PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 99/43802
C12N 15/12, 5/10, C07K 14/705	A2	(43) International Publication Date: 2 September 1999 (02.09.99)
(21) International Application Number: PCT/JPS (22) International Filing Date: 25 February 1999 (22)		(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
(30) Priority Data: 10/46607 27 February 1998 (27.02.98)) .	Published Without international search report and to be republished upon receipt of that report.
(71) Applicants (for all designated States except US): S CHEMICAL RESEARCH CENTER [JP/JP] Nishi-Ohnuma 4-chome, Sagamihara-shi, K 229-0012 (JP). PROTEGENE INC. [JP/JP]; Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).]; 4- anagay	ı, va
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi 3-46-50, Wakamatsu, Sagamihara-shi, K 229-0014 (JP). SEKINE, Shingo [JP/JP]; F 101, 2-8-15, Atago, Ageo-shi, Saitama 362-00 KIMURA, Tomoko [JP/JP]; 302, 4-1-28, Ni Tama-ku, Kawasaki-shi, Kanagawa 214-003 NAKAMURA, Nobuko [JP/JP]; 2-20-6, Kozono Ayase-shi, Kanagawa 252-1122 (JP).	anagav Remon: 34 (JF ishiikut 37 (JF	a au). a,).
(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Os Osaka 540-0001 (JP).		

(54) Title: HUMAN PROTEINS HAVING TRANSMEMBRANE DOMAINS AND DNAs ENCODING THESE PROTEINS

(57) Abstract

Human proteins having transmembrane domains, cDNAs coding for these proteins, and expression vectors of said cDNAs as well as eucaryotic cells expressing said cDNAs. Said proteins and eucaryotic cells having said proteins on the membrane surface can be provided by expression of cDNAs coding for human proteins having transmembrane domains and of recombinants of these human cDNAs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	υz	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KB	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway .	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal .		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

DESCRIPTION

Human Proteins Having Transmembrane Domains and DNAs Encoding these Proteins

5

10

15

20

25

30

TECHINIAL FIELD

The present invention relates to human proteins having transmembrane domains, cDNAs coding for these proteins, and expression vectors of said cDNAs as well as eucaryotic cells expressing said cDNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against said proteins. The human cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by said cDNAs. Cells, wherein these membrane protein genes are introduced and membrane proteins are expressed in large amounts, can be utilized for detection of the corresponding ligands, screening of novel low-molecular pharmaceuticals, and so on.

BACKGROUND ART

Membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. in the material transportation membrane and the information transmission which are mediated by the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes of many of them have been cloned already.

2

It has been clarified that abnormalities of these membrane proteins are associated with a number of hithertocryptogenic diseases. For instance, a gene of a membrane protein having twelve transmembrane domains was identified as the gene responsible for cystic fibrosis [Rommens, J. M. et al., Science 245: 1059-1065 (1989)]. In addition, it has been clarified that several membrane proteins act as receptors when a virus infects the cells. For instance, is revealed to infect into the cells through mediation of a membrane protein fusin having a membrane protein on the T-cell membrane, a CD-4 antigen, and seven transmembrane domains [Feng, Y. et al., Science 272: 872-877 (1996)]. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

5

10

15

20

25

30

Heretofore, owing to difficulty in the purification, many membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a cDNA library in eucaryotic cells to express cDNAs and then detection of the cells expressing the target membrane protein on the membrane by an immunological technique using an antibody or a physiological technique on the change in the membrane permeability. However, this method is applicable only to cloning of a gene of a membrane protein with a known function.

In general, membrane proteins possess hydrophobic transmembrane domains inside the proteins, wherein, after synthesis thereof in the ribosome, these domains remain in the phospholipid membrane to be trapped in the membrane. Accordingly, the evidence of the cDNA for encoding the

3

membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic transmembrane domains in the amino acid sequence of the protein encoded by said cDNA.

5

10

15

DISCLOSURE OF INVENTION

The object of the present invention is to provide novel human proteins having transmembrane domains, DNAs coding for said proteins, and expression vectors of said cDNAs as well as transformation eucaryotic cells that are capable of expressing said cDNAs.

As the result of intensive studies, the present inventors have been successful in cloning of cDNAs coding for proteins having transmembrane domains from the human full-length cDNA bank, thereby completing the present invention. In other words, the present invention provides human proteins having transmembrane domains, namely proteins containing any of the amino acid sequences represented by Sequence Nos. 1 to 7. Moreover, the present invention provides DNAs coding for the above-mentioned proteins, exemplified by cDNAs containing any of the base sequences represented by Sequence Nos. 8 to 15, 17, 19, 21, 23, 25 and 27, as well as transformation eucaryotic cells that are capable of expressing said cDNAs.

25

20

BRIEF DESCRIPTION OF DRAWINGS

Fig. 1: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01434.

30

Fig. 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01512.

4

Fig. 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02080.

Fig. 4: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02239.

Fig. 5: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02375.

Fig. 6: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10517.

Fig. 7: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10521.

BEST MODE FOR CARRYING OUT THE INVENTION

5

10

15

20

25

30

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the transmembrane domains of the present invention, wherein the method for obtainment by the recombinant DNA technology is employed preferably. For instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of cDNAs of the present invention, followed by in vitro translation using this RNA as a template. Also, recombination of the translation region into a suitable expression vector by the method known in the art leads to expression of a large amount of the encoded protein by using prokaryotic cells

5

such as *Escherichia coli*, *Bacillus subtilis*, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

5

10

15

20

25

30

In the case in which one of the proteins of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro, when the translation region of said cDNA is subjected to recombination to a vector having an RNA polymerase promoter, followed by addition to an in vitro translation system such as a rabbit riticulocyte lysate or a wheat germ extract, containing polymerase corresponding to the promoter. RNA polymerase inhibitors are exemplified by T7, T3, SP6, and the like. The vectors containing these RNA polymerase inhibitors are exemplified by pKA1, pCDM8, pT3/7 18, pT7/3 19, pBluescript II, and so on. Furthermore, a membrane protein of the present invention can be expressed as the form incorporated in the microsome membrane, when a dog pancreas microsome or the like is added into the reaction system.

In the case in which a protein of the present invention is produced by expressing the DNA using a microorganism such as Escherichia coli etc., a recombinant expression vector bearing the translation region in the cDNA of the present invention is constructed in an expression vector having an origin, a promoter, a ribosomebinding site, a cDNA-cloning site, a terminator etc., which can be replicated in the microorganism, and, transformation of the host cells with said expression the thus-obtained transformant vector, is incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In this case, a protein fragment containing an optional region can be obtained by

6

carrying out the expression with inserting an initiation codon and a termination codon in front of and behind an optional translation region. Alternatively, a fusion protein with another protein can be expressed. Only a protein portion coding for said cDNA can be obtained by cleavage of said fusion protein with a suitable protease. The expression vector for *Escherichia coli* is exemplified by the pUC system, pBluescript II, the pET expression system, the pGEX expression system, and so on.

5

10

15

20

25

30

In the case in which one of the proteins of the present invention is produced by expressing the DNA in eucaryotic cells, the protein of the present invention can be produced as a transmembrane protein on the cell-membrane surface, when the translation region of said cDNA subjected to recombination to an expression vector for eucaryotic cells that has a promoter, a splicing region, a poly(A) insertion site, etc., followed by introduction into the eucaryotic cells. The expression vector is exemplified by pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian culture cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm cells, Xenopus laevis egg cells, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the present proteins on the membrane surface. The expression vector can be introduced in the eucaryotic cells by methods known in the art such as the electroporation method, the potassium phosphate method, the liposome method, the DEAE-dextran method, and so on.

After one of the proteins of the present invention is expressed in prokaryotic cells or eucaryotic cells, the

7

objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a surface-active agent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

5

10

15

20

25

30

The proteins of the present invention include peptide fragments (more than 5 amino acid residues) containing any partial amino acid sequence in the amino acid sequences represented by Sequence Nos. 1 to 7. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequence are secreted in the form of maturation proteins on the surface of the cells, after the signal sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japanese Patent Kokai Publication No. 187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secretory forms. Such proteins or peptides in the secretory forms shall come within the scope of the present invention. When sugar chain-binding sites are present in the amino acid sequences, expression in appropriate eucaryotic cells affords proteins wherein sugar chains are added. Accordingly, such proteins or peptides wherein sugar chains are added shall come within the scope of the present

WO 99/43802

8

PCT/JP99/00875

invention.

5

10

15

20

25

30

The DNAs of the present invention include all DNAs coding for the above-mentioned proteins. Said DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries of the human cell origin. These cDNA are synthesized by using as templates poly(A)* RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of an optional portion in the cDNA base sequences of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of oligonucleotide to be hybridized at both termini of the objective cDNA fragment, followed by the usage of this oligonucleotide as the primer for the RT-PCR method from an mRNA isolated from human cells.

The cDNAs of the present invention are characterized

by containing either of the base sequences represented by Sequence Nos. 8 to 14 or the base sequences represented by Sequence Nos. 15, 17, 19, 21, 23, 25 and 27. Table 1 summarizes the clone number (HP number), the cells affording the cDNA, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

10

15

5

Sequence No.	HP No.	Cell	Number of bases	Number of amino acids
1, 8, 15	HP01434	Stomach Cancer	761	129
2, 9, 16	HP01512	Stomach Cancer	701	135
3, 10, 17	HP02080	Saos-2	393	79
4, 11, 18	HP02239	Stomach Cancer	1033	144
5, 12, 19	HP02375	PMA-U937	1270°	282
6, 13, 20	HP10517	Liver	836	100
7, 14, 21	HP10521	Liver	1022	225

Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines and human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of Sequence Nos. 8 to 15, 17, 19, 21, 23, 25 and 27.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Accordingly, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides in Sequence Nos. 8 to 15, 17, 19, 21,

23, 25 and 27 shall come within the scope of the present

10

invention.

5

10

15

20

25

30

In a similar manner, any protein that is formed by these modifications comprising insertion or deletion of one or plural amino acids and/or substitution with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by Sequence Nos. 1 to 7.

The cDNAs of the present invention include cDNA fragments (more than 10 bp) containing any partial base sequence in the base sequences represented by Sequence Nos. 8 to 14 or in the base sequences represented by Sequence Nos. 15, 17, 19, 21, 23, 25 and 27. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be utilized as the probes for the gene diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein

5

10

15

20

25

30

11

is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the

corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

5

10

15

20

25

30

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation,

13

such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation
Activity

5

10

15

20

25

30

A protein of the present invention may exhibit cell proliferation (either inducing inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular

Immunology 133:327-341, 1991; Bertagnolli, et al., J.
Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol.
152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation 15 hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley 20 and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse interleukin 6-Nordan, R. In Current Protocols in Immunology. 25 J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. In Current Protocols in Immunology. J.E.e.a. Coligan 30 eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current

15

Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

5

10

15

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit 20 immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., 25 in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or 30 may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the

16

present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

. 5

10

15

20

25

30

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic rheumatoid arthritis, erythematosus, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis. myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells

17

to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

5

10

15

20

25

30

Down regulating or preventing one or more antigen functions (including without limitation B antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease For example, blockage of T cell function should (GVHD). result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover,

the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to

19

inhibit T cell activation and prevent production autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

5

10

15

20

25

30

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a

20

soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

5

10

15

20

25

30

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides the surface on of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated

immune response against the transfected tumor cells. addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

5

10

15

20

25

30

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans);

22

Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 5 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

10

15

20

25

30

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses that affect Th1/Th2 profiles) include, limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, limitation, those described in: Current Protocols Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

5

10

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in

regulation of hematopoiesis and, consequently, treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates 5 involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction irradiation/chemotherapy to stimulate the production of 10 erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with 15 chemotherapy to prevent or treat consequent suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use 20 in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell 25 disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., 30 in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated

25

for gene therapy.

5

10

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate 15 lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. 20 USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 25 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and 30 Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay,

26

Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

5

10

15

20

25

30

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

WO 99/43802

5

10

15

20

25

30

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. preparation employing а tendon/ligament-like inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament De novo tendon/ligament-like tissue formation tissue. by a composition of the present induced invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

27

PCT/JP99/00875

The protein of the present invention may also be useful for proliferation of neural cells and for WO 99/43802 PCT/JP99/00875.

5

10

15

25

30

28

regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to 20 promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A

29

protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

5

10

15

20

25

30

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive

WO 99/43802

5

10

20

25

30

PCT/JP99/00875

based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and

other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

5

10

15

20

25

30

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

32

Hemostatic and Thrombolytic Activity

5

10

15

20

25

30

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

protein of the present invention may demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development

cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

10 Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 15 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 Stoltenborg et al., J. Immunol. Methods 175:59-68, 20 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

5

25

30

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting cell extravasation, or by stimulating promoting suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins

34

such activities can exhibiting be used to treat conditions inflammatory including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemiareperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

5

10

15

20

25

30

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria,

viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or 5 body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, 10 utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive 15 disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other hematopoietic lineages; hormonal or endocrine activity; in 20 the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment hyperproliferative disorders (such for as, example, immunoglobulin-like activity psoriasis); (such as, example, the ability to bind antigens or complement); and 25 the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

30 Examples

The present invention is embodied in more detail by

WO 99/43802

5

10

15

the following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature ["Molecular Laboratory Manual", Cloning. Α Cold Spring Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from TAKARA SHUZO. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Preparation of Poly(A) * RNA

The histiocyte lymphoma cell line U937 (ATCC CRL 1593) stimulated by phorbol ester, the osteosarcoma cell line Saos-2 (ATCC HTB 85), tissues of stomach cancer delivered by the operation, and the liver were used for human cells to extract mRNAs. The cell line was incubated by a conventional procedure.

After about 1 g of the human cells was homogenized in 20 ml of a 5.5 M guanidinium thiocyanate solution, a total mRNA was prepared according to the literature [Okayama, H. et al., "Method in Enzymology", Vol. 164, Academic Press, 1987]. This was subjected to chromatography on oligo(dT)-cellulose column washed with a 20 mM Tris-hydrochloride buffer solution (pH 7.6), 0.5 M NaCl, and 1 mM EDTA to obtain a poly(A)* RNA according to the above-described literature.

(2) Construction of cDNA Library

30 Ten micrograms of the above-mentioned poly(A)⁺ RNA were dissolved in a 100 mM Tris-hydrochloride buffer solution (pH 8), one unit of an RNase-free, bacterial

alkaline phosphatase was added, and the reaction was run at 37°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 50 mM sodium acetate (pH 6), 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.01% Triton X-100. Thereto was added one unit of a tobacco-origin acid pyrophosphatase (Epicentre Technologies) and a total 100 µl volume of the resulting mixture was reacted at 37°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in water to obtain a solution of a decapped poly(A)* RNA.

5

10

15

20

25

30

The decapped poly(A)* RNA and 3 nmol of a chimeric DNA-RNA oligonucleotide (5'-dG-dG-dG-dG-dA-dA-dT-dT-dC-dG-dA-G-G-A-3') were dissolved in a solution containing 50 mM Tris-hydrochloride buffer solution (pH 7.5), 0.5 mM ATP, 5 mM MgCl₂, 10 mM 2-mercaptoethanol, and 25% polyethylene glycol, whereto was added 50 units of T4RNA ligase and a total 30 µl volume of the resulting mixture was reacted at 20°C for 12 hours. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in water to obtain a chimeric-oligo-capped poly(A)* RNA.

After digestion of vector pKA1 (Japanese Patent Kokai Publication No. 1992-117292) developed by the present inventors with KpnI, about 60 dT tails were added using a terminal transferase. A vector primer to be used below was prepared by digestion of this product with EcoRV to remove a dT tail at one side.

After 6 μg of the previously-prepared chimeric-oligo-capped poly(A) † RNA was annealed with 1.2 μg of the vector

5

10

15

20

25

30

primer, the resulting product was dissolved in a solution containing 50 mM Tris-hydrochloride buffer solution (pH 8.3), 75 mM KCl, 3 mM MqCl, 10 mM dithiothreitol, and 1.25 mM dNTP (dATP + dCTP + dGTP + dTTP), 200 units of a reverse transcriptase (GIBCO-BRL) were added, and the reaction in a total 20 µl volume was run at 42°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 50 mM Tris-hydrochloride buffer solution (pH 7.5), 100 mM NaCl, 10 mM MgCl2, and 1 mM dithiothreitol. Thereto were added 100 units of EcoRI and a total 20 µl volume of the resulting mixture was reacted at 37°C for one hour. After the reaction solution was subjected to phenol extraction, followed by ethanol precipitation, the resulting pellet was dissolved in a solution containing 20 Tris-hydrochloride buffer $\mathbf{m}\mathbf{M}$ solution (pH 7.5), 100 mM KCl, 4 mM MgCl2, 10 mM (NH4)2SO4, and 50 µg/ml of the bovine serum albumin. Thereto were added 60 units of an Escherichia coli DNA ligase and the resulting mixture was reacted at 16°C for 16 hours. To the reaction solution were added 2 µl of 2 mM dNTP, 4 units of Escherichia coli DNA polymerase I, and 0.1 unit of Escherichia coli RNase H and the resulting mixture was reacted at 12°C for one hour and then at 22°C for one hour.

Next, the cDNA-synthesis reaction solution was used for transformation of *Escherichia coli* DH12S (GIBCO-BRL). The transformation was carried out by the electroporation method. A portion of the transformant was sprayed on the 2xYT agar culture medium containing 100 μ g/ml ampicillin and the mixture was incubated at 37°C overnight. A colony formed on the agar medium was picked up at random and inoculated on 2 ml of the 2xYT culture medium containing

39

100 µg/ml ampicillin. After incubation at 37°C overnight, the culture mixture was centrifuged to separate the mycelia, from which a plasmid DNA was prepared by the alkaline lysis method. The plasmid DNA was subjected to double digestion with EcoRI and NotI, followed by 0.8% agarose electrophoresis, to determine the size of the cDNA insert. Furthermore, using the thus-obtained plasmid as a template, the sequence reaction was carried out by using an M13 universal primer labeled with a fluorescent dye and a Tag polymerase (a kit of Applied Biosystems) and then the product was examined with a fluorescent DNA sequencer (Applied Biosystems) to determine an about 400-bp base sequence at the 5'-terminus of the cDNA. The sequence data were filed as the homo/protein cDNA bank database.

5

10

15

20

25

30

(3) Selection of cDNAs Encoding Proteins Having
Transmembrane Domains

A base sequence registered in the homo/protein cDNA bank was converted to three frames of amino acid sequences and the presence or absence of an open reading frame (ORF) beginning from the initiation codon was examined. Then, the selection was made for the presence of a signal sequence that is characteristic to a secretory protein at the Nterminus of the portion encoded by the ORF. These clones were sequenced from the both 5' and 3' directions by the deletion method using exonuclease III use of the to determine whole the base sequence. The hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by the ORF by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. In the case in which there is a hydrophobic region of a putative transmembrane domain in the amino acid

10

15

20

25

30

PCT/JP99/00875

sequence of an encoded protein, this protein was judged as a membrane protein.

(4) Functional Verification of Secretory Signal Sequence or Transmembrane Domains

It was verified by the method described in the literature [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)] that the N-terminal hydrophobic region in the secretory protein clone candidate obtained in the abovementioned steps functions as a secretory signal sequence. First, the plasmid containing the target cDNA was cleaved at an appropriate restriction enzyme site existing at the downstream of the portion expected for encoding secretory signal sequence. In the case in which this restriction site was a protruding terminus, the site was blunt-ended by the Klenow treatment or treatment with the T4DNA polymerase. Digestion with HindIII was carried out and a DNA fragment containing the SV40 promoter and a cDNA encoding the secretory signal sequence at the downstream of the promoter was separated by agarose gel The resulting fragment was electrophoresis. inserted between HindIII in pSSD3 (DDBJ/EMBL/GenBank Registration No. AB007632) and a restriction enzyme site selected so as to match with the urokinase-coding frame, thereby constructing a vector expressing a fusion protein of the secretory signal sequence of the target cDNA and the urokinase protease domain.

After Escherichia coli (host: JM109) bearing the fusion-protein expression vector was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ l) was added and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent

41

precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 µl of 1 mM Tris-0.1 mM EDTA, pH 8 (TE). Also, there were used as controls suspensions of single-stranded phage particles prepared in the same manner from pSSD3 and from the vector pKA1-UPA containing a full-length cDNA of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)].

5

10

15

20

25

30

The culture cells originating from the simian kidney. COS7, were incubated at 37°C in the presence of 5% CO, in the Dulbecco's modified Eagle's culture medium containing 10% fetal calf albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1 X 10⁵ COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO2. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Tris-hydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1 ul of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μl of TRANSFECTAMTM (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2.

To 10 ml of 50 mM phosphate buffer solution (pH 7.4) containing 2% bovine fibrinogen (Miles Inc.), 0.5% agarose, and 1 mM calcium chloride were added 10 units of human thrombin (Mochida Pharmaceutical Co., Ltd.) and the resulting mixture was solidified in a plate of 9 cm in

10

15

20

25

30

PCT/JP99/00875

diameter to prepare a fibrin plate. Ten microliters of the culture supernatant of the tansfected COS7 cells were spotted on the fibrin plate, which was incubated at 37°C for 15 hours. In the case in which a clear circle appears on the fibrin plate, it is judged that the cDNA fragment codes for the amino acid sequence functioning as a secretory signal sequence. On the other hand, in case in which a clear circle is not formed, the cells were washed well, then the fibrin sheet was placed on the cells, and incubation was carried out at 37°C for 15 hours. In case in which a clear portion is formed on the fibrin sheet, it indicates that the urokinase activity was expressed on the cell surface. In other words, the cDNA fragment is judged to code for the transmembrane domains.

(5) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In this case. [35S]methionine was added label the expression product with a radioisotope. Each reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was reacted at 30°C for 90 minutes in a total 25 µl volume of the reaction solution containing 12.5 µl of TNT rabbit reticulocyte lysate, 0.5 µl of a buffer solution (attached to kit), 2 µl of an amino acid mixture (methionine-free), 2 μ l of [35S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7RNA polymerase, and 20 U of RNasin. To 3 µl of the resulting reaction solution was added 2 µl of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting

10

15

25

30

mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography.

(6) Expression by COS7

Escherichia coli bearing the expression vector of the protein of the present invention was infected with helper phage M13K07 and single-stranded phage particles were obtained by the above-mentioned procedure. The thus-obtained phage was used for introducing each expression vector in the culture cells originating from the simian kidney, COS7. After incubation at 37°C for 2 days in the presence of 5% CO₂, the incubation was continued for one hour in the culture medium containing [35S]cystine or [35S]methionine. Collection and dissolution of the cells, followed by subjecting to SDS-PAGE, allowed to observe the presence of a band corresponding to the expression product of each protein, which did not exist in the COS7 cells.

(7) Clone Examples

20 <HP01434> (Sequence Nos. 1, 8, and 15)

Determination of the whole base sequence of the cDNA insert of clone HP01434 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 69-bp 5'-nontranslation region, a 390-bp ORF, and a 302-bp 3'-nontranslation region. The ORF codes for a protein consisting of 129 amino acid residues and there existed one putative transmembrane domain. Figure 1 depicts hydrophobicity/hydrophilicity profile, obtained by Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 17 kDa that was a little larger than the molecular weight of 14,795 predicted from the ORF. Introduction of an

10

15

20

expression vector, wherein the HindIII-PstI (blunt-ended by treatment with T4RNA polymerase) fragment containing a cDNA portion coding for the N-terminal 68 amino acid residues of the present protein was inserted into the HindIII-PmaCI site of pSSD3, into the COS7 cells revealed that the urokinase activity was not detectable in the culture medium to indicate that the present protein remains in the membrane.

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the murine FK506-binding protein (SWISS-PROT Accession No. P45878). Table 2 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the murine FK506-binding protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 46.8% in the 94 amino acid residues.

Table 2

MM PPKIPGGATLVFEVELLKIERRSEL

45

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA431230) in EST, but any of the sequences was shorter than the present cDNAs and was not found to contain the initiation codon.

The murine FK506-binding protein possesses the peptidyl prolylsis-transisomerase activity and is associated with the folding of proteins [Hendrickson, B. A. et al., Gene 134: 271-275 (1993)].

<HP01512> (Sequence Nos. 2, 9, and 17)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP01512 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 45-bp 5'-nontranslation region, a 408-bp ORF, and a 248-bp 3'-nontranslation region. The ORF codes for a protein consisting of 135 amino acid residues and there existed one putative transmembrane domain. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base by using the amino acid sequence of the present protein revealed that the protein was analogous to the nematode imaginary protein W02B12.7 (PID Accession No. 1044857). Table 3 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the nematode imaginary protein W02B12.7 (CE). Therein, the marks of -, \star , and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The C-terminal 87 amino acid residues possessed a homology of 49.4% with the N-terminal side of

the nematode imaginary protein W02B12.7.

Table 3

5 HS MVLESVARIVKVQLPAYLKRLPVPESITGFARLTVSEWLRLLPFIGVLALLGYLA
*. **.***.

CE MTIAGFCALSLIQDHCCWTTPQHCSVAELGIMPCPTQVSGRCVATTAAVLAGGALIGYLV

HS VRPFLPKKKQQKDSLINLKIQKENPKVVNEINIEDLCLTKAAYCRCWRSKTFPACDGSHN

* *... * *** .. *.*** .. * *.***. .* *.***.

CE GYKF-----GQRSARCNYKIQLDSNKIVDTVDIEDIG-EKKAFCRCWKSEKWPYCDGSHG

HS KHNELTGDNVGPLILKKKEV

*** *******

CE KHNKETGDNVGPLIVKSEKNLYIYIIISDFYNNHTNDLKHQIAQLERKTATIPKLENQLH

15

20 ·

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. AA429420) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02080> (Sequence Nos. 3, 10, and 19)

insert of clone HP02080 obtained from cDNA libraries of human osteosarcoma cell line Saos-2 revealed the structure consisting of an 80-bp 5'-nontranslation region, a 240-bp ORF, and a 73-bp 3'-nontranslation region. The ORF codes for a protein consisting of 79 amino acid residues and there existed one putative transmembrane domain. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation

47

product of 10 kDa that was almost identical with the molecular weight of 8,177 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to a yeast imaginary protein Lpg10p (PID Accession No. 1749572). Table 4 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the yeast imaginary protein Lpg10p (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 46.3% in the entire region.

15

10

5

Table 4

HS MPVAVGPYGQSQPSCFDRVKMGFVMGCAVGMAAGALFGTFSCLRIGMRGREIMGGIGRTM

SC MQSMQPSTVDKLKMGAIMGSAAGLGIGFLFGGVAVLRYGPGPRGFLRTLGQYM HS MOSGGTFGTFMAIGMGIRC

. *..*** **.** **

SC LTSAATFGFFMSIGSVIRNEDIPLIQQSGSHWNQRLLNENANSSRIFALAMQQAKSSPRK

25

30

20

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. AA348987) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10

15

20

<HP02239> (Sequence Nos. 4, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP02239 obtained from cDNA libraries of human stomach cancer revealed the structure consisting of a 47-bp 5'-nontranslation region, a 435-bp ORF, and a 551-bp 3'-nontranslation region. The ORF codes for a protein consisting of 144 amino acid residues and there existed three putative transmembrane domains. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 17 kDa that was almost identical with the molecular weight of 16,687 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was analogous to mouse cornichon (PID Accession No. 2460430). Table 5 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the mouse cornichon (MM). Therein, the marks of * and . represent an amino acid residue identical with the protein of the present invention and an amino acid residue analogous to the protein of the present invention, respectively. The both proteins possessed a homology of 99.3% in the entire region.

49

Table 5

HS	MAFTFAAFCYMLALLLTAALIFFAIWHIIAFDELKTDYKNPIDQCNTLNPLVLPEYLIHA

MM	MAFTFAAFCYMLALLLTAALIFFAIWHIIAFDELKTDYKNPIDQCNTLNPLVLPEYLIHA
HS	FFCVMFLCAAEWLTLGLNMPLLAYHIWRYMSRPVMSGPGLYDPTTIMNADILAYCQKEGW

MM	FFCVMFLCAAEWLTLGLNMPLLAYHIWRYMSRPVMSAPGLYDPTTIMNADILAYCQKEGW
HS	CKLAFYLLAFFYYLYGMIYVLVSS

MM	CKLAFYLLAFFYYLYGMIYVLVSS
	MM HS MM HS

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. W02973) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

Cornichon has been found in the genesis of *Drosophila* as a membrane protein that is essential to the morphogenesis [Roth, S. et al., Cell 81:967-978 (1995)].

<HP02375> (Sequence Nos. 5, 12, and 23)

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP02375 obtained from cDNA libraries of human lymphoma cell line U937 revealed the structure consisting of an 85-bp 5'-nontranslation region, an 849-bp ORF, and a 336-bp 3'-nontranslation region. The ORF codes for a protein consisting of 282 amino acid residues and possessed a signal-like sequence at the N-terminus and one transmembrane domain at the C-terminus. Accordingly, the present protein is considered to be a type-I membrane

50

protein. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

5

10

15

The search of the protein data base using the amino acid sequence of the present protein has revealed that this had an analogy to the human LDL-related protein 1 (PID Accession No. 1708865). Table 6 shows the comparison of the amino acid sequence between the human protein of the present invention (HP) and the human LDL-related protein 1 (LR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with the protein of the present invention, and an amino acid residue analogous to the protein of the present invention, respectively. An intermediate portion of the present protein possessed a homology of 36.4% with the LDL receptor class-A domain portion of the human LDL-related protein 1. Particularly, the position of cysteine was preserved.

30

Table 6

HS MSGGWMAQVGAW LR CGDRSDESASCAYPTCFPLTQFTCNNGRCININWRCDNDNDCGDNSDEAGCSHSCSSTQF HS RTGALGLALLLLLGLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCRTSGLCVPLTW*...*....*.*.*. **** *** LR KCNSGRCIPEHWTCDGDNDCGDYSDETHANCTNQATRPPGGCHTDEFOCRLDGLCIPLRW HS RCDRDLDCSDGSDEEECR--IEPCTQKGQ--C-PPPPGLPCP--CTGVSDCSGGTDKKLR *** * ** *.***..* 10 LR RCDGDTDCMDSSDEKSCEGVTHVCDPSVKFGCKDSARCISKAWVCDGDNDCEDNSDEE-HS NCSRLACLAGELRCTLSDD-CIPLTWRCDGHPDCPDSSDELGCGTNETLPEGDATTMGPP ${\tt LR} \ \ {\tt NCESLACRPPSHPCANNTSVCLPPDKLCDGNDDCGDGSDEGELCDQCSLNNGGCSHNCSV}$ 15 HS VTLESVTSLRNATIMGPPVTLESVPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVT LR APGEGIVCSCPLGMELGPDNHTCQIQSYCAKHLKCSQKCDQNKFSVKCSCYEGWVLEPDG HS ATLLLLSWLRAOERLRPLGLLVAMKESLLLSEQKTSLP 20 LR ESCRSLDPFKPFIIFSNRHEIRRIDLHKGDYSVLVPGLRNTIALDFHLSQSALYWIDVVE

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that possessed a homology of 90% or more (for example, Accession No. H94922) in EST, but any of them was shorter than the present cDNA and was found not to contain the initiation codon.

The human LDL-related protein 1 has been shown to be an $\alpha 2$ -macroglobulin receptor [Kristensen, T. et al., FEBS Lett. 276: 151-155 (1990)]. The protein possessing such an LDL receptor class-A domain is considered to work as a receptor for proteins existing in the serum.

<HP10517> (Sequence Nos. 6, 13, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP10517 obtained from cDNA libraries of human liver revealed the structure consisting of a 163-bp 5'-nontranslation region, a 303-bp ORF, and a 370-bp 3'nontranslation region. The ORF codes for a protein consisting of 100 amino acid residues and possessed one transmembrane domain. Figure 6 depicts the hydrophobicity/hydrophilicity profile, obtained by Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,796 predicted from the ORF.

5

10

15

20

25 .

30

The search of the protein data base using the amino acid sequence of the present protein has not identified any known protein having an analogy. Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. R68523) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10521> (Sequence Nos. 7, 14, and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10521 obtained from cDNA libraries of human liver revealed the structure consisting of a 55-bp 5'-nontranslation region, a 678-bp ORF, and a 289-bp 3'nontranslation region. The ORF codes for a protein consisting of 225 amino acid residues and possessed four transmembrane domains. 7 Figure depicts the hydrophobicity/hydrophilicity profile, obtained by Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product

53

of 27 kDa that was a little larger than the molecular weight of 24,809 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein has not revealed the presence of any known protein having an analogy. Also, the search of the GenBank using the base sequences of the present cDNA has revealed the presence of sequences that possessed a homology of 90% or more (for example, Accession No. AA043627) in EST, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

5

10

15 The present invention provides human proteins having transmembrane domains, cDNAs coding for these proteins, and expression vectors of said cDNAs as well as eucaryotic cells expressing said cDNAs. All of the proteins of the present invention exist in the cell membrane, so that they 20 are considered to be proteins controlling the proliferation and the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents relating to the control of the proliferation and the differentiation of 25 the cells or as antigens for preparing antibodies against said proteins. The cDNAs of the present invention can be utilized as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized for large-scale expression of said proteins. Cells, 30 wherein these membrane protein genes are introduced to possess said proteins on the membrane surface, utilized for detection of the corresponding ligands,

5

10

15

20

25

30

54

screening of novel low-molecular pharmaceuticals, and so on.

present invention also provides corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified gene(s) expression of the corresponding the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of

the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, 5 provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, 10 organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding 15 Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, 20 Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 348-352; U.S. Patent Nos. 5,464,764; 25 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the 30 study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of

56

the corresponding gene(s).

5

10

15

20

25

Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that

57

of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

5

10

15

20

25

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 7

Stringency	Polynucleotide	Hybrid	Hybridization Temperature	Wash
Condition	Hybrid	Length	and Buffer	Temperature
	,	(bp) [‡]		and Buffer
A	DNA : DNA	≥50	65°C; 1×SSC -or-	65°C; 0.3×SSC
			42°C; 1×SSC,50% formamide	,
В	DNA: DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
С	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C; 0.3×SSC
İ			45℃; 1×SSC,50% formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C; 0.3×SSC
			50°C; 1×SSC,50% formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or-	65℃; 1×SSC
			42°C; 4×SSC,50% formamide	
H	DNA: DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA : RNA	≥50	67°C; 4×SSC -or-	67℃; 1×SSC
			45°C; 4×SSC,50% formamide	
J	DNA: RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67℃; 1×SSC
			50°C; 4×SSC,50% formamide	,
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA: DNA	≥50	50℃; 4×SSC -or-	50℃; 2×SSC
			40°C; 6×SSC,50% formamide	
N	DNA: DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55℃; 4×SSC -or-	55℃; 2×SSC
			42°C; 6×SSC,50% formamide	
P	DNA: RNA	<50	T _P *; 6×SSC	T _P *; 6×SSC
Q	RNA: RNA	≥50	°60℃; 4×SSC -or-	60°C; 2×SSC
			45℃; 6×SSC,50% formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

- ‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- †: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
 - *T_B T_R: The hybridization temperature for hybrids anticipated to be less than 50 base

59

pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (°C)=81.5 + 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

5

10

15

20

25

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

CLAIMS

- 1. Proteins containing any of the amino acid sequences represented by Sequence Nos. 1 to 7.
- 5 2. DNAs coding for any of the proteins described in Claim 1.
 - 3. cDNAs containing any of the base sequences represented by Sequence Nos. 8 to 14.
- 4. The cDNAs described in Claim 3 comprising any of the base sequences represented by Sequence Nos. 15, 17, 19, 21, 23, 25 and 27.
 - 5. Expression vectors that are capable of expressing any of the DNAs described in Claim 2 to Claim 4 by in vitro translation or in eucaryotic cells
- 6. Transformation eucaryotic cells that are capable of expressing any of the DNAs described in Claim 2 to Claim 4 and of producing the proteins described in Claim 1.

Fig. 1

Fig. 2

Fig.

Fig. 4

Fig. 6

1/27

SEQUENCE LISTING

<110> Sagami Chemical Research Center et al.

5 <120> Human Proteins Having Transmembrane Domains and DNAs Encoding these Proteins

<130> 661098

10 <141> 1999-02-25

<150> JP 10-046607

<151> 1998-02-27

15 <160> 28

<170> Windows 95 (Word 98)

<210> 1

20 <211> 129

<212> PRT

<213> Homo sapiens

<400> 1

25 Met His Phe Leu Phe Arg Phe Ile Val Phe Phe Tyr Leu Trp Gly Leu

35

15

Phe Thr Ala Gln Arg Gln Lys Lys Glu Glu Ser Thr Glu Glu Val Lys

20

25

10

30

Ile Glu Val Leu His Arg Pro Glu Asn Cys Ser Lys Thr Ser Lys Lys

30

40

45

Gly Asp Leu Leu Asn Ala His Tyr Asp Gly Tyr Leu Ala Lys Asp Gly

50

55

60

2/27

	Ser	Lys	Phe	Tyr	Суз	Ser	Arg	Thr	Gln	Asn	Glu	Gly	His	Pro	Lys	Trp
	6 5					70					75					80
	Phe	Val	Leu	Gly	Val	Gly	Gln	Val	Ile	Lys	Gly	Leu	Asp	Ile	Ala	Met
					8 5					90					95	
5	Thr	Asp	Met	Cys	Pro	Gly	Glu	Lys	Arg	Lys	Val	Val	Ile	Pro	Pro	Ser
				100					105					110		-
	Phe	Ala	Tyr	Gly	Lys	Glu	Gly	Tyr	Asp	Lys	Pro	Leu	Leu	Ala	Lys	Gly
			115					120					125			
	Ile	•														
10																
	<210	> 2														
	<21	> 13	35													
	<212	> Pi	T													
	< 213	3> Hc	a come	sapie	ens											
15																
	<400	> 2														
	Met	Val	Leu	Glu	Ser	Val	Ala	Arg	Ile	Val	ГЛЗ	Val	Gln	Leu	Pro	Ala
	1				5					10					15	
	Tyr	Leu	Lys	Arg	Leu	Pro	Val	Pro	Glu	Ser	Ile	Thr	Gly	Phe	Ala	Arg
20				20					25					30		
	Leu	Thr	Val	Ser	Glu	Trp	Leu	Arg	Leu	Leu	Pro	Phe	Leu	Gly	Val	Leu
			35					40					45			
	Ala	Leu	Leu	Gly	Tyr	Leu	Ala	Val	Arg	Pro	Phe	Leu	Pro	Lys	Lys	Lys
		50					55					. 60				
25		Gln	Lys	Asp	Ser		Ile	Asn	Leu	Lys		Gln	Lys	Glu	Asn	Pro
	65					70					75					80
•	Lys	Val	Val	Asn	Glu	Ile	Asn	Ile	Glu	Asp	Leu	Cys	Leu	Thr	Lys	Ala
					8 5					90					95	
	Ala	Tyr	Сув	Arg	Cys	Trp	Arg	Ser	Lys	Thr	Phe	Pro	Ala	Сув	Asp	Gly
30		•		100					105					110		
	Ser	His	Asn	Lys	His	Asn	Glu		Thr	Gly	Asp	Asn		Gly	Pro	Leu
			115					120					125			

WO 99/43802

3/27

	Ile Leu	Lys	Lys	Lys	Glu	val									
	130					1,35	;								
															,
	<210> 3														
5	<211> 79	•													
	<212> PF	TS													
	<213> Homo sapiens														
	<400> 3														
10	Met Pro	Val :	Ala	Val	Gly	Pro	Tyr	Gly	Gln	Ser	Gln	Pro	Ser	Суз	Phe
•	1			5					10					15	
	Asp Arg	Val 1	Lys	Met	Gly	Phe	Val	Met	Gly	Cys	Ala	Val	Gly	Met	Ala
			20					25					30		
	Ala Gly	Ala 1	Leu	Phe	Gly	Thr	Phe	Ser	Cys	Leu	Arg	Ile	Gly	Met	Arg
15		35					40					45			
	Gly Arg	Glu 1	Leu	Met	Gly	Gly	Ile	Gly	Lys	Thr	Met	Met	Gln	Ser	Gly
	50					55					60				
	Gly Thr	Phe (Gly	Thr		Met	Ala	Ile	Gly	Met	Gly	Ile	Arg	Cys	
20	65				70					75					
20															
	<210> 4														
	<211> 14														
	<212> PR														
25	<213> Ho	ud sa	apre	iis											
20	<400> 4														
	Met Ala	Phe 1	Phr '	Dha	a f A	Δla	Dha	Cara	Фил	Mo+	Ton	N) a	Ton	Ton	T 🚗 .
	1	*100 3		5	nia.	щ	riic	Cys	10	PACE	LEu	лда	TEU	15	TEU
	Thr Ala	Ala I	eŭ '		Phe	Phe	Ala	Tle		Hiq	Tle	Tle	Δla		Aan
30		•	20					25	P				30	- 146	-wp
	Glu Leu	Lys 1		ASD	Tvr	Lvs	Asn		Ile	Asp	Gln	Cvs		Thr	Len
	_	-J		-F			40			- F		_,_			

	Asn	Pro	Leu	Val	Leu	Pro	Glu	Tyr	Leu	Ile	His	Ala	Phe	Phe	Cys	Val
		50					55					60	١			
	Met	Phe	Leu	Cys	Ala	Ala	Glu	Trp	Leu	Thr	Leu	Gly	Leu	Asn	Met	Pro
i	65					70					75					80
5	Leu	Leu	Ala	Tyr	His	Ile	Trp	Arg	Tyr	Met	Ser	Arg	Pro	Val	Met	Ser
					85					90					95	
	Gly	Pro	Gly	Leu	Tyr	Asp	Pro	Thr	Thr	Ile	Met	Asn	Ala	Asp	Ile	Leu
				100					105					110		
	Ala	Tyr		Gln	Lys	Glu	Gly		Суз	Lys	Leu	Ala	Phe	Tyr	Leu	Leu
10			115					120					125			
	Ala		Phe	Tyr	Tyr	Leu		Gly	Met	Ile	Tyr		Leu	Val	Ser	Ser
		130					135					140				
	<210	~ ∈														
15	2 10		22													
10	<212															
			amo s	apie	ns									-		•
•																
	<400	> 5														
20	Met	Ser	Gly	Gly	Trp	Met	Ala	Gln	Val	Gly	Ala	Trp	Arg	Thr	Gly	Ala
	1				5					10					15	
	Leu	Gly	Leu	Ala	Leu	Leu	Leu	Leu	Leu	Gly	Leu	Gly	Leu	Gly	Leu	Glu
				20					25					30		
	Ala	Ala	Ala	Ser	Pro	Leu	Ser	Thr	Pro	Thr	Ser	Ala	Gln	Ala	Ala	Gly
25			35					40					45			
•	Pro	Ser	Ser	Gly	Ser	Суз	Pro	Pro	Thr	Lys	Phe	Gln	Cys	Arg	Thr	Ser
		50					55					60				
	Gly	Leu	Cys	Val	Pro	Leu	Thr	Trp	Arg	Cys	Asp	Arg	Asp	Leu	Asp	Cys
	65					70					75					80
30	Ser	Asp	Gly	Ser	Asp	Glu	Glu	Glu	Cys	Arg	Ile	Glu	Pro	Cys	Thr	Gln
					85					90					95	
	Lys	Gly	Gln	Сув	Pro	Pro	Pro	Pro	Gly	Leu	Pro	Cys	Pro	Cys	Thr	Glv

				100					105					110		
	Val	Ser	Asp	Сув	Ser	Gly	Gly	Thr	Asp	Lys	Lys	Leu	Arg	Asn	Суз	Ser
			115					120					125			
	Arg	Leu	Ala	Cys	Leu	Ala	Gly	Glu	Leu	Arg	Cys	Thr	Leu	Ser	Asp	Asp
5		130					135					140				
	Суз	Ile	Pro	Leu	Thr	Trp	Arg	Cys	Asp	Gly	His	Pro	Asp	Cys	Pro	Asp
	145					150					155					160
	Ser	Ser	Asp	Glu	Leu	Gly	Cys	Gly	Thr	Asn	Glu	Ile	Leu	Pro	Glu	Gly
					165					170				•	175	
10	Asp	Ala	Thr	Thr	Met	Gly	Pro	Pro	Val	Thr	Leu	Glu	Ser	Val	Thr	Ser
				180					185					190		
	Leu	Arg	Asn	Ala	Thr	Thr	Met	Gly	Pro	Pro	Val	Thr	Leu	Glu	Ser	Val
			195					200					205			
	Pro	Ser	Val	Gly	Asn	Ala	Thr	Ser	Ser	Ser	Ala	Gly	Asp	Gln	Ser	Gly
15		210					215					220				
		Pro	Thr	Ala	Tyr	_	Val	Ile	Ala	Ala		Ala	Val	Leu	Ser	
	225					230					235					240
	Ser	Leu	Val	Thr		Thr	Leu	Leu	Leu		Ser	Trp	Leu	_		Gln
					245					250					255	
20	Glu	Arg	Leu	Arg	Pro	Leu	Gly	Leu		Val	Ala	Met	Lys		Ser	Leu
	_	_	_	260		_		_	265	_				270		
	Leu	Leu		Glu	GLn	Lys	Thr		Leu	Pro						
			275					280								
25	Q 10	~ 6														
20		6 10	10													
		> PF														
				sapie	ma	÷										
	~~1.	~ IA	A18-) S	apue	-LIL									٠		
30	<400	> 6														
J			Asp	Asp	Glv	Ser	Ile	Asp	Tvr	Thr	Val	His	Glu	Ala	ጥነጥ	Agn
	1	,	F	F	5			F	-,,-	10	- 				15	

	Glu	Ala	Thr	Asn	Val	Tyr	Leu	Ile	Val	Ile	Leu	Val	Ser	Phe	Gly	Leu
				20					25					30		
	Phe	Met	Tyr	Ala	Lys	Arg	Asn	Lys	Arg	Arg	Ile	Met	Arg	Ile	Phe	Ser
			35					40					45			
5	Val	Pro	Pro	Thr	Glu	Glu	Thr	Leu	Ser	Glu	Pro	Asn	Phe	Tyr	Asp	Thr
		50					55					60				
	Ile	Ser	Lys	Ile	Arg	Leu	Arg	Gln	Gln	Leu	Glu	Met	Tyr	Ser	Ile	Ser
	65					70					75					80
	Arg	Lys	Tyr	Asp	Tyr	Gln	Gln	Pro	Gln	Asn	Gln	Ala	Asp	Ser	Val	Gln
10					85					90					95	
	Leu	Ser	Leu	Glu												
				100												
												,				
	<210	> 7														
15	<211	l> 22	25													
	<212	> PI	ET.				•									
	<213	3> Hc	omo s	sapie	ans											
	<400	> 7														
20		Gly	Thr	Ala	_	Ser	Asp	Glu	Met		Pro	Glu	Ala	Pro		His
	1				5					10					15	
	Thr	His	Ile	_	Val	His	Ile	His		Glu	Ser	Ala	Leu		Lys	Leu
				20			_		25					30		
~=	Leu	Leu		Cys	Cys	Ser	Ala		Arg	Pro	Arg	Ala		Gln	Ala	Arg
25		_	35	_	_	_		40	_	_	_		45			_
	GLY		Ser	Arg	Leu	Leu		Ala	Ser	Trp	Val		GLn	Ile	Val	Leu
		50	_	_			55 -					60		_		
	_	Ile	Leu	Ser	Ala	Val	Leu	Gly	Gly	Phe		Tyr	Ile	Arg	Asp	
	65					70	_				75					80
30	Thr	Leu	Leu	Val		Ser	Gly	Ala	Ala		Trp	Thr	Gly	Ala		Ala
				_	85					90					95	
	Val	Leu	Ala	Gly	Ala	Ala	Ala	Phe	Ile	Tyr	Glu	Lys	Arg	Gly	Gly	Thr

			100			•		105					110				
	Tyr Trp	Ala	Leu	Leu	Arg	Thr	Leu	Leu	Ala	Leu	Ala	Ala	Phe	Ser	Thr		
		115					120					125					
	Ala Ile	Ala	Ala	Leu	Lys	Leu	Trp	Asn	Glu	Asp	Phe	Arg	Tyr	Gly	Tyr		
5	130					135					140						
	Ser Tyr	Tyr	Asn	Ser	Ala	Cys	Arg	Ile	Ser	Ser	Ser	Ser	Asp	Trp	Asn		
	145				150					155					160		
	Thr Pro	Ala	Pro	Thr	Gln	Ser	Pro	Glu	Glu	Val	Arg	Arg	Leu	His	Leu		
				165					170					175			
10	Cys Thr	Ser	Phe	Met	Asp	Met	Leu	Lys	Ala	Leu	Phe	Arg	Thr	Leu	Gln		
			180					185					190				
	Ala Met	Leu	Leu	Gly	Val	Trp	Ile	Leu	Leu	Leu	Leu	Ala	Ser	Leu	Ala		
		195					200					205					
	Pro Leu	Trp	Leu	Tyr	Cys	Trp	Arg	Met	Phe	Pro	Thr	Lys	Gly	Val	Ser		
15	210					215					220						
	Pro																
	225																
							•										
	<210> 8																
20	<211> 38	37															
	<212> DN	IA.		•													
	<213> Ho	amo s	apie	ens													
	<400> 8																
25	atgcattt	æt t	atto	agat	t ca	ttgt	tttc	ttt	tato	tgt	9 999	cctt	tt t	actg	ctcag	6	
	agacaaaa	ıga a	agag	gaga	g ca	ccga	agaa	gtg	aaaa	tag	aagt	tttg	jca t	cgtc	cagaa	12	
	aactgctc	ta a	gaca	agca	a ga	aggg	pagac	cta	ctaa	atg	ccca	ittat	ga c	ggct	acctg.	18	
	gctaaaga	icg g	ctcg	aaat	t ct	actg	cago	cgg	acac	aaa	atga	aggo	ca c	ccca	aatgg	24	
	tttgttct	tg g	tgtt	gggc	a ag	rtcat	aaaa	ggc	ctag	aca	ttgc	tato	ac a	igata	tgtgc	30	1
30	cctggaga	aa a	gega	aaag	rt ag	ttat	accc	cct	tcat	ttg	cata	ıcgga	aa g	gaag	gctat	36	•
	gataaacc	tc t	actt	gcaa	a gg	gaat	:t									38	•

	<210> 9	
	<211> 405	
	<212> DNA	
	<213> Homo sapiens	
5		
	<400> 9	
	atggtgctgg agagcgtggc ccgtatcgtg aaggtgcagc tccctgcata tctgaagcgg	6
	ctcccagtcc ctgaaagcat taccgggttc gctaggctca cagtttcaga atggcttcgg	12
	ttattgeett teettggtgt actegeaett ettggetaee ttgeagtteg teeatteete	18
10	ccgaagaaga aacaacagaa ggatagcttg attaatctta aaatacaaaa ggaaaatccg	24
	aaagtagtga atgaaataaa cattgaagat ttgtgtctta ctaaagcagc ttattgtagg	30
	tgttggegtt ctaaaacgtt tectgeetge gatggtteac ataataaaca caatgaattg	36
	acaggagata atgtgggtcc actaatactg aagaagaaag aagta	40
15	<210> 10	
	<211> 237	
	<212> DNA	
	<213> Homo sapiens	
20	<400> 10	
	atgeeggtgg eegtgggtee etaeggaeag teecageeaa getgettega eegtgteaaa	6
	atgggetteg tgatgggttg egeegtggge atggeggeeg gggegetett eggeaeettt	12
	teetgtetea ggateggaat gegggtega gagetgatgg geggeattgg gaaaaccatg	18
	atgcagagtg gcggcacctt tggcacattc atggccattg ggatgggcat ccgatgc	23
25		
	<210> 11	
	<211> 432	
	<212> DNA	
	<213> Homo sapiens	
30		
	< 400> 11	
	atgregates egitegegge citetoctae atgetggege tgetgetese tgeegegete	6

9/27

	atcttcttcg	ccatttggca	cattatagca	tttgatgagc	tgaagactga	ttacaagaat	120
	cctatagacc	agtgtaatac	cctgaatccc	cttgtactcc	cagagtacct	catecaeget	180
	ttcttctgtg	tcatgtttct	ttgtgcagca	gagtggctta	cactgggtct	caatatgccc	240
	ctcttggcat	atcatatttg	gaggtatatg	agtagaccag	tgatgagtgg	cccaggactc	300
5	tatgacccta	caaccatcat	gaatgcagat	attctagcat	attgtcagaa	ggaaggatgg	360
	tgcaaattag	ctttttatct	tctagcattt	ttttactacc	tatatggcat	gatctatgtt	420
	ttggtgagct	ct					432
	<210> 12						
10	<211> 846						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 12						
15	atgageggeg	gttggatggc	gcaggttgga	gcgtggcgaa	caggggctct	gggcctggcg	60
	ctgctgctgc	tgctcggcct	cggactaggc	ctggaggccg	ccgcgagccc	gctttccacc	120
	ccgacctctg	cccaggccgc	aggccccagc	tcaggctcgt	geccaeccae	caagttccag	180
	tgccgcacca	gtggcttatg	egtgeeecte	acctggcgct	gcgacaggga	cttggactgc	240
	agcgatggca	gcgatgagga	ggagtgcagg	attgagccat	gtacccagaa	agggcaatgc	300
20	ccaccgccc	ctggcctccc	ctgcccctgc	accggcgtca	gtgactgctc	tgggggaact	360
	gacaagaaac	tgcgcaactg	cagccgcctg	gectgectag	caggcgagct	ccgttgcacg	420
	ctgagcgatg	actgcattcc	actcacgtgg	egetgegaeg	gecacecaga	ctgtcccgac	480
	tocagogacg	ageteggetg	tggaaccaat	gagateetee	cggaagggga	tgccacaacc	540
	atggggcccc	ctgtgaccct	ggagagtgtc	acctctctca	ggaatgccac	aaccatgggg	600
25	cccctgtga	ccctggagag	tgtcccctct	gtcgggaatg	ccacatcctc	ctctgccgga	660
	gaccagtctg	gaagcccaac	tgcctatggg	gttattgcag	ctgctgcggt	gctcagtgca	720
	agectggtca	ccgccaccct	cctccttttg	teetggetee	gagcccagga	gegeeteege	780
	ccactggggt	tactggtggc	catgaaggag	tecetgetge	tgtcagaaca	gaagacctcg	840
	ctgccc						846
30							
	<210> 13			,			

<211> 300

10/27

	<212> DNA	
	<213> Homo sapiens	
	<400> 13	
5	atgggtgacg atggttctat tgattatact gttcacgaag cctggaatga agccaccaat	60
	gtttacttga tagttateet tgttagette ggtetettea tgtatgeeaa aaggaacaaa	120
	aggagaatta tgaggatatt cagtgtgcca cctacagagg aaactttgtc agagcccaac	180
	ttttatgaca cgataagcaa gattegttta agacaacaac tggaaatgta ttccatttca	240
	agaaagtacg actatcagca gccacaaaac caagctgaca gtgtgcaact ctcattggaa	300
10		
	<210> 14	
	<211> 675	
	<212> DNA	
	<213> Homo sapiens	
15		
	<400> 14	
	atgggaacag ccgacagtga tgagatggcc ccggaggccc cacagcacac ccacatcgat	60
	gtgcacatec accaggagte tgccctggcc aagetectge teacetgctg etetgegetg	120
	cggccccggg ccacccaggc caggggcagc agccggctgc tggtggcctc gtgggtgatg	180
20	cagategtge tggggatett gagtgeagte etaggaggat ttttetaeat eegegaetae	240
	accetecteg teaceteggg agetgeeate tggaeagggg etgtggetgt getggetgga	300
	gctgctgcct tcatttacga gaaacggggt ggtacatact gggccctgct gaggactctg	360
	ctagegetgg cagetttete cacagecate getgeeetea aactttggaa tgaagattte	420
	cgatatggct actottatta caacagtgcc tgccgcatct ccagctcgag tgactggaac	480
25	actocageoc ecactoagag tecagaagaa gtoagaaggo tacaectatg tacetootto	540
	atggacatgc tgaaggeett gttcagaaec ettcaggeea tgetettggg tgtctggatt	600
	ctgctgcttc tggcatctct ggcccctctg tggctgtact gctggagaat gttcccaacc	660
	aaaggggtga gtccc	675
30	<210> 15	
	<211> 761	

<212> DNA

11/27

<213> Homo sapiens

	<40	0> 1	5															
	gaca	atcc	acg (gggc	gcga	gt g	acac	gcgg	g ag	ggag	agca	gtg	ttct	gct	ggag	ccgat	.g (5(
5	ccaa	aaaa	cc at	tg c	at t	tc t	ta t	tc a	ga t	tc a	tt g	tt t	tc t	tt t	at c	tg tg	ıg 11	L
			M	et H	is P	he L	eu P	he A	rg P	he I	le V	al P	he P	he T	yr L	eu Tr	TP	
				1				5					10					
	ggc	ctt	ttt	act	gct	cag	aga	caa	aag	aaa	gag	gag	agc	acc	gaa	gaa	15	35
	Gly	Leu	Phe	Thr	Ala	Gln	Arg	Gln	Lys	Lys	Glu	Glu	Ser	Thr	Glu	Glu		
10	15					20					25					30		
	gtg	aaa	ata	gaa	gtt	ttg	cat	cgt	cca	gaa	aac	tgc	tct	aag	aca	agc	20)7
	Val	Lys	Ile	Glu	Val	Leu	His	Arg	Pro	Glu	Asn	Cys	Ser	Lys	Thr	Ser		
ō					35					40					45			
	aag	aag	gga	gac	cta	cta	aat	gcc	cat	tat	gac	ggc	tac	ctg	gct	aaa	25	5
15	Lys	Lys	Gly	Asp	Leu	Leu	Asn	Ala	His	Tyr	Asp	Gly	Tyr	Leu	Ala	Lys		
				50					55					60				
	gac	ggc	tcg	aaa	ttc	tac	tgc	agc	cgg	aca	caa	aat	gaa	ggc	cac	ccc	30	3
	Asp	Gly	Ser	Lys	Phe	Tyr	Cys	Ser	Arg	Thr	Gln	Asn	Glu	Gly	His	Pro		
			65					70					75					
20	aaa	tgg	ttt	gtt	ctt	ggt	gtt	9 99	caa	gtc	ata	aaa	ggc	cta	gac	att	35	1
	Lys	Trp	Phe	Val	Leu	Gly	Val	Gly	Gln	Val	Ile	Lys	Gly	Leu	Asp	Ile		
		80					85					90						
	gct	atg	aca	gat	atg	tgc	cct	gga	gaa	aag	cga	aaa	gta	gtt	ata	ccc	39	9
	Ala	Met	Thr	Asp	Met	Cys	Pro	Gly	Glu	Lys	Arg	Lys	Val	Val	Ile	Pro		
25	95					100					105					110		
•	cct	tca	ttt	gca	tac	gga	aag	gaa	ggc	tat	gat	aaa	cct	cta	ctt	gca	44	7
	Pro	Ser	Phe	Ala	Tyr	Gly	Lys	Glu	Gly	Tyr	Asp	Lys	Pro	Leu	Leu	Ala		
					115					120					125			
	aag	gga	att	tgaa	aaaa	gat o	gagaa	agoca	ac gi	tgaca	aagto	ata	atcag	ggat	gcag	3	50	0
30	Lys	Gly	Ile															

ttttagaaga tatttttaag aagaatgacc atgatggtga tggcttcatt tctcccaagg

12/27

	aatacaa	tgt a	atac	caaca	ac g	atga	acta	t ag	cata	tttg	tat	ttct	act	tttt	tttta
	gctattt	act (gtac	tttat	tg t	ataa	aaca	a ag	tcac	ttt	ctc	caag	ttg	tatt	tgctat
	ttttccc	cta 1	tgag	aagat	ta t	tttg	atct	c co	caat	acat	tga	tttt	ggt	ataa	taaaat
	gtgaggc	tgt 1	tttg	caaac	t t										
5															
	<210> 10	6													
	<211> 13	29						•							
	<212> PI	RT													
	<213> Hz	omo i	варі	ens											
10															
	<400> 10	6													
		Me	et H	is Ph	e La	eu Pl	ne Ai	cg Pi	ne I	le Va	al Pl	he P	he T	yr Le	eu Trp
			1				5				:	10			•
	Gly Leu	Phe	Thr	Ala	Gln	Arg	Gln	Lys	Lys	Glu	Glu	Ser	Thr	Glu	Glu
15	15				20					25				•	30
	Val Lys	Ile	Glu	Val	Leu	His	Arg	Pro	Glu	Asn	Cys	Ser	Lys	Thr	Ser
				35				•	40					45	
•	Lys Lys	Gly	Asp	Leu	Leu	Asn	Ala	His	Tyr	Asp	Gly	Tyr	Leu	Ala	Lys
			50					55					60		
20	Asp Gly	Ser	Lys	Phe	Tyr	Cys	Ser	Arg	Thr	Gln	Asn	Glu	Gly	His	Pro
		65					70					75			
	Lys Trp	Phe	Val	Leu	Gly	Val	Gly	Gln	Val	Ile	Lys	Gly	Leu	Asp	Ile
	80					85					90				
	Ala Met	Thr	Asp	Met	Cys	Pro	Gly	Glu	Lys	Arg	Lys	Val	Val	Ile	Pro
25	95				100					105					110
	Pro Ser	Phe	Ala	Tyr	Gly	Lys	Glu	Gly	Tyr	Asp	Lys	Pro	Leu	Leu	Ala
				115					120					125	
	Lys Gly	Ile													
30	<210> 17														
	<211> 70								•						
	<212 N	ATA.													

13/27

<213> Homo sapiens

	<400)> 1	7														
	caga	ageg	gag (9 999	ctcg	gg a	gagg	agtg	g ac	gccg	ctgg	cca	gg a	tg g	tg c	tg gag	5
5													M	et V	al L	eu Glu	
				•										1			
	agc	gtg	gcc	cgt	atc	gtg	aag	gtg	cag	ctc	cct	gca	tat	ctg	aag	cgg	10!
	Ser	Val	Ala	Arg	Ile	Val	Lys	Val	Gln	Leu	Pro	Ala	Tyr	Leu	Lys	Arg	
	5					10					15					20	
10	ctc	cca	gtc	cct	gaa	agc	att	acc	ggg	ttc	gct	agg	ctc	aca	gtt	tca	153
	Leu	Pro	Val	Pro	Glu	Ser	Ile	Thr	Gly	Phe	Ala	Arg	Leu	Thr	Val	Ser	
					25					30					35		
	gaa	tgg	ctt	cgg	tta	ttg	cct	ttc	ctt	ggt	gta	ctc	gca	ctt	ctt	ggc	201
	Glu	Trp	Leu	Arg	Leu	Leu	Pro	Phe	Leu	Gly	Val	Leu	Ala	Leu	Leu	Gly	
15				40					45					50			
	tac	ctt	gca	gtt	cgt	cca	ttc	ctc	ccg	aag	aag	aaa	caa	cag	aag	gat	249
	Tyr	Leu	Ala	Val	Arg	Pro	Phe	Leu	Pro	Lys	Lys	Lys	Gln	Gln	Lys	Asp	
			55					60					65				
	agc	ttg	att	aat	ctt	aaa	ata	caa	aag	gaa	aat	ccg	aaa	gta	gtg	aat .	297
20	Ser	Leu	Ile	Asn	Leu	Lys	Ile	Gln	Lys	Glu	Asn	Pro	Lys	Val	Val	Asn	
		70					75					80					
	gaa	ata	aac	att	gaa	gat	ttg	tgt	ctt	act	aaa	gċa	gct	tat	tgt	agg	345
•	Glu	Ile	Asn	Ile	Glu	Asp	Leu	Суз	Leu	Thr	Lys	Ala	Ala	Tyr	Cys	Arg	
	85					90					95					100	•
25	tgt	tgg	cgt	tct	aaa	acg	ttt	cct	gcc	tgc	gat	ggt	tca	cat	aat	aaa	39 3
	Cys	Trp	Arg	Ser	Lys	Thr	Phe	Pro	Ala	Cys	Asp	Gly	Ser	His	Asn	Lys	
					105					110					115		
	cac	aat	gaa	ttg	aca	gga	gat	aat	gtg	ggt	cca	cta	ata	ctg	aag	aag	441
	His	Asn	Glu	Leu	Thr	Gly	Asp	Asn	Val	Gly	Pro	Leu	Ile	Leu	Lys	Lys	
30				120					12 5					130			

aaa gaa gta taataataat aacaatattt totoattott tgtgtataga

Lys Glu Val

14/27

550

610 670

701

•	-	

aaattttaaa atggtggtct taattattac tactggttga acaattattt cttccaattt attitettee tgeactactg tittgtattig atcettigte tatteagtea citaattaga aattaaattg tcaagcetet tattetgaet tcaaagaatt aatgtatett ccaacaataa 5 aatcacttct gattttaatc taggaaaacc t <210> 18 <211> 135 <212> PRT 10 <213> Homo sapiens <400> 18 Met Val Leu Glu 15 Ser Val Ala Arg Ile Val Lys Val Gln Leu Pro Ala Tyr Leu Lys Arg 10 15 Leu Pro Val Pro Glu Ser Ile Thr Gly Phe Ala Arg Leu Thr Val Ser 25 Glu Trp Leu Arg Leu Leu Pro Phe Leu Gly Val Leu Ala Leu Leu Gly 20 45 50 40 Tyr Leu Ala Val Arg Pro Phe Leu Pro Lys Lys Gln Gln Lys Asp 55 60 Ser Leu Ile Asn Leu Lys Ile Gln Lys Glu Asn Pro Lys Val Val Asn **75** 80 25 Glu Ile Asn Ile Glu Asp Leu Cys Leu Thr Lys Ala Ala Tyr Cys Arg 85 90 95 100 Cys Trp Arg Ser Lys Thr Phe Pro Ala Cys Asp Gly Ser His Asn Lys 105 110 115 His Asn Glu Leu Thr Gly Asp Asn Val Gly Pro Leu Ile Leu Lys Lys 30 120 125 130 Lys Glu Val

	<210> 19	
	<211> 393	
	<212> DNA	
5	<213> Homo sapiens	
	<400> 19	
	tcatcgggcc gcgagcgccc tccccgtcgt tttccgtgag agacgtagag ctgagcgacc	60
	cagecegega gegaggtgag atg eeg gtg gee gtg ggt eee tae gga eag tee	113
10	Met Pro Val Ala Val Gly Pro Tyr Gly Gln Ser	
	1 5 10	
	cag cca age tge tte gae egt gte aaa atg gge tte gtg atg ggt tge	161
	Gln Pro Ser Cys Phe Asp Arg Val Lys Met Gly Phe Val Met Gly Cys	
	15 20 25	
15	goe gtg ggc atg geg gec ggg geg etc tte ggc acc ttt tee tgt etc	209
	Ala Val Gly Met Ala Ala Gly Ala Leu Phe Gly Thr Phe Ser Cys Leu	
	30 35 40	
	agg atc gga atg cgg ggt cga gag ctg atg ggc ggc att ggg aaa acc	257
	Arg Ile Gly Met Arg Gly Arg Glu Leu Met Gly Gly Ile Gly Lys Thr	
20	45 50 55	
	atg atg cag agt ggc ggc acc ttt ggc aca ttc atg gcc att ggg atg	305
	Met Met Gln Ser Gly Gly Thr Phe Gly Thr Phe Met Ala Ile Gly Met	
	60 65 70 75	
	ggc atc cga tgc taaccatggt tgccaactac atctgtccct tcc	350
25	Gly Ile Arg Cys	
	ggc atc cga tgc taaccatggt tgccaactac atctgtccct tcccatcaat ccc	360
	Gly Ile Arg Cys	
	agoccatgta ctaataaaag aaagtctttg agt	393
30	<210> 20	
	<211> 83	
	<212> PRT	

16/27

<213> Homo sapiens

<400> 20

	\400> 20					
			Met Pro Va	al Ala Val Gl	y Pro Tyr Gl	y Gln Ser
5			1	5		10
	Gln Pro Ser	r Cys Phe A	sp Arg Val	Lys Met Gly	Phe Val Met	Gly Cys
		15		20	25	
	Ala Val Gly	y Met Ala A	la Gly Ala	Leu Phe Gly	Thr Phe Ser	Cys Leu
	30	0	35		40	
10	Arg Ile Gly	y Met Arg G	ly Arg Glu	Leu Met Gly	Gly Ile Gly	Lys Thr
	45		50		55	•
	Met Met Gli	n Ser Gly G	ly Thr Phe	Gly Thr Phe	Met Ala Ile	Gly Met
	60	•	65	70		75
	Gly Ile Arg	g Cys				
15	Gly Ile Arg	g Cys				
	<210> 21				•	
	<211> 1033					
	<212> DNA	•				
20	<213> Homo	sapiens				
	<400> 21				•	
	ctttctccgc	tggcaacggc	googeteece	getectecte (cocagec atg	geg ttc 56
•				·	Met A	la Phe
25					1	
	acg ttc gcg	g gee tte to	c tac atg	ctg gcg ctg (ctg ctc act o	gee geg 104
	Thr Phe Ala	a Ala Phe Cy	s Tyr Met 1	Leu Ala Leu 1	Leu Leu Thr <i>I</i>	lla Ala
	5		10		15	
	ctc atc ttc	ttc gcc at	t tgg cac a	att ata gca 1	ttt gat gag d	tg aag 152
30	Leu Ile Phe	e Phe Ala Il	e Trp His :	Ile Ile Ala I	Phe Asp Glu I	eu Lys
	20	2	25	30		35
	act gat tac	e aag aat co	t ata gac o	cag tgt aat a	acc ctg aat o	ec ctt 200

	Thr	Asp	Tyr	Lys	Asn	Pro	Ile	Asp	Gln	Cys	Asn	Thr	Leu	Asn	Pro	Leu	,
					40					45					50		
	gta	ctc	cca	gag	tac	ctc	atc	cac	gct	ttc	ttc	tgt	gtc	atg	ttt	ctt	248
	Val	Leu	Pro	Glu	Tyr	Leu	Ile	His	Ala	Phe	Phe	Cys	Val	Met	Phe	Leu	
5				55					60					65			
	tgt	gca	gca	gag	tgg	ctt	aca	ctg	ggt	ctc	aat	atg	ccc	ctc	ttg	gca	296
	Суз	Ala	Ala	Glu	Trp	Leu	Thr	Leu	Gly	Leu	Asn	Met	Pro	Leu	Leu	Ala	•
			70					75					80				
	tat	cat	att	tgg	agg	tat	atg	agt	aga	cca	gtg	atg	agt	ggc	cca	gga	344
10	Tyr	His	Ile	Trp	Arg	Tyr	Met	Ser	Arg	Pro	Val	Met	Ser	Gly	Pro	Gly	
		85					90					95					
	ctc	tat	gac	cct	aca	acc	atc	atg	aat	gca	gat	att	cta	gca	tat	tgt	392
	Leu	Tyr	Asp	Pro	Thr	Thr	Ile	Met	Asn	Ala	Asp	Ile	Leu	Ala	Tyr	Cys	
	100					105					110					115	
15	cag	aag	gaa	gga	tgg	tgc	aaa	tta	gct	ttt	tat	ctt	cta	gca	ttt	ttt	440
	Gln	Lys	Glu	Gly	Trp	Cys	Lys	Leu	Ala	Phe	Tyr	Leu	Leu	Ala	Phe	Phe	
					120					125					130		
	tac	tac	cta	tat	ggc	atg	atc	tat	gtt	ttg	gtg	agc	tct	taga	acaa	ca c	490
	Tyr	Tyr	Leu	Tyr	Gly	Met	Ile	Tyr	Val	Leu	Val	Ser	Ser				
20				135				•	140		•						
	acag	gaaga	aat t	ggtc	cagt	t aa	ıgtgo	catgo	aaa	aago	cac	caaa	itgaa	igg g	gatto	tatec	550
	agca	aagat	cc t	gtee	aaga	ag ta	ıgcct	gtgg	, aat	ctga	itca	gtta	ctt	aa a	aaat	gactc	610
	ctta	atttl	tt a	aato	ttt c	c ac	attt	ttgc	ttg	jtgga	aag	acto	tttt	ca t	atgt	tatac	670
	tcag	gataa	aag a	ittti	aaat	g gt	atta	acgta	taa	atta	ata	taaa	atga	itt a	cctc	tggtg	730
25	ttga	acag	gtt t	gaac	ttgc	a ct	.tctt	aagg	aac	agco	ata	atco	tctg	jaa t	gatg	catta	790
	atta	actga	act g	tect	agta	ac at	:tgga	agct	: ttt	gttt	ata	ggaa	cttg	rta g	ggct	cattt	850
	tggt	ttc	att <u>c</u>	gaaac	agta	at ct	aatt	ataa	att	agct	gta	gata	itcag	gt g	cttc	tgatg	910
	aagt	tgaaa	aat g	jtata	itctg	ga ct	agto	ggaa	act	tcat	ggg	tttc	ctca	itc t	gtca	tgtcg	970
	atga	attat	cat a	itgga	itaca	at tt	acaa	aaat	aaa	aago	ggg	aatt	ttee	ct t	cgct	tgaat	1030
30	att																1033

18/27

<211> 144 <212> PRT <213> Homo sapiens

5 <400> 22

Met Ala Phe

1

Thr Phe Ala Ala Phe Cys Tyr Met Leu Ala Leu Leu Leu Thr Ala Ala
5 10 15

10 Leu Ile Phe Phe Ala Ile Trp His Ile Ile Ala Phe Asp Glu Leu Lys
20 25 30 35

Thr Asp Tyr Lys Asn Pro Ile Asp Gln Cys Asn Thr Leu Asn Pro Leu
40 45 50

Val Leu Pro Glu Tyr Leu Ile His Ala Phe Phe Cys Val Met Phe Leu

15 55 60 65

Cys Ala Ala Glu Trp Leu Thr Leu Gly Leu Asn Met Pro Leu Leu Ala
70 75 80

Tyr His Ile Trp Arg Tyr Met Ser Arg Pro Val Met Ser Gly Pro Gly
85 90 95

20 Leu Tyr Asp Pro Thr Thr Ile Met Asn Ala Asp Ile Leu Ala Tyr Cys 100 105 110 115

Gln Lys Glu Gly Trp Cys Lys Leu Ala Phe Tyr Leu Leu Ala Phe Phe 120 125 130

Tyr Tyr Leu Tyr Gly Met Ile Tyr Val Leu Val Ser Ser

25 135 140

<210> 23

<211> 1270

<212> DNA

30 <213> Homo sapiens

<400> 23

	ccc	cgcc	cca	accc	cgcg	cg t	gege	gtgc	g ca	ggga	taag	aga	gcgg	tct	ggac	agegeg	60
	tgg	ccgg	cgc	cgct	gtgg	gg a	cago	atg	agc	ggc	ggt	tgg	atg	gcg	cag	gtt	112
								Met	Ser	Gly	Gly	Trp	Met	Ala	Gln	Val	
								1				5					
5	gga	gcg	tgg	cga	aca	ggg	gct	ctg	ggc	ctg	gcg	ctg	ctg	ctg	ctg	ctc	160
	Gly	Ala	Trp	Arg	Thr	Gly	Ala	Leu	Gly	Leu	Ala	Leu	Leu	Leu	Leu	Leu	
	10					15			,		20					25	
	ggc	ctc	gga	cta	ggc	ctg	gag	gcc	gcc	gcg	agc	ccg	ctt	tcc	acc	ccg .	208
	Gly	Leu	Gly	Leu	Gly	Leu	Glu	Ala	Ala	Ala	Ser	Pro	Leu	Ser	Thr	Pro	
10					30					35					40		
	acc	tct	gec	cag	gcc	gca	ggc	ccc	agc	tca	ggc	tcg	tgc	cca	ccc	acc	256
	Thr	Ser	Ala	Gln	Ala	Ala	Gly	Pro	Ser	Ser	Gly	Ser	Cys	Pro	Pro	Thr	
				45					50					5 5			
	aag	ttc	cag	tgc	cgc	acc	agt	ggc	tta	tgc	gtg	ccc	ctc	acc	tgg	cgc	304
15	Lys	Phe	Gln	Cys	Arg	Thr	Ser	Gly	Leu	Cys	Val	Pro	Leu	Thr	Trp	Arg	
			60					65					70				
	tgc	gac	agg	gac	ttg	gac	tgc	agc	gat	ggc	agc	gat	gag	gag	gag	tgc	352
	Сув	Asp	Arg	Asp	Leu	Asp	Cys	Ser	Asp	Gly	Ser	Asp	Glu	Glu	Glu	Сув	
		75					80					85					
20	agg	att	gag	cca	tgt	acc	cag	aaa	9 99	caa	tgc	cca	ccg	ccc	cct	ggc	400
	Arg	Ile	Glu	Pro	Cys	Thr	Gln	Lys	Gly	Gln	Cys	Pro	Pro	Pro	Pro	Gly	
	90					95					100					105	
	ctc	ccc	tgc	ccc	tgc	acc	ggc	gtc	agt	gac	tgc	tct	ggg	gga	act	gac	448
	Leu	Pro	Сув	Pro	Сув	Thr	Gly	Val	Ser	Asp	Cys	Ser	Gly	Gly	Thr	Asp	
25					110					115					120		
	aag	aaa	ctg	cgc	aac	tgc	agc	cgc	ctg	gcc	tgc	cta	gca	ggc	gag	ctc	496
	Lys	Lys	Leu	Arg	Asn	Cys	Ser	Arg	Leu	Ala	Cys	Leu	Ala	Gly	Glu	Leu	
				125					130					135			
	cgt	tgc	acg	ctg	agc	gat	gac	tgc	att	cca	ctc	acg	tgg	cgc	tgc	gac	544
30	Arg	Cys	Thr	Leu	Ser	Asp	Asp	Cys	Ile	Pro	Leu	Thr	Trp	Arg	Cys	Asp	
			140					145					150				
	ggc	cac	cca	gac	tgt	ccc	gac	tec	agc	gac	gag	ctc	ggc	tgt	gga	acc	592

	Gly His Pro Asp Cys Pro Asp Ser Ser Asp Glu Leu Gly Cys Gly Thr	
	155 160 165	
	aat gag atc ctc ccg gaa ggg gat gcc aca acc atg ggg ccc cct gtg	640
	Asn Glu Ile Leu Pro Glu Gly Asp Ala Thr Thr Met Gly Pro Pro Val	
5 .	170 175 180 185	
	ace ctg gag agt gtc ace tet etc agg aat gee aca ace atg ggg cee	688
	Thr Leu Glu Ser Val Thr Ser Leu Arg Asn Ala Thr Thr Met Gly Pro	
	190 195 200	
	cet gtg ace etg gag agt gte ece tet gte ggg aat gee aca tee tee	736
10	Pro Val Thr Leu Glu Ser Val Pro Ser Val Gly Asn Ala Thr Ser Ser	
	205 210 215	
	tot goo gga gac cag tot gga ago coa act goo tat ggg gtt att goa	784
	Ser Ala Gly Asp Gln Ser Gly Ser Pro Thr Ala Tyr Gly Val Ile Ala	
	220 225 230	
15	get get geg gtg etc agt gea age etg gte ace gec ace etc ett	832
	Ala Ala Ala Val Leu Ser Ala Ser Leu Val Thr Ala Thr Leu Leu Leu	
	235 240 245	
	ttg tee tgg etc ega gee eag gag ege etc ege eea etg ggg tta etg	880
	Leu Ser Trp Leu Arg Ala Gln Glu Arg Leu Arg Pro Leu Gly Leu Leu	
20	250 255 260 265	
	gtg gcc atg aag gag tcc ctg ctg ctg tca gaa cag aag acc tcg ctg	928
	Val Ala Met Lys Glu Ser Leu Leu Leu Ser Glu Gln Lys Thr Ser Leu	
	270 275 280	
	ccc tgaggacaag cacttgccac caccgtcact cagecctggg cgtagecgg	980
25	Pro	
	acaggaggag agcagtgatg cggatgggta cccgggcaca ccagccctca gagacctgag	1040
	ctcttctggc cacgtggaac ctcgaacccg agctcctgca gaagtggccc tggagattga	1100
	gggtccctgg acactcccta tggagatccg gggagctagg atggggaacc tgccacagcc	1160
30	agaactgagg ggctggcccc aggcagctcc cagggggtag aacggccctg tgcttaagac	1220
	actectgetg eccegtetga gggtggegat taaagttget teacatecte	1270

	<21	0> 2	4													
	<21	1> 2	B2													
	<21	2> P1	RT													
	<21	3> H	omo i	sapi	ens											
5																
	<40	0> 2	4									•				
								Met	Ser	Gly	Gly	Trp	Met	Ala	Gln	Val
		•						1				5				
	Gly	Ala	Trp	Arg	Thr	Gly	Ala	Leu	Gly	Leu	Ala	Leu	Leu	Leu	Leu	Leu
10	10					15					20					25
	Gly	Leu	Gly	Leu	Gly	Leu	Glu	Ala	Ala	Ala	Ser	Pro	Leu	Ser	Thr	Pro
					30					3 5					40	
	Thr	Ser	Ala	Gln	Ala	Ala	Gly	Pro	Ser	Ser	Gly	Ser	Cys	Pro	Pro	Thr
				45					50					55		
15	Lys	Phe	Gln	Cys	Arg	Thr	Ser	Gly	Leu	Сув	Val	Pro	Leu	Thr	Trp	Arg
			60			•		6 5					70			
	Суз	Asp	Arg	Asp	Leu	Asp	Cys	Ser	Asp	Gly	Ser	Asp	Glu	Glu	Glu	Cys
		75					80					85	•			
	Arg	Ile	Glu	Pro	Суз	Thr	Gln	Lys	Gly	Gln	Суз	Pro	Pro	Pro	Pro	Gly
20	90					95					100					105
	Leu	Pro	Cys	Pro	Cys	Thr	Gly	Val	Ser	As p	Сув	Ser	Gly	Gly	Thr	Asp
					110					115					120	
	Lys	Lys	Leu	Arg	Asn	Cys	Ser	Arg	Leu	Ala	Cys	Leu	Ala	Gly	Glu	Leu
				125					130					135		
25	Arg	Cys		Leu	Ser	Asp	Asp	Сув	Ile	Pro	Leu	Thr	Trp	Arg	Cys	yab
			140					145					150			
	Gly	His	Pro	Asp	Cys	Pro	Asp	Ser	Ser	Asp	Glu	Leu	Gly	Cys	Gly	Thr
		155					160					165				
	Asn	Glu	Ile	Leu	Pro	Glu	Gly	Asp	Ala	Thr	Thr	Met	Gly	Pro	Pro	Val
30	170					175					180					185
	Thr	Leu	Glu	Ser	Val	Thr	Ser	Leu	Arg	Asn	Ala	Thr	Thr	Met	Gly	Pro
					190					195					200	

	Pro Val Thr Leu Glu Ser Val Pro Ser Val Gly Asn Ala Thr Ser Ser	
	205 210 215	
	Ser Ala Gly Asp Gln Ser Gly Ser Pro Thr Ala Tyr Gly Val Ile Ala	
	220 225 230	
5	Ala Ala Ala Val Leu Ser Ala Ser Leu Val Thr Ala Thr Leu Leu Leu	
	235 240 245	
	Leu Ser Trp Leu Arg Ala Gln Glu Arg Leu Arg Pro Leu Gly Leu Leu	
	250 255 260 265	
	Val Ala Met Lys Glu Ser Leu Leu Ser Glu Gln Lys Thr Ser Leu	
10	270 275 280	
	Pro	
	<210> 25	
	<211> 836	
15	<212> DNA	
	<213> Homo sapiens	
	<400> 25	
	aaaaaaaagg aaatgacgaa ggcagagggc gtccaggtcc gctcggtaac cgtttcccgc	60
20	gegeeeggee eegacteegg ggtaaagage eeeggagegg ageagegetg geegegtgee	120
•	geeteeggag eeggeageee eeatggetgg gggttatgga gtg atg ggt gae gat	179
	Met Gly Asp Asp	
	1	
	ggt tot att gat tat act gtt cac gaa gee tgg aat gaa gee ace aat	223
25	Gly Ser Ile Asp Tyr Thr Val His Glu Ala Trp Asn Glu Ala Thr Asn	
	5 10 15 20	
	gtt tac ttg ata gtt atc ctt gtt agc ttc ggt ctc ttc atg tat gcc	271
,	Val Tyr Leu Ile Val Ile Leu Val Ser Phe Gly Leu Phe Met Tyr Ala	
	25 30 35	
30	aaa agg aac aaa agg aga att atg agg ata ttc agt gtg cca cct aca	319
	Lys Arg Asn Lys Arg Arg Ile Met Arg Ile Phe Ser Val Pro Pro Thr	
	40 45 50	

23/27

	gag gaa act ttg tca gag ccc aac ttt tat gac acg ata agc aag att	367
	Glu Glu Thr Leu Ser Glu Pro Asn Phe Tyr Asp Thr Ile Ser Lys Ile	
	55 60 65	
	cgt tta aga caa caa ctg gaa atg tat tcc att tca aga aag tac gac	415
5	Arg Leu Arg Gln Gln Leu Glu Met Tyr Ser Ile Ser Arg Lys Tyr Asp	
	70 75 80	
	tat cag cag cca caa aac caa gct gac agt gtg caa ctc tca ttg gaa	463
	Tyr Gln Gln Pro Gln Asn Gln Ala Asp Ser Val Gln Leu Ser Leu Glu	
	85 90 95 100	
10	tgaaacc tcagaaaaag agcaacagaa gtaattgttt caagctcctg attctttcta	520
	ctaaatcatg aacagcttta aaaacatttc tgtctgcata aaattatttt acttgtaact	580
	ttteeecaat tgttetgtge attgttttge etttttaaat tacateteea agtggeteaa	640
	aaggeettga cacagggaac etgeacatat ecaggatatg tgtaaccage gatggtgact	700
	tgaccttgcc aagacctgtg attecttcag gatacaatca gtgagaaata aaaacacatc	760
15	ttgggaagtg ggaateetgg agtttatgee atttgeaata ttaaaaaata aaaatgeaag	820
	ttattattte aataat	836
	<210> 26	
	<211> 100	
20	<212> PRT	
	<213> Homo sapiens	
	•	
	<400> 26	
	Met Gly Asp Asp	
25	1	
	Gly Ser Ile Asp Tyr Thr Val His Glu Ala Trp Asn Glu Ala Thr Asn	
	5 10 15 20	
	Val Tyr Leu Ile Val Ile Leu Val Ser Phe Gly Leu Phe Met Tyr Ala	
	25 30 35	
30	Lys Arg Asn Lys Arg Arg Ile Met Arg Ile Phe Ser Val Pro Pro Thr	
	40 45 50	

Glu Glu Thr Leu Ser Glu Pro Asn Phe Tyr Asp Thr Ile Ser Lys Ile

		55	,				60)				65	ı			
	Arg Le	ı Arg	Gln	Gln	Leu	Glu	Met	Туг	Ser	Ile	Ser	Arg	Lys	Тут	Asp	
	70)				75	,				80					
	Tyr Gl	n Gln	Pro	Gln	Asn	Gln	Ala	Asp	Ser	Val	Gln	Leu	Ser	Leu	Glu	
5	85				90					95					100	
												•				
	<210> 2	27														
	<211> 1	L 022														
	<212> [NA			•											
10	<213> F	iomo	sapi	ens												
	<400> 2	27												·		
	agecete	ccg	ccgc	cege	tc go	cagg	tece	g ag	gage	gcag	act	gtgte	cc ·	tgac	a atg	58
															Met	
15															1	
	gga aca	gcc	gac	agt	gat	gag	atg	gcc	ccg	gag	gcc	cca	cag	cac	acc	106
	Gly Thr	Ala	Asp	Ser	Asp	Glu	Met	Ala	Pro	Glu	Ala	Pro	Gln	His	Thr	•
			5					10					15			
	cac ato	gat	gtg	cac	atc	cac	cag	gag	tct	gcc	ctg	gcc	aag	ctc	ctg	154
20	His Ile	: Asp	Val	His	Ile	His	Gln	Glu	Ser	Ala	Leu	Ala	Lys	Leu	Leu	
		20					25					30				
	ctc acc	tgc	tgc	tct	gcg	ctg	cgg	ccc	cgg	gcc	acc	cag	gcc	agg	ggc	202
	Leu Thr	Cys	Cys	Ser	Ala	Leu	Arg	Pro	Arg	Ala	Thr	Gln	Ala	Arg	Gly	
	35	,				40					45					
25	agc agc	cgg	ctg	ctg	gtg	gcc	tcg	tgg	gtg	atg	cag	atc	gtg	ctg	9 99	250
	Ser Ser	Arg	Leu	Leu	Val	Ala	Ser	Trp	Val	Met	Gln	Ile	Val	Leu	Gly	
	50				55					60					65	
	atc ttg	agt	gca	gtc	cta	gga	gga	ttt	ttc	tac	atc	cgc	gac	tac	acc	298
	Ile Leu	Ser	Ala	Val	Leu	Gly	Gly	Phe	Phe	Tyr	Ile	Arg	Asp	Tyr	Thr	
30				70					7 5					80		
	ctc ctc	gtc	acc	tcg	gga	gct	gcc	atc	tgg	aca	9 99	gct	gtg	gct	gtg	346
	Leu Leu	Val	Thr	Ser	Gly	Ala	Ala	Ile	Trp	Thr	Gly	Ala	Val	Ala	Val	

				85					90					95			
	ctg c	gct	gga	gct	gct	gcc	ttc	att	tac	gag	aaa	cgg	ggt	ggt	aca	tac	394
	Leu A	Ala	Gly	Ala	Ala	Ala	Phe	Ile	Tyr	Glu	Lys	Arg	Gly	Gly	Thr	Tyr	
			100			•		105					110				
5	tgg g	jec	ctg	ctg	agg	act	ctg	cta	gcg	ctg	gca	gct	ttc	tcc	aca	gcc	442
	Trp A	Ala	Leu	Leu	Arg	Thr	Leu	Leu	Ala	Leu	Ala	Ala	Phe	Ser	Thr	Ala	
	1	L15					120					125					
	atc c	gct	gcc	ctc	aaa	ctt	tgg	aat	gaa	gat	ttc	cga	tat	ggc	tac	tct	490
	Ile A	Ala	Ala	Leu	Lys	Leu	Trp	Asn	Glu	Asp	Phe	Arg	Tyr	Gly	Tyr	Ser	
10	130					135					140					145	
	tat t	ac	aac	agt	gcc	tgc	cgc	atc	tcc	agc	tcg	agt	gac	tgg	aac	act	538
	Tyr 1	ζyr	Asn	Ser	Ala	Суз	Arg	Ile	Ser	Ser	Ser	Ser	Asp	Trp	Asn	Thr	
					150					155					160		•
	cca g	jec	ccc	act	cag	agt	cca	gaa	gaa	gtc	aga	agg	cta	cac	cta	tgt	586
15	Pro A	lla	Pro	Thr	Gln	Ser	Pro	Glu	Glu	Val	Arg	Arg	Leu	His	Leu	Cys	
				1 6 5					170					175			
	acc t	cc	ttc	atg	gac	atg	ctg	aag	gcc	ttg	ttc	aga	acc	ctt	cag	gee	634
	Thr S	er	Phe	Met	Asp	Met	Leu	ГЛЗ	Ala	Leu	Phe	Arg	Thr	Leu	Gln	Ala	
			180					185					190				
20	atg c	tc	ttg	ggt	gtc	tgg	att	ctg	ctg	ctt	ctg	gca	tct	ctg	gcc	œt	682
	Met I	æu	Leu	Gly	Val	Trp	Ile	Leu	Leu	Leu	Leu	Ala	Ser	Leu	Ala	Pro	
	1	.95					200					205					
	ctg t	:gg	ctg	tac	tgc	tgg	aga	atg	ttc	cca	acc	aaa	ggg	gtg	agt	ccc	730
	Leu T	Tp.	Leu	Tyr	Cys	Trp	Arg	Met	Phe	Pro	Thr	Lys	Gly	Val	Ser	Pro	
25	210					215					220					225	
	taaga	aaa	ga g	acca	gaag	g aa	atgt	tgga:	agt	gagt	gga	atct	agoo	at g	cctc	tectg	790
•	attat	tag	tg c	ctgg	rtgct	t ct	gcac	æggg	r egt	ccct	gca	tctg	actg	ct g	gaag	aagaa	850
	ccaga	ctg	ag g	aaaa	gagg	jc to	ttca	acag	000	cagt	tat	cctg	geec	ca t	gacc	gtggc	910
	cacag	ccc	tg c	tcca	gcag	c ac	ttgc	ccat	tec	ttac	acc	cctt	cccc	at c	ctgc	teege	970
30	ttcat	atc	CC C	toot	aaat	a of	cato	traat	aat	aaac	tet	cato	ttat	ta +	+		1022

<211> 225

	<21	2> P	RT ·														
	<21	3> H	amo	sapi.	ens												
5	<40	0> 2	8														
																Met	
															,	1	
	Glv	ምስዮ	Δla	Agn	Ser	Δen	Glu	Mat	Δla	Dm	Glu.	ב [ב	Dro	Gln	uic		•
	CLJ			5 5		p	O_Lu	1100	10	110	<u> </u>	Mu	110		11125	1111	
10	TT 2 -	T1-	>		***	71.	*** _	a 1-		0		- .	•••	15		_	
10	HIS	TTE		val	HIS	TTE	HIS		GIU	ser	AIa	Leu		Lys	Leu	Leu	
			20					25					30				
	Leu	Thr	Cys	Cys	Ser	Ala	Leu	Arg	Pro	Arg	Ala	Thr	Gln	Ala	Arg	Gly	
		35					40					45					
	Ser	Ser	Arg	Leu	Leu	Val	Ala	Ser	Trp	Val	Met	Gln	Ile	Val	Leu	αlγ	
15	50	•				55					60					65	
	Ile	Leu	Ser	Ala	Val	Leu	Gly	Gly	Phe	Phe	Tyr	Ile	Arg	Asp	Tyr	Thr	
					70					75					80		
	Leu	Leu	Val	Thr	Ser	Gly	Ala	Ala	Ile	Trp	Thr	Gly	Ala	Val	Ala	Val	
				85		_			90	_				95			
20	Leu	Ala	Glv	Ala	Ala	Ala	Phe	Ile	Tvr	Glu	Lvs	Ara	Glv	Gly	Thr	ሞህጉ	
			100					105	-1-		-1-	5	110	1		-7	
	m	λla		Ton	7 ~~	Mb*	Ton		210	Tan	3 35	81 0		Ser	m	310	
	пр		TIEU	TIEU	ALG	1111		Lieu	ма	Deu	MIG		Pile	SeT	THE	ALA	
		115		_	_	_	120	_				125	_				
		AJA	Ala	Leu	Lys		Trp	Asn	Glu	Asp		Arg	Tyr	Gly	Tyr	Ser	
25	130					135					140					145	
	Tyr	Tyr	Asn	Ser	Ala	Cys	Arg	Ile	Ser	Ser	Ser	Ser	Asp	Trp	Asn	Thr	
					150					155					160		
	Pro	Ala	Pro	Thr	Gln	Ser	Pro	Glu	Glu	Val	Arg	Arg	Leu	His	Leu	Cys	
				165					170					175			
30	Thr	Ser	Phe	Met	Asp	Met	Leu	Lys	Ala	Leu	Phe	Arg	Thr	Leu	Gln	Ala	
			180					185					190				
	Met	Leu	Leu	Gly	Val	Trp	Ile	Leu	Leu	Leu	Leu	Ala	Ser	Leu	Ala	Pro	

	195									205					
Leu	Trp	Leu	Tyr	Cys	Trp	Arg	Met	Phe	Pro	Thr	Lys	Gly	Val	Ser	Pro
210					215					220					225