Piotr Gajowniczek Instytut Telekomunikacji PW

Data Transmission

MPLS – Multiprotocol Label Switching

fundamentals and applications

MPLS – introduction

- RFC 3031, RFC 3032 MPLS architecture
 - initially invented in the '90s to improve the forwarding speed of IP routers and introduce additional functionality to IP control plane
- Nowadays, MPLS is very popular in the ISP core networks
 - network virtualization (VPNs)
 - resource and service management
 - traffic engineering, QOS
 - network resiliency
- Extension beyond the ISP core applications also exist
 - □ GMPLS (Generalized MPLS) single control plane extended to optical transport technologies
 - Seamless MPLS extension of MPLS towards the access network

Layered model / switching vs routing

- Switching (L2)
 - findin the destination MAC address in
 MAC table (forwarding table, bridge table)
 - establish the outbound interface
 - send packet from input queue to output queue
 - packet is not modified in any way

- Routing (L3)
 - remove L2 header
 - □ lookup for next hop (forwarding table; routing table)
 - determine the correct destination L2 (MAC) address
 - rewrite MAC header
 - send packet to the output queue

□ L3 switch?

IP routing ...

IP routing:

- data link layer frame validation
- network-layer protocol demultiplexing
- IP packet validation
- forwarding decision longest prefix match
- data link frame construction

... vs MPLS

IP routing:

- data link layer frame validation
- network-layer protocol demultiplexing
- IP packet validation
- forwarding decision longest prefix match
- data link frame construction

MPLS:

Label Push, Swap & Pop

IP control plane ...

- FEC (Forwarding Equivalence Class)
 - □ IP routing FEC = IP Prefix; FEC lookup done at each hop
 - MPLS other FEC criteria possible, FEC lookup only at an iLER

... vs MPLS control plane

- FEC (Forwarding Equivalence Class)
 - □ IP routing FEC = IP Prefix; FEC lookup done at each hop
 - MPLS other FEC criteria possible, FEC lookup only at an iLER

MPLS – labels and tunnels

LSR handles only transport tunnels

MPLS – tunel set-up

- MPLS tunnel set-up requires:
 - FEC (IP prefixes)reachability = OSPF
 - distribution of label
 mappings between routers

- Label distribution protocols
 - LDP (Label Distribution Protocol) – "Downstream Unsolicited"
 - RSVP-TE (Resource Reservation Protocol) – "Downstream on Demand"

- RI Request(FEC C)
- R3 Response(FEC C, 100)
- R2 Response(FEC C, 200)

MPLS – label distribution protocols

transport tunnels

- LDP (Label Distribution Protocol)
 - TCP based
 - tunnels built based on IGP (full-mesh)
 - simple configuration
 - automatic creation of tunnels
 - no traffic engineering
 - convergence time depends on IGP
 - label distribution in "downstream unsolicited" approach

- RSVPTE (Resource Reservation Protocol with Traffic Engineering)
 - explicit tunnels (not following IGP paths)
 - additional constraints (administrative and TE-related) for advanced path calculation
 - bandwidth reservation for LSP (CAC)
 - advanced LSP protection against failures
 - □ label distribution in "downstream on demand" approach

service tunnels

- T-LDP (Targeted LDP) RFC 4447
 - multi-hop LDP
 - for L2 services
 - for end-to-end tunnels between PE routers

- MP-BGP (Multi-Protocol BGP) RFC 4364
 - for L3 services

LDP (Label Distribution Protocol)

- To establish LDP adjacency:
 - router sends UDP multicast (224.0.0.2:646) hello packets to discover other neighbors
 - next, builds the neighbor adjacency (on loopback addresses) using a TCP connection for exchanging label information (each router has a unique ID called the LSR ID; much like in OSPF).
- LDP creates a label binding for each prefix by default and sends them to neighbors (downstream unsolicited) Label Mapping Advertisement, Label Withdraw
- LDP configuration

LIB (Label Information Base)

```
R1#show mpls ldp bindings
lib entry: 2.2.2.2/32, rev 7
local binding: label: 16
remote binding: lsr: 2.2.2.2:0, label: imp-null
lib entry: 3.3.3.3/32, rev 9
local binding: label: 17
remote binding: lsr: 2.2.2.2:0, label: 21
```

LFIB (Label Forwarding Information Base)

R1#show mpls forwarding-table					
Loca	l Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label Label		or Tunnel	Switched	interface	
		Id			
16	Pop Label	2.2.2.2/32	0	F0/0	10.1.1.1
17	21	3.3.3.3/32	0	F0/0	10.1.1.1

• implicit null label – penultimate hop popping (PHP)

MPLS – the RSVP protocol

- RFC 3209 RSVP as LDP
- RSVPTE:
 - LSP definition
 - path calculation "outside" IGP metrics ("link colors", bandwidth etc.)
 - tunel protection (Secondary Paths, Fast Reroute)
 - resource reservation (CAC)

- MPLS tunnel can be composed of many paths (LSP-Paths).
 - one "primary" path and seven "secondary"
 - only one active at a time

- Other message types:
 - PATH Tear: (downstream), RESVTear: (upstream)
 - PATH Error, RESV Error:
 - Hello (RSVP heartbeat)
 - Summary Refresh (for less signalling)

RSVP Traffic Engineering: path calculation

- Source routing
- Path Option Explicit
 - manual configuration at source router
 - high signalling overhead
- Path Option Dynamic = APC (Advanced Path Calculation)
 - CSPF (Constrained Shortest Path First)
 - additional criteria
 - bandwidth reservation state
 - administrative criteria (link colors)
 - hop limit
 - TE metric
 - Explicit route (,,strict hops", ,,loose hops")
 - Shared Link Groups

reservations are made in the Control Plane

- actual bandwidth usage in the Data
 Plane is not considered
- requires relevant QoS solutions in the Data Plane

resiliency

allows automated creation of backup
 paths and detours (Fast Reroute) that
 are disjoint with the primary path

RSVP-TE – how to force tunner route?

Signalling

- information about the route is conveyed in the RSVP PATH message in an ERO (Explicit Route Object)
- ERO is updated in each intermediate router

Bandwidth reservation

- CSPF algorithm calculates a path with the required amount of unreserved bandwidth using data from TED database at source router
- downstream:
 - reservation request is signaled in RSVP PATH message
 - each router checks bandwidth availability on outgoing link (CAC)
- upstream:
 - bandwidth is reserved in each router on path (RSVP RESV message)
 - Unreserved Bandwidth updated and advertised

Least-Fill Bandwidth Reservation rule

- if CSPF has found multiple paths with the same metric
- relevant QOS policies in the Data Plane are required

RSVP – TE variables

the need for additional constraints and link state data has to be reflected in routing protocol

- OSPF-TE (OSPF Traffic Engineering)
 - RFC 2370:The OSPF Opaque LSA Option
 - Opaque LSAs deneric mechanism for OSPF extensions

OSPFTE

- routers create additional database TED (Traffic Engineering Database) for storing additional link attributes distributed by Opaque LSAs (Type 10)
- Opaque LSA Flooding activated when:
 - link state (up/down), link configuration of bandwidth reservation state changes
 - periodically (as in IGP)
- Opaque LSA Type 10 contains Link TLV object, used to advertise information about links handled by RSVP-enabled routers:
 - link type, link ID
 - IP addresses of interfaces on both sides of the link
 - TE metrics
 - maximum bandwidth
 - maximum reservable bandwidth (per LSP priority)
 - unreserved bandwidth (100 = 100%, overbooking possible)
 - administrative group
 - Shared Risk Link Group (SRLG)

MPLS – priorities and preemption

- LSP Soft Preemption
 - higher priority LSPs can preempt lower priority paths
 - priorities work in conjunction with knowledge of the Unreserved Bandwidth parameter – current values are advertised by OSPF TE for each priority level
- Setup and Hold priorities (0 to 7, lower value = higher priority)
 - LSP A can preempt LSP B if Setup
 Priority(A) < Hold Priority(B)
 - LSP priorities are signaled in RSVP PATH message, in SESSION_ATTRIBUTE object

- RSVP Preemption-Timer & LSP Retry-Timer
 - preemption by MBB (Make Before Break)
 - CSPF tries to find another route for preempted LSP
 - periodically (Retry-Timer)
 - preemption (status = down) after time defined in Preemption-Timer (unless a new route was found earlier)

Using MPLS tunnels in IP routing

Static mapping

- LSR is configured to send packets through the tunnel
- scalability issues
- Dynamic mapping (done by IGP)
 - LSP is treated as an interface (tunnel) with an associated metric
 - metric can influence routing decisions (choice between CSPF and SPF)
 - two cases:
 - IGP can use tunnel for SPF calculation only in an iLER (autoroute announce)
 - tunnel may be signaled in LSA for use by other routers to calculate shortest paths (forwarding adjacency)

MPLS – failure resiliency

- factors influencing quality of protection
 - □ avg. failure detection speed
 - OSPF Hello (30 s)
 - RSVP Hello (9 s)
 - Bidirectional Forwarding Detection (<|s)
 - » "IP level heartbeat"
 - speed of failure advertising
 - service restoration time (switchover speed)

Secondary LSP

- switchover at source router
- switchover time depends on PATH ERR message delivery to source router
- max. 7 standby (Secondary) paths
 - Hot Standby
 - Non-Standby

Fast Reroute

- local switchover (<50 ms)
- PATH ERR conveys only the information about failure
- detour paths are calculated automatically (CSPF)
- protects against node and link failures
- protection types:
 - One-to-One Backup (Detour)
 - Facility Backup (Bypass Tunnel)