

**NUCLEOBASES AND OTHER PREBIOTIC SPECIES FROM THE ULTRAVIOLET IRRADIATION OF PYRIMIDINE IN ASTROPHYSICAL ICES.** S. A. Sandford<sup>1</sup>, M. Nuevo<sup>1,2</sup>, C. K. Materese<sup>1,2</sup>, and S. N. Millam<sup>3</sup>, <sup>1</sup>NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035, USA (Scott.A.Sandford@nasa.gov), <sup>2</sup>SETI Institute, 189 N. Bernardo Ave., Ste. 100, Mountain View, CA 94043, USA, <sup>3</sup>NASA Goddard Space Flight Center, MS 691.0, Greenbelt, MD 20771, USA.

**Introduction:** Nucleobases are *N*-heterocycles that are the informational subunits of DNA and RNA, and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites [1,2] and their extraterrestrial origin confirmed by isotope measurement [3]. Although no *N*-heterocycles have ever been observed in the ISM [4,5], the positions of the 6.2-μm interstellar emission features suggest a population of such molecules is likely to be present [6]. In this work we study the formation of pyrimidine-based molecules, including nucleobases, as well as other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in combinations of H<sub>2</sub>O, NH<sub>3</sub>, CH<sub>3</sub>OH, and CH<sub>4</sub> ices at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium and icy bodies of the Solar System.

**Experimental:** Gas mixtures are prepared in a glass mixing line (background pressure ~10<sup>-6</sup>–10<sup>-5</sup> mbar). Relative proportions between mixture components are determined by their partial pressures. Gas mixtures are then deposited on an aluminum foil attached to a cold finger (15–20 K) and simultaneously irradiated with an H<sub>2</sub> lamp emitting UV photons (Lyman α and a continuum at ~160 nm). After irradiation samples are warmed to room temperature, at which time the remaining residues are recovered to be analyzed with liquid and gas chromatographies.

**Results:** These experiments showed that the UV irradiation of pyrimidine mixed in these ices at low temperature leads to the formation of several photo-products derived from pyrimidine, including the nucleobases uracil [7,8] and cytosine [8], as well as their precursors 4(3*H*)-pyrimidone and 4-aminoypyrimidine [7,8] (Fig. 1). Theoretical quantum calculations on the formation of 4(3*H*)-pyrimidone and uracil from the irradiation of pyrimidine in pure H<sub>2</sub>O ices are in agreement with their experimental formation pathways [9]. In those residues, other species of prebiotic interest such as urea and the amino acids glycine and alanine could also be identified [8]. However, no pyrimidine derivatives containing CH<sub>3</sub> groups, including the third nucleobase thymine, could be identified [10], suggesting that the addition of methyl groups to pyrimidine is not an efficient process [10].

**References:** [1] van der Velden W. and Schwartz A., (1977) *Geochim. Cosmochim. Acta*, 41, 961. [2] Stoks P. and Schwartz A. (1979) *Nature*, 282, 709. [3] Martins Z. et al. (2008) *Earth Planet. Sci. Lett.*, 270, 130. [4] Kuan Y.-J. et al. (2003) *Month. Not. R. Astron. Soc.*, 345, 650. [5] Charnley S. B. et al. (2005) *Adv. Space Res.*, 36, 137. [6] Hudgins D. M. et al. (2005) *Astrophys. J.*, 632, 316. [7] Nuevo M. et al. (2009) *Astrobiology*, 9, 683. [8] Nuevo M. et al. (2012) *Astrobiology*, in press. [9] Bera P. P. et al. (2010) *J. Chem. Phys.*, 133, 104303. [10] Materese C. K. et al. (2012) *Astrobiology*, in preparation.



Fig. 1: Pyrimidine derivatives formed after addition of OH groups from H<sub>2</sub>O and NH<sub>2</sub> groups from NH<sub>3</sub>. Photochemistry with CH<sub>3</sub>OH is similar to that of H<sub>2</sub>O, with additional compounds such as 4-pyrimidinemethanol.