Equations aux Dérivées Partielles (EDP)

Serge Mazauric

CPE – Lyon

4ETI

Sommaire

- I. Introduction
- II. Equation de la chaleur
- III. Equation d'onde
- IV. Application au traitement d'image

I. Introduction

Une équation aux dérivées partielles (EDP) est une équation dont l'inconnue est une fonction de la forme ...

$$(x_1,x_2,\ldots,x_n,t)\mapsto f(x_1,x_2,\ldots,x_n,t)$$

... et qui implique un certain nombre de ses fonctions dérivées partielles :

$$\frac{\partial f}{\partial t}$$
, $\frac{\partial^2 f}{\partial t^2}$, ..., $\frac{\partial f}{\partial x_1}$, $\frac{\partial^2 f}{\partial x_2^2}$, ..., $\frac{\partial f}{\partial x_2}$, $\frac{\partial^2 f}{\partial x_2^2}$..., $\frac{\partial f}{\partial x_n}$, $\frac{\partial^2 f}{\partial x_n^2}$, ...

Applications à la description de nombreux phénomènes physiques :

- Électrostatique : Laplace, Poisson
- Electrodynamique : Maxwell
- Théorie de la chaleur : Fourier
- Diffusion : Fick
- Mécanique des fluides : Euler, Navier-Stokes
- Mécanique quantique : Schrödinger

L'équation de diffusion de la chaleur s'écrit (en dimension 1) :

$$\frac{\partial f}{\partial t}(x,t) = \frac{\partial^2 f}{\partial x^2}(x,t), \qquad x \in [0;L] \text{ et } t > 0$$

Conditions aux limites :
$$\begin{cases} f(0,t) = f_1(t) \\ f(L,t) = f_2(t) \end{cases}$$

Condition initiale:

$$f(x,0) = g(x)$$

Applications

La résolution de l'équation de la chaleur permet d'obtenir la distribution de température, en fonction du temps, le long d'une barre dont on connait l'évolution temporelle de la température aux extrémités.

Remarque

L'équation de la chaleur est une EDP dite **parabolique**, par analogie avec l'équation cartésienne d'une parabole :

$$\frac{\partial f}{\partial t} = a \frac{\partial^2 f}{\partial x^2} \qquad \longleftrightarrow \qquad y = ax^2$$

Discrétisation par différences finies

La variable continue t est discrétisée en m intervalles de durée τ ainsi :

$$t_i = i\tau$$
, $i = 0,1,...,m$

L'intervalle [0;L] est découpé en n+1 intervalles de largeur h=L/(n+1), ainsi :

$$x_i = jh, \qquad j = 0, 1, ..., n + 1$$

Approximation de la dérivée temporelle : $\frac{\partial f}{\partial t} \simeq \frac{1}{\tau} [f(x, t + \tau) - f(x, t)]$

Approximation de la dérivée 2nd spatiale : $\frac{\partial^2 f}{\partial x^2} \simeq \frac{1}{h^2} [f(x+h,t) - 2f(x,t) + f(x-h,t)]$

Discrétisation par différences finies (suite)

On introduit les notations suivantes : $f(x_j, t_i) = f_j^{(i)}$

L'équation de la chaleur s'écrit alors :

$$\frac{1}{\tau} \left[f_j^{(i+1)} - f_j^{(i)} \right] \simeq \frac{1}{h^2} \left[f_{j+1}^{(i)} - 2f_j^{(i)} + f_{j-1}^{(i)} \right]$$

$$\frac{1}{\tau} \left[f_j^{(i+1)} - f_j^{(i)} \right] \simeq \frac{1}{h^2} \left[f_{j+1}^{(i)} - 2f_j^{(i)} + f_{j-1}^{(i)} \right]$$

$$\frac{1}{\tau} \left[f_j^{(i+1)} - f_j^{(i)} \right] \simeq \frac{1}{h^2} \left[f_{j+1}^{(i)} - 2f_j^{(i)} + f_{j-1}^{(i)} \right]$$

$$\frac{1}{\tau} \left[f_j^{(i+1)} - f_j^{(i)} \right] \simeq \frac{1}{h^2} \left[f_{j+1}^{(i)} - 2f_j^{(i)} + f_{j-1}^{(i)} \right]$$

$$\frac{1}{\tau} \left[f_j^{(i+1)} - f_j^{(i)} \right] \simeq \frac{1}{h^2} \left[f_j^{(i)} - 2f_j^{(i)} + f_{j-1}^{(i)} \right]$$

$$\frac{1}{\tau} \left[f_j^{(i)} - f_j^{(i)} \right] \simeq \frac{1}{h^2} \left[f_j^{(i)} - 2f_j^{(i)} + f_{j-1}^{(i)} \right]$$

$$\frac{1}{\tau} \left[f_j^{(i)} - f_j^{(i)} \right] \simeq \frac{1}{h^2} \left[f_j^{(i)} - 2f_j^{(i)} + f_j^{(i)} \right]$$

Ou encore, en posant $r = \frac{\tau}{h^2}$:

$$f_j^{(i+1)} \simeq r \left[f_{j+1}^{(i)} + f_{j-1}^{(i)} \right] + (1 - 2r) f_j^{(i)}$$

avec
$$i = 0,1,...,m$$
 et $j = 1,...,n$

$$le \ temps \qquad l'espace$$

Ecriture matricielle de l'équation de la chaleur

On pose:
$$\mathbf{F}^{(i)} = \left(f_1^{(i)}, f_2^{(i)}, \dots, f_n^{(i)}\right)^T$$
 et $\tilde{\mathbf{F}}^{(i)} = \left(f_0^{(i)}, 0, \dots, 0, f_{n+1}^{(i)}\right)^T$ \longleftarrow dim. $n \times 1$

L'équation de la chaleur discrétisée s'écrit alors :

avec
$$\mathbf{M} = \begin{pmatrix} 1 - 2r & r & 0 \\ r & 1 - 2r & r & 0 \\ 0 & r & \ddots & & \\ & & \ddots & r & 0 \\ 0 & & r & 1 - 2r & r \\ & & 0 & r & 1 - 2r \end{pmatrix}$$

Cas particulier où la température aux extrémités est constante dans le temps et nulle :

$$\Rightarrow$$
 $\tilde{\mathbf{F}}^{(i)} = \mathbf{0}$ et $\mathbf{F}^{(i+1)} = \mathbf{M}.\mathbf{F}^{(i)}$

Stabilité de l'équation de la chaleur

L'équation matricielle $\mathbf{F}^{(i+1)} = \mathbf{M} \cdot \mathbf{F}^{(i)}$ ne converge que si les valeurs propres de \mathbf{M} sont inférieures à 1 (en valeur absolue).

De façon générale, la matrice tri-diagonale
$$\mathbf{A}=\left(\begin{array}{ccccc}b&c&0\\a&b&c&&0\\0&a&\ddots&&&\\&&\ddots&c&0\\0&&a&b&c\\&&&0&a&b\end{array}\right)$$
 admet les

valeurs propres suivantes :

$$\forall k \in [1; n], \ \lambda_k = b + 2\sqrt{ac}\cos\left(\frac{k\pi}{n+1}\right)$$

Ici a = c = r et b = 1 - 2r donc :

$$-1 < \lambda_k < 1 \iff -1 < 1 - 2r \left(1 - \cos \left(\frac{k\pi}{n+1} \right) \right) < 1$$
$$\Leftrightarrow 0 < \frac{\tau}{h^2} \sin^2 \left(\frac{k\pi}{2(n+1)} \right) < \frac{1}{2}$$

Rappel: $r = \tau/h^2$

En particulier, lorsque $h \to 0$ (càd h petit), on a $n \to +\infty$ (càd n grand), donc $\sin\left(\frac{n\pi}{2(n+1)}\right) \to 1$ et finalement :

$$r = \frac{\tau}{h^2} < \frac{1}{2}$$

 \Rightarrow condition restrictive sur le pas temporel : $\tau < \frac{h^2}{2}$

Exemple

$$h = 0.05, \tau = 0.00124 \implies r = 0.496$$

$$h = 0.05, \tau = 0.00127 \implies r = 0.508$$

L'équation d'onde s'écrit (en dimension 1) :

$$\frac{\partial^2 f}{\partial t^2}(x,t) - c^2 \frac{\partial^2 f}{\partial x^2}(x,t) = u(x), \qquad x \in [0;L] \ et \ t > 0$$

Conditions aux limites :

$$\begin{cases} f(0,t) = f_1(t) \\ f(L,t) = f_2(t) \end{cases}$$

Conditions initiales :

$$\begin{cases} f(x,0) = g(x) \\ \frac{\partial f}{\partial t}(x,0) = k(x) \end{cases}$$

Applications

- Cette équation décrit la propagation d'une onde, et plus précisément, dans le cas monodimensionnel, l'évolution au cours du temps de la forme d'une corde pincée.
- En électromagnétisme, l'équation d'onde (en 3 dimensions) est construite à partir des équations de Maxwell : elle décrit la propagation du champ électrique et du champ magnétique.

Remarque

L'équation d'onde est une EDP dite **hyperbolique**, par analogie avec l'équation cartésienne d'une parabole :

$$\frac{\partial^2 f}{\partial t^2} - c^2 \frac{\partial^2 f}{\partial x^2} = u \qquad \longleftrightarrow \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Discrétisation par différences finies (dans le cas particulier u=0)

La variable continue t est discrétisée en m intervalles de durée τ ainsi :

$$t_i = i\tau$$
, $i = 0,1,...,m$

L'intervalle [0; L] est découpé en n+1 intervalles de largeur h=L/(n+1), ainsi :

$$x_j = jh$$
, $j = 0,1,...,n+1$

$$\frac{\partial^2 f}{\partial t^2} \simeq \frac{1}{\tau^2} [f(x, t + \tau) - 2f(x, t) + f(x, t - \tau)]$$

$$\frac{\partial^2 f}{\partial x^2} \simeq \frac{1}{h^2} [f(x+h,t) - 2f(x,t) + f(x-h,t)]$$

On introduit les notations $f(x_j, t_i) = f_j^{(i)}$ et $r = \left(\frac{c\tau}{h}\right)^2$, l'équation d'onde s'écrit alors :

$$f_j^{(i+1)} - 2f_j^{(i)} + f_j^{(i-1)} \simeq r \left[f_{j+1}^{(i)} - 2f_j^{(i)} + f_{j-1}^{(i)} \right]$$

avec
$$i = 0,1,...,m$$
 et $j = 1,...,n$

$$le \ temps \qquad l'espace$$

Ecriture matricielle de l'équation d'onde

On pose : $\mathbf{F}^{(i)} = \left(f_1^{(i)}, f_2^{(i)}, ..., f_n^{(i)}\right)^T$ et $\tilde{\mathbf{F}}^{(i)} = \left(f_0^{(i)}, 0, ..., 0, f_{n+1}^{(i)}\right)^T$ \longleftarrow dim. $n \times 1$

$$\tilde{\mathbf{F}}^{(i)} = \left(f_0^{(i)}, 0, \dots, 0, f_{n+1}^{(i)}\right)^T$$

L'équation d'onde discrétisée s'écrit alors :

Conditions aux bords à l'instant i

avec
$$\mathbf{M} = \begin{pmatrix} 2(1-r) & r & 0 \\ r & 2(1-r) & r & 0 \\ 0 & r & \ddots & \\ & & \ddots & r & 0 \\ & & 0 & r & 2(1-r) & r \\ & & & 0 & r & 2(1-r) \end{pmatrix}$$

Matrice tri-diagonale de dimension $n \times n$

Cas particulier d'un solution nulle aux extrémité : on a $\tilde{\mathbf{F}}^{(i)} = \mathbf{0}$ et l'équation devient :

$$\mathbf{F}^{(i+1)} = \mathbf{M}.\,\mathbf{F}^{(i)} - \mathbf{F}^{(i-1)}$$

Discrétisation des conditions initiales :

Rappel des conditions initiales : $\frac{\partial f}{\partial x}$

$$f(0,x) = g(x)$$
 et $\frac{\partial f}{\partial t}(0,x) = k(x)$

•
$$f(x,0) = g(x)$$
 \Rightarrow $\mathbf{F}^{(0)} = (f_1^{(0)}, f_2^{(0)}, \dots, f_n^{(0)})^T = (g(x_1), g(x_2), \dots, g(x_n))^T$

•
$$f(x_j, t_1) \simeq \underbrace{f(x_j, 0)}_{g(x_j)} + t_1 \underbrace{\frac{\partial f}{\partial t}(x_j, 0)}_{k(x_j)}$$
 avec $t_1 = \tau$ et $x_j = jh$ donc $f_j^{(1)} = g(x_j) + \tau k(x_j)$

$$\Rightarrow \quad \mathbf{F}^{(1)} = \left(f_1^{(1)}, f_2^{(1)}, \dots, f_n^{(1)}\right)^T = (g(x_1) + \tau k(x_1), g(x_2) + \tau k(x_2), \dots, g(x_n) + \tau k(x_n))^T$$

Stabilité de l'équation d'onde

$$\frac{h}{c\tau} \ge 1$$

« Condition CFL » (Courant-Friedrichs-Levy)

Ou encore:

$$\frac{h}{\tau} > c$$
pseudo-vistesse vitesse des ondes

Interprétation : la pseudo-vitesse numérique h/τ doit être supérieure à la vitesse de propagation de l'onde (ou encore, le pas de calcul temporel τ doit être inférieur à la durée h/c que met l'onde pour parcourir la distance h).

Exemple:
$$\tau = 0.005$$
, $h = 0.02$, $c = 1 \Rightarrow \frac{ch}{\tau} = 4$

(Serge Mazauric - Mohammad Arzi)

Objectif

- Utilisation des EDP (équation de la chaleur en particulier) pour faire du traitement d'image
- Débruitage (lissage) d'image sans perturber les contrastes

Sommaire

- 1. Rappels
- 2. Equation de la chaleur
- 3. Modèle de Perona-Malik

1. Rappels

produit de convolution

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(x - x')g(x')dx'$$
 (1)

2D
$$(f * g)(x, y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x - x', y - y') g(x', y') dx' dy'$$
 (2)

Distribution de Dirac et propriété de filtrage

$$\int_{-\infty}^{+\infty} f(x)\delta(x - x_0)dx = f(x_0)$$
 (3)

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \delta(x - x_0, y - y_0) dx dy = f(x_0, y_0)$$
 (4)

Gradient

Soit u(x,y) une fonction dérivable définie de \mathbb{R}^2 dans \mathbb{R} . Le gradient de u(x,y), noté ∇u (∇ = opérateur « nabla »), est le vecteur défini par :

$$\nabla u(x,y) = \begin{pmatrix} u_x(x,y) \\ u_y(x,y) \end{pmatrix} \tag{5}$$

avec

$$u_x \equiv \frac{\partial u}{\partial x}$$
 et $u_y \equiv \frac{\partial u}{\partial y}$

Divergence

Soit $\mathbf{f}(x,y) = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix}$ un champ de vecteurs où f_1 et f_2 sont des fonctions dérivables

définie de \mathbb{R}^2 dans \mathbb{R} . La divergence de $\mathbf{f}(x,y)$ est le <u>scalaire</u> définie par :

$$\operatorname{div} \mathbf{f}(x,y) = \frac{\partial f_1}{\partial x}(x,y) + \frac{\partial f_2}{\partial y}(x,y) \tag{6}$$

Remarque : On peut aussi voir la divergence du vecteur $\mathbf{f}(x,y)$ comme le produit du vecteur

ligne
$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$$
 par le vecteur colonne $\mathbf{f}(x, y) = \begin{pmatrix} f_1(x, y) \\ f_2(x, y) \end{pmatrix}$:

$$\operatorname{div} \mathbf{f} = \nabla \cdot \mathbf{f} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} \tag{7}$$

Attention, ne pas confondre ∇u et $\nabla \cdot \mathbf{f}$:

Gradient :
$$\nabla u = \text{vecteur}$$
scalaire

Divergence :
$$\nabla \cdot \mathbf{f} = \text{scalaire}$$

vecteur

- Laplacien

Calculons la divergence du vecteur $\nabla u = \begin{pmatrix} u_x \\ u_y \end{pmatrix}$:

$$\operatorname{div}(\nabla u) = \nabla \cdot \nabla u = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \begin{pmatrix} u_x \\ u_y \end{pmatrix} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

On retiendra que le laplacien d'une fonction $u:(x,y)\mapsto u(x,y)$, deux fois dérivable par rapport à x et par rapport à y, est égal à la divergence de son gradient :

$$\Delta u(x,y) \equiv u_{xx}(x,y) + u_{yy}(x,y) = \operatorname{div}(\nabla u(x,y)) = \nabla \cdot \nabla u(x,y)$$
(8)

avec

$$u_{xx} \equiv \frac{\partial^2 u}{\partial x^2}$$
 et $u_{yy} \equiv \frac{\partial^2 u}{\partial y^2}$

2. Equation de la chaleur

- Filtre gaussien

On considère une image bruitée représentée par une fonction u_0 réelle bornée et définie sur un sous-ensemble Ω de \mathbb{R}^2 :

$$u_0: \Omega \longrightarrow \mathbb{R}$$

 $(x,y) \mapsto u_0(x,y)$

Soit G_{σ} un filtre gaussien 2D d'écart type σ et de moyenne nulle :

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Filtrage et produit de convolution

On définit le filtre gaussien suivant :

$$h(t, x, y) = G_{\sqrt{2t}}(x, y) = \frac{1}{4\pi t} \exp\left(-\frac{x^2 + y^2}{4t}\right)$$
 (9)

On filtre l'image u_0 par le filtre gaussien (9). L'image filtrée, notée u, est alors le produit de convolution de u_0 par h:

$$u(t, x, y) = h(t, x, y) * u_0(x, y)$$
 (10)

Remarque : La formule (10) contient un abus de notation, on devrait écrire

$$u(t, x, y) = (h^t * u_0)(x, y)$$
 où $h^t(x, y) = h(t, x, y)$

Calculons alors $\Delta u(t,x,y)$ d'une part et de $\frac{\partial u}{\partial t}(t,x,y)$ d'autre part :

- Calcul de $\Delta u(t, x, y)$

$$\Delta u(t, x, y) = \Delta (h(t, x, y) * u_0(x, y))$$

Rappel:
$$\frac{\partial^n}{\partial x^n}(f*g) = \frac{\partial^n f}{\partial x^n}*g = f*\frac{\partial^n g}{\partial x^n}$$

$$= \left(\frac{\partial^2 h}{\partial x^2}(t, x, y)\right) * u_0(x, y) + \left(\frac{\partial^2 h}{\partial y^2}(t, x, y)\right) * u_0(x, y)$$

Donc:

$$\Delta u(t, x, y) = \Delta h(t, x, y) * u_0(x, y)$$
 (11)

Donc:

Rappel:
$$h(t, x, y) = \frac{1}{4\pi t} \exp\left(-\frac{x^2 + y^2}{4t}\right)$$

$$\Delta h(t, x, y) = \frac{1}{4\pi t} \left\{ \frac{\partial}{\partial x} \left(-\frac{x}{2t} \exp\left(-\frac{x^2 + y^2}{4t} \right) \right) + \frac{\partial}{\partial y} \left(-\frac{y}{2t} \exp\left(-\frac{x^2 + y^2}{4t} \right) \right) \right\}$$

$$=\frac{1}{4\pi t}\left\{-\frac{1}{2t}\exp\left(-\frac{x^2+y^2}{4t}\right)+\frac{x^2}{4t^2}\exp\left(-\frac{x^2+y^2}{4t}\right)-\frac{1}{2t}\exp\left(-\frac{x^2+y^2}{4t}\right)+\frac{y^2}{4t^2}\exp\left(-\frac{x^2+y^2}{4t}\right)\right\}$$

$$= \frac{1}{4\pi t} \exp\left(-\frac{x^2 + y^2}{4t}\right) \left[-\frac{1}{t} + \frac{x^2 + y^2}{4t}\right] = h(t, x, y) \left[-\frac{1}{t} + \frac{x^2 + y^2}{4t}\right]$$
(12)

Donc d'après (11):

$$\Delta u(t, x, y) = \left[-\frac{1}{t} + \frac{x^2 + y^2}{4t} \right] h(t, x, y) * u_0(x, y)$$

Rappel: $u(t, x, y) = h(t, x, y) * u_0(x, y)$

C'est-à-dire:

$$\Delta u(t, x, y) = \left[-\frac{1}{t} + \frac{x^2 + y^2}{4t} \right] u(t, x, y)$$
 (13)

- Calcul de $\frac{\partial u}{\partial t}(t, x, y)$

$$\frac{\partial u}{\partial t}(t,x,y) = \frac{\partial}{\partial t} \left(h(t,x,y) * u_0(x,y) \right) = \frac{\partial h}{\partial t}(t,x,y) * u_0(x,y) \qquad \text{Rappel:} h(t,x,y) = \frac{1}{4\pi t} \exp\left(-\frac{x^2 + y^2}{4t}\right)$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\partial h}{\partial t}(t,x',y') u_0(x-x',y-y') dx' dy' \qquad \text{d'après (2)}$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left\{ -\frac{1}{4\pi t^2} + \frac{1}{4\pi t} \left(\frac{x'^2 + y'^2}{4t^2} \right) \right\} \exp\left(-\frac{x'^2 + y'^2}{4t} \right) u_0(x-x',y-y') dx' dy'$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left[-\frac{1}{t} - + \frac{x'^2 + y'^2}{4t^2} \right] \frac{1}{4\pi t} \exp\left(-\frac{x'^2 + y'^2}{4t} \right) u_0(x-x',y-y') dx' dy'$$

$$h(t,x,y)$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Delta h(t, x, y) u_0(x - x', y - y') dx' dy'$$
 d'après (12)

$$= \Delta h(t, x, y) * u_0(x, y) \tag{14}$$

On déduit des équations (11) et (14) que :

$$\frac{\partial u}{\partial t}(t, x, y) = \Delta u(t, x, y)$$

Condition initiale (t = 0):

$$u(t, x, y) \stackrel{\text{def}}{=} h(t, x, y) * u_0(x, y) = u_0(x, y) * h(t, x, y)$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u_0(x', y') h(t, x - x', y - y') dx' dy'$$

h n'est pas définie en 0 mais lorsque $t \to 0$ la courbe de h, qui est une gaussienne, tend vers un pic de Dirac 2D, donc :

$$\lim_{t\to 0} u(t,x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u_0(x',y') \delta(x-x',y-y') dx' dy' = u_0(x,y) \qquad \text{d'après (4)}$$

$$\lim_{t\to 0} u(t,x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u_0(x',y') \delta(x-x',y-y') dx' dy' = u_0(x,y)$$

$$\lim_{t\to 0} u(t,x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} u_0(x',y') \delta(x-x',y-y') dx' dy' = u_0(x,y)$$

On a donc démontré le théorème suivant :

Une image $u_0(x,y)$ filtrée par un filtre gaussien $G_{\sqrt{2t}}(x,y)=\frac{1}{2\pi\sigma^2}\exp\left(-\frac{x^2+y^2}{4t}\right)$ donne un image u(t,x,y) qui vérifie l'EDP suivante :

$$\begin{cases} \frac{\partial u}{\partial t}(t,x,y) = \operatorname{div}(\nabla u(t,x,y)) \\ u(0,x,y) = u_0(x,y) \end{cases}$$
 (15) Equation de la chaleur

Rappel: $\operatorname{div}(\nabla u) = \Delta u$

- Appliquer l'équation de la chaleur sur une image $u_0(x,y)$ pendant un « temps » t revient à filtrer l'image avec un filtre gaussien 2D d'écart type $\sigma=\sqrt{2t}$
- Plus le « temps » est long, plus l'image est lissée et donc plus le bruit est atténué

- Discrétisation

La discrétisation consiste à remplacer les dérivées partielles d'ordre 1 par des taux de variation dont le pas vaut 1 pixel (h = 1):

South
$$u_x^S(t,x,y) = \lim_{h \to 0} \frac{u(t,x+h,y) - u(t,x,y)}{h}$$

$$u_x^S(t,x,y) = \lim_{h \to 0} \frac{u(t,x+h,y) - u(t,x,y)}{h}$$

$$u_x^N(t,x,y) = \lim_{h \to 0} \frac{u(t,x-h,y) - u(t,x,y)}{h}$$

$$u_x^M(t,x,y) = \lim_{h \to 0} \frac{u(t,x-h,y) - u(t,x,y)}{h}$$

$$u_x^M(t,x,y) = \lim_{h \to 0} \frac{u(t,x,y+h) - u(t,x,y)}{h}$$

$$u_y^M(t,x,y) = \lim_{h \to 0} \frac{u(t,x,y+h) - u(t,x,y)}{h}$$

$$u_y^M(t,x,y) = \lim_{h \to 0} \frac{u(t,x,y+h) - u(t,x,y)}{h}$$

$$u_x^M(t,x,y) = \lim_{h \to 0} \frac{u(t,x,y+h) - u(t,x,y)}{h}$$

Pour la discrétisation des dérivées partielles d'ordre 2 (cf. page 8) on a :

$$u_{xx}(t,x,y) = \lim_{h \to 0} \frac{u(t,x+h,y) - 2u(t,x,y) + u(t,x-h,y)}{h^2} \xrightarrow{disc.} u_{i+1,j}^m - 2u_{i,j}^m + u_{i-1,j}^m = \nabla_S u_{ij}^m + \nabla_N u_{ij}^m$$

$$u_{yy}(t,x,y) = \lim_{h \to 0} \frac{u(t,x,y+h) - 2u(t,x,y) + u(t,x,y-h)}{h^2} \xrightarrow{\text{disc.}} u_{i,j+1}^m - 2u_{i,j}^m + u_{i,j-1}^m = \nabla_E u_{ij}^m + \nabla_W u_{ij}^m$$

La discrétisation du Laplacien s'écrit alors :

$$\Delta u(t,x,y) = u_{xx}(t,x,y) + u_{yy}(t,x,y) \quad \underline{\qquad} \quad \text{disc.} \qquad \nabla_S u_{ij}^m + \nabla_N u_{ij}^m + \nabla_W u_{ij}^m + \nabla_E u_{ij}^m$$

La discrétisation de $\frac{\partial u}{\partial t}(t, x, y)$ s'écrit :

$$\frac{\partial u}{\partial t}(t,x,y) = \lim_{\tau \to 0} \frac{u(t+h,x,y) - u(t,x,y)}{\tau} \qquad \xrightarrow{\text{disc.}} \qquad \frac{u_{i,j}^{m+1} - u_{i,j}^{m}}{\tau}$$

Pour finir la discrétisation de l'équation de la chaleur s'écrit :

$$\frac{\partial u}{\partial t}(t,x,y) = \Delta u(t,x,y) \xrightarrow{\text{disc.}} \frac{u_{i,j}^{m+1} - u_{i,j}^{m}}{\tau} = \nabla_{S} u_{ij}^{m} + \nabla_{N} u_{ij}^{m} + \nabla_{W} u_{ij}^{m} + \nabla_{E} u_{ij}^{m}$$

Résoudre l'équation de la chaleur revient donc à calculer pour chaque pixel (i,j) les termes de la suite suivante :

$$\begin{cases} u_{i,j}^{m+1} = u_{i,j}^m + \tau (\nabla_S u_{ij}^m + \nabla_N u_{ij}^m + \nabla_W u_{ij}^m + \nabla_E u_{ij}^m) \\ u_{i,j}^0 = \text{image bruit\'ee} \end{cases}$$
(16)

$$egin{aligned}
abla_{S}u_{ij}^{m} &\equiv u_{i+1,j}^{m} - u_{i,j}^{m} \\
abla_{N}u_{ij}^{m} &\equiv u_{i-1,j}^{m} - u_{i,j}^{m} \\
abla_{E}u_{ij}^{m} &\equiv u_{i,j+1}^{m} - u_{i,j}^{m} \\
abla_{W}u_{ij}^{m} &\equiv u_{i,j-1}^{m} - u_{i,j}^{m} \end{aligned}$$

Exemple 1 : lissage d'une image bruitée par résolution de l'équation de la chaleur

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t}(t, x, y) = \Delta \mathbf{u}(t, x, y) \\ u(0, x, y) = u_0(x, y) \end{cases}$$

Exemple 2 : lissage d'une image bruitée par résolution de l'équation de la chaleur

image originale

image bruitée

 $u_0(x,y)$

image débruitée

u(2, x, y) (10 itérations)

solution de:

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t}(t, x, y) = \Delta \mathbf{u}(t, x, y) \\ u(0, x, y) = u_0(x, y) \end{cases}$$

Commentaire : le bruit des zones homogènes (faibles gradients) est atténué

... mais les contours (forts gradients) aussi!

⇒ pertes de contraste ⇒ image floue

3. Modèle de Perona-Malik

L'équation de la chaleur peut s'écrire de façon plus générale :

$$\begin{cases} \frac{\partial u}{\partial t}(t, x, y) = \operatorname{div}(D(x, y) \nabla u(t, x, y)) \\ u(0, x, y) = u_0(x, y) \end{cases}$$
(17)

où D(x, y) est le coefficient de diffusion.

- Lorsque la fonction D est constante, on parle alors de <u>diffusion isotrope</u>; la diffusion est identique dans toutes les directions et on retrouve alors l'équation de la chaleur (15).
- Cette dernière présente l'inconvénient suivant : le débruitage est effectif dans les zones d'intensité homogène (faibles gradients de u) mais les zones présentant des contours (forts gradients de u) sont également lissées, ce qui a pour effet d'atténuer les contrastes (cf. figure page précédente).

38

- Pour améliorer les résultats de filtrage obtenus à l'aide de l'équation de la chaleur isotrope, Perona et Malik ont proposé en 1990 * d'intégrer dans l'équation (17) un coefficient de diffusion D anisotrope dépendant de la norme du gradient de u.
- Le lissage de l'image bruitée u_0 consiste alors à résoudre l'EDP suivante :

$$\begin{cases} \frac{\partial u}{\partial t}(t, x, y) = \operatorname{div}(D(\|\nabla u(t, x, y)\|) |\nabla u(t, x, y)|) \\ u(0, x, y) = u_0(x, y) \end{cases}$$
(18)

- On remarquera que le coefficient de diffusion D est dorénavant une fonction réelle dépendant d'une seule variable. Cette fonction doit être décroissante et vérifier les conditions :
 - 1. $\lim_{\|\nabla u\|\to +\infty} D(\|\nabla u\|) = 0$ \Rightarrow le filtrage est stoppé dans les régions de forts gradients, les contours sont alors conservées
 - 2. D(0) = 1 \Rightarrow le filtrage agit de la même façon que l'équation de la chaleur isotrope (15) dans les région de faibles gradients

^{*} Perona, P., Malik, J., : Scale-space and edge detection using anisotropic diffusion. IEEE Transaction on Pattern Analysis and Machine Intelligence **12**(7), 629-639 (1990)

- Deux exemples de fonction de diffusion :

•
$$D(\|\nabla u\|) = \exp\left(-\frac{\|\nabla u\|^2}{2\alpha^2}\right)$$
 (19) gaussienne

$$D(\|\nabla u\|) = \frac{1}{1 + \frac{\|\nabla u\|^2}{\alpha^2}}$$
 (20) *lorentzienne*

où α est un paramètre que l'on peut ajuster en fonction des détails de l'image que l'on veut mettre en évidence

- On rappelle que la norme du gradient de u s'écrit :

$$\|\nabla u\| = \sqrt{u_x(t, x, y)^2 + u_y(t, x, y)^2}$$
 (21)

- Avant de discrétiser le modèle de Perona-Malik, ré-écrivons le terme de droite de l'équation (18) :

On a supprimé la dépendance en t, x, y pour alléger l'écriture

- commençons par $D(\|\nabla u\|) \nabla u$:

$$D(\|\nabla u\|) \ \nabla u = \begin{pmatrix} D(\|\nabla u\|) \ u_x \\ D(\|\nabla u\|) \ u_y \end{pmatrix} \quad \text{est remplacé par} \quad \begin{pmatrix} D(|u_x|) & 0 \\ 0 & D(|u_y|) \end{pmatrix} \begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} D(|u_x|)u_x \\ D(|u_y|)u_y \end{pmatrix}$$

avec
$$D(|u_x|) = \exp\left(-\frac{u_x^2}{2\alpha^2}\right)$$
 et $D(|u_y|) = \exp\left(-\frac{u_y^2}{2\alpha^2}\right)$ pour une diffusion gaussienne

(ou
$$D(|u_x|) = \frac{1}{1 + \frac{u_x^2}{\alpha^2}}$$
 et $D(|u_y|) = \frac{1}{1 + \frac{u_y^2}{\alpha^2}}$ pour une diffusion lorentzienne)

- puis passons à $\operatorname{div}(D(\|\nabla u\|) \nabla u)$ qui s'écrit alors :

$$\operatorname{div}(D(\|\nabla u\|) \nabla u) = \operatorname{div} \begin{pmatrix} D(|u_x|)u_x \\ D(|u_y|)u_y \end{pmatrix} = \frac{\partial}{\partial x} [D(|u_x|)u_x] + \frac{\partial}{\partial y} [D(|u_y|)u_y]$$

Le modèle de Perona-Malik s'écrit alors :

$$\begin{cases} u_{t} = \frac{\partial}{\partial x} [D(|u_{x}|)u_{x}] + \frac{\partial}{\partial y} [D(|u_{y}|)u_{y}] \\ u(0, x, y) = u_{0}(x, y) \end{cases}$$
 (22)

- Discrétisation de l'équation du modèle de Perona-Malik (22):

$$u_{t} \xrightarrow{disc.} \qquad (u_{t})_{i,j} = \frac{u_{i,j}^{m+1} - u_{i,j}^{m}}{\tau}$$

$$u_{x} \xrightarrow{disc.} \qquad (u_{x})_{i,j} = u_{i,j}^{m} - u_{i-1,j}^{m}$$

$$v_{y} \xrightarrow{disc.} \qquad (u_{x})_{i,j} = u_{i,j}^{m} - u_{i-1,j}^{m}$$

$$v_{y} \xrightarrow{disc.} \qquad (u_{y})_{i,j} = u_{i,j}^{m} - u_{i,j-1}^{m}$$

$$v_{y} \xrightarrow{disc.} \qquad [D(|u_{x}|)u_{x}]_{i+1,j} - [D(|u_{x}|)u_{x}]_{i,j} \qquad (taux \ de \ variation)$$

$$= D(|(u_{x})_{i+1,j}|)(u_{x})_{i+1,j} - D(|(u_{x})_{i,j}|)(u_{x})_{i,j}$$

$$= D(|u_{i+1,j}^{m} - u_{i,j}^{m}|)(u_{i+1,j}^{m} - u_{i,j}^{m}|) - D(|u_{i,j}^{m} - u_{i-1,j}^{m}|)(u_{i,j}^{m} - u_{i-1,j}^{m}|)$$

$$= D(|\nabla_{S} u_{i,j}^{m}|)\nabla_{S} u_{i,j}^{m} + D(|\nabla_{N} u_{i,j}^{m}|)\nabla_{N} u_{i,j}^{m}$$

De la même façon :

$$\frac{\partial}{\partial y} \left[D(|u_y|) u_y \right] \quad \xrightarrow{\text{disc.}} \quad D(|\nabla_E u_{i,j}^m|) \nabla_E u_{i,j}^m + D(|\nabla_W u_{i,j}^m|) \nabla_W u_{i,j}^m$$

Finalement la discrétisation du modèle de Perona-Malik s'écrit :

$$u_{i,j}^{m+1} = u_{i,j}^{m} + \tau \left[D(\left|\nabla_{S} u_{i,j}^{m}\right|)\nabla_{S} u_{i,j}^{m} + D(\left|\nabla_{N} u_{i,j}^{m}\right|)\nabla_{N} u_{i,j}^{m} + D(\left|\nabla_{W} u_{i,j}^{m}\right|)\nabla_{W} u_{i,j}^{m} \right]$$

$$+D(\left|\nabla_{E} u_{i,j}^{m}\right|)\nabla_{E} u_{i,j}^{m} + D(\left|\nabla_{W} u_{i,j}^{m}\right|)\nabla_{W} u_{i,j}^{m} \right]$$

$$u_{i,j}^{0} = \text{image bruitée}$$

Rappel:

$$egin{aligned}
abla_{S}u_{ij}^{m} &\equiv u_{i+1,j}^{m} - u_{i,j}^{m} \\

abla_{N}u_{ij}^{m} &\equiv u_{i-1,j}^{m} - u_{i,j}^{m} \\

abla_{E}u_{ij}^{m} &\equiv u_{i,j+1}^{m} - u_{i,j}^{m} \\

abla_{W}u_{ij}^{m} &\equiv u_{i,j-1}^{m} - u_{i,j}^{m}
\end{aligned}$$

(23)

Exemple 1 : lissage d'une image bruitée par le modèle de Perona-Malik

Exemple 2 : lissage d'une image bruitée par le modèle de Perona-Malik

image originale

image débruitée

Equation de la chaleur

u(2, x, y) (10 itérations) solution de :

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t}(t, x, y) = \Delta \mathbf{u}(t, x, y) \\ u(0, x, y) = u_0(x, y) \end{cases}$$

image bruitée

image débruité

Perona-Malik (diff. gaussienne)

 $u_0(x,y)$

image débruité

Perona-Malik (diff. lorentzienne)

46

u(2, x, y) (10 itérations) solution de :

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t}(t, x, y) = \operatorname{div}(D(\|\mathbf{u}(t, x, y)\|) \nabla \mathbf{u}(t, x, y)) \\ u(0, x, y) = u_0(x, y) \end{cases}$$

Commentaires:

- le bruit des zones homogènes (faibles gradients) est atténué
- les contours (forts gradients) sont conservés
- dans cet exemple l'utilisation de la diffusion lorentzienne semble plus performante que celle de la diffusion gaussienne