ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Изучение поглощения космических лучей в свинце

Работу выполнил: Шурыгин Антон Алексеевич, группа Б01-909

Долгопрудный, 2021

Содержание

1	Теоретические положения	3
2	Экспериментальная установка	4
3	Ход работы и обработка данных	5
4	Вывод	8

Цель работы: измерить зависимость интенсивности космического излучения в лаборатории от толщины свинца, оценка вернхей границы отношения жесткой и мягкой компонент.

Оборудование: комический телескоп, блоок управления и индикации.

1 Теоретические положения

Комические лучи - это заполняющие все космическое пространство микрочастицы с высокой энергией, называемые также первичным космическим излучением. Вторичное комическое излучение вслесдвтие прохождения комических лучей через атмосферу по пути к Земле. Оно состоит из следующих компонент:

- адронная (ядерно-активная) компонента, взаимодействующая с ядрами элементов, составляющих атмосферный слой. Состоит компонента из нуклонов и мезонов.
- жесткая (мюонная) компонента, которая генерируется в результате распада заряженных пионов.
- мягкая (электронно-фотонная) компонента возникающая из-за распада нейтральных пионов с образованием квантов высокой энергии, которые при столкновении с атомным ядром рождают электроннопозитронную пару последняя в свою очередь испускает тормозные кванты, создавая лавинообразный процесс, промисходящиц до тех пор, пока энегрия не уменьшится до критической энергии в в воздухе порядка 72 МэВ.

Атмосфера сильно поглощает адронную и мягкую компоненты вторичного излучения, до Земли доходят фактически только высокоэнергетические галактические лучи с энергией более 10¹⁰ эВ, так, например, на уровне моря интенсивности жесткой и мягкой компонент составляют:

$$I_{xx} = 1,7 \cdot 10^{-2} \frac{\text{qact}}{\text{cm}^2}$$

$$I_{\rm m} = 0,7 \cdot 10^{-2} \frac{{
m qact}}{{
m cm}^2}$$

В данной работе сследуется прохождение космических лучей через вещество (свинец).

Учтем в работе, что измерения проводятся в лаборатории, и мягкая компонента излучения практически полностью поглощается перекрытиями. Поэтому доля мягкой компоненты, дошедшей до пластим и способной в них поглотиться, мала по сравнению с полным потоком вторичного излучения, и реально мы оцениваем только верхнюю границу $\frac{I_{\rm M}}{I_{\rm M}}$.

2 Экспериментальная установка

Основой установки является телескоп, отбирающий для регистрации лишь те частицы, которые приходят в определенном направлении внутри телесного угла, определяемого геометрией детекторов. Установка состоит из двух детекторов частиц — сцинтилляционных счетчиков, набора свинцовых фильтров и электронных схем, служащих для регистрации и дискриминации сигналов от детекторов.

Рис. 1 Схема экспериментальной установки

Регистрация световых вспышек от сцинтилляторов производится с помощью $\Phi \ni V-85$, напряжение питания на каждый $\Phi \ni V$ подается от ста-

билизированного высоковольтного выпрямителя. Сигналы с ФЭУ поступают на усилители-формирователи, а затем на схему двойных совпадений. Схема совпадений формирует на выходе сигнал только в том случае, если в обоих детекторах появились сигналы, совпадающие во времени в интервале, равной разрешающему времени схемы. Число зарегистрированных импульсов регистрируется пересчетным прибором.

3 Ход работы и обработка данных

Ниже представлены результаты измерений, число частиц измерялось за время $t=900\ c.$

Погрешность измерения штангенциркулем положим $\sigma_d = 0,01$ см.

Погрешность измерения излучения, будем полагать, находиться в 10% от измеренной величины. Погрешность обусловлена сложностью процесса излучения. Основное упрощение в нашей модели - учет потери энергии при прохождении через свинцовые пластины. Поэтому такая большая погрешность.

No	d, см	Ni	σ_d , cm	$\sigma_{\text{Ni,ctat}}$
1	0	1127	0	113
2	0, 92	1053	0,01	105
3	2,54	1012	0,01	101
4	4,42	937	0,01	94
5	5, 68	924	0,01	92
6	7,36	898	0,01	90
7	8, 84	864	0,01	86
8	10,55	842	0,01	84
9	13, 16	811	0,01	81

Таблица 1 : данные для графика

Известно, что мягкая (электронно-фотонная) компонента космического излучения почти полностью поглощается слоем свинца толщиной 10 - 15 см, а жесткая (мюонная) практически не поглощается. Имея это

в виду, вычитаем из значений n на предыдущем графике значение, соответствующее $d=131\,\mathrm{mm}$.

N	d, см	Niмягк	σ_d , cm	$\sigma_{\text{Ni}_{\text{mark}},\text{ctat}}$
1	0	316	0	32
2	0,92	242	0,01	24
3	2,54	201	0,01	20
4	4,42	126	0,01	13
5	5,68	113	0,01	11
6	7,36	87	0,01	9
7	8,84	53	0,01	5
8	10,55	31	0,01	3
9	13, 16	0	0,01	0

Таблица 2 : данные для графика

Построим графики зависимости по таблицам 1, 2.

Рис. 2 Зависимость числа прошедших частиц от толщины свинца

Заметим, что данные первого графика оказались слишком проблемными для аппроксимации экпонентой, поэтому кривая выродилась

Рис. З Зависимость числа прошедших частиц (мягкая компонента) от толщины свинца

в прямую. В любом случае рассчитаем искомое отношения компонент.

Используя формулу:

$$\frac{I_{M}}{I_{M}} = \frac{N_{i(d=0)} - N_{i(d=m\alpha x)}}{N_{i(d=m\alpha x)}}$$

$$\sigma_{\frac{I_M}{I_{sc}}} = \frac{I_{_M}}{I_{_{sc}}} \sqrt{\left(\frac{\sigma_{N_{\mathfrak{i}(d=0)}} + \sigma_{N_{\mathfrak{i}(d=\mathfrak{max})}}}{N_{\mathfrak{i}(d=0)} - N_{\mathfrak{i}(d=\mathfrak{max})}}\right)^2 + \left(\frac{\sigma_{N_{\mathfrak{i}(d=\mathfrak{max})}}}{N_{\mathfrak{i}(d=\mathfrak{max})}}\right)^2}$$

и полученную аппроксимацию с учетом погрешности измерения:

$$N_{i(d=0),appox} pprox (1075,20 \pm 113) rac{vact}{cm^2}$$
,

$$N_{i(d=max),appox} pprox (777,68 \pm 81) \frac{vact}{cm^2}, \Rightarrow$$

$$\frac{I_{\scriptscriptstyle M}}{I_{\scriptscriptstyle MC}}\approx 0,382\pm 0,046$$

В пределах погрешности полученное отношение совпадает с теоретических значением, приведенным в теоретическом положении.

4 Вывод

В предлжоженной работе была получена зависимость мягкой и жесткой, только мягкой компонент излучения от тольщины свинцовых пластин. В обоих случаях зависимость аппроксимировалась экспонентой.

График 1 приблизить экспонентой получилось сложнее в виду большего количества частиц \to большего накопления ошибки.

Из построенной аппроксимации с учетом вычисленных погрешностей получили верхнюю границу отношения мягкой и жесткой компонент.

Измереренное значение:

$$\frac{\mathrm{I}_{\mathrm{M}}}{\mathrm{I}_{\mathrm{K}}} \approx 0,382 \pm 0,046$$

Полученные результаты хорошо совпадают с теоретическим значением в пределах погрешности.

Теоретическое значение:

$$\frac{I_{\rm M}}{I_{\rm x theor}} \approx 0,412$$