Datum:		Třída:
20.4.2023	SPŠ CHOMUTOV	А3
Číslo úlohy:		Příjmení:
20.	Měření charakteristik optočlenu	Lacek
	•	

Zadání: Změřte VA charakteristiku vysílače, změřte výstupní charakteristiku optronu a změřte dobu náběhu a doběhu

Schéma:

Výstupní charakteristika:

Dynamické vlastnosti:

Tabulka přístrojů:

Název přístroje:	Označení:	Údaje:	Ev. Číslo:
zdroj	U1	RXN 3010D	LE 5110
potenciometr	P1	105 Ω 2,5 A	LE1 343
ampérmetr	A1	6 A <u>□ 0,5</u> ☆	LE1 2313/17
číslicový voltmetr	ČV1	Keysight U3401A	LE 5096
optorn		WK 16412	
zdroj	U2	AX-12001 DBL	LE 5111
potenciometr	P ₂	250 Ω 1,6 Α	LE1 354
miliampérmetr	mA	600 mA <u>[] 0,5</u> 🏠	LE1 2172/5
číslicový voltmetr	ČV2	MX 553	LE2 5010
rezistor	R1	0 - 100 kΩ	LE1 1923
rezistor	R ₂	0 - 100 kΩ	LE1 1920
generátor		SDG 1020	LE 5077
osciloskop		RIGOL DS1052E	LE 5066

Teorie:

Optočlen je elektronický prvek, který slouží k přenosu signálu pomocí světelného záření místo elektrického signálu. Optočlen se skládá ze dvou základních částí: vysílače a přímače.

Vysílač může být buď LED, nebo laserová dioda. LED optočleny jsou většinou pomalejší a mají menší přenosovou rychlost než laserové optočleny, ale jsou méně nákladné a spotřebují méně energie.

Přímač je prvek, který reaguje na světelné záření a produkuje elektrický signál. Nejčastěji se používají fototranzistor, fotodioda nebo fotorezistor.

Optočleny se používají v mnoha aplikacích, například v telekomunikacích, kde se využívají pro přenos dat mezi různými zařízeními. Optočleny se také používají v průmyslových aplikacích, například v automatizované výrobě, kde slouží k přenosu signálů mezi různými senzory a řídícími systémy.

Optočleny mají několik výhod oproti elektrickým prvkům. Jsou imunní vůči elektromagnetickému rušení a mohou být použity v oblastech, kde by elektrické signály byly nebezpečné nebo nedostupné. Optočleny také umožňují galvanicky oddělit různé části obvodu, což zvyšuje spolehlivost a bezpečnost systému.

Postup:

Vyhledáme si mezní parametry tranzistoru.

VA charakteristiky vysílače:

Zapojíme obvod dle schématu pro měření výstupních charakteristik.

Budeme pracovat pouze s částí připojené k vysílači.

Změříme VA charakteristiku diody

Výstupní charakteristiky:

Nastavíme konstantní proud diodou, využijeme naměřenou VA charakteristiku diody.

Budeme nastavovat napětí na tranzistoru a odečítat proud.

Musíme si dávat pozor, abychom nepřekročili ani jeden z mezních parametrů.

Dynamické vlastnosti

Zapojíme obvod dle schématu pro měření dynamických vlastností.

Vypočítáme si velikosti rezistorů.

Na generátoru nastavíme obdélníkový průběh.

Z osciloskopu odečteme dobu náběhu a doběhu, některé osciloskopy mají zabudovanou funkci na odečet.

Naměřené hodnoty zpracujeme tabelárně a graficky a porovnáme s katalogovými hodnotami.

Mezní parametry:

 $U_{CEmax} = 6 V$

 $I_{Cmax} = 20 \text{ mA}$

 $P_{Cmax} = 50 \text{ mW}$

 $I_{Fmax} = 30 \text{ mA}$

Tabulka naměřených hodnot:

VA charakteristika vysílače

IF[mA]	U _F [V]
0,5	0,975
1,0	1,007
2,0	1,036
4,0	1,065
6,0	1,083
8,0	1,096
10,0	1,107
12,0	1,117
14,0	1,126
16,0	1,135
18,0	1,140
20,0	1,142
22,0	1,156
24,0	1,163

Výstupní charakteristiky:

If = 16 mA		
UCE[V]	Ic[mA]	
0,1	0,2	
0,2	1,2	
0,3	2,2	
0,5	3,8	
1,0	6,7	
1,5	9,0	
2,0	11,2	
2,5	13,0	
3,0	14,8	

IF = 18 mA			
Uce[V]	Ic[mA]		
0,1	0,3		
0,2	1,4		
0,3	2,4		
0,5	4,0		
1,0	6,8		
1,5	9,2		
2,0	11,4		
2,5	13,4		
3,0	15,2		

Výpočty:

$$R_1 = \frac{U_{TTL} - U_F}{I_F} = \frac{5 - 1,14}{0,018} = 214,4\Omega$$

$$R_2 = \frac{U_{TTL}}{I_C} = \frac{5}{0,0114} = 438,6\Omega$$

Grafy:

VA charakteristika přímače

Výstupní charakteristika

Dynamické vlastnosti:

Závěr:

Doba náběhu a doběhu byli kratší, než udává výrobce v katalogu.

VA charakteristiky optočlenu vyšly podle našich očekávání.

Při měření nás omezoval nedostatek odkládacího místa na stole pro velké množství měřících přístrojů.

Měření jsme zvládli s časovou rezervou.