Triangle meshes

CS 4620 Lecture 11

Notation

- n_T = #tris; n_V = #verts; n_F = #edges
- Euler: $n_V n_F + n_T = 2$ for a simple closed surface
 - and in general sums to small integer
 - argument for implication that $n_T:n_E:n_V$ is about

Validity of triangle meshes

- in many cases we care about the mesh being able to bound a region of space nicely
- in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
- two completely separate issues:
 - topology: how the triangles are connected (ignoring the positions entirely)
 - geometry: where the triangles are in 3D space

Topology/geometry examples

same geometry, different mesh topology:

same mesh topology, different geometry:

Topological validity

- strongest property, and most simple: be a manifold
 - this means that no points should be "special"
 - interior points are fine
 - edge points: each edge should have exactly 2 triangles
 - vertex points: each vertex should have one loop

Geometric validity

- generally want non-self-intersecting surface
- hard to guarantee in general
 - because far-apart parts of mesh might intersect

Representation of triangle meshes

- Compactness
- Efficiency for rendering
 - enumerate all triangles as triples of 3D points
- Efficiency of queries
 - all vertices of a triangle
 - all triangles around a vertex
 - neighboring triangles of a triangle
 - (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing

Representations for triangle meshes

- Separate triangles
- Indexed triangle set
 - shared vertices
- Triangle strips and triangle fans
 - compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes

Separate triangles

 (x_1, y_1, z_1)

Separate triangles

- array of triples of points
 - float[n_T][3][3]: about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)
- various problems
 - wastes space (each vertex stored 6 times)
 - cracks due to roundoff
 - difficulty of finding neighbors at all

Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

```
Triangle {
Vertex vertex[3];
Vertex {
float position[3]; // or other data
// ... or ...
Mesh {
float verts[nv][3]; // vertex positions (or other data)
int tInd[nt][3]; // vertex indices
```

Indexed triangle set

Indexed triangle set

- array of vertex positions
 - float[n_{V}][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - int[n_{τ}][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined

Triangle strips

- Take advantage of the mesh property
 - each triangle is usually adjacent to the previous

- let every vertex create a triangle by reusing the second and third vertices of the previous triangle
- every sequence of three vertices produces a triangle (but not in the same order)
- e. g., 0, 1, 2, 3, 4, 5, 6, 7, ... leads to
 (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7),
 ...
- for long strips, this requires about one index per triangle

Triangle strips

₽p₁

 \mathbf{p}_5

Triangle strips

- array of vertex positions
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of index lists
 - int[n_s][variable]: 2 + n indices per strip
 - on average, $(1 + \varepsilon)$ indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- total is 20 bytes per vertex (limiting best case)
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh

Triangle fans

- Same idea as triangle strips, but keep oldest rather than newest
 - every sequence of three vertices produces a triangle
 - e. g., 0, 1, 2, 3, 4, 5, ... leads to (0 1 2), (0 2 3), (0 3 4), (0 3 5), .1
 - for long fans, this requires about one index per triangle
- Memory considerations exactly the same as triangle strip

- Extension to indexed triangle set
- Triangle points to its three neighboring triangles
- Vertex points to a single neighboring triangle
- Can now enumerate triangles around a vertex


```
Triangle {
Triangle nbr[3];
Vertex vertex[3];
// t.neighbor[i] is adjacent
// across the edge from i to i+1
Vertex {
// ... per-vertex data ...
Triangle t; // any adjacent tri
// ... or ...
Mesh {
// ... per-vertex data ...
int tInd[nt][3]; // vertex indices
int tNbr[nt][3]; // indices of neighbor triangles
int vTri[nv]; // index of any adjacent triangle
```



```
TrianglesOfVertex(v) {
    t = v.t;
    do {
        find t.vertex[i] == v;
        t = t.nbr[pred(i)];
        } while (t != v.t);
}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;
```


- indexed mesh was 36 bytes per vertex
- add an array of triples of indices (per triangle)
 - int[n_{τ}][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- add an array of representative triangle per vertex
 - int[n_{V}]: 4 bytes per vertex
- total storage: 64 bytes per vertex
 - still not as much as separate triangles

Triangle neighbor structure refined

```
Triangle {
Edge nbr[3];
Vertex vertex[3];
// if t.nbr[i].i == i
// then t.nbr[i].t.nbr[j] == t
Edge {
// the i-th edge of triangle t
Triangle t;
int i; // in {0,1,2}
// in practice t and i share 32 bits
Vertex {
// ... per-vertex data ...
Edge e; // any edge leaving vertex
```



```
T_0.nbr[0] = \{ T_1, 2 \}
T_1.nbr[2] = \{ T_0, 0 \}
V_0.e = \{ T_0, 2008 \text{ Steve Marschner} \cdot 23 \}
```

```
TrianglesOfVertex(v) {
    {t, i} = v.e;
    do {
          {t, i} = t.nbr[pred(i)];
        } while (t != v.t);
}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;
```


Winged-edge mesh

- Edge-centric rather than face-centric
 - therefore also works for polygon meshes
- Each (oriented) edge points to:
 - left and right forward edges
 - left and right backward edges
 - front and back vertices
 - left and right faces
- Each face or vertex points to one edge

Winged-edge mesh

```
Edge {
Edge hl, hr, tl, tr;
Vertex h, t;
Face I, r;
Face {
// per-face data
Edge e; // any adjacent edge
Vertex {
// per-vertex data
Edge e; // any incident edge
```


Winged-edge structure

```
EdgesOfVertex(v) {
    e = v.e;
    do {
        if (e.t == v)
            e = e.tl;
        else
            e = e.hr;
        } while (e != v.e);
}
```

	hl	hr	tl	tr	
edge[0]	1	4	2	3	
edge[1]	18	0	16	2	
edge[0] edge[1] edge[2]	12	1	3	0	
		;			

Winged-edge structure

```
EdgesOfFace(f) {
    e = f.e;
    do {
        if (e.l == f)
            e = e.hl;
        else
            e = e.tr;
        } while (e != f.e);
}
```

	hl	hr	tl	tr	
edge[0]	1	4	2	3	
edge[1]	18	0	16	2	
edge[2]	12	1	3	0	
		;			

Winged-edge structure

- array of vertex positions: 12 bytes/vert
- array of 8-tuples of indices (per edge)
 - head/tail left/right edges + head/tail verts + left/right tris
 - int[$n_{\rm F}$][8]: about 96 bytes per vertex
 - 3 edges per vertex (on average)
 - (8 indices x 4 bytes) per edge
- add a representative edge per vertex
 - int[n_{V}]: 4 bytes per vertex
- total storage: 112 bytes per vertex
 - but it is cleaner and generalizes to polygon meshes

Winged-edge optimizations

- Omit faces if not needed
- Omit one edge pointer on each side
 - results in one-way traversal

- Simplifies, cleans up winged edge
 - still works for polygon meshes
- Each half-edge points to:
 - next edge (left forward)
 - next vertex (front)
 - the face (left)
 - the opposite half-edge
- Each face or vertex points to one half-edge


```
HEdge {
HEdge pair, next;
Vertex v;
Face f:
Face {
// per-face data
HEdge h; // any adjacent h-edge
Vertex {
// per-vertex data
HEdge h; // any incident h-edge
```



```
EdgesOfVertex(v) {
h = v.h;
do {
       h = h.pair.next;
    } while (h != v.h);
```

	pair	next
hedge[0]	1	2
hedge[1]	0	10
hedge[2]	3	4
hedge[3]	2	9
hedge[4]	5	0
hedge[5]	4	6
	:	


```
EdgesOfFace(f) {
    h = f.h;
    do {
         h = h.next;
        } while (h != f.h);
}
```

	pair	next
hedge[0]	1	2
hedge[1]	0	10
hedge[2]	3	4
hedge[3]	2	9
hedge[4]	5	0
hedge[5]	4	6
	:	

- array of vertex positions: 12 bytes/vert
- array of 4-tuples of indices (per h-edge)
 - next, pair h-edges + head vert + left tri
 - int[$2n_F$][4]: about 96 bytes per vertex
 - 6 h-edges per vertex (on average)
 - (4 indices x 4 bytes) per h-edge
- add a representative h-edge per vertex
 - int[n_{v}]: 4 bytes per vertex
- total storage: 112 bytes per vertex

Half-edge optimizations

- Omit faces if not needed
- Use implicit pair pointers
 - they are allocated in pairs
 - they are even and odd in an

