Introducción a Redes Neuronales Artificiales (ANNs)

Una **red neuronal artificial (Artificial Neural Network)** es un modelo computacional inspirado en la forma en que las neuronas del cerebro procesan información. Su objetivo principal es **aprender patrones a partir de datos** para resolver tareas como clasificación, regresión o generación.

Conceptos Fundamentales

1. Neurona Artificial

La unidad básica. Cada neurona realiza esta operación:

$$z = \sum (x_i \cdot w_i) + b$$
 y luego $a = \sigma(z)$

- x_i : entrada
- w_i : peso
- b: sesgo (bias)
- $\sigma(z)$: función de activación (sigmoid, ReLU, etc.)
- a: salida

2. Capas

- Entrada: recibe los datos originales.
- Ocultas: transforman los datos internamente.
- Salida: produce la predicción final.

Cada capa tiene varias neuronas conectadas a la capa anterior.

3. Funciones de Activación

Añaden no linealidad, lo que permite a la red aprender relaciones complejas.

Función	Fórmula	Características
Sigmoid	$\frac{1}{1+e^{-x}}$	Salida entre 0 y 1, buena para probabilidades

Función	Fórmula	Características
T <mark>anh</mark>	$\tanh(x)$	Salida entre -1 y 1
ReLU	$\max(0,x)$	Rápida, evita desvanecimiento del gradiente
Softmax	$exi\sum exjrac{e^{x_i}}{\sum e^{x_j}}$	Para clasificación multiclase
	Cambiar formula	

4. Función de pérdida (Loss Function)

Mide qué tan lejos está la predicción del valor real.

Tipo de problema	Función de pérdida común
Clasificación binaria	binary_crossentropy
Clasificación multiclase	categorical_crossentropy
Regresión	mean_squared_error (MSE)

5. Propagación hacia adelante (Forward Propagation)

Se calculan las salidas de cada neurona desde la entrada hasta la salida final.

6. Retropropagación (Backpropagation)

Algoritmo que calcula cómo deben ajustarse los pesos para reducir el error. Se basa en el **gradiente del error con respecto a los pesos** y aplica el **descenso del gradiente**.

7. Optimización

Actualiza pesos y sesgos. Algoritmos comunes:

- SGD (Stochastic Gradient Descent)
- Adam (ajusta automáticamente la tasa de aprendizaje)
- RMSProp

Conceptos Clave para Implementar en Python

Preprocesamiento

 Normalizar/estandarizar los datos para que los valores estén en rangos similares. • Codificar etiquetas si es clasificación (One-hot o label encoding).

Inicialización de Pesos

Crucial para que la red converja (ej: He, Xavier).

Arquitectura

- ¿Cuántas capas ocultas?
- ¿Cuántas neuronas por capa?
- ¿Qué función de activación?
- **Evitar Overfitting** El modelo está muy ajustado a reconocet un caso.
- Regularización: L2/L1
- **Dropout**: apaga neuronas aleatoriamente durante el entrenamiento
- Early stopping: detener si la validación deja de mejorar

Batch size y Epochs

- batch_size: cuántas muestras se usan por paso de entrenamiento.
- epochs: cuántas veces pasa todo el dataset por la red.

Ejemplo de Red Neuronal Desde Cero (Python + NumPy)

```
import numpy as np

# Sigmoid y derivada
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def sigmoid_deriv(x):
    return x * (1 - x)

# Datos (XOR)
X = np.array([[0,0], [0,1], [1,0], [1,1]])
y = np.array([[0], [1], [0]])
```

```
# Pesos aleatorios
np.random.seed(42)
w0 = 2 * np.random.random((2, 4)) - 1 # capa oculta (2 entradas, 4 neuron
as)
w1 = 2 * np.random.random((4, 1)) - 1 # salida (4 entradas, 1 salida)
# Entrenamiento
for epoch in range(10000):
  # Forward
  10 = X
  I1 = sigmoid(np.dot(I0, w0))
  12 = sigmoid(np.dot(I1, w1))
  # Error
  error = y - 12
  if epoch % 1000 == 0:
     print(f"Error: {np.mean(np.abs(error))}")
  # Backpropagation
  12_delta = error * sigmoid_deriv(I2)
  I1_delta = I2_delta.dot(w1.T) * sigmoid_deriv(I1)
  # Actualizar pesos
  w1 += I1.T.dot(I2_delta)
  w0 += I0.T.dot(I1_delta)
# Predicciones
print("Predicción final:")
print(I2)
```

Ejemplo con Keras (Alto Nivel)

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense import numpy as np

XOR

```
X = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0],[1],[1],[0]])

# Modelo
model = Sequential()
model.add(Dense(4, input_dim=2, activation='relu')) # capa oculta
model.add(Dense(1, activation='sigmoid')) # capa salida

# Compilar y entrenar
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['ac curacy'])
model.fit(X, y, epochs=1000, verbose=0)

# Predicciones
print("Predicciones:")
print(model.predict(X))
```

Recomendaciones Finales

- Empieza con pocas capas y aumenta la complejidad solo si es necesario.
- Siempre separa tus datos en entrenamiento y validación.
- Usa skleam para preparar datos y evaluar modelos (confusion matrix, accuracy, etc.).
- Visualiza la evolución del error con matplotlib.