RIDDLER 1-7-22

Jackson Dougherty

RIDDLER CLASSIC

Problem. Amare the ant is traveling within triangle \triangle ABC, shown in fig 1. Angle \angle A measures 15 degrees, and sides AB and AC both have length 1.

FIGURE 1. Amare the ant will travel across triangle $\triangle ABC$.

Amare starts at point B and wants to arrive on side AC, but the colony's queen requires that Amare's path follow several constraints:

- (1) Start at point B.
- (2) Touch any point on side AC.
- (3) Touch any point on side AB.
- (4) Reach any point on side AC.

What is the shortest distance Amare can travel while following the queen's path?

FIGURE 2. Amare the ant will travel across triangle $\triangle ABC$ on a path from points B to E to G to H.

Solution. We will add several points to triangle $\triangle ABC$ to describe the path that Amare will take.

Amare could take any straight line path to side AC, but going towards point C takes Amare farther from side AB. Traveling directly to side AC would minimize that portion of the trip, but Amare can shorten later sections by traveling to a

point E that lies closer to A. Therefore, we define the segment perpendicular to AC and passing through B with the point D. Amare travels to the point E on AD, and we define angle $\angle DBE = \theta$.

Similar logic applies to suggest that Amare could travel directly to side AB from point E, but should aim for a point G closer to A. As in the previous step, we can define the point F on AB via the segment perpendicular to AB that intersects E, and we define angle \angle FEG = ϕ .

Finally, Amare should travel to AC directly, and so we define the point H on AC via the segment perpendicular to AC that intersects G.

With the previous construction, shown in Fig. 2, Amare will take a partwise straight-line path from points B to E to G to H. We need to analyze the situation to find the values of θ and ϕ that will minimize Amare's distance traveled.

The distance traveled is given by $\overline{BE} + \overline{EG} + \overline{GH}$. We will develop expressions for each length in turn.

We begin by looking at the right triangle $\triangle ABD$. Since $\angle CAB = 15^{\circ}$ and $\overline{AB} = 1$, we have $\overline{BD} = \sin(15^{\circ})$. We can look at the right triangle $\triangle BDE$,

$$\overline{BE} = \frac{\overline{BD}}{\cos \theta}$$
$$= \frac{\sin(15^\circ)}{\cos \theta}.$$

We can then look at the right triangle $\triangle BFE$. Since $\angle ABD = 75^{\circ}$, we have $\angle EBF = 75^{\circ} - \theta$. By the right angle, $\overline{EF} = \overline{BE} \sin(\angle EBF)$. Turning to the right triangle $\triangle FEG$, we can determine \overline{EG} ,

$$\overline{EG} = \frac{\overline{EF}}{\cos \phi}$$

$$= \frac{\sin(75^{\circ} - \theta)}{\cos \phi} \frac{\sin 15^{\circ}}{\cos \theta}.$$

We note that $\angle AEF = 75^{\circ}$, implying $\angle HEG = \angle AEG = 75^{\circ} - \phi$. Looking at the right triangle $\triangle EHG$, we can express \overline{GH} ,

$$\overline{GH} = \overline{EG}\sin(\angle \text{GEH})$$

$$= \sin(75^{\circ} - \phi)\frac{\sin(75^{\circ} - \theta)}{\cos \phi}\frac{\sin 15^{\circ}}{\cos \theta}.$$

Putting everything together, and noting $\sin(75^{\circ} - x) = \cos(15^{\circ} + x)$, we can write the total distance traveled by Amare as

$$d(\theta,\phi) = \frac{\cos(15^\circ + \phi)}{\cos\phi} \frac{\cos(15^\circ + \theta)}{\cos\theta} \sin 15^\circ + \frac{\sin(15^\circ)}{\cos\phi} \frac{\cos(15^\circ + \theta)}{\cos\theta} + \frac{\sin(15^\circ)}{\cos\theta}.$$

We recall from their definition that the appropriate domain for θ and ϕ are $[0,75^{\circ}]$. At the extremes, we have $d(75^{\circ},\phi)=1$ for any ϕ , and $d(0,0)=\sin(15^{\circ})(1+\cos(15^{\circ})+\cos^2(15^{\circ}))$.

Using some calculus, we could find the minimum of the distance function over the domain. WolframAlpha gives a local minimum at $(\theta, \phi) = (\pi/6, \pi/12) = (30^{\circ}, 15^{\circ})$ with minimum distance $1/\sqrt{2}$.

This minimum happens to be the side length of an isosceles right triangle with hypotenuse 1. This value is not a coincidence, as there is a geometric proof involving such a triangle that simplifies the solution for this problem.