MPEI 2024/25 - PL 4

Variáveis Aleatórias Multidimensionais

Palavras-chave: variáveis aleatórias multidimensionais, correlação, covariância, coeficiente de correlação, independência.

Responda às seguintes questões usando o Matlab e confirmando os resultados efetuando os cálculos no papel:

1. Considere duas variáveis aleatórias com a seguinte distribuição conjunta:

$X \setminus Y$	0	1	2
0	0,3	0,2	0
1	0,1	0,15	0,05
2	0	0,1	0,1

- (a) Calcule as funções de massa de probabilidade marginais de X e Y e represente-as graficamente;
- (b) Calcule a média e variância de X e Y;
- (c) Calcule a correlação, covariância e coeficiente de correlação entre X e Y.
- 2. Dada a probabilidade conjunta das variáveis X e Y:

$X \setminus Y$	-1	0	1
-1	1/8	1/8	1/24
0	1/8	1/4	1/8
1	1/24	1/8	1/24

- (a) As variáveis X e Y são independentes ? Efectue os cálculos usando Matlab.
- 3. Considere duas variáveis aleatórias relativas às classificações de uma turma de 120 alunos em duas Unidades Curriculares (ex: MPEI e POO). Designemos essas variáveis discretas por N_1 e N_2 .
 - (a) Gere N_1 e N_2 para que, antes de arredondamento para o valor inteiro mais próximo, tenham uma distribuição Normal com as seguintes médias e variâncias: média de N_1 igual a 14; média de N_2 20% superior a N_1 ; variâncias iguais a 1/4 da média.
 - (b) Obtenha e represente graficamente a função probabilidade de massa conjunta de N_1 e N_2 .
 - (c) Qual o valor do coeficiente de correlação entre N_1 e N_2 ?
 - (d) N_1 e N_2 são independentes ?
- 4. Numa determinada cidade e num determinado período do ano a probabilidade de estar sol é 0.75 e a probabilidade de chover 0.25.

As previsões da meteorologia local acertam 100 % das vezes se o tempo for de chuva mas apenas 1/3 se for um dia de sol. Um estudante atento observa que em média o meteorologista tem apenas uma taxa média de 50 %, enquanto se previsse sempre bom tempo (sol) acertaria 75 % das vezes. Com base neste argumento candidata-se ao lugar, mas um responsável que sabia um pouco de probabilidades rejeita a candidatura. Explique porquê ?

Sugestão: Comece por criar a tabela com a função massa de probabilidade conjunta.