데이터에서 가치를 찾는 데이터 분석가, 허주혁입니다.

Contact

Github https://github.com/hjuhyeok

Phone 010-2476-5021

Email wngur1205@naver.com

Q ABOUT ME

이름: 허주혁

번호: 010-2476-5021

연구분야

• 불균형 데이터 분석

• 불량 예측 모델 개발

좌우명: 나는 할 수 있다.

저는 제조업의 불량 예측과 품질 개선에 관심이 있습니다. 특히 데이터를 통해 새로운 가치를 창출하는 것을 즐깁니다.

학력

2017.02 운천고등학교 졸업

2023.08 충북대학교 정보통계학과 졸업

GPA: 3.98 / 4.5

2025.08 연세대학교 통계데이터사이언스학과 졸업

GPA: 4.19 / 4.5

실무 경력

2022 이노포스트

• 보행안전지수 개발 및 시각화

2023,2025 연세대학교 데이터사이언스연구소

• 석/박사 대상 통계 상담 및 의사결정 지원

2024 연세대학교 바른ICT연구소

• 악성댓글 비용 시뮬레이터 개발

프로젝트

2022 천안시 교통사고 취약지역 도출

2023 맞춤형 추천을 제공하는 개인화 추천 시스템 모델 구축

2024 Tabular Data Generation Using Generative Models

논문

2025 ADBoost: Boosting with Tree-Based Hybrid-sampling for Imbalance Data

• Statistics and Computing 저널 투고

수상 경력

2017 충북대학교 성적우수 장학생

2022 천안시 데이터 기반 시각화 아이디어 공모전 우수상

프로그램 활용 능력

자격증 및 공인 성적

2020 워드프로세서, 사회조사분석사 2급

2021 데이터 분석 준전문가(ADsP)

2022 컴퓨터 활용능력 1급, 품질경영기사, SQL 개발자

(SQLD), 빅데이터 분석기사

2024 TOEIC 785/990

2025 OPIC IH LEVEL

ADBoost: Boosting with Tree-based Hybrid-sampling for Imbalanced Data

국문: 불균형 데이터 처리를 위한 결정트리 기반 하이브리드 샘플링 부스팅 기법

분류기가 양품(다수 클래스) 에 편향되어 신규 불량품 예측이 어려움

ADBoost Architecture Majority Training set Minority Oversampling(ARF) Minority Synthetic Temporary Dataset Final Model Update weights Update weights

현재 상태 Statistics and Computing 저널 투고

기여도

연구 100% 논문 85%

사용도구

논문 개요

본 연구는 불균형 데이터 환경에서 소수 클래스 예측 성능을 향상시키는 것을 목표로 합니다.

이를 위해 Adversarial Random Forest 기반 오버샘플링과 Double Random Forest 기반 언더샘플링을 결합한 하이브리드 샘플링 기법을 제안하였습니다.

또한 이 기법을 Boosting과 통합하여 불량 예측 성능을 개선하는 ADBoost 알고리즘을 개발하였습니다.

ADBoost: Boosting with Tree-based Hybrid-sampling for Imbalanced Data

국문 : 불균형 데이터 처리를 위한 결정트리 기반 하이브리드 샘플링 부스팅 기법

Adversarial Random Forest(ARF)

리프노드 내 변수별로 샘플링해 비선형적으로 데이터를 생성

고차원에서도 조건부 독립성을 활용해 복잡한 경계를 잘 반영

Data Oversampling

- > 소수 클래스와 유사한 특성을 지닌 Synthetic Data(불량 데이터) 생성
- 불균형을 완화하여 모델이 불량 데이터 패턴을 학습할 수 있도록 지원

ADBoost: Boosting with Tree-based Hybrid-sampling for Imbalanced Data

국문: 불균형 데이터 처리를 위한 결정트리 기반 하이브리드 샘플링 부스팅 기법

Double Random Forest(DRF)

개념

제거 방식

리프노드 번호	클래스 구성	유형
1	양품	제거 대상
2	양품, 불량품	보존
3	양품	제거 대상
4	불량품	보존

🔵 🔵 : 데이터 보존

: 제거 대상

- 양품 데이터만 존재하는 리프노드를 제거
- 과적합 방지 및 학습 효율 향상

Data Undersampling

- 불필요한 양품 데이터 제거를 통한 경계 정보 강화
- 복잡한 경계를 반영해 불량 예측 성능 향상에 기여

ADBoost: Boosting with Tree-based Hybrid-sampling for Imbalanced Data

국문: 불균형 데이터 처리를 위한 결정트리 기반 하이브리드 샘플링 부스팅 기법

Boosting 학습 과정

ADBoost vs 기존 부스팅 모델 성능 비교

ADBoost vs AdaBoost

ADBoost vs OUBoost

	${\bf AdaBoost}$	${\bf SMOTEBoost}$	$\mathbf{RUSBoost}$	$\mathbf{OUBoost}$	ADBoost
G-Mean	0.6949	0.7316	0.7104	0.8049	0.8740
F-Score	0.5772	0.6064	0.5927	0.6082	0.6491
MCC	0.5624	0.5847	0.5737	0.5794	0.6276

- ARF : 의미 있는 불량 데이터 생성 → 데이터 다양성 확보
- DRF: 양품 데이터 제거 → 경계 학습 강화
- ADBoost : 클래스 간 균형 있는 분류 성능 확보
- 실험 결과 : 클래스 균형 분류 달성, 주요 지표(G-Mean, F-Score, MCC)에서 **최고 성능 기록**

읽어주셔서 감사합니다!

Contact

Github https://github.com/hjuhyeok Phone 010-2476-5021

Email wngur1205@naver.com