## **Markov Modelle**

#### **Markov Modelle**



16. Juni 2017

Modelle für zeitlich voneinander abhängende Zustände und sich daraus ergebende Sequenzen:

$$\mathbf{\omega}^{T} = \{\omega(1), \omega(2), \dots, \omega(T)\}$$

Markov Modelle erster Ordnung:

Zustand zum Zeitpunkt *t* +1 hängt vom Zustand zum Zeitpunkt *t* ab. Abhängigkeit wird beschrieben durch Übergangswahrscheinlichkeiten

$$P\left(\omega_{j}\left(t+1\right)|\omega_{i}\left(t\right)\right)=a_{ij}$$

Wie groß ist  $P(\boldsymbol{\omega}^T | \boldsymbol{\theta})$ ?

#### **Markov Modelle**



16. Juni 2017

#### **Antwort:**

 $P\left(\mathbf{\omega}^{T} \mid \mathbf{\theta}\right)$ ergibt sich als Produkt der beteiligten Übergangswahrscheinlichkeiten  $a_{ij}$  und der Startwahrscheinlichkeiten  $P\left(\omega\left(1\right) = \omega_{i}\right)$ 

Bemerkung: Die Darstellung wird etwas einfacher, wenn wir einen festgelegten Startzustand  $\omega(0)$  definieren, mit:  $P(\omega(0) = \omega_0) = 1$ 

## Markov Modell erster Ordnung:



**FIGURE 3.8.** The discrete states,  $\omega_i$ , in a basic Markov model are represented by nodes, and the transition probabilities,  $a_{ij}$ , are represented by links. In a first-order discrete-time Markov model, at any step t the full system is in a particular state  $\omega(t)$ . The state at step t+1 is a random function that depends solely on the state at step t and the transition probabilities. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

#### **Hidden Markov Models**



16. Juni 2017

#### **Hidden Markov Model:**

Die Zustände sind nicht beobachtbar, sondern nur daraus mit bestimmter Wahrscheinlichkeit  $P(v_k(t)|\omega_j(t)) = b_{jk}$  folgende visible states:

$$\mathbf{V}^{T} = \left\{ v(1), v(2), \dots, v(T) \right\}$$



#### Hidden Markov Model:



FIGURE 3.9. Three hidden units in an HMM and the transitions between them are shown in black while the visible states and the emission probabilities of visible states are shown in red. This model shows all transitions as being possible; in other HMMs, some such candidate transitions are not allowed. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

#### **Hidden Markov Models**



16. Juni 2017

Hidden Markov Models werden z.B. zur Spracherkennung eingesetzt.

Drei interessante Probleme:

- 1. Bewertungsproblem: Bestimme  $P(\mathbf{V}^T \mid \mathbf{\theta})$ , gegeben:  $\mathbf{V}^T$ ,  $a_{ij}$ ,  $b_{jk}$
- 2. Dekodierungsproblem: Bestimme wahrscheinlichste Folge  $\mathbf{\omega}^T$ , gegeben:  $\mathbf{V}^T$
- 3. Lernproblem: Bestimme  $a_{ij}, b_{jk}$ , gegeben Menge von Trainingsdaten  $\{\mathbf{V}^T_n\}$



### 1. Bewertungsproblem:

$$P\left(\mathbf{V}^{T} \mid \mathbf{\theta}\right) = \sum_{r=1}^{r_{\text{max}}} P\left(\mathbf{V}^{T} \mid \mathbf{\omega}_{r}^{T}\right) P\left(\mathbf{\omega}_{r}^{T}\right)$$

Summe über alle möglichen Folgen, die Beobachtung hervorgerufen haben könnten.

Anzahl der möglichen Zustände: c

Anzahl der möglichen Folgen:  $r_{\text{max}} = c^T$ 

## **HMM:** Bewertung



16. Juni 2017

Es gilt: 
$$P\left(\boldsymbol{\omega}_{r}^{T}\right) = \prod_{t=1}^{T} P\left(\omega\left(t\right) \mid \omega\left(t-1\right)\right)$$

(Produkt der verschiedenen  $a_{ii}$ )

und: 
$$P\left(\mathbf{V}^{T} \mid \boldsymbol{\omega}_{r}^{T}\right) = \prod_{t=1}^{T} P\left(v\left(t\right) \mid \omega\left(t\right)\right)$$

(Produkt der verschiedenen  $b_{jk}$ )

Insgesamt erhalten wir also:

$$P\left(\mathbf{V}^{T} \mid \mathbf{\theta}\right) = \sum_{r=1}^{r_{\text{max}}} \prod_{t=1}^{T} P\left(v\left(t\right) \mid \omega\left(t\right)\right) P\left(\omega\left(t\right) \mid \omega\left(t-1\right)\right)$$

Dabei ist normalerweise

$$\omega(T) = \omega_0; a_{00} = 1$$
 (absorbierender Zustand)

## Berechnungsaufwand:

$$P\left(\mathbf{V}^{T} \mid \mathbf{\theta}\right) = \sum_{r=1}^{r_{\text{max}}} \prod_{t=1}^{T} P\left(v\left(t\right) \mid \omega\left(t\right)\right) P\left(\omega\left(t\right) \mid \omega\left(t-1\right)\right)$$

$$\left|O\left(c^TT\right)\right|$$

Beispiel: c=10, T=20, 10<sup>21</sup> Berechnungen!

Viel besser: Forward Algorithmus

Wir definieren und berechnen rekursiv:

$$\alpha_{j}(t) = \begin{cases} 0 & t = 0, j \neq \text{Anfangszustand} \\ 1 & t = 0, j = \text{Anfangszustand} \\ \left[\sum_{i} \alpha_{i}(t-1)a_{ij}\right]b_{jk}\left(v(t) = v_{k}\right) & \text{sonst} \end{cases}$$

Aufwand: 
$$O(c^2T)$$

Beispiel: c=10, T=20, 2000 Berechnungen!

## **HMM:** Bewertung



16. Juni 2017

# Forward Algorithmus



**FIGURE 3.10.** The computation of probabilities by the Forward algorithm can be visualized by means of a trellis—a sort of "unfolding" of the HMM through time. Suppose we seek the probability that the HMM was in state  $\omega_2$  at t=3 and generated the observed visible symbol up through that step (including the observed visible symbol  $v_k$ ). The probability the HMM was in state  $\omega_j(t=2)$  and generated the observed sequence through t=2 is  $\alpha_j(2)$  for  $j=1,2,\ldots,c$ . To find  $\alpha_2(3)$  we must sum these and multiply the probability that state  $\omega_2$  emitted the observed symbol  $v_k$ . Formally, for this particular illustration we have  $\alpha_2(3)=b_{2k}\sum_{j=1}^c\alpha_j(2)a_{j2}$ . From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.



# Forward Algorithmus Beispiel: (Start mit $\omega_1$ )



$$\mathbf{V}^{5} = \{v_{3}, v_{1}, v_{3}, v_{2}, v_{0}\}$$





 $V_3$ 

t =















### **HMM:** Bewertung



16. Juni 2017

Mustererkennung mit HMM:

Für jede Kategorie ein HMM, berechne alle Wahrscheinlichkeiten, dann Bayes:

$$P\left(\mathbf{\theta} \mid \mathbf{V}^{T}\right) = \frac{P\left(\mathbf{V}^{T} \mid \mathbf{\theta}\right) P\left(\mathbf{\theta}\right)}{P\left(\mathbf{V}^{T}\right)}$$



# Bei Spracherkennung vereinfachtes Modell: left-to-right HMM



**FIGURE 3.11.** A left-to-right HMM commonly used in speech recognition. For instance, such a model could describe the utterance "viterbi," where  $\omega_1$  represents the phoneme  $\langle v/, \omega_2 \rangle$  represents  $\langle i/, \ldots, \rangle$  and  $\omega_0$  a final silent state. Such a left-to-right model is more restrictive than the general HMM in Fig. 3.9 because it precludes transitions "back" in time. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.



## 2. Dekodierungsproblem

Dekodierung mit Forward-Algorithmus:

Gegeben:  $V^T$ 

Wir können wieder berechnen:

$$\alpha_{j}(t) = \left[\sum_{i} \alpha_{i}(t-1)a_{ij}\right]b_{jk}(v(t) = v_{k})$$

und dann das  $\omega_j$  auswählen, das zum maximalen  $\alpha_j(t)$  gehört. Wir erhalten eine Sequenz von Zuständen  $\omega^T$ , die allerdings nicht unbedingt erlaubt sein muss.

#### **Hidden Markov Models**



16. Juni 2017

# Forward Algorithmus



**FIGURE 3.10.** The computation of probabilities by the Forward algorithm can be visualized by means of a trellis—a sort of "unfolding" of the HMM through time. Suppose we seek the probability that the HMM was in state  $\omega_2$  at t=3 and generated the observed visible symbol up through that step (including the observed visible symbol  $v_k$ ). The probability the HMM was in state  $\omega_j(t=2)$  and generated the observed sequence through t=2 is  $\alpha_j(2)$  for  $j=1,2,\ldots,c$ . To find  $\alpha_2(3)$  we must sum these and multiply the probability that state  $\omega_2$  emitted the observed symbol  $v_k$ . Formally, for this particular illustration we have  $\alpha_2(3)=b_{2k}\sum_{j=1}^c\alpha_j(2)a_{j2}$ . From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

## **HMM** - Dekodierung



16. Juni 2017

Dekodierung mit Forward-Algorithmus



**FIGURE 3.12.** The decoding algorithm finds at each time step t the state that has the highest probability of having come from the previous step and generated the observed visible state  $v_k$ . The full path is the sequence of such states. Because this is a local optimization (dependent only upon the single previous time step, not the full sequence), the algorithm does not guarantee that the path is indeed allowable. For instance, it might be possible that the maximum at t=5 is  $\omega_1$  and at t=6 is  $\omega_2$ , and thus these would appear in the path. This can even occur if  $a_{12}=P(\omega_2(t+1)|\omega_1(t))=0$ , precluding that transition. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

## Backward-Algorithmus:

Analog zu den  $\alpha_i(t)$  beim Forward-Algorithmus definieren wir  $\beta_i(t)$  für eine Sequenz  $\mathbf{V}^T$ als Wahrscheinlichkeit, dass sich das Modell, wenn es sich im Zustand  $\omega_i(t)$  befindet, den Rest der gegebenen sichtbaren Sequenz produziert:

$$\beta_{i}(t) = \begin{cases} 1 & t = T+1; i = c+1 \\ 0 & t = T+1; i \neq c+1 \\ a_{i,c+1} & t = T \\ \sum_{j} \beta_{j} (t+1) a_{ij} b_{jk} \left( v(t+1) = v_{k} \right) & \text{sonst} \end{cases}$$
 Dabei ist  $a_{i,c+1}$  die Wahrscheinlichkeit für Zustand  $\omega_{i}$ , der letzte Zustand der Sequenz vor dem einde

Dabei ist  $a_{i,c+1}$  die Wahrscheinlichkeit für Zustand  $\omega_i$ , der letzte Zustand der Sequenz vor dem eindeutig definierten Endzustand  $\omega_{c+1}$  zu sein.



#### Viterbi-Dekoder

Wir berechnen rekursiv die Wahrscheinlichkeit  $\phi_j(t)$  für den wahrscheinlichsten Pfad, der mit  $v(t) = v_k$  endet und den vorherigen wahrscheinlichsten Pfad einschließt:

$$\phi_{j}(t) = \begin{cases} 0 & t = 0, j \neq 0 \\ 1 & t = 0, j = 0 \\ b_{jk}(v(t) = v_{k}) \max_{i} \left[\phi_{i}(t-1)a_{ij}\right] & \text{sonst} \end{cases}$$

#### HMM – Viterbi-Dekoder



16. Juni 2017

Achtung: in den folgenden Folien wird eine etwas andere Nomenklatur verwendet.

405















Save each of the N=4 maximum probabilities in the vector  $\delta_t$ Save the state at t=0 in each retained path in the vector  $\Psi_t$ 





choose path ending in  $Q_0$  having highest probability at t = 2.





choose path ending in  $Q_1$  having highest probability at t = 2.





choose path ending in  $Q_2$  having highest probability at t = 2.





choose path ending in  $Q_3$  having highest probability at t = 2.





Save each of the N = 4 maximum probabilities in the vector  $\delta_2$ Save the state at t = 1 in each retained path in the vector  $\Psi_1$ 



continue until t = T-1

final probabilities





- •maximum final probability defines best path
- •must backtrack through the  $\Psi_t$  to find it

final probabilities





## HMM - Auswertung - Dekodierung



16. Juni 2017

Aus numerischen Gründen rechnet man beim Viterbi-Dekoder statt mit den Wahrscheinlichkeiten mit den Logarithmen davon

- Warum?
- Wie?
- Können wir bei Forward- und Backward-Algorithmus auch mit Logarithmen rechnen?



#### Forward-Rekursion:

$$\alpha_{j}(t) = \begin{cases} 0 & t = 0, j \neq 0 \\ 1 & t = 0, j = 0 \\ \left[\sum_{i} \alpha_{i}(t-1)a_{ij}\right]b_{jk} & \text{sonst; } v(t) = v_{k} \end{cases}$$

## Logarithmieren und exponenzieren:

$$\alpha'_{j}(t) = \begin{cases} -\infty & t = 0, j \neq 0 \\ 0 & t = 0, j = 0 \end{cases}$$

$$\log\left[\sum_{i} a_{ij} e^{\alpha'_{i}(t-1) - \overline{\alpha}'(t-1)}\right] + \log b_{jk} + \overline{\alpha}'(t-1) & \text{sonst; } v(t) = v_{k} \end{cases}$$

Beispiel: Dishonest Casino

Fairer Würfel: 
$$P(n) = \frac{1}{6}$$

Gezinkter Würfel: 
$$P(6) = 0.5; P(n; n \neq 6) = 0.1$$

Wahrscheinlichkeiten für Wechsel:

Fair -> gezinkt: 0.05

Gezinkt -> fair: 0.1



Aus: Durbin, Eddy, Krough, Mitchison: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998., nach Skript zu Shamir: Algorithms for Molecular Biology Tel-Aviv 2001

#### HMM – Viterbi-Dekoder



16. Juni 2017

# Ergebnis mit Viterbi-Dekoder: 300 Würfe , L=Loaded (gezinkt) F=Fair

| Rolls<br>Die<br>Viterbi | 315116246446644245311321631164152133625144543631656626566666<br>FFFFFFFFFFFFFFFFFFFFFFFFFFF           |
|-------------------------|-------------------------------------------------------------------------------------------------------|
| Rolls<br>Die<br>Viterbi | 651166453132651245636664631636663162326455236266666625151631<br>LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLL |
| Rolls<br>Die<br>Viterbi | 222555441666566563564324364131513465146353411126414626253356<br>FFFFFFFFLLLLLLLLLLFFFFFFFFFFFFFFFFFFF |
| Rolls<br>Die<br>Viterbi | 366163666466232534413661661163252562462255265252266435353336<br>LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFF   |
| Rolls<br>Die<br>Viterbi | 233121625364414432335163243633665562466662632666612355245242<br>FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF       |

#### Beispiel Spracherkennung



**Figure 7.8** Single automaton made from the words *I*, *need*, *on*, and *the*. The arcs between words have probabilities computed from Figure 7.7. For lack of space the figure only shows a few of the between-word arcs.



## Beispiel Spracherkennung; Ergebnisse



**Figure 7.10** The entries in the individual state columns for the Viterbi algorithm. Each cell keeps the probability of the best path so far and a pointer to the previous cell along that path. Backtracing from the successful last word (*the*), we can reconstruct the word sequence *I need the*.

# **HMM – Posterior Decoding**



16. Juni 2017

Durch Kombinieren der Forward und Backward Algorithmen können wir, wenn die ganze Sequenz  $\mathbf{V}^T$  bekannt ist, die gesamte Wahrscheinlichkeit berechnen, dass das System zum Zeitpunkt t im Zustand  $\omega_i$  war:

$$P\left(\omega_{i}\left(t\right)|\mathbf{V}^{T}\right) = \frac{\alpha_{i}\left(t\right)\beta_{i}\left(t\right)}{P\left(\mathbf{V}^{T}\right)}$$

wobei:  $P(\mathbf{V}^T) = \alpha (T+1) = \beta (0) = \sum_i \alpha_i(t) \beta_i(t)$ (was ist wohl  $\alpha (T+1)$  und  $\beta (0)$ ?)

#### **Antwort:**

$$\alpha (T+1) = \alpha_{c+1} (T+1) = \left[ \sum_{i} \alpha_{i} (T) a_{i,end} \right]; a_{i,end} = a_{i,c+1}$$

 $a_{i, \mathrm{end}}$  ist die Wahrscheinlichkeit für Zustand  $\omega_i$  der letzte Zustand einer Sequenz zu sein.

$$\beta(0) = \beta_0(0) = \sum_{j} \beta_j(1) a_{0j} b_{jk} (v(1) = v_k)$$

 $a_{0j}$  ist die Wahrscheinlichkeit, dass eine Sequenz mit Zustand  $\omega_i$  beginnt

## **HMM – Posterior Decoding**



16. Juni 2017

Beispiel: Dishonest Casino





#### 3. Lernproblem:

Wie bestimmt man aus Trainingsdaten die  $a_{ij}$ ,  $b_{jk}$ ?

Forward-Backward- oder Baum-Welch- Algorithmus (Leonard E. Baum und Lloyd R. Welch, 1970)

#### **Hidden Markov Models – Lernen**



16. Juni 2017

Problem wäre einfach, wenn zusätzlich zu den  $\mathbf{V}^{T(l)}$  auch die Sequenzen der versteckten Zustände  $\mathbf{\omega}^{T(l)}$  bekannt wären:

- Auszählen für alle  $\mathbf{V}^{T(l)}$  und alle t:
  - Anzahl  $A_{ij}$  der Übergänge von  $\omega_i\left(t\right) \rightarrow \omega_j\left(t+1\right)$
  - Anzahl  $B_{jk}$  der sichtbaren Zustände  $v_k(t)$  bei verstecktem Zustand  $\omega_j(t)$
- Dann Maximum Likelihood Schätzung:

$$a_{ij} = \frac{A_{ij}}{\sum_{q} A_{iq}} \qquad b_{jk} = \frac{B_{jk}}{\sum_{l} B_{jl}}$$

#### HMM - Baum-Welch



16. Juni 2017

Nun der Forward-Backward- oder Baum-Welch-Algorithmus:

Der Algorithmus ist ein Expectation-Maximization-Algorithmus:

Wir fangen mit einem beliebigen Modell ( $a_{ij}$ ,  $b_{jk}$ ) an und berechnen die Erwartungswerte von  $A_{ij}$  und  $B_{jk}$  unter der Voraussetzung, dass dieses Modell stimmt.

Dann berechnen wir daraus iterativ neue  $a_{ij}$  und  $b_{jk}$ .

#### HMM - Baum-Welch



16. Juni 2017

Für die Wahrscheinlichkeit eines Übergangs vom Zustand  $\omega_i(t-1)$  in den Zustand  $\omega_j(t)$  erhalten wir (Sequenz  $\mathbf{V}^T$ ):

$$\gamma_{ij}(t) = \frac{\alpha_i(t-1)a_{ij}b_{jk}(v(t) = v_k)\beta_j(t)}{P(\mathbf{V}^T \mid \mathbf{\theta})} = \frac{\gamma'_{ij}(t)}{P(\mathbf{V}^T \mid \mathbf{\theta})}$$

Wobei  $P(\mathbf{V}^T | \mathbf{\theta})$  die Wahrscheinlichkeit ist, dass das Modell die sichtbare Sequenz  $\mathbf{V}^T$  auf irgendeinem Pfad erzeugt hat.

Dann bekommen wir, wenn wir eine Menge von Trainingssequenzen  $\mathbf{V}^{T(l)}$  betrachten, als Erwartungswert (das hochgestellte, in Klammern stehende l bezeichnet die Nummer der Trainingssequenz):

$$A_{ij} = \sum_{l} \sum_{t=1}^{T(l)+1} \gamma_{ij}^{(l)}(t)$$

$$= \sum_{l} \frac{1}{P(\mathbf{V}^{T(l)} | \mathbf{\theta})} \sum_{t=1}^{T(l)+1} \alpha_{i}^{(l)}(t-1) a_{ij} b_{jk} (v^{(l)}(t) = v_{k}) \beta_{j}^{(l)}(t)$$

$$= \sum_{l} \frac{1}{P(\mathbf{V}^{T(l)} | \mathbf{\theta})} \sum_{t=1}^{T(l)+1} \gamma'_{ij}^{(l)}(t)$$

Die Gesamtwahrscheinlichkeit für  $\mathbf{V}^{T(l)}$  kann man schreiben als

$$P\left(\mathbf{V}^{T(l)} \mid \boldsymbol{\theta}\right) = \sum_{i} \sum_{j} \gamma_{ij}^{\prime(l)}(t) = \frac{1}{T(l)+1} \sum_{i} \sum_{j} \sum_{t=1}^{T(l)+1} \gamma_{ij}^{\prime(l)}(t)$$

Schreiben wir für  $\sum_{t=1}^{T(l)+1} \gamma_{ij}^{\prime(l)}(t) = A_{ij}^{(l)}$ , so erhalten wir:

$$A_{ij} = \sum_{l} \frac{T(l) + 1}{\sum_{m} \sum_{n} A_{mn}^{(l)}} A_{ij}^{(l)}$$

Die Maximum likelihood Schätzung für das neue  $a_{ii}$  ist:

$$\hat{a}_{ij} = \frac{A_{ij}}{\sum_{q} A_{iq}}$$

Betrachten wir nur *eine* Folge (mehrere können u. U. zu einer zusammengefasst werden), so können wir durch  $P(\mathbf{V}^{T(l)} | \mathbf{\theta})$  kürzen:

$$\hat{a}_{ij} = \frac{A_{ij}}{\sum_{q} A_{iq}} = \frac{A_{ij}^{(1)}}{\sum_{q} A_{iq}^{(1)}}$$

# Schätzung der b<sub>ik</sub>:

Wir berechnen die den Erwartungswert für die Anzahl der Fälle, in denen sich das System im Zustand  $\omega_j$  befindet:

$$\sum_{t} P(\omega_{j}(t)|\mathbf{V}^{T},\mathbf{\theta}) = \frac{1}{P(\mathbf{V}^{T}|\mathbf{\theta})} \sum_{t} \alpha_{j}(t)\beta_{j}(t)$$

$$= \frac{1}{P(\mathbf{V}^{T}|\mathbf{\theta})} \sum_{t} \sum_{m} \alpha_{m}(t-1)a_{mj}b_{jk}(v(t) = v_{k})\beta_{j}(t)$$

$$= \frac{1}{P(\mathbf{V}^{T}|\mathbf{\theta})} \sum_{t} \sum_{m} \gamma'_{mj}(t)$$

Dann schränken wir ein auf visible state  $v_k$ :

$$\sum_{t} P(\omega_{j}(t), v_{k}(t) | \mathbf{V}^{T}, \mathbf{\theta}) = \sum_{t; v(t)=v_{k}} \alpha_{j}(t) \beta_{j}(t)$$

und erhalten:

$$B_{jk} = \sum_{l} \frac{1}{P(\mathbf{V}^{T(l)} | \mathbf{\theta})} \sum_{t; v(t) = v_k} \alpha_j^{(l)}(t) \beta_j^{(l)}(t)$$
$$= \sum_{l} \frac{1}{P(\mathbf{V}^{T(l)} | \mathbf{\theta})} \sum_{t; v(t) = v_k} \sum_{m} \gamma'_{mj}(t)$$

Wieder schreiben wir abkürzend:

$$B_{jk}^{(l)} = \sum_{t;v(t)=v_k} \alpha_j^{(l)}(t) \beta_j^{(l)}(t) = \sum_{t;v(t)=v_k} \sum_m \gamma'_{mj}(t)$$

Die neuen  $b_{jk}$  berechnen wir wieder wie im Fall bekannter innerer Zustände (s. o.):

$$\hat{b}_{jk} = \frac{B_{jk}}{\sum_{q} B_{jq}}$$

Auch hier können wir wieder den Fall betrachten, dass nur *eine* Folge  $\mathbf{V}^{T(1)}$  (mehrere können u. U. zu einer zusammengefasst werden) gelernt werden soll, und können dann durch  $P\left(\mathbf{V}^{T(1)} \mid \mathbf{\theta}\right)$  kürzen:

$$\hat{b}_{jk} = \frac{B_{jk}}{\sum_{q} B_{jq}} = \frac{B_{jk}^{(1)}}{\sum_{q} B_{jq}^{(1)}}$$

#### HMM - Baum-Welch



16. Juni 2017

# Anschließend wird so lange iteriert, bis

- die Parameter  $a_{ij}$  und  $b_{jk}$  sich nicht mehr stark ändern, oder
- Die Wahrscheinlichkeit, dass die Trainingsseqenzen vom Modell erzeugt wurden, einen Mindestwert überschreitet.