1 The Vanilla System

First, we present the top-level system, which is easy to understand.

1.1 Grammar

1.2 Declarative Subtyping

 $\Gamma \vdash N \simeq_0^{\leq} M$ Negative equivalence

$$\frac{\Gamma \vdash N \leqslant_0 M \quad \Gamma \vdash M \leqslant_0 N}{\Gamma \vdash N \simeq_0^{\leqslant} M} \quad \text{D0NDEF}$$

 $\Gamma \vdash P \simeq_0^{\leqslant} Q$ Positive equivalence

$$\frac{\Gamma \vdash P \geqslant_0 Q \quad \Gamma \vdash Q \geqslant_0 P}{\Gamma \vdash P \simeq_0^{\varsigma} Q} \quad \text{D0PDEF}$$

 $\Gamma \vdash N \leqslant_0 M$ Negative subtyping

$$\frac{\Gamma \vdash a - \leqslant_0 a -}{\Gamma \vdash P = \circ_0^{\leqslant} Q} \quad \text{D0ShiftU}$$

$$\frac{\Gamma \vdash P = \circ_0^{\leqslant} Q}{\Gamma \vdash \uparrow P \leqslant_0 \uparrow Q} \quad \text{D0ShiftU}$$

$$\frac{\Gamma \vdash P \quad \Gamma \vdash [P/a +] N \leqslant_0 M \quad M \neq \forall \beta^+ . M'}{\Gamma \vdash \forall \alpha^+ . N \leqslant_0 M} \quad \text{D0ForallL}$$

$$\frac{\Gamma, \alpha^+ \vdash N \leqslant_0 M}{\Gamma \vdash N \leqslant_0 \forall \alpha^+ . M} \quad \text{D0ForallR}$$

$$\frac{\Gamma \vdash P \geqslant_0 Q \quad \Gamma \vdash N \leqslant_0 M}{\Gamma \vdash P \to N \leqslant_0 Q \to M} \quad \text{D0Arrow}$$

 $\Gamma \vdash P \geqslant_0 Q$ Positive supertyping

$$\frac{\Gamma \vdash a + \geqslant_0 a +}{\Gamma \vdash N \simeq_0^{\leqslant} M} \quad \text{D0PVar}$$

$$\frac{\Gamma \vdash N \simeq_0^{\leqslant} M}{\Gamma \vdash \downarrow N \geqslant_0 \downarrow M} \quad \text{D0ShiftD}$$

$$\frac{\Gamma \vdash N \quad \Gamma \vdash [N/a -] P \geqslant_0 Q \quad Q \neq \exists \alpha^-. Q'}{\Gamma \vdash \exists \alpha^-. P \geqslant_0 Q} \quad \text{D0ExistsL}$$

$$\frac{\Gamma, \alpha^- \vdash P \geqslant_0 Q}{\Gamma \vdash P \geqslant_0 \exists \alpha^-. Q} \quad \text{D0ExistsR}$$

2 Multi-Quantified System

2.1 Grammar

$$N,\ M$$
 ::= multi-quantiff
$$\begin{vmatrix} \alpha^- \\ | & \uparrow P \\ | & P \rightarrow N \\ | & \forall \alpha^+.N \\ | & (N) & \mathsf{S} \end{vmatrix}$$

2.2 Declarative Subtyping

 $\Gamma \vdash N \simeq M$ Negative equivalence on MQ types

$$\frac{\Gamma \vdash N \leqslant_1 M \quad \Gamma \vdash M \leqslant_1 N}{\Gamma \vdash N \simeq_1^{\leqslant} M} \quad \text{D1NDEF}$$

 $\Gamma \vdash P \simeq_1^{\leq} Q$ Positive equivalence on MQ types

$$\frac{\Gamma \vdash P \geqslant_1 Q \quad \Gamma \vdash Q \geqslant_1 P}{\Gamma \vdash P \simeq_1^{\varsigma} Q} \quad \text{D1PDEF}$$

 $\Gamma \vdash N \leq_1 M$ Negative subtyping

$$\frac{\Gamma \vdash \alpha^{-} \leqslant_{1} \alpha^{-}}{\Gamma \vdash P \leqslant_{1}^{*} Q} \quad D1\text{NVAR}$$

$$\frac{\Gamma \vdash P \approx_{1}^{*} Q}{\Gamma \vdash \uparrow P \leqslant_{1}^{*} \uparrow Q} \quad D1\text{ShiftU}$$

$$\frac{\Gamma \vdash P \geqslant_{1} Q \quad \Gamma \vdash N \leqslant_{1} M}{\Gamma \vdash P \to N \leqslant_{1} Q \to M} \quad D1\text{Arrow}$$

$$\frac{\Gamma, \overrightarrow{\beta^{+}} \vdash P_{i} \quad \Gamma, \overrightarrow{\beta^{+}} \vdash [\overrightarrow{P}/\overrightarrow{\alpha^{+}}]N \leqslant_{1} M}{\Gamma \vdash \forall \overrightarrow{\alpha^{+}}.N \leqslant_{1}^{*} \forall \overrightarrow{\beta^{+}}.M} \quad D1\text{Forall}$$

 $\overline{|\Gamma \vdash P \geqslant_1 Q|}$ Positive supertyping

2.3 Declarative Equivalence

 $|N \simeq_1^D M|$ Negative multi-quantified type equivalence

$$\frac{\alpha^{-} \simeq_{1}^{D} \alpha^{-}}{\alpha^{-} \simeq_{1}^{D} Q} \quad (VAR^{-} \simeq_{1}^{D})$$

$$\frac{P \simeq_{1}^{D} Q}{\uparrow P \simeq_{1}^{D} \uparrow Q} \quad (\uparrow \simeq_{1}^{D})$$

$$\frac{P \simeq_{1}^{D} Q \quad N \simeq_{1}^{D} M}{P \to N \simeq_{1}^{D} Q \to M} \quad (\to \simeq_{1}^{D})$$

$$\frac{\{\overrightarrow{\alpha^+}\} \cap \mathbf{fv} \, M = \varnothing \quad \mu : (\{\overrightarrow{\beta^+}\} \cap \mathbf{fv} \, M) \leftrightarrow (\{\overrightarrow{\alpha^+}\} \cap \mathbf{fv} \, N) \quad N \simeq_1^D [\mu] M}{\forall \overrightarrow{\alpha^+}. N \simeq_1^D \forall \overrightarrow{\beta^+}. M} \quad (\forall^{\simeq_1^D})$$

 $P \simeq_1^D Q$ Positive multi-quantified type equivalence

$$\frac{\overline{\alpha^{+} \simeq_{1}^{D} \alpha^{+}}}{\sqrt[]{N} \simeq_{1}^{D} M} (\bigvee^{\simeq_{1}^{D}})$$

$$\frac{(\overrightarrow{\alpha^{-}}) \cap \mathbf{fv} Q = \varnothing \quad \mu : (\{\overrightarrow{\beta^{-}}\} \cap \mathbf{fv} Q) \leftrightarrow (\{\overrightarrow{\alpha^{-}}\} \cap \mathbf{fv} P) \quad P \simeq_{1}^{D} [\mu] Q}{\exists \overrightarrow{\alpha^{-}} . P \simeq_{1}^{D} \exists \overrightarrow{\beta^{-}} . Q} (\exists^{\simeq_{1}^{D}})$$

3 Algorithm

3.1 Normalization

3.1.1 Ordering

 $\mathbf{ord} \ vars \mathbf{in} \ N = \overrightarrow{\alpha}$

$$\frac{\alpha^{-} \in vars}{\operatorname{ord} vars \operatorname{in} \alpha^{-} = \alpha^{-}} \quad (VAR_{\in}^{-})$$

$$\frac{\alpha^{-} \notin vars}{\operatorname{ord} vars \operatorname{in} \alpha^{-} = \cdot} \quad (VAR_{\notin}^{-})$$

$$\frac{\operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \uparrow P = \overrightarrow{\alpha}} \quad (\uparrow)$$

$$\frac{\operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}_{1} \quad \operatorname{ord} vars \operatorname{in} N = \overrightarrow{\alpha}_{2}}{\operatorname{ord} vars \operatorname{in} P \to N = \overrightarrow{\alpha}_{1}, (\overrightarrow{\alpha}_{2} \setminus \{\overrightarrow{\alpha}_{1}\})} \quad (\to)$$

$$\frac{vars \cap \{\overrightarrow{\alpha^{+}}\} = \varnothing \quad \operatorname{ord} vars \operatorname{in} N = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \bigvee \overrightarrow{\alpha^{+}}.N = \overrightarrow{\alpha}} \quad (\forall)$$

 $\mathbf{ord} \ vars \mathbf{in} \ P = \vec{\alpha}$

$$\frac{\alpha^{+} \in vars}{\operatorname{ord} vars \operatorname{in} \alpha^{+} = \alpha^{+}} \quad (\operatorname{VaR}_{\in}^{+})$$

$$\frac{\alpha^{+} \notin vars}{\operatorname{ord} vars \operatorname{in} \alpha^{+} = \cdot} \quad (\operatorname{VaR}_{\notin}^{+})$$

$$\frac{\operatorname{ord} vars \operatorname{in} N = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \downarrow N = \overrightarrow{\alpha}} \quad (\downarrow)$$

$$\frac{vars \cap \{\overrightarrow{\alpha^{-}}\} = \varnothing \quad \operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \exists \overrightarrow{\alpha^{-}} . P = \overrightarrow{\alpha}} \quad (\exists)$$

 $\mathbf{ord} \ vars \mathbf{in} \ N = \overrightarrow{\alpha}$

$$\frac{}{\mathbf{ord} \, vars \, \mathbf{in} \, \widehat{\alpha}^{-} \{\Delta\} = \cdot} \quad (\mathbf{U} \mathbf{Var}^{-})$$

 $\operatorname{\mathbf{ord}} vars \operatorname{\mathbf{in}} P = \overrightarrow{\alpha}$

$$\overline{\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \widehat{\alpha}^+ \{\Delta\} = \cdot} \quad (\operatorname{UVar}^+)$$

3.1.2 Quantifier Normalization

$$\mathbf{nf}\left(N\right) = M$$

$$\frac{\mathbf{nf}(\alpha^{-}) = \alpha^{-}}{\mathbf{nf}(P) = Q} \quad (\uparrow)$$

$$\frac{\mathbf{nf}(P) = Q}{\mathbf{nf}(\uparrow P) = \uparrow Q} \quad (\uparrow)$$

$$\frac{\mathbf{nf}(P) = Q \quad \mathbf{nf}(N) = M}{\mathbf{nf}(P \to N) = Q \to M} \quad (\to)$$

$$\frac{\mathbf{nf}(N) = N' \quad \mathbf{ord}\{\overrightarrow{\alpha^{+}}\} \mathbf{in} N' = \overrightarrow{\alpha^{+'}}}{\mathbf{nf}(\forall \overrightarrow{\alpha^{+}}.N) = \forall \overrightarrow{\alpha^{+'}}.N'} \quad (\forall)$$

 $\mathbf{nf}\left(P\right) = Q$

$$\frac{\mathbf{nf}(\alpha^{+}) = \alpha^{+}}{\mathbf{nf}(N) = M} \qquad (\downarrow)$$

$$\frac{\mathbf{nf}(N) = M}{\mathbf{nf}(\downarrow N) = \downarrow M} \qquad (\downarrow)$$

$$\underline{\mathbf{nf}(P) = P' \quad \mathbf{ord} \{\overrightarrow{\alpha^{-}}\} \mathbf{in} P' = \overrightarrow{\alpha^{-'}}}$$

$$\underline{\mathbf{nf}(\exists \overrightarrow{\alpha^{-}}.P) = \exists \overrightarrow{\alpha^{-'}}.P'} \qquad (\exists)$$

 $\mathbf{nf}(N) = M$

$$\overline{\mathbf{nf}\left(\widehat{\alpha}^{-}\{\Delta\}\right) = \widehat{\alpha}^{-}\{\Delta\}} \quad \left(\mathbf{U}\mathbf{V}\mathbf{A}\mathbf{R}^{-}\right)$$

 $\mathbf{nf}\left(P\right) = Q$

$$\frac{1}{\mathbf{nf}\left(\widehat{\alpha}^{+}\{\Delta\}\right) = \widehat{\alpha}^{+}\{\Delta\}} \quad \left(\mathbf{U}\mathbf{Var}^{+}\right)$$

3.2 Unification

 $N \stackrel{u}{\simeq} M = \widehat{\sigma}$ Negative unification

$$\frac{\alpha^{-\frac{u}{\simeq}\alpha^{-}} \dashv \cdot \text{UNVAR}}{\frac{P \overset{u}{\simeq} Q \dashv \widehat{\sigma}}{\uparrow P \overset{u}{\simeq} \uparrow Q \dashv \widehat{\sigma}} \text{USHIFTU}} \qquad \frac{P \overset{u}{\simeq} Q \dashv \widehat{\sigma}_{1} \quad N \overset{u}{\simeq} M \dashv \widehat{\sigma}_{2}}{P \rightarrow N \overset{u}{\simeq} Q \rightarrow M \dashv \widehat{\sigma}_{1} \& \widehat{\sigma}_{2}} \qquad \text{UARROW}} \qquad \frac{N \overset{u}{\simeq} M \dashv \widehat{\sigma}}{\forall \alpha^{+}.N \overset{u}{\simeq} \forall \alpha^{+}.M \dashv \widehat{\sigma}} \qquad \text{UFORALL}} \qquad \frac{\text{fv } N \subseteq \{\Delta\}}{\widehat{\alpha}^{-} \{\Delta\} \overset{u}{\simeq} N \dashv (\Delta \vdash \widehat{\alpha}^{-} : \approx N)} \qquad \text{UNUVAR}$$

 $P \stackrel{u}{\simeq} Q = \widehat{\sigma}$ Positive unification

$$\frac{\alpha^{+}\overset{u}{\simeq}\alpha^{+}\dashv\cdot}{\alpha^{+}\overset{u}{\simeq}M\dashv\widehat{\sigma}}\quad\text{UPVAR}$$

$$\frac{N\overset{u}{\simeq}M\dashv\widehat{\sigma}}{\downarrow N\overset{u}{\simeq}\downarrow M\dashv\widehat{\sigma}}\quad\text{USHIFTD}$$

$$\frac{P\overset{u}{\simeq}Q\dashv\widehat{\sigma}}{\exists \overrightarrow{\alpha^{-}}.P\overset{u}{\simeq}\exists \overrightarrow{\alpha^{-}}.Q\dashv\widehat{\sigma}}\quad\text{UEXISTS}$$

$$\frac{\mathbf{fv}\,P\subseteq\{\Delta\}}{\widehat{\alpha}^{+}\{\Delta\}\overset{u}{\simeq}P\dashv(\Delta\vdash\widehat{\alpha}^{+}:\approx P)}\quad\text{UPUVAR}$$

3.3 Algorithmic Subtyping

 $\Gamma \models N \leqslant M \dashv \widehat{\sigma}$ Negative subtyping

 $\Gamma \models P \geqslant Q \dashv \hat{\sigma}$ Positive supertyping

$$\frac{\mathbf{nf}(N) \stackrel{u}{\simeq} \mathbf{nf}(M) \dashv \widehat{\sigma}}{\Gamma \vDash \downarrow N \geqslant \downarrow M \dashv \widehat{\sigma}} \quad \text{ASHIFTD}$$

$$\frac{\mathbf{nf}(N) \stackrel{u}{\simeq} \mathbf{nf}(M) \dashv \widehat{\sigma}}{\Gamma \vDash \downarrow N \geqslant \downarrow M \dashv \widehat{\sigma}} \quad \text{ASHIFTD}$$

$$\frac{\Gamma, \overrightarrow{\beta^-} \vDash [\widehat{\alpha}^- \{\Gamma, \overrightarrow{\beta^-}\} / \alpha^-] P \geqslant Q \dashv \widehat{\sigma}}{\Gamma \vDash \exists \alpha^- . P \geqslant \exists \overrightarrow{\beta^-} . Q \dashv \widehat{\sigma}} \quad \text{AEXISTS}$$

$$\frac{\mathbf{upgrade} \Gamma \vdash \mathbf{nf}(P) \mathbf{to} \Delta = Q}{\Gamma \vDash \widehat{\alpha}^+ \{\Delta\} \geqslant P \dashv (\Delta \vdash \widehat{\alpha}^+ : \geqslant Q)} \quad \text{APUVAR}$$

3.4 Unification Solution Merge

Unification solution is represented by a list of unification solution entries. Each entry restrict an unification variable in two possible ways: either stating that it must be equivalent to a certain type $(\Delta \vdash \hat{\alpha}^+ : \approx P \text{ or } \Delta \vdash \hat{\alpha}^- : \approx N)$ or that it must be a (positive) supertype of a certain type $(\Delta \vdash \hat{\alpha}^+ : \approx P)$.

Definition 1 (Matching Entries). We call two entries matching if they are restricting the same unification variable.

Two matching entries can be merged in the following way:

Definition 2.

 $e_1 \& e_2 = e_3$ Unification Solution Entry Merge

$$\frac{\Gamma \vDash P_1 \lor P_2 = Q}{(\Gamma \vdash \hat{\alpha}^+ : \geqslant P_1) \& (\Gamma \vdash \hat{\alpha}^+ : \geqslant P_2) = (\Gamma \vdash \hat{\alpha}^+ : \geqslant Q)} \quad (\geqslant \& \geqslant)$$

$$\frac{\Gamma \vDash P \geqslant Q \Rightarrow \hat{\sigma}'}{(\Gamma \vdash \hat{\alpha}^+ : \approx P) \& (\Gamma \vdash \hat{\alpha}^+ : \geqslant Q) = (\Gamma \vdash \hat{\alpha}^+ : \approx P)} \quad (\simeq \& \geqslant)$$

$$\frac{\Gamma \vDash Q \geqslant P \Rightarrow \hat{\sigma}'}{(\Gamma \vdash \hat{\alpha}^+ : \geqslant P) \& (\Gamma \vdash \hat{\alpha}^+ : \approx Q) = (\Gamma \vdash \hat{\alpha}^+ : \approx Q)} \quad (\geqslant \& \simeq)$$

$$\frac{(\Gamma \vdash \hat{\alpha}^+ : \approx P) \& (\Gamma \vdash \hat{\alpha}^+ : \approx Q) = (\Gamma \vdash \hat{\alpha}^+ : \approx Q)}{(\Gamma \vdash \hat{\alpha}^+ : \approx P) \& (\Gamma \vdash \hat{\alpha}^+ : \approx P)} \quad (\simeq \& \simeq^+)$$

$$\frac{(\Gamma \vdash \hat{\alpha}^- : \approx N) \& (\Gamma \vdash \hat{\alpha}^- : \approx N) = (\Gamma \vdash \hat{\alpha}^- : \approx N)}{(\Gamma \vdash \hat{\alpha}^- : \approx N) \& (\Gamma \vdash \hat{\alpha}^- : \approx N)} \quad (\simeq \& \simeq^-)$$

To merge two unification solution, we merge each pair of matching entries, and unite the results.

Definition 3. $\hat{\sigma}_1 \& \hat{\sigma}_2 = \{e_1 \& e_2 \mid e_1 \in \hat{\sigma}_1, e_2 \in \hat{\sigma}_2, s.t. \ e_1 \ matches \ with \ e_2\}$

3.5 Least Upper Bound

 $\Gamma \models P_1 \lor P_2 = Q$ Least Upper Bound (Least Common Supertype)

 $\mathbf{upgrade}\,\Gamma \vdash P\,\mathbf{to}\,\Delta = Q$

3.6 Antiunification

$$\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 = (Q, \hat{\sigma}_1, \hat{\sigma}_2)$$

$$\frac{\Gamma \vDash \alpha^{+} \stackrel{a}{\simeq} \alpha^{+} \dashv (\alpha^{+}, \cdot, \cdot)}{\Gamma \vDash N_{1} \stackrel{a}{\simeq} N_{2} \dashv (M, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})} \qquad \text{AUPShift}$$

$$\frac{\Gamma \vDash N_{1} \stackrel{a}{\simeq} N_{2} \dashv (M, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})}{\Gamma \vDash \downarrow N_{1} \stackrel{a}{\simeq} \downarrow N_{2} \dashv (\downarrow M, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})} \qquad \text{AUPShift}$$

$$\frac{\{\overrightarrow{\alpha^{-}}\} \cap \{\Gamma\} = \varnothing \qquad \Gamma \vDash P_{1} \stackrel{a}{\simeq} P_{2} \dashv (Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})}{\Gamma \vDash \exists \overrightarrow{\alpha^{-}}. P_{1} \stackrel{a}{\simeq} \exists \overrightarrow{\alpha^{-}}. P_{2} \dashv (\exists \overrightarrow{\alpha^{-}}. Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})} \qquad \text{AUPEXISTS}$$

 $\Gamma \vDash N_1 \stackrel{a}{\simeq} N_2 = (M, \hat{\sigma}_1, \hat{\sigma}_2)$

$$\frac{\Gamma \vDash \alpha^{-\frac{a}{\cong}} \alpha^{-} \dashv (\alpha^{-}, \cdot, \cdot)}{\Gamma \vDash P_{1} \stackrel{a}{\cong} P_{2} \dashv (Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})} \quad \text{AUNSHIFT}$$

$$\frac{\Gamma \vDash P_{1} \stackrel{a}{\cong} P_{2} \dashv (Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})}{\Gamma \vDash \uparrow P_{1} \stackrel{a}{\cong} \uparrow P_{2} \dashv (\uparrow Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})} \quad \text{AUNSHIFT}$$

$$\frac{\Gamma \vDash P_{1} \stackrel{a}{\cong} P_{2} \dashv (Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2}) \quad \Gamma \vDash N_{1} \stackrel{a}{\cong} N_{2} \dashv (M, \widehat{\sigma}'_{1}, \widehat{\sigma}'_{2})}{\Gamma \vDash P_{1} \rightarrow N_{1} \stackrel{a}{\cong} P_{2} \rightarrow N_{2} \dashv (Q \rightarrow M, \widehat{\sigma}_{1} \cup \widehat{\sigma}'_{1}, \widehat{\sigma}_{2} \cup \widehat{\sigma}'_{2})} \quad \text{AUNARROW}$$

$$\frac{\text{if any other rule is not applicable} \quad \Gamma \vDash N \quad \Gamma \vDash M}{\Gamma \vDash N \stackrel{a}{\cong} M \dashv (\widehat{\alpha}^{-}_{\{N,M\}}, (\Gamma \vDash \widehat{\alpha}^{-}_{\{N,M\}} :\approx N), (\Gamma \vDash \widehat{\alpha}^{-}_{\{N,M\}} :\approx M))} \quad \text{AUNAU}$$

4 Proofs

4.1 Variable Ordering

Definition 4 (Collision free bijection). We say that a bijection $\mu: A \leftrightarrow B$ between sets of variables is **collision free on sets** P and Q if and only if

1.
$$\mu(P \cap A) \cap Q = \emptyset$$

2.
$$\mu(Q \cap A) \cap P = \emptyset$$

Lemma 1 (Soundness of variable ordering). Variable ordering extracts precisely used free variables.

- $\{ \mathbf{ord} \ vars \mathbf{in} \ N \} \equiv vars \cap \mathbf{fv} \ N \ (as \ sets)$
- $+ \{ ord \ vars \ in \ P \} \equiv vars \cap fv \ P \ (as \ sets)$

Proof. Straightforward mutual induction on **ord** vars in $N = \vec{\alpha}$ and **ord** vars in $P = \vec{\alpha}$

Corollary 1 (Additivity of ordering). Variable ordering is additive (in terms of set union) with respect to its first argument.

 $- \{ \mathbf{ord} (vars_1 \cup vars_2) \mathbf{in} N \} \equiv \{ \mathbf{ord} \ vars_1 \mathbf{in} \ N \} \cup \{ \mathbf{ord} \ vars_2 \mathbf{in} \ N \} \ (as \ sets)$

```
+ \{ \mathbf{ord} (vars_1 \cup vars_2) \mathbf{in} P \} \equiv \{ \mathbf{ord} vars_1 \mathbf{in} P \} \cup \{ \mathbf{ord} vars_2 \mathbf{in} P \}  (as sets)
```

Corollary 2 (Weakening of ordering). Extending the first argument of the ordering with unused variables does not change the result.

- $-\operatorname{\mathbf{ord}}(vars \cap \operatorname{\mathbf{fv}} N)\operatorname{\mathbf{in}} N = \operatorname{\mathbf{ord}} vars\operatorname{\mathbf{in}} N$
- + $\operatorname{ord}(vars \cap \operatorname{fv} P) \operatorname{in} P = \operatorname{ord} vars \operatorname{in} P$

Lemma 2 (Distributivity of renaming over variable ordering). Suppose that μ is a bijection between two sets of variables $\mu: A \leftrightarrow B$.

- If μ is collision free on vars and $\mathbf{fv} N$ then $[\mu](\mathbf{ord} \ vars \mathbf{in} \ N) = \mathbf{ord} \ ([\mu] \ vars) \mathbf{in} \ [\mu] N$
- + If μ is collision free on vars and $\mathbf{fv} P$ then $[\mu](\mathbf{ord} \ vars \mathbf{in} P) = \mathbf{ord} ([\mu] \ vars) \mathbf{in} [\mu] P$

Proof. Mutual induction on N and P.

Case 1. $N = \alpha^-$

let us consider four cases:

 $a. \ \alpha^- \in A \text{ and } \alpha^- \in vars$

Then
$$[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^-)$$

$$= [\mu]\alpha^- \qquad \text{by Rule } (\operatorname{Var}_{\epsilon}^+)$$

$$= \beta^- \qquad \text{for some } \beta^- \in B \text{ (notice that } \beta^- \in [\mu] \operatorname{\mathit{vars}})$$

$$= \operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \beta^- \qquad \text{by Rule } (\operatorname{Var}_{\epsilon}^+), \text{ because } \beta^- \in [\mu] \operatorname{\mathit{vars}}$$

$$= \operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} [\mu] \alpha^-$$

b. $\alpha^- \notin A$ and $\alpha^- \notin vars$

Notice that $[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^-) = \cdot \text{ by Rule } (\operatorname{Var}_{\notin}^+)$. On the other hand, $\operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} [\mu] \alpha^- = \operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^- = \cdot \text{ The latter equality is from Rule } (\operatorname{Var}_{\notin}^+)$, because μ is collision free on $\operatorname{\mathit{vars}}$ and $\operatorname{\mathbf{fv}} N$, so $\operatorname{\mathbf{fv}} N \ni \alpha^- \notin \mu(A \cap \operatorname{\mathit{vars}}) \cup \operatorname{\mathit{vars}} \supseteq [\mu] \operatorname{\mathit{vars}}$.

c. $\alpha^- \in A$ but $\alpha^- \notin vars$

Then $[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^-) = \cdot$ by Rule $(\operatorname{Var}_{\notin}^+)$. To prove that $\operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} [\mu] \alpha^- = \cdot$, we apply Rule $(\operatorname{Var}_{\notin}^+)$. Let us show that $[\mu]\alpha^- \notin [\mu] \operatorname{\mathit{vars}}$. Since $[\mu]\alpha^- = \mu(\alpha^-)$ and $[\mu] \operatorname{\mathit{vars}} \subseteq \mu(A \cap \operatorname{\mathit{vars}}) \cup \operatorname{\mathit{vars}}$, it suffices to prove $\mu(\alpha^-) \notin \mu(A \cap \operatorname{\mathit{vars}}) \cup \operatorname{\mathit{vars}}$.

- (i) If there is an element $x \in A \cap vars$ such that $\mu x = \mu \alpha^-$, then $x = \alpha^-$ by bijectivity of μ , which contradicts with $\alpha^- \notin vars$. This way, $\mu(\alpha^-) \notin \mu(A \cap vars)$.
- (ii) Since μ is collision free on vars and $\mathbf{fv} N$, $\mu(A \cap \mathbf{fv} N) \ni \mu(\alpha^-) \notin vars$.
- d. $\alpha^- \notin A$ but $\alpha^- \in vars$

 $\operatorname{\mathbf{ord}}[\mu] \operatorname{vars} \operatorname{\mathbf{in}}[\mu] \alpha^- = \operatorname{\mathbf{ord}}[\mu] \operatorname{vars} \operatorname{\mathbf{in}} \alpha^- = \alpha^-$. The latter is by Rule $(\operatorname{Var}_{\notin}^+)$, because $\alpha^- = [\mu] \alpha^- \in [\mu] \operatorname{vars} \operatorname{\mathbf{since}} \alpha^- \in \operatorname{vars}$. On the other hand, $[\mu](\operatorname{\mathbf{ord}} \operatorname{vars} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{vars} \operatorname{\mathbf{in}} \alpha^-) = [\mu] \alpha^- = \alpha^-$.

```
Case 2. N = \uparrow P
```

$$[\mu](\mathbf{ord}\ vars\ \mathbf{in}\ N) = [\mu](\mathbf{ord}\ vars\ \mathbf{in}\ P)$$

$$= [\mu](\mathbf{ord}\ vars\ \mathbf{in}\ P) \qquad \text{by Rule } (\uparrow)$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]P \qquad \text{by the induction hypothesis}$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ \uparrow [\mu]P \quad \text{by Rule } (\uparrow)$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]\uparrow P \quad \text{by the definition of substitution}$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]N$$

Case 3.
$$N = P \rightarrow M$$

 $[\mu](\mathbf{ord} \ vars \mathbf{in} \ N) = [\mu](\mathbf{ord} \ vars \mathbf{in} \ P \to M)$

where
$$\operatorname{\mathbf{ord}} \operatorname{vars} \operatorname{\mathbf{in}} P = \overrightarrow{\alpha}_1$$
 and $\operatorname{\mathbf{ord}} \operatorname{vars} \operatorname{\mathbf{in}} M = \overrightarrow{\alpha}_2$

$$= [\mu] \overrightarrow{\alpha}_1, [\mu] (\overrightarrow{\alpha}_2 \setminus \{\overrightarrow{\alpha}_1\})$$

$$= [\mu] \overrightarrow{\alpha}_1, ([\mu] \overrightarrow{\alpha}_2 \setminus [\mu] \{\overrightarrow{\alpha}_1\})$$
 by induction on $\overrightarrow{\alpha}_2$; the inductive step is similar to case 1. Notice that μ is collision free on $\{\overrightarrow{\alpha}_1\}$ and $\{\overrightarrow{\alpha}_2\}$ since $\{\overrightarrow{\alpha}_1\} \subseteq \operatorname{vars}$ and $\{\overrightarrow{\alpha}_2\} \subseteq \operatorname{\mathbf{fv}} N$

$$= [\mu] \vec{\alpha}_1, ([\mu] \vec{\alpha}_2 \setminus \{[\mu] \vec{\alpha}_1\})$$

$$(\mathbf{ord} [\mu] vars \mathbf{in} [\mu] N) = (\mathbf{ord} [\mu] vars \mathbf{in} [\mu] P \to [\mu] M)$$

$$= (\vec{\beta}_1, (\vec{\beta}_2 \setminus \{\vec{\beta}_1\})) \qquad \text{where } \mathbf{ord} [\mu] vars \mathbf{in} [\mu] P = \vec{\beta}_1 \text{ and } \mathbf{ord} [\mu] vars \mathbf{in} [\mu] M = \vec{\beta}_2$$
then by the induction hypothesis, $\vec{\beta}_1 = [\mu] \vec{\alpha}_1, \vec{\beta}_2 = [\mu] \vec{\alpha}_2,$

$$= [\mu] \vec{\alpha}_1, ([\mu] \vec{\alpha}_2 \setminus \{[\mu] \vec{\alpha}_1\})$$

Case 4.
$$N = \forall \overrightarrow{\alpha^+}.M$$

 $[\mu](\mathbf{ord}\ vars\ \mathbf{in}\ N) = [\mu]\mathbf{ord}\ vars\ \mathbf{in}\ \forall \overrightarrow{\alpha^+}.M$
 $= [\mu]\mathbf{ord}\ vars\ \mathbf{in}\ M$
 $= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]M$ by the induction hypothesis
 $(\mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]N) = \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]\forall \overrightarrow{\alpha^+}.M$
 $= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ \forall \overrightarrow{\alpha^+}.[\mu]M$
 $= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]M$

Lemma 3 (Completeness of variable ordering). Variable ordering is invariant under equivalence.

- For $N \simeq_1^D M$ and any vars, if ord vars in $N = \vec{\alpha}_1$ and ord vars in $M = \vec{\alpha}_2$, then $\vec{\alpha}_1 = \vec{\alpha}_2$ (as lists)

+ For $P \simeq_1^D Q$ and any vars, if ord vars in $P = \vec{\alpha}_1$ and ord vars in $Q = \vec{\alpha}_2$, then $\vec{\alpha}_1 = \vec{\alpha}_2$ (as lists)

Proof. Mutual induction on $N \simeq_1^D M$ and $P \simeq_1^D Q$.

4.2 Normaliztaion

Lemma 4. Set of free variables is invariant under equivalence.

- If $N \simeq_1^D M$ then $\mathbf{fv} N \equiv \mathbf{fv} M$ (as sets)
- + If $P \simeq_1^D Q$ then $\mathbf{fv} P \equiv \mathbf{fv} Q$ (as sets)

Proof. Straightforward mutual induction on $N \simeq_1^D M$ and $P \simeq_1^D Q$

Lemma 5. Free variables are not changed by the normalization

- $-\mathbf{fv} N \equiv \mathbf{fv} \, \mathbf{nf} \, (N)$
- + $\mathbf{fv} P \equiv \mathbf{fv} \, \mathbf{nf} \, (P)$

Proof. By straightforward induction on $\mathbf{nf}(N) = M$.

Lemma 6 (Commutativity of normalization and renaming). Normalization of a term commutes with renaming. Suppose that μ is a bijection between two sets of variables $\mu: A \leftrightarrow B$. Then

- $-\mathbf{nf}([\mu]N) = [\mu]\mathbf{nf}(N)$
- + $\mathbf{nf}([\mu]P) = [\mu]\mathbf{nf}(P)$

Here equality means alpha-equivalence.

Proof. Mutual induction on N and P.

Case 1.
$$N = \alpha^-$$

 $\mathbf{nf}([\mu]N) = \mathbf{nf}([\mu]\alpha^-) = [\mu]\alpha^-$. The latter follows from the fact that $[\mu]\alpha^-$ is a variable, and thus, Rule (Var⁻) is applicable. $[\mu]\mathbf{nf}(N) = [\mu]\mathbf{nf}(\alpha^-) = [\mu]\alpha^-$.

Case 2. If the type is formed by \rightarrow , \uparrow , or \downarrow , the required equality follows from the congruence of the normalization and substitution, and the induction hypothesis. For example, if $N = P \rightarrow M$ then

$$\begin{aligned} \mathbf{nf} \left([\mu] N \right) &= \mathbf{nf} \left([\mu] (P \to M) \right) \\ &= \mathbf{nf} \left([\mu] P \to [\mu] M \right) & \text{By the congruence of substitution} \\ &= \mathbf{nf} \left([\mu] P \right) \to \mathbf{nf} \left([\mu] M \right) & \text{By the congruence of normalization, i.e. Rule } (\to) \\ &= [\mu] \mathbf{nf} \left(P \right) \to [\mu] \mathbf{nf} \left(M \right) & \text{By the induction hypothesis} \\ &= [\mu] (\mathbf{nf} \left(P \right) \to \mathbf{nf} \left(M \right)) & \text{By the congruence of substitution} \\ &= [\mu] \mathbf{nf} \left(P \to M \right) & \text{By the congruence of normalization} \\ &= [\mu] \mathbf{nf} \left(N \right) & \end{aligned}$$

Case 3.
$$N = \forall \overrightarrow{\alpha^{+}}.M$$

 $[\mu] \mathbf{nf}(N) = [\mu] \mathbf{nf}(\forall \overrightarrow{\alpha^{+}}.M)$
 $= [\mu] \forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}(M)$ Where $\mathbf{ord}(\overrightarrow{\alpha^{+}}) \mathbf{in} \mathbf{nf}(M) = \overrightarrow{\alpha^{+'}}$
 $\mathbf{nf}([\mu]N) = \mathbf{nf}([\mu] \forall \overrightarrow{\alpha^{+}}.M)$
 $= \mathbf{nf}(\forall \overrightarrow{\alpha^{+}}.[\mu]M)$ Assuming $\{\overrightarrow{\alpha^{+}}\} \cap A = \emptyset$ and $\{\overrightarrow{\alpha^{+}}\} \cap B = \emptyset$
 $= \forall \overrightarrow{\beta^{+}}.\mathbf{nf}([\mu]M)$ Where $\mathbf{ord}(\{\overrightarrow{\alpha^{+}}\}) \mathbf{nf}([\mu]M) = \overrightarrow{\beta^{+}}$
 $= \forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}([\mu]M)$ As $\overrightarrow{\beta^{+}} = \overrightarrow{\alpha^{+'}}$ (see below)

Notice that μ is free of collisions on $\{\alpha^+\}$ and $\mathbf{fv} \, \mathbf{nf} \, (M)$ because

(i)
$$\mu(A \cap \{\overrightarrow{\alpha^{+}}\}) \cap \mathbf{fv} \, \mathbf{nf} \, (M) = \emptyset \cap \mathbf{fv} \, \mathbf{nf} \, (M) = \emptyset \, \mathbf{nd}$$

(ii) $\mu(A \cap \mathbf{fv} \, \mathbf{nf} \, (M)) \cap \{\overrightarrow{\alpha^{+}}\} \subseteq B \cap \{\overrightarrow{\alpha^{+}}\} = \emptyset$
 $\overrightarrow{\beta^{+}} = \mathbf{ord} \, \{\overrightarrow{\alpha^{+}}\} \, \mathbf{in} \, \mathbf{nf} \, ([\mu]M)$
 $= \mathbf{ord} \, \{\overrightarrow{\alpha^{+}}\} \, \mathbf{in} \, [\mu] \mathbf{nf} \, (M)$ By the induction hypothesis
 $= \mathbf{ord} \, \{[\mu]\overrightarrow{\alpha^{+}}\} \, \mathbf{in} \, [\mu] \mathbf{nf} \, (M)$ Since $\{\overrightarrow{\alpha^{+}}\} \cap A = \emptyset$
 $= [\mu] \mathbf{ord} \, \{\overrightarrow{\alpha^{+}}\} \, \mathbf{in} \, \mathbf{nf} \, (M)$ by lemma 2
 $= \mathbf{ord} \, \{\overrightarrow{\alpha^{+}}\} \, \mathbf{in} \, \mathbf{nf} \, (M)$ Since $\{\mathbf{ord} \, \{\overrightarrow{\alpha^{+}}\} \, \mathbf{in} \, \mathbf{nf} \, (M)\} \cap A \subseteq \{\overrightarrow{\alpha^{+}}\} \cap A = \emptyset$

To show alpha-equivalence of $[\mu] \forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}(M)$ and $\forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}([\mu]M)$, we can assume that $\{\overrightarrow{\alpha^{+'}}\} \cap A = \emptyset$, and $\{\overrightarrow{\alpha^{+'}}\} \cap B = \emptyset$. Then $[\mu] \forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}(M) = \forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}([\mu]M)$, the latter follows from the induction hypothesis.

Case 4.
$$P = \exists \overrightarrow{\alpha}^-.Q$$

Same as for case 3.

Lemma 7 (Soundness of quantifier normalization).

$$-N \simeq_{1}^{D} \mathbf{nf}(N)$$

$$+ P \simeq_1^D \mathbf{nf}(P)$$

Proof. Mutual induction on $\mathbf{nf}(N) = M$ and $\mathbf{nf}(P) = Q$. Let us consider how this judgment is formed:

Case 1. (Var^-) and (Var^+)

By the corresponding equivalence rules.

Case 2. (\uparrow) , (\downarrow) , and (\rightarrow)

By the induction hypothesis and the corresponding congruent equivalence rules.

Case 3. (\forall) , i.e. $\mathbf{nf}(\forall \overrightarrow{\alpha^+}. N) = \forall \overrightarrow{\alpha^+}'. N'$

From the induction hypothesis, we know that $N \cong_{1}^{D} N'$. In particular, by lemma 4, $\mathbf{fv} N \equiv \mathbf{fv} N'$. Then by lemma 1, $\{\overrightarrow{\alpha^{+'}}\} \equiv \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} N' \equiv \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} N$, and thus, $\{\overrightarrow{\alpha^{+'}}\} \cap \mathbf{fv} N' \equiv \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} N$.

To prove $\forall \overrightarrow{\alpha^+}. N \simeq_1^D \forall \overrightarrow{\alpha^+}'. N'$, it suffices to provide a bijection $\mu : \{\overrightarrow{\alpha^+}'\} \cap \mathbf{fv} \ N' \leftrightarrow \{\overrightarrow{\alpha^+}\} \cap \mathbf{fv} \ N$ such that $N \simeq_1^D [\mu] N'$. Since these sets are equal, we take $\mu = id$.

Case 4. (\exists) Same as for case 3.

Lemma 8 (Completeness of quantified normalization). Normalization returns the same representative for equivalent types.

- If
$$N \simeq_1^D M$$
 then $\mathbf{nf}(N) = \mathbf{nf}(M)$

+ If
$$P \simeq_1^D Q$$
 then $\mathbf{nf}(P) = \mathbf{nf}(Q)$

(Here equality means alpha-equivalence)

9

Proof. Mutual induction on $N \simeq_1^D M$ and $P \simeq_1^D Q$.

Case 1.
$$(\forall^{\simeq_1^D})$$

From the definition of the normalization,

- $\mathbf{nf}(\forall \overrightarrow{\alpha^+}.N) = \forall \overrightarrow{\alpha^+}'.\mathbf{nf}(N) \text{ where } \overrightarrow{\alpha^+}' \text{ is } \mathbf{ord}\{\overrightarrow{\alpha^+}\}\mathbf{in}\,\mathbf{nf}(N)$
- $\mathbf{nf}(\forall \overrightarrow{\beta^+}.M) = \forall \overrightarrow{\beta^{+\prime}}.\mathbf{nf}(M)$ where $\overrightarrow{\beta^{+\prime}}$ is $\mathbf{ord}\{\overrightarrow{\beta^+}\}$ in $\mathbf{nf}(M)$

Let us take $\mu: (\{\overrightarrow{\beta^+}\} \cap \mathbf{fv} M) \leftrightarrow (\{\overrightarrow{\alpha^+}\} \cap \mathbf{fv} N)$ from the inversion of the equivalence judgment. Notice that from lemmas 1 and 5, the domain and the codomain of μ can be written as $\mu: \{\overrightarrow{\beta^{+'}}\} \leftrightarrow \{\overrightarrow{\alpha^{+'}}\}$.

To show the alpha-equivalence of $\forall \overrightarrow{\alpha^{+\prime}}$.**nf** (N) and $\forall \overrightarrow{\beta^{+\prime}}$.**nf** (M), it suffices to prove that (i) $[\mu]$ **nf** $(M) = \mathbf{nf}(N)$ and (ii) $[\mu]\overrightarrow{\beta^{+\prime}} = \overrightarrow{\alpha^{+\prime}}$.

(i) $[\mu]\mathbf{nf}(M) = \mathbf{nf}([\mu]M) = \mathbf{nf}(N)$. The first equality holds by lemma 6, the second—by the induction hypothesis.

(ii)
$$[\mu]\overrightarrow{\beta^{+\prime}} = [\mu]\operatorname{ord}\{\overrightarrow{\beta^{+}}\}\operatorname{in}\operatorname{nf}(M)$$
 by the definition of $\overrightarrow{\beta^{+\prime}}$ $= [\mu]\operatorname{ord}(\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M)\operatorname{in}\operatorname{nf}(M)$ from lemma 5 and corollary 2 $= \operatorname{ord}[\mu](\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M)\operatorname{in}[\mu]\operatorname{nf}(M)$ by lemma 2, because $\{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N \cap \operatorname{fv}\operatorname{nf}(M) \subseteq \{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} M = \emptyset$ and $\{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N \cap (\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M) \subseteq \{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} M = \emptyset$ $= \operatorname{ord}[\mu](\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M)\operatorname{in}\operatorname{nf}(N)$ since $[\mu]\operatorname{nf}(M) = \operatorname{nf}(N)$ is proved $= \operatorname{ord}(\{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N)\operatorname{in}\operatorname{nf}(N)$ because μ is a bijection between $\{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N$ and $\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M = \emptyset$ by the definition of $\overrightarrow{\alpha^{+\prime}}$

Case 2. $(\exists^{\succeq_1^D})$ Same as for case 1.

Case 3. Other rules are congruent, and thus, proved by the corresponding congruent alpha-equivalence rule, which is applicable by the induction hypothesis.

4.3 Subtyping

Lemma 9 (Shape of the supertypes). Let us define the set of upper bounds of a positive type $\mathsf{UB}(P)$ in the following way: