Stetigkeit

Konvergenz von Funktionen

Es sei $D\subseteq \mathbb{R}$ und $f:D\to \mathbb{R}$ eine Funktion. Wir schreiben

$$\lim_{x \to a} f(x) = c,$$

wenn $\lim_{n\to\infty} f(x_n) = c$ für alle Folgen $(x_n)_{n\in\mathbb{N}}$ mit $x_n\in D$ und $\lim_{n\to\infty} x_n = a$ und nennen dies den **Grenzwert** der Funktion f im Punkt a.

Erinnerung:

Eine Zahl $a \in \mathbb{R}$ heißt Grenzwert der Folge $(x_n)_{n \in \mathbb{N}}$, wenn für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, sodass

$$|x_n - a| < \varepsilon$$

für alle $n \in \mathbb{N}$ mit n > N.

Gilt $\lim_{n\to\infty} f(x_n) = c$ für alle Folgen $(x_n)_{n\in\mathbb{N}}$ in D, die von oben gegen a konvergieren, d.h. $x_n > a$ und $\lim_{n\to\infty} x_n = a$, so schreiben wir $\lim_{x\searrow a} f(x) = c$ und nennen dies den **rechtsseitigen Grenzwert**. Analog heißt $\lim_{x\nearrow a} f(x) = c$, dass $\lim_{n\to\infty} f(x_n) = c$ für alle Folgen $(x_n)_{n\in\mathbb{N}}$ in D, die von unten gegen a konvergieren, d.h. $\lim_{n\to\infty} x_n = a$ und $x_n < a$. Wir nennen dies den **linksseitigen Grenzwert**.

Erklärung

Definition von Stetigkeit

Es sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion. Wir sagen, f ist im Punkt $x_0 \in D$ stetig, wenn eine der folgenden (äquivalenten) Bedingungen erfüllt ist:

- (i) Der linksseitige und rechtsseitige Grenzwert von f in x_0 stimmen überein.
- (ii) (Folgenkriterium)

$$\lim_{x \to x_0} f(x) = f(x_0).$$

(iii) (ε - δ -Kriterium) Für alle $\varepsilon > 0$ existiert ein $\delta > 0$, sodass für alle $x \in D$ mit $|x - x_0| < \delta$ gilt $|f(x) - f(x_0)| < \varepsilon$.

Eine Funktion $f: D \to \mathbb{R}$ heißt (**punktweise**) stetig, wenn sie in allen Punkten $a \in D$ stetig ist.

Eigenschaften stetiger Funktionen und gleichmäßige Stetigkeit

• Summe, Differenz, Produkt und Quotient stetiger Funktionen sind wieder stetig, d.h.:

Sind $f, g: D \to \mathbb{R}$ zwei Funktionen, die in $x_0 \in D$ stetig sind und $\lambda \in \mathbb{R}$, dann sind auch f+g, $\lambda \cdot f, f \cdot g: D \to \mathbb{R}$ in x_0 stetig. Ist $g(x_0) \neq 0$, so ist auch $\frac{f}{g}: D' \to \mathbb{R}$ in x_0 stetig, wobei man $D' := \{x \in D \mid g(x) \neq 0\}$ setzt.

• Die Verkettung stetiger Funktionen ist stetig, d.h.:

Sind $f: D \to \mathbb{R}$ und $g: E \to \mathbb{R}$ zwei Funktionen mit $f(D) \subseteq E$ und ist f in $x_0 \in D$ und g in $y_0 = f(x_0)$ stetig, so ist $g \circ f$ in x_0 stetig.

Satz.(Zwischenwertsatz)

Sei $f : [a, b] \to \mathbb{R}$ stetig mit f(a) < f(b). Dann existiert zu jedem $c \in [f(a), f(b)]$ ein $\xi \in [a, b]$ sodass $f(\xi) = c$.

Wir nennen eine Funktion $f:D\to\mathbb{R}$ gleichmäßig stetig, wenn für alle $\varepsilon>0$ ein $\delta>0$ existiert, sodass für alle $x,y\in D$ mit $|x-y|<\delta$ gilt $|f(x)-f(y)|<\varepsilon$. Jede gleichmäßig stetige Funktion ist auch punktweise stetig. Es gilt ferner:

Satz. Eine stetige Funktion auf einem kompakten Intervall ist gleichmäßig stetig.

Aufgaben

Grenzwert von Funktionen

Aufgabe 1. Berechnen Sie die Grenzwerte der folgenden Funktionen:

$$\text{(a)} \ \lim_{x\to\infty} x - \sqrt{x^2+3x}, \quad \text{(b)} \ \lim_{x\to 2} \frac{x^2-4}{x+2}, \quad \text{(c)} \ \lim_{x\to a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \ \text{für} \ x, a>0, \quad \text{(d)} \ \lim_{x\to 0} \sin\left(\frac{1}{x}\right).$$

Stetigkeit

Aufgabe 2. Prüfen Sie, ob die folgenden Funktionen $f: \mathbb{R} \to \mathbb{R}$ stetig in $x_0 = 0$ sind:

(a)
$$f(x) = c$$
, für $c \in \mathbb{R}$ (b) $f(x) = x^2 + 2x + 1$, (c) $f(x) = \operatorname{sgn}(x) = \begin{cases} -1 & \text{für } x < 0 \\ 0 & \text{für } x = 0 \\ 1 & \text{für } x > 0, \end{cases}$

$$(d) \ f(x) = \sin(x) \qquad \qquad (e) \ f(x) = |x|, \qquad \qquad (f) \ f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{für } x \neq 0 \\ 0 & \text{sonst.} \end{cases}$$

$$f(x) = g(x)$$
 für alle $x \in \mathbb{Q}$.

Zeigen Sie, dass dann bereits f(x) = g(x) für alle $x \in \mathbb{R}$ gilt.

$$d(x) := \inf\{|x - y| : y \in M\} \quad \text{für alle } x \in \mathbb{R}$$

stetig ist.

Eigenschaften stetiger Funktionen

Aufgabe 5. Zeigen Sie mit Hilfe des Zwischenwertsatzes, dass die Funktion

$$f(x) = x^3 - 3x^2 + \frac{1}{2}x - \frac{5}{2}$$

im Intervall [2, 5] eine Nullstelle besitzt.

Aufgabe 6. Es seien $f, g : [a, b] \to \mathbb{R}$ stetige Funktionen mit f(a) > g(a) und f(b) < g(b). Zeigen Sie, dass es einen Punkt $c \in (a, b)$ gibt mit f(c) = g(c).

(ii) Zeige, dass die Funktion $f(x) = \frac{1}{x}$ auf dem Intervall [1, 2] gleichmäßig stetig ist.

