Definition (Homomorphism)

Let

- ightharpoonup (S, *) and (T, *') be two groupoids, and
- ightharpoonup f be a function from S to T

If for all a and b in S

$$f(a * b) = f(a) *' f(b)$$

$$\tag{1}$$

- ▶ f is called a homomorphism from (S, *) to (T, *')
- ♪ S is homomorphic to T, denoted by $S \sim T$
- ightharpoonup f(S) is the homomorphic image of S

Definition (Homo- and Isomorphism)

Let f be a homomorphism from (S, *) to (T, *')

- ▶ If f is an onto from S to T, that is f(S) = T
- ▶ If f is a bijection from S to T
 - \blacksquare f is called an isomorphism from (S, *) to (T, *')
 - $\ \ \ S$ is isomorphic to T, or S and T are isomorphic, denoted by $S\cong T$

Notice for both an isomorphism and a homomorphism

♪ The image of a product is the product of the images

Example (Isomorphic?)

Let

*	a	b	c	
\overline{a}	a	b	c	
b	b	c	a	
c	c	a	b	

Example (Free Semigroup)

Let

$$A = \{0, 1\}$$

$$f(\alpha) = \begin{cases} 1 & \text{if } \alpha \text{ has an odd number of 1's} \\ 0 & \text{if } \alpha \text{ has an even number of 1's} \end{cases}$$

If $\alpha, \beta \in A^*$, then it is easy to verify

$$f(\alpha \cdot \beta) = f(\alpha) + f(\beta)$$

ightharpoonup Therefore, f is a homomorphism.

Steps To Determine Whether . . .

Homomorphism?

- Step1: Define a function $f: S \to T$
- ♪ Step2: Show that f(a*b) = f(a)*'f(b)

- ightharpoonup Step3: Show that f is one-to-one.
- ▶ Step4: Show that *f* is onto.

Steps To Determine Whether . . .

Homomorphism?

- ▶ Step1: Define a function $f: S \to T$
- Step2: Show that f(a * b) = f(a) *' f(b)

- ightharpoonup Step3: Show that f is one-to-one.
- ▶ Step4: Show that *f* is onto.

Steps To Determine Whether ...

Homomorphism?

- ▶ Step1: Define a function $f: S \to T$
- ▶ Step2: Show that f(a * b) = f(a) *' f(b)

- ightharpoonup Step3: Show that f is one-to-one.
 - ightharpoonup Step4: Show that f is onto.

Steps To Determine Whether ...

Homomorphism?

- ▶ Step1: Define a function $f: S \to T$
- ▶ Step2: Show that f(a * b) = f(a) *' f(b)

- ▶ Step3: Show that *f* is one-to-one.
- \square Step4: Show that f is onto.

Example

Let

- $ightharpoonup \mathbb{Z}$ be the set of all integers
- ightharpoonup ightharpoonup be the set of all even integers

Show that the groups $(\mathbb{Z}, +)$ and $(\mathbb{E}, +)$ are isomorphic.

- Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- ② f(a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- Φ f is onto.

- **①** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- (a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)

- **①** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- (a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- \bullet f is one-to-one.

- **①** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- (a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- \bullet f is one-to-one.
 - Suppose that $f(a_1) = f(a_2)$.
 - Then $2a_1 = 2a_2$, so $a_1 = a_2$.
 - \blacksquare Hence f is one-to-one
- \bullet f is onto.

- **①** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- (a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- \bullet f is one-to-one.
 - **♪** Suppose that $f(a_1) = f(a_2)$.
 - ↑ Then $2a_1 = 2a_2$, so $a_1 = a_2$.
 - \blacksquare Hence f is one-to-one
- Φ f is onto.

- **①** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- (a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- \bullet f is one-to-one.
 - **♪** Suppose that $f(a_1) = f(a_2)$.
 - ↑ Then $2a_1 = 2a_2$, so $a_1 = a_2$.
 - ightharpoonup Hence f is one-to-one
- Φ f is onto.

- **①** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- (a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- \bullet f is one-to-one.
- \bullet f is onto.

- **①** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- (a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- \bullet f is one-to-one.
- \bullet f is onto.
 - ightharpoonup Suppose that b is any even integer.
 - **Then** $a = b/2 ∈ \mathbb{Z}$
 - f(a) = f(b/2) = 2(b/2) = b
 - \bullet So f is onto.

- **1** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- (a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- **o** *f* is one-to-one.
- f is onto.
 - Suppose that b is any even integer.
 - **♪** Then $a = b/2 \in \mathbb{Z}$

- **1** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- f(a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- **o** *f* is one-to-one.
- f is onto.
 - Suppose that b is any even integer.
 - **♪** Then $a = b/2 \in \mathbb{Z}$
 - f(a) = f(b/2) = 2(b/2) = b

- **1** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- f(a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- **o** *f* is one-to-one.
- f is onto.
 - Suppose that b is any even integer.
 - **♪** Then $a = b/2 \in \mathbb{Z}$
 - f(a) = f(b/2) = 2(b/2) = b
 - \bullet So f is onto.

- **①** Define $f: \mathbb{Z} \to \mathbb{E}$ by f(a) = 2a.
- (a+b) = 2(a+b) = 2a + 2b = f(a) + f(b)
- \bullet f is one-to-one.
- \bullet f is onto.

Group of Order 4: Different or Isomorphic?

Klein 4 group

Cyclic Group

*	e	a	b	c
\overline{e}	e	$egin{array}{c} a \\ c \\ e \\ b \end{array}$	b	c
a	a	c	e	b
b	b	e	c	a
c	c	b	a	e

Let

- ightharpoonup (G, *) and (G', *') be two groupoids, and
- ▶ $f: G \to G'$ be an onto homomorphism

- If e is the identity in G and e' is the identity in G', then f(e)=e'.
 - ▶ If $a \in G$, then $f(a^{-1}) = (f(a))^{-1}$.
 - ♪ If H is a subgroup of G, then $f(H) = \{f(h) | h \in H\}$ is a subgroup of G'.
 - If G is groupoid, semigroup, monoid, group, or abelian, so is G'.

Let

- ightharpoonup (G, *) and (G', *') be two groupoids, and
- ▶ $f: G \to G'$ be an onto homomorphism

- ▶ If e is the identity in G and e' is the identity in G', then f(e) = e'.
- If $a \in G$, then $f(a^{-1}) = (f(a))^{-1}$.
 - ♪ If H is a subgroup of G, then $f(H) = \{f(h) | h \in H\}$ is a subgroup of G'.
 - If G is groupoid, semigroup, monoid, group, or abelian, so is G'.

Let

- ightharpoonup (G, *) and (G', *') be two groupoids, and
- ightharpoonup f:G o G' be an onto homomorphism

- ▶ If e is the identity in G and e' is the identity in G', then f(e) = e'.
- ▶ If $a \in G$, then $f(a^{-1}) = (f(a))^{-1}$.
- If H is a subgroup of G, then $f(H) = \{f(h) | h \in H\}$ is a subgroup of G'.
 - ▶ If G is groupoid, semigroup, monoid, group, or abelian, so is G'.

Let

- ightharpoonup (G, *) and (G', *') be two groupoids, and
- ▶ $f: G \to G'$ be an onto homomorphism

- ▶ If e is the identity in G and e' is the identity in G', then f(e) = e'.
- ▶ If $a \in G$, then $f(a^{-1}) = (f(a))^{-1}$.
- ▶ If H is a subgroup of G, then $f(H) = \{f(h)|h \in H\}$ is a subgroup of G'.
- If G is groupoid, semigroup, monoid, group, or abelian, so is G'.

Remember

Isomorphism preserves all properties defined in terms of the group operations.

▶ The groups S_3 and \mathbb{Z}_6 are both of order 6. However, S_3 is not Abelian and \mathbb{Z}_6 is Abelian. Hence they are not isomorphic.

Example (Non-Isomorphic)

Let

- $ightharpoonup \mathbb{Z}$ be the set of all integers
- ightharpoonup ightharpoonup be the set of all even integers
- ♪ × be ordinary multiplication

- ↑ The semigroups (\mathbb{Z}, \times) and (\mathbb{E}, \times) are not isomorphic