THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA

Department of Electrical and Computer Engineering

ELEC 318 Electromagnetic Fields

HW #8, due April 2nd, 2015

Reading Assignment: Chapter 6 (all)

Chapter 7 (Section 7.1)

Written Assignment:

1. A circular conducting loop lies in the *x-y* plane as shown in the figure. The loop as a radius of 20 cm and a resistance of $R = 4 \Omega$. The magnetic flux density is $40 \sin \left(10^4 t\right) \hat{\mathbf{z}}$ mWb/m².

Determine the current induced in the loop.

2. A coil comprises 50 turns of wire wrapped around a square frame with each side measuring 20 cm. The coil is centered at the origin on plane z = 0 such that its sides are parallel to the x and y axes.

The loop is subject to the magnetic flux density $2\cos(y)\cos(10^3t)\hat{z}$ Wb/m². Determine the voltage induced in the coil.

- 3. At a frequency of 1 GHz, calculate the ratio of conduction current density (magnitude) to displacement current density (magnitude) for
 - (a) distilled water ($\mu = \mu_0$, $\varepsilon = 81\varepsilon_0$, $\sigma = 2 \cdot 10^{-3}$ S/m),
 - (b) seawater ($\mu = \mu_0$, $\varepsilon = 81\varepsilon_0$, $\sigma = 25\,\mathrm{S/m}$), and
 - (c) limestone ($\mu = \mu_0$, $\varepsilon = 5\varepsilon_0$, $\sigma = 2 \cdot 10^{-4} \text{ S/m}$).
- 4. In a region of free space, the electric flux density is $D_0 \cos(\omega t + kz) \hat{\mathbf{y}} \cdot \mathbf{C/m^2}$.

Write an expression for the magnetic flux density.

5. The rectangular conducting loop shown in the figure rotates at 3000 revolutions per minute in a uniform magnetic flux density of $75\,\hat{\mathbf{y}}\,$ mWb/m². The internal resistance of the loop is $2\,\Omega$.

Determine the maximum current induced in the loop.

