

GU TECH, AL GHAZALI UNIVERSITY

Fall-2024 Department of Computer Science Final Exam SOLUTION PAPER 6th February 2025, 10:00am – 01:00pm

Course Code:CS103	Course Name:	: Discrete Structures
Instructor Name: Dr. M. Shahzad		
Student ID:		Name:

Instructions:

- Calculators are **NOT ALLOWED**.
- Answer all questions on the question paper. Do all ROUGH work on the plane sides of the pages.
- Left column contains questions. Right column contains the space for ANSWERS.
- In case of any ambiguity, you may make assumption. However, your assumption should not any statement in the question paper.
- Write Student ID and Name first page of the question paper.

Total Time: 3 Hours Max Points: 50

Q1 [CLO-1]: Choose the best answer:	[10 points, 30 mins]
1. Which of the following is a tautology?	2. The negation of $\forall x(P(x) \rightarrow Q(x))$ is:
a) p∧¬p	a) $\forall x(P(x) \land \neg Q(x))$
<mark>b) p∨¬p</mark>	b) $\exists x(P(x) \land Q(x))$
c) p→p	c) $\exists x (P(x) \land \neg Q(x))$
d) p↔¬p	d) $\forall x(P(x)\lor Q(x))$
3. The inverse of the function $f(x)=2x+3$ is:	4. To prove that the sum of two even numbers
a) $f^{-1}(x) = rac{x-3}{2}$	is even, we assume two numbers a and b, and
b) $f^{-1}(x)=2x-3$	write them as:
c) $f^{-1}(x) = \frac{x+3}{2}$	a) a=2m+1, b=2n+1
d) $f^{-1}(x) = x - 3$	b) a=2m, b=2n
Sol. (a)	c) a=m/2, b=n/2
	d) a=2m+1, b=2n
5. What is the negation of " $n \le 5$ "	6. The contrapositive statement for $(\sim p \land q) \rightarrow$
a) n is less then OR equal to 5	∼q is:
b) n is less then AND equal to 5	$a) \sim (\sim p \land q) \rightarrow q$
c) n is neither less then nor equal to 5	$ b) \sim q \rightarrow (\sim p \land q)$
d) None of these	c) $\sim q \rightarrow \sim (p \lor \sim q)$
	d) $q \rightarrow \sim (\sim p \land q)$
7. Which of the following is expression(s) true?	8. A relation R on set A is called antisymmetric
a) $p \rightarrow q \equiv t$	if:
b) $(p \rightarrow q) \rightarrow p \equiv t$	a) $(a, a) \in R \rightarrow (b, a) \in R$
c) $((p \rightarrow q) \rightarrow p) \rightarrow p \equiv t$	b) $(a, a) \in R$ and $(b, a) \in R$ imply $a = b$
d) None of these	c) $(a,a) \in R \ \forall a \in A$
	$d) (a,b) \notin R \ \forall a \neq b$
9. Suppose a universal set U contains 50	10. What is correct Boolean expression for the
elements, and two subsets A and B satisfy	following combinatorial circuit:
A =30, B =25, and A∩B =10. What is	<i>p</i>
$A^c \cup B^c$ $A^c \cup B^c = U - (A \cap B)$	
a) 25	
b) 30 $ A^c \cup B^c = 50 - 15 = 35$	a) $p.(q+\overline{r})$

c) 35	b) $p.(q+\overline{r})$
d) 40	c) $(p,q) + \overline{r}$
	d) $\overline{(p+q).r}$

Q2 [CLO-1]: SETS and FUNCTIONS

[10 points, 50 mins]

[10 points, 50 mins]
{-1,1}
{} or Ø
The given set is not a power set of any set
$S = \{a,b\}$
Either A is null set or B is null set
$A_1 = \{0,1\}$
$A_2 = \{0,1,00,01,10,11\}$
$A_1UA_2=A_2$
a) Not injective because $f(-1)=1$ and $f(1)=1$,
b) Not surjective because negative
integers are not in the range.
Range: All odd numbers
Not onto because even integers have no
preimage
Yes f is one-to-one
$(f\circ g)(x)=f(g(x))$
• First, apply $g(x)$:
g(x) = 2x
• Now, apply $f(x)$ to $g(x)$:
f(g(x))=f(2x)=2x+3
$ullet$ So, $(f\circ g)(x)=2x+3$

Q3 [CLO-1]: RELATIONS

[10 points, 50 mins]

do [ozo i]: (zzz.tilotto			
For the relations in parts (a-e), determine the properties of the relations.			
Note:	Reflexive/Irreflex	Symmetric/Asymmetri	Transitive/No
Relations in parts (d-f) are defined on Z.	ive/None	c/Anti-symmetric/None	t Transitive
Relations in parts (a-c) are defined on set			
{1,2,3,4}			
a) R: {(1, 2), (2, 3), (3, 4)}	Irreflexive	Asymmetric	Not
			Transitive
b) R: {(1, 1), (2, 2), (3, 3), (4, 4)}	Reflexive	Symmetric, Anit-sym	Transitive
c) R: {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}	Irreflexive	None	Not
			Transitive
d) R: $x = y^2$	None	Anti-symmetric	Not
		-	Transitive
e) R: x ≥ y ²	None	Anti-symmetric	Transitive
f) R: x ≠ y	Irreflexive	Symmetric	Transitive
g) Let A={1, 2, 3, 4}. Consider the following	$R_2^2 \circ R_1 = \{(1,2),(1,1),(3,1),(3,2)\}$		
two relation on A.	,,		
$R_1=\{(1,1), (1,2), (2,2), (2,1), (3,3)\}$			

R ₂ = {(1,3), (3,2), (2,1)} Find $R_2^2 \circ R_1$	
h) Is (Z,=) a poset? How?	The relation "=" is reflexive because a=a.
	 It is antisymmetric because if a=b and b=a, then a=b.
	 It is transitive because if a=b and b=c, then a=c.
i) Determine is it a poset?	 Reflexive
	 Antisymmetric X (fails because M₁₂=1 and M₂₁=1)
	 Transitive
[, , ,]	Since it fails antisymmetric, the relation is not a poset.
j) Draw Hasse diagram for the poset (S,<=)	4
S={1,2,4}	
	2
	1

Q4 [CLO-1]: LOGICS

[10 points, 20 mins]

a)	Let p, q, and r be the propositions p :You have the flu. q :You miss the final examination. r :You pass the course. Express the proposition $(p \rightarrow \neg r) \lor (q \rightarrow \neg r)$ as an English sentence.	If you have the flu then you don't pass the course or if you miss the final examination then you don't pass the course.
b)	State the converse, contrapositive, and inverse of the following conditional statements.	Converse: "If I come to class, then there will be a quiz."
	"I come to class whenever there is going to be a quiz⊚"	Contrapositive: "If I do not come to class, then there will not be a quiz."
		Inverse: "If there is not going to be a quiz, then I don't come to class."
Translate (c-e) of these statements into logical expressions using predicates, quantifiers, and logical connectives.		
c)	Something is not in the correct place.	P(x): x is in the correct place. Q(x):x is in excellent condition. The domain of x consists of all objects under consideration. ∃x¬P(x)

d)	All tools are in the correct place and are in excellent condition.	$\forall x (T(x) \rightarrow (P(x) \land Q(x)))$
e)	Nothing is in the correct place and is in excellent condition.	$\neg \exists x (P(x) \land Q(x))$ or $\forall x \neg (P(x) \land Q(x))$

********End of The Exam******