Image correction

Image Processing Dr. Márton Szemenyei Associate Professor 2024

One good for humans and another for algorithms

Contrast, brightness

Histogram

Histogram transformation

Histogram transformation

Histogram equalisation

Colour correction

Screenshots

Gauss noise
Salt and pepper noise

$$I_o = k * I_i$$

$$(k * I)(x,y) = \sum_{u=-n}^{n} \sum_{v=-n}^{n} k(u,v) \cdot I(x-u,y-v)$$

$$(f * g)(x,y) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} f(u,v) \cdot g(x-u,y-v)$$

Simple averaging

$$p'_{x,y} = \frac{\sum_{u=-1}^{1} \sum_{v=-1}^{1} I(x-u, y-v)}{9}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$p'_{x,y} = \frac{\sum_{u=-n}^{n} \sum_{v=-n}^{n} I(x-u, y-v)}{(2n+1)^2}$$

$$p'_{x,y} = \frac{\sum_{u=-n}^{n} \sum_{v=-n}^{n} k_{u,v} \cdot I(x-u,y-v)}{\sum_{u=-n}^{n} \sum_{v=-n}^{n} k_{u,v}}$$

Gaussian filtering

$$k(x, y, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\left(\frac{x^2 + y^2}{2\sigma^2}\right)}$$

$$\begin{bmatrix} 1 & 4 & 1 \\ 4 & 16 & 4 \\ 1 & 4 & 1 \end{bmatrix}$$

 $\sigma = 0.6$

Kernel size: 3σ

Smoothing filters

Smoothing filters

Sharpening filters

Sharpening filters

Spatial enhancement

Rank filters

k-th neighbour

Minimum filter (**k=1**)

Maximum filter (**k=n**)

Median filter (k=n/2)

Median

Median / averaging

Median

Linear vs Rank

Diadic decomposition - separable filters

1	2	1

1	1	2	1
2	2	4	2
1	1	2	1

Only with linear filters (not always)

Image mathematics

Image-value v. image-image

Addition / subtraction / averaging

Multiplication / division / normalisation

Maximum / minimum

Logical operations (mainly binary images)

Texturing (multiplication)

Background separation

Bilinear interpolation

$$f(x,y_1) = \frac{x_2 - x}{x_2 - x_1} \cdot f(x_1, y_1) + \frac{x - x_1}{x_2 - x_1} \cdot f(x_2, y_1)$$

$$f(x,y_2) = \frac{x_2 - x}{x_2 - x_1} \cdot f(x_1, y_2) + \frac{x - x_1}{x_2 - x_1} \cdot f(x_2, y_2)$$

$$f(x,y) = \frac{y_2 - y}{y_2 - y_1} \cdot f(x, y_1) + \frac{y - y_1}{y_2 - y_1} \cdot f(x, y_2)$$

Bicubic Interpolation

$$f(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$

$$\frac{\partial f(x,y)}{\partial x} = \sum_{i=1}^{3} \sum_{j=0}^{3} a_{ij} i x^{i-1} y^{j}$$

$$\frac{\partial f(x,y)}{\partial y} = \sum_{i=0}^{3} \sum_{j=1}^{3} a_{ij} x^{i} j y^{j-1}$$

$$\frac{\partial^{2} f(x,y)}{\partial x \partial y} = \sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij} i x^{i-1} j y^{j-1}$$

$$\frac{\partial f(x,y)}{\partial x} = \frac{f(x+1,y) - f(x-1,y)}{2}$$

$$\frac{\partial f(x,y)}{\partial y} = \frac{f(x,y+1) - f(x,y-1)}{2}$$

$$\frac{\partial^{2} f(x,y)}{\partial x \partial y} = \frac{f(x+1,y+1) - f(x-1,y) - f(x,y-1) + f(x,y)}{4}$$

 $\partial x \partial y$

Complex interpolation

Scale2X, 3X, 4X

Registration

Overlap

Overlap

Combination - focus

Combination - brightness

