How DP instructions affect Flags C, V, Z, N

	Effect on Flags		
Instructions	if S -bit = 0	if S -bit = 1 and	if S -bit = 1 and
		no shift/rotate	shift/rotate is there
add, sub, rsb,	No flags are affected	s are affected All 4 flags are affected, ALU carry is used	
adc, sbc, rsc	No mags are affected		
cmp, cmn	All 4 flags are affected, ALU carry is used		
and, orr, xor, bic,	No flags are affected	Only Z and N are	C, Z and N are affected
mov, mvn		affected	shift/rotate carry is used
tst, teq	Only Z and N are affected		simulotate carry is used

Circuit for maintaining Flags

This circuit will, of course, have an edge triggered 4-bit register (or 4 edge triggered flip-flops) that will be set according to the table shown above. The inputs required for it are as follows.

- Whether it is a DP instruction? If yes, which of the 16 instructions it is or to which of the 4 sub-classes of DP instructions (as per the rows of the above table) it belongs?
- S-bit of the instruction.
- Whether shift/rotate for operand 2 is specified or not? No shift/rotate is encoded as LSL #0. Other three types of shifts with #0 (i.e., LSR #0, ASR #0 and ROR #0) are used for some special purpose and are out of scope for the current Lab assignment.
- Carry output from ALU.
- Carry output from shifter.
- Result output from ALU (for determining next value of Z and N flags).
- MSB's of ALU operands (for determining next value of V flag).

Determining the next value of V flag

Let us use the following notation.

 A_{31} and B_{31} are the msb's of the ALU operands S_{31} is the msb of the result produced by ALU C_{32} and C_{31} are the final and per-final carries from ALU

If both C₃₂ and C₃₁ are available, the simplest way to determine overflow is as follows.

$$V = C_{31} \text{ xor } C_{32}$$

However, since we are using + operator of VHDL rather than doing bit-by-bit addition, C₃₁ is not available to us. We can determine overflow by looking at the signs of operands and result, as shown below (assuming add operation being performed by ALU).

$$V = A_{31}.B_{31}.S_{31}' + A_{31}'.B_{31}'.S_{31}$$
 [2]

Alternatively, we can first determine C₃₁ as shown below and then apply equation [1].

Since
$$S_{31} = A_{31} \text{ xor } B_{31} \text{ xor } C_{31}$$
, we get $C_{31} = A_{31} \text{ xor } B_{31} \text{ xor } S_{31}$ [3]

Note that while equation [1] does not depend on whether the operation being performed by ALU is addition or subtraction, equations [2] and [3] assume the operation to be add operation. In case of subtract operation, we need to replace B_{31} by B_{31} ' and in case of reverse subtract operation, we need to replace A_{31} by A_{31} '.