Computing Planck's blackbody spectrum, considering index of refraction

J. Muschaweck, July 18th, 2020

When blackbody radiation is emitted from the opening of a gas filled cavity (e.g. Argon), and/or detected by a detector in a gas (e.g. air), then the index of refraction of the gas must be considered. See this paper by Gaertner, http://www.bipm.org/cc/CCT/Allowed/25/D11_CCTdraftAAG.pdf which corrects this paper by Hartmann, https://www.osapublishing.org/oe/abstract.cfm?uri=oe-14-18-8121.

We know:

- Basic spectral radiance as function of frequency, $L_{basic,\nu}(\nu) = \frac{\mathrm{d}\Phi}{\mathrm{d}A\,n^2\,\cos(\theta)\,d\Omega\,\mathrm{d}\nu}$ is invariant along a ray when this ray undergoes refraction without Fresnel losses (the brightness conservation theorem).
- Integrating blackbody spectral basic radiance, $L_{basic} = \int L_{basic,\nu}(\nu) d\nu$ over frequency yields $L_{basic} = \frac{\sigma T^4}{\pi}$, with absolute temperature T and Stefan-Boltzmann constant σ , independent of refractive index.

Note the factor of n^2 in the denominator of $L_{basic,\nu}(\nu)$: this is what makes basic spectral radiance different from standard (geometric) spectral radiance L_{ν} .

For blackbody radiation, basic spectral radiance as function of frequency is

$$L_{basic,\nu}^{bb}(\nu) = \frac{2h\nu^3}{c^2 \left(\exp\left(\frac{h\nu}{kT}\right) - 1\right)}$$

There is no refractive index, correctly, because frequency does not change with index, and because of brightness conservation.

However: In practice, we often need spectra as function of wavelength, and that wavelength is often taken within a refractive medium.

The dispersion free case

Let us now change variables from frequency to wavelength λ in units of "wlu meters", e.g. wlu = 10^{-9} for nanometers, in medium with constant refractive index n:

$$\nu = \frac{c}{n \lambda \text{ wlu}} \qquad \left| \frac{d\nu}{d\lambda} \right| = \frac{c}{n \lambda^2 \text{ wlu}}$$

or, with $\lambda_{\text{vac,m}} = n \lambda \text{ wlu}$ (the wavelength in vacuum in meters)

$$\nu = \frac{c}{\lambda_{\text{vac,m}}} \qquad \left| \frac{\mathrm{d}\nu}{\mathrm{d}\lambda} \right| = \frac{c}{\lambda_{\text{vac,m}}\lambda}$$

Then, basic spectral radiance as function of wavelength in any units in medium is

$$L_{basic,\lambda}(\lambda) = L_{basic,\nu}(\nu(\lambda)) \left| \frac{\mathrm{d}\nu}{\mathrm{d}\lambda} \right| = \frac{c_{1L}}{\lambda \lambda_{\mathrm{vac,m}}^4 \left[\exp\left(\frac{c_2}{\lambda_{\mathrm{vac,m}}T}\right) - 1 \right]} = \frac{c_{1L} n \, \mathrm{wlu}}{\lambda_{\mathrm{vac,m}}^5 \left[\exp\left(\frac{c_2}{\lambda_{\mathrm{vac,m}}T}\right) - 1 \right]}$$

where $c_{1L} = 2hc^2$ and $c_2 = hc/k$ are CODATA's first and second radiation constants.

This result makes it easy to calculate $L_{basic,\lambda}(\lambda)$ numerically in a constant index medium:

First, compute the standard (non-basic) blackbody spectral radiance for wavelength in meters. Then, multiply with n wlu. Finally, check the result by integrating over λ , verifying the result is $L_{basic} = \frac{\sigma T^4}{\pi}$.

The dispersive case

If there is dispersion, $n = n(\lambda)$:

$$\nu = \frac{c}{n(\lambda) \lambda \text{ wlu}} \qquad \left| \frac{\mathrm{d}\nu}{\mathrm{d}\lambda} \right| = \frac{\left(n(\lambda) + \lambda \frac{\mathrm{d}n}{\mathrm{d}\lambda} \right) c}{(n(\lambda) \lambda)^2 \text{ wlu}}.$$

Note the additional $\lambda \frac{\mathrm{d}n}{\mathrm{d}\lambda}$ term in the numerator. Then,

$$L_{basic,\lambda}(\lambda) = L_{basic,\nu}(\nu) \left| \frac{\mathrm{d}\nu}{\mathrm{d}\lambda} \right| = \frac{c_{1L} \left(n(\lambda) + \lambda \frac{\mathrm{d}n}{\mathrm{d}\lambda} \right)}{n(\lambda) \lambda \lambda_{\mathrm{vac,m}}^{4} \left[\exp\left(\frac{c_{2}}{\lambda_{\mathrm{vac,m}}T} \right) - 1 \right]} = \frac{c_{1L} \left(n(\lambda) + \lambda \frac{\mathrm{d}n}{\mathrm{d}\lambda} \right) \mathrm{wlu}}{\lambda_{\mathrm{vac,m}}^{5} \left[\exp\left(\frac{c_{2}}{\lambda_{\mathrm{vac,m}}T} \right) - 1 \right]}$$

The numerical calculation proceeds similar to the constant index case: Compute compute the standard (non-basic) blackbody spectral radiance for wavelength in meters. Then, multiply with $\left(n(\lambda) + \lambda \frac{\mathrm{d}n}{\mathrm{d}\lambda}\right)$ wlu. It is the

 $\frac{\mathrm{d}n}{\mathrm{d}\lambda}$ term which may cause some headaches. The dispersion curve $n(\lambda)$ may be given as a function, in e.g.

Sellmeier or Cauchy cofficients. Then, it can be readily differentiated. In case of $n(\lambda)$ given by tabulated values, I would recommend to perform a cubic spline interpolation of the tabulated values and then differentiate the cubic polynomials analytically. In Matlab, for example, pp = spline(lambda, n) returns a piecewise polynomial structure that can be evaluated using ppval. This structure can be readily differentiated, too, using a function like this:

```
function rv = ipp_deriv(pp)
% Input: pp is piecewise polynomial struct, returned from spline or pchip or makima
% Output: pp struct with derivative coefficients, order - 1
    if strcmp(pp.form,'pp') ~= 1
        error('ipp_deriv: expect piecewise polynomial structure');
    end
    if pp.dim ~= 1
        error('ipp_deriv: expect 1-dim piecewise polynomial structure');
    end
% breaks: [1 3 4 6 10 11]
% coefs: [5×4 double]
```

```
% pieces: 5
% order: 4
% dim: 1
rv = pp;
rv.order = pp.order - 1;
rv.coefs = pp.coefs(:,1:end-1) .* (rv.order:-1:1);
end
```