

ST5623

PRELIMINARY

6-Bit 1200-Channel TFT LCD Source Driver with TCON

Product Description

ST5623 is a highly integrated 1200 channel source driver with TTL interface Timing Controller for color TFT-LCD panels. ST5623 integrate source driver, timing controller and pin control interface. Input data can support TTL digital 18-bit / 24-bit parallel RGB data format, and source driver support 256 gray scales with dithering features. All functions can be set by relative H/W pin.

ST5623 can be configured as dual-gate operation mode to reduce the FPC amount and save the cost. With wide range of supply voltages and small output deviations make this chip more suitable for various applications.

Features

- **♦** TCON
 - Supports display resolutions: 800(RGB)x600 > 800(RGB)x480 \ 640(RGB)x480
 - Supports TTL 18-bit or 24-bit parallel (RGB) input timing
 - Support LED Backlight Enable Control Signal With CABC Function(CABC PWM)
 - Supports to configure CABC block via 3 line SPI mode
 - Output dynamic range : 0.1 ~ VDDA-0.1V
 - Power for logic circuit: 3.0V~3.6V
 - Operating frequency : 50MHz
 - 8-bit resolution with 2-bits dithering
 - Support dual-gate operation mode
 - Support Stripe color filter configuration
 - Hardware Pin Control CABC Mode Selection
- PWM booster function
- Source Driver
 - Output: 1200/960 output channels
 - Power of LCD driving voltage : 6.5 ~ 13.5V
 - Output deviation : ± 20mV
 - Supports external V1~V14 pad for Gamma correction
 - Support stand-by mode for low power consumption
 - Support 1 dot or 2 dot inversion driving scheme
 - Package : COG available

Function Block Diagram

800x480 dual gate mode (Gate driver on left side)

800x480 dual gate mode(Gate driver on right side)

800x600 dual gate mode (Gate driver on left side)

800x600 dual gate mode(Gate driver on right side)

Pin Assignments (Bump View)

Pin Description

Designation	1/0	Description						
D0[7:0] D1[7:0] D2[7:0]	Ι	Parallel data Input. For TTL 24-bit parallel RGB image data input. 20[7:0] = R[7:0] data; D1[7:0] = G[7:0] data; D2[7:0] = B[7:0] data. 30 [7:0] = R[7:0] data; D1[7:0] = G[7:0] data; D2[7:0] = B[7:0] data. 30 [7:0] = R[7:0] data buses to DGND.						
CLKIN	I	Clock for Input Data. Data latched at rising/falling edge of this signal. Default falling edge.						
HSD	I	Horizontal Sync input. Negative polarity.						
VSD	I	Vertical Sync input. Negative polarity.						
DEN	-	Data Input Enable. Active High to enable the data input bus under "DE Mode". (Normally pull low.)						
REV	I	Data inverted control. Normally pull low REV="1": Data inverted for normally black LCD REV="0": Data not inverted for normally white LCD. (Default)						
MODE	I	DE / SYNC mode select. (Normally pull high) H: DE mode. L: HSD/VSD mode.						
		Display resolution selection. (default value is 00)						
		RES[1:0] Resolution						
		00 800(RGB)*480						
RES[1:0]	ı	01 800(RGB)*600						
		10 640(RGB)*480(channel 481~720 is disable)						
		11 800(RGB)*480						
DITHB	I	Dithering function enable control. (Normally pull high) DITHB = "1", Disable internal dithering function DITHB = "0", Enable internal dithering function						
CLKPOL	I	Input clock edge selection.(Normally pull low) CLKPOL = "1", Latch data at CLKIN rising edge. CLKPOL = "0", Latch data at CLKIN falling edge.						
CSX	_	A chip select signal(Normally pull high) CSX="L", the chip is selected and accessible CSX="H", the chip is not selected and not accessible Note: Fix to the VDD level when not in use.						
SCL/DBCM[0]		Multi-Function Selection: When DBC/3="L", this pin act as 3-wire "SCL" pin. Serial clock input. This pin is used for CABC command set only. When DBC/3="H", this pin act as DBC mode select pin LSB (DBCM[0]) Note: Normal pull high and Fix to the VDD level when not in use.						
SDA/DBCM[1]	9	Multi-Function Selection: When DBC/3="L", this pin act as 3-wire "SDA" pin. Serial data input / output. This pin is used for CABC command set only. When DBC/3="H", this pin act as DBC mode select pin MSB (DBCM[1]) Note: Normal pull high and Fix to the VDD level when not in use.						
CABC_EN	I	CABC Function Enable Control.(Normal pull "L") CABC_EN="L", BLKEN pin is used to be backlight control signal for external backlight controller. CABC_EN="H", ST5623 will refer the gray scale content of display image to output a PWM frequency to LED driver via BLKEN pin.						
BLKEN	0	The backlight control signal for external backlight controller. BLKEN ="L", turn off the external backlight controller. BLKEN ="H", turn on the external backlight controller. Note: Refer to the Power ON/OFF sequence for the detail information when						

		CABC_EN is set to "L".
V1 ~ V14	I/O	When VSET="L", the internal Gamma table is used and V1~V14 pins are unused. When VSET="H", V1~V14 pins are the external adjustment point for Gamma correction. The relationship between V1~V14 must be: AGND <v14<v13<v12<v11<v10<v9<v8<v7<v6<v5<v4<v3<v2<v1<vdda< td=""></v14<v13<v12<v11<v10<v9<v8<v7<v6<v5<v4<v3<v2<v1<vdda<>
GOSEQ	ı	Gate on sequence. (Normally pull low) GOSEQ="L", INVBRR/INVBRL will output "H" and gate on sequence is "G1->G2->G3->G4->G5->G6->G7->G8->>Gn-3-> Gn-2-> Gn-1-> Gn " GOSEQ="H", INVBRR/INVBRL will output "L" and gate on sequence is
		"G1->G2->G4->G5->G6->G8->G7->> Gn-3-> Gn-2-> Gn -> Gn-1" Note: This function is inactive while CFSEL is fixed to "L".
RSTB	I	Global reset pin. Active Low to enter Reset State. (Normally pull high.) Suggest to connecting with an RC reset circuit for stability.
VSET	ı	Gamma correction source select(Normally pull low) VSET="L" ,to use internal Gamma reference voltage(VDDA) VSET="H" ,to use external Gamma correction input(V1~V14)
INVSEL	1	The driving polarity inversion select.(Normally pull low) INVSEL="L", 2-dot inversion INVSEL="H",1-dot inversion
STBYB	I	Standby mode,(normally pulled high.) STBYB = "1", normal operation STBYB = "0", timing controller, source driver will turn off, all output are High-Z
SHLR	ı	Source Right or Left sequence control.(Normally pull high) SHLR = "L", shift left : last data = S1←S2←S3←S1200 = first data. SHLR = "H", shift right : first data = S1→S2→S3→S1200 = last data.
UPDN	I	Gate Up or Down scan control. (Normally pull high.) UPDN = "L", STV2 output vertical start pulse and UD pin output logical "0" to Gate driver. UPDN = "H", STV1 output vertical start pulse and UD pin output logical "1" to Gate driver.
DBC/3	1	DBC/3-wire selection pin(Normal pull high) DBC/3="H", Select DBC hardware control function. DBC/3="L", Select 3-wire SPI interface function.
BIST	1	Normal Operation/BIST pattern select. Normally pull low BIST = "H": BIST(DCLK input is not needed) BIST = "L": Normal Operation
OVER/OVEL	0	Gate driver control signal
UDR/UDL	0	Gate driver control signal
CKVR/CKVL	0	Gate driver control signal
STV1R/STV1L	0	Gate driver control signal
STV2R/STV2L	0	Gate driver control signal
STBNR/STBNL	0	Gate driver control signal
INVBRR/INVBRL	0	Gate driver control signal(High=Z shape ,Low= 弓 shape)
VDDA	PI	Power supply for analog circuits
AGND	PI	Ground pins for analog circuits

VDD	PI	Power supply for digital circuits
DGND	PI	Ground pins for digital circuits
SO1~SO1200	0	Source Driver Output Signals. All outputs will be of unknown values under stand-by mode.
ALIGN	М	For assembly alignment.
COM1_B COM1_B	S	Internal link together between input side and output side.
COM1_T COM2_T	S	Internal link together between input side and output side.
TP0~TP4	I	Test pins, not accessible to user, must be left open(Normally pull low)
TP6~TP10	0	Test pins, not accessible to user, must be left open
SHIELDING	SH	IC Shielding pads. Those pins are internally connected to the AGND. DO NOT connect to any WOA on the panel.
DASHD	SH	Data Bus Shielding pad. Those pins are internally connected to the DGND. RECOMMAND to add shielding lines on the FPC to reduce EMI.
DUMMY DUMMR DUMML	D	Dummy pads. Those pins are floating pads.
PWM_EN	I	PWM_EN="L" ,disable booster circuit(default) PWM_EN="H" ,enable booster circuit
FB	I	feedback voltage from external booster circuit (1.2V)
DRV	0	Driving output for external booster power MOS gate control

Note:

I: Input, O: Output, P: Power, S: Shorted line, M:mark, PI: Power input, PO: Power output, T: Testing, SH: Shielding, I / O: Input / Output.

DBC/3 for CABC Function Control description:

Pin name	DBC/3										
Fili liallie	L	H(default)									
CSX		CABC Fund	Disable SPI Fur	nction, Irdware Pin control							
		SDA/DBCM[1]	SCL/DBCM[0]	MODE							
001 (550140)	Enable SPI Function	0	0	User Interface image							
SCL/DBCM[0]	Enable of 11 diletion	0	1	CABC off							
		1	0	Moving image							
		1	1	Still picture							
SDA/DBCM[1]		Remark :Default Still Mode									
.,,											

Application Circuit for Reset function

Recommend R =47k Ω ,C=0.1uF

Pass Line Description:

Pass Line No:	Pa	d Name		
1	COM1_B	COM1_T		
2	COM2_B	COM2_T		

ps: The wiring resistance value from COM1_B(COM2_B) to COM1_T(COM2_T) is less than 10Ω

The input wiring resistance values affect power or signal integrity and the display quality. So be sure to design using values that do not exceed those recommended as below.

Pin name	Wiring resistance value(Ω)
VDDA	<5
AGND	<5(
VDD	<10
DGND	<10
V1~V14	<10
Dx[0:7]	<50
CLKIN	<50
VSD	<50°
HSD	<50
DEN	<50
BLK_EN	<200
CSX	<200
SCL/DBCM[0]	<200
SDA/DBCM[1]	<200
RESX	<500
STBYB	<500
DITHB	<500
SHLR	<500
UPDN	<500
BIST	<500
MODE	<500
RES0	<500
RES1	<500
CLKPOL	<500
DBC/3	<500
VSET	<500
INVBRR/INVBRL	<500
OEVR/OEVL	<500
UDR/UDL	<500
CKVR/CKVL	<500
STV1R/STV1L	<500
STV2R/STV2L	<500
STBNR/STBNL	<500
Others	<500

Relationship between the Order of Input Data and Output Channels

GOSEQ= "H", Stripe Mode

The relationship between input display data and source output channels is illustrated as below:

(1) SHLR="L", shift left

Output	SO1	SO2	SO3	←	SO1198	SO1199	SO1200		
Order	La	st data			First data				
Odd Line /Gn	D0[7:0]	D2[7:0]	D1[7:0]		D0[7:0]	D2[7:0]	D1[7:0]		
Odd Line /Gn+1	D1[7:0]	D0[7:0]	D2[7:0]		D1[7:0]	D0[7:0]	D2[7:0]		
Even Line /Gn	D0[7:0]	D2[7:0]	D1[7:0]		D0[7:0]	D2[7:0]	D1[7:0]		
Even Line /Gn+1	D1[7:0]	D0[7:0]	D2[7:0]		D1[7:0]	D0[7:0]	D2[7:0]		

(2) SHLR="H", shift right

Output	SO1	SO2	SO3	\rightarrow	SO1198	SO1199	SO1200	
Order	Fir	st data			Last data			
Odd Line /Gn	D0[7:0]	D2[7:0]	D1[7:0]		D0[7:0]	D2[7:0]	D1[7:0]	
Odd Line /Gn+1	D1[7:0]	D0[7:0]	D2[7:0]		D1[7:0]	D0[7:0]	D2[7:0]	
Even Line /Gn	D0[7:0]	D2[7:0]	D1[7:0]		D0[7:0]	D2[7:0]	D1[7:0]	
Even Line /Gn+1	D1[7:0]	D0[7:0]	D2[7:0]		D1[7:0]	D0[7:0]	D2[7:0]	

Dot Polarity Inversion

ST5623 supplies both of 1-dot and 2-dot inversion, the pixel polarity inversion was illustrated as below:

1-dot inversion, INVSEL"H" & GOSEQ="L"

2-dot inversion, INVSEL"L" & GOSEQ="L"

Gate Scan Sequence

Based on special panel request, ST5623 supports two kinds of gate scan sequences and illustrated as below:

GOSEQ="L" & UPDN="H"=>INVBRR/INVBRL="H" (Z Shape)

GOSEQ="L" & UPDN="L"=>INVBRR/INVBRL="H" (Z Shape)

GOSEQ="H" & UPDN="H"=>INVBRR/INVBRL="L" (弓 Shape)

GOSEQ="H" & UPDN="L"=>INVBRR/INVBRL="L" (弓 Shape)

CABC (Content Adaptive Brightness Control)

ST5623 provides a dynamic backlight control function as CABC (Content adaptive brightness control) to reduce the power consumption of the luminance source. ST5623 will refer the gray scale content of display image to output a PWM waveform to LED driver for backlight brightness control. Content adaptation means that the content of gray sale can be increased while simultaneously lowering brightness of the backlight to achieve the same perceived brightness. The adjusted gray level scale and thus the power consumption reduction depend on the content of the image.

The CABC function can be turned ON/OFF via external pin as CABC_EN and also can be configured by software commands via SPI mode for performance optimization.ST5623 can calculate the backlight brightness level and send a PWM pulse to LED driver via BLKEN pin for backlight brightness control purpose. The figure in the following is the basic timing diagram which is applied ST5623 to control LED driver.

Relationship between Input Data and Output Voltage

The figure below shows the relationship between the input data and the output voltage with the output polarity. The range of V1~V7 is for positive polarity, and V8~V14 for negative polarity. Please refer to the next page to get the R-string resistor value and voltage calculation table.

Note: $VDDA-0.1 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5 \ge V6 \ge V7 \ge V8 \ge V9 \ge V10 \ge V11 \ge V12 \ge V13 \ge V14 \ge AGND+0.1$

Gamma Correction Resistor Ratio

Display Data(Hex)	Positive	Polarity	Neg	ative Polarity
00h	VDDA X	0.962	VDDA X	0.019598
01h	VDDA X	0.938	VDDA X	0.046119
02h	VDDA X	0.905	VDDA X	0.083529
03h	VDDA X	0.883	VDDA X	0.109285
04h	VDDA X	0.865	VDDA X	0.12996
05h	VDDA X	0.851	VDDA X	0.146395
06h	VDDA X	0.840	VDDA X	0.159756
07h	VDDA X	0.831	VDDA X	0.171244
08h	VDDA X	0.823	VDDA X	0.181228
09h	VDDA X	0.816	VDDA X	0.190248
0Ah	VDDA X	0.810	VDDA X	0.198566
0Bh	VDDA X	0.805	VDDA X	0.205538
0Ch	VDDA X	0.800	VDDA X	0.212346
0Dh	VDDA X	0.795	VDDA X	0.218658
0Eh	VDDA X	0.791	VDDA X	0.224393
0Fh	VDDA X	0.787	VDDA X	0.230035
10h	VDDA X	0.784	VDDA X	0.235175
11h	VDDA X	0.781	VDDA X	0.24012
12h	VDDA X	0.777	VDDA X	0.245052
13h	VDDA X	0.775	VDDA X	0.249372
14h	VDDA X	0.772	VDDA X	0.253994
15h	VDDA X	0.769	VDDA X	0.258138
16h	VDDA X	0.767	VDDA X	0.262134
17h	VDDA X	0.764	VDDA X	0.266387
18h	VDDA X	0.762	VDDA X	0.270174
19h	VDDA X	0.760	VDDA X	0.273866
1Ah	VDDA X	0.758	VDDA X	0.277749
1Bh	VDDA X	0.756	VDDA X	0.281507
1Ch	VDDA X	0.754	VDDA X	0.284932
1Dh	VDDA X	0.753	VDDA X	0.288506
1Eh	VDDA X	0.751	VDDA X	0.292303
1Fh	VDDA X	0.749	VDDA X	0.295628
20h	VDDA X	0.748	VDDA X	0.298992
21h	VDDA X	0.746	VDDA X	0.302483
22h	VDDA X	0.744	VDDA X	0.3059
23h	VDDA X	0.742	VDDA X	0.308842
24h	VDDA X	0.741	VDDA X	0.311887

Sitronix ST5623

25h	VDDA X	0.739	/DDA X	0.315036
26h	VDDA X	0.737 \	/DDA X	0.318369
27h	VDDA X	0.736	/DDA X	0.321407
28h	VDDA X	0.734 \	/DDA X	0.324539
29h	VDDA X	0.733 \	/DDA X	0.327767
2Ah	VDDA X	0.731 \	/DDA X	0.331173
2Bh	VDDA X	0.730 \	/DDA X	0.334383
2Ch	VDDA X	0.728 \	/DDA X	0.337684
2Dh	VDDA X	0.727 \	/DDA X	0.341076
2Eh	VDDA X	0.725 \	/DDA X	0.344652
2Fh	VDDA X	0.724\	/DDA X	0.348236
30h	VDDA X	0.722 \	/DDA X	0.351912
31h	VDDA X	0.721 \	/DDA X	0.355689
32h	VDDA X	0.719\	/DDA X	0.359704
33h	VDDA X	0.718	/DDA X	0.363864
34h	VDDA X	0.716	/DDA X	0.368123
35h	VDDA X	0.715	/DDA X	0.372563
36h	VDDA X	0.713 \	/DDA X	0.3776
37h	VDDA X	0.712 \	/DDA X	0.38275
38h	VDDA X	0.710 \	/DDA X	0.388237
39h	VDDA X	0.708 \	/DDA X	0.394664
3Ah	VDDA X	0.706	/DDA X	0.401224
3Bh	VDDA X	0.704	/DDA X	0.40944
3Ch	VDDA X	0.701 \	/DDA X	0.418345
3Dh	VDDA X	0.697 ۱	/DDA X	0.42997
3Eh	VDDA X	0.688 \	/DDA X	0.446886
3Fh	VDDA X	0.529\	/DDA X	0.514095
		_		

VDDA=10.4

CHIP	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	[UNIT]
version	00H	01H	10H	20H	30H	3ЕН	3FH	3FH	3ЕН	30H	20H	10H	01H	00Н	
ST5623	10.004	9.755	8.153	7.774	7.511	7.15	6.55	5.35	4.647	3.66	3.11	2.445	0.480.	0.204	v

Power On/Off Sequence

In order to prevent IC from power on reset fail, the rising time (TPOR) of the digital power supply VDD should be maintained within the given specifications. Refer to "AC Characteristics" for more detail on timing.

Power-On/Off Timing Sequence

Standby Mode Sequence

Data Input Format

Vertical input timing

Horizontal input timing

Timing Characteristic

For 800x480 panel

Horizontal input timing

Parameter	Symbol		Value			
Horizontal display	thd	800			DCLK	
DCLK frequen	fclk	Min.	Тур.	Max.		
DOLK frequent	ICIK	ı	33.3	50	MHz	
1 Horizontal Li	th	862	1056	1200		
	Min.			1		, ,
HSD pulse width	Тур.	thpw				7
	Max.			40	4 2	DCLK
HSD Blanking	thb	46	46	46		
HSD Front Por	ch	thfp	16	210	354	

Vertical input timing

Parameter	Symbol			Uint	
	-	Min.	Тур.	Max.	
Vertical display area	tvd)	480		Н
VSD period time	tv	510	525	650	н
VSD pulse width	tvpw	1	-	20	Н
VSD Blanking	tvb	23	23	23	Н
VSD Front Porch	tvfp	7	22	147	Н

For 800x600 panel

Horizontal input timing

Parameter		Symbol		Value		Unit
Horizontal displa area	у	thd			DCLK	
DCLK frequency	,	fclk	Min.	Тур.	Max.	
DOLK frequency	/	ICIK	ı	40	50	MHz
1 Horizontal Line	9	th	862	1056	1200	
	Min.					
HSD pulse width	Тур.	thpw				
	Max.			40		DCLK
HSD Blanking		thb	46	46	46	
HSD Front Porcl	า	thfp	16	210	354	

Vertical input timing

Parameter	Symbol			Uint	
	- J	Min.	Тур.	Max.	
Vertical display area	tVd	X	600		Н
VSD period time	tv	624	635	700	Н
VSD pulse width	tvpw	1		20	Н
VSD Blanking	tvb	23	23	23	Н
VSD Front Porch	tvfp	1	12	77	Н

For 640x480 panel

Horizontal input timing

Paramet	er	Symbol		Value		Unit		
Horizontal di area	splay	thd		640				
DCL K frogu	onov	fclk	Min.	Тур.	Max.			
DCLK frequ	ency	ICIK	20	24	50	MHz		
1 Horizontal	Line	th	976	760	1280	_		
HSD	Min.							
pulse	Тур.	thpw						
width	Max.			40		DCLK		
HSD Blank	king	thb	46	46	46			
HSD Front F	Porch	thfp	290	74	594) '		

Vertical input timing

				_			
Parameter	Symbol		Value				
	-	Min.	Тур.	Max.			
Vertical display area	tvd		480		Н		
VSD period time	tv	510	525	650	Н		
VSD pulse width	tvpw	1		20	Н		
VSD Blanking	tvb	23	23	23	Н		
VSD Front Porch	tvfp	7	22	147	Н		

The Command Format for 3-line Serial Interface

ST5623 using the 3-line serial port as communication interface for all the commands and parameters of CABC function. This 3-line serial communication can be bi-directional controlled by the "R/W" bit in address field. Under read mode, the 3-line engine in ST5623 will return the data during "Data phase". The returned data should be latched at the rising edge of SPCK by external controller. Data in the "Hi-Z phase" will be ignored by 3-line engine during write operation, and should be ignored during read operation also. During read operation, external controller should float SPDA pin under "Hi-Z phase" and "Data phase". Each Read/Write operation should be exactly 17 bit. To prevent from incorrect setting of the internal register, any write operation with more or less than 17 bit data during a CSX Low period will be ignored by 3-line engine. The timing diagram of read/write operation is illustrated as below:

Write Operation

Read Operation

Command List

Command Function	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Write Diepley Drightness	0	0	1	0	1	0	0	0	1	51h
Write Display Brightness	0					DE	3V[7:0]			XX
Read Display Brightness Value	0	0	1	0	1	0	0	1	0	52h
	1		DBV[7:0]							XX
Write CTRL Display	0	0	1	0	1	0	0	1	1	53h
Write CTRL Display	0	0	0	0	0	DD	BL	0	0	XX
Read CTRL Display	0	0	1	0	1	0	1	0	0	54h
Read OTNE Display	1	0	0	0	0	DD	BL	0	0	XX
Write Content Adaptive Brightness Control	0	0	1	0	1	0	1	0	1	55h
write Content Adaptive Brightness Control	0	0	0	0	0	0	0	cl	C[1:0]	
	0	0	1	0	1	0	1	1	0	56h
Read Content Adaptive Brightness Control	1	0	0	0	0	0	0	cl	1:0]	xx
Write CABC Minimum Brightness	0	0	1	0	1	>	1	1	0	5Eh
	0					CN	/IB[7:0]	1		XX
Read CABC Minimum Brightness	0	0	1	0		1	1	1	1	5Fh
	1	,				CN	/IB[7:0]	l		XX
CABC Control 1	0	0	1	1	0	0	0	0	0	60h
57.25 SSTM ST.	0	bl_tu	ne_ui	bl_tun	e_still	bl_tune_	_movie			XX
CABC Control 2	0	0	1	1	0	0	0	0	1	61h
CABC Control 2	0	Din	n_still_	tune	Dim	_movie	_tune			XX
CABC Control 3	0	0	1	1	0	0	0	1	0	62h
CADO CONTROLO	0	lut_	_tune_	cabc	p١	wm_per	iod	force_bl		XX

Note: 1. These commands above can be transmitted from host to driver IC via 3-line SPI mode only.

2. When R/W in the table above is '0', it means the "Write" operation is executed and the "Read" operation is executed when R/W is set to '1'

Command Description

Write Display Brightness Value (51h)

51h	WRDISBV(Write Display Brightness)											
	D7	D7 D6 D5 D4 D3 D2 D1 D0 HEX										
Command	0	0 1 0 1 0 0 0 1 51h										
Parameter		DBV[7:0] XX										
Description	DBVI7:01: 8 h	his command is used to adjust the brightness value of the display. DBV[7:0]: 8 bit, for display brightness of manual brightness setting and CABC in ST5623. There is a PWM output signal, CABC_PWM pin to control the LED driver IC in order to control display brightness.										

Read Display Brightness Value (52h)

52h	RDDISBV(Read Display Brightness Value)											
	D7	D7 D6 D5 D4 D3 D2 D1 D0 HEX										
Command	0	0 1 0 1 0 0 1 0 52h										
Parameter		DBV[7:0] XX										
Description				ness value of in mode.		(53h)" comma	nd when BL b	iit is '1'.				

Write CTRL Display Value (53h)

53h				WF	RCTRLD	(Write Co	ntrol Dis	play)						
		D7	D6	D 5	D4	D3	D2	D1	D0	HEX				
Command		0	1 4	0	7 1	0	0	1	1	53h				
Parameter		Χ	X	X	X	DD	BL	Χ	X	XX				
	DD: I	Display D	imming Contr	nming Control. This function is only for manual brightness setting.										
		DD		Description										
		0	.	Display Di	mming OFF									
		1		Display Di	mming ON									
Description	BL:	Backlight	Control On/O	ff			_'							
Description		BL		Desc	ription									
_	•	0	7	Backlight (Control OFF									
		1		Backlight Control ON										
			hange from "C	On" to "Off", ba	cklight is turne	ed off without o	gradual dimmii	ng, even if dim	ming-on (DD=	1) are selected				
	X=D	on't care												

Read CTRL Display Value (54h)

54h		RDCTRLD(Read Control Display)										
		D7	D6	D5	D4	D3	D2	D1	D0	HEX		
Command		0	1 0 1 0				1	0	0	54h		
Parameter		Χ	Х	Χ	Χ	DD	BL	Χ	Χ	XX		
	DD:	: Display Dimming Control. This function is only for manual brightness setting.										
		DD		Desc	ription							
		0		Display Di	mming OFF							
		1		Display Di	mming ON							
Description	BL:	Backlight	Control On/O	ff			•					
Description		BL		Desc	ription							
		0		Backlight (Control OFF							
		1		Backlight				111				
	X=Don't care											

Write Content Adaptive Brightness Control Value (55h)

55h	WRCABC(Write Control Display)										
	D7	' D6	5 D	5	D4	D3	D2	D1	D0	HEX	
Command	0	1	C)	1	0	7	0	1	55h	
Parameter	0	0	C)	0	0	y 0	C[´	1:0]	XX	
	This command is used to set parameters for image content based adaptive brightness control functionality. There is possible to use 4 different modes for content adaptive image functionality, which are defined on a table below. C[1:0] Description 0 CABC OFF										
Description		0	1		User Interface	Image					
		1	0		Still Pictu	ire					
		1	1		→Moving im	age					
	X=Don't care										

Read Content Adaptive Brightness Control Value (56h)

56h	RDCABC(Read Control Display)										
4	D7	D6	5 D5		D4	D3	D2	D1	D0	HEX	
Command	0	1	()	1	0	1	1	0	56h	
Parameter	0	0	()	0	0	0	C[1	1:0]	XX	
This command is used to read the settings for image content based adaptive brightness control functionality. There is Possible to use 4 different modes for content adaptive image functionality which are defined on the table below. C[1:0] Description CABC OFF											
Description		0	1		User Interface	e Image					
	<u> </u>	1 0 Still Picture 1 1 Moving image									
X=Don't care											

Write CABC Minimum Brightness(5Eh)

5Eh	WRCABCMB(Write CABC Minimum Brightness)										
	D7	D6	D5	D4	D3	D2	D1	D0	HEX		
Command	0	1	0	1	1	1	1	0	5Eh		
Parameter		CMB[7:0] XX									
Description	CMB[7:0]: CA When CABC processing fu This function brightness to	ABC minimum is active, CAB inction is worked does not affect less than CAE elationship is the	brightness con C can not reduced as normal, to the other f C minimum br	ntrol, this para uce the display even if the bric unction, manu rightness. Smo	phtness can no al brightness s both transition	to avoid too m less than CAE of be changed. setting. Manua and dimming f	uch brightness BC minimum b Il brightness ca unction can be	s reduction. rightness setting an be set the deworked as no eans the higher	isplay rmal.		

Read CABC Minimum Brightness(5Fh)

5Fh	RDCABCMB(Read CABC Minimum Brightness)										
	D7	D6	D5	D4	D3 🎍	D2	D1	D0	HEX		
Command	0	1	0	1	1 🔨	-	1	1	5Fh		
Parameter		CMB[7:0] XX									
Description	In principle th brightness.	e relationship	is that 00h val	ue means the	, and a	ess and FFh	value means th	J			

60h	Backlight fine tune									
	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	0	1	1	0	0	0	0	0	60h	
Parameter	bl_tu	ne_ui	bl_tun	e_still	bl_tune	_movie			XX	
Description	bl_tune_si bl_tune_u 00: 01: 10: 11: bl_tune_si 00: 01: 10: bl_tune_m 00: 01: 10:	Back light Back light Back light Eill: Back light	control dyr control dyr	for still pictine for movement rangement range		255 2-255 3-255 3-255 2-255 2-255 3-255 3-255				

61h				Dir	mming se	etting			
	D7	D6	D 5	D4	D3	D2	D1	D0	HEX
Command	0	1 🔏	1	0	0	0	0	1	61h
Parameter	Dir	m_still_tu	ine	Dim	_movie_t	tune			XX
Description	001 010 011 100 101 110 111 dim_movie 000 001 010 011 100 101	: every frar : brightnes : brightnes : brightnes : brightnes : brightnes : brightnes : every frar : brightnes : brightnes : brightnes : brightnes : brightnes	s change 1 s change s s change 1 s change 1 s change 1 s change 5 s change 6	target brig 27/256 * 1 64/256 * 10 32/256 * 10 16/256 * 10 4/256 * 10 2/256 * 10 target brig 27/256 * 1 64/256 * 1 8/256 * 1 8/256 * 1 4/256 * 1 4/256 * 1 2/256 * 1	00% / frame 00% / frame 00% / frame 00% / frame 0% / frame 0% / frame 00% / frame 00% / frame 00% / frame 00% / frame 00% / frame	eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee			

62h	Other setting									
	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	0	1	1	0	0	0	1	0	62h	
Parameter	lut	_tune_ca	ıbc	pwm_period force_bl						
Description	000 001 010 011 100 101 111 Pwm_peri 3'b0 3'b0 3'b0 3'b1 3'b1 3'b1 3'b1 3'b1 5'b1	cabc:data to cabc:data trans cata trans data trans do: pwm po 00:sig_pwr 01:sig_pwr 11:sig_pwr 10:sig_pwr 11:sig_pwr 11:sig_pwr 11:sig_pwr 11:sig_pwr 11:sig_pwr	sfer curve safer safer curve s	slope rate (slope rate 2 slope rate 2 slope rate 3 slope rate 4 slope rate 5 slope rate 6 slope rate 6 slope rate 7 g osc period*	0/128 1/128 1/128 3/128 3/128 5/128 5/128 7/128 256*1=20r 256*1=20r 256*1=20r 256*1=20r 256*1=20r 256*1=20r	ns*256*16* ns*256*16* ns*256*16* ns*256*16* ns*256*16* ns*256*16* ns*256*16*	1=82us 2=164us 4=328us 8=656us 16=1312u: 32=2624u: 64=5248u:			

Absolute Maximum Ratings

	9		
Parameter	Symbol	Ratings	Unit
Digital supply voltage	VDD	-0.5 to 5.0	V
Analog supply voltage,	VDDA	-0.5 to 13.5	V
Storage temperature		-55 to +125	$^{\circ}\!\mathbb{C}$
Operating temperature		-20 to +85	$^{\circ}\!\mathbb{C}$

CAUTIONS:

Stresses beyond "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operations beyond those indicated under "typical operating conditions" is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Recommended Operating Range

(DGND = AGND = 0V, TA = -20 to +85%)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Digital supply voltage	VDD	3.0	3.3	3.6	V
Analog supply voltage,	VDDA	6.5	10.4	13.5	V
Digital input voltage	VIN	0		VCC	V

DC Electrical Characteristics (VDD=3.0~3.6V, VDDA=6.5~13.5V, DGND=AGND=0V, TA=-20~85°C)

Parameter	Symbol	Min	Тур.	Max.	Unit	Conditions
Power supply voltage	VDD	3.0	3.3	3.6		
Power supply voltage	VDDA	6.5	10.4	13.5		
Low level input voltage	Vil	0		0.3xVDD	V	For digital circuit
High level input voltage	Vih	0.7xVDD	-	VDD	V	For digital circuit
Input leakage current	li	-		+/-1	uA	For digital circuit
High level output voltage	Voh	VDD-0.4	1	-	V	Ioh=-400uA
Low level output voltage	Vol	7	-	DGND+0.4	V	Iol=+400uA
Pull low/high resistor	Ri 🚄	200K	250K	300K	Ohm	For the digital input pin@VDD=3.3V
Digital Operation Current	ldd		8	10	mΑ	Fclk=50MHz, FLD=48KHz, VDD=3.3V
Digital Stand-by current	lst1	-	10	50	uA	Clock & all functions are stopped
Analog Operation Current	ldda)	10	12	mA	No load Fclk=50Mhz, FLD=48K@VDDA=10V, V1=8V, V14=0.4V
Analog Stand-by Current	lst2	-	10	50	uA	No load. Clock & all functions are stopped
Input Level of V1~V7	Vref1	0.4*VDDA	ı	VDDA-0.1	V	Gamma correction voltage input
Input Level of V8~V14	Vref2	0.1	1	0.6*VDDA	V	Gamma correction voltage input
Output Voltage deviation	Vod1	-	+/- 20	+/- 35	mV	Vo=AGND+0.1V~ AGND +0.5V& Vo= VDDA -0.5V~VDDA-0.1V
Output Voltage deviation	Vod2	-	+/- 15	+/- 20	mV	Vo=AGND+0.5V~VDDA-0.5V
Output Voltage offset between chips	Voc	-	-	+/- 20	mV	Vo=AGND+0.5V~VDDA-0.5V
Dynamic Range of Output	Vdr	0.1	-	VDDA-0.1	V	SO1~SO1200
Sinking current of Output	lOLy	80	-	-	uA	SO1~SO1200; Vo=0.1V vs. 1.0V, VDDA=13.5V
Driving current of outputs	ЮНу	80	-	-	uA	SO1~SO1200; Vo=13.4V vs. 12.5V, VDDA=13.5V
Resistance of Gamma Table	Rg	0.7*Rn	1.0*Rn	1.3*Rn	ohm	Rn:Internal gamma resistor

Timing Diagram

Input Clock and Data Timing Diagram

Output Load Condition

Vertical Timing Diagram SYNC (Dual Gate)

Vertical Timing Diagram DE (Dual Gate)

Gate output Timing Diagram (Dual Gate)

AC Electrical Characteristics (VDD =3.0~3.6V, VDDA=6.5~13.5V, AGND=DGND=0V, TA= -20~85°C)

Parameter	Symbol	Min	Тур.	Max.	Unit	Conditions
VDD Power on Slew Rate	T_POR	ı	•	20	ms	From 0V to 90% VDD
RSTB pulse width	T_{RST}	10			us	Clkin=50MHz
CLKIN cycle time	Tcph	20	•		ns	
CLKIN pulse duty	Tcwh	40	50	60	%	
VSD setup time	Tvst	8			ns	
VSD hold time	Tvhd	8	-		ns	
HSD setup time	Thst	8		-	ns	
HSD hold time	Thhd	8)	•	ns	
Data setup time	Tdsu	8		•	ns	D[7:0], D1[7:0], D2[7:0] to clkin
Date hold time	Tdhd 🚄	8)	•	ns	D[7:0], D1[7:0], D2[7:0] to clkin
DE setup time	Tesu	8	ı	ı	ns	
DE hold time	Tehd	8	-	•	ns	
Output stable time	Tsst	-	-	6	us	10% to 90% target voltage. CL=120pF, R=10Kohm
CLKIN Frequency	Fclk	/ -	40	50	MHz	VDD=3.0V~3.6V
CLKIN Cycle Time	Tclk	20	25	_	ns	
CLKIN Pulse Duty	Tcwh	40	50	60	%	Tclk
Time from HSD to Source Output	Thso	ı	20	ı	CLKIN	
Time from HSD to LD	Thld	-	20	-	CLKIN	
Time from HSD to STV	Thstv	-	2	1	CLKIN	
Time from HSD to CKV	Thckv	ı	20	ı	CLKIN	
Time from HSD to OEV	Thoev	=	4	-	CLKIN	
LD pulse width	Twld	=	10	-	CLKIN	
CKV pulse width	Twckv	-	66	•	CLKIN	
OEV pulse width	Twoev	-	74	-	CLKIN	

SPI timing

Parameter		Min	Тур.	Max.		
SCL period	T_ck	60			ns 🚄	
SCL high width	T_CKH	30			ns	$\mathcal{N}_{\mathcal{N}}$
SCL low width	T_CKL	30			ns	
Data setup time	T_{SU1}	12			ns	
Data hold time	T _{HD1}	12			ns	
CSX to SCL setup time	T _{CS}	20			ns	
CSX to SDA hold time	T_CE	20			ns	
CSX high pulse width	T_{CD}	50			ns	

Chip Outline Dimensions and Coordination (Bump Side)

Pad Dimension

Symbol	Dimension(um)	Symbol	Dimension(um)
Α	17	D2	100
A1	34	D3	30
A2	110	D4	70
A3	30	D5	266
В	30	D6	168.5
B1	50	D7	50
B2	70	E1	22578
B3	50	E2	1045
B4	191.5	E3	TBD
С	65	E4	57
C1	85	E5	57
C2	110	E6	136.5
C3	115	F1	115
D	30	F2	20
D1	40	F3	25

Pad Coordination

No.	ı a		uman		N.	I NAME	V	V		N10.04E		V		NAME	W	
2 OEVR	No.	NAME	X	Y	No.	NAME	X 7040	Y 400	No.	NAME	X	Y 400	No.	NAME	X	Y 400
3					_								_			
4 UDR													_			
S													_			
66 CKVR												_				
STYIR						-										
8																
9 STVZR 11179 8 69 SHIELDING 6630 408 130 V2 1445 408 190 V5D 3655 408 111 STV1R 11179 72 71 BIST 6460 408 331 V2 1136 408 191 V5D 3626 408 131 STV1R 11179 72 73 RESO 6290 408 332 SHIELDING 1275 408 192 DASHD 3825 408 133 STBNR 11199 152 73 RESO 6290 408 332 SHIELDING 1276 408 193 M5D 3995 408 150 DUMMR 11197 232 75 SHIELDING 6120 408 135 SHIELDING 1100 408 194 KDD 3995 408 150 DUMMR 11196 222 75 SHIELDING 6120 408 335 SHIELDING 1200 408 195 DASHD 408 408 177 SHIELDING 11196.5 408 77 DDC3 6595 408 335 SHIELDING 1200 408 195 DASHD 408 408 195 DASHD 408 408 195 DEC3 408 408 195 DEC3 408 408 195 DEC3 408												_	_			
10 STVZR																
11 STV1R													_			
12 STVIR 11049 -72 73 SHELDING -6376 408 132 SHELDING 1275 408 132 DASHD 3825 408 14 STBNR 111049 -152 74 RESQ -6206 408 133 403 11105 408 194 HSD 3995 408 16 DUMMR -11119 -232 75 SHELDING -6120 408 135 SHELDING -1000 408 140 HSD 3995 408 16 DUMMR -11119 -232 76 DBC/3 -6035 408 136 W4 -935 408 195 DASHD 4090 408					_										-	_
33 STBNR 11179 152 73 RESO -6299 408 133 V3 1190 408 193 MSD 3910 408 145 MSD 3950 408 155 DUMMR 111179 -232 75 SHIELDING -6120 408 135 SHIELDING 1020 408 195 DASHD 4090 408						_									W -40000	-
14 STBNR 11049 -152 74 RESO -6205 -408 134 V3 -1105 -408 194 -15D -3995 -408 16 DUMMR -11179 -232 76 DBC/3 -6035 -408 135 SHELDING -1020 -408 -408 197 DEC/3 -408 136 V4 -395 -408 195 DEN -4250 -408 185 SHELDING -11195 -408																
15 DUMMR -111179 -232 75 SHELDING -6120 -408 135 SHELDING -1020 -408 195 DASHD 4080 408 140																
16 DUMMR -11049 -232 76 DBC/3 -6035 -408 136 V4 -935 -408 136 DEN -408 136 DEN -408 136 DEN -408 438 -408 136 DEN -408 438 -408 136 DEN -408												_	_			
The color					_											
18 SHIELDING -11025 -408 -1													A0000		18000	
99 SHIELDING 110285 408 408 20 SHIELDING 110285 408 20 SHIELDING 110285 408 20 CLKPOL 5699 408 408 141 SHIELDING 510 408 405 408 408 412 COM1 8 1025 408 408 418 SHIELDING 5610 408 418 SHIELDING 510 408 418 418 SHIELDING 510 408 418													9 L V			
20					_											
22													0000			
22 COM1 B -10625 -408 82 DITHB -5540 408 413 V6 -425 -498 202 D2171 4675 408 408 413 V6 -425 -498 203 D2171 4767 408 408 413 V6 -425 -498 203 D2171 4767 408 408 413 V6 -425 -408 203 D2171 4767 408													1			
SHIELDING					_											
25						DITHB		-408								
25 AGND -10370 408 85 MODE -5270 408 145 V7 -170 408 205 D2[6] 4303 408 26 AGND -10285 -408 87 SHELDING -5100 -408 147 SHELDING 206 DASHD 5015 408 28 AGND -10115 -408 88 SHLR -5015 408 148 V8 85 -408 205 D2[5] 5100 -408 30 SHIELDING -9945 -408 99 SHIELDING -408 99 SHIELDING -9860 -408 91 UPDN -4767 -408 152 W9 -425 -408 211 D2[4] 5270 -408 33 SHIELDING -9950 -408 92 UPDN -4675 -408 152 W9 -425 -408 212 D2[3] 5525 -408 34 SHELDING -9850	24	SHIELDING	-10455	-408	84	SHIELDING	-5355	-408	144	SHIELDING	-255	-408	204	D2[6]	4845	-408
27	25	AGND	-10370	-408	85	MODE		-408	145	V7.	-170	-408	205	D2[6]	4930	-408
27	26	AGND	-10285	-408	86	MODE	-5185	-408	146	V7.	-85	-408	206	DASHD	5015	-408
SHIELDING -10030 -408 89 SHLR -4930 -408 149 V8 170 -408 209 D2[4] 5375 -408 13 SHIELDING -9860 -408 91 UPDN -4760 -408 150 SHIELDING -255 -408 211 DASHD 5440 -408 32 SHIELDING -9775 -408 93 SHIELDING -4675 -408 152 V9 340 -408 211 DASHD 5440 -408 -		AGND	-10200	-408	87	SHIELDING		-408	147	SHIELDING	0	<i>-</i> 408	207	D2[5]	5100	-408
SHIELDING 9945 -408 91 UPDN -4760 -408 91 UPDN -4760 -408 91 UPDN -4760 -408 92 UPDN -4760 -408 93 SHIELDING -9755 -408 92 UPDN -4675 -408 -40	28	AGND	-10115	-408	88	SHLR	-5015	-408	148	V8 →	85 7	-408	208	D2[5]	5185	-408
SHIELDING 9.9860 -408 91 UPDN -4.760 -408 152 V9 340 -408 211 DASHD 5.440 -408 32 SHIELDING -9.975 -408 93 SHIELDING -4.980 -4.98 -4.9	29	SHIELDING	-10030	-408	89	SHLR	-4930	-408	149	V8	170	-408	209	D2[4]	5270	-408
32 SHIELDING 9-975 -408 93 SHIELDING -4590 -408 152 V9 425 -408 212 D2[3] 5525 -408 34 SHIELDING -9695 -408 94 STBYB -4505 -408 -408 153 SHIELDING 510 -408 213 D2[3] 5610 -408 34 SHIELDING -9505 -408 94 STBYB -4420 -408 35 SHIELDING -595 -408 214 D2[2] 5595 -408 36 TPO -9520 -408 95 STBYB -4420 -408 155 V10 680 -408 215 D2[2] 5780 -408 36 TPO -9435 -408 96 SHIELDING -4335 -408 156 SHIELDING -408 217 D2[1] 5950 -408 38 TP1 -9265 -408 98 RSTB -4165 -408 -408 158 V11 935 -408 217 D2[1] 5950 -408 39 TP2 -9180 -408 100 BLKEN -3995 -408 158 SHIELDING -408 219 D2[0] 6120 -408 400 TP2 -9995 -408 100 BLKEN -39910 -408 400 TP2 -9985 -408 101 BLKEN -39910 -408 400 V12 1190 -408 221 DASHD 6290 -408 417 TP3 -9010 -408 101 BLKEN -39910 -408 162 SHIELDING -408 222 D1[7] 6375 -408 428 D2 D2 D2 D2 D2 D2 D2	30	SHIELDING	-9945	-408	90	SHIELDING	-4845	-408	150	SHIELDING	255	-408	210	D2[4]	5355	-408
33 SHIELDING -9605 -408 34 STBYB -4505 -408 153 SHIELDING 510 -408 140 121 122 1578 -408 36 TPO -9620 -408 55 STBYB -4420 -408 4	31	SHIELDING	-9860	-408	91	UPDN	-4760	-408	151	V9	340	-408	211	DASHD	5440	-408
SHIELDING -9605 -408 94 STBYB -4505 -408 154 V10 595 -408 214 D2[2] 5695 -408 36 TPO -9520 -408 95 STBYB -4250 -408 156 SHIELDING 765 -408 215 D2[2] 5780 -408 37 TP1 -9350 -408 97 RSTB -4250 -408 157 V11 850 -408 217 D2[1] 5950 -408 38 TP1 -9265 -408 98 RSTB -4165 -408 158 V11 935 -408 217 D2[1] 5950 -408 408 409 TP2 -9180 -408 99 SHIELDING -408 -408 159 SHIELDING 1020 -408 219 D2[0] 6120 -408 400 TP2 -9095 -408 100 BLKEN -3995 -408 160 V12 1105 -408 220 D2[0] 6225 -408 420 TP3 -8925 -408 101 BLKEN -3995 -408 160 V12 1105 -408 221 DASHD 6290 -408 440 TP4 -8755 -408 103 VSET -3740 -408 468 TP4 -8755 -408 104 VSET -3655 -408 468 REV -8585 -408 106 TP6 -3365 -408 408 165 SHIELDING 1530 -408 222 D1[7] 6460 -408 488 INVSEL -88415 -408 106 TP6 -33485 -408 166 V14 1615 -408 226 DASHD 6715 -408 498 INVSEL -8415 -408 107 TP7 -3400 -408 167 V14 1700 -408 226 DASHD 6715 -408 498 INVSEL -8415 -408 108 TP7 -3310 -408 168 SHIELDING 1785 -408 228 D1[6] 6680 -408 498 INVSEL -8815 -408 109 TP8 -3230 -408 169 AGND 1955 -408 229 D1[4] 6970 -408 55 SHIELDING -7790 -408 113 TP10 -2890 -408 175 AGND 225 -408 233 D1[3] 7310 -408 55 SHIELDING -7735 -408 116 DUMMY -2635 -408 175 AGND 2265 -408 239 D1[1] 7850 -408 59 SHIELDING -77460 -408 117 SHIELDING -2550 -408 177 BIELDING -2630 -408	32	SHIELDING	-9775	-408	92	UPDN	-4675	-408	152	V9	425	-408	212	D2[3]	5525	-408
35	33	SHIELDING	-9690	-408	93	SHIELDING	-4590	-408	153	SHIELDING	510	-408	213	D2[3]	5610	-408
36 TP0 -9435 -408 96 SHIELDING -4335 -408 156 SHIELDING 765 -408 216 DASHID 5865 -408 37 TP1 -9350 -408 97 RSTB -4250 -408 157 V11 850 -408 217 D2[1] 595 -408 39 TP2 -9180 -408 99 SHIELDING -4080 -408 159 SHIELDING 1020 -408 219 D2[0] 6120 -408 40 TP2 -9995 -408 100 BLKEN -3995 -408 160 V12 1105 -408 220 D2[0] 6205 -408 41 TP3 -9010 -408 102 SHIELDING -3825 -408 160 V12 1105 -408 221 DASHID 5865 -408 42 TP3 -8925 -408 102 SHIELDING -3825 -408 <td>34</td> <td>SHIELDING</td> <td>-9605</td> <td>-408</td> <td>94</td> <td>STBYB</td> <td>-4505</td> <td>-408</td> <td>154</td> <td>V10</td> <td>595</td> <td>-408</td> <td>214</td> <td>D2[2]</td> <td>5695</td> <td>-408</td>	34	SHIELDING	-9605	-408	94	STBYB	-4505	-408	154	V10	595	-408	214	D2[2]	5695	-408
37	35	TP0	-9520	-408	95	STBYB	-4420	-408	155	V10	680	-408	215	D2[2]	5780	-408
38	36			-408	96	SHIELDING	-4335	-408	156	SHIELDING	765	-408	216	DASHD	5865	-408
39 TP2 -9180 -408 99 SHIELDING -408 159 SHIELDING 1020 -408 219 D2[0] 6120 -408 40 TP2 -9095 -408 100 BLKEN -3995 -408 160 V12 1105 -408 220 D2[0] 6205 -408 41 TP3 -9010 -408 101 BLKEN -3910 -408 161 V12 11190 -408 221 DASHD 6290 -408 42 TP3 -8825 -408 102 SHIELDING -3825 -408 162 SHIELDING 1275 -408 221 DASHD 6290 -408 44 TP4 -8755 -408 103 VSET -3740 -408 163 V13 1360 -408 222 D1[7] 6460 -408 45 Dummy -8670 -408 106 TP6 -3570 -408 165	37			-408	97		_	-408	1 57		850	-408	217	D2[1]	5950	-408
TP2					_							_				-
41 TP3 -9010 -408 101 BLKEN -3910 -408 161 V12 1190 -408 221 DASHD 6290 -408 42 TP3 -8925 -408 102 SHIELDING -3825 -408 162 SHIELDING 1275 -408 222 D1[7] 6375 -408 43 TP4 -8840 -408 103 VSET -3740 -408 163 V13 1360 -408 222 D1[7] 6460 -408 45 Dummy -8670 -408 105 TP6 -3570 -408 165 SHIELDING 1530 -408 225 D1[6] 6630 -408 46 REV -8585 -408 106 TP6 -3485 -408 166 V14 1615 -408 225 D1[6] 6630 -408 49 INVSEL -8330 -408 107 TP7 -3400 -408																
42 TP3 -8925 -408 102 SHIELDING -3825 -408 162 SHIELDING 1275 -408 222 D1[7] 6375 -408 43 TP4 -8840 -408 103 VSET -3740 -408 163 V13 1360 -408 222 D1[7] 6375 -408 45 Dummy -8670 -408 105 TP6 -3570 -408 165 SHIELDING 1530 -408 222 D1[6] 6545 -408 46 REV -8585 -408 105 TP6 -3570 -408 166 V14 1615 -408 226 DASHD 6715 -408 47 SHIELDING -8500 -408 107 TP7 -3400 -408 167 V14 1700 -408 227 D1[5] 6800 -408 49 INVSEL -8330 -408 108 TP7 -3315 -408					_							_				
43 TP4 -8840 -408 103 VSET -3740 -408 163 V13 1360 -408 223 D1[7] 6460 -408 44 TP4 -8755 -408 104 VSET -3655 -408 164 V13 1445 -408 224 D1[6] 6545 -408 45 Dummy -8670 -408 105 TP6 -3570 -408 165 SHIELDING 1530 -408 224 D1[6] 6545 -408 46 REV -8585 -408 106 TP6 -3485 -408 166 V14 1615 -408 226 DASHD 6715 -408 48 INVSEL -8330 -408 108 TP7 -3315 -408 167 V14 1700 -408 227 D1[5] 6800 -408 50 SHIELDING -8245 -408 109 TP8 -3230 -408 1																
44 TP4 -8755 -408 104 VSET -3655 -408 164 V13 1445 -408 224 D1[6] 6545 -408 45 Dummy -8670 -408 105 TP6 -3570 -408 165 SHIELDING 1530 -408 224 D1[6] 6630 -408 46 REV -8585 -408 106 TP6 -3485 -408 166 V14 1615 -408 226 DASHD 6715 -408 48 INVSEL -8415 -408 108 TP7 -3315 -408 166 V14 1700 -408 227 D1[5] 6800 -408 49 INVSEL -8330 -408 109 TP8 -3230 -408 166 SHIELDING 1785 -408 229 D1[4] 6970 -408 51 CABC_EN -8160 -408 110 TP8 -3145 -408																
45 Dummy -8670 -408 105 TP6 -3570 -408 165 SHIELDING 1530 -408 225 DT[6] 6630 -408 46 REV -8585 -408 106 TP6 -3485 -408 166 V14 1615 -408 226 DASHD 6715 -408 47 SHIELDING -8500 -408 107 TP7 -3400 -408 166 V14 1615 -408 226 DASHD 6715 -408 48 INVSEL -8415 -408 108 TP7 -3315 -408 168 SHIELDING 1785 -408 227 D1[5] 6800 -408 50 SHIELDING -8245 -408 110 TP8 -3145 -408 170 AGND 1870 -408 229 D1[4] 6970 -408 51 CABC_EN -8160 -408 111 TP9 -3060 -408 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>					_											
46 REV -8585 -408 106 TP6 -3485 -408 166 V14 1615 -408 226 DASHD 6715 -408 47 SHIELDING -8500 -408 107 TP7 -3400 -408 167 V14 1700 -408 227 D1[5] 6800 -408 48 INVSEL -8330 -408 108 TP7 -3315 -408 168 SHIELDING 1785 -408 228 D1[5] 6800 -408 50 SHIELDING -8245 -408 110 TP8 -3230 -408 169 AGND 1870 -408 229 D1[4] 6970 -408 51 CABC_EN -8160 -408 111 TP9 -3060 -408 170 AGND 1955 -408 230 D1[4] 7055 -408 52 CABC_EN -8075 -408 112 TP9 -2975 -408											_					
47 SHIELDING -8500 -408 107 TP7 -3400 -408 167 V14 1700 -408 227 D1[5] 6800 -408 48 INVSEL -8415 -408 108 TP7 -3315 -408 168 SHIELDING 1785 -408 228 D1[5] 6885 -408 50 SHIELDING -8245 -408 110 TP8 -3145 -408 170 AGND 1955 -408 229 D1[4] 6970 -408 51 CABC_EN -8165 -408 111 TP9 -3060 -408 171 AGND 1955 -408 230 D1[4] 7055 -408 52 CABC_EN -8075 -408 112 TP9 -2975 -408 172 AGND 2125 -408 231 DASHD 7140 -408 53 SHIELDING -7990 -408 113 TP10 -2890 -40					_							_				
48 INVSEL -8415 -408 108 TP7 -3315 -408 168 SHIELDING 1785 -408 228 D1[5] 6885 -408 49 INVSEL -8330 -408 109 TP8 -3230 -408 169 AGND 1870 -408 229 D1[4] 6970 -408 50 SHIELDING -8245 -408 110 TP8 -3145 -408 170 AGND 1955 -408 230 D1[4] 6970 -408 51 CABC_EN -8075 -408 111 TP9 -3060 -408 171 AGND 2040 -408 231 DASHD 7140 -408 53 SHIELDING -7990 -408 113 TP10 -2890 -408 173 AGND 2210 -408 232 D1[3] 7310 -408 54 SHIELDING -7905 -408 114 Dummy -2805 -					Y 1							_				
49 INVSEL -8330 -408 109 TP8 -3230 -408 169 AGND 1870 -408 229 D1[4] 6970 -408 50 SHIELDING -8245 -408 110 TP8 -3145 -408 170 AGND 1955 -408 230 D1[4] 7055 -408 51 CABC_EN -8160 -408 111 TP9 -3060 -408 171 AGND 2040 -408 231 DASHD 7140 -408 52 CABC_EN -8075 -408 112 TP9 -2975 -408 172 AGND 2125 -408 232 D1[3] 7225 -408 54 SHIELDING -7990 -408 113 TP10 -2890 -408 173 AGND 2210 -408 233 D1[3] 7310 -408 55 SHIELDING -7820 -408 115 RES1 -2720 -408 </td <td></td> <td>_</td>																_
50 SHIELDING -8245 -408 110 TP8 -3145 -408 170 AGND 1955 -408 230 D1[4] 7055 -408 51 CABC_EN -8160 -408 111 TP9 -3060 -408 171 AGND 2040 -408 231 DASHD 7140 -408 52 CABC_EN -8075 -408 112 TP9 -2975 -408 172 AGND 2125 -408 232 D1[3] 7225 -408 53 SHIELDING -7990 -408 113 TP10 -2890 -408 173 AGND 2210 -408 233 D1[3] 7310 -408 55 SHIELDING -7905 -408 115 RES1 -2720 -408 175 AGND 2295 -408 234 D1[2] 7395 -408 56 SHIELDING -7735 -408 116 DUMMY -2635 -					100000	-								• • •		
51 CABC_EN -8160 -408 111 TP9 -3060 -408 171 AGND 2040 -408 231 DASHD 7140 -408 52 CABC_EN -8075 -408 112 TP9 -2975 -408 172 AGND 2125 -408 232 D1[3] 7225 -408 53 SHIELDING -7990 -408 113 TP10 -2890 -408 173 AGND 2210 -408 233 D1[3] 7310 -408 55 SHIELDING -7905 -408 114 Dummy -2805 -408 174 AGND 2295 -408 234 D1[2] 7395 -408 55 SHIELDING -7820 -408 115 RES1 -2720 -408 175 AGND 2380 -408 235 D1[2] 7480 -408 56 SHIELDING -7735 -408 116 DUMMY -2635 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td>***************************************</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				-		***************************************										
52 CABC_EN -8075 -408 112 TP9 -2975 -408 172 AGND 2125 -408 232 D1[3] 7225 -408 53 SHIELDING -7990 -408 113 TP10 -2890 -408 173 AGND 2210 -408 233 D1[3] 7310 -408 55 SHIELDING -7905 -408 114 Dummy -2805 -408 174 AGND 2295 -408 234 D1[2] 7395 -408 55 SHIELDING -7820 -408 115 RES1 -2720 -408 175 AGND 239 -408 235 D1[2] 7395 -408 56 SHIELDING -7735 -408 116 DUMMY -2635 -408 176 AGND 2380 -408 236 DASHD 7565 -408 57 CSX -7660 -408 117 SHIELDING -2550 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>230</td><td></td><td></td><td></td></t<>													230			
53 SHIELDING -7990 -408 113 TP10 -2890 -408 173 AGND 2210 -408 233 D1[3] 7310 -408 54 SHIELDING -7905 -408 114 Dummy -2805 -408 174 AGND 2295 -408 234 D1[2] 7395 -408 55 SHIELDING -7820 -408 115 RES1 -2720 -408 175 AGND 2380 -408 235 D1[2] 7480 -408 56 SHIELDING -7735 -408 116 DUMMY -2635 -408 176 AGND 2346 -408 236 DASHD 7565 -408 57 CSX -7565 -408 117 SHIELDING -2550 -408 177 SHIELDING 250 -408 178 SHIELDING 2635 -408 237 D1[1] 7735 -408 59 SHIELDING -7480 <td></td> <td>2710112</td> <td></td> <td></td>														2710112		
54 SHIELDING -7905 -408 114 Dummy -2805 -408 174 AGND 2295 -408 234 D1[2] 7395 -408 55 SHIELDING -7820 -408 115 RES1 -2720 -408 175 AGND 2380 -408 235 D1[2] 7480 -408 56 SHIELDING -7735 -408 116 DUMMY -2635 -408 176 AGND 2465 -408 236 DASHD 7565 -408 57 CSX -7650 -408 117 SHIELDING -2550 -408 177 SHIELDING 2550 -408 237 D1[1] 7650 -408 58 CSX -7565 -408 118 VDDA -2465 -408 178 SHIELDING 2635 -408 238 D1[1] 7735 -408 59 SHIELDING -7480 -408 119 VDDA -2380				1000	-											
55 SHIELDING -7820 -408 115 RES1 -2720 -408 175 AGND 2380 -408 235 D1[2] 7480 -408 56 SHIELDING -7735 -408 116 DUMMY -2635 -408 176 AGND 2465 -408 236 DASHD 7565 -408 57 CSX -7650 -408 117 SHIELDING -2550 -408 177 SHIELDING 2550 -408 237 D1[1] 7650 -408 58 CSX -7565 -408 118 VDDA -2465 -408 178 SHIELDING 2635 -408 238 D1[1] 7735 -408 59 SHIELDING -7480 -408 119 VDDA -2380 -408 179 DGND 2720 -408 239 D1[0] 7820 -408				_												
56 SHIELDING -7735 -408 116 DUMMY -2635 -408 176 AGND 2465 -408 236 DASHD 7565 -408 57 CSX -7650 -408 117 SHIELDING -2550 -408 177 SHIELDING 2550 -408 237 D1[1] 7650 -408 58 CSX -7565 -408 118 VDDA -2465 -408 178 SHIELDING 2635 -408 238 D1[1] 7735 -408 59 SHIELDING -7480 -408 119 VDDA -2380 -408 179 DGND 2720 -408 239 D1[0] 7820 -408				* 100 E												
57 CSX -7650 -408 117 SHIELDING -2550 -408 177 SHIELDING 2550 -408 237 D1[1] 7650 -408 58 CSX -7565 -408 118 VDDA -2465 -408 178 SHIELDING 2635 -408 238 D1[1] 7735 -408 59 SHIELDING -7480 -408 119 VDDA -2380 -408 179 DGND 2720 -408 239 D1[0] 7820 -408			N													
58 CSX -7565 -408 118 VDDA -2465 -408 178 SHIELDING 2635 -408 238 D1[1] 7735 -408 59 SHIELDING -7480 -408 119 VDDA -2380 -408 179 DGND 2720 -408 239 D1[0] 7820 -408				100								_				
59 SHIELDING -7480 -408 119 VDDA -2380 -408 179 DGND 2720 -408 239 D1[0] 7820 -408				-												_
00 1				_												
		COL/DBCW[0]	-1383	100	120	V DDA	-2230	-400	100	DOIND	2000	-+00	240	סונסן	1 300	-400

No.	NAME	X	Υ	No.	NAME	Χ	Υ	No.	NAME	X	Υ	No.	NAME	Х	Υ
241	DASHD	7990	-408	301	SHIELDING	10664	428	361	SO[60]	9617.5	408	421	SO[120]	8597.5	408
242	D0[7]	8075	-408	302	SO[1]	10620.5	128	362	SO[61]	9600.5	128	422	SO[121]	8580.5	128
243	D0[7]	8160	-408	303	SO[2]	10603.5	268	363	SO[62]	9583.5	268	423	SO[122]	8563.5	268
244	D0[6]	8245	-408	304	SO[3]	10586.5	408	364	SO[63]	9566.5	408	424	SO[123]	8546.5	408
245	D0[6]	8330	-408	305	SO[4]	10569.5	128	365	SO[64]	9549.5	128	425	SO[124]	8529.5	128
246	DASHD	8415	-408	306	SO[5]	10552.5	268	366	SO[65]	9532.5	268	426	SO[125]	8512.5	268
247	D0[5]	8500	-408	307	SO[6]	10535.5	408	367	SO[66]	9515.5	408	427	SO[126]	8495.5	408
248	D0[5]	8585	-408	308	SO[7]	10518.5	128	368	SO[67]	9498.5	128	428	SO[127]	8478.5	128
249 250	D0[4]	8670 8755	-408 -408	309 310	SO[8] SO[9]	10501.5 10484.5	268 408	369 370	SO[68] SO[69]	9481.5 9464.5	268 408	429 430	SO[128] SO[129]	8461.5 8444.5	268 408
251	D0[4] DASHD	8840	-408	311	SO[9]	10464.5	128	371	SO[70]	9447.5	128	431	SO[129] SO[130]	8427.5	128
252	D0[3]	8925	-408	312	SO[10]	10450.5	268	372	SO[70]	9430.5	268	432	SO[130]	8410.5	268
253	D0[3]	9010	-408	313	SO[12]	10433.5	408	373	SO[71]	9413.5	408	433	SO[131]	8393.5	408
254	D0[2]	9095	-408	314		10416.5	128	374	SO[73]	9396.5	128	434	SO[133]	8376.5	128
255	D0[2]	9180	-408	315	SO[14]	10399.5	268	375	SO[74]	9379.5	268	435	SO[134]	8359.5	268
256	DASHD	9265	-408	316		10382.5	408	376	SO[75]	9362.5	408	436	SO[135]	8342.5	408
257	D0[1]	9350	-408	317	SO[16]	10365.5	128	377	SO[76]	9345.5	128	437	SO[136]	8325.5	128
258	D0[1]	9435	-408	318	SO[17]	10348.5	268	378	SO[77]	9328.5	268	438	SO[137]	8308.5	268
259	D0[0]	9520	-408	319	SO[18]	10331.5	408	379	SO[78]	9311.5	408	439	SO[138]	8291.5	408
260	D0[0]	9605	-408	320	SO[19]	10314.5	128	380	SO[79]	9294.5	128	440	SO[139]	8274.5	128
261	DASHD	9690	-408	321	SO[20]	10297.5	268	381	SO[80]	9277.5	268	441	SO[140]	8257.5	268
262	SHIELDING	9775	-408	322	SO[21]	10280.5	408	382	SO[81]	9260.5	408	442	SO[141]	8240.5	408
263	FB	9860	-408	323	SO[22]	10263.5	128	383	SO[82]	9243.5	128	443	SO[142]	8223.5	128
264	FB	9945	-408	324	SO[23]	10246.5	268	384	SO[83]	9226.5	268	444	SO[143]	8206.5	268
265	SHIELDING VDDA	10030	-408 -408	325 326	SO[24]	10229.5	408 128	385 386	SO[84]	9209.5	408	445 446	SO[144] SO[145]	8189.5 8172.5	408 128
266 267	VDDA	10115 10200	-408	327	SO[25] SO[26]	10212.5 10195.5	268	387	SO[85] SO[86]	9192.5 9175.5	128 268	447	SO[145]	8155.5	268
268	VDDA	10200	-408	328	SO[20]	10193.5	408	388	SO[87]	9158.5	408	448	SO[140]	8138.5	408
269	VDDA	10203	-408	329	SO[28]	10176.5	128	389	SO[88]	9141.5	128	449	SO[147]	8121.5	128
270	PWM EN	10455	-408	330	SO[29]	10144.5	268	390	SO[89]	9124.5	268	450	SO[149]	8104.5	268
271	PWM EN	10540	-408	331	SO[30]	10127.5	408	391	SO[90]	9107.5	408	451	SO[150]	8087.5	408
272	COM2_B	10625	-408	332	SO[31]	10110.5	128	392	SO[91]	9090.5	128	452	SO[151]	8070.5	128
273	COM2_B	10710	-408	333	SO[32]	10093.5	268	393	SO[92]	9073.5	268	453	SO[152]	8053.5	268
274	DRV	10825	-408	334	SO[33]	10076.5	408	394	SO[93]	9056.5	408	454	SO[153]	8036.5	408
275	DRV	11026.5	-408	335	SO[34]	10059.5	128	395	SO[94]	9039.5	128	455	SO[154]	8019.5	128
276	DRV	11111.5	-408	336	SO[35]	10042.5	268	3 <mark>9</mark> 6	SO[95]	9022.5	268	456	SO[155]	8002.5	268
277	SHIELDING	11196.5	-408	337	SO[36]	10025.5	408	3 <mark>9</mark> 7	SO[96]	9005.5	408	457	SO[156]	7985.5	408
278	DUMML	11049	-232	338	SO[37]	10008.5	128	398	SO[97]	8988.5	128	458	SO[157]	7968.5	128
279	DUMML	11179	-232	339	SO[38]	9991.5	268	399	SO[98]	8971.5	268	459	SO[158]	7951.5	268
280 281	STBNL STBNL	11049 11179	-152 -152	340 341	SO[39] SO[40]	9974.5 9957.5	408 128	400 401	SO[99] SO[100]	8954.5 8937.5	408 128	460 461	SO[159] SO[160]	7934.5 7917.5	408 128
282	STV1L	11049	-72	342	SO[41]	9940.5	268	402	SO[100]	8920.5	268	462	SO[160]	7900.5	268
283	STV1L	11179	-72	343	SO[42]	9923.5	408	403	SO[101]	8903.5	408	463	SO[161]	7883.5	408
284	STV2L	11049	8	344	SO[43]	9906.5	128	404	SO[103]	8886.5	128	464	SO[163]	7866.5	128
285	STV2L	11179	8	345	SO[44]	9889.5	268	405	SO[104]	8869.5	268	465	SO[164]	7849.5	268
286	STV1L	11049	88	346	SO[45]	9872.5	408	406	SO[105]	8852.5	408	466	SO[165]	7832.5	408
287	STV1L	11179	88	347	SO[46]	9855.5	128	407	SO[106]	8835.5	128	467	SO[166]	7815.5	128
288	CKVL	11049	168	348	SO[47]	9838.5	268	408	SO[107]	8818.5	268	468	SO[167]	7798.5	268
289	CKVL	11179	168	349	SO[48]	9821.5	408	409	SO[108]	8801.5	408	469	SO[168]	7781.5	408
290	UDL	11049	248	350	SO[49]	9804.5	128	410	SO[109]	8784.5	128	470	SO[169]	7764.5	128
291	UDL	11179	248	351	SO[50]	9787.5	268	411	SO[110]	8767.5	268	471	SO[170]	7747.5	268
292	OEVL	11179	328	352 252		9770.5	408	412	SO[111]	8750.5	408	472	SO[171]	7730.5	408
293	INVBRL	11179 11049	408 408	353 354		9753.5 9736.5	128 268	413	SO[112]	8733.5	128 268	473 474	SO[172]	7713.5 7696.5	128 268
294 295	INVBRL OEVL	11049	328	354		9736.5	408	414	SO[113] SO[114]	8716.5 8699.5	408	474	SO[173] SO[174]	7696.5	408
295	DUMML	1049	428	356		9719.5	128	416	SO[114] SO[115]	8682.5	128	475	SO[174] SO[175]	7662.5	128
296	DUMML	10864	428	357	SO[55]	9685.5	268	417	SO[116]	8665.5	268	477	SO[175]	7645.5	268
298	SHIELDING	10814	428	358		9668.5	408	418	SO[110]	8648.5	408	478	SO[170]	7628.5	408
299	COM2_T	10764	428	359		9651.5	128	419	SO[117]	8631.5	128	479	SO[177]	7611.5	128
300	COM2_T	10714	428	360		9634.5	268	420	SO[119]	8614.5	268	480	SO[179]	7594.5	268
	_				L 1				1						

No.	NAME	Х	Υ	No.	NAME	Х	Υ	No.	NAME	Х	Υ	No.	NAME	Х	Υ
481	SO[180]	7577.5	408	541	SO[240]	6557.5	408	601	SO[300]	5537.5	408	661	SO[360]	4517.5	408
482	SO[181]	7560.5	128	542	SO[241]	6540.5	128	602	SO[301]	5520.5	128	662	SO[361]	4500.5	128
483	SO[182]	7543.5	268	543	SO[242]	6523.5	268	603	SO[302]	5503.5	268	663	SO[362]	4483.5	268
484	SO[183]	7526.5	408	544	SO[243]	6506.5	408	604	SO[303]	5486.5	408	664	SO[363]	4466.5	408
485	SO[184]	7509.5	128	545	SO[244]	6489.5	128	605	SO[304]	5469.5	128	665	SO[364]	4449.5	128
486	SO[185]	7492.5	268	546	SO[245]	6472.5	268	606	SO[305]	5452.5	268	666	SO[365]	4432.5	268
487	SO[186]	7475.5	408	547	SO[246]	6455.5	408	607	SO[306]	5435.5	408	667	SO[366]	4415.5	408
488	SO[187]	7458.5	128	548	SO[247]	6438.5	128	608	SO[307]	5418.5	128	668	SO[367]	4398.5	128
489	SO[188]	7441.5	268	549	SO[248]	6421.5	268	609	SO[308]	5401.5	268	669	SO[368]	4381.5	268
490	SO[189]	7424.5	408	550	SO[249]	6404.5	408	610	SO[309]	5384.5	408	670	SO[369]	4364.5	408
491	SO[190]	7407.5	128	551	SO[250]	6387.5	128	611	SO[310]	5367.5	128	671	SO[370]	4347.5	128
492	SO[191]	7390.5	268	552	SO[251]	6370.5	268	612	SO[311]	5350.5	268	672	SO[371]	4330.5	268
493	SO[192]	7373.5	408	553	SO[252]	6353.5	408	613	SO[312]	5333.5	408	673	SO[372]	4313.5	408
494	SO[193]	7356.5	128	554	SO[253]	6336.5	128	614	SO[313]	5316.5	128	674	SO[373]	4 <mark>296</mark> .5	128
495	SO[194]	7339.5	268	555	SO[254]	6319.5	268	615	SO[314]	5299.5	268	675	SO[374]	4279.5	268
496	SO[195]	7322.5	408	556	SO[255]	6302.5	408	616	SO[315]	5282.5	408	676	SO[375]	4262.5	408
497	SO[196]	7305.5	128	557	SO[256]	6285.5	128	617	SO[316]	5265.5	128	677	SO[376]	4245.5	128
498	SO[197]	7288.5	268	558	SO[257]	6268.5	268	618	SO[317]	5248.5	268	678	SO[377]	4228.5	268
499	SO[198]	7271.5	408	559	SO[258]	6251.5	408	619	SO[318]	5231.5	408	679	y SO[378]	4211.5	408
500	SO[199]	7254.5	128	560	SO[259]	6234.5	128	620	SO[319]	5214.5	128	680	SO[379]	4194.5	128
501	SO[200]	7237.5	268	561	SO[260]	6217.5	268	621	SO[320]	5197.5	268	681	SO[380]	4177.5	268
502	SO[201]	7220.5	408	562	SO[261]	6200.5	408	622	SO[321]	5180.5	408	682	SO[381]	4160.5	408
503	SO[202]	7203.5	128	563	SO[262]	6183.5	128	623	SO[322]	5163.5	128	683	SO[382]	4143.5	128
504	SO[203]	7186.5	268	564	SO[263]	6166.5	268	624	SO[323]	5146.5	268	684	SO[383]	4126.5	268
505	SO[204]	7169.5	408	565	SO[264]	6149.5	408	625	SO[324]	5129.5	408	685	SO[384]	4109.5	408
506 507	SO[205]	7152.5	128 268	566 567	SO[265]	6132.5	128 268	626 627	SO[325]	5112.5	128 268	686 687	SO[385]	4092.5	128 268
	SO[206]	7135.5 7118.5	408		SO[266]	6115.5	408		SO[326]	5095.5 5078.5	408		SO[386]	4075.5 4058.5	408
508 509	SO[207] SO[208]	7118.5	128	568 569	SO[267] SO[268]	6098.5 6081.5	128	628 629	SO[327] SO[328]	5078.5	128	688 689	SO[387] SO[388]	4038.5	128
510	SO[208]	7101.5	268	570	SO[268]	6064.5	268	630	→ SO[329]	5044.5	268	690	SO[389]	4024.5	268
510	SO[210]	7067.5	408	571	SO[209]	6047.5	408	631	SO[329] SO[330]	5027.5	408	691	SO[390]	4007.5	408
512	SO[211]	7050.5	128	572	SO[271]	6030.5	128	632	SO[331]	5010.5	128	692	SO[391]	3990.5	128
513	SO[212]	7033.5	268	573	SO[271]	6013.5	268	633	SO[332]	4993.5	268	693	SO[392]	3973.5	268
514	SO[213]	7016.5	408	574	SO[273]	5996.5	408	634	SO[333]	4976.5	408	694	SO[393]	3956.5	408
515	SO[214]	6999.5	128	575	SO[274]	5979.5	128	635	SO[334]	4959.5	128	695	SO[394]	3939.5	128
516	SO[215]	6982.5	268	576	SO[275]	5962.5	268	636	SO[335]	4942.5	268	696	SO[395]	3922.5	268
517	SO[216]	6965.5	408	577	SO[276]	5945.5	408	637	SO[336]	4925.5	408	697	SO[396]	3905.5	408
518	SO[217]	6948.5	128	578	SO[277]	5928.5	128	638	SO[337]	4908.5	128	698	SO[397]	3888.5	128
519	SO[218]	6931.5	268	579	SO[278]	> 5911.5	268	639	SO[338]	4891.5	268	699	SO[398]	3871.5	268
520	SO[219]	6914.5	408	580	SO[279]	5894.5	408	640	SO[339]	4874.5	408	700	SO[399]	3854.5	408
521	SO[220]	6897.5	128	581	SO[280]	5877.5	128	641	SO[340]	4857.5	128	701	SO[400]	3837.5	128
522	SO[221]	6880.5	268	582	SO[281]	5860.5	268	642	SO[341]	4840.5	268	702	SO[401]	3820.5	268
523	SO[222]	6863.5	408	583	SO[282]	5843.5	408	643	SO[342]	4823.5	408	703	SO[402]	3803.5	408
524	SO[223]	6846.5	128	584	SO[283]	5826.5	128	644	SO[343]	4806.5	128	704	SO[403]	3786.5	128
525	SO[224]	6829.5	268	585	SO[284]	5809.5	268	645	SO[344]	4789.5	268	705	SO[404]	3769.5	268
526	SO[225]	6812.5	408	586	SO[285]	5792.5	408	646	SO[345]	4772.5	408	706	SO[405]	3752.5	408
527	SO[226]	6795.5	128	587	SO[286]	5775.5	128	647	SO[346]	4755.5	128	707	SO[406]	3735.5	128
528	SO[227]	6778.5	268	588	SO[287]	5758.5	268	648	SO[347]	4738.5	268	708	SO[407]	3718.5	268
529	SO[228]	6761.5	408	589	SO[288]	5741.5	408	649	SO[348]	4721.5	408	709	SO[408]	3701.5	408
530	SO[229]	6744.5	128	590	SO[289]	5724.5	128	650	SO[349]	4704.5	128	710	SO[409]	3684.5	128
531	SO[230]	6727.5	268	591	SO[290]	5707.5	268	651	SO[350]	4687.5	268	711	SO[410]	3667.5	268
5 <mark>3</mark> 2	SO[231]	6710.5	408	592	SO[291]	5690.5	408	652	SO[351]	4670.5	408	712	SO[411]	3650.5	408
533	SO[232]	6693.5	128	593	SO[292]	5673.5	128	653	SO[352]	4653.5	128	713	SO[412]	3633.5	128
534	SO[233]	6676.5	268	594	SO[293]	5656.5	268	654	SO[353]	4636.5	268	714	SO[413]	3616.5	268
535	SO[234]	6659.5	408	595	SO[294]	5639.5	408	655	SO[354]	4619.5	408	715	SO[414]	3599.5	408
536	SO[235]	6642.5	128	596	SO[295]	5622.5	128	656	SO[355]	4602.5	128	716	SO[415]	3582.5	128
537	SO[236]	6625.5	268	597	SO[296]	5605.5	268	657	SO[356]	4585.5	268	717	SO[416]	3565.5	268
538	SO[237]	6608.5	408	598	SO[297]	5588.5	408	658	SO[357]	4568.5	408	718	SO[417]	3548.5	408
539	SO[238]	6591.5	128	599	SO[298]	5571.5	128	659	SO[358]	4551.5	128	719	SO[418]	3531.5	128
540	SO[239]	6574.5	268	600	SO[299]	5554.5	268	660	SO[359]	4534.5	268	720	SO[419]	3514.5	268

No.	NAME	Х	Υ	١	lo.	NAME	Х	Υ	No.	NAME	Х	Υ	No.	NAME	Х	Υ
721	SO[420]	3497.5	408	7	81	SO[480]	2477.5	408	841	SO[540]	1457.5	408	901	SO[600]	437.5	408
722	SO[421]	3480.5	128	7	82	SO[481]	2460.5	128	842	SO[541]	1440.5	128	902	DUMMY	403.5	408
723	SO[422]	3463.5	268	7	83	SO[482]	2443.5	268	843	SO[542]	1423.5	268	903	DUMMY	369.5	408
724	SO[423]	3446.5	408	7	84	SO[483]	2426.5	408	844	SO[543]	1406.5	408	904	DUMMY	335.5	408
725	SO[424]	3429.5	128	7	85	SO[484]	2409.5	128	845	SO[544]	1389.5	128	905	DUMMY	301.5	408
726	SO[425]	3412.5	268	7	86	SO[485]	2392.5	268	846	SO[545]	1372.5	268	906	DUMMY	267.5	408
727	SO[426]	3395.5	408	7	87	SO[486]	2375.5	408	847	SO[546]	1355.5	408	907	DUMMY	233.5	408
728	SO[427]	3378.5	128	7	88	SO[487]	2358.5	128	848	SO[547]	1338.5	128	908	DUMMY	-233.5	408
729	SO[428]	3361.5	268	7	89	SO[488]	2341.5	268	849	SO[548]	1321.5	268	909	DUMMY	-267.5	408
730	SO[429]	3344.5	408	7	90	SO[489]	2324.5	408	850	SO[549]	1304.5	408	910	DUMMY	-301.5	408
731	SO[430]	3327.5	128	7	91	SO[490]	2307.5	128	851	SO[550]	1287.5	128	911	DUMMY	-335.5	408
732	SO[431]	3310.5	268	7	92	SO[491]	2290.5	268	852	SO[551]	1270.5	268	912	DUMMY	-369.5	408
733	SO[432]	3293.5	408	7	93	SO[492]	2273.5	408	853	SO[552]	1253.5	408	913	DUMMY	-403.5	408
734	SO[433]	3276.5	128	7	94	SO[493]	2256.5	128	854	SO[553]	1236.5	128	914	SO[601]	-4 <mark>37</mark> .5	408
735	SO[434]	3259.5	268	7	95	SO[494]	2239.5	268	855	SO[554]	1219.5	268	915	SO[602]	-454.5	268
736	SO[435]	3242.5	408	7	96	SO[495]	2222.5	408	856	SO[555]	1202.5	408	916	SO[603]	-471.5	128
737	SO[436]	3225.5	128	7	97	SO[496]	2205.5	128	857	SO[556]	1185.5	128	917	SO[604]	-488.5	408
738	SO[437]	3208.5	268	7	98	SO[497]	2188.5	268	858	SO[557]	1168.5	268	918	SO[605]	-505.5	268
739	SO[438]	3191.5	408	7	99	SO[498]	2171.5	408	859	SO[558]	1151.5	408	919	y SO[606]	-522.5	128
740	SO[439]	3174.5	128	1 H	00	SO[499]	2154.5	128	860	SO[559]	1134.5	128	920	SO[607]	-539.5	408
741	SO[440]	3157.5	268	1 -	01	SO[500]	2137.5	268	861	SO[560]	1117.5	268	921	SO[608]	-556.5	268
742	SO[441]	3140.5	408	1 -	02	SO[501]	2120.5	408	862	SO[561]	1100.5	4 08	922	SO[609]	-573.5	128
743	SO[442]	3123.5	128	1 -	03	SO[502]	2103.5	128	863	SO[562]	1083.5	128	923	SO[610]	-590.5	408
744	SO[443]	3106.5	268	1 -	04	SO[503]	2086.5	268	864	SO [563]	1066.5	268	924	SO[611]	-607.5	268
745	SO[444]	3089.5	408	1 -	05	SO[504]	2069.5	408	865	SO[564]	1049.5	408	925	SO[612]	-624.5	128
746	SO[445]	3072.5	128	1 H	06	SO[505]	2052.5	128	866	SO[565]	1032.5	128	926	SO[613]	-641.5	408
747	SO[446]	3055.5	268	4 -	07	SO[506]	2035.5	268	867	SO[566]	1015.5	268	927	SO[614]	-658.5	268
748	SO[447]	3038.5	408	1 H	80	SO[507]	2018.5	408	868	SO[567]	998.5	408	928	SO[615]	-675.5	128
749	SO[448]	3021.5	128	1 H	09	SO[508]	2001.5	128	869	SO[568]	981.5	128	929	SO[616]	-692.5	408
750	SO[449]	3004.5	268	1 H	10	SO[509]	1984.5	268	870	> SO[569]	964.5	268	930	SO[617]	-709.5	268
751	SO[450]	2987.5	408	1 H	11	SO[510]	1967.5	408 128	871 872	SO[570]	947.5	408 128	931 932	SO[618]	-726.5 -743.5	128
752 753	SO[451]	2970.5 2953.5	128 268	1 H	12 13	SO[511]	195 <mark>0</mark> .5	268	873	SO[571]	930.5 913.5	268	933	SO[619]	-743.5	408 268
754	SO[452]	2936.5	408	1 H	-	SO[512]	1933.5 1916.5	408	874	SO[572]	896.5	408	934	SO[620]	-777.5	128
755	SO[453] SO[454]	2930.5	128	1 -	14 15	SO[513] SO[514]	1899.5	128	875	SO[573] SO[574]	879.5	128	935	SO[621] SO[622]	-794.5	408
756	SO[454]	2902.5	268	1 -	16	SO[514]	1882.5	268	876	SO[574]	862.5	268	936	SO[622]	-811.5	268
757	SO[455]	2885.5	408	1 ⊢	17	SO[515]	1865.5	408	877	SO[575]	845.5	408	937	SO[623]	-828.5	128
758	SO[450]	2868.5	128	1 -	18	SO[510] SO[517]	1848.5	128	878	SO[570]	828.5	128	938	SO[625]	-845.5	408
759	SO[457]	2851.5	268	1 -	19	SO[517]	1831.5	268	879	SO[577]	811.5	268	939	SO[626]	-862.5	268
760	SO[459]	2834.5	408	-	20	SO[519]	1814.5	408	880	SO[579]	794.5	408	940	SO[627]	-879.5	128
761	SO[460]	2817.5	128		21	SO[520]	1797.5	128	881	SO[580]	777.5	128	941	SO[628]	-896.5	408
762	SO[461]	2800.5	268		22	SO[521]	1780.5	268	882	SO[581]	760.5	268	942	SO[629]	-913.5	268
763	SO[462]	2783.5	408		23	SO[522]	1763.5	408	883	SO[582]	743.5	408	943	SO[630]	-930.5	128
764	SO[463]	2766.5	128	- 1	24	SO[523]	1746.5	128	884	SO[583]	726.5	128	944	SO[631]	-947.5	408
765	SO[464]	2749.5	268		25	SO[524]	1729.5	268	885	SO[584]	709.5	268	945	SO[632]	-964.5	268
766	SO[465]	2732.5	408		26	SO[525]	1712.5	408	886	SO[585]	692.5	408	946	SO[633]	-981.5	128
767	SO[466]	2715.5	128	1 -	27	SO[526]	1695.5	128	887	SO[586]	675.5	128	947	SO[634]	-998.5	408
768	SO[467]	2698.5	268	1 -	28	SO[527]	1678.5	268	888	SO[587]	658.5	268	948	SO[635]	-1015.5	268
769	SO[468]	2681.5	408	8	29	SO[528]	1661.5	408	889	SO[588]	641.5	408	949	SO[636]	-1032.5	128
770	SO[469]	2664.5	128	8	30	SO[529]	1644.5	128	890	SO[589]	624.5	128	950	SO[637]	-1049.5	408
771	SO[470]	2647.5	268	8	31	SO[530]	1627.5	268	891	SO[590]	607.5	268	951	SO[638]	-1066.5	268
7 <mark>7</mark> 2	SO[471]	2630.5	408	8	32	SO[531]	1610.5	408	892	SO[591]	590.5	408	952	SO[639]	-1083.5	128
773	SO[472]	2613.5	128	8	33	SO[532]	1593.5	128	893	SO[592]	573.5	128	953	SO[640]	-1100.5	408
774	SO[473]	2596.5	268	8	34	SO[533]	1576.5	268	894	SO[593]	556.5	268	954	SO[641]	-1117.5	268
775	SO[474]	2579.5	408	8	35	SO[534]	1559.5	408	895	SO[594]	539.5	408	955	SO[642]	-1134.5	128
776	SO[475]	2562.5	128	8	36	SO[535]	1542.5	128	896	SO[595]	522.5	128	956	SO[643]	-1151.5	408
777	SO[476]	2545.5	268	8	37	SO[536]	1525.5	268	897	SO[596]	505.5	268	957	SO[644]	-1168.5	268
778	SO[477]	2528.5	408	8	38	SO[537]	1508.5	408	898	SO[597]	488.5	408	958	SO[645]	-1185.5	128
779	SO[478]	2511.5	128	8	39	SO[538]	1491.5	128	899	SO[598]	471.5	128	959	SO[646]	-1202.5	408
780	SO[479]	2494.5	268	8	40	SO[539]	1474.5	268	900	SO[599]	454.5	268	960	SO[647]	-1219.5	268
								-								

No.	NAME	X	Υ	No	. NAME	X	Υ	No.	NAME	Х	Υ	No.	NAME	Х	Υ
961	SO[648]	-1236.5	128	102	1 SO[708]	-2256.5	128	1081	SO[768]	-3276.5	128	1141	SO[828]	-4296.5	128
962	SO[649]	-1253.5	408	102	2 SO[709]	-2273.5	408	1082	SO[769]	-3293.5	408	1142	SO[829]	-4313.5	408
963	SO[650]	-1270.5	268	102	3 SO[710]	-2290.5	268	1083	SO[770]	-3310.5	268	1143	SO[830]	-4330.5	268
964	SO[651]	-1287.5	128	102	4 SO[711]	-2307.5	128	1084	SO[771]	-3327.5	128	1144	SO[831]	-4347.5	128
965	SO[652]	-1304.5	408	102	5 SO[712]	-2324.5	408	1085	SO[772]	-3344.5	408	1145	SO[832]	-4364.5	408
966	SO[653]	-1321.5	268	102	6 SO[713]	-2341.5	268	1086	SO[773]	-3361.5	268	1146	SO[833]	-4381.5	268
967	SO[654]	-1338.5	128	102		-2358.5	128	1087	SO[774]	-3378.5	128	1147	SO[834]	-4398.5	128
968	SO[655]	-1355.5	408	102		-2375.5	408	1088	SO[775]	-3395.5	408	1148	SO[835]	-4415.5	408
969	SO[656]	-1372.5	268	102		-2392.5	268	1089	SO[776]	-3412.5	268	1149	SO[836]	-4432.5	268
970	SO[657]	-1389.5	128	103		-2409.5	128	1090	SO[777]	-3429.5	128	1150	SO[837]	-4449.5	128
971	SO[658]	-1406.5	408	103		-2426.5	408	1091	SO[778]	-3446.5	408	1151	SO[838]	-4466.5	408
972	SO[659]	-1423.5	268	103		-2443.5	268	1092	SO[779]	-3463.5	268	1152	SO[839]	-4483.5	268
973	SO[660]	-1440.5	128	103		-2460.5	128	1093	SO[780]	-3480.5	128	1153	SO[840]	-4500.5	128
974	SO[661]	-1457.5	408	103		-2477.5	408	1094	SO[781]	-3497.5	408	1154	SO[841]	-4517.5	408
975	SO[662]	-1474.5	268	103		-2494.5	268	1095	SO[782]	-3514.5	268	1155	SO[842]	-4534.5	268
976	SO[663]	-1491.5	128	103		-2511.5	128	1096	SO[783]	-3531.5	128	1156	SO[843]	-4551.5	128
977	SO[664]	-1508.5	408	103		-2528.5	408	1097	SO[784]	-3548.5	408	1157	SO[844]	-4568.5	408
978	SO[665]	-1525.5	268	103		-2545.5	268	1098	SO[785]	-3565.5	268	1158	SO[845]	-4585.5	268
979	SO[666]	-1542.5	128	103		-2562.5	128	1099	SO[786]	-3582.5	128	1159	SO[846]	-4602.5	128
980	SO[667]	-1559.5	408	104		-2579.5	408	1100	SO[787]	-3599.5	408	1160	SO[847]	-4619.5	408
981 982	SO[668]	-1576.5	268	104		-2596.5	268	1101 1102	SO[788]	-3616.5	268	1161	SO[848]	-4636.5	268 128
	SO[669]	-1593.5	128	10 ⁴		-2613.5 -2630.5	128 408	1102	SO[789] SO[790]	-3633.5	128 408	1162 1163	SO[849]	-4653.5	
983 984	SO[670] SO[671]	-1610.5 -1627.5	408 268	104		-2630.5	268	1103	SO[790]	-3650.5 -3667.5	268	1163	SO[850] SO[851]	-4670.5 -4687.5	408 268
985	SO[671] SO[672]	-1644.5	128	104		-2647.5	128	1104	SO[791]	-3684.5	128	1164	SO[851]	-4704.5	128
986	SO[672]	-1661.5	408	102		+	408	1106	SO[793]	-3701.5	408	1166		-4721.5	408
987	SO[673]	-1678.5	268	104		-2681.5 -2698.5	268	1107	SO[794]	-3718.5	268	1167	SO[853] SO[854]	-4721.5	268
988	SO[675]	-1695.5	128	104		-2715.5	128	1108	SO[795]	-3735.5	128	1168	SO[855]	-4755.5	128
989	SO[676]	-1712.5	408	104		-2732.5	408	1109	SO[796]	-3752.5	408	1169	SO[856]	-4772.5	408
990	SO[677]	-1729.5	268	10		-2749.5	268	1110	SO[797]	-3769.5	268	1170	SO[857]	-4789.5	268
991	SO[678]	-1746.5	128	10		-2766.5	128	1111	SO[798]	-3786.5	128	1171	SO[858]	-4806.5	128
992	SO[679]	-1763.5	408	10		-2783.5	408	1112	SO[799]	-3803.5	408	1172	SO[859]	-4823.5	408
993	SO[680]	-1780.5	268	10		-2800.5	268	1113	SO[800]	-3820.5	268	1173	SO[860]	-4840.5	268
994	SO[681]	-1797.5	128	10		-2817.5	128	1114	SO[801]	-3837.5	128	1174	SO[861]	-4857.5	128
995	SO[682]	-1814.5	408	10		-2834.5	408	1115	SO[802]	-3854.5	408	1175	SO[862]	-4874.5	408
996	SO[683]	-1831.5	268	10	6 SO[743]	-2851.5	268	1116	SO[803]	-3871.5	268	1176	SO[863]	-4891.5	268
997	SO[684]	-1848.5	128	10	7 SO[744]	-2868.5	128	1117	SO[804]	-3888.5	128	1177	SO[864]	-4908.5	128
998	SO[685]	-1865.5	408	10	8 SO[745]	-2885.5	408	1118	SO[805]	-3905.5	408	1178	SO[865]	-4925.5	408
999	SO[686]	-1882.5	268	10	9 SO [746]	-2902.5	268	1119	SO[806]	-3922.5	268	1179	SO[866]	-4942.5	268
1000	SO[687]	-1899.5	128	106	0 SO[747]	-2919.5	128	1120	SO[807]	-3939.5	128	1180	SO[867]	-4959.5	128
1001	SO[688]	-1916.5	408	106	1 SO[748]	-2936.5	408	1121	SO[808]	-3956.5	408	1181	SO[868]	-4976.5	408
1002	SO[689]	-1933.5	268	106	2 SO[749]	-2953.5	268	1122	SO[809]	-3973.5	268	1182	SO[869]	-4993.5	268
1003	SO[690]	-1950.5	128	106	3 SO[750]	-2970.5	128	1123	SO[810]	-3990.5	128	1183	SO[870]	-5010.5	128
1004	SO[691]	-1967.5	408	106		-2987.5	408	1124	SO[811]	-4007.5	408	1184	SO[871]	-5027.5	408
1005	SO[692]	-1984.5	268	106		-3004.5	268	1125	SO[812]	-4024.5	268	1185	SO[872]	-5044.5	268
1006	SO[693]	-2001.5	128	106		-3021.5	128	1126	SO[813]	-4041.5	128	1186	SO[873]	-5061.5	128
1007	SO[694]	-2018.5	408	106		-3038.5	408	1127	SO[814]	-4058.5	408	1187	SO[874]	-5078.5	408
1008	SO[695]	-2035.5	268	106		-3055.5	268	1128	SO[815]	-4075.5	268	1188	SO[875]	-5095.5	268
1009	SO[696]	-2052.5	128	106		-3072.5	128	1129	SO[816]	-4092.5	128	1189	SO[876]	-5112.5	128
1010	SO[697]	-2069.5	408	107		-3089.5	408	1130	SO[817]	-4109.5	408	1190	SO[877]	-5129.5	408
1011	SO[698]	-2086.5	268	107		-3106.5	268	1131	SO[818]	-4126.5	268	1191	SO[878]	-5146.5	268
1012	SO[699]	-2103.5	128	107		-3123.5	128	1132	SO[819]	-4143.5	128	1192	SO[879]	-5163.5	128
1013	SO[700]	-2120.5	408	107		-3140.5	408	1133	SO[820]	-4160.5	408	1193	SO[880]	-5180.5	408
1014	SO[701]	-2137.5	268	10		-3157.5	268	1134	SO[821]	-4177.5	268	1194	SO[881]	-5197.5 -5214.5	268
1015	SO[702]	-2154.5	128	10		-3174.5	128	1135	SO[822]	-4194.5	128	1195	SO[882]	-5214.5 -5231.5	128
1016	SO[703]	-2171.5	408	10		-3191.5	408	1136	SO[823]	-4211.5	408	1196 1197	SO[883]	+	408
1017	SO[704] SO[705]	-2188.5 -2205.5	268 128	107		-3208.5 -3225.5	268 128	1137 1138	SO[824] SO[825]	-4228.5 -4245.5	268 128	1197	SO[884] SO[885]	-5248.5 -5265.5	268 128
1019	SO[705] SO[706]	-2222.5	408	10		-3242.5	408	1139	SO[826]	-4245.5	408	1199	SO[886]	-5282.5	408
1020	SO[700]	-2239.5	268	108		-3259.5	268	1140	SO[827]	-4202.5	268	1200	SO[887]	-5299.5	268
1020	55[757]	2200.0	200	1.00	5 55[767]	0200.0	200	. 140	00[021]	127 0.0	200	.200	55[507]	0200.0	200

No.	NAME	Х	Υ	No.	NAME	Х	Υ	No.	NAME	Х	Υ	No.	NAME	Х	Υ
1201	SO[888]	-5316.5	128	1261	SO[948]	-6336.5	128	1321	SO[1008]	-7356.5	128	1381	SO[1068]	-8376.5	128
1202	SO[889]	-5333.5	408	1262	SO[949]	-6353.5	408	1322	SO[1009]	-7373.5	408	1382	SO[1069]	-8393.5	408
1203	SO[890]	-5350.5	268	1263	SO[950]	-6370.5	268	1323	SO[1010]	-7390.5	268	1383	SO[1070]	-8410.5	268
1204	SO[891]	-5367.5	128	1264	SO[951]	-6387.5	128	1324	SO[1011]	-7407.5	128	1384	SO[1071]	-8427.5	128
1205	SO[892]	-5384.5	408	1265	SO[952]	-6404.5	408	1325	SO[1012]	-7424.5	408	1385	SO[1072]	-8444.5	408
1206	SO[893]	-5401.5	268	1266	SO[953]	-6421.5	268	1326	SO[1013]	-7441.5	268	1386	SO[1073]	-8461.5	268
1207	SO[894]	-5418.5	128	1267	SO[954]	-6438.5	128	1327	SO[1014]	-7458.5	128	1387	SO[1074]	-8478.5	128
1208	SO[895]	-5435.5	408	1268	SO[955]	-6455.5	408	1328	SO[1015]	-7475.5	408	1388	SO[1075]	-8495.5	408
1209	SO[896]	-5452.5	268	1269	SO[956]	-6472.5	268	1329	SO[1016]	-7492.5	268	1389	SO[1076]	-8512.5	268
1210	SO[897]	-5469.5	128	1270	SO[957]	-6489.5	128	1330	SO[1017]	-7509.5	128	1390	SO[1077]	-8529.5	128
1211	SO[898]	-5486.5	408	1271	SO[958]	-6506.5	408	1331	SO[1018]	-7526.5	408	1391	SO[1078]	-8546.5	408
1212	SO[899]	-5503.5	268	1272	SO[959]	-6523.5	268	1332	SO[1019]	-7543.5	268	1392	SO[1079]	-8563.5	268
1213	SO[900]	-5520.5	128	1273	SO[960]	-6540.5	128	1333	SO[1020]	-7560.5	128	1393	SO[1080]	-8580.5	128
1214	SO[901]	-5537.5	408	1274	SO[961]	-6557.5	408	1334	SO[1021]	-7577.5	408	13 <mark>9</mark> 4	SO[1081]	-85 <mark>97</mark> .5	408
1215	SO[902]	-5554.5	268	1275	SO[962]	-6574.5	268	1335	SO[1022]	-7594.5	268	1395	SO[1082]	-8614.5	268
1216	SO[903]	-5571.5	128	1276	SO[963]	-6591.5	128	1336	SO[1023]	-7611.5	128	1396	SO[1083]	-8631.5	128
1217	SO[904]	-5588.5	408	1277	SO[964]	-6608.5	408	1337	SO[1024]	-7628.5	408	1397	SO[1084]	-8648.5	408
1218	SO[905]	-5605.5	268	1278	SO[965]	-6625.5	268	1338	SO[1025]	-7645.5	268	1398		-8665.5	268
1219	SO[906]	-5622.5	128	1279	SO[966]	-6642.5	128	1339	SO[1026]	-7662.5	128	1399	SO[1086]	-8682.5	128
1220	SO[907]	-5639.5	408	1280	SO[967]	-6659.5	408	1340	SO[1027]	-7679.5	408	1400	SO[1087]	-8699.5	408
1221	SO[908]	-5656.5	268	1281	SO[968]	-6676.5	268	1341	SO[1028]	-7696.5	268	1401			268
1222	SO[909]	-5673.5	128	1282	SO[969]	-6693.5	128	1342	SO[1029]	-7 <mark>71</mark> 3.5	128	1402		-8733.5	128
1223	SO[910]	-5690.5	408	1283	SO[970]	-6710.5	408	1343	SO[1030]	-7730.5	408	1403			408
1224	SO[911]	-5707.5	268	1284	SO[971]	-6727.5	268	1344	SO[1031]	-7747.5	268	1404			268
1225	SO[912]	-5724.5	128	1285	SO[972]	-6744.5	128	1345	SO[1032]	- 776 4.5	128	1405			128
1226	SO[913]	-5741.5	408	1286	SO[973]	-6761.5	408	1346	SO[1033]	-7781.5	408	1406			408
1227	SO[914]	-5758.5	268	1287	SO[974]	-6778.5	268	1347	SO[1034]	-7798.5	268	1407			268
1228	SO[915]	-5775.5	128	1288	SO[975]	-6795.5	128	1348	SO[1035]	-7815.5	128	1408		-8835.5	128
1229	SO[916]	-5792.5	408	1289	SO[976]	-6812.5	408	1349	SO[1036]	-7832.5	408	1409			408
1230	SO[917]	-5809.5	268	1290	SO[977]	-6829.5	268	1350	SO[1037]	-7849.5	268	1410		-8869.5	268
1231	SO[918]	-5826.5	128	1291	SO[978]	-68 4 6.5	128 408	1 <mark>3</mark> 51	SO[1038]	-7866.5	128	1411			128
1232 1233	SO[919]	-5843.5 -5860.5	408 268	1292 1293	SO[979]	-68 <mark>6</mark> 3.5	268	1352 1353	SO[1039] SO[1040]	-7883.5	408 268	1412			408 268
1233	SO[920] SO[921]	-5877.5	128	1293	SO[980]	-6897.5	128	1354	SO[1040]	-7900.5 -7917.5	128	1414			128
1234	SO[921]	-5877.5	408	1294	SO[981] SO[982]	-6897.5	408	1354	SO[1041]	-7917.5	408	1412			408
1236	SO[922]	-5911.5	268	1295	SO[983]	-6931.5	268	1356	SO[1042]	-7951.5	268	1416			268
1237	SO[923]	-5928.5	128	1290	SO[984]	-6948.5	128	1357	SO[1043]	-7968.5	128	1417			128
1238	SO[924]	-5945.5	408	1298	SO[985]	- 69 65.5	408	1358	SO[1044]	-7985.5	408	1418			408
1239	SO[926]	-5962.5	268	1299	SO[986]	-6982.5	268	1359	SO[1046]	-8002.5	268	1419			268
1240	SO[927]	-5979.5	128	1300	SO[987]	-6999.5	128	1360	SO[1047]	-8019.5	128	1420			128
1241	SO[928]	-5996.5	408	1301	SO[988]	-7016.5	408	1361	SO[1048]	-8036.5	408	142			408
1242	SO[929]	-6013.5	268	1302	SO[989]	-7033.5	268	1362	SO[1049]	-8053.5	268	1422			268
1243	SO[930]	-6030.5	128	1303	SO[990]	-7050.5	128	1363	SO[1050]	-8070.5	128	1423			128
1244	SO[931]	-6047.5	408	1304	SO[991]	-7067.5	408	1364	SO[1051]	-8087.5	408	-	SO[1111]		408
1245	SO[932]	-6064.5	268	1305	SO[992]	-7084.5	268	1365	SO[1052]	-8104.5	268		SO[1112]		268
1246	SO[933]	-6081.5	128	1306	SO[993]	-7101.5	128	1366	SO[1053]	-8121.5	128	_	SO[1113]		128
1247	SO[934]	-6098.5	408	1307	SO[994]	-7118.5	408	1367	SO[1054]	-8138.5	408		SO[1114]		408
1248	SO[935]	-6115.5	268	1308	SO[995]	-7135.5	268	1368	SO[1055]	-8155.5	268		SO[1115]		268
1249	SO[936]	-6132.5	128	1309	SO[996]	-7152.5	128	1369	SO[1056]	-8172.5	128		SO[1116]		128
1250	SO[937]	-6149.5	408	1310	SO[997]	-7169.5	408	1370	SO[1057]	-8189.5	408		SO[1117]		408
1251	SO[938]	-6166.5	268	1311	SO[998]	-7186.5	268	1371	SO[1058]	-8206.5	268		SO[1118]		268
12 <mark>5</mark> 2	SO[939]	-6183.5	128	1312	SO[999]	-7203.5	128	1372	SO[1059]	-8223.5	128	_	SO[1119]	1	128
1253	SO[940]	-6200.5	408	1313	SO[1000]	-7220.5	408	1373	SO[1060]	-8240.5	408	1433	SO[1120]	-9260.5	408
1254	SO[941]	-6217.5	268	1314	SO[1001]	-7237.5	268	1374	SO[1061]	-8257.5	268	1434	SO[1121]	-9277.5	268
1255	SO[942]	-6234.5	128	1315	SO[1002]	-7254.5	128	1375	SO[1062]	-8274.5	128	1435	SO[1122]	-9294.5	128
1256	SO[943]	-6251.5	408	1316	SO[1003]	-7271.5	408	1376	SO[1063]	-8291.5	408	1436	SO[1123]	-9311.5	408
1257	SO[944]	-6268.5	268	1317	SO[1004]	-7288.5	268	1377	SO[1064]	-8308.5	268	1437	' SO[1124]	-9328.5	268
1258	SO[945]	-6285.5	128	1318	SO[1005]	-7305.5	128	1378	SO[1065]	-8325.5	128	1438	SO[1125]	-9345.5	128
1259	SO[946]	-6302.5	408	1319	SO[1006]	-7322.5	408	1379	SO[1066]	-8342.5	408	1439	SO[1126]	-9362.5	408
1260	SO[947]	-6319.5	268	1320	SO[1007]	-7339.5	268	1380	SO[1067]	-8359.5	268	1440	SO[1127]	-9379.5	268
								-		•			•	•	

NI-	NAME	V	Υ	Г
No.	NAME	X		Н
1444	SO[1131]	-9447.5	128	H
1445	SO[1132]	-9464.5	408	
1446	SO[1133]	-9481.5	268	
1447	SO[1134]	-9498.5	128	
1448	SO[1135]	-9515.5	408	
1449	SO[1136]	-9532.5	268	-
1450 1451	SO[1137]	-9549.5 -9566.5	128 408	-
1452	SO[1138] SO[1139]	-9583.5	268	ŀ
1453	SO[1139]	-9600.5	128	l
1454	SO[1140]	-9617.5	408	ŀ
1455	SO[1141]	-9634.5	268	
1456	SO[1143]	-9651.5	128	ŀ
1457	SO[1143]	-9668.5	408	-
1458	SO[1145]	-9685.5	268	ŀ
1459	SO[1146]	-9702.5	128	
1460	SO[1147]	-9719.5	408	
1461	SO[1148]	-9736.5	268	l
1462	SO[1149]	-9753.5	128	
1463	SO[1149]	-9770.5	408	
1464	SO[1151]	-9787.5	268	
1465	SO[1152]	-9804.5	128	
1466	SO[1153]	-9821.5	408	
1467	SO[1154]	-9838.5	268	
1468	SO[1155]	-9855.5	128	
1469	SO[1156]	-9872.5	408	
1470	SO[1157]	-9889.5	268	
1471	SO[1158]	-9906.5	128	
1472	SO[1159]	-9923.5	408	
1473	SO[1160]	-9940.5	268	
1474	SO[1161]	-9957.5	128	
1475	SO[1162]	-9974.5	408	
1476	SO[1163]	-9991.5	268	
1477	SO[1164]	-10008.5	128	
1478	SO[1165]	-10025.5	408	
1479	SO[1166]	-10042.5	268	
1480	SO[1167]	-10059.5	128	
1481	SO[1168]	-10076.5	408	
1482	SO[1169]	-10093.5	268	4
1483	SO[1170]	-10110.5	128	
1484	SO[1171]	-10127.5	408	
1485	SO[1172]	-10144.5	268	
1486	SO[1173]	-10161.5	128	
1487	SO[1174]	-10178.5	408	١
1488	SO[1175]	-10195.5	268	
1489	SO[1176]	-10212.5	128	
1490	SO[1177]	-10229.5	408	
1491	SO[1178]	-10246.5	268	
1492	SO[1179]	-10263.5	128	
1493	SO[1180]	-10 2 80.5	408	
1494	SO[1181]	-10297.5	268	
1495	SO[1182]	-10314.5	128	
1496 1497	SO[1183]	-10331.5 -10348.5	408 268	
1497	SO[1184] SO[1185]	-10348.5 -10365.5		
1498		-10365.5	128 408	
1500	SO[1186] SO[1187]	-10302.5	268	
1300	50[1167]	-10033.0	200	

No.	NAME	X	Υ
1504	SO[1191]	-10467.5	128
1505	SO[1192]	-10484.5	408
1506	SO[1193]	-10501.5	268
1507	SO[1194]	-10518.5	128
1508	SO[1195]	-10535.5	408
1509	SO[1196]	-10552.5	268
1510	SO[1197]	-10569.5	128
1511	SO[1198]	-10586.5	408
1512	SO[1199]	-10603.5	268
1513	SO[1200]	-10620.5	128
1514	SHIELDING	-10664	428
1515	COM1_T	-10714	428
1516	COM1_T	-10764	428
1517	SHIELDING	-10814	428
1518	DCMPR	-10864	428
1519	DCMPR	-10914	428
1520	OEVR	-11049	328
1521	INVBRR	-11049	408

Sitronix ST5623

Application Circuit Diagram

1. Dual Gate Mode

Figure 2 ST5623 used for Dual Gate Mode

2.PWM Booster

BIST Pattern

No.	Pattern	Test Function Description	Notice
1		Color R alignment with color filter.	
2		Color G alignment with color filter.	>
3		Color B alignment with color filter.	
4		Black Pattern.	
5		White Pattern.	
6		 Customer standard test pattern. Color alignment with color filter. Driver scan direction. 	

7	Customer standard test pattern.	4
8	Customer standard test pattern.	
9	Crosstalk Pattern (Vertical cross talk: Belong to Panel issue, Horizontal cross talk: Inversion structure issue(Line inversion)).	
10	Chessboard Pattern.	
11	Black-Gray(128) Flicker Pattern	
12	Black background and White frame	

Ordering information

Part.No	Package
ST5623 – Gx	G: means COG x: means chip thick ness 3 = 400um 4 = 300um

Revision History

Version	Description of Changes	Page	Date
V0.0	First Version Release.		2010/6/3
V0.3	Modify Pin Assignments (Bump View)	4	2010/6/28
	Modify Pad Coordination 14,15,17,18 ,38,39 and 121~180	34	
	Modify Pad Arrangement	32	
V0.4	1.Modify dual gate structrure for dot polarity	9	2010/7/12
	2.Modify gamma table	13~15	
V0.5	1.Add RES[1:0]:11=>800*480 resolution	4	2010/7/20
	2.Add wiring resistance value from COM1_B(COM2_B) to COM1_T(COM2_T)	6	>
	3.Add SPI AC timing		
	4.Modify application circuit for ST5091	32	
	5.Modify bist mode pattern 7	42	
		44	
V0.6	Add PWM booster function	1,2,3,6,33	2010/8/18
V0.7	1.ADD DBC/3, SCL/DBCM[0] ,SDA/DBCM[1] function	5,8.11,39	2010/12/27
	2.ADD REV function	45	
	3.modify Gamma table,pad Coordination	18,19	
	4.remove BCTRL of Write CTRL Display Value(53h) for CABC	26,27	
	5.ADD 800x480,800x600 dual gate mode for gate driver on left and right side) 6.Modify bist pattern Black background and White frame	3~6	
	7.remove colore enhance function	40	
	7.Terriove colore entrance function	49	
V0.8	A VAIL on VICET (II II) VA VAA mine over the system of the transfer of comme	9	2011/3/1
VU.8	1.When VSET="H", V1~V14 pins are the external adjustment point for Gamma correction. The relationship between V1~V14 must be:	9	2011/3/1
	AGND <v14<v13<v12<v11<v10<v9<v8<v7<v6<v5<v4<v3<v2<v1<vdda< td=""><td></td><td></td></v14<v13<v12<v11<v10<v9<v8<v7<v6<v5<v4<v3<v2<v1<vdda<>		
V0.9	Add reset application circuit	11	2011/3/10
V1.0	Modify AC voltage 2.7V~3.6V to 3.0V~3.6V	35	2011/3/10
V 1.0	Modify 640*480 Horizontal input timing	24	2011/4/27
V1.1	1 1	34	
V 1.1	Modify Sync mode timing diagram	34	2011/6/2