MATEMATİK II

Hafta 9

Prof. Dr. Refik KESKİN, Prof. Dr. Halim ÖZDEMİR, Doç. Dr. Şevket GÜR, Yrd. Doç. Dr. Murat SARDUVAN

MAT112 MATEMATİK II 9. HAFTA

İÇİNDEKİLER

3.6. Ağırlık Merkezi Genel Çözümlü Örnekler

HEDEFLER

Bu haftanın notunu çalıştıktan sonra;

- ✓ Yoğunluğu sabit olarak verilmiş bir bölgenin ağırlık merkezini bulabileceksiniz.
- ✓ Tüm soru tiplerini bir arada görüp eksik kaldığınız kısımlar varsa farkına varabileceksiniz.

ÖNERİLER

Bu üniteyi daha iyi kavrayabilmek için;

- Bu bölümde bulunan ağırlık merkezi konusunu çalıştıktan sonra genel çözümlü örneklere hemen geçmeyiniz.
- Önce, önceki haftalardaki ders notlarını şöyle bir gözden geçiriniz.
- Sonrasında, genel çözümlü örnekler başlığında önce çözüme bakmaksızın soruyu kendiniz çözmeye çalışınız. Sonra çözüme bakıp doğru çözüm yapıp yapamadığınızı irdeleyiniz.

3.6. Ağırlık Merkezi

Bir R bölgesinin ağırlık merkezi bulunurken simetriden faydalanılır. Bir R bölgesi bir L doğrusuna göre simetrik ise ve yoğunluk sabit ise ağırlık merkezinin koordinatları bu doğru üzerinde bulunur. Böyle bir durumda \mathbb{R}^2 de bir R bölgesinin ağırlık merkezi $(\overline{x}, \overline{y})$ noktası ile gösterilirse bu noktaların koordinatları

$$\overline{x} = \frac{M_y}{A}, \ \overline{y} = \frac{M_x}{A}$$

ile verilir. Burada A ile R bölgesinin alanı iken

$$M_{x} = \int_{a}^{b} \frac{1}{2} (f(x)^{2} - g(x)^{2}) dx = \int_{a}^{b} \frac{1}{2} (f(x) + g(x)) (f(x) - g(x)) dx$$

$$M_{y} = \int_{a}^{b} x (f(x) - g(x)) dx$$

şeklindedir. Yani

$$\overline{y} = \frac{1}{A} \int_a^b \frac{1}{2} \left(f(x)^2 - g(x)^2 \right) dx$$

$$\overline{x} = \frac{1}{A} \int_{a}^{b} x (f(x) - g(x)) dx$$

olmak üzere $M_x = \int \tilde{y} dA$, $M_y = \int \tilde{x} dA$ olarak ortaya çıkar. Burada (\tilde{x}, \tilde{y}) alınan kesitin ağırlık merkezidir.

Örnek y = 2x doğrusu y = 0, x = 1 doğruları ile sınırlı bölgenin ağırlık merkezini bulunuz.

Çözüm.

$$M_{y} = \int \tilde{x} dA = \int_{0}^{1} x 2x dx = \int_{0}^{1} 2x^{2} dx = \frac{2}{3} x^{3} \Big]_{0}^{1} = \frac{2}{3}$$

$$M_{x} = \int \tilde{y} dA = \int_{0}^{1} x 2x dx = \int_{0}^{1} 2x^{2} dx = \frac{2}{3}$$

$$A = 1 \rightarrow \overline{x} = \overline{y} = \frac{2}{3}$$
 olur.

Örnek. $y = 4 - x^2$ parabolü ve x-ekseniyle sınırlı bölgenin ağırlık merkezini bulunuz.

Çözüm.

$$A = \int_{-2}^{2} (4 - x^2) dx = \frac{32}{3}$$

$$M_{x} = \int \tilde{y} dA = \int_{-2}^{2} \left(\frac{4 - x^{2}}{2}\right) (4 - x^{2}) dx = \int_{0}^{2} (4 - x^{2})^{2} dx = \int_{0}^{2} (16 - 8x^{2} + x^{4}) dx$$

$$=16x - \frac{8x^3}{3} + \frac{x^5}{5} \bigg]_0^2 = \frac{256}{15}$$

$$M_y = \int \tilde{x} dA = \int_0^2 x (4 - x^2) dx = 0$$

$$\overline{x} = \frac{M_y}{A} = 0$$
, $\overline{y} = \frac{M_x}{A} = \frac{8}{5}$ olur.

Örnek. $x^2 + y^2 \le r^2$ dairesinin $0 \le x \le r$ arasındaki parçasının ağırlık merkezini bulunuz.

Çözüm. $A = \frac{\pi r^2}{4}$

$$M_y = \int \tilde{x} dA = \int_0^r xy dx = \int_0^r x \sqrt{r^2 - x^2} dx = -\frac{1}{3} (r^2 - x^2) \Big|_0^r = \frac{r^3}{3}$$

$$M_{x} = \int \tilde{y} dA = \int_{0}^{r} \frac{y}{2} y dx = \int_{0}^{r} \frac{1}{2} y^{2} dx = \frac{1}{2} \int_{0}^{r} \left(r^{2} - x^{2} \right) dx = \frac{1}{2} \left(r^{2} x - \frac{x^{3}}{3} \right)_{0}^{r} = \frac{r^{3}}{3}$$

$$\overline{x} = \frac{r^3}{3} / \frac{\pi r^2}{4} = \frac{4r}{3\pi}, \ \overline{y} = \frac{4r}{3\pi} \text{ olur.}$$

Örnek. $y = x^2$ eğrisi ve $y^2 = 8x$ eğrisi arasında kalan bölgenin ağırlık merkezini bulunuz.

Çözüm.

$$M_{y} = \int \tilde{x} dA = \int_{0}^{2} x \left(\sqrt{8x} - x^{2} \right) dx$$

$$M_x = \int \tilde{y} dA = \int_0^2 \frac{1}{2} (x^2 + \sqrt{8x}) (\sqrt{8x} - x^2) dx$$

$$\overline{x} = \frac{9}{10}$$
, $\overline{y} = \frac{9}{5}$ bulunur. Alan $= \int_0^2 \left(\sqrt{8x} - x^2\right) dx = \frac{8}{3}$ olur.

Not: R bölgesi aşağıdaki gibi ise x-eksenine paralel kesit alınır.

$$M_x = \int \tilde{y} dA$$
 $\overline{x} = \frac{M_y}{A}$ $A = \text{b\"olgenin alan}$ $M_y = \int \tilde{x} dA$ $\overline{y} = \frac{M_x}{A}$

Örnek. $y^2 = 2x$ parabolü ve y = x - 4 doğrusuyla sınırlı bölgenin ağırlık merkezini bulunuz.

Çözüm. Yandaki şekli de inceleyerek $(\overline{x}, \overline{y}) = \left(\frac{16}{5}, 1\right)$ olduğunu görünüz.

Problemler.

1) $f(x) = 2 - x^2$ eğrisiyle g(x) = |x| doğrusu arasında kalan bölgenin ağırlık merkezini bulunuz.

$$(\text{cevap:}\left(0,\frac{38}{5}\right))$$

2) $x^2 + y^2 = 4$ çemberi ile $(x-1)^2 + y^2 = 1$ çemberi arasında kalan bölgenin ağırlık merkezini bulunuz. (cevap: $\left(-\frac{1}{3}, 0\right)$)

- 3) $y = x^2$ parabolü ile $x = y^2$ parabolü arasında kalan bölgenin ağırlık merkezini bulunuz. (cevap: $\left(\frac{9}{20}, \frac{9}{20}\right)$)
- 4) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ elipsinin 1. bölgede kalan kısmının ağırlık merkezini bulunuz. (cevap: $\left(\frac{4a}{3\pi}, \frac{4b}{3\pi}\right)$)
- 5) $y = \frac{x^2}{2}$ ve y = x + 4 eğrileri arasındaki bölgenin ağırlık merkezini bulunuz.

Genel Çözümlü Örnekler

1) $\int x\sqrt{x-5} \, dx \text{ integralini hesaplayınız.}$

Çözüm. $\begin{cases} u = x - 5 \\ du = dx \end{cases}$ değişken dönüşümü yapılırsa

$$\int x\sqrt{x-5} \, dx = \int (u+5)\sqrt{u} \, du$$

$$= \int (u^{3/2} + 5u^{1/2}) \, du$$

$$= \frac{2u^{5/3}}{5} + \frac{10u^{3/2}}{3} + c$$

$$= \frac{2(x-5)^{5/2}}{5} + \frac{10(x-5)^{3/2}}{3} + c$$

bulunur.

2) $\int \frac{(2x-1)dx}{(x^2-4)(x-3)}$ integralini hesaplayınız.

Çözüm. Verilen sorunun çözümü için, rasyonel fonksiyonları integrali başlığı altında olduğu gibi $\frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{x-3} = \frac{2x-1}{\left(x^2-4\right)\left(x+3\right)}$ diyelim. Buradan

•
$$x = 2$$
 için $-4A = 3 \Rightarrow A = \frac{-3}{4}$

•
$$x = -2$$
 için $20B = 5 \Rightarrow B = \frac{-1}{4}$

•
$$x = 3$$
 için $5C = 5 \Rightarrow C = 1$

$$\int \frac{(2x-1)dx}{(x^2-4)(x-3)} = \frac{-3}{4} \int \frac{dx}{x-2} - \frac{1}{4} \int \frac{dx}{x+2} + \int \frac{dx}{x-3}$$
$$= \frac{-3}{4} \ln|x-2| - \frac{1}{4} \ln|x+2| + \ln|x-3| + c$$

elde edilir.

3)
$$I = \int \frac{3x^2 - x + 2}{(x - 1)(x^2 + 1)} dx$$
 integralini hesaplayınız.

Çözüm. Bir önceki örnekte olduğu gibi $\frac{A}{x-1} + \frac{Bx+C}{x^2+1} = \frac{3x^2-x+2}{(x-1)(x^2+1)}$ denirse, payların karşılıklı eşitliğinden $A(x^2+1)+(Bx+C)(x-1)=3x^2-x+2$ bulunur. Buradan

- x = 1 için 2A = 2
- x^2 li terimlerin katsayılarından $A + B = 3 \Rightarrow B = 1$
- x li terimlerin katsayılarından $A C = 2 \Rightarrow C = 0$

olur. Böylece,

$$I = 2\int \frac{dx}{(x-1)} + \int \frac{x \, dx}{x^2 + 1} = 2\ln|x - 1| + \frac{1}{2}\ln|x^2 + 1| + c$$

elde edilir.

4)
$$\int \frac{x+1}{(x-3)(x^2+1)} dx$$
 integralini hesaplayınız.

Çözüm.
$$\frac{A}{x-3} + \frac{Bx+C}{x^2+1} = \frac{x+1}{(x-3)(x^2+1)}$$
 olsun. Buradan $A(x^2+1) + (Bx+C)(x-3) = x+1$ yani

$$(A+B)x^{2}+(-3B+C)x+A-3C=x+1$$
 elde edilir. O halde,

•
$$x = 3$$
 için $10A = 4 \Rightarrow A = \frac{2}{5}$

•
$$x^2$$
 li $A + B = 0 \Rightarrow B = \frac{-2}{5}$

•
$$x \text{ li } \frac{2}{5} - 3C = 1 \Rightarrow C = \frac{-1}{5}$$

bulunur. Sonuç olarak,

$$\int \frac{x+1}{(x-3)(x^2+1)} dx = \frac{2}{5} \int \frac{dx}{x-3} - \frac{1}{5} \int \frac{2x+1}{x^2+1} dx$$

$$= \frac{2}{5} \ln|x-3| - \frac{2}{5} \int \frac{x \, dx}{x^2+1} - \frac{1}{5} \int \frac{dx}{x^2+1}$$

$$= \frac{2}{5} \ln|x-3| - \frac{1}{5} \ln|x^2+1| - \frac{1}{5} \arctan x + c$$

olur.

5) $I = \int \sin x \sin 2x \sin 3x \, dx \text{ integralini hesaplayınız.}$

Çözüm. Bu integral için $\begin{cases} \sin a \sin b = \frac{1}{2} \left\{ \cos \left(a - b \right) - \cos \left(a + b \right) \right\} \\ \sin a \cos b = \frac{1}{2} \left\{ \sin \left(a - b \right) + \sin \left(a + b \right) \right\} \end{cases}$ özdeşlikleri kullanılabilir.

Böylece,

$$I = \int \sin x \sin 2x \sin 3x \, dx = \int \frac{1}{2} (\cos x - \cos 3x) \sin 3x \, dx$$

$$= \frac{1}{2} \int (\sin 3x \cos x - \sin 3x \cos 3x) \, dx$$

$$= \frac{1}{4} \int \{ \sin (3x - x) + \sin (3x + x) - (\sin (3x - 3x) + \sin (3x + 3x)) \} \, dx$$

$$= \frac{1}{4} \int (\sin 2x + \sin 4x - \sin 6x) \, dx$$

$$= \frac{-1}{8} \cos 2x - \frac{1}{16} \cos 4 + \frac{1}{24} \cos 6x + c$$

olur.

6) $\int \sin^5 x \cos^3 x \, dx \text{ integralini hesaplayınız.}$

Ç**özüm.** $\begin{cases} u = \sin x \\ du = \cos x dx \end{cases}$ değişken dönüşümü ile

$$\int \sin^5 x \cos^3 x \, dx = \int u^5 \left(1 - u^2 \right) du$$

$$= \frac{-u^8}{8} + \frac{u^6}{6} + c$$

$$= \frac{-\sin^8 x}{8} + \frac{\sin^6 x}{6} + c$$

elde edilir.

7)
$$\int \frac{dx}{1 + 2\sin x - \cos x}$$
 integralini hesaplayınız.

Çözüm. $\tan \frac{x}{2} = u$ değişken dönüşümü yapılırsa $\sin x = \frac{2u}{1+u^2}$, $\cos x = \frac{1-u^2}{1+u^2}$ ve $dx = \frac{2du}{1+u^2}$ olacağını daha önce görmüştük. Buradan

$$I = \int \frac{dx}{1 + 2\sin x - \cos x} = \int \frac{\frac{2u}{1 + u^2}}{1 + 2\frac{2u}{1 + u^2} - \frac{1 - u^2}{1 + u^2}} = \int \frac{2}{1 + u^2} \frac{1 + u^2}{1 + u^2 + 4u - 1 + u^2} du$$
$$= \int \frac{du}{u^2 + 2u} = \int \left(\frac{A}{u} + \frac{B}{u + 2}\right) du$$

olacak şekilde A ve B; A(u+2)+Bu=1 denkleminden $A=\frac{1}{2}$, $B=\frac{-1}{2}$ şeklinde elde edilir. Böylece,

$$I = \frac{1}{2} \int \frac{du}{u} - \frac{1}{2} \int \frac{du}{u+2} = \frac{1}{2} \ln \left| \frac{\tan x/2}{\tan x/2 + 2} \right| + c$$

olur.

8)
$$I_3 = \int \frac{dx}{x^2 \sqrt{7 - 5x^2}}$$
 integralini hesaplayınız.

Çözüm. Burada
$$\begin{cases} \sqrt{5}x = \sqrt{7}\sin\theta \\ \sqrt{5}dx = \sqrt{7}\cos\theta d\theta \end{cases}$$
 değişken dönüşümü kullanılırsa

$$I_{3} = \int \frac{\frac{7}{\sqrt{5}}\cos\theta d\theta}{\frac{7}{5}\sin^{2}\theta \sqrt{\frac{7-7\sin^{2}\theta}{\sqrt{7}\cos\theta}}} = \frac{\sqrt{5}}{7}\int \cos\theta c^{2}\theta d\theta = -\frac{\sqrt{5}}{7}\cot\theta + c$$

$$= \frac{\sqrt{5}}{7}\frac{\sqrt{7-5x^{2}}}{\sqrt{5}x} + c$$

$$= \frac{\sqrt{7-5x^{2}}}{7} + c$$

elde edilir. $\cot \theta$ nın nasıl $\frac{\sqrt{7-5x^2}}{\sqrt{5}x}$ halini aldığını anlamak için yukarıdaki değişken dönüşümünü kullanarak dik üçgenden faydalanınız.

9) $\int x \arctan x \, dx \text{ integralini hesaplayınız.}$

Çözüm. Kısmi integrasyon metodu ile çözüme gidelim. $\begin{cases} u = \arctan x & dv = xdx \\ du = \frac{1}{1+x^2} dx & v = \frac{x^2}{2} \end{cases}$ dönüşümü ile

$$\int x \arctan x \, dx = \frac{x^2 \arctan x}{2} - \int \frac{x^2}{1+x^2}$$
$$= \frac{x^2 \arctan x}{2} - \left\{ \int dx - \int \frac{dx}{1+x^2} \right\}$$
$$= \frac{x^2 \arctan x}{2} - \frac{x}{2} + \frac{\arctan x}{2} + c$$

elde edilir.

10) $I = \int \frac{\cos^2 x}{e^x} dx$ integralini hesaplayınız.

Çözüm. Bu integrali çözmek için kısmi integrasyon yöntemi kullanılır. Eğer, I için $\begin{cases} u = \cos^2 x & |dv = e^{-x} dx \\ du = -2\cos x \sin x dx | v = -e^{-x} \end{cases}$ dönüşümü yapılırsa

$$I = -\frac{\cos^2 x}{e^x} - \int 2\cos x \sin x \, e^{-x} dx = -\frac{\cos^2 x}{e^x} - \int \frac{\sin 2x}{e^x} dx$$

elde edilir. Sağ yandaki son integral $I_1 = \int \frac{\sin 2x}{e^x} dx$ olsun. O halde I_1 için $\begin{cases} u = \sin 2x & dv = e^x dx \\ du = 2\cos 2x dx & v = -e^{-x} \end{cases}$ dönüşümü yapılırsa

$$I_1 = -\frac{\sin 2x}{e^x} + 2\int \frac{\cos 2x}{e^x} dx$$

olur. Burada da sağ yandaki son integrale bu kez $I_2 = \int \frac{\cos 2x}{e^x} dx$ denir ve I_2 için $\begin{cases} u = \cos 2x & dx = -2\sin 2x dx \\ du = -2\sin 2x dx & dz = -e^{-x} \end{cases}$ dönüşümü yapılırsa $I_2 = -\frac{\cos 2x}{e^x} - \int \frac{\sin 2x}{e^x} dx$ dolayısıyla,

$$I_{1} = \frac{-\sin 2x}{e^{x}} + 2 \left[-\frac{\cos 2x}{e^{x}} - 2 \underbrace{\int \frac{\sin 2x}{e^{x}} dx}_{I_{1}} \right] = \frac{-\sin 2x}{e^{x}} - \frac{2\cos 2x}{e^{x}} - 4 \underbrace{\int \frac{\sin 2x}{e^{x}} dx}_{I_{1}}$$

$$I_{1} = \frac{-1}{5e^{x}} \left(\sin 2x + 2\cos 2x \right)$$

bulunur. Böylece aranan integral

$$I = \frac{1}{e^x} \left(-\cos^2 x + \frac{\sin 2x + 2\cos 2x}{5} \right) + c$$

olarak elde edilir.

11)
$$I = \int \frac{dx}{(x+3)\sqrt{x^2+6x+8}}$$
 integralini hesaplayınız.

$$\mathbf{C\ddot{o}z\ddot{u}m.} \ \ \mathbf{I} = \int \frac{dx}{\left(x+3\right)\sqrt{\left(x+3\right)^2-1}} = \int \frac{dx}{dx = \sec{\theta}\tan{\theta}d\theta} \int \frac{\sec{\theta}\tan{\theta}d\theta}{\sec{\theta}\sqrt{\sec^2{\theta}-1}} = \int d\theta = \theta + c = \arccos\left(\frac{+1}{x+3}\right) + c$$

12)
$$I = \int \frac{\left(1 + \sqrt[4]{x+1}\right) dx}{\sqrt{x+1}(x+1)}$$
 integralini hesaplayınız.

Ç**özüm.** $\begin{cases} x+1=t^4 \\ dx=4t^3dt \end{cases}$ dönüşümü yapılırsa

$$I = \int \frac{(1+t)4t^3dt}{t^2t^4} = 4\int \frac{1+t}{t^3}dt = 4\int \frac{dt}{t^3} + 4\int \frac{dt}{t^2} = -\frac{2}{t^2} - \frac{4}{t} + c$$
$$= \frac{-2}{\sqrt{x+1}} - \frac{4}{\sqrt[4]{x+1}} + c$$

bulunur.

13)
$$\int_{0}^{3} |(x-1)(x-2)| dx \text{ integralini hesaplayınız.}$$

Cözüm.

$$\int_{0}^{3} |(x-1)(x-2)| dx = \int_{0}^{1} (x^{2} - 3x + 2) dx - \int_{1}^{2} (x^{2} - 3x + 2) dx + \int_{2}^{3} (x^{2} - 3x + 2) dx$$

$$= \left[\frac{x^{2}}{3} - \frac{3x^{2}}{2} + 2x \right]_{0}^{1} - \left[\frac{x^{2}}{3} - \frac{3x^{2}}{2} + 2x \right]_{1}^{2} + \left[\frac{x^{2}}{3} - \frac{3x^{2}}{2} + 2x \right]_{2}^{2}$$

$$= 2\left(\frac{1}{3} - \frac{3}{2} + 2 \right) - 2\left(\frac{8}{3} - 6 + 4 \right) + \left(9 - \frac{27}{2} + 6 \right)$$

$$= \frac{5}{3} - \frac{4}{3} + \frac{3}{2} = \frac{11}{6}$$

14) $\int_{0}^{\ln 5} \frac{e^{x} \sqrt{e^{x} - 1}}{e^{x} + 3} dx$ integralini hesaplayınız.

Çözüm.
$$\sqrt{e^x - 1} = u$$
 dersek
$$\begin{cases} e^x - 1 = u^2 \\ e^x dx = 2udu \\ e^x + 3 = u^2 + 4 \end{cases}$$
 bulunur. Sınırlara bakacak olursak
$$\begin{cases} x = 0 \Rightarrow u = 0 \\ x = \ln 5 \Rightarrow u = 2 \end{cases}$$

dır. O halde

$$I = \int_{0}^{\ln 5} \frac{e^{x} \sqrt{e^{x} - 1}}{e^{x} + 3} dx = \int_{0}^{2} \frac{u \cdot 2u \, du}{u^{2} + 4} = \int_{0}^{2} \frac{2u^{2} du}{u^{2} + 4} \int_{0}^{2} \left(2 - \frac{8}{u^{2} + 4}\right) du = \left[+2u - \frac{8}{2} \arctan \frac{u}{2} \right]_{0}^{2} = 4 - 4 \arctan 1 - 0 + 0$$

$$= 4 - 4 \cdot \frac{\pi}{4} = 4 - \pi$$

olur.

15) $y = \sin x$ eğrisi $y = \frac{1}{2}$, $x = \frac{\pi}{6}$ ve $x = \frac{5\pi}{6}$ doğruları arasında kalan bölgeyi koordinat düzleminde gösterip integral vasıtasıyla alanını bulunuz.

Cözüm.

$$Alan = \int_{\pi/6}^{5\pi/6} \left(\sin x - \frac{1}{2} \right) dx = \left[-\cos x - \frac{x}{2} \right]_{\pi/6}^{5\pi/6}$$
$$= \frac{\sqrt{3}}{2} - \frac{5\pi}{12} + \frac{\sqrt{3}}{2} + \frac{\pi}{12}$$
$$= \sqrt{3} - \frac{\pi}{3}$$
$$= \frac{3\sqrt{3} - \pi}{2}$$

16) $x^2 + y^2 = 4$ eğrisi ile sınırlı bölgenin alanını integral yardımıyla bulunuz.

Çözüm. Şekilde de gösterildiği gibi alanın 1/4 ünü integral yardımı ile bulup bulunan alanı 4 ile çarpalım.

$$Alan = 4 \int_{0}^{2} \sqrt{4 - x^{2}} dx = \sum_{\substack{x=0 \Rightarrow t=0 \\ x=2 \Rightarrow t=\frac{\pi}{2}}}^{x=2 \sin t} 4 \int_{0}^{\frac{\pi}{2}} \sqrt{4 - 4 \sin^{2} t} 2 \cos t dt$$
$$= 16 \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt = 8 \int_{0}^{\frac{\pi}{2}} (\cos 2t + 1) dt$$
$$= 8 \left[\frac{\sin 2t}{2} + t \right]_{0}^{\pi/2} = 8 \cdot \frac{\pi}{2} = 4\pi$$

17) $y = 9 - x^2$ parabolü ve y = x + 3 doğrusu ile sınırlı bölgenin alanını integral yardımı ile hesaplayınız.

Çözüm. Bu iki eğrinin kesişim noktalarını bulalım.

$$y = 9 - x^{2} \cap y = x + 3 \Rightarrow 9 - x^{2} = x + 3 \Rightarrow x^{2} + x - 6 = 0 \Rightarrow x = 2, x = -3$$

olur. Buradan

Alan =
$$\int_{-3}^{2} (9 - x^2 - x - 3) dx$$

= $\left[\frac{-x^3}{3} - \frac{x^2}{2} + 6x \right]_{-3}^{2}$
= $\frac{-8}{3} - 2 + 12 - 9 + \frac{9}{2} + 18$
= $19 + \frac{-16 + 27}{6}$
= $\frac{125}{6}$

