XP-002148312

Page: 12 655

12658v Reactions of 6-amino-1,3-dimethyluracils with thionyl chloride. I. Novel thiazole synthesis. 4,5,6,7-Tetrahydro-thiazolo [4,5-d] pyrimidine-5,7-diones. Goldman, I. M. (Med. Res. Lab., Chas. Pfizer and Co., Inc., Groton, Conn.). J. Org. Chem. 1969, 34(11), 3285-9 (Eng). 6-Amino-1,3-dimethyluracils (I, R = H, CO₂H, CO₂Et, Ph, and CF₂) undergo facile conversion to the corresponding thiazolopyrimidines (II) upon

treatment with SOCl₁-pyridine, except for I (R = CF₁), where SOCl₁ is more effective in absence of pyridine. II (R = H, CO₂H and CO₂Et) were reported previously by Schroeder (1964). The reaction is presumed to proceed via dehydration of the intermediate thiazoline S-oxides. A different reaction is observed when an inferior grade of SOCl₁ is used in the absence of pyridine, resulting in the formation of sulfides and products derived therefrom. Speculation is offered on the mechanism of thiazole formation from suitably substituted 6-aminouracils. RCKF

XP-002148311

Page: 3367

36067r Thiazolo-N-hydroxyuracils. Bauer, Ludwig; Mahajanshetti, C. S. (Med. Center, Univ. of Illinois, Chicago, Ill.). J. Heterocycl. Chem. 1968, 5(3), 331-5 (Eng). The partial Lossen degradation of the hydroxamic acid group at C-4 or C-5 of Na 4,5-thiazoledicarbohydroxamate and its 2-Me analog initiated a multicoursed reaction which furnished a mixt. of thiazolo-[4,5-d]-(I) and thiazolo[5,4-d]-N-hydroxyuracils (II). The isomer distribution was sensitive to the solvent systems in which these reactions were carried out. The structure of the isomers

so obtained was established by chem. and spectral methods. RCKS