3. Rango di una matrice

Definizione

Data una matrice A_{mxn} , si definisce **minore estratto di ordine h** il determinante della matrice quadrata ottenuta scegliendo ad arbitrio h righe e h colonne

Esempio

Data la matrice

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -4 & 7 \end{pmatrix}$$

I minori estratti di ordine 2 sono tre:

$$\begin{vmatrix} 1 & 2 \\ 1 & -4 \end{vmatrix}$$
 $\begin{vmatrix} 1 & 3 \\ 1 & 7 \end{vmatrix}$ $\begin{vmatrix} 2 & 3 \\ -4 & 7 \end{vmatrix}$

Definizione

Si definisce **rango** (o **caratteristica**) di una matrice A_{mxn} , e si indica con r(A), l'ordine massimo dei minori non nulli estraibili dalla matrice **A**.

Nell'esempio precedente la matrice A ha rango 2, mentre la matrice

$$\mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \end{pmatrix}$$

ha rango 1, in quanto sono nulli tutti i minori di ordine 2.

Esercizi

Calcolare il rango delle seguenti matrici:

1.
$$A = \begin{pmatrix} 4 & 7 \\ -2 & 3 \end{pmatrix}$$
; $B = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix}$; $C = \begin{pmatrix} -3 & 0 \\ 5 & 0 \end{pmatrix}$

2.
$$\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 2 & -4 \\ 3 & 7 \end{pmatrix}$$
 ; $\mathbf{B} = \begin{pmatrix} -1 & 2 & 3 \\ 0 & -4 & 7 \end{pmatrix}$; $\mathbf{C} = \begin{pmatrix} 2 & -8 \\ -1 & 4 \end{pmatrix}$

L. Mereu – A. Nanni Matrici-Sistemi lineari

3.
$$\mathbf{A} = \begin{pmatrix} 2 & -3 & -5 \\ 2 & 4 & 1 \end{pmatrix}$$
; $\mathbf{B} = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 16 & 24 \end{pmatrix}$

4.
$$\mathbf{A} = \begin{pmatrix} 0 & -6 & 2 \\ 4 & 9 & -1 \\ 8 & -3 & 10 \end{pmatrix}; \quad \mathbf{B} = \begin{pmatrix} 7 & -1 & 5 \\ 0 & -4 & 2 \\ -7 & 5 & -7 \end{pmatrix}$$

5.
$$A = \begin{pmatrix} 13 & 1 & 4 \\ -3 & 7 & 5 \\ 7 & 15 & 14 \end{pmatrix}$$
; $B = \begin{pmatrix} -1 & 0 & 2 & 3 \\ 9 & 14 & -22 & 1 \\ 4 & 7 & -10 & 5 \end{pmatrix}$

6.
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 4 \\ -2 & 1 & 5 \\ 3 & 0 & 0 \end{pmatrix}$$
 ; $\mathbf{B} = \begin{pmatrix} 1 & 2 & 3 & 2 \\ 3 & 0 & 0 & 1 \\ 4 & 2 & 3 & 3 \\ 7 & 2 & 3 & 4 \end{pmatrix}$

7.
$$\mathbf{A} = \begin{pmatrix} 10 & 8 & 9 \\ -3 & 7 & 5 \\ 7 & 15 & 14 \end{pmatrix}$$
; $\mathbf{B} = \begin{pmatrix} 5 & 7 & -12 & -4 \\ 3 & 7 & -8 & 14 \\ 4 & 7 & -10 & 5 \end{pmatrix}$

Soluzioni

1. S.
$$r(A)=2$$
; $r(B)=1$; $r(C)=1$; **2. S**. $r(A)=2$; $r(B)=2$; $r(C)=1$;

3. S.
$$r(A) = 2$$
; $r(B) = 1$; **4. S.** $r(A) = 3$; $r(B) = 2$; **5. S**. $r(A) = 2$; $r(B) = 3$;

6. S.
$$r(A) = 3$$
; $r(B)=2$; **7. S.** $r(A)=2$; $r(B) = 2$;