Life Cycle Plan (LCP)

TipSure.com

Team 09

Jonathan Tuse, Project Manager
Raymond Feng, Life Cycle Planner and IIV&V
David Brenn-Cogen, Operational Concept Engineer
Aayushi Birla, Prototyper
Tej Trivedi, System Architect
Nirupama Vaidyanathan, Requirements Engineer
Linkun Li, Feasibility Analyst

Version History

Date	Author	Version	Changes made	Rationale
09/28/14	RF	1.0	• Template used from ICSM website, added Section 3: Skills on page 3-4	• To understand the roles and skills of the development team for future planning and progress
10/11/14	RF	1.1	• Sections 1-5 completed	• To understand the current project progress
10/18/14	RF	1.2	• Sections 6.1 completed, edited sections 3 and 5.	To understand development milestones and goals
11/30/14	RF	2.0	• Sections 6.2-6.3 completed	To provide feedback on our CCD results
12/4/14	RF	2.1	• Sections 1-2 updated	• Finalize statement of the document

Table of Contents

Life Cycl	e Plan (LCP)	i
Version 1	History	ii
	Contents	
	Tables	
Table of	Figures	
1.	Introduction	1
1.1	Purpose of the LCP	1
1.2	Status of the LCP	1
1.3	Assumptions	1
2.	Milestones and Products	2
2.1	Overall Strategy	2
2.2	Project Deliverables	3
3.	Responsibilities	6
3.1	Project-specific stakeholder's responsibilities	6
3.2	Responsibilities by Phase	6
3.3	Skills	8
4.	Approach	.10
4.1	Monitoring and Control	.10
4.2	Methods, Tools and Facilities	.10
5.	Resources	
6.	Iteration Plan	.16
6.1	Plan	.16
6.2	Iteration Assessment	.18
63	Adherence to Plan	18

Table of Tables

-
4
5
-
ĺ
-
5

Table of Figures

No table of figures entries found.

1. Introduction

1.1 Purpose of the LCP

The purpose of the Life Cycle Plan (LCP) is to provide a framework to understand the responsibilities of the success-critical stakeholders in this project, understand the project timeline holistically, and describe the resources available to the project from a personnel standpoint.

1.2 Status of the LCP

The LCP is currently at the Transition Readiness Review level, version number 2.0. This is the final version that will be discussed and summarized during the Architecture Review Boards. The major changes from the Foundations Commitment Review / Development Commitment Review are:

• Completion of section 6

1.3 Assumptions

The guiding assumption is that this project will last 12 weeks, beginning in September 2014 and ending the first week of December 2014, by which time all deliverables will be complete and given to the client.

2. Milestones and Products

2.1 Overall Strategy

The TipSure Mobile App design is following the Architected Agile process because there is no Non-Development Item or Web service that would fit to most of the core functionality, and because the core requirements are simple enough for us to build from scratch.

Exploration phase

Duration: 09/15/14- 9/22/14

Concept: During this phase, we begin to identify the project model, business workflow, and the results benefit chain in regards to the system and the stakeholders that are a part of this project. During this time we also begin to become acquainted with our client and her view, role, and vision of the system as it develops. We also explore the current system of how TipSure works today.

Deliverables: Client Interaction Report, Progress Report, Project Plan, Program Model,

Valuation Commitment Package.

Milestone: Valuation Commitment Review **Strategy**: One Incremental Commitment Cycle

Valuation phase

Duration: 09/22/14- 10/13/14

Concept: During this phase, we identify the specific win conditions and success critical stakeholders that will be involved in this project. We further expand on our business case, building an idea of what our target market is, as well as a persona of our potential user base. Lastly, we begin to analyze the technologies we will use at a high-level, and further research the requirements for our system. As a result, we can prototype the most important features, which in our case happened to be the development of the mobile app.

Deliverables: Prototype, Progress Report, Project Plan, WinWin conditions on Winbook,

Prototype Presentation

Milestone: Architecture Review Board **Strategy**: One Incremental Commitment Cycle

Foundations phase

Duration: 10/13/14- 10/20/14

Concept: During this phase, we identify finalize and prioritize our win conditions for all the success critical stakeholders, and have created a prototype which we will continue to expand on and develop. Furthermore, we begin serious development on the core capabilities required by the client, namely the mobile accessibility and the search functionality.

Deliverables: Operational Concept Design, Life Cycle Plan (1-5), System and Software Architecture Description, Feasibility Evidence Description, Prototype Presentation, Progress

Report, Project Plan

Milestone: Architecture Review Board

Strategy: One Incremental Commitment Cycle

Development Phase

Duration: 10/20/14- 12/08/14

Concept: During this phase, we will develop the core functionality of the system required by our client, implement this system, and create the framework that the client can use to maintain the system after the conclusion of our development (i.e. create manuals, etc.)

Deliverables: Mobile application (search functionality, add business functionality), Operational Concept Design, Life Cycle Plan, Systems and Software Architecture

Description, Quality Control Results, Training Plan, User Manuals/Documentation

Milestone: Core Capability Drive-Through

Strategy: Two Incremental Commitment Cycle (1 for Development, 1 for Transition)

2.2 Project Deliverables

2.2.1 Exploration Phase

Table 1: Artifacts Deliverables in Exploration Phase

Artifact	Due date	Format	Medium
Client Interaction Report	9/17/2014	.doc, .pdf	Soft copy
Valuation Commitment Package	09/29/2014	.doc, .pdf	Soft copy
Operational Concept Description			
(OCD) Early Section			
• Life Cycle Plan (LCP) Section			
3.3 - Skills			
• Feasibility Evidence Description			
(FED) Section 3 - Risks			
Project Plan	Biweekly on	.mpp, .pdf	Soft copy
	Wednesday		
Progress Report	Biweekly on	.xls	Soft copy
	Wednesday		

2.2.2 Valuation Phase

Table 2: Artifact deliverable in Valuation Phase

Artifact	Due date	Format	Medium
Project Plan	Biweekly on	.mpp, .pdf	Soft copy
	Wednesday		
Progress Report	Biweekly on	.xls	Soft copy
	Wednesday		
Prototype	10/2/2014	.com	Website
Prototype Presentation	10/2/2014	.ppt	Prototype Presentation
Winbook Win	10/2/2014	.com	WinBook
Conditions			

2.2.3 Foundations Phase

Table 3: Artifact deliverable in Foundations Phase

Artifact	Due date	Format	Medium
Operational Concept	10/20/2014	.doc, .pdf	Soft Copy
Design			
Life Cycle Plan	10/20/2014	.doc, .pdf	Soft Copy
(Sections 1-5)			
System and Software	10/20/2014	.doc, .pdf	Soft Copy
Architecture Description			
Prototype Presentation	10/20/2014	.doc, .pdf	Soft Copy
Feasibility Evidence	10/20/2014	.doc, .pdf	Soft Copy
Description			
Project Plan	Biweekly on	.mpp, .pdf	Soft copy
	Wednesday		
Progress Report	Biweekly on	.xls	Soft copy
	Wednesday		

2.2.4 Development Phase

Table 4: Artifact deliverable in Development Phase

Artifact	Due date	Format	Medium
Functioning Software	12/8/2014	.doc, .pdf	Soft Copy
System			
Operational Concept	12/8/2014	.doc, .pdf	Soft Copy
Design			
Life Cycle Plan	12/8/2014	.doc, .pdf	Soft Copy
(Sections 1-6)			
System and Software	12/8/2014	.doc, .pdf	Soft Copy
Architecture Description			
Quality Control Results	12/8/2014	.doc, .pdf	Soft Copy
Training Plan	12/8/2014	.doc, .pdf	Soft Copy
User Documentation	12/8/2014	.doc, .pdf	Soft Copy

3. Responsibilities

3.1 Project-specific stakeholder's responsibilities

As of currently, there are no project-specific stakeholder responsibilities.

3.2 Responsibilities by Phase

Table 5: Stakeholder's Responsibilities in each phase

	Primary / Secondary Responsibility				
Team Member /	Exploration	Valuation	Foundations	Development-	Development-
Role	•			Construction	Transition
				Iteration	Iteration
Name:	Primary	Primary	Primary	Primary	Primary
Jonathan Tuse /	Responsibility	Responsibility	Responsibility	Responsibility	Responsibility
Project Manager	Progress Report	Bugzilla	Progress Report	Analyze project	Finalize project
, ,	Client	Repository	Secondary	progress	reports
	Interaction		Responsibility	Secondary	Secondary
	Report	Secondary	Progress Plan	Responsibility	Responsibility
	Secondary	Responsibility		Detail project	Training
	Responsibility	Create and follow		readiness	
	Project Plan	up action items			
Name:	Primary	Primary	Primary	Primary	Primary
Raymond Feng /	Responsibility	Responsibility	Responsibility	Responsibility	Responsibility
Life Cycle Planner	Project Plan	Quality	Project Plan	Perform Testing	Perform Testing
and IIV&V	Identify	Management	Identify	Assess	Assess
	Responsibilities	Strategy	Responsibilities	Development	Development
	and Skills	Identify	and Skills	Iteration	Iteration
		Responsibilities	Secondary		
	Secondary	Secondary	Responsibility	Secondary	Secondary
	Responsibility	Responsibility	Progress Report	Responsibility	Responsibility
	Progress Report	Progress Plan		Project Plan	Project Plan
Name:	Primary	Primary	Primary	Primary	Primary
David Brenn-Cogen	Responsibility	Responsibility	Responsibility	Responsibility	Responsibility
/ Operational	Analyze	Identify	Operational	Development of	Testing the
Concept Engineer	Current System	Objectives,	Concept	the system	system
		constraints, and	Description		_
	Secondary	priorities	Secondary	Secondary	Secondary
	Responsibility	Secondary	Responsibility	responsibility	responsibility
	Project Plan	Responsibility	Assess	Testing of the	Quality control
		Explore	operational	system	of the system
		alternatives	concept		

Name: Aayushi Birla / Prototyper	Primary Responsibility Analyze Current System Secondary Responsibility Explore Alternatives	Primary Responsibility Develop prototype Secondary Responsibility Prepare development and production environment	Primary Responsibility Assess Prototype and components Secondary Responsibility Prioritize capabilities in the system	Primary Responsibility Develop software components Secondary Responsibility Test those components	Primary Responsibility Fixing bugs in the system Secondary Responsibility Quality testing of system
Name: Tej Triveldi / Systems Architect	Primary Responsibility Analyze Current System Secondary Responsibility Explore Alternatives	Primary Responsibility Assess and evaluate NDI candidates Secondary Responsibility Explore Alternatives	Primary responsibility SSAD, Assess system architecture Secondary responsibility UML Model	Primary Responsibility Development of the system Secondary responsibility Testing of the system	Primary Responsibility Testing the system Secondary responsibility Quality control of the system
Name: Nirupama Vaidyanathan / Requirements Engineer	Primary Responsibility Analyze Current System Secondary Responsibility Explore Alternatives	Primary Responsibility Capture and score win-conditions Secondary Responsibility Capture progress of win-win negotiation	Primary Responsibility System and Software Architecture Description Secondary Responsibility Development of system	Primary Responsibility Development of the system Secondary responsibility Testing of the system	Primary Responsibility Testing the system Secondary responsibility Quality control of the system
Name: Linkun Li / Feasibility Analyst	Primary Responsibility Assess and create plans to mitigate risks Secondary Responsibility Explore Alternatives	Primary Responsibility Analyze Business Case Secondary Responsibility Assess and plan to mitigate risks	Primary Responsibility Feasibility evidence description Secondary Responsibility Assess feasibility evidence	Primary Responsibility Development of the system Secondary responsibility Testing of the system	Primary Responsibility Fixing bugs in the system Secondary Responsibility Quality testing of system
Name: Stacy Waite / Client	Primary Responsibility Analyze Current System Secondary Responsibility Client Interaction Report	Primary Responsibility Identify Objectives, constraints and priorities Secondary Responsibility Identify shared vision	Primary Responsibility Specify architecture styles and frameworks Secondary responsibility Assess Prototype	Primary Responsibility Perform Core capabilities drive- through Secondary responsibility Training plan	Primary Responsibility Provide training to administrators Secondary responsibility Perform core capabilities drive-through

3.3 Skills

Team members	Role	Skills
Jonathan Tuse	Project Manager	Current skills: C, Java, HTML, CSS, JQuery Required skills: Project management
Raymond Feng	Life Cycle Planner / IIV&V	Current skills: C++, Java, LaTeX, Cloud, Technical Writing Required skills: MS Project, Project planning, Quality management
David Brenn-Cogen	Operational Concept Engineer	Current skills: Java, C, PHP, Python, HTML, CSS, MySQL Required skills: HTML, CSS, MySQL
Aayushi Birla	Prototyper	Current skills: Java, C, HTML, JSP, XML, CSS, JQuery Required skills: HTML, CSS
Tej Trivedi	Systems Architect	Current skills: C, C++, Java, PHP, JavaScript, HTML, CSS Required skills: JavaScript, HTML, CSS

Team members	Role	Skills
Nirupama Vaidyanathan	Requirements Engineer	Current Skills: C, Java, JQuery, HTML, CSS, SQL Required skills: HTML, CSS
Linkun Li	Feasibility Analyst	Current skills: C, C++, Java, C# Required skills: HTML, CSS

4. Approach

4.1 Monitoring and Control

We are using five different ways to monitor the activity of our project: the use of a project plan, a progress report, tickets created in Bugzilla, a Google Excel document to track all of our upcoming assignments and responsibilities, and lastly, Winbook to facilitate win conditions and win-win negotiation.

4.1.1 Closed Loop Feedback Control

Every Monday, Wednesday, and Friday we have internal meetings to discuss the progress on each of our respective responsibilities. Depending on the results, we shift resources on the team and adjust time spent on the project accordingly.

4.1.2 Reviews

The project manager and IIV&V spend time reading through and quality checking every deliverable before they are posted. They also check in on the members depending on how much work is visually been done, as they can see those documents on the website.

4.2 Methods, Tools and Facilities

Tools	Usage	Provider
WinBook	To facilitate Win-Win negotiations and prioritize win	USC
	conditions	
Microsoft	To create our project plan and update it on a biweekly basis	Microsoft
Project		
Microsoft	To create and update our progress reports on a biweekly basis	Microsoft
Excel		
Bugzilla	To document all activity that the team partakes in on a weekly	USC
	basis	
COINCOMO	To estimate resources needed for our project	USC
Visual	To create Universal Modelling Language designs for business	Visual
Paradigm	workflow	Paradigm

5. Resources

For our project, we are estimated 7 team members to finish the system at 7 hrs/week for 12 weeks, which totals to be around 588 hours of effort. The budget is less than \$500 as mandated by the client, but as we are using open-source software that will not be an issue. The major two components in this project are the search module and the mobile application modules. The main programming languages we will be using are HTML and CSS.

Table 6: COCOMOII Scale Driver

Scale Driver	Value	Rationale	
PREC	HIGH	The team has worked on several mobile-application	
		projects before along similar lines.	
FLEX	LOW	We have a lot of several restrictions involved in this	
		project: from a time perspective (12 weeks) and a	
		programming perspective (must use Google API, use	
		current MySQL database, etc.).	
RESL	NOM	The architectural definition is fairly fleshed out; we know	
		the type of software architecture we are responsible for	
		integrating with.	
TEAM	NOM	The project team is dedicated to working on this project,	
		but they also have other priorities such as classes, other	
		jobs, etc.	
PMAT	NOM	As the project team will be following ICSM processes,	
		which in turn is compatible with CMMI level 2 maturity	
		level	

Table 7: COCOMOII Cost Driver

Mobile Application Interface Module				
Cost Driver	Value	Rationale		
RELY	LOW	Software doesn't have to be exceptionally robust; client is		
		okay with a low reliability (easily recoverable losses) and is		
		open to upgrading to higher service with hosting provider.		
DATA	LOW	Data is fairly small (around 10MB), so testing data will		
		small, text data at low volume		
DOCU	NOM	There is no stringent requirement for specific detailed		
		documentation.		
CPLX	LOW	The interface we are to design is fairly straightforward, and		
		very simplistic. The interface is mostly basic operators an		
		web technologies with simple queries and a very basic GUI.		
RUSE	LOW	System is not going to be reused for any other projects as of		
		currently, but some of the interface will be used for the rest		
		of the pages in the application.		
TIME	NOM	Execution time is not a significant requirement by the client		
		(within 5-10 seconds, which is a enough for almost pure text-		
		based interface).		
STOR	NOM	There are very small storage constraints; most of what is		
		stored is text data. Current storage usage is <10% of		
		available.		
PVOL	LOW	Software is using very common platforms (WordPress,		
		MySQL) that are also fairly user friendly to modify and c		
		on.		
ACAP	NOM	We have analysts that have worked with building websites		
		and mobile design before, but they are still fairly young in		
		terms of expertise and experience.		
PCAP	NOM	We have programmers that have worked with building		
		websites and mobile design before, but they are still fairly		
		young in terms of expertise and experience.		
PCON	VERY	As our team plans to stick together for the complete year,		
	HIGH	there should be no personnel issues.		
APEX	HIGH	Members on the team are experienced with interfacing with		
		this type of application in the past.		
LTEX	HIGH	Members on the team by and large know the language (CSS,		
		HTML) that we are required to use.		
PLEX	NOM	While one member is very knowledgeable about the		
		WordPress platform, the rest only have moderate experience		
		working with it.		
TOOL	LOW	Use of software tools to debug, check, etc. is not planned for		
		this project		
SITE	VERY	The entire team is sees each other on a regular basis, and		
	HIGH	works in the surrounding area.		

Search Module			
Cost Driver Value Rationale			
RELY	LOW	Software doesn't have to be exceptionally robust; client is	
		okay with a low reliability (easily recoverable losses) and	
		is open to upgrading to higher service with hosting	
		provider.	
DATA	LOW	Data is fairly small (around 10MB), so testing data will	
		small, text data at low volume	
DOCU	NOM	There is no stringent requirement for specific detailed	
		documentation.	
CPLX	LOW	Search function we are to design is fairly straightforward,	
		and very simplistic. There are simply a few basic MySQL	
		queries when pulling data.	
RUSE	LOW	System is not going to be reused for any other projects as	
_		of currently, or in the remainder of the project.	
TIME	NOM	Execution time is not a significant requirement by the	
		client (within 5-10 seconds, which is a enough for almost	
		pure text-based interface).	
STOR	NOM	There are very small storage constraints; most of what is	
		stored is text data. Current storage usage is <10% of	
		available.	
PVOL	LOW	Software is using very well documented API, (Google	
	2702.5	API), that has major upgrades on an annual basis.	
ACAP	NOM	We have analysts that have worked with building websites	
		and mobile design before, but they are still fairly young in	
DC A D	1.011	terms of expertise and experience.	
PCAP	LOW	We have programmers that have worked with building	
		websites and mobile design before, but have not really	
DCON	VEDV HIGH	worked with the Google API before.	
PCON	VERY HIGH	As our team plans to stick together for the complete year,	
ADEV	VEDV LOW	there should be no personnel issues.	
APEX	VERY LOW	Members on the team have not worked extensively with	
LTEV	NOM	search functions before.	
LTEX	NOM	Members on the team have experience with HTML, CSS,	
DLEV	LOW	and JavaScript to build the search function.	
PLEX	LOW	While one member is very knowledgeable about the	
		WordPress platform, the rest only have moderate	
TOOL	LOW	experience working with it.	
TOOL	LOW	Use of software tools to debug, check, etc. is not planned for this project.	
SITE	VERY HIGH	The entire team is sees each other on a regular basis, and	
SILE	VEKT IIION	works in the surrounding area.	
		works in the suffounding area.	

Add Business / Form Module				
Cost Driver	Value	Rationale		
RELY	LOW	Software doesn't have to be exceptionally robust; client is okay with a low reliability (easily recoverable losses) and is open to upgrading to higher service with hosting provider.		
DATA	LOW	Data is fairly small (around 10MB), so testing data will small, text data at low volume		
DOCU	NOM	There is no stringent requirement for specific detailed documentation.		
CPLX	LOW	Add function we are to design is fairly straightforward, and very simplistic; just a form that stores text information and sends that information to a MySQL database.		
RUSE	LOW	System is not going to be reused for any other projects as of currently. The form function may be reused for a similar module.		
TIME	NOM	Execution time is not a significant requirement by the client (within 5-10 seconds, which is a enough for almost pure text-based interface).		
STOR	NOM	There are very small storage constraints; most of what is stored is text data. Current storage usage is <10% of available.		
PVOL	LOW	Language and software we're using is using very common (WordPress, MySQL); these are also fairly well documented to use. Major upgrades on an annual basis or longer.		
ACAP	NOM	We have analysts that have worked with building websites and mobile design before, but they are still fairly young in terms of expertise and experience.		
PCAP	NOM	We have programmers that have worked with building websites and mobile design before.		
PCON	VERY HIGH	As our team plans to stick together for the rest of the semester, there should be no personnel issues.		
APEX	HIGH	Members on the team are experienced with interfacing with this type of submission form in the past.		
LTEX	NOM	Many members on the team have used these languages before (CSS, HTML, JavaScript).		
PLEX	LOW	While one member is very knowledgeable about the WordPress platform, the rest only have moderate experience working with it.		
TOOL	LOW	Use of software tools to debug, check, etc. is not planned for this project.		
SITE	VERY HIGH	The entire team is sees each other on a regular basis, and works in the surrounding area.		

According to our results, it appears that it is estimated that the project would be completed in five to six months assuming a 1 person workload, working on the project for approximately 152 hours a month. This is a total of around 535 person-hours spent using the pessimistic calculations. Since we have a team of 7, each whom are spending approximately 40 hours a month on this project (10 hours a week), this equates to approximately 840 person-hours over 12 weeks. From this perspective, given the more pessimistic calculations of 535 hours, we should be able to complete the project within the limited timeframe of 12 weeks (840 team person-hours).

6. Iteration Plan

6.1 Plan

During the upcoming iteration, the major milestone to be addressed is the core-capability drivethrough (CCD). In this milestone, we will address and demonstrate the core capabilities of our system to the panel and the client, and receive feedback on whether we were successful in terms of delivering a system with the core functionality in place. Specifically for our project, we will be demonstrating the search function, the mobile interface, and the application form modules, which are the three capabilities the client have said were requirements.

6.1.1 Capabilities to be implemented

Table 8: Construction iteration capabilities to be implemented

ID	Capability	Description	Priority	Iteration
CC-1	Mobile Application	Create a mobile interface for TipSure	10	1
	Interface	visitors on mobile by way of creating a		
		web app		
CC-2	Search function	Searches TipSure database for relevant	8	1
		businesses according to search input		
CC-3	Form module	Allow users to submit questions and add	8	1
		businesses using a form		

6.1.2 Capabilities to be tested

Table 9: Construction iteration capabilities to be tested

ID	Capability	Description	Priority	Iteration
CC-1	Mobile	Create a mobile interface for TipSure	10	1
	Application	visitors on mobile by way of creating		
	Interface	a web app		
CC-2	Search function	Searches TipSure database for	8	1
		relevant businesses according to		
		search input		
CC-3	Form module	Allow users to submit questions and	8	1
		add businesses using a form		

For this upcoming milestone, we are only going to focus on the core capability functions and testing them to make sure that they work. All other features and modules are considered as secondary, and as such, provided that we have time after making sure the core capabilities works as the client intends, only then would we begin to test other capabilities.

6.1.3 Capabilities not to be tested

ID	Capability	Description	Priority	Rationale
CC-4	Tip Calculator	Users can calculate tips using	6	Not core
		the app		capability
CC-5	Load times	Application should load data	6	Depends on
		within 5-10 seconds		search and
				mobile app
				interface
CC-6	Travel Guide	Users can download travel	4	Not core
		guides		capability
CC-7	Social media	Share and link application	4	Not core
	linking	using Facebook, Twitter, etc.		capability

6.1.4 CCD Preparation Plans

The people who will be involved in the core capability drive-through are the client and 3-4 additional users of the system (these could be any person). We will ask them to use their smartphones, or, in the situation that they do not have one, will lend them our smartphones to use for the duration of the CCD.

We will first thoroughly test our application ourselves by going through every core capability to make sure that the users will receive an error-free or near error-free application. To test it, we will have them use the data that is duplicated from TipSure's database, and give them a simple instruction to search for a business on their mobile devices. We will give them an opportunity to search for businesses that are already in the database by giving them example businesses to search for, and allow them to search for whatever they like. After allowing them to perform 5 or more searches, we will give them a feedback form, which asks them to rate the usability of each of the core capabilities on a scale of one to five. We will also ask for additional feedback comments.

Assuming that our feedback on average rates our core capabilities each as 3.0 and higher, we will consider our core capabilities successful, and use the feedback to address whatever errors, bugs, or usability issues there may be.

6.2 Iteration Assessment

6.2.1 Capabilities Implemented, Tested, and Results

In terms of the capabilities that were tested and implemented, the three main core capabilities were all implemented and tested prior to the core capabilities drive through, as well as during the core capabilities drive through by the client. They all passed the tests as specified in the Test Plan and Cases documentation, and CC-1, testing the core capability of the mobile application interface was mainly tested by the client during the CCD itself, seeing as the client was the sole indicator of whether or not our design was appropriate, and we were presenting the application to her for the first time.

Capability ID **Test Case Test Results** If fail, why? CC-1 Mobile Application Interface N/A Pass N/A CC-2 Search function TC-01 Pass N/ACC-3 TC-02 Form module Pass N/A

Table 10: Capabilities implemented, tested, and results

6.2.2 Core Capabilities Drive-Through Results

In regards to the three sections and the demo of the mobile application (of which all three above core capabilities were delivered at the time), the client mostly commented on our design of the application. The search results and form submissions were thoroughly tested by the client as well, and they operated in an appropriate fashion (no additional feedback besides the fact that it was well-done).

For design, the mobile application needed to have consistent font, font color, and font size between the headings for the forms as well as the paragraphs of the text. There should also be a green border all around the page (ideally the same color as the TipSure logo). There should also be some white space under the logo in the white space, and there should be an "empty" response when there are no search results for a specific query. In addition, the search footer should redirect to the main page such that when clicking it, users can quickly search again as necessary. The "Contact Us" page should have also have a smaller textbox: currently it takes up too much space, and there should be a popup on successful submission.

There were also a few colons, semi-colons, and parentheses that the client wanted to remove, as well as a few extraneous spaces that could be moved or removed.

6.3 Adherence to Plan

The iteration ran largely according to the plan described in our project planner, and we did not run over our budget. There were, however, a few extraneous bugs that we did not foresee as well as additional feedback by the client that we will still have to implement. We are planning to use

the time after the core capabilities drive-through, but before our final delivery date to implement these additional, light requests for the client.

In the future and if we were to go through this iteration again, we would certainly involve our client earlier in our design process, and gotten her feedback earlier. This way, it would have been more likely that she could have raised the same feedback during the CCD, but earlier, allowing us to act on those responses and consequently and possibly more quickly act on them.