Chapter 2 Configuration Space
Chapter 3 Rigid-Body Motions
Chapter 4 Forward Kinematics
Chapter 5 Velocity Kinematics and Statics
Chapter 6 Inverse Kinematics
Chapter 7 Kinematics of Closed Chains
Chapter 8 Dynamics of Open Chains
8.1 Lagrangian Formulation

Chapter 9 Trajectory Generation
Chapter 10 Motion Planning
Chapter 11 Robot Control
Chapter 12 Grasping and Manipulation
Chapter 13 Wheeled Mobile Robots

Important concepts, symbols, and equations

$$\tau = M(\theta)\ddot{\theta} + c(\theta, \dot{\theta}) + g(\theta)$$

kinetic energy of a robot:

$$\mathcal{K}(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^{\mathrm{T}} M(\theta) \dot{\theta}$$

When $\dot{\theta} = 0$ and g = 0, $M(\theta)$ maps $\ddot{\theta}$ to τ and $M^{-1}(\theta)$ maps τ to $\ddot{\theta}$

Important concepts, symbols, and equations (cont.)

If $V = J(\theta) \dot{\theta}$ is the e-e velocity and J is invertible (there exists a unique joint velocity for each e-e velocity):

end-effector mass matrix

there are some e-e velocities that connot be achieved by the joints: cannot be achieved by the joints: 'Infinitely massive" in these directions.

What if J is tall? wide?

An infinite # of 6 correspond to the same V.

Important concepts, symbols, and equations (cont.)

When $\dot{\theta} = 0$ and g = 0, $\Lambda(\theta)$ maps \dot{V} to F and $\Lambda^{-1}(\theta)$ maps F to \dot{V}

Force and acceleration are only parallel along principal axes.

 $\theta_1 = 0^{\circ}$ $\theta_2 = 150^{\circ}$

RP robot

 $\dot{\theta} = 0$ and g = 0

$$\tau = M(\theta)\ddot{\theta} + c(\theta, \dot{\theta}) + g(\theta)$$

$$M(\theta) = \begin{bmatrix} \mathcal{I}_1 + \mathcal{I}_2 + \mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 \theta_2^2 & 0\\ 0 & \mathfrak{m}_2 \end{bmatrix}$$

What are the e-vals and e-vecs of *M*?

Draw the ellipse of τ corresponding to a unit circle of θ as θ_2 increases from zero and $I_1 = I_2 = \mathfrak{m}_1 = \mathfrak{m}_2 = L_1 = 1$.

$$M(\theta) = \begin{bmatrix} 3 + \theta_2^2 & 0 \\ 0 & 1 \end{bmatrix}$$

RP robot

$$\dot{\theta} = 0$$
 and $g = 0$

At $\theta_1 = 0$, the e-e mass matrix is

$$\Lambda(\theta) = \begin{bmatrix} \mathfrak{m}_2 & 0 \\ 0 & (\mathcal{I}_1 + \mathcal{I}_2 + \mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 \theta_2^2)/\theta_2^2 \end{bmatrix}$$

Draw the ellipse of F corresponding to a unit circle of V as θ_2 increases from zero and $I_1 = I_2 = \mathfrak{m}_1 = \mathfrak{m}_2 = L_1 = 1$. How does it change as θ_1 changes?

$$F = \Lambda (\theta) \dot{V} \qquad \Lambda = \begin{bmatrix} 1 & 0 \\ 3 + \theta_2^2 \end{pmatrix} / \theta_2^2$$
if $\theta_2 = \infty$: $\gamma_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 + \theta_2^2 \end{bmatrix} / \theta_2^2$

$$\lambda_2 = 1, \ \forall_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

As
$$\theta_1$$
 rotates, $\lambda_1 = 1$, $V_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
So do the force ellipses.

$$\left(3+\theta_2^2\right)/\theta_2^2$$

