Министерство образования и науки Российской Федерации САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО

Исследование производственных систем с маршрутизацией, зависящей от состояния

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА СПЕЦИАЛИСТА

студента 5 курса 511 группы специальности 010501 — прикладная математика и информатика факультета компьютерных наук и информационных технологий Салина Романа Владимировича

Научный руководитель доцент, к.ф.-м.н.

В. И. Долгов

Цели и задачи дипломной работы

- исследование производственных систем с маршрутизацией, зависящей от состояния;
- разработка алгоритма метода анализа производственных систем с маршрутизацией, зависящей от состояния;
- программная реализация алгоритма;
- проведение численных экспериментов с разработанной программой

Гибкие производственные системы

```
C_i — множество рабочих станций (систем), i \in I \equiv \{i \mid i=1,...,L\}; t — множество типов производственных операций, t \in T; \kappa_i — параллельно работающие машины (приборы) на станции C_i; s_i — емкость рабочей станции, s_i \geqslant \kappa_i, \ i=1,...,L; \kappa = (\kappa_i) — вектор числа приборов на рабочих станциях, i=1,...,L; s=(s_i) — вектор емкостей рабочих станций, i=1,...,L. C_0 — система транспортировки материалов (MHS); \kappa_0 — транспортеры в C_0; N — общее число деталей, N \leqslant \sum_{i=1}^L s_i.
```

Гибкие производственные системы

Гибкие производственные системы

 N_t — число деталей типа t, $\sum N_t = N$; $N = (N_t), t = 1, ..., T$ — вектор начального числа деталей; $I_t \subseteq I$ — множество рабочих станций, на которых обрабатываются детали типа t: s_{it} — емкость хранилища, выделенного для деталей типа t на станции C_i ; $s_{it} = 0$, если $i \notin I_t$; μ_{it} — интенсивность обработки детали типа t на станции C_i , $i \in I_t$; $D_i = RANDOM$ — дисциплина обработки на станциях C_i , i = 0, ..., L; $\overline{\eta}_i = (n_{i1}, ..., n_{iT})$ — состояние рабочей станции C_i ; $n_{it} = 0$, если $i \notin I_t$; $\mu_{it}n_{it}\nu_i(n_i),\ \nu_i(n_i)=rac{\min(n_i,\kappa_i)}{n_i}$ — суммарная интенсивность обработки деталей типа t на станции C_i . $\Theta = (\theta_{it.it})$ — маршрутная матрица, t = 1, ..., T, i, j = 0, ..., L, $\theta_{it.it} = 0$ при i, i > 0.

$$\Gamma = \langle L, T, \mathbf{N}, N, M, \Theta, \kappa, \mu, RANDOM \rangle$$
.

Состояние СеМО

 $\overline{\eta}=(\overline{\eta}_0,\overline{\eta}_1,...,\overline{\eta}_L)$ — состояние СеМО Γ ; $\overline{\eta}_i=(n_{i1},...,n_{iT})$, i=0,1,...,L — вектор числа требований в системе C_i ; $\{\overline{\eta}(\tau)\}$ — процесс Маркова со следующим конечным пространством

 $S = \left\{ \overline{\eta} \in Z_{+}^{(L+1)T} \mid n_{it} \leqslant s_{it} \ (i \in I), \ \sum_{i \in I_{+}^{+}} n_{it} = N_{t}, \ t = 1, ..., T
ight\},$ (1)

где
$$Z_+$$
 —множество неотрицательных чисел и $I_t^+ = \{0\} \cup I_t.$

состояний:

PSQ-маршрутизация

$$\theta_{0t,it} = \frac{r_{it}(n_{it})}{r_{0t}(n_{0t})},$$
 (2)

где $r_{it}(\cdot)$ и $r_{0t}(\cdot)$ — две линейные функции:

$$r_{it}(n_{it}) = s_{it} - n_{it}$$
 и $r_{0t}(n_{0t}) = \sum_{C_t \in I_t} s_{it} + n_{0t} - N_t.$

Стационарное решение

Теорема. Марковский процесс $\overline{\eta}(\tau)$, определенный в пространстве состояний S и управляемый PSQ-маршрутизацией, как определено в (2), является обратимым относительно времени и имеет следующую мультипликативную форму стационарного распределения вероятностей:

$$\pi(\overline{\eta}) = G^{-1} \prod_{i=0}^{L} \left[\prod_{j=1}^{n_i} \nu_i^{-1}(j) \right] \left[\prod_{t=1}^{T} \prod_{j=1}^{n_{it}} \frac{r_{it}(j-1+\delta_{i0})}{j\mu_{it}} \right], \quad \overline{\eta} \in S, \quad (3)$$

где $\delta_{i0}=1$, если i=0, иначе $\delta_{i0}=0$, и G — нормализующая константа.

Стационарное решение

Определим векторы $\mathbf{N}=(N_1,...,N_T)$, $\mathbf{n}=(n_1,...,n_T)$, $\mathbf{e_t}=(0,...,1,...,0)$ и $\mathbf{0}=(0,...,0)$. Пусть $G(m,\mathbf{N})$ — нормализующая константа, где \mathbf{N} — вектор начального числа требований в сети. Кроме того, определим

$$R_t(m, \mathbf{N}) = \frac{G(m, \mathbf{N} - \mathbf{e_t})}{G(m, \mathbf{N})}, \quad t = 1, ..., T.$$

Теорема. Если ${\bf n}>{\bf 0}$ (т.е. все элементы вектора ${\bf n}$ положительны), то для всех t=1,...,T

$$\pi_m(\mathbf{n}, \mathbf{N}) = \pi_m(\mathbf{n} - \mathbf{e_t}, \mathbf{N} - \mathbf{e_t}) f_{mt}(\mathbf{n}) R_t(m, \mathbf{N}), \tag{4}$$

иначе для всех t = 1, ..., T

$$\pi_m(\mathbf{n}, \mathbf{N}) = \pi_m(\mathbf{n}, \mathbf{N} - \mathbf{e_t}) R_t^{-1}(m-1, \mathbf{N} - \mathbf{n}) R_t(m, \mathbf{N}).$$
 (5)

Блок 1. Ввод исходных данных

```
L — число СМО в СеМО;
```

 $N = (N_t)$ — вектор начального числа требований в CeMO, t = 1, ..., T;

 $\kappa = (\kappa_i)$ — вектор числа приборов в системах обслуживания СеМО,

$$i = 0, ..., L;$$

 $s = (s_{it})$ — матрица емкостей систем в CeMO, i = 0, ..., L, t = 1, ..., T;

 $\mu = (\mu_{it})$ — матрица интенсивностей обслуживания требований системами CeMO, i = 0, ..., L, t = 1, ..., T.

Блок 2. Перестановка СМО C_i и C_L

Блок 3. Вычисление стационарного распределения вероятностей состояний СМО C_i

Входные данные: L, T, $\mathbf{N} = (N_t)$, $\kappa = (\kappa_i)$, $s = (s_{it})$, $\mu = (\mu_{it})$, i = 0, ..., L, t = 1, ..., T.

Выходные данные: $\pi_i(\mathbf{n}, \mathbf{N})$, i = 1, ..., L.

Блок 4. Обратная перестановка СМО C_L и C_i

Блок 5. Вычисление стационарных характеристик СеМО

Входные данные: L, T, $\mathbf{N}=(N_t)$, $\pi_m(\mathbf{n},\mathbf{N})$, $\kappa=(\kappa_i)$, $s=(s_{it})$, $\mu=(\mu_{it})$, $i=0,...,L,\ m=1,...,L,\ t=1,...,T$. Выходные данные: \overline{n}_{it} , λ_{it} , ψ_{it} , $i=0,...,L,\ t=1,...,T$.

$$\overline{n}_{it} = \sum_{l=0}^{s_{it}} k \pi_i(\mathbf{n}, \mathbf{N}), \tag{6}$$

$$\bar{h}_{it} = \begin{cases}
\sum_{k=0}^{\kappa_i} k \pi_i(\mathbf{n}, \mathbf{N}) + \kappa_i \sum_{k=\kappa_i+1}^{s_{it}} \pi_i(\mathbf{n}, \mathbf{N}), & \kappa_i < s_{it}, \\
\sum_{k=0}^{s_{it}} k \pi_i(\mathbf{n}, \mathbf{N}), & \kappa_i \ge s_{it},
\end{cases}$$
(7)

$$\lambda_{it} = \mu_{it} \overline{h}_{it}, \tag{8}$$

$$\psi_{it} = \frac{\lambda_{it}}{\min(\kappa_{i}, s_{it})\mu_{it}},\tag{9}$$

где i = 1, ..., L, t = 1, ..., T.

$$\bar{n}_{0t} = N_t - \sum_{i=1}^{L} \bar{n}_{it},$$
(10)

$$\lambda_{0t} = \sum_{i=1}^{L} \lambda_{it},\tag{11}$$

$$\psi_{0t} = \frac{\lambda_{0t}}{\kappa_0 \mu_{0t}},\tag{12}$$

где t = 1, ..., T.

Интерфейс программы

Интерфейс программы

Эксперимент 1

Рассмотрим производственную систему с 18 машинами, которые сгруппированы по 9 рабочим станциям. Число приборов, интенсивность обработки детали одним прибором и емкость локального хранилища на каждой станции соответственно равны: $\kappa_1=\kappa_2=\kappa_3=1$; $\kappa_4=\kappa_5=\kappa_6=2$; $\kappa_7=\kappa_8=\kappa_9=3$; $\mu_1=\mu_2=\mu_3=2$; $\mu_4=\mu_5=\mu_6=1,5$; $\mu_7=\mu_8=\mu_9=1$; $s_1=s_2=s_3=4$; $s_4=s_5=s_6=6$; $s_7=s_8=s_9=7$. Число транспортеров $\kappa_0=9$, каждый из которых имеет интенсивность обработки $\mu_0=3$. В данной системе есть N=50 палет, т.е. общее число деталей (одного типа) в любой момент времени равно 50.

Эксперимент 1

Математическое ожидание числа деталей (\overline{n}_i), пропускная способность (λ_i) и коэффициенты использования приборов (ψ_i) для каждой станции:

C_i	C_0	$C_{1,2,3}$	$C_{4,5,6}$	$C_{7,8,9}$
\overline{n}_i	11,070	3,003	4,492	5,482
λ_i	23,595	1,954	2,950	2,961
ψ_i	0,874	0,977	0,983	0,987

Эксперимент 2. Зависимость стационарных характеристик ГПС от числа приборов

Эксперимент 2. Зависимость стационарных характеристик ГПС от емкостей рабочих станций

Эксперимент 2. Зависимость стационарных характеристик ГПС от интенсивностей обработки деталей

