Jorge Grajal Herrero, Ignacio Doce Bedoya Ordenar palabras y girar 180º una imagen

CÁLCULOS REALIZADOS CON 2 EQUIPOS:

Al realizar las mediciones en los dos equipos, obtuvimos los siguientes resultados:

ORDENADOR A:

ORDENADOR B:

Con los datos obtenidos, construimos la siguiente tabla: (Medidas en milisegundos)

Ordenadores	Algoritmos	Ejec. 1	Ejec. 2	Ejec. 3	Ejec. 4	Ejec. 5	Media
Ordenador A	Ordenar	11.963	9.89	8.143	6.219	4.093	8.062
	palabras						
	Giro de	37.867	12.597	11.755	11.747	11.797	17.153
	180º						
Ordenador B	Ordenar	3.653	2.361	2.48	1.725	1.437	2.331
	palabras						
	Giro de 180º	29.736	12.462	8.927	8.251	7.811	13.457

Claramente se puede observar con los datos que el ordenador B es más rápido que el ordenador A, le utilizaremos como referencia.

Ahora calculamos el Tiempo de Ejecucción Normalizado con la siguiente formula:

Normalized Execution Time = Execution Time in the rate Machine / Execution Time in the reference Machine (B)

Ordenador A:

Normalized ET (Ordenar palabras) = 8.062 / 2.331 = 3.458

Normalized ET (Giro de las imagenes 180º) = 17.153 / 13.457 = 1.276

Ordenador B:

Normalized ET (Ordenar palabras) = 2.331 / 2.331 = 1

Normalized ET (Giro de las imágenes 180º) = 13.457 / 13.457 = 1

Una vez calculados los tiempos de ejecucción normalizados, calculamos el ratio de rendimiento con la siguiente fórmula:

Normalized Execution Time i Execution Time in the reference Machine (B) / Execution time in the rated Machine.

Ordenador A:

Normalized ET ratio (Ordenar palabras) = 2.331 / 8.062 = 0.289

Normalized ET ratio (Giro de imágenes 180º) = 13.457 / 17.153 = 0.783

Ordenador B:

Normalized ET ratio (Ordenar palabras) = 2.331 / 2.331 = 1

[Escriba aquí]

Normalized ET ratio (Giro de las imágenes 180°) = 13.457 / 13.457 = 1

Ahora calulamos la media geométrica con la siguiente fórmula:

$$\sqrt[n]{\prod_{i=1}^{n} Sample_i}$$

Ordenador A:

Geometric Mean ET =
$$\sqrt[2]{3.458 + 1.276}$$
 = 2.101

Geometric Mean Ratio =
$$\sqrt[2]{0.289 + 0.783} = 0.475$$

Ordenador B:

Geometric Mean ET =
$$\sqrt[2]{1+1}$$
 = 1

Geometric Mean Ratio =
$$\sqrt[2]{1+1}$$
 = 1

Después de realizar los cálculos, realizamos la siguiente tabla con todos los datos obtenidos.

Ordenadores	Algoritmos	Media	Normalized	Normalized	Geometric	Geometric Mean
			ET	ET ratio	Mean ET	Ratio
Ordenador A	Ordenar palabras	8.062	3.458	0.289	2.101 0.475	
	Giro de 180º	17.153	1.276	0.783		
Ordenador B	Ordenar palabras	2.331	1	1	1	1
	Giro de 180º	13.457	1	1		