Convolutional Neural Network

Image Classification

A core task in Computer Vision

Slide Credit: Stanford CS231n

Challenges of Recognition

Viewpoint

Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Slide Credit: Stanford CS231n

Convolutional Neural Network

- Most widely used for image classification.
- Generally, it consists of convolution layer, pooling layer and fullyconnected layer.
- Convolution, Pooling layer feature extraction
- Fully-connected layer classification

Convolution Filters(Hand Crafted)

Let's Try!

http://setosa.io/ev/image-kernels/

0	-1	0
-1	5	-1
0	-1	0
	sharpen	<u> </u>

CNN 동작원리

- 이미지를 작은 tile로 나누고, convolution filter를 통해 tile에서 특정 feature를 추출(예: 귀)
- Filter가 다음 tile로 이동하면서 같은 방법으로feature를 추출(동일한 weight 사용)
- 다른 feature(예: 눈)를 추출하는 filter를 추가로 만들고 위와 같은 방법으로 tile을 하나씩 network에 적용
- 추출된 모든 feature들을 잘 조합 하여 최종적으로 이미지를 판단

Convolution Layer

Slide Credit: Stanford CS231n

Convolution Layer

consider a second, green filter

Feature maps Activation maps

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Slide Credit: Stanford CS231n

Dense Layer(Fully Connected Layer)

$$y_0 = x_0 \cdot w_{00} + x_1 \cdot w_{01} + x_2 \cdot w_{02} + x_3 \cdot w_{03}$$

Dense Layer(Fully Connected Layer)

$$y0 = x0 \cdot w00 + x1 \cdot w01 + x2 \cdot w02 + x3 \cdot w03$$

$$y_1 = x_0 \cdot w_{10} + x_1 \cdot w_{11} + x_2 \cdot w_{12} + x_3 \cdot w_{13}$$

1-D Convolution Layer

$$y0 = x0 \cdot w0 + x1 \cdot w1 + x2 \cdot w2$$

1-D Convolution Layer

$$y0 = x0 \cdot w0 + x1 \cdot w1 + x2 \cdot w2$$

$$y0 = x1 \cdot w0 + x2 \cdot w1 + x3 \cdot w2$$

1-D Convolution Layer

$$y_0 = x_0 \cdot w_0 + x_1 \cdot w_1 + x_2 \cdot w_2$$

$$y_0 = x_1 \cdot w_0 + x_2 \cdot w_1 + x_3 \cdot w_2$$

Weight sharing &
Locally connected

• 1X1 + 1X0 + 1X1 + 0X0 + 1X1 + 1X0 + 0X1 + 0X0 + 1X1 = 4

• 1X1 + 1X0 + 0X1 + 1X0 + 1X1 + 1X0 + 0X1 + 1X0 + 1X1 = 3

• 1X1 + 0X0 + 0X1 + 1X0 + 1X1 + 0X0 + 1X1 + 1X0 + 1X1 = 4

• 0X1 + 1X0 + 1X1 + 0X0 + 0X1 + 1X0 + 0X1 + 0X0 + 1X1 = 2

• 1X1 + 1X0 + 1X1 + 0X0 + 1X1 + 1X0 + 0X1 + 1X0 + 1X1 = 4

• 1X1 + 1X0 + 0X1 + 1X0 + 1X1 + 1X0 + 1X1 + 1X0 + 0X1 = 3

• 0X1 + 0X0 + 1X1 + 0X0 + 0X1 + 1X0 + 0X1 + 1X0 + 1X1 = 2

• 0X1 + 1X0 + 1X1 + 0X0 + 1X1 + 1X0 + 1X1 + 1X0 + 0X1 = 3

• 1X1 + 1X0 + 1X1 + 1X0 + 1X1 + 0X0 + 1X1 + 0X0 + 0X1 = 4

Image

Convolved Feature

Feature Extractor

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

Original image Visualization of the filter on the image

Feature Extractor

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(50*30)+(50*30)=6600 (A large number!)

Visualization of the filter on the image

Pixel representation of receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = 0

Convolution (Multi Channel, Many Filters)

Input channel: 3

of filters: 2

Output channel: 2

Convolution (Multi Channel, Many Filters)

Visualization of a Convolution Layer

2D Convolution Layer – 4D Tensors

Options of Convolution

- Stride : filter가 한 번 convolution을 수행 한 후 옆으로(혹은 아래로) 얼마나 이동할 것인가
 - 예) 7x7 input, 3x3 convolution filter with stride 2 → 3x3 output!

Options of Convolution

Zero Padding

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
```

Quiz

- 다음의 각 경우에 convolution layer의 output size는?
 - 1. 32x32x3 input, 10 5x5 filters with stride 1, pad o
 - 2. 32x32x3 input, 10 5x5 filters with stride 1, pad 2
 - 3. 32x32x3 input, 10 3x3 filters with stride 2, pad 1

Answer

- 1. 28x28x10
- 2. 32X32X10
- 3. 16x16x10

Input 이 $W_i \times H_i \times C_i$ 이고, $F \times F$ filter 를 K 개 사용하고, stride 는 S, zero padding 은 P 만큼 했을 경우, output feature map size($W_o \times H_o \times C_o$) 는,

$$W_o = \frac{(W_i - F + 2P)}{S} + 1$$

$$H_o = \frac{(H_i - F + 2P)}{S} + 1$$

$$C_o = K$$

ReLU

Pooling Layer

Max pooling or Average Pooling

2x2 Max Pooling with Stride=1

Fully-Connected Layer

Convolutional Neural Network

State of the art object recognition using CNNs

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

고전적인 CNN의 특징

- Convolution Layer parameter(weight) sharing
- Good for local invariance pooling
- 연산량은 Convolution layer가 대부분을 차지
- Parameter 수는 FC layer가 대부분을 차지

Model	Params (M)	Conv (%)	FC (%)	Ops (M)	Conv (%)	FC (%)
AlexNet	61	3.8	96.2	725	91.9	8.1
VGG-F	99	2.2	97.8	762	87.4	12.6
VGG-M	103	6.3	93.7	1678	94.3	5.7
VGG-S	103	6.3	93.7	2640	96.3	3.7
VGG-16	138	10.6	89.4	15484	99.2	0.8
VGG-19	144	13.9	86.1	19647	99.4	0.6
NIN	7.6	100	0	1168	100.0	0.0
GoogLeNet	6.9	85.1	14.9	1566	99.9	0.1