## Class 27

Note1:  $\mu_0$ ,  $\mu_1$  singular & abso. conti. parts of  $\mu$  w.r.t. u

Pf: Assume  $u, \mu$  finite positive measures

(1) Existence:

Let 
$$\lambda = u + \mu$$
  
i.e.,  $\lambda(E) = u(E) + \mu(E) \ \forall E \in \mathbf{a}$   
 $\therefore \mu \ll \lambda$   
 $\therefore \text{R-N Thm} \Rightarrow \exists \text{ integrable } f \Rightarrow 0 \le \mu(E) = \int_E f \ d\lambda \le \lambda(E) \ \forall E \in \mathbf{a}$   
Ex: 2.7.3  $\Rightarrow$  0  $\le$   $f \le 1$  a.e.  $[\lambda]$   $\|$   
 $\Rightarrow 0 \le f \le 1$  a.e.  $[\mu]$   $\int_E 1 d\lambda$   
Let  $A = \{x : f(x) = 1\}$ 

 $B = X \setminus A$ Let  $\mu_0(E) = \mu(E \cap A)$ ,  $\mu_1(E) = \mu(E \cap B)$  finite measures

Note2: In prob. theory,  $F(x) = P(X \le x)$ : distribution function of random variable X

u =Lebesgue measure on  $\mathbb{R}$ 

 $\mu$  = Lebesgue-Stieltjes measure corresponding to F ( $F \uparrow$ )

$$\therefore \mu = \mu_0 + \mu_1, \ \mu_1(E) = \int_E f(x) \ dx$$

R-N derivative = density function of X

(i) : 
$$\mu = \mu_0 + \mu_1$$
 (:  $\mu(E) = \mu(E \cap A) + \mu(E \cap B) = \mu_0(E) + \mu_1(E)$ )

(ii) :: 
$$\mu_0(B) = \mu(B \cap A) = \mu_0(\phi) = 0$$

Check: u(A) = 0

$$\therefore \mu(A) = \int_A f \ d\lambda = \lambda(A) = u(A) + \mu(A) \& \mu(A) < \infty$$
$$\Rightarrow u(A) = 0$$

Hence  $\mu_0 \perp u$ 

(iii)  $\mu_1 \ll u$ :

Assume 
$$u(E) = 0$$

$$\therefore 1 - f > 0 \text{ a.e. on } E \cap B \left[ \mu \right]$$

 $\mu_1(E)$ 

Thm. 
$$2.7.5 \Rightarrow \mu(E \cap B) = 0$$

## (2) Uniqueness:

Assume 
$$\mu = \overline{\mu_0} + \overline{\mu_1}$$
,  $\overline{\mu_0} \perp u \& \overline{\mu_1} \ll u$ 

$$= \mu_0 + \mu_1, \ \mu_0 \perp u \& \mu_0 \ll u$$

$$\Rightarrow \mu_0 - \overline{\mu_0} = \overline{\mu_1} - \mu_1 \perp u \& \ll u \text{ (by property (2))}$$

$$\Rightarrow \mu_0 - \overline{\mu_0} = \overline{\mu_1} - \mu_1 = 0 \text{ (by property (3))}$$
i.e.,  $\mu_0 = \overline{\mu_0} \& \overline{\mu_1} = \mu_1$ 

In general, u,  $\mu$   $\sigma$ -finite signed measures.

Homework: 2.13.4, 2.13.2

