

Probabilidade e Estatística

Medidas de dispersão

Prof. Ruana Maíra Schneider ruana.Schneider@farroupilha.ifrs.edu.br

Medidas de dispersão

Utilizadas para avaliar o grau de variabilidade dos valores em torno da média.

As medidas de dispersão (variabilidade) indicam se os valores estão próximos ou afastados uns dos outros.

Exemplo: calcule as médias aritméticas. Qual conjunto possui maior dispersão?

A: 20, 20, 20, 20, 20

B: 15, 10, 20, 25, 30

C: 17, 18, 20, 22, 23

Amplitude Total: indica a diferença entre o maior e o menor valor de um conjunto de dados (também chamado de intervalo ou "range"). Analisa somente os extremos.

$$Amp = x_{m\acute{a}x} - x_{min}$$

Exemplo: calcule a amplitude dos conjuntos de dados

$$A = \{2, 7, 5, 11, 15, 20\}$$

$$B = \{19, 14, 20, 25, 18, 30\}$$

Desvio Médio Absoluto: representa o afastamento médio dos pontos em relação à média.

$$DMA = \frac{\sum_{i=1}^{\infty} |x_i - \bar{x}|}{n}$$

 x_i é o elemento do conjunto;

 \bar{x} é a média aritmética (as vezes representada por $\bar{\mu}$ para População)

n é a quantidade de elementos no conjunto (população)

Ou seja, é uma "média aritmética" entre a distância de cada valor à média dos dados

OBSERVAÇÕES:

1) Quando se trabalha com uma <u>amostra</u> de uma população usa-se n-1 elementos:

$$DMA \ amostral = \frac{\sum_{i=1}^{\infty} |x_i - \bar{x}|}{n-1}$$

- 2) O desvio médio absoluto trabalha com todos os valores da série, mas também é sensível aos extremos.
- 3) No Excel = DESVIO.MÉDIO()

Google e LIBRE OFFICE: =desv.médio()

Exemplo: calcule o desvio médio dos conjuntos

A: 20, 20, 20, 20, 20

B: 15, 10, 20, 25, 30

C: 17, 18, 20, 22, 23

	A
Xi	
20	
20	
20	
20	
20	

	В
Xi	
15	
10	
20	
25	
30	

	C
хi	
17	
18	
20	
22	
23	

Desvio Médio Absoluto para dados agrupados :

multiplicamos cada desvio pela sua frequência absoluta.

$$DMA = \frac{\sum_{i=1}^{\infty} |x_i - \bar{x}| \cdot f_i}{n}$$

 x_i é o elemento do conjunto;

 \bar{x} é a média aritmética

n é a quantidade de elementos no conjunto (população)

*(n-1 para amostra)

 f_i = frequência absoluta do valor x_i

Ou seja, é uma "média aritmética ponderada" das distância de cada valor à média dos dados

Exemplo (aula anterior):

	Fi	x- média	x- média * Fi
11	2		
12	5		
13	6		
14	7		
15	3		
16	2		
17	1		

$$\bar{x} \approx 13,53$$
 $n = 26$

DMA para dados agrupados em classe:

Usamos o ponto médio de cada classe no lugar de x_i cada desvio pela sua frequência absoluta.

$$DMA = \frac{\sum_{i=1}^{\infty} |PM_i - \bar{x}| \cdot f_i}{n}$$

 PM_i é o ponto médio da classe;

 \bar{x} é a média aritmética

n é a quantidade de elementos no conjunto (População)

*(n-1 para amostra)

Exemplo:

Classe	Fi	PMi	Pmi-média	Pmi-média *Fi
0 10	2			
10 20	1			
20 30	5			
30 40	8			
40 50	4			

$$\bar{x} = 30.5$$

$$n = 20$$

Variância

É a média aritmética dos quadrados das distâncias

$$Var = \sigma^2 = \frac{\sum_{i=1}^{\infty} (x_i - \bar{x})^2}{n}$$

No exemplo anterior, basta criar uma nova coluna, $(xi - \bar{x})^2$ e fazer o seu somatório,

Exemplo: calcule a variância dos conjuntos

A: 20, 20, 20, 20, 20

B: 15, 10, 20, 25, 30

 $\bar{x}=20$

C: 17, 18, 20, 22, 23

	Α	
Xi		
20	0	
20	0	
20	0	
20	0	
20	0	

	В	
Xi		
15	5	
10	10	
20	0	
25	5	
30	10	

$$DMA = 0$$

$$DMA = \frac{30}{5} = 6$$

$$DMA = \frac{10}{5} = 2$$

Dicas (utilizando todo o conjunto de dados):

```
EXCEL:
=VAR.A() ----- Variância de amostra (n-1)
=VAR.P( ) -----Variância de população (n)

Para Google Planilhas: Libre office:
=VARA( ) =VAR
=VARP( )
```

* Verifique os cálculos anteriores

Variância para dados agrupadas

Procedemos de forma semelhante ao cálculo do Desvio médio, utilizando a frequência de cada valor (para categorias):

$$\sigma^2 = \frac{\sum_{i=1}^{\infty} (x_i - \bar{x})^2 * fi}{n}$$

E o ponto médio de cada classe, no caso de tabelas com classe:

$$\sigma^2 = \frac{\sum_{i=1}^{\infty} (PM_i - \bar{x})^2 * fi}{n}$$

Exemplo: Calcular a variância nos exemplos anteriores com dados agrupados em categoria e Classe

(exemplo em planilhas)

Exemplo: (tabela de freq. Por categoria)

	Fi	x-média	x-média ^2
11	2		
12	5		
13	6		
14	7		
15	3		
16	2		
17	1		

$$\bar{x} \approx 13,53$$
 $n = 26$

Exemplo (tabela de freq. por classe):

Classe	Fi	PMi	
0 10	2		
10 20	1		
20 30	5		
30 40	8		
40 50	4		

$$\bar{x} = 30,5$$

$$n = 20$$

Desvio padrão

É a raiz quadrada da variância e pode, então, ser usado para comparações com a média. É a medida de dispersão mais usada na estatística porque possui a mesma unidade da média.

$$\sigma = \sqrt{Var} = \sqrt{\frac{\sum_{i=1}^{\infty} (x_i - \bar{x})^2}{n}}$$

- =DESVPAD.A() ---desvio padrão para amostra (n-1)
- =DESVPAD.P () --- desvio padrão para população (n)

Exemplo:

$$\bar{x} = 20$$

	Α	
Xi		
20	0	0
20	0	0
20	0	0
20	0	0
20	0	0

	В	
Xi		
15	5	25
10	10	100
20	0	0
25	5	25
30	10	100

	С	
xi		
17	3	9
18	2	4
20	0	0
22	2	4
23	3	9

$$DMA = 0$$
$$Var = 0$$

$$DMA = \frac{30}{5} = 6$$

$$Var = \frac{250}{5} = 50$$

$$DMA = \frac{10}{5} = 2$$

$$Var = \frac{26}{5} = 5.2$$

Exemplo:

$$\bar{x} = 20$$

	Α	
Xi		
20	0	0
20	0	0
20	0	0
20	0	0
20	0	0

	В	
Xi		
15	5	25
10	10	100
20	0	0
25	5	25
30	10	100

	С	
хi		
17	3	9
18	2	4
20	0	0
22	2	4
23	3	9

$$DMA = 0$$

$$Var = 0$$

$$\sigma = 0$$

$$DMA = \frac{30}{5} = 6$$

$$Var = \frac{250}{5} = 50$$

$$\sigma = \sqrt{50} \approx 7,07$$

$$DMA = \frac{10}{5} = 2$$

$$Var = \frac{26}{5} = 5.2$$

$$\sigma = \sqrt{5.2} \approx 2.28$$

Exemplo: Calcular o desvio padrão para os exemplos anteriores com dados agrupados em categoria e Classe

(exemplo em planilha)

Coeficiente de Variação CV

Usado para comparar variações de unidades diferentes

$$CV = \frac{desvio\ padrão}{m\'edia} \times 100\%$$

$$CV = \frac{\sigma}{\bar{x}} \times 100\%$$

Classificação

Baixa dispersão: CV ≤ 15%;

Média dispersão: 15% < CV < 30% e

Alta dispersão: CV ≥ 30%

Exemplo: Numa empresa, o salário médio dos homens é de R\$ 4.000,00, com desvio padrão de R\$ 1.500,00, e o das mulheres é em média de R\$ 3.000,00, com desvio padrão de R\$ 1.200,00. Qual o coeficiente de variação para os homens? E para as mulheres?

No Excel:

```
=DESVIO.MÉDIO()
=VAR.A() ----- Variância de amostra (n-1)
=VAR.P() ----- Variância de população (n)
=DESVPAD.A() ---- desvio padrão para amostra (n-1)
=DESVPAD.P() ---- desvio padrão para população (n)
```

Google:

- =STDEVA() desvio padrão para amostra (n-1)
- =STDEVP() desvio padrão para população (n)

