

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170510702

FCC REPORT

(BLE)

Applicant: MOVEON TECHNOLOGY LIMITED

Address of Applicant: World Trade Plaza-A block#3201-3202 Fuhong Road, Futian

Equipment Under Test (EUT)

Product Name: smart phone

Model No.: Smart Prime

Trade mark: ZOOM

FCC ID: 2AFD9-SMARTPRIME

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 23 May, 2017

Date of Test: 23 May, to 19 Jun., 2017

Date of report issued: 21 Jun., 2017

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	21 Jun., 2017	Original

Tested by: Date: 21 Jun., 2017 Test Engineer Reviewed by:

Date:

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 21 Jun., 2017

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
_	_		
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	18
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	20
	6.6.2		
	6.7	Spurious Emission	27
	6.7.1	Conducted Emission Method	27
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
Q	FIIT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	MOVEON TECHNOLOGY LIMITED
Address of Applicant:	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian
Manufacturer	MOVEON TECHNOLOGY LIMITED
Address of Manufacturer:	World Trade Plaza-A block#3201-3202 Fuhong Road, Futian

5.2 General Description of E.U.T.

Product Name:	smart phone
Model No.:	Smart Prime
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.79 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1300mAh
AC adapter:	Input: AC100-240V 50/60Hz 0.13A Output: DC 5.0V, 0.5A
	Output. DO 3.07, 0.3A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar

Report No: CCISE170510702

Test mode:

Operation mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018	
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018	
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018	

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018	
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018	
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.79 dBi.

6.2 Conducted Emission

Test Requirement: FCC Part 15 C Section 15.207 Test Method: ANSI C63.4: 2014 Test Frequency Range: 150 kHz to 30 MHz Class 6 Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 *Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (LL.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details Test results: Passed						
Test Frequency Range: 150 kHz to 30 MHz Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56' 56 to 46' 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN ACC power EUT: Equipment Under Test LISN Line imposiones Stabilization Nielwork Test table linsulation plane Remark EUT: Equipment Under Test LISN Line imposiones Stabilization Nielwork Test table height=0 am Test Instruments: Refer to section 5.7 for details	Test Requirement:	FCC Part 15 C Section 15	.207			
Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN Aux E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test stable regist-0 on Test stabilization Network Test stable regist-0 on	Test Method:	ANSI C63.4: 2014	ANSI C63.4: 2014			
Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Ouasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 *Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane	Test Frequency Range:	150 kHz to 30 MHz				
Limit: Frequency range (MHz)	Class / Severity:	Class B				
Limit: Frequency range (MHz)	Receiver setup:	RBW=9kHz, VBW=30kHz				
Test procedure Prequency large (wir2) Quasi-peak Average	Limit:		Limit	(dBuV)		
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN AUX Equipment Under Test LISN Line impedence Stabilization Network Test lable height=0 8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	-	Frequency range (MHz)	Prequency range (MHz) Quasi-peak Average			
Test procedure Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Refe				56 to 46*		
* Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Ref						
1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN AUX Equipment LUSN LISN Filter AC power Remark E.U.T Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details				50		
line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Reference Plane Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details						
LISN 40cm 80cm Filter AC power Equipment E.U.T Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	rest procedure	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 				
Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details	Test setup:	Reference Plane				
Test mode: Refer to section 5.3 for details		AUX Equipment Test table/Insulation Remark: E.U.T. Equipment Under Te	E.U.T EMI Receiver	ilter — AC power		
	Test Instruments:	Refer to section 5.7 for details				
Test results: Passed	Test mode:	Refer to section 5.3 for de	tails			
	Test results:	Passed				

Measurement Data:

Neutral:

Trace: 15

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Site Condition

: Smart Phone EUT : Smart Prime Model Test Mode : BLE mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Mike

lemark	:	-				-		
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2000	MHz	dBu₹	dB	dB	dBu₹	dBu₹	<u>d</u> B	
1	0.158	25.36	0.13	10.78	36.27	55.56	-19.29	Average
2	0.162	42.34	0.13	10.77	53.24	65.34	-12.10	QP
2 3 4 5 6 7	0.182	39.85	0.14	10.77	50.76	64.42	-13.66	QP
4	0.190	26.89	0.14	10.76	37.79	54.02	-16.23	Average
5	0.206	36.87	0.15	10.76	47.78	63.36	-15.58	QP
6	0.211	21.86	0.16	10.76	32.78	53.18	-20.40	Average
7	0.230	33.95	0.16	10.75	44.86	62.44	-17.58	QP
8	0.238	19.62	0.17	10.75	30.54	52.17	-21.63	Average
9	0.286	30.74	0.19	10.74	41.67	60.63	-18.96	QP
10	0.486	29.28	0.24	10.76	40.28	56.23	-15.95	QP
11	0.489	20.98	0.24	10.76	31.98	46.19	-14.21	Average
12	0.582	13.93	0.28	10.77	24.98	46.00	-21.02	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Trace: 13

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site

Condition

EUT : Smart Phone : Smart Prime Model : BLE mode Test Mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

Freq			Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	dB	dB	dBu₹	dBu₹	<u>dB</u>	
0.162	42.75	0.14	10.77	53.66	65.34	-11.68	QP
0.162	28.49	0.14	10.77	39.40	55.34	-15.94	Average
0.190	25.26	0.15	10.76	36.17	54.02	-17.85	Average
0.206	37.72	0.15	10.76	48.63	63.36	-14.73	QP
0.211	24.31	0.15	10.76	35.22	53.18	-17.96	Average
0.234	34.11	0.15	10.75	45.01	62.30	-17.29	QP
0.253	18.74	0.16	10.75	29.65	51.64	-21.99	Average
0.307	30.51	0.17	10.74	41.42	60.06	-18.64	QP
0.389	28.00	0.23	10.72	38.95	58.08	-19.13	QP
0.494	31.76	0.24	10.76	42.76	56.10	-13.34	QP
0.494	16.37	0.24	10.76	27.37	46.10	-18.73	Average
0.608	10.76	0.29	10.77	21.82	46.00	-24.18	Average
	MHz 0. 162 0. 162 0. 190 0. 206 0. 211 0. 234 0. 253 0. 307 0. 389 0. 494 0. 494	MHz dBuV 0.162 42.75 0.162 28.49 0.190 25.26 0.206 37.72 0.211 24.31 0.234 34.11 0.253 18.74 0.307 30.51 0.389 28.00 0.494 31.76 0.494 16.37	MHz dBuV dB 0.162 42.75 0.14 0.162 28.49 0.14 0.190 25.26 0.15 0.206 37.72 0.15 0.211 24.31 0.15 0.234 34.11 0.15 0.253 18.74 0.16 0.307 30.51 0.17 0.389 28.00 0.23 0.494 31.76 0.24 0.494 16.37 0.24	MHz dBuV dB dB 0.162 42.75 0.14 10.77 0.162 28.49 0.14 10.77 0.190 25.26 0.15 10.76 0.206 37.72 0.15 10.76 0.211 24.31 0.15 10.76 0.234 34.11 0.15 10.75 0.253 18.74 0.16 10.75 0.307 30.51 0.17 10.74 0.389 28.00 0.23 10.72 0.494 31.76 0.24 10.76 0.494 16.37 0.24 10.76	MHz dBuV dB dB dBuV 0.162 42.75 0.14 10.77 53.66 0.162 28.49 0.14 10.77 39.40 0.190 25.26 0.15 10.76 36.17 0.206 37.72 0.15 10.76 48.63 0.211 24.31 0.15 10.76 35.22 0.234 34.11 0.15 10.75 45.01 0.253 18.74 0.16 10.75 29.65 0.307 30.51 0.17 10.74 41.42 0.389 28.00 0.23 10.72 38.95 0.494 31.76 0.24 10.76 42.76 0.494 16.37 0.24 10.76 27.37	MHz dBuV dB dB dBuV dBuV 0.162 42.75 0.14 10.77 53.66 65.34 0.162 28.49 0.14 10.77 39.40 55.34 0.190 25.26 0.15 10.76 36.17 54.02 0.206 37.72 0.15 10.76 48.63 63.36 0.211 24.31 0.15 10.76 35.22 53.18 0.234 34.11 0.15 10.75 45.01 62.30 0.253 18.74 0.16 10.75 29.65 51.64 0.307 30.51 0.17 10.74 41.42 60.06 0.389 28.00 0.23 10.72 38.95 58.08 0.494 31.76 0.24 10.76 42.76 56.10 0.494 16.37 0.24 10.76 27.37 46.10	MHz dBuV dB dB dBuV dBuV dB 0.162 42.75 0.14 10.77 53.66 65.34 -11.68 0.162 28.49 0.14 10.77 39.40 55.34 -15.94 0.190 25.26 0.15 10.76 36.17 54.02 -17.85 0.206 37.72 0.15 10.76 48.63 63.36 -14.73 0.211 24.31 0.15 10.76 35.22 53.18 -17.96 0.234 34.11 0.15 10.75 45.01 62.30 -17.29 0.253 18.74 0.16 10.75 29.65 51.64 -21.99 0.307 30.51 0.17 10.74 41.42 60.06 -18.64 0.389 28.00 0.23 10.72 38.95 58.08 -19.13 0.494 31.76 0.24 10.76 42.76 56.10 -13.34 0.494 16.37 0.24

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.1.1					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-5.63		
Middle	-5.24	30.00	Pass
Highest	-6.24		

Test plot as follows:

Date: 23.APR.2017 19:30:23

Lowest channel

Date: 23.APR.2017 19:31:17

Middle channel

Date: 23.APR.2017 19:32:20

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	0.732				
Middle	0.726	>500	Pass		
Highest	0.720				
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	1.074				
Middle	1.074	N/A	N/A		
Highest	1.074				

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

modedi omont Bata.			
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-7.06		
Middle	-6.80	8.00	Pass
Highest	-7.90		

Test plots as follow:

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 24.APR.2017 15:29:36

Lowest channel

Date: 24.APR.2017 15:28:43

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	209 and 15.205				
Test Method:	ANSI C63.10: 2013 and KDB 558074v03r05 section 12.1						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBV	W	Remark	
•	Above 1GHz	Peak	1MHz	3MHz Pea		eak Value	
		RMS	1MHz	3MF		erage Value	
Limit:	Frequen	ncy L	imit (dBuV/m @:	3m)		mark	
	Above 10	GHz -	54.00 74.00		Average Value Peak Value		
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emithe limit sof the EU have 10 ce	d at a 3 meterine the position was set 3 meterine which was more than the individual of the control of the cont	n the top of a rot r camber. The ta on of the highest ters away from to ounted on the top varied from one re the maximum rtical polarization t. nission, the EUT nna was turned from	able was radiation he interform of a value of as of the was arrado heights om 0 decade and between the errore by one by o	ble 1.5 me rotated 36 n. ference-re ariable-heid four mete the field santenna aranged to its from 1 m grees to 3 ct Functions. was 10 dB d and the missions to the rotated for the single single single single single record for the single single rotated for the single rotated f	eters above 60 degrees ceiving ght antenna ers above trength. are set to ts worst neter to 4 60 degrees an and lower than peak values hat did not peak, quasi-	
Test setup:	NAMA I Store	AE EUT (Turntable)	Horn Ground Reference Plane est Receiver	n Antenna An	ntenna Tower		
Test Instruments:	Refer to section	n 5.7 for deta	ils				
	Refer to section 5.7 for details Refer to section 5.3 for details						
Test mode:	Refer to section	on 5.3 for deta	ils				

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: smart phone : Smart Prime : BLE-L Mode Model Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Mike REMARK :

חדיטווי			Antenna						100	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBm	dB/m	dB	dB	$\overline{dBm/m}$	dBπ/m	<u>dB</u>		
1	2390.000	19.59	23.68	4.69	0.00	47.96	74.00	-26.04	Peak	
2	2390,000	8, 06	23, 68	4.69	0.00	36, 43	54.00	-17.57	Average	

Vertical:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : smart phone : Smart Prime : BLE-L Mode Model Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Mike REMARK :

-	Freq		Antenna Factor						
	MHz	dBm	$\overline{-dB/m}$	₫B	<u>d</u> B	_dBm/m	_dBm/m	<u>dB</u>	
1 2	2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: smart phone : Smart Prime EUT : Smart Prime
Test mode : BLE-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK

TE III CAL		Read	Antenna	Cable	Preamn		Limit	Over	
	Freq								Remark
	MHz	dBm	dB/m	dB	<u>dB</u>	dBm/m	dBm/m	<u>dB</u>	
1	2483.500	20.92	23.70	4.81	0.00	49.43	74.00	-24.57	Peak
2	2483.500	7.93	23.70	4.81	0.00	36.44	54.00	-17.56	Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : smart phone Condition

: smart phone

model : Smart Prime

Test mode : BLE-H Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK :

	Freq				Preamp Factor				
-	MHz	dBm	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	_dBm/m	_dBm/m	<u>dB</u>	
	2483,500 2483,500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer E.U.T Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Date: 24.APR.2017 15:30:34

30MHz~25GHz

Date: 24.APR.2017 15:31:37

30MHz~25GHz

Date: 24.APR.2017 15:32:51

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	5.209	and 15.205						
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency Detector RBW VBW Remark									
·	30MHz-1GHz	Quasi-pe	eak	120KHz	300	KHz Quasi-peak Value				
	Above 1GHz	Peak		1MHz	3M		Peak Value			
		RMS		1MHz	3M	Hz	Average Value			
Limit:	Frequency		Lim	nit (dBuV/m @	3m)		Remark			
	30MHz-88M			40.0			uasi-peak Value			
	960MHz-1G	HZ								
	Above 1GF	lz –								
	4 The FUT	waa nlaa	- A - A		f o rot	otina				
Test Procedure:	216MHz-960MHz									

Below 1GHz:

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

: smart phone

Model : Smart Prime
Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK

MARK	:								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	₫B	dB	$\overline{dBuV/m}$	dBuV/m	dB	
1	32.979	34.87	13.83	0.91	29.96	19.65	40.00	-20.35	QP
1 2 3	40.559	30.26	16.98	1.22	29.90	18.56	40.00	-21.44	QP
3	110.957	37.49	10.46	2.07	29.45	20.57	43.50	-22.93	QP
4	175.652	41.55	9.45	2.70	29.01	24.69	43.50	-18.81	QP
5	633.907	29.74	18.69	3.89	28.83	23.49	46.00	-22.51	QP
6	787.851	30.24	20.56	4.35	28.26	26.89	46.00	-19.11	QP

Vertical:

x_{INVIV}									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu₹	$-\overline{dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	43.812	39.38	17.56	1.26	29.87	28.33	40.00	-11.67	QP
2	69.600	51.51	6.90	1.52	29.72	30.21	40.00	-9.79	QP
3	124.569	46.37	12.04	2.22	29.36	31.27	43.50	-12.23	QP
4	137.420	45.43	11.88	2.37	29.29	30.39	43.50	-13.11	QP
4	265.676	41.56	11.95	2.85	28.51	27.85	46.00	-18.15	QP
6	584.790	37.46	18.37	3.92	28.99	30.76	46.00	-15.24	QP

Above 1GHz

Test channel:			Lo	west	Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.92	35.99	6.80	41.81	48.90	74.00	-25.10	Vertical
4804.00	47.66	35.99	6.80	41.81	48.64	74.00	-25.36	Horizontal
Т	est channel	•	Lowest		Le	vel:	A	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	38.06	35.99	6.80	41.81	39.04	54.00	-14.96	Vertical
4804.00	37.37	35.99	6.80	41.81	38.35	54.00	-15.65	Horizontal

Т	est channel	:	Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	46.86	36.38	6.86	41.84	48.26	74.00	-25.74	Vertical	
4884.00	47.58	36.38	6.86	41.84	48.98	74.00	-25.02	Horizontal	
Т	est channel	:	Middle		Le	vel:	A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	37.87	36.38	6.86	41.84	39.27	54.00	-14.73	Vertical	
4884.00	37.52	36.38	6.86	41.84	38.92	54.00	-15.08	Horizontal	

Т	est channel	•	Hiç	ghest	Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.48	36.71	6.91	41.87	50.23	74.00	-23.77	Vertical
4960.00	47.24	36.71	6.91	41.87	48.99	74.00	-25.01	Horizontal
Т	est channel	• •	Highest		Le	vel:	A۱	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	38.82	36.71	6.91	41.87	40.57	54.00	-13.43	Vertical
4960.00	37.39	36.71	6.91	41.87	39.14	54.00	-14.86	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.