

M1 E3A - Voie André Ampère

411

CONVERSION D'ÉNERGIE

Enseignant:
MOHAMED GABSI & FABIEN
ADAM & JAVIER OJEDA

Rédigé par: Pierre-Antoine Comby

Table des matières

1	\mathbf{Ma}	chine :	Synchrone 2 5 Conversion DC-AC: onduleur de tension	7				
	1	Princi	pe fondamentaux : de la cellule de commutation au bras d'onduleur	7				
		1.1	Principes	7				
		1.2	Sources d'alimentation électrique	7				
		1.3	Interrupteur de puissance	9				
		1.4	Règle d'association des sources	10				
	2	Conve	ersion DC- AC	10				
		2.1	Introduction	10				
		2.2	Structure d'onduleur monophasé	12				
	3	Ondul	leur de tension triphasé	15				
		3.1	Structure	15				
		3.2	Commande	15				
		3.3	Vue de la charge triphasé équilibrée, neutre non relié	15				
3	Mo	Modélisation des alternateurs synchrones en vue de la commande 17						
	1	Intro		17				
	2	Modèl	le de commande	17				
	3	Coupl	age réseau	17				
	4	Schém	na équivalent Behn-Eschenburg	17				
		4.1	Diagramme de Fresnel	17				
4	Pui	issance	e à la sortie d'un alternateur synchrone et pont de diode 519					
O	ndule	eur de	tension piloté en courant et échange de puissance dans le repère					
de	Par	k		21				

Machine Synchrone

Mohamed Gabsi, beaucoup trop de figure pour se faire en \LaTeX

Conversion DC-AC: onduleur de tension

1 Principe fondamentaux : de la cellule de commutation au bras d'onduleur

1.1 Principes

- ullet Conversion statique (Énergie électrique \to Énergie électrique) : adapter les tensions, les courants (mettre en forme, modifier les amplitudes) pour gérer les transferts de puissances.
- Connexion séquentielle en commutation

Sortie Entrée	DC	AC	
AC	Redresseur (non) comman-	Gradateurs Cyclo-	
	dés	convertisseurs	
DC	Hacheurs alimentation à dé-	imentation à dé- Onduleurs de tension com-	
	coupage	mutateur de courant	

• Composants

- Sources d'alimentation électrique (tension et courant)
- Élements passifs (Inductance, transformateur, condensateur, PAS de résistances)
- Interrupteur de puissance

1.2 Sources d'alimentation électrique

Il existe théoriquement 2 type de sources :

- source de tension
- source de courant

pour deux régimes de fonctionnement

- régime statique
- régime dynamique/ instantanée.

1.2.1 Régime statique

source de tension

Définition

Une source de tension impose la tension quelque soit le courant et on a

$$\lim_{f \to 0} \left| \frac{\delta V}{V_0} \right| << \lim_{f \to 0} \left| \frac{\delta I}{I_0} \right|$$

$$i_v \quad V_v$$

Source de courant

Définition

Une source de courant impose le courant quelque soit la tension à ses bornes à puissance limitée et on a

$$\lim_{f \to 0} \left| \frac{\delta I}{I_0} \right| << \lim_{f \to 0} \left| \frac{\delta V}{V_0} \right|$$

$$i_v \quad V_v$$

Source instantanées

de tension

Définition

une source instantanée de tension est un dipôle capable de limiter les variations de tension en présence de variation instantanée de courant.

$$\lim_{f \to \infty} \left| \frac{\partial V_v}{\partial I_v} \right|_{V_0, I_0} << \left| \frac{V_0}{I_0} \right|$$

$$i_v$$

$$V_v$$

De courant

Définition

une source instantanée de courant tension est un dipôle capable de limiter les variations de tension en présence de variation instantanée de courant.

$$\lim_{f \to \infty} \left| \frac{\partial V_v}{\partial I_v} \right|_{V_0, I_0} << \left| \frac{V_0}{I_0} \right|$$

$$i_v$$

$$V_v$$

Remarque Toutes les sources "réelles" sont limitées en puissance.

1.2.2 Règle d'association

Pour une source de tension

- jamais en court-circuit
- peut être ouverte

Pour une source de courant

- jamais ouverte
- peux être court-circuitée

Exemple de sources Statique selon leur réversibilité

	réversible en	irréversible en
	tension	tension
réversible en courant	machine	batterie
	électrique	
irréversible en courant		pile

1.3 Interrupteur de puissance

On utilise des semi-conducteur de puissance pour construire des interrupteurs de puissances.

$$v_k$$

$$K$$
 fermé : $v_k = 0$, $i_k \neq 0$, K ouvert $v_k \neq 0$, $i_k = 0$

Proposition

411

C'est la commutation qui dissipe de la puissance :

$$w_k = \int_{t_{com}} v_k(t)i_k(t) \ge 0$$
M1 IST-E3A

Exemple d'interrupteur de puissance

diode , transistor IGBT, mosfet à chaque fois , caractéristique statique, symbole , convention fléchage Le transistor IGBT fonctionnent aux alentour de 10kHz

1.4 Règle d'association des sources

Définition

un interrupteur:

- ne doit jamais court-circuiter une source de tension
- peux ouvrir une source de tension
- ne doit jamais ouvrir une source de courant
- peux court-circuiter une source de courant

FIGURE 2.1 – Cellule de Commutation

Exemple Les deux interrupteurs fonctionnent en opposition pour respecter les règles d'associations.

C'est la structure de base d'association de source!

2 Conversion DC- AC

2.1 Introduction

Les onduleurs de tension sont très variés (large plage de fréquence, frequence, et/ou tension variable ...)

2.1.1 Modulation de largeur d'impulsion

on controle la structure suivante :

FIGURE 2.2 – Cellule de commutation commandée

Définition

On définit une fonction de modulation tel que :

$$f_m(t) = \begin{cases} 1 & \Longrightarrow v_s = U_{DC} \\ 0 & \Longrightarrow v_s = 0 \end{cases}$$

Proposition

On a en sortie

$$\left\{ i_s = f_m I_{DC} v_s = f_m U_{DC} \right\}$$

MLI naturelles Hysterisis

MLI calculée, répétée Lecture de table, MLI vectorielle, comparaison avec triangle.

2.1.2 Grandeur filtrée et moyennée

On rappelle la définition d'une valeur moyenne :

Définition
$$X = \langle x(t) \rangle = \frac{1}{T_{dec}} \int_{T_{dec}} x(t) dt$$

Proposition (Cas de la MLI)

On a le rapport cyclique

$$\alpha = \frac{m(t)}{A}$$

alors:

$$V_S = \langle v_s(t) \rangle = U_{DC} \langle f_m(t) \rangle = \alpha U_{DC} = \frac{m(t)}{A} U_{DC}$$

2.2 Structure d'onduleur monophasé

objectif: Piloter $v_s(t)$, avec les contraintes suivantes:

- $\alpha \in [0, 1]$
- A = 1
- $m(t) = \frac{1}{2} + \frac{m_0}{2} sin(\omega_0 t)$

On a alors:

$$\boxed{V_s(t) = \frac{U_{DC}}{2} + \frac{U_{DC}}{2} m_0 sin(\omega_0 t)}$$

2.2.1 Montage en demi-pont

FIGURE 2.3 – Structure en demi-pont

La tension est sinusoidale pure dans la charge :

$$v_o(t) = (2f_m - 1)\frac{U_{DC}}{2} = \pm \frac{U_{DC}}{2}$$

a) pleine onde:

Proposition

On a
$$V_{oeff} = \frac{U_{DC}}{2}$$
 et $V'_{oeff} = \frac{4}{\pi} \frac{U_{DC}}{2\sqrt{2}} \simeq 48\% U_{DC}$
On a un THD de 48%.

b) MLI:

$$V_0(t) = V_0 sin(\omega t) \text{ et } f_0 \ll f_{dec}$$

$$m(t) = \frac{A}{2} + \frac{V_0}{U_{DC}} sin(\omega_0 t)$$

$$\alpha(t) = \frac{1}{2} + \frac{V_0}{U_{DC}} sin(\omega_0 t)$$

On définit :

N Indice de modulation $\frac{f_{dec}}{f_0} > 1$ r taux de modulation $\frac{2V_0}{U_{DC}} < 1$

l'analyse spectrale de $v_0(t)$ donne :

FIGURE 2.4 – On a tout interet à prendre N>>1

2.2.2 Montage en pont complet

cette fois ci on a le montage :

Proposition

$$\overline{v_{s1}} = f_{m1}\overline{U}_{DC}$$
 et $v_{s2} = f_{m2}U_{DC}$
$$v_0 = (f_{m1} - f_{m2})U_{DC}$$

a) Commande bipolaire

Définition -

Pour une commande bipolaire on a besoin que d'une fonction de modulation:

$$f_{m2} = 1 - f_{m1} = \overline{f_{m1}}$$

- b) Commande unipolaire
 - pleine onde

Proposition

Avec une commande bipolaire sur un pont complet on a :

- amplitude $2 \times$ plus grande qu'en 1/2 pont.
- courant non sinus
- pas de réglage d'amplitude

• MLI

c) Commande unipolaire (3 états)

Définition

En commande unipolaire, $f_{m1} \neq f_{m2}$ et on peux avoir trois états pour la charge.

3 Onduleur de tension triphasé

3.1 Structure

[Schéma]

3.2 Commande

- pleine onde cf TD3
- MLI
- 3.3 Vue de la charge triphasé équilibrée, neutre non relié

On a les équations :

$$\begin{bmatrix} v_{1N'} \\ v_{2N'} \\ v_{2N'} \end{bmatrix} = \frac{U_{DC}}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} f_{m1} \\ f_{m2} \\ f_{m3} \end{bmatrix}$$

et:

$$m_i = \frac{A}{2} + \frac{Ar}{2}\sin\left(\omega_0 t - (i-1)\frac{2\pi}{3}\right)$$

puis:

$$v_{iN'} = r \frac{U_{DC}}{2} \sin\left(\omega_0 t - (i-1)\frac{2\pi}{3}\right)$$

Alors:

$$V_{0fonda}^{eff} = \frac{1}{\sqrt{2}} \frac{2}{2\pi} \int_0^{2\pi} V_0(\theta + \beta/2) \cos(\theta) d\theta$$
$$= \frac{4U_{DC}}{\sqrt{2}\pi} \int_0^{\beta/2} \cos(\theta) d\theta$$
$$= \frac{4U_{DC}}{\sqrt{2}\pi} \sin(\beta/2)$$

MLI: 1 porteuse, 2 modulantes

Modélisation des alternateurs synchrones en vue de la commande

- 1 Intro
- 2 Modèle de commande
- 3 Couplage réseau

$$\frac{d(i)}{dt} = -[L]^{-1}[R](i) - [L]^{-1} \left\{ (v) - p\Omega \frac{d(\Phi_0)}{dt} \right\}$$

On a donc égalité des amplitudes et des phases pour la vitesse :

$$(v) = p\Omega \frac{\mathrm{d}(\Phi_0)}{\mathrm{d}t}$$

4 Schéma équivalent Behn-Eschenburg

Hypothèse

- RPS sinus
- MS non saturé , pole lisse , éuilibré

$$\underline{E} = (j\mathcal{L}\omega + R)\underline{I} + \underline{V}$$

4.1 Diagramme de Fresnel

On considère l'origine de phase sur V et on se place en alternateur ie $\delta = Arg(E) - Arg(V) > 0$

4.1.1 Surexcitation

[schema fresnel]

Proposition

$$||E|| > ||V||$$
 on a alors :
$$\begin{cases} P > 0 \\ Q > 0 \end{cases}$$

4.1.2 Sousexcitation

[schema fresnel]

Proposition

$$||E|| < ||V||$$
 on a alors :
$$\begin{cases} P > 0 \\ Q > 0 \end{cases}$$

Puissance à la sortie d'un alternateur synchrone et pont de diode

Onduleur de tension piloté en courant et échange de puissance dans le repère de Park