Uitwerking van opgave 16c bij paragraaf 5.3 van Huth&Ryan

We zoeken een eigenschap van de toegankelijkheidsrelatie die correspondeert met het formuleschema $\Diamond \Box \phi \to \Box \Diamond \phi$, dat wil zeggen:

Het schema $\Diamond\Box\phi\to\Box\Diamond\phi$ is geldig in een frame $\mathcal{F}=(W,R)$

R heeft de gezochte eigenschap

De gezochte eigenschap wordt wel de 'diamond property' genoemd en is als volgt gedefinieerd:

$$\forall xyz \ [\ Rxy \land Rxz \ \rightarrow \ \exists t \ (Ryt \land Rzt) \]$$

Er rest ons nog te bewijzen dat de diamond property inderdaad correspondeert met het gegeven formuleschema.

(a) We bewijzen eerst dat het schema $\Diamond \Box \phi \to \Box \Diamond \phi$ geldig is in een frame als de relatie van het frame de diamond property heeft.

We nemen aan dat R de diamond property heeft. Neem nu een labeling functie L en een verzameling werelden W zodat $\mathcal{M} = (W, R, L)$ een model is. We laten zien dat $\mathcal{M} \Vdash \Diamond \Box \phi \to \Box \Diamond \phi$.

Kies een willekeurige x uit W en neem aan dat $x \Vdash \Diamond \Box \phi$. Er is dus een y met Rxy en $y \Vdash \Box \phi$. De diamond property zegt nu dat voor iedere z met Rxz er een t bestaat met Ryt en Rzt. Dat betekent dat $t \Vdash \phi$ (immers, $y \Vdash \Box \phi$). Maar dan hebben we voor iedere z met Rxz dus $z \Vdash \Diamond \phi$. Dit geeft precies $x \Vdash \Box \Diamond \phi$.

Hiermee hebben we laten zien dat $\Diamond \Box \phi \to \Box \Diamond \phi$ waar is in iedere wereld van ieder model op ieder frame met de diamond property en dus geldig in al deze frames.

(b) We bewijzen vervolgens dat het schema $\Diamond \Box \phi \to \Box \Diamond \phi$ niet geldig is in een frame als de relatie van het frame niet de diamond property heeft.

Neem een willekeurig frame $\mathcal{F} = (W, R)$ zonder de diamond property. Dan zijn er dus drie werelden x, y en z in W zodat Rxy en Rxz zonder dat er een wereld t bestaat met Ryt en Rzt.

We laten nu zien dat $\Diamond \Box \phi \to \Box \Diamond \phi$ niet geldig is in \mathcal{F} . Daartoe kiezen we een labeling functie L zodat $\mathcal{M} = (W, R, L)$ een model is met:

p is waar in alle werelden u met Ryu en nergens anders

Nu hebben we $x \Vdash \Diamond \Box p$, want y is toegankelijk vanuit x en alle werelden vanuit y toegankelijk maken p waar.

Maar we hebben $niet x \Vdash \Box \Diamond p$, immers, $\Diamond p$ zou waar moeten zijn in alle werelden bereikbaar vanuit x, waaronder z. Maar $z \not\Vdash \Diamond p$ omdat er geen wereld bereikbaar is vanuit z die p waar maakt. De enige werelden die p waar maken zijn bereikbaar vanuit y en er is geen wereld t met Ryt en Rzt.

Dit betekent dat $x \not\models \Diamond \Box p \to \Box \Diamond p$. Dit is een instantie van het schema en dus weten we ook dat $x \not\models \Diamond \Box \phi \to \Box \Diamond \phi$.

Hiermee hebben we laten zien dat er een wereld in een model op \mathcal{F} is waar $\Diamond \Box \phi \to \Box \Diamond \phi$ niet waar is, dus dat $\Diamond \Box \phi \to \Box \Diamond \phi$ niet geldig is in \mathcal{F} .