Linear Models

ENTMLGY 6707 Entomological Techniques and Data Analysis

GROOMING VS. TIME IN GRAD SCHOOL

What happens when you realize nobody's paying attention.

JORGE CHAM © 2009

WWW.PHDCOMICS.COM

Learning objectives

- 1) Understand when to conduct a simple linear regression
- 2) Interpret the outcome of a simple linear regression
- 3) Evaluate assumptions of simple linear regression

Linear regression

Table 4.1 Examples of the Generalized Linear Model as a Function of Independent Variable and Dependant Variable Type

		Responses						
		Continuous DV	Binary DV	Unordered Multicategory DV	Ordered Categorical DV	Count DV		
Predictors	Continuous IV Mixed continuous and categorical IV	OLS regression	Binary logistic regression	Multinomial logistic regression	Ordinal logistic	OLS, Poisson regression		
Pre	Binary/ categorical IV only	ANOVA and <i>t</i> -test	Log-linear models	Log-linear models	regression	Log-linear models		

ANOVA, analysis of variance; DV, dependent variable; IV, independent variable; OLS, ordinary least squares.

Chapter 4: Simple Linear Models With Continuous Dependent Variables: Simple ANOVA Analyses In: Regression & Linear Modeling: Best Practices and Modern Methods

Simple linear regression

Table 4.1 Examples of the Generalized Linear Model as a Function of Independent Variable and Dependent Variable Type

		Responses						
		Continuous DV	Binary DV	Unordered Multicategory DV	Ordered Categorical DV	Count DV		
Predictors	Continuous IV Mixed continuous and categorical IV	OLS regression	Binary logistic regression	Multinomial logistic regression	Ordinal logistic	OLS, Poisson regression		
Pre	Binary/ categorical IV only	ANOVA and <i>t</i> -test	Log-linear models	Log-linear models	regression	Log-linear models		

ANOVA, analysis of variance; DV, dependent variable; IV, independent variable; OLS, ordinary least squares.

Chapter 4: Simple Linear Models With Continuous Dependent Variables: Simple ANOVA Analyses In: Regression & Linear Modeling: Best Practices and Modern Methods

Linear regression

$$y = b + mx$$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Linear regression

$$y = b + mx$$

Example: size of orange trees

Example: size of orange trees

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Example: size of orange trees

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Linear regression in R

```
fit_oranges_1 <- lm(circumference~age, data=OT)</pre>
   summary(fit_oranges_1)
   ##
   ## Call:
   ## lm(formula = circumference ~ age, data = OT)
   ##
e_i \rightarrow \# Residuals:
   ## -4.052 -5.873 8.461 8.759 -4.736 5.775 -8.335
   ##
   ## Coefficients:
   ##
                 Estimate Std. Error t value Pr(>|t|)
\beta_0 + (Intercept) 24.437847 6.543311 3.735 0.0135 *
\beta_1 + \# age
          ## ---
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
   ##
   ## Residual standard error: 8.056 on 5 degrees of freedom
   ## Multiple R-squared: 0.9711, Adjusted R-squared: 0.9654
   ## F-statistic: 168.3 on 1 and 5 DF, p-value: 4.852e-05
```

Linear regression in R

```
fit_oranges_1 <- lm(circumference~age, data=OT)</pre>
   summary(fit_oranges_1)
   ##
   ## Call:
   ## lm(formula = circumference ~ age, data = OT)
   ##
e_i \rightarrow \# Residuals:
   ## -4.052 -5.873 8.461 8.759 -4.736 5.775 -8.335
   ##
   ## Coefficients:
   ##
                 Estimate Std. Error t value Pr(>|t|)
\beta_0 + (Intercept) 24.437847 6.543311 3.735 0.0135 *
\beta_1 + \# age
          ## ---
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
   ##
   ## Residual standard error: 8.056 on 5 degrees of freedom
   ## Multiple R-squared: 0.9711, Adjusted R-squared: 0.9654
   ## F-statistic: 168.3 on 1 and 5 DF, p-value: 4.852e-05
```

Assumptions

- 1. The relationship between response and predictor is linear
- 2. Residuals are independent
- 3. Residuals are normally distributed
- 4. Residuals are homoscedastic (i.e., the variance in Y does not increase or decrease as X increases or decreases)

Linear regression in R

plot(fit_oranges_1)

Residual plots

Leverage

Linear regression model coefficients

	Coefficient	Value
1	Intercept	0.04516
2	Slope	-0.42981

Influence measures for the adjustable point

	Measure	Value
1	hatvalue	0.41424
2	residual	4.51638
3	dfbeta.1	0.50038
4	dfbeta.x	-5.41604

Interpolation vs. extrapolation

Evolutionary and plastic variation in larval growth and digestion reveal the complex underpinnings of size and age at maturation in dung beetles

Patrick T. Rohner

Armin P. Moczek

				11.70	11.70			
1	ID species	nutritional treatment	_	_	_		_	weight.peak
2	2 L. militaris	high-quality	0.0092		0.1443	0.1414		0.2645
3	4 L. militaris	high-quality	0.0104	0.0409	0.1527	0.1535	0.0992	0.2936
4	5 L. militaris	high-quality	0.0083	0.0311	0.1333	0.1172	0.0791	0.2561
5	6 L. militaris	high-quality	0.0142	0.0531	0.1529	0.1317	0.0872	0.2986
6	7 L. militaris	high-quality	0.0118	0.0318	0.1411	0.1252	0.0875	0.2547
7	8 L. militaris	high-quality	0.0089	0.0367	0.1567	0.1365	0.0958	0.296
8	9 L. militaris	high-quality	0.0078	0.0312	0.1213	0.1332	0.093	0.2499
9	10 L. militaris	high-quality	0.0089	0.0326	0.0835	0.1402	0.0945	0.2421
10	11 L. militaris	high-quality	0.0094	0.0381	0.1606	0.1613	0.1053	0.2789
11	12 L. militaris	high-quality	0.0076	0.0293	0.1062	0.1147	0.0763	0.2255
12	13 L. militaris	high-quality	0.0137	0.0287	0.1198	0.1307	0.0884	0.2796
13	14 L. militaris	high-quality	0.0139	0.0423	0.1509	0.1347	0.0925	0.2817
14	15 L. militaris	high-quality	0.006	0.0276	0.1212	0.1218	0.0808	0.2445
15	16 L. militaris	high-quality	0.0068	0.0851	0.1127	0.1063	0.0728	0.2387
16	17 L. militaris	high-quality	0.0091	0.0313	0.1185	0.125	0.0837	0.2538
17	19 L. militaris	high-quality	0.0064	0.0315	0.14	0.1356	0.0926	0.2611
18	20 L. militaris	high-quality	0.0143	0.0528	0.1119	0.1211	0.0836	0.2512
19	21 L. militaris	high-quality	0.0104	0.0502	0.1331	0.1167	0.0797	0.2599
20	22 L. militaris	high-quality	0.0091	0.0365	0.1078	0.1355	0.0939	0.2656
21	23 L. militaris	high-quality	0.0093	0.0369	0.0886	0.1168	0.0801	0.2234
22	24 L. militaris	high-quality	0.0096	0.0601	0.1268	0.1353	0.0932	0.2546
23	25 L. militaris	high-quality	0.0068	0.0535	0.1101	0.1258	0.0841	0.2455
24	26 L. militaris	high-quality	0.0067	0.0256	0.1499	0.1223	0.0847	0.2128
25	27 L. militaris	high-quality	0.0114	0.031	0.1764	0.1619	0.0996	0.2974
26	28 L. militaris	high-quality	0.0101	0.0257	0.1113	0.1348	0.0931	0.2726
27	29 L. militaris	high-quality	0.0094	0.0364	0.1443	0.1345	0.093	0.2786
28	31 L. militaris	high-quality	0.0071	0.0308	0.1393	0.1322	0.0909	0.2701
	weight by age weight and age by stage variable description							

Metadata provided with the dataset!

1	sheet: weight by age and stage						
2	ID	unique identifier for each individual					
3	nutritional treatment	high-quality = cow poop from grass-fed cows; low-quality = cow poop from hay-fed cows					
4	species	cies identity					
5	weight.L1	larval weight at the onset of the first larval instar (L1) [g]					
6	weight.L2	larval weight at the onset of the second larval instar (L2) [g]					
7	weight.L3	larval weight at the onset of the third larval instar (L3) [g]					
8	weight.pupa	pupal weight [g]					
9	weight.adult	adult weight [g]					
10	weight.peak	maximum weight in L3 [g]					
11	age.L1	age at the onset of the first larval instar (L1) [days]					
12	age.L2	age at the onset of the second larval instar (L2) [days]					
13	age.L3	age at the onset of the third larval instar (L3) [days]					
14	age.pupa	age at pupation [days]					
15	age.peak	age when larvae reached their peak weight [days]					
16	age.adult	ge at adult emergence [days]					
17	pronotum width	dult pronotum width [mm]					
18	FA.tibia.shape	uctuation asymmetry score in tibia shape					
19	FA.tibia.CS	fluctuation asymmetry score in tibia centroid size					
20	FA.tibia.length	fluctuation asymmetry score in tibia length					
21	instantaneous.growth.rate	instantaneous growth rates					
22	missing data indicated wit "n/a"						
23							
24	sheet: weight by age						
25	ID	unique identifier for each individual					
26	nutritional treatment	high-quality = cow poop from grass-fed cows; low-quality = cow poop from hay-fed cows					
27	species	species identity					
28	mass [g]	weight measurement at the given age					
	weight by age weight and age by stage variable description						

> summary(growth) nutritional.treatment ID species Min. : 2.0 D. gazella:48 high-quality:88 1st Qu.: 59.0 L. militaris:50 low-quality:87 Median :122.0 O. binodis :36 :138.3 Mean 0. taurus :41 3rd Qu.:219.5 :289.0 Max. weight.L3 weight.pupa weight.adult we Min. :0.0305 Length:175 Length: 175 Le Class :character 1st Qu.:0.0899 Class :character C1 Mode :character Median :0.1270 Mode :character :0.1240 Mean 3rd Qu.:0.1526 :0.2560 Max. age.L2 age.L3 age.pupa age :1.000 Min. : 3.000 Length:175 Min. Lenat 1st Qu.:2.000 1st Qu.: 5.000 Class :character Class Median:3.000 Median : 7.000 Mode :character Mode

Liatongus militaris

Genus Liatongus

Length 8-10 mm

Colour

brown to dark brown; distinc- tive black broken stripes on wing co- vers. Yellow 'shoulder patches' and a dark oval patch on the top and bot- tom of each femur.

Horns none

Flight time day

Yearly Activity spring to autumn

Distribution QLD, NT, northeast NSW

Similar Species Unlikely to be confused with other species.

1	ID species	nutritional treatment	weight.L1	weight.L2	weight.L3	weight.pupa	weight.adult	weight.peak
2	2 L. militaris	high-quality	0.0092	0.0558	0.1443	0.1414	0.0987	0.2645
3	4 L. militaris	high-quality	0.0104	0.0409	0.1527	0.1535	0.0992	0.2936
4	5 L. militaris	high-quality	0.0083	0.0311	0.1333	0.1172	0.0791	0.2561
5	6 L. militaris	high-quality	0.0142	0.0531	0.1529	0.1317	0.0872	0.2986
6	7 L. militaris	high-quality	0.0118	0.0318	0.1411	0.1252	0.0875	0.2547
7	8 L. militaris	high-quality	0.0089	0.0367	0.1567	0.1365	0.0958	0.296
8	9 L. militaris	high-quality	0.0078	0.0312	0.1213	0.1332	0.093	0.2499
9	10 L. militaris	high-quality	0.0089	0.0326	0.0835	0.1402	0.0945	0.2421
10	11 L. militaris	high-quality	0.0094	0.0381	0.1606	0.1613	0.1053	0.2789
11	12 L. militaris	high-quality	0.0076	0.0293	0.1062	0.1147	0.0763	0.2255
12	13 L. militaris	high-quality	0.0137	0.0287	0.1198	0.1307	0.0884	0.2796
13	14 L. militaris	high-quality	0.0139	0.0423	0.1509	0.1347	0.0925	0.2817
14	15 L. militaris	high-quality	0.006	0.0276	0.1212	0.1218	0.0808	0.2445
15	16 <i>L. militaris</i>	high-quality	0.0068	0.0851	0.1127	0.1063	0.0728	0.2387
16	17 L. militaris	high-quality	0.0091	0.0313	0.1185	0.125	0.0837	0.2538
17	19 L. militaris	high-quality	0.0064	0.0315	0.14	0.1356	0.0926	0.2611
18	20 L. militaris	high-quality	0.0143	0.0528	0.1119	0.1211	0.0836	0.2512
19	21 L. militaris	high-quality	0.0104	0.0502	0.1331	0.1167	0.0797	0.2599
20	22 L. militaris	high-quality	0.0091	0.0365	0.1078	0.1355	0.0939	0.2656
21	23 L. militaris	high-quality	0.0093	0.0369	0.0886	0.1168	0.0801	0.2234
22	24 L. militaris	high-quality	0.0096	0.0601	0.1268	0.1353	0.0932	0.2546
23	25 L. militaris	high-quality	0.0068	0.0535	0.1101	0.1258	0.0841	0.2455
24	26 L. militaris	high-quality	0.0067	0.0256	0.1499	0.1223	0.0847	0.2128
25	27 L. militaris	high-quality	0.0114	0.031	0.1764	0.1619	0.0996	0.2974
26	28 L. militaris	high-quality	0.0101	0.0257	0.1113	0.1348	0.0931	0.2726
27	29 L. militaris	high-quality	0.0094	0.0364	0.1443	0.1345	0.093	0.2786
28	31 <i>L. militaris</i>	high-quality	0.0071	0.0308	0.1393	0.1322	0.0909	0.2701
	weight by age weight and age by stage variable description							


```
> summary(beetle_mod)
       Call:
       lm(formula = weight.adult ~ weight.L3, data = beetle_high)
e_i \longrightarrow Residuals:
               Min
                             10 Median
                                                       30
                                                                   Max
       -0.0138056 -0.0042889 0.0004019 0.0053646 0.0124737
       Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
\beta_0 \longrightarrow \text{(Intercept)} \ 0.068932 \ 0.007904 \ 8.721 \ 3.38e-09 ***
\beta_1 \longrightarrow \text{weight.L3} 0.156824 0.060297 2.601 0.0151 *
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
       Residual standard error: 0.00711 on 26 degrees of freedom
       Multiple R-squared: 0.2065, Adjusted R-squared: 0.1759
       F-statistic: 6.764 on 1 and 26 DF, p-value: 0.01514
       > anova(beetle_mod)
       Analysis of Variance Table
       Response: weight.adult
                   Sum Sq Mean Sq F value Pr(>F)
       weight.L3 1 0.00034194 0.00034194 6.7645 0.01514 *
       Residuals 26 0.00131429 0.00005055
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

