Open Economy: The 123 Model

Thomas F. Rutherford

Department of Agricultural and Applied Economics University of Wisconsin, Madison

October 14, 2016

Computable General Equilibrium Models

• Stylized (but useful): 123 model

Computable General Equilibrium Models

- Stylized (but useful): 123 model
- Open CGE model: more sectors and detail (Wednesday and homework)

Computable General Equilibrium Models

- Stylized (but useful): 123 model
- Open CGE model: more sectors and detail (Wednesday and homework)
- GTAP: global model, more detail (next Monday)

 Capture mechanisms by which external shocks and domestic policies ripple through the economy

- Capture mechanisms by which external shocks and domestic policies ripple through the economy
- Many problems (and solutions) are related to links between external sectors and domestic economy

- Capture mechanisms by which external shocks and domestic policies ripple through the economy
- Many problems (and solutions) are related to links between external sectors and domestic economy
- Minimum requirements for an interesting model

- Capture mechanisms by which external shocks and domestic policies ripple through the economy
- Many problems (and solutions) are related to links between external sectors and domestic economy
- Minimum requirements for an interesting model
 - 1 small country

- Capture mechanisms by which external shocks and domestic policies ripple through the economy
- Many problems (and solutions) are related to links between external sectors and domestic economy
- Minimum requirements for an interesting model
 - 1 small country
 - 2 producing sectors: nontradable & tradable

- Capture mechanisms by which external shocks and domestic policies ripple through the economy
- Many problems (and solutions) are related to links between external sectors and domestic economy
- Minimum requirements for an interesting model
 - 1 small country
 - 2 producing sectors: nontradable & tradable
 - 3 goods: nontraded, import, export

- Capture mechanisms by which external shocks and domestic policies ripple through the economy
- Many problems (and solutions) are related to links between external sectors and domestic economy
- Minimum requirements for an interesting model
 - 1 small country
 - 2 producing sectors: nontradable & tradable
 - 3 goods: nontraded, import, export
- Devarajan-Go-Lewis-Robinson-Sinko (1997), Chapter 6 of Applied methods in trade policy analysis: A Handbook, Francois and Reinert, eds., Cambridge University Press.

• 1 producer (activity level X, zero profit)

- 1 producer (activity level X, zero profit)
- 1 consumer (income level *M*)

- 1 producer (activity level X, zero profit)
- 1 consumer (income level *M*)
- 1 market for domestic goods (price P, market clearance)

- 1 producer (activity level X, zero profit)
- 1 consumer (income level *M*)
- 1 market for domestic goods (price *P*, market clearance)
- Balance of trade (foreign exchange price π , market clearance). N.B. Both exports and imports are denominated in units of foreign exchange.

Supply Technology

Optimal Supply

Relative Prices and Optimal Supply

Differentiated Goods Supply: Details

Adopt a constant elasticity of transformation technology:

$$X = g(E, D) = \left(\theta_E \left(\frac{E}{\bar{e}}\right)^{\rho_E} + (1 - \theta_E) \left(\frac{D}{\bar{d}}\right)^{\rho_E}\right)^{1/\rho_E}$$

where X is an *index* of resource inputs to domestic production (when $E=\bar{e}$ and $D=\bar{d},~X=1$.)

- \bar{d} Benchmark production for the domestic market (when we use Harberger normalization: $\bar{p}_E = 1$ and $\bar{p}_D = 1$.
- ē Benchmark exports
- θ_E Export value share:

$$heta_{\mathsf{E}} = rac{ar{e}}{ar{e} + ar{d}}$$

Linear Homogeneity

g(E, D) is linearly homogeneous, i.e.

$$g(\lambda E, \lambda D) = \lambda g(E, D) \quad \forall \lambda > 0.$$

We therefore can solve for optimal coefficients:

$$\max_{a_E,a_D} p_E a_E + p_D a_D$$
 s.t. $g(a_E,a_D) = 1$

Points on a unit isoquant satisfy:

$$heta_{E}\left(rac{a_{E}}{ar{e}}
ight)^{
ho_{E}}+\left(1- heta_{E}
ight)\left(rac{a_{D}}{ar{d}}
ight)^{
ho_{E}}=1$$

Points on the Supply Frontier

Expressing a_E as a function of a_D , we have:

$$a_E = ar{e} \left[rac{1 - (1 - heta_E)(a_D/ar{d})^{
ho_E}}{ heta_E}
ight]^{1/
ho_E}$$

Expressing D as a function of E, we have:

$$a_D = ar{d} \left[rac{1 - heta_{\mathsf{E}} (a_{\mathsf{E}}/ar{e})^{
ho_{\mathsf{E}}}}{1 - heta_{\mathsf{E}}}
ight]^{1/
ho_{\mathsf{E}}}$$

Domestic-Export Supply in Excel

123 Model Graphics				
Input Data				
Reference level of exports	e0	1		
Reference level of domestic goods	d0	3		
Elasticity of transformation	etadx	2		
	rhodx	1.5		
	thetae	0.25		
Reference level of imports	m0	1		
Elasticity of substitution	esubdm	2		
	rhodm	0.5		
	thetam	0.25		
Counterfactual Data				
Price of domestic goods	pd	1		
World price of imports	pm	1		
World price of exports	pe	1.5		
Real exchange rate	pi	1		
Counterfactual Equilibrium				
Revenue function	R	1.168082		
Export supply	E	1.649057		
Domestic Supply	D	2.198743		
Unit Isoquant (see notes)	E/e0	D/d0	E	D
	1	1	1	
	0.9	1.032227	0.9	3.09668
	0.0	4 050054		0.40676

Supply Response in Excel

Demand Technology

Optimal Choice

Relative Prices and Optimal Choice

Linking Elements of the Model

- **1** Supply to the domestic market needs to equal demand for the non-traded domestic good (D): $D^S = D^D$
- Q Current account balance (value of imports = value of exports + current account deficit (exogenous)

Linking Supply and Demand

Linking Supply and Demand

Linking Supply and Demand

Trade Balance $\Rightarrow M = E$

Trade Balance

• Imports (M) have to be financed by exports (E) and flows of foreign money (B = current account balance):

$$P^{M}M = P^{E}E + B$$

Trade Balance

• Imports (M) have to be financed by exports (E) and flows of foreign money (B = current account balance):

$$P^{M}M = P^{E}E + B$$

 Relation between imports and export depends on terms of trade (the ratio of export prices to import prices), while foreign capital determines the intercept

Trade Balance

• Imports (M) have to be financed by exports (E) and flows of foreign money (B = current account balance):

$$P^{M}M = P^{E}E + B$$

- Relation between imports and export depends on terms of trade (the ratio of export prices to import prices), while foreign capital determines the intercept
- Initially assume that B is zero (runs through origin) and that world market prices are unity (45⁰ angle)

Trade Balance $\Rightarrow M = E$

Basic General Equilibrium Model

• Accounting consistency

- Accounting consistency
- Deals with inter-industry linkages

- Accounting consistency
- Deals with inter-industry linkages
- Theoretical consistency through Walras Law:

- Accounting consistency
- Deals with inter-industry linkages
- Theoretical consistency through Walras Law:
 - if there is an equilibrium in ${\it N}-1$ markets, the ${\it N}^{th}$ market is also in equilibrium

- Accounting consistency
- Deals with inter-industry linkages
- Theoretical consistency through Walras Law:
 - if there is an equilibrium in N-1 markets, the N^{th} market is also in equilibrium
- Putting sector-effects in perspective

- Accounting consistency
- Deals with inter-industry linkages
- Theoretical consistency through Walras Law:
 - if there is an equilibrium in N-1 markets, the N^{th} market is also in equilibrium
- Putting sector-effects in perspective
- Welfare analysis by including households

Key features of the model

Imperfect substitutability, both in production supply and consumption demand

Key features of the model

- Imperfect substitutability, both in production supply and consumption demand
- Homogeneous in prices: only relative prices matter

Key features of the model

- Imperfect substitutability, both in production supply and consumption demand
- · Homogeneous in prices: only relative prices matter
- Walras Law holds

• Translate the graphical model to math

- Translate the graphical model to math
 - producer

- Translate the graphical model to math
 - producer
 - consumer

- Translate the graphical model to math
 - producer
 - consumer
 - domestic market

- Translate the graphical model to math
 - producer
 - consumer
 - domestic market
 - trade balance

- Translate the graphical model to math
 - producer
 - consumer
 - domestic market
 - trade balance
- Add government

- Translate the graphical model to math
 - producer
 - consumer
 - domestic market
 - trade balance
- Add government
- Add savings and investment