Chapter 15

15.1 Eq. (15.15):

$$F_s = \frac{c'}{\gamma H \cos^2 \beta \tan \beta} + \frac{\tan \phi'}{\tan \beta}$$

$$2.75 = \frac{31}{(17.8)(H)(\cos^2 25)(\tan 25)} + \frac{\tan 28}{\tan 25}$$

$$2.75 = \frac{4.546}{H} + 1.14$$

H = 2.82 m

15.2 Eq. (15.16):

$$H_{\rm cr} = \frac{c'}{\gamma} \frac{1}{\cos^2 \beta (\tan \beta - \tan \phi')} = \frac{300}{115} \frac{1}{(\cos^2 30)(\tan 30 - \tan 21)} = 17.97 \text{ ft}$$

15.3
$$\gamma' = 19.2 - 9.81 = 9.39 \text{ kN/m}^3$$

Eq. (15.28):

$$F_s = \frac{c'}{\gamma_{\text{sat}} H \cos^2 \beta \tan \beta} + \frac{\gamma'}{\gamma_{\text{sat}}} \frac{\tan \phi'}{\tan \beta} = \frac{46}{(19.2)(11)(\cos 18)^2 (\tan 18)} + \frac{9.39}{19.2} \frac{\tan 22}{\tan 18}$$
$$= 0.741 + 0.608 \approx 1.35$$

15.4
$$\gamma_{\text{sat}} = \frac{(G_s + e)\gamma_w}{1 + e} = \frac{(2.73 + 0.69)(62.4)}{1 + 0.69} = 126.27 \text{ lb/ft}^3$$

 $\gamma' = 126.27 - 62.4 = 63.87 \text{ lb/ft}^3$

$$F_s = \frac{c'}{\gamma_{\text{sat}} H \cos^2 \beta \tan \beta} + \frac{\gamma'}{\gamma_{\text{sat}}} \frac{\tan \phi'}{\tan \beta}$$

$$= \frac{1000}{(126.27)(27)(\cos^2 28)(\tan 28)} + \frac{63.87}{126.27} \frac{\tan 18}{\tan 28}$$

$$= 0.707 + 0.309 \approx 1.016$$

15.5 a. Eq. (15.15):

$$F_{s} = \frac{c'}{\gamma H \cos^{2} \beta \tan \beta} + \frac{\tan \phi'}{\tan \beta}$$

$$F_{s} = \frac{21}{\left[\frac{(1950)(9.81)}{1000}\right](5)(\cos^{2} 18)(\tan 18)} + \frac{\tan 26}{\tan 18}$$

$$\approx 2.25$$

b. Eq. (15.15):

$$F_{s} = \frac{c'}{\gamma H \cos^{2} \beta \tan \beta} + \frac{\tan \phi'}{\tan \beta}$$

$$1.75 = \frac{21}{\left[\frac{(1950)(9.81)}{1000}\right](H)(\cos^{2} 27)(\tan 27)} + \frac{\tan 26}{\tan 27}$$

$$1.75 = \frac{2.713}{H} + 0.957$$

$$H = 3.42 \text{ m}$$

15.6 Consider a 1-ft length of the wedge ABC

Eq. (15.29):

$$W = \frac{1}{2}H^2\gamma(\cot\theta - \cot\beta) = (0.5)(25^2)(115)(\cot 25 - \cot 50) = 46,913 \text{ lb}$$

$$T_a = 46913 \sin 25 = 19826.3 \, \text{lb}$$

$$N_a = 46913\cos 25 = 42517.6 \,\mathrm{lb}$$

$$T_r = \frac{1}{F_s} \left(\overline{AC} c' + N_a \tan \phi' \right) = \frac{1}{F_s} \left[\left(\frac{25}{\sin 25} \right) (400) + (42517.6) \tan 25 \right] = \frac{43488.3}{F_s}$$

Since $T_r = T_a$,

$$\frac{43488.3}{F_s} = 19826.3$$

Therefore, $F_s = 2.19$

15.7 Eq. (15.42):

$$H_{\rm cr} = \frac{4c'}{\gamma} \left[\frac{\sin \beta \cos \phi'}{1 - \cos(\beta - \phi')} \right] = \left[\frac{(4)(28)}{16.5} \right] \left[\frac{(\sin 58)(\cos 14)}{1 - \cos(58 - 14)} \right] = \mathbf{19.9} \,\mathbf{m}$$

15.8
$$F_s = 2.5$$
; $c'_d = \frac{c'}{F_s} = \frac{28}{2.5} = 11.2 \text{ kN/m}^2$; $\phi'_d = \tan^{-1} \left(\frac{\tan 14}{2.5} \right) = 5.69^\circ$

$$H = \frac{4c_d'}{\gamma} \left[\frac{\sin \beta \cos \phi_d'}{1 - \cos(\beta - \phi_d')} \right] = \left[\frac{(4)(11.2)}{16.5} \right] \left[\frac{(\sin 58)(\cos 5.69)}{1 - \cos(58 - 5.69)} \right] = 5.89 \,\mathrm{m}$$

15.9
$$H = \frac{4c'_d}{\gamma} \left[\frac{\sin \beta \cos \phi'_d}{1 - \cos(\beta - \phi'_d)} \right]; \gamma = 118 \text{ lb/ft}^3$$

$F_{s(assumed)}$	$\phi_d' = \tan^{-1} \left(\frac{\tan 22}{F_s} \right)$	$c_d' = \frac{c'}{F_s}$	β	Н
	(deg)	(lb/ft^2)	(deg)	(ft)
2.0	11.42	350	45	49.27
2.5	9.18	280	45	35.02
3.0	7.67	233.3	45	27
2.75	8.36	254.5	45	30.54

 $F_s \approx 2.75$

15.10
$$\rho = 1800 \text{ kg/m}^3$$
; $\gamma = \frac{(1800)(9.81)}{1000} = 17.65 \text{ kN/m}^3$; $c' = 20 \text{ kN/m}^2$; $\phi' = 17^\circ$

$$\beta = \tan^{-1} \left(\frac{1}{2}\right) = 26.57^\circ; F_s = 2.3; \ c'_d = \frac{c'}{F_s} = \frac{20}{2.3} = 8.69 \text{ kN/m}^2$$

$$\phi'_d = \tan^{-1} \left(\frac{\tan \phi'}{F_s}\right) = \tan^{-1} \left(\frac{\tan 17}{2.3}\right) = 7.57^\circ$$

$$H = \frac{4c'_d}{\gamma} \left[\frac{\sin \beta \cos \phi'_d}{1 - \cos(\beta - \phi'_d)}\right] = \left[\frac{(4)(8.69)}{17.65}\right] \left[\frac{(\sin 26.57)(\cos 7.57)}{1 - \cos(26.57 - 7.57)}\right] \approx 16 \text{ m}$$

15.11 $m \approx 0.185$ (From Figure 15.13). Eq. (15.48):

$$H_{\rm cr} = \frac{c_u}{\gamma m} = \frac{26}{(18.5)(0.185)} =$$
7.59 m - -Toe circle

15.12 $m \approx 0.185$ for $\beta = 55^{\circ}$ (Figure 15.13)

$$c_d = \frac{c_u}{F_s} = \frac{26}{2.5} = 10.4 \text{ kN/m}^2$$

$$H = \frac{c_d}{\gamma m} = \frac{10.4}{(18.5)(0.185)} = 3.04 \,\mathrm{m}$$

15.13
$$\beta = \tan^{-1} \left[\frac{1}{2} \right] = 26.56^{\circ}$$
. For $\beta = 26.56^{\circ}$ and $D = 1.5$, $m = 0.16$ (Figure 15.13).

$$c_d = \frac{c_u}{F_s} = \frac{800}{2.5} = 320 \,\text{lb/ft}^2$$

$$H = \frac{c_d}{\gamma m} = \frac{320}{(119)(0.16)} =$$
16.8 ft

15.14
$$H_{cr} = \frac{c_u}{\gamma m} = \frac{800}{(119)(0.16)} = 42 \text{ ft.}$$
 It is a midpoint circle.

15.15 a.
$$D = \frac{14}{10} = 1.4$$
; $\gamma_{\text{sat}} = 17 \text{ kN/m}^3$. For $\beta = 48^\circ$ and $D = 1.4$, $m = 0.18$. $H_{\text{cr}} = \frac{c_u}{\gamma m}$; $c_u = (10)(17)(0.18) = 30.6 \text{ kN/m}^2$

- b. From Figure 15.13, midpoint circle
- c. From Figure 15.15, $n \approx 0.85$.

Distance =
$$nH = (0.85)(10) = 8.5 \text{ m}$$

15.16 a.
$$\beta = \tan^{-1} \left(\frac{1}{2} \right) = 26.57^{\circ}$$

$$\frac{F_s}{\tan \phi'} = \frac{1}{\tan 12} = 4.7$$

From Figure 15.25

$$\frac{c'}{\gamma H_{\rm cr} \tan \phi'} \approx 0.2$$

Or,

$$H_{\rm cr} = \frac{750}{(118)(0.2)(\tan 12)} =$$
149.5 ft

b.
$$\frac{F_s}{\tan \phi'} = \frac{1}{\tan 18} = 3.07$$
. $\beta = \tan^{-1} \left(\frac{1}{1}\right) = 45^\circ$.

Figure 15.25:

$$\frac{c'}{\gamma H_{\rm cr} \tan \phi'} \approx 0.22; \quad \frac{30}{(17)(H_{\rm cr})(\tan 18)} = 0.22$$

$$H_{\rm cr} = 24.7 \ {\rm m}$$

15.17
$$\beta = \tan^{-1}\left(\frac{1}{2.5}\right) = 21.8^{\circ}; \ \phi' = 14^{\circ}; \ c' = 500 \text{ lb/ft}^2; \ \gamma = 120 \text{ lb/ft}^3.$$

ϕ'_d (deg)	$F_{\phi'} = \frac{\tan \phi'}{\tan \phi'_d}$	m	$c'_d = m\gamma H$ (lb/ft^2)	$F_{c'} = \frac{c'}{c'_d}$
8	1.77	0.06	432	1.15
10	1.41	0.048	346	1.44
12	1.17	0.04	288	1.74
14	1.00	0.026	187	2.67

The plot of $F_{c'}$ vs. $F_{\phi'}$ is shown. From the figure, $F_{c'} = F_{\phi'} = F_s = 1.42$.

15.18
$$n' = 1$$
; $\beta = \tan^{-1} \left(\frac{1}{1} \right) = 45^{\circ}$; $\phi' = 20^{\circ}$; $c' = 32 \text{ kN/m}^2$; $\gamma = 18 \text{ kN/m}^3$; $H = 10 \text{ m}$

ϕ'_d (deg)	$F_{\phi'} = \frac{\tan \phi'}{\tan \phi'_d}$	m	$c'_d = m\gamma H$ (kN/m^2)	$F_{c'} = \frac{c'}{c'_d}$
5	4.16	0.134	24.12	1.32
10	2.06	0.105	18.9	1.69
15	1.36	0.08	14.4	2.22
20	1.00	0.059	10.62	3.01

The plot of $F_{c'}$ vs. $F_{\phi'}$ is shown below. From the figure, $F_{\phi'} = F_{c'} = F_s = 1.8$.

15.19 For
$$\beta = 21.8^{\circ}$$
 and $\frac{c'}{\gamma H \tan \phi'} = \frac{500}{(120)(60) \tan 14} = 0.278$, the value of $\frac{\tan \phi}{F_s}$

obtained from Figure (15.27) is about 0.15. Therefore,

$$F_s = \frac{\tan 14}{0.15} = 1.66$$

15.20 a. Refer to the figure.

$$\frac{50}{x} = \sin 30^{\circ}$$
; $x = 100$ ft

$$\frac{50}{\text{Radius}, R} = \sin 35^\circ; \ R = \frac{50}{\sin 35} = 87.17 \text{ ft}$$

With radius R = 87.17 ft, the trial surface circle has been drawn.

Now the following table can be prepared.

		Weight of glice			
Slice	Area of slices (ft ²)	Weight of slice $W_n = A \times \gamma$ (kip/ft)	α_n (deg)	$W_n \cos \alpha_n$ (kip/ft)	$W_n \sin \alpha_n$ (kip/ft)
1	$\frac{(30)(23)}{2} = 345$	41.75	47	28.47	30.52
2	$\frac{(13)(30+41)}{2} = 462$	55.9	32	47.4	29.62
3	$\frac{(25)(41+25)}{2} = 825$	99.82	20	93.8	34.14
4	$\frac{(25)(25)}{2} = 312$	37.75	5	37.6	3.29
				$\Sigma 207.27$	Σ97.57

$$F_s = \frac{R\theta c' + (\sum W_n \cos \alpha_n) \tan \phi'}{\sum W_n \sin \alpha_n}$$

$$= \frac{(87.17) \left[\left(\frac{\pi}{180} \right) (70) \right] (0.65) + (207.27) (\tan 18)}{97.57} = 1.4$$

Note: The accuracy can be increased by increasing the number of slices.

b. As in Part a,
$$\frac{H}{x} = \sin \alpha$$
; $x = \frac{H}{\sin \alpha} = \frac{8}{\sin 30} = 16 \text{ m}$

$$\frac{\left(\frac{x}{2}\right)}{R} = \sin\frac{\theta}{2}, \text{ or } \frac{8}{\sin 40} = R = 12.44 \text{ m}$$

With a radius R = 12.44 m, the trial surface has been drawn on the next page.

The following table can now be prepared.

Slice	Area of slices (m ²)	Weight of slice $W_n = A \times \gamma$ (kN/m)	α_n (deg)	$W_n \cos \alpha_n$ (kN/m)	$W_n \sin \alpha_n$ (kN/m)
1	$\frac{(2.36)(3.85)}{2} = 4.54$	77.18	54	45.36	62.44
2	$\frac{(3.85 + 6.51)(3.25)}{2} = 16.83$	286.11	38	225.45	176.14
3	$\frac{(6.51 + 4.14)(3.55)}{2} = 18.9$	321.3	20	301.92	109.89
4	$\frac{(4.14)(4.74)}{2} = 9.81$	166.77	6	165.85	17.43
				$\Sigma 738.58$	Σ 365.9

$$F_s = \frac{R\theta c' + (\sum W_n \cos \alpha_n) \tan \phi'}{\sum W_n \sin \alpha_n}$$

$$= \frac{(12.44) \left[\left(\frac{\pi}{180} \right) (80) \right] (27) + (738.58)(\tan 20)}{365.9} = 2.01$$

Note: The accuracy will improve with smaller slices.

15.21
$$\phi' = 25^{\circ}$$
; $\beta = 26.56^{\circ}$; $r_u = 0.5$; $\frac{c'}{\gamma H} = \frac{20}{(19)(14)} \approx 0.075$.

Using Table 15.3, the following table can be prepared.

D	m'	n'	$F_s = m' - n'r_u$
Toe circle	1.853	1.430	1.138
1.00	1.872	1.386	1.179
1.25	2.004	1.641	1.183
1.50	2.308	1.914	1.351

 $F_s \approx 1.14$.

15.22
$$\phi' = 20^{\circ}$$
; $\beta = 18.43^{\circ}$; $r_u = 0.5$; $\frac{c'}{\gamma H} = \frac{475}{(118)(40)} = 0.1$

Using Table 15.3, the following table can be prepared.

D	m'	n'	$F_s = m' - n'r_u$
Toe circle	2.286	1.588	1.49
1.00	2.421	1.472	1.68
1.25	2.283	1.558	1.50
1.50	2.387	1.742	1.51

$$F_s \approx 1.49$$
.

15.23
$$\beta = 26^{\circ}$$
; $\phi' = 21^{\circ}$; $r_u = 0.5$; $\gamma = 19 \text{ kN/m}^3$; $c' = 21 \text{ kN/m}^2$; $H = 17 \text{ m}$

$F_{s(assumed)}$	$\frac{c'}{\gamma HF_s}$	ϕ'_d (deg)	$F_{s(\text{calculated})} = \frac{\tan \phi'}{\tan \phi'_d}$
1.2	0.0541	27.5	0.737
1.1	0.0591	25	0.823
1.0	0.065	23	0.9
0.9	0.0722	21.5	0.974

From the plot on the next page, $F_s \approx 0.95$.

15.24
$$\beta = \tan^{-1} \left(\frac{1}{3} \right) = 18.43^{\circ}$$
; $\phi' = 24^{\circ}$; $c' = 27 \text{ kN/m}^2$; $\gamma = 17.5 \text{ kN/m}^3$; $r_u = 0.25$; $H = 18 \text{ m}$

a. Spencer's solution (Figure 15.35):

F	<u>c'</u>	ϕ_d'	F $=$ $\frac{\tan \phi'}{}$
$F_{s(assumed)}$	γHF_s	(deg)	$\frac{1}{\sin \phi'_d}$
1.7	0.0504	12	2.09
1.8	0.0476	12.5	2.0
1.9	0.045	13.8	1.81

From the graph,

 F_s ≈ **1.88**.

b. Michalowski's solution (Figure 15.36)

$$\beta = \tan^{-1}\left(\frac{1}{3}\right) = 18.43^{\circ}; \ \phi' = 24^{\circ}; \ c' = 27 \text{ kN/m}^2; \ \gamma = 17.5 \text{ kN/m}^3; \ r_u = 0.25;$$

$$H = 18 \text{ m}$$

$$\frac{c'}{\gamma H \tan \phi'} = \frac{27}{(17.5)(18)\tan 24} 0.192$$

Figure (15.36):
$$\frac{F_s}{\tan 24} \approx 4.5$$
; Therefore, $F_s \approx 2.0$