Zadania z Matematyki Dyskretnej - Funkcje

- 1. Niech $A=\{1,2,3,4\},\ B=\{3,4,5\}.$ Które z poniższych relacji są funkcjami ?
 - (a) $R_1 = \{(1,3), (2,4), (3,5)\}$
 - (b) $R_2 = \{(1,3), (2,3), (3,5), (4,5), (1,5)\}$
 - (c) $R_3 = \{(1,4), (2,4), (4,5), (3,4)\}$
 - (d) $R_4 = \{(1,3), (2,4), (3,5), (4,4)\}$
- Czy dana funkcja jest różnowartościowa," na", znaleźć obrazy i przeciw obrazy.
 - (a) $f: \mathbb{R} \to \mathbb{R}$ $f(x) = x^2 3x + 2$ $f((0,1)), f([-2,1]), f(\{1,2\}), f^{\leftarrow}((-\infty, -6)), f^{\leftarrow}(\{-3, -4\}).$
 - (b) $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \sin x + 1$ $f([0, \frac{3}{2}\pi]), f(\{0, \pi\}), f(\{\frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{6}\}), f^{\leftarrow}((\frac{1}{2}, \infty)), f^{\leftarrow}((-\infty, -1]), f^{\leftarrow}(0).$
 - (c) $\phi : \mathbb{R}^n \to \mathbb{R}, \quad \phi([x_1, ..., x_n]) = \sum_{k=1}^n x_k^2$ $\phi^{\leftarrow}(-1), \phi^{\leftarrow}(0), \phi^{\leftarrow}(1).$
 - (d) $\phi: \mathbb{N}^2 \to \mathbb{N}$, $\phi(n,k) = n+k+1$. $\phi(\mathbb{N} \times \{1\}), \phi^{\leftarrow}(0), \phi^{\leftarrow}(5)$.
 - (e) $\phi: \mathbb{N}^2 \to \mathbb{N}$, $\phi(n,k) = nk$. $\phi(\mathbb{N} \times \{2\}), \phi^{\leftarrow}(0), \phi^{\leftarrow}(\{2^n : n \in \mathbb{N}\})$.
 - (f) $\phi: \mathbb{N}^2 \to \mathbb{N}$, $\phi(n, k) = n^2 + k^2$. $\phi^{\leftarrow}(0), \phi^{\leftarrow}(24)$.
 - (g) $\phi: \mathbb{N}^2 \to \mathbb{N}$, $\phi(n,k) = \max(n,k)$. $\phi^{\leftarrow}(0), \phi^{\leftarrow}(k)$.
 - (h) $f: \mathbb{R} \to \mathbb{R}^+$ $f(x) = |x^2 5x + 6|$. $f((2, \infty)), f(\{0, 1, 2, 3, 4\}), f^{\leftarrow}([0.5, 1]), f^{\leftarrow}((0, 1)), f^{\leftarrow}(\{0\}).$
- 3. Udowodnić.
 - (a) $A \subset B \Rightarrow f(A) \subset f(B)$
 - (b) $A \subset f^{\leftarrow}(f(A))$
- 4. Pokazać kontrprzykłady, ze inkluzji nie można zastąpić równościami.
 - (a) $f(A) \cap f(B) \supset f(A \cap B)$
 - (b) $f(A) \setminus f(B) \subset f(A \setminus B)$
 - (c) $f^{\leftarrow}(A) \subset f^{\leftarrow}(B)$ jeśli $A \subset B$
- 5. Zlożyć funkcje f, g i h w różnej kolejności. Sprawdzić dziedzinę.
 - (a) $f(x) = \sin x, g(x) = \sqrt{x}, h(x) = x^2$
 - (b) $f(x) = \cos x, g(x) = \log x, h(x) = \frac{1}{x}$

- 6. Obliczyć (a) $\frac{8!}{6!}$ (b) $\frac{9!}{5!}$ (c) $\frac{12!}{5!4!}$ (d) $\frac{8!}{1!2!3!4!}$ (e) $\frac{4!}{2!0!}$ (f) $\sum_{i=1}^{100} (-1)^i i$ (g) $\sum_{i=1}^4 (i^2+1)$ (h) $\sum_{i=1}^4 (i^2) + 1$ (i) $\sum_{i=1}^{10} (-1)^i$
- 7. Napisać wzór ogólny
 - (a) $\sum_{i=0}^{n} 2^{i}$
 - (b) $\prod_{k=1}^{n} \frac{k+2}{k}$
 - (c) $\prod_{k=n}^{m} k$
- 8. Dla jakiego zbioru funkcja $b(n) = \frac{1}{2}(1+(-1)^n)$ jest funkcją charakterystyczną?
- 9. Napisz wzór ogólny ciągów a_n,b_n,c_n jeśli
 - (a) $a_n = a_{n-1}n, b_n = a_n + a_{n-1}, c_n = \frac{a_n}{b_n}$ $a_0 = 1$
 - (b) $a_n = a_{n-1}^2, b_n = a_n : a_{n-1}, c_n = a_n + b_n \quad a_0 = 2$
- 10. Obliczyć (a) $\sum_{i=1}^n (x^i + \frac{1}{x^i})^2$ (b) $\sum_{i=1}^n (x^i \frac{1}{x^i})^2$
- 11. Dany jest ciąg $(a+b)^2$, a^2+b^2 , $(a-b)^2$, ... obliczyć sumę n początkowych wyrazów tego ciągu.