Machine Learning Assignment 4

Team Members:

- 1. Amir Youssef
- 2. Mohamed Elesawy
- 3. Abdulrahman Ahmed

Part 1: Calculations

Weather (F1)	Temperature (F2)	Humidity (F3)	Wind (F4)	Hiking (Labels)
Cloudy	Cool	Normal	Weak	No
Sunny	Hot	High	Weak	Yes
Rainy	Mild	Normal	Strong	Yes
Cloudy	Mild	High	Strong	No
Sunny	Mild	High	Strong	No
Rainy	Cool	Normal	Strong	No
Cloudy	Mild	High	Weak	Yes
Sunny	Hot	High	Strong	No
Rainy	Cool	Normal	Weak	No
Sunny	Hot	High	Strong	No

a) Using Gini Index:

P (Hiking = No) =
$$\frac{7}{10}$$

P (Hiking = Yes) = $\frac{3}{10}$

The probability of each category in every feature was calculated regardless of the target label:

Following the rule: $\frac{Number\ of\ rows\ in\ this\ category\ of\ the\ feature}{Number\ of\ rows\ in\ the\ dataset}$

Starting with Temperature:

P(Temperature = Hot) =
$$\frac{3}{10}$$

$$P(Temperature = Mild) = \frac{4}{10}$$

$$P(Temperature = Cool) = \frac{3}{10}$$

Then Humidity:

$$P(Humidity = High) = \frac{6}{10}$$

$$P(Humidity = Normal) = \frac{4}{10}$$

Then Wind:

$$P(Wind = Strong) = \frac{6}{10}$$

$$P(Wind = Weak) = \frac{4}{10}$$

And Lastly Weather:

$$P(Weather = Sunny) = \frac{4}{10}$$

$$P(Weather = Cloudy) = \frac{3}{10}$$

$$P(Weather = Rainy) = \frac{3}{10}$$

The conditional probability of every category of each feature as well as the gini index for it, the weighted gini index for each feature, and for the whole dataset using the following rules:

GINI (Dataset) =
$$1 - \left(\frac{Number\ of\ rows\ where\ label=Yes}{Number\ of\ rows\ of\ the\ dataset}\right)^2 - \left(\frac{Number\ of\ rows\ where\ label=No}{Number\ of\ rows\ of\ the\ dataset}\right)^2$$

$$= 1 - \frac{3}{10}^2 - \frac{7}{10}^2 = 0.42$$

$$-1 - \frac{1}{10} - \frac{1}{10} - 0.5$$

Conditional Probability =

Joint probability where a certain label and a certain category of a feature (P(A and B))

Gini (Node) =
$$1 - \sum_{j} [P(j|Node)]^2$$

	Temperature =Hot	Temperature =Mild	Temperature =Cool	Humidity =High	Humidity =Normal
Yes	$\frac{1}{3}$	$\frac{2}{4}$	$\frac{0}{3}$	$\frac{2}{6}$	$\frac{1}{4}$
No	$\frac{2}{3}$	$\frac{2}{4}$	3 3	$\frac{4}{6}$	$\frac{3}{4}$
Gini (category)	$1 - \frac{1^2}{3} - \frac{2^2}{3}$ = 0.444	$1 - \frac{2^2}{4} - \frac{2^2}{4}$ = 0.5	$1 - \frac{0^2}{3} - \frac{3^2}{3} = 0$	$1 - \frac{2^2}{6} - \frac{4^2}{6}$ = 0.444	$1 - \frac{1^2}{4} - \frac{3^2}{4}$ = 0.375
Weighted Gini	$0.444*\frac{3}{10}$	$\frac{4}{0} + 0.5 * \frac{4}{10} + 0 * \frac{1}{1}$	$\frac{3}{0} = 0.3332$	$0.444*\frac{6}{10}$	$\frac{1}{0} + 0.375 * \frac{4}{10} = 0.4164$

	Wind=Strong	Wind=Weak	Weather =Sunny	Weather =Cloudy	Weather =Rainy
Yes	$\frac{1}{6}$	$\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{3}$	1 3
No	<u>5</u> 6	$\frac{2}{4}$	$\frac{3}{4}$	2 3	2 3
Gini (category)	$1 - \frac{1^2}{6} - \frac{5^2}{6}$ = 0.277	$1 - \frac{2^2}{4} - \frac{2^2}{4}$ = 0.5	$1 - \frac{1^2}{4} - \frac{3^2}{4}$ = 0.375	$1 - \frac{2^2}{3} - \frac{1^2}{3}$ = 0.444	$1 - \frac{2^2}{3} - \frac{1^2}{3}$ = 0.444
Weighted Gini	$0.277 * \frac{6}{10} + 0.$	$5 * \frac{4}{10} = 0.3662$	$0.375*\frac{4}{10}+$	$-0.444*\frac{3}{10}+0.44$	$4 * \frac{3}{10} = 0.4164$

Temperature provides the best split as it is the lowest Gini index.

rows where temperature is cool are pure with 0 Gini index, so they lead to a leaf node (decision) and their lines are excluded from the dataset.

rows where temperature is hot have lower Gini than those where temperature is Mild, so they are explored next.

Weather (F1)	Temperature (F2)	Humidty (F3)	Wind(F4)	Hiking (Labels)
Sunny	Hot	High	Weak	Yes
Sunny	Hot	High	Strong	No
Sunny	Hot	High	Strong	No

The probability of each category in every feature was calculated regardless of the target label:

Following the rule: $\frac{Number\ of\ rows\ in\ this\ category\ of\ the\ feature}{Number\ of\ rows\ in\ the\ subset}$

Starting at Humidity:

P(Humidity = High) =
$$\frac{3}{3}$$

Then Wind:

P(Wind = Strong) =
$$\frac{2}{3}$$

P(Wind = Weak) = $\frac{1}{2}$

And Lastly Weather:

P(Weather = Sunny) =
$$\frac{3}{3}$$

The conditional probability of every category of each feature as well as the gini index for it, the weighted gini index for each feature, and for the whole dataset using the following rules:

$$1 - \left(\frac{Number\ of\ rows\ where\ label = Yes}{Number\ of\ rows\ of\ the\ subset}\right)^{2}$$

$$- \left(\frac{Number\ of\ rows\ where\ label = No}{Number\ of\ rows\ of\ the\ subset}\right)^{2}$$

$$= 1 - \frac{1^{2}}{3} - \frac{2^{2}}{3} = 0.44$$

Conditional Probability =

<u>Joint probability where a certain label and a certain category of a feature (P(A and B))</u> <u>Probability of certain category of a feature (P(B))</u>

Gini (Node) =
$$1 - \sum_{i} [P(j|Node)]^2$$

	Weather	Wind	Wind	Humidity
	=Sunny	=Strong	=Weak	=High
Yes	$\frac{1}{3}$	$\frac{0}{2}$	$\frac{1}{1}$	$\frac{1}{3}$
0No	$\frac{2}{3}$	$\frac{2}{2}$	$\frac{0}{1}$	$\frac{2}{3}$
Gini (category)	$1 - \frac{1^2}{3} - \frac{2^2}{3}$ = 0.444	$1 - \frac{0^2}{2} - \frac{2^2}{2} = 0$	$1 - \frac{0^2}{1} - \frac{1^2}{1} = 0$	$1 - \frac{1^2}{3} - \frac{2^2}{3} = 0.444$

Weighted Gini	$0.444*\frac{3}{3}$	$0 * \frac{2}{3} + 0 * \frac{1}{3} = 0$	$0.444 * \frac{3}{3} = 0.444$
	= 0.444		

Wind provides the best split as it is the lowest Gini index.

rows where Wind is Strong or Weak are pure with 0 Gini index, so they lead to a leaf node (decision) and their lines are excluded from the dataset.

rows where temperature is Mild have the next lower Gini, so they are explored next.

Weather (F1)	Temperature (F2)	Humidty (F3)	Wind(F4)	Hiking (Labels)
Rainy	Mild	Normal	Strong	Yes
Cloudy	Mild	High	Strong	No
Sunny	Mild	High	Strong	No
Cloudy	Mild	High	Weak	Yes

The probability of each category in every feature was calculated regardless of the target label:

Following the rule: $\frac{Number\ of\ rows\ in\ this\ category\ of\ the\ feature}{Number\ of\ rows\ in\ the\ subset}$

Starting at Humidity:

$$P(Humidity = High) = \frac{3}{4}$$

$$P(Humidity = Normal) = \frac{1}{4}$$

Then Wind:

$$P(Wind = Strong) = \frac{3}{4}$$

$$P(Wind = Weak) = \frac{1}{4}$$

And Lastly Weather:

P(Weather = Sunny) =
$$\frac{1}{4}$$

P(Weather = Cloudy) = $\frac{2}{4}$
P(Weather = Rainy) = $\frac{1}{4}$

The conditional probability of every category of each feature as well as the gini index for it, the weighted gini index for each feature, and for the whole dataset using the following rules:

$$1 - \left(\frac{Number\ of\ rows\ where\ label = Yes}{Number\ of\ rows\ of\ the\ subset}\right)^{2}$$

$$- \left(\frac{Number\ of\ rows\ where\ label = No}{Number\ of\ rows\ of\ the\ subset}\right)^{2}$$

$$= 1 - \frac{2^{2}}{4} - \frac{2^{2}}{4} = 0.5$$

Conditional Probability =

 $\frac{\textit{Joint probability where a certain label and a certain category of a feature } (\textit{P(A and B)})}{\textit{Probability of certain category of a feature }} (\textit{P(B)})$

Gini (Node) =
$$1 - \sum_{j} [P(j|Node)]^2$$

	Wind=Strong	Wind=Weak	Weather =Sunny	Weather =Cloudy	Weather =Rainy
Yes	$\frac{1}{3}$	$\frac{1}{1}$	$\frac{0}{1}$	$\frac{1}{2}$	1/1
No	2 3	$\frac{0}{1}$	$\frac{1}{1}$	$\frac{1}{2}$	<u>0</u> 1
Gini (category)	$1 - \frac{1^2}{3} - \frac{2^2}{3}$ = 0.444	$1 - \frac{1^2}{1} - \frac{0^2}{1} = 0$	$1 - \frac{1^2}{1} - \frac{0^2}{1} = 0$	$1 - \frac{1^2}{2} - \frac{1^2}{2}$ = 0.5	$1 - \frac{1^2}{1} - \frac{0^2}{1} = 0$

Weighted Gini	$0.444 * \frac{3}{4} + 0 * \frac{1}{4} = 0.333$	$0 * \frac{1}{4} + 0.5 * \frac{2}{4} + 0 * \frac{1}{4} = 0.25$

	Humidity =High	Humidity =Normal
Yes	$\frac{1}{3}$	$\frac{1}{1}$
No	$\frac{2}{3}$	$\frac{0}{1}$
Gini (category)	$1 - \frac{1^2}{3} - \frac{2^2}{3} = 0.444$	$1 - \frac{1^2}{1} - \frac{0^2}{1} = 0$
Weighted Gini	$0.444 * \frac{3}{2}$	$\frac{3}{4} + 0 * \frac{1}{4} = 0.333$

Weather provides the best split as it is the lowest Gini index.

rows where Weather is Rainy or Sunny are pure with 0 Gini index, so they lead to a leaf node (decision) and their lines are excluded from the dataset.

rows where Weather is Cloudy have the next lower Gini, so they are explored next.

Weather (F1)	Temperature (F2)	Humidty (F3)	Wind(F4)	Hiking (Labels)
Cloudy	Mild	High	Strong	No
Cloudy	Mild	High	Weak	Yes

The probability of each category in every feature was calculated regardless of the target label:

Following the rule: $\frac{Number\ of\ rows\ in\ this\ category\ of\ the\ feature}{Number\ of\ rows\ in\ the\ subset}$

Starting with Temperature:

P(Temperature = Mild) =
$$\frac{2}{2}$$

Then Humidity:

$$P(Humidity = High) = \frac{2}{2}$$

Then Wind:

P(Wind = Strong) =
$$\frac{1}{2}$$

P(Wind = Weak) = $\frac{1}{2}$

The conditional probability of every category of each feature as well as the gini index for it, the weighted gini index for each feature, and for the whole dataset using the following rules:

$$1 - \left(\frac{Number\ of\ rows\ where\ label = Yes}{Number\ of\ rows\ of\ the\ subset}\right)^{2}$$

$$- \left(\frac{Number\ of\ rows\ where\ label = No}{Number\ of\ rows\ of\ the\ subset}\right)^{2}$$

$$= 1 - \frac{1^{2}}{2} - \frac{1^{2}}{2} = 0.5$$

Conditional Probability =

 $\underline{\textit{Joint probability where a certain label and a certain category of a feature} \left(\textit{P(A and B)} \right)$

Gini (Node) =
$$1 - \sum_{j} [P(j|Node)]^2$$

	Temperature =Mild	Wind =Strong	Wind =Weak	Humidity =High
Yes	$\frac{1}{2}$	$\frac{0}{1}$	$\frac{1}{1}$	$\frac{1}{2}$
No	$\frac{1}{2}$	$\frac{1}{1}$	$\frac{0}{1}$	$\frac{1}{2}$
Gini (category)	$1 - \frac{1^2}{2} - \frac{1^2}{2}$ = 0.5	$1 - \frac{0^2}{1} - \frac{1^2}{1} = 0$	$1 - \frac{0^2}{1} - \frac{1^2}{1} = 0$	$1 - \frac{1^2}{2} - \frac{1^2}{2} = 0.5$
Weighted Gini	$0.5 * \frac{2}{2} = 0.5$	$0*\frac{1}{2}+0*\frac{1}{2}=0$		$0.5 * \frac{2}{2} = 0.5$

b) using Information Gain:

P (Hiking = No) =
$$\frac{7}{10}$$

P (Hiking = Yes) = $\frac{3}{10}$

The probability of each category in every feature was calculated regardless of the target label:

Following the rule: $\frac{Number\ of\ rows\ in\ this\ category\ of\ the\ feature}{Number\ of\ rows\ in\ the\ dataset}$

Starting with Temperature:

P(Temperature = Hot) =
$$\frac{3}{10}$$

P(Temperature = Mild) = $\frac{4}{10}$
P(Temperature = Cool) = $\frac{3}{10}$

Then Humidity:

P(Humidity = High) =
$$\frac{6}{10}$$

P(Humidity = Normal) = $\frac{4}{10}$

Then Wind:

P(Wind = Strong) =
$$\frac{6}{10}$$

P(Wind = Weak) = $\frac{4}{10}$

And Lastly Weather:

P(Weather = Sunny) =
$$\frac{4}{10}$$

P(Weather = Cloudy) = $\frac{3}{10}$
P(Weather = Rainy) = $\frac{3}{10}$

The conditional probability of every category of each feature as well as information gain for each feature, and for the whole dataset using the following rules:

InformationGain (Dataset) =

$$-\frac{Number\ of\ rows\ where\ label=Yes}{Number\ of\ rows\ of\ the\ dataset} * log_2 \left(\frac{Number\ of\ rows\ where\ label=Yes}{Number\ of\ rows\ where\ label=No} \right) - \frac{Number\ of\ rows\ where\ label=No}{Number\ of\ rows\ of\ the\ dataset} * log_2 \left(\frac{Number\ of\ rows\ where\ label=No}{Number\ of\ rows\ of\ the\ dataset} \right) = -\frac{3}{10}\ log_2 \left(\frac{3}{10} \right) - \frac{7}{10}\ log_2 \left(\frac{7}{10} \right) = 0.881$$

Conditional Probability =

Joint probability where a certain label and a certain category of a feature (P(A and B))

Entropy (Node) =
$$-\sum_{j} [P(j|Node)] * log_2(P(j|Node))$$

	Temperature =Hot	Temperature =Mild	Temperature =Cool	Humidity =High	Humidity =Normal
Yes	$\frac{1}{3}$	$\frac{2}{4}$	$\frac{0}{3}$	$\frac{2}{6}$	$\frac{1}{4}$
No	2 3	$\frac{2}{4}$	3 3	$\frac{4}{6}$	$\frac{3}{4}$
Information Gain (category)	10 3	$\frac{4}{10} * \left(-\frac{2}{4} * \log_2\left(\frac{2}{4}\right) - \frac{2}{4} * \log_2\left(\frac{2}{4}\right)\right) = 0.4$	$\frac{3}{10} * \left(-0 - \frac{3}{3} * \log_2\left(\frac{3}{3}\right)\right) = 0$	$\frac{6}{10}$ $*\left(-\frac{2}{6}\right)$ $*\log_2\left(\frac{2}{6}\right)$ $-\frac{4}{6}$ $*\log_2\left(\frac{4}{6}\right)$ $= 0.551$	$\frac{4}{10} * \left(-\frac{1}{4} * \right)$ $\log_2\left(\frac{1}{4}\right) - \frac{3}{4} *$ $\log_2\left(\frac{3}{4}\right)$ $= 0.324$
Information Gain	0.881	-0.275 - 0 - 0.4 =	= 0.206	0.881-0.551-0	324 = 0.006

	Wind=Strong	Wind=Weak	Weather	Weather	Weather
			=Sunny	=Cloudy	=Rainy
Yes	$\frac{1}{6}$	$\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{3}$
No	<u>5</u> 6	$\frac{2}{4}$	$\frac{3}{4}$	$\frac{2}{3}$	$\frac{2}{3}$
Information Gain	$\frac{6}{10} * \left(-\frac{1}{6} * (-\frac{1}{6} * \left(-\frac{1}{6} * \left(-\frac{1}{6} * \left(-\frac{1}{6} * \left(-\frac{1}{6} * (-\frac{1}{6} * \left(-\frac{1}{6} * \left(-\frac{1}{6} * \left(-\frac{1}{6} * \left(-\frac{1}{6} * (-\frac{1}{6} * \left(-\frac{1}{6} * \left(-\frac{1}{6} * \left(-\frac{1}{6} * \left(-\frac{1}{6} * (-\frac{1}{6} * (-\frac{1}{6} * \left(-\frac{1}{6} * (-\frac{1}{6} * $	$\frac{4}{10} * \left(-\frac{2}{4} *\right)$	$\frac{\frac{4}{10} * \left(-\frac{1}{4} * \log_2\left(\frac{1}{4}\right) - \right)}{\log_2\left(\frac{1}{4}\right) - 2}$	$\frac{3}{10} * \left(-\frac{1}{3} * \log_2\left(\frac{1}{3}\right) - \frac{2}{3} * \right)$	$\frac{3}{10} * \left(-\frac{1}{3} * \log_2\left(\frac{1}{3}\right) - \frac{2}{3} * \right)$
(category)	$\log_2\left(\frac{5}{6}\right) = 0.39$		$\log_2\left(\frac{3}{4}\right) = \frac{3}{4} * \log_2\left(\frac{3}{4}\right)$ $= 0.324$	$\log_2\left(\frac{2}{3}\right) - \frac{1}{3}$ $\log_2\left(\frac{2}{3}\right)$ $= 0.275$	$\log_2\left(\frac{2}{3}\right) - \frac{1}{3}$ $\log_2\left(\frac{2}{3}\right)$ $= 0.275$
	0.004				
Information Gain	0.881 – 0.39	-0.4 = 0.091	0.881 —	0.324 — 0.275 — 0.2	275 = 0.097
c)					

 $Temperature\ provides\ the\ best\ split\ as\ it\ is\ the\ Highest\ Information\ Gain$

Weather (F1)	Temperature (F2)	Humidty (F3)	Wind(F4)	Hiking
Sunny	Hot	High	Weak	Yes
Sunny	Hot	High	Strong	No
Sunny	Hot	High	Strong	No

P (Yes) =
$$\frac{1}{3}$$
,
P (No) = $\frac{2}{3}$

The probability of each category in every feature was calculated regardless of the target label:

Following the rule: $\frac{Number\ of\ rows\ in\ this\ category\ of\ the\ feature}{Number\ of\ rows\ in\ the\ subset}$

Starting at Humidity:

P(Humidity = High) =
$$\frac{3}{3}$$

Then Wind:

$$P(Wind = Strong) = \frac{2}{3}$$

$$P(Wind = Weak) = \frac{1}{3}$$

And Lastly Weather:

P(Weather = Sunny) =
$$\frac{3}{3}$$

The conditional probability of every category of each feature as well as information gain for each feature, and for the whole dataset using the following rules:

InformationGain (Dataset) =

$$-\frac{Number\ of\ rows\ where\ label=Yes}{Number\ of\ rows\ of\ the\ dataset} * log_2 \left(\frac{Number\ of\ rows\ where\ label=Yes}{Number\ of\ rows\ where\ label=No} \right) - \frac{Number\ of\ rows\ where\ label=No}{Number\ of\ rows\ of\ the\ dataset} * log_2 \left(\frac{Number\ of\ rows\ where\ label=No}{Number\ of\ rows\ of\ the\ dataset} \right) - \frac{1}{2} log_2 \left(\frac{1}{2} \right) - \frac{2}{3} log_2 \left(\frac{2}{3} \right) = \boxed{0.918}$$

Conditional Probability =

Joint probability where a certain label and a certain category of a feature (P(A and B))

Entropy (Node) =
$$-\sum_{j} [P(j|Node)] * log_2(P(j|Node))$$

	Weather =Sunny	Wind =Strong	Wind =Weak	Humidity =High
Yes	$\frac{1}{3}$	$\frac{0}{2}$	$\frac{1}{1}$	$\frac{1}{3}$
No	$\frac{2}{3}$	$\frac{2}{2}$	$\frac{0}{1}$	$\frac{2}{3}$
Information Gain (category)	$\frac{\frac{3}{3}(-\frac{1}{3} \log_2(\frac{1}{3}) - \frac{2}{3} \log_2(\frac{2}{3}))}{=0.918}$	$\frac{\frac{2}{3}(-\frac{2}{2})}{\log_2(\frac{2}{2})}$ =0	$\frac{1}{3}\left(-\frac{1}{1} \log_2(\frac{1}{1})\right) = 0$	$\frac{3}{3} \left(-\frac{1}{3} \log_2(\frac{1}{3}) - \frac{2}{3} \log_2(\frac{2}{3}) \right)$ =0.918
Information Gain	0.918 - 0.918 = 0	0.918 - 0 - 0 = 0.	918	0.918 - 0.918 = 0

Wind provides the best split as it is the highest information gain.

Weather (F1)	Temperature (F2)	Humidty (F3)	Wind(F4)	Hiking
Rainy	Mild	Normal	Strong	Yes
Cloudy	Mild	High	Strong	No
Sunny	Mild	High	Strong	No
Cloudy	Mild	High	Weak	Yes

P (Yes) =
$$\frac{2}{4}$$
,
P (No) = $\frac{2}{4}$

The probability of each category in every feature was calculated regardless of the target label:

Following the rule: $\frac{Number\ of\ rows\ in\ this\ category\ of\ the\ feature}{Number\ of\ rows\ in\ the\ subset}$

Starting at Humidity:

$$P(Humidity = High) = \frac{3}{4}$$

P(Humidity = Normal) =
$$\frac{1}{4}$$

Then Wind:

$$P(Wind = Strong) = \frac{3}{4}$$

$$P(Wind = Weak) = \frac{1}{4}$$

And Lastly Weather:

$$P(Weather = Sunny) = \frac{1}{4}$$

$$P(Weather = Cloudy) = \frac{2}{4}$$

$$P(Weather = Rainy) = \frac{1}{4}$$

The conditional probability of every category of each feature as well as information gain for each feature, and for the whole dataset using the following rules:

InformationGain (Dataset) =

$$-\frac{Number\ of\ rows\ where\ label=Yes}{Number\ of\ rows\ of\ the\ dataset} * log_2 \left(\frac{Number\ of\ rows\ where\ label=Yes}{Number\ of\ rows\ where\ label=No} \right) - \frac{Number\ of\ rows\ where\ label=No}{Number\ of\ rows\ of\ the\ dataset} * log_2 \left(\frac{Number\ of\ rows\ where\ label=No}{Number\ of\ rows\ of\ the\ dataset} \right) = -\frac{2}{4}\ log_2 \left(\frac{2}{4} \right) - \frac{2}{4}\ log_2 \left(\frac{2}{4} \right) = 1$$

Conditional Probability =

Joint probability where a certain label and a certain category of a feature (P(A and B))

Entropy (Node) =
$$-\sum_{j} [P(j|Node)] * log_2(P(j|Node))$$

	Wind=Strong	Wind=Weak	Weather =Sunny	Weather =Cloudy	Weather =Rainy
Yes	$\frac{1}{3}$	1 1	$\frac{0}{1}$	$\frac{1}{2}$	$\frac{1}{1}$
No	2 3	$\frac{0}{1}$	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{0}{1}$
Information Gain (category)	$\frac{\frac{3}{4}\left(-\frac{1}{3}\log_2(\frac{1}{3}) - \frac{2}{3}\right)}{\log_2(\frac{2}{3})} = 0.612$	$\frac{1}{4} \left(-\frac{1}{1} \log_2(\frac{1}{1}) \right) = 0$	$\frac{\frac{1}{4}(-\frac{1}{1}\log_2(\frac{1}{1}))}{=0}$	$\frac{\frac{2}{4}\left(-\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\right)}{\log_2(\frac{1}{2})} = 0.5$	$\frac{1}{4} \left(-\frac{1}{1} \log_2(\frac{1}{1}) \right) = 0$
Information Gain	1 - 0 - 0.612 = 0.38	38		1 - 0 - 0.5 - 0 = 0	0.5

	Humidity =High	Humidity =Normal
Yes	$\frac{1}{3}$	$\frac{1}{1}$
No	$\frac{2}{3}$	$\frac{0}{1}$
Information Gain (category)	$\frac{3}{4} \left(-\frac{1}{3} \log_2(\frac{1}{3}) - \frac{2}{3} \log_2(\frac{2}{3}) \right) = 0.612$	$\frac{1}{4} \left(-\frac{1}{1} \log_2(\frac{1}{1}) \right) = 0$
Information Gain	1 – 0.6	12 - 0 = 0.388

Weather is the best split for Highest information Gain

Weather (F1)	Temperature (F2)		Wind(F4)	Hiking
Cloudy	Mild	High	Strong	No
Cloudy	Mild	High	Weak	Yes

$$P (Yes) = \frac{1}{2} P (No) = \frac{1}{2}$$

The probability of each category in every feature was calculated regardless of the target label:

Following the rule: $\frac{Number\ of\ rows\ in\ this\ category\ of\ the\ feature}{Number\ of\ rows\ in\ the\ subset}$

Starting with Temperature:

P(Temperature = Mild) =
$$\frac{2}{2}$$

Then Humidity:

$$P(Humidity = High) = \frac{2}{2}$$

Then Wind:

$$P(Wind = Strong) = \frac{1}{2}$$

$$P(Wind = Weak) = \frac{1}{2}$$

The conditional probability of every category of each feature as well as information gain for each feature, and for the whole dataset using the following rules:

InformationGain (Dataset) =

$$-\frac{Number\ of\ rows\ where\ label=Yes}{Number\ of\ rows\ of\ the\ dataset} * log_2 \left(\frac{Number\ of\ rows\ where\ label=Yes}{Number\ of\ rows\ where\ label=No} \right) - \frac{Number\ of\ rows\ where\ label=No}{Number\ of\ rows\ of\ the\ dataset} * log_2 \left(\frac{Number\ of\ rows\ where\ label=No}{Number\ of\ rows\ of\ the\ dataset} \right) = -\frac{1}{2}\ log_2 \left(\frac{1}{2} \right) - \frac{1}{2}\ log_2 \left(\frac{1}{2} \right) = 1$$

Conditional Probability =

Joint probability where a certain label and a certain category of a feature (P(A and B))

Entropy (Node) =
$$-\sum_{j}[P(j|Node)] * log_2(P(j|Node))$$

	Temperature =Mild	Wind =Strong	Wind =Weak	Humidity =High
Yes	$\frac{1}{2}$	$\frac{0}{1}$	$\frac{1}{1}$	$\frac{1}{2}$
No	$\frac{1}{2}$	$\frac{1}{1}$	$\frac{0}{1}$	$\frac{1}{2}$
Information Gain (category)	$\frac{\frac{2}{2}\left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right)}{\frac{1}{2}\log_2\left(\frac{1}{2}\right)} = 1$	$1 - \frac{1}{2} \left(-\frac{1}{1} \right)$ $\log_2 \left(\frac{1}{1} \right) = 0$	$1 - \frac{1}{2} \left(-\frac{1}{1} \log_2 \left(\frac{1}{1} \right) \right) = 0$	$\frac{\frac{2}{2}\left(-\frac{1}{2} \log_2\left(\frac{1}{2}\right) - \frac{1}{2} \log_2\left(\frac{1}{2}\right)\right) = 1$
Information Gain	1 - 1 = 0	1 -	-0-0=1	1 - 1 = 0

2. Coding Part

Functions were made to facilitate such process like function that reads data and splits into train and test, function that gets accuracy, and function that gets prediction:

```
[2] train_data=pd.read_csv("/content/pendigits-tra.csv",header=None)
      test_data=pd.read_csv("/content/pendigits-tes.csv",header=None)
[3] X_train=train_data.iloc[:,:-1]
     y train=train data.iloc[:,-1]
[4] X_test=test_data.iloc[:,:-1]
     y_test=test_data.iloc[:,-1]
def get_accuracies(y_actual, y_predict):
 from sklearn.metrics import classification_report, ConfusionMatrixDisplay, accuracy_score, confusion_matrix
 print('\nClassification Report:\n')
 print(classification report(y actual, y predict))
 cm = confusion_matrix(y_actual, y_predict)
 print('\nAccuracy Score:\n')
 print(accuracy_score(y_actual, y_predict))
 print('\Confusion Matrix Display:\n')
 print(ConfusionMatrixDisplay(cm).plot())
[6] def get_predect(pip,Xtrain,Xtest, ytrain,y):
     pip.fit(Xtrain.values, ytrain.values)
    # Predicting the Test set results
      y pred = pip.predict(Xtest.values)
      acc=accuracy_score(y, y_pred)*100
      print( acc)
      return y_pred,acc
```

a. Apply Decision Tree:

Decision tree was applied to the dataset and confusion matrix and Classification report were calculated to check the trained model

```
[10] from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import classification_report
    from sklearn.metrics import accuracy_score

    estimator = DecisionTreeClassifier(random_state=2022)
    estimator.fit(X_train, y_train)
    DTy_pred = estimator.predict(X_test)
    report = get_accuracies(y_test, DTy_pred)
```

Acc	Accuracy Score:												
0.9	0.9159519725557461												
Cla	ssi	fic	atio	n Re	epor	t:							
				pre	ecis	ion		reca	all	f1-score			support
			0		0	.95		0	.94		0.	94	363
			1		0	.85		0	.87		0.	86	364
			2			.86			.95		0.		364
			3			.88			.93		0.		336
			4			.92			.96		0.		364
			5 6			.94 .98			.85 .94		0. 0.		335 336
			7			.91			.85		0.		364
			8			.94			.95		0.		336
			9		0	.95			.92		0.		336
											0	00	2400
		cur			0	രാ		a	.92		0. 0.		3498 3498
		ro ed		0.92 0.92				0		0.		3498 3498	
	ъ				Ĭ			ŭ				-	3.30
	0 -	340	0	0	0	0	0	1	11	11	0		350
	1 -	0	317	44	2	1	0	0	0	0	0		- 300
	2 -	0	12	345	1	0	2	0	4	0	0		- 250
ı	3 -	0	10	7	311	0	2	0	3	0	3		250
abel	4 -	0	3	2	0	350	4	2	0	0	3		- 200
Frue labe	ਜੂ ਜੂ 5 - 0 2		0	26	3	286	0	3	3	12		- 150	
	_												
Γ	6 -	9	1	1	0	0	4	317	3	1	0		
		9	1 17	1	0 8	0 24	4 0	317 1	3 308	1 2	0		- 100
	6 -								_				- 100 - 50
	6 - 7 -	0	17	4	8	24	0	1	308	2	0		

Bagging:

 a. Bagging Strategy was applied on both svm and Decision Tree as base estimators and accuracy and confusion matrix were measured for both classifiers SVM:

```
[11] bag_clf = BaggingClassifier(SVC(), n_estimators=500,bootstrap=True, n_jobs=-1, oob_score=True, random_state=20
    bag_clf.fit(X_train, y_train)
    bag_clf.oob_score_

0.9958633573525487
```

Ad	cu	rac	у :	Sco	re:										
	0.9811320754716981														
0.	0.9011320/54/16981														
C1	Classification Report:														
C	ezussi report.														
	precision recall f1-s										f1-s	core	support		
				0			1.	00		(0.9	7	(9.98	363
				1			0.	96		(0.9	6	(9.96	364
				2				96		(0.9	9		9.98	364
				3				99			0.9			9.99	336
				4				00			0.9			9.99	364
				5				98			0.9			9.98	335
				6				00			1.0		1.00		336
				7 8				99		0.95			0.97		364
				8 9				97 98			1.0 0.9		0.98 0.98		336 336
				7			٥.	70		0.55					0.00
		aco	ura	acv									(9.98	3498
			0				0.						9.98	3498	
WE			ed a	_			0.	98						9.98	3498
		252			_								350		
		352	0	0						11			330		
	1 -	0	350		0	1					0		- 300		
	2 -		2	362	0	0							- 250		
_	3 -		1		333	0	0				2		230		
Frue label	4 -					359	4	1					- 200		
ue l	5 -				5		328 0				2		- 150		
-	6 -						0	336	0				150		
	7 -		12	2				0	346	0	4		- 100		
	8 -						1		0	335	0		- 50		
	9 -	0	1	0	0	0	0	0	3	1	331		30		
	,	0	1	2	3	4	5	6	7	8	9	l	0		
1		U	1	2	_		o ed la	_	,	0	9				

Decision Tree:

```
bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=500,bootstrap=True, n_jobs=-1, oob_score=True, random_state=2022)
bag_clf.fit(X_train, y_train)
bag_clf.oob_score_

0.9834534294101949
```

```
Accuracy Score:
0.9811320754716981
Classification Report:
               precision
                             recall f1-score
                                                 support
           0
                    1.00
                               0.97
                                         0.98
                                                     363
                    0.96
                               0.96
                                         0.96
                                                     364
                    0.96
                               0.99
                                         0.98
                                                     364
                               0.99
                                         0.99
                    0.99
                                                     336
                    1.00
                              0.99
                                         0.99
                                                     364
                    0.98
                               0.98
                                         0.98
                               1.00
                                         1.00
                                                     336
           6
                    1.00
                    0.99
                               0.95
                                         0.97
                                                     364
                    0.97
                              1.00
                                         0.98
                                                     336
           9
                    0.98
                               0.99
                                         0.98
                                                     336
                                         0.98
                                                    3498
    accuracy
                                         0.98
   macro avg
                    0.98
                               0.98
                                                    3498
weighted avg
                    0.98
                               0.98
                                         0.98
                                                    3498
                                       (S)0
                                       300
                                       250
                                       200
                                       150
                                       - 100
                                       - 50
                 4 5 6
           2
```

Best Number of Estimators:

Different number of estimators were tried, and they were plotted against the testing accuracy to decide on the best number for decision tree classifier

```
estimators=[100,200,250,300,450]
accuracy=[]
for i in estimators:
  bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=i,bootstrap=True, n_jobs=-1, oob_score=True, random_state=2
  bag_clf.fit(X_train, y_train)
  y_pred = bag_clf.predict(X_test)
  accuracy.append(accuracy_score(y_test, y_pred))

plt.plot(estimators,accuracy)
  plt.xlabel('Number Of Estimators')
  plt.ylabel('Accuracy')
  plt.title('Accuracy VS. Number Of Estimators')
  plt.show()
```


As it is shown from the plot 100 Estimators has managed to get the best testing accuracy over the interval of tried values.

4. Boosting:

A- In the hyper parameter tuning for GradientBoostingClassifier we found that the best value for the number of estimators from the accuracy from these values [50,100,150,200] is both 100 and 200 so we choesd 200

```
[ ] n_estimators=[50,100,150,200]
    accn=[]
    yperdes=[]
    for n in n_estimators:
        model = GradientBoostingClassifier(n_estimators=n)
        y_pred,acc=get_predect(model,X_train, X_test, y_train, y_test)
        accn.append(acc)
        yperdes.append(y_pred)

95.02572898799315
    96.25500285877644
    96.1978273299028
    96.25500285877644
```


And using the number of estimator as 200 we found that the best value for the learning rat is .5 from these values [.1,.5,.7,.9]

B- Using the best parameter from the 4-A part we build an Xgboost model:

```
from xgboost import XGBClassifier
xgboost = XGBClassifier(n_estimators = 200, learning_rate = 0.5)
y_pred,acc=get_predect(xgboost,X_train, X_test, y_train, y_test)
get_accuracies(y_test, y_pred)
```

And got the following accuracy and confusion matrix:

C- between the Xgboost and GradientBoostingClassifier the difference is not that big even though the Xgboost is better in term of accuracy ,and between the acuracy and confusion matrix the confusion matrix is better because it lets us know better which class is the model confused about ,the bagging was better than the boosting in this problem in term of accuracy and confusion matrix result