ABSTRACT

A detailed comparison of projects between an already existing race car manufacturing industry Formula Ford and X1 race industry is put forward. The Anatomy of these race cars is that they are open wheel race cars with only 4 wheels and bars on it. It was conceptualized by Formula Ford. It is a motorsport which contains a single seater and open wheel race car which is in some form in various countries around the globe. It is an beginner-level single seater race car, from which the best of drivers aspire to one day go to formula 1 by winning races across the globe. Our industry aims at two main streams: 1. Manufacturing such type of single seater race cars for training academies so as to create awareness of motorsports in India where weekend racers market is majorly captured keeping our market survey and cost-benefit analysis appropriate and 2. Manufacturing ergonomic packages which includes seats, seat inserts, pedal box assembly, steering wheel, etc. and selling it with 25% profit to other leagues who have their own rules on powertrain and drivetrain departments and therefore will have their own purchases based on performance. Having all of this said finally we try to compare the marketing aims, strategies, surveys, finance, technical inclusions, unique selling point and a cost-benefit analysis on the industries showing a break-even point too.

Target Market

Vehicle Supplier For Training Academies

Four Training Academies in Four Major Cities

Twelve vehicles per academy replaced every year

According to design changes

Ergonomic Package Supplier For Racing Leagues

Supply of ergonomic package to Five major racing leagues

New Ergonomic package for vehicle replaced every month

Total of 600 packages to be supplied in a year

Forty Eight Vehicles per year

Safety Stock - 8% of total packages to be supplied Batch Size - 60 Vehicles every year

USP

We will be replacing our ergonomic packages by selling it to the leagues every one month focusing mainly on technical R&D aiming to boost the performance of the car and the driver so that every weekend racer would be satisfied at the end and feel enlightened targeting our main agend.

Our Design

Pedal Assembly

- 1. Adjustable assembly (fore /aft = 50 mm)
- 2. Allow tuning to suit a driver's style
- 3. Optimum height of pedal to achieve mechanical
- 4. Pedal inclined at 85° to vertical to transmit force with less effort to reduce driver knee strain
- 5. Pedal Padding to provide grippy brake and throttle pedal.

Steering Wheel

- 1. Optimum radius to provide required torque while steering.
- 2. Contours according to driver's hand posture
- 3. Sufficient clearance to turn the wheel without hitting their legs with wheel on their hand.
- 4. Integrated gear shifter indicators for assistance
- 5. Buttons for electropneumatic shifting of gears

Foot Rest

- 1. To minimise driver's knee strain during throttling and braking
- 2. To support driver's knee region

Pedal Shifter

- 1. Fast and Easy Shifting
- 2. Improved Lap timing
- 3. Reduced driver effort while cornering

- 1. Accommodates breadth of each driver of the vehicle
- 2. Reclined Seat Angle for comfortable driving position
- 3. Thigh Support
- 4. Arm Support
- 5. Optimum seat height to ensure the driver has maximum vision of the road.

Seat Insert

- 1. Fits to the posture of the drivers
- 2. To provide maximum angle of view

Dashboard

- 1. Optimum height to prevent obstruction in driver vision
- 2. Assistance through display for monitoring rpm, coolant Temperature sensor, TPS position, voltage

Relative Importance

Criteria	Score
Cost	9
Time	8
Wastage	5
Weight	5
Adjustability	8
Reliability	6

Consistency Check

Lambda Max	1.00250737		
Consistency Index	-0.99949853		
Consistency Ratio	-0.8060472		

System Consistent

Weights

Criteria	Weights		
Cost	0.219		
Time	0.195		
Wastage	0.122		
Weight	0.122		
Adjustability	0.195		
Reliabilty	0.146		

Pair Wise Comparison Matrix

Criteria	Cost	Time	Wastage	Weight	Adjustability	Reliability
Cost	1.00	1.13	1.80	1.80	1.13	1.50
Time	0.89	1.00	1.60	1.60	1.00	1.34
Wastage	0.56	0.63	1.00	1.00	0.63	0.84
Weight	0.56	0.63	1.00	1.00	0.63	0.84
Adjustability	0.89	1.00	1.60	1.60	1.00	1.34
Reliability	0.67	0.75	1.20	1.20	0.75	1.00
Sum	4.57	5.14	8.20	8.20	5.14	6.86

Characteristics

Criteria	Alternative 1	Alternative 2	Current
Cost	2	3	1
Time	3	2	1
Wastage	3	1	2
Weight	1	2	3
Adjustability	2	3	1
Reliability	1	3	2

Normalised Comparison Matrix

Criteria	Cost	Time	Wastage	Weight	Adjustability	Reliability	Average
Cost	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Time	0.19	0.19	0.20	0.20	0.19	0.20	0.19
Wastage	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Weight	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Adjustability	0.19	0.19	0.20	0.20	0.19	0.20	0.19
Reliability	0.15	0.15	0.15	0.15	0.15	0.15	0.15

Decision Matrix

Criteria	Weight	Current	Alternative 1	Alternative 2
Cost	0.219	1	0.5	0.33
Time	0.195	1	0.33	0.5
Wastage	0.122	0.50	0.33	1
Weight	0.122	0.33	1	0.5
Adjustability	0.195	0.33	0.67	1
Reliability	0.146	0.67	0.33	1
Total	-	0.68	0.52	0.70

Percentile Proof

Measurements (All values in cm)	Male	Female
Stature	167.3	157.7
Eye Height	156.6	147.1
Head Height	146.5	137.1
Shoulder Height	138.0	129.4
Crotch Height	73.3	68.9
Knee Height	49	45.2
Bideltoid length	45.6	40.9
Waist Width		
Head Circumference	55.3	54.8
Chest Circumference	89.2	85.8
Waist Circumference	83.3	79.8

The population is split into three age groups namely 18-29, 30-44 and 45 and above depicting the young, middle aged and elderly people.

5 Regional groups; 3 Age groups; 2 Gender groups = 5 X 3 X 2 = 30

	Current Design	Alternative Design
Cockpit Width	49.5	49.5
Cockpit Length	81	81
Seat Width (Waist)	43	42
Seat Width (Shoulder)		

S.No.	Maximum	Minimum
Height	1.78	1.66
Weight (kg)	75	54
Hand Reach (m)	0.78	0.71
Hip Height (m)	32	0.34
Erect Sitting Height(m)	1.33	0.37
Sitting Shoulder Height(m)	1	0.93
Sitting Shoulder Width (m)	0.98	0.42
Hip Width (m)	0.39	0.31
Shoulder Grip Length (m	0.79	0.71
Foot length bare (m)	0.29	0.19
Foot Width bare (m)	0.13	0.09

Material Selection

- Low cost material and manufacture
- Easy to manufacture
- Durable high tensile strength to support moving parts and repeated
- installation
- Waterproof
- Recyclable recycle waste material back into production
- Density low density for lightweight design, aiding fuel consumption

Box selection further narrowed down materials to a specific range Most common material was Acrylonitrile Butadiene Styrene (ABS) For plastic parts and Aluminium 7075 T6 for metal parts

Factor	Casting	Forging	Metal Injection Moulding	Reason
Automation	1	1	1	All are equally automated.
Production speed	1	3	2	Production of forging is fastest
.Availability of raw material	2	3	1	In forging alloy can be used directly whereas in Casting Alloys metal has to be mixed
Processing Cost	2	1	1	The processing cost of forging is high because of short life of die as well as high cost of die. Also in forging machines are very expensive.
Labour skills	2	2	1	Both the process requires equally skilled labour
Storage	1	2	2	Storage required by casting is more because alloys are to be added to molten metal.
Quality of product	1	2	2	Quality of forged rims is high. It has more strength also the porosity is less.
Fatigue characteristics	1	2	3	High in forged magnesium resulting in longer reliable service
Process of heat treatment	1	2	1	Casting requires heat treatment process where as in forging alloys are used directly. So no heat treatment is required.
Ease in manufacturing	1	2	1	Manufacturing through casting is more complicated as compared to manufacturing through forging.
Weight of product	1	2	1	Forged rims are lighter.
Machining	1	2	3	Machining in casting is more as compared to machining in forging.
Total	14	17		

Process Selection

Factor	or Multiplying Factor			Wet Layup Pre-preg			Sheet moulding Compound	
Automation	1.5	Machinery	1	Manual skilled labor required	2	Cutting of the pieces can be automated	3	Only the laying of pieces requires manual labor.
Storage	1.5	Storage for raw materials	1	Fiber, resin, molds.	3	Pre-preg fiber and mold	2	Fiber, low viscous resin
Production Speed	1.5	High speeds	1	Resin needs to be applied	2	Medium to fast, some automation possible	3	Process is automated.
Size	0.5	How big manufacturin g possible	2	Any size and shape	2	No limit.	3	Limited due to resin flow
Strength	1.5	High strength	3	Highly controllable	2	Pre-decided strength	1	Least strength
Complexity of the product	1	Least complexity favored	2	All the layup is done easily onto the mold	1	Cut out according to the mold and set it up.	3	High resin flow complexity
Labor Skill	1	Decides spending on training of the workforce	1	Highly skilled labor as manual layup is required	3	Not so skilled labor	3	No skilled labor is required. Only the setup needs to be done.
Shelf life of Raw Material	1	Decides the material to be brought	3	Stored indefinitely	1	Requires special storage in fridge at low temperature.	3	Stored indefinitely
Total		_		17.5		24		21

Factor	Injection Moulding	3D Printing	CNC Machining	Reason
Automation	1	2	1	Both are equally automated.
Production speed	3	1	2	Production of forging is faster than casting.
Availability of raw material	2	1	2	In forging alloy can be used directly whereas in Casting Alloys metal has to be mixed.
Processing cost	3	1	2	The processing cost of forging is high because of short life of die as well as high cost of die. Also in forging machines are very expensive.
Labour skills	3	1	2	Both the process requires equally skilled labour
Storage	1	3	2	Storage required by casting is more because alloys are to be added to molten metal.
Quality of product	2	2	3	Quality of forged rims is high. It has more strength also the porosity is less.
Surface Finish	2	1	3	
Ease in manufacturing	2	3	1	Manufacturing through casting is more complicated as compared to manufacturing through forging.
Weight of product	2	2	3	Forged rims are lighter.
Total	14	17		

Cause – Effect Diagram

	Risk Aware	ness
Pre Production	External Sourcing (no material)	Have a backup supplier
Pre Production	Damaged material	Agreement with supplier on quality
		Work in contingency into manufacturing schedule
	Machina Failura	Onsite mechanic trained in machine repair
During Production	Machine Failure	Safety stock
riodaction		Have a backup cause-effect analysis to solve issue
	Human Error	Regular mandatory training days
	Transportation Issue	Have a backup stock and transport plan
Post Production	Faulty Products	Rigorous QC procedure
	Customer satisfaction	Highly Trained customer services department

Plant Location

SEZ of India – SIPCOT Perundrai , Erode district , Tamil Nadu

100 per cent income tax exemption on export income for SEZ units for first five years

Duty free import/domestic procurement of goods

Vicinity to market, rail, road transport area and sea port

Unemployment rate – 6.7 %

Infrastructure Facilities

- Customised support infrastructure
- Adequate warehousing
- Inland container depots
- Dedicated jetty for cargo movements
- Captive power plants of SEZs to support state electricity
- Safety and security measures

Double U Shaped Assembly

- Factory Size of square feet (sq.ft)
- Factory Rent based on \$60.00 per sq.ft.p/a totalling \$750'000 p/a (per annum)
- All processes in one factory eliminates out of house problems and decreases the
- manufacture time per unit

Material Requirement Planning (MRP)

Inventory Control

									FIR	ST MOI	NTH												
							ERGONOMIC	PACKAGES	(FOR EVENT)														
													WEEK 4										
DAYS	1	2	3 4	4 5	6	7 8	9 1	0 1:	1 12 1	3 1	1 15	16	17	18	19 20	21	22 2	3 24	25	26 27	28	29	30
PR					10				10					10				10					10
RECIEPT					14				14					14				14					14
SOH (0)	C	0	0 (0 0	4	4 4	4	4 4	4 8	8	3 8	8	8	12	12 12	12	12 1	2 16	16	16 16	16	10	5 20
POR	14				14				14					14				14					14

						ER	GONOMIC	PACKAGES (FOR CAR	S) AND CAR	PRODUCTION													
DAYS			WEEK 1					WEEK 2						WEEK 3					WEEK 4				
DAYS	1	1 2	3	4 !	6	7 8	3 9	10 1	1 1	2 13	14	15	16	17 1	8 19	20 2	1 22	23 2	4 25	26	27	28	29 30
PR					1					1					1				1				1
RECIEPT					1					1					1				1				1
SOH (0)	0	0	0	0 (0	0 (0 0	o	0 (0	o	0	o	0	0 0	o	0 0	O	0 0	o	0	0	0 0
POR	1	ı			1					1					1				1				1

INTERCHANGE OF STOCK WITH CURRENT RECEIVED ORDER

	SECOND MONTH																															
	ERGONOMIC PACKAGES (FOR EVENT)																															
			WEEK 5			WEEK 6 WEEK 7 WEEK 8								8					WEEK 9													
DAYS	1		2 3		4	5	6	7	8		9 1	1	.1	12 1	.3 14	1 15	1	6	17	18	.9 2	0 2	21	22	23 2	24 2	5	26	27	28	29	30
PR							10							10						10					1	LO						10
RECIEPT							14							14						14					1	14						14
SOH (20)	20) 2	20 20	2	20	20	24	24	24	2	4 2	1 2	4	28 2	8 2	3 28	2	8	28	32	32 3	2 3	32	32	32 3	36	6	36	36	36	36	40
POR	14						14							14						14					1	4						14

	THIRD MONTH																																		
	ERGONOMIC PACKAGES (FOR EVENT)																																		
	WEEK 10 WEEK 11 WEEK 12														WEE	K 13																			
DAYS	1		2	3	4	4	5	6	7		8	9	10	1	1	12	13	14	15	16	17	18	19	20	2	1	22	23	24	25	26	27	28	2	29 30
PR								10								10						10							10						10
RECIEPT								14								14						10							10						10
SOH (40)	40		40	40	40	0	40	44	44	4	14	44	44	4	4	48	48	48	48	48	48	48	48	48	4	8	48	48	48	48	48	48	48	. 4	18 49
POR	14				·-			14								10						10		·-					10				·-		10

	ERGONOM	IC PACKAGES FO	OR	CARS
	EVENT	STOCK	CARS	PRODUCTION
MONTHLY	50	48	5	5
YEARLY	600	48	60	60
TOTAL	648		60	
IOIAL		708		60

INTERCHANGE OF STOCK WITH CURRENT RECEIVED ORDER

Quality Control

Humidity

COST BENEFIT ANALYSIS

Wood

		Allumi	inium 7075		Glass Fibre (S Class) Polyurethane Foam							ABS		(HDF)
	_		Break Peddal \$	Railbox \$	Seat \$	Foot Rest \$	Seat Insert \$	Head Rest	Lumbar Support \$	Leg Support \$	Peddal Shifter \$	Steering Grip \$	Peddal Face \$	Steering Wheel \$
COST	24.83	17.37	20.66	21.96	25.59	7.33	5.06	4.99	4.94	4.93	9.20	26.17	8.54	17.33
PARTS MANUFACTURED	3540	3540	10620	3540	3540	354	1062	0 354	0 708	0 708	30 708	0 708	0 1062	0 3540
TOTAL COST	\$ 87,893.14	\$ 61,494.86	\$ 2,19,378.8 6	\$ 77,728.29	\$ 90,573.43	\$ 25,943.14	\$ 53.706.86	\$ 6 17.649.43	\$ 34,995.43	\$ 34.894.2	\$ 965,136.00	\$ 1,85,293.7 1		\$ 61,343.14
				,						.,				02,010.21
TOTAL MANUFACTURING COST		1	\$ 1,06,755.7 1	5										
TOTAL SETUP COST			\$ 1,84,350.63	5										
OVERAL COST INCURED IN 5 YEARS		1	ç 2,91,106.35	5										
PROFIT PERCENT	25%	25%	25%	25 %	6 25%	6 25	% 25%	25 %	6 25%	% 25	% 259	% 25 %	% 25 9	% 25%
SELLING PRICE	\$ 31.04	\$ 21.71	\$ 25.82	\$ 27.45	\$ 31.98	\$ 9.16	\$ 6.32	\$ 6.23	\$ 6.18	\$ 6.16	\$ 11.50	\$ 32.71	\$ 10.68	\$ 21.66
PARTS MANUFACTURED	3540.00	3540.00	10620.00	3540.00	3540.00	3540.0	00 10620.0	0 3540.0	0 7080.0	0 7080.0	7080.0	0 7080.0	0 10620.0	0 3540.00
REVENUE GENERATED	\$ 1,09,866.43		\$ 2,74,223.5 7		\$ 1,13,216.79	\$ 32,428.93	\$ 67,133.57	\$ 7 22,061.79	\$ 43,744.29	\$ 43,617.8	\$ 6681,420.00		\$ 1,13,406.4 3	\$ 76,678.93
TOTAL REVENUE GENERATED	13,	\$ 83,444.64												
TOTAL PROFIT		\$ 92,338.30												

Cost Benefit Analysis

	Yea	rly Rev	enue Chart	
Year	Revenue		Investment	Cumulative Profit
1	\$ 2,76,688.93	\$	4,05,701.78	\$ -1,29,012.85
2	\$ 5,53,377.86	\$	6,27,052.92	\$ -73,675.06
3	\$ 8,30,066.79	\$	8,48,404.06	\$ -18,337.28
4	\$ 11,06,755.71	\$	10,69,755.20	\$ 37,000.51
5	\$ 13,83,444.64	\$	12,91,106.35	\$ 92,338.30

