

TSV632, TSV632A, TSV633, TSV633A TSV634, TSV634A, TSV635, TSV635A

Dual and quad rail-to-rail input/output 60 µA 880 kHz operational amplifiers

Features

■ Rail-to-rail input and output

■ Low power consumption: 60 µA typ at 5 V

■ Low supply voltage: 1.5 V - 5.5 V

■ Gain bandwidth product: 880 kHz typ

Unity gain stability

■ Low power shutdown mode: 5 nA typ

■ Low offset voltage: 800 µV max (A version)

■ Low input bias current: 1 pA typ

■ EMI hardened op-amps

■ High tolerance to ESD: 4 kV HBM

■ Extended temperature range: -40° C to

+125° C

Applications

Battery-powered applications

■ Portable devices

Signal conditioning

Active filtering

Medical instrumentation

Description

The TSV63x series of dual and quad operational amplifiers offers low voltage operation and rail-to-rail input and output.

This family features an excellent speed/power consumption ratio, offering a 880 kHz gain-bandwidth product while consuming only 60 μ A at 5 V supply voltage. The devices also feature an ultra-low input bias current and have a shutdown mode (TSV633, TSV635).

These features make the TSV63x family ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

Table 1. Device summary

		Dual v	ersion	Quad v	ersion
	Reference	Without standby	With standby	Without standby	With standby
Ī	TSV63x	TSV632	TSV633	TSV634	TSV635
	TSV63xA	TSV632A	TSV633A	TSV634A	TSV635A

Contents TSV63x, TSV63xA

Contents

1	Pack	rage pin connections
2	Abse	olute maximum ratings and operating conditions4
3	Elec	trical characteristics 5
4	Арр	lication information
	4.1	Operating voltages
	4.2	Rail-to-rail input
	4.3	Rail-to-rail output
	4.4	Shutdown function (TSV633 - TSV635)
	4.5	Optimization of DC and AC parameters
	4.6	Driving resistive and capacitive loads
	4.7	PCB layouts
	4.8	Macromodel 16
5	Pack	cage information
	5.1	DFN8 2x2 package information
	5.2	SOT23-8 package information
	5.3	SO-8 package information
	5.4	MiniSO-8 package information
	5.5	MiniSO-10 package information
	5.6	TSSOP14 package information
	5.7	TSSOP16 package information
6	Orde	ering information
7	Revi	sion history

1 Package pin connections

Out1 1 10 V_{CC+} Out1 1 8 V_{CC+} In1- 2 9 Out2 In1-Out2 In1+ | 3 8 In2-In1+ 3 6 ln2ln2+ $V_{\text{CC-}}$ ln2+ V_{CC-} 5 6 SHDN2 SHDN1 TSV632IDT/IST/ILT/IQ2T TSV633IST SO8/Mini-SO8/SOT23-8/DFN8 MiniSO-10 16 Out4 Out1 1 14 Out4 Out1 1 In1- 2 15 In4-2 In1-13 In4ln1+ 3 14 ln4+ ln1+ 12 In4+ $\rm V_{\rm CC^+}$ 13 V_{CC-} V_{CC+} 11 V_{CC-} ln2+ 12 In3+ ln2+ 5 10 In3+ In3-In2- 6 In3-In2- 6 Out2 7 10 Out3 Out2 7 8 Out3 SHDN1/2 8 9 SHDN3/4 TSV634IPT TSV635IPT TSSOP14 TSSOP16

Figure 1. Pin connections for each package (top view)

2 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{id}	Differential input voltage (2)	±V _{CC}	V
V _{in}	Input voltage (3)	V _{CC-} - 0.2 to V _{CC+} + 0.2	V
I _{in}	Input current (4)	10	mA
SHDN	Shutdown voltage ⁽³⁾	V _{CC-} - 0.2 to V _{CC+} + 0.2	V
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾⁽⁶⁾ DFN8 2x2 SOT23-8 MiniSO-8 SO-8 MiniSO-10 TSSOP14 TSSOP16	57 105 190 125 113 100 95	°C/W
Tj	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁷⁾	4	kV
ESD	MM: machine model ⁽⁸⁾	300	V
	CDM: charged device model ⁽⁹⁾	1.5	kV
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC}-V_{in} must not exceed 6 V, V_{in} must not exceed 6V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. R_{th} are typical values.
- 7. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 3. Operating conditions

	1 3		
Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	1.5 to 5.5	V
V _{icm}	Common mode input voltage range	V _{CC-} - 0.1 to V _{CC+} + 0.1	V
T _{oper}	Operating free air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 4. Electrical characteristics at V_{CC+} = +1.8 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25° C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance			•	•	'
V	Offset voltage	TSV63x TSV63xA TSV633AIST - MiniSO10			3 0.8 1	mV
V _{io}	Onset voltage	$\begin{split} &T_{min} < T_{op} < T_{max} - TSV63x \\ &T_{min} < T_{op} < T_{max} - TSV63xA \\ &T_{min} < T_{op} < T_{max} - TSV633AIST \end{split}$			4.5 2 2.2	mV
DV _{io}	Input offset voltage drift			2		μV/°C
	Input offset surrent	$(V_{out} = V_{CC}/2)$		1	10 ⁽¹⁾	pA
I _{io}	Input offset current	$T_{min} < T_{op} < T_{max}$		1	100	pА
	Input bigg gurrant	$(V_{out} = V_{CC}/2)$		1	10 ⁽¹⁾	pA
I _{ib}	Input bias current	$T_{min} < T_{op} < T_{max}$		1	100	pA
CMR	Common mode rejection	0 V to 1.8 V, V _{out} = 0.9 V	53	74		dB
CIVIN	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	51			dB
^	Large signal voltage gain	$R_L = 10 \text{ k}\Omega, V_{out} = 0.5 \text{ V to } 1.3 \text{ V}$	85	95		dB
A _{vd}	Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	80			dB
V_{OH}	High level output voltage	$\begin{aligned} R_L &= 10 \text{ k}\Omega \\ T_{min} &< T_{op} < T_{max} \end{aligned}$	35 50	5		mV
V _{OL}	Low level output voltage	$R_L = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$		4	35 50	mV
	1	V _o = 1.8 V	6	12		A
	Isink	$T_{min} < T_{op} < T_{max}$	4			mA
l _{out}	1	V _o = 0 V	6	10		A
	I _{source}	$T_{min} < T_{op} < T_{max}$	4			mA
	Supply current (per	No load, V _{out} = V _{CC} /2	40	50	60	μA
I _{CC}	operator)	$T_{min} < T_{op} < T_{max}$			62	μA
AC perfo	rmance			•	•	
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	700	790		kHz
φm	Phase margin	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		45		Degrees
G _m	Gain margin	$R_L = 2 \text{ k}\Omega, \ C_L = 100 \text{ pF}$		13		dB
SR	Slew rate	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $Av = 1$	0.2	0.27		V/μs
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		60 33		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$

^{1.} Guaranteed by design.

Electrical characteristics

Table 5. Shutdown characteristics $V_{CC} = 1.8 \text{ V}$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC performance										
		SHDN = V _{CC} -		2.5	50	nA				
I _{CC}	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85° C			200	nA				
	($T_{min} < T_{op} < 125^{\circ} C$			1.5	μΑ				
t _{on}	Amplifier turn-on time	$R_L = 2 k\Omega$ $V_{out} = V_{CC}$ to V_{CC} + 0.2 V		200		ns				
t _{off}	Amplifier turn-off time	$R_L = 2 \text{ k}\Omega$ $V_{\text{out}} = V_{\text{CC+}} - 0.5 \text{ V to } V_{\text{CC+}} - 0.7 \text{ V}$		20		ns				
V _{IH}	SHDN logic high		1.35			V				
V _{IL}	SHDN logic low				0.6	V				
I _{IH}	SHDN current high	SHDN = V _{CC+}		10		pA				
I _{IL}	SHDN current low	SHDN = V _{CC} -		10		pA				
1	Output leakage in shutdown	SHDN = V _{CC} -		50		pA				
^I OLeak	mode	T _{min} < T _{op} < 125° C		1		nA				

Table 6. V_{CC+} = +3.3 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25° C, R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	mance				<u> </u>	
	Office Asset have	TSV63x TSV63xA TSV633AIST - MiniSO10			3 0.8 1	mV
V _{io}	Offset voltage	$\begin{split} &T_{min} < T_{op} < T_{max} - TSV63x \\ &T_{min} < T_{op} < T_{max} - TSV63xA \\ &T_{min} < T_{op} < T_{max} - TSV633AIST \end{split}$			4.5 2 2.2	mV
DV _{io}	Input offset voltage drift			2		μV/°C
I.	Input offset current	$V_{out} = V_{CC}/2$		1	10 ⁽¹⁾	pА
l _{io}	input onset current	$T_{min} < T_{op} < T_{max}$		1	100	pА
	Input bias current	V _{out} = V _{CC} /2		1	10 ⁽¹⁾	pА
l _{ib}	input bias current	$T_{min} < T_{op} < T_{max}$		1	100	pА
CMR	Common mode rejection ratio 20 log (ΔV _{ic} /ΔV _{io})	0 V to 3.3 V, V _{out} = 1.65 V	57	79		dB
CIVIN		$T_{min} < T_{op} < T_{max}$	53			uБ
۸	Large signal voltage gain	$R_L = 10 \text{ k}\Omega$, $V_{out} = 0.5 \text{ V}$ to 2.8 V	88	98		dB
A_{vd}		$T_{min} < T_{op} < T_{max}$	83			ub
V _{OH}	High level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{\text{mi.}} < T_{\text{op}} < T_{\text{max}}$	35 50	5		mV
V _{OL}	Low level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$		4	35 50	mV
		V _o = 3.3 V	23	45		
	Isink	$T_{min} < T_{op} < T_{max}$	20			mA
l _{out}		V _o = 0 V	23	38		
	Isource	$T_{min} < T_{op} < T_{max}$	20			mA
ı	Supply current (per	No load, V _{out} = 1.75 V	43	55	64	μA
I _{CC}	operator)	$T_{min} < T_{op} < T_{max}$			66	μΑ
AC perfor	mance					
GBP	Gain bandwidth product	$R_L = 2 k\Omega C_L = 100 pF,$ f = 100 kHz	710	860		kHz
φm	Phase margin	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		46		Degrees
G _m	Gain margin	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		13		dB
SR	Slew rate	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF}, A_V = 1$	0.22	0.29		V/μs

^{1.} Guaranteed by design.

Table 7. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25° C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	mance			l	<u>I</u>	
V _{io}	Office to collect	TSV63x TSV63xA TSV633AIST - MiniSO10			3 0.8 1	mV
V IO	Offset voltages	$\begin{split} T_{min} < T_{op} < T_{max} - TSV63x \\ T_{min} < T_{op} < T_{max} - TSV63xA \\ T_{min} < T_{op} < T_{max} - TSV633AIST \end{split}$			4.5 2 2.2	mV
DV_io	Input offset voltage drift			2		μV/°C
I.	Input offset current	$(V_{out} = V_{CC}/2)$		1	10 ⁽¹⁾	pА
l _{io}	input onset current	$T_{min} < T_{op} < T_{max}$		1	100	pA
1	Input bias current	$(V_{out} = V_{CC}/2)$		1	10 ⁽¹⁾	pA
l _{ib}	input bias current	$T_{min} < T_{op} < T_{max}$		1	100	pА
CMR	Common mode rejection	0 V to 5 V, V _{out} = 2.5 V	60	80		dB
CIVIN	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	55			dB
SVR	Supply voltage rejection ratio 20 log (ΔV _{CC} /ΔV _{io})	V _{CC} = 1.8 to 5 V	75	102		dB
SVN		$T_{min} < T_{op} < T_{max}$	73			uБ
Δ.	Large signal voltage gain	R_L = 10 kΩ, V_{out} = 0.5 V to 4.5 V	89	98		dB
A_{vd}		$T_{min} < T_{op} < T_{max}$	84			dB
	EMI rejection ratio EMIRR = -20 log (V _{RFpeak} /ΔV _{io})	V _{RF} = 100 mV _{rms} , f = 400 MHz		61		
EMIDD		V _{RF} = 100 mV _{rms} , f = 900 MHz		85		40
EMIRR		V _{RF} = 100 mV _{rms} , f =1800 MHz		92		dB
		V _{RF} = 100 mV _{rms} , f =2400 MHz		83		
V _{OH}	High level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$	35 50	7		mV
V _{OL}	Low level output voltage	$R_L = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$		6	35 50	mV
		V _o = 5 V	40	69		
	Isink	$T_{min} < T_{op} < T_{max}$	35			mA
l _{out}		V _o = 0 V	40	74		mA
	Isource	$T_{min} < T_{op} < T_{max}$	35			
1	Supply current (per	No load, V _{out} =V _{CC} /2	50	60	69	μA
I _{CC}	operator)	$T_{min} < T_{op} < T_{max}$			72	μA
AC perfor	mance	1				
GBP	Gain bandwidth product	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	730	880		kHz
F _u	Unity gain frequency	$R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$		830		kHz
	1	1			l	

Table 7. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25° C, and R_L connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
φm	Phase margin	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		48		Degrees
G _m	Gain margin	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		13		dB
SR	Slew rate	$R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $Av=1$	0.25	0.34		V/µs
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		60 33		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+e _n	Total harmonic distortion + noise	$V_{CC} = 5V$, $f = 1kHz$, $A_V = 1$, $R_L = 100k\Omega$, $V_{icm} = V_{CC}/2$, $V_{out} = 2V_{PP}$		0.002		%

^{1.} Guaranteed by design.

Table 8. Shutdown characteristics at $V_{CC} = 5 \text{ V}$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC performance										
	_	SHDN = V _{CC} -		5	50	nA				
I_{CC}	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85° C			200	nA				
		$T_{min} < T_{op} < 125^{\circ} C$			1.5	μΑ				
t _{on}	Amplifier turn-on time	$R_L = 2 \text{ k}\Omega$ $V_{\text{out}} = V_{\text{CC-}} \text{ V to } V_{\text{CC-}} + 0.2 \text{ V}$		200		ns				
t _{off}	Amplifier turn-off time	$ \begin{vmatrix} R_L = 2 \text{ k}\Omega \\ V_{\text{out}} = V_{\text{CC+}} - 0.5 \text{ V to } V_{\text{CC+}} - 0.7 \text{ V} \end{vmatrix} $		20		ns				
V _{IH}	SHDN logic high		2			V				
V _{IL}	SHDN logic low				0.8	V				
I _{IH}	SHDN current high	SHDN = V _{CC+}		10		pA				
I _{IL}	SHDN current low	SHDN = V _{CC} -		10		pA				
1.	Output leakage in shutdown	SHDN = V _{CC} -		50		pA				
l _{OLeak}	mode	T _{min} < T _{op} < 125° C		1		nA				

Figure 2. Supply current vs. supply voltage Figure 3. Output current vs. output voltage at at $V_{icm} = V_{CC}/2$ $V_{CC} = 1.5 \text{ V}$

Figure 4. Output current vs. output voltage at Figure 5. Voltage gain and phase vs. $V_{CC} = 5 \text{ V}$ frequency at $V_{CC} = 1.5 \text{ V}$

Figure 6. Voltage gain and phase vs. Figure 7. Phase margin vs. output current at frequency at $V_{CC} = 5 \text{ V}$ $V_{CC} = 5 \text{ V}$

Positive slew rate vs. time Figure 8.

Figure 9. Negative slew rate vs. time

Figure 10. Positive slew rate vs. supply voltage

4.0

Supply Voltage (V)

4.5

Figure 11. Negative slew rate vs. supply voltage

Figure 12. Distortion + noise vs. output voltage

3.5

0.0 ∟ 2.5

3.0

Figure 13. Distortion + noise vs. frequency

5.5

5.0

Figure 14. Noise vs. frequency

Figure 15. EMIRR vs. frequency at Vcc = 5 V, $T = 25^{\circ} \text{ C}$

1.2

0.9

0.6

0.3

0.0

-0.3

-0.6 -0.9

-1.2

T=-40°C

T=125°C

nput Offset Voltage (mV)

Application information 4

4.1 Operating voltages

The TSV63x can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8-, 3.3and 5-V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSV63x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40° C to +125° C.

4.2 Rail-to-rail input

The TSV63x are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from V_{CC-} - 0.1 V to V_{CC+} + 0.1 V. The transition between the two pairs appears at V_{CC+} - 0.7 V. In the transition region, the performance of CMRR, PSRR, Vio (Figure 16 and Figure 17) and THD is slightly degraded.

Figure 16. Input offset voltage vs input

Vcc=1.5V

0.6 0.8 Input Common Mode Voltage (V)

Figure 17. Input offset voltage vs input common mode at V_{CC} = 1.5 V

The devices are guaranteed without phase reversal.

T=25°C

4.3 Rail-to-rail output

The operational amplifiers' output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k Ω resistive load to $V_{CC}/2$.

4.4 **Shutdown function (TSV633 - TSV635)**

The operational amplifiers are enabled when the SHDN pin is pulled high. To disable the amplifiers, the \overline{SHDN} must be pulled down to V_{CC-} . When in shutdown mode, the amplifiers' output is in a high impedance state. The SHDN pin must never be left floating, but tied to V_{CC+} or V_{CC-}.

The turn-on and turn-off times are calculated for an output variation of ±200 mV (*Figure 18* and *Figure 19* show the test configurations).

Figure 18. Test configuration for turn-on time Figure 19. Test configuration for turn-off time (Vout pulled down) (Vout pulled down)

Figure 20. Turn-on time, $V_{CC} = 5 \text{ V}$, Vout pulled down, $T = 25^{\circ} \text{ C}$

Shutdown pulse 3 -Vcc = 5VT = 25°C Output voltage (V) Vout Vout Voltage (V) Vcc = 5VT = 25 C -2 Shutdown pulse R, connected to GND -3 | -0.1 0.00 0.05 0.10 0.15 -0.10 -0.05 0.20 0.3 0.0 0.1 0.2 0.4 0.5 Time (µs) Time (µs)

Figure 21. Turn-off time, V_{CC} = 5 V, Vout pulled down, T = 25° C

4.5 Optimization of DC and AC parameters

These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (60 μ A typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and AVd, benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 730 kHz minimum and SR = 0.25 V/ μ s minimum).

4.6 Driving resistive and capacitive loads

These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 2 k Ω For lower resistive loads, the THD level may significantly increase.

In a *follower* configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding an in-series resistor at the output can improve the stability of the devices (see *Figure 22* for recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model.

Figure 22. In-series resistor vs. capacitive load

4.7 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.8 Macromodel

Two accurate macromodels (with or without shutdown feature) of the TSV63x is available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV63x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.

TSV63x, TSV63xA Package information

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Package information TSV63x, TSV63xA

5.1 DFN8 2x2 package information

Figure 23. DFN8 2x2 mm package mechanical drawing

Table 9. DFN8 2 x 2 mm package mechanical data (pitch 0.5 mm)

			Dimer	nsions			
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.51	0.55	0.60	0.020	0.022	0.024	
A1			0.05			0.002	
A3		0.15			0.006		
b	0.18	0.25	0.30	0.007	0.010	0.012	
D	1.85	2.00	2.15	0.073	0.079	0.085	
D2	1.45	1.60	1.70	0.057	0.063	0.067	
E	1.85	2.00	2.15	0.073	0.079	0.085	
E2	0.75	0.90	1.00	0.030	0.035	0.040	
е		0.50			0.020		
L			0.50			0.020	
ddd			0.08			0.003	

TSV63x, TSV63xA Package information

0.45mm 0.75mm 2.80mm

Figure 24. DFN8 2x2 footprint recommendation

Package information TSV63x, TSV63xA

5.2 SOT23-8 package information

DIMENSIONS IN mm

SIDE VIEW

A1

A2

COLITIC COPPLANAR LEADS

D

COPPLANAR LEADS

D

E1/2

E1/2

E1/2

E1/2

TOP VIEW

PROJECTION

Figure 25. SOT23-8 package mechanical drawing

Table 10. SOT23-8 package mechanical data

00120 0 pa	okuge ilicolit	iiiioai aata					
		Dime	nsions				
	Millimeters			Inches			
Min.	Тур.	Max.	Min.	Тур.	Max.		
		1.45			0.057		
		0.15			0.006		
0.90		1.30	0.035		0.051		
0.22		0.38	0.009		0.015		
0.08		0.22	0.003		0.009		
2.80		3	0.110		0.118		
2.60		3	0.102		0.118		
1.50		1.75	0.059		0.069		
	0.65			0.026			
	1.95			0.077			
0.30		0.60	0.012		0.024		
0°		8°					
	0.90 0.22 0.08 2.80 2.60 1.50	Millimeters Min. Typ. 0.90 0.22 0.08 2.80 2.60 1.50 0.65 1.95	Millimeters Min. Typ. Max. 1.45 0.15 0.90 1.30 0.22 0.38 0.08 0.22 2.80 3 2.60 3 1.50 1.75 0.65 1.95 0.30 0.60	Dimensions Min. Typ. Max. Min. 1.45 0.15 0.00 0.035 0.22 0.38 0.009 0.08 0.22 0.003 2.80 3 0.110 2.60 3 0.102 1.50 1.75 0.059 0.65 1.95 0.60 0.012	Dimensions Min. Typ. Max. Min. Typ. 0.15 0.15 0.0035 0.035 0.22 0.38 0.009 0.003 0.08 0.22 0.003 0.110 2.80 3 0.110 0.026 1.50 1.75 0.059 0.026 1.95 0.0077 0.30 0.60 0.012		

TSV63x, TSV63xA Package information

5.3 SO-8 package information

Figure 26. SO-8 package mechanical drawing

Table 11. SO-8 package mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
С	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
E	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
L1		1.04			0.040		
k	0		8°	1°		8°	
CCC			0.10			0.004	

Package information TSV63x, TSV63xA

5.4 MiniSO-8 package information

Figure 27. MiniSO-8 package mechanical drawing

Table 12. MiniSO-8 package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
E	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
е		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	0°		8°	0°		8°
ccc			0.10			0.004

TSV63x, TSV63xA Package information

5.5 MiniSO-10 package information

Figure 28. MiniSO-10 package mechanical drawing

E1

Output

Discrepance of the package mechanical drawing

SEATING PLANE

COURT TO THE PACKAGE PLANE

COURT TO THE PACKAG

Table 13. MiniSO-10 package mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.10			0.043	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.78	0.86	0.94	0.031	0.034	0.037	
b	0.25	0.33	0.40	0.010	0.013	0.016	
С	0.15	0.23	0.30	0.006	0.009	0.012	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	4.75	4.90	5.05	0.187	0.193	0.199	
E1	2.90	3.00	3.10	0.114	0.118	0.122	
е		0.50			0.020		
L	0.40	0.55	0.70	0.016	0.022	0.028	
L1		0.95			0.037		
k	0°	3°	6°	0°	3°	6°	
aaa			0.10			0.004	

Package information TSV63x, TSV63xA

5.6 TSSOP14 package information

Figure 29. TSSOP14 package mechanical drawing

Table 14. TSSOP14 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.90	5.00	5.10	0.193	0.197	0.201
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.176
е		0.65			0.0256	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k	0°		8°	0°		8°
aaa			0.10			0.004

TSV63x, TSV63xA Package information

5.7 TSSOP16 package information

Figure 30. TSSOP16 package mechanical drawing

Table 15. TSSOP16 package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	4.90	5.00	5.10	0.193	0.197	0.201
Е	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
k	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
aaa			0.10			0.004

6 Ordering information

Table 16. Order codes

Order code	Temperature range	Package	Packing	Marking
TSV632IQ2T		DFN8 2x2	Tape & reel	K1N
TSV632ID/DT		SO-8	Tube and tone 9 real	TSV632
TSV632AID/DT		50-6	Tube and tape & reel	TV632A
TSV632IST		MiniSO-8	Tono 9 rool	K110
TSV632AIST	-40° C to +125° C	WIIIIISO-6	Tape & reel	K145
TSV632ILT		COTO2 0	Tono 9 rool	K110
TSV632AILT		SOT23-8	Tape & reel	K145
TSV633IST		MiniSO-10	Tape & reel	K111
TSV633AIST		MINISO-10		K146
TSV634IPT		T000D 44	T 0	TSV634
TSV634AIPT		TSSOP-14	Tape & reel	TSV634A
TSV635IPT		TSSOP-16	Tana 9 roal	TSV635
TSV635AIPT		1330F-10	Tape & reel	TSV635A

TSV63x, TSV63xA Revision history

7 Revision history

Table 17. Document revision history

Date	Revision	Changes
25-May-2009	1	Initial release.
15-Jun-2009	2	Corrected pin connection diagram in Figure 1.
03-Sep-2009	3	Added root part numbers (TSv63xA) and <i>Table 1: Device summary</i> on cover page. Added order code TSV632AILT in <i>Table 16: Order codes</i> .
07-Nov-2011	4	Chapter 5: added DFN8 2x2 package mechanical drawing. Added ordering information for DFN package to Table 16: Order codes. Corrected unit on Y axis of Figure 16 and Figure 17.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

28/28 Doc ID 15688 Rev 4

