Ajami Stewart Problem 1 = $I_1 + I_2$ = $I_$ a) I = I, + I2 = f'k(n·s,) + f'k(n·s,)
TT = S' K (n·s, +n·sz) = S ((n(0 5, + 52)) = p(n.cs, +sz) The light source can be viewed as coming from objection s, +sz - P' K, (n.s.) + P'Kz(n.sz) = g'(K,(n.s,) + K2(N.s2)) = f'(n. (3,K, + S, K2)) Let $S_3 K_3 = S_1 K_1 + S_2 K_2$ Source direction Intensity $= S' S(h, S_3)$ $= S_1 K_1 + S_2 K_2$ $= S_3 = S_3 K_1 + S_3 K_2$ 1151K, +SEK211