Flujo de aire

Punto de operación: 25-50

Grupo 03

Katherine Vargas Castro B88198 Jorge Adán Mora Soto B95222 Daniel Chacón Mora B72018

Planteamiento

- Punto de operación: 25-50
- Robustez antes que desempeño
- Servocontrol

Polinizador eléctrico

Método de identificación 123c Alfaro POMTM:

Parámetros:

$$P(s) = \frac{Ke^{-Ls}}{Ts+1}$$

$$K = \frac{\Delta y}{\Delta u} = \frac{22.5397}{25} = 0.9016$$

$$\tau = T = 0.9102(t_{25\%} - t_{75\%}) = 1.27539784s$$

$$t_m = L = 1.2620t_{25\%} - 0.2620t_{75\%} = 0.1090s$$

Ecuación del modelo:

$$P(s) = \frac{0.9016e^{-0.1090}}{1.2784s + 1}$$

Método de identificación 123c Alfaro POMTM:

Criterio de error integral absoluto (IAE):

8.4220

Método de identificación de dos puntos: Ho et Al.

$$P_{Ho} = \frac{0.9016e^{-0.1004s}}{1.314s + 1}$$

Sus parámetros son:

$$\tau = at_1 + bt_2$$
$$t_m = ct_1 + dt_2$$

Coeficientes del modelo:

$$b = 0.67$$

$$c = 1.30$$

$$d = -0.29$$

Método de identificación de dos puntos: Ho et Al.

Criterio de error integral absoluto (IAE):

8.6932

System Identification Toolbox de Matlab

Su función de transferencia:

$$P(s) = \frac{0.9058e^{-0.11419s}}{1 + 1.2637s}$$

La estimación máxima obtenida fue de 96.58 %.

$$IAE = 8.04$$

Comparación de los modelos de Identificación

Comparación de los modelos usando el IAE

Modelo	IAE
SI Toolbox	8.049
Método de Ho	8.6932
123c Alfaro POMTM	8.4220

Método de sintonización uSORT1

Table 3. Servo-Control PI Tuning

	Contro	lled proce	ess time o	constants	ratio a
	0.0	0.25	0.50	0.75	1.0
	Tar	rget robus	stness M_s^t	$\frac{1}{5} = 1.8$	
a_0	0.243	0.094	0.013	-0.075	-0.164
a_1	0.509	0.606	0.703	0.837	0.986
a_2	-1.063	-0.706	-0.621	-0.569	-0.531
	Tai	rget robus	stness M_{ξ}^{t}	$\frac{1}{5} = 1.6$	1 - 1 - 1 - 1 - 1
a_0	0.209	0.057	-0.010	-0.130	-0.220
a_1	0.417	0.528	0.607	0.765	0.903
a_2	-1.064	-0.667	-0.584	-0.506	-0.468
	Tar	rget robus	stness M_s^t	s = 1.4	
a_0	0.164	0.019	-0.061	-0.161	-0.253
a_1	0.305	0.420	0.509	0.636	0.762
a_2	-1.066	-0.617	-0.511	-0.439	-0.397
b_0	14.650	0.107	0.309	0.594	0.625
b_1	8.450	1.164	1.362	1.532	1.778
b_2	0.0	0.377	0.359	0.371	0.355
b_3	15.740	0.066	0.146	0.237	0.209

$$\tau = \frac{L}{T} = 0.0904$$

$$Kp = \frac{a0 + a1(\tau)^{a2}}{K} = 4.5481$$

$$Ti = \left(\frac{b0 + b1\tau + b2(\tau)^2}{b3 + \tau}\right)T = 4.5481$$

$$C = \frac{4.5481(1.2304s + 1)}{1.2304s}$$

$$0.1 \le \tau_o \le 2.0$$

Método de sintonización uSORT1

Método de sintonización uSORT1 PI

Características	Simulación
$t_{a2\%}(s)$	0.7200
$M_{p\%}(\%)$	0
$e_{p\%}(\%)$	0

Resultado obtenido utilizando uSORT en el laboratorio

Parámetros del controlador:

Características	Simulación	Experimental
$t_{a2\%}(s)$	0.7200	5.1687
$M_{p\%}(\%)$	0	0
$e_{p\%}(\%)$	0	0
IAE	8.0603	41.5532
TV_{ur}	NA	47.9099

Cuadro IV

Reglas de diseño Chien et al.

Controlador PI Chein:

$$G_c(s) = K_c \left(1 + \frac{1}{T_i s}\right)$$

Sus parámetros son:

$$K_c = \frac{0.35T}{KL} = 4.2761$$

$$T_i = 1.17T = 1.4785$$

Reglas de diseño Chien et al.

Reglas de diseño Chien et al.

Resultado obtenido utilizando las reglas Chien en el laboratorio

Parámetros del controlador:

Características	Simulación	Experimental
$t_{a2\%}(s)$	4.1	7.5841
$M_{p\%}(\%)$	0	0
$e_{p\%}(\%)$	0	0
IAE	9.8745	52.6684
TV_{ur}	NA	46.4257

Cuadro V

Murril - Criterio de dos restricciones:

$$K_c = \frac{0.928}{K_m} \left(\frac{T_m}{\tau_m}\right)^{0.946} = 0.1054$$

$$T_i = \frac{T_m}{1.078} \left(\frac{\tau_m}{T_m}\right)^{0.583} = 0.2886$$

$$C(s) = \frac{0.03043s + 0.1054}{0.2886s}$$

Murril - Criterio de dos restricciones:

Características	Simulación	Experimental
$t_{a2\%}(s)$	7.8900	7.2398
$M_{p\%}(\%)$	1.1	0
$e_{p\%}(\%)$	0	1.2536
IAE	78.512	98.7905
TV_{ur}	NA	34.5162

Cuadro VI

Murril - Criterio de dos restricciones:

Simulación	Experimental
7.8900	7.2398
1.1	0
0	1.2536
78.512	98.7905
NA	32.5662
	7.8900 1.1 0 78.512

Conclusiones

Con base en los resultados obtenidos:

El mejor modelo a considerar fue propuesto por la herramienta System Identification por MATLAB.

El controlador más adecuado para la problemática propuesta se diseñó bajo la técnica de uSORT.

Como recomendación los practicantes deben mejorar el cálculo del esfuerzo de control para los sistemas simulados.

Regla de diseño utilizada	IAE	Esfuerzo de Control	ta2 %	Мр %	epr %
uSORT	41.5532	47.9099	5.1687	0	0
Chien	52.6684	46.4257	7.58	0	0
Murrill	98.7905	34.5162	7.2398	0	1.2536

Cuadro III

COMPARACIÓN DE LOS SISTEMAS CONTROLADOS EXPERIMENTALES

Características	Simulación	Experimental
$t_{a2\%}(s)$	0.7200	5.1687
$M_{p\%}(\%)$	0	0
$e_{p\%}(\%)$	0	0
IAE	8.0603	41.5532
TV_{ur}	NA	47.9099

Cuadro IV

COMPARACIÓN DE LOS RESULTADOS EXPERIMENTALES Y SIMULADOS APLICANDO LAS TÉCNICAS DE USORT

Referencias

- [1] MathWorks. (2022, feb) System identification toolbox actualización importante. Visitado en febrero 26 de 2023. [Online]. Available: https://la.mathworks.com/products/sysid.html
- [2] V. M. Alfaro, "Identificación de modelos de orden reducido a partir de la curva de reacción del proceso," Ciencia y Tecnología, vol. 1, no. 0378-0524, p. 207, sep 2006.
- [3] V. M. Alfar, IDENTIFICACIÓN DE PROCESOS SOBREAMORTIGUADOS UTILIZANDO TÉCNICAS DE LAZO ABIERTO, 1st ed. San Pedro, San José, Costa Rica: Universidad de Costa Rica, dec 2001, vol. 11.
- [4] O. Aidan, Handbook of PI and PID controller tuning rules, 3rd ed. Imperial College Press, 2009.
- [5] R. V. V´ıctor M. Alfaro, "Optimal robust tuning for 1dof pi/pid control unifying fopdt/sopdt models," Revista Iberoamericana de Automática e Informática industrial, vol. 8, p. 141–158, 2011.

¡Muchas Gracias!