Aufgabenblatt 7

Wenn Sie sich für das Niveau A der Übungen entschieden haben, brauchen Sie nur die ersten drei der folgenden Aufgaben zu bearbeiten.

Aufgabe 1. (Ableitungsregeln anwenden) Berechnen Sie mithilfe von Produktregel, Quotientenregel und Kettenregel die Ableitungen der folgenden Funktionen.

(a)
$$f(x) = \frac{x}{1+x^2}$$
, (b) $f(x) = \frac{\sin(x)}{x}$ (für $x \neq 0$), (c) $f(x) = e^{-2x} \cos(3x)$,

(d)
$$f(x) = \ln(x + \sqrt{1 + x^2})$$
, (e) $f(x) = \arctan\left(\frac{1}{x^2}\right)$ (für $x \neq 0$). (5 Punkte)

Aufgabe 2. (Tangenten) Bestimmen Sie jeweils die Tangenten zum Graphen von f an den angegebenen Stellen.

(a)
$$f(x) = \frac{1}{8}x^3 - \frac{3}{2}x + 2$$
, $x_0 = 0$, $x_1 = 2$, $x_2 = -2$.

(b)
$$f(x) = \cosh(x) := \frac{1}{2}(e^x + e^{-x}), \quad x_0 = 0, x_1 = \ln(2).$$

Berechnen Sie bei (a) ausserdem die Schnittstellen der Tangenten mit dem Graphen von f, falls es weitere gibt ausser der Berührstelle, und machen Sie eine Skizze.

(5 Punkte)

Aufgabe 3. (Differenzierbarkeit) Sind die folgenden Funktionen jeweils an der Stelle x = 0 differenzierbar und falls ja, welchen Wert hat f'(0)?

(a)
$$f(x) = |x|(x^2 + 1)$$
, (b) (b) $f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{für } x \neq 0 \\ 1 & \text{für } x = 0 \end{cases}$

(c)
$$f(x) = \begin{cases} x \cdot \ln(x) & \text{für } x > 0 \\ 0 & \text{für } x = 0 \end{cases}$$
 (d) $f(x) = \begin{cases} \exp(-\frac{1}{x^2}) & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$

Hinweis: Bei (b),(c) und (d) sollten Sie jeweils mit der Definition 4.1.1 und eventuell der l'Hospitalschen Regel argumentieren. (4 Punkte)

Aufgabe 4. (Beweis der Quotientenregel) (a) Zeigen Sie mit der Grenzwertdefinition, dass die Ableitung von f(x) = 1/x (für $x \neq 0$) lautet $f'(x) = -1/x^2 \ \forall x \neq 0$.

(b) Sei jetzt f eine beliebige differenzierbare Funktion ohne Nullstellen auf dem Intervall I. Bestimmen Sie mit der Kettenregel (und NICHT der Quotientenregel) die Ableitung von $g(x) = \frac{1}{f(x)}$ (für $x \in I$).

(c) Leiten Sie nun aus (b) und der Produktregel die Quotientenregel her. (3 Punkte)

Aufgabe 5. (Tangente der Exponentialfunktion) Es gilt $e^x = \lim_{n \to \infty} (1 + \frac{x}{n})^n \forall x \in \mathbb{R}$. Dies dürfen Sie ohne Begründung verwenden, um folgendes zu zeigen:

(a)
$$e^x \ge 1 + x$$
, falls $|x| < 1$. (b) $e^x \le \frac{1}{1 - x}$, falls $x < 1$. (c) $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$. (3 Punkte)

Und hier noch zwei Verständnisfragen zur Selbstkontrolle:

Frage 1. (Differenzierbarkeit) Welche der folgenden Aussagen über eine Funktion f sind korrekt?

- (a) Ist f bei x_0 stetig, aber nicht differenzierbar, dann hat f dort eine Knickstelle. \square
- (b) Hat f bei x_0 eine Sprungstelle, dann ist f dort nicht differenzierbar.
- (c) Hat der Graph von f bei x_0 eine eindeutige Tangente, dann ist f bei x_0 differenzierbar.
- (d) Hat f bei x_0 eine Definitionslücke und gibt es dort eine Tangente von rechts und eine von links mit derselben Steigung, dann lässt sich f differenzierbar nach x_0 fortsetzen.

Frage 2. (Umkehrfunktionen) Welche der folgenden Aussagen über eine umkehrbare, differenzierbare Funktion f und ihre Umkehrfunktion g sind korrekt?

- (a) Hat die Tangente des Graphen von f an der Stelle x_0 die Steigung m, dann hat die Tangente des Graphen von g bei $f(x_0)$ die Steigung 1/m.
- (b) Hat der Graph von f an der Stelle x_0 eine waagerechte Tangente, dann hat der Graph von g an der Stelle $f(x_0)$ eine senkrechte Tangente und ist dort nicht differenzierbar.
- (c) Der Graph von g besitzt an jeder Stelle x_0 eine eindeutige Tangente.

Abgabe der Aufgaben: Donnerstag, den 4. November 2021, bis 12.30 Uhr als .pdf via ADAM bei Ihrem Tutor bzw. Ihrer Tutorin.