

Формальная арифметика Пеано

Определение 20.1.

Сигнатура $\Sigma_0 = \langle <^2, +^2, *^2, S^1, 0 \rangle$ является **сигнатурой арифметики Пеано**. Введем обозначения:

 $T(\Sigma_0)$ - множество термов Σ_0 .

 $F(\Sigma_0)$ - множество формул Σ_0 .

 $S(\Sigma_0)$ - множество предложений Σ_0 .

 $\{v_i \mid i \in \mathbb{N}\}$ - множество переменных.

Определение 20.2.

Гёделевской нумерацией термов и формул сигнатуры Σ_0 называется:

1)
$$\gamma(0) = c(0, 1)$$

$$\gamma(v_i) = c(1,i), \ v_i$$
 - переменная;

2)
$$\gamma(S(t)) = c(2, \gamma(t));$$

3)
$$\gamma(t+q) = c(3, c(\gamma(t), \gamma(q)));$$

4)
$$\gamma(t*q) = c(4, c(\gamma(t), \gamma(q)));$$

5)
$$\gamma(t=q) = c(5, c(\gamma(t), \gamma(q)));$$

$$6)\ \gamma(t < q) = c(6, c(\gamma(t), \gamma(q)));$$

7)
$$\gamma(\varphi \& \psi) = c(7, c(\gamma(\varphi), \gamma(\psi)));$$

8)
$$\gamma(\varphi \lor \psi) = c(8, c(\gamma(\varphi), \gamma(\psi)));$$

9)
$$\gamma(\varphi \to \psi) = c(9, c(\gamma(\varphi), \gamma(\psi)));$$

10)
$$\gamma(\neg\varphi) = c(10, \gamma(\varphi));$$

11)
$$\gamma(\exists v_i \varphi) = c(11, c(i, \gamma(\varphi)));$$

12)
$$\gamma(\forall v_i \varphi) = c(12, c(i, \gamma(\varphi))).$$

miro

1

Предложение 20.3.

Множества

$$\gamma(T(\Sigma_0)) = \{ \gamma(t) \mid t \in T(\Sigma_0) \}$$

$$\gamma(F(\Sigma_0)) = \{ \gamma(\varphi) \mid \varphi \in F(\Sigma_0) \}$$

$$\gamma(S(\Sigma_0)) = \{ \gamma(\varphi) \mid \varphi \in S(\Sigma_0) \}$$

так как у нас есть уникальные идентификкаторы, но потом ещё нужно провреять

являются прм.

Без доказательства.

Определение 20.4.

Пусть $X \subseteq T(\Sigma_0) \cup F(\Sigma_0)$. Множество X является **разрешимым**, если $\gamma(X) = \{\gamma(y) \mid y \in X\}$ - **рм**. Множество X является **перечислимым**, если $\gamma(X)$ - **рпм**.

— то есть произвольное множество термов и формул разрешимо, если множество его номеров рекурсивно

Теорема 20.5.

Для
$$\forall n \ \forall a_0 \dots a_n \in \mathbb{N} \ \exists x = p_0^{a_0} \dots p_n^{a_n}$$
 такие, что $ex(0,x) = a_0, \dots, ex(n,x) = a_n$.

Доказательство: упражнение.

Определение 20.6.

Обозначим
$$\Pi_{\Sigma_0} = \{ \varphi \in F(\Sigma_0) \mid \varphi - \text{т.и.} \}.$$

Предложение 20.7.

 Π_{Σ_0} перечислимо.

Доказательство:

Определим функцию:

Определим функцию:
$$f(x,n,y) = \begin{cases} y, \text{ если } ex(n,x) = y \text{ и } \gamma^{-1}(ex(0,x)), \dots, \gamma^{-1}(ex(n,x)) - \\ \text{последовательность формул из } F(\Sigma_0), \text{ являющаяся док-вом;} \\ \gamma(v_0 = v_0), \text{ иначе.} \end{cases}$$

ЛЕММА 20.8.

f - орф.

Без доказательства.

На основе леммы выше мы можем сказать, что $\rho f = \Pi_{\Sigma_0}$.

Данный факт тоже без доказательства.

Предложение 20.7. доказано.

Следствие 20.9.

Множество $\{\varphi \in S(\Sigma_0) \mid \varphi - \text{т.и.}\}$ перечислимо.

БЕЗ ДОКАЗАТЕЛЬСТВА.

ПРЕДЛОЖЕНИЕ 20.10.

- 1) Пусть $A\subseteq F(\Sigma_0)$, A конечно, либо разрешимо. Тогда множество всех следствий $A'=\{\varphi\in F(\Sigma_0)\mid A\rhd\varphi\}$ перечислимо.
- 2) Пусть $A\subseteq S(\Sigma_0)$, A конечно, либо разрешимо. Тогда множество $A''=\{\varphi\in S(\Sigma_0)\mid A\rhd\varphi\}$ перечислимо.

БЕЗ ДОКАЗАТЕЛЬСТВА.

Теорема 20.11.

Пусть теория $T \subseteq S(\Sigma_0)$, T - полная перечислимая теория. Тогда T разрешима.

Без доказательства.

Определение 20.12. Формальной арифметикой Пеано называется

следующая система аксиом A_0 :

аксиомы натуральных чисел

- 1. $\forall v_0 \neg (s(v_0) = 0);$
- 2. $\forall v_0 \forall v_1 ((s(v_0) = s(v_1)) \rightarrow (v_0 = v_1));$
- 3. $\forall v_0(v_0 + 0 = v_0);$
- 4. $\forall v_0 \forall v_1 (v_0 + s(v_1) = s(v_0 + v_1));$
- 5. $\forall v_0(v_0 * 0 = 0)$;
- 6. $\forall v_0 \forall v_1 (v_0 * s(v_1) = (v_0 * v_1) + v_0);$
- 7. $\forall v_0 \neg (v_0 < 0)$;
- 8. $\forall v_0 \forall v_1 ((v_0 < s(v_1)) \rightarrow ((v_0 < v_1) \lor (v_0 = v_1)));$
- 9. $\forall v_0 \forall v_1 (((v_0 < v_1) \lor (v_0 = v_1)) \rightarrow (v_0 < s(v_1)));$
- 10. $\forall v_0 \forall v_1 (\neg (v_0 = v_1) \rightarrow ((v_0 < v_1) \lor (v_1 < v_0))).$

miro

Определение 20.13.

Введем следующие обозначения:

$$\underline{0} = 0$$

$$\underline{1} = S(\underline{0})$$

.

$$\underline{n+1} = S(\underline{n}) = \underbrace{S(\dots S(\underline{0}) \dots)}_{n+1 \text{ pas}}$$

Определение 20.14.

Пусть $f: \mathbb{N}^k \to N$. Говорят, что f **представима** в A_0 , если существует формула $\varphi(v_0, \dots, v_k) \in F(\Sigma_0)$ такая, что для $\forall n_0 \dots n_k \in \mathbb{N}$ выполняется:

$$1) \ f(n_0,\ldots,n_{k-1}) = n_k \Rightarrow A_0 \vdash \varphi(\underline{n_0},\ldots,\underline{n_k}); \qquad \qquad \mathsf{f(x,y)} = \mathsf{x} + \mathsf{y}$$

2)
$$f(n_0, \dots, n_{k-1}) \neq n_k \Rightarrow A_0 \vdash \neg \varphi(\underline{n_0}, \dots, \underline{n_k})$$
. fi(x, y, z) = $\exists x \exists y \exists z (x + y = z)$

Теорема 20.11. Пусть $T \subseteq S(\Sigma_0)$. Если T — полная, перечислимая теория, то T — разрешима.

Доказательство. Пусть $T \subseteq S(\Sigma_0)$ — полная, перечислимая теория. Рассмотрим 2 случая.

- Пусть T противоречива. Тогда $T = S(\Sigma_0)$. Следовательно, $\gamma(T) = O$ ПРЕДЕЛЕНИЕ 20.4. Пусть $X\subseteq T(\Sigma_0)\cup F(\Sigma_0)$. Множество X является **разрешимым**, если $\gamma(S(\Sigma_0))$ является примитивно рекурсивным множеством. Значит, теория $T_{\gamma(X) = \{\gamma(y) \mid y \in X\}$ - рм. Множество X является перечислимым, если разрешима. *по опр.*
 - 2) Пусть T – непротиворечива. Введем обозначение $M \leftrightharpoons \gamma(T)$. Покажем, что множество M – рекурсивно.

Теория T перечислима, следовательно, множество M – рекурсивно перечислимо. Значит, существует общерекурсивная функция f такая, что

M=
ho f . Покажем, что тогда $\frac{1}{2000}$ защтита от случая если дадут предложение не из нашего множества $\chi_M(x)=\overline{sg}\,\left|f\left(\mu y\left[\chi_{\gamma(S(\Sigma_0))}(x)\cdot|f(y)-x|\cdot|f(y)-c(10,x)|=0\right]\right)-x\right|_{10.}$ $\gamma(\neg\varphi)=c(10,\gamma(\varphi));$

х не лежит во множестве 1) Пусть $x \notin \gamma(S(\Sigma_0))$. Тогда $\chi_M(x) = 0$. Имеем $\overline{sg} |f(0) - x| = 0$, так номеров предложений сигнатуры

- как $x \notin M$. Следовательно, $f(0) \neq x$.
 - найдется само предложение, соответствующее этому номеру Пусть $x \in \gamma(S(\Sigma_0))$. Тогда найдется предложение $\varphi \in S(\Sigma_0)$ такое, что $x = \gamma(\varphi)$. Рассмотрим два случая:
 - а) Пусть $\varphi \in T$. Тогда $x = \gamma(\varphi) \in M$. Следовательно, найдется такое $n \in \mathbb{N}$, что f(n) = x. n - номер предложения

Так как T непротиворечиво, $\neg \varphi \notin T$. Следовательно, с(10,х) - номер не фи $\gamma(\neg \varphi) = c(10, x) \notin M$. А это означает, что для любого $k \in \mathbb{N}$ имеет место $f(k) \neq c(10,x)$. Таким образом, существует минимальное k такое, что f(k) =x. Следовательно, $\chi_M(x) = 1$.

miro

б) Пусть $\varphi \notin T$. Тогда $x = \gamma(\varphi) \notin M$. Так как T полно, $\neg \varphi \in T$. Следовательно, $\gamma(\neg \varphi) = c(10, x) \in M$. А это означает, что найдется такое число $n \in \mathbb{N}$, что f(n) = c(10, x). Следовательно, для любого $k \in \mathbb{N}$ имеет место $f(k) \neq x$. То есть существует минимальный элемент k такой, что f(k) =c(10,x). Тогда $\chi_M(x)=0$ и $\overline{sg}|f(k)-x|=0$.

Стало быть, функция $\chi_{M}(x)$ является частично рекурсивной и, следовательно, общерекурсивной.

Таким образом, мы доказали, что множество M – рекурсивно, значит Tеория T разрешима. вкратце - простая идея : если принажлежит фи, то не принадлежит обрвтный к нему

miro

Теорема 20.11 доказана.

Теорема 20.15. Каждая общерекурсивная функция представима в A_0 .

Доказательство. Будем индукцией доказывать по построению общерекурсивных функций.

Частично-рекурсивные функции (чрф):

- а) простейшие функции являются частично-рекурсивными;
- б) функция, полученная из частично-рекурсивных функций однократным применением оператора суперпозиции, оператора примитивной рекурсии или оператора минимизации, является частич
 - в) других частично-рекурсивных функций нет.

- Простейшие функции:
 - а. Функция $O(v_0)$ представима формулой $\varphi(v_0, v_1) \leftrightharpoons (v_1 = 0)$;
 - b. Функция $S(v_0)$ представима формулой

$$\varphi(v_0, v_1) \leftrightharpoons (v_1 = s(v_0));$$

с. Функция $I_m^n(v_0,...,v_{n-1})$ представима формулой $\varphi(v_0, v_1, ..., v_n) \leftrightharpoons (v_n = v_{m-1});$

Суперпозиция: Рассмотрим функцию

по инд. предположению внутренние функции представимы

$$f(v_0, \dots, v_{n-1}) = hig(g_1(v_0, \dots, v_{n-1}), \dots, g_k(v_0, \dots, v_{n-1})ig)$$
. Пусть формулы $\varphi_1(v_0, \dots, v_n), \dots, \varphi_k(v_0, \dots, v_n)$ и $\psi(v_0, \dots, v_k)$ представляют функции g_1, \dots, g_k и h соответственно. Тогда следующая формула представляет функцию $f(v_0, \dots, v_{n-1})$:

это результаты функций д

$$\xi(v_0, \dots, v_n) \leftrightharpoons \exists v_{N+1} \dots \exists v_{N+k}$$

$$\left(\varphi_1(v_0, ..., v_{n-1}, v_{N+1}) \& \dots \& \varphi_k(v_0, ..., v_{n-1}, v_{N+k}) \& \psi(v_{N+1}, ..., v_{N+k}, \underline{v_n}) \right),$$
 где $N \leftrightharpoons \max\{l \mid v_l \text{ входит в } \varphi_1 \& \dots \& \varphi_k \& \psi\}.$ "глобальный" результат

3. Примитивная рекурсия: Рассмотрим функцию

выная рекурсия: Рассмотрим функцию
$$\begin{cases} f(v_0,...,v_{n-1},0) = g(v_0,...,v_{n-1}); \\ f(v_0,...,v_{n-1},v_{n+1}) = h(v_0,...,v_{n-1},v_n,f(v_0,...,v_n)). \end{cases}$$

$$\begin{cases} b) \text{ Оператор примитивной рекурсии. Рассмотрим функции } g(x_1,...,x_n) & h(x_1,...,x_n,y,z). \\ f(x_1,...,x_n,0) = g(x_1,...,x_n); \\ f(x_1,...,x_n,y+1) = h(x_1,...,x_n,y,f(x_1,...,x_n,y)). \end{cases}$$

$$\begin{cases} f(v_0,...,v_{n-1},v_{n+1}) = h(v_0,...,v_n,f(v_0,...,v_n)). \end{cases}$$

$$\begin{cases} f(v_0,...,v_{n-1},v_n) = g(x_1,...,x_n,y,z). \\ f(x_1,...,x_n,y+1) = h(x_1,...,x_n,y,f(x_1,...,x_n,y)). \end{cases}$$

Пусть формулы $\varphi(v_0,...,v_n)$ и $\psi(v_0,...,v_{n+2})$ представляют функции g и hсоответственно. Пусть $N \leftrightharpoons \max\{l \mid v_{\ell}\}$ входит в $\varphi \& \psi\}$ и

$$v_{N+1} = p_0^{f(v_0,\dots,v_{n-1},0)} \cdot \dots \cdot p_{v_n}^{f(v_0,\dots,v_{n-1},v_n)}$$
. кодируем результаты всех вызовов функции

Тогда следующая формула представляет функцию $f(v_0, ..., v_n)$:

$$\xi(v_0,...,v_{n+1}) \leftrightarrows$$
 $(v_0,...,v_{n+1}) = 0$ $(v_0,...,v_{n+1}) + 0$ $(v_0,...,v_{n+1},v_{n+1},v_{n+1}) + 0$ $(v_0,...,v_{n-1},v_{n+2},ex(v_{n+2},v_{n+1}),ex(v_{n+2}+1,v_{n+1})))$ $(v_0,...,v_{n-1},v_{n+2},ex(v_{n+2},v_{n+1}),ex(v_{n+2}+1,v_{n+1})))$ $(v_0,...,v_{n-1},v_{n+2},ex(v_{n+2},v_{n+1}),ex(v_{n+2}+1,v_{n+1})))$ $(v_0,...,v_{n+1},v_{n+2},ex(v_{n+2},v_{n+1}),ex(v_{n+2}+1,v_{n+1})))$ $(v_0,...,v_{n+1},v_{n+2},ex(v_{n+2},v_{n+1}),ex(v_{n+2}+1,v_{n+1})))$ $(v_0,...,v_{n+1},v_{n+2},ex(v_{n+2},v_{n+1}),ex(v_{n+2}+1,v_{n+1})))$ $(v_0,...,v_{n+1},v_{n+2},ex(v_{n+2},v_{n+1}),ex(v_{n+2}+1,v_{n+1}))$

4. Минимизация: Рассмотрим функцию

$$f(v_0, ..., v_{n-1}) = \mu v_n[g(v_0, ..., v_{n-1}, v_n) = 0].$$

Пусть формула $\varphi(v_0,...,v_{n+1})$ представляют функцию g. Тогда следующая формула представляет функцию $f(v_0,...,v_{n-1})$: неопределённость не рассматриваем т.к. теорема для орф

в противном случае. Тогда говорят, что функция f получена из функции g применением оператора минимизации. Это обозначается так: $f(x_1,...,x_n) = \mu y[g(x_1,...,x_n,y) = 0].$

Теорема 20.16 (Геделя о неразрешимости). Пусть $T \subseteq S(\Sigma_0)$, $A_0 \subseteq T$ и T — непротиворечивая теория. Тогда T — неразрешима.

Это означает, что система аксиом A_0 наследственно неразрешима, то есть, любая содержащая её непротиворечивая теория является неразрешимой.

Доказательство. Будем доказывать от противного. Допустим, что теория T_{Y} $Y \subseteq T(\Sigma_0) \cup F(\Sigma_0)$. Множество X является разрешимым, если T – разрешима. Тогда множество номеров $M=\gamma(T)$ – рекурсивно. $\gamma(X)$ - рим. Следовательно, характеристическая функция χ_{M} является общерекурсивной. Определим функцию берёт формулу х и в ней все вхождения v0 меняет на у и обратно отдаёт номер

$$f(x,y) \leftrightharpoons \begin{cases} \gamma[\gamma^{-1}(x)]_{\underline{y}}^{v_0}, & x \in \gamma(F(\Sigma_0)); \\ 0, & x \notin \gamma(F(\Sigma_0)). \end{cases}$$

Функция f(x,y) всюду определена, и так как множество номеров $\gamma(F(\Sigma_0))$ по 20.3 примитивно рекурсивно, то и функция f(x, y) будет примитивно рекурсивной.

Пусть $g(x,y) \leftrightharpoons \chi_M(f(x,y))$. Очевидно, что функция g(x,y) является общерекурсивной. Следовательно, она представима в арифметике Пеано. Пусть формула $\varphi(v_0, v_1, v_2)$ представляет функцию $g(v_0, v_1)$. Положим $n \leftrightharpoons$ $\gamma(\varphi(v_0, v_0, 0))$. Тогда имеем п - номер формулы которая представляет функцию которая явл. характеристич. ф-ей для f которая преобразовывает одну формулу в другую

 $f(n,y) = \gamma \left(\left[\varphi(v_0, v_0, 0) \right]_y^{v_0} \right) = \gamma \left(\varphi\left(\underline{y}, \underline{y}, 0 \right) \right).$

Тогда $f(n,n) = \gamma(\varphi(\underline{n},\underline{n},0))$. И $g(n,n) = \chi_M(f(n,n))$.

что вообще вернёт характеристическая функция?

м - множество номеров наших предложений

а потом, всю эту матрёшку суём обратно в f

Возможны два случая для значения g(n,n).

хотим понять лежит ли эта фигня в М $\gamma(arphi(\underline{n},\underline{n},0))$ Пусть $g(n,n) = \chi_M(f(n,n)) = 1$. Тогда, так как $g(n,n) \neq 0$, имеем

2) $f(n_0, \dots, n_{k-1}) \neq n_k \Rightarrow A_0 \vdash \neg \varphi(\underline{n_0}, \dots, \underline{n_k})$. $A_0 \vdash \neg \varphi(\underline{n},\underline{n},0)$. А так как $A_0 \subseteq T$, имеем $T \vdash \neg \varphi(\underline{n},\underline{n},0)$. Следовательно, $\neg \varphi(\underline{n},\underline{n},0) \in T$. И, в силу того, что T непротиворечиво, получим, что $\varphi(\underline{n},\underline{n},0) \notin T$. Следовательно, $\gamma(\varphi(\underline{n},\underline{n},0)) \notin M$, т.е. $\chi_M(f(n,n)) =$ $\chi_M\left(\gamma\left(\varphi(\underline{n},\underline{n},0)\right)\right)=0.$ А это противоречит нашему предположению, что $\chi_M(f(n,n)) = 1.$

2. Пусть $g(n,n) = \chi_M (f(n,n)) = 0$. Тогда $\chi_M (\gamma (\varphi(\underline{n},\underline{n},0))) = 0$. Следовательно, $\gamma (\varphi(\underline{n},\underline{n},0)) \notin M$, т. е. $\varphi(\underline{n},\underline{n},0) \notin T$. Тогда, в силу того, что T выводилось бы из A0 выводилось бы из T а эта штука говорит нам что g(n,n) = 0, и если она НЕ выводил – неприментиво и $A_0 \subseteq T$, получим $A_0 \nvdash \varphi(\underline{n},\underline{n},0)$. Следовательно, $g(n,n) \neq 0$

пришли к противоречию, предположив, что функция общерекурсивна. Следовательно, множество номеров М рекурсивным, а теория T — неразрешима.

Теорема 20.16 доказана.

0, и мы опять пришли к противоречию.

Определение 20.4.

 $\gamma(X) = \{\gamma(y) \mid y \in X\}$ - рм. Множество X является перечислимым, если

Mножество $A\subseteq \mathbb{N}^k$ называется рекурсивным (примитивно рекур-

$$X_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$
 является орф (прф).

miro

Теорема 20.17 (Черча о неразрешимости). Множество ИП $_{\Sigma_0}$ теорем логики предикатов сигнатуры Σ_0 является неразрешимым. (включаем = в сигнатуру по умолчанию) Доказательство. Введем обозначения: Т - мн-во т.и. предложений сигма_0 если какое-то преложение выводимо - оно выводимо из Аксиом $T \leftrightharpoons \{\varphi \in S(\Sigma_0)| \ \vdash \varphi\}, \ T_0 \leftrightharpoons \{\varphi \in S(\Sigma_0)| \ A_0 \vdash \varphi\} \ \mathsf{H} \ \psi \leftrightharpoons \&_{\varphi \in A_0} \varphi.$ Очевидно, что множества предложений T и T_0 являются теориями. т.к. если они просто выводятся, то и в рамках этой теории выводятся

— У сигнатура сигма_0 и осн. множество натур. числа Рассмотрим стандартную модель натуральных чисел => Yueto Nty => Zueto: NXu $\mathfrak{N}=\langle \mathbb{N};<,+,*,s,0 \rangle$. Очевидно, что $\mathfrak{N}\vDash A_0$. Тогда теория T_0 непротиворечива. Кроме того, $A_0 \subseteq T_0$.

Следовательно, по теореме Геделя о неразрешимости, получим, что теория T_0 (по теореме о корректности СИП) ТЕОРЕМА 14.19.(о корректности секвенционального исчислени предикатов) Если сег неразрешима. (а мы хотим получить неразрешимость Т) т.е. если бы была т.и. была бы и док С другой стороны, имеем $\varphi \in T_0 \iff A_0 \vdash \varphi \iff \psi \vdash \varphi \iff \vdash (\psi \to \varphi) \iff (\psi \to \varphi) \in T_\gamma$ $\Gamma \vdash (\varphi \rightarrow \psi)$ Пусть $m \leftrightharpoons \gamma(\psi)$ и $n \leftrightharpoons \gamma(\varphi)$. Тогда $c(9,c(m,n)) = \gamma(\psi \to \varphi)$. miro Следовательно, $\chi_{\gamma(T_0)}(n) = \chi_{\gamma(T)} \left(c \left(9, c(m, n) \right) \right)$. 9) $\gamma(\varphi \to \psi) = c(9, c(\gamma(\varphi), \gamma(\psi)));$ Будем доказывать от противного. Допустим, что теория T – разрешима. $\frac{\text{no onp.}}{\text{Тогда}}$ Следовательно, характеристическая функция $\chi_{\gamma(T_0)}$ так же общерекурсивна. А значит, теория T_0 разрешима. Мы пришли к противоречию. Определение 20.4. Определение 19.2. Пусть $X\subseteq T(\Sigma_0)\cup F(\Sigma_0)$. Множество X является разрешимым, если Множество $A\subseteq\mathbb{N}^k$ называется рекурсивным (примитивно рекур- $\gamma(X) = \{\gamma(y) \mid y \in X\}$ - рм. Множество X является перечислимым, если сивным), если его характеристическая функция $\gamma(X)$ - рпм. то есть произвольное множество термов и формул разрешимо, **Теорема 20.19** (Геделя о неполноте). Пусть $T \subseteq S(\Sigma_0)$, $A_0 \subseteq T$ и T перечислимая, непротиворечивая теория, тогда T не полна. То есть, система **Теорема 20.11.** Пусть $T\subseteq S(\Sigma_0)$. Если T — полная, перечислимая теория, аксиом A_0 не имеет непротиворечивых перечислимых пополнений. то Т – разрешима

Доказательство. Допустим теория T полна. Тогда, по Предложению

20.11, теория T разрешима. А это противоречит Теореме Геделя о неразрешимости. Следовательно, теория T — не полна.

Теорема 20.19 доказана.

Теорема 20.16 (Геделя о неразрешимости). Пусть $T\subseteq S(\Sigma_0),\ A_0\subseteq T$ и T — непротиворечивая теория. Тогда T — неразрешима.

неформальный смысл: мы до бесконечности можем добавлять туда новые вещи и дополнять теорию, она никогда не станет полной, будут предложения которые ни сами не верны, ни их отрицания (пример: континуум гипотеза)?