DIALOG(R) File 351: DERWENT WPI (c) 2000 Derwent Info Ltd. All rts. reserv.

007047153

WPI Acc No: 1987-047150/198707

Microwave plasma CVD equipment - has dielectric layer formed on inside ceiling wall and duct of reactive furnace linked with waveguide

NoAbstract Dwg 1,2/5

Patent Assignee: SUMITOMO CHEM IND KK (SUMO) Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Week Date JP 62005600 A 19870112 JP 85143036 19850628 198707 B

Priority Applications (No Type Date): JP 85143036 A 19850628 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 62005600 Α

Title Terms: MICROWAVE; PLASMA; CVD; EQUIPMENT; DIELECTRIC; LAYER; FORMING; CEILING; WALL; DUCT; REACT; FURNACE; LINK; WAVEGUIDE; NOABSTRACT

```
DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat
(c) 2000 EPO. All rts. reserv.
5875147
Basic Patent (No, Kind, Date): JP 62005600 A2 870112
                                                    <No. of Patents: 002>
Patent Family:
    Patent No
                Kind Date
                                Applic No
                                            Kind Date
   JP 62005600
                A2 870112
                               JP 85143036
                                            Α
                                                 850628
                                                        (BASIC)
   JP 93044798
                B4 930707
                               JP 85143036
                                             Α
                                                 850628
Priority Data (No, Kind, Date):
   JP 85143036 A 850628
PATENT FAMILY:
JAPAN (JP)
 Patent (No, Kind, Date): JP 62005600 A2 870112
   MICROWAVE PLASMA PROCESSOR (English)
   Patent Assignee: SUMITOMO METAL IND
   Author (Inventor): KOMACHI KYOICHI; KOBAYASHI SUMIO
   Priority (No, Kind, Date): JP 85143036 A 850628
   Applic (No, Kind, Date): JP 85143036 A 850628
   IPC: * H05H-001/46
   Derwent WPI Acc No: *
                         G 87-047150
   Language of Document: Japanese
 Patent (No, Kind, Date): JP 93044798 B4 930707
   Patent Assignee: SUMITOMO METAL IND
   Author (Inventor): KOMACHI KYOICHI; KOBAYASHI SUMIO
   Priority (No, Kind, Date): JP 85143036 A 850628
   Applic (No, Kind, Date): JP 85143036 A 850628
```

IPC: * H05H-001/46

Language of Document: Japanese

DIALOG(R) File 347: JAPIO (c) 2000 JPO & JAPIO. All rts. reserv.

02088700

MICROWAVE PLASMA PROCESSOR

PUB. NO.: **62** -005600 [JP 62005600 A] PUBLISHED: January 12, 1987 (19870112)

INVENTOR(s): KOMACHI KYOICHI

KOBAYASHI SUMIO

APPLICANT(s): SUMITOMO METAL IND LTD [000211] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.: 60-143036 [JP 85143036]

FILED: June 28, 1985 (19850628)

INTL CLASS: [4] H05H-001/46

JAPIO CLASS: 42.3 (ELECTRONICS -- Electron Tubes)

JAPIO KEYWORD: R004 (PLASMA); R096 (ELECTRONIC MATERIALS -- Glass

Conductors)

⑲ 日本国特許庁(JP)

10 特許出願公告

❷特 許 公 報(B2) $\overline{\Psi}5-44798$

Mint. Cl. 3

識別記号

庁内整理番号

❷❸公告 平成5年(1993)7月7日

H 05 H 1/46

9014-2G

発明の数 1 (全4頁)

60発明の名称 マイクロ波ブラズマ処理装置

> 2045 顧 昭60-143036

❷公 閉 昭62-5600

顧 昭60(1985)6月28日

@昭62(1987) 1 月12日

兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式 の発 明 小 町

会社中央技術研究所内

個発 明 者 小 林 純夫 兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式

会社中央技術研究所内

勿出 顧 人 住友金属工業株式会社 大阪府大阪市中央区北浜 4丁目 5番33号

四代 理 人 弁理士 溝上 満好 外1名

審査官 江 塚 政 弘

1

2

砂特許請求の範囲

1 マイクロ波発振器と該マイクロ波発振器から のマイクロ波を伝送する導波管と、該導波管に連 通され排気装置およびガス導入装置を夫々備えた の小さい耐熱性板によつて上部室と下部室とに気 密に仕切られていると共に、前記導波管に連通す る金属製容器の上部室の天井壁内面及び連通部に はマイクロ波導波路を形成すべく誘電体層が設置 されていることを特徴とするマイクロ波プラズマ 10 ④ 発振器が簡単である。 処理装置。

発明の詳細な説明

(産業上の利用分野)

. 本発明は、マイクロ波プラズマ処理装置の改良 に関するものである。

(従来の技術およびその問題点)

低圧ガスの放電によつて生成した低温プラズマ は、系全体が低温でありながら化学反応を促進す るため、無機材料と有機材料のいずれにも適用で ズマを発生させるために、従来の研究開発・実用 機では主にラジオ波(13.56MHz)が用いられて いたが、マイクロ波を用いる方が効率・装置の点 で有利であることが指摘されている(広源:マイ クロ波放電プラズマとその装置、塗装技術、19、25 閉昭57-9868、特開昭56-41382) や、②周期構

1、(1980)、100~105頁)。 有利な点を以下に示す。

- ① 電子温度Teとガス温度Tgの比Te/Tgが大 きく、より低温のプラズマが得られる。
- 金属製容器を具備し、前配金属製容器は誘電損失 5 ② 電極を必要としないので、電極からの汚染を 防ぐことができる。
 - ③ マイクロ波の電力を局所的に注入でき、外部 空間への不用な放射損失がなく、高密度のプラ ズマが生成できる。
 - - ⑤ 導波管でマイクロ波を伝送するため放射損失 がなく、整合が簡単な構造でできる。

ところで、従来のマイクロ波プラズマ発生装置 のうち、導波管に対して石英管を貫通させた生成 15 部・処理室分離方式(前記文献)や、マイクロ波 の伝搬方向に磁場を形成し共鳴を利用した電子サ イクロトロン共鳴方式(松尾、木内、高橋: ECRブラズマCVD、電気学会電子デバイス研究 会、EDD-84-55、(1984)、17~23頁、特公昭 き、極めて応用範囲が広い。しかして、このプラ 20 58-37680) については高周波を用いた装置に比 べて処理面積が小さいという問題がある。

> また、比較的広い処理面積をもつ装置として は、①マイクロ波をアンテナを用いて広いプラズ マ発生室に導入する装置(特公昭57-53858、特

造を利用した装置 (R.G. Bosisio、C.F. Weissfloch, M. R. Wertheimer: The Large Volume Microwave Plasma Generator, J. Microwave Power、7(4)、1972) がある。

しかしながら、前配①についてはアンテナとの 5 なる。 整合がむずかしく、プラズマが不均一になりやす い為、その改善のための装置が複雑になる。ま た、②については細長いプラズマしか発生できな い(前記文献によれば外径19mmの石英ガラス管内 でプラズマを発生させている)という問題があ 10 る。

本発明は前記問題点に鑑みて成されたものであ り、マイクロ波を用いて大面積かつ均一なプラズ マを比較的簡単な構造で安定して発生できるマイ クロ波プラズマ処理装置を提供せんとするもので 15 (実施例) ある。

(問題点を解決するための手段)

本発明は、マイクロ波発振器と、該マイクロ波 発振器からのマイクロ波を伝送する導波管と、該 導波管に連通され排気装置およびガス導入装置を 20 り伝送される。 夫々備えた金属製容器を具備して成り、前記金属 製容器は誘電損失の小さい耐熱性板によって上部 室と下部室とに気密に仕切られていると共に、前 起導波管に連通する金属製容器の上部室の天井壁 内面および連通部にはマイクロ波導波路を形成す 25 持できるように密閉構成されている。そして前記 べく誘電体層が設置されていることを要旨とする マイクロ波プラズマ処理装置である。

(作用)

一般にマイクロ波は誘電体層に対して均一に広 がる性質がある。また、金属には反射される。

本発明装置にあつては、マイクロ波は誘電体層 に均一に広がるとともに、誘電体層の上面側には 金属製容器の金属部があるので、この金属部によ つて反射される。したがつて、マイクロ波の作用 による電界は、誘電体層の下面側、すなわち上部 35 ば長さ1075째、幅200째、厚さ20㎜とする等の如 室及び下部室側に均一に形成される。

マクロ的には、上記の電界強度はほぼ均一であ るので、真空状態に保たれた前配下部室にプラズ マ生成用ガスを導入すると、上配電界の作用によ つて下部室内にはほぼ均一な分布のプラズマが形 40 ある。つまり、この誘電体層6の厚さは、マイク 成される。

厳密には、マイクロ波は、マイクロ波進行方向 の誘電体層前面の金属製容器の金属部によっても 反射されるので、誘電体層のマイクロ波進行方向 には定在波が発生する。したがつて、電界強度 は、マイクロ波の進行方向では強弱の波を持つこ とになるが、発生したプラズマの拡散が速いた め、結果的に下部室内のプラズマの分布は均一と

このように、本発明の装置においては、広い面 額にわたつてプラズマを均一に発生させることが. 可能なため、処理面積が広い装置を得ることがで きる。

本装置は、このような特徴を生かし、単一の処 理材、小型の処理材はもとより、複数の処理材ま たは面積の広い処理材を対象にした、表面への化 学気相成長、表面のエツチング等にも適用でき る。

以下本発明を添付図面に基づいて説明する。

図面において、1はマイクロ被発振器であり、 ここから例えば245GHzのマイクロ波が発生され、 導波管 2 (WRI-22、109.22m×54.61m) によ

3は前記導波管2とその上部において連通され た金属製容器であり、例えば石英ガラス板4のよ うな誘電損失の小さい耐熱性板によつて上下に気 密に仕切られ、 図示例では下部室 7 は髙真空を保 石英ガラス版 4 によって仕切られた上部室 5 の天 井壁内面およびこの上部室5と前記導波管2との 連通部にはマイクロ波導波路を形成すべく例えば ポリー4フツ化エチレン(比誘電率208)を用い 30 て誘電体層6が設けられている。

ところで、前記誘電体層6のマイクロ波の進行 方向の長さは、本実施例では誘電体層6の表面波 の波長 λのm/2倍(m:整数)とし、金属製容 器3を共振器構造としたものを示している。例え くである。ここで、誘電体層6の各種寸法のう ち、厚さが問題となる。すなわち、誘電体層6の 厚さをどのような値に決定するかは、均一なプラ ズマを発生するために重大な影響を与えるからで 口波の周波数と大きな関連を有し、マイクロ波周 波数が2.45GHzの場合には20mm以下とするのがよ い。なお、前配周波数と誘電体層6の各寸法は反 比例の関係にあるため、例えば10GHzのマイクロ

第1図

第4図

波を使用した場合には厚さは5 並以下とする。

2

前記誘電体層6として本実施例はポリー4フツ 化エチレンを用いたものを示したが、これに限ら れるわけではなく、ポリスチレン(比誘電率 2.56)、ポリエチレン(比誘電率2.35)等を用い 5 性膜をコーテイングした非金属製、或いは外壁に てもよいことは勿論である。この場合には、共振 器の長さ(前記実施例では1075째)が変わるだけ である。

本実施例では前記誘電体層 6 におけるマイクロ 部室5の連通部における誘電体層6の形状を、第 3図に示すようなテーパをもつた形状としてい る。例えば該部分の誘電体層6の長さはテーパ 部、直方体部とも管内波長Agの1/4とし、上部室 5側のテーパ部の長さは 1/4 とする等の如くで 15 ある。しかし、この連通部における形状も前記と 同様何等限定されるものでないことは勿論であ る。

更に、前記石英ガラス板4によつて仕切られた を示したが、誘電体層6の幅と同軸のほうがより 望ましい) 7、すなわち、プラズマ発生室(長さ 1000ѭ、幅200ѭ、高さ500ѭ、なお、石英ガラス 板4と誘電体層6表面間の距離は15mm) 内部には 部損傷や処理材 9 の汚染を回避できるようになつ ている。また、前記石英ガラス容器 8 を挿入する 代わりに、下部室7の側壁を外部より水冷する方 法によつても内部損傷、汚染を防止できる。すな わち、これによつて電子材料関係の処理(アモル 30 である。 フアスSi作製、Siウエハーの窒化、酸化等)を高 品質に行なうことができるのである。

なお、図中10は前記処理材9に化学気相成長 を施す場合等処理材を所要温度に加熱する際に用 いるべく下部室7の底部に配設されたヒータ、1 35

1はガスポンペ12および流量計13を備えたガ ス導入装置、14は排気装置である。また前配金 属製容器3は、マイクロ波が透過しないものであ れば金属製に限るものではなく、金属製の他導電 水の層を設けた非金属製等でもよい。第4図及び 第5図は、誘電体層を設けている上部室5の天井 壁の幅を誘電体層の幅よりも大きくし、且つ、側 壁を設けない他の実施例を示したものであつて、 波の反射を小さくするために、前記導波管2と上 10 このようにすることによりポリー4フツ化エチレ ン上の電界が均一化される。本実施例では、上部 室5と下部室7を一体構成したものを示したが、 これらを分離しても何等支障はない。

(発明の効果)

以上説明した如く本発明に係るマイクロ波ブラ ズマ処理装置は、誘電体層の作用によってプラズ マを広い面積にわたつて均一に発生させることが できる為、大量の処理材を一度に処理したり、ま た、大型の処理材を処理することができる。更に 下部室(本実施例では、上部室5と略同幅のもの 20 本発明装置は整合も簡単にとれる為、装置の構造 を簡単にできる等益するところ大なる効果を有す る。

図面の簡単な説明

図面は本発明に係るマイクロ波プラズマ処理装 石英ガラス容器8が挿入され、プラズマによる内 25 置の一実施例を示すもので、第1図は正面図中央 縦断面図、第2図は第1図におけるI-I断面 図、第3図は導波管と上部室間における連通部の 誘電体層の形状の一実施例図、第4図は他の実施 例を示す断面図、第5図は第4図のⅡ-Ⅱ断面図

> 1はマイクロ波発振器、2は導波管、3は金属 製容器、4は石英ガラス板、5は上部室、6は誘 電体層、9は処理材、10はヒータ、11はガス 導入技置、14は排気装置。

