Epidemiological Agent-based Model Optimization

DS-GA 1019, Spring 2023

Group 11: Xu Han, Chenxi Ning, Jason Wang, Philip Xing, Chloe Zheng

Background

Motivation: Given the COVID-19 pandemic and the public discourse on vaccinations, our group was interested in a stochastic model for visual predictions of susceptible, infected, and recovered populations over the course of a simulated epidemic.

- We first implemented an agent-based model (ABM) that can simulate how an epidemic may unfold;
- We also optimized model runtime and compared and combined various optimization strategies

Agent-based Model

- Status (S, I, R)
 - Susceptible → Infected
 - Within a certain distance from an infected agent
 - Pass a threshold of infection probability
 - Infected → Recovered
 - Have been infected for a certain number of days
 - Pass a threshold of recovery probability
- Location
 - Assign each agent a random location in a unit square
 - Update each agent's location at each timestamp
 - Snap to the edge if the new location is out of bounds
- Days with status
- Vaccine attributes

Research Question

- How do different vaccination roll out methods affect a pandemic?
 - Vary vaccination start time, distribution rate, and targeting specific populations first
- Varying simulations and parameters through CLI
 - Basic Sim: Duration (100), Number of agents (10000), Infection distance (0.03), Infection
 probability (0.3), Minimum infection duration (7), Recovery probability (0.3)
 - Random Vaccine Sim: Vaccine availability day (start time), Daily vaccine distribution count (speed), Initial vaccine efficacy (0.95), Vaccinated recovery reduction (2)
 Targeted Vaccine Sim: Immunodeficient proportion and complete rollout day (target populations), Immunodeficient infection probability increase (0.3)

Varying vaccine start date

 The later the vaccine is available, the more pronounced the infected population curve

Varying daily vaccine distribution count

 The faster we distribute the vaccine, the more we flatten the infected population curve

Varying the immunodeficient population proportion

- Targeting the immunodeficient population first with the existing configuration (availability after the 10th day, 0.3 infection probability, etc.) does little to change the infection population curve overall
- Hypothesis: Given roughly 10% of the population is infected after 10 days, targeted vaccination doesn't change the overall population curves much

Optimization

Diagnosed Efficiency with Line Profiler

- Showed that 98% of execution time was due to the function infect() for original code
- Infect function nested for loops

Line #	Hits	Time	Per Hit	% Time	Line Contents	
9 recover	v probabil	ity, profile=	:False):		def main(duration, num_agents, infection_dist	
10)_p: 000010	rej, profite			# Initialize random seed	
11	1	16.0	16.0	0.0	random.seed(42)	
12					, , , , , , , , , , , , , , , , , , , ,	
13					# Initialize the list of agents	
14	1	12315.0	12315.0	0.0	agents = [Agent("S", (random.random(), ra	
15						
16					# Set one agent as patient zero	
17	1	2.0	2.0	0.0	agents[0].status = "I"	
18						
19					# Initialize status counts	
20	1	2.0	2.0	0.0	status_counts = {"S": [], "I": [], "R": [
21						
22						
23	No. 27	Topings 1996	700 700	960 000	# Run simulation for given duration	
24	101	89.0	0.9	0.0	for _ in range(duration):	
25					# Update status counts for current da	
26	400	276.0	0.7	0.0	for status in ["S", "I", "R"]:	
27	300	326155.0	1087.2	0.1	<pre>count = sum(1 for agent in agents</pre>	
28	300	397.0	1.3	0.0	status_counts[status].append(coun	
29						
30	1000100	462264 0	٥.		# Update agent days with status and l	
31 32	1000100 1000000	463364.0 770469.0	0.5 0.8	0.2 0.3	for agent in agents:	
33	1000000	464459.0	0.5	0.2	agent.increase_days_with_status() max distance = 0.01	
34	1000000	1824356.0	1.8	0.6	new_location = generate_random_lo	
35	1000000	1019553.0	1.0	0.4	new location = snap to edge(new l	
36	1000000	505493.0	0.5	0.2	agent.location = new location	
37	1000000	303433.0	0.5	0.2	agent: tocation = new_tocation	
38					# Infect agents	
39	100	276962804.0	2769628.0	98.0		
40	100	27030200110	270302010	5010	intect(agents) intection_alstance, i	
41					# Recover agents	
42	100	177957.0	1779.6	0.1	recover(agents, minimum infection dur	
43					·, · · · · · · · · · · · · · · · ·	
44					# Add final day status counts	
45	4	3.0	0.8	0.0	for status in ["S", "I", "R"]:	
46	3	3209.0	1069.7	0.0	<pre>count = sum(1 for agent in agents if</pre>	
47	3	1.0	0.3	0.0	status_counts[status].append(count)	
48						

Optimization

Improved Speed with Cython and Vectorization

- C compilation allows for fast execution
- Low-level language (C) operates quickly on large data
- Vectorization with NumPy allows for parallel operations

Simulation	% Time	Line Contents
basic_sim - Original	98.0	infect()
basic_sim - Vectorization	55.6	infect()

Conclusion

- Simulation takeaways
- Optimization takeaways
 - Trade-offs
- Future Directions
 - Social distances
 - Central locations
 - Possibility of reinfections
 - Age-related vulnerabilities

Links

Our public Git repository:

https://github.com/xh852/Epidemiological-Agent-based-Model-Optimization

References:

- The Institute for Disease Modeling: https://idmod.org/
- 2. 3Blue1Brown's "Simulating an epidemic": https://www.youtube.com/watch?v=qxAaO2rsdls
- 3. This Week's Cartoons: April 13-17, 2020: https://www.wired.com/story/wired-cartoons-week-35/