OXFORD

Page No. / 63 Date. / 25 | 05 | 23

EXPERIMENT NO-13
TITLE: Design of Arithmetic-Logic Unit (ALV) using VHDL CODE
OBJECTIVE! To design a Arithmetic-logic Unit (ALW) using VHDI CODE
Software Used: Xilinx ISE Project Novigator
Software tools used: ISE 14.7 Simulator
THEORY: An arithmetic logic Unit (ALU) is a combinational
operations on integer binary numbers. This is in Contrast
point numbers, it is a fundamental building block of
processing Unit (CPV) of computer, fPVs and graphis
The inputs to an ALV are the data to be
operated on called operands and a Code indicating the operation to be performed. The ALV's output is the result of performed operation

Expression No-15

Desiry grown (BIA) that ongot off and that for the rest during

per sumbice i it is a fundamental best of best ding teles a arrang tripe of computary in cludes i the center presents of computary if its establishment (Color) of computary if is established by each contract of computary in the contract of computary in the contract of c

The inputs to an Alvane the same to be

to entry on called experiences and a code indicatory the appears

HALLOWER OF THE LAST

OXFORD

Page No. / 64 Date. /

VIIDL CODE for ALU	
Library TREE;	600
use affe, 970, LoGac, 1164, ALL',	
USE THE E.STD LOGIC UNSTONED ALL;	1-7
uce ice. Numeric STDAU;	
entity ALU is	
generic	
Constant N! natural := 1	
3)	
Port	
A, B: in STD_LOGIC_VECTOR (7 down to 0);	
ALUSEL ! in STP LOGIC VECTOR (3 down to 0);	
ALV_Out: Out STD_LOGIC_VECTOR (7 downto 0);	
Carryout: out Std logic	
;;	
end ALV	
architecture Behavioral of ALU is	
7	
signal ALU-Result: Std logic-Vector (7downto 0);	
signal tunp: Std_togic_vector (8 down to 0);	
begin	
process (A, B, ALU_Sel)	

Expt.No.

Page No. / 65 Date. /

```
begin
         case (ALU_Sel) is
          when "0000" =>
          ALV RESULT 3= A+B;
          when "0001"=>
          ALU_Result <= A-B;
          when 400104 =>
          ALV_Result <= Std_logic_vector Lto_unsigned (1 to_integer (unsigned (A))
                                      * to_integer (unsigned (B))) 8));
          when "0020"=>
           ALU_Result 12 Std_logic_vector (to_unsigned Lto_integer (unsigned
                                        (A)) / to_integer (unsigned(B)), 8));
          when 401004 =>
          ALV-Result for Std_logic_vector (unsigned (A) slLN);
          when " 0101" =>
          ALV-Result (= Std_logic-Vector (unsigned (A) SrlN);
          When "0910" 2>
           ALU-Result 42 Std_logic_Vector (unsigned (A) rol N);
           when " 0111"=>
           ALU_Result <= Std_logic_vector (unsigned (A) for N);
           when 41000 "=>
           ALU-Result So A and B;
           when 4 100 14 =)
           ALU_Result L= AOrB;
OXLOUD
           when 4 10104 =>
            ALU-Result (= A XOr B)
```

Page No. / 66 Date. /

		Date.
when "1011" =>		
ALV_Result <= A no	or B)	
when " 1100" =>	and the second	
ALU-Result <= Ar	iand Bj	
when "1109" =>		
ALU-Result (= A X	inor Bj	
when 411104 =>		
if (A)B) then		
ALU-Result 4=	×40145	
else		
ALV-Result 25	x 4004;	
end if;		
when 411114		
if (A=B) then		
ALV-Result K	2 x "01";	
else	4 H H	
A LV-Result &	(= ×100")	
end if	A	
	=> ALU_Roult <= A+B	T ₂
end case;		
end process;	ALV Result;	
	& A) + (1018B);	
11		
end Behavior		
era Denavion		and the second

X1: 50,003 ps

Expt.No.

Page No. / 67 Date. /

	VHOL TESTBENCH CODE FOR ALU
-	LIBRARY icee;
	use ieee . std_logic_1164. ALL')
	use j'eer std_logic_unsigned.all;
	use ieee . Std_logic_STD.all')
	ENTITY the ALU.TS
	END .+b_ALV;
	ARCHITECTURE behavior OF th_ALU IS
	COMPONENT ALU
	PORT (
	A: IN Std_logiz_vector (7 downto 0);
	B: IN Std_logic_vector (7 down to 0);
	ALU_Sel! IN Std_logic_vector (3 down to 0);
	ALU_Out: OUT Std_logic_vector (7 downto 10);
	Carryout: OUT Std_logic_vector
	٠ ١
	END COMPONENT;
	Signal A! Statogic-Vector (7 down to 0) != (others =>101)
	Signal B! Std. logic_Vector (7 downto 0)!= (0 thers => 101)
6	Signal ALU_Sel! Std_logic_vector(3 downto 0)!= (others=> 'o

Name		المعادة المالية
Value	0 0000000 0000000 0	MANDO GAZ
23,330 ps		88 (25° (25° 13° 13° 13° 13° 13° 13° 13° 13° 13° 13
श्वाधः		
138,382 ps		AND THE
(1.38,383 ₅₅		4 14 44 8 14 14 14 14 14 14 14 14 14 14 14 14 14
E,8211 89,82,821]	00101000 0100000 0100000	25.034_ FY121
શ્રુક્ટ કરો. શ્રુડ		
24 (85 (87))		part be a real a
श्रद्धाः		o magandilo
36 (SE 1811)		

Expt.No.

Page No./ 68 Date./

Signal ALV-Out! Std_logic_vector (7 downto 0); Signal Carryout: Std_logic; Signali: Integer; BEGIN uut: ALU PORT MAP(A => A, B=>B, ALV_Sel => ALV_Selg ALU_Out => ALU_Out, Carryout => Carryout Stim proc: process begin A = x " O A"; B < = x " 0 2 "; ALV_Sel (2 X404; for i in 0 to 15 loop ALU_Selfs ALU_selt x "1"; wait for 100 ns; end loop

AL= x "F6"; B <= x 40A4;

OXFORD

Page No. / 69 Expt.No. wait: end precess; CONCLUSION! In this experiment we are introduced to procedure using VHN. ALU is a combinational digital
circuit. We have to use the Statement in VHDL. We also have Written the Corresponding Test Bench and Successfully Verified the Simulation result with help of Truth Table. 21/5/23 DXFORD Teacher's Signature