# Modelo

**Matching Network** 



- Uses recent advances in NN with augmented memory.
- Training procedure is based on simple ML principle: test and train conditions must match (Showing only a few examples per class).

map from a **S** of **k** examples of image-label pairs  $S = \{(x_i, y_i)\}_{i=1}^k$  to a classifier  $C_S(\widehat{x})$ 

given a test example  $\widehat{(x)}$  defines a probability distribution over outputs  $\widehat{(Y)}$ 

We define the mapping  $S \to C_s(\widehat{x})$  to be  $P(\widehat{Y}|\widehat{x},S)$  where **P** is parameterised by a neural network.



#### Our model in its simplest form computes $\hat{y}$ as follows:

$$\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$$

the attention mechanism **a** is a kernel on  $X \times X$ , then is akin to a **kernel density estimator** 

describes the output for a new class as a linear combination of the labels in the support set.

$$a(\hat{x}, x_i) = e^{c(f(\hat{x}), g(x_i))} / \sum_{j=1}^k e^{c(f(\hat{x}), g(x_j))}$$

- The Attention Kernel
  - Calculate softmax over the cosine distance between  $f(\hat{x},S)$  and  $g(x_i)$ 
    - Similar to nearest neighbor calculation
  - Train a network using cross entropy loss

embedding functions **f** and **g** being appropriate neural networks (potentially **with f = g**) to embed  $\hat{x}$  and  $x_i$ .

#### Loss

• This kind of loss is also related to methods such as **Neighborhood Component Analysis (NCA)**, **triplet loss** or large margin nearest neighbor (Investigar).

$$ext{similarity} = \cos( heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}},$$

## Full Context Embeddings *f*

$$f(\hat{x}, S) = \text{attLSTM}(f'(\hat{x}), g(S), K)$$

where f' is a neural network (e.g., VGG or Inception, as described in the main text). We define K to be the number of "processing" steps following work from [26] from their "Process" block. g(S) represents the embedding function g applied to each element  $x_i$  from the set S.

K steps of "reads", attLSTM
$$(f'(\hat{x}), g(S), K) = h_K$$

- a "content" based attention
- the softmax g(xi).
- The read-out rk-1 from g(S) is concatenated to hk-1.



$$\hat{h}_{k}, c_{k} = LSTM(f'(\hat{x}), [h_{k-1}, r_{k-1}], c_{k-1}) 
h_{k} = \hat{h}_{k} + f'(\hat{x}) 
r_{k-1} = \sum_{i=1}^{|S|} a(h_{k-1}, g(x_{i}))g(x_{i}) 
a(h_{k-1}, g(x_{i})) = softmax(h_{k-1}^{T}g(x_{i}))$$



$$\hat{h}_{k}, c_{k} = \text{LSTM}(f'(\hat{x}), [h_{k-1}, r_{k-1}], c_{k-1}) \qquad r_{k-1} = \sum_{i=1}^{|S|} a(h_{k-1}, g(x_{i}))g(x_{i}) 
h_{k} = \hat{h}_{k} + f'(\hat{x}) \qquad |S| \qquad |S|$$









## Full Context Embeddings g

Then we define  $g(x_i, S) = \vec{h}_i + \overleftarrow{h}_i + g'(x_i)$  with:

$$\vec{h}_i, \vec{c}_i = \text{LSTM}(g'(x_i), \vec{h}_{i-1}, \vec{c}_{i-1})$$
  
 $\vec{h}_i, \vec{c}_i = \text{LSTM}(g'(x_i), \vec{h}_{i+1}, \vec{c}_{i+1})$   
 $g': \text{ neural network } (e.g., \text{VGG or Inception})$ 

$$\overleftarrow{h}$$
 starts from  $i = |S|$ 

- The Fully Conditional Embedding g
  - Embed  $x_i$  in consideration of S



### RNN



The scheme of an RNN

$$\mathbf{h}_t = \phi \left( W \mathbf{x}_t + U \mathbf{h}_{t-1} \right)$$



### RNN LSTM

In direct response to the vanishing gradients problem of simple RNNs, the **Long Short-Term Memory (LSTM)** layer was invented. This layer performs much better at longer time series.



The repeating module in an LSTM contains four interacting la 7rs.





$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
  
$$h_t = o_t * \tanh (C_t)$$



$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
  
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

### **Training Strategy**

- Our model has to perform well with support sets  $\hat{S}$  which contain classes never seen during training.
- T as distribution over possible label sets L.
- T to uniformly weight all data sets of up to a few unique classes (e.g., 5) with a few examples per class (e.g., up to 5
- A label set L sampled from a task T, L ~ T, will typically have 5 to 25 examples.
- "episode" compute gradients and update our model
- sample L from T (e.g., L could be the label set {cats, dogs}). Use L to sample the support set S and a batch B (i.e., both S and B are labelled examples of cats and dogs).
- The Matching Net is then trained to minimise the error predicting the labels in the batch B conditioned on the support set S.

$$\theta = \arg\max_{\theta} E_{L \sim T} \left[ E_{S \sim L, B \sim L} \left[ \sum_{(x,y) \in B} \log P_{\theta} \left( y | x, S \right) \right] \right]$$

#### Train a classifier through one-shot learning



### Results



Figure 2: Example of two 5-way problem instance on ImageNet. The images in the set S' contain classes never seen during training. Our model makes far less mistakes than the Inception baseline.

Table 2: Results on miniImageNet.

| Model                | Matching Fn  | Fine Tune | 5-way Acc<br>1-shot 5-shot |
|----------------------|--------------|-----------|----------------------------|
| PIXELS               | Cosine       | N         | 23.0% 26.6%                |
| BASELINE CLASSIFIER  | Cosine       | N         | 36.6% 46.0%                |
| BASELINE CLASSIFIER  | Cosine       | Y         | 36.2% 52.2%                |
| BASELINE CLASSIFIER  | Softmax      | Y         | 38.4% 51.2%                |
| MATCHING NETS (OURS) | Cosine       | N         | 41.2% 56.2%                |
| MATCHING NETS (OURS) | Cosine       | Y         | 42.4% 58.0%                |
| MATCHING NETS (OURS) | Cosine (FCE) | N         | 44.2% 57.0%                |
| MATCHING NETS (OURS) | Cosine (FCE) | Y         | 46.6% 60.0%                |

Table 3: Results on full ImageNet on rand and dogs one-shot tasks. Note that  $\neq L_{rand}$  and  $\neq L_{dogs}$  are sets of classes which are seen during training, but are provided for completeness.

| Model                | Matching Fn    | Fine Tune | ImageNet 5-way 1-shot Acc |                 |                |                 |
|----------------------|----------------|-----------|---------------------------|-----------------|----------------|-----------------|
| Wodel                |                |           | $L_{rand}$                | $\neq L_{rand}$ | $L_{dogs}$     | $\neq L_{dogs}$ |
| PIXELS               | Cosine         | N         | 42.0%                     | 42.8%           | 41.4%          | 43.0%           |
| INCEPTION CLASSIFIER | Cosine         | N         | 87.6%                     | 92.6%           | 59.8%          | 90.0%           |
| MATCHING NETS (OURS) | Cosine (FCE)   | N         | 93.2%                     | 97.0%           | 58.8%          | 96.4%           |
| INCEPTION ORACLE     | Softmax (Full) | Y (Full)  | $\approx 99\%$            | $\approx 99\%$  | $\approx 99\%$ | $\approx 99\%$  |



### Codigo

• <a href="https://github.com/AntreasAntoniou/MatchingNetworks">https://github.com/AntreasAntoniou/MatchingNetworks</a>