Homework 2 – Theory Solutions

Your Name CSCI-GA 2572 Deep Learning (Fall 2025)

October 2, 2025

1.1 Convolutional Neural Networks

(a) Output dimension with given parameters (1 pt)

We are given an input image of size 21×12 , a kernel of size 4×5 , stride S = 4, and no padding.

To understand how many times the kernel fits, imagine sliding the kernel across the input. Along the height:

- The first placement covers rows 1 to 4.
- After moving by stride 4, it covers rows 5 to 8.
- Continuing this process, the last valid placement is rows 17 to 20.
- If we try one more step, the kernel would need rows 21 to 24, which do not exist.

Thus there are 5 valid placements in the vertical direction.

Along the width:

- The first placement covers columns 1 to 5.
- The next placement covers columns 5 to 9.
- Trying another step would require columns 9 to 13, but the image only has 12 columns.

Thus there are 2 valid placements horizontally.

Formally, if the input length is L, kernel size K, and stride S, then after t steps the kernel spans

$$[tS, tS + K - 1].$$

For this to remain valid, we require

$$tS + (K - 1) < L - 1.$$

This inequality gives

$$t \le \frac{L - K}{S}.$$

The maximum integer t allowed is $\lfloor \frac{L-K}{S} \rfloor$, and since we also include t=0, the number of valid placements is

$$L_{\text{out}} = \left| \frac{L - K}{S} \right| + 1.$$

Applying to the given image:

$$H_{\text{out}} = \left\lfloor \frac{21 - 4}{4} \right\rfloor + 1 = 5, \qquad W_{\text{out}} = \left\lfloor \frac{12 - 5}{4} \right\rfloor + 1 = 2.$$

Output dimension
$$= 5 \times 2$$

(b) General case (2 pts)

Let the input be $C \times H \times W$ with C channels, kernel size $K \times K$, padding P, stride S, dilation D, and F filters.

Step 1: Effective kernel size. Dilation means that the kernel does not cover K consecutive elements, but instead skips D-1 elements between taps. Thus the last index touched by a kernel of size K with dilation D is

$$n + (K - 1)D,$$

and the first index touched is

n.

Therefore, the number of indices covered (the effective kernel size) is

$$(n + (K - 1)D) - n + 1 = (K - 1)D + 1.$$

Step 2: Counting placements. As in part (a), the kernel starting at tS extends to tS + (K-1)D. For the kernel to fit, we require

$$tS + (K-1)D \le (L+2P) - 1,$$

where L is the input length in one dimension and 2P accounts for padding. This gives the number of valid placements:

$$L_{\text{out}} = \left[\frac{L + 2P - ((K - 1)D + 1)}{S} \right] + 1.$$

Step 3: Apply to 2D. For height H and width W, the output dimensions are

$$H_{\text{out}} = \left[\frac{H + 2P - ((K - 1)D + 1)}{S} \right] + 1, \qquad W_{\text{out}} = \left[\frac{W + 2P - ((K - 1)D + 1)}{S} \right] + 1.$$

Step 4: Final output dimension. Since each of the F filters produces one output channel, the final shape is

$$F \times H_{\text{out}} \times W_{\text{out}}$$

(c) One-dimensional convolution (12 pts)

We are given an input $x[n] \in \mathbb{R}^5$ with length 7, i.e. $x \in \mathbb{R}^{5 \times 7}$. We consider a convolutional layer f_W with one filter, kernel size 3, stride S = 2, no dilation, and no padding. The weights of this filter are $W \in \mathbb{R}^{1 \times 5 \times 3}$. There is no bias and no non-linearity.

The convolution is implemented as cross-correlation:

$$s[n] = \sum_{m} x[n+m] W[m],$$

with W[m] nonzero only for m = 0, 1, 2. Since we have 5 input channels, this becomes

$$s[n] = \sum_{c=1}^{5} \sum_{m=0}^{2} W[0, c, m] \cdot x[c, n+m].$$

(i) Output dimension and expression (1 pt)

The input length is L = 7, kernel size K = 3, stride S = 2. The number of valid positions is

$$L_{\text{out}} = \left| \frac{L - K}{S} \right| + 1 = \left| \frac{7 - 3}{2} \right| + 1 = 3.$$

Thus, the output is a sequence of 3 scalars:

$$f_W(x) = (s[0], s[1], s[2]) \in \mathbb{R}^3,$$

where each $s[t] \in \mathbb{R}$.

Explicitly,

$$s[t] = \sum_{c=1}^{5} \sum_{m=0}^{2} W[0, c, m] \cdot x[c, 2t + m + 1], \quad t = 0, 1, 2.$$

(ii) Derivative with respect to W (3 pts)

Since s[t] is linear in the weights,

$$\frac{\partial s[t]}{\partial W[0,c,m]} = x[c, 2t + m + 1].$$

Hence,

$$\frac{\partial f_W(x)}{\partial W} \in \mathbb{R}^{3 \times 1 \times 5 \times 3}.$$

3

(iii) Derivative with respect to x (3 pts)

Differentiating with respect to x[c, n] gives

$$\frac{\partial s[t]}{\partial x[c,n]} = \begin{cases} W[0,c,m], & \text{if } n = 2t+m+1, \\ 0, & \text{otherwise.} \end{cases}$$

Therefore,

$$\frac{\partial f_W(x)}{\partial x} \in \mathbb{R}^{3 \times 5 \times 7}.$$

(iv) Gradient with respect to W given loss gradient (5 pts)

Suppose the loss ℓ is computed, and we are given the gradient

$$\frac{\partial \ell}{\partial f_W(x)} = \left(\frac{\partial \ell}{\partial s[0]}, \frac{\partial \ell}{\partial s[1]}, \frac{\partial \ell}{\partial s[2]}\right) \in \mathbb{R}^3.$$

By the chain rule,

$$\frac{\partial \ell}{\partial W[0,c,m]} = \sum_{t=0}^2 \frac{\partial \ell}{\partial s[t]} \cdot \frac{\partial s[t]}{\partial W[0,c,m]}.$$

Substituting from part (ii):

$$\frac{\partial \ell}{\partial W[0,c,m]} = \sum_{t=0}^{2} \frac{\partial \ell}{\partial s[t]} \cdot x[c, 2t + m + 1].$$

Thus,

$$\frac{\partial \ell}{\partial W} \in \mathbb{R}^{1 \times 5 \times 3}$$

Summary of (c):

- (i) $f_W(x) \in \mathbb{R}^3$, each $s[t] \in \mathbb{R}$.
- (ii) $\frac{\partial f_W(x)}{\partial W} \in \mathbb{R}^{3 \times 1 \times 5 \times 3}$.
- (iii) $\frac{\partial f_W(x)}{\partial x} \in \mathbb{R}^{3 \times 5 \times 7}$.
- (iv) $\frac{\partial \ell}{\partial W} \in \mathbb{R}^{1 \times 5 \times 3}$ with explicit formula above.

1.2.1 Recurrent Neural Network (30 pts, Part 1)

We are given the following recurrence:

$$c[t] = \sigma(W_c x[t] + W_h h[t-1]) \tag{1}$$

$$h[t] = c[t] \odot h[t-1] + (1 - c[t]) \odot W_x x[t]$$
(2)

where σ is the elementwise sigmoid, $x[t] \in \mathbb{R}^n$, $h[t] \in \mathbb{R}^m$, $W_c \in \mathbb{R}^{m \times n}$, $W_h \in \mathbb{R}^{m \times m}$, $W_x \in \mathbb{R}^{m \times n}$, and \odot is elementwise multiplication. The initial hidden state is h[0] = 0.

(a) (4 pts) Diagram

Equation (1) shows that c[t] depends on both the current input x[t] and the previous hidden state h[t-1]. Equation (2) shows that h[t] is a convex combination (elementwise) of the previous hidden state h[t-1] and a transformed version of the input $W_x x[t]$, with gate c[t] controlling the mixture.

A diagram (to be drawn in diagrams.net) should show:

- Inputs x[t] feeding into both W_c and W_x .
- Previous hidden state h[t-1] feeding into both W_h and the gated combination.
- Sigmoid gate c[t] applied elementwise, controlling the mix between h[t-1] and $W_xx[t]$.

(b) Dimension of c[t] (1 pt)

From Eq. (1):

$$c[t] = \sigma(W_c x[t] + W_h h[t-1]).$$

Let us check dimensions term by term:

- $x[t] \in \mathbb{R}^n$ (the input at time t has dimension n).
- $W_c \in \mathbb{R}^{m \times n}$ (maps input into the hidden dimension).
- Therefore:

$$W_c x[t] \in \mathbb{R}^{m \times n} \cdot \mathbb{R}^n = \mathbb{R}^m.$$

- $h[t-1] \in \mathbb{R}^m$ (the hidden state at the previous step).
- $W_h \in \mathbb{R}^{m \times m}$ (maps hidden state back into hidden dimension).
- Therefore:

$$W_h h[t-1] \in \mathbb{R}^{m \times m} \cdot \mathbb{R}^m = \mathbb{R}^m.$$

• Adding the two terms:

$$W_c x[t] + W_h h[t-1] \in \mathbb{R}^m.$$

• Applying the elementwise sigmoid σ preserves dimension.

Thus,

$$c[t] \in \mathbb{R}^m$$
.

(c) Gradient w.r.t. W_x (5 pts)

From the recurrence (Eq. 2):

$$h[t] = c[t] \odot h[t-1] + (1-c[t]) \odot W_x x[t]$$

We want $\frac{\partial \ell}{\partial W_x}$, assuming we know $\frac{\partial \ell}{\partial h[t]}$ for all $t = 1, \dots, K$.

• Isolate the W_x term. Only the second part of (2) depends on W_x :

$$h[t] \supset (1 - c[t]) \odot (W_x x[t]).$$

Here $(1 - c[t]) \in \mathbb{R}^m$, $W_x \in \mathbb{R}^{m \times n}$, $x[t] \in \mathbb{R}^n$, hence $W_x x[t] \in \mathbb{R}^m$.

• Write elementwise expression. For each hidden dimension $i = 1, \dots, m$:

$$h_i[t] = (1 - c_i[t]) \cdot \left(\sum_{j=1}^n W_{x,ij} x_j[t]\right).$$

• Differentiate w.r.t. $W_{x,ij}$.

$$\frac{\partial h_i[t]}{\partial W_{x,ij}} = (1 - c_i[t]) \cdot x_j[t].$$

• Apply chain rule with loss. The gradient of the loss w.r.t. $W_{x,ij}$ is:

$$\frac{\partial \ell}{\partial W_{x,ij}} = \sum_{t=1}^{K} \sum_{i=1}^{m} \frac{\partial \ell}{\partial h_i[t]} \cdot \frac{\partial h_i[t]}{\partial W_{x,ij}}.$$

Substituting:

$$\frac{\partial \ell}{\partial W_{x,ij}} = \sum_{t=1}^{K} \frac{\partial \ell}{\partial h_i[t]} \cdot (1 - c_i[t]) x_j[t].$$

• Collect into matrix form. If $\frac{\partial \ell}{\partial h[t]} \in \mathbb{R}^m$ is a column vector, then the contribution at time t is

$$\left(\frac{\partial \ell}{\partial h[t]} \odot (1 - c[t])\right) x[t]^{\top} \in \mathbb{R}^{m \times n}.$$

• Final result. Summing across all time steps:

$$\frac{\partial \ell}{\partial W_x} = \sum_{t=1}^K \left(\frac{\partial \ell}{\partial h[t]} \odot (1 - c[t]) \right) x[t]^\top$$

which has shape $\mathbb{R}^{m \times n}$, the same as W_x .

(d) (2 pts) Vanishing/exploding gradients

Yes, this network can suffer from vanishing or exploding gradients, because:

- The recurrence depends multiplicatively on h[t-1], so repeated multiplication through time can shrink gradients to zero (vanishing) or grow them without bound (exploding).
- The gating c[t] may alleviate this somewhat (since it controls how much of h[t-1] is retained), but it does not completely eliminate the problem like more sophisticated gating mechanisms (e.g. LSTMs or GRUs).

1.2.3 AttentionRNN (20 pts)

We define the AttentionRNN(2) as follows:

$$q_0[t], q_1[t], q_2[t] = Q_0x[t], Q_1h[t-1], Q_2h[t-2]$$
 (3)

$$k_0[t], k_1[t], k_2[t] = K_0x[t], K_1h[t-1], K_2h[t-2]$$
 (4)

$$v_0[t], v_1[t], v_2[t] = V_0x[t], V_1h[t-1], V_2h[t-2]$$
 (5)

$$w_i[t] = q_i[t]^\top k_i[t] \tag{6}$$

$$a[t] = \operatorname{softargmax}([w_0[t], w_1[t], w_2[t]]) \tag{7}$$

$$h[t] = \sum_{i=0}^{2} a_i[t] v_i[t]. \tag{8}$$

Here $x[t], h[t] \in \mathbb{R}^n$ and $Q_i, K_i, V_i \in \mathbb{R}^{n \times n}$. We define h[t] = 0 for t < 1 (base case, can be ignored for derivations).

(a) (4 pts) Diagram

The diagram should show:

- Input x[t] feeding into Q_0, K_0, V_0 producing $q_0[t], k_0[t], v_0[t]$. - Previous hidden state h[t-1] feeding into Q_1, K_1, V_1 . - Earlier hidden state h[t-2] feeding into Q_2, K_2, V_2 . - Each pair $(q_i[t], k_i[t])$ combined with a dot product to produce $w_i[t]$. - The softargmax takes $[w_0, w_1, w_2]$ to form attention weights $a[t] \in \mathbb{R}^3$. - Weighted sum $\sum_i a_i[t]v_i[t]$ yields h[t].

(Diagram can be drawn in TikZ or block style.)

(b) (1 pt) Dimension of a[t]

Since we softmax over three scores $[w_0[t], w_1[t], w_2[t]]$:

$$a[t] = (a_0[t], a_1[t], a_2[t]) \in \mathbb{R}^3.$$

$$a[t] \in \mathbb{R}^3$$

7

(c) (3 pts) AttentionRNN(k)

Generalizing to the last k hidden states:

$$q_i[t] = Q_i h[t-i], \quad k_i[t] = K_i h[t-i], \quad v_i[t] = V_i h[t-i], \quad i = 0, 1, \dots, k,$$

where h[t] is defined to be x[t] when i = 0.

Scores:

$$w_i[t] = q_i[t]^{\top} k_i[t], \quad i = 0, 1, \dots, k.$$

Attention:

$$a[t] = \operatorname{softargmax}([w_0[t], w_1[t], \dots, w_k[t]]) \in \mathbb{R}^{k+1}$$

Hidden state:

$$h[t] = \sum_{i=0}^{k} a_i[t] v_i[t].$$

(d) (3 pts) AttentionRNN(∞)

We can extend this to all past hidden states by parameter sharing:

$$q_i[t] = Qh[t-i], \quad k_i[t] = Kh[t-i], \quad v_i[t] = Vh[t-i], \quad i \ge 0.$$

Scores:

$$w_i[t] = q_i[t]^{\top} k_i[t], \quad i = 0, 1, 2, \dots$$

Attention:

$$a[t] = \text{softargmax}([w_0[t], w_1[t], w_2[t], \dots]).$$

Hidden state:

$$h[t] = \sum_{i=0}^{t} a_i[t] v_i[t].$$

This allows the network to attend over all past states with tied parameters (Q, K, V).

(e) (5 pts) Derivative $\frac{\partial h[t]}{\partial h[t-1]}$ for AttentionRNN(2)

We recall the recurrence:

$$h[t] = a_0[t]v_0[t] + a_1[t]v_1[t] + a_2[t]v_2[t],$$

where

$$v_0[t] = V_0x[t], \quad v_1[t] = V_1h[t-1], \quad v_2[t] = V_2h[t-2].$$

The attention weights are:

$$a[t] = \operatorname{softargmax}([w_0[t], w_1[t], w_2[t]]),$$

with scores

$$w_i[t] = q_i[t]^{\top} k_i[t].$$

In particular,

$$q_1[t] = Q_1h[t-1], \qquad k_1[t] = K_1h[t-1], \qquad v_1[t] = V_1h[t-1].$$

- Step 1: Identify dependencies. The current hidden state h[t] depends on h[t-1] in two ways:
 - 1. Directly through $v_1[t] = V_1h[t-1]$.
 - 2. Indirectly through a[t], since a[t] depends on the scores $w_1[t]$ which in turn depend on h[t-1].
- Step 2: Differentiate h[t] w.r.t. h[t-1]. Differentiating term by term:

$$\frac{\partial h[t]}{\partial h[t-1]} = \underbrace{\frac{\partial (a_1[t]v_1[t])}{\partial h[t-1]}}_{\text{direct + indirect}} + \underbrace{\frac{\partial (a_0[t]v_0[t])}{\partial h[t-1]}}_{\text{indirect only}} + \underbrace{\frac{\partial (a_2[t]v_2[t])}{\partial h[t-1]}}_{\text{indirect only}}.$$

• Step 3: Expand the direct contribution. For the middle term:

$$\frac{\partial (a_1[t]v_1[t])}{\partial h[t-1]} = a_1[t] \cdot \frac{\partial v_1[t]}{\partial h[t-1]} + v_1[t] \cdot \frac{\partial a_1[t]}{\partial h[t-1]}.$$

Since $v_1[t] = V_1 h[t-1],$

$$\frac{\partial v_1[t]}{\partial h[t-1]} = V_1.$$

Hence:

$$\frac{\partial (a_1[t]v_1[t])}{\partial h[t-1]} = a_1[t]V_1 + v_1[t] \cdot \frac{\partial a_1[t]}{\partial h[t-1]}.$$

• Step 4: Expand the indirect contributions. The other two terms $(a_0[t]v_0[t])$ and $a_2[t]v_2[t]$ do not depend on h[t-1] directly, but only through their attention weights:

$$\frac{\partial (a_0[t]v_0[t])}{\partial h[t-1]} = v_0[t] \cdot \frac{\partial a_0[t]}{\partial h[t-1]}, \qquad \frac{\partial (a_2[t]v_2[t])}{\partial h[t-1]} = v_2[t] \cdot \frac{\partial a_2[t]}{\partial h[t-1]}.$$

• Step 5: Differentiate the attention weights. The attention weights are obtained from the softmax:

$$a_i[t] = \frac{\exp(w_i[t])}{\sum_{j=0}^{2} \exp(w_j[t])}.$$

To compute its derivative, we apply the quotient rule. For i = j:

$$\frac{\partial a_i[t]}{\partial w_i[t]} = \frac{\exp(w_i[t]) \cdot \sum_{j=0}^{2} \exp(w_j[t]) - \exp(w_i[t]) \cdot \exp(w_i[t])}{\left(\sum_{j=0}^{2} \exp(w_j[t])\right)^2}.$$

Simplifying:

$$\frac{\partial a_i[t]}{\partial w_i[t]} = a_i[t] (1 - a_i[t]).$$

For $i \neq j$:

$$\frac{\partial a_i[t]}{\partial w_j[t]} = \frac{0 \cdot \sum_{u=0}^2 \exp(w_u[t]) - \exp(w_i[t]) \cdot \exp(w_j[t])}{\left(\sum_{u=0}^2 \exp(w_u[t])\right)^2}.$$

Simplifying:

$$\frac{\partial a_i[t]}{\partial w_i[t]} = -a_i[t]a_j[t].$$

Both cases can be summarized compactly using the Kronecker delta:

$$\frac{\partial a_i[t]}{\partial w_i[t]} = a_i[t](\delta_{ij} - a_j[t]),$$

where

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

• Step 6: Apply chain rule. Since only $w_1[t]$ depends on h[t-1], we have

$$\frac{\partial a_i[t]}{\partial h[t-1]} = \frac{\partial a_i[t]}{\partial w_1[t]} \cdot \frac{\partial w_1[t]}{\partial h[t-1]}.$$

• Step 7: Differentiate the score $w_1[t]$. By definition:

$$w_1[t] = (Q_1 h[t-1])^{\top} (K_1 h[t-1]) = h[t-1]^{\top} Q_1^{\top} K_1 h[t-1].$$

Differentiating w.r.t. h[t-1]:

$$\frac{\partial w_1[t]}{\partial h[t-1]} = Q_1^{\top} k_1[t] + K_1^{\top} q_1[t],$$

where $q_1[t] = Q_1h[t-1]$ and $k_1[t] = K_1h[t-1]$.

• Step 8: Combine results. Substituting back into the derivative of h[t]:

$$\frac{\partial h[t]}{\partial h[t-1]} = a_1[t]V_1 + v_1[t] \cdot \frac{\partial a_1[t]}{\partial w_1[t]} \cdot \frac{\partial w_1[t]}{\partial h[t-1]} + v_0[t] \cdot \frac{\partial a_0[t]}{\partial w_1[t]} \cdot \frac{\partial w_1[t]}{\partial h[t-1]} + v_2[t] \cdot \frac{\partial a_2[t]}{\partial w_1[t]} \cdot \frac{\partial w_1[t]}{\partial h[t-1]}.$$

Using the compact softmax derivative:

$$\frac{\partial h[t]}{\partial h[t-1]} = a_1[t]V_1 + \sum_{i=0}^{2} v_i[t] a_i[t] (\delta_{i1} - a_1[t]) \cdot \left(Q_1^{\top} k_1[t] + K_1^{\top} q_1[t]\right)^{\top}.$$

Final Expression:

$$\frac{\partial h[t]}{\partial h[t-1]} = a_1[t]V_1 + \sum_{i=0}^2 v_i[t] a_i[t] (\delta_{i1} - a_1[t]) \cdot (Q_1^\top k_1[t] + K_1^\top q_1[t])^\top$$

This captures both the direct contribution via $v_1[t] = V_1h[t-1]$ and the indirect contribution via the softmax attention weights a[t].

(f) (2 pts) Backpropagation for $\frac{\partial \ell}{\partial h[T]}$ in AttentionRNN(k)

We want the gradient of the loss ℓ with respect to some hidden state h[T]. We are given: $-\frac{\partial \ell}{\partial h[t]}$ for all t > T (these are the "direct" gradients from the loss into later hidden states), - and $\frac{\partial h[t]}{\partial h[T]}$ for all t > T (these describe how h[T] influences later states through recurrence).

- Step 1: Direct effect at time T. If h[T] itself contributes directly to the loss (e.g. via an output layer at time T), then that contributes:

$$\frac{\partial \ell}{\partial h[T]} \supset \left(\frac{\partial \ell}{\partial h[T]}\right)_{\rm direct}.$$

In many setups, the direct gradient may be zero unless h[T] is explicitly used to compute ℓ .

- Step 2: Indirect effect via future steps. Every later hidden state h[t] with t > T depends on h[T] (possibly through multiple paths). By the chain rule:

$$\left(\frac{\partial \ell}{\partial h[T]}\right)_{\text{indirect}} = \sum_{t=T+1}^{K} \frac{\partial \ell}{\partial h[t]} \cdot \frac{\partial h[t]}{\partial h[T]}.$$

- Step 3: Expand $\frac{\partial h[t]}{\partial h[T]}$. The term $\frac{\partial h[t]}{\partial h[T]}$ itself is recursive:

$$\frac{\partial h[t]}{\partial h[T]} = \frac{\partial h[t]}{\partial h[t-1]} \cdot \frac{\partial h[t-1]}{\partial h[T]} + \frac{\partial h[t]}{\partial h[t-2]} \cdot \frac{\partial h[t-2]}{\partial h[T]} + \dots + \frac{\partial h[t]}{\partial h[T]} \cdot I.$$

For AttentionRNN(k), each h[t] depends on the k previous states. So in general:

$$\frac{\partial h[t]}{\partial h[T]} = \sum_{j=1}^{k} \frac{\partial h[t]}{\partial h[t-j]} \cdot \frac{\partial h[t-j]}{\partial h[T]}.$$

- Step 4: Combine results. Thus, the full gradient is:

$$\frac{\partial \ell}{\partial h[T]} = \left(\frac{\partial \ell}{\partial h[T]}\right)_{\text{direct}} + \sum_{t=T+1}^{K} \frac{\partial \ell}{\partial h[t]} \cdot \frac{\partial h[t]}{\partial h[T]}.$$

Compact expression:

$$\frac{\partial \ell}{\partial h[T]} = \frac{\partial \ell}{\partial h[T]} \text{ (direct term)} + \sum_{t=T+1}^{K} \frac{\partial \ell}{\partial h[t]} \cdot \frac{\partial h[t]}{\partial h[T]}$$

__

Expanded view for AttentionRNN(k): Since each h[t] depends on the k previous states,

$$\frac{\partial h[t]}{\partial h[T]} = \begin{cases} \sum_{j=1}^k \frac{\partial h[t]}{\partial h[t-j]} \cdot \frac{\partial h[t-j]}{\partial h[T]}, & \text{if } T \leq t-1, \\ 0, & \text{otherwise.} \end{cases}$$

So the loss gradient w.r.t. h[T] propagates backward through all possible paths of length up to k, exactly like standard backpropagation-through-time but with k-step connections instead of only one.

1.3 Debugging loss curves

1. What caused the spikes on the left? (1 pt)

The spikes in the early epochs are caused by *exploding gradients* in the RNN during training. RNNs repeatedly multiply by weight matrices through time steps, which can cause the gradient values to grow very large. When this happens, the parameter update becomes extremely large, temporarily making the loss shoot up. This is common in sequence models without gradient clipping.

2. How can they be higher than the initial value of the loss? (1 pt)

The initial loss corresponds to predictions from a randomly initialized network, which are essentially "uninformed guesses." Once training starts, a very large weight update (caused by exploding gradients) can make the network's predictions much worse than random, producing loss values higher than the starting baseline. In other words, poor updates can push the model into a bad region of parameter space before it recovers.

3. What are some ways to fix them? (1 pt)

Several standard techniques can reduce or eliminate these spikes:

- Gradient clipping (most common): cap the maximum norm of gradients to prevent runaway updates.
- Smaller learning rate: reduces the size of parameter updates.
- Weight initialization strategies (e.g., orthogonal initialization for recurrent weights) to reduce instability.

- Use gated RNNs (LSTMs/GRUs) instead of vanilla RNNs, since gates control gradient flow better.

4. Why are the loss and accuracy at these values before training starts? (2 pts)

Before training begins (epoch 0), the model weights are randomly initialized. Predictions are therefore random guesses across the possible output classes.

If this is a classification task (like sequence classification in the notebook), then:

- The initial accuracy will be roughly uniform guessing, i.e.

$$\mathrm{accuracy} \approx \frac{1}{\mathrm{num\ classes}}.$$

- The initial loss will be close to the cross-entropy of the uniform distribution, i.e.

$$\ell \approx \log(\text{num classes}).$$

In the given graph it seems there are 4 classes:

$$\ell \approx \log 4 \approx 1.386$$
, accuracy $\approx \frac{1}{4} = 25\%$.