Project Design Phase-II Technology Stack (Architecture & Stack)

Date	27 June 2025 LTVIP2025TMID41438	
Team ID		
Project Name	GrainPalette – A Deep Learning Odyssey in Ric Type Classification Through Transfer Learning	
Maximum Marks	4 Marks	

Technical Architecture:

Example: Rice Type Classification Using Advanced Machine Learning Techniques

Table-1: Components & Technologies:

S.No	Component	Description	Technology	
1	User Interface	Simple UI (optional web frontend)	HTML, CSS, Streamlit / Flask (optional)	
2	Application Logic-1	Image preprocessing (resizing, normalization)	Python (OpenCV, NumPy, PIL)	
3	Application Logic-2	Model training and prediction using CNN	Python (TensorFlow, Keras, MobileNetv4)	
4	Application Logic-3	Evaluation metrics and display	Seaborn, Matplotlib	
5	Database	Local image dataset	Folder-based storage, Pandas metadata	
6	Cloud Database	(Not used)	_	
7	File Storage	Dataset stored and accessed locally	Local filesystem / Google Drive (in Colab)	
8	External API-1	(Not used)	_	
9	External API-2	(Not used)	_	
10	Machine Learning Model	Identify rice grain type using image classification	MobileNetv4 + Transfer Learning (CNN)	
11	Infrastructure	Executed in browser or cloud environment	Google Colab, Jupyter Notebook, Streamlit	

Table-2: Application Characteristics:

S.No	Characteristic	Description	Technology
1	Open-Source Frameworks	Used for model development and training	TensorFlow, Keras, OpenCV, NumPy, Pandas
2	Security Implementations	No external security needed (offline/local analysis)	Not applicable (for local use)
3	Scalable Architecture	Can be deployed with REST API via Flask for web integration	Flask / Streamlit
4	Availability	Highly available via Colab or cloud-hosted deployment	Google Colab, Render, Heroku (optional)
5	Performance	Lightweight model optimized for fast real-time predictions using MobileNet	TensorFlow (MobileNetv4) + GPU (optional)