AD A116419

82

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION I	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER		3. RECIPIENT'S CATALOG NUMBER			
WHOI-81-68	AD-A11641	7			
4. TITLE (and Substite) A COMPILATION OF MOORED CURRENT-ME	TER DATA FROM	5. TYPE OF REPORT & PERIOD COVERED			
THREE TOPOGRAPHIC EXPERIMENTS: TH	IE BERMUDA	Technical			
MICROSTRUCTURE ARRAY, THE ISLAND T ARRAY AND THE GIBBS FRACTURE ZONE		6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*) NOO014-74-C-0262; NR 083-			
Theresa K. McKee, Erika A. Francis Nelson Hogg	s and	400 and N00014-76-C-0197; NR-083-400			
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Woods Hole Oceanographic Instituti Woods Hole, Massachusetts 02543	on	NR 083-400			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
NORDA/National Space Technology La	boratory	August 1981			
Bay St. Louis, MS 39529	•	13. NUMBER OF PAGES			
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	47 15. SECURITY CLASS. (of this report)			
		Unclassified			
	•	15a, DECLASSIFICATION/DOWNGRADING SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)	<u>.</u>				
Approved for public release; distr	ribution unlimit	ed.			
17. DISTRIBUTION STATEMENT (of the abatract entered in	n Block 20, il different froi	m Report)			
18. SUPPLEMENTARY NOTES	··				
This report should be cited as: WHOI-81-68.	loods Hole Ocean	og. Inst. Tech. Rept.			
19. KEY WORDS (Continue on reverse side if necessary and	l identify by block number)				
1. Ocean currents					
2. Ocean temperatures					
3. Moored instruments					
20. ABSTRACT (Continue on reverse elde if necessary and identify by block number)					
See reverse side.					
Jee reverse stue.					
		/ .			

DD 1 FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601-

UNCLASSIFIED 8/87
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20

This report is a summary of information collected from three separate oceanographic experiments, each with three moorings, whose objectives were to study the influence of topography on low-frequency motions. Two arrays were set near Bermuda and one in the Charlie-Gibbs Fracture Zone (53°N, 34°W).

All the moorings were recovered after nine or thirteen months at sea. Temperature and current velocity data are displayed graphically as time series plots, histograms and spectra. Progressive vector plots and pressure time series are also presented. The data are summarized in statistical tables.

UNCLASSIFIED 8/81

A COMPILATION OF MOORED CURRENT-METER DATA FROM THREE TOPOGRAPHIC EXPERIMENTS: THE BERMUDA MICROSTRUCTURE ARRAY, THE ISLAND TRAPPED WAVES ARRAY AND THE GIBBS FRACTURE ZONE ARRAY **VOLUME XXVII**

by

Theresa K. McKee, Erika A. Francis Nelson G. Hogg

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

August 1981

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contracts N00014-C-0262; NR 083-004 and N00014-76-C-0197; NR 083-400.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech Rept. WHOI-81-68,

Approved for public release; distribution unlimited. .

Approved for Distribution:

Valentine Worthington, Chairman

Department of Physical Oceanography

ABSTRACT

This report is a summary of information collected from three separate oceanographic experiments, each with three moorings, whose objectives were to study the influence of topography on low-frequency motions. Two arrays were set near Bermuda and one in the Charlie-Gibbs Fracture Zone (53°N, 34°W).

All the moorings were recovered after nine or thirteen months at sea. Temperature and current velocity data are displayed graphically as time series plots, histograms and spectra. Progressive vector plots and pressure time series are also presented. The data are summarized in statistical tables.

CONTENTS

	Text Page	Fiche
Abstract Contents Diagram of Fiche Acknowledgments Preface Presentation Introduction Instrumentation Moorings Data Processing Programs References Table and Figure Captions Tables 1-4 Data Summaries Tables 5-13 Mooring component lists Figures 1-3 Location maps Figures 4-21	ii iii-iv v vi 1 1-2 2-3 3 3-4 4-5 6 7 8-11 12-14	1 - A - 4 1 - A - 5 1 - A - 6-7 1 - A - 8 1 - A - 9 1 - A - 10 1 - A - 10-11 1 - A - 11-12 1 - A - 12 1 - A - 12-13 1 - A - 13-14 1 - B - 1 1 - B - 2 1 - B - 3-6 1 - C-D 10-14 1 - B - 7-9
Vector roses Vector and temperature plots GFZ BMA " ITW		1 - D - 10,12,14 1 - E-G 11-12 1 - E-G 9-10 1 - E-G 13-14
Basic Data Presentation, on microfiche of Gibbs Fracture Zone, Current meter Spectra and statistical dis Histograms Progressive vector plots Time series plots	'S	1 - D - 1-8 1 - E - 1-8 1 - F - 1-8 1 - G - 1-8
Bermuda Microstructure Array, Curr Spectra and statistical dis Histograms Progressive vector plots Time series plots	splay	2 - A - 1-14 2 - B - 1-14 2 - C - 1-14 2 - D - 1-14
Bermuda Microstructure Array, T/P Spectra and statistical dis Time series plots		2 - F - 2,6,10 2 - G - 2,6,10
Island Trapped Waves Experiment, C Spectra and statistical dis Histograms Progressive vector plots Time series plots Island Trapped Waves Experiment, T	splay 「/P Recorders	3 - A - 1-8 3 - B - 1-8 3 - C - 1-8 3 - D - 1-8
Spectra and statistical dis Time series plots	splay	3 - F - 5,7 3 - G - 5,7

ACK NOWLEDGMENTS

The authors wish to acknowledge the moored array group's operations personnel for their work of organizing, deploying and recovering the instruments. They also would like to acknowledge the crews of the various ships involved in the work, with special mention of the effort of the people involved in the trip of the R/V Panulirus to pick up a mooring which had broken loose.

Data processors Ellen Levy, Ann Spencer and Susan Tarbell provided extensive help with the plots and layout of the report.

Acknowledgments are also due to the Office of Naval Research for its support. The work was performed under contract numbers NO0014-74-C-0262, NR083-004 and N00014-76-C-0197, NR083-400.

PREFACE

This volume is the twenty-seventh in a series of Data Reports presenting moored current meter and associated data collected by the WHOI Buoy Group.

Volumes I through XXVI present data obtained during the years 1963-1978, arranged either by year or experiment (see notes).

A data directory and bibliography for the years 1963-1978 has been published, as WHOI Technical Report 79-88.

Volume XXVII presents data from the Bermuda Microstructure experiment, the Island Trapped Waves array and the Charlie-Gibbs Fracture Zone array.

Volume No.	WHOI Ref. N	o .	Notes Year Experiment
I II III IY	70-40	Webster, F. and N. P. Fofonoff Webster, F. and N. P. Fofonoff Webster, F. and N. P. Fofonoff Pollard, R. T.	
V IV	71-50	Tarbell, S. and F. Webster Tarbell. S.	1967 measurements 1968 measurements
VIII	75-7	Pollard, R.T. and S. Tarbell	1970 Array Data 1973 IWEX Array
ΧΙ	76-41	Tarbell, S. Tarbell, S.	1969a measurements 1969b measurements
XII	76-101 77-18	Chausse, D. and S. Tarbell	1973 MODE Array
XIII	77-18 77-41	Tarbell, S. and A. W. Whitlatch Tarbell, S., R. Payne and R. Walden	1976 measurements 1976 mooring 592 Saint Croix
XΥ	77-56	Tarbell, S. and A. W. Whitlatch	
	78-5		1971-1975 MODE Site
XVII	78-49	Tarbell, S., A. Spencer and R. E. Payne	1975-1977 POLYMODE Array II
XVIII	79-65	Tarbell, S., M. G. Briscoe and R. A. Weller	1978 JASIN
XIX		Spencer, A., C. Mills and R. Payne	1974-1975 POLYMODE Array I
XX		Spencer, A.	1974 Rise Array
	79-85		1978 W.B.U.C.
	79-87	Tarbell, S. and R. Payne.	1973 measurements
XXIII	89-40	Tarbell, S. and R. Payne.	1978 POLYMODE Array III
VXIV		Spencer, A., K. O'Neill and J. R. Luyten.	INDEX 1976
XXA	81-12	Spencer, A., E. D'Asaro and L. Armi.	BBL 1977
IVXX	81-45	Chausse, D. and R. E. Payne.	1972 measurements

PRESENTATION

The printed portion of this report contains introductory text and information about the instruments and data processing procedures. Tables and figures give summaries of the location of the instruments. Data are

shown graphically in numerous composite displays.

The microfiche pages contain displays of the basic data. The data from the Gibbs Fracture Zone are shown on fiche 1, together with reproduction of the printed pages. Fiche 2 contains data from the Bermuda Microstructure experiment. Data from the Island Trapped Waves experiment are shown on fiche 3. The displays for the basic current meter data include spectral plots, tables of statistics, time series plots, progressive vector diagrams and frequency histograms. Time series plots, spectral plots and tables of statistics are shown for data from temperature/pressure recorders.

A detailed layout of the data on the microfiche sheets is shown on pages

iii and iv.

INTRODUCTION

This report is a summary of information collected from three separate moored arrays, of nine or thirteen months duration. One array was deployed in the Charlie-Gibbs Fracture Zone to measure the mean flow and study the properties of the eddy field. The other two were deployed near Bermuda, one relatively far from the island and one close to the island. The objectives of the Bermuda experiment were to monitor low frequency motions during a shipboard investigation of microstructure near the island and to study low-frequency baroclinic waves trapped by the island.

Three moorings were set in September 1975 in the Charlie-Gibbs Fracture Zone, a deep east-west channel through the Mid-Atlantic ridge at 53° north (see Figure 1 and Table 1). Objectives were to measure the mean flow and investigate the properties of the mesoscale eddy field at this latitude and their interaction with the underlying topography. Results are reported in Schmitz and Hogg (1978) and Hogg and Schmitz (1980). The moorings were recovered in June 1976, giving 7 nine-month records. Data return is

summarized in Table 2.

The first Bermuda array was set in April, 1975, in approximately an equilateral triangle configuration with 100 km sides and Bermuda at the center (see Figure 2 and Table 1). It was designed to monitor the background mesoscale eddy field during an intensive investigation of possible microstructure generation processes near the island (as a part of FAME, the north Atlantic Fine and Microstructure Experiment, Sanford and Hogg, 1977). The mooring and related hydrographic results are described in Hogg, Katz and Sanford (1978). The array was recovered in January, 1976, giving records of up to 9 months duration. Instrument performance is summarized in Table 3.

In these current meter records, there were suggestions of coherent motions (trapped waves) travelling clockwise around Bermuda. This prompted the setting of the second array (the "Island Trapped Waves" experiment) in November 1977 (see Figure 3 and Table 1) which was designed to be in the near field of the trapped wave motions. Results from this experiment have been reported by Hogg (1980). The array was recovered in December, 1978 after more than a years deployment, although one mooring released prematurely two weeks earlier and was found by a local fisherman. Data return is summarized in Table 4.

INSTRUMENTATION

Current Meters

The current meters described in this report were Vector Averaging Current Meters (YACMs), built by AMF SeaLink Systems (now EG&G SeaLink Systems), or

Model 850 current meters built by Geodyne, now a part of EG&G.

Each time a pair of rotor magnets passes the sensing diode, the VACM samples compass and vane information and computes a measure of east and north water current components. These components are summed through the entire recording interval, usually 15 minutes, thus giving a true vector average. One complete rotor revolution initiates 8 compute cycles. Temperature is derived from a voltage-to-frequency converter (v/f), whose output frequency is related to the thermistor resistance at its input. The v/f output pulses are summed over the entire recording interval, thus averaging temperature. The thermistors are routinely calibrated before and after deployment and the temperatures are accurate to \pm .01°C (Payne et al., 1976). All variables are recorded on a cassette tape at the end of each recording interval.

The Model 850 current meter stores burst sampled data on magnetic tape cartridges. The instrument collects and stores 23 or 24 data cycles sampled at 5.27 second intervals. It then turns off for the remainder of the recording interval (usually 15 or 30 minutes). Model 850's, which have been modified to include temperature measurements, accumulate the count from the temperature circuit from one 5.19 second period and record it at the

beginning of each data burst.

Time was measured using a quartz crystal oscillator with a manufacturer's specified accuracy of ±1 second per day. All stated times are in UTC (Universal Coordinated Time). The instrument clock times were synchronized with UTC before mooring launch. After recovery, differences in the two times were noted.

Two of the instruments (5532 and 5552) were modified to record differential temperature (tdif). A thermistor was mounted externally at each end of the VACM pressure case (a distance of 1.74 meters apart), and a differential resistance was measured and recorded. The lithium batteries in the instruments failed shortly after deployment, giving short records of all variables. See McCullough (1975) and Dean (1979) for further information.

One of the VACMs (6331) contained a pressure transducer, manufactured by Paine. It is a strain gauge with a rated accuracy of .05 per cent of full

scale. The instrument is routinely calibrated before deployment.

Transerature/Pressure Recorder

An instrument to record temperature, pressure and time (T/P) was developed in the Draper Laboratory at MIT for MODE-1 and has been used extensively since 1973. The instrument stores a sample every 15 seconds and records the sum of 128 successive data samples every 32 minutes on a magnetic tape cassette $(128 \times 15 = 1920 \text{ seconds} = 32 \text{ minutes})$.

Temperatures have a resolution of .001°C (Wunsch and Dahlen, 1974). The

absolute accuracy is not specified.

The pressure sensor is a strain gauge with a manufacturer-specified accuracy of .03 per cent of full scale (Wunsch and Dahlen, 1974). These sensors are recalibrated for each instrument deployment.

MOORINGS

Details of the mooring configuration are shown in Tables 5-13. The items on each mooring are listed. Depths in meters and data names are included for data recording instruments.

The anchor was usually a cylinder weighing from 2000-2700 pounds (wet weight). In the Gibbs Fracture Zone, the anchor on the short mooring weighed

1000 pounds.

Items with the words "glass spheres" refer to glass flotation spheres of 16" or 17" diameter with hard hats, each one bolted to 3/8" chain at ! meter intervals.

Milliman samples are corrosion measuring devices, attached to the mooring wire.

Figures 1 through 3 show mooring locations and Tables 1 through 4 give summaries of the instruments, their depths and the quality of the data.

See Heinmiller (1976) for a more complete description of WHOI moorings.

DATA PROCESSING

Current Meters

The data from the instrument tapes were transcribed to 9-track magnetic tapes, converted to scientific units, edited to remove launch and retrieval transients and bad points, and linearly interpolated across missing or erroneous data cycles.

WHOI data are identified by a mooring number, a sequential instrument position number (e.g., 5713 is the third instrument down on mooring 571), a letter to indicate the data version (e.g., 5713B is the second editing of 5713), and a number to indicate the time sampling interval for that data record (e.g., 5713B1800 is the half-hour (1800 seconds) averaged version).

Low-passed versions of data series were formed by passing the data through a Gaussian filter with a 24 hour half-width, and then subsampling the filtered series once a day. The composite plots shown for each mooring and the time series plots and progressive vector plots on the microfiche use these low-passed data files.

Temperature/Pressure Recorders

Cassette reading and preliminary data processing were carried out at MIT. The basic time series received by WHOI had been truncated to remove launch and retrieval transients, but detailed editing was done at WHOI. Basic spectral plots, time series and statistics are shown for the T/Ps, and the low-passed temperature data are shown on the composite temperature plots for each mooring.

PROGRAMS

Time Series Plots

Current meter and T/P variables versus time are presented graphically. All the plots are based on low-passed time series.

Statistics

Statistics for each variable measured by the current meters and T/P's are presented on microfiche. Mean, standard error, variance, kurtosis and extrema are given for all the variables; east and north covariance, correlation and other statistics are given for the vectors. The data series used is based on the instrument sampling interval. For reference, note that a Gaussian random variable would have a kurtosis of three and a skewness of zero.

See Tarbell, Spencer and Payne, (1978) for a more detailed discussion of

these parameters.

Progressive Vector Plots

Based on a low-passed time series, the current vectors are placed tail-to-head so as to show the path that a perfect particle in a perfectly homogeneous flow would have travelled. Flow regimes and low frequency behavior show up well on this type of plot. The plot begins with an asterisk and the first day of each month is marked with a plus sign and every 5th month is annotated.

Vector Stick Plots

The 24-hour averaged current components are plotted as individual vectors along a time scale. Unless otherwise indicated, the vector orientation is such that north is upwards on the page.

The vector roses show current vectors sampled every 7 days, plotted at

the location of the mooring.

Histograms

The variables temperature, speed and direction are shown as frequency of occurence versus amplitude plots. The mean for each data series is marked.

Spectra

The horizontal kinetic energy (HKE) and temperature are displayed as spectra. The HKE spectrum is half of the sum of the spectra of the east and north components. It has the advantage of not being tied to

a particular coordinate system.

The HKE and temperature have units of (cm²/sec²)/cph and (°C)²/cph respectively. The spectra are all one-sided, i.e., the area under the spectrum is equal to the variance of the original record. The plots are log-log rather than 'variance preserving', i.e., the contributions of various frequency bands to the total variance are not in proportion to the displayed areas.

The spectra are calculated based on data sequences of 3240 or 4000 points ('pieces'). Frequency band averaging is across three

frequencies and no data-windowing or prewhitening is done.

The WHOI spectral program TIMSAN (Hunt, 1977) averages the spectra in increasingly large groups at the high frequencies to prevent having to plot thousands of points. This procedure gives few degrees of freedom (d.o.f) at the low frequencies, and many at the high frequencies. For the spectra calculated from one piece with three frequencies averaged there are 6 d.o.f. in the lowest frequency group, and 600 d.o.f. in the highest frequency group.

REFERENCES

- Dean, J. P., 1979, A Moored Instrument for Vertical Temperature Gradients. J. Geophys. Res. <u>84</u>, 5089-5091.
- Heinmiller, R. H., 1976, Woods Hole Buoy Project Moorings, 1960-1974. WHOI Ref. 76-53 (Technical Report).
- Hogg, N. G., 1980. Observations of internal Kelvin Waves trapped round Bermuda. J. Phys. Ocean. 10, 1353-1376
- Hogg, N. G., E. J. Katz and T. B. Sanford, 1978. Eddies Islands and Mixing. J. Geophys. Res. <u>83</u>, 2921-2938.
- Hogg, N. G. and W. J. Schmitz, Jr., 1980. A dynamical interpretation of low frequency motions near very rough topography the Charlie-Gibbs Fracture Zone. J. Mar. Res. 38, 215-248.
- Hunt, M., 1977, A program for spectral analysis of time series. WHOI Technical Memorandum 2-77.
- McCullough, J. R., 1975, Vector Averaging current meter speed calibration and recording technique. WHOI Ref. 75-44 (Technical Report.)
- Payne, R. E., A. L. Bradshaw, J. P. Dean and K. E. Schleicher, 1976, Accuracy of temperature measurements with the V.A.C.M. WHOI Ref. 76-94 (Technical Report).
- Sanford, T.,B. and N. G. Hogg, 1977. The North Atlantic fine and microstructure cruise, Knorr 52 and Eastward 75-12. WHOI Ref. 77-11. (Technical Report)
- Schmitz, W. J. Jr. and N. G. Hogg, 1978. Observations of energetic low frequency current fluctuations in the Charlie-Gibbs Fracture Zone. J. Mar. Res. 36, 725-734.
- Tarbell, S., A. Spencer and R. E. Payne, 1978. A compilation of moored current meter data and associated oceanographic observations. Vol XVII (POLYMODE Array II data). WHOI Ref. 78-49 (Technical Report).
- Wunsch, C., and J. Dahlen, 1974, A moored temperature and pressure recorder. <u>Deep-Sea Res.</u>, 21, 145-154.

TABLE CAPTIONS

Table	1	Summary of Mooring Locations.		
Table	2	Data return and quality from instruments	in	the
		Charlie-Gibbs Fracture Zone.		
Table	3	Data return and quality from instruments	in	the
		Bermuda Microstructure array.		
Table	4.	Data return and quality from instruments	in	the
		Island Trapped Waves experiment.		

The following tables are printed on microfiche only:
Tables 5-7 List of mooring components: Gibbs Fracture Zone.
Tables 8-10 List of mooring components: Bermuda Microstructure Array.
Tables 11-13 List of mooring components: Island Trapped Waves experiment.

FIGURE CAPTIONS

Figure 1	Location of moorings in the Charlie-Gibbs Fracture Zone.
Figure 2	Location of moorings near Bermuda for the Bermuda
·	Microstructure Array.
Figure 3	Location of moorings near Bermuda for the Island
•	Trapped Waves experiment.
Figure 4	Current vectors at mooring locations in the Charlie-Gibbs
•	Fracture Zone. Vector plotted for every 7th data point in
	a 271 day series.
Figure 5	Current vectors at mooring locations of the Bermuda
	Microstructure Array. Vector plotted for every 7th data
	point in a 271 day series.
Figure 6	Current vectors at 2 mooring locations during the Island
	Trapped Waves experiment. Vector plotted for every 7th data
	point in a 394 day series.
Figures 7-9	Composite time series plot of current vectors: Moorings 570-572
Figures 10-12	Composite time series plot of temperatures: Moorings 570-572
Figures 13-15	Composite time series plot of current vectors: Moorings 553-555
Figures 16-18	Composite time series plot of temperatures: Moorings 553-555
Figures 19-21	Composite time series plot of current vectors: Moorings 633-635
Figures 22-24	Composite time series plot of temperatures: Moorings 633-635

Figs. 7-21

Orientation of vectors is as noted on plots. Scales are in cm/sec (not mm/sec as noted in fiche).

TABLE 1

SUMMARY OF MOORINGS

Mooring No.	No. of instruments	Date Set	Date Retr.	Location	Bottom Depth (m)
	CHA		FRACTURE ZONE ruise Knorr 54 Leg 7		
570	1	Sep. 26 1975	June 24 1976	52° 42.7'N 33° 59.2'W	4288
571	3	Sep. 27 1975	June 26 1976	52° 53.7'N 35° 31.0'W	2895
572	4	Sep. 27 1975	June 25 1976	52° 46.1'N 35° 30.0'W	3398
	BER!		TRUCTURE ARRA' ruise USCGC Evergreen	Y	
553	5	Apr. 28 1975	Jan. 26 1976	31° 46.9'N 64° 25.2'W	4353
554	5	Apr. 29 1975	Jan. 26 1976	32° 21.5'N 65° 27.0'W	4774
555	7	Apr. 9 1975	Jan. 25 1976	32° 59.0'N 64° 23.8'W	4527
	ISLAN	Cr	AVES EXPERIME ruise Oceanus 52 Leg III	ИТ	
633	4	Nov. 15 1977	Dec. 7 * 1978	32° 33.8'N 64° 44.7'W	1611
634	3	Nov. 16 1977	Dec. 16 1978	32° 32.2'N 64° 44.1'W	942
635	3	Nov. 17 1977	Dec. 17 1978	32° 22.4'N 65° 0.9'W	924

^{*} Recovered by R/V Panulirus.

TABLE 2

DATA RETURN AND QUALITY

RECORDS FROM CHARLIE-GIBBS FRACTURE ZONE

Record No.	Inst. depth (m)	Data Datēs 1975 - 1976	No. of Data days pres ente	;–
5701	4227	Sep.27 - June 24	271 V T	*
5711	1007	Sep.28 - June 26	272 V T	Electronic problems
5712	2537	Sep 28 - Nov. 4/75	39 V T	
5713	2835	Sep 28 - June 26	272 V T	
5721	998	Sep.28 - June 25	271 V T	
5722	2528	Sep.28 - June 25	271 V T	
5723	3060	Sep.28 - June 25	271 V T	
5724	3360	Sep.28 - June 25	271 V T	

V Velocity component data presented Temperature " "

^{*} There were 2 thermistors on this current meter. The records were virtually identical, only one series is displayed

TABLE 3
DATA RETURN AND QUALITY

RECORDS FROM BERMUNA MICROSTRUCTURE ARRAY

Record No.	Inst. depth (m)	Data Dates 1975 - 1976	562 01 4893	Data pres- ented	Comments
5531 5532 5533(T/P) 5534 5535	306 506 734 1005 1505	Apr.29 - Jan.26 Apr.29 - Oct.15/75 Apr.29 - Jan.26 Apr.29 - Jan.26 Apr.29 - Jan.26	¿ /2		Errors on sea tape Vane stuck after Sept.15 Rotor stuck after Dec. 1
5541 5542 5543(T/P) 5544 5545	314 514 718 1013 1513	Apr.29 - Jan.26 Apr.29 - Jan.26 Apr.29 - Aug.29/75 Apr.29 - Jan.26 Apr.29 - May 25/75	271	V T V T T P V T V T #	Battery depleted Vane stuck after May 26. Rotor below threshold after Oct. 19
5551 5552 5553(T/P) 5554 5555 5556	316 516 752 766 1016 1516	Apr.30 - Jan.25 Apr.30 - Aug.12/75 Apr.29 - May 20/75 Apr.29 ~ Nov.21/75 Apr.30 - Jan.25 Apr.30 - June 12/76 Apr.30 - Jan.25	5 104 5 20 5 206 270	V T V T TU V T V T V T V T #	Battery leaked Electronic problem Battery leaked Corrosion in vane vane stuck after June 13

All instruments were current meters except where noted (T/P)

- V Velocity component data presented
- P Pressure
- T Temperature
- TD Instrument also had differential temperature sensors
- * No data is presented for the basic velocity series Time series are shown for all low-passed data.
- # All data is presented for the stated interval.
 A questionable full-length series is used to show provecs and time series plots.

TABLE 4 DATA RETURN AND QUALITY

RECORDS FROM ISLAND TRAPPED WAVES EXPERIMENT

Record No.	Inst. depth (m)	Data Dates 1977 - 1978	No. of days	Data pres- ented	Comments
6331	792	Nov.16 - Dec.3	382	T P	Rotor did not work
6332	1092	Nov.16 - Dec.3	382	Y T	
6333	1392	Nov.16 - Aug.18/77	275	Y T	
6334	1692	Nov.16 - Dec.3	382	V 7	
6341(T/P)	242	Nov.16 - Dec.16	395	T P	
6342	542	Nov.16 - Dec.16	395	V T	
6343	842	Nov.16 - Dec.16	395	V T	
6351(T/P) 6352 6353	224 524 824	Nov.17 - Dec.16 Nov.17 - Dec.16 Nov.17 - Dec.16	394 394 394	T P V T T	No rotor data on cassette

All instruments were current meters except where noted (T/P)

Velocity component data presented Pressure " " " Temperature

Same and the second of the sec

Figure 1

Figure 2

Figure 3

CURRENT ROSES FOR NEAR BOTTOM INSTRUMENTS

Figure 4

CURRENT ROSES AT A NOMINAL DEPTH OF 1500 M

Figure 5

CURRENT ROSES AT A NOMINAL DEPTH OF 500 M

Figure 6

Figure 7

Figure 10

Figure 8

1-F-11

Figure 11

1-F-12

1-G-11

Figure 12

CURRENT VECTORS FOR MOORING 553

CURRENT VECTORS FOR MOORING 554

1-G-10

CURRENT VECTORS FOR MOORING 634

France Commercial Control of the State of the Commercial Commercia

CURRENT VECTORS FOR MOORING 635

The wast of the man with the wast of the second of the sec

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS PUBLISHED BY CCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(REVISED NOVEMBER 1978)

Deputy Under Secretary of Defense (Research and Advanced Technology) Military Assistant for Environmental Science Room 3D129 Washington, D.C. 20301

Office of Naval Research 800 North Quincy Street Arlington, VA 22217

3 ATTN: Code 483 1 ATTN: Code 460

2 ATTN: 102B

1 CDR Joe Spigai, (USN)
ONR Representative
Woods Hole Oceanographic Inst.
Woods Hole, MA 02543

Commanding Officer
Naval Research Laboratory
Washington, D.C. 20375
ATTN: Library Code 2627

6 ATTN: Library, Code 2627

12 Defense Technical Information Center Cameron Station Alexandria, VA 22314 ATTN: DCA

> Commander Naval Oceanographic Office NSTL Station Bay St. Louis, MS 39522

1 ATTN: Code 8100 1 ATTN: Code 6000 1 ATTN: Code 3300

1 NODC/NOAA Code D781 Wisconsin Avenue, N.W. Washington, D.C. 20235

Mr. Michael H. Kelly
Administrative Contracting Officer
Department of the Navy
Office of Naval Research
Eastern/Central Regional Office
Building 114, Section D
666 Summer Street
Boston, MA 02210

1. Ocean cucrents 2. Ocean temperatures 3. Hoored instruments I. McKee, Theresa K. II. Francis, Erika A. III. Hogg, Melson G. IV. MODOI4-74-C-0262; NR 083-400 V. MODOI4-77-C-0197; NR 083-400 This card is UNCLASSIFIED	1. Ocean currents 2. Ocean terperatures 3. Woored finstruments 1. WcKee, Theresa K. 11. Francis, Erika A. 111. Hogg, welson G. 17. WOOO14-76-C-0197; NR 083-400 V. WOOO14-76-C-0197; NR 083-400 This card is UNCLASSIFIED
KNOCA HOLE Oceanographic Institution KNOL-81-68 A COPPLATION OF MORED CURRENT-METER DATA FRON THREE TOPOGRAPHIC EXTREMENTS: THE ERGADA HIGGROSTRUCTURE ARRAY, THE ISSAND SAVIDED HAVES ARRAY AND THE GIBSS FRACTURE ZOME ARRAY. VOLUME XAVID by Thereas & KAKER, Ell A., Francis and Halson G., Hopgs. 41 pages. August 1991. Peraned for the Office of Haval Research under Contracts NOODI4-74-C- 0265: NR 083-409 and NOODI4-75-C-0197; NR 083-400. This report is a surgary of information collected from three separate oceanographic appetrients, each with three roorings, whose objectives were to study the influence of copography on four-frequency rations. Two arrays were set near Repends and one in the Carille-Gibbs Fracture Sof (5314, 3344). The moorings were recovered after nine or thirteen months at the moorings were recovered after nine or thirteen displayed graphically as time series plots, Nicopraes and are also presented. The data are surmarized in statistical tables.	Woods Hole Oceanagraphic Institution wind81-68 A COSPILATION OF MONED CURENT-WEIGE DAIR FROM THEEE TOPOGRAPHIC FYSHINGS. THE BERNAM HIGGOSTHEUDEL ARRAY. THI SYLVING TAMPED NAVES ARRAY AND THE GIBLS FRACING TOWN ARRAY. WOLKER ANYINI BY Theresa K. McKee, Erika A. Francis and Melson G. Minysi Asserth Money Contracts MODOI-4-76-6- OZ62; MR OBX-400 and MODOI-4-76-6-0197; MR OBX-400. This report is a surmary of information occilected from thore separate occanographic experiments, each with three toporings, whise objectives were to study the influence of topography on low-frequency actions. Show arrays were sat (\$379, Minky). At's the money were recovered after nine or thirteen manity if set. Frequency and current velocity data are dispined graphically as time series plots, histogeram and species frequency. At preferice the data are sumarized in statistical tabids.
1. Ocean currents 2. Ocean temperatures 3. Hoored instruments 1. McKee. Theresa K. 11. Francis, Erita A. 111. Hugg, Nelson G. 11V. NOODI4-76-C-0262; NR 083-400 V. NOODI4-76-C-0197; NR 083-400 T-1s card is UNCLASSIFIED	1. Ocean currents 2. Ocean temperatures 3. Noord Instruments 11. McKee, Theresa K. 11. Francis, Erita A. 111. Hogg, Nelson G. 114. NOOI4-74-C-0262; NR 083-400 V. NOOI4-76-C-0197; NR 083-400 This card is UNCLASSIFICO
Wol-81-6 Geanographic intitution Wol-81-66 WORLD CREEKINGTON THE SERVIN HICKSTRUCTURE AGAI, TOPOCRATION TRAPFIC MATERIAL MERCALLY THE STAND TRAPFIC MATERIAL MERCALLY AGAINGTON THE STAND TRAPFIC MATERIAL MERCALLY AGAINGTON THE STAND TRAPFIC MATERIAL MERCALLY AGAINGTON THE STAND TRAPFIC MENT AGAINGT SHAPE AGAINGT AGAING	Woods Hole Oceanographic intitution A COPILATION OF MORED CUMMINISTER DATA FRON THREE TOPOGRAPHIC ELERRIMORIST THE REMAIN HICROSTRUCTURE AND THE OCEANORY THE ISSUED HICROSTRUCTURE AND THE OCEANORY AND THE GIBSS FAMILY COMMINISTED OF THE ASSUED THREE TO COLORER NOODIG-74-C- 0162: NA 081-430 and MOODIG-76-C-0193; NR 081-400. This report is a surmary of information collected from the of separate oceanographic assued rame to study the influence of cooperaby on low-frequency potions. The arrays were set many demands and one for the Assued and serial and one in the coording were recovered after nine or thirteen Annews at sea. Respectative and current wiledity date are displayed quantities and section. Propressive vector piots and presented. The data are surmarized in statistical stables.

A COMPILATION OF MOORED CURRENT-METER DATA FROM THREE TOPOGRAPHIC EXPERIMENTS: THE BERMUDA MICROSTRUCTURE ARRAY, THE ISLAND TRAPPED WAVES ARRAY AND THE GIBBS FRACTURE ZONE ARRAY VOLUME XXVII

by

Theresa K. McKee, Erika A. Francis and Nelson G. Hogg

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

August 1981

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contracts N00014-C-0262; NR 083-004 and N00014-76-C-0197; NR 083-400.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech Rept. WHOI-81-68.

Approved for public release; distribution unlimited.

Approved for Distribution:

Valentine Worthington, Chairman Department of Physical Oceanography

ABSTRACT

This report is a summary of information collected from three separate oceanographic experiments, each with three moorings, whose objectives were to study the influence of topography on low-frequency motions. Two arrays were set near Bermuda and one in the Charlie-Gibbs Fracture Zone (53°N, 34°W).

All the moorings were recovered after nine or thirteen months at sea. Temperature and current velocity data are displayed graphically as time series plots, histograms and spectra. Progressive vector plots and pressure time series are also presented. The data are summarized in statistical tables.

CONTENTS

	Text P	age Fich	е
Abstract Contents Diagram of Fiche Acknowledgments Preface Presentation Introduction Instrumentation Moorings Data Processing Programs References Table and Figure Captions Tables 1-4 Data Summaries Tables 5-13 Mooring componen Figures 1-3 Location maps Figures 4-21	12-14] - /] - /	A - 4 A - 5 A - 6-7 A - 8 A - 9 A - 10-11 A - 11-12 A - 12-13 A - 12-13 A - 13-14 B - 1 B - 2 B - 3-6 C-D 10-14 B - 7-9
Vector roses Vector and temperature	plots GFZ 18-23] -	D - 10,12,14 E-G 11-12
,, 11 ji:	BMA 24-29 ITW 30-41		E-G 9-10 E-G 13-14
Basic Data Presentation, on m Gibbs Fracture Zone, Cu Spectra and stat Histograms Progressive vect Time series plot	rrent meters distical display for plots] -] -	D - 1-8 E - 1-8 F - 1-8 G - 1-8
Bermuda Microstructure Spectra and stat Histograms Progressive vect Time series plot	istical display or plots	2 - - 2 - 2 - 2 -	A - 1-14 B - 1-14 C - 1-14 D - 1-14
Bermuda Microstructure Spectra and stat Time series plot	istical display	2 -	F - 2,6,10 G - 2,6,10
Island Trapped Waves Ex Spectra and stat Histograms Progressive vect Time series plot Island Trapped Waves Ex	istical display or plots	3 - 3 - 3 - 3 -	A - 1-8 B - 1-8 C - 1-8 D - 1-8
Spectra and stat Time series plot	tistical display	3 -	F - 5,7 G - 5,7

ACKNOWLEDGMENTS

The authors wish to acknowledge the moored array group's operations personnel for their work of organizing, deploying and recovering the instruments. They also would like to acknowledge the crews of the various ships involved in the work, with special mention of the effort of the people involved in the trip of the R/V Panulirus to pick up a mooring which had broken loose.

Data processors Ellen Levy, Ann Spencer and Susan Tarbell provided

extensive help with the plots and layout of the report.

Acknowledgments are also due to the Office of Naval Research for its support. The work was performed under contract numbers NO0014-74-C-0262, NR083-004 and NO0014-76-C-0197, NR083-400.

PREFACE

This volume is the twenty-seventh in a series of Data Reports presenting moored current meter and associated data collected by the WHCI Buoy Group.

Volumes I through XXVI present data obtained during the years 1963-1978, arranged either by year or experiment (see notes).

A data directory and bibliography for the years 1963-1978 has been published, as WHOI Technical Report 79-88.

Volume XXVII presents data from the Bermuda Microstructure experiment, the Island Trapped Waves array and the Charlie-Gibbs Fracture Zone array.

	WHOI Ref. No) .	Notes Year Experiment
III III IV	67-66 70-40	Webster, F. and N. P. Fofonoff Webster, F. and N. P. Fofonoff Webster, F. and N. P. Fofonoff Pollard, R. T.	
VI VIII VIII	71-50 74-4 74-52 75-7 75-68	Tarbell, S. and F. Webster Tarbell, S. Chausse, D. and S. Tarbell Pollard, R.T. and S. Tarbell Tarbell, S., M. G. Briscoe	1967 measurements 1968 measurements 1970 Array Data 1973 IWEX Array
XII	76-41 76-101	and D. Chausse Tarbell, S. Tarbell, S. Chausse, D. and S. Tarbell Tarbell, S. and A. W. Whitlatch	1969a measurements 1969b measurements 1973 MODE Array 1970 Measurements
	77 - 56 78-5	Tarbell, S., R. Päyne and R. Walden Tarbell, S. and A. W. Whitlatch: Tarbell, S. and A. Spencer	1971-1975 MODE Site
	78-49 79-65	Tarbell, S., A. Spencer and R. E. Payne Tarbell, S., M. G. Briscoe and R. A. Weller	1975-1977 POLYMODE Array II 1978 JASIN
	79-34 79-56 79-85 79-87	Spencer, A., C. Mills and R. Payne Spencer, A. Mills, C. and P. Rhines. Tarbell, S. and R. Payne.	1974-1975 POLYMODE Array I 1974 Rise Array 1978 W.B.U.C. 1973 measurements
XXIV	80-40 80-41	Tarbell, S. and R. Payne. Spencer, A., K. O'Neill and J. R. Luyten.	1978 POLYMODE Array III INDEX 1976
XXV	81 <i>-</i> 12 81 <i>-</i> 45	Spencer, A., E. D'Asaro and L. Armi. Chausse, D. and R. E. Payne.	BBL 1977 1972 measurements

PRESENTATION

The printed portion of this report contains introductory text and information about the instruments and data processing procedures. Tables and figures give summaries of the location of the instruments. Data are

shown graphically in numerous composite displays.

The microfiche pages contain displays of the basic data. The data from the Gibbs Fracture Zone are shown on fiche 1, together with reproduction of the printed pages. Fiche 2 contains data from the Bermuda Microstructure experiment. Data from the Island Trapped Waves experiment are shown on fiche 3. The displays for the basic current meter data include spectral plots, tables of statistics, time series plots, progressive vector diagrams and frequency histograms. Time series plots, spectral plots and tables of statistics are shown for data from temperature/pressure recorders.

A detailed layout of the data on the microfiche sheets is shown on pages

iii and iv.

INTRODUCTION

This report is a summary of information collected from three separate moored arrays, of nine or thirteen months duration. One array was deployed in the Charlie-Gibbs Fracture Zone to measure the mean flow and study the properties of the eddy field. The other two were deployed if ar Bermuda, one relatively far from the island and one close to the island. The objectives of the Bermuda experiment were to monitor low frequency motions during a shipboard investigation of microstructure near the island and to study low-frequency baroclinic waves trapped by the island.

Three moorings were set in September 1975 in the Charlie-Gibbs Fracture Zone, a deep east-west channel through the Mid-Atlantic ridge at 53° north (see Figure 1 and Table 1). Objectives were to measure the mean flow and investigate the properties of the mesoscale eddy field at this latitude and their interaction with the underlying topography. Results are reported in Schmitz and Hogg (1978) and Hogg and Schmitz (1980). The moorings were recovered in June 1976, giving 7 nine-month records. Data return is

summarized in Table 2.

The first Bermuda array was set in April, 1975, in approximately an equilateral triangle configuration with 100 km sides and Bermuda at the center (see Figure 2 and Table 1). It was designed to monitor the background mesoscale eddy field during an intensive investigation of possible microstructure generation processes near the island (as a part of AME, the north Atlantic Fine and Microstructure Experiment, Sanford and Hogg, 1977). The mooring and related hydrographic results are described in Hogg, Katz and Sanford (1978). The array was recovered in January, 1976, giving records of up to 9 months duration. Instrument performance is summarized in Table 3.

In these current meter records, there were suggestions of coherent motions (trapped waves) travelling clockwise around Bermuda. This prompted the setting of the second array (the "Island Trapped Waves" experiment) in November 1977 (see Figure 3 and Table 1) which was designed to be in the near field of the trapped wave motions. Results from this experiment have been reported by Hogg (1980). The array was recovered in December, 1978 after more than a years deployment, although one mooring released prematurely two weeks earlier and was found by a local fisherman. Data return is summarized in Table 4.

INSTRUMENTATION

Current Meters

The current meters described in this report were Vector Averaging Current Meters (YACMs), built by AMF SeaLink Systems (now EG&G SeaLink Systems), or

Model 850 current meters built by Geodyne, now a part of EG&G.

Each time a pair of rotor magnets passes the sensing diode, the VACM samples compass and vane information and computes a measure of east and north water current components. These components are summed through the entire recording interval, usually 15 minutes, thus giving a true vector average. One complete rotor revolution initiates 8 compute cycles. Temperature is derived from a voltage-to-frequency converter (v/f), whose output frequency is related to the thermistor resistance at its input. The v/f output pulses are summed over the entire recording interval, thus averaging temperature. The thermistors are routinely calibrated before and after deployment and the temperatures are accurate to ±.01°C (Payne et al., 1976). All variables are recorded on a cassette tape at the end of each recording interval.

The Model 850 current meter stores burst sampled data on magnetic tape cartridges. The instrument collects and stores 23 or 24 data cycles sampled at 5.27 second intervals. It then turns off for the remainder of the recording interval (usually 15 or 30 minutes). Model 850's, which have been modified to include temperature measurements, accumulate the count from the temperature circuit from one 5.19 second period and record it at the

beginning of each data burst.

Time was measured using a quartz crystal oscillator with a manufacturer's specified accuracy of ±1 second per day. All stated times are in UTC (Universal Coordinated Time). The instrument clock times were synchronized with UTC before mooring launch. After recovery, differences in the two times were noted.

Two of the instruments (5532 and 5552) were modified to record differential temperature (tdif). A thermistor was mounted externally at each end of the VACM pressure case (a distance of 1.74 meters apart), and a differential resistance was measured and recorded. The lithium batteries in the instruments failed shortly after deployment, giving short records of all variables. See McCullough (1975) and Dean (1979) for further information.

One of the VACMs (6331) contained a pressure transducer, manufactured by Paine. It is a strain gauge with a rated accuracy of .05 per cent of full

scale. The instrument is routinely calibrated before deployment.

Temperature/Pressure Recorder

An instrument to record temperature, pressure and time (T/P) was developed in the Draper Laboratory at MIT for MODE-1 and has been used extensively since 1973. The instrument stores a sample every 15 seconds and records the sum of 128 successive data samples every 32 minutes on a magnetic tape cassette (128 x 15 = 1920 seconds = 32 minutes).

Temperatures have a resolution of .001°C (Wunsch and Dahlen, 1974). The

absolute accuracy is not specified.

The pressure sensor is a strain gauge with a manufacturer-specified accuracy of .03 per cent of full scale (Nunsch and Dahlen, 1974). These sensors are recalibrated for each instrument deployment.

MOORINGS

Details of the mooring configuration are shown in Tables 5-13. The items on each mooring are listed. Depths in meters and data names are included for Gata recording instruments.

The anchor was usually a cylinder weighing from 2000-2700 pounds (wet weight). In the Gibbs Fracture Zone, the anchor on the short mooring weighed

1000 pounds.

Items with the words "glass spheres" refer to glass flotation spheres of 16" or 17" diameter with hard hats, each one bolted to 3/8" chain at 1 meter intervals.

Milliman samples are corrosion measuring devices, attached to the mooring wire.

Figures 1 through 3 show mooring locations and Tables 1 through 4 give summaries of the instruments, their depths and the quality of the data.

See Heinmiller (1976) for a more complete description of WHOI moorings.

DATA PROCESSING

Current Meters

The data from the instrument tapes were transcribed to 9-track magnetic tapes, converted to scientific units, edited to remove launch and retrieval transients and bad points, and linearly interpolated across missing or erroneous data cycles.

WHOI data are identified by a mooring number, a sequential instrument position number (e.g., 5713 is the third instrument down on mooring 571), a letter to indicate the data version (e.g., 5713B is the second editing of 5713), and a number to indicate the time sampling interval for that data record (e.g., 5713B1800 is the half-hour (1800 seconds) averaged version).

Low-passed versions of data series were formed by passing the data through a Gaussian filter with a 24 hour half-width, and then subsampling the filtered series once a day. The composite plots shown for each mooring and the time series plots and progressive vector plots on the microfiche use

these low-passed data files.

Temperature/Pressure Recorders

Cassette reading and preliminary data processing were carried out at MIT. The basic time series received by WHOI had been truncated to remove launch and retrieval transients, but detailed editing was done at WHOI. spectral plots, time series and statistics are shown for the T/Ps, and the low-passed temperature data are shown on the composite temperature plots for each mooring.

PROGRAMS

Time Series Plots

Current meter and T/P variables versus time are presented graphically. All the plots are based on low-passed time series.

Statistics

Statistics for each variable measured by the current meters and T/P's are sented on microfiche. Mean, standard error, variance, kurtosis and presented on microfiche. extrema are given for all the variables; east and north covariance, correlation and other statistics are given for the vectors. The data series used is based on the instrument sampling interval. For reference, note that a Gaussian random variable would have a kurtosis of three and a skewness of

See Tarbell, Spencer and Payne, (1978) for a more detailed discussion of these parameters.

Progressive Vector Plots

Based on a low-passed time series, the current vectors are placed tail-to-head so as to show the path that a perfect particle in a perfectly homogeneous flow would have travelled. Flow regimes and low frequency behavior show up well on this type of plot. The plot begins with an asterisk and the first day of each month is marked with a plus sign and every 5th month is annotated.

Vector Stick Plots

The 24-hour averaged current components are plotted as individual vectors along a time scale. Unless otherwise indicated, the vector orientation is such that north is upwards on the page.

The vector roses show current vectors sampled every 7 days, plotted at

the location of the mooring.

Histograms

The variables temperature, speed and direction are shown as frequency of occurence versus amplitude plots. The mean for each data series is marked.

Spectra

The horizontal kinetic energy (HKE) and temperature are displayed as spectra. The HKE spectrum is half of the sum of the spectra of the east and north components. It has the advantage of not being tied to

a particular coordinate system.

The HKE and temperature have units of (cm²/sec²)/cph and (°C)²/cph respectively. The spectra are all one-sided, i.e., the area under the spectrum is equal to the variance of the original record. The plots are log-log rather than 'variance preserving', i.e., the contributions of various frequency bands to the total variance are not in proportion to the displayed areas.

The spectra are calculated based on data sequences of 3240 or 4000 points ('pieces'). Frequency band averaging is across three

frequencies and no data-windowing or prewhitening is done.

The WHOI spectral program TIMSAN (Hunt, 1977) averages the spectra in increasingly large groups at the high frequencies to prevent having to plot thousands of points. This procedure gives few degrees of freedom (d.o.f) at the low frequencies, and many at the high frequencies. For the spectra calculated from one piece with three frequencies averaged there are 6 d.o.f. in the lowest frequency group, and 600 d.o.f. in the highest frequency group.

REFERENCES

- Dean, J. P., 1979, A Moored Instrument for Vertical Temperature Gradients. J. Geophys. Res. 84, 5089-5091.
- Heinmiller, R. H., 1976, Woods Hole Buoy Project Moorings, 1960-1974. WHOI Ref. 76-53 (Technical Report).
- Högg, N. G., 1980. Observations of internal Kelvin Waves trapped round Bermuda. J. Phys. Ocean. 10, 1353-1376
- Hogg, N. G., E. J. Katz and T. B. Sanford, 1978. Eddies Islands and Mixing. J. Geophys. Res. 83, 2921-2938.
- Hogg, N. G. and W. J. Schmitz, Jr., 1980. A dynamical interpretation of low frequency motions near very rough topography the Charlie-Gibbs Fracture Zone. J. Mar. Res. 38, 215-248.
- Hunt, M., 1977, A program for spectral analysis of time series. WHOI Technical Memorandum 2-77.
- McCullough, J. R., 1975, Vector Averaging current meter speed calibration and recording technique. WHOI Ref. 75-44 (Technical Report.)
- Payne, R. E., A. L. Bradshaw, J. P. Dean and K. E. Schleicher, 1976, Accuracy of temperature measurements with the V.A.C.M. NHOI Ref. 76-94 (Technical Report).
- Sanford, T.,B. and N. G. Hogg, 1977. The North Atlantic fine and microstructure cruise, Knorr 52 and Eastward 75-12. WHOI Ref. 77-11. (Technical Report)
- Schmitz, W. J. Jr. and N. G. Hogg, 1978. Observations of energetic low frequency current fluctuations in the Charlie-Gibbs Fracture Zone. J. Mar. Res. 36, 725-734.
- Tarbell, S., A. Spencer and R. E. Payne, 1978. A compilation of moored current meter data and associated oceanographic observations. Vol XVII (POLYMODE Array II data).

 WHOI Ref. 78-49 (Technical Report).
- Wunsch, C., and J. Dahlen, 1974, A moored temperature and pressure recorder. <u>Deep-Sea Res.</u>, 21, 145-154.

TABLE CAPTIONS

Table	1	Summary of Mooring Locations.
Table	2	Data return and quality from instruments in the
		Charlie-Gibbs Fracture Zone.
Table	3	Data return and quality from instruments in the
=		Bérmuda Microstructure array.
Table	4.	Data return and quality from instruments in the
		Island Trapped Naves experiment.

The following tables are printed on microfiche only:

lables 5-7	List of modring components: Gibbs fracture Zone.
Tables 8-10	List of mooring components: Bermuda Microstructure Array.
Tables 11-13	List of mouring components: Island Trapped Waves experiment.

	**
	F-IGURE CAPTIONS
Figure 1 Figure 2	Location of moorings in the Charlie-Gibbs Fracture Zone. Location of moorings near Bermuda for the Bermuda Microstructure Array.
Figure 3	Location of moorings near Bermuda for the Island Trapped Waves experiment.
Figure 4	Current vectors at mooring locations in the Charlie-Gibbs Fracture Zone. Vector plotted for every 7th data point in a 271 day series.
Figure 5	Current vectors at mooring locations of the Bermuda Microstructure Array. Vector plotted for every 7th data point in a 271 day series.
Figure 6	Current vectors at 2 mooring locations during the Island Trapped Waves experiment. Vector plotted for every 7th data point in a 394 day series.
Figures 7-9 Figures 10-12 Figures 13-15 Figures 16-18 Figures 19-21 Figures 22-24	Composite time series plot of current vectors: Moorings 570-572 Composite time series plot of temperatures: Moorings 570-572 Composite time series plot of current vectors: Moorings 553-555 Composite time series plot of temperatures: Moorings 553-555 Composite time series plot of current vectors: Moorings 633-635 Composite time series plot of temperatures: Moorings 633-635

TABLE 1 SUMMARY OF MOORINGS

Mooring No.	No. of instruments	'Date Set	Date Retr.	Location	Bottom Depth (m)	
	СНА		FRACTURE ZONE uise Knorr 54 Leg 7			
570	İ	Sep. <u>2</u> 6 1975	June 24 1976	52° 42.7'N 33° 59.2'W	-4288 ⁻	
571	3	Sep. 27 1975	June 26 1976	52° 53.7'N 35° 31.0'W	2895	
572	4	Sep. 27 1975	June 25 3976	52° 46.1'N 35° 30.0'W	3398	
	-BER <u>i</u>		TRUCTURE ARRA' uise USCGC Evergreen	r		
553	5	Apr. 28 1975	Jan. 26 1976	31° 46.9'N 64° 26.2'W	4353	
554	5-	Apr. 29 1975	Jan. 26 1976	32° 21.5'N 65° 27.0'W	4774	
555	7	Ápř. 9 1975	Jan. 25 1976	32° 59.0'N 64° 23.8'W	4527	
ISLÂND TRĂPPED WAVES EXPERIMENT Cruise RV Erline Oceanus 52 Leg III						
633	4	No V 15 1977	Dec. 7 * 1978	32° 33.8'N 64° 44.7'W	161-1	
634	3	No⊽₁ ∄6 1977	Dec. 16 1978	32° 32.2'N 64° 44.1'W	942	
635	3	Nov. 17 1977	Dec. 17 1978	32° 22.4'N 65° 0.9'N	924	

^{*} Recovered by R/V Panulirus.

TABLE 2 DATA RETURN AND QUALITY

RECORDS FROM CHARLIE-GIBBS FRACTURE ZONE

Record: No•	Inst. depth (m)	Data Dates 1975 - 1976	No. of Data days pres- ented	Comments
5701	4227	Sep.27 - June 24	271: V T *	
571 <u>1</u>	1007	Sep.28 - June 26	272 V T	Electronic problems
5712	2537	Sep 28 - Nov. 4/75	39 V T	
5713	2835	Sep 28 - June 26	272 V T	
5721	998	Sep.28 - June 25	271 V T	
5722	2528	Sep.28 - June 25	271 V T	
5723	3060	Sep.28 - June 25	271 V T	
5724	3360	Sep.28 - June 25	271 V T	

Velocity component data presented Temperature "

^{*} There were 2 thermistors on this current meter. The records were virtually identical, only one series is displayed

TABLE 3

DATA RETURN AND QUALITY

RECORDS FROM BERMUDA MICROSTRUCTURE ARRAY

Record No.	Inst. depth (m)	Dāta Dātēs 1975 — 1976-	No. of days	Data pres- ented	Comments
5531 5532 5533(T/P) 5534 5535	306 506 734 1005 1505	Āpr.29 - Jan.2 Apr.29 - Oct.1 Apr.29 - Jan.2 Apr.29 - Jan.2 Apr.29 - Jan.2	5/75 170 26 272 26 272	V T V T TD T P V T V T *	Errors on sea tape Vane stuck after Sept.15
5541 5542 5543(T/P) 5544	1013		26 271 29/75 122 26 271	V T V T T P V T	Rotor stuck after Dec. 1 Battery depleted
·5545	1513	Apr.29 - Mây 2		V ⁻ .T #	Vane stuck after May 26 Rotor below threshold after Oct. 19
5551 5552 5553(T/P) 5554 5555	316 516 752 766 1016	Apr.30 - Jan.2 Apr.30 - Aug.1 Apr.29 - May 2 Apr.29 - Nov.2 Apr.30 - Jan.2	2/75 104 20/75 20 21/75 206	γ τ	Battery leaked Electronic problem Battery leaked
5556 5557	1516 4016	Apr.30 - June Apr.30 - Jan.2	12/75 44	V T #	Corrosion in vane vane stuck after June 13

All instruments were current meters except where noted (T/P)

- Velocity component data presented
- P Pressure
- T Temperature " "
- TD Instrument also had differential temperature sensors
- * No data is presented for the basic velocity series Time series are shown for all low-passed data.
- # All data is presented for the stated interval.
 A questionable full-length series is used to show provecs and time series plots.

TABLE 4

DATA RETURN AND QUALITY

RECORDS FROM ISLAND TRAPPED WAVES EXPERIMENT

iRecordi No∙	Inst. depth (m)	Data Dates 1977 - 1978	No. of days	Data pres- ented	-Comments
6331 6332	792 1092	Nov.16 - Dec.3 Nov.16 - Dec.3	382 382	T P. V T.	Rotor did not work
6333 6334	1392 1692	Nov.16 - Aug.18/77 Nov.16 - Dec.3	275 382	Y T	Clock problems
6341 (T/P) 6342 6343	242 542 842	Nov.16 - Dec.16 Nov.16 - Dec.16 Nov.16 - Dec.16	395 395 395	T P V T V T	
6351(T/P) 6352 6353	224 524 824	Nov.17 - Dec.16 Nov.17 - Dec.16 Nov.17 - Dec.16	394 394 394	T P V T T	No rotor data on cassette

All instruments were current meters except where noted (T/P)

Velocity component data presented Peressure "" " Temperature " "

Figure 1

Figure 2

Figure 3

55555555555555555555555555555555555555	77777777777		0000°	11 111
5 5	77 77 77	00	00_	1111
55		00	00	11
· -	_ 	00	QO	11
55555555555	7 .7 .	0.0	00	11:
555555555555	7 <i>7</i> .	-00=	00	12
:55	77	00	•	4 1 4 1
55	77	· -	.00	11
55 55	· · ·	00	00	11
	77	00.	00	11
555555555555	7.7	00000	00000	11:
5555555555	77		0000	4.4
		900		+ +

GGGG	GGGGGG	II.ΰIIĪΰĪ	8888888888	
GGGGG	GGGGGGG	III II III	888888888888	
GG	GG	II	88- ŠB	-
GG	ĢĢ	<u>I</u> _I	88. 88	
GG		I - I -	88 88	
GG		.11	88888888888	
GG	GGGG	II	88888888888	
GG	GGGGG	11	88 88	,
GG	GG	11	88 BB	į
GG	GGG:	11	88 88	i
	GGGGGGG	IIIIIII	888888888888	,
GGGG	GGGGG GG	111111	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	

55555555555555555555555555555555555555	77777777777777 77777777777777	11. 111	1 <u>1</u> 111
55	77 77	1111	1111
55 ₋	77	1:1	11
55·	.77	11	1.1
55555555555	ヺヺ	1.1	11
555555555555	77	11	2.1
55	77	11	11
55 .	77 .	11	11
55 55	77	11	11
555555555555	77	11	1-1
5555555555	77	11	11

8888888		SSSSS	-
88 88 88	88 88 88	\$\$\$\$ \$ \$\$ \$\$ \$\$ \$\$	S\$
8888888 888888 88 88	388883 88 88	\$\$\$\$ \$ \$\$ \$\$ \$ \$\$	282823 282823 28 28 28
88 888888 868888	88 888888 88888	-\$\$ -\$\$\$\$ \$ \$\$ -\$\$\$ \$ \$	

55555555555555555555555555555555555555	777777777777	11	2222222222
	777777777777	111	22222222222
95	77 77.	1111	22 22
55	77		22
5 5	7.7	1.1	55
55555555555555555555555555555555555555	77	11	55
	7 7	1=1	55
55	77	11	55.
55	77	11-	55
55 55		11	55
55555555555555555555555555555555555555	77	11	22222222222
ວລຸບວນວນຈວນວ	//	11	CEECEECEEE

FFFFFFFFFFF	RRHRR	RRRRRRR	AAAA/	1 44444
FFFFFFFFFFF		RRRRRRRR	AAAAAA	AAAAAA
FF	RR	ŔR	: A A	ĀΑ
<u>.e</u> f	-RR:	-RR	-∳.A.	AA
FF	RR	RR	AA	A-A
FFFFFFFF	RRRRR	RRRRRRRR	AAAAAA	
FFFFFFF	RHHRR	RRRRRRR	<u> </u>	
EF	RR	RR	ŅΛ	ÅA
FF	RR	RR	AA	AA
FF	RR	RR	AA	AA
FF.	RR	RR	ΑĄ	AA
FF ⁻	RR	RR	AA	AA

55555555555555555555555555555555555555	777777777777 777777777777	11 111	3333333333 3333333333333
`55	77 77	1111	33 33
55	77	11	33
55	77	11	33
55555555555	7 7	<u></u>	3333
555555555555	77	11	3353
55	77	<u>ī</u> ī	33
55	77	11	33
⁻ 55 55	77	11	33
555555555555	77	11	333333333333
5555555555	77	11	3333333333

00000000000	TÄTTÄTTTT	ŲÜ	UU
CCCCCCCCCCCCC	T-17-11171111	ŲU	UÚ
CC CC	TT	UU	ŲU
-CC	.T-T -	ŲŪ.	ַּטָטַ
čč	TT	UU-	UU
cc	ΤŢ	้ำกั	UU
ĈĈ	_ T T	ŲU	UU
·cc	TT	UU	υu
CC	TT	UU	UŲ
כֿכ יַבֿכ	ΤŤ	ÚU	·UU
CCCCCCCCCCCCCC	ŤŦ	ບົນບຸນບຸນ	UUUUUU
CCCGCCCCGG	TT	ບບໍ່ບໍ່ບັບບ	บบบบบ

555555555555 55555555555555	7777777777777 77777777777	22222 <u>2</u> 22222 22222222222	<u>IÎ</u> -1*Î*Î.
55	77 77	22 2 2	1111
55	7.7	22	1.1
· 5 5	ַ 7ָ๋7	22	11
55555555555	- 7.7	55	Ĭ-1
555555555555	77·	22	11.
55	77	22	11
·55	77-	22.	11
55 £5	77	22	11
555555555555	7.7	55555555555	11
5555555555	77	L4155555555555	13

```
EEEEEEEEEE
RRRRRRRRRRRRR
                           EEEEEEEEEEE
          RR
                           EE
RR -
                           EE
          RR
RR
                          EE
          RR
RR
                          EEEEEEE
RRRRRRRRRRRRRR
RRRRRRRRRRRRR
                          EEEEEEEE
                           EE
RR
       RR
                           EE
        RR
RR
                           EE
RR
         RR
         RR.
                           EZEEEEEEEEE
RR
                          EFFEEEEFEEE
          RK
RR
```

55555555555555555555555555555555555555	7777777777 7 7 7777777777777	2222222222	2222222222 222222222222
55	77 <i>7-</i> 7	55 55	55 55
-55	77	22 :	22
55	77	22	22
55555555555	77	22	22
55555555555	7-7	55	55
:55	77	22	55
55	77	22	-22
55 55	77	22	22
555555555555	77 ⁻	55555555555	55255555555
5555555555	7 7	55555555555	555555555555

777777777	69868	00000	NN		NN
12777777777	000000	8888888	NNN		NN
ZZ	66	68	NNK	N	-NN
. 	86-	± 0 0 :	:NN-	NŇ	NN.
22	88	6₿1	NN	NN	NN
ZZ	86	99	-NN-	NN	NN
ZZ	66	66.	NN	NN	NN
22	88	56	NN	NN	NN
22	88	6 6	NN:	NN	NŅ.
72 22	66	8 8	NN	N	NNN
77777777777	988888		NN	i	NNN
2222222222	00000	999999	-NN		NN

555555555555	7777777777777	5555555555	3333333333
555555555555	77777777777	555555555555	3333333333333
55	77 77	2 <u>2</u> 22	33 33
5 5	77	22	33
-55	77	22	3 3.
55555555555	7.7	22	3333
5 55555555555	77	22	3333
55	77	22	33
55	77	22	33
55 55	77	22	33
555555555555	7-7	555555555555	3333333333333
5555555555	77	555555555555	3333333333

```
7777777777777
555555555555
                                     555555555
5555555555555
                  777777777777
                                    55555555555
55
                  77
                          77
77
                                                22
                                    22
55
                                                55
55
                         77
                                                22
55555555555
                        7-7
                                               22
                        77
555555555555
                                             55
                       77
           55
                                           25
           55
                       77
                                        22
                      77
55
           55
                      77
555555555555
                                    555555555555
                                                              44
 5555555555
                      77
                                    55555555555
                                                              44
```

Table 5

W.H.O.I. Mooring # <u>570</u>

Charlie-Gibbs Fracture Zone

	Length of	Mooring Component	Depth	Data
	ikem in m.		in_m.	Name_
3.	1	Radio Float	4190	
22	2	1/2" chain		
23	12	12 16" spheres		
4	- 20 -	3/16" wire		
5	1.5	VACM	4227	5701
-6	13	5/8" Nylon		
7	3	3/8" chain		
8	2	Release	4247	
9	÷ 5	1/2" chain		
10		5/8" Nylon		
11	. 3	J./2" chain		
_ 12		Anchor	4288:	

Mooring set	September 26, 1975	Lati tude	52º 42.7'N
Retrieved	June 24, 1976	Longitude	33° 59.7'W
Dave at sea	272		

W.H.O.I. Mooring # 571
Charlie-Gibbs Fracture Zone

	Length of item_in m.	Mooring Component	Depth in m.	Data Name
1		Radio Float	970	
1 2	2	1/2" chain	570	
3	13	13 17" spheres		
4	20	3/16" wire		
5	1.5	VACM	1007	5711
<i>4</i> 6	1000	3/16" wire	1007	3/11
7	400	3/16" wire		
8	66	3/16" wire		
9	28	5/8" Nylon		
10	8.	8 17" spheres		
11	20-	3/16" wire		
12	1.5	VACM	2538	5712
13	282	3/16" wire		
14 15	12	12 17" spheres		
	1.5	VACM	2835	5713
16	15	5/8" Nylon		
17	3	3/8" chain		
18	2 3	Release	2857	
19	3	1/2" chain		
20	20	5/8" Nylon		
21	2.5	1/2" chain		
22		Anchors	2895	

Mooring set	September 27, 1975	Latitude	52° 53.7'N
Retrieved	June 26, 1976	Longitude	35°_31.0'W
Days at sea	273		

Table 8

W.H.O.I. Mooring # _553

Bermuda Microstructure Array

Length of item_in_m.	Mooring:-Component	Depth	Data Name_
1 1	Radio Float	2 86-	
2 2	1/2" chain		
3 15	3/8" chain, 15 16" spheres		
4 1.5	VACM	306	5531
5 180	3/16" wire		
6 17	3/8" chảin		
7 1.5	VACM	506	5532
8 218	3/16" wire		
9 .4	T/P	725	5533
16 258	3/16" w <u>i</u> re		
11 18	3/8" chain, 18 16" spheres		
12 1.5	VACM	1005	5534
13 480	3/16" wire		
14 15	3/8" chain, 15 16" spher <u>es</u>		
15 1.5	850 CM	1505	5535
16 3	3/8" chain		
17 <u>2</u>	Release		
18 1193.5	1/4" wire		
19 1000	3/16" wire		
20 400	3/16" wire		
21 177	5/8" Nylon		
22 20	5/8" Nylon		
23 3	1/2" chain	_	
24	Anchor	4353	

Mooring set April 28, 1975

Retrieved January 26, 1976

Latitude 31° 46.9'N

Longitude 64° 26.2'W

Days at sea 273

Table 9

W.H.O.I. Mooring # 554

Bermuda Microstructure Array

Length of item_in m.	Mooring Component	Depth in m.	Data Name
1 2 3	Radio Float Light Radio	.294	
-4 2	1/2" chain		
5 15	3/8" chain, 15 16" spheres		
6 1.5	VACM	314	5541
7 180	3/16" wire		
8 17:	3/8" chain, 17 16" spheres	514	5542
9 1.5	VACM 3/16" wire	214	2242
10 218 11 14	T/P	733	5543
12 258	3/16" wire	7-55	JJ-15
13 18	3/8" chain, 18 16" spheres		
14 1.5	VACM	1013	5544
15 480	3/16" wire		
16 15	3/8" chain, 15 16" spheres		
17 1.5	850 -CM	1513	5545
.18 3	3/8" chain		
19 2	Release		
20 1221	1/4" wire		
21 1000	3/16" wire		
22 780	3/16" wire		
23 180	5/8" Nylon		
24 20	5/8" Nylon		
25 3	1/2" chain		
26	Anchor	4774	

Mooring set April 29, 1975	Latitude 32° 21.5'N
Retrieved January 26, 1976	Longitude 65° 27.0'W
Days at sea 272	

Table 11

W.H.O.I. Mooring # 633

Island Trapped Waves Experiment

	Length of item in m.	Mooring Component	Depth	Dātā
:	rem III-m.		ingm.	Naņa_
1		Radio :float	565	
		Radio		
-		Light		
.2	.2	1/2" chain		
3	21	21 17" spheres		
4	20	3/16" wire		
5	1.5	VACM	311	6331
6	297	3/16" wire		
7	1.5	VACM	911	6332
8	297	3/16" wire		
9	1.5	VACM	1211	6333
10	259	3/16" wire	_	
11	17	17 17" spheres		
12	20	3/16" wire		
13	1.5	VACM	1511	6334
14	1.5 3	3/8" chain		
15	2	Release		
16	3	3/8" chain		
17	7.1	3/16" wire		
18	15	5/8" Nylon		
19	.2	1/2" chain		
20		Anchor	1611	

Mooring set	November 15, 1977	Latitude	32° 33.8'N
Retrieved	December 7, 1978	Longitude	64° 44.7'W
Days at sea	388_		

W.H.O.I. Mooring # 634

Island Trapped Waves Experiment

	Length of	Mooring Component	Depth	Data
-	item in m.		in m.	Name_
_				
Ţ		Radio Float Radio	217	
		1		
	2	Light		
ż	2	1/2" chain		
3	28	28 17" spheres		
4.	.4	T/P	242	6341
3 4 5 5	.295	3/16" wire		
ő	1.5	VACM	542	6342
.7	263	3/16" wire		
8	13	13 17" spheres		
9	20	3/16" wire		
10	1.5	VACM-	842	6343
10 11	3	3/8" chain		_
12	2	Release		
13	3	3/8" chain		
14	71	3/16" wire		
15	15	5/8" Nylon		
16	2	1/2" chain		-
17		Anchor	942	

Mooring set	November 16, 1977	Latitude 32° 32.2'N
Retrieved	December 16, 1978	Longitude 64° 44.1'W

Days at sea 395

570161H 6502 POINTS FROM: 75+ 1X -27 TU 76- VI -24 INST. V-0129 DEPTH 4227 M. VARIABLE EAST NORTH SPEED TEMPERATURE TEMP. 2 UNITS MM/S MM/S MM/S DEGREES C. DEG. C. MEAN 40.584 -5-962 2.941 730349 2.952 STD. ERR. · 908 .711E-3 -302 .589 •714E•3 VARIANCE 5357 • 006 594 • 362 2253 • 925 ..331E+2 .329E+2 STU. DEV. 73.192 24.380 47.476 .575E-1 .573E -1 KURTOSIS 2.621 3.545 3.496 37450 3 . 431 SKEWNESS E-145 .993E-1 -.896 - . 892 1.011 MINIMUM -94.496 -278.507 2.316 2.782 2.793 MAXY 98 - 115 183 • 187 279 - 208 3.064 3.074 DURATION 270.88 DAYS EAST & NORTH CUVARIANCE **■75 • 696** STD. ERR. OF COVARIANCE 27 . 299 STO. DEV. OF COVARIANCE 2201 . 256 PERLOD, HRS. CORRELATION COEFFICIENT 1.000 - 424E-1 100 1.0 101 VECTOR MEAN 41.020 VECTOR VARIANCE 2975 • 684 VECTOR STD. DEV. 54.550

AUTO SPECTRUM
5701B1H EAST
5701B1H NORTH
4227 METERS
75-1X-27 TO 76-VI-23
FIECES WITH 3240 ESTIMATES
PER PIECE AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

AUTO SPECTRUM
5701B1H TEMPERATURE1
4227 METERS
75-1X-27 TO 76-VI-23
1 PIECES WITH 3240 ESTIMATES
PER PIECE- AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

######################################	***	*****	***	********	****
VARIABLE	*	EAST	NORTH	SPEED	TEMPERATURE
UNITS	-₩	MM/S	MM/S	MM/S	DEGREES C.
****	***	*****	***	****	****
MEAN		- 16 -3 75	●37 • 509	73::050	3•774
STU. ERR.	ja -	•637	- 625	• 486	•989E•3
VARIANCE.	- 🖀 :	.2651 • 218	2549 869	1539 • 818	•638E <u>~2</u>
STD. DEV.	- #	51 • 490	50.496	39.241	799E+1
KURTOSIS	# -	3.166	2.942	3.328	5.260
SKEWNESS	-	 744E-1	*•307	•794	-1-745
MINIMUM	# -	-206 445	-237 • 379	• 227	3 • 4 9 0
MŮMIXÁM		179.167	100.551	245.435	3.916

EAST & NORTH

COVARIANCE	
STD. ERR.	UF COVARIANCE
STD. DEV.	UF COVARIANCE
CORRELATIO	N COEFFICIENT
VECTOR MEA	Ň
VECTOR VAR	IANCE
VECTOR STD	· DEV.
-	TOTON UDO:

42.683 3447.531 40.927 2600.543 50.996

-385 - 914

* SAMPLE SIZE * 6524 RGINTS * * Spanning Range

* FRUM 75 IX -28 08:15:00 * TU 76 VI -26 03:15:00

* DURATION 271.79 DAYS

AUTO SPECTRUM

5711A1H EAST

5711A1H NORTH

1007 METERS

75-1X-28 TO 76-VI-24

1 PIECES WITH 3240 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

571241H 881 POINTS FROM 75- IX -28 TO 75- XI -04

INST	V+0119	DEPTH	2537	M+

	+++	*******	****	****	****
VARIABLE	#	EAST	NORTH	SPEED	TEMPERATURE
UNITS	*	MM/S	MM/S	MM/S	DEGREES C.
****	***	*****	***	*****	***
MEAN:	≅ .	-23.041	•2•363	55 • 696	3.110
STD. ERR.	: # -	1-• 296	1-2474	• 969	•587E - 3
VARIANCE	: \$:	1479 • 226	1913+620	826-985	304E-3
STO. DEV.	=	38,461	43.745	28.757	•174E +1
KURTOSIS	- #	3 • 9 4 4	2 • 956	3•939	2 • 806
SKEWNESS	#	•151	-•641E-1	1 • 034	= • 385E = 1
MINIMUM	` =	·149.923	-125,253	7.872	3,058
MAXIMUM	₩-	152 • 155	145.070	163.393	3 • 151

EAST & NORTH

COVARIANCE STD. ERR. OF COVARIANCE STD. DEV. OF COVARIANCE CORRELATION COEFFICIENT VECTOR MEAN VECTOR VARIANCE VECTOR STD. DEV.

-753 · 837 69.214 2054.375 -. 448 23.156

1696 423

41.188

881 PUINTS SAMPLE SIZE = SPANNING KANGE FROM 75- IX -28 08.15.00 75- XI -04

DURATION 36.67 DAYS

AUTO SPECTRUM 571281H EAST 57:281H NORTH 2537 METERS 75-1X-28 TO 75-X1-03 1 PIECES WITH 432 ESTIMATES PER PIECE AVERAGED OVER 3 ADJACENT FREQUENCY BANDS

00.15.00

AUTO SPECTRUM 571281H TEMPERATURE 2537 METERS
2537 METERS
75-1X-28 TO 75-X1-03
PIECES WITH 432 ESTIMATES
PER PIECE, AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

***	***	****	****	****	****
VARIABLE	#	EAST	NORTH-	SPEED	TEMPERATURE
UNITS	₩.:	MM/S	MM/S:	MM/S	DEGREES C.
*****) # # #	*****	****	*****	****
MEAN-	8	€4 • 075	7 • 562	52.562	3.040
STU. ERR.	∰.	• 468	•563 [;]	•353	•535E=3
VARIANCE		1430.352	2071.516	812,933	187E=2.
STD. DEV.	Ŧ	37.820	45.514	28.512	•432E+1
KURTUSIS	Ř	3.036	610.6	4 • 7.08	2.545
SKEWNESS		-,169	.105	1.105	•133
MINIMUM	*	•147•772	145 • 281	• 935	2 • 894
MUMIXAM	- X	127.018	ã03∙11 ^{:9} °	229.015	3.169

EAST & NORTH

COVARIANCE
STD. ERR. UF COVARIANCE
STD. DEV. UF COVARIANCE
CORRELATION COEFFICIENT
VECTOR MEAN
VECTOR VARIANCE
VECTOR STD. DEV.

-734 • 709 24 • 724 1996 • 975 • • 427 8 • 590

1750 • 934 41 • 844 SAMPLE SIZE # 6524 POINTS

SPANNING KANGE

* FxUM 75* IX *28 08*15*00 * TU 76* VI *26 03.15.00

+ DURATION 271.79 DAYS

AUTO SPECTRUM
571381H EAST
571381H NORTH
2835- METERS
75-1X-28 TO 76-V1-24
1 PIECES WITH 3240-ESTIMATES
PER PIECE- AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

AUTO SPECTRUM
5713B1H TEMPERATURE
2835 METERS
75-1X-28 TO 76-V1-24
1 PIECES WITH 3240 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

5721A1H 6513 POINTS FROM 75 1X -28 1110-A 4.15NI DEPTH 998 Me VARIABLE NORTH EAST SPEED TEMPERATURE UNITS MM/S MM/S MM/S DEGREES C. MEAN 13+691 ***32 • 670** 92 • 499 3.780 STU. ERR. #856 •839 .563: •143E •2 VARIANCE 4775 810 4588 • 248 2062 • 712 •133E=1 STU. DEV. 69.107 67.737 45.417 KURTUSIS 2.944 2 . 488 3.383 2 . 643 SKEWNESS •303 -.954 -.812E-1 .722 MINIMUM -179.519 -257,229 5.817 3.447 MAXIMUM 251 • 435 147 • 102 288 - 166 3.981 EAST & NURTH COVARIANCE SAMPLE SIZE . 6513 POINTS -436 • 177 STO. ERR. OF COVARIANCE 63.617 STD. DEV. OF COVARIANCE 5134.116 SPANNING RANGE CORRELATION COEFFICIENT -.932E-1 FROM 75- IX -28 12.15.00 VECTOR MEAN 35.423 TU 76 VI -25 20 • 15 • 00 VECTOR VARIANCE 4682.029 VECTOR STD. DEV. 68 • 425 DURATION 271 • 33 DAYS PERIOD, HRS. PERIOD, HRS. 100 10 100 i.0 1 0⁵ 101 104 100 ı o³ 101 ENERGY DENSITY 102 102 DENSITY 101 10³ KINETIC IERGY AUTO SPECTRUM AUTO SPECTRUM 104 S721A1H TEMPERATURE 5721ATH EAST 5721ATH HORTH 1 0⁰ 998 METERS 998 METERS 75-1X-28 TO 76-VI--75-1X-28 TO 76-VI-24 1 PIECES WITH 3240 ESTIMATES 1 PIECES WITH 3240 ESTIMATES PER PIECE: AVERAGED OVER PER PIECE. AVERAGED OVER BIADJACENT FREGUENCY BANDS ADJACENT FREQUENCY BANDS 10⁵[0.01 0.01 0.1 FREQUENCY, CYCLES/HRS. FREQUENCY CYCLES/HRS.

5722A1H 4513 POINTS FROM 75- 1X -28 DEPTH 2528 M. INST. V.0118 VARIABLE EAST NORTH TEMPERATURE SPEED DEGREES C. UNITS MM/S MM/S MM/S MEAN 75.546 -16.346 -44.411 3.063 STD. ERR. .780 • 451 .528 •707E=3 VÄRTANCE 3963 • 663 1322 • 965 18181945 .326E+2 STD. DEV. 62.958 36.373 42.649 .571E-1 KURTUSIS 3.208 3.634 3.151 2.368 .180 SKEWNESS. .786 .503 ··182 2,252 -251.479 -163.498 2.931 MINIMUM 114 - 455 MAXIMUM 209 870 256.312 3.210 EAST & NORTH COVARIANCE 14.769 SAMPLE SIZE = 6513 POINTS STO. ERR, UF COVARIANCE 39.422 STO. DEV. OF COVARIANCE 3181 • 442 SPANNING KANGE .645E-2 CORRELATION COEFFICIENT FROM 75 - IX -28 12.15.00 VECTOR MEAN 47.323 * TE 76- VI -25 20 - 15 - 00 VECTOR VARIANCE 2643.314 VECTOR STD. DEV. 51.413 DURATION 271.33 DAYS PERIOD. HRS. PERIOD, HRS. 1-00 10 104 1:000 100 1-0 4 đ1 10³ 100 **DENSITY** 102 ıö¹ OPEGREES C/1.1 ENERGY 101 102 DENSITY KINETIC 1 đ⁰ 10³ ENERGY AUTO SPECTRUM 10 1ŏ4 5722AIH TEMPERATURE 0.001 0.1 0.01 2528 METERS FREQUENCY, CYCLES/HRS. 75-1X-28 TO 76-V1-24 PIECES WITH 3240 ESTIMATES PER PIECE, AVERAGED OVER AUTO SPECTRUM AVERAGED OVER S722AIH EAST 3 ADJACENT FREQUENCY BANDS 5722AIH-NORTH ı Ö 5 2528 HETERS

75-1X-28 TO 76-V1-24

1 PIECES WITH 3240 ESTIMATES PER PIECE. AVERAGED OVER 3 ADJACENT FREQUENCY BANDS

0.1

0.001

0.01

FREQUENCY, CYCLES/HRS.

***	*******	****	****	***	****	****
44/	5723A1H **	6513	POINTS	FROM 75-	1x -58	TO 760 VI -25
	INSTA VACIAS	DEBTH	SOLO MA			

****	***	****	************	*****	****
VARIABLE	*	EAST	NORTH	SPEED	TEMPERATURE
UNITS	*	MM/S	:MM/S	MM/S	DEGREES C.
****	***	****	******	*****	****
MEAN	=	#38•224	•9•95 4	75+939	2.970
STD. ERR.	Š .	•875	• 402	•530	•593E=3
VARIANCE	Ţ	4986+988	1050 • 807	1831 • 284	•229E • 2
STO. DEV.	Ħ,	70.619	32.416	42.793	• 479E • 1
KURTUSIS	Ħ.	2.887	3.310	3.937	2.984
SI'EWNESS	=	•883E=1	436E-1	1.033	*•525
MINIMUM	ê	-269 • 454	-122-792	1.992	2•814
MAXIMUM	Ŧ.	192 • 233	123 • 886	274 • 712	3 • 086

EAST & NORTH

~~~~~~~~~		
COVARIANCE		476 • 658
STD. ERR. UF COVARTANCE	¥	34.720
STO. DEV. OF COVARIANCE		2802 • 004
CURRELATION COEFFICIENT		•208
VECTOR MEAN		39•499
VECTOR VARIANCE	.2	3018 • 897
VECTOR STD. DEV.	ŝ	54 • 944
PERIOD, HRS.		

6513 POINTS SAMPLE SIZE .

SPANNING HANGE FROM 75- IX -28-

12.15.00 TO 76= VI -25 20 • 15 • 00

-10

0.1

DURATION 271.33 DAYS PERIOD HRS.





6513 POINTS FROM 75+ IX +ZE T# 76- VI -25 INST . V=0161 DEPTH 3360 M. VARTABLE EAST NORTH SPEED TEMPERATURE UNITS MM/S MM/S MM/S DEGREES C.

MEAN		-31.957	-20.992	************* 76•-187	2.904
• -	_	= ' •		· - · · · · · · · · · · · · · · · · · ·	- T
ITD. ERR.	À	<b>*825</b>	• 548	•561	• 1·1·1 E • 2
VARIANCE	#	4434 • 251	1955 • 429	2047 • 116	•807E-2
STD. DEV.	Ŕ	66.590	44.220	45,245	.899E-1
KURTOSIS	*	3•360	4.452	3.873	2.426
KEWNESS	1∰	-+507E-2	<b>*•764</b>	1.030	••631
MUMININ	7	<b>*</b> 266 <b>*</b> 978	-250·028	1 • 1 1 3	2.634
1AXIMUM	ř	155.841	93.151	285.211	3.040

600 • 467

43-489

EAST & NORTH COVARIANCE

STD. ERR. OF COVARIANCE STD. DEV. OF COVARIANCE CORRELATION COEFFICIENT VECTOR MEAN VECTOR VARIANCE VECTOR STD. DEV.

3509 • 719 .204 38 . 235 3194 . 840 56.523 PERÍOD, HRS.

SAMPLE SIZE . 6513 POINTS

SPANNING RANGE

FROM 75. IX .28 12.15.00 TU 76- VI -25 20-15-00

DURATION. 271 .33 DAYS PERTOD, HRS.



75-1X-28 TO 76-V1-24 PIECES WITH 3240 ESTIMATES PER PIECE, AVERAGED OVER 3 ADJACENT FREQUENCY BANDS



Table 7

W.H.O.I. Mooring # <u>572</u>

## Charlie-Gibbs Fracture Zone

	Length of	Mooring Component	Depth	Data
	item_in m.		in_m.	Name_
1		Radio Float	956	
2	2	1/2" chain		
3-	16	16 16" spheres		
4	20	3/16" wire		
5	1.5	VACM	997	5721
6	1000	3/16" wire		-
7		Milliman sample		
8		Milliman sample		
9		Milliman sample		
10	400	3/16" wire		
11		Milliman sample		
12	<b>79</b> -	3/16" wire		
1-3	13.5	5/8" Nylon		
14	11	11 16" spheres		
15	20	3/16" wire		
16	1.5	VACM	2528	<b>5722</b>
17	500	3/16" wire		
18		Milliman sample		
19	8	8 16" spheres		
20	20	3/16" wire		
21	1.5	VACM	3060	5723
22	269	3/16" wire		-
23	17	17 16" spheres		
24	10	3/16" wire		
25	1.5	VACM	3359	5724
26	13	5/8" Nylon		
27		Milliman sample		
28	5	3/8" chain		
29	2	Release		
30	3	1/2" chain		
31	20	5/8" Nylon		
32	2.5	1/2" chain		
33		Anchors	3398	

Mooring Set	September 27, 1975	Latitude 52° 46.1'N
Retrieved	June 25, 1976	Longitude 35° 30.0'W
Days at sea	273	

# CURRENT ROSES FOR NEAR BOTTOM INSTRUMENTS



Figure 4

Table 10

W.H.O.I. Mooring # 555

## Bermuda Microstructure Array

Length of item in m.	Mooring Component	Depth- in_m.	Data Name_
1 2- 3	Teardrop Float Radio Light	297	
4 2 5 15	3/8" chain		
6 1.5	3/8" chain, 15 16" spheres VACM	316	5551
7 182	Wire	310	2274
8 15	3/8" chain, 15 16" spheres		
9 1.5 10 218	VACM 3/16" wire	516	5552
11 .4	T/P	736	5553
12 28,	3/16" wire	750	3333
13 1.5	VACM	766	5554
14 237 15 10	3/16" wire 3/18" chain, 10 16" spheres		
16 1.5	VACM Spheres	1016	5555
17 480	3/16" wire	2020	0330
18 15	3/8" chain, 15 16" spheres		
19 1.5	850 CM	<b>1516</b>	5556
20 1000	3/16" wire		
21 1000 22 478	3/16" wire		
23 5	3/16" wire		
24 1.5	3/8" chain, 5 16" spheres	403.5	
25 200	:850 CM 3/16" wire	4016	5557
26 20	3/16" wire		
27 50	3/16" wire		
28 100	3/16" wire		
29 76	5/8" Nylon	-	
30 15	3/8" chain, 15 16" spheres		
31 2	Release		
32 5	1/2" chain		
33 20	5/8" Nylon		
34 3	1/2" chain		
35	Anchor	4527	

Mooring Set	April 29, 1975	Latitude 32° 59'N
Retrieved	January 25, 1976	Longitude 64° 23.8'W
Days at sea	271	

# CURRENT ROSES AT A NOMINAL DEPTH OF 1500 M



Figure 5

W.H.O.I. Mooring # 635

Island Trapped Waves Experiment

	Length of <pre>ttem_in m.</pre>	Mooring Component	Depth in_m.	Data Name_
1		Radio Float Radio Light	199	
2	2	1/2" chain		
3	28	28 17" sphexes		
4	.4	T/P	224	6351
⁻ 5	295	3/16" wire		
6 7	1.5	VACM	524	6352
	263	3/16" wire	_	
8	13	13 17" spheres		٠
9	20	3/16" wire		
10	1.5	VACM	824	6353
11	3	3/8" chain		
12	2	Release		
13	3	3/8" chain		
14	71	3/16" wire		
15	15	5/8" Nylon		
16	2	1/2" chain		
<u>1</u> 7		Anchors	924	

Mooring set	November 17, 1977	Latitude 32° 22.4'N
Retrieved	December 17, 1978	Longitude 65° 00.9'W
Days at sca	395	

# CURRENT ROSES AT A NOMINAL DEPTH OF 500 M



Figure 5

















### CURRENT VECTORS FOR MOORING 553



1-E-9



CURRENT VECTOR FOR MOORING 570



Figure 7

1-E-11

TEMPERATURE RECORD

MOORING 570



Figure 10





N 200.

KILONETERS

57.0 18 1 0 GAU24

VERT H

75-1X-20 18 75- VI -22





KILONETERS 5712B1UGAU24 2837:10 29- 1X--26 TO: 78- XI: -7/2

f~~#SEP

0, 290: KILONETERS 571381DGAU24 2835 N 75- IX -28 T8 78- VI -24















### CURRENT **VECTORS** FOR MOORING 554





### CURRENT V.E.CT:ORS FOR MOORING 571



Figure 8

1-F-11



Figure 11

## CURRENT VECTORS FOR MOORING 634







RECORD #5701B1DGAU24 DEPTH=4227 METERS



RECORD #5711A1DGAU24 DEPTH=1007 METERS



RECORD #5712B1DCAU24 DEPTH=2537 METERS



RECORD #5713B1DGAU24 DEPTH=2835 METERS



RECORD #5721A1DGAU24 DEPTH=998 METERS



RECORD #5722A1DCAU24 DEPTH=2528 METERS



RECORD #5723AIDCAU24 DEPTH=3060 METERS



RECORD #5724A1DGAU24 DEPTH=3360 METERS





1-G-10





## CURRENT VECTORS FOR MOORING 635





***	****	-	***
The second secon		5+ IV +29 TO 7	6 <b>•</b> I ≈26
INST. V-0183 DEPTH	306 M.		
VARIABLE + EAST	NORTH	SPEED	TEMPERATURE
UNITS * MM/S	MMZS	MM/S	DEGREES C
****	*****	******	-DEGUEES CA
MEAN # #31-931	18 • 532	213+396	18 • 145
STD. ERR. # 2.119	2.046	1 • 385	•567E+2
VARIANCE = 29351-972	27365 • 655	12542 • 642	•210
STD. DEV. # 171.324	165.426	111-994	• 458
KURTUSIS = 2.744	3 • 268	2.501	8 • 490
SKEWNESS #777E-1	• 21.5	• 462	<b>-1</b> • 912
MINIMUM # #572.516	<b>-</b> 489 <b>.</b> 876	2.846	15.843
MAXIMUM # 402+526	495 • 9 ₀ 7	561 • 533	18.846
######################################	7042.348 302.137 24430.164 .248 .26.920 28358.813 168.401	* SPANNING RAN 75 1 7 6 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	**************************************
FREQUENCY CYCLES/HRS.	-	<u>U,00</u>	0.01 0.1 OUENCY.CYCLES/HRS.

5532P1H 4079 POINTS FR9M 75= IV -29 INST + DT +5106 DEPTH 506 M+ NORTH SPEED TEMPERATURE TDIF EAST VARIABLE DEG. C. DEGREES C. MM/ 's MM/S MM/S UNITS 20.753 183 • 074 16.564 MEAN-• 410 •131E -1 1 . 328 *110E+1 2.590 STD. ERR. 1.779 .143E-3 7191 - 103 -490 12912.912 VARIANCE 27363 • 502 .830E-4 84 - 800 • 700 STD. DEVI 165 • 419 113.635 •911E-2 KURTUSIS 2.612 2.599 3.235 3 + 858 2.071 • • 923 *· 247 .276 .534 SKEWNESS - . 208 1.844 14.376 - • 155E - 1 MINIMUM -411.094 -395,810 439.973 17.872 MAXIMUM 336.132 278 • 320 •642E=1 EAST & NORTH SAMPLE SIZE . 4079 POINTS COVARIANCE 2175.815 STD. ERR. OF COVARIANCE 318 862 STD. DEV. UF COVARIANCE SPANNING RANGE 20364.787 FROM 75- IV -29 01.37.30 .116 CORRELATION COEFFICIENT ŤĦ X •15 23.37.30 75-VECTOR MEAN 20.757 VECTOR VARIANCE 20138.207 DURATIF" 169 . 92 DAYS VECTOR STD. DEV. 141.909 PERIOD, HRS. PERIOD HRS 1:00 103 1000 100* 10 HRS. PERIOD. 1011000 100 10 10⁵ 102 102 104 ιό¹ INFIGREFS. 1-0³ 1-00 103 ENERGY DENSITY DENSI 10 1-02 101 KINETIC AUTO SPECTRUM ENERGY 5532PIH !DIF 105 102 101 0.001 0.01 0.1 FREQUENCY, CYCLES/HRS AUTO SPECTRUM 506 METERS 75-14-29 TO 75-X-14 5532PIH EAST AUTO SPECTRUM 5532P+H TEMPERATURE 5532PIH NORTH 1 PIECES WITH 2025 ESTIMATES 0.001 0.001 PER PIECE. AVERAGED OVER 3 ADJACENT FREQUENCY BANDS 0.01 0.1 0.01 0.1

FREGUENCY, CYCLES/HRS.

FREQUENCY, CYCLES/HRS.

######################################		************ 5• IV •29 TO 76	****** 1 *26
VARIABLE * EAST. UNITS * MM/S	**************************************	**************************************	TEMPERATURE DEGREES C.
MEAN = #10.317 STD. ERR. = .782 VARIANCE = 3999.645 STD. DEV. = 63.243 KURTOSIS = .2.728 SKEWNESS = .237E#1 MINIMUM: = #204.466	3.493 •701 3208.957 56.648 3.342 •231 •190.015	75.612 .496 1610.044 40.125 3.041 .699	6•740 •635E•2 •264 •614 2•902 •178 5•683
MAXIMUM = 194.928  ***********  EAST & NORTH  *********  COVARIANCE =  STD. ERR. OF COVARIANCE =  STD. DEV. OF COVARIANCE =  CORRELATION COEFFICIENT =	228 • 960 412 • 390 46 • 252 3739 • 860 • 115	245.272 **************** * SAMPLE SIZE * SPANNING RAN * FROM 75. IV	8 • 167 ************* <u>• 6538 POINTS</u> GE • 29 • 04 • 00 • 00
VECTOR MEAN VECTOR VARIANCE VECTOR STD. DEV. PERIOD. HRS. 100 100 10	10•892 3604•301 60•036	* TE 76. I.  * DURATION 27 PE 103 1000	2.38 DAYS
DENSITY CH ² /SEC		OPGREES C 12 C/1.U. C/1.U. C/1.U.	1 - - - - - - - - - - - - - -
AUTO SPECTRUM  5534A1H EAST  5534A1H NORTH  1005 METERS  75-1V-29 TO 76-1-24		ENERGY DENSITY	
75-1V-29 TO 76-1-24 PIECES WITH 3240 ESTIMATES PER PIECE: AVERAGED OVER 3 ADJACENT FREQUENCY BANDS 0.001 0.01 0.1 FREQUENCY CYCLES/HRS.		1 0 3 1 0 · 001	0.01 0.1  OUENCY CYCLES/HRS

```
6538 POINTS FROM: 75- IV -29: TO 76-
5535A1HTEMP **
INST . T-0052
               DEPTH 1505 M.
```

VARIABLE	#	TEMPERATURE
UNITS	*	DEGREES C.
****	***	****
MEAN-	ž	4 • 50 4
STD. ERR.	E	•192E=2
VARIANCE	×	•241E-1
STD . DEV.	· 🚆	. 155
KŲRŢŪSIŠ	- 🛎	2.335
SKEWNESS	*	**145
MINIMUM-	ž	4.066
MAXIMUM	*	4 • 8 4 9

SAMPLE SIZE # 6538 PUINTS

SPANNING RANGE

FROM 75. IV -29: 03.30.42

I -26 TU 12.30.42 76-

DURATION 272.38 DAYS PERIOD HRS.



AUTO SPECTRUM
5535A1HTEMP TEMPERATURE
1505 METERS
75-IV-29 TO 76-1-24
1 PIECES WITH 3240 ESTIMATES
PER PIECE. AVERACED OVER
3 ADJACENT FREQUENCY BANDS

********* ** 5541A1	U-0 = 0 1	**************************************	************** 5= IV =29	54- I 456
**************************************	EAST MM/S.	************** NORTH MM/S	**************************************	TEMPERATURE Degrees C.
MEAN STDO ERRO STDO ERRO STDO DEVO STDO SEVENTUSIS SKEWNESS SKEWNE	22 • 117 1 • 824 21665 • 770 1 47 • 193 3 • 766 • 405 • 522 • 638 485 • 418	•55 •866 1 • 935 24365 • 303 156 • 094 2 • 190 •116 •427 • 856 518 • 449	202 • 639 1 • 148 8578 • 635 92 • 621 3 • 391 • 504 5 • 974 696 • 074	18 • 28 9 • 368 E = 2 • 88 3 E = 1 • 29 7 3 • 42 5 • • 69 3 16 • 9 7 6 18 • 9 2 9
KINETIC ENERGY DENSITY CHICKS 1000  1000  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010  1010	SPECTRUM TH EAST H NORTH MEJERS TO 76-1-24	5741 • 169 269 • 821 21770 • 377 • 250 60 • 084 23015 • 536 151 • 709	ENERGY DENSITY (DEGREES C. 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29 22.00.00 -26 03.00.00 1.21 DAYS ERIOD, HRS

**********  ** 5542A1H  INST; V  **********  VARIABLE *  UNITS *  ***********  MEAN *  STD * ERR* *  VARIANCE *  VARIANCE *  STD * DEV *  KURTOSIS *  SKEWNESS *  MINIMUM *  MAXIMUM **		**************************************	**************************************	**************************************
KINETIC ENERGY DENSITY CHAZAGES  KINETIC ENERGY DENSITY  Solor  S	COVARIANCE E DEFFICIENT E	6077.522 173.267 13979.985 .396 .45.547 15521.772 124.586	* SPANNI 76 * * DURATION 10 10 10 10 10 10 10 10 10 10 10 10 10	AUTO SPECTRUM SALATH TEMPERATURE SIA METERS S-IV-29 TO 76-I-24 DES WITH 3240 ESTIMATES PIECE. AVERAGED OVER JACENT FREQUENCY BANDS

**************************************	**************************************	**************************************	****** I =26
**************************************	NORTH MM/S	**************************************	TEMPERATURE DEGREES C.
MEAN = -16.225 STD. ERR. = .779 VARIANCE = 3947.889 STD. DEV. = 62.832 KURTOSIS = 3.199 SKEWNESS =317 MINIMUM = -244.846 MAXIMUM = 154.463	-20.294 .891 51 64.897 71 867 2.689 202 -269.253 179.944	8-7.306 .577 .2165.536 .46.535 .3.37.8 .77.8 .3.220 .277.657	7.046 .864E-2 .486 .697 2.234 .484 5.819 8.929
**********  EAST & NGRTH  ***********  COVARIANCE  STD. ERR. OF COVARIANCE  STD. DEV. OF COVARIANCE  CORRELATION COEFFICIENT  VECTOR MEAN  VECTOR VARIANCE  PERIOD. HRS.  100  100  100  100  100  100  100  1	1473.676 56.699 4574.746 .326 25.983 4556.393 67.501	# * DURATION 271  * DURATION 271  * O	AUTO SPECIRUM 544AIH TEMPERATURE

****	***	**	****	<del>*******</del>	£####	****	****	****	***	
** 554	5A1H	1 ## :6	27 POINT	S FROM	75-	I-V -29:	TO	75= \	425	
		-260T DEP								4
*****	***	*****	******	*******	****	****	****	*****	****	***
VARI ABLE	*	EAST COMP	NOF	RTH COMP		SP	EED	TEM	PERAT	UR Ē
UNITS	*	MM/S EC		MM/SEC		MM/	SEC	ĎΕ	GREES	C.
******	***	****	*****	*****	****	*****	****	***	****	***
MEAN	=	-22.391		-6.521		39.		-		275
STD. ERR.	=	1.345		•7.99		- • ·	928		•	175E-2
VAR I ANCE	=	1134.416		399.788		539.				193E-2
STD. DEV.	=	33.681		19.995		23.2				439E-1
KURTOSIS	=	2.748		3.702		3.	126			882
SKEWNESS	=	303		495		-	975			050:
MINIMUM	=	-113.783		-81.405		17.2	276			188
MAX I MUM	=	74.032		56.108		114.				437
*****	***	***								
EAST COM	B G	NORTH COMP								
		****			**	******	****	****	****	****
COVARIANC	E		= -	216.981	*	SAMPLE			627 P	
STD. ERR.	:OF	COVARIANCE	=	30.071	*					





AUTO SPECTRUM
5545AIH EAST COMP
5545AIH NORTH COMP
1513 METERS
75-IV-29 TO 75-V-24
1 PIECES WITH 300 ESTIMATES
PER PIECE, AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



21-30-42

23.30.42

AUTO SPECTRUM
5545A1H TEMPERATURE
1513 METERS
75-1V-29 TO 75-V-24
1 PIECES WITH 300 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREGUENCY BANDS

6488 POINTS FR8M 75= IV =30 5551A1H INST. V-0111 DEPTH 316 M. NORTH SPEED TEMPERATURE VARIABLE EAST DEGREES C. MM/S MM/S MM/S UNITS -32.533 17.817 73+461 STD. ERR. 2.280 2.616 1.692 0892E#2 18584 + 638 •517 33733 • 439 VARIANCE 443843.154 136.325 •719 STU. DEV. 183+667 210.675 1.944 4.210 2.470 KURTOSIS 2 • 445 -1.289 SKEWNESS • 633 --244 •133 14.783 -289.179 -594 - 268 4.758 MINIMUM 614 + 104 18.731 595 - 212 MAX IMUM 511-112 EAST & NORTH COVARIANCE 5083 815 SAMPLE SIZE = 6488 POINTS STD. ERR. OF COVARIANCE 413.015 STU. DEV. OF COVARIANCE 33267.586 SPANNING RANGE CORRELATION COEFFICIENT FRUM 75* IV *30 11.00.00 • 131 TU 76-1 -25 VECTOR MEAN 80.343 18:00:00 VECTOR VARIANCE 39058 • 7.97 DURATION 270 - 29 DAYS VECTOR STD. DEV. 197 • 633 PERIOD, HRS. PERIOD HRS 1000 100 1.0 100 10 1 0⁶ 1000 ı đ³ 1 ỗ⁵ 102 104 101 COFGREFS C. ENERGY DENSITY 1 đ⁰ 103 DENSITY 1 đ² 10¹ KINETIC AUTO SPECTRUM NERGY SSSIATH EAST AUTO SPECTRUM 1:0¹ 5551A1H NORTH 102 5551AIH TEMPERATURE 316 METERS 316 METERS PIECES WITH 3240 ESTIMATES PER PIECE. AVERAGED OVER 75-1V-30 TO 76-1-25 PIECES WITH 3240 ESTIMATES 3 ADJACENT FREQUENCY BANDS ADJACENT FREQUENCY BANDS 0.1 0.001 0.01 0.001 0.01 0.1 FREQUENCY, CYCLES/HRS.

FREQUENCY CYCLES/HRS.

## S552A1H ## 24	91 PBINTS FROM 75 1 TH: 516 Me	V- =30 +5-75	) n <u>A:1-1</u> :1 m:1 S-	
**************************************	******************* NBRTH	*********** SPEED MM/S	**************************************	******* TDIF DEG. C.
MEAN	•6•134 2•396 22359•266 149.530 2•393 ••176 •414•125 335•092	253 • 461 1 • 877 8772 • 938 93 • 664 2 • 691 • • 322 7 • 816 559 • 182	15.915 .319E-1 2.527 1.590 4.102 -1.454 10.656 17.625	198E=1 194E=3 933E=4 966E=2 4.479 1.002 226E=2 679E=1
CORRELATION COEFFICIENT	# 6545.988 545.209 # 27211.323 • 360 # 188.183 • 18801.315 • 137.118		PERIOD.	HRS.
PERIOD. HRS. 100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  100 10  1	ENERGY DENSITY OF CALLS OF CAL	ENERGY DENSITY CONFIRENCE OF 15	10 ²	
5552AIH EAST 5552AIH NORTH 0.01 0.1 FREQUENCY.CYCLES/HRS.	75-1V-30 TO TE-VIII-0 1 PIECES WITH 1215 ESTIM PER PIECE. AVERAGED OV 3 ADJACENT FREQUENCY BA	IATES Fr	SSSZAIH TE 0.01 FREQUENCY.	MPERATURE

4946 POINTS FROM 75- IV -29 5554A1H 7.66 M. DEPTH INST. D75115 NORTH SPEED TEMPERATURE EAST VARIABLE MM/S MMZS DEGREES C. UNITS MM/S 138 - 835 MEAN 41+254 **-4**•027 .923 STD. ERR. 1,498 1 + 469 11100.832 4213.462 2.629 VARIANCE 10669+758 64.911 1.621 105.360 STD. DEV. 103.295 2.562 2.443 2.513 KURTUSIS 2.346

•353

-222.006

349 487

EAST & NORTH

SKEWNESS

MINIMUM

MUMIXAM

COVARIANCE STD' ERR. OF COVARIANCE STD. DEV. OF COVARIANCE CORRELATION COEFFICIENT VECTOR MEAN VECTOR VARIANCE VECTOR STD. DEV.

142.401 10014.749 • 168 -41-> 450 10885.295

104.333

1824 - 792

- · 115

-300.759

278 • 126

4946 P01NTS SAMPLE SIZE =

.231E+1

- 620

6.453

13.442

SPANNING HANGE

.323

3.009

372 • 149

75- IV -29 FROM 22.00.00

75 × XI +21 53.00.00

206+04 DAYS DURATION



FREQUENCY.CYCLES/HRS.



VARIABLE	****	***	***	***
VARIABLE + EAST NORTH SPEED TEMPERATURE UNITS + MM/S MM/S DEGREES C.  MEAN			- IV -30 TO 76	• I •25
UNITS * MM/S MM/S DEGREES C.  MEAN 7.258 -9.018 74.478 5.46.5  STD, ERR. 711 .710 .715 .504  EAST & NORTH  EAST &	INSTATIVO DEPT	H 1016 M.	*****	*****
UNITS * MM/S MM/S DEGREES C.  MEAN 7.258 -9.018 74.478 5.46.5  STD, ERR. 711 .710 .715 .504  EAST & NORTH  EAST &	-vāRiable + Fast	NORTH	SPEED	TEMPERATURE
MEAN	, · · · · · · · · · · · · · · · · · · ·			
STD. ERR.	*****	****	***	<b>英型技术的基础的基础的</b>
VARIANCE = 3278.644       3353,136       1218.795       504         STD. DEV. = 57.259       57.959       57.966       34.911       .710         KURTBSIS = 2.579       2.599       2.920       1.939         SKENNESS = 166       .166       .145       .496      222         MINIMUM = 177.367       -185.4570       1.611       4.816         MAXIMUM = 174.425       179.391       201.911       7.929     EAST & NORTH  ***********************************	·	· <del>-</del>		· -
STD. DEV. = 57.959	, , ,		-	•=
SAPPLE SIZE				
SKEWESS * 1266 -145 -145 -145 -145 -145 -145 -145 -145		•	_ · · · · · · · · · · · · · · · · · · ·	
MINITHUM = -197.367 -185.570 1.611 4.816  MAXIMUM = 174.425 179.391 201.911 7.929  **********************************	· <del>-</del> - ·		<del>-</del>	
######################################				
EAST & NBRTH  ***********************************	MAXIMUM = 174.425	179•391	201 • 911	7 • 929
1016 METERS 75-IV-30 TO 76-1-25 1 PIECES WITH 3240 ESTIMATES PER PIECE. AVERAGED OVER 1000 0.01 0.01 0.01 FREQUENCY.CYCLES/HRS.	EAST & NBRITH  ***********************************	39.657 3194.299 314E=1 11.576 3315.890 57.584	FRERGY DENSITY TO	11.00.00 -25 18.00.00 0.29 DAYS PERIOD. HRS. GO 100 10

*******	* * *	*******	******	* * * * * * * * * * * * * * *	*********
VAR I ABLE	*	EAST COMP	NORTH COMP	SPEED	TEMPERATURE
UNITS	*	MMŽSEC	MM/SEC	MM/SEC	DEGREES C.
****	***	******	*****	- *******	*****
MEAN	=	45.695	-6.169	58-285	4.163
STD. ERR.	=	•990	•982	<b>.</b> 853	-224E-2
1 131 2 131 2	=	1024.345	1008.533	761.758	•523 E-2
STD. DEV.	=	32.005	31.757	27.600	•723E-1
KURTOSIS	=	2.916	3.010	2.740	1.875
SKEWNESS	=	357E-1	472	• 495	482E-1
MINIMUM	=	-58.741	-131-916	17.695	4.010
MUM IXAM	=	134.834	89.692	153.333	4.311

STD. ERR. OF COVARIANCE =
STD. DEV. OF COVARIANCE =
CORRELATION COEFFICIENT =
VECTOR MEAN =
VECTOR VARIANCE =

VECTOR VARIANCE VECTOR STD. DEV. -107.527 58.153

1880-782 --106 --46-109

1016.439 31.882 * SPANNING RANGE * FROM 75- IV -30

ROM 75- IV -30 10.30.42 75- VI -12 23.30.42

**⇒** T(

* DURATION 43.54 DAYS



AUTO SPECTRUM
555681H EAST COMP
555681H NORTH COMP
1516 METERS
75-1V-30 TO 75-V1-12
1 PIECES WITH 512 ESTIMATES
PER PIECE: AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
SSSEBIH TEMPERATURE
1516 METERS
75-1V-30 TG 75-VI-12
1 PIECES WITH SIZ ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREGUENCY BANDS

6488 POINTS FROM 75- IV -30 TO 76-555781H I -25 INST. Ma274T DEPTH 4016 M. *********************** VAR I ABLE NORTH COMP EAST COMP SPEED **TEMPERATURE** * UNITS MM/SEC MM/SEC MM/SEC DEGREES C. MEAN 7.735 -7.23865.971 2.243 .754 STD. ERR. = .587 .510 -240E-3 VARIANCE = 2237.577 3687.979 1685.579 .375E-3 .194E-1 STD. DEV. = 47.303 60.729 41.056 2.719 KURTOSIS 3.232 3.096 28.237 .426E-1 .772 SKEWNESS .391 3.521 -110.716MINIMUM -245.405 16.844 = 2.201 MAXIEMUM-178.061 189.532 247.259 2.426 *********** EAST CCMP & NORTH COMP ************** *********************** COVARIANCE -1639.681 SAMPLE SIZE = 6488 POINTS STD. ERR. OF COVARIANCE 38.826 STD. DEV. OF COVARIANCE 3127.367 * SPANNING RANGE CORRELATION COEFFICIENT = -.571 FROM 75 - IV - 3010.30.42 VECTOR MEAN 76-10.593 TO I -25 17.30.42 VECTOR VARIANCE 2962.778 VECTOR STD. DEV. 54.431 * DURATION 270.29 DAYS PERIOD, HRS. PERIOD. HRS 1000 100 10 100 LŌĐĐ 1.0 ı 05 10 ١ű 103 15 DENSITY DENSITY 103 102 FNERGY FNERGY 161 ıõ KINETIC AUTO SPECTRUM E781H EAST COMP 100 SESTBIH NORTH COMP 15 40.6 METERS 75-17-30 TO 76-1-25 5.50. S.Ji J - 1 FREQUENCY.CYCLES/HRS. PIECES WITH 3240 ESTIMATES PER PIECE- AVERAGED OVER AUTO SPECTRUM SSS7BIH TEMPERATURE J ADJACENT FREGUENCY BANDS  $i\hat{\mathfrak{o}}^{1}$ 40.6 METERS 0.301 0.01 15-14-26 15 75-1-25 FREQUENCY.CYCLES/HRS. PIECES WITH 3.40 ESTIMATES PER PIECE - AVERAGED GVER 3 ADJACENT FREQUENCY BANDS





























0. NOO.

KILOMETERS

5531A1DGGU24

500 N



KILOMETERS

5532P1DGAU24 508 m 79- V -01 TO 78- X -18











N RILOMETERS 5545A1DG240× 1813 N - V-01 10 78- 1 -25



The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa























RECORD #5531 A1 DGAU24 DEPTH=306 METERS



RECORD #5532P1DGAU24 DEPTH=506 METERS



RECORD #5534AIDGAU24 DEPTH=1005 METERS



2-D-4



RECORD #5541A1DGAU24 DEPTH=314 METERS



2-D-6



2-D-7



2-D-8



RECORD #5551 ANDGAU24 DEPTH=316 METERS



RECORD #5552A1DGAU24 DEPTH=516 METERS



2-D-11



2-D-12



2-D-13



RECORD #5557B1DGAU24 DEPTH=4016 METERS

11	3333333333	5555555555	5	555555555555	
111	333333333333	5555555555	5	555555555555	
1111	33 33		-	55	
11	33			55	
1-1	33			55	
1:1.	3333	555555555		58555555555	
11	3333	5555555555	ā	555555555555	
11.	33	55	5	55	
11	33	- <b>5</b> 5	5	[*] 55	
1.1	33	<b>5</b> 5-	5	55 55	
1-1	333333333333	5555555555	5	555555555555	
11	3333333333	555555555		5555555555	

555555555555	555555555555	3333333333	555555555
555555555 <b>5</b> 5	5555555555555	333333333333	55555555555
55.	·55.	33: 33	22 22
55	55	33	ŽŽ
55	55	<b>3</b> 3	ŽŽ
555555555555	<b>55</b> 5555555555	3333	-22
555555555555	555555555555	3333	55
<b>5</b> 5	55	33	22
-5 <b>5</b>	55	33	22
55 55	55 55	33·	55
35555555555555555555555555555555555555	555555555555	333333333333	555555555555
555 <b>5</b> 5555 <b>5</b> 55 <b>5</b>	555555555	333333333	55555555555

8888888 8888888	868888- 3888888	EEFÉEEEEÉEE EEEÉEEEEEEE
88	8B	
:8B:	BB	EE EE
<b>₿</b> ₿⁻	BB:	EE
888888	88668	EEEEEEE
BBBBBB	BBBBB	EEEEEEE
-88	Β̈́Β	EE
88 88	88	ξE
88	BB	EE
	BBBBBB	EEFEEEEEEEE
888888	888888	GEEEEEEEEE

55555555555555555555555555555555555555	55555555555555 55555555555555	33333333333 3333333333333	3333333333 3333333333333
<b>5</b> 5	55	33 33	33 33
55	55 55	33 33	33.
55	55	<b>33</b> .	33
<b>5555555555</b>	55555555555555555555555555555555555555	3333	3333
<b>555555555</b> 55555	55555555555	3333	3333
55:	55	33	<b>3</b> 3
55	55	33	33
55 55	55 55	33-	33
<b>555555555555</b>	555555555555	333333333333	33333333333333
5555555555	5555555555	3333333333	3333333333

555555555555	5 <b>5</b> 5555555555	3333333333	44
5555555555555	555555555555	333333333333	444
55	55	33 33	:444
55	55	33	44 44
<b>5</b> 5.	55	33	-44 44
555555555555	55555555555	3333	44 44
55555555 <b>5555</b>	555555555555	3333	-44 44
55	55	33	44444444 <i>4</i>
-55	ร์ วิ	33	4444444444
55 55	55 55	33	- <b>44</b>
555555555555	555555555555	333333333333	44
555 <b>5</b> 5555555	5555555555	3333333333	44

RRRRR	RRRRRRR	MM	1	MM
	RRRRRRR	MMM	M	MM
RR	RR	ММММ	MMÍ	MM
RR	-RR-	MM MM	i MM	MM
ŔR	RR	•		MM
RRRRR	RRRRRRR	MM		MM
RRRRR	RRRRRRR	MM	M-	MM
RR	RR.	MM-		MM
RR	-RR	MM		MM
RR	:RR=	MM [*]		MM
RR	RK.	MM		MM
ŔŔ	⁻RR	MM		MM

55555555555555555555555555555555555555	55555555555555555555555555555555555555	33333333333 3333333333333 33 33	55555555555555555555555555555555555555
<b>5</b> 5 <b>5</b> 5	55-	33	55 55
555555555555	55 555555555555	<b>3333</b> 33 ³	55 555555555555
55555555555	555555555555	3333	555555555555
55 55	<b>5</b> 5 55		-55 -55
55 55 565555555555555555555555555555555	55 55	33	55 55
55555555555555555555555555555555555555	555555555555 55555555555	33333 (3333333 333333333333	55555555555555555555555555555555555555

UU	. <b>U</b> U-		
ń'n	UU	ָּטַׁסְׁסַׁסַ <b>ּסְ</b>	DÖÖÖD
ِل <b>َّا</b> لِ	UU.	<b>DD</b>	DC
UU:	ÚŲ	DD	-00
ŢŲÚ;	ŨŨ ⁻	DD	DD
ŲÜ	UU⊧	DD.	-00
UU-	ַעט	DD	DD
UU	ÜU	.ÓŌ	-DO
UU	υŪ	DĎ	DO
UU-	UU	DD	-D0
ປິ່ນບາກກາດກາດກາດກາດການການການການການການການການການການການການການກ		DDDDDDD	מטסטטק
	บบบบับ	DDDDDDD	

5555555555555	555555555555	<b>4</b> 4	41
555555555555	5555555555555		31 311
55	55.	4444	1111
55 ⁻	·55·	44 44	
55	53	44 44	11
55555555555555555555555555555555555555	55555555555	44	11
5555 <b>5</b> 55555 <b>55</b>	555555555555	44. 44.	11
55	:55-	44444444444	11
55	55	44444444444	11
55 55	55 55	44	11
555555555555	555555555555	44	11.
5555555555	5555555555	44	-11.

5555555555555	555555555555	44-	555555555
555555555555	555555555555	444	555555555555
55:	55 ⁻	4444	55 55
55	<b>55</b> :	44 44	22
55:	<b>55</b> :	.44- 44-	23
55555555555	55555555555	:44 44-	22
555555555555	555555555555	44 44	22
55	55	444444444444	22
<b>5</b> 5	<b>5</b> 5	44 ⁴ 444 ⁴ 4 ⁴ 4 ⁴ 44 ⁴	22
55 55	55 55	44	:52
555555555555	555 <b>5555</b> 55555	44	555555555555
5555555555	5555555555	44	555555555555

555555555555	5555555555555	44	33333333333
555555555555	555555555555	444	3333333333333
55 [°]	55	4444	33 33
55	<b>55</b> -	44-44	33
55	55	44 44	33
55555555555	5555555555	44 44	3333
555555555555	55555555555	44 44	3333
55	55	****	33
55	55	444444444444	33
55 55	55 55	44	33
555555555555	55555555555	44	333333333333
555 <b>5</b> 5555555	555555555	44	3333333333

5555555555 <b>55</b>	5555555555555	44	44
555555555555	555555555555	444	444
:55	55	4444-	4444
55	55	44. 44	-4 <b>4</b> -4 <b>4</b>
<b>55</b> .	55	= <b>44</b> - 44-	44 44
55555555555	5555555555	44 44	44° - 44°
5555555555555	555555555555	44 44	44 44
35	.55	****	****
55	55	-4444444444444	<b>-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4</b>
55 <b>55</b>	55 <b>5</b> 5	44	-44
5555555555555	55555 <b>5555</b> 555	44	44
5555555555	5555555555	44	-44-

MM		MM	111111
MMM	1	IMM	111111
MMM	IM MI	IMM	<b>V</b> T
-MM	MM: -MM	-MM-	<b>I</b>
MM	MM MM	MM	II
:MM	MMM	MM	11
MM	M	MM .	I,I
:MM		MM	IΪ
MM		MM	I
MM		ΜM	II.
MM		MM	11 11 11 11 11 11 11 11 11 11 11 11 11
MM		MM	HILLIE

555555555555	5555555555555	44.	555555555555
5555555555555	555555555555	444	555555555555
55	55	4°4 4 4.	.55
55	-55	44-44	55
·55	² 55	=4 <u>4</u> 44.	55
555555555555	55555555555	44 44	55555555555
555555555555	555555555555	4Å 4 <del>Å</del> -	555555555555
55	55	444444444444	· <b>5</b> 5
55	55	44444444444	55
55 55	55 55	44	55 55
555555555555	555555555555	44	555555555555
5555555555	555555555	44	5555555555

CCCCCCCCCC	RRKRRRRRRR RRKRRRRRRRRR	
ccccccccccc		
CC *CC	:RR	RR
-CC-	RR	RR'
CC	₽R	RR
	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	
CC	RKKRR	RRRRRRR
∵CC	-RR	RR
CC:	:RR	RR
CC CC	RR	RR
CCCCCCCCCCCC	RR	RR
ccccccccc	₽R#	RR

555555555555	555555555555	555555555555	11
55555555555	555555555555	555555555555	111
55	<b>55</b>	<b>55</b>	1111
<b>5</b> 5.	<b>₌55</b>	55	11
55	<b>55</b> :	55	:11
55555555555	55555555555	5 <b>5555</b> 5555555	11
555555555555	555555555555	555555555555	11
55	·55	55	11
<b>5</b> 5	-55.	<b>5</b> 5	11
55 55	55 :55	55 55	11
555555555555	555555555555	555555555555	11
5555555555	555555555	555555555	11

00000	88888	SSSSSSSSSSSSS	SS
800900		SSSSSSSS	SSS
:00	188	SS S	SS
:9 <del>0</del>	:00	SS	
66	<b></b>	SS	
68	90°	SSSSSSSSSS	
88	99	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	
-66	- :88-		SS
.00 .00	₹ <b>0</b> <i>0</i>		SS
:00 :00	: <b>6</b> 6	<b>'SS</b>	SS
	666655	SSSSSSSSS	SSS
	999999	SSSSSSSSS	

55555555555555555555555555555555555555	55555555555555555555555555555555555555	55555555555555555555555555555555555555	22 22 22 22 22 22 22 22 22 22 22 22 22
55 55555555555555555555555555555555555	55	55	55
<b>5555555555</b>	55555555555	55555555555	.22.
555555555555	55555555555	555555555555	22
:55	55	55	<b>5</b> 2
<b>55</b> -	55	55	-22
55 ±55	<b>55 5</b> 5	·55 55	22 ⁻
555555555555	555555555555	5555555555555	555555555555
5555555555	5555555555	555555555	55555555555

ान । । । । । । । । । । । । । । । । । । ।	RRRRR	RRRRRRR	
र्ने व विवेद व	<del>_</del>	RRRRRRRRRRRRR	
गा	RR .	RR	
<u>1-1</u>	R.R.	RR	
नुर	RR	RR	
<b>77</b>		RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	
1T		RRRRRRRRRRR	
<b>ा</b>	RR	RR	
II	`RR	RR	
<u> </u>	RR	RR	
ŢŢ	RR	RR	
TT.	RR	₹RR	

5555555555555 55555555555555	555555555555 55555555555555	-55 <b>55</b> 55555555 -55555555555555	33333333333 3333333333333
<b>5</b> 5	<b>⁻</b> 55	55	33 33
55	55	<b>55</b>	: <b>33</b> :
55	·5 <b>5</b>	<b>55</b> .	:33
5555555555	55555555555	5555555555	3333
555555555555	55555555555	5555555555	3333
55	.55	-55	33
55	⁻ 55	ສຣັ	.33
<b>55 55</b>	55 55	·55	33.
555555555555	555555555555	55555555555	333333333333
555555555	5555555555	555555555	3333333333

5555555555555	55555555555	55555555555	4-4
55555555555	55555555555	555555555555	444
<b>5</b> 5	55	55	-4444
55	55	55	-44 44
<b>5</b> 5	55	.55	44 44
55555555555	55555555555	555555555555	44. 4.4.
55555555555	555555555555	55555555555	:44 44
55	<b>5</b> 5	55	4444444444
:55	<b>55</b> -	<b>55</b> .	4444444444
<b>5</b> 5 :55	55 55	55 55	44
555555555555	55555555555	55555555555	44
·5555555555	555555555	5555555555	44

·UU	iUU	2222222222
ÚÙ-	ÜÜ	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
ปีบั	(ÜÜ:	CC CC
∍UÙ.	ŧŪŪ:	€CC
·UU	<b>100</b>	CC
UÜ	ŪŪ	CC
Ųΰ	-	CC
ŪŪ	·ŭŭ	CC
UÙ	ะบับ	:CC
UÚ	ะบัย	CC (CC
บบบบบบบ	บบบบอบน เกลเกล	בכבכבבבבבב בכבכבבבבב

55555555555	55555555555	55555555555	555555555555
555555555 <b>5</b> 5	55555555555	55555555555	555555555555
<b>55</b>	<b>.</b> 55.	55	55
55	<b>55</b>	:55	·55·
55	[′] 55	55	.55
5555555555	5555555555	5555555555	555555555555
55555555555	555555555555	555555555555	555555555555
<b>55</b>	:55	55	55
.55	:55	55	55
<b>55 55</b> .	55 °55	55 55	<b>55</b> 55
55555555555	555555555555	55555555555	555555555555
5555555555	5555555555	555555555	5555555555

ने का क्षेत्र का का का का	.UU-	UU
र्यान् स्थाननान स्थ	.บับ	UU
TT	ุบับ-	, UU
TT	.ŬU.	.ŪŪ
<b>TT</b>	.ບູບິ	Ūį
77	ŊŪ	ÜÜ
T <u>T</u>	ŲÚ	UÜ
ŢŢ	บบุ๊	ŲŲ
<u> </u>	ŲŪ	UŲ
ŢŢ	UU	ŲÚ
71	ນປາກກຸກການກົດການຄົ	
77	ນບບບບຸບຸບຸບຸບ	

55555555555555555555555555555555555555	55555555555555555555555555555555555555	55555555555555555555555555555555555555	666666666666
.55.	⁵⁵	·55	<i>'</i> 66
-	55	55	<i>-</i> 66
55	55	-55	<i>4</i> 66
55555555555	55555555555	5555555555	66666666666
55555555555	55555555555	55555555555	6666666666666
55	55	-55·	66 66
55	. <b>5</b> 5	<b>*55</b> :	166 66
55 °55:	⁻ 55 55	-55 -55	66 66
555555555555	555555555555	55555555555	666666666666
5555555555	5555555555	555555555	66666666666

RRRRR	RRRRRRR	EEEEEEEEEE
	RRRRRRR	EEEEEEEEEE
RR	RR	EE
RR	:RR:	ΕĒ
RR	RR	ΞĔ
RRRRR	RRRRRRR	EEEEEEE
RRRRR	RRRRRR	EEEEEEE
RR.	'RR:	EE
RR	RR	ΣĒ
RR	-RR	<b>E</b> E
:RR	RR	EEEEEEEEEE
ŖR	RR	EEEEEEEEEE

55555555555555555555555555555555555555	55555555555555555555555555555555555555	55555555555555555555555555555555555555	7,777,777,777 7,772,777,777,777 7,7 7,7
55555555555 55555555555555555555555555	5555555555	5555555555	77
5555555555 <u>55</u>	555 <b>5555</b> 555555	55555555555	77
:55	<b></b>	55	77
:55	.55	:55	77
55 55	55 55	<b>.</b> 55 .55	77
55555555555	555555555555	55555555555	77
5555555555	555555555	555555555	77



AUTO SPECTRUM
5533\$1920 TEMPERATURE
735 METERS
75-1V-29 TO 76-1-21
1 PIECES WITH 1500 ESTIMATES
PER PIECE: AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
5533\$1920 PRESSURE
735 METERS
75-IV-29 TO 76-I-21
1 PIECES WITH 1500 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

```
** 5533$1920
                 ** 12220 PBINTS FROM 75. IV -29
                                                       T8 76-
INST. TD#15
                DEPTH 734 M.
                                 UNITS . DEGREES , DECIBARS
VARIABLE ---
              TEMPERATURE -- PRESSURE
MEAN
                             741.962
                12.210
STD. ERR.
                   •113E•1
                                 •529E -1
VARIANCE
                 1.547
                               34 • 163
KURTOSIS
                 2.632
                              12.252
SKEWNESS
                 -,632
                                2:687
MINIMUM
                 8.824
                             737 401
MAXIMI'M
                14.912
```



AUTO SPECTRUM
5543\$1920-TEMPERATURE
719:METERS
75-1V-29 TO 75-VIII-27
1 PIECES WITH 675-ESTIMATES
PER PIECE, AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
5543\$1920 PRESSURE
719 METERS
75-1V-29 TO 75-V111-27
1-PIECES WITH 675 ESTIMATES
PER PIECE AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

```
5450 POINTS FROM 75. IV #29
                                                      10 75-VIII-29
** 5543$1920
INST.
                DEPTH
                       718 M+
                                  UNITS . DEGREES , DECIBARS
VARIABLE
              TEMPERATURE -- PRESSURE
MEAN:
                13,404
                              725 • 388
STD . ERR.
                   .124E-1
                                 •992E•1
VARIANCE
                   .841
                               54:056
KURTOSIS
                               10.481
                 2 • 623
                                2.199
SICEWNESS
                  **476
                              718 • 109
MUNIMUM
                11.122
MAXIMUM
                              785•999
                 15.177
```



AUTO SPECTRUM
5553\$1920 TEMPERATURE
753 METERS
75-1V-29 TO 75-V-19
-1 PIECES WITH 108 ESTIMATES
PER PIECE AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
5553\$1920 PRESSURE
753 METERS
75-LV-29 TO 75-V-19
1 PIECES WITH 108 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY DANDS

```
924 POINTS
                                   FROM 75- IV -29
** 5553$1920
                                                       T9 75-
                DEPTH 752 Me
                                  UNITS . DEGREES , DECIBARS
INST.
              TEMPERATURE -- PRESSURE
VARIABLE
                              759 • 786
MEAN
                 8 * 253
SID ERR.
                   .245E-1
                                 •501
                   •554
                             232,321
VARIANCE
KURTOSIS
                                2.514
                  1 978
SKEWNESS
                  • • 127
                                 • 441
                              719.252
MINIMUM
                 6.702
MAXIMUM
                  9:767
```



DATA 5533\$1DGAU24

2-G-9

•



DATA 5543\$100 4124

2 my year y

↑ •.

**\$** 



```
FROM 77- XI -16
  €6331 A900
                     36720 POINTS
                                                        T9 78- XII-03
                                  UNITS . DBARS . DEGREES CELSIUS
       V-0325P DEPTH
INST.
                       792 M.
VARIABLE - PRESSURE - TEMPERATURE
MEAN
               798 + 335
                               10.928
STD.ERR.
                   .857E-2
                                 .632E-2
VARIANCE
                  2.697
                                1 • 466
KURTOSIS
                                4 • 866
                38+235
SKEWNESS
                                - • 709
                  4 = 446
MINIMUM
                                6.243
               794 203
MAXIMUM
               819 • 586
                               14.296
```



AUTO SPECTRUM
6331A1H PRESSURE
792 METERS
77-X1-16 TO 78-X-15
1 PIECES WITH 4000 ESTIMATES
PER PIECE AVERAGED CYER
3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
-6331A1H TEMPERATURE
792 METERS
77-X1-16 TO 78-X-15
1 PIECES WITH 4000 EST-IMATES
PER PIECE, AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

```
********************************
** 6332B900
                ** 36720 PCINTS
                                FROM 77- XI -16
                                                  TO 78- XII-03
               DEPTH 1092 M.
                               UNITS = MM/SFC , DEGREES CELSIUS
INST.
       V-0139
VARIABLE ----
              -- EAST
                            NORTH: ----
                                        SPEED --- TEMPERATURE
MEAN
                3.84.0
                            -1.995
                                         59:345
                                                      6.048
                             .174
SITD . ERR .
                 .308
                                           .17.3
                                                        -237F-2
VARIANCE
             3483.713
                          1112.673
                                       1093.306
                                                        .206
KURTOSIS
                                                       5.375
                3.514
                             2.937
                                          5.324
SKEWNESS
                -.441
                              .219F-1
                                          1.345
                                                        .893
MINIMUM
             -255.262
                          -129.108
                                          1:944
                                                       4 - 758
MAXIMUM
              202.680
                           137.924
                                        257.547
                                                       8.242
----EAST & NORTH--
                           * * * *
                                           *
                                                        * * * *
COVARIANCE
                135.735
CORR. COEF.
                   .689E-1*
ORIENTATION
                 86.734
                          *
MAJAX
                 59.089
MINAX
                 33.240
ELLIP
                   .437
                    ****************
```



6332BIH NORTH 1092 METERS

77-X1-16 TO 78-X-15

PER PIECE. AVERAGED OVER

3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
633281H TEMPERATURE
1092 METERS
77-X - 16 TO 78-X-15
1 PIECES WITH 4000 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

```
** 6333AC900
              ** 26478 POINTS
                              FROM 77- XT -16
                                              TO 78-VIII-18
                            UNITS = MM/SEC , DEGREES CFLSIUS
             DEPTH 1392 M.
INST. V-0183
VARIABLE +---- EAST ----- NORTH ----
                                     SPEED ---- TEMPERATURE
                          - 222
MEAN
             -1.097
                                      41.588
                                                  4.661
STD.ERR.
               . 243
                           .149
                                       .127
                                                   ·104F-2
VARIANCE
                         591.427
                                     423.965
                                                    .284F-1
         ŧ
            1560.879
KUR TOSIS
              3.048
                          2.922
                                      5.723
                                                   3.055
              -.876E-1
                           -234
                                                   .677
SKE WNESS
         =
                                      1.465
M I.N-I MUM
         =
           -160.865
                         -89:635
                                       1.393
                                                   4.293
                         103.375
                                                   5.349
MAXIMUM
             148.623
                                     164.941
         =
----EAST & NORTH----
                                                     *
                           * *
COVARIANCE
               210.115
                 .219
                        *
CORR COEF.
           =
OR-LENT AT ION
          ==
               78.282
                        *
MAJAX
               40.056
                        *
MIN-AX
           =
               23.406
                        *
                        *
ELL IP
           =
                 .416
************
```



AUTO SPECTRUM
6333AC1H EAST
6333AC1H NORTH
1392 METERS
77-X1-16 TO 78-VIII-13
1 PIECES WITH 3240 ESTIMATES
PER PIECE, AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
G333AC1H TEMPERATURE
1392 METERS
77-X1-16 TO 78-VIII-10
1 PIEGES WITH 3240 ESTIMATES
PER PIEGE AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

```
** 6334B900
              ** 36720 PCINTS
                             FROM 77- XI -16
                                             10 78- XII-03
INST. V-0122
             DEPTH 1692 M.
                            UNITS = MM/SEC , DEGREES CELSIUS
VARIABLE
       ----- EAST -----
                          NORTH ----
                                     SPEED ---- TEMPERATURE
MEAN
         =
              3.110
                          1.515
                                     42.854
                                                  4.128
                                       .105
STD FRR.
               .203
                           · 140
                                                   ·542E-3
VAR LANCE
            1505.893
                        720.920
                                    402.288
                                                   .108F-1
         =
KURTOSI-S
              2.969
         =
                          2.813
                                      5.036
                                                  3.549
SKEWNESS
               .522E-1
                          -.806F-2
                                      1.317
                                                   . 432
         =
MINIMUM-
                                      2.715
           -148.917
                        -105.595
                                                  3:775
                                                  4.583
MAX I MUM
             147.724
                                    151.797
         =
                        108.069
---- EAST & NORTH-----
COVARIANCE
               66.773
CORR. COEF.
                 .641E-1*
ORIENTATION
               85.172
MAJAX
               38.878
MINAX
           =;
               26.745
ELLIP
                 .312
*************
```



1692 METERS

77-X1-16 TO 78-X-15

I PIECES WITH 4000 ESTIMATES

PER PIECE. AVERAGED OVER

3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
6334B1H TEMPERATURE
1692 METERS
77-X1-16 TO 78-X-15
1 PIECES WITH 4000 ESTIMATES
PER PIECE. AVERAGED GVER
3 ADJACENT FREQUENCY BANDS

*******	****	****	*****	****
** 6342A900	<b>** 37908</b>	PCINTS FR	DM 77- XI -16 TE	78- XII-16
INST. VOI13	DEPTH 542	M. UNIT	S = MM/SEC , DEGI	REES CELSIUS
VARIABLE	EAST	NÓRTH -	SPEED	TEMPERATURE
MEAN =	18.697	800	8 <u>.</u> 9 • 85 0	12.309
STD.ERR. =	•501	.212	•:303	•855E-2
VARIANCE =	9498.162	1699 979	3475.318	2.774
KURTOSIS =	3.605	4.827	5.835	7.519
SKEWNESS =	. 1-33	101	1.483	-2.021
7	-481-855	-243:064	•926	5.817
MÀX IMUM =	460.616	261 425	482-015	15.022
EAST & N	ORTH	* * * * *	* * * * * * * *	* * * * * *
COVARIANCE =	900.548	*		
CORR. COEF. =	• 22.4.	*		
ORIENTATION =	83.497	*		
= XALAM	) I V / U I	*		
MINAX =	39.966	*		
ELL IP =	•592	*		
*** ****	****	*****	* * * * * * * * * * * * * * * * * *	<b>*</b> ****







AUTO SPECTRUM
6342AIH TEMPERATURE
542 METERS
77-XI-16 TO 78-X-16
1 PIECES WITH 4000 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

```
** 6343A900
               ** 37908 PGINTS
                              FROM 77- XI -16
                                              TO 78- XII-16
INST. V-0163
              DEPTH
                    842 M.
                            UNITS = HM/SEC , DEGREES CELSIUS
VARIABLE --
             -- EAST
                                     SPEED ---- TEMPERATURE
                    ---- NORTH
MEAN
              -1.023
                          -3.296
                                     51.536
                                                   6.721
STD.ERR.
                .246
                                        .138
                                                    .400E-2
         =
                           . 168
VARIANCE
            2292.087
                        1069.007
                                     717.022
                                                    .606
KURTOSIS
         =
               3.544
                           3.194
                                       5.889
                                                   4.930
SKEWNESS
         =
               -.914F-1
                            . 1.27
                                       1.401
                                                    .372
MINIMUM
         =
            -247.625
                        -167.056
                                        535
                                                   4.596
MAXIMUM
             205.776
                         156.775
                                     247.647
                                                  10.049
                          * * * *
----EAST & NORTH----
                                        *
                                          *
                                                  *
                                                   * * * *
COVAR I ANCE
                        *
              -178.164
CORR. COEF.
                --114
                        *
DRIENTATION
           =
                        *
               98.121
XALAM
                        *
               48.141
                        坎
MINAX
                32.305
           =
ELLIP
                  .329
************
```



6343AIH NORTH

842 METERS

77-X1-16 TO 78-X-16
1 PIECES WITH 4000 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY PANDS



AUTO SPECTRUM
6343A1H TEMPERATURE
842 METERS
77-X1-16 TO 78-X-16
1 PIECES WITH 4000 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

*****	*****	****	******	****
** 63521900	<b>** 37824</b>	PGINTS FRO		0 78- XII-16
INST. V-C18	1 DEPTH 524		= MM/SEC , DEG	REES CELSTIS
VARIABLE	EAST	NORTH -	SPEED	TEMPERATURE
MEAN_ =	8.515	6.310	75.780	12.149
STD. FRR. =	• <u>2</u> 88	•357·	•248	.76512-2
VARIANCE =	3144•290	4815.346	2329.388	2.214
KURTOSIS =	5.197	3.429	6.948	5.822
SKEWNESS =	261	219	1.631	-1.533
MINIMUM =	2.000	-301.932	•939	6.776
MUMIXAM =	398 - 535	330.080	440.822	14.838
EAST &	NORTH		* * * * * * * *	* * * * * *
COVARIANCE	= 2743.674	**		
CORR. COEF.		*		
ORTENTATION	= 36.531	*		
MAJAX	= 82.752	<b>☆</b> -		
XAPIK	= 33.343	<b>*</b> -		
ELLIP	= .597	*		
**********************				



5352ATH NURTH
524 METERS
77-X1-17 TO 78-X-17
1 PIECES WITH 4000 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
6352A1H TEMPERATURE
524 METERS
77-X1-17 TO 78-X-17
1 PIECES WITH 4000 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

*****	**************************************
** 6353A900	** 37824 POINTS FROM 77* XI -17 TO 78* XII+16
INST . V-0371	DEPTH 824 Me UNITS # DEGREES CELSIUS
VARIABLE	
MEAN =	6¢\$90
STD.ERR. *	•361E÷2
VARIANCE *	• 494
KURTOSIS =	4 • 700
SKEWNESS =	•545
MINIMUM .	4 • 790
MĀX ĮMŪM 🛪	9 • 874
*****	· ************************************



AUTO SPECTRUM
6353AIH TEMPERATURE
824 METERS
77-X1-17 TO 78-X-17
1 PIECES WITH 4000 ESTIMATES
PER PIECE- AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



















N A

0: 150.
KILOMETERS
6332A1DGAU24
1092 M
77- X1 -17 TO 78- X11-02



Ċ

APR HOV

KILOMETERS

6334B1DGAU24 1692 m 77- XI -17 TO 78- XII-02



KILOMETERS 6342Å1DGAU24 542 M 77- XI -17 TO 78- XII-14



N KILOMETERS 6343A1DGAU24 842 M 77- X1 -17 TO 78- X11-14



0: 150.

KILOMETERS
6352A1:DGAU24

524 M
77- XI -18 TO 78- XII-14







DEPTH=792 METERS

RECORD #6331A1DGAU24





3-D-3









RECORD #6352A1DGAU24 DEPTH=524 METERS



RECORD #6353A1DGAU24 DEPTH=824 METERS

666666	666666	3333333	333	3333333	3333-	11
666666		33333333		33333333	33333	111
66	-	33	33:	33	35	1111,
66-			33	•	33	1 1
66			<b>3</b> 3		33	11
6666666	566666	3	333		3333	1.1
666666	666666	ã	333		3333	1-1
66:	66⊧		33		3,3	11
66 66	66.		33.		33	1-1-
66	66 <b>:</b>		_ <b>3</b> 3		33	11
666666	666666	333333333	33 <b>3</b> 3	33333333		11
66666	666666	33333333	333	333333	3333	11

HIMIN	\$55555555	
	SSSSSSSSSSS	SS
ŢŢŢŢŢŢŢŢ		SS
I I	·ŠS:	-
Î	SS	
II II	SSSSSSSSSSS	S
* *	SSSSSSSSS	SS.
<u>.</u>		SS
	:	SS
	SS	SS
III	SSSSSSSSSSSSS	
	SSSSSSSSS	

666666	666666	3333333333	t	33333333	33	222222	2222
6666666	666666	333333333333	13,	333333333	333	5555555	
66		33 3	13	33:	33	22	22
66		. 3	13		33	-	22
66 *		3	3		<b>3</b> 3		55.
6666666		3333		.33	33		22
666666	666666	3333	1	33	333		<b>2</b> 2
66	66	3	3		33	52	-
66	66	3	13		33	2 <b>2</b>	
66	66		13	_	33	22	
6666666	666666	333333333333	13	333333333	3333	5555555	55555
666666	566666	33333333333	}-	33333333	333	5555555	55555

- <b>L-L</b>	AAAAA	MAAAÀ	NN-		·NN
EL		TAAAAA:	NNN		NN:
TL	AA	* <b>A A</b> -	NNN	V	NN-
	<b>A</b> - <b>A</b> -	*AA	NN:	-	NN
ĽĹ	* <b>A A</b>	-ÀÁ	NN:	NN:	NN
LL	ĀAÁAAĀ	<b>AAAAA</b>	NN:	NN	NN
LĹ	AAAAA	<b>FAAAÄÄ</b>	NN	NN	:NN:
LL	AÂ:	- <b>A</b> .A	NN-	NN-	-NN
LL.	AA ⁻	- <b>A</b> A	NN:		: NN=
ÜÜ. LL	ÀA	AA.	NN:		INNN
LELLLLLLLLLLL	A'A	ÄA	NN:		NNN
LLELLÉELLELL	AA	:AA	NN:		NN

666666	666666	3333333	3333°	33333	333333	33333	333333
6666666	666666	33333333			3333333		3333333
66		33	33	33	33	33	33
66			33		33		33
66-			33		33		33,
6666666			3333		3333		3333
666666	666666	•	3333:		3333		3333
66	66		33		33		33
66-	66		33		33		33
66	66		33		33		33
666666		33333333	33333	333333	3333333	333333	3333333
666666	66666	3333333	3333	33333	333333	33333	33333

Όρρουρορο		THEFT
מממממ		TTTTTTTTT
DD	-DD	<b>T</b> ₹
	(DD)	<b>Т</b> - <b>Y</b> .
OD: OD:	(DD	ŢŢ
-DD	DD	Tall the second
DD.	DD	T*T
ĎΟ	(DD	ŢŢ
ĎD	DD	<b>T</b> .Ţ
DD	DD	<u> </u>
ספסטסט	ססססטס	<u> 157</u>
טטסטטט	ĎÕODĎ	Till and the second

666666	666666	3333333333	- 3333	333333		<b>4</b> 4:
6666666		333333333333		3333333		444
66		33: 33	3 33	33	4	444:
66		33	· ·	33	-44	- <b>4</b> ,4c
66		33		.33	44	-44:
6666666	66666	.3333:		3333	-44	: <b>4</b> 4=
6666666	666666	3333-		3333	44	44
66	66	33	3	33	444444	4444444
66	66	33		<b>3</b> 3	444444	**
66	66-	33		33		44-
6666666	666666	333333333333		33333333		44-
666666	66666	3333333333		3333333		44.

RRRRR	RRRRRRRR AAAAAAAAA		NA A A A A A A A A A A A A A A A A A A	PPPPPP	ppppp
	RRRRRRRR	AAAAA		PRPPPPP	PPPPPP
RR	RŔ	AÃ.	AA	PP	PP
RR	ŕRŘ⁺	ÁÄ.	ÁÀ	PP:	:bb.
RR	RŘ	AA	<b>AA</b> -	:PP	PP
	RRRRRRRR	AAAAAA			PPPPPP
RRRRR	RRRRRRR	AAAAAA		PPPPPP	PPPPP
RR	RR	ÄÄ	AA	ξ₽Þ	
RR	-RR-	<b>AA</b>	ÀÀ	PP	
RR	RR	ÀÀ	ÅÅ	·PP	
RR	RR	ÃÃ	- <b>A.A</b> -	· 'PP	
RR	RR.	AA	ÄÄ	PP	

66666666666	3333333333	- <b>4</b> - <b>4</b>	555555555
666666666666	3333333333333	444	525555555555
66	33 33	4444	55 55
- 56:	33	44 44	-22
66: .	.33	44 44	.22
66666666666	3333	-44- 44	22
5666666666666	- :3333:	-44 44-	22
66 66	33	444444444444	2Ž
66 66		<u> </u>	52
66 56		44	55
6666666666666	333333333333	44	555555555555
66666666666	3333333333	44	55555555555

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	PPPPPP	EEEEEEEEEEE	DDDDDD DDDDDDD	
PP PP PP	.₽₽ :₽₽ :₽₽	EE EE	DD	DD
ŘPPŘŘPP ŘPPŘPP	PPPPPP	EEEEEEE EEEEEEE	,DD DD DD	.DD :DD
PP PP		EE EE EE	DD DD DD	DD DD
PP		EEEEEEEEEEEE	: ບ້ອຍອິດຍອິດອຸດອົດ - ບ້ອຍອິດອຸດອິດອຸດອຸດ	

666666	666666	33333333333	44	11
666666		3333333333333	444	111
66		33: 33	444	1111
66		33	44 44	<b>1-1</b>
66		33	44 44.	11
6666666	66666	3333	44 44	11
666666	666665	3333	44 4 <u>4</u>	11
66	66	33	4444444444444	11
66	66	33	444444444444	11
66	66	33	44	11
666666	666666	3333333333333	44	11
666666	66666	3333333333	44	11

6666666	6666:	33333	333333		-44	33333	33333 <del>3</del> ;
66666666			3333333		444	333333	3333333
66:		33	33	4	4444	.33	33
66			33	41	4- :44		33
66:			33	44	44		33
666666666			3333	<u>44</u>	44		3333
666666666	6666		3333	44-	<b>44</b> -		3333
66.	66		33	44444	444444		33
66:	66		33	***	<b>+</b> *444*444		33
66.	66		.33		* <b>4 4</b>		33
666666666		333333	3333333		44	333333	33333 <b>33</b>
66666666	666	33333	333333		44	333333	33333

WW	WW	A-A-A-A-A	AAAA
WW	WŴ		AAAAA
WW	Μ̈́M	-88	ÄÄ
:MM-	WW-	<b>4</b>	-ÂÂ
WW	₩Ŵ	AA	AA
₩Ŵ	MM.	AAAAAA	AAAAA
WW V	IMM MM:	AAAAAA	
WW WV		ÅΑ̈́	ÁÀ
WW WW	'MM MM'	ÀÁ	ÂÃ
MMMM	KWHb	<b>A</b> A-	ÀÀ
WWW	WWW	AA	ÁÀ
WW	WW	A A	-▲-▲

666666666666	3333333333	5555555555555	555555555
666666666666	333333333333	555555555555	555555555555
66	33 33	55	22 22
66	33	<b>5</b> 5	22
66.	33	55	22 23
6666666666	3333:	55555555555	52
666666666666	3333	555555555555	22
66 66	33	55	22
66 66	33	55	55.
<b>66</b> 66	<b>33</b> °	55 55	22
666666666666	333333333333	555555555555	555555555555
6666666666	3333333333	5555555555	55555555555

VV	EÉEEEEÉÉÉEEE	\$\$\$\$\$ <b>\$\$\$\$\$</b> \$\$\$\$\$ <b>\$\$\$\$</b> \$\$\$
Ÿv ÝŸ	E & C	SS SS
VV VV	EE	SS
ŽVV VV.	ĒE	SS
·VV· VV	EEEEEEE	\$\$\$\$\$\$\$ <b>\$\$\$</b>
VV VV	EEEEEEE	\$\$\$\$\$\$ <b>\$\$\$\$</b>
<b>γν</b> : <b>γγ</b>	EE	53
<b>V</b> V <b>V</b> V	ĘΕ,	<b>8</b> .5.
AĂ AA	EE	SS SS
<b>: √ √ ∀</b> :	EEEEEEEEEE	SSSSSSSSSSS
. <b>V</b>	EEEEEEEEEE	\$\$\$\$\$\$\$\$\$\$ <b>\$</b> \$\$

	666666	<b>ສົ</b> ສິສສສສສສສສ	55555555555	11
666666666666		3333333333333	55555555555	111
66		33 33	55	1111
66		33	55	11
-66		<b>ૂ</b> 33	55	11
66666666666		3333	5555555555	11
6666666	666666	3333	55555555555	11
66	66	33	55	11
-6'6	66	.33	55	11
66	-66:	33	55 55	11
666666666666		3333333333333	55555555555	11
66666666666		3333333333	5555555555	11

66666666666	3333333333	55555555555	3333333333
666666666666	333333333333	55555555555	3333333333333
66	33. 33	.55	33 33
66	33,	55	33
66	.33	55	<b>3</b> 3
66666666666	3333	<b>55</b> 555555555	333 <b>3</b>
666666666666	3333:	<b>55</b> 55555555555	· 33§3
66 66	33	<b>5</b> 5	.33
66 66	33	<b>55</b> -	33
66 .66	33	<b>55 5</b> 5	33
666666666666	3333333333333	5555555555	3333333333333
6666666666	3333333333	555555555	3333333333

****	***	***	F # # # # # # # # # # # # # # # # # # #
VARIABLE	*	TEMPERATURE	PRESSURE
UNITS	₩-	DEGREES C.	-DBÄRS
****	****	***	<b>********************************</b>
MEAN	#	17.229	410.792 * SAMPLE SIZE . 17690 POINTS
STD. ERR.	■.	•923E•2	•200 <b>*</b>
VARIANCE	s.	1 • 506	707.892 * SPANNING RANGE
STD. DEV.	<b>#</b> -	1 • 227	26.606 * FROM 77- XI -18 17.24.00
KURTOSIS	<b>2</b> :	12.771	13.037 * TO 78. XII-16 19.32.00
SKEWNESS	<b>.</b> :	<b>•3•236</b>	3.200 *
MINIMUM	<b>#</b> -	11•987	386.369 * DURATION: 393.09 DAYS
MAXIMUM	Ř	18.321	551,941
	-	-0	



AUTO SPECTRUM
6341\$1920 TEMPERATURE
407 METERS
77-X1-18 TO 78-X1-09
2 PIECES WITH 4000 ESTIMATES
PER PIECE, AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



AUTO SPECTRUM
6341\$1920 PRESSURE
407 METERS
77-X1-18 TO 78-X1-09
2 PIECES WITH 4000 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS

***************************************					
VARIABLE	` <b>#</b>	TEMPERATURE	PRESSURE	-	
UNITS	*	DEGREES C.	DBARS		
*****	****	*****	*****	**	网络萨拉斯特特拉特拉特斯斯特 计特殊系统 经特殊的经济
MEAN		17.163	425.844	#	SAMPLE SIZE . 17700 PUINTS
STO. ERR.	*	•767E•2	•755E=1	*	•
VARIANCE		1:•040	100.923	*	SPANNING RANGE
STD. DEV.	. <u>.</u>	1-020	10.046	-#-	FROM: 77- XI -18 17-24-00
110		12 • 845	17.920	*	TO 78 × XII+17 00 • 52 • 00
		•3·120	3.269	*	
MINIMUM		11:•8 <b>9</b> 5	414.929	₩,-	DURATION 393.31 DAYS
MUMIXÁM		1g•271	498.096		



AUTO SPECTRUM
6351\$1920 YEMPERATURE
422 METERS
77-X1-18 TO 78-X1-09
2 PLECES WITH 4000 ES IMATES
PER PLECE: AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



AUIO SPECTRUM
6351\$1720 PRESSURE
422 METERS
77-XI-18 TO 78-XI-09
2 PIECES WITH 4000 ESTIMATES
PER PIECE. AVERAGED OVER
3 ADJACENT FREQUENCY BANDS



DATA 6541A1DCAU24



DATA 6351A1DGAU24