

Dorking with RF

How to add a radio to your project without losing your mind

Ward Ramsdell DorkbotPDX 0x07

Intro

- Adding a radio to your project can make it
 - Cooler
 - Work better
 - Easier to use
- Adding a radio to your project can also lead to
 - Stress
 - Anxiety
 - Depression
- But it doesn't have to!

RF is hard. Don't do it.

Complicated

- Lots of additional components
- More PCB layers
- Will cause your project to fail in new and interesting ways

Unpredictable

- Interference
- Antenna performance
- Range

Expensive

- Components
- Test gear
- Simulation software
- Compliance testing

RF is hard. Don't do it. Really.

- Technically challenging
 - Math, math, math
 - Antennas
 - Layout sensitivities
 - Instability
 - Power supply issues
 - Temperature drift
 - Component parasitics
 - Compliance

Wouldn't you rather be doing something else?

Okay, it's not really that hard

- Modules make life better
 - Isolate complexity
 - Contain cost
 - Guaranteed, verified design
 - Pre-tested, pre-certified
 - Integrated processors and software stacks
 - Physically larger, easier to solder
 - Integrated antennas
- Add a lot of functionality without a lot of effort
 - It's okay to "cheat"
 - It's worth it

Care and feeding

Antennas

- Keep integrated antennas clear of obstructions
- Careful with case materials

Power Supply

Bypassing/Decoupling
 Rejecting power supply noise and preventing
 the radio from leaking RF onto the power supply

- Filtering more aggressive noise rejection
- Layout
 - Groundplane
 - Antenna trace routing

Power dissipation

The \$15 wireless serial port

- Roving Networks RN-42
 - Class-2 Bluetooth (50-60 foot range)
 - Integrated antenna
 - Also available in Class 1: longer range
- 4 wires
 - +3.3V, Ground, TX, RX
- Hardware configured
 - Pins on the device select hardware handshaking, port mode
- Easy pairing

Blinkenlights

Simple project to demonstrate Bluetooth control

 Cell phone control of a microcontroller system via Bluetooth Serial Port Profile (SPP)

Microcontroller

(Netduino Mini)

FET Board

Bluetooth Module

(RN-41)

Peer-Peer Radios

- Digi XBee
 - Zigbee/802.15.4 module
 - Many different flavors
 - Integrated/external antenna
 - Different power levels
 - 900 MHz/2.4 GHz

- Big experimenter community
- Potential for mesh networking with some variants
- More complex from a software standpoint

Low-Power

- TI CC1101
 - Low-power, low-mid datarate radio (<=250 kBaud)
 - SPI interface
 - 16 μJ/byte, 80 MBytes on a 100mAH battery
 - Good candidate for solar/energy harvesting
 - 4 kBytes/hr on an SMT solar cell
- Proprietary wireless protocol
- Good support software from TI
 - You'll need it!

- Some knowledge of communications theory helpful
 - Modulation rate/sensitivity tradeoff
 - Range vs. data rate vs. power

Cellular

- Telit GE865
 - Quad-band GSM module
 - Lots of peripherals
 - UART interface
 - Python scripting, AT command set
- More external components
 - Antenna
 - SIM Card
- More technically demanding
 - GSM has stringent power supply requirements
 - BGA package
- Have to deal with cellular companies

GPS

- ADH Technology GP-2106
 - SiRF Star IV chipset
 - UART interface
 - 1.8V supply
- Highly sensitive receiver
 - Care required in power supply
 - Other system radios may interfere
- Keep antenna clear for best performance

Why should I add a radio?

- Connectivity
- Control
- Functionality
- Interactivity
- Simplicity
- Easier installation
- Cleaner look

• It's not as hard as it seems. Really!