Artificial Intelligence with Python

Language

Natural Language Processing

Natural Language Processing

- automatic summarization
- information extraction
- machine translation
- question answering
- text classification
- •

Syntax

"Just before nine o'clock Sherlock Holmes stepped briskly into the room." "Just before Sherlock Holmes nine o'clock stepped briskly the room."

"I saw the man on the mountain with a telescope."

Semantics

"Just before nine o'clock Sherlock Holmes stepped briskly into the room." "A few minutes before nine, Sherlock Holmes walked quickly into the room."

"Colorless green ideas sleep furiously."

Natural Language Processing

formal grammar

a system of rules for generating sentences in a language

Context-Free Grammar

she saw the city


```
N → she | city | car | Harry | ...
D → the a an ...
V → saw ate walked ...
P → to on over ...
```

ADJ → blue busy old ...

NP -> N D N

NP -> N D N

NP she NP -> N D N

VP → V V NP

VP → V V NP

VP → V V NP

S -> NP VP

S \rightarrow NP VP

nltk

n-gram

a contiguous sequence of n items from a sample of text

tokenization

the task of splitting a sequence of characters into pieces (tokens)

Markov Chains

Text Categorization

"My grandson loved it! So much fun!"

"Product broke after a few days."

"One of the best games I've played in a long time."

"Kind of cheap and flimsy, not worth it."

"My grandson loved it! So much fun!"

"Product broke after a few days."

"One of the best games I've played in a long time."

"Kind of cheap and flimsy, not worth it."

"My grandson loved it! So much fun!"

"Product broke after a few days."

"One of the **best** games I've played in a long time."

"Kind of cheap and flimsy, not worth it."

bag-of-words model

model that represents text as an unordered collection of words

Naive Bayes

Bayes' Rule

$$P(b \ a) = \frac{P(a \ b) P(b)}{P(a)}$$

P(Positive)

P(Negative)

P

P

"My grandson loved it!"

P("my grandson loved it")

 $P(\Theta \mid \text{"my", "grandson", "loved", "it"})$

 $P(\Theta \mid \text{"my", "grandson", "loved", "it"})$

$$P(\ensuremath{\center{ensuremath{\center{\c$$

equal to

$$P(\text{"my", "grandson", "loved", "it"}|\Theta)P(\Theta)$$

P("my", "grandson", "loved", "it")

the denominator can be ignored since the probability that all those words appear in the review doesn't depend on whether we are looking at the positive or negative sentiment case

 $P(\ensuremath{\color{\circ}}\ensuremath{|}\ens$

proportional to

 $P(\text{"my", "grandson", "loved", "it"}|\Theta)P(\Theta)$

which will later be normalized

$P(\ensuremath{\color{\circ}}\xspace | "my", "grandson", "loved", "it")$

proportional to

can be rewritten as joint probability

 $P(\Theta, \text{"my"}, \text{"grandson"}, \text{"loved"}, \text{"it"})$

$$P(\ensuremath{\center{ensuremath{\center{\c$$

naively proportional to

if we assume all words are independent, we can rewrite as

$$P(\ensuremath{\e$$

each word is dependent on sentiment

number of positive samples

number of total samples

number of positive samples with "loved"

 $P("loved" \mid \ensuremath{\mathfrak{S}}) = \frac{}{\text{number of positive samples}}$

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

0.00014112

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

©. 6837

0. 3163

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.01	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.00	0.02
loved	0.32	0.08
it	0.30	0.40

0.49	0.51

my	0.30	0.20
grandson	0.00	0.02
loved	0.32	0.08
it	0.30	0.40

additive smoothing

adding a value α to each value in our distribution to smooth the data

Laplace smoothing

adding 1 to each value in our distribution: pretending we've seen each value one more time than we actually have

Word Representation


```
he [1, 0, 0, 0]
wrote [0, 1, 0, 0]
a [0, 0, 1, 0]
book [0, 0, 0, 1]
```

one-hot representation

representation of meaning as a vector with a single 1, and with other values as 0

```
he [1, 0, 0, 0]
wrote [0, 1, 0, 0]
a [0, 0, 1, 0]
book [0, 0, 0, 1]
```

```
he [1, 0, 0, 0, 0, 0, 0, ...]
wrote [0, 1, 0, 0, 0, 0, 0, ...]
a [0, 0, 1, 0, 0, 0, 0, ...]
book [0, 0, 0, 1, 0, 0, 0, ...]
```

"He authored a novel."

```
wrote [0, 1, 0, 0, 0, 0, 0, 0, ...]
authored [0, 0, 0, 0, 1, 0, 0, ...]
```

book [0, 0, 0, 1, 0, 0, 0, ...]
novel [0, 0, 0, 0, 0, 0, 1, ...]

distributed representation

representation of meaning distributed across multiple values

```
ne [-0.34, -0.08, 0.02, -0.18, 0.22, ...]
Wrote [-0.27, 0.40, 0.00, -0.65, -0.15, ...]
a [-0.12, -0.25, 0.29, -0.09, 0.40, ...]
DOOK [-0.23, -0.16, -0.05, -0.57, 0.05, ...]
```

define the meaning of a word by the context words that appear around it

"You shall know a word by the company it keeps."

J. R. Firth, 1957

for		he	ate
-----	--	----	-----

for	breakfast	he	ate
-----	-----------	----	-----

for	lunch	he	ate
-----	-------	----	-----

for	dinner	he	ate
-----	--------	----	-----

for		he	ate
-----	--	----	-----

word2vec

model for generating word vectors

book book onovel dinner

Neural Networks

input network output

The only light in the room came from the lamp upon the table at which I had been reading.

La pièce n'était éclairée que par la lampe placée sur la table où je lisais. What is the capital of Massachusetts?

The capital is Boston.

not all words of input sequence are equally important

Attention

the capital is

what is the capital of Massachusetts

lighter squares indicate higher attention score

Adapted from Bahdanau et al. 2015. Neural machine translation by jointly learning to align and translate

Transformers

input sequence

each input word will go through the same neural network

Jack likes Jill
has different meaning than
Jill likes Jack
so we need to track word's position

this single example is happening to every word

encoded representations

output uses similar structure to input: using the context of other output words and we also want it to also pay attention to input words

decoder

Language

Artificial Intelligence

Search

Knowledge

$$P o Q$$
 P

Uncertainty

Optimization

Learning

Neural Networks

Language

Artificial Intelligence with Python