39. A method according to claim 34, further comprising the steps of:
providing a sensible colorant uniformly distributed within the sample, said sensible
colorant having a signal to concentration ratio;
providing as a part of said information used in the performance of the one or more
tests, a first spatial location for locating a first sample field, a second spatial location for
locating a second sample field, and a geometric characteristic positioned within one of said first
or second sample fields, said characteristic having a height;
positioning said field illuminator to align with said first spatial location;
imaging said first sample field;
positioning-said field illuminator to align with said first second location;
imaging said second sample field;
determining said volume of one of said first or second sample fields using said images
of said first and second sample fields, said height of said geometric feature, and said signal to
eoncentration ratio.

40. A method for testing a sample of biologic fluid, comprising the steps of:
providing a container for holding the sample, said container having a chamber with a
first-wall and a transparent second wall;
locating one or more features at spatial locations within said chamber, each said feature
being operable to enable the testing of the sample;
depositing said sample within said chamber, wherein said sample quiescently resides in
said chamber thereafter;
providing a reader module which receives said container, said reader module including a
field illuminator for selectively illuminating one or more fields of the sample, each said sample
field having a known or ascertainable area;
positioning said field illuminator to align with said spatial location of said feature;
selectively imaging one of said sample fields which contains said feature using said field
illuminator.

	41. An apparatus for testing a sample of biologic fluid, said apparatus comprising:
	a container having a chamber for quiescently holding the sample during the test, one or
	more features operable to enable the testing of the sample, wherein at least one of the one or
	more features is positioned at a known spatial location within the chamber, and a label
5	containing information which is used in the performance of one or more tests on the sample,
	wherein the information includes the spatial location of the at least one feature located within
	the chamber; and
	a reader module operable to perform the testing of the sample, wherein the reader
	module includes:
10	a label reader for reading the label, and thereby accessing the information
	including the spatial location of the at least one feature located within the chamber;
	a field illuminator for selectively illuminating a field of the sample quiescently
	residing within the chamber, wherein the sample field has a known or ascertainable
	area; and
15	a positioner, which is operable to selectively change the position of one of the
	chamber or the field illuminator relative to the other of the chamber or the field
	illuminator, to align the field illuminator with a field of the sample in which the at least
	one feature at a known spatial location within the chamber is positioned.
20	42. The apparatus of claim 41, wherein the reader module further comprises:
	an image dissector, for converting an image of light passing through or emanating from
	each sample field into an electronic data format useful for test purposes.
	43. The apparatus of claim 41, wherein the reader module further comprises:
25	means for determining one of a through-plane thickness or a volume of the sample
	field.