

NCERT SOLUTIONS FOR CLASS 6 MATHS FRACTIONS EXERCISE 7.6

Question 1:

Solve

(a)
$$\frac{2}{3} + \frac{1}{7}$$
 (b) $\frac{3}{10} + \frac{7}{15}$

(c)
$$\frac{4}{9} + \frac{2}{7}$$
 (d) $\frac{5}{7} + \frac{1}{3}$

(e)
$$\frac{2}{5} + \frac{1}{6}$$
 (f) $\frac{4}{5} + \frac{2}{3}$

$$\frac{3}{4} - \frac{1}{3}$$
_(h) $\frac{5}{6} - \frac{1}{3}$

$$\frac{2}{3} + \frac{3}{4} + \frac{1}{2} \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

(k)
$$1\frac{1}{3} + 3\frac{2}{3}$$
 (l) $4\frac{2}{3} + 3\frac{1}{4}$

$$\frac{16}{(m)} \frac{7}{5} - \frac{7}{5} \frac{4}{(n)} \frac{4}{3} - \frac{1}{2}$$

(a)
$$\frac{2}{3} + \frac{1}{7}$$

$$=\frac{\left(2\times7\right)+\left(1\times3\right)}{21}$$

(Taking L.C.M as 21)

$$=\frac{14+3}{21}=\frac{17}{21}$$

(b)
$$\frac{3}{10} + \frac{7}{15}$$

$$= \frac{(3\times3) + (7\times2)}{30}$$

$$= \frac{9+14}{30} = \frac{23}{30}$$
(Taking 30 as L.C.M)

Question 2:

Sarita bought $\frac{2}{5}$ metre of ribbon and Lalita $\frac{3}{4}$ metre of ribbon. What is the total length of the ribbon they bought?

Answer:

 $\text{Length of ribbon bought by Sarita} = \frac{2}{5} \ m$

Total length of ribbon bought by them = $\frac{2}{5} + \frac{3}{4}$

$$=\frac{(2\times4)+(3\times5)}{20}=\frac{8+15}{20}=\frac{23}{20}$$
 m

Question 3:

Naina was given $1\frac{1}{2}$ piece of cake and Najma was given $1\frac{1}{3}$ piece of cake. Find the total amount of cake was given to both of them.

Answer:

Fraction Naina got =
$$1\frac{1}{2} = \frac{3}{2}$$

Fraction Najma got =
$$1\frac{1}{3} = \frac{4}{3}$$

Total amount of cake given to them
$$=$$
 $\frac{3}{2}$ $+$ $\frac{4}{3}$ $=$ $\frac{3 \times 3 + 4 \times 2}{6}$ $=$ $\frac{9 + 8}{6}$ $=$ $\frac{17}{6}$ $=$ $2\frac{5}{6}$

Question 4:

Fill in the boxes: (a)
$$\Box -\frac{5}{8} = \frac{1}{4}$$
 (b) $\Box -\frac{1}{5} = \frac{1}{2}$ (c) $\frac{1}{2} - \Box = \frac{1}{6}$

$$\Box -\frac{5}{8} = \frac{1}{4}$$

$$\Box -\frac{1}{5} = \frac{1}{2}$$

$$\Box = \frac{1}{2} + \frac{1}{5} = \frac{(1 \times 5) + (1 \times 2)}{10} = \frac{5 + 2}{10} = \frac{7}{10}$$

$$(c)$$
 $\frac{1}{2} - \square = \frac{1}{6}$

$$\Box = \frac{1}{2} - \frac{1}{6} = \frac{(1 \times 3) - 1}{6} = \frac{3 - 1}{6} = \frac{2}{6} = \frac{1}{3}$$

Question 5:

Complete the addition-subtraction box.

(a)

(b)

		—	-
	1/2	1/3	
	1/3	1/4	
1			

Answer:

(a)
$$\frac{2}{3} + \frac{4}{3} = \frac{2+4}{3} = \frac{6}{3} = 2$$

$$\frac{1}{3} + \frac{2}{3} = \frac{1+2}{3} = \frac{3}{3} = 1$$

$$\frac{2}{3} - \frac{1}{3} = \frac{2-1}{3} = \frac{1}{3}$$

$$\frac{2}{3} - \frac{1}{3} = \frac{2 - 1}{3} = \frac{1}{3}$$

$$\frac{4}{3} - \frac{2}{3} = \frac{4 - 2}{3} = \frac{2}{3}$$

$$\frac{1}{3} + \frac{2}{3} = \frac{3}{3} = 1$$

Hence, the given box can be completed as

(b)
$$\frac{1}{2} + \frac{1}{3} = \frac{(1 \times 3) + (1 \times 2)}{6} = \frac{3+2}{6} = \frac{5}{6}$$

$$\frac{1}{3} + \frac{1}{4} = \frac{(1 \times 4) + (1 \times 3)}{12} = \frac{4+3}{12} = \frac{7}{12}$$
$$\frac{1}{2} - \frac{1}{3} = \frac{(1 \times 3) - (1 \times 2)}{6} = \frac{3-2}{6} = \frac{1}{6}$$

$$\frac{1}{2} - \frac{1}{3} = \frac{(1 \times 3) - (1 \times 2)}{6} = \frac{3 - 2}{6} = \frac{1}{6}$$

$$\frac{1}{3} - \frac{1}{4} = \frac{(1 \times 4) - (1 \times 3)}{12} = \frac{4 - 3}{12} = \frac{1}{12}$$

$$\frac{1}{6} + \frac{1}{12} = \frac{\left(1 \times 2\right) + 1}{12} = \frac{2 + 1}{12} = \frac{3}{12} = \frac{1}{4}$$

Hence, the given box can be completed as

	_	-0-	-
	1/2	1/3	5 6
0	1/3	1/4	7 12
1	1/6	1/12	1/4

Question 6:

A piece of wire 8 metre long broke into two pieces. One piece was 4 metre long. How long is the other piece?

$$\frac{1}{4}$$
ingth of one piece = $\frac{1}{4}$

The length of the other piece of wire will be the difference of the lengths of the original

Hence, length of the other piece of wire = $\frac{8}{4}$

$$=\frac{7-(1\times2)}{8}=\frac{7-2}{8}=\frac{5}{8}$$
 m

Question 7:

Nandini's house is $\overline{10}$ km from her school. She walked some distance and then took a

bus for 2 km to reach the school. How far did she walk?

Distance walked by Nandini = Total distance - Distance for which she took the bus

$$= \frac{9}{10} - \frac{1}{2}$$

$$= \frac{9 - 1 \times 5}{10} = \frac{9 - 5}{10} = \frac{4}{10} = \frac{2}{5} \text{ km}$$

Question 8:

Asha and Samuel have bookshelves of the same size partly filled with books.

Asha's shelf is
$$\frac{5}{6}$$
 th full and Samuel's shelf is $\frac{2}{5}$ th full. Whose bookshelf is more full? By what fraction?

Answer:

Fraction of Asha's shelf = $\frac{1}{6}$

Fraction of Samuel's shelf = $\overline{5}$ Converting these into like fractions,

$$\frac{5}{6} = \frac{5}{6} \times \frac{5}{5} = \frac{25}{30}$$
$$\frac{2}{5} = \frac{2}{5} \times \frac{6}{6} = \frac{12}{30}$$
$$\frac{25}{30} > \frac{12}{30}$$

Clearly, Asha's bookshelf is more full.

Difference =
$$\frac{5}{6} - \frac{2}{5} = \frac{25}{30} - \frac{12}{30} = \frac{13}{30}$$

Jaidev takes $2^{\frac{1}{5}}$ minutes to walk across the school ground. Rahul takes $\frac{\prime}{4}$ minutes to do the same. Who takes less time and by what fraction?

Time taken by Jaidev = $2\frac{1}{5}$ minutes = $\frac{11}{5}$ min

me taken by Jaidev =
$$\frac{2-5}{5}$$
 minutes = $\frac{-5}{5}$ min

Time taken by Rahul = 4 min Converting these into like fractions,

$$\frac{11}{5} = \frac{11}{5} \times \frac{4}{4} = \frac{44}{20}$$

$$\frac{7}{4} = \frac{7}{4} \times \frac{5}{5} = \frac{35}{20}$$

$$\frac{11}{5} > \frac{7}{4}$$

Hence, Rahul takes lesser time.

Difference =
$$\frac{11}{5} - \frac{7}{4}$$

$$=\frac{44}{20} - \frac{35}{20} = \frac{9}{20} \min_{F}$$