SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

JHD12864-G13BSW(G/B/Y) SPECIFICATION

DOC.REVISION A01

Customer Approval:		

	NAME	SIGNATURE	DATE
PREPARED BY			30 th Mar 2010
APPROVED BY			

1

SHENZHEN JHDLCM ELECTRONIC CO.,LTD

Address: Bao'an District of Shenzhen City West township Hok Chau Hang Fung Industrial City, 14th floor, Building B, C6, China

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

DOCUMENT REVISION HISTORY

Version	DATE	DESCRIPTION	CHANGED BY
A00	16-Mar-2010	First issue	

Address: Bao'an District of Shenzhen City West township Hok Chau Hang Fung Industrial City, 14th floor, Building B, C6, China

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

CONTENTS

Dimensional Outline	4
Functions & Features	5
Mechanical Specifications	5
Pin Description	6
Maximum Absolute Limit	7
Electrical characteristics	8
AC Characteristics	9
Rererence Applications	12

Address: Bao'an District of Shenzhen City West township Hok Chau Hang Fung Industrial City, 14th floor, Building B, C6, China

1.DIMENSIONAL OUTLINE

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

2.FUNCTIONS & FEATURES

2-1. Format : 128 *64dots

2-2. LCD mode : STN, Positive Mode

2-3. Viewing direction : 6 o clock

2-4. Driving scheme : 1/64Duty, 1/9 Bias

2-5. Driver IC : ST7565R

3.MECHANICAL SPECIFICATIONS

Viewing area 57.80mm(L)*33.00mm(W)

Address: Bao'an District of Shenzhen City West township Hok Chau Hang Fung Industrial City, 14th floor, Building B, C6, China

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

4. PIN DESCRIPTION

Pin no.	Symbol	Function(parallel)
30	NC	
29	P/S	This pin configures the interface to be parallel mode or serial mode.
28	C86	This is the MPU interface selection pin
27	V4	
26	V3	This is a multi-level power supply for the liquid crystal drive.
25	V2	This is a multi-level power supply for the liquid crystal drive.
24	V1	
23	V0	
22	CAP2-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal.
21	CAP2+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.
20	CAP1+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
19	CAP1-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal.
18	CAP3+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.
17	VOUT	DC/DC voltage converter output.
16	VSS	Ground
15	VDD	Power supply
7~14	D0~D7	The pin is the data bus to be connected to the MPU.
6	/RD	This Pin is MCU interface input .This pin will be read signal
5	/WR	This Pin is MCU interface input .This pin will be write signal.
4	/RS	This is connect to the least significant bit of the normal MPU address bus, and it
4	/K3	determines whether the data bits are data or command.
3	/RST	When/RES is set to "L", the settings are initialized
2	/CS1	This is the chip select signal.
1	NC	

BACKLIGHT SPECIFIATIONS

Item	Symbol	Min	Туре	Max	Unit
Forward voltage	Vf		3.0		V
Forward current	Ir		45		mA

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

5.MAXIMUM ABSOLUTE LIMIT (T=25°C)

Unless otherwise noted, Vss = 0V

Table 17

Parameter		Symbol	Conditions	Unit		
Power Supply Voltage		VDD	-0.3 ~ 3.6	V		
Power supply voltage (Vpb standard)		VDD2	-0.3 ~ 3.6	V		
Power supply voltage (Vpb standard)		V ₀ , Vout	-0.3 ~ 13.5	V		
Power supply voltage (VDD standard)		V1, V2, V3, V4	-0.3 to V ₀	V		
Operating temperature		Topr	-30 to +85	°C		
Storage temperature	Bare chip	Tstr	-65 to +150	°C		

Figure 30

Notes and Cautions

- 1. The VDD2, V0 to V4 and VOUT are relative to the Vss = 0V reference.
- 2. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VouT \geq V0 \geq V1 \geq V2 \geq V3 \geq V4.
- Permanent damage to the LSI may result if the LSI is used outside of the absolute maximum ratings. Moreover, it is
 recommended that in normal operation the chip be used at the electrical characteristic conditions, and use of the LSI
 outside of these conditions may not only result in malfunctions of the LSI, but may have a negative impact on the LSI
 reliability as well.

Address: Bao'an District of Shenzhen City West township Hok Chau Hang Fung Industrial City, 14th floor, Building B, C6, China

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

6.ELECTRICAL CHARACTERISTICS

Unless otherwise specified, Vss = 0 V, VDD = 3.0 V, Ta = -30 to 85°C

14.0	Item Symbo		Canditian			Rating		Units	Applicable
Itte	em	Symbol	Condition		Min.	Тур.	Max.	Units	Pin
Operating	Voltage (1)	V _{DD}			1.8	_	3.3	٧	V _{DD} *1
Operating	Voltage (2)	V _{DD2}	(Relative t	(Relative to V _{SS})		_	3.3	٧	V _{DD}
High-level Ir	nput Voltage	V _{IHC}			0.8 x VDD	_	VDD	٧	*3
Low-level Ir	iput Voltage	V _{ILC}			Vss	_	0.2 x VDD	٧	*3
High-level O	utput Voltage	V _{OHC}	Іон = -0.5	mA	0.8 x VDD	_	VDD	٧	*4
Low-level Or	ıtput Voltage	Valc	loL = 0.5 n	IoL = 0.5 mA		_	0.2 x VDD	٧	*4
Input leaka	age current	ILI	VIN = VDD	or V _{SS}	-1.0	_	1.0	μΑ	*5
Output leak	age current	ILO	VIN = VDD	or V _{SS}	-3.0	_	3.0	μΑ	*6
Liquid Cryst	al Driver ON		Ta = 25°C V ₀ = 13.0 V		_	2.0	3.5	ΚΩ	SEGn
	tance	Ron	(Relative to Vss)	V ₀ = 8.0 V	_	3.2	5.4	N 12	COMn *7
Static Consur	nption Current	I _{SSQ}	V ₀ = 13.0	V	_	0.01	2	μΑ	V _{DD} , V _{DD2}
Output Leak	age Current	loq	(Relative 1	Γο V _{SS})	_	0.01	10	μΑ	V ₀
Input Termina	I Capacitance	C _{IN}	Ta = 25°C	, f = 1 MHz	_	5.0	8.0	pF	
	Internal Oscillator	fosc	1/65 duty	To = 05%C	17	20	24	kHz	*8
Oscillator	External Input	fcL	1/33 duty	Ta = 25°C	17	20	24	kHz	CL
Frequency	Internal Oscillator	fosc	1/49 duty	To = 25°C	25	30	35	kHz	*8
	External Input	fcL	1/53 duty 1/55 duty	Ta = 25°C	25	30	35	kHz	CL

Table 19

Item		Symbol	Symbol Condition		Rating	Units	Applicable	
		Syllibol	Condition	Min.	Тур.	Max.	UIIIIS	Pin
	Input voltage	V_{DD2}	(Relative To V _{SS})	2.4	_	3.3	V	V _{DD}
L	Supply Step-up output voltage Circuit	Vouт	(Relative To Vss)	_	-	13.5	٧	Vout
	Voltage regulator Circuit Operating V	Vout	(Relative To V _{SS})	6.0	-	13.5	٧	Vout
Internal	Voltage Follower Circuit Operating Voltage	V ₀	(Relative To V _{SS})	4.0	_	13.5	٧	V ₀ *9
	Base Voltage	VRS	Ta = 25°C, (Relative To Vss) -0.05%/°C	2.07	2.10	2.13	٧	*10

SHENZHEN JHDLCM ELECTRONIC CO.,LTD

Address: Bao'an District of Shenzhen City West township Hok Chau Hang Fung Industrial City, 14th floor, Building B, C6, China

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

7.AC CHARACTERISTICS

The 4-line SPI Interface

Figure 39

Table 30

				(VDD = 3.3V)	Ta = -30 to	85°C)
Item	Signal	Symbol	Condition	Rating		Units
Relli	Signai	Symbol	Condition	Min.	Max.	Ullits
4-line SPI Clock Period		Tscyc		50	_	
SCL "H" pulse width	SCL	Tshw		25	_	
SCL "L" pulse width		Tslw		25	_	
Address setup time	A0	Tsas		20	_	
Address hold time	T AU	Tsah		10	_	ns
Data setup time	SI	Tsds		20	_	
Data hold time	31	Тѕон		10	_	
CS-SCL time	- cs	Tcss		20	_]
CS-SCL time		Tcsh		40	_	

Table 31

/Vnn =	2 7V/T	a = -30.6	o 85°C)

<u> </u>		1	· '	(VDD = 2.7V,		100 0)
Item	Signal	Symbol	Condition	Rati	Units	
	Oigilai	Symbol	Condition	Min.	Max.	Oilles
4-line SPI Clock Period		Tscyc		100	_	
SCL "H" pulse width	SCL	Tshw		50	_]
SCL "L" pulse width		TsLw		50	_	
Address setup time	A0	Tsas		30	_]
Address hold time] AU	Тѕан		20	_	ns
Data setup time	- SI	Tsps		30	_]
Data hold time	51	Тѕон		20	_	
CS-SCL time	- cs	Tcss		30	_	
CS-SCL time		Тсѕн		60	_	

SHENZHEN JHDLCM ELECTRONIC CO.,LTD

Address: Bao'an District of Shenzhen City West township Hok Chau Hang Fung Industrial City, 14th floor, Building B, C6, China

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

8.REFERENCE APPLICATIONS

The ST7565R Series can be connected to either 80X86 Series MPUs or to 6800 Series MPUs. Moreover, using the 4-line SPI interface it is possible to operate the ST7565R series chips with fewer signal lines.

The display area can be enlarged by using multiple ST7565R Series chips. When this is done, the chip select signal can be used to select the individual ICs to access.

(1) 8080 Series MPUs

Figure 42-1

Figure 42-2

(3) Using the 4-line SPI Interface

Figure 42-3

SHENZHEN JHDLCM ELECTRONIC CO.,LTD

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

SHENZHEN JHDLCM ELECTRONIC CO.,LTD

```
/************/
      IC:ST7565R
                            */
      Date:10-03-23
/*************
/*************
      Head File Define
/*************/
#include <reg51.h>
#include <E:\driver_prg\image\char.h>
//#include <math.h>
//#include <intrins.h>
/*************
      Interface Define
/*************/
sbit
      RESET=P3^0;
sbit
      CD=P3^4;
sbit
      CS=P3^2;
      SCL=P1^6;
sbit
sbit
      SDA=P1^7;
sbit
      KEY PRESS=P3^3;
      DEC_KEY=P3^1;
sbit
      EXIT_KEY=P3^7;
/*************/
      Parameter Define
/*************/
#define CONTRAST=0x0C
#define DATA0=0x40
#define DATA1=0x41
unsigned char page_width;
unsigned char seg_width;
unsigned char Buf_1,Buf_2,Buf_3,conversion;
unsigned char *char_point;
int contrast;
/*************
      Picture data
/*************/
unsigned char code row_table[]=\{0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80\};
g -1[] {0 unsigned char code char_0[]={62,65,65,62,0};
                                                           12
unsi ned char code char = ,66,127,64,0;
```

```
unsigned char code char_2[]=\{98,81,73,70,0\};
unsigned char code char_3[]={34,73,73,54,0};
unsigned char code char_4[]={28,18,127,16,0};
unsigned char code char_5[]={39,69,69,57,0};
unsigned char code char_6[]=\{62,73,73,50,0\};
unsigned char code char_7[]=\{1,121,7,1,0\};
unsigned char code char_8[]={54,73,73,54,0};
unsigned char code char_9[]={6,73,73,62,0};
unsigned char code orise_tech[]={
/**************
       Time Delay
/**************
void Delay(long i)
     while(i!=0)
         i--;
}
/*************
       Transfer Command
/*************/
void Write_Command(unsigned char command)
{
     int i,j;
     j=0x80;
     CS=0;
     CD=0;
     for(i=0;i<8;i++)
        SCL=0;
        if(command&j)SDA=1;
        else SDA=0;
        SCL=1;
        j=j>>1;
     CS=1;
}
```

```
Transfer Data
/*************
void Write_Data(unsigned char data1)
    int i,j;
    j=0x80;
    CS=0;
    CD=1;
    for(i=0;i<8;i++)
       SCL=0;
       if(data1&j)SDA=1;
       else SDA=0;
       SCL=1;
       j=j>>1;
    CS=1;
}
void Set_column_addr(unsigned char add)
{
    unsigned char temp;
    temp=add;
    add=add>>4;
    add=add&0x0f;
    add=add|0x10;
    Write_Command(add); //Set upper addr;
    add=temp;
    add=add&0x0F;
    Write_Command(add); //Set lower addr;
}
void Set_row_addr(unsigned char row)
{
    row=row&0x0F;
    row=row|0x0B0;
    Write_Command(row);
                         //page addr set
LCD Initial Code
```

```
/************/
void Lcd_Set()
     RESET=0;
     Delay(1000);
     RESET=1;
     Delay(1000);
     Write_Command(0xA2);
                                    //Set Bias
                                                    0xA2
     Write_Command(0xA0);
                                    //Segment Direction
Select ,bit0=1,reverse;=0,normal;
     Write_Command(0xC8);
                                    //Common Direction Select,bit3=1,reverse
direction:=0,normal;
     Write_Command(0xAC);
     Write_Command(0xA7);
                                    //bit0=0,Normal/bit0=1,Reverse Display
     Write_Command(0xA4);
     Write_Command(0x2C);
                                    //Power Control Set
     Delay(10);
     Write_Command(0x2E);
                                    //Power Control Set
     Delay(10);
     Write_Command(0x2F);
                                    //Power Control Set
     Delay(10);
     Write_Command(0x24);
                                   //set ra/rb 0x25
     Write_Command(0x81);
                                   //Set Contrast
     Write_Command(0x27);
                                   //29
     Write_Command(0xD5);
     Write Command(0x00);
     Write_Command(0xD2);
     Write_Command(0x00);
     Write_Command(0x60);
                                   //Set Display Start Line
                                                            40
     Write_Command(0xb0);
     Write Command(0x10);
     Write_Command(0x00);
     Write_Command(0xAF);
                                    //Display ON
}
/**************
       Clear Display
/*************
void Display_Clear(data1,data2)
                                                                     15
     int i, ,m;
```

```
m=0xb0;
     for(i=0;i<9;i++)
        {
            Write Command(m);
            Write_Command(0x10);
            Write_Command(0x00);
            for(j=0;j<96;j++)
                   Write_Data(data1);
                   Write_Data(data2);
            m++;
         }
/*************
void show_three_h_bar(int row)
     int i,page,row_data;
     page=row/8;
     i=row%8;
     row_data=row_table[i];
                             //清除前一条横线
     Set_row_addr(page-1);
     Set_column_addr(00);
     for(i=0;i<192;i++)
        {
            Write_Data(0x00);
                             //清除前一条横线
     Set_row_addr(page);
     Set_column_addr(00);
     for(i=0;i<192;i++)
        {
            Write_Data(0x00);
         }
     Set_row_addr(page);
     Set_column_addr(00);
     for(i=0;i<192;i++)
        {
            Write_Data(row_data);
         }
```

```
/************/
/*************
      three vertical bar
/************/
void show_three_v_bar(int bar)
    int i;
    Set_column_addr(bar-1);
    for(i=0;i<9;i++)
       {
          Set_row_addr(i);
          Set_column_addr(bar-1);
          Write_Data(0x00);
    Set_column_addr(bar);
    for(i=0;i<9;i++)
       {
          Set_row_addr(i);
          Set_column_addr(bar);
          Write_Data(0x0ff);
    for(i=0;i<9;i++)
       {
          Set_row_addr(i);
          Set_column_addr(bar+1);
          Write_Data(0x0ff);
    for(i=0;i<9;i++)
          Set_row_addr(i);
          Set_column_addr(bar+2);
          Write_Data(0x0ff);
/************
one vertical bar
void show_one_v_bar(int bar)
{
    int i;
    Set_column_addr(bar-1);
```

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

```
for(i=0;i<9;i++)
        {
            Set_row_addr(i);
            Set_column_addr(bar-1);
            Write_Data(0x00);
         }
     Set_column_addr(bar);
     for(i=0;i<9;i++)
        {
            Set_row_addr(i);
            Set_column_addr(bar);
            Write_Data(0x0ff);
/*************/
       one horizontal bar
/*************
void show_one_h_bar(int row)
     int i,page,row_data;
     page=row/8;
     i=row%8;
     row_data=row_table[i];
     Set_row_addr(page-1);
                             //清除前一条横线
     Set_column_addr(00);
     for(i=0;i<132;i++)
        {
            Write_Data(0x00);
                             //清除前一条横线
     Set_row_addr(page);
     Set_column_addr(00);
     for(i=0;i<192;i++)
        {
            Write_Data(0x00);
         }
     Set_row_addr(page);
     Set_column_addr(00);
     for(i=0;i<192;i++)
        {
```

Write_Data(row_data);

```
}
/*************
       Display Font
/**************
void Display_Font(unsigned char page0,seg0,unsigned char *p)
    int i,m,n;
    m=((seg0\&0xf0)>>4)|0x10;
    n=seg0\&0x0f;
    Write_Command(page0);
    Write_Command(m);
    Write_Command(n);
     for(i=0;i<5;i++)
        {
           Write_Data(*p++);
/*************
       Display Hanzi
/*************/
void Display_Hanzi(unsigned char page0,seg0,unsigned char *p)
    int i,m,n;
    m=((seg0\&0xf0)>>4)|0x10;
    n=seg0\&0x0f;
    Write_Command(page0);
    Write_Command(m);
    Write_Command(n);
    for(i=0;i<16;i++)
           Write_Data(*p++);
    m=((seg0\&0xf0)>>4)|0x10;
    n=seg0\&0x0f;
     Write_Command(page0+1);
    Write_Command(m);
    Write_Command(n);
     for(i=0;i<16;i++)
        {
           Write_Data(*p++);
```

```
}
}
/************/
        Display Character
/*************/
void Display_Character(unsigned char page0,seg0,unsigned char *p0)
{
            int step0=10;
            int step1=5;
            Display_Font(page0,seg0,p0);
            seg0=seg0+step0;
            p0=p0+step1;
            Display_Font(page0,seg0,p0);
            seg0=seg0+step0;
```

```
p0=p0+step1;
Display_Font(page0,seg0,p0);
seg0=seg0+step0;
p0=p0+step1;
                                                                 21
Display_Font(page0,seg0,p0);
```

```
seg0=seg0+step0;
             p0=p0+step1;
             Display_Font(page0,seg0,_00);
             */
}
void Show_one_char(unsigned char xs,unsigned char page,unsigned char *p)
      int i;
      Set_column_addr(xs);
                            //column addr set
      Set_row_addr(page);
      for(i=0;i<5;i++)
                            //5X8 font
         {
              Write_Data(*(p++));
              //Write_Data(*(p++));
}
void Conversion_T0_char(int number)
{
       Buf 1=number/100;
       conversion=number% 100;
       Buf_2=conversion/10;
       Buf_3=conversion%10;
char *Get_addr(int num)
            unsigned char *pt;
            switch(num)
                case 0: pt=char_0;break;
                case 1: pt=char_1;break;
                case 2: pt=char_2;break;
                case 3: pt=char_3;break;
                case 4: pt=char_4;break;
                case 5: pt=char_5;break;
                case 6: pt=char_6;break;
```

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

```
case 7: pt=char_7;break;
              case 8: pt=char_8;break;
              case 9: pt=char_9;break;
          }
          return pt;
void show_three_number(unsigned char x,y,int n)
    Conversion_T0_char(n);
    char_point=Get_addr(Buf_1);
    Show_one_char(x,y,char_point);
    char_point=Get_addr(Buf_2);
    x=x+5;
    Show_one_char(x,y,char_point);
    char_point=Get_addr(Buf_3);
    x=x+5;
    Show_one_char(x,y,char_point);
//************
/*************/
void Wait_Press()
   while(KEY_PRESS);
   Delay(0x5000);
/**************
       Draw a image
/*************
void Display_Image(unsigned char page0,seg0,pagew,segw,unsigned char *p)
{
     int i,j,m,n;
     m=((seg0\&0xf0)>>4)|0x10;
     n=seg0\&0x0f;
     for(i=0;i<pagew;i++)
            Write_Command(page0);
            Write_Command(m);
            Write_Command(n);
            for(j=0;j<segw;j++)
               {
                  Write_Data(*(p++));
```

23

```
}
            page0++;
}
/**************
//REGULATE CONTRAST
void Regulate_contrast()
{
   while(EXIT_KEY&&01)
   {
       if(KEY_PRESS==0)
          contrast=contrast+1;
          Write_Command(0x81);
                                        //Set Contrast
          Write_Command(contrast);
          Delay(0x5000);
       }
       if(DEC_KEY==0)
          contrast=contrast-1;
          Write_Command(0x81);
                                       //Set Contrast
          Write_Command(contrast);
       Delay(0x5000);
       }
}
       Main
/*************
void main()
{
     int i;
     int j=0x40;
     contrast=0x0C;
     Lcd_Set();
     while(1)
        {
```

SHENZHEN JHDLCM ELECTRONICS CO.,LTD.

```
Display_Image(0xb0,0x01,8,128,description2);
    Wait_Press(); //Delay(0x5000);
    Display_Image(0xb0,0x01,8,128,description3);
    Wait_Press(); //Delay(0x5000);
   Display Image(0xb0,0x01,8,128,description4);
    Wait_Press(); //Delay(0x5000);
   Display_Image(0xb0,0x01,8,128,description5);
    Wait_Press();
                  //Delay(0x5000);
Display_Clear(0x00,0x00);
Display_Clear(0x55,0xaa);
                                    //SNOW
Wait_Press();
Display_Clear(0x00,0x00);
Display_Clear(0xFF,0xFF);
                                    //BLACK
Wait_Press();
Display_Clear(0x00,0x00);
                                    //V_BAR
Display_Clear(0xff,0x00);
Wait_Press();
Display_Clear(0x00,0x00);
Display_Clear(0x55,0x55);
                                    //H_BAR
Wait_Press();
Display_Clear(0x00,0x00);
//Display_Clear(0xFF,0xFF);
                                    //BLACK
for(i=0;i<65;i++)
{
   show one h bar(i);
   show_three_number(4,3,i);
   Wait_Press();
}
  }
```

}