Namrata Kolla Homework 5 March 5, 2015

Problem 1

Part A: Least-squares regression and correlation coefficient

- (1) Slope = 0.3665; y-intercept = 43.5618 95% confidence interval of the slope = [-1.2727, 2.0057]
- (2) Correlation coefficient = 0.411495% confidence interval of correlation coefficient = [0.1759, 0.6024]Correlation is significant because p = 0.0011 < 0.05

(3)

Comments on calculation methods:

To get the slope and y-intercept of the linear regression, I simply used the polyfit (function. To get the error bounds, I used the t-statistic by calculating error variance, calculating standard deviation for slope, multiplying those two values together, and adding/subtracting that value from the slope.

Part B: Through-the-origin least-squares regression

(2)/(3)

(4) $(4) (y_{i}-b) = \beta_{0} + \beta_{1}(x_{i}-\alpha)$ $cost function = Q = \Sigma[(y_{i}-b) - \beta_{0} - \beta_{1}(x_{i}-\alpha)]^{2}$ $d0/d\beta_{i} = z \Sigma[(y_{i}-b) - \beta_{0} - \beta_{1}(x_{i}-\alpha)][-(x_{i}-\alpha)]$ $= -2\Sigma(x_{i}-\alpha)[(y_{i}-b) - \beta_{0} - \beta_{1}(x_{i}-\alpha)]$ $Setting \frac{d0}{d\beta}|d\beta_{i}=0:$ $\Sigma(x_{i}-a)(y_{i}-b) - \beta_{0}(x_{i}-a) - \beta_{1}(x_{i}-a)^{2} = 0$ $\Sigma(x_{i}-a)(y_{i}-b) - \beta_{0}(x_{i}-a) - \beta_{0}(x_{i}-a)$ $\beta_{1} = \Sigma(x_{i}-a)(y_{i}-b) - \beta_{0}(x_{i}-a) = \Sigma(y_{i}-b) - \beta_{0}$ $\Sigma(x_{i}-a)^{2} = \Sigma(x_{i}-a)(x_{i}-a)^{2} = \Sigma(x_{i}-a)(x_{i}-a)$ $Y = \left(\Sigma(y_{i}-b) - \beta_{0}(x_{i}-a)\right) \times (x_{i}-a)$

Part C: Resampled statistics

Subset	LS slope	LS confidence interval	Through-the-origin slope
1	1.6967	[-3.3206, 6.7139]	2.3670
2	8.5125	[0.2772, 16.7477]	1.8013
3	0.3539	[-14.7947, 15.5025]	1.6917
4	2.3957	[-19.1092, 23.9007]	1.5484
5	0.8829	[-4.2985, 6.0642]	1.3899
6	-0.2813	[-2.2710, 1.7084]	1.0868

All plots: (zoomed in versions in following pages)

Comments on variation between subplots:

If the model worked well, then the slope would be near 1 because modeled values would be very close to measured values. When the slopes are not forced through the origin, subset 5's model has the best performance. Subset 6 was the only one with a negative regression slope, but it had the smallest confidence interval. This means that the model did a good job of mirroring the measured values, but it was consistently lower than the measured values.

Problem 2

(1)/(2)

PROBLEM 2

(1) $\frac{m}{2} \left(w - x_{i}\right)^{2} = Q$ where Q = cost function $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}}\right)^{2} = Q$ where Q = cost function $dW = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}}\right) \left(\frac{1}{\sigma_{i}}\right) = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ winimizing dQ = Q $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}}\right) \left(\frac{1}{\sigma_{i}}\right) = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ winimizing dQ = Q $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}}\right) \left(\frac{1}{\sigma_{i}}\right) = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ winimizing dQ = Q $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ winimizing dQ = Q $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}}\right) \left(\frac{1}{\sigma_{i}}\right) = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ winimizing dQ = Q $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ winimizing dQ = Q $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ winimizing dQ = Q $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ winimizing dQ = Q $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ winimizing dQ = Q $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right)$ $dQ = 2 \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}\right) = \sum_{i=1}^{m} \left(\frac{w - x_{i}}{\sigma_{i}^{2}}$

(3) weighted average mean (wam) = 45.8878 uncertainty of wam = variance = 2.6704