Best Available Copy

WO9109045

Publication Title:

HEPATOCELLULAR CARCINOMA ONCOGENE

Abstract:

The present invention relates to an oncoprotein specific for hepatocellular carcinomas and to a nucleotide sequence that codes for such a protein. The invention further relates to screening and diagnostic methodologies (and kits based thereon) that make use of the oncoprotein (or antibodies specific for same) and the nucleotide sequence.

Data supplied from the esp@cenet database - http://ep.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

51) International Patent Classification 5:	Γ	JNDER THE PATENT COOPERATION TREATY (PCT) (11) International Publication Number: WO 91/0904
C07H 15/12, C12Q 1/68 C12N 15/00		(43) International Publication Date: 27 June 1991 (27.06.91
21) International Application Number: PCT/US 22) International Filing Date: 13 December 1990 20) Priority data: 451,953 19 December 1989 (19.12 575,524 31 August 1990 (31.08.96) 21) Applicant: THE UNITED STATES OF AMERIC sented by THE SECRETARY, UNITED STA PARTMENT OF COMMERCE [US/US]; Wa DC 20231 (US). 22) Inventor: YANG, Stringner, Sue; 6625 Marywo Bethesda, MD 20817 (US). 34) Agents: OLIFF, James, A. et al.; Oliff & Berric Box 19928, Alexandria, VA 22320 (US).	2.89) UCA, repricted Distribution of Road	(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), ES (European patent), GB (European patent), GB (European patent), GB (European patent), IT (European patent), JP, KR, LL (European patent), NL (European patent), SE (European patent). Published With international search report.

(54) Title: HEPATOCELLULAR CARCINOMA ONCOGENE

(57) Abstract

The present invention relates to an oncoprotein specific for hepatocellular carcinomas and to a nucleotide sequence that codes for such a protein. The invention further relates to screening and diagnostic methodologies (and kits based thereon) that make use of the oncoprotein (or antibodies specific for same) and the nucleotide sequence.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	Pt	Finland	ML	Mali
AU	Australia	FR	France	MN	
88	Barbados	GA	Gabon		Mongolia
BE	Belgium	GB	United Kingdom	MR	Mauritania
BF	Burkina Faso	GN	Guinea	MW	Malawi
BG	Bulgaria			NL.	Netherlands
		GR	Greece	NO	Norway
Ŋ	Benin	RU	Hungary	PL.	Poland
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	SD SD	Sudan
CP	Central African Republic	KP	Democratic People's Republic	SE	
CG	Congo		of Korea		Sweden
CH	Switzerland			SN	Senegal [*]
_	-	KR	Republic of Kores	SU -	Soviet Union
а	Côte d'Ivoire	u	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TC	Togo -
DE	Germany	ш	Luxembourg		_
DK	Dunmark			US	United States of America
		MC	Monaco		
es	Spain	MG	Madepuscar		

HEPATOCELLULAR CARCINOMA ONCOGENE

TECHNICAL FIELD

The present invention relates, in general, to a protein of hepatoma cells, and, in particular, to an oncoprotein that is an amplified gene expression product of hepatoma cells. The invention further relates to a nucleotide fragment coding for the oncoprotein, to a recombinant molecule that includes such a fragment and to cells transformed therewith. The invention further relates to methods of detecting the presence of hepatocellular carcinomas in a patient and to kits based thereon.

5

10

30

35

BACKGROUND INFORMATION

Epidemiological evidence has led to a strong etiological implication of several DNA viruses with the occurrence of certain cancers and other disorders in 15 These include the papillomavirus in cervical humans. carcinoma (HPV 16) and in epidermodysplasia verruciformis (HPV 3 and 8); the Epstein-Barr virus in Burkitt's lymphoma; and the hepatitis B virus (HBV) in human hepatocellular carcinoma (Beasley et al, In: Vyas GN, Dienstag JL, 20 Hoofnagle JH, eds. Viral hepatitis and liver disease. Orlando, FL, Grune and Stratton, 1984, 209-224). observations, together with the correlation of retroviral infection such as HTLV-I in Adult T-cell leukemia asserts the possible role of infectious viruses acting as trans-25 ducing agents in the pathogenesis of these aforementioned human neoplasms and disorders.

The mechanism(s) by which infectious viruses exert their oncogenicity is believed to be mediated by DNA recombination with the host cell DNA. The mammalian genome contains certain genes, designated proto-oncogenes, that can acquire oncogenic properties upon transduction into the genome of acute transforming retroviruses (Bishop, Ann. Rev. Biochem. 1983, 52:301; Bishop, Cell 1985, 42:23). In certain human cancers (e.g. T24 and EJ human bladder carcinoma) it has been well documented that the identified transforming gene (H-ras-1 locus) relates to the v-rasH of the Harvey murine sarcoma virus. Among the

10

15

20

25

30

35

proto-oncogenes and oncogenes, the <u>ras</u> family has been thoroughly characterized and studied with respect to activation and expression in human neoplasms. When a proto-oncogene undergoes point-mutation (e.g. c-<u>rasH</u>) or rearrangement (e.g. n-<u>myc</u>), such changes can lead to a loss of cell regulation in differentiation and growth, and eventually oncogenesis.

Recently, a transforming DNA sequence from a human (Mahlavu) hepatocellular carcinoma, hhc , has been identified and molecularly cloned as part of a large fragment (Yang et al, J. Gen. Virol. 1982, 63:25; Yang et al, Environmental Health Perspectives 1985, 62:231). A number of hhc related DNA clones from several other human hepatocellular carcinomas have been isolated that exhibited nil to moderate cell transforming activity on NIH/3T3 Two have been partially characterized and they are a moderately cell-transforming gene from Mahlavu hepatocellular carcinoma (hhc") and a putative cellular homologue (c-hhc) isolated from normal human liver DNA, which has no cell-transforming activity. The biological activities of two molecular clones of hhc and a Korean hhc and c-hhc have been characterized and compared (Yang et al, Leukemia 1988, 2(12 Supplement):102S). Amplification of the hhc^{H} sequence in the various genomic DNAs of hepatomas from 2 Chinese, one African and 17 Korean sources, was observed and compared with the distribution of integrated HBV DNA sequences in the same hepatomas in order to provide some insight into the possible role of hhc".

The present invention relates to an oncoprotein specific for hepatocellular carcinomas and to a nucleotide sequence that codes for such a protein. The invention further relates to diagnostic and screening methodologies (and kits based thereon) that make use of the oncoprotein (or antibodies specific for same) and the nucleotide sequence.

SUMMARY OF THE INVENTION

It is one object of the invention to provide a

20

35

hepatocellular oncoprotein and a nucleotide sequence coding for same.

It is another object of the invention to provide a diagnostic test for the presence of hepatocellular carcinomas as well as preneoplastic or pathological conditions of the liver.

Further objects and advantages of the present invention will be clear to one skilled in the art from the description that follows.

In one embodiment, the present invention relates to a DNA fragment coding for the amino acid sequence set forth in Figure 1 or an allelic variation of that sequence, or a unique portion thereof.

In another embodiment, the present invention relates to a recombinant DNA molecule comprising:

- i) a vector, and
- ii) the above-described DNA fragment.

In a further embodiment, the present invention relates to a host cell transformed with the above-described recombinant DNA molecule.

In another embodiment, the present invention relates to a nucleotide fragment sufficiently complementary to the above-described DNA fragment to hybridize therewith.

In a further embodiment, the present invention relates to a protein having the amino acid sequence set forth in Figure 1 or an allelic variation of that sequence, or a unique portion thereof.

In another embodiment, the present invention relates to antibodies (polyclonal and/or monoclonal) specific for the above-described protein.

In a further embodiment, the present invention relates to a process of producing the above-described protein comprising culturing a host cell transformed with the above-described recombinant DNA molecule under conditions such that the DNA fragment is expressed and the protein thereby produced; and isolating the protein.

In another embodiment, the present invention

10

15

20

25

30

35

relates to a method of detecting the presence of the above-described protein in a sample comprising:

- i) contacting the sample with an antibody specific for the protein under conditions such that binding of the antibody to the protein can occur, whereby a complex is formed; and
 - ii) assaying for the presence of the complex.

In another embodiment, the present invention relates to a method of detecting the presence of a nucleotide sequence coding for the above-described protein in a sample comprising: i)contacting the sample with a nucleotide fragment sufficiently complementary to the nucleotide sequence to hybridize therewith under conditions such that hybridization can occur, whereby a complex is formed, and

ii) assaying for the presence of the complex.

In a further embodiment, the present invention relates to a method of diagnosing the presence of hepatocellular carcinoma in a patient comprising:

- i) contacting a biological sample from the patient with the above-described antibody under conditions such that binding of the antibody to the protein present in the sample can occur, whereby a complex is formed; and
 - ii) assaying for the presence of the complex.

In another embodiment, the present invention relates to a method of diagnosing the presence of hepatocellular carcinoma in a patient comprising:

- i) contacting nucleic acid sequences derived from a cellular sample from the patient with the above-described nucleotide fragment under conditions such that hybridization can occur, whereby a complex is formed; and
 - ii) assaying for the presence of the complex.

In another embodiment, the present invention relates to a diagnostic kit for detecting the presence of the above-described protein in a sample comprising a container means having disposed therewithin antibodies specific for the protein.

In a further embodiment, the present invention relates to a diagnostic kit for detecting the presence of

- 5 - .

a nucleic acid sequence coding for a protein having the amino acid sequence set forth in Figure 1 or an allelic variation of the sequence, or a unique portion thereof, comprising a container means having disposed therewithin the above-described nucleotide fragment.

BRIEF DESCRIPTION OF THE FIGURES

5

15

20

25

30

35

Figure 1 shows the complete nucleotide sequence of hhc^H, and the amino acid sequence of a 52,000 dalton protein encoded within its open reading frame.

10 Figures 2 shows the construction of hhc^{H} -LacZ chimeric plasmid for the production of the hhc^{H} 52 kD protein.

Figure 3 shows the Aflatoxin B_1 epoxide binding on high molecular weight DNAs prepared from human hepatocellular carcinoma (Mahlavu), human normal liver and from murine (NIH/3T3) fibroblasts.

Figure 4 shows the identification of the dG bound by AFB_1 epoxide within the hhc^M (PM-1) DNA by a modified Maxam-Gilbert sequencing method. Nucleotide sequences are specified on the side. The left panel illustrates ladder for all four 6 deoxynucleotides and AFB_1 -dG; only native dG and AFB_1 -dG were given in all other three panels on the right. $aG = AFB_1$ bound dG at all time; $^{\circ}G = dG$ that was not reacted with AFB_1 ; whereas $^{\circ}G = moderately$ preferred dG.

Pigure 5 shows the kinetic analysis of protein production in <u>E. coli</u> cells harboring pJZ102. Plasmid pJZ102 and control plasmid pJZ101 were cultured in <u>E. coli</u> cells until cell density reached a Klett reading of 80, at which point the inducer, IPTG (final concentration, 10⁻³ mol), was added to activate transcription from the <u>lac</u> promoter for the production of the chimeric hhc^M-<u>lac</u> 52-kD protein. One ml samples of the cultures were removed at specified times, pelleted by centrifugation and lysed, and the proteins were denatured by boiling in Laemmli buffer. Equivalent aliquots of each sample were applied and analyzed by SDS-polyacrylamide gel electrophoresis as

- 6 -

described in (Somerville et al., Structural and Organizational Aspects of Metabolic Regulation: UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 133, p. 181-197. New York: Alan R. Liss, Inc. 1990). The lanes represent: (a) pJZ102 + ITPG at time zero; (b) pJZ102 - ITPG at time zero, and 20 hours (c); pJZ102 + ITPG at 30 minutes (d), 4 hours (e), 7 hours (f), and 20 hours (g). Dark field microscopy of pJZ102 transformed <u>E. coli</u> cells + ITPG at 0 time (a'), 30 minutes (b'), 4 hours (e'), 7 hours (f'), and 20 hours (g'). Prestained molecular weight markers (m) in kD are 130 (faint band on top), 94, 75, 50, 39, 27, 17.

5

10

15

20

25

30

35

Figures 6A and 6B show purified hhck fusion protein p52 produced in bacteria (Figure 6A) and specificity of a polyclonal anti-p52 IqG (Figure 6B). Figure 6A shows the SDS-polyacrylamide gel electrophoresis of bacterially All conditions for the bacterial expresexpressed p52. sion of chimeric hhcM-lac fusion proteins were described in Figure 5. Lanes d, e, and e' represent total cell extracts of pJZ102-bearing R. coli cells (in varying amounts) induced by IPTG and lane f represents the total cell extracts of a negative control pJ2101-bearing E. coli Lanes a $(5\mu l)$, b $(15 \mu l)$ and c $(1\mu l)$ depict different amounts of gel purified p52 that was used to immunize rabbits. Lane m depicts pre-stained molecular markers in kD of 75, 57, 50, 39, 27, 17.

Figure 6B shows the reactivity of a polyclonal anti-p52. Anti-p52 polyclonal IgG was raised by immunizing rabbits. SDS polyacrylamide gel purified p52 at 0.8 to 1.0 mg each was used to immunize the New Zealand White rabbit by standard techniques. Two booster injections were given. Detergent (0.2% SDS) lyzed samples corresponding to 0.2 ml of packed human hepatoma cells (1/3:v/v) including Mahlavu hepatocellular carcinoma, Hp3p21.7 and HPG2, and pBrpM-1 transfected BRL-1 tumor cells and control BRL-1 cells and p52, at 10 µl each were applied to sample well and allowed to diffuse and cross-react overnight against the polyclonal anti-p52 IgG.

- 7 -.

Results were recorded at 48 hours.

5

10

15

20

25

30

35

Figure 7 shows the DNA-DNA hybridization against ³²P-hhc^H DNA.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to an oncoprotein coded for by a transforming nucleotide sequence of hepatocellular carcinomas and to the transforming sequence itself. The invention further relates to unique portions (i.e., at least 5 amino acids) of the oncoprotein, and to nucleotide sequences (fragments) that code for such polypeptides. The invention further relates to nucleotide segments sufficiently complementary to the above-described nucleotide sequences (fragments) to be used as probes for detecting the presence of such nucleotide sequences (fragments). The invention also relates to diagnostic and screening methodologies for use in detecting the presence of hepatocellular carcinomas (as well as preneoplastic or pathological conditions of the liver) in a warm blood animal.

The oncoprotein of the present invention is an amplified gene expression product of hepatoma cells that is specifically related to hepatomas. The protein can have the complete sequence given in Figure 1, in which case it is designated hhc. The protein can also have the amino acid sequence of a molecule having substantially the same properties (e.g., immunological) as the molecule given in Figure 1 (for example, allelic forms of the Figure 1 sequence). Alternatively, the protein (or polypeptide) of the invention can have an amino acid sequence corresponding to a unique portion of the sequence given in Figure 1 (or allelic form thereof).

The protein can be present in a substantially pure form, that is, in a form substantially free of proteins and nucleic acids with which it is normally associated in the liver. The oncoprotein of the invention, including that made in cell-free extracts using corresponding mRNA, and the oncoprotein made using recombinant techniques, can be purified using protocols known in the art. The onco-

10

15

20

25

30

35

protein, or unique portion thereof, can be used as an antigen, in protocols known in the art, to produce antibodies thereto, both monoclonal and polyclonal.

another embodiment, the present invention relates, as indicated above, to nucleotide (fragments) (including cDNA sequences) that encode the entire amino acid sequence given in Figure 1 (the specific DNA sequence given in Figure 1 being only one example), or any unique portion thereof. Nucleotide sequences to which the invention relates also include those coding for proteins (or polypeptides) having substantially the same properties (e.g., immunological) of the hhck polypeptide (for example, allelic forms of the amino acid sequence of Figure 1). The invention further relates to nucleotide segments sufficiently complementary to the above-described nucleotide sequences (fragments) to hybridize therewith (e.g. under stringent conditions).

In another embodiment, the present invention relates to a recombinant molecule that includes a vector and a nucleotide sequence (fragment) as described above (advantageously, a DNA sequence coding for the molecule shown in Figure 1 or a molecule having the properties thereof). The vector can take the form of a virus or a plasmid vector. The sequence can be present in the vector operably linked to regulatory elements, including, for example, a promoter (e.g., the <u>LacZ</u> promoter). The recombinant molecule can be suitable for transforming procaryotic or eucaryotic cells, advantageously, protease deficient <u>E</u>. coli cells.

A specific example of a recombinant molecule of the invention is shown in Figure 2. In this example, the hcc^M nucleotide sequence is placed in a chimeric construct by replacing the codons of the original N-terminus 18 amino acids of the hhc^M p52kD with the procaryote <u>Lac2</u> expression/translation sequence plus codons for 11 amino acids by appropriate recombinant DNA manipulations (Yang et al. Proc. of the XIV Inter. Symp. Sponsored by the International Association for Comparative Research on

5

10

15

20

25

30

35

- 9 - .

Leukemia and Related Diseases Nov. 1989 (Vale, Colorado)). Driven by the Lacz promoter, the resultant chimeric gene is expressed at high levels in a protease deficient <u>E.</u> coli mutant at 30°C. In a further embodiment, present invention relates to a host cell transformed with the above-described recombinant molecule. The host can be procaryotic (for example, bacterial (advantageously E. coli)), lower eucaryotic (i.e., fungal, including yeast) or higher eucaryotic (i.e. mammalian, including human). Transformation can be effected using methods known in the The transformed host cells can be used as a source for the nucleotide sequence described above (which sequence constitutes part of the recombinant molecule). When the recombinant molecule takes the form of an expression system (see specific construct described above), the transformed cells can be used as a source for the oncoprotein.

The oncoprotein and nucleic acid sequence of the present invention can be used both in a research setting (for example, to facilitate an understanding of how and why hepatocellular carcinomas develop) and in a clinical setting to, for example, diagnosis (and/or screening) the presence and/or progress of hepatocellular carcinomas (as well as preneoplastic or pathological condition of the liver).

The diagnostic/screening methodologies referred to above can be carried out using antisera or monoclonal antibodies (produced using known techniques) against the oncoprotein (or unique portions thereof) of the invention. For example, the diagnostic method can take the form of an immunoassay that can be used with urine or serum samples of patients at high risk for hepatocellular carcinoma (e.g. chronic hepatitis carriers) and/or of populations in the geographically identified hot-spots of liver cancer (e.g. Chitung Province of China). The screening immunoassay can be of the simple dip-stick type where binding of one member of the antigen/antibody pair, attached to the stick, with the other member of the pair, present in the

sample, is accompanied by a color change (such dip-stick type assays have been described for use with a variety of binding pairs). Such simple tests would be easily and widely applicable to populations in areas where analytical electrophoresis equipment (required for detecting alphafetoprotein levels in patients' sera, which levels are currently used in screening and diagnosing the presence of hepatocellular carcinomas) may not be readily available.

5

10

15

20

25

30

The diagnostic methods of the invention can also take the form of a histochemical diagnostic tests involving the use of antibodies against the protein or polypeptide of the invention. Such a test can be used on frozen or prefixed liver thin section samples to enable a more definite diagnosis of liver cancer.

The diagnostic methods of the invention can also involve the use of nucleic acid probes sufficiently complementary to a portion of the nucleic acid sequence of the invention to hybridize thereto. Such probes can be used to detect the presence of the endogenous sequence, for example, following electrophoresis of genomic DNA digested with appropriate restriction enzymes. The probe can be labelled, for example, with 32P, to facilitate detection.

The invention further relates to diagnostic/screening kits for use in carrying out the above methods. The kits can comprise, for example, the above-described antibodies specific for the oncoprotein (or polypeptide) of the invention or, alternatively, the above-described nucleic acid probes, together with any ancillary reagents (e.g., buffers, detectable markers, enzyme substrates, etc.) necessary to conducting the test.

The invention is described in further detail in the following non-limiting Examples.

Examples

The following protocols are referenced in the Examples that follow:

Molecular cloning of hhch

Genomic DNA purified from human normal liver and Mahlavu (African) hepatocellular carcinoma (HHC), described below, were subjected to complete digestion by HindIII restriction endonuclease. 5 (Other restriction endonucleases including BamHI, EcoRI and PstI, were also used for isolating genomic DNA fragments from HHC and liver DNA in an attempt to clone HHC DNA sequences; the clones isolated from these efforts were not successful with respect to transfection studies.) 10 The DNA samples both $[^3H]$ aflatoxin B_1 (AFB₁)-epoxide bound (as described below) and unbound, were separated into 180 fractions by polyacrylamide gel electrophoresis. Specificity $[^3H]AFB_1$ -epoxide per μg of DNA was determined. Fractions with significant [3H]AFB1-epoxide specific activity were 15 used in DNA transfection assay on NIH3T3 cells as described below. Fractions showing positive focus formation indicating positive cell transformation, were identified and the parallel unbound DNA fractions were molecularly cloned by ligation onto the HindIII site of pBR322, pBR325 20 and/or Puc 8 plasmid DNAs for transformation of E. coli HB101 cells as described elsewhere (Yang et al., J. Gen. Virol. 1982, 63:25). Primary selection of the resultant clones was thus based on (1) the sensitivity to tetracycline, and/or color change associated with the disruption 25 of the <u>lacz</u> operon containing the B-galactosidase coding sequence of the plasmid; and (2) the capability of celltransformation in transfection assays on NIH3T3 cells with or without AFB_1 binding; (3) the presence of human sequence in colony-hybridization and DNA-DNA hybridization 30 against [32P]probes prepared from human Alu sequence (Lawn et al., Cell 1978, 15:1157) and also [32P] labelled HindIII digested MAH HHC DNA fragments; and (4) [3H] AFB1-epoxide binding on the DNA fragments. After screening over 30,000 clones by these quadruple technical approaches including 35 $[^3H]AFB_1$ binding, transfection assay on NIH3T3 cells and DNA-DNA hybridization against the [32P]Alu and [32P]HindIII

MAH HHC DNA probes, three clones were isolated. One particular 3.1 kb DNA restriction fragment constitutes the hhc^H DNA.

Preparation of plasmid DNA and AFB, binding

5

10

15

20

25

30

35

The clone used in these studies has been referred to as PM-1. Plasmid DNA was prepared by the Holmes' method, i.e. the rapid heating method, followed by CsCl,ethidium bromide isopycnic centrifugation at 180,000xg for 20 hrs (Maniatis et al., Molecular Cloning, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1982). banded PM-1 DNA was then purified free of ethidium bromide by isopropanol extraction and exhaustive dialysis against TEN buffer. A yield of 25 to 50 µg of total plasmid DNA per 5 ml of culture was generally obtained. The 3.1 kb hhc DNA was then separated from PUC 8 DNA and other contaminants by digesting the PM-1 DNA with HindIII endonuclease and then subjecting to agarose gel electrophoresis and electroelution of the separated 3.1 kb band. The resultant 3.1 kb hhc DNA was homogeneously purified and used in AFB, activation experiments.

The hhc^M 3.1 kb DNA was also cloned into a pSVneo vector that carried a murine retroviral (Moloney) LTR, SV40 promoter and part of the T antigen besides the neomycin resistance gene. This clone, rpMpN-1, is expressed at a significantly higher level when transfected into cells and offers special advantages for transfection assay.

[3H]AFB₁ at 15 Ci/mmole specificity was acquired from Morales Laboratory, CA. It was further purified by HPLC to homogeneity and the resultant single peak of [3H]AFB₁ had the specific activity of 9,250 cpm/pmole. It was used in activation reactions with either mixed function oxidases freshly prepared from liver microsomal preparation or by the chemical peroxidation reaction using perchlorobenzoic acid and methylene chloride as described earlier (Bennett et al., Cancer Res. 1981, 41:650; Garner et al., Chem. Biol. Interact. 1979, 26:57). Binding of

- 13 -

[3H]AFB₁ epoxide with either high molecular weight HHC or plasmid DNA was monitored by kinetic analysis (Yang et al. Environmental Health Perspective 1985, 62:231 and Modali and Yang, Monitoring of Occupational Genotoxicants pp. 147-158 (1986)). Samples withdrawn at each time point was washed free of unbound [3H]AFB₁ epoxide with chloroform, and ethanol precipitated prior to redissolving the [3H]AFB₁-DNA in Tris-EDTA-NaCl (TEN) buffer for transfection assay or sequence analysis.

10 Cells, tissue culture and transfection assay

15

20

25

30

35

NIH/3T3 cells, passage 6 to 11, and Buffalo rat liver cells (BRL-1) for transfection assays, were maintained in Dulbecco's modified Eagle's media supplemented with 10% heat-inactivated fetal calf serum, penicillin (50 units ml⁻¹) and streptomycin (25 μ g ml⁻¹) (DMEM) in a 5% CO₂ atmosphere, at 37°C.

DNA transfection was carried out as described earlier (see Yang et al. 1985 and Modali and Yang 1986, referenced above). Optimal conditions were achieved by carefully titrating the pH curve for the DNA-calcium phosphate complex mixture; it was usually found that pH 6.75 ensured a fine complex precipitation.

Preparations of DNA and RNA from tissue culture cells and tumor tissues

Total high molecular weight (HMW) DNA was extracted and purified from tissue culture cells and tumor tissues as described elsewhere (Yang et al., 1985 referenced above). The HMW DNA thus purified, has been subjected to proteinase K digestion, first sequential chemical purification with phenol-cresol, chloroform-isoamyl alcohol, ether and ethanol-NaCl precipitation, followed by RNase digestion and a second sequential chemical purifica-The purified DNAs were then dialyzed against TEN buffer for use in experiments. Total RNA was extracted from tissue culture cells and prepared as described previously (Maniatis et al., 1982 referenced above). A rich RNA was obtained by affinity separation with oligo dT cellulose (Collaborative Research, MA.) column elution.

15

20

25

30

35

Tumorigenesis

Transformed cells, cloned out from the transfected cell culture by either cloning cylinder method or terminal dilution method, were expanded and inoculated at 10⁴ to 10⁶ cells into athymic Swiss nu/nu mice subcutaneously. Tumorigenesis in the challenged mice was monitored closely.

Nucleotide sequence analysis and site-targeted mutagenesis

Nucleotide sequencing of the hhc^M 3.1 kb and

variants produced by site-targeted mutagenesis were
carried out by the standard Maxam-Gilbert Methods in
Enzymology 1980, 65:499 and the Sanger (M13) dideoxy
sequencing methods (Maniatis et al., 1982 referenced
above).

Specified oligonucleotide sequence of 20 mers carrying the targeted dG--->T mutation were synthesized by the Applied Biosystem oligonucleotide synthesizers. They were used as templates in generating the mutated clones. Mutant DNA clones were produced in accordance with the protocol provided by and using the oligonucleotide-directed in vitro system of Amersham (Arlington Hts., IL). DNAs of the mutated clones were verified by nucleotide sequencing. Effects of these site-targeted mutagenized DNA were analyzed by potentiation of cell-transformation in transfection assay on NIH/3T3 cells and RNA expressions in transfected cells using the BRL dot-blot technique (Bethesda Research Laboratory, Rockville, MD).

Example I

Dosimetry of AFB, binding and potentiation of hhc^M cell-transformation capability on NIH/3T3 cells

AFB₁ epoxide binds high molecular weight DNAs prepared from human hepatoma, human liver and mouse NIH/3T3 cells efficiently (Fig. 3). The initial rates in each binding kinetic were extremely rapid. The rates of AFB₁-epoxide binding to human normal liver or hepatoma DNA and to murine NIH/3T3 cell DNA became significantly different after one minute of binding reaction. The MAH HHC DNA showed a greater rate of binding than normal liver

- 15 -

5

10

. 15

DNA and all the dG targets became saturated earlier, whereas AFB1 epoxide bound the normal liver DNA at a slower rate but eventually saturated all the dG targets at a slightly lower level. The human DNAs showed a higher level of AFB₁ binding than the murine NIH/3T3 cell DNA. The overall AFB1 specific activity, i.e. AFB1-dG adduct, was found to be about one dG bound per 10 nucleotides among these high molecular weight double stranded DNAs. This overall specificity also took into consideration the existence of secondary or tertiary structure of the high molecular weight DNAs. AFB1 epoxide binding on linearized 3.1 kb double stranded hhc DNA was consistently found to be 4 to 8 dG bound per 104 nucleotides. binding capability reflects the relatively easy accessibility of dG within the linearized double stranded PM-1 DNA by AFB, epoxide and should not be compared with the efficiency of AFB1-dG adduct formation with high molecular weight native double-stranded DNA.

Within a finite dosimetry the binding of AFB₁
20 epoxide with dG potentiates the cell-transformation capability of hhc^H by 10 to 20 fold as seen in the experiment illustrated in Table 1.

40

Table 1. AFB, Dose-dependent Activation of PM-1 DNA in Transformation of NUB/3T3 Cells

DNA Source	AFTB ₁ femtomole per 100 ng DNA	Number of Foci per 100 ng DNA
hhc ^M (PM-1)	. 0	15 X 10 ⁻¹
C-Ha-ras-1	0	465
c-K-ras-1	0	0
c-hhc (human liver homolog)	0	0
E. coli	0	0
hhc ^M (PM-1) hhc ^M (PM-1)	0 5 14 24 35	15 x 10 ⁻¹ 18 26 66 3
c-hhc	0 8 15 30 40	0 0 0 0 0

AFB₁ binding and transfection assay were as described in Methods. Data were calculated on the basis of per 100 ng. In the assay with unbound hhc^M DNA the transfection assays were carried out with 500 ng to 1.5 ug of DNA in order to obtain reasonable foci formation on NIH/3T3 cells. Transfection with AFB₁-epoxide bound DNA was carried out at a range of 50 to 500 ng DNA. Data were normalized to show potentiation of hhc^M cell-transformation capability by AFB₁-epoxide activation.

Whereas the efficiency of unbound PM-1 DNA in transforming NIH/3T3 cells was usually observed at about 15 FFU/ μ g DNA the efficiency of AFB₁ epoxide activated PM-1 DNA was optimized at 66 FFU/100 ng DNA, an increase of 20 fold. The possibility of non-specific mutagenization accounting for this potentiation were considered. That this potentiation effect was due to free AFB₁ that diffused into the cell or recycling of AFB₁ adducts has been ruled out earlier with the appropriate control experiments which showed that activation of normal liver or <u>E. coli</u> DNA at the same dosimetry failed to activate any cell-transforming capability (Yang et al., 1985 referenced above).

Moreover in this experiment with AFB, activated DNA from c-rask-1 or c-hhc, a normal human liver homolog to hhc as appropriate controls, no cell-transformation NIH/3T3 cells was obtained suggesting that AFB, epoxide activated PM-1 DNA was not a random phenomenon. 5 the AFB1 dose dependency of PM-1 DNA in cell-transformation efficiency (Table 1) further substantiated specificity of AFB, epoxide binding in conferring potentiation of cell-transformation. Whereas dosimetry was seen at 24 femtomole AFB1/100 ng of PM-1 10 DNA, at dosimetry beyond 45 femtomole per 100 ng of PM-1 DNA, an overkill effect was observed. No transformed foci were obtained in NIH/3T3 cells transfected with AFB, epoxide bound PM-1 DNA although human DNA was incorporated 15 into the NIH/3T3 cells in a degraded form (Yang et al., 1985 and Modali and Yang, 1986 referenced above). observation suggested that over activation of PM-1 DNA not only generated scissions in the molecule but possibly degradation leading to a loss of biological activity. 20 was also evident from these results that no more than one or at most a few AFB1-dG adducts per PM-1 DNA molecule could be tolerated by the hhc DNA before the biological activity of the hhc DNA became compromised and at the risk of survival. Moreover the potentiation of hhc DNA in cell-transformation probably necessitates no more than one 25 or at most a finite number of AFB, bindings.

EXAMPLE II

Specificity of the AFB,-epoxide binding on dG's of PM-1 DNA

Deoxyguanine nucleotide of native DNA, when bound by AFB₁ epoxide, became alkali and therefore could be identified by piperidine cleavage; whereas unbound deoxyguanine nucleotide within the same native DNA would not cleave without dimethyl sulfide (alkali) treatment.

Figure 4 shows the dG targets within the PM-1 DNA when bound at a saturation conditions. When the targeted sequences are evaluated in sets of tetranucleotides, an empirical formulation can be derived on the basis of the

10

15

20

25

30

35

binding pattern of AFB, epoxide with the dG's in PM-1 DNA. Table 2 summarizes the nucleotide sequence in a set of tetranucleotides that were seen and targeted by AFB, epoxide. As shown in Figure 4, the dG within a sequence of any one of the following tetranucleotides of AGAG, AGTT, TGTT, TGAT, or AGAA, escaped attack by AFB, epoxide and hence showed no cleavage in the sequence without prior DMS treatment. This is confirmed by the distinct cleavage of dG as a result of AFB, epoxide attack on dG in a sequences of GGGC, CGGC, AGGC, TGGC or CGCG. Upon evaluating the various sequences in which a dG target could be accessed by AFB, epoxide, it can be concluded that within a double stranded DNA, the least likely dG target would be that flanked by dA and dT, i.e. category III. likely dG target would be that flanked by dG and/or dC, i.e. category I, and that tetranuclectide sequences in which dG is either preceded by dA or T and followed by dG and dC would be the moderately preferred targets of AFB; epoxide, i.e. category II. This, of course, does not take into consideration the secondary or the tertiary structure of the DNA in its natural state since these analyses were done on linearized double-stranded DNA. It should also be that whereas mentioned the dG binding affinity of AFB1-epoxide was greatly affected by the vicinal nucleotides in the double-stranded PM-1 DNA, no specificity was observed with respect to AFB1-epoxide binding to dG in single stranded DNA. The observations of Modali and Yang (1986 referenced above) were basically in agreement with others working on AFB1 binding on OX174 and pBR 322 DNAs (Misra et al., Biochemistry, 1983, 22:3351).

Within the past two years, the nucleotide sequence of hhc^M has been resolved by a combination of Maxam-Gilbert nucleotide sequencing technique and the M13 dideoxy method using the BRL kilobase sequencing system. Applying these empirical rules in computer analysis of the hhc^M 3.1 kb nucleotide sequence, the most and moderately preferred dG targets within the various loci of hhc^M have

been predicted (Table 3). Although a maximum number of 60 dG targets was predicted on the basis of AFB₁-epoxide binding studies with linearized 3.1 kb hhc^M DNA, it was evident upon examining the possible secondary and tertiary structure of hhc^M sequence, that a much lower number of dG targets would be accessible by AFB₁-epoxide. Moreover, only a few such induced mutations would produce any effect of survival value.

Table 2. <u>Vicinal Nucleotide Sequence Dictates the dG Targets of AFB,-Epoxide Binding*</u>

Preferred targets Category I	Least Favored Targets Category III
*	*
GGGG	AGAG
GGGC	AGTG
GGGA	AGAA
GGGT	AGAC
	AGAT
CGGG	TGAG
AGGG	TGAC
TGGG	TGAA
	TGAC .
CGGC	TGTG
AGGC	TGTA
TGGC	TGTC
	TGTT
CGGA	1911
AGGA	·
TGGA .	
ican .	·
CGGT	
AGGT	
TGGT	

^{*}This table represents the dG targets of AFB₁-epoxide 30 binding observed in studies with linearized double stranded PM-1 DNA. Moderately preferred dG targets, i.e. Category II, are omitted here but are described elsewhere (Modali and Yang, 1986).

Table 3. Predicted dG Targets within the Nucleotide Sequence of hhc Preferrentially Attacked by AFB₁-Epoxide

5	*	*	# GGCC	*	*	*	* • • • • • • • • • • • • • • • • • • •	*	* G TGGA	*	*
10		* CGG		0000		A AG		C · 16C		TGGG SA TĞ	
						73	·				
					•	74	0.4				
							84		97		
1.5					125				98		
					126						
									201	140	
20						223	}		221		
					•	224					
						307 308	:				
5									371		
<i>-</i>				472	•				391		
										481	
					494					492	
0					495						
						539					550
					560 561				_		
5				577							
					692					0.50	
						901				860	
0		•			1320	1125					
					1321						
									1330	1264	
-										1354 1404	
5			1405		1431						
			1543 1588	•	1471						
)							1.650		1	1637	
					1765		1652				
		1	1853			1815					
		•				1862					
;								1000		1	868
						1986		1878			

Table 3. (con't)

CGCC CGGC GGCC (GGC GGGA AGGA TGCC	TGCG TGGA TGGG GGA
CGGC	ggāa agāa	TGGA TGGG
	2064	
2225	2094	
2205		2315
		2331
	2352	
	2352	2460
2482	•	2400
		2718
		2797
		2884 2926

10

15

20

25

30

35

In order to analyze the possible effect of any such AFB₁ induced dG-->T mutation, site-targeted mutagenesis study of the hhc DNA was initiated using polynucleotides of 20 mers that carried a predicted dG-->dT point-mutation, presumably the result of an AFB1-epoxide mutagenesis. Thus far, only a few of the predicted dG--->dT mutagenesis sites have been analyzed and these are summarized in Table 4. The recombinant construct carrying the hhc^{\aleph} sequence in the SV40 T antigen vector plus a neomycin resistance marker, rpN^rpM-1 was used in this study since it offered the advantage of selecting the transfected cells by its resistance to Gentamicin sulfate (G418), an analog of neomycin. Using expression of hhc specific mRNA as a criterion, we analyzed by Northern dot-blot in a semi-quantitative assay of the mRNA, i.e. poly A enriched RNA, expressed in the G418 resistant NIH/3T3 cells after transfection with the mutagenized $hhc^{\mathtt{M}}$ Focal transformation in these cells was monitored for 4 to 6 weeks.

Results from seven mutagenized clones, for which nucleotide sequence confirmation was available, suggested that, thus far, mutation leading to a structural protein alteration did not seem to potentiate the cell-transformation of hhc^{H} (Table 4). Alternatively the introduced dG-->T mutations which led to amino acid substitution, thus far, have not altered cell-transformation or expression of mRNA levels. These included mutation at 577 which caused an amino acid substitution of Gly--->Val, and mutation at 1005 which resulted in no amino acid substitution because of the wobbling code.

Within the hhc^H nucleotide sequence, there exists an apparent open reading frame, ORF, coding for a polypeptide of about 467 amino acids. This was in good agreement with a 55-57 kD protein and some smaller polypeptide including one 53 kD protein observed in cell-free protein synthesis using hhc^H-specific mRNA in a rabbit reticulo-

15

20

25

cyte lysate system. dG--->T mutations at nucleotide 73 and 74 in the 5' terminus, which bears the consensus sequence for ribosomal RNA binding site just 5' ahead of the first methionine codon, blocked cell transformation although hhc specific mRNA level showed no difference. This could be the result of blocking protein synthesis. Likewise, interpreted as a mutations at 492 and 550 also blocked cell-transformation since a stop codon (UGA) was introduced in each case to stop protein synthesis prematurely.

10

It was of interest to note that dG-->T mutation at 626 generated a sequence resembling the enhancer sequence for RNA polymerase II, which was reported to function even within the coding sequence (footnote of Table 4). level of mRNA level was increased by 1.5 fold and cell transformation seemed to be enhanced by a slight increase in the number of foci per µg of DNA. This observation suggested that one possible action by which AFB, induced mutation in hhc", which itself is a moderately transforming DNA sequence, led to increase in its transformation potential is through augmentation of hhc expression. This is analogous to other observations which also indicated that an elevated expression of the cellular ras proto-onocgene driven by a murine LTR sequence, containing both promoter and enhancer sequence, also led to cell transformation in tissue culture cells predisposed to immortality.

Table 4. The Effect of dG --> dT Mutation Induced by Site-Targetted Mutagenesis Within The hhcH DNA Sequence

# on hhc ^H	Sequence	mRNA Synthesis	Cell Transformation'
73	AGGA> ATGA	+	01
74	AGGA> AGTG	+	_01
492	* TGGG> TGTG	+	-02
550	* GGAG> GTAG	+	-02
577	* GGGC> GTGC	+	+ .
626	* GGGG> GTGG	++	++@ 3
1005	* TGCA> TTCA	+	+

^{@1} Disruption of ribosomal RNA (16S) binding site: AGGA.

@3 Creation of an enhancer sequence: GGTGTGGTAAAG (Watson et al., 1987; Dynan and Tjian, 1985; Schaffner et al. 1985) and hence increases expression.

^{@2} Creation of stop codon: UGA.

[#] Cell transformation was determined by transfection
analysis as described in Methods and mRNA synthesis in
transfected cells was determined by Northern dot-blot
analysis with [32p]3.1 kb hhcH DNA.

WO 91/09045

5

10

15

20

25

30

35

- 26 -.

Example III

HhcM-p52 and anti-p52 and their use as screening and diagnostic reagents for human hepatocellular carcinoma and related liver preneoplastic pathological conditions

Hhc^M-p52 as a fusion protein was produced by a bacterial system described above at high levels (Figure 5). This protein was used to generate a panel of both monoclonal and polyclonal antibodies against related human hepatoma proteins (see Figures 6A and 6B). Anti-p52, a polyvalent antibody against hhc^M-p52 was produced and shown to be highly specific against an African (Mahlavu) hepatoma and a Philadelphia hepatoma (Figures 6A and 6B).

Assays for the presence of hepatoma specific protein p52 in tumor samples entail diffusion and immunoprecipitation using the tumor sample extracts reacted with anti-p52, with or without radioactive or immunofluorescence labels. Further, anti-p52, labelled with either a radioactive compound or with a chromophore, is useful in RIPA or colorchange assays, respectively, for testing for the presence of hepatoma related proteins shed by the patient in sera and urine samples. Fluorescence imagery analysis using anti-p52 conjugated to a fluorescence compound or another suitable compound for systemic perfusion, provide the ability to localize in situ preneoplastic or neoplastic lesions by scanning. Localization of lesions permits laser removal with surgical precision, and/or other treatment.

Hhc^M-p52 nucleotide sequence, labelled appropriately, can be applied to diagnose hepatomas in biopsy samples. Hhc^M-related nucleic acid sequences can be detected in needle biopsy samples of patients suspected of carrying preneoplastic nodules or liver cancer. This is accomplished by the using the polymerase chain reaction to amplify "hhc^M-like" sequences using fragments of the hhc^M-p52 sequence as primers, and then detecting the presence of such hhc^M-like sequences in the biopsy sample with labelled hhc^M-p52 as a probe in a DNA-DNA hybridization

- 27 -·

reaction. Such an example is shown in Figure 7.

5

10

* * * *

The entire contents of all references cited herein are hereby incorporated by reference.

The present invention has been described in some detail for purposes of clarity and understanding. One skilled in the art will appreciate from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention.

15

25

30

WHAT IS CLAIMED IS:

- 1. A DNA fragment coding for the amino acid sequence set forth in Figure 1 or an allelic variation of said sequence, or a unique portion thereof.
- 2. The DNA fragment according to claim 1 wherein said fragment codes for the amino acid sequence set forth in Figure 1, or a unique portion thereof.
 - 3. A recombinant DNA molecule comprising:
 - i) a vector, and
- 10 ii) said DNA fragment according to claim 1.
 - 4. The recombinant molecule according to claim 3 wherein said DNA fragment codes for the amino acid sequence set forth in Figure 1, or a unique portion thereof.
 - 5. The recombinant DNA molecule according to claim 3 further comprising a promoter sequence operably linked to said DNA fragment.
 - 6. A host cell transformed with the recombinant DNA molecule according to claim 5.
- 7. The host cell according to claim 6, wherein 20 said cell is a procaryotic cell.
 - 8. The host cell according to claim 7, wherein said cell is an \underline{E} . coli cell.
 - 9. A nucleotide fragment sufficiently complementary to said DNA fragment according to claim 1 to hybridize therewith.
 - 10. A protein having the amino acid sequence set forth in Figure 1 or an allelic variation of said sequence, or a unique portion thereof.
 - 11. The protein according to claim 10 wherein said protein has the amino acid sequence set forth in Figure 1, or a unique portion thereof.
 - 12. Antibodies specific for said protein according to claim 10.
- 13. The antibodies according to claim 12, wherein said antibodies are polyclonal.
 - 14. A process of producing the protein according to claim 10 comprising

culturing a host cell transformed with a

10

recombinant DNA molecule comprising:

- i) a vector, and
- ii) a DNA fragment coding for said protein under conditions such that said DNA fragment is expressed and said protein thereby produced; and

isolating said protein.

- 15. A method of detecting the presence of the protein according to claim 10 in a sample comprising:
- i) contacting the sample with an antibody specific for said protein under conditions such that binding of said antibody to said protein can occur, whereby a complex is formed; and
 - ii) assaying for the presence of said complex.
- 16. The method according the claim 15 wherein said antibody is linked to a detectable label.
 - 17. A method of detecting the presence of a nucleotide sequence coding for said protein according to claim 10 in a sample comprising:
- 1) contacting the sample with a nucleotide fragment sufficiently complementary to said nucleotide sequence to hybridize therewith under conditions such that hybridization can occur, whereby a complex is formed, and
- ii) assaying for the presence of said 25 complex.
 - 18. The method according to claim 17 wherein said nucleotide fragment is linked to a detectable label.
 - 19. A method of diagnosing the presence of hepatocellular carcinoma in a patient comprising:
- i) contacting a biological sample from said patient with an antibody according to claim 12 under conditions such that binding of said antibody to said protein present in said sample can occur, whereby a complex is formed; and
- 35 ii) assaying for the presence of said complex.
 - 20. The method according to claim 19 wherein said sample is a tissue sample.

- 21. A method of diagnosing the presence of hepatocellular carcinoma in a patient comprising:
- i) contacting nucleic acid sequences derived from a cellular sample from said patient with said nucleotide fragment according to claim 9 under conditions such that hybridization can occur, whereby a complex is formed; and
- ii) assaying for the presence of said complex.
- 22. A diagnostic kit for detecting the presence of the protein according to claim 10 in a sample comprising a container means having disposed therewithin antibodies specific for said protein.
- 23. A diagnostic kit for detecting the presence of a nucleic acid sequence coding for a protein having the amino acid sequence set forth in Figure 1 or an allelic variation of said sequence, or a unique portion thereof, comprising a container means having disposed therewithin said nucleotide fragment according to claim 9.

			1/11				
ATG WET	162 GGT Gly	243 CTC Leu	324 GAC Asp	405 CCC Pro	486 GAG GLu	567 CAC H1s	
AAA	GAG Glu	CAT His	ATG MET	TTC Phe	666 61y	AC Tr	
GGA	GCA Ala	1CC Ser	V E	TTT Phe	GGT Gly	666 G l y	
₽₩	GCT	CTC	ATG MET	AAA Lys	ACA Thr	GCA Ala	
ACA	Pro Pro	AGT	CAC His	동년	9 6 7	F 2	
T₩	GCA Ata	667 Gly	GGA	CAG Gln	CAG Gln	GAG Glu	
ACT	GTG Val	66A 61y	7. P. C.	AAC Asn	CAC His	ATG Met	
ACC	666 61y	GGA Gly	CCT Pro	CCA Pro	AGA Arg	14C	
<u> </u> ₩	TE N	667 Gly	CTG	7. S	AGC	GCC Ata	
TAA A	135 GAC Asp	216 TCA Ser	297 GAG Glu	378 GTG Val	459 AGG Arg	540 GGA Gly	
*E	GTT Val	AGG	TCT Ser	GAG	TCT Ser	ACA Thr	
ACA ATG	GAT Asp	TCA Ser	CTA Leu	ATG MET	CAC	GCC	
ACA	AGG Arg	AGC Ser	AAG Lys	AAA Lys	చి క	GCA	
GCA	ದ	TTG Leu	GAG	ACA Thr	AGC Ser	GCA	
TTA	AGC	द्धाः वर्	otg Val	AAG Lys	פפכ פוץ	TTA Leu	
ACA	AAC Asn	GCT	CAC	AAT Asn	CAA Gln	GG Gly	
≸	GA GLu	AAG Lys	AAA Lys	AGA Arg	ACT	AAT Asn	
ACA	AAT Asn	GCC	CTG Leu	77G Leu	TTG Leu	מזם Val	
27 CAT	108 GCA Ala	189 ACT Thr	270 TGC Cys	351 AGA Arg	432 GCC Ala	513 TCA Ser	
C₩	AAT Asn	AGC	ಚಿ	GGA GLy	CTG Leu	TAC	
GAG	AGA Arg	66C 61y	AAA Lys	TCA Ser	TCC Ser	GCT	
AGA AAA TAT	GGA	GAG ติใน	TCT Ser	TTA Leu	CAT	CAG Gln	
AAA	TGT Cys	GTC Val	AGC	AAA Lys	76G Trp	CTC Leu	
AGA	ACT Tar	CAT HIS	TGC Cys	ATA I le	CTC Leu	ACC Thr	
AA T	∓ ₽	CAG Gtn	GAG GE	ATC 11e	TTC Phe	666 Gly	
ET CT	3 &	GTG Val	TGC Cys	CTG Leu	Ser Ser	166 Trp	
AAG	71G Leu	AAC Asn	TTC Phe	ACT Thr	TH Ph	CTC Leu	
SUBSTITUTE SHEET							

F

SUBSTITUTE SHEET,

$\overline{}$
=
0
$\ddot{\mathbf{c}}$
ت
•
G
\simeq
L

	•			•		
			2/11		_	
648 TTT Phe	729 AGC Ser	810 GGA Gly	891 ATA I le	974 TTA Leu	1053 TGC Cys	1134 TCC Ser
CTT Leu	0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00	TTT Phe	66A 61y	GCT	TGC Cys	CAA
66T 61y	AGC	AAC Asn	GAT Asp	GAG	AAT Asn	ACA Thr
ACG Thr	ATG	AGG Arg	CTC	CAT HIS	ATC I le	AGG Arg
BCC Ala	ATA Ile	ATG NET	충두	CAC His	CAC HIS	3 £
AAG Lys	GAC Asp	GTA Va l	GTG Va (AAA Lys	AAC Asn	ACG Thr
61A Va (C51	AGG Arg	ATG MET	3 1	3 2	AAA Lys
666 Gly	CAC	15C Cys	35.	ATA Ile	1028 5 CAA CAT AAG C 1 Gln HIS Lys P	TTC
GGT GLy	GAG Glu	AAC Asn	GCA Ala	16C Cys	CAT HIS	1107 ACA ACA Thr Thr
621 GAG Glu	702 1GT Cys	783 AGA Arg	864 CAT HIS	947 ACC Thr	102 CAA G1n	11 AC 41 4
CGA Arg	AAG Lys	CAG Gln	زور وام	676 Va l	776 Leu	CTC /
155 rs	AGA Arg	CAT HIS	GCT Ala	AGA Arg	CAC His	AGT
GAT Asp	פפנ פוץ	CAG Gln	CGA Arg	GTG Yal	CTG Leu	GAG G
TGT Cys	AGA Arg	ACA Thr	TCC Ser	GAC Asp	GCT Ata	ACA Thr
AGC	CGA Arg	ACC Tal	CAC His	CGA Arg	GTT Val	AAG Lys
ATA	GGT	676 Va l	GCT	CAC	CAG Gin	AAT Asn
CAG Gln	GAG GLu	CAG Gla	CTG Leu	CTC Leu	CTG Leu	TTA Leu
AAT Asn	55 £	इंट	3	TAC	384	1080 TAC CAC TTA Tyr His Leu
594 1CT Ser	ACC Thr	756 GAA Glu	837 AAA Lys	918 ATC 11e	999 CAG Gln	108 TAC Tyr
GCC	ATG	GAA Glu	GTA Val	666 61y	5 2	SCA Pr
CTT	GTC Val	AAA Lys	TCA Ser	GAG Glu	AAG Lys	TCT Ser
GAT Asp	EAC His	25	TTG Leu	द्धाः हर्	166 1rp	CAT HIS
AGG	20 2 2 2 2 2 2 2 2 2 2	76C Cys	GTG Va l	53 54	ATG MET	CAG Gla
	Ser	AGA	ATC I le	GA Glu	CTG Leu	CTA
GAG Glu	ACA Tar	ACT Thr	Ser Ser	GAG	GAG Glu	AAA Lys
ACT Tar	75 s	CTG	CAA Gln	TAT	ACT Thr	ACA Thr
AAC Asn	CTC	CTT	AAG Lys	GAC Asp	AAG Lys	AAA Lys

			3/11		
1215 ACA Thr	1296 ATA 11e	1377 AAT Asn	1458 CAA Gln	CAC TGA TTT AAA AAA AAA TGA GGC AGG GCT CAG TGG CTC ACA CQT ATA ATC CCA ATA CCT TGG HIS	1620 i AAA i Lys
ATG A	S. S	ACA	Val	CCT	CCA TCT CTA CTG
GAG Glu	ACT CTT (Thr Leu (GAA	GTT VA L	ATA	CTA
GCT A la	ACT	CTG Leu	GCA	₩	TCT Ser
AGT	AAC	ე; გე ე	ATG Met	A JC	CCA Pro
GCC	GCA	i GGA ATT GCA (I Gly Ile Ala i	1431 ATG AAA AGG GAA AGA GTT GTT ATG MET Lys Arg Glu Arg Val Val MET	ATA	1593 CAA CAT GGC AAA ATC CI Gln His Gly Lys Ile Pi
GCT	ATC	ATT 11e	Yal	<u></u>	AAA Lys
GTA GCT Val Ala	GTA Va l	GGA GLy	AGA Arg	ACA	95 15
1188 CAA TCA (Gln Ser /	1270 CAG CAA Glu Gln	1350 CAA GTG (Gln Val (_ 60 50 50 50	CTC	CAT HIS
G 44 E	127 CAG Glu	135 64 64	143 AGG	151 TG	159 CAA Gln
155 T	ATT CTC I	GAC Asp	'AAA Lys	CAG	3 6
AAA Lys	ATT 11e	AAT Asn	ATG	GCT	E C
66A 61y	A ATT ATC ATA AGC A I Ile ILe Ile Ser I	ACA AAG AAT G Thr Lys Asn A	ATG GAA (AGG	1566 CTG AGG TCA GGA GTT CAA GAC TAC CCT Leu Arg Ser Gly Val Gln Asp Tyr Pro
	ATA	충	ATC	<u> </u>	GAC
GAG	ATC	. 161 . Cys	AGA	1	₹5.5
AAT	ATT I le	GTG GAA Val Glu	AGG Arg	₩	GTT
CTC /	15.0	GTG	AAC Asn	₩	66A
1161 GAA AAT (Glu Asn (1248 : TTT AAA (: Phe Lys \	1323 AGG GAG AAA (Arg Glu Lys	1404 GGC TGG GCC A Gly Trp Ala A		6 TCA
116 GA 160	124 TH Phe	132 GAG GLU	140 170	148 TT[156 AGG
CAG	ATC 116	AGG	999		CTG
AAT	AAC	CTC	Ser Ser	185	CAC
AAA	ATC	AGG Arg	GTC	AGA Prg	TAT
ACA Tar	ATC Ile	AGA Arg	GCA Ala	CAC AAA AGA His Lys Arg	TEE
TCT Ser	. GGA	ATA Ile	AAA Lys	CAC H s	. CCA
ACT Thr	Yal	AAG Lys	GAT Asp	GAA CAA Glu Gln	CAG GCA ATG TAT (
ATT Ile	AGG Arg	. GGA GLy	CAG Gln		3
AAA Lys	ATG	AAT Asn	CAC	TTT	GAG
		SUBS	TITUTE SI	HEET	

FIG. 1 (cont.)

1701
ATA CAA GAA TTA GCT GGG CAT GGT GGC AGG TGC CTG CAA TCC CAG CTA CTC AGG AGG CTG AGG CAG GAG AAT CAC TTG AAC
Ile Gin Giu Leu Aig Giy His Giy Arg Cys Leu Gin Ser Gin Leu Leu Arg Arg Leu Arg Gin Giu Asn His Leu Asn

			4/11	•					
1782 AAA Lys	1863 GGA Gly	1944 AAC Asn	2024 GAA Glu	2106 ACA Thr	2187 660 61y	2268 TTA Leu			
Ser	GAA	ATA I le	TGT Cys	AAT Asn	166 17	AGG			
GTC Val	P CA	ည္	ي چ	GGA	1 64	25 s			
TCT Ser	GGC	AAG Lys	TTA Leu	₹ 3	AAA TGA Lys •	CGT Arg			
GAC Asp	ध्र बर्	AAA Lys	A TCA 1 u Ser L	AAG Lys	ಚಿಕ್ಕ	4 7 7			
GGA	ATT Ile	TTG	TTA	AGG Arg	AAC Asn	AGG Arg			
GAG	1836 C AAC AGC TGT ATA ATT GGT GG r Asn Ser Cys Ile Ile Gly GI	1917 IT AAT GTT TCA ATT TTG AAA AAG GA IP Asn Val Ser Ile Leu Lys Lys As	1998 GAT GCA GAT ATA TTA 1 Asp Ala Asp Ile Leu !	2079 IT CAA AAG TAC ACA AGG AAG GA IP GIn Lys Tyr Thr Arg Lys Gl	2160 A CAC TTA AGC AAC A4 A HIS Leu Ser Asn As	2214 CTC TTC AAA AGT GTC AGG TCA CGA AAT AAA TCC ATG CTG AGG ACC Leu Phe Lys Ser Val Arg Ser Arg Asn Lys Ser MET Leu Arg Thr			
1755 TGG GTG ACA G Trp Val Thr G	16T Cys	TCA Ser	GAT Asp	TAC Tyr	AGC Ser	ATG MET			
5 GTG Val	AGC Ser	7 GTT Val	GCA Ala	AAG Lys) TTA Leu	_ 55 rs			
175 166 177	1830 AAC Asn	191 AAT Asn	1999 GAT Asp	207 CAA GIn	2161 CAC H1s	2241 MM Lys			
ಟ್ತ	₽ <u>\$</u>	ACT GAT / Thr Asp /	ᄼᅩᆽᇎ	6 GAG AAA AGA GAT C P Glu Lys Arg Asp G	2) A GTG TGA ATA CAT AGA ACA GCA CA r Val • Ile His Arg Thr Ala Hi	AAT Asn			
ನ್ನ ಕ	AG Ys	ACT Thr	AAT Asn	AGA Arg	ACA Thr	CGA Arg			
ATT Ile	AAA Lys	ATG Met	ATA Ile	AAA Lys	AGA Arg	JCA Ser			
CTC TGC ATT CCA G Leu Cys Ile Pro A	ACC AAA 4 Thr Lys 1	A CTA ATG /	AAT AGG ATA AAT 7 Asn Arg Ile Asn 1	GAG	CAT HIS	AGG			
CTC Leu	AAT Asn	₽ 0	AAT Asn	구드	ATA	GTC			
CAC	AAC Asn	GAA Glu	کے کے	CTG Leu	_₽•	AGT Ser			
1728 CCA AAA TCG Pro Lys Ser I	1809 5 CAC CTC AGG A 1 HIS Leu Arg A	1890 ATG AGA TCT C	1971 CAG CTG AAT 1 GIn Leu Asn S	Ser	78 SE	AAA Lys			
AAA Lys	9 CTC Leu	O AGA Arg	1 CTG Leu	2052 GCA TTG Ala Leu	2133 GTG TCA (Val Ser)	TTC Phe			
	180 CAC HIS	ATG MET	197 CAG Gln						
GAG	E CA	₹3	GCC Ala	55 °C	GAG Glu	TTA Leu			
AGT Ser	GAA Glu	ACA Thr	AAA Lys	AAG Lys	AAA Lys	CCT			
TGC Cys	AAT Asn	AGT	TCA Ser	CAC His	666 Gly	166 17			
666 Gly	AAA Lys	166 Trp	GAT Asp	161 Cys	CAT His	AGT			
AGA	ACA Thr	GAG	ATT ATA Ile Ile	E &	55 61y	AAC Asn			
61y	AAA Lys	AAA	ATT I le	35 T	TAT Tyr	\$			
66A 61y	AAC Asn	GAG ดิโน	AAG Lys	AAT	TAT	CTA Leu			
155 rs	CAA	GAG GLu	CTA Leu	ATA I le	6 4 A Glu	TTC Phe			
	SUBSTITUTE SHEET								

				5/11		•	
2349 GAG	2484 ACG	2565 TTG	2619 AAA TTG AAA AGT TAA AAA TGA ACC CCC AAC AGA ATG TTC CCC TTT ATT TTT	2727 TCT	2808 TTT	2889 TTA	2916 TGA TAA GAT CTG GAC ATG CTA GAT GAA ATC AAA GCC CTG GAT GTC CTT GTT CAA GCT T
1 6T	CAG	010	ATT	Ħ		010	₩.
299	₩	GCT	E	GTA	5	ATG (H
₽ ₩	ATA	₹	g	316	≸	MT /) H
AGA	TAT	ATC	110	¥¥	TTG (3AG /)][
ACT	ATC	TTA	ATG	TGA	CAT	5	JAT (
166	₩	AAG	AGA	E	110	. 916	.TG (
2295 CAC AGT GAA ACG TGT GAG CTT GGA TTA GAT ATA TGC TGG ACT AGA GAA GGC TGT Pro Ser Glu Thr Cys Glu Leu Gly Leu Asp	2376 Gag gtt act ata gtt atg aaa aat gtt aag act tgg aaa atc tat ata aag cag	2511 Aac tit tia ata aac ctg aaa cta tit caa aat gaa aag tia atc caa gct	AAC	2700 TGC ATC CCA TTT TGA GAA GTG GTA TTT	2754 Aaa aaa tat tta aga tct tct ctt ttt aaa gaa tct gtt cat ttg gaa tgt act	2862 Gac ttc act gtg tca gag aat atg	ည္ဟ
ATA	ACT	₽₩I	_ 8	ATC	M)][¥ ₩
2322 GAT / Asp	2457 AAG	2538 CAA (2619 ACC (2700 TGC /	2781 AAA (2862 GAC	2943 ATC (
11A Leu	GTT	E	TGA	2673 GCA TIT TGC TCA GCT ACC ACC CTT CAC	Ш	TAT	₹
6GA Gly	₽₽Ţ	CTA	₹	ETT	CII	ATG	GA
CT1 Leu	₩	AAA	TAA	ACC	TCT	TGA	CTA
GAG Glu	ATG	CTG	AGT	ACC	TCT	2835 Tat tta tcc ttt ttg tta tga atg tat	ATG
TGT Cys	GTT	AAC	AAA	ECT	AGA	116	. CAC
ACG Thr	ATA	ATA	176	1 5	TTA	E	CTG
GAA	ACT	TTA	₩	791	TAT	100	GAT
AGT Ser	6 GTT	1 TT	2592 AAA AGA	3	_ ₹	TTA	
	2376 GAG (2511 AAC	2592 AAA <i>(</i>	267 GCA		2835 TAT 1	
GCT GGA CAA Ala Gly Gln	₩	1 60	AAC	TAT	TTA	ATG	GAA
6.55 S. 25	616	TAC TTT TTT TGC	AAC	aag gac gca gga tat	III	act tgt gaa aat atg	TGA
Ala	₩	Ħ	AAC	₹	AGG	₹	111
666 61y	1GA	TAC	AAC	GAC	101	TGT	₩
Lys A	299	116	4₹	₩	TGT	ACT	aca gaa aac tti
a ACT AAA (GAC AAT GGC TGA AAT GTG AA1	111	AGA AGT TAA AAC AAC AAC AAC	TCA TGT	TTC ATC TGT TCT AGG TTT	E	ACA
₹5	GAC	₩				ATT	GAT
AAG Lys	999	GCA	AGT	CTT	·TCA	7GC	AGA
			SUBS	TITUTE	SHEET		

F16.1 (cont.)

SUBSTITUTE SHEET

SUBSTITUTE SHEET

9/11

mgg ffeedd cmb a

FIG. 5

SUBSTITUTE SHEET

SUBSTITUTE SHEET

11/11

FIG. 7

DNA-DNA HYBRIDIZATION AGAINST (32P)-hhcM DNA

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER (I						
I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) ⁶ According to international Patent Classification (IPC) or to both National Classification and IPC						
TDC(E). COST	ional Patent Classification (IPC) or to both N	ational Classification and IPC				
IPC(5): CO71	H 19/12; C12Q 1/68; C12N	15/00				
II. FIELDS SEARCH	5/27; 435/6; 935/77, 78		·			
Classification System		nentation Searched 7				
		. Classification Symbols				
U.S. C1.	536/27; 435/6; 935/77,	78				
		r than Minimum Documentation its are included in the Fields Searched #				
APS, SIN, Gen Bank, EMBL						
III. DOCUMENTS C	ONSIDERED TO BE RELEVANT					
Category * Citati	on of Document, 11 with Indication, where as	propriate, of the relevant passages 12	Relevant to Claim No. 13			
			 			
issued Clonin Virus and Fu	al of General Virolog 1 1982, Yang et al, " ag of the Endogenous DNA Sequence: Struc Inctional Analysis of Tagments" pages 25-36	Molecular Rat C-type Helper tural Organization -Same Restricted	1-23			
			•			
		<u>:</u>				
		·				
		•				
Special categories of cited documents: 10 "A" document defining the general state of the art which is not considered to be of particular relevance "T" later document published after the International filling date or priority date and not in conflict with the application but cried to understand the principle or theory underlying the investion.						
filing date	but published on or after the international	"X" document of particular relevance	e; the claimed invention			
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another		involve an inventive step	cannot be considered to			
citation of other	special reason (as specified)	"Y" document of particular relovance cannot be considered to involve a	e; the claimed invention			
"O" document referring to an oral disclosure, use, exhibition or other means		document is combined with one ments, such combination being o	of more other such docum			
"P" document published prior to the international filing date but later than the priority date claimed		m (ne art.				
Tocoment member of the same patent family						
IV. CERTIFICATION						
Date of the Actual Com	plotion of the International Search	Date of Mailing of this International Sea	rch Report			
28 January 1991		20FEB 199				
Assembled Combine Automatica						
		Signature of Authorized Officer	•			
ISA/US		mindy B. Husher				
		Mindy B. Fleisher				

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

Ų	BLACK BORDERS
Q	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
P	BLURED OR ILLEGIBLE TEXT OR DRAWING
'	SKEWED/SLANTED IMAGES
	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox