Содержание

Вопрос 1		2
1.1	Непрерывность действительных функций одного и многих действительных переменных. Свойства непрерывных функций	2
Вопро	c 11	5
2.1	Матрицы над полем. Ранг матрицы над полем. Эквивалентные матрицы	
	и их ранги. Приведение матрицы к ступенчатому и каноническому ви-	
	дам. Теорема о ранге матрицы. Нахождение ранга и олратной матрицы с	
	помошью элементарных преобразований	5

Вопрос 1

1.1 Непрерывность действительных функций одного и многих действительных переменных. Свойства непрерывных функций.

Определение 1 (Понятие функции). Говорят, что на множестве X имеется функция со значениями в Y, если в силу некторого f каждому элементу $x \in X$ соответствует элемент $y \in Y$. Обозначается: $f: X \to Y$

$$f(x) := \{ y \in Y \mid \exists \ x((x \in X) \land (y = f(x))) \}$$

Определение 2 (Предел по коши). Пусть $E \subset \mathbb{R}$ и $f : E \to \mathbb{R}$. Значение A функции f(x) в точке x_0 называется <u>пределом</u>, если:

$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \ 0 < |x - x_0| < \delta \implies |f(x) - a| < \delta$$

Определение 3 (Непрерывность в точке). Функция f(x) называется непрерывной в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$

Определение 4 (Определение непрерывности по Гейне). Говорят, что функция действительного переменного f(x) является непрерывной в точке $a \in \mathbb{R}$ если для любой последовательности $\{x_n\}$, такой что

$$\lim_{n\to\infty} x_n = a$$
, выполняется соотношение $\lim_{n\to\infty} f(x_n) = f(a)$

На практике удобно использовать следующие 3 условия непрерывности функции f(x) в точке x=a (которые должны выполняться одновременно):

- 1) Функция f(x) определена в точке a
- 2) Предел $\lim_{x\to a} f(x)$ существует
- 3) Выполняется равенство $\lim_{x\to a} f(x) = f(a)$

Определение 5. Элементами пространства \mathbb{R}^n являются упорядоченные наборы (x_1, \dots, x_n) , где $x_i \in \mathbb{R}$

Определение 6. \mathbb{R}^n векторное пространство над $\mathbb{R} \Rightarrow x + y = (x_1 + y_1, \dots, x_n + y_n),$ $\lambda \cdot x = (\lambda \cdot x_1, \dots, \lambda \cdot x_n)$

Определение 7. $e_i = (\underbrace{0, \dots, \overset{i}{1}, \dots, 0}_n)$, где $i = \overline{1, n}$ стандартый базис \mathbb{R}^n

Определение 8. Скалярным произведением называется $x,y \in \mathbb{R}^n$, $(x,y) = \sum_{i=1}^n x_i \cdot y_i$, Нормой вектора $||x|| = (x,x)^{\frac{1}{2}}$, Расстояние между элементами \mathbb{R}^n $\rho(x,y) = ||x-y||$

Определение 9 (Открытый шар). Пусть $x \in \mathbb{R}^n, r > 0$. Обозначим $U(x,r) = \{y \in \mathbb{R}^n : ||x-y|| < r\}$ – открытый шар радиуса r

Определение 4 10. Множество $U \in \mathbb{R}^n$ называется открытым, если $\forall x \in U \; \exists \; r > 0 \; : \; U(x,r) \subset U$

Определение 11. Окрестностью точки $x \in \mathbb{R}^n$ называется любое открытое подмножество, содержащее данную точку : U(x)

Определение 4. Пусть $f: E \to \mathbb{R}^m, E \in \mathbb{R}^n, x_0 \in \mathring{E}$. Говорят, что \exists предел f(x) при $x \to x_0$ по мн-ву E, равный $a \in \mathbb{R}^m$, если $\forall U(a) \exists U(x_0) \ \forall x \in \mathring{U}_E(x_0) \Rightarrow f(x) \in U(a)$ и обозначается $\lim_{x \to x_0} f(x) = a$

Утверждение* **1** (): Если $\lim_{x\to x_0} f(x) = (a_1, \dots, a_m) = a$, то $\forall k \in \overline{1,m} \exists \lim_{x\to x_0} f_k(x) = a_k$ Верно и обратное, Где $f(x) = (f_1(x), \dots, f_m(x))$ – координатное представление функции f(x)

Определение 4 13. Пусть $f: E \to \mathbb{R}^m, E \in \mathbb{R}^n, x_0 \in E$ Ф-я f(x) называется непрерывной в точке x_0 , если $\forall U(f(x_0)) \; \exists U(x_0): \; \forall x \in U_E(x_0) \Rightarrow f(x) \in U(f(x_0))$

- x_0 изолированная $\Rightarrow f(x)$ всегда непрерывна в точке x_0
- x_0 предельная точка $E\Rightarrow (f(x)$ непрерывна в точке $x_0)\Leftrightarrow \exists\lim_{x\to x_0}f(x)=f(x_0)$

Утверждение* 2 (): Пусть $f: E \to \mathbb{R}^m, E \in \mathbb{R}^n, x_0 \in E, f(x) = (f_1(x), \dots, f_m(x))$ Тогда f(x)непрерывна в точке $x_0 \Leftrightarrow \forall i = \overline{1,m} \ f_i(x)$ непрерывна x_0 Доказательство \square Если x_0 - изолированная, то все доказано. Пусть $x_0 \in E$, тогда f(x)непрерывна в точке $x_0 \Leftrightarrow \exists \lim_{x \to x_0} f(x) = f(x_0) \stackrel{\text{по утв}}{\Leftrightarrow} \exists \lim_{x \to x_0} f_i(x) = f_i(x_0) \forall i = \overline{1,m}$

Утверждение* 3 ():

- 1) $f_1, f_2: E \to \mathbb{R}^m, E \in \mathbb{R}^n, f_i$ непрерывна в точке $x_0 \in E \Rightarrow f_1 + f_2, \lambda \cdot f_1$ непрерывны в точке x_0
- 2) $f_1,f_2:E\to\mathbb{R}^m,\,E\in\mathbb{R}^n,\,f_i$ непрерывна в точке $x_0\in E\Rightarrow f_1\cdot f_2,\frac{f_1}{f_2},$ если $f_2\neq 0$

Доказательство□ Следует из свойств предела функции ■

Определение 14. $f: E \to \mathbb{R}^m, \ E \subseteq \mathbb{R}^n$. Ф-я f(x) называется непрерывной на E, если она непрерывна в любой точке множества E

Утверждение* 4 (): Пусть $f(x): E \to J, E \subseteq \mathbb{R}^n, J \subseteq \mathbb{R}^m, \ g(y): J \to \mathbb{R}^k$

f(x) непрерывна в точке $x_0 \in E$ g(y) непрерывна в точке $y_0 \in f(x_0)$ $\} \Rightarrow g \circ f$ непрерывна в т. x_0

Доказательство Вафиксируем любую $U(g(y_0))$ т.к g(y) непрерывна в т. y_0 , то $\exists U(y_0) = U(f(x_0)): \forall y \in U_y(y_0) \Rightarrow g(y) \in U(g(y_0))$

С другой стороны f(x)непрерывна в точке $x_0 \in E \Rightarrow \exists U(x_0): \forall x \in U_E(x_0) \Rightarrow g(x) \in U(f(x_0)) \Rightarrow g(f(x)) \in U(g(y_0))$

To есть имеем: $\forall U(g(f(x_0))) \exists U(x_0) : \forall x \in U_E(x_0) \Rightarrow g(f(x)) \in U(g(f(x_0))) \blacksquare$

Определение 15. Множество $M \in \mathbb{R}^n$ называется компактным $\stackrel{\text{onp}}{\Leftrightarrow}$ из любого покрытия M открытыми подмножествами можно выделить конечное подпокрытие.

Теорема ★ 1 (1-я теорема Вейерштрасса про ограниченность непрерывной функции): Если ф-я $f: E \to \mathbb{R}^m$ непрерывна на E, E - компактное подмножество \mathbb{R}^n , то f - ограничена. f(E) ограниченное подмножество \mathbb{R}^n

Доказательство $\forall x \in E$ f-непрерывна в точке $x \Rightarrow \exists U(x,r_x) \ r_x > 0 : \forall z \in E \cap U(x,r_k)$

 $||f(z)|| \subseteq M_x, \ E \subset \bigcup_{x \in E} U(x, r_x) \ E$ -компактно \Rightarrow можно выбрать конечное подпокрытие,

т.е разбить $E \subset \bigcup_{i=1}^k U(x_i, r_{x_i}), \ M = \max_{1 \leq i \leq k} M_{x_i} \Rightarrow \ \forall x \in E \ \exists \ U(x_j, r_{x_j}) : x \in U(x_j, r_{x_j}) \Rightarrow ||f(x)|| \subseteq M_{x_j} \subseteq M \blacksquare$

Теорема \bigstar 2 (2-я теорема Вейерштрасса о достижении верхней и нижней границ): Пусть $f: E \to \mathbb{R}, f$ -непрерывна на E, E-компактное подмножество \mathbb{R}^n Тогда $\exists \ x_1, x_2: f(x_1) = \max_{x \in E} f(x), \ f(x_2) = \min_{x \in E} f(x)$

Доказательство \Box f-непрерывна на $E\Rightarrow$ по 1 теореме Вейерштрасса f ограничена на $E\Rightarrow\exists\sup_{x\in E}f(x)=M\in\mathbb{R}$

Покажем, что $\exists x_1 \in E: f(x_1) = M$ Предположим противное и рассмотрим ф-ю $g(x) = \frac{1}{M-f(x)}, \ M-f(x)$ непрерывна и не $\neq 0 \ \Rightarrow g(x)$ непрерывна на E и по 1-й теореме Вейерштрасса ограничена на E

С другой стороны т.к. $M=\sup_{x\in E}f(x)$, то $\exists \{x_k\}: \lim_{k\to\infty}f(x_k)=M \Rightarrow \lim_{k\to\infty}(M-f(x))=0 \Rightarrow \lim_{k\to\infty}\frac{1}{M-f(x)}=\infty$, противоречие с тем что g(x) ограничена

Для минимума также ■

Теорема \bigstar 3 (Кантора о равномерной непрерывности): Пусть $f: E \to \mathbb{R}^m, f$ - непрерывна на E, E-компактое подмножество в \mathbb{R}^n . Тогда f - равномерно непрерывна на E

Доказательство $x \in E, \ \forall \varepsilon > 0, \exists \delta_x > 0: \forall \ z \in U(x, \delta_x) \cap E: ||f(x) - f(z)|| < \frac{\varepsilon}{2}$ $E \subset \bigcup_{x \in E} U()$

Вопрос 11

2.1 Матрицы над полем. Ранг матрицы над полем. Эквивалентные матрицы и их ранги. Приведение матрицы к ступенчатому и каноническому видам. Теорема о ранге матрицы. Нахождение ранга и олратной матрицы с помощью элементарных преобразований.

Определение 16 (Матрица над полем). Матрицей размеров mxn над полем P называют прямоугольную таблицу элементов поля P, состоящую из m строк и n столбцов.

Определение 17 (Ранг матрицы). Рангом ненулевой матрицы A называют наибольший из порядков отличных от нуля миноров матрицы A. Ранг нулевой матрицы равен 0.

Теорема★ 4 (О рангах эквивалентных матриц): Если матрицы A и B эквивалентны, то их ранги равны.

Доказательство Пусть матрицы A и B эквивалентны и rang A = k. По определению ранга в матрице $A \ \forall l > k$ или совсем нет миноров порядка l, или все они равны нулю. Тогда по теореме о минорах эквивалентных матриц (Если $A, B \in R_{m,n}, A$ B и все миноры k-го порядка матрицы A кратны элементу c кольца R, то все миноры k-го порядка матрицы B также кратны c) то же самое верно и для матрицы $B \Rightarrow rang B \leqslant k$, то есть $rang B \leqslant rang A$. Так как отношение эквивалентности матриц симметрично, то аналогичными рассуждениями имеем: $rang A \leqslant rang B \Rightarrow rang A = rang B$.

Определение 18 (Ступенчатая матрица). Ненулевая матрица $S = (s_{i,j})$ называется ступенчатой матрицей типа $S(i_1, \ldots, i_r)$, где $r \in \overline{1, m}, 1 \leqslant i_1 < \ldots < i_r \leqslant n$, если:

- 1) $s_{1i_1}, s_{2i_2}, \dots, s_{ri_r} \neq 0$
- 2) $s_{l_t} = 0$ при $l > r, t \in \overline{1,n}$ и при $l \in \overline{1,r}, t < i_l$

Подробно:

$$\begin{pmatrix} 0 \dots 0 & s_{1i_1} \dots * & * \dots * & * & * \dots * \\ 0 \dots 0 & 0 \dots 0 & s_{2i_2} \dots * & * & * \dots * \\ \dots & \dots & \dots & \dots & \dots \\ 0 \dots 0 & 0 \dots 0 & 0 \dots 0 & s_{ri_r} & * \dots * \\ 0 \dots 0 & 0 \dots 0 & 0 \dots 0 & 0 & 0 \dots 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 \dots 0 & 0 \dots 0 & 0 \dots 0 & 0 & 0 \dots 0 \end{pmatrix}$$

Теорема★ 5 (Об ступенчатой матрице): Любую матрицу A над полем P можео элементарными преобразованиями строк привести к ступенчатой матрице.

Доказательство Индукция по числу m строк матрицы. 1. База индукции. m=1. Матрица A и есть ступенчатая, утверждение верно. 2. Предположим, что утверждение верно для m. 3. Докажем для m+1. Если A - нулевая матрица, то она ступенчатая и утверждение верно. Пусть $A \neq 0$ и $A_{i_1} \downarrow \blacksquare$

Определение 4 19 (Предел по коши). Пусть $E \subset \mathbb{R}$ и $f : E \to \mathbb{R}$. Значение A функции f(x) в точке x_0 называется пределом, если:

$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \ 0 < |x - x_0| < \delta \implies |f(x) - a| < \delta$$

Определение 20 (Непрерывность в точке). Функция f(x) называется непрерывной в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$

Определение 21 (Определение непрерывности по Гейне). Говорят, что функция действительного переменного f(x) является непрерывной в точке $a \in \mathbb{R}$ если для любой последовательности $\{x_n\}$, такой что

$$\lim_{n \to \infty} x_n = a$$
, выполняется соотношение $\lim_{n \to \infty} f(x_n) = f(a)$

На практике удобно использовать следующие 3 условия непрерывности функции f(x) в точке x=a (которые должны выполняться одновременно):

- 1) Функция f(x) определена в точке a
- 2) Предел $\lim_{x\to a} f(x)$ существует
- 3) Выполняется равенство $\lim_{x\to a} f(x) = f(a)$

Определение 22. Элементами пространства \mathbb{R}^n являются упорядоченные наборы (x_1, \ldots, x_n) , где $x_i \in \mathbb{R}$

Определение 33. \mathbb{R}^n векторное пространство над $\mathbb{R} \Rightarrow x+y=(x_1+y_1,\ldots,x_n+y_n),$ $\lambda \cdot x=(\lambda \cdot x_1,\ldots,\lambda \cdot x_n)$

Определение
$$4$$
 24. $e_i = (\underbrace{0,\ldots,\stackrel{i}{1},\ldots,0}_n)$, где $i=\overline{1,n}$ стандартый базис \mathbb{R}^n

Определение 25. Скалярным произведением называется $x,y\in\mathbb{R}^n,\ (x,y)=\sum_{i=1}^n x_i\cdot y_i,$ Нормой вектора $||x||=(x,x)^{\frac{1}{2}},$ Расстояние между элементами \mathbb{R}^n $\rho(x,y)=||x-y||$

Определение 36 (Открытый шар). Пусть $x \in \mathbb{R}^n, r > 0$. Обозначим $U(x,r) = \{y \in \mathbb{R}^n : ||x-y|| < r\}$ – открытый шар радиуса r

Определение . 27. Множество $U \in \mathbb{R}^n$ называется открытым, если $\forall x \in U \; \exists \; r > 0 \; : \; U(x,r) \subset U$

Определение 28. Окрестностью точки $x \in \mathbb{R}^n$ называется любое открытое подмножество, содержащее данную точку : U(x)

Определение 29. Пусть $f: E \to \mathbb{R}^m, E \in \mathbb{R}^n, x_0 \in \mathring{E}$. Говорят, что \exists предел f(x) при $x \to x_0$ по мн-ву E, равный $a \in \mathbb{R}^m$, если $\forall U(a) \exists U(x_0) \forall x \in \mathring{U}_E(x_0) \Rightarrow f(x) \in U(a)$ и обозначается $\lim_{x \to x_0} f(x) = a$

Утверждение* **5** (): Если $\lim_{x\to x_0} f(x) = (a_1, \dots, a_m) = a$, то $\forall k \in \overline{1,m} \ \exists \lim_{x\to x_0} f_k(x) = a_k$ Верно и обратное, Где $f(x) = (f_1(x), \dots, f_m(x))$ – координатное представление функции f(x)

Определение 30. Пусть $f: E \to \mathbb{R}^m$, $E \in \mathbb{R}^n$, $x_0 \in E$ Ф-я f(x) называется непрерывной в точке x_0 , если $\forall U(f(x_0)) \; \exists U(x_0): \; \forall x \in U_E(x_0) \Rightarrow f(x) \in U(f(x_0))$

- x_0 изолированная $\Rightarrow f(x)$ всегда непрерывна в точке x_0
- x_0 предельная точка $E\Rightarrow (f(x)$ непрерывна в точке $x_0)\Leftrightarrow \exists\lim_{x\to x_0}f(x)=f(x_0)$

Утверждение* 6 (): Пусть $f: E \to \mathbb{R}^m, E \in \mathbb{R}^n, x_0 \in E, f(x) = (f_1(x), \dots, f_m(x))$ Тогда f(x)непрерывна в точке $x_0 \Leftrightarrow \forall i = \overline{1, m} \ f_i(x)$ непрерывна x_0

Доказательство Если x_0 - изолированная, то все доказано. Пусть $x_0 \in E$, тогда f(x)непрерывна в точке $x_0 \Leftrightarrow \exists \lim_{x \to x_0} f(x) = f(x_0) \overset{\text{по утв}}{\Leftrightarrow} \exists \lim_{x \to x_0} f_i(x) = f_i(x_0) \forall i = \overline{1,m}$

Утверждение* 7 ():

- 1) $f_1, f_2: E \to \mathbb{R}^m, E \in \mathbb{R}^n, f_i$ непрерывна в точке $x_0 \in E \Rightarrow f_1 + f_2, \lambda \cdot f_1$ непрерывны в точке x_0
- 2) $f_1, f_2: E \to \mathbb{R}^m, \ E \in \mathbb{R}^n, \ f_i$ непрерывна в точке $x_0 \in E \Rightarrow f_1 \cdot f_2, \frac{f_1}{f_2},$ если $f_2 \neq 0$

Доказательство□ Следует из свойств предела функции

Определение 31. $f: E \to \mathbb{R}^m, \ E \subseteq \mathbb{R}^n$. Ф-я f(x) называется непрерывной на E, если она непрерывна в любой точке множества E

Утверждение* 8 (): Пусть $f(x): E \to J, E \subseteq \mathbb{R}^n, J \subseteq \mathbb{R}^m, \ g(y): J \to \mathbb{R}^k$

f(x) непрерывна в точке $x_0 \in E$ g(y) непрерывна в точке $y_0 \in f(x_0)$ $\} \Rightarrow g \circ f$ непрерывна в т. x_0

Доказательство Зафиксируем любую $U(g(y_0))$ т.к g(y) непрерывна в т. y_0 , то $\exists U(y_0) = U(f(x_0)): \forall y \in U_y(y_0) \Rightarrow g(y) \in U(g(y_0))$

С другой стороны f(x)непрерывна в точке $x_0 \in E \Rightarrow \exists U(x_0): \forall x \in U_E(x_0) \Rightarrow g(x) \in U(f(x_0)) \Rightarrow g(f(x)) \in U(g(y_0))$

To есть имеем: $\forall U(g(f(x_0))) \exists U(x_0) : \forall x \in U_E(x_0) \Rightarrow g(f(x)) \in U(g(f(x_0))) \blacksquare$

Определение 32. Множество $M \in \mathbb{R}^n$ называется компактным $\stackrel{\text{onp}}{\Leftrightarrow}$ из любого покрытия M открытыми подмножествами можно выделить конечное подпокрытие.

Теорема \bigstar 6 (1-я теорема Вейерштрасса про ограниченность непрерывной функции): Если ф-я $f: E \to \mathbb{R}^m$ непрерывна на E, E - компактное подмножество \mathbb{R}^n , то f - ограничена. f(E) ограниченное подмножество \mathbb{R}^n

Доказательство $\forall x \in E$ f-непрерывна в точке $x \Rightarrow \exists U(x,r_x) \ r_x > 0 : \forall z \in E \cap U(x,r_k)$

 $||f(z)|| \subseteq M_x, \ E \subset \bigcup_{x \in E} U(x, r_x)$ E-компактно \Rightarrow можно выбрать конечное подпокрытие,

т.е разбить $E \subset \bigcup_{i=1}^k U(x_i, r_{x_i}), \ M = \max_{1 \leq i \leq k} M_{x_i} \Rightarrow \ \forall x \in E \ \exists \ U(x_j, r_{x_j}) : x \in U(x_j, r_{x_j}) \Rightarrow \|f(x)\| \subseteq M_{x_j} \subseteq M \blacksquare$

Теорема \bigstar 7 (2-я теорема Вейерштрасса о достижении верхней и нижней границ): Пусть $f: E \to \mathbb{R}, f$ -непрерывна на E, E-компактное подмножество \mathbb{R}^n Тогда $\exists \ x_1, x_2: f(x_1) = \max_{x \in E} f(x), \ f(x_2) = \min_{x \in E} f(x)$ Доказательство \Box f-непрерывна на $E \Rightarrow$ по 1 теореме Вейерштрасса f ограничена на

Доказательство \Box f-непрерывна на $E\Rightarrow$ по 1 теореме Вейерштрасса f ограничена на $E\Rightarrow\exists\sup_{x\in E}f(x)=M\in\mathbb{R}$

Покажем, что $\exists x_1 \in E: f(x_1) = M$ Предположим противное и рассмотрим ф-ю $g(x) = \frac{1}{M-f(x)},\ M-f(x)$ непрерывна и не $\neq 0 \Rightarrow g(x)$ непрерывна на E и по 1-й теореме Вейерштрасса ограничена на E

С другой стороны т.к. $M=\sup_{x\in E}f(x)$, то $\exists \{x_k\}:\lim_{k\to\infty}f(x_k)=M\Rightarrow\lim_{k\to\infty}(M-f(x))=0\Rightarrow\lim_{k\to\infty}\frac{1}{M-f(x)}=\infty$, противоречие с тем что g(x) ограничена

Для минимума также ■

Теорема ** 8 (Кантора о равномерной непрерывности): Пусть $f: E \to \mathbb{R}^m, f$ - непрерывна на E, E-компактое подмножество в \mathbb{R}^n . Тогда f - равномерно непрерывна на E

Доказательство $x \in E, \ \forall \varepsilon > 0, \exists \delta_x > 0: \forall \ z \in U(x, \delta_x) \cap E: ||f(x) - f(z)|| < \frac{\varepsilon}{2}$ $E \subset \bigcup_{x \in E} U(x) = 0$