1

Matrix theory Assignment 11

Shivangi Parashar

Abstract—This document contains the concept of sub space V

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment11/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment11/ Assignment 11.tex

1 Problem

Which of the following set of vectors

$$\alpha = (a_1, a_2, \dots, a_n)$$

in \mathbb{R}^n are subspace of \mathbb{R}^n $(n \ge 3)$?

- a)All α such that $a_1 >= 0$
- b)All α such that $a_1 + 3a_2 = a_3$
- c)All α such that $a_2 = a_1^2$
- d)All α such that $a_1a_2 = 0$
- e)All α such that a_2 is rational

2 Solution

a) All α such that $a_1 >= 0 \in \mathbf{R}^n \ (n >= 3)$ Let,

$$\alpha = (1, 0, 0, 0, \dots, 0) \in \mathbf{S}$$

 $(-\alpha) = (-1, 0, 0, 0, \dots, 0) \notin \mathbf{S}$ (2.0.1)

From equation (2.0.1) it is not closed with respect to scalar multiplication and hence not a subspace. b) All α such that $a_1 + 3(a_2) \in \mathbf{R}^{\mathbf{n}}$ (n >= 3), Let $c \in \mathbf{R}$

$$\alpha = (a_1, a_2, a_3, ..., a_n) \in \mathbf{S}$$

 $\beta = (b_1, b_2, b_3, ..., b_n) \in \mathbf{S}$
(2.0.2)

Now, $c.(\alpha)+\beta$

$$= c(a_1, a_2, a_3, ..., a_n) + (b_1, b_2, b_3, ..., b_n)$$

= $(ca_1, ca_2, ca_3, ..., ca_n) + (b_1, b_2, b_3, ..., b_n)$
(2.0.3)

Now, using condition $a_1 + 3(a_2)$ we have,

$$ca_1 + b_1 + 3(ca_2 + b_2) = ca_1 + b_1 + 3ca_2 + 3b_2$$

$$\implies c(a_1 + 3a_2) + (b_1 + 3b_2) = ca_3 + b_3$$
(2.0.4)

From equation (2.0.4) it is closed under addition and scalar multiplication, hence it is a subspace. c) All α such that $a_2 = {a_1}^2 \in \mathbf{R^n}$ (n >= 3),

$$\alpha = (-1, 1, 0, \dots 1) \in \mathbf{S}$$

$$\beta = (1, 1, 0, \dots 0) \in \mathbf{S}$$

$$\implies \alpha + \beta = (0, 2, 0, \dots 1) \notin \mathbf{S}$$
(2.0.5)

From equation (2.0.5) $2 \neq 0^2$. Hence ,it is not closed with respect to additions and hence not a subspace. d) All α such that $a_1a_2 = 0 \in \mathbb{R}^n$ $(n \ge 3)$, Let,

$$\alpha = (0, 1, 0, ...0) \in \mathbf{S}$$

$$\beta = (1, 0, 0, ...0) \in \mathbf{S}$$

$$\implies \alpha + \beta = (1, 1, 0, ...0) \notin \mathbf{S}$$
(2.0.6)

From (2.0.6) $1.1 = 1 \neq 0$ it is not closed with respect to addition and hence not a subspace.

e) All α such that a_2 is rational $\in \mathbb{R}^n$ $(n \ge 3)$, Let,

$$\alpha = (0, 1, 0, ...0) \in \mathbf{S}$$

$$b = \sqrt{2} \in \mathbf{R}$$

$$b \cdot \alpha = (0, \sqrt{2}, 0,0) \notin \mathbf{S}$$
(2.0.7)

From (2.0.7) it is not closed with respect to scalar multiplication and hence not a subspace.