re¹ Notas de Álgebra Moderna IV. Módulos Janiel Alvarado 31 de octubre de 2024 aniel Alvarado ESEM

Cristo Daniel Alvarado ES

Índice general

Índice general	Sujer Stado ESt	
Orro.		
1. Módulos, Homomorfismos y Secuencias exactas		2
	los	2
10 5		8
1.3. Referencias		9
2. Módulos Libres y Espacio	s Vectoriales	10
2.1. Conceptos Fundamental	es	

Capítulo 1

Módulos, Homomorfismos y Secuencias exactas

1.1. Módulos y homomorfismos

Los módulos son una generalización de los grupos abelianos y lo enteros (los cuales son módulos sobre \mathbb{Z}).

Definición 1.1.1

Sea R un anillo no trivial. Decimos que R es un **anillo de división**, si R es unitario y para cada $a \in A$ existe $a^{-1} \in A$.

Si R es conmutativo, entonces R es un campo.

Definición 1.1.2

Sea R un anillo, un R-módulo (izquierdo) es un grupo abeilano A junto con una función $\cdot : R \times A \to A$ (denotada simplemente por $(r, a) \mapsto ra$) tal que para todo $r, s \in R$ y para todo $a \in A$:

- (1) r(a+b) = ra + rb.
- (2) (r+s)a = ra + sa.
- (3) r(sa) = (rs)a.

si R además tiene elemento identidad 1_R y se cumple que

(4) $1_R a = a$, para todo $a \in A$.

entonces decimos que A es un R-módulo unitario (izquierdo). En caso de que R sea un anillo de división, el módulo unitario A será llamado espacio vectorial (izquierdo).

De forma análoga podemos definir los R-módulos derechos, cambiando el orden en el que se hacen las operaciones. Sin embargo, a lo largo del texto solo trabajaremos con módulos izquierdos y todos los resultados que se prueben para esto, también se cumplirán para los derechos.

Ejercicio 1.1.1

Sea A un R-módulo izquierdo. Si R es conmutativo, podemos hacer de A un R-módulo derecho

definiendo:

$$ar = ra, \quad \forall a \in A \ y \ \forall r \in R$$

Demostración:

Considere la función de $\cdot : A \times R \to A$ dada por:

$$(a,r) \mapsto ar = ra, \quad \forall (a,r) \in A \times R$$

Afirmamos que esta función hace de A un R-módulo derecho. En efecto, debemos verificar tres condiciones, sean $r, s \in R$ y $a, b \in A$:

(1) Se tiene que:

$$(a+b)r = r(a+b)$$
$$= ra + rb$$
$$= ar + br$$

(2) Se tiene que:

$$a(r+s) = (r+s)a$$
$$= ra + sa$$
$$= ar + as$$

(3) Se tiene que:

$$(as)r = r(as)$$

 $= r(sa)$
 $= (rs)a$, como R es conmutativo:
 $= (sr)a$
 $= a(sr)$

por los tres incisos anteriores se sigue que A es un R-módulo derecho.

Observación 1.1.1

A menos que se especifique lo contrario, todo R-módulo A sobre un anillo conmutativo R será izquierdo y derecho haciendo:

$$ra = ar, \quad \forall a \in A \ y \ \forall r \in R$$

Observación 1.1.2

Denotaremos al elemento identidad de un R-módulo A por 0_A , y al elemento neutro de R por 0_R .

Proposición 1.1.1

Sea A un R-módulo, entonces:

$$r0_A = 0_A \quad \text{y} \quad 0_R a = 0_A$$

para todo $r \in R$ y para todo $a \in A$.

Demostración:

Sea $r \in R$, se tiene que:

$$r0_A = r(0_A + 0_A) = r0_A + r0_A \Rightarrow r0_A = 0_A$$

y, para todo $a \in A$:

$$0_R a = (0_R + 0_R)a = 0_R a + 0_R a \Rightarrow 0_R a = 0_A$$

Por lo que, en lo que sigue del texto se denotará por 0 a $0_A, 0_R, 0 \in \mathbb{Z}$ y al módulo trivial $\{0\}$.

Ejemplo 1.1.1

Todo grupo abeliano G es un \mathbb{Z} módulo unitario izquierdo (en particular, puede ser derecho por ser abeliano), bajo la operación $(n, a) \mapsto na$, siendo na la suma de a consigo mismo n-veces.

Ejemplo 1.1.2

Si S es un anillo y R es un subanillo, entonces S es un R-módulo (pero no al revés, ya que puede que la operación se salga de S) con ra siendo $r \in R$ y $a \in S$. En particular, los anillos:

$$R[x_1, ..., x_n]$$
 y $R[[x]]$

son R-módulos, los cuáles son unitarios si R posee identidad.

Ejemplo 1.1.3

Sean R, S anillos y $\varphi: R \to S$ un homomorfismo de anillos. Entonces todo S-módulo puede hacerse un R-módulo definiendo rx (con $x \in A$) por $\varphi(r)x$, esto es:

$$rx = \varphi(r)x$$

donde la operación de la derecha se toma en el S-módulo, A. En este caso se dice que la estructura de R-módulo de A está dada por el **pullback a lo largo de** φ .

Definición 1.1.3

Sean A y B módulos sobre un anillo R. Una función $f:A \to B$ es un **homomorfismo de** R-módulos, si para todo $a,b \in A$ y para todo $r \in R$ se tiene que:

$$f(a+b) = f(a) + f(b) \quad y \quad f(ra) = rf(a)$$

si R es un anillo de división, entonces f es llamada transformación lineal.

En el contexto actual, los homomorfismos de R-módulos serán simplemente llamados homomorfismos. Se adopta la misma terminología de monomorfismo, epimorfismo e isomorfismo. Se define también de forma análoga el **núcleo** o **kernel** de f por:

$$\ker(f) = \left\{ a \in A \middle| f(a) = 0 \right\}$$

con lo que se tienen los siguientes resultados (que provienen directamente de lo probado en anillos):

Teorema 1.1.1

Sean A y B dos R-módulos y $f: A \to B$ un homomorfismo.

(a) f es monomorfismo si y sólo si $ker(f) = \{0\}$.

(b) f es isomorfismo si y sólo si existe un homomorfismo de R-módulos $g: B \to A$ tal que $g \circ f = \mathbbm{1}_A$ y $f \circ g = \mathbbm{1}_B$.

Ejemplo 1.1.4

Todo homomorifsmo entre grupos abelianos es un homomorfismo de Z-módulos.

Ejemplo 1.1.5

Si R es un anillo, la función de R[x] en R[x] dada por: $f(x) \mapsto xf(x)$ es un homomorfismo de R-módulos, pero no es un homomorfismo de anillos (no separa productos).

Observación 1.1.3

Para un anillo R dado, la clase de todos los R-módulos forma una categoría concreta, denotada por \mathcal{M}_R para los módulos derechos y $_R\mathcal{M}$ para los izquierdos.

Definición 1.1.4

Sea R un anillo, A un R-módulo y $B \subseteq A$ un subconjunto no vacío. Se dice que B es un submódulo de A si B es un subgrupo aditivo de A y, para todo $r \in R$ se tiene que:

$$rb \in B, \quad \forall b \in B$$

un submódulo de un espacio vectorial es llamado subespacio vectorial.

Observación 1.1.4

Todo submódulo es en sí mismo un módulo. Todo submódulo de un módulo unitario es también untario.

Ejemplo 1.1.6

Si $\{B_i | i \in I\}$ es una familia de submódulos de un módulo A, entonces $\bigcap_{i \in I} B_i$ es un submódulo de A.

Definición 1.1.5

Sea A un R-módulo y $X \subseteq A$, entonces la intersección de todos los submódulos que contienen a X es llamado el **submódulo generado por** X.

- Si X es finito y X genera al módulo B, se dice que B es **finitamente generado**. Si X tiene un solo elemento, se dice que B es un **módulo cíclico**.
- Si $\{B_i\}_{i\in I}$ es una familia de submódulos de A, entonces el submódulo generado por $\bigcup_{i\in I} B_i$ es llamado la **suma de los módulos** B_i . Si el conjunto I es finito, esto se denota por:

$$B_1 + \cdots + B_n$$

Teorema 1.1.2

Sea R un anillo, A un R-módulo, $X \subseteq X$, $\{B_i\}_{i \in I}$ una familia de submódulos de A y $a \in A$. Tomemos $Ra = \{ra | r \in R\}$.

(a) Ra es un submódulo de A y la función de R en Ra dada por $r\mapsto ra$ es un epimorfismo de R-módulos.

(b) El submódulo cíclico C generado por a es

$$\left\{ ra + na \middle| r \in R, n \in \mathbb{Z} \right\}$$

si R tiene identidad y C es unitario, entonces C = Ra.

(c) El submódulo D generado por X es:

$$\left\{ \sum_{i=1}^{s} r_i a_i + \sum_{j=1}^{t} n_j b_j \middle| s, t \in \mathbb{N}^*; a_i, b_j \in X; r_i \in R; n_j \in \mathbb{Z} \right\}$$

si R tiene identidad y A es unitario, entonces:

$$D = RX = \left\{ \sum_{i=1}^{s} r_i a_r \middle| i \in \mathbb{N}^*; r_i \in R; a_i \in X \right\}$$

(d) La suma de la familia $\{B_i | i \in I\}$ consiste de todas las sumas finitas $b_1 + \cdots + b_{i_n}$ con $b_{i_k} \in B_{i_k}$ para todo k = 1, ..., n.

Demostración:

De (a): Veamos que Ra es un R-módulo. Claramente s(ra) está bien definida (sigue en Ra ya que A es un R-módulo). Veamos que:

• Sean $ra, sa \in Ra$, entonces:

$$t(ra + sa) = t(ra) + t(sa)$$

• Sean $r, s \in R$ y $ta \in Ra$, entonces:

$$(r+s)(ta) = ((r+s)t)a$$
$$= (rt+st)a$$
$$= (rt)a + (st)a$$
$$= r(ta) + s(ta)$$

• Sean $r, s \in R$ y $ta \in Ra$, entonces:

$$r(s(ta)) = r((st)a)$$

$$= (r(st))a$$

$$= ((rs)t)a$$

$$= (rs)(ta)$$

por tanto, Ra es un R-módulo. Claramente la función $r\mapsto ra$ es un epimorfismo de módulos.

De (b): Sea C el submódulo cíclico generado por a, esto es, es la intersección de todos los submódulos que contienen a a.

Teorema 1.1.3

Sea B un submódulo de un módulo A sobre un anillo R. Entonces, el grupo cociente A/B es un R-módulo con la acción de R en A/B dada por:

$$r(a+B) = ra + B, \quad \forall r \in R \ y \ \forall a \in A$$

Cristo Daniel Alvarado ESFM

Cristo

Demostración:

1.2. Ejercicios

Observación 1.2.1

R es un anillo.

Ejercicio 1.2.1

Si A es un grupo abeliano y n > 0 es natural tal que na = 0 para todo $a \in A$, entonces A es un $\mathbb{Z}/\mathbb{Z}n$ -módulo untario con la acción dada por:

$$[k]a = ka, \quad \forall k \in \mathbb{Z}$$

Demostración:

Veamos que en efecto, A es un $\mathbb{Z}/\mathbb{Z}n$ -módulo:

1.3.

Algebra de Thomas Hungerford, ed. Springer. Cristo Daniel Alvarado ESFM Cristo Danie

Capítulo 2

Módulos Libres y Espacios Vectoriales

2.1. Conceptos Fundamentales

No queda de otra más que asumir este resultado de categorías:

Teorema 2.1.1 (Hungerford, Theorem I.7.8)

Si \mathcal{C} es una categoría concreta, F y F' son objetos en C tales que F es libre en el conjunto X y F' lo es en X' siendo estos conjuntos tales que |X| = |X'|, entonces F es equivalente a F'.

En particular, la categoría de R-módulos unitarios es una categoría concreta, donde la equivalencia entre dos objetos de la categoría es un isomorfismo entre ambos R-módulos.

Teorema 2.1.2

Sea R un anillo conmutativo con identidad. Las siguientes condiciones son equivalentes en un R-módulo unitario F:

- I. F tiene base no vacía.
- II. F es la suma interna directa de una familia cíclica de R-módulos, cada uno de los cuales es isomorfo a R como un R-módulo.
- III. F es un R-módulo isomorfo a la suma directa de copias del R-módulo izquierdo R.
- IV. Existe un conjunto no vacío X y una función $i:X\to F$ con la siguiente propiedad: dado un R-módulo, A y una función $f:X\to A$ existe un único homomorfismo de R-módulos $\overline{f}:F\to A$ tal que

$$\overline{f}\circ i=f$$

En otras palabras, F es un objeto libre en la categoría de R-módulos uniatrios.

Demostración:

 $(i)\Rightarrow (iv)$: Sea X una base no vacía de F y sea $i:X\to F$ el mapeo inclusión. Sea A un R-módulo y $f:X\to A$ una función.

Si $u \in F$, entonces existen $n \in \mathbb{N} \cup \{0\}$, $r_i \in R$ y $x_i \in X$, para todo $i \in \{1, ..., n\}$ tales que

$$u = \sum_{i=1}^{n} r_i x_i$$

Definimos la función $\overline{f}: F \to A$ dada por:

$$\overline{f}(u) = \sum_{i=1}^{n} r_i f(x_i)$$

Esta función está bien definida, pues F tiene como base a X (por ende, todo elemento se representa de forma única como combinación lineal finita de elementos de X). Además,

$$\overline{f} \circ i(x_i) = \overline{f}(x_i)$$

$$= 1_R \cdot f(x_i)$$

$$= f(x_i), \quad \forall x_i \in X$$

por ende, $\overline{f} \circ i = f$.

Veamos que es homomorfismo de R-módulos (no sé como se verifica eso, chécalo porfa Roque).

Ahora, si $g: F \to A$ es otro homomorfismo de R-módulos tal que

$$g \circ i = f$$

se tiene que

$$\overline{f} \circ i = g \circ i \Rightarrow \overline{f}|_X = g|_X$$

Como X genera F y todo homomorfismo de R-módulos que vaya de F en algún R-módulo, B queda únicamente determinado por X, basta ver que $\overline{f}=g$ en X, lo cual sucede por la igualdad anterior. Por tanto, \overline{f} es único.

 $(iv)\Rightarrow (iii)$: Asumiendo (iv), sean $X\subseteq F$ no vacío y una función $i:X\to F$ que cumplan esta propiedad. Considere el R-módulo

$$A = \sum_{x \in X} R$$

(es decir, es la suma directa de |X|-veces el R-módulo izquierdo R). Sea

$$Y = \left\{ \theta_x \middle| x \in X \right\}$$

donde

$$\theta_x(y) = \begin{cases} 1_R & \text{si} \quad y = x \\ 0_R & \text{si} \quad y \neq x \end{cases}, \quad \forall y \in Y$$

Como X es no vacío, entonces Y es no vacío. Por la parte $(iii) \Rightarrow (i)$, se sabe que Y es una base del R-módulo unitario A. En particular, como $(iii) \Rightarrow (iv)$, se tiene que A es un R-módulo libre en la categoría de R-módulos unitarios.

En particular, F y A son R-módulos libres en la categoría de R-módulos unitarios y son tales que |X| = |Y| (por la forma en que se construyó Y), luego por el Teorema anterior son equivalentes en esta categoría, es decir que existe un isomorfismo $f: F \to A$. Así que

$$F\cong \sum_{x\in X}R$$

lo que prueba el resultado.