Appln. No.: 10/581,716

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1-46. (canceled).

- 47. (currently amended): A mesogenic, cross-linkable mixture comprising:
- i) a cross-linkable liquid crystalline host comprising at least one cross-linkable
 liquid crystalline compound, and
- ii) at least one chiral or achiral rod shaped additive component, wherein the additive component is a compound of formula (I):

wherein:

C¹ to C⁴ are selected from optionally substituted cyclohexyl or cyclohexylene, phenyl or phenylene, naphthyl or naphthylene or phenanthryl or phenanthrylene;

connected to each other at the opposite positions via the bridging groups Z^1 to Z^3 ; wherein A^1 to A^3 each independently represent hydrogen or a group represented by

formula (II), and

wherein at least one of A¹ to A³ has the meaning of formula (II),

$$P-(Sp)_k-(X)_f- \qquad (II)$$

wherein:

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Appln. No.: 10/581,716

P is hydrogen or a polymerizable group which is CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-, wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

$$R^{1}$$

 $(CH_{2})n^{1}-(Y^{1})m^{1}-(CH_{2})n^{2}-(B^{1})m^{2}-(CH_{2})n^{3}-(Y^{2})m^{3}-(CH_{2})n^{4}$
 R^{2}
(III)

wherein:

Y¹ and Y² each independently represent -OCO- or -COO-,

B¹ represents C or CH,

 R^1 and R^2 each independently represent hydrogen or a C_1 - C_{12} alkyl residue, preferably a C_1 - C_6 alkyl residue, which is a methyl, ethyl, propyl, butyl, pentyl, hexyl or isopropyl residue.

 n^1 , n^2 , n^3 and n^4 are independently integers from 0 to 15,

such that 0 that $1 \le n^1 + n^2 + n^3 + n^4 \le 15$;

with the proviso that

if m¹ is 1 then n¹, n² are independently integers from 1 to 15,

if m³ is 1 then n³, n⁴ are independently integers from 1 to 15;

 m^1 , m^2 and m^3 are independently integers from 0 + to 3 to 1, such that $1 < m^1 + m^2 + m^3 \le 3$ and wherein:

Appln. No.: 10/581,716

one or more $-CH_2$ - groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C=C-,

with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 ,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1;

A⁴ is hydrogen, a polar group which is cyano, nitro, a halogen, or a group of formula (II)

$$P$$
- $(Sp)_k$ - $(X)_t$ – (II)

in which:

P is hydrogen or a polymerizable group which is CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R" is a C_{1-6} alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is a C_{1-22} branched or straight-chain alkylene group, in which one or more $-CH_2-$ groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-O-, - CH=CH-, -C=C-, -(CF₂)_r-,

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Appln. No.: 10/581,716

with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

with the proviso that at least one of A^1 to A^4 comprises a polymerizable group which is $CH_2=CW$ -, $CH_2=CW$ -O-, $CH_2=CW$ -COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R" is a C_{1-6} alkyl group, methoxy, cyano, F, Cl, Br or I;

Z¹ to Z³ are independently from each other -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -COCF₂-, -CF₂CO-, -S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C=C-, -CH=CH-COO-, -OCO-CH=CH-, -CH=N-, -C(CH₃)=N-, -N=N- or a single covalent bond,

a1, a2 and a3 are independently from each other integers from 0 to 3, such that

$$1 \le a1 + a2 + a3 \le 3$$
,

with the proviso that the sequence:

$$A^1-C^1-(Z^1-C^2)_{a1}-(Z^2-C^3)_{a2}-(Z^3-C^4)_{a3}-A^2$$

describes the long molecular axis of the rod shaped additive components

AMENDMENT UNDER 37 C.F.R. § 1.114(c)

Appln. No.: 10/581,716

and wherein the additive component changes from the liquid crystalline state to the isotropic state at a temperature of 20 °C or lower.

- 48. (previously presented): A mixture according to claim 47, wherein the additive component has a transition temperature to the isotropic state of 0 °C or lower.
- 49. (previously presented): A mixture according to claim 47 having a clearing temperature of 30 °C or higher.
- 50. (previously presented): A mixture according to claim 47 having a clearing temperature of 50 °C or higher.
- 51. (previously presented): A mixture according to any one of claims 47-50, wherein the liquid crystalline host has a clearing temperature of 50 °C or higher.
- 52. (currently amended): A mixture according to claim 47, wherein A¹ to A³ each independently represent hydrogen or a group represented by formula (II), and

wherein at least one of A¹ to A³ has the meaning of formula (II),

$$P-(Sp)_k-(X)_t - \qquad (II)$$

wherein:

P is hydrogen or a polymerizable group which is CH_2 =CW- CH_2 =CW-COO-,

wherein:

W is H or CH_3 ,

Sp has the meaning of formula (III)

AMENDMENT UNDER 37 C.F.R. § 1.114(c)

Appln. No.: 10/581,716

$$\begin{array}{c} & \mathsf{R}^1 \\ | \\ (\mathsf{CH}_2)\mathsf{n}^1\text{-}(\mathsf{Y}^1)\mathsf{m}^1\text{-}(\mathsf{CH}_2)\mathsf{n}^2\text{-}(\mathsf{B}^1)\mathsf{m}^2\text{-}(\mathsf{CH}_2)\mathsf{n}^3\text{-}(\mathsf{Y}^2)\mathsf{m}^3\text{-}(\mathsf{CH}_2)\mathsf{n}^4 \\ | & \mathsf{R}^2 \end{array}$$

(III)

wherein:

Y¹ and Y² each independently represent -OCO- or -COO-,

B¹ represents C or CH,

R¹ is hydrogen

R² represents a methyl, ethyl, propyl, butyl, pentyl or hexyl group and most preferably a methyl or ethyl group,

 n^1 , n^2 , n^3 and n^4 are independently integers from 0 to 15,

such that
$$0$$
 that $1 \le n^1 + n^2 + n^3 + n^4 \le 15$;

with the proviso that

if m¹ is 1 then n¹, n² are independently integers from 1 to 15,

if m³ is 1 then n³, n⁴ are independently integers from 1 to 15;

m¹, m² and m³ are independently integers from 0-to 3 to 1,

such that $1 \le m^1 + m^2 + m^3 \le 3$, and wherein:

one or more -CH₂- groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C=C-,

with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 ,

k is 1,

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Appln. No.: 10/581,716

 $X \qquad \text{is -O-, -CO-, -CO-, -CH=CH-, -C=C-, or a single bond, more} \\ \text{preferably -O-, -COO-, -OCO- or a single bond,}$

t is 1.

- 53. (previously presented): A mixture according to claim 47 comprising further agents, such as cross-linking agents, stabilizing agents, initiators, dyes, other chiral or achiral additives and plasticizers.
- 54 (previously presented): A mixture according to claim 47 in form of an elastomer, polymer gel, polymer network or polymer film.
- 55. (currently amended): A chiral or achiral rod shaped compound, wherein said compound is of formula (I):

wherein:

C¹ to C⁴ are selected from optionally substituted cyclohexyl or cyclohexylene, phenyl or phenylene, naphthyl or naphthylene or phenanthryl or phenanthrylene;

connected to each other at the opposite positions via the bridging groups Z^1 to Z^3 ; wherein A^1 to A^3 each independently represent hydrogen or a group represented by

formula (II), and

wherein at least one of A^1 to A^3 has the meaning of formula (II),

$$P-(Sp)_k-(X)_t- \qquad \qquad (II)$$

wherein:

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Appln. No.: 10/581,716

P is hydrogen or a polymerizable group which is CH_2 =CW-O-, CH_2 =CW-COO-,

wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

$$\begin{array}{c} & \mathsf{R}^1 \\ | \\ (\mathsf{CH}_2)\mathsf{n}^1\text{-}(\mathsf{Y}^1)\mathsf{m}^1\text{-}(\mathsf{CH}_2)\mathsf{n}^2\text{-}(\mathsf{B}^1)\mathsf{m}^2\text{-}(\mathsf{CH}_2)\mathsf{n}^3\text{-}(\mathsf{Y}^2)\mathsf{m}^3\text{-}(\mathsf{CH}_2)\mathsf{n}^4 \\ | & \mathsf{R}^2 \end{array}$$

(III)

wherein:

Y¹ and Y² each independently represent -OCO- or -COO-,

B¹ represents C or CH,

 R^1 and R^2 each independently represent hydrogen or a C_1 - C_{12} alkyl residue, preferably a C_1 - C_6 alkyl residue, which is methyl, ethyl, propyl, butyl, pentyl, hexyl or isopropyl residue,

n¹, n², n³ and n⁴ are independently integers from 0 to 15,

such that
$$0$$
 that $1 \le n^1 + n^2 + n^3 + n^4 \le 15$;

with the proviso that

if m¹ is 1 then n¹, n² are independently integers from 1 to 15,

if m³ is 1 then n³, n⁴ are independently integers from 1 to 15;

m¹, m² and m³ are independently integers from 0-to-3 to 1, such that

$$1 \le m^1 + m^2 + m^3 \le 3$$
 and

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Attorney Docket No.: Q94723

Appln. No.: 10/581,716

wherein:

-one or more -CH₂- groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C \equiv C-,

with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 ,

k is 1,

X is -O-, -CO-, -CO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1

A⁴ is hydrogen, a polar group which is cyano, nitro, a halogen, or a group of formula (II)

$$P$$
- $(Sp)_k$ - $(X)_t$ - (II)

in which:

P is hydrogen or a polymerizable group which is $CH_2=CW$ -, $CH_2=CW$ -O-, $CH_2=CW$ -COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R" is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is a C_{1-22} branched or straight-chain alkylene group, in which one or more $-CH_2$ - groups present in the hydrocarbon chain may be replaced, independently, by one

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Attorney Docket No.: Q94723

Appln. No.: 10/581,716

or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, -CH=CH-, -C=C-, -(CF₂)_r -

with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

with the proviso that at least one of A^1 to A^4 comprises a polymerizable group which is $CH_2=CW-$, $CH_2=CW-$ O-, $CH_2=CW-$ COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R" is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I;

 Z^1 to Z^3 are independently from each other -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -COCF₂-, -CF₂CO-, -S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C=C-, -CH=CH-COO-, -OCO-CH=CH-, -CH=N-, -C(CH₃)=N-, -N=N- or a single covalent bond,

a1, a2 and a3 are independently from each other integers from 0 to 3, such that

$$1 \le a1 + a2 + a3 \le 3$$
,

with the proviso that the sequence:

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Attorney Docket No.: Q94723

Appln. No.: 10/581,716

$$A^{1}-C^{1}-(Z^{1}-C^{2})_{a1}-(Z^{2}-C^{3})_{a2}-(Z^{3}-C^{4})_{a3}-A^{2}$$

describes the long molecular axis of the rod shaped compound and has a transition temperature to the isotropic state of 20 $^{\circ}$ C or lower.

56. (currently amended): A compound according to claim 55, wherein A¹ to A³ each independently represent hydrogen or a group represented by formula (II), and

wherein at least one of A¹ to A³ has the meaning of formula (II),

$$P-(Sp)_k-(X)_t - \qquad (II)$$

wherein:

P is hydrogen or a polymerizable group which is $CH_2=CW-$, $CH_2=CW-$ COO-,

wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

$$\begin{array}{c} R^1 \\ | \\ (CH_2)n^1 \text{--}(Y^1)m^1 \text{--}(CH_2)n^2 \text{--}(B^1)m^2 \text{--}(CH_2)n^3 \text{--}(Y^2)m^3 \text{--}(CH_2)n^4 \\ | \\ R^2 \end{array}$$

(III)

wherein:

Y¹ and Y² each independently represent –OCO- or –COO-,

B¹ represents C or CH,

R¹ is hydrogen,

Appln. No.: 10/581,716

 ${
m R}^2$ represents a methyl, ethyl, propyl, butyl, pentyl or hexyl group and most preferably a methyl or ethyl group,

 n^1 , n^2 , n^3 and n^4 are independently integers from 0 to 15,

such that 0 that $1 \le n^1 + n^2 + n^3 + n^4 \le 15$;

with the proviso that

if m¹ is 1 then n¹, n² are independently integers from 1 to 15,

if m³ is 1 then n³, n⁴ are independently integers from 1 to 15;

 m^1 , m^2 and m^3 are independently integers from 0-to-3 to 1, such that

 $1 \le m^1 + m^2 + m^3 \le 3$, and

wherein:

one or more $-CH_2$ - groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C=C-,

with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 ,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

- 57. (previously presented): A method of using a chiral or achiral rod shaped compound, comprising preparing a mesogenic polymer mixture as described in claim 47 and having a transition temperature to the isotropic state of 20 °C or lower.
- 58. (previously presented): A polymer network prepared from a mixture according to claim 47.

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Appln. No.: 10/581,716

59. (previously presented): A liquid crystalline polymer film prepared from a mixture according to claim 47.

- 60. (previously presented): A method of using a polymer network or a liquid crystalline polymer film, comprising preparing unstructured or structured optical and electro-optical components and multilayer systems from (A) a polymer network prepared from a mixture according to claim 47 or (B) a liquid crystalline polymer film prepared from a mixture according to claim 47.
- 61. (previously presented): A method of using a mesogenic, cross-linkable mixture, comprising preparing an elastomer, polymer gel, polymer network or polymer film from a mesogenic, cross-linkable mixture according to claim 47.
- 62. (previously presented): A method of using a polymer network, comprising manufacturing waveguides, optical gratings, filters, retarders, polarizers, piezoelectric cells or thin film exhibiting non-linear optical properties from a polymer network according to claim 58.
- 63. (previously presented): Optical or electro-optical components comprising a polymer network according to claim 58.
- 64. (previously presented): A method of using a liquid crystalline polymer film, comprising manufacturing waveguides, optical gratings, filters, retarders, polarizers, piezoelectric cells or thin film exhibiting non-linear optical properties from a liquid crystalline polymer film according to claim 59.
- 65. (previously presented): Optical or electro-optical components comprising a liquid crystalline polymer film according to claim 59.