

Prof. Dr. Anne Driemel Frederik Brüning, Jan Eube Institut für Informatik

Abgabe: keine

Übungsblatt 0

Dieses Blatt wird während der ersten Übung bearbeitet und in der Gruppe besprochen.

Aufgabe 1: Wachstum von Funktionen

(keine Punkte)

Für zwei Funktionen $f,g:\mathbb{N}\to\mathbb{R}_{\geq 0}$ gelte $f\preceq g$ genau dann, wenn $O(f)\subseteq O(g)$. Ordnen Sie die folgenden Funktionen in aufsteigender Reihenfolge bezüglich \preceq .

$$n2^n$$
 $2018 \cdot (n + \sin n)$ $\frac{n}{\log \log n}$ $\sqrt{n^5}$ $2^{\log \log n}$ $n!$ 2^{2^n} $\frac{1}{n}$ $4n$ $(n \log n)^2$

Begründen Sie Ihre Antworten durch eine Grenzwertbetrachtung oder einen kurzen Beweis!

Aufgabe 2: Wiederholung Potenz- und Logarithmusgesetze

(keine Punkte)

Finden Sie Paare von äquivalenten Termen und formen Sie diese schrittweise ineinander um. Geben Sie die verwendeten Regeln an.

$$\log_a(n^{\log_b a}) \qquad \sqrt[b]{\frac{a^n}{a^m}} \qquad b^{n\log a} \qquad \log_b n \qquad a^{\frac{n-m}{b}} \qquad \log(a^n b^n) \qquad n(\log a + \log b) \qquad a^{(\log b^n)}$$

Aufgabe 3: Funktionen in O-Notation

(keine Punkte)

Welche der folgenden Aussagen sind korrekt?

- 1. $6n^5 \in \Theta(n^6)$
- 2. $\sqrt{n^3} \in o(n^2)$
- 3. $n^n \in O(e^n)$
- 4. $\log^2(n) \in O(\log \log n)$

Geben Sie einen formalen Beweis im Falle der Korrektheit einer Aussage an oder ein Gegenbeispiel/eine Begründung im Falle der Inkorrektheit.