74HC158

Quad 2-input multiplexer; inverting Rev. 03 — 12 November 2004

Product data sheet

General description 1.

The 74HC is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). The 74HC158 is specified in compliance with JEDEC standard no. 7A.

The 74HC158 is a quad 2-input multiplexer which select 4 bits of data from two sources and are controlled by a common data select input (S). The four outputs present the selected data in the inverted form. The enable input (\overline{E}) is active LOW.

When \overline{E} is HIGH, all the outputs $(1\overline{Y} \text{ to } 4\overline{Y})$ are forced HIGH regardless of all other input conditions.

Moving the data from two groups of registers to four common output buses is a common use of the 74HC158. The state of S determines the particular register from which the data comes. It can also be used as a function generator.

The device is useful for implementing highly irregular logic by generating any four of the 16 different functions of two variables with one variable common.

The 74HC158 is the logic implementation of a 4-pole, 2-position switch, where the position of the switch is determined by the logic levels applied to S.

The logic equations for the output are:

 $1\overline{Y} = \overline{E}.(111.S + 110.\overline{S})$

 $2\overline{Y} = \overline{E}.(211.S + 210.\overline{S})$

 $3\overline{Y} = \overline{E}.(311.S + 310.\overline{S})$

 $4\overline{Y} = \overline{E}.(411.S + 410.\overline{S})$

The 74HC158 is identical to the 74HC157 but has inverting outputs.

Features 2.

- Low-power dissipation
- Inverting data path
- Complies with JEDEC standard no. 7A
- ESD protection:
 - HBM EIA/JESD22-A114-B exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V.
- Multiple package options
- Specified from -40 °C to +80 °C and from -40 °C to +125 °C.

Quad 2-input multiplexer; inverting

3. Quick reference data

Table 1: Quick reference data $GND = 0 \ V; T_{amb} = 25 \ ^{\circ}C; t_f = t_f = 6 \ ns.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHL} , t _{PLH}	propagation delay	$C_L = 15 \text{ pF};$ $V_{CC} = 5 \text{ V}$				
	nI0, nI1 to nY		-	12	-	ns
	Ē to nŸ		-	14	-	ns
	S to n\overline{Y}		-	14	-	ns
C _I	input capacitance		-	3.5	-	pF
C _{PD}	power dissipation capacitance per multiplexer	$V_I = GND \text{ to } V_{CC}$	[1] -	40	-	pF

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \sum (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

4. Ordering information

Table 2: Ordering information

Type number	Package	Package										
	Temperature range	Name	Description	Version								
74HC158N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4								
74HC158D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1								

Quad 2-input multiplexer; inverting

5. Functional diagram

Quad 2-input multiplexer; inverting

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3: Pin description

Table 5.	i ili description	
Symbol	Pin	Description
S	1	common data select input
110	2	data input 1 from source 0
111	3	data input 1 from source 1
1 	4	multiplexer output 1
210	5	data input 2 from source 0
211	6	data input 2 from source 1
2 Y	7	multiplexer output 2
GND	8	ground (0 V)
$3\overline{Y}$	9	multiplexer output 3
311	10	data input 3 from source 1
310	11	data input 3 from source 0
$4\overline{Y}$	12	multiplexer output 4
411	13	data input 4 from source 1
410	14	data input 4 from source 0
Ē	15	enable input (active LOW)
V_{CC}	16	positive supply voltage

7. Functional description

7.1 Function table

Table 4: Function [1]

Control		Input		Output
Ē	S	nI0	nl1	nΥ
Н	X	X	X	Н
L	L	L	Χ	Н
		Н	Χ	L
	Н	Χ	L	Н
		X	Н	L

^[1] H = HIGH voltage level;

Quad 2-input multiplexer; inverting

L = LOW voltage level;

X = don't care.

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Quad 2-input multiplexer; inverting

10	,				
Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	V
I _{IK}	input diode current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{OK}	output diode current	$V_O < -0.5 \text{ V or}$ $V_O > V_{CC} + 0.5 \text{ V}$	-	±20	mA
Io	output source or sink current	$V_{O} = -0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$	-	±25	mA
I_{CC} , I_{GND}	V _{CC} or GND current		-	±50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation				
	DIP16 package		[1] _	750	mW
	SO16 package		[2] _	500	mW

^[1] Above 70 °C: P_{tot} derates linearly with 12 mW/K.

9. Recommended operating conditions

Table 6: Recommended operating conditions

Parameter	Conditions	Min	Тур	Max	Unit
supply voltage		2.0	5.0	6.0	V
input voltage		0	-	V_{CC}	V
output voltage		0	-	V_{CC}	V
input rise and fall times	$V_{CC} = 2.0 \text{ V}$	-	-	1000	ns
	$V_{CC} = 4.5 \text{ V}$	-	6.0	500	ns
	$V_{CC} = 6.0 \text{ V}$	-	-	400	ns
ambient temperature		-40	-	+125	°C
	supply voltage input voltage output voltage input rise and fall times ambient	supply voltage input voltage output voltage input rise and fall times	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	supply voltage $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^[2] Above 70 °C: P_{tot} derates linearly with 8 mW/K.

Quad 2-input multiplexer; inverting

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T_{amb} = 25 $^{\circ}$	C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A$; $V_{CC} = 2.0 \text{ V}$	1.9	2.0	-	V
		$I_{O} = -20 \mu A$; $V_{CC} = 4.5 \text{ V}$	4.4	4.5	-	V
		$I_{O} = -20 \mu A$; $V_{CC} = 6.0 \text{ V}$	5.9	6.0	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	V
√ _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 \text{ V}$	-	0	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	V
ы	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	μΑ
СС	quiescent supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	μΑ
Cı	input capacitance		-	3.5	-	pF
Γ _{amb} = −40	°C to +85 °C					
√ _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
/ _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
√ _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A$; $V_{CC} = 2.0 \text{ V}$	1.9	-	-	V
		$I_O = -20 \mu\text{A}; V_{CC} = 4.5 \text{V}$	4.4	-	-	V
		$I_O = -20 \mu\text{A}; V_{CC} = 6.0 \text{V}$	5.9	-	-	V
		I _O = -4 mA; V _{CC} = 4.5 V	3.84	-	-	V
		$I_O = -5.2 \text{ mA; } V_{CC} = 6.0 \text{ V}$	5.34	-	-	V

Quad 2-input multiplexer; inverting

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions t voltage V. – V or V	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 \text{ V}$	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.33	V
ILI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	80	μΑ
T _{amb} = -40	°C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A; V_{CC} = 2.0 V$	1.9	-	-	V
		$I_{O} = -20 \mu A$; $V_{CC} = 4.5 V$	4.4	-	-	V
		$I_{O} = -20 \mu A; V_{CC} = 6.0 V$	5.9	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A; V_{CC} = 2.0 \text{ V}$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 \text{ V}$	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μΑ
I _{CC}	quiescent supply current	$V_1 = V_{CC}$ or GND; $I_0 = 0$ A; $V_{CC} = 6.0$ V	-	-	160	μΑ

11. Dynamic characteristics

Table 8: Dynamic characteristics

 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF; \ see \ Figure \ 8.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
t _{PHL} , t _{PLH}	propagation delay nI0, nI1 to $n\overline{Y}$	see Figure 6				
		$V_{CC} = 2.0 \text{ V}$	-	41	125	ns
	propagation delay nl0, nl1 to n\overline{Y} propagation delay \overline{E} to n\overline{Y} propagation delay S to n\overline{Y} output transition time power dissipation capacitance per multiplexer 40 °C to +85 °C propagation delay nl0, nl1 to n\overline{Y} propagation delay \overline{E} to n\overline{Y}	$V_{CC} = 4.5 \text{ V}$	-	15	25	ns
		$V_{CC} = 6.0 \text{ V}$	-	12	21	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	12	-	ns
	propagation delay \overline{E} to $n\overline{Y}$	see Figure 7				
		V _{CC} = 2.0 V	-	47	145	ns
		V _{CC} = 4.5 V	-	17	29	ns
		V _{CC} = 6.0 V	-	14	25	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	14	-	ns
	propagation delay S to $n\overline{Y}$	see Figure 6				
		V _{CC} = 2.0 V	-	47	145	ns
		V _{CC} = 4.5 V	-	17	29	ns
		V _{CC} = 6.0 V	-	14	25	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		14	-	ns
t _{THL} , t _{TLH}	output transition time	see Figure 6 and 7				
		V _{CC} = 2.0 V	-	19	75	ns
		V _{CC} = 4.5 V	-	7	15	ns
		V _{CC} = 6.0 V	-	6	13	ns
C _{PD}	power dissipation capacitance per multiplexer	$V_I = GND$ to V_{CC}	<u>[1]</u> _	40	-	pF
T _{amb} = -40	°C to +85 °C					
t _{PHL} , t _{PLH}	propagation delay nI0, nI1 to nY	see Figure 6				
		V _{CC} = 2.0 V	-	-	155	ns
		V _{CC} = 4.5 V	-	-	31	ns
		V _{CC} = 6.0 V	-	-	26	ns
	propagation delay \overline{E} to $n\overline{Y}$	see Figure 7				
		V _{CC} = 2.0 V	-	-	180	ns
		V _{CC} = 4.5 V	-	-	36	ns
		V _{CC} = 6.0 V	-	-	31	ns
	propagation delay S to $n\overline{Y}$	see Figure 6				
		V _{CC} = 2.0 V	-	-	180	ns
		V _{CC} = 4.5 V	-	-	36	ns
		V _{CC} = 6.0 V	-	-	31	ns
t _{THL} , t _{TLH}	output transition time	see Figure 6 and 7				
	•	V _{CC} = 2.0 V	-	-	95	ns
		V _{CC} = 4.5 V	-	-	19	ns
		V _{CC} = 6.0 V		_	16	ns

io 13805 © Koninklijke Philips Electronics N.V. 2004. All rights reserved.

9397 750 13805

Product data sheet

Quad 2-input multiplexer; inverting

Parameter	Conditions	Min	Тур	Max	Unit
°C to +125 °C					
propagation delay nl0, nl1 to n \overline{Y}	see Figure 6				
	V _{CC} = 2.0 V	-	-	190	ns
	V _{CC} = 4.5 V	-	-	38	ns
	V _{CC} = 6.0 V	-	-	32	ns
propagation delay \overline{E} to $n\overline{Y}$	see Figure 7				
	V _{CC} = 2.0 V	-	-	220	ns
	V _{CC} = 4.5 V	-	-	44	ns
	V _{CC} = 6.0 V	-	-	38	ns
propagation delay S to $n\overline{Y}$	see Figure 6				
	V _{CC} = 2.0 V	-	-	220	ns
	V _{CC} = 4.5 V	-	-	44	ns
	V _{CC} = 6.0 V	-	-	38	ns
output transition time	see Figure 6 and 7				
	V _{CC} = 2.0 V	-	-	110	ns
	V _{CC} = 4.5 V	-	-	22	ns
	V _{CC} = 6.0 V	-	-	19	ns
	propagation delay nI0, nI1 to n \overline{Y} propagation delay \overline{E} to n \overline{Y} propagation delay S to n \overline{Y}		$ \begin{array}{c} \text{propagation delay nI0, nI1 to n\overline{Y}} & \begin{array}{c} \text{see Figure 6} \\ \hline V_{CC} = 2.0 \text{ V} \\ \hline V_{CC} = 4.5 \text{ V} \\ \hline V_{CC} = 6.0 \text{ V} \end{array} \\ \\ \text{propagation delay \overline{E} to n\overline{Y}} & \begin{array}{c} \text{see Figure 7} \\ \hline V_{CC} = 2.0 \text{ V} \\ \hline V_{CC} = 2.0 \text{ V} \\ \hline \hline V_{CC} = 6.0 \text{ V} \end{array} \\ \\ \text{propagation delay S to n\overline{Y}} & \begin{array}{c} \text{see Figure 6} \\ \hline V_{CC} = 2.0 \text{ V} \\ \hline \hline V_{CC} = 2.0 \text{ V} \\ \hline \hline V_{CC} = 4.5 \text{ V} \\ \hline \hline V_{CC} = 6.0 \text{ V} \end{array} \\ \\ \text{output transition time} & \begin{array}{c} \text{see Figure 6} \\ \hline V_{CC} = 2.0 \text{ V} \\ \hline \hline V_{CC} = 6.0 \text{ V} \end{array} \\ \\ \text{output transition time} & \begin{array}{c} \text{see Figure 6} \\ \hline V_{CC} = 2.0 \text{ V} \\ \hline \hline V_{CC} = 4.5 \text{ V} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \text{output transition time} \\ \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \sum (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

12. Waveforms

9397 750 13805

Quad 2-input multiplexer; inverting

 $V_M = 0.5 \times V_I$.

Fig 7. Waveforms showing the enable input (\overline{E}) to output $(n\overline{Y})$ propagation delays and the output transition times

Test data is given in Table 9.

Definitions for test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

C_L = Load capacitance including jig and probe capacitance.

Fig 8. Load circuitry for switching times

Table 9: Test data

Supply	Input	Load	
V _{CC}	VI	t _r , t _f	C _L
2.0 V	V _{CC}	6 ns	50 pF
4.5 V	V _{CC}	6 ns	50 pF
6.0 V	V _{CC}	6 ns	50 pF
5.0 V	V _{CC}	6 ns	15 pF

Quad 2-input multiplexer; inverting

13. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

	•															
UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.03

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT38-4						95-01-14 03-02-13

Fig 9. Package outline SOT38-4 (DIP16)

9397 750 13805

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.014 0.0075

0.38

0.15

OUTLINE	REFERENCES				EUROPEAN	ICCUE DATE
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012				99-12-27 03-02-19

0.228

0.016

Fig 10. Package outline SOT109-1 (SO16)

0.049

0.004

9397 750 13805

0.012

Philips Semiconductors 74HC158

Quad 2-input multiplexer; inverting

14. Revision history

Table 10: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes	
74HC158_3	20041112	Product data sheet	-	9397 750 13805	74HC_HCT158_CNV_2	
Modifications:	 The format of this data sheet has been redesigned to comply with the current presentation and information standard of Philips Semiconductors. Removed type number 74HCT158. Inserted family specification. 					
74HC_HCT158_CNV_2	19970827	Product specification	-	-	74HC_HCT158_1	
74HC_HCT158_1	19901201	Product specification	-	-	-	

Quad 2-input multiplexer; inverting

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Quad 2-input multiplexer; inverting

19. Contents

1	General description
2	Features
3	Quick reference data 2
4	Ordering information 2
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning
6.2	Pin description 5
7	Functional description 5
7.1	Function table 5
8	Limiting values 6
9	Recommended operating conditions 6
10	Static characteristics 7
11	Dynamic characteristics 9
12	Waveforms
13	Package outline 12
14	Revision history
15	Data sheet status
16	Definitions
17	Disclaimers 15
18	Contact information 15

© Koninklijke Philips Electronics N.V. 2004

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

