Mechanical Processing in Internally Coupled Ears

Anupam Prasad Vedurmudi

TMP Thesis Defence July 3, 2013

Auditory Systems

Independent Ears

Eustachian tubes typically very narrow.

Effectively independent eardrum vibrations.

Coupled Ears

Eardrums connected through wide eustachian tubes and a large mouth cavity.

Eardrums vibrations influence eachother.

Evaluation

The Model

Introduction

Conclusion

Mouth Cavity

Mouth Cavity

Mouth Cavity Model

3D Wave Equation

$$\frac{1}{c^2}\partial_t^2 p(x,r,\phi,t) = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial p(x,r,\phi,t)}{\partial r}\right) + \frac{1}{r^2}\frac{\partial p(x,r,\phi,t)}{\partial \phi^2} + \frac{\partial p(x,r,\phi,t)}{\partial x^2} \tag{1}$$

No-penetration boundary condition

$$-j\rho\omega\mathbf{v} = \nabla p(x, r, \phi; t) = 0 \tag{2}$$

Mouth Cavity

Eardrum

Sketch of a Tokay eardrum as seen from the outside^a.

 $\ensuremath{\mathsf{COL}}$ - approximate position opposite the extracolumella insertion.

The ICE eardrum.

Extracolumella (dark) - rigid, stationary.

Tympanum - assumed linear elastic.

Rigidly clamped at the boundaries ($r=a_{\mathrm{tymp}}$ and $\phi=\beta,\ 2\pi-\beta$)

^aG. A. Manley, "The middle ear of the tokay gecko," Journal of Comparative Physiology, vol. 81, no. 3, pp. 239–250, 1972

Membrane Vibrations

Membrane EOM

$$-\partial_t^2 u(r,\phi;t) - 2\alpha \partial_t u(r,\phi;t) + c_M^2 \nabla^2 u(r,\phi;t) = \frac{1}{\rho_m d} \Psi(r,\phi;t)$$
(3)

Conclusion

Evaluation

The Model

Conclusion

Introduction

Conclusion

Thank You

