11^a Lista de Exercícios de SMA332 - Cálculo II

Professor: Thais Jordão e Wagner Vieira Leite Nunes 17.02.2014

Exercício 1 Calcule o valor da intergral curvelínea $\int_C \vec{\mathsf{F}} \bullet \vec{\mathsf{T}} \, ds$ nos seguintes casos:

- a) $\vec{F}(x,y) \doteq xy \cdot \vec{e}_1 y \cdot \vec{e}_2 + \vec{e}_3$, $(x,y) \in \mathbb{R}^2$ e C é o segmento de reta que une os pontos (0,0,0) e (1,1,1);
- b) $\vec{F}(x,y,z) \doteq x \cdot \vec{e}_1 y \cdot \vec{e}_2 + z \cdot \vec{e}_3$, $(x,y,z) \in \mathbb{R}^3$ e C é o traço da curva que tem como parametrização: $(x(\theta),y(\theta),z(\theta)) = \left(\cos(\theta),\sin(\theta),\frac{\theta}{\pi}\right)$, para $\theta \in [0,2\pi]$.

Exercício 2

- a) Demonstrar que a integral de linha $\int_{(1,2)}^{(3,4)} (6xy^2 y^3) dx + (6x^2y 3xy^2) dy$ é independente do caminho que une o ponto (1,2) ao porto (3,4).
- b) Calcule o valor a integral de linha do item a) utilizando um caminho a sua escolha que una os dois pontos em questão.

Exercício 3

- a) Provar que o campo vetorial $\vec{F}: \mathbb{R}^2 \to \mathbb{R}$ dado por $\vec{F}(x,y,z) \doteq (2xz^3 + 6y)\vec{i} + (6x 2yz)\vec{j} + (3x^2z^2 y^2)\vec{k}$, $(x,y,z) \in \mathbb{R}^3$, é um campo conservativo, isto é, o campo vetorial \vec{F} deriva de um potencial.
- b) Calcular o valor a integral de linha $\int_{\gamma} \vec{\mathbf{f}} \cdot d\vec{\mathbf{r}}$, onde o traço da curva parametrizada γ é um caminho que liga os pontos (1,-1,1) e (2,1,-1).

Exercício 4 Mostre que a integral de linha $\int_{\gamma} \vec{\mathsf{F}} \bullet d\vec{\mathsf{r}}$ independe do caminho γ , determinando uma função potencial $\underline{\mathsf{f}}$ que deriva do campo $\vec{\mathsf{F}}$, nos seguintes casos:

- a) $\vec{F}(x,y) \doteq (3x^2y + 2) \cdot \vec{e}_1 + (x^3 + 4y^3) \cdot \vec{e}_2, (x,y) \in \mathbb{R}^2$.
- b) $\vec{F}(x,y) \doteq (2x \operatorname{sen}(y) + 4e^x) \cdot \vec{e}_1 + [x^2 \cos(y) + 2] \cdot \vec{e}_2, (x,y) \in \mathbb{R}^2.$
- c) $\vec{F}(x,y) = [2y^3 \operatorname{sen}(x)] \cdot \vec{e}_1 + (6y^2 \cos(x) + 5) \cdot \vec{e}_2, (x,y) \in \mathbb{R}^2.$

Exercício 5 Comprovar o Teorema de Green nos seguintes casos:

- a) $\oint_{\gamma} (2xy x^2) dx + (x + y^2) dy$, onde o traço da curva parametrizada γ é a curva fechada contida na região limitada, delimitada pelas representaçãoes geométricas dos gráficos das funções $y = x^2$, para $x \in \mathbb{R}$ e $y^2 = x$, para $y \in \mathbb{R}$.
 - $\textbf{b)} \ \vec{F}(x,y) \stackrel{.}{=} xy \cdot \vec{e}_1 2xy \cdot \vec{e}_2, \ \textit{para} \ (x,y) \in D \ , \ \textit{onde a região} \ D \ \textit{o retângulo} \ [1,2] \times [0,3].$
 - c) $\vec{F}(x,y) \doteq e^x \operatorname{sen}(y) \cdot \vec{e}_1 + e^x \cos(y) \cdot \vec{e}_2$, $(x,y) \in D$, onde D é o retângulo $[0,1] \times \left[0,\frac{\pi}{2}\right]$.
- d) $\vec{F}(x,y) = \left(\frac{2}{3}xy^3 x^2y\right) \cdot \vec{e}_1 + x^2y^2 \cdot \vec{e}_2$, $(x,y) \in D$, onde D o triângulo de vértices nos pontos (0,0),(1,0),(1,1).

Exercício 6 Usando o Teorema de Green, calcular o valor das integrais de linha:

- a) $\oint_{\gamma} e^{x} \operatorname{sen}(y) \, dx + e^{x} \cos(y) \, dy$, onde o traço da curva parametrizada γ é o retângulo de vértices nos pontos (0,0), (1,0), $\left(1,\frac{\pi}{2}\right)$ e $\left(0,\frac{\pi}{2}\right)$.
 - b) $\oint_{\gamma} 2x^2y^3 dx + 3xy dy$, onde o traço da curva parametrizada γ é a circunferência $x^2 + y^2 = 1$.

Exercício 7 Usando integrais de linha, calcule a área da região plana limitada, delimitada pelas representações geométricas dos gráficos das funções y = x + 2, $y = x^2$.

Exercício 8 Usando integrais de linha, calcule a área da região plana limitada, que está contida no primeiro quadrante e é delimitada pelos traços das curvas 4y = x, y = 4x e xy = 4.

Exercício 9 Calcule a integral de linha $\oint_C \frac{x \, dx + y \, dy}{x^2 + y^2}$, ondea curva C é o arco da parábola $y = x^2 - 1$, $-1 \le x \le 2$, percorrido no sentidodo ponto (2,3) para o ponto (-1,0). Sugestão: aplicar o Teorema de Green.