TERMIN 5 - zadaci za samostalan rad - rješenja

* * *

Zadatak 1.

Ispitati da li postoji i ako postoji odrediti matricu $A \in \mathcal{M}_3(\mathbb{R})$ takvu da je:

- a) matrica A invertibilna, a njen prostor kolona neka ravan;
- b) prostor kolona matrice A ravan x + y + z = 0.

Rješenje

- a) Kako je $dim\left(C\left(A\right)\right)=2$ i zaključujemo da je $dim\left(N\left(A\right)\right)=1$, odakle je dalje jedna sopstvena vrijednost matrice A jednaka 0. Kako je determinanta matrice A jednaka proizvodu svih njenih sopstvenih vrijednosti, zaključujemo da je $det\left(A\right)=0$ pa matrica A nije invertibilna. Stoga, ovakva matrica $A \in \mathcal{M}_3\left(\mathbb{R}\right)$ ne postoji.
- b) Uočimo dva linearno nezavisna vektora iz ravni $\alpha: x+y+z=0$. Neka su to, recimo, $\overrightarrow{x_1}=\begin{bmatrix} -1\\1\\0 \end{bmatrix}$ i $\overrightarrow{x_2}=\begin{bmatrix} -1\\0\\1 \end{bmatrix}$.

Jasno je da $\overrightarrow{x_1}$ i $\overrightarrow{x_2}$ čine bazu potprostora $\alpha: x+y+z=0$. Posmatrajmo matricu

$$A = \begin{bmatrix} -1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

čije su kolone $A_{\bullet 1}=\overrightarrow{x_1},\ A_{\bullet 2}=\overrightarrow{x_2}$ i $A_{\bullet 3}=\overrightarrow{0}.$ Vidimo da je

$$C\left(A\right)=Lin\left\{A_{\bullet1},A_{\bullet2},A_{\bullet3}\right\}=Lin\left\{\overrightarrow{x_{1}},\overrightarrow{x_{2}},\overrightarrow{0}\right\}=Lin\left\{\overrightarrow{x_{1}},\overrightarrow{x_{2}}\right\}=\alpha,$$

pa je A jedna takva matrica. Naravno, ovakvih matrica ima beskonačno mnogo, a matrica A je samo primjer jedne takve.

Zadatak 2.

Ispitati da li postoji i ako postoji odrediti matricu A takvu da je:

a)
$$C(A) = Lin \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
 i $R(A) = C(A^T) = Lin \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$;

b)
$$C(A) = Lin \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
 i $R(A) = C(A^T) = Lin \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}$.

Rješenje

a) Iz dimenzija potprostora $C\left(A\right)$ i $R\left(A\right)$ zaključujemo da je A matrica reda 3×2 . Kako je

$$R(A) == Lin\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\} = \mathbb{R}^2 = Lin\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\},$$

navedene uslove ispunjava matrica

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

b) Iz dimenzija potprostora $C\left(A\right)$ i $R\left(A\right)$ zaključujemo da je A matrica reda 3×3 . Kako je

$$C(A) = Lin \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

zaključujemo da je matrica A oblika

$$A = \begin{bmatrix} a & b & c \\ a & b & c \\ a & b & c \end{bmatrix}, \quad a, b, c \in \mathbb{R}.$$

Sa druge strane, kako je

$$R(A) = Lin \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\},\,$$

zaključujemo da je

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = Lin \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}.$$

Odavde dobijamo da je b=2a i c=a, pa je

$$A = \begin{bmatrix} a & 2a & a \\ a & 2a & a \\ a & 2a & a \end{bmatrix}, a \in \mathbb{R} \setminus \{0\}$$

skup svih matrica koje zadovoljavaju početni uslov. Jedna takva matrica je i matrica

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Važno je napomenuti da matrica A u oba slučaja nije jednoznačno određena.

* * *

Zadatak 3.

Neka je $\mathcal{A}: V_3 \to V_3$ linearno preslikavanje takvo da je $\mathcal{A}\left(\overrightarrow{i}\right) = \overrightarrow{j}, \mathcal{A}\left(\overrightarrow{j}\right) = \overrightarrow{k}$ i $\mathcal{A}\left(\overrightarrow{k}\right) = \overrightarrow{i}$. Ne određujući matricu A tog preslikavanja, dokazati da je $A^3 = I$.

Rješenje

Kako je

$$\mathcal{A}^{3}\left(\overrightarrow{i}\right) = \mathcal{A}\left(\mathcal{A}\left(\overrightarrow{A}\left(\overrightarrow{i}\right)\right)\right) = \mathcal{A}\left(\mathcal{A}\left(\overrightarrow{j}\right)\right) = \mathcal{A}\left(\overrightarrow{k}\right) = \overrightarrow{i}$$

$$\mathcal{A}^{3}\left(\overrightarrow{j}\right) = \mathcal{A}\left(\mathcal{A}\left(\mathcal{A}\left(\overrightarrow{j}\right)\right)\right) = \mathcal{A}\left(\mathcal{A}\left(\overrightarrow{k}\right)\right) = \mathcal{A}\left(\overrightarrow{i}\right) = \overrightarrow{j}$$

$$\mathcal{A}^{3}\left(\overrightarrow{i}\right) = \mathcal{A}\left(\mathcal{A}\left(\mathcal{A}\left(\overrightarrow{k}\right)\right)\right) = \mathcal{A}\left(\mathcal{A}\left(\overrightarrow{k}\right)\right) = \mathcal{A}\left(\overrightarrow{j}\right) = \overrightarrow{k}$$

zaključujemo da je \mathcal{A}^3 $\left(\overrightarrow{v}\right)=\overrightarrow{v}$ za sve $\overrightarrow{v}\in V_3$, pa je $A^3=I$, što je trebalo dokazati.

* * *

Zadatak 4.

Neka je $\mathcal{R}: \mathbb{R}^3 \to \mathbb{R}^3$ refleksija u odnosu na ravan $\pi: x+2y+3z=0$. Odrediti matricu R operatora \mathcal{R} u odnosu na standardnu bazu.

Rješenje

Odredimo proizvoljno dva linearno nezavisna vektora koji pripadaju ravni π . Takvi su, npr. vektori

$$\overrightarrow{v_1} = \begin{bmatrix} -2\\1\\0 \end{bmatrix} \quad \text{i} \quad \overrightarrow{v_2} = \begin{bmatrix} -3\\0\\1 \end{bmatrix}.$$

Kako vektori $\overrightarrow{v_1}$ i $\overrightarrow{v_2}$ pripadaju ravni π , oni se refklektuju u sebe, dok se vektor normale $\overrightarrow{v_3} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ reflektuje u sebi suprotan vektor $\begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$.

Ako formiramo bazu

$$B_N = \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\},\,$$

po ovoj bazi matrica refleksije je

$$R_{B_N} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

pa je matrica refleksije po standardnoj bazi:

$$\begin{split} R_{B_S} &= S_{B_N \to B_S} \cdot A_{B_N} \cdot S_{B_S \to B_N} \\ &= \begin{bmatrix} -2 & -3 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} -2 & -3 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}^{-1} \\ &= \begin{bmatrix} \frac{6}{7} & -\frac{2}{7} & -\frac{3}{7} \\ -\frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \\ -\frac{3}{7} & -\frac{6}{7} & -\frac{2}{7} \end{bmatrix}. \end{split}$$

* * *

Zadatak 5.

Neka je $\mathcal{P}_{\overrightarrow{d}}: \mathbb{R}^3 \to \mathbb{R}^3$ ortogonalno projektovanje na pravu određenu vektorom $\overrightarrow{d} = (2, 1, 2)$. Odrediti matricu P_a preslikavanja $\mathcal{P}_{\overrightarrow{d}}$ u odnosu na standardnu bazu prostora \mathbb{R}^3 .

Rješenje

Primijetimo da se svi vektori iz prostora ortogonalnog na pravu određenu vektorom $\overrightarrow{a} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ projektuju u $\overrightarrow{0}$.

Prostor ortogonalan na vektor \overrightarrow{a} je ravan π čiji je vektor normale vektor \overrightarrow{a} , a to je ravan

$$\pi : 2x + y + 2z = 0.$$

Odredimo proizvoljna dva linearno nezavisna vektora koji pripadaju ravni π . Takvi su npr. vektori

$$\overrightarrow{v_1} = \begin{bmatrix} -1\\2\\0 \end{bmatrix} \quad \text{i} \quad \overrightarrow{v_2} = \begin{bmatrix} -1\\0\\1 \end{bmatrix}.$$

Vektor \overrightarrow{d} se projektuje u samog sebe, pa ako formiramo bazu

$$B_N = \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\},\,$$

matrica projekcije po ovoj bazi je

$$P_{B_N} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

pa je matrica projekcije po standardnoj bazi:

$$\begin{split} P_{B_S} &= S_{B_N \to B_S} \cdot P_{B_N} \cdot S_{B_S \to B_N} \\ &= \begin{bmatrix} 2 & -1 & -1 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 & -1 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}^{-1} \\ &= \begin{bmatrix} \frac{4}{9} & \frac{2}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{1}{9} & \frac{2}{9} \\ \frac{4}{9} & \frac{2}{9} & \frac{4}{9} . \end{bmatrix} \end{split}$$

Zadatak 6.

Dokazati da za svaku matricu $A \in \mathcal{M}_n$ važi:

- a) $Ker(A) \subseteq Ker(A^2)$;
- b) $Ker(A) = Ker(A^2)$, ako je matrica A regularna.

Rješenje

a) Za svaku matricu $A \in \mathcal{M}_n$ važi

$$\overrightarrow{x} \in Ker(A) \Rightarrow A\overrightarrow{x} = \overrightarrow{0}$$

pa je

$$A^{2}\overrightarrow{x} = A \cdot A\overrightarrow{x} = A \cdot \overrightarrow{0} = \overrightarrow{0} \Rightarrow \overrightarrow{x} \in Ker(A^{2})$$

čime dokazujemo da je $Ker(A) \subseteq Ker(A^2)$.

b) Ako je matrica A regularna, tada je $det\left(A\right)\neq0$ pa je $Ker\left(A\right)=\left\{ \overrightarrow{0}\right\} .$

S druge strane, matrica A^2 je takođe regularna jer je $det\left(A^2\right) = det\left(A\right) \cdot det\left(A\right) \neq 0$ pa je $Ker\left(A^2\right) = \left\{\overrightarrow{0}\right\}$.

Dakle, ako je matrica A regularna, vrijedi $Ker(A) = Ker(A^2) = \{\overrightarrow{0}\}.$

Zadatak 7.

Za svako od sljedećih tvrđenja ustanoviti da li je tačno ili ne:

- a) Ako je $A \in \mathcal{M}_3$ i ako postoje vektori $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3} \in \mathbb{R}^3$ takvi da su vektori $A\overrightarrow{v_1}, A\overrightarrow{v_2}, A\overrightarrow{v_3}$ linearno nezavisni, tada je matrica A regularna.
- b) Neka je $A \in \mathcal{M}_{3,2}$ i neka je $Ker(A) = \{\overrightarrow{0}\}$. Ako su $B, C \in \mathcal{M}_{2,3}$ matrice takve da je AB = AC, tada je B = C.

Rješenje

- a) Kako potprostor C(A) sadrži tri linearno nezavisna vektora $\overrightarrow{Av_1}, \overrightarrow{Av_2}, \overrightarrow{Av_3}$, jasno je da je $dim\left(C(A)\right) \geq 3$. Sa druge strane, kako je $C(A) \subseteq \mathbb{R}^3$, vrijedi $dim\left(C(A)\right) \leq 3$, što znači da je $dim\left(C(A)\right) = 3$, odnosno rank(A) = 3. To dalje znači da je $det(A) \neq 0$ pa je matrica A regularna.
- b) Kako je $Ker(A) = \{\overrightarrow{0}\}$, zaključujemo da je dim(Ker(A)) = 0. Pošto je dim(Ker(A)) + dim(Im(A)) = 2, jer je matrica A reprezentacija linearnog operatora $A: U \to V$, pri čemu je dim(U) = 2 i dim(V) = 3, zaključujemo da je dim(Im(A)) = 2 pa su kolone $A_{\bullet 1}$ i $A_{\bullet 2}$ matrice A linearno nezavisne.

Ako je AB = AC, tada je A(B - C) = O, a to znači da su kolone matrice A(B - C) nula-vektori. Dakle

$$A(B - C) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \quad \begin{bmatrix} A_{\bullet 1} & A_{\bullet 2} \end{bmatrix} \cdot \begin{bmatrix} b_{1j} - c_{1j} \\ b_{2j} - c_{2j} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad j = 1, 2, 3$$

$$\Leftrightarrow \quad (b_{1j} - c_{1j}) A_{\bullet 1} + (b_{2j} - c_{2j}) A_{\bullet 2} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad j = 1, 2, 3.$$

Kako su kolone $A_{\bullet 1}$ i $A_{\bullet 2}$ matrice A linearno nezavisne, prethodni uslov će biti ispunjen ako i samo ako je

$$b_{1j} - c_{1j} = 0 \wedge b_{2j} - c_{2j} = 0,$$

odakle dobijamo $b_{1j} = c_{1j}$ i $b_{2j} = c_{2j}$ za j = 1, 2, 3, tj. B = C.

Zadatak 8.

Neka je $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3$ linearno preslikavanje za koje vrijedi

$$\mathcal{A}(0,1,1) = (-4,4a,-2), \quad \mathcal{A}(1,0,-1) = (2,-2,a) \quad \text{i} \quad \mathcal{A}(2,1,2) = (-6,8a-2,a-4).$$

- a) Odrediti $a \in \mathbb{R}$ ako je rank(A) = 1.
- b) Odrediti $a \in \mathbb{R}$ ako je rank(A) = 2 i A(-a, 1, -1) = (0, 0, 0).

Za oba rješenja naći Ker(A) i Im(A).

Rješenje

a) Kako su vektori (0,1,1), (1,0,-1) i (2,1,2) linearno nezavisni, pa u odnosu na bazu

$$B_N = \left\{ \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\2 \end{bmatrix} \right\}$$

prostora \mathbb{R}^3 , matrica linearnog operatora \mathcal{A} je

$$A_{B_N} = \begin{bmatrix} -4 & 2 & -6 \\ 4a & -2 & 8a - 2 \\ -2 & a & a - 4 \end{bmatrix}.$$

Iz stepenaste forme matrice A

$$\begin{bmatrix} -4 & 2 & -6 \\ 4a & -2 & 8a - 2 \\ -2 & a & a - 4 \end{bmatrix} \xrightarrow{R_1 \cdot \left(-\frac{1}{2}\right) + R_3} \begin{bmatrix} -4 & 2 & -6 \\ 0 & 2a - 2 & 2a - 2 \\ 0 & a - 1 & a - 1 \end{bmatrix}$$

imamo da je $rank(A) = 1 \Leftrightarrow a = 1$. Nakon uvrštavanja a = 1 dobijamo da je matrica linearnog operatora A u odnosu na bazu B_N :

$$A_{B_N} = \begin{bmatrix} -4 & 2 & -6 \\ 4 & -2 & 6 \\ -2 & 1 & -3 \end{bmatrix}.$$

U odnosu na standardnu bazu B_S prostora \mathbb{R}^3 , matrica linearnog operatora \mathcal{A} je

$$A_{B_S} = S_{B_N \to B_S} \cdot A_{B_N} \cdot S_{B_S \to B_N}$$

$$= \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -4 & 2 & -6 \\ 4 & -2 & 6 \\ -2 & 1 & -3 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & -3 & -3 \\ 0 & -6 & -6 \end{bmatrix}$$

Odavde dobijamo da je

$$C(A) = Lin \left\{ \begin{bmatrix} 0 \\ -3 \\ -6 \end{bmatrix} \right\} = Lin \left\{ \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\} \implies Im(\mathcal{A}) = Lin \left\{ (0, 1, 2) \right\}$$

dok je

$$\begin{split} N\left(A\right) &= \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : -3y - 3z = 0 \right\} \\ &= \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : y = -z \right\} \\ &= \left\{ \begin{bmatrix} x \\ -z \\ z \end{bmatrix} \right\} \\ &= x \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + z \cdot \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \\ &= Lin \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\} \implies Ker \left(\mathcal{A}\right) = Lin \left\{ (1, 0, 0), (0, -1, 1) \right\}. \end{split}$$

b) Kako je

$$\begin{bmatrix} -6\\8a-2\\a-4 \end{bmatrix} = 2 \cdot \begin{bmatrix} -4\\4a\\-2 \end{bmatrix} + \begin{bmatrix} 2\\-2\\a \end{bmatrix},$$

vrijedi rank(A) = 2 za sve vrijednosti $a \in \mathbb{R} \setminus \{1\}$. Predstavimo vektor $\begin{bmatrix} -a \\ 1 \\ -1 \end{bmatrix}$ kao linearnu kombinaciju baznih vektora baze B_N :

$$\begin{bmatrix} -a \\ 1 \\ -1 \end{bmatrix} = \alpha \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

odakle dobijamo sistem:

$$\begin{cases} \beta + 2\gamma = -a \\ \alpha + \gamma = 1 \\ \alpha - \beta + 2\gamma = -1 \end{cases}$$

čcije je rješenje

$$\alpha = \frac{a+5}{3}, \ \beta = \frac{4-a}{3}, \ \gamma = -\frac{a+2}{3}.$$

Sada je

$$\mathcal{A}\left(\begin{bmatrix} -a \\ 1 \\ -1 \end{bmatrix}\right) = \mathcal{A}\left(\frac{a+5}{3} \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \frac{4-a}{3} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} - \frac{a+2}{3} \cdot \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}\right)$$

$$= \frac{a+5}{3} \cdot \begin{bmatrix} -4 \\ 4a \\ -2 \end{bmatrix} + \frac{4-a}{3} \cdot \begin{bmatrix} 2 \\ -2 \\ a \end{bmatrix} - \frac{a+2}{3} \cdot \begin{bmatrix} -6 \\ 8a-2 \\ a-4 \end{bmatrix}$$

$$= \frac{1}{3} \cdot \begin{bmatrix} -4a - 20 + 8 - 2a + 6a + 12 \\ 4a^2 + 20a - 8 + 2a - 8a^2 - 16a + 2a + 4 \\ -2a - 10 + 4a - a^2 - a^2 - 2a + 4a + 8 \end{bmatrix}$$

$$= \frac{1}{3} \cdot \begin{bmatrix} 0 \\ -4a^2 + 8a - 4 \\ -2a^2 + 4a - 2 \end{bmatrix}$$

$$= \frac{1}{3} \cdot \begin{bmatrix} 0 \\ -4(a-1)^2 \\ -2(a-1)^2 \end{bmatrix}$$

odakle dobijamo

$$\frac{1}{3} \cdot \begin{bmatrix} 0 \\ -4(a-1)^2 \\ -2(a-1)^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow a = 1.$$

Međutim, kako je za a=1, rang preslikavanja \mathcal{A} jednak 1, ne postoji $a\in\mathbb{R}$ takav da navedeni uslovi budu ispunjeni.

Zadatak 9.

Odrediti linearnu transformaciju \mathcal{A} vektorskog prostora \mathbb{R}^4 takvu da bude:

- a) $Im(A)=Lin\{(1,3,-1,0),(2,4,0,-1)\};$
- b) $Ker(A) = Lin\{(3, 2, -1, 1)\};$
- c) $Im(A) = Lin\{(1,3,-1,0), (2,4,0,-1)\}$ i $Ker(A) = Lin\{(3,2,-1,1)\}$.

Rješenje

Linearna transformacija \mathcal{A} prostora \mathbb{R}^4 podrazumijeva linearno preslikavanje $\mathcal{A}:\mathbb{R}^4\to\mathbb{R}^4$ koje zadovoljava svojstva iz zadatka.

a) Primijetimo da matrica

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

linearnog preslikavanja $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^4$ zadovoljava početni uslov. Iz matrice A imamo da je

$$\mathcal{A}(1,0,0,0) = (1,3,-1,0),$$

$$\mathcal{A}(0,1,0,0) = (2,4,0,-1),$$

$$\mathcal{A}(0,0,1,0) = (0,0,0,0),$$

$$\mathcal{A}(0,0,0,0) = (0,0,0,0)$$

pa je sa

$$\mathcal{A}(x, y, z, t) = x \cdot \mathcal{A}(1, 0, 0, 0) + y \cdot \mathcal{A}(0, 1, 0, 0) + z \cdot \mathcal{A}(0, 0, 1, 0) + t \cdot \mathcal{A}(0, 0, 0, 1)$$

$$= x \cdot (1, 3, -1, 0) + y \cdot (2, 4, 0, -1) + z \cdot (0, 0, 0, 0) + t \cdot (0, 0, 0, 0)$$

$$= (x + 2y, 3x + 4y, -x, -y)$$

data jedna od linearnih transformacija \mathcal{A} prostora \mathbb{R}^4 takva da vrijedi uslov

$$Im(\mathcal{A}) = Lin\{(1,3,-1,0),(2,4,0,-1)\}.$$

b) Kako je $N(A) \perp C(A^T)$, zaključujemo da linearna transformacija \mathcal{A} mora biti takva da zadovoljava uslov

$$R(A) \perp \begin{bmatrix} 3\\2\\-1\\1 \end{bmatrix}.$$

Sada je

$$C\left(A^{T}\right) = R\left(A\right) = \left\{ \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} \ : \ 3x + 2y - z + t = 0 \right\} = \left\{ \begin{bmatrix} x \\ y \\ 3x + 2y + t \\ t \end{bmatrix} \right\} = \left\{ x \cdot \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \end{bmatrix} + y \cdot \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\} = Lin \left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$

pa je

$$A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

matrica jednog od linearnih transformacija \mathcal{A} prostora \mathbb{R}^4 koje zadovoljava uslov

$$Ker(\mathcal{A}) = Lin\{(3,2,-1,1)\}.$$

Odavde dobijamo da je linearno preslikavanje \mathcal{A} kom odgovara matrica A:

$$A(x, y, z, t) = (x + 3z, y + 2z, z + t, 0).$$

c) Iz uslova zadatka imamo da je dim(Im(A)) = 2 i dim(Ker(A)) = 1. Međutim, kako mora da vrijedi

$$dim\left(Im\left(\mathcal{A}\right)\right) + dim\left(Ker\left(\mathcal{A}\right)\right) = dim\left(\mathbb{R}^{4}\right) = 4,$$

vidimo da ne postoji linearno preslikavanje $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^4$ takvo da vrijedi

$$Im(\mathcal{A}) = Lin\{(1,3,-1,0), (2,4,0,-1)\}\ i\ Ker(\mathcal{A}) = Lin\{(3,2,-1,1)\}.$$

Zadatak 10.

Odrediti

- a) matricu skaliranja koja preslikava $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ u $\begin{bmatrix} 6 \\ 9 \end{bmatrix}$;
- b) matricu projektovanja koja preslikava $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ u $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$;
- c) matricu refleksije koja preslikava $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ u $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$;
- d) matricu rotacije koja preslikava $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ u $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

Rješenje

a) Ako je A matrica skaliranja, onda vrijedi $A\overrightarrow{x}=\lambda \overrightarrow{x}$ za neku vrijednost parametra λ . Tada je

$$A = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

pa je

$$\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \end{bmatrix} \quad \Rightarrow \quad \lambda = 3.$$

Odavde je konačno

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

tražena matrica skaliranja.

b) Ako se vektor $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ projektuje u $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$, to znači da se projekcija vrši na pravu generisanu vektorom $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$, odnosno na y-osu.

To dalje znači da se vektor ortogonalan na y-osu, a to je vektor $\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ projektuje u nula-vektor.

Kako se projektovanje vrši na y-osu, vektor $\overrightarrow{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ se projektuje u samog sebe. To sada znači da je tražena matrica projektovanja

$$P = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

c) Ako se vektor $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ reflektuje u vektor $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$, riječ je o refleksiji u odnosu na pravu y=x.

Ta refleksija vektor $\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ preslikava u vektor $\overrightarrow{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, dok vektor $\overrightarrow{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ preslikava u vektor $\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. S obzirom na to, matrica date refleksije u odnosu na standardnu bazu prostora \mathbb{R}^2 je

$$R = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

d) Ako se vektor $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ pomoću rotacije preslikava u vektor $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$, onda se vektor $\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ projektuje u vektor $\frac{1}{5} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} \\ \frac{1}{5} \end{bmatrix}$. Kako je

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

matrica rotacije za ugao θ zaključujemo da je $\cos \theta = \frac{3}{5}$ i $\sin \theta = \frac{4}{5}$, pa je tražena matrica rotacije

$$R_{\theta} = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}.$$