Université Mohammed V. Faculté des Sciences Dép. de Mathématiques -Rabat.

Analyse 1 (SMPC)

Année: 2014-2015.

A. Hanine et E. Zerouali

Chapitre 1

Les suites

1. Définitions

1.1. Définition d'une suite

Définition 1

- **–** Une *suite* est une application $u : \mathbb{N} \to \mathbb{R}$.
- Pour $n \in \mathbb{N}$, on note u(n) par u_n et on l'appelle n-ème **terme** ou **terme général** de la suite.

La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(u_n)_{n\geq n_0}$.

Exemple 1

- $(\sqrt{n})_{n\geq 0}$ est la suite de termes : 0, 1, $\sqrt{2}$, $\sqrt{3}$,...
- $((-1)^n)_{n\geq 0}$ est la suite qui alterne +1, -1, +1, -1,...
- $-\left(\frac{1}{n^2}\right)_{n\geq 1}$. Les premiers termes sont $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$

1.2. Suite majorée, minorée, bornée

Définition 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est **majorée** si ∃ $M \in \mathbb{R}$ ∀ $n \in \mathbb{N}$ $u_n \leq M$.
- $(u_n)_{n\in\mathbb{N}}$ est **minorée** si $\exists m\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n \ge m$.
- $(u_n)_{n\in\mathbb{N}}$ est **bornée** si elle est majorée et minorée, ce qui revient à dire :

$$\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leq M.$$

1.3. Suite croissante, décroissante

Définition 3

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est *croissante* si $\forall n\in\mathbb{N}$ $u_{n+1} \ge u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est **décroissante** si $\forall n\in\mathbb{N}$ $u_{n+1}\leq u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est **monotone** si elle est croissante ou décroissante.

Remarque

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $\forall n\in\mathbb{N} \quad u_{n+1}-u_n\geqslant 0$.
- Si $(u_n)_{n \in \mathbb{N}}$ est une suite à termes strictement positifs, elle est croissante si et seulement si $\forall n \in \mathbb{N}$ $\frac{u_{n+1}}{u_n} \ge 1$.

Exemple 2

.

La suite $(u_n)_{n\geq 1}$ définie par $u_n=(-1)^n/n$ pour $n\geq 1$, n'est ni croissante ni décroissante. Elle est majorée par 1/2 (borne atteinte en n=2), minorée par -1 (borne atteinte en n=1).

– La suite $\left(\frac{1}{n}\right)_{n\geq 1}$ est une suite décroissante. Elle est majorée par 1 (borne atteinte pour n=1), elle est minorée par 0 mais cette valeur n'est jamais atteinte.

2. Limites

2.1. Limite finie, limite infinie

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

Définition 4

La suite $(u_n)_{n\in\mathbb{N}}$ a pour *limite* $\ell\in\mathbb{R}$ si : pour tout $\varepsilon>0$, il existe un entier naturel N tel que si $n\geqslant N$ alors $|u_n-\ell|\leqslant \varepsilon$:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \qquad (n \ge N \Longrightarrow |u_n - \ell| \le \varepsilon)$$

On dit aussi que la suite $(u_n)_{n\in\mathbb{N}}$ **tend vers** ℓ . Autrement dit : u_n est proche d'aussi près que l'on veut de ℓ , à partir d'un certain rang.

Définition 5

1. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si :

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \qquad (n \ge N \Longrightarrow u_n \ge A)$$

2. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ si :

$$\forall A>0 \quad \exists N\in \mathbb{N} \quad \forall n\in \mathbb{N} \qquad (n\geqslant N \Longrightarrow u_n\leqslant -A)$$

Remarque

- 1. On note $\lim_{n\to+\infty}u_n=\ell$ ou parfois $u_n\xrightarrow[n\to+\infty]{}\ell$, et de même pour une limite $\pm\infty$.
- 2. $\lim_{n\to+\infty} u_n = -\infty \iff \lim_{n\to+\infty} -u_n = +\infty$.
- 3. On raccourcit souvent la phrase logique en $: \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \qquad (n \ge N \implies |u_n \ell| \le \varepsilon)$. Noter que N dépend de ε et qu'on ne peut pas échanger l'ordre du « pour tout » et du « il existe ».
- 4. L'inégalité $|u_n \ell| \le \varepsilon$ signifie $\ell \varepsilon \le u_n \le \ell + \varepsilon$. On aurait aussi pu définir la limite par la phrase : $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \qquad (n \ge N \Longrightarrow |u_n \ell| < \varepsilon)$, où l'on a remplacé la dernière inégalité large par une inégalité stricte.

Définition 6

Une suite $(u_n)_{n\in\mathbb{N}}$ est **convergente** si elle admet une limite **finie**. Elle est **divergente** sinon (c'està-dire soit la suite tend vers $\pm \infty$, soit elle n'admet pas de limite).

On va pouvoir parler de *la* limite, si elle existe, car il y a unicité de la limite :

Proposition 1

Si une suite est convergente, sa limite est unique.

Démonstration

On procède par l'absurde. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente ayant deux limites $\ell\neq\ell'$. Choisissons $\varepsilon>0$ tel que $\varepsilon<\frac{|\ell-\ell'|}{2}$.

Comme $\lim_{n\to+\infty}u_n=\ell$, il existe N_1 tel que $n\geqslant N_1$ implique $|u_n-\ell|<\varepsilon$.

De même $\lim_{n\to+\infty}u_n=\ell'$, il existe N_2 tel que $n\geqslant N_2$ implique $|u_n-\ell'|<\varepsilon$.

Notons $N = \max(N_1, N_2)$, on a alors pour ce N:

$$|u_N - \ell| < \varepsilon$$
 et $|u_N - \ell'| < \varepsilon$

Donc $|\ell - \ell'| = |\ell - u_N + u_N - \ell'| \le |\ell - u_N| + |u_N - \ell'|$ d'après l'inégalité triangulaire. On en tire

 $|\ell - \ell'| \le \varepsilon + \varepsilon = 2\varepsilon < |\ell - \ell'|$. On vient d'aboutir à l'inégalité $|\ell - \ell'| < |\ell - \ell'|$ qui est impossible. Bilan : notre hypothèse de départ est fausse et donc $\ell = \ell'$.

2.2. Propriétés des limites

Proposition 2

- 1. $\lim_{n\to+\infty} u_n = \ell \iff \lim_{n\to+\infty} (u_n \ell) = 0 \iff \lim_{n\to+\infty} |u_n \ell| = 0$,
- 2. $\lim_{n\to+\infty} u_n = \ell \implies \lim_{n\to+\infty} |u_n| = |\ell|$.

Démonstration

Cela résulte directement de la définition.

Proposition 3: Opérations sur les limites

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes.

- 1. Si $\lim_{n\to+\infty} u_n = \ell$, où $\ell \in \mathbb{R}$, alors pour $\lambda \in \mathbb{R}$ on a $\lim_{n\to+\infty} \lambda u_n = \lambda \ell$.
- 2. Si $\lim_{n\to+\infty} u_n = \ell$ et $\lim_{n\to+\infty} v_n = \ell'$, où $\ell,\ell' \in \mathbb{R}$, alors

$$\lim_{n \to +\infty} (u_n + v_n) = \ell + \ell'$$

$$\lim_{n \to +\infty} (u_n \times v_n) = \ell \times \ell'$$

3. Si $\lim_{n\to+\infty}u_n=\ell$ où $\ell\in\mathbb{R}^*=\mathbb{R}\setminus\{0\}$ alors $u_n\neq 0$ pour n assez grand et $\lim_{n\to+\infty}\frac{1}{u_n}=\frac{1}{\ell}$.

Nous utilisons continuellement ces propriétés, le plus souvent sans nous en rendre compte.

Exemple 3

Si $u_n \to \ell$ avec $\ell \neq \pm 1$, alors

$$u_n(1-3u_n) - \frac{1}{u_n^2-1} \xrightarrow[n \to +\infty]{} \ell(1-3\ell) - \frac{1}{\ell^2-1}.$$

Proposition 4 : Opérations sur les limites infinies

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}v_n=+\infty$.

- 1. $\lim_{n\to+\infty}\frac{1}{v_n}=0$
- 2. Si $(u_n)_{n\in\mathbb{N}}$ est minorée alors $\lim_{n\to+\infty}(u_n+v_n)=+\infty$
- 3. Si $(u_n)_{n\in\mathbb{N}}$ est minorée par un nombre $\lambda>0$ alors $\lim_{n\to+\infty}(u_n\times v_n)=+\infty$
- 4. Si $\lim_{n\to+\infty} u_n = 0$ et $u_n > 0$ pour n assez grand alors $\lim_{n\to+\infty} \frac{1}{u_n} = +\infty$.

Exemple 4

Si (u_n) est la suite de terme général $\frac{1}{\sqrt{n}}$, alors $\lim_{n\to+\infty}(u_n)=0$.

Proposition 5

Toute suite convergente est bornée.

Démonstration

Donc si on pose

$$M = \max(|u_0|, |u_1|, \cdots, |u_{N-1}|, |\ell| + 1)$$

on a alors $\forall n \in \mathbb{N} |u_n| \leq M$.

Proposition 6

Si la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et $\lim_{n\to+\infty}v_n=0$ alors $\lim_{n\to+\infty}(u_n\times v_n)=0$.

Exemple 5

Si $(u_n)_{n\geqslant 1}$ est la suite donnée par $u_n=\cos(n)$ et $(v_n)_{n\geqslant 1}$ est celle donnée par $v_n=\frac{1}{\sqrt{n}}$, alors $\lim_{n\to+\infty}(u_nv_n)=0$.

2.3. Formes indéterminées

Dans certaines situations, on ne peut rien dire à priori sur la limite, il faut faire une étude au cas par cas.

Exemple 6

1. « $+\infty - \infty$ » Cela signifie que si $u_n \to +\infty$ et $v_n \to -\infty$ il faut faire faire l'étude en fonction de chaque suite pour $\lim (u_n + v_n)$ comme le prouve les exemples suivants.

$$\lim_{n \to +\infty} \left(e^n - \ln(n) \right) = +\infty$$

$$\lim_{n \to +\infty} \left(n - n^2 \right) = -\infty$$

$$\lim_{n \to +\infty} \left(\left(n + \frac{1}{n} \right) - n \right) = 0$$

2.4. Limite et inégalités

Proposition 7

1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes telles que : $\forall n\in\mathbb{N}, u_n\leq v_n$. Alors

$$\lim_{n \to +\infty} u_n \le \lim_{n \to +\infty} v_n$$

- 2. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}u_n=+\infty$ et $\forall n\in\mathbb{N},\,v_n\geqslant u_n$. Alors $\lim_{n\to+\infty}v_n=+\infty$.
- 3. Théorème des « gendarmes » : si $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont trois suites telles que

$$\forall n \in \mathbb{N} \quad u_n \leq v_n \leq w_n$$

et $\lim_{n\to+\infty} u_n = \ell = \lim_{n\to+\infty} w_n$, alors la suite $(v_n)_{n\in\mathbb{N}}$ est convergente et $\lim_{n\to+\infty} v_n = \ell$.

Remarque

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente telle que $: \forall n \in \mathbb{N}, u_n \ge 0$. Alors $\lim_{n \to +\infty} u_n \ge 0$.
- 2. Attention : $\operatorname{si}(u_n)_{n\in\mathbb{N}}$ est une suite convergente telle que : $\forall n\in\mathbb{N},\,u_n>0$, on ne peut affirmer que la limite est strictement positive mais seulement que $\lim_{n\to+\infty}u_n\geqslant0$. Par exemple la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=\frac{1}{n+1}$ est à termes strictement positifs, mais converge vers zéro.

Exemple 7 : Exemple d'application du théorème des « gendarmes »

Trouver la limite de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général :

$$u_n = 2 + \frac{(-1)^n}{1 + n + n^2}$$

3. Exemples remarquables

3.1. Suite géométrique

Proposition 8 : Suite géométrique

On fixe un réel a. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général : $u_n=a^n$.

- 1. Si a = 1, on a pour tout $n \in \mathbb{N}$: $u_n = 1$.
- 2. Si a > 1, alors $\lim_{n \to +\infty} u_n = +\infty$.
- 3. Si -1 < a < 1, alors $\lim_{n \to +\infty} u_n = 0$.
- 4. Si $a \le -1$, la suite $(u_n)_{n \in \mathbb{N}}$ diverge.

Démonstration

1. est évident.

- 2. Écrivons a=1+b avec b>0. Alors le binôme de Newton s'écrit $a^n=(1+b)^n=1+nb+\binom{n}{2}b^2+\cdots+\binom{n}{k}b^k+\cdots+b^n$. Tous les termes sont positifs, donc pour tout entier naturel n on $a:a^n\geqslant 1+nb$. Or $\lim_{n\to+\infty}(1+nb)=+\infty$ car b>0. On en déduit que $\lim_{n\to+\infty}a^n=+\infty$.
- 3. Si a=0, le résultat est clair. Sinon, on pose $b=|\frac{1}{a}|$. Alors b>1 et d'après le point précédent $\lim_{n\to+\infty}b^n=+\infty$. Comme pour tout entier naturel n on a : $|a|^n=\frac{1}{b^n}$, on en déduit que $\lim_{n\to+\infty}|a|^n=0$, et donc aussi $\lim_{n\to+\infty}a^n=0$.
- 4. Supposons par l'absurde que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers le réel ℓ . De $a^2\geqslant 1$, on déduit que pour tout entier naturel n, on a $a^{2n}\geqslant 1$. En passant à la limite, il vient $\ell\geqslant 1$. Comme de plus pour tout entier naturel n on a $a^{2n+1}\leqslant a\leqslant -1$, il vient en passant de nouveau à la limite $\ell\leqslant -1$. Mais comme on a déjà $\ell\geqslant 1$, on obtient une contradiction, et donc (u_n) ne converge pas.

3.2. Série géométrique

Proposition 9 : Série géométrique

Soit a un réel, $a \neq 1$. En notant $\sum_{k=0}^n a^k = 1 + a + a^2 + \dots + a^n$, on a :

$$\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}$$

Démonstration

En multipliant par 1-a on fait apparaître une somme télescopique (presque tous les termes s'annulent) :

$$(1-a)(1+a+a^2+\cdots+a^n) = (1+a+a^2+\cdots+a^n) - (a+a^2+\cdots+a^{n+1}) = 1-a^{n+1}.$$

Remarque

Si $a \in]-1,1[$ et $(u_n)_{n\in\mathbb{N}}$ est la suite de terme général : $u_n = \sum_{k=0}^n a^k$, alors $\lim_{n\to+\infty} u_n = \frac{1}{1-a}$. De manière plus frappante, on peut écrire :

$$1 + a + a^2 + a^3 + \dots = \frac{1}{1 - a}$$

Enfin, ces formules sont aussi valables si $a \in \mathbb{C} \setminus \{1\}$. Si a = 1, alors $1 + a + a^2 + \cdots + a^n = n + 1$.

3.3. Suites telles que $\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1$

Théorème 1

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls. On suppose qu'il existe un réel ℓ tel que pour tout entier naturel n (ou seulement à partir d'un certain rang) on ait :

$$\left| \frac{u_{n+1}}{u_n} \right| < \ell < 1.$$

Alors $\lim_{n\to+\infty} u_n = 0$.

3.4. Approximation des réels par des décimaux

Proposition 10

Soit $a \in \mathbb{R}$. Posons

$$u_n = \frac{E(10^n \alpha)}{10^n}.$$

Alors u_n est une approximation décimale de a à 10^{-n} près, en particulier $\lim_{n\to+\infty}u_n=a$.

Exemple 8

 $\pi = 3,14159265...$

$$u_0 = \frac{E(10^0\pi)}{10^0} = E(\pi) = 3$$

$$u_1 = \frac{E(10^1\pi)}{10^1} = \frac{E(31,415...)}{10} = 3,1$$

$$u_2 = \frac{E(10^2\pi)}{10^2} = \frac{E(314,15...)}{100} = 3,14$$

$$u_3 = 3,141$$

Démonstration

D'après la définition de la partie entière, on a

$$E(10^n a) \le 10^n a < E(10^n a) + 1$$

donc

$$u_n \le a < u_n + \frac{1}{10^n}$$

ou encore

$$0 \le \alpha - u_n < \frac{1}{10^n}.$$

Or la suite de terme général $\frac{1}{10^n}$ est une suite géométrique de raison $\frac{1}{10}$, donc elle tend vers 0. On en déduit que $\lim_{n\to+\infty} u_n = a$.

Exercice 1

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ de la proposition 10 est croissante.

Remarque

- 1. Les u_n sont des nombres décimaux, en particulier ce sont des nombres rationnels.
- 2. Ceci fournit une démonstration de la densité de \mathbb{Q} dans \mathbb{R} . Pour $\varepsilon > 0$, et $I =]a \varepsilon, a + \varepsilon[$, alors pour n assez grand, $u_n \in I \cap \mathbb{Q}$.

4. Théorème de convergence

4.1. Toute suite convergente est bornée

On a

Proposition 11

Toute suite convergente est bornée.

La réciproque est fausse mais nous allons ajouter une hypothèse supplémentaire pour obtenir des résultats.

4.2. Suite monotone

Théorème 2

Toute suite croissante et majorée est convergente.

Remarque

Et aussi:

- Toute suite décroissante et minorée est convergente.
- Une suite croissante et qui n'est pas majorée tend vers $+\infty$.
- Une suite décroissante et qui n'est pas minorée tend vers $-\infty$.

4.3. Deux exemples

 $\zeta(2)$

Soit $(u_n)_{n \ge 1}$ la suite de terme général :

$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

- La suite $(u_n)_{n\geq 1}$ est croissante : en effet $u_{n+1}-u_n=\frac{1}{(n+1)^2}>0$.
- Montrons par récurrence que pour tout entier naturel $n \ge 1$ on a $u_n \le 2 \frac{1}{n}$.
 - Pour n = 1, on a $u_1 = 1 \le 1 = 2 \frac{1}{1}$.
 - Fixons $n \ge 1$ pour lequel on suppose $u_n \le 2 \frac{1}{n}$. Alors $u_{n+1} = u_n + \frac{1}{(n+1)^2} \le 2 \frac{1}{n} + \frac{1}{(n+1)^2}$. Or $\frac{1}{(n+1)^2} \le \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$, donc $u_{n+1} \le 2 \frac{1}{n+1}$, ce qui achève la récurrence.
- Donc la suite $(u_n)_{n\geq 1}$ est croissante et majorée par 2 : elle converge.

Remarque

On note $\zeta(2)$ cette limite, vous montrerez plus tard qu'en fait $\zeta(2) = \frac{\pi^2}{6}$.

Suite harmonique

C'est la suite $(u_n)_{n\geq 1}$ de terme général :

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Calculons $\lim_{n\to+\infty} u_n$.

- La suite $(u_n)_{n\geqslant 1}$ est croissante : en effet $u_{n+1}-u_n=\frac{1}{n+1}>0$. Minoration de $u_{2^p}-u_{2^{p-1}}$. On a $u_2-u_1=1+\frac{1}{2}-1=\frac{1}{2}$; $u_4-u_2=\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$, et en général :

$$u_{2^p} - u_{2^{p-1}} = \underbrace{\frac{1}{2^{p-1}+1} + \frac{1}{2^{p-1}+2} + \dots + \frac{1}{2^p}}_{2^{p-1}=2^p-2^{p-1} \text{ termes } \geqslant \frac{1}{2^p}} > 2^{p-1} \times \frac{1}{2^p} = \frac{1}{2}$$

– $\lim_{n\to+\infty} u_n = +\infty$. En effet

$$u_{2^p} - 1 = u_{2^p} - u_1 = (u_2 - u_1) + (u_4 - u_2) + \dots + (u_{2^p} - u_{2^{p-1}}) \ge \frac{p}{2}$$

donc la suite $(u_n)_{n\geq 1}$ est croissante mais n'est pas bornée, donc elle tend vers $+\infty$.

4.4. Suites adjacentes

Définition 7

Les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites **adjacentes** si

- 1. $(u_n)_{n\in\mathbb{N}}$ est croissante et $(v_n)_{n\in\mathbb{N}}$ est décroissante,
- 2. pour tout $n \ge 0$, on a $u_n \le v_n$,
- 3. $\lim_{n\to+\infty} (v_n u_n) = 0$.

Théorème 3

Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, elles convergent vers la même limite.

Il y a donc deux résultats dans ce théorème, la convergence de (u_n) et (v_n) et en plus l'égalité des limites. Les termes de la suites sont ordonnées ainsi :

$$u_0 \le u_1 \le u_2 \le \dots \le u_n \le \dots \dots \le v_n \le \dots \le v_2 \le v_1 \le v_0$$

Démonstration

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par v_0 , donc elle converge vers une limite ℓ .
- La suite $(v_n)_{n\in\mathbb{N}}$ est décroissante et minorée par u_0 , donc elle converge vers une limite ℓ' .
- Donc $\ell' \ell = \lim_{n \to +\infty} (v_n u_n) = 0$, d'où $\ell' = \ell$.

Exemple 9

Reprenons l'exemple de $\zeta(2)$. Soient (u_n) et (v_n) les deux suites définies pour $n \ge 1$ par

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
 et $v_n = u_n + \frac{2}{n+1}$.

Montrons que (u_n) et (v_n) sont deux suites adjacentes :

- 1. (a) (u_n) est croissante car $u_{n+1} u_n = \frac{1}{(n+1)^2} > 0$.
 - (b) (v_n) est décroissante $: v_{n+1} v_n = \frac{1}{(n+1)^2} + \frac{2}{n+2} \frac{2}{n+1} = \frac{n+2+2(n+1)^2-2(n+1)(n+2)}{(n+2)(n+1)^2} = \frac{-n}{(n+2)(n+1)^2} < 0$
- 2. Pour tout $n \ge 1$: $v_n u_n = \frac{2}{n+1} > 0$, donc $u_n \le v_n$.
- 3. Enfin comme $v_n u_n = \frac{2}{n+1}$ donc $\lim (v_n u_n) = 0$.

Les suites (u_n) et (v_n) sont deux suites adjacentes, elles convergent donc vers une même limite finie ℓ . Nous avons en plus l'encadrement $u_n \le \ell \le v_n$ pour tout $n \ge 1$. Ceci fournit des approximations de la limite : par exemple pour n = 3, $1 + \frac{1}{4} + \frac{1}{9} \le \ell \le 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{2}$ donc $1,3611... \le \ell \le 1,8611...$

Exercice 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On suppose que les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ . Montrer que $(u_n)_{n\in\mathbb{N}}$ converge également vers ℓ .

5. Suites récurrentes

Une catégorie essentielle de suites sont les suites récurrentes définies par une fonction. Ce chapitre est l'aboutissement de notre étude sur les suites, mais nécessite aussi l'étude de fonctions (voir «Limites et fonctions continues»).

5.1. Suite récurrente définie par une fonction

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction. Une *suite récurrente* est définie par son premier terme et une relation permettant de calculer les termes de proche en proche :

$$u_0 \in \mathbb{R}$$
 et $u_{n+1} = f(u_n)$ pour $n \ge 0$

Une suite récurrente est donc définie par deux données : un terme initial u_0 , et une relation de récurrence $u_{n+1} = f(u_n)$. La suite s'écrit ainsi :

$$u_0$$
, $u_1 = f(u_0)$, $u_2 = f(u_1) = f(f(u_0))$, $u_3 = f(u_2) = f(f(f(u_0)))$,...

Le comportement peut très vite devenir complexe.

Exemple 10

Soit $f(x) = 1 + \sqrt{x}$. Fixons $u_0 = 2$ et définissons pour $n \ge 0$: $u_{n+1} = f(u_n)$. C'est-à-dire $u_{n+1} = 1 + \sqrt{u_n}$. Alors les premiers termes de la suite sont :

$$2$$
, $1+\sqrt{2}$, $1+\sqrt{1+\sqrt{2}}$, $1+\sqrt{1+\sqrt{1+\sqrt{2}}}$, $1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{2}}}}$,...

Voici un résultat essentiel concernant la limite si elle existe.

Proposition 12

Si f est une fonction continue et la suite récurrente (u_n) converge vers ℓ , alors ℓ est une solution de l'équation :

$$f(\ell) = \ell$$

Si on arrive à montrer que la limite existe alors cette proposition permet de calculer des candidats à être cette limite.

Une valeur ℓ , vérifiant $f(\ell) = \ell$ est un **point fixe** de f. La preuve est très simple et mérite d'être refaite à chaque fois.

Démonstration

Lorsque $n \to +\infty$, $u_n \to \ell$ et donc aussi $u_{n+1} \to \ell$. Comme $u_n \to \ell$ et que f est continue alors la suite $(f(u_n)) \to f(\ell)$. La relation $u_{n+1} = f(u_n)$ devient à la limite (lorsque $n \to +\infty$) : $\ell = f(\ell)$.

Nous allons étudier en détail deux cas particuliers fondamentaux : lorsque la fonction est croissante, puis lorsque la fonction est décroissante.

5.2. Cas d'une fonction croissante

Commençons par remarquer que pour une fonction croissante, le comportement de la suite (u_n) définie par récurrence est assez simple :

- Si $u_1 \ge u_0$ alors (u_n) est croissante.
- Si $u_1 ≤ u_0$ alors (u_n) est décroissante.

La preuve est une simple récurrence : par exemple si $u_1 \ge u_0$, alors comme f est croissante on a $u_2 = f(u_1) \ge f(u_0) = u_1$. Partant de $u_2 \ge u_1$ on en déduit $u_3 \ge u_2$,...

Voici le résultat principal:

Proposition 13

Si $f:[a,b] \to [a,b]$ une fonction continue et *croissante*, alors quelque soit $u_0 \in [a,b]$, la suite récurrente (u_n) est monotone et converge vers $\ell \in [a,b]$ vérifiant $f(\ell) = \ell$.

Le graphe de f joue un rôle très important, il faut le tracer même si on ne le demande pas explicitement. Il permet de se faire une idée très précise du comportement de la suite : Est-elle croissante ? Est-elle positive ? Semble-t-elle converger ? Vers quelle limite ? Ces indications sont essentielles pour savoir ce qu'il faut montrer lors de l'étude de la suite.

5.3. Cas d'une fonction décroissante

Proposition 14

Soit $f:[a,b] \to [a,b]$ une fonction continue et **décroissante**. Soit $u_0 \in [a,b]$ et la suite récurrente (u_n) définie par $u_{n+1} = f(u_n)$. Alors :

– La sous-suite (u_{2n}) converge vers une limite ℓ vérifiant $f \circ f(\ell) = \ell$.

- La sous-suite (u_{2n+1}) converge vers une limite ℓ' vérifiant $f \circ f(\ell') = \ell'$.

Il se peut (ou pas !) que $\ell = \ell'$.

6. Exercices

- 1. La suite $\left(\frac{n}{n+1}\right)_{n\in\mathbb{N}}$ est-elle monotone ? Est-elle bornée ?
- 2. La suite $\left(\frac{n\sin(n!)}{1+n^2}\right)_{n\in\mathbb{N}}$ est-elle bornée ?
- 3. Donner la négation mathématique de chacune des phrases. (a) La suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 7. (b) La suite $(u_n)_{n\in\mathbb{N}}$ est constante. (c) La suite $(u_n)_{n\in\mathbb{N}}$ est strictement positive à partir d'un certain rang. (d) $(u_n)_{n\in\mathbb{N}}$ n'est pas strictement croissante.
- 4. Est-il vrai qu'une suite croissante est minorée ? Majorée
- 5. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=\frac{2n+1}{n+2}$. En utilisant la définition de la limite montrer que $\lim_{n\to+\infty}u_n=2$. Trouver explicitement un rang à partir duquel $1,999\leq u_n\leq 2,001$.
- 6. Déterminer la limite ℓ de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général : $\frac{n+\cos n}{n-\sin n}$ et trouver un entier N tel que si $n \ge N$, on ait $|u_n \ell| \le 10^{-2}$.
- 7. La suite $(u_n)_{n\in\mathbb{N}}$ de terme général $(-1)^n e^n$ admet-elle une limite ? Et la suite de terme général $\frac{1}{u_n}$?
- 8. Déterminer la limite de la suite $(u_n)_{n\geqslant 1}$ de terme général $\sqrt{n+1}-\sqrt{n}$. Idem avec $v_n=\frac{\cos n}{\sin n+\ln n}$. Idem avec $w_n=\frac{n!}{n^n}$.
- 9. Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général 5^n-4^n .
- 10. Soit $v_n = 1 + a + a^2 + \dots + a^n$. Pour quelle valeur de $a \in \mathbb{R}$ la suite $(v_n)_{n \ge 1}$ a pour limite 3 (lorsque $n \to +\infty$)?
- 11. Calculer la limite de $\frac{1+2+2^2+\cdots+2^n}{2^n}$.
- 12. Montrer que la somme des racines n-ièmes de l'unité est nulle.
- 13. Montrer que si $\sin(\frac{\theta}{2}) \neq 0$ alors $\frac{1}{2} + \cos(\theta) + \cos(2\theta) + \cdots + \cos(n\theta) = \frac{\sin((n+\frac{1}{2})\theta)}{2\sin(\frac{\theta}{2})}$ (penser à $e^{i\theta}$).
- 14. Soit $(u_n)_{n\geq 2}$ la suite de terme général $u_n = \ln(1+\frac{1}{2}) \times \ln(1+\frac{1}{3}) \times \cdots \times \ln(1+\frac{1}{n})$. Déterminer la limite de $\frac{u_{n+1}}{u_n}$. Que peut-on en déduire ?
- 15. Déterminer la limite de $\frac{\pi^n}{1\times 3\times 5\times \cdots \times (2n+1)}$ (où $\pi=3,14\ldots$).
- 16. Soit a un réel. Montrer que pour tout $\varepsilon > 0$ il existe un couple $(m, n) \in \mathbb{Z} \times \mathbb{N}$ (et même une infinité) tel que $\left|a \frac{m}{2^n}\right| \le \varepsilon$.
- 17. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et pour $n\geq 1$, $u_n=\sqrt{2+u_{n-1}}$. Montrer que cette suite est croissante et majorée par 2. Que peut-on en conclure ?
- 18. Soit $(u_n)_{n\geqslant 2}$ la suite définie par $u_n=\frac{\ln 4}{\ln 5}\times\frac{\ln 6}{\ln 7}\times\frac{\ln 6}{\ln 9}\times\cdots\times\frac{\ln (2n)}{\ln (2n+1)}$. Étudier la croissance de la suite. Montrer que la suite (u_n) converge.
- 19. Soit $N \ge 1$ un entier et $(u_n)_{n \in \mathbb{N}}$ la suite de terme général $u_n = \cos(\frac{n\pi}{N})$. Montrer que la suite diverge.
- 20. Montrer que les suites de terme général $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot (n!)}$ sont adjacentes. Que peut-on en déduire ?
- 21. Soit $(u_n)_{n\geqslant 1}$ la suite de terme général $\sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. On considère les deux suites extraites de terme général $v_n=u_{2n}$ et $w_n=u_{2n+1}$. Montrer que les deux suites $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$ sont adjacentes. En déduire que la suite $(u_n)_{n\geqslant 1}$ converge.
- 22. Montrer qu'une suite bornée et divergente admet deux sous-suites convergeant vers des valeurs distinctes.

- 23. Soit $f(x) = \frac{1}{9}x^3 + 1$, $u_0 = 0$ et pour $n \ge 0$: $u_{n+1} = f(u_n)$. Étudier en détails la suite (u_n) : (a) montrer que $u_n \ge 0$; (b) étudier et tracer le graphe de g ; (c) tracer les premiers termes de (u_n) ; (d) montrer que (u_n) est croissante ; (e) étudier la fonction g(x) = f(x) x ; (f) montrer que f admet deux points fixes sur \mathbb{R}_+ , $0 < \ell < \ell'$; (g) montrer que $f([0,\ell]) \subset [0,\ell]$; (h) en déduire que (u_n) converge vers ℓ .
- 24. Soit $f(x) = 1 + \sqrt{x}$, $u_0 = 2$ et pour $n \ge 0$: $u_{n+1} = f(u_n)$. Étudier en détail la suite (u_n) .
- 25. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $:u_0\in[0,1]$ et $u_{n+1}=u_n-u_n^2$. Étudier en détail la suite (u_n) .
- 26. Étudier la suite définie par $u_0 = 4$ et $u_{n+1} = \frac{4}{u_n + 2}$.

Chapitre 2

Limites et fonctions continues

1. Notions de fonction

1.1. Définitions

Définition 8

Une **fonction** d'une variable réelle à valeurs réelles est une application $f: U \to \mathbb{R}$, où U est une partie de \mathbb{R} . En général, U est un intervalle ou une réunion d'intervalles. On appelle U le **domaine de définition** de la fonction f.

Le *graphe* d'une fonction $f: U \to \mathbb{R}$ est la partie Γ_f de \mathbb{R}^2 définie par $\Gamma_f = \{(x, f(x)) \mid x \in U\}$.

1.2. Opérations sur les fonctions

Soient $f: U \to \mathbb{R}$ et $g: U \to \mathbb{R}$ deux fonctions définies sur une même partie U de \mathbb{R} . On peut alors définir les fonctions suivantes :

- la **somme** de f et g est la fonction $f + g : U \to \mathbb{R}$ définie par (f + g)(x) = f(x) + g(x);
- le **produit** de f et g est la fonction $f \times g : U \to \mathbb{R}$ définie par $(f \times g)(x) = f(x) \times g(x)$;
- la *multiplication par un scalaire* $\lambda \in \mathbb{R}$ de f est $\lambda \cdot f : U \to \mathbb{R}$ définie par $(\lambda \cdot f)(x) = \lambda \cdot f(x)$.

1.3. Fonctions majorées, minorées, bornées

Définition 9

Soient $f: U \to \mathbb{R}$ et $g: U \to \mathbb{R}$ deux fonctions. Alors :

- $f \ge g \text{ si } \forall x \in U \ f(x) \ge g(x) \ ;$
- $f \ge 0$ si $\forall x \in U$ $f(x) \ge 0$;
- f > 0 si $\forall x \in U$ f(x) > 0;
- f est dite **constante** sur U si $\exists a \in \mathbb{R} \ \forall x \in U \ f(x) = a$;
- f est dite **nulle** sur U si $\forall x \in U$ f(x) = 0.

Définition 10

Soit $f: U \to \mathbb{R}$ une fonction. On dit que:

- f est **majorée** sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- f est $minor\acute{e}e$ sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \ge m$;
- f est **bornée** sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

1.4. Fonctions croissantes, décroissantes

Définition 11

Soit $f: U \to \mathbb{R}$ une fonction. On dit que:

- f est **croissante** sur U si $\forall x, y \in U$ $x \leq y \Longrightarrow f(x) \leq f(y)$
- f est strictement croissante sur U si $\forall x, y \in U$ $x < y \Longrightarrow f(x) < f(y)$
- f est **décroissante** sur U si $\forall x, y \in U$ $x \leq y \Longrightarrow f(x) \geq f(y)$

- f est strictement décroissante sur U si $\forall x, y \in U$ $x < y \Longrightarrow f(x) > f(y)$
- f est **monotone** (resp. **strictement monotone**) sur U si f est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur U.

Exemple 11

- La fonction racine carrée $\begin{cases} [0,+\infty[\longrightarrow \mathbb{R}\\ x\longmapsto \sqrt{x} \end{cases}$ est strictement croissante.
- Les fonctions exponentielle exp : $\mathbb{R} \to \mathbb{R}$ et logarithme ln :]0, $+\infty$ [$\to \mathbb{R}$ sont strictement croissantes.
- La fonction valeur absolue $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto |x| \end{cases}$ n'est ni croissante, ni décroissante. Par contre, la fonction

$$\begin{cases} [0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto |x| \end{cases}$$
 est strictement croissante.

1.5. Parité et périodicité

Définition 12

Soit I un intervalle de $\mathbb R$ symétrique par rapport à 0 (c'est-à-dire de la forme]-a,a[ou [-a,a] ou $\mathbb R$). Soit $f:I\to\mathbb R$ une fonction définie sur cet intervalle. On dit que :

- f est **paire** si $\forall x \in I$ f(-x) = f(x),
- f est **impaire** si $\forall x \in I$ f(-x) = -f(x).

Interprétation graphique :

- f est paire si et seulement si son graphe est symétrique par rapport à l'axe des ordonnées.
- -f est impaire si et seulement si son graphe est symétrique par rapport à l'origine.

Exemple 12

- La fonction définie sur \mathbb{R} par $x \mapsto x^{2n}$ $(n \in \mathbb{N})$ est paire.
- La fonction définie sur \mathbb{R} par $x \mapsto x^{2n+1}$ $(n \in \mathbb{N})$ est impaire.
- La fonction $\cos:\mathbb{R}\to\mathbb{R}$ est paire. La fonction $\sin:\mathbb{R}\to\mathbb{R}$ est impaire.

Définition 13

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction et T un nombre réel, T > 0. La fonction f est dite **périodique** de période T si $\forall x \in \mathbb{R}$ f(x+T) = f(x).

Interprétation graphique: f est périodique de période T si et seulement si son graphe est invariant par la translation de vecteur $T\vec{i}$, où \vec{i} est le premier vecteur de coordonnées.

Exemple 13

Les fonctions sinus et cosinus sont 2π -périodiques. La fonction tangente est π -périodique.

2. Limites

2.1. Définitions

Limite en un point

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit $x_0 \in \mathbb{R}$ un point de I ou une extrémité de I.

Définition 14

Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en x_0 si

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \Longrightarrow |f(x) - \ell| < \varepsilon$$

On dit aussi que f(x) tend vers ℓ lorsque x tend vers x_0 . On note alors $\lim_{x \to x_0} f(x) = \ell$ ou bien $\lim_{x \to x_0} f = \ell$.

Remarque

- L'inégalité $|x-x_0| < \delta$ équivaut à $x \in]x_0 \delta, x_0 + \delta[$. L'inégalité $|f(x) \ell| < \varepsilon$ équivaut à $f(x) \in]\ell \varepsilon, \ell + \varepsilon[$.
- On peut remplacer certaines inégalités strictes « < »par des inégalités larges « ≤ » dans la définition : $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x x_0| \le \delta \implies |f(x) \ell| \le \varepsilon$
- Dans la définition de la limite

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon$$

le quantificateur $\forall x \in I$ n'est là que pour être sûr que l'on puisse parler de f(x). Il est souvent omis et l'existence de la limite s'écrit alors juste :

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon.$$

- N'oubliez pas que l'ordre des quantificateurs est important, on ne peut échanger le $\forall \varepsilon$ avec le $\exists \delta$: le δ dépend en général du ε . Pour marquer cette dépendance on peut écrire : $\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 \dots$

- lim_{x→x₀} √x = √x₀ pour tout x₀ ≥ 0,
 la fonction partie entière E n'a pas de limite aux points x₀ ∈ Z.

Définition 15

- On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) > A.$$

On note alors $\lim_{x\to x_0} f(x) = +\infty$. - On dit que f **a pour limite** $-\infty$ **en** x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) < -A.$$

On note alors $\lim_{x \to x_0} f(x) = -\infty$.

Limite en l'infini

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle de la forme $I =]a, +\infty[$.

Définition 16

– Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en $+\infty$ si

$$\forall \varepsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \Longrightarrow |f(x) - \ell| < \varepsilon.$$

On note alors $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{+\infty} f = \ell$.

- On dit que f a pour limite $+\infty$ en $+\infty$ si

$$\forall A>0 \quad \exists B>0 \quad \forall x\in I \quad x>B \Longrightarrow f(x)>A.$$

On note alors $\lim_{x \to +\infty} f(x) = +\infty$.

On définit de la même manière la limite en $-\infty$ des fonctions définies sur les intervalles du type $]-\infty,a[$.

Exemple 15

On a les limites classiques suivantes pour tout $n \ge 1$:

$$-\lim_{x \to +\infty} x^n = +\infty \quad \text{et} \quad \lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair} \end{cases}$$
$$-\lim_{x \to +\infty} \left(\frac{1}{x^n}\right) = 0 \quad \text{et} \quad \lim_{x \to -\infty} \left(\frac{1}{x^n}\right) = 0.$$

$$-\lim_{x\to+\infty} \left(\frac{1}{x^n}\right) = 0 \quad \text{et} \quad \lim_{x\to-\infty} \left(\frac{1}{x^n}\right) = 0$$

Exemple 16

Soit $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ avec $a_n > 0$ et $Q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$ avec $b_m > 0$.

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \begin{cases} +\infty & \text{si } n > m \\ \frac{a_n}{b_m} & \text{si } n = m \\ 0 & \text{si } n < m \end{cases}$$

Limite à gauche et à droite

Soit f une fonction définie sur un ensemble de la forme $]a,x_0[\cup]x_0,b[$.

Définition 17

- On appelle *limite* à *droite* en x_0 de f la limite de la fonction $f_{\big| 1x_0,b[}$ en x_0 et on la note $\lim_{x_0^+} f$. On définit de même la *limite* à *gauche* en x_0 de f: la limite de la fonction $f_{\big| 1a,x_0[}$ en x_0 et on la note $\lim f$.
- On note aussi $\lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$ pour la limite à droite et $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$ pour la limite à gauche.

Dire que $f:I\to\mathbb{R}$ admet une limite $\ell\in\mathbb{R}$ à droite en x_0 signifie donc :

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad x_0 < x < x_0 + \delta \implies |f(x) - \ell| < \varepsilon.$$

Si la fonction f a une limite en x_0 , alors ses limites à gauche et à droite en x_0 coïncident et valent $\lim f$. Réciproquement, si f a une limite à gauche et une limite à droite en x_0 et si ces limites valent $f(x_0)$ (si fest bien définie en x_0) alors f admet une limite en x_0 .

Exemple 17

Considérons la fonction partie entière au point x = 2:

- comme pour tout $x \in]2,3[$ on a E(x) = 2, on a $\lim E = 2$,
- comme pour tout $x \in [1,2[$ on a E(x) = 1, on a $\lim_{x \to \infty} E = 1.$

Ces deux limites étant différentes, on en déduit que E n'a pas de limite en 2.

2.2. Propriétés

Proposition 15

Si une fonction admet une limite, alors cette limite est unique.

On ne donne pas la démonstration de cette proposition, qui est très similaire à celle de l'unicité de la limite pour les suites (un raisonnement par l'absurde).

Soient deux fonctions f et g. On suppose que x_0 est un réel, ou que $x_0 = \pm \infty$.

Proposition 16

Si $\lim_{x_0} f = \ell \in \mathbb{R}$ et $\lim_{x_0} g = \ell' \in \mathbb{R}$, alors : $-\lim_{x_0} (\lambda \cdot f) = \lambda \cdot \ell \text{ pour tout } \lambda \in \mathbb{R}$ $-\lim_{x_0} (f+g) = \ell + \ell'$

- $-\lim_{x_0}^{x_0} (f \times g) = \ell \times \ell'$ $-\sin \ell \neq 0, \text{ alors } \lim_{x_0} \frac{1}{f} = \frac{1}{\ell}$

De plus, si $\lim_{x_0} f = +\infty$ (ou $-\infty$) alors $\lim_{x_0} \frac{1}{f} = 0$.

On a aussi

Proposition 17

Si $\lim_{x_0} f = \ell$ et $\lim_{\ell} g = \ell'$, alors $\lim_{x_0} g \circ f = \ell'$.

Ce sont des propriétés que l'on a l'habitude d utiliser!

Exemple 18

Soit $x \mapsto u(x)$ une fonction, $x_0 \in \mathbb{R}$ tel que $u(x) \to 2$ lorsque $x \to x_0$. Posons $f(x) = \sqrt{1 + \frac{1}{u(x)^2} + \ln u(x)}$. Si elle existe, quelle est la limite de f en x_0 ?

- Tout d'abord comme $u(x) \to 2$ alors $u(x)^2 \to 4$ donc $\frac{1}{u(x)^2} \to \frac{1}{4}$ (lorsque $x \to x_0$).
- De même comme $u(x) \to 2$ alors dans un voisinage de x_0 u(x) > 0 donc $\ln u(x)$ est bien définie dans ce voisinage et de plus $\ln u(x) \rightarrow \ln 2$ (lorsque $x \rightarrow x_0$).
- Cela entraı̂ne que $1 + \frac{1}{u(x)^2} + \ln u(x) \rightarrow 1 + \frac{1}{4} + \ln 2$ lorsque $x \rightarrow x_0$. En particulier $1 + \frac{1}{u(x)^2} + \ln u(x) \ge 0$ dans un voisinage de x_0 donc f(x) est bien définie dans un voisinage de x_0 .
- Et par composition avec la racine carrée alors f(x) a bien une limite en x_0 et $\lim_{x\to x_0} f(x) =$ $\sqrt{1+\frac{1}{4}+\ln 2}.$

Il y a des situations où l'on ne peut rien dire sur les limites. Par exemple si $\lim_{x_0} f = +\infty$ et $\lim_{x_0} g = -\infty$ alors on ne peut a priori rien dire sur la limite de f + g (cela dépend vraiment de f et de g). On raccourci cela en $+\infty - \infty$ est une *forme indéterminée*.

Voici une liste de formes indéterminées $: +\infty -\infty ; 0 \times \infty ; \frac{\infty}{\infty} ; \frac{0}{0} ; 1^{\infty} ; \infty^{0}$.

Enfin voici une proposition très importante qui lie le comportement d'une limite avec les inégalités.

Proposition 18

- Si $f \leq g$ et si $\lim_{x_0} f = \ell \in \mathbb{R}$ et $\lim_{x_0} g = \ell' \in \mathbb{R}$, alors $\ell \leq \ell'$. Si $f \leq g$ et si $\lim_{x_0} f = +\infty$, alors $\lim_{x_0} g = +\infty$.
- Théorème des gendarmes

Si $f \le g \le h$ et si $\lim_{x_0} f = \lim_{x_0} h = \ell \in \mathbb{R}$, alors g a une limite en x_0 et $\lim_{x_0} g = \ell$.

3. Continuité en un point

3.1. Définition

Soit *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

Définition 18

- On dit que f est **continue en un point** $x_0 \in I$ si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

- On dit que f est **continue sur** I si f est continue en tout point de I.

Intuitivement, une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever le crayon », c'est-à-dire si elle n'a pas de saut.

Voici des fonctions qui ne sont pas continues en x_0 :

Exemple 19

Les fonctions suivantes sont continues :

- une fonction constante sur un intervalle,
- la fonction racine carrée $x \mapsto \sqrt{x}$ sur $[0, +\infty[$,
- les fonctions sin et cos sur \mathbb{R} ,
- la fonction valeur absolue $x \mapsto |x| \operatorname{sur} \mathbb{R}$,
- la fonction exp sur \mathbb{R} ,
- la fonction ln sur]0,+∞[.

Par contre, la fonction partie entière E n'est pas continue aux points $x_0 \in \mathbb{Z}$, puisqu'elle n'admet pas de limite en ces points. Pour $x_0 \in \mathbb{R} \setminus \mathbb{Z}$, elle est continue en x_0 .

3.2. Propriétés

La continuité assure par exemple que si la fonction n'est pas nulle en un point (qui est une propriété ponctuelle) alors elle n'est pas nulle autour de ce point (propriété locale). Voici l'énoncé :

Lemme 1

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I et x_0 un point de I. Si f est continue en x_0 et si $f(x_0) \neq 0$, alors il existe $\delta > 0$ tel que

$$\forall x \in]x_0 - \delta, x_0 + \delta[f(x) \neq 0$$

La continuité se comporte bien avec les opérations élémentaires. Les propositions suivantes sont des conséquences immédiates des propositions analogues sur les limites.

Proposition 19

Soient $f, g: I \to \mathbb{R}$ deux fonctions continues en un point $x_0 \in I$. Alors

- $\lambda \cdot f$ est continue en x_0 (pour tout $\lambda \in \mathbb{R}$),
- f + g est continue en x_0 ,
- $f \times g$ est continue en x_0 ,
- si $f(x_0) \neq 0$, alors $\frac{1}{f}$ est continue en x_0 .

Exemple 20

La proposition précédente permet de vérifier que d'autres fonctions usuelles sont continues :

- les fonctions puissance $x \mapsto x^n$ sur \mathbb{R} (comme produit $x \times x \times \cdots$),
- les polynômes sur ℝ (somme et produit de fonctions puissance et de fonctions constantes),
- les fractions rationnelles $x \mapsto \frac{P(x)}{Q(x)}$ sur tout intervalle où le polynôme Q(x) ne s'annule pas.

La composition conserve la continuité (mais il faut faire attention en quels points les hypothèses s'appliquent).

Proposition 20

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$. Si f est continue en un point $x_0 \in I$ et si g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

3.3. Prolongement par continuité

Définition 19

Soit *I* un intervalle, x_0 un point de *I* et $f: I \setminus \{x_0\} \to \mathbb{R}$ une fonction.

- On dit que f est **prolongeable par continuité** en x_0 si f admet une limite finie en x_0 . Notons alors $\ell = \lim_{x \to \infty} f$.
- **–** On définit alors la fonction \tilde{f} : *I* → \mathbb{R} en posant pour tout $x \in I$

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ \ell & \text{si } x = x_0. \end{cases}$$

Alors \tilde{f} est continue en x_0 et on l'appelle le **prolongement par continuité** de f en x_0 .

Dans la pratique, on continuera souvent à noter f à la place de \tilde{f} .

Exemple 21

Considérons la fonction f définie sur \mathbb{R}^* par $f(x) = x \sin(\frac{1}{x})$. Voyons si f admet un prolongement par continuité en f ?

Comme pour tout $x \in \mathbb{R}^*$ on a $|f(x)| \le |x|$, on en déduit que f tend vers 0 en 0. Elle est donc prolongeable par continuité en 0 et son prolongement est la fonction \tilde{f} définie sur \mathbb{R} tout entier par .

$$\tilde{f}(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

4. Continuité sur un intervalle

4.1. Le théorème des valeurs intermédiaires

Théorème 4 : Théorème des valeurs intermédiaires

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment.

Pour tout réel y compris entre f(a) et f(b), il existe $c \in [a,b]$ tel que f(c) = y.

4.2. Applications du théorème des valeurs intermédiaires

Voici la version la plus utilisée du théorème des valeurs intermédiaires.

Corollaire 1

Soit $f : [a,b] \to \mathbb{R}$ une fonction continue sur un segment.

Si $f(a) \cdot f(b) < 0$, alors il existe $c \in]a, b[$ tel que f(c) = 0.

Démonstration

Il s'agit d'une application directe du théorème des valeurs intermédiaires avec y = 0. L'hypothèse $f(a) \cdot f(b) < 0$ signifiant que f(a) et f(b) sont de signes contraires.

Exemple 22

Tout polynôme de degré impair possède au moins une racine réelle.

En effet, un tel polynôme s'écrit $P(x) = a_n x^n + \dots + a_1 x + a_0$ avec n un entier impair. On peut supposer que le coefficient a_n est strictement positif. Alors on a $\lim_{n \to \infty} P = -\infty$ et $\lim_{n \to \infty} P = +\infty$. En particulier, il existe deux réels a et b tels que f(a) < 0 et f(b) > 0 et on conclut grâce au corollaire précédent.

Corollaire 2

Soit $f: I \to \mathbb{R}$ une fonction continue sur un intervalle I. Alors f(I) est un intervalle.

Attention! Il serait faux de croire que l'image par une fonction f de l'intervalle [a,b] soit l'intervalle [f(a),f(b)].

4.3. Fonctions continues sur un segment

Théorème 5

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment. Alors il existe deux réels m et M tels que f([a,b]) = [m,M]. Autrement dit, l'image d'un segment par une fonction continue est un segment.

Comme on sait déjà par le théorème des valeurs intermédiaires que f([a,b]) est un intervalle, le théorème précédent signifie exactement que

Si f est continue sur [a,b] alors f est bornée sur [a,b] et elle atteint ses bornes.

Donc m est le minimum de la fonction sur l'intervalle [a,b] alors que M est le maximum. [[Preuve : à écrire]]

5. Fonctions monotones et bijections

5.1. Rappels: injection, surjection, bijection

Dans cette section nous rappelons le matériel nécessaire concernant les applications bijectives.

Définition 20

Soit $f: E \to F$ une fonction, où E et F sont des parties de \mathbb{R} .

- f est **injective** si $\forall x, x' \in E$ $f(x) = f(x') \implies x = x'$;
- f est **surjective** si $\forall y \in F \exists x \in E \ y = f(x)$;
- f est **bijective** si f est à la fois injective et surjective, c'est-à-dire si $\forall y \in F \exists ! x \in E \ y = f(x)$.

Proposition 21

Si $f: E \to F$ est une fonction bijective alors il existe une unique application $g: F \to E$ telle que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$ La fonction g est la **bijection réciproque** de f et se note f^{-1} .

Remarque

- On rappelle que l'*identité*, $id_E : E \to E$ est simplement définie par $x \mapsto x$.
- $g \circ f = id_E$ se reformule ainsi : $\forall x \in E$ g(f(x)) = x.
- Alors que $f \circ g = \mathrm{id}_F$ s'écrit : $\forall y \in F$ f(g(y)) = y.
- Dans un repère orthonormé les graphes des fonctions f et f^{-1} sont symétriques par rapport à la première bissectrice.

5.2. Fonctions monotones et bijections

Voici un résultat important qui permet d'obtenir des fonctions bijectives.

Théorème 6: Théorème de la bijection

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est continue et strictement monotone sur I, alors

- 1. f établit une bijection de l'intervalle I dans l'intervalle image J = f(I),
- 2. la fonction réciproque $f^{-1}: J \to I$ est continue et strictement monotone sur J et elle a le même sens de variation que f.

En pratique, si on veut appliquer ce théorème à une fonction continue $f: I \to \mathbb{R}$, on découpe l'intervalle I en sous-intervalles sur lesquels la fonction f est strictement monotone.

Exemple 23

Soit $n \ge 1$. Soit $f:[0,+\infty[\to [0,+\infty[$ définie par $f(x)=x^n$. Alors f est continue et strictement croissante. Comme $\lim_{n\to\infty} f=+\infty$ alors f est une bijection. Sa bijection réciproque f^{-1} est notée $:x\mapsto x^{\frac{1}{n}}$ (ou aussi $x\mapsto \sqrt[n]{x}$) : c'est la fonction racine n-ième. Elle est continue et strictement croissante.

5.3. Exercice

- 1. Déterminer, si elle existe, la limite de $\frac{2x^2-x-2}{3x^2+2x+2}$ en 0. Et en $+\infty$?
- 2. Déterminer, si elle existe, la limite de $\sin(\frac{1}{x})$ en $+\infty$. Et pour $\frac{\cos x}{\sqrt{x}}$?
- 3. En utilisant la définition de la limite (avec des ε), montrer que $\lim_{x\to 2} (3x+1) = 7$.
- 4. Montrer que si f admet une limite finie en x_0 alors il existe $\delta > 0$ tel que f soit bornée sur $]x_0 \delta, x_0 + \delta[$.
- 5. Déterminer, si elle existe, $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$. Et $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$?
- 6. Déterminer le domaine de définition et de continuité des fonctions suivantes : $f(x) = 1/\sin x$, $g(x) = 1/\sqrt{x + \frac{1}{2}}$, $h(x) = \ln(x^2 + x 1)$.
- 7. Trouver les couples $(a,b) \in \mathbb{R}^2$ tels que la fonction f définie sur \mathbb{R} par f(x) = ax + b si x < 0 et $f(x) = \exp(x)$ si $x \ge 0$ soit continue sur \mathbb{R} . Et si on avait $f(x) = \frac{a}{x-1} + b$ pour x < 0?
- 8. Soit f une fonction continue telle que $f(x_0) = 1$. Montrer qu'il existe $\delta > 0$ tel que : pour tout $x \in]x_0 \delta, x_0 + \delta[f(x) > \frac{1}{2}.$
- 9. Étudier la continuité de $f: \mathbb{R} \to \mathbb{R}$ définie par : $f(x) = \sin(x)\cos\left(\frac{1}{x}\right)$ si $x \neq 0$ et f(0) = 0. Et pour g(x) = xE(x)?
- 10. La fonction définie par $f(x) = \frac{x^3+8}{|x+2|}$ admet-elle un prolongement par continuité en -2 ?
- 11. Soit la suite définie par $u_0 > 0$ et $u_{n+1} = \sqrt{u_n}$. Montrer que (u_n) admet une limite $\ell \in \mathbb{R}$ lorsque $n \to +\infty$. À l'aide de la fonction $f(x) = \sqrt{x}$ calculer cette limite.
- 12. Soient $P(x) = x^5 3x 2$ et $f(x) = x2^x 1$ deux fonctions définies sur \mathbb{R} . Montrer que l'équation P(x) = 0 a au moins une racine dans [1,2]; l'équation f(x) = 0 a au moins une racine dans [0,1]; l'équation P(x) = f(x) a au moins une racine dans [0,2].
- 13. Montrer qu'il existe x > 0 tel que $2^x + 3^x = 5^x$.
- 14. Dessiner le graphe d'une fonction continue $f : \mathbb{R} \to \mathbb{R}$ tel que $f(\mathbb{R}) = [0,1]$. Puis $f(\mathbb{R}) = [0,1[; f(\mathbb{R}) =]0,1[; f(\mathbb$
- 15. Soient $f,g:[0,1] \to \mathbb{R}$ deux fonctions continues. Quelles fonctions suivantes sont à coup sûr bornées $: f+g, f \times g, f/g$?
- 16. Soient f et g deux fonctions continues sur [0,1] telles que $\forall x \in [0,1]$ f(x) < g(x). Montrer qu'il existe m > 0 tel que $\forall x \in [0,1]$ f(x) + m < g(x). Ce résultat est-il vrai si on remplace [0,1] par $\mathbb R$?

Chapitre 3

Dérivée d'une fonction

1. Dérivée

1.1. Dérivée en un point

Soit *I* un intervalle ouvert de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction. Soit $x_0 \in I$.

Définition 21

f est **dérivable en** x_0 si le **taux d'accroissement** $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 . La limite s'appelle alors le **nombre dérivé** de f en x_0 et est noté $f'(x_0)$. Ainsi

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Définition 22

f est dérivable sur I si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la **fonction** dérivée de f, elle se note f' ou $\frac{df}{dx}$.

Exemple 24

La fonction définie par $f(x) = x^2$ est dérivable en tout point $x_0 \in \mathbb{R}$. En effet :

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x - x_0)(x + x_0)}{x - x_0} = x + x_0 \xrightarrow[x \to x_0]{} 2x_0.$$

On a même montré que le nombre dérivé de f en x_0 est $2x_0$, autrement dit : f'(x) = 2x.

Exemple 25

Montrons que la dérivée de $f(x) = \sin x$ est $f'(x) = \cos x$. Nous allons utiliser les deux assertions suivantes :

$$\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1 \qquad \text{et} \qquad \sin p - \sin q = 2\sin\frac{p-q}{2} \cdot \cos\frac{p+q}{2}.$$

Remarquons déjà que la première assertion prouve $\frac{f(x)-f(0)}{x-0} = \frac{\sin x}{x} \to 1$ et donc f est dérivable en $x_0 = 0$ et f'(0) = 1.

Pour x_0 quelconque on écrit :

$$\frac{f(x)-f(x_0)}{x-x_0} = \frac{\sin x - \sin x_0}{x-x_0} = \frac{\sin \frac{x-x_0}{2}}{\frac{x-x_0}{2}} \cdot \cos \frac{x+x_0}{2}.$$

Lorsque $x \to x_0$ alors d'une part $\cos \frac{x+x_0}{2} \to \cos x_0$ et d'autre part en posant $u = \frac{x-x_0}{2}$ alors $u \to 0$ et on a $\frac{\sin u}{u} \to 1$. Ainsi $\frac{f(x)-f(x_0)}{x-x_0} \to \cos x_0$ et donc $f'(x) = \cos x$.

1.2. Tangente

La droite qui passe par les points distincts $(x_0, f(x_0))$ et (x, f(x)) a pour coefficient directeur $\frac{f(x) - f(x_0)}{x - x_0}$. À la limite on trouve que le coefficient directeur de la tangente est $f'(x_0)$. Une équation de la **tangente** au point $(x_0, f(x_0))$ est donc :

On a clairement d'après es la définition :

Proposition 22

Soit *I* un intervalle ouvert, $x_0 \in I$ et soit $f: I \to \mathbb{R}$ une fonction.

- Si f est dérivable en x_0 alors f est continue en x_0 .
- Si f est dérivable sur I alors f est continue sur I.

Remarque

La réciproque est **fausse** : par exemple, la fonction valeur absolue est continue en 0 mais n'est pas dérivable en 0.

En effet, le taux d'accroissement de f(x) = |x| en $x_0 = 0$ vérifie :

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \begin{cases} +1 & \text{si } x > 0\\ -1 & \text{si } x < 0 \end{cases}.$$

Il y a bien une limite à droite (qui vaut +1), une limite à gauche (qui vaut -1) mais elles ne sont pas égales : il n'y a pas de limite en 0. Ainsi f n'est pas dérivable en x = 0.

Cela se lit aussi sur le dessin il y a une demi-tangente à droite, une demi-tangente à gauche mais elles ont des directions différentes.

2. Calcul des dérivées

2.1. Somme, produit,...

La proposition suivante est très pratique sa démonstration se fait par un calcul direct.

Proposition 23

Soient $f,g:I\to\mathbb{R}$ deux fonctions dérivables sur I. Alors pour tout $x\in I$:

- (f+g)'(x) = f'(x) + g'(x),
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé,
- $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x),$
- $-\left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f(x)^2} \text{ (si } f(x) \neq 0),$
- $-\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} \text{ (si } g(x) \neq 0\text{)}.$

Remarque

Il est plus facile de mémoriser les égalités de fonctions :

$$(f+g)' = f'+g', \quad (\lambda f)' = \lambda f', \quad (f \times g)' = f'g+fg', \quad \left(\frac{1}{f}\right)' = -\frac{f'}{f^2}, \quad \left(\frac{f}{g}\right)' = \frac{f'g-fg'}{g^2}.$$

2.2. Dérivée de fonctions usuelles

Le tableau de gauche est un résumé des principales formules à connaître, x est une variable. Le tableau de droite est celui des compositions (voir paragraphe suivant), u représente une fonction $x \mapsto u(x)$.

Fonction	Dérivée
x^n	nx^{n-1} $(n \in \mathbb{Z})$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2}\frac{1}{\sqrt{x}}$
x^{α}	$\alpha x^{\alpha-1} (\alpha \in \mathbb{R})$
e^x	e^x
$\ln x$	$\frac{1}{x}$
$\cos x$	$-\sin x$
$\sin x$	$\cos x$
tanx	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

Fonction	Dérivée
u^n	$nu'u^{n-1}$ $(n \in \mathbb{Z})$
$\frac{1}{u}$	$-\frac{u'}{u^2}$
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$
u^{α}	$\alpha u' u^{\alpha-1} (\alpha \in \mathbb{R})$
e^u	$u'e^u$
$\ln u$	$\frac{u'}{u}$
$\cos u$	$-u'\sin u$
$\sin u$	$u'\cos u$
tan u	$u'(1+\tan^2 u) = \frac{u'}{\cos^2 u}$

Remarque

- Notez que les formules pour x^n , $\frac{1}{x}\sqrt{x}$ et x^α sont aussi des conséquences de la dérivée de l'exponentielle. Par exemple $x^\alpha = e^{\alpha \ln x}$ et donc

$$\frac{d}{dx}(x^{\alpha}) = \frac{d}{dx}(e^{\alpha \ln x}) = \alpha \frac{1}{x}e^{\alpha \ln x} = \alpha \frac{1}{x}x^{\alpha} = \alpha x^{\alpha - 1}.$$

– Si vous devez dériver une fonction avec un exposant dépendant de x il faut absolument repasser à la forme exponentielle. Par exemple si $f(x) = 2^x$ alors on réécrit d'abord $f(x) = e^{x \ln 2}$ pour pouvoir calculer $f'(x) = \ln 2 \cdot e^{x \ln 2} = \ln 2 \cdot 2^x$.

2.3. Composition

Proposition 24

Si f est dérivable en x et g est dérivable en f(x) alors $g \circ f$ est dérivable en x de dérivée :

$$g \circ f'(x) = g'(f(x)) \cdot f'(x)$$

Démonstration

La preuve est similaire à celle ci-dessus pour le produit en écrivant cette fois :

$$\frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \times \frac{f(x) - f(x_0)}{x - x_0} \xrightarrow{x \to x_0} g'(f(x_0)) \times f'(x_0).$$

Exemple 26

Calculons la dérivée de $\ln(1+x^2)$. Nous avons $g(x) = \ln(x)$ avec $g'(x) = \frac{1}{x}$; et $f(x) = 1 + x^2$ avec f'(x) = 2x. Alors la dérivée de $\ln(1+x^2) = g \circ f(x)$ est

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x) = g'(1+x^2) \cdot 2x = \frac{2x}{1+x^2}.$$

On a aussi

Proposition 25

Soit I un intervalle ouvert. Soit $f: I \to J$ dérivable et bijective dont on note $f^{-1}: J \to I$ la bijection réciproque. Si f' ne s'annule pas sur I alors f^{-1} est dérivable et on a pour tout $x \in J$:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Exemple 27

Soit $f : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x + \exp(x)$. Étudions f en détail. Tout d'abord :

- 1. f est dérivable car f est la somme de deux fonctions dérivables. En particulier f est continue.
- 2. f est strictement croissante car f est la somme de deux fonctions strictement croissante.

- 3. f est une bijection car $\lim_{x\to-\infty} f(x) = -\infty$ et $\lim_{x\to+\infty} f(x) = +\infty$.
- 4. $f'(x) = 1 + \exp(x)$ ne s'annule jamais (pour tout $x \in \mathbb{R}$).

Notons $g = f^{-1}$ la bijection réciproque de f. Même si on ne sait pas a priori exprimer g, on peut malgré tout connaître des informations sur cette fonction : par le corollaire ci-dessus g est dérivable et l'on calcule g' en dérivant l'égalité f(g(x)) = x. Ce qui donne $f'(g(x)) \cdot g'(x) = 1$ et donc ici

$$g'(x) = \frac{1}{f'(g(x))} = \frac{1}{1 + \exp(g(x))}.$$

Pour cette fonction f particulière on peut préciser davantage : comme f(g(x)) = x alors $g(x) + \exp(g(x)) = x$ donc $\exp(g(x)) = x - g(x)$. Cela conduit à :

$$g'(x) = \frac{1}{1+x-g(x)}.$$

Par exemple f(0)=1 donc g(1)=0 et donc $g'(1)=\frac{1}{2}$. Autrement dit $(f^{-1})'(1)=\frac{1}{2}$. L'équation de la tangente au graphe de f^{-1} au point d'abscisse $x_0=1$ est donc $y=\frac{1}{2}(x-1)$.

2.4. Dérivées successives

Soit $f: I \to \mathbb{R}$ une fonction dérivable et soit f' sa dérivée. Si la fonction $f': I \to \mathbb{R}$ est aussi dérivable on note f'' = (f')' la **dérivée seconde** de f. Plus généralement on note :

$$f^{(0)} = f$$
, $f^{(1)} = f'$, $f^{(2)} = f''$ et $f^{(n+1)} = (f^{(n)})'$

Si la *dérivée* n-ième $f^{(n)}$ existe on dit que f est n fois dérivable.

Théorème 7 : Formule de Leibniz

$$(f \cdot g)^{(n)} = f^{(n)} \cdot g + \binom{n}{1} f^{(n-1)} \cdot g^{(1)} + \dots + \binom{n}{k} f^{(n-k)} \cdot g^{(k)} + \dots + f \cdot g^{(n)}$$

Autrement dit:

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(n-k)} \cdot g^{(k)}.$$

La démonstration est similaire à celle de la formule du binôme de Newton et les coefficients que l'on obtient sont les mêmes.

Exemple 28

- Pour n = 1 on retrouve $(f \cdot g)' = f'g + fg'$.
- Pour n = 2, on a $(f \cdot g)'' = f''g + 2f'g' + fg''$.

3. Extremum local, théorème de Rolle

3.1. Extremum local

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

Définition 23

- On dit que x_0 est un **point critique** de f si $f'(x_0) = 0$.
- On dit que f admet un **maximum local en** x_0 (resp. un **minimum local en** x_0) s'il existe un intervalle ouvert J contenant x_0 tel que

pour tout
$$x \in I \cap J$$
 $f(x) \leq f(x_0)$

(resp. $f(x) \ge f(x_0)$).

- On dit que f admet un *extremum local en* x_0 si f admet un maximum local ou un minimum local en ce point.

Dire que f a un maximum local en x_0 signifie que $f(x_0)$ est la plus grande des valeurs f(x) pour les x proches de x_0 . On dit que $f: I \to \mathbb{R}$ admet un **maximum global** en x_0 si pour toutes les autres valeurs f(x), $x \in I$ on a $f(x) \leq f(x_0)$ (on ne regarde donc pas seulement les f(x) pour x proche de x_0). Bien sûr un maximum global est aussi un maximum local, mais la réciproque est fausse.

Théorème 8

Soit I un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction dérivable. Si f admet un maximum local (ou un minimum local) en x_0 alors $f'(x_0) = 0$.

En d'autres termes, un maximum local (ou un minimum local) x_0 est toujours un point critique. Géométriquement, au point $(x_0, f(x_0))$ la tangente au graphe est horizontale.

Remarque

- 1. La réciproque du théorème 8 est fausse. Par exemple la fonction $f: \mathbb{R} \to \mathbb{R}$, définie par $f(x) = x^3$ vérifie f'(0) = 0 mais $x_0 = 0$ n'est ni maximum local ni un minimum local.
- 2. L'intervalle du théorème 8 est ouvert. Pour le cas d'un intervalle fermé, il faut faire attention aux extrémités. Par exemple si $f:[a,b]\to\mathbb{R}$ est une fonction dérivable qui admet un extremum en x_0 , alors on est dans l'une des situations suivantes :
 - $x_0 = a$,
 - $x_0 = b$,
 - x_0 ∈]a,b[et dans ce cas on a bien $f'(x_0)$ = 0 par le théorème 8.

Aux extrémités on ne peut rien dire pour f'(a) et f'(b), comme le montre les différents maximums sur les dessins suivants.

3. Pour déterminer $\max_{[a,b]} f$ et $\min_{[a,b]} f$ (où $f:[a,b] \to \mathbb{R}$ est une fonction dérivable) il faut comparer les valeurs de f aux différents points critiques et en a et en b.

Démonstration: Preuve du théorème

Supposons que x_0 soit un maximum local de f, soit donc J l'intervalle ouvert de la définition contenant x_0 tel que pour tout $x \in I \cap J$ on a $f(x) \leq f(x_0)$.

- Pour $x \in I \cap J$ tel que $x < x_0$ on a $f(x) f(x_0) \le 0$ et $x x_0 < 0$ donc $\frac{f(x) f(x_0)}{x x_0} \ge 0$ et donc à la limite $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$
- Pour $x \in I \cap J$ tel que $x > x_0$ on a $f(x) f(x_0) \le 0$ et $x x_0 > 0$ donc $\frac{f(x) f(x_0)}{x x_0} \le 0$ et donc à la limite $\lim_{x\to x_0^+}\frac{f(x)-f(x_0)}{x-x_0}\leqslant 0.$ Or f est dérivable en x_0 donc

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

La première limite est positive, la seconde est négative, la seule possibilité est que $f'(x_0) = 0$.

3.2. Théorème de Rolle

Théorème 9 : Théorème de Rolle

Soit $f:[a,b] \to \mathbb{R}$ telle que

- f est continue sur [a,b],
- f est dérivable sur]a,b[,
- f(a) = f(b).

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est horizontale.

Démonstration

Tout d'abord, si f est constante sur [a,b] alors n'importe quel $c \in]a,b[$ convient. Sinon il existe $x_0 \in [a,b]$ tel que $f(x_0) \neq f(a)$. Supposons par exemple $f(x_0) > f(a)$. Alors f est continue sur l'intervalle fermé et borné [a,b], donc elle admet un maximum en un point $c \in [a,b]$. Mais $f(c) \geq f(x_0) > f(a)$ donc $c \neq a$. De même comme f(a) = f(b) alors $c \neq b$. Ainsi $c \in]a,b[$. En c, f est donc dérivable et admet un maximum (local) donc f'(c) = 0.

4. Théorème des accroissements finis

4.1. Théorème des accroissements finis

Théorème 10: Théorème des accroissements finis

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b]. Il existe $c \in]a,b[$ tel que

$$f(b)-f(a)=f'(c)(b-a)$$

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est parallèle à la droite (AB) où A = (a, f(a)) et B = (b, f(b)).

Démonstration

Posons $\ell = \frac{f(b) - f(a)}{b - a}$ et $g(x) = f(x) - \ell \cdot (x - a)$. Alors g(a) = f(a), $g(b) = f(b) - \frac{f(b) - f(a)}{b - a} \cdot (b - a) = f(a)$. Par le théorème de Rolle, il existe $c \in]a,b[$ tel que g'(c) = 0. Or $g'(x) = f'(x) - \ell$. Ce qui donne $f'(c) = \frac{f(b) - f(a)}{b - a}$.

4.2. Fonction croissante et dérivée

Corollaire 3

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b].

- 1. $\forall x \in]a,b[f'(x) \ge 0 \iff f \text{ est croissante };$
- 2. $\forall x \in]a,b[f'(x) \le 0 \iff f \text{ est décroissante };$
- 3. $\forall x \in]a, b[f'(x) = 0 \iff f \text{ est constante } ;$
- 4. $\forall x \in]a,b[$ $f'(x)>0 \implies f \text{ est strictement croissante };$
- 5. $\forall x \in]a,b[$ $f'(x) < 0 \implies f \text{ est strictement décroissante.}$

Remarque

La réciproque au point (4) (et aussi au (5)) est fausse. Par exemple la fonction $x \mapsto x^3$ est strictement croissante et pourtant sa dérivée s'annule en 0.

Démonstration

Prouvons par exemple (1).

Sens \implies . Supposons d'abord la dérivée positive. Soient $x, y \in]a, b[$ avec $x \le y$. Alors par le théorème des accroissements finis, il existe $c \in]x, y[$ tel que f(x) - f(y) = f'(c)(x - y). Mais $f'(c) \ge 0$ et $x - y \le 0$ donc $f(x) - f(y) \le 0$. Cela implique que $f(x) \le f(y)$. Ceci étant vrai pour tout x, y alors f est croissante.

Sens \Leftarrow . Réciproquement, supposons que f est croissante. Fixons $x \in]a, b[$. Pour tout y > x nous avons y - x > 0 et $f(y) - f(x) \ge 0$, ainsi le taux d'accroissement vérifie $\frac{f(y) - f(x)}{y - x} \ge 0$. À la limite, quand $y \to x$, ce taux d'accroissement tend vers la dérivée de f en x et donc $f'(x) \ge 0$.

4.3. Inégalité des accroissements finis

Corollaire 4 : Inégalité des accroissements finis

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I ouvert. S'il existe une constante M tel que pour tout $x \in I$, $|f'(x)| \leq M$ alors

$$\forall x, y \in I$$
 $|f(x) - f(y)| \le M|x - y|$

Démonstration

Fixons $x, y \in I$, il existe alors $c \in]x, y[$ ou]y, x[tel que f(x) - f(y) = f'(c)(x - y) et comme $|f'(c)| \le M$ alors $|f(x) - f(y)| \le M|x - y|$.

Exemple 29

Soit $f(x) = \sin(x)$. Comme $f'(x) = \cos x$ alors $|f'(x)| \le 1$ pour tout $x \in \mathbb{R}$. L'inégalité des accroissements finis s'écrit alors :

pour tous
$$x, y \in \mathbb{R}$$
 $|\sin x - \sin y| \le |x - y|$.

En particulier si l'on fixe y = 0 alors on obtient

$$|\sin x| \le |x|$$

4.4. Règle de l'Hospital

Corollaire 5 : Règle de l'Hospital

Soient $f,g:I\to\mathbb{R}$ deux fonctions dérivables et soit $x_0\in I$. On suppose que

- $f(x_0) = g(x_0) = 0,$
- $\forall x \in I \setminus \{x_0\}$ $g'(x) \neq 0$.

Si
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$$
 $(\in \mathbb{R})$ alors $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$.

Exemple 30

Calculer la limite en 1 de $\frac{\ln(x^2+x-1)}{\ln(x)}$. On vérifie que :

- $f(x) = \ln(x^2 + x 1), f(1) = 0, f'(x) = \frac{2x + 1}{x^2 + x 1},$
- $g(x) = \ln(x)$, g(1) = 0, $g'(x) = \frac{1}{x}$,
- Prenons I =]0,1], $x_0 = 1$, alors g' ne s'annule pas sur $I \setminus \{x_0\}$.

$$\frac{f'(x)}{g'(x)} = \frac{2x+1}{x^2+x-1} \times x = \frac{2x^2+x}{x^2+x-1} \xrightarrow{x\to 1} 3.$$

Donc

$$\frac{f(x)}{g(x)} \xrightarrow[x \to 1]{} 3.$$

5. Exercices

- 1. Montrer que la fonction $f(x) = x^3$ est dérivable en tout point $x_0 \in \mathbb{R}$ et que $f'(x_0) = 3x_0^2$.
- 2. Montrer que la fonction $f(x) = \sqrt{x}$ est dérivable en tout point $x_0 > 0$ et que $f'(x_0) = \frac{1}{2\sqrt{x_0}}$.
- 3. Montrer que la fonction $f(x) = \sqrt{x}$ (qui est continue en $x_0 = 0$) n'est pas dérivable en $x_0 = 0$.
- 4. Calculer l'équation de la tangente (T_0) à la courbe d'équation $y = x^3 x^2 x$ au point d'abscisse $x_0 = 2$. Calculer x_1 afin que la tangente (T_1) au point d'abscisse x_1 soit parallèle à (T_0) .
- 5. Montrer que si une fonction f est paire et dérivable, alors f' est une fonction impaire.
- 6. Calculer les dérivées des fonctions suivantes : $f_1(x) = x \ln x$, $f_2(x) = \sin \frac{1}{x}$, $f_3(x) = \sqrt{1 + \sqrt{1 + x^2}}$, $f_4(x) = \left(\ln(\frac{1+x}{1-x})\right)^{\frac{1}{3}}$, $f_5(x) = x^x$, $f_6(x) = \arctan x + \arctan \frac{1}{x}$.

- 7. On note $\Delta(f) = \frac{f'}{f}$. Calculer $\Delta(f \times g)$.
- 8. Soit $f:]1, +\infty[\rightarrow]-1, +\infty[$ définie par $f(x) = x \ln(x) x$. Montrer que f est une bijection. Notons $g = f^{-1}$. Calculer g(0) et g'(0).
- 9. Calculer les dérivées successives de $f(x) = \ln(1+x)$.
- 10. Calculer les dérivées successives de $f(x) = \ln(x) \cdot x^3$.
- 11. Dessiner le graphe de fonctions vérifiant : f_1 admet deux minimums locaux et un maximum local ; f_2 admet un minimum local qui n'est pas global et un maximum local qui est global ; f_3 admet une infinité d'extremum locaux ; f_4 n'admet aucun extremum local.
- 12. Calculer en quel point la fonction $f(x) = ax^2 + bx + c$ admet un extremum local.
- 13. Soit $f:[0,2] \to \mathbb{R}$ une fonction deux fois dérivable telle que f(0) = f(1) = f(2) = 0. Montrer qu'il existe c_1, c_2 tels que $f'(c_1) = 0$ et $f'(c_2) = 0$. Montrer qu'il existe c_3 tel que $f''(c_3) = 0$.
- 14. Montrer que chacune des trois hypothèses du théorème de Rolle est nécessaire.
- 15. Soit $f(x) = \frac{x^3}{3} + \frac{x^2}{2} 2x + 2$. Étudier la fonction f. Tracer son graphe. Montrer que f admet un minimum local et un maximum local.
- 16. Soit $f(x) = \sqrt{x}$. Appliquer le théorème des accroissements finis sur l'intervalle [100, 101]. En déduire l'encadrement $10 + \frac{1}{22} \le \sqrt{101} \le 10 + \frac{1}{20}$.
- 17. Appliquer le théorème des accroissements finis pour montrer que $\ln(1+x) \ln(x) < \frac{1}{x}$ (pour tout x > 0).
- 18. Soit $f(x) = e^x$. Que donne l'inégalité des accroissements finis sur [0,x]?
- 19. Appliquer la règle de l'Hospital pour calculer les limites suivantes (quand $x \to 0$): $\frac{x}{(1+x)^n 1}$; $\frac{\ln(x+1)}{\sqrt{x}}$; $\frac{1-\cos x}{\tan x}$; $\frac{x-\sin x}{x^3}$.

Chapitre 4

Développements limités

Dans ce chapitre, pour n'importe quelle fonction, nous allons trouver le polynôme de degré n qui approche le mieux la fonction. Les résultats ne sont valables que pour x autour d'une valeur fixée (ce sera souvent autour de 0). Ce polynôme sera calculé à partir des dérivées successives au point considéré. Sans plus attendre, voici la formule, dite formule de Taylor-Young :

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + x^n \varepsilon(x).$$

La partie polynomiale $f(0) + f'(0)x + \cdots + f^{(n)}(0)\frac{x^n}{n!}$ est le polynôme de degré n qui approche le mieux f(x) autour de x = 0. La partie $x^n \varepsilon(x)$ est le «reste» dans lequel $\varepsilon(x)$ est une fonction qui tend vers 0 (quand x tend vers 0) et qui est négligeable devant la partie polynomiale.

1. Formules de Taylor

Nous allons voir trois formules de Taylor, elles auront toutes la même partie polynomiale mais donnent plus ou moins d'informations sur le reste. Nous commencerons par la formule de Taylor avec reste intégral qui donne une expression exacte du reste. Puis la formule de Taylor avec reste $f^{(n+1)}(c)$ qui permet d'obtenir un encadrement du reste et nous terminons avec la formule de Taylor-Young très pratique si l'on n'a pas besoin d'information sur le reste.

Soit $I \subset \mathbb{R}$ un intervalle ouvert. Pour $n \in \mathbb{N}^*$, on dit que $f: I \to \mathbb{R}$ est une fonction de **classe** \mathscr{C}^n si f est n fois dérivable sur I et $f^{(n)}$ est continue. f est de **classe** \mathscr{C}^n si f est de **classe** f est de classe f pour tout f est de classe f est

1.1. Formule de Taylor avec reste intégral

Théorème 11 : Formule de Taylor avec reste intégral

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^{n+1} $(n \in \mathbb{N})$ et soit $a, x \in I$. Alors

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \int_a^x \frac{f^{(n+1)}(t)}{n!}(x-t)^n dt.$$

Nous noterons $T_n(x)$ la partie polynomiale de la formule de Taylor (elle dépend de n mais aussi de f et a) :

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Remarque

En écrivant x = a + h (et donc h = x - a) la formule de Taylor précédente devient (pour tout a et a + h de I):

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \dots + \frac{f^{(n)}(a)}{n!}h^n + \int_0^h \frac{f^{(n+1)}(a+t)}{n!}(h-t)^n dt$$

Exemple 31

La fonction $f(x) = \exp x$ est de classe \mathscr{C}^{n+1} sur $I = \mathbb{R}$ pour tout n. Fixons $a \in \mathbb{R}$. Comme $f'(x) = \exp x$, $f''(x) = \exp x$, ... alors pour tout $x \in \mathbb{R}$:

$$\exp x = \exp a + \exp a \cdot (x-a) + \dots + \frac{\exp a}{n!} (x-a)^n + \int_a^x \frac{\exp t}{n!} (x-t)^n dt.$$

Bien sûr si l'on se place en a=0 alors on retrouve le début de notre approximation de la fonction exponentielle en x=0 : $\exp x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$

1.2. Formule de Taylor avec reste $f^{(n+1)}(c)$

Théorème 12 : Formule de Taylor avec reste $f^{(n+1)}(c)$

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^{n+1} $(n \in \mathbb{N})$ et soit $a, x \in I$. Il existe un réel c entre a et x tel que :

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

Exemple 32

Soient $a, x \in \mathbb{R}$. Pour tout entier $n \ge 0$ il existe c entre a et x tel que $\exp x = \exp a + \exp a \cdot (x - a) + \cdots + \frac{\exp a}{n!} (x - a)^n + \frac{\exp c}{(n+1)!} (x - a)^{n+1}$.

Dans la plupart des cas on ne connaîtra pas ce c. Mais ce théorème permet d'encadrer le reste. Ceci s'exprime par le corollaire suivant :

Corollaire 6

Si en plus la fonction $|f^{(n+1)}|$ est majorée sur I par un réel M, alors pour tout $a, x \in I$, on a :

$$\left| f(x) - T_n(x) \right| \le M \frac{|x - a|^{n+1}}{(n+1)!}.$$

Exemple 33

Approximation de sin(0,01).

Soit $f(x) = \sin x$. Alors $f'(x) = \cos x$, $f''(x) = -\sin x$, $f^{(3)}(x) = -\cos x$, $f^{(4)}(x) = \sin x$. On obtient donc f(0) = 0, f'(0) = 1, f''(0) = 0, $f^{(3)}(0) = -1$. La formule de Taylor ci-dessus en a = 0 à l'ordre 3 devient : $f(x) = 0 + 1 \cdot x + 0 \cdot \frac{x^2}{2!} - 1 \frac{x^3}{3!} + f^{(4)}(c) \frac{x^4}{4!}$, c'est-à-dire $f(x) = x - \frac{x^3}{6} + f^{(4)}(c) \frac{x^4}{24}$, pour un certain c entre 0 et x.

Appliquons ceci pour x = 0.01. Le reste étant petit on trouve alors

$$\sin(0,01) \approx 0.01 - \frac{(0.01)^3}{6} = 0.00999983333...$$

On peut même savoir quelle est la précision de cette approximation : comme $f^{(4)}(x) = \sin x$ alors $|f^{(4)}(c)| \le 1$. Donc $|f(x) - \left(x - \frac{x^3}{6}\right)| \le \frac{x^4}{4!}$. Pour x = 0,01 cela donne : $\left|\sin(0,01) - \left(0,01 - \frac{(0,01)^3}{6}\right)\right| \le \frac{(0,01)^4}{24}$. Comme $\frac{(0,01)^4}{24} \approx 4,16\cdot 10^{-10}$ alors notre approximation donne au moins 8 chiffres exacts après la virgule.

1.3. Formule de Taylor-Young

Théorème 13 : Formule de Taylor-Young

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^n et soit $a \in I$. Alors pour tout $x \in I$ on a :

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x),$$

où ε est une fonction définie sur I telle que $\varepsilon(x) \xrightarrow[r \to q]{} 0$.

1.4. Un exemple

Soit $f:]-1,+\infty[\to\mathbb{R},x\mapsto\ln(1+x);f$ est infiniment dérivable. Nous allons calculer les formules de Taylor en 0 pour les premiers ordres.

Tous d'abord f(0) = 0. Ensuite $f'(x) = \frac{1}{1+x}$ donc f'(0) = 1. Ensuite $f''(x) = -\frac{1}{(1+x)^2}$ donc f''(0) = -1. Puis $f^{(3)}(x) = +2\frac{1}{(1+x)^3}$ donc $f^{(3)}(0) = +2$. Par récurrence on montre que $f^{(n)}(x) = (-1)^{n-1}(n-1)!\frac{1}{(1+x)^n}$ et donc $f^{(n)}(0) = (-1)^{n-1}(n-1)!$. Ainsi pour n > 0: $\frac{f^{(n)}(0)}{n!}x^n = (-1)^{n-1}\frac{(n-1)!}{n!}x^n = (-1)^{n-1}\frac{x^n}{n}$.

Voici donc les premiers polynômes de Taylor :

$$T_0(x) = 0$$
 $T_1(x) = x$ $T_2(x) = x - \frac{x^2}{2}$ $T_3(x) = x - \frac{x^2}{2} + \frac{x^3}{3}$

Les formules de Taylor nous disent que les restes sont de plus en plus petits lorsque n croît. Sur le dessins les graphes des polynômes T_0, T_1, T_2, T_3 s'approchent de plus en plus du graphe de f. Attention ceci n'est vrai qu'autour de 0.

Pour n quelconque nous avons calculer que le polynôme de Taylor en 0 est

$$T_n(x) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n}.$$

Notation. Le terme $(x-a)^n \varepsilon(x)$ où $\varepsilon(x) \xrightarrow[x\to 0]{} 0$ est souvent abrégé en «**petit o**» de $(x-a)^n$ et est noté $o((x-a)^n)$. Donc $o((x-a)^n)$ est une fonction telle que $\lim_{x\to a} \frac{o((x-a)^n)}{(x-a)^n} = 0$. Il faut s'habituer à cette notation qui simplifie les écritures, mais il faut toujours garder à l'esprit ce qu'elle signifie.

Cas particulier : Formule de Taylor-Young au voisinage de 0. On se ramène souvent au cas particulier où a = 0, la formule de Taylor-Young s'écrit alors

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + x^n \varepsilon(x)$$

où $\lim_{x\to 0} \varepsilon(x) = 0$.

Et avec la notation «petit o» cela donne:

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + o(x^n)$$

2. Développements limités au voisinage d'un point

2.1. Définition et existence

Soit *I* un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction quelconque.

Définition 24

Pour $a \in I$ et $n \in \mathbb{N}$, on dit que f admet un **développement limité** (**DL**) au point a et à l'ordre n, s'il existe des réels c_0, c_1, \ldots, c_n et une fonction $\varepsilon : I \to \mathbb{R}$ telle que $\lim_{x \to a} \varepsilon(x) = 0$ de sorte que pour tout $x \in I$:

$$f(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n + (x-a)^n \varepsilon(x).$$

- L'égalité précédente s'appelle un DL de f au voisinage de a à l'ordre n.
- Le terme $c_0 + c_1(x-a) + \cdots + c_n(x-a)^n$ est appelé la *partie polynomiale* du DL.
- Le terme $(x-a)^n \varepsilon(x)$ est appelé le **reste** du DL.

La formule de Taylor-Young permet d'obtenir immédiatement des développements limités en posant $c_k = \frac{f^{(k)}(a)}{k!}$:

Proposition 26

Si f est de classe \mathscr{C}^n au voisinage d'un point a alors f admet un DL au point a à l'ordre n, qui provient de la formule de Taylor-Young :

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)$$

où $\lim_{x\to a} \varepsilon(x) = 0$.

Remarque

1. Si f est de classe \mathscr{C}^n au voisinage d'un point 0, un DL en 0 à l'ordre n est l'expression :

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + x^n \varepsilon(x)$$

2. Si f admet un DL en un point a à l'ordre n alors elle en possède un pour tout $k \le n$.

2.2. Unicité

Proposition 27

Si f admet un DL alors ce DL est unique.

Démonstration

Écrivons deux DL de $f: f(x) = c_0 + c_1(x-a) + \cdots + c_n(x-a)^n + (x-a)^n \varepsilon_1(x)$ et $f(x) = d_0 + d_1(x-a) + \cdots + d_n(x-a)^n + (x-a)^n \varepsilon_2(x)$. En effectuant la différence on obtient :

$$(d_0 - c_0) + (d_1 - c_1)(x - a) + \dots + (d_n - c_n)(x - a)^n + (x - a)^n (\varepsilon_2(x) - \varepsilon_1(x)) = 0.$$

Lorsque l'on fait x=a dans cette égalité alors on trouve $d_0-c_0=0$. Ensuite on peut diviser cette égalité par x-a: $(d_1-c_1)+(d_2-c_2)(x-a)+\cdots+(d_n-c_n)(x-a)^{n-1}+(x-a)^{n-1}(\varepsilon_2(x)-\varepsilon_1(x))=0$. En évaluant en x=a on obtient $d_1-c_1=0$, etc. On trouve $c_0=d_0$, $c_1=d_1$, ..., $c_n=d_n$. Les parties polynomiales sont égales et donc les restes aussi.

Corollaire 7

Si f est paire (resp. impaire) alors la partie polynomiale de son DL en 0 ne contient que des monômes de degrés pairs (resp. impairs).

Par exemple $x \mapsto \cos x$ est paire et nous verrons que son DL en 0 commence par : $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$

Remarque

- 1. L'unicité du DL et la formule de Taylor-Young prouve que si l'on connaît le DL et que f est de classe \mathscr{C}^n alors on peut calculer les nombres dérivés à partir de la partie polynomiale par la formule $c_k = \frac{f^{(k)}(a)}{k!}$. Cependant dans la majorité des cas on fera l'inverse : on trouve le DL à partir des dérivées.
- 2. Si f est continue et admet un DL en un point a à l'ordre $n \ge 0$ alors $c_0 = f(a)$.
- 3. Si f admet un DL en un point a à l'ordre $n \ge 1$, alors f est dérivable en a et on a $c_0 = f(a)$ et $c_1 = f'(a)$. Par conséquent $y = c_0 + c_1(x a)$ est l'équation de la tangente au graphe de f au point d'abscisse a.

2.3. DL des fonctions usuelles à l'origine

Les DL suivants en 0 proviennent de la formule de Taylor-Young.

$$\exp x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \varepsilon(x)$$

$$\operatorname{ch} x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + x^{2n+1} \varepsilon(x)$$

$$\operatorname{sh} x = \frac{x}{1!} + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \varepsilon(x)$$

$$\operatorname{cos} x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + x^{2n+1} \varepsilon(x)$$

$$\operatorname{sin} x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \varepsilon(x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \varepsilon(x)$$

$$\boxed{(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + x^n\varepsilon(x)}$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + x^n \varepsilon(x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \varepsilon(x)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{1}{8}x^2 + \dots + (-1)^{n-1} \frac{1 \cdot 1 \cdot 3 \cdot 5 \dots (2n-3)}{2^n n!} x^n + x^n \varepsilon(x)$$

Ils ne sont pas tous à apprendre par cœur. Certain sont conséquence des autres. A vous de voir comment.

2.4. DL des fonctions en un point quelconque

La fonction f admet un DL au voisinage d'un point a si et seulement si la fonction $x \mapsto f(x+a)$ admet un DL au voisinage de 0. Souvent on ramène donc le problème en 0 en faisant le changement de variables h = x - a.

Exemple 34

1. DL de $f(x) = \exp x$ en 1.

On pose h = x - 1. Si x est proche de 1 alors h est proche de 0. Nous allons nous ramener à un DL de $\exp h$ en h = 0. On note $e = \exp 1$.

$$\exp x = \exp(1 + (x - 1)) = \exp(1) \exp(x - 1) = e \exp h = e \left(1 + h + \frac{h^2}{2!} + \dots + \frac{h^n}{n!} + h^n \varepsilon(h) \right)$$
$$= e \left(1 + (x - 1) + \frac{(x - 1)^2}{2!} + \dots + \frac{(x - 1)^n}{n!} + (x - 1)^n \varepsilon(x - 1) \right), \quad \lim_{x \to 1} \varepsilon(x - 1) = 0.$$

2. DL de $g(x) = \sin x$ en $\pi/2$.

Sachant $\sin x = \sin(\frac{\pi}{2} + x - \frac{\pi}{2}) = \cos(x - \frac{\pi}{2})$ on se ramène au DL de $\cos h$ quand $h = x - \frac{\pi}{2} \to 0$. On a donc $\sin x = 1 - \frac{(x - \frac{\pi}{2})^2}{2!} + \dots + (-1)^n \frac{(x - \frac{\pi}{2})^{2n}}{(2n)!} + (x - \frac{\pi}{2})^{2n+1} \varepsilon (x - \frac{\pi}{2})$, où $\lim_{x \to \pi/2} \varepsilon (x - \frac{\pi}{2}) = 0$.

3. DL de $\ell(x) = \ln(1+3x)$ en 1 à l'ordre 3.

Il faut se ramener à un DL du type $\ln(1+h)$ en h=0. On pose h=x-1 (et donc x=1+h). On a $\ell(x)=\ln(1+3x)=\ln\left(1+3(1+h)\right)=\ln(4+3h)=\ln\left(4\cdot(1+\frac{3h}{4})\right)=\ln 4+\ln\left(1+\frac{3h}{4}\right)=\ln 4+\frac{3h}{4}-\frac{1}{2}\left(\frac{3h}{4}\right)^2+\frac{1}{3}\left(\frac{3h}{4}\right)^3+h^3\varepsilon(h)=\ln 4+\frac{3(x-1)}{4}-\frac{9}{32}(x-1)^2+\frac{9}{64}(x-1)^3+(x-1)^3\varepsilon(x-1)$ où $\lim_{x\to 1}\varepsilon(x-1)=0$.

3. Opérations sur les développements limités

3.1. Somme et produit

On suppose que f et g sont deux fonctions qui admettent des DL en 0 à l'ordre n:

$$f(x) = c_0 + c_1 x + \dots + c_n x^n + x^n \varepsilon_1(x)$$
 $g(x) = d_0 + d_1 x + \dots + d_n x^n + x^n \varepsilon_2(x)$

Proposition 28

- f + g admet un DL en 0 l'ordre n qui est :

$$(f+g)(x) = f(x) + g(x) = (c_0 + d_0) + (c_1 + d_1)x + \dots + (c_n + d_n)x^n + x^n \varepsilon(x).$$

- $f \times g$ admet un DL en 0 l'ordre n qui est : $(f \times g)(x) = f(x) \times g(x) = T_n(x) + x^n \varepsilon(x)$ où $T_n(x)$ est le polynôme $(c_0 + c_1 x + \dots + c_n x^n) \times (d_0 + d_1 x + \dots + d_n x^n)$ tronqué à l'ordre n.

Tronquer un polynôme à l'ordre n signifie que l'on conserve seulement les monômes de degré $\leq n$.

Exemple 35

Calculer le DL de $\cos x \times \sqrt{1+x}$ en 0 à l'ordre 2. On sait que $\cos x = 1 - \frac{1}{2}x^2 + x^2\varepsilon_1(x)$ et $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon_2(x)$.

Donc:

$$\begin{split} \cos x \times \sqrt{1+x} &= \left(1 - \frac{1}{2}x^2 + o(x^2)\right) \times \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)\right) \quad \text{on d\'eveloppe} \\ &= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2) \\ &\qquad - \frac{1}{2}x^2 + o(x^2) \\ &\qquad + o(x^2) \\ &= 1 + \frac{1}{2}x - \frac{5}{8}x^2 + o(x^2) \end{split}$$

La notation «petit o» évite de devoir donner un nom à chaque fonction, en ne gardant que sa propriété principale, qui est de décroître vers 0 au moins à une certaine vitesse. Comme on le voit dans cet exemple, $o(x^2)$ absorbe les éléments de même ordre de grandeur ou plus petits que lui : $o(x^2) - \frac{1}{4}x^3 + \frac{1}{2}x^2o(x^2) = o(x^2)$. Mais il faut bien comprendre que les différents $o(x^2)$ écrits ne correspondent pas à la même fonction, ce qui justifie que cette égalité ne soit pas fausse!

3.2. Composition

On écrit encore:

$$f(x) = C(x) + x^{n} \varepsilon_{1}(x) = c_{0} + c_{1}x + \dots + c_{n}x^{n} + x^{n} \varepsilon_{1}(x) \qquad g(x) = D(x) + x^{n} \varepsilon_{2}(x) = d_{0} + d_{1}x + \dots + d_{n}x^{n} + x^{n} \varepsilon_{2}(x)$$

Proposition 29

Si g(0) = 0 (c'est-à-dire $d_0 = 0$) alors la fonction $f \circ g$ admet un DL en 0 à l'ordre n dont la partie polynomiale est le polynôme tronqué à l'ordre n de la composition C(D(x)).

Exemple 36

Calcul du DL de $h(x) = \sin(\ln(1+x))$ en 0 à l'ordre 3.

- On pose ici $f(u) = \sin u$ et $g(x) = \ln(1+x)$ (pour plus de clarté il est préférable de donner des noms différents aux variables de deux fonctions, ici x et u). On a bien $f \circ g(x) = \sin(\ln(1+x))$ et g(0) = 0.
- On écrit le DL à l'ordre 3 de $f(u) = \sin u = u \frac{u^3}{3!} + u^3 \varepsilon_1(u)$ pour u proche de 0.
- Et on pose $u = g(x) = \ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon_2(x)$ pour x proche de 0.
- On aura besoin de calculer un DL à l'ordre 3 de u^2 (qui est bien sûr le produit $u \times u$) : $u^2 = \left(x \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon_2(x)\right)^2 = x^2 x^3 + x^3 \varepsilon_3(x)$ et aussi u^3 qui est $u \times u^2$, $u^3 = x^3 + x^3 \varepsilon_4(x)$.
- Donc $h(x) = f \circ g(x) = f(u) = u \frac{u^3}{3!} + u^3 \varepsilon_1(u) = \left(x \frac{1}{2}x^2 + \frac{1}{3}x^3\right) \frac{1}{6}x^3 + x^3 \varepsilon(x) = x \frac{1}{2}x^2 + \frac{1}{6}x^3 + x^3 \varepsilon(x).$

Exemple 37

Soit $h(x) = \sqrt{\cos x}$. On cherche le DL de h en 0 à l'ordre 4.

On utilise cette fois la notation «petit o». On connaît le DL de $f(u) = \sqrt{1+u}$ en u=0 à l'ordre 2 : $f(u) = \sqrt{1+u} = 1 + \frac{1}{2}u - \frac{1}{8}u^2 + o(u^2)$.

Et si on pose $u(x) = \cos x - 1$ alors on a h(x) = f(u(x)) et u(0) = 0. D'autre part le DL de u(x) en x = 0 à l'ordre 4 est : $u = -\frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)$. On trouve alors $u^2 = \frac{1}{4}x^4 + o(x^4)$.

Et ainsi

$$h(x) = f(u) = 1 + \frac{1}{2}u - \frac{1}{8}u^2 + o(u^2)$$

$$= 1 + \frac{1}{2}\left(-\frac{1}{2}x^2 + \frac{1}{24}x^4\right) - \frac{1}{8}\left(\frac{1}{4}x^4\right) + o(x^4)$$

$$= 1 - \frac{1}{4}x^2 + \frac{1}{48}x^4 - \frac{1}{32}x^4 + o(x^4)$$

$$= 1 - \frac{1}{4}x^2 - \frac{1}{96}x^4 + o(x^4)$$

3.3. Division

Voici comment calculer le DL d'un quotient f/g. Soient

$$f(x) = c_0 + c_1 x + \dots + c_n x^n + x^n \varepsilon_1(x)$$
 $g(x) = d_0 + d_1 x + \dots + d_n x^n + x^n \varepsilon_2(x)$

Nous allons utiliser le DL de $\frac{1}{1+u} = 1 - u + u^2 - u^3 + \cdots$.

- 1. Si $d_0 = 1$ on pose $u = d_1 x + \dots + d_n x^n + x^n \varepsilon_2(x)$ et le quotient s'écrit $f/g = f \times \frac{1}{1+u}$.
- 2. Si d_0 est quelconque avec $d_0 \neq 0$ alors on se ramène au cas précédent en écrivant

$$\frac{1}{g(x)} = \frac{1}{d_0} \frac{1}{1 + \frac{d_1}{d_0}x + \dots + \frac{d_n}{d_0}x^n + \frac{x^n \varepsilon_2(x)}{d_0}}.$$

3. Si $d_0 = 0$ alors on factorise par x^k (pour un certain k) afin de se ramener aux cas précédents.

Exemple 38

1. DL de tanx en 0 à l'ordre 5.

Tout d'abord $\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + x^5 \varepsilon(x)$. D'autre part $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x) = 1 + u$ en posant $u = -\frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x)$.

Nous aurons besoin de u^2 et u^3 : $u^2 = \left(-\frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x)\right)^2 = \frac{x^4}{4} + x^5 \varepsilon(x)$ et en fait $u^3 = x^5 \varepsilon(x)$. (On note abusivement $\varepsilon(x)$ pour différents restes.)

Ainsi

$$\frac{1}{\cos x} = \frac{1}{1+u} = 1 - u + u^2 - u^3 + u^3 \varepsilon(u) = 1 + \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^4}{4} + x^5 \varepsilon(x) = 1 + \frac{x^2}{2} + \frac{5}{24} x^4 + x^5 \varepsilon(x);$$

Finalement

$$\tan x = \sin x \times \frac{1}{\cos x} = \left(x - \frac{x^3}{6} + \frac{x^5}{120} + x^5 \varepsilon(x)\right) \times \left(1 + \frac{x^2}{2} + \frac{5}{24}x^4 + x^5 \varepsilon(x)\right) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + x^5 \varepsilon(x).$$

Autre méthode. Soit $f(x) = C(x) + x^n \varepsilon_1(x)$ et $g(x) = D(x) + x^n \varepsilon_2(x)$. Alors on écrit la division suivant les puissances croissantes de C par D à l'ordre $n: C = DQ + x^{n+1}R$ avec $\deg Q \le n$. Alors Q est la partie polynomiale du DL en 0 à l'ordre n de f/g.

Exemple 39

DL de $\frac{2+x+2x^3}{1+x^2}$ à l'ordre 2. On pose $C(x) = 2+x+2x^3$ et $g(x) = D(x) = 1+x^2$ alors $C(x) = D(x) \times (2+x-2x^2) + x^3(1+2x)$. On a donc $Q(x) = 2+x-2x^2$, R(x) = 1+2x. Et donc lorsque l'on divise cette égalité par C(x) on obtient $\frac{f(x)}{g(x)} = 2 + x - 2x^2 + x^2 \varepsilon(x)$.

3.4. Intégration

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^n dont le DL en $a \in I$ à l'ordre n est $f(x) = c_0 + c_1(x-a) + c_2(x-a)$ $(a)^2 + \cdots + c_n(x-a)^n + (x-a)^n \varepsilon(x).$

Théorème 14

Notons F une primitive de f. Alors F admet un DL en a à l'ordre n+1 qui s'écrit :

$$F(x) = F(a) + c_0(x-a) + c_1\frac{(x-a)^2}{2} + c_2\frac{(x-a)^3}{3} + \dots + c_n\frac{(x-a)^{n+1}}{n+1} + (x-a)^{n+1}\eta(x)$$

où $\lim_{x\to a} \eta(x) = 0$.

Cela signifie que l'on intègre la partie polynomiale terme à terme pour obtenir le DL de F(x) à la constante F(a) près.

Exemple 40

Calcul du DL de arctan x.

On sait que $\arctan' x = \frac{1}{1+x^2}$. En posant $f(x) = \frac{1}{1+x^2}$ et $F(x) = \arctan x$, on écrit

$$\arctan' x = \frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + x^{2n} \varepsilon(x).$$

Et comme $\arctan(0) = 0$ alors $\arctan x = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} x^{2k+1} + x^{2n+1} \varepsilon(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$

4. Applications des développements limités

Voici les applications les plus remarquables des développements limités. On utilisera aussi les DL lors de l'étude locale des courbes paramétrées lorsqu'il y a des points singuliers.

4.1. Calculs de limites

Les DL sont très efficaces pour calculer des limites ayant des formes indéterminées! Il suffit juste de remarquer que si $f(x) = c_0 + c_1(x - a) + \cdots$ alors $\lim_{x \to a} f(x) = c_0$.

Exemple 41

Limite en 0 de $\frac{\ln(1+x) - \tan x + \frac{1}{2}\sin^2 x}{3x^2\sin^2 x}.$ Notons $\frac{f(x)}{g(x)}$ cette fraction. En 0 on a $f(x) = \ln(1+x) - \tan x + \frac{1}{2}\sin^2 x = \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)\right) - \left(x + \frac{x^3}{3} + o(x^4)\right) + \frac{1}{2}\left(x - \frac{x^3}{6} + o(x^3)\right)^2 = -\frac{x^2}{2} - \frac{x^4}{4} + \frac{1}{2}(x^2 - \frac{1}{3}x^4) + o(x^4) = -\frac{5}{12}x^4 + o(x^4) \text{ et } g(x) = 3x^2\sin^2 x = 3x^2\left(x + o(x)\right)^2 = 3x^4 + o(x^4).$

Ainsi $\frac{f(x)}{g(x)} = \frac{-\frac{5}{12}x^4 + o(x^4)}{3x^4 + o(x^4)} = \frac{-\frac{5}{12} + o(1)}{3 + o(1)}$ en notant o(1) une fonction (inconnue) tendant vers 0 quand $x \to 0$.

Donc $\lim_{x\to 0} \frac{f(x)}{g(x)} = -\frac{5}{36}$.

Note : en calculant le DL à un ordre inférieur (2 par exemple), on n'aurait pas pu conclure, car on aurait obtenu $\frac{f(x)}{g(x)} = \frac{o(x^2)}{o(x^2)}$, ce qui ne lève pas l'indétermination. De façon générale, on calcule les DL à l'ordre le plus bas possible, et si cela ne suffit pas, on augmente progressivement l'ordre (donc la précision de l'approximation).

4.2. Position d'une courbe par rapport à sa tangente

Proposition 30

Soit $f: I \to \mathbb{R}$ une fonction admettant un DL en $a: f(x) = c_0 + c_1(x-a) + c_k(x-a)^k + (x-a)^k \varepsilon(x)$, où k est le plus petit entier ≥ 2 tel que le coefficient c_k soit non nul. Alors l'équation de la tangente à la courbe de f en a est $y = c_0 + c_1(x-a)$ et la position de la courbe par rapport à la tangente pour x proche de a est donnée par le signe f(x) - y, c'est-à-dire le signe de $c_k(x-a)^k$.

Il y a 3 cas possibles.

- Si le signe est positif alors la courbe est au-dessus de la tangente.

- Si le signe est négatif alors la courbe est en dessous de la tangente.

- Si le signe change (lorsque l'on passe de x < a à x > a) alors la courbe traverse la tangente au point d'abscisse a. C'est un *point d'inflexion*.

Comme le DL de f en a à l'ordre 2 s'écrit aussi $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + (x-a)^2 \varepsilon(x)$. Alors l'équation de la tangente est aussi y = f(a) + f'(a)(x-a). Si en plus $f''(a) \neq 0$ alors f(x) - y garde un signe constant autour de a. En conséquence si a est un point d'inflexion alors f''(a) = 0. (La réciproque est fausse.)

Exemple 42

Soit $f(x) = x^4 - 2x^3 + 1$.

1. Déterminons la tangente en $\frac{1}{2}$ du graphe de f et précisons la position du graphe par rapport à la tangente.

On a $f'(x) = 4x^3 - 6x^2$, $f''(x) = 12x^2 - 12x$, donc $f''(\frac{1}{2}) = -3 \neq 0$ et k = 2.

On en déduit le DL de f en $\frac{1}{2}$ par la formule de Taylor-Young : $f(x) = f(\frac{1}{2}) + f'(\frac{1}{2})(x - \frac{1}{2}) + \frac{f''(\frac{1}{2})}{2!}(x - \frac{1}{2})^2 + (x - \frac{1}{2})^2 \varepsilon(x) = \frac{13}{16} - (x - \frac{1}{2}) - \frac{3}{2}(x - \frac{1}{2})^2 + (x - \frac{1}{2})^2 \varepsilon(x).$

Donc la tangente en $\frac{1}{2}$ est $y = \frac{13}{16} - (x - \frac{1}{2})$ et le graphe de f est en dessous de la tangente car $f(x) - y = \left(-\frac{3}{2} + \varepsilon(x)\right)(x - \frac{1}{2})^2$ est négatif autour de $x = \frac{1}{2}$.

2. Déterminons les points d'inflexion.

Les points d'inflexion sont à chercher parmi les solutions de f''(x) = 0. Donc parmi x = 0 et x = 1.

- Le DL en 0 est f(x) = 1 2x³ + x⁴ (il s'agit juste d'écrire les monômes par degrés croissants
 !). L'équation de la tangente au point d'abscisse 0 est donc y = 1 (une tangente horizontale).
 Comme -2x³ change de signe en 0 alors 0 est un point d'inflexion de f.
- Le DL en 1 : on calcule f(1), f'(1), ... pour trouver le DL en 1 $f(x) = -2(x-1) + 2(x-1)^3 + (x-1)^4$. L'équation de la tangente au point d'abscisse 1 est donc y = -2(x-1). Comme $2(x-1)^3$ change de signe en 1, 1 est aussi un point d'inflexion de f.

4.3. Développement limité en $+\infty$

Soit f une fonction définie sur un intervalle $I =]x_0, +\infty[$. On dit que f admet un **DL** en $+\infty$ à l'ordre n s'il existe des réels c_0, c_1, \ldots, c_n tels que

$$f(x) = c_0 + \frac{c_1}{x} + \dots + \frac{c_n}{x^n} + \frac{1}{x^n} \varepsilon \left(\frac{1}{x}\right)$$

où $\varepsilon(\frac{1}{x})$ tend vers 0 quand $x \to +\infty$.

Exemple 43

$$f(x) = \ln\left(2 + \frac{1}{x}\right) = \ln 2 + \ln\left(1 + \frac{1}{2x}\right) = \ln 2 + \frac{1}{2x} - \frac{1}{8x^2} + \frac{1}{24x^3} + \dots + (-1)^{n-1} \frac{1}{n2^n x^n} + \frac{1}{x^n} \varepsilon(\frac{1}{x}), \text{ où } \lim_{x \to \infty} \varepsilon(\frac{1}{x}) = 0$$

Cela nous permet d'avoir une idée assez précise du comportement de f au voisinage de $+\infty$. Lorsque $x \to +\infty$ alors $f(x) \to \ln 2$. Et le second terme est $+\frac{1}{2}x$, donc est positif, cela signifie que la fonction f(x) tend vers $\ln 2$ tout en restant au-dessus de $\ln 2$.

Remarque

- 1. Un DL en $+\infty$ s'appelle aussi un développement asymptotique.
- 2. Dire que la fonction $x \mapsto f(x)$ admet un DL en $+\infty$ à l'ordre n est équivalent à dire que la fonction $x \to f(\frac{1}{x})$ admet un DL en 0^+ à l'ordre n.
- 3. On peut définir de même ce qu'est un DL en $-\infty$.

Proposition 31

On suppose que la fonction $x\mapsto \frac{f(x)}{x}$ admet un DL en $+\infty$ (ou en $-\infty$) : $\frac{f(x)}{x}=a_0+\frac{a_1}{x}+\frac{a_k}{x^k}+\frac{1}{x^k}\varepsilon(\frac{1}{x})$, où k est le plus petit entier ≥ 2 tel que le coefficient de $\frac{1}{x^k}$ soit non nul. Alors $\lim_{x\to+\infty}f(x)-(a_0x+a_1)=0$ (resp. $x\to-\infty$) : la droite $y=a_0x+a_1$ est une **asymptote** à la courbe de f en $+\infty$ (ou $-\infty$) et la position de la courbe par rapport à l'asymptote est donnée par le signe de f(x)-y, c'est-à-dire le signe de f(x)-y

Démonstration

On a $\lim_{x\to +\infty} \left(f(x)-a_0x-a_1\right)=\lim_{x\to +\infty} \frac{a_k}{x^{k-1}}+\frac{1}{x^{k-1}}\varepsilon(\frac{1}{x})=0$. Donc $y=a_0x+a_1$ est une asymptote à la courbe de f. Ensuite on calcule la différence $f(x)-a_0x-a_1=\frac{a_k}{x^{k-1}}+\frac{1}{x^{k-1}}\varepsilon(\frac{1}{x})=\frac{a_k}{x^{k-1}}\left(1+\frac{1}{a_k}\varepsilon(\frac{1}{x})\right)$.

Exemple 44

Asymptote de $f(x) = \exp \frac{1}{x} \cdot \sqrt{x^2 - 1}$.

1. En $+\infty$,

$$\frac{f(x)}{x} = \exp\frac{1}{x} \cdot \frac{\sqrt{x^2 - 1}}{x} = \exp\frac{1}{x} \cdot \sqrt{1 - \frac{1}{x^2}}$$

$$= \left(1 + \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} + \frac{1}{x^3} \varepsilon(\frac{1}{x})\right) \cdot \left(1 - \frac{1}{2x^2} + \frac{1}{x^3} \varepsilon(\frac{1}{x})\right)$$

$$= \dots = 1 + \frac{1}{x} - \frac{1}{3x^3} + \frac{1}{x^3} \varepsilon(\frac{1}{x})$$

Donc l'asymptote de f en $+\infty$ est y=x+1. Comme $f(x)-x-1=-\frac{1}{3x^2}+\frac{1}{x^2}\varepsilon(\frac{1}{x})$ quand $x\to +\infty$, le graphe de f reste en dessous de l'asymptote.

2. En $-\infty$. $\frac{f(x)}{x} = \exp \frac{1}{x} \cdot \frac{\sqrt{x^2-1}}{x} = -\exp \frac{1}{x} \cdot \sqrt{1-\frac{1}{x^2}} = -1-\frac{1}{x}+\frac{1}{3x^3}+\frac{1}{x^3}\varepsilon(\frac{1}{x})$. Donc y=-x-1 est une asymptote de f en $-\infty$. On a $f(x)+x+1=\frac{1}{3x^2}+\frac{1}{x^2}\varepsilon(\frac{1}{x})$ quand $x\to-\infty$; le graphe de f reste au-dessus de l'asymptote.

5. Exercice

- 1. Écrire les trois formules de Taylor en 0 pour $x \mapsto \cos x$, $x \mapsto \exp(-x)$ et $x \mapsto \sinh x$.
- 2. Écrire les formules de Taylor en 0 à l'ordre 2 pour $x\mapsto \frac{1}{\sqrt{1+x}},\,x\mapsto \tan x.$
- 3. Avec une formule de Taylor à l'ordre 2 de $\sqrt{1+x}$, trouver une approximation de $\sqrt{1,01}$. Idem avec $\ln(0,99)$.
- 4. Calculer le DL en 0 de $x \mapsto \operatorname{ch} x$ par la formule de Taylor-Young. Retrouver ce DL en utilisant que $\operatorname{ch} x = \frac{e^x e^{-x}}{2}$.
- 5. Écrire le DL en 0 à l'ordre 3 de $\sqrt[3]{1+x}$. Idem avec $\frac{1}{\sqrt{1+x}}$.
- 6. Écrire le DL en 2 à l'ordre 2 de \sqrt{x} .
- 7. Justifier l'expression du DL de $\frac{1}{1-x}$ à l'aide de l'unicité des DL de la somme d'une suite géométrique.
- 8. Calculer le DL en 0 à l'ordre 3 de $\exp(x) \frac{1}{1+x}$, puis de $x\cos(2x)$ et $\cos(x) \times \sin(2x)$.
- 9. Calculer le DL en 0 à l'ordre 2 de $\sqrt{1+2\cos x}$, puis de $\exp\left(\sqrt{1+2\cos x}\right)$.
- 10. Calculer le DL en 0 à l'ordre 3 de $\ln(1+\sin x)$. Idem à l'ordre 6 pour $\left(\ln(1+x^2)\right)^2$.

- 11. Calculer le DL en 0 à l'ordre n de $\frac{\ln(1+x^3)}{x^3}$. Idem à l'ordre 3 avec $\frac{e^x}{1+x}$.
- 12. Par intégration retrouver la formule du DL de ln(1+x). Idem à l'ordre 3 pour arccos x.
- 13. Calculer la limite de $\frac{\sin x x}{x^3}$ lorsque x tend vers 0. Idem avec $\frac{\sqrt{1+x} \sinh \frac{x}{2}}{x^k}$ (pour k = 1, 2, 3, ...).
- 14. Calculer la limite de $\frac{\sqrt{x}-1}{\ln x}$ lorsque x tend vers 1. Idem pour $\left(\frac{1-x}{1+x}\right)^{\frac{1}{x}}$, puis $\frac{1}{\tan^2 x} \frac{1}{x^2}$ lorsque x tend vers 0.
- 15. Soit $f(x) = \exp x + \sin x$. Calculer l'équation de la tangente en x = 0 et la position du graphe. Idem avec $g(x) = \sinh x$.
- 16. Calculer le DL en $+\infty$ à l'ordre 5 de $\frac{x}{x^2-1}$. Idem à l'ordre 2 pour $\left(1+\frac{1}{x}\right)^x$.
- 17. Soit $f(x) = \sqrt{\frac{x^3+1}{x+1}}$. Déterminer l'asymptote en $+\infty$ et la position du graphe par rapport à cette asymptote.

Chapitre 5

Courbes paramétrées

1. Définitions

Soit deux fonctions f et g définies sur le même sous-ensemble $D \subset \mathbb{R}$. Le point M(t) de coordonnées (f(t);g(t)) décrit un sous-ensemble (C) du plan lorsque t varie dans un intervalle I. Une représentation paramétrique d'une courbe (C) est un système d'équations où les coordonnées des points de la courbe sont exprimées en fonction d'un paramètre (souvent noté t,k,θ,\ldots).

$$(C): \begin{cases} x = f(t) \\ y = g(t) \end{cases}$$

ou

$$(C): \begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

Ces équations sont appelées équations paramétriques de (C). On note parfois également

Si l'on veut que cette définition ait un sens, il faut que x(t) et y(t) existent simultanément. C'est pourquoi le domaine de définition D de la courbe (C) est l'intersection des domaines de définition D_x et D_y des fonctions x(t) et y(t). On a donc $D = D_x \cap D_y$.

Remarques La courbe (C) n'est pas nécessairement le graphe d'une fonction ; c'est pourquoi on parle de courbe paramétrée et non pas de fonction paramétrée. On peut parfois, en éliminant le paramètre t entre les deux équations, obtenir y comme fonction de x, et ramener l'étude de la courbe à celle d'une courbe définie par une relation y = h(x). Ainsi dans le cas suivant une telle fonction existe sur [0,2[mais pas pour x < 0.

Exemples de courbes paramétrées classique

Figures de Lissajous (Jules Antoine Lissajous, 1822 - 1880)

En électronique, on peut faire apparaître des figures de Lissajous sur un oscilloscope.

2. Étude d'une courbe parametré

On étudie les courbes parametrées dans le but de les tracer dans le plan. A cet effet, on collecte le maximum d information a travers une 'étude qui comprend en général les six étapes suivantes.

- 1. Domaine de définition : Déterminer le domaine D où la courbe est définie. Puis réduire le domaine d'étude, on on l'identifie des symétries possibles et leurs impacts sur la courbe.
- 2. Branches infinies et asymptotes : Déterminer, s'il y a des asymptotes verticales, des asymptotes horizontales ou obliques
- 3. Dérivées et tableau de variation : Calculer x'(t), y'(t) et $\frac{y'(t)}{x'(t)}$ et dresser le tableau de variation.
- 4. Points particuliers: Déterminer, s'il y en a, les points à tangente verticale, les points à tangente horizontale et les points singuliers (x'(t) = 0 et y'(t) = 0. Calculer la limite de la pente de la tangente aux points singulier
- 5. Intersection avec les axes :
- 6. Représentation graphique : Dessiner la courbe en utilisant les renseignements glanés aux étapes 1 à 5. Il n'est pas interdit de calculer certains points de la courbe, afin de faire un dessin plus précis.

2.1. Domaine de définition :

Le domaine de définition D de la courbe (C) est l'intersection des domaines de définition D_x et D_y des fonctions x(t) et y(t). On a donc

$$D = D_x \cap D_y$$
.

On considère toujours une courbe paramétrée donnée en coordonnées cartésiennes sur un intervalle réel $I \to \mathbb{R}^2$. La première étape de son étude consiste à reduire l'intervalle d' étude en s'appuyant sur une périodicité ou/et des symétries. Plusieurs cas sont possibles. La liste suivante n'est pas exhaustive.

- Cas òu $I = \mathbb{R}$ et où x(t) et y(t) sont périodiques de période T: alors pour tout $t \in \mathbb{R}$, le point M(t+T) = M(t). D'où, étude se réduit sur un intervalle de longueur T.
- . Cas où I est symétrique par rapport à 0 et où x(t) et y(t) sont paires : alors pour tout $t \in I$, le point M(-t) coincide avec le point M(t). D'où, étude sur $I \cap \mathbb{R}^+$.

- Cas où I est symétrique par rapport à 0 et où x(t) et y(t) sont impaires : alors pour tout $t \in I$, le point M(-t) est le symétrique du point M(t) par rapport à O. D'où, étude sur $I \cap \mathbb{R}^+$, puis symétrie par rapport à O.
- Cas où I est symétrique par rapport à 0 et où x(t) est paire et y(t) est impaire : alors pour tout $t \in I$, le point M(-t) est le symétrique du point M(t) par rapport à (Ox). D'où, étude sur $I \cap \mathbb{R}^+$ puis symétrie par rapport à (Ox).
- Cas où I est symétrique par rapport à 0 et où x(t) est impaire et y(t) est paire : alors pour tout $t \in I$, le point M(-t) est le symétrique du point M(t) par rapport à (Oy). D'où, étude sur $I \cap \mathbb{R}^+$ puis symétrie par rapport à (Oy)
- Cas où I est symétrique par rapport à 0 et où x(-t)=y(t) et y(-t)=x(t): alors pour tout $t\in I$, le point M(-t) est le symétrique du point M(t) par rapport à la droite d'équation y=x. D'où, é tude sur $I\cap\mathbb{R}^+$ puis symétrie par rapport à y=x

2.2. Branches infinies et asymptotes

On parle d une branche infini lorsque lorsque

$$\lim_{t \to t_0} x(t) = \infty \ ou \ \lim_{t \to t_0} y(t) = \infty$$

Le signe de l'infini n a pas d'importance. On a une asymptote dans les trois cas suivants.

- Asymptote verticale: On obtient une telle asymptote lorsque x(t) tend vers une valeur finie a et y(t) tend vers une valeur infinie.

$$\lim_{t \to t_0} x(t) = a \ et \ \lim_{t \to t_0} y(t) = \infty$$

L'asymptote verticale est une droite qui a pour équation x = a. Si x(t)-a est positif, la courbe est à droite de l'asymptote, sinon elle est à gauche. La courbe coupe l'asymptote lorsque x(t) = a.

- Asymptote horizontale: Cette fois, x(t) tend vers l'infini et y(t) tend vers une valeur finie b lorsque t tend vers t_0 .

$$\lim_{t \to t_0} x(t) = \infty \ et \ \lim_{t \to t_0} y(t) = b$$

L'asymptote horizontale est une droite qui a pour équation y = b. Si y(t)-b est positif, la courbe est en dessus de l'asymptote, sinon elle est en dessous. La courbe coupe l'asymptote lorsque y(t) = b.

- Asymptote oblique: Une asymptote oblique ne peut exister que si x(t) et y(t) tendent tous deux vers l'infini lorsque t tend vers t_0 . Cette condition est nécessaire mais pas suffisante. Il faut en plus qu'il existe a et b tels que

$$\lim_{t \to t_0} \frac{y(t)}{x(t)} = a \ et \ \lim_{t \to t_0} y(t) - ax(t) = b$$

2.3. Dérivées et tableau de variation :

1. Dérivées.

Les valeurs de t décrivant le domaine d'étude, on étudie, lorsque c'est possible, le signe des dérivées x'(t) et y'(t).

Regardons deux points voisins de la courbe : $M(t_0)$ et $M(t_0 + \varepsilon)$. La droite passant par ces deux points tend vers la tangente à la courbe au point $M(t_0)$ lorsque ε tend vers zéro. La pente de la droite passant par $M(t_0)$ et $M(t_0 + \varepsilon)$ est :

$$\frac{y(t_0+\varepsilon)-y(t_0)}{x(t_0+\varepsilon)-x(t_0)} = \frac{y(t_0+\varepsilon)-y(t_0)}{\varepsilon} \cdot \frac{\varepsilon}{x(t_0+\varepsilon)-x(t_0)} = \frac{\frac{y(t_0+\varepsilon)-y(t_0)}{\varepsilon}}{\frac{x(t_0+\varepsilon)-x(t_0)}{\varepsilon}}$$

Lorsque ε tend vers 0, la pente tend vers

$$\frac{\frac{dy}{dt}(t_0)}{\frac{dx}{dt}(t_0)} = \frac{dy}{dx}(t_0)$$

la quantité $\frac{dy}{dx}(t_0)$ donne la pente de la tangente à la courbe.

2. Tableau de variation.

Comme pour les fonctions d'une seule variable on présentera les résultats sous forme d'un tableau, qui est constitué de deux tableaux accolés, donnant les variations de x(t) et y(t). La quantité $\frac{y'(t)}{x'(t)}$ donne la pente de la tangente à la courbe.

2.4. Points particuliers

Proposition 32

Si au point t_0 on a $(x'(t_0), y'(t_0)) \neq (0, 0)$, alors la tangente à la courbe au point de $M(t_0)$ est la droite qui passe par le point $M(t_0)$ et dirigée par le vecteur $(x'(t_0), y'(t_0))$. En particulier

Si $x'(t_0) \neq 0$ et $y'(t_0) = 0$, la courbe admet une tangente horizontale en $M(t_0)$.

Si $x'(t_0) = 0$ et $y'(t_0) \neq 0$, la courbe admet une tangente verticale en $M(t_0)$.

Si $x'(t_0) = 0$ et $y'(t_0) = 0$, la courbe admet un point singulier (ou stationnaire) en $M(t_0)$. Pour d'ecrire l'allure de la courbe, nous utilisons les DL des fonctions x(t) et y(t) au voisinage de t_0 (quand ils existent). On ecrit

$$x(t) = a_0 + a_1(t - t_0) + \dots + a_n(t - t_0)^n + (t - t_0)^n \varepsilon((t - t_0))$$

et

$$y(t) = b_0 + b_1(t - t_0) + \dots + b_n(t - t_0)^n + (t - t_0)^n \delta((t - t_0))^n$$

nous écrivons aussi

$$M(t) = M_0 + M_1(t - t_0) + \dots + M_n(t - t_0)^n (t - t_0)^n \Delta((t - t_0))$$

On a la proposition suivante,

Proposition 33

Soient 1 < m < n les plus petits entiers tels que les vecteurs M_n et M_m soient linéairement indépendants, alors l'allure des courbes au voisinage de $M(t_0)$ dépend de la parité de n et m de la manière suivante

- si m et n impairs, nous avons un point d'inflexion ;
- si *m* impair et *n* pairs, nous avons le cas standard ;
- si m pair et n impair, nous avons un point de rebroussement de 1ère espèce ;
- si *m* et *n* pair, nous avons un point de rebroussement de deuxième espèce.

2.5. Intersection avec les axes:

Trouver les t qui satisfont x(t) = 0 et y(t) = 0. On peut aussi voir l'intersection avec x = y et x = -y. On pourra compléter le tableau des dérivées par une ligne donnant les valeurs de y'(t) et x'(t) pour les valeurs de t figurant déjà dans ce tableau.

2.6. Représentation graphique :

Dessiner la courbe en utilisant les renseignements glanés aux étapes (2.1) à (2.5). Il n'est pas interdit de calculer certaines points de la courbe afin de faire un dessin plus précis.

3. Exemples d'études

Exemple 1

Étudier la courbe paramétrée suivante $M: t \mapsto (x(t), y(t))$ avec

$$\mathscr{C}: \begin{cases} x(t) = \tan(t) + \sin(t) \\ y(t) = \frac{1}{\cos(t)} \end{cases}$$

Domaine de définition et dérivabilité

Les deux fonctions x(t) et y(t) sont des sommes et composées de fonctions de classes \mathscr{C}^{∞} sur $\mathbb{R}\setminus\{k\pi+\frac{\pi}{2};\ k\in\mathbb{Z}\}$. Elles sont donc \mathscr{C}^{∞} sur $\mathbb{R}\setminus\{k\pi+\frac{\pi}{2};\ k\in\mathbb{Z}\}$.

Réduction du domaine d'étude

On remarque que $x(t+2\pi) = x(t)$ et $y(t+2\pi) = y(t)$. Donc $M(t+2\pi) = M(t)$. Il suffit de faire l'étude de la courbe sur un intervalle $[\alpha, \alpha + \pi]$. De plus x(-t) = -x(t) et y(-t) = y(t). Le point y(-t) est le symétrique du point y(t) par rapport à l'axe y(-t). Il suffit donc de faire l'étude sur y(-t) et de compléter le tracé de la courbe par une symétrie par rapport à l'axe y(-t).

Étude des variations de x et y

$$\begin{cases} x'(t) = \frac{\cos^{3}(t) + 1}{\cos^{2}(t)} \\ y'(t) = \frac{\sin(t)}{\cos^{2}(t)} \end{cases}$$

D'où le tableau de variations :

t	0			$\frac{\pi}{2}$			π
x'(t)		+				+	0
			$+\infty$				0
x(t)		1				1	
	0				$+\infty$		
			+∞				-1
y(t)		1				1	
	1				$-\infty$		
y'(t)	0	+		Ш		+	0

On remarque la courbe admet une tangente horizontale au point M(0), un point stationnaire $M(\pi)$ et une branche infinie en $t = \frac{\pi}{2}$.

Étude des points stationnaires

Sans les développements limités :

$$\frac{y(t) - y(\pi)}{x(t) - x(\pi)} = \frac{\frac{1}{\cos(t)} + 1}{\tan(t) + \sin(t)} = \frac{1 + \cos(t)}{\sin(t)(1 + \cos(t))} = \frac{1}{\sin(t)} \to \infty, \quad t \to \pi^{-}$$

donc la courbe admet une tangente verticale en le point stationnaire de paramétre $t=\pi.$

Avec les développements limités : Posons $h = t - \pi$ et faisons un DL au voisinage de 0 à l'ordre 3 :

$$x(\pi + h) = \frac{h^3}{2} + o(h^3), \quad y(\pi + h) = -1 - \frac{h^2}{2} + o(h^3)$$

d'oʻu

$$M(\pi + h) = (0, -1) + \frac{h^2}{2}(0, -1) + \frac{h^3}{2}(1, 0) + o(h^3)$$

Dans le repère $\mathcal{R}(M(\pi), \vec{u}, \vec{v})$ où $\vec{u} = (0, -1)$ et $\vec{v} = (1, 0)$, le point M(t) a pour coordonnées (X(t), Y(t)) avec $X(t) = \frac{(t-\pi)^2}{2}$ et $Y(t) = \frac{(t-\pi)^3}{2}$ lorsque $t \to \pi$. On en déduit que le point $M(\pi)$ est un point de rebroussement de première espèce à tangente verticale.

Étude des branches infinies

$$\frac{y(t)}{x(t)} = \frac{1}{\sin(t)(1+\cos(t))} \to 1, \quad t \to \pi/2.$$

Ensuite on calcule:

$$y(t) - x(t) = \frac{1 - \sin(t)}{\cos(t)} - \sin(t) \to 1, \quad t \to \pi/2$$

car les fonctions sin et cos sont dérivables en $\pi/2$ donc pour leurs taux d'accroissements respectifs en $\pi/2$, on a :

$$\lim_{t \to \pi/2} \frac{\sin(t) - 1}{t - \pi/2} = \cos(\pi/2) = 0$$

et

$$\lim_{t \to \pi/2} \frac{\cos(t)}{t - \pi/2} = -\sin(\pi/2) = -1$$

$$\lim_{t \to \pi/2} \frac{1 - \sin(t)}{\cos(t)} = 0.$$

Enfin, on étudie la position de la courbe par rapport à l'asymptote d'équation y = x - 1:

$$y(t) - x(t) + 1 = \frac{(1 - \sin(t))(1 - \cos(t))}{\cos(t)},$$

qui est de signe de cos. Donc lorsque $t\to\pi/2^+$ la courbe arrive sous l'asymptote, et lorsque $t\to\pi/2^-$ la courbe arrive sur l'asymptote.

Exemple 2

Considérons la courbe paramétrée suivante $M: t \mapsto (x(t), y(t))$ avec

$$\mathscr{C}: \begin{cases} x(t) = \frac{1}{t} \\ y(t) = t + \frac{1}{t} \end{cases}$$

Domaine de définition et dérivabilité

Les deux fonctions x et y sont définies et de classe C^1 sur l'ensemble \mathbb{R}^* , on fait donc l'étude sur cet ensemble.

Réduction du domaine d'étude

Pour tout $t \in \mathbb{R}^*$, $-t \in \mathbb{R}^*$ et

$$\mathscr{C}: \begin{cases} x(-t) = -x(t) \\ y(-t) = -y(t) \end{cases}$$

Les deux points M(t) et M(-t) sont donc symétriques par rapport à l'origine O repère , on peut restreindre le domaine d'étude à $]0, +\infty[$.

Étude des variations de x et y

$$x'(t) = -\frac{1}{t^2}$$
 sur \mathbb{R}_+^*

$$y'(t) = -\frac{(t-1)(t+1)}{t^2}$$
 sur \mathbb{R}_+^* D'où le tableau de variations :

t	0		1		+∞
x'(t)	II	_	1	_	
	+∞				
x(t)	Ш	\			
			1		
	Ш				
	Ш				0
	+∞				+∞
y(t)				1	
	Ш		2		
y'(t)		_	0	+	

Donc la tangente au point M(1) est horizontale.

Étude des branches infinies

 $\lim_{t\to 0^+} x(t) = +\infty$ et $\lim_{t\to 0^+} y(t) = +\infty$, nous avons donc une branche infinie.

 $\lim_{t\to 0^+} \frac{y(t)}{x(t)} = \lim_{t\to 0^+} (t^2+1) = 1 \text{ et } \lim_{t\to 0^+} y(t) - x(t) = \lim_{t\to 0^+} t = 0. \text{ Donc la droite d'équation } y = x \text{ est } t = 0.$ asymptote à la courbe.

Chapitre 6

Exercices

1. Série I

Exercice 1 Les suites suivantes sont-elle majorées, minorées, bornées, monotones ?

1.
$$u_n = \frac{3n-1}{2n+12}$$

2.
$$u_n = (-1)^n$$
.

3.
$$u_n = 2n^2 - 1$$
.

$$4. \quad u_n = \cos(\frac{n\pi}{6}).$$

5.
$$u_n = \frac{1}{n^2 + (-1)^n (n+1)}$$
.

Exercice 2 Déterminer la limite de chacune des suites réelles suivantes :

1.
$$u_n = \frac{n + (-1)^n}{2n + (-1)^n}$$
.

$$2. \frac{n\sin(n)}{n^2+1}$$

3.
$$u_n = \sqrt{n+3} - \sqrt{n+2}$$
.

4.
$$\frac{n+1}{\sqrt{n+2}} - \frac{n+1}{\sqrt{n+3}}$$
.

5.
$$u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$$
, (remarquer que $\frac{1}{2n^2} \le \frac{1}{n^2 + k^2} \le \frac{1}{n^2}$ pour $1 \le k \le n$).

Exercice 3 Contrôle continu N 1 (SMPC S1, 2011/2012)

Soit la suite réelle $(u_n)_n$ définie par :

$$u_0 = 2$$
 et $u_{n+1} = \frac{4u_n - 1}{u_n + 2}$ $\forall n \in \mathbb{N}$

- 1) Démontrer par récurrence que : $u_n > 1 \quad \forall n \in \mathbb{N}$.
- 2) Démontrer que la suite $(u_n)_n$ est décroissante.
- 3) En déduire qu'elle est convergente et trouver sa limite.

Solution:

1)
$$u_0 = 2 > 1$$

H.R:
$$u_n > 1$$

$$u_{n+1} - 1 = \frac{4u_n - 1}{u_n + 2} - 1 = \frac{4u_n - 1 - 2 - u_n}{u_n + 2} = \frac{3u_n - 3}{u_n + 2} = 3\frac{u_n - 1}{u_n + 2}$$

d'après l'hypothèe de récurrence : $u_n > 1 \Rightarrow u_n - 1 > 0$ et $u_n > 0$

d'où
$$u_{n+1} - 1 = 3 \frac{u_n - 1}{u_n + 2} > 0 \Rightarrow u_{n+1} > 1$$

et par suite $u_n > 1 \quad \forall n \in \mathbb{N}$.

$$u_{n+1} - u_n = \frac{4u_n - 1}{u_n + 2} - u_n = -\frac{u_n^2 - 2u_n + 1}{u_n + 2} = -\frac{(u_n - 1)^2}{u_n + 2} < 0$$

Donc $(u_n)_n$ est décroissante.

 $(u_n)_n$ est une suite décroissante minorée, elle est donc convergente.

Sa limite l vérifie :

$$l = \frac{4l-1}{l+2} \Leftrightarrow 2l+l^2 = 4l-1 \Leftrightarrow (l-1)^2 = 0 \Leftrightarrow l=1$$

Exercice 4 On considère la suite définie par :

$$u_0 = 1$$
 et $u_{n+1} = \frac{2u_n + 3}{u_n + 2}$, pour tout $n \in \mathbb{N}$

- 1) i) Déterminer la monotonie de la fonction $f(x) = \frac{3+2x}{x+2}$ pour x > 1.
- *ii)* Montrer que $1 \le u_n \le \sqrt{3}$
- 2) Montrer que la suite $(u_n)_n$ est convergente et calculer sa limite.

Solution:

1)

- i) Pour x > 1, on a $f'(x) = \frac{1}{(2+x)^2} > 0$ donc f est strictement croissante
- ii) $u_{n+1} 1 = \frac{u_n + 1}{u_n + 2} \ge 0$ car $u_n \ge 0 \forall n \in \mathbb{N}$, d'où $u_n \ge 1$

on montre par récurrence que $u_n \le \sqrt{3}$

2) on a $u_{n+1} = f(u_n)$ avec f strictement croissante et $u_1 = 5/3 > u_0 = 1$

donc la suite $(u_n)_n$ est croissante, étant majorée par $\sqrt{3}$, elle est convergente.

Sa limite l vérifie : $l = \frac{2l+3}{l+2}$ d'où $l^2 = 3$

comme $u_n \ge 0 \quad \forall n \in \mathbb{N} \text{ alors } l = \sqrt{3}$

Exercice 5 Soit $(u_n)_n$ la suite définie par : $u_0 > 1$ et $u_{n+1} = \frac{1}{2}(u_n + \frac{4}{u_n})$

- 1) Montrer que $u_n^2 \ge 4$ pour tout n > 1.
- 2) En déduire que $(u_n)_n$ est décroissante, qu'elle est convergente et calculer sa limite.

Solution:

1)

$$u_{n+1}^2 - 4 = \frac{1}{4}(u_n + \frac{4}{u_n})^2 - 4 = \left[\frac{1}{2}(u_n + \frac{4}{u_n}) - 2\right] \left[\frac{1}{2}(u_n + \frac{4}{u_n}) + 2\right]$$

comme $\frac{1}{2}(u_n+\frac{4}{u_n})-2=\frac{1}{2}u_n(u_n-2)^2\geq 0$ alors $u_n^2\geq 4$ pour tout n>1.

2) $u_{n+1} - u_n = \frac{1}{2} \frac{4 - u_n^2}{u_n} \le \text{donc } (u_n)_n \text{ est décroissante, étant minorée elle est convergente. Sa limite } l \text{ vérifie } : l = \frac{1}{2}(l + \frac{4}{l}) \text{ d'où } l = 2 \text{ car } u_n \ge 0 \quad \forall n \in \mathbb{N}^*$

Exercice 6 Soit $(u_n)_n$ la suite définie par : $u_0 = 1$ et $u_{n+1} = u_n + \sqrt{u_n + 1}$ $\forall n \in \mathbb{N}$.

- 1) Vérifier que $(u_n)_n$ est croissante.
- 2) Démontrer par l'absurde que $(u_n)_n$ n'est pas convergente.
- 3) En déduire que $(u_n)_n$ n'est pas majorée.

Solution:

- 1) $u_{n+1} u_n = \sqrt{1 + u_n} > 0$ donc $(u_n)_n$ est croissante.
- 2) Supposons par l'absurde que $(u_n)_n$ est convergente, sa limite l vérifiera $l = l + \sqrt{l+1}$ d'où l = -1 or $u_n > 0 \quad \forall n \in \mathbb{N}$ (par récurrence) donc $l \ge 0$, ce qui est contradictoire, donc $(u_n)_n$ n'est pas convergente.
- 3) Si $(u_n)_n$ était majorée, étant croissante elle serait convergente ce qui est absurde d'après 2) donc $(u_n)_n$ n'est pas majorée.

Exercice 7 Soient les suites réelles $(u_n)_n$ et $(v_n)_n$ définies par :

$$u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \quad et \quad v_n = u_n + \frac{1}{n} \quad \forall n \in \mathbb{N}^*$$

- 1) Montrer que $u_{n+1} u_n = \frac{1}{(2n+1)(2n+2)}$
- 2) Montrer que $(u_n)_n$ et $(v_n)_n$ sont adjacentes. Conclure.

Solution:

1)

$$u_{n+1} - u_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{1}{(2n+1)(2n+2)}$$

2) i)
$$u_{n+1} - u_n = \frac{1}{(2n+1)(2n+2)} > 0 \quad \forall n \in \mathbb{N}^*$$

 $(u_n)_n$ donc $(u_n)_n$ est croissante.

ii)

$$v_{n+1}-v_n=u_{n+1}+\frac{1}{n+1}-u_n-\frac{1}{n}=u_{n+1}-u_n+\frac{1}{n+1}-\frac{1}{n}=\frac{1}{(2n+1)(2n+2)}-\frac{1}{n(n+1)}$$

 $\frac{1}{(2n+1)(2n+2)} - \frac{1}{n(n+1)} < 0 \quad \forall n \in \mathbb{N}^*, \text{ donc } (v_n)_n \text{ est décoissante.}$

iii)

$$\lim_{n \to +\infty} ((v_n - u_n) = \lim_{n \to +\infty} \frac{1}{n} = 0$$

donc les deux suites $(u_n)_n$ et $(v_n)_n$ sont adjacentes.

Conclusion : Elles sont alors convergentes et convergent vers la même limite

Exercice 8 Soit la suite s_n définie par : $s_n = \sum_{k=1}^n \frac{(-1)^k}{k+1}$ et soient $(u_n)_n$ et $(v_n)_n$ telles que : $u_n = s_{2n}$ et $v_n = s_{2n+1}$

- 1) Vérifier que $(u_n)_n$ et $(v_n)_n$ sont monotones et bornées
- 2) $(s_n)_n$ est elle une suite monotone?
- 3) Soit $w_n = v_n u_n$. Calculer la limite de la suite $(w_n)_n$.

Solution:

Les suites $(u_n)_n$ et $(v_n)_n$ définies par :

 $u_n = s_{2n}$ et $v_n = s_{2n+1}$ sont monotones. En effet

$$u_{n+1} - u_n = s_{2(n+1)} - s_{2n} = \frac{1}{2n+2} - \frac{1}{2n} = \frac{-1}{n(2n+2)} < 0$$

donc $(u_n)_n$ est strictement décoissante. On a de la même manière $(v_n)_n$ est strictement croissante.

Exercice 9 Soit $(u_n)_n$ la suite définie par : $u_0 = 0$ et $u_{n+1} = \frac{6}{u_n+5}$ $\forall n \in \mathbb{N}$

- 1) Montrer que $0 \le u_n \le \frac{6}{5}$ pour tout $n \in \mathbb{N}$
- 2) i) Si la suite $(u_n)_n$ converge, quelle est sa limite éventuelle?
- *ii)* Montrer que pour tout $n \in \mathbb{N}$ on a:

$$|u_{n+1} - u_n| \le k|u_n - 1|$$
 où k est une constante à déterminer.

iii) En déduire que $(u_n)_n$ est une suite convergente et qu'elle converge vers 1.

Solution:

1) (par récurrence sur $n \in \mathbb{N}$).

2)

i) Si la suite $(u_n)_n$ converge. Sa limite l vérifie :

$$l = \frac{6}{l+5} \Leftrightarrow (l-1)(l+6) = 0 \Leftrightarrow l = 1$$

 $\operatorname{car} u_n \ge 0$

i)

$$|u_{n+1}-1|=\frac{|1-u_n|}{5+u_n}\leq \frac{1}{5}|1-u_n|$$

donc $k = \frac{1}{5}$

ii)

$$|u_n - 1| = \le \left(\frac{1}{5}\right)^{n-1} |1 - u_1|$$

on obtient que $(u_n)_n$ converge vers 1.

Exercices complémentaires :

Exercice 10 Étudier la convergence de la suite $(u_n)_n$ définie par :

$$u_0 = \sqrt{2}$$
 et $u_{n+1} = \sqrt{u_n + 2}$ $\forall n \in \mathbb{N}^*$.

Exercice 11 Rattrapage (SMPC S1, 2011/2012)

Soit a>0, on définit la suite numérique $(u_n)_{n\in\mathbb{N}}$ par u_0 un réel vérifiant $u_0>0$ et par la relation $u_{n+1}=\frac{1}{2}(u_n+\frac{a}{u_n})$

- 1) Montrer que $u_{n+1}^2 a = \frac{(u_n^2 a)^2}{4u_n^2}$
- 2) Montrer que si $n \ge 1$, alors $u_n \ge \sqrt{a}$; puis que la suite $(u_n)_{n \ge 1}$ est décroissante.
- 3) En déduire que la suite $(u_n)_{n\geq 1}$ converge vers \sqrt{a} .

2. Série II

Exercice 12 Déterminer le domaine de définition des fonctions suivantes :

1.
$$f(x) = \sqrt{x^2 - 3x - 4}$$
.

2.
$$f(x) = \frac{x}{1 - \sqrt{1 - x}}$$
.

3.
$$f(x) = \log\left(\frac{(1-x-x^2)^{\frac{1}{2}}}{|x|}\right)$$

4.
$$f(x) = \sqrt{\sin(2x)}$$
.

Exercice 13 1. Démontrer que $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} = 1$.

2. Soient
$$m, n$$
 des entiers positifs. Étudier $\lim_{x\to 0} \frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}$.

3. Démontrer que
$$\lim_{x\to 0} \frac{1}{x} (\sqrt{1+x+x^2} - 1) = \frac{1}{2}$$

Solution:

Généralement pour calculer des limites faisant intervenir des sommes de racines carrées, il est utile de faire intervenir "l'expression conjuguée" :

$$\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

Les racines au numérateur ont "disparu" en utilisant l'identité $(x-y)(x+y)=x^2-y^2$. Appliquons ceci sur un exemple :

$$f(x) = \frac{\sqrt{1+x^m} - \sqrt{1-x^m}}{x^n}$$

$$= \frac{(\sqrt{1+x^m} - \sqrt{1-x^m})(\sqrt{1+x^m} + \sqrt{1-x^m})}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})}$$

$$= \frac{1+x^m - (1-x^m)}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})}$$

$$= \frac{2x^m}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})}$$

$$= \frac{2x^{m-n}}{\sqrt{1+x^m} + \sqrt{1-x^m}}$$

Et nous avons

$$\lim_{x\to 0}\frac{2}{\sqrt{1+x^m}+\sqrt{1-x^m}}=1.$$

Donc l'étude de la limite de f en 0 est la même que celle de la fonction $x \mapsto x^{m-n}$.

Distinguons plusieurs cas pour la limite de f en 0.

- Si m > n alors x^{m-n} , et donc f(x), tendent vers 0.
- Si m = n alors x^{m-n} et f(x) tendent vers 1.
- Si m < n alors $x^{m-n} = \frac{1}{x^{n-m}} = \frac{1}{x^k}$ avec k = n m un exposant positif. Si k est pair alors les limites à droite et à gauche de $\frac{1}{x^k}$ sont +∞. Pour k impair la limite à droite vaut +∞ et la limite à gauche vaut -∞. Conclusion pour k = n m > 0 pair, la limite de f en 0 vaut +∞ et pour k = n m > 0 impair f n a pas de limite en 0 car les limites à droite et à gauche ne sont pas égales.

Exercice 14 Calculer lorsqu'elles existent les limites suivantes

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$

b)
$$\lim_{x\to-\infty}\frac{x^2+2|x|}{x}$$

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$
 b) $\lim_{x\to -\infty} \frac{x^2+2|x|}{x}$ c) $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$

$$d$$
) $\lim_{x\to\pi} \frac{\sin^2 x}{1+\cos x}$

$$e) \lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x}}{x}$$

d)
$$\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$$
 e) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x^2}}{x}$ f) $\lim_{x \to +\infty} \sqrt{x + 5} - \sqrt{x - 3}$

g)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$

$$h) \lim_{x\to 1} \frac{x-1}{x^n-1}$$

Solution:

- 1. $\frac{x^2+2|x|}{x}=x+2\frac{|x|}{x}$. Si x>0 cette expression vaut x+2 donc la limite à droite en x=0 est +2. Si x<0l'expression vaut -2 donc la limite à gauche en x = 0 est -2. Les limites à droite et à gauche sont différentes donc il n'y a pas de limite en x = 0.
- 2. $\frac{x^2+2|x|}{x} = x+2\frac{|x|}{x} = x-2$ pour x < 0. Donc la limite quand $x \to -\infty$ est $-\infty$.
- 3. $\frac{x^2-4}{x^2-3x+2} = \frac{(x-2)(x+2)}{(x-2)(x-1)} = \frac{x+2}{x-1}$, lorsque $x \to 2$ cette expression tend vers 4.
- 4. $\frac{\sin^2 x}{1 + \cos x} = \frac{1 \cos^2 x}{1 + \cos x} = \frac{(1 \cos x)(1 + \cos x)}{1 + \cos x} = 1 \cos x. \text{ Lorsque } x \to \pi \text{ la limite est donc 2.}$ 5. $\frac{\sqrt{1 + x} \sqrt{1 + x^2}}{x} = \frac{\sqrt{1 + x} \sqrt{1 + x^2}}{x} \times \frac{\sqrt{1 + x} + \sqrt{1 + x^2}}{\sqrt{1 + x} + \sqrt{1 + x^2}} = \frac{1 + x (1 + x^2)}{x(\sqrt{1 + x} + \sqrt{1 + x^2})} = \frac{x x^2}{x(\sqrt{1 + x} + \sqrt{1 + x^2})} = \frac{1 x}{\sqrt{1 + x} + \sqrt{1 + x^2}}. \text{ Lorsque } x \to 0$ la limite vaut $\frac{1}{2}$
- 6. $\sqrt{x+5} \sqrt{x-3} = (\sqrt{x+5} \sqrt{x-3}) \times \frac{\sqrt{x+5} + \sqrt{x-3}}{\sqrt{x+5} + \sqrt{x-3}} = \frac{x+5-(x-3)}{\sqrt{x+5} + \sqrt{x-3}} = \frac{8}{\sqrt{x+5} + \sqrt{x-3}}$. Lorsque $x \to +\infty$, la limite
- 7. Nous avons l'égalité $a^3 1 = (a 1)(1 + a + a^2)$. Pour $a = \sqrt[3]{1 + x^2}$ cela donne :

$$\frac{a-1}{x^2} = \frac{a^3-1}{x^2(1+a+a^2)} = \frac{1+x^2-1}{x^2(1+a+a^2)} = \frac{1}{1+a+a^2}.$$

Lors que $x \to 0$, alors $a \to 1$ et la limite cherchée est $\frac{1}{3}$.

Autre méthode : si l'on sait que la limite d'un taux d'accroissement correspond à la dérivée nous avons une méthode moins astucieuse. Rappel (ou anticipation sur un prochain chapitre) : pour une fonction f dérivable en a alors

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Pour la fonction $f(x) = \sqrt[3]{1+x} = (1+x)^{\frac{1}{3}}$ ayant $f'(x) = \frac{1}{3}(1+x)^{-\frac{2}{3}}$ cela donne en a = 0:

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2} - 1}{x^2} = \lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = \frac{1}{3}.$$

8. $\frac{x^n-1}{x-1}=1+x+x^2+\cdots+x^n$. Donc si $x\to 1$ la limite de $\frac{x^n-1}{x-1}$ est n. Donc la limite de $\frac{x-1}{x^n-1}$ en 1 est $\frac{1}{n}$. La méthode avec le taux d'accroissement fonctionne aussi très bien ici. Soit $f(x) = x^n$, $f'(x) = nx^{n-1}$ et a = 1. Alors $\frac{x^n - 1}{x - 1} = \frac{f(x) - f(1)}{x - 1}$ tend vers f'(1) = n.

Exercice 15 Sur $\left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$, on considère la fonction f définie par :

$$f(x) = \sin(x) + \frac{(1 - (\cos x)^2)^{\frac{1}{2}}}{\sin(x)}$$
 si $x \neq 0$ et $f(x) = 1$, si $x = 0$

f est elle continue au point x = 0.

Solution:

Calculons la limite de f en 0

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin(x) + \frac{|\sin(x)|}{\sin(x)}$$
$$\lim_{x \to 0^{-}} f(x) = -1 \neq f(0)$$

donc la fonction f n'est pas continue en 0.

Exercice 16 Soient p et q deux entiers naturels non nuls on considère la fonction g définie par :

$$g(x) = x^p \sin\left(\frac{1}{x^q}\right)$$
 si $x \neq 0$ et $g(x) = 0$, si $x = 0$

Montrer que la fonction g est continue sur \mathbb{R} .

Solution:

La fonction g est continue sur $\mathbb{R} \setminus 0$, étudions la continuité de g en 0

$$|x^p \sin\left(\frac{1}{x^q}\right)| \le |x^p| \quad \forall p \ge 1$$

d'où $\lim_{x\to 0} x^p \sin\left(\frac{1}{x^q}\right) = 0 = g(0)$ et par suite la fonction g est continue en 0, donc elle est continue sur \mathbb{R}

Exercice 17 Soit $f:[a,b] \to \mathbb{R}$ une fonction continue telle que : f(a) = f(b).

Montrer que la fonction g définie par :

$$g(t) = f(t + \frac{b-a}{2}) - f(t)$$

s'annule en au moins un point de $[a, \frac{b-a}{2}]$

Solution:

La fonction g est continue comme composée de fonctions continues et on a :

$$g(a) = f\left(\frac{a+b}{2}\right) - f(a)$$

$$g\left(\frac{a+b}{2}\right) = f(b) - f\left(\frac{a+b}{2}\right) = f(a) - f\left(\frac{a+b}{2}\right)$$

Ainsi $g(a)g\left(\frac{a+b}{2}\right) \le 0$ et d'après le théorème des valeurs intermédiaires (TVI), il existe $c \in [a,\frac{a+b}{2}]$ telle que g(c) = 0

Exercice 18 Contrôle continu N 1 (SMPC S1, 2011/2012)

Sur $[0,\pi]$, on considère la fonction f définie par :

$$f(x) = \sin(x) - \exp(-x)$$

Montrer qu'il existe x_0 unique dans $[0, \frac{\pi}{2}]$ tel que $f(x_0) = 0$.

Solution:

Les deux fonctions $x \to \sin(x)$ et $x \to e^{-x}$ sont continues, donc f est continue sur $[0, \pi]$

de plus $f'(x) = \cos(x) + e^{-x} > 0$ $\forall x \in]0, \frac{\pi}{2}[$, donc f est strictement croissante.

Enfin
$$f(0) = -1 < 0$$
 et $f(\frac{\pi}{2}) = 1 - e^{-\frac{\pi}{2}} > 0$

d'où $f(0)f(\frac{\pi}{2}) < 0$.

d'après le théorème des valeurs intermédiaires il existe un unique x_0 dans $]0, \frac{\pi}{2}[$ tel que $f(x_0) = 0$.

Exercice 19 Montrer que :

1. pour
$$x \ge 0$$
, $\frac{x}{1+x} \le \ln(1+x) \le x$.

- 2. pour $x \in \mathbb{R}$, $|\exp(x) 1 x| \le \frac{x^2}{2} \exp(|x|)$.
- 3. pour tout $x, y \in \left[-\frac{\pi}{4}, +\frac{\pi}{4} \right], |y-x| \le |\tan(y) \tan(x)| \le 2|y-x|$.

Solution:

Pour la question 1) et 3) appliquer le théorème des accroissements finis.

- 2) Pour simplifier nous supposons x > 0.
 - 1. Appliquer le théorème des accroissements finis ne va pas être suffisant. En effet, soit f(x) = $e^x - 1 - x$. Alors il existe $c \in (0, x)$ tel que f(x) - f(0) = f'(c)(x - 0). Soit $f(x) = (e^c - 1)x$. Soit maintenant $g(x) = e^x - 1$ alors, par le théorème des accroissements finis sur [0,c] il existe $d \in]0,c[$ tel que g(c) - g(0) = g'(d)(c - 0), soit $e^c - 1 = e^d c$. Donc $e^x - 1 - x = f(x) = (e^c - 1)x = e^d cx$. Comme $d \le c \le x$, alors $e^x - 1 - x \le e^x x^2$.

Cela donne une inégalité, mais il manque un facteur 1/2.

2. Nous allons obtenir l'inégalité par application du théorème de Rolle. Soit maintenant $f(t) = e^t$ $1-t-k\frac{t^2}{2}$. Nous avons f(0)=0, x>0 étant fixé, nous choisisons k tel que f(x)=0, (un tel k existe car $e^x - 1 - x > 0$ et $x^2 > 0$). Comme f(0) = 0 = f(x) alors par Rolle il existe $c \in (0, x)$ tel que f'(c) = 0. Mais $f'(t) = e^t - t - kt$, donc f'(0) = 0. Maintenant f'(0) = 0 = f'(c) donc il existe (par Rolle toujours !) $d \in]0, c[$ tel que f''(d) = 0. Or $f''(t) = e^t - k$, donc f''(d) = 0 donne $k = e^d$. Ainsi f(x) = 0 devient $e^{x} - 1 - x = e^{d} \frac{x^{2}}{2}$. Comme $d \le x$ alors $e^{x} - 1 - x \le e^{x} \frac{x^{2}}{2}$.

Exercice 20 Soient f et g deux fonctions à valeurs réelles, définies et continues sur un intervalle fermé borné [a,b] et dérivable sur [a,b]. On suppose de plus que pour tout $x \in]a,b[$, $f'(x) \leq g'(x)$.

- 1) Soit h = f g. Montrer qu'il existe $c \in]a, b[$ tel que $\frac{h(b) h(a)}{h a} = h'(c)$.
- 2) En déduire que $h(b) h(a) \le 0$, puis que $f(b) f(a) \le g(b) g(a)$.

on considère la fonction $\Phi:]1, +\infty[\to \mathbb{R}$ définie par :

$$\Phi(x) = x - \log(1+x)$$

3) Montrer que pour tout $x \ge 0$,

$$0 \le \Phi'(x) \le x$$
.

- 4) En déduire que pour tout $x \ge 0$, on $a: 0 \le x \log(1+x) \le \frac{x^2}{2}$ 5) En déduire $\lim_{x \to 0^+} \frac{x \log(1+x)}{x\sqrt{x}}$

Exercice 21 Étudier la dérivabilité des fonctions suivantes :

$$f_1(x) = x^2 \cos \frac{1}{x}$$
, $\sin x \neq 0$; $f_1(0) = 0$;

$$f_2(x) = \sin x \cdot \sin \frac{1}{x}$$
, $\sin x \neq 0$; $f_2(0) = 0$;

$$f_3(x) = \frac{|x|\sqrt{x^2 - 2x + 1}}{x - 1}$$
, $si \ x \neq 1$; $f_3(1) = 1$.

1.
$$f(x) = x \mapsto \sqrt{x^2 - x^3}$$
.

2.
$$f(x) = x \mapsto x|x|$$
.

3.
$$f(x) = x \mapsto \frac{x}{|x|+1}$$
.

Solution:

1. La fonction f_1 est dérivable en dehors de x = 0. En effet $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* et $x \mapsto \cos x$ est dérivable sur \mathbb{R} , donc par composition $x \mapsto \cos \frac{1}{x}$ est dérivable sur \mathbb{R}^* . Puis par multiplication par la fonction dérivable $x \mapsto x^2$, la fonction f_1 est dérivable sur \mathbb{R}^* . Par la suite on omet souvent ce genre de discussion ou on l'abrège sous la forme "f est dérivable sur I comme somme, produit, composition de fonctions dérivables sur I".

Pour savoir si f_1 est dérivable en 0 regardons le taux d'accroissement :

$$\frac{f_1(x) - f_1(0)}{x - 0} = x \cos \frac{1}{x}.$$

Mais $x\cos(1/x)$ tend vers 0 (si $x \to 0$) car $|\cos(1/x)| \le 1$. Donc le taux d'accroissement tend vers 0. Donc f_1 est dérivable en 0 et $f'_1(0) = 0$.

2. Encore une fois f_2 est dérivable en dehors de 0. Le taux d'accroissement en x=0 est :

$$\frac{f_2(x) - f_2(0)}{x - 0} = \frac{\sin x}{x} \sin \frac{1}{x}$$

Nous savons que $\frac{\sin x}{x} \to 1$ et que $\sin 1/x$ n'a pas de limite quand $x \to 0$. Donc le taux d'accroissement n'a pas de limite, donc f_2 n'est pas dérivable en 0.

3. La fonction f_3 s'écrit :

$$f_3(x) = \frac{|x||x-1|}{x-1}.$$

- Donc pour $x \ge 1$ on a $f_3(x) = x$; pour $0 \le x < 1$ on a $f_3(x) = -x$; pour x < 0 on a $f_3(x) = x$.
- La fonction f_3 est définie, continue et dérivable sur $\mathbb{R} \setminus \{0,1\}$. Attention ! La fonction $x \mapsto |x|$ n'est pas dérivable en 0.
- La fonction f_3 n'est pas continue en 1, en effet $\lim_{x\to 1^+} f_3(x) = +1$ et $\lim_{x\to 1^-} f_3(x) = -1$. Donc la fonction n'est pas dérivable en 1.
- La fonction f_3 est continue en 0. Le taux d'accroissement pour x > 0 est

$$\frac{f_3(x) - f_3(0)}{x - 0} = \frac{-x}{x} = -1$$

et pour x < 0,

$$\frac{f_3(x) - f_3(0)}{x - 0} = \frac{x}{x} = +1.$$

Donc le taux d'accroissement n'a pas de limite en 0 et donc f_3 n'est pas dérivable en 0.

Exercice 22 Soit $f: \mathbb{R}^* \to \mathbb{R}$ définie par $f(x) = x^2 \sin \frac{1}{x}$. Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Solution:

La fonction f est de classe C^{∞} sur l'ensemble \mathbb{R}^* .

- 1. Comme $|\sin(1/x)| \le 1$ alors f tend vers 0 quand $x \to 0$. Donc en prolongeant f par f(0) = 0, la fonction f prolongée est continue sur \mathbb{R} .
- 2. Le taux d'accroissement est

$$\frac{f(x)-f(0)}{x-0} = x\sin\frac{1}{x}.$$

Comme ci-dessus il y a une limite (qui vaut 0) en x = 0. Donc f est dérivable en 0 et f'(0) = 0.

3. Sur \mathbb{R}^* , $f'(x) = 2x \sin(1/x) - \cos(1/x)$, Donc f'(x) n'a pas de limite quand $x \to 0$. Donc f' n'est pas continue en 0.

Exercice 23 Déterminer les extremums de la fonction $f(x) = x^4 - x^3 + 1$ sur l'ensemble \mathbb{R} .

Solution:

 $f'(x) = 4x^3 - 3x^2 = x^2(4x - 3)$ donc les extremums appartiennent à $\{0, \frac{3}{4}\}$. Comme $f''(x) = 12x^2 - 6x = 6x(2x - 1)$. Alors f'' ne s'annule pas en $\frac{3}{4}$, donc $\frac{3}{4}$ donne un extremum local (qui est même un minimum global). Par contre f''(0) = 0 et $f'''(0) \neq 0$ donc 0 est un point d'inflexion qui n'est pas un extremum (même pas local, pensez à un fonction du type $x \mapsto x^3$).

Exercice 24 Soit f une fonction dérivable sur un intervalle ouvert I à valeurs dans \mathbb{R} . Soient a et b deux points distincts de I vérifiant f'(a) < f'(b) et soit enfin un réel m tel que f'(a) < m < f'(b).

- 1. Montrer qu'il existe h > 0 tel que $\frac{f(a+h)-f(a)}{h} < m < \frac{f(b+h)-f(b)}{h}$.
- 2. Montrer qu'il existe y dans [a,b] tel que $m = \frac{f(y+h)-f(y)}{h}$ puis qu'il exsite x tel que f'(x) = m.

Solution:

1. Soit m un élément de]f'(a), f'(b)[. Puisque $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$ et que $\lim_{h\to 0} \frac{f(b+h)-f(b)}{h} = f'(b)$, on a (en prenant par exemple $\varepsilon = \min\{m - f'(a), f'(b) - m\} > 0$)

$$\begin{split} &\exists h_1 > 0/\,\forall h \in]0, h_1[,\, (a+h \in I \Rightarrow \frac{f(a+h)-f(a)}{h} < m \text{ et} \\ &\exists h_2 > 0/\,\forall h \in]0, h_2[\, (b+h \in I \Rightarrow \frac{f(b+h)-f(b)}{h} > m. \end{split}$$

L'ensemble $E=\{h\in]0, \min\{h_1,h_2\}[/\ a+h\ {\rm et}\ b+h\ {\rm sont}\ {\rm dans}\ I\}$ n'est pas vide (car I est ouvert) et pour tous les h de E, on a $: \frac{f(a+h)-f(a)}{h} < m < \frac{f(b+h)-f(b)}{h}.$

h > 0 est ainsi dorénavant fixé.

2. La fonction f est continue sur I et donc, la fonction $g: x \mapsto \frac{f(x+h)-f(x)}{h}$ est continue sur [a,b]. D'après le théorème des valeurs intermédiaires, comme g(a) < m < g(b), $\exists y \in [a,b]/g(y) = m$ ou encore $\exists y \in [a,b]/\frac{f(y+h)-f(y)}{h} = m$.

Maintenant, d'après le théorème des accroissements finis, $\exists x \in]y, y + h[\subset I/m = \frac{f(y+h) - f(y)}{h} = f'(x)$. Donc une fonction dérivée n'est pas nécessairement continue mais vérifie tout de même le théorème des valeurs intermédiaires.

3. série IV

Exercice 251. a est un réel strictement positif donné. Etudier et construire la courbe de paramétrisation : $\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases}$

2. Pour $t \in]0, \frac{\pi}{2}[$, on note A(t) et B(t) les points d'intersection de la tangente au point courant M(t) avec respectivement (Ox) et (Oy). Calculer la longueur A(t)B(t).

Solution:

3.1. Domaine d'étude.

Pour tout réel t, M(t) existe.

Pour tout réel t, $M(t+2\pi)=M(t)$. Par suite, la courbe complète est obtenue quand t décrit un segment de longueur 2π comme par exemple $[-\pi,\pi]$.

Pour tout réel t,

$$M(-t) = \begin{pmatrix} \cos^3(-t) \\ \sin^3(-t) \end{pmatrix} = \begin{pmatrix} \cos^3 t \\ -\sin^3 t \end{pmatrix} = s_{(Ox)}(M(t)).$$

On étudie et on construit la courbe pour $t \in [0, \pi]$, puis on obtient la courbe complète par réflexion d'axe (Ox).

Pour tout réel t,

$$M(t+\pi) = \begin{pmatrix} \cos^3(t+\pi) \\ \sin^3(t+\pi) \end{pmatrix} = \begin{pmatrix} -\cos^3 t \\ -\sin^3 t \end{pmatrix} = s_O(M(t)).$$

La portion de courbe obtenue quand t décrit $[-\pi,0]$ est donc aussi la symétrique par rapport à O de la portion de courbe obtenue quand t décrit $[0,\pi]$. Néanmoins, cette constatation ne permet pas de réduire davantage le domaine d'étude.

Pour tout réel t,

$$M(\pi - t) = \begin{pmatrix} \cos^3(\pi - t) \\ \sin^3(\pi - t) \end{pmatrix} = \begin{pmatrix} -\cos^3 t \\ \sin^3 t \end{pmatrix} = s_{(Oy)}(M(t)).$$

On étudie et on construit la courbe pour $t \in [0, \frac{\pi}{2}]$, puis on obtient la courbe complète par réflexion d'axe (Oy), puis par réflexion d'axe (Ox).

Pour tout réel t,

$$M\left(\frac{\pi}{2}-t\right) = \begin{pmatrix} \cos^3\left(\frac{\pi}{2}-t\right) \\ \sin^3\left(\frac{\pi}{2}-t\right) \end{pmatrix} = \begin{pmatrix} \sin^3 t \\ \cos^3 t \end{pmatrix} = s_{y=x}(M(t)).$$

On étudie et on construit la courbe pour $t \in [0, \frac{\pi}{4}]$, puis on obtient la courbe complète par réflexion d'axe la droite d'équation y = x, puis d'axe (Oy) et enfin d'axe (Ox).

3.2. Variations conjointes de

x et y. La fonction $t \mapsto x(t)$ est strictement décroissante sur $\left[0, \frac{\pi}{4}\right]$ et la fonction $t \mapsto y(t)$ est strictement croissante sur $\left[0, \frac{\pi}{4}\right]$. **Etude des points singuliers.** Pour $t \in \mathbb{R}$,

$$\frac{\overrightarrow{dM}}{dt}(t) = \begin{pmatrix} -3a\cos^2t\sin t \\ 3a\sin^2t\cos t \end{pmatrix} = 3a\cos t\sin t \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}.$$

Pour toutréel t, le vecteur $\begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}$ est unitaire et n'est donc pas nul. Par suite, $\frac{\overrightarrow{dM}}{dt}(t) = \overrightarrow{0} \Leftrightarrow 3a\cos t\sin t = 0 \Leftrightarrow \cos t = 0 \text{ ou } \sin t = 0 \Leftrightarrow t \in \frac{\pi}{2}\mathbb{Z}.$

Les points singuliers sont donc les $M\left(\frac{k\pi}{2}\right)$, $k \in \mathbb{Z}$. Pour $t \notin \frac{\pi}{2}\mathbb{Z}$, M(t) est un point régulier et la tangente en M(t) est dirigée par le vecteur $\begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}$.

3.3. Point Singulier

Etudions alors le point singulier M(0). Pour $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}$,

$$\frac{y(t) - y(0)}{x(t) - x(0)} = \frac{a \sin^3 t}{a \cos^3 t - a} = \frac{\sin^3 t}{(\cos t - 1)(\cos^2 t + \cos t + 1)}$$
$$= \frac{8 \sin^3 \frac{t}{2} \cos^3 \frac{t}{2}}{-2 \sin^2 \frac{t}{2} (\cos^2 t + \cos t + 1)} = \frac{-4 \sin \frac{t}{2} \cos^3 \frac{t}{2}}{\cos^2 t + \cos t + 1},$$

et donc, $\lim_{t\to 0} \frac{y(t)-y(0)}{x(t)-x(0)} = 0$. Si on connaît déjà les 'equivalents, c'est plus court :

$$\frac{\sin^3 t}{(\cos t - 1)(\cos^2 t + \cos t + 1)} \underset{x \to 0}{\sim} \frac{t^3}{-\frac{t^2}{2} \times 3} = -\frac{2t}{3} \to 0$$

La courbe admet en M(0) une tangente dirigée par le vecteur (1,0). Par symétrie, la courbe admet également une tangente en $M\left(-\frac{\pi}{2}\right)$, $M\left(\frac{\pi}{2}\right)$ et $M(\pi)$, dirigée respectivement par (0,1), (0,1) et (1,0). Toujours par symétrie, ces quatre points sont des points de rebroussement de première espèce. Il en résulte aussi que pour tout réel t, la tangente en M(t) est dirigée par le vecteur $(-\cos t, \sin t)$.

2. Soit $t \in \left]0, \frac{\pi}{2}\right[$. On a vu que la tangente (T_t) en M(t) est dirigée par le vecteur $(-\cos t, \sin t)$. Une 'equation cartésienne de T_t est donc $: -\sin t(x - a\cos^3 t) - \cos t(y - a\sin^3 t) = 0$, ou encore

$$x\sin t + y\cos t = a\sin t\cos t \,(T_t).$$

On en déduit immédiatement que A(t) a pour coordonnées $(a\cos t,0)$ et que B(t) a pour coordonnées $(0,b\sin t)$ puis que

$$\forall t \in]0, \frac{\pi}{2}[, A(t)B(t) = a.$$