Steven Rosendahl Homework 10

- 1. Let ϕ denote Euler's Function.
 - (a) Calculate $\phi(22)$.

$$\phi(22) = \phi(11)\phi(2) = 10 \cdot 1 = 10.$$

(b) Does there exist $l \in \mathbb{Z}$ such that $a^{7l} \equiv a \mod 22$ for all units $a \in \mathbb{Z}_{22}$? If so, find l. Otherwise, explain why no such l exists.

We know that we can find an l if $7l \equiv 1 \mod \phi(22)$. Since gcd(7,10) = 1, there is an inverse of 7 in \mathbb{Z}_{10} , which is 3. Therefore, $a^{21} \equiv a \mod 22$ for all units $a \in \mathbb{Z}_{22}$.

2. Suppose that $a \in \mathbb{Z}$ is such that gcd(a, 15) = 1. If gcd(k, 8) = 1, prove that $a^{k^2} \equiv a \mod 15$.

Suppose gcd(k,8)=1, and define the set U_8 to be the set of units in \mathbb{Z}_8 . We want to find k^{-1} such that $k^{-1}k\equiv 1 \mod \phi(15)$, which allows us to say $a^{k^{-1}k}\equiv a \mod 15$. We know that $U_8=\{1,3,5,7\}$. Since gcd(k,8)=1, $k\in U_8$. Suppose that k=1. Then $k^{-1}=1$, so $a^{k^2}\equiv a^1\equiv a \mod 15$. If k=3, $k^{-1}=3$, so $a^{k^2}\equiv a^9\equiv a \mod 15$. If k=5, then $k^{-1}=5$, and $a^{k^2}\equiv a^{25}\equiv a \mod 15$. If k=7, then $k^{-1}=7$, so $a^{k^2}\equiv a^{49}\equiv a \mod 15$.

- 3. Let Ω denote the prime counting map and λ the Liouville function. Prove that $\lambda(x) = \lambda(y)$ if and only if $\Omega(x) \equiv \Omega(y) \mod 2$.
 - \Rightarrow) Suppose $\lambda(x) = \lambda(y)$. We know

$$\lambda(a) = \begin{cases} 1, & \Omega(a) \in \{2k|k \in \mathbb{Z}\} \\ -1, & \Omega(a) \in \{2k+1|k \in \mathbb{Z}\} \end{cases}.$$

Therefore, the only way $\lambda(x) = \lambda(y)$ is if the parity of $\Omega(x)$ is the same as the parity of $\Omega(y)$. Assume that $\Omega(x), \Omega(y) \in \{2k|k \in \mathbb{Z}\}$. Then $\Omega(x) \equiv \Omega(y) \equiv 0 \mod 2$. Assume $\Omega(x), \Omega(y) \in \{2k+1|k \in \mathbb{Z}\}$. Then $\Omega(x) \equiv \Omega(y) \equiv 1 \mod 2$. Therefore, if $\lambda(x) = \lambda(y)$, $\Omega(x) \equiv \Omega(y) \mod 2$.

- \Leftarrow) Suppose that $\Omega(x) \equiv \Omega(y) \mod 2$. We know that $\lambda(a)$ is defined to be $(-1)^{\Omega(a)}$, so suppose without loss of generality that $\Omega(x), \Omega(y) \in \{2k | k \in \mathbb{Z}\}$. Then $\lambda(x) = (-1)^{2k} = 1$, and $\lambda(y) = (-1)^{2k} = 1$, so $\lambda(x) = \lambda(y)$.
- 4. Let $i = \sqrt{-1} \in \mathbb{C}$ and define $\rho : \mathbb{N} \to \mathbb{C}$ by $\rho(x) = i^{\Omega(x)}$. Prove that $\rho(x) = \rho(y)$ if and only if $\Omega(x) \equiv \Omega(y) \mod 4$.
 - \Rightarrow) Suppose $\rho(x)=\rho(y)$. We know that i to a power is either 1,-1,i, or -i. If $\rho(x)$ is to equal $\rho(y)$, then both must equal one of the four variations of i to a power. Suppose $\rho(x)=\rho(y)=1$. Then $i^{\Omega(x)}=i^{\Omega(y)}=1$, so $\Omega(x)$ and $\Omega(y)$ must be a multiple of 4. Then $\Omega(x)\equiv\Omega(y)\equiv0$ mod 4. If $\rho(x)=\rho(y)=-1$, then $\Omega(x)$ and $\Omega(y)$ must be a multiple of 2 but not a multiple of 4, since being a multiple of 4 would cause $\rho(x)=\rho(y)=1$. If $\Omega(x)$ and $\Omega(y)$ are multiples of 2 and not multiples of 4, then $\Omega(x)\equiv\Omega(y)\equiv2$ mod 4. Suppose that $\rho(x)=\rho(y)=i$. Then $i^{\Omega(x)}=i^{\Omega(y)}=i$. We know that $\Omega(x)$ and $\Omega(y)$ must be in the set $\{4k+1|k\in\mathbb{Z}\}$, or $\{4k+3|k\in\mathbb{Z}\}$. Suppose $\Omega(x),\Omega(y)\in\{4k+1|k\in\mathbb{Z}\}$. Then $i^{\Omega(x)}=i^{\Omega(y)}=i^{4k+1}=i^{4k}i=i$. In this case, we have $\Omega(x)\equiv\Omega(y)\equiv1$ mod 4. Finally, suppose that $\Omega(x),\Omega(y)\in\{4k+3|k\in\mathbb{Z}\}$. Then $i^{\Omega(x)}=i^{\Omega(y)}=i^{4k+3}=i^{4k}(-i)=-i$. In this case, $\Omega(x)\equiv\Omega(y)\equiv3$ mod 4. Therefore, if $\rho(x)=\rho(y),\Omega(x)\equiv\Omega(y)$ mod 4.
 - \Leftarrow) Suppose $\Omega(x) \equiv \Omega(y) \mod 4$. Then $\Omega(x), \Omega(y) \in \{0, 1, 2, 3\}$. If $\Omega(y) = 0$, then $\Omega(x) = 0$, and $\rho(x) = i^0 = 1$ and $\rho(y) = i^0 = 1$, so $\rho(x) = \rho(y)$. If $\Omega(x) = \Omega(y) = 1$, then $\rho(x) = i = \rho(y)$. If $\Omega(x) = \Omega(y) = 3$, then $\rho(x) = -i = \rho(y)$.

- 5. Suppose that $f: \mathbb{N} \to \mathbb{C}$ is a function such that f(xy) = f(x) + f(y) for all $x, y \in \mathbb{N}$. If f(p) = 1 for all primes p, prove that $f(x) = \Omega(x)$ for all $x \in \mathbb{N}$.
- 6. For an ordered pair $(a,b) \in \mathbb{N} \times \mathbb{N}$ we define the Generalized Prime Counting Map by

$$\overline{\Omega}(a,b) = \Omega(a) - \Omega(b).$$

If $(a,b),(c,d) \in \mathbb{N} \times \mathbb{N}$ are such that ad = bc, prove that $\overline{\Omega}(a,b) = \overline{\Omega}(c,d)$.

- 7. Let μ be the Möbius Function.
 - (a) If p and q are distinct primes, prove that $\mu(pq) = 1$.

Since μ is multiplicative, we have that $\mu(xy) = \mu(x)\mu(y)$ when gcd(x,y) = 1. Since p and q are distinct, we know that $\mu(pq) = \mu(p)\mu(q)$. By definition of the Möbius function, for a prime ρ we have

$$\mu(\rho) = -\sum_{\substack{d \mid \rho \\ d \neq \rho}} \mu(\rho) = -\mu(1) = -1,$$

so
$$\mu(p)\mu(q) = (-1)(-1) = 1$$
.

(b) If p is prime, prove that $\mu(p^2) = 0$.

From (a), we know that $\mu(\rho) = 1$ for some prime ρ . If we consider p^2 , we know that the only divisors are 1, p, and p^2 . By the definition of the Möbius function, we have

$$\mu(p^2) = -\sum_{\substack{d \mid p^2 \\ d \neq p^2}} \mu(d) = -(\mu(1) + \mu(p)) = -1 + 1 = 0.$$

(c) If p is prime and n is a positive integer, find a formula for the value of $\mu(p^n)$. Prove your answer.

$$\mu(p^n) = \begin{cases} -1, & n = 1\\ 0, & n > 1 \end{cases}$$

Consider the value of $\mu(p^n)$. We have already shown that $\mu(p) = -1$ for any prime p and that $\mu(p^2) = 0$ for any prime. We can suppose that $\mu(p^n) = 0$ for $n \ge 2$, and $\mu(p^n) = -1$ for n = 1. We want to show that $\mu(p^{n+1}) = 0$ for $n \ge 2$. Then

$$\begin{split} \mu(p^{n+1}) &= -\sum_{\substack{d \mid p^{n+1} \\ d \neq p^{n+1}}} \mu(d) \\ &= -(\mu(1) + \mu(p) + \mu(p^2) + \mu(p^3) + \dots + \mu(p^n)) \\ &= -(1 + (-1) + 0 + 0 + \dots + 0) \text{ by the inductive hypothesis} \\ &= -(0 + 0 + 0 + \dots + 0) \\ &= -0 \\ &= 0. \end{split}$$

8. If ϕ denotes Euler's Function and s > 2, prove that

$$\frac{\zeta(s-1)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\phi(n)}{n^s}.$$