Michał Bronikowski Zadania numer: 1,2,7,8

Zadanie 1

Udowodnij, że liczba funkcji różnowartościowych z n-elementowego zbiory $A\le m$ elementowy zbiór B wynosi $\frac{m!}{(m-n)!}$.

Rozwiązanie:

Tworząc funkcje różnowartościowe z A w B na początku wybieram pierwszą wartość f-cji na m sposobów drugą na m-1 trzecią na m-2 itd. W ogólności:

$$m(m-1)(m-2)...(m-n+1) = \frac{m!}{(m-n)!}$$

Zadanie 2

Czy wśród liczb $1, 2, ..., 10^{10}$ zapisanych w systemie dziesiętnym jest więcej tych zawierających cyfrę 9, czy tych, które jej nie zawierają?

Rozwiązanie:

Wszystkich liczb w tym przedziale jest 10^{10} , liczb nie zawierających 9 jest 9^{10} . Ilość liczb zawierających 9 jest równa: $10^{10}-9^{10}$. Można ułożyć funkcję: $\frac{10^{10}-9^{10}}{10^{10}}$ która będzie określała zależność pomiędzy ilością liczb zawierających 9, a tymi, które jej nie zawierają w tym przedziale. Można to uprościć do postaci $1-(0.9)^n$ widać, że jest to funkcja rosnąca, ponieważ $(0.9)^n$ maleje dla n = 10 jest mniejsze od 0.5 więc jest więcej tych zawierających 9.

Zadanie 7

Ile jest możliwych rejestracji samochodowych złożonych z 3 liter, po których następują 4 cyfry?

Rozwiązanie:

Załóżmy, że alfabet ma 21 znaków (bez polskich znaków), cyfr jest 10. Mamy 3 miejsca na litery więc możemy je tam wstawić na 21^3 sposobów. Na cyfry mamy 4 miejsca umieszczamy je tam na 10^4 sposobów. Ostatecznie mamy $21^3 \cdot 10^4$ możliwych tablic rejestracyjnych.

Zadanie 8

Pokaż, że dla dowolnej liczby rzeczywiatej x i dowolnej liczby całkowitej n zachodzi $\lceil x+n \rceil = \lceil x \rceil + n$.

Rozwiązanie:

```
\lceil x+n \rceil = \min\{k \in \mathbb{Z} : k \geqslant x+n\}
```

Ale wiemy, że $n \in \mathbb{Z}$ więc, aby k było niż x+n wystarczy zastosować funkcję $\lceil \rceil$ na x i uzyskamy interesującą nas zależność.