CP Quiz 1 Results for Ali Asad

True

False

(!) Correct answers are hidden. Score for this attempt: 10 out of 10 Submitted Aug 29 at 1:34pm This attempt took 4 minutes. Question 1 1 / 1 pts How many distinct pairs can be formed out of *n* people? n!/2 n choose 2 (n choose 2) / 2 2^n Question 2 1 / 1 pts 2ⁿ is the number of ways to choose _____. n people out of 2ⁿ a set of people out of n 2 people out of n n people out of a set H Question 3 1 / 1 pts Assuming even n, the binomial coefficient, n choose k, takes the largest value for which value of k? n/2 k/2 0 1 \bigcirc n Question 4 1 / 1 pts T/F: n-choose-k is in O(2 n).

iii Question 5 1 / 1 pts
The algorithms discussed in class for the Bar Fight Prevention Problem were all exponential time.
True
O False
Question 6
1 / 1 pts
A language, in the sense studied in this course, is a(n)
 alphabet
set of strings
O boolean function
 Turing Machine
Question 7
1 / 1 pts
Consider a function $f: \{0,1\}^* \to \{0,1\}$. In what sense can we call this function related to a language?
the function maps infinitely many strings to 0 or 1
 the function maps 0 or 1 to infinitely many strings
the language contains the entire domain of the function
the language contains only those strings that are mapped to 1
::
Question 8
1 / 1 pts
A larger alphabet Turing Machine and a multi-tape Turing Machine both decide the same class of languages as the standard single tape Turing Machine model.
True
○ False
Question 9
1 / 1 pts
Not every Turing Machine can be encoded as a string.
O True
False
:

Question				10
1	/	1	pts	

There exists a Universal Turing Machine that can simulate the workings of any Turing Machine.

True

False

Quiz Score: 10 out of 10