We will begin by building theorems from the ground up from basic rules

Theorem 0.1. Convergence: For $A_n \to L$ means: For all $\epsilon > 0$, there exists N such that for all $n \ge N$, $|a_n - L| < \epsilon$.

Theorem 0.2. Triangle inequality

Triangle inequality :
$$|a+b| \le |a| + |b|$$

Reverse triangle : $||a|-|b|| \le |a-b|$
Product bound : $|ab|=|a||b|$

We will now prove our first theorem

Theorem 0.3. (Uniqueness of Limits) If $a_n \to L$ and $a_n \to M$ then L = M.

Proof. Let $\epsilon > 0$ be arbitrary. Since $a_n \to L$ there exists an N_1 such that for all $n \ge N : |a_n - L| < \frac{\epsilon}{2}$.

Likewise since $a_n \to M$, there exists N_2 such that for all $n \ge N_2$: $|a_n - M| < \frac{\epsilon}{2}$. Let $N = \max\{N_1, N_2\}$. For $n \ge N$:

$$|L - M| = |L - a_n + a_n - M| \le |a_n - L| + |a_n + M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Since this holds for arbitrary $\epsilon > 0$, we must have |L - M| = 0, so L = M.