

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
https://sites.google.com/view/iitkgpakdas/

Peano's postulates on set of natural numbers N

Let *N* be the set of natural numbers, $N = \{1, 2, 3, ..., n, ...\}$. For the nonempty set *N* of natural numbers:

- Postulate 1. $1 \in N$, that is, 1 is a natural number.
- **Postulate 2.** For each $n \in N$, there exists a unique natural number $n^+ \in N$, called the *successor* of $n [n^+ = n + 1]$.
- **Postulate 3.** 1 is not the successor of any natural number, that is, there is NO $n \in N$ for which $n^+ = 1$.
- **Postulate 4.** If $m, n \in N$ and $m^+ = n^+$, then m = n, that is, each natural number, if it is a successor, is the successor of a unique natural number.
- **Postulate 5.** If $K \subseteq N$ such that $1 \in K$ and $n \in K \Rightarrow n^+ \in K$, then K = N.

Deduction 1. Every element $n(\neq 1)$ is the successor of some other element of N.

Deduction 2. $m^+ \neq m$, $\forall m \in N$.

Order relations in the system of natural numbers

- **1 Law of Trichotomy]** If $m, n \in N$, any one of the following must hold:
 - (i) m > n, (ii) m = n, (iii) m < n
- **2** [Law of Transitivity] If $m, n, p \in N$, then m > n and $n > p \Rightarrow m > p$.
- **3** [Monotone Law of Addition] If $m, n, p \in N$, then $m > n \Rightarrow m + p > n + p$.
- **4** [Monotone Law of Multiplication] If $m, n, p \in N$, then $m > n \Rightarrow mp > np$.

First Principle of Mathematical Induction (Weak Induction)

For a given statement P(n) involving a natural number n, if we can show that:

- The statement P(n) is true for $n = n_0$; and
- ② The statement P(n) is true for n = k + 1, assuming that P(n) is true for n = k, $(k \ge n_0)$,

then we can conclude that P(n) is for all natural numbers $n \ge n_0$. (1) is referred to as the **basis of induction** and (2) is usually referred to as the **induction step**.

The assumption that the statement is true for n = k in (2) is usually referred to as the *induction hypothesis*.

Second Principle of Mathematical Induction (Strong Induction)

For a given statement P(n) involving a natural number n, if we can show that:

- The statement P(n) is true for $n = n_0$; and
- 2 The statement P(n) is true for n = k + 1, assuming that P(n) is true for $n_0 \le k \le n$,

then we can conclude that P(n) is for all natural numbers $n \ge n_0$.

- (1) is referred to as the **basis of induction** and (2) is usually referred to as the **induction step**.
- The assumption that the statement is true for n = k in (2) is usually referred to as the *induction hypothesis*.

Problem: Using the mathematical induction, show that $(10^{n+1} + 10^n + 1)$ is divisible by 3 for a positive integer n.

Solution: Let "P(n): $10^{n+1} + 10^n + 1$ be divisible by 3" be a statement.

- [Basis Step.] Here $n_0 = 1$. Then, $P(1) = 10^2 + 10^1 + 1 = 111$, which is divisible by 3. Thus, the statement P(1) is true for $n = n_0 = 1$.
- [Induction Step.] Consider

$$P(k+1) - P(k): \qquad (10^{k+2} + 10^{k+1} + 1) - (10^{k+1} + 10^k + 1)$$

$$= 10^{k+2} - 10^k = 10^k (10^2 - 1)$$

$$= 10^k .99 = 3(33.10^k) = 3.p, say$$

where $p = 33.10^k$. Thus, P(k+1) - P(k) is divisible by 3. Hence, P(k+1) is divisible by 3, if P(k) be so (by **Induction Hypothesis**). By the first principle of mathematical induction, it follows that P(n) is true for all $n \in N$.

Problem: Let $\alpha = \frac{1+\sqrt{5}}{2}$. Then, show that $\alpha^{n-2} < F_n < \alpha^{n-1}$, where $n \ge 3$ and F_n is the n^{th} Fibonacci number.

Solution: Note that $\alpha = \frac{1+\sqrt{5}}{2}$ is a solution of the equation

$$x^2 = x + 1$$
.

So,

$$\alpha^2 = \alpha + 1$$
.

The Fibonacci sequence is defined as follows:

$$F_1 = 1$$

 $F_2 = 1$
 $F_{k+1} = F_k + F_{k-1}, k \ge 2$.

Let P(n): $\alpha^{n-2} < F_n$, where $n \ge 3$, be a statement.

- [Basis Step.] Since the induction step uses the recurrence relation: $F_{k+1} = F_k + F_{k-1}$, the basis step involves verifying that both P(3) and P(4) are true.
 - To show that P(3) is true: when n = 3,

$$\alpha^{n-2} = \alpha = \frac{1+\sqrt{5}}{2} < \frac{1+3}{2} = 2 = F_3.$$

So, P(3) is true.

2 To show that P(4) is true: when n = 4,

$$\begin{split} \alpha^{n-2} &= \alpha^2 = \left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{1+2\sqrt{5}+5}{4} \\ &= \frac{3+\sqrt{5}}{2} < \frac{3+3}{2} = 3 = F_4. \end{split}$$

So, P(4) is true.

• [Induction Step.] Assume $P(3), P(4), \dots, P(k)$ are true; that is, assume $\alpha^{i-2} < F_i$, for $5 \le i \le k$. We must show that P(k+1) is true; that is, $\alpha^{k-1} < F_{k+1}$. We have,

$$\alpha^2 = \alpha + 1$$

since $\alpha = \frac{1+\sqrt{5}}{2}$ is a root of the equation $x^2 = x + 1$. Then,

$$lpha^{k-3}(lpha^2) = lpha^{k-3}(lpha+1)$$

 $\Rightarrow lpha^{k-1} = lpha^{k-2} + lpha^{k-3}$, since $k-3 \ge 2$
 $< F_k + F_{k-1}$, by the Induction Hypothesis
 $= F_{k+1}$, by the currence relation

So, P(k+1) is true. Thus, by the Second Principle of Mathematical Induction (Strong Induction), $\alpha^{n-2} < F_n$, for every $n \ge 3$.

Problem: Suppose a post office sells only 2 Rs. and 3 Rs. stamps. Show that any postage of 2 Rs. or 3 Rs. can be paid using only these stamps.

Solution: Construct a statement as follows:

$$P(n): \forall n \geq 2, \exists m_2, m_3 (\geq 0)$$
 such that $n = m_2 * 2 + m_3 * 3$ that is, $P(n): \forall n [n \geq 2 \Rightarrow \exists m_2, m_3 (\geq 0)]$ such that $n = m_2 * 2 + m_3 * 3$

- [Basis Step.] n = 2Then, 2 = 1 * 2 + 0 * 3, when $m_2 = 1$ and $m_3 = 0$. Thus, P(2) is true.
- [Induction Step.]
 Induction Hypothesis]: Assume that P(n) is true for some n = k, k > 2.
 Required to Prove (RTP): P(k + 1) is true.

Required to Prove (RTP): P(k + 1) is true. By hypothesis,

$$k = m_2 * 2 + m_3 * 3$$

• [Induction Step (Continued...).] Then,

$$k+1 = m_2 * 2 + m_3 * 3 + 1$$

$$= (m_2 - 1) * 2 + (m_3 + 1) * 3, \text{ for } m_2 \neq 0$$

$$OR$$

$$= (m_2 + 2) * 2 + (m_3 - 1) * 3, \text{ for } m_3 \neq 0$$

Thus, P(k+1) holds.

Since P(n) is true for n = 2, so it holds for n = 2 + 1 = 3, n = 3 + 1 = 4, and so on.

Therefore, P(n) is true for all $n \ge 2$.

Well-Ordering Principle

The set of natural numbers, N, is well-ordered, that is, every non-empty subset of N has a least element.

- \bigcirc *N* has least element $1 \in N$.
- 2 Z, the set of all integers, $Z = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$ is not well-ordered, because it has no least element, that is, it has no lower bound.

Principle of Mathematical Induction

Let $S \subseteq N$ such that

- \bigcirc 1 \in S, and
- 2 $t \in S$ implies $t + 1 \in S$, for $t \in N$, then S = N.