

TEAM 14

UBER CAR FARE PREDICTION

Guided by Baishalini Sahu

About Project

Abstract

"In this project, we employ AI and ML to accurately predict Uber car fares based on dynamic factors. Our aim is to develop a model for transparent fare estimation, enhancing user experience and operational efficiency within Uber. Through this effort, we contribute to advancing AI-driven transportation solutions and empowering users with informed decision—making."

Objective

The core challenge is predicting Uber car fares accurately, a task influenced by diverse factors such as distance, time, and location.

SCOPE

Building best prediction model with car fare data analysis and prediction of future prices.

CLIENT

Uber

SOLUTION APPROACH

Machine Learning and Deep Learning Algorithms

DATA SOURCE

The dataset is obtained from kaggle, it consists of record organized into 10 columns, each representing a specific aspect of car and ride information.

DATA VISUALIZATIONS

Power BI, Matplotlib

AUTO EDA

Pandas Profilling

CROSS VALIDATION

K - fold

TECHNOLOGY STACK

TECHNOLOGY

SOFTWARE

MACHINE LEARNING
PYTHON
HTML
CSS
JAVA SCRIPT

JUPYTER NOTEBOOK

VS CODE

POWER BI

GOOGLE COLAB

Flow Chart

Algorithms **Used**

- 1. GRADIENT BOOST
- 2.ANN
- 3. DECISION TREE
- 4.XGB
- 5.KNN
- 6. LASSO
- 7. LINEAR REGRESSION
- 8.SVM
- 9. RANDOM FOREST

Analytics

Web Page

Analytics and Visualization

Prediction

Select Source Location:	Select Source	*
Select Destination Location:	Select Destination	v
Product ID:		
Select Car:	Select Car	v
Submit		

Data Visualization

Scatter and density plots

Correlation matrix

S.No	Algorithm	Mean Squared Error	R square value
1	Linear Regression	5.7320	0.9208
2	Decision Tree	3.5264	0.9513
3	Random Forest	3.4754	0.9522
4	Support Vector Machine	4.5374	0.9212
5	K-Nearest Neighbour	3.6057	0.9502
6	XGB	3.4283	0.9526
7	Lasso Regression	29.3660	0.5943
8	Gradient Boost	3.7367	0.9484
9	ANN	3.8220	0.9474

Benefits

What We'll Offer

Cost Savings

Predictability

Efficiency

OUR TEAM

21BCE7429 - Pasupuleti Lakshmi Sujith

21BCE7801 - K. Nikhil Kumar

21BCE8118 - Polamada Sathwika

21BCE8466 - Pydisetty Sampath

21BCE8623 - Bhimireddy Uday Sai Kiran Reddy

21BCE8998 - Somu Preethi Deekshita

21BCE9018 - Kakumanu Venu Alekhya

21BCE9022 - Shaik Afraa

21BCE9314 - Vanga Lasya Sri

21BCE9613 - Amavasa Venkata Bala Uday Kumar

