Problem Statment:

In the competitive restaurant industry, stakeholders often lack clear insights into which user engagement factors contribute most to business success. This project seeks to address the question: How do user engagement metrics (e.g., reviews, tips, and check-ins) correlate with key business performance indicators (such as review count and ratings) for How do user engagement metrics, such as reviews, tips, and check-ins, influence key business performance indicators like review counts and ratings for restaurants? In the highly competitive restaurant industry, understanding these relationships is crucial for stakeholders aiming to enhance business success. providing data-driven insights that can guide strategic decision-making and promote sustainable growth .? By analyzing the Yelp dataset, the goal is to identify actionable patterns that can guide strategic decisions and enhance restaurant performance.

General Research Objectives:

Quantify the Correlation Between User Engagement and Business Metrics: Assess the relationship between user engagement factors—such as reviews, tips, and check-ins—and business metrics, including review count and average star rating. This will reveal whether restaurants with higher user engagement tend to have higher ratings and more reviews.

Analyze the Impact of Sentiment on Business Performance: Investigate whether positive sentiment in reviews and tips is associated with

higher star ratings and an increase in the total number of reviews. This analysis will help determine if sentiment influences business success.

Identify Time Trends in User Engagement: Explore whether consistent user engagement over time serves as a stronger indicator of long-term success compared to sporadic bursts of activity. This will provide insights into engagement patterns that contribute to sustained business growth.

Adapt Research Based on Emerging Insights: Modify the research focus as necessary, based on findings and insights gained during analysis, to capture additional factors relevant to business success.

Hypothesis Testing:

User Engagement and Business Performance: Higher levels of user engagement, such as increased reviews, tips, and check-ins, are positively correlated with higher review counts and ratings for restaurants.

Sentiment Impact on Ratings and Review Counts: Positive sentiments expressed in reviews and tips contribute to higher overall ratings and increased review counts for restaurants.

Consistent Engagement and Long-term Success: Consistent user engagement over time is positively associated with sustained business success for restaurants.

About Dataset:

This Yelp dataset contains information across eight metropolitan areas in the USA and Canada, organized into five primary tables for analysis:

Business: Contains details on 131,930 businesses, including over 1.2 million attributes like hours, parking, availability, and ambiance.

Review: Includes user-generated reviews with star ratings, text, and timestamps.

User: Information on 1,987,897 users, including activity and interaction data.

Tip: Contains 908,915 tips from users, providing short advice about businesses.

Check -in: Aggregates check-in data over time for each business, enabling time-based analysis of user visits.

Importing Necessary Libraries Below:

```
import pandas as pd
import numpy as np
from matplotlib.pyplot import subplot
from rich.jupyter import display
from sqlalchemy import create_engine, text
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.colors import LinearSegmentedColormap
from datetime import datetime
import folium
from geopy.geocoders import Nominatim
import warnings
warnings.filterwarnings('ignore')
```

Creating MySQL connection Using SQLAlchemy Engine :

```
In [2]: from sqlalchemy import create_engine

# Create an engine that connects to your MySQL database
engine = create_engine('mysql+mysqlconnector://root:Vermasuryanshu%40110906@localho

# Verify connection
try:

# Here, you can use pandas to directly interact with the database
print("Successfully connected to the database using SQLAlchemy!")
except Exception as e:
    print(f"Error: {e}")
```

Successfully connected to the database using SQLAlchemy!

Reading the tables using sqlAlchemy:

```
In [3]: try:
            # Open the connection using the engine and use it as a context manager
            with engine.connect() as sql:
                print("Successfully connected to the database using SQLAlchemy!")
                # Execute SHOW TABLES query
                result = sql.execute(text("SHOW TABLES;"))
                # Fetch and print the tables
                print("Tables in the database:")
                for row in result:
                    print(row[0]) # Print the name of each table
        except Exception as e:
            print(f"Error: {e}")
       Successfully connected to the database using SQLAlchemy!
       Tables in the database:
       business
       checkin
       checkin df csv
       review
       tip
       user
In [4]: # Reading data from the 'business' table using pandas
        business = pd.read_sql("SELECT * FROM business;", engine)
        business # Display the first few rows of the DataFrame
```

[4]:		business_id	name	address	city	state	postal_code
	0	Pns2l4eNsfO8kk83dixA6A	Abby Rappoport, LAC, CMQ	1616 Chapala St, Ste 2	Santa Barbara	CA	93101
	1	mpf3x-BjTdTEA3yCZrAYPw	The UPS Store	87 Grasso Plaza Shopping Center	Affton	МО	63123
	2	tUFrWirKiKi_TAnsVWINQQ	Target	5255 E Broadway Blvd	Tucson	ΑZ	85711
	3	MTSW4McQd7CbVtyjqoe9mw	St Honore Pastries	935 Race St	Philadelphia	PA	19107
	4	mWMc6_wTdE0EUBKIGXDVfA	Perkiomen Valley Brewery	101 Walnut St	Green Lane	PA	18054
	•••					•••	
	150341	IUQopTMmYQG-qRtBk-8QnA	Binh's Nails	3388 Gateway Blvd	Edmonton	АВ	T6J 5H2
	150342	c8GjPIOTGVmlemT7j5_SyQ	Wild Birds Unlimited	2813 Bransford Ave	Nashville	TN	37204
	150343	_QAMST-NrQobXduilWEqSw	Claire's Boutique	6020 E 82nd St, Ste 46	Indianapolis	IN	46250
	150344	mtGm22y5c2UHNXDFAjaPNw	Cyclery & Fitness Center	2472 Troy Rd	Edwardsville	IL	62025
	150345	jV_XOycEzSITx-65W906pg	Sic Ink	238 Apollo Beach Blvd	Apollo beach	FL	33572
	150346 rd	ows × 12 columns					
	4						>

```
In [5]: # Reading data from the 'checkin' table using pandas
  checkin = pd.read_sql("SELECT * FROM checkin;", engine)
  checkin # Display the first few rows of the DataFrame
```

Out[5]:		business_id	date
	0	kPU91CF4Lq2-WIRu9Lw	2020-03-13 21:10:56, 2020-06-02 22:18:06, 2020
	1	0iUa4sNDFiZFrAdIWhZQ	2010-09-13 21:43:09, 2011-05-04 23:08:15, 2011
	2	30_8IhuyMHbSOcNWd6DQ	2013-06-14 23:29:17, 2014-08-13 23:20:22
	3	7PUidqRWpRSpXebiyxTg	2011-02-15 17:12:00, 2011-07-28 02:46:10, 2012
	4	7jw19RH9JKXgFohspgQw	2014-04-21 20:42:11, 2014-04-28 21:04:46, 2014
	•••		
	131718	zznJox6-nmXlGYNWgTDwQQ	2013-03-23 16:22:47, 2013-04-07 02:03:12, 2013
	131719	zznZqH9CiAznbkV6fXyHWA	2021-06-12 01:16:12
	131720	zzu6_r3DxBJuXcjnOYVdTw	2011-05-24 01:35:13, 2012-01-01 23:44:33, 2012
	131721	zzw66H6hVjXQEt0Js3Mo4A	2016-12-03 23:33:26, 2018-12-02 19:08:45
	131722	zzyx5x0Z7xXWWvWnZFuxlQ	2015-01-06 17:51:53

131723 rows × 2 columns

```
In [6]: # Reading data from the 'review' table using pandas
    review = pd.read_sql("SELECT * FROM review;", engine) # Display the first few rows
    review
```

Out[6]:		review_id	user_id	business ₋
	0	KU_O5udG6zpxOg-VcAEodg	mheMZ6K5RLWhZyISBhwA	XQfwVwDr-v0ZS3_CbbE5〉
	1	BiTunyQ73aT9WBnpR9DZGw	OyoGAe7OKpv6SyGZT5g77Q	7ATYjTlgM3jUlt4UM3lyរ
	2	saUsX_uimxRICVr67Z4Jig	8g_iMtfSiwikVnbP2etR0A	YjUWPpI6HXG530lwP-fb
	3	AqPFMleE6RsU23_auESxiA	_7bHUi9Uuf5HHc_Q8guQ	kxX2SOes4o-D3ZQBkiMR
	4	Sx8TMOWLNuJBWer-0pcmoA	bcjbaE6dDog4jkNY91ncLQ	e4Vwtrqf-wpJfwesgvdg:
	•••			
	6990275	H0RlamZu0B0Ei0P4aeh3sQ	qskILQ3k0I_qcCMI-k6_QQ	jals67o91gcrD4DC81Vkı
	6990276	shTPgbgdwTHSuU67mGCmZQ	Zo0th2m8Ez4gLSbHftiQvg	2vLksaMmSEcGbjl5gywp.

> review_id user_id business_ 6990277 YNfNhgZlaaCO5Q_YJR4rEw mm6E4FbCMwJmb7kPDZ5v2Q R1khUUxidqfaJmcpmGd4i 6990278 i-I4ZOhoX70Nw5H0FwrQUA YwAMC-jvZ1fvEUum6QkEkw Rr9kKArrMhSLVE9a53q-6990279 6JehEvdoCvZPJ_Xlxnzllw VAeEXLbEcl9Emt9KGYq9 RwcKOdEuLRHNJe4M9-qpqq 6990280 rows × 9 columns

```
In [7]: # Reading data from the 'tip' table using pandas
        tip = pd.read_sql("SELECT * FROM tip;", engine) # Display the first few rows of the
        tip
```

Out[7]:		user_id	business_id	text	date	com			
	0	AGNUgVwnZUey3gcPCJ76iw	3uLgwr0qeCNMjKenHJwPGQ	Avengers time with the ladies.	2012- 05-18 02:17:21				
	1	NBN4MgHP9D3cw SnauTkA	QoezRbYQncpRqyrLH6lqjg	They have lots of good deserts and tasty cuban	2013- 02-05 18:35:10				
	2	-copOvldyKh1qr-vzkDEvw	MYoRNLb5chwjQe3c_k37Gg	It's open even when you think it isn't	2013- 08-18 00:56:08				
	3	FjMQVZjSqY8sylO-53KFKw	hV-bABTK-glh5wj31ps_Jw	Very decent fried chicken	2017- 06-27 23:05:38				
	4	ld0AperBXk1h6UbqmM80zw	_uN0OudeJ3ZI_tf6nxg5ww	Appetizers platter special for lunch	2012- 10-06 19:43:09				
	•••								
	908910	eYodOTF8pkqKPzHkcxZs-Q	3IHTewuKFt5IImbXJoFeDQ	Disappointed in one of your managers.	2021- 09-11 19:18:57				
	908911	1uxtQAuJ2T5Xwa_wp7kUnA	OaGf0Dp56ARhQwIDT90w_g	Great food and service.	2021- 10-30 11:54:36				
	908912	v48Spe6WEpqehsF2xQADpg	hYnMeAO77RGyTtlzUSKYzQ	Love their Cubans!!	2021- 11-05 13:18:56				
	908913	ckqKGM2hl7l9Chp5lpAhkw	s2eyoTuJrcP7I_XyjdhUHQ	Great pizza great price	2021- 11-20 16:11:44				
	908914	4tF1CWdMxvvwpUlgGsDygA	_cb1Vg1NIWry8UA0jyuXnQ	Food is good value but a bit hot!	2021- 12-07 22:30:00				
	908915 rows × 5 columns								
	4					•			
In [8]:	# Reading data from the 'user' table using pandas user = pd.read_sql("SELECT * FROM user;", engine) # Display the first few rows of user								

ut[8]:		user_id	name	review_count	yelping_since	C 5	funny
	0	qVc8ODYU5SZjKXVBgXdI7w	Walker	585	2007-01-25 16:47:26	7217	1259
	1	j14WgRoU2ZE1aw1dXrJg	Daniel	4333	2009-01-25 04:35:42	43091	13066
	2	2WnXYQFK0hXEoTxPtV2zvg	Steph	665	2008-07-25 10:41:00	2086	1010
	3	SZDeASXq7o05mMNLshsdIA	Gwen	224	2005-11-29 04:38:33	512	330
	4	hA5IMy-EnncsH4JoR-hFGQ	Karen	79	2007-01-05 19:40:59	29	15
	•••						
	1983818	fB3jbHi3m0L2KgGOxBv6uw	Jerrold	23	2015-01-06 00:31:31	7	0
	1983819	68czcr4BxJyMQ9cJBm6C7Q	Jane	1	2016-06-14 07:20:52	0	0
	1983820	1x3KMskYxOuJCjRz70xOqQ	Shomari	4	2017-02-04 15:31:58	1	1
	1983821	ulfGl4tdbrH05xKzh5lnog	Susanne	2	2011-01-14 00:29:08	0	0
	1983822	wL5jPrLRVCK_Pmo4IM1zpA	lsa	2	2020-12-19 02:32:39	0	0
	1983823 rd	ows × 22 columns					
	4						>

Data Analysis:

```
In [9]: business_Open_Restaurants=pd.read_sql("select * from business where is_open = 1 AND
In [10]: business_Open_Restaurants # Open Restaurants
```

Out[10]: business_id name address city state postal_code St Honore 935 Race **0** MTSW4McQd7CbVtyjqoe9mw Philadelphia PA 19107 St **Pastries** Sonic 615 S Ashland 1 ΤN 37015 CF33F8-E6oudUQ46HnavjQ Drive-In City Main St 2312 Sonic 2 bBDDEgkFA1Otx9Lfe7BZUQ Dickerson Nashville ΤN 37207 Drive-In Pike Vietnamese 3 eEOYSgkmpB90uNA7IDOMRA None Tampa Bay FL 33602 Food Truck 8901 US 4 il_Ro8jwPlHresjw9EGmBg Denny's Indianapolis IN 46227 31 S Bittercreek 246 N 8th 34999 w_4xUt-1AyY2ZwKtnjW0Xg ID 83702 **Boise** Alehouse St 19 N Clifton PA 35000 I9eLGG9ZKpLJzboZq-9LRQ Wawa Bishop 19018 Heights Ave 1181 N **Dutch Bros** 35001 cM6V90ExQD6KMSU3rRB5ZA Milwaukee **Boise** ID 83704 Coffee St Adelita 1108 S 9th 35002 WnT9NIzQgLIILjPT0kEcsQ Taqueria & Philadelphia PA 19147 Restaurant The Plum 4405 2O2K6SXPWv56amqxCECd4w 35003 DE 19014 Aston Pennell Rd

35004 rows × 12 columns

Out of 150K Businesses, 35K are Restaurant Business and are Open.

Q. What is the descriptive stats for review count and star rating for businesses?

```
In [11]: query = """
         SELECT
             AVG(review_count) AS average_review,
             MIN(review_count) AS min_review,
             MAX(review_count) AS max_review,
             AVG(stars) AS average_star_rating,
             MIN(stars) AS min_star_rating,
             MAX(stars) AS max_star_rating
         FROM (
             SELECT *
             FROM business
             WHERE is_open = 1
             AND LOWER(categories) LIKE '%restaurant%'
         ) AS business_Open_Restaurants;
         # Execute the query and display the result
         review_business = pd.read_sql(query, engine)
In [12]: # Calculating the median for the both Stars & Review_count
         review_business.insert(3,'median_review',[business['review_count'].median()])
         review_business.insert(7, 'median_stars', [business['stars'].median()])
In [13]: review_business # As per the stats, We can conclude that the review columns include
Out[13]:
            average_review min_review max_review median_review average_star_rating min_star_r
         0
                  104.0978
                                              7568
                                                             15.0
                                                                            3.523969
In [14]:
         review_business=review_business.T
In [15]: review_business
```

```
Out[15]:
                                          0
               average_review
                                 104.097800
                  min_review
                                   5.000000
                  max review
                               7568.000000
               median review
                                  15.000000
           average_star_rating
                                   3.523969
               min star rating
                                   1.000000
              max_star_rating
                                   5.000000
                 median stars
                                   3.500000
```

The Max_review is outlier and data is skewed, To address this I decided to remove restaurants with outlier review counts, For this I created a Function to identify & remove outliers using IOR method.

```
In [16]: # Convert column to integer, if it contains boolean values by mistake
    business_Open_Restaurants['review_count'] = business_Open_Restaurants['review_count']

In [17]: # Removing Outliers using IQR
    # Defining a function called --> remove_outlier

def remove_outlier(df,col):
    q1 = df[col].quantile(0.25)
    q3 = df[col].quantile(0.75)
    iqr = q3-q1
    lower_bound = q1 - 1.5 * iqr
    upper_bound = q3 + 1.5 * iqr
    df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
    return df

# calling the function
    business_Open_Restaurants = remove_outlier(business_Open_Restaurants, 'review_count')

In [18]: business_Open_Restaurants</pre>
```

Out[18]: business_id name address city state postal_code St Honore 935 Race **0** MTSW4McQd7CbVtyjqoe9mw Philadelphia PA 19107 St **Pastries** Sonic 615 S Ashland 1 ΤN 37015 CF33F8-E6oudUQ46HnavjQ Drive-In City Main St 2312 Sonic 2 bBDDEgkFA1Otx9Lfe7BZUQ Dickerson Nashville ΤN 37207 Drive-In Pike Vietnamese 3 eEOYSgkmpB90uNA7IDOMRA None Tampa Bay FL 33602 Food Truck 8901 US 4 il_Ro8jwPlHresjw9EGmBg Denny's Indianapolis IN 46227 31 S 5028 Old 34998 sf_oQ62L8UEnOOLf00nNGA Pizza Hut Hermitage ΤN 37076 Hickory 19 N Clifton PA 35000 I9eLGG9ZKpLJzboZq-9LRQ Wawa Bishop 19018 Heights Ave 1181 N **Dutch Bros** 35001 cM6V90ExQD6KMSU3rRB5ZA Milwaukee **Boise** ID 83704 Coffee St Adelita 1108 S 9th 35002 WnT9NIzQgLIILjPT0kEcsQ Taqueria & Philadelphia PA 19147 Restaurant The Plum 4405 2O2K6SXPWv56amqxCECd4w 35003 DE 19014 Aston Pennell Rd

31537 rows × 12 columns

```
business_Open_Restaurants['review_count'].describe() # its reflected the change and
Out[19]: count
                   31537.000000
          mean
                      55.975426
          std
                      56.559679
          min
                      5.000000
          25%
                      14.000000
          50%
                      33.000000
          75%
                      79.000000
                     248.000000
          max
          Name: review_count, dtype: float64
```

After Removing outliers, Now I get average review count as 55.975 for the restaurant business.

Open Businesses Which Are Restaurant:

```
In [20]: business_Open_Restaurants
```

Out[20]: business_id name address city state postal_code St Honore 935 Race 0 MTSW4McQd7CbVtyjqoe9mw Philadelphia PA 19107 **Pastries** St Sonic 615 S Ashland 1 ΤN 37015 CF33F8-E6oudUQ46HnavjQ Drive-In City Main St 2312 Sonic 2 bBDDEgkFA1Otx9Lfe7BZUQ Dickerson Nashville ΤN 37207 Drive-In Pike Vietnamese 3 eEOYSgkmpB90uNA7IDOMRA None Tampa Bay FL 33602 Food Truck 8901 US 4 il_Ro8jwPlHresjw9EGmBg Denny's Indianapolis IN 46227 31 S 5028 Old 34998 sf_oQ62L8UEnOOLf00nNGA Pizza Hut Hermitage ΤN 37076 Hickory 19 N Clifton PA 35000 I9eLGG9ZKpLJzboZq-9LRQ Wawa Bishop 19018 Heights Ave 1181 N **Dutch Bros** 35001 cM6V90ExQD6KMSU3rRB5ZA Milwaukee **Boise** ID 83704 Coffee St Adelita 1108 S 9th 35002 WnT9NIzQgLIILjPT0kEcsQ Taqueria & Philadelphia PA 19147 Restaurant The Plum 4405 2O2K6SXPWv56amqxCECd4w 35003 DE 19014 Aston Pennell Rd

31537 rows × 12 columns

5

6

7

8

Q. Which restaurant have the higest number of reviews?

main

Out[21]: Higest_Review_Counts Average_Rating 0 McDonald's 16490.0 1.868702 Chipotle Mexican Grill 9071.0 2.381757 2 First Watch 8688.0 3.896552 3 Acme Oyster House 8343.0 4.000000 4 Taco Bell 8017.0 2.141813

7967.0

7400.0

6810.0

6613.0

6093.0

3.373418

4.000000

2.347458

2.661905

4.500000

In [21]: pd.read_sql(""" select name, SUM(review_count) AS Higest_Review_Counts, AVG(stars)

Q. Which restaurant have the highest number of highest rating?

Chick-fil-A

Oceana Grill

Panera Bread

Buffalo Wild Wings

9 Hattie B's Hot Chicken - Nashville

In [22]: pd.read_sql(""" select name, SUM(review_count) AS Higest_Review_Counts, AVG(stars)

Out[22]: Higest_Review_Counts Average_Rating 7 Vegan International Co. Kitchen & Market 269.0 5.0 6 185.0 The Foundry Bakery 5.0 9 152.0 5.0 Jet City Espresso Hyde Park 1 42.0 bb.q Chicken - O'Fallon 5.0 3 10.0 5.0 Asia Mix Restaurant 5 9.0 5.0 Healthy Soul Indy 8 Antojitos Carmen Restaurante Y Taqueria 9.0 5.0 2 Tacos Don Vicente 8.0 5.0 0 YWCA Corazon Cafe & Catering 5.0 5.0 5.0 In and Out Express Food Market 5.0

NOTE:

No direct correlation: Higher rating do not guarantee a higher review count and vice versa, The review cannot reflect user engagement, but do not necessarily States the overall customer satisfaction or business performance, Successes in the restaurant business is not solely determined by rating or review counts.

Q. Do restaurants with higer engagement tends to have higher rating?

In [23]: pd.read_sql(""" select business_id, sum(length(date) - length(replace(date, ',', ''

Out[23]: business_id checkin_count **0** 3wo9jODQnuvBm8Gkem6qXq 3110.0 MkF4gosEaJqJ3tNk1BZiwg 3106.0 2 ctHjyadbDQAtUFfkcAFEHw 3104.0 3 h6lzeUVASeDtvKhd2PEsKA 3101.0 6dDC5PSmPEoJYuM8r8dN A 3096.0 131718 i5tex_2_UNEsPUh6oaVREA 1.0 131719 i6-xjNGY_8Co3DwHDrBZ4w 1.0 131720 i69x-7o4wuLbWC3sf4ek7Q 1.0 131721 i6n5Cv7C2OOfrgGAj5weiw 1.0 131722 i6nsOTszsTWJw_vRrBkAJg 1.0

131723 rows × 2 columns

In [24]: # tip_counts per business_id
pd.read_sql(""" select business_id, count(*) as tip_counts from tip group by busin

Out[24]:		business_id	tip_counts
	0	FEXhWNCMkv22qG04E83Qjg	2571
	1	-QI8Qi8XWH3D8y8ethnajA	1011
	2	_ab50qdWOk0DdB6XOrBitw	932
	3	ytynqOUb3hjKeJfRj5Tshw	827
	4	Eb1XmmLWyt_way5NNZ7-Pw	826
	•••		
	106188	54hp8YAMnI0baeSwbnBxDA	1
	106189	GP9X_N5vMHYTuwcEiz-Xnw	1
	106190	qgZtdbGuASSA-Av7rgCw	1
	106191	H5TSeRUNkoCRtL2RcB9WKQ	1
	106192	uE_4H4kj4Xjb115_LBvA	1

106193 rows × 2 columns

```
AVG(total.tip_count) as avg_tip_count
(select
   business.business_id,
   SUM(business.review_count) AS review_count,
   AVG(business.stars) AS avg_rating,
   SUM(LENGTH(checkin.date) - LENGTH(replace(checkin.date, ',', '')) +1) AS checki
   SUM(tip.tip_count) as tip_count
from
   business
left join
   checkin ON business.business_id = checkin.business_id
left join
   (select business_id, count(business_id) as tip_count from tip GROUP BY business
where business.business id IN {tuple(business Open Restaurants['business id'])}
GROUP BY
   business.business_id) as total
GROUP BY total.avg_rating
""", engine)
```

```
In [26]: review_counts=review_counts.sort_values('rating', ascending=False)
```

Ploting Bar Graphs:

```
In [27]: # Creating Void and Axis for ploting the graphs
         plt.figure(figsize=(25,8))
         plt.title('AVG Engagement Based On Rating\n\n')
         plt.xticks([])
         plt.yticks([])
         # Review Count Plot
         plt.subplot(1,3,1)
         plt.title('Review Count')
         plt.barh(review_counts['rating'].astype('str'), review_counts['avg_review_count'],
         plt.gca().spines['right'].set_visible(False)
         for i, value in enumerate(review_counts['avg_review_count']):
             plt.text(value+3,i,str(round(value)), color='Black', va = 'center')
         plt.xticks([])
         # Checkin Count Plot
         plt.subplot(1,3,2)
         plt.title('Checkin Count')
         plt.barh(review_counts['rating'].astype('str'), review_counts['avg_checkin_count'],
         plt.gca().spines['right'].set_visible(False)
         for i, value in enumerate(review_counts['avg_checkin_count']):
             plt.text(value+3,i,str(round(value)), color='Black', va = 'center')
         plt.xticks([])
         # Tip Count Plot
         plt.subplot(1,3,3)
         plt.title('Tip Count')
         plt.barh(review_counts['rating'].astype('str'), review_counts['avg_tip_count'], edg
         plt.gca().spines['right'].set_visible(False)
```


NOTE:

Data show a general increase in average review check in and tip counts as rating improves from one to four stars, restaurants created four stars. Exhibit the highest engagement across reviews, check insurance and tips, suggesting a peak in user interaction, interestingly, engagement matrix. (Review, check in). Dip for restaurant rated 4.5 and significantly more at five stars, They dropped an engagement at 5 stars might suggest either a situation point where fewer customer feel compended or to add their reviews for a selective believer only a small satisfied audience. Frequents these establishment.

Q. Is there a correctation between the number of reviews, tip, and check - ins for a business?

```
""",engine).dropna()
          engage_df_corr = engage_df[['review_count','checkin_count','tip_count']].corr()
In [30]: # Ploting the HeatMap
           sns.heatmap(engage_df_corr,cmap='seismic', annot=True, linewidths=0.5,linecolor='wh
Out[30]: <Axes: >
                                                                                     1.00
          review count
                                                                                     - 0.95
                                                                 0.77
                                           0.65
                                                                                     - 0.90
         checkin count
                                                                                     - 0.85
                      0.65
                                             1
                                                                 0.78
                                                                                     - 0.80
                                                                                    - 0.75
         ip count
                      0.77
                                           0.78
                                                                                      0.70
                 review count
                                      checkin count
                                                              tip count
```

```
In [31]: engage_dff = pd.read_sql(F"""
             SELECT
                 business.business_id,
                 SUM(business.review_count) AS review_count,
                 AVG(business.stars) AS avg_rating,
                 SUM(LENGTH(checkin.date) - LENGTH(REPLACE(checkin.date, ',', '')) + 1) AS c
                 SUM(tip.tip_count) AS tip_count,
                 CASE
                     WHEN business.stars >= 3.5 THEN 'High-Rated'
                     ELSE 'Low-Rated'
                 END AS category
             FROM
                 business
             LEFT JOIN
                 checkin ON business.business_id = checkin.business_id
             LEFT JOIN
                 (SELECT business_id, COUNT(business_id) AS tip_count
                  FROM tip
                  GROUP BY business_id) AS tip ON business.business_id = tip.business_id
```

```
WHERE
                  business.business_id IN {tuple(business_Open_Restaurants['business_id'])}
             GROUP BY
                  business.business_id, business.stars
          """, engine).dropna()
In [32]: engage_dff.groupby('category')[['review_count','tip_count','checkin_count']].mean()
Out[32]:
                      review count tip count checkin count
            category
          High-Rated
                         72.274446 10.148378
                                                 121.375576
                         42.123420
                                   6.541689
                                                  88.880828
          Low-Rated
```

NOTE:

The data set shows a strong positive correlation among review counts, checking counts and tip counts, These correlations suggest that user engagement across different platforms, such as reviews, tips and check insurance is interlinked, Higher activity in one area tends to be associated with higher activity others. Businesses should focus on strategies that boost all types of user investment as increases in one type of engagement are likely to drive increase in others. And hence, in overall visibility and interaction with customers.

```
In [33]: # Function to calculate the sucess score based on the avg rating and total review of
def calculate_sucess_metric(df):
    sucess_score=[]
    for idx, row in df.iterrows():
        score = row['avg_rating'] * np.log(row['review_count'] + 1 )
        sucess_score.append(score)
    return sucess_score
```

MAP Plot:

Q. How do the sucess metrics (review_count or avg_rating) of restaurant vary across different states and cities?

```
latitude,
              longitude,
              AVG(stars) AS avg rating,
              SUM(review_count) AS review_count,
              COUNT(*) AS restaurant_count
          FROM business
          WHERE business_id IN {tuple(business_Open_Restaurants['business_id'])}
          GROUP BY state, city, latitude, longitude
          ORDER BY review count DESC
          LIMIT 10
          """, engine)
In [35]: city_df = city_df.reset_index()
In [36]: city_df = city_df.drop('index',axis = 1)
         city_df['success_score'] = calculate_sucess_metric(city_df)
In [37]:
In [38]:
         city df
Out[38]:
                      city state
                                   latitude
                                              longitude avg_rating review_count restaurant_count
          0
               Philadelphia
                             PA 39.953159
                                             -75.159098
                                                          4.000000
                                                                            541.0
                                                                                                6
          1
                  Nashville
                             TN 36.163685
                                             -86.782598
                                                          4.000000
                                                                            517.0
                                                                                                3
          2
                   Carmel
                              IN 39.978599
                                             -86.128981
                                                          4.166667
                                                                            503.0
                                                                                                3
                             NV 39.541452 -119.716242
          3
                    Sparks
                                                           3.000000
                                                                            452.0
          4 Hendersonville
                             TN
                                 36.302820
                                             -86.619056
                                                          4.375000
                                                                            431.0
                                                                                                4
          5
                  Nashville
                             TN 36.170064
                                             -86.665561
                                                           3.625000
                                                                            424.0
                                                                                                4
          6
                  Nashville
                             TN 36.138603
                                             -86.800358
                                                           4.000000
                                                                            417.0
                                                                                                2
          7
               Philadelphia
                             PA 39.958359
                                             -75.195393
                                                          4.250000
                                                                           416.0
                                                                                                6
          8
                                                                                                2
               Indianapolis
                              IN 39.858230
                                             -85.978565
                                                          4.250000
                                                                           411.0
                                                           3.583333
          9
               Philadelphia
                              PA 39.949756
                                             -75.148062
                                                                            379.0
                                                                                               12
In [39]: # Create a base Map
          m = folium.Map(location = [city_df['latitude'].mean(), city_df['longitude'].mean()]
          # Define a color scale
          color_scale = folium.LinearColormap(colors=['green','yellow','#E54F29'], vmin = cit
          # Add markers to the map
          for idx, row in city_df.iterrows():
              folium.CircleMarker(
                  location = [row['latitude'], row['longitude']],
                  radius = 5,
                  color = color_scale(row['success_score']),
```

```
fill = True,
    fill_color = color_scale(row['success_score']),
    fill_opacity = 0.7,
    popup=F"Success Score: {row ['success_score']}"
    ).add_to(m)

# Add color scale to the map

m.add_child(color_scale)
```


NOTE:

Philadelphia emerges as the top city with the highest success code, indicating a combination of high ratings and active user engagements. following Philadelphia, Tampa, Indianapolis and tucson rank among the top cities with significant success score, suggesting thriving restaurant success in these areas. The success matrix vary significantly across different state and cities, highlighting regional differences in dining Preferences, culinary sceneries and customer engagement levels, identifying city with the highest success score present opportunities for Restaurant chains to Expend or invest further while areas with low score may require targeted efforts to improve rating and increase user engagement.

Time:

Q. Are there any patterns in the user engagement over time for sucessfull business compared to less sucessfull ones, Are there any seasonal trends in the user engagement for restaurant?

```
In [40]: high_rated_engagement = pd.read_sql_query(f"""
         SELECT review.month_year, review.review_count, tip.tip_count FROM
         (SELECT DATE_FORMAT(date, '%m-%Y') AS month_year, COUNT(*) AS review_count
         WHERE business_id IN {tuple(business_Open_Restaurants['business_id'])} AND stars >=
         GROUP BY month_year
         ORDER BY month year) AS review
         (SELECT AVG(b.stars) AS avg_stars, DATE_FORMAT(tip.date, '%m-%Y') AS month_year, CO
         FROM tip
         JOIN business AS b
         ON tip.business_id = b.business_id
         WHERE tip.business_id IN {tuple(business_Open_Restaurants['business_id'])} AND b.st
         GROUP BY month_year
         ORDER BY month_year) AS tip
         ON review.month_year = tip.month_year
         ;""", engine)
         low_rated_engagement = pd.read_sql_query(f"""
         SELECT review.month_year, review.review_count, tip.tip_count FROM
         (SELECT DATE_FORMAT(date, '%m-%Y') AS month_year, COUNT(*) AS review_count
         WHERE business id IN {tuple(business Open Restaurants['business id'])} AND stars <
         GROUP BY month year
         ORDER BY month_year) AS review
         (SELECT AVG(b.stars) AS avg_stars, DATE_FORMAT(tip.date, '%m-%Y') AS month_year, CO
         FROM tip
         JOIN business AS b
         ON tip.business_id = b.business_id
         WHERE tip.business_id IN {tuple(business_Open_Restaurants['business_id'])} AND b.st
         GROUP BY month_year
         ORDER BY month_year) AS tip
         ON review.month_year = tip.month_year
         ;""", engine)
```

In [41]: high_rated_engagement

Out[41]:		month_year	review_count	tip_count
	0	01-2010	1218	79
	1	01-2011	2171	621
	2	01-2012	3086	1321
	3	01-2013	3801	1230
	4	01-2014	4973	1357
	•••			
	149	12-2017	10161	1477
	150	12-2018	12870	1163
	151	12-2019	13756	1161
	152	12-2020	11294	937
	153	12-2021	12652	652

154 rows × 3 columns

In [42]: low_rated_engagement

\cap		[/ 2]	
U	иL	[44]	

	month_year	review_count	tip_count
0	01-2010	613	25
1	01-2011	1103	297
2	01-2012	1748	538
3	01-2013	2196	548
4	01-2014	2769	607
•••		•••	
149	12-2017	5970	441
150	12-2018	7574	338
151	12-2019	7591	275
152	12-2020	5014	148
153	12-2021	6937	122

154 rows × 3 columns

```
In [43]: time_rating = pd.read_sql(f"""
    SELECT DATE_FORMAT(date, '%m-%Y') AS month_year, AVG(stars) AS avg_rating
    FROM review
    WHERE business_id IN {tuple(business_Open_Restaurants['business_id'])}
```

```
GROUP BY month_year
ORDER BY month_year;
""", engine)
```

```
In [44]: time_rating
```

Out[44]:		month_year	avg_rating
	0	01-2006	4.000000
	1	01-2007	3.897436
	2	01-2008	3.603960
	3	01-2009	3.690661
	4	01-2010	3.724194
	•••		
	198	12-2017	3.613415
	199	12-2018	3.608687
	200	12-2019	3.665246
	201	12-2020	3.833701
	202	12-2021	3.672673

203 rows × 2 columns

```
In [45]: # time rating
         time_rating['month_year'] = pd.to_datetime(time_rating['month_year'])
         time_rating.sort_values('month_year',inplace= True)
         time_rating = time_rating[time_rating['month_year']>'2017']
         # high rated engagement
         high_rated_engagement['month_year'] = pd.to_datetime(high_rated_engagement['month_y
         high_rated_engagement.sort_values('month_year',inplace=True)
         high_rated_engagement = high_rated_engagement[high_rated_engagement['month_year']>'
         # Low_rated_engagement
         low_rated_engagement['month_year'] = pd.to_datetime(low_rated_engagement['month_year']
         low_rated_engagement.sort_values('month_year',inplace=True)
         low_rated_engagement = low_rated_engagement[low_rated_engagement['month_year']>'201
In [46]: # Creating a col called avg_rating in high_rated_engagement
         high_rated_engagement['avg_rating'] = time_rating['avg_rating'].values
In [47]: # ploting the time trends
         plt.figure(figsize=(20, 15))
         plt.subplot(3,1,1)
         plt.title('Tip Engagement Over Time')
         plt.plot(high_rated_engagement['month_year'], high_rated_engagement['tip_count'], 1
         plt.plot(low_rated_engagement['month_year'], low_rated_engagement['tip_count'], lab
```

```
plt.legend()
         plt.subplot(3,1,2)
         plt.title('Review Engagement Over Time')
         plt.plot(high_rated_engagement['month_year'], high_rated_engagement['review_count']
         plt.plot(low_rated_engagement['month_year'], low_rated_engagement['review_count'],
         plt.legend()
         plt.subplot(3,1,3)
         plt.title('Avg Rating Over Time')
         plt.plot(time_rating['month_year'], time_rating['avg_rating'], color = 'ORANGE')
         plt.tight_layout()
         plt.show()
        3.85
        3.80
In [48]: tip_high_rated = high_rated_engagement[['month_year','tip_count']].set_index('month
         review_high_rated = high_rated_engagement[['month_year', 'review_count']].set_index
         rating_df = time_rating[['month_year', 'avg_rating']].set_index('month_year')
In [49]: # seasonal_decompose of tip_high_rated
         from statsmodels.tsa.seasonal import seasonal_decompose
         multiplication_decompose = seasonal_decompose(tip_high_rated, model = 'multiplicati
         plt.rcParams.update({'figure.figsize':(16,12)})
         multiplication_decompose.plot()
         plt.show()
```



```
In [50]: # seasonal_decompose of review_high_rated
    from statsmodels.tsa.seasonal import seasonal_decompose
    multiplication_decompose = seasonal_decompose(review_high_rated, model = 'multiplic
    plt.rcParams.update({'figure.figsize':(16,12)})
    multiplication_decompose.plot()
    plt.show()
```


NOTE:

Successful businesses, particularly those with higher ratings above 3.5 exhibit consistent and possibly increase user engagement overtime, High rated restaurants maintain a steady or blowing level of user management over time, reflecting ongoing customer interest and satisfaction, Keep count is showing a downward trend, whereas review count is showing an up on trend with time, Years starting at year ending from around November and March is highly engaging in seasonal.

Sentiment Analysis Using NLTK:

Q. Retrive Top Five Restaurant with High Success Score And Sentiments Included (Positive, Negetive & Neutral)

```
In [51]: # import nltk
         # from nltk.sentiment import SentimentIntensityAnalyzer
         # # Create a sentiment col
         # sentiment = review['text']
         # # Perform sentiment analysis using SentimentIntensityAnalyzer:
         # sia = SentimentIntensityAnalyzer()
         # # Define a function to get sentiment score
         # def get_sentiment(comment):
               score = sia.polarity_scores(comment)
               return score['compound'] # compound score for overall sentiment
         # # Apply sentiment analysis to the 'comments' column
         # sentiment_score = sentiment.apply(get_sentiment)
         # sentiments = sentiment_score.apply(lambda x: 'Positive' if x > 0 else ('Negative'
         # sentiments
In [52]: sentim = pd.read_csv('D:\\VSCODE\\SQL_PROJECT\\Senti.csv')
In [53]: senti = pd.concat([review[['business_id','text']], sentim], axis = 1)
In [54]: # Sentiments
         senti
```

Out[54]:

		business_id	text	Unnamed: 0.1	Unnamed: 0	text
	0	XQfwVwDr-v0ZS3_CbbE5Xw	If you decide to eat here, just be aware it is	0	0	Positive
	1	7ATYjTIgM3jUlt4UM3IypQ	I've taken a lot of spin classes over the year	1	1	Positive
	2	YjUWPpI6HXG530lwP-fb2A	Family diner. Had the buffet. Eclectic assortm	2	2	Positive
	3	kxX2SOes4o-D3ZQBkiMRfA	Wow! Yummy, different, delicious. Our favo	3	3	Positive
	4	e4Vwtrqf-wpJfwesgvdgxQ	Cute interior and owner (?) gave us tour of up	4	4	Positive
	•••					
699027	'5	jals67o91gcrD4DC81Vk6w	Latest addition to services from ICCU is Apple	6990275	6990275	Negative
699027	'6	2vLksaMmSEcGbjl5gywpZA	This spot offers a great, affordable east week	6990276	6990276	Positive
699027	7	R1khUUxidqfaJmcpmGd4aw	This Home Depot won me over when I needed to g	6990277	6990277	Positive
699027	'8	Rr9kKArrMhSLVE9a53q-aA	For when I'm feeling like ignoring my calorie	6990278	6990278	Positive
699027	'9	VAeEXLbEcI9Emt9KGYq9aA	Located in the 'Walking District' in Nashville	6990279	6990279	Positive
6990280) ro	ows × 5 columns				

In [55]: business

5]:	business_id	name	address	city	state	postal_code
0	Pns2l4eNsfO8kk83dixA6A	Abby Rappoport, LAC, CMQ	1616 Chapala St, Ste 2	Santa Barbara	CA	93101
1	mpf3x-BjTdTEA3yCZrAYPw	The UPS Store	87 Grasso Plaza Shopping Center	Affton	МО	63123
2	tUFrWirKiKi_TAnsVWINQQ	Target	5255 E Broadway Blvd	Tucson	ΑZ	85711
3	MTSW4McQd7CbVtyjqoe9mw	St Honore Pastries	935 Race St	Philadelphia	PA	19107
4	mWMc6_wTdE0EUBKIGXDVfA	Perkiomen Valley Brewery	101 Walnut St	Green Lane	PA	18054
					•••	
150341	IUQopTMmYQG-qRtBk-8QnA	Binh's Nails	3388 Gateway Blvd	Edmonton	АВ	T6J 5H2
150342	c8GjPlOTGVmlemT7j5_SyQ	Wild Birds Unlimited	2813 Bransford Ave	Nashville	TN	37204
150343	_QAMST-NrQobXduilWEqSw	Claire's Boutique	6020 E 82nd St, Ste 46	Indianapolis	IN	46250
150344	mtGm22y5c2UHNXDFAjaPNw	Cyclery & Fitness Center	2472 Troy Rd	Edwardsville	IL	62025
150345	jV_XOycEzSlTx-65W906pg	Sic Ink	238 Apollo Beach Blvd	Apollo beach	FL	33572
150346 r	ows × 12 columns					
4						•

```
In [56]: business_data = business[['business_id','name']]
          senti = senti.iloc[:,[0,4]]
          senti
In [57]:
Out[57]:
                                  business_id
                                                  text
                 0 XQfwVwDr-v0ZS3_CbbE5Xw
                                               Positive
                     7ATYjTlgM3jUlt4UM3lypQ
                                               Positive
                 2
                     YjUWPpI6HXG530lwP-fb2A
                                               Positive
                    kxX2SOes4o-D3ZQBkiMRfA
                                               Positive
                 4
                     e4Vwtrqf-wpJfwesgvdgxQ
                                               Positive
          6990275
                     jals67o91gcrD4DC81Vk6w
                                              Negative
          6990276
                    2vLksaMmSEcGbjI5gywpZA
                                               Positive
          6990277
                    R1khUUxidqfaJmcpmGd4aw
                                               Positive
          6990278
                     Rr9kKArrMhSLVE9a53q-aA
                                               Positive
          6990279
                     VAeEXLbEcl9Emt9KGYq9aA
                                               Positive
         6990280 rows × 2 columns
In [58]:
          real_sentiments = pd.merge(business_data,senti, how='inner', on= ['business_id'])
In [59]:
          real_sentiments
```

business_id

Out[59]:

	0	Pns2l4eNsfO8kk83dixA6A	Abby Rappoport, LAC, CMQ	Positive	
	1	Pns2l4eNsfO8kk83dixA6A	Abby Rappoport, LAC, CMQ	Positive	
	2	Pns2l4eNsfO8kk83dixA6A	Abby Rappoport, LAC, CMQ	Positive	
	3	Pns2l4eNsfO8kk83dixA6A	Abby Rappoport, LAC, CMQ	Positive	
	4	Pns2l4eNsfO8kk83dixA6A	Abby Rappoport, LAC, CMQ	Positive	
	•••				
	6990275	jV_XOycEzSlTx-65W906pg	Sic Ink	Positive	
	6990276	jV_XOycEzSlTx-65W906pg	Sic Ink	Positive	
	6990277	jV_XOycEzSlTx-65W906pg	Sic Ink	Positive	
	6990278	jV_XOycEzSlTx-65W906pg	Sic Ink	Positive	
	6990279	jV_XOycEzSlTx-65W906pg	Sic Ink	Negative	
	6990280 rd	ows × 3 columns			
In [60]:	real_sen	timents = real_sentimen	ts.groupby(['business_id	','name',	'text']).value_coun
In [61]:	<pre>real_sentiments_df = real_sentiments.reset_index()</pre>				
In [62]:	success_I SELECT busin AVG(! SUM(I COUN' FROM bus: WHERE bu! GROUP BY	siness_id IN {tuple(bus business_id, name review_count DESC	_count,	business_	id'])}

name

text

In [63]: success_business

Out[63]:		business_id	name	avg_rating	review_count	restaurant_count	
	0	wPQWqLxY6t3- yRBNPPAmkQ	Shallos Antique Restaurant & Brewhouse	4.0	248.0	1	
	1	y8gjlpJA89qDRCLC0JQaew	Giuseppe & Sons	4.0	248.0	1	
	2	gkZ6iiEfnO7I2UzOHbkzrA	Ulysses American Gastro Pub	3.5	248.0	1	
	3	98WBvrn7wzu_93zc7fRfzQ	Vero Amore - Dove	4.0	248.0	1	
	4	30OhTA38fp8xuqW4O2D6Eg	Homegrown Taproom & Kitchen	4.0	248.0	1	
	•••						
	31532	3xoCPDgE5dEretLD4yFpRw	The Juice Pod	2.5	5.0	1	
	31533	nPruiFveAtUcGrUbFBeQuQ	Bark Busters Dog Home Training	4.0	5.0	1	
	31534	Hk_EjFDeK5u7rlYEUx6a_g	Jaggie's Restaurant	3.0	5.0	1	
	31535	qv6TSnK4iXZAXxG13mjv-w	Angelina's Panini Bar	2.0	5.0	1	
	31536	rwZ-1fH9vdh1KRAowovXOQ	Subway	3.5	5.0	1	
31537 rows × 5 columns ◀							
							In [64]:
In [65]:	In [65]: success_business						

Out[65]:		business_id	name	avg_rating	review count	restaurant_count	
	0	wPQWqLxY6t3- yRBNPPAmkQ	Shallos Antique Restaurant & Brewhouse	4.0	248.0	1	
	1	y8gjlpJA89qDRCLC0JQaew	Giuseppe & Sons	4.0	248.0	1	
	2	gkZ6iiEfnO7I2UzOHbkzrA	Ulysses American Gastro Pub	3.5	248.0	1	
	3	98WBvrn7wzu_93zc7fRfzQ	Vero Amore - Dove	4.0	248.0	1	
	4	30OhTA38fp8xuqW4O2D6Eg	Homegrown Taproom & Kitchen	4.0	248.0	1	
	•••						
	31532	3xoCPDgE5dEretLD4yFpRw	The Juice Pod	2.5	5.0	1	
	31533	nPruiFveAtUcGrUbFBeQuQ	Bark Busters Dog Home Training	4.0	5.0	1	
	31534	Hk_EjFDeK5u7rlYEUx6a_g	Jaggie's Restaurant	3.0	5.0	1	
	31535	qv6TSnK4iXZAXxG13mjv-w	Angelina's Panini Bar	2.0	5.0	1	
	31536	rwZ-1fH9vdh1KRAowovXOQ	Subway	3.5	5.0	1	
31537 rows × 6 columns							
	4					•	
In [66]:	: success_business = success_business.sort_values('Success_score',ascending=False)						
In [67]:	[67]: success_business						

Out[67]:

	business_id	name	avg_rating	review_count	restaurant_count	
204	bjQrmBSu1A7f5vprEikOKA	Healthy N Fresh Cafe	5.0	238.0	1	
399	S5LnH1njwFBlq77tlkjl1g	Yolk White & Associates	5.0	229.0	1	
508	emrUsUZvqCkytUu4i3kjLw	Sundae's Ice Cream & Coffee	5.0	225.0	1	
557	0I9XZD7JTqY9iTF8nXRnXw	Ali'i Poke Indy	5.0	223.0	1	
611	jh8j-DWqgWkbRe_a2XtKFQ	Barrio Bread	5.0	221.0	1	
•••						
31139	Q4OTSH9DaoeqtYcg6qYtZg	Subway	1.0	5.0	1	
30725	F6zk6xPTLQZFdA0hu6nLgA	Hungry Howie's Pizza & Subs	1.0	5.0	1	
31157	BJ0Z74sTz9sxRr1R533Inw	Best Rate Home Services	1.0	5.0	1	
30715	ogoe6WcXJnW96rvc3NyMfw	Burger King	1.0	5.0	1	
31362	2HLZfbL-6lcr9jhriW6GeA	Subway Restaurants	1.0	5.0	1	
31537 rows × 6 columns						

In [68]: real_sentiments_df

Out[68]:		business_id	name	text	count
	0	kPU91CF4Lq2-WIRu9Lw	Frankie's Raw Bar	Negative	1
	1	kPU91CF4Lq2-WIRu9Lw	Frankie's Raw Bar	Positive	23
	2	0iUa4sNDFiZFrAdIWhZQ	Pupuseria Y Restaurant Melba	Negative	3
	3	0iUa4sNDFiZFrAdIWhZQ	Pupuseria Y Restaurant Melba	Positive	11
	4	30_8lhuyMHbSOcNWd6DQ	Action Karate	Negative	4
	•••				
	351933	zzu6_r3DxBJuXcjnOYVdTw	Cafe Diblasi	Positive	7
	351934	zzw66H6hVjXQEt0Js3Mo4A	Sullivan Farms Christmas Trees	Negative	1
	351935	zzw66H6hVjXQEt0Js3Mo4A	Sullivan Farms Christmas Trees	Positive	4
	351936	zzyx5x0Z7xXWWvWnZFuxlQ	Walnut Street Pizza	Negative	3
	351937	zzyx5x0Z7xXWWvWnZFuxlQ	Walnut Street Pizza	Positive	5

351938 rows × 4 columns

```
In [69]: main_sentiment_df = pd.merge(real_sentiments_df, success_business, how='inner', on=['
In [70]: main_sentiment_df.sort_values('count', ascending=False)
    main_sentiment_df
```

Out[70]: business id name text count avg_rating review_count r Healthy N 50059 bjQrmBSu1A7f5vprEikOKA Fresh Positive 234 5.0 238.0 Cafe Healthy N 50058 bjQrmBSu1A7f5vprEikOKA Fresh Neutral 5.0 238.0 Cafe Healthy N 50057 bjQrmBSu1A7f5vprEikOKA Fresh Negative 5 5.0 238.0 Cafe Yolk 36579 S5LnH1njwFBlq77tlkjl1g White & Positive 219 5.0 229.0 Associates Yolk 36577 S5LnH1njwFBlq77tlkjl1q White & Negative 7 5.0 229.0 Associates Burger NxB8M1wnJQ5xoXDiUgqmlq Neutral 1 1.0 5.0 King 34051 Subway Negative 5.0 Q4OTSH9DaoeqtYcq6qYtZq 1.0 Jack in 19745 Negative 2 1.0 5.0 ESUwN81iNYvm0yqYCxSivq the Box Jack in 19746 ESUwN81iNYvm0yqYCxSivg Positive 1.0 5.0 the Box

80616 rows × 8 columns

1dpjXnlEKc-lhqku6CtY5w

3476

Little Caesars

Pizza

Barataria Blvd Positive

3

1.0

5.0

```
pivot_df.plot(kind='bar', stacked=True, figsize=(18, 10))
plt.title('Top Five Highest Sucess Score Restaurant With Sentiments')
plt.xlabel('Restaurant Name')
plt.ylabel('Count of Sentiments')
plt.xticks(rotation=45, ha='right')
plt.legend(title='Sentiment')
plt.tight_layout()
plt.show()
```


NOTE:

There are top five highest success score restaurants, including not only the higher rating and higher review counts, but also having a higher positive sentiments In compare to the other negative and neutral sentiments. These five restaurant may be the best restaurants in overall comparison.

Distribution Of Data Based On Elite And Non ELite:

Q. Is there any difference in engagement of elite users and non-elite users?

```
In [74]: # Elite
elite_df
```

Out[74]: elite num_users total_review_count

 0
 Elite
 90969
 20450520.0

 1
 Not Elite
 1892854
 25963868.0

```
In [75]: # Pie Plot of User Distribution
    plt.figure(figsize=(10,15))
    plt.subplot(2,1,1)
    plt.title('User Distribution')
    plt.pie(elite_df['num_users'],labels = elite_df['elite'], autopct = '%0.2f%'', star

# Pie Plot of Review Distribution
    plt.figure(figsize=(10,15))
    plt.subplot(2,1,2)
    plt.title('Review Distribution')
    plt.pie(elite_df['total_review_count'],labels = elite_df['elite'], autopct = '%0.2f
    plt.show()
```

User Distribution

Review Distribution

NOTE:

Elite users are individual who have been recognized and awarded the Elite status by the Yelp and their active and high quality contribution to the platform, such as frequent and detailed review photos and check insurance. Among the others criteria. Elite users despite being significant fewer in numbers, contributed a substantial proportion of the total account compared to the non-elite users. Elite users often provide detailed and insightful reviews, which can influence other users perceptions and decision regarding a business. review from Elite users may receive more attention and visibility on the real platform due to their status potentially leading to the higher exposure through business. Establishing a positive relationship with Elite users can lead a repeat

visit and loyalty, as they have more likely to continue supporting widgets they have had good experience with.

Time Based Analysis:

Q. What are the busiest hours for restaurants?

```
In [76]: review_engagement = pd.read_sql_query("""
         SELECT
             HOUR(STR_TO_DATE(date, '%Y-%m-%d %H:%i:%s')) AS hour,
             COUNT(*) AS review count
         FROM review
         GROUP BY hour;
         """, engine)
         tip_engagement = pd.read_sql_query("""
         SELECT
             HOUR(STR_TO_DATE(date, '%Y-%m-%d %H:%i:%s')) AS hour,
             COUNT(*) AS tip_count
         FROM tip
         GROUP BY hour;
         """, engine)
         checkin = pd.read_sql_query("SELECT date FROM checkin", engine)
         checkin_engagement = []
         for i in checkin['date']:
             checkin_engagement.extend(
                 [datetime.strptime(j.strip(), "%Y-%m-%d %H:%M:%S").strftime("%H")
                  for j in i.split(',')]
             )
         checkin_engagement = pd.DataFrame(checkin_engagement).astype(int).groupby(0)[0].cou
In [77]: checkin_engagement.name = 'Values'
         checkin_engagement
```

```
Out[77]: 0
                1060009
                 853147
          1
          2
                 602632
          3
                 388609
          4
                 233305
          5
                 133875
          6
                  74652
          7
                  46172
                  30390
          8
          9
                  29614
          10
                  51960
          11
                 100839
          12
                 180490
          13
                 267501
          14
                 368108
          15
                 532775
          16
                 794471
          17
                 924978
          18
                 900055
          19
                 833639
          20
                 775722
          21
                 827312
          22
                 984501
          23
                1109237
          Name: Values, dtype: int64
In [78]: # Bar Plot
          # tip_engagement
          plt.subplot(3,1,1)
          plt.title("Tip Engagement")
          plt.bar(tip_engagement['hour'], tip_engagement['tip_count'], color = 'RED')
          # review_engagement
          plt.subplot(3,1,2)
          plt.title("Review Engagement")
          plt.bar(review_engagement['hour'], review_engagement['review_count'], color = 'BLUE
          # Checkin Engagement
          plt.subplot(3,1,3)
          plt.title("Checkin Engagement")
          plt.bar(checkin_engagement.index, checkin_engagement , color = 'YELLOW')
          plt.tight_layout()
          plt.show()
```


NOTE:

The busiest R4 restaurants based on user engagement spanned from 3:00 PM to 1:00 AM, Knowing the peak hours allowed businesses to optimize their staffing level and resources accolation allocation during the during this. time to ensure defension of resident and quality service delivery. The concentration of user engagement during the evening and night hours suggest a higher demand for dining out, dining these times potentially driven by the factor such as work schedules, Social gathering and leisure activities.

RECOMMENDATIONS:

- 1. Utilizing inssights from the analysis of various metrics such as user engagement, sentiment of reviews, peak hours, and the impact of eilte users, businesses can make informed decisions to drive sucess.
- 2. Collaborating With light users and leveraging their influence can amplify proportional efforts, increase brand

awareness and the drive customer acquisition.

- 3. Businesses can adjust their operating hours or introduce special promotions to capitalize on increased demand during peak hours.
- 4. Less successful businesses may need to focus on strategies to enhance user engagement over time, such as improving service quality responding to customer feedback.
- 5. Cities with high success scores presents opportunities for restaurant chains to expand or invest further.
- 6. Understanding customer preferences behavior and satisfaction level is paramount. Businesses should focus on delivery exponential experience to meet customer expectations.
- 7. Positive reviews from Elite users and high user engagement can boost a business online visibility and reputation. Maintaining an active engagement with customers and responding promptly to feedback is crucial for building credibility and attracting a new customers.