# Data Science for Economists Introduction to Machine Learning

Mox Ballo

University of the Philippines

April 23, 2025



University of the Philippines

- 1 Introduction to Machine Learning
- 2 Components of Learning
- 3 Types of Learning
- 4 Learning Feasibility
- **6** Error and Noise

- 1 Introduction to Machine Learning
- Components of Learning
- 3 Types of Learning
- 4 Learning Feasibility
- **6** Error and Noise

#### Overview

- Learning = improving performance at a task through experience
- Formal set-up: input x, output y, unknown target function f
- Goal: learn an approximation g(x) using data
- Example: Forecasting electricity demand from past weather and consumption

- Inputs:  $x \in \mathcal{X}$  observed variables (e.g., hour, weather, previous demand)
- Outputs:  $y \in \mathcal{Y}$  quantity to predict (e.g., next-hour electricity load)
- Input Space:  $\mathcal{X}$  all possible combinations of input features
- Output Space:  $\mathcal{Y}$  all valid values the output can take
- Unknown Target Function:  $f: \mathcal{X} \to \mathcal{Y}$  true, hidden mapping
- Learning Objective: Find an approximation  $g \in \mathcal{H}$  such that  $g(x) \approx f(x)$

- Demand forecasting: Predict electricity load based on time, weather, and historical usage
- Price elasticity estimation: Learn how quantity demanded responds to price changes using observed market data
- Consumer choice modeling: Predict product choice given consumer attributes and product features

- 2 Components of Learning
- 3 Types of Learning
- 4 Learning Feasibility
- **5** Error and Noise

**Problem:** Predict hourly electricity demand to optimize production.

- **Vector of Inputs**  $(x_n)$ : hour of day, day of week, temperature, humidity, historical consumption
- Input Space (X):

$$\mathcal{X} = \{0\text{-}23\} \times \{\mathsf{Mon}\text{-}\mathsf{Sun}\} \times \mathbb{R}^+ \times [0,100] \times \mathbb{R}^+$$

## Output and Hypothesis Space

- Output  $(y_n)$ : The observed electricity demand, e.g. in megawatts (MW), at time n.
- Output Space  $(\mathcal{Y})$ : Since demand cannot be negative, we model outputs in the space of non-negative real numbers:  $\mathcal{Y} = \mathbb{R}^+$ .
- Hypothesis Space ( $\mathcal{H}$ ): The set of functions  $g: \mathcal{X} \to \mathcal{Y}$ that map input features (e.g., time of day, weather) to a predicted demand value.
  - Linear models:  $\mathcal{H} = \{g(x) = \mathbf{w}^{\top} x\}$
  - Polynomial regression:  $\mathcal{H}$  includes higher-order terms to capture nonlinear trends.
  - Nonparametric models: GAMs or decision trees allow more flexible hypothesis spaces.

- **Goal**: Use training data  $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$  to choose a hypothesis  $g \in \mathcal{H}$  that approximates the unknown target function f.
- Learning Algorithm (A): A systematic procedure that selects the final hypothesis:

$$g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$$

- Examples for electricity demand:
  - Linear regression (OLS, Ridge, Lasso)
  - Tree-based models (Random Forest, XGBoost)
  - Neural networks for time series
- Output: A learned function g that generalizes well to new inputs x<sub>new</sub>

- Final Hypothesis: The learned function  $g(x) = f(x; \hat{\beta})$  aims to approximate the unknown target f.
- In-Sample Error (Training Error):

$$E_{\text{in}}(g) = \frac{1}{N} \sum_{n=1}^{N} (g(x_n) - y_n)^2$$

Measures how well g fits the training data.

Out-of-Sample Error (Generalization Error):

$$E_{\text{out}}(g) = \mathbb{E}_{x,y}\left[\left(g(x) - y\right)^2\right]$$

Measures how well g performs on new, unseen data.

#### Frror Measures

- Goal of Learning: Minimize  $E_{out}(g)$ , not just  $E_{in}(g)$ . This ensures good generalization.
- Common Metrics:
  - MSE (Mean Squared Error) most common for regression.
  - MAE (Mean Absolute Error) less sensitive to outliers.
  - MAPE (Mean Absolute Percentage Error) often used in electricity demand forecasting.
- Why it matters: A low in-sample error doesn't guarantee a low out-of-sample error — hence the need for validation techniques (e.g. cross-validation).

#### Basic Set-up: Electricity Demand Prediction



Components of Learning -

# A Simple Learning Model

- Consider forecasting the electricity demand for a given hour in a day, given weather and time-based conditions.
- The training examples  $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$  come from historical demand logs.
- We choose a hypothesis set  $\mathcal{H}$ , and a learning algorithm  $\mathcal{A}$ , to find a function  $g \approx f$  that maps inputs x to predicted demand y.
- A simple model: assume demand can be predicted as a weighted sum of features:

$$g(x) = \sum_{i=1}^{d} w_i x_i + b$$

• for simplicity, instead of  $\beta$ , we will use w

Components of Learning -

University of the Philippines

- $x \in \mathbb{R}^d$ , where each component of x represents:
  - x<sub>1</sub>: Hour of the day (0–23)
  - x<sub>2</sub>: Day of the week
  - x<sub>3</sub>: Temperature
  - x<sub>4</sub>: Humidity
  - x<sub>5</sub>: Lagged demand (e.g. demand one hour ago)
- Output  $y \in \mathbb{R}^+$ : actual electricity demand in megawatts (MW)
- Our goal: learn a function g(x) that gives accurate predictions of v

## Linear Hypothesis for Demand

• We define our hypothesis space  $\mathcal{H}$  to consist of linear models:

$$h(x) = \sum_{i=1}^d w_i x_i + b$$

- w<sub>i</sub>: learned importance of each input feature (e.g., temperature, time)
- b: bias term, reflects baseline electricity demand
- Compact form:

$$h(x) = w^{T}x + b$$

After training, we get final hypothesis:

$$g(x) = h(x; \hat{w})$$

- We use the training data to estimate weights  $\hat{w}$  and bias  $\hat{b}$
- Objective: minimize squared error (Empirical Risk Minimization)

$$\min_{\mathbf{w},b} \frac{1}{N} \sum_{n=1}^{N} \left( y_n - (\mathbf{w}^{\top} \mathbf{x}_n + b) \right)^2$$

- This selects the best-fitting line (or hyperplane) in the training data
- The result is our final hypothesis:

$$g(x) = w^{T}x + b$$

- In econometrics, models are often specified from theory: design-based.
- In machine learning, we let the data suggest the best hypothesis: data-driven.
- Tradeoff:
  - Design-based: interpretable, theory-aligned, but may misrepresent data.
  - Learning-based: better predictive accuracy, but harder to interpret and justify causally.
- Our goal is to understand when and how data-driven models (like this) can augment economic analysis.

## Digression: Perceptrons

- A perceptron is a simple binary classifier.
- It takes multiple inputs (features), computes a weighted sum, and applies a decision rule:

$$h(x) = sign(w^{T}x + b)$$

- Think of it as a "yes/no" decision boundary like deciding if the grid is stable or at risk.
- Inspired by how neurons in the brain work: inputs fire, and if the signal is strong enough, there's an activation (output = 1).

#### Illustration: 2-Feature Case



## Digression Summary

- A perceptron is one of the simplest machine learning models.
- It separates the space into two regions using a line (or hyperplane in higher dimensions).
- It's fast and interpretable great for simple decisions like:
  - Is the power grid at risk of overload?
  - Should we activate a reserve power plant?
- But it only works well if the data can be separated by a straight line (linearly separable).

 In some energy markets, the goal is to make a \*\*binary decision\*\*:

$$y \in \{-1, +1\}$$
 (e.g., brownout risk?)

- Input vector x might include:
  - x<sub>1</sub>: Forecasted demand (MW)
  - x<sub>2</sub>: Available generation capacity
  - x<sub>3</sub>: Grid frequency deviation
  - x<sub>4</sub>: Weather forecast (e.g., typhoon alert)
- Output: y = +1 means "risk of brownout" and y = -1 means "normal operation"

#### Perceptron Model

Define hypothesis:

$$h(x) = sign(w^T x + b)$$

- Interpretation:
  - If h(x) = +1: trigger preventive measures (e.g., activate reserve plants)
  - If h(x) = -1: system is stable
- The learning algorithm finds weights w that separate high-risk vs. low-risk conditions.
- If input space is linearly separable, the Perceptron algorithm converges to a solution.

#### Philippine Examples of Binary Energy Decisions

- Scenario 1: Load Shedding
  - NGCP needs to decide whether to issue yellow or red alerts
  - Predict based on forecast demand and supply margin
- Scenario 2: Rotational Brownouts
  - During the dry season, hydroelectric capacity is low
  - Predict risk of brownout in provinces like Palawan or Mindoro
- Scenario 3: Distributed Energy Dispatch
  - If risk h(x) = +1, then dispatch diesel backup generators in off-grid areas

- Introduction to Machine Learning
- 2 Components of Learning
- 3 Types of Learning
- 4 Learning Feasibility
- **5** Error and Noise

# Supervised Learning

- In supervised learning, the algorithm is given input-output pairs (x, y).
- The goal is to learn a function g(x) that predicts y from x.
- Two major types:
  - Regression: Predict continuous output (e.g. electricity demand in MW)
  - Classification: Predict binary or categorical output (e.g. default vs. no default)
- The algorithm is "supervised" by the correct answer.
- Examples:
  - Predicting household electricity consumption based on time and weather
  - Forecasting inflation using macroeconomic indicators
  - Predicting approval for microfinance loans based on applicant data

- In standard supervised learning, the algorithm passively receives labeled data.
- In active learning, the learner can query for labels it chooses which x to ask for a y.
- Motivation: labels may be expensive or time-consuming to obtain.
- Example: Smart meters collect hourly consumption (x), but manual surveys provide income class (y).
- Active learning asks: "Which households should we label (survey) to improve our model fastest?"
- Examples:
  - Reducing survey costs in poverty targeting
  - Sampling households for tariff adjustment studies
  - Choosing which firms to audit for competition enforcement

- In online learning, the algorithm updates its model one observation at a time.
- Useful for streaming data or when retraining on full data is costly.
- At each step t, the learner:
  - $\mathbf{0}$  Gets input  $x_t$
  - **2** Predicts  $\hat{y}_t = g_t(x_t)$
  - **3** Receives actual  $y_t$  and incurs loss
  - 4 Updates model to  $g_{t+1}$
- Examples:
  - Real-time pricing forecasts in electricity markets (e.g., WESM)
  - Updating inflation predictions with streaming macroeconomic indicators
  - Learning user behavior in mobile payment platforms

- In unsupervised learning, we are given only inputs  $x_1, x_2, \ldots, x_N$ , with no labels or targets.
- objective: discover patterns, structures, or relationships within the data.
- The algorithm is "unsupervised" it must learn without knowing the correct answer.
- Useful when labels are unavailable or ambiguous.
- Main types:
  - Clustering (e.g. k-means, hierarchical clustering)
  - **Dimensionality reduction** (e.g. PCA, t-SNE)

- Clustering groups similar observations together based on a distance or similarity metric.
- Examples:
  - K-means clustering
  - Hierarchical clustering
  - DBSCAN
- Clustering reveals hidden groupings in the data no labels are needed.
- Examples:
  - Segmenting consumers based on electricity usage patterns
  - Grouping municipalities by poverty and infrastructure indicators
  - Identifying similar firms in competition analysis

# Dimensionality Reduction

- Reduces the number of features while retaining the most important variation in the data.
- Techniques:
  - Principal Component Analysis (PCA)
  - t-SNE for visualization
  - Autoencoders (neural networks)
- Helps:
  - Visualize high-dimensional data
  - Remove noise or redundancy
  - Improve downstream supervised learning
- Example:
  - Reducing 50 household expenditure categories into 2–3 latent "lifestyle" dimensions

Types of Learning -

## Supervised vs. Unsupervised Learning

| Aspect   | Supervised Learning          | Unsupervised Learning |
|----------|------------------------------|-----------------------|
| Input    | Features $+$ labels $(x, y)$ | Features only (x)     |
| Goal     | Predict labels               | Find structure        |
| Feedback | Known correct outputs        | No direct feedback    |
| Methods  | Regression, classification   | Clustering, PCA       |

## Reinforcement Learning

- In reinforcement learning, an agent learns by interacting with an environment.
- It receives feedback in the form of rewards and learns a policy to maximize long-term reward.
- No fixed training set learning happens over time via trial and error.
- Examples:
  - Dynamic pricing of electricity under real-time market conditions
  - Adaptive congestion pricing in transport networks
  - Policy simulation: learning optimal subsidy schemes under changing economic conditions
- Especially useful for problems involving time, strategy, and sequential decisions.

## Key Components of Reinforcement Learning

- Agent: Learner or decision-maker (e.g., National Grid operator)
- Environment: World with which the agent interacts (e.g., electricity grid)
- **State** (s): Current situation observed by the agent (e.g., demand level, reserve margin)
- Action (a): Decision the agent can take (e.g., dispatch reserve, adjust price)
- Reward (r): Feedback signal after taking action (e.g., blackout avoided = +10; blackout = -100)
- Policy  $(\pi)$ : Mapping from state to action:  $a = \pi(s)$
- Goal: Learn the best policy  $\pi^*$  that maximizes long-term cumulative reward

- Unlike supervised learning, RL does not receive labeled pairs (x, y).
- Instead, the agent observes a sequence of experience tuples:

$$(s_t, a_t, r_t, s_{t+1})$$

- This tells the agent:
  - "I was in state s<sub>+</sub>"
  - "I chose action a<sub>t</sub>"
  - "I received reward r<sub>t</sub>"
  - "The new state is  $s_{t+1}$ "
- Learning happens by updating value estimates or policies from this feedback.

#### Where is RL Useful?

- Reinforcement Learning is ideal when:
  - The agent must make sequential decisions
  - The environment changes dynamically
  - Outcomes depend on both present and past decisions
- Possible Applications:
  - Energy markets: dispatch decisions, real-time pricing
  - Transport economics: dynamic tolling, congestion response
  - Social policy: testing subsidy levels under uncertain behaviors
  - Public health: optimizing allocation of limited vaccines over time
- RL is often used in simulation-based environments when real-world experimentation is costly.

- Introduction to Machine Learning
- 2 Components of Learning
- 3 Types of Learning
- 4 Learning Feasibility
- **5** Error and Noise

- Learning is only useful if we can generalize from the data.
- Key question: If a model works well on training data, will it also work on new, unseen data?
- This is the difference between:
  - Memorization fitting the training data exactly
  - **Generalization** capturing the true underlying pattern
- Learning is feasible when we can ensure small error on unseen data (out-of-sample).
- This requires assumptions on:
  - How the data is generated
  - The complexity of the hypothesis space

- We assume the training data  $(x_1, y_1), \dots, (x_N, y_N)$  are drawn independently from the same probability distribution  $\mathcal{D}$ .
- This is the i.i.d. assumption (independent and identically distributed).
- Why it matters:
  - If data changes over time (non-stationary), past experience may not generalize.
  - If observations are correlated (e.g., clustered or networked), standard learning guarantees break down.
- Examples:
  - Forecasting electricity demand works if usage patterns are stable — not during blackouts or crises.
  - Learning a pricing model for MC Taxi fares only works if commuter behavior is consistent.
- Takeaway: For learning to generalize, the future must "look like" the past.

- ullet A hypothesis space  ${\cal H}$  is the set of functions we allow the learner to choose from.
- If H is too rich (too many flexible models), it can perfectly fit the training data but fail to generalize.
- The more complex the hypothesis set, the more data we need to ensure learning is feasible.
- Complexity can be measured by:
  - VC Dimension
  - Number of parameters
  - Model structure (e.g., depth of trees, layers of a neural net)
- Examples:
  - A flexible forecasting model with dozens of lag terms, interaction effects, and splines may overfit if sample size is small.
  - Simpler models (e.g., linear regression with 3-4 predictors) are more robust in small datasets.

Learning Feesibiling ade-off: More expressive models vs. risk of overfitting of the Philippines Data Science for Economists 40/54

- Learning is about drawing conclusions from finite samples.
- Even if we fit the training data well, we might just be overfitting — capturing noise.
- We use probability to:
  - Estimate the likelihood of making a mistake on unseen data
  - Bound the difference between in-sample error and out-of-sample error
- Example: If we train a demand forecasting model on dry-season data, can it generalize to rainy season?
- Formal tools: concentration inequalities, generalization bounds

## Putting It All Together

- Learning is feasible when:
  - The data is i.i.d. from a fixed distribution
  - The hypothesis space has controlled complexity
- We can then bound the difference between:

$$E_{\rm out}(g) \approx E_{\rm in}(g)$$

- This is the heart of generalization.
- In economics and policy:
  - Make sure your training data is relevant to your policy domain.
  - Don't fit overly flexible models without enough observations.



- The **VC Dimension** (Vapnik–Chervonenkis) measures the complexity of a hypothesis set.
- Informally: it's the largest number of points that can be "shattered" (i.e., labeled in all possible ways).
- Higher VC dimension → more expressive models, but also higher risk of overfitting.
- Lower VC dimension → simpler models, may underfit.
- Goal: find a balance where the hypothesis set is expressive enough but still generalizes well.

## Examples of VC Dimension

- Threshold function on the real line: VC dimension = 1
- Linear classifiers in 2D: VC dimension = 3
- Perceptron with d inputs: VC dimension = d+1
- Implication for electricity demand prediction:
  - If you use too many features (hour, temperature, weather alerts, device types, etc.), you may overfit.
  - VC dimension helps guide the size of the hypothesis space.

# Summary: When is Learning Feasible?

- Learning is feasible when:
  - The hypothesis space is not too large
  - The number of training examples is sufficient
  - The data distribution is stable over time
- Probability theory helps us quantify generalization error.
- VC dimension tells us when a model is too complex.
- **In economics:** Learning is feasible when:
  - You don't have too many instruments relative to observations
  - Consumer behavior is relatively stable

- 1 Introduction to Machine Learning
- Components of Learning
- Types of Learning
- 4 Learning Feasibility
- **5** Error and Noise

- In supervised learning, we want our hypothesis g to approximate the true function f.
- But even the best model g will make some mistakes.
- We distinguish between:
  - In-sample error  $E_{in}$ : How well g performs on training data
  - Out-of-sample error  $E_{out}$ : How well g performs on new, unseen data
- Goal: minimize  $E_{out}$ , not just memorize training data.

### Common Error Measures

Mean Squared Error (MSE):

MSE = 
$$\frac{1}{N} \sum_{n=1}^{N} (g(x_n) - y_n)^2$$

Mean Absolute Error (MAE):

MAE = 
$$\frac{1}{N} \sum_{n=1}^{N} |g(x_n) - y_n|$$

**Binary Classification Error:** 

Error Rate = 
$$\frac{1}{N} \sum_{n=1}^{N} 1 [g(x_n) \neq y_n]$$

Choice depends on the task and whether large errors should be penalized more.

#### What is Noise?

- Noise refers to the randomness or uncertainty in the relationship between x and y.
- Two data points with identical x may have different y values.

$$y = f(x) + noise$$

- Noise is often due to:
  - Measurement errors
  - Omitted variables
  - Human unpredictability
- Noise sets a lower bound on the best achievable performance.
- Even the best model can't predict noise only patterns.

# Noisy Targets in Economics

- Many economic outcomes are inherently noisy:
  - Electricity consumption depends on mood, appliance use, etc.
  - Household income may fluctuate due to informal jobs
  - Self-reported survey data often contains inaccuracies
- As a result:
  - Don't expect perfect accuracy measure error realistically
  - Focus on robustness and generalization, not fitting every detail
- **Design implication:** Simpler models may outperform complex ones in noisy settings.

## Summary:

Total error can be broken down into:

Total Error = 
$$Bias^2 + Variance + Noise$$

- Bias: Error due to wrong assumptions (underfitting)
- Variance: Error due to model sensitivity to data (overfitting)
- **Noise:** Irreducible error from randomness in the data
- As economists and data scientists, our job is to minimize bias and variance — not noise.

### Bias-Variance Tradeoff

- When we train a model, the goal is to predict well not just memorize.
- But prediction error has \*\*three ingredients\*\*:

Total Error = 
$$\underset{\text{wrong model}}{\mathsf{Bias}^2} + \underset{\text{too flexible}}{\mathsf{Variance}} + \underset{\text{randomness}}{\mathsf{Noise}}$$

- Bias is the error from using a model that's too simple (e.g., a straight line for something curvy).
- Variance is the error from using a model that's too complex
   it overreacts to small changes in the data.
- **Noise** is unavoidable randomness (e.g., people leaving the aircon on by accident).
- Tradeoff:
  - A simple model (low variance, high bias) may miss real trends.
  - A complex model (low bias, high variance) may chase noise.
- We want a balance not too simple, not too wiggly.

  Error and Noise -

# Visualizing Bias vs. Variance





Accurate & consistent

High Bias, Low Variance



Inaccurate, consistent

Low Bias, High Variance



Accurate (avg), inconsistent

High Bias, High Variance



Inaccurate & inconsistent

Error and Noise -

University of the Philippines

Data Science for Economists

54/54