## The Use of Generative AI in the Videogames Industry

June 15, 2024

## 1 Survey results

#### 1.1 Introduction

Here we will analyze and visualize the survey data.

#### 1.2 Initial setup

Install and load the needed libraries and the survey data.

```
[]: # List of packages to install
     packages <- c("tidyverse", "syuzhet", "wordcloud", "tidytext", "readxl", "tm")</pre>
     # Function to check and install packages if not already installed
     install_if_missing <- function(p) {</pre>
       if (!requireNamespace(p, quietly = TRUE)) {
         install.packages(p)
       }
     }
     # Install necessary packages
     invisible(sapply(packages, install_if_missing))
     # Load necessary libraries
     library(tidyverse) # for data manipulation
     library(syuzhet) # for sentiment analysis
     library(wordcloud) # for word clouds
     library(tidytext) # for text mining
     library(readxl) # for reading excel files
     library(tm) # for text mining
     # Load the provided survey data
     file_path <- "data/cleanSurveyData20240514.xlsx"</pre>
     # this line can be repeated later to reset the data
     data <- read_excel(file_path)</pre>
     # Suppress warnings (this is fine)
     options(warn = -1)
```

#### 1.2.1 Show the column names + index number (survey questions)

## []: # Display the column names print(colnames(data)) [1] "TD" [2] "Start time" [3] "Completion time" [4] "Email" [5] "Do you consider yourself a professional or a hobbyist in game development?" [6] "Primary area of work?" [7] "Years of experience in game development?" [8] "Are you in a lead role?" [9] "Team size?" [10] "Overall stance on Generative AI?2" [11] "Which areas do you think are less<U+00A0>" [12] "Art & Assets" [13] "Level Design" [14] "Storytelling" [15] "Sound Design" [16] "Voice Overs & Acting" [17] "Programming" [18] "Game Design" [19] "Marketing & PR" [20] "Music" [21] "Community management" [22] "Initial prototyping" [23] "Do you use Generative AI in your work?" [24] "Was it your own idea to begin using Generative AI or your employers?" [25] "Efficiency?" [26] "Quality?" [27] "Enjoyment?" [28] "Do you think of the ability to use Generative AI as an actual and useful competence in your area of work?" [29] "Do your coworkers use Generative AI in their work?" [30] "Do your peers in the industry use Generative AI in their work?" [31] "Do you disclose your use of Generative AI internally?" [32] "Do you disclose your use of Generative AI externally?" [33] "Do you perceive any stigma associated with the use of Generative AI internally?" [34] "Do you perceive any stigma associated with the use of Generative AI externally?" [35] "Would you care to elaborate?5" [36] "Would you care to elaborate?4" [37] "It will help shorten development timelines" [38] "It will lead to more individualized gaming experiences"

[39] "It will impact staffing decisions"

```
[40] "It will lead to smaller team sizes"
[41] "It will democratize game development"
[42] "It will make it cheaper to develop games"
[43] "It will lead to lower quality games"
[44] "It will lead to better games"
[45] "What do you think will be the most promising innovations from Generative
AI in game development?"
[46] "What do you think will be the most negative consequences of Generative AI
in game development?"
[47] "Statement 1"
[48] "Statement 23"
[49] "Question4"
[50] "What would be your ideal future Generative AI driven tool, that could help
you in your area of work?"
[51] "Creativity?"
[52] "Anything else we should know / feedback?"
```

**Syntax note** From here on we will use the index numbers to refer to the questions.

#### Example:

To return the contents of the fifth column "Do you consider yourself a professional or a hobbyist in game development?"

```
data[5] # Returns a data frame with the fifth column
data[[5]] # Returns the raw contents of the fifth column
```

#### 1.3 Count of Professionals vs. Hobbyists

Here we'll access column [5] "Do you consider yourself a professional or a hobbyist in game development?"

```
[]: # Print the count of professionals vs. hobbyists
table(data[[5]])

# Plotting the count of professionals vs. hobbyists
ggplot(
    as.data.frame(table(data[[5]])),
    aes(x = Var1, y = Freq, fill = Var1)
) +
    geom_bar(stat = "identity") +
    labs(
        title = "Professionals vs. Hobbyists",
        x = "Type",
        y = "Count"
    )
```

Hobbyist Professional

200 107



## 1.4 Primary area of work

Here it's column [6] "Primary area of work?"

```
[]: # Show the distribution of 'Primary area of work?' in number of respondents
primary_area_count <- table(data[6])

# Censor abusive language in [6]
names(primary_area_count)[6] <- "Censored"

# Print the raw count of respondents in each primary area of work
```

```
primary_area_count
```

```
Art & Assets
                                      Audio & Music
                                     Auto body, lol
                                                  1
                                            Defense
                               Design & Production
                                           Censored
                                         Generalist
                                                 10
                  Generalist (also solo developer)
I work a full-time job and do game dev as a hobby.
                                    Marketing & PR
               Project Lead, Programmer & Designer
                  Solo developer - I do everything
                           Technical & Programming
                         Travel & Customer Service
                                           Whatever
                                                  1
```

#### 1.4.1 Manual clean up of categories

```
[]: # Generalists
for (i in c(7, 9, 11, 12)) { # Combine the categories
    primary_area_count[8] <- primary_area_count[8] + primary_area_count[i]
}

# Rename to Generalists
names(primary_area_count)[8] <- "Generalists"

# Other
for (i in c(3, 4, 6, 14)) { # Combine the categories
    primary_area_count[15] <- primary_area_count[15] + primary_area_count[i]
}</pre>
```

```
# Rename to Other
names(primary_area_count)[15] <- "Other"

# Remove the categories that were combined
primary_area_count <- primary_area_count[-c(7, 9, 11, 12, 3, 4, 6, 14)]

# Output the cleaned up categories
primary_area_count</pre>
```

```
Art & Assets Audio & Music Design & Production
35 3 13

Generalists Marketing & PR Technical & Programming
138 1 112

Other
5
```

#### 1.4.2 Visualizing the data

```
[]: par(bg = "white") # White background

# Distribution of primary areas of work
pie(
    primary_area_count,
    labels = paste(names(primary_area_count), primary_area_count),
    col = rainbow(length(primary_area_count)),
    main = "Distribution of Primary Areas of Work"
)

# And as a dotchart
dotchart(
    primary_area_count,
    labels = paste(names(primary_area_count), primary_area_count),
    col = rainbow(length(primary_area_count)),
    main = "Distribution of Primary Areas of Work"
)

primary_area_count
```

# Distribution of Primary Areas of Work



| Design & Production | Design    | Audio & Music  | Art & Assets |
|---------------------|-----------|----------------|--------------|
| 1                   |           | 3              | 35           |
| nical & Programmin  | Technical | Marketing & PR | Generalists  |
| 11                  |           | 1              | 138          |
|                     |           |                | Other        |
|                     |           |                | 5            |

## **Distribution of Primary Areas of Work**



#### 1.5 Distribution of Years of Experience

Here we're workin with column [7] "Years of experience in game development?"

```
[]: # Define the correct order for the levels
year_levels <- c(
    "0-1 years",
    "2-4 years",
    "5-9 years",
    "10-14 years",
    "15-19 years",
    "20 years or more"
)</pre>
```

```
# Convert the Years of experience column to a factor with specified levels
data[[7]] <- factor(data[[7]], levels = year_levels)

# Filter out 'Unknown' values
filtered_data <- data[!is.na(data[[7]]), ]

# Descriptive analysis: Distribution of years of experience
experience_distribution <- table(filtered_data[[7]])

# Plotting the distribution of years of experience
ggplot(
    as.data.frame(experience_distribution),
    aes(x = Var1, y = Freq, fill = Var1)
) +
    geom_bar(stat = "identity") +
    labs(
        title = "Years of experience in game development?",
        x = "Experience",
        y = "Count"
)</pre>
```





#### 1.6 Overall Stance on Generative AI

```
[]: # Define the correct order for the levels
stance_levels <- c(
    "Very negative",
    "Negative",
    "Neutral",
    "Positive",
    "Very positive"
)

# Convert the 'Overall stance on Generative AI?2'
# column to a factor with specified levels</pre>
```

```
data[[10]] <- factor(data[[10]], levels = stance_levels)

# Exclude 'Unknown' values
filtered_data <- data[!is.na(data[[10]]), ]

# Descriptive analysis: Overall stance on Generative AI
stance_distribution <- table(filtered_data[[10]])

# Plotting the overall stance on Generative AI
ggplot(
   as.data.frame(stance_distribution),
   aes(x = Var1, y = Freq, fill = Var1)
) +
   geom_bar(stat = "identity") +
   labs(title = "Overall Stance on Generative AI", x = "Stance", y = "Count")</pre>
```

#### Overall Stance on Generative AI



#### 1.7 Correlation Analysis

```
[]: # Convert categorical data to numeric for correlation analysis
     data_numeric <- data %>%
       mutate(
         YearsExperience = case_when(
           [[7]] == "0-1 years" \sim 1,
           .[[7]] == "2-4 years" \sim 2,
           .[[7]] == "5-9 years" ~ 3,
           .[[7]] == "10-14 years" ~ 4,
           .[[7]] == "15-19 years" ~ 5,
           .[[7]] == "20 years or more" ~ 6,
           TRUE ~ 0
         ),
         StanceOnGenAI = case_when(
           .[[10]] == "Very positive" ~ 5,
           .[[10]] == "Positive" ~ 4,
           .[[10]] == "Neutral" ~ 3,
           .[[10]] == "Negative" ~ 2,
           .[[10]] == "Very negative" ~ 1,
           TRUE ~ 0
         )
       )
     # Calculate correlation
     correlation <- cor(</pre>
       data_numeric$YearsExperience,
       data_numeric$StanceOnGenAI,
      method = "spearman",
       use = "complete.obs"
     print(correlation)
```

[1] -0.08107992

#### 1.8 Sentiment Analysis

#### 1.8.1 Wordcloud

"What do you think will be the most promising innovations from Generative AI in game development?"

```
[]: # Preprocess the text data
data[[45]] <- iconv(data[[45]], "latin1", "UTF-8") # Convert to UTF-8
data[[45]] <- tolower(data[[45]]) # Convert to lowercase
```

```
data[[45]] <- removePunctuation(data[[45]]) # Remove punctuation</pre>
data[[45]] <- removeNumbers(data[[45]]) # Remove numbers</pre>
data[[45]] <- removeWords(data[[45]], stopwords("smart")) # Remove stopwords
data[[45]] <- gsub("\bgame\b", "games", data[[45]]) # turn game into games</pre>
data[[45]] <- stripWhitespace(data[[45]]) # Remove extra whitespaces</pre>
par(bg = "white") # White background
# Create a wordcloud
wordcloud(
 data[[45]],
 colors = rainbow(10),
 random.order = FALSE,
 scale = c(5, 0.5),
 max.words = 250
# Add a title to the wordcloud
title(main = "Most promising innovations from GenAI?")
# now withouth "games"
data[[45]] <- removeWords(data[[45]], "games")</pre>
wordcloud(
 data[[45]],
 colors = rainbow(10),
 random.order = FALSE,
 scale = c(4, 0.5),
 max.words = 250
# Add a title to the wordcloud
title(main = "Most promising innovations from GenAI? (-games)")
```

#### Most promising innovations from GenAl?



#### Most promising innovations from GenAl? (-games)

```
procedurally complex procedural cost innovative improve improve improve individual asset process individual asset process
```

# "What do you think will be the most negative consequences of Generative AI in game development?"

```
# wordcloud
# Preprocess the text data
data[[46]] <- iconv(data[[46]], "latin1", "UTF-8") # Convert to UTF-8
data[[46]] <- tolower(data[[46]]) # Convert to lowercase
data[[46]] <- removePunctuation(data[[46]]) # Remove punctuation
data[[46]] <- removeNumbers(data[[46]]) # Remove numbers
data[[46]] <- removeWords(data[[46]], stopwords("smart")) # Remove stopwords
data[[46]] <- gsub("\\bgame\\b", "games", data[[46]]) # turn game into games
data[[46]] <- stripWhitespace(data[[46]]) # Remove extra whitespaces</pre>
```

```
par(bg = "white") # White background
# Create a wordcloud
wordcloud(
 data[[46]],
 colors = rainbow(10),
 random.order = FALSE,
 scale = c(6, 0.5),
 max.words = 250
# Add a title to the wordcloud
title(main = "Most negative consequences from GenAI?")
# now withouth "games"
data[[46]] <- removeWords(data[[46]], "games")</pre>
wordcloud(
 data[[46]],
 colors = rainbow(10),
random.order = FALSE,
 scale = c(6, 0.5),
 max.words = 250
# Add a title to the wordcloud
title(main = "Most negative consequences from GenAI? (-games)")
```

#### Most negative consequences from GenAl?



#### Most negative consequences from GenAl? (-games)



```
barplot(
  sentiment_summary_0,
  las = 2,
  col = rainbow(10),
  main = "Sentiment Analysis of most promising inovations from genAI?"
)
```

| sadness | joy | fear     | disgust  | anticipation | anger    |
|---------|-----|----------|----------|--------------|----------|
| 48      | 85  | 28       | 22       | 87           | 23       |
|         |     | positive | negative | trust        | surprise |
|         |     | 234      | 66       | 100          | 63       |

## Sentiment Analysis of most promising inovations from genAl?



```
[]: # Extract open-ended responses
    open_ended_responses <- data[[46]]

# Perform sentiment analysis
    sentiment_scores_1 <- get_nrc_sentiment(open_ended_responses)

# Summarize sentiment scores
    sentiment_summary_1 <- colSums(sentiment_scores_1)
    print(sentiment_summary_1)

par(bg = "white") # White background

# Plot sentiment scores
barplot(
    sentiment_summary_1,
    las = 2,
    col = rainbow(10),
    main = "Sentiment Analysis of most negative consequences from genAI?"
)</pre>
```

| sadness | joy | fear     | disgust  | anticipation | anger    |
|---------|-----|----------|----------|--------------|----------|
| 147     | 119 | 107      | 71       | 143          | 89       |
|         |     | positive | negative | trust        | surprise |
|         |     | 329      | 226      | 137          | 83       |

## Sentiment Analysis of most negative consequences from genAl?



```
barplot(
  sentiment_summary_2,
  las = 2,
  col = rainbow(10),
  main = "Sentiment Analysis of ideal future genAI driven tool?"
)
```

| sadness | joy | fear     | disgust  | anticipation | anger    |
|---------|-----|----------|----------|--------------|----------|
| 56      | 94  | 36       | 25       | 96           | 24       |
|         |     | positive | negative | trust        | surprise |
|         |     | 276      | 75       | 117          | 42       |

## Sentiment Analysis of ideal future genAl driven tool?



```
[]: # Extract open-ended responses
    open_ended_responses <- data[[52]]

# Perform sentiment analysis
    sentiment_scores_3 <- get_nrc_sentiment(open_ended_responses)

# Summarize sentiment scores
    sentiment_summary_3 <- colSums(sentiment_scores_3)
    print(sentiment_summary_3)

par(bg = "white") # White background

# Plot sentiment scores
barplot(
    sentiment_summary_3,
    las = 2,
    col = rainbow(10),
    main = "Sentiment Analysis of 'Anything else we should know?'"
)</pre>
```

| sadness | joy | fear     | disgust          | anticipation | anger    |
|---------|-----|----------|------------------|--------------|----------|
| 44      | 43  | 32       | 26               | 59           | 23       |
|         |     | positive | ${\tt negative}$ | trust        | surprise |
|         |     | 145      | 58               | 74           | 29       |

## Sentiment Analysis of 'Anything else we should know?'



#### 1.9 Group Comparisons

```
[]: # Define the correct order for the levels
stance_levels <- c(
    "Very negative",
    "Negative",
    "Neutral",
    "Positive",
    "Very positive"
)

# Convert the 'Overall stance on GenAI' column to a factor with specified levels
data[[10]] <- factor(data[[10]], levels = stance_levels)</pre>
```

```
# Convert categorical data to numeric for stance on Generative AI
data <- data %>%
 mutate(
    StanceOnGenAI = case_when(
      .[[10]] == "Very positive" ~ 5,
      .[[10]] == "Positive" \sim 4,
      .[[10]] == "Neutral" ~ 3,
      .[[10]] == "Negative" \sim 2,
      .[[10]] == "Very negative" ~ 1,
      TRUE ~ NA_real_
   )
  )
# Filter data for professionals and hobbyists
professionals <- data %>% filter(data[[5]] == "Professional")
hobbyists <- data %>% filter(data[[5]] == "Hobbyist")
# Calculate average stance on Generative AI
avg_stance_professionals <- mean(professionals$StanceOnGenAI, na.rm = TRUE)</pre>
avg_stance_hobbyists <- mean(hobbyists$StanceOnGenAI, na.rm = TRUE)</pre>
print(
 paste(
    "Average stance on GenAI for professionals:",
    avg_stance_professionals
)
print(
 paste(
    "Average stance on GenAI for hobbyists:",
    avg_stance_hobbyists
 )
)
# Perform a t-test to compare the average stance
# on Generative AI between professionals and hobbyists
t_test_result <- t.test(</pre>
 professionals$StanceOnGenAI,
 hobbyists$StanceOnGenAI,
 alternative = "two.sided",
 mu = 0,
 conf.level = 0.95
# Print the t-test results
print(t_test_result)
```

```
# visualize the t-test results
ggplot() +
  geom_density(
    aes(x = professionals$StanceOnGenAI, fill = "Professionals"),
    alpha = 0.5
  ) +
  geom_density(
    aes(x = hobbyists$StanceOnGenAI, fill = "Hobbyists"),
    alpha = 0.5
  ) +
  geom_vline(
    xintercept = t_test_result$estimate,
  ) +
  labs(
    title = "Distribution of Stance on Generative AI",
    x = "Stance on Generative AI",
    y = "Density"
  )
[1] "Average stance on GenAI for professionals: 2.5981308411215"
[1] "Average stance on GenAI for hobbyists: 2.795"
```

Welch Two Sample t-test

```
data: professionals$StanceOnGenAI and hobbyists$StanceOnGenAI
t = -1.1712, df = 210.38, p-value = 0.2428
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5282309 0.1344926
sample estimates:
mean of x mean of y
2.598131 2.795000
```



#### 1.9.1 Stance on Generative AI vs. Years of Experience

We'll be working with [7] "Years of experience in game development?" and [10] "Overall stance on Generative AI?2"

```
[]: # Factorize the 'Years of experience' and 'Stance on GenAI' columns
data <- data %>%
    mutate(
        ExperienceGroup = factor(data[[7]]),
        StanceOnGenAI = as.numeric(data[[10]])
)
```

```
[]: # Boxplot for Stance on GenAI vs. Experience Group
ggplot(
    data, aes(
        x = ExperienceGroup,
        y = StanceOnGenAI,
        fill = ExperienceGroup
    )
) +
    geom_boxplot() +
    labs(
        title = "Stance on Generative AI vs. Years of Experience",
        x = "Years of Experience",
        y = "Stance on Generative AI"
    )
```

#### Stance on Generative AI vs. Years of Experience



```
[]: # ANOVA test for Stance on GenAI vs. Experience Group
anova_result <- aov(StanceOnGenAI ~ ExperienceGroup, data = data)
summary(anova_result)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
ExperienceGroup 5 4.11 0.823 0.397 0.85
Residuals 101 209.60 2.075
200 observations deleted due to missingness
```

#### 1.9.2 Main area of work VS Stance on GenAI

Here it's [6] "Primary area of work?" and [10] "Overall stance on Generative AI?2"

```
[]: # Konverter relevante kolonner til faktorer
     data <- data %>%
       mutate(
         UsesGenAI = factor(`Do you use Generative AI in your work?`),
         StanceOnGenAI = as.numeric(`Overall stance on Generative AI?2`)
       )
     # Boxplot for Stance on GenAI vs. Uses GenAI
     ggplot(data, aes(x = UsesGenAI, y = StanceOnGenAI, fill = UsesGenAI)) +
       geom_boxplot() +
      labs(
        title = "Stance on Generative AI vs. Uses Generative AI",
         x = "Uses Generative AI",
         y = "Stance on Generative AI"
       )
     # T-test for Stance on GenAI vs. Uses GenAI
     t_test_result <- t.test(StanceOnGenAI ~ UsesGenAI, data = data)</pre>
     print(t_test_result)
```

Welch Two Sample t-test





```
[]: # Define the levels for the factor
agree_levels <- c(
    "Strongly disagree",
    "Disagree",
    "Neutral",
    "Agree",
    "Strongly agree"
)</pre>
[]: # Convert relevant columns to numeric
data <- data %>%
    mutate(
```

UsesGenAI = factor(`Do you use Generative AI in your work?`),

```
ShortenTimelines = as.numeric(factor(
      `It will help shorten development timelines`,
      agree_levels
    )),
    IndividualizedExperiences = as.numeric(factor(
      'It will lead to more individualized gaming experiences',
      agree_levels
    )),
    ImpactStaffing = as.numeric(factor(
      `It will impact staffing decisions`,
      agree_levels
    )).
    SmallerTeams = as.numeric(factor(
      `It will lead to smaller team sizes`,
      agree_levels
    )),
    DemocratizeDevelopment = as.numeric(factor(
      `It will democratize game development`,
      agree_levels
    )),
    CheaperDevelopment = as.numeric(factor(
      'It will make it cheaper to develop games',
      agree_levels
    )),
    LowerQuality = as.numeric(factor(
      'It will lead to lower quality games',
      agree_levels
    )),
    BetterGames = as.numeric(factor(
      `It will lead to better games`,
      agree_levels
    ))
  )
# Calculate mean responses for each question grouped by UsesGenAI
mean_responses <- data %>%
  group_by(UsesGenAI) %>%
  summarise(
    MeanShortenTimelines = mean(
      ShortenTimelines,
      na.rm = TRUE
    ),
    MeanIndividualizedExperiences = mean(
      IndividualizedExperiences,
     na.rm = TRUE
    ),
    MeanImpactStaffing = mean(
```

```
ImpactStaffing,
      na.rm = TRUE
    ),
    MeanSmallerTeams = mean(
      SmallerTeams,
     na.rm = TRUE
    ),
    MeanDemocratizeDevelopment = mean(
      DemocratizeDevelopment,
      na.rm = TRUE
    ).
    MeanCheaperDevelopment = mean(
      CheaperDevelopment,
     na.rm = TRUE
    ),
    MeanLowerQuality = mean(
      LowerQuality,
      na.rm = TRUE
    ),
    MeanBetterGames = mean(
      BetterGames,
     na.rm = TRUE
    )
  )
print(mean_responses)
# Pivot the data to a long format for plotting
data_long <- data %>%
 pivot_longer(
    cols = starts_with("ShortenTimelines"):starts_with("BetterGames"),
    names_to = "Question",
    values_to = "Response"
  )
# Improve the plot layout and labels
ggplot(data_long, aes(x = UsesGenAI, y = Response, fill = UsesGenAI)) +
  geom_boxplot() +
 facet_wrap(~Question, scales = "free_y", ncol = 2) +
 labs(
    title = "Comparison of Perceptions by Generative AI Usage",
    x = "Uses Generative AI",
    y = "Response (1=Strongly Disagree, 5=Strongly Agree)",
    fill = "Uses Generative AI"
  )
```

# A tibble: 2 x 9

UsesGenAI MeanShortenTimelines MeanIndividualizedExperien~1 MeanImpactStaffing

| <fct></fct> | <dbl></dbl> |      |
|-------------|-------------|------|
| <dbl></dbl> | <dbl></dbl> |      |
| 1 No        | 2.85        | 2.14 |
| 4.12        |             |      |
| 2 Yes       | 4.01        | 3.36 |
| 3.99        |             |      |

# i abbreviated name: 1: MeanIndividualizedExperiences

# i 5 more variables: MeanSmallerTeams <dbl>, MeanDemocratizeDevelopment
<dbl>,

# MeanCheaperDevelopment <dbl>, MeanLowerQuality <dbl>, MeanBetterGames
<dbl>

### Comparison of Perceptions by Generative AI Usage



```
[]: # Custom function to convert columns to numeric factor levels
     convert_to_numeric <- function(column, levels) {</pre>
       as.numeric(factor(column, levels = levels))
     }
     # Convert relevant columns to factors and numeric
     data <- data %>%
       mutate(
         LeadRole = ifelse(
           is.na(`Are you in a lead role?`),
           "Hobbyist", as.character(`Are you in a lead role?`)
         LeadRole = factor(LeadRole, levels = c("No", "Yes", "Hobbyist")),
         ShortenTimelines = convert_to_numeric(
           'It will help shorten development timelines',
           agree_levels
         ),
         IndividualizedExperiences = convert_to_numeric(
           `It will lead to more individualized gaming experiences`,
           agree_levels
         ImpactStaffing = convert_to_numeric(
           `It will impact staffing decisions`,
           agree_levels
         ),
         SmallerTeams = convert to numeric(
           `It will lead to smaller team sizes`,
           agree_levels
         ),
         DemocratizeDevelopment = convert_to_numeric(
           `It will democratize game development`,
           agree_levels
         ),
         CheaperDevelopment = convert_to_numeric(
           'It will make it cheaper to develop games',
           agree_levels
         ),
         LowerQuality = convert_to_numeric(
           'It will lead to lower quality games',
           agree_levels
         ),
         BetterGames = convert to numeric(
           'It will lead to better games',
           agree_levels
         )
       )
```

```
# Calculate mean responses for each question grouped by LeadRole
mean_responses_lead <- data %>%
  group_by(LeadRole) %>%
  summarise(
    MeanShortenTimelines = mean(
      ShortenTimelines,
      na.rm = TRUE
    ),
    MeanIndividualizedExperiences = mean(
      IndividualizedExperiences,
      na.rm = TRUE
    ),
    MeanImpactStaffing = mean(
      ImpactStaffing,
     na.rm = TRUE
    ),
    MeanSmallerTeams = mean(
      SmallerTeams,
      na.rm = TRUE
    ),
    MeanDemocratizeDevelopment = mean(
      DemocratizeDevelopment,
      na.rm = TRUE
    ),
    MeanCheaperDevelopment = mean(
      CheaperDevelopment,
      na.rm = TRUE
    ),
    MeanLowerQuality = mean(
      LowerQuality,
     na.rm = TRUE
    ),
    MeanBetterGames = mean(
      BetterGames,
      na.rm = TRUE
    )
  )
print(mean_responses_lead)
# Pivot the data to a long format for plotting
data_long_lead <- data %>%
 pivot_longer(
    cols = ShortenTimelines:BetterGames,
    names_to = "Question",
    values_to = "Response"
  )
```

```
# Plot each question in a facet grid
ggplot(data_long_lead, aes(x = LeadRole, y = Response, fill = LeadRole)) +
    geom_boxplot() +
    facet_wrap(~Question, scales = "free_y", ncol = 2) +
    labs(
        title = "Comparison of Perceptions by Lead Role",
        x = "Lead Role",
        y = "Response (1=Strongly Disagree, 5=Strongly Agree)",
        fill = "Lead Role"
    )
```

#### # A tibble: 3 x 9

 ${\tt LeadRole\ MeanShortenTimelines\ MeanIndividualizedExperiences\ MeanImpactStaffing}$ 

```
<fct>
                          <dbl>
<dbl>
                   <dbl>
1 No
                           3.36
                                                          2.89
4.20
2 Yes
                           3.14
                                                          2.32
3.86
3 Hobbyist
                           3.33
                                                          2.64
4.11
# i 5 more variables: MeanSmallerTeams <dbl>, MeanDemocratizeDevelopment
    MeanCheaperDevelopment <dbl>, MeanLowerQuality <dbl>, MeanBetterGames
```

### Comparison of Perceptions by Lead Role



```
[]: # Filter out hobbyists for the t-tests
data_filtered <- data %>%
    filter(LeadRole %in% c("No", "Yes"))

# Perform t-tests for each question
t_test_results <- list()

questions <- c(
    "ShortenTimelines",
    "IndividualizedExperiences",
    "ImpactStaffing",
    "SmallerTeams",
    "DemocratizeDevelopment",</pre>
```

```
"CheaperDevelopment",
  "LowerQuality",
  "BetterGames"
for (question in questions) {
  t_test_result <- t.test(get(question) ~ LeadRole, data = data_filtered)</pre>
  t_test_results[[question]] <- t_test_result</pre>
}
# Print t-test results
for (question in questions) {
  print(paste("T-test for", question))
  print(t_test_results[[question]])
[1] "T-test for ShortenTimelines"
        Welch Two Sample t-test
data: get(question) by LeadRole
t = 0.90523, df = 92.772, p-value = 0.3677
alternative hypothesis: true difference in means between group No and group Yes
is not equal to 0
95 percent confidence interval:
-0.2635614 0.7051199
sample estimates:
mean in group No mean in group Yes
         3.363636
                           3.142857
[1] "T-test for IndividualizedExperiences"
        Welch Two Sample t-test
data: get(question) by LeadRole
t = 2.2615, df = 90.679, p-value = 0.02612
alternative hypothesis: true difference in means between group No and group Yes
is not equal to 0
95 percent confidence interval:
0.06918259 1.06862405
sample estimates:
mean in group No mean in group Yes
         2.886364
                           2.317460
[1] "T-test for ImpactStaffing"
        Welch Two Sample t-test
```

data: get(question) by LeadRole t = 1.7029, df = 101.76, p-value = 0.09163 alternative hypothesis: true difference in means between group No and group Yes is not equal to 0 95 percent confidence interval: -0.05724882 0.75205402 sample estimates: mean in group No mean in group Yes 4.204545 3.857143 [1] "T-test for SmallerTeams" Welch Two Sample t-test data: get(question) by LeadRole t = 0.57107, df = 87.702, p-value = 0.5694 alternative hypothesis: true difference in means between group No and group Yes is not equal to 095 percent confidence interval: -0.3453515 0.6238507 sample estimates: mean in group No mean in group Yes 3.409091 3.269841 [1] "T-test for DemocratizeDevelopment" Welch Two Sample t-test data: get(question) by LeadRole t = -0.63141, df = 97.143, p-value = 0.5293 alternative hypothesis: true difference in means between group No and group Yes is not equal to 095 percent confidence interval: -0.6486929 0.3355615 sample estimates: mean in group No mean in group Yes 2.111111 1.954545 [1] "T-test for CheaperDevelopment" Welch Two Sample t-test data: get(question) by LeadRole t = 0.35169, df = 94.569, p-value = 0.7259 alternative hypothesis: true difference in means between group No and group Yes is not equal to 0 95 percent confidence interval:

-0.4323495 0.6184967

```
sample estimates:
     mean in group No mean in group Yes
             3.045455
                               2.952381
    [1] "T-test for LowerQuality"
            Welch Two Sample t-test
    data: get(question) by LeadRole
    t = -0.67785, df = 91.141, p-value = 0.4996
    alternative hypothesis: true difference in means between group No and group Yes
    is not equal to 0
    95 percent confidence interval:
     -0.5784907 0.2841184
    sample estimates:
     mean in group No mean in group Yes
             4.090909
                               4.238095
    [1] "T-test for BetterGames"
            Welch Two Sample t-test
    data: get(question) by LeadRole
    t = 0.5885, df = 89.019, p-value = 0.5577
    alternative hypothesis: true difference in means between group No and group Yes
    is not equal to 0
    95 percent confidence interval:
     -0.3351935 0.6173003
    sample estimates:
     mean in group No mean in group Yes
             2.204545
                               2.063492
[]: # Convert relevant columns to factors and numeric, and filter out hobbyists
     data <- data %>%
      mutate(
         TeamSize = factor(
           `Team size?`,
           levels = c(
             "Solo",
             "2-9",
             "10-49",
             "50-149",
             "150-299",
             "300+"
           )
         ),
```

```
ShortenTimelines = as.numeric(factor(
      `It will help shorten development timelines`,
      agree_levels
    )),
    IndividualizedExperiences = as.numeric(factor(
      'It will lead to more individualized gaming experiences',
      agree_levels
    )),
    ImpactStaffing = as.numeric(factor(
      `It will impact staffing decisions`,
      agree_levels
    )).
    SmallerTeams = as.numeric(factor(
      'It will lead to smaller team sizes',
      agree_levels
    )),
    DemocratizeDevelopment = as.numeric(factor(
      `It will democratize game development`,
      agree_levels
    )),
    CheaperDevelopment = as.numeric(factor(
      'It will make it cheaper to develop games',
      agree_levels
    )),
    LowerQuality = as.numeric(factor(
      'It will lead to lower quality games',
      agree_levels
    )),
    BetterGames = as.numeric(factor(
      `It will lead to better games`,
      agree_levels
    ))
  ) %>%
  filter(!is.na(TeamSize))
# Perform ANOVA for each question
anova_results <- list()</pre>
questions <- c(
  "ShortenTimelines",
  "IndividualizedExperiences",
  "ImpactStaffing",
  "SmallerTeams",
  "DemocratizeDevelopment",
  "CheaperDevelopment",
  "LowerQuality",
  "BetterGames"
```

```
for (question in questions) {
  anova_result <- aov(get(question) ~ TeamSize, data = data)</pre>
  anova_results[[question]] <- summary(anova_result)</pre>
}
# Print ANOVA results
for (question in questions) {
  print(paste("ANOVA for", question))
  print(anova results[[question]])
# Pivot the data to a long format for plotting
data_long_team <- data %>%
  pivot_longer(
    cols = starts_with("ShortenTimelines"):starts_with("BetterGames"),
    names_to = "Question",
    values_to = "Response"
# Plot each question in a facet grid
ggplot(data_long_team, aes(x = TeamSize, y = Response, fill = TeamSize)) +
  geom boxplot() +
  facet_wrap(~Question, scales = "free_y", ncol = 2) +
    title = "Comparison of Perceptions by Team Size",
    x = "Team Size",
    y = "Response (1=Strongly Disagree, 5=Strongly Agree)",
    fill = "Team Size"
  )
[1] "ANOVA for ShortenTimelines"
             Df Sum Sq Mean Sq F value Pr(>F)
TeamSize
                  7.83
                        1.566
                                1.019 0.411
           101 155.33
                         1.538
Residuals
[1] "ANOVA for IndividualizedExperiences"
             Df Sum Sq Mean Sq F value Pr(>F)
TeamSize
              5 12.56
                       2.512
                                 1.529 0.187
            101 165.91
Residuals
                         1.643
[1] "ANOVA for ImpactStaffing"
             Df Sum Sq Mean Sq F value Pr(>F)
TeamSize
                  9.38
                         1.876
                                 1.653 0.153
              5
            101 114.62
Residuals
                         1.135
[1] "ANOVA for SmallerTeams"
             Df Sum Sq Mean Sq F value Pr(>F)
TeamSize
              5 12.69
                         2.538
                                 1.769 0.126
Residuals
          101 144.86 1.434
```

```
[1] "ANOVA for DemocratizeDevelopment"
            Df Sum Sq Mean Sq F value Pr(>F)
TeamSize
             5
                 9.87
                        1.975
                               1.225 0.303
Residuals
           101 162.89
                        1.613
[1] "ANOVA for CheaperDevelopment"
            Df Sum Sq Mean Sq F value Pr(>F)
                        1.389
                 6.94
                               0.754 0.585
TeamSize
           101 186.05
Residuals
                        1.842
[1] "ANOVA for LowerQuality"
            Df Sum Sq Mean Sq F value Pr(>F)
             5 21.07
                       4.214
                               3.994 0.00239 **
TeamSize
Residuals
           101 106.56 1.055
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] "ANOVA for BetterGames"
            Df Sum Sq Mean Sq F value Pr(>F)
TeamSize
             5 13.26
                        2.652
                               1.911 0.099 .
Residuals
          101 140.16
                       1.388
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

### Comparison of Perceptions by Team Size



### 1.10 How useful GenAI are in different areas

### Prepare data

```
[]: # Define usefulness columns
usefulness_columns <- c(
    "Art & Assets",
    "Level Design",
    "Storytelling",
    "Sound Design",
    "Voice Overs & Acting",
    "Programming",
    "Game Design",
    "Marketing & PR",</pre>
```

```
"Music",
  "Community management",
  "Initial prototyping"
# Convert usefulness columns to factors with specific levels
data <- data %>%
 mutate(across(
    all_of(usefulness_columns),
    ~ factor(., levels = c(
      "Not useful",
      "Somewhat useful",
      "Very useful"
    ))
  ))
# Map categorical responses to numeric values
usefulness_mapping <- c(</pre>
 "Not useful" = 1,
 "Somewhat useful" = 2,
  "Very useful" = 3
)
data <- data %>%
 mutate(across(
    all_of(usefulness_columns),
    ~ usefulness_mapping[as.character(.)]
  ))
```

### Calculate Average Usefulness Scores

```
[]: # Calculate mean usefulness scores for each area using updated syntax
mean_usefulness_scores <- data %>%
    summarise(across(
        all_of(usefulness_columns),
        \(x) mean(x, na.rm = TRUE)
    )) %>%
    pivot_longer(
        cols = everything(),
        names_to = "Area",
        values_to = "MeanScore"
    )

# Print mean usefulness scores to check for anomalies
print(mean_usefulness_scores)
```

# A tibble: 11 x 2

Area MeanScore

```
<chr>
                            <dbl>
 1 Art & Assets
                             1.83
2 Level Design
                             1.39
3 Storytelling
                             1.52
4 Sound Design
                             1.44
5 Voice Overs & Acting
                             1.66
6 Programming
                             1.93
7 Game Design
                             1.28
8 Marketing & PR
                             1.51
9 Music
                             1.35
10 Community management
                             1.35
11 Initial prototyping
                             1.91
```

#### Visualization

```
[]: # Bar plot of average usefulness scores with y-axis fixed
ggplot(
    mean_usefulness_scores,
    aes(x = reorder(Area, -MeanScore), y = MeanScore, fill = Area)
) +
    geom_bar(stat = "identity") +
    labs(
        title = "Average Perceived Usefulness of Generative AI in Different Areas",
        x = "Area",
        y = "Mean Usefulness Score (1=Not useful, 2=Somewhat useful, 3=Very useful)"
    ) +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
```





### Perceived Usefulness of Generative AI in Different Areas by Lead Role

```
[]: # Ensure the lead role column is correctly labeled
data <- data %>%
    mutate(LeadRole = factor(
         data[[8]],
         levels = c("Yes", "No")
        ))

# Remove rows with all NA values in usefulness columns
data <- data %>%
    filter(rowSums(!is.na(select(., all_of(usefulness_columns)))) > 0)
```

```
# Pivot the data to a long format for ggplot2
usefulness_long <- data %>%
 pivot_longer(
    cols = all_of(usefulness_columns),
   names_to = "Area",
    values_to = "UsefulnessScore"
 )
# Remove rows with NA values in UsefulnessScore or LeadRole
usefulness_long <- usefulness_long %>%
 filter(
   !is.na(UsefulnessScore),
   !is.na(LeadRole)
 )
# Calculate mean and standard error for each group
usefulness_summary <- usefulness_long %>%
  group_by(Area, LeadRole) %>%
 summarise(
   MeanScore = mean(UsefulnessScore, na.rm = TRUE),
    SE = sd(UsefulnessScore, na.rm = TRUE) / sqrt(n())
 )
# Bar plot with error bars side by side
ggplot(usefulness_summary, aes(
 x = Area,
 y = MeanScore,
 fill = LeadRole
)) +
  geom_bar(
    stat = "identity",
    position = position_dodge(width = 0.9)
 geom_errorbar(
    aes(
      ymin = MeanScore - SE,
     ymax = MeanScore + SE
    ),
    width = 0.2,
   position = position_dodge(width = 0.9)
 ) +
 labs(
   title = "Perceived Usefulness of Generative AI
    in Different Areas by Lead Role",
   x = "Area",
    y = "Mean Usefulness Score:
     1 = Not useful
```

```
2 = Somewhat useful
3 = Very useful"
) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

`summarise()` has grouped output by 'Area'. You can override using the `.groups` argument.

## Perceived Usefulness of Generative AI in Different Areas by Lead Role



### Perceived Usefulness of Generative AI in Different Areas by Professional or hobbyist

```
[]: # Reset to source data
data <- read_excel(file_path)

data <- data %>%
```

```
mutate(across(
   all_of(usefulness_columns),
   ~ usefulness_mapping[as.character(.)]
 ))
# Ensure the role column is correctly labeled
data <- data %>%
 mutate(Role = factor(
   data[[5]],
   levels = c("Professional", "Hobbyist")
 ))
# Remove rows with all NA values in usefulness columns
data <- data %>%
 filter(rowSums(!is.na(select(., all_of(usefulness_columns)))) > 0)
# Pivot the data to a long format for ggplot2
usefulness_long <- data %>%
 pivot_longer(
   cols = all_of(usefulness_columns),
   names_to = "Area",
   values_to = "UsefulnessScore"
 )
# Remove rows with NA values in UsefulnessScore or Role
usefulness_long <- usefulness_long %>%
 filter(!is.na(UsefulnessScore), !is.na(Role))
# Calculate mean and standard error for each group
usefulness_summary <- usefulness_long %>%
 group_by(Area, Role) %>%
 summarise(
   MeanScore = mean(UsefulnessScore, na.rm = TRUE),
   SE = sd(UsefulnessScore, na.rm = TRUE) / sqrt(n()),
    .groups = "drop" # Explicitly drop the grouping
# Bar plot with error bars side by side
ggplot(usefulness_summary, aes(
 x = Area,
 y = MeanScore,
 fill = Role
)) +
 geom_bar(
   stat = "identity",
   position = position_dodge(width = 0.9)
```

```
geom_errorbar(
   aes(
     ymin = MeanScore - SE,
     ymax = MeanScore + SE
   ),
   width = 0.2,
   position = position_dodge(width = 0.9)
 ) +
 labs(
   title = "Perceived Usefulness of Generative AI
            in Different Areas by Role",
   x = "Area",
   y = "Mean Usefulness Score
     1 = Not useful
     2 = Somewhat useful
     3 = Very useful"
 theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Print summary
usefulness_summary
```

Role

Area

MeanScore SE

|                  | <chr></chr>          | <fct $>$     | <dbl $>$ | <dbl $>$   |
|------------------|----------------------|--------------|----------|------------|
|                  | Art & Assets         | Professional | 1.831776 | 0.06961868 |
|                  | Art & Assets         | Hobbyist     | 1.945000 | 0.05314127 |
|                  | Community management | Professional | 1.345794 | 0.05953858 |
|                  | Community management | Hobbyist     | 1.270000 | 0.03928379 |
|                  | Game Design          | Professional | 1.280374 | 0.05107622 |
|                  | Game Design          | Hobbyist     | 1.305000 | 0.03959436 |
|                  | Initial prototyping  | Professional | 1.906542 | 0.07456771 |
|                  | Initial prototyping  | Hobbyist     | 1.930000 | 0.05559636 |
|                  | Level Design         | Professional | 1.392523 | 0.05902429 |
| A tibble: 22 x 4 | Level Design         | Hobbyist     | 1.385000 | 0.04351255 |
| A tibble, 22 X 4 | Marketing & PR       | Professional | 1.514019 | 0.06818358 |
|                  | Marketing & PR       | Hobbyist     | 1.505000 | 0.04962042 |
|                  | Music                | Professional | 1.345794 | 0.05491662 |
|                  | Music                | Hobbyist     | 1.400000 | 0.04594075 |
|                  | Programming          | Professional | 1.925234 | 0.06989038 |
|                  | Programming          | Hobbyist     | 1.960000 | 0.05391227 |
|                  | Sound Design         | Professional | 1.439252 | 0.06110943 |
|                  | Sound Design         | Hobbyist     | 1.395000 | 0.04642901 |
|                  | Storytelling         | Professional | 1.523364 | 0.06685334 |
|                  | Storytelling         | Hobbyist     | 1.575000 | 0.04778380 |
|                  | Voice Overs & Acting | Professional | 1.663551 | 0.07144122 |
|                  | Voice Overs & Acting | Hobbyist     | 1.670000 | 0.05496001 |
|                  |                      |              |          |            |

## Perceived Usefulness of Generative Al in Different Areas by Role



### Perceived Usefulness of Generative AI in Different Areas by Usage

```
[]: # Reset to source data
data <- read_excel(file_path)

data <- data %>%
    mutate(across(
        all_of(usefulness_columns),
        ~ usefulness_mapping[as.character(.)]
    ))

# Ensure the usage of Generative AI column is correctly labeled
data <- data %>%
```

```
mutate(UsesGenAI = factor(
    data[[23]],
    levels = c("Yes", "No")
  ))
# Remove rows with all NA values in usefulness columns
data <- data %>%
  filter(rowSums(!is.na(select(., all_of(usefulness_columns)))) > 0)
# Pivot the data to a long format for ggplot2
usefulness_long <- data %>%
 pivot_longer(
    cols = all_of(usefulness_columns),
   names_to = "Area",
   values_to = "UsefulnessScore"
  )
# Remove rows with NA values in UsefulnessScore or UsesGenAI
usefulness_long <- usefulness_long %>%
  filter(!is.na(UsefulnessScore), !is.na(UsesGenAI))
# Calculate mean and standard error for each group
usefulness_summary <- usefulness_long %>%
  group by(Area, UsesGenAI) %>%
 summarise(
    MeanScore = mean(UsefulnessScore, na.rm = TRUE),
    SE = sd(UsefulnessScore, na.rm = TRUE) / sqrt(n()),
    .groups = "drop"
  )
# Bar plot with error bars side by side
ggplot(usefulness_summary, aes(
 x = Area,
 y = MeanScore,
 fill = UsesGenAI
)) +
  geom_bar(
   stat = "identity",
    position = position_dodge(width = 0.9)
  ) +
  geom errorbar(
    aes(
     ymin = MeanScore - SE,
     ymax = MeanScore + SE
    ),
    width = 0.2,
    position = position_dodge(width = 0.9)
```

```
) +
 labs(
   title = "Perceived Usefulness of Generative AI
     in Different Areas by Usage",
   x = "Area",
   y = "Mean Usefulness Score
     1 = Not useful
      2 = Somewhat useful
     3 = Very useful"
 theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Calculate mean and standard error for each group
usefulness_summary <- usefulness_long %>%
 group_by(Area, UsesGenAI) %>%
 summarise(
   MeanScore = mean(UsefulnessScore, na.rm = TRUE),
   SE = sd(UsefulnessScore, na.rm = TRUE) / sqrt(n()),
   .groups = "drop"
# Print the summarized data
usefulness_summary
```

|                  | Area                 | UsesGenAI | MeanScore | SE         |
|------------------|----------------------|-----------|-----------|------------|
|                  | <chr $>$             | <fct $>$  | <dbl $>$  | <dbl $>$   |
| -                | Art & Assets         | Yes       | 2.313559  | 0.06334529 |
|                  | Art & Assets         | No        | 1.650794  | 0.04773149 |
|                  | Community management | Yes       | 1.398305  | 0.06034791 |
|                  | Community management | No        | 1.232804  | 0.03742102 |
|                  | Game Design          | Yes       | 1.576271  | 0.06184987 |
|                  | Game Design          | No        | 1.121693  | 0.02609801 |
|                  | Initial prototyping  | Yes       | 2.296610  | 0.06734694 |
|                  | Initial prototyping  | No        | 1.687831  | 0.05213607 |
|                  | Level Design         | Yes       | 1.627119  | 0.06345663 |
| A tibble: 22 x 4 | Level Design         | No        | 1.238095  | 0.03686375 |
| A tibble, 22 X 4 | Marketing & PR       | Yes       | 1.745763  | 0.07037331 |
|                  | Marketing & PR       | No        | 1.359788  | 0.04486913 |
|                  | Music                | Yes       | 1.601695  | 0.06716441 |
|                  | Music                | No        | 1.243386  | 0.03629382 |
|                  | Programming          | Yes       | 2.372881  | 0.06113112 |
|                  | Programming          | No        | 1.682540  | 0.04889652 |
|                  | Sound Design         | Yes       | 1.610169  | 0.06917688 |
|                  | Sound Design         | No        | 1.285714  | 0.03918978 |
|                  | Storytelling         | Yes       | 1.906780  | 0.06480147 |
|                  | Storytelling         | No        | 1.338624  | 0.04120499 |
|                  | Voice Overs & Acting | Yes       | 1.966102  | 0.07314484 |
|                  | Voice Overs & Acting | No        | 1.481481  | 0.04953493 |



0.5 -

Better Design Dothypho

Level Design

Perceived Usefulness of Generative AI in Different Areas by Internal Stigma Perception

Area

Sound Design

```
[]: # Reset to source data
     data <- read_excel(file_path)</pre>
     data <- data %>%
       mutate(across(
         all_of(usefulness_columns),
         ~ usefulness_mapping[as.character(.)]
       ))
     # Ensure the stigma column is correctly labeled
```

```
data <- data %>%
 mutate(StigmaGenAI = factor(
    data[[33]],
    levels = c("Yes", "No")
  ))
# Remove rows with all NA values in usefulness columns
data <- data %>%
  filter(rowSums(!is.na(select(., all_of(usefulness_columns)))) > 0)
# Pivot the data to a long format for ggplot2
usefulness_long <- data %>%
 pivot_longer(
    cols = all_of(usefulness_columns),
   names_to = "Area",
    values_to = "UsefulnessScore"
 )
# Remove rows with NA values in UsefulnessScore or StigmaGenAI
usefulness_long <- usefulness_long %>%
  filter(!is.na(UsefulnessScore), !is.na(StigmaGenAI))
# Calculate mean and standard error for each group
usefulness summary <- usefulness long %>%
  group_by(Area, StigmaGenAI) %>%
 summarise(
    MeanScore = mean(UsefulnessScore, na.rm = TRUE),
    SE = sd(UsefulnessScore, na.rm = TRUE) / sqrt(n()),
    .groups = "drop"
  )
# Bar plot with error bars side by side
ggplot(usefulness_summary, aes(
 x = Area,
 y = MeanScore,
 fill = StigmaGenAI
)) +
  geom_bar(
    stat = "identity",
   position = position_dodge(width = 0.9)
  geom_errorbar(
    aes(
      ymin = MeanScore - SE,
     ymax = MeanScore + SE
    width = 0.2,
```

|                  | Area                 | ${\bf StigmaGenAI}$ | MeanScore | SE         |
|------------------|----------------------|---------------------|-----------|------------|
|                  | <chr $>$             | <fct $>$            | <dbl $>$  | <dbl $>$   |
|                  | Art & Assets         | Yes                 | 1.659420  | 0.06213554 |
|                  | Art & Assets         | No                  | 2.106509  | 0.05310944 |
|                  | Community management | Yes                 | 1.224638  | 0.04365861 |
|                  | Community management | No                  | 1.355030  | 0.04773624 |
|                  | Game Design          | Yes                 | 1.217391  | 0.04080426 |
|                  | Game Design          | No                  | 1.360947  | 0.04557878 |
|                  | Initial prototyping  | Yes                 | 1.724638  | 0.06404018 |
|                  | Initial prototyping  | No                  | 2.082840  | 0.05900229 |
|                  | Level Design         | Yes                 | 1.282609  | 0.04712077 |
| A tibble: 22 x 4 | Level Design         | No                  | 1.473373  | 0.04969978 |
| A tibble, 22 x 4 | Marketing & PR       | Yes                 | 1.405797  | 0.05504072 |
|                  | Marketing & PR       | No                  | 1.591716  | 0.05656045 |
|                  | Music                | Yes                 | 1.326087  | 0.04950089 |
|                  | Music                | No                  | 1.426036  | 0.05012152 |
|                  | Programming          | Yes                 | 1.826087  | 0.06333000 |
|                  | Programming          | No                  | 2.047337  | 0.05680679 |
|                  | Sound Design         | Yes                 | 1.347826  | 0.05209275 |
|                  | Sound Design         | No                  | 1.461538  | 0.05173790 |
|                  | Storytelling         | Yes                 | 1.398551  | 0.05298640 |
|                  | Storytelling         | No                  | 1.686391  | 0.05386535 |
|                  | Voice Overs & Acting | Yes                 | 1.630435  | 0.06511152 |
|                  | Voice Overs & Acting | No                  | 1.698225  | 0.05863379 |



# Perceived Usefulness of Generative AI in Different Areas by External Stigma Perception

Area

```
[]: # Reset to source data
data <- read_excel(file_path)

data <- data %>%
    mutate(across(
        all_of(usefulness_columns),
        ~ usefulness_mapping[as.character(.)]
    ))

# Ensure the external stigma column is correctly labeled
```

```
data <- data %>%
 mutate(ExternalStigmaGenAI = factor(
   data[[34]],
   levels = c("Yes", "No")
 ))
# Remove rows with all NA values in usefulness columns
data <- data %>%
 filter(rowSums(!is.na(select(., all_of(usefulness_columns)))) > 0)
# Pivot the data to a long format for ggplot2
usefulness_long <- data %>%
 pivot_longer(
   cols = all_of(usefulness_columns),
   names_to = "Area",
   values_to = "UsefulnessScore"
 )
# Remove rows with NA values in UsefulnessScore or ExternalStigmaGenAI
usefulness_long <- usefulness_long %>%
 filter(!is.na(UsefulnessScore), !is.na(ExternalStigmaGenAI))
# Calculate mean and standard error for each group
usefulness summary <- usefulness long %>%
 group_by(Area, ExternalStigmaGenAI) %>%
 summarise(
   MeanScore = mean(UsefulnessScore, na.rm = TRUE),
   SE = sd(UsefulnessScore, na.rm = TRUE) / sqrt(n()),
   .groups = "drop"
 )
# Bar plot with error bars side by side
ggplot(
 usefulness_summary,
 aes(
   x = Area,
   y = MeanScore,
   fill = ExternalStigmaGenAI
 )
) +
 geom_bar(
   stat = "identity",
   position = position_dodge(width = 0.9)
 geom_errorbar(
   aes(
     ymin = MeanScore - SE,
```

```
ymax = MeanScore + SE
   ),
   width = 0.2,
   position = position_dodge(width = 0.9)
 ) +
 labs(
   title = "Perceived Usefulness of Generative AI
            in Different Areas by External Stigma Perception",
   x = "Area",
   y = "Mean Usefulness Score
     1 = Not useful
     2 = Somewhat useful
     3 = Very useful"
 ) +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))
# Print the usefulness summary to get results in text form
usefulness_summary
```

|                  | Area                 | ${\bf External Stigma Gen AI}$ | MeanScore | SE         |
|------------------|----------------------|--------------------------------|-----------|------------|
|                  | <chr></chr>          | <fct $>$                       | <dbl $>$  | <dbl $>$   |
|                  | Art & Assets         | Yes                            | 1.886555  | 0.04762504 |
|                  | Art & Assets         | No                             | 1.971014  | 0.09226480 |
|                  | Community management | Yes                            | 1.256303  | 0.03506786 |
|                  | Community management | No                             | 1.434783  | 0.08122638 |
|                  | Game Design          | Yes                            | 1.239496  | 0.03243718 |
|                  | Game Design          | No                             | 1.492754  | 0.07895089 |
|                  | Initial prototyping  | Yes                            | 1.869748  | 0.04963473 |
|                  | Initial prototyping  | No                             | 2.101449  | 0.09715678 |
|                  | Level Design         | Yes                            | 1.352941  | 0.03679173 |
| A tibble: 22 x 4 | Level Design         | No                             | 1.507246  | 0.08909699 |
| A tibble: 22 x 4 | Marketing & PR       | Yes                            | 1.470588  | 0.04320554 |
|                  | Marketing & PR       | No                             | 1.637681  | 0.09677453 |
|                  | Music                | Yes                            | 1.386555  | 0.04004150 |
|                  | Music                | No                             | 1.362319  | 0.07717026 |
|                  | Programming          | Yes                            | 1.932773  | 0.04743620 |
|                  | Programming          | No                             | 2.000000  | 0.09683834 |
|                  | Sound Design         | Yes                            | 1.411765  | 0.04117875 |
|                  | Sound Design         | No                             | 1.405797  | 0.08340280 |
|                  | Storytelling         | Yes                            | 1.512605  | 0.04282804 |
|                  | Storytelling         | No                             | 1.710145  | 0.08784007 |
|                  | Voice Overs & Acting | Yes                            | 1.684874  | 0.05006211 |
|                  | Voice Overs & Acting | No                             | 1.608696  | 0.08812093 |

### Perceived Usefulness of Generative AI in Different Areas by External Stigma Perception



# 1.11 Some questions about how your use of Generative AI impact different areas of your work?

#### Impact of Generative AI on Different Areas of Work

```
[]: # Reset to source data
data <- read_excel(file_path)

# Define impact columns
impact_columns <- c("Efficiency?", "Quality?", "Enjoyment?", "Creativity?")

# Convert impact columns to factors with specific levels
data <- data %>%
    mutate(across(all_of(impact_columns), ~ factor(., levels = c(
```

```
"Much lower", "Lower", "Neutral", "Higher", "Much Higher"
  ))))
# Map categorical responses to numeric values
impact_mapping <- c(</pre>
  "Much lower" = 1,
  "Lower" = 2,
 "Neutral" = 3,
 "Higher" = 4,
 "Much Higher" = 5
)
data <- data %>%
 mutate(across(all_of(impact_columns), ~ impact_mapping[as.character(.)]))
# Calculate mean impact scores for each area
mean_impact_scores <- data %>%
  summarise(across(all_of(impact_columns), ~ mean(.x, na.rm = TRUE))) %>%
 pivot_longer(
    cols = everything(),
   names_to = "ImpactArea",
   values_to = "MeanScore"
  )
# Print mean impact scores to check for anomalies
print(mean_impact_scores)
# Bar plot of the mean impact scores
ggplot(
 mean_impact_scores,
 aes(x = ImpactArea, y = MeanScore, fill = ImpactArea)
 geom_bar(stat = "identity") +
 labs(
    title = "Mean Impact of Generative AI
            on Different Areas of Work",
   x = "Impact Area",
    y = "Mean Impact Score
     1 = Much lower
      5 = Much Higher"
  scale_y_continuous(limits = c(0, 5), breaks = 1:5)
# Here's the boxplot
# Pivot the data to a long format for ggplot2
impact_long <- data %>%
```

```
pivot_longer(
   cols = all_of(impact_columns),
   names_to = "ImpactArea",
   values_to = "ImpactScore"
  )
# Remove rows with NA values in ImpactScore
impact_long <- impact_long %>%
 filter(!is.na(ImpactScore))
# Box plot of the impact of Generative AI on different areas
ggplot(impact_long, aes(x = ImpactArea, y = ImpactScore, fill = ImpactArea)) +
 geom_boxplot() +
 labs(
   title = "Impact of Generative AI
          on Different Areas of Work",
   x = "Impact Area",
   y = "Impact Score
     1 = Much lower
     5 = Much Higher"
  scale_y_continuous(limits = c(1, 5), breaks = 1:5)
```

### Mean Impact of Generative AI on Different Areas of Work







### Impact of Generative AI on Different Areas by Lead Role

```
[]: # Reset to source data
data <- read_excel(file_path)

data <- data %>%
    mutate(across(
    all_of(impact_columns),
    ~ impact_mapping[as.character(.)]
    ))

# Pivot the data to a long format for ggplot2
impact_long <- data %>%
```

```
pivot_longer(
    cols = all_of(impact_columns),
    names_to = "ImpactArea",
    values_to = "ImpactScore"
  )
# Remove rows with NA values in ImpactScore or LeadRole
impact_long <- impact_long %>%
  filter(!is.na(ImpactScore), !is.na(`Are you in a lead role?`))
# Calculate mean impact scores for each area and role
mean_impact_scores_by_role <- impact_long %>%
  group_by(ImpactArea, `Are you in a lead role?`) %>%
 summarise(
    MeanScore = mean(ImpactScore, na.rm = TRUE),
    SE = sd(ImpactScore, na.rm = TRUE) / sqrt(n()),
    .groups = "drop"
  )
# Rename the role column for better readability
colnames(mean_impact_scores_by_role)[2] <- "LeadRole"</pre>
# Print mean impact scores by role to check for anomalies
print(mean_impact_scores_by_role)
# Bar plot with error bars side by side
barplot <- ggplot(</pre>
 mean_impact_scores_by_role,
 aes(
    x = ImpactArea,
   y = MeanScore,
   fill = LeadRole
 )
) +
 geom_bar(
    stat = "identity",
    position = position_dodge(width = 0.9)
  geom errorbar(
    aes(
     ymin = MeanScore - SE,
      ymax = MeanScore + SE
    ),
   width = 0.2,
   position = position_dodge(width = 0.9)
  ) +
  labs(
```

```
title = "Mean Impact of Generative AI
            on Different Areas by Lead Role",
    x = "Impact Area",
    y = "Mean Impact Score
      1 = Much lower
      5 = Much Higher"
  )
# Box plot of the impact of Generative AI on different areas by lead role
boxplot <- ggplot(</pre>
  impact_long,
  aes(
    x = ImpactArea,
    y = ImpactScore,
   fill = `Are you in a lead role?`
  )
) +
  geom_boxplot(
    position = position_dodge(width = 0.9)
  ) +
  labs(
    title = "Impact of Generative AI
           on Different Areas by Lead Role",
    x = "Impact Area",
    y = "Impact Score
      1 = Much lower
      5 = Much Higher"
  )
# Print the plots
print(barplot)
print(boxplot)
# A tibble: 8 x 4
  ImpactArea LeadRole MeanScore
  <chr>
            <chr>
<dbl> <dbl>
                          3.39 0.244
1 Creativity? No
2 Creativity? Yes
                          3.04 0.236
3 Efficiency? No
                          4.06 0.262
4 Efficiency? Yes
                          3.96 0.189
5 Enjoyment? No
                          3 0.313
6 Enjoyment? Yes
                          3.26 0.211
7 Quality?
                          3.17 0.305
             No
8 Quality? Yes
                          2.74 0.189
```

### Mean Impact of Generative AI on Different Areas by Lead Role



