Convergence de produit numérique

Soit (u_n) une suite de réels non nuls, on lui associe la suite (p_n) définie par

$$\forall n \in \mathbb{N}^*, p_n = \prod_{p=1}^n u_p = u_1 u_2 \dots u_n.$$

On dit que le produit (p_n) converge si et seulement si la suite (p_n) admet une limite finie <u>non nulle</u>. Sinon on dit que le produit (p_n) diverge.

Partie I

- 1. En considérant le quotient $\frac{p_{n+1}}{p_n}$, montrer que, pour que le produit (p_n) converge, il est nécessaire que la suite (u_n) converge vers 1.
- 2. Soit $p_n = \prod_{p=1}^{n} \left(1 + \frac{1}{p}\right)$.

Montrer que : $\forall n \ge 1, p_n = n+1$.

Quelle est la nature du produit (p_n) ?

3. Soit un réel a différent de $k\pi$ ($k \in \mathbb{Z}$) et $p_n = \prod_{p=1}^n \cos \frac{a}{2^p}$.

Pour tout entier naturel n non nul, calculer $p_n \sin \frac{a}{2^n}$.

En déduire que le produit (p_n) converge et donner la limite de la suite (p_n) .

Partie II

- 1. Soit (p_n) un produit associé à une suite (u_n) qui converge vers 1.
- 1.a Montrer qu'il existe un entier $\,n_{\scriptscriptstyle 0}\,$ tel que $\,\,\forall\,n\geq n_{\scriptscriptstyle 0},u_{\scriptscriptstyle n}>0$.
- 1.b On pose $S_n = \sum_{n=n}^n \ln(u_p)$.

Montrer que la convergence de la suite (S_n) équivaut à la convergence du produit (p_n) .

Lorsque (S_n) converge vers ℓ donner la limite de la suite (p_n) en fonction de ℓ .

2. Soit
$$p_n = \prod_{p=1}^n \sqrt[p]{p}$$
, $S_n = \sum_{p=1}^n \frac{\ln p}{p}$ et $H_n = \sum_{p=1}^n \frac{1}{p}$.

- 2.a Montrer que la suite (H_n) est croissante et que $\forall n \in \mathbb{N}^*, H_{2n} H_n \geq \frac{1}{2}$. En déduire que $H_n \to +\infty$.
- 2.b En déduire la nature de la suite (S_n) et du produit (p_n) .

Partie III

- 1. Soit $p_n = \prod_{p=1}^n (1+v_p)$ où (v_n) est une suite de réels strictement positifs qui converge vers 0. On pose $S_n' = \sum_{p=1}^n v_p$.
- 1.a Montrer que $\forall x \in \mathbb{R}^+, \ln(1+x) \le x$.
- 1.b Montrer que la suite (S_n') est croissante.

- 1.c Montrer que si la suite (S'_n) converge, alors le produit (p_n) converge.
- 2. Soit $p_n = \prod_{p=1}^n (1 + a^{2^p})$ avec $a \in \mathbb{R}^{+*}$.
- 2.a Que dire de la nature du produit (p_n) lorsque $a \ge 1$?
- 2.b On suppose $a \in \]0,1[$. Montrer que le produit $(p_{\scriptscriptstyle n})$ converge.
- 2.c Pour tout entier naturel $\,n\,$ non nul, calculer $\,(1-a^2)p_n\,$ et en déduire la limite de la suite $\,(p_n)\,$.