Models With Three or More Levels and Cross-Classified Models

2024-08-26

Table of contents

Introduction
Three Or More Levels
The Data
The Equation
Run The Models
Stata
Get The Data
Unconditional Model
Conditional Model
R
Get The Data
Change Some Variables To Categorical 6
Unconditional Model
Conditional Model
Get The Data
Change Some Variables To Categorical
Unconditional Model
Conditional Model
Interpretation
Cross-Classified Models
The Data
The Equation
Run The Models
Stata
Get The Data

	Unconditional Model	12
	Conditional Model	13
R		14
	Get The Data	14
	Change Some Variables To Categorical	14
	Unconditional Model	14
	Conditional Model	15
Julia .		16
	Get The Data	16
	Change Some Variables To Categorical	16
	Unconditional Model	16
	Conditional Model	17
Interpretation	1	18

Introduction

A two level multilevel model imagines that *Level 1* units are nested in *Level 2* units. A three level multilevel model imagines that *Level 1* units are nested in *Level 2* units, which are in turn nested in *Level 3*. As more levels are added to the model (e.g. *Level 4*), we imagine all of these levels to be hierarchically nested.

A cross classified model imagines that the nesting is not hierarchical, but rather that there are two sets of clusters or nestings in which individuals may be nested.

Below, I describe the use of Stata, R, and Julia to estimate these models.

Three Or More Levels

The Data

I use the *longitudinal* data from *Multilevel Thinking* to which I have added an extra level of *United Nations Region* (Arel-Bundock, Enevoldsen, and Yetman 2018). This data thus requires a four level model.

The Equation

$$outcome_{itjk} = \beta_0 + \beta_1 parental warmth_{itjk} + \beta_2 physical punishment_{itjk} + \beta_3 time_{itjk} + (1)$$

$$\beta_4$$
identity_{itik} + β_5 intervention_{itjk} + β_6 HDI_{itjk}+

$$w_{0k} + u_{0j} + v_{0i} + e_{itjk}$$

Here we imagine w_{0k} (region), u_{0j} (country) and v_{0i} (family) are hierarchically nested effects.

Run The Models

Stata

Get The Data

```
use "fourlevel.dta", clear
```

Unconditional Model

```
mixed outcome || UNregion: || country: || family:
```

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -29061.686
Iteration 1: Log likelihood = -29061.679
Iteration 2: Log likelihood = -29061.679

Computing standard errors ...

Mixed-effects ML regression

Number of obs = 9,000

Grouping information

Group variable		No. of groups	Obser Minimum	rvations per Average	group Maximum
UNregion		5	600	1,800.0	3,600
country		30	300	300.0	300
family		3,000	3	3.0	3

Wald chi2(0) = ...

Log likelihood = -29061.679			Prob > chi2	= .
outcome Coefficient St			[95% conf.	interval]
_cons 54.05906			52.12385	55.99426
Random-effects parameters				
UNregion: Identity				
· ·		3.187885		
country: Identity	 			
· ·		.8710225		5.187414
family: Identity				
· ·		.57475	10.64997	12.90641
var(Residual)	•	.5154842	27.24177	29.26286
LR test vs. linear model: chi2	2(3) = 1843.44	4	Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

Conditional Model

```
mixed outcome t warmth physical_punishment i.identity i.intervention HDI ///
|| UNregion: || country: || id:
```

Performing EM optimization ...

Performing gradient-based optimization: Iteration 0: Log likelihood = -28503.082 Iteration 1: Log likelihood = -28503.039 Iteration 2: Log likelihood = -28503.039

Computing standard errors ...

Grouping information

	No. of groups	Obser	vations per	group
Group variable		Minimum	Average	Maximum
UNregion	5	600	1,800.0	3,600
country	30	300	300.0	300
id	3,000	3	3.0	3

Log likelihood = -28503.039

Wald chi2(6) = 1209.42Prob > chi2 = 0.0000

outcome		Coefficient	Std. err.	z	P> z	[95% conf.	_
t		.9433791	.0658667	14.32	0.000	.8142827	1.072476
warmth		.9140704	.0379156	24.11	0.000	.8397571	.9883837
physical_punishment		-1.008615	.0497772	-20.26	0.000	-1.106176	9110531
1.identity		1332133	.1516437	-0.88	0.380	4304294	.1640028
1.intervention		.8589263	.1519619	5.65	0.000	.5610865	1.156766
HDI		.0148561	.0196605	0.76	0.450	0236777	.0533899
_cons		50.16426	1.675219	29.94	0.000	46.88089	53.44763

Random-effects parameters				
UNregion: Identity	4.722007	3.585939	1.065898	20.91884
country: Identity	2.863495	.8656459	1.583342	5.178668
<pre>id: Identity var(_cons)</pre>	8.421131	.4711947	7.546445	9.397199
var(Residual)				
LR test vs. linear model: chi2	Prob > chi	2 = 0.0000		

Note: LR test is conservative and provided only for reference.

R

Get The Data

```
library(haven)
df4 <- read_dta("fourlevel.dta")</pre>
```

Change Some Variables To Categorical

```
df4$identity <- factor(df4$identity)</pre>
df4$intervention <- factor(df4$intervention)</pre>
```

Unconditional Model

Caution

lme4 does not directly provide p values in results, because of some disagreement over exactly how these p values should be calculated. Therefore, in this Appendix, I also call library lmerTest to provide p values for lme4 results.

R prefers to use scientific notation when possible. I find that the use of scientific notation can be confusing in reading results. I turn off scientific notation by setting a penalty for its use: options(scipen = 999).

```
library(lme4)
library(lmerTest)
```

```
Attaching package: 'lmerTest'
```

The following object is masked from 'package:lme4':

lmer

```
The following object is masked from 'package:stats':
    step
options(scipen = 999)
fit4A <- lmer(outcome ~ (1 | UNregion/country/id),</pre>
             data = df4)
summary(fit4A)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: outcome ~ (1 | UNregion/country/id)
   Data: df4
REML criterion at convergence: 58121.4
Scaled residuals:
             1Q Median
    Min
                             ЗQ
                                    Max
-3.7850 -0.6064 -0.0047 0.6020 3.4399
Random effects:
 Groups
                       Name
                                   Variance Std.Dev.
 id:(country:UNregion) (Intercept) 11.724 3.424
 country:UNregion
                      (Intercept) 2.842 1.686
                       (Intercept) 5.478 2.340
 UNregion
 Residual
                                   28.234 5.314
Number of obs: 9000, groups:
id:(country:UNregion), 3000; country:UNregion, 30; UNregion, 5
Fixed effects:
            Estimate Std. Error
                                    df t value
                                                 Pr(>|t|)
(Intercept) 54.061
                         1.112 3.777
                                         48.6 0.00000201 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Conditional Model
fit4B <- lmer(outcome ~ t + warmth + physical_punishment +</pre>
                identity + intervention + HDI +
```

```
(1 | UNregion/country/id),
             data = df4
summary(fit4B)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTestl
Formula:
outcome ~ t + warmth + physical_punishment + identity + intervention +
    HDI + (1 | UNregion/country/id)
   Data: df4
REML criterion at convergence: 57026.4
Scaled residuals:
    Min
            1Q Median
                            3Q
                                   Max
-3.6846 -0.6096 -0.0038 0.6138 3.6850
Random effects:
 Groups
                                  Variance Std.Dev.
                      Name
 id:(country:UNregion) (Intercept) 8.438
                                           2.905
 country:UNregion
                      (Intercept) 2.979 1.726
                                         2.486
 UNregion
                      (Intercept) 6.178
 Residual
                                  26.036 5.103
Number of obs: 9000, groups:
id:(country:UNregion), 3000; country:UNregion, 30; UNregion, 5
Fixed effects:
                     Estimate Std. Error
                                                df t value
(Intercept)
                     50.11857 1.78086
                                           15.79112 28.143
                      0.94338 0.06588 5998.37756 14.321
warmth
                      0.91406 0.03793 4745.28492 24.096
physical_punishment
                     -1.00876 0.04980 6483.46337 -20.257
identity1
                     -0.13324 0.15173 2969.00938 -0.878
intervention1
                      0.85872 0.15205 2971.85430 5.648
HDI
                                0.02006
                                           24.39852 0.778
                      0.01560
                               Pr(>|t|)
(Intercept)
                    0.0000000000000641 ***
                   < 0.0000000000000000 ***
                   < 0.0000000000000000 ***
warmth
physical_punishment < 0.000000000000000 ***
```

0.380

identity1

```
intervention1 0.0000001780521096 ***
HDI
                                 0.444
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
           (Intr) t
                        warmth physc_ idntt1 intrv1
t
           -0.073
           -0.071 -0.002
warmth
physcl_pnsh -0.073 -0.007 -0.012
          -0.040 0.000 -0.013 -0.003
identity1
interventn1 -0.045 0.000 0.039 0.019 -0.018
          -0.738 0.000 -0.005 0.005 -0.001 0.001
HDI
```

Julia

Get The Data

```
using Tables, MixedModels, StatFiles, DataFrames, CategoricalArrays, DataFramesMeta
df4 = DataFrame(load("fourlevel.dta"))
```

Change Some Variables To Categorical

```
@transform!(df4, :country = categorical(:country))
@transform!(df4, :UNregion = categorical(:UNregion))
@transform!(df4, :identity = categorical(:identity))
@transform!(df4, :intervention = categorical(:intervention))
```

Unconditional Model

```
(1 | country) +
(1 | id)), df4)
```

```
Linear mixed model fit by maximum likelihood
outcome ~ 1 + t + warmth + physical_punishment + identity + intervention + HDI + (1 | UNreg logLik -2 logLik AIC AICc BIC
-28503.0394 57006.0787 57028.0787 57028.1081 57106.2335
```

Variance components:

Column Variance Std.Dev.

id (Intercept) 8.42110 2.90191

country (Intercept) 2.86347 1.69218

UNregion (Intercept) 4.72082 2.17274

Residual 26.02921 5.10188

Number of obs: 9000; levels of grouping factors: 3000, 30, 5

Fixed-effects parameters:

	Coef.	Std. Error	Z	Pr(> z)
(Intercept)	50.1643	1.67514	29.95	<1e-99
t	0.943379	0.0658668	14.32	<1e-45
warmth	0.91407	0.0379156	24.11	<1e-99
physical_punishment	-1.00861	0.0497772	-20.26	<1e-90
identity	-0.133213	0.151644	-0.88	0.3797
intervention	0.858927	0.151962	5.65	<1e-07
HDI	0.0148553	0.0196604	0.76	0.4499

Conditional Model

Linear mixed model fit by maximum likelihood

```
outcome ~ 1 + t + warmth + physical_punishment + identity + intervention + HDI + (1 | UNreg logLik -2 logLik AIC AICc BIC -28503.0394 57006.0787 57028.0787 57028.1081 57106.2335
```

Variance components:

Column Variance Std.Dev.
id (Intercept) 8.42110 2.90191
country (Intercept) 2.86347 1.69218
UNregion (Intercept) 4.72082 2.17274
Residual 26.02921 5.10188

Number of obs: 9000; levels of grouping factors: 3000, 30, 5

Fixed-effects parameters:

	Coef.	Std. Error	Z	Pr(> z)
(Intercept)	50.1643	1.67514	29.95	<1e-99
t	0.943379	0.0658668	14.32	<1e-45
warmth	0.91407	0.0379156	24.11	<1e-99
physical_punishment	-1.00861	0.0497772	-20.26	<1e-90
identity	-0.133213	0.151644	-0.88	0.3797
intervention	0.858927	0.151962	5.65	<1e-07
HDI	0.0148553	0.0196604	0.76	0.4499

Interpretation

Cross-Classified Models

The Data

I use the *cross-sectional* data from *Multilevel Thinking* to which I have added an extra level of a hypothetical language.

The Equation

$$\text{outcome}_{itj} = \beta_0 + \beta_1 \text{parental warmth}_{itj} + \beta_2 \text{physical punishment}_{itj} + \beta_3 \text{time}_{itj} + \qquad (2)$$

$$\beta_4 \mathrm{identity}_{itj} + \beta_5 \mathrm{intervention}_{itj} + \beta_6 \mathrm{HDI}_{itj} +$$

$$u_{0j} + m_{0m} + e_{ijm}$$

Here u_{0i} (country) and m_{0m} (language) are not nested hierarchically, but are cross classified.

Run The Models

Stata

Get The Data

```
use "crossclassified.dta", clear
```

Unconditional Model

```
mixed outcome || _all: R.country || _all: R.language
```

Performing EM optimization ...

Performing gradient-based optimization: Iteration 0: Log likelihood = -9835.8123

Iteration 1: Log likelihood = -9835.8111
Iteration 2: Log likelihood = -9835.8111

Computing standard errors ...

Mixed-effects ML regression

Group variable: _all

Number of obs = 3,000

Number of groups = 1

Obs per group:

min = 3,000avg = 3,000.0

 $\max = 3,000$ Wald chi2(0) = .

Log likelihood = -9835.8111 Prob > chi2 = .

 .----

Random-effects parameters					
_all: Identity var(R.country)	3.177791	.9244633	1.796798	5.620198	
_all: Identity var(R.language)	.9566314	.3284087	.4881235	1.87482	
var(Residual)			37.63148	41.73206	
LR test vs. linear model: chi2(2) = 180.84					

Note: LR test is conservative and provided only for reference.

Conditional Model

```
mixed outcome warmth physical_punishment i.identity i.intervention HDI || _all: R.country ||
Performing EM optimization ...
Performing gradient-based optimization:
Iteration 0: Log likelihood = -9663.2195
Iteration 1: Log likelihood = -9663.2194
Computing standard errors ...
Mixed-effects ML regression
                                                 Number of obs = 3,000
                                                 Number of groups = 1
Group variable: _all
                                                 Obs per group:
                                                             min = 3,000
                                                             avg = 3,000.0
                                                             max = 3,000
                                                 Wald chi2(5)
                                                               = 367.04
Log likelihood = -9663.2194
                                                 Prob > chi2
                                                               = 0.0000
           outcome | Coefficient Std. err.
                                            z P>|z|
                                                             [95% conf. interval]
```

warmth	.8331461	.0579811	14.37	0.000	.7195052	.946787
physical_punishment	9979749	.080268	-12.43	0.000	-1.155297	8406525
1.identity	2922428	.2191421	-1.33	0.182	7217534	.1372678
1.intervention $ $.6097458	.2195139	2.78	0.005	.1795064	1.039985
HDI	0015879	.0204157	-0.08	0.938	0416021	.0384262
_cons	51.92255	1.411069	36.80	0.000	49.15691	54.6882

Random-effects parameters				_
_all: Identity var(R.country)	 3.361218	.9603072	1.920024	5.884192
_all: Identity var(R.language)	 1.121946	.3269535	. 6337502	1.986214
var(Residual)		.9263999	33.35002	36.98306
LR test vs. linear model: chi2(2) = 227.02				

Note: LR test is conservative and provided only for reference.

R

Get The Data

```
library(haven)

dfCC <- read_dta("crossclassified.dta")</pre>
```

Change Some Variables To Categorical

```
dfCC$identity <- factor(dfCC$identity)

dfCC$intervention <- factor(dfCC$intervention)</pre>
```

Unconditional Model

```
library(lme4)
library(lmerTest)
options(scipen = 999)
fitCC_A <- lmer(outcome ~</pre>
               (1 | country) +
               (1 | language),
            data = dfCC)
summary(fitCC_A)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: outcome ~ (1 | country) + (1 | language)
  Data: dfCC
REML criterion at convergence: 19671.8
Scaled residuals:
   Min 1Q Median
                         3Q
                                 Max
-3.3899 -0.6602 -0.0104 0.6798 3.6924
Random effects:
Groups Name
                  Variance Std.Dev.
language (Intercept) 0.9604 0.980
country (Intercept) 3.2919 1.814
Residual
                    39.6276 6.295
Number of obs: 3000, groups: language, 100; country, 30
Fixed effects:
          Estimate Std. Error
                                 df t value
                                                      Pr(>|t|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Conditional Model
fitCC_B <- lmer(outcome ~ t + warmth + physical_punishment +</pre>
              identity + intervention + HDI +
```

```
(1 | country) +
   (1 | language),
data = dfCC)
```

Error in model.frame.default(data = dfCC, drop.unused.levels = TRUE, formula = outcome ~ : is

```
summary(fitCC_B)
```

 $\hbox{\it Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a } \\$

Julia

Get The Data

```
using Tables, MixedModels, StatFiles, DataFrames, CategoricalArrays, DataFramesMeta
dfCC = DataFrame(load("crossclassified.dta"))
```

Change Some Variables To Categorical

```
@transform!(dfCC, :country = categorical(:country))
@transform!(dfCC, :language = categorical(:language))
@transform!(dfCC, :identity = categorical(:identity))
@transform!(dfCC, :intervention = categorical(:intervention))
```

Unconditional Model

```
Linear mixed model fit by maximum likelihood
 outcome ~ 1 + (1 | country) + (1 | language)
   logLik
          -2 logLik
                         AIC
                                   AICc
                                              BIC
 -9835.8111 19671.6222 19679.6222 19679.6356 19703.6477
Variance components:
           Column
                   Variance Std.Dev.
language (Intercept) 0.956631 0.978075
country (Intercept) 3.177768 1.782629
Residual
                     39.628773 6.295139
 Number of obs: 3000; levels of grouping factors: 100, 30
  Fixed-effects parameters:
              Coef. Std. Error z Pr(>|z|)
(Intercept) 52.4319
                        0.35902 146.04
                                          <1e-99
```

Conditional Model

```
Linear mixed model fit by maximum likelihood
outcome ~ 1 + warmth + physical_punishment + identity + intervention + HDI + (1 | country)
logLik -2 logLik AIC AICc BIC
-9663.2194 19326.4388 19344.4388 19344.4990 19398.4962
```

Variance components:

 Column
 Variance Std.Dev.

 language (Intercept)
 1.12193 1.05921

 country (Intercept)
 3.36119 1.83335

 Residual
 35.11960 5.92618

Number of obs: 3000; levels of grouping factors: 100, 30

Fixed-effects parameters:

	Coef.	Std. Error	Z	Pr(> z)
(Intercept)	51.9226	1.41106	36.80	<1e-99
warmth	0.833146	0.0579811	14.37	<1e-46
<pre>physical_punishment</pre>	-0.997975	0.080268	-12.43	<1e-34
identity	-0.292243	0.219142	-1.33	0.1823
intervention	0.609746	0.219514	2.78	0.0055
HDI	-0.00158794	0.0204156	-0.08	0.9380

Interpretation

Arel-Bundock, Vincent, Nils Enevoldsen, and CJ Yetman. 2018. "Countrycode: An r Package to Convert Country Names and Country Codes." *Journal of Open Source Software* 3 (28): 848. https://doi.org/10.21105/joss.00848.