

Energija sunca

Korištenje energije sunca za proizvodnju el. energije Energijske tehnologije FER 2008.

Gdje smo:

- 1. Organizacija i sadržaj predmeta
- 2. Uvodna razmatranja
- 3. O energiji
- 4. Energetske pretvorbe i procesi u termoelektranama
- 5. Energetske pretvorbe i procesi u hidroelektranama
- 6. Energetske pretvorbe i procesi u nuklearnim el.
- 7. Geotermalna energija
- 8. Potrošnja električne energije
- Prijenos i distribucija električne energije

10. Energija Sunca

- 11. Energija vjetra
- 12. Biomasa
- 13. Gorivne ćelije i ostale neposredne pretvorbe
- 14. Skladištenje energije
- 15. Utjecaj na okoliš, održivi razvoj i energija

Sadržaj

- Uvod
- Sunčevo zračenje na horizontalnu i položenu plohu
- Korištenje energije zračenja Sunca za grijanje
- Korištenje energije zračenja Sunca za proizvodnju električne energije
- Ukratko

Uvod: Povijest korištenja energije sunca

- život na zemlji
- vjerovanja
- prvi pokušaji korištenja krajem 19. st.
- 1954. prva fotonaponska ćelija
- najrazvijenije korištenje za grijanje
- komercijalno razvijene termoelektrane koje koriste toplinu proizvedenu sunčevim zračenjem
- cijena u opadaju

Taperet praying to the sun

Le bagnanti, Pablo Picasso, 1918

Sources: Okanagan university college in Canada, Department of geography, University of Oxford, school of geography; United States Environmental Protection Agency (EPA), Washington; Climate change 1995, The adjeppy of climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge university press, 1996.

Snaga i energija sa Sunca

 $G_0 = 1370 \text{ W/m}^2$

- na rubu atmosfere pola Zemlje
- solarna konstanta srednja vrijednost (±3,5%)

- 1. Solarna energija godišnje dozračena na Zemlju
- 2. Trenutno korištena solarna energija
- 3. Rezerve prirodnog plina
- 4. Rezerve ugljena
- 5. Rezerve nafte
- 6. Rezerve urana
- 7. Godišnja svjetska potrošnje energije

$$G = K_t \cdot G_0$$

- na tlu ovisi o atmosferi

K_t – indeks prozračnosti

Zadatak 1. Energija sa Sunca u jednom danu

Odrediti energiju koju sa Sunca primi Zemlja i Hrvatska u jednom danu (24 h) uz:

- snaga sunčeva zračenja na rubu atmosfere
 G₀ = 1370 W/m²
- polumjer Zemlje $R_7 = 6,378e6 \text{ m}$
- površina Hrvatske $A_H = 56594 \text{ km}^2$
- indeks prozračnosti K = 0,5
- pretpostaviti da Sunce sja 12 sati na dan

$$W_Z$$
, W_H

$$W = P \cdot t \quad [Ws]$$

$$P = K \cdot G_0 \cdot A \quad [W]$$

Rješenje:

$$P_Z = 0.5 \cdot 1370 \cdot (6.378e6)^2 \cdot 3.14$$

= 685 \cdot 1.277e14 = 87.5e15 W

- sunce sja 12 h na dan

$$W_Z = 8,75e16 \cdot 12 = 1,05e18 \text{ Wh}$$

= 1,05e15 [kWh]

$$P_{H} = 685 \cdot 56594e6 = 38,8e12 \text{ W}$$

$$W_H = 3.88e13 \cdot 12 = 4.65e14 Wh$$

= 0.465e12 kWh

Za vježbu:

 odrediti potrebnu površinu, apsolutno i postotno, za pokrivanje godišnje potrošnje energije za HR i Svijet uz poznatu potrošnju -u HR 400e15 J i

-u Svijetu 413e18 J

Rj.:

Energija i snaga sunčeva zračenja na Zemlji

Ozračenje – gustoća snage **G** [W/m²] (iradijacija, insolacija)

Ozračenost – gustoća energije **H** [Ws/m²]

Kolektor: najbolji nagib kolektora za Sunce u najvišoj točki β_o : $\omega=0^o$, okomito na sunčeve zrake: $\beta_0 = 90^\circ - \varphi + \delta$

ω_{sc} satni kut za fiksni kolektor

Zemljopisna širina φ

Deklinacija Sunca δ - kut između ravnine ekvatora i spojnice središta Zemlje i Sunca Satni kut Sunca ω - vrijeme izraženo pomoću kuta (1h≡15°, 0° za Sunce u najvišem položaju, negativno prije podne: npr. 10h Sunč. vremena odgovara sat. kutu $\omega = -30^{\circ}$; ω_s satni kut izlaska/zalaska: $\alpha = 0^{\circ}/180^{\circ}$ u formuli

Visina Sunca α - kut između horizonta i Sunca

Između pravca prema jugu i pravca projekcije sunčevih zraka na horizont (0° za Sunce u najvišem položaju, negativno prije podne) 2008.

 $\sin \alpha = \sin \varphi \sin \delta + \cos \varphi \cos \delta \cos \omega$

Prividno gibanje Sunca kroz godinu i dan

Mjerenje ozračenosti (Sunčeva energija)

- Piranometri:
 - termički ili
 - poluvodički
- Zračenje na ravnoj plohi:
 - globalno (ukupno),
 - direktno i
 - difuzno (raspršeno)
- Važan je iznos i trajanje dnevne ozračenosti (insolacije)
- Najčešće se mjeri samo globalna (ukupna) ozračenost
 - tada je potrebno izračunavati udio direktne i difuzne komponente

- Rezultati mjerenja su dostupni kao ozračenost na ravnu plohu za prosječni dan u mjesecu: [Wh/m² ili J/m²]
- Za sve primjene nužno je razlučiti direktni i difuzni dio

Od izmjerenoga do potrebnoga

Ozračenosti na horizontalnu plohu za prosječni dan u mjesecu

H [MJ/m²/dan]	sije.	velj.	ožu.	trav.	svib.	lip.	srp.	kol.	ruj.	list.	stud.	pros.	GOD
Split	6,5	9,8	14,3	18,6	23,3	25,9	25,4	22,4	17,4	12,7	7,4	5,7	5760
Zagreb	3,7	6,5	9,7	14,8	19,3	20,6	21,3	18,7	14,0	8,3	3,6	2,7	4320

- često su dostupne samo vrijednosti kao u tablici iznad
- za većinu primjena potrebno je odrediti ukupnu ozračenost na plohu pod nekim nagibom β koja se sastoji od tri dijela:
 - direktni dio (b) se određuje preko produkta direktne ozračenosti na ravnu površinu i faktora proporcionalnosti R_b
 - difuzni dio (d) se određuje preko difuzne ozračenosti na ravnu plohu i prostornog kuta pod kojim se 'vidi' nebo s plohe uz pretpostavku o izotropnosti neba

- indeks prozračnosti određuje omjer ukupne ozračenosti i ozračenosti na ulazu u atmosferu H₀
- reflektirani dio se računa preko produkta faktora refleksije ρ, ukupne ozračenosti na ravnu plohu i proporcionalnosti s dijelom okoline koja odbija svjetlost na plohu
- za ravnu plohu nema reflektirane komponente
- opisani postupak određuje dnevne prosjeke ozračenosti za plohu pod nagibom te je potrebno koristiti dnevne prosjeke za H₀ i R_b

$$[1kWh=3,6MJ]$$

$$\overline{H}_{\beta} = \overline{H}_{b\beta} + \overline{H}_{d\beta} + \overline{H}_{r\beta}$$

$$\overline{H}_{b\beta} = \overline{H}_{b} \overline{R}_{b\beta}$$

$$\overline{H}_{d\beta} = \overline{H}_{d} \frac{1 + \cos \beta}{2}$$

$$\overline{H}_{b} = \overline{H} - \overline{H}_{d}$$

$$\overline{H}_{r\beta} = \rho \overline{H} \frac{1 - \cos \beta}{2}$$

$$\overline{H}_{d} = \overline{H} \cdot \left(1,60 - 4,17\overline{K}_{t} + 5,29\overline{K}_{t}^{2} - 2,86\overline{K}_{t}^{3}\right)$$

$$\overline{K}_{t} = \frac{\overline{H}}{\overline{H}_{0}}$$

$$\overline{H}_0 = \frac{24}{\pi} \overline{G}_0 \left(1 + 0.033 \cdot \cos \frac{360 \cdot n}{365} \right) \left(\sin \varphi \sin \delta \sin \omega_s + \omega_s \sin \varphi \sin \delta \right)$$

$$\overline{R}_{b\beta} = \frac{\overline{H}_{b\beta}}{\overline{H}_{b}} = \frac{\cos(\varphi - \beta)\cos\delta\sin\omega_{sc} + \omega_{sc}\sin(\varphi - \beta)\sin\delta}{\cos\varphi\cos\delta\sin\omega_{s} + \omega_{s}\sin\varphi\sin\delta}$$

$$\omega_s = \arccos(-tg\varphi tg\delta)$$

$$\omega_{sc} = \min\{\omega_s, \arccos[-tg(\varphi - \beta)tg\delta]\}$$

Zadatak 2. Ozračenost plohe pod nagibom

Odrediti ozračenost plohe u Splitu pod nagibom za svibanj uz:

- površina plohe A = 1 m²
- nagib jednak zemljopisnoj širini $\beta=\phi=43,5^{\circ}$
- faktor refleksije $\rho = 0.2$
- ozračenost na horizontalnu plohu za prosječan dan u mjesecu H = 23,3 MJ/m²
- prosječni faktor (za svibanj, β i ϕ = 43,5°) $R_{b\beta}$ = 0,89
- ozračenost na horizontalnu plohu za prosječan dan u mjesecu H₀ = 38,5 MJ/m²

 H_{β}

$$\overline{H}_{\beta} = \overline{H}_{b\beta} + \overline{H}_{d\beta} + \overline{H}_{r\beta}$$

$$\overline{H}_{b\beta} = \overline{H}_b \overline{R}_{b\beta}$$

$$\overline{H}_{d\beta} = \overline{H}_d \frac{1 + \cos \beta}{2} \qquad \overline{H}_{r\beta} = \rho \overline{H} \frac{1 - \cos \beta}{2}$$

Rješenje:

 $H_{r\beta} = 0.2.23.3.(1-\cos(43.5))/2 = 0.637 \text{ MJ/m}^2$

Za difuzni dio pod kutom treba izračunati prvo difuzni dio na ravnu plohu izrazom

$$\overline{H}_d = \overline{H} \cdot (1,60 - 4,17\overline{K}_t + 5,29\overline{K}_t^2 - 2,86\overline{K}_t^3)$$

- prosječni dnevni indeks prozračnosti za svibanj:

$$K_{t.5} = H/H_0 = 23,3/38,5 = 0,6$$

$$\overline{H}_d = 23.3 \cdot (1,60 - 4,17 \cdot 0,6 + 5,29 \cdot 0,6^2 - 2,86 \cdot 0,6^3)$$

 $H_d = 8,96 \text{ MJ/m}^2$

$$H_{d\beta} = 8.96 \cdot (1 + \cos(43.5))/2 = 7.73 \text{ MJ/m}^2$$

$$H_{b\beta} = (H-H_d) \cdot R_{b\beta} = (23,3-8,96) \cdot 0.89$$

= 12.8 MJ/m²

$$H_{\beta} = H_{b\beta} + H_{d\beta} + H_{r\beta} = 12.8 + 7.73 + 0.637$$

= **21.2** MJ/m²

Za vježbu:

- odrediti ozračenost iste plohe za kolovoz uz H=22,4 MJ/m² , H $_0$ = 35,3 MJ/m² i $R_{b\beta}$ = 1,0

Rj.: $H_B = 21.9 \text{ MJ/m}^2 \text{ (međurezultat } H_d = 7.8 \text{ MJ/m}^2\text{)}$

Korištenje sunčeve energija

50 kWe

Električna energija

direktno

u elektranama

ehnologije: Energija sunca

Pasivno solarno grijanje

Potencijali:

- Zadovoljenje desetine postotaka potreba za grijanjem
- Od jednostavnih rješenja do sofisticiranih izvedbi
- Svjetlo po danu, upravljivi pokrovi, vakumirano staklo
- EU 2010: pasivno solarno grijanje štedi 10% potreba za grijanjem prostora

Zahtjevi:

- Konstrukcija s velikom termalnom masom (npr. gusti beton ili cigle).
 Ovo sprema toplinsku energiju za dana i zadržava preko noći.
- Dobra izolacije na vanjskim strukturama za održavanje topline
- Izbjegavanje zasjenjivanja objekata.

Aktivno solarno grijanje

Solarni toplinski kolektori preuzimaju energiju svjetlosnog zračenja i griju vodu. Solarni toplinski kolektori se mogu kategorizirati prema temperaturi na koju griju vodu.

- Nisko-temperaturni kolektori:
 - Bez pokrova za grijanje npr bazena.
 - Perforirane ploče za predgrijavanje zraka.

Izolirani kolektori s pokrovom.

Efikasnost ravnih kolektora Coopertube

$$\eta = \dot{Q}_k / (G \cdot A) = Q_k / (H \cdot A)$$

Korisna toplina = Primljeno - Gubitci

$$Q_k = F \cdot A \left[a \cdot G - k \cdot \Delta T \right] \cdot \Delta t$$

$$Q_k = F \cdot A \left[a \cdot H - k \cdot \Delta T \cdot \Delta t \right]$$

Efikasnost

$$\eta = F [a - k \cdot \Delta T/G]$$

Propusnost stakla prema valnoj duljini svjetlosti

G = globalno (ukupno) ozračenje (W/m²)

F = faktor prijenosa topline iz apsorbera na medij (vodu)

 $\dot{Q}_k = korisna toplinska snaga (W)$

k = koeficijent ukupnih topl. gubitaka (W/m²K)

$$\Delta T = \mathcal{G}_{u} - \mathcal{G}_{z}$$

 g_u = ulazna temperatura medija

 g_z = vanjska temperatura zraka

 $a = efektivni produkt \tau \alpha$

 $\tau = transmitivnost pokrova$

 α = apsorptivnost apsorbera

Existing water heater

Flat-plate collector

Solar water heater

Pressure relie

Zadatak 3. Dobivena toplina iz kolektora i efikasnost

Srednje sunčevo ozračenje kolektora u Zagrebu za jedan dan u prosincu u podne (12-13 h) iznosi 255 W/m². Koeficijent toplinskih gubitaka kolektora je $k=5 \text{ W/m}^2\text{K}$, efektivni produkt $a=\tau\alpha=0.87$, koeficijent prijenosa topline F= 0.85, ukupna dnevna ozračenost kolektora 28.4 MJ i ukupna dobivena toplina 4.54 MJ. Temperatura vode na ulazu u kolektor je konstantno 30 °C, a temperatura zraka u podne 25 °C. Odrediti podnevnu i dnevnu efikasnost kolektora površine 6 m².

Toplina koja se apsorbira u fluidu koji protječe kroz kolektor može se izračunati iz izraza

$$Q_p = F \cdot A \cdot \left[a \cdot \overline{G} - k \cdot \Delta T \right] \cdot \Delta t$$

$$Q_p = 0.85 \cdot 6 \cdot [0.87 \cdot 255 - 5 \cdot (303 - 275.5)] \cdot 3600$$

 $Q_p = 1.55 \text{ MJ}$

Podnevna efikasnost kolektora jednaka je

$$\eta_{12} = \frac{Q_p}{A \cdot G \cdot \Delta t} = \frac{1,55 \cdot 10^6}{6 \cdot 255 \cdot 3600} = 0.28$$

Dnevna efikasnost kolektora

$$\eta_{dnevno} = \frac{\Sigma Q_p}{A \cdot \Sigma (G \cdot \Delta t)} = \frac{4.54}{28.4} = 0.16$$

Efikasnost kolektora određuje konstrukcija i razlika temperature

Sunčevo ozračenje na kolektor u horizontalnom položaju, pod nagibom i u pokretu

Promjena položaja

- -u jednoj osi tijekom dana 25% do 30% više energije
- -u dvije osi tijekom daje 30% do 40% više energije
- sunčanije lokacije imaju više koristi

Promjena položaja

- -poskupljuje instalaciju (duplo)
- -otežava održavanje
- -veća masa

Solarna elektrana – parabolična protočna

 kao i sve druge koncentrirane teh. koristi samo direktno zračenje

- najrazvijenija tehnologija
- instalirano više stotina MWe
- koncentracija sunca 75x
- temperature do 500 °C

 godišnja efikasnost (sunce u el. en.) do 14%

obično prati sunce istok-zapa

Rankine ciklus direktno ili

 posredno

- cijena blizu konkurentne drugim izvorima
- optimalna snaga 200 MWe
- unapređenja na cijevima i spremanju topline (otopljena sol)

30 MWe, Kramer Junction, California

Solarna elektrana – solarni toranj

- manje razvijenija tehnologija u odnosu na parabolične protočne
- instalirano probno više desetaka MWe
- koncentracija sunca 800x
- temperature do 560 °C
- procjena godišnje efikasnosti do 18%
- radni mediji: voda, org. kapljevine soli natrij nitrata ili zrak
- Rankine ciklus posredno ili direktno
- optimalna snaga 100-e MWe
- unapređenja na cijevima i spremanju topline (otopljena sol)

Solar II 10 MWe, California, skoro 2000 ogledala, 100m toranj, 40 M\$

FIGURE 23: Annual efficiency of a 100 MW, central receiver The efficiencies at the bottoms of the bars are component efficiencies; those a the top are cumulative efficiencies.

FIGURE 2: Efficiency with which a safer-thermal query convert surlight to electricity is sharted.

From 16 to 30 percent of direct studies to whise a system is converted into electricity.

Solarna elektrana – parabolični tanjur

- najmanje razvijen sustav
- instalirano probno više MWe
- koncentracija sunca više od 3000x
- temperature preko 750 °C i godišnja efikasnost od 22%
- svaka jedinica ima 10 do 25 kWe i može raditi samostalno - modularnost
- Stirlingov toplinski stroj
 - η_t preko 40 %
 - visoka gustoća snage ~55kW/L
 - problem pouzdanost i cijena koncentratora,
- Braytonov topl. stroj i mikroturbine se također testiraju
- planovi za stotine MWe

Fotonaponska sunčeva

- fotoefekt otkrio Becquerel 1839.
- Einstein objasnio fotoefekt 1905.
- direktna konverzija solarnog zračenja u el. energiju
- prva moderna FN ćelija napravljena 1954. u Bell Labs
- kristal silicija (ili drugi poluvodič) apsorbira svjetlost – odgovarajuće zračenje oslobađa elektron
- slobodni elektron znači elektricitet

Kako radi FN ćelija

- A location that can accept an electron Free electron Proton Tightly-held electron Step 1 negative character n-layer p-layer positive character Step 2 positive charge n-layer p-n junction p-layer sun Step 3 photons positive charge n-layer p-n junction p-laver Step 4 free electron load
- Kristali silicija dopirani atomima različitog broja valentnih elektrona
 - – Silicij 4,
 - Fosfor 5 i Bor 3
- Fosforom dopirani silicij postaje n-sloj, sa slobodnim elektronima
- Borom dopirani silicij postane p-sloj, sa šupljinama
- Elektroni idu od n-sloja prema p-sloju
- Inicijalno neutralni p-n spoj ima električno polje – napon između p-sloja i n-sloja
- Fotoni oslobađaju elektrone u p-n spoju koje električnom polju usmjerava u n-sloj
- 4. Nagomilani elektroni struje kroz priključeni teret električna energija

Učinkovitost FN ćelije

Bakar Indium Selenid (CuInSe²) Galij Arsenid, CadmijTelur

- 77% sunčeva spektra iskoristivo:
- Oko 43% apsorbiranog zračenja samo grije kristal.
- Teorijski maksimum za Si:
 - na 0°C efikasnost = 24%
- Efikasnost opada brzo s porastom temperature
 - na 100°C efikasnost = 14%

Teorijski maksimum efikasnosti za neke vrste FN ćelija pri standardnim uvjetima ovisno o vrsti ćelije i energiji zabranjenog pojasa E_a.

Za izbijanje elektrona foton mora imati veću energiju od E_{α} .

Energija fotona veća od E_g se ne iskoristi. Ćelije s manjim E_g imaju i manji napon.

Sunčevo zračenje i FN ćelija

Samo je dio zračenja u UV području, a ostalo približno podijeljeno u vidljivom (0,38-0,78 µm) i IC.

Temeljni parametri FN ćelija

Vrsta ćelije	U_{ok} V	$J_{ks}/(mA cm^{-2})$	η%	Proizvodnja
Monokristalična-Si	0,65	30	14- 18	masovna
Polikristalična-Si	0,60	26	~14	masovna
Amorfna-Si	0,85	15	8	masovna
Amorfna-Si, 2 sloja, tanki film	0,5	20	8,8	manje količine
Cd S / Cu ₂ S	0,7	15	12	manje količine
Cd S / Cd Te	1	25	10,7	manje količine
Ga In PAs / Ga As			21	manje količine

Polikristalni Si

Stupanj djelovanja je definiran kao omjer upadnog ozračenja i električne snage.

Veći stupanj djelovanja od teorijskog se postiže kombinacijom poluvodičkih materijala, kvantnim točkama i fokusiranjem sunčeva zračenja.

Nadomjesna shema FN ćelije

Izlazna struja / jednaka je struji koju proizvodi sunčeva svjetlost I_L , umanjenoj za, zanemarivu, struju diode I_d i struju šanta I_{SH} .

Otpor šanta R_{SH} je obrnuto razmjeran rasipnoj struji prema zemlji. Serijski otpor R_S predstavlja unutarnji otpor toku struje i ovisi o dubini p-n spoja, nečistoćama i otporu spoja.

Nadomjesna shema FN ćelije

- U idealnoj fotonaponskoj ćeliji $R_s=0$ (nema serijskog gubitka), i $R_{SH}=\infty$ (nema rasipanja prema zemlji).
- U običnoj visoko kvalitetnoj silicijevoj ćeliji veličine jednog kvadratnog inča $R_S=0.05$ do $0.10~\Omega$ i $R_{SH}=200$ do $300~\Omega$.
- Učinkovitost fotonaponske ćelije je osjetljiva na male promjene R_S, ali nije osjetljiva na promjene R_{SH}. Malo povećanje u serijskom otporu R_S može značajno smanjiti izlazne karakteristike
- Napon praznog hoda V_{PH} ćelije određuje se kada je ćelija neopterećena (struja potrošača I = 0), prema izrazu: V_{PH} = V+IR_{SH}
- Struja diode je dana izrazom:

$$I_d = I_D \left[\frac{QV_{PH}}{AKT} - 1 \right]$$

 I_D = struja zasićenja diode

 $Q = 1.6 \cdot 10^{-19} C$

A = prilagođavanje krivulje konstante

 $K = Boltzmannova konstanta = 1.38 \cdot 10^{-23} J/K$

T = temperatura u K

I-U karakteristika i maksimalna snaga

Unutrašnji otpori FN ćelije određuju I-U karakteristiku s točkom maksimalne snage.

Za maksimalnu snagu P_m karakteristične su struja I_m i napon U_m

 U_{OC} – napon otvorenog kruga (*open circuit,* ili U_{OK} ili samo U_O)

Omjer maksimalne snage i produkta I_{KS} sa naponom U_o se naziva faktor punjenja F.

$$F = \frac{I_m \cdot U_m}{I_{KS} \cdot U_0}$$

Snaga, solarno zračenje i temperatura

I-U karakteristika monokristalne FN ćelije pri ozračenjima od 200, 600 i 1000W/m²

I-U karakteristika modula sa monokristalnim FN ćelijama pri tri različite temperature.

Zadatak 4. Efikasnost fotonaponske ćelije i faktor punjenja

Fotonaponska ćelija, površine 270 cm², ima neopterećena napon od 0,6 V i struju kratkog spoja 8 A pri ozračenju od 1000 W/m².

Maksimum snage iz ćelije dobije se pri teretu od $0,05 \Omega$ i naponu 0,47 V. Koliko iznosi efikasnost ćelije i faktor punjenja?

F η

Efikasnost ćelije određuje se iz omjera snage električne energije i snage sunčeva ozračenja:

$$\eta = \frac{I_m \cdot U_m}{G \cdot A}$$

$$I_m = \frac{U_m}{R}$$

$$\eta = \frac{U_m^2}{R \cdot G \cdot A} = \frac{0.47^2}{0.05 \cdot 1000 \cdot 270 \cdot 10^{-4}} = 0.16$$

Faktor punjenja prikazuje koliko je stvarna ćelija blizu idealnoj i to je omjer produkta struja i napona pri maksimalnoj snazi prema produktu struje kratkog spoja i napona bez opterećenja:

$$F = \frac{I_m \cdot U_m}{I_{KS} \cdot U_0} \qquad I_m = \frac{U_m}{R}$$

$$F = \frac{U_m^2}{R \cdot I_{KS} \cdot U_0} = \frac{0.47^2}{0.05 \cdot 8.8 \cdot 0.6} = 0.84$$

Solarni modul i panel

Vršna snaga Wp:	3,8W
Napon otvorenog strujnog kruga Voc:	0,605V
Struja Kratkog spoja Isc:	8,9A
Napon max. snage Vmp:	0,472V
Struja pri max. snazi Imp:	8,05A
Efikasnost: 14,6%	
Debljina: 450-600 microns	
Ćelija 165x165mm	

	150Wp
Struja pri max. snazi Imp	8,42 A
Napon max. snage Vmp	17,8 V
Struja kratkog spoja Isc	9,9A
Napon praznog hoda Voc	23V

Dimenzije: 1700 x 690 x 34mm

Težina: 14,5kg

2008.

Energijske tehnologije: Energija sunca

35

Optimiranje globalnog i lokalnog optimuma ozračenosti FN panela položajem

Lokacija									
PULA			Zemljopisna širina	45,65	Sjever				
		INSOLACIJA							
		MJ/mq/dan	kWh/mq/dan	kWh/mq/dan		kWh/mq/dan			
	P	Vodoravna površina	Vodoravna površina	Azimut= Tilt=	0 60	Azimut= Tilt=	30		
SIJEČANJ	0,2	4,30	1,19	2,30		1,95			
VELJAČA	0,2	7.20	2,00	3,15		2,87			
OŻUJAK	0,2	11,10	3,08	3,78		3,81			
TRAVANJ	0,2	15,60	4,33	4,13		4,66			
SVIBANJ	0,2	20,00	5,56	4,44		5,45			
LIPANJ	0,2	21.50	5.97	4,40		5,62			
SRPANJ	0.2	23,30	8,47	4,92		6,21			
KOLOVOZ	0,2	20,00	5,56	4,96		5,80			
RUJÁN	0,2	14.80	4.11	4,70		4,91			
LISTOPAD	0.2	9,60	2,67	4,07		3,76			
STUDENI	0.2	5,10	1,42	2,62		2,25			
PROSINAC	0.2	3,90	1,08	2,30		1,89			
Prosj. Dnevna insolacija		13,03	3,62	3,81		4.10			
Prosj. godišnja insolacija		4757.17	1321,44	1391	3	1496,	1		

Sistemi stand-alone: teži se maksimizaciji proizvedene energije u najnepovoljnijem periodu. Sistemi grid-connected: teži se maksimizaciji prosječne godišnje proizvedene energije

FN primjene

Consumer

Porast oko kapaciteta 30% godišnje. Golem porast (preko 1GW/god) dovodi u pitanje raspoloživost Si. Ekonomičnost još uglavnom nedostižna

 6 rid-connected ■ Off-grid

Ekonomično

10 i 6,3 MWe Njemačka

Instalirano 2002.

Energijske tehnologije: Energija sunca

Samostalni PV sistemi

Fleksibilnost i optimalni rad se postiže primjenom elektronike snage za ispravljanje, konverziju i rad u točki maksimalne snage

d. Hybrid system with inverter and ac loads

Elektrifikacija udaljenih i nerazvijenih krajeva

Pokazatelji: cijena na sat i cijena po litri vode

FN na mreži

Pokazatelji: estetika, cijena po površini i cijena po energiji

Podudarnost FN proizvodnje i potreba u poslovnoj zgradi potencijal za ekonomičnost.

Mae Hong Son 500 kWp turn-key for EGAT (Energy Generating Authority of Thailand)

The nearby Rote Jahne 6 MW photovoltaic power plant

Modules: 1680x ASE-300-DG-FT

Inverters: 2x 250 kVA Sunny Central and 2x 250 kVA Battery Inverter SMA

Grid: 22 kV PEA (Provincial Energy Authority of Thailand) at Mae Hong Son
Installation by SAG-Frankfurt (RWE Solutions) with local companies, April 2004

Do kraja 2009. bi se trebala dovršiti FN (tanki film) elektrana od **40 MWe** u Njemačkoj:

• 130 M€, 3250 €/kW, 400000 m²

Udio različitih FN tehnologija

Potrošnja silicija u konvencionalnom pristupu je prevelika. Nove tehnologije poput tankog filma rješavaju taj problem. Projekcije na slici za 2010. već su ostvarene u 2005. c-Si – kristalni silicij

thin film - tanki film

"New Concepts"

0.56

2.72

20

133

Ukratko

- Grijanje najveći i najisplativiji potencijal
 - pasivno
 - aktivno
- Posredna pretvorba u el. en. vrlo razvijena
 - komercijalno za parabolične protočne elektrane
 - veliki broj prototipnih postrojenja za solarne tornjeve
 - u razvoju za solarne tanjure
 - uz spremanje topline ima veliki potencijal

- FN predstavlja čistu i pouzdanu tehnologiju
 - Proizvodnja uložene energije za 3 do 6 godina
 - Silicij dominira, tanki film dolazi
 - Značajnih FN resursa ima i u zemljama na sjeveru
- FN primjena isplativa
 - samo u posebnim aplikacijama
 - poticaji nužni
- Masovna proizvodnja i inovacije će vjerojatno spustiti cijenu značajno na duži rok:
 - 750 to 1500 kWh/kW
 - za 2010. 2-3 €/Wp
 - za 2020. 3 €/Wp i 9 €ct/kWh