Equations différentielles linéaires d'ordre 2 à coefficients constants 1

$$\begin{cases} y'' + y' - 2y = 0 \\ y(0) = 0 \\ y'(0) = 1 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = \frac{e^t - e^{-2t}}{3}$$

$$\begin{cases} y'' + y' - 2y = 0 \\ y(0) = 0 \\ y'(0) = 1 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = \frac{e^t - e^{-2t}}{3}$$
$$\begin{cases} y'' + y = 0 \\ y(0) = 1 \\ y'(0) = 1 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = \cos(t) + \sin(t) = \sqrt{2}\cos(t - \pi/4)$$
$$\begin{cases} y''(0) = 1 \\ y''(0) = 1 \end{cases}$$

$$\begin{cases} y'' - 2y' + y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = (1 - t)e^t$$

$$\begin{cases} y'' + y' + y = 0 \\ y(0) = 1 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = e^{-\frac{1}{2}t} \left(\cos \left(\frac{\sqrt{3}}{2}t \right) + \sqrt{3} \sin \left(\frac{\sqrt{3}}{2}t \right) \right) = 2e^{-t/2} \cos \left(\frac{\sqrt{3}}{2}t + \frac{\pi}{3} \right) \end{cases}$$

Remarque 1.1. Pour mettre une expression $a\cos(\omega t) + b\sin(\omega t)$ sous la forme $\rho\cos(\omega t + \varphi)$, il faut écrire le nombre complexe a-ib sous forme exponentielle $a-ib=\rho e^{i\varphi}$ (avec $\rho>0$ et $\varphi\in\mathbb{R}$). En effet, si $a-ib=\rho e^{i\varphi}$, alors pour tout $t\in\mathbb{R}$, on peut écrire

$$a\cos(\omega t) + b\sin(\omega t) = \operatorname{Re}(ae^{i\omega t} - ibe^{i\omega t})$$

 $= \operatorname{Re}((a - ib)e^{i\omega t})$
 $= \operatorname{Re}(\rho e^{i(\omega t + \varphi)})$
 $= \rho\cos(\omega t + \varphi)$

Exercice 20. —

$$\begin{cases} y'' - 4y = 0 \\ y(0) = 0 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = \frac{e^{2t} - e^{-2t}}{4}$$
$$y'(0) = 1$$

$$\begin{cases} y'' - y' = 0 \\ y(0) = 1 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = 2 - e^t \\ y'(0) = 1 \end{cases}$$

$$\begin{cases} y'' - 8y' + 16y = 0 \\ y(0) = 1 \\ y'(0) = 2 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = (1 - 2t)e^4$$

$$\begin{cases} y'' - y' = 0 \\ y(0) = 1 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = 2 - e^t \\ y'(0) = 1 \end{cases}$$

$$\begin{cases} y'' - 8y' + 16y = 0 \\ y(0) = 1 \end{cases} \iff \forall t \in \mathbb{R}, \ y(t) = (1 - 2t)e^{4t} \\ y'(0) = 2 \end{cases}$$

$$\begin{cases} y'' + y = 0 \\ y(0) = 1 \iff \forall t \in \mathbb{R}, \ y(t) = \cos(t) + 2\sin(t) = \sqrt{5}\cos(t - \arctan(2)) \\ y'(0) = 2 \end{cases}$$

Exercice 21. —

- 1. La fonction $t\mapsto (t+1)e^{-2t}$ est une solution particulière de l'équation différentielle y''-2y'-3y=0 $(5t-1)e^{-2t}$.
- 2. Les solutions de l'équation différentielle homogène y''-2y'-3y=0 sont de la forme

$$y(t) = \lambda e^{3t} + \mu e^{-t}$$

avec $\lambda, \mu \in \mathbb{R}$.

3. Les solutions C^2 de l'équation différentielle $y''-2y'-3y=(5t-1)e^{-2t}$ sont donc de la forme

$$y(t) = (t+1)e^{-2t} + \lambda e^{3t} + \mu e^{-t}$$

avec $\lambda, \mu \in \mathbb{R}$.

Exercice 22. —

- 1. La fonction $t \mapsto -\sin(t)e^{-t}$ est une solution particulière de l'équation différentielle y'' + y' + 2y = $(\cos(t) - \sin(t))e^{-t}.$
- 2. Les solutions de l'équation différentielle homogène y'' + y' + 2y = 0 sont de la forme

$$y(t) = e^{-t/2} \left(\lambda \cos \left(\frac{\sqrt{7}}{2} t \right) + \mu \sin \left(\frac{\sqrt{7}}{2} t \right) \right)$$

avec $\lambda, \mu \in \mathbb{R}$.

3. Les solutions C^2 de l'équation différentielle $y''-2y'-3y=(5t-1)e^{-2t}$ sont donc de la forme

$$y(t) = -\sin(t)e^{-t} + e^{-t/2}\left(\lambda\cos\left(\frac{\sqrt{7}}{2}t\right) + \mu\sin\left(\frac{\sqrt{7}}{2}t\right)\right)$$

avec $\lambda, \mu \in \mathbb{R}$.

Exercice 23. —

1. Les solutions de l'équation différentielle $y'' - 2y' + y = e^t$ sont de la forme

$$y(t) = \left(\frac{1}{2}t^2 + \lambda t + \mu\right)e^t$$

avec $\lambda, \mu \in \mathbb{R}$.

2. Les solutions de l'équation différentielle $y''-4y'+y=(2t-1)e^{-t}$ sont de la forme

$$y(t) = \frac{2t+1}{6}e^{-t} + \lambda e^{(2-\sqrt{3})t} + \mu e^{(2+\sqrt{3})t}$$

avec $\lambda, \mu \in \mathbb{R}$.

3. Les solutions de l'équation différentielle $y''-4y'+y=(2t-1)e^{-t}$ sont de la forme

$$y(t) = \frac{2t+1}{6}e^{-t} + \lambda e^{(2-\sqrt{3})t} + \mu e^{(2+\sqrt{3})t}$$

avec $\lambda, \mu \in \mathbb{R}$.

4. Les solutions de l'équation différentielle $y'' - 4y' + 3y = (2t - 1)e^t$ sont de la forme

$$y(t) = \frac{t^2 + 2}{2}e^t + \lambda e^t + \mu e^{3t}$$

avec $\lambda, \mu \in \mathbb{R}$.