MATH 2602, Midterm 1

June 6th, 2012

Name:	GTID:_	
Section:		

Problem	Points
1	
2	
3	
4	
5	

TOTAL:	
IUIAL:	

Please do show all your work including intermediate steps and also explain in words how you solve each problem. Partial credit is available.

Problem 1 (20 points).

Use mathematical induction to prove that for every integer $n\geq 1$

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

Problem 2 (20 points).

Jump induction is another induction scheme, which works in the following way: Given a statement P(n), if

- (a) P(1) and P(2) are both true and
- (b) For any $k \ge 1$, P(k) is true implies P(k+2) is true then P(n) is true for all $n \ge 1$.

Use jump induction to show that for every integer $n \ge 1$

$$1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{n-1}n^{2} = (-1)^{n-1}(1 + 2 + \dots + n).$$

Problem 3 (20 points).

Consider the following recurrence relation:

$$a_n = 3a_{n-1} - 2a_{n-2} + 3^n$$
, $a_0 = 1$, $a_1 = 1$.

- 1. Find a particular solution to the recurrence relation.
- 2. Find the general solution to the corresponding homogeneous recurrence.

Problem 4 (20 points).

How many integers between 1 and 300 (inclusive) are

- 1. divisible by both 3 and 5?
- 2. divisible by both 3 and 5 but not divisible by 11?
- 3. divisible by exactly two of 3, 5 and 11?

Problem 5 (20 points).

Suppose 51 numbers are chosen from the set $\{1, 2, 3, ..., 100\}$. Show that among those chosen numbers there are two numbers such that one is a multiple of the other.

Hint: Any natural number n can be written in the form $n=2^ka$ with $k\geq 0$ and a odd.