# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-193911

(43) Date of publication of application: 03.08.1993

(51)Int.Cl.

C01B 13/32 CO1B 33/18

(21)Application number : 04-025642

(71)Applicant: SHIN ETSU CHEM CO LTD

TOYOTA MOTOR CORP

(22)Date of filing:

16.01.1992

(72)Inventor: KONYA YOSHIHARU

KAMIYA SUMIO

ABE SAN

### (54) PRODUCTION OF METAL OXIDE POWDER

#### (57)Abstract:

PURPOSE: To control the particle diameter of the metal oxide powder by regulating the heat of a reaction generated at the time of producing metal oxide powder from metal powder. CONSTITUTION: When metal powder fed with carrier gas and oxygen are introduced into a flame from a burner formed with combustible gas and metal oxide powder is produced by continuous oxidation combustion, carbon dioxide is fed into the burner.

#### **LEGAL STATUS**

[Date of request for examination]

18.12.1998

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3225073

[Date of registration]

24.08.2001

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

#### (12) 特 報(B2)

(11)特許番号 特許第3225073号

(P3225073)

(45)発行日 平成13年11月5日(2001.11.5)

(24)登録日 平成13年8月24日(2001.8.24)

(51) Int.Cl.7

C 0 1 B 13/32

33/18

識別記号

FΙ

C 0 1 B 13/32 33/18

Z

謝求項の数4(全 4 頁)

(21)出願番号 特願平4-25642 (73)特許権者 000002060 信越化学工業株式会社 (22)出顧日 平成4年1月16日(1992.1.16) 東京都千代田区大手町二丁目6番1号 (73)特許権者 000003207 (65)公開番号 特開平5-193911 トヨタ自動車株式会社 (43)公開日 平成5年8月3日(1993.8.3) 愛知県豊田市トヨタ町1番地 審査請求日 平成10年12月18日(1998.12.18) (72)発明者 紺谷 義治 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 磯部工場内 (72)発明者 ▲神▼谷 純生 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (74)代理人 100062823 弁理士 山本 亮一 (外1名)

最終頁に続く

#### (54) 【発明の名称】 金属酸化物粉末の製造方法

#### (57)【特許請求の範囲】

【請求項1】 キャリアガスで同伴した金属粉末と酸素 とを可燃性ガスにより形成したバーナー火炎中に導入 し、連続的な酸化燃焼によって金属酸化物粉末を製造す る方法において、バーナー中に二酸化炭素を供給するこ とを特徴とする金属酸化物粉末の製造方法。

【請求項2】 二酸化炭素を金属粉末のキャリアガスに 混入する請求項1に記載した金属酸化物粉末の製造方 法。

【請求項3】 二酸化炭素を金属粉末の外周部から供給 10 し、その外周から酸素を供給する請求項1に記載した金 属酸化物粉末の製造方法。

【請求項4】 二酸化炭素を酸素と混合して供給する請 求項1に記載した金属酸化物粉末の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は金属酸化物粉末の製造方 法、特には粉末の粒子径を容易に制御することができる 金属酸化物粉末の製造方法に関するものである。

#### [0002]

審査官

【従来の技術】金属酸化物粉末の製造方法については、 金属粉末を火炎中に導入し、酸素含有雰囲気下で連続的 に爆発燃焼を発生させる方法が公知とされており(特開 昭60-255602号公報参照)、これによれば酸化 チタン、酸化ジルコニウム、酸化アルミニウム、二酸化 けい素などを超微粒子状で熱効率、量産性よく生産する ことができるとされている。

#### [0003]

【発明が解決しようとする課題】しかし、この方法では 酸化反応熱が大きく、金属粉末が瞬時に溶融微細化なら

2

安齋 美佐子

びに蒸発し、生成する金属酸化物粉末の粒子径は反応熱 に大きく支配されるのであるが、この方法ではその反応 熱の調整を行なうことができないために、ここに得られ る金属酸化物の粒子径を制御することが困難であるとい う欠点がある。

#### [0004]

【課題を解決するための手段】本発明はこのような欠点 を解決した金属酸化物粉末の製造方法に関するものであ り、これはキャリアガスを同伴した金属粉末と酸素とを 可燃性ガスにより形成したバーナー火炎中に導入し、連 10 続的な酸化燃焼によって金属酸化物粉末を製造する方法 において、バーナー中に二酸化炭素を供給することを特 徴とするものである。

【0005】すなわち、本発明者らは粒子径の制御され た金属酸化物粉末の製造方法について種々検討した結 果、支燃性ガスとして二酸化炭素を使用すれば金属粉末 と二酸化炭素との反応熱が金属粉末と酸素との反応熱よ り小さいので、この二酸化炭素の供給比率を変えれば反 応熱を制御することができるということを見出し、した することができることを確認して本発明を完成させた。 以下にこれをさらに詳述する。

#### [0006]

【作用】本発明は金属酸化物粉末の製造方法に関するも のであり、これは上記したように金属粉末を酸素と共に バーナー火炎中に導入し、連続的な酸化燃焼によって金 属酸化物粉末を製造する方法において、このバーナーに 二酸化炭素を供給して金属酸化物粉末の粒子径を制御す るというものである。

【0007】本発明は金属酸化物粉末の製造方法に関す 30 るものであるが、この金属としてはシリコン、アルミニ ウム、マグネシウム、チタン、ジルコニウム、その他ム ライト組成を形成するアルミニウムとシリコンとの混合 物などのような複合物が例示される。この金属は本発明 の目的が金属酸化物粉末であることから、金属粉末とし て供給されるが、これは高純度金属酸化物粉末を得るた めには純度が99.9%以上のものとすることがよい。 【0008】この金属粉末はバーナー火炎中における酸 化燃焼によって金属酸化物粉末とされるのであるが、バ ーナーへの導入はキャリアガスへの同伴によって行なわ 40 れる。このキャリアガスとしては窒素、ヘリウム、アル ゴンなどの不活性ガスまたは空気が用いられる。この場\*

S i (固体) +O<sub>2</sub> (気体) → S i O<sub>2</sub> (固体)

Si(固体)+2CO₂(気体)→SiO₂(固体)+2CO(気体)…(2)

(1)式では反応熱が ΔH<sub>k</sub> = −217.6Kcal/ モル、(2) 式では反応熱が ΔH<sub>8</sub> = -82. 4Kca 1/モルであることから、二酸化炭素のほうが反応熱が はるかに小さいので、この酸素と二酸化炭素との供給比 率を変えることによって反応熱を制御することができ、 したがって得られる金属酸化物粉末の粒子径を制御する 50 酸素を供給する方法としてもよく、さらには二酸化炭素

\* 合における金属粉末の粒度分布やキャリアガス中の金属 粉末濃度は粉塵爆発に必要な粉塵雲を形成する条件の範 囲内にあればよく、具体的には200メッシュの篩を通 過し、なだらかな粒度分布をもち、爆発下限以上の粉塵 濃度をもつものとすればよいが、好ましくは粒子径が 1 Ομm以下の微粉を含むものとすることがよい。

【0009】この金属粉末はバーナー火炎中での爆発燃 焼によって金属酸化物粉末とされるのであるが、この金 属粉末の連続爆発を安定して形成させるための種火とし ては可燃性ガスによる燃焼火炎を使用することがよい。 この可燃性ガスとしてはメタン、プロパンなどのような 化学式C。H<sub>2h/2</sub> で示される炭化水素ガスまたは水素ガ スを用いればよいが、この種火用の燃焼火炎は粉塵爆発 を形成するのに必要な最小着火エネルギーを与えればよ いので、反応容器の熱負荷を減らすということからも可 燃性ガスをできるだけ少ないものとすることがよい。

【0010】この金属粉末および燃焼用ガスは通常室温 で供給されるが、反応容器は燃焼火炎温度が1、000 ℃以上となるためにアルミナなどの耐熱材料で内張りし がってこれによれば生成する金属酸化物の粒子径を制御 20 たものとすればよく、これは煙道側に排風機を設けて吸 引し、圧力が大気圧基準で-200mHgから-10m mHgの負圧となるようにすることがよい。

> 【0011】この金属粉末はキャリアガスに同伴されて バーナーから反応容器内に放出され、種火火炎によって 着火し、連続的に爆発燃焼して金属酸化物粉末となり、 反応容器中の捕集機で回収されるのであるが、この場合 には酸化反応熱が大きいことから、生成する金属酸化物 粉末の粒子径を制御することができず、このようにして 得られた金属酸化物粉末は通常その粒子径が微細なもの となる。

> 【0012】本発明においてはこの公知の方法において バーナーに二酸化炭素が供給され、これによって反応熱 が制御される。すなわち、燃焼により生成する金属酸化 物粉末の粒子径は金属および金属酸化物の融点、沸点、 表面張力などの物性によって相異するが、この粒子径は 主として反応熱によって支配され、金属粉末の燃焼反応 熱が大きい程、金属粉末の溶融微細化と蒸発が促進され るために生成する金属酸化物粉末は微細化する。

> 【0013】しかし、ここに支燃性ガスとして酸素以外 に二酸化炭素を添加すると、例えばシリコンの反応例は 次式のようになり、

> > ... (1)

【0014】この二酸化炭素の添加方法はどのような方 法で行なってもよいが、これは例えば二酸化炭素を金属 粉末を搬送するキャリアガスに添加してもよいし、二酸 化炭素を金属粉末の外周部に供給し、さらにその外周に

ことができる。

5

を酸素ガスに混合してもよいが、これは二酸化炭素を金 属粉末の反応中心域に供給することが好ましい。

【0015】このようにして得られた金属酸化物粉末は サイクロン、バクフイルなどの分離捕集機で採取されて 製品とされるが、これによればその反応熱が二酸化炭素 の供給により低減されるので、従来法にくらべて粒子径 の大きいものとして得ることができる。

【0016】つぎに本発明による金属酸化物粉末製造方 法に使用される反応装置を添付の図面について説明す る。図1はこの金属酸化物粉末製造装置の縦断面図を示 10 のアルミナレンガの表面温度は最高1,350℃を示 したものであるが、金属粉末2は原料ホツパー1カラ取 り出され、このものはキャリアガス3に同伴され、導入 管4を通ってバーナー5に導かれ、耐熱レンガ7で内張 りされた反応容器6内に放出される。この金属粉末2は 反応容器6の中に形成されている種火火炎によって酸素 と二酸化炭素を含む雰囲気下で着火して燃焼火炎8を形 成し、この燃焼反応により生成した金属酸化物粉末は排 ガスと共に煙道9を通って冷却されたのち、捕集機10 で分離捕集されるが、排ガスは排風機11により排気さ れる。

【0017】なお、図2はここに使用されるバーナーの 縦断面図を示したものであるが、これは同心円状の供給 口をもつもので、中心に金属粉末導入管4があり、その 外周にガス供給口21,22,23が配されたものとさ れている。

#### [0018]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1

図1に示した反応装置を使用し、平均粒径が20μm、 純度が99%であるシリコン粉末を供給量3kg/時 で、4 N m²/時の二酸化炭素と窒素とを3:1で混合し たキャリアガスに同伴させてバーナーの中心導入管に供 給した。

【0019】反応容器はアルミナレンガで内張りした内 径が350mm、高さが2,500mmの円筒形のもの とし、バーナーの供給口から酸素ガスを1.8 N m³/ 時、プロパンを0. 1 N m³/時、酸素を0. 8 N m³/時 で供給し、シリコン粉を供給する前に反応容器内に火炎 を形成させておき、シリコン粉末が供給されたらここに 燃焼火炎が発生するようにしておいたので、上記による 40 バーナーノズルの縦断面図を示したもの。 シリコン粉末の供給と共に燃焼火炎が発生し、これによ ってシリコン粉末は酸素および二酸化炭素と反応してシ リカ粉末が生成した。

【0020】この場合、燃焼時のアルミナレンガの表面 温度を白金ロジウム熱電対で測定したところ、最高1. 200℃を示したが、生成したシリカ粉末を煙道途中の バグフィルターで捕集し、得られたシリカ粉末の透過電

子顕微鏡で観察したところ、このものは真球状のアモル \*ファスで平均粒子径が3.5μmのものであり、純度分 析では99.5%のものであった。なお、運転時間2時 間で捕集したシリカ粉末は12.2Kgであり、収率は 95%であった。

#### 【0021】実施例2

上記した実施例1におけるキャリアガスの混合比を、二 酸化炭素と窒素との混合比が1:1としたほかは実施例 1と同じ条件でシリカの合成を行なったところ、燃焼時 し、得られたシリカ粉末は真球状のアモルファスで平均 粒子径が2.3μm、純度99.5%のものであり、収 率は93%であった。

#### 【0022】比較例

キャリアガスをすべて窒素ガスからなるものとしたほか は実施例1と同じ条件でシリカの合成を行なったとこ ろ、燃焼時のアルミナレンガの表面温度は1,500℃ を示し、得られたシリカ粉末は真球状のアモルファスで 純度が97.6%のもので、収率は92%であったが、 このものは平均粒子径が1.4μmとして微細なもので あった。

#### [0023]

20

【発明の効果】本発明は金属酸化物粉末の製造方法に関 するものであり、これは前記したように金属粉末と酸素 とをバーナー火炎中に導入して連続的な酸化燃焼によっ て金属酸化物粉末を製造する方法において、バーナー中 に二酸化炭素を供給することを特徴とするものである が、これによれば二酸化炭素が支燃性ガスとなって金属 粉末と反応して金属酸化物粉末が生成されるが、これ場 合の反応熱が金属粉末と酸素との反応熱にくらべてはる かに小さいので、全体として反応熱が減少し、したがっ て目的とする金属酸化物粉末の粒子径が制御され、支燃 性ガスが酸素だけのときよりも金属酸化物粉末を粒子径 の大きなものに制御することができるという有利性が与 えられる。

#### 【図面の簡単な説明】

【図1】本発明による金属酸化物粉末製造方法に使用さ れる反応装置の縦断面図を示したもの。

【図2】本発明による金属酸化物粉末製造装置における

#### 【符号の説明】

1 ……原料ホッパー、 2 ……金属粉末、3 … ……キャリアガス、 4……導入管、5……バ ーナー、 6……反応容器、7……耐熱レ 8……火炎、9……煙道、

10……捕集機、11……排風機、

21、22、23……ガス供給口。





## フロントページの続き

(72)発明者 安部 賛

愛知県豊田市トヨタ町1番地 トヨタ自

動車株式会社内

(56)参考文献 特開 昭61-205604 (JP, A)

特開 昭63-252910 (JP, A)

特開 平2-199004 (JP, A)

(58)調査した分野(Int.Cl.<sup>7</sup>, DB名)

C01B 13/32

CO1B 33/18

C01F 5/04

C01F 7/42

C01G 23/047

COIG 25/047