# Section 9.5 Simple Harmonic Motion; Damped Motion; **Combining Waves**



**Simple harmonic motion** is a special kind of vibrational motion in which the acceleration a of the object is directly proportional to the negative of its displacement d from its rest position. That is, a = -kd, k > 0.



Vibrating tuning fork





$$\theta = \omega t$$
 
$$x = a \cos \theta = a \cos(\omega t)$$
$$y = a \sin \theta = a \sin(\omega t)$$



#### **THEOREM**

## Simple Harmonic Motion

An object that moves on a coordinate axis so that the distance d from its rest position at time t is given by either

$$d = a\cos(\omega t)$$
 or  $d = a\sin(\omega t)$ 

where a and  $\omega > 0$  are constants, moves with simple harmonic motion.

The motion has amplitude |a| and period  $\frac{2\pi}{\omega}$ .

## Frequency

$$f = \frac{\omega}{2\pi} \qquad \omega > 0$$

#### **Build a Model for an Object in Harmonic Motion**



Suppose that an object attached to a coiled spring is pulled down a distance of 5 inches from its rest position and then released. If the time for one oscillation is 3 seconds, write an equation that relates the displacement *d* of the object from its rest position after time *t* (in seconds). Assume no friction.

$$d = a\cos(\omega t)$$

$$a=-5$$
 and  $\frac{2\pi}{\omega}=\text{period}=3$ , so  $\omega=\frac{2\pi}{3}$ 

An equation that models the motion of the object is

$$t = 0$$

$$d = -5\cos\left[\frac{2\pi}{3}t\right]$$

## 2 Analyze Simple Harmonic Motion

## **Analyzing the Motion of an Object**

Suppose that the displacement d (in meters) of an object at time t (in seconds) satisfies the equation

$$d = 25 \cos(4t)$$

- (a) Describe the motion of the object.
- (b) What is the maximum displacement from its resting position?
- (c) What is the time required for one oscillation?
- (d) What is the frequency?
- (a) The motion is simple harmonic.
- (b) Maximum displacement is |a| = 25 meters.

(c) Period 
$$\frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2}$$
 seconds

(d) Frequency = 
$$\frac{\omega}{2\pi} = \frac{2}{\pi}$$
 oscillations per second

## 3 Analyze an Object in Damped Motion



#### Damped Motion

The displacement d of an oscillating object from its at-rest position at time t is given by

$$d(t) = ae^{-bt/(2m)}\cos\left(\sqrt{\omega^2 - \frac{b^2}{4m^2}}t\right)$$

where b is the **damping factor** or **damping coefficient** and m is the mass of the oscillating object. Here |a| is the displacement at t=0 and  $\frac{2\pi}{\omega}$  is the period under simple harmonic motion (no damping).

## **Analyzing a Damped Vibration Curve**

Analyze the damped vibration curve  $d(t) = e^{-t/\pi} \cos t$ ,  $t \ge 0$  $|d(t)| = |e^{-t/\pi} \cos t| = |e^{-t/\pi}| |\cos t| \le |e^{-t/\pi}| = e^{-t/\pi}$ 

$$-e^{-t/\pi} \le d(t) \le e^{-t/\pi}$$

| - | t                          | 0      | $rac{\pi}{2}$                 | $\pi$            | $\frac{3\pi}{2}$                | $2\pi$           |  |
|---|----------------------------|--------|--------------------------------|------------------|---------------------------------|------------------|--|
|   | $e^{-t/\pi}$               | 1      | $e^{-1/2}$                     | $e^{-1}$         | $e^{-3/2}$                      | $e^{-2}$         |  |
|   | cos t                      | 1      | 0                              | -1               | 0                               | 1                |  |
|   | $d(t) = e^{-t/\pi} \cos t$ | 1      | 0                              | $-e^{-1}$        | 0                               | $e^{-2}$         |  |
|   | Point on graph of <i>d</i> | (0, 1) | $\left(\frac{\pi}{2},0\right)$ | $(\pi, -e^{-1})$ | $\left(\frac{3\pi}{2},0\right)$ | $(2\pi, e^{-2})$ |  |

Also, the graph of d will touch these graphs when  $|\cos t| = 1$ 



The -intercepts of the graph of d occur when  $\cos t = 0$ 

This means that the graph of d will lie between the graphs of  $y = e^{-t/\pi}$  and  $y = -e^{-t/\pi}$ , the **bounding curves** of d.

## Exploration

Graph  $Y_1=e^{-x/\pi}\cos x$ , along with  $Y_2=e^{-x/\pi}$ , and  $Y_3=-e^{-x/\pi}$ , for  $0\le x\le 2\pi$ . Determine where  $Y_1$  has its first turning point (local minimum). Compare this to where  $Y_1$  intersects  $Y_3$ .



## 4 Graph the Sum of Two Functions

### **Graphing the Sum of Two Functions**

Use the method of adding y-coordinates to graph  $f(x) = x + \sin x$ .

$$y = f_1(x) = x \qquad y = f_2(x) = \sin x$$



## **Graphing the Sum of Two Functions**

Use the method of adding y-coordinates to graph  $f(x) = x + \sin x$ .

Select several values of x and compute  $f_1(x)$ ,  $f_2(x)$  and  $f(x) = f_1(x) + f_2(x)$ 

| x                     | 0     | $\frac{\pi}{2}$                    | π           | $\frac{3\pi}{2}$                    | $2\pi$        |
|-----------------------|-------|------------------------------------|-------------|-------------------------------------|---------------|
| $y=f_1(x)=x$          | 0     | $\frac{\pi}{2}$                    | $\pi$       | $\frac{3\pi}{2}$                    | $2\pi$        |
| $y = f_2(x) = \sin x$ | 0     | 1                                  | 0           | -1                                  | 0             |
| $f(x) = x + \sin x$   | 0     | $\frac{\pi}{2}$ + 1 $\approx$ 2.57 | $\pi$       | $\frac{3\pi}{2}-1\approx 3.71$      | $2\pi$        |
| Point on graph of f   | (0,0) | $\left(\frac{\pi}{2}, 2.57\right)$ | $(\pi,\pi)$ | $\left(\frac{3\pi}{2}, 3.71\right)$ | $(2\pi,2\pi)$ |

### **Graphing the Sum of Two Functions**

Use the method of adding y-coordinates to graph  $f(x) = x + \sin x$ .



## Graphing the Sum of Two Sinusoidal Functions

Use the method of adding y-coordinates to graph

$$f(x) = \sin x + \cos(2x)$$

| x                          | $-\frac{\pi}{2}$                 | 0      | $\frac{\pi}{2}$                | $\pi$  | $\frac{3\pi}{2}$                 | $2\pi$        |
|----------------------------|----------------------------------|--------|--------------------------------|--------|----------------------------------|---------------|
| $y = f_1(x) = \sin x$      | -1                               | 0      | 1                              | 0      | -1                               | 0             |
| $y = f_2(x) = \cos(2x)$    | -1                               | 1      | -1                             | 1      | -1                               | 1             |
| $f(x) = \sin x + \cos(2x)$ | -2                               | 1      | 0                              | 1      | -2                               | 1             |
| Point on graph of f        | $\left(-\frac{\pi}{2},-2\right)$ | (0, 1) | $\left(\frac{\pi}{2},0\right)$ | (π, 1) | $\left(\frac{3\pi}{2},-2\right)$ | (2 $\pi$ , 1) |

