







#### what is linux?

- An open-source, Unix-like operating system
- Consists of: Kernel, GNU utilities, Shell
- Common Distributions: Ubuntu, Fedora, Debian, Arch, Kali Linux, CentOS





#### why learn linux?

- Security and Stability
- Widely Used in Servers and Cybersecurity
- Flexibility and Customization
- Command-Line Power







#### what is a shell?

- An interface that allows users to interact with the OS through commands (a terminal)
- Types of shells: Bash, Zsh, Fish
- Plays an important role in Automation and Scripting





# accessing the terminal

- Ctrl + Alt + T (Linux)
- Applications Menu
- SSH Access







## HOW TO UPDATE AND INSTALL STUFF





# how to update and install stuff?

- On debian based distros (Ubuntu, Kali, Parrot etc), updating constists of two steps:
  - sudo apt-get update (to update your repositories)
  - sudo apt-get upgrade (to upgrade your anything in the system that has an update)





# how to update and install stuff?

- To install something, if a package is included in your repositories, you just run the command:
  - sudo apt-get install package\_name
  - Sometimes, the package is not included in the default repos, so you have to first add the needed repo





#### basic linux commands

| ls    | List directory contents         |  |
|-------|---------------------------------|--|
| cd    | Change directory                |  |
| pwd   | Print current working directory |  |
| СР    | Copy files                      |  |
| mv    | Move/rename files               |  |
| rm    | Remove Files                    |  |
| clear | Clear the terminal screen       |  |
| exit  | Close the terminal session      |  |





#### mastering the ls command

- **ls** (list) is a fundamental command used to display the contents of a directory.
- It helps users see files, directories, and metadata, and understand the structure of their filesystem.

#### × 🗆 🗕



#### ls – basic usage:

- ls [options] [directory]
- Example (list current directory):
  - o 1s
- Example (list other directory):
  - o ls /home/user1
- Detail list showing also hidden files:
  - **ls -l**







#### ls - common options:

| -1    | Long listing format (detailed view)                           | ls -1                  |
|-------|---------------------------------------------------------------|------------------------|
| -a    | Show all files, including hidden ones (files starting with .) | ls -a                  |
| -h    | Human-readable file sizes (used with -1)                      | ls -lh                 |
| -R    | List contents recursively, including subdirectories           | ls -R                  |
| -+    | Sort files by modification time (newest first)                | ls -1†                 |
| -s    | Sort files by size (largest first)                            | ls -1S                 |
| -1    | Display one file per line                                     | ls -1                  |
| color | Add colors to output based on file type                       | lscolor=au <b>to (</b> |







# file & directory structure

- Linux organizes everything in a hierarchical directory structure.
- Root Directory (/): The starting point of the filesystem. All files and directories stem from this root.
  - We also call the root of a folder, the top folder





#### everything is a file

In Linux, everything is treated as a file, including:

- Regular files: Text, binary, images, etc.
- Directories: Treated as special files that list file names.
- Devices: Represented as files in /dev (e.g., /dev/sda1).





#### everything is a file

In Linux, everything is treated as a file, including:

- Processes: Represented as files in /proc (e.g., /proc/1234).
- Sockets and pipes: For inter-process communication.



#### Key Directories and their Purposes

| / (root)     | Top-level directory. All other directories fall under it  |  |
|--------------|-----------------------------------------------------------|--|
| /home (or ~) | User home directories (e.g., /home/user1)                 |  |
| /bin         | Essential binary executables (e.g., ls, cp)               |  |
| /boot        | Files needed to boot the system (e.g., kernel)            |  |
| /dev         | Device files (e.g., /dev/sda for hard drives)             |  |
| /etc         | System configuration files                                |  |
| /lib         | Shared library files for system binaries                  |  |
| /mnt         | Mount points for temporary filesystems or external drives |  |
| /proc        | Virtual filesystem for process information                |  |
| /usr         | User binaries and read-only data (e.g., /usr/bin)         |  |
| /var         | Variable data (e.g., logs, mail, databases)               |  |
| /tmp         | Temporary files (cleared on reboot)                       |  |



### Understanding Paths Absolute vs. Relative Paths

- Absolute Path:
  - Starts from the root directory (/).
  - Always provides the full path, regardless of the current working directory.
  - Example: show the contents of file.txt:
    - cat /home/user1/documents/file.txt
  - o Use when you need to specify an exact location.
- Relative Path:
  - Describes the path based on the current working directory.
  - Does not start with /.
  - o Example: If you're in /home/user1:
    - cat documents/file.txt
  - Shorter and useful for scripts or navigating within known directories.



#### Navigating with cd (Change Directory)

Common commands

- Move to a specific directory:
   o cd /var/log
- Go to the parent directory:o cd ..
- Return to the previous directory:
   cd -
- Go to the home directory:cd ~
- Combine with relative paths:
   cd ../../etc



## Navigating with cd (Change Directory)

Special Characters in Paths

| Symbol   | Meaning            | Example                                           |
|----------|--------------------|---------------------------------------------------|
|          | Current directory  | ./script.sh (run script in the current directory) |
|          | Parent directory   | cd/documents                                      |
| <b>1</b> | Home directory     | cd ~/Downloads                                    |
| _        | Previous directory | cd - (switch back to the last<br>directory)       |





#### process management

- Stopping processes:
  - Ctrl + C Force-stop a running process
  - Ctrl + Z Suspend a process to run in the background (bg)
- Resuming Processes:
  - o fg Bring a background process to the foreground
- Clear terminal screen:
  - Ctrl + L (or clear)









#### what is cat?

- cat (short for concatenate) is a command used to display the contents of a file, concatenate files, and redirect output to other files or devices.
- Basic usage: display the content of a file or more
  - o cat filename.txt
  - o cat file1.txt file2.txt







# using cat with redirection ( > and >> )

- > (Redirect Output to a File):
  - Redirects the output of a command to a file, overwriting it if it exists
  - o Example: command >file
  - Example with cat: cat file1.txt > output.txt
  - This command will redirect the contents of file1.txt into output.txt, replacing its content if the file already exists.





# using cat with redirection ( > and >> )

- Concatenate files and create a new one:
  - o cat file1.txt file2.txt > combined.txt
- Append content to an existing file using >>:
  - o cat file1.txt >> existingfile.txt







#### touch command

- The touch command in Linux is primarily used to create empty files and update the access and modification timestamps of existing files.
- How to use:
  - o touch filename.txt





## using cat with redirection ( > and >> )

- >> (Append Output to a File):
  - Redirects the output of a command to a file, **appending** it to the file instead of overwriting it.
  - o Example: command >> file
  - o Example with cat: cat file1.txt >> output.txt
  - This appends the contents of file1.txt to the end of output.txt.





#### what is grep ?

- grep (Global Regular Expression Print) is a powerful command-line tool used for searching text within files.
- It searches for a specific pattern in one or more files and displays the matching lines.
- Example: grep "hello" file.txt





#### using grep with the pipe (|) operator

- The pipe (|) is a shell operator that allows you to take the output of one command and pass it as input to another command.
- This is useful when you want to process or filter the output of a command using another command.





#### using grep with the pipe (|) operator

- When you use grep with a pipe, you're filtering the output of a previous command by searching for a specific pattern.
- Syntax:
  - o command | grep "pattern"
- The output of command is passed as input to grep, which then filters and displays lines containing the specified pattern





#### using grep with the pipe (I) operator

- Example:
  - o cat /var/log/syslog | grep "timeout"







#### strings Command

- What is strings?
  - The strings command is used to extract printable strings (text) from binary files or files that contain non-printable characters.
  - It searches through a file (usually a binary file) and outputs any sequence of printable characters that it finds.





#### strings Command

- Example:
  - strings executable.bin
- Example with | and grep:
  - o strings executable.bin | grep FLAG{
     Example output:
     FLAG{this\_is\_the\_flag\_1234}









#### what is ssh?

- Secure Shell (SSH) is a protocol for securely accessing remote systems over an encrypted connection.
- Used to manage remote servers, transfer files securely, and run commands remotely







#### basic ssh command:

ssh username@remote\_host

• If the ssh server is not running on the default port (22), then you have to specify the port:

ssh -p <port\_number> username@remote\_host







#### basic ssh command:

Example: Connect as user to the server on

192.168.1.10 on port 2222:

ssh -p 2222 user@192.168.1.10







#### common ssh options:

- -i <key\_file> Use a specific private key file for passwordless login
- scp Securely copy files to/from a remote server
   scp -P <port> local\_file username@remote\_host:/remote/path
- ssh-keygen Generate SSH keys for passwordless login





#### practice time

https://play.picoctf.org/

Classroom Code: CleCzOnr1 (its an omikron)

Practice -> Assignments -> Shell Basics

- 1. Super SSH
- 2. Magikarp Ground Mission



# Thank you for your attention!

