ECE 637 Digital Image Processing Laboratory: Pointwise Operations and Gamma

Yang Wang

February 12, 2016

1 Histogram of an Image

In this section, original sample images and their histograms are plotted.

1.1 Plot Sample Images and Its Histograms

(a) Original kids.tif

(b) Histogram of kids.tif

(a) Original race.tif

(b) Histogram of race.tif

2 Histogram Equalization

In this section, histogram equalization is used to enhance the given sample images. A MATLAB function that implements a equalization function that approximates a cumulative distribution function is written.

2.1 Plot the CDF $\hat{F}_x(i)$

Figure 3: CDF $\hat{F}_x(i)$

2.2 Plot the Histogram of the Equalized Image

Figure 4: Histogram of Equalized kids.tif

2.3 Plot the Equalized Image

It is apparent that the equalized image appears to be brighter than the original image.

Figure 5: Equalized Image of kids.tif

2.4 Code Listing

2.4.1 equalize.m

```
function [Z Y] = equalize(X)
    N = hist(X(:), [0:255]);
    Y = cumsum(N)/sum(N);

    Ymin = Y(min(X(:)));
    Ymax = Y(max(X(:)));

    Z = uint8(255*((Y(X) - Ymin)/(Ymax - Ymin)));
end

2.4.2 sec1.m

% Section 1
close all;
clear all;

[raceimg] = imread('race.tif');
figure(1);
image(raceimg+1);
axis('image');
```

```
graymap = [0:255;0:255;0:255],/255;
colormap(graymap);
[kidimg] = imread('kids.tif');
figure(2);
image(kidimg+1);
axis('image');
colormap(graymap);
figure(3);
hist(raceimg(:),[0:255]);
xlabel('pixel intensity');
ylabel('number of pixels');
title('Histogram of race.tif');
print('-dpng', '-r300', '../report/race_hist.png');
figure(4);
hist(kidimg(:),[0:255]);
xlabel('pixel intensity');
ylabel('number of pixels');
title('Histogram of kids.tif');
print('-dpng', '-r300', '../report/kids_hist.png');
```

3 Contrast Stretching

In this section, another useful image enhancement technique called contrast stretching is explored. The main idea is to define two thresholds, T1 and T2; T1 has a value relatively close to 0 and T2 is relatively close to 255. Anything less that T1 will be set to 0 and anything greater than T2 will be set to 255. Pixel values in between these two values will keep the same.

3.1 Plot the Transformed Image and its Histogram

(a) "Stretched" kids.tif

(b) Histogram of "stretched" kids.tif

3.2 Code Listing

3.2.1 stretch.m

```
function [output] = stretch(input, T1, T2)
    output = zeros(size(input));
    index = find(input > T1 & input < T2);</pre>
    output(index) = (input(index) - T1)*(255/(T2-T1));
    output(input > T2) = 255;
    output = uint8(output);
3.2.2 sec3.m
% Section 3
close all;
clear all;
img = imread('kids.tif');
strImg = stretch(img, 70, 180);
figure(1);
image(strImg+1);
axis('image');
graymap = [0:255;0:255;0:255]'/255;
colormap(graymap);
print('-dpng', '-r300', '../report/kids_str.png');
figure(2);
hist(strImg(:),[0:255]);
xlabel('pixel intensity');
ylabel('number of pixels');
title('Histogram of stretched kids.tif');
print('-dpng', '-r300', '../report/kids_str_hist.png');
```

4 Gamma (γ)

In this section, the topic of gamma, gamma correction and its relation with gray level is discussed.

4.1 Setting the Black Level and Picture of Your Monitor

Values are set. Nothing due for report.

4.2 Determining the Gamma of Your Computer

4.2.1 Plot the Checkboard to the Matching Gray Level

It is determined from my screen that with a gray level of 195, it produces the best intensity match between the stripes.

Figure 7: Checkerboard Image with gray level 195

4.2.2 Derive an Expression that Relates the Matching Gray Level to the Value of γ

We are given:

$$I_c = \frac{I_{255}}{2}$$

and:

$$I_g = I_{255} (\frac{g}{255})^{\gamma}$$

For matching gray level, we have:

$$I_c = I_g$$

$$\frac{I_{255}}{2} = I_{255} (\frac{g}{255})^{\gamma}$$

Hence,

$$\gamma = -\frac{\log 2}{\log \frac{g}{255}} \tag{1}$$

4.2.3 Calculate the Value of Gray Level and γ

Using equation (1), g = 195, we have:

$$\gamma = -\frac{\log 2}{\log \frac{195}{255}}$$
$$= 2.583$$

4.3 Gamma Correction

4.3.1 Plot the Original and the Corrected Images

(a) Original linear.tif

(b) Corrected linear.tif with $\gamma = 2.583$

4.3.2 Derive the Formula for Transforming the Image

We have:

$$y = 255(\frac{x}{255})^{\gamma}$$
$$\frac{y}{255} = (\frac{x}{255})^{\gamma}$$
$$\frac{x}{255} = (\frac{y}{255})^{\gamma}$$

Hence,

$$x = 255\left(\frac{y}{255}\right)^{\gamma} \tag{2}$$

4.4 Gamma Correction on Gamma Corrected Image

4.4.1 Plot the Original and the Corrected Images

(b) Corrected gamma.tif with $\gamma = \frac{1.5}{2.583}$

4.4.2 Derive the Formula for Transforming the Image

Let's say we already have a image with gamma correction γ_1 :

$$y = 255\left(\frac{x}{255}\right)^{\gamma_1}$$

And we want to do another gamma correction on top of that with γ_2 ,

$$z = 255(\frac{y}{255})^{\gamma_2}$$

Then the result image will be:

$$z = 255(\frac{x}{255})^{\frac{\gamma_1}{\gamma_2}} \tag{3}$$

Hence, for given $\gamma_1 = 1.5$, the resulting γ will be:

$$\gamma = \frac{1.5}{2.583}$$

4.5 Code Listing

4.5.1 sec3.m

```
%Section 4
linearImg = imread('linear.tif');
corLinearImg = 255*(double(linearImg)/255).^(double(1/2.583));
figure(1);
image(uint8(corLinearImg)+1);
axis('image');
graymap = [0:255;0:255;0:255]'/255;
colormap(graymap);
print('-dpng', '-r300', '../report/linear_gamma.png');
gammaImg = imread('gamma15.tif');
corGammaImg = 255*(double(gammaImg)/255).^(double(1.5/2.583));
figure(2);
image(uint8(corGammaImg)+1);
axis('image');
colormap(graymap);
print('-dpng', '-r300', '../report/gamma15_gamma.png');
```