SEMAINE DU 21/11 AU 25/11

1 Cours

Équations différentielles linéaires

- Notion d'équation différentielle Exemples. Ordre d'une équation différentielle. Problème de Cauchy. Équations différentielles linéaires homogènes et avec second membre. Structure de l'ensemble des solutions (solution particulière + solution de l'équation homogène). Principe de superposition.
- **EDL du premier ordre** Solution d'une EDL homogène. Solution d'une EDL avec second membre. Méthode de variation de la constante. Unicité de la solution d'un problème de Cauchy.
- EDL du second ordre à coefficients constants Équation caractéristique. Solution d'une EDL homogène (cas réel et complexe). Unicité de la solution d'un problème de Cauchy. Recherche d'une solution particulière : second membre de la forme $P(t)e^{kt}$ (P polynomiale), passage en complexe dans le cas de fonctions trigonométriques.

Compléments Résolution par changement de variable ou de fonction. Équations fonctionnelles. Problèmes de raccord.

Comparaison de fonctions

Négligeabilité Définition et notation. Critère de négligeabilité : $f = o(g) \iff \lim_{\alpha} \frac{f}{g} = 0$. Règles de calcul et opérations interdites. Changement de variable. Exemples usuels : croissances comparées. Lien avec les limites : $\lim_{\alpha} f = l \iff f = l + o(1)$.

Équivalence Définition et notation. Critère d'équivalence : $f \sim g \iff \lim_{\alpha} \frac{f}{g} = 1$. Lien avec les petits $o: f \sim g \iff f = g + o(g)$. Règles de calcul et opérations interdites. Changement de variable. Équivalents usuels en 0 et formules avec petits o associées. Lien avec les limites : si deux fonctions sont équivalentes alors elles admettent toutes deux la même limite ou elles n'admettent pas de limites ; si l est un réel **non nul** alors $f \sim l \iff \lim_{\alpha} f = l$.

2 Méthodes à maîtriser

- ▶ Résoudre une EDL d'ordre un avec second membre :
 - 1. Résoudre l'équation homogène.
 - 2. Rechercher une solution particulière (utilisation éventuelle de la méthode de variation de la constante).
 - 3. Ensemble des solutions de l'équation avec second membre.
 - 4. Prise en compte d'une condition initiale éventuelle.
- \blacktriangleright Résoudre une EDL d'ordre deux à coefficients constants avec second membre :
 - 1. Résoudre l'équation homogène via l'équation caractéristique.
 - 2. Recherche d'une solution particulière (utilisation éventuelle du principe de superposition)
 - (a) second membre $P(t)e^{\alpha t} \rightarrow \text{solution particulière } Q(t)e^{\alpha t}$
 - (b) dans le cas de fonctions trigonométriques, passage en complexe pour se ramener au premier cas puis retour au problème initial par passage à la partie réelle (cas cos) ou imaginaire (cas sin)
- ▶ Pour les comparaisons de fonctions, on retiendra surtout les erreurs à ne pas commettre :
 - 1. On ne compose pas à gauche.
 - 2. On n'additionne pas des équivalents.
 - 3. On n'additionne pas des relations avec des petits o différents.
 - 4. On ne mélange pas équivalents et petits o dans une même ligne.
- ▶ Passage par les petits o pour déterminer l'équivalent d'une somme.
- ▶ Déterminer des limites à partir d'équivalents ou de petits o.
- ▶ Savoir se ramener en 0 par un changement de variable.

3 Questions de cours

- ▶ Soient a et b deux fonctions impaires continues sur \mathbb{R} . Montrer que toute solution de l'équation différentielle y'+ay=b est paire.
- \blacktriangleright Déterminer les fonctions f dérivables sur $\mathbb R$ telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x)f(y)$$

lacktriangle Déterminer les fonctions f dérivable sur $\mathbb R$ telles que

$$\forall x \in \mathbb{R}, f'(x) = -f(-x)$$

ightharpoonup Déterminer le fonctions f de classe \mathcal{C}^2 sur \mathbb{R} telle que

$$\forall x \in \mathbb{R}, \ f(x) + \int_0^x (x - t)f(t) \ dt = 1$$