

Chapter 5

Digital transmission through the AWGN channel

— by Prof. XIAOFENG LI SICE, UESTC

- Introduction
- Geometric rep. of the sig waveforms
- Pulse amplitude modulation
- 2-d signal waveforms
- M-d signal waveforms
- Opt. reception for the sig. in AWGN
- Optimal receivers and probs of err

5.2.1. PAM: Binary= info bits are 1 and 0

5.2.1. PAM: Binary= info bits are 1 and 0

Pulses of amp A and -A is used, called antipodal (or polar) signaling.

If one bit takes an interval of T_b seconds, the rate of signaling is $R_b = 1 / T_b$ bps (bit-per-sec).

Alternately, A

and 0 may be

used, called

pulse of amp A

5.2 Pulse amplitude modulation

5.2.1. PAM: Binary= info bits are 1 and 0

Pulses of amp A and -A is used, called antipodal (or polar) signaling.

If one bit takes an interval of T_b seconds, the rate of signaling is $R_b = 1 / T_b$ bps (bit-per-sec).

5.2.1. PAM: M-ary = k bits at a time.

5.2.1. PAM: M-ary = k bits at a time.

A str of k bits is regarded as a symbol, and we have $M=2^k$ different symbols.

- Take k=2, then M=4, and there are 4 symbols: 00, 01, 10, 11.
- We need 4 signals, pulses of 4 different amps, to send them.

If one symbol takes an interval of T_s seconds, the rate of signaling is $R_s = 1/T_s$ symbols/s (also called Bauds).

5.2 Pulse a

5.2 Pulse amplitude modulation

5.2.1. PAM: M-ary = k bits at a time.

A str of k bits is regarded as a symbol, and we have $M=2^k$ different symbols.

- Take k=2, then M=4, and there are 4 symbols: 00, 01, 10, 11.
- We need 4 signals, pulses of 4 different amps, to send them.

- More, 1) R_s is called the symbol rate, or baud rate.
 - 2) The bit rate is $R_b = kR_s$ bps. Equivalently, the bit interval is $T_b = T_s / k$.

5.2.1. PAM: signal expression.

5.2.1. PAM: signal expression.

$$S_m(t) = A_m g_T(t)$$

The signal 'element' is a rect pulse, and generally, can be of other shapes.

Pulse Amp Modulation

- For polar 2-PAM, A_m are A and –A.
- For polar 4-PAM, A_m are 3A, A, –A and –3A.

Generally, let $g_T(t)$ be the pulse, the signals for M symbols is,

$$s_m(t) = A_m g_T(t)$$
 $m = 1, 2, ..., M$

where A_m are amps.

5.2.1. PAM: geometric representation

$$S_m(t) = A_m g_T(t)$$

5.2.1. PAM: geometric representation

$$S_m(t) = A_m g_T(t)$$

1) Basis function: $\psi(t) = k_0 g_T(t)$

where
$$k_0 = 1/\sqrt{E_g}$$
, $E_g = \int_{-\infty}^{\infty} g_T^2(t) dt$ = the energy of the $g_T(t)$.

The space is of 1-d and N=1.

2) The signal vectors (points): $\mathbf{s}_m = (a_m)$ m = 1, 2, ..., M

$$\mathbf{s}_m = (a_m)$$

$$m = 1, 2, ..., M$$

where,
$$a_m = \mathbf{s}_m \cdot \mathbf{\psi_i} = \int_{-\infty}^{\infty} A_m g_T(t) \frac{g_T(t)}{\sqrt{E_g}} dt$$

= $A_m \sqrt{E_g}$

5.2.1. PAM: geometric representation

$$S_m(t) = A_m g_T(t)$$

1) Basis function:
$$\psi(t) = k_0 g_T(t)$$

where
$$k_0 = 1/\sqrt{E_g}$$
 , $E_g = \int_{-\infty}^{\infty} g_T^2$

The space is of 1-d and N=1.

2) The signal vectors (points): $\mathbf{s}_m = (a_m)$

$$\mathbf{s}_m = (a_m)$$

where,
$$a_m = \mathbf{s}_m \cdot \mathbf{\psi_i} = \int_{-\infty}^{\infty} A_m g_T(t) \frac{g_T(t)}{\sqrt{E_g}} dt$$
$$= A_m \sqrt{E_g}$$

5.2.1. PAM: geometric representation

$$S_m(t) = A_m g_T(t)$$

1) Basis function: $\psi(t) = k_0 g_T(t)$

where
$$k_0 = 1/\sqrt{E_g}$$
 , $E_g = \int_{-\infty}^{\infty} g_T^2$

The space is of 1-d and N=1.

2) The signal vectors (points): $\mathbf{s}_m = (a_m)$

$$\mathbf{s}_m = (a_m)$$

0

where,
$$a_m = \mathbf{s}_m \cdot \mathbf{\psi}_i = \int_{-\infty}^{\infty} A_m g_T(t) \frac{g_T(t)}{\sqrt{E_g}} dt$$

$$=A_{m}\sqrt{E_{g}}$$

The energy of signals

$$E_m = \|\mathbf{s}_m\|^2 = \left(A_m \sqrt{E_g}\right)^2 = A_m^2 E_g$$

5.2.1. PAM: geometric representation

$$s_m(t) = A_m g_T(t)$$

1) Basis function:
$$\psi(t) = k_0 g_T(t)$$

where
$$k_0 = 1/\sqrt{E_g}$$
 , $E_g = \int_{-\infty}^{\infty} g_T^2$

The space is of 1-d and N=1.

2) The signal vectors (points): $\mathbf{s}_m = (a_m)$

$$\mathbf{s}_m = (a_m)$$

"01"

where,
$$a_m = \mathbf{s}_m \cdot \mathbf{\psi_i} = \int_{-\infty}^{\infty} A_m g_T(t) \frac{g_T(t)}{\sqrt{E_g}} dt$$

$$=A_m\sqrt{E_g}$$

5.2.1. PAM: geometric representation

1) Basis function: $\psi(t) = k_0 g_T(t)$

where
$$k_0 = 1/\sqrt{E_g}$$
, $E_g = \int_{-\infty}^{\infty} g_T^2(t) dt =$ the energ

The space is of 1-d and N=1.

2) The signal vectors (points): $\mathbf{s}_m = (a_m)$

where,
$$a_m = \mathbf{s}_m \cdot \mathbf{\psi_i} = \int_{-\infty}^{\infty} A_m g_T(t) \frac{g_T(t)}{\sqrt{E_g}} dt$$

= $A_m \sqrt{E_g}$

$$-s_m(t) = A_m g_T(t)$$

5.2.1. PAM: passband signals

- Baseband signal: its freq band is close to zero, often used in wire-line transmission.
- Passband signal: its freq band is away from zero, a cos-like waveform, and widely used in wireless transmission.

$$S_m(t) = A_m g_T(t) \cos 2\pi f_c t$$

5.2.1. PAM: passband signals

BPSK=Binary Phase-Shift-Keying

- Baseband signal: its freq band is close to zero, often used in wire-line transmission.
- Passband signal: its freq band is away from zero, a cos-like waveform, and widely used in wireless transmission.

$$S_m(t) = A_m g_T(t) \cos 2\pi f_c t$$

5.2.1. PAM: passband signals

BASK=Binary Amp-Shift-Keying OOK=On-Off-Keying

- ✓ Baseband signal: its freq band is close to zero, often used in wire-line transmission.
- Passband signal: its freq band is away from zero, a cos-like waveform, and widely used in wireless transmission.

$$-s_m(t) = A_m g_T(t) \cos 2\pi f_c t$$

5.2.1. PAM: passband signals

- Baseband signal: its freq band is close to zero, often used in wire-line transmission.
- Passband signal: its freq band is away from zero, a cos-like waveform, and widely used in wireless transmission.

$$S_m(t) = A_m g_T(t) \cos 2\pi f_c t$$

4PAM

 $-3\sqrt{E_g}$

5.2.1. PAM: geometric representation

1) Basis function: $\psi(t) = k_0 g_T(t)$

where
$$k_0=1/\sqrt{E_g}$$
 , $E_g=\int_{-\infty}^{\infty}g_T^2(t)dt=$ the energ MASK

The space is of 1-d and N=1.

 $3\sqrt{E_g}$

$$S_m(t) = A_m g_T(t) \cos 2\pi f_c t$$

5.2.1. PAM: geometric representation

1) Basis function:
$$\psi(t) = k_0 g_c(t) = k_0 [g_T(t) \cos 2\pi f_c t]$$
 where $k_0 = 1/\sqrt{E_{gc}}$

The space is of 1-d and N=1.

$$S_m(t) = A_m g_T(t) \cos 2\pi f_c t$$

5.2.1. PAM: geometric representation

1) Basis function:
$$\psi(t) = k_0 g_c(t) = k_0 [g_T(t) \cos 2\pi f_c t]$$
 where $k_0 = 1/\sqrt{E_{g_c}} = \sqrt{2}/\sqrt{E_g}$

The space is of 1-d and N=1.

Note that
$$\begin{split} E_{gc} &= \int_{-\infty}^{\infty} g_T^2(t) \cos^2(2\pi f_c t) dt \\ &= \int_{-\infty}^{\infty} \frac{g_T^2(t) (1 - \cos 4\pi f_c t)}{2} dt = \frac{E_g}{2} \end{split}$$

$$S_m(t) = A_m g_T(t) \cos 2\pi f_c t$$

5.2.1. PAM: geometric representation

1) Basis function:
$$\psi(t) = k_0 g_c(t) = k_0 [g_T(t) \cos 2\pi f_c t]$$

where
$$k_0 = 1/\sqrt{E_{g\underline{c}}} = \sqrt{2}/\sqrt{E_g}$$

The space is of 1-d and N=1.

The graph is called the constellation

2) The signal vectors (points): $\mathbf{s}_m = (a_m)$

where,
$$a_m = \mathbf{s}_m \cdot \mathbf{\psi_i} = \int_{-\infty}^{\infty} A_m g_T(t) \frac{g_T(t)}{\sqrt{E_g}} dt$$

$$= A_m \sqrt{E_{g\underline{c}}} = A_m \sqrt{E_g/2}$$

