Introduction to Gradients

Office: MB 113,AV 106

vidyapradananda@gm.rkmvu.ac.in

real-valued function $z=f(x,\,y):U\subseteq\mathbb{R}^2 o\mathbb{R}$ of two variables

The graph of $z=f(x,\,y)$ is the surface $S\,=\,ig\{(x,\,y,\,f(x,\,y)):\,(x,\,y)\ ext{in}\ U\,ig\}$

How do we know the surfaces look like that?

The basic idea is to take cross-sections of the surface by plane slices.

Because a plane intersects the surface in a curve that also lies in the plane, this curve is often referred to as the **trace of the surface** on the plane.

Identifying traces gives us one way of 'picturing' the surface

ullet the trace on a vertical plane y=mx+b is the curve consisting of all points

$$\{(x, mx+b, f(x, mx+b)) : (x, mx+b) \text{ in } D\},\$$

in the plane y = mx + b,

• the trace on a horizontal plane z = c is the curve

$$\{(x, y, c): (x, y) \text{ in } D, f(x, y) = c\}$$

in the plane z = c.

In the case $z=x^2-y^2$ slicing vertically by y=b means fixing y=b and graphing

$$z = f(x, b) = x^2 - b^2,$$

while slicing vertically by the plane x=a gives

$$z = f(a, y) = a^2 - y^2$$
,

i.e., parabolas opening up and down respectively.

$$z = f(a, y) = a^2 - y^2$$

$$z = f(x, b) = x^2 - b^2$$

On the other hand, slicing horizontally by z=c gives

$$f(x, y) = c = x^2 - y^2,$$

i.e., hyperbolas opening in the x-direction if c>0 and in the y-direction if c<0. So the cross-sections are parabolas or hyperbolas, and the surface is called a hyperbolic paraboloid. You can think of it as a saddle or as a *Pringle*!

Level curves: for a function $z=f(x,y):D\subseteq\mathbb{R}^2\to\mathbb{R}$ the level curve of value c is the curve C in $D\subseteq\mathbb{R}^2$ on which $f\Big|_C=c$.

By combining the level curves f(x,y)=c for equally spaced values of c into one figure, say c=-1,0,1,2,..., in the x-y plane, we obtain a **contour map** of the graph of z=f(x,y)

Level curves: for a function $z=f(x,y):D\subseteq\mathbb{R}^2\to\mathbb{R}$ the level curve of value c is the curve C in $D\subseteq\mathbb{R}^2$ on which $f\Big|_C=c$.

Problem: Describe the contour map of a plane in

3-space.

Solution: The equation of a plane in 3-space is

$$Ax + By + Cz = D,$$

so the horizontal plane z=c intersects the plane when

$$Ax + By + Cc = D.$$

For each c, this is a line with slope -A/B and y-intercept y=(D-Cc)/B. Since the slope does not depend on c, the level curves are parallel lines, and as c runs over equally spaced values these lines will be a constant distance apart.

Level curves: for a function $z=f(x,y):D\subseteq\mathbb{R}^2\to\mathbb{R}$ the level curve of value c is the curve C in $D\subseteq\mathbb{R}^2$ on which $f\Big|_C=c$.

Notice the critical difference between a level curve of value c and the trace on the plane z = c,

- A level curve C always lies in the (x,y)-plane, and is the set C of points in the (x,y)-plane on which f(x,y) = c
- The trace lies in the plane z=c, and is the set of points with (x,y,c) with (x,y) in C

Level Surface

Level surfaces: For a function $w=f(x,\,y,\,z):U\subseteq\mathbb{R}^3\to\mathbb{R}$ the level surface of value c is the surface S in $U\subseteq\mathbb{R}^3$ on which $f\Big|_S=c$.

Example: $w = f(x, y, z) = x^2 + y^2 - z^2$.

Two-sheeted Hyperboloid

$$x^2 + y^2 - z^2 = 0$$

Double Cone

$$x^2 + y^2 - z^2 = 1$$

Single-sheeted Hyperboloid

Level Surface

Example 1: Spheres $x^2 + y^2 + z^2 = r^2$

level surfaces
$$w=r^2$$
 of $w=x^2+y^2+z^2$

Example 2: The graph of z=f(x,y) as a surface in 3-space

the level surface
$$w=0$$
 of $w(x,y,z)=z-f(x,y)$.

Derivative Matrix

derivative of a function $f: \mathbf{R} \to \mathbf{R}$

the derivative of
$$f(x)$$
 at $x=a$ $Df(a)=\left[\frac{\mathrm{d}f}{\mathrm{d}x}(a)\right]$ 1 x 1 matrix

For
$$f: \mathbf{R}^n o \mathbf{R}$$
, viewed as a $f(\mathbf{x})$, where $\mathbf{x} = (x_1, x_2, \dots, x_n)$

derivatives at
$$\mathbf{x} = \mathbf{a}$$
: $Df(\mathbf{a}) = \left[\frac{\partial f}{\partial x_1}(\mathbf{a}) \frac{\partial f}{\partial x_2}(\mathbf{a}) \dots \frac{\partial f}{\partial x_n}(\mathbf{a}) \right]$ 1 x n matrix

vector-valued functions, $\mathbf{f}: \mathbf{R}^n \to \mathbf{R}^m$

$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_m(\mathbf{x})) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix} D\mathbf{f}(\mathbf{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \frac{\partial f_1}{\partial x_2}(\mathbf{a}) & \dots & \frac{\partial f_1}{\partial x_n}(\mathbf{a}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{a}) & \frac{\partial f_2}{\partial x_2}(\mathbf{a}) & \dots & \frac{\partial f_2}{\partial x_n}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \frac{\partial f_m}{\partial x_2}(\mathbf{a}) & \dots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{bmatrix}$$

All are matrix of partia derivatives of the function

m x n matrix

Gradient as Vector

The matrix of partial derivatives of a scalar-valued function is called gradient

$$abla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \frac{\partial f}{\partial x_2}(\mathbf{x}), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x}) \right)$$

we can think of the gradient as a function $\nabla f: \mathbf{R}^n \to \mathbf{R}^n$,

which can be viewed as a special type of vector field

Gradient is a vector **operator** denoted by ∇ and called del or nabla.

$$\nabla f \equiv \operatorname{grad}(f)$$
.

Let ∅ be a real function of three variables, then in Cartesian coordinates,

$$\nabla \phi(x, y, z) = \frac{\partial \phi}{\partial x} \,\hat{\mathbf{x}} + \frac{\partial \phi}{\partial y} \,\hat{\mathbf{y}} + \frac{\partial \phi}{\partial z} \,\hat{\mathbf{z}}$$

Directional derivative

directional derivative of f in the direction \mathbf{u} at the point \mathbf{a}

$$D_{\mathbf{u}}f(\mathbf{a}) = \lim_{h o 0} rac{f(\mathbf{a} + h\mathbf{u}) - f(\mathbf{a})}{h}.$$

 $D_{\mathbf{u}}f(\mathbf{a})$ is the slope of f(x,y) when standing at the point \mathbf{a}

. For example, if
$$\mathbf{u}=(1,0)$$
, then $D_{\mathbf{u}}f(\mathbf{a})=\frac{\partial f}{\partial x}(\mathbf{a})$.

$$\mathbf{u} = (0, 1), \text{ then } D_{\mathbf{u}} f(\mathbf{a}) = \frac{\partial f}{\partial y}(\mathbf{a}).$$

Example: Directional derivative on a mountain

https://mathinsight.org/applet/directional_derivative_mountain

Gradient & directional derivative

- The direction of ∇f is the orientation in which the directional derivative has the largest value
- The value of directional derivative along the direction ∇f is $|\nabla f|$

$$egin{aligned} D_{\mathbf{u}}f(\mathbf{a}) &=
abla f(\mathbf{a}) \cdot \mathbf{u} \ &= \|
abla f(\mathbf{a})\| \|\mathbf{u}\| \cos \theta \ &= \|
abla f(\mathbf{a})\| \cos \theta \end{aligned}$$

 θ is the angle between **u** and the gradient.

 \mathbf{u} is a unit vector, meaning that $\|\mathbf{u}\| = 1$

$$-\|
abla f(\mathbf{a})\| \le D_{\mathbf{u}} f(\mathbf{a}) \le \|
abla f(\mathbf{a})\|$$
 $heta = \pi$
 $heta = 0 ext{ or } heta = 2\pi$

Gradient=maximal slope

There is a direction of maximal slope:

$$rac{
abla f(\mathbf{a})}{\|
abla f(\mathbf{a})\|} = \mathbf{m}$$

At x = a the gradient is a vector that points in the direction of **m** and

$$\|\nabla f(\mathbf{a})\| = D_{\mathbf{m}}f(\mathbf{a}).$$

Gradient and level curve/surface

If $\nabla f \neq 0$ at point **x**, then

- the gradient is perpendicular to the level curve through $\mathbf{x} = (x_1, ..., x_n)$
- the gradient is perpendicular to the level surface through (\mathbf{x},y) , given by $F(\mathbf{x},y)=0$.

Homework

Let
$$f(x,y) = x^2 y$$
.

- (a) Find $\nabla f(3,2)$
- . (b) Find the derivative of f in the direction of (1,2) at the point (3,2).
- c) find the directional derivative of f at the point (3,2) in the direction of (2,1)
- d) at the point (3,2), (a) in which direction is the directional derivative maximal, what is the directional derivative in that direction?
- e) at the point (3,2), what is the directional derivative in the direction (-3,4)
- f) at the point (3,2) what is the directional derivative in the direction (-4,-3)