

COMPUTER ARCHITECTURE AND SOFTWARE EXECUTION PROCESS

DATA REPRESENTATION

Bachelor in Artificial Intelligence, Data and Management Sciences

m CentraleSupelec and ESSEC Business School - 2023/2024

OUTLINE

- Character Encoding
- Number Encoding

Back to the outline - Back to the begin

WHAT DATA TO ENCODE?

- Characters and strings
- Natural, integers and fixed point numbers
- Floating point numbers
- Pictures, sounds, videos...

OUTLINE

- Character Encoding
- Number Encoding

Back to the outline - Back to the begin

ASCII CHARACTER ENCODING

- American Standard Code for Information Interchange ASCII
 - ASCII is a character encoding standard for electronic communication.
- ASCII codes represent text in computers, telecommunications equipment, and other devices.
- The first edition of the ASCII standard was published in 1963.
- ASCII has just 128 code points (7 bits + 1 as parity bit).
 - Of the 2^7 =128 codes, 33 were used for controls, and 95 for printable characters

ASCII CHARACTER ENCODING

B: 665					-	° ° °	° 0 ,	° , o	٥,,	00	0,	1 0	1 1
Bits	b₄	b₃ ↓	b°→	b	Column Row J	0	ı	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	`	р
	0	0	0	1	1	SOH	DCI	!	- 1	Α	Q	а	q
	0	0	_	0	2	STX	DC2	"	2	В	R	b	r
	0	0	-	1	3	ETX	DC3	#	3	С	S	С	s
	0	_	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	ı	5	ENQ	NAK	%	5	Ε	υ	е	u
	0	1	_	0	6	ACK	SYN	8.	6	F	٧	f	v
	0	-	_	1	7	BEL	ETB	,	7	G	W	g	w
	١	0	0	0	8	BS	CAN	(8	Н	×	h	x
	ı	0	0	ı	9	нт	EM)	9	I	Y	i	У
	ı	0	_	0	10	LF	SUB	*	:	J	Z	j	z
	1	0	1	1	- 11	VT	ESC	+	;	K	[k	[
	1	-	0	0	12	FF	FS	,	<	L	١	ı	
	١	1	0	١	13	CR	GS	_	=	М]	m	}
	ı	1	1	0	14	SO	RS	•	>	N	^	n	~
	ı	1	Ι	ı	15	SI	US	/	?	0	_	0	DEL

EXTENDED ASCII

- Extended ASCII is a repertoire of character encodings that include the original ASCII character set, plus up to 128 additional characters.
- In 1987, the ISO published a set of standards for 8-bit ASCII extensions, ISO 8859
 - ISO 8859-1: for the most common Western European languages.
 - ISO 8859-2: for Eastern European languages.
 - ISO 8859-xxx: ...

THE UNICODE STANDARD

- Unicode is a text encoding standard maintained by the Unicode Consortium designed to support the use of text written in all of the world's major writing systems.
- Unicode is used to encode the vast majority of text on the Internet, including most web pages.
- 149 813 code points in the last published version.
 (15.1, September 2023)

THE UNICODE STANDARD

Forme	Used bits	Code points
0xxxxxxx	7	0 to 127
110xxxxx 10xxxxxx	11	128 to 2 047
1110xxxx 10xxxxxx 10xxxxxx	16	2 048 to 65 535
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx	21	65 536 to 1 114 111

STRINGS ENCODING

- The most used representation is a character array.
 - but an array is not directly manipulated by the processor.
- The processor needs to know the address of the beginning of the array and the index of the element it wants to access.
 - the first memory word contains the number of characters,
 - or the ASCII code 0 (NULL) indicates the end of the string (like in C)

OUTLINE

- Character Encoding
- Number Encoding

Back to the outline - Back to the begin

NATURAL NUMBERS

- Classic binary representation: generally used.
- Example: case of using 32-bit encoding
 - **214** = 00000000 00000000 00000000 11010110
- BCD, Binary-Coded Decimal: a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits (4 or 8).
- Example: case of using 32-bit encoding
 - **214** = 00000000 00000010 0000001 00000100

INTEGER NUMBERS

- Signed number representation
 - the sign bit is a bit in a signed number representation that indicates the sign of a number
 - number = sign bit + absolute value
 - lacktriangle example: 5 = 00000101 and -5 = 10000101
 - Two representations of 0
 - X Arithmetic operations cannot be implemented in electronic circuits.

INTEGER NUMBERS

- Two's complement
 - the most common method of representing signed integers
- The two's complement of an integer is computed by:
 - 1. starting with the binary representation of the number;
 - 2. inverting all bits changing every 0 to 1, and every 1 to 0;
 - 3. adding 1 to the entire inverted number, ignoring any overflow
- Example: to calculate the number -6 in binary from the number 6
 - 1. 6 in decimal is 00000110 in binary (using 8-bit encoding)
 - 2. flip all bits in 00000110, giving 11111001.
 - 3. add the value 1 to the obtained number 11111001, giving 11111010.

REAL NUMBERS

- Fixed-point arithmetic
 - A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor.
 - 18.625 = 10010.101 (with 8 as a fixed scaling factor) \rightarrow 10010101
 - $\circ 2^4 + 2^1 = 18$
 - $\circ \ 2^{-1} + 2^{-3} = 0.625$

REAL NUMBERS

- floating-point arithmetic
 - is arithmetic that represents real numbers using an integer with a fixed precision (significand), scaled by an integer exponent of a fixed base.

$$x=3.14159265359=\underbrace{314159265359}_{ ext{significand}} imes\underbrace{10}_{ ext{base}}^{ ext{exponent}}$$

REAL NUMBERS

- floating-point arithmetic
 - IEEE 754 standard: binary32
 - Sign bit: 1 bit
 - Exponent width: 8 bits
 - Significand precision: 24 bits (23 explicitly stored)

$$\circ (-1)^{sign} \times 2^{exponent-127} \times 1. fraction$$

$$\circ \; exponent = 124 \, \mathsf{and} \, fraction = 25$$

$$\circ \ 2^{124-127} \times 1.25 = 0.15625$$

THANK YOU

Back to the begin - Back to the outline