Universidad Politécnica Salesiana ¶

Nombre: Fernando Sanchez

Materia: Sistemas Expertos

Practica:

Caso práctico de implementación de un sistema de razonamiento basado en casos

I. Preprocesar los datos del corpus de acuerdo a las sugerencias desarrolladas por wguillen [github].

La base de caso original utilizada para el desarrollo del sistema RBC puede ser que se encuentra en: https://archive.ics.uci.edu/ml/datasets/Wine+Quality) . (https://archive.ics.uci.edu/ml/datasets/Wine+Quality) .

Instalar API pandas para la manipulación y el análisis de datos

pip install pandas

Importar la API pandas para procesar los datos del documento excel "winequality-red.csv"

```
In [1]: 1 import pandas as pd
In [2]: 1 df = pd.read_csv("winequality-red.csv",sep=';')
2 lista = [list(row) for row in df.values]
3 print(len(lista))
```

1599

Los casos se filtraron eliminando posibles duplicados y datos erróneos, dejando un total de 1517 cajas en la base utilizada por el sistema.

1359

Verificacion de datos duplicados eliminados

II.Aplicar la técnicas de los vecinos más cercanos indicada en clase y empleando la fórmula propuesta por wguillen.

El cálculo de similitud entre el caso buscado y los casos de la base de conocimientoocurre a través de la fórmula:

```
Similaridade (A1C1, A1C2) = 1- | A1C2 - A1C1 |

Intervalo de variação! (val max - val min)
```

Adquirir datos de la interfaz y realizar el calculo de similitud

Se tienen los siguientes atributos del vino (Tabla 2):

1 - fixed acidity
2 - volatile acidity
3 - citric acid
4 - residual sugar
5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 - sulphates
11 - alcohol
Variable de salida:

12 - quality (puntaje entre 0 y 10)

Crear tabla con los campos establecidos en la imagen anterior

Importar messagebox de tkinder

La calidad del vino tinti puntua entre 0 y 10, como resutado de imprimira en un Mensaje de Información


```
In [44]:
           1
             from tkinter import messagebox
           2
             def CalcularSimilitud():
           3
                 tk_Reporte = Tk()
                 tk Reporte.title("Reporte")
           4
                 tk_Reporte geometry('1400x600')
           5
           6
                 lista = result
           7
                 similares = {}
           8
                 cn = [float(Fixed_Acidy.get()), float(Volatily_Acidy.get())
           9
                        float(Residual_Sugar.get()), float(Chlorides.get()),
          10
                        float(Total_Sulfure_Dioxide.get()), float(Density.get
          11
                        float(Sulphates.get()), float(Alcohol.get())]
          12
         13
                 weight = [float(Fixed_Acidy_Peso.get()), float(Volatily_Aci
          14
                            float(Residual_Sugar_Peso.get()), float(Chlorides
          15
                            float(Total_Sulfure_Dioxide_Peso.get()), float(De
          16
                            float(Sulphates_Peso.get()), float(Alcohol_Peso.g
          17
         18
         19
                 for i in range(len(lista)):
                      fila = []
         20
         21
                     fila = lista[i]
                     x = similaridade(fila, cn, weight )
         22
         23
                      similares.update({str(i): round(x, 3)})
         24
         25
                 ordenados = dict(sorted(similares.items(), key=operator.ite
                 columna = ("Fixed Acidity", "Volatile Acidity", "Citric Aci
         26
                 "Total Sulfure Dioxide", "Density", "pH", "Sulphates", "Alc
         27
          28
                 tree = ttk.Treeview(tk_Reporte, columns=columna, show='head
                 vsh = ttk.Scrollbar(tk Reporte, command=tree.vview.orient="
         29
```

```
30
       vsb.pack(side=RIGHT, fill=BOTH)
31
32
       tree.configure(yscrollcommand=vsb.set)
33
       for i in range(len(columna)):
34
           tree.heading(columna[i], text=columna[i])
35
           tree.column(columna[i], minwidth=0, width=70)
36
       tree.pack(expand=YES, fill=BOTH)
       for i in range(len(ordenados)):
37
38
            pos = int(list(ordenados.items())[i][0])
           Fixed_Acidy_Campo = lista[int(pos)][0]
39
40
           Volatily_Acidy_Campo = lista[int(pos)][1]
41
           Citric Acid Campo = lista[int(pos)][2]
           Residual Sugar Campo = lista[int(pos)][3]
42
43
           Chlorides_Campo = lista[int(pos)][4]
           Free_Sulfur_Dioxide_Campo = lista[int(pos)][5]
44
           Total Sulfure Dioxide Campo = lista[int(pos)][6]
45
           Density_Campo = lista[int(pos)][7]
46
47
           pH Campo = lista[int(pos)][8]
48
           Sulphates_Campo = lista[int(pos)][9]
49
           Alcohol_Campo = lista[int(pos)][10]
50
           Quality_Campo = lista[int(pos)][11]
51
           Similary_Campo = str(list(ordenados.items())[i][1])
52
            tree.insert("", 0, i, values=( Fixed_Acidy_Campo, Volat
53
                                           Residual Sugar Campo, Chl
54
                                           Total Sulfure Dioxide Cam
55
                                           Alcohol Campo, Quality Ca
56
57
58
       aux = list(ordenados.items())[len(ordenados) - 1][0]
59
       res = lista[int(aux)][11]
       messagebox.showinfo(message="Calidad de Similitus es de = "
60
```

III. Desarrollar una pequeña interfaz en Python u otro lenguaje donde se coloquen los atributos y el sistema indique la calidad del vino.


```
In [ ]:
           from tkinter import *
         1
          2
            from tkinter import ttk
            from tkinter import messagebox
          4
            import operator
         5
            tk = Tk()
         6
         7
            lista_Weight = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
         8
         9
            tk.geometry('597x230')
         10
         11
            tk.title('Calidad del Vino Tinto ')
            tk.resizable(height=FALSE,width=FALSE)
        12
        13
        14
            Label(tk, text="Ingresar Datos").place(x=10, y=0)
        15
            Label(tk, text="Fixed Acidy").place(x=0, y=25)
        16
        17
            Fixed_Acidy = Spinbox(tk, from_=4.6, to=15.9, width=15, increme
            Fixed_Acidy.place(x=0, y=50)
        18
           Fixed_Acidy_Peso = ttk.Combobox(tk, values=lista_Weight, width=
        20
            Fixed_Acidy_Peso.place(x=130, y=50)
        21
           Fixed Acidy Peso.current(3)
        22
        23
            Label(tk, text="Volatily Acidy").place(x=200, y= 25)
        24
           Volatily_Acidy = Spinbox(tk, from_=0.12, to=1.58, width=15, inc
            Volatily_Acidy.place(x=200, y=50)
        25
        26
            Volatily_Acidy_Peso = ttk.Combobox(tk, values=lista_Weight, wid
            Volatily_Acidy_Peso.place(x=330, y=50)
        27
        28
           Volatily_Acidy_Peso.current(3)
        29
        30
            Label(tk, text="Citric Acid").place(x=400, y=25)
            Citric_Acid = Spinbox(tk, from_=0.0, to=1.0, width=15, incremen
         31
```

```
32 | Citric_Acid.place(x=400, y=50)
   Citric_Acid_Peso = ttk.Combobox(tk, values=lista_Weight, width=
33
34 Citric Acid Peso.place(x=530, y=50)
35
   Citric_Acid_Peso.current(3)
36
37
   Label(tk, text="Residual Sugar").place(x=0, y=75)
38
   Residual_Sugar = Spinbox(tk, from_=0.9, to=13.9, width=15, incr
39
   Residual_Sugar.place(x=0, y=100)
   Residual_Sugar_Peso = ttk.Combobox(tk, values=lista_Weight, wid
40
41
   Residual_Sugar_Peso.place(x=130, y=100)
42
   Residual Sugar Peso.current(5)
43
44
   Label(tk, text="Chlorides").place(x=200, y=75)
45
   Chlorides = Spinbox(tk, from_=0.012, to=0.611, width=15, increm
   Chlorides.place(x=200, y=100)
46
   Chlorides_Peso = ttk.Combobox(tk, values=lista_Weight, width=6,
47
48
   Chlorides_Peso.place(x=330, y=100)
49
   Chlorides_Peso.current(1)
50
51
   Label(tk, text="Free Sulfur Dioxide").place(x=400, y=75)
52
   Free_Sulfur_Dioxide = Spinbox(tk, from_=1.0, to=72.0, width=15,
53
  Free_Sulfur_Dioxide.place(x=400, y=100)
   Free Sulfur Dioxide Peso = ttk.Combobox(tk, values=lista Weight
54
   Free_Sulfur_Dioxide_Peso.place(x=530, y=100)
55
56
   Free_Sulfur_Dioxide_Peso.current(1)
57
58
   Label(tk, text="Total Sulfure Dioxide").place(x=0, y=125)
59
   Total Sulfure Dioxide = Spinbox(tk, from =6.0, to=289.0, width=
   Total_Sulfure_Dioxide.place(x=0, y=150)
60
   Total_Sulfure_Dioxide_Peso = ttk.Combobox(tk, values=lista_Weig
61
   Total_Sulfure_Dioxide_Peso.place(x=130, y=150)
62
63
   Total_Sulfure_Dioxide_Peso.current(1)
64
   Label(tk, text="Density").place(x=200, y=125)
65
   Density = Spinbox(tk, from_=0.9900, to=1.0000, width=15, increm
66
   Density.place(x=200, y=150)
67
   Density_Peso = ttk.Combobox(tk, values=lista_Weight, width=6, f
68
69
   Density_Peso.place(x=330, y=150)
   Density Peso.current(1)
70
71
72
   Label(tk, text="pH").place(x=400, y=125)
73
   pH = Spinbox(tk, from_=2.74, to=4.01, width=15, increment=0.01,
74
   pH.place(x=400, y=150)
75
   pH_Peso = ttk.Combobox(tk, values=lista_Weight, width=6, font='
76
   pH_Peso.place(x=530, y=150)
77
   pH_Peso.current(6)
78
79
   Label(tk, text="Sulphates").place(x=0, y=175)
   Sulphates = Spinbox(tk, from_=0.33, to=2.0, width=15, increment
80
81
   Sulphates.place(x=0, y=200)
  Sulphates_Peso = ttk.Combobox(tk, values=lista_Weight, width=6,
   Sulphates_Peso.place(x=130, y=200)
84
   Sulphates_Peso.current(1)
85
```

```
Label(tk, text="Alcohol").place(x=200, y=175)
87
   Alcohol = Spinbox(tk, from_=8.4, to=14.9, width=15, increment=0
   Alcohol.place(x=200, y=200)
88
   Alcohol_Peso = ttk.Combobox(tk, values=lista_Weight, width=6, f
89
90
   Alcohol_Peso.place(x=330, y=200)
91
   Alcohol Peso.current(5)
92
   ttk.Button(tk, text='Calcular Similitud', command=CalcularSimil
93
94
   tk.mainloop()
```

Resultado Obtenidos

Ingresar datos del vino tinto para ver su similitud con datos almacenados en la base de conocimiento:

Mensaje sobre la calidad de silimitud del vino tinto ingresado:

Imprimir la tabla de resultado con referencia a la mayor similitud de los datos almacenados:

Conclusiones

Se llego a la conclusión dee que es sisteemas experto es preciso siempree y cuando se tenga una gran base de conocimiento, como en este caso se tiene 1359 datos con lo que ayudo a determinar la calidad del vini tinto, también se recomienda a dar mantenimiento a la base de conocimiento para no tener datos duplicados o ingresar más datos.

Referencias

[1] https://www.sciencedirect.com/science/article/abs/pii/S0167923609001377?via=ihub (https://www.sciencedirect.com/science/article/abs/pii/S0167923609001377?via=ihub)

[2] https://github.com/wguilen/red-wine-quality-cbr/tree/master/presentation (https://github.com/wguilen/red-wine-quality-cbr/tree/master/presentation)

[3] https://archive.ics.uci.edu/ml/datasets/Wine+Quality)

[4] https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/(https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/)

