MS&E 228: Inference with Modern Non-Linear Prediction

Vasilis Syrgkanis

MS&E, Stanford

Recap of Last Lecture

Causal Inference Pipeline

Causal Inference Pipeline

Goals for Today

- Methods for Confidence Intervals for ATE with non-linear models
- General Neyman Orthogonality Framework (Double/Debiased ML)
- Methods for Confidence Intervals for ATE in a partially-linear model
- Sample-splitting and cross-fitting

Proof sketch of main theorem*

The Example Problem

Identification under Conditional Ignorability

• Once we condition on enough variables X that affect treatment assignment, remnant variation in D is exogenous (as-if trial)

$$Y^{(d)} \perp \!\!\!\perp D \mid X$$
 (conditional ignorability)

Why useful:

$$E[Y \mid D = d, X] = E[Y^{(D)} \mid D = d, X]$$
$$= E[Y^{(d)} \mid D = d, X] = E[Y^{(d)} \mid X]$$

• Average treatment effect is "identified" as (g-formula):

$$\theta_0 = E[Y^{(1)} - Y^{(0)}] = E[E[Y^{(1)} - Y^{(0)} | X]]$$
$$= E[E[Y|D = 1, X] - E[Y|D = 0, X]]$$

Let's take it to data

• We observe n samples Z_1, \ldots, Z_n where $Z_i = (X_i, D_i, Y_i)$

• Want to estimate average effect θ_0 , which satisfies:

$$\theta_0 = E[g_0(1, X) - g_0(0, X)]$$

• Where:

$$g_0(D,X) \coloneqq E[Y \mid D,X]$$

• We want to be able to use ML to learn regression function $g_0!$

What do we want from $\hat{\theta}$?

- Ideally parametric rates for θ_0 even when we have slower rates for g_0
- Ideally construction of confidence intervals for $heta_0$
- One approach. Asymptotic normality $\sqrt{n}(\hat{\theta} \theta_0) \rightarrow_d N(0, \sigma^2)$
- Implies construction of approximately correct confidence intervals

with prob.
$$\approx$$
 95%: $\theta_0 \in \left[\hat{\theta} \pm 1.96\hat{\sigma}/\sqrt{n}\right]$

Natural Estimation Algorithm

- Estimate \hat{g} of g_0 from data
- Calculate empirical plug-in average:

$$\widehat{\theta} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \widehat{g}(1, X) - \widehat{g}(0, X)$$

Natural Algorithm Gone Wrong

```
def est(X, D, y): # direct non-orthogonal estimator of average effect
    est = RandomForestRegressor(min_samples_leaf=20)
    est.fit(np.hstack([D.reshape(-1, 1), X]), y)
    ones = np.hstack([np.ones((X.shape[0], 1)), X])
    zeros = np.hstack([np.zeros((X.shape[0], 1)), X])
    preds = est.predict(ones) - est.predict(zeros)
    return np.mean(preds), np.std(preds)/np.sqrt(X.shape[0])
```

Simple Example

```
X \sim N(0, I_{20})

D \sim \text{Binomial}(0.5 + \text{clip}(X_0, -0.4, 0.4))

y \sim \theta_0 D + X_0 + X_1 + N(0,1)
```


Natural Estimation Algorithm (Draft 2)

- Split the data in half S_1, S_2
- On first half S_1 , estimate \hat{g} of g_0
- Calculate empirical plug-in average on second half S_2 :

$$\widehat{\theta} \coloneqq \frac{1}{|S_2|} \sum_{i \in S_2} \widehat{g}(1, X) - \widehat{g}(0, X)$$

Natural Estimation Algorithm (Draft 3)

- Split data in K parts, $S_1, ..., S_K$
- For each part k, estimate \hat{g}_k using data from all parts except S_k
- Calculate average over all data:

$$\hat{\theta} = \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in S_k} \hat{g}_k(1, X) - \hat{g}_k(0, X)$$

Natural Algorithm (Draft 3) Gone Wrong

```
def est2(X, D, y): # direct non-orthogonal estimator with sample splitting
   effects = np.zeros(X.shape[0])
   for train, test in KFold(n_splits=3).split(X):
        est = RandomForestRegressor(min_samples_leaf=20)
        est.fit(np.hstack([D[train].reshape(-1, 1), X[train]]), y[train])
        ones = np.hstack([np.ones((X[test].shape[0], 1)), X[test]])
        zeros = np.hstack([np.zeros((X[test].shape[0], 1)), X[test]])
        effects[test] = est.predict(ones) - est.predict(zeros)
        return np.mean(effects), np.std(effects)/np.sqrt(X.shape[0])
```

Simple Example

$$X \sim N(0, I_{20})$$

 $D \sim \text{Binomial}(0.5 + \text{clip}(X_0, -0.4, 0.4))$
 $y \sim \theta_0 D + X_0 + X_1 + N(0,1)$

When is estimate $\hat{\theta} \sqrt{n}$ -asymptotically normal?

When is estimate $\hat{\theta}$ \sqrt{n} -asymptotically normal? We need to change the moment we use

Debiased Machine Learning

Average Causal Effect Example

- We observe n samples $Z_1, ..., Z_n$ where $Z_i = (X_i, D_i, Y_i)$
- Want to estimate average effect θ_0 , which satisfies:

$$\theta_0 \coloneqq E[g_0(1, X) - g_0(0, X)]$$

• Where:

$$g_0(D,X) \coloneqq E[Y \mid D,X]$$

- ullet The identification formula for $heta_0$ is sensitive to variations in g
- ullet Any bias or error in g propagates to bias or error in moment and $\widehat{ heta}$
- Can we add a correction that corrects the biases of \hat{g}

Better Formula for ATE

Key Idea. Add a debiasing correction

$$M(g,a) = E[g(1,X) - g(0,X)] + E[a(D,X)(Y - g(D,X))]$$

Regression residual is a

proxy that g is biased

- What is a_0 ?
- Insensitivity: Take derivative with respect to g at θ_0 , g_0 , a_0 in any direction $\nu \in G$

$$\left. \frac{\partial}{\partial t} M(g_0 + t \, \nu, a_0) \right|_{t=0} = E[\nu(1, X) - \nu(0, X)] - E[a(D, X) \, \nu(D, X)] = 0$$

• If this holds then if g is very wrong but a is correct:

$$\theta = E[a_0(D, X)Y] = E[a_0(D, X)E[Y \mid D, X]]$$

= $E[a_0(D, X)g(D, X)] = E[g(1, X) - g(0, X)]$

Inverse Propensity Weighting (IPW)

• The following works: inverse propensity scoring

$$a_0(D,X) = \frac{D}{\Pr[D=1|X]} - \frac{1-D}{\Pr[D=0|X]}$$

• Sketch:

$$E\left[\frac{D}{\Pr[D=1|X]}g(D,X)\right] = E\left[\frac{D}{\Pr[D=1|X]}g(1,X)\right]$$
$$= E\left[\frac{E[D|X]}{\Pr[D=1|X]}g(1,X)\right]$$
$$= E[g(1,X)]$$

New Formula is Insensitive

$$M(g,a) = E[g(1,X) - g(0,X)] + E[a(D,X)(Y - g(D,X))]$$

• Take derivative with respect to g at g_0 , a_0 in any direction $\nu \in G$

$$\left. \frac{\partial}{\partial t} M(g_0 + t \, \nu, a_0) \right|_{t=0} = E[\nu(1, X) - \nu(0, X)] - E[a(D, X) \, \nu(D, X)] = 0$$

Take derivative with respect to a at g_0 , a_0 in any direction $v \in A$

$$\left. \frac{\partial}{\partial t} M(g_0, a_0 + t\nu) \right|_{t=0} = E[\nu(D, X) \left(Y - g_0(D, X) \right)] = 0$$

Asymptotic Normality of De-biased Estimate

$$\widehat{\theta} := E_n \big[\widehat{g}(1, X) - \widehat{g}(0, X) + \widehat{a}(D, X) \cdot \big(Y - \widehat{g}(D, X) \big) \big]$$

- Assume that propensities are bounded away from 0 and 1 (strict overlap)
- Assume \hat{g} , \hat{a} estimated on separate sample (or cross-fitting), are consistent and:

$$\sqrt{n} E[(a_0(D,X) - \hat{a}(D,X))(\hat{g}(D,X) - g_0(D,X))] \rightarrow_p 0$$

- Assume random variables Y, a(D,X), g(D,X) have bounded fourth moments
- Then:

$$\sqrt{n}(\hat{\theta} - \theta_0) \to_d N(0, \sigma^2), \qquad \hat{\sigma}^2 = Var_n \left(\hat{g}(1, X) - \hat{g}(0, X) + \hat{a}(X) \cdot \left(Y - \hat{g}(X) \right) \right)$$

Python Pseudocode

```
cv = KFold(n splits=nfolds, shuffle=True, random state=123)
yhat0, yhat1 = np.zeros(y.shape), np.zeros(y.shape)
# we will fit a model E[Y|D, X] by fitting a separate model for D==0
# and a separate model for D==1.
for train, test in cv.split(X, y):
   # train a model on training data that received zero and predict on all test data
    yhat0[test] = modely.fit(X[train][D[train]==0], y[train][D[train]==0]).predict(X[test])
   # train a model on training data that received one and predict on all test data
    yhat1[test] = modely.fit(X[train][D[train]==1], y[train][D[train]==1]).predict(X[test])
# prediction for observed treatment
yhat = yhat0 * (1 - D) + yhat1 * D
# propensity scores
Dhat = cross val predict(modeld, X, D, cv=cv, method='predict proba', n jobs=-1)[:, 1]
Dhat = np.clip(Dhat, trimming, 1 - trimming)
# doubly robust quantity for every sample
drhat = yhat1 - yhat0 + (y - yhat) * (D/Dhat - (1 - D)/(1 - Dhat))
point = np.mean(drhat)
var = np.var(drhat)
stderr = np.sqrt(var / X.shape[0])
return point, stderr, yhat, Dhat, y - yhat, D - Dhat, drhat
```

Continuous Treatments under Partial Linearity

Partially Linear Model

- Relevant in many applications: dose-response curve in healthcare, effect of price on demand, return-on-investment
- Assume conditional exogeneity

$$Y^{(d)} \perp \!\!\!\perp D \mid X$$

Assume partially linear response

$$Y = \theta_0 D + f_0(X) + \epsilon, \qquad E[\epsilon \mid D, X] = 0$$

• Equivalently, a partial linearity condition on the conditional expectation function $g_0(D,X) = E[Y \mid D,X] = \theta_0 D + f_0(X)$

• Parameter of interest θ_0 is constant marginal effect of treatment

Generalization of FWL Theorem

Let's define a slight variant of residualization

$$\tilde{V} = V - E[V|X]$$

Generalization of FWL theorem to partially linear models

$$\tilde{Y} = \theta_0 \tilde{D} + \epsilon, \qquad E[\epsilon | \tilde{D}] = 0$$

• Let's consider the residual outcome

Regression model
$$h_0(X)$$
 predicting
$$\tilde{Y} = Y - E[Y|X] \text{ the outcome from the controls} \\
= \theta_0 D + f_0(X) + \epsilon - E[\theta_0 D + f_0(X) + \epsilon | X] \\
= \theta_0 D + f_0(X) + \epsilon - \theta_0 E[D|X] - f_0(X) \\
= \theta_0 (D - E[D|X]) + \epsilon$$

Regression model $p_0(X)$ predicting the treatment from the controls

Orthogonal Method: Double ML

- Double ML. Split samples in half
 - Regress $Y \sim X$ with ML on first half, to get estimate $\hat{h}(S)$ of E[Y|X]
 - Regress $D \sim X$ with ML on first half, to get estimate $\hat{p}(S)$ of E[D|X]

Orthogonal Method: Double ML

- Double ML. Split samples in half
 - Regress $Y \sim X$ with ML on first half, to get estimate $\hat{h}(X)$ of E[Y|X]
 - Regress $D \sim X$ with ML on first half, to get estimate $\hat{p}(X)$ of E[D|X]
 - Construct residuals on other half, $\widehat{D} \coloneqq D \widehat{p}(X)$ and $\widehat{Y} \coloneqq Y \widehat{h}(X)$
 - Run OLS on residuals: $\widehat{Y} \sim \widehat{D}$ to get $\widehat{\theta}$
- Final OLS, in population limit, equivalent to solving normal equation: $E\big[\big(\widetilde{Y}-\theta\widetilde{D}\big)\widetilde{D}\big]=0$
- Define the formula:

$$M(\theta; h, p) = E\left[\left(Y - h(X) - \theta\left(D - p(X)\right)\right) \left(D - p(X)\right)\right]$$

• Final OLS, in population limit, equivalent to solving for θ :

$$M(\theta; h_0, p_0) = 0$$

Insensitivity of Double ML Method

• The formula M is insensitive to the nuisance functions h, p

$$M(\theta, h, p) = E\left[\left(Y - h(X) - \theta\left(D - p(X)\right)\right) \left(D - p(X)\right)\right]$$

• Directional derivative with respect to *h*

$$\left. \frac{\partial}{\partial t} M(\theta_0; h_0, p_0 + t \, \nu) \right|_{t=0} = -E[\nu(X) \big(D - p_0(X) \big) \big] = E[\nu(X) E[D - p_0(X) \mid X] = 0$$

• Directional derivative with respect to p

$$\left. \frac{\partial}{\partial t} M(\theta_0; h_0, p_0 + t \nu) \right|_{t=0} = E[\nu(X) (D - p_0(X))] - E[(Y - h_0(X) - \theta_0(D - p_0(X))) \nu(X)] = 0$$

Asymptotic Normality of DoubleML Estimate

$$E_n[(\widehat{Y} - \theta \widehat{D})\widehat{D}] = 0 \Leftrightarrow \widehat{\theta} = \frac{E_n[\widehat{Y}\widehat{D}]}{E_n[\widehat{D}^2]}$$

- Assume that $E[\widetilde{D}^2] = E[Var(D \mid X)] > 0$ (average overlap)
- Assume \hat{h} , \hat{p} estimated on separate sample (or cross-fitting), are consistent and:

$$\sqrt{n} \left(\text{RMSE}(\hat{h}) \cdot \text{RMSE}(\hat{p}) + \text{RMSE}(\hat{p})^2 \right) \rightarrow_p 0$$

• Assume random variables Y, D, X have bounded fourth moments

$$\left[\sqrt{n} (\hat{\theta} - \theta_0) \rightarrow_d N(0, \sigma^2), \right]$$

$$\left[\sigma^2 \coloneqq \frac{E \left[\left(\tilde{Y} - \theta_0 \tilde{D} \right)^2 \tilde{D}^2 \right]}{E \left[\tilde{D}^2 \right]^2}, \right]$$

$$\left[\hat{\sigma}^2 = \frac{E_n \left[\left(\hat{Y} - \hat{\theta} \; \hat{D} \right)^2 \hat{D}^2 \right]}{E_n \left[\hat{D}^2 \right]^2} \right]$$

$$\text{Estimate of variance}$$

$$\text{Estimate of variance} \Rightarrow 95\% \text{ CI} \left[\theta \pm 1.96 \frac{\hat{\sigma}}{\sqrt{n}} \right]$$

Estimate asymptotically normal

$$\hat{\sigma}^2 = \frac{E_n \left[\left(\hat{Y} - \hat{\theta} \ \hat{D} \right)^2 \hat{D}^2 \right]}{E_n \left[\hat{D}^2 \right]^2}$$

Natural Algorithm (Draft 3) Gone Right

```
def dml2(X, D, y): # orthogonal dml with sample-splitting
    est_y = RandomForestRegressor(min_samples_leaf=20)
    yres = y - cross_val_predict(est_y, X, y, cv=3)
    est_t = RandomForestRegressor(min_samples_leaf=20)
    Dres = D - cross_val_predict(est_t, X, D, cv=3)
    theta = np.mean(yres * Dres) / np.mean(Dres**2)
    var = np.mean((Dres**2) * (yres - theta*Dres)**2) / np.mean(Dres**2)
    stderr = np.sqrt(var / X.shape[0])
    return theta, stderr
```


Natural Algorithm (Draft 3) Gone Right

Proof sketch

$$\sqrt{n}(\hat{\theta} - \theta_0) = \sqrt{n} \left(\frac{E_n[\tilde{Y}\tilde{D}]}{E_n[\tilde{D}^2]} - \theta_0 \right)$$

$$\approx \sqrt{n} \left(\frac{E_n[\tilde{Y}\tilde{D}]}{E_n[\tilde{D}^2]} - \theta_0 \right)$$
Due to insensitivity of the formula and fast enough rates of the nuisance models, we can ignore the error in the residuals
$$= \sqrt{n} \left(\frac{E_n[\tilde{Y}\tilde{D}]}{E_n[\tilde{D}^2]} - \frac{E_n[\tilde{D}^2]}{E_n[\tilde{D}^2]} \theta_0 \right)$$

$$= \sqrt{n} \left(\frac{E_n[(\tilde{Y} - \theta_0\tilde{D})\tilde{D}]}{E_n[\tilde{D}^2]} \right)$$

$$\approx \sqrt{n} \left(\frac{E_n[(\tilde{Y} - \theta_0\tilde{D})\tilde{D}]}{E[\tilde{D}^2]} \right) = \sqrt{n} E_n \left[\frac{(\tilde{Y} - \theta_0\tilde{D})\tilde{D}}{E[\tilde{D}^2]} \right] \rightarrow_d N \left(0, Var \left(\frac{(\tilde{Y} - \theta_0\tilde{D})\tilde{D}}{E[\tilde{D}^2]} \right) \right)$$
e numbers, the denominator can be

By law of large numbers, the denominator can be replaced by the expectation, $E_n[\widetilde{D}^2] \approx E[\widetilde{D}^2]$

(Extended) Partially Linear Model

- Relevant in many applications: dose-response curve in healthcare, effect of price on demand, return-on-investment
- Assume conditional exogeneity

$$Y^{(d)} \perp \!\!\!\perp D \mid X$$

- Assume partially linear response, for a known feature map ϕ $Y = \theta_0' \phi(D, X) + f_0(X) + \epsilon$, $E[\epsilon \mid D, X] = 0$
- Parameter of interest θ_0
- Example: in pricing applications $\phi(D,X) = (D,D^2,X\cdot D,X\cdot D^2)$

Orthogonal Method: (Extended) Double ML

- Double ML. Split samples in half
 - Regress $Y \sim X$ with ML on first half, to get estimate $\hat{h}(X)$ of E[Y|X]
 - Regress $\phi(D,X) \sim X$ with ML on first half, to get estimate $\hat{p}(X)$ of $E[\phi(D,X)|X]$
 - Construct residuals on other half, $\widetilde{D} \coloneqq \phi(D,X) \hat{p}(X)$ and $\widetilde{Y} \coloneqq Y \hat{h}(X)$
 - Run OLS on residuals: $\widetilde{Y} \sim \widetilde{D}$ to get $\hat{\theta}$
- Final OLS, in population limit, equivalent to solving normal equation:

$$E\big[\big(\widetilde{Y} - \theta'\widetilde{D}\big)\widetilde{D}\big] = 0$$

• Define the formula:

$$M(\theta, h, p) = E\left[\left(Y - h(X) - \theta'\left(\phi(D, X) - p(X)\right)\right) \left(\phi(D, X) - p(X)\right)\right]$$

• OLS is equivalent to solving with respect to θ :

$$M(\theta, h_0, p_0) = 0$$

Asymptotic Normality of DoubleML Estimate

$$E_n[(\widehat{Y} - \theta \widehat{D})\widehat{D}] = 0 \Leftrightarrow \widehat{\theta} = E_n[\widehat{D}\widehat{D}']^{-1}E_n[\widehat{D}\widehat{Y}]$$

- Assume that $E\left[\widetilde{D}\widetilde{D}'\right] \geqslant 0$ (minimum eigenvalue bounded away)
- Assume \hat{h} , \hat{p} estimated on separate sample (or cross-fitting), are consistent and:

$$\sqrt{n} \left(\text{RMSE}(\hat{h}) \cdot \text{RMSE}(\hat{p}) + \text{RMSE}(\hat{p})^2 \right) \rightarrow_p 0$$

• Assume random variables Y, D, X have bounded fourth moments

$$\sqrt{n}(\hat{\theta} - \theta_0) \to_d N(0, V), \qquad \hat{V} \coloneqq \left[E_n \left[\widehat{D} \widehat{D}' \right]^{-1} E_n \left[\left(\widehat{Y} - \hat{\theta} \widehat{D} \right)^2 \widehat{D} \widehat{D}' \right] E_n \left[\widehat{D} \widehat{D}' \right]^{-1} \right]$$

Sandwich formula for heteroskedasticity-robust standard errors in OLS packages (HCO)

Practical Variants of Cross-Fitting

Stacking and Model Selection

• If we want to choose among many models or perform stacking, we can just use a stacked or automl model in place of each ML model

Stacking ML Models

```
def dml2(X, D, y): # orthogonal dml with sample-splitting
    est_y = StackingRegressor([rf, nnet, gbf, lasso])
    yres = y - cross_val_predict(est_y, X, y, cv=3)
    est_t = StackingRegressor([rf, nnet, gbf, lasso])
    Dres = D - cross_val_predict(est_t, X, D, cv=3)
    theta = np.mean(yres * Dres) / np.mean(Dres**2)
    var = np.mean((Dres**2) * (yres - theta*Dres)**2) / np.mean(Dres**2)
    stderr = np.sqrt(var / X.shape[0])
    return theta, stderr
```

AutoML Models

```
from flaml import AutoML

def dml2(X, D, y): # orthogonal dml with sample-splitting
    est_y = AutoML()
    yres = y - cross_val_predict(est_y, X, y, cv=3)
    est_t = AutoML()
    Dres = D - cross_val_predict(est_t, X, D, cv=3)
    theta = np.mean(yres * Dres) / np.mean(Dres**2)
    var = np.mean((Dres**2) * (yres - theta*Dres)**2) / np.mean(Dres**2)
    stderr = np.sqrt(var / X.shape[0])
    return theta, stderr
```

Stacking and Model Selection

- If we want to choose among many models or perform stacking, we can just use a stacked or automl model in place of each ML model
- Model selection or stacking done many times within each training fold
- Computationally expensive and statistically lossy

Can we use all the data to at least select among models?

Semi-Crossfitting Estimation Algorithm

Split the data in half (in practice K folds)

- On first half, estimate $\hat{g}_1^{(1)}$, ..., $\hat{g}_1^{(L)}$ of g_0 and predict on second half
- On second half, estimate $\hat{g}_2^{(1)}$, ..., $\hat{g}_2^{(L)}$ of g_0 and predict on first half
- Choose the model $\ell \in \{1, ..., L\}$ that optimizes out-of-sample RMSE

• On all data, solution
$$\hat{\theta}$$
 to empirical plug-in moment equation:
$$M_n(\hat{\theta},\hat{g})\coloneqq \frac{1}{n}\sum_{i\in S_1} m\left(Z_i;\hat{\theta},\hat{g}_2^{(\ell)}\right) + \frac{1}{n}\sum_{i\in S_2} m\left(Z_i;\hat{\theta},\hat{g}_1^{(\ell)}\right) = 0$$

Semi-Crossfitting

```
def dml2(X, D, y): # orthogonal dml with semi-crossfitting
    # cross val predict with many models
    est_y = [rf, gbf, lasso]
    yres = np.array([y - cross_val_predict(est, X, y, cv=3) for est in est_y])
    est_d = [rf, gbf, lasso]
    Dres = np.array([D - cross_val_predict(est, X, D, cv=3) for est in est_d])
    # select models with best out of fold performance
    best_y = np.argmin(np.mean(yres**2, axis=1))
    best_d = np.argmin(np.mean(Dres**2, axis=1))
    yres = yres[best_y]
    Dres = Dres[best d]
    # go with their corresponding residuals
    theta = np.mean(yres * Dres) / np.mean(Dres**2)
    var = np.mean((Dres**2) * (yres - theta*Dres)**2) / np.mean(Dres**2)
    stderr = np.sqrt(var / X.shape[0])
    return theta, stderr
```

Semi-Crossfitting

- If the number of models L is small, then "spillover" is ok and approach still works. For practical purposes L should be thought as constant.
- Under further regularity, provably asymptotic normality holds if $\sqrt{\log(L)} = \mathrm{o}(\mathrm{n}^{1/4})$

Semi-Crossfitting with Stacking

Split the data in half (in practice K folds)

- ullet On first half, estimate $\hat{g}_1^{(1)}$, ..., $\hat{g}_1^{(L)}$ of g_0 and predict on second half
- On second half, estimate $\hat{g}_2^{(1)}$, ... , $\hat{g}_2^{(L)}$ of g_0 and predict on first half
- Construct weights $\alpha=(\alpha_1,...,\alpha_L)$ on the models using all the data (stacking)
- Define stacked models $\hat{g}_k^{(\alpha)} = \sum_{j=1}^L a_j \cdot \hat{g}_k^{(j)}$
- On all data, solution $\hat{\theta}$ to empirical plug-in moment equation:

$$M_n(\hat{\theta}, \hat{g}) := \frac{1}{n} \sum_{i \in S_1} m\left(Z_i; \hat{\theta}, \hat{g}_2^{(\alpha)}\right) + \frac{1}{n} \sum_{i \in S_2} m\left(Z_i; \hat{\theta}, \hat{g}_1^{(\alpha)}\right) = 0$$

Semi-Crossfitting with Stacking

```
def dml2(X, D, y): # orthogonal dml with semi-crossfitting and stacking
    # cross val predict with many models
    est_y = [rf, gbf, lasso]
    ypreds = np.array([cross_val_predict(est, X, y, cv=3) for est in est_y]).T
    est_d = [rf, gbf, lasso]
    Dpreds = np.array([cross_val_predict(est, X, D, cv=3) for est in est_d]).T
    # calculate stacked residuals by finding optimal coefficients
    # and weigthing out-of-sample predictions by these coefficients
    yres = y - LinearRegression().fit(ypreds, y).predict(ypreds)
    Dres = D - LinearRegression().fit(Dpreds, D).predict(Dpreds)
    # go with the stacked residuals
    theta = np.mean(yres * Dres) / np.mean(Dres**2)
    var = np.mean((Dres**2) * (yres - theta*Dres)**2) / np.mean(Dres**2)
    stderr = np.sqrt(var / X.shape[0])
    return theta, stderr
```

Semi-Crossfitting

- If the number of models L is small, then "spillover" is ok and approach still works. For practical purposes L should be thought as constant.
- Under further regularity, provably asymptotic normality holds if $\sqrt{L} = \mathrm{o}(\mathrm{n}^{1/4})$

Equivalent view of cross-fitting with stacking (lens of FWL theorem)

- Construct out of fold predictions based on many ML models
- ullet Use these predictions as engineered features X in a simple OLS regression on D , X
- Use the coefficient and standard error of *D* from this final OLS

General Theory

Estimation from Moment Restrictions

- Observe samples Z_1, \dots, Z_n i.i.d. from data distribution D
- Parameter of interest $\theta_0 \in \mathbb{R}^d$ is identified as the solution to a set of population formulas

$$M(\theta_0; g_0) \coloneqq E_{Z \sim D}[m(Z; \theta_0, g_0)] = 0$$

Vector of moment restrictions that $M(\theta_0;g_0)\coloneqq E_{Z\sim D}[m(Z;\theta_0,g_0)]=0$ distribution D needs to satisfy and which have a unique solution with respect to θ have a unique solution with respect to heta

• $g_0 \in G$ a function we don't care (*nuisance function*) but need to estimate from data

Examples.

$$m(Z;\theta,g,a) = g(1,X) - g(0,X) - a(D,X) (Y - g(D,X)) - \theta \qquad \text{(ATE for binary treatment)}$$

$$m(Z;\theta,h,p) = \Big(Y - h(X) - \theta \Big(D - p(X)\Big)\Big) \cdot \Big(D - p(X)\Big) \qquad \text{(ATE under PLR model)}$$

Sample-Splitting Estimation Algorithm

Split the data in half

• On first half, estimate \hat{g} of g_0 and predict on second half

On second half, calculate solution $\widehat{ heta}$ to empirical plug-in moment equation:

$$M_n(\hat{\theta}, \hat{g}) \coloneqq \frac{1}{|S_2|} \sum_{i \in S_2} m(Z_i; \hat{\theta}, \hat{g}) = 0$$

Cross-fitting Estimation Algorithm

Split the data in half

- On first half, estimate \hat{g}_1 of g_0 and predict on second half
- On second half, estimate \hat{g}_2 of g_0 and predict on first half

On all data, solution
$$\hat{\theta}$$
 to empirical plug-in moment equation:
$$M_n(\hat{\theta}, \hat{g}) \coloneqq \frac{1}{n} \sum_{i \in S_1} m(Z_i; \hat{\theta}, \hat{g}_2) + \frac{1}{n} \sum_{i \in S_2} m(Z_i; \hat{\theta}, \hat{g}_1) = 0$$

In practice use $K \approx 3$ to 5 folds: for each fold, train on all other folds and predict on that fold

Neyman Orthogonality (Insensitivity)

Moment $M(\theta, g)$ is Neyman orthogonal if for any $\nu \in G - g_0$:

$$\left. \frac{\partial}{\partial t} M(\theta_0, g_0 + t \, \nu) \right|_{t=0} = 0$$

Main Theorem

If moment is Neyman orthogonal and RMSE of \hat{g} is $o_p(n^{-1/4})$, plus regularity conditions

$$\sqrt{n}\left(\hat{\theta}-\theta_0\right)\to N\left(0,J_0^{-1}\Sigma\left(J_0^{-1}\right)^{\mathsf{T}}\right)$$

where $J_0 \coloneqq \nabla_{\theta} M(\theta_0, g_0)$ and $\Sigma \coloneqq E[m(Z; \theta_0, g_0) \ m(Z; \theta_0, g_0)^{\mathsf{T}}]$

Automatic Debiasing

- Quite generally, start with any formula that identifies your parameter
- You can turn it into an "insensitive formula" to nuisance functions
- ullet Typically add a debiasing term multiplied by an appropriate lpha function

See e.g.

[2110.03031] RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests

[2307.04527] Automatic Debiased Machine Learning for Covariate Shifts

[2203.13887] Automatic Debiased Machine Learning for Dynamic Treatment Effects (arxiv.org)

Example: Parameters Defined via Linear Functionals

Suppose parameter of interest defined as:

$$\theta_0 = E[m(Z; g_0)], \qquad g_0(X) \coloneqq E[Y|X]$$

for some known moment m that is linear in g

- Examples
 - Average Treatment Effect: $g_0(D,X) = E[Y|D,X], \ \theta_0 \coloneqq E[g_0(1,X) g_0(0,X)]$
 - Average Policy Effect: $g_0(D,X) \coloneqq E[Y|D,X], \ \theta_0 \coloneqq E[\pi(X) \cdot (g_0(1,X) g_0(0,X))]$
 - Average Derivative: $g_0(D,X) \coloneqq E[Y|D,X], \ \theta_0 \coloneqq E[\partial_D g_0(D,X)]$

De-biased Moment

• Suppose parameter of interest defined as of the form:

$$\theta_0 = E[m(Z; g_0)], \qquad g_0(X) \coloneqq E[Y|X]$$

for some known moment m that is linear in g

• Then debiased version of the moment is of the form:

$$\theta_0 = E[m(Z; g_0) + a_0(X) \cdot (Y - g_0(X))]$$

• $a_0(X)$: Riesz Representer (RR) of linear functional

$$\forall g : E[m(Z;g)] = E[a_0(X) \cdot g(X)]$$

Automatic Debiasing

Traditionally: characterize how RR looks like and perform plug-in estimation

Average Treatment Effect:

$$\theta \coloneqq E[g(1,X) - g(0,X)], \qquad a(D,X) \coloneqq \frac{D}{p(X)} - \frac{(1-D)}{1-p(X)}$$

Average Policy Effect:

$$\theta \coloneqq E\left[\pi(X) \cdot \left(g(1,X) - g(0,X)\right)\right], \qquad a(D,X) \coloneqq \pi(X) \left(\frac{D}{p(X)} - \frac{(1-D)}{1-p(X)}\right)$$

Average Derivative:

$$\theta \coloneqq E[\partial_D g(D, X)], \quad a(D, X) \coloneqq -\partial_D \log(f(D|X))$$

Can we circumvent the characterization step and estimate α **directly?** [Newey'94, Chen-Liao'14, Chernozhukov, Newey, Singh'18, Smucler, Rotnitzky, Robins, 19, Chernozhukov, Newey, S., Singh'19-21, Chernozhukov, Newey, Quintas-Martinez, S.'21]

Automatic Debiasing

[2104.14737] Automatic Debiased Machine Learning via Neural Nets for Generalized Linear Regression

• The RR is the minimizer of the loss

$$L(a) \coloneqq E[a(X)^2 - 2 m(Z; a)]$$

• By RR property of a_0 :

$$E[m(Z; a)] = E[a_0(X) \cdot a(X)]$$

Loss is equivalent to an incomplete square loss

$$L(a) \coloneqq E[a(X)^2 - 2 a_0(X) \cdot a(X)]$$

Therefore,

$$L(a) - L(a_0) = E[(a(X) - a_0(X))^2]$$

• Fast statistical learning rates based on modern statistical learning theory techniques can be derived based on this interpretation + practical ML algorithms (RieszNet, ForestRiesz)

Appendix: General Theory (Expanded)

Main Theorem (expanded) Define RMSE: $||h||_{L^2} = \sqrt{E[h(X)^2]}$

If moment is Neyman orthogonal and RMSE of \hat{g} goes down at rate $n^{1/4}$, plus regularity conditions

$$n^{1/4} \|\hat{g} - g_0\|_{L^2} \approx 0$$

• Then the estimate $\hat{ heta}$ is asymptotically linear

$$\sqrt{n}(\hat{\theta} - \theta_0) \approx \sqrt{n} E_n[\phi_0(Z)], \qquad \phi_0(Z) = -J_0^{-1} m(Z; \theta_0, g_0), \qquad J_0 \coloneqq \partial_\theta E[m(Z; \theta_0, g_0)]$$

$$\phi_0(Z) = -J_0^{-1} m(Z; \theta_0, g_0)$$

Jacobian of moments with respect to parameter; relates to identification strength

$$J_0 \coloneqq \partial_\theta E[m(Z; \theta_0, g_0)]$$

influence function

influence is a linear transformation of the moment; transforming from

Consequently, it is asymptotically normal

$$\sqrt{n}\left(\hat{\theta}-\theta_0\right)$$

 $\sqrt{n} \left(\hat{\theta} - \theta_0 \right) \sim n \sqrt{n} e^{n} e^{n} \sqrt{n} e^{n} e^{n}$

Covariance of the influence function

Confidence intervals for any projection based on estimate of variance are asymptotically valid

$$\ell'\theta \in \left[\ell'\hat{\theta} \pm c\sqrt{\frac{\ell'\hat{V}\ell}{n}}\right], \qquad \hat{V} = \operatorname{Var}_{n}\left(\hat{\phi}(Z)\right), \qquad \hat{\phi}(Z) \coloneqq -\hat{J}^{-1}m(Z;\hat{\theta},\hat{g}), \qquad \hat{J} = \partial_{\theta}E_{n}\left[m(Z;\hat{\theta},\hat{g})\right]$$

$$\widehat{V} = \operatorname{Var}_{n} \left(\widehat{\phi}(Z) \right)$$

$$\hat{\phi}(Z) \coloneqq -\hat{J}^{-1}m(Z; \hat{\theta}, \hat{g})$$

$$\hat{J} = \partial_{\theta} E_n [m(Z; \hat{\theta}, \hat{g})]$$

Empirical variance of approximate influence

Approximate influence function Empirical average of jacobian

Python Pseudocode

return point, stderr ell

```
# General DML pseudocode
     def general_dml(Z, ell, nfolds, moment, jacobian, nuisance
                                                                            Estimate \hat{g} out of fold and predict
          # construct out-of-fold predictions from the nuisar
          ghat = cross_val_predict(nuisance_estimator, Z, cv=nfo]
                                                                            Construct cross-fitted moment function
          use these predictions to define the empirical moment
 Solve that
                                                                                     \theta \to E_n[m(Z;\theta,\hat{g})]
moment = 0 with respect to theta
          moment = lambda theta: np.mean(moment(Z, theta, ghat), axis=0)
  wrt 	heta
          # solve for the empirical moment equation equals zero
          thetahat = fsolve(avg moment)
          # calculate empirical jacobian with respect to theta, evaluated
                                                                                                Calculate
          # at the estimates thetahat and ghat
                                                                                          \hat{J} := \partial_{\theta} E_n[m(Z; \hat{\theta}, \hat{g})]
          Jhat = np.mean(jacobian(Z, thetahat, ghat), axis=8)
          # construct approximate influence function for each sample
                                                                                        Approximate influence
          phihat = - moment(Z, thetahat, ghat) @ np.linalg.pinv(Jhat).T
                                                                                              function
          # variance estimate
                                                                                     Z \to \widehat{\phi}(Z) \coloneqq \widehat{J}^{-1}m(Z; \widehat{\theta}, \widehat{g})
          var = phihat.T @ phihat / phihat.shape[0]
          # estimate and standard error for any projection ex
                                                                                        Empirical covariance of
          point = ell @ thetahat
                                                                                              estimate
          stderr_ell = np.sqrt(ell.T @ var @ ell / phihat.shape[0])
                                                                                         \hat{V} = E_n [\hat{\phi}(Z)\hat{\phi}(Z)']
```

Main Theorem (linear moments)

If moments are linear

$$m(Z; \theta, g) = \nu(Z; g) - \alpha(Z; g)\theta$$

Estimate is closed form:

$$\hat{\theta} = \hat{J}^{-1}E_n[\nu(Z;g)], \qquad \hat{J} = E_n[a(Z;g)]$$

• Then the estimate $\hat{ heta}$ is asymptotically linear

$$\sqrt{n}(\hat{\theta} - \theta_0) \approx \sqrt{n} E_n[\phi_0(Z)], \qquad \phi_0(Z) = -J_0^{-1} m(Z; \theta_0, g_0), \qquad J_0 \coloneqq E[a(Z; g_0)]$$

Consequently, it is asymptotically normal

$$\sqrt{n} \left(\hat{\theta} - \theta_0 \right) \sim_a N(0, V), \qquad V \coloneqq E[\phi_0(Z)\phi_0(Z)']$$

Confidence intervals for any projection based on estimate of variance are asymptotically valid

$$\ell'\theta \in \left[\ell'\hat{\theta} \pm c\sqrt{\frac{\ell'\hat{V}\ell}{n}}\right], \qquad \widehat{V} = \operatorname{Var}_{n}\left(\widehat{\phi}(Z)\right), \qquad \widehat{\phi}(Z) \coloneqq -\widehat{J}^{-1}m(Z; \widehat{\theta}, \widehat{g}), \qquad \widehat{J} = E_{n}[a(Z; \widehat{g})]$$

Python Pseudocode

```
# General DML pseudocode for linear moments: m(Z; theta, g)
def general_dml_linear_moment(Z, ell, nfolds, alpha, nu, jac
                                                                        Estimate \hat{q} out of fold and predict
    # construct out-of-fold predictions from the nuisance
    ghat = cross_val_predict(nuisance_estimator, Z, cv=nfolds)
    # use these predictions to define the empirical moment equation
    # and solve explicitly with respect to theta
                                                             cross-fitted jacobian \hat{J} := E_n[a(Z; \hat{g})]
    Jhat = np.mean(alpha(Z, ghat), axis=0)
                                                                 cross-fitted offset E_n[\nu(Z; \hat{g})]
    avg_nu = np.mean(nu(Z, ghat), axis=0)_
    # solve for the empirical moment equation equals zero
    invJhat = np.linalg.pinv(Jhat)
                                                    Closed form solution: \theta = \hat{J}^{-1}E_n[\nu(Z;\hat{g})]
    thetahat = invJhat @ avg_nu
    # construct approximate influence function for each sample
    phihat = - (nu(Z, ghat) - alpha(Z, ghat) @ thetahat) @ invJhat.T
                                                                                      Approximate influence
    # variance estimate
                                                                                            function
    var = phihat.T @ phihat / phihat.shape[0]
                                                                                   Z \to \widehat{\phi}(Z) \coloneqq \widehat{J}^{-1}m(Z; \widehat{\theta}, \widehat{g})
    # estimate and standard error for any projection
                                                                                     Empirical covariance of
    point = ell @ thetahat
    stderr_ell = np.sqrt(ell.T @ var @ ell / phihat.shape[0])
                                                                                            estimate
                                                                                      \hat{V} = E_n [\hat{\phi}(Z)\hat{\phi}(Z)']
    return point, stderr_ell
```

Proving the Main Theorem

Linear in θ Moments

• We will restrict attention to a broad class that simplifies proof

Moment is linear in target parameter

$$m(Z;\theta,g) = a(Z;g)'\theta + \nu(Z;g)$$

• Expected moment also linear in θ $M(\theta, g) = A(g)'\theta + V(g)$

Proof Ingredients: Linear in θ Moments

- Since $M_n(\hat{\theta}, \hat{g}) = 0$ we expect by concentration and sample splitting $M(\hat{\theta}, \hat{g}) \approx n^{-1/2}$
- Since $M(\theta_0,g_0)=0$ we expect by Neyman orthogonality $M(\theta_0,\hat{g})\approx RMSE(\hat{g})^2=o\left(n^{-1/2}\right)$
- Since moment is linear in θ : $A(\hat{g}) (\hat{\theta} \theta_0) = M(\hat{\theta}, \hat{g}) M(\theta_0, \hat{g})$
- Since A is Lipschitz and $\hat{g} \to g_0$: $A(g_0) \left(\hat{\theta} \theta_0 \right) = M(\hat{\theta}, \hat{g}) M(\theta_0, \hat{g}) + o_p(\|\hat{\theta} \theta_0\|)$
- Since $A(g_0)$ is invertible: $\|\hat{\theta} \theta_0\| = O(\|M(\hat{\theta}, \hat{g})\| + \|M(\theta_0, \hat{g})\|) = O_p(n^{-1/2})$
- More fine-grained analysis of $M(\hat{\theta}, \hat{g})$ term, shows: $\sqrt{n}M(\hat{\theta}, \hat{g}) \to N(0, V)$

Proof of Main Theorem (visually)

Proof of Main Theorem (algebraically)

- Since moment $M(\theta, g)$ is linear in θ and $M_n(\widehat{\theta}, \widehat{g}) = 0$ and $M(\theta_0, g_0) = 0$ $A(\widehat{g}) (\widehat{\theta} \theta_0) = M(\widehat{\theta}, \widehat{g}) M(\theta_0, \widehat{g})$ $= M(\widehat{\theta}, \widehat{g}) M_n(\widehat{\theta}, \widehat{g}) + M(\theta_0, g_0) M(\theta_0, \widehat{g})$
- Since RMSE $(\hat{g}) = \|\hat{g} g_0\| = o_p(1)$ $A(g_0) \left(\hat{\theta} \theta_0\right) = A(\hat{g}) \left(\hat{\theta} \theta_0\right) + o_p(\|\hat{\theta} \theta_0\|)$
- Thus $A(g_0)\left(\widehat{\theta}-\theta_0\right)=M(\widehat{\theta},\widehat{g})-M_n(\widehat{\theta},\widehat{g})+M(\theta_0,g_0)-M(\theta_0,\widehat{g})+\mathrm{o}_\mathrm{p}\big(\big\|\widehat{\theta}-\theta_0\big\|\big)$

$$ightarrow N(0,V)$$
 = $o_p(n^{-1/2})$
via CLT via orthogonality
+ sample-splitting
+ concentration
+ $\hat{g}
ightarrow g_0$ $= o_p(n^{-1/4})$

Proof of Main Theorem: Orthogonality

• By Neyman orthogonality and bounded second derivative of $M(\theta_0,g)$ w.r.t. g $M(\theta_0,g_0)-M(\theta_0,\hat{g})=D_gM(\theta_0,g_0)[g_0-g]+O\big(\|\hat{g}-g_0\|^2\big)=o_p\big(n^{-1/2}\big)$

• Thus

$$A(g_0) \left(\hat{\theta} - \theta_0\right) = M(\hat{\theta}, \hat{g}) - M_n(\hat{\theta}, \hat{g}) + o_p(n^{-1/2} + ||\hat{\theta} - \theta_0||)$$

$$G_n(\hat{\theta}, \hat{g})$$

Proof of Main Theorem: Sample-Splitting (1)

• Let
$$G_n(\theta, g) = M(\theta, g) - M_n(\theta, g)$$

$$G_n(\hat{\theta}, \hat{g}) = G_n(\theta_0, g_0) + G_n(\hat{\theta}, \hat{g}) - G_n(\theta_0, \hat{g}) + G_n(\theta_0, \hat{g}) - G_n(\theta_0, g_0)$$

• Linearity of moment + (sample-splitting and concentration $\Rightarrow \|A(\hat{g}) - A_n(\hat{g})\| = o_p(1)$): $G_n(\hat{\theta}, \hat{g}) - G_n(\theta_0, \hat{g}) = (A(\hat{g}) - A_n(\hat{g}))(\hat{\theta} - \theta_0) = o_p(\|\hat{\theta} - \theta_0\|)$

Thus

$$A(g_0) (\hat{\theta} - \theta_0) = G_n(\theta_0, g_0) + G_n(\theta_0, \hat{g}) - G_n(\theta_0, g_0) + o_p(n^{-1/2} + ||\hat{\theta} - \theta_0||)$$

Proof of Main Theorem: Sample-Splitting (2)

• Note for
$$X_i = m(Z_i; \theta_0, \hat{g}) - m(Z_i; \theta_0, \hat{g}) - E[m(Z_i; \theta_0, \hat{g}) - m(Z_i; \theta_0, \hat{g})]$$

$$G_n(\theta_0, \hat{g}) - G_n(\theta_0, g_0) = \frac{1}{n_2} \sum_{i \in S_2} X_i$$

• By sample splitting, X_i are i.i.d. with $E[X_i] = 0$. By varian<u>ce decomposition</u> (concentration)

$$\left\| \frac{1}{n_2} \sum_{i \in S_2} X_i \right\|_{L_2} \le \sqrt{\frac{E[X_i^2]}{n}}$$

Thus

$$\|G_n(\theta_0, \hat{g}) - G_n(\theta_0, g_0)\|_{L_2} \le \frac{1}{\sqrt{n}} \sqrt{E\left[\left(m(Z_i; \theta_0, \hat{g}) - m(Z_i; \theta_0, \hat{g})\right)^2\right]} = O\left(\frac{\|\hat{g} - g_0\|}{\sqrt{n}}\right) = o_p(n^{-1/2})$$

Concluding

• So far

$$A(g_0)(\hat{\theta} - \theta_0) = G_n(\theta_0, g_0) + o_p(n^{-1/2} + ||\hat{\theta} - \theta_0||)$$

• Since $A(g_0)$ is invertible and $G_n(\theta_0,g_0)=O_p\big(n^{-1/2}\big)$ by concentration $\|\hat{\theta}-\theta_0\|=O_p\big(n^{-1/2}\big)$

• Thus, we have asymptotic linearity

$$\sqrt{n} \left(\hat{\theta} - \theta_0 \right) = \sqrt{n} A(g_0)^{-1} G_n(\theta_0, g_0) + o_p(1) = \frac{1}{\sqrt{n_2}} \sum_{i \in S_2} A(g_0)^{-1} m(Z_i; \theta_0, g_0) + o_p(1)$$

By CLT we get the theorem

Main Theorem

• If moment is Neyman orthogonal and RMSE of \hat{g} is $o_p(n^{-1/4})*$

$$\sqrt{n} \left(\hat{\theta} - \theta_0 \right) \to N \left(0, A^{-1} \Sigma \left(A^{-1} \right)^{\mathsf{T}} \right)$$

• $A = \nabla_{\theta} M(\theta_0, g_0)$ and $\Sigma = E[m(Z; \theta_0, g_0) \ m(Z; \theta_0, g_0)^{\mathsf{T}}]$

*plus regularity conditions