Forward Feed Neural Network:

- Create 5 FFNN models that will classify the 5 target variables
- Split dataset into training and test:
 - 70 training, 15% validation, 15% test. The importance of this is that the test set should not be a part of the learning process. Otherwise overfitting occurs.
- Tuning parameters:
 - Number of "Hidden Layers"
 - o Number of "Neurons"
 - Combination of different "Neurons" with "Hidden Layers"
 - Optimizer
 - o Loss
- Number of "Hidden Layers":
 - Tested out a range of "Hidden Layers" from 1 5.
 - Found that although not much difference occurs, and complexity isn't that large. Best performing was 2 layers and 5 layers.
 - Tested both a little more, stuck with 2 layers as it did the job and the complexity is less.
- Number of "Neurons"
 - Again, tested with a range, scaling up by power of 2 ([64, 128, 256, 512]), with the exception of 36 "Neurons" included as this was the size of the input features.
 - o Found 36 "Neurons" in each layer to work well.
- Optimizer:
 - o Tested out SGD, Adam and RMSprop. Adam optimizer worked out really well.
 - o Had issues with loss being "nan" initially. Dropping learning rate helped.
- Loss:
 - Tested out a few "Loss" variables, sparse_categorical_crossentropy worked really well. Didn't need to encode target variables, as although they appeared numeric, they were also categorical. Had I used "categorical_crossentropy", I may have had to encode using one-hot encoding method and extract the max value.
- Although didn't seem to have big overfitting issues, still created models with "Dropout" layers off different dropout values. Dropout value of 0.4 seemed to work, reducing what I deemed could be overfitting