midterm-19127177

March 13, 2022

```
[176]: import matplotlib.pyplot as plt
  import seaborn as sns
  import pandas as pd
  import numpy as np
  import statsmodels.formula.api as smf

plt.style.use('default')
[249]: df = pd.read_csv('supermarket_sales - Sheet1.csv')
```

1 Câu 1

```
[162]: payment = df[['Payment','Invoice ID']].groupby(by='Payment').agg(['count'])
fig, ax = plt.subplots()
ax.set_title("Payment method")
ax.set_xlabel("Number of tracnsactions")
sns.barplot(
    data=payment,
    y=list(payment.index),
    x=payment.values.reshape((1,-1))[0],
    orient='h'
)
ax.spines['top'].set_visible(False)
ax.spines['ight'].set_visible(False)
# ax.spines['bottom'].set_visible(False)
# ax.spines['left'].set_visible(False)
```


1.1 Nhân xét

- Số lượng các phiên giao dịch qua phương pháp thanh toán tiền mặt (cash) và ví điện tử (Ewallet) khá giống nhau (gần 350 lượng giao dịch trong vòng 3 tháng)
- Số lượng các giao dịch quá thẻ tín dụng chiếm thấp nhất (hơn 300 phiên giao dịch)

```
[218]: fig, ax = plt.subplots()
    ax.spines['top'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
# ax.spines['bottom'].set_visible(False)
# ax.spines['left'].set_visible(False)
Q1, Q2, Q3 = df['Total'].quantile([0.25, 0.5, 0.75])
mean = df['Total'].mean()
ax.set_title("Total price including tax")
ax.set_xlabel("Total")
ax.hist(df['Total'],edgecolor='black', color='cyan')
ax.axvline(x=Q1,c='brown', linestyle='dashed')
ax.axvline(x=q2,c='blue')
ax.axvline(x=mean,c='red')
ax.axvline(x=Q3,c='brown', linestyle='dashed')
ax.legend(['Q1', 'Q2','mean','Q3']);
```


1.2 Nhận xét

• Phân phối của dữ liệu Total có phần hướng dương và có các giá trị

```
[220]: print('Q1',np.round(Q1, 2), sep=' = ')
    print('Q2',np.round(Q2, 2), sep=' = ')
    print('Q3',np.round(Q3, 2), sep=' = ')
    print('mean',np.round(mean, 2), sep=' = ')

Q1 = 124.42
    Q2 = 253.85
    Q3 = 471.35
    mean = 322.97

[217]: fig, ax = plt.subplots()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    # ax.spines['bottom'].set_visible(False)
    # ax.spines['left'].set_visible(False)
    # ax.spines['left'].set_visible(False)
    Q1, Q2, Q3 = df['Rating'].quantile([0.25, 0.5, 0.75])
```

```
mean = df['Rating'].mean()
ax.set_title("Rating from transactions")
ax.set_xlabel("Rating")
ax.hist(df['Rating'],edgecolor='black', color='cyan')
ax.axvline(x=Q1,c='brown', linestyle='dashed')
ax.axvline(x=Q2,c='blue')
ax.axvline(x=mean,c='red')
ax.axvline(x=Q3,c='brown', linestyle='dashed')
ax.legend(['Q1', 'Q2','mean','Q3']);
```


1.3 Nhận xét

• Phân phối của dữ liệu rating khá đều với các giá trị:

```
[221]: print('Q1',np.round(Q1, 2), sep=' = ')
    print('Q2',np.round(Q2, 2), sep=' = ')
    print('Q3',np.round(Q3, 2), sep=' = ')
    print('mean',np.round(mean, 2), sep=' = ')
```

Q1 = 124.42

```
Q2 = 253.85

Q3 = 471.35

mean = 322.97
```

2 Câu 2

```
[168]: fig, ax = plt.subplots()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    # ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)

sns.boxplot(data=df, x='Total',color='cyan');
```



```
[248]: IQR = df['Total'].quantile(0.75) - df['Total'].quantile(0.25)
notoutliers = df['Total'][(df['Total'] <= df['Total'].quantile(0.75) + 1.

$\infty 5*IQR)&(df['Total'] >= df['Total'].quantile(0.25)-1.5*IQR)]
print("Tổng số các outlier là:",df.shape[0] - notoutliers.shape[0], sep=' ')
```

Tổng số các outlier là: 9

3 Câu 3

```
[203]: fig, ax = plt.subplots()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False);
    # ax.spines['bottom'].set_visible(False)
    # ax.spines['left'].set_visible(False)
    ax.set_title("Relationship between Quantity and Total")
    sns.scatterplot(data=df, x='Quantity',y='Total');
```


4 Câu 4

```
[206]: df['log_total'] = np.log(df['Total'])
print(smf.ols("Q('Quantity') ~ Q('Unit price') + Q('log_total')", data=df).

ofit().summary())
```

OLS Regression Results

Dep. Variable:	Q('Quantity')	R-squared:	0.858
Model:	OLS	Adj. R-squared:	0.858

Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	-		F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		3009. 0.00 -1515.6 3037. 3052.	
0.975]	coef	std err	t	P> t	[0.025	
	10.0001	0.040	42.002	0.000	10.000	
Intercept -9.811	-10.2381	0.218	-46.996	0.000	-10.666	
Q('Unit price')	-0.0794	0.002	-47.322	0.000	-0.083	
	3.7178	0.048	77.576	0.000	3.624	
Omnibus:		84.690	Durbin-Watson:		2.023	
<pre>Prob(Omnibus):</pre>		0.000	<pre>Jarque-Bera (JB):</pre>		45.436	
Skew:			Prob(JB):		1.3	36e-10
Kurtosis:	=======	2.252 	Cond. No.		========	394. =====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.1 Nhận xét

- Mô hình sử dụng 2 biến là \mathbf{Unit} price và $\mathbf{ln}(\mathbf{Total})$
- R-squared đạt mức 0.858 với p-value bằng 0