2021 가을학기 데이터베이스개론 중간고사

학번: **2017313107** 이름: 이승태 성적:

- 1. 다음 문항에 대해 O, X 로 답하시오.(10 점, 문항당 2 점)
 - a. 표준 SQL 과 relational calculus 의 expressive power 는 동일하다. (X)
 - b. RDBMS 의 모든 뷰는 갱신가능 하다. (X)
 - c. unique 선언된 칼럼은 null 값을 가질 수 있다. (O)
 - d. 두 개 이상의 테이블을 대상으로 정의되는 integrity constraint 기능도 있다. (O)
 - e. {a,b}, {a,c}, {b,c}가 frequent itemset 이면, {a,b,c}도 frequent itemset 이다. (X)
- 2. 질의 작성 및 처리 관점에서, file system 기반의 host language 로 질의 로직을 구현하는 방식 대비, RDBMS 에서 SQL 질의어 및 질의최적화기가 제공하는 장점을 세 가지 열거하고 간단히 설명하시오. (각 2점, 총 5점)
 - 1. SQL 로 작성하게 되면 사용자는 what I want 만 구현하면 되기 때문에 구현하기 쉽지만, file system 은 직접 code 를 다 구현해줘야 한다.
 - 2. SQL 에서는 how 를 직접 구현해주지 않더라도 자동적으로 최적화해주기 때문에 생산성 측면에서 훨씬 이득이라고 할 수 있다. 반면 file system 으로 구현하게 되면 how 의 최적화를 직접 구현해줘 야 해서 생산성이 떨어진다.
 - 3. SQL은 Concurrency control, crash recovery 를 지원해주지만, file system 은 원한다면 직접 구현 해야 한다.
- 3. 수업시간에 설명한, data independence 관점에서 관계형 데이터 모델의 특징 (features)을 3 가지 나열하고 간단히 설명하시오. (5점)
 - 1. External schema : view 에 해당한다. Logical schema 를 기반으로 사용자에게 보여진다.
 - 2. Logical schema: table 에 해당한다. Relations 에 해당한다.
 - 3. Physical schema: index 에 해당하며 물리적으로 어디에 저장되어 있는지 나타낸다.

4. 보안 관점에서 뷰가 제공하는 장점을 설명하시오. 또한, 보안 이외에 뷰의 장점 2 가지를 기술하시오. (5 점).

View 는 user 에게 보여주고 싶은 것만 select, from, where 를 통해 보여줄 수 있으며, content based 하고, flexible security policy 를 제공해준다.

5. 교재에서 사용되는 스키마 Sailors(sid, sname, rating), Reserve(sid, bid, date), Boats(bid, bname, color)에서, 1) 적어도 하나의 붉은 색 배를 예약한 선원의 ID, 이름과 예약 건수, 2) 모든 붉은색(RED) 배를 예약한 선원의 이름을 구하는 SQL 질의를 작성하시오. 단, 2)의 경우 EXISTS 및 EXCEPT (or MINUS) 구문을 사용하여야 함. (10 점)

1) (5 점)

select s.sid, s.sname, count(*)
from Sailors s, Reserve r, Boats b
where s.sid = r.sid and r.bid = b.bid and b.color =
"RED"
group by s.sid, s.sname;

2) (5 점)

select s.name

from sailors s

where not exists(s

6. 오라클의 경우, primary key(PK)에 대해 인덱스를 자동생성하는데, 이 PK 인덱스는 PK 칼럼에 대한 selection 조건이 주어졌을 때 해당 질의를 빨리 처리하기 위해 사용될 수 있다. 이 이외에 entity integrity 및 referential integrity 관점에서 PK 인덱스 역할에 대해 설명하시오. (총 5점)

- 1. Entity integrity 관점에서 보았을 때 만약 현재 table 에 insert 가 실행되었을 때, 빠르게 primary key 가 동일한 것이 존재하는지 체크하기 위하여, PK 인덱스를 사용한다.
- 2. Referential integriy 관점에서 보았을 때 다른 테이블이 이 테이블의 primary key 를 참조하고 있다면 다른 테이블에서 tuple 이 추가되었을 때, 빠르게 foreign key 가 이 테이블의 primary key 에 있는지 체크하기 위해 PK 인덱스를 사용한다.

7. 다음의 EMP, DEPT 테이블에 대해, 다음 질문에 답하시오.(총 25점)

EMP	EMPNO	ENAME	JOB	MGR	HIREDATE	SAL	сомм	DEPTNO
171/11								
	7839	KING	PRESIDENT		17-NOV-81	5000		10
	7698	BLAKE	MANAGER	7839	01-MAY-81	2850		30
	7782	CLARK	MANAGER	7839	09-JUN-81	2450		10
	7566	JONES	MANAGER	7839	02-APR-81	2975		20
	7654	MARTIN	SALESMAN	7698	28-SEP-81	1250	1400	30
	7499	ALLEN	SALESMAN	7698	20-FEB-81	1600	300	30
	7844	TURNER	SALESMAN	7698	08-SEP-81	1500	0	30
	7900	JAMES	CLERK	7698	03-DEC-81	950		30
	7521	WARD	SALESMAN	7698	22-FEB-81	1250	500	30
	7902	FORD	ANALYST	7566	03-DEC-81	3000		20
	7369	SMITH	CLERK	7902	17-DEC-80	800		20
	7788	SCOTT	ANALYST	7566	09-DEC-82	3000		20
	7876	ADAMS	CLERK	7788	12-JAN-83	1100		20
	7934	MILLER	CLERK	7782	23-JAN-82	1300		10

a. 다음과 같은 detpno, job 별 cross-tab에 필요한 measure 값들 (즉, 해당직원수, 예: 6, 14) 을 구하는 단일 SQL을 작성하시오. (Cross-tab 형태로 결과 display 하는 질의 아님) (5점)

Count	DeptNo			
Job	10	20	30	Subtotal
ANALYST		2		2
CLERK	1	2	1	4
MANAGER	1	1	1	3
PRESIDENT	1			1
SALESMAN			4	4
Subtotal	3	5	6	14

b. 다음 질의의 의미를 설명하고, 같은 의미의 window function 질의를 작성하시오. (총 10점)

SELECT e1.deptno, e1.ename, e1.hiredate, e1.sal, avg
(e2.sal) avgsal FROM emp e1, emp e2

WHERE e1.hiredate >= e2.hiredate and e1.deptno=e2.deptno

GROUP BY e1.deptno, e1.ename, e1.hiredate, e1.sal

ORDER BY deptno

의미 (5점):

자신이 속한 부서의 사람들 중에서 자신보다 hiredate 가 높은 사람들의 평균 sal 을 구해서 column 에 추가(avgsal) 하고 deptno 순으로 정렬하는 쿼리이다.

Window function 질의 (5점):

select e1.deptno, e1.ename, e1.hiredate, e1.sal, avg(e1.sal) over(partition by e1.deptno order by hiredate desc range between bounded preceding and current row) as avgsal from emp.e1;

(계속)

EMP

EMPNO	ENAME	JOB	MGR	HIREDATE	SAL	COMM	DEPTNO
7839	KING	PRESIDENT		17-NOV-81	5000		10
7698	BLAKE	MANAGER	7839	01-MAY-81	2850		30
7782	CLARK	MANAGER	7839	09-JUN-81	2450		10
7566	JONES	MANAGER	7839	02-APR-81	2975		20
7654	MARTIN	SALESMAN	7698	28-SEP-81	1250	1400	30
7499	ALLEN	SALESMAN	7698	20-FEB-81	1600	300	30
7844	TURNER	SALESMAN	7698	08-SEP-81	1500	0	30
7900	JAMES	CLERK	7698	03-DEC-81	950		30
7521	WARD	SALESMAN	7698	22-FEB-81	1250	500	30
7902	FORD	ANALYST	7566	03-DEC-81	3000		20
7369	SMITH	CLERK	7902	17-DEC-80	800		20
7788	SCOTT	ANALYST	7566	09-DEC-82	3000		20
7876	ADAMS	CLERK	7788	12-JAN-83	1100		20
7934	MILLER	CLERK	7782	23-JAN-82	1300		10

c. Oracle connect by 기능을 이용해서, 모든 직원에 대해, 그 직원의 이름과 직간접 상사 이름 쌍을 모두 출력. **힌트**: SELECT 절에서 CONNECT_BY_ROOT 키워드는 출발점 튜플을 지칭 (예: CONNECT_BY_ROOT ename 은 출발 튜플 ename 을 지칭). (5 점) 또한, SQL script 에서 배운 with subquery factoring 기능을 이용해서 같은 질의를 작성하시오(5 점).

d. 다음 두 질의 결과는 동일한지? 그리고, 그 이유를 설명하시오. (5점)

SELECT EMPNO

FROM EMP

WHERE EMPNO NOT IN (SELECT MGR FROM EMP);

SELECT EMPNO

FROM EMP E1

WHERE NOT EXISTS (SELECT * FROM EMP E2 WHERE E2.MGR =E1.EMPNO);

결과:

다르다.

이유:

MGR 값에 null 값이 존재하기 때문이다.

MGR이 null 값인 king은 Not in에서 unknown이 되므로 출력이되므로 출력이 되지 않는다.

8. 아래 EMP 테이블에 정의된 세 가지 무결성제약조건 (primary key, foreign key, check)을 emp table insertion, update, deletion 시 구동하는 3 개의 trigger 를 이용해서 enforce 하고자 할 때, 각 trigger 의 Condition-Action 을 간단히 기술하시오. 단, PK 에 대한 update 는 허용하지 않는 것으로 가정. (총 15 점)

create table EMP (ename char(20) not null, manager char(20), sal number, primary key ename foreign key (manager) references EMP on delete cascade, check (200 <= sal <= 1000))

ANSWER: 각 5점

1) Emp table insertion Trigger 1:

Insertion 을 진행할 때 trigger 의 Condition 은 primary key 인 ename 의 값이 겹치는 것이 없어야한다. Sal 의 값은 200 이상 1000 이하여야 하며, manager 은 EMP(자신)를 참조하고 있으므로 ename에 manager의 값이 존재해야 한다. 이 때 이 조건을 만족하지 못하면 reject 되는 action을 취한다.

2) Emp table update trigger (5 점)

Update 를 진행할 때 trigger 의 conditions 은 Sal 의 값은 200 이상 1000 이하여야 하며, manager 은 EMP(자신)를 참조하고 있으므로 ename 에 manager 의 값이 존재해야 한다. 이 때 이 조건을 만족하지 못하면 reject 되는 action 을 취한다.

3) Emp table deletion trigger (5 점)

Deletion 을 진행할 때 trigger 의 condition 은 자신의 primary key 를 참조하는 tuple 이 존재한다면, action 은 자신의 primary key 를 참조하고 있는 모든 tuple 을 지우게 된다.

- 9. Association Rule 마이닝 기법의 대표적인 알고리즘인 A-Priori 에 대해 논하시오. 구체적으로, frequent itemset 을 구하는 단계에서, 1) Naïve 방식의 문제점을 논하고, 2) A-priori Property 를 설명하고, 3) 그에 기반한 두 가지 최적화 기회를 설명하시오. (총 10점).
 - 1) Naïve 방식에서는 frequent itemset 을 구할 때 모든 경우를 적용하여 계산한다. 만약 item 의 개수가 N 개라고 하면, 2^N 번 만큼 database 를 체크해줘야 하므로 시간이 매우 오래 걸린다.
 - 2) A-priori Property 는 만약 a,b,c 라는 item 들이 있고, {a}, {b}라는 set 이 frequent 하고, {c}라는 set 은 frequent 하지 않을 때, 이것들을 subset 으로 가지는 {a, b}는 frequent 할 가능성이 있고 {a, c}나 {b, c}의 set 은 frequent 하기 불가능하다는 알고리즘으로 위의 Naive 방식에서 보다 경우의 수를 줄여나갈 수 있다.
 - 3) A-priori Property 의 최적화는 모든 subset 들이 frequent 할 때, 그 set 이 frequent 할 가 능성이 있다는 것을 이용한다. 예를 들어 a, b, c, d 라는 item 이 있고, 아이템을 2 개 선택했을 때, {a,b}, {a,c}라는 set 이 frequent 하다고 했을 때, {a,b,c}는 {b,c}가 frequent 하지 않으므로 frequent 할 가능성이 없게 된다. 이로써 경우의 수를 더 줄일 수 있게 된다.

10. 다음 transaction table, DB,에 대해 frequency 가 3 회 이상인 1 개 item 으로 구성된 frequent itemset 을 구하는 SQL 문을 작성하시오. (5 점)

\mathbf{DB}

TID	ITEM		
100	1		
100	3		
100	4		
200	2		
200	3		
200	5		
300	1		
300	2		
300	3		
300	5		
400	2		
400	5		

정답:

select cast(item_set as fi_num) as item_set from DB(dbms_frequent_itemset(fi_transactional)(cursor(select TID for ITEM), (3/12),

1, 1, null, null

));

======= 끝: 수고

했습니다.

==========
