Project 3. 2-way set-associative Cache Design in Verilog HDL

E-mail: bsjang@ics.kaist.ac.kr / jylee@ics.kaist.ac.kr

Due date: Nov. 26, 2022

1. Project Outline

In project 3, you will implement the 2-way set-associative cache in Verilog HDL. This is an individual project.

- ✓ Do NOT use 'initial' and 'delay' statement except for testbench.
- ✓ You can use 'Icarus Verilog' if you do not have Verilog compile environment. Otherwise, you can use your compiler if you have one.

2. Specifications

- (1) Memory
 - ✓ Both the main memory and the on-chip memory are single-port synchronous RAM.
 - ✓ Little endian.
 - ✓ Data access latency

Main memory : 10 cycles
On-chip memory : 1 cycle

✓ Capacity

Main memory: 64 KB

Cache data memory: 4 KB (2 KB per 1 way excluding valid, dirty, LRU bits and tag memory)

- (2) Replacement policy
 - ✓ Least Recently Used (LRU)
- (3) Write strategy
 - ✓ Write back : use a dirty bit
 - ✓ Write allocate

(4) Data path

(5) Flow diagram for read

(6) Flow diagram for write

3. Input/Output Ports

(1) Cache controller

Do NOT modify the input and output ports of CACHE_CONTROLLER.v. If you modify any of them, it is not possible to evaluate your design. You will get the lowest grade.

The input/output ports should be

[31:0]

[31:0]

ADDR_CPU

ADDR_MEM

input

output

input		CLK	: clock		
input		RST	: reset, active high		
input	[31:0]	DATA_IN_CPU	: data from the CPU		
output	[31:0]	DATA_OUT_CPU	: data into the CPU		
input	[31:0]	DATA_IN_MEM	: data from the memory		
output	[31:0]	DATA_OUT_MEM	: data into the memory		

: data address given by CPU: data address given to memory

input	REQ_CPU	: request signal from CPU to cache
output	REQ_MEM	: request signal from cache to memory
input	nRW_CPU	: CPU's memory(cache) read/write
output	nRW_MEM	: Cache's memory read/write
output	STALL_CPU	: stall signal from cache to CPU (1: stall / 0: not stall)
input	VALID_MEM	: indicating the validity of the data from mem to cache

(2) Main memory

✓ Read timing

✓ Write timing

(3) On-chip memory

✓ Read timing

✓ Write timing

4. Attached Files

- (1) Project3_template
- ✓ CACHE_CONTROLLER.v CACHE top module:
- ✓ model.v on-chip RAM of cache controller and main memory model
- ✓ testbench.v For cache design verification
- ✓ test.f A list of all related Verilog files
- ✓ data.hex initialize the main memory (write your own data)
- ✓ init_ftram0/1.hex initialize the flag & tag on-chip RAM of the cache (all zeros)
- ✓ init_dram0/1.hex initialize the data RAM of the cache (all zeros)
- (2) Documents
- ✓ [EE511] Project3

5. Submission

- ✓ Due date: Nov. 26 (Sat.) 23:59
- ✓ All Verilog HDL source file (*.v) and a list of Verilog files (test.f)
 - A. Do not modify the name of CACHE_CONTROLLER.v and top module name

- B. File containing the top module: CACHE_CONTROLLER.v
- C. Top module name: CACHE_CONTROLLER
- ✓ Project Report Document
 - A. File format: {StudentNumber}_{YourName}_project3_report.pdf e.g.) 20221234_GildongHong_project3_report.pdf
 - B. The report should contain:
 - Explanation on your design itself and the design procedure or methodology
 - Overall block diagram of data path and control unit
 - Verification of your design
 - C. 1 column per page. No more than 5 pages.
 - D. Language: Korean / English
- √ Submit) A zip file
 - A. Zip file: ZIP all the relevant files (source code and report) and upload it to KLMS.
 - B. Zip file name: {StudentNumber}_{YourName}_project3.zip e.g.) 20221234_GildongHong_project3.zip

(Follow the format of the file name, or you will get deduction)

- ✓ If you copy other's work, you will not receive any credit.
- ✓ After due date, no more submission is permitted.