Porównania detektorów i metod aproksymujących

Parametry detektorów

W przeprowadzonych symulacjach wykorzystano różne parametry detektorów (tabela 1).

Tabela 1. Parametry detektorów.

Parametr	Detektor 1	Detektor 2	Detektor 3	Detektor 4
Wielkość piksela [μm]	75	100	50	50
Sigma chmury ładunku [µm]	6.31	16	6.31	16
Liczba ładunków $[e^-]$	2200	4970	2200	4970
Sigma szumu [e ⁻ RMS]	50	200	50	200

Parametry metod aproksymujących

Wszystkie metody aproksymujące wykorzystywały zmienne typu float.

Przybliżenie Taylora wykorzystywało przybliżenie rzędu 10 (chyba, że stwierdzono inaczej).

Przybliżenie z wykorzystaniem tablicy LUT wykorzystywało tablicę wielkości 50 (chyba, że stwierdzono inaczej).

Porównanie z podziałem na oś X i Y

Porównanie z podziałem na oś X i Y zostało przeprowadzone dla przekątnej piksela [pozycje (0, 0), (1, 1), (2, 2), ..., (n-1, n-1), (n, n), gdzie n to wielkość piksela, a jednostką jest 1 μ m].

Dla każdej pozycji symulowano 10000 razy uderzenie fotonu w detektor i aproksymowano pozycję uderzenia oraz liczono błąd względny według wzoru:

$$error = |r - c|,$$

gdzie:

r – idealna pozycja uderzenia w detektor w danej osi,

c – obliczona pozycja uderzenia w detektor w danej osi.

Następnie wszystkie dane uśredniono, a wyniki przedstawiono na rysunkach od 1 do 4.

pixel size = 75 μ m, charge cloud σ = 6.31 μ m number of charges = 2200e, noise σ = 50e RMS

Rysunek 1. Porównanie z podziałem na osie dla detektora 1.

pixel size = $100\mu m$, charge cloud $\sigma = 16\mu m$ number of charges = 4970e, noise $\sigma = 200e$ RMS

Rysunek 2. Porównanie z podziałem na osie dla detektora 2.

pixel size = $50\mu m$, charge cloud $\sigma = 6.31\mu m$ number of charges = 2200e, noise $\sigma = 50e$ RMS

Rysunek 3. Porównanie z podziałem na osie dla detektora 3.

pixel size = $50\mu m$, charge cloud $\sigma = 16\mu m$ number of charges = 4970e, noise $\sigma = 200e$ RMS

Rysunek 4. Porównanie z podziałem na osie dla detektora 4.

Porównanie dwuwymiarowe

Porównanie dwuwymiarowe zostało przeprowadzone dla każdej pary x, y, gdzie $x \in (0,75)$ [μm] oraz y $\in (0,75)$ [μm]

Dla każdej pozycji symulowano 100 razy uderzenie fotonu w detektor i aproksymowano pozycję uderzenia oraz liczono błąd jako długość wektora w układzie kartezjańskim według wzoru:

$$error = \sqrt{(r_{x} - c_{x})^{2} + (r_{y} - c_{y})^{2}},$$

gdzie:

r – wektor idealnej pozycji uderzenia w detektor,

c – wektor obliczonej pozycji uderzenia w detektor.

Następnie wszystkie dane uśredniono, a wyniki przedstawiono na rysunkach od 5 do 8.

Rysunek 5. Porównanie dwuwymiarowe dla detektora 1.

Rysunek 6. Porównanie dwuwymiarowe dla detektora 2.

Rysunek 7. Porównanie dwuwymiarowe dla detektora 3.

Rysunek 8. Porównanie dwuwymiarowe dla detektora 4.