Assignment 4

Mesh Laplacians and Applications

Laplacians

 Discussed in the differential geometry chapter of the mesh processing book.

- Discretizations:
 - Uniform Laplacian (page 44)

$$\Delta f(v_i) = \frac{1}{|\mathcal{N}_1(v_i)|} \sum_{v_j \in \mathcal{N}_1(v_i)} (f_j - f_i)$$

- Cotangent Laplacian (page 46, Assignment 1)

$$\Delta f(v_i) := \frac{1}{2A_i} \sum_{v_j \in \mathcal{N}_1(v_i)} \left(\cot \alpha_{i,j} + \cot \beta_{i,j} \right) \left(f_j - f_i \right).$$

Laplacians

• Properties:

Meancurvature normal property

$$\Delta_{\mathcal{S}} \mathbf{x} = -2H\mathbf{n}.$$

Only true for the Laplacian associated to S!!

Where x are the positional surface coordinates of the surface S, $\Delta_{\underline{\mathcal{S}}}$ is the Laplacian associated to S, H is the mean curvature

Laplacians

- Properties:
 - Very interesting eigenfunctions!

Laplacians: Pros and Cons

- Uniform Laplacian:
 - Simple to implement
 - Numerically stable, as its definition does not take triangle shapes into count.
 - Only a coarse approximation of the Laplace operator
- Cotangent Laplacian:
 - Better approximation of the Laplace operator
 - Degenerates when the triangles degenerate too much.

Implicit Smoothing

- Scheme discussed in the lecture.
- Problem: shrinking!

 Solution: rescale mesh such that the volume is preserved, i.e. scale the mesh with

$$\left(\frac{vol_{old}}{vol_{new}}\right)^{1/3}$$

Implicit Smoothing

Volume of a mesh

$$\sum_{triangles\{p1,p2,p3\}} \langle p1, p2 \times p3 \rangle / 6$$

Unsharp Masking

http://www.multires.caltech.edu/pubs/irrsub.pdf

Examples

 Surface area is minimal under some (boundary) constraints

http://rkneufeld.wordpress.com/2010/10/27/minimal-surfaces-and-the-area-functional-2/

Theory

– Area functional:

$$A(S) = \int_{S} dA$$

Perturbation by some phi

$$A(S+t\phi)$$
 $t \in \mathbb{R}$

- Surface is minimal if

$$\frac{\partial}{\partial t}A(S+t\phi)=0$$
 for all perturbations ϕ

Some Math later....

$$\Rightarrow meancurvature(A) = 0$$

- Your task:
 - Input: a mesh with the correct connectivity
 - Output: mesh with same boundary and zero mean curvature.

- Algorithm: Input mesh S with positions (x,y,z)
 - Solve for zero curvature mesh using the mesh Laplacian L_S

$$L_S(x', y', z') = 0$$
 inside the mesh $I(x', y', z') = (x, y, z)$ On the mesh boundary

- Update: $(x,y,z) \leftarrow (x',y',z')$
- Recompute L_S, solve again, until convergence.

- In General:
 - Compute eigenvectors/ values of Laplacian
 - Reproject onto this new basis

- Problem:
 - Need symmetric Laplacian matrix
 - To guarantee existence of real eigenvectors.
- Adapt cotangent matrix:
 - Instead of

$$\Delta_{ij} = -\frac{1}{\mathcal{A}_i}(cotan(P) + cotan(Q))$$
$$\Delta_{ii} = -\sum_{j \neq i} \Delta_{ij}$$

Use

$$\Delta_{ij} = -\frac{1}{\sqrt{\mathcal{A}_i \mathcal{A}_j}} (cotan(P) + cotan(Q))$$
$$\Delta_{ii} = -\sum_{j \neq i} \Delta_{ij}$$

- Eigen vectors and eigenvalues
 - Relation to frequencies

$$freq = \sqrt{|Eigenvalue|}$$

- Low frequencies = coarse shape
- High frequencies = details
- Spectral filtering, steal image from paper.

 Spectral Filtering. Instead of only projecting onto the eigenfunctions, increase/decrese importance of some frequencies

Example filters.

$$\omega = \sqrt{|Eigenvalue|}$$

The Numerical Side.....

- Linear equations:
 - SciPy Solver: Slow and reliable
 - JMTSolver: Fast, but does not always converge.
 - For this assignment the JMTSolver usually does the job.
- Eigenvalue decomposition:
 - SCIPYEVD.java
 - Calls Python script
 - Works only for small (< 10'000 x 10'000) matrices.

Questions?

