

Applied Cryptography CPEG 472/672 Lecture 10A

Instructor: Nektarios Tsoutsos

RSA Implementations

⊙ Step 1:

- Never implement RSA yourself

Step 2:

- Use a library for RSA
- Requires an arbitrary precision arithmetic library (e.g., GMP)
- Use secure padding (OAEP, PSS)

Modular Exponentiation

- $\circ y = x^e \mod n$
- Naïve method
 - Multiply x to itself e-1 times then mod n
 - Inefficient
- Square and multiply method
 - Exponentially faster than the naïve method
 - \odot E.g., if $e = 2^{16} + 1$ then $x^e \mod n$ requires only 17 multiplications (not 65536)
 - Uses the bits of the exponent one by one

Square and Multiply

 \odot Break the exponent e in bits

```
\odot e_{m-1}, e_{m-2}, e_{m-3}, ..., e_1, e_0
expMod(x, e, n) {
y = 1
for i = m - 1 to 0 {
   y = y * y mod n
   if e<sub>i</sub> == 1 then
      y = y * x mod n
return y
```

What is the problem?

Timing and power analysis attacks

- Exponentiation operations depend on the bits of exponent e
 - The algorithm uses a different path if e=1 compared to when e=0
 - When e=1 the loop is slower
 - Attackers can monitor execution time
- Power analysis attacks
 - Hardware-level attack
 - When e=1 the loop consumes more power

Power analysis attack

Benefit of small exponents e

- RSA encryption and signature verification uses exponentiation to e
 - Square and multiply cost depends on the bits of exponent e
 - Smaller e = faster exponentiation
 - ⊙ Typically select e=65537
 - Only 17 multiplication needed
- ⊙ In RSA, d is about the size of N
- ⊙ Avoid using e=3
 - Low exponent attacks possible

Chinese Remainder Theorem (CRT)

- \circ Assume $n = n_1 \cdot n_2 \cdot n_3 \dots$
 - All factors are pairwise coprime
 - \odot If we know $x \mod n_1$, $x \mod n_2$, $x \mod n_3$, ... we can recover $x \mod n$
- $\odot x \mod n = \sum P(n_i)$

 - CRT can accelerate RSA Dec and Signing by 4x
 - \odot We can recover $x^d \mod n$

Attacks

- Bellcore Fault Injection Attack (RSA-CRT)
 - RSA FDH signatures (deterministic)
 - Very powerful attack, recovers p (or q)
 - \odot Attacker injects a fault in the CRT computation of x_q (or x_p)
 - \odot Using faulty x_q' we recover faulty x'
- Sharing your d and n
 - Possible to recover p and q using d, n

Factorize n using d

- $\odot e \cdot d = 1 + k \cdot \varphi(n)$ for some k
- \odot For a coprime to n, $a^{k\varphi(n)} = 1 \mod n$
- $\odot k\varphi(n) = k(p-1)(q-1)$ is even integer
 - $\circ k\varphi(n) = 2^s t$ for some s and t
 - $o(a^{t2^{s-1}})^2 = 1 \mod n$, which is an equation in the form $x^2 = 1$ that has solutions x 1, x + 1
 - \odot So, $a^{t2^{s-1}} 1$ is a factor of n (either p or q)
 - \odot We can run a program to find a, t and s
 - Demo today

Hands-on exercises

- Modular Exponentiation (naïve method)
- Shift and Multiply Exponentiation
- Montgomery Ladder exponentiation
- Recovering p, q from d, n

Reading for next lecture

- Aumasson: Chapter 11 until Anonymous Diffie-Hellman (inclusive)
 - We will have a short quiz on the material