Chapter 10, section 6

• R-10.6

Which of the hash table collision-handling schemes could tolerate a load factor above 1 and which could not?

could handle: Separate Chaining

could not handle: Open Addressing (e.g linear probing, quadratic probing, double hashing)

• R-10.9

Draw the 11-entry hash table that results from using the hash function, $h(i) = (3i+5) \mod 11$, to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5, assuming collisions are handled by chaining.

1		44		19	16	20
.		44		12	10	20
)		88		23	5	
)			88 11	 	$ \begin{array}{c cccc} & 88 & 23 \\ & 11 & \end{array} $	

• R-10.10

What is the result of the previous exercise, assuming collisions are handled by linear probing?

0	1	2	3	4	5	6	7	8	9	10
13	94	39	16	5	44	88	11	12	23	20

• R-10.12

What is the result of Exercise R-10.9 when collisions are handled by double hashing using the secondary hash function $h(k) = 7 - (k \mod 7)$?

0		1	2	3	4	5	6	7	8	9	10
13	. (94	5	39	88	44	23	11	12	16	20

• R-10.14

Show the result of rehashing the hash table shown in Figure 10.6 into a table of size 19 using the new hash function $h(k) = 3k \mod 17$.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		12	18	41		36	25		54			38	10		90	28		

Chapter 13, section 6

• R-13.11

Draw the frequency array and Huffman tree for the following string: "dogs do not spot hot pots or cats" $\,$

Character Frequency	7	a 1	c 1	d 2	g 1	h 1	n 1	o 7	p 2	r 1	s 4	5		Total 33
(33)														
33)														
(14) (19)														
		/	\nearrow	\prec	_	_								
Space 7 0 7 8 11														
$\begin{bmatrix} s & 4 \end{bmatrix} \begin{pmatrix} 4 \\ \end{bmatrix} \begin{bmatrix} t & 5 \end{bmatrix} \begin{pmatrix} 6 \\ \end{bmatrix}$														
(2) (2) (4)														
$\begin{bmatrix} g_1 \\ h_1 \end{bmatrix} \begin{bmatrix} h_1 \\ \hline n_1 \end{bmatrix} \begin{bmatrix} r_1 \\ \hline \end{bmatrix} \begin{bmatrix} d_2 \\ \end{bmatrix}$														
$\begin{bmatrix} a_1 \end{bmatrix} \begin{bmatrix} c_1 \end{bmatrix}$														

• R-13.12

Draw a standard trie for the following set of strings: { abab, baba, ccccc, bbaaaa, caa, bbaacc, cbcc, cbca }

• R-13.13

Draw a compressed trie for the strings given in the previous problem.

• R-13.14

Draw the compact representation of the suffix trie for the string: "minimize minime"

• C-13.43

Give an efficient algorithm for deleting a string from a standard trie and analyze its running time.

Input a Trie and Search for the desired string to delete. If the string reaches a leaf then begin to delete each node upwards until hitting a node with more than one child. A node cannot be deleted if it does not reach

a leaf which is a termination node because that means it is only a partial string. The running time for deletion of a string would be O(l) where l is the length of the string to be deleted.

Chapter 15, section 5

• R-15.4

For what values of d is the tree T of the previous exercise an order-d B-tree?

The value for an order-d B-tree 8. A B-Tree of order-d is an (a,b) with a = [d/2] and b = d. For the previous question the (a,b) tree was equal to a = 4 and b = 8. Therefore d = 8 for the order-d tree.

• R-15.8

Draw the result of inserting, into an initially empty order-7 B-tree, entries with keys (4,40,23,50,11,34,62,78,66,22,90,59,25,72,64,77,39,12), in this order

