6 апреля 2024 г. 20:32
$$32.8$$
 $y = 2x_1^2 + 8x_1x_2$

9)
$$2x_1^2 + 8x_1x_2 + 4x_1x_3 + 9x_2^2 + 19x_3^2$$
;

$$2x_{1}^{2} + 8x_{1}x_{2} + 4x_{1}x_{3} + 9x_{2}^{2} + 19x_{3}^{2} = 2(x_{1}^{2} + 4x_{1}x_{2} + 2x_{1}x_{3} + 4x_{3}^{2} + 4x_{3}^{2}$$

12) (p)
$$x_1x_2 + x_2x_3 + x_1x_3$$
;

32.13. Привести к каноническому виду данную квадратичную форму в n-мерном пространстве:

$$4) \sum_{1 \leqslant i < j \leqslant n} x_i x_j;$$

32.18. При каких значениях параметра λ данная квадратичная форма положительно, отрицательно определена или полуопределена:

3)
$$\lambda x_1^2 + 8x_2^2 + x_3^2 + 16x_1x_2 + 4x_1x_3 + 4x_2x_3;$$

$$\begin{pmatrix} \lambda & 8 & 2 \\ 2 & 8 & 2 \\ 2 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} \lambda - 8 & 0 & 0 \\ 0 & 8 & 2 \\ 0 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} \lambda - 8 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \begin{array}{c} \lambda - 8 - n \cos p \\ \lambda - 8 - n \cos p - n \cos p \\ \lambda - 8 - n \cos p - n$$

2) Доказать, что в матрице положительно определенной квадратичной формы максимальный по модулю элемент положителен.

- 32.21. 1) Доказать, что в линейном пространстве вещественных квадратных матриц порядка n функция k(X) = $=\operatorname{tr}(X^TX)$ является положительно определенной квадратичной функцией.
- 2) Доказать, что в линейном пространстве вещественных квадратных матриц порядка n функция $k(X) = tr(X^2)$ является квадратичной функцией. Найти ее ранг и сигнатуру.

1)
$$tr(X^TX) = tr((XX^T)^T) = tr(XX^T) - nb. qopua.$$

 $XX^T := \sum_{i=1}^{N} a_i^2 > 0$ you $a_i \neq 0$ $= tr(XX^T) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_j^2 > 0$

Т.1. Пусть угловые миноры матрицы квадратичной формы q на четырехмерном вещественном пространстве удовлетворяют условиям $\delta_1 > 0, \, \delta_2 = \delta_3 = 0, \, \delta_4 > 0.$ Какими могут быть положительный r_+ и отрицательный r_- индексы инерции формы q?

δηρο => ΓΚq = 4 => Γ+ + Γ = 4 δ2 = δ3 = 0 => Γ+ + 4 , Γ + 4 -> Γ+ + 0 , Γ + 0 Tamme Γ+ Γ = 1 < , ΚΕΝ => Regument Copyrians (Γ+ = 2)

 $\mathbf{T.2}^*$. Пусть $V = U \oplus W$ и ограничения $q|_U$ и $q|_W$ положительно определены.

How observe caryoner 91470

243

25.7. В линейном пространстве функций, непрерывных на отрезке [-1, 1], функциям f и g сопоставляется число

P-now, wo get = $\int_{-1}^{1} f^3(t) dt > 0$ $\forall f \leq 0$ To a now $f \neq 0$, to $\exists t \ f^3(t) > 0$ torgo TR, f-respepara, to $\int_{-1}^{1} f^3(t) > 0$

§ 25. Скалярное произведение. Матрица Грама

$$(f, g) = \int_{-1}^{1} f(t) g(t) dt.$$

Доказать, что этим определено скалярное произведение.

25.25. Найти скалярное произведение векторов, если заданы их координаты в некотором базисе и матрица Γ рама Γ этого базиса:

1) $\|1 \ 1 \ 1\|^{T}$, $\|1 \ 3 \ 1\|^{T}$, $\Gamma = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -4 \\ 1 & -4 & 6 \end{bmatrix}$; $(1 \ 1) \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{T}$, $\Gamma = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -4 \\ 1 & -4 & 6 \end{bmatrix}$;

25.21. Найти угол между ребром и диагональю n-мерного куба.

 $a = \{1, 0, ..., a\}$ $6 = \{1, 0, ..., a\}$ $\{a = 1, 0, ..., a\}$ $\{a = 1,$

25.23. Пусть в некотором базисе квадрат длины любого вектора x равен сумме квадратов его координат. Доказать, что базис ортонормированный.

25.10. Пусть e — базис в линейном пространстве \mathcal{E} . Доказать, что в \mathcal{E} существует одно и только одно скалярное произведение, относительно которого базис е — ортонормированный.

Eumersonas popua (ce. sporzo) agrazionho zag. zr na Sezuciere B-pase

25.35. Может ли третья строка матрицы Грама некоторого базиса в четырехмерном пространстве быть строкой:

Т.5. Проведите ортогонализацию базиса $\{1, x, x^2\}$ пространства многочленов степени ≤ 2 со скалярным произведением из задачи Б 25.7.

 $\mathbf{T.6}^*$. В пространстве $\mathrm{M}_n(\mathbb{R})$ со скалярным произведением $(X,Y)=\mathrm{tr}(X^TY)$ найдите ортогональное дополнение к подпространству а) симметричных

верхнетреугольных матриц.

Troumany, no cur X=XT y Y=-YT, no (X, Y)=0 | + am ukoronen cop. reenyro cynny $(x, y) = tr(x^{T}y) = tr(xy) = tr(yx) = -tr(y^{T}x) = -(y, x) = -(x, y)$ 2(X,Y)=0=> (X,Y)=0 => Des 400 Associa a com mosping his ce. ye poloso 0-5.0. one X-Equanisperp , Y-hunchesterp $\Rightarrow (X,Y) = tr(X^TY) = tr((X^O)(Y,O)) = tr((XY,O) = 0)$

26.6. Подпространства \mathcal{L}_1 и \mathcal{L}_2 ортогональны. Обязатель-

21 arlit u (a,a)>0 2>12 \$ \tag{2}

26.13. Подпространство \mathcal{L} задано как линейная оболочка векторов, имеющих в ортонормированном базисе координат-

3) $\|3-1591\|^T$, $\|3-6-32\|^T$; а) матрицу системы уравнений, определяющей \mathcal{L}^{\perp} , б) базис в \mathcal{L}^{\perp} .

26.15. Подпространство ${\cal L}$ задано в ортонормированном базисе системой линейных уравнений $A\xi = \mathbf{o}$. Найти систему

уравнений подпространства
$$\mathcal{L}^{\perp}$$
:
2) $8x_1 - x_2 + 2x_3 - 4x_4 = 0$; $\begin{pmatrix} 8 & -4 & 2 & -4 \\ -6 & 3 & -4 & 6 \end{pmatrix} \sim \begin{pmatrix} 8 & -4 & 2 & -4 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 48 & 0 &$

26.27. Подпространство \mathcal{L} — линейная оболочка векторов $a_1, ..., a_k$. В ортонормированном базисе заданы координатные столбцы этих векторов и координатный столбец ξ вектора x. Найти координатные столбцы ξ' и ξ" ортогональных проекций вектора x соответственно на \mathcal{L} и \mathcal{L}^{\perp} :

2)
$$\mathbf{a}_1 = \|\mathbf{6} \ \mathbf{1} \ \mathbf{5}\|^T$$
, $\mathbf{a}_2 = \|\mathbf{4} \ -\mathbf{1} \ \mathbf{3}\|^T$, $\mathbf{\xi} = \|\mathbf{1} \ \mathbf{3} \ -\mathbf{2}\|^T$;

1) $\begin{pmatrix} 6 \ 1 \ 5 \\ 4 \ -\mathbf{3} \end{pmatrix} \sim \begin{pmatrix} 6 \ 1 \ 5 \\ 5 \ 0 \ 4 \end{pmatrix} \sim \begin{pmatrix} 6 \ 1 \ 5 \\ 5 \ 0 \ 4 \end{pmatrix} \sim \begin{pmatrix} 0.5 \ 1 \\ 5 \ 0 \ 4 \end{pmatrix} \sim \begin{pmatrix} -1 \ -\mathbf{1} \ 5 \end{pmatrix} \sim A = \begin{pmatrix} -1 \ -\mathbf{1} \ 5 \end{pmatrix} \sim A$

2)
$$\xi' \in L_1 \land \xi'' \in L_2 \land \xi' + \xi'' = \xi$$

$$\begin{pmatrix} 0 & 0 & 0 & -4 & -1 & 5 & 0 & 0 \\ 6 & 1 & 5 & 0 & 0 & 0 & 0 \\ 4 & -1 & 3 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 & 0 & 1 & -2 \end{pmatrix}$$
Permaen c-ruy: $\begin{pmatrix} 34121 \\ 1742 \\ -36142 \\ -13121 \\ 109142 \\ 1/42 \end{pmatrix} \notin \xi''$

28.19. Дана матрица A преобразования φ в базисе \mathbf{e} с матрицей Грама Г. Найти матрицу сопряженного преобразования φ^* :

$$A = \begin{pmatrix} 0.19 \\ 0.00 \\ 0.00 \end{pmatrix} \qquad \Gamma = \begin{pmatrix} 1.01 \\ 0.10 \\ 1.02 \end{pmatrix} \qquad A^* = \Gamma^* A^T \Gamma$$

$$A^* = \begin{pmatrix} 0.00 \\ 1.00 \\ 0.00 \end{pmatrix}$$

30.7. Пусть A — матрица линейного преобразования в базисе с матрицей Грама Г. Найти матрицу сопряженного преоб-

 $T = \begin{pmatrix} 5 \\ -7 \end{pmatrix} \rightarrow A^{4} = \frac{1}{4} \begin{pmatrix} 1 \\ -7 \end{pmatrix} \begin{pmatrix} 1 \\ -7 \end{pmatrix} \begin{pmatrix} 5 \\ -7 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 7 \\ -19 \end{pmatrix} \begin{pmatrix} 7 \\ -19 \end{pmatrix}$

28.27. Пусть преобразование φ диагонализуемо. Доказать, что φ^* также диагонализуемо. Втоерен базис, rge $\Gamma = E \Rightarrow A^* = A^T$ тогда $\exists C \land \neg \neg \neg C \Rightarrow A^* = A^T$ тогда $\exists C \land \neg \neg \neg C \Rightarrow A^* = A^T$ тогда $\exists C \land \neg \neg C \Rightarrow A^* = A^* = A^* = C^T A$

- 29.5. Найти все самосопряженные ортогональные преобазивания. $\Gamma = E \Rightarrow A^T =$ разования.
- 29.6. Найти все самосопряженные идемпотентные преобразования. {2(N={(x)} => {-ywerter, towne ({(x),y)=(x,{(y)) => ({(x),y)=({(x),y)=> }} =>(x,y)=(f(N,f(y)) - gronomarett
- 29.19. Найти матрицу перехода к ортонормированному базису из собственных векторов преобразования φ и матрицу преобразования в этом базисе, если φ задано в ортонормирован-

59.
$$\left\| \frac{1}{2} \quad \frac{2}{2} \right\| \rightarrow \left| \frac{1-\lambda^2}{2-2-\lambda} \right| = -(1-\lambda)(2+\lambda) - 4 = 0 = 0 \Rightarrow \lambda = 3 \Rightarrow 2$$

ооразования в этом оазись, сым φ задано в ортопоримрован-

- **29.37.** Пусть φ линейное преобразование евклидова пространства. Доказать, что:
- 1) преобразования $\varphi^*\varphi$ и $\varphi\varphi^*$ неотрицательные самосопряженные.

1)
$$(f^*f)^* = f^*f$$
 no quadrular components
2) Types $u - c$ 6-top $f^*f: (u, f^*f(u)) = (f(u), f(u)) > 0$ $\frac{1}{2}$

ТОГОНАЛЬНЫМ:
$$f o Sozuc$$
 revains got redepute no hold

1) $A = \begin{bmatrix} 4 & 2 \\ 7 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 8 & 2 \\ 1 & -1 \end{bmatrix}$; $[4,7]^{\binom{3}{4}} = 16 + 49 = 65$ $\forall K$. $(2,7)^{\binom{3}{4}} = 4 + 4 = 5$ $(2,7)^{\binom{3}{4}} = 4 + 4 = 5$

25.50. Может ли ортогональная матрица четвертого порядка содержать строку:

29.49. Пусть \mathcal{L} — инвариантное подпространство ортогонального преобразования φ . Доказать, что \mathcal{L}^{\perp} — также инвариантно относительно φ . Как этот результат связан с задачей 25.55?

4en 25.55?

$$a \in L^{+} \Rightarrow \forall b \in L$$
 $(a,b)=0=(\{(a),\{(b)\}\}) \Rightarrow \{(a) \perp C \Rightarrow \{(a) \in L^{+} \}$
 $(a,b)=0=(\{(a),((b)\}\}) \Rightarrow \{(a) \perp C \Rightarrow \{(a) \in L^{+} \}$
 $(a,b)=0=(\{(a),((b)\}\}) \Rightarrow \{(a) \perp C \Rightarrow \{(a) \in L^{+} \}$

29.50. Ортогональное преобразование задано в ортонормированном базисе матрицей A. Найти матрицу S перехода к каноническому базису и матрицу A' преобразования в этом базисе:

parameter:

2)
$$\frac{1}{4} \begin{vmatrix} -1 & -3 & -\sqrt{6} \\ -3 & -1 & \sqrt{6} \\ \sqrt{6} & -\sqrt{6} & 2 \end{vmatrix}$$
; $\begin{vmatrix} -\frac{1}{4} - \lambda & -\frac{1}{4} - \sqrt{6} / 4 \\ -\frac{1}{2} - \frac{1}{4} - \lambda & \sqrt{6} / 4 \end{vmatrix} = 0 \Rightarrow \lambda^{\frac{3}{2}} = -1 \Rightarrow \lambda = \frac{1}{2} \Rightarrow$

$$\lambda = -1: \begin{pmatrix} \frac{3}{4} - \frac{3}{4} - \frac{16}{4} \\ -\frac{3}{4} - \frac{16}{4} \\ \frac{1}{4} - \frac{1}{4} \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 1 \\ 1 - 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 \\ 1 \\ 2 \end{pmatrix} \sim \begin{pmatrix} 0$$

30.44. Для унитарного преобразования, заданного в ортонормированном базисе матрицей A, найти ортонормированный базис из собственных векторов и матрицу преобразования в этом базисе:

1)
$$A = \left\| \begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array} \right\|; \longrightarrow \left(\begin{array}{cc} e^{id} & 9 \\ 0 & e^{id} \end{array} \right)$$

29.53. Получить полярное разложение матрицы:

2) $\begin{vmatrix} 5 & 0 \\ 4 & 3 \end{vmatrix}$,

12.82. Представить каждое из аффинных преобразований задачи 12.81 в виде произведения $f = h_2 h_1 g$, где g — ортогональное преобразование, а h_1 и h_2 — сжатия к двум взаимно перпендикулярным прямым.

7)
$$x^* = 2x + 5y$$
, $y^* = -11x + 10y$; $\Rightarrow \begin{pmatrix} y \\ y \end{pmatrix} = \begin{pmatrix} 25 \\ -110 \end{pmatrix} \begin{pmatrix} y \\ y \end{pmatrix}$

Theorem als pervasance $\begin{pmatrix} 2.5 \\ -110 \end{pmatrix} = A \Rightarrow AA^T = \begin{pmatrix} 2.5 \\ -110 \end{pmatrix} \begin{pmatrix} 2.7 \\ -125 \end{pmatrix} \begin{pmatrix} 2.7 \\ -125 \end{pmatrix} \Rightarrow \begin{pmatrix} 2.5 \\ 2.8 & 2.21 \end{pmatrix} \Rightarrow \begin{pmatrix} 2.21 \\ -125 \end{pmatrix} \Rightarrow \begin{pmatrix} 2.21$

Т.12. а) Выясните, может ли какая-нибудь из приведенных ниже матриц являться матрицей самосопряженного оператора в евклидовом пространстве в некотором (не обязательно ортонормированном) базисе, если

1)
$$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
 2) $B = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}$ 3) $C = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$.

1) Het, $\tau \cdot R$. $\begin{vmatrix} 1 - \lambda & 1 \\ -1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 \cdot 1 - 0$, $\tau \cdot e$ $\lambda \notin \mathbb{R}$ a grant the guaranamy upgets A .

2) $\begin{vmatrix} 2 - \lambda & 1 \\ -1 & 1 - \lambda \end{vmatrix} = 0 \Rightarrow \lambda_{1,2} = 3$, trace B symbologists A (right $\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$) - the guaranamy upgets A .

3) $\begin{vmatrix} -\lambda & 1 \\ 2 & 1 - \lambda \end{vmatrix} = 0 \Rightarrow \lambda_{1,2} = 3$, trace A the Equit A symbologists A (right A) and A and

b)* В случае положительного ответа предъявите (хотя бы одно) скалярное произведение, относительно которого оператор самосопряжен.

ное произведение, относительно которого оператор самосопряжен.

Бра а и в g-ил бия герпия 7.е.
$$a^{T} \Gamma b = 0 - (-1, 1) \Gamma \binom{1}{-1} = 0$$
 $\Gamma = \binom{ab}{cd} = (-1, 1) \binom{ab}{cd} \binom{1}{-2} = (-1, 1) \binom{a-2b}{c-2d} = -a+2b+c-2d=0$
 $\Gamma = \binom{ab}{cd} = (-1, 1) \binom{ab}{cd} \binom{1}{-2} = (-1, 1) \binom{a-2b}{c-2d} = -a+2b+c-2d=0$
 $\Gamma = \binom{ab}{cd} = (-1, 1) \binom{ab}{cd} \binom{1}{-2} = (-1, 1) \binom{a-2b}{c-2d} = -a+2b+c-2d=0$

Reserve $d = b = 1$: $\Gamma = \binom{1}{3/5} \sim \binom{5}{3} = \binom{5}$

32.27. Квадратичная (билинейная) функция записана в ортонормированном базисе n-мерного евклидова пространства. Найти ортонормированный базис, в котором данная функция имеет диагональный вид, и записать этот диагональный вид.

3)
$$7 + x^2 + x (3 + x) + 3 + 2 = (7 + 2 + 3) = (1 - 1 +$$

9.4. Определить тип кривой второго порядка, составить ее каноническое уравнение и найти каноническую систему коорлинат:

динат:
2) (р)
$$4xy - 3y^2 - 4x + 10y - 6 = 0$$
; $\Rightarrow \begin{pmatrix} 0 & 2 \\ 2-3 \end{pmatrix} \sim \begin{pmatrix} \lambda_1 = -4 \\ \lambda_2 = 1 \end{pmatrix} \sim \begin{pmatrix} -43 \\ 0 \end{pmatrix}$
 $\lambda_1 = 1$: $\begin{pmatrix} -42 \\ 2-4 \end{pmatrix} \Rightarrow a\begin{pmatrix} 2 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{4}{5} \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 \\ 2-3 \end{pmatrix} \sim \begin{pmatrix} 2 \\ 2-4 \end{pmatrix}$ thy a landa frag

32.33. В базисе **e** евклидова пространства задана квадратичная форма. Найти в том же базисе матрицу присоединенного к ней преобразования, если матрица Грама базиса **e** равна Г:

тичная форма. Наити в том же оазисе матрицу присоединенного к ней преобразования, если матрица Грама базиса е равна
$$\Gamma$$
:

1) $4x_1^2 + 16x_1x_2 + 6x_2^2$, $\Gamma = A_{56}$; $= \begin{pmatrix} 1/4 \\ 1/3 \end{pmatrix}$ $A = G^{-1} + \frac{1}{2} \begin{pmatrix} 3-4 \\ -1/4 \end{pmatrix} \begin{pmatrix} 48 \\ 86 \end{pmatrix} = \begin{pmatrix} 2/4 \\ 2/4 \end{pmatrix}$

32.39. Не находя замены координат, приводящей положительно определенную квадратичную форму g к каноническому

§ 32. Билинейные и квадратичные функции

305

виду, а квадратичную форму f к диагональному виду, найти этот диагональный вид формы f.

этот диагональный вид формы 1.

1)
$$f = x_1^2 + 2x_1x_2 + x_2^2$$
, $g = 10x_1^2 + 6x_1x_2 + x_2^2$; \Rightarrow $G = \begin{pmatrix} 1 & 3 & 3 & 4 \\ 1 & 1 & 4 & 4 & 4 \end{pmatrix}$

$$|H - tG| = \begin{vmatrix} 1 - 1 & 1 & 1 & 3t \\ 1 - 3t & 1 & -t \end{vmatrix} = 0 \Rightarrow \begin{cases} \frac{1}{t} = 0 & 2 & 1 \\ \frac{1}{t} = \frac{1}{t} = \frac{1}{t} = 0 \end{cases}$$
 $|H - tG| = \begin{vmatrix} 1 - 1 & 1 & 1 & 3t \\ 1 - 3t & 1 & -t \end{vmatrix} = 0 \Rightarrow \begin{cases} \frac{1}{t} = 0 & 2 & 1 \\ \frac{1}{t} = \frac{1}{t} = \frac{1}{t} = 0 \end{cases}$

32.36. Проверить, что по меньшей мере одна из двух данных квадратичных форм является знакоопределенной. Найти замену координат, приводящую эти две формы одновременно к диагональному виду, и записать этот диагональный вид обеих форм.

3)
$$f = 11x_1^2 - 6x_1x_2 + x_2^2$$
, $g = 13x_1^2 - 10x_1x_2 + 3x_2^2$;
4) $f = 9x_1^2 - 10x_1x_2 + 3x_2^2$, $g = 2x_1x_2 - x_2^2$;
3) $G = \begin{pmatrix} 11 - 3 \\ -3 \end{pmatrix}$, $H = \begin{pmatrix} 13 - 5 \\ -5 \end{bmatrix}$ for R . Considering the three R for R for

$$\lambda = 1 \cdot \begin{pmatrix} -9 & 6 \\ 6 & -4 \end{pmatrix} - \begin{pmatrix} -3 & 2 \\ 6 & 0 \end{pmatrix} \Rightarrow a \begin{pmatrix} 2 \\ 3 \end{pmatrix} \Rightarrow |a| = \sqrt{a^{T}} G a^{T} = \sqrt{3}$$

$$\lambda = -\frac{1}{2} \cdot \begin{pmatrix} +\frac{9}{2} - \frac{3}{2} \\ -6 & 0 \end{pmatrix} \Rightarrow 6 \begin{pmatrix} 3 \\ 3 \end{pmatrix} \quad |b| = \sqrt{6^{T}} G b^{T} = \sqrt{6}$$

$$\lambda = -\frac{1}{2} \cdot \begin{pmatrix} +\frac{9}{2} - \frac{3}{2} \\ -6 & 0 \end{pmatrix} \Rightarrow 6 \begin{pmatrix} 3 \\ 3 \end{pmatrix} \quad |b| = \sqrt{6^{T}} G b^{T} = \sqrt{6}$$

Muretirol pyrayem.

31.21. Пусть t_0 — фиксированное число. Сопоставим каждому многочлену p(t) степени $\leq n$ его значение при $t=t_0$. Доказать, что этим определена линейная функция φ на пространстве $\mathcal{P}^{(n)}$. Вычислить координатную строку функции φ в базисах $1, t, \ldots, t^n$ и $1, t-t_0, \ldots, (t-t_0)^n$.

p= p(t) 1) lunewroses:
$$(p+q)(t_0) = p(t_0) + g(t_0) - orithagon$$

$$(xp(t_0) = x p(t_0)$$

31.30. Доказать, что всякую ненулевую линейную функцию f на \mathcal{L}_n подходящим выбором базиса в \mathcal{L}_n можно привести к виду f $(x) = \xi_1$, где ξ_1 — первая координата вектора x.

Fycos
$$a=(a_1, ..., d_n)$$
 - noong opera on δ -ce, ronga hypero g -76, V 0 f 0 $a=e$ 0, v 9 $e=(1,0...o)$
 $a=e$ 0, v 9 $e=(1,0...o)$

31.31. В базисе **e** линейная функция f имеет строку коэффициентов \varkappa . Найти ее строку коэффициентов \varkappa' в базисе $\mathbf{e}' = \mathbf{e}S$, если:

e' = es, echu:
2)
$$\varkappa = \mathbf{c}_{64}^T$$
, $S = A_{202}$; $S \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \Rightarrow \ell(a) = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_2 \end{pmatrix} = \chi \begin{pmatrix} \lambda_1 \\ \lambda_$

2) Многочлены 1, $t-t_0,\ldots,(t-t_0)^n$ образуют базис в пространстве $\mathcal{P}^{(n)}$. Найти соответствующий биортогональный базис

31.35. 1) Пусть базису e_1 , e_2 , e_3 пространства \mathcal{L}_3 биортогонален базис f_1 , f_2 , f_3 пространства \mathcal{L}_3^* . Найти базис, биортогональный базису $e_1'=e_1+e_2$, $e_2'=e_2+e_3$, $e_3'=e_3$.

гональный базису
$$e_1' = e_1 + e_2$$
, $e_2' = e_2 + e_3$, e_3'

1) $g_1(e_1 + e_2) = 1$
 $g_1(e_2 + e_3) = 0$
 $g_1(e_3) = 0$
 $g_1(e_3) = 0$

2)
$$q_{2}(e_{2}+e_{3}=1)$$
 $q_{2}(e_{3})=0$ $q_{2}=f_{1}-f_{2}$ $q_{2}(e_{3})=0$ $q_{3}(e_{3})=0$ $q_{4}=f_{1}-f_{2}$ $q_{5}=f_{1}-f_{2}$

3)
$$g_3(e_1+e_2)=0$$

 $g_3(e_2+e_3)=0$
 $g_3(e_3)=1$

Т.16. Докажите, что любая линейная функция f на пространстве матриц $\mathrm{M}_n(\mathbb{R})$ имеет вид $f(X) = \mathrm{tr}(AX)$, где $A \in \mathrm{M}_n(\mathbb{R})$, причем матрица

Тенгоры. (вегде применяется правило суминумования запилетна)

35.14. Тензор типа (1, 1) имеет в некотором базисе компоненты

$$\delta^i_j = \begin{cases} 1, & \text{если } i = j; \\ 0, & \text{если } i \neq j. \end{cases}$$

Изменяются ли его компоненты при переходе к другому бази- Г-е- б ј не изм измене бозила

 $\delta_{i}^{k} = d_{i}^{k} C_{i}^{k} \delta_{i}^{k} = d_{i}^{k} C_{i}^{k} = \delta_{i}^{k}$ Taa non D=c-1=> DC=E,7 e. di CL

су? Какой геометрический смысл имеет этот тензор? \int геом. \int сионе: δ узаморирем тормедилентаму menozopy Idu.

35.15. Тензор типа (0, 2) имеет в некотором базисе компоненты

$$\delta_{ij} = \begin{cases} 1, & \text{если } i = j; \\ 0, & \text{если } i \neq j. \end{cases}$$

Как изменятся его компоненты при переходе к другому базису? Какая билинейная функция соответствует этому тензору?

Ski = Ck Ci dij = Ck Ci + Tki Tonavy renzopy cools requesioners (ng u-you have monzbeglenes (100)

35.21. 1) Тензор типа (0, n) имеет в некотором базисе ком- () $\mathcal{E}_{k_1 \dots k_n}^{\dagger} = \mathcal{E}_{i_1 \dots i_n}$ $\mathcal{E}_{k_1 \dots k_n}^{\dagger} = \mathcal{E}_{i_1 \dots i_n}$ $\mathcal{E}_{k_1 \dots k_n}^{\dagger} = \mathcal{E}_{i_1 \dots i_n}$ бенты

поненты
$$\varepsilon_{i_1 \dots i_n} = \begin{cases} (-1)^{N(i_1 \dots i_n)}, & \text{если все числа } i_1, \dots, i_k \text{ различны;} \\ 0 & \text{в остальных случаях} \end{cases}$$

 $(N\ (i_1\ \dots\ i_n)$ — число нарушений порядка в перестановке (i_1,\dots,i_n)). Вычислить компоненты данного тензора в базисе Ekr. kn= Etr.-kn-det S TO CESTO

D & Einmin Skn - Skn = (sgn(kn-kn) dets in-inksn) 0 (kn kn) 4 Sn

- 2) Каждому базису пространства \mathcal{L}_n сопоставлены числа нет, том ном уши ререгиде от борицу Einin = dettein Ein tan non IdetCl + 1 $\varepsilon_{i_1,\,\dots,\,i_n}$. Будет ли это соответствие тензором типа $(0,\,n)$?
 - **47.2.** Найти значение F(v, f) тензора

$$F = e^1 \otimes e_2 + e^2 \otimes (e_1 + 3e_3) \in \mathbb{T}_1^1(V).$$

где $v = e_1 + 5e_2 + 4e_3$, $f = e^1 + e^2 + e^3$.

Fig.
$$e_1 + 3e_2 + 4e_3$$
, $f = e^2 + e^2 + e^3$.

$$F(x) = \left(e^{2} + e^{2} + e$$

47.7. Найти координаты:

а) \tilde{t}_{21}^1 тензора $e^1 \otimes e^2 \otimes (e_1 + e_2) \in \mathbb{T}_2^1(V)$ в базисе

$$(\tilde{e}_{1}, \tilde{e}_{2}) = (e_{1}, e_{2})\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}; \quad D = C^{-1} = \begin{pmatrix} 3 - 1 \\ -2 & 1 \end{pmatrix}$$

$$t_{11}^{1} = 0 \qquad t_{12}^{2} = 0 \qquad T_{21}^{1} = d_{1}^{2} c_{2}^{1} c_{1}^{2} t_{1}^{2} = t_{12} \cdot c_{2}^{1} c_{1}^{2} d_{1}^{2} + t_{12}^{2} c_{2}^{2} d_{1}^{2} + t_{12}^{2} c_{2}^{2} d_{1}^{2} + t_{12}^{2} c_{2}^{2} d_{1}^{2} = 6 - \lambda = 4$$

$$t_{12}^{1} = 0 \qquad t_{12}^{2} = 0 \qquad T_{22}^{2} = 0$$

$$t_{12}^{2} = 1$$
 $t_{12}^{2} = 1$ $t_{22}^{2} = 0$ $t_{21}^{2} = 0$ $t_{21}^{2} = 0$

47.11. Найти ранг билинейных функций:

a)
$$(e^{1} + e^{2}) \otimes (e^{1} + e^{3}) - e^{1} \otimes e^{1} - e^{2} \otimes e^{2}; = 1$$

$$T(u,v) = (u_{1}u_{2})(v_{1}v_{3}) - u_{1}v_{1} - u_{2}v_{2} = u_{1}v_{3} + u_{2}v_{1} + u_{2}v_{3} - u_{2}v_{2} \sim \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \sum_{i=1}^{n} \frac{1}{(i-1)^{n}} e^{i} \otimes e^{i} + e^{i} \otimes e^{i} + e^{i} \otimes e^{i} = 1$$

47.13. Найти полную свертку тензоров:

a)
$$(e_1 + 3e_2 - e_3) \otimes (e^1 - 2e^2 + 3e^4) - (e_1 + e_3) \otimes (e^1 - 3e^3 + e^4);$$

$$T(e_1, e_2) = 1 - 1 - 1 - 1 = 0$$

$$T(e_2, e_3) = 3 \cdot (-2) - 0 = -6$$

$$T(e_3, e_3) = -1 \cdot 0 - 1 \cdot (-3) = 3$$

$$T(e_1, e_2) = 0 - 0 = 0$$

47.16. Пусть на пространстве V задано скалярное произведение с матрицей

$$\begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$

Провести опускание и подъем индексов у тензоров:

a)
$$e^1 \otimes e_3 + e^2 \otimes e_4$$
; 6) $(e^1 + e^2) \otimes (e_3 + e_4) - (e^1 + e^3) \otimes e_3$;