Matrix and Linear Algebra

David Robinson

Linear Equations in Linear Algebra

A matrix is in **echelon form** if:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

A matrix is in **reduced echelon form** if:

- 1. It is in echelon form.
- 2. The leading entry in each nonzero row is 1.

Properties

- Two matrices are row equivalent if there exists a sequence of elementary row operations that transforms one matrix into the other.
- Each matrix is row equivalent to only one reduced echelon matrix.
- The echelon form of a matrix is not unique, but the reduced echelon form is unique.

Existence and Uniqueness Theorem

A linear system is consistent if the rightmost column of echelon form of the augmented matrix is not a pivot column.

Row Reduction Algorithm

The row reduction algorithm leads directly to an explicit description of the solution set of a linear system when the algorithm is applied to the augmented matrix of the system, leading to a general solution of a system.

1. Forward Phase (reducing a matrix to echelon form)

- (a) Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.
- (b) Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.
- (c) Use row replacement operations to create zeros in all positions below the pivot.
- (d) Ignore the row containing the pivot position and all rows above it.
- (e) Repeat until there are no more nonzero rows to modify.
- 2. Backward Phase (reducing a matrix to reduced echelon form)
 - (a) Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

Span (Linear Combination)

- The span of two vectors, $Span\{v_1, v_2\}$, represents all vectors that can be reached by scaling and adding the two vectors.
- If the system consisting of vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{b} is consistent, then \mathbf{b} is in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$.
- A matrix can only span \mathbb{R}^n if it has pivot positions in n rows.

Matrix Equation $A\mathbf{x} = b$

 $A\mathbf{x} = b$ can be represented as a vector or matrix equation.

$$ax_1 + bx_2 + cx_3 = d$$
$$ex_1 + fx_2 + gx_3 = h$$

Vector Equation:

$$x_1 \begin{bmatrix} a \\ e \end{bmatrix} + x_2 \begin{bmatrix} b \\ f \end{bmatrix} + x_3 \begin{bmatrix} c \\ h \end{bmatrix} = \begin{bmatrix} d \\ h \end{bmatrix}$$

Matrix Equation:

$$\begin{bmatrix} a & b & c \\ e & f & g \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} d \\ h \end{bmatrix}$$

Augmented Matrix:

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \end{bmatrix}$$

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- 1. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- 2. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- 3. The columns of A span \mathbb{R}^m .
- 4. A has a pivot position in every row.

Homogeneous Equation

A homogeneous equation is a linear equation in the form Ax = 0

- 1. The homogeneous equation always has at least one solution (the trivial solution), where $\mathbf{x} = \mathbf{0}$.
- 2. The homogeneous equation has a nontrivial solution if the equation has at least one free variable.
- 3. If the matrix **A** has more columns than rows (n > m), the system often has infinitely many solutions.
- 4. If **A** has n pivot columns, the columns of **A** are linearly independent, since every variable is a basic variable.

Parametric Vector Equation

The equation can be represented in parametric vector form if there is a free variable so that all of the other variables are represented in terms of the free variable. For example, if x_3 is a free variable in \mathbb{R}^3 ,

$$x = \begin{bmatrix} c \\ d \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} a \\ b \\ 1 \end{bmatrix}$$

where $x_1 = ax_3 + c$ and $x_2 = bx_3 + d$.

$$x = \begin{bmatrix} a + bx_3 \\ c + dx_3 \\ e + fx_3 \end{bmatrix}, \text{ geometrically describes a line through } \begin{bmatrix} a \\ c \\ e \end{bmatrix} \text{ parallel to } \begin{bmatrix} b \\ d \\ f \end{bmatrix}$$

The solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the equation $A\mathbf{x} = \mathbf{0}$, only when the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and there exists a vector \mathbf{p} such that \mathbf{p} is a solution.

Linear Independence

An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be linearly independent if the vector equation $x_1\mathbf{v}_1 + \dots + x_p\mathbf{v}_p = 0$ has only the trivial solution.

- If a set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.
- Two vectors are linearly dependent if they live on a line through the origin.

Linear Transformations

A linear transformation is a function from \mathbb{R}^n to \mathbb{R}^m that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . For a transformation to be linear, then:

- T(0) = 0.
- $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$

Key Points

- If A is a $m \times n$ matrix and T is a transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, then the domain of T is \mathbb{R}^n and the range of T is the solution set.
- A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unquie vector in \mathbb{R}^m . Also, T is one-to-one if and only if the columns of A are linearly independent.
- A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector in \mathbb{R}^m is mapped onto by some vector \mathbf{x} in \mathbb{R}^n . Also, T is onto \mathbb{R}^m if there are n pivot columns.

Standard matrix of T to rotate points about the origin by θ : $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then there exists a unique matrix A such that the following equation is true.

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

In fact, A is the $m \times n$ matrix whose jth column is the vector, $T(e_j)$, where e_j is the jth column of the identity matrix in \mathbb{R}^n , as shown in the following equation.

$$A = \begin{bmatrix} T(e_1) & \cdots & T(e_n) \end{bmatrix}$$

Matrix Multiplication

The definition of matrix multiplication states that if A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{b}_1, \dots, \mathbf{b}_p$, then $AB = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_p \end{bmatrix}$.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} \times \begin{bmatrix} g & h \\ i & j \end{bmatrix} = \begin{bmatrix} ag+bi & ah+bj \\ cg+di & ch+dj \\ eg+fi & eh+fj \end{bmatrix}$$

The (i, j) entry in AB is

$$\sum_{k=1}^{n} a_{ik} b_{kj} \quad \text{or} \quad a_{i1} b_{1j} + \dots + a_{in} b_{nj}$$

$$(AB)^T = B^T A^T$$

Key Points

- Matrix multiplication is only allowed for matrices where the number of columns in the first matrix equal the number of rows in the second matrix.
- If A is a $a \times b$ matrix and B is a $b \times c$ matrix, then AB is a $a \times c$ matrix.
- Given a square $n \times n$ matrix A, there are infinite matrices for B in AB = BA because any multiple of I_n will satisfy the equation.
- The definition of AB states that each column of AB is a linear combination of the columns of A using weights from the corresponding column of B.

Inverse Matrices

$$A \times A^{-1} = I$$

where A is an invertible matrix, A^{-1} is the inverse of A, and I is the identity matrix with the same shape as A. Calculating the inverse of a 2 × 2 square matrix.

Calculating the Inverse of a Matrix

- 1. Start with a square matrix A.
- 2. Reduce the matrix $\begin{bmatrix} A & I \end{bmatrix}$ (where I is the identity matrix with the same shape as A) to reduced echelon form which will result in $\begin{bmatrix} I & A^{-1} \end{bmatrix}$.

If A is a
$$2 \times 2$$
 matrix, then $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

If A is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Invertible Matrix Theorem

The following statements are either all true or all false

- 1. A is an invertible matrix.
- 2. A has n pivot positions.
- 3. The columns of A form a linearly independent set.
- 4. The columns of A span \mathbb{R}^n .
- 5. There are $n \times n$ matrices C and D such that CA = I and AD = I.

The determinant of a standard $n \times n$ matrix is ad - bc.

Key Points

- $(AB)^{-1}$ is $B^{-1}A^{-1}$.
- If A is an invertible $n \times n$ matrix, then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^n because $A^{-1}\mathbf{b}$ exists for all \mathbf{b} in \mathbb{R}^n and $\mathbf{x} = A^{-1}\mathbf{b}$.
- The columns of an $n \times n$ matrix A are linearly independent when A is invertible because the equation $A\mathbf{x} = 0$ has the unique solution $\mathbf{x} = 0$.
- The product of invertible matrices is also invertible.
- If A and B are $n \times n$ matrices and AB is invertible, then B is also invertible

LU Factorization

For a 3x3 matrix, LU Factorization looks like

$$\begin{bmatrix} \# & \# & \# \\ \# & \# & \# \\ \# & \# & \# \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \# & 1 & 0 \\ \# & \# & 1 \end{bmatrix} \begin{bmatrix} \# & \# & \# \\ 0 & \# & \# \\ 0 & 0 & \# \end{bmatrix}$$

where # is any number.

- 1. Start with a matrix A.
- 2. Reduce A to echelon form U.
- 3. Before reducing each column for U, place that column with 0's above the current pivot position into L.
- 4. At each pivot column in L, divide the column by the pivot point

If A is a $n \times m$ matrix, L is a $n \times n$ matrix and U is a $n \times m$ matrix.

Other

1. It is not possible that $CA = I_4$ for some 4×2 matrix C when A is a 2×4 matrix because if it were true, then $CA\mathbf{x}$ would equal \mathbf{x} for all \mathbf{x} in \mathbb{R}^4 . Since the columns of A are linearly dependent as there are more columns than rows, $A\mathbf{x} = 0$ for some nonzero vector \mathbf{x} , so $\mathbf{x} = I\mathbf{x} \neq CA\mathbf{x} = 0$.