0.1 牛顿插值多项式

0.1.1 牛顿均差插值多项式

定义 0.1 (均差)

称 $f[x_0,x_k]=\frac{f(x_k)-f(x_0)}{x_k-x_0}$ 为函数 f(x) 关于点 x_0,x_k 的**一阶均差**. $f[x_0,x_1,x_k]=\frac{f[x_0,x_k]-f[x_0,x_1]}{x_k-x_1}$ 称为 f(x) 的**二阶均差**. 一般地, 称

$$f[x_0, x_1, \cdots, x_k] = \frac{f[x_0, \cdots, x_{k-2}, x_k] - f[x_0, x_1, \cdots, x_{k-1}]}{x_k - x_{k-1}}$$
(1)

为 f(x) 的 k 阶均差 (均差也称为差商).

定理 0.1 (均差的基本性质)

(1) k 阶均差可表示为函数值 $f(x_0), f(x_1), \dots, f(x_k)$ 的线性组合, 即

$$f[x_0, x_1, \cdots, x_k] = \sum_{i=0}^k \frac{f(x_i)}{(x_i - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_k)}.$$
 (2)

这个性质也表明均差与节点的排列次序无关, 称为均差的对称性, 即

$$f[x_0, x_1, \dots, x_k] = f[x_1, x_0, x_2, \dots, x_k] = \dots = f[x_1, \dots, x_k, x_0]$$

(2)

$$f[x_0, x_1, \cdots, x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in [a, b].$$
 (4)

证明

- (1) 利用数学归纳法证明即可.
- (2) 由性质(1)及(1)式立得.
- (3) 反复使用 Rolle 定理证明即可.

表 1: 均差表

x_k	$f(x_k)$	一阶均差	二阶均差	三阶均差	四阶均差
x_0	$f(x_0)$				
x_1	$f(x_1)$	$\underline{f[x_0,x_1]}$			
x_2	$f(x_2)$	$f[x_1,x_2]$	$\underline{f[x_0,x_1,x_2]}$		
<i>x</i> ₃	$f(x_3)$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$\underline{f[x_0,x_1,x_2,x_3]}$	
<i>x</i> ₄	$f(x_4)$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0, x_1, x_2, x_3, x_4]$
÷	:	:	:	i :	:

定理 0.2 (牛顿均差插值多项式)

若已知 f 在插值点 x_i $(i=0,1,\cdots,n)$ 上的值为 $f(x_i)$ $(i=0,1,\cdots,n)$, 记 f 的 n 次插值多项式为 $P_n(x)$, 且满 足条件

$$P_n(x_i) = f(x_i), \quad i = 0, 1, \dots, n.$$
 (5)

则一次插值多项式可表示为

$$P_1(x) = f(x_0) + f[x_0, x_1](x - x_0),$$

二次插值多项式可表示为

$$P_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1).$$

将x看成[a,b]上一点,可得

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$
$$+ f[x_0, x_1, \dots, x_n](x - x_0) + \cdots + f[x$$

其中n次插值多项式和余项分别为

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$
$$+ f[x_0, x_1, \dots, x_n](x - x_0) + \cdots + (x_0, x_1, \dots, x_n)(x -$$

$$R_n(x) = f(x) - P_n(x) = f[x, x_0, \dots, x_n]\omega_{n+1}(x),$$
 (7)

其中 $\omega_{n+1}(x)$ 由(??) 式定义. 我们称 $P_n(x)$ 为牛顿均差插值多项式. 系数就是均差表中加横线的各阶均差.

 $\dot{\mathbf{z}}$ (7) 式为插值余项, 由插值多项式唯一性知, 它与(\mathbf{z})式是等价的, 事实上, 利用均差与导数关系式 (\mathbf{z}) 可由 (\mathbf{z}) 式 推出(\mathbf{z})式. 但 (\mathbf{z}) 式更有一般性, 它对 \mathbf{z} 是由离散点给出的情形或 \mathbf{z} 导数不存在时均适用.

注 牛顿插值比拉格朗日插值计算量省,且便于程序设计.

证明 借助均差的定义,一次插值多项式可表示为

$$P_1(x) = P_0(x) + f[x_0, x_1](x - x_0) = f(x_0) + f[x_0, x_1](x - x_0),$$

而二次插值多项式可表示为

$$P_2(x) = P_1(x) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

= $f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1).$

实际上, 根据均差定义, 将x看成 [a,b] 上一点, 可得

$$f(x) = f(x_0) + f[x, x_0](x - x_0),$$

$$f[x, x_0] = f[x_0, x_1] + f[x, x_0, x_1](x - x_1),$$

:

$$f[x, x_0, \dots, x_{n-1}] = f[x_0, x_1, \dots, x_n] + f[x, x_0, \dots, x_n](x - x_n).$$

只要把后一式依次代入前一式,就得到

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$

$$+ f[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1})$$

$$+ f[x, x_0, \dots, x_n]\omega_{n+1}(x) = P_n(x) + R_n(x),$$

其中

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$

$$+ f[x_0, x_1, \dots, x_n](x - x_0) + \cdots + (x_0, x_{n-1}),$$

$$R_n(x) = f(x) - P_n(x) = f[x, x_0, \dots, x_n]\omega_{n+1}(x),$$
(8)

其中 $\omega_{n+1}(x)$ 由(??) 式定义.

由 (8) 式确定的多项式 $P_n(x)$ 显然满足插值条件 (5), 且次数不超过 n, 若记

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) + \dots + a_n(x - x_{n-1}),$$

则其系数为

$$a_k = f[x_0, x_1, \dots, x_k], \quad k = 0, 1, \dots, n.$$

例题 0.1 给出 f(x) 的函数表 (见表 2-2), 求 4 次牛顿插值多项式, 并由此计算 f(0.596) 的近似值. 解 首先根据给定函数表造出均差表.

表 2: 函数及均差表

0.40	0.410 75					
0.55	0.578 15	<u>1.116 00</u>				
0.65	0.696 75	1.186 00	0.280 00			
0.80	0.888 11	1.275 73	0.358 93	0.197 33		
0.90	1.026 52	1.384 10	0.433 48	0.213 00	0.031 34	
1.05	1.253 82	1.515 33	0.524 93	0.228 63	0.031 26	-0.00012

从均差表看到 4 阶均差近似常数, 故取 4 次插值多项式 $P_4(x)$ 做近似即可.

$$P_4(x) = 0.41075 + 1.116(x - 0.4) + 0.28(x - 0.4)(x - 0.55)$$
$$+ 0.19733(x - 0.4)(x - 0.55)(x - 0.65)$$
$$+ 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8),$$

于是

$$f(0.596) \approx P_4(0.596) = 0.63192,$$

截断误差

$$|R_4(x)| \approx |f[x_0, x_1, \cdots, x_5]\omega_5(0.596)| \leq 3.63 \times 10^{-9}.$$

这说明截断误差很小, 可忽略不计.

此例的截断误差估计中,5 阶均差 $f[x,x_0,\cdots,x_4]$ 用 $f[x_0,x_1,\cdots,x_5]=-0.00012$ 近似. 另一种方法是取 x=0.596, 由 $f(0.596)\approx 0.63192$, 可求得 $f[x,x_0,\cdots,x_4]$ 的近似值, 再根据均差的定义, 可求得 $[R_4(x)]$ 的近似.

0.1.2 差分形式的牛顿插值多项式

定义 0.2

n 个节点 x_0, x_1, \dots, x_n 称为**等距节点**,即 $x_k = x_0 + kh$ $(k = 0, 1, \dots, n)$,这里的 h 称为**步长**. 设 x_k 点的函数值为 $f_k = f(x_k)$ $(k = 0, 1, \dots, n)$,称 $\Delta f_k = f_{k+1} - f_k$ 为 x_k 处以 h 为步长的**一阶 (向前) 差分**. 类似地称 $\Delta^2 f_k = \Delta f_{k+1} - \Delta f_k$ 为 x_k 处的**二阶差分**. 一般地,称

$$\Delta^{n} f_{k} = \Delta^{n-1} f_{k+1} - \Delta^{n-1} f_{k} \tag{9}$$

为 x_k 处的n**阶差分**. 为了表示方便,再引入两个常用算子符号:

$$If_k = f_k, \quad Ef_k = f_{k+1},$$

I 称为不变算子,E 称为步长为 h 的位移算子.

由给定函数表计算各阶差分可由以下形式差分表给出.

定理 0.3

设 n 个节点 x_0, x_1, \dots, x_n , 步长为 h, x_k 点的函数值为 $f_k = f(x_k)$ $(k = 0, 1, \dots, n)$, 则

$$\Delta f_k = f_{k+1} - f_k = \mathbf{E} f_k - \mathbf{I} f_k = (\mathbf{E} - \mathbf{I}) f_k,$$

$$\Delta^{n} f_{k} = (E - I)^{n} f_{k} = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} E^{n-j} f_{k} = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} f_{n+k-j},$$
(10)

(10) 式表示各阶差分均可用函数值给出.

反之也可用各阶差分表示函数值如下

$$f_{n+k} = \sum_{j=0}^{n} \binom{n}{j} \Delta^j f_k. \tag{11}$$

还可导出均差与差分的关系:

$$f[x_k, \dots, x_{k+m}] = \frac{1}{m!} \frac{1}{h^m} \Delta^m f_k, \quad m = 1, 2, \dots, n.$$
 (12)

还可得到差分与导数的关系:

$$\Delta^n f_k = h^n f^{(n)}(\xi), \quad \not \pm \psi \xi \in (x_k, x_{k+n}).$$
(13)

证明 由定义 0.2可推出:

$$\Delta f_k = f_{k+1} - f_k = \mathbf{E} f_k - \mathbf{I} f_k = (\mathbf{E} - \mathbf{I}) f_k,$$

$$\Delta^{n} f_{k} = (E - I)^{n} f_{k} = \sum_{i=0}^{n} (-1)^{j} {n \choose j} E^{n-j} f_{k} = \sum_{i=0}^{n} (-1)^{j} {n \choose j} f_{n+k-j},$$

其中 $\binom{n}{j} = \frac{n(n-1)\cdots(n-j+1)}{j!}$ 为二项式展开系数.

$$\Delta f_k = f_{k+1} - f_k = f_{k+1} - \mathrm{I} f_k \Longrightarrow f_{k+1} = \mathrm{E} f_k = (\mathrm{I} + \Delta) f_k,$$

$$f_{n+k} = \mathbf{E}^n f_k = (\mathbf{I} + \Delta)^n f_k = \left[\sum_{j=0}^n \binom{n}{j} \Delta^j \right] f_k,$$

于是

$$f_{n+k} = \sum_{j=0}^{n} \binom{n}{j} \Delta^{j} f_{k}.$$

根据均差的定义就可导出均差与差分的关系:

$$\begin{split} f[x_k,x_{k+1}] &= \frac{f_{k+1} - f_k}{x_{k+1} - x_k} = \frac{\Delta f_k}{h}, \\ f[x_k,x_{k+1},x_{k+2}] &= \frac{f[x_{k+1},x_{k+2}] - f[x_k,x_{k+1}]}{x_{k+2} - x_k} = \frac{1}{2h^2} \Delta^2 f_k. \end{split}$$

一般地,有

$$f[x_k, \dots, x_{k+m}] = \frac{1}{m!} \frac{1}{h^m} \Delta^m f_k, \quad m = 1, 2, \dots, n.$$

由 (12) 式及(4)式就可得到差分与导数的关系:

$$\Delta^n f_k = h^n f^{(n)}(\xi), \quad \sharp \, \exists \, \xi \in (x_k, x_{k+n}).$$

定理 0.4

若已知 n+1 阶可导函数 f 在步长为 h 的等距插值点 x_i $(i=0,1,\cdots,n)$ 上的值为 $f(x_i)$ $(i=0,1,\cdots,n)$, 记 n 次插值多项式 $P_n(x)$ 满足条件

$$P_n(x_i) = f(x_i), \quad i = 0, 1, \dots, n.$$

令 $x = x_0 + th$,则插值多项式可表示为

$$P_n(x_0 + th) = f_0 + t\Delta f_0 + \frac{t(t-1)}{2!} \Delta^2 f_0 + \dots + \frac{t(t-1)\cdots(t-n+1)}{n!} \Delta^n f_0, \tag{14}$$

(14)式称为牛顿前插公式. 其余项为

$$R_n(x) = \frac{t(t-1)\cdots(t-n)}{(n+1)!}h^{n+1}f^{(n+1)}(\xi), \quad \xi \in (x_0, x_n).$$
 (15)

证明 在牛顿插值公式 (6) 中, 用 (12) 式的差分代替均差, 并令 $x = x_0 + th$, 则得

$$P_n(x_0 + th) = f_0 + t\Delta f_0 + \frac{t(t-1)}{2!}\Delta^2 f_0 + \dots + \frac{t(t-1)\cdots(t-n+1)}{n!}\Delta^n f_0,$$

由(7)式和(4)式得其余项为

$$R_n(x) = \frac{t(t-1)\cdots(t-n)}{(n+1)!}h^{n+1}f^{(n+1)}(\xi), \quad \xi \in (x_0, x_n).$$

例题 0.2 给出 $f(x) = \cos x$ 在 $x_k = kh$, $k = 0, 1, \dots, 5$, h = 0.1 处的函数值, 试用 4 次牛顿前插公式计算 f(0.048) 的 近似值并估计误差.

解 先构造差分表 (见表 3) 并用牛顿前插公式 (14) 求 f(0.048) 的近似值.

表 4: 差分表

x_k	$f(x_k)$	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$	$\Delta^5 f$
0.00	1.00000					
		-0.00500				
0.10	0.99500		-0.00993			
		-0.01493		0.00013		
0.20	0.98007		-0.00980		0.00012	
		-0.02473		0.00025		-0.00002
0.30	0.95534		-0.00955		0.00010	
		-0.03428		0.00035		
0.40	0.92106		-0.00920			
		-0.04348				
0.50	0.87758					

取
$$x = 0.048$$
, $h = 0.1$, $t = \frac{x - 0}{h} = 0.48$, 得
$$P_4(0.048) = 1.00000 + 0.48 \times (-0.00500) + \frac{(0.48)(0.48 - 1)}{2}(-0.00993) + \frac{1}{3!}(0.48)(0.48 - 1)(0.48 - 2)(0.00013) + \frac{1}{4!}(0.48)(0.48 - 1)(0.48 - 2)(0.48 - 3)(0.00012) = 0.99885 \approx \cos 0.048$$
,

由 (15) 式可得误差估计为

$$|R_4(0.048)| \le \frac{M_5}{5!} |t(t-1)(t-2)(t-3)(t-4)| h^5 \le 1.5845 \times 10^{-7},$$

其中 $M_5 = |\sin 0.6| \le 0.565$.