0.1 Stirling 公式

对于阶乘问题, 最好用的估计工具就是 Stirling 公式. 与组合数相关的极限问题, 都可以尝试将其全部转化为阶乘然后估计大小.

定理 0.1 (Stirling 公式)

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n \to \infty.$$

证明 由 E-M 公式可知, 对 $\forall n \in \mathbb{N}$, 都有

$$\sum_{k=1}^{n} \ln k = \frac{\ln n}{2} + \int_{1}^{n} \ln x dx + \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x} dx = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{n} \left(x - [x] - \frac{1}{2} \right) \frac{1}{x} dx. \tag{1}$$

由 Dirichlet 判别法可知, $\int_{1}^{+\infty} \left(x-[x]-\frac{1}{2}\right) \frac{1}{x} dx$ 收敛. 则可设 $\lim_{n\to\infty} \int_{1}^{n} \left(x-[x]-\frac{1}{2}\right) \frac{1}{x} dx = \int_{1}^{+\infty} \left(x-[x]-\frac{1}{2}\right) \frac{1}{x} dx \triangleq C_{0} < \infty$. 记 $b_{1}(x) = x-[x]-\frac{1}{2}$,再令 $b_{2}(x) = \frac{1}{2}(x-[x])^{2}-\frac{1}{2}(x-[x])+\frac{1}{12}, x \in \mathbb{R}$. 则不难发现 $b_{2}(x)$ 在 \mathbb{R} 上连续且周期为 1,并且

$$b_2(x) = \int_0^x b_1(y) dy, \quad |b_2(x)| \le \frac{1}{12}, \forall x \in \mathbb{R}.$$

从而对(1)式使用分部积分可得

$$\sum_{k=1}^{n} \ln k = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{n} \frac{b_{1}(x)}{x} dx = \frac{\ln n}{2} + n \ln n - n + 1 + \int_{1}^{+\infty} \frac{b_{1}(x)}{x} dx - \int_{n}^{+\infty} \frac{b_{1}(x)}{x} dx$$

$$= \frac{\ln n}{2} + n \ln n - n + 1 + C_{0} - \int_{n}^{+\infty} \frac{1}{x} db_{2}(x) = \frac{\ln n}{2} + n \ln n - n + 1 + C_{0} - \frac{b_{2}(x)}{x} \Big|_{n}^{+\infty} - \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{2}} dx$$

$$= \left(n + \frac{1}{2}\right) \ln n - n + 1 + C_{0} + \frac{b_{2}(n)}{n} - \int_{n}^{+\infty} \frac{b_{2}(x)}{x^{2}} dx, \forall n \in \mathbb{N}.$$

又因为 $|b_2(x)| \leq \frac{1}{12}$, $\forall x \in \mathbb{R}$. 所以对 $\forall n \in \mathbb{N}$, 我们有

$$\left|\frac{b_2(n)}{n} - \int_n^{+\infty} \frac{b_2(x)}{x^2} \mathrm{d}x\right| \leqslant \frac{1}{12} \left(\frac{1}{n} + \int_n^{+\infty} \frac{1}{x^2} \mathrm{d}x\right) = \frac{1}{6n}.$$

故 $\frac{b_2(n)}{n} - \int_n^{+\infty} \frac{b_2(x)}{x^2} dx = O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$ 于是再记 $C = 1 + C_0$, 则

$$\sum_{k=1}^{n} \ln k = \left(n + \frac{1}{2}\right) \ln n - n + C + O\left(\frac{1}{n}\right), \forall n \in \mathbb{N}.$$
 (2)

注意到

$$(2n)!! = 2^n n!, n = 0, 1, 2, \cdots$$
 (3)

于是由 Wallis 公式: $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}, n \to \infty$. 再结合(2)(3)可得

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{(2n)!!}{(2n-1)!!\sqrt{n}} = \lim_{n \to \infty} \frac{[(2n)!!]^2}{(2n)!\sqrt{n}} = \lim_{n \to \infty} \frac{(2^n n!)^2}{(2n)!\sqrt{n}} = \lim_{n \to \infty} \frac{4^n n! \cdot n!}{(2n)!\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{4^n n! \prod_{k=1}^n k}{\sqrt{n} \prod_{k=n+1}^{2n} k} = \lim_{n \to \infty} \frac{4^n n! e^{\sum_{k=1}^n \ln k}}{\sqrt{n} e^{\sum_{k=1}^n \ln k}} = \lim_{n \to \infty} \frac{4^n n! e^{(n+\frac{1}{2}) \ln n - n + C + O(\frac{1}{n})}}{\sqrt{n} e^{(2n+\frac{1}{2}) \ln 2n - 2n + C + O(\frac{1}{n})}}$$

$$= \lim_{n \to \infty} \frac{4^{n} n! e^{(n+\frac{1}{2}) \ln n - n + C + O(\frac{1}{n}) - \left[(2n+\frac{1}{2}) \ln 2n - 2n + C + O(\frac{1}{n})\right]}}{\sqrt{n}} = \lim_{n \to \infty} \frac{4^{n} n! e^{-n \ln n + n - (2n+\frac{1}{2}) \ln 2 + O(\frac{1}{n})}}{\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{4^{n} n! 2^{-2n - \frac{1}{2}} e^{n}}{n^{n} \sqrt{n}} e^{O(\frac{1}{n})} = \lim_{n \to \infty} \frac{n! e^{n}}{n^{n} \sqrt{2n}} e^{O(\frac{1}{n})}.$$

从而 $\lim_{n\to\infty} \frac{n!e^n}{n^n\sqrt{2n}} = \frac{\sqrt{\pi}}{\lim_{n\to\infty} e^{O\left(\frac{1}{n}\right)}} = \sqrt{\pi}$. 因此 $\lim_{n\to\infty} \frac{n!}{\sqrt{n}\left(\frac{n}{e}\right)^n} = \lim_{n\to\infty} \frac{n!e^n}{n^n\sqrt{n}} = \sqrt{2\pi}$. 故 $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n\to\infty$.

例题 **0.1** 设 n, v 为正整数且 1 < v < n, 满足 $\lim_{n \to \infty} \frac{v - \frac{n}{2}}{\sqrt{n}} = \lambda > 0$, 证明: $\lim_{n \to \infty} \frac{\sqrt{n}}{2^n} C_n^v = \sqrt{\frac{2}{\pi}} e^{-2\lambda^2}$.

证明 根据条件, 显然在 $n \to \infty$ 时 v 也会趋于无穷, 设 $v = \frac{n}{2} + w\sqrt{n}$, 则 $w = \frac{v - \frac{n}{2}}{\sqrt{n}}$, 从而 $\lim_{n \to \infty} w = \lambda > 0$, 则有

$$\frac{\sqrt{n}}{2^n}C_n^{\nu} = \frac{\sqrt{n}}{2^n} \frac{n!}{\nu!(n-\nu)!}, \quad n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, n \to \infty.$$

从而

$$\sqrt{\frac{2}{\pi}}e^{-2\lambda^2} = \lim_{n \to \infty} \frac{\sqrt{n}}{2^n} C_n^{\nu} = \lim_{n \to \infty} \frac{\sqrt{n}}{2^n} \frac{n!}{\nu! (n-\nu)!}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n}}{2^n} \frac{\sqrt{2\pi \nu} \left(\frac{n}{e}\right)^n}{\sqrt{2\pi \nu} \left(\frac{\nu}{e}\right)^{\nu} \sqrt{2\pi (n-\nu)} \left(\frac{n-\nu}{e}\right)^{n-\nu}} = \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \frac{n^n}{2^n \nu^{\nu} (n-\nu)^{n-\nu}} \frac{n}{\sqrt{\nu} (n-\nu)}$$

$$\iff \lim_{n \to \infty} \frac{n^n}{2^n \left(\frac{n}{2} + w\sqrt{n}\right)^{\nu} \left(\frac{n}{2} - w\sqrt{n}\right)^{n-\nu}} \frac{n}{2\sqrt{\nu} (n-\nu)} = e^{-2\lambda^2}.$$

又

$$\lim_{n \to \infty} \frac{n}{2\sqrt{\nu(n-\nu)}} = \lim_{n \to \infty} \frac{n}{2\sqrt{\left(\frac{n}{2} + w\sqrt{n}\right)\left(\frac{n}{2} - w\sqrt{n}\right)}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 - \frac{4w^2}{\sqrt{n}}}} = 1,$$

故

$$\lim_{n \to \infty} \frac{n^n}{2^n \left(\frac{n}{2} + w\sqrt{n}\right)^v \left(\frac{n}{2} - w\sqrt{n}\right)^{n-v}} \frac{n}{2\sqrt{v(n-v)}} = e^{-2\lambda^2}$$

$$\iff \lim_{n \to \infty} \frac{n^{\left(\frac{n}{2} + w\sqrt{n}\right) + \left(\frac{n}{2} - w\sqrt{n}\right)}}{2^{\left(\frac{n}{2} + w\sqrt{n}\right) + \left(\frac{n}{2} - w\sqrt{n}\right)} \left(\frac{n}{2} + w\sqrt{n}\right)^{\frac{n}{2} + w\sqrt{n}} \left(\frac{n}{2} - w\sqrt{n}\right)^{\frac{n}{2} - w\sqrt{n}}} = e^{-2\lambda^2}$$

$$\iff \lim_{n \to \infty} \frac{n^{\left(\frac{n}{2} + w\sqrt{n}\right) + \left(\frac{n}{2} - w\sqrt{n}\right)} \left(\frac{n}{2} + w\sqrt{n}\right)^{\frac{n}{2} + w\sqrt{n}} \left(\frac{n}{2} - w\sqrt{n}\right)^{\frac{n}{2} - w\sqrt{n}}}}{\left(n + 2w\sqrt{n}\right)^{\frac{n}{2} + w\sqrt{n}} \left(1 - 2w\sqrt{n}\right)^{\frac{n}{2} - w\sqrt{n}}} = e^{-2\lambda^2}$$

$$\iff \lim_{n \to \infty} \frac{1}{\left(1 + \frac{2w}{\sqrt{n}}\right)^{\frac{n}{2} + w\sqrt{n}} \left(1 - \frac{2w}{\sqrt{n}}\right)^{\frac{n}{2} - w\sqrt{n}}} = e^{-2\lambda^2}$$

$$\iff \lim_{n \to \infty} \left[\left(\frac{n}{2} + w\sqrt{n}\right) \ln\left(1 + \frac{2w}{\sqrt{n}}\right) + \left(\frac{n}{2} - w\sqrt{n}\right) \ln\left(1 - \frac{2w}{\sqrt{n}}\right)\right] = 2\lambda^2. \tag{4}$$

又由 Taylor 公式可得

$$\begin{split} &\left(\frac{n}{2}+w\sqrt{n}\right)\ln\left(1+\frac{2w}{\sqrt{n}}\right)+\left(\frac{n}{2}-w\sqrt{n}\right)\ln\left(1-\frac{2w}{\sqrt{n}}\right)\\ &=\left(\frac{n}{2}+w\sqrt{n}\right)\left(\frac{2w}{\sqrt{n}}-\frac{2w^2}{n}+O\left(\frac{1}{n\sqrt{n}}\right)\right)+\left(\frac{n}{2}-w\sqrt{n}\right)\left(-\frac{2w}{\sqrt{n}}-\frac{2w^2}{n}+O\left(\frac{1}{n\sqrt{n}}\right)\right)\\ &=w\sqrt{n}+w^2+O\left(\frac{1}{\sqrt{n}}\right)-w\sqrt{n}+w^2+O\left(\frac{1}{\sqrt{n}}\right)=2w^2+O\left(\frac{1}{\sqrt{n}}\right),n\to\infty. \end{split}$$

再结合 $\lim_{n\to\infty} w = \lambda$ 可知(4)式成立, 因此结论得证.