

Simple Diffusion

Мещанинов Вячеслав

Centre of Deep Learning and Bayesian Methods HSE University

Background

Diffusion process:

$$q(z_t|x) = N(z_t|lpha_t x, \sigma_t^2)$$

$$q(z_t|z_s) = N(z_t|lpha_{ts}z_s,\sigma^2_{ts})$$

$$lpha_{ts}=rac{lpha_t}{lpha_s}$$

$$\sigma_{ts}^2 = \sigma_t^2 - lpha_{t|s}^2 \sigma_s^2$$

Denoising:

$$q(z_s|z_t,x) = N(z_t|\mu_{t
ightarrow s},\sigma^2_{t
ightarrow s})$$

$$\mu_{t
ightarrow s}=rac{lpha_{ts}\sigma_{s}^{2}}{\sigma_{t}^{2}}z_{t}+rac{lpha_{s}\sigma_{ts}^{2}}{\sigma_{t}^{2}}x_{t}$$

$$\sigma_{t
ightarrow s}=rac{\sigma_{ts}^2\sigma_s^2}{\sigma_t^2}$$

$$\hat{x} = f_{ heta}(z_t,t)$$

Parametrization

DDPM:
$$\hat{arepsilon} = f_{ heta}(z_t,t)$$
 $\hat{x} = rac{z_t - \sigma_t arepsilon}{lpha_t}$

При $t=1\Rightarrow lpha_t=0$ предсказание получается неустойчивым

Авторы предлагают решение:

$$egin{aligned} v_t &= lpha_t arepsilon - \sigma_t x & \hat{x} &= lpha_t z_t - \sigma_t \hat{v}_t \ &\hat{arepsilon} &= \sigma_t z_t + lpha_t \hat{v}_t \end{aligned}$$

Optimization

Авторы, предложившие v-параметризацию, используют следующую функцию потерь

$$|L_{v_t} = ||v_t - \hat{v}_t||_2^2$$

$$L_{v_t} = (1 + rac{lpha_t^2}{\sigma_t^2})L_x = rac{1}{lpha_t^2}L_arepsilon$$

Авторы Simple Diffusion используют

$$L_arepsilon = lpha_t^2 L_{v_t}$$
 в этом случае моменты близкие к 1 входят в функцию потерь с коэффициентом близким к нулю

Noise Schedule for High Resolutions

SNR for High Resolutions

Пересчет SNR для уменьшенных изображений:

$$SNR^{d/s imes d/s}(t) = SNR^{d imes d}(t)\cdot s^2$$

SNR для расписания DDPM для изображений разрешения 64 x 64:

$$SNR_{DDPM}^{64 imes 64}(t)=tanh(rac{\pi t^2}{2})^{-2}$$

Тогда можно пересчитать SNR и коэффициенты расписания для увеличенных изображений

$$egin{aligned} lpha_t^2 &= sigmoid(logSNR(t)) \ \sigma_t^2 &= sigmoid(-logSNR(t)) \end{aligned}$$

Shifted SNR

Noise Schedule on ImageNet

Noise Schedule	FID train	FID eval
128×128 resolution		
cosine (original at 128)	2.96	3.38
cosine (shifted to 64)	2.41	3.03
cosine (shifted to 32)	2.26	2.88
256×256 resolution		
cosine (original at 256)	7.65	6.87
cosine (shifted to 128)	5.05	4.74
cosine (shifted to 64)	3.94	3.89
cosine (shifted to 32)	3.76	3.71

Multiscale Training Loss

4.28

171.0

$$\widetilde{L}^{d\times d} = \sum_{s \in \{32,64,128,...,d\}} \frac{1}{s} L^{s\times s} \qquad \begin{array}{c} \text{Resolution} & \text{FID train} & \text{FID eval} & \text{IS} \\ \hline 256 & \textbf{3.76} & \textbf{3.71} & \textbf{171.6} \\ & + \text{multiscale loss (32)} & 4.00 & 3.89 & 171.0 \\ \hline L^{s\times s} = \frac{1}{s^2} ||D^{s\times s}[\varepsilon] - D^{s\times s}[\hat{\varepsilon}]|| & 512 & 4.85 & 4.58 & 156.1 \\ \hline \end{array}$$

+ multiscale loss (32)

4.30

D[] — операция уменьшения разрешения

d — изначальное разрешение изображения

Comparison to Generative Models

	FID		
Method	train	eval	IS
128 × 128 resolution			
ADM (Dhariwal & Nichol, 2021)	5.91		
CDM (32, 64, 128) (Ho et al., 2022)	3.52	3.76	128.8 ± 2.51
RIN (Jabri et al., 2022)	2.75		144.1
simple diffusion (U-Net) (ours)	2.26	2.88	137.3 ± 2.03
simple diffusion (U-ViT, L) (ours)	1.94	3.23	171.9 ± 3.24
256 × 256 resolution			
BigGAN-deep (no truncation)	6.9		171.4 ± 2
MaskGIT (Chang et al., 2022)	6.18		182.1
DPC* (full 5) (Anonymous, 2023)	4.45		244.8
Denoising diffusion models			
ADM (Dhariwal & Nichol, 2021)	10.94		
CDM (32, 64, 256) (Ho et al., 2022)	4.88	4.63	158.71 ± 2.26
LDM-4 (Rombach et al., 2022)	10.56		103.49
RIN (Jabri et al., 2022)	4.51		161.0
DiT-XL/2 (Peebles & Xie, 2022)	9.62		121.5
simple diffusion (U-Net) (ours)	3.76	3.71	171.6 ± 3.07
simple diffusion (U-ViT, L) (ours)	2.77	3.75	211.8 ± 2.93
512 × 512 resolution			
MaskGIT (Chang et al., 2022)	7.32		156.0
DPC (U)* (Anonymous, 2023)	3.62		249.4
Denoising diffusion models			
ADM (Dhariwal & Nichol, 2021)	23.24		
DiT-XL/2 (Peebles & Xie, 2022)	12.03		105.3
simple diffusion (U-Net) (ours)	4.30	4.28	171.0 ± 3.00
simple diffusion (U-ViT, L) (ours)	3.54	4.53	205.3 ± 2.65

Generated Images

512 x 512 256 x 256 128 x 128