# Assignment-6 Implement SGD for linear regression.

## 1. Loading the Boston price data set & generating train & test dataframes

#### In [1]:

```
import warnings
warnings.filterwarnings("ignore")
from random import seed
from random import randrange
from csv import reader
from math import sqrt
from sklearn import preprocessing
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDRegressor
from sklearn.metrics import mean_squared_error
```

#### In [2]:

```
from sklearn.datasets import load_boston
boston = load_boston()
```

#### In [3]:

```
print(boston.data.shape)
print(boston.feature_names)
print(boston.target)
```

```
(506, 13)
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
 'B' 'LSTAT']
     21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9 21.7 20.4
 18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8
18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9 20. 21.
                                                  24.7 30.8 34.9 26.6
 25.3 24.7 21.2 19.3 20. 16.6 14.4 19.4 19.7 20.5 25.
                                                       23.4 18.9 35.4
24.7 31.6 23.3 19.6 18.7 16.
                             22.2 25. 33. 23.5 19.4 22.
                                                           17.4 20.9
 24.2 21.7 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28. 23.9 24.8 22.9
 23.9 26.6 22.5 22.2 23.6 28.7 22.6 22.
                                        22.9 25.
                                                  20.6 28.4 21.4 38.7
43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8 19.4 21.7 22.8
18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22. 20.3 20.5 17.3 18.8 21.4
15.7 16.2 18. 14.3 19.2 19.6 23. 18.4 15.6 18.1 17.4 17.1 13.3 17.8
     14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4
     15.6 13.1 41.3 24.3 23.3 27.
                                   50.
                                        50.
                                            50.
                                                  22.7 25.
                                                            50.
23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2
37.9 32.5 26.4 29.6 50.
                         32. 29.8 34.9 37. 30.5 36.4 31.1 29.1 50.
 33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5 50.
                                             22.6 24.4 22.5 24.4 20.
 21.7 19.3 22.4 28.1 23.7 25. 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1
44.8 50. 37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29. 24.
               20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
 23.7 23.3 22.
 29.6 42.8 21.9 20.9 44.
                         50.
                              36.
                                   30.1 33.8 43.1 48.8 31.
                                                            36.5 22.8
30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32. 33.2 33.1 29.1 35.1
45.4 35.4 46. 50. 32.2 22. 20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9
21.7 28.6 27.1 20.3 22.5 29.
                              24.8 22.
                                        26.4 33.1 36.1 28.4 33.4 28.2
22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21.
                                                            23.8 23.1
20.4 18.5 25. 24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
19.5 18.5 20.6 19.
                   18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6
 22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25.
                                                       19.9 20.8 16.8
21.9 27.5 21.9 23.1 50. 50.
                             50.
                                   50.
                                        50.
                                             13.8 13.8 15.
                                                           13.9 13.3
13.1 10.2 10.4 10.9 11.3 12.3 8.8 7.2 10.5
                                             7.4 10.2 11.5 15.1 23.2
 9.7 13.8 12.7 13.1 12.5 8.5
                              5.
                                    6.3
                                        5.6
                                              7.2 12.1
                                                       8.3
                                                            8.5
 11.9 27.9 17.2 27.5 15.
                         17.2 17.9 16.3
                                        7.
                                                  7.5 10.4
                                              7.2
                                                            8.8
 16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11.
                                              9.5 14.5 14.1 16.1 14.3
11.7 13.4 9.6 8.7
                     8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6
          13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20.
 14.1 13.
                                                            16.4 17.7
 19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3
 16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7.
 8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
 22.
     11.9]
```

#### In [4]:

```
import pandas as pd
bos = pd.DataFrame(boston.data)
print(bos.head())
        0
               1
                    2
                         3
                                4
                                       5
                                             6
                                                     7
                                                          8
                                                                      10
\
0
  0.00632
           18.0
                 2.31
                       0.0
                           0.538 6.575 65.2 4.0900
                                                             296.0
                                                                    15.3
                                                        1.0
1
  0.02731
            0.0
                 7.07
                       0.0
                            0.469
                                   6.421
                                          78.9 4.9671
                                                        2.0
                                                             242.0
                                                                    17.8
2
  0.02729
            0.0
                 7.07
                       0.0
                            0.469
                                   7.185
                                          61.1 4.9671
                                                        2.0
                                                            242.0
                                                                    17.8
3 0.03237
                 2.18
                            0.458
                                   6.998
                                          45.8
                                                             222.0
                                                                    18.7
            0.0
                       0.0
                                               6.0622
                                                        3.0
  0.06905
            0.0
                 2.18
                       0.0
                            0.458
                                   7.147
                                          54.2 6.0622
                                                        3.0
                                                             222.0
                                                                    18.7
       11
            12
  396.90 4.98
0
1
  396.90
          9.14
2
  392.83 4.03
3 394.63 2.94
  396.90 5.33
In [5]:
bos.columns.values
Out[5]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int64)
In [6]:
bos['PRICE'] = boston.target
In [7]:
bos.columns.values
Out[7]:
```

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 'PRICE'], dtype=object)

#### In [8]:

bos.head(10)

Out[8]:

|   | 0       | 1    | 2    | 3   | 4     | 5     | 6     | 7      | 8   | 9     | 10   | 11     | 12    | Ī |
|---|---------|------|------|-----|-------|-------|-------|--------|-----|-------|------|--------|-------|---|
| 0 | 0.00632 | 18.0 | 2.31 | 0.0 | 0.538 | 6.575 | 65.2  | 4.0900 | 1.0 | 296.0 | 15.3 | 396.90 | 4.98  | : |
| 1 | 0.02731 | 0.0  | 7.07 | 0.0 | 0.469 | 6.421 | 78.9  | 4.9671 | 2.0 | 242.0 | 17.8 | 396.90 | 9.14  | Ŀ |
| 2 | 0.02729 | 0.0  | 7.07 | 0.0 | 0.469 | 7.185 | 61.1  | 4.9671 | 2.0 | 242.0 | 17.8 | 392.83 | 4.03  | Ŀ |
| 3 | 0.03237 | 0.0  | 2.18 | 0.0 | 0.458 | 6.998 | 45.8  | 6.0622 | 3.0 | 222.0 | 18.7 | 394.63 | 2.94  | Ŀ |
| 4 | 0.06905 | 0.0  | 2.18 | 0.0 | 0.458 | 7.147 | 54.2  | 6.0622 | 3.0 | 222.0 | 18.7 | 396.90 | 5.33  | Ŀ |
| 5 | 0.02985 | 0.0  | 2.18 | 0.0 | 0.458 | 6.430 | 58.7  | 6.0622 | 3.0 | 222.0 | 18.7 | 394.12 | 5.21  |   |
| 6 | 0.08829 | 12.5 | 7.87 | 0.0 | 0.524 | 6.012 | 66.6  | 5.5605 | 5.0 | 311.0 | 15.2 | 395.60 | 12.43 | Ŀ |
| 7 | 0.14455 | 12.5 | 7.87 | 0.0 | 0.524 | 6.172 | 96.1  | 5.9505 | 5.0 | 311.0 | 15.2 | 396.90 | 19.15 | : |
| 8 | 0.21124 | 12.5 | 7.87 | 0.0 | 0.524 | 5.631 | 100.0 | 6.0821 | 5.0 | 311.0 | 15.2 | 386.63 | 29.93 |   |
| 9 | 0.17004 | 12.5 | 7.87 | 0.0 | 0.524 | 6.004 | 85.9  | 6.5921 | 5.0 | 311.0 | 15.2 | 386.71 | 17.10 | [ |

In [9]:

```
bos['PRICE'].describe()
```

#### Out[9]:

count 506.000000 22.532806 mean std 9.197104 5.000000 min 25% 17.025000 50% 21.200000 75% 25.000000 max 50.000000

Name: PRICE, dtype: float64

#### In [10]:

```
X=bos.drop('PRICE', axis = 1)
Y = bos['PRICE']
```

## 1.1 Splitting the data

#### In [11]:

```
# splitting the data frame into train & test
import sklearn
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.33, random_stat
e = 5)
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)

(339, 13)
(167, 13)
(339,)
(167,)
```

#### 1.2 Standardizing the train & test data

#### In [23]:

```
#standardizing Xi's
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
scaler1 = StandardScaler()
scaler1.fit(X_train)
X_train_std=scaler1.transform(X_train)
X_test_std=scaler1.transform(X_test)

print("After Standardization")
print(X_train_std.shape)
print(X_test_std.shape)
After Standardization
```

After Standardization (339, 13) (167, 13)

#### In [24]:

```
#standardizing Yi's
from sklearn.preprocessing import StandardScaler
scaler2 = StandardScaler()
scaler2.fit(Y_train.values.reshape(-1,1))
Y_train_std=scaler2.transform((Y_train).values.reshape(-1,1))
Y_test_std=scaler2.transform((Y_test).values.reshape(-1,1))
print("After Standardization")
print(Y_train_std.shape)
print(Y_test_std.shape)
```

After Standardization (339, 1) (167, 1)

#### 1.2.1 Creating dataframes for train & test data using standardized values

#### 1.2.1.1 To create train\_data

#### In [25]:

#### Out[25]:

|   | CRIM      | ZN        | INDUS     | CHAS      | NOX       | RM        | AGE       | D       |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| 0 | 0.911839  | -0.502419 | 1.072305  | -0.256978 | 1.633548  | 0.486034  | 0.962774  | -0.8234 |
| 1 | -0.411727 | -0.502419 | -1.129795 | -0.256978 | -0.552451 | 1.028078  | 0.668619  | -0.1832 |
| 2 | 0.124583  | -0.502419 | 1.072305  | -0.256978 | 1.441946  | -3.913414 | 0.725324  | -1.0759 |
| 3 | -0.406208 | 0.839388  | -0.901940 | -0.256978 | -1.083710 | 0.097426  | -0.515087 | 1.60050 |
| 4 | 0.021742  | -0.502419 | 1.072305  | -0.256978 | 1.398401  | 0.123238  | 0.743044  | -0.6051 |

#### In [26]:

```
#create df for Y_train data
df2=pd.DataFrame(Y_train_std, columns=['PRICE'])
df2.head()
```

#### Out[26]:

|   | PRICE     |
|---|-----------|
| 0 | -1.022679 |
| 1 | 0.118958  |
| 2 | 0.555465  |
| 3 | -0.037738 |
| 4 | -0.541401 |

#### In [27]:

#concatenate df1 & df2 to get train\_data
train\_data=pd.concat([df1,df2],axis=1)
train\_data.head()

Out[27]:

|   | CRIM      | ZN        | INDUS     | CHAS      | NOX       | RM        | AGE       | D       |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| 0 | 0.911839  | -0.502419 | 1.072305  | -0.256978 | 1.633548  | 0.486034  | 0.962774  | -0.8234 |
| 1 | -0.411727 | -0.502419 | -1.129795 | -0.256978 | -0.552451 | 1.028078  | 0.668619  | -0.1832 |
| 2 | 0.124583  | -0.502419 | 1.072305  | -0.256978 | 1.441946  | -3.913414 | 0.725324  | -1.0759 |
| 3 | -0.406208 | 0.839388  | -0.901940 | -0.256978 | -1.083710 | 0.097426  | -0.515087 | 1.60050 |
| 4 | 0.021742  | -0.502419 | 1.072305  | -0.256978 | 1.398401  | 0.123238  | 0.743044  | -0.6051 |

In [28]:

train\_data.shape

Out[28]:

(339, 14)

In [29]:

train\_data.shape[0]

Out[29]:

339

#### 1.2.1.2 To create test\_data

#### In [30]:

#### Out[30]:

|   | CRIM      | ZN        | INDUS     | CHAS      | NOX       | RM        | AGE       | D       |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| 0 | -0.372923 | -0.502419 | -0.711561 | -0.256978 | -0.421814 | 2.509379  | 0.675707  | -0.2849 |
| 1 | -0.414165 | 3.075732  | -0.898942 | -0.256978 | -1.231765 | 0.487468  | -1.560575 | 0.65338 |
| 2 | -0.412891 | -0.502419 | -1.129795 | -0.256978 | -0.552451 | 0.182031  | -0.047275 | -0.3458 |
| 3 | 0.905605  | -0.502419 | 1.072305  | -0.256978 | 1.006488  | -1.984712 | 1.154151  | -1.2926 |
| 4 | -0.392026 | 0.392119  | -0.597633 | 3.891382  | -0.770180 | 2.008920  | -0.554071 | 0.28308 |

#### In [31]:

```
#create df for Y_test data
df4=pd.DataFrame(Y_test_std, columns=['PRICE'])
df4.head()
```

#### Out[31]:

|   | PRICE     |
|---|-----------|
| 0 | 1.685909  |
| 1 | 0.600236  |
| 2 | 0.007032  |
| 3 | -0.977908 |
| 4 | 1.417289  |

#### In [32]:

```
#concatenate df3 & df4 to get test_data
test_data=pd.concat([df3,df4],axis=1)
test_data.head()
```

Out[32]:

|   | CRIM      | ZN        | INDUS     | CHAS      | NOX       | RM        | AGE       | D       |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| 0 | -0.372923 | -0.502419 | -0.711561 | -0.256978 | -0.421814 | 2.509379  | 0.675707  | -0.2849 |
| 1 | -0.414165 | 3.075732  | -0.898942 | -0.256978 | -1.231765 | 0.487468  | -1.560575 | 0.65338 |
| 2 | -0.412891 | -0.502419 | -1.129795 | -0.256978 | -0.552451 | 0.182031  | -0.047275 | -0.3458 |
| 3 | 0.905605  | -0.502419 | 1.072305  | -0.256978 | 1.006488  | -1.984712 | 1.154151  | -1.2926 |
| 4 | -0.392026 | 0.392119  | -0.597633 | 3.891382  | -0.770180 | 2.008920  | -0.554071 | 0.28308 |

```
In [33]:
test_data.shape
Out[33]:
(167, 14)
```

## 2. Implementing own version of SGD

Reference: <a href="https://machinelearningmastery.com/implement-linear-regression-stochastic-gradient-descent-scratch-python/">https://machinelearningmastery.com/implement-linear-regression-stochastic-gradient-descent-scratch-python/</a>)

#### 2.1 To find best coefficients from Train data

```
In [34]:
```

```
# Make a prediction with coefficients
def predict(row, coefficients):
    yhat = coefficients[0]
    for i in range(len(row)-1):
        yhat += coefficients[i + 1] * row[i]
    return yhat
```

#### In [35]:

```
# Estimate linear regression coefficients for train data using stochastic gradient desc
ent
def coefficients_sgd(train, l_rate, n_epoch):
    MSE_list=[]
    coef = [0.0 for i in range(14)]
    for epoch in range(n_epoch):
        sum_error = 0
        for row in (train.values):
            yhat = predict(row, coef)
            error = yhat - row[-1]
            sum_error += error**2
            coef[0] = coef[0] - 1_rate * error #corresponds to b0 or w0
            for i in range(len(row)-1):
                coef[i + 1] = coef[i + 1] - l_rate * error * row[i] #corresponds to bi
or wi
        print('For epoch=%d:, lrate=%.8f error=%.3f' % (epoch,l_rate,((sum_error)/train
_data.shape[0])))
        1_rate=1_rate/2;
        MSE_list.append((sum_error)/(train_data.shape[0]))
    return coef, MSE_list
# Calculate coefficients
dataset = train_data
1_{\text{rate}} = 0.01
n_{epoch} = 100
coef, MSE_list = coefficients_sgd(dataset, l_rate, n_epoch)
print(coef)
```

```
For epoch=0:, lrate=0.01000000 error=0.357
For epoch=1:, lrate=0.00500000 error=0.280
For epoch=2:, lrate=0.00250000 error=0.266
For epoch=3:, lrate=0.00125000 error=0.259
For epoch=4:, 1rate=0.00062500 error=0.255
For epoch=5:, lrate=0.00031250 error=0.253
For epoch=6:, lrate=0.00015625 error=0.252
For epoch=7:, lrate=0.00007813 error=0.252
For epoch=8:, 1rate=0.00003906 error=0.252
For epoch=9:, lrate=0.00001953 error=0.251
For epoch=10:, lrate=0.00000977 error=0.251
For epoch=11:, lrate=0.00000488 error=0.251
For epoch=12:, lrate=0.00000244 error=0.251
For epoch=13:, lrate=0.00000122 error=0.251
For epoch=14:, lrate=0.00000061 error=0.251
For epoch=15:, lrate=0.00000031 error=0.251
For epoch=16:, lrate=0.00000015 error=0.251
For epoch=17:, lrate=0.00000008 error=0.251
For epoch=18:, lrate=0.00000004 error=0.251
For epoch=19:, lrate=0.00000002 error=0.251
For epoch=20:, lrate=0.00000001 error=0.251
For epoch=21:, lrate=0.00000000 error=0.251
For epoch=22:, lrate=0.00000000 error=0.251
For epoch=23:, lrate=0.00000000 error=0.251
For epoch=24:, lrate=0.00000000 error=0.251
For epoch=25:, lrate=0.00000000 error=0.251
For epoch=26:, lrate=0.00000000 error=0.251
For epoch=27:, lrate=0.00000000 error=0.251
For epoch=28:, lrate=0.00000000 error=0.251
For epoch=29:, lrate=0.00000000 error=0.251
For epoch=30:, lrate=0.00000000 error=0.251
For epoch=31:, lrate=0.00000000 error=0.251
For epoch=32:, lrate=0.00000000 error=0.251
For epoch=33:, lrate=0.00000000 error=0.251
For epoch=34:, lrate=0.00000000 error=0.251
For epoch=35:, lrate=0.00000000 error=0.251
For epoch=36:, lrate=0.00000000 error=0.251
For epoch=37:, lrate=0.00000000 error=0.251
For epoch=38:, lrate=0.00000000 error=0.251
For epoch=39:, lrate=0.00000000 error=0.251
For epoch=40:, lrate=0.00000000 error=0.251
For epoch=41:, lrate=0.00000000 error=0.251
For epoch=42:, lrate=0.00000000 error=0.251
For epoch=43:, lrate=0.00000000 error=0.251
For epoch=44:, lrate=0.00000000 error=0.251
For epoch=45:, lrate=0.00000000 error=0.251
For epoch=46:, lrate=0.00000000 error=0.251
For epoch=47:, lrate=0.00000000 error=0.251
For epoch=48:, lrate=0.00000000 error=0.251
For epoch=49:, lrate=0.00000000 error=0.251
For epoch=50:, lrate=0.00000000 error=0.251
For epoch=51:, lrate=0.00000000 error=0.251
For epoch=52:, lrate=0.00000000 error=0.251
For epoch=53:, lrate=0.00000000 error=0.251
For epoch=54:, lrate=0.00000000 error=0.251
For epoch=55:, lrate=0.00000000 error=0.251
For epoch=56:, lrate=0.00000000 error=0.251
For epoch=57:, lrate=0.00000000 error=0.251
For epoch=58:, lrate=0.00000000 error=0.251
For epoch=59:, lrate=0.00000000 error=0.251
For epoch=60:, lrate=0.00000000 error=0.251
```

```
For epoch=61:, lrate=0.00000000 error=0.251
For epoch=62:, lrate=0.00000000 error=0.251
For epoch=63:, lrate=0.00000000 error=0.251
For epoch=64:, lrate=0.00000000 error=0.251
For epoch=65:, lrate=0.00000000 error=0.251
For epoch=66:, lrate=0.00000000 error=0.251
For epoch=67:, lrate=0.00000000 error=0.251
For epoch=68:, lrate=0.00000000 error=0.251
For epoch=69:, lrate=0.00000000 error=0.251
For epoch=70:, lrate=0.00000000 error=0.251
For epoch=71:, lrate=0.00000000 error=0.251
For epoch=72:, lrate=0.00000000 error=0.251
For epoch=73:, lrate=0.00000000 error=0.251
For epoch=74:, lrate=0.00000000 error=0.251
For epoch=75:, lrate=0.00000000 error=0.251
For epoch=76:, lrate=0.00000000 error=0.251
For epoch=77:, lrate=0.00000000 error=0.251
For epoch=78:, lrate=0.00000000 error=0.251
For epoch=79:, lrate=0.00000000 error=0.251
For epoch=80:, lrate=0.00000000 error=0.251
For epoch=81:, lrate=0.00000000 error=0.251
For epoch=82:, lrate=0.00000000 error=0.251
For epoch=83:, lrate=0.00000000 error=0.251
For epoch=84:, lrate=0.00000000 error=0.251
For epoch=85:, lrate=0.00000000 error=0.251
For epoch=86:, lrate=0.00000000 error=0.251
For epoch=87:, lrate=0.00000000 error=0.251
For epoch=88:, lrate=0.00000000 error=0.251
For epoch=89:, lrate=0.00000000 error=0.251
For epoch=90:, lrate=0.00000000 error=0.251
For epoch=91:, lrate=0.00000000 error=0.251
For epoch=92:, lrate=0.00000000 error=0.251
For epoch=93:, lrate=0.00000000 error=0.251
For epoch=94:, lrate=0.00000000 error=0.251
For epoch=95:, lrate=0.00000000 error=0.251
For epoch=96:, lrate=0.00000000 error=0.251
For epoch=97:, lrate=0.00000000 error=0.251
For epoch=98:, lrate=0.00000000 error=0.251
For epoch=99:, lrate=0.00000000 error=0.251
[0.009077332087515743, -0.13781089229710045, 0.06235467361715586, -0.06610
829067584187, 0.03282518890559946, -0.09966629740611256, 0.351165715732349
56, -0.05186144061840854, -0.24722673627286096, 0.14194842039861835, -0.07
707901958214271, -0.2278706710881424, 0.10383646506196041, -0.345892818811
7475]
```

## 2.2 Plotting Epochs vs Mean squared error(MSE)

#### In [36]:

```
#Plot of epochs vs Mean squared error

plt.plot(range(0,100), MSE_list)
plt.xlabel("Epochs")
plt.ylabel("MSE")
plt.title("Epochs vs MSE- SGD Implemented")
plt.show()
```



For epoch=0:, lrate=0.01000000 error=0.357

#### In [37]:

```
# To get the coefficients when there is not much of change in the error
dataset = train_data
l_rate = 0.01
n_epoch = 7
coef,MSE_list = coefficients_sgd(dataset, l_rate, n_epoch)
print(coef)
```

```
For epoch=1:, lrate=0.00500000 error=0.280
For epoch=2:, lrate=0.00250000 error=0.266
For epoch=3:, lrate=0.00125000 error=0.259
For epoch=4:, lrate=0.00062500 error=0.255
For epoch=5:, lrate=0.00031250 error=0.253
For epoch=6:, lrate=0.00015625 error=0.252
[0.009558946531683554, -0.13818718767629987, 0.06243946570609928, -0.06653
276256328082, 0.033085987060484955, -0.09943414546086045, 0.35178301798939
13, -0.05210974376059008, -0.24617355920767672, 0.14098947216684204, -0.07
69546176730711, -0.22803779179897943, 0.10347864673326172, -0.345793820987
20907]
```

```
In [38]:
```

```
coefficients_test=coef #assigning the best coefficients that are to be used for testing
purpose
coefficients_test
Out[38]:
[0.009558946531683554,
 -0.13818718767629987,
0.06243946570609928,
 -0.06653276256328082
 0.033085987060484955,
 -0.09943414546086045,
0.3517830179893913,
 -0.05210974376059008,
 -0.24617355920767672,
0.14098947216684204,
 -0.0769546176730711,
 -0.22803779179897943,
 0.10347864673326172,
 -0.34579382098720907]
```

### 2.3 Applying the best coefficients on test data

#### In [110]:

#### In [111]:

```
# Applying best learning rate & coefficients on test data

dataset = test_data
l_rate = 0.0002

MSE,pred = test_sgd(dataset, l_rate,coefficients_test)
print(f'The MSE for test data using custom implemented SGD is:{MSE}')
```

The MSE for test data using custom implemented SGD is:0.3678398415588903

## 2.4 Converting standardized outputs to original outputs using inverse\_transform attribute

#### In [ ]:

```
sq_error= [i[0] for i in ((act_or-pred_or)**2)]
#print(sq_error)
MSE=sum(sq_error)/Y_test_std.shape[0]
print(f'The MSE for original test data using sklearn version of SGD is:{MSE}')
```

#### In [116]:

```
pred_or=scaler2.inverse_transform(pred)
pred_or=pred_or.reshape(-1,1)

act_or=scaler2.inverse_transform(Y_test_std)

sq_error= [i[0] for i in ((act_or-pred_or)**2)] #using list comprehension

MSE=sum(sq_error)/Y_test_std.shape[0]
print(f'The MSE for original test data using custom implemented SGD is:{MSE}')
```

The MSE for original test data using custom implemented SGD is:29.36322407 9377503

#### 2.5 Plotting Actual vs Predicted values for test data

#### In [117]:

```
plt.scatter(act_or, pred_or)
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.title("Actual vs Predicted values- SGD Implemented")
plt.show()
```



## 3. Scikit learn version of SGD

## 3.1 Applying SGD

#### In [105]:

```
from sklearn.linear_model import SGDRegressor
from sklearn.metrics import mean_squared_error

reg = SGDRegressor(loss='squared_loss',max_iter=100, alpha=0.0001, tol=.0001,learning_r
ate='invscaling')

reg.fit (X_train_std, Y_train_std)

yhat=reg.predict(X_test_std)

MSE=mean_squared_error(Y_test_std,yhat)

print(f'The MSE for standardized test data using sklearn version of SGD is:{MSE}')
```

The MSE for standardized test data using sklearn version of SGD is:0.36072 161627698773

## 3.2 Converting standardized outputs to original outputs using inverse\_transform attribute

#### In [106]:

```
yhat_=yhat.reshape(-1,1)
#print(yhat_.shape)
#print(Y_test_std.shape)
pred_or=scaler2.inverse_transform(yhat_)
#print(pred_or)
act_or=scaler2.inverse_transform(Y_test_std)
#print(act_or)
sq_error= [i[0] for i in ((act_or-pred_or)**2)]
#print(sq_error)
MSE=sum(sq_error)/Y_test_std.shape[0]
print(f'The MSE for original test data using sklearn version of SGD is:{MSE}')
```

The MSE for original test data using sklearn version of SGD is:28.79500383 680074

### 3.3 Co-efficients & intercept

#### In [107]:

```
coefs=reg.coef_
print(coefs)
w0=reg.intercept_
print('Intercept=',w0)
[-0.13847363    0.08209953   -0.05357241    0.02511937   -0.1476366    0.32158284
   -0.04633332   -0.29991421    0.20889573   -0.12852264   -0.23329494    0.1176353
   -0.37131385]
Intercept= [6.66425325e-05]
```

### 3.4 Plotting Actual vs Predicted values

#### In [109]:

```
plt.scatter(act_or, pred_or)
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.title("Actual vs Predicted values- SGD Implemented using sklearn")
plt.show()
```



## 4. Summary

#### 4.1 MSE summary

#### In [118]:

```
#Ref: http://zetcode.com/python/prettytable/
from prettytable import PrettyTable

x = PrettyTable()
x.field_names = ["Implementation type","MSE"]
x.add_row(["Manual", 29.4])
x.add_row(["Sklearn", 28.8])
print(x)
```

| +-     | Implementation type | • |              | + |
|--------|---------------------|---|--------------|---|
| <br> - | Manual<br>Sklearn   | • | 29.4<br>28.8 | • |

## 4.2 Co-efficients summary

#### In [119]:

```
# creating lists of co-effs for both the versions
man=[0.009558946531683554, -0.13818718767629987, 0.06243946570609928, -0.06653276256328
082, 0.033085987060484955, -0.09943414546086045, 0.3517830179893913, -0.052109743760590
08, -0.24617355920767672, 0.14098947216684204, -0.0769546176730711, -0.2280377917989794
3, 0.10347864673326172, -0.34579382098720907]
sk=[6.66425325e-05,-0.13847363,0.08209953,-0.05357241,0.02511937,-0.1476366,0.32158284,
-0.04633332,-0.29991421,0.20889573,-0.12852264,-0.23329494,0.1176353,-0.37131385]
```

#### In [120]:

```
# Creating a table in form of data frame
tab = pd.DataFrame(list(zip(man,sk)),index =['Intercept','CRIM','ZN', 'INDUS', 'CHAS',
'NOX', 'RM','AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO',
    'B', 'LSTAT'],columns =['Manual','Sklearn'])
tab
```

#### Out[120]:

|           | Manual    | Sklearn   |
|-----------|-----------|-----------|
| Intercept | 0.009559  | 0.000067  |
| CRIM      | -0.138187 | -0.138474 |
| ZN        | 0.062439  | 0.082100  |
| INDUS     | -0.066533 | -0.053572 |
| CHAS      | 0.033086  | 0.025119  |
| NOX       | -0.099434 | -0.147637 |
| RM        | 0.351783  | 0.321583  |
| AGE       | -0.052110 | -0.046333 |
| DIS       | -0.246174 | -0.299914 |
| RAD       | 0.140989  | 0.208896  |
| TAX       | -0.076955 | -0.128523 |
| PTRATIO   | -0.228038 | -0.233295 |
| В         | 0.103479  | 0.117635  |
| LSTAT     | -0.345794 | -0.371314 |