mounted solhal		of (C = 0): MC(00mn powpnomal)	10 (20)		l hen			Civell of Amana	Callan a Bincon	John Laimonita	Note Title	TUTORIAL
Toyloz polynomial are easy to evaluate and are very accurate around	Kno	M _A (X) =		$f(x) = \int_{0}^{x} (x)^{2}$	ve can approximate our fix)	()	(2) $f(x) = exists on (a b)$	f(x) of $G(x)$ is sometimes	() () () () () () () () () ()	ortinomial interpolation of approximation		TUTORIAL WEEK 12 - 2 no Review
eay occurate orough the point c.	KOO KI	+ (0) X k		$f(x) = \int_{\mathbb{R}} h(x)$ Where $\int_{\mathbb{R}} h(x) = \int_{\mathbb{R}} \frac{h(x)}{h(x)} (x-c)^2$	Then we can approximate our fix) using a Taylor polynomial of order in:	יפר,	(a b)		and the state of t			
				· (X-C) ²	OPZ 10:							
											31/03/2015	

However, they behave harnby for from c (see mottob script from post weeks turbal)

locky we reviewed also how to use spline and putify in mathab. Review when it's to use one or the other

least squares

Suppose I have a overdeter mined system (more equinous than unknowns)

Hx = b -> our exoct source for this system obes not exists.

How I And at solution in the least square sense? I use the normal equation:

ATAX=ATB

if A is not square, ATA is square - > wern passed system

Solve for $x^* \Rightarrow x^* = (A^TA)^TA^Tb = x^*$ is the best solution in the Boat square sonce

In mother we use appearant to solve own overdetermined system. (See least, and least, a scripts)

Application using least squares, approximate as set of points (xo, yo), (x, y,); (x2; y2); ... (xn, yn) with a palynomial of degree l The (x) = 00 + 0, x + 02x2+... Ore xe

for every couple of points:

[]e (x) = a0 + a, x* + a2x*+ , -- + alx = gk +k

So my system is:

(3) composite midpoint formula

*(X)

 $\sqrt{\frac{c^m}{a}} \int_{a}^{c_m} f(x) dx$

(1) divide Ea, b] in subintervals of whath it he value of fathe midpoint of each

(3 the R= H. f(xx) (A) I'm = H (\(\sum_{\max} \psi_{\sum_{\max} \max} \psi_{\sum_{\max} \max} \psi_{\sum_{\max} \max}) subinterval.

Jer b (x)dx

(1) divide [a,b] in subintezods of width H

2) the area of each in 15 H(b+B) where b and B ore the idues of fathe extremes of each subinterval.

(a) In general: $\int_{-\infty}^{\infty} H\left(\frac{f(a) + f(b)}{2} + \sum_{k=1}^{\infty} \left(\frac{f(x_k)}{2}\right)\right)$ (3) $SO(T_1 = H(f(a) + f(x_1)), T_2 = H(f(x_1) + f(x_2)), T_3 = H(f(x_2) + f(b))$

Numerical differentiation

Completion with the desired

Goal: approximate the decimance of a financial

By def. -> f(x)= (m f(x+h)-f(x)

Ignoung higher order terms, using Taylor's polynomials:

f(x+h)~ f(x)+ f(x)h+...

HUTTING TOgether and solving for fix). 1(x)~ (x+h)- f(x) f(x+h) - f(x)

forward finite diff. scheme

X+X X+X

Bock word finite oliff scheme

 $f(x) = \lim_{h \to 0} f(x) - f(x-h)$

Ignoung higher order terms, using Taylor's paynomials:

$$f(x-h) \sim f(x) - f(x)h + \dots$$

Horring regether and solving for fix), f(x)-f(x-h) ~ f(x)-f(x)-f(x)+f(x)h $f'(x) \sim f(x) - f(x-h)$

f(x)-f(x-h) / f(x)