# heap勉強会

- mallocやfreeに関して学ぶ
- INTERNAL\_SIZE\_T prev\_size
- INTERNAL\_SIZE\_T size
- INTERNAL\_SIZE\_Tは64bit環境の場合は64bit
- 32bit環境の場合は32bit

# 参考資料

- https://faraz.faith/2019-10-12-picoctf-2019-heap-challs/
- https://ctf-wiki.github.io/ctf-wiki/pwn/linux/glibcheap/heap\_structure/
- ptr-yudaiさんのCTFするぞやwrite-up
- https://furutsuki.hatenablog.com/entry/2019/02/26/112

# heap領域はどこ?



# free時のデータ構造



# malloc時のデータ構造





### free listはこんなに単純?

- ・実は数種類ある
  - t-cache
  - fast bin
  - o small bin
  - large bin
  - unsorted bin

- glibc 2.26から追加されたもの
  - スレッド毎のキャッシュ
  - 排他制御の必要がないので高速
- 64bitだと TCACHE\_MAX\_BINS は64になっている
  - キャッシュサイズは0x18, 0x28, 0x38, ... 0x408バイト以下というように区切られている
  - リンクリストの長さは TCACHE\_FILL\_COUNT によって 制限されていて7になっている

- Aを0x10でmallocする
- Bを0x10でmallocする
- Aをfreeする
- Bをfreeする
- Cを0x10でmallocする
- この場合どんな感じになるか







#### fast bin

- 小さなメモリブロックをmallocしてはfreeするという処理がよくある
  - ○マウスの移動など
- freeリストで隣接している部分はくっつける

#### unsorted bin

free後すぐに同じ大きさのmallocが呼ばれやすいことから作られた