) NE O)),B(I,J,R,W) * SX(I,J,R,W,P)$B(I,J,R,W));
575
576
577
578
       SELECT(I,J,R,W)$B(I,J,R,W)...
579
           0 = E = SUM(P,SX(I,J,R,W,P)\$B(I,J,R,W)) *
580
581
                 SUM((K,RP)$( (ORD(RP) LT ORD(R)) AND
582
583
                        (B(I,J,RP,W) NE O) AND (ORD(K) EQ WPTYPE(I,J,RP))),
584
585
                                                        (WP(K) - WEAP(K));
586
587
588
589 DISTR(I,J,W,P)$SUM(R,B(I,J,R,W))...
590
591
              SUM(R,SX(I,J,R,W,P)\$B(I,J,R,W)) = E = PR(W) *
592
                    SUM((R,WPP)\$B(I,J,R,WPP),SX(I,J,R,WPP,P)\$B(I,J,R,WPP));
593
594
595
596
597
     MODEL AIRATTACK /ALL/
                                                                             ;
598
599
600
     * Limit for number of iterations
601
     OPTION ITERLIM = 1000 , LIMCOL = 0 , LIMROW = 0
602
603
     OPTION SOLPRINT = OFF , SYSOUT = OFF
604
605
606
     SOLVE AIRATTACK USING NLP MAXIMIZING Z
607
608
609
          The following statements represent the solution values
610
611
612 PARAMETERS
```

```
613
614
          KILLTG(J,P)
                           number of targets J killed in period P
615
          OBJECTIVE(P)
                              Objective Function Value
616
          KILLPOT(J.P)
                              potential Kill-Capability (target-type vs period)
617
          OPSORTIE(I,J,R,P,W) number of optimal sorties
618
          SORTIE(J,P,I)
                           number of sorties I assigned to target J in period P
          WPCOMB(I,J,K)
619
                           number of weapons (sortie, target and weapon type)
620
          WPCONS(R,K)
                              number of weapons (tactic vs weapon-type)
621
                              number of weapons (target vs weapon-type)
          WEAPON(J,K)
622
623
624
              KILLTG(J,P) = KILL.L(J,P)
                                                                             ;
625
626
              OBJECTIVE(P) = SUM(J,V(J,P) * KILL.L(J,P))
                                                                             ;
627
628
              KILLPOT(J,P) = SUM((I,R,W)\$B(I,J,R,W),
629
630
                                    E(I,J,R) * SX.L(I,J,R,W,P)
631
632
              WEAPON(J,K) = SUM((I,R,W,P)\$(ORD(K) EQ WPTYPE(I,J,R)),
633
634
                                              B(I,J,R,W) * SX.L(I,J,R,W,P));
635
636
              WPCONS(R,K) = SUA((I,J,W,P))$(
637
              (ORD(K) EQ WPTYPE(I,J,R)) AND (B(I,J,R,W) NE 0)),
638
639
640
                                            B(I,J,R,W) * SX.L(I,J,R,W,P))
                                                                             ;
641
642
                OPSORTIE(I,J,R,P,W) = SX.L(I,J,R,W,P)
                                                                             ;
643
644
                SORTIE(J,P,I)
                                    = SUM((R,W),SX,L(I,J,R,W,P))
                                                                             ;
645
646
647
648
    OPTION OBJECTIVE: 2
                            ; DISPLAY OBJECTIVE
649
     OPTION KILLTG: 1: 1: 1
                            ; DISPLAY KILLTG
                            ; DISPLAY KILLPOT
650
    OPTION KILLPOT: 1: 1: 1
     OPTION OPSORTIE: 1: 2: 1; DISPLAY OPSORTIE
651
    OPTION SORTIE: 1: 1: 2
                              DISPLAY SORTIE
652
    OPTION WPCONS: 1: 1: 1
653
                              DISPLAY WPCONS
     OPTION WEAPON: 1: 1: 1
654
                              DISPLAY WEAPON
                              DISPLAY WEAP. L
655
     OPTION WEAP: 1
656
    OPTION REBUILD: 1: 1: 1 ; DISPLAY REBUILD. L
```

COMPILATION TIME = 2.140 SECONDS

MODEL STATISTICS SOLVE AIRATTACK USING NLP FROM LINE 607

MODEL STATISTICS

BLOCKS OF EQUATIONS 10 SINGLE EQUATIONS 932
BLOCKS OF VARIABLES 7 SINGLE VARIABLES 1289
NON ZERO ELEMENTS 9758 NON LINEAR N-Z 1889
DERIVATIVE POOL 31 CONSTANT POOL 61
CODE LENGTH 15943

GENERATION TIME = 65.580 SECONDS

EXECUTION TIME = 67.680 SECONDS

SOLUTION REPORT SOLVE AIRATTACK USING NLP FROM LINE 607

SOLVE SUMMARY

MODEL AIRATTACK OBJECTIVE Z
TYPE NLP DIRECTION MAXIMIZE
SOLVER MINOS5 FROM LINE 607

**** SOLVER STATUS

**** MODEL STATUS

**** OBJECTIVE VALUE

1 NORMAL COMPLETION
2 LOCALLY OPTIMAL
1358.0172

RESOURCE USAGE, LIMIT 64.179 1000.000 ITERATION COUNT, LIMIT 639 1000 EVALUATION ERRORS 0 0

M I N O S --- VERSION 5.0 APR 1984

COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS,
DEPARTMENT OF OPERATIONS RESEARCH,
STANFORD UNIVERSITY,
STANFORD CALIFORNIA 94305 U.S.A.

WORK SPACE NEEDED (ESTIMATE) -- 104191 WORDS.
WORK SPACE AVAILABLE -- 134740 WORDS.
(MAXIMUM OBTAINABLE -- 288878 WORDS.)

EXIT -- OPTIMAL SOLUTION FOUND
MAJOR ITERATIONS 22
NORM RG / NORM PI 5.752E-08
TOTAL USED 65.17 UNITS

MINOS5 TIME 56.27 (INTERPRETER - 9.78)

**** REPORT SUMMARY: 0 NONOPT 0 INFEASIBLE 0 UNBOUNDED

0 ERRORS

	648 PAR	AMETER	OBJECTIVE	OBJECTIVE	FUNCTIO	N VALUE		
PER1	251.30,	PER2	333.84,	PER3 674.04,	PER4	98. 84		
	649 PAR	AMETER	KILLTG	NUMBER OF	TARGETS	J KILLED	IN PERIOD	P
	PER	1	PER2	PER3	PER4			
TG5 TG8	0. 13.	_	1. 1	18.0	2.0			
TG10 TG11	9.	6			26. 3			
TG13 TG14	2. 2.			1. 7	0. 1			
TG22 TG24 TG25 TG27 TG34			26. 6	1.5 1.1 21.0 18.0	6. 0 1. 3	٠		
•	650 PAR	AMETER	KILLPOT	POTENTIAL PERIOD)	KILL-CA	PABILITY ((TARGET-TYF	PE VS
	PER	1	PER2	PER3	PER4			
TG5 TG8	0. 13.		1. 1	20. 1	2.5			
TG10 TG11					29.0			
TG13 TG14	9. 2. 2.	4		2. 2	0.2			
TG22 TG24 TG25 TG27 TG34	2.		28. 9	1. 9 1. 3 36. 1 20. 1	6. 7 3. 3			
	651 PAR	AMETER	OPSORTIE	NUMBER OF	OPTIMAL	SORTIES		
INDEX	1 = AC1 I	NDEX 2	= TG8					
		WB2	WB3	WB4	V	7B5	WB6	
OD3. P	PER1	0.2	1. 2	0.6	(). 6	5.8	
INDEX	1 = AC1 I	NDEX 2	= TG10					
		WB2	WB3	WB4	¥	7B5	WB6	
OD1. P OD3. P		4. 2	29. 4	14. 7	14	. 7	99.9 47.1	
INDEX	INDEX 1 = AC1 INDEX 2 = TG11							

	WB2	WB3	WB4	WB5	WB6
OD1. PER1	2.0	14.0	7.0	7.0	69.8
INDEX $1 = AC$	21 INDEX 2 = 3	TG13			
	WB2	WB3	WB4	WB5	WB6
OD1. PER3	0. 2	1. 4	0.7	0.7	7. 2
INDEX $1 = AC$	1 INDEX 2 = 1	TG25			
	WB2	WB3	WB4	WB5	WB6
OD1. PER2 OD1. PER3	2. 0 0. 2	14. 0 1. 3	7. 0 0. 7	7. 0 0. 7	70. 0 6. 5
INDEX 1 = AC	1 INDEX 2 = 1	rG27			
	WB2	WB3	WB4	WB5	WB6
OD1. PER3 OD3. PER3	0.8	5. 4	2. 7	2.7	27. 2
INDEX $1 = AC$	1 INDEX $2 = 7$	TG34			
	WB2	WB3	WB4	WB5	WB6
OD1. PER3	0.9	6.5	3. 3	3.3	32.5
INDEX 1 = AC	2 INDEX 2 = 7	CG5			
	WB2	WB3	WB4	WB5	WB6
	. 3313E-2 . 6886E-2 1. 6 0. 2	0.3 0.6 11.4 1.4	0. 2 0. 3 5. 7 0. 7	0. 2 0. 3 5. 7 0. 7	1.5 3.0 56.9 7.0
INDEX 1 = AC	2 INDEX 2 = 1	G8			
	WB2	WB3	WB4	WB5	WB6
OD1. PER1	0.9	6.0	3.0	3.0	29. 9
INDEX 1 = AC	2 INDEX 2 = 1	G10			
	WB2	WB3	WB4	WB5	WB6
OD3. PER4	3. 1	21. 9	10.9	10. 9	109.4
INDEX 1 = AC	2 INDEX 2 = T	G11			
	WB2	WB3	WB4	WB5	WB6

OD1. PER	R1	0.4	2. 9	1.5	;	1.5	14.6
INDEX 1	l = AC2 INI	DEX 2 = TG13					
		WB2	WB3	WB4	•	WB5	WB6
OD1. PER		0. 2 BE-2	1.7 0.1	0. 8 6. 2153E-2		0.8 3E-2	8. 4 0. 6
INDEX 1	I = AC2 INI	DEX 2 = TG14					
		WB2	WB3	WB4	•	WB5	WB6
OD1. PER OD2. PER		¥E-2	0.4	0. 2	:	0.2	2. 2
INDEX 1	L = AC2 INI	DEX 2 = TG22					
		WB2	WB3	WB4	+	WB5	WB6
OD1. PEF	R4	0.5	3. 7	1. 9	1	1. 9	18. 7
INDEX 1	l = AC2 INI	0EX 2 = TG24					
		WB2	WB3	WB4	•	WB5	WB6
OD1. PER OD1. PER OD3. PER	84	0. 1 0. 3	1.0 2.3	1. 1 0. 5		1. 1 0. 5	11. 3 5. 1
INDEX 1	= AC2 INI	DEX 2 = TG25					
		WB2	WB3	WB4	•	WB5	WB6
OD1. PEF	R2	2. 3	16. 2	8. 1		8.1	81.0
INDEX 1	= AC2 INI	0EX 2 = TG34					
		WB2	WB3	WB4	•	WB5	WB6
OD1. PER OD3. PER		0.3	2.3	1. 1		1. 1	11.4
	652 PARAM	ÆTER SORTIE		NUMBER C		S I ASSIGNE	D TO TARGET J
	PER1. AC1	PER1. AC2	PE	R2. AC1	PER2. AC2	PER3. AC	1 PER3. AC2
TG5 TG8	8. 3	2. 2 42. 8			4. 3		81. 3
TG11 TG13 TG14	99.7	20. 9 12. 1				10.	3
TG24 TG25		3. 1		100.0	115. 7	9.	7.4

TG27 TG34					38. 8 46. 5	16.3
+	PER4. AC1	PER4. AC2				
TG5 TG10 TG13 TG22 TG24	210.0	10. 0 156. 3 0. 9 26. 7 16. 1				
	653 PARAMET	ER WPCONS	NUMBER	OF WEAPONS	(TACTIC VS	WEAPON-TYPE)
	WP1	WP2	WP3	WP5	WP7	WP12
OD1 OD2	598.0	586.8	507.3	587.6		76. 2 0. 2
OD3	2.0		4.7	12.4	423.5	0.2
+	WP46					
OD1	450.0					
	654 PARAMET	ER WEAPON	NUMBER	OF WEAPONS	(TARGET VS	WEAPON-TYPE)
	WP1	WP2	WP3	WP5	WP7	WP12
TG5 TG8 TG10 TG11	256.6	586.8		325. 8 241. 2	16. 7 406. 9	
TG13 TG14	77.7			20. 7		12.4
TG22 TG24	160. 0 103. 7			12.4		
TG27 TG34	2.0		233. 0 279. 0			64. 1
+	WP46					
TG25	450.0					
	655 VARIABL	E WEAP. L				
WP1 WP12	600.0, WP2 76.4, WP46	586.8, 450.0	WP3 511.9,	WP5 600.	0, WP7	423.5
••••	656 VARIABL	E REBUILD	. L			
	PER1	PER2	PER3			
TG5	0.5	1.1	2. 0	•		

TG11 0.5 1.0 TG25 5.3 10.0

EXECUTION TIME = 22.580 SECONDS

LIST OF REFERENCES

- 1. Lord, Paul H., An Examination of the United States Air Force Optimal Nonnuclear Munitions Procurement Model, Masters Thesis, Naval Postgraduate School, CA, October 1982.
- 2. Clasen, R. J., Graves, G. W., and Lu, J. Y., Sortie Allocation by a Nonlinear Programming Model for Determining a Munitions Mix, RAND Corporation Report R-1411-DDPAE, March 1974.
- 3. Brooke, A., Kendrick, D., and Meeraus, A., GAMS a User's Guide, The Scientific Press, CA, 1988.
- 4. Murtagh, B., A., and Saunders, M., A., Courtesy of MINOS Version 5.0, Department of Operations Research, Stanford University, CA, 1984.
- 5. Coulter, Dennis, M., Major, Headquarters USAF (XOX, FM), Personal Communication, Pentagon, Washington, D.C., 1988.
- 6. Boger, D. C., and Washburn, A. R., Notes from the Stockpile Seminar, Technical Report NPS55-85-014, Naval Postgraduate School, CA, August 1985.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93943-5002		2
3.	Prof. Alan R. Washburn Naval Postgraduate School (Code 55Ws) Department of Operations Research Monterey, CA 93943-5000		2
4.	Prof. Gerald G. Brown Naval Postgraduate School (Code 55Bw) Department of Operations Research Monterey, CA 93943-5000		1
5.	Departement of the Navy Office of Chief of Naval Operations (OP - 073) Washington, D.C. 20330 - 5000		1
6.	Commander Naval Weapons Center China Lake, CA 93555 - 6001		1
7.	Headquarters United States Air Force War, Mobilization & Munitions Division Directorate of Plans (XOX/FM) Pentagon, Washington, D.C. 20330		3
8.	German Military Representative USA CA Chef des Stabes 4000 Brandywine St., N.W. Washington, D.C. 20016-1887		1
9.	Bundesminister der Verteidigung Abteilung Personal IV 4 c/o OTL Habel Postfach 1328 5300 Bonn 1 West Germany		1

10.	Fernmelde- und Radarstellung der Bundeswehr Dezernat 4 General Huettner Kaserne 8670 Hof a.d. Saale West Germany	2
11.	Amt für Studien und Übungen der Bundeswehr Friedrich-Ebert-Str. 72 5660 Bergisch Gladbach 1 West Germany	1
12.	Amt für Studien und Übungen der Bundeswehr Mil. Bereich OR Einstein-Str. 20 8012 Ottobrunn West Germany	1
13.	Hptm. Klaus Wirths III. Fernmelderegiement 33 Desenberg Kaserne 3532 Borgentreich West Germany	2