Preconditioning techniques

- Basic concepts
- Gauss-Seidal and SSOR as preconditioners
- Incomplete LU factorizations
- Level-of-fill and threshold-based methods.
- Multi-elimination, ARMS
- See Chapter 10 of text for details.

$Preconditioning - Basic\ principles$

Basic idea is to use the Krylov subspace method on a modified system such as

$$M^{-1}Ax = M^{-1}b.$$

- The matrix $M^{-1}A$ need not be formed explicitly; only need to solve Mw=v whenever needed.
- ullet Consequence: fundamental requirement is that it should be easy to compute $M^{-1}v$ for an arbitrary vector v.

Left, Right, and Split preconditioning

Left preconditioning

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

$$AM^{-1}u=b$$
, with $x=M^{-1}u$

Split preconditioning: M is factored as $M=M_LM_R$.

$$M_L^{-1}AM_R^{-1}u=M_L^{-1}b$$
, with $x=M_R^{-1}u$

An observation. Introduction to Preconditioning

- Take a look back at basic relaxation methods: Jacobi, Gauss-Seidel, SOR, SSOR, ...
- Iterations of the form $x^{(k+1)} = Mx^{(k)} + f$ where M is of the form $M = I P^{-1}A$. For example for SSOR,

$$P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)$$

- > Referred to as the SSOR preconditioner
- The iteration $x^{(k+1)}=Mx^{(k)}+f$ is attempting to solve (I-M)x=f. Since $M\equiv I-P^{-1}A$ this system can be rewritten as $P^{-1}Ax=P^{-1}b$

In other words:

Relaxation iter. \iff Preconditioned Fixed Point Iter.

Csci 8314 - March 30, 2014

$Standard\ preconditioners$

- Simplest preconditioner: M = Diag(A) > Diag(A) poor convergence.
- Next to simplest: SSOR.

$$M=(D-\omega E)D^{-1}(D-\omega F)$$

- Still simple but often more efficient: ILU(0).
- ILU(p) ILU with level of fill p more complex.
- Class of ILU preconditioners with threshold
- Class of approximate inverse preconditioners
- Class of Multilevel ILU preconditioners
- Algebraic Multigrid Preconditioners

$The \ SOR/SSOR \ preconditioner$

SOR preconditioning

$$M_{SOR} = (D - \omega E)$$

SSOR preconditioning

$$M_{SSOR} = (D{-}\omega E)D^{-1}(D{-}\omega F)$$

 $M_{SSOR} = LU$, L = lower unit matrix, U = upper triangular. One solve with $M_{SSOR} pprox$ same cost as a MAT-VEC.

k-step SOR (resp. SSOR) preconditioning:

 $m{k}$ steps of SOR (resp. SSOR)

 \blacktriangleright Questions: Best ω ? For preconditioning can take $\omega=1$

$$M=(D-E)D^{-1}(D-F)$$

Observe: M = LU + R with $R = ED^{-1}F$.

ightharpoonup Best k? k=1 is rarely the best. Substantial difference in performance.

Iteration times versus k for $\mathsf{SOR}(k)$ preconditioned GMRES

ILU(0) and IC(0) preconditioners

Notation:

$$NZ(X)=\{(i,j)\mid X_{i,j}
eq 0\}$$

Formal definition of ILU(0):

$$A = LU + R \ NZ(L) igcup NZ(U) = NZ(A) \ r_{ij} = 0 ext{ for } (i,j) \in NZ(A)$$

ightharpoonup This does not define ILU(0) in a unique way.

Constructive definition: Compute the LU factorization of A but drop any fill-in in L and U outside of Struct(A).

 \blacktriangleright ILU factorizations are often based on i, k, j version of GE.

What is the IKJ version of GE?

ALGORITHM: 1. Gaussian Elimination – IKJ Variant

```
1. For i = 2, ..., n Do:

2. For k = 1, ..., i - 1 Do:

3. a_{ik} := a_{ik}/a_{kk}

4. For j = k + 1, ..., n Do:

5. a_{ij} := a_{ij} - a_{ik} * a_{kj}

6. EndDo

7. EndDo

8. EndDo
```


$|ILU(0)-zero ext{-}fill\;ILU|$

ALGORITHM: 2. ILU(0)

```
For i=1,\ldots,N Do:

For k=1,\ldots,i-1 and if (i,k)\in NZ(A) Do:

Compute a_{ik}:=a_{ik}/a_{kj}

For j=k+1,\ldots and if (i,j)\in NZ(A), Do:

compute a_{ij}:=a_{ij}-a_{ik}a_{k,j}.

EndFor

EndFor
```

When A is SPD then the ILU factorization = Incomplete Choleski factorization – IC(0). Meijerink and Van der Vorst [1977].

Typical eigenvalue distribution

- More than anything else, what determines the convergence of an iterative method is the distribution of the eigenvalues of the matrix.
- \blacktriangleright Need to consider eigenvalues of preconditioned matrix $M^{-1}A$

Clustering around 1 results in fast convergence

Pattern of ILU(0) for 5-point matrix

Higher order ILU factorization

- Higher accuracy incomplete Choleski: for regularly structured problems, IC(p) allows p additional diagonals in L.
- ➤ Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]
- ullet Initially $Lev_{ij} = \left\{egin{array}{ll} 0 & ext{for } a_{ij}
 eq 0 \ \infty & ext{for } a_{ij} == 0 \end{array}
 ight.$
- ullet At a given step i of Gaussian elimination:

$$Lev_{kj} = \min\{Lev_{kj}; Lev_{ki} + Lev_{ij} + 1\}$$

- ightharpoonup ILU(p) Strategy = drop anything with level of fill-in exceeding p.
- * Increasing level of fill-in usually results in more accurate ILU and...
- * ...typically in fewer steps and fewer arithmetic operations.

ILU(1)

$ALGORITHM: 3 \cdot ILU(p)$

```
For i=2,N Do For each k=1,\ldots,i-1 and if a_{ij}\neq 0 do Compute a_{ik}:=a_{ik}/a_{jj} Compute a_{i,*}:=a_{i,*}-a_{ik}a_{k,*}.

Update the levels of a_{i,*} In row i: if lev(a_{ij})>p set a_{ij}=0 EndFor
```

➤ The algorithm can be split into a symbolic and a numerical phase.
Level-of-fill ➤ in Symbolic phase

$ILU\ with\ threshold-generic\ algorithms$

ILU(p) factorizations are based on structure only and not numerical values > potential problems for non M-matrices.

One remedy: ILU with threshold – (generic name ILUT.)

Two broad approaches:

First approach [derived from direct solvers]: use any (direct) sparse solver and incorporate a dropping strategy. [Munksgaard ('78), Osterby & Zlatev, Sameh & Zlatev'90, D. Young, & al. (Boeing) etc...]

Second approach: [derived from 'iterative solvers' viewpoint]

- 1. use a (row or colum) version of the (i, k, j) version of GE;
- 2. apply a drop strategy for the elment l_{ik} as it is computed;
- 3. perform the linear combinations to get a_{i*} . Use full row expansion of a_{i*} ;
- 4. apply a drop strategy to fill-ins.

ILU with threshold: ILUT (k, ϵ)

- ullet Do the i, k, j version of Gaussian Elimination (GE).
- During each i-th step in GE, discard any pivot or fill-in whose value is below $\epsilon ||row_i(A)||$.
- ullet Once the i-th row of L+U, (L-part + U-part) is computed retain only the k largest elements in both parts.
- Advantages: controlled fill-in. Smaller memory overhead.
- Easy to implement much more so than preconditioners derived from direct solvers.
- can be made quite inexpensive.

$Other\ preconditioners$

Many other techniques have been developed:

- Approximate inverse methods
- Polynomial preconditioners
- Multigrid type methods
- Incomplete LU based on Crout factorization
- Multi-elimination and multilevel ILU (ARMS)