EE230 Homework 1 NGSPICE simulation of RC and RLC circuits

Name. Rohan Rajesh Kalbag, Roll. 20D170033 January 12, 2022

1 Overview of the experiment

1.1 Aim of the experiment

To simulate RC Integrator, RC Differentiator, RC lowpass, RC highpass, RC bandpass and RLC bandpass circuits using NGSPICE and realise the circuit diagrams using XCircuit.

1.2 Circuit Diagrams

RC Differentiator Circuit

 $RC\ Lowpass\ Filter\ Circuit$

 $RC\ Highpass\ Filter\ Circuit$

 $RC\ Bandpass\ Filter\ Circuit$

 $RLC\ Bandpass\ Filter\ Circuit$

2 Simulation Code Snippets

2.1 B1 - RC Integrator

2.1.1 $T = 10\tau$

```
RC Integrator 

* Components 

r1 1 2 10k 

c1 2 0 0.1u 

V1 1 0 pulse(0 5 0 0 0 0.01 0.02) 

* Analysis Command 

.tran 0.01m 0.06 

.control 

run 

plot v(1) v(2) 

.endc 

.end
```

2.1.2 $T = 5\tau$

```
RC Integrator  * Components \\ r1\ 1\ 2\ 10k \\ c1\ 2\ 0\ 0.1u \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.005\ 0.01) \\ * Analysis Command \\ .tran\ 0.01m\ 0.03 \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end
```

2.1.3 $T = \tau$

RC Integrator * Components r1 1 2 10k c1 2 0 0.1u V1 1 0 pulse (0 5 0 0 0 0.001 0.002) * Analysis Command . tran 0.001m 0.006 . control run plot v(1) v(2) . endc . endc

2.1.4 $T = 0.5\tau$

RC Integrator $* \ Components \\ r1\ 1\ 2\ 10k \\ c1\ 2\ 0\ 0.1u \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.0005\ 0.001) \\ * \ Analysis\ Command \\ .tran\ 0.001m\ 0.003 \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end$

2.1.5 $T = 0.1\tau$

```
RC Integrator  * \ Components \\ r1\ 1\ 2\ 10k \\ c1\ 2\ 0\ 0.1u \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.0001\ 0.0002) \\ * \ Analysis\ Command \\ .tran\ 0.0001m\ 0.0006 \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end
```

2.1.6 $T = 0.05\tau$

 $\begin{array}{l} {\rm RC\ Integrator} \\ *\ {\rm Components} \\ {\rm r1\ 1\ 2\ 10k} \\ {\rm c1\ 2\ 0\ 0.1u} \\ {\rm V1\ 1\ 0\ pulse}(0\ 5\ 0\ 0\ 0\ 0.05m\ 0.1m) \\ *\ {\rm Analysis\ Command} \\ .{\rm tran\ 0.01u\ 0.3m} \\ .{\rm control\ run} \\ {\rm plot\ v(1)\ v(2)} \\ .{\rm endc} \\ .{\rm end} \end{array}$

2.2 B2 - RC Differentiator

2.2.1 $T = 10\tau$

RC Differentiator

* Components
c1 1 2 0.1u
r1 2 0 10k
V1 1 0 pulse(0 5 0 0 0 10m 20m)

* Analysis Command
.tran 0.02m 60m
.control
run
plot v(1) v(2)
.endc
.end

2.2.2 $T = 5\tau$

RC Differentiator $* \ Components \\ c1\ 1\ 2\ 0.1u \\ r1\ 2\ 0\ 10k \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.005\ 0.01) \\ * \ Analysis\ Command \\ .tran\ 0.002m\ 0.03 \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end$

2.2.3 $T = \tau$

RC Differentiator * Components c1 1 2 0.1u r1 2 0 10k V1 1 0 pulse(0 5 0 0 0 0.001 0.002) * Analysis Command .tran 0.002m 0.006 .control run plot v(1) v(2) .endc .end

2.2.4 $T = 0.5\tau$

RC Differentiator * Components $c1\ 1\ 2\ 0.1u$ $r1\ 2\ 0\ 10k$ $V1\ 1\ 0$ pulse(0\ 5\ 0\ 0\ 0\ 0.5m\ 1m) * Analysis Command .tran 0.002m\ 3m .control run plot v(1) v(2) .endc .end

2.2.5 $T = 0.1\tau$

RC Differentiator $* Components \\ c1 1 2 0.1u \\ r1 2 0 10k \\ V1 1 0 pulse(0 5 0 0 0 0.1m 0.2m) \\ * Analysis Command \\ .tran 0.002m 0.6m \\ .control \\ run \\ plot v(1) v(2) \\ .endc \\ .end$

2.2.6 $T = 0.05\tau$

RC Differentiator * Components $c1\ 1\ 2\ 0.1u$ $r1\ 2\ 0\ 10k$ $V1\ 1\ 0$ pulse(0\ 5\ 0\ 0\ 0\ 0.05m\ 0.1m) * Analysis Command $.tran\ 0.0001m\ 0.3m$.control run plot $v(1)\ v(2)$.endc .end

2.3 B3 - RC Lowpass Filter

```
RC lowpass filter
*Components
r1 1 2 10k
c1 2 0 0.1u
V1 1 0 dc 0 ac 1 $ac analysis
*Analysis Command
.ac dec 10 1m 100k
.control
run
plot vdb(2)
.endc
.end
```

2.4 B4 - RC Highpass Filter

```
RC highpass filter
*Components
c1 1 2 0.1u
r1 2 0 10k
V1 1 0 dc 0 ac 1 $ac analysis
*Analysis Command
.ac dec 10 1m 100k
.control
run
plot vdb(2)
.endc
.end
```

2.5 B5 - RC Bandpass Filter

```
RC bandpass filter
*Components
r1 1 2 10k
c1 2 3 0.1u
r2 3 0 10k
c2 3 0 0.1u
V1 1 0 dc 0 ac 1 $ac analysis
*Analysis Command
.ac dec 10 1m 10Meg
.control
run
plot vdb(3)
print vdb(3)
.endc
.end
```

2.6 B5 - RLC Bandpass Filter

```
RLC bandpass filter
*Components
11 1 2 10m
c1 2 3 0.1u
r2 3 0 1k
V1 1 0 dc 0 ac 1 $ac analysis
*Analysis Command
.ac dec 10 10m 1000Meg
.control
run
plot vdb(3)
print vdb(3)
.endc
.end
```

2.7 Parameters obtained for RC and RLC Bandpass filters

2.7.1 RC Bandpass

Peak Amplitude : -9.542 dB

$$\begin{split} f_{center} : & 158.48 \text{ Hz} \\ f_{upper} : & 630.95 \text{ Hz} \\ f_{lower} : & 39.810 \text{ Hz} \end{split}$$

2.7.2 RLC Bandpass

Peak Amplitude : $-3.05 \times 10^{-5} \text{ dB}$

$$\begin{split} f_{center} : 5011.872 \text{ Hz} \\ f_{upper} : 19952.62 \text{ Hz} \\ f_{lower} : 1258.92 \text{ Hz} \end{split}$$

2.8 Simulation Plots

RC Integrator for $T = 10\tau$ V(1): Vin, V(2): Vout

RC Integrator for $T = 5\tau$ V(1): Vin, V(2): Vout

RC Integrator for $T = \tau$ V(1): Vin, V(2): Vout

RC Integrator for $T=0.5\tau$ V(1): Vin, V(2): Vout

 $\begin{array}{ll} RC\ Integrator\ for\ T=0.1\tau\\ V(1):\ Vin,\ V(2):\ Vout \end{array}$

RC Integrator for $T = 0.01\tau$ V(1): Vin, V(2): Vout

 $\begin{array}{ll} RC \ Differentiator \ for \ T=10\tau \\ V(1): \ Vin, \ V(2): \ Vout \end{array}$

RC Differentiator for $T = 5\tau$ V(1): Vin, V(2): Vout

 $\begin{array}{ll} RC \ Differentiator \ for \ T = \tau \\ V(1): \ Vin, \ V(2): \ Vout \end{array}$

 $\begin{array}{ccc} RC \ Differentiator \ for \ T=0.5\tau \\ V(1): \ Vin, \ V(2): \ Vout \end{array}$

 $\begin{array}{ccc} RC \ Differentiator \ for \ T = 0.1\tau \\ V(1): \ Vin, \ V(2): \ Vout \end{array}$

 $\begin{array}{c} RC \; Differentiator \; for \; T = 0.01\tau \\ V(1): \; Vin, \; V(2): \; Vout \end{array}$

Amplitude Bode Plot for RC Lowpass Filter vdb(2): $20log_{10}(|V_{out}|)$

Amplitude Bode Plot for RC Highpass Filter vdb(2): $20log_{10}(|V_{out}|)$

 $Amplitude\ Bode\ Plot\ for\ RC\ Bandpass\ Filter\\ vdb(3):\ 20log_{10}(|V_{out}|)$

Amplitude Bode Plot for RLC Bandpass Filter vdb(3): $20log_{10}(|V_{out}|)$