AER210 Abridged

Aman Bhargava

September 2019

Contents

		4
		4
1.3	Partial Derivatives	4
	1.3.1 Functions of Several Variables	4
	1.3.2 Limits and Continuity with Functions of Several Variables	5
	1.3.3 Higher Partial Derivatives	5
1.4	Gradient	5
1.5		6

0.1 Review: Stuff to Have Memorized

Chapter 1

In-Class Review

1.1 Vectors & Vector Functions

- Vector = magnitude + direction
- If the origin of the vector is the origin of the coordinate system, it's a position vector.
- Dot product: $\vec{a} \cdot \vec{b} = \vec{a}_1 \cdot \vec{b}_1 + ... + \vec{a}_n \cdot \vec{b}_n$
- Cross product: $\vec{a} \times \vec{b} = det(i, j, k; \vec{a}^T; \vec{b}^T)$
- Cross product is the area of the paralellogram traced out by the two vectors.
- Scalar triple product: $\vec{a} \cdot (\vec{b} \times \vec{c})$, produces a scalar, represents the volume of the parallelepiped formed by the three vectors.
- To get the derivative of a vector function, simply take the derivative of each of the internal functions and package them into a new vector function.

1.2 Arc Length

1.2.1 One-Variable Functions

$$L = \int_a^b \sqrt{1 + [f'(x)]^2} dx$$

1.2.2 Parametric Functions

Let y(t) and x(t) describe a parametric function in 2 dimensions. Then the arc length would be:

$$L = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dx$$

1.2.3 Vector Funtions

Let $\vec{r}(t)$ describe a vector function that converts a scalar t into a vector. Then the arclength function would be:

$$L = \int_{a}^{b} |\vec{r}(t)| dt$$

1.2.4 Reparamerizing with respect to Arc Length

What is this? Let there be a vector function $\vec{r}(t)$ and its corresponding arc length function s(t). Since s is strictly increasing, we can safely **reparameterize** $\vec{r}(t)$ to be $\vec{r}(s(t)) \to \vec{r}(s)$.

Why would you want to do this? This type of reparameterization is useful because now we do not have to rely on any particular coordinate system.

Steps to Reparameterizing

- 1. Find $s(t) = \int_a^b |\vec{r}(u)| du$.
- 2. Put s in terms of t.
- 3. Substitute the expression found in part 2 in the original $\vec{r}(t)$.

1.3 Partial Derivatives

1.3.1 Functions of Several Variables

A function of two variables transforms each pair of Reals (x, y) in a given set to a single real number. The given set is the domain, and the set of reals that the pair is transformed to is the range.

Level functions are functions that have f(x,y) = k for given ranges of (x,y)

Functions of 3 or more variables are pretty easy to extrapolate from functions of two variables, tbh.

1.3.2 Limits and Continuity with Functions of Several Variables

Limits

Definition of limit with many variables:

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for every number $\epsilon>0$ there is a corresponding number $\delta>0$ s.t. if $0<\sqrt{(x-a)^2+(y-b)^2}<\delta$ then $|f(x,y)-L|<\epsilon$

How to find: Regard the non-mentioned variable in the notation as a constant and differentiate with respect to the mentioned variable.

1.3.3 Higher Partial Derivatives

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial z}{\partial y \partial x}$$

Clairaut's Theorem

If f_{xy} and f_{yx} are both **defined** and **continuous** on disk D then:

$$f_{xy}(a,b) = f_{yx}(a,b)$$

1.4 Gradient

Think of the gradient like an operator that applies to functions of many variables (functions of vectors). The ∇ just calculates the partial derivatative of the function with respect to each of its input variables and puts it into a vector.

$$\nabla f(x,y) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Or, more generally for a function $f(\vec{x})$,

$$\nabla f(\vec{x}) = \left[\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right]$$

1.5 Chain Rule with Many Variables

Let there be a function $f(\vec{x})$. Let \vec{x} of length n be a function of \vec{t} of length m. We take the partial derivative of f with respect to t_i by the following:

$$\frac{\partial f}{\partial t_i} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

Chapter 2
Multiple Integrals