Text Analytics Fundamentals

Data Science Dojo

Structured vs. Unstructured Data

- Structured Tabular data
- Semi-structured Non-tabular data with some meta-data
 - Ex: JSON, XML
- Unstructured Non-tabular data with no meta-data

Structured – tabular data

*	PassengerId [‡]	Survived [‡]	Pclass [‡]	Name	Sex [‡]	Age [‡]	SibSp [‡] Parch	Ticket	Fare [‡]	Cabin
1	1	0	3	Braund, Mr. Owen Harris	male	22.00	1	A/5 21171	7.2500	
2	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38.00	1	PC 17599	71.2833	C85
3	3	1	3	Heikkinen, Miss. Laina	female	26.00	0	STON/O2. 3101282	7.9250	
4	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.00	1	113803	53.1000	C123
5	5	0	3	Allen, Mr. William Henry	male	35.00	0	373450	8.0500	
6	6	0	3	Moran, Mr. James	male	NA	0	330877	8.4583	
7	7	0	1	McCarthy, Mr. Timothy J	male	54.00	0	17463	51.8625	E46
8	8	0	3	Palsson, Master. Gosta Leonard	male	2.00	3	1 349909	21.0750	
9	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.00	0	2 347742	11.1333	
10	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.00	1 (237736	30.0708	
11	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.00	1	1 PP 9549	16.7000	G6
12	12	1	1	Bonnell, Miss. Elizabeth	female	58.00	0 (113783	26.5500	C103
13	13	0	3	Saundercock, Mr. William Henry	male	20.00	0 (A/5. 2151	8.0500	
14	14	0	3	Andersson, Mr. Anders Johan	male	39.00	1 !	347082	31.2750	
15	15	0	3	Vestrom, Miss. Hulda Amanda Adolfina	female	14.00	0 (350406	7.8542	

Semi-structured data

```
<html>
    <head>
    <title>CSS Experiments</title>
    <link rel="stylesheet" href="styles.css" type="text/css" media="all">
    </head>
    <body>
    <div id="menu">
    <a href="http://abduzeedo.com/">Home</a>
9
        <a href="http://abduzeedo.com/tutorials">Tutorials</a>
        <a href="http://abduzeedo.com/tags/interview">Interviews</a>
II
        <a href="http://abduzeedo.com/tags/wallpaper">Wallpapers</a>
12
13
    <input type="" name="" value="" />
14
        </div>
15
        <div id="flickr_badge_uber_wrapper">
16
            <div id="flickr_badge_wrapper">
17
                <script type="text/javascript" src="http://www.flickr.com/</pre>
18
                  badge_code_v2.gne?
                  count=12&display=latest&size=s&layout=x&source=user_set&user=764
                  66518%40N00&set=72157604672645588&context=in
                  %2Fset-72157604672645588%2F"></script>
            </div>
19
        </div>
21
    </body>
22:
    </html>
```

Unstructured data

TIME ♥ @TIME · 52s

An earlier version of this story incorrectly stated that the National Weather Service mistakenly sent a tsunami warning to phones. The warning was sent by third-party weather apps, not by the National Weather Service. The tweet was since deleted

A Tsunami Warning Blared on Phones Across the Country This Morni...
"Please note there is NO TSUNAMI THREAT"

Text Analytics in Business

- Information Retrieval (IR)
 - Find documents which match a query
- Sentiment Analysis
 - Determine "emotion" of document based on certain words/terms appearing in the document
- Recommendation Engines (Similarity)
 - Recommend entities based on certain attributes
- Topic Modelling
 - Reduce document to topics

Information Retrieval

Sentiment Analysis

New York City is my favorite city in the world, so during our weekend get away I chose to have dinner at Daniel for our Friday night date night dinner. It was so disappointing.

The service was excellent, all the staffs were super friendly, made us feel very welcomed. But the food was so disappointing, we were so glad not to get the tasting menu after our dinner. I can't even start on the details of what we ordered, but everything sucked! It was super disappointing that I couldn't even finish my food.

For the service I would give a 5 star, but I wanna give a 3 star for the food because it didn't meet the expectation at all! If I was going to some random restaurant then yes I might give a 4 star review.

So disappointing....

See it in action

New York City is my favorite city in the world, so during our weekend get away I chose to have dinner at Daniel for our Friday night date night dinner. It was so disappointing.

The service was excellent, all the staffs were super friendly, made us feel very welcomed. But the food was so disappointing, we were so glad not to get the tasting menu after our dinner. I can't even start on the details of what we ordered, but everything sucked! It was super disappointing that I couldn't even finish my food.

For the service I would give a 5 star, but I wanna give a 3 star for the food because it didn't meet the expectation at all! If I was going to some random restaurant then yes I might give a 4 star review.

So disappointing....

Analyze

Recommendation Engines

"Associate" appears in all postings, and all postings share words that may be related ("private equity," "investment," "valuations," "MBA," "capital," etc)

Topic Modelling

The New York Times

music band songs rock album jazz pop song singer night book life novel story books man stories love children family

art
museum
show
exhibition
artist
artists
paintings
painting
century
works

game knicks nets points team season play games night coach show film television movie series says life man character know

theater play production show stage street broadway director musical directed

clinton
bush
campaign
gore
political
republican
dole
presidential
senator
house

stock market percent fund investors funds companies stocks investment trading

restaurant sauce menu food dishes street dining dinner chicken served budget tax governor county mayor billion taxes plan legislature fiscal

Text Analytics Fundamentals

- Token: A specific word in the document
- Term: The version of a word set that is in the dictionary
- Corpus: All of the documents.

Text Analytics Fundamentals

- How do we turn unstructured data into structured data?
 - Create columns based on document content
 - Each term in document creates a column
 - Column types: binary, word count, TF-IDF
 - Do we want to count every word?
 - Stop words
 - Stemming and lemmatization

Term – Dictionary Example

dictionary

Stemming & Lemmatization

- Stemming: Convert tokens to terms by removing letters via heuristic
 - Both simple (Levins) and complex (Porter)
- Lemmatization: Classify tokens into terms using a linguistic analysis
 - Lemma: the base (dictionary) form of a word
 - Can be done using dictionary look-up, machine learning on annotated corpus

Stemming / Lemmatizing Example

Token	Stemmed term	Lemmatized term
Stemming is funnier than lemmatizing says the Barcelona	Stem is funnier than lemmas say the Barcelona love data scientist	stem be funny than lemmatizing say the barcelona love data scientist
loving data scientists		

Document Vectorization

Terms in the documents

			tea m	coa ch	pla y	ball	sco re	ga me	win		tim eou t		
	(d_1	3	0	5	0	2	6	0	2	0	2	
Documents 1 to 3	(d_2	0	7	0	2	1	0	0	3	0	0	
	_ (d_3	0	1	0	0	1	2	2	0	3	0	

data science for everyone

Document Vectorization

- Each document becomes a vector
- Allows use of numeric analysis

	tea	coa	play	ball	scor	gam	win	lost	tim	sea
	m	ch			е	е			eou	son
									t	
d_1	3	0	5	0	2	6	0	2	0	2
d_2	0	7	0	2	1	0	0	3	0	0
d_3	0	1	0	0	1	2	2	0	3	0

Document Similarity Measure

	Team	Coach
d_1	3	0
d_2	0	7
d_3	0	1

Distance between documents is calculated as:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Binary Document Vectorization

 Each document has a 1 if the word appears in it and a 0 if not

	tea	coa	play	ball	scor	gam	win	lost	tim	seas
	m	ch			е	е			eou	on
									t	
d_1	1	0	1	0	1	1	0	1	0	1
d_2	0	1	0	1	1	0	0	1	0	0
d_3	0	1	0	0	1	1	1	0	1	0

Drawbacks of Vectorization

- Not every word has similar importance
- Longer documents have a higher chance to have random unimportant words

TF-IDF

- Calculates term importance based on its occurrence in a given document
- But balanced with its prevalence elsewhere in the pool of documents
- The more frequently it appears in any particular document, the more important it becomes
- Frequent appearances in other documents reduces its importance

Term Frequency (TF)

- Measures how often a term appears (density in a document) in a given document
 - Assumes important terms appear more often
 - Normalized to account for document length

Term Frequency (TF)

- Let freq(t,d) number of occurrences of keyword t in document d
- Let max{freq(w,d)} denote the highest number of occurrences of another keyword of d

$$TF(t,d) = \frac{freq(t,d)}{\max\{freq(w,d): w \in d\}}$$

(Frequency of a particular term in a document divided by the maximum frequency of any word in that document)

data science for everyone

Term Frequency (TF)

Following

"You are not a robo-adviser," says

@meirstatman, "Your advantage is not in
beating the market . . . Your advantage is in
creating this bond, this emotional bond, with
your clients," via @laurenfosternyc

$$\max\{freq(w,d): w \in d\} = 2$$

$$\mathsf{TF} \; (\mathsf{advantage}) = 2/2 = 1$$

$$\mathsf{TF} \; (\mathsf{market}) = \frac{1}{2} = 0.5$$

Inverse Document Frequency

- Aims to reduce the weight of terms that appear in many other documents
- Assumes terms that appear in many documents are less distinguishing

Inverse Document Frequency

- N: number of all recommendable documents
- n(t): number of documents in which keyword t appears

•
$$IDF(t) = log \frac{N}{n(t)}$$

IDF Example

- Given 1000 documents (could be tweets, articles, etc)
- The term "coffee" appears in 10 out of 1000 documents
- The term "mug" appears in all 1000 documents

IDF (coffee) =
$$log 1000/10 = log 100 = 2$$

IDF (mug) = $log 1000/1000 = log 1 = 0$

Calculating TF-IDF

- Compute the overall importance of keywords
 - Given a keyword t and a document d

$$TF-IDF(t,d) = TF(t,d) * IDF(t)$$

TF-IDF Exercise

- D1 = "If it walks like a duck and quacks like a duck, it must be a duck."
- **D2** = "Beijing Duck is mostly prized for the thin, crispy duck skin with authentic versions of the dish serving mostly the skin."
- **D3** = "Bugs' ascension to stardom also prompted the Warner animators to recast Daffy Duck as the rabbit's rival, intensely jealous and determined to steal back the spotlight while Bugs remained indifferent to the duck's jealousy, or used it to his advantage. This turned out to be the recipe for the success of the duo."
- **D4** = "6:25 PM 1/7/2007 blog entry: I found this great recipe for Rabbit Braised in Wine on cookingforengineers.com."
- **D5** = "Last week Li has shown you how to make the Sechuan duck. Today we'll be making Chinese dumplings (Jiaozi), a popular dish that I had a chance to try last summer in Beijing. There are many recipies for Jiaozi."
- Dictionary: {beijing, dish, duck, rabbit, recipe}

Creating the TF Matrix: Step 1

Step 1: Count the word frequency per document.

	beijing	dish	duck	rabbit	recipe
D1	0	0	3	0	0
D2	1	1	2	0	0
D3	0	0	2	1	1
D4	0	0	0	1	1
D5	1	1	1	0	1

Creating the TF Matrix: Step 2

Step 2: Normalize the counts by the most frequency word.

Normalized Frequency:
$$TF(t,d) = \frac{freq(t,d)}{\max\{freq(w,d):w \in d\}}$$

	beijing	dish	duck	rabbit	recipe
D1	0/3	0/3	3/3	0/3	0/3
D2	1/2	1/2	2/2	0/2	0/2
D3	0/2	0/2	2/2	1/2	1/2
D4	0/1	0/1	0/1	1/1	1/1
D5	1/1	1/1	1/1	0/1	1/1

Creating the IDF Vector

TF Matrix

	beijing	dish	duck	rabbit	recipe
D1	0	0	1	0	0
D2	0.5	0.5	1	0	0
D3	0	0	1	0.5	0.5
D4	0	0	0	1	1
D5	1	1	1	0	1

IDF Vector

Word	IDF		
beijing	log(5/2)		
dish	log(5/2)		
duck	log(5/4)		
rabbit	log(5/2)		
recipe	log(5/3)		

TF-IDF Matrix

We calculate the TF-IDF numbers by multiplying TF and IDF

	beijing	dish	duck	rabbit	recipe
D1	0*log(5/2)	0*log(5/2)	1*log(5/4)	0*log(5/2)	0*log(5/3)
D2	0.5*log(5/2)	0.5*log(5/2)	1*log(5/4)	0*log(5/2)	0*log(5/3)
D3	0*log(5/2)	0*log(5/2)	1*log(5/4)	0.5*log(5/2)	0.5*log(5/3)
D4	0*log(5/2)	0*log(5/2)	0	1*log(5/2)	1*log(5/3)
D5	1*log(5/2)	1*log(5/2)	1*log(5/4)	0*log(5/2)	1*log(5/3)

TF-IDF Search Example

- User searches in our document set
- Query: "Beijing duck recipe"
- Calculate TF-IDF of query

	beijing	dish	duck	rabbit	recipe
Query	1/1 * log(5/2)	0	1/1 * log(5/4)	0	1/1 * log(5/3)

Word	IDF
beijing	log(5/2)
dish	log(5/2)
duck	log(5/4)
rabbit	log(5/2)
recipe	log(5/3)

TF-IDF Search Example

- Cosine similarity of query and each doc
 - D1 = [0, 0, 0.097, 0, 0] (D1's TF-IDF score)
 - Q = [0.398, 0, 0.097, 0, 0.222] $\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$

$$\cos(D1, Q) = \frac{0*0.398+0*0+0.097*0.097+0*0+0*0.222}{\sqrt{0.097^2}*\sqrt{0.398^2+0.097^2+0.222^2}} = 0.208$$

Cosine similarities

	beijing	dish	duck	rabbit	recipe	cos(D,Q)
D1	0	0	0.097	0	0	0.208
D2	0.199	0.199	0.097	0	0	0.639
D3	0	0	0.097	0.199	0.111	0.256
D4	0	0	0	0.398	0.222	0.232
D5	0.398	0.398	0.097	0	0.222	0.760
Query	.398	0	.097	0	.222	1

Final ordered list

- **D5** = "Last week Li has shown you how to make the Sechuan duck. Today we'll be making Chinese dumplings (Jiaozi), a popular dish that I had a chance to try last summer in Beijing. There are many recipies for Jiaozi."
- **D2** = "Beijing Duck is mostly prized for the thin, crispy duck skin with authentic versions of the dish serving mostly the skin."
- **D3** = "Bugs' ascension to stardom also prompted the Warner animators to recast Daffy Duck as the rabbit's rival, intensely jealous and determined to steal back the spotlight while Bugs remained indifferent to the duck's jealousy, or used it to his advantage. This turned out to be the recipe for the success of the duo."
- **D4** = "6:25 PM 1/7/2007 blog entry: I found this great recipe for Rabbit Braised in Wine on cookingforengineers.com."
- D1 = "If it walks like a duck and quacks like a duck, it must be a duck."

N-grams

 Our representations so far have been single terms, known as unigrams or 1-grams.

- There are also bigrams, trigrams, 4-grams, 5grams, etc.
- N-grams allow us to extend the bags-of-words model to include word ordering

N-grams

- Take the sample document:
 - "If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck."

- A standard data pre-processing pipeline (stop word removal, stemming, etc.) would transform the above into something like:
 - "look like duck swim like duck quack like duck probabl duck"

Which we could represent as a document-term frequency matrix:

look	like	duck	swim	quack	probabl
1	3	4	1	1	1

Bigrams

Given the processed document,

"look like duck swim like duck quack like duck probabl duck"

The bigrams for the processed data would be:

look_like	like_duck	duck_swim	swim_like	duck_quack	quack_like	duck_probabl	probabl_duck
1	3	1	1	1	1	1	1

NOTE – We've now more than doubled the total size of our matrix!

Text Analytics Tools

- R tm, Rstem, openNLP
- Python NLTK
- Azure Feature Hashing module

QUESTIONS

