Química

Model 3

Contesta una opció de les dues proposades. Utilitza la taula periòdica adjunta. Pots usar la calculadora.

La puntuació màxima de cada pregunta està indicada a l'inici de la pregunta. La nota de l'examen és la suma de les puntuacions.

OPCIÓ A

1. (1 punt) El $N_2O_{4(g)}$ ha estat àmpliament utilitzat per la NASA com a comburent de coets. Un investigador està interessat a calcular la constant d'equilibri de la reacció de descomposició del $N_2O_{4(g)}$ a 100 °C:

$$N_2O_{4(g)} \rightleftharpoons 2 NO_{2(g)}$$

En un experiment, introdueix un mol de $N_2O_{4(g)}$ dins un recipient buit d'un litre de capacitat i determina com varien les concentracions dels composts N_2O_4 i NO_2 en funció del temps (figura 1) a 100 °C; mentre que en un altre experiment introdueix la mateixa quantitat inicial de N_2O_4 i un catalitzador específic per a aquesta reacció, i torna a determinar la variació temporal de concentracions (figura 2) a 100 °C. Justifica la veracitat o falsedat de les afirmacions següents:

- a) De la figura 1 es pot deduir que Kc a 100 °C tindrà un valor molt menor que la unitat.
- b) Quan s'introdueix un catalitzador al recipient que conté inicialment el N₂O_{4(g)} (vegeu la figura 2), l'equilibri tarda més temps a assolir-se.

Figura 1 Figura 2

Convocatòria 2015

2. (2,5 punts) L'estany metàl·lic reacciona amb el HNO₃ segons la reacció següent:

$$Sn_{(s)} + HNO_{3(aq)} \rightarrow SnO_{2(s)} + NO_{2(g)} + H_2O_{(l)}$$

- a) Escriu i ajusta la reacció iònica i molecular pel mètode de l'ió-electró.
- b) Calcula el volum d'una dissolució d'àcid nítric 0,5 M que reaccionarà amb 2,0 g d'estany.
- c) Anomena les molècules següents: HNO₃ i SnO₂.

3. (2,5 punts)

- a) Calcula el pH d'una dissolució de HCl del 2% en pes i de densitat 1,01 g/mL.
- b) Calcula el pH de la dissolució resultant de mesclar 10 mL d'una dissolució de HCl 0,1 M amb 30 mL d'una dissolució de NaOH 0,1 M, tenint en compte que els volums són additius.
- c) Al recipient de la dissolució de HCl apareix el següent pictograma. Indica el seu significat.

4. (2 punts) Considera la següent reacció química:

$$\text{Cl}_{2(g)} \ \rightarrow \ 2 \ \ \text{Cl}_{(g)}$$

Contesta, de manera raonada, les preguntes següents:

- a) Quin signe tindrà la variació d'entalpia d'aquesta reacció?
- b) Quin signe tindrà la variació d'entropia d'aquesta reacció?
- c) És cert que aquesta reacció és espontània a qualsevol temperatura?
- d) Per quin motiu el Cl₂ és un gas a temperatura ambient mentre que el Br₂ és un líquid?

5. (2 punts)

- a) Quin dels següents elements té menor radi atòmic: oxigen o fòsfor? Raona la resposta.
- b) Indica, raonadament, el nombre d'electrons desaparellats que té el fòsfor en el seu estat fonamental.
- c) Per a la molècula d'etè (C₂H₄), dedueix l'estructura de Lewis i indica, de manera raonada, el tipus d'hibridació dels àtoms de carboni.

OPCIÓ B

- 1. (2 punts) Indica, raonadament, si són certes les següents afirmacions respecte al BF₃:
 - a) El bor presenta una hibridació sp³ en aquest compost.
 - b) Es tracta d'una molècula polar.
 - c) La temperatura d'ebullició del $BF_{3(I)}$ és major que la del $NH_{3(I)}$.
 - d) El primer potencial d'ionització de l'element bor és major que el de l'element fluor.

2. (2 punts)

En un laboratori tenim una dissolució d'un àcid monopròtic (AH) amb una constant d'acidesa (Ka) de 10⁻⁵.

- a) És cert que el seu grau de dissociació és igual a la unitat? Raona la resposta.
- b) Si es neutralitza la dissolució de l'àcid AH amb una base forta, com el NaOH, és cert que el pH de la dissolució en el punt d'equivalència serà menor que 7,0? Raona la resposta.
- c) Indica el procediment i el material de laboratori per realitzar la valoració de l'apartat b).
- **3. (2 punts)** L'età es pot obtenir per hidrogenació de l'etè (CH₂=CH₂) en presència d'un catalitzador segons la següent equació termoquímica:

$$CH_2 = CH_{2(g)} + H_{2(g)} \rightarrow CH_3 - CH_{3(g)}$$
 $\Delta H = -137 \text{ kJ/mol}$

- a) Calcula la massa d'età formada a partir de 20 L d'etè i 15 L de H₂, mesurats a 300 °C i 650 mmHg.
- b) Calcula l'energia de l'enllaç C=C, si les energies d'enllaç C-C, H-H i C-H són, respectivament, 347, 436 i 413 kJ/mol.

4. (2 punts) A 350 K la constant d'equilibri (Kc) de la reacció de descomposició del COBr_{2(g)} val 0,25 M.

$$COBr_{2(g)} \rightleftharpoons CO_{(g)} + Br_{2(g)}$$

En un recipient tancat i buit de 2,0 L s'introdueixen 1,0 mol de $CO_{(g)}$ i 1,0 mol de $Br_{2(g)}$ i es manté la temperatura a 350 K fins que el sistema assoleix l'equilibri químic.

- a) Calcula la concentració de COBr_{2(g)} a l'equilibri.
- b) Determina el valor de Kp per a aquest equilibri a 350 K.
- c) Com afecta l'equilibri un augment de la pressió total del sistema? Raona la resposta.
- **5. (2 punts)** Donats els següents metalls: coure i níquel. Contesta raonadament les qüestions següents, considerant condicions estàndard en tots els casos:
 - a) Ordena els metalls de major a menor poder reductor.
 - b) D'aquests metalls, qualcun podrà reduir l'ió Pb²⁺ a Pb?

- c) Determina la fem estàndard de la pila formada pels elèctrodes de Cu²⁺/Cu i Ni²⁺/Ni que funciona espontàniament.
- d) Quina utilitat te un pont salí en una pila galvànica? Dades: $E^0(Cu^{2+}/Cu) = + 0.34 \text{ V}$; $E^0(Ni^{2+}/Ni) = -0.25 \text{ V}$; $E^0(Pb^{2+}/Pb) = -0.13 \text{ V}$.

18	0	2 He 4,0026	و N	20,1797	<u>د</u> > <u>∞</u>	A ľ 39,948	36	궃	83,80	54	Xe	131,29	98	Rn	(222,02)		Uuo (293)
17	VIIa		6 Ц	984	ے ر		35	Br	79,904	53	ر Xe	126,9045	85	At	(209,99)	117	Uus
16	VIa		∞ O	15,9994	ر 9	7 32,066	34	Se			Te		84	\mathbf{P}	(208	116	Uuh
15	Va		_~ Z	14,0067	ا ک	⊤ 30,9738		AS	74,9216	51	Sb			<u>B</u>	208,980	115	Uup ()
14	IVa		ں و			7 28,08	32	9	72,61	50	Sn	118,710	82	Ъ	207,2	114	Uuq (285)
13	= -		<u>ء</u>	10,811	13	AI 26,9815	31	Сa	69,723	49	므	114,818	81	F	204,383	113	Uub Uut (277) (.)
12	q						30	_	62,39	48	D U	112,411	80	Τ ω	200,59	112	Uub
11	<u>a</u>						29	Ŋ	63,546	47	d Ag (107,8682	79	Au	196,967	111	Uuu (272)
10							28	ï	58,6934	46	<u>Д</u>	106	78	Pt	195,078	110	Uun (269)
6	=						27	ပ	58,9332	45	牊	102,905	11	_	192,217	109	M (268)
∞							26	Fe	55,845	44	Ru		9/	Os	190,23	108	Hs Mt
7	QIIV						25	Mn	54,9380	43	<u>၁</u>	93	75	Re	186,207		
9	QIV								51,9961	42	$\frac{W}{W}$					106	Sg Bh
2	Ab						23	>	50,9415	41	g	92,9064	73	Ta W	180,948		Db
4	9 ≥						22	j=	47,867	40		91,224	72	Ŧ	178,49	104	Rf (261.11)
8	q						21	Sc	44,9559	39	>	88,9059	57 *	Гa	138,906	* 68	Ac (227.03)
7	= Ha		Pe P	9,0122	12	Z 6,3050	20	Ca		38	S	87,62	26	Ва	137,327	88	Fr Ra
1	<u>e</u>	1 H 1,00794	<u>.</u> ت	6,941	<u> </u>	5 2,9898	19	~	39,0983 40,078	37	Rb	82,4678	55	Cs	132,905	87	Fr
		H	7		•	~		4			7			9			7

58	59	09	61	62	63	64	65		29	89	69	70	7
	P	ρZ	Pm	Sm	Eu	P9	Тb	δ	운	F	H	Υb	Γſ
	140,908	144,24	(144,913)	150,36	151,964	157,25	158,925	162,50	164,930	167,26	168,934	173,04	174,967
	91	92	93	94	95	96	97	86	66	100	101	102	103
Т	Ра	\supset	ď	Pu	Am	CH	쓢	Ç	Es	Fm	ÞΜ	ž	۲
	232,038 231,036	238,029	(237,048)	(244,06)	(243,06)	(247,07)	(247,07)	(251,08)	(252,08)	(257,10)	(258,10)		(262,11)

Constants: R = 0.082 atm L mol⁻¹ K⁻¹ = 8,3 J mol⁻¹ K⁻¹

Química

Model 3. Criteris específics de correcció

La puntuació màxima de cada pregunta està indicada a l'inici de la qüestió. La nota de l'examen és la suma de les puntuacions.

A les preguntes on es demana una resposta raonada, podran ser no qualificades les respostes sense raonament.

Les preguntes numèriques, en cas de resultat incorrecte, es podran qualificar fins a un màxim del 80% de la nota màxima, sempre que els plantejaments siguin **correctes, ordenats i clarament explicats**.

Si a la resposta d'una pregunta, tant numèrica com teòrica, es detecten errors de concepte, contradiccions o absurds, àdhuc si la solució final és correcta, la pregunta no es qualificarà.

Química

Model 3. Solucions

OPCIÓ A

1. (1 punt)

a) $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

$$Kc = \frac{[NO_2]^2}{[N_2O_4]} = \frac{(1.4)^2}{(0.4)} = 4.9$$

De la gràfica es pot extreure

Fals. Kc és > 10,5 punts

b) A la gràfica es comprova que les concentracions a l'equilibri a la figura 2 són les mateixes que a la figura 1. Diferència: tarda menys temps a assolir l'equilibri químic (8 hores enfront de 60 hores en absència de catalitzador). Fals **0,5 punts**

2. (2,5 punts)

a)
$$4 \text{ H} + 4 \text{ NO}_3^- + \text{ Sn} \rightarrow \text{SnO}_2 + 4 \text{ NO}_2 + 2 \text{ H}_2\text{O}$$
 R. Iònica **0,75** $4 \text{ HNO}_3 + \text{ Sn} \rightarrow \text{SnO}_2 + 4 \text{ NO}_2 + 2 \text{ H}_2\text{O}$ R. Molecular **0,25**

b)
$$2g \text{ de Sn} \cdot \frac{1mol \text{ Sn}}{118,7g \text{ Sn}} \cdot \frac{4mol \text{ } HNO_3}{1mol \text{ Sn}} \cdot \frac{1000mL}{0,5mol HNO_3} = 134,8 \text{ mL HNO}_3$$
 0,50

c) HNO₃ Àcid nítric / hidroxidioxidnitrogen / hidrogen(trioxidnitrat) **0,50** SnO₂. Diòxid d'estany **0,50**

3. (2,5 punts)

a) [HCI] = 0.55 M0,5 punts pH = 0.260,5 punts

b) Queda 0,05 M de NaOH sense neutralitzar. 0,75 punts

pHf = 12,70,25 punts c) Corrosiu 0,5 punts

4. (2 punts) 0,5 punts cada apartat

- a) Es tracta de la ruptura d'un enllaç covalent. Procés endotèrmic. $\Delta H > 0$.
- b) $\Delta S > 0$. Augmenta el desordre
- c) $\Delta G = \Delta H T\Delta S = (+) T(+)$

Aquesta reacció serà espontània a elevades temperatures. Fals.

d) Ambdós composts són covalents moleculars, i les forces intermoleculars seran les interaccions de London. Com que el Br té una major mida que el Cl, les interaccions de London entre les molècules de Br₂ seran més elevades i, per aquest motiu, el Br₂ és líquid a temperatura ambient.

5. (2 punts)

- a) L'oxigen es troba a la taula periòdica al segon període i grup 16 mentre que el fòsfor es troba al tercer període i grup 15. El P ocupa orbitals que estan més allunyats del nucli, per tant, presenta major radi atòmic. El qui té menor radi és el O. **o,5 punts**
- b) 1s²2s²2p⁶3s²3p³ Presenta 3 e- desaparellats **0,5 punts**

Hibridació sp² per justificar la geometria i la formació d'un enllaç doble. **0,5 punts**

OPCIÓ B

1. (2 punts)

Fals. Formació de tres enllaços senzills, no té parell d'electrons sense compartir. Hibridació sp². **0,5 punts**

- b) Fals. Els tres enllaços són polars però, a causa de la seva geometria, es tracta d'una molècula apolar. **o,5 punts**
- c) Fals. A la molècula de NH_3 hi ha la possibilitat de formar ponts d'hidrogen. Per tant, la Teb del BF_3 serà menor que la del NH_3 .
- d) A la taula periòdica, es comprova que en un mateix període, quan augmenta Z, augmenta la càrrega nuclear efectiva i, per tant, augmenta l'atracció dels electrons cap al nucli. Per tant, el primer potencial d'ionització del fluor és major que el del bor. L'afirmació és falsa.

0,5 punts

2. (2 punts)

a) Si α = 1, l'àcid estaria completament dissociat. Això es compleix en àcids forts. En aquest cas es tracta d'un àcid feble, ja que Ka < 10^{-3} . Per tant, l'afirmació és falsa. **0,5 punts**

b) AH + NaOH
$$\rightarrow$$
 ANa + H₂O \rightleftharpoons AH + OH

ANa prové d'un àcid feble i una base forta. El pH serà bàsic. **0,5 punts**

c) Una bureta, un erlenmeyer i un indicador (viratge a la zona bàsica) **o,5 punts**S'ha d'explicar que la dissolució de valorant anirà a la bureta; mentre que la dissolució a valorar va a l'erlenmeyer. S'addicionen unes gotes d'indicador a l'erlenmeyer per detectar el

punt d'equivalència. Es deixa caure una gota de valorant a l'erlenmeyer i s'agita. Aquest procediment es repeteix fins a aconseguir un canvi de color de la dissolució degut a l'indicador o,5 punts

3. (2 punts)

a) Reacció 1:1; per tant, el reactiu limitant és la molècula de dihidrogen. o,5 punts

$$PV = nRT$$
 $\Rightarrow \frac{650}{760} \cdot 15 = n \cdot 0,082(300 + 273)$
 $n = 0,273 \text{ mols } C_2H_6 \times \frac{30g}{1mol} = 8,20 \text{ g de } C_2H_6$ **0,5 punts**

b)
$$\Delta H = E_{enll\ romputs} - E_{Enll\ formats} \Rightarrow E_{C=C} = 600 \text{ kJ/mol}$$
 1 punt

4. (2 punts)

a)
$$x^2 - 2.5x + 1 = 0$$
 Solució: $x = 0.5$ **0.5 punts** $[COBr_2] = \frac{0.5}{2} = 0.25M$ **0.5 punts**

b)
$$K_p = K_c (RT)^{\Delta n} = 0.25 (0.082 \times 350)^{(2-1)} = 0.25 \cdot 28.7 = 7.18 \text{ atm}$$
 0.5 punts

c) Si augmenta la pressió total, l'equilibri es desplaça cap a on disminueixi la pressió, on hi hagi menys mols. Cap a l'esquerra. **o,5 punts**

5. (2 punts) 0,5 punts cada apartat

a) Major poder reductor: té major tendència a oxidar-se. A partir del potencial de reducció: Ni > Cu

b)
$$Pb^{2+} + 2e^- \rightarrow Pb \quad E = -0.13 \text{ V}$$
 $Pb^{2+} + 2e^- \rightarrow Pb \quad E = -0.13 \text{ V}$ $Cu \rightarrow Cu^{2+} + 2e^- = -0.34 \text{ V}$

El Ni, perquè el potencial del sistema serà positiu.

c)
$$Cu^{2+} + 2e^{-} \rightarrow Cu \quad E = +0,34 \text{ V}$$

 $Ni \rightarrow Ni^{2+} + 2e^{-} E = +0,25 \text{ V}$ $E_T = 0,59 \text{ V}$

d) Transport d'ions per mantenir l'electroneutralitat dels dos compartiments.