Neural Networks as Universal Approximators

Pratik Shah Jan 20, 2023 1943 - McCulloh and Pitts

In 1943, neurophysiologist Warren McCulloch and mathematician Walter Pitts wrote a paper on how neurons might work. In order to describe how neurons in the brain might work, they modeled a simple neural network using electrical circuits.

1949 - "Organization of the Behaviour"

1957 - Frank Rosenblatt - first paper - percepteon"

1BM 204 "A Logical Calculus of the Ideas Immanent in Merrous Activity!"

Behaviour Donald Hebb

1957-62 Perceptron - HYPE AI

1969 Perception, Minsky and Papert

(limitations and critique to AI)

1982-85 John Hopfied (Callech)

Today ...

- . What is learning?
- . What is the role of data in learning?

Data {(Xi, Yi)}

Straining} 1 1

Yier

Yie

P(Y; | X;) => P(Y; | X;, 0) w,b $P(Y_i|X_i,S_T,\theta)$ $P(Y;|X;, \Upsilon, S_T, \Theta)$ training

sorbonne, Paris

Further back in 1900 Dovid 8th August Hilbert

1 CM

The 13th Hilbert's problem:

· Is it possible to write its solution x, as a function of a, b and c -> as a composition of a finite number of two variable functions?

$$x = f(a,b,c)$$
.

$$f = \phi_n \circ \phi_{n-1} \circ \cdots \circ \phi_2 \circ \phi_1$$

composition of Functions.

1957 Arnold (Kolmogorov)

"Can every continuous function of 3 variables be expressed as a composition of finitely many continuous functions of two variables?"

$$f(x, y, z) = x^3 + xy^2z + zx = 0$$

$$f(x, y, z) = \phi_n(\phi_{n-1}(-), -)$$

. ReLU

- OIP
- . tanh , Sigmoid
 [-1,+1] [0,1]
 - · Monlineanité!

$$X = \left[x, x_2... x_n\right]^T \times \in \mathbb{R}^n$$

$$W = \left[\omega_1 \ \omega_2 \ ... \ \omega_n\right]^T \quad \omega \in \mathbb{R}^n$$

 $(3) \frac{1}{2} \frac{1}{2}$ Win jon, 5, (5 wn; sit bn) 0 - ym Loyer 1 Output -> 510 t1(x)

$$Y = G_{k} \circ t_{k} \circ G_{k-1} \circ t_{k-1} \circ \dots \circ G_{2} \circ t_{2} \circ G_{1} \circ t_{1}(X)$$
.
 $S - set of activation functions $G_{1} \in G_{2}$
 $G - net$
 $G - net$
 $G - net$
 $G = G_{k} \circ t_{k} \circ G_{k-1} \circ t_{k-1} \circ \dots \circ G_{2} \circ t_{2} \circ G_{1} \circ t_{1}(X)$.$

Universal Approximation:

$$D = \left\{ \left(X_i, Y_i \right) \right\} \in \left\{ 1, \dots, M \right\}$$

X₁ X₂ X₃ X₄... X_N

$$\mathbb{Q} \subset \mathbb{R}$$

rational Jz irrationals

· Floating point anthrmetic

Q is dense in R.

$$f^*) = \sum_{i=1}^{N} (f^i(x_i) - f^*(x_i))$$

minimize
$$e_f(W,b) = \sum_{i=1}^{\infty} (f(X_i, W, b) - Y_i)^2$$

$$C(R^n, R)$$
 $R^n \to R$
 $C(R^n, R)$
 $R^n \to R$
 $C(R^n, R)$
 $C(R^n, R)$

Reference	Function class	Activation ρ	Upper / lower bounds
Lu et al. (2017)	$L^1(\mathbb{R}^{d_x},\mathbb{R})$	ReLU	$d_x + 1 \le w_{\min} \le d_x + 4$
	$L^1(\mathcal{K}, \mathbb{R})$	Relu	$w_{\min} \geq d_x$
Hanin and Sellke (2017)	$C(K, \mathbb{R}^{d_y})$	ReLU	$d_x + 1 \le w_{\min} \le d_x + d_y$
Johnson (2019)	$C(\mathcal{K}, \mathbb{R})$	uniformly conti.†	$w_{\min} \ge d_x + 1$
Kidger and Lyons (2020)	$C(\mathcal{K}, \mathbb{R}^{d_y})$	conti. nonpoly [‡]	$w_{\min} \le d_x + d_y + 1$
	$C(K, \mathbb{R}^{d_y})$	nonaffine poly	$w_{\min} \le d_x + d_y + 2$
	$L^p(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$	ReLU	$w_{\min} \le d_x + d_y + 1$
Ours (Theorem 1)	$L^p(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$	ReLU	$w_{\min} = \max\{d_x + 1, d_y\}$
Ours (Theorem 2)	$C([0, 1], \mathbb{R}^2)$	RELU	$w_{\min} = 3 > \max\{d_x + 1, d_y\}$
Ours (Theorem 3)	$C(\mathcal{K}, \mathbb{R}^{d_y})$	RELU+STEP	$w_{\min} = \max\{d_x + 1, d_y\}$
Ours (Theorem 4)	$L^p(\mathcal{K}, \mathbb{R}^{d_y})$	conti. nonpoly [‡]	$w_{\min} \le \max\{d_x + 2, d_y + 1\}$

ICLR 2620, Min width for Universal approximation

Park, Lee

· Fully connected NN, alternating composition of aftitions functions.

& A set of activation functions [

 ξ L-layer MN 'f' of dimension $d_x \longrightarrow d_y$ and hidden layer dimensions d_1, \ldots, d_{l-1}

& te: Rd1-1 -> Rd1 is an affine transformation

& €, is a vector activation, S; €∑.

$$\mathcal{E}_{1}(x_{1},...,x_{d_{1}}) = (\mathcal{E}_{1}(x_{1}),...,\mathcal{E}_{d_{1}}(x_{d_{1}}))$$

& width of NN w:= mox { d1, ..., d2}

escription of Universal Approximation:

g-nets of soidth ω are dense in C(X,Y), if for any $f^* \in C(X,Y)$ and $\varepsilon > 0$, \exists a ς -net f of soidth $\omega \leq 1$.

If $f^* - f|_{\infty} \leq \varepsilon$.