72. Ферромагнетизм. Магнитная структура ферромагнетика. Кривая намагничивания ферромагнетика (магнитный гистерезис, остаточная намагниченность и коэрцитивная сила). Принцип магнитной записи информации

Диа- и парамагнетики относятся к слабомагнитным веществам, которые в отсутствие внешнего магнитного поля не обладают атомным магнитным порядком.

Однако, существуют <u>сильномагнитные</u> вещества, обладающие в отсутствие внешнего магнитного поля атомным магнитным порядком: ферромагнетики, антиферромагнетики и ферримагнетики.

Ферромагнетики — твердые вещества, обладающие в определенном температурном интервале *спонтанной* (самопроизвольной) намагниченностью, которая существенно изменяется под влиянием внешних условий.

Типичные ферромагнетики: железо Fe, кобальт Co, никель Ni и др.

Отличительные свойства ферромагнетиков:

- наличие в определенном интервале температур спонтанной намагниченности при отсутствии внешнего магнитного поля;
- резкая анизотропия свойств (зависимость магнитной проницаемости µ от направления; особые свойства проявляются вдоль определенной кристаллографической оси – оси легкого намагничивания);
- сверхвысокие значения μ (до ~10⁵);
- нелинейная зависимость μ от температуры T и напряженности магнитного поля;
- нелинейная зависимость намагниченности J от напряженности магнитного поля;
- наличие магнитного гистерезиса.

Специфические свойства ферромагнетиков наблюдаются лишь при $T < T_C$, где T_C – температура Кюри, которая для каждого ферромагнетика имеет свое значение.

Отличительные свойства ферромагнетиков обусловлены их

особой кристаллической структурой – доменной.

При $T < T_C$ весь объем кристалла самопроизвольно разбивается на **домены** — микроскопические области, в пределах каждой из которых магнитные моменты всех атомов сонаправлены.

В отсутствие внешнего поля векторы \vec{J}_s разных доменов могут быть направлены хаотично и весь образец в целом не намагничен.

При $T > T_C$ доменная структура ферромагнетика разрушается, его необычные свойства исчезают и он становится обычным парамагнетиком.

При внесении ферромагнетика во внешнее магнитное поле те домены, намагниченность \vec{J}_s которых близка по направлению к \vec{H} поля, начинают расти, изменяя свои границы за счет соседних доменов.

Затем с увеличением \overrightarrow{H} происходит поворот \overrightarrow{J}_s доменов в направлении внешнего поля.

В достаточно сильных полях наступает явление *насыщения*, когда весь образец намагничен по полю и его намагниченность J_s не изменяется при дальнейшем росте H.

Магнитный гистерезис — явление зависимости вектора намагниченности не только от приложенного магнитного поля, но и от предыстории данного образца.

При циклических изменениях напряженности поля \vec{H} зависимость $J_x(H_x)$ имеет вид кривой, называемой петлей гистерезиса (J_x и H_x — проекции векторов \vec{J} и \vec{H} на ось легкого намагничивания Ox в кристалле, вдоль которой они сонаправлены).

С увеличением H_x намагниченность J_x растет и достигает насыщения J_s .

С последующим уменьшением H_x снижение намагниченности J_x происходит с «запаздыванием» и при $H_x=0$ $J_x=J_r$, где J_r- остаточная намагниченность.

Для размагничивания образца магнитное поле нужно приложить в противоположном направлении и J=0 при $H_x=-H_c$, где H_c- коэрцитивная сила.

Области применения ферромагнетиков:

- в качестве сердечников трансформаторов, катушек индуктивности, электромагнитных реле;
- в качестве постоянных магнитов в электроизмерительных приборах, громкоговорителях, телефонах;
- в качестве битовых ячеек памяти в системах магнитной записи и хранения информации и др.

Спасибо за сотрудничество!

Всем добра и удачи!