

ECONOMICS OF MODERN POWER SYSTEMS

M6 – Behind-the-Meter (BTM) Energy Management Systems: PV + battery

Learning Goals

- Storage management
 - More on solving LPs in Python/R
 - case study for a customer with (PV + battery) system

Energy Storage Management

Study case: Behind-the-meter Solar + Storage

Approaches to Solar Storage

Utility Scale Storage

- Customer Sited Storage
 - Commercial / Industrial
 - Residential

Projections of Energy storage growth in U.S.A in different levels (source: Navigant Research)

Customer Sited Storage: Commercial/Industrial

- May be incentivized through existing or new tariffs
- □ If existing demand charges are $\geq $15/kW$, customer storage may already be feasible with current technologies and pricing
- New tariffs with time-varying or dynamic rates to promote demand reduction are an option
 - High peak kW demand rate at certain hours reflecting seasonal patterns (e.g. 4-6pm in May-Sep)
 - Low off-peak kW demand rate
 - Low energy rate for kWh (2-3 cents)
- According to 2017 NREL whitepaper on behind-the-meter battery energy storage, demand rates in NC are as high as \$25.65 per kW, average \$15.61

Customer-sited storage: Residential

- DC and AC storage options
- Storage connects directly to DC service to avoid the loss incurred by DC/AC conversion
- Options for PV system and electric vehicle(s) and/or other storage

Customer benefits

- ✓ Shift energy according to time-of-use rate
- √ Minimize PV curtailment
- √ Optimize EV charging
- √ Backup generation source

Model, Data & Tools

- √ Household load model
- √ Converter efficiency curve
- √ EV charging patterns
- √ Energy storage parameters

SST 380 V_{dc} 120/240 V_{ac} DC Load

AC House

Hybrid House (both AC & DC)

Pure DC house

PV-based Storage Control

Study Case Description

- Customer Sited PVs with Storage
- We will use data from Assignment #1
 - Same Residential Customer
 - Same PV system
 - But now he will also have battery and he needs help with storage management to minimize cost of electricity
- Assumptions
 - He will not send power to the grid (e.g. suppose there is no net metering, so that is no incentive for him to feed the grid)
 - Inverter DC to AC ratio is 1 (matches PV installed capacity)

Try to think about this problem

- □ Planning horizon − 1 day
- Time step hours
- Write down your decision variables

- Write down your constraints
 - □ If you can't come up with a mathematical expression, just describe with words what they would be

Our goal is

minimize cost

- Cost here is not related to investment, but daily expenses related to electricity supply
- Cost function depends on how much electricity I am using from utility and electricity rate I am paying, assuming there is no cost to generate and/store electricity with the PV + battery system
- And we want to minimize cost for all hours of the day

Now let's think about constraints...

Power Balance at each time t

Power in >= Power out

subjected to:

Equality constraints:

(i) Power Balance: Input and output power should be equivalent

subjected to:

Equality constraints:

(i) Power Balance: Input and output power should be equivalent

$$P_{grid,t} - P_{b_{ch},t} + P_{b_{disch},t} - P_{slack,t} = P_{load,t} - P_{PV,t}^{\omega_t}; \ (\forall t \in T)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Charge \qquad Discharge \qquad PV$$

$$Demand \qquad PV$$

What's next?

Storage balance constraint

Storage_level_t = Storage_level_t-1 + P_charge_t - P_discharge_t

subjected to:

Equality constraints:

(i) Power Balance: Input and output power should be equivalent

(ii) Charge Balance: State of charge will change based on charging/ discharging power

Understanding SOC equation

$$SoC_{t} = SoC_{t-1} + \frac{P_{b_{ch,t}} \cdot \eta_{b}^{ch}}{Q_{b} \cdot \Delta t} - \frac{P_{b_{disch,t}}}{Q_{b} \cdot \Delta t \cdot \eta_{b}^{disch}}$$

Defining Boundary Conditions

□ What's next?

Boundary conditions

Defining Boundary Conditions

Inequality Constraints:

Storage device will be charged only from PV-generated power

$$P_{b_{ch,t}} \le P_{PV,t}^{\omega_t}$$
, $\forall t \in T$

Storage device will deliver power only to the household

$$P_{b_{disch,t}} \leq P_{load,t}$$
, $\forall t \in T$

There will be no back-feeding of power to the grid

$$P_{grid,t} \geq 0$$
, $\forall t \in T$

Upper and lower bounds:

 $SoC_{b,min} \leq SoC_{b,t} \leq SoC_{b,max}, \forall t \in T$

 $\qquad P_{b_{ch}}^{min} \le P_{b_{ch},t} \le P_{b_{ch}}^{max} \text{ , } \forall t \in T$

 $P_{b_{disch}}^{min} \le P_{b_{disch,t}} \le P_{b_{disch}}^{max}, \forall t \in T$

The less your battery is discharged before being recharged again, the longer it will last

The default SoC for Li-ion batteries is 95%

Uncertainty: A Challenge

Defining Boundary Conditions

Inequality Constraints:

Storage device will be charged only from PV-generated power

$$P_{b_{ch,t}} \le P_{PV,t}^{\omega_t}$$
, $\forall t \in T$

Storage device will deliver power only to the household

$$P_{b_{disch,t}} \leq P_{load,t}$$
, $\forall t \in T$

There will be no back-feeding of power to the grid

$$P_{grid,t} \geq 0$$
, $\forall t \in T$

Upper and lower bounds:

- $\square \quad SoC_{b,min} \leq SoC_{b,t} \leq SoC_{b,max} , \forall t \in T$
- $P_{b_{ch}}^{min} \le P_{b_{ch,t}} \le P_{b_{ch}}^{max} , \forall t \in T$
- $\qquad \qquad P_{b_{disch}}^{min} \leq P_{b_{disch,t}} \leq P_{b_{disch}}^{max} \text{ , } \forall t \in T$

The less your battery is discharged before being recharged again, the longer it will last

The default SoC for Li-ion batteries is 95%

Uncertainty generation:

 $P_{PV,t}^{\omega_t}$ where ω_t is a scenario within Ω_t that is the set of all scenarios , $\forall t \in T$

Uncertainty: A Challenge

Really???

... Thanks god I took Time Series!!

... I knew I should have taken Time series!!

But we will not handle uncertainty today...

Today we will go over a DETERMINISTIC approach!

Our final formulation will be...

$$\mathbf{min} \qquad z = \sum_{t=1}^{T} [P_{grid,t} \cdot C_t]$$

Because we are doing deterministic approach, no need to write $\forall \omega_t \in \Omega_t$

s.t.
$$P_{grid,t} - P_{b_{ch},t} + P_{b_{disch},t} - P_{slack,t} = P_{load,t} - P_{PV,t}^{\omega_t} \ \forall t \in T$$
 (Power Balance)

$$SoC_t = SoC_{t-1} + \frac{P_{b_{ch,t}} \cdot \eta_b^{ch}}{Q_b \cdot \Delta t} - \frac{P_{b_{disch,t}}}{Q_b \cdot \Delta t \cdot \eta_b^{disch}} \quad \forall t \in T$$
 (Charge Balance)

$$P_{b_{ch,t}} \leq P_{PV,t}^{\omega_t}$$
 $\forall t \in T$ (Storage device only charged from PV)

$$P_{b_{disch,t}} \le P_{load,t}$$
 $\forall t \in T$ (Storage deliver power only to household)

$$P_{grid,t} \ge 0$$
 $\forall t \in T$ (No back-feeding of power to the grid)

$$SoC_{b,min} \leq SoC_{b,t} \leq SoC_{b,max} \quad \forall t \in T$$

$$P_{b_{ch}}^{min} \le P_{b_{ch}} t \le P_{b_{ch}}^{max}$$
 $\forall t \in T$ (Upper and lower bounds)

$$P_{b_{disch}}^{min} \le P_{b_{disch}} \le P_{b_{disch}}^{max} \quad \forall t \in T$$

Study Case Parameters

Known parameters

PV installed capacity	7,92	kW
Battery capacity	4	kWh
Battery Efficiency for charging and discharging	0,92	
Initial State of Charge (SOC_0)	20%	
Minimum SOC	20%	
Maximum SOC	80%	
Pb_ch_min	0	kW
Pb_ch_max	3	kW
Pb_disch_min	0	kW
Pb_disch_max	3	kW
Battery type	Li-ion	
Time steps for this analysis: t	1	h
Time Horizon: T	24	h

"Unknown" parameters – Deterministic Approach

	P_PV_t	P_load_t	C_t	
Sep 18, 12:00 am		0	2.05	0.09996372
Sep 18, 1:00 am		0	0.32	0.09996372
Sep 18, 2:00 am		0	1.72	0.09996372
Sep 18, 3:00 am		0	0.34	0.09996372
Sep 18, 4:00 am		0	1.58	0.09996372
Sep 18, 5:00 am		0	0.34	0.09996372
Sep 18, 6:00 am	0.230	828	0.83	0.09996372
Sep 18, 7:00 am	1.53	247	1.55	0.09996372
Sep 18, 8:00 am	3.19	997	0.51	0.09996372
Sep 18, 9:00 am	4.53	936	1.98	0.09996372
Sep 18, 10:00 am	4.32	765	0.37	0.09996372
Sep 18, 11:00 am	2.07	893	2.5	0.09996372
Sep 18, 12:00 pm	3.82	706	2.08	0.09996372
Sep 18, 1:00 pm	5.54	551	1.86	0.09996372
Sep 18, 2:00 pm	4.79	316	3.42	0.09996372
Sep 18, 3:00 pm	3.04	991	1.55	0.09996372
Sep 18, 4:00 pm	1.38	626	2.88	0.09996372
Sep 18, 5:00 pm	0.353	036	2.34	0.09996372
Sep 18, 6:00 pm		0	3.1	0.09996372
Sep 18, 7:00 pm		0	2.22	0.09996372
Sep 18, 8:00 pm		0	2.79	0.09996372
Sep 18, 9:00 pm		0	1.05	0.09996372
Sep 18, 10:00 pm		0	1.1	0.09996372
Sep 18, 11:00 pm		0	1.47	0.09996372
	A	_	A	A

From SAM

From Customer

From Duke

Questions

- How many decision variables do we have?
 - 5*24 = 120 decision variables
- How many constraints do we have?
 - \square 4*24 = 96 technical constraints

 - \square 2*24 = 48 nonnegativity
- Can we use Excel Solver to find optimal solution?
 - We might, but would require some rewriting
 - As it is, the problem is too big for the Solver

Model Implementation in R

Study Case Model Implementation

- Download data file from Sakai
- Recall: number of columns is number of dec. variables
 - $5 \times 24 = 120$ columns
 - Keep track of the order of the variables in the LP
 - Our example

```
\blacksquare 1 to 24 P_{grid,t}
```

25 to 48
$$P_{b_{ch},t}$$

$$\blacksquare$$
 49 to 72 $P_{b_{disch},t}$

97 to 120 SoC_t

Power Balance Constraint (t = 1)

$$P_{grid,t} - P_{b_{ch},t} + P_{b_{disch},t} - P_{slack,t} = P_{load,t} - P_{PV,t}^{\omega_t}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
$P_{grid,t}$	1																							
	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
$P_{b_{ch},t}$	-1																							
	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
$P_{b_{disch},t}$	1																							
	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
$P_{slack,t}$	-1																							
	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
SoC_t																								

All other cells should be zero!

Power Balance Constraint (t = 2)

$$P_{grid,t} - P_{b_{ch},t} + P_{b_{disch},t} - P_{slack,t} = P_{load,t} - P_{PV,t}^{\omega_t}$$

	1	2	3	4	5	6	7	8	9	10	-11	12	13	14	15	16	17	18	19	20	21	22	23	24
$P_{grid,t}$		1																						
	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
$P_{b_{ch},t}$		-1																						
	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	<i>7</i> 1	72
$P_{b_{disch},t}$		1																						
	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
$P_{slack,t}$		-1																						
	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
SoC_t																								

All other cells should be zero!

Power Balance Constraint (t=24)

$$P_{grid,t} - P_{b_{ch},t} + P_{b_{disch},t} - P_{slack,t} = P_{load,t} - P_{PV,t}^{\omega_t}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
$P_{grid,t}$																								1
	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
$P_{b_{ch},t}$																								-1
	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
$P_{b_{disch},t}$																								1
	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
$P_{slack,t}$																								-1
	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
SoC_t																								

All other cells should be zero!

R code

- Running Simple Example ?
 - IpSolveAPI running ?
- Importing Data using read.table ?
- Understanding how R store decision variables vector
 - □ Jump by 24
- Understanding how constraints are entered
- Understanding how to access optimal variables values
- Plotting graphs in R

Model Implementation in Python

Study Case Model Implementation

Please refer to the ipynb file on Sakai

THANK YOU!