USULAN PENELITIAN PENGEMBANGAN DOSEN

STUDI PENERAPAN TALA STEMMING DALAM SISTEM REKOMENDASI DOKUMEN

TIM PENGUSUL:

WAYAN GEDE SUKA PARWITA (0822088901) NI PUTU DIAN INDRA PRATIWI (0814099002)

PROGRAM STUDI TEKNIK INFORMATIKA
STMIK STIKOM INDONESIA
DENPASAR
JUNI 2018

HALAMAN PENGESAHAN

1. Judul Penelitian : Studi Penerapan Tala Stemming Dalam

Sistem Rekomendasi Dokumen

2. Bidang Penelitian : Teknik Informatika

3. Ketua Peneliti

a. Nama Lengkap : Wayan Gede Suka Parwita, M.Cs

b. Jenis Kelamin : Laki-Laki

c. Disiplin Ilmu : Ilmu Komputer

d. Pangkat/Golongan : III/b

e. Jabatan Fungsional : Asisten Ahli

f. Program Studi : Teknik Informatika

4. Anggota Peneliti :

a. Nama Lengkap : Ni Putu Dian Indra Pratiwi, M.Pd.

b. Jenis Kelamin : Perempuan

c. Disiplin Ilmud. Pangkat/Golongane. Jabatan Fungsional:

f. Program Studi : Teknik Informatika 5. Jumlah Biaya yang Diusulkan : Rp 4.975.000,-

Denpasar, 21 Juni 2018

Mengetahui Ketua Peneliti

Kepala Program Studi TI

I Putu Gede Budayasa, M.T.I. Wayan Gede Suka Parwita, M.Cs.

NIDN: 0820068402 NIDN: 0822088901

Menyetujui

Kepala Lembaga Penelitian dan Pengabdian Masyarakat

Ida Bagus Ary Indra Iswara, S.Kom., M.Kom NIDN: 0824048801

DAFTAR ISI

HALAMAN COVER	i
HALAMAN PENGESAHAN	2
DAFTAR ISI	iii
DAFTAR GAMBAR	v
DAFTAR TABEL	vi
DAFTAR LAMPIRAN	vii
RINGKASAN	viii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	2
1.4 Manfaat Penelitian	2
1.5 Luaran Penelitian	2
BAB II TINJAUAN PUSTAKA	4
2.1 Ekstraksi Keyword	4
2.1.1 Tokenisasi	4
2.1.2 Stopword Removal	5
2.1.3 Stemming	5
2.1.4 Tala Stemmer	6
2.1.5 Pembobotan	7
2.2 Cosine Similarity	7
2.3 Evaluasi Recommendation System	8
2.3.1 Precision	8
2.3.2 Recall	9
2.3.3 F-Measure	9
BAB IIIMETODE PENELITIAN	11
3.1 Data Pengujian	11

3.1.1 Data Rekomendasi	11
3.1.2 Dokumen Penelitian	11
3.1.3 Stopword	11
3.2 Tahapan Penelitian	11
3.3 Pengujian Sistem	12
BAB IV BIAYA DAN JADWAL PENELITIAN	13
4.1 Anggaran Biaya	13
4.2 Jadwal Penelitian	13
DAFTAR PUSTAKA	14

DAFTAR GAMBAR

Gambar 3.1 Tahap Penelitian	1	11
-----------------------------	---	----

DAFTAR TABEL

Tabel 3.1 Pembagian kondisi hasil yang memungkinkan	9
Tabel 4.1 Anggaran penelitian	13
Tabel 4.2 Jadwal penelitian	13

DAFTAR LAMPIRAN

Lampiran 1. Justifikasi Anggaran Penelitian	14
Lampiran 2. Susunan Organisasi Tim Peneliti/Pelaksana dan Pembag	
	15
Lampiran 3. Biodata Ketua Tim Peneliti	
Lampiran 4. Biodata Anggota Tim Peneliti	19

RINGKASAN

Pengembangan sistem rekomendasi berbasis ekstraksi keyword dapat menggunakan Tala Stemming. Hal ini mengingat ekstraksi keyword dalam dokumen membutuhkan sumber daya yang besar. Penggunaan Tala Stemming merupakan salah satu opsi yang lebih ramah sumber daya karena tidak perlu membandingkan setiap eliminasi imbuhan dengan kamus kata. Dengan mempertimbangkan kelemahan Tala Stemming, perlu dilakukan studi pada pengaruh penggunaan Tala Stemming dalam sistem rekomendasi berbasis ekstraksi keyword, dimana akan dilakukan perbandingan untuk menentukan kualitas rekomendasi saat penggunaan Tala stemming dan saat tidak menggunakan Tala stemming.

Penelitian dimulai dengan analisis sistem yang telah dibangun pada penelitian Parwita, dkk (2017). Analisis ini memetakan komponen yang akan digunakan dalam pengujian sistem rekomendasi. Setelah analisis sistem, selanjutnya dilakukan pengumpulan data seperti stopword yang diambil dari penelitian Tala (2003), rekomendasi dosen, dan dokumen penelitian dosen. Implementasi pengujian dilakukan dengan membangun algoritma pengujian memanfaatkan komponen sistem rekomendasi yang telah dibangun. Algoritma yang dibangun yaitu untuk 2 pengujian yang dilakukan. Pengujian pertama adalah pengujian sistem informasi memanfaatkan proses stemming, dan pengujian kedua yaitu pengujian sistem informasi tanpa proses stemming. Hasil pengujian merupakan nilai precission, recall, dan f-mesure yang digunakan dalam melakukan analisis perbandingan hasil pengujian.

Keyword: Stemming, Tala Stemming, Sistem Rekomendasi.

BABI

PENDAHULUAN

1.1 Latar Belakang

Stemming merupakan salah satu proses dalam ektraksi keyword yang mengubah kata menjadi kata dasar (stem). Ada 2 pendekatan dalam pengembangan proses stemming yaitu dengan pendekatan berbasis aturan dan pendekatan berbasis kamus kata. Pendekatan berbasis aturan banyak digunakan karena menggunakan sumber daya yang lebih kecil dibandingkan dengan pendekatan berbasis kamus. Proses stemming berbasis aturan mulai dikembangkan oleh Porter (1980) (Porter Stemmer) untuk bahasa Inggris. Porter stemmer lalu dikembangkan untuk bahasa Indonesia oleh Tala yang saat ini sering disebut dengan algoritma Tala Stemming.

Tala *Stemming* menggunakan aturan dalam imbuhan bahasa Indonesia. Penggunaan Tala *Stemming* merupakan salah satu opsi dalam pengembangan sistem ekstraksi teks dalam *information retrival*. Akan tetapi, Tala *stemming* juga belum sepenuhnya akurat untuk mencari kata dasar. Ada beberapa kata yang gagal diubah ke dalam kata dasar oleh Algoritma Tala. Selain itu, walaupun lebih ramah sumber daya dibandingkan dengan pendekatan berbasis kamus kata, Tala *Stemming* tetap membutuhkan sumber daya yang besar dalam melakukan ekstraksi setiap kata yang ada dalam dokumen. Hal ini berdampak pada meningkatnya waktu yang dibutuhkan dalam ekstraksi dokumen.

Pengembangan sistem rekomendasi berbasis ekstraksi keyword dapat menggunakan Tala Stemming. Hal ini mengingat ekstraksi keyword dalam dokumen membutuhkan sumber daya yang besar. Penggunaan Tala Stemming merupakan salah satu opsi yang lebih ramah sumber daya karena tidak perlu membandingkan setiap eliminasi imbuhan dengan kamus kata. Dengan mempertimbangkan kelemahan Tala Stemming, perlu dilakukan studi pada pengaruh penggunaan Tala Stemming dalam sistem rekomendasi berbasis ekstraksi keyword, dimana akan dilakukan perbandingan untuk menentukan kualitas rekomendasi saat penggunaan Tala stemming dan saat tidak menggunakan Tala stemming.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dipaparkan dapat dirumuskan masalah yang akan dikaji dalam penelitian ini yaitu bangaimana penerapan tala *stemming* dan pengaruhnya dalam sistem rekomendasi berbasis ektraksi *keyword*.

1.3 Tujuan Penelitian

Tujuan penelitian ini yaitu melakukan penerapan tala *stemming* dan mengetahui pengaruh tala *stemming* pada akurasi sistem rekomendasi.

1.4 Manfaat Penelitian

Manfaat yang didapat dari penelitian ini yaitu dapat mengetahui bagaimana penerapan tala *stemming* dalam sistem rekomendasi berbasis ekstraksi *keyword* dan seberapa besar pengaruh tala *stemming* terhadap akurasi sistem rekomendasi.

1.5 Luaran Penelitian

Hasil penelitian ini akan dipublikasikan dalam bentuk publikasi ilmiah hasil penelitian yaitu pada Jurnal Ilmiah Nasional Sistem Informasi ber-ISSN.

NT.	Jenis Luaran		Indikator Capaian			
No			TS0	TS+1	TS+2	
1	Publikasi Ilmiah ²⁾	Internasional				
		Nasional terakreditasi				
		Nasional tidak terakreditasi	draf	published		
2	Pemakalah dalam temu	Internasional				
2	ilmiah ³⁾	Nasional				
3	Invited speaker dalam temu	Internasional				
3	ilmiah ⁴⁾	Nasional				
4	Visiting Lecturer ⁵⁾	Internasional				
		Paten				
		Paten Sederhana				
	Hak Kekayaan Intelektual	Hak Cipta				
5		Merek Dagang				
		Rahasia Dagang				
		Desain Produk Industri				
		Indikasi Geografis				

		Perlindungan Varietas Tanaman		
		Perlindungan topografi sirkuit terpadu		
6	Teknologi Tepat Guna ⁷⁾			
7	Model/Purwarupa/Desain/Kary	a seni/ Rekayasa Sosial ⁸⁾		
8	Buku Ajar (ISBN) ⁹⁾			
9	Tingkat Kesiapan Teknologi (T	(KT) ¹⁰⁾		

BAB II

TINJAUAN PUSTAKA

2.1 Ekstraksi Keyword

Dalam dokumen ilmiah, *keyword* adalah kata pokok yang merepresentasikan masalah yang diteliti atau istilah-istilah yang merupakan dasar pemikiran dan dapat berupa kata tunggal atau gabungan kata. Similaritas *keyword* dokumen dapat digunakan untuk menentukan relevansi dokumen terhadap dokumen lain (Weiss, dkk., 2005). *Automatic keyword extraction system* memiliki tugas untuk mengidentifikasi kumpulan kata, frase kunci, *keyword*, atau segmen kunci dari sebuah dokumen yang dapat menggambarkan arti dari dokumen (Hulth, 2003). Tujuan dari ekstraksi otomatis adalah menekan kelemahan pada ekstraksi manual yang dilakukan manusia yaitu pada kecepatan, ketahanan, cakupan, dan juga biaya yang dikeluarkan.

Salah satu pendekatan yang dapat digunakan dalam *automatic keyword* extraction yaitu pendekatan tata bahasa. Pendekatan ini menggunakan fitur tata bahasa dari kata-kata, kalimat, dan dokumen. Metode ini memperhatikan fitur tata bahasa seperti bagian kalimat, struktur sintaksis, dan makna yang dapat menambah bobot. Fitur tata bahasa tersebut dapat digunakan sebagai penyaring untuk *keyword* yang buruk. Dalam ekstraksi *keyword* dengan pendekatan tata bahasa berbasis struktur sintaksis, ada beberapa tahap yang dilakukan yaitu tokenisasi, *stopword removal*, *stemming*, dan pembobotan kata (Oelze, 2009).

2.1.1 Tokenisasi

Teks elektronik adalah urutan linear simbol (karakter, kata-kata atau frase). Sebelum dilakukan pengolahan, teks perlu disegmentasi ke dalam unitunit linguistik seperti kata-kata, tanda baca, angka, *alpha-numeric*, dan lain-lain Proses ini disebut tokenisasi. Tokenisasi sederhana (*white space tokenization*) merupakan tokenisasi yang memisahkan kata berdasarkan karakter spasi, tab, dan baris baru (Weiss, dkk., 2005). Namun, tidak setiap bahasa melakukan hal ini (misalnya bahasa Cina, Jepang, Thailand). Dalam bahasa Indonesia, selain tokenisasi sederhana diperlukan juga tokenisasi yang memisahkan kata-kata berdasarkan karakter lain seperti "/" dan "-".

2.1.2 Stopword Removal

Stopword removal adalah pendekatan mendasar dalam preprocessing yang menghilangkan kata-kata yang sering muncul (stopword). Fungsi utamanya adalah untuk mencegah hasil proses selanjutnya terpengaruh oleh stopword tersebut. Banyak diantara stopword tersebut tidak berguna dalam Information Retrival (IR) dan text mining karena kata-kata tersebut tidak membawa informasi (seperti ke, dari, dan, atau). Cara biasa untuk menentukan apa yang dianggap sebagai stopword adalah menggunakan stoplist. Stoplist merupakan kumpulan kata atau kamus yang berisi daftar stopword. Langkah penghilangan stopword ini adalah langkah yang sangat penting dan berguna (Srividhya dan Anitha, 2010).

2.1.3 Stemming

Algoritma *stemming* adalah proses yang melakukan pemetaan varian morfologi yang berbeda dari kata-kata ke dalam kata dasar/kata umum (*stem*). *Stemming* berguna pada banyak bidang komputasi linguistik dan *information retrieval* (*Lovins*, 1968). Dalam kasus bahasa Indonesia, sejauh ini hanya ada dua algoritma untuk melakukan proses *stemming* yaitu algoritma yang dikembangkan oleh Nazief dan Adriani serta algoritma yang dikembangkan oleh Tala. Algoritma Nazief dan Adriani dikembangkan dengan menggunakan pendekatan *confix stripping* dengan disertai pemindaian pada kamus. Sedangkan *stemming* yang dikembangkan Tala menggunakan pendekatan yang berbasis aturan (*rule-based*).

Pengembangan Algoritma Tala didasarkan pada kenyataan bahwa sumber daya seperti kamus besar digital untuk bahasa mahal karena kurangnya penelitian komputasi di bidang linguistik. Maka, ada kebutuhan untuk algoritma stemming tanpa keterlibatan kamus. Algoritma Tala sendiri dikembangkan dari algoritma Porter stemmer yang dimodifikasi untuk bahasa Indonesia. Algoritma Tala menghasilkan banyak kata yang tidak dipahami. Ini disebabkan oleh ambiguitas dalam aturan morfologi Bahasa Indonesia. Dalam beberapa kasus kesalahan tidak mempegaruhi kinerja, tetapi dalam kasus lain menurunkan kinerja (Tala, 2003).

2.1.4 Tala Stemmer

Gambar 2.1 Skema Tala Stemmer (Tala, 2003)

Algoritma Tala memproses awalan, akhiran, dan kombinasi keduanya dalam kata turunan. Walaupun dalam bahasa Indonesia terdapat sisipan, jumlah kata yang diturunkan menggunakan sisipan sangat sedikit. Karena hal tersebut dan juga demi penyederhanaan, sisipan akan diabaikan.

Algoritma Porter *stemmer* dibangun berdasarkan ide tentang akhiran pada bahasa Inggris yaitu kebanyakan merupakan kombinasi dari akhiran yang lebih sederhana dan lebih kecil. Beberapa perubahan dilakukan pada algoritma Porter *stemmer* agar sesuai dengan Bahasa Indonesia. Perubahan dilakukan pada bagian kumpulan aturan dan penilaian kondisi. Karena algoritma Porter *stemmer* hanya dapat menangani akhiran, maka perlu penambahan agar dapat menangani awalan, akhiran, dan juga penyesuaian penulisan dalam kasus dimana terjadi perubahan karakter pertama kata dasar. Gambar 2.1 menunjukkan langkahlangkah proses pada algoritma Tala.

Dalam Bahasa Indonesia, unit terkecil dari suatu kata adalah suku kata. Suku kata paling sedikit terdiri dari satu huruf vokal. Desain implementasi algoritma Tala belum dapat mengenali seluruh suku kata. Ini disebabkan karena adanya dua huruf vokal yang dianggap satu suku kata yaitu ai, au, dan oi. Kombinasi dua huruf vokal (terutama ai, oi) tersebut dapat menjadi masalah, apalagi jika berada pada akhir sebuah kata. Ini disebabkan oleh sulitnya membedakannya dengan kata yang mengandung akhiran —i. Hal ini

menyebabkan kombinasi huruf vokal ai/oi akan diperlakukan seperti kata turunan. Huruf terakhir (-i) akan dihapus pada hasil proses *stemming*. Kebanyakan kata dasar terdiri dari minimal dua suku kata. Inilah alasan kenapa kata yang akan diproses memiliki minimal dua suku kata.

2.1.5 Pembobotan

Tahapan ini dilakukan dengan tujuan untuk memberikan suatu bobot pada *term* yang terdapat pada suatu dokumen. *Term* adalah satu kata atau lebih yang dipilih langsung dari *corpus* dokumen asli dengan menggunakan metode *term-extraction*. Fitur tingkat *term*, hanya terdiri dari kata-kata tertentu dan ekspresi yang d*item*ukan dalam dokumen asli (Feldman dan Sanger, 2007).

Dalam pengkategorian teks dan aplikasi lain di *information retrieval* maupun *machine learning*, pembobotan *term* biasanya ditangani melalui metode yang diambil dari metode pencarian teks, yaitu yang tidak melibatkan tahap belajar (Debole dan Sebastiani, 2003). Ada tiga asumsi monoton yang muncul di hampir semua metode pembobotan dapat dalam satu atau bentuk lain yaitu (Zobel dan Moffat, 1998):

- a. *Term* yang langka tidak kalah penting daripada *term* yang sering muncul (asumsi IDF).
- b. Kemunculan berkali-kali dari *term* pada dokumen tidak kalah penting daripada kemunculan tunggal (asumsi TF).
- c. Untuk pencocokan *term* dengan jumlah pencocokan yang sama, dokumen panjang tidak lebih penting daripada dokumen pendek (asumsi normalisasi).

Bobot diperlukan untuk menentukan apakah *term* tersebut penting atau tidak. Bobot yang diberikan terhadap sebuah *term* bergantung kepada metode yang digunakan untuk membobotinya.

2.2 Cosine Similarity

Pendekatan *cosine similarity* sering digunakan untuk mengetahui kedekatan antara dokumen teks. Perhitungan *cosine similarity* dimulai dengan menghitung *dot product*. *Dot product* merupakan perhitungan sederhana untuk setiap komponen dari kedua vektor. Vektor merupakan representasi dari masingmasing dokumen dengan jumlah *term* pada masing-masing dokumen sebagai

dimensi dari vektor (Manning, dkk., 2009). Vektor ditunjukkan oleh notasi (2.1) dan (2.2). Hasil *dot product* bukan berupa vektor tetapi berupa skalar. Persamaan (2.3) merupakan perhitungan *dot product* dimana n merupakan dimensi dari vector (Axler, 1997).

$$\vec{a} = (a_1, a_2, a_3, \dots, a_n) \tag{2.1}$$

$$\vec{b} = (b_1, b_2, b_3, \dots, b_n) \tag{2.2}$$

$$\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$
 (2.3)

 a_n dan b_n merupakan komponen dari vektor (bobot term masing-masing dokumen) dan n merupakan dimensi dari vektor. $Cosine\ similarity$ merupakan perhitungan yang mengukur nilai $cosine\$ dari sudut antara dua vektor (atau dua dokumen dalam $vector\ space$). $Cosine\ similarity$ dapat dilihat sebagai perbandingan antara dokumen karena tidak hanya mempertimbangkan besarnya masing-masing jumlah kata (bobot) dari setiap dokumen, tetapi sudut antara dokumen. Persamaan (2.4) dan (2.5) adalah notasi dari metode $cosine\ similarity$ dimana $\|\vec{a}\|$ merupakan $Euclidean\ norm\ dari\ vektor\ a\ dan\ \|\vec{b}\|$ merupakan $Euclidean\ norm\ dari\ vektor\ a\ dan\ \|\vec{b}\|$ merupakan $Euclidean\ norm\ dari\ vektor\ a\ dan\ \|\vec{b}\|$

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \|\vec{\mathbf{a}}\| \|\vec{\mathbf{b}}\| \cos \theta \tag{2.4}$$

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} \tag{2.5}$$

Dari notasi (2.5) dapat dibentuk persamaan matematika yang ditunjukkan oleh persamaan (2.6) (Lops, dkk., 2011).

$$Similarity(x,y) = \frac{\sum_{i=1}^{n} a_i b_i}{\sqrt{\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} b_i^2}}$$
(2.6)

Dimana:

a_i: term ke-i yang terdapat pada dokumen a.

b_i: term ke-i yang terdapat pada dokumen b.

2.3 Evaluasi Recommendation System

2.3.1 Precision

Precision bersama recall merupakan salah satu pengujian dasar dan paling sering digunakan dalam penentuan efektifitas information retrival system maupun recommendation system. True positive (tp) pada information retrival

merupakan *item* relevan yang dihasilkan oleh sistem. Sedangkan *false positive* (fp) merupakan semua *item* yang dihasilkan oleh sistem. Sehingga dalam *information retrival*, *precision* dihitung dengan persamaan (2.7) (Manning, dkk., 2009).

$$Precision = \frac{tp}{tp + fp} = \frac{relevant \ item \ retrieved}{retrieved \ item}$$
(2.7)

Istilah *positive* dan *negative* mengacu pada prediksi yang dilakukan oleh sistem. Sedangkan istilah *true* dan *false* mengacu pada prediksi yang dilakukan oleh pihak luar atau pihak yang melakukan observasi. Pembagian kondisi tersebut dapat dilihat pada Tabel 3.11 (Manning, dkk., 2009).

Tabel 3.1 Pembagian kondisi hasil yang memungkinkan

	Relevant	Nonrelevant
Retrieved	True positive (tp)	False positive (fp)
Not retrieved	False negative (fn)	True negative (tn)

2.3.2 Recall

Recall digunakan sebagai ukuran dokumen yang relevan yang dihasilkan oleh sistem. False negative (fn) merupakan semua item relevan yang tidak dihasilkan oleh sistem. Dalam evaluasi information retrival system, recall dihitung dengan persamaan (2.8) (Manning, dkk., 2009).

$$Recall = \frac{tp}{tp + fn} = \frac{relevant \ item \ retrieved}{relevant \ item}$$
(2.8)

2.3.3 F-Measure

F-measure merupakan nilai tunggal hasil kombinasi antara nilai *precision* dan nilai *recall*. F-measure dapat digunakan untuk mengukur kinerja dari *recommendation system* ataupun *information retrival system*. Karena merupakan rata-rata harmonis dari *precision* dan *recall*, F-measure dapat memberikan penilaian kinerja yang lebih seimbang. Persamaan (2.9) merupakan persamaan untuk menghitung F-measure (Jannach, dkk., 2010).

$$F_{measure} = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$
 (2.9)

BAB III

METODE PENELITIAN

3.1 Data Pengujian

Data yang dikumpulkan untuk penelitian yaitu data kesesuaian penelitian dosen dengan pengajuan UPP mahasiswa, dokumen penelitian dosen, dan *stopword*.

3.1.1 Data Rekomendasi

Pengumpulan data rekomendasi untuk pengujian dilakukan dengan metode kuesioner ke masing-masing dosen untuk mengetahui UPP yang sesuai dengan bidang penelitian dosen. Dalam lembar kuesinoer berisi nim dan judul UPP yang diajukan oleh mahasiswa. UPP yang digunakan diambil dari basis data Sintesys tanpa dilakukan perubahan. Contoh lembar kuesioner dapat dilihat pada Lampiran 1.

3.1.2 Dokumen Penelitian

Dokumen untuk set data merupakan 54 dokumen penelitian yang dimiliki oleh 22 orang dosen STMIK STIKOM Indonesia. Sedangkan set data UPP menggunakan 185 pengajuan yang diambil dari basis data Sintesys.

3.1.3 Stopword

Stopword yang digunakan merupakan stopword yang diusulkan oleh Tala dalam penelitian pengembangan stemmer untuk bahasa Indonesia.

3.2 Tahapan Penelitian

Gambar 3.1 Tahap Penelitian

Penelitian dimulai dengan analisis sistem yang telah dibangun pada penelitian Parwita, dkk (2017). Analisis ini memetakan komponen yang akan

digunakan dalam pengujian sistem rekomendasi. Setelah analisis sistem, selanjutnya dilakukan pengumpulan data seperti *stopword* yang diambil dari penelitian Tala (2003), rekomendasi dosen, dan dokumen penelitian dosen. Implementasi pengujian dilakukan dengan membangun algoritma pengujian memanfaatkan komponen sistem rekomendasi yang telah dibangun. Algoritma yang dibangun yaitu untuk 2 pengujian yang dilakukan. Pengujian pertama adalah pengujian sistem informasi memanfaatkan proses *stemming*, dan pengujian kedua yaitu pengujian sistem informasi tanpa proses *stemming*. Hasil pengujian merupakan nilai precission, recall, dan f-mesure yang digunakan dalam melakukan analisis perbandingan hasil pengujian. Gambar 3.1 merupakan gambaran mengenai tahapan penelitian yang dilakukan.

3.3 Pengujian Sistem

Pengujian dilakukan 2 kali yaitu melakukan rekomendasi dengan menggunakan proses *stemming* dan pengujian tanpa menggunakan *stemming*. Pengujian dilakukan dengan batasan minimum similarity dari 5% hingga 40%. Hasil pengujian ini kemudian dibandingkan sehingga menemukan pengaruh penggunaan proses *stemming*. Adapun nilai yang dibandingkan adalah nilai precission, recall, dan f-measure.

BAB IV

BIAYA DAN JADWAL PENELITIAN

4.1 Anggaran Biaya

Adapun rincian anggaran biaya yang diajukan pada penelitian ini dapat dilihat pada Tabel 4.1.

Tabel 4.1 Anggaran penelitian

No.	Jenis Pengeluaran	Biaya yang Diusulkan (Rp)
1	Gaji dan Upah	3.000.000
2	Bahan habis pakai dan peralatan	1.075.000
3	Perjalanan	150.000
4	Lain-lain (publikasi, seminar, laporan, lainnya)	750.000
	Jumlah	4.975.000

4.2 Jadwal Penelitian

Penelitian ini akan dilaksanakan dalam jangka waktu tujuh bulan dengan jadwal kegiatan seperti yang ditunjukkan pada tabel 4.2.

Tabel 4.2 Jadwal penelitian

No. Kegiatan		Bulan ke-					
NO.	Kegiatan	1	2	3	4	5	6
1.	Persiapan dan Pengumpulan Data						
2.	Studi Literatur						
3.	Analisis Kebutuhan Sistem						
4.	Perancangan Sistem						
5.	Implementasi dan Pengujian Sistem						
6.	Pengukuran Akurasi						
7.	Penyusunan Laporan Penelitian						
8.	Publikasi Ilmiah Hasil Penelitian						

DAFTAR PUSTAKA

- Hulth, A., 2003, Improved Automatic Keyword Extraction Given More Linguistic Knowledge, Proceedings of the 2003 Conference on Emprical Methods in Natural Language Processing, Sapporo, Japan, 216-223.
- Lovins, J. B., 1968, Development of a *Stemming* Algorithm, Mechanical Translation and Computational Linguistics, 11, Massachusetts Institute of Technology, Cambridge, Massachusetts, Maret dan Juni 1968, 22-31.
- Manning, C. D., Raghavan, P., dan Schütze, H., 2009, An Introduction to Information Retrieval, Cambridge University Press, Cambridge, England.
- Oelze, I., 2009, Automatic *Keyword* Extraction for Database Search, Ph.D. Thesis, University of Hannover, Hannover.
- Parwita, W. G. S., Swari, M. H. P., Welda, 2018, Perancangan Sistem Rekomendasi Dokumen Dengan Pendekatan Content-Based Filtering, Journal of Computer Engineering, System and Science, vol 3, issue 1, hal 65-75, Medan, Indonesia.
- Tala, F. Z., 2003, A Study of *Stemming* Effects on Information Retrieval in Bahasa Indonesia, Master Thesis, Universiteit van Amsterdam.
- Weiss, S. M., Indurkhya, N., Zhang, T., dan Damearau, F. J., 2005, Text Mining: Predictive Method for Analizing Unstructured Information, Springer,New York, USA.

Lampiran 1. Justifikasi Anggaran Penelitian

1. Gaji dan Upah

Total Biaya

3	1	
	Biaya Programmer sebesar Rp7.353 / jam	Dm 2 000 000
((alokasi waktu 17 jam/minggu selama 24 minggu)	Rp. 3.000.000
2. Bah	an Habis Pakai dan Peralatan	
a.	Biaya Pengolahan Data (Listrik, Komputer)	Rp. 50.000
b.	Foto Copy (FC)	Rp. 175.000
c.	Alat Tulis Kantor (Tinta Printer, Kertas, dll.)	Rp. 150.000
d.	Penelusuran pustaka dan pembelian buku referensi	Rp. 700.000
3. Bia	ya Perjalanan Penelitian	
a.	Biaya Survey Pendahuluan (Rapat, Konsumsi Rapat)	Rp. 100.000
b.	Biaya Pengumpulan Data	Rp. 50.000
4. Laiı	n-lain	
a.	Biaya Dokumentasi	Rp. 50.000
b.	Biaya Publikasi	Rp. 600.000
c.	Biaya Penyusunan Laporan	Rp. 100.000

(Empat Juta Sembilan Ratus Tujuh Puluh Lima Ribu Rupiah)

Rp 4.975.000

Lampiran 2. Susunan Organisasi Tim Peneliti/Pelaksana dan Pembagian Tugas

No.	Nama Lengkap	Instansi	Bidang	Alokasi Waktu	Uraian
	/ NIDN	Asal	Ilmu	(Jam/Minggu)	Tugas
1.	Wayan Gede	STMIK	Ilmu	10 Jam /	Menganalisis
	Suka Parwita	STIKOM	Komputer,	minggu	permasalahan,
	/0822088901	Indonesia	Sistem		merancang dan
			Informasi		membangun
					sistem.
2.	Ni Putu Dian	STMIK		7 Jam /	Menganalisis
	Indra Pratiwi/	STIKOM		minggu	permasalahan,
		Indonesia			mengumpulkan
					data, menyusun
					laporan.

Lampiran 3. Biodata Ketua Tim Peneliti

A. Identitas Diri

1.	Nama Lengkap	Wayan Gede Suka Parwita, M.Cs.
2.	Jenis Kelamin	Laki-laki
3.	Jabatan Fungsional	Tenaga Pengajar
4	NIK	1507236
5.	NIDN	0822088901
6.	Tempat dan Tanggal Lahir	Denpasar, 22 Agustus 1989
7.	E-Mail	gede.suka@gmail.com
8.	Nomor HP	081337841111
9.	Alamat Kantor	Jl. Tukad Pakerisan 97 Denpasar, Bali
10.	Nomor Telepon/Faks	0361 - 256 995/ 0361 - 246 875
11.	Lulusan yang Telah	-
	Dihasilkan	
12.	Mata Kuliah yg Diampu	a. Object Oriented Analysis and Design
		b. Struktur Data
		c. Sistem Basis Data
		d. Bahasa Basis Data
		e. Riset Teknologi Informasi

B. Riwayat Pendidikan

	S-1	S-2
Nama Perguruan	Universitas Udayana	Universitas Gadjah Mada
Tinggi		
Bidang Ilmu	Ilmu Komputer	Ilmu Komputer
Tahun Masuk-Lulus	2007-2011	2011-2015
Judul Tugas	Perancangan dan	Hybrid Recommendation
Akhir/Tesis	Implementasi Sistem	System Memanfatkan
	Pencarian Buku	Penggalian Frequent Itemset
	Menggunakan Algoritma	dan Perbandingan Keyword
	Pemetaan Transaksi	
Nama Pembimbing	Ngurah Agus Sanjaya Er,	Edi Winarko, M.Sc., Ph.D.
	M.Kom., Luh Gede Astuti,	
	M.Kom.	

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

No.	Tahun Judul Penelitian -		Penda	naan
NO.	Tanun	Judui Fenentian	Sumber	Jml (juta Rp)
1.	2016	Pengembangan Sistem	Penelitian	
		Monitoring Tugas Akhir	Pengembangan	3.325.000
		dan Kerja Praktek STMIK Dosen STIK		3.323.000
		STIKOM Indonesia	(PPDS)	
2.	2016	Sistem Rekomendasi	Penelitian	20.000.000
		Dosen Pembimbing Tugas	Dosen Pemula	20.000.000

		Akhir di STMIK STIKOM	(PDP) Ristek	
		Indonesia Menggunakan	Dikti	
		Content-Based Filtering		
3.	2017	Pengaruh Stopword	Penelitian	
		Terhadap Akurasi Sistem	Pengembangan	3.000.000
		Rekomendasi Dokumen	Dosen STIKI	3.000.000
			(PPDS)	

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No.	Tahun	Judul Penelitian	Pend	lanaan
NO.	1 anun	Judui Penentian	Sumber	Jml (juta Rp)
1.	2015	Pelatihan 40 Wanita Pelaku UKM se-Kota Denpasar	BKBPP Kota Denpasar	27.023.500
3.	2015	Input Data Keluarga Menggunakan Microsoft Excel Pada Kegiatan PKM 2015 Bekerja Sama Dengan BKKBN Provinsi Bali	BKKBN Provinsi Bali	910.000.000
4.	2016	Edukasi Program 1 Juta Domain Bekerjasama Dengan Kementrian Komunikasi dan Informatika	Kementrian Kominfo RI	50.000.000
5.	2016	Pendataan Penduduk Kabupaten Badung dalam Program "Krama Badung Sehat" Menggunakan Aplikasi Terintegrasi	Kabupaten Badung	250.500.000

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No.	Judul Artikel Ilmiah	Nama Jurnal	Volume/Nomor/Tahun
1.	Hybrid Recommendation	Indonesian	Vol 9, No 2 (2015)
	System Memanfaatkan	Journal of	
	Penggalian Frequent	Computing and	
	Itemset dan Perbandingan	Cybernetics	
	Keyword	Systems	
		(IJCCS)	
2.	Perencanaan Strategsi	S@cies (STIKI	Vol 6, No 1 (2016)
	SI/TI pada STMIK	Applied	
	STIKOM Indonesia	Sciences)	

	Dengan Metode Ward and		
	Peppard		
3.	Pengembangan Sistem	S@cies (STIKI	Vol 7, No 1 (2016)
	Monitoring Tugas Akhir	Applied	
	dan Kerja Praktek STMIK	Sciences)	
	STIKOM Indonesia		
4.	Perancangan Sistem	CESS (Journal	Vol 3, No 1 (2018)
	Rekomendasi Dokumen	of Computer	
	Dengan Pendekatan	Engineering,	
	Content-Based Filtering	System and	
		Science)	

F. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

No.	Nama Pertemuan	Judul Artikel	Waktu dan Tempat
	Ilmiah/Seminar	Ilmiah	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Penelitian Pengembangan Dosen STIKI.

Denpasar, 21 Juni 2018 Pembuat,

(Wayan Gede Suka Parwita)

Lampiran 4. Biodata Anggota Tim Peneliti

A. Identitas Diri

1.	Nama Lengkap	
2.	Jenis Kelamin	
3.	Jabatan Fungsional	
4	NIK	
5.	NIDN	
6.	Tempat dan Tanggal Lahir	
7.	E-Mail	
8.	Nomor HP	
9.	Alamat Kantor	
10.	Nomor Telepon/Faks	
11.	Lulusan yang Telah	
	Dihasilkan	
12.	Mata Kuliah yg Diampu	1.
		2.
		3.
		4.
		5.

B. Riwayat Pendidikan

	S-1	S-2
Nama Perguruan		
Tinggi		
Bidang Ilmu		
Tahun Masuk-Lulus		
Judul Tugas		
Akhir/Tesis		
Nama Pembimbing		

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

No.	Tohun	Ladad Danalidan	Penda	nnaan
NO.	Tahun	Judul Penelitian	Sumber	Jml (juta Rp)
1				
2				

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No	Tahun	Judul Danalitian	Pendanaan	
No.	1 anun	Judul Penelitian	Sumber	Jml (juta Rp)
1				

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No.	Judul Artikel Ilmiah	Nama Jurnal	Volume/Nomor/Tahun

F. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

No.	Nama Pertemuan	Judul Artikel	Waktu dan Tempat
	Ilmiah/Seminar	Ilmiah	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Penelitian Pengembangan Dosen STIKI.

Denpasar, 15 April 2016 Pengusul,

•	`
\ 	_)

SURAT PERNYATAAN KETUA

PENELITI/PELAKSANA

Yang bertanda tangan dibawah ini:

Nama : Wayan Gede Suka Parwita, M.Cs.

NIDN : 0822088901

Pangkat / Golongan : -

Jabatan Fungsional : Tenaga Pengajar

Dengan ini menyatakan bahwa proposal penelitian saya yang dengan judul: *Studi Penerapan Tala Stemming Dalam Sistem Rekomendasi Dokumen*, yang diusulkan dalam Hibah Penelitian Pengembangan Dosen STIKI untuk tahun anggaran 2018 **bersifat original dan belum pernah dibiayai oleh lembaga / sumber dana lain.**

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke STMIK STIKOM Indonesia (STIKI).

Demikian pernyatan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Mengetahui, Kepala LPPM STIKOM Indonesia, Denpasar, 21 Juni 2018 Yang menyatakan,

Ida Bagus Ary Indra Iswara, M.Kom. NIP/NIK: 1403210 Wayan Gede Suka Parwita, M.Cs. NIP/NIK: 1507236

22