pXp analysis

Luiz Emediato (Sao Paulo)
Tom McDowell, Cory Rude, Jane Nachtman (Iowa)
Mike Albrow (FNAL)

Overview

A) Central track plots:

- **1:** Central (CMS) track multiplicity distribution (for events with the two protons).
- **2:** Distributions for Q = + and Q = separately of pT and eta and phi.

We expect that +ve and -ve tracks have identical distributions but good to check.

B) Combined CMS+TOTEM plots

C) Acceptance phi vs |t|

TOTEM's RP map

-Z		IP		+z	
	sec45		sec	sec56	
top:	024	020	120	124	
ver:	023 022		122	122 123	
bot:	025	021	121	125	
Left			Rig	Right	

Multiplicity – 2-track events (reduced2) – all 2015 data – except run#9998

2-track events - except run#9998

2-track events

2-track events $\eta \pi \pi$

2-track events

2-track events $\phi \pi \pi$

coming up...

Combined CMS+TOTEM plots

Balance in transverse momenta like Delta pX and Delta py. You showed one and I think that means px and py balance, but really it is the SUM of the four tracks pX and py (keeping signs) that should equal 0 for balanced events. We may still have a different coordinate system in CMS and TOTEM, beware!

Anyway the plot you showed of Delta px CMS-TOTEM TT/BB peaks at 0 and that must mean balance, and a selection of -0.2 GeV/c to + 0.2 GeV/c (I suppose) will keep nearly all the good balanced events and just remove a few that may have missing or badly measured tracks. **Do same thing for py balance.**

Note: For a plot of a quantity like that – having seen it I think a histogram (rather than points with statistical error bars) would be better, choosing a bin size like 0.01 or 0.005 GeV/c if the statistics allows it to look smooth.

Acceptance A(t,phi)

