

Chem.

Hexachloroplumbates, a new class of complex compounds. G. Spacu and M. Radu. *Chem. et Tehn. si chim. h. Brezearu. Acad. rep. populare Romane, Bul. stiint., Sect. chim. 1971, 11, 9* (French summary).—One g. of trans- $\text{[Co}(\text{en})_2\text{Cl}_2\text{Cl}_6\text{]Cl}$ in 20 ml. of freshly prep'd. Cl water and 0.65 g. of finely powd. $(\text{NH}_4)_2\text{PbCl}_6$, gave on filtration and drying cis- $(\text{en}_2\text{Co}(\text{en})_2)\text{PbCl}_6 \cdot 0.5\text{H}_2\text{O}$, green crystals. Similarly prep'd. were the trans-analog, black needles (via a yellow intermediate, probably $[\text{Co}(\text{NH}_3)_3\text{Cl}_5\text{Cl}]_2\text{PbCl}_6 \cdot 3\text{H}_2\text{O}$, yellow, over P_2O_5 forms the anhyd. compd.; and $[\text{Co}(\text{en})_3\text{Cl}_5\text{Cl}]_2\text{PbCl}_6 \cdot \text{H}_2\text{O}$, yellow crystals. All these compds. were prep'd. under a Cl atm. in freshly prep'd. Cl water; they are stable in air, but decomp. in acids and H_2O to give PbO_2 . The results are presented as evidence that the double salts reported in the literature ought to be formulated as complex compds. contg. PbCl_6^{2-} , and this ion remains unchanged in reactions of M_2PbCl_6 with metalamines. *Gary Gerard* *PM* *GGP*

(clipped abstract)

Spach, G.

The salts of $\text{H}_3\text{Sb}(\text{OH})_6$ (I) (Baud, G. Spach and Baud, J. L. *Ann. Rev. chim. Acad. rep. populaire Roumaine* 1, 1, 5-14 (1951) (in French).—A no. of new complex pyramidal mononitrogen were prepd. and their ease of dehydration studied. $\text{KSB}(\text{OH})_6$ (I) (0.60 g.) and 0.85 g. of benzidine HCl (II) were mixed with 5 ml. of H_2O in a small mortar, stirred for 8-9 min., filtered under vacuum, and dried on a porous plate to yield $[\text{Sb}(\text{OH})_6\text{H}_3\text{Bz}_2\text{HCl}]$ (III), white crystals, sol. in dil. aq. HCl . II was also prepd. from $[\text{S}(\text{OH})_4\text{H}_3\text{Bz}_2\text{HCl}]$ (IV) by agitation with 20 ml. of abs. Et_2O for 10 min., filtering and washing twice with alc., and twice with Et_2O . Treating III with Li_2O at room temp. gave $\text{H}[\text{Sb}(\text{OH})_6]$ (V) which loses $1/2$ H_2O on drying to give $\text{Sb}(\text{OH})_5\text{H}_2\text{O}$ (VI) whereas treatment with 30% Na_2CO_3 sol. gave $\text{Na}[\text{Sb}(\text{OH})_6]$ (VII) and 50% Et_2OH caused decomposition (0.66 g.) and 1.28 g. of V were treated in a mortar with 10 ml. of H_2O for 10 min., filtered, and dried on a porous plate to give IV, white crystals, sol. in dil. aq. HCl . IV in H_2O gave V which then went to VI on drying. VI was prepd. by treating 0.5 g. of III with 100 ml. of H_2O , agitating for 1 hr., adding 60 ml. more of H_2O , agitating for 30 min., then filtering and drying at room temp. $[\text{S}(\text{OH})_4\text{H}_3\text{Bz}_2\text{HCl}]$ (VIII) was prepd. from 0.75 g. of I and 0.45 g. of II in 15 ml.

Spec. G, and Lopas, Sandoz
of H_2O , filtering and drying to give white crystals that form
slightly yellow crystals in concn. HCl. On drying in the sun
became yellow and the substance blackish but on boiling
the soln. became violet without complete dissolving of the
crystal. This was reconstituted by boiling with
and tartaric acid. Treatment of I with equimolar HCl led to
 $[Sb(OH)_6]H$ (I) and similarly $[Sb(OH)_6]^{2-}$ (II) was
was prep'd. These have properties similar to the
benzidine
compds. When 1 g. of I in 25 ml. of H_2O was
treated with 0.4 g. of $[Cr(NH_3)_6]Cl_3$ (VIII) in 10 ml. of H_2O
and stirred, a yellow prp. of $[Cr(NH_3)_6]_2[Si(OH)_4]_2$ (IX)
was formed which was washed with a soln. containing 0.5 g. of
VIII in 100 ml. of H_2O and dried on porous plate. IX
is sol. in dil. aq. HCl. Similarly $[Co(NH_3)_6]_2[Si(OH)_4]_2$
 $(SO_4)_2 \cdot 5H_2O$ was prep'd. by treating 0.3 g. of $[Co$
 $(NH_3)_6]_2(SO_4)_2$ in 20 ml. of H_2O with 0.5 g. $[Cr(OH)_6]^{2-}$
to form $[Co(NH_3)_6]_2[Si(OH)_4]_2$ (IX) which is added to 0.3 g. of I
light orange crystals, sol. in dil. acids. The correspondin
Cr salt was prep'd. similarly to give $[Cr(NH_3)_6]_2[Si(OH)_4]_2$
 $(SO_4)_2 \cdot 5H_2O$, pale yellow crystals, sol. in dil. HCl.

2/2
A. L. Miller
M

SPACU, G.

Cle

Determination of copper in the presence of molybdenum
G. Spacu and Constanta Gheorghiu (Univ. "C.I. Parhon",
Bucharest). *Rev. chim. Acad. rep. populaire Roumaină* 1,
15-20 (1950) (in French); cf. *C.A.* 49, 8033c. CuSCN is
pptd. at 60° from acid soln. with NH₄SCN. Cu is detd.
from the wt. of CuSCN after it has been washed and dried
in vacuo. After the SCN⁻ ions have been removed by
oxidation with HNO₃, the Mo⁺ is reduced to Mo⁺⁺⁺ with
electrolytic Cd and added to a soln. of ferric ions. The
resulting Fe⁺⁺ is titrated with KMnO₄; 1 ml. 0.1 N
KMnO₄ = 3.2 mg. Mo. In a 2nd method Cu is sep'd. as
Cupry₂(SCN)₄. Pyridine is added to a tartaric acid soln. of
Cu and Mo until the soln. is blue. NH₄SCN is then added
ppt. Cupry₂(SCN)₄. Cu is calcd. from the wt. of the ppt.
after it has been dried *in vacuo*. The filtrate is concd.,
oxidized with HNO₃, and the Mo is pptd. with 30% hydroxyquinoline dissolved in 4 N H₂OAc. Wt. of Mo is detd.
from the wt. of ppt. after it has been dried at 130°. In 2
hrs. 30-50 mg. of Mo can be detd. to ±0.3 mg. and 25 g.
Cu can be detd. to ±0.64 g. *Mary L. McFadie*

SPACU, 6.

New gravimetric methods for the determination of thorium, aluminum, beryllium, and zinc and their separation from certain elements. (I. S. Serebryakov and Th. J. Pütter (Hans F. Pütter), "Bucharev," Rev. chim. Acad. rdp. populaire Roumaine 1, No. 2, 5-25 (1958) (in French).—In a modification of a method with mercaptobenzothiazole (I) for the detn. of Cu, Cd, Pb, Th, Bi, and Au (C.A. 29, 72137; 30, 25781), a procedure is described by which Th, Al, Zn, and Be are estd. gravimetrically by means of the Na salt (II) of I. Th: To 5-20 ml. of a Th(NO₃)₄ soln. contg. 0.01-0.1 g. Th add 2-10 ml. of a 10% aq. soln. of II with agitation. The pptd. I-Th (III), white crystals, is filtered, washed with 50-100 ml. of a soln. contg. 0.1-0.15 g. of II and distil. H₂O, and dried at 110-20°. Th: factor 0.2578. III can be calcined to ThO₂ at 1100°. Al: It is estd. by a similar method as a salt of I (factor 0.05307), or by the calcination of the latter to Al₂O₃. In the presence of Mg, Al is pptd. 1st with II, and after the pptn. of I with 10-15% HCl, Mg is detd. in the filtrate with an a.c. soln. of 8-quinolinol (IV) (Berg, C.A. 21, 2850). Be: A neutral or weakly acidic Be salt soln. (5-50 ml.) contg. 0.003-0.03 g. Be is pptd. with 1-15 ml. of the soln. of II. The resulting I-BeOH·H₂O is washed with warm 3% NH₄NO₃ soln., contg. II, dried over P₂O₅, and calcined to the oxide. SO₄²⁻, NO₃⁻, halogen⁻, OAc⁻, Na⁺, K⁺, NH₄⁺ do not interfere with this detn. The sepn. of Be from Mg is carried out similarly to the estn. of Al and Mg. Be in the presence of Al: Al is pptd. with IV (Kolthoff and Sandell, C.A. 22, 3112), and Be from the filtrate with II at 10°. The Be-I is estd. as oxide, Zn: The Zn salt soln. (5-50 ml.) (pH 5-6), contg. 1-2 g. NaCl is pptd. with a 10% soln. of II (factor 0.1644). In the presence of Al and Fe, 1-2 g. of tartaric acid is added and Zn is pptd. as Zn-I and calcined to ZnO. Zr: It is pptd. at pH 2.0 and estd. as ZrO₂.

Distr: 4B3d

SHACO, G

1 2 3 4 5

Colorimetric determination of copper. G. Scam and D. Scherzer. TC. I. Reaktion. Mat. Bucharest. Acces. rep. populari. România. Studii cercetarii chim., 4, 219-25 (1961).—Cu can be detd. colorimetrically as [Cupro(OCN)₄]²⁻ in CHCl_3 soln., in amounts of 0.3-3 mg. The influence of the reagents, pH, temp., time, and foreign ions upon the extinction was studied. Extinction varied linearly if a large excess of reagents is used to ppt. Cu in H_2O and if the extn. with CHCl_3 is performed at pH 8 and 20°. From 0.3 to 3 mg. of Cu can be detd. In the presence of 2 mg. of Mg^{2+} the presence of 2 mg. of Zn^{2+} decreases the determinable amt. to 0.3-2 mg., 1 mg. Ag^{+} to 0.3-1.5, and 1 mg. of Hg^{2+} to 0.3-1 mg. Cu.

Werner Jacobson

SPACU, G. ; ANTONESCU, E.

A new gravimetric method for the determination of silver. p. 105.
(ANALELE. SERIA STIINTELOR NATURII. Romania. Vol. 5, no. 11, 1956)

SO: Monthly List of East European Accessions (EEAL) LC, Vol. 6, no. 7, July 1957. Uncl.

SPACU, G. ; IANCU, C.

A new ~~Volumetric~~ method for the determination of lead. p. 109.
(ANALELE. SERIA STIINTELOR NATURII. Rumania. Vol. 5, no. 11, 1956)

SO: Monthly List of East European Accessions (EEL) LC, Vol. 6, no. 7, July 1957. ~~Unel.~~

RUMANIA/Analysis of Inorganic Substances

G-2

Abs Jour: Ref Zhur-Khimiya, No 6, 1957, 19549

Author : G. Spacu, Th. Firtea

Inst : C. J. Parhon University.

Title : New Method of Quantitative Determination of Mercury in the Presence of Iron and Aluminum.

Orig Pub: An. Univ. "C. J. Parhon". Ser. stiint. natur., 1956, No 10, 35 - 38.

Abstract: Hg^{2+} ions are precipitated as $(HgPy_2)(Cr_2O_7)$ after Fe^{3+} and Al^{3+} have been combined in sulfo-salicylate complexes. Fe and Al are determined in the filtrate, using a known method.

Card 1/1

- 29 -

RUMANIA/Analysis of Inorganic Substances

G-2

Abs Jour: Ref Zhur-Khimiya, No 6, 1957, 19595

Author : Gh. Spacu, Constanta Gheorghiu

Inst : C. J. Parhon University

Title : New Method of Separating Cobalt from Tungsten

Orig Pub: An. Univ. "C. J. Parhon". Ser. Stiint. Natur., 1956, No 10, 51 - 53.

Abstract: Co is precipitated as $[CoPy_4(SCN)_2]_7$ from a tartrate containing solution; W is precipitated from the filtrate with cinchonine. The error is some tenths of a milligram. The determination duration is 30 min.

Card 1/1

- 71 -

SPACU

Volumetric method for the separation and the indirect determination of nickel in presence of aluminum. Spacu and Claudiu Visinescu (Univ. Bucharest, Romania). *Analele univ., C. I. Parhon Bucuresti, Ser. stiint. nat.* 1956, No. 10, 55-9.—Al is maintained in soln. as a stable sol. complex by the addn. of Na sulfoalicylate and the Ni is titrated indirectly according to the method of Spacu and Ripan (C.A. 17, 3848). When the Al is in soln. as a complex, Ni is pptd. with pyridine and a known vol. of a standard soln. of NH_4SCN . The ppt. is filtered out and the excess NH_4SCN is titrated with AgNO_3 with diphenylcarbazone as an indicator. For this titration the soln. has to be neutral, so the excess pyridine is neutralized with dil. HNO_3 with α -dinitrophenol as an indicator. A. Berlin

Volumetric method for the separation and the indirect determination of cobalt in presence of aluminum (G. Spacu and Claudia Vasilescu (Univ. Bucharest, Romania). *Acade. univ., C. I. Parhon Bucuresti, Ser. St. Sti. nat.* 1956, No. 10, 61-4.—Al is maintained in soln. as a stable sol. complex by the addn. of Na sulfosalicylate and Co is titrated indirectly according to the method of G. Spacu and M. Kuras (*Bul. soc. stiinte Cluj* 7, 377-3(1934)). When the Al is in soln. as a complex, Co is pptd. with pyridine and a known vol. of a standard soln. of NH_4SCN . The ppt. is filtered out and the excess NH_4SCN is titrated with AgNO_3 with diphenylcarbazone as an indicator. For this titration the soln. has to be neutral, so the excess pyridine is neutralized with dil. AgNO_3 with dinitrophenol as an indicator.

A. Berlin

Distr: 4E4j

[Signature]

SPACE, E.

RUMANIA/Analysis of Inorganic Substances

G-2

Abstr.: Ref Zhur Khimii, No 6, 1957, 19522

Author : G. Saceu, Cornelia Iancu

Inst : C. J. Parhon University

Title : Separation and Volumetric Determination of
Copper in the Presence of Iron and Aluminum

Orig Pub: An. Univ. "C. J. Parhon". Scr. stiint. natur.,
1956, No. 10, 3 - 67.

Abstract: Cu is precipitated as $\text{CuP}_{\text{2}}\text{O}(\text{SCH})_5$ retaining
 Fe^{3+} in solution by adding NaF and retaining
Al in solution by sulfosalicylic acid.

V. Sazanova

Card 1/1

10 -

APPROVED FOR

27

New gravimetric method for silver analysis. G. Sporea and El. Asionescu (Fac. Chem. Bucharest, Romania). *Anal. chim. "C. I. Parhon", Bucuresti, Ser. chim., no. 11, 105-3 (1958)* (in Romanian) (Russian and French summaries).—The destr. is based on the formation of a new complex compd. $[\text{Ag}]_4[\text{Cr}(\text{OH})_6]_4$ obtained by treating a Ag salt with KI and $[\text{Cr}(\text{OH})_6]_4$. This new compd. has a mol. wt. of 1901.20, contains 11.33% Ag, and the ppt. becomes cryst. in a few min. For known quantities of Ag varying between 4.9 mg. and 32.7 mg., the analysis error in all cases investigated is smaller than 0.3 mg.

Mircea Fotino

SPACU, Gh.

Distr: 4E2c

✓ New volumetric method for lead analysis. Gh. Spacu
and Cornelia Iancu (Fac. Chem., Bucharest, Romania).
Analitica "C. I. Parhan" Bucharest, Ser. stinț. nat. No.
11, 109-11 (1950) (in Romanian) (Russian and French sum-
maries). — The Pd is quantitatively pptd. as OH₂PbSCN by
means of pyridine and KSCN. The method is rapid and
accurate to within 0.1%. Mircea Potu

R8

Distr: 4E2c

27
Gravimetric method for copper analysis. P. Spacu and
[REDACTED] Antonescu (Fac. Chem., Bucharest, Romania). *Analele
univ., "C. I. Parhon" Bucuresti, Ser. stinf. nat. No. 11,
131-3 (1958)* (Russian and French summaries).—The dein is
based on the formation of a new complex compd. [Cu.Pip-
(SCN)] obtained from an aq. soln. of Cu sulfate (blue
vitriol) with a reagent made of 0.1 g. piperazine in 40 cc.
of 1% soln. of ammonium thiocyanate. For known quanti-
ties of Cu varying between 11.7 and 38.7 mg., the exptl.
error in all cases was less than 0.19 mg. The presence of
NH₄⁺, K⁺, Na⁺, Co⁺⁺, and Ni⁺⁺ had no influence on Cu
analysis, but with Zn, Cd, Fe, and Al ions the results were
not satisfactory. Mireen Fotino

Distr: 112c/ 4E2c (j) 7
A new class of complex compounds. Metal ammine tri-thiocyanato-bismuthates(III). C. Spacu and George M. Mihail (Univ. C. I. Parhon, Bucharest, Romania). Andreea univ. C. I. Parhon" Bucuresti, Ser. stiint. nof. No. 12, 45-50 (1956). The purpose of this work was to establish the proof of the presence of the complex anion $[\text{Bi}(\text{S}_2\text{O}_3)_3]^{3-}$ in the substance $\text{P}_2\text{B}(\text{S}_2\text{O}_3)_3$. The K^+ ion was substituted in soln. by different ammine complexes of Co. The compds. of the complex ppt. was detd. chemically. The following complex compds. were formed: $[\text{Co}(\text{NH}_3)_6][\text{Bi}(\text{S}_2\text{O}_3)_3]$ yellow, very stable; $[\text{Co}(\text{NH}_3)_5\text{Cl}][\text{Bi}(\text{S}_2\text{O}_3)_3]$ violet, very stable; $[\text{Co}(\text{NH}_3)_5\text{CO}_2][\text{Bi}(\text{S}_2\text{O}_3)_3]$ green, not quite so stable; $[\text{Co}(\text{NH}_3)_5\text{C}_6\text{O}_4][\text{Bi}(\text{S}_2\text{O}_3)_3]$ pink-purple, very stable; $[\text{Co}(\text{NH}_3)_5\text{C}_6\text{O}_4][\text{Bi}(\text{S}_2\text{O}_3)_3]$ pink, stable; $[\text{Co en}][\text{Bi}(\text{S}_2\text{O}_3)_3]$ yellow, very stable; $[\text{Co enBr}][\text{Bi}(\text{S}_2\text{O}_3)_3]$ pale green, very stable; $[\text{Co enCl}][\text{Bi}(\text{S}_2\text{O}_3)_3]$ violet, stable; $[\text{Co en}(\text{SCN})_2][\text{Bi}(\text{S}_2\text{O}_3)_3]$ red, very stable. A. Berlin

5
2 may
2

Distr: 4E2c(j) /

/ Hexachloroplumbates. A new class of complex compounds. L. Sjau and M. Brezany, *Rev. chim. Acad. rep. populaire Roumaine* 2, 27-34 (1957) (in French); cf. *C.A.* 53, 5949a. Metal ammine salts of PbCl_4^- were prepd. by the reaction of the ammine with $(\text{NH}_3)_4\text{PbCl}_4$ in Cl water. Prepd. were: *cis*- $[\text{Co}(\text{en})_2\text{Cl}_2]_2\text{PbCl}_4$ (violet), *trans*- $[\text{Co}(\text{en})_2\text{Cl}_2]_2\text{PbCl}_4$ (green), $[\text{Co}(\text{py})_2\text{Cl}_2]_2\text{PbCl}_4$ (green), $[\text{Co}(\text{en})_2\text{Cl}_2]\text{PbCl}_4$ (yellow), $[\text{Cr}(\text{en})_2\text{Cl}_2]\text{PbCl}_4$ (yellow), and $[\text{Co}(\text{NH}_3)_4\text{NO}_2]\text{PbCl}_4$ (yellow). The reaction with $[\text{Co}(\text{NH}_3)_4\text{Cl}_3$ gave a yellow intermediate, unstable in air, which turned brown. The intermediate was $[\text{Co}(\text{NH}_3)_4\text{Cl}]_2\text{PbCl}_4$ (I) which was oxidized by O or OCl^- to $\text{PbCl}_4[\text{Co}(\text{NH}_3)_4\text{O}]_2\text{PbCl}_4$. All solns. of I also turned brown in a Cl atm. or *in vacuo*. The nitrate analog of I is stable in air. Piperazine. H_2PbCl_4 , (urotropine). H_2PbCl_4 , (quinine. HCl). H_2PbCl_4 , and (strychnine. HCl). $2\text{H}_2\text{PbCl}_4$. Strychnine were also prepd. R. F. Trimble /

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7"

"APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7

Chloroform solution was found to be most suitable for the separation of lead and tin from the reagent. If the chloroform solution is extracted at pH 8 at 20°, the presence of small amounts of Al, Ni, Cu, Ag, and Hg must may be tolerated, but Co, Cd, Pb, ferric and Al ions interfere.

PM
MT

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7"

SPACU, G.

The study of thio compounds. Complex thiomolybdates and thiotungstates. [S. G. Popescu, Petre Basile, and Constanta Gheorghiu (C. I. Parhon Univ., Bucharest). *Acad. Rep. populares Române, Studii cercetări științ. 5, 189-98 (1957).*]

The existence of thiomolyblic acids (I) and thiotungstic acids (II) in soln. was investigated by isolating them by aid of org. bases, like aminopyridine, ethylenediamine, hexamethylenetetramine, and 10-phenanthroline. In order to stabilize the ions of I and II, they were combined with complex metallic amines of Cr and Cu, and it is found that such salts are more stable than the known alkali salt. New compds. prep'd. this way are $[Cr(NH_3)_6][MoS_4]NO_3 \cdot H_2O$; $[Cr(NH_3)_6Cl][MoS_4]$; $[Cr(OEt)_6][MoS_4]SO_4$; $[Cr(OH)_6][MoS_4]Cl_2$; $[Cu(etc.)_6][MoS_4] \cdot H_2O$; $[Cr(NH_3)_6][WS_4]NO_3 \cdot H_2O$; $[Cr(NH_3)_6Cl][WS_4]$; $[Cr(NH_3)_6][WS_4]SO_4$. From these the salts with the above named bases were prep'd., and by aid of these salts it could be shown that the II are stable even in the presence of AcOH, whereas the I are very sensitive to the presence of even traces of H^+ .

Werner Jacobson

FM

Separation and determination of nickel in presence of iron and aluminum. G. Soculescu and Claudia Vasilescu (Universitatea din Bucuresti, Bucarest, Romania). *Analisis* 1968, 1, 177-180 (French and Russian summaries).—The Fe and Ni ions are retained in solution as complex sol. compds. of NH_3 and H_2O . The Ni present in pyrolyzed pyridine as $[\text{Ni}(\text{py})_6]^{2+}$ is determined by the method of G. Soculescu and J. Drak (G.R.B. 1961) 10 references. M. L. Johnson

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7"

SPACU, G.

RUMANIA/Inorganic Chemistry - Complex Compounds.

C.

Abs Jour : Ref Zhur - Khimiya, No 10, 1958, 31998

Author : G. Spacu, P. Spacu, El. Radulescu

Inst : "C.I. Parhon" University.

Title : A New Class of Complex Compounds. Complex Pyridazine-rhodenites and Pyridazinehalides of Metals.

Orig Pub : An. Univ. "C.I. Parhon". Ser. stiint. natur., 1957,
No 13, 65-74

Abstract : $MPdz_2(SCN)_2$ (where $M = Cu(2+)$, $Cu(1+)$, Co, Ni, Cd, Fe and Zn) and $CuPdz(SCN)$, as well as $MPTzCl_2$ (where $M = Cd$, Hg, Cu and Mn) were prepared by adding pyridazine (Pdz) and NH_4SCN to aqueous solution of $Cu(2+)$, $Cu(1+)$, Co, Ni, Cd, Fe and Zn salts or the aqueous solution of Cd, Hg, Cu and Mn halides. $CdPdzBr_2$ and $CdPdzI_2 \xrightarrow{(sic!)} [CdI_4]/[CdIaz_2]$

Card 1/1

7/23/86
Distr: 4E2c(j)

Complex compounds of the type $[\text{Co}(\text{Py})_4\text{Cl}_4]$ - L. Boacu, A. Iancu, and E. Nicolau (Univ. "C. I. Parhon" Bucharest, Romania). *Anal. Univ. "C. I. Parhon" Bucharest, Ser. Stiint. nat.* 15, 73-81 (1957). - An improvement in yield in the synthesis of $[\text{Co}(\text{Py})_4\text{Cl}_4]$ by the method of Werner has been achieved by changing the proportions of the reacting substances. A satd. soln. of $\text{CoCl}_3 \cdot 6\text{H}_2\text{O}$ was used with a very large excess of pyridine (py) and Cl^- ; the yield was 47%. By concg. this soln., $\text{H}_2[\text{Co}(\text{Py})_4]$ (I) was obtained. Upon treatment of this same soln. with an excess of KCNS , $\text{H}_2[\text{Co}(\text{SCN})_4\text{Py}] \cdot \text{HSCNPy}$ (II) was isolated. I

and II are blue. From the ion $[\text{Co}(\text{Py})_4\text{Cl}_4]^+$ (III), the following compds. were prep'd. and analyzed: chlorate, perchlorate, dichromate (acidic and neutral), permanganate, and vanadate. All these substances are green with the exception of the permanganate which is brown. In order to elucidate the structure of these compds. replacement of pyridine in III by other groups was tried. Thus $[\text{Co}(\text{NH}_3)_4\text{Cl}_4]$ was obtained by treatment of III with an NH_3 soln. On the other hand when III was treated with KNO_3 , a brown-colored mixt. of substances was obtained. If, instead, III was treated with a small excess of cold KNO_3 , green $[\text{Co}(\text{Py})_4\text{NO}_3]$ ppd. *A. Berlin*

RB

"APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7"

Potentiometric determination of arsenate. P. Spruill, Z. anal. Chem. 100, 187-190 (1935).—The method is based on the formation of an orange ppt. of $(\text{Hg}_2)_3(\text{AsO}_4)_2$ by titrating with a soln. of $\text{Hg}_2(\text{NO}_3)_2$ (contg. no $\text{Hg}(\text{NO}_3)_2$) in the presence of 24% EtOH. As indicator electrode an amalgamated Pt wire is used. From the results of the titrations, the solv. product of $(\text{Hg}_2)_3(\text{AsO}_4)_2 = 4.98 \times 10^{-2}$. W. T. H.

W. T. H.

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7"

"APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7"

CA

6

A new class of ammine. The metallic phthalazine thiocyanates. G. Spica and P. Spica (Univ. Bucharest, Romania). *Acad. Rep. Poporului România, Ser. Stiinte Mat., Fiz. Chim., Ser. A*, 2, Mem. 12, 20 pp. (1960) (French summary).—By treating aq. solns. of their salts with phthalazine (Phtz) and then with NH_4SCN , Fe, Cu, Cd, Zn, and Ni form $\text{MPhtz}(\text{SCN})$, Pb forms $\text{PbPhtz}(\text{SCN})$, Mn forms $\text{MnPhtz}(\text{OH})\text{SCN}$, $\text{MnPhtz}(\text{SCN})$, and Co forms $\text{CoPhtz}(\text{OH})\text{SCN}$, $\text{CoPhtz}(\text{SCN})$. The Mn and Ni salts have 3 mols. of H_2O ; the others are anhydrous. The Fe complex is sol. in some org. solvents, especially in chloroform (blood-red coloration used to identify ferrous ions); all the others are either insol. or decompr. in org. solvents. All decompr. in mineral acids and bases. An example of the method of prepn. is: treat 0.7 g. $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$ in 10 ml. H_2O with 0.7 g. phthalazine in 5 ml. H_2O and 0.3 g. NH_4SCN in 10 ml. H_2O , wash the white ppt. with a small amt. H_2O , and dry on a porous plate in vacuo at room temp. Gerhard Aufeger

C 1

7

A new gravimetric method for the determination of oxalic acid. P. Spata and Maria Ilieva (Inst. Politec. Bucharest, Romania); *Anal. Rep. Papeterie Rumanie, Bul. Stiin., Ser.: Mat., Phys., Chim.* 3: 677-81 (1980) (French summary).—To an eq. soln. of oxalic acid or Na oxalate, add NH₄OH until the pH reaches 8.3 (phenolphthalein indicator). Add excess. soln. of [Co(NH₃)₆]NO₂Cl until ppt. is complete. After 1 hr. filter through a filter crucible A, and wash with 15-20 ml. of water (contg. 1.25 g. reagent + a few drops NH₄OH) in 1000 ml. H₂O, with 1-3 ml. H₂O, then twice with 2 ml. of 96% EtOH, and finally 3 times with 1 ml. of Et₂O. Dry the ppt. for 30 min. in a vacuum desicator and weigh as [Co(NH₃)₆]NO₂Cl₂. The reagent is prepd. as described by Jørgensen. The presence of NO₃⁻, Cl⁻, Na⁺, K⁺, and NH⁴⁺ does not interfere. Sulfates interfere only when exceeding by more than 5 times the quantity of oxalate; citric and tartaric acid disturb unless the ratio between acids and oxalate is 1:1. Gerhard Anleger

Spacu, Jr.

A new method for the gravimetric determination of silver.
P. Spacu and M. Bleaca. *Comun. Acad. Rep. Populară*
Volume 3, 211-15 (1953).—Ag was distd. gravimetrically by
treating the aq. soln. of Ag^+ with a 16% soln. of K xanthate
at room temp. The yellow ppt. of Ag xanthate is insol. in
 H_2O , ether, or alc. After addn. of 2 drops of an aq. pyri-
dine soln., the ppt. is filtered through a porcelain filter and
washed in distd. H_2O , alc., and ether. Francois Kertesz.

R

PM

Spacu, P.

*A new method for the gravimetric determination of benzidine. P. Spacu, Margareta Brasoveanu and Viorica Spiridon. *Chem. acad. rep. populara Române* 3, 217-21 (1953). Benzidine was detd. gravimetrically by treating an acidified aq. soln. of benzidine-HCl with an aq. soln. of Reinecke's salt. The ppt. is filtered through a porcelain filter, washed with the reagent, dried at 105°, and weighed. The chief advantage of this method is that it permits the detn. of benzidine in a soln. contg. HCl.*

François Kertesz

3
Junk
PM

SPACU, P.

Cleare ✓ A new rapid method for the gravimetric copper determination. P. Spacu and G. Hlevca (Polytehn. Inst., Bucharest, Romania). *Ed. rep. Populară Române, Bul. științ., tehn., și chim.* 5, 93-7 (1953). — Cu can be dried rapidly gravimetrically, with a relative error rarely as high as 0.4% (2-10 mg. Cu⁺⁺ to be detd.) by adding NH₃ to the Cu⁺⁺ soln. till Cu(NH₃)₄⁺⁺ has been formed, which is then mixed with a 2% soln. of NH₄[Cr(SCN)₅(NH₃)₂] (I), to get [Cu(NH₃)₄]Cr(SCN)₅(NH₃)₂·5H₂O which is filtered off, washed with a 0.1% soln. of I + NH₃, then with EtOH, Et₂O, then with Et₂O, and then is dried in vac.

Werner Jacobson

2
5000

SPACU, P.

Rumania/Chemical Technology. Chemical Products and Their Application -- Mineral salts. Oxides. Acids. Bases, I-5

Abst Journal: Referat Zhur - Khimiya, No 2, 1957, 5021

Author: Spacu, P., Vcichescu, P., Ovanesian, A.

Institution: None

Title: Products Obtained on Action of Chlorine on Some Silicates. Production of Silicon Tetrachloride from Diatomite

Original Publication: Studii si cercetari chim., 1955, 3, No 3-4, 195-201

Abstract: SiCl_4 was obtained by chlorination of diatomite (containing a small amount of Fe_2O_3) in the presence of coal as a reducing agent. The diatomite being porous has a large contact surface of active silica, which makes possible a ready reduction; the chlorination reaction takes place at a low temperature ($730-750^\circ$). Bisulfite liquor is used as binder for the raw material. Yield of SiCl_4 is 46-50%.

Card 1/1

SPACU, P

✓ 2120. New rapid method for the kindest estimation of thallium. E. Spănu and G. Hlevyč Bacharest, Romania. *Staz. Cercet. Chim. Bucureşti*, 1935, 3 (3-4), 203-207. Thallium is ptd. quant. as the complex $Tl(Cr(SCN)_4(NH_3)_2)$ by the addition of a 3.5% eq. soln. of Reinecke's salt to an acid neutral or freely alkaline soln. of Tl^+ . After filtration, the ppt. is washed with ethanol and with ether, and is dried in a vacuum desiccator. The estimation can be carried out in the presence of most common ions, but Pb interferes. The analysis requires 60 to 70 min. J. H. WATSON

2

OM pre

Distr: 4E2C (J)/4E2C

Gravimetric method for silver analysis. P. Săpun and M. Găbăteanu (Fac. Chem., Bucharest, Romania). *Anal. 1964, 16, no. 1, p. 11-14.* (C. I. Parhon, Bucuresti, Ser. chim., vol. No. 11, 123-81 (1965) (in Romanian) (Russian and French summaries).—The detn. is based on the formation of the complex compd. $[\text{Ag}(\text{C}_3\text{N}_4\text{H}_4)_2(\text{C}_6\text{H}_5\text{N}_3\text{O}_2)]$ obtained by treating a Ag salt with a satd. 1% soln. of picric acid and a 5% soln. of thiourea. This method is fast, and the detn. of Ag can be performed with accuracies of less than 0.2% even in the presence of several other elements, especially Pb.

Mirela Fotino

4
2 May
2

The chloroiodates—two new classes of compounds—the dichloroiodo metal amines and the tetrachloroiodo metal amines. P. Spaci and Florica Popescu. *Rend. chim. Acad. rom. populare*, *Cluj-Napoca*, I, No. 1, 127-32 (1960) (in French).—Complex dichloroiodates were prepd. by the reaction of NH_4Cl_4 and Co amines in eq. or alc. HCl solns. Among those prepd. were (trans- $[\text{Co}(\text{NH}_3)_5\text{Cl}]$) ICl_2 , (trans- $[\text{Co}(\text{NH}_3)_5(\text{DH})]$) ICl_2 , (cis- $[\text{Co}(\text{en}-\text{C}_6\text{H}_4)\text{Cl}]$) ICl_2 , cis- $[\text{Co}(\text{py})_2(\text{DH})]$ ICl_2 , and $[\text{Co}(\text{py})_2\text{Cl}_2]$ ICl_2 , where DH is dimethylglyoxime. All of these compds. have the same color as does the metal cation, are cryst., and are more stable than the simple salts. When solid NH_4Cl_4 was added to Co amine in eq. HCl soln. $[\text{Co}(\text{en})_2]$ $[\text{Co}] \cdot 2\text{HCl}$ was formed which when mixed in an agate mortar with NH_4ICl_4 in H_2O gave the mono HCl salt. This was converted to the anhyd. salt by washing with an alc. Et_2O mixt. The iodates and chlorides of $[\text{Co}(\text{NH}_3)_5\text{Cl}]$, $[\text{Co}(\text{NH}_3)_5(\text{DH})]$ HCl-OH^{++} and $[\text{Co}(\text{NH}_3)_5(\text{ICl}_2)]\text{H}_2\text{O}^{++}$ were formed by the addn. of NH_4ICl_4 to the respective amine, are yellow and the Co compd. stable to P_2O_5 at 80° *in vacuo*. If the dichloroiodate is treated with Cl_2 , the corresponding $[\text{Cl}_2\text{Co}]$ compd. can be formed. The substances are less brilliantly colored than are the corresponding ICl_2 compds. but are unaffected by weak acids, NaOH , and NH_4OH at room temp., and insol. in Et_2O and sol. in alc. $[\text{Co}(\text{NH}_3)_5(\text{DH})]$ HCl $\text{ICl}_2\text{H}_2\text{O}$ loses the H_2O after 2-4 hrs. in alc. $\text{H}_2\text{N}(\text{Cl})$, and the HCl deriv. of 2-aminopyridine were prepd. by the reaction of the respective amines with NH_4Cl_4 and Cl_2 at 0° , and are yellow, unstable cryst. A. Leibler

S. B. C. B., Jr.

2894. New gravimetric and volumetric method
for determination of silver. P. Spacu and T. T. Pirtea. *Rev. Chim. Bucharest*, 1960, 7 (8), 481-483.

The procedure is based on the reaction of Ag with sodium nitroprusside (I), which gives a cream ppt. of $\text{Ag}_3[\text{Fe}(\text{C}_6\text{N})_6(\text{NO})]$, unaffected by light, stable, and insoluble with mol. wt. greater than that of the usual halogen complexes. Ppt. is rapid and complete at room temp., and ppt. can be filtered immediately, and after washing can be dried in a vacuum desiccator or even in an oven at 110° . If modified the method can be used in the presence of Pb and Zn. *Gravimetric method*—To 10 to 30 ml of a neutral or acid soln. of Ag at 50° to 60° add 1 to 2 g of solid NH_4NO_2 , followed by approx. 0.1 N I. A yellow-red colour of the supernatant liquid indicates complete pptn. and excess of I. Filter immediately through a sintered glass crucible, washing with NH_4NO_2 soln. (3%) water, ethanol and ether. Dry in a vacuum desiccator and weigh. The determination takes 1 to 1.5 hr. In the presence of Pb or Zn the ppt. is washed 4 to 5 times with aq. NH_4NO_2 soln. (3%) heated to between 50° and 60° . *Volumetric method*—Since addition of I soln. to AgNO_3 soln. leads to the formation of a colloidal ppt., the determination is carried out by running AgNO_3 soln. into a known vol. of I. This gives a good end-point with or without eosin as an adsorption indicator. Results are consistently $\approx 0.3\%$ high.

H. SHER

SPACU, P.

RUMANIA/Analytic Chemistry - Analysis of Organic
Substances.

E-3

Abs Jour : Ref Zhur - Khimiya, No 14, 1958, 46480
Author : P. Spacu, Gr. Teodoroscu
Inst : Bucharest Polytechnical Institute.
Title : Volumetric Method of Determination of Isonicotinic
Acid Hydrazide.
Orig Pub : Bul. Inst. politechn. Bucuresti, 1956, 18, No 1-2, 47-
50.
Abstract : The method is based on the oxidation of the hydrazide
of isonicotinic acid (I) with an excess of KIO_3 and the
iodometric determination of KIO_3 , which has not taken
part in the reaction. 3 to 10 ml of I solution (0.015
to 0.05 g of I) and 2 to 5 ml of 0.1 M solution of KIO_3
are mixed in a flask, diluted to 100-150 ml with water,

Card 1/2

39

RUMANIA/Analytic Chemistry - Analysis of Organic
Substances.

E-3

Abs Jour : Ref Zhur - Khimiya, No 14, 1958, 46480

and 0.5 g of KI is added to it. After the latter has dissolved, 15 to 30 ml of 0.2 n. NaOH solution is added, and 5 min. later 5 to 10 ml of 0.5 n. H_2SO_4 is also added and the liquid is titrated with $Na_2S_2O_3$ solution. One mole of KIO_3 oxidizes 1.5 mole of I. The accuracy of the method is $\pm 0.4\%$.

Card 2/2

SPACU, P.

RUMANIA/Analytic Chemistry - Analysis of Organic
Substances.

E-3

Abs Jour : Ref Zhur - Khimiya, No 14, 1958, 46481
Author : P. Spacu, Gr. Teodoroscu, D. Gavanescu
Inst : Bucharest Polytechnical Institute.
Title : New Volumetric Method of Determination of Isonicotinic
Acid Hydrazide.
Orig Pub : Bul. Inst. politechn. Bucuresti, 1956, 18, No 1-2, 51-
54.

Abstract : A new rapid and accurate method of volumetric determina-
tion of isonicotinic acid hydrazide (I) is proposed, it
is based on hydrazide oxidation with chloramine T.
3 to 10 ml of I solution (0.015 to 0.05 g of I) and 10
to 20 ml of 0.1 chloramine T solution are mixed in a
flask and diluted with water to 100 ml, after which 0.1

Card 1/2

30

SPACU, P.

RUMANIA/Analytical Chemistry. Analysis of Inorganic Substances. E-2

Abs Jour: Ref. Zhur.-Khimiya, 1958, No II, 35895.

Author : P. Spacu, A. Ovanesian, D. Găvănescu.

Inst : Not given.

Title : Volumetric Method of Determination of Cadmium.

Orig Pub: Bul. Inst. politehn., Bucuresti, 1956, 18, No 1-2, 55-58.

Abstract: A method is described, based on precipitation of Cd^{2+} in the form of $CdC_2O_4 \cdot 3H_2O$ in a neutral medium and on a subsequent permanganometric determination of the excess $C_2O_4^{2-}$. At a big excess of $Na_2C_2O_4$ ($> 10\%$) a complex compound $CdNa_2(C_2O_4)_2$ soluble in water is formed. The presence of important quantities of ammonium and alkali salts in the solution contributes also to the solution of the deposit $CdC_2O_4 \cdot 3H_2O$. 0.1 n $Na_2C_2O_4$ is added to the analyzed solution containing 0.1-0.2 g Cd diluted by water

Card : 1/2

RUMANIA/Analytical Chemistry. Analysis of Inorganic Substances. E-2

Abs Jour: Ref. Zhur.-Khimiya, 1958, No II, 35895.

up to 50 or 100 ml, mixed thoroughly, kept for 5-10 min. and filtrated. 25 ml of the obtained filtrate is diluted by water (50-60 ml), acidified by 20% H_2SO_4 (5-6 ml) and the excess of $Na_2C_2O_4$ is titrated back by 0.1 n. solution of $KMnO_4$. The length of determination is ~ 20 min. The determination is hindered by Cl^- .

Card : 2/2

17

RUMANIA/Chemical Technology. Chemical Products and Their Application. Pharmaceuticals. Vitamins. Antibiotics.

H-17

Abs Jour: Ref Zhur-Min., No 2, 1959, 5755.

Author : Spacu, P.; Roboiu, F.; Brasoveanu, M.

Inst : Bucharest Polytechnical Institute.

Title : Gravimetric Method of Determination of Vitamin B₁.

Orig Pub: Bul. Inst. polit. Bucuresti, 1956, 13, No 3-4,
159-173.

Abstract: A method of gravimetric determination of vitamin B₁ in its pure solutions is proposed: the vitamin is precipitated at 18° with an excess of the aqueous solution of tetrathiocyanatediaminochromate of ammonium NH₄[Cr(SCN)₄]₂·H₂O in the medium of acetic acid (pH = 2.6); 1 hour later the rose-violet crystalline precipitate is separated with a filter crucible, washed with distilled water,

Card : 1/2

SPACU P.

RUMANIA/Chemical Technology. Pharmaceuticals. Vitamins.
Antibiotics.

H

Abs Jour: Ref Zhur-Khin., No 24, 1958, 82722.

Author : Spacu P., Brnsoveanu M., Roboiu F.

Inst :

Title : A New Gravimetric Method for Determining
Acridine.Orig Pub: Bul. Inst. politech. Ducuresti, 1956, 18, No 3-4, 175-
179.Abstract: By the reaction of a solution of acridine (I) with
a freshly prepared solution of NH₄- Reinecke salt
(II) in acetic acid medium, the yellow crystalline
precipitate $\left[C_{18}(NH_3)_2(CNS)_4 \right] HC_13H_9N$ salt is formed,
which dissolves in alcohol and ether, and is sparingly
soluble in water. Ten ml of 0.4% solution of I, acidi-

Card : 1/2

26

SPACU, P.

RUMANIA/Analytic Chemistry - Analysis of Organic
Substances.

E-3

Abs Jour : Ref Zhur - Khimiya, No 14, 1958, 46485

Author : P. Spacu, V. Spiridonescu

Inst : Bucharest Polytechnical Institute.

Title : New Volumetric Method of Methionine Determination.

Orig Pub : Bul. Inst. politechn. Bucuresti, 1956, 18, No 3-4, 181-184.

Abstract : Methionine (I) oxidizes quantitatively to $\text{CH}_3\text{CO}(\text{CH}_2)_2\cdot\text{CHNH}_2\cdot\text{COOH}$ sulfoxide interacting with KIO_3 and KI in a hydrochloric acid medium at pH of 1 to 2. 1 mole of KIO_3 corresponds to 3 moles of I. 1 ml of 0.1 M KIO_3 solution, 2 ml of concentrated HCl, 0.5 ml of KI and I_2 , which has not reacted, are added to 5 or 10 ml of a

Card 1/2

31

Spacu P.

4571

VOLUMETRIC DOSE DETERMINATION OF STRONTIUM

P. Spacu and F. Popescu (Laboratory of Inorganic and Analytical Chemistry, Polytechnic Inst. of Bucharest, Fac. Inst. Politehnica, Bucharest 11, Nos. 3-4, 135-7 (1958) July-Dec. (In Romanian))

A new method is offered for the volumetric determination of Sr in the form of iodide. A solution of $\text{Sr}(\text{NO}_3)_2$ is treated with KIO_3 in the presence of alcohol. The solution is agitated, precipitated, and filtered through a dry quantitative filter. Then the KI and SrSO_4 are added to the filtrate, and by titration iodide is liberated with a solution of 0.1N $\text{Na}_2\text{S}_2\text{O}_3$. The method is very simple and can be applied with ordinary reagents. (Transtr.)

RUMANIA/Analytical Chemistry. Analysis of Inorganic
Substances.

E-2

Abs Jour: Ref Zhur-Khin., No 13, 1958, 43014.

Author : Spacu P., Teodorescu Gr.

Inst : Bucharest Polytechnic Institute.

Title : New Method of Quantitative Separation of Iron and
Zinc.

Orig Pub: Bul. Inst. politehn. Bucuresti, 1956, 18, No 3-4, 189-191.

Abstract: It was found that on addition of pyridine to a neutral
or weakly acidic solution containing Fe^{3+} and Zn^{2+} ,
 Fe^{3+} is completely precipitated as $Fe(OH)_3$, while Zn^{2+}
remains in solution in the form of $Zn(C_5H_5N)_2$. Fe^{2+}
is first oxidized to Fe^{3+} . On twice-performed precipi-
tation the precipitate of $Fe(OH)_3$ is completely
freed from traces of Zn^{2+} . To 150-200 ml of the solu-

Card : 1/2

SPACU, P.

RUMANIA/Analytical Chemistry. Analysis of Inorganic Substances. E-2

Abs Jour: Ref. Zhur-Khimiya, 1958, No II, 35880.

Author : P. Spacu, A. Ovanesian, D. Givinescu.

Inst : Not given.

Title : Chloramine T Analytical Application. I. The Determination of Zinc and Magnesium.

Orig Pub: Bul. Inst. politehn. Bucuresti, 1956, 18, No 3-4, 193-197

Abstract: The solution of chloramine T (I) is applied for the volumetric determination of 8-hydroxyquinoline (II) instead of KB_4O_7 + KBr solution and, hence, for an indirect determination of cations, deposited quantitatively in the form of complexes $(C_9H_6ON)_2M \cdot 5,7$ dichlorhydroxyquinoline is formed in presence of HCl by interaction of I and II (2 moles I - 1 mole II). In order to determine Zn^{2+} , the solution to be analyzed containing ~ 0.04 g Zn is diluted

Card : 1/2

7

Spacu, P.

RUMANIA/Inorganic Chemistry - Complex Compounds. C

Abs Jour: Referat Zhur - Khim, N° 9, 1959, 30759

Author : Spacu, P., Gheorghiu, C., Brezeanu, M, Popescu, S.

Title : Syntheses of Complex Compounds. I. Complex Compounds of Trivalent Cobalt

Orig Pub: Studii si Cercetari Chem, 1957, No 3, 517-528

Abstract: No abstract

Card 1/1

7

Petru Spacu

27 ✓ Determination of bismuth. Petru Spacu and Sofia Calugareanu (Univ. Bucharest, Romania). *Anal. chim. C. I. Parhon* Bucuresti, Ser. stiint. mat. No. 13, 75-8 (1957) (Russian and French summaries). To an aq. soln. of Bi^{3+} with an excess of KCl present, add dil. NaOH dropwise until a white ppt. of $\text{Bi}(\text{OH})_3$ appears. Dil. HCl is added dropwise, just enough to dissolve this ppt. The Bi is now pptd. with an excess of 15% aq. K xanthogenate, which is added under continuous agitation. The yellow crystals are filtered, washed with H_2O , 50% EtOH, and dried at 60-70°. Tons of As, Sb, Sn, Cu, Mn, Co, Fe, Ni, Cr, Re, Te, Ag, Hg, and Cd interfere, while Na, K, NH₄, Ca, Sr, Ba, and Al do not. Max. error is $\pm 0.3\%$. M. Liquornik

fj

A new gravimetric method for the determination of pyro-phosphates. E. Spacu and Cl. Vasilescu (Univ. Bucharest, Romania). *Analyst* (1957), "C. I. Parhon" Bucharest, Ser. stiint. nat. No. 13, 79-83 (1957) (French and Russian summaries).—To a cold 5% ammoniacal soln. add a 1% soln. of $[\text{Co}(\text{NH}_3)_6](\text{NO}_3)_3$. The ppt. thus formed is allowed to stand $1\frac{1}{2}$ hr. Filter, wash with a 20% EtOH soln. contg. 40 ml. 25% NH₄OH and 40 ml. 1% $[\text{Co}(\text{NH}_3)_6](\text{NO}_3)_3$, to the disappearance of NO_3^- ions, and afterwards with EtOH and ether. Dry the ppt. 15 min. *in vacuo*, and weigh as $[\text{Co}(\text{NH}_3)_6]\text{Na}_2\text{P}_2\text{O}_7$. 16 references. M. Liquoraki.

RUMANIA/Inorganic Chemistry. Complex Compounds.

C

Abs Jour: Ref Zhur-Khim., No 13, 1958, 42832.

Author : Spaci Petre Drezeanu M.

Inst : "C. I. Parhon" University.

Title : Hexachloroplumbates. Communication IIIa. New Class
of Complex Compounds: Hexachloroplumbatamines.

Orig Pub: An. Univ. "C.I. Parhon". Ser. stiint. natur.,
1957, No 14, 55-75.

Abstract: On addition of $(\text{NH}_4)_2[\text{PbCl}_6]$ (I) to a solution of $[\text{Co}(\text{NH}_3)_6]Cl$ in chlorine water, there are formed yellow crystals of probably composition $[\text{PbCl}_6]_x$ $[\text{Co}(\text{NH}_3)_6]Cl$, which change very rapidly into a dark-brown substance $[\text{PbCl}_6]_x[\text{Co}(\text{NH}_3)_6]_y$ $[\text{Co}(\text{NH}_3)_6]/[\text{PbCl}_6]$ (II). In dilute solutions, due to hydrolysis, there is formed the yellow

Card : 1/4

RUMANIA/Inorganic Chemistry. Complex Compounds.

Abs Jour: Ref Zhur-Khim., No 13, 1958, 42832.

yield complex compounds containing $Pb(2+)$. Yellow compounds of the composition $[Co(NH_3)_6]_2 [PbCl_6]_2 X \cdot nH_2O$, wherein X -- NO_3^- , ClO_4^- , NO_2^- , $1/2 SO_4^{2-}$, are obtained on addition of I to dilute solutions of luteo-salts of oxygen-containing acids. By the action of concentrated HCl all these yellow compounds are converted to the purple form IV. If solutions of I and $[Co(NH_3)_6]Cl_3$ are mixed and a concentrated solution of KNO_3 is added, without filtering off II, there is obtained the yellow $[Co(NH_3)_6]_2 [PbCl_6]_2 NO_3 \cdot 3H_2O$. This confirms the fact that valency of Pb remains equal to 4. Over P_2O_5 the purple dodecaminodiol-chromic salt loses 1 molecule of water, and the color changes to dark-brown, which evidences a conversion of the diol to an oxo-

Card : 3/4

Abs Jour: Ref Zhur-Khim., No 13, 1958, 42832.

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001652620020-7" analogy in structure of purple compounds of Co and Cr. Communication II see RZhKhim, 1956, 35610.

Card : 4/4

RUMANIA/Analytical Chemistry - Analysis of Organic Substances

E-3

Abs Jour : Ref Zhur - Khimiya, No 4, 1958, No 11056

Author : Petre Spacu, M. Gafiteanu

Inst : "C.I. Parhon" University

Title : New Method of Determination of Phenolic Acid

RUMANIA/Analytical Chemistry - Analysis of Inorganic Substances. E-2

Abs Jour : Ref Zhur - Khimiya, No 8, 1958, 24742

(30 ml 0.1 N solution) and Cd^{2+} (5 ml 0.1 N solution) 0.8-1 g Complexon III are added to the solution being titrated in order to mask these ions. NO_3^- , CH_3COO^- , SO_4^{2-} do not interfere. Determination error does not exceed 2%.

Card 2/2

//

The metallic complexes of pyrocatechol. I. $\text{Fe}(\text{III})$ -pyrocatechol complexed. Petru Simion and Sanda Păunescu, Univ. "C.I. Parroiu" Bucureşti, Sov. J. Chem., no. 10, 63-66 (1957).—The possible existence of the ion $[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3]^{2-}$ was investigated as well as the increase of the stability of $(\text{NH}_3)_5[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3]$ by reaction with different complexes of amines. The reactions between $(\text{NH}_3)_5[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3]$, H_2O and the amines $[\text{Co en}] \text{Cl}_2$, $[\text{Cr en}] \text{Cl}_2 \cdot 3\text{H}_2\text{O}$, and $[\text{Co en-}o\text{-phen}] \text{ClSO}_4 \cdot 2\text{H}_2\text{O}$ ($o\text{-phen} = o\text{-phenanthroline}$), produced the anion $[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3]^{2-}$ in the following compounds: $[\text{Co en-}[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3]]$, $[\text{Cr en-}[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3]]$, $[\text{Co en-}o\text{-phen}]$. The existence of the anion $[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3]^{2-}$ in aq. soln. was proven in the following complexes: $[\text{Co en-} \text{ClOH}_4]$, $[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3(\text{OH}_2)_4] \cdot 14\text{H}_2\text{O}$, $[\text{Fe-}o\text{-phen}] \cdot [\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3(\text{OH}_2)_4] \cdot 5\text{H}_2\text{O}$, and $[\text{Fe-}o\text{-phen}] \cdot [\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3(\text{OH}_2)_4] \cdot 8\text{H}_2\text{O}$. In these cases the radical pyrocatechol is replaced by 2 mol. of water. If $(\text{NH}_3)_5[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3]$, H_2O is treated with $[\text{Fe-}o\text{-phen}] \text{SO}_4$, one pyrocatechol is replaced by $o\text{-phenanthroline}$: $[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3-o\text{-phen}] \cdot [\text{Fe-}o\text{-phen}] \cdot 8\text{H}_2\text{O}$. In order to study these replacements, the action of $o\text{-phenanthroline}$ and dipyridyl (dpy) was studied on the salt of Weinland and Blümler $(\text{NH}_3)_5[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3]$, H_2O . Even with an excess of org. base (1 mole $[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3] \cdot (\text{NH}_3)_5 \cdot \text{H}_2\text{O}$; 1, 2, 3, 5, or 8 moles $o\text{-phenanthroline}$ or 1, 2, 3, or 5 moles dipyridyl), the same compounds were always formed: $\text{NH}_3[\text{Fe}(\text{O}_2\text{C}_6\text{H}_4)_3-o\text{-phen}]$ (I), $\text{NH}_3[\text{Fe}(\text{C}_6\text{H}_4)_3 \cdot \text{dpy}]$ (II). In the case of a large excess of org. base, the complexes I and II are contaminated by the org. base.

ed by the org. base.
C. Hattan Virginia

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001652620020-7"

NUMINL/Chemical Technology Chemical Products and Their
Applications. Pharmaceuticals. Vitamins.
Antibiotics.

H

Abs Jour: Ref Zhur-Khim., No 8, 1959, 28574.

Author : Spacu, P., Radulescu, E., and Iancu, C.

Inst : C. J. Parhon University

Title : Determination of Quinine and Cinchonine by the Gravimetric
Method with the Use of Reinecke Salt.

Orig Pub: An Univ C. J. Parhon, Ser Stiint Natur, No 16, 67-70
(1957) (in Rumanian with French and Russian summaries)

Abstract: Conditions have been established for the determination
of quinine and cinchonine in the form of $2[\text{Cr}(\text{NH}_3)_2$
 $(\text{SCN})_4]$ -alkaloid complexes by precipitation from
strongly acid Reinecke salt solutions. The bibliography
lists 26 titles. -- N. Vavilova.

Card : 1/1

Distr : 4E2c(j)/4E3d

A volumetric method for the determination of nitrofuran: (5-nitro-2-furfuraldehyde semicarbazone). P. Spăcu and Gr. Teodorescu. (Analele univ. "C. I. Parhon", Bucuresti). Ser. *științ. nat.* 16, 75-8 (1957).—A quick and precise volumetric method is given for the detn. of nitrofuran with a soln. of 0.1*N* KBrO₃. This soln. oxidizes the hydrazine which is formed by hydrolysis of nitrofuran with concd. HCl. The indicator is a mixed alc. soln. of 1% methyl red and 0.1% methylene blue. This method uses a reagent commonly found in labs., does not need any special app., and can be effected in series. C. Heitner-Wirguin

1
2 MAY
2

PETRU SPACU

Distr: 4, E2c
Use of Chloramine T in analytical chemistry. II. Determination of iron, aluminum, vanadium and titanium.

Petru Spacu, Agon Ovulescu, and Dumitru Gavanescu

(Inst. Politeh., Bucuresti, Romania). *Bul. inst. politehnic*

Bucuresti 19, 183-7 (1951) (summary in Russian and French).

5/1

The metal to be detd. is pptd. with an acetate soln. of 2% 8-quinolinol. The pH of the soln. before pptn. must be as follows: 3-11 for Fe, 4-9 for Al, 3-8 for V, and 5-8 for Ti. The ppt. is washed with hot water, filtered, then dissolved in 5N HCl, except for Al where a 1:1 soln. of 5N HCl and EtOH is used. To the resultant soln. and excess of 0.1N chloramine T is added dropwise and with stirring. To this 0.5 g. of KI is added and the I liberated by the excess of chloramine T is titrated with a 0.1N Na₂S₂O₃. If the solns. of Al and V have a concn. larger than 5 mg./cc. the results will be high. A. Berlin

SPACU, 1?

RUMANIA/Inorganic Chemistry. Complex Compounds

Abs Jour : Ref Zhur - Khimiya, No 3, 1958, No 7384

Author : G. Spacu, P. Spacu, C. Gheorghiu

Inst : Not Given

Title : On the Study of the Complex Compounds of Thio-Molybdates and Thio-Tungstates.

Orig Pub : Studii si. cercetari chim., 1957, 5, No 1, 169-188

Abstract : Following complex compounds are synthesized: $(MoS_4)X$ and $(WS_4)X$ (where X- is $(Cr(NH_3)_6)NO_3 \cdot I/2H_2O$ and $(Cr(NH_3)_5Cl) \cdot I/2H_2O$); $(MoS_4)_2 (Cr_4(OH)_6 En_6) SO_4$; $(MoS_4)_2 (Cr_4(OH)_6 En_6) Cl_2$; $(MoS_4) (CuEn_2) \cdot I/2H_2O$; $(WS_4)_3 (Cr(NH_3)_6)_2$; $(WS_4) \cdot (Cr(NH_3)_5Cl)$; $(WS_4) (Cr(NH_3)_5Br)$; $(WS_4)_2 (Cr_4(OH)_6 \cdot En_6) SO_4$; $(MoS_4)X$ and $(WS_4)X$ (where X is $H_2 \cdot 2(C_{13}H_9N) H_2(C_2H_8N_2) \cdot H_2 \cdot 2(CH_2)_6N_4$; $H_2 \cdot 2(C_{12}H_8N_2 \cdot H_2O)$, $H_2 \cdot 2(NH_2 \cdot C_5H_4N)$ and $H_2 \cdot (C_4H_{10}N_2)$, $(WS_4)H_2 \cdot 2(C_6H_5N)$ and $(WS_4)H_2 \cdot 2(NC_9H_6OH) \cdot H_2O$.

Card : 1/1

Spacu, P.; Teodorescu, G.

A new volumetric method for the determination of the hydrazide of isonicotinic acid; Remifon.

P. 42 (REVISTA DE CHIMIE) (Bucuresti, Rumania) Vol. 7, No. 1, Jan. 1957

30: Monthly Index of East European Accessions (EEAI) LC Vol. 7, No. 5. 1958

RUMANIA/Analytical Chemistry - Analysis of Organic Substances E-3

Abs Jour : Ref Zhur - Khimiya, No 4, 1958, No 11079

Author : P. Spacu, Gr. Teodorescu
Inst : ~~Not given~~ Inst. Polytechnic, Bucharest
Title : New Volumetric Method of Determination of Isonicotinic Acid Hydrazide

Orig Pub : Rev. chin., 1957, 8, No 1, 42-43

Abstract : The complex compound $(C_5H_4NCONH-NH_3) \cdot Cr(SCN)_4 \cdot (NH_3)_2$ (III) is formed at the interaction of isonicotinic acid hydrazide (I) with Reineke's salt (II) in an acid medium. This compound is of lilac color, little soluble in water, better soluble in alcohol and ether and very well soluble in acetone. III dissociates at heating. The determination of I is carried out in an indirect way by adding $AgNO_3$ solution to III solution in acetone; the precipitated reinekeate is separated and the excessive $AgNO_3$ is titrated off with $NH_4 \cdot SCN$ solution. From 5 to 10 mlit of I solution (about 0.5%) is taken for analyzing, it is acidified with 3 drops of dilute H_2SO_4 and the volume is brought up to 20 mlit; 10 mlit of freshly pre-

Card : 1/2

RUMANIA/Analytical Chemistry - Analysis of Organic Substances
APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001652620020-7"

Abs Jour : Ref Zhur - Khimiya, No 4, 1958, No 11079

pared 2%-vnl II solution is added drop by drop and the formed precipitate of III is filtered, washed 3 or 4 times with 0.1%-vnl II solution, and twice with 0.5 mlit of water each time. The precipitate is dissolved on the filter in acetone, the received solution is transferred into a calibrated flask of 100 mlit capacity, 10 to 15 mlit of 0.1 n. $AgNO_3$ solution and a few drops of weak HNO_3 are added and the volume is brought up to the mark with water. After mixing the flask content is filtered through a dry filter into a dry flask and 25 to 50 mlit of the filtrate are titrated with 0.1 n. $NH_4 \cdot SCN$ solution having added 2 mlit of $(NH_4)_2Fe_2(SO_4)_4$ solution as an indicator.

Card : 2/2

SPACU, P.; ALBESCU, I.; GHEORGHIU, C.

On the quantitative determination of Pentasol. p. 565.

Academia Republicii Populare Romine. STUDII SI CERCETARI DE CHIMIE. Bucuresti,
Rumania. Vol. 6, no. 4, 1958.

Monthly List of East European Accessions (EEAI) Vol. 8, no. 7, July 1959.

Uncl.

SPACU, P.; ANTONESCU, E.; GHEORGHIU, C.

On the quantitative determination of Largactil. p. 573

Academia Republicii Populare Romine. STUDII SI CERCETARI DE CHIMIE. Bucuresti, Romania. Vol. 6, no. 4, 1958.

Monthly List of East European Accessions (EEAI) Vol. 8, no. 2, July 1959.

Uncl.

COUNTRY	Romania	
CATEGORY		
ABS. JOUR.	RZhkhim., No. 21 1959, No.	74479
AUTHOR	Space, P. and Gherghiu, C.	
INST.	Romanian Academy of Sciences	
TITLE	Contributions to the Study of Thio Compounds. Complex Thiovianadates.	
ORIG. PUB.	Studii si Cercetari Chim Acad RPR, 6, No 4, 619-633 (1958)	
ABSTRACT	<p>It has been established that $(\text{NH}_3)_2\text{VS}_4$ is completely soluble in liquid NH_3, with the formation of aminothiovianadates of the type $[\text{Cr}(\text{NH}_3)_5\text{X}]_2(\text{VS}_4)_2$ have been prepared, where $\text{X} = \text{Cl}, \text{Br}, \text{SCN}, \text{NO}_3$, and $\text{Cr}(\text{NH}_3)_5\text{VS}_4$. Freshly prepared aqueous solutions of $(\text{NH}_3)_2\text{VS}_4$ change their color with an accompanying change in pH from 7 to 3.8; the equilibrium</p> $(\text{NH}_3)_2\text{VS}_4 + \text{H}_2\text{O} \rightleftharpoons \text{H}[\text{VS}_3\text{H}_2\text{O}] + (\text{NH}_3)_2\text{S}$ <p>is assumed to operate. The existence of $\text{H}[\text{VS}_3\text{H}_2\text{O}]$ has been proved.</p>	
CARD:	1/1	From authors' summary

Distr: 4E2c

The analytical chemistry of zirconium. A new gravimetric method for the determination of zirconium. P. Spacu and Florica Popca. *Analyst. Univ. "C.I. Parhon" Bucuresti, Ser. Stiint. nat. 1958, No. 17, 45-53.*—A new gravimetric method for the detn. of Zr in HNO₃ (other acids do not interfere) is given. The reagent is the Na or NH₄ salt of mercaptobenzothiazole which is added until the color of bromothymol appears (pH = 6-7.6). The ppt. can immediately be filtered and washed with water. As the ppt. is discolored by small amts. of mercaptobenzothiazole and Zr(OH)₄, it must be transformed into ZrO₂ and then weighed. This method is easy to perform, and differences found are not more than 0.0002 g. Alk., ammonium, Sr, and Mg salts do not interfere with the detn. of Zr. C. Heitner-Wirguin.

SPACU, P., and others.

New syntheses in the chemistry of complex compounds of trivalent cobalt obtained by use of hydrogen peroxide as an oxidizing agent. p. 43.

ANALELE SERIA STINTEI OR NATURII. Bucuresti, Romania. Vol. 7, no. 18, 1958.

Monthly List of East European Accessions (EEAI), LC, Vol. 8, no. 9, Sept. 1959.
Uncl.

RUMANIA/Inorganic Chemistry - Complex Compounds.

C

Abs Jour : Ref Zhur Khimiya, No 19, 1959, 67503

Author : Spacu, Petru; Gheorghiu, Constanta; Brezeanu, Marieta;
Popescu, Sanda

Inst : C.I. Parhon University

Title : New Syntheses of Complex Compounds of Trivalent Cobalt
Using Hydrogen Peroxide as the Oxidizing Agent.

Orig Pub : An Univ. "C.I. Parhon". Ser. stint. natur., 1958, No 19,
No 43-53.

Abstract : Using H_2O_2 as the oxidizing agent, $\left[Co(NH_3)_6\right]X_3$,
where $X = Cl, I; NO_3$; $\left[CoEn_3\right]Cl_3 \cdot 3H_2O$; $\left[CoPn_3\right]Y_3$.
 $3H_2O$, where $Y = Cl, I; Co\left[(NH_3)_4CO_3\right] \cdot z$ where

Card 1/2

- 48 -

SPACU, P.; PIRTEA, TH.

A method of determining penicillin in finished products. p. 49.

ANALEL SERIA STINTELOR NATURII. Bucuresti, Rumania. Vol. 7, no. 20, 1958.

Monthly List of East European Accessions (EEAI), GL, Vol. 8, no. 9, Sept., 1959

Uncl.

✓ Potentiometric determination of silver in the presence of other elements. P. Soacu and Th. I. Pirtea. *Analise* univ. "C. I. Parhon" Bucureşti, Ser. fizică, vol. No. 20, 55-8 (1968).—A new potentiometric method is proposed for the detn. of Ag in the presence of Zn, Pb, Cu, Cd, Co, Ni, Mn, Ti, and Sb. A soln. of 0.1N Na nitroprussiate, Na₂[Fe(CN)₅NO].2H₂O, was used as a precipitant; and ethylenediaminetetraacetic acid (complexon III) was used for the masking of other elements. To a soln. of 100-50 ml. vol. was added 7-8 g. of NaNO₃ for the coagulation of the colloidal Ag nitroprussiate. In this case, the potentiometric breaking point is more evident. Before the titration, the potential of the system was approx. 380 mv., and the potential of the inflection point was at 280 mv. with the standard calomel electrode. This method is useful for quick and accurate analysis of Ag in alloys and minerals.

P. P. Croitoru

3
4E2c

COUNTRY : Rumania E-3
CATEGORY :
ABS. JOUR. : RZKhim., No. 1959, No. 86296
AUTHOR : Spacu, P.; Iancu, C.
INST. : "C. I. Parhon" University
TITLE : Gravimetric Determination of Brucine and Strychnine.
ORIG. PUB. : An. Univ. "C.I. Parhon". Ser. stiint. natur., 1958, No 20, 59-61
ABSTRACT : On interaction of brucine (I) or strychnine (III) with $K_3[Cr(SCN)_6]$ (III) in a strongly acidic medium there are formed pale-violet precipitates insoluble in water, partially soluble in alcohol, and readily soluble in acetone. For determination of I and II, 0.01-0.05 g of material are dissolved in 25-35 ml water, 2-3 ml concentrated HCl are added to the solution, followed by an excess of freshly prepared 5% aqueous solution of III. After 5 minutes the resultant precipitate is filtered off, washed with water and dried at 100-102°. Conversion factor is 0.6990 for I, and 0.7130 for II. The error does not exceed 0.07%.
B. Manole.

CARD:

124

COUNTRY : Rumania
 CATEGORI : .

E-3

ABS. JOUR. : RZKhim., No. 1959, No. 86297

AUTHOR :
 INST. :
 TITLE :

ORIG. PUB. :

ABSTRACT : followed by freshly-prepared 5% solution of $K_3[Cr(SCN)_6]$ until complete precipitation is effected (until the solution turns violet). The precipitate is filtered off, washed with water (to remove Cl^-), dissolved in 5-10 ml acetone, 15-20 ml 0.1 N solution of $AgNO_3$ are added to the acetone solution, the mixture is diluted with water, filtered, HNO_3 and $NH_4Fe(SO_4)_2$ are added to aliquot portion of filtrate, and titration with 0.1 N solution of NH_4SCN is carried out. -- B. Manole.

CARD: 2/2

125

RUMANIA / Analytical Chemistry. Inorganic Analysis.

E

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001652620020-7"

Abs Jour : Ref Zhur - Khimiya, No 23, 1959, No. 81960

Author : Spacu, P.; Radulescu, Elena; Vasilescu, Claudia;
 Balan, Elena

Inst : Not given
 Title : Separation and Determination of Manganese in
 Ferromanganese

Orig Pub : An. Univ. "C. I. Parhon", Ser. stiint. natur.,
 1958, No 20, 69-77

Abstract : Two methods were applied with improvements to
 the determination of Mn in ferromanganese
 under factory conditions: complexometric method
 (Pribil, R.; Horacek; Z. anal. Chem., 132,
 140 (1951)) and ion-exchange method (RZ Khim,
 No 6, 1955, No. 9697). In the 1st method the
 sample to be analyzed, containing 30-150 mg

Card 1/4

RUMANIA / Analytical Chemistry. Inorganic Analysis.

E

Abs Jour : Ref Zhur - Khimiya, No 23, 1959, No. 81960

method the cation exchange resin Amberlite 1R-120 is used; 20% HCl solution (150 ml) is used for the elution of Mn. The resulting solution is neutralized with a concentrated NH₄OH solution, and Mn is determined by an indirect titration: an excess of 0.1 N solution of 1 [means (I)], 8-10 ml buffer solution (350 ml NH₄OH + 54 g NH₄Cl) are added, and the excess of (I) is back-titrated with 0.1 N ZnSO₄ solution, using Eriochrome Black T as indicator. It was determined that the use of NaOH or KOH (instead of NH₄OH) for the neutralization causes high results in the determination of Mn. This method is two times more accurate than the first one, but is more time-consuming; it is also necessary to separate

Card 3/4

RUMANIA / Analytical Chemistry. Inorganic Analysis. E

Abs Jour : Ref Zhur - Khimiya, No 23, 1959, No. 81960

SiO₂ previously. After the separation of Mn, Fe in the solution is determined by a titration with permanganate (after reducing Fe⁺³ to Fe⁺² with electrolytic Cd). -- B. Manole

Card 4/4

14

SPACU, P.; ANTONESCU, E.; GHEORGHIU, C.

On the determination of largactil. Rev chimie 4 no.2:243-252 '59.
(ERAI 9:7)

(Chlorodimethylaminopropylthiazine)
(Complex compounds)

SPACU, P.

Complex compounds of chromium with sorin. J. Schei-
zer and V. Spacu (C. I. Parhon Univ., Bucharest, Rom-
ania). *Angew. u. allgem. Chem.* 301, 197-214 (1959).—
Addn. of excess Me_3CO to boiled aq. solns. of CrCl_3 and
varying amounts of sorin (AH) ppts. viscous masses which,
over P_2O_{10} at appropriate temps., give glassy, hygroscopic
 $[\text{Cr}(\text{AH})(\text{H}_2\text{O})\text{Cl}_2]\text{H}_2\text{O}$, $[\text{Cr}(\text{AH})\text{Cl}_2]2\text{H}_2\text{O}$, $[\text{Cr}(\text{AH})\text{Cl}_2]\text{Cl}\cdot 3\text{H}_2\text{O}$, and $[\text{Cr}(\text{AH})_2]\text{Cl}\cdot 3\text{H}_2\text{O}$. The compds. form viscous, acidic aq. solns. from
which $\text{Cr}(\text{OH})_3$ is not pptd. by NH_3 . Cond. data are con-
sistent with the above formulations; the ligand is mono-
dentate, probably through the amine N. Addn. of 1 mol.
 NaOH to these complexes gives mononuclear complexes
with bidentate ligands, i.e., $[\text{Cr}(\text{AH})_2\text{Cl}_2]$ gives $[\text{Cr}(\text{AH})_2\text{Cl}_2]$ and $[\text{CrA}_2(\text{AH})\text{Cl}]$ for 1 and 2 mols. NaOH , resp.
Addn. of 3 mols. NaOH gives $\text{Cr}(\text{OH})_3$ for the bis complex
and the binuclear complex, $[\text{CrA}_2(\text{OH})_3]0.5\text{H}_2\text{O}$ (I) for the
others; yields of the latter increase with increasing no. of
AH mols. in the initial complex but decrease if NaOH is
added in excess of 3 mols. An inner complex, CrA_3 , is not
found. A mechanism for the condensation is suggested.
The chelate rings of I are successively opened with appro-
priate amounts of concd. HCl to form $[\text{CrA}_2(\text{H}_2\text{O})\text{Cl}]$, $[\text{CrA}_2(\text{AH})(\text{H}_2\text{O})\text{Cl}_2]$, and $[\text{Cr}(\text{AH})_2(\text{H}_2\text{O})\text{Cl}_2]$. Treatment of
these compds. (or their aq. solns. obtained from I and HCl)
with appropriate amounts of AH gives $[\text{CrA}(\text{AH})\text{Cl}_2]\text{H}_2\text{O}$,
 $[\text{Cr}(\text{AH})_2\text{Cl}_2]2\text{H}_2\text{O}$, $[\text{CrA}_2(\text{AH})_2\text{Cl}]$, $[\text{Cr}(\text{AH})_2\text{Cl}_2\text{Cl}\cdot \text{H}_2\text{O}$,
and $[\text{Cr}(\text{AH})_2\text{Cl}_2]\text{Cl}$. The tris and tetrakis complexes re-
semble the mono complexes. Cond. and pH measurements
show that in aq. soln. the Cr-AH complexes undergo both
acid dissociation and aquation with replacement of Cl^- or

more slowly, AH in the coordination sphere. Cond. and
pH changes are used to evaluate the relative extent of these
reactions in the different solns. Richard H. Jaquith

SPACU, P.; ANTONESCU, E.

A study on the determination of Phenergan. Rev chimie 5 no.2:243-250
'60. (EEAI 10:4)

1. Centre of Chemical Researches of the Academy of the R.P.R.,
Bucharest.
(Dimethylaminoisopropylphenothiazine)

SPACU, P.; ANTONESCU, Elena

Studies on the determination of synopen. Studii cerc chim 8 no.1:
73-83 '60. (EEAI 9:8)

1. Centrul de cercetari chimice al Academiei R.P.R., Bucuresti.
2. Comitetul de redactie, Studii si cercetari de chimie (for Spacu).

(Synopen)

SPACU, P.; ALBESCU, I.

Studies on the determination of nickel. Studii cerc chim 8 no.1:
85-90 '60. (EEAI 9:8)

1. Centrul de cercetari chimice al Academiei R.P.R., Bucuresti.
(Nickel) (Aluminum) (Zinc) (Iron)
(Magnesium) (Paludrine) (Complex compounds)

SPACU, P.; ALBESCU, I.

Studies on the determination of paludrine. Studii cerc chim 8 no.1:
91-96 '60. (EEAI 9:8)

1. Centrul de cercetari chimice al Academiei R.P.R., Bucuresti.
(Complex compounds) (Paludrine)

SPACU, P.; ANTONESCU, Elena

Method for the microgravimetric determination of flaxedil. Studii
cerc chim 8 no.1:179-180 '60. (EKA 9:8)

1. Centrul de cercetari chimice al Academiei R.P.R., Bucuresti.
(Phenetyltrisozyethylenetriethylammonium iodide)

SPACU, P., prof.; SCHERZER, I.

Some aspects of the complex compounds with amino acids. *Annalele
chimie* 15 no.2:107-144 Ap-Je '60. (EEAI 9:11)

1. Comitetul de redactie, *Annalele Romano-Sovietice, Chimie* (for
Spacu)

(Complex compounds)
(Amino acids)
(Platinum)
(Chromium)

SPAKU, P. [Spacu, P.]; GEORGIU, K. [Gheorghiu, C.]; ZUBOV, I.

Chemistry of osmium. Rev chimie 6 no.2:323-341 '61.

1. Kafedra neorganicheskoy khimii, Universitet imeni K. I. Parkhona
[C.I.Parhon], Bukharest

SPACU, Petru; POPEA, Florica

Spectrophotometric determination of uranium. Studii cerc chim 9
no.1:139-147 '61. (EEAI 10:9)

1. Centrul de cercetari chimice al Academiei R.P.R., Bucuresti.
2. Comitetul de redactie, STUDII SI CERCETARI DE CHIMIE(for Spacu).

(Spectrophotometry) (Uranium)

SPACU, Petru; BREZEANU, M.; KRIZA, A.

New syntheses in the chemistry of complex compounds. II. Complex compounds of cobalt(III) with dioxime. Studii cerc chim 9, no.1:149-158 '61. (EEAI 10:9)

1. Laboratorul de chimie anorganica al Universitatii "C. I. Parhon", Bucuresti. 2. Comitetul de redactie, STUDII SI CERCETARI DE CHIMIE (for Spacu).

(Complex compounds) (Cobalt) (Oximes)

SPACU, Petre[Spacu, Petru]; GHEORGHIU, Constanta; ALBESCU, Ileana

New syntheses in the chemistry of complex compounds. III and IV.
Complex compounds of cobalt(III) with paludrine. Studii cerc chim 9
no.1:159-178 '61. (EEAI 10:9)

1. Laboratorul de chimie anorganica, Centrul de cercetari chimice
al Academiei R.P.R., Bucuresti. 2.Comitetul de redactie, STUDII SI
CERCETARI DE CHIMIE(for Spacu).

(Complex compounds) (Cobalt) (Paludrine)

SPACU, P.; ALBESCU, I.

New syntheses in the chemistry of complex compounds. V. Complex compounds of nickel with paludrine. Studii cerc chim 9 no.1:179-186 '61. (EEAI 10:9)

1. Laboratorul de chimie anorganica, Centrul de cercetari chimice al Academiei R.P.R., Bucuresti. 2. Comitetul de redactie, STUDII SI CERCETARI DE CHIMIE (for Spacu).

(Complex compounds) (Nickel) (Paludrine)

SPACU, P. i BREZEANU, M.

Study of lead complex thiosulfates. Studii cerc chim 9 no.1:187-196
'61. (EEAI 10:9)

1. Laboratorul de chimie anorganica al Universitatii "C. I. Parhon",
Bucuresti. 2. Comitetul de redacte, STUDII SI CERCETARI DE CHIMIE (for
Spacu).

(Lead) (Thiosulfates)

SPACU, Petru; POPESCU, Sanda

Study of the complex metallopyrocatechins. Note II. Complex pyrocatechins of Cr(III), Mn(III), and Cu(II). Studii cerc chim 9 no.2: 367-395 '61.

1. Laboratorul de chimie anorganica, Facultatea de chimie, Bucuresti.
2. Membru al Comitetului de redactie, "Studii si cercetari de chimie" (for Spacu).

(Complex compounds) (Pyrocatechol) (Chromium)
(Manganese) (Copper)

SPACU, P.; GHEORGHIU, C.; ZUBOV, L.

Chemistry of osmium. Studii cerc chim 9 no.3:493-511 '61.

1. Catedra de chimie anorganica, Universitatea "C. I. Parhon", Bucuresti.
2. Membru al Comitetului de redactie "Studii si cercetari de chimie" (for Spacu).

SPACU, P.; BREZEANU, M.

Conductometric study of the complex lead thiosulfates. Studii cerc
chim 9 no.4:615-619 '61.

1. Universitatea "C.I. Parhon", Facultatea de chimie, Laboratorul
de chimie anorganica, Bucuresti. 2. Membru al Comitetului de
redactie, "Studii si cercetari de chimie" (for Spacu).