ДЕТЕКЦИЈА НА ЛАЖНИ ПОТПИСИ СО ПОМОШ НА НАДГЛЕДУВАНО УЧЕЊЕ И НАОЃАЊЕ НА СЛИЧНОСТА НА ПОТПИСИТЕ

- семинарска работа по предметот Дигитално процесирање на слика -

Филип Самарџиски и Тамара Стојанова

Содржина

- **01.** Вовед
- **02.** Структура и тек на апликацијата
- 03. Надгледувано учење
 - Препроцесирање
 - Модели
 - Точности на различните модели
 - Заклучок

04. Споредба на сличност

- 01. Начини за наоѓање на сличност
 - Наоѓање на сличност преку контури
 - Наоѓање на сличност со SSIM
 - Сличност меѓу два потписа
 - Сличност меѓу еден и повеќе потписи
- **05.** ДЕМО
- 06. Проблеми

01. Вовед

→ Дигитално процесирање на слики

- → Злоупотреба на потписи
 - Фалсификување
 - Цели
- Детекција

02. Структура и тек на апликацијата

структура

main.py

preprocessor.py

supervised_learning.py

similarities.py

тек

- □ Дали потписот е веродостоен?
- □ Колку овие два потписи се слични?
- □ Колку е овој потпис сличен со останатите потписи?

- Вчитување на сликите imread()
- Намалување на шум fastNIMeansDenoising()
- Thresholding со инверзна бинаризација
- Пронаоѓање на ненулеви пиксели и преградување околу нив
- Промена на големина и претворање во еднодимензионална низа flatten()
- Збир на колони и редици и сооднос на сликите

Слика - потпис пред и по фазата на препроцесирање

Модели при надгледувано учење

Невронски мрежи

Наивен Баесов

Дрва на одлука Шума од дрва

Точности на различните модели

* се споредува точноста од тестирачкото множество, затоа што врз тренирачкото множество сите модели имаат точност од 100%.

Модел	Точност над тестирачко множество	
Невронска мрежа	0,7777777778	
Наивен Баесов класификатор	0,8055555555513	
Дрво на одлучување	0,90277777778	
Шума од дрва на одлучување	0,97222222222467	

Точност над тестирачкото множество според модели и автори

Модел	Avtor1	Avtor2	Avtor3
Невронска мрежа	0.8333333333333333	0.875	0.625
Наивен Баесов класификатор	0.9166666666666666	0.5833333333333333	0.916666666666666
Дрво на одлучување	0.875	1.0	0.8333333333333333
Шума од дрва на одлучување	0.95833333333333334	1.0	0.95833333333333334

Заклучок

2. Невронската мрежа дава најниска точност во најголем дел од случаите.

1. Разновидни и неочекувани резултати

3. Шумата од дрва на одлука дава најстабилни резултати и доста висока точност.

30ШТО?

- ✓ недоволно препроцесирање на сликите
 - ✓ неразновидност на податоците во тренирачкото множество
 - ✓ overfitting на тренирачкото множество

- ✓ неоптималност на поставените параметри
- ✓ случајната распределба на податоци и нивни атрибути кај шумата од дрва
- ✓ принцип на независност на карактеристиките на податоците кај наивен баесов

О4. Споредба на сличност

Начини за наоѓање на сличноста на потписите

eg H. March

Пронаоѓање на контурите на соодветните слики и нивна споредба со помош на готовата функција cv2.matchShapes.

КОНТУРИ

SSIM

Подобри резултати

Функција за споредба на слики која го оценува структурниот и текстурниот контекст на сликата, вклучувајќи ги вредностите за осветленост и контраст.

Резултати за сличноста помеѓу**:**

ДВА ПОТПИСИ

Прилично неконзинстентни резултати за оваа функционалност.

ЕДЕН И ПОВЕЌЕ ПОТПИСИ

Не е целосно точен и стабилен, меѓутоа сепак дава одредена одделеност на вистинските од лажните потписи со одредени исклучоци.

05. ДЕМО

06. Проблеми

Ви благодариме на вниманието.

Дали имате некои прашања?