CERTAMEN 1 FIS-120 1er SEM.2009, UTFSM, 17 de abril de 2009, 19:00hrs NOMBRE, APELLIDO:

ROL:

Hay 20+2=22 preguntas. 20 respuestas correctas y justificadas representan 100 puntos (nota de 100). 22 respuestas correctas representan 110 puntos (nota de 110), es decir, dos preguntas son un bono.

Respuesta correcta y no justificada: -4 puntos

Respuesta correcta y justificada: 100/20 = 5 puntos

Respuesta omitida: 0.8 punto. Respuesta incorrecta: 0 punto .

Duración: 135 minutos

REVISE PRIMERO TODOS LOS PROBLEMAS Y RESUELVE PRIMERO LOS QUE LE PARECEN MAS FÁCILES.

PROBLEMAS 1-5 SE REFIEREN A LA FIGURA 1

Cargas eléctricas "fuentes" $q_1=+2$ C, $q_2=-2$ C, están situadas en el plano x-z (y=0), en los puntos T_1 , T_2 señalados en el dibujo $[\vec{OT_1}=(a,0,0);\ \vec{OT_2}=(0,0,a)]$. Además, consideraremos los puntos P_1 y P_2 : $\vec{OP_1}=(a,0,a);\ \vec{OP_2}=(a+b,0,0);$ donde: a=6 m, b=2 m.

Datos: $q_1 = +2 \ C$; $q_2 = -2 \ C$; $a = 6 \ m$; $b = 2 \ m$. Use: $k \equiv 1/(4\pi\epsilon_0) = 9 \cdot 10^9 \ Nm^2/C^2$.

1.) El campo eléctrico $\vec{E}(P_1)$ en el punto P_1 es

2.) El potencial eléctrico $V(P_1)$ en el punto P_1 es [use la convención: $V(\infty) = 0$]

(a)
$$(1/3) \cdot 10^9 \ Nm/C$$

(b)
$$(1/9) \cdot 10^9 \ Nm/C$$

(d)
$$-(1/3) \cdot 10^9 \ Nm/C$$

(e) ninguno de los anteriores

(a)
$$2 Nm$$

(b) $-2 Nm$
(c) $36 Nm$
(d) $-36 Nm$
(e) $38 Nm$
 $= (K(P_2) + q.V(P_2)) - (K(P_1) + q.V(P_1))$
 $= (K(P_2) + q.V(P_2)) - (K(P_1) + q.V(P_1))$
 $= (\frac{1}{2}MN^2P_2) + q.(\frac{q_1}{2} + \frac{q_2}{2})) - (0 + 0) = (\frac{1}{2}.\frac{1}{4}.4^2Nm + \frac{1}{2})$
 $= (\frac{1}{2}MN^2P_2) + q.(\frac{q_1}{2} + \frac{q_2}{2})) - (0 + 0) = (\frac{1}{2}.\frac{1}{4}.4^2Nm + \frac{1}{2})$
 $= (\frac{1}{2}MN^2P_2) + q.(\frac{q_1}{2} + \frac{q_2}{2})) - (0 + 0) = (\frac{1}{2}.\frac{1}{4}.4^2Nm + \frac{1}{2}Nm + \frac{1}{2}$
 $= (\frac{1}{2}MN^2P_2) + \frac{1}{2}NN^2P_2 + \frac{1}{2}NN^2P_2$

anterior es

(a)
$$2 Nm$$
(b) $-2 Nm$
(c) $36 Nm$
(d) $-36 Nm$
(e) $38 Nm$
(e) $38 Nm$

$$W(P_1 - P_2) = -(U_{ee}(P_2) - U_{ee}(P_1)) = q(V(P_2) - V(P_1))$$

$$= -q \cdot V(P_2) = -5.10^{-9} \cdot \frac{3610^9 Nm}{5.000} = -3610^m$$

5.) El flujo
$$\Phi_E = \int \int E_{\perp} dA$$
 del campo eléctrico a través de una esfera de radio $r_0 = 3 m$, con el centro en el punto P_2 , es aproximadamente [Puede usar: $\epsilon_0 \approx 9 \cdot 10^{-12} C^2/(Nm^2)$.]

6.) En la Figura 2 se muestra una varilla cargada positivamente (de forma uniforme). Desde el punto W se libera (desde reposo) una partícula de masa $M=1,5\cdot 10^{-7}~kg$ y carga $q=2\cdot 10^{-6}~\mathcal{C}$. Se observa que su rapidez al pasar por el punto X es 40~m/s. No hay actuación de agentes externos. La diferencia V(X)-V(W) del potencial eléctrico, en unidades de $V\equiv Nm/\mathcal{C}$, es

varilla W X
$$W_{2,\rho}=0=$$
 \times \times $(a) 60$ \times $(b) -60$ $(c) 40$ $(d) -40$ $(e) ninguna de las anteriores $= -K(x)/q = -\frac{1}{2} \frac{1}{3!0^{-6}} \frac{3!0^{-7}40^{2}}{10!0^{2}} V = -3.210 V = -60 V$$

 $-\lambda$ respectivamente. ¿Cuál es la magnitud del campo eléctrico en el origen 0 (justo en el centro entre las barras)?

FIG.4

9.) En el espacio tenemos el siguiente campo eléctrico:

$$\vec{E}(x,y,z) = \left\{ \begin{array}{ll} \hat{x} \ E_0 \ \left(\frac{x}{a}\right)^2, & (-a \leq x \leq a) \\ 0, & (|x| > a) \end{array} \right\} ,$$

donde $E_0 = (1/9) \cdot 10^{10} \, N/\mathcal{C}$ y $a=2 \, m$. Este campo es producido por cargas "fuentes" que están en el espacio. La cantidad de carga en la caja de arista a=2 m, caja = $\{(x,y,z); 0 \le x,y,x \le a\}$, es aproximadamente [use $\epsilon_0 \approx 9 \cdot 10^{-12} \ \mathcal{C}^2/(Nm^2)$]

[use
$$\epsilon_0 \approx 9 \cdot 10^{-12} \ C^2/(Nm^2)$$
]

(a) cero
(b) $0.08 \ C$
(c) $-0.08 \ C$
(d) $-0.04 \ C$
 \rightarrow
(e) $0.04 \ C$
 \rightarrow

(e) $0.04 \ C$
 \rightarrow

In each lado EH superfice $-3E = 0$

Each lado $E=0$

In each lado EH superfice $-3E = 0$

11.) Considere tres láminas delgadas planas largas, con las densidades de carga superficiales mostradas en la Figura 5 $(+\sigma_0, +\sigma_0, -\sigma_0)$. La magnitud del campo eléctrico en los puntos A, B, C y D es, respectivamente [Sugerencia: aplique el principio de superposición.]

(b) $E_A = \sigma_0/(2\epsilon_0)$, $E_B = \sigma_0/(2\epsilon_0)$, $E_C = \sigma_0/\epsilon_0$, $E_D = 0$

(c) $E_A = \sigma_0/(2\epsilon_0)$, $E_B = 0$, $E_C = 2\sigma_0/\epsilon_0$, $E_D = 0$

(d)
$$E_A = \sigma_0/(2\epsilon_0)$$
, $E_B = \sigma_0/(2\epsilon_0)$, $E_C = 2\sigma_0/\epsilon_0$, $E_D = \sigma_0/(2\epsilon_0)$
(e) $E_A = \sigma_0/(2\epsilon_0)$, $E_B = \sigma_0/(2\epsilon_0)$, $E_C = 3\sigma_0/(2\epsilon_0)$, $E_D = \sigma_0/(2\epsilon_0)$

$$\overline{E}(D) = \overline{E}(D) + \overline{E}(D) + \overline{E}(D) = \frac{1}{26} \hat{x} \left(+1 + 1 - 1\right) = \frac{3}{26} \hat{x}$$

$$(B) = |\overline{E}(D)| = \frac{3}{26} \cdot |\overline{E}(D)| = \frac{3}{26$$

 $= \frac{|\vec{E}(A)| = |\vec{E}(B)| = |\vec{E}(D)| = \frac{8a}{2E_0}}{|\vec{E}(C)| = \frac{3E_0}{2E_0}}$ 12.) Se tiene el cilíndro Gaussiano de la Figura 6, y una carga Q_0 fuera de él. No hay otras cargas. Las caras del cilíndro están rotuladas como se muestra. Si $\Phi_A=-20~Nm^2/\mathcal{C}$ y $\Phi_C=5~Nm^2/\mathcal{C}$, el valor de Φ_B

 $[\Phi_{A,B,C}$ simboliza el valor del flujo eléctrico a través de la cara correspondiente.]

(b) 15 Nm2/C

(c) no es posible determinar sin conocer la magnitud de Q_0

(d) no es posible determinar sin conocer las dimensiones del cilíndro

(e) ninguna de las anteriores

13.) Considere una placa vertical hecha de un material aislante, infinita en sus dimensiones z e y, limitada por los planos infinitos de ecuaciones x = -D/2 y x = +D/2, respectivamente. La placa tiene espesor D y contiene una distribución de carga volumétrica positiva de densidad constante ρ . Fuera de los planos que limitan la placa no hay cargas eléctricas. Un corte transversal de la placa se muestra en la Figura 7. El campo eléctrico $\vec{E}(x,y,z)$ dentro de la placa es

[Sugerencia: ¿Cuál es el campo en x=0? Después de responder esto, aplique la ley de Gauss.]

Una bola (esfera llena) conductora, de radio a=2 m, está cargada con carga $Q_a=-4$ C. Esta carga está rodeada por una lámina esférica (cascarón muy delgado) conductora, de radio b=4~m y de carga $Q_b=+6\mathcal{C}$. El origen del sistema de coordenadas se pone en el centro de la bola.

Datos: a = 2 m; b = 4 m; $Q_a = -4 C$; $Q_b = +6C$. Use: $k \equiv 1/(4\pi\epsilon_0) = 9 \cdot 10^9 Nm^2/C^2$.

14.) Por simetría esférica, $\vec{E}(\vec{r}) = E_{\perp}(r) \hat{r}$. $E_{\perp}(r)$ para r=3 m, y r=6 m, respectivamente, es (en unidades de N/C)

(a)
$$4 \cdot 10^9$$
; 10^9
(b) $-4 \cdot 10^9$; $(1/2) \cdot 10^9$
(c) $12 \cdot 10^9$; $3 \cdot 10^9$
(d) $4 \cdot 10^9$; cero

(e) cero; $(3/2) \cdot 10^9$

$$E_{1}(r) = E_{1}(r) \ \hat{r}. \ E_{1}(r) \ \text{para } r = 3 \ \text{m, } y \ r = 6 \ \text{m, respectivamente, es (en } Por \ lo \ ley \ de \ Gourst, en structure esférice:
$$E_{1}(r) = \mathcal{E}. \ \frac{q_{enc.}(Sa(r))}{r^{2}} = S \left(\frac{q_{enc.}(Sa(r))}{r^{2}}\right) =$$$$

15.) El potencial eléctrico V(r) en el sector $a \le r \le b$ es [usando la convención $V(r = \infty) = 0$] En stometita exterice: E_(r) = - dV(r) (a) kQ_a/r $= ((V|r=+a)) \quad \text{por} \quad 14) = 3$ $V(r) = \begin{cases} 2 \cdot \frac{6}{7} + C, & (r \leq 3) \\ (r \leq 3) \end{cases} \quad \text{In where solves}$ $V(r) = \begin{cases} 2 \cdot \frac{6}{7} + C, & (r \leq 3) \\ (2 \cdot \frac{6}{7} + C) \end{cases} \quad \text{In where solves}$ $V(r) = \begin{cases} 2 \cdot \frac{6}{7} + C, & (r \leq 3) \\ (2 \cdot \frac{6}{7} + C) \end{cases} \quad \text{In where solves}$ $V(r) = \begin{cases} 2 \cdot \frac{6}{7} + C, & (r \leq 3) \\ (2 \cdot \frac{6}{7} + C) \end{cases} \quad \text{In where solves}$ $V(r) = \begin{cases} 2 \cdot \frac{6}{7} + C, & (r \leq 3) \\ (2 \cdot \frac{6}{7} + C) \end{cases} \quad \text{In where solves}$ $V(r) = \begin{cases} 2 \cdot \frac{6}{7} + C, & (r \leq 3) \\ (2 \cdot \frac{6}{7} + C) \end{cases} \quad \text{In where solves}$ \rightarrow (b) $k(Q_a/r + Q_b/b)$ (c) $k(Q_a/r + Q_b/a - Q_a/b)$ (d) $k(Q_a/a + Q_b/b)$ (e) $k(Q_a + Q_b)/b$ 16.) El potencial eléctrico V(r) en el sector $r \leq a$ es [usando la convención $V(r = \infty) = 0$] (a) kQ_a/r Ver 15.) -> V(r) = C2 = E(42 + 46 (b) $k(Q_a/r + Q_b/b)$ (c) $k(Q_a/r + Q_b/a - Q_a/b)$ \rightarrow (d) $k(Q_a/a + Q_b/b)$ (e) $k(Q_a + Q_b)/b$ 17.) Se conecta la bola a la Tierra. La nueva carga Q_a' de la bola es (en unidades de \mathcal{C}) (d) 4 (e) cero

18.) Un cable, de material Óhmico conductor, tiene resistencia $R=5\Omega$, y está conectado a una fuente de fem (diferencia de potencial eléctrico) $\varepsilon = |\triangle V| = 100 \ V$ (note: $1 \ V \equiv 1 \ Nm/C$). La potencia $P_R \equiv dQ_R/dt$ de disipación de la energía por este cable es (en unidades de Nm/s = J/s = W)

(a) 10
(b) 75
(c) 125
(d) 500

$$\Rightarrow$$
 (e) 2000

$$P_{R} = R T_{R}^{2} \Rightarrow \frac{(\Delta V_{R})^{2}}{R} = \frac{E^{2}}{R} = \frac{100^{2}}{5}W = \frac{2000W}{100}$$

[fin del bloque 13-16]

19.) El cable de la pregunta anterior ahora se funde y se hace de él un cable cuatro veces más largo (note: el cable se pone más delgado). Se conecta el nuevo cable a la fuente de fem aludida ($|\Delta V| = 10 V$). La potencia de disipación de la energía por este cable es (en unidades de W)

(a) 10 | Le restationided of no combine; el wolumen no combine.

(b) 75 |
$$e^{(c)} = 4e^{(c)}$$
; $e^{(c)} = 4e^{(c)}$; $e^{(c)} = 4e$

20.) Un capacitor, de placas largas paralelas, tiene la capacitancia $C_0 = 9 \, mF \, (= 9 \cdot 10^{-3} \, F)$, y está cargado, con la carga $Q_0 = 3 \, C$. Ahora un agente externo estira la placas para que, al final, la distancia entre ellas quede tres veces la distancia inicial $(D=3D_0)$. Las placas se mantienen eléctricamente aisladas del entorno (es decir, Q_0 no cambia). El trabajo del agente externo, en unidades de J, es aproximadamente

(a) 333,3
(b) -333,3
(c) 1000
(d) -1000
(e) cero
$$C = \frac{\epsilon_0 H_0}{D} = \frac{\epsilon_0 N_0}{3D_0} = \frac{1}{3}C = 3mF(=3.10^{-3}F)$$

$$W_{0.e.} = U_C - U_C = \frac{1}{2}\frac{\epsilon_0^2}{C} - \frac{1}{2$$

21.) El capacitor de la pregunta anterior (con $C_0^{-}9$ mF y $Q_0=3$ C) se mantiene ahora conectado a una batería (es decir, $|\Delta V|$ no cambia). El trabajo de agente externo, al estirar la placas para que, al final, la distancia entre ellas quede tres veces la distancia inicial ($D=3D_0$), es aproximadamente (en unidades de

$$|\Delta V| = |\Delta V_c| = \frac{3}{2} |\Delta V|^2 + \frac{3}{2} |\Delta V|^2 = \frac{3}{2} |\Delta V|^2 = \frac{3}{2} |\Delta V|^2 = \frac{3}{2} |\Delta V|^2 = \frac{1}{2} |\Delta$$

22.) Una partícula de prueba, con masa M=(1/11) kg y carga q=-(1/2) $n\mathcal{C}$ $(=-(1/2)\cdot 10^{-9}~\mathcal{C})$, se encuentra inicialmente a distancia $x_{\rm in.}=0.4$ m de una superficie conductora cuya densidad superficial es $\sigma=9\cdot 10^{-2}\mathcal{C}/m^2$. La rapidez inicial de la partícula es $v_{\rm in.}=10$ m/s. La partícula se mueve sin actuación de agentes externos.

La rapidez $v_{\text{imp.}}$ del impacto de la partícula sobre la superficie conductora, en unidades de m/s, es aproximadamente

LISTA DE ALGUNAS FORMULAS fis-120, 1.sem.2009, C1, UTFSM, 17 de abril de 2009

Una carga q situada en $\vec{r}' = 0$ produce:

$$\vec{E}(\vec{r}) = k \frac{q}{r^2} \hat{r} \quad (\hat{r} = \frac{\vec{r}}{r}) \; , \qquad V(\vec{r}) = k \frac{q}{r} \; ; \quad \text{donde} \; : \; k = \frac{1}{4\pi\epsilon_0} \approx 9 \times 10^9 \frac{Nm^2}{\mathcal{C}^2} \; , \quad \epsilon_0 \approx 8.85 \times 10^{-12} \frac{\mathcal{C}^2}{Nm^2} \; . \; \; (1)$$

Una distribución de cargas $dq(\vec{r}')$ produce en el punto \vec{r} :

$$\vec{E}(\vec{r}) = k \int \frac{dq(\vec{r}')}{|\vec{r} - \vec{r}'|^2} \frac{(\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|} , \qquad V(\vec{r}) = k \int \frac{dq(\vec{r}')}{|\vec{r} - \vec{r}'|} . \tag{2}$$

La relación general entre V y \vec{E} :

$$V(\vec{r}_f) - V(\vec{r}_i) = -\int_{\vec{r}_i}^{\vec{r}_f} \vec{E}(\vec{r}) \cdot d\vec{r} , \qquad \vec{E}(\vec{r}) = -\nabla V(\vec{r}) .$$
 (3)

 $V(\vec{r})$ es una función de \vec{r} sin discontinuidades.

Si hay simetría esférica: $V(\vec{r}) = V(r)$; y $\vec{E}(r) = E_{\perp}(r)\hat{r} = -[dV(r)/dr]\hat{r}$, es decir: $V'(r) = -E_{\perp}(r)$. Si hay simetría cilíndrica: $V(\vec{r}) = V(r_{\perp})$; y $\vec{E}(r_{\perp}) = E_{\perp}(r_{\perp})\hat{r}_{\perp} = -[dV(r_{\perp})/dr_{\perp}]\hat{r}_{\perp}$, es decir: $V'(r_{\perp}) = -(dV(r_{\perp})/dr_{\perp})\hat{r}_{\perp}$

La energía potencial electrostática de una carga q_0 en \vec{r} es: $U(\vec{r}) = q_0 V(\vec{r})$. La energía potencial de un conjunto de cargas q_j $(j=1,2,\ldots n)$ es: $U=k\sum q_iq_j/|\vec{r}_i-\vec{r}_j|$, donde la suma corre por todos los pares diferentes qiqj.

Ley de Gauss:

$$\epsilon_0 \oint_{\partial \Omega} E_{\perp} dA = q_{\text{enc.}}(\Omega) , \quad \text{donde} : E_{\perp} = \vec{E} \cdot \hat{n} .$$
 (4)

Por Gauss, si hay simetría esférica: $\vec{E}(\vec{r}) = E_{\perp}(r)\hat{r}$, y $E_{\perp}(r) = k \ q_{\rm enc.}(\Omega(r))(1/r^2)$; aquí, $q_{\rm enc.}(\Omega(r))$ es la carga encerrada en esfera de radio r.

Por Gauss, si hay simetría cilíndrica: $\vec{E}(\vec{r}) = E_{\perp}(r_{\perp})\hat{r}_{\perp}$, y $E_{\perp}(r_{\perp}) = 2k \ [q_{\rm enc.}(\Omega(\ell,r_{\perp}))/\ell](1/r_{\perp})$; aquí, $q_{\rm enc.}(\Omega(\ell,r_{\perp}))$ es la carga encerrada en cilíndro de radio r_{\perp} y longitud ℓ .

Campo eléctrico cerca de un conductor (fuera): $\vec{E} = \frac{\sigma}{\epsilon_0} \hat{n}$, donde: $\sigma = dq/dA$.

Campo eléctrico cerca de una lámina delgada: $\vec{E} = \frac{\sigma}{2\epsilon_0}\hat{n}$, donde: $\sigma = dq/dA$.

Campo eléctrico cerca de una lámina delgada de material aislante: $\vec{E} = \frac{\sigma}{2\epsilon_0}\hat{n}$, donde: $\sigma = dq/dA$

Condensadores (capacitores):

$$Q = C|\triangle V| , \quad U_C = \frac{Q^2}{2C} = \frac{1}{2}C|\triangle V|^2 = \frac{1}{2}Q|\triangle V| .$$
 (5)

$$C_{\text{eq.}} = \sum_{j=1}^{n} C_j$$
 (en paralelo), $\frac{1}{C_{\text{eq.}}} = \sum_{j=1}^{n} \frac{1}{C_j}$ (en serie). (6)

Densidad (por volumen) de energía electrostática:

$$u = \frac{dU}{d\text{Vol.}} = \frac{1}{2}\epsilon_0 \vec{E}^2 \ . \tag{7}$$

Condensador de placas paralelas conductoras (A es el área de un lado de la placa, separación de placas D; $\sqrt{A} \gg D$):

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{A\epsilon_0} , \quad V(\equiv |\triangle V|) = ED , \qquad C = \frac{\epsilon_0 A}{D} .$$
 (8)

Si hay material dieléctrico: $E_0 \mapsto E = E_0/\kappa_e$; $C_0 \mapsto C = \kappa_e C_0$ ($\epsilon_0 \mapsto \kappa_e \epsilon_0$). Aquí, $\kappa_e > 1$ es constante dieléctrica.