

Gestão da Tecnologia da Informação

Introdução a Big Data

Francisco José Tosi

Aula 06 **Fundamentos** Tecnológicos para o Big Data

Francisco José Tosi

Fundamentos tecnológicos do "Big Data"

Se tivermos que lidar com:

- Alto volume de dados transacionais;
- Requisitos de tolerância a falhas;
- Diferentes tipos de dados;
- Com fontes conhecidas e desconhecidas;

Construir um modelo extensível, conduzindo a um armazém de dados

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

 A estrutura do Big Data devera lidar com todas as exigências que discutimos:

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Interfaces e feeds de/para a internet

Interfaces e feeds de/para aplicativos internos

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 0 - Infraestrutura Física Redundante

Desempenho: Quanto receptivo o sistema precisa ser?

Latência deve ser medido de ponta a ponta, com base em uma

única transação ou solicitação de consulta.

Alto Desempenho Baixa Latência tendem ser muito caros

Disponibilidade: É necessário a garantia de 100% do serviço?

Quanto tempo o negócio pode esperar no caso de interrupção ou

EDUCAÇÃO

falha?

Infraestrutura com alta disponibilidade é caro

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 0 - Infraestrutura Física Redundante

Escalabilidade: Qual o tamanho de infraestrutura é necessária?

Quanto espaço em disco é necessário agora e no futuro?

Quanto poder computacional é necessário?

Definir a necessidade e incluir um pouco mais para desafios inesperado

Flexibilidade: Com que rapidez consegue incluir mais recurso a infraestrutura?

Qual a velocidade o ambiente se recupera de falhas?

Infraestrutura flexível é cara, mas pode ser minimizada com serviços em nuvem

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 0 - Infraestrutura Física Redundante

Custo: Quanto de dinheiro está disponível?

Quanto espaço em disco é necessário agora e no futuro?

Uma estratégia é comprar a "melhor" rede e economizar no armazenamento, ou vice-versa

Estabelecer exigências para cada uma das áreas no orçamento global Fazer compensações se for necessário

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 0 - Infraestrutura Física Redundante

O Big Data precisa ser de alta disponibilidade, para que as redes, os servidores, o armazenamento físico possam ser redundantes e resilientes.

Infraestrutura ou Sistemas, é resiliente a fracassos ou mudanças quando há recursos redundantes suficientes, estando posicionados e prontos para entrar em ação.

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 0 - Infraestrutura Física Redundante

Exemplo:

Se existir apenas uma conexão de rede entre o negócio e a internet, não existe redundância a uma interrupção da rede.

Em grandes Data Centers com requisitos de continuidade de negócios, a redundância acontece e pode ser utilizada para criar o ambiente do Big Data.

EDUCAÇÃO

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 0 - Infraestrutura Física Redundante

As redes devem ser redundantes

Capacidade suficiente para acomodar o volume necessário

Velocidade tráfego normal

Em um Big Data é normal a velocidade e o volume aumente

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 0 - Infraestrutura Física Redundante

Gestão de hardware: Armazenamento e servidores

Devem ter velocidade suficiente

Ser suficiente para lidar com a capacidade esperada do

Big Data

Não adianta ter rede de alta velocidade se o servidor é

Do mesmo modo não adianta ter servidores rápidos que ultrapassam o desempenho da rede

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 0 - Infraestrutura Física Redundante

Operações de infraestrutura

Ambiente deve ser bem gerido para conseguir maiores níveis de desempenho

Ser capaz de prever e prevenir falhas

Deve ser seguro com integridade dos dados e os processos de negócios

EDUCAÇÃO

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 1 - Infraestrutura de Segurança

Acesso a dados: Os dados devem estar disponíveis apenas para quem tem o direto e necessidade legitima de negócio

Acesso a aplicativos: manter controle sobre uso não autorizado

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 1 - Infraestrutura de Segurança

Criptografia de dados: Criptografar grandes volumes de dados é muito caro e estressante, uma abordagem mais moderada é identificar elementos de dados que exigem um nível maior de segurança

Deteção de ameaças: Garantir vários perímetros de segurança, contra ameaças em dispositivos móveis e redes sociais

EDUCAÇÃO

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 1 - Infraestrutura de Segurança

Interfaces e Fontes para e de Aplicativos e Internet

Devido ao grande volume de dados ser desestruturados o Big Data exige uma diferença em desenvolvimento de API

Uma nova técnica "LINGUAGEM NATURAL" PLN

Fazer o interface entre o Big Data e os aplicativos

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 2 – Base de dados Operacionais

No centro do Big Data estão os mecanismos de base de dados com as informações relevantes ao negócio.

Mecanismos necessitam ser rápidos; escaláveis e extremamente sólidos.

Existem muitas tecnologias diferentes de base de dados, é muito importante que seja escolhida a que mais atenda as necessidades.

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 2 – Base de dados Operacionais

Características de base de dados:

Atomicidade: Uma transação é "tudo o nada" quando é atônica. Se qualquer parte da transação ou sistema de base falha, tudo falha.

Consistência: Apenas transações com dados válidos serão executadas na base de dados. Se os dados estão corrompidos ou são impróprio, ela não será completada e os dados não serão escritos na base.

EDUCAÇÃO

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 2 – Base de dados Operacionais

Características de base de dados:

Isolamento: Transações múltiplas e simultâneas não vão interferir umas nas outras. Todas as que forem válidas serão executadas até serem concluídas e na ordem que foram submetidas para processamento.

Durabilidade: Depois que os dados da transação são escritos na base de dados, eles ficam lá para sempre.

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 2 – Base de dados Operacionais

Características de base de dados:

Mecanismo	Linguagem de consulta	Map Reduce	Tipo de Dados	Transações	Exemplos
Relacional	SQL, Python, C	Não	Typed	ACID	PostgreSQL; Oracle; DB/2
Colunar	Ruby	Haddop	Predefinido; Typed	Sim se habilitada	HBase
Gráfico	Walking; Search;Cypher	Não	Untyped	ACID	Neo4J
Documental	Commands	JavaScript	Typed	Não	Não MongoDB; CouchDB
Valor-chave	Lucene; Commands	JavaScript	BLOB; semityped	Não	Não Riak; Redis

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 3 – Serviços de Organização de Dados e Ferramentas

Capturam, validam e reúnem vários elementos Big Data

MapReduce é uma técnica muito utilizada

Muitos serviços de organização de dados são mecanizados

São serviços utilizados para **coletar e organizar os** dados para processamentos futuros

Precisam fornecer integração, tradução, normatização e escala

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 3 – Serviços de Organização de Dados e Ferramentas

Sistema de arquivos distribuídos: acomodar a decomposição de fluxos de dados para fornecer escala e capacidade de armazenamento

Serviço de serialização: armazenamento de dados persistentes e chamadas de procedimentos remotos em várias linguagens

Serviço de coordenação: construção de aplicativos distribuídos

Ferramenta de extração, transformação e carga (ETL): carregamento e conversão de dados estruturados e desestruturados para o Hadoop

Serviço de fluxo de trabalho: agendamento de processos e fornecer estrutura de sincronização dos elementos do processo

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Camada 4 - Armazéns de Dados Analíticos

Armazéns de dados e repositório de dados tem sido a técnica utilizada para otimizar dados e ajudar a tomar decisões

Contém dados normatizados, coletados de uma variedade de fonte

São criados a partir de base de dados relacionais, dados multidimensionais, arquivos simples e base de dados de objetos tradicionais

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Análise Big Data

Existem ferramentas que ajudam na análise

Algoritmos devem ser capazes de trabalhar grande volume de dados em tempo real e com dados inconsistentes

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Análise Big Data

Classes de ferramenta para ajudar na análise Big Data

Relatórios e Painéis: Disponibilizam uma representação "de fácil utilização" da informação em várias fontes.

Visualização: Saída tende a ser altamente iterativa e dinâmica. Pode conter uma variedade de animação. Ex. mapas mentais, mapas de calor, infográficos e diagramas de conexão.

Análise e análise avançada: Atingem o armazém de dados e os processam para consumo humano. Devem explicar a tendências ou eventos que são transformativos, únicos ou revolucionários para a prática do negócio.

Fundamentos tecnológicos do "Big Data"

Explorando a pilha do Big Data

Aplicativo Big Data

Aplicativos personalizados e terceirizados oferecem um método alternativo de compartilhamento de fontes Big Data

Aplicativos são onde a maioria das inovações e da criatividade estão evidentes

A criação dos aplicativos exigirá estrutura, padrões, rigor e APIs bem definidas

Os aplicativos podem lidar com problemas que são comuns em todos os setores ou específico de um determinado setor

EDUCAÇÃO

Fundamentos tecnológicos do "Big Data"

Boa Prova

Basso, Douglas Eduardo; Big Data [recurso eletrônico] / Douglas Eduardo Basso, Curitiba: Contentus, 2020.

Informática; O grande livro do Big Data: Um guia prático para tirar seu primeiro projeto de Big Data do papel

I2AI, a conect al Word; Desmistificando Machine Learneing, acessado de https://www.i2ai.org/

Intel IT Center, Guia de planejamento: Introdução à Big Data, como avançar com uma implantação bemsucedida; 2014

Hurwitz, Judith; Big Data para leigos / Judith Hurwitz, Alan Nugent, Dr. Fern Halper, Marcia Kufman – Rio de Janeiro: Alta Books, 2015

Taurion, Cezar; Big Data / Cezar Taurion – Rio de Janeiro: Brasport, 2013

