Started on Friday, 27 May 2022, 7:00 PM State Finished Completed on Friday, 27 May 2022, 7:19 PM Time taken 19 mins 43 secs Marks 8.50/20.00 Grade 21.25 out of 50.00 (43%) Cuestion 1 Correct Mark 1.00 out of 1.00 Впорядкування символів за імовірностями їх появи не є обов'язковим при побудові коду Select one:
State Finished Completed on Friday, 27 May 2022, 7:19 PM Time taken 19 mins 43 secs Marks 8.50/20.00 Grade 21.25 out of 50.00 (43%) Question 1 Соггест Магк 1.00 out of 1.00 Впорядкування символів за імовірностями їх появи не є обов'язковим при побудові коду Select one: а. Шеннона b. Шеннона-Фано c. Гільберта-Мура d. Хаффмена е. завжди обов'язкове впорядкування, як необхідня умова префіксності Question 2 Соггест
Completed on Friday, 27 May 2022, 7:19 PM Time taken 19 mins 43 secs Marks 8.50/20.00 Grade 21.25 out of 50.00 (43%) Question 1 Correct Mark 1.00 out of 1.00 Bnopsgkybahhs символів за імовірностями їх появи не є обов'язковим при побудові коду Select one: a. Шеннона b. Шеннона-Фано c. Гільберта-Мура d. Хаффмена e. завжди обов'язкове впорядкування, як необхідня умова префіксності
Тime taken 19 mins 43 secs Marks 8.50/20.00 Grade 21.25 out of 50.00 (43%) Question 1 Соггесt Магk 1.00 out of 1.00 Впорядкування символів за імовірностями їх появи не є обов'язковим при побудові коду Select one: а. Шеннона b. Шеннона-Фано с. Гільберта-Мура d. Хаффмена е. завжди обов'язкове впорядкування, як необхідня умова префіксності Question 2 Соггесt
Marks 8.50/20.00 Grade 21.25 out of 50.00 (43%) Cuestion 1 Correct Mark 1.00 out of 1.00 Bnopядкування символів за імовірностями їх появи не є обов'язковим при побудові коду Select one: a. Шеннона b. Шеннона-Фано c. Гільберта-Мура d. Хаффмена e. завжди обов'язкове впорядкування, як необхідня умова префіксності
Grade 21.25 out of 50.00 (43%) Question 1 Соггесt Магк 1.00 out of 1.00 Впорядкування символів за імовірностями їх появи не є обов'язковим при побудові коду Select one: а. Шеннона b. Шеннона-Фано с. Гільберта-Мура d. Хаффмена e. завжди обов'язкове впорядкування, як необхідня умова префіксності
Question 1 Correct Mark 1.00 out of 1.00 Впорядкування символів за імовірностями їх появи не є обов'язковим при побудові коду Select one: а. Шеннона b. Шеннона-Фано с. Гільберта-Мура d. Хаффмена е. завжди обов'язкове впорядкування, як необхідня умова префіксності ✓ Question 2 Соггесt
Соггесt Магк 1.00 out of 1.00 Впорядкування символів за імовірностями їх появи не є обов'язковим при побудові коду Select one: а. Шеннона b. Шеннона-Фано c. Гільберта-Мура d. Хаффмена e. завжди обов'язкове впорядкування, як необхідня умова префіксності Question 2 Correct
Магк 1.00 out of 1.00 Впорядкування символів за імовірностями їх появи не є обов'язковим при побудові коду Select one: а. Шеннона b. Шеннона-Фано c. Гільберта-Мура d. Хаффмена e. завжди обов'язкове впорядкування, як необхідня умова префіксності
Впорядкування символів за імовірностями їх появи не є обов'язковим при побудові коду Select one: а. Шеннона b. Шеннона-Фано с. Гільберта-Мура d. Хаффмена e. завжди обов'язкове впорядкування, як необхідня умова префіксності
Select one:
Correct
Якщо алфавіт джерела складається з k повідомлень, а алфавіт приймача − з k+1, то канал називають Select one: a. з витиранням b. нерівномірним відносно алфавіту приймача c. несиметричним d. нерівномірним відносно алфавіту джерела
Question 3
Incorrect
Mark 0.00 out of 1.00

Для лінійного (k, n) коду, мінімальна відстань між кодовими словами якого $d_{min}=2l_2+1$, кількість перевірних розрядів визначають з нерівності, яку називають нижньою межею Хеммінга

Select one:

$$\begin{array}{l} \text{ a. } & r \geq \log_2(C_n^{l_2} + C_n^{l_2-1} + \ldots + C_n^1 + 1) \\ \text{ b. } & r \geq \log_2(C_{n-1}^{2l_2-1} + C_{n-1}^{2l_2-2} + \ldots + C_{n-1}^1 + 1) \\ \text{ c. } & r \geq 2d_{min} - 2 - \log_2 d_{min} \\ \text{ d. } & r \geq \log_2(C_{n-1}^{l_2} + C_{n-1}^{l_2-1} + \ldots + C_{n-1}^1 + 1) \end{array}$$

Question 4
Incorrect
Mark 0.00 out of 1.00
Нехай для побудови непримітивного коду БЧХ над полем $GF(2^6)$ вибрано непримітивний елемент β^5 порядок якого дорівнює 13, тоді
Question 5 Correct Mark 1.00 out of 1.00
Дискретний канал називають симетричним за виходом, якщо Select one: а. всі рядки його перехідної матриці можна отримати перестановкою елементів першого рядка b. детермінант перехідної матрицю є від'ємним с. слід перехідної матриці дорівнює 1 всі стовпці його перехідної матриці можна отримати перестановкою елементів першого стовпця ✓
Question 6 Incorrect Mark 0.00 out of 1.00
Якщо твірний поліном циклічного коду $g(x)=x+1$, то такий код ϵ еквівалентний коду поліноміальному жодному з вказаних з перевіркою на парність з простим повторенням Бауера ітеративному з перевіркою на непарність

Question **7**

Incorrect

Mark 0.00 out of 1.00

Нехай імовірності появи символів джерела наведено у таблиці. За використання арифметичного кодування код повідомлення S_2S_1 належатиме інтервалу

Символ	Імовірність		
S_1	1/2		
S_2	1/3		
S_3	1/6		

- 0 (0; 1/6)
- 0 [0; 1/3)
- 0 [1/2; 5/6)
- 0 [1/2; 2/3)
- [1/3;2/3)

Question ${\bf 8}$

Correct

Mark 1.00 out of 1.00

Нехай 8 повідомлень з імовірностями появи $\{0.0625, 0.0625,$

- 1/24
- 8/23
- 1/23
- 5/24
- 6/23

Question **9**

Incorrect

Mark 0.00 out of 1.00

Нехай перехідна матриця каналу має вигляд $\begin{pmatrix} 0.5 & 0 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0.5 \end{pmatrix}$, а швидкість передачі символів через канал становить 1000

сим/с. Тоді пропускна здатність такого каналу

- **1500**
- 0 1000
- O 2000
- O 500
- 250
- Некоректно задана перехідна матриця

×

×

Question 10	
Incorrect	
Mark 0.00 out of 1.00	
За К. Шеноном, задачу надійного зв'язку	
Select one:	
🔾 а. можна розв'язати за певних, доволі широких умов, стосовно джерела інформації та каналу передачі інформації	
 b. можна розкласти на дві підзадачі: кодування джерела та кодування каналу 	
 с. неможливо вирішити в реальних умовах 	
 d. можна розкласти на дві підзадачі: побудова каналу передачі інформації та, в залежності від надійності каналу, вибору правила кодування інформації 	×
Question 11	
Incorrect	
Mark 0.00 out of 1.00	
Довжина п кодової комбінації БЧХ коду може приймати значення	
31, 63, 94	×
O 5, 15, 255	
O 15, 52, 511	
O 7, 21, 712	
Question 12	
Correct	
Mark 1.00 out of 1.00	
Кодування – це	
Select one:	
 а. процес перетворення повідомлення у впорядкований набір "0" та "1" 	
 b. процес перетворення повідомлення на впорядкований набір символів, знаків 	•
○ c. процес перетворення повідомлення у набір "0" та "1"	
 d. процес перетворення повідомлення на набір символів, знаків 	

Question 13	
Incorrect	
Mark 0.00 out of 1.00	
Які з двійкових комбінацій: а) 1100110011 б) 0010101100 в) 1010101010 г) 11001110011 можуть бути рядками перевірної підмалінійного (5, 15) коду здатного виправляти помилки кратності 3	атриці
Select one:	
а. а) і в)	×
○ b. 6)	
oc. a) i 6)	
○ d. r)	
○ e. a)	
○ f. всі можуть	
○ g. 6) i r)	
○ h. б) i в)	
○ i. a) i r)	
○ j. жодна не може ○ k. в)	
∪ к. в)	
Question 14 Incorrect	
Mark 0.00 out of 1.00	
За використання алгоритму Хаффмена для стиснення даних отримано повне двійкове дерево, яке має k листків. Для повного дерева достатньо	опису
	опису
дерева достатньо	опису
дерева достатньо $2k$ біт 2^k біт	опису
дерева достатньо $ 2k \ бiт $ $ 2^k \ бiт $ $ 2^k \ 6iт $ $ 2^k - 1 \ 6iт $	
дерева достатньо $2k\ \mathrm{бiт}$ $2^k\ \mathrm{бiт}$ $2^k-1\ \mathrm{бiт}$ $2^k+1\ \mathrm{бit}$	
дерева достатньо $2k\ \mathrm{бiт}$ $2^k\ \mathrm{бiт}$ $2^k-1\ \mathrm{бiт}$ $2^k+1\ \mathrm{бiт}$ $2k-1\ \mathrm{бit}$	
дерева достатньо $2k\ \mathrm{бiт}$ $2^k\ \mathrm{бiт}$ $2^k-1\ \mathrm{бiт}$ $2^k+1\ \mathrm{бit}$	
дерева достатньо $2k\ \mathrm{бiт}$ $2^k\ \mathrm{бiт}$ $2^k-1\ \mathrm{бiт}$ $2^k+1\ \mathrm{бiт}$ $2k-1\ \mathrm{бit}$	
дерева достатньо $2k\ \mathrm{бiт}$ $2^k\ \mathrm{бiт}$ $2^k-1\ \mathrm{бiт}$ $2^k+1\ \mathrm{бiт}$ $2k-1\ \mathrm{бit}$	
дерева достатньо $ 2k \ 6i\tau \\ 2^k \ 6i\tau \\ 2^k - 1 \ 6i\tau \\ 2^k + 1 \ 6i\tau \\ 2k - 1 \ 6i\tau \\ 2k + 1 \ 6i\tau $	
дерева достатньо $2k \ \text{біт}$ $2^k \ \text{біт}$ $2^k - 1 \ \text{біт}$ $2^k + 1 \ \text{біт}$ $2k - 1 \ \text{біт}$ $2k + 1 \ \text{біт}$ $2k + 1 \ \text{біт}$	
дерева достатньо $ 2k \ 6i\tau \\ 2^k \ 6i\tau \\ 2^k - 1 \ 6i\tau \\ 2^k + 1 \ 6i\tau \\ 2k - 1 \ 6i\tau \\ 2k + 1 \ 6i\tau $	
дерева достатньо $2k \text{ біт}$ 2^k біт $2^k - 1 \text{ біт}$ $2^k + 1 \text{ біт}$ $2k - 1 \text{ біт}$ $2k - 1 \text{ біт}$ $2k + 1 \text{ біт}$	
дерева достатньо $2k \ 6i\tau$ $2^k \ 6i\tau$ $2^k - 1 \ 6i\tau$ $2^k + 1 \ 6i\tau$ $2k - 1 \ 6i\tau$ $2k + 1 \ 6i\tau$ $2k + 1 \ 6i\tau$ $4k + 1 \ 6i\tau$ $2k + 1 \ 6i\tau$ $4k + 1 \ 6i\tau$ $4k + 1 \ 6i\tau$ Hexaй $P(X, Y) = \begin{pmatrix} 0.5 & 0 \\ 0.25 & 0.25 \end{pmatrix}$, тоді $H(X, Y) = \begin{pmatrix} 0.5 & 0 \\ 0.25 & 0.25 \end{pmatrix}$, тоді $H(X, Y) = \begin{pmatrix} 0.5 & 0 \\ 0.25 & 0.25 \end{pmatrix}$, тоді $H(X, Y) = \begin{pmatrix} 0.5 & 0 \\ 0.25 & 0.25 \end{pmatrix}$	
дерева достатньо $2k \ 6 \ \text{i} \tau$ $2^k \ 6 \ \text{i} \tau$ $2^k - 1 \ 6 \ \text{i} \tau$ $2^k + 1 \ 6 \ \text{i} \tau$ $2k - 1 \ 6 \ \text{i} \tau$ $2k - 1 \ 6 \ \text{i} \tau$ $2k + 1 \ 6 \ \text{i} \tau$ $4k + 1 \ 6 \ \text{i} \tau$ $2k + 1 \ 6 \ \text{i} \tau$ $4k + 1 \ 6 \ \text{i} \tau$ $5k + 1 \ 6 \ \text{i} \tau$ $6k + 1 $	×
дерева достатньо $2k \text{ біт}$ 2^k біт $2^k - 1 \text{ біт}$ $2^k + 1 \text{ біт}$ $2k - 1 \text{ біт}$ $2k + 1 \text{ біт}$ $2k + 1 \text{ біт}$	×

Question 18

Correct

Mark 1.00 out of 1.00

Для побудови перевірної підматриці твірної матриці циклічного (k, n) коду потрібно

- одвійкові послідовності, що відповідають остачам від ділення поліномів унітарних інформаційних послідовностей, зсунутих на r=n-k розрядів вліво, на твірний поліном, записати як відповідні стовпці цієї матриці.
- одвійкові послідовності, що відповідають остачам від ділення поліномів унітарних інформаційних послідовностей, зсунутих на r=n-k розрядів вліво, на твірний поліном, записати як відповідні рядки цієї матриці.
- одвійкові послідовності, що відповідають остачам від ділення поліномів унітарних інформаційних послідовностей, зсунутих на r=n-k розрядів вправо, на твірний поліном, записати як відповідні стовпці цієї матриці.
- одвійкові послідовності, що відповідають остачам від ділення поліномів унітарних інформаційних послідовностей на твірний поліном, записати як відповідні рядки цієї матриці.
- двійкові послідовності, що відповідають остачам від ділення поліномів унітарних інформаційних послідовностей на твірний поліном записати як відповідні стовпці цієї матриці.
- двійкові послідовності, що відповідають остачам від ділення поліномів унітарних інформаційних послідовностей, зсунутих на r=n-k розрядів вправо, на твірний поліном, записати як відповідні рядки цієї матриці.

Question	1	9

Correct

Mark 1.00 out of 1.00

Значення перевірних розрядів у лінійному коді визначаються через значення інформаційних розрядів за допомогою операції:

Select one:

- а. заперечення
- b. додавання за модулем два
- с. логічного множення
- d. логічного додавання

Question 20

Partially correct

Mark 0.50 out of 1.00

Які з наведених поліномів не можуть бути поліномами циклічного (5, 8) коду?

Select one or more:

- $lacksquare a. \quad x^2 + x^4 + x^6 + x^8$
- \Box b. $1+x+x^2+x^3$
- \Box c. $1 + x + x^2$
- \Box d. $x + x^3 + x^5 + x^7$

◄ Новини

Jump to...