EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

2002050136

PUBLICATION DATE

15-02-02

APPLICATION DATE

28-07-00

APPLICATION NUMBER

2000229159

APPLICANT: TOSHIBA CORP;

INVENTOR: KASHIWABARA YUTAKA;

INT.CL.

: G11B 20/20 G11B 7/005 G11B 7/007

TITLE

: READ-ONLY OPTICAL DISK, DEVICE

AND METHOD FOR REPRODUCING

OPTICAL DISK

OPT3 OPTIE B OFIT Cate OPT10 **6 1 3** 6 QP 16 **DP74**

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a read-only optical disk which secures

compatibility with a rewritable disk and is excellent in format efficiency.

SOLUTION: The read-only optical disk has compatibility with the rewritable optical disk which has a plurality of sector fields of a first prescribed length, each sector field of which has a header field of a second prescribed length and a recording field of a third prescribed length, and each recording field of which has a rewritable user data recording field of a fourth prescribed length. The read-only optical disk has a plurality of sector fields of the first prescribed length, each sector field of which has the header field of the second prescribed length and the recording field of the third prescribed length, and each recording field of which has a read-only user data recording field of the fourth prescribed length.

COPYRIGHT: (C)2002,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-50136 (P2002-50136A)

(43)公開日 平成14年2月15日(2002.2.15)

(51) Int.Cl.7	戲別記号	F I	ァーマコート*(参考)
G11B 20/20		C 1 1 B 20/20	5 D 0 9 0
7/005		7/005	Z
7/007		7/007	

審査請求 有 請求項の数11 OL (全 20 頁)

(21)出願番号	特願2000-229159(P2000-229159)	(71)出願人	000003078
			株式会社東芝
(22)出顧日	平成12年7月28日(2000.7.28)		東京都港区芝浦一丁目1番1号
		(72)発明者	岡本 豊
			神奈川県川崎市幸区柳町70番地 株式会社
			東芝柳町事業所內
		(72)発明者	山田 尚志
			東京都港区芝浦一丁目1番1号 株式会社
			東芝木社事務所内
		(74)代理人	100058479
			弁理士 鈴江 武彦 (外6名)
			具数百沙妇之

最終頁に続く

(54) 【発明の名称】 説出し専用型光ディスク、光ディスク再生装置、及び光ディスク再生方法

(57)【要約】

【課題】書換え型ディスクに対して互換性を確保するとともに、フォーマット効率に優れた読出し専用型光ディスクを提供すること。

【解決手段】第1所定長のセクタ・フィールドを複数有し、各セクタ・フィールドが、第2所定長のヘッダ・フィールド及び第3所定長のレコーディング・フィールドを有し、各レコーディング・フィールドが、第4所定長の書き換え可能なユーザ・データ記録フィールドを有する書換え型光ディスクと互換性を有する読出し専用型光ディスクであって、第1所定長のセクタ・フィールドを複数有し、各セクタ・フィールドが、第2所定長のヘッダ・フィールド及び第3所定長のレコーディング・フィールドを有し、各レコーディング・フィールドが、第4所定長の読み出し専用のユーザ・データ記録フィールドを有する。

		Hecord	p geld		
OPTB OPT	7 OPT8 OP	OPT9 OPT10	Detta	111 OPT12	DPT13
5	8 02	63	2 478	ья	ĸ

(2) 開2002-50136 (P2002-50136A)

【特許請求の範囲】

【請求項1】第1所定長のセクタ・フィールドが連続して複数配置され、

各セクタ・フィールドが、第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続く第3所定長のレコーディング・フィールドを有し、

各レコーディング・フィールドが、所定位置に第4所定 長の書き換え可能なユーザ・データ記録フィールドを有 する書換え型光ディスクと互換性を有する読出し専用型 光ディスクであって、

第1所定長のセクタ・フィールドが連続して複数配置され、

各セクタ・フィールドが、第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続く第3所定長のレコーディング・フィールドを有し、

各レコーディング・フィールドが、所定位置に第4所定 長の読み出し専用のユーザ・データ記録フィールドを有 する、

ことを特徴とする読出し専用型光ディスク。

【請求項2】第1所定長のセクタ・フィールドが連続して複数配置され、

各セクタ・フィールドが、ヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続きレコーディング・フィールド特有のデータを含む第3所定長のレコーディング・フィールドを有し、

各レコーディング・フィールドが、所定位置に第4所定 長の書き換え可能なユーザ・データ記録フィールドを有 する書換え型光ディスクと互換性を有する読出し専用型 光ディスクであって、

第1所定長のセクタ・フィールドが連続して複数配置され、

各セクタ・フィールドが、読出し専用型光ディスク特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続き読出し専用型光ディスク特有のデータを含む第3所定長のレコーディング・フィールドを有し、

各レコーディング・フィールドが、所定位置に第4所定 長の読み出し専用のユーザ・データ記録フィールドを有 する、

ことを特徴とする読出し専用型光ディスク。

【請求項3】第1所定長のセクタ・フィールドが連続して複数配置され、

各セクタ・フィールドが、ヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続きレコーディング・フィールド特有のデータを含む第3所定長のレコーディング・フィールドを有し、

各レコーディング・フィールドが、所定位置に第4所定 長の書き換え可能なユーザ・データ記録フィールドを有 する書換え型光ディスクと互換性を有する読出し専用型 光ディスクであって、

第1所定長のセクタ・フィールドが連続して複数配置され、

各セクタ・フィールドが、読出し専用型光ディスク特有のデータ並びにヘッダ・フィールド特有のデータの一部を含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続き読出し専用型光ディスク特有のデータを含む第3所定長のレコーディング・フィールドを有し

各レコーディング・フィールドが、所定位置に第4所定 長の読み出し専用のユーザ・データ記録フィールドを有 する

ことを特徴とする読出し専用型光ディスク。

【請求項4】第1所定長のセクタ・フィールドが連続して複数配置され、

各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続きレコーディング・フィールド特有のデータを含む第3所定長のレコーディング・フィールドを有し、

各レコーディング・フィールドが、所定位置に第4所定 長の書き換え可能なユーザ・データ記録フィールドを有 する書換え型光ディスクと互換性を有する読出し専用型 光ディスクであって、

第1所定長のセクタ・フィールドが連続して複数配置され、

各セクタ・フィールドが、読出し専用型光ディスク特有のデータ並びに同期パターンを除くヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続き読出し専用型光ディスク特有のデータを含む第3所定長のレコーディング・フィールドを有し、

各レコーディング・フィールドが、所定位置に第4所定 長の読み出し専用のユーザ・データ記録フィールドを有 する

ことを特徴とする読出し専用型光ディスク。

【請求項5】第1所定長のセクタ・フィールドが連続して複数配置され。

各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続きレコーディング・フィールド特有のデータを含む第3所定長のレコーディング・フィールドを有し、

各レコーディング・フィールドが、所定位置に第4所定 長の書き換え可能なユーザ・データ記録フィールドを有 する書換え型光ディスクと互換性を有する読出し専用型 光ディスクであって、

第1所定長のセクタ・フィールドが連続して複数配置され、

(3)開2002-50136(P2002-50136A)

各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続き読出し専用型光ディスク特有のデータを含む第3所定長のレコーディング・フィールドを有し、

各レコーディング・フィールドが、所定位置に第4所定 長の読み出し専用のユーザ・データ記録フィールドを有 する

ことを特徴とする読出し専用型光ディスク。

【請求項6】前記読出し専用型光ディスク特有のデータが、読み出し専用のユーザ・データ記録フィールドに記録されたデータに対して選択的に利用可能なパリティ情報を含むことを特徴とする請求項2、3、4、又は5に記載の読出し専用型光ディスク。

【請求項7】前記読出し専用型光ディスク特有のデータが、選択的に利用可能な追加情報を含むことを特徴とする請求項2、3、4、又は5に記載の読出し専用型光ディスク。

【請求項8】書換え型光ディスクが、連続して複数配置された第1所定長のセクタ・フィールドを有し、

これら各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続きレコーディング・フィールド特有のデータを含む第3所定長のレコーディング・フィールドを有し、

これら各レコーディング・フィールドが、所定位置に第 4所定長の書き換え可能なユーザ・データ記録フィール ドを有し、

前記書換え型光ディスクと互換性を有する読出し専用型 光ディスクが、連続して複数配置された第1所定長のセ クタ・フィールドを有し、

これら各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続き読出し専用型光ディスク特有のデータを含む第3所定長のレコーディング・フィールドを有し、

これら各レコーディング・フィールドが、所定位置に第 4所定長の読み出し専用のユーザ・データ記録フィール ドを有し、

前記読出し専用型光ディスクを再生するとき、この読出 し専用型光ディスクのヘッダ・フィールドに記録された ヘッダ・フィールド特有のデータに基づき、目的アドレ スにアクセスして再生する再生手段を備えたことを特徴 とする光ディスク再生装置。

【請求項9】書換え型光ディスクが、連続して複数配置された第1所定長のセクタ・フィールドを有し、

これら各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続きレコーディング・フィールド特有のデータを含む第3所定長

のレコーディング・フィールドを有し、

これら各レコーディング・フィールドが、所定位置に第 4所定長の書き換え可能なユーザ・データ記録フィール ドを有し、

前記書換え型光ディスクと互換性を有する読出し専用型 光ディスクが、連続して複数配置された第1所定長のセ クタ・フィールドを有し、

これら各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続き読出し専用型光ディスク特有のデータを含む第3所定長のレコーディング・フィールドを有し、

これら各レコーディング・フィールドが、所定位置に第 4所定長の読み出し専用のユーザ・データ記録フィール ドを有し、

前記読出し専用型光ディスクを再生するとき、この読出 し専用型光ディスクのヘッダ・フィールドに記録された ヘッダ・フィールド特有のデータに基づき、目的アドレ スにアクセスして再生することを特徴とする光ディスク 再生方法。

【請求項10】書換え型光ディスクが、連続して複数配置された第1所定長のセクタ・フィールドを有し、

これら各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続きレコーディング・フィールド特有のデータを含む第3所定長のレコーディング・フィールドを有し、

これら各レコーディング・フィールドが、所定位置に第 4所定長の書き換え可能なユーザ・データ記録フィール ドを有し、

前記書換え型光ディスクと互換性を有する読出し専用型 光ディスクが、連続して複数配置された第1所定長のセ クタ・フィールドを有し、

これら各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続き読出し専用型光ディスク特有のデータを含む第3所定長のレコーディング・フィールドを有し、

これら各レコーディング・フィールドが、所定位置に第 4所定長の読み出し専用のユーザ・データ記録フィール ドを有し、

前記読出し専用型光ディスクを再生するとき、この読出 し専用型光ディスクのヘッダ・フィールドに記録された ヘッダ・フィールド特有のデータに基づき、トラッキン グを制御して再生する再生手段を備えたことを特徴とす る光ディスク再生装置。

【請求項11】書換え型光ディスクが、連続して複数配置された第1所定長のセクタ・フィールドを有し、

これら各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ

(4) 開2002-50136 (P2002-50136A)

・フィールド、及びこのヘッダ・フィールドに続きレコーディング・フィールド特有のデータを含む第3所定長のレコーディング・フィールドを有し、

これら各レコーディング・フィールドが、所定位置に第 4所定長の書き換え可能なユーザ・データ記録フィール ドを有し、

前記書換え型光ディスクと互換性を有する読出し専用型 光ディスクが、連続して複数配置された第1所定長のセ クタ・フィールドを有し、

これら各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続き読出し専用型光ディスク特有のデータを含む第3所定長のレコーディング・フィールドを有し、

これら各レコーディング・フィールドが、所定位置に第4所定長の読み出し専用のユーザ・データ記録フィールドを有し、

前記読出し専用型光ディスクを再生するとき、この読出 し専用型光ディスクのヘッダ・フィールドに記録された ヘッダ・フィールド特有のデータに基づき、トラッキン グを制御して再生することを特徴とする光ディスク再生 方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、高密度記録を特徴とする読出し専用型光ディスクに関する。また、この読出し専用型光ディスクを再生する光ディスク再生装置及び光ディスク再生方法に関する。

[0002]

【従来の技術】直径12cmの光ディスク片面にMPEG2画像を2時間以上録画したいという要求から、DVD(Digital Video Disk)システムが商品化されている。DVD規格ではディスクの記憶容量は片面4.7GBであり、トラック密度は0.74μm/トラック、線密度は0.267μm/ビットである。以後、この規格に基づくDVDを現行DVDと呼ぶ。

【0003】DVDのような光ディスクに記録された情報の再生は、光ヘッドを用いて行われる。光ヘッドにおいては、LD(レーザダイオード)から出射される光ビームが対物レンズにより光ディスクのトラック上のピット系列に集光され、光ディスクで反射された光ビームは、集光レンズで光検出器に集光され、再生信号が得られる。この光検出器からの再生信号は再生信号処理系に入力され、等化器で波形等化を受けた後、検出器でデータの復号が行われる。DVD規格の場合、光ヘッド中のLDの波長は0.65μm、対物レンズの開口数は0.6である。

【0004】DVDには、読出し専用型光ディスクと書き換え型光ディスクがあり、データが記録されている物理的なフォーマットが異なる。

【0005】読出し専用型では、記録されるデータは、原盤作成時に連続して記録されるので"データのつなぎ目"が存在しない。図13に示すように、データの1バイトの区切りを検出するためのSYNCと、スクランブル処理されてから変調されたデータとから構成されるセクタと言うアクセス単位が存在するが、セクタとセクタの境目には不連続点は存在せず、ディスク全周にわたって信号の周波数が一定で位相もそろっている。

【0006】読出し専用型のディスクを再生するには、 まず、光ヘッドが載ったアクチュエータを目標データが 記録されたトラック付近にシークさせる。その後、PL Lを用いてチャネルクロックを再生信号の位相に同期さ せ、SYNC領域でバイト同期をとって、セクタの先頭 に記録されている I D情報を読出す。目的とするデータ の少し手前のアドレスが読み出された場合は、そのまま 目的のデータにたどり着くまで待って再生を開始する。 目的のデータのアドレスから遠く離れている場合や行き 過ぎている場合はシークからやり直す。読出し専用型の 場合、読出し時にはデータは全て書き込み済みであり、 かつ、再生信号は、ディスク全周にわたって信号の周波 数が一定で位相もそろっているので、位相を引きこむた めのゲインの稼げる特別なパターンが無くてもPLLを 同期させることが容易であり、データを読み出せれば、 アドレス情報が必ず取得できる。読出し専用型の場合、 基本的には大量のデータを連続して再生する用途が主で あるため、引きこみ時間に関する制限は厳しくない。 【0007】書き込みのできるDVDには、DVD-R AM、DVD-R、DVD-RWがある。このうち、D VD-RAMは、磁気ディスクのように計算機の2次記 憶装置としての用途にも十分絶え得るもので、データが 記録されているフォーマットも、読出し専用型とは異な っている。

【0008】DVD-RAMの場合、セクタは図20~図22に示すようなフォーマットになっている。

【0009】図20は、DVD-RAMのトラック・レイアウトを示している。データが記録/再生される最小単位であるセクタは、プリピットで形成されたヘッダ・フィールドとユーザ・データがマークで記録されるレコーディング・フィールドで構成されている。DVD-RAMの場合、レコーディング・フィールドは、ランドトラックとグループトラックが交互に配置されるような構成になっている。

【0010】図21にセクタのレイアウトを、図22に ヘッダ・フィールドのレイアウトを示す。DVD-RA Mの場合、物理的にはセクタ単位の書き換えが可能で、 セクタとセクタの境目は不連続点になるので、つなぎ目 の役割を果たす領域が存在する。

【0011】一つのヘッダ・フィールドは、VFO、AM、PID、IED、PAで構成されている。VFOは、装置のPLLの一部を構成するVariable Frequenc

(5) 開2002-50136 (P2002-50136A)

y Oscillatorにビット同期を与えて周波数と位相を引き込み、チャネルクロックをリカバリする為のパターンである。AM (Address Mark) は、VFOにより位相の揃ったデータ列にバイト同期をかけるためのパターンである。PID (PhysicalID) は、セクタに関する情報とセクタ番号が記録されている。IED (ID Error Detection code) は、ID部分のエラー検出コードである。PA(Postamble)は、ポストアンブルある。

【〇〇12】ユーザ・データ領域901の内容は、読出し専用型と一致しているから、データの書かれた部分に関しては、ユーザ・データの先頭の部分からアドレス情報を取得することも可能であるが、データが未記録の部分には、アドレス情報が存在することは保証されないので、そのような領域でもアドレス情報を取得できるように、各セクタの先頭部分には、書き換えが不可能なプリピットでID情報が書きこまれている。ID部と書き換えが可能なデータ部との周波数や位相は、書き込み時の状態により、必ずしも一致しないから、それぞれの領域の最初には、PLLを高速に引き込むための同期パターン(VFO)が存在する。

【 O O 1 3】 D V D - R A M では、このように、つなぎのためのG a p 領域や、I D 領域、同期パターン (V F O) が必要なため、読出し専用型に比べてフォーマット効率が低い。

【0014】レコーディング・フィールドは、GAP、 Guard1、VFO、PS、Dataフィールド、P A、Guard2、Bufferで構成されている。G APは、データの書きこみ処理において、ヘッダ・フィ ールドを読み出して、目標セクタであること判断してか ら書きこみ動作に切替える時間を稼ぐ為のフィールドで ある。Gaurd1フィールドは、データが何回も同じ 場所から書きかえられると媒体破壊が生じるので、GA Pフィールドとともにこれを避けるためにも使用される 調整/緩衝用フィールドである。VFOは、PLLをデ ータフィールドの位相に引き込んで、チャネルクロック をリカバリする為のパターンである。PSは、位相の引 き込まれたデータ列のバイト同期を取る為のパターンで ある。Dataフィールドにはユーザ・データと共に、 Data ID、IDエラー検出コード、エラー検出コ ードが記録される。

【0015】書き込みの出来るDVDのさらに異なったタイプに、DVD-R、DVD-RWがある。DVD-Rは書き込み回数が1回、DVD-RWは書き換え可能回数がおよそ1000回と、DVD-RAMの10万回に比べて少ない。DVD-R、DVD-RWは、元々読出し専用型の原盤作成前の試し書きの用途を目的に作られた。従って、データが記録されているフォーマットは、読出し専用型とほとんど一致している。ただし、読出し専用型と違い、ユーザが使用する時にはデータが未記録でアドレス情報が存在することは保証されないにも

かかわらず、読み出し専用型同様、DVD-RAMのようなアドレス情報を取得するために各セクタの先頭部分に設けられるID領域も無い。この為、データの記録されていない領域でもアドレス情報を取得できるように、ウォブリング・グルーブとランド・プリピットと言う仕組みを導入している。

【0016】ウォブリング・グルーブとは、データを記録するための溝を、半径方向に揺らせて波状にするものである。データは、この振幅周波数に同期させて記録させる。ランド・プリピットは、溝と溝の間のランド部に、ウォブリング・グルーブの振幅と同期した位置に形成されたプリピットのことで、これにアドレス情報をもたせることで、未記録領域からもアドレス情報を得ることが出来るようになっている。

[0017]

【発明が解決しようとする課題】上記のように、現在のDVDには、用途によって、DVD-ROM、DVD-RAM、DVD-R、DVD-RWと言った種類があり、記録媒体上のフォーマットはそれぞれに適したものとなっている。このため、後から製品化されたDVD-RAMドライブは、全てのフォーマットをサポートしているが、初期のDVD-ROMドライブでは、DVD-RAM媒体をカートリッジから取り外して挿入しても読み出すことが出来ない状況にある。

【0018】DVD-ROMドライブも新機種では他のフォーマットに対応してきているが、様々なフォーマットに対応するには、機構、制御等がその分複雑になるためドライブの製造コストを安く出来ない。また、ユーザに対しても混乱を与え、規格の普及、浸透の加速を鈍らせる要因にもなりかねない。

【0019】また、DVD-ROMの場合、アドレス情報はECCブロックの先頭にデータとともに書きこまれている。このため、エラーが頻発するような状況では、ECCを解いてエラー訂正を行なうまでアドレス情報が得られなくなって、アクセス速度が低下するという問題もあった。

【0020】フォーマットを読出し専用型の光ディスクと書換え型の光ディスクで共通化させれば上記の問題は解消されるが、新たな課題も生じる。即ち、読出し専用型では全てのデータが連続しているので、位相引込みのためのパターンや制御の切替のための領域が必要ではないが、DVD-RAMのように頻繁にランダムなデータの書換えが出来るようにするためには、これらの領域が必要になる。したがって、共通フォーマットには、位相引込みのためのパターンや制御の切替のための領域を含めざるを得ない。これらのパターンは、本来、読出し専用型では必要のないパターンであるため、フォーマット効率が低下してしまう。

【0021】本発明の目的は、上記したような問題を解決し、以下の読出し専用型光ディスク、光ディスク再生

(6) 開2002-50136 (P2002-50136A)

装置、及び光ディスク再生方法を提供することにある。 【0022】(1)書換之型ディスクに対して互換性を 確保するとともに、フォーマット効率に優れた読出し専 用型光ディスクを提供すること。

【0023】(2)書換え型ディスクに対して互換性を確保するとともに、フォーマット効率に優れた読出し専用型光ディスクを高速再生することが可能な光ディスク再生装置及び光ディスク再生方法。

[0024]

【課題を解決するための手段】上記課題を解決し目的を 達成するために、この発明の読出し専用光ディスク、光 ディスク再生装置、及び光ディスク再生方法は、以下の ように構成されている。

【0025】(1)第1所定長のセクタ・フィールドが連続して複数配置され、各セクタ・フィールドが、第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続く第3所定長のレコーディング・フィールドを有し、各レコーディング・フィールドが、所定位置に第4所定長の書き換え可能なユーザ・データ記録フィールドを有する書換え型光ディスクと互換性を有する読出し専用型光ディスクであって、第1所定長のセクタ・フィールドが連続して複数配置され、各セクタ・フィールドが、第2所定長のヘッダ・フィールド、及びこのヘッダ・フィールドに続く第3所定長のレコーディング・フィールドを有し、各レコーディング・フィールドが、所定位置に第4所定長の読み出し専用のユーザ・データ記録フィールドを有する読出し専用型光ディスク。

【0026】(2)書換え型光ディスクが、連続して複 数配置された第1所定長のセクタ・フィールドを有し、 これら各セクタ・フィールドが、同期パターン等のヘッ ダ・フィールド特有のデータを含む第2所定長のヘッダ ・フィールド、及びこのヘッダ・フィールドに続きレコ ーディング・フィールド特有のデータを含む第3所定長 のレコーディング・フィールドを有し、これら各レコー ディング・フィールドが、所定位置に第4所定長の書き 換え可能なユーザ・データ記録フィールドを有し、前記 書換え型光ディスクと互換性を有する読出し専用型光デ ィスクが、連続して複数配置された第1所定長のセクタ ・フィールドを有し、これら各セクタ・フィールドが、 同期パターン等のヘッダ・フィールド特有のデータを含 む第2所定長のヘッダ・フィールド、及びこのヘッダ・ フィールドに続き読出し専用型光ディスク特有のデータ を含む第3所定長のレコーディング・フィールドを有 し、これら各レコーディング・フィールドが、所定位置 に第4所定長の読み出し専用のユーザ・データ記録フィ ールドを有し、前記読出し専用型光ディスクを再生する とき、この読出し専用型光ディスクのヘッダ・フィール ドに記録されたヘッダ・フィールド特有のデータに基づ き、目的アドレスにアクセスして再生する再生手段を備 えた光ディスク再生装置。

【0027】(3)書換え型光ディスクが、連続して複 数配置された第1所定長のセクタ・フィールドを有し、 これら各セクタ・フィールドが、同期パターン等のヘッ ダ・フィールド特有のデータを含む第2所定長のヘッダ ・フィールド、及びこのヘッダ・フィールドに続きレコ ーディング・フィールド特有のデータを含む第3所定長 のレコーディング・フィールドを有し、これら各レコー ディング・フィールドが、所定位置に第4所定長の書き 換え可能なユーザ・データ記録フィールドを有し、前記 書換え型光ディスクと互換性を有する読出し専用型光デ ィスクが、連続して複数配置された第1所定長のセクタ フィールドを有し、これら各セクタ・フィールドが、 同期パターン等のヘッダ・フィールド特有のデータを含 む第2所定長のヘッダ・フィールド、及びこのヘッダ・ フィールドに続き読出し専用型光ディスク特有のデータ を含む第3所定長のレコーディング・フィールドを有 し、これら各レコーディング・フィールドが、所定位置 に第4所定長の読み出し専用のユーザ・データ記録フィ ールドを有し、前記読出し専用型光ディスクを再生する とき、この読出し専用型光ディスクのヘッダ・フィール ドに記録されたヘッダ・フィールド特有のデータに基づ き、目的アドレスにアクセスして再生する光ディスク再 生方法。

【0028】(4)書換え型光ディスクが、連続して複 数配置された第1所定長のセクタ・フィールドを有し、 これら各セクタ・フィールドが、同期パターン等のヘッ ダ・フィールド特有のデータを含む第2所定長のヘッダ ・フィールド、及びこのヘッダ・フィールドに続きレコ ーディング・フィールド特有のデータを含む第3所定長 のレコーディング・フィールドを有し、これら各レコー ディング・フィールドが、所定位置に第4所定長の書き 換え可能なユーザ・データ記録フィールドを有し、前記 書換え型光ディスクと互換性を有する読出し専用型光デ ィスクが、連続して複数配置された第1所定長のセクタ ・フィールドを有し、これら各セクタ・フィールドが、 同期パターン等のヘッダ・フィールド特有のデータを含 む第2所定長のヘッダ・フィールド、及びこのヘッダ・ フィールドに続き読出し専用型光ディスク特有のデータ を含む第3所定長のレコーディング・フィールドを有 し、これら各レコーディング・フィールドが、所定位置 に第4所定長の読み出し専用のユーザ・データ記録フィ ールドを有し、前記読出し専用型光ディスクを再生する とき、この読出し専用型光ディスクのヘッダ・フィール ドに記録されたヘッダ・フィールド特有のデータに基づ き、トラッキングを制御して再生する再生手段を備えた 光ディスク再生装置。

【0029】(5)書換え型光ディスクが、連続して複数配置された第1所定長のセクタ・フィールドを有し、これら各セクタ・フィールドが、同期パターン等のヘッダ・フィールド特有のデータを含む第2所定長のヘッダ

(7) 開2002-50136 (P2002-50136A)

・フィールド、及びこのヘッダ・フィールドに続きレコ ーディング・フィールド特有のデータを含む第3所定長 のレコーディング・フィールドを有し、これら各レコー ディング・フィールドが、所定位置に第4所定長の書き 換え可能なユーザ・データ記録フィールドを有し、前記 書換え型光ディスクと互換性を有する読出し専用型光デ ィスクが、連続して複数配置された第1所定長のセクタ ・フィールドを有し、これら各セクタ・フィールドが、 同期パターン等のヘッダ・フィールド特有のデータを含 む第2所定長のヘッダ・フィールド、及びこのヘッダ・ フィールドに続き読出し専用型光ディスク特有のデータ を含む第3所定長のレコーディング・フィールドを有 し、これら各レコーディング・フィールドが、所定位置 に第4所定長の読み出し専用のユーザ・データ記録フィ ールドを有し、前記読出し専用型光ディスクを再生する とき、この読出し専用型光ディスクのヘッダ・フィール ドに記録されたヘッダ・フィールド特有のデータに基づ き、トラッキングを制御して再生する光ディスク再生方

[0030]

【発明の実施の形態】以下、この発明の実施の形態について図面を参照して説明する。

【0031】図1は、書換え型光ディスクにおける一つのセクタ・フィールドの構成を示す図である。後に、この図1と対比して、この発明の一例に係る読出し専用型光ディスクにおけるセクタ・フィールドの構成を説明する。

【0032】書換え型光ディスクには、第1所定長のセ クタ・フィールドが連続して複数配置されている。図1 に示すように、書換え型光ディスクにおける一つのセク タ・フィールドは、第2所定長のヘッダ・フィールド、 ミラー (Mirror)、及び第3所定長のレコーディ ング・フィールド (Recording field) を備えている。ミラーを除いて考えると、ヘッダ・フィ ールドに続いてレコーディング・フィールドが設けられ ている。ヘッダ・フィールドは、VFO1、AM、PI D1、IED1、PA1を備えている。レコーディング ·フィールドは、Gap、Guard1、VFO3、P reSync、Data (ユーザ・データ記録フィール ド)、PA3、Guard2、Bufferを備えてい る。レコーディング・フィールドのDataは、レコー ディング・フィールド中の所定位置に設けられており、 第4所定長を有する書換え可能なフィールドである。

【0033】通常、書換え型光ディスクのヘッダ・フィールド(Header 1 field)は、安全のため ID情報が多重書きされているが、個々のID情報の構成は同じなので、ここでは説明の簡略化のため、ID情報が1回だけ記録されている構成を示すが、本発明はID情報の多重書き回数に関係なく適用可能である。

【0034】図2は、本発明の第1例に係る読出し専用

型光ディスクにおける一つのセクタ・フィールドの構成 を示す図である。

【0035】読出し専用型光ディスクには、第1所定長 のセクタ・フィールドが連続して複数配置されている。 図2に示すように、読出し専用型光ディスクにおける一 つのセクタ・フィールドは、第2所定長のヘッダ・フィ ールド、OP (OPTION) 6、及び第3所定長のレ コーディング・フィールド (Recording fi eld)を備えている。OP6を除いて考えると、ヘッ ダ・フィールドに続いてレコーディング・フィールドが 設けられている。ヘッダ・フィールドは、OP(OPT ION) 1~OP5を備えている。レコーディング・フ ィールドは、OP7~OP10、Data(ユーザ・デ ータ記録フィールド)、OP11~OP13を備えてい る。レコーディング・フィールドのDataは、レコー ディング・フィールド中の所定位置に設けられており、 第4所定長(2418バイト)を有する読出し専用のフ ィールドである。

【0036】つまり、図1に示す書換え型光ディスクの一つのセクタ・フィールドと、図2に示す読出し専用型 光ディスクの一つのセクタ・フィールドとを対比説明すると以下のようになる。

【0037】図1に示す書換え型光ディスクの一つのセクタ・フィールドにおける、ヘッダ・フィールドの全て、さらに、Mirror、Gap、Guard1、VFO3、PreSync、PA3、Guard2、Bufferの各フィールドは、読出し専用型光ディスクでは必要無い部分である。そのため、読出し専用型光ディスクでは、これら各フィールドをオプション情報を記録するためのオプション情報記録フィールドとして割り当てる。その結果、図2に示す読出し専用型光ディスクのセクタ・フィールドが得られる。

【0038】図3は、本発明の第2例に係る読出し専用型光ディスクにおける一つのセクタ・フィールドの構成を示す図である。

【0039】読出し専用型光ディスクには、第1所定長のセクタ・フィールドが連続して複数配置されている。図3に示すように、読出し専用型光ディスクにおけるーつのセクタ・フィールドは、第2所定長のヘッダ・フィールド、OP(OPTION)2、及び第3所定長のレコーディング・フィールド(Recording field)を備えている。OP2を除いて考えると、ヘッダ・フィールドは、OP1、AM、PID1、IED1、PA1を備えている。レコーディング・フィールドは、OP3~OP6、Data(ユーザ・データ記録フィールド)、OP7~OP9を備えている。レコーディング・フィールドのDataは、レコーディング・フィールド中の所定位置に設けられており、第4所定長を有する読出し専用のフィールド

(8) 開2002-50136 (P2002-50136A)

である。

【0040】つまり、図1に示す書換え型光ディスクの一つのセクタ・フィールドと、図3に示す読出し専用型光ディスクの一つのセクタ・フィールドとを対比説明すると以下のようになる。

【0041】図1に示す書換え型光ディスクの一つのセ クタ・フィールドにおける、ヘッダ・フィールドの全 て、さらに、Mirror、Gap、Guard1、V FO3, PreSync, PA3, Guard2, Bu fferの各フィールドは、読出し専用型光ディスクで は必要無い部分である。しかし、この第2例では、ヘッ ダ・フィールドのVFO以外を利用する。そのため、こ の第2例の読出し専用型光ディスクでは、ヘッダ・フィ ールドのVFO、さらに、Mirror、Gap、Gu ard 1、VFO3、PreSync、PA3、Gua rd2、Bufferの各フィールドにオプション情報 を記録するためのオプション情報記録フィールドを割り 当てる。その結果、図3に示す読出し専用型光ディスク のセクタ・フィールドが得られる。読出し専用型光ディ スクにおいて、ヘッダ・フィールドのVFO以外のフィ ールドを使用することにより、ID情報をヘッダ・フィ ールドから取得することで、アクセス速度の高速化を図 ることができる。

【0042】図4は、本発明の第3例に係る読出し専用型光ディスクにおける一つのセクタ・フィールドの構成を示す図である。

【0043】読出し専用型光ディスクには、第1所定長のセクタ・フィールドが連続して複数配置されている。図4に示すように、読出し専用型光ディスクにおける一つのセクタ・フィールドは、第2所定長のヘッダ・フィールド、OP1、及び第3所定長のレコーディング・フィールド(Recording field)を備えている。OP1を除いて考えると、ヘッダ・フィールドに続いてレコーディング・フィールドが設けられている。ヘッダ・フィールドは、VFO、AM、PID1、IED1、PA1を備えている。レコーディング・フィールドは、OP2~OP5、Data(ユーザ・データ記録フィールド)、OP6~OP8を備えている。レコーディング・フィールドのDataは、レコーディング・フィールド中の所定位置に設けられており、第4所定長を有する読出し専用のフィールドである。

【0044】つまり、図1に示す書換え型光ディスクの一つのセクタ・フィールドと、図4に示す読出し専用型 光ディスクの一つのセクタ・フィールドとを対比説明す ると以下のようになる。

【0045】図1に示す書換え型光ディスクの一つのセクタ・フィールドにおける、ヘッダ・フィールドの全て、さらに、Mirror、Gap、Guard1、VFO3、PreSync、PA3、Guard2、Bufferの各フィールドは、読出し専用型光ディスクで

は必要無い部分である。しかし、この第3例では、ヘッダ・フィールドの全てを利用する。そのため、この第3例の読出し専用型光ディスクでは、Mirror、Gap、Guard1、VFO3、PreSync、PA3、Guard2、Bufferの各フィールドをオプション情報を記録するためのオプション情報記録フィールドとして割り当てる。その結果、図3に示す読出し専用型光ディスクにおいて、ヘッダ・フィールドが得られる。読出し専用型光ディスクにおいて、ヘッダ・フィールドから取得することにより、ID情報をヘッダ・フィールドから取得することで、アクセス速度の高速化を図ることができる。さらに、ヘッダ・フィールドへのクロックの同期を高速化させて、アクセス速度のさらなる高速化を量ることができる。

【0046】ここで、上記説明した第1例の読出し専用型光ディスクにオプション情報記録フィールドに、読出し専用型光ディスク固有の情報を記録する一例を示す。【0047】図2に示すフォーマットの場合、あるセクタのOPT11からその次のセクタのOPT10までは、196バイトの連続した領域になる。チャネル・ビットによる長さに換算すると、196(バイト)×8(ビット/バイト)×2(チャネル・ビット/ユーザ・ビット)=3136(チャネル・ビット)になる。

【0048】一方、図23に示したように、DVDに記録される情報は、1rowが、

32+1456+32+1456=2976 (チャネル ・ビット)

である。したがって、1セクタ分のオプション情報記録フィールドに1row分、即ち13分の1セクタ分の情報を記録できることがわかる。

【0049】このオプション情報記録フィールドの情報は、従来のデータ記録部分からの情報と、再生装置のバッファ内で分離され、別情報として、上位装置からアクセス可能なようにすることが出来る。よって、例えば、ROM固有のボーナス・トラックをオプション記録フィールドに記録することにすれば、本編部分については、書換え型の光ディスク装置と物理的なフォーマットのレベルから互換性を取ることができ、かつ、ROMの容量面でのアドバンテージを保つことが可能になる。

【0050】図5は、オプション情報記録フィールドに記録されるオプション情報の概略を示す図である。図6は、オプション情報を有するROMディスクの再生制御を説明するフローチャートである。図6に示すように、従来のデータフィールドが再生され(ST11)、オプション情報の再生が許可されていれば(ST12、YES)、オプション情報も再生されユーザのリクエストに応じて情報がホストに転送される(ST13)。オプション情報の再生が許可されていなければ(ST12、NO)、オプション情報は再生されず従来データの処理に

(9) 開2002-50136 (P2002-50136A)

復帰する(ST14)。

【0051】オプション情報記録フィールドに記録する 内容の別の一例に、メディア種別の識別情報を記録する ことがあげられる。例えば、ROM媒体の場合には、図 3のOPT1からOPT9の領域に、変調コードの制約 上現れないようなコードを記録し、RAM媒体との区別 するための識別符号として利用する。結果的にROMの 場合、図7に示すようなフォーマットになる。

【0052】ROMとRAMの識別が明確に可能になると、例えば、ROM上のコピープロテクトされた情報のイメージを互換の有る録再可能な媒体(RAM)にバイナリデータイメージのままコピーした場合でも、不正コピーであることが容易に検出可能になる。図8は、メディア識別情報の再生制御を示すフローチャートである。【0053】図8に示すように、ディスクが再生され(ST21)、メディア識別情報が検出されれば(ST22)、ROMディスクとして再生される(ST23)。メディア識別情報が検出されずに(ST22、NO)、コンテンツのコピーが禁止されていなければ(ST24、NO)、ROMディスクとして再生される(ST24、NO)、ROMディスクとして再生される(ST24、NO)、ROMディスクとして再生される(ST24、YES)、コンテンツの再生を終了し、必要に応じて警告が出される(ST26)。

【0054】オプション情報としては、ボーナス・トラック以外にも、著作権者情報、メーカー情報、著作権保護のための制御情報などを記録しても良い。

【0055】例えば、ビジュアルなコンテンツ情報が、ある間隔の記録位置毎に異なる鍵で暗号化されていて、再生時に、オプション情報中に記録された暗号解読鍵を読出しながら、ビジュアルなコンテンツ情報をリアルタイムで暗号解読しながら表示出力する、等の用途に使用できる。

【0056】また、著作権保護のための複製制御情報に、図9に示したCGMS(Copy Generation Management System)情報を記録し、再生時の複製制限制御に使用することも出来る。

【0057】上記の例では、オプション情報の記録用フィールドに、ボーナス・トラックのような選択的に利用可能な追加情報を記録しているが、従来のデータ記録部分に対して選択的に利用可能なパリティ情報を記録することも可能である。

【0058】従来のデータ記録部分には、図24に示したように、16セクタを1ECCブロックとしたパリティ情報が付加されている。本発明の実施例においては、書換え型光ディスク装置との互換性を確保する為、この従来のパリティ構成は変更しないで、エラー検出/訂正能力を高める為の追加パリティ情報をオプション情報の記録用フィールドに記録する。この場合、ボーナス・トラック情報の記録時のように、あるセクタのデータ領域の後のオプション領域と、そのセクタの次のセクタのデ

ータ領域の前のオプション領域とを一つながりと扱っても良いが、同一セクタ内の、データ領域で前後に分割されたオプション領域を一まとまりとして、そのセクタに対する選択的に利用可能なパリティ情報を記録することにしても良い。

【0059】図10は、オプション情報記録フィールド に記録された選択的に利用可能な追加情報を再生する再生制御を示すフローチャートである。

【0060】図10に示すように、オプション情報記録 フィールドでなければ(ST31、NO)、従来のデー タフィールドの処理が行なわれる(ST32)。オプシ ョン情報記録フィールドであり(ST31、YES)、 ホストからオプション情報の読出し要求がきていれば (ST33、YES)、2SYNCフレームが読み込ま れる(ST34)。26SYNCフレーム全てが読み込 まれ(ST35、YES)、16レコーディング・フレ ーム全てが読み込まれると(ST36、YES)、エラ 一処理をして情報がホストに転送される(ST37)。 【0061】図11及び図12は、オプション情報記録 フィールドに記録された選択的に利用可能なパリティ情 報を再生する再生制御を示すフローチャートである。図 11は、セクタごとのインナーパリティ (inner parit y)を補強する場合、図12は、ECCブロックでのア ウターパリティ (outer parity) を補強する場合であ る。

【0062】図11に示すように、オプション情報記録フィールドでなければ(ST41、NO)、従来のデータフィールドの処理が行なわれる(ST42)。オプション情報記録フィールドであれば(ST41、YES)、オプション情報が読み込まれる(ST43)。処理中のセクタのオプション情報が読み終わり(ST44、YES)、インナーパリティで訂正不能なエラーがあれば(ST45、YES)、オプション情報のパリティによりエラーが訂正される(ST46)。

【0063】図12に示すように、オプション情報記録フィールドでなければ(ST51、NO)、従来のデータフィールドの処理が行なわれる(ST52)。オプション情報記録フィールドであれば(ST51、YES)、オプション情報が読み込まれる(ST53)。処理中のセクタのオプション情報が読み終わり(ST54、YES)、ECCブロック全てが読み終わり(ST55、YES)、アウターパリティで訂正不能なエラーがあれば(ST56、YES)、オプション情報のパリティによりエラーが訂正される(ST57)。

【0064】図13は、書換え型光ディスクにおける一つのブロック・フィールドの構成を示す図である。後に、この図13と対比して、この発明の一例に係る読出し専用型光ディスクにおけるブロック・フィールドの構成を説明する。

【0065】書換え型光ディスクには、第1所定長のブ

(10) \$2002-50136 (P2002-50136A)

ロック・フィールドが連続して複数配置されている。図 13に示すように、書換え型光ディスクにおける一つのブロック・フィールドは、第2所定長のヘッダ・フィールド、ミラー(Mirror)、及び第3所定長のレコーディング・フィールド(Recording field)を備えている。ミラーを除いて考えると、ヘッダ・フィールドに続いてレコーディング・フィールドが設けられている。ヘッダ・フィールドは、VFO1、AM、PID1、IED1、PA1を備えている。レコーディング・フィールドは、Gap、Guard1、VFO3、PreSync、Data(ユーザ・データ記録フィールド)、PA3、Guard2、Bufferを備えている。レコーディング・フィールドのDataは、レコーディング・フィールド中の所定位置に設けられており、第4所定長を有する書換え可能なフィールドである。

【0066】通常、書換え型光ディスクのヘッダ・フィールド(Header 1 field)は、安全のため ID情報が多重書きされているが、個々のID情報の構成は同じなので、ここでは説明の簡略化のため、ID情報が1回だけ記録されている構成を示すが、本発明はID情報の多重書き回数に関係なく適用可能である。

【0067】また、現在のDVD-RAM(書換え型光ディスク)では、図1に示したように、ヘッダ・フィールドが2048バイトのユーザ・データを記録する為のレコーディング・フィールド(=1セクタ)毎に存在するが、図13に示すような、ECCブロックを構成する16セクタ毎に1つのヘッダ・フィールドが存在するようなフォーマットも考えられる。

【0068】図14は、本発明の第4例に係る読出し専用型光ディスクにおける一つのブロック・フィールドの構成を示す図である。

【0069】読出し専用型光ディスクには、第1所定長 のブロック・フィールドが連続して複数配置されてい る。図14に示すように、読出し専用型光ディスクにお ける一つのブロック・フィールドは、第2所定長のヘッ ダ・フィールド、OP (OPTION) 6、及び第3所 定長のレコーディング・フィールド (Recordin g field)を備えている。OP6を除いて考える と、ヘッダ・フィールドに続いてレコーディング・フィ ールドが設けられている。ヘッダ・フィールドは、OP (OPTION) 1~OP5を備えている。レコーディ ング・フィールドは、OP7~OP10、Data(ユ ーザ・データ記録フィールド)、OP11~OP13を 備えている。レコーディング・フィールドのData は、レコーディング・フィールド中の所定位置に設けら れており、第4所定長(2418×16バイト)を有す る読出し専用のフィールドである。

【0070】つまり、図13に示す書換え型光ディスクの一つのブロック・フィールドと、図14に示す読出し

専用型光ディスクの一つのブロック・フィールドとを対 比説明すると以下のようになる。

【0071】図13に示す書換之型光ディスクの一つのブロック・フィールドにおける、ヘッダ・フィールドの全て、さらに、Mirror、Gap、Guard1、VFO3、PreSync、PA3、Guard2、Bufferの各フィールドは、読出し専用型光ディスクでは必要無い部分である。そのため、読出し専用型光ディスクでは、これら各フィールドをオプション情報を記録するためのオプション情報記録フィールドとして割り当てる。その結果、図14に示す読出し専用型光ディスクのブロック・フィールドが得られる。

【0072】図15は、本発明の第5例に係る読出し専用型光ディスクにおける一つのブロック・フィールドの構成を示す図である。

【0073】読出し専用型光ディスクには、第1所定長 のブロック・フィールドが連続して複数配置されてい る。図15に示すように、読出し専用型光ディスクにお ける一つのブロック・フィールドは、第2所定長のヘッ ダ・フィールド、OP (OPTION) 2、及び第3所 定長のレコーディング・フィールド(Recordin g field)を備えている。OP2を除いて考える と、ヘッダ・フィールドに続いてレコーディング・フィ ールドが設けられている。ヘッダ・フィールドは、OP 1、AM、PID1、IED1、PA1を備えている。 レコーディング・フィールドは、OP3~OP6、Da ta (ユーザ・データ記録フィールド)、OP7~OP 9を備えている。レコーディング・フィールドのDat aは、レコーディング・フィールド中の所定位置に設け られており、第4所定長(2418×16バイト)を有 する読出し専用のフィールドである。

【0074】つまり、図13に示す書換え型光ディスクの一つのブロック・フィールドと、図15に示す読出し専用型光ディスクの一つのブロック・フィールドとを対比説明すると以下のようになる。

【0075】図13に示す書換之型光ディスクの一つのブロック・フィールドにおける、ヘッダ・フィールドの全て、さらに、Mirror、Gap、Guard1、VFO3、PreSync、PA3、Guard2、Bufferの各フィールドは、読出し専用型光ディスクでは必要無い部分である。しかし、この第5例では、ヘッダ・フィールドのVFO以外を利用する。そのため、この第5例の読出し専用型光ディスクでは、ヘッダ・フィールドのVFO、さらに、Mirror、Gap、Guard1、VFO3、PreSync、PA3、Guard2、Bufferの各フィールドにオプション情報を記録するためのオプション情報記録フィールドを割り当てる。その結果、図15に示す読出し専用型光ディスクのブロック・フィールドが得られる。読出し専用型光ディスクにおいて、ヘッダ・フィールドのVFO以外

(11) 月2002-50136 (P2002-50136A)

のフィールドを使用することにより、ID情報をヘッダ・フィールドから取得することで、アクセス速度の高速 化を図ることができる。

【0076】図16は、本発明の第6例に係る読出し専用型光ディスクにおける一つのブロック・フィールドの構成を示す図である。

【0077】読出し専用型光ディスクには、第1所定長 のブロック・フィールドが連続して複数配置されてい る。図16に示すように、読出し専用型光ディスクにお ける一つのブロック・フィールドは、第2所定長のヘッ ダ・フィールド、OP1、及び第3所定長のレコーディ ング・フィールド (Recording field) を備えている。OP1を除いて考えると、ヘッダ・フィ ールドに続いてレコーディング・フィールドが設けられ ている。ヘッダ・フィールドは、VFO、AM、PID 1、IED1、PA1を備えている。レコーディング・ フィールドは、OP2~OP5、Data(ユーザ・デ ータ記録フィールド)、OP6~OP8を備えている。 レコーディング・フィールドのDataは、レコーディ ング・フィールド中の所定位置に設けられており、第4 所定長(2418×16)を有する読出し専用のフィー ルドである。

【0078】つまり、図13に示す書換え型光ディスクの一つのブロック・フィールドと、図16に示す読出し専用型光ディスクの一つのブロック・フィールドとを対比説明すると以下のようになる。

【0079】図13に示す書換え型光ディスクの一つの ブロック・フィールドにおける、ヘッダ・フィールドの 全て、さらに、Mirror、Gap、Guard1、 VFO3、PreSync、PA3、Guard2、B ufferの各フィールドは、読出し専用型光ディスク では必要無い部分である。しかし、この第6例では、へ ッダ・フィールドの全てを利用する。そのため、この第 3例の読出し専用型光ディスクでは、Mirror、G ap、Guard1、VFO3、PreSync、PA 3、Guard2、Bufferの各フィールドをオプ ション情報を記録するためのオプション情報記録フィー ルドとして割り当てる。その結果、図16に示す読出し 専用型光ディスクのブロック・フィールドが得られる。 読出し専用型光ディスクにおいて、ヘッダ・フィールド を使用することにより、ID情報をヘッダ・フィールド から取得することで、アクセス速度の高速化を図ること ができる。さらに、ヘッダ・フィールド中のVFOを使 用することにより、ヘッダ・フィールドへのクロックの 同期を高速化させて、アクセス速度のさらなる高速化を 量ることができる。

【0080】図17は、従来の読出し専用型光ディスク 媒体の1セクタのデータの構造を示す。1セクタは20 64バイトで構成されており、その内訳は、2048バ イトのユーザ・データと、4バイトのデータID(ID 情報)、2バイトの I Dエラー検出コード(I E D)、6バイトの予約部分、4バイトのエラーエラー検出コード(E D C)である。このように、1 セクタのデータには I D情報が埋めこまれている。従来の読出し専用型の光ディスクにおける 1 セクタ、2418バイトの内訳は、図24に示したE C C エンコーディングによる、アウターパリティ(outer parity(図24中のP O)) 1 7 2バイト、インナーパリティ(inner parity(図24中のP I)) $13 \times 10 = 130$ バイト、図23に示したチャネルに記録されるときに付加される 26 個のsync 32 (bit) $\times 2$ (個/raw) $\times 13$ (raw) $\times 2$ (channel bit/user data bit) $\times 2$ (bit/Byte) $\times 2$ ($\times 2$ ($\times 2$) (

【0081】このように、従来の読出し専用型光ディスクは、1セクタのデータの中にID情報が含まれている為、これを読み出すことで、シーク/トラッキングの制御情報を行なったり、再生時のセクタアドレスの確認を行なったりしてきた。ただし、この場合、ID情報は、エラー訂正をユーザ・データと共用している為、読出しエラーが起きた場合でアウターパリティ(outer parity)が必要になった場合は、図24のように、アウターパリティ情報はECCブロック内のセクタに分散して記録されている為、全てのECCブロックを読み出さないと訂正できない場合がある。

【0082】これに対して、図15のフォーマットの場合、データ部分は従来の形式と同じであるので、上記のような従来方法でシーク/トラッキングの制御情報を行なったり、再生時のセクタアドレスの確認を行なうことも出来るが、書換え型光ディスクと同様にヘッダ・フィールドのID情報を使用して、シーク/トラッキングの制御情報を行なったり、再生時のセクタアドレスの確認を行なうことが可能である。

【0083】図18は、上記説明した本発明の読出し専用型光ディスクを再生する再生装置の概略構成を示す図である。この再生装置は、再生専用型光ディスクのヘッダ・フィールドのID情報を使用して、シーク/トラッキングの制御情報を行なったり、再生時のセクタアドレスの確認を行なったりする。

【0084】図18に示すように再生装置は、光ピックアップ部11、スピンドルモータ12、サーボ制御部13、レベルスライス信号処理部14、ID検出部15、エラー訂正部16、上位装置インターフェース17、ドライブ制御回路18、RLL変調器19、書込み補償回路20、書込みドライバ21を備えている。

【0085】光ピックアップ部11は、光ディスクに対して再生用レーザ光又は記録用レーザ光を照射する。さらにこの光ピックアップ部11は、再生用レーザ光を照射した場合には、このレーザ光の反射光を検出し、この反射光に反映された光ディスクのデータを再生信号として提供する。スピンドルモータ12は、光ディスクを所

(12) $\sqrt{2}$ $\sqrt{2}$

定速度で回転させる。サーボ制御部13は、光ピックアップ部11から照射されるレーザのトラッキング及びフォーカッシングを制御する。さらに、このサーボ制御部13は、スピンドルモータの回転も制御する。

【0086】レベルスライス信号処理部14は、AGC制御部141、オフセット制御部142、AGCアンプ143、等化器144、PLL回路145、スライスレベル検出器146、RLL復調器147を備えている。このレベルスライス信号処理部14は、光ピックアップ部11から提供される再生信号に対して、レベルスライス信号処理を行なう。

【0087】ID検出部15は、読出し専用型光ディスク媒体の再生時にあっても、書換え型光ディスクと同様にヘッダ・フィールドのID情報を読み出して、ドライブ制御回路18に出力する。ドライブ制御回路18は、この情報を利用してシーク/トラッキングの制御情報を行なったり、再生時のセクタアドレスの確認を行なったりする。また、データ部分は従来の形式と同じであるので、エラー訂正部16の出力を利用して、従来方法でシーク/トラッキングの制御情報を行なう。再生時のセクタアドレスの確認を行なう方法を併用しても構わない。

【0088】図19は、ドライブ制御部における書換え型光ディスクと同様のヘッダ・フィールドのID情報を使用してシーク/トラッキングの制御を行なったり、再生時のセクタアドレスの確認を行なったりする方法を示すフローチャートである。

【0089】図19に示すように、上位装置からアクセス要求が入力されると(ST61)、セクタ番号と目標トラックとが算出され(ST62)、サーボ制御部に対して目標トラックへのシークが指示される(ST6

3)。ID検出部でヘッダ・フィールドのID情報が読み出され(ST64)、シーク位置が良好であり(ST65、YES)、目標セクタであれば(ST66、YES)、アクセスが開始される(ST67)。目標セクタでなければ(ST66、NO)、ID検出部でヘッダ・フィールドのID情報が読み出される(ST68)。アクセスが開始された後(ST67)、セクタの最後までアクセスが続行され(ST69)、全てのデータがアクセスされれば(ST70、YES)、一連の処理は終了する。全てのデータがアクセスされなければ(ST70、NO)、シークの要否に応じて(ST71、YES/NO)、処理が移行する。

【0090】以上説明したように、本発明によれば、フォーマットを書換え型ディスクと共通化させた読出し専用型ディスクにおいても、読出し専用型では読出し制御に寄与しない領域を追加情報記録領域とすることで、書換え型ディスクとの互換性を確保しつつ、フォーマット効率の高い光ディスクを提供することが可能となる。

【0091】なお、本願発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない

範囲で種々に変形することが可能である。また、各実施 形態は可能な限り適宜組み合わせて実施してもよく、そ の場合組み合わせた効果が得られる。更に、上記実施形 態には種々の段階の発明が含まれており、開示される複 数の構成要件における適当な組み合わせにより種々の発 明が抽出され得る。例えば、実施形態に示される全構成 要件からいくつかの構成要件が削除されても、発明が解 決しようとする課題の欄で述べた課題が解決でき、発明 の効果の欄で述べられている効果が得られる場合には、 この構成要件が削除された構成が発明として抽出され得 る。

[0092]

【発明の効果】この発明によれば、下記の読出し専用型 光ディスク、光ディスク再生装置、及び光ディスク再生 方法を提供できる。

【0093】(1)書換え型ディスクに対して互換性を確保するとともに、フォーマット効率に優れた読出し専用型光ディスクを提供すること。

【0094】(2) 書換え型ディスクに対して互換性を確保するとともに、フォーマット効率に優れた読出し専用型光ディスクを高速再生することが可能な光ディスク再生装置及び光ディスク再生方法。

【図面の簡単な説明】

【図1】書換え型光ディスクにおける一つのセクタ・フィールドの構成を示す図である。

【図2】本発明の第1例に係る読出し専用型光ディスク における一つのセクタ・フィールドの構成を示す図である。

【図3】本発明の第2例に係る読出し専用型光ディスクにおける一つのセクタ・フィールドの構成を示す図である

【図4】本発明の第3例に係る読出し専用型光ディスクにおける一つのセクタ・フィールドの構成を示す図である

【図5】オプション情報記録フィールドに記録されるオプション情報の概略を示す図である。

【図6】オプション情報を有するROMディスクの再生 制御を説明するフローチャートである。

【図7】メディア識別情報がオプション情報記録フィールドに記録された様子を示す図である。

【図8】メディア識別情報の再生制御を示すフローチャ ートである。

【図9】著作権保護のための複製制御情報の一例を示す 図である。

【図10】オプション情報記録フィールドに記録された 選択的に利用可能な追加情報を再生する再生制御を示す フローチャートである。

【図11】オプション情報記録フィールドに記録された 選択的に利用可能なパリティ情報(インナーパリティ) を再生する再生制御を示すフローチャートである。

(13) 月2002-50136 (P2002-50136A)

【図12】オプション情報記録フィールドに記録された 選択的に利用可能なパリティ情報(アウターパリティ) を再生する再生制御を示すフローチャートである。

【図13】書換え型光ディスクにおける一つのブロック・フィールドの構成を示す図である。

【図14】本発明の第4例に係る読出し専用型光ディスクにおける一つのブロック・フィールドの構成を示す図である。

【図15】本発明の第5例に係る読出し専用型光ディスクにおける一つのブロック・フィールドの構成を示す図である

【図16】図16は、本発明の第6例に係る読出し専用型光ディスクにおける一つのブロック・フィールドの構成を示す図である。

【図17】従来の読出し専用型光ディスク媒体の1セクタのデータの構造を示す。

【図18】上記説明した本発明の読出し専用型光ディスクを再生する再生装置の概略構成を示す図である。

【図19】ヘッダ・フィールドのID情報を利用してシーク/トラッキングを制御したり、再生時のセクタアドレスを確認したりする方法を示すフローチャートである。

【図20】DVD-RAMのトラックのレイアウトを示

す図である。

【図21】DVD-RAMのセクタのレイアウトを示す 図である。

【図22】DVD-RAMのヘッダのレイアウトを示す図である。

【図23】DVD-RAM上のユーザ・データ記録フィールドに記録されるセクタデータを示す図である。

【図24】DVD-RAM上のユーザ・データ記録フィールドに記録されるECCブロックデータを示す図である。

【符号の説明】

- 11…光ピックアップ部
- 12…スピンドルモータ
- 13…サーボ制御部
- 14…レベルスライス信号処理部
- 15…ID検出部
- 16…エラー訂正部
- 17…上位装置インターフェース
- 18…ドライブ制御回路
- 19…RLL変調器
- 20…書込み補償回路
- 21…書込みドライバ

【図1】

	ŀ	łea	der1	lield						Recordi	ng field			
VFO	1 A	М	PID1	IED1	PA1	Mirror	Gap	Guard1	VFO3	PreSync	Data	⊬A3	Guard2	Buffer
36	<u> </u> ;	3	4	2	1	2	10+J/16	20+K	35	3	2418	1	55-K	25-J/16

【図2】

	He	der1 f	ield					-	i lecordi	ng fleld			
O: T1	Oi T2	ОРТЗ	OPT4	OPT5	ОРТ6	ОРТ7	OP (8	OPT9	OPT10	Data	OPT11	OPT12	OPT13
36	3	4	2	1	2	10	20	35	3	2418	1	55	25

【図3】

	: le:	ader1 (ield						Record	ing fletd			
О:Т1	AM	PIU1	IED1	PA1	OPT2	ОРТЗ	OP (4	OPT5	Oî Tê	Data	OP 17	ОРТ8	ОРТ9
36	3	4	2	1	2.	10	20	35	3	2418	1	55	25

【図4】

	He	eder1 (ield						Record	ng field			
VFQ1	АМ	PID1	IED1	PA1	OPI	OPTS.	ОРТЗ	OPT4	OPTS	Dáta	QP16	OPT7	ОРТВ
36	3	4	2	1	2	10	20	35	3	2418	1	55	25

(14) 月2002-50136 (P2002-50136A)

【図5】

【図6】

【図7】

(15) 月2002-50136 (P2002-50136A)

【図8】

【図9】

CGMS	definition
0,0	Copyling is permitted without restriction
0.1	Codition not to be used
1.0	One generation of coples may be made
1.1	No copying is permitted

【図13】

	He	ader1	field		L				Hecord	ing fletd		-	
VFOt	AM	PID1	ŒD1	PA1	Miror	Gap	Guard1	VFO3	PreSync	Data	PA3	Guard2	Buffer
38	3	4	2	1	2.	10+J/16	20+K	35	3	2418X16	1	55-K	25-J/13

【図14】

	Hə	aderi	field						Hecord	ing field			_
דיוס	OPT2	ОРТЗ	OP14	OPT5	OPT6	OPT7	OP (8	ОРТ9	OPT10	Data	OPT11	OPT12	OPT13
36	3	4	2	1	2.	10	20	35	3	2418X16	1	55	25

(16) 月2002-50136 (P2002-50136A)

【図12】

(17) 月2002-50136 (P2002-50136A)

【図15】

	He	ader1 1	ileid						Record	ing field		-	
O⊬T1	AM	PD>1	IED1	PA1	OPT2	Ондз	OPT4	OPT5	ОРТБ	Data	OP17	ОНТ8	ОРТ9
36	3	4	2	1	2	10	20	35	3	2418×16	1	55	25

【図16】

	Hə	ader1 1	ield						Hecord	ing field			
VFO1	AM	PIO1	IED1	PAf	OPT1	OPT2	OP (3	OPT4	OPT5	Data	OPT6	OPT7	OP 18
36	3	4	2	1	2.	10	20	35	3	2418×16	1	55	25

【図17】

【図20】

(18) 月2002-50136 (P2002-50136A)

【図18】

【図19】

(19) 月2002-50136 (P2002-50136A)

【図21】

							901		
					Recordi	ing Beld		_	
Header	Mirror	Gap	Guard1	VFO3	PreSync	Data	PA3	Guard?	Buffer
128	2	10 W/16	20+K	35	3	2418	1	55-K	25-J/16

【図22】

	Hea	Header1 field Header2 field Header3 field							Header4 field										
VFO1	AM	PID1	IED1	l'A1	VFO2	АМ	PID2	IED2	PA2	VFO1	AM	PID3	IED3	PA1	VF02	AM	PID4	IED4	PA2
30	3	4	2	7	8	3	4	2	1	36	3	4	2	1	8	3	4	2	1

【図23】

	32	1456	32	1456
	SYNC = F			
Ť	SY0		SY5	
	SY1		SY5	
	SY2		SY5	
	SY3		SY5	
	SY4		SY5	
13rows	SY1		SY6	
8	SY2		SY6	
	SY3		SY6	
	SY4		SY6	
	SY1		SY7	
	SY2		SY7	
	SY3		SY7	
Ł	SY4		SY7	
	-	Syncフレーム		Syncフレーム

(20) 月2002-50136 (P2002-50136A)

【図24】

フロントページの続き

(72)発明者 安東 秀夫

神奈川県川崎市幸区柳町70番地 株式会社

東芝柳町事業所内

(72)発明者 能弾 長作

神奈川県川崎市幸区柳町70番地 株式会社

東芝柳町事業所内

(72) 発明者 柏原 裕

神奈川県川崎市幸区柳町70番地 株式会社

東芝柳町事業所内

Fターム(参考) 5D090 AA01 BB02 DD03 FF25 GG17

GG28