CIS 520, Machine Learning, Fall 2015: Assignment 4 Due: Thursday, October 15th, 11:59pm, PDF to Canvas

Arpit Panwar

Boosting and MDL

1. Analyzing the training error of boosting

Consider the AdaBoost algorithm you saw in class. In this question we will try to analyze the training error of boosting.

1. Given a set of m examples, (x_i, y_i) (y_i) is the class label of x_i , i = 1, ..., m, let $h_t(x)$ be the weak classifier obtained at step t, and let α_t be its weight. Recall that the final classifier is

$$H(x) = \text{sign}(f(x)), \text{ where } f(x) = \sum_{t=1}^{T} \alpha_t h_t(x).$$

Show that the training error of the final classifier can be bounded from above by an exponential loss function:

$$\frac{1}{m} \sum_{i=1}^{m} I(H(x_i) \neq y_i) \le \frac{1}{m} \sum_{i=1}^{m} \exp(-f(x_i)y_i),$$

where I(a=b) is the indicator function. It is equal to 1 if a=b, and 0 otherwise $Hint: e^{-x} \ge 1 \Leftrightarrow x \le 0$.

$$\begin{split} D_{t+1}(i) &= \frac{D_{t-1}(i) * e^{-\alpha_t * y_i * h_t(x_i)} * e^{-\alpha_{t-1} * y_i * h_{t-1}(x_i)}}{Z_t * Z_{t-1}} \\ &= \frac{D_1(i) * e^{-\alpha_t * y_i * h_t(x_i)} * e^{-\alpha_{t-1} * y_i * h_{t-1}(x_i)} \dots e^{-\alpha_1 * y_i * h_1 x_i}}{Z_t * Z_{t-1} * Z_{t-1} \dots * Z_1} \\ &= \frac{e^{\sum_t y_t * \alpha_t * h_t(x_i)}}{m * \prod_t Z_t} \\ D_{t+1}(i) &= \frac{e^{-y_i f(x_i)}}{m * \prod_t Z_t} \\ When \ H(x_i) \neq y_i \ y_i * f(x_i) \leq 0. \ Thus \ e^{-y_i * f(x_i)} \geq 1 \\ I(H(x_i) \neq y_i) \leq e^{-y_i * f(x_i)} \\ \frac{1}{m} * \sum_i I(H(x_i) \neq y_i) = \frac{1}{m} * \sum_i e^{-y_i * f(x_i)} \end{split}$$

2. Remember that

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Use this recursive definition to prove the following.

$$\frac{1}{m} \sum_{i=1}^{m} \exp(-f(x_i)y_i) = \prod_{t=1}^{T} Z_t,$$
(1)

where Z_t is the normalization factor for distribution D_{t+1} :

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i)). \tag{2}$$

Hint: Remember that $e^{\sum_i g_i} = \prod_i e^{g_i}, D_1(i) = \frac{1}{m}$, and that $\sum_i D_{t+1}(i) = 1$.

$$Expanding the above equation for D_{t+1}$$

$$D_{t+1}(i) = \frac{D_{t-1}(i) * e^{-\alpha_t * y_i * h_t(x_i)} * e^{-\alpha_{t-1} * y_i * h_{t-1}(x_i)}}{Z_t * Z_{t-1}}$$

$$Expanding till D_1$$

$$= \frac{D_1(i) * e^{-\alpha_t * y_i * h_t(x_i)} * e^{-\alpha_{t-1} * y_i * h_{t-1}(x_i)} \dots e^{-\alpha_1 * y_i * h_{1}x_i}}{Z_t * Z_{t-1} * Z_{t-1} \dots * Z_1}$$

$$= \frac{e^{\sum_t y_t * \alpha_t * h_t(x_i)}}{m * \prod_t Z_t}$$

$$= \frac{e^{-y_i \sum_t \alpha_t h_t(y_i)}}{m * \prod_t Z_t}$$

$$We know that f(x) = \sum_t \alpha_t * h_t(x_i)$$

$$D_{t+1}(i) = \frac{e^{-y_i f(x_i)}}{m * \prod_t Z_t}$$

$$Summing over all i$$

$$\sum_i D_{t+1}(i) = \frac{\sum_i e^{-y_i * f(x_i)}}{m * \prod_t Z_t}$$

$$We know \sum_i D_{t+1}(i) = 1.Substituting and rearranging$$

$$\prod_i Z_t = \sum_i e^{-y_i * f(x_i)}$$

3.

$$\frac{1}{m} \sum_{i=1}^{m} \exp(-f(x_i)y_i) = \prod_{t=1}^{T} Z_t,$$
(3)

suggests that the training error can be reduced rapidly by greedily optimizing Z_t at each step. You have shown that the error is bounded from above:

$$\epsilon_{training} \leq \prod_{t=1}^{T} Z_t.$$

Observe that Z_1, \ldots, Z_{t-1} are determined by the first (t-1) rounds of boosting, and we cannot change them on round t. A greedy step we can take to minimize the training error bound on round t is to minimize Z_t .

In this question, you will prove that for binary weak classifiers, Z_t from

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i)). \tag{4}$$

is minimized by picking α_t as:

$$\alpha_t^* = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right), \tag{5}$$

where ϵ_t is the training error of weak classifier h_t for the weighted dataset:

$$\epsilon_t = \sum_{i=1}^m D_t(i) I(h_t(x_i) \neq y_i).$$

where I is the indicator function. For this proof, only consider the simplest case of binary classifiers, i.e. the output of $h_t(x)$ is binary, $\{-1, +1\}$.

For this special class of classifiers, first show that the normalizer Z_t can be written as:

$$Z_t = (1 - \epsilon_t) \exp(-\alpha_t) + \epsilon_t \exp(\alpha_t).$$

Hint: Consider the sums over correctly and incorrectly classified examples separately.

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i) \exp(-\alpha_{t} y_{i} h_{t}(x_{i}))$$

$$Splitting into with h(x_{i}) \neq y_{i} and h(x_{i}) = y_{i}$$

$$Z_{t} = \sum_{h(x_{i})=y_{i}} D_{t}(x_{i}) e^{-y_{i}*\alpha_{i}*h_{t}(x_{i})} + \sum_{h(x_{i})\neq y_{i}} D_{t}(x_{i}) e^{-y_{i}*\alpha_{i}*h_{t}(x_{i})}$$

$$We \ know \ that \ \epsilon_{t} = \sum_{i=1}^{m} D_{t}(i) I(h_{t}(x_{i}) \neq y_{i}).$$

Additionally we know $e^{-y_i*\alpha_t*h_t(x_i)} = e^{-\alpha_t}$ when $h_t(x_i) = y_i$ and $e^{-y_i*\alpha_t*h_t(x_i)} = Also$ since the classifier is binary we when we classify correctly the error is $(1 - \epsilon_t)$

$$Z_t = (1 - \epsilon_t)e^{-\alpha_t} + \epsilon_t e^{\alpha_t}$$

4. Now, prove that the value of α_t that minimizes this definition of Z_t is given by Equation

$$\alpha_t^* = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right). \tag{6}$$

Using the equation above and taking differential w.r.t α_t and setting to 0

$$\frac{dZ_t}{d\alpha_t} = \frac{d}{d\alpha_t} (1 - \epsilon_t) e^{-\alpha_t} + \frac{d}{d\alpha_t} \epsilon_t * e^{-\alpha_t}$$

$$0 = -(1 - \epsilon_t) e^{-\alpha_t} + \epsilon_t e^{\alpha_t}$$

$$\epsilon_t e^{\alpha_t} = (1 - \epsilon_t) e^{-\alpha_t}$$

$$e^{\alpha_t} = \frac{(1 - \epsilon_t) * e^{-\alpha_t}}{\epsilon_t}$$

$$e^{2\alpha_t} = \frac{1 - \epsilon_t}{\epsilon_t}$$

$$2\alpha_t = \log \frac{1 - \epsilon_t}{\epsilon_t}$$

$$\alpha_t = \frac{1}{2} * \log \frac{1 - \epsilon_t}{\epsilon_t}$$

5. Prove that for the above value of α_t we have $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$. Substituting the values from 1.3 into 1.4

$$Z_{t} = \frac{1 - \epsilon_{t}}{\sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}} + \epsilon_{t} * \sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}$$

$$= \frac{1 - \epsilon_{t}}{\sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}} + \sqrt{\epsilon_{t} * (1 - \epsilon_{t})}$$

$$= \sqrt{\epsilon_{t} * (1 - \epsilon_{t})} + \sqrt{\epsilon_{t} * (1 - \epsilon_{t})}$$

$$= 2 * \sqrt{\epsilon_{t} * (1 - \epsilon_{t})}$$

6. Furthermore, let $\epsilon_t = \frac{1}{2} - \gamma_t$ and prove that $Z_t \leq \exp(-2\gamma_t^2)$. Therefore, we will know

$$\epsilon_{training} \leq \prod_t Z_t \leq \exp(-2\sum_t \gamma_t^2).$$

Hint: $\log(1-x) \le -x$ for $0 < x \le 1$.

Using 1.5 and substituting the value for ϵ_t

$$Z_t = 2\sqrt{\left(\frac{1}{2} - \gamma_t\right) * \left(1 - \frac{1}{2} + \gamma_t\right)}$$

$$= 2\sqrt{\frac{1}{4} - \gamma_t^2}$$

$$= \sqrt{1 - 4\gamma_t^2}$$

$$= e^{\frac{1}{2}\log 1 - 4\gamma_t^2}$$

$$Using \log(1 - x) \le -x$$

$$Z_t \le e^{\frac{1}{2}*4* - \gamma_t^2}$$

$$Z_t \le e^{-2\gamma_t^2}$$

$$\prod_t Z_t \le e^{\sum_t - 2\gamma_t^2}$$

- 7. For every step of AdaBoost in a binary classifier if we have a classifier with $\epsilon_t > 0.5$ then there will always be a classifier which classifies exactly opposite and has an error $1 \epsilon_t$.

 Additionally if $\epsilon_t > 0.5$ we get $\alpha_t < 0$ which will penalize the correct prediction and not the once predicted incorrectly. And since we know that we always converge the weak classifier should have error
- 8. For $\epsilon_t = 0.5$, using the equation for α_t above, we get $alpha_t = 0$. Thus $D_{t+1} = D_t$ thus the error gets stuck.

2. Adaboost on a toy dataset

Now we will apply Adaboost to classify a toy dataset. Consider the dataset shown in Figure 1a. The dataset consists of 4 points: $(X_1:0,-1,-), (X_2:1,0,+), (X_3:-1,0,+)$ and $(X_4:0,1,-)$. For this part, you may find it helpful to use MATLAB as a calculator rather than doing the computations by hand. (You do not need to submit any code though.)

Figure 1: a) Toy data in Question . b) h_1 in Question

Figure 2: a) H1 b) H2 c) H3 d) H4

1. For T=4, show how Adaboost works for this dataset, using simple decision stumps (depth-1 decision trees that simply split on a single variable once) as weak classifiers. For each timestep compute the following:

$$\epsilon_t, \alpha_t, Z_t, D_t(i) \ \forall i,$$

Also for each timestep draw your weak classifier. For example h_1 can be as shown in 1b).

	T=1	T=2	T=3	T=4
E	0.2500	0.1667	0.1000	0.0556
Alpha	0.5493	0.8047	1.0986	1.4166
D	[0.25;0.25;0.25;0.25]	[0.1667; 0.1667; 0.5000; 0.1667]	[0.1;0.1;0.3;0.5]	[0.0556; 0.500; 0.1667; 0.2778]
Z	0.8660	0.7454	0.6000	0.4581

Table 1: Errors and Alphas

- 2. Training error is 0
- 3. The dataset is not linearly separable. Since the dataset is not linearly separable, decision tree can not make a better decision on non-linear dataset.

3. MDL on a toy dataset

Consider the following problem

We provide a data set generated from a particular model with N=64. where we want to estimate

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3$$

We want to use MDL to find the 'optimal' L_0 -penalized model.

1. Estimate the three linear regressions

(We could actually try all possible subsets here, but instead we'll just try three.)

$$y_1 = w_1 x_1$$

 $y_2 = w_1 x_1 + w_2 x_2$
 $y_3 = w_1 x_1 + w_2 x_2 + w_3 x_3$

For each of the three cases, what is

- (a) the sum of square error
 - i) $Err_1 = 1.2779e + 03$
 - ii) $Err_2 = 835.0558$
 - iii) $Err_3 = 834.7418$
- (b) 2 times the estimated bits to code the residual $(n \log \frac{Error}{n})$
 - i) $ERR_bits_1 = 191.6237$
 - ii) $ERR_bits_2 = 164.3914$
 - iii) $ERR_bits_3 = 164.3973$
- (c) 2 times the estimated bits to code each residual plus model under AIC (2*1 bit to code each feature)
 - i) AIC_bits₁ = 193.6237
 - ii) AIC_bits₂ = 168.3914
 - iii) AIC_bits₃ = 170.3673
- (d) 2 times the estimated bits to code each residual plus model under BIC (2*(1/2)log(n)) bits to code each feature)
 - i) $BIC_bits_1 = 195.7826$
 - ii) BIC_bits₂ = 172.7092
 - iii) BIC_bits₃ = 176.8440
- 2. Which model has the smallest minimum description length?
 - a) for AIC:- Model 2 gives minimum MDL
 - b) for BIC: Model 2 gives minimum MDL
- 3. i. Error for model 1 = 1.7786e + 03
 - ii. Error for model 2 = 1.1671e + 03
 - iii. Error for model 3 = 1.1727e + 03