What is Data Mining?

Data mining is the discovery of models for data

- Statistical model for the data
- https://powcoder.com
 Machine Learning (training and test datasets)

Add WeChat powcoder

• Computational (Summarizing or Extracting prominent features)

Big Data characteristics (five Vs)

Volume

The quantity of generated and stored data. The size of the data determines the value and potential insight- and whether it can actually be considered big data or not.

• Variety Assignment Project Exam Help
The type and nature of the data. This helps people who analyze it to effectively use the resulting insight der.com

Velocity

In this context, the special water the data id generated and processed to meet the demands and challenges that lie in the path of growth and development.

Variability

Inconsistency of the data set can hamper processes to handle and manage it.

Veracity

The data quality of captured data can vary greatly, affecting the accurate analysis.

Linear Algebra

Assignment Project Exam Help

Source: Linear Algebra and Matrices - UCL https://powcoder.com

Add WeChat powcoder

Review Linear Algebra

- Definitions-Scalars
- · Vectorsignmenteroject Exam Help
- Vector an dtlybsti pel vulatider.com
- Identity, in verde West at & protest midents
- Eigenvectors & inner products

Scaler

• A quantity (variable), described by a single real number

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Vector

• Series of numbers (e.g. . A column of numbers)

Assignment Project Exam Help

Not a physics vector (magnitude, direction)

https://powcoder.com

 $\begin{bmatrix} x1 \\ x2 \\ xn \end{bmatrix}$

Add WeChat powcoder

Matrix

Rectangular display of vectors in rows and columns

Assignment Project Exam Help
Can inform about the same vector intensity at different https://powcoder.com

times simultaneously.
Add WeChat powcoder

Vector is just a n x 1 matrix

$$\begin{bmatrix} x11 & x12 & x13 \\ x21 & x22 & x23 \\ x31 & x32 & x33 \end{bmatrix}$$

Transposition

$$\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \qquad \mathbf{b}^{T} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 \end{bmatrix} \qquad \mathbf{d} = \begin{bmatrix} 3 & 4 & 9 \end{bmatrix} \qquad \mathbf{d}^{T} = \begin{bmatrix} 3 \\ 4 \\ 9 \end{bmatrix}$$

$$\mathbf{column} \qquad \mathbf{b} \qquad \mathbf{column} \qquad \mathbf{column} \qquad \mathbf{column}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 4 & 1 \\ 6 & 7 & 4 \end{bmatrix} \qquad \mathbf{A}^T = \begin{bmatrix} 1 & 5 & 6 \\ 2 & 4 & 7 \\ 3 & 1 & 4 \end{bmatrix}$$

Matrix Calculations

Addition

- Commutative: A+B=B+A
- Associative: At Bit Fibit Exam Help

Attps:
$$\begin{bmatrix} 2 & 2 & 2 & 4 \\ 2 & 5 & 4 \\ 3 & 1 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 + 3 & 5 + 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
Add WeChat powcoder

Subtraction

- By adding a negative matrix

$$\mathbf{A} - \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 5 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 5 & 3 \end{bmatrix} + \begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

Scalar multiplication

Scalar * matrix = scalar multiplication

Assignment Project Exam Help

https://powcoder.com

$$\lambda \left(\begin{array}{cc} a \text{Abld W} \\ d & e \end{array} \right) = \left(\begin{array}{cc} \text{hat powbbdenc} \\ \lambda d & \lambda e & \lambda f \end{array} \right)$$

Matrix Multiplication

$$AB = \begin{pmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \end{pmatrix} \begin{pmatrix} b_{11} b_{12} \\ signmenta Project Exam, Help_{12} + a_{12}b_{22} + a_{13}b_{32} \\ b_{31} b_{33} \end{pmatrix}$$

$$2 \times 3 \qquad \text{Add WeChat powcoder}$$

Matrix Multiplication

Matrix multiplication

Matrix multiplication is NOT commutative i.e the order matters!

AB#Banment Project Exam Help

» Matrix multiphittpusonpowesolciatioen

A(BC)-(AB)CeChat powcoder

> Matrix multiplication IS distributive

$$A(B+C)=AB+AC$$

$$(A+B)C=AC+BC$$

Identify Matrix

```
Assigment Project Exam Help
           https://powcoder.com
nxn matrix \boldsymbol{A}, we have \boldsymbol{A} \boldsymbol{I}_n = \boldsymbol{I}_n \boldsymbol{A} = \boldsymbol{A}
```


Assignment Project Exam Help More Advance Watrix Techniques Add WeChat powcoder

Vector components & orthonormal base

• A given vector (a b) can be summarized by its components, but only in a particular base (set of axes; the vector itself can be independent from the choice of this particular base).

Add WeChat powcoder

example

a and b are the components of V in the given base (axes chosen for expression of the coordinates in vector space)

<u>Orthonormal base</u>: set of vectors chosen to express the components of the others, perpendicular to each other and all with norm (length) = 1

Linear combination & dimensionality

Vectorial space: space defined by different vectors (for example for dimensions...).

The vectorial space desting an another rectors to a real number then adding them (linear hope) wooder.com

A matrix A $(m \times n)$ can itself be decomposed in as many vectors as its number of columns (or lines). When decomposed, one can represent each column of the matrix by a vector. The ensemble of n vector-column defines a *vectorial space* proper to matrix A.

Similarly, A can be viewed as a matricial representation of this ensemble of vectors, expressing their components in a given *base*.

Linear dependency and rank

If one can find a *linear relationship* between the lines or columns of a matrix, then the *rank* of the matrix (number of dimensions of its vectorial space) will not be equal to its number of column/lines – the matrix will be said to be *rank-deficient*.

Example

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

When representing the vectors, we see that x1 and x2 are superimposed. If we look better, we see that we can express one by a *linear combination* of the other: x2 = 2 x1.

The *rank* of the matrix will be 1. In parallel, the *vectorial space* defined will has only one dimension.

Linear dependency and rank

• The *rank of a matrix* corresponds to the *dimensionality* of the vectorial space defined by this matrix. It corresponds to the number of vectors defined by the matrix that are linearly independents from each other.

Assignment Project Exam Help

• Linealy independent vectors are vectors defining each one one more dimension in space, compared to the space defined by the other vectors. They

cannot be expressed by a linear combination of the others.

Add WeChat powcoder

Note. Linearly independent vectors are not necessarily orthogonal (perpendicular). Example: take 3 linearly independent vectors x1, x2 et x3.

Vectors x1 and x2 define a plane (x,y) And vector x3 has an additional non-zero component in the z axis. But x3 is not perpendicular to x1 or x2.

Eigenvalues et eigenvectors

One can represent the vectors from matrix X (eigenvectors of A) as a set of orthogonal vectors (perpendicular), and thus representing the different dimensions of the original matrix A. The amplitude of the matrix A in these different dimensions will be given by the eigenvalues corresponding to the different eigenvectors of A (the vectors composing X).

Note: if a matrix is raph-deficient point of the point of the composition of the original matrix A.

In *Principal Component Analysis (PCA)*, the matrix is decomposed into *eigenvectors* and *eigenvalues* AND the matrix is *rotated* to a new *coordinate system* such that the greatest variance by any projection of the data comes to lie on the first coordinate (called the first *principal component*), the second greatest variance on the second coordinate, and so on.

Vector Products

Two vectors:
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

Assignment Project Exam Help

Inner product = scalar

Inner product = scalar Inner product
$$X^TY$$
 is a scalar https://powcoder.com/(nx1)

 $\mathbf{x}^T\mathbf{y} = [x_1 \quad x_2^A dd_3 We Chat powcoder] + x_3 y_3 = \sum_{i=1}^3 x_i y_i$

Outer product = matrix

$$xy^{T} = \begin{vmatrix} x_{1} \\ x_{2} \\ x_{3} \end{vmatrix} \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} = \begin{vmatrix} x_{1}y_{1} & x_{1}y_{2} & x_{1}y_{3} \\ x_{2}y_{1} & x_{2}y_{2} & x_{2}y_{3} \\ x_{3}y_{1} & x_{3}y_{2} & x_{3}y_{3} \end{vmatrix}$$
Outer product XY^T is a matrix (nx1) (1xn)

Scalar product of vectors

Calculate the *scalar product* of two vectors is equivalent to make the *projection* of one vector on the other one. One can indeed show that $x\overrightarrow{1} \cdot x\overrightarrow{2} = |x\overrightarrow{1}|$. $|x\overrightarrow{2}| \cdot cos\alpha$ where α is the angle that separates two vectors when they have both the same original project Exam Help

In parallel, if two vectors are orthogonal, their scalar product is zero: the projection of one onto the other will be zero.

For a matrix 1×1 :

$$\det(a_{11}) = a_{11}$$

For a matrix 2×2 :

$$As Sign = a_{11}a_{22} - a_{12}a_{21}$$
As Sign ment Project Exam Help

For a matrix 3×3 :

For a matrix 3×3:

$$\begin{vmatrix} a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33} \end{vmatrix} = a_{11} a_{22} a_{33} - a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31}$$

$$= a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{12} (a_{21} a_{33} - a_{23} a_{31}) + a_{13} (a_{21} a_{32} - a_{22} a_{31})$$

The determinant of a matrix can be calculate by multiplying each element of one of its lines by the *determinant of a sub-matrix* formed by the elements that stay when one suppress the line and column containing this element. One give to the obtained product the sign $(-1)^{i+j}$.

- •Determinants can only be found for square matrices.
- •For a 2x2 matrix A, det(A) = ad-bc. Lets have at closer look at that:

The determinant gives an idea of the 'volume' occupied by the matrix in vector space

A matrix A has an inverse matrix A^{-1} if and only if $\det(A) \neq 0$.

The *determinant* of a matrix is *zero* if and only if there exist a linear relationship between the lines or the columns of the matrix – if the matrix is *rank-deficient*. In parallel, one can define the *rank* of a matrix A as the size of the largest square sub-matrix of A that has a non-zero determionant.

Assignment Project Exam Help

Add WeChat powcoder

Here x1 and x2 are superimposed in space, because one can be expressed by a *linear* combination of the other: x2 = 2 x1.

The *determinant* of the matrix X will thus be zero.

The largest square sub-matrix with a non-zero determinant will be a matrix of 1x1 => the *rank* of the matrix is 1.

- In a vectorial space of n dimensions, there will be no more than n linearly independent vectors.
- If 3 vectors (2×1) x'₁, x'₂, x'₃ are represented by a matrix X':
 Assignment Project Exam Help

Graphically, we have: https://powcoder.com

Here x3 can be expressed by a linear combination of x1 and x2.

The *determinant* of the matrix X' will thus be zero.

The largest square sub-matrix with a non-zero determinant will be a matrix of $2x2 \Rightarrow$ the rank of the matrix is 2.

The notions of *determinant*, of the *rank* of a matrix and of linear dependency are closely linked.

Take a set of vectors in the same runder of elements: these vectors are *linearly dependent* if one can find a set of scalars *c1*, *c2*,...,*cn* non equal to zero such as:

https://powcoder.com_0

A set of vectors are linearly dependent if one of then can be expressed as a *linear combination* of **Actor** has the combination of the combinatio

Similarly, if all the elements of a line or column are zero, the determinant of the matrix will be zero.

If a matrix present two rows or columns that are equal, its determinant will also be zero

Matrix inverse

Definition. A matrix A is called nonsingular or invertible if there exists a matrix B such that:

- Notation. A common delimination of the power of $A^{-1}=A^{-1}$ $A=I_n$. So:
- The inverse matrix is unique when it exists. So if \mathbf{A} is invertible, then \mathbf{A}^{-1} is also invertible and then $(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}$
 - In Matlab: **A**-1 = **inv(A)**

•Matrix division: A/B= **A*B**-1

Matrix inverse

• For a XxX square matrix:
$$A = \begin{pmatrix} x_{1,1} & \dots & x_{1,j} \\ \vdots & \ddots & \vdots \\ x_{i,1} & \dots & x_{i,j} \end{pmatrix}$$

Assignment Project Exam Help_(A, x_{1,j})
The inverse matrix is: $A^{-1} = \begin{pmatrix} 1 \\ \det(A) \end{pmatrix}$: : : : https://powcoder.com ... $\operatorname{cof}(A, x_{i,j})$

• E.g.: 2x2 matrix
$$\mathbf{A}^{-1} = \begin{bmatrix} a & \mathbf{A} \\ c & d \end{bmatrix} = \frac{\mathbf{Add}}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
.

For a matrix to be invertible, its determinant has to be non-zero (it has to be square and of full rank).

A matrix that is not invertible is said to be *singular*.

Reciprocally, a matrix that is *invertible* is said to be *non-singular*.

Review

Assignmen Review von Help Probability and Statistics

Add WeChat powcoder

Probability in discrete space

Probability Axioms:

$$P(A) \ge 0$$

Assignment Project Exam Help

https://powcbder.com

Add WeChat powcoder

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$

A1	A2	А3	A4
A5	A6	A7	A8
A9	A10	A11	A12
A13	A14	A15	A16
A17	A18	A19	A20

Classical Probability

 Assumes all outcomes in the sample space are equally likely to occur

Assignment Project Exam Help

Classical probability of wencycler.com

$$P(A) = \frac{N_A}{N} = \underbrace{\text{Authorotographs that satisfy the event A}}_{\text{total number of outcomes in the sample space}}$$

Requires a count of the outcomes in the sample space

Probability in discrete space

Lemma:

https://powcoder.com
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
Add WeChat powcoder

Expectation of function variables

$$E[f(x)] = f(x)p(x)$$
https://powcoder.com

Add WeCharpowcoder
$$E(g(X)) = \int g(X)f(X)$$

Expectation of a random variables

$$\mu = E[X] = \sum_{x} xp(x)$$
Assignment Project Exam Help
$$E[X] = \sum_{x} xp(x)$$

$$E[X] = \sum_{x} xp(x)$$
Add WeChat powcoder
$$E[a] = a; E[aX] = aE[X]$$

Covariance between two random variables

$$Cov[x, y] = \sum \sum (x-\mu x)(y-\mu y)p(x,y)$$

Assignment Project Exam Help

$$Cov[x, y] = \begin{cases} https://powcoder.com \\ Add WeChat powcoder \end{cases}$$

$$\int \int (x - \mu x)(y - \mu y)f(x, y)$$

Variance of a random variables

$$Var(X) = E[(X - \mu)^2]$$

Assignment Project Exam Help

https://powcoder.com

Var(a)=0; WardaW)=Caravap(X)coder