

Sintesi del contatore modulo 8 (1)

Il *contatore modulo 8* parte da 0 e ad ogni fronte d'onda discendente del clock incrementa di 1 il suo valore, fino ad arrivare a 7; poi torna a 0 e ricomincia.

Codifica dell'automa:

- Associo allo stato S_i la codifica binaria di $i \rightarrow 3$ bit $\rightarrow 3$ FF
- Non c'è alfabeto di input
- I caratteri di output vengono codificati con la loro normale codifica binaria

Contatori

Un *contatore* è un registro usato per contare il numero di occorrenze di un determinato evento, sempre modulo un certo numero naturale.

 \rightarrow se formato da *n* FF, potrà contare fino a modulo 2^n

Tipicamente, gli eventi che può contare sono i colpi di clock o le occorrenze di alcuni valori (o sequenze) di input.

Si distinguono in:

- sincroni (tutti i FF del contatore hanno lo stesso clock)
- asincroni (nello stesso contatore i vari FF hanno clock diversi)

Possono contare a salire o a scendere (o entrambe)

Possono essere settabili (forzare un valore che non rispetta la normale sequenza)

Sintesi del contatore modulo 8 (2)

Stato(t+1)

			S ₀ S ₁ S ₂ S ₃ S ₄ S ₅			S ₁ S ₂ S ₃ S ₄ S ₅ S ₆		
12 v1 V0	0	1	y2 y1 y0	0	1	, y2 y1 V	0	,
y2 y1 00	0	0	00	0	1	00	1)
01	0	1	01	х	Х	01	1)
11	х	Х	11	х	Х	11	1)
10	v	v	10	n	1	100	4	,

Stato(t)

10	х	х	10	0	1	10	1	Х
J2 map		J1 map				J0 map		
y2 y1 ^{y0}	0	1	y2 y1 y0	0	1	y2 y1 y0	0	1
00	х	Х	00	х	Х	00	X	1
01	Х	Х	01	0	1	01	Х	1
11	0	1	11	0	1	11	Х	1
10	0	0	10	Х	Х	10	Х	1
	TZ2 .			TZ 1			TZO.	

y ₂ y ₁ y ₀	$Y_2 Y_1 Y_0$	J ₂ K ₂ J ₁ K ₁ J ₀ K ₀
0 0 0	0 0 1	0 - 0 - 1 -
0 0 1	0 1 0	0 - 1 1
0 1 0	0 1 1	0 0 1 -
0 1 1	1 0 0	1 1 - 1
1 0 0	1 0 1	- 0 0 - 1 -
1 0 1	1 1 0	- 0 1 1
1 1 0	1 1 1	- 0 - 0 1 -
1 1 1	0 0 0	- 1 - 1 - 1

$$J_0 = K_0 = 1$$

 $J_1 = K_1 = y_0$
 $J_2 = K_2 = y_1y_0$

3

FF con ingressi asincroni

Spesso, i FF sono equipaggiati con due ulteriori ingressi, chiamati PRESET e CLEAR, che funzionano in maniera *asincrona* rispetto al clock: essi cioè sono usati per settare o resettare il FF in modo istantaneo, cioè indipendentemente dalle entrate usuali e dal *clock*.

Funzionamento:

- PRESET = CLEAR = 0: normale funzionamento del FF;
- PRESET = 1, CLEAR = 0: set immediato del FF;
- PRESET = 0, CLEAR = 1: reset immediato del FF;
- PRESET = CLEAR = 1: non usata.

Contatori preselezionabili

Un secondo utilizzo dei FF con ingressi asincroni è la realizzazione di *contatori preselezionabili*, in cui cioè si può forzare un valore e mantenerlo, indipendentemente dai valori in ingresso e dal clock.

Funzionamento:

- Se il segnale PL (= parallel load) vale 0, allora si comporta come un normale contatore MOD 2ⁿ;
- Se PL = 1, forza i valori presenti sulle linee p_{n-1},...,p₀ (parallel data inputs) nei rispettivi FF;
- Per mantenere memorizzato un valore, basta tenere tale valore sulle linee di input parallele e PL = 1.

