Global Developer Survey Insights: Current Usage, Future Trends & Demographics

Priyadarshini Gupta

5th September, 2025

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- The dashboard analyzes survey data to reveal current technology usage, emerging trends, and respondent demographics across programming languages, databases, platforms, and web frameworks.
- JavaScript, Python, and SQL dominate current language use, while MySQL and PostgreSQL lead database adoption.
- Framework preferences highlight **Node.js**, **React**, **and ASP.NET Core** as key tools, with notable adoption of **Next.js** and **Express**.
- Future interest shifts toward **Next.js**, **FastAPI**, **and Svelte**, indicating a move toward **modern**, **lightweight**, **and performance-oriented stacks**.
- Demographics show a respondent base largely in the 25–34 age range, with a high proportion holding bachelor's or higher degrees and representation from multiple countries.
- Insights suggest that developers intend to deepen expertise in familiar technologies while exploring innovative frameworks, guiding organizations toward strategic upskilling and tool adoption.

INTRODUCTION

Purpose

- Turn survey data into clear insights on tech use, trends and demographics
- Support planning, skills focus and decision-making with visuals

Value

- Converts raw data into quick, actionable insights
- Guides curriculum, recruitment & tool adoption
- Shows hands-on skills in cleaning & visualizing data
- Highlights current vs. future technology shifts

Target Audience

- Faculty/evaluators reviewing dashboard work
- Organizations planning training and hiring
- Developers and tech leads tracking stack trends

METHODOLOGY

- Data Source: Global developer survey dataset (CSV/Excel responses)
- Collection: Anonymous self-reported responses on tech usage, preferences & demographics
- Wrangling: Removed blanks/duplicates, normalized headers, split multi-choice fields, kept top-10 per category
- Tool: Built interactive dashboards in Google Looker Studio
- Layout: 2×2 panel for clear theme-based visuals
- Visuals: Stacked bars/columns, pie, map, tree map, word cloud, scatter bubble, line-bar
- Validation: Cross-checked cleaned data with raw files for consistency

PROGRAMMING LANGUAGE TRENDS

Current Year

Next Year

PROGRAMMING LANGUAGE TRENDS - FINDINGS & IMPLICATIONS

Findings

Stable leaders: JavaScript (#1) and SQL (#2) hold the top spots in both current and desired lists → universal front-end + data backbone.

TypeScript momentum: climbs from #4 \rightarrow #3 (desired), edging past HTML/CSS \rightarrow stronger push toward typed JS in production apps.

Python steady: holds #5 in both lists → sustained demand across data, scripting, and backend.

New entrants (future): Go (#6) and Rust (#7) appear only in "Desired Next Year" → rising interest in high-performance, cloud-native, systems work.

Deprioritized: PHP (#9 current) and PowerShell (#10 current) drop out of the desired top 10.

Implications

Upskilling focus: Prioritize JavaScript + TypeScript, SQL, and Python; add Go/Rust for future-proofing in performance and cloud services.

Hiring strategy: Expect tighter markets for TypeScript, Go, Rust; start pipeline building and internal training now.

Curriculum & training: Shift hours from PHP/PowerShell toward TypeScript, modern JS tooling, and Go/Rust fundamentals; keep SQL core.

Stack modernization: Invest in typed front-ends (TS) and cloud-native backends (Go/Rust) while maintaining support for existing Java/C# estates.

Team capability mix: Keep Bash/Shell for ops hygiene, but emphasize Python/Go for automation and platform tooling.

Roadmap signal: The "desired" list suggests the next wave of projects will favor typed JS + performant services—align tech choices and L&D budgets accordingly.

DATABASE TRENDS

Current Year

Next Year

DATABASE TRENDS - FINDINGS & IMPLICATIONS

Findings

PostgreSQL dominance: holds #1 today and next year → trusted relational core for modern stacks.

Redis surge: leaps from #6 \rightarrow #2 desired \rightarrow clear move toward low-latency caching & speed-first architectures.

SQLite consistency: remains #3 → lightweight, embedded storage stays essential for edge, mobile, and prototyping.

Managed Postgres rises: Supabase debuts at #10 desired → demand for developer-friendly, hosted Postgres services.

Search & analytics layer: steady interest in Elasticsearch → teams value integrated search/observability next to core data.

Legacy fade: Oracle drops out → cost & flexibility push workloads toward open-source, cloud-ready DBs.

Implications

Upskilling: Prioritize PostgreSQL, Redis, SQLite, and Supabase for future-ready roles.

Hiring focus: Build pipelines for Postgres + caching expertise, anticipate demand in Redis/Elasticsearch.

Curriculum & training: Reduce Oracle/legacy SQL exposure; add Postgres extensions, caching patterns, managed DB ops.

Architecture shift: Expect stacks built on a relational core plus caching/search layers for scalability and speed.

JOB POSTINGS

In Module 1 you have collected the job posting data using Job API in a file named "job-postings.xlsx". Present that data using a bar chart here. Order the bar chart in the descending order of the number of job postings.

DASHBOARD

https://github.com/priya-pg/IBM-Capstone-Project-/blob/main/Survey_Results_Dashboard_by_Priyadarshini_Gupta.pdf

DASHBOARD TAB 1

Current Technology Usage

Future Technology Trends

Demographics

DASHBOARD TAB 2

DASHBOARD TAB 3

OVERALL FINDINGS & IMPLICATIONS

Findings

JavaScript, SQL, React, PostgreSQL dominate current usage.

Rising interest in Go, Rust, Redis, Svelte, FastAPI.

Cloud platforms (AWS, Google Cloud, Azure) are key focus areas.

Respondents mostly aged 25–44, highly educated, globally spread.

Implications

Balance established tools with adoption of emerging tech.

Upskilling in modern languages & frameworks is critical.

Cloud demand is accelerating—AWS leads future interest.

Strong global talent pipeline ensures adaptability.

CONCLUSION

- Core technologies remain strong but next wave of adoption is forming.
- Cloud-first, modern, lightweight tools will drive future growth.
- Companies must invest in both stability and innovation to stay competitive.

APPENDIX

 To easily build the dashboard from a raw messy and very long data, I created 12 separated tables for each visual for easy readability and visual making.

• Examples:

4	A	В	C	
	Age	EdLevel 💌	Count 💌	
	18-24 years old	Associate degree (A.A., A.S., etc.	132	
	18-24 years old	Bachelor's degree (B.A., B.S.,	1468	
	18-24 years old	Master's degree (M.A., M.S., N	299	
	18-24 years old	Primary/elementary school	25	
	18-24 years old	Professional degree (JD, MD, Ph.	20	
	18-24 years old	Secondary school (e.g. American	495	
	18-24 years old	Some college/university study wit	496	
	18-24 years old	Something else	53	
	25-34 years old	Associate degree (A.A., A.S., etc.	231	
	25-34 years old	Bachelor's degree (B.A., B.S.,	3985	
	25-34 years old	Master's degree (M.A., M.S., N	2178	
	25-34 years old	Primary/elementary school	30	
	25-34 years old	Professional degree (JD, MD, Ph.	157	
	25-34 years old	Secondary school (e.g. American	288	
,	25-34 years old	Some college/university study wit	843	
1	25-34 years old	Something else	76	
3	35-44 years old	Associate degree (A.A., A.S., etc.	176	
į	OE Minara ald	PanhalarâfMadagraa/PAPC	2115	

4	A		В							
1	Database	¥	Count	Ψ						
2	PostgreSQL		115	14						
3	MySQL		85	56						
4	SQLite		70	21						
5	MongoDB		59	30						
6	Microsoft SQL Server		58	70						
7	Redis		58	14						
8	MariaDB		39	94						
9	Elasticsearch		34	91						
10	Dynamodb		22	68						
11	Oracle		19	07						
10										

4	A		D		
	Language	~	Count	¥	
	JavaScript		149	43	
	SQL		126	02	
	HTML/CSS		124	10	
	TypeScript		107	09	
	Python		95	90	
	Bash/Shell (all shells)		72	44	
	C#		63	40	
	Java		59	82	
)	PHP		46	44	
1	PowerShell		34	38,	
)					

P.S. These three are only example purposes, I have made 9 others like this for each of the corresponding visuals in the dashboard

POPULAR LANGUAGES

In Module 1 you have collected the job postings data using web scraping in a file named "popular-languages.csv". Present that data using a bar chart here. Order the bar chart in the descending order of salary.

