HLR - Hochleistungsrechnen

Aufgabenblatt 7

Merle Hoffmann, Joël Miramon, Max Press

1. Circle:

Ein eindimensionales Array der Länge N wird auf nprocs Prozesse möglichst gleichmäßig aufgeteilt. Schreiben Sie die Formel auf und visualisieren Sie eine Beispielaufteilung für N=13 und nprocs=5.

Länge des Arrays NAnzahl Prozesse nprocsAktueller Prozess procChunksize für Prozess proc $C_{proc}(N, nprocs) = \begin{cases} \lfloor N/nprocs \rfloor + 1, & \text{falls } proc \leq N \text{ mod } nprocs \\ \lfloor N/nprocs \rfloor, & \text{sonst.} \end{cases}$

Beispielaufteilung für N = 13 und nprocs = 5:

$n \in N$	1	2	3	4	5	6	7	8	9	10	11	12	13
$proc \in nprocs$	1			2			3			4		5	

2. Visualisierung:

1. Wie können Sie in der grafischen Darstellung die Richtung der Kommunikation erkennen? Korreliert die Darstellung mit ihren Erwartungen?

TODO

2. Lassen Sie sich die Communication Matrix View ausgeben.

TODO

3. Markieren Sie die unterschiedlichen Programmphasen (Initialisierung, Iterationen und Beenden) in den Screenshots.

TODO

4. Wie lange hat die MPI_Init-Phase gedauert?

TODO

3. Parallelisierung mit MPI:

• Formel für i(Interlines) und nprocs, nach der die Matrix möglichst gleichmäßig aufgeteilt wird:

Geben Sie für den ersten (Rang 0), den letzten und einen Beispielprozess aus der Mitte den Schleifenkopf der Berechnung an.

TODO

 \bullet Visualisierung der Aufteilung für i=2 und nprocs=5:

TODO

 \bullet Visualisierung des Kommunikationsschemas für 3 Prozesse und 3 Iterationen in einem Diagramm:

TODO