Fonction de transfert

Définition: $H(p) = \frac{S(p)}{E(p)}$ lorsque les conditions initiales sont nulles

Ordre, Classe et gain statique :

Soit
$$H(p) = \frac{S(p)}{E(p)} = \frac{N(p)}{D(p)}$$

- Ordre n : Degré de D(p) (La plus grande puissance de p)
- Classe α : Nombre d'intégrations dans D(p) (La plus petite puissance de p)
- Gain statique : G_s = H(0) = $\frac{s(\infty)}{e(\infty)} = \frac{b_0}{a_0}$

Schémas blocs

Association en série (en cascade)

$$H(p) = H1(p)*H2(p)*H3(p)$$

Association en parallèle

$$H(p) = H1(p) + H2(p) + H3(p)$$

Système asservi : Système en boucle fermée

Fonction de transfert en boucle fermée :

$$H_{BF}(p) = \frac{S(p)}{E(p)} = \frac{H_1(p)}{1 + H_1(p).H_2(p)}$$
: Formule de Black

Fonction de transfert en boucle ouverte :

$$H_{BO}(p) = \frac{X(p)}{\varepsilon(p)} = H_1(p).H_2(p)$$

Fonction de transfert de l'erreur :

$$F_{err} = \frac{\varepsilon(p)}{E(p)} = \frac{1}{1 + H_{BO}(p)} = \frac{1}{1 + H_1(p) \cdot H_2(p)} \Rightarrow \varepsilon(p) = \frac{E(p)}{1 + H_{BO}(p)}$$

Transformation en un schéma à retour unitaire :

Dans ce cas : $\varepsilon(p) = \frac{\alpha. E(p)}{1 + H_{BO}(p)}$

Présence d'une perturbation :

- Méthode directe (A partir du schéma bloc)
- Méthode de superposition : $S(p) = S_1(p) + S_2(p)$

Système fondamental de 1er ordre

Forme canonique : $H(p) = \frac{K}{1+\tau p}$ avec : $\begin{cases} K : Gain statique \\ \tau : Constante du temps (en s) \end{cases}$

Réponse impulsionnelle pour une impulsion d'amplitude E

$$s(t) = \frac{K.E}{\tau}.e^{-\frac{t}{\tau}}.u(t)$$

Réponse indicielle pour un échelon d'amplitude E

Temps de réponse à 95% de s(∞): Tr = 3. τ

Tracé asymptotique et réel de Bode

Pulsation de cassure : $\omega_c = \frac{1}{\tau}$

Bande Passante à -3 dB: W_{BP} = [0 , ω_c]

SYSTEME FONDAMENTAL DU SECOND ORDRE

2 formes canoniques:

$$H(p) = \frac{K\omega_0^2}{p^2 + 2m\omega_0 p + \omega_0^2} = \frac{K}{1 + \frac{2m}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}}$$

Avec K: Gain statique

m: facteur d'amortissement (ξ,z)

 ω_0 : pulsation propre ou naturelle non amortie (ω_n)

3 régimes de fonctionnement :

*) m>1 : Régime apériodique
$$(H(p) = \frac{K}{(1+\tau_1,p).(1+\tau_2,p)})$$

Réponse indicielle :

Tracé asymptotique et réel de Bode

Pulsations de cassure :
$$\begin{cases} \omega_{c1} = \frac{1}{\tau_1} \\ \omega_{c2} = \frac{1}{\tau_2} \end{cases} \quad \omega_0 = \frac{1}{\sqrt{\tau_1.\tau_2}}$$

*) <u>0<m<1</u> : Régime pseudo-périodique

Réponse indicielle

- Dépassement :
$$D\% = 100. e^{-\frac{\pi.m}{\sqrt{1-m^2}}} = 100. \frac{s(T_{pic}) - s(\infty)}{s(\infty)}$$

-
$$m = \frac{|\ln D|}{\sqrt{(\ln D)^2 + \pi^2}}$$

- Temps de pic :
$$T_{pic} = \frac{\pi}{\omega_0.\sqrt{1-m^2}}$$

- Pseudo_période :
$$T_p = \frac{2.\pi}{\omega_0.\sqrt{1-m^2}} = 2.T_{pic}$$

- Temps de réponse à \pm 5% : $T_r \approx \frac{3}{m.\omega_0}$

Tracé asymptotique et réel de Bode:

Pulsation de cassure $:\omega_{ca}=\omega_{0}$

Si $m < \frac{\sqrt{2}}{2} = 0.707$ alors II y'a résonance dans la courbe du gain

Pulsation de résonance : $\omega_r = \omega_0 \cdot \sqrt{1 - 2 \cdot m^2}$

Pic de résonance en dB: $|H(j\omega_r)|_{dB} = 20. log \frac{K}{2.m\sqrt{1-m^2}}$

*) m=1: Régime Critique

Réponse indicielle :

Tracé asymptotique et réel de Bode :

Pulsation de cassure $:\omega_{ca}=\omega_{0}$

Remarque:

$$|H(j\omega_0|_{dB}=20.\log\,\frac{\kappa}{2m}\,\forall m$$

Stabilité

Critère de Routh:
$$H_{BF}(p) = \frac{H_1(p)}{1 + H_1(p) \cdot H_2(p)} = \frac{F.T.C.D(p)}{1 + H_{BO}(p)} = \frac{b_m \cdot p^m + \dots + b_1 \cdot p + b_0}{a_n \cdot p^n + \dots + a_1 \cdot p + a_0}$$

$$D(p) = a_n \cdot p^n + \dots + a_1 \cdot p + a_0$$

<u>1ère</u> condition (Condition nécessaire): Tous les a_i sont strictement de même signe. Cette condition est suffisante dans le cas des systèmes de 1^{er} et de second ordre.

2ème condition (Nécessaire et suffisante): Table de Routh

F			T	
$p^n p^{n-1}$	a_n	a_{n-2}	a_{n-4}	
p^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	
•••	b_1	b_2	b_3	
	c_1	c_2	••••	
p				
1		·		

$$\begin{aligned} \textbf{Avec:} \ b_1 &= \frac{a_{n-1}.a_{n-2}-a_n.a_{n-3}}{a_{n-1}} \quad \text{,} \quad b_2 &= \frac{a_{n-1}.a_{n-4}-a_n.a_{n-5}}{a_{n-1}} \\ c_1 &= \frac{b_1.a_{n-3}-a_{n-1}.b_2}{b_1} \text{,} \quad c_2 &= \frac{b_1.a_{n-5}-a_{n-1}.b_3}{b_1} \end{aligned}$$

Les (n+1) éléments de la première colonne doivent être strictement de même signe.

Critère de Revers :

Il permet d'étudier la stabilité en boucle fermée à partir de la fonction de transfert en boucle ouverte.

Le système est stable en boucle fermée si $|H_{BO}(j\omega)|_{dB} < 0 \,$ quand la phase est égale à $-\pi$

Autrement dit : Le système est stable en boucle fermée si $|H_{BO}(j\omega_{cr})|<1$ ou bien 20. $\log|H_{BO}(j\omega_{cr})|<0$

Marge de gain et marge de phase :

Ce sont les distances qui séparent les lieux de transfert de $H_{BO}(j\omega)$ du point critique (OdB, $-\pi$) qui constitue la limite de stabilité du système en boucle fermée

Analytiquement:

Marge de phase :

$$\begin{cases} M\varphi = \pi + \arg(H_{BO}(j\omega_1) \\ avec \; |H_{BO}(j\omega_1)| = 1 \; ou \; |H_{BO}(j\omega_1)|_{dB} = 0 \end{cases}$$

Marge de gain :

$$\begin{cases} MG = -20.\log|H_{BO}(j\omega_{cr})|\\ avec \ \arg(H_{BO}(j\omega_{cr})) = -\pi \end{cases}$$

Remarques:

1°) Si le système est stable
$$\Rightarrow \begin{cases} MG > 0 \\ M\varphi > 0 \end{cases}$$
 et

2°) Dans le cas où H_{BO}(p) est de premier ou de second ordre, la marge de gain est infinie, $MG=\infty$ (Puisqu'il n'y a pas intersection de la courbe de phase avec l'axe $\varphi=-180^\circ$)

Précision:

- Elle dépend de l'erreur en régime permanent : $m{arepsilon}(\infty) = \lim_{p \to 0} p . \, m{arepsilon}(p)$
- Plus $\varepsilon(\infty)$ est faible, plus le système est précis
- Si $\varepsilon(\infty) = 0 \Rightarrow \text{Précision} : 100\%$
- Si l'entrée est un échelon $\Rightarrow \varepsilon(\infty)$: Erreur de position
- Si l'entrée est une rampe $\Rightarrow \varepsilon(\infty) : Erreur \ de \ vitesse$, erreur de traînage
- Si l'entrée est parabolique $\Rightarrow \varepsilon(\infty) : Erreur d'accélération$

Théorème de la valeur finale :

$$\varepsilon(\infty) = \lim_{p \to 0} p. \varepsilon(p) = \lim_{p \to 0} \frac{p. E(p)}{1 + H_{BO}(p)}$$

Méthode de classe pour la détermination de l'erreur en régime permanent :

Forme canonique:
$$H_{BO}(p) = \frac{K.(1+\tau_1.p).(1+\tau_2.p)...}{p^{\alpha}.(1+\tau_3.p).(1+\tau_4.p)...}$$
, α : Classe de $H_{BO}(p)$

- Si classe (E(p)) \leq classe ($H_{BO}(p)$) $\Rightarrow \varepsilon(\infty) = 0$
- Si classe ((E(p)) = classe (H_{BO}(p)) + 1 \Rightarrow $\varepsilon(\infty) = cte =$

$$\begin{cases} \frac{E}{K+1} \text{ si Classe}(H_{BO}(p)) = 0 \text{ et classe}(E(p)) = 1\\ \frac{E}{K} \text{ sinon} \end{cases}$$

• Si classe((E(p)) > classe (H_{BO}(p)) + 1 $\Rightarrow \varepsilon(\infty) = \infty$

La rapidité:

- Elle dépend du temps de réponse T_r (Temps de stabilisation T_s). C'est le temps mis par le système pour que la sortie soit à $\pm 5\%$ de sa valeur finale.
- Plus T_r est faible, plus le système est rapide.

Les Correcteurs:

Afin d'améliorer les performances des systèmes asservis (Stabilité, Précision et rapidité), on utilise des correcteurs.

Exemples:

Correcteur Proportionnel : C(p) = k

Correcteur Intégral : $C(p) = \frac{K}{p}$

Correcteur Proportionnel intégral : C(p) =K. $\left(1+\frac{1}{\tau_i.p}\right)=K$. $\frac{1+\tau_i.p}{\tau_i.p}$

Correcteur Proportionnel dérivée : C(p) =K. $(1 + \tau_d.p)$