UNIVERSIDAD NACIONAL DE CÓRDOBA

Facultad de Ciencias Exactas Físicas y Naturales

Arquitectura de Computadoras Trabajo Práctico nº 3

"Implementación de un procesador monociclo simple sin saltos BIP"

Autores:

- Collante, Gerardo 39022782
- Quinteros Castilla, Nicolás 34351470

Docentes:

- Pereyra, Martín
- Pinzani, Paulo

Fecha: 20/11/2019

Introducción y objetivos

En lenguaje de descripción de hardware Verilog, se implementó un procesador simple, sin saltos monociclo: BIP, basado en el paper "A Basic Processor for Teaching Digital Circuits and Systems Design with FPGA" de Pereira y otros.

El procesador trabaja con operaciones de 16 bits como sigue:

El conjunto de instrucciones que se implementan es:

Operation	Opcode	Instruction	Data Memory (DM) and Accumulator (ACC) Updating	Program Counter (PC) updating	Affected Flags	BIP Model
Halt	00000	HLT		PC ← PC		I, II
Store Variable	00001	STO operand	DM[operand] ← ACC	PC ← PC + 1		I, II
Load Variable	00010	LD operand	ACC ← DM[operand]	PC ← PC + 1		I, II
Load Immediate	00011	LDI operand	ACC ← operand	PC ← PC + 1		I, II
Add Variable	00100	ADD operand	ACC ← ACC + DM[operand]	PC ← PC + 1	Z,N	I, II
Add Immediate	00101	ADDI operand	ACC ← ACC + DM	PC ← PC + 1	Z,N	I, II
Subtract Variable	00110	SUB operand	ACC ← ACC - DM[operand]	PC ← PC + 1	Z,N	I, II
Subtract Immediate	00111	SUBI operand	ACC ← ACC - operand	PC ← PC + 1	Z,N	I, II

La memoria está direccionada como se muestra a continuación:

Finalmente, el diagrama de bloques del procesador es como se presenta a continuación:

Figure 3. BIP I organization

Una vez implementado el procesador, se muestra por los leds (seleccionando cada uno con un botón) el PC, el valor del registro acumulador y el OPCODE.

Resultados

A través del testbench se logró una simulación que se muestra a continuación:

Donde se observa:

- acc = 16h'0008.
- instruction = 16h'0000.
- Pc = d'9.

En donde se puede ver que la ejecución del programa se lleva a cabo correctamente. A continuación se presenta el diagrama RTL top level:

Estructura RTL del módulo top level

Conclusión

Se entendió el funcionamiento de un procesador básico de instrucciones simples con el objetivo de sentar las bases para el próximo trabajo. En el mismo se deberán implementar instrucciones con saltos y un pipeline para explotar el ILP.