05 October 2023 17:56

$$m|n \iff \frac{n}{m} \in \mathbb{Z}$$

$$\sqrt{2} = \frac{1}{2} + \frac{2}{3} \in \mathbb{Z}$$

$$\sqrt{2} = \frac{1}{2} + \frac{2}{3} \in \mathbb{Z}$$

My ⇒ y=0 an |x| ≤|y|

$$N = P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}} - P_{n}^{\alpha_{n}}$$

$$N = \left\{ P_{1} P_{1}, \dots, P_{1} \right\}$$

If Z|xy then Z|xy for only $a,b \in Z$ x|y iff $x \neq y \neq z$ for some non-zero integer Zx|y $\Rightarrow x|y \neq z$ for only $z \in Z$

Fundamental Theorem of Anthonatic

Any natural number greater than I has a unique prime factor takon upto order

$$A = \{ P_1, P_1, P_1, \dots, P_n, P_n, P_n, P_n \}$$

$$B = \{ \alpha_1, \alpha_2, P_1, \dots, P_n \}$$

$$G_{G}(Q_{A},b) = A \cap B$$

 $LCM(Q,b) = A \cup B$

c/a and c/b > c/qcb(a,b)

dla but god(d,b)=1 teen D elp pot god(ea)=1 than E

$$Q = P_1^{K_1} P_2^{K_2} - P_n^{B_n}$$

$$b = P_1^{B_1} P_2^{B_2} - P_n^{B_n}$$

$$min(\alpha_1, \beta_1) p min(\alpha_1 B_2)$$

$$q(d(\alpha_1 b)) = P_1^{B_1} P_2^{B_2} - P_n^{B_n}$$

$$l(m(\alpha_1 b)) = P_1^{B_1} P_2^{B_2} - P_n^{B_1}$$

#(Eudid) Prove that there are infinitely many primes

Suppose there are fritely many primes and the se are ¿p,,p-,...Prz

Let us define a number $N = P_1 P_2 P_3 - P_k + 1$

Any number which not divisible by only prime less took itself is a prime number. N>1 and by F indomental Thearem of the Arithmetic it must be dirided by a prime

P/XN 05 71/(N-1) PLXN as PL/(N-1)

PKXN as PK (N-1)

Thus N has a dirison as prime + P, or P_ or - or Pk ≥ Contradiction - 0.0

g Prove that 52 is issociated hoi- Suppose \(\frac{1}{2} = \frac{p}{q} \) \(\text{P,q} \in \frac{1}{2} \) \(\text{poly} \) $2 = \frac{p^{2}}{q^{2}} \Rightarrow 2q^{2} = p^{2} \Rightarrow 2|p^{2} \Rightarrow 2|p^{2} \Rightarrow 2|p^{2} \Rightarrow 4|p^{2}$ $4|2q^{2} \Rightarrow 2|q^{2} \Rightarrow 2|q \longrightarrow \gcd(p,q) \neq 1 \Rightarrow \in$ Hence 52 to form for ony p, gr =2.

Q) Find integers x, y such that 1110 x + 1011y = 3 (HomeWork) (Howe Work) -> Read)

Euclid's Entended Algoritem:

We have a, b and we need or only such that antby=1

Each step we need to calculate
$$X = 0$$
, otherwise, $X = y - \lfloor \frac{b}{a} \rfloor \times x$ $y = 1$

Ans	;-

١	(;	х;	<i>A</i> :	%;	_
	<u>)</u>	1	Ö		
	13	0	1	١	
	8	1	-1	1	
	5	-1	2	(
	3	2	-3	١	
	2	-3	5	1	
•		5	- 5	3	