

COMP9418 - Advanced Topics in Statistical Machine Learning

W4 – Variational Inference (Part II)

Instructor: Edwin V. Bonilla

School of Computer Science and Engineering

Last update: 22/8/17 11:10:52 pm

IV. Variational Inference in Bayesian GMMs

Bayesian GMMs (1)

 $\mathbf{x}^{(n)}$: Observed variable for data point $\mathbf{n} \to \mathbf{X} = {\mathbf{x}^{(n)}}$

 $\mathbf{z}^{(n)}$: Hidden or missing variable $\rightarrow \mathbf{Z} = \{\mathbf{z}^{(n)}\}$

K: Number of mixture components

Prior over latent variables

$$p(\mathbf{Z}|\boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}}$$

Conditional likelihood

$$p(\mathbf{X}|\mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}^{(n)}|\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k^{-1})^{z_k^{(n)}}$$

Need a prior over $\{oldsymbol{\pi}, oldsymbol{\mu}, oldsymbol{\Lambda}\}$

One-hot encoding

Precision matrix

Bayesian GMMs (2)

Dirichlet prior over mixture weights:

$$p(\boldsymbol{\pi}) = \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha}) = \frac{1}{\mathrm{B}(\boldsymbol{\alpha})} \prod_{k=1}^K \pi_k^{\alpha_k - 1}$$
• Independent (Conjugate) Gaussian-Wishart prior over mean and precision:
$$p(\boldsymbol{\mu}, \boldsymbol{\Lambda}) = p(\boldsymbol{\mu}|\boldsymbol{\Lambda})p(\boldsymbol{\Lambda})$$

Brief Digression

The Gaussian-Wishart distribution

Assume:

$$\boldsymbol{\mu}_k \sim \mathcal{N}(\boldsymbol{\mu}_k | \tilde{\mathbf{m}}_k, (\tilde{\beta}_k \boldsymbol{\Lambda}_k)^{-1})$$

Wishart distribution (over PD matrices)
Generalization of the gamma distribution (to D>1) $oldsymbol{\Lambda}_k \sim \mathcal{W}(oldsymbol{\Lambda}_k | ilde{\mathbf{W}}_k, ilde{
u}_k)$

Then
$$p(\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k) = \mathcal{NW}(\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k | \tilde{\mathbf{m}}_k, \tilde{\beta}_k, \tilde{\mathbf{W}}_k, \tilde{\nu}_k)$$

= $\mathcal{N}(\boldsymbol{\mu}_k | \tilde{\mathbf{m}}_k, (\tilde{\beta}_k \boldsymbol{\Lambda}_k)^{-1}) \mathcal{W}(\boldsymbol{\Lambda}_k | \tilde{\mathbf{W}}_k, \tilde{\nu}_k)$

Gaussian-Wishart

- Joint distribution over mean and precision
- Generalization of the Gaussian-gamma distribution (to D>1)

Bayesian GMMs (2)

Dirichlet prior over mixture weights:

$$p(\boldsymbol{\pi}) = \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha}) = \frac{1}{\mathrm{B}(\boldsymbol{\alpha})} \prod_{k=1}^K \pi_k^{\alpha_k - 1}$$
 • Independent (Conjugate) Gaussian-Wishart prior over mean and precision:
$$p(\boldsymbol{\mu}, \boldsymbol{\Lambda}) = p(\boldsymbol{\mu}|\boldsymbol{\Lambda})p(\boldsymbol{\Lambda})$$

$$= \prod_{k=1}^{K} \mathcal{N}(\boldsymbol{\mu}_k | \mathbf{m}_0, (\beta_0 \boldsymbol{\Lambda}_k)^{-1}) \mathcal{W}(\boldsymbol{\Lambda}_k | \mathbf{W}_0, \nu_0)$$

Full joint distribution:

$$p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = p(\boldsymbol{\pi})p(\boldsymbol{\Lambda})p(\boldsymbol{\mu}|\boldsymbol{\Lambda})p(\mathbf{Z}|\boldsymbol{\pi})p(\mathbf{X}|\mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Lambda})$$

- Note only X are observed
 - » Difference between Z and GMM parameters?

Variational Posterior Distribution (1)

• We need to define a posterior over all unobserved variables:

$$q(\mathbf{Z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda}) = q(\mathbf{Z})q(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Lambda})$$

- Note factorisation (independence) between **Z** and GMM parameters
- Remarkably, this is the only assumption we will make
 - » No constraints on the functional form
- Notational simplicity (subscripts on q and dependence on X dropped)
- Updates using general result for factorised distributions:

$$\log q^{\star}(\mathbf{Z}) = \mathbb{E}_{\boldsymbol{\pi}}[\log p(\mathbf{Z}|\boldsymbol{\pi})] + \mathbb{E}_{\boldsymbol{\mu},\boldsymbol{\Lambda}}[\log p(\mathbf{X}|\mathbf{Z},\boldsymbol{\mu},\boldsymbol{\Lambda})] + \text{const.}$$

- yielding:

$$q^{\star}(\mathbf{Z}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \tilde{r}_{nk}^{z_{nk}}$$

- q*(**Z**): same functional form as the prior
- $-\tilde{r}_{nk}$: function of parameters of $q^*(\pi,\mu,\Lambda)$
 - » Automatically satisfies the constraints
 - » Role of responsibilities as $\mathbb{E}_{z_{nk}}[ilde{r}_{nk}]$

Variational Posterior Distribution (2)

• Expected sufficient statistics (analogous to EM statistics):

$$\tilde{r}_k = \sum_{n=1}^N \tilde{r}_{nk} \qquad \tilde{\boldsymbol{\mu}}_k = \frac{1}{\tilde{r}_k} \sum_{n=1}^N \tilde{r}_{nk} \mathbf{x}^{(n)} \qquad \tilde{\boldsymbol{\Sigma}}_k = \frac{1}{\tilde{r}_k} \sum_{n=1}^N \tilde{r}_{nk} (\mathbf{x}^{(n)} - \tilde{\boldsymbol{\mu}}_k) (\mathbf{x}^{(n)} - \tilde{\boldsymbol{\mu}}_k)^T$$

For the variational posterior over GMM parameters:

$$q^\star(\pi)=\mathrm{Dir}(\pi| ilde{lpha})$$
 - $\mathsf{q}^\star(\pi)$: same functional form as the prior $ilde{lpha}_k= ilde{r}_k+lpha_k$

$$q^{\star}(\boldsymbol{\mu}_{k}, \boldsymbol{\Lambda}_{k}) = \mathcal{N}(\boldsymbol{\mu}_{k} | \tilde{\mathbf{m}}_{k}, (\tilde{\beta}_{k} \boldsymbol{\Lambda}_{k})^{-1}) \mathcal{W}(\boldsymbol{\Lambda}_{k} | \tilde{\mathbf{W}}_{k}, \tilde{\nu}_{k})$$

- $-q^*(\mu_k, \Lambda_k)$: same functional form as the prior
- $\tilde{m}_k, \tilde{eta}_k, \tilde{\mathbf{W}}_k, \tilde{
 u}_k$: function of expected sufficient statistics (which include \tilde{r}_{nk})

In fact, updates variational responsibilities \tilde{r}_{nk} , also analogous to EM's

Variational EM-like Algorithm

- 1. VE-step: Update variational responsibilities \tilde{r}_{nk} Using current distributions over model parameters
- 2. VM-step: Update posterior over model parameters using current responsibilities
- Variational posteriors with same form as prior a consequence of conjugate priors
 - This is not the case for general priors or non-factorised distributions
- Deterministic approximations using bounds
- Assumptions on posterior functional form may be needed
 - » stochastic approximations of the variational objective
 - » Gradient-based optimization

Variational Inference in Action

- Bayesian mixture with K=6
 - Ellipses: 1 std. dev. Contours
 - Density of red shade: mean of posterior mixing weights
 - Dirichlet prior to encourage sparsity: α =10⁻³
 - » Only two components with non-zero posterior mean weights

V. Final Remarks

Variational Inference: Remarks

- Close resemblance variational solution and EM's
 - $As N \rightarrow \infty \rightarrow ML$ solution by EM
 - Similar computational cost
 - Singularity problems do not appear in the Bayesian treatment
 - No overfitting
 - Can evaluate lower bound for converge assessment and debugging
- Alternative derivations
 - Write down lower bound and optimise wrt posterior parameters
 - » Exploit knowledge about conjugacy
- Determining number of components
 - Model selection needs to consider K! settings
 - » Adding penalty term log K! to the lower bound
 - » Alternative to cross-validation

Advantages and Disadvantages of VI

(Slide based on Shakir Mohamed's tutorial on VI)

Disadvantages

- Never exact, only approximate posterior
- Typically underestimate the variance
- Can get stuck in local optima
- Limited theory

Advantages

- Applicable to a large class of models
- Can assess convergence
- Can do model selection
- Usually scalable and fast
- Compact representation of posterior

Conclusions

- Variational inference (VI) as a deterministic approximate algorithm for posterior estimation
 - Integration problem transformed into an optimisation problem
 - Optimisation of the variational objective (evidence lower bound)
 equivalent to minimizing KL(q||p)
 - usually fast and scalable but inexact

Possible solutions

- Free-form posterior
 - » Factorised distributions and mean-field solution
 - » Closed-form updates through conjugacy
- Parameterized posterior

Reading

- Bishop (PRML, 2006): Ch. 10 (except Sec. 10.4, 10.5, 10.7), Sec 2.3.6
- Murphy (MLaPP, 2012): Ch 21 (except Sec. 21.4, 21.7, 21.8)

