

Block Modeling-Guided Graph Convolutional Neural Networks

Dongxiao He, Chundong Liang, Huixin Liu, Mingxiang Wen, Pengfei Jiao, Zhiyong Feng

College of Intelligence and Computing, Tianjin University School of Cyberspace, Hangzhou Dianzi University

- Motivation
- Method
- Experiments
- Conclusion

Network Representation Learning

Graph Convolutional Networks

- **Essence**: propagate node attributes in neighbors guided by graph structure.
- Goal: encode nodes to embedding space by preserving network structure and properties.

^[2] Wu F, Souza A, Zhang T, et al. Simplifying graph convolutional networks. PMLR, 2019.

Is GCN Universal?

• Question: Can neighbor information represent a node?

• **Homophily Assumption**: GCN only works on homophily networks.

most connections happen among nodes in the same or similar classes

Existing Related Work

- **♦** Aggregating higher-order neighbors:
 - H₂GCN [Zhu *et al.*, 2020]
 - MixHop [Abu-El-Haija et al., 2019]
 - ***** ...
- **Passing signed messages:**
 - GGCN [Yan *et al.*, 2021]
 - GPR-GNN [Chien *et al.*, 2019]
 - ***** ..

damage network topology

fail to define optimal aggregating mechanism

A BETTER WAY

<u>automatically</u> learn corresponding aggregation rules for neighbors of different classes

Homophily Ratio & Block Matrix

Homophily Ratio: measure the overall homophily level in a network.

$$h = \frac{1}{|\mathcal{V}|} \sum_{v_i \in \mathcal{V}} \frac{|\{v_j | v_j \in \mathcal{N}_i, Y_j = Y_i\}|}{|\mathcal{N}_i|}$$

♦ **Block Matrix**: measure the connected possibility of nodes in any two classes.

$$H = (Y^T A \overline{Y}) \oslash (Y^T A E)$$

Challenge 1: how to derive the block matrix in GCN without all known labels.

Challenge 2: how to design aggregation mechanism based on block matrix.

block matrix depicts the heterophilic property of the network in heterophilic situations.

- Motivation
- Method
- Experiments
- Conclusion

Overview – BM-GCN

Block Similarity Matrix

1) Pre-train MLP for soft labels

$$\bar{B} = \sigma \left(\text{MLP} \left(X \right) \right)$$

$$B = \operatorname{softmax}(\bar{B})$$

$$\mathcal{L}_{MLP} = \sum_{v_i \in \mathcal{T}_{\mathcal{V}}} f(B_i, Y_i)$$

- obtain predicted soft labels via node attributes
- train MLP in a semi-supervised way

2) Calculate block matrix H

$$Y_s = \{Y_i, B_j | \forall v_i \in \mathcal{T}_{\mathcal{V}}, \forall v_j \notin \mathcal{T}_{\mathcal{V}}\}$$

$$H = (Y_s^T A Y_s) \oslash (Y_s^T A E)$$

- make full use of existing known labels
- H depicts the connecting pattern between classes

3) Calculate block similarity matrix Q

$$Q = HH^T$$

$$\operatorname{Diag}(Q) \leftarrow \alpha \cdot \operatorname{Diag}(Q)$$

- Q depicts the similarity of connecting patterns between classes
- The more similar the two classes, the greater the value of the corresponding element in Q

Illustration on Why Block Modeling Effective

Block-Guided Graph Convolution Process

Block-Guided Graph Convolution Process

Information propagating ratio for two nodes

$$\omega_{ij} = \sum_{r=1}^{c} \sum_{t=1}^{c} q_{r,t} b_i^r b_j^t$$

Information propagating ratio for all node pairs (in the form of matrix)

$$\Omega = BQB^T$$

A refined topology matrix based on Ω

$$A' = \Omega \odot (A + \beta I)$$

New graph convolutional layer

$$Z^{(k)} = Z^{(k-1)}W_1^{(k)} + \tilde{A}Z^{(k-1)}W_2^{(k)}$$

Semi-supervised Model Optimization (with fine-tuning MLP)

$$\mathcal{L}_{final} = \lambda \mathcal{L}_{GCN} + (1 - \lambda) \mathcal{L}_{MLP}$$
, $\mathcal{L}_{GCN} = \sum_{v_i \in \mathcal{T}_{V}} f(Z_i, Y_i)$

- Motivation
- Method
- Experiments
- Conclusion

Experiments

Datasets

Node Classification

Method/ Accuracy (%)	heterophilic graphs			homophilic graphs			
	Texas $h = 0.09$	Squirrel $h = 0.23$	Chameleon $h = 0.22$	Cora $h = 0.81$	Citeseer $h = 0.74$	Pubmed $h = 0.8$	
MLP	82.70±6.19	33.35±1.24	48.20±2.63	74.14±1.40	69.58±2.31	86.38±0.61	
GCN	55.41±3.47	44.07±1.95	67.04±2.23	86.48±1.12	72.67±1.99	87.39±0.68	
H2GCN	82.16±8.21	28.91±1.78	51.58±1.51	87.69±1.37	75.95±2.18	88.78±0.53	
GPR-GNN	84.59±4.37	29.45±1.27	69.78±1.97	86.70±1.03	75.12±1.98	87.38±0.63	
CPGNN-MLP	77.09±4.22	28.65±1.50	52.63±1.79	85.23±1.71	74.29±2.41	86.83±0.78	
CPGNN-Cheby	77.03±5.83	30.95±1.24	54.05±4.67	86.82±1.11	75.42±1.85	89.08±0.67	
BM-GCN(Ours)	85.13±4.64	51.41±1.10	69.58±2.90	87.99±1.29	76.13±1.92	90.25±0.75	

Experiments

Visualization

Figure 3: Visualization results on Chameleon dataset. Different colors correspond to different ground truth classes.

♦ Parameter Analysis

Datasets/	The number of graph convolutional layers k								
Accuracy (%)	1	2	3	4	5	6			
Cora Chameleon	81.27 58.71	86.92 67.74	87.99 69.58	87.30 65.00	60.10 49.28	40.16 34.69			

Table 4: Node classification accuracy of BM-GCN with graph convolutional layers *k* varying from 1 to 6.

Experiments

Parameter Analysis

Figure 4: Parameter analysis of enhancement factor α in Q on Cora and Chameleon datasets. We report the average node classification accuracy over 10 random splits.

Figure 5: Parameter analysis of loss balancing parameter λ on Cora and Chameleon datasets. We report the average node classification accuracy over 10 random splits.

- Motivation
- Method
- Experiments
- Conclusion

Conclusion

 Propose a new framework to make GCN applicable to both homophilic and heterophilic networks.

 Introduce block modeling technology to solve the problem of Homophily Assumption.

 Propose a novel design of block similarity matrix to enable block modeling technology to guide GCN to achieve classified aggregation.

Thanks

Data & Code: https://github.com/hedongxiao-tju/BM-GCN