

MA1101 Grunnkurs

Analyse I

Høst 2017

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag

Løsningsforslag — Øving 7

Bemerkning: Legg merke til bruken av Korollar 6.2.5 for å vise injektivitet i oppgavene under.

7.4.1 c) Vi er gitt funksjonen $f(x) = x^2$ med definisjonsmengde $D_f = (-\infty, 0]$. f er kontinuerlig med f'(x) = 2x < 0 for x < 0, så f er strengt avtagende på D_f og dermed injektiv.

$$y = x^2 \Longrightarrow x = -\sqrt{x}$$

pga. definisjonsmengden må vi ta $-\sqrt{x}$. Dermed er $f^{-1}(x) = -\sqrt{x}$, med $D_{f^{-1}} = V_f = [0, \infty)$.

d) Vi er gitt $f(x) = \sqrt{x} \mod D_f = [0, \infty)$. f er kontinuerlig og $f'(x) = \frac{1}{2\sqrt{x}} > 0$ for $x \in (0, \infty)$, så f er injektiv. Dermed

$$y = \sqrt{x} \Longrightarrow x = y^2$$

Dermed er $f^{-1}(x) = x^2 \text{ med } D_{f^{-1}} = V_f = [0, \infty).$

g) Vi er gitt $f(x) = e^{-(x^2+2x+1)}$, $D_f = (-\infty, -1)$. f er kontinuerlig med $f'(x) = -(2x+2)e^{-(x^2+2x+1)} > 0$ når x < -1, så f er strengt avtakende og injektiv. Vi har videre at $V_f = (0,1)$. Da vet vi at f har en inversfunksjon f^{-1} med $D_{f^{-1}} = (0,1)$. Vi løser så $y = e^{-(x^2+2x+1)}$ for x. Tar ln på begge sider

$$\ln y = -(x^2 + 2x + 1) \Longrightarrow x^2 + 2x + (1 + \ln y) = 0$$

Dette kan løses med "abc-formelen". Merk at gitt definisjonsmengden må vi velge minustegnet i "abc-formelen".

$$x = \frac{-2 - \sqrt{4 - 4(\ln y + 1)}}{2} = -1 - \sqrt{-\ln y}$$

Dermed er $f^{-1}(x) = -1 - \sqrt{-\ln y} \mod V_{f^{-1}} = (0, 1).$

7.4.2d) Med $f(x) = e^x - e^{-x}$, $D_f = (-\infty, \infty)$ er

$$f'(x) = e^x + e^{-x} > 1 > 0$$

for alle $x \in \mathbb{R}$, så f er strengt voksende og injektiv på hele \mathbb{R} . Vi ser også at $V_f = (-\infty, \infty)$. For å finne inversfunksjonen løser vi $y = e^x - e^{-x}$ for x:

$$y = e^x - e^{-x} \Longrightarrow ye^x = e^{2x} - 1 \Longrightarrow e^{2x} - ye^x - 1 = 0$$

Dette er en annengradslikning i e^x (sett $u=e^x$, da er dette $u^2-yu-1=0$). "abc-formelen" gir

$$e^x = \frac{-(-y) \pm \sqrt{(-y)^2 - 4 \cdot 1 \cdot (-1)}}{2} = \frac{y \pm \sqrt{y^2 + 4}}{2}$$

Kun plusstegnet gir mening her, så $e^x = \frac{y + \sqrt{y^2 + 4}}{2}$, som gir

$$x = \ln(\frac{y + \sqrt{y^2 + 4}}{2})$$

Inversfunksjonen er derfor

$$f^{-1}(x) = \ln(\frac{x + \sqrt{x^2 + 4}}{2}), \quad D_{f^{-1}} = \mathbb{R}$$

7.4.3 Vi er gitt $f(x) = 2xe^x + 1$, $D_f = [-1, \infty)$, som gir

$$f'(x) = 2e^x + 2xe^x = 2e^x(1+x)$$

f er kontinuerlig og f'(x) > 0 for x > -1, så f er injektiv og har derfor en inversfunksjon g. Vi skal finne g'(1). For dette trenger vi ikke finne inversfunksjonen. Vi finner x slik at f(x) = 1:

$$2xe^x + 1 = 1 \Longrightarrow 2xe^x = 0 \Longrightarrow x = 0$$

Da har vi

$$g'(1) = \frac{1}{f'(0)} = \frac{1}{2e^0(1+0)} = \frac{1}{2}$$

7,6,1f) $\arccos(-\frac{\sqrt{3}}{2}) = \frac{5\pi}{6}$, siden $\cos(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2}$.

7.6.2

f)

$$D[\ln(\arctan(e^x))] = \frac{1}{|\arctan(e^x)|} D[\arctan(e^x)] = \frac{1}{|\arctan(e^x)|} \cdot \frac{1}{1 + (e^x)^2} D[e^x]$$
$$= \frac{e^x}{\arctan(e^x)(1 + e^{2x})}$$

g)

$$D[\arccos(\sin x)] = \frac{1}{\sqrt{1-(\sin x)^2}}D[\sin x] = -\frac{\cos x}{\sqrt{1-(\sin x)^2}} = -\frac{\cos x}{|\cos x|}$$

for $\cos x \neq 0$.

[7.6.6 a) La $f(x) = \arctan(x) + x - 2$. Oppgaven er ekvivalent med å vise at f har kun ett nullpunkt og at nullpunktet er i $[1, \sqrt{3}]$. f er kontinuerlig på \mathbb{R} så skjæringssetningen er høyst aktuell. Har at

$$f'(x) = \frac{1}{1+x^2} + 1 > 0$$

for alle $x \in \mathbb{R}$. Så f er strengt voksende på \mathbb{R} . Har videre at

$$f(1) = \arctan(1) + 1 - 2 = \frac{\pi}{4} + 1 - 2 = \frac{\pi}{4} - 1 < 0$$
$$f(\sqrt{3}) = \arctan(\sqrt{3}) + \sqrt{3} - 2 = \frac{\pi}{3} + \sqrt{3} - 2 > 0$$

Det følger av skjæringssetningen at det finnes $c \in [1, \sqrt{3}]$ hvor f(c) = 0, og siden f er (strengt) voksende er dette det eneste nullpunktet, som var det vi skulle vise.

7.4.14 Vi lager først en skisse av situasjonen:

Fra skissen ser vi at

$$\frac{3}{x} = \tan(\arctan(\frac{2}{x}) + \theta)$$

Ved å anvende arctan på begge sider får vi

$$\arctan(\frac{3}{x})=\arctan(\frac{2}{x})+\theta$$

Vi får da θ som funksjon av x gitt ved

$$\theta(x) = \arctan(\frac{3}{x}) - \arctan(\frac{2}{x})$$

Dette kan vi derivere med hensyn på x og sette lik null

$$\theta'(x) = \frac{1}{1 + (\frac{3}{x})^2} \left(-\frac{3}{x^2}\right) - \frac{1}{1 + (\frac{2}{x})^2} \left(-\frac{2}{x^2}\right) = 0$$

Dette kan skrives om til

$$\frac{2}{1 + (\frac{2}{x^2})} - \frac{3}{1 + (\frac{3}{x})^2} = 0$$

$$\implies 2(1 + (\frac{3}{x})^2) - 3(1 + (\frac{2}{x})^2) = 0$$

$$\implies 2 + 18\frac{1}{x^2} - 3 - 12\frac{1}{x^2} = 0$$

$$\implies -x^2 + 18 - 12 = 0$$

$$\implies x^2 = 6$$

$$\implies x = \sqrt{6}$$

Dette er det eneste indre kritiske punktet siden $x \in [0, \infty)$. Vi ser fra uttrykket for θ at

$$\lim_{x\to 0}\theta(x)=0=\lim_{x\to \infty}\theta(x)$$

Vi konkluderer med at $x = \sqrt{6}$ maksimerer θ .