Quantum Communication System Based on Temporal Synchronization and Correlated Measurement

Proposal: Quantum Communication System Based on Temporal Synchronization and Correlated

Measurement of Entangled Particles

Author: Ruben Gomez Sandoval

Collaborator: Al Technical Assistance (ChatGPT)

Date: 2025-06-29

Summary:

A conceptual model is proposed for quantum communication without the need for an active classical

channel. The method involves entangled particle pairs distributed between two locations (e.g., Earth

and a rover). Information is encoded not in the particle state but in the temporal pattern of

measurements, using synchronized clocks and pre-agreed timing codes.

Core Mechanism:

1. Entangled Pairs Distribution:

- Both endpoints possess multiple entangled particle pairs (e.g., photons or electrons).

- Measurements at one location have correlated outcomes with the other.

2. Initial Synchronization:

Quantum Communication System Based on Temporal Synchronization and Correlated Measurement

- A shared time reference (astronomical event, atomic clock) defines the starting point.
- Measurement windows begin with long intervals (e.g., 1 day) and are progressively shortened (to
minutes, seconds, microseconds, etc.) depending on system capacity.
3. Temporal Encoding:
- Data is encoded in the time between measurements.
- Example: a pause of 2 seconds = "1", pause of 1 second = "0".
- Both ends measure particles simultaneously based on this timing protocol.
4. Resynchronization:
- The system does not collapse if synchronization is lost; it can be restored.
- Restarts can occur from long time intervals (days) and narrow back down.
Benefits:
- Does not depend on a classical data channel.
- Avoids direct signaling, respecting quantum no-signaling principles.
- Offers potential communication in deep space, military, or isolated environments.
Limitations:

Quantum Communication System Based on Temporal Synchronization and Correlated Measurement

- Requires stable entangled particle generation and low decoherence.
- High-precision clocks and measurement software needed.
- Information transfer is probabilistic and based on mutual understanding of the temporal scheme.
Applications:
- Interplanetary communication (e.g., with rovers on Mars or moons).
- Secure communications in hostile or signal-restricted areas.
- Fundamental experiments in long-distance quantum correlations.
Legal Protection:
© 2025 Ruben Gomez Sandoval. All rights reserved.
This document and idea may not be reproduced, implemented, or patented without explicit
permission of the author.
Hook CHASES
Hash SHA256:
dc9a6986b31191f2238e46c3760482590fe72f27d62025e50220345fbc2edfa0