Digital Signatures

Use cases of digital signatures

• ``digital'' equivalent of signing a contract (NemID/MitID)

Building authenticated channels over insecure network

Software integrity

Transactions in cryptocurrencies

Defining Security

MACs for public key setting!

Unforgeability:

No adversary with vk and message/signature pairs m_1, σ_1, \dots should be able to make new m, σ

EUF-CMA for Signatures

Signatures from RSA: the wrong way

Signing key: secret *d*

Verification key: N, e

Counterexample 1

Generate signature on ``random'' message:

- 1. Let pk = (N, e)
- 2. Fix a random element $\sigma \in Z_N^*$
- 3. Compute $m = \sigma^e \mod N$

 (m, σ) is valid by construction

Counterexample 2 – Inspired by Homework 2

We want to forge a signature on m

- 1. Choose $m_1 \in Z_N^*$, compute $m_2 \leftarrow \frac{m}{m_1} \mod N$
- 2. Ask EUF-CMA oracle to compute $\sigma_1 \leftarrow Sign(m_1, sk), \sigma_2 \leftarrow Sign(m_2, sk)$
- 3. Then $\sigma = \sigma_1 \cdot \sigma_2 = m_1^d \cdot m_2^d = m^d$ is a valid signature on m!

Digital Signatures using RSA: RSA-FDH

Signing key: secret *d*

Verification key N, e

Cryptographic hash $H: \{0,1\}^* \to Z_N^*$

Verify m, σ :

Check that $H(m) = \sigma^e \mod N$

Any RSA instance for encryption can also be used for signing!

EUF-CMA security

Recap from Problem Sheet 5: the Random Oracle Model

Looking at EUF-CMA

What we prove

Assuming *H* is a random oracle. Then given the RSA problem is hard (Problem Sheet 6), RSA-FDH is EUF-CMA secure.

RSA Challenger

 $(pk, sk) \leftarrow KG()$ $c \in Z_N^*$

Win if Enc(m, pk) = c

m

Carsten Baum

32