Filter

cifbuild

ccf.cif is produced

Odfingest

log/01odfingest.log 2849_0762870601_SCX00000SUM.SAS is produced

Epchain and emchain

These two steps produce an unfiltered event lists, namely mos1S001-ori.fits, mos2S002-ori.fits,pnS003-oot.fits and pnS003-ori.fits. They will be used for filtering

Extraction criteria:

Pattern

To filter out unwanted events, you do the following:

- 1) Create lightcurves in a certain energy range, i.e. 2.5-12 keV, or 2.5-8.5 keV using mos1S001-ori.fits. Energies > 2.5 keV well avoid cosmic X-ray background and solar wind contaminations. The lightcurves are in units of count rates per second
- 2) Bin the lightcurves, the default is 60s.
- 3) Plot a histogram to see the distribution of count rates per second, then make a gaussian fit.
- 4) Set criteria for filter, e.g. within 3sigma of the best fit. A text file and a fits file containing the good time interval is written in mos1S001_gti.txt and mos1S001_gti.fits
- 5) Use the good time interval file in fits format to write the final product for all analysis mos1S001 clean.fits

Everything is done in LC_filter.py. I am repeating the commands here. Now just do Python LC_filter.py

And the following are produced:

- mos1S001-LC-2.5-12.0.fits and mos1S001-LC-corn-2.5-12.0.fits FOV and corner LCs in 2.5-12keV for checking for proton flares. The energies can be changed. After 7 keV, the cluster emission is small, so better include high energies
 - mos1S001_gti.txt mos1S001_gti.fits good time interval files containing the filtered event times
 - mos1S001_2.5_12.0_gti.png a plot showing the count rate histogram for filter and the binned LCs showing selected and unselected events

mos1S001 clean.fits the final filtered event list you want

1.Lightcurves creation

Let's create the FOV LCs and corner LCs using the following commands:

FOV LCs

evselect table=mos1S001-ori.fits expression='(PATTERN<=12)&&(PI in [2500:8500])&&((FLAG & 0xfb0000) == 0)&&!((DETX,DETY) in BOX(10167,13005,3011,6575,0))' filtertype=expression rateset=mos1S001_LC_2.5-8.5.fits timecolumn=TIME timebinsize=1 maketimecolumn=yes makeratecolumn=yes withrateset=yes

Corner LCs

 $\begin{array}{l} \text{evselect table=mos1S001-ori.fits with filtered set=yes expression='(PATTERN<=12)\&\&(PI in [2500:8500])\&\&(((FLAG \& 0x766a0f63) == 0))||((FLAG \& 0x766a0763) == 0))\&\&!((DETX,DETY) in BOX(13280,-306,6610,6599,0))\&\&!((DETX,DETY) in BOX(-13169,-105,6599,6599,0))\&\&((FLAG \& 0x766a0f63) == 0)\&\&!(((DETX,DETY) in CIRCLE(100,-200,17700))||((DETX,DETY) in CIRCLE(834,135,17100))||((DETX,DETY) in CIRCLE(770,-803,17100))||((DETX,DETY) in BOX(-20,-17000,6500,500,0))||((DETX,DETY) in BOX(5880,-20500,7500,1500,10))||((DETX,DETY) in BOX(-5920,-20500,7500,1500,350))||((DETX,DETY) in BOX(-20,-20000,5500,500,0)))| \\ \end{array}$

 $rate set = mos 1S001_LC_corn_2.5-8.5. fits\ time column = TIME\ time bin size = 1\ make time column = yes\ makerate column = yes\ with rate set = yes$

Here are what they look

FOV rawLC.png and corner rawLC.png

2. Lightcurves binningBin the LCs in 60sFOV binned LC.png and corner binned LC.png

3 and 4. Plot a histogram using the binned LCs and make a gaussian fit, then set a selection criteria for events selection.

I set the fitting range to be the [highest histogrambin/1.4,highest histogrambin*1.4] In espfilt, it is decided by "rangescale", but I don't know the exact algorithm. As for the selection criteria, I set it to be 2 sigma.

Here is the histogram, FOV LCs and corner LCs with selection indicated from this program and from mos-filter

mos1S001_2.5_12_gti.png esas_qdp.png

I don't know how they do the binning in the histogram. There is some difference in the good time interval selection between my program and mos-filter but they are mostly the same. My good time interval file and mos-filter's is mos1S001_gti.txt and mos1S001-gti.txt, respectively.

5.Use the good time interval file in fits format to write the final product for all analysis - mos1S001_clean.fits

To create the final filtered event list (i.e.mos1S001_clean.fits), you need the good time interval generated from the previous steps. But it is in txt format. We need to convert it to fits format. We do the following:

ftcreate colname.lis mos1S001 gti.txt mos1S001 gti.fits extname = "STDGTI" clobber=yes

(Ref: https://heasarc.gsfc.nasa.gov/lheasoft/ftools/headas/ftcreate.html)

Colname.lis contains information of the column name, which has to be created in advance. It is just the following;

START D s STOP D s

Now the fits good time interval is called mos1S001 gti.fits

Finally, to produce the final product - mosS001_clean.fits, we use the following command:

evselect table=mos1S001-ori.fits filteredset=tmp.fit expression='(PATTERN<=12)&>I(mos1S001_gti.fits,TIME)&&(((FLAG & 0x766a0f63)==0))|((FLAG & 0x766a0763) == 0))' filtertype=expression

To do: add functions to extract FOV and corner image in esas commands.***