NOIP模拟赛day1

题目名称	星形	树状数组	多叉树	括号序列
题目类型	传统型	传统型	传统型	传统型
输入文件名	star.in	fenwick.in	ktree.in	bracket.in
输出文件名	star.out	fenwick.out	ktree.out	bracket.out
每个测试点时限	1.0 秒	2.0 秒	3.0 秒	3.0 秒
内存限制	512 MB	512 MB	512 MB	512 MB
测试点数目	10	10	10	10
测试点是否等分	是	是	是	是

提交源程序文件名

对于 C++ 语言 :	star.cpp	fenwick.cpp	ktree.cpp	bracket.cpp
-------------	----------	-------------	-----------	-------------

编译选项

对于 C++ 语言	-lm -O2 -std=c++14
-----------	--------------------

注意事项

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 3. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。
- 4. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 5. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 6. 题目不一定按照难度顺序排序,请注意掌握时间。

NOIP模拟赛 day1 星形(star)

星形 (star)

【题目描述】

小 T 有一棵 n 个结点的树。他想通过删掉若干(可以为 0)个结点来使这棵树变成星形。请问有多少种不同的删点方式满足条件。

一棵树是星形当且仅当它恰好含有一个度数 ≥ 3 的结点。

换句话说,给定一棵 n 个结点的树,你需要统计满足以下条件的点集 S 的个数。

• S 的导出子图中恰有一个点 u 满足 $deg_u \ge 3$,其中 deg_u 表示 u 的度数。 你只需要输出答案对 998244353 取模的结果。

即:统计满足条件的点集 S 的个数,其中点集 S 是联通点集

【输入格式】

从文件 star.in 中读入数据。

第一行一个整数 n,表示树的大小。

接下来 n-1 行, 第 i 行两个整数 u_i, v_i 表示一条树边。

【输出格式】

输出到文件 star.out 中。

输出一行一个整数,表示答案对 998244353 取模的结果。

【样例 1 输入】

6

1 2

1 3

1 4

4 5

4 6

【样例 1 输出】

6

【样例1解释】

删掉的点集分别为 $\{5\},\{6\},\{5,6\},\{2\},\{3\},\{2,3\}$ 。

【样例 2】

见选手目录下的 $star/ex_star2.in$ 与 $star/ex_star2.out$ 。

NOIP模拟赛 day1 星形 (star)

【样例 3】

见选手目录下的 $star/ex_star3.in$ 与 $star/ex_star3.out$ 。

【数据范围与提示】

对于 20% 的数据, $n \le 15$ 。

对于 40% 的数据, $n \le 2000$ 。

对于另外 10% 的数据, $u_i = i, v_i = i + 1$ 。

对于另外 10% 的数据, $u_i = 1, v_i = i + 1$ 。

对于另外 10% 的数据, 保证给定的树为星形。

对于 100% 的数据, $1 \le n \le 5 \times 10^5$,保证给定的边构成一棵树。

树状数组 (fenwick)

【题目描述】

小 T 刚刚学习了树状数组,他决定练习一下。

具体来说,他想维护一个长度为 n 的整数序列 $[a_1, a_2, \ldots, a_n]$,初始均为 0,执行 m 次操作,有如下两种操作:

- 1. 1 l r v: 对于每个 $i \in [l, r]$, 将序列 a 中区间 [i f(i) + 1, i] 里的数增加 v。
- 2. 2 1 r: 询问序列 a 中区间 [l,r] 的和。

其中 f(x) 表示将 x 写成二进制数后,仅保留最低的 1 以及之后的 0 得到的值。例如 44 写成二进制为 $(101100)_2$,所以 $f(44)=(100)_2=4$ 。

【输入格式】

从文件 fenwick.in 中读入数据。

第一行两个整数 n, m,分别表示序列长度和操作次数。

接下来 m 行,每行四个整数 1,l,r,v 或三个整数 2,l,r,表示一次操作。

【输出格式】

输出到文件 fenwick.out 中。

对于每个询问操作,输出一行一个数表示答案。

【样例 1 输入】

- 9 8
- 1 3 5 3
- 2 2 4
- 2 4 9
- 1 1 9 1
- 2 5 5
- 2 2 4
- 1 8 9 1
- 2 1 9

【样例 1 输出】

- 12
- 6
- 6
- 20
- 48

【样例1解释】

第一次修改完的序列为 [3,3,6,3,3,0,0,0,0]。

第二次修改完的序列为 [7,6,9,5,6,2,2,1,1]。

第三次修改完的序列为 [8,7,10,6,7,3,3,2,2]。

【样例 2】

见选手目录下的 fenwick/ex_fenwick2.in 与 fenwick/ex_fenwick2.out。

【样例 3】

见选手目录下的 fenwick/ex_fenwick3.in 与 fenwick/ex_fenwick3.out。

【数据范围与提示】

对于 20% 的数据, $n, m \le 2 \times 10^3$ 。

对于另外 10% 的数据, $n, m \le 10^5$, 对于所有修改操作, 满足 l = r。

对于另外 20% 的数据, $n, m \le 10^5$, 对于所有询问操作, 满足 l = r。

对于 70% 的数据, $n, m \le 10^5$ 。

对于 100% 的数据, $1 \le n, m \le 10^6$, $1 \le l \le r \le n$, $1 \le v \le 10^4$ 。

注意:本题的输入输出量较大,且评测环境为 windows,请使用下发的快读模板或使用自己手写的 fread/fwrite。不保证使用其它输入输出方式(包括普通快读)的正解能够通过本题。

多叉树 (ktree)

【题目描述】

小 T 有一个深度为 n 的满 k 叉树,树上每个结点都有一个权值。树上的叶节点从左到右编号为 $1 \sim k^n$ 。

叶节点的权值为 0 或 1, 而非叶结点的权值定义为它子树内叶结点的权值总和。

开始时叶节点的权值均为 0,小 T 每次操作可以将其中一个叶节点的权值从 0 变为 1,那么经过 k^n 次操作后,所有叶子的权值均为 1。小 T 想知道,有多少长为 k^n 的操作序列满足以下条件:

- 每次操作结束后,所有非叶结点的儿子的权值的极差不超过 1。
- 有 m 条限制, 第 i 条限制形如 t_i, x_i ,表示第 t_i 次操作的叶节点必须为 x_i 。

你只需要输出答案对 998244353 取模的结果。

深度为 n 的满 k 叉树是指所有非叶结点都有恰好 k 个儿子,并且所有叶结点的深度都为 n。特别地,根的深度为 0。

【输入格式】

从文件 ktree.in 中读入数据。

本题输入文件包含多组数据。

第一行一个整数 T,表示数据组数。

每组测试数据的第一行包含三个整数 k, n, m,分别表示树的叉数,树的深度以及限制条数。接下来 m 行,第 i 行两个整数 t_i, x_i ,表示一条限制。

【输出格式】

输出到文件 ktree.out 中。

对每组测试数据输出一行一个整数,表示答案对998244353取模的结果。

【样例 1 输入】

- 4
- 2 2 1
- 1 2
- 2 2 2
- 2 2
- 1 1
- 5 1 3
- 3 1
- 4 4
- 2 3
- 3 2 3
- 5 1

2 6

8 3

【样例 1 输出】

4

0

2

96

【样例1解释】

第一组数据中合法的操作序列有 [2,3,1,4], [2,3,4,1], [2,4,1,3], [2,4,3,1]。其中操作序列里的第 i 个数表示第 i 次操作的叶子的编号。

第二组数据中没有合法的操作序列。

第三组数据中合法的操作序列有 [2,3,1,4,5], [5,3,1,4,2]。

【样例 2】

见选手目录下的 ktree/ex_ktree2.in 与 ktree/ex_ktree2.out。

【样例 3】

见选手目录下的 ktree/ex_ktree3.in 与 ktree/ex_ktree3.out。

【数据范围与提示】

对于 20% 的数据, $T \le 20, k^n \le 9$ 。

对于另外 10% 的数据, $m \le 1$ 。

对于另外 20% 的数据, n=2。

对于另外 20% 的数据, k=2。

对于 100% 的数据, $T \le 2 \times 10^5, 2 \le k \le 10^6, n \ge 1, 0 \le m \le 2 \times 10^5, \sum m \le 2 \times 10^5, 1 \le t_i, x_i \le k^n \le 10^{18}$,对于每组数据保证 t_i 互不相同, x_i 互不相同。

括号序列(bracket)

【题目描述】

小 T 有一个长为 2n 的括号序列,用一个长为 2n 的序列 a 表示。序列中有 n 种不同的括号,编号为 $1 \sim n$ 。每种括号在序列中恰好出现了两次,第一次出现为左括号,第二次出现为右括号。例如序列 1 2 3 2 3 1 就代表了括号序列 [{(})]。

"符合规范的超级括号序列"的定义如下:

- 1. 空序列,S S 均是符合规范的超级括号序列,其中 S 表示一个在 [1, n] 之间的正整数(以下规则中的 S 均为此含义);
- 2. 如果 A 为非空的符合规范的超级括号序列,那么 S A S 为符合规范的超级括号序列;
- 3. 如果 A 和 B 均为符合规范的超级括号序列, 那么 A B 为符合规范的超级括号序列;
- 4. 所有符合规范的超级括号序列均可通过上述 3 条规则得到。

小 T 认为符合规范的超级括号序列非常炫酷,可惜他目前得到的这个序列不一定满足条件。于 是他决定将这个序列划分成两个子序列,使得每个子序列都是符合规范的超级括号序列。

可惜小 T 对如何划分毫无头绪,于是只好请求你来帮忙。你需要给出一种满足条件的划分方案,或输出无解。

【输入格式】

从文件 bracket.in 中读入数据。

本题输入文件包含多组数据。

输入的第一行包含一个整数 T,表示测试数据的组数。

每组测试数据的第一行包含一个正整数 n,第二行包含 2n 个用空格隔开的整数 a_1, a_2, \ldots, a_{2n} 。

【输出格式】

输出到文件 bracket.out 中。

对每个测试数据输出一行答案。

如果无解,输出一行 -1, 否则输出一行一个长度为 2n 的、由字符 1 或 2 构成的字符串(不含空格),其中 1 表示该元素位于第一个子序列,2 表示该元素位于第二个子序列。

本题使用**自定义校验器**检验你的答案是否正确,因此若有多种满足条件的方案,你只需要输出**任 意一种**。

【样例 1 输入】

1 2 3 3 2 1 5 5 2 4 2 1 5 1 4 3 3

【样例 1 输出】

212122 -1 111111

2212121111

【样例1解释】

第一组数据中将序列 1 2 3 2 3 1 划分为2 2 和 1 3 3 1。

第二组数据不存在合法的划分方式。

第三组数据中将序列 1 2 3 3 2 1 划分为 1 2 3 3 2 1 和空序列。注意某个子序列可以为空。

第四组数据中将序列5242151433划分为411433和5225。

【样例 2】

见选手目录下的 bracket/ex_bracket2.in 与 bracket/ex_bracket2.out。

【样例3】

见选手目录下的 bracket/ex_bracket3.in 与 bracket/ex_bracket3.out。

【数据范围与提示】

对于 20% 的数据, $T = 1, n \le 20$ 。

对于 40% 的数据, $\sum n \le 2000$ 。

对于 60% 的数据, $\sum n \leq 10^5$ 。

对于另外 20% 的数据,保证 a_1, a_2, \ldots, a_n 为一个 $1 \sim n$ 的排列。

对于 100% 的数据, $1 \le T \le 2 \times 10^4, 1 \le n \le 10^6, \sum n \le 1.5 \times 10^6, 1 \le a_i \le n$,保证序列 a 中 $1 \sim n$ 每个数恰好出现了两次。

注意: 本题的输入输出量较大,建议使用较快的输入输出方式。