Chapitre 9

Statistiques et simulation

I. Le problème

On réalise n fois une expérience aléatoire qui conduit à une distribution de fréquences observées et on on souhaite évaluer l'adéquation de ces données expérimentales à une loi équirépartie.

Distribution des fréquences observées

Distribution aes frequences observees							
valeur	x_1	x_2		x_{i}		X_n	
fréquence	f_{1}	f_2	•••	f_{i}	•••	\int_{n}^{∞}	

Loi équirépartie							
issue	x_1	x_2		x_{i}		X_n	
probabilité	$\frac{1}{k}$	$\frac{1}{k}$		$\frac{1}{k}$		$\frac{1}{k}$	

Exemple:

Un pisciculteur possède un bassin qui contient 3 variétés de truites :communes, saumonées et arcen-ciel. Il voudrait savoir s'il peut considérer que son bassin contient autant de truites de chaque variété.

II. Les étapes du test

1) Prélèvements réels

Exemple:

Il effectue, au hasard, 400 prélèvements d'une truite avec remise.

Il obtient ainsi: 146 truites communes, 118 truites saumonées et 136 truites arc-en-ciel.

Notons f_c , f_s et f_a les fréquences correspondantes.

On a donc:

$$f_c = \frac{146}{400} = 0.365$$

$$f_s = \frac{118}{400} = 0,295$$

$$f_a = \frac{136}{400} = 0,340$$

2) Calcul de d_{obs}^2

On mesure la « distance » entre la distribution des fréquences et la loi équirépartie.

On calcule:

$$d_{obs}^2 = \sum_{i=1}^k \left(f_i - \frac{1}{k} \right)^2$$

Remarque:

On rejettera l'hypothèse d'équirépartition si l'éloignement d_{obs}^2 est assez flagrant : on va déterminer un seuil au-delà duquel il en est ainsi.

Exemple:

$$\overline{d_{obs}^2 = \left(f_c - \frac{1}{3}\right)^2 + \left(f_s - \frac{1}{3}\right)^2 + \left(f_a - \frac{1}{3}\right)^2 = \left(0.365 - \frac{1}{3}\right)^2 + \left(0.295 - \frac{1}{3}\right)^2 + \left(0.340 - \frac{1}{3}\right)^2 \approx 0.00252$$

3) Simulation

On réalise une simulation de N échantillons de taille n de la loi équirépartie à k issue. Pour chaque échantillon, on calcule la distance d^2 ; on obtient une série de N valeurs d_1 , d_2 , ..., d_N .

Exemple:

A l'aide d'un ordinateur, le pisciculteur simule le prélèvement au hasard de 400 truites suivant la loi équirépartie. Il répète 1000 fois cette opération et calcule à chaque fois la valeur d^2 .

Parmi les 1000 prélèvements de 400 truites, 705 prélèvements ont un d^2 compris entre 0 et 0,002; 184 prélèvements ont un d^2 compris entre 0,002 et 0,004.

Définition:

Le **neuvième décile** (empirique) est le plus petit élément D_9 des valeurs des termes de la série, tel qu'au moins 90 % des données soient inférieures ou égales à D_9 .

On s'intéresse, en fait, au $9^{\rm e}$ décile D_9 de la série :

B423 ▼ f ∞ ∑		= CENTILE(B407:ALM407;0,9)				
	Α	В	С			
401		0	2			
402						
403	Nb truites communes	128	138			
404	Nb truites saumonées	141	122			
405	Nb truites arc en ciel	131	140			
406						
407	d ²	0,0005791667	0,001216667	0,00		
408						
409						
410						
411						
412						
413						
414	Minimum	0,0000041667				
415	1 ^{er} décile	0,0002041667				
416	2 ^e décile	0,0003791667				
417	3 ^e décile	0,0005541667				
418	4 ^e décile	0,0008291667				
419	5º décile	0,0011416667				
420	6 ^e décile	0,0015041667				
421	7 ^e décile	0,0019616667				
422	8 ^e décile	0,0026791667				
423	9º décile	0,0041166667				
424	Maximum	0,0119541667				
425						

Sur l'exemple, on constate que 90% des valeurs de la série des d^2 sont inférieures à ~0,004117.

4) Règle de décision

On compare d_{obs}^2 et D_9 .

- Si $d_{obs}^2 > D_9$, on peut, avec un risque d'erreur inférieur à 10%, rejeter l'adéquation des données observées à une loi équirépartie.
- Si $d_{obs}^2 \le D_9$, on ne peut pas, avec un risque d'erreur inférieur à 10%, rejeter l'adéquation des données observées à une loi équirépartie.

Exemple:

On constate que $d_{obs}^2 = 0.00252 < D_9 = 0.00411$.

On dit alors, avec un risque d'erreur inférieur à 10% que « le bassin contient autant de truite de chaque variété ».

Remarques:

- Parfois, on introduit un coefficient multiplicateur pour d_{obs}^2 . C'est en particulier le cas lorsque la taille n de l'échantillon observé et la taille n' des N simulations ne sont pas les mêmes
 - On compare alors nd_{obs}^2 au 9^e décile D'_9 de la série des N valeurs $n'd^2$.
- Si au lieu du 9^e décile, on utilise par exemple le 95^e centile, la règle de décision sera :
 Si d²_{obs}> C₉₅, on peut avec un risque d'erreur inférieur à 5%, rejeter l'adéquation des données à une loi équirépartie.