

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (W), Mumbai: 400058, India

(Autonomous College of Affiliated to University of Mumbai)

End Semester Examination

December 2022

Maxi Marks: 100 Duration: 3 hours

Class: SE Semester: III

Course code: CS203/AI203/EC201/DS203 Branch: All Branches

Name of the course: Computer Architecture & Organization

Q No		Max	СО	
		Marks		
Q.1	A Direct Mapped Cache Subsystem needs to be designed having the	12	CO 4	
(a)	following specifications:			
	a) Main Memory Size of 1GB			
	b) Block Size of 16 Bytes			
	c) Cache Memory Size of 64 KB			
	d) Line Size of 16 Bytes			
	Answer the following:			
	1) Address Interpretation by Main Memory			
	2) Address Interpretation by Cache Memory			
	3) Design of Line Entry			
	Draw a neat Conceptual Diagram of the System showing all the blocks.			
	Answer: Address Interpretation by Main Memory			
	DI 111 0011			
	Block bits = 26 bits Word bits = 4 bits			
	Address Interpretation by Cache Memory			
	Page bits = 14 bits Line bits = 12 bits Word bits = 4 bits 3 marks			
	Design of Line Entry			
	Tag bits = 14 bits V bit =1			
	3 marks			
	Conceptual Diagram			
	s+w			
	Cache Main memory Tag Data WO WI W2 B0			
	$s-r$ r w $s-r$ \vdots			
	$\begin{array}{c c} & & & & & & & & & & & \\ \hline & & & & & & &$			
	I if match 0 if no match			
	0 if match 1 if no match (Miss in cache)			
	Figure 4.9 Direct-Mapping Cache Organization 3 marks			

	OR		
	A Two Way Set Associative Cache Subsystem needs to be designed having the following specifications: a) Main Memory Size of 1GB b) Block Size of 16 Bytes c) Cache Memory Size of 64 KB d) Line Size of 16 Bytes Answer the following: 1) Address Interpretation by Main Memory 2) Address Interpretation by Cache Memory 3) Design of Line Entry Draw a neat Conceptual Diagram of the System showing all the blocks. Answer: Address Interpretation by Main Memory		
	Block bits = 26 bits Word bits = 4 bits		
	Address Interpretation by Cache Memory		
	Page bits = 15 bits Line bits = 11 bits Word bits = 4 bits 3 marks Design of Line Entry		
	Tag bits = 15 bits V bit =1		
	Conceptual Diagram		
	Cache Main memory $S = d$		
	Figure 4.14 K-Way Set Associative Cache Organization 3 marks		
.1	Devise the mechanism to implement Virtual Memory Segmentation technique that translates the Virtual Address to its equivalent Physical Address. Your answer must have the supporting diagram of the	8	CO 4

	OR				
	Generate the control signals by using Hardwired control unit design for				
	WMFC signal and MARin signal. Use the following instructions:				
	(i) ADD R1, R2				
	(ii) ADD R1, LOCA;				
	(iii) BRANCH LABEL				
	Control signals for ADD R1, R2(2)				
	Control signals for ADD R1, LOCA(2)				
	Control signals for (i) BRANCH LABEL(2)				
	Hardwired control design for WMFC(2)				
	Hardwired control design for MARin(2)				
	Generation of Control Signals				
	ADD R1, R2 ADD R1, LOCA BRANCH Label				
	1 PC _{out} , MAR _{in} , Read, 1 PC _{out} , MAR _{in} , Read, 1 PC _{out} , MAR _{in} , Read,				
	Select4, Add, Z _{in} Select4, Add, Z _{in} Select4, Add, Z _{in}				
	2 Z _{out} , PC _{in} , Y _{in} , WMFC 2 Z _{out} , PC _{in} , Y _{in} , WMFC 2 Z _{out} , PC _{in} , Y _{in} , WMFC 3 MDR _{out} , IR _{in} 3 MDR _{out} , IR _{in}				
	3 MDR _{out} , IR _{in} 3 MDR _{out} , IR _{in} 3 MDR _{out} , IR _{in} 4 R1 _{out} , Y _{in} 4 Address field of IRout, 4 Offset-field-of-IR _{out} ,				
	MAR _{in} , Read SelectY, Add, Z _{in}				
	6 Z R1 Find 5 R1 _{out} , Y _{in} , WMFC 5 Z _{out} , PC _{in} , End				
	6 MDR _{out} , SelectY, Add, Z _{in} 7 Z _{out} , R1 _{in} , End				
Q.3		10	CO2		
· -	What are the largest and smallest positive, finite, normalized numbers	10	CO2		
(a)	that can be represented as IEEE single precision float? Represent 231.56				
	in IEEE Single Precision Format				
	The largest exponent code is 11111110 i.e. 254 (since 11111111 is reserved). Thus, the largest				
	exponent that can be represented is $254 - 127 = 127$. Thus, the largest (finite) float is $1.11111111111111111111111111111111111$				
	The smallest exponent code for normalized numbers is 00000001 (since 00000000 is reserved).				
	This exponent code has value 1 since it is treated as an unsigned number. Thus, the smallest				
	exponent that can be represented is $1-127=-126$.				
	It follows that smallest (normalized positive) float is $1.000000000000000000000000000000000000$				
	is just 2^{-126} .				
	[5 Marks]				
	Representation of 231.56[5 Marks]				
	127+7 =134 (10000110)				
	OR				
	Prove how Modified Booths (Bit-Pair Recoding) speed-up the				
	multiplication process as compared to Booths Algorithm by Multiplying				
	the Multiplicand (-17) with the Multiplier (21).				
	Comparison of Dit Dair Dacadina and Dactha Alassidhar [4 Maulta]				
	Comparison of Bit-Pair Recoding and Booths Algorithm[4 Marks]				
	Maldalain de Maldalae 17 170 de 1 Metre 17 7010 de 18 17				
	Multiplying the Multiplicand (-17) with the Multiplier (21)[6 marks]	4.0	60.4		
Q.3	A benchmark program is run first on 200 Mhz and then on 300 Mhz	10	CO 1		
(b)	processor. The executed program consists of 1 million instruction				
	execution, with the following instruction mix and clock cycle count:				
	Instruction Type Instruction Count Cycles per				
	Instruction				
	1	1	1		

	Integer Arithmetic	4,00,000	1			
	Data Transfer	3,50,000	2			
			3			
	Floating Point	2,00,000				
	Control Transfer Determine the effective	50,000	2	n Tima Also		
	compare the performa		e and Execution	ii Tillie. Also		
	1. Effective CPI = 108 2. MIPS(200 MHz)=	_	arks]			
	MIPS (300 MHz) = 16					
	3. XTime 1 = 90 ms	-				
	XTime2 = 60 ms 300 MHz processor is	factor by 66%	A markel			
	300 MHZ processor is	Taster by 00%.	4 marksj			
Q.4 (a)	What is the major fundinvolved when the used displayed on the monitorial ways.	er provides input		-	10	CO6
	The major functions of following[5 Marks] categories:	r requirements f	or an I/O modul	le fall into the		
	• Control and timing					
	Processor communicationDevice communication					
	• Data buffering	ion				
	• Error detection					
	The process involved till it is displayed on the			rough the keyboard		
	1 -	=	_	electronic signal		
	1	•	•	board and translated		
	-	tern of the corre		le in the computer		
	<u> </u>	A code character		-		
	device from th		- 4 4 4- 41			
		r interprets the coals to the output		-		
	_	acter or perform		<u> </u>		
0.4	Compare different All	0 0 0 tion == 1!	nd Dolosse Del'	ov for Dec	10	COS
Q.4 (b)	Compare different All Arbitration.	ocation policy a	nu Kelease Poli	cy for bus	10	CO6
	Bus Allocation Policy					
	• Fixed p	Each master is a	assigned a fixed	priority		
	•	Highest priority	master always	gets the bus		
	•		e assigned based	d on the importance		
	Rotatir	of service ng priority				
	•	Priority is not fi	xed			
	•	Several ways of		ity		

	 Increase the priority as a function of 		
	_ · · · · · · · · · · · · · · · · · · ·		
	waiting time		
	 Lowest priority for the master that just 		
	received the bus		
	Fair policies		
	 A fair policy will not allow starvation 		
	 Rotating priority policies are fair 		
	 Fair policies need not use priorities 		
	Fairness can be defined in several ways		
	 A window-based request satisfaction 		
	 Within a specified time period 		
	» In PCI, we can specify the		
	maximum delay to grant a request		
	Hybrid policies		
	Both priority and fairness can be incorporated into		
	a single policy		
	Release Policy[4 Marks]		
	Non-preemptive		
	 Current master voluntarily releases the bus 		
	 Disadvantage 		
	» May hold bus for long time		
	Transaction-based release		
	2. Demand-driven release		
	• Preemptive		
	 Forces the current master to release the bus 		
	l e e e e e e e e e e e e e e e e e e e		
	without completing its bus transaction		
	without completing its bus transaction		
	without completing its bus transaction		
Q.5	without completing its bus transaction Compare Instruction level and Processor level parallelism. Discuss in	10	CO 5
Q.5 (a)		10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards.	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks]	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks]	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] • Read after write (RAW), or true dependency	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency An instruction reads a register or memory location	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency An instruction reads a register or memory location Succeeding instruction writes to the location	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency An instruction reads a register or memory location Succeeding instruction writes to the location Hazard occurs if the write operation completes before the	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency An instruction reads a register or memory location Succeeding instruction writes to the location Hazard occurs if the write operation completes before the read operation takes place	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency An instruction reads a register or memory location Succeeding instruction writes to the location Hazard occurs if the write operation completes before the read operation takes place Write after write (WAW), or output dependency	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency An instruction reads a register or memory location Succeeding instruction writes to the location Hazard occurs if the write operation completes before the read operation takes place Write after write (WAW), or output dependency Two instructions both write to the same location	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency An instruction reads a register or memory location Succeeding instruction writes to the location Hazard occurs if the write operation completes before the read operation takes place Write after write (WAW), or output dependency	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency An instruction reads a register or memory location Succeeding instruction writes to the location Hazard occurs if the write operation completes before the read operation takes place Write after write (WAW), or output dependency Two instructions both write to the same location	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] • Read after write (RAW), or true dependency - An instruction modifies a register or memory location - Succeeding instruction reads data in memory or register location - Hazard occurs if the read takes place before write operation is complete • Write after read (WAR), or antidependency - An instruction reads a register or memory location - Succeeding instruction writes to the location - Hazard occurs if the write operation completes before the read operation takes place • Write after write (WAW), or output dependency - Two instructions both write to the same location - Hazard occurs if the write operations take place in the reverse order of the intended sequence	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] Data Hazards[3 Marks] Read after write (RAW), or true dependency An instruction modifies a register or memory location Succeeding instruction reads data in memory or register location Hazard occurs if the read takes place before write operation is complete Write after read (WAR), or antidependency An instruction reads a register or memory location Succeeding instruction writes to the location Hazard occurs if the write operation completes before the read operation takes place Write after write (WAW), or output dependency Two instructions both write to the same location Hazard occurs if the write operations take place in the reverse order of the intended sequence	10	CO 5
	Compare Instruction level and Processor level parallelism. Discuss in detail data and control pipeline hazards. Compare Instruction level and Processor level parallelism.[4 Marks] • Read after write (RAW), or true dependency - An instruction modifies a register or memory location - Succeeding instruction reads data in memory or register location - Hazard occurs if the read takes place before write operation is complete • Write after read (WAR), or antidependency - An instruction reads a register or memory location - Succeeding instruction writes to the location - Hazard occurs if the write operation completes before the read operation takes place • Write after write (WAW), or output dependency - Two instructions both write to the same location - Hazard occurs if the write operations take place in the reverse order of the intended sequence	10	CO 5

	 Brings instructions into the pipeline that must subsequently be discarded Dealing with Branches: Multiple streams Prefetch branch target Loop buffer Branch prediction Delayed branch 		
Q.5 (b)	RISC uses Harvard Model and CISC uses Von-Neumann Model", Justify the statement. Explain the important design rules of RISC philosophy. Justification of statement with explanation	10	CO 3