

Lecture 10

- 5.1 Introduction
- 5.2 Basic Theory of Systems of First
 Order Linear Equations
- 5.3 Homogeneous Linear Systems with Constant Coefficients
- 5.4 Complex Eigenvalues

Introduction

Consider the dynamical system shown above. There are two blocks and three springs. Forces F_1 and F_2 act on the blocks as shown.

See https://tinyurl.com/wm2ogdh

We expect that the acceleration of the blocks will depend on

- the displacements x_1 and x_2 ;
- the forces F_1 and F_2 ; and
- the masses of the blocks.

We expect that the acceleration of the blocks will depend on

- the displacements x_1 and x_2 ;
- the forces F_1 and F_2 ; and
- the masses of the blocks.

So we expect that:

$$\begin{cases} \frac{d^2x_1}{dt^2} = f_1(x_1, x_2, F_1, m_1) \\ \frac{d^2x_2}{dt^2} = f_2(x_1, x_2, F_2, m_2). \end{cases}$$

We expect that the acceleration of the blocks will depend on

- the displacements x_1 and x_2 ;
- the forces F_1 and F_2 ; and
- the masses of the blocks.

So we expect that:

$$\begin{cases} \frac{d^2x_1}{dt^2} = f_1(x_1, x_2, F_1, m_1) \\ \frac{d^2x_2}{dt^2} = f_2(x_1, x_2, F_2, m_2). \end{cases}$$

This is a system of two ODEs. To find $x_1(t)$ and $x_2(t)$, we would need to solve these equations at the same time.

The most famous system of ODEs is the system of *Predator-Prey* equations:

$$\begin{cases} \frac{dx}{dt} = \alpha x - \beta xy \\ \frac{dy}{dt} = \delta xy - \gamma y \end{cases}$$

where

$$x(t) = \text{number of prey (e.g. mice)}$$

 $y(t) = \text{number of predators (e.g. owls)},$

which originate circa 1925.

It is possible to convert an nth order linear ODE into a system of n first order linear ODEs. Or vice versa.

$$a_{n}y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_{1}y' + a_{0}y = g(t)$$

$$\begin{cases}
x'_{1} = b_{11}x_{1} + \dots + b_{1n}x_{n} + h_{1}(t)
x'_{2} = b_{21}x_{1} + \dots + b_{2n}x_{n} + h_{2}(t)
\vdots
x'_{n} = b_{n1}x_{1} + \dots + b_{nn}x_{n} + h_{n}(t)
\end{cases}$$

Example

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

$\operatorname{Example}$

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

Let $x_1 = u$ and $x_2 = u'$.

Example

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

Let $x_1 = u$ and $x_2 = u'$. Then clearly $x'_1 = u' = x_2$

Example

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

Let $x_1 = u$ and $x_2 = u'$. Then clearly $x'_1 = u' = x_2$ and

$$x_2' = u'' = -0.25u' - u = -0.25x_2 - x_1.$$

Example

Write

$$u'' + 0.25u' + u = 0$$

as a system of two first order ODEs.

Let $x_1 = u$ and $x_2 = u'$. Then clearly $x'_1 = u' = x_2$ and

$$x_2' = u'' = -0.25u' - u = -0.25x_2 - x_1.$$

Therefore

$$\begin{cases} x_1' = x_2 \\ x_2' = -x_1 - 0.25x_2. \end{cases}$$

Remark

We will need

- matrices,
- eigenvalues,
- eigenvectors,
- the Wronskian,
- linear independence,
- and more

from MATH215 – please either revise your Linear Algebra lecture notes or read your Linear Algebra book or read §7.2-7.3 in the textbook by Boyce and DiPrima.

$$\begin{cases} x'_1 = p_{11}(t)x_1 + p_{12}(t)x_2 + \dots + p_{1n}(t)x_n + g_1(t) \\ x'_2 = p_{21}(t)x_1 + p_{22}(t)x_2 + \dots + p_{2n}(t)x_n + g_2(t) \\ \vdots \\ x'_n = p_{n1}(t)x_1 + p_{n2}(t)x_2 + \dots + p_{nn}(t)x_n + g_n(t) \end{cases}$$

is a system of n linear ODEs and n variables: x_1, x_2, \ldots, x_n .

If we write

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ \mathbf{x}' = \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix}, \ P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}, \text{ and } \mathbf{g} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}$$

then we can write this system as

$$\mathbf{x}' = P(t)\mathbf{x} + \mathbf{g}(t).$$

First we will consider the homogeneous system

$$\mathbf{x}' = P(t)\mathbf{x}.$$

In Chapters 3 and 4 when we had multiple solutions, we wrote them as $y_1(t)$, $y_2(t)$, But we are already using $x_1, x_2, ...$ to denote coordinates. So we need a new type of notation.

In Chapters 3 and 4 when we had multiple solutions, we wrote them as $y_1(t)$, $y_2(t)$, But we are already using $x_1, x_2, ...$ to denote coordinates. So we need a new type of notation.

Notation

We use $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$, ... to denote different vector solutions.

Recall from Chapter 3 that if $y_1(t)$ and $y_2(t)$ are both solutions to

$$ay'' + by' + cy = 0,$$

then

$$c_1y_1 + c_2y_2$$

is also a solution.

Theorem

If
$$\mathbf{x}^{(1)}(t)$$
 and $\mathbf{x}^{(2)}(t)$ are solutions to $\mathbf{x}' = P(t)\mathbf{x}$, then
$$c_1\mathbf{x}^{(1)} + c_2\mathbf{x}^{(2)}$$

is also a solution for any $c_1, c_2 \in \mathbb{R}$.

Example

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t}$$
 and $\mathbf{x}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}$ are both solutions to $\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}$ (we will see this later).

Example

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t}$$
 and $\mathbf{x}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}$ are both solutions to $\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}$ (we will see this later). Therefore

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}$$

is also a solution to this system.

(Suppose that P(t) is an $n \times n$ matrix.)

Theorem

If $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$, ..., $\mathbf{x}^{(n)}(t)$ are linearly independent solutions to $\mathbf{x}' = P(t)\mathbf{x}$, then every solution to this system can be written as

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + \ldots + c_n \mathbf{x}^{(n)}$$

in exactly one way.

Definition

In this case, we say that $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$, ..., $\mathbf{x}^{(n)}(t)$ form a fundamental set of solutions to $\mathbf{x}' = P(t)\mathbf{x}$.

Definition

In this case, we say that $\mathbf{x}^{(1)}(t)$, $\mathbf{x}^{(2)}(t)$, ..., $\mathbf{x}^{(n)}(t)$ form a fundamental set of solutions to $\mathbf{x}' = P(t)\mathbf{x}$.

<u>De</u>finition

In this case,

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + \dots + c_n \mathbf{x}^{(n)}$$

is called the general solution to $\mathbf{x}' = P(t)\mathbf{x}$.

Consider

$$\mathbf{x}' = A\mathbf{x}$$

where $A \in \mathbb{R}^{n \times n}$.

$$\mathbf{x}' = A\mathbf{x}$$

If n = 1, then we just have

$$\frac{dx}{dt} = ax$$

which has general solution $x(t) = ce^{at}$.

$$\mathbf{x}' = A\mathbf{x}$$

If n = 1, then we just have

$$\frac{dx}{dt} = ax$$

which has general solution $x(t) = ce^{at}$.

For n > 1, we guess that

$$\mathbf{x}(t) = \boldsymbol{\xi} e^{rt}$$

is a solution to $\mathbf{x}' = A\mathbf{x}$, for some number $r \in \mathbb{C}$ and some vector $\boldsymbol{\xi} \in \mathbb{C}^n$.

But if
$$\mathbf{x}(t) = \boldsymbol{\xi} e^{rt}$$
, then

$$\mathbf{x}' = A\mathbf{x}$$

But if
$$\mathbf{x}(t) = \boldsymbol{\xi} e^{rt}$$
, then

$$r\boldsymbol{\xi}e^{rt} = \mathbf{x}' = A\mathbf{x}$$

But if
$$\mathbf{x}(t) = \boldsymbol{\xi} e^{rt}$$
, then

$$r\boldsymbol{\xi}e^{rt} = \mathbf{x}' = A\mathbf{x} = A\boldsymbol{\xi}e^{rt}$$

But if
$$\mathbf{x}(t)=\pmb{\xi}e^{rt}$$
, then
$$r\pmb{\xi}e^{rt}=\mathbf{x}'=A\mathbf{x}=A\pmb{\xi}e^{rt}$$

$$r\pmb{\xi}=A\pmb{\xi}$$

But if
$$\mathbf{x}(t)=\pmb{\xi}e^{rt}$$
, then
$$r\pmb{\xi}e^{rt}=\mathbf{x}'=A\mathbf{x}=A\pmb{\xi}e^{rt}$$

$$r\pmb{\xi}=A\pmb{\xi}$$

$$(A-rI)\pmb{\xi}=\mathbf{0}$$

where I is the identity matrix.

But if
$$\mathbf{x}(t)=\pmb{\xi}e^{rt}$$
, then
$$r\pmb{\xi}e^{rt}=\mathbf{x}'=A\mathbf{x}=A\pmb{\xi}e^{rt}$$

$$r\pmb{\xi}=A\pmb{\xi}$$

$$(A-rI)\pmb{\xi}=\mathbf{0}$$

where I is the identity matrix. Hence r must be an eigenvalue of A and $\boldsymbol{\xi}$ must be a corresponding eigenvector of A.

Remark

So the idea is:

- 1 Find the eigenvalues;
- 2 Find the eigenvectors; then
- 3 Write $\mathbf{x}^{(j)}(t) = \boldsymbol{\xi}^{(j)} e^{r_j t}$.

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

First we find the eigenvalues.

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \mathbf{x}.$$

First we find the eigenvalues. Since

$$0 = \det(A - rI) = \begin{vmatrix} 1 - r & 1 \\ 4 & 1 - r \end{vmatrix} = (1 - r)^2 - 4$$
$$= r^2 - 2r - 3 = (r + 1)(r - 3),$$

the eigenvalues are $r_1 = 3$ and $r_2 = -1$.

Using the first eigenvalue $r_1 = 3$, we calculate that

$$\mathbf{0} = (A - r_1 I)\boldsymbol{\xi} = \begin{bmatrix} -2 & 1\\ 4 & -2 \end{bmatrix} \begin{bmatrix} \xi_1\\ \xi_2 \end{bmatrix}$$

OF AN LIVE SEASON OF THE SEASO

Using the first eigenvalue $r_1 = 3$, we calculate that

$$\mathbf{0} = (A - r_1 I)\boldsymbol{\xi} = \begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \qquad \Longrightarrow \qquad 0 = -2\xi_1 + \xi_2.$$

Using the first eigenvalue $r_1 = 3$, we calculate that

$$\mathbf{0} = (A - r_1 I)\boldsymbol{\xi} = \begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \qquad \Longrightarrow \qquad 0 = -2\xi_1 + \xi_2.$$

Hence we can choose
$$\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
.

Using the first eigenvalue $r_1 = 3$, we calculate that

$$\mathbf{0} = (A - r_1 I)\boldsymbol{\xi} = \begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \qquad \Longrightarrow \qquad 0 = -2\xi_1 + \xi_2.$$

Hence we can choose $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Then using the second eigenvalue $r_2 = -1$, we calculate that

$$\mathbf{0} = (A - r_2 I)\boldsymbol{\xi} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$

Using the first eigenvalue $r_1 = 3$, we calculate that

$$\mathbf{0} = (A - r_1 I)\boldsymbol{\xi} = \begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \qquad \Longrightarrow \qquad 0 = -2\xi_1 + \xi_2.$$

Hence we can choose $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Then using the second eigenvalue $r_2 = -1$, we calculate that

$$\mathbf{0} = (A - r_2 I)\boldsymbol{\xi} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \qquad \Longrightarrow \qquad 0 = 2\xi_1 + \xi_2.$$

Using the first eigenvalue $r_1 = 3$, we calculate that

$$\mathbf{0} = (A - r_1 I)\boldsymbol{\xi} = \begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \qquad \Longrightarrow \qquad 0 = -2\xi_1 + \xi_2.$$

Hence we can choose $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Then using the second eigenvalue $r_2 = -1$, we calculate that

$$\mathbf{0} = (A - r_2 I)\boldsymbol{\xi} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \qquad \Longrightarrow \qquad 0 = 2\xi_1 + \xi_2.$$

Hence we can choose $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

Using the first eigenvalue $r_1 = 3$, we calculate that

$$\mathbf{0} = (A - r_1 I)\boldsymbol{\xi} = \begin{bmatrix} -2 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \qquad \Longrightarrow \qquad 0 = -2\xi_1 + \xi_2.$$

Hence we can choose $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Then using the second eigenvalue $r_2 = -1$, we calculate that

$$\mathbf{0} = (A - r_2 I)\boldsymbol{\xi} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \qquad \Longrightarrow \qquad 0 = 2\xi_1 + \xi_2.$$

Hence we can choose $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. This gives us two solutions:

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t}$$
 and $\mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}$.

But are these two solutions linearly independent?

But are these two solutions linearly independent? To find out, we calculate the Wronskian of $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$:

But are these two solutions linearly independent? To find out, we calculate the Wronskian of $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$:

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} = \begin{bmatrix} e^{3t} \\ 2e^{3t} \end{bmatrix} \quad \text{and} \quad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} = \begin{bmatrix} e^{-t} \\ -2e^{-t} \end{bmatrix}.$$

But are these two solutions linearly independent? To find out, we calculate the Wronskian of $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$:

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} = \begin{bmatrix} e^{3t} \\ 2e^{3t} \end{bmatrix} \quad \text{and} \quad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} = \begin{bmatrix} e^{-t} \\ -2e^{-t} \end{bmatrix}.$$

$$W(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})(t) = \begin{vmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{vmatrix} = -4e^{2t} \neq 0.$$

But are these two solutions linearly independent? To find out, we calculate the Wronskian of $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$:

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} = \begin{bmatrix} e^{3t} \\ 2e^{3t} \end{bmatrix} \quad \text{and} \quad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} = \begin{bmatrix} e^{-t} \\ -2e^{-t} \end{bmatrix}.$$

$$W(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})(t) = \begin{vmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{vmatrix} = -4e^{2t} \neq 0.$$

Since $W \neq 0$, we have that $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are linearly independent.

But are these two solutions linearly independent? To find out, we calculate the Wronskian of $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$:

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} = \begin{bmatrix} e^{3t} \\ 2e^{3t} \end{bmatrix} \quad \text{and} \quad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} = \begin{bmatrix} e^{-t} \\ -2e^{-t} \end{bmatrix}.$$

$$W(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})(t) = \begin{vmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{vmatrix} = -4e^{2t} \neq 0.$$

Since $W \neq 0$, we have that $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are linearly independent. So $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ form a fundamental set of solutions.

But are these two solutions linearly independent? To find out, we calculate the Wronskian of $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$:

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} = \begin{bmatrix} e^{3t} \\ 2e^{3t} \end{bmatrix} \quad \text{and} \quad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} = \begin{bmatrix} e^{-t} \\ -2e^{-t} \end{bmatrix}.$$

$$W(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})(t) = \begin{vmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{vmatrix} = -4e^{2t} \neq 0.$$

Since $W \neq 0$, we have that $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are linearly independent. So $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ form a fundamental set of solutions. Therefore the general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}.$$

Example

Solve

$$\begin{cases} \mathbf{x}' = \begin{bmatrix} 8 & -1 \\ 6 & 1 \end{bmatrix} \mathbf{x} \\ \mathbf{x}(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}. \end{cases}$$

Example

Solve

$$\begin{cases} \mathbf{x}' = \begin{bmatrix} 8 & -1 \\ 6 & 1 \end{bmatrix} \mathbf{x} \\ \mathbf{x}(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}. \end{cases}$$

The eigenvalues are $r_1 = 7$ and $r_2 = 2$.

Example

Solve

$$\begin{cases} \mathbf{x}' = \begin{bmatrix} 8 & -1 \\ 6 & 1 \end{bmatrix} \mathbf{x} \\ \mathbf{x}(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}. \end{cases}$$

The eigenvalues are $r_1 = 7$ and $r_2 = 2$. The corresponding eigenvectors are $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$.

Example

Solve

$$\begin{cases} \mathbf{x}' = \begin{bmatrix} 8 & -1 \\ 6 & 1 \end{bmatrix} \mathbf{x} \\ \mathbf{x}(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}. \end{cases}$$

The eigenvalues are $r_1 = 7$ and $r_2 = 2$. The corresponding eigenvectors are $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$. Therefore the general solution to the ODE is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{7t} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} e^{2t}.$$

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{7t} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} e^{2t}.$$

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \mathbf{x}(0)$$

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{7t} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} e^{2t}.$$

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 \\ c_1 + 6c_2 \end{bmatrix}$$

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{7t} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} e^{2t}.$$

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 \\ c_1 + 6c_2 \end{bmatrix} \implies \begin{cases} c_1 + c_2 = 1 \\ c_1 + 6c_2 = -2 \end{cases}$$

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{7t} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} e^{2t}.$$

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 \\ c_1 + 6c_2 \end{bmatrix} \implies \begin{cases} c_1 + c_2 = 1 \\ c_1 + 6c_2 = -2 \end{cases}$$

$$\implies \begin{cases} c_1 = \frac{8}{5} \\ c_2 = -\frac{3}{5}. \end{cases}$$

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{7t} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} e^{2t}.$$

Setting t = 0, we have

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = \mathbf{x}(0) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 \\ c_1 + 6c_2 \end{bmatrix} \implies \begin{cases} c_1 + c_2 = 1 \\ c_1 + 6c_2 = -2 \end{cases}$$

$$\implies \begin{cases} c_1 = \frac{8}{5} \\ c_2 = -\frac{3}{5}. \end{cases}$$

Therefore the solution to the IVP is

$$\mathbf{x}(t) = \frac{8}{5} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{7t} - \frac{3}{5} \begin{bmatrix} 1 \\ 6 \end{bmatrix} e^{2t}.$$

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{bmatrix} \mathbf{x}.$$

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{bmatrix} \mathbf{x}.$$

The eigenvalues are $r_1 = -1$ and $r_2 = -4$.

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{bmatrix} \mathbf{x}.$$

The eigenvalues are $r_1 = -1$ and $r_2 = -4$. The corresponding eigenvectors are $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}$ and $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix}$.

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{bmatrix} \mathbf{x}.$$

The eigenvalues are $r_1 = -1$ and $r_2 = -4$. The corresponding eigenvectors are $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix}$ and $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix}$. Hence the general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix} e^{-4t}.$$

Remark

$$\det(A - rI) = 0$$

There are three possibilities for the eigenvalues of A.

Remark

$$\det(A - rI) = 0$$

There are three possibilities for the eigenvalues of A.

- 1 All the eigenvalues are real and different;
- 2 Some eigenvalues occur in complex conjugate pairs;
- 3 Some eigenvalues are repeated.

If all the eigenvalues are real and different, then the eigenvectors are linearly independent:

If all the eigenvalues are real and different, then the eigenvectors are linearly independent:

So $W(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)})(t) \neq 0$ and $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$ form a fundamental set of solutions.

If some eigenvalues are repeated, but there are n linearly independent eigenvectors, then this is also true: $\mathbf{x}^{(1)}(t), \ldots, \mathbf{x}^{(n)}(t)$ form a fundamental set of solutions.

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \mathbf{x}.$$

The eigenvalues and eigenvectors are

$$r_1 = 2$$
 $r_2 = -1$ $r_3 = -1$ $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $\boldsymbol{\xi}^{(3)} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

The eigenvalues and eigenvectors are

$$r_1 = 2$$
 $r_2 = -1$ $r_3 = -1$ $\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $\boldsymbol{\xi}^{(3)} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

which gives us the following three solutions

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} e^{2t} \qquad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} e^{-t} \qquad \mathbf{x}^{(3)}(t) = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} e^{-t}.$$

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} e^{2t} \qquad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} e^{-t} \qquad \mathbf{x}^{(3)}(t) = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} e^{-t}.$$

You can check that the Wronskian of $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ and $\mathbf{x}^{(3)}$ is non-zero.

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} e^{2t} \qquad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} e^{-t} \qquad \mathbf{x}^{(3)}(t) = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} e^{-t}.$$

You can check that the Wronskian of $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ and $\mathbf{x}^{(3)}$ is non-zero. Therefore $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ and $\mathbf{x}^{(3)}$ form a fundamental set of solutions.

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} e^{2t} \qquad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} e^{-t} \qquad \mathbf{x}^{(3)}(t) = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} e^{-t}.$$

You can check that the Wronskian of $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ and $\mathbf{x}^{(3)}$ is non-zero. Therefore $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$ and $\mathbf{x}^{(3)}$ form a fundamental set of solutions. The general solution to the ODE is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} e^{-t} + c_3 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} e^{-t}.$$

Remark

Next we will study systems with complex eigenvalues.

Complex Eigenvalues

Consider

$$\mathbf{x}' = A\mathbf{x}$$

where $A \in \mathbb{R}^{n \times n}$.

Consider

$$\mathbf{x}' = A\mathbf{x}$$

where $A \in \mathbb{R}^{n \times n}$.

$$\begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Consider

$$\mathbf{x}' = A\mathbf{x}$$

where $A \in \mathbb{R}^{n \times n}$.

$$\begin{cases} x'_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x'_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ x'_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}$$

Any complex eigenvalues of A must occur in complex conjugate pairs: If $r_1 = \lambda + i\mu$ is an eigenvalue of A, then $r_2 = \overline{r}_1 = \lambda - i\mu$ is also an eigenvalue of A.

Moreover, if $\boldsymbol{\xi}^{(1)}$ is an eigenvector of A corresponding to r_1 , then $\boldsymbol{\xi}^{(2)} = \overline{\boldsymbol{\xi}^{(1)}}$ is an eigenvector of A corresponding to $r_2 = \overline{r}_1$.

Two solutions of $\mathbf{x}' = A\mathbf{x}$ are

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}^{(1)} e^{r_1 t}$$
 and $\mathbf{x}^{(2)}(t) = \overline{\boldsymbol{\xi}^{(1)}} e^{\overline{r}_1 t}$.

Two solutions of $\mathbf{x}' = A\mathbf{x}$ are

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}^{(1)} e^{r_1 t}$$
 and $\mathbf{x}^{(2)}(t) = \overline{\boldsymbol{\xi}^{(1)}} e^{\overline{r}_1 t}$.

But $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} : \mathbb{R} \to \mathbb{C}^n$ and we want solutions $: \mathbb{R} \to \mathbb{R}^n$.

If
$$r_1 = \lambda + i\mu$$
, and $\boldsymbol{\xi}^{(1)} = \mathbf{a} + i\mathbf{b}$ $(\lambda, \mu \in \mathbb{R}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^n)$, then $\mathbf{x}^{(1)}(t) = (\mathbf{a} + i\mathbf{b})e^{(\lambda + i\mu)t}$

If
$$r_1 = \lambda + i\mu$$
, and $\boldsymbol{\xi}^{(1)} = \mathbf{a} + i\mathbf{b}$ $(\lambda, \mu \in \mathbb{R}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^n)$, then
$$\mathbf{x}^{(1)}(t) = (\mathbf{a} + i\mathbf{b})e^{(\lambda + i\mu)t}$$
$$= (\mathbf{a} + i\mathbf{b})e^{\lambda t} (\cos \mu t + i\sin \mu t)$$

If
$$r_1 = \lambda + i\mu$$
, and $\boldsymbol{\xi}^{(1)} = \mathbf{a} + i\mathbf{b}$ ($\lambda, \mu \in \mathbb{R}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^n$), then
$$\mathbf{x}^{(1)}(t) = (\mathbf{a} + i\mathbf{b})e^{(\lambda + i\mu)t}$$
$$= (\mathbf{a} + i\mathbf{b})e^{\lambda t} (\cos \mu t + i\sin \mu t)$$
$$= e^{\lambda t} (\mathbf{a}\cos \mu t - \mathbf{b}\sin \mu t) + ie^{\lambda t} (\mathbf{a}\sin \mu t + \mathbf{b}\cos \mu t)$$

If
$$r_1 = \lambda + i\mu$$
, and $\boldsymbol{\xi}^{(1)} = \mathbf{a} + i\mathbf{b}$ ($\lambda, \mu \in \mathbb{R}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^n$), then
$$\mathbf{x}^{(1)}(t) = (\mathbf{a} + i\mathbf{b})e^{(\lambda + i\mu)t}$$
$$= (\mathbf{a} + i\mathbf{b})e^{\lambda t} (\cos \mu t + i\sin \mu t)$$
$$= e^{\lambda t} (\mathbf{a}\cos \mu t - \mathbf{b}\sin \mu t) + ie^{\lambda t} (\mathbf{a}\sin \mu t + \mathbf{b}\cos \mu t)$$
$$= \mathbf{u}(t) + i\mathbf{v}(t).$$

The functions $\mathbf{u}(t)$ and $\mathbf{v}(t)$ will be linearly independent.

The functions $\mathbf{u}(t)$ and $\mathbf{v}(t)$ will be linearly independent. Furthermore

$$\operatorname{span}\{\mathbf{u}(t), \mathbf{v}(t)\} = \operatorname{span}\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\}.$$

The functions $\mathbf{u}(t)$ and $\mathbf{v}(t)$ will be linearly independent. Furthermore

$$\operatorname{span}\{\mathbf{u}(t), \mathbf{v}(t)\} = \operatorname{span}\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\}.$$

So we can include $\mathbf{u}(t)$ and $\mathbf{v}(t)$ in our fundamental set of solutions instead of $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$.

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{bmatrix} \mathbf{x}.$$

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{bmatrix} \mathbf{x}.$$

We calculate that

$$0 = \det(A - rI) = \begin{vmatrix} -\frac{1}{2} - r & 1\\ -1 & -\frac{1}{2} - r \end{vmatrix} = r^2 + r + \frac{5}{4}$$

and

$$r_{1,2} = \frac{-1 \pm \sqrt{1-5}}{2} = \frac{-1 \pm 2i}{2} = -\frac{1}{2} \pm i.$$

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{bmatrix} \mathbf{x}.$$

We calculate that

$$0 = \det(A - rI) = \begin{vmatrix} -\frac{1}{2} - r & 1\\ -1 & -\frac{1}{2} - r \end{vmatrix} = r^2 + r + \frac{5}{4}$$

and

$$r_{1,2} = \frac{-1 \pm \sqrt{1-5}}{2} = \frac{-1 \pm 2i}{2} = -\frac{1}{2} \pm i.$$

So we have $r_1 = -\frac{1}{2} + i$ and $r_2 = -\frac{1}{2} - i$.

Example

Solve

$$\mathbf{x}' = \begin{bmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{bmatrix} \mathbf{x}.$$

We calculate that

$$0 = \det(A - rI) = \begin{vmatrix} -\frac{1}{2} - r & 1\\ -1 & -\frac{1}{2} - r \end{vmatrix} = r^2 + r + \frac{5}{4}$$

and

$$r_{1,2} = \frac{-1 \pm \sqrt{1-5}}{2} = \frac{-1 \pm 2i}{2} = -\frac{1}{2} \pm i.$$

So we have $r_1 = -\frac{1}{2} + i$ and $r_2 = -\frac{1}{2} - i$. We will use r_1 . We do not need r_2 .

Since

$$0 = (A - r_1 I)\boldsymbol{\xi}^{(1)} = \begin{bmatrix} -i & 1\\ -1 & -i \end{bmatrix} \begin{bmatrix} \xi_1\\ \xi_2 \end{bmatrix}$$

Since

$$0 = (A - r_1 I) \boldsymbol{\xi}^{(1)} = \begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \implies \begin{cases} -i\xi_1 + \xi_2 = 0 \\ -\xi_1 - i\xi_2 = 0 \end{cases}$$

Since

$$0 = (A - r_1 I) \boldsymbol{\xi}^{(1)} = \begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \implies \begin{cases} -i\xi_1 + \xi_2 = 0 \\ -\xi_1 - i\xi_2 = 0 \end{cases}$$

we can choose

$$\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ i \end{bmatrix}.$$

Note that we also have

$$\boldsymbol{\xi}^{(2)} = \overline{\boldsymbol{\xi}^{(1)}} = \overline{\begin{bmatrix} 1 \\ i \end{bmatrix}} = \begin{bmatrix} 1 \\ -i \end{bmatrix},$$

Note that we also have

$$\boldsymbol{\xi}^{(2)} = \overline{\boldsymbol{\xi}^{(1)}} = \overline{\begin{bmatrix} 1 \\ i \end{bmatrix}} = \begin{bmatrix} 1 \\ -i \end{bmatrix},$$

but we don't need $\boldsymbol{\xi}^{(2)}$.

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}^{(1)} e^{r_1 t} = \begin{bmatrix} 1 \\ i \end{bmatrix} e^{-\frac{t}{2}} \left(\cos t + i \sin t\right)$$

$$=$$

$$=$$

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}^{(1)} e^{r_1 t} = \begin{bmatrix} 1 \\ i \end{bmatrix} e^{-\frac{t}{2}} (\cos t + i \sin t)$$
$$= e^{-\frac{t}{2}} \begin{bmatrix} \cos t + i \sin t \\ i \cos t - \sin t \end{bmatrix}$$
$$=$$

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}^{(1)} e^{r_1 t} = \begin{bmatrix} 1 \\ i \end{bmatrix} e^{-\frac{t}{2}} (\cos t + i \sin t)$$

$$= e^{-\frac{t}{2}} \begin{bmatrix} \cos t + i \sin t \\ i \cos t - \sin t \end{bmatrix}$$

$$= e^{-\frac{t}{2}} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} + i e^{-\frac{t}{2}} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$$

Next we look at $\mathbf{x}^{(1)}(t)$:

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}^{(1)} e^{r_1 t} = \begin{bmatrix} 1 \\ i \end{bmatrix} e^{-\frac{t}{2}} (\cos t + i \sin t)$$

$$= e^{-\frac{t}{2}} \begin{bmatrix} \cos t + i \sin t \\ i \cos t - \sin t \end{bmatrix}$$

$$= e^{-\frac{t}{2}} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} + i e^{-\frac{t}{2}} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$$

$$= \mathbf{u}(t) + i \mathbf{v}(t).$$

Next we look at $\mathbf{x}^{(1)}(t)$:

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}^{(1)} e^{r_1 t} = \begin{bmatrix} 1 \\ i \end{bmatrix} e^{-\frac{t}{2}} (\cos t + i \sin t)$$

$$= e^{-\frac{t}{2}} \begin{bmatrix} \cos t + i \sin t \\ i \cos t - \sin t \end{bmatrix}$$

$$= e^{-\frac{t}{2}} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} + i e^{-\frac{t}{2}} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$$

$$= \mathbf{u}(t) + i \mathbf{v}(t).$$

Hence we choose

$$\mathbf{u}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix}$$
 and $\mathbf{v}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$.

$$\mathbf{u}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix}$$
 and $\mathbf{v}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$.

But are $\mathbf{u}(t)$ and $\mathbf{v}(t)$ linearly independent?

$$\mathbf{u}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix}$$
 and $\mathbf{v}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$.

But are $\mathbf{u}(t)$ and $\mathbf{v}(t)$ linearly independent? Since

$$W(\mathbf{u}(t), \mathbf{v}(t))(t) = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} = \begin{vmatrix} e^{-\frac{t}{2}} \cos t & e^{-\frac{t}{2}} \sin t \\ -e^{-\frac{t}{2}} \sin t & e^{-\frac{t}{2}} \cos t \end{vmatrix}$$
$$= e^{-t} \cos^2 t + e^{-t} \sin^2 t = e^{-t}$$
$$\neq 0$$

the answer is yes.

$$\mathbf{u}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix}$$
 and $\mathbf{v}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$.

But are $\mathbf{u}(t)$ and $\mathbf{v}(t)$ linearly independent? Since

$$W(\mathbf{u}(t), \mathbf{v}(t))(t) = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} = \begin{vmatrix} e^{-\frac{t}{2}} \cos t & e^{-\frac{t}{2}} \sin t \\ -e^{-\frac{t}{2}} \sin t & e^{-\frac{t}{2}} \cos t \end{vmatrix}$$
$$= e^{-t} \cos^2 t + e^{-t} \sin^2 t = e^{-t}$$
$$\neq 0$$

the answer is yes. Therefore $\mathbf{u}(t)$ and $\mathbf{v}(t)$ form a fundamental set of solutions.

$$\mathbf{u}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix}$$
 and $\mathbf{v}(t) = e^{-\frac{t}{2}} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$.

But are $\mathbf{u}(t)$ and $\mathbf{v}(t)$ linearly independent? Since

$$W(\mathbf{u}(t), \mathbf{v}(t))(t) = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} = \begin{vmatrix} e^{-\frac{t}{2}} \cos t & e^{-\frac{t}{2}} \sin t \\ -e^{-\frac{t}{2}} \sin t & e^{-\frac{t}{2}} \cos t \end{vmatrix}$$
$$= e^{-t} \cos^2 t + e^{-t} \sin^2 t = e^{-t}$$
$$\neq 0$$

the answer is yes. Therefore $\mathbf{u}(t)$ and $\mathbf{v}(t)$ form a fundamental set of solutions.

Therefore the general solution to $\mathbf{x}' = \begin{bmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{bmatrix} \mathbf{x}$ is

$$\mathbf{x}(t) = c_1 e^{-\frac{t}{2}} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} + c_2 e^{-\frac{t}{2}} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}.$$

Remark

Our method is

- II Find the eigenvalues;
- 2. Find the eigenvectors;
 - If r_j is real, just use the solution $\mathbf{x}^{(j)}(t) = \boldsymbol{\xi}^{(j)} e^{r_j t}$;
 - But if r_j is complex, write

$$\mathbf{x}^{(j)}(t) = \boldsymbol{\xi}^{(j)} e^{r_j t} = \begin{pmatrix} \text{real valued} \\ \text{function} \end{pmatrix} + i \begin{pmatrix} \text{real valued} \\ \text{function} \end{pmatrix}$$

and use these two functions.

Example

The electric circuit shown above is described by

$$\begin{cases} I' = -I - V \\ V' = 2I - V \end{cases}$$

where

I = the current through the inductor V = the voltage drop across the capacitor.

(Ask an Electrical Engineer.)

Example

The electric circuit shown above is described by

$$\begin{cases} I' = -I - V \\ V' = 2I - V \end{cases}$$

where

I = the current through the inductor V = the voltage drop across the capacitor.

(Ask an Electrical Engineer.)

Suppose that at time t = 0 the current is 2 amperes and the voltage drop is 2 volts. Find I(t) and V(t).

$$\begin{cases} I' = -I - V \\ V' = 2I - V \end{cases}$$

Suppose that at time t = 0 the current is 2 amperes and the voltage drop is 2 volts. Find I(t) and V(t).

We must solve the IVP

$$\begin{cases} \frac{d}{dt} \begin{bmatrix} I \\ V \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} I \\ V \end{bmatrix} \\ \begin{bmatrix} I \\ V \end{bmatrix} (0) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}. \end{cases}$$

The eigenvalues of
$$\begin{bmatrix} -1 & -1 \\ 2 & -1 \end{bmatrix}$$
 are $r_1 = -1 + i\sqrt{2}$ and

 $r_2 = -1 - i\sqrt{2}$ (please check). The corresponding eigenvectors are

$$\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ -i\sqrt{2} \end{bmatrix} \qquad \text{and} \qquad \boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ i\sqrt{2} \end{bmatrix}.$$

The eigenvalues of $\begin{vmatrix} -1 & -1 \\ 2 & -1 \end{vmatrix}$ are $r_1 = -1 + i\sqrt{2}$ and

 $r_2 = -1 - i\sqrt{2}$ (please check). The corresponding eigenvectors are

$$\boldsymbol{\xi}^{(1)} = egin{bmatrix} 1 \\ -i\sqrt{2} \end{bmatrix} \qquad \text{and} \qquad \boldsymbol{\xi}^{(2)} = egin{bmatrix} 1 \\ i\sqrt{2} \end{bmatrix}.$$

Then we calculate that

$$\mathbf{x}^{(1)}(t) = \boldsymbol{\xi}^{(1)} e^{r_1 t} = \begin{bmatrix} 1 \\ -i\sqrt{2} \end{bmatrix} e^{(-1+i\sqrt{2})t}$$

$$= \begin{bmatrix} 1 \\ -i\sqrt{2} \end{bmatrix} e^{-t} \left(\cos\sqrt{2}t + i\sin\sqrt{2}t\right)$$

$$= e^{-t} \begin{bmatrix} \cos\sqrt{2}t + i\sin\sqrt{2}t \\ -i\sqrt{2}\cos\sqrt{2}t + \sqrt{2}\sin\sqrt{2}t \end{bmatrix}$$

$$= e^{-t} \begin{bmatrix} \cos\sqrt{2}t \\ \sqrt{2}\sin\sqrt{2}t \end{bmatrix} + ie^{-t} \begin{bmatrix} \sin\sqrt{2}t \\ -\sqrt{2}\cos\sqrt{2}t \end{bmatrix}.$$

Hence the general solution to the ODE is

$$\begin{bmatrix} I(t) \\ V(t) \end{bmatrix} = c_1 e^{-t} \begin{bmatrix} \cos \sqrt{2}t \\ \sqrt{2}\sin \sqrt{2}t \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} \sin \sqrt{2}t \\ -\sqrt{2}\cos \sqrt{2}t \end{bmatrix}.$$

Hence the general solution to the ODE is

$$\begin{bmatrix} I(t) \\ V(t) \end{bmatrix} = c_1 e^{-t} \begin{bmatrix} \cos \sqrt{2}t \\ \sqrt{2} \sin \sqrt{2}t \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} \sin \sqrt{2}t \\ -\sqrt{2} \cos \sqrt{2}t \end{bmatrix}.$$

Using the initial condition, we calculate that

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} I(0) \\ V(0) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ -\sqrt{2} \end{bmatrix} \qquad \Longrightarrow \qquad \begin{cases} c_1 = 2 \\ c_2 = -\sqrt{2}. \end{cases}$$

Hence the general solution to the ODE is

$$\begin{bmatrix} I(t) \\ V(t) \end{bmatrix} = c_1 e^{-t} \begin{bmatrix} \cos \sqrt{2}t \\ \sqrt{2} \sin \sqrt{2}t \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} \sin \sqrt{2}t \\ -\sqrt{2} \cos \sqrt{2}t \end{bmatrix}.$$

Using the initial condition, we calculate that

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} I(0) \\ V(0) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ -\sqrt{2} \end{bmatrix} \qquad \Longrightarrow \qquad \begin{cases} c_1 = 2 \\ c_2 = -\sqrt{2}. \end{cases}$$

Thus

$$\begin{bmatrix} I(t) \\ V(t) \end{bmatrix} = 2 e^{-t} \begin{bmatrix} \cos \sqrt{2}t \\ \sqrt{2} \sin \sqrt{2}t \end{bmatrix} - \sqrt{2} e^{-t} \begin{bmatrix} \sin \sqrt{2}t \\ -\sqrt{2} \cos \sqrt{2}t \end{bmatrix}.$$

$$\begin{bmatrix} I(t) \\ V(t) \end{bmatrix} = 2 e^{-t} \begin{bmatrix} \cos \sqrt{2}t \\ \sqrt{2}\sin \sqrt{2}t \end{bmatrix} - \sqrt{2} e^{-t} \begin{bmatrix} \sin \sqrt{2}t \\ -\sqrt{2}\cos \sqrt{2}t \end{bmatrix}$$

So the answers to this problem are

$$I(t) =$$

$$V(t) =$$

$$\begin{bmatrix} I(t) \\ V(t) \end{bmatrix} = 2 e^{-t} \begin{bmatrix} \cos \sqrt{2}t \\ \sqrt{2}\sin \sqrt{2}t \end{bmatrix} - \sqrt{2} e^{-t} \begin{bmatrix} \sin \sqrt{2}t \\ -\sqrt{2}\cos \sqrt{2}t \end{bmatrix}$$

So the answers to this problem are

$$I(t) = 2e^{-t}\cos\sqrt{2}t - \sqrt{2}e^{-t}\sin\sqrt{2}t$$

$$V(t) =$$

$$\begin{bmatrix} I(t) \\ V(t) \end{bmatrix} = 2 e^{-t} \begin{bmatrix} \cos \sqrt{2}t \\ \sqrt{2} \sin \sqrt{2}t \end{bmatrix} - \sqrt{2} e^{-t} \begin{bmatrix} \sin \sqrt{2}t \\ -\sqrt{2} \cos \sqrt{2}t \end{bmatrix}$$

So the answers to this problem are

$$I(t) = 2e^{-t}\cos\sqrt{2}t - \sqrt{2}e^{-t}\sin\sqrt{2}t$$

$$V(t) = 2\sqrt{2}e^{-t}\sin\sqrt{2}t + 2e^{-t}\cos\sqrt{2}t.$$

See https://tinyurl.com/wm2ogdh for an animated figure.

Example

For the dynamical system shown above, find $x_1(t)$ and $x_2(t)$.

As the springs are stretched and compressed, they apply forces on the blocks as shown below (Hooke's Law).

We calculate that

 $mass \times acceleration = force$

 $mass \times acceleration = force$

We calculate that

$$2\frac{d^2x_1}{dt^2} = \text{mass} \times \text{acceleration} = \text{force} = -x_1 + 3(x_2 - x_1)$$

 $mass \times acceleration = force$

We calculate that

$$2\frac{d^2x_1}{dt^2} = \text{mass} \times \text{acceleration} = \text{force} = -x_1 + 3(x_2 - x_1)$$

$$\frac{9}{4}\frac{d^2x_2}{dt^2} = \text{mass} \times \text{acceleration} = \text{force} = -3(x_2 - x_1) - \frac{15}{4}x_2.$$

$$2\frac{d^2x_1}{dt^2} = -x_1 + 3(x_2 - x_1)$$
$$\frac{9}{4}\frac{d^2x_2}{dt^2} = -3(x_2 - x_1) - \frac{15}{4}x_2.$$

This is a system of 2 second order ODEs.

$$2\frac{d^2x_1}{dt^2} = -x_1 + 3(x_2 - x_1)$$
$$\frac{9}{4}\frac{d^2x_2}{dt^2} = -3(x_2 - x_1) - \frac{15}{4}x_2.$$

This is a system of 2 second order ODEs. We want a system of first order ODEs.

$$2\frac{d^2x_1}{dt^2} = -x_1 + 3(x_2 - x_1)$$
$$\frac{9}{4}\frac{d^2x_2}{dt^2} = -3(x_2 - x_1) - \frac{15}{4}x_2.$$

Now let $y_1 = x_1$, $y_2 = x_2$, $y_3 = x'_1$ and $y_4 = x'_2$.

$$2\frac{d^2x_1}{dt^2} = -x_1 + 3(x_2 - x_1)$$
$$\frac{9}{4}\frac{d^2x_2}{dt^2} = -3(x_2 - x_1) - \frac{15}{4}x_2.$$

Now let
$$y_1=x_1,\,y_2=x_2,\,y_3=x_1'$$
 and $y_4=x_2'$. Then
$$y_1'=x_1'=y_3$$

$$y_2'=$$

$$y_3'=$$

$$y_4'=$$

$$2\frac{d^2x_1}{dt^2} = -x_1 + 3(x_2 - x_1)$$
$$\frac{9}{4}\frac{d^2x_2}{dt^2} = -3(x_2 - x_1) - \frac{15}{4}x_2.$$

Now let
$$y_1=x_1, y_2=x_2, y_3=x_1'$$
 and $y_4=x_2'$. Then
$$y_1'=x_1'=y_3$$

$$y_2'=x_2'=y_4$$

$$y_3'=$$

$$y_4'=$$

$$2\frac{d^2x_1}{dt^2} = -x_1 + 3(x_2 - x_1)$$
$$\frac{9}{4}\frac{d^2x_2}{dt^2} = -3(x_2 - x_1) - \frac{15}{4}x_2.$$

Now let
$$y_1 = x_1$$
, $y_2 = x_2$, $y_3 = x_1'$ and $y_4 = x_2'$. Then
$$y_1' = x_1' = y_3$$
$$y_2' = x_2' = y_4$$
$$y_3' = x_1'' = \frac{1}{2} \left(-x_1 + 3x_2 - 3x_1 \right) = -2y_1 + \frac{3}{2}y_2$$
$$y_4' =$$

$$2\frac{d^2x_1}{dt^2} = -x_1 + 3(x_2 - x_1)$$
$$\frac{9}{4}\frac{d^2x_2}{dt^2} = -3(x_2 - x_1) - \frac{15}{4}x_2.$$

Now let
$$y_1 = x_1$$
, $y_2 = x_2$, $y_3 = x'_1$ and $y_4 = x'_2$. Then

$$y'_{1} = x'_{1} = y_{3}$$

$$y'_{2} = x'_{2} = y_{4}$$

$$y'_{3} = x''_{1} = \frac{1}{2} \left(-x_{1} + 3x_{2} - 3x_{1} \right) = -2y_{1} + \frac{3}{2}y_{2}$$

$$y'_{4} = x''_{2} = \frac{4}{9} \left(-3x_{2} + 3x_{1} - \frac{15}{4}x_{2} \right) = \frac{4}{3}y_{1} - 3y_{2}.$$

So

$$\mathbf{y}' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & \frac{3}{2} & 0 & 0 \\ \frac{4}{3} & -3 & 0 & 0 \end{bmatrix} \mathbf{y}.$$

The characteristic polynomial of this matrix is

$$0 = r^4 + 5r^2 + 4 = (r^2 + 1)(r^2 + 4).$$

The characteristic polynomial of this matrix is

$$0 = r^4 + 5r^2 + 4 = (r^2 + 1)(r^2 + 4).$$

So
$$r_1 = i$$
, $r_2 = -i$, $r_3 = 2i$ and $r_4 = -2i$.

The characteristic polynomial of this matrix is

$$0 = r^4 + 5r^2 + 4 = (r^2 + 1)(r^2 + 4).$$

So $r_1 = i$, $r_2 = -i$, $r_3 = 2i$ and $r_4 = -2i$. We will use r_1 and r_3 (we do not need r_2 and r_4).

The characteristic polynomial of this matrix is

$$0 = r^4 + 5r^2 + 4 = (r^2 + 1)(r^2 + 4).$$

So $r_1 = i$, $r_2 = -i$, $r_3 = 2i$ and $r_4 = -2i$. We will use r_1 and r_3 (we do not need r_2 and r_4).

The corresponding eigenvectors (please check) are

$$\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 3\\2\\3i\\2i \end{bmatrix} \quad \text{and} \quad \boldsymbol{\xi}^{(3)} = \begin{bmatrix} 3\\-4\\6i\\-8i \end{bmatrix}.$$

It follows that

$$\boldsymbol{\xi}^{(1)}e^{r_1t} = \begin{bmatrix} 3\\2\\3i\\2i \end{bmatrix} (\cos t + i\sin t) = \begin{bmatrix} 3\cos t\\2\cos t\\-3\sin t\\-2\sin t \end{bmatrix} + i \begin{bmatrix} 3\sin t\\2\sin t\\3\cos t\\2\cos t \end{bmatrix}$$
$$= \mathbf{u}(t) + i\mathbf{v}(t)$$

It follows that

$$\boldsymbol{\xi}^{(1)}e^{r_1t} = \begin{bmatrix} 3\\2\\3i\\2i \end{bmatrix} (\cos t + i\sin t) = \begin{bmatrix} 3\cos t\\2\cos t\\-3\sin t\\-2\sin t \end{bmatrix} + i \begin{bmatrix} 3\sin t\\2\sin t\\3\cos t\\2\cos t \end{bmatrix}$$
$$= \mathbf{u}(t) + i\mathbf{v}(t)$$

$$\boldsymbol{\xi}^{(3)}e^{r_3t} = \begin{bmatrix} 3\\ -4\\ 6i\\ -8i \end{bmatrix} (\cos 2t + i\sin 2t) = \begin{bmatrix} 3\cos 2t\\ -4\cos 2t\\ -6\sin 2t\\ +8\sin 2t \end{bmatrix} + i \begin{bmatrix} 3\sin 2t\\ -4\sin 2t\\ 6\cos 2t\\ -8\cos 2t \end{bmatrix}$$
$$= \mathbf{w}(t) + i\mathbf{z}(t)$$

Therefore the general solution is

$$\mathbf{y}(t) = c_1 \mathbf{u}(t) + c_2 \mathbf{v}(t) + c_3 \mathbf{w}(t) + c_4 \mathbf{z}(t)$$

Therefore the general solution is

$$\mathbf{y}(t) = c_1 \mathbf{u}(t) + c_2 \mathbf{v}(t) + c_3 \mathbf{w}(t) + c_4 \mathbf{z}(t)$$

$$= c_1 \begin{bmatrix} 3\cos t \\ 2\cos t \\ -3\sin t \\ -2\sin t \end{bmatrix} + c_2 \begin{bmatrix} 3\sin t \\ 2\sin t \\ 3\cos t \\ 2\cos t \end{bmatrix} + c_3 \begin{bmatrix} 3\cos 2t \\ -4\cos 2t \\ -6\sin 2t \\ 8\sin 2t \end{bmatrix} + c_4 \begin{bmatrix} 3\sin 2t \\ -4\sin 2t \\ 6\cos 2t \\ -8\cos 2t \end{bmatrix}.$$

Example

Suppose that the above system has initial condition

$$\mathbf{y}(0) = \begin{bmatrix} -1\\4\\1\\1 \end{bmatrix}.$$

Sketch graphs of $y_1(t)$ and $y_2(t)$.

The initial value problem

$$\mathbf{y}' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & \frac{3}{2} & 0 & 0 \\ \frac{4}{3} & -3 & 0 & 0 \end{bmatrix} \mathbf{y}, \qquad \mathbf{y}(0) = \begin{bmatrix} -1 \\ 4 \\ 1 \\ 1 \end{bmatrix}$$

has solution

$$\mathbf{y}(t) = \frac{4}{9} \begin{bmatrix} 3\cos t \\ 2\cos t \\ -3\sin t \\ -2\sin t \end{bmatrix} + \frac{7}{18} \begin{bmatrix} 3\sin t \\ 2\sin t \\ 3\cos t \\ 2\cos t \end{bmatrix} - \frac{7}{9} \begin{bmatrix} 3\cos 2t \\ -4\cos 2t \\ -6\sin 2t \\ 8\sin 2t \end{bmatrix} - \frac{1}{36} \begin{bmatrix} 3\sin 2t \\ -4\sin 2t \\ 6\cos 2t \\ -8\cos 2t \end{bmatrix}.$$

Then we can draw the graphs of y_1 and y_2 :

Please see https://tinyurl.com/s7uww7m

Next Time

- 5.5 Fundamental Matrices
- 5.6 Repeated Eigenvalues