Background

People v. Collins (1968) is an example where conditional probability and independence were used in probability calculations to aid in a court case in the Supreme Court of California. The case involved a purse being stolen. Witnesses claimed to see a young woman with blond hair in a ponytail running away from the the scene in a yellow car that was driven by a black man with a beard. A few days later, a couple was arrested because they matched these descriptions. However, there was no physical evidence on them.

A mathematician was hired, and they calculated the probability that a randomly selected couple in this California area would possess these characteristics. They found the probability to be 8.3×10^{-8} , or about 1 in 12 million. The jury found this probability extremely compelling and convicted the couple. However, the Supreme Court thought, in the light of no evidence, that a different probability might be more useful: Given that there is one couple who meets the descriptions provided by the witness, what is the probability that a second couple also has those same characteristics?

Set-up

Let's define the following:

- p is the probability that a randomly selected couple from a population of n couples has the aforementioned characteristics. The mathematician found $p = 8.3 \times 10^{-8}$.
 - We will assume that the n couples are mutually independent
- A is the event that at least one couple in the population has the characteristics
- B as the event that at least two couples in the population have the characteristics
- C be the event that exactly one couple has the characteristics
- A_i is the event that couple i has the characteristics described by the witness, for $i = 1, \ldots, n$.

In terms of these events, the probability the Court is interested in is:

What are some relationships between some or all the events A, B, C?

1.

2.

Calculations

Now let's find P(B).

Realize that we need P(C)! Once again made easier by re-writing C in terms of the A_i

Results

Because the crime occurred in a heavily populated area of California, they estimated n to be in the millions. Letting $p=8.3\times 10^{-8}$ based off the mathematician's calculations and n=8,000,000 couples (according to California statistics):