CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

Computability

- -- Decidability
- Non-Computable functions:
 - Halting Problem
 - Number of Non-Computable functions.

EXISTENCE OF NON-COMPUTABLE FUNCTIONS

- Are there problems that are "not computable"?
 - Yes. Based on our definitions of "computability":
 - Decision problems computable (by TM) are referred to as decidable problems.
 - There exist proven undecidable problems.
- Theorem: *Halting problem is undecidable*
 - i.e. There is no program H such that H(P,x) will decide whether or not program P will halt on input x.

HALTING PROBLEM

- Undecidability of Halting problem: [Proof by Contradiction]
 - Assume that there is a program H such that

```
oH(P,x) = 1 if P(x) terminates

oH(P,x) = 0 if P(x) does not terminate
```

• Define D as the procedure:

```
oD(P) { while(H(P,P)); }
```

- What is H(D,D)?
 - o Assume H(D,D) == 1
 - Requires H(D,D) to be 0 i.e. Contradiction.
 - o Assume H(D,D) == 0
 - Requires H(D,D) to be 1 i.e. Contradiction.

HALTING PROBLEM - DIAGONALIZATION

- This proof (with the construction) is an instance of a (proof) technique referred to as **Cantor's** diagonalization:
 - If you can imagine H as a matrix rows for programs
 P and columns for inputs x,
 - then H(P,P) for any P represents a diagonal element.

PROOF OF UNDECIDABILITY — BY REDUCTION

- Implication of $\pi_1 \preceq \pi_2$:
 - If π_1 cannot be solved, then there can be no algorithm to solve π_2 .
- Therefore, one can prove a problem π_2 to be undecidable by
 - reducing a known undecidable problem π_1 (say Halting Problem) to π_2

How Many Non-Computable Functions Exist?

o Theorem NonC:

- There are more problems that are not computable than there are problems that are computable.
- If "programs" in a general purpose programming language, say C, solve "computable problems",
 - then the size of the "class of computable problems" is at most the size of the "class of programs".
- Theorem NonC (rewritten):
 - There are more problems than there are C programs.

HOW MANY NON-COMPUTABLE FUNCTIONS EXIST?[2]

- Proof of Theorem NonC [by Cardinality comparison]:
 - Number of programs in say C is equal to |N|
 By Lemma 1
 - Let S be $\{f \mid f \text{ is a function from } \mathbb{N} \text{ to } \{0,1\}\}.$
 - |S| = 2^{|N|}
 By Lemma 2.
 - |S| < |P(S)| for any non-empty set S, where P(S) is the power-set of S.
 - By Cantor's Power-Set Theorem.

Note: $2^{|N|}$ denotes the size of the power set of N. End of Note.

How Many Non-Computable Functions Exist? [2]

o Lemma 1:

• The number of programs in a given programming language, say C, is equal to $|\mathbb{N}|$ where \mathbb{N} is the set of all natural numbers.

• Proof:

- o Define a 1-1 onto function from the set of all strings in a finite alphabet to N:
 - For each j, number increasingly each string of size j, in lexicographic order (i.e. dictionary order).
 - Repeat step 1 for j = 0, 1, ... and continue the numbering from one step to the next.

HOW MANY NON-COMPUTABLE FUNCTIONS EXIST?[2]

- o Lemma 2:
 - Consider the set $S = \{ f \mid f \text{ is a function from } \mathbb{N} \text{ to } \{0,1\} \}$
 - $|S| = 2^{|N|}$, $2^{|N|}$ denotes the number of subsets of N
- o Proof:
 - Map each function f in S to a specific subset T_f of \mathbb{N} :
 - f(x)=1 iff x is in the subset T_f
 - o This is a 1-to-1 onto mapping [Why?]