O Chapter 6

- MOSFET Operation
 - Capacitance
 - Accumulation
 - Depletion
 - Inversion
 - IV Characteristics
 - Linear
 - Saturation
 - Spice Models
 - Short Channel
 - LDD
 - Scaling
 - Hot Carriers
 - Oxide Breakdown
 - DIBL
 - Body Effect
 - Gate Tunneling

Capacitance - Accumulation

Figure 6.2 Cross-sectional view of a MOSFET operating in accumulation.

O DESCRIPTION

- NFET, Vgs<0 ATTRACTS + HOLES
- MAJORITY CARRIERS AT SURFACE

GATE TO BULK CAPACITANCE

- POLY GATE
- P+ HOLES AT SURFACE
- $C_{GB} = \varepsilon (L_{EFF}) (W_{DRAWN}) / t_{OX}$

GATE TO SOURCE/DRAIN CAP

- POLY GATE
- N- ELECTRONS AT SURFACE
- $C_{GS} = \varepsilon (L_{DIFF} (W_{DRAWN}) / t_{OX}$
- SUBSTRATE RESISTANCE
 - CANNOT NEGLECT
- WHAT IS NORMAL BIASING?

Depletion capacitance in

series with oxide C.

Capacitance - Depletion

DESCRIPTION

FOX n+ **FOX** FOX p+ n+ Depletion layer p-substrate

Figure 6.3 Cross-sectional view of a MOSFET operating in depletion.

Bottom Plate of Capacitor is moving "down", further Into the substrate

NFET, Vgs BETWEEN RANGES **NEITHER CARRIER AT SURFACE** IMMOBILE IONS LEFT

GATE TO CHANNEL CAPACITANCE

- **POLY GATE**
- SOME N- ELECTRONS
- APPROX C= ε A / t_{ox}

DEPL TO BUILK CAPACITANCE

- SOME N- ELECTRONS SURFACE
- NO ANALYTICAL EQUATION

GATE TO SOURCE/DRAIN CAP

- **POLY GATE**
- N+ ELECTRONS AT SURFACE
- $C_{GS} = \varepsilon \left(L_{DIFF} \left(W_{DRAWN} \right) / t_{OX} \right)$
- WHAT IS OPERATING POINT?

O Capacitance - Inversion

O DESCRIPTION

NFET, Vgs>Vtn

LARGE number of electrons, Q N- ELECTRONS AT SURFACE

GATE TO CHANNEL CAPACITANCE

- POLY GATE
- N- ELECTRONS
- C=ε A / t_{ox}

GATE TO SOURCE/DRAIN CAP

- POLY GATE
- N+ ELECTRONS AT SURFACE
- $C_{GS} = \varepsilon (L_{DIFF} (W_{DRAWN}) / t_{OX}$
- WHAT IS OPERATING POINT?

O CV CURVE

Figure 6.4 The variation of the gate capacitance with DC gate-source voltage.

Figure 6.5 Using the MOSFET as a capacitor.

O DESCRIPTION

- KEEP IN MIND OPERATING POINT
- ACCUMULATION != GOOD CAP
 - SERIES RESISTANCE TO TAP
- CAN USE MOSFET AS CAP
 - SHORT SOURCE TO DRAIN
 - IF VGATE CHANGES, VARACTOR
- SHOULD UNDERSTAND EACH CAP

Figure 6.6 MOSFET capacitances.

O IV TERMINLOGY

ID DRAIN CURRENT

→ IMPLIES DRAIN TO SOURCE (IDS)

WHERE ELSE WOULD CURRENT GO FROM-TO?

IDLIN IDS IN LINEAR REGION

IDSAT IDS IN SATURATION REGION

μ_n MOBILITY OF ELECTRONS

W WIDTH OF CHANNEL

L LENGTH OF CHANNEL (CT-CT DIRECTION)

COX GATE OXIDE CAPACITANCE

V_{GS} GATE TO SOURCE POTENTIAL

V_{tn} TRANSISTOR THRESHOLD FOR NFET

V_{DS} DRAIN TO SOURCE POTENTIAL

V_{DS-SAT} SATURATION VDS

V_{EFF} VGS – VTN, HOW FAR ABOVE THRESHOLD IS THE GATE

O IV VS. VDS CURVE

O DESCRIPTION

- LINEAR REGION
 - CHANNEL IS INVERTED
 - V=IR IS LINEAR REGION

Figure 3.20 The I_D versus V_{DS} curve for an ideal MOS transistor. For $V_{DG} > -V_{tn}$, I_D is approximately constant.

SATURATION REGION

- CURRENT IS CONSTANT
- NO DEPENDENCE NO VDS

TRANISTION REGION

NEED FULL EQUATION

Three regions of operation:

•Linear or Triode Region

•Saturation or Active Region

•Transition region

Vds << Veff

Vds > Veff

Vdg ~ Vt or Vds ~ Veff

channel inverted channel pinched off

beginning of pinch off

O IDS vs. VDS (SATURATION)

Figure 6.11 Characterisitics of a long-channel NMOS device.

Slope = $\lambda \cdot I_{D,sat}$

Figure 6.10 The MOSFET in saturation (pinched off).

O DESCRIPTION

- IDS vs. VDS, VARY VGS
 - AS VGS INCR, R DECR
 - VDsat, WHERE PINCHOFF OCCURS
 - VGD=VT PINCHOFF

TRANSCONDUCTANCE PARM

- $K_{PN} = \mu_N C_{OX} = \mu_N \epsilon_{OX} / t_{OX} \sim 120 uA / V^2$
- $K_{PP}=\mu_P C_{OX}=\mu_P \epsilon_{OX}/t_{OX} \sim 40 uA/V^2$

MOBILITY DIFFERENCES

- $\mu_N = 650 \text{ cm}^2 / \text{ V sec}$
- $\mu_P = 250 \text{ cm}^2 / \text{ V sec}$

O IDS vs. VGS (BODY EFFECT)

Figure 6.13 Threshold voltage and body effect.

Figure 6.15 Qualitative description of body effect.

DESCRIPTION

- IDS vs. VGS, VARY VSB
 - DETERMINES Vt
 - BODY BIAS EFFECT
- BODY BIAS
 - AS VSB INC, e- GO TO SOURCE
 - DEPL DEPTH INCR
 - HARDER TO INVERT SURFACE
- LOG IDS
 - SHOWS Ioff LEAKAGE

Figure 6.14 How an NMOS can have body effect.

Figure 6.16 Drain current plotted from weak to strong inversion.

Figure 6.16 Drain current plotted from weak to strong inversion.

DESCRIPTION

IDS VS. VDS, VARY VGS

- LINEAR, SATURATION REGIONS
- DOES NOT SHOW Vt
- MAY SHOW SHORT CH EFFECTS

IDS VS. VGS, VARY VSB

- SHOWS Vt
- SHOWS BODY EFFECT

IDS VS. VGS, LOG SCALE

- DOES NOT SHOWS Vt
- SHOWS OFF-STATE CURRENT
- SHOWS SSLP

SHORT CHANNEL EFFECTS (SCE)

- Leff IS SMALLER THAN Ldrawn
- USE LDD TO MITIGATE IMPACT
- DRAIN ENGINEERING

O IDS vs. VGS EXAMPLES

DESCRIPTION

Vt VARIES WITH PROCESS

- SHAPE OF CURVE CHANGES
- Vt DERIVED AT MAX INFLECTION
- SMALL OFFSET OF VDS APPLIED LOG SCALE SHOWS Ioff

