ISMRM & ISMRT ANNUAL MEETING & EXHIBITION

Fundamentals of Deep Learning

Efrat Shimron

Deep learning is everywhere!

This image is licensed under CC BY-SA 3.0; changes made

Image by Jin Clyde Monge

Mindy-support.com

http://axti.radboudimaging.nl/

Nvidia.com

Outline

- 1. Neural Networks: Basics
- 2. Convolutional Neural Networks
- 3. Applications in MRI
- 4. Challenges and limitations

Artificial neuron

Why non-linearity?

Can we separate the two groups?

Without non-linearity

With non-linearity

Activation functions

$$f(z) = \frac{1}{1 + e^{-z}}$$

$$f(z) = \max(0, z)$$

$$f(z) = \begin{cases} z & z > 0 \\ az & z \le 0 \end{cases}$$

Artificial neuron

$$Y = f\left(\sum(input * weight) + bias\right)$$

Simple neural networks

Simple neural networks

Setting up the problem

https://www.cs.toronto.edu/~kriz/cifar.html

Setting up the problem

Database of input-output pairs

• ImageNet, CIFAR10, ...

Initial processing steps

• subtract mean, normalize, ...

Training: Loss functions

Cross-entropy loss - useful for classification

$$\mathcal{L}_{CE} = -\sum_{i=1}^{n} t_i \log(p_i)$$

 $\mathcal{L}_{CE} = -\sum_{i=1}^{n} t_i \log(p_i)$ i=1,...,n class t_i true probability of the label p_i predicted probability

Mean Squared Error (MSE) loss - useful for regression

$$\mathcal{L}_{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$
 There are many other loss functions!

MAE, VGG loss, ...

backpropagation

 ∂w_{ij}

Loss (\mathcal{L})

Predicted

39% cat

27% dog

34% hat

True

100% cat

0% dog

0% hat

Backpropagation:

Computes the gradient of the loss w.r.t. each weight

Updates the weights to minimize the loss

Split data: train / validation / test

For example: 70% / 15% / 15%

What's the difference between validation and test?

- Validation data
 - Used during training for model evaluation
 - Enables hyperparameter & architecture optimization
- Test data
 - Should not be accessed during training!

How to avoid overfitting:

- Early stopping
- Data augmentation rotations, scaling etc.

How to avoid overfitting:

- Early stopping
- Data augmentation rotations, scaling etc.
- Dropout
 - Some layers are randomly dropped

How to avoid overfitting:

- Early stopping
- Data augmentation rotations, scaling etc.
- Dropout
- Regularization

$$\mathcal{L} = Error(y, \tilde{y}) + \mathcal{R}(w)$$

• L1 regularization

$$\mathcal{L} = Error(y, \tilde{y}) + \lambda \sum_{i} |w_{i}|$$

• L2 regularization

$$\mathcal{L} = Error(y, \tilde{y}) + \lambda \sum_{i} w^{2}$$

Test

- Test data new input
- No dropout

Outline

- 1. Neural Networks: Basics
- 2. Convolutional Neural Networks
- 3. Applications in MRI
- 4. Challenges and limitations

Why CNNs?

- Fully connected neural networks don't scale well to large images
 - Typical image: 300x200 pixels x 3 channels (RGB)
 - Full connectivity computationally demanding, wasteful
- CNNs are more suited to images

Regular network

• Full connectivity

CNN

- Connections to only a few neurons
- Layers have depths (3D structure)
- Computationally efficient
- Suitable to high-dimensional data

Convolutional Neural Networks (CNNs)

Conv layer

- Computes a sliding dot-product of the input and the kernel (weights matrix)
- Produces a feature map

Conv layer

Futurology https://www.youtube.com/watch?v=pj9-rr1wDhM

Conv layer

- ReLU layer
 - Element-wise activation function
- Pooling layer
 - Down-sampling operation
 - Example: max pooling
 - Benefit: translation invariance
- Fully Connected layer

Repeated several times

S. Saha towardsdatascience.com

Basic architectures for medical imaging

ResNet

- Very deep NNs are hard to train due to vanishing gradients
- Introduced
 - Residual blocks
 - Skips connections
- Enables training very deep networks
 - → excellent performance (SoTA in 2015)

Basic architectures for medical imaging

U-NET

- CNN, encoder-decoder
- Down-sampling & up-sampling
- Skip connections
- Developed for segmentation
- Highly popular

Ronneberger, et al. "U-net: Convolutional networks for biomedical image segmentation." MICCAI 2015

There are many other architectures!

- AlexNet (2012)
- Recurrent Neural Networks (RNNs)
- Long Short Term Memory (LSTM)
- VGG
- AutoEncoders
- Generative Adversarial Networks (GANs)
- Diffusion models
- Vision Transformers

Outline

- 1. Neural Networks: Basics
- 2. Convolutional Neural Networks
- 3. Applications in MRI
- 4. Challenges and limitations

Image reconstruction

- Aim: scan acceleration by reconstruction from sub-sampled k-space data
- Early DL approaches: data-driven, image-to-image
- Current focus: physics-guided/model-based iterative methods
 - Unrolled network:

Segmentation

Brain tumor segmentation using CNNs [1]

K2S Challenge: from 8x under-sampled k-space to segmentation[2]

Other applications

- Image registration
- Motion correction
- Automated pulse sequence design
- Protocol optimization
- Contrast synthesis
- Quantitative MRI
- Classification

Kustner et al., IEEE TMI 2021

Chaithya & Ciuciu, Bioengineering, 2023

Reviews: Lundervold, et al. Zeitschrift für Medizinische Physik (2019); Mazurowski et al., JMRI (2019); Alzubaidi et al. Journal Bf big Data (2021); Hammernik et al., Sig Proc. Mag. (2023) Spieker et al. arXiv (2023)

Outline

- 1. Neural Networks: Basics
- 2. Convolutional Neural Networks
- 3. Applications in MRI
- 4. Challenges and limitations

Limited data availability

- DL is data-hungry, but training data are scarce
- Common workaround: "off-label" data use
 - Biased, overly optimistic results

Limited data availability

- DL is data-hungry, but training data are scarce
- Common workaround: "off-label" data use
 - Biased, overly optimistic results
 - Algorithmic failure for real-world data

Limited data availability

• DL is data-hungry, but training data are scarce

Practical Solutions

- Augmentation
- Transfer learning
- Pre-training on other data & fine-tuning
- Training on synthesized/simulated data
- If using processed data: report the preprocessing

Deep Learning

Hallucinations

- DL can produce *hallucinated structures* which look realistic hard to detect!
- Open problem
- Uncertainty estimation may help

2nd FastMRI challenge

Muckley et al., arXiv, 2020

Summary

Deep learning is very powerful

Many opportunities for novelty and breakthroughs

However, problems must be addressed!

My Lab has Open positions!

Team

Technion

Join us

Our recent publications

Review paper

Deep learning for accelerated and robust MRI reconstruction

Reinhard Heckel, Mathews Jacob, Akshay Chaudhari, Or Perlman, Efrat Shimron, (MAGMA 2024)

K-band: Self-supervised MRI Reconstruction via Stochastic
Gradient Descent over K-space Subsets

Frederic Wang, Han Qi, Alfredo De Goyeneche, Michael Lustig, Efrat Shimron (arXiv 2023)

Implicit data crimes: Machine learning bias arising from misuse of public data

Efrat Shimron, Jonathan Tamir, Ke Wang, Michael Lustig