Commuting, Migration, and Local Employment Elasticities by F.Monte, S.Redding, E.Rossi-Hansberg (AER 2018)

Mila Markevych

UBC (VSE)

January 12, 2020

M. Markeyvch January 12, 2020 1 / 10

Motivation

FIGURE 1. KERNEL DENSITIES OF THE SHARE OF RESIDENTS WHO WORK IN THE COUNTY WHERE THEY LIVE

M. Markevych January 12, 2020 2 / 10

General equilibrium model with spacial linkages 1/4

Spatial general equilibrium model:

- locations are linked through
 - good market (trade)
 - factor markets (migration and commuting)

Consumer preferences: Cobb-Douglas

$$U_{ni\omega} = \frac{b_{ni\omega}}{\kappa_{ni}} \left(\frac{C_{n\omega}}{\alpha}\right)^{\alpha} \left(\frac{H_{n\omega}}{1-\alpha}\right)^{1-\alpha}.$$

$$G_{ni}(b) = e^{-B_{ni}b^{-\epsilon}}, \quad B_{ni} > 0, \epsilon > 1$$

Good consumption: CES

$$C_n = \left[\sum_{i \in N} \int_0^{M_i} c_{ni}(j)^{\rho} dj\right]^{\frac{1}{\rho}}, \quad \sigma = \frac{1}{1-\rho} > 1$$

M. Markevych January 12, 2020 3/10

General equilibrium model with spacial linkages 2/4

Land price:

$$Q_n = (1 - \alpha) \frac{\overline{v}_n R_n}{H_n}$$

Goods price:

$$p_{ni}(j) = \left(\frac{\sigma}{\sigma - 1}\right) \frac{d_{ni}w_i}{A_i}$$

Share of goods consumed:

$$\pi_{ni} = \frac{M_i p_{ni}^{1-\sigma}}{\sum_{k \in N} M_k p_{nk}^{1-\sigma}} = \frac{L_i (d_{ni} w_i / A_i)^{1-\sigma}}{\sum_{k \in N} L_k (d_{nk} w_k / A_k)^{1-\sigma}}.$$

Workplace income:

$$w_i L_i = \sum_{n \in \mathcal{N}} \pi_{ni} \bar{v}_n R_n$$

M. Markevych January 12, 2020 4/10

General equilibrium model with spacial linkages 3/4

Probability a worker chooses to live in *n* and work in *i*

$$\lambda_{ni} = \frac{B_{ni} \left(\kappa_{ni} P_n^{\alpha} Q_n^{1-\alpha}\right)^{-\epsilon} w_i^{\epsilon}}{\sum_{r \in N} \sum_{s \in N} B_{rs} \left(\kappa_{rs} P_r^{\alpha} Q_r^{1-\alpha}\right)^{-\epsilon} w_s^{\epsilon}} \equiv \frac{\Phi_{ni}}{\Phi}$$

Overall probabilities:

$$\lambda_n^R = \frac{R_n}{\bar{L}} = \sum_{i \in N} \lambda_{ni} = \sum_{i \in N} \frac{\Phi_{ni}}{\Phi}, \quad \lambda_i^L = \frac{L_n}{\bar{L}} = \sum_{n \in N} \lambda_{ni} = \sum_{n \in N} \frac{\Phi_{ni}}{\Phi}$$

Conditional probability:

$$\lambda_{ni|n}^{R} \equiv \frac{\lambda_{ni}}{\lambda_{n}^{R}} = \frac{B_{ni}(w_{i}/\kappa_{ni})^{\epsilon}}{\sum_{s \in N} B_{ns}(w_{s}/\kappa_{ns})^{\epsilon}}$$

Expected worker income:

$$\bar{v}_n = \sum_{i \in N} \lambda_{ni|n}^R w_i$$

M. Markevych January 12, 2020 5/10

General equilibrium model with spacial linkages 4/4

General equilibrium:

• A vector $\{w_n, \overline{v}_n, Q_n, L_n, R_n, P_n\}_{n=1}^N$ that maximizes worker's utility and solves previously given equations.

M. Markevych January 12, 2020 6 / 10

Calibration of the model

Data (2006-2010):

 Commodity Flow Survey, American Community Survey, US Census, Bureau of Economic Analysis, GIS data

FIGURE 2. KERNEL DENSITY FOR THE DISTRIBUTION OF EMPLOYMENT AND RESIDENTS ELASTICITIES IN RESPONSE TO A PRODUCTIVITY SHOCK ACROSS COUNTIES

M. Markevych January 12, 2020 7 / 10

Heterogeneity of the local employment elasticity

Table 2—Explaining the General Equilibrium Local Employment Elasticities to a 5 Percent Productivity Shock

	Elasticity of employment								
	1	2	3	4	5	6	7	8	9
$\log L_i$		-0.003 (0.014)	0.009 (0.012)	-0.054 (0.006)				0.037 (0.004)	0.033 (0.004)
$\log w_i$			-0.201 (0.059)	-0.158 (0.039)				-0.257 (0.016)	-0.263 (0.016)
$\log H_i$			-0.288 (0.021)	-0.172 (0.015)				0.003 (0.009)	0.009 (0.009)
$\log L_{-i}$				0.118 (0.017)				-0.027 (0.009)	-0.027 (0.009)
$\log \bar{w}_{-i}$				0.204 (0.083)				0.163 (0.037)	0.207 (0.038)
$\lambda^R_{ii i}$					-2.047 (0.042)				
$\sum_{n\in N} (1-\lambda_{Rni})\vartheta_{ni}$						2.784 (0.192)		2.559 (0.178)	
$\vartheta_{ii} \left(\frac{\lambda_{ii}}{\lambda_{si}} - \lambda_{Li} \right)$						0.915		0.605	
(· ni /						(0.210)		(0.175)	
$\frac{\partial w_i}{\partial A_i} \frac{A_i}{w_i}$						-1.009 (0.123)		-0.825 (0.150)	
$\frac{\partial w_i}{\partial A_i}\frac{A_i}{w_i} \cdot \sum_{r \in \mathit{N}} \bigl(1 - \lambda_{rn r}\bigr) \vartheta_{rn}$							1.038 (0.090)		1.100 (0.091)
$\frac{\partial w_i}{\partial A_i} \frac{A_i}{w_i} \cdot \vartheta_{ii} \left(\frac{\lambda_{ii}}{\lambda_{Ri}} - \lambda_{Li} \right)$							-0.818		-0.849
							(0.098)		(0.092)
Constant	1.515 (0.034)	1.545 (0.158)	5.683 (0.632)	1.245 (0.797)	2.976 (0.022)	0.840 (0.201)	1.553 (0.087)	1.861 (0.404)	2.064 (0.352)
R ² Observations	0.00	0.00 3,111	0.40 3,111	0.51 3,081	0.89 3,111	0.93 3,111	0.93 3,111	0.95 3,081	0.95 3,081
	.,	-,	-,	-,,,,,	-,	-,	-,	-,,,,,,	lanuani

Conclusions

- Develop a general equilibrium model that incorporates spatial linkages
- Document substantial heterogeneity across counties in the elasticity of local employment
- Show that this heterogeneity is hard to explain with usual empirical controls, but is well explained by measures of linkages in commuting networks (i.e. share of residents that work locally)
- Provide additional empirical evidence using Millior dollar plants
- Show that commuting matters on the aggregate level decrease in commuting costs is associated with an increase in welfare

M. Markevych January 12, 2020 9 / 10

Thank you

M. Markevych January 12, 2020 10 / 10

Appendix

M. Markevych January 12, 2020 1 / 4

More empirical evidence: Million Dollar Plants 1/2

Data:

- location decisions of million dollar plants (MDP)
- source: corporate real estate journal Site Selection
- sample: 166 counties 1972-2003

(Greenstone, Hornbeck, and Moretti 2010)

Augment Diff-in-diff with a measure of openness of the labour market to commuting (*residence own commuting share*):

$$\ln L_{it} = \kappa I_{j\tau} + \theta (I_{j\tau} \times W_i) + \beta (I_{j\tau} \times \lambda_{ii|i}^R)$$
$$+ \gamma (I_{j\tau} \times W_i \times \lambda_{ii|i}^R) + \alpha_i + \eta_j + \mu_t + \varepsilon_{it}$$

M. Markevych January 12, 2020 2 / 4

More empirical evidence: Million Dollar Plants 2/2

TABLE 3—ESTIMATED MDP TREATMENT AND COMMUTING OP	JPENNESS
--	----------

Variable	Coefficient	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(9)
		- ' '	(2)		(4)	- ' '	- ' '	(7)	(8)
$I_{j\tau} \times W_i$	θ	0.057 (0.018)	0.250 (0.078)	0.191 (0.065)	(0.068)	0.260 (0.078)	0.223 (0.078)	0.177 (0.066)	0.182
7 YV \ R		(0.018)	-0.242	(0.003)	(0.008)	(0.078)	-0.219	-0.190	(0.063) -0.195
$I_{j au} imes W_i imes \lambda^R_{ii i}$	γ		-0.242 (0.078)				(0.096)	(0.077)	-0.193 (0.073)
$I_{i\tau} \times W_i \times \lambda_{ii i}^L$	γ		(/	-0.177			(/	()	(/
*J# * * * * * * * * * * * * * * * * * *	,			(0.087)					
$I_{j\tau} \times W_i \times \lambda_{ii i}^{ARL}$	γ				-0.241				
					(0.088)				
$I_{j\tau} \times W_i \times \lambda_{ii i}^{MRL}$	γ					-0.281			
* > P			0.012			(0.110)	0.040	0.202	0.212
$I_{j au} imes\lambda_{ii i}^R$	β		0.012 (0.135)				-0.048 (0.108)	-0.203 (0.075)	-0.213 (0.082)
$I_{i au} imes \lambda^L_{ii i}$	β		(0.155)	0.243			(0.100)	(0.075)	(0.002)
$i_{j\tau} \wedge \lambda_{ii i}$	ρ			(0.129)					
$I_{j au} imes \lambda_{ii i}^{ARL}$	β				0.124				
					(0.160)				
$I_{j au} imes \lambda_{ii i}^{MRL}$	β					0.133			
						(0.145)			
$I_{j au}$	κ	-0.015 (0.008)	-0.024 (0.096)	-0.200 (0.096)	-0.113 (0.125)	-0.113 (0.106)	(0.086)	0.160 (0.060)	0.159 (0.066)
County fixed effects		Yes							
Case fixed effects		Yes							
Year fixed effects		Yes	Yes	Yes	Yes	Yes			
Industry-year fixed effect							Yes		
Census-region-year fixed	d effects							Yes	37
State-year fixed effects									Yes
Observations		4,431	4,431	4,431	4,431	4,431	4,431	4,430	4,186
R^2		0.991	0.991	0.991	0.991	0.991	0.992	0.994	0.996

M. Markevych January 12, 2020 3 / 4

6 Counterfactual estimations: Welfare

TABLE 5—WELFARE IMPACTS FOR DIFFERENT CHANGES IN COMMUTING COSTS

	Decrease by p75	Decrease by p50	Decrease by p25	Increase by 1/p50
Implied $\hat{\tilde{\mathcal{B}}}_{ni}$	0.79	0.88	0.96	1.13
Welfare change (%)	6.89	3.26	0.89	-2.33

M. Markevych January 12, 2020