README.md 2024-10-21

Optymalizacja przełączania sygnalizacji świetlnej na skrzyżowaniu

Opis problemu:

Optymalizacja przełączania sygnalizacji świetlnej na skrzyżowaniu w celu minimalizacji liczby pojazdów oczekujących przy jednoczesnym zapewnieniu płynnego i bezpiecznego ruchu.

Model matematyczny:

Zmienne decyzyjne

(Moga być używanne zamiennie)

- **xi(t)** stan sygnalizacji na pasie i (1-zielone, 0-czerwone)
- Ti_on, Ti_off czas włączenia i wyłączenia sygnalizacji na pasie i

Zmienne stanu

• qi(t) – liczba pojazdów oczekujących w kolejce na pasie i

$$qi(t+1) = qi(t) + ai(t) - vi(t) * xi(t)$$

- vi(t) przepustowość na pasie i
- ai(t) przyrost pojazdów na pasie i

Ograniczenia:

- Tmin, Tmax minimalny i maksymalny czas trwania zielonego światła
- Top czas pomiędzy przełączeniem świateł (żółte światło)
- Ci lista pasów kolidujących z pasem i
- Di lista kierunków w jakie można pojechać z pasa i
- W jednej rotacji muszą zaświecić się wszystkie światła

Funcja celu

$$\min \sum_{i} q_i(t).$$

Uproszczenia:

Kierowcy nie popełniają błędów, stosują się do zasad ruchu drogowego

Możliwe podejścia:

1. Stały czas przełączania:

Określone czasy trwania zielonego światła są takie same dla każdego cyklu, niezależnie od aktualnego natężenia ruchu.

README.md 2024-10-21

2. Adaptacyjne sterowanie:

Wykorzystanie danych o bieżącym natężeniu ruchu (np. z systemów wizyjnych, sensorów) do dynamicznego dostosowywania cyklu świateł.

Model skrzyżowania

Na przykładzie tego skrzyżowania będzie przeprowadzana optymalizacja, jednak celem będzię możliwie jak najbardziej uogólnić model aby miał zastosowania również do innych skrzyżowań.

