APPROXIMATIONS TO THE LOOP SPACE OF FLAG MANIFOLDS

Simon Stoltze

Institut for Matematik Aarhus University

16. January, 2017

$$Y_{m,n}(\sigma)$$

Definition

For a permutation $\sigma \in \mathcal{S}_m \subset \mathrm{GL}_m(\mathbb{C})$, we define an open subset of \mathbb{C}^{mn} :

$$Y_{m,n}(\sigma) = \left\{ (a_1, \dots, a_n) \in (\mathbb{C}^m)^n \,\middle|\, \begin{array}{l} \text{Any m subsequent vectors in} \\ (e_1, \dots, e_m, a_1, \dots, a_n, \sigma_1, \dots, \sigma_m) \\ \text{are linearly independent.} \end{array} \right\}.$$

Example

The space $Y_{m,1} = Y_{m,1}(Id)$ is homeomorphic to $(\mathbb{C}^*)^m$, since

satisfies the condition iff $\lambda_i \neq 0$ for all i.

Example

The space $Y_{2,2}$ is

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \;\middle|\; a \neq 0, d \neq 0, ad - bc \neq 0 \right\},$$

which is homeomorphic to the space

$$(\mathbb{C}^*)^2 imes \left\{ (b,c) \in \mathbb{C}^2 \mid bc \neq 1 \right\}$$

Example

The space $Y_{2,2}$ is

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a \neq 0, d \neq 0, ad - bc \neq 0 \right\},\,$$

which is homeomorphic to the space

$$(\mathbb{C}^*)^2 imes \left\{ (b,c) \in \mathbb{C}^2 \mid bc \neq 1 \right\}.$$

The torus T^n acts on the columns of $Y_{m,n}(\sigma)$,

$$(\lambda_1,\ldots,\lambda_n)\cdot(a_1,\ldots,a_n)=(\lambda_1a_1,\ldots,\lambda_na_n).$$

Definition

The space $X_{m,n}(\sigma)$ is the quotient of this action

$$X_{m,n}(\sigma) = Y_{m,n}(\sigma)/T^n$$

The torus T^n acts on the columns of $Y_{m,n}(\sigma)$,

$$(\lambda_1,\ldots,\lambda_n)\cdot(a_1,\ldots,a_n)=(\lambda_1a_1,\ldots,\lambda_na_n).$$

Definition

The space $X_{m,n}(\sigma)$ is the quotient of this action,

$$X_{m,n}(\sigma) = Y_{m,n}(\sigma)/T^n$$
.

Identities

We have the following identities:

$$X_{m,n}(\sigma) \cong \left\{ A \in Y_{m,n}(\sigma) \middle| \begin{array}{c} \text{The last } n \text{ determinants of} \\ (e_1, \dots, e_m, a_1, \dots, a_{n-1}, a_n, \sigma_1, \dots, \sigma_m) \\ \text{are all equal to } 1. \end{array} \right\},$$

ulatala atropa una a a

$$\pi_1(Y_{m,n}) \cong \pi_1(X_{m,n}) \times \mathbb{Z}^n$$

Identities

We have the following identities:

$$X_{m,n}(\sigma) \cong \left\{ A \in Y_{m,n}(\sigma) \middle| egin{array}{c} \text{The last n determinants of} \\ (e_1,\ldots,e_m,a_1,\ldots,a_{n-1},a_n,\sigma_1,\ldots,\sigma_m) \\ \text{are all equal to 1.} \end{array} \right\},$$

which gives us e.g.

$$\pi_1(Y_{m,n}) \cong \pi_1(X_{m,n}) \times \mathbb{Z}^n.$$

Example

The space $X_{m,1}$ is homeomorphic to $(\mathbb{C}^*)^{m-1}$, since

satisfies the condition iff $\lambda_i \neq 0$ for all i.

Example

The space $X_{2,2}$ is

$$\left\{ \begin{pmatrix} 1 & b \\ c & 1 \end{pmatrix} \;\middle|\; bc \neq 1 \right\}.$$

The limit

We are interested in what happens when n becomes large.

Definition

The limit space is

$$X_{m,\infty}(\sigma) = \left\{ (a_i) \in (\mathbb{C}^m)^{\mathbb{Z}} \middle| \begin{array}{l} \exists n : (a_1,\ldots,a_n) \in X_{m,n}(\sigma), \\ a_{n+1} = \sigma_1, a_{n+2} = \sigma_2,\ldots, \\ a_0 = e_m, a_{-1} = e_{m-1},\ldots \end{array} \right\}$$
$$= \lim_{n \to \infty} \left(\ldots \longrightarrow X_{m,n} \xrightarrow{s} X_{m,n+1} \longrightarrow \ldots \right)$$

The limit

We are interested in what happens when n becomes large.

Definition

The limit space is

$$X_{m,\infty}(\sigma) = \left\{ (a_i) \in (\mathbb{C}^m)^{\mathbb{Z}} \middle| \begin{array}{l} \exists n : (a_1, \dots, a_n) \in X_{m,n}(\sigma), \\ a_{n+1} = \sigma_1, a_{n+2} = \sigma_2, \dots, \\ a_0 = e_m, a_{-1} = e_{m-1}, \dots \end{array} \right\}$$
$$= \underbrace{\lim_{n \to \infty} \left(\dots \longrightarrow X_{m,n} \xrightarrow{s} X_{m,n+1} \longrightarrow \dots \right)}_{n}$$

Equivalence

Theorem

The limit space $X_{m,\infty}$ is homotopy equivalent to the loop space $\Omega = \Omega(\mathrm{SU}_m/\mathrm{T}^{m-1})$.

Defining the map

For $a_1, \ldots, a_{mn} \in Y_{m,mn}$:

$$a_1 = c_1 e_1 + c_2 e_2 + \dots + c_m e_m.$$

$$\frac{1}{c_1} a_1 = e_1 + \frac{c_2}{c_1} e_2 + \dots + \frac{c_m}{c_1} e_m.$$

Get a path in $\mathrm{GL}_m(\mathbb{C})$ by

$$t \mapsto \left(e_1 + t \cdot \left(\sum_{i=2}^m rac{c_i}{c_1} e_i
ight), e_2, \ldots, e_m
ight)$$

from Id to $\left(\frac{1}{c_1}a_1, e_2, \ldots, e_m\right)$.

Defining the map

For $a_1, \ldots, a_{mn} \in Y_{m,mn}$:

$$a_1 = c_1 e_1 + c_2 e_2 + \dots + c_m e_m.$$

$$\frac{1}{c_1} a_1 = e_1 + \frac{c_2}{c_1} e_2 + \dots + \frac{c_m}{c_1} e_m.$$

Get a path in $\mathrm{GL}_m(\mathbb{C})$ by

$$t \mapsto \left(e_1 + t \cdot \left(\sum_{i=2}^m \frac{c_i}{c_1} e_i\right), e_2, \dots, e_m\right)$$

from Id to $\left(\frac{1}{c_1}a_1, e_2, \dots, e_m\right)$.

Defining the map

For $a_1, \ldots, a_{mn} \in Y_{m,mn}$:

$$a_1 = c_1 e_1 + c_2 e_2 + \dots + c_m e_m.$$

$$\frac{1}{c_1} a_1 = e_1 + \frac{c_2}{c_1} e_2 + \dots + \frac{c_m}{c_1} e_m.$$

Get a path in $\mathrm{GL}_m(\mathbb{C})$ by

$$t \mapsto \left(e_1 + t \cdot \left(\sum_{i=2}^m \frac{c_i}{c_1} e_i\right), e_2, \dots, e_m\right)$$

from Id to $\left(\frac{1}{c_1}a_1, e_2, \dots, e_m\right)$.

Repeat for the other columns,

$$\frac{1}{d_2}a_2 = e_2 + \frac{d_1}{d_2}a_1 + \frac{d_3}{d_2}e_3 + \dots + \frac{d_m}{d_2}e_m.$$

$$t\mapsto \left(\frac{1}{c_1}a_1,e_2+t\cdot\left(\frac{d_1}{d_2}a_1+\sum_{i=3}^m\frac{d_i}{d_2}e_i\right),e_3,\ldots,e_m\right)$$

Piecing all of these paths together gives a path from Id to $\operatorname{diag}(\lambda_1, \ldots, \lambda_m)$. If we quotient out, this defines a map

$$f: X_{m,\infty} \to \Omega$$
.

Repeat for the other columns,

$$\frac{1}{d_2}a_2 = e_2 + \frac{d_1}{d_2}a_1 + \frac{d_3}{d_2}e_3 + \dots + \frac{d_m}{d_2}e_m.$$

$$t\mapsto\left(\frac{1}{c_1}a_1,e_2+t\cdot\left(\frac{d_1}{d_2}a_1+\sum_{i=3}^m\frac{d_i}{d_2}e_i\right),e_3,\ldots,e_m\right).$$

Piecing all of these paths together gives a path from Id to $\operatorname{diag}(\lambda_1, \ldots, \lambda_m)$. If we quotient out, this defines a map

$$f: X_{m,\infty} \to \Omega$$
.

Repeat for the other columns,

$$\frac{1}{d_2}a_2 = e_2 + \frac{d_1}{d_2}a_1 + \frac{d_3}{d_2}e_3 + \dots + \frac{d_m}{d_2}e_m.$$

$$t\mapsto\left(\frac{1}{c_1}a_1,e_2+t\cdot\left(\frac{d_1}{d_2}a_1+\sum_{i=3}^m\frac{d_i}{d_2}e_i\right),e_3,\ldots,e_m\right).$$

Piecing all of these paths together gives a path from Id to $\operatorname{diag}(\lambda_1,\ldots,\lambda_m)$. If we quotient out, this defines a map

$$f: X_{m,\infty} \to \Omega$$
.

Repeat for the other columns,

$$\frac{1}{d_2}a_2 = e_2 + \frac{d_1}{d_2}a_1 + \frac{d_3}{d_2}e_3 + \dots + \frac{d_m}{d_2}e_m.$$

$$t\mapsto\left(\frac{1}{c_1}a_1,e_2+t\cdot\left(\frac{d_1}{d_2}a_1+\sum_{i=3}^m\frac{d_i}{d_2}e_i\right),e_3,\ldots,e_m\right).$$

Piecing all of these paths together gives a path from Id to $\operatorname{diag}(\lambda_1,\ldots,\lambda_m)$. If we quotient out, this defines a map

$$f: X_{m,\infty} \to \Omega$$
.

Loop space

Since SU_m/T^{m-1} is compact, we can find $\varepsilon > 0$ such that:

- $B_{\varepsilon}(A)$ is geodesically convex for any $A \in SU_m/T^{m-1}$.
- If A and B are both in $B_{\varepsilon}(U)$, then any m subsequent columns in $(a_1, \ldots, a_m, b_1, \ldots, b_m)$ are linearly independent.

With this, we can require loops to be piecewise in some $B_{arepsilon}$, giving

$$\Omega = \bigcup_{k} \Omega_{k}$$

Loop space

Since SU_m/T^{m-1} is compact, we can find $\varepsilon > 0$ such that:

- $B_{\varepsilon}(A)$ is geodesically convex for any $A \in SU_m/T^{m-1}$.
- If A and B are both in $B_{\varepsilon}(U)$, then any m subsequent columns in $(a_1, \ldots, a_m, b_1, \ldots, b_m)$ are linearly independent.

With this, we can require loops to be piecewise in some B_{ε} , giving

$$\Omega = \bigcup_{k} \Omega_{k}.$$

Now we can map

$$\Omega_k \to X_{m,(2^k-1)m}$$

$$\gamma \mapsto \left(\gamma\left(\frac{1}{2^k}\right), \gamma\left(\frac{2}{2^k}\right), \dots, \gamma\left(\frac{2^k-1}{2^k}\right)\right)$$

These maps are the "inverses" of the map f, and we can now prove injectivity and surjectivity on cell complexes directly.

Now we can map

$$\Omega_k \to X_{m,(2^k-1)m}$$

$$\gamma \mapsto \left(\gamma\left(\frac{1}{2^k}\right), \gamma\left(\frac{2}{2^k}\right), \dots, \gamma\left(\frac{2^k-1}{2^k}\right)\right)$$

These maps are the "inverses" of the map f, and we can now prove injectivity and surjectivity on cell complexes directly.

Corollary

The homology of $X_{m,\infty}$ is

$$T(x_1,\ldots,x_{m-1})\otimes \mathbb{Z}[y_1,\ldots,y_{m-1}]/I$$

where the degree of x_i is one, the degree of y_i is 2i and with relations $x_k^2 = x_p x_a + x_q x_p = 2y_1$, $p \neq q$. See [GT10, Thm 4.1].

Filtration

From now on we only consider m = 3. We want to do calculations:

Definition

Let $F_p \subset X_{3,n}(\sigma)$, $p \in \{0,1,2\}$, be the set

$$F_p = \{(a_1, \dots, a_n) \in X_{3,n}(\sigma) \mid a_n \text{ has at most } p \text{ zeroes.}\}$$
.

Then $F_0 \subset F_1 \subset F_2 = X_{3,n}(\sigma)$ is an increasing sequence of open subspaces, which gives us a spectral sequence converging to the cohomology of $X_{3,n}(\sigma)$ with terms

$$E_1^{p,q} = H^{p+q}(F_p, F_{p-1}).$$

Filtration

From now on we only consider m = 3. We want to do calculations:

Definition

Let $F_p \subset X_{3,n}(\sigma)$, $p \in \{0,1,2\}$, be the set

$$F_p = \{(a_1, \ldots, a_n) \in X_{3,n}(\sigma) \mid a_n \text{ has at most } p \text{ zeroes.}\}$$
.

Then $F_0 \subset F_1 \subset F_2 = X_{3,n}(\sigma)$ is an increasing sequence of open subspaces, which gives us a spectral sequence converging to the cohomology of $X_{3,n}(\sigma)$ with terms

$$E_1^{p,q} = H^{p+q}(F_p, F_{p-1}).$$

Theorem

For any permutation σ , there are permutations $\sigma_\emptyset, \sigma_{\{1\}}, \sigma_{\{2\}}, \sigma_{\{1,2\}}$ such that

$$H^*(F_0) \cong H^*(X_{3,n-1}(\sigma_{\emptyset}) \times T^2)$$

 $H^*(F_1, F_0) \cong H^*((X_{3,n-1}(\sigma_{\{1\}}) \sqcup X_{3,n-1}(\sigma_{\{2\}})) \times T \times (D, D-0))$
 $H^*(F_2, F_1) \cong H^*(X_{3,n-1}(\sigma_{\{1,2\}}) \times (D_2, D_2-0))$

Theorem

For any permutation σ , there are permutations $\sigma_\emptyset, \sigma_{\{1\}}, \sigma_{\{2\}}, \sigma_{\{1,2\}}$ such that

$$H^*(F_0) \cong H^*(X_{3,n-1}(\sigma_{\emptyset}) \times T^2)$$

 $H^*(F_1, F_0) \cong H^*((X_{3,n-1}(\sigma_{\{1\}}) \sqcup X_{3,n-1}(\sigma_{\{2\}})) \times T \times (D, D-0))$
 $H^*(F_2, F_1) \cong H^*(X_{3,n-1}(\sigma_{\{1,2\}}) \times (D_2, D_2-0))$

σ	σ_{\emptyset}	$\sigma_{\{1\}}$	$\sigma_{\{2\}}$	$\sigma_{\{1,2\}}$
Id	ld	(12)	(23)	(1 3 2)
(12)	ld	(123)	ld	(13)
(23)	ld	$(1\ 2)$	ld	(12)
(123)	ld	ld	ld	ld
(1 3 2)	(23)	(123)	$(2\ 3)$	(1 2 3)
(13)	(23)	$(2\ 3)$	$(2\ 3)$	(2 3)

Permutations

Definition

Define a function λ on S_3 by

$$\lambda(\sigma) = egin{cases} 1 & \sigma = \mathsf{Id}, \ 2 & \sigma \in \{(1\,2), (2\,3), (1\,2\,3)\}\,, \ 3 & \sigma \in \{(1\,3\,2), (1\,3)\}\,. \end{cases}$$

Stabilisation

Definition

The inclusion that considers an element (a_1, \ldots, a_n) in $X_{3,n}(\sigma)$ as an element in $X_{3,\infty}(\sigma)$ will be denoted

$$L_n: X_{3,n}(\sigma) \to X_{3,\infty}(\sigma).$$

Cohomological stability

Theorem

If $n \geq k + \lambda(\sigma)$, the map

$$L_n^*: H^k(X_{3,\infty}(\sigma)) \to H^k(X_{3,n}(\sigma))$$

is an isomorphism.

The proof is by induction. The induction hypothesis is:

Hypothesis (I_{k-1})

For all $r \leq k-1$ and all $\sigma \in S_3$, the following two statements hold:

- The map $L_n^*: H^r(X_{3,\infty}(\sigma)) \to H^r(X_{3,n}(\sigma))$ is an isomorphism for $n \ge r + \lambda(\sigma)$.
- The map $L_n^*: H^r(X_{3,\infty}(\sigma)) \to H^r(X_{3,n}(\sigma))$ is injective for $n \ge r + \lambda(\sigma) 1$.

First we show the theorem for the map

$$s^*: H^k(X_{3,n+1}(\sigma)) \to H^k(X_{3,n}(\sigma_{\emptyset})).$$

Since $(Id)_{\emptyset} = Id$, this allows us to work out the identity case explicitly.

First we show the theorem for the map

$$s^*: H^k(X_{3,n+1}(\sigma)) \to H^k(X_{3,n}(\sigma_\emptyset)).$$

Since $(Id)_{\emptyset} = Id$, this allows us to work out the identity case explicitly.

Proof

For $\sigma \neq Id$, consider the diagram

$$H^{k}(X_{3,\infty}(\sigma)) \xrightarrow{s^{*}} H^{k}(X_{3,\infty}(\sigma_{\emptyset}))$$

$$\downarrow^{L_{n}^{*}} \qquad \downarrow^{L_{n-1}^{*}}$$

$$H^{k}(X_{3,n}(\sigma)) \xrightarrow{s^{*}} H^{k}(X_{3,n-1}(\sigma_{\emptyset})).$$

Use that we already know the theorem for σ_{\emptyset} .

Example

$$\bigoplus_{r=0}^{k} H^{r}(X_{n,3}) \otimes H^{k-r}(\mathbf{T}^{3}) \cong H^{k}(Y_{n,3})$$

$$\cong H^{k}(Y_{3,n})$$

$$\cong \bigoplus_{r=0}^{k} H^{r}(X_{3,n}) \otimes H^{k-r}(\mathbf{T}^{n})$$

$$\cong \bigoplus_{r=0}^{k} H^{r}(X_{3,\infty}) \otimes H^{k-r}(\mathbf{T}^{n})$$

Example

$$\bigoplus_{r=0}^{k} H^{r}(X_{n,3}) \otimes H^{k-r}(\mathbf{T}^{3}) \cong H^{k}(Y_{n,3})$$

$$\cong H^{k}(Y_{3,n})$$

$$\cong \bigoplus_{r=0}^{k} H^{r}(X_{3,n}) \otimes H^{k-r}(\mathbf{T}^{n})$$

$$\cong \bigoplus_{k}^{k} H^{r}(X_{3,\infty}) \otimes H^{k-r}(\mathbf{T}^{n})$$

Example

$$\bigoplus_{r=0}^{k} H^{r}(X_{n,3}) \otimes H^{k-r}(\mathbf{T}^{3}) \cong H^{k}(Y_{n,3})$$

$$\cong H^{k}(Y_{3,n})$$

$$\cong \bigoplus_{r=0}^{k} H^{r}(X_{3,n}) \otimes H^{k-r}(\mathbf{T}^{n})$$

$$\cong \bigoplus_{r=0}^{k} H^{r}(X_{3,\infty}) \otimes H^{k-r}(\mathbf{T}^{n})$$

Example

$$\begin{split} \bigoplus_{r=0}^k H^r(X_{n,3}) \otimes H^{k-r}(\mathbf{T}^3) &\cong H^k(Y_{n,3}) \\ &\cong H^k(Y_{3,n}) \\ &\cong \bigoplus_{r=0}^k H^r(X_{3,n}) \otimes H^{k-r}(\mathbf{T}^n) \\ &\cong \bigoplus_{r=0}^k H^r(X_{3,\infty}) \otimes H^{k-r}(\mathbf{T}^n) \end{split}$$

Example (k = 1)

$$H^1(X_{n,3}) \oplus H^1(\mathbf{T}^3) \cong H^1(X_{3,\infty}) \oplus H^1(\mathbf{T}^n)$$

 $\implies H^1(X_{n,3}) \cong \mathbb{Z}^{n-1}.$

Example (k=2)

$$H^{2}(X_{n,3}) \oplus \mathbb{Z}^{3(n-1)} \oplus \mathbb{Z}^{3} \cong \mathbb{Z}^{2} \oplus \mathbb{Z}^{2n} \oplus \mathbb{Z}^{\binom{n}{2}}$$
$$\implies \operatorname{rank}_{\mathbb{Z}}H^{2}(X_{n,3}) = 1 + \binom{n-1}{2}$$

Example (k = 1)

$$H^1(X_{n,3}) \oplus H^1(\mathbf{T}^3) \cong H^1(X_{3,\infty}) \oplus H^1(\mathbf{T}^n)$$

 $\implies H^1(X_{n,3}) \cong \mathbb{Z}^{n-1}.$

Example (k = 2)

$$H^2(X_{n,3}) \oplus \mathbb{Z}^{3(n-1)} \oplus \mathbb{Z}^3 \cong \mathbb{Z}^2 \oplus \mathbb{Z}^{2n} \oplus \mathbb{Z}^{\binom{n}{2}}$$

$$\implies \operatorname{rank}_{\mathbb{Z}} H^2(X_{n,3}) = 1 + \binom{n-1}{2}$$

$$E_{\mathbf{1}}^{p,q} = H^{p+q}(F_{p}, F_{p-1}) \cong \bigoplus_{\{v_{1}, \dots, v_{p}\}} H^{p+q} \left(Y_{\{v_{1}, \dots, v_{p}\}} \times (D_{p}, D_{p} - 0) \right)$$

$$d_1: H^{p+q}(F_p, F_{p-1}) = E_1^{p,q} \to E_1^{p+1,q} = H^{p+q+1}(F_{p+1}, F_p)$$

$$E_1^{p,q} = H^{p+q}(F_p, F_{p-1}) \cong \bigoplus_{\{v_1, \dots, v_p\}} H^{p+q} \left(Y_{\{v_1, \dots, v_p\}} \times (D_p, D_p - 0) \right)$$

$$d_1: H^{p+q}(F_p, F_{p-1}) = E_1^{p,q} \to E_1^{p+1,q} = H^{p+q+1}(F_{p+1}, F_p)$$

$$E_1^{p,q} = H^{p+q}(F_p, F_{p-1}) \cong \bigoplus_{\{v_1, \dots, v_p\}} H^{p+q} \left(Y_{\{v_1, \dots, v_p\}} \times (D_p, D_p - 0) \right)$$

$$d_1: H^{p+q}(F_p, F_{p-1}) = E_1^{p,q} \to E_1^{p+1,q} = H^{p+q+1}(F_{p+1}, F_p)$$

9
$$H^{9}(F_{0}) \longrightarrow H^{10}(F_{1}, F_{0}) \longrightarrow H^{11}(F_{2}, F_{1})$$
8
$$H^{8}(F_{0}) \longrightarrow H^{9}(F_{1}, F_{0}) \longrightarrow H^{10}(F_{2}, F_{1})$$
7
$$H^{7}(F_{0}) \longrightarrow H^{8}(F_{1}, F_{0}) \longrightarrow H^{9}(F_{2}, F_{1})$$
6
$$H^{6}(F_{0}) \longrightarrow H^{7}(F_{1}, F_{0}) \longrightarrow H^{8}(F_{2}, F_{1})$$
5
$$H^{5}(F_{0}) \longrightarrow H^{6}(F_{1}, F_{0}) \longrightarrow H^{7}(F_{2}, F_{1})$$
4
$$H^{4}(F_{0}) \longrightarrow H^{5}(F_{1}, F_{0}) \longrightarrow H^{6}(F_{2}, F_{1})$$
3
$$H^{3}(F_{0}) \longrightarrow H^{4}(F_{1}, F_{0}) \longrightarrow H^{5}(F_{2}, F_{1})$$
2
$$H^{2}(F_{0}) \longrightarrow H^{3}(F_{1}, F_{0}) \longrightarrow H^{4}(F_{2}, F_{1})$$
1
$$H^{1}(F_{0}) \longrightarrow H^{2}(F_{1}, F_{0}) \longrightarrow H^{2}(F_{2}, F_{1})$$
0
$$H^{0}(F_{0}) \longrightarrow H^{1}(F_{1}, F_{0}) \longrightarrow H^{2}(F_{2}, F_{1})$$
q
$$H^{0}(F_{0}) \longrightarrow H^{1}(F_{1}, F_{0}) \longrightarrow H^{2}(F_{2}, F_{1})$$

E_1

9	\mathbb{Z}	0	0
8	\mathbb{Z}^7	\mathbb{Z}^2	0
7	\mathbb{Z}^{22}	\mathbb{Z}^{12}	\mathbb{Z}
6	\mathbb{Z}^{42}	\mathbb{Z}^{32}	\mathbb{Z}^4
5	\mathbb{Z}^{56}	\mathbb{Z}^{50}	\mathbb{Z}^7
4	\mathbb{Z}^{56}	\mathbb{Z}^{50}	\mathbb{Z}^7
3	\mathbb{Z}^{42}	\mathbb{Z}^{32}	\mathbb{Z}^4
2	\mathbb{Z}^{22}	\mathbb{Z}^{12}	\mathbb{Z}
1	\mathbb{Z}^7	\mathbb{Z}^2	0
0	\mathbb{Z}	0	0
q_p	0	1	2

$$E_1^{p,q} = H^{p+q}(F_p, F_{p-1})$$
 $d_1: E_1^{p,q} \to E_1^{p+1,q}$

E_2

9	\mathbb{Z}	0	0
8	\mathbb{Z}^5	0	0
7	\mathbb{Z}^{11}	0	0
6	\mathbb{Z}^{15}	\mathbb{Z}	0
5	\mathbb{Z}^{16}	\mathbb{Z}^3	0
4	\mathbb{Z}^{16}	\mathbb{Z}^3	0
3	\mathbb{Z}^{15}	\mathbb{Z}	0
2	\mathbb{Z}^{11}	0	0
1	\mathbb{Z}^5	0	0
0	\mathbb{Z}	0	0
q_p	0	1	2

$$E_2^{p,q} = \ker d_1 / \operatorname{im} d_1$$

 $d_2 : E_2^{p,q} \to E_2^{p+2,q-1}$

$$E_2 = E_{\infty}$$

9	\mathbb{Z}	0	0
8	\mathbb{Z}^5	0	0
7	\mathbb{Z}^{11}	0	0
6	\mathbb{Z}^{15}	\mathbb{Z}	0
5	\mathbb{Z}^{16}	\mathbb{Z}^3	0
4	\mathbb{Z}^{16}	\mathbb{Z}^3	0
3	\mathbb{Z}^{15}	\mathbb{Z}	0
2	\mathbb{Z}^{11}	0	0
1	\mathbb{Z}^5	0	0
0	\mathbb{Z}	0	0
q_p	0	1	2

$$E_r^{p,q} = \ker d_{r-1} / \operatorname{im} d_{r-1}$$
 $d_r : E_r^{p,q} \to E_2^{p+r,q-r+1}$

$$H^*(X_{3,3})$$

$$H^{q}(X_{3,3}) = egin{cases} \mathbb{Z} & q = 6 \ \mathbb{Z}^{2} & q = 5 \ \mathbb{Z}^{3} & q = 4 \ \mathbb{Z}^{2} & q = 3 \ \mathbb{Z}^{2} & q = 2 \ \mathbb{Z}^{2} & q = 1 \ \mathbb{Z} & q = 0 \ 0 & ext{otherwise} \end{cases}$$

$$H^{q}(X_{3,3}) = \begin{cases} \mathbb{Z} & q = 6 \\ \mathbb{Z}^{2} & q = 5 \\ \mathbb{Z}^{3} & q = 4 \\ \mathbb{Z}^{2} & q = 3 \\ \mathbb{Z}^{2} & q = 2 \\ \mathbb{Z}^{2} & q = 1 \\ \mathbb{Z} & q = 0 \\ 0 & \text{otherwise} \end{cases} \qquad H^{q}(Y_{3,3}) = \begin{cases} \mathbb{Z} & q = 9 \\ \mathbb{Z}^{5} & q = 8 \\ \mathbb{Z}^{12} & q = 7 \\ \mathbb{Z}^{18} & q = 6 \\ \mathbb{Z}^{19} & q = 5 \\ \mathbb{Z}^{17} & q = 4 \\ \mathbb{Z}^{15} & q = 3 \\ \mathbb{Z}^{11} & q = 2 \\ \mathbb{Z}^{5} & q = 1 \\ \mathbb{Z} & q = 0 \\ 0 & \text{otherwise} \end{cases}$$

Compare

$$H^{q}(X_{3,3}) = \begin{cases} \mathbb{Z} & q = 6 \\ \mathbb{Z}^{2} & q = 5 \\ \mathbb{Z}^{3} & q = 4 \\ \mathbb{Z}^{2} & q = 3 \\ \mathbb{Z}^{2} & q = 2 \\ \mathbb{Z}^{2} & q = 1 \\ \mathbb{Z} & q = 0 \end{cases} \qquad H^{q}(\Omega(SU_{3}/T^{2})) = \begin{cases} \vdots & q > 5 \\ \mathbb{Z}^{4} & q = 5 \\ \mathbb{Z}^{3} & q = 4 \\ \mathbb{Z}^{2} & q = 3 \\ \mathbb{Z}^{2} & q = 2 \\ \mathbb{Z}^{2} & q = 1 \\ \mathbb{Z} & q = 0 \end{cases}$$