COMS W3261

Computer Science Theory

Lecture 5

Properties of Regular Expressions

Alexander Roth

$$2014 - 09 - 17$$

Overview

- Algebraic laws can be used to simplify regular expressions.
- The pumping lemma for regular languages can be used to prove that some languages are not regular.
- The set of regular languages is closed under many common operations such as union, intersection, complement and reversal.

1 Algebraic Laws for Regular Expressions

- Algebraic laws can be used to simplify regular expressions
- Here are some of the most important algebraic identities for regular expressions
 - Union is commutative: L + M = M + L
 - Union is associative: (L+M)+N=L+(M+N)
 - Concatenation is associative: (LM)N = L(MN)
 - $-\varnothing$ is the identity for union: $\varnothing + L = L + \varnothing = L$
 - $-\epsilon$ is the identity for concatenation: $\epsilon L = L\epsilon = L$
 - \varnothing is the annihilator for concatenation: $\varnothing L = L\varnothing = \varnothing$
 - Concatenation left distributes over union: L(M+N) = LM + LN
 - Concatenation right distributes over union: (M+N)L = ML + NL
 - Union is idempotent: L + L = L
 - $-L^{**} = L^*$
 - $\varnothing^* = \epsilon$
 - $-\epsilon^* = \epsilon$

1.1 Class Notes

Simplifying regular expressions:

$$\epsilon + a + (\epsilon + a)(\epsilon + a)^*(\epsilon + a)$$

$$\epsilon + a + (\epsilon + a)a^*(\epsilon + a)$$

$$\epsilon + a + a^*$$

$$a^*$$

2 The Pumping Lemma for Regular Languages

- The pumping lemma for regular languages states that for every nonfinite regular language L, there exists a constant n that depends on L such that for all w in L with $|w| \geq n$, there exists a decomposition of w into xyz such that
 - 1. $y \neq \epsilon$
 - 2. $|xy| \leq n$, and
 - 3. for all $k \geq 0$, the string xy^kz is in L.
- Proof: See HMU, p. 129.
- One important use of the pumping lemma is to prove some languages are not regular.
- Example: The language L consisting of all strings of a's and b's of the form a^ib^i , $i \geq 0$, is not regular.
 - The proof will be by contradiction. Assume L is regular. Then by the pumping lemma there is a constant n associated with L such that for all w in L with $|w| \ge n$, w can be written as xyz such that
 - 1. $y \neq \epsilon$
 - 2. $|xy| \leq n$, and
 - 3. for all $k \geq 0$, the string xy^kz is in L.
 - Since $|xy| \le n$, xy = a, for some $0 < m \le n$.
 - Setting k=0, condition (3) of the pumping lemma says xz must also be in L.
 - But xz is of the form a^pb^n , where p < n.
 - This contradicts the conclusion that xz must be in L.

3 Closure Properties of Regular Languages

- A closure property for a family of languages is a theorem that says if we apply a certain operation to the languages in the family, then the resulting language will also be in the family. For example, if we take the union of two regular languages L and M, then the language $L \cup M$ is also regular. We therefore say the regular languages are closed under the operation of union.
- We can show that the regular languages are closed under the following operations:
 - union, intersection, complement, difference
 - concatenation, Kleene closure
 - reversal
 - homomorphism, inverse homomorphism
- These closure properties can be used to show that some languages are regular.
- These closure properties combined with the pumping lemma can be used to show some languages are not regular.

4 Practice Problems

- 1. Show that the language consisting of all strings of balanced parentheses is not regular.
- 2. Prove that the language consisting of all strings of a's and b's that read the same forwards as backwards is not regular.
- 3. Prove that the language $L = \{w \, | \, w = a^i b^i \text{ where } i \text{ is not equal to } j\}$ is not regular.

5 Reading Assignment

• HMU: Sects. 3.4, 4.1, 4.2