Университет ИТМО

Мой прекрасный диплом «сверхбыстрая динамика носителей заряда в полупроводниковых нитевидных нанокристаллах.»

Студент: Елисеев А.

Группа: V3400

Научрук: Валерий Николаевич

Санкт-Петербург 2017

КИДАТОННА

СОДЕРЖАНИЕ

	Стр.
АННОТАЦИЯ RNДАТОННА	. 2
ГЛАВА 1 Введение	4
1.1 Использование ННК в качестве эмиттеров в ТГц спектро-	
скопии	. 4
1.2 Динамика носителей в ННК	. 4
ГЛАВА 2 Основная часть	5
2.1 Зависимость ТГц излучения от динамики	. 5
2.2 Схема установки, описание метода	. 5
2.3 Упорядоченные образцы ННК GaAs	. 5
2.4 Полученные результаты	. 5
2.5 Упорядоченные образцы с шубой	. 6
2.6 Связь GaAs и AlGaAs	. 6
2.7 Неупорядоченные ННК на основе GaAs	. 6
2.8 Динамика в неупорядоченных ННК	. 6
2.9 Анализ и сравнение для разных образцов	. 6
2.10 Те самые образцы, для которых эффективность генерации	
увеличивается	. 6
ГЛАВА 3 Заключение	7
3.1 Динамика	. 7
3.2 Где следует применить полученные результаты	. 7
3.3 Положения дипломной работы	
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ	. 8
СПИСОК ТЕРМИНОВ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	. 10
ПРИЛОЖЕНИЯ	11

ГЛАВА 1

Введение

Полупроводниковые наноструктуры в виде свободно стоящих полупроводниковых нитевидных нанокристаллов (ННК), а так же отдельные ННК, являются одними из наиболее перспективных объектов для применения в наноэлектронике, нанофотонике, а так же во многих других областях науки и техники. Так ННК используются для создания сверхчувствительных фотодиодов [1], транзисторов сверхвысокой плотности [2], эмиттеров излучения видимого диапазона волн [3] и ТГц диапазона [4].

Огромная перспективность обусловлена рядом исключительных свойств таких нанообъектов и структур на их основе. Характерные размеры, порядка $100~\rm hm$ в диаметре и $1~\rm mkm$ по высоте приводят к огромным, по сравнению с объемными материалами, отношениям площади поверхности к объему. Такая особенность в первую очередь влияет на рекомбинационные свойства материала, так как существенно увеличивается поверхностная рекомбинация. Кроме того, для некоторых материалов, таких как GaAs~n типа, при концентрации порядка $10^{-15}~\rm cm^{-3}$ и небольших диаметрах происходит полное обеднение объема ННК. Это в свою очередь приводит к изменению энергетических уровней в полупроводнике.

1.1 Использование ННК в качестве эмиттеров в ТГц спектроскопии

Найти первую статью про ТГц спектроскопию.

Рассказать о том, почему лучше использовать ННК в качестве эмиттеров $T\Gamma_{\rm H}$.

Сослаться на статью, про то, что в полупроводниковых ННК ТГц генерится за счет движения носителей.

1.2 Динамика носителей в ННК

Какие есть работы и что в них изучено.

Чего нет и почему это необходимо.

ГЛАВА 2

Основная часть

Коротко о том, что я напишу в этой главе.

2.1 Зависимость ТГц излучения от динамики

Коротко, о том, от чего зависит ТГц излучение от ННК. Определяющие процессы.

2.2 Схема установки, описание метода

Ссылочка На статью, где впервые описан этот метод и его описание Схема, ссылка на приложение, в котором описаны характеристики элементов, используемых в схеме.

2.3 Упорядоченные образцы ННК GaAs

Метод газофазной эпитаксии, ссылка на статью и короткое описание с картиночкой

Ориентация GaAs, получившиеся образцы, фото СЭМ

2.4 Полученные результаты

Типичные волновые формы

Динамика, для упорядоченных образцов, при разной мощности накачки

Характерные участки (короткая и длинная динамика)

Зависимость от мощности накачки, для короткой динамики.

Объяснение результатов, гипотезы, предположения.

Возможно, спектральные компоненты, для подтверждения предположений

2.5 Упорядоченные образцы с шубой

Узнать у ВН и разобраться самому

2.6 Связь GaAs и AlGaAs

Наверняка в динамике должно быть видно проявление изменения концентрации ловушек на поверхности и вообще изменения встроенного поля. Тут же надо привести зонную диаграмму.

2.7 Неупорядоченные ННК на основе GaAs

Метод получения, ссылка на статью и короткое описание.

2.8 Динамика в неупорядоченных ННК

Динамика, основные параметры

2.9 Анализ и сравнение для разных образцов

Объяснение разницы в динамике

2.10 Те самые образцы, для которых эффективность генерации увеличивается

Процессы, отвечающие за генерацию ТГц в этих образцах.

Почему таки происходит увеличение эффективности.

Сравнить "наилучшую" эффективность для каждого из образцов

ГЛАВА 3

Заключение

3.1 Динамика

Все, что удалось узнать.

3.2 Где следует применить полученные результаты

Наверное важно сказать об этом.

3.3 Положения дипломной работы

Все что удалось узнать, но в виде выражений и емких утверждений.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

СПИСОК ТЕРМИНОВ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Agarwal R., Lieber C. M. Semiconductor nanowires: optics and optoelectronics //Applied Physics A. − 2006. − T. 85. − №. 3. − C. 209.
- 2. Tomioka K., Yoshimura M., Fukui T. A III-V nanowire channel on silicon for high-performance vertical transistors //Nature. − 2012. − T. 488. − №. 7410. − C. 189-192.
- 3. Duan X. et al. Single-nanowire electrically driven lasers //Nature. 2003. T. $421. N_0. 6920.$ C. 241-245.
- 4. Trukhin V. N. et al. Terahertz generation by GaAs nanowires //Applied Physics Letters. − 2013. − T. 103. − №. 7. − C. 072108.

приложения