Mnożenie macierzy algorytmem Bineta i Strassena

Jakub Płowiec, Filip Dziurdzia

Zadanie

Dla macierzy o rozmiarze mniejszym lub równym $2^l \times 2^l$ algorytm rekurencyjny Binéta. Dla macierzy o rozmiarze większym od $2^l \times 2^l$ algorytm rekurencyjny Strassena.

Wstęp teoretyczny

1. Wprowadzenie

Najbardziej intuicyjną metodą mnożenia jest klasyczne mnożenie macierzy, które ma złożoność czasową $O(n^3)$. W celu zwiększenia efektywności opracowano różne optymalizacje, takie jak:

- Metoda Bineta, która opiera się na rekurencyjnym dzieleniu macierzy na mniejsze bloki i stosowaniu klasycznego mnożenia dla najmniejszych podmacierzy.
- Metoda Strassena, która wykorzystuje sprytne obliczenia rekurencyjne, zmniejszając liczbę operacji mnożenia kosztem dodatkowych operacji dodawania i odejmowania.

Obie te metody zmniejszają liczbę operacji mnożenia, co prowadzi do przyspieszenia obliczeń w porównaniu do klasycznej metody.

2. Klasyczne mnożenie macierzy

Niech dane będą dwie macierze kwadratowe:

$$A = [a_{ij}]$$
 oraz $B = [b_{ij}]$

o wymiarach $n \times n$. Klasyczne mnożenie macierzy definiujemy jako:

$$C = A \cdot B$$
, gdzie $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$

Dla każdego elementu c_{ij} wykonujemy n operacji mnożenia i dodawania, co prowadzi do całkowitej liczby operacji rzędu $O(n^3)$.

3. Metoda Bineta – mnożenie adaptacyjne

3.1 Idea metody

Metoda Bineta polega na rekurencyjnym podziale macierzy na bloki i wykonywaniu mnożenia na mniejszych podmacierzach.

3.2 Algorytm

1. Podział macierzy na podmacierze

Dzielimy macierze na cztery mniejsze bloki:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

2. Rekurencyjne mnożenie bloków

Obliczamy wyniki dla podmacierzy:

$$\begin{split} C_{11} &= A_{11}B_{11} + A_{12}B_{21} \\ C_{12} &= A_{11}B_{12} + A_{12}B_{22} \\ C_{21} &= A_{21}B_{11} + A_{22}B_{21} \\ C_{22} &= A_{21}B_{12} + A_{22}B_{22} \end{split}$$

3. Scalanie wyników

Łaczymy bloki w macierz wynikowa C.

3.3 Złożoność obliczeniowa

Niestety metoda Bineta działa ze złożonością $O(n^3)$, jednakże wykonywanych jest mniej operacji niż przy klasycznym mnożeniu.

4. Metoda Strassena

4.1 Idea metody

Metoda Strassena, opracowana przez Volkera Strassena w 1969 roku, redukuje liczbę operacji mnożenia, zamieniając część z nich na operacje dodawania i odejmowania. Kluczowa idea tej metody polega na inteligentnym wykorzystaniu tożsamości macierzowych w celu zmniejszenia liczby mnożeń blokowych z 8 do 7.

Dzięki temu, zamiast złożoności $O(n^3)$, uzyskujemy złożoność $O(n^{\log_2 7}) \approx O(n^{2.81})$, co jest znaczną poprawą dla dużych macierzy.

4.2 Algorytm

Podobnie jak w metodzie Bineta, dzielimy macierze A i B na cztery bloki. Następnie definiujemy siedem pośrednich iloczynów macierzowych:

$$\begin{split} M_1 &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ M_2 &= (A_{21} + A_{22}) \cdot B_{11} \\ M_3 &= A_{11} \cdot (B_{12} - B_{22}) \\ M_4 &= A_{22} \cdot (B_{21} - B_{11}) \\ M_5 &= (A_{11} + A_{12}) \cdot B_{22} \\ M_6 &= (A_{21} - A_{11}) \cdot (B_{11} + B_{12}) \\ M_7 &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \end{split}$$

Na ich podstawie obliczamy elementy wynikowej macierzy C:

$$C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4$$

$$C_{22} = M_1 - M_2 + M_3 + M_6$$

 $C_{11} = M_1 + M_4 - M_5 + M_7$

4.3 Złożoność obliczeniowa

Metoda Strassena redukuje liczbę mnożeń, ale wprowadza dodatkowe operacje dodawania i odejmowania. Jej złożoność wynosi:

$$O(n^{\log_2 7}) \approx O(n^{2.81})$$

co daje znaczną poprawę dla dużych macierzy.

Rozwiązanie

Implementację obu algorytmów, funkcji je scalającej oraz generowanie wykresów wykonaliśmy w języku **Python**.

1. Pseudokod

Funkcja: matrix_multiplication(A, B, 1) - Dane wejściowe:

- A, B: Kwadratowe macierze o rozmiarze $n \times n$
- 1: Próg przełączania na metodę Strassena
- Wynik:
- Macierz C, będaca wynikiem iloczynu A * B

Algorytm: 1. Warunek bazowy:

- Jeśli n <= 1, oblicz C = strassen_multiplication(A, B) i zwróć wynik.

2. Podział macierzy:

- Podziel A na cztery podmacierze: A_11, A_12, A_21, A_22
- Podziel B na cztery podmacierze: B_11, B_12, B_21, B_22
- 3. Rekurencyjne obliczanie wynikowych podmacierzy:

Oblicz podmacierze C według wzoru:

- C_11 = matrix_multiplication(A_11, B_11, 1) + matrix_multiplication(A_12, B_21, 1)
- C_12 = matrix_multiplication(A_11, B_12, l) + matrix_multiplication(A_12, B 22, l)
- C_21 = matrix_multiplication(A_21, B_11, l) + matrix_multiplication(A_22, B_21, l)
- C_22 = matrix_multiplication(A_21, B_12, 1) + matrix_multiplication(A_22, B_22, 1)
- 4. Scalanie wyników:
 - Połącz podmacierze C_11, C_12, C_21, C_22 w pełną macierz C za pomocą merge matrices().
- 5. Zwróć wynikową macierz C

Funkcja: strassen_multiplication(A, B) - Dane wejściowe:

- A, B: Kwadratowe macierze o rozmiarze $n \times n$ Wynik:
- Macierz C, będąca wynikiem iloczynu A * B

Algorytm: 1. Warunek bazowy:

- Jeśli n == 1, wykonaj zwykłe mnożenie skalarne C = A * B i zwróć wynik.

2. Podział macierzy:

- Podziel A na cztery podmacierze: A 11, A 12, A 21, A 22
- Podziel B na cztery podmacierze: B_11, B_12, B_21, B_22
- 3. Obliczenie siedmiu macierzy pomocniczych M_i:
 - M1 = strassen_multiplication(A_11 + A_22, B_11 + B_22)

- M2 = strassen_multiplication(A_21 + A_22, B_11)
- M3 = strassen_multiplication(A_11, B_12 B_22)
- M4 = strassen_multiplication(A_22, B_21 B_11)
- M5 = strassen_multiplication(A_11 + A_12, B_22)
- M6 = strassen_multiplication(A_21 A_11, B_11 + B_12)
- M7 = strassen_multiplication(A_12 A_22, B_21 + B_22)
- 4. Obliczenie podmacierzy wynikowej macierzy C:
 - $C_{11} = M1 + M4 M5 + M7$
 - $C_{12} = M3 + M5$
 - $C_21 = M2 + M4$
 - $C_{22} = M1 M2 + M3 + M6$
- 5. Scalanie wyników:
 - Połącz C_11, C_12, C_21, C_22 w macierz C za pomocą merge_matrices().
- 6. Zwróć wynikową macierz C

2. Wyniki

Obliczenia wykonaliśmy dla $k \in [2,9]$ i otrzymane rezultaty przedstawiliśmy na wykresach poniżej. Każdy eksperyment został wykonany dla 1=4.

Następnie przeprowadziliśmy doświadczenia ze zmienną wartością $l \in [2, 5]$

Możemy zauważyć niewielką różnicę w czasach wywołania dla różnych 1 - im mniejsza jego wartość tym obliczenia były nieznacznie szybsze. Wynika to z faktu, że mnożenie algorytmem **Strassena** jest szybsze od mnożenia metodą **Bineta**, więc im szybciej zaczniemy z niej korzystać w obliczeniach tym szybciej otrzymamy całościowe wyniki.