Linear Algebra

April 30, 2018

Contents

Ι	2017	3
1	Rank nullity theorem	3
II	January 2018	3
2	Theorem 6.1. Properties of inner products	4
II	I February	4
3	Exercise 5.4.25. Simultaneously diagonalizable if $UT = TU$	4
4	Theorem. If two operators agree on a basis, they are equal.	4
5	Theorem. Eigenvectors corresponding to distinct eigenvalues of a normal operator are orthogonal	4
6	Theorem. Normal operators are diagonalizable	5
7	Theorem *6.3. An operator T is diagonalizable iff there exists a basis of V consisting of eigenvectors of T	5

8	Theorem 6.3	5
9	Theorem 6.16. Complex case: normal operator and orthonormal basis consisting of eigenvectors	6
10	Theorem 6.17. Real case: self-adjoint operator and orthonormal basis consisting of eigenvectors	6
11	Proposition. Eigenvectors and eigenvalues of the adjoint of a normal operator	6
ΙV	⁷ March	6
12	Conjecture. The inner product is unique up to an orthonormal basis.	7
13	Exercise 6.4.17. Positive semi/definite operator	7
14	Ex 6.4.18. Derived positive semidefinite matrices	9
15	Ex 6.4.19. Properties of positive definite operators	9
16	Unitary and orthogonal operators and their matrices	9
17	Example 6.18. Rotation in \mathbb{R}^2 .	g
18	Lemma 6.18. T_0 is the only self-adjoint operator that is orthogonal to all its inputs	10
19	Theorem 6.18. Characterizing unitary $/$ orthogonal $/$ isometric operators on a fin dim inner product space	11
20	Proposition *6.18. The adjoint of a unitary $/$ orthogonal operator is its inverse	12
21	Proposition. Equality of two operators in an inner product	13

22	Exercise 2.4.9. AB invertible implies A and B are invertible for square matrices A and B	1 4
23	Exercise 2.4.10. One-sided inverse is a two-sided inverse	1 4
24	Corollary 6.18. Selfadjoint and orthogonal iff orthonormal basis of eigenvectors with eigenvalues of absolute value 1	15
25	Corollary 6.18.1. Unitary iff orthonormal basis of eigenvectors with eigenvalues of absolute value 1	15
26	Lemma *6.18. Orthonormal basis of eigenvectors with eigenvalues of absolute value 1 implies T maps orthonormal basis to orthonormal basis	16
27	Definition 6.18. Reflection about a line in \mathbb{R}^2	16
28	Definition 6.18.1. Orthogonal and unitary matrices	16

Part I

2017

1 Rank nullity theorem

Let V be a finite dimensional vector space, and W be a (not necessarily finite dimensional) vector space over some field and let $T:V\to W$ be a linear map. Then

$$\dim(\operatorname{im}(T)) + \dim(\ker(T)) = \dim(V)$$

Part II

January 2018

2 Theorem 6.1. Properties of inner products

Let $V \langle \rangle$. If $\langle x, y \rangle = \langle x, z \rangle$ for all x, then y = z. Similarly $\langle y, x \rangle = \langle z, x \rangle$.

Part III

February

M19F18

3 Exercise 5.4.25. Simultaneously diagonalizable if UT = TU

Proposition. If T and U are diagonalizable linear operators on a finite-dimensional vector space V s.t. UT = TU, then T and U are simultaneously diagonalizable.

- 4 Theorem. If two operators agree on a basis, they are equal.
- 5 Theorem. Eigenvectors corresponding to distinct eigenvalues of a normal operator are orthogonal

Theorem. Let T be normal on V, $\langle \cdot, \cdot \rangle$. Then eigenvectors corresponding to distinct eigenvalues of T are orthogonal.

- 6 Theorem. Normal operators are diagonalizable
- 7 Theorem *6.3. An operator T is diagonalizable iff there exists a basis of V consisting of eigenvectors of T

Corollary. If T is a self-adjoint operator, then there is a basis of V consisting of eigenvectors of T.

Proof. Follows from Theorem 6.16 or 6.17.

8 Theorem 6.3

Theorem. Let V be an inner product space and $S = \{v_1, v_2, \ldots, v_k\}$ be an orthogonal subset of V consisting of nonzero vectors. If $y \in \text{span}(S)$ then

$$y = \sum_{i=1}^k rac{\langle y, v_i
angle}{\|v_i\|^2} v_i.$$

Corollary. Let V be an inner product space and $S = \{v_1, v_2, \ldots, v_k\}$ be an orthonormal subset of V and $y \in \operatorname{span}(S)$, then

$$y = \sum_{i=1}^k raket{y, v_i}{v_i}$$
 .

Corollary. Let V be an inner product space, $y \in V$, and $\beta = \{v_1, v_2, \ldots, v_k\}$ be an orthonormal basis for V. Then

$$y = \sum\limits_{i=1}^k \left\langle y, v_i
ight
angle v_i.$$

9 Theorem 6.16. Complex case: normal operator and orthonormal basis consisting of eigenvectors

Let T be a linear operator on a finite-dimensional complex inner product space V. Then T is normal iff there exists an orthonormal basis for V consisting of eigenvectors of T.

10 Theorem 6.17. Real case: self-adjoint operator and orthonormal basis consisting of eigenvectors

Let T be a linear operator on a finite-dimensional real inner product space V. Then T is self-adjoint iff there exists an orthonormal basis for V consisting of eigenvectors of T.

Corollary 6.17. Let T be a linear operator on a finite-dimensional complex [real] inner product space V. If T is normal [self-adjoint] then T is diagonalizable.

Proof. In either case, V has an orthonormal basis consisting of eigenvectors of T. By Theorem *6.3, this happens iff T is diagonalizable. Oh, I already have this corollary as a corollary over there.

11 Proposition. Eigenvectors and eigenvalues of the adjoint of a normal operator

Proposition. Let T be a normal linear operator on an inner product space V with eigenvalue λ and eigenvector x, then x is an eigenvector of T^* corresponding to eigenvalue $\overline{\lambda}$.

Part IV

March

12 Conjecture. The inner product is unique up to an orthonormal basis.

Specifically, let V be a finite-dimensional inner product on C or R, and β and γ be any orthonormal bases for V, and x, y be vectors in V. Then

$$\langle x,y
angle = \overline{y}^T x = [y]_eta \cdot [x]_eta = [y]_\gamma \cdot [x]_\gamma.$$

In other words, the dot product of two vectors is the same in any orthonormal basis.

Proof. TODO.

Definition. A linear operator T on a finite dimensional inner product space V is called positive definite if T is self-adjoint and $\langle T(x), x \rangle > 0$ for all $x \neq 0$. It's called positive semidefinite if $\langle T(x), x \rangle \geq 0$ for all $x \neq 0$. Similarly for a square matrix A.

13 Exercise 6.4.17. Positive semi/definite operator

Let T and U be self-adjoint linear operators on an n-dimensional inner product space V, and let $A = [T]_{\beta}$, where β is an orthonormal basis for V. Prove:

- 1. T is positive definite (semidefinite) iff all of its eigenvalues are positive (nonnegative).
- 2. T is positive definite iff

$$\sum_{i,j} A_{ij} a_j \overline{a}_i > 0$$

for all $(a_1, \ldots, a_n) \neq 0$. [What about semidefinite? Also true.]

- 3. T is positive semidefinite iff $A = B^*B$ for some square matrix B.
- 4. If T and U are positive semidefinite operators s.t. $T^2=U^2$, then T=U.
- 5. If T and U are positive definite (semidefinite?) operators s.t. TU = UT, then TU is positive definite (semidefinite?).
- 6. T is positive definite (semidefinite) iff A is.

Proof 1. We'll show definite, semi is similar. Let T be positive definite, and let λ be an eigenvalue, and $x \neq 0$. Then

$$egin{aligned} \left\langle T(x),x
ight
angle >0\ &\left\langle \lambda x,x
ight
angle >\ &\lambda \left\langle x,x
ight
angle >0. \end{aligned}$$

Since |x| > 0, λ must also be > 0. Conversely, suppose that all eigenvalues of T are positive. Let v_i be the eigenvectors of T with corresponding eigenvalues λ_i . Then

$$T(v_i) = \lambda_i v_i$$
.

Now let x be any vector, and $x = \sum a_i v_i$. Then

$$\left\langle T(x),x
ight
angle =\left\langle T\left(\sum a_{i}v_{i}
ight),\sum a_{i}v_{i}
ight
angle =\left\langle \sum a_{i}\lambda_{i}v_{i},\sum a_{i}v_{i}
ight
angle =\sum\lambda_{i}\left|v_{i}
ight|^{2}$$

(because the v_i 's are orthonormal).

Proof 2. First note that

$$\sum_{i,j} A_{ij} a_j \overline{a}_i = \overline{a}^T A a = \overline{ig[a_1 \quad \cdots \quad a_nig]} \, [A_{ij}] egin{bmatrix} a_1 \ dots \ a_n \end{bmatrix}.$$

This is equal to

$$\langle T\left(x\right),x\rangle$$

since β is an orthonormal basis (recall that the dot product of two vectors is the same in any orthonormal basis).

14 Ex 6.4.18. Derived positive semidefinite matrices

Let $T:V\longrightarrow W$ be a linear transformation, where V and W are finite-dim. Then

- 1. T^*T and TT^* are positive semidefinite.
- 2. $\operatorname{rank}(T^*T) = \operatorname{rank}(TT^*) = \operatorname{rank}(T)$.

15 Ex 6.4.19. Properties of positive definite operators

Let T and U be positive definite operators on an inner product space V. Then

- 1. T + U is positive definite.
- 2. If c > 0, then cT is p.d.
- 3. T^{-1} is p.d.

16 Unitary and orthogonal operators and their matrices

Definition. Let T, n, $\langle \rangle$, V, F. If ||T(x)|| = ||x|| for all x, we call T a unitary operator if F = C, and an orthogonal operator if F = R. T is also called an isometry, or length-preserving operator.

17 Example 6.18. Rotation in \mathbb{R}^2 .

E.g. any rotation or reflection in \mathbb{R}^2 preserves length and hence is an orthogonal operator. Rotation by θ given by

$$R_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}.$$

Rotation by $-\theta$ is its inverse:

$$R_{ heta}^{-1} = R_{- heta} = egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix} = R_{ heta}^T.$$

Since rotation by θ followed by rotation by $-\theta$ is the identity, we have

$$R_{ heta}^T R_{ heta} = R_{ heta}^{-1} R_{ heta} = I.$$

By Theorem 6.18 below, R_{θ} is orthogonal. By Theorem 6.18.b, it preserves the inner product and hence preserves the angle between two vectors. Since $R_{\theta} \neq R_{\theta}^{T}$, it is not selfadjoint.

E.g. Recall the space H of continuous complex-valued functions defined on $[0,2\pi]$ with the inner product

$$\langle f,g
angle =rac{1}{2\pi}\int_{0}^{2\pi}f(t)\overline{g(t)}dt.$$

Let $h \in H$ satisfy |h(x)| = 1 for all x. Define T on H by T(f) = hf. Then

$$\left|\left|T(f)
ight|
ight|^2 = \left|\left|hf
ight|
ight|^2 = rac{1}{2\pi}\int_0^{2\pi}h(t)f(t)\overline{h(t)f(t)}dt = \left|\left|f
ight|
ight|^2$$

since $|h(t)|^2 = 1$. So T is a unitary operator.

18 Lemma 6.18. T_0 is the only self-adjoint operator that is orthogonal to all its inputs

Let U be self adjoint on $n, \langle \rangle, V$. If $\langle x, U(x) \rangle = 0$ for all x, then $U = T_0$, the zero operator.

Proof. By Theorem 6.16 or 6.17, there exists an orthonormal basis β for V consisting of eigenvectors of U. Let $x \in \beta$. Then $U(x) = \lambda x$ for some λ . Thus

$$0=\left\langle x,U(x)
ight
angle =\left\langle x,\lambda x
ight
angle =\overline{\lambda}\left\langle x,x
ight
angle =\overline{\lambda}\left|\left|x
ight|
ight|^{2}$$
 ,

and $\overline{\lambda}=0.$ Hence U(x)=0 for all $x\in eta$ and $U=T_0.$

Nonexample of a nonselfadjoint operator that has $\langle x, U(x) \rangle = 0$ but is not the zero op: the rotation U by 90 degrees in the plane.

19 Theorem 6.18. Characterizing unitary / orthogonal / isometric operators on a fin dim inner product space

Let T, n, $\langle \rangle$, V, F. Then the following statements are equivalent:

- 1. $TT^* = T^*T = I$. In particular, T is normal and there exists an orthonormal basis for V consisting of eigenvectors of T.
- 2. $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all x, y.
- 3. If β is an orthonormal basis, then $T(\beta)$ is an orthonormal basis.
- 4. There exists an orthonormal basis β s.t. $T(\beta)$ is an orthonormal basis.
- 5. ||T(x)|| = ||x|| for all x, i.e. T is unitary / orthogonal.

In other words, an operator is unitary / orthogonal iff it is normal and its "norm" TT^* is 1.

Proof (1) implies (2). For any x, y,

$$\langle x,y
angle = \langle T^*T(x),y
angle = \langle T(x),T(y)
angle$$
 .

Proof (2) implies (3). Let $\beta = \{v_1, \ldots, v_n\}$ be an orthonormal basis for V. Then $T(\beta) = \{T(v_1), \ldots, T(v_n)\}$ and

$$\langle T(v_i), T(v_j)
angle = \langle v_i, v_j
angle = \delta_{ij},$$

so $T(\beta)$ is an orthonormal basis for V.

Proof (3) implies (4). [This one is a little odd?] Any orthonormal basis β satisfies this property, and there must be one because V is fin dim.

Proof (4) implies (5). Let $x \in V, \beta = \{v_1, \ldots, v_n\}$. Then

$$x = \sum_{i=1}^n a_i v_i$$

for some a_i , and

$$\left|\left|x
ight|
ight|^2 = \left\langle \sum_{i=1}^n a_i v_i, \sum_{i=1}^n a_i v_i
ight
angle = \sum_i \sum_j a_i \overline{a_j} \left\langle v_i, v_j
ight
angle = \sum_{i=1}^n \left|a_i
ight|^2.$$

Similarly,

$$\left|\left|T(x)
ight|
ight|^2 = \left\langle \sum_{i=1}^n a_i T(v_i), \sum_{i=1}^n a_i T(v_i)
ight
angle = \sum_i \sum_j a_i \overline{a_j} \left\langle T(v_i), T(v_j)
ight
angle = \sum_{i=1}^n \left|a_i
ight|^2,$$

since $T(\beta)$ is also orthonormal.

Proof (5) implies (1). For any x,

$$egin{aligned} \langle x,x
angle &= \langle T(x),T(x)
angle &= \langle x,T^*T(x)
angle \ \langle x,(I-T^*T)(x)
angle &= 0. \end{aligned}$$

Let $U = I - T^*T$. Then U is self-adjoint and $\langle x, U(x) \rangle = 0$ for all x. By the previous lemma, $I - T^*T = U = T_0$ and $I = T^*T$. [Why does this imply that $TT^* = I$? The referenced Exercise 2.4.10 is about invertible matrices, not adjoint operators.... Ah, See next.]

20 Proposition *6.18. The adjoint of a unitary / orthogonal operator is its inverse

Let $Tn \langle \rangle VF$, and let β be an orthonormal basis for V, and suppose T^{-1} exists. Then $T^* = T^{-1}$ iff $T(\beta)$ is also an orthonormal basis for V.

If that were true we can apply Exercise 2.4.10 and say that $TT^* = TT^{-1} = I$ and therefore $T^{-1}T = T^*T = I$.

Proof. Suppose $T^* = T^{-1}$. Then $TT^* = T^*T = I$ and (3) implies that $T(\beta)$ is an orthonormal basis. Conversely suppose that $T(\beta)$ is an orthonormal basis,

$$eta = \left\{v_1, \ldots, v_n
ight\}, T(eta) = \left\{T(v_1), \ldots, T(v_n)
ight\}.$$

To show that $T^* = T^{-1}$, we want to show that

$$\left\langle T^{-1}(x),y
ight
angle =\left\langle T^{st}(x),y
ight
angle =\left\langle x,T(y)
ight
angle$$

for all $x, y \in V$. It suffices to show that this holds for all $x \in T(\beta), y \in \beta$. [Why? This feels right, but it's not quite the result I'm thinking about.] There are two cases: either (1) x = T(y) or (2) $x \neq T(y)$. In case (1),

$$\left\langle T^{-1}(x),y
ight
angle =\left\langle y,y
ight
angle =1=\left\langle x,T(y)
ight
angle .$$

In case (2),

$$\langle x,T(y)
angle = 0 = \left\langle T^{-1}(x),y
ight
angle$$
 .

Therefore $T^* = T^{-1}$.

21 Proposition. Equality of two operators in an inner product

Let $T, n \langle \rangle VF$, and let β and $T(\beta)$ be orthonormal bases for V and suppose that T^{-1} exists. If

$$\left\langle T^{-1}(x),y
ight
angle =\left\langle x,T(y)
ight
angle$$

for all $y \in \beta, x \in T(\beta)$, then $\langle T^{-1}(x), y \rangle = \langle x, T(y) \rangle$ for all $x, y \in V$. In particular $\langle T^{-1}(x), y \rangle = \langle T^*(x), y \rangle$ for all x, y, and therefore $T^{-1} = T^*$.

Proof. Let $\beta = \{v_1, \ldots, v_n\}$, $T(\beta) = \{T(v_1), \ldots, T(v_n)\}$, and let

$$egin{aligned} x &= \sum a_i T(v_i) \ y &= \sum b_i v_i. \end{aligned}$$

Expanding $\langle x, T(y) \rangle$ and $\langle T^{-1}(x), y \rangle$ we get

$$egin{aligned} \langle x,T(y)
angle &= \left\langle \sum a_i T(v_i), T\left(\sum b_i v_i
ight)
ight
angle \ &= \left\langle \sum a_i T(v_i), \sum b_i T(v_i)
ight
angle \ &= \sum a_i \overline{b_i} \ &\left\langle T^{-1}(x),y
ight
angle &= \left\langle T^{-1}\left(\sum a_i T(v_i)
ight), \sum b_i v_i
ight
angle \ &= \sum a_i \overline{b_i}. \end{aligned}$$

We should apply abstract results on concrete examples.

22 Exercise 2.4.9. AB invertible implies A and B are invertible for square matrices A and B

Let A and B be $n \times n$ matrices such that AB is invertible. Prove that A and B are invertible. Give an example to show that arbitrary matrices A and B need not be invertible if AB is invertible.

Proof. The columns of AB are of the form $[Ab_1 \cdots Ab_n]$ where b_i are the columns of B. Since AB is invertible, its columns are linearly independent. By the rank-nullity theorem $(\dim N_A + \dim R_A = \dim V = n)$, we have $\dim R_A = n$, so $\dim N_A = 0$, and T is invertible. This also means the b_i are linearly independent, so B is invertible.

23 Exercise 2.4.10. One-sided inverse is a two-sided inverse

Let A and B be $n \times n$ matrices s.t. $AB = I_n$. (a) Use previous to conclude that A and B are invertible. (b) Prove $A = B^{-1}$ and $B = A^{-1}$, i.e. for square matrices, a one-sided inverse is a two-sided inverse.

Proof. (a) By previous, A and B are invertible. (b) Multiply on the left by A^{-1}

$$AB = I$$

$$A^{-1}AB = A^{-1}$$

$$B = A^{-1}.$$

Similarly for the other one.

24 Corollary 6.18. Selfadjoint and orthogonal iff orthonormal basis of eigenvectors with eigenvalues of absolute value 1

Corollary. Let $TnVR\langle\rangle$. Then V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues of absolute value 1 iff T is both selfadjoint and orthogonal.

Proof. (\Longrightarrow) Suppose $\beta=\{v_i\}$ is an orthonormal basis of eigenvectors of T with corresponding eigenvalues of absolute value 1. By Theorem 6.17 T is selfadjoint. Let $x=\sum a_iv_i$. We want to show T is orthogonal, i.e. ||T(x)||=||x||:

$$\left|\left|T(x)
ight|
ight|^2 = \left\langle T(x), T(x)
ight
angle = \left\langle \sum a_i T(v_i), \sum a_i T(v_i)
ight
angle = \sum a_i^2 = \left|\left|x
ight|
ight|$$

because the $T(v_i)$'s are orthonormal, thanks to a lemma we'll prove below. (\iff) Suppose T is selfadjoint and orthogonal. By Theorem 6.17 V has an orthonormal basis $\beta = \{v_i\}$ of eigenvectors of T. WTS $|\lambda_i| = 1$. We have $T(v_i) = \lambda_i v_i$, so

$$||T(v_i)|| = \langle T(v_i), T(v_i)
angle = \langle \lambda_i v_i, \lambda_i v_i
angle = \lambda_i^2 \, \langle v_i, v_i
angle = \lambda_i^2 \, ||v_i|| \ 1 = \lambda_i^2,$$

because T is orthogonal. Therefore $|\lambda_i| = 1$. [NOTE. We could've written the previous equation using norms instead of inner products: $||T(v_i)|| = ||\lambda_i v_i|| = |\lambda_i| ||v||$.]

25 Corollary 6.18.1. Unitary iff orthonormal basis of eigenvectors with eigenvalues of absolute value 1

Corollary. Let $TnVC\langle\rangle$. Then V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues of absolute value 1 iff T is unitary.

Proof similar to the real case.

26 Lemma *6.18. Orthonormal basis of eigenvectors with eigenvalues of absolute value 1 implies T maps orthonormal basis to orthonormal basis

Lemma. Let $TnVR\langle\rangle$. If V has an orthonormal basis β of eigenvectors with eigenvalues of absolute value 1, then $T(\beta)$ is also an orthonormal basis.

Proof. Let $\beta = \{v_i\}$. Then

$$\langle T(v_i), T(v_j)
angle = \langle \lambda_i v_i, \lambda_j v_j
angle = egin{matrix} 0 & ext{if } i
eq j \ 1 & ext{if } i = j. \end{cases}$$

Therefore the $T(v_i)$'s are orthonormal and form an orthonormal basis.

27 Definition 6.18. Reflection about a line in \mathbb{R}^2

Let L be a one dimensional subspace of R^2 . We may view L as a line in the plane through the origin. A linear operator T on R^2 is called a reflection of R^2 about L if T(x) = x for all $x \in L$ and T(x) = -x for all $x \in L^{\perp}$.

T is an orthogonal operator: let $v_1 \in L, v_2 \in L^{\perp}$ with length 1. Then $T(v_1) = v_1$ and $T(v_2) = -v_2$, thus v_i are eigenvectors with eigenvalues 1 and -1. By Corollary 6.18 T is orthogonal. We can also see that $\beta = \{v_i\}$ is an orthonormal basis for V, as is $T(\beta) = \{T(v_i)\}$.

28 Definition 6.18.1. Orthogonal and unitary matrices

Definition. A square matrix A is called an orthogonal matrix if $A^tA = AA^t = I$ and unitary if $A^*A = AA^* = I$.