6.1 Design the circuit in Fig. 1 to obtain a dc voltage of +0.1v at each of the drains of Q1 and Q2 when $v_{G1} = v_{G2} = 0v$. Operate all transistors at $V_{ov} = 0.15v$ and assume that for the process technology in which the circuit is fabricated, $V_{in} = 0.4v$ and $\mu_n C_{ox} = 400 \,\mu A/V^2$. Neglect channel-length modulation. Determine the values of R, R_D, and W/L ratios of Q₁, Q₂, Q₃, and Q₄. What is the input common-mode voltage range for your design?

- 6.2 Figure 2 shows a MOS differential amplifier with the drain resistors R_D implemented using diode-connected PMOS transitors and Q₄ be matched.
- (a) Find the differential half-circuit and use it to derive an expression for A_d in terms of $g_{m1,2}$, $g_{m3,4}$, $r_{01,2}$, and $r_{03,4}$.
- (b) Neglecting the effect of the output resistances r_0 , find A_d in terms of μ_n , μ_p , $(\frac{W}{L})_{1,2}$, $(\frac{W}{L})_{3,4}$.
- (c) if μ_n =4 μ_p and all four transistors have the same channel length, find (W_{1,2}/W_{3,4}) that results in A_d=10 V/V.

- **6.3** Figure 3 shows a circuit for a differential amplifier with an active load. Here Q_1 and Q_2 form the differential pair, while the current source transistors Q_4 and Q_5 form the active loads for Q_1 and Q_2 , respectively. The dc bias circuit that establishes an appropriate dc voltage at the drains of Q_1 and Q_2 is not shown. It is required to design the circuit to meet the following specifications:
 - (a) Differential gain $A_d = 50 \text{ V/V}$.
 - (b) $I_{REF} = I = 200 \, \mu A$
 - (c) The dc voltage at the gates of Q_6 and Q_3 is +0.8V.

(d) The dc voltage at the gates of P, Q_A , and Q_5 is P. The technology available is specified as follows: $\mu_n C_{ox} = 2.5 \mu_p C_{ox} = 250 \mu A/V^2$; $V_{tn} = |V_{tp}| = 0.5 V$, $V_{An} = |V_{Ap}| = 10 V$. Specify the required value of R and the W/L rations for transistors. Also specify L_D and $|V_{GS}|$ at which each transistor is operating. For dc bias calculations you may neglect channel-length modulation.

Add WeChat powcoder

