

2019년 정보보호학회 담당 트랙 소개

- · <mark>주안점 다양성, 연속성</mark>
- · 2019년 게임봇 탐지 트랙
 - 다양한 분야 제공을 위해 신규 주제의 트랙 오픈
 - 기 게재되어 검증된 논문과 dataset 활용, academic follow-up research 활성화
 - 해당 참고 논문 주저자가 직접 문제 출제 담당
- 2017년의 차량 이상징후 탐지 트랙 → 2018 차량주행 데이터 기반 도난탐지 트랙
 → 2019 자동차용 침입탐지 트랙
 - 차량 보안 분야 트랙의 연속성 유지
 - 차량용 IDS 개발 분야에 응용 가능
 - 기 게재되어 검증된 논문과 dataset 활용, academic follow-up research 활성화
 - 해당 참고 논문 주저자가 직접 문제 출제 담당

2 | 17

Challenge

게임봇(Game Bot) 탐지 알고리즘 개발

MMORPG와 같은 온라인 게임에서 게임 내 재화, 아이템의 환금성을 악용하여 대량의 캐릭터를 운용하여 수입을 얻는 "작업장"은 게임 밸런스를 해치고 게임 회사와 일반 이용자에게 큰 피해를 주고 있습니다.

작업장에서 이용하는 게임봇은 환금성이 있는 재화나 아이템을 채굴하기 위해 특정 행위를 반복하는 경우가 많습니다.

✓ 제공된 게임 데이터를 분석하여 게임봇을 탐지할 수 있는 알고리즘 및 프로그램을 제시하시기 바랍니다.

3 17

배경

게임 **봇:** 사람 대신 자동으로 게임을 플레이해주는 프로그램. 휴식 없이 24시간 게임을 진행할 수 있기 때문에 게임 재화 및 아이템을 빠르게 습득할 수 있음.

- □ 게임 내 설계된 컨텐츠를 빠르게 소진하여 게임 수명이 짧아지게 만드는 요인 중 하나
- □ 일반 유저의 게임 플레이에 방해가 되어 불평 발생

제외

(게임 봇과는 유형이 다른 불법 프로그램으로, <u>본 트랙에서는</u> 탐지 대상에서 제외)

[데미지 핵]

데이터셋

AION 게임 로그 데이터셋

- □ 2008년 11월부터 엔씨소프트에서 서비스 중인 MMORPG
- □ https://aion.plaync.com/

□ 유저의 다양한 활동이 기록된 양질의 게임 로그 제공

• 2010년 게임 흥행 당시의 실제 로그를 분석할 수 있는 기회

- 레벨업, 비행, 결투 등 플레이어의 기본적인 행위와 관련된 로그
- 아이템 획득, 사용과 관련된 로그
- NPC, 몬스터, 펫과 관련된 로그

데이터셋

AION 게임 로그 데이터셋

- □ 2010년 4~7월의 실제 플레이 데이터를 활용 예정
- □ 개인정보가 포함된 데이터는 비식별 처리하여 제공 (계정 ID, IP 주소 등)
- □ 게임 봇 탐지 대표 논문
 - Kang, A. R., Jeong, S. H., Mohaisen, A., & Kim, H. K. (2016). Multimodal game bot detection using user behavioral characteristics. *SpringerPlus*, *5*(1), 1-19.
- □ 예선: 게임봇이 포함된 일정기간(약 2주치)의 게임 액션 로그
 - 분석에 도움이 되도록 일부 게임봇/일반유저의 식별자(ID)를 제공
 - 제공한 게임봇 식별자 외 데이터셋에 포함된 모든 게임봇을 찾아 목록 제출
- □ 본선: 예선과 다른 기간의 게임 액션 로그
 - 개발한 알고리즘을 이용하여 당일 새로 제공되는 게임 로그에서 게임봇을 탐지하여 결과 제출

구분	게임 로그	정답지 여부
예선	약 2주간의 액션 로그	일부 게임봇/일반유저 목록 제공
본선	TBD (본선 진행 시간을 고려하여 규모 조정)	미제공

* 데이터셋 규모 및 정답지 여부는 진행상황에 따라 조정될 수 있음

운영방식

온라인 예선(10.1~11월 중), 오프라인 본선(11~12월 중) 진행

온라인 예선 (2019.10.1~2019.11)

홈페이지 신청

- 개인, 팀(최대 5인) 신청
- 트랙 다중 신청 가능

데이터셋 배포

• 신청자에 한해 다운로드 링크 제공

결과물 제출

- 탐지결과파일(CSV)
- 알고리즘 설명 문서
- 프로그램

예선결과 심사 (2019.11)

제출물 심사

• 결격사유 만족 시 제외 (서류 누락, 허위 작성 등)

상위 팀 선정

• 탐지율 높은 순

본선진출자 발표

• 홈페이지 공지 및 개별 연락

오프라인 본선 (2019.11~2019.12)

데이터셋 배포

- 본선 진행 안내
- 데이터셋 배포 (예선 결과에 따라 난이도 조정)

탐지결과 제출

- 최대 3~5회 제출 가능
- 마지막 제출결과로 점수반영

프레젠테이션

- 알고리즘, 분석내용 발표
- 탐지율과 발표점수 합산하여 최종순위 산출

수상 (2019.12 中)

시상식

• 본선 최종순위에 따라 수상

기술공유 세미나

- 챌린지 수상자, 업계 관계자 등 참석
- 상세 일정 협의 中

상세 진행방식

예선 (온라인)

- □ 진행기간
 - 2019. 10. 1~11월 중
- □ 신청방법
 - 데이터 챌린지 홈페이지를 통해 신청 양식 작성 및 제출 (datachallenge.kr)
 - 신청자에 한해 예선 데이터셋 다운로드 URL 및 파일 비밀번호 배포
- □ 결과물 제출
 - 탐지결과파일(CSV), 알고리즘 설명 문서, 프로그램
 - 제출 방법은 사이트를 통해 공지
- □ 평가
 - 탐지정확도 100%
 - 탐지정확도는 "평가방법 탐지정확도" 참고
 - 알고리즘 설명 문서와 프로그램은 치팅 여부 검증을 위한 목적으로만 활용

8 17

상세 진행방식

본선 (오프라인)

- □ 본선 진출자 발표
 - 예선 결과물을 채점하여 탐지정확도 순으로 상위 팀 선정 (5~10여개 팀)
 - 홈페이지 공지 및 개별 연락(이메일)
- □ 진행일자
 - 2019년 11~12월 중 (1일)
- □ 본선 진행
 - 당일 새로운 게임 데이터셋 배포
 - 탐지 결과는 여러 번 제출 가능 (최대 3~5회로 제한 예정)
 - 본선 당일 알고리즘 및 분석내용 발표 진행 (약 10분 발표, 5분 질의)
- □ 평가
 - 탐지정확도 80%, 발표 점수 20% 합산
 - 탐지정확도
 - 마지막 제출한 결과를 최종 점수로 반영
 - 발표
 - 문제 해결 방법의 논리성, 창의성 위주로 채점

9 17

평가방법

탐지정확도(F1-score)

카테고리		실제결과	
		게임봇	일반 유저
실험결과	게임봇	True Positive (TP)	False Positive (FP)
	일반 유저	False Negative (FN)	True Negative (TN)

- Precision은 "정밀도"로써 게임봇으로 예측한 유저 중 실제로 게임봇인 유저의 비율을 나타냄
- Recall은 "재현율"로써 실제로 게임봇인 유저 중 게임봇으로 정확히 예측한 유저의 비율을 나타냄

Precision =
$$\frac{TP}{TP + FP}$$
, Recall = $\frac{TP}{TP + FN}$

• F1-Score는 Precision과 Recall의 조화평균으로, 일반 유저가 게임봇보다 많은 상황에서 성능을 합리적으로 평가할 수 있음

$$F1$$
-Score = $2 \times \frac{Precision \times Recall}{Precision + Recall}$

Thank You

