Source: KBe2020math530refExr0nRetIndex

Lemma

Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

Proof

Given two subspaces A, B of vector space V, one is contained within the other if and only if $A \subseteq B$ or $B \subseteq A$, equivalently $A \cup B = B$ or $A \cup B = A$. Thus, we just need to show that $A \cup B$ is a subspace of V if and only if $A \cup B = A$ or $A \cup B = B$.

First, assume that $A \cup B = A$. $A \cup B$ must be a subspace of V because A is a subspace of V. The argument is symmetric for the case $A \cup B = B$.

Now, given that $A \cup B$ is a subspace of V, show that $A \cup B = A$ or $A \cup B = B$.

Assume for the sake of contradiction that $A \cup B \neq A$ and $A \cup B \neq B$. There must exist some elements $a \in A, b \in B$ such that $a \notin B$ and $b \notin A$. Additionally, because A, B are vector spaces, $-a \in A$ and $-b \in B$. Because $A \cup B$ is a subspace of V, it must also be a vector space and closed under addition. Thus, $a+b \in A \cup B$. Because $A \cup B$ is comprised exclusively of elements in A or in B, $a+b \in A$ or $a+b \in B$. Because A is closed under addition and $-a \in A$, if $a+b \in A$, the sum $(a+b)+(-a)= \not a+b \not = a=b \in A$. This contradicts the earlier definition of $b \notin A$ and completes the proof. The argument is symmetric for the case $a+b \in B$.

Exr0n · 2020-2021 Page 1

Exr0n · 2020-2021 Page 2

Appendix: Working it out

{ height: 40px_age 3

Exr0n · 2020-2021 Page 4