DM1: Logique

A rendre pour le 17 septembre 2021 à 10h. Les exercices sont indépendants.

Exercice 1 Le club écossais

Il existe en Ecosse un club très fermé qui obéit aux règles suivantes :

- (1) Tout membre non écossais porte des chaussettes rouges.
- (2) Tout membre portant des chaussettes rouges porte un kilt.
- (3) Les membres mariés ne sortent pas le dimanche.
- (4) Un membre sort le dimanche si et seulement si il est écossais.
- (5) Tout membre qui porte un kilt est écossais et est marié.
- (6) Tout membre écossais porte un kilt.
- 1. On note e la proposition "être écossais", e la proposition "porter des chaussettes rouges", e la proposition "porter un kilt", e la proposition "sortir le dimanche" et e la proposition "être marié". Traduire les règles du club en formules du calcul propositionnel.
- 2. En déduire une formule F traduisant le fait de pouvoir entrer au club.
- 3. Donner une forme normale conjonctive pour F.
- 4. Montrer que les règles du club sont si contraignantes qu'il ne peut accepter personne.

Exercice 2 Systèmes complets de connecteurs

On rappelle qu'un système de connecteurs C est complet si toute formule du calcul propositionnel est équivalente à une formule ne faisant intervenir que des connecteurs de C (éventuellement zéro). On supposera dans tout l'exercice que l'ensemble des variables propositionnelles \mathcal{P} utilisé est fini et contient au moins deux éléments. On note n le cardinal de \mathcal{P} .

- 1. Monter que le système de connecteurs $\{\lor, \land, \neg\}$ est complet.
- 2. Montrer que le système $\{\neg, \land\}$ est complet.
- 3. Qu'en est-il de $\{\neg, \lor\}$?
- 4. Et de $\{\neg, \Rightarrow\}$?
- 5. On définit le connecteur de Sheffer, aussi appelé barre de Sheffer ou connecteur NAND et noté | par : $(p|q) = \neg(p \land q)$. Les questions suivantes visent à étudier le système de connecteurs {|}}.
 - a) Donner la table de vérité de la formule (p|q).
 - b) Donner la table de vérité de la formule (p|p). En déduire que le connecteur \neg peut être défini en n'utilisant que la barre de Scheffer.
 - c) Trouver une formule équivalente à $p \vee q$ n'utilisant que la barre de Scheffer.
 - d) En déduire que le système de connecteurs {||} est complet.
- 6. On note \oplus le connecteur XOR (eXclusive OR) défini par la table de vérité suivante :

p	q	$p\oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

a) Montrer que si $F = \bot, F = \top$ ou F = p pour p une variable propositionnelle alors le nombre de valuations qui rendent F vraie est pair.

- b) Si $F = G \oplus H$, on notera n_{TT} le nombre de valuations qui rendent G et H vraies en même temps, n_{TF} le nombre de valuations qui rendent G vraie mais H fausse, n_{FT} le nombre de valuations qui rendent G fausse mais H vraie et n_{FF} le nombre de valuations qui rendent à la fois G et H fausses. Montrer que si G et H sont chacune rendues vraies par un nombre pair de valuations alors F est rendue vraie par un nombre pair de valuations.
- c) Déduire des questions précédentes que si F est une formule ne faisant intervenir que le connecteur \oplus alors le nombre de modèles de F est pair.
- d) Le système de connecteurs $\{\oplus\}$ est-il complet ?
- e) La réponse à la question 6.d. reste-t-elle valable si $card(\mathcal{P}) = 1$?