GENG 8010-Part 1: Elements of Differential and Difference Equations

Mehrdad Saif (C)

University of Windsor

Winter 2023

GENG 8010-Part 1-Diffal/Diffce Eqs.

<ロト <部ト <きト <きト = 1 Winter 2023

1/239

990

Part I-Outline II

- Complex conjugate roots
- Solution of the non-homogeneous equation
 - Method of undetermined coefficients
 - Variation of parameters
 - Green Functions
- 8 Laplace transforms
 - Definition and transforms
 - Existence and Properties of $\mathcal{L}\{f(t)\}\$
 - System engineering review Response of system
 - Resonance
- Difference equations
 - Difference and anti-difference operators
 - Solution of difference equation
 - System engineering concepts

Part I-Outline I

- Introduction & definitions
- Solution of Differential Equations
 - Existence and uniqueness of the solution
- 3 Solution of first order differential equations
 - Solution by integration
 - Solution using integrating factor
- 4 Linear differential equations
 - Solutions and independent solutions
- Solution of 2nd order homogeneous equation
 - Distinct roots
 - Repeated roots
 - Complex conjugate roots
- Solution of higher order diff. eqs.
 - Distinct roots
 - Repeated roots

Mehrdad Saif © (UWindsor)

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2023

ベロトス部とスミとスミと、意

Part I-Outline III

- Z transform
 - Definitions, transforms, properties
 - Applications of \mathscr{Z}

Mehrdad Saif (C) (UWindsor)

<□ > < □ > < □ > < 亘 > < 亘 > □

Introduction & defenitions I

GENG 8010-Part 1-Diffal/Diffce Eqs.

◆□▶◆圖▶◆選▶◆選▶ ■ Winter 2023

990 5 / 239

Introduction & defenitions II

Math phobic's nightmare

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2023

◆□▶ ◆郵≯ ◆選≯ ◆選≯ ○選

Introduction & definitions

Introduction & defenitions III

Many physical systems' behaviors in science and engineering are described with differential or partial differential equations.

Differential equations

- An equation relating an unknown dependent function and one or more of its derivatives with respect to an independent variable is called a **differential equation**.
- If the DE contains only ordinary derivatives of one or more functions with respect to a single independent variable, then the DE is called to be an ordinary differential equation.
- If the DE involves partial derivatives of one or more functions of two or more independent variables, then it is called a partial differential equation.

Introduction & definitions

Introduction & defenitions IV

Ordinary vs. Partial DE

• Ordinary: dy, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, \dot{y} , \ddot{y} , dx

• Partial: $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial x \partial y}$, u_{xx} , u_{xy}

Order of DE

Order of a differential equation is defined by the order of the highest derivative in the equation.

Introduction & definitions

Introduction & defenitions V

Types of variables

- Variables that denote values of a function are often called the **dependent variables**.
- An **independent variable** is one that may take on any values in the domain of the function which the dependent variables stands for.

《□》《圖》《意》《意》 意

GENG 8010-Part 1-Diffal/Diffce Eqs.

Introduction & definitions

Introduction & defenitions VII

Example—In the previous example

- In (a,c), y is the dependent variable and x is the independent variable.
- In (b), u is the dependent variable and, x, y and t are the independent variables.
- in (d) either x or y can be thought of the dependent variable and then the other would be the independent variable.

Introduction & definitions

Introduction & defenitions VI

Example—Consider the following differential equations

$$\frac{dy}{dx} = e^{2x} + \cos x \tag{a}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial t}$$
 (b)

$$y'' - 2y' + y = \sin x \tag{c}$$

$$4x^3dx - 3ydy = 0 (d)$$

GENG 8010-Part 1-Diffal/Diffce Eqs.

Introduction & definitions

Introduction & defenitions VIII

Example-

$$\frac{dy}{dx} = 3y \tag{e}$$

or

$$\frac{d^2y}{dx^2} - 6x\frac{dy}{dx} + 3xy = \cos(x) \tag{f}$$

In the above y(x) is a function of x. Hence

- y is dependent variable
- x is independent variable

The order of the differential equation is the order of the highest derivative that appears in the equation. So

- Equation (e) is first order
- Equation (f) is a second order differential equation

Introduction & definitions

Introduction & defenitions IX

Differential Form

A first order differential equation in differential form

$$M(x, y)dx + N(x, y)dy = 0$$

Example—Consider

$$(2y+3x)dx+2dy=0$$

by assuming that y is the dependent variable and the fact that differential dy is defined as dy = y' dx, we get

$$\frac{dy}{dx} + y + \frac{3}{2}x = 0$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

GENG 8010-Part 1-Diffal/Diffce Egs.

General vs. Normal Form

Introduction & defenitions X

• General Form of an *nth* order ordinary equation in one dependent variable

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

• Assuming that it is possible to solve for the highest derivative. Then the **Normal Form** of the differential equation is

$$\frac{d^{n}y}{dx^{n}}=f(x,y,y',\cdots,y^{(n-1)})$$

GENG 8010-Part 1-Diffal/Diffce Eqs.

Introduction & definitions

Introduction & defenitions XI

Linear vs. Non-Linear DE

Linearity is a property of differential equations which relates to the relationship of the function to its derivatives. For our purposes, linearity is not affected by anything happening to the independent variable

- Linear terms: $t\dot{y}$, t^3y , $t^2\ddot{y}$, $cos(t)\dot{y}$, $e^{-2t}\ddot{y}$.
- Nonlinear terms: y^3 , yy, sin(y)y, uu_y , u_tu_y .

Introduction & definitions

Introduction & defenitions XII

Example—Consider the following equations

$$y'' + 5xy' - 8y = \sin x$$
 Linear despite the term xy'
 $y'' + 4yy' - 10y = \cos x$ nonlinear because of yy'

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial v}{\partial t} + u + v = \sin u$$

This last equation is linear in v but nonlinear in u because of $\sin u$ so the equation is nonlinear.

Introduction & definitions

Introduction & defenitions XIII

" ... and according to the legend, there are many, many applications at the other end of the rainbow!"

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2023

17 / 239

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2023

◆ロト ◆部 ▶ ◆注 ▶ ◆注 ▶ 注 り へ ②

Introduction & definitions

Introduction & defenitions XV

Electric (DC) motor driving an inertial load

$$V = Ri + L\frac{di}{dt}V_{emf} \Longrightarrow \frac{di}{dt} = -\frac{R}{L}i(t) - \frac{K_e}{L}\omega(t) + \frac{1}{L}V$$

$$J\frac{d^2\theta}{dt^2} = K_ii - K_d\frac{d\theta}{dt} \Longrightarrow \frac{d\omega}{dt} = -\frac{1}{J}K_d\omega(t) + \frac{1}{J}K_ii(t)$$

Introduction & defenitions XIV

Quarter car active suspension system

The equations of motion for this system are

$$m_s \ddot{z_s} = -b_s (\dot{z_s} - \dot{z_u}) - k_s (z_s - z_u) + f_a$$

 $m_u \ddot{z_u} = b_s (\dot{z_s} - \dot{z_u}) + k_s (z_s - z_u) - f_a + b_t (\dot{z_r} - \dot{z_u}) + k_t (z_r - z_u)$

Mehrdad Saif © (UWindsor)

Introduction & definitions

Introduction & defenitions XVI

Li-ion battery in electrified vehicles

(ロ) (回) (注) (注) (注) () () () ()

Introduction & defenitions XVII

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2023

《中》《圖》《意》《意》

990 21 / 239

Introduction & definitions

Introduction & defenitions XIX

Horizontal Equations of Motion

The forces on each floor must balance. Hence the system of equations for the overall three stories would be

$$M\ddot{x} + K_{x}x = -M1\ddot{x_{g}}$$

$$\begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} \begin{bmatrix} \ddot{x_1} \\ \ddot{x_2} \\ \ddot{x_3} \end{bmatrix} + \begin{bmatrix} k_{x_1} + k_{x_2} & -k_{x_2} & 0 \\ -k_{x_2} & k_{x_2} + k_{x_3} & -k_{x_3} \\ 0 & -k_{x_3} & k_{x_3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = -\boldsymbol{M} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \ddot{x_g}$$

Introduction & defenitions XVIII

Simplified multi-story shear building model

A multi-degrees of freedom model of a building where only the x and yhorizontal sway motions and the z vertical motion of each floor is considered.

Mehrdad Saif (C) (UWindsor)

GENG 8010-Part 1-Diffal/Diffce Eqs.

◆□▶◆御≯◆選≯◆選≯・選 Winter 2023

Introduction & definitions

Introduction & defenitions XX

Vertical Equations of Motion

Figure 4: Vertical Motion

$$M\ddot{z} + K_z z = -M1\ddot{z_\sigma}$$