Thapar Institute of Engineering and Technology, Patiala

Department of Computer Science and Engineering

B E- COI	E, CSE (3 rd Year) Auxiliary Course Code: UCS701	Course Code: UCS701 Course Name: Theory of Computation Faculty Name: Dr. Avadh Kishor	
Time: 2			
Vote: Al Q1(a)	Il questions are compulsory. Assume missing data, if any, suitably. Construct a DFA for the language of strings whose digits add to a multiple of $(\Sigma = \{0,1,2,\cdots,9\})$	f 3	
Q1(b)	Consider the language $L = \{w \in \{0,1\}^* \text{next-to-last symbol of } w \text{ is } 0\}$. Wri a regular expression for L and convert the regular expression into NF (using Thompson's construction).		
Q2(a)	Convert the following NFA into DFA	(5)	
Q2(b)	$q_0 \qquad 0 \qquad q_1 \qquad 1 \qquad q_2$ Show that the language $\{0^n1^{2n+5} n\geq 0\}$ is not regular.	(5)	
4 -(~)		(0)	
Q3 (a)	Design a Moore machine for detecting a sequence 1010 where overlappi sequences are also accepted.	ng (5)	
Q3(b)	 i. Give a CFG for the language {aⁿba^m m = 2n, n ≥ 0}. The alphabis {a, b}. ii. What is an ambiguous grammar? Explain with example. 	bet (2+	
Q4(a)	Convert the following grammar into CNF $S \rightarrow bA/aB$ $A \rightarrow bAA/aS/a$ $B \rightarrow aBB/bS/a$	(5)	

Define concept and working of PDA. Justify the argument that "NPDA is

an instantaneous description for M while accepting the string "aaabbb".

definition, and describe three features of the Turing machine that make it

Consider a Turing machine M that accepts the language $\{a^nb^n|n \ge 1\}$. Show (5)

Describe the basic model of the Turing machine, including its formal (2+3)

more power than DPDA" (you can take suitable example to explain).

Q4(b)

Q5(a)

Q5(b)

more powerful than the PDA.

(2+3)