Mécanique

Jean-Baptiste Manneville

Prépa Agreg ENS Paris-Saclay 2020-2021

Table des matières

1	Rap	ppels d	le mécanique newtonienne	5
	1.1	Systèr	mes et référentiels	5
		1.1.1	Espace/temps, référentiels et repères	5
		1.1.2	Système et actions	5
	1.2	Lois d	le Newton, principe fondamental de la dynamique (PFD)	5
		1.2.1	Lois de Newton	5
		1.2.2	Remarques, conditions d'application des lois de Newton	6
	1.3	Lois d	le conservation, principes fondamentaux, intégrales premières du mouvement	6
		1.3.1	Quantité de mouvement	6
		1.3.2	Moment cinétique	7
		1.3.3	Energie	7
	1.4	Mouve	ement à un degré de liberté	8
		1.4.1	Profils d'énergie potentielle	8
		1.4.2	Stabilité de l'équilibre	8
		1.4.3	Solution du mouvement	8
		1.4.4	Exemples, applications	8
	1.5	Forces	s centrales	9
		1.5.1	Définition et propriétés	9
		1.5.2	Théorème de Bertrand	9
		1.5.3	Problème à deux corps	9
	1.6	Mécar	nique dans les référentiels non galiléens (non inertiels)	9
		1.6.1	Référentiels accélérés non tournants	10
		1.6.2	Forces de marée	10
		1.6.3	Référentiels tournants	10
2	Mé	caniqu	e du solide	11
	2.1	Génér	ralités	11
		2.1.1	Repérage d'un solide indéformable	11
		2.1.2	Centre d'inertie et moment d'inertie	11

		2.1.3	Champs et torseurs	12
	2.2	Ciném	natique du solide	12
		2.2.1	Vecteur rotation	12
		2.2.2	Champ des vitesses	13
		2.2.3	Champ des accélérations	13
		2.2.4	Composition des mouvements	13
	2.3	Action	as sur un solide : forces et couples	13
		2.3.1	Torseur des forces extérieures	13
		2.3.2	Actions de contact entre solides	14
	2.4	Cinéti	ique du solide	14
		2.4.1	Torseur cinétique (torseur des quantités de vitesse)	14
		2.4.2	Mouvement dans le référentiel barycentrique	15
		2.4.3	Rotation autour d'un point ou d'un axe	15
	2.5	Dynar	mique du solide, théorèmes généraux, principe fondamental (TRD)	16
		2.5.1	Torseur 'dynamique' (torseur des quantités d'accélération)	16
		2.5.2	Théorèmes de la résultante dynamique et du moment dynamique	16
		2.5.3	Théorème de l'énergie cinétique	17
	2.6	Frotte	ements, actions de contact	18
		2.6.1	Forces et couples de frottements	18
		2.6.2	Origine microscopique du frottement solide	18
		2.6.3	Lois du frottement solide d'Amontons-Coulomb	19
	2.7	Solide	en rotation	19
		2.7.1	Rotation autour d'un axe fixe	20
		2.7.2	Rotation autour d'un point fixe	20
0	λ / ()	•	1 . 1	00
3		_	e analytique	22
	3.1		l variationnel	22
		3.1.1	Exemples	22
		3.1.2	Système à une fonction	22
		3.1.3	Système à deux fonctions	22
	0.0	3.1.4	Equations de Lagrange	23
	3.2		nique lagrangienne	23
		3.2.1	Système sans contraintes3	23
		3.2.2	Systèmes contraints, holonomes ou non holonomes	24
		3.2.3	Equations de Lagrange pour un système contraint holonome	24
		3.2.4	Equations de Lagrange pour un système contraint non holonome, multi- plicateurs de Lagrange	25

	3.2.5	Exemples d'utilisation des équations de Lagrange	25
3.3	Mécan	tique hamiltonienne	25
	3.3.1	Symétries et invariances, grandeurs conservées	26
	3.3.2	Hamiltonien et transformation de Legendre	26
	3.3.3	Crochet de Poisson	27
	3.3.4	Exemples d'utilisation du formalisme hamiltonien	27
	3.3.5	Avantages du formalisme hamiltonien	28
	3.3.6	Orbites dans l'espace des phases, théorème de Liouville	28
	3.3.7	Compléments	29

Introduction

 $Pr\'erequis: m\'ecanique du point, lois de Newton, changement de r\'ef\'erentiel, composition vitesses/acc\'el\'erations.\dots$

Historique rapide:

Mécanique classique (échelle spatiale \gg tailles des particules, $v \ll c$) = 3 formulations

- \bullet Galilée (1564-1642) + Newton (1642-1727)
- Lagrange (1736-1813)
- Hamilton (1805-1865)

Mécanique relativiste ($v \sim c$) (1905-1915)

Mécanique quantique (échelle spatiale \sim taille des particules) (1905-1925)

Plus récemment : théorie du chaos, applications de la mécanique aux milieux granulaires, aux systèmes/fluides complexes, en biologie...

Chapter 1

Rappels de mécanique newtonienne

1.1 Systèmes et référentiels

1.1.1 Espace/temps, référentiels et repères

- Espace (3D) = référentiel + repère + système de coordonnées
- Référentiel = système de $N \ge 4$ points fixes non coplanaires par rapport auquel on étudie le mouvement (exemples : référentiel terrestre, référentiel géocentrique, référentiel héliocentrique ou de Kepler ou de Copernic, référentiel lié à un solide indéformable, référentiel barycentrique) + repère de temps
- **Repère** = origine + 3 vecteurs qui peuvent dépendre du temps : $(O, \overrightarrow{e}_x, \overrightarrow{e}_y, \overrightarrow{e}_z) = (O, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}) = (O, \overrightarrow{e}_i, \overrightarrow{e}_j, \overrightarrow{e}_k)$ (pas forcément orthonormé)
- Système de **coordonnées** = cartésiennes (x, y, z) cylindriques (r, θ, z) , sphériques (r, θ, φ) , angles d'Euler (ψ, θ, φ)
 - Temps = absolu en mécanique classique, paramètre unique et universel
 - Référentiel galiléen (ou inertiel) = référentiel dans lequel la 1ère loi de Newton (loi d'inertie) est vérifiée (un système isolé est en translation uniforme)

1.1.2 Système et actions

- Systèmes étudiés en mécanique classique :
- 'Point matériel' = modèle, masse ponctuelle
- Systèmes de points
- Répartition/densités de masse : linéique $(dm = \lambda (l) dl)$, surfacique $(dm = \sigma (S) dS)$, volumique $(dm = \rho (\tau) d\tau)$, systèmes fermés ou ouverts
- Solide indéformables
 - Actions exercées sur le système : forces intérieures/extérieures, forces à distance/de contact

1.2 Lois de Newton, principe fondamental de la dynamique (PFD)

1.2.1 Lois de Newton

ullet loi de Newton = loi d'inertie, définit les référentiels galiléens (=inertiels) :

Pour un système isolé, $\sum_{syst} \overrightarrow{F} = \overrightarrow{0} \Rightarrow \overrightarrow{v} = cte$

• 2^{ème} loi de Newton = Théorème de la résultante dynamique (TRD) = Principe fondamental de la dynamique (PFD) :

Dans un référentiel galiléen : $\frac{d\overrightarrow{p}}{dt} = \sum_{syst} \overrightarrow{F}$ où $\overrightarrow{p} = m\overrightarrow{v}$ est la quantité de mouvement (impulsion).

Si le système est fermé, m=cte, $\sum_{syst}\overrightarrow{F}=m\frac{d\overrightarrow{v}}{dt}=m\overrightarrow{d}$ où \overrightarrow{a} est l'accélération.

Référentiel non galiléen : ajouter force d'entrainement et force de Coriolis.

• 3^{ème} loi de Newton = action/réaction : $F_{1\to 2} = -F_{2\to 1}$

1.2.2 Remarques, conditions d'application des lois de Newton

- 1^{ère} et 2^{ème} lois de Newton définissent le modèle classique de la mécanique, elles sont valides dans les référentiels galiléens.
- Equivalence entre 3ème loi de Newton et conservation de la quantité de mouvement pour un système de points :

 $3^{\mathrm{\`e}me}$ loi de Newton $\Rightarrow \frac{d\overrightarrow{p}}{dt} = \sum_{syst} \overrightarrow{F} = \sum \overrightarrow{F}_{ext} + \sum \overrightarrow{F}_{int} = \sum \overrightarrow{F}_{ext}$ car les forces intérieures s'annulent deux à deux. Si $\sum \overrightarrow{F}_{ext} = \overrightarrow{0}$, alors la $3^{\mathrm{\`e}me}$ loi de Newton implique la conservation de la quantité de mouvement (réciproque vraie, donc $3^{\mathrm{\`e}me}$ loi de Newton équivalente à la conservation de la quantité de mouvement).

- Cas des ondes électromagnétiques :
- La partie magnétique de la force de Lorentz (force de Laplace) $\overrightarrow{F}_{magn} = q \left(\overrightarrow{v} \wedge \overrightarrow{B} \right)$ n'obéit pas à la 3ème loi de Newton (schéma exemple) \Rightarrow non conservation de la quantité de mouvement (l'onde électromagnétique possède une impulsion).

$$-\overrightarrow{F}_{elec} = q\overrightarrow{E} = q. \\ \frac{1}{4\pi\varepsilon_0}. \\ \frac{q}{r^2} = \frac{1}{4\pi\varepsilon_0}. \\ \frac{q^2}{r^2} \text{ et } \overrightarrow{F}_{magn} = q\left(\overrightarrow{v}\wedge\overrightarrow{B}\right) = q\overrightarrow{v}\wedge\left(\frac{\mu_0}{4\pi}. \\ \frac{q}{r^3}\left(\overrightarrow{v}\wedge\overrightarrow{r}\right)\right) = \frac{\mu_0}{4\pi}. \\ \frac{q^2v^2}{r^2} = \frac{1}{4\pi\varepsilon_0}. \\ \frac{q^$$

d'où $F_{magn}/F_{elec} \sim v^2/c^2$: les forces magnétiques sont négligeables si $v \ll c$ (cas de la mécanique classique).

1.3 Lois de conservation, principes fondamentaux, intégrales premières du mouvement

1.3.1 Quantité de mouvement

- Définition de la quantité de mouvement (ou impulsion): pour un point matériel $\overrightarrow{p} = m\overrightarrow{v}$; pour un système de points $\overrightarrow{p} = \sum_i m_i \overrightarrow{v}_i$.
- Conservation de la quantité de mouvement : pour un système isolé $\sum \overrightarrow{F}_{ext} = \overrightarrow{0} \Rightarrow \overrightarrow{p}$ est conservée.
- Exemples et ordres de grandeur :
 - → recul d'un fusil (vidéo)
 - → fusée (système ouvert)
 - \longrightarrow collisions élastiques et inélastiques, transfert de quantité de mouvement : pendule de Newton (vidéo), marteau/clou, chocs. . .

1.3.2 Moment cinétique

- Définition du **moment cinétique** : pour un point matériel M de masse m, le moment cinétique de M par rapport au point O ('en O') est $\overrightarrow{\sigma}_O = \overrightarrow{OM} \wedge \overrightarrow{p}$ (aussi noté \overrightarrow{L}_O).
- Dimensions : moment cinétique en mécanique $[\sigma_O]=ML^2T^{-1}$, moment cinétique orbital en mécanique quantique $[L_z]=[n\hbar]=ML^2T^{-1}$
- Cas du mouvement de rotation autour d'un axe $\Delta=(O,\overrightarrow{e}_z)$ passant par O, en coordonnées cylindriques : $\overrightarrow{\sigma}_O=mr^2\dot{\theta}\overrightarrow{e}_z$
 - Théorème du moment cinétique : PFD $\Rightarrow \frac{d\overrightarrow{\sigma}_O}{dt} = \overrightarrow{\mathcal{M}}_{ext,O}$ où $\overrightarrow{M}_{ext,O} = \overrightarrow{OM} \wedge \sum \overrightarrow{F}_{ext}$ est le moment par rapport au point O ('en O') de la résultante des forces extérieures.
 - Conservation du moment cinétique : pour un système isolé $\sum \overrightarrow{F}_{ext} = \overrightarrow{0} \Rightarrow \overrightarrow{\sigma}_O$ est conservé.
 - Exemples et ordres de grandeur :
 - → pulsar milliseconde
 - \longrightarrow pendule simple
 - \longrightarrow forces centrales, conservation du moment cinétique \overrightarrow{L}
 - \longrightarrow tabouret inertiel (vidéo), chat retombant sur ses pattes (vidéo), plongeon (vidéo), danse/patinage

1.3.3 Energie

- Définition de **l'énergie cinétique** $T = E_c$ (notation lagrangienne) : pour un point matériel M de masse $m, T = \frac{1}{2}mv^2$ (système de points $T = \frac{1}{2}\sum_i m_i v_i^2$)
- \bullet Théorème de l'énergie cinétique : 2ème loi de Newton, dans un référentiel galiléen \Rightarrow
- Forme différentielle (travail élémentaire) : $dT=\sum\overrightarrow{F}_{ext}.\overrightarrow{dr}=\delta W_{ext}$.
- Forme variationnelle (travail) : $\Delta T_{1\to 2} = T_2 T_1 = \int_1^2 \sum \overrightarrow{F}_{ext} . \overrightarrow{dr} = W_{ext \, 1\to 2}$ où $W_{ext \, 1\to 2}$ est le **travail** des forces extérieures..
- Forme puissance : $\frac{dT}{dt} = \sum \overrightarrow{F}_{ext} \cdot \overrightarrow{v} = \mathcal{P}_{ext}$ où \mathcal{P}_{ext} est la **puissance** des forces extérieures.
 - Energie potentielle et forces conservatives : les forces conservatives 'dérivent d'une énergie potentielle', deux conditions définissent une force conservative :
- (1) La force ne dépend que de la position $\overrightarrow{F}(\overrightarrow{r},t,\overrightarrow{v},\ldots) = \overrightarrow{F}(\overrightarrow{r})$
- (2) Le travail de la force entre deux points est indépendant du chemin suivi
- \Rightarrow il existe $U(\overrightarrow{r})$ énergie potentielle telle que $U(\overrightarrow{r}) = -\int_{r_0}^r \overrightarrow{F}(\overrightarrow{r}) . \overrightarrow{dr'} = -W_{Fr_0 \to r}$ où W_F est le **travail** de a force \overrightarrow{F} .
- \Rightarrow il existe $U(\overrightarrow{r})$ énergie potentielle telle que $\overrightarrow{F} = -\overrightarrow{\nabla}U(\overrightarrow{r})$ (\overrightarrow{F} dérive d'une énergie potentielle).
- \Rightarrow l'énergie totale (= énergie mécanique ou hamiltonien) est conservée au cours du temps $E=E_m=H=T+U=cte$ (indépendante du temps), $\Delta E=E\left(t_2\right)-E\left(t_1\right)=0$
- ou, de façon équivalente,
- (2) Le rotationnel de la force F est nul : $\overrightarrow{rot} \overrightarrow{F} = \overrightarrow{\nabla} \wedge \overrightarrow{F} = \overrightarrow{0}$.
- \longrightarrow Exemples de forces conservatives : force centrale en $-1/r^2$, force élastique en -kr , force électrostatique, force de pesanteur

- Forces non conservatives : forces de frottements, forces de viscosité, forces de Laplace/Lorentz, forces de déformation au cours d'un choc inélastique
- Energie totale et conservation de l'énergie :
- Forme différentielle : $\frac{dE}{dt} = \mathcal{P}_{non\ conserv}$ ou bien $dE = \mathcal{P}_{non\ conserv}dt$, où $\mathcal{P}_{non\ conserv}$ est la **puissance** des forces non conservatives.
- Forme variationnelle : $\Delta E = E(t_2) E(t_1) = W_{non\ conserv}$ où $W_{non\ conserv}$ est le **travail** des forces non conservatives.
- Même si l'énergie est conservée, les forces ne sont pas nécessairement toutes conservatives.
 - Exemples, applications :
 - \longrightarrow systèmes de deux particules : forces intérieures (forces d'interaction) \overrightarrow{F}_{int} conservatives (dérivent d'une énergie potentielle d'interaction U_{int}) + particules éloignées \Rightarrow conservation de l'énergie cinétique (collision élastique)
 - → saut à la perche (vidéo)

1.4 Mouvement à un degré de liberté

Notion de **degré de liberté** (ddl) : en mécanique du point, 3 ddl (coordonnées (x, y, z), (r, θ, z) , etc.); en mécanique du solide, 6 ddl (coordonnées du centre de gravité correspondant à 3 translations par rapport à une origine + 3 rotations autour d'axes fixes).

Ici on considère le cas particulier du mouvement à 1 ddl (noté q) et d'une force conservative dérivant d'une énergie potentielle $U \Rightarrow$ l'énergie potentielle U(q) ne dépend que de q.

1.4.1 Profils d'énergie potentielle

Profil d'énergie potentielle = tracé de U(q).

La conservation de l'énergie totale (hamiltonien) H = T + U = cte avec $T \ge 0$ permet de définir états liés et états libres et positions d'équilibre du système (extrema de U(q)).

1.4.2 Stabilité de l'équilibre

Equilibre stable en $q = q_{eq}$ si $U(q_{eq})$ est minimale $(\frac{dU}{dq} = 0 \text{ et } \frac{d^2U}{dq^2} > 0)$.

Equilibre instable en $q = q_{eq}$ si $U(q_{eq})$ est maximale $\left(\frac{dU}{dq} = 0\right)$ et $\frac{d^2U}{dq^2} < 0$.

1.4.3 Solution du mouvement

Equation du mouvement de la particule de masse m dans le profil d'énergie potentielle $U\left(q\right)$: $t=\sqrt{\frac{m}{2}}\int_{q_0}^q \frac{dq'}{\sqrt{H-U\left(q'\right)}}.$

1.4.4 Exemples, applications

- \longrightarrow Pendule simple
- → Force centrale, énergie potentielle efficace
- → Masse ponctuelle liée à un ressort
- → Régulateur à boules (=machine de Watt), exemple de bifurcation
- → Corps liés et systèmes contraints (plus facile en formulation lagrangienne)

1.5 Forces centrales

1.5.1 Définition et propriétés

Force centrale : $\overrightarrow{F}(\overrightarrow{r}) = f(\overrightarrow{r}) \overrightarrow{e}_r$

Exemples: force de Coulomb, gravitation

Propriété : force centrale conservative $(\overrightarrow{F}(\overrightarrow{r}) = f(\overrightarrow{r}) \overrightarrow{e}_r = -\overrightarrow{\nabla}U(\overrightarrow{r})) \iff$ force centrale à symétrie sphérique $(\overrightarrow{F}(r) = f(r) \overrightarrow{e}_r)$

1.5.2 Théorème de Bertrand

Si $f(r) = \frac{1}{r^n}$ alors les trajectoires seront **fermées** seulement si n = -1 (loi de Hooke) ou si n = -2 (force en 1/r, Coulomb ou gravitation)

1.5.3 Problème à deux corps

A priori, 6 ddl mais se ramène à 1 ddl et intégrable (contrairement au problème à trois corps).

- Réduction du problème à deux corps
- Hypothèses : système isolé, masses m_1 et m_2 , positions $M_1(\overrightarrow{r}_1)$ et $M_2(\overrightarrow{r}_2)$, force $\overrightarrow{F}_{1\to 2} = -\overrightarrow{F}_{2\to 1} = \overrightarrow{F}$
- Problème équivalent à une particule de masse $M=m_1+m_2$ située au centre de masse G (en translation uniforme) et une particule de masse $\mu=\frac{m_1m_2}{m_1+m_2}$ (masse réduite) située en $\overrightarrow{r}=\overrightarrow{r}_1-\overrightarrow{r}_2$ dans le référentiel barycentrique (galiléen) soumise à \overrightarrow{F} .
- \Rightarrow 3 ddl
 - Cas d'une force centrale $\overrightarrow{F}(\overrightarrow{r}) = f(\overrightarrow{r}) \overrightarrow{e}_r$
- Conservation du **moment cinétique** L (intégrale première)
- $\Rightarrow 2 \text{ ddl}$
 - \bullet Cas d'une force centrale et conservative, $F\left(r\right)$ conservative dérive de l'énergie potentielle $U\left(r\right)$
- Energie potentielle effective $U_{eff}\left(r\right)=U\left(r\right)+\frac{L^{2}}{2\mu r^{2}}$, barrière centrifuge
- Conservation de l'énergie totale (intégrale première)
- $\Rightarrow 1 ddl$
- Lois de Kepler, états liés et états libres, orbites de Kepler

1.6 Mécanique dans les référentiels non galiléens (non inertiels)

Cf. Mécanique du solide (chp. 2)

Référentiel non galiléen (ou non inertiel) = référentiel qui n'est pas en translation rectiligne uniforme par rapport un référentiel galiléen (translation non uniforme et/ou rotation)

Vecteur rotation

Formule de Bour/Varignon (dérivée par rapport au temps)

Composition des vitesses et des accélérations

PFD, théorème du moment cinétique, théorème de l'énergie cinétique dans un référentiel non galiléen

1.6.1 Référentiels accélérés non tournants

- Référentiel en accélération A par rapport à un référentiel galiléen: ${\rm PFD}={\rm ajouter}$ la force d'inertie-mA
- Exemples et applications : effets d'une accélération sur la gravité, pendule, microgravité

1.6.2 Forces de marée

- Marées = effet différentiel
- Cas des satellites : limite de Roche

1.6.3 Référentiels tournants

- PFD dans un référentiel tournant = ajouter force de Coriolis et force centrifuge

Exemples : déviation vers l'Est, courants atmosphériques et météo, pendule de Foucault (vidéo)

Chapter 2

Mécanique du solide

2.1 Généralités

2.1.1 Repérage d'un solide indéformable

- Solide **indéformable** = la distance entre deux points du solide reste constante au cours du temps.
- Repérage d'un solide : **6 degrés de liberté** (3 ddl pour la position du centre de mase, 3 ddl pour l'orientation)
- Angles d'Euler (schéma) et notations :
- Repère (O,e_x,e_y,e_z) lié au référentiel $\mathcal R$ et système de coordonnées cartésiennes (x,y,z)
- Trois changements de repères successifs qui définissent les angles d'Euler ψ , θ et φ :

précession $\psi = \text{rotation autour de } e_z$, vecteur rotation $\dot{\psi}e_z$, définit un nouveau repère (O,u,v,e_z)

nutation θ = rotation autour de u (ligne des nœuds), vecteur rotation $\dot{\theta}u$, définit un nouveau repère (O, u, w, e'_z)

giration ou rotation propre φ = rotation autour de e'_z , vecteur rotation $\dot{\varphi}e'_z$, définit un nouveau repère (vecteurs non orthogonaux, dépendent du temps) (O, e'_x, e'_y, e'_z) lié au solide \mathcal{S} (référentiel \mathcal{R}_s)

- Blocage de Cardan $\theta = 0$ (contrainte), φ et ψ sont équivalents \Rightarrow un ddl en moins

2.1.2 Centre d'inertie et moment d'inertie

On considère un solide S de masse volumique $\rho(r)$ et de masse $M = \int_{P \in S} \rho(P) d\tau$ (pour un solide homgène, $\rho(P) = \rho = \text{cte.}$

- Centre de gravité/centre d'inertie/centre de masse
- Position du centre de masse : $\overrightarrow{OG} = \frac{1}{M} \int_{P \in \mathcal{S}} \rho(P) \overrightarrow{OP} d\tau$
- Théorème de Guldin : détermination de la position du centre de masse
- \succ d'une courbe de longueur l dans le plan (O,x,y): la courbe l génère une surface S_x (resp. S_y) par rotation autour de (O,x) (resp. (O,y)) et la position du centre de masse (x_G,y_G) est donnée par $x_G = \frac{S_y}{2\pi l}$, $y_G = \frac{S_x}{2\pi l}$.
- \succ d'une surface S dans le plan (O,x,y): la surface S génère un volume V_x (resp. V_y) par rotation autour de (O,x) (resp. (O,y)) et la position du centre de masse (x_G,y_G) est donnée par $x_G = \frac{V_y}{2\pi S}$, $y_G = \frac{V_x}{2\pi S}$.

• Moment d'inertie

- Moment d'inertie par rapport à un point $O\ :\ J_{o}=\int_{P\in\mathcal{S}}\rho\left(P\right)OP^{2}d\tau$
- Moment d'inertie par rapport à un axe $\Delta \ : J_{\Delta} = \int_{P \in \mathcal{S}} \rho\left(P\right) d\left(\Delta,P\right)^2 d\tau$
- Dimensions : $[J] = ML^2$

- Théorème de Huygens :

- \triangleright Moment d'inertie par rapport à un point O : $J_o = J_G + MOG^2$ où J_G est le moment d'inertie du solide par rapport au centre de masse
- ightharpoonup Moment d'inertie par rapport à un axe $\Delta: J_{\Delta} = J_{\Delta_G} + Ma^2$ où J_{Δ_G} est le moment d'inertie rapport à un axe Δ_G passant par G et $a = d(\Delta, G)^2$ est la distance entre J_{Δ} et J_{Δ_G}
- Rayon de giration : $R_g^2 = J_G/M$

2.1.3 Champs et torseurs

• Définitions

Soit un champ vectoriel $M \mapsto \overrightarrow{m}(M)$, $M \mapsto \overrightarrow{m}(M)$ est un **torseur** de **moment** $\overrightarrow{m}(O)$ **en O** et de **résultante** \overrightarrow{R} , noté $\left(\overrightarrow{m}(O), \overrightarrow{R}\right)$ (ou $\left\{\begin{array}{c}\overrightarrow{R}\\\overrightarrow{m}(O)\end{array}\right\}$) si

$$(1) \overrightarrow{m}(M) = \overrightarrow{m}(O) + \overrightarrow{R} \wedge \overrightarrow{OM}$$

ou

- (2) $M \longmapsto \overrightarrow{m}(M)$ est un **champ équiprojectif** : $\forall A, B \overrightarrow{m}(A) . \overrightarrow{AB} = \overrightarrow{m}(B) . \overrightarrow{AB}$
- (1) et (2) sont équivalents.
- Cas particuliers

Couple : si $\overrightarrow{R} = \overrightarrow{0}$.

Glisseur : si il existe un point O tel que $\overrightarrow{m}(O) = \overrightarrow{0}$.

2.2 Cinématique du solide

2.2.1 Vecteur rotation

Réferentiel \mathcal{R}_s lié au solide de repère $(O, \overrightarrow{e}'_x, \overrightarrow{e}'_y, \overrightarrow{e}'_z)$, et référentiel \mathcal{R} (de référence) de repère $(O, \overrightarrow{e}_x, \overrightarrow{e}_y, \overrightarrow{e}_z)$

• Vecteur rotation

 $\overrightarrow{\Omega}(\mathcal{R}_s/\mathcal{R})$, avec les angles d'Euler : $\overrightarrow{\Omega} = \dot{\psi} \overrightarrow{e}_z + \dot{\theta} \overrightarrow{u} + \dot{\varphi} \overrightarrow{e}_z'$

• Formule de Bour/Varignon

- L'opérateur d/dt dépend du référentiel : $\frac{d\overrightarrow{A}}{dt}\Big|_{\mathcal{R}} = \frac{d\overrightarrow{A}}{dt}\Big|_{\mathcal{R}_{\mathcal{S}}} + \overrightarrow{\Omega}(\mathcal{R}_s/\mathcal{R}) \wedge \overrightarrow{A}$
- Cas particulier vecteurs de base du repère un nouveau repère $(O, \overrightarrow{e}'_x, \overrightarrow{e}'_y, \overrightarrow{e}'_z)$ lié au solide $\frac{d\overrightarrow{e_i'}}{dt}\Big|_{\mathcal{R}} = \overrightarrow{\Omega}(\mathcal{R}_s/\mathcal{R}) \wedge \overrightarrow{e_i'}$.

2.2.2 Champ des vitesses

• Champ des vitesses

Soient O et OM deux points du solide indéformable S ($OM^2 = cte$), fixes dans R_S :

$$\Rightarrow \left(\overrightarrow{v}_O, \overrightarrow{\Omega}\right) \text{ est un torseur (torseur des vitesses ou torseur cinématique, aussi noté } \left\{\begin{array}{c} \overrightarrow{\Omega} \\ \overrightarrow{v}_O \end{array}\right\})$$

$$: \overrightarrow{v}(M,t)|_{\mathcal{R}} = \overrightarrow{v}(O,t)|_{\mathcal{R}} + \overrightarrow{\Omega}(\mathcal{R}_s/\mathcal{R}) \wedge \overrightarrow{OM}$$

Si O est fixe dans R: $\overrightarrow{v}(M,t)|_{\mathcal{R}} = \overrightarrow{\Omega}(\mathcal{R}_s/\mathcal{R}) \wedge \overrightarrow{OM}$

• Cas particuliers

 $\overrightarrow{v}_O.\overrightarrow{\Omega}=0$: translation instantanée si $\overrightarrow{\Omega}=\overrightarrow{0}$, rotation pure instantanée si $\overrightarrow{v}_O=\overrightarrow{0}$, rotation propre si $\overrightarrow{v}_O\bot\overrightarrow{\Omega}$

 $\overrightarrow{v}_O.\overrightarrow{\Omega} \neq 0~:$ vissage instantané

2.2.3 Champ des accélérations

• Champ des accélérations

$$\overrightarrow{a}(M,t)|_{\mathcal{R}} = \frac{\mathrm{d}v}{\mathrm{d}t} = \overrightarrow{a}(O,t)|_{\mathcal{R}} + \overrightarrow{\Omega}(\mathcal{R}_s/\mathcal{R}) \wedge \frac{d\overrightarrow{OM}}{dt} + \frac{d\overrightarrow{\Omega}}{dt} \wedge \overrightarrow{OM}$$

 $\overrightarrow{a}(M,t)$ n'est pas un torseur.

2.2.4 Composition des mouvements

Référentiel \mathcal{R}' (d'origine O') mobile par rapport au référentiel \mathcal{R} (d'origine O), vecteur rotation : $\overrightarrow{\Omega}\left(\mathcal{R}'/\mathcal{R}\right)$

• Composition des vitesses

$$\overrightarrow{v}\left(M/\mathcal{R}\right) = \overrightarrow{v}\left(M/\mathcal{R}'\right) + \left[\overrightarrow{v}\left(O'/\mathcal{R}'\right) + \overrightarrow{\Omega} \wedge \overrightarrow{O'M}\right]$$

Vitesse absolue = vitesse relative + vitesse d'entraînement

- Vitesse d'entraı̂nement = vitesse du **point coïncidant** à M fixe dans \mathcal{R}'
- Remarque : si $\mathcal{R}' = \mathcal{R}_S$, O = O' et M fixes dans \mathcal{R}_S , on retrouve $\overrightarrow{v}(M,t)|_{\mathcal{R}} = \overrightarrow{\Omega}(\mathcal{R}_s/\mathcal{R}) \wedge \overrightarrow{OM}$
 - Composition des accélérations

$$\overrightarrow{a}\left(M/\mathcal{R}\right) = \overrightarrow{a}\left(M/\mathcal{R}'\right) + \left[\overrightarrow{a}\left(O'/\mathcal{R}\right) + \overrightarrow{\Omega}\wedge\left(\overrightarrow{\Omega}\wedge\overrightarrow{O'M}\right) + \frac{d\overrightarrow{\Omega}}{dt}\wedge\overrightarrow{O'M}\right] + \left[2\overrightarrow{\Omega}\wedge\overrightarrow{v}\left(M/\mathcal{R}'\right)\right]$$

Accélération absolue = accélération relative + accélération d'entrainement + accélération de Coriolis

2.3 Actions sur un solide : forces et couples

2.3.1 Torseur des forces extérieures

• Forces et moments

- Force \overrightarrow{F} extérieure (forces ponctuelles $\overrightarrow{F}_{ext} = \sum_{P_i \in S} \overrightarrow{F}_{ext} (P_i)$ ou volumiques $\overrightarrow{F} = \int_{P \in S} \overrightarrow{f}_{ext} (P) d\tau$)
- Moment \overrightarrow{M}_O au point O :

forces ponctuelles $\overrightarrow{M}_{Oext} = \sum_{P_i \in S} \overrightarrow{OP_i} \wedge \overrightarrow{F}_{ext} (P_i)$

forces volumiques $\overrightarrow{M}_{Oext} = \int_{P \in S} \left(\overrightarrow{OP} \wedge \overrightarrow{f}_{ext}\left(P\right)\right) d\tau$

 $\Rightarrow \left(\overrightarrow{M}_{Aext}, \overrightarrow{F}_{ext}\right) \text{ est un torseur appelé torseur des forces extérieures (ou torseur d'effort, aussi noté } \left\{ \overrightarrow{F}_{ext} \atop \overrightarrow{M}_{Aext} \right\}) : \overrightarrow{M}_{Aext} = \overrightarrow{M}_{Oext} + \overrightarrow{F}_{ext} \wedge \overrightarrow{OA}.$

• Cas particuliers

$$\overrightarrow{M}_{Aext}.\overrightarrow{F}_{ext}=0: \text{ force unique si } \left(\overrightarrow{M}_{Aext}=0,\overrightarrow{F}_{ext}\right); \text{ couple si } \left(\overrightarrow{M}_{Aext},\overrightarrow{F}_{ext}=0\right).$$

2.3.2 Actions de contact entre solides

- Contacts entre deux solides S_1 et S_2
- Différents types de mouvements relatifs (schéma) = glissement, pivotement $\overrightarrow{\Omega}_n$, roulement $\overrightarrow{\Omega}_t$, mouvement plan sur plan
- Vecteur rotation $\overrightarrow{\Omega}_{S_2/S_1}=\overrightarrow{\Omega}_{S_2/R}-\overrightarrow{\Omega}_{S_1/R}=\overrightarrow{\Omega}_t+\overrightarrow{\Omega}_n$
 - Point de contact
- Plan tangent \mathcal{P}
- Notion de point de contact I et point coïncidant $I^* = I(t)$
- Vitesse de glissement : $\overrightarrow{u}(t) = \overrightarrow{v}(I \in \mathcal{S}_2/\mathcal{R}) \overrightarrow{v}(I \in \mathcal{S}_1/\mathcal{R}) \in \mathcal{P}$

Cas particulier où le référentiel \mathcal{R} est lié au solide \mathcal{S}_1 (noté $\mathcal{R}_{\mathcal{S}_1}$): la vitesse de glissement est $\overrightarrow{u}(t) = \overrightarrow{v}(I \in \mathcal{S}_2/\mathcal{R}_{\mathcal{S}_1})$ et la vitesse d'un point M de \mathcal{S}_2 par rapport à \mathcal{S}_1 est $\overrightarrow{v}(M \in \mathcal{S}_2/\mathcal{R}_{\mathcal{S}_1}) = \overrightarrow{u} + \overrightarrow{\Omega}_{\mathcal{S}_{21}/\mathcal{S}_1} \wedge \overrightarrow{IM}$

- Condition de **non glissement** : $\overrightarrow{u}(t) = \overrightarrow{0}$

Cas où le solide S_1 est fixe dans \mathcal{R} : non glissement $\Rightarrow \overrightarrow{v}(I \in S_2/\mathcal{R}_{S_1}) = \overrightarrow{0}$

- → exemple : roulement sans glissement d'un cylindre sur un plan
 - Actions de contact et degrés de liberté
- Le contact implique une contrainte et donc une diminution du nombre de ddl (cf. systèmes contraints en mécanique lagrangienne au chp. 2 et §2.6 et 2.7)

liaison unilatérale = 1 ddl en moins

liasion bilatérale = 2 ddl en moins

- Réaction et couple de frottement (cf. §2.6).

2.4 Cinétique du solide

2.4.1 Torseur cinétique (torseur des quantités de vitesse)

• Quantité de mouvement du solide dans \mathcal{R}

$$\overrightarrow{p}(t) = \int_{P \in S} \rho(P) \overrightarrow{v}(P, t) d\tau = M \overrightarrow{v}_G$$

• Moment cinétique (ou moment angulaire) en A

$$\overrightarrow{\sigma}_{A}\left(t\right)=\int_{P\in\mathcal{S}}\overrightarrow{AP}\wedge\rho\left(P\right)\overrightarrow{v}\left(P,t\right)d au$$

 \Rightarrow $(\overrightarrow{\sigma}_{A}(t), \overrightarrow{p}(t))$ est un torseur appelé **torseur des quantités de vitesse** (ou torseur ciné-

tique, aussi noté
$$\left\{\begin{array}{c} \overrightarrow{p}\left(t\right)\\ \overrightarrow{\sigma}_{A}(t) \end{array}\right\}\right): \overrightarrow{\sigma}_{A}\left(t\right)|_{\mathcal{R}} = \overrightarrow{\sigma}_{O}\left(t\right)|_{\mathcal{R}} + \overrightarrow{p} \wedge \overrightarrow{OA}$$

2.4.2 Mouvement dans le référentiel barycentrique

• Référentiel barycentrique

 \mathcal{R}^* en translation à la vitesse $\overrightarrow{v}_G(t)|_{\mathcal{R}}$ (pas nécessairement uniforme, \mathcal{R}^* pas nécessairement galiléen, et dans \mathcal{R}^* , $\overrightarrow{v}_G(t)|_{\mathcal{R}^*} = \overrightarrow{0}$ et $\overrightarrow{p}|_{\mathcal{R}^*} = \overrightarrow{0}$.

- Théorème de Koenig pour le moment cinétique
- Dans \mathcal{R}^* , le moment cinétique est **indépendant du point** : $\forall A, \overrightarrow{\sigma}_A|_{\mathcal{R}^*} = \overrightarrow{\sigma}_G|_{\mathcal{R}^*} = \overrightarrow{\sigma}^*$ (= moment cinétique dans le référentiel barycentrique = moment cinétique propre, analogue au spin)
- Dans \mathcal{R} , **théorème de Koenig**: en A, point du solide \mathcal{S} , $\overrightarrow{\sigma}_{A}(t) = \overrightarrow{\sigma}^* + \overrightarrow{AG} \wedge \overrightarrow{p}$ (= moment cinétique propre + moment cinétique orbital) avec $\overrightarrow{p} = M\overrightarrow{v}_{G}$.

2.4.3 Rotation autour d'un point ou d'un axe

• Expression du moment cinétique du solide S en A

 $\overrightarrow{\sigma}_{A}\left(t\right) = M\overrightarrow{AG} \wedge \overrightarrow{v}\left(A,t\right) + \int_{P \in \mathcal{S}} \rho\left(P\right) \overrightarrow{AP} \wedge \left(\overrightarrow{\Omega} \wedge \overrightarrow{AP}\right) d\tau \text{ (second terme = linéaire en } \overrightarrow{\Omega} \text{ , } M = \text{masse du solide)}$

ullet Rotation autour de A point fixe du solide ${\mathcal S}$

$$\overrightarrow{v}\left(A\right) = \overrightarrow{0} \quad \Rightarrow \text{le moment cinétique en A} \ \overrightarrow{\sigma}_{A}\left(t\right)|_{\mathcal{R}} \text{ est linéaire en } \overrightarrow{\Omega} \ :$$

 \exists matrice /opérateur/tenseur d'inertie en A $[J_A]$ telle que $\overrightarrow{\sigma}_A = [J_A]$ $\overrightarrow{\Omega}$

avec
$$[J_A] = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix}$$
 où $I_{xx} = \int_{M \in S} \rho\left(M\right) \left(y^2 + z^2\right) d\tau$, $I_{xy} = \int_{M \in S} \rho\left(M\right) \left(xy\right) d\tau$... avec $\overrightarrow{AM}\left(x, y, z\right)$ dans \overrightarrow{e}_x , \overrightarrow{e}_y , \overrightarrow{e}_z

 I_{xx},I_{yy},I_{zz} sont les moments d'inertie par rapport à e_x , e_y , et $e_z.$

 I_{xy}, I_{xz}, I_{yz} sont les **produits d'inertie.**

 $[J_A]$ est caractérsitique du solide, indépendante du temps t.

• Axes principaux d'inertie

 $[J_A]$ est symétrique réelle donc diagonalisable \Rightarrow il existe 3 axes perpendiculaires entre eux liés

au solide tels que
$$[J_A] = \begin{bmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{bmatrix}$$
 soit diagonale : I_1, I_2, I_3 sont les **moments principaux**

d'inertie, les 3 axes sont les axes principaux d'inertie.

• Détermination des axes principaux d'inertie

- Symétries (par rapport un plan ou un axe passant par A)
- Rotation autour d'un axe fixe Δ passant par \mathbf{A} : $\overrightarrow{\sigma}_A = J_\Delta \overrightarrow{\Omega}$ avec $J_\Delta = \int_{P \in S} \rho\left(P\right) d\left(\Delta, P\right)^2 d\tau$, si Δ est axe principal d'inertie
- Théorème de Huygens : soient Δ_G un axe passant par G et Δ un axe parallèle à Δ_G : $J_{\Delta} = Md(\Delta, G)^2 + J_{\Delta_G}$ où $d(\Delta, G)$ est la distance entre G et l'axe Δ .

2.5 Dynamique du solide, théorèmes généraux, principe fondamental (TRD)

2.5.1 Torseur 'dynamique' (torseur des quantités d'accélération)

• Résultante dynamique

$$\overrightarrow{Q}\left(\mathcal{S}/\mathcal{R}\right)(t) = \frac{d\overrightarrow{p}(t)}{dt}$$

Pour un système fermé M=cte, masse volumique $\rho=cte$ indépendante du temps : $Q\left(S/R\right)(t)=\int_{P\in S}\rho\left(P\right)a\left(P,t\right)d\tau=Ma_{G}$

• Moment dynamique en A

$$\overrightarrow{D}\left(S/R\right)\left(t\right) = \int_{P \in S} \overrightarrow{AP} \wedge \rho\left(P\right) \overrightarrow{d}\left(P,t\right) d\tau$$

- $\Rightarrow (\overrightarrow{D}_A(t), \overrightarrow{Q}(t)) \text{ est un torseur appelé torseur des quantités d'accélération (aussi noté } \left\{ \left. \overrightarrow{\overrightarrow{Q}}(t) \atop \overrightarrow{D}_A(t) \right\} \right) : \overrightarrow{D}_A(t) \Big|_{\mathcal{R}} = \overrightarrow{D}_O(t) \Big|_{\mathcal{R}} + \overrightarrow{Q} \wedge \overrightarrow{OA}$
 - Théorème de Koenig pour le moment dynamique
- Dans \mathcal{R}^* , le moment dynamique **est indépendant** du point $\forall A, \overrightarrow{D}_A \Big|_{\mathcal{R}^*} = \overrightarrow{D}_G \Big|_{\mathcal{R}^*} = \overrightarrow{D}^*$
- Dans \mathcal{R} , théorème de Koenig : en A, point du solide \mathcal{S} , $\overrightarrow{D}_A(t) = \overrightarrow{D}^* + \overrightarrow{AG} \wedge \overrightarrow{Q}$ avec $\overrightarrow{Q} = M \overrightarrow{a}_G$.
 - Relation entre moment cinétique et moment dynamique

$$\overrightarrow{D}_A \Big|_{\mathcal{D}} = \frac{\mathrm{d}\overrightarrow{\sigma}_A}{\mathrm{d}t} + M \overrightarrow{v}_A \wedge \overrightarrow{v}_G$$

Cas particuliers (importants en pratique):

- Si A est un point fixe $(\overrightarrow{v}(A) = \overrightarrow{0})$ ou si A = G ou si $\overrightarrow{v}(A) \parallel \overrightarrow{v}(G)$, alors $\overrightarrow{D}_A \Big|_{\mathcal{R}} = \frac{d\overrightarrow{\sigma}_A}{dt}$
- Contact entre deux solides S_1 et S_2 avec S_1 fixe dans \mathcal{R} (référentiel $\mathcal{R} = \mathcal{R}_{S_1}$ lié à S_1), sans glissement $\overrightarrow{u}(t) = \overrightarrow{v}(I \in S_2/\mathcal{R}_{S_1}) = \overrightarrow{0} \Rightarrow \overrightarrow{D}_I\Big|_{\mathcal{R}} = \frac{d\overrightarrow{\sigma}_I}{dt}$.

2.5.2 Théorèmes de la résultante dynamique et du moment dynamique

• Théorèmes fondamentaux

Ils traduisent l'égalité entre le torseur des quantités d'accélération et le torseur des forces extérieures $(\overrightarrow{D}_A(t), \overrightarrow{Q}(t)) = (\overrightarrow{M}_{Aext}, \overrightarrow{F}_{ext})$.

Hypothèses : système fermé, A est un point fixe ou bien A = G , alors :

- Théorème de la résultante dynamique (TRD = PFD) : $\overrightarrow{Q}\left(\mathcal{S}/\mathcal{R}\right)(t) = \frac{d\overrightarrow{p}\left(t\right)}{dt} = \overrightarrow{F}_{ext}$
- Théorème du moment dynamique (A fixe ou A=G) : $\overrightarrow{D}_{A}\left(t\right)=\frac{d\overrightarrow{\sigma}_{A}}{dt}=\overrightarrow{M}_{Aext}$
- Actions réciproques : S_1 et S_2 en interaction et $S_1 \cup S_2$ isolé $\overrightarrow{F}_{1 \to 2} = -\overrightarrow{F}_{2 \to 1}$ et $\overrightarrow{M}_{1 \to 2} = -\overrightarrow{M}_{2 \to 1}$
- Cas particuliers :

Dans le référentiel barycentrique \mathcal{R}^* , $\frac{d\overrightarrow{\sigma}^*}{dt} = \overrightarrow{M}_{Gext}$

Cas d'une rotation autour d'un axe Δ passant par A : $\frac{d\overrightarrow{\sigma}_A}{dt} = J_{\Delta} \frac{d\overrightarrow{\Omega}}{dt} = \overrightarrow{M}_{Aext}$

- Méthode générale de résolution d'un problème de mécanique du solide :
- Définition du système
- Référentiel, repère, système de coordonnées (symétrie du problème)
- Coordonnées du solide ${\mathcal S}$
- Inventaire des forces
- Hypothèse sur le contact (avec/sans glissement)
- Choix du point d'application des théorèmes fondamentaux : point A fixe, ou A=G , ou A=I point de contact
- \longrightarrow Exemples : yoyo, marteau

2.5.3 Théorème de l'énergie cinétique

- Energie cinétique d'un solide
- Définition : $T=\frac{1}{2}\int_{P\in S}\rho\left(P\right)v^{2}\left(P,t\right)d\tau$
- Remarque : énergie cinétique = moitié du produit (ou comoment) du torseur des vitesses et du torseur cinétique, $T = \frac{1}{2} \left(\overrightarrow{v}, \overrightarrow{\Omega} \right) \bigodot \left(\overrightarrow{\sigma}, \overrightarrow{p} \right) = \frac{1}{2} m v^2 + \frac{1}{2} \overrightarrow{\Omega} . \overrightarrow{\sigma}$
- Théorème de Koenig pour l'énergie cinétique : $T=T^*+\frac{1}{2}Mv_G^2$ où T^* est l'énergie cinétique dans le référentiel barycentrique
- Cas du solide en **rotation autour d'un point fixe** $\mathbf{A}: T = \frac{1}{2}\overrightarrow{\Omega}.\overrightarrow{\sigma}_A = \frac{1}{2}\overrightarrow{\Omega}.[J_A]\overrightarrow{\Omega}$
- Cas du solide en rotation autour d'un axe fixe Δ) passant par $A~:~T=\frac{1}{2}J_{\Delta}\Omega^{2}$
 - Puissance et travail des forces
- Puissance des actions intérieures et extérieures au point A, $\mathcal{P}=\overrightarrow{F}.\overrightarrow{v}_A+\overrightarrow{M}_A.\overrightarrow{\Omega}$
- Remarque : puissance = produit (ou comoment) du torseur des forces et du torseur des vitesses, $\mathcal{P} = \left(\overrightarrow{M}_A, \overrightarrow{F}\right) \bigodot \left(\overrightarrow{v}_A, \overrightarrow{\Omega}\right)$
- En G, centre de gravité : $\mathcal{P}=\overrightarrow{F}.\overrightarrow{v}_G+\overrightarrow{M}_G.\overrightarrow{\Omega}$
- Cas des forces de contact, en I point de contact : $\mathcal{P} = \overrightarrow{F} \cdot \overrightarrow{u} = 0$ si il n'y a pas de frottement (réaction tangentielle $\overrightarrow{R}_T = 0$, voir §2.6) ou si il n'y a pas de glissement $(\overrightarrow{u} = \overrightarrow{0})$
- Cas des forces intérieures : solide indéformable $\mathcal{P}_{int} = 0$
 - Travail : $W = \int_{t_1}^{t_2} P(t) dt$
 - Théorème de l'énergie cinétique
- Forme différentielle (travail élémentaire) : $dT = \delta W$ (toutes les forces)
- Forme puissance : $\frac{dT}{dt} = P$ (toutes les forces)

- Forces conservatives (cf §1.3.3)
- (1) La force ne dépend que de la position $\overrightarrow{F}(\overrightarrow{r},t,\overrightarrow{v},\ldots) = \overrightarrow{F}(\overrightarrow{r})$
- (2) Le travail de la force entre deux points est indépendant du chemin suivi
- \Rightarrow il existe $U\left(r\right)$ énergie potentielle telle que $U\left(r\right)=-\int_{r_{0}}^{r}F\left(r'\right)dr'=-W_{Fr_{0}\rightarrow r}$
- \Rightarrow il existe $U\left(r\right)$ énergie potentielle telle que $\overrightarrow{F}=-\overrightarrow{\triangledown}U\left(r\right)$
- (2) Le rotationnel de la force F est nul : $\overrightarrow{\nabla} \wedge \overrightarrow{F} = \overrightarrow{0}$
- \Rightarrow Energie totale (hamiltonien) conservée : H = T + U = cte (indépendante du temps)
 - Méthodes énergétiques et intégrales premières du mouvement
- ➤ 1 ddl : cf §1.4
- > N > 1 ddl:
- si système conservatif, conservation de H = T + U
- projection du TRD sur un vecteur constant \overrightarrow{u}_x : $\overrightarrow{F}.\overrightarrow{u}_x = 0 \Rightarrow \overrightarrow{p}.\overrightarrow{u}_x = \text{cte}$
- projection du théorème du moment cinétique sur un vecteur constant $u_x: \overrightarrow{M}_{Oext}.\overrightarrow{u}_x = 0 \Rightarrow \overrightarrow{\sigma}_O.\overrightarrow{u}_x = \text{cte}$

2.6 Frottements, actions de contact

2.6.1 Forces et couples de frottements

• 3 **types** de mouvements

Glissement, pivotement, roulement actions associées (voir aussi §2.3.2): forces et moments des actions de contact

- Forces et couples de frottements (schéma)
- Forces : réaction normale R_N et réaction tangentielle (frottement) R_T
- Moments : résistance au pivotement et résistance au roulement (négligeables si contact quasi ponctuel)
 - Puissance des actions de contact : $\mathcal{P} = \overrightarrow{R}_T \cdot \overrightarrow{u}$

2.6.2 Origine microscopique du frottement solide

- Réaction normale \overrightarrow{R}_N : modélisation de la rugosité de surface, contact élastique de Hertz (schéma)
- Solide élastique de rayon R de module d'Young E
- Contact sur une surface a^2 , enfoncement δ , déformation = δ/a
- Force répulsive élastique qui s'oppose à l'enfoncement : contrainte $\sigma = \frac{R_N}{a^2} \propto E\delta/a$ (en Pa)
- Petites déformations $\delta \ll R$ et $\delta \ll a \Rightarrow a \sim \sqrt{2\delta R}$ d'où $R_N \propto E\sqrt{R}\delta^{3/2}$
- Remarques :
- > Ordres de grandeur pour l'acier
- ightharpoonup Raideur = $\frac{R_N}{\delta} \propto \sqrt{\delta}$ augmente avec δ
- ightharpoonup Si non élastique, par exemple : $\sigma_N=\frac{R_N}{a^2}=cte.H$ où H est la dureté $R_N\propto HR\delta$

- Réaction tangentielle R_T :
- Expérience de **Léonard de Vinci** (schéma) = 3 masses superposées ou à la file mises en mouvement
- Résultats :
- (1) La même force est nécessaire pour mettre en mouvement (faire glisser) les masses la force de frottement solide est indépendante de la surface de contact S
- (2) $R_T \propto R_N$
- (3) $R_{T,d} < R_{T,s}$: force plus importante pour mettre en mouvement les masses (frottement statique) que pour maintenir le glissement (frottement dynamique)
- Interprétation et **origine microscopique** :

Rugosité microscopique des solides (schéma) contacts uniquement sur les aspérités des surfaces donc la surface de contact réelle est **petite**: $S_{r\acute{e}elle} \ll S_{apparente}$ et $S_{r\acute{e}elle} = N_{contacts}s_{contact}$ où $N_{contacts}$ est le nombre de contacts et $s_{contact}$ est la surface d'un contact.

Contraintes sur les aspérités très fortes : la contrainte normale σ_N atteint la **limite de plasticité** du matériau (constante) et $\sigma_N = \frac{R_N}{S_{r\acute{e}elle}} = H = \sigma_{plast} = cte$.

Pour faire glisser les deux surfaces, il faut 'ouvrir' les contacts par cisaillement donc $R_T \propto N_{contacts}$ et $R_T \propto S_{r\'eelle}$ la contrainte tangentielle atteint la **limite en cisaillement** du matériau $\sigma_T = \frac{R_T}{S_{r\'eelle}} = \sigma_{cis} = cte$.

Conséquence : $\frac{R_T}{R_N} = \frac{\sigma_{cis}}{\sigma_{plast}} = cte = \mu$ coefficient de frottement et $R_T \propto R_N$.

2.6.3 Lois du frottement solide d'Amontons-Coulomb

- Lois d'Amontons (1699)-Coulomb (1785) :
- Statique : la réaction tangentielle R_T est indéterminée et telle que $|R_T| \le \mu_s |R_N|$, $R_T \in$ cône de frottement d'angle $\phi_s = Arctg(\mu_s)$ où μ_s est le coefficient de frottement statique.
- Dynamique: mise en mouvement si $|R_T| = \mu_s |R_N|$ puis $|R_T| = \mu_d |R_N|$ dès qu'il y a glissement (i.e. vitesse de glissement $u \neq 0$) avec μ_d coefficient de frottement dynamique, tel que $\mu_d < \mu_s$ (graphe μ en fonction de u).
- \longrightarrow Ordres de grandeur de $0.1 < \mu_d < \mu_s < 1$ en fonction du matériau
 - Hystérésis lors du frottement solide
- Contact avec glissement (dynamique = $|R_T| = \mu_s |R_N| etu \neq 0$) devient sans glissement (statique = $|R_T| \leq \mu_s |R_N| etu = 0$) si u s'annule, mais contact sans glissement devient avec glissement si $|R_T| = \mu_s |R_N|$
- Remarque : mêmes lois pour le couple de frottement sur un axe
- → Exemples : statique sur plan incliné, cône de frottement, vis bois/métal, stick-slip, archet de violon (vidéo), cabestan (vidéo)

2.7 Solide en rotation

- Différents types de liaisons : pivot (ou rotoïde)/glissière/rotule (ou sphérique)/hélicoïdale,
- Liaison parfaite/idéale = sans frottement

2.7.1 Rotation autour d'un axe fixe

• Rotation autour d'un axe fixe

- Rotation autour d'un axe Δ fixe et passant par O : axe vertical (Oz) de vecteur directeur $\overrightarrow{e}_z = \overrightarrow{e}'_z$.
- Référentiel fixe \mathcal{R} (repère $(O, \overrightarrow{e}_x, \overrightarrow{e}_y, \overrightarrow{e}_z)$), référentiel tournant lié au solide \mathcal{R}_s (repère $(O, \overrightarrow{e}_x', \overrightarrow{e}_y', \overrightarrow{e}_z)$)
- Vecteur rotation \mathcal{R}_s / \mathcal{R} : $\overrightarrow{\Omega} = \dot{\theta} \overrightarrow{e}_z$
- Moment cinétique par rapport $O: \overrightarrow{\sigma}_O = [J_O] \overrightarrow{\Omega} = \theta \left(-I_{xz}e'_x I_{yz}e'_y + I_{zz}e_z \right)$ dans \mathcal{R}_s ($I_{zz} = J$, $-I_{xz} = A$, $-I_{yz} = B$)
- Théorèmes fondamentaux :

$$\mathbf{TRD}: \ m \begin{pmatrix} -a\theta^2 \\ a\theta \\ 0 \end{pmatrix} = \overrightarrow{P} + \overrightarrow{F}_{contact} \ \text{où } a \ \text{est la distance entre } O \ \text{et } G.$$

Théorème du **moment cinétique** :
$$m \begin{pmatrix} A\theta - B\theta^2 \\ B\theta + A\theta^2 \\ J\theta \end{pmatrix} = \overrightarrow{M}_P + \overleftarrow{M}_{contact}$$

Théorème de **l'énergie cinétique** : $T = \frac{1}{2}J\theta^2 \Rightarrow \frac{dT}{dt} = J\theta\dot{\theta} = \overrightarrow{M}_O.\overrightarrow{\Omega} \Rightarrow J\ddot{\theta} = \overrightarrow{M}_O.\overrightarrow{e}_z = \mathcal{M}_{O,z}.$

• Cas d'une liaison idéale

 $\mathcal{M}_{O,z\,contact} = 0$ et puissance des actions de contact $\mathcal{P}_{contact} = 0 \Rightarrow \dot{\theta} = cte$.

- Equilibrage d'une machine tournante
- Equilibrage statique : $\sum \overrightarrow{F} = \overrightarrow{0} \Rightarrow a = 0$, G est sur l'axe de rotation.
- Equilibrage dynamique : $\sum \mathcal{M}_{x,y} = 0 \Rightarrow A = B = 0$ et (Oz) est axe principal d'inertie.

2.7.2 Rotation autour d'un point fixe

• Angles d'Euler

- Angles d'Euler (ψ, θ, φ) tels que les trois directions $(\overrightarrow{u}, \overrightarrow{w}, \overrightarrow{e'}_z)$ sont axes principaux d'inertie, point fixe O
- La matrice d'inertie $[J_O]$ est diagonale : $[J_O]=\begin{bmatrix}I_1&0&0\\0&I_2&0\\0&0&I_3\end{bmatrix}.$

• Expression du vecteur rotation :

- Dans la base (e_z, u, e_z') : $\overrightarrow{\Omega} = \dot{\psi} \overrightarrow{e}_z + \dot{\theta} \overrightarrow{u} + \dot{\varphi} \overrightarrow{e}_z'$
- Dans la base (u,w,e_z') : $\Omega=\dot{\theta}\,\overrightarrow{u}+\dot{\psi}\sin\theta\overrightarrow{w}+\left(\dot{\varphi}+\dot{\psi}cos\theta\right)\overrightarrow{e}_z'$

• Energie cinétique

-
$$T = \frac{1}{2}\overrightarrow{\Omega}$$
. $[J_O]\overrightarrow{\Omega}$

- Cas de la **toupie symétrique**: $I_1 = I_2 \implies T = \frac{1}{2}I_1\left(\dot{\theta}^2 + \dot{\psi}^2\sin^2\theta\right) + \frac{1}{2}I_3\left(\dot{\varphi} + \dot{\psi}\cos\theta\right)^2$
 - Equations d'Euler

- Cas général sans symétrie particulière avec $I_1 < I_2 < I_3$, dans la base des axes principaux d'inertie $(\overrightarrow{e}'_x, \overrightarrow{e}'_y, \overrightarrow{e}'_z)$: $\overrightarrow{\Omega} = \omega_1 \overrightarrow{e}'_x + \omega_2 \overrightarrow{e}'_y + \omega_3 \overrightarrow{e}'_z$ et $\overrightarrow{\sigma}_O = [J_O] \overrightarrow{\Omega} = I_1 \omega_1 \overrightarrow{e}'_x + I_2 \omega_2 \overrightarrow{e}'_y + I_3 \omega_3 \overrightarrow{e}'_z$
- Théorème du moment cinétique en O: $\frac{d\overrightarrow{\sigma}_O}{dt}\Big|_{\mathcal{R}} = \frac{d\overrightarrow{\sigma}_O}{dt}\Big|_{\mathcal{R}_S} + \overrightarrow{\Omega}_{\mathcal{R}_S/\mathcal{R}} \wedge \overrightarrow{\sigma}_O = \overrightarrow{M}_o$.

$$\Rightarrow \text{Equations d'Euler} \begin{cases} I_1 \dot{\omega}_1 - (I_2 - I_3) \omega_2 \omega_3 = \mathcal{M}_1 \\ I_2 \dot{\omega}_2 - (I_3 - I_1) \omega_3 \omega_1 = \mathcal{M}_2 \\ I_3 \dot{\omega}_3 - (I_1 - I_3) \omega_1 \omega_2 = \mathcal{M}_3 \end{cases}$$

• Cas où le moment des forces extérieures est nul (mouvement de Poinsot)

 $\overrightarrow{M}_o = \overrightarrow{0}$: cas du mouvement de Poinsot

- Symétrie sphérique : $I_1=I_2=I_3=I\Rightarrow\overrightarrow{\Omega}=\overrightarrow{\cot}$ et $\overrightarrow{\sigma}_O=I\overrightarrow{\Omega}=\overrightarrow{\cot}=\overrightarrow{L}$.
- Toupie symétrique : $I_1=I_2\neq I_3 \Rightarrow \omega_3=cte$
- $\succ \widetilde{\omega} = \omega_1 + i\omega_2$ vérifie $\frac{d\widetilde{\omega}}{dt} = i\lambda\widetilde{\omega}$ avec $\lambda = \omega_3 \frac{I_3 I_1}{I_1}$ d'où précession de $\overrightarrow{\Omega}$ autour de \overrightarrow{e}'_z à la vitesse angulaire λ (schéma) = mouvement de précession libre.
- ightharpoonup Cône du corps (mouvement dans \mathcal{R}_S) : précession de $\overrightarrow{\Omega}$ précession de $\overrightarrow{\sigma}_O = \begin{pmatrix} I_1\omega_1 \\ I_1\omega_2 \\ I_3\omega_3 \end{pmatrix}$

dans $\left(\overrightarrow{e}_x',\overrightarrow{e}_y',\overrightarrow{e}_z'\right)$ autour de \overrightarrow{e}_z' à la vitesse angulaire $\Omega_c=\lambda$.

- ightharpoonup Cône d'espace (ou cône de base) (mouvement dans \mathcal{R}): $\overrightarrow{\sigma}_O = \overrightarrow{cte}$ car $\overrightarrow{M}_o = \overrightarrow{0}$, $\overrightarrow{\Omega}$ et \overrightarrow{e}'_z précessent autour de $\overrightarrow{\sigma}_O$ à la vitesse angulaire $\Omega_s = \sigma_O/I_1$.
- \longrightarrow Exemple de la Terre : oscillation de Chandler de période T=300-400 jours .
 - \bullet Cas où le moment des forces extérieures est non nul $\overrightarrow{M}_o \neq 0$:
- Toupie symétrique dans l'approximation gyroscopique : le moment du poids est faible donc $\dot{\varphi} \gg \dot{\psi}, \dot{\theta}$) (schéma)

Théorème du moment cinétique : $\frac{\mathrm{d}\overrightarrow{\sigma}_O}{\mathrm{d}t}\Big|_{\mathcal{R}} = \overrightarrow{M}_{\overrightarrow{P},o} = \overrightarrow{OG} \wedge M\overrightarrow{g}$ avec $\overrightarrow{OG} = R\overrightarrow{e}'_z$ et $\overrightarrow{g} = -g\overrightarrow{e}_z$

Approximation gyroscopique : le moment du poids est faible, $\overrightarrow{\sigma}_O$ varie peu donc $\overrightarrow{\sigma}_O \sim L\overrightarrow{e}_z' = \overrightarrow{\text{cte}}$

$$\frac{d\overrightarrow{e}_z'}{dt} = \frac{MgR}{I_3\omega} \overrightarrow{e}_z \wedge \overrightarrow{e}_z' \text{ où } L = I_3\omega \text{ (avec } \overrightarrow{\Omega} \sim \omega \overrightarrow{e}_z' \text{ et } \overrightarrow{\sigma}_O \sim L \overrightarrow{e}_z' = I_3 \overrightarrow{\Omega} \text{) , soit : } \frac{d\overrightarrow{e}_z'}{dt} = \overrightarrow{\Omega}_P \wedge \overrightarrow{e}_z'$$

- \Rightarrow **Précession** de l'axe de la toupie \overrightarrow{e}_z' autour de \overrightarrow{e}_z ($\theta=cte$) à la vitesse angulaire $\Omega_P=\frac{MgR}{I_3\omega}$
- \longrightarrow Exemple de la Terre : précession des équinoxes de période T=26 000 ans
- Toupie symétrique soumise à son poids (cas du mouvement de Lagrange-Poisson = moment du poids, pas forcément faible)

Traité en formalisme lagrangien (précession) et hamiltonien (précession + nutation) Cf. Chp 3

→ Exemples (cf. Chp 3): pendule simple, pendule pesant, gyroscope/toupie symétrique (vidéo)

Chapter 3

Mécanique analytique

3.1 Calcul variationnel

Formulations Lagrangienne ou Hamiltonienne = plus simples que la mécanique newtonienne Généralité des principes variationnels en physique, formulation unifiée

3.1.1 Exemples

- Notations : dérivée d'une fonction $y\left(x\right)$ notée $y^{'}\left(x\right)=\frac{dy}{dx}$
- Plus court chemin
- Principe de Fermat

3.1.2 Système à une fonction

On définit
$$S = \int_{x_1}^{x_2} f(y(x), y'(x), x) dx$$

Problème variationnel = trouver y(x) telle que S soit **stationnaire** $\iff dS = 0$

Remarque : si on veut que S soit minimale/maximale, on impose le signe de la dérivée seconde

- Equation d'Euler-Lagrange (1756)
- S stationnaire, $dS = 0 \Rightarrow \frac{\partial f}{\partial y} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial f}{\partial y'} = 0$
 - Exemples d'application :
- Chemin le plus court
- Courbe brachistochrone

3.1.3 Système à deux fonctions

On définit $S = \int_{u_{1}}^{u_{2}} f\left(x\left(u\right), y\left(u\right), x^{'}\left(u\right), y^{'}\left(u\right), u\right) dx$ (représentation paramétrique $x\left(u\right), y\left(u\right)$)

$$S \text{ stationnaire}, dS = 0 \Rightarrow \begin{cases} \frac{\partial f}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}u} \frac{\partial f}{\partial x'} = 0 \\ \frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}u} \frac{\partial f}{\partial y'} = 0 \end{cases} \text{ avec } x'(u) = \frac{dx}{du} \text{ et } y'(u) = \frac{dy}{du} \text{ (2 équations d'Euler-Lagrange)}.$$

3.1.4 Equations de Lagrange

Généralisation à n degrés de liberté (ddl).

 \longrightarrow Exemple : N particules dans un espace à 3 dimensions : 3N coordonnées q_i avec i=1...3NOn considère n degrés de liberté (1 point dans un espace n dimensions) :

 q_i avec i = 1...n sont les **coordonnées généralisées** et $\dot{q}_i = \frac{dq_i}{dt}$ avec i = 1...n sont leurs dérivées par rapport au temps.

Soit $\mathcal{L} = \mathcal{L}(q_i, \dot{q}_i, t)$ le Lagrangien du système (cf. §3), on définit l'intégrale d'action ou action par :

$$S = \int_{t_1}^{t_2} \mathcal{L}\left(q_i, \dot{q}_i, t\right) dt$$

S stationnaire, $dS = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = 0$ (n équations de Lagrange).

3.2 Mécanique lagrangienne

- Avantages de la formulation lagrangienne de la mécanique classique :
- ➤ La forme des équations de Lagrange est indépendante du système de coordonnées.
- ➤ Les équations de Lagrange éliminent les forces dues aux contraintes.
- > Formulation plus simple que la deuxième loi de Newton
- Hypothèses : forces conservatives et référentiel inertiel (galiléen) \Rightarrow pas d'avantage si le système est dissipatif.

3.2.1 Système sans contraintes3

• Principe de d'Alembert

2ème loi de Newton, Principe de d'Alembert (1743) : $\sum_i \left(\frac{\mathrm{d} \overrightarrow{p}_i}{\mathrm{d} t} - \overrightarrow{F}_i\right) . \delta \overrightarrow{r}_i = 0$ lors d'un déplacement δr

• - Définition du Lagrangien

 $\mathcal{L} = T - U$ avec $T = \frac{1}{2}mv^2$ énergie cinétique et U = U(r) énergie potentielle. \mathcal{L} est une fonction des coordonnées q_i et de leurs dérivées \dot{q}_i .

• Principe de Hamilton (ou principe d'action stationnaire ou 1^{er} principe variationnel ou principe de moindre action)

L'action $S = \int_{t_1}^{t_2} \mathcal{L}(q_i, \dot{q}_i, t) dt$ est stationnaire le long de la trajectoire réelle.

$$\Leftrightarrow \delta S = 0$$

- \Leftrightarrow Equations de Lagrange : $\frac{\partial \mathcal{L}}{\partial q_i} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$, où q_i sont les coordonnées généralisées (équations différentielles du 2ème ordre).
- \Leftrightarrow Equations de Lagrange : $\dot{p}_i = \frac{\partial \mathcal{L}}{\partial q_i}$, où $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ sont les moments conjugués (ou impulsions généralisées ou quantités de mouvement généralisées) et $\frac{\partial \mathcal{L}}{\partial q_i}$ est la force généralisée
 - Généralisation à un système de plusieurs particules sans contraintes
 - Exemples
- \longrightarrow Mouvement à 2D (x,y) dans un champ conservatif \Rightarrow 2ème loi de Newton (x)
- \longrightarrow Mouvement à 2D en polaires $(r,\theta) \Rightarrow$ 2ème loi de Newton (r) et théorème du moment cinétique (θ)

3.2.2 Systèmes contraints, holonomes ou non holonomes

- ullet Exemple : pendule simple, contrainte r=l=cte perte d'un ddl
- Nombre de coordonnées généralisées

 \triangleright Système à N particules de coordonnées \overrightarrow{r}_i avec $i=1\dots N$ et de coordonnées généralisées q_i avec $i=1\dots n$, où n est le nombre minimal de coordonnées généralisées permettant de décrire complètement la configuration du système (espace de configuration) :

$$q_i(\overrightarrow{r_i},t)$$
 avec $i=1\ldots N$ au maximum $3N$ coordonnées $\overrightarrow{r}_i(q_i,t)$ avec $i=1\ldots n$

Cas particulier : les coordonnées sont dites ' $\mathbf{naturelles}$ ' lorsqu'elles sont indépendantes du temps t

- ightharpoonup Contraintes \Rightarrow diminution du nombre de coordonnées généralisées : $n \leq 3N$ (n=3N : système sans contrainte, n < 3N : système avec contraintes)
 - Nombre de **degrés de liberté** (ddl) = nombre de coordonnées généralisées n qui peuvent varier indépendamment au cours d'un 'petit' déplacement.
 - Systèmes holonomes

Système holonome = système pour lequel le nombre de ddl est **égal** au nombre de coordonnées généralisées = système dont les **contraintes sont toutes holonomes** (il existe une relation entre les \overrightarrow{r}_i (ou entre les q_i), telle que $g(\overrightarrow{r}_i,t)=0$)

- \Rightarrow s'il y a s contraintes holonomes, le système possède n=3N-s d
dl et n=3N-s coordonnées généralisées.
- \longrightarrow Exemples: pendule simple (n=1), pendule double (n=2).
 - Systèmes non holonomes

Système non holonome = système pour lequel le nombre de ddl est **différent** du nombre de coordonnées généralisées = systèmes qui possède des **contraintes non holonomes** (il existe une relation entre les \overrightarrow{r}_i ou entre les q_i , telle que par exemple $g(\overrightarrow{r}_i,t) > 0$ ou $\frac{\partial g}{\partial t}(\overrightarrow{r}_i,t) = 0$)

 \longrightarrow Exemple : boule sur un plan.

3.2.3 Equations de Lagrange pour un système contraint holonome

- Hypothèses sur les forces : forces liées aux contraintes et forces actives (ou d'interaction)
- Forces liées aux contraintes $\overrightarrow{F}_{contr\,i}$: elles peuvent être non conservatives mais sont perpendiculaires à la surface de déplacement (liaisons sans frottement, **pas de dissipation**), donc $\delta \overrightarrow{r}_i.\overrightarrow{F}_{contr\,i}=0$ (on dit que le déplacement compatible avec les contraintes)
- Forces actives \overrightarrow{F}_i : elles dérivent d'une énergie potentielle mais sont non conservatives car peuvent dépendre du temps t, donc $\overrightarrow{F}_i = -\overrightarrow{\nabla} U_i \left(\overrightarrow{r}_i, t\right)$
- Force totale : $\overrightarrow{F}_{tot} = \sum_i \overrightarrow{F}_i + \overrightarrow{F}_{contr\,i}$, vérifie la 2ème loi de Newton.
 - Principe de d'Alembert

Le déplacement $\delta \overrightarrow{r}_i$ est compatible avec les contraintes i.e. $\delta \overrightarrow{r}_i . \overrightarrow{F}_{contr}{}_i = 0 \Rightarrow \sum_i \left(\frac{\mathrm{d} \overrightarrow{p}_i}{\mathrm{d} t} - \overrightarrow{F}_i \right) . \delta \overrightarrow{r}_i = 0$

• Principe de Hamilton pour un système contraint holonome

- Définition du Lagrangien : $\mathcal{L} = T U$ exclut les forces liées aux contraintes
- L'action $S = \int_{t_1}^{t_2} \mathcal{L}(q_i, q_i, t) dt$ est stationnaire le long de la trajectoire réelle (respecte les contraintes)

$$\Leftrightarrow \delta S = 0$$

- \Leftrightarrow Equations de Lagrange : $\frac{\partial \mathcal{L}}{\partial q_i} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ où q_i avec $i=1\dots n=3N-s$ sont les coordonnées généralisées
- \Leftrightarrow Equations de Lagrange : $\dot{p}_i = \frac{\partial \mathcal{L}}{\partial q_i}$ où $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ sont les moments conjugués (ou impulsions généralisées ou quantités de mouvement généralisées) et $\frac{\partial \mathcal{L}}{\partial q_i}$ est la force généralisée
 - Coordonnées cycliques

Si le Lagrangien $\mathcal{L}(q_i, q_i, t)$ ne dépend pas de la coordonnée q_j , on dit que q_j est cyclique (ou muette, ou ignorable) et la quantité de mouvement généralisée correspondante est conservée : $\frac{\partial L}{\partial q_i} = 0$ (invariance de \mathcal{L} en q_j) $\Rightarrow p_j = \frac{\partial L}{\partial q_j} = \text{cte } (p_j \text{ est conservée}).$

3.2.4 Equations de Lagrange pour un système contraint non holonome, multiplicateurs de Lagrange

- Exemple de multiplicateur de Lagrange pour une contrainte holonome sur un système 2D à 1ddl, interprétation du multiplicateur de Lagrange
- ullet Cas général : système à s contraintes holonomes et r contraintes non holonomes
- 3N s coordonnées généralisées : q_k avec $k = 1 \dots 3N s$
- r relations de contraintes non holonomes : $\sum_{k=1}^{3N-s} \gamma_{lk} q_k + \gamma_l = 0$
- $\Rightarrow 3N-s$ équations de Lagrange généralisées : $\frac{\partial \mathcal{L}}{\partial q_k} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_k} \sum_{l=1}^r \lambda_l \gamma_{lk} = 0$ où les r coefficients λ_l sont les **multiplicateurs de Lagrange**.
 - Remarques
- applicable à des contraintes holonomes s'écrivant sous forme d'égalités $g_l\left(q_k,t\right)=0$ avec $\gamma_{lk}=\frac{\partial g_l}{\partial q_k}$ et $\gamma_l=\frac{\partial g_l}{\partial t}$.
- pas applicable à des contraintes non holonomes s'écrivant sous forme d'inégalités.

3.2.5 Exemples d'utilisation des équations de Lagrange

- → Perle sur cerceau tournant
- → Machine d'Atwood
- → Problème à deux corps
- → Toupie symétrique soumise à son poids (mouvement de Lagrange-Poisson)
- \longrightarrow Force centrale

3.3 Mécanique hamiltonienne

1687 Newton 'Principia Mathematica' : 2ème loi de Newton, coordonnées cartésiennes

1788 Lagrange 'Mécanique analytique' : équations de Lagrange, coordonnées généralisées

Formulation Lagrangienne pas adaptée aux systèmes dissipatifs

1834 Hamilton, formalisme plus flexible pour le choix des coordonnées

3.3.1 Symétries et invariances, grandeurs conservées

• Théorème de Noether

A toute transformation laissant l'action S invariante (ou le lagrangien \mathcal{L} invariant) correspond une grandeur conservée.

- Rappel sur les coordonées cycliques
- q_j est cyclique (\mathcal{L} ne dépend pas de la coordonnée q_j), $\frac{\partial \mathcal{L}}{\partial q_j} = 0 \Rightarrow \dot{p}_j = 0 \Rightarrow p_j = \frac{\partial \mathcal{L}}{\partial \dot{q}_j} = cte$ et p_j est une constante du mouvement.
 - Invariance par translation \iff conservation de la quantité de mouvement
- $2^{\grave{\rm e}{\rm m}{\rm e}}$ loi de Newton : un système isolé est invariant par translation.
- \mathcal{L} invariant par translation (i.e. pour tout déplacement $\overrightarrow{\varepsilon}$ tel que $\overrightarrow{r}_i \to \overrightarrow{r}_i + \overrightarrow{\varepsilon}$, $\delta \mathcal{L} = 0$) $\Rightarrow \overrightarrow{p} = \sum \overrightarrow{p}_{\alpha} = \overrightarrow{cte}$.
 - Invariance par **rotation** \iff conservation du moment cinétique

 \mathcal{L} invariant par rotation $\Rightarrow \overrightarrow{\sigma} = \sum \overrightarrow{r}_{\alpha} \wedge \overrightarrow{p}_{\alpha} = \text{cte.}$

• Invariance par translation dans le temps \iff conservation de l'énergie totale, hamiltonien \mathcal{H}

 \mathcal{L} ne dépend pas explicitement du temps $t \Rightarrow \frac{\partial \mathcal{L}}{\partial t} = 0 \Rightarrow \frac{d}{dt} \left[\sum_i p_i \dot{q}_i - \mathcal{L} \right] = 0 \Rightarrow \mathcal{H} = \sum_i p_i \dot{q}_i - \mathcal{L} = cte$

• Définition du **hamiltonien** : $\mathcal{H} = \sum_i p_i \dot{q}_i - \mathcal{L}$

Si les coordonnées sont naturelles (i.e. $\overrightarrow{r}_{\alpha} = \overrightarrow{r}_{\alpha} (q_i)$ avec $i = 1 \dots n$, indépendantes du temps), alors $\mathcal{H} = T + U$ représente l'énergie totale du système

3.3.2 Hamiltonien et transformation de Legendre

- Espace de configuration et espace d'état
- $(q_i) = (q_1, q_2, \dots, q_n)$ avec $i = 1 \dots n$ déterminent la configuration (position) du système et définissent l'espace de configuration de dimension n
- $(q_i, \dot{q}_i) = (q_1, q_2, \dots, q_n, \dot{q}_1, \dot{q}_2, \dots, \dot{q}_n)$ avec $i = 1 \dots n$ définissent l'espace d'état de dimension 2n
- n équations de Lagrange (équations différentielles du 2^{nd} ordre) : la donnée des $(q_i, \dot{q}_i)_{t=t_0}$ au temps $t=t_0$ fournit les 2n conditions initiales pour la résolution des équations de Lagrange et obtenir une orbite (solution) unique dans l'espace d'état
 - Lagrangien et Hamiltonien, transformée de Legendre, espace des phases
- On passe du Lagrangien $\mathcal{L}(q_i, \dot{q}_i, t)$ au Hamiltonien $\mathcal{H}(q_i, p_i, t)$ par une **transformation de** Legendre : $\mathcal{H} = \sum_i p_i \dot{q}_i \mathcal{L}$ (avec $i = 1 \dots n$).
- $(q_i, p_i) = (q_1, q_2, \dots, q_n, p_1, p_2, \dots, p_n)$ avec $i = 1 \dots n$ définissent l'espace des phases de dimension 2n
- Equations de Lagrange et équations de Hamilton
- ightharpoonup A partir des équations de Lagrange $p_i = \frac{\partial L}{\partial \dot{q}_i}$ et $\dot{p}_i = \frac{\partial L}{\partial q_i}$ (conduisent à des équations différentielles du $\mathbf{2}^{\mathrm{nd}}$ ordre) et de la définition du Hamiltonien $H = \sum_i p_i q_i L$ (ou H = T + U si les coordonnées sont naturelles), on obtient les équations de Hamilton.
- \succ Hypothèses : contraintes holonomes, forces dérivent d'une énergie potentielle mais non conservatives car peuvent dépendre du temps t donc $\overrightarrow{F}_i = -\overrightarrow{\nabla} U_i(\overrightarrow{r}_i,t)$, coordonnées pas forcément naturelles.
- > Equations de Hamilton $\begin{cases} \dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i} \\ \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q_i} \end{cases}$ (système d'équations différentielles du **1er ordre**)

- Cas des systèmes 1D conservatifs
- Obtention des équations de Hamilton dans le cas d'un système 1D conservatif
- Lagrange \Rightarrow 1 équation différentielle du 2nd ordre, Hamilton \Rightarrow 2 équations différentielles du 1^{er}ordre
- Méthode (q = x):
- 1) écrire le Hamiltonien $\mathcal{H}(x, \dot{x}) = T(x, \dot{x}) + U(x)$
- 2) changement de variable $\dot{x} \to p : T(x,p)$ puis $\mathcal{H}(x,p)$
- 3) équations de Hamilton : $\dot{x} = \frac{\partial \mathcal{H}}{\partial p}$ et $\dot{p} = -\frac{\partial \mathcal{H}}{\partial x}$
- → Exemples simples à 1D : perle sur un fil rectiligne, machine d'Atwood

3.3.3 Crochet de Poisson

- Définition du crochet de Poisson
- $\overrightarrow{q} = (q_1, q_2, \dots, q_n) \text{ et } \overrightarrow{p} = (p_1, p_2, \dots, p_n)$
- $\mathcal{H}(\overrightarrow{q}, \overrightarrow{p}, t)$: 2n+1 variables
- Dérivée par rapport au temps t d'une quantité $F: \frac{dF}{dt} = \frac{\partial F}{\partial t} + \{F, \mathcal{H}\}$ où $\{F, \mathcal{H}\} = \sum_k \left[\frac{\partial F}{\partial q_k} \frac{\partial \mathcal{H}}{\partial p_k} \frac{\partial F}{\partial p_k} \frac{\partial \mathcal{H}}{\partial q_k} \right]$ est le crochet de Poisson
 - \bullet Conservation de \mathcal{H}
- Dérivée de $\mathcal H$ par rapport au temps $t: F=\mathcal H \Rightarrow \frac{d\mathcal H}{dt}=\frac{\partial\mathcal H}{\partial t}$
- Si H ne dépend pas explicitement du temps, alors H est conservé.
 - Cas particulier

Si les forces sont conservatives et les contraintes $g_l(q_k)$ sont indépendantes du temps (coordonnées naturelles), alors H = T + U et H est **conservé**

3.3.4 Exemples d'utilisation du formalisme hamiltonien

- Méthode de résolution en formalisme hamiltonien
- 1) Choix des coordonnées généralisées q_i
- 2) Ecrire T et U en fonction de (q_i, q_i)
- 3) Calculer $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{\partial T}{\partial \dot{q}_i}$ si le système est conservatif $(U(q_i))$ ne dépend que de q_i)
- 4) Changement de variable $(q_i, \dot{q}_i) \rightarrow (q_i, p_i)$ en exprimant $\dot{q}_i (q_i, p_i)$
- 5) Ecrire le hamiltonien: $\mathcal{H}(q_i, p_i) = T + U$ si les coordonnées sont naturelles, $\mathcal{H} = \sum_i p_i \dot{q}_i \mathcal{L}$ sinon
- 6) Ecrire les équations de Hamilton

(Remarque: étapes 3 et 4 = étapes supplémentaires par rapport à l'approche lagrangienne)

- Exemples :
- \longrightarrow Force centrale
- \longrightarrow Particule sur un cône
- → Toupie symétrique soumise à son poids (mouvement de Lagrange-Poisson)

3.3.5 Avantages du formalisme hamiltonien

• Signification physique

Le Hamiltonien $\mathcal{H}(q_i, p_i, t) = T + U$ a un sens physique (énergie totale), ce n'est pas le cas pour le Lagrangien $\mathcal{L}(q_i, \dot{q}_i, t) = T - U$

- Coordonnées cycliques
- Si le Hamiltonien $\mathcal{H}(q_i, p_i, t)$ ne dépend pas de la coordonnée q_j , on dit que q_j est cyclique et la quantité de mouvement généralisée correspondante est conservée : $\frac{\partial \mathcal{H}}{\partial q_j} = 0$ (invariance de \mathcal{H} en q_j) $\Rightarrow p_j = -\frac{\partial \mathcal{H}}{\partial q_j} = 0 \Rightarrow p_j = \text{cte}$.
- n ddl et q_j cyclique \Rightarrow en formalisme hamiltonien, $\mathcal{H}(q_i, p_i, t)$ ne dépend pas de q_j et p_j = cte donc on peut ignorer q_j et p_j : problème à n-1 ddl (ce n'est pas le cas en formalisme lagrangien puisque $\mathcal{L}(q_i, \dot{q}_i, t)$ dépend toujours de \dot{q}_j).
- \longrightarrow Exemple : force centrale
 - Equations de Lagrange vs. équations de Hamilton
- Lagrange : n équations différentielles du $2^{\rm nd}$ ordre, invariantes par changement de coordonnées dans l'espace des configurations à n dimensions $\overrightarrow{Q} = \overrightarrow{Q}(\overrightarrow{q})$ (= impossible de mélanger \overrightarrow{q} et $\dot{\overrightarrow{q}} = \frac{d\overrightarrow{q}}{dt}$)
- **Hamilton**: 2n équations différentielles du 1^{er}ordre, invariantes par changement de l'espace des configurations à 2n **dimensions** $\begin{cases} \overrightarrow{Q} = \overrightarrow{Q}(\overrightarrow{q}, \overrightarrow{p}) \\ \overrightarrow{P} = \overrightarrow{P}(\overrightarrow{q}, \overrightarrow{p}) \end{cases}$ (transformation canonique = possible de mélanger \overrightarrow{q} et \overrightarrow{p})
- Forme différentielle simple (1^{er} ordre) des équations de Hamilton : $\begin{cases} \dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i} = f_i(\overrightarrow{q}, \overrightarrow{p}) \\ \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q_i} = g_i(\overrightarrow{q}, \overrightarrow{p}) \end{cases} \Rightarrow$ $\dot{\overrightarrow{z}} = \overrightarrow{h}(\overrightarrow{z}) \text{ avec } \overrightarrow{z} = (\overrightarrow{q}, \overrightarrow{p}) \text{ et } \overrightarrow{h} = (f_1 \dots f_n, g_1 \dots g_n) \text{ (2}n \text{ dimensions)}$

3.3.6 Orbites dans l'espace des phases, théorème de Liouville

- Orbites dans l'espace des phases
- $\overrightarrow{z}=(\overrightarrow{q},\overrightarrow{p})$ représente un **point unique** dans l'**espace des phases** à 2n dimensions
- Au temps $t=t_0$, $\overrightarrow{z}_0=(\overrightarrow{q}_0,\overrightarrow{p}_0)$ définit la condition initiale
- Pour $t > t_0$, les équations de Hamilton donnent l'évolution de $\overrightarrow{z}(t) = (\overrightarrow{q}, \overrightarrow{p})(t)$ qui décrit une trajectoire unique dans l'espace des phases appelée **orbite** (visualisation par sections de Poincaré).
- Propriété : deux orbites différentes dans l'espace des phases **ne peuvent pas se croiser** en \overrightarrow{z}_0 (même à des instants différents si H ne dépend pas du temps).
- → Exemples : oscillateur harmonique, chute libre
 - Théorème de Liouville
- $\overrightarrow{z}=(\overrightarrow{q},\overrightarrow{p})$ évolue dans le temps selon les équations de Hamilton $\dot{\overrightarrow{z}}=h\left(\overrightarrow{z}\right)$
- $\overrightarrow{v} = \dot{\overrightarrow{z}} = (\dot{\overrightarrow{q}}, \dot{\overrightarrow{p}}) = (\frac{\partial \mathcal{H}}{\partial p}, -\frac{\partial \mathcal{H}}{\partial q}) =$ 'vitesse' dans l'espace des phases
- Systèmes identiques avec des conditions initiales différentes à $t=t_0$, $\overrightarrow{z}_0=(\overrightarrow{q}_0,\overrightarrow{p}_0)$ dont l'ensemble représente une **aire** (si 2n=2, n=1 ddl) ou un **volume** (si 2n>2, n>1 ddl) qui **se déforme** dans l'espace des phases au cours du temps.

- Théorème de Liouville : l'évolution d'un ensemble de conditions initiales dans l'espace des phases se fait sans déformation. Le volume occupé dans l'espace des phases ne varie pas.
- Remarques :
- > seule hypothèse = les équations de Hamilton sont vérifiées.
- \succ valable même si le Hamiltonien dépend du temps, si les forces ne sont pas conservatives, ou si les coordonnées ne sont pas naturelles et $H \neq T + U$.
- \succ valable dans l'espace des phases $(\overrightarrow{q}, \overrightarrow{p})$ du formalisme hamiltonien mais pas dans l'espace des états du formalisme lagrangien $(\overrightarrow{q}, \overrightarrow{q})$.
- \succ analogie avec la **conservation du volume** pour un fluide incompressible : théorème de Liouville (volume V=cte) et non croisement des orbites (nombre de points N=cte dans le volume V), d'où densité d'orbites $\rho=\frac{N}{V}=cte$ (fluide incompressible).
- > systèmes chaotiques : sensibles aux conditions initiales (des orbites proches à $t=t_0$ s'éloignent les unes des autres) d'où étirements et repliements du volume dans l'espace des phases pour qu'il reste constant.

3.3.7 Compléments

• Action

$$A = \int_{t_1}^{t_2} \mathcal{L}(t) dt \Rightarrow \frac{\partial A}{\partial q_i} = p_i \text{ et } \frac{\partial A}{\partial t} = -\mathcal{H}$$

• Equation de Hamilton-Jacobi

$$\frac{\partial A}{\partial t} = -\mathcal{H} \text{ avec } \mathcal{H} \left(q_i, p_i = \frac{\partial A}{\partial q_i}, t \right)$$

• 2^{ème} principe variationnel

 \mathcal{H} est conservé le long de la trajectoire $\frac{\partial H}{\partial t}=0 \Rightarrow \Delta \int_{t_0}^{t_1} \left(L+H\right) dt=0$

Si
$$\mathcal{L} = T - U$$
 et $\mathcal{H} = T + U$, alors $\Delta \int_{t_0}^{t_1} 2T dt = 0$

Bibliographie

Mécanique Classique – J.R. Taylor (de Boeck 2012)

La physique par la pratique – B. Portelli, J. Barthes (H& K 2005)

La physique de tous les jours – I. Berkes (Vuibert 2006)

Les milieux granulaires : entre fluide et solide – B. Andreotti, Y. Forterre, O. Pouliquen (EDP Sciences 2011)

Sables, poudres et grains : Introduction à la physique des milieux granulaires – J. Duran (Eyrolles)

Dictionnaire de physique expérimentale tome 1 Mécanique – L. Quaranta, G. Germain (Pierron 2002)

Petits problèmes de physique 1ère partie – F. Graner (Springer 1998)

Petits problèmes de physique 2ème parie – R. Kaiser (Springer 1999)

Livres de prépa

Mécanique 1ère année MPSI-PCSI – P. Brasselet (PUF, 2000)

Mécanique – J.P. Perez (Elsevier Masson 1997, 2006)

Mécanique 1 et 2 – M. Bertin, J. Renaud (Dunod 1994)

Mécanique 1 et 2 – J.P Faroux, J. Renaud (Dunod 1998)

Mécanique – J.P Faroux, J. Renaud, L. Bocquet (Dunod 2002)

Sciences Industrielles Mécanique 2ème année – C. Chèze , M. Delègue, F. Bronsard (Ellipses 2008)

Mécanique 2 – J. Boutigny (Vuibert)

Mécanique 2ème année – J.P. Sarmant, H. Gié (Tec & Doc 1996) PC-PC* - S. Olivier (Tec & Doc)

MP-MP* - C. More, D. Augier (Tec & Doc)

PCSI – P. Grécias (Tec & Doc)

MP-MP*, PC-PC* - M.N. Sanz (Dunod)

1001 questions en prépa Physique – C. Garing (Ellipses 2013,2014)

BUPs

939 – Dynamique de l'atmosphère terrestre – T. Alhalel (2011)

574 – Systèmes à deux états – M. Gerl (1975)

867 – Etude expérimentale des oscillateurs mécaniques – R. Duffait (2004)

850 – Preuves expérimentales du mouvement de la Terre – J. Savardière (2003)

775 – Théorème de Bertrand – C. Terrien (1995)

587- Aspects modernes des gyroscopes – J.C. Radix (1976)

712 – Le moment cinétique à travers l'univers – H. Gié (1989)

851 – Expérience de Melde - J.P. Roux (2003)

Sujets

- 2019 Composition '(...) Stabilités' (parties A, B, D)
- 2018 Composition 'Interactions dans le système solaire' (parties 1, 3, 4, 6-8)
- 2017 Problème (GPS, ordres de grandeurs, orbites des satellites)
- 2016 Problème (méthodes variationelles en mécanique, équations d'Euler-Lagrange)
- 2015 Problème (oscillateurs, résonance)
- 2011 Composition (oscillations de molécules)
- 2010 Problème (atome d'H, vecteur de Laplace)
- 2008 Problème (moment magnétique, spin)
- 2001 Problème (effet gyroscopique, moment magnétique, spin)
- 2003 Problème 'Planètes extra-solaires'
- 2001 Problème (isolation sismique)
- 1999 Composition (gravitation, effets de marées)

Leçons 2019-2020

- 1. Contact entre deux solides. Frottement.
- 2. Gravitation.
- 3. Caractère non galiléen du référentiel terrestre.
- 4. Précession dans les domaines macroscopique et microscopique.
- 5. Lois de conservation en dynamique.? 20. Conversion de puissance électromécanique.
- ? 22. Rétroaction et oscillations.
- 48. Phénomènes de résonance dans différents domaines de la physique.
- 49. Oscillateurs ; portraits de phase et non-linéarités.

Montages 2019-2020

- 1. Dynamique du point et du solide.
- 2. Surfaces et interfaces.
- 4. Capteurs de grandeurs mécaniques.
- 25. Mesure des fréquences temporelles (domaine de l'optique exclu).
- 26. Mesure de longueurs.
- ? 27. Systèmes bouclés.
- 28. Instabilités et phénomènes non-linéaires.*
- 31. Résonance.
- 32. Couplage des oscillateurs.
- 33. Régimes transitoires.
- ? 35. Moteurs.

Sites Internet

http://www.agregation-physique.org/

http://bupdoc.udppc.asso.fr/consultation/selections.php

http://www.physagreg.fr/

http://www.physagreg.fr/video.php

https://www.ph-suet.fr/agrégation/

Vidéos et exemples

• Conservation de la quantité de mouvement

Recul d'un fusil : https://www.youtube.com/watch?v=Nl0rbQ7TWlU

Pendule de Newton : https://www.youtube.com/watch?v=mUrj8ll7Oos

• Rotation, conservation du moment cinétique

Tabouret inertiel: https://www.youtube.com/watch?v=yfwb39VCNcQ

Chat retombant sur ses pattes: https://www.youtube.com/watch?v=W99aif0eH9A,

https://www.youtube.com/watch?v=S5CzHqy0Rbk

Plongeon: https://www.youtube.com/watch?v=QwbStLWMnXM

• Conservation énergie mécanique

Saut à la perche : https://www.youtube.com/watch?v=3eOE-ABOrBU

Régulateur de Watt: https://www.youtube.com/watch?v=cM25CX EKQg

• Référentiels non galiléens

Pendule de Foucault: https://www.youtube.com/watch?v=qOxxAWICYdY

• Frottements

Fouet d'Indiana Jones : https://www.youtube.com/watch?v=ceU4oPRCwX8

Stick-slip, archet violon: https://www.youtube.com/watch?v=FO5bq6x_Tws

Règle de Sommerfeld (doigt sous règle)

Effet rétro au billard : https://www.youtube.com/watch?v=ACkqi8Aqgyg

Frottement solide (statique): https://www.youtube.com/watch?v=3miOIZKKYHs

Frottement solide (dynamique): https://www.youtube.com/watch?v=4kY-v6mq8lA,

https://www.youtube.com/watch?v=Hizwkr2LCp4

• Solides en rotation, conservation du moment cinétique

Gyroscope: https://www.youtube.com/watch?v=GeyDf4ooPdo,

https://www.youtube.com/watch?v=cquvA IpEsA

Disque d'Euler : https://www.youtube.com/watch?v=W99aif0eH9A