ASSIGNMENT-4

CUSTOMER SEGMENTATION ANALYSIS

Importing the libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Loading the dataset: Input:

df = pd.read_csv('Mall_Customers.csv')
df

Output:

	Custome	erID Ge	ender	Age /	Annual Income (k\$)	Spending Score (1-100)		
0	1	Male	19	15	39			
1	2	Male	21	15	81			
2	3	Female	20	16	6			
3	4	Female	23	16	77			
4	5	Female	31	17	40			
195	196	Female	35	120	79			
196	197	Female	45	126	28			
197	198	Male	32	126	74			
198	199	Male	32	137	18			
199	200	Male	30	137	83			
200	$rows \times 5$ columns							

Encoding Categorical Columns

Input:

Output:

	Customerl	D G	ender Ag	e Annu	al Income (k	\$) Spending Sco	re (1-100) Cluster
0	1 1	19	15.00	39	2		
1	2 1	21	15.00	81	2		
2	3 0	20	16.00	6	2		
3	4 0	23	16.00	77	2		
4	5 0	31	17.00	40	2		
•••							
195	196	0	35	120.00	79 3		
196	197	0	45	126.00	28 1		
197	198	1	32	126.00	74 3		
198	199	1	32	60.55	18 1		
199	200	1	30	60.55	83 3		

 $200 \text{ rows} \times 6 \text{ columns}$

Visualizations Univariate Analysis

Input: plt.hist(df['Age'])

```
(array([31., 19., 34., 29., 16., 26., 15., 10., 6., 14.]),
array([18., 23.2, 28.4, 33.6, 38.8, 44., 49.2, 54.4, 59.6, 64.8, 70.]),
```


Input:

```
plt.hist(df['Annual Income (k$)'])
```

Output:

Input:

plt.hist(df['Spending Score (1-100)']) Output:

```
(array([16., 20., 10., 17., 35., 37., 11., 24., 14., 16.]),
array([1., 10.8, 20.6, 30.4, 40.2, 50., 59.8, 69.6, 79.4, 89.2, 99.]),
```

100

Input: sns.countplot(df['Gender'])

Bi-Variate Analysis

Input:

sns.scatterplot(df['Annual Income (k\$)'], df['Spending Score (1-100)']) **Output:**

Input:

sns.barplot(df['Gender'], df['Age'])

Output:

Input: sns.heatmap(df.corr(), annot = True) Output:

Multi-variate Analysis

Input: sns.pairplot(df)

output:

Descriptive Statistics

Input: df.info()

Output:

RangeIndex: 200 entries, 0 to 199 Data

columns (total 5 columns):

#	Column	Non-Null Count Dtype	
0	CustomerID	200 non-null int64	
1	Gender	200 non-null int64	
2	Age	200 non-null int64	
_	_	 	

3 Annual Income (k\$) 200 non-null int64 4 Spending Score (1-100) 200 non-null int64 dtypes: int64(5) memory usage: 7.9 KB

Input: df.describe()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	0.440000	38.850000	60.560000	50.200000
std	57.879185	0.497633	13.969007	26.264721	25.823522
min	1.000000	0.000000	18.000000	15.000000	1.000000
25%	50.750000	0.000000	28.750000	41.500000	34.750000
50%	100.500000	0.000000	36.000000	61.500000	50.000000
75%	150.250000	1.000000	49.000000	78.000000	73.000000
max	200.000000	1.000000	70.000000	137.000000	99.000000

Input:

df.skew()

Output:

Custome		0.000000			
Gender	0.243578				
Age			0.485569		
Annual	Income	(k\$)	0.321843		

Spending Score (1-100) -0.047220 dtype:

float64

Input:

df.kurt()

Output:

CustomerID -1.200000 Gender -1.960375 Age -0.671573 Annual Income (k\$) -0.098487

Spending Score (1-100) -0.826629 dtype:

float64

Input:

df.corr()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	0.057400	-0.026763	0.977548	0.013835
Gender	0.057400	1.000000	0.060867	0.056410	-0.058109
Age	-0.026763	0.060867	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	0.056410	-0.012398	1.000000	0.009903
Spending Score (1-100) Input: df.var()	0.013835	-0.058109	-0.327227	0.009903	1.000000

Output:

3350.000000 CustomerID Gender 0.247638 Age 195.133166
Annual Income (k\$) 689.835578
Spending Score (1-100) 666.854271 dtype:

float64

Input: df.std()

Output:

CustomerID 57.879185 Gender 0.497633 13.969007 Annual Income (k\$) 26.264721 Spending Score (1-100) 25.823522 dtype:

float64

Checking for missing values

```
Input:
```

```
df.isna().sum()
```

Output:

0 CustomerID Gender 0 0 Annual Income (k\$)

Spending Score (1-100) 0 dtype:

int64

Input:

df.isna().sum().sum()

Output:

0 **Input:**

df.duplicated().sum()

Output:

Finding & Handling Ouliers

Input:

```
quantile = df.quantile(q = [0.25, 0.75])
quantile Output:
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0.25	50.75	0.0	28.75	41.5	34.75
0.75	150.25	1.0	49.00	78.0	73.00

Input:

IQR = quantile.iloc[1] - quantile.iloc[0]

IQR Output:

CustomerID 99.50 Gender 1.00 20.25 Annual Income (k\$) 36.50 Spending Score (1-100) 38.25 dtype:

float64

Input:

```
upper = quantile.iloc[1] + (1.5 *IQR) upper
```

CustomerID	299.500
Gender	2.500

Age	79.375
Annual Income (k\$)	132.750
Spending Score (1-100)	130.375
dtype: float64 Input:	
<pre>lower = quantile.iloc[(</pre>)] - (1.5* IQR)
lower Output:	
CustomerID	-98.500
Gender	-1.500
Age	-1.625
-	-13.250
Spending Score (1-100)	
dtype: float64 Input:	df.mean()
Output:	
CustomerID	100.50
Gender	0.44
Age	38.85
Annual Income (k\$)	60.56
Spending Score (1-100)	
	30.20
dtype: float64 Input:	
df['Annual Income (k\$)	'].max()
Output:	
_	

137

Input:
sns.boxplot(df['CustomerID'])

Input: sns.boxplot(df['Gender']) Output:

Input: sns.boxplot(df['Age']) Output:

Input: sns.boxplot(df['Annual Income (k\$)']) Output:

Input: $df['Annual Income (k$)'] = np.where(df['Annual Income (k$)'] > 132.750, \\ 60.55, df['Annual Income (k$)']) sns.boxplot(df['Annual Income (k$)'])$

Input: df['Annual Income (k\$)'].max() Output: 126.0

Input: sns.boxplot(df['Spending Score (1-

100)']) **Output:**

Scaling the data

Input:

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler().fit_transform(df) ss
```

```
[-1.5155634, -0.88640526, 1.37433211, -1.58880894, -1.36651894],
[-1.49824268, -0.88640526, -1.06573534, -1.58880894, 1.04041783],
[-1.48092195, 1.12815215, -0.13276838, -1.58880894, -1.44416206],
[-1.46360123, 1.12815215, -1.20926872, -1.58880894, 1.11806095],
[-1.4462805, -0.88640526, -0.27630176, -1.5488846, -0.59008772],
[-1.42895978, 1.12815215, -1.3528021, -1.5488846, 0.61338066],
[-1.41163905, 1.12815215, 0.94373197, -1.46903593, -0.82301709],
[-1.39431833, -0.88640526, -0.27630176, -1.46903593, 1.8556706],
 [-1.3769976 \ , \quad 1.12815215, \quad -0.27630176, \quad -1.42911159, \quad -0.59008772] \ , 
[-1.35967688, 1.12815215, -0.99396865, -1.42911159, 0.88513158],
[-1.34235616, -0.88640526, 0.51313183, -1.38918726, -1.75473454],
[-1.32503543, 1.12815215, -0.56336851, -1.38918726, 0.88513158],
[-1.30771471, -0.88640526, 1.08726535, -1.26941425, -1.4053405],
[-1.29039398, 1.12815215, -0.70690189, -1.26941425, 1.23452563],
[-1.27307326, -0.88640526, 0.44136514, -1.26941425, -0.7065524],
[-1.25575253, 1.12815215, -0.27630176, -1.26941425, 0.41927286],
[-1.23843181, -0.88640526, 0.08253169, -1.22948991, -0.74537397],
[-1.22111108, -0.88640526, -1.13750203, -1.22948991, 1.42863343], [-1.20379036, 1.12815215, 1.51786549, -1.18956557, -1.7935561],
[-1.18646963, -0.88640526, -1.28103541, -1.18956557, 0.88513158],
[-1.16914891, 1.12815215, 1.01549866, -1.06979256, -1.7935561],
[-1.15182818, 1.12815215, -1.49633548, -1.06979256, 1.62274124],
[-1.13450746, -0.88640526, 0.7284319, -1.06979256, -1.4053405],
[-1.11718674, -0.88640526, -1.28103541, -1.06979256, 1.19570407],
[-1.09986601, -0.88640526, 0.22606507, -1.02986823, -1.28887582],
[-1.08254529, -0.88640526, -0.6351352, -1.02986823, 0.88513158],
[-1.06522456, -0.88640526, -0.20453507, -0.91009522, -0.93948177],
\hbox{\tt [-1.04790384, -0.88640526, -1.3528021 , -0.91009522, 0.96277471],}
[-1.03058311, -0.88640526, 1.87669894, -0.87017088, -0.59008772],
[-1.01326239, 1.12815215, -1.06573534, -0.87017088, 1.62274124],
[-0.99594166, 1.12815215, 0.65666521, -0.83024654, -0.55126616],
[-0.97862094, -0.88640526, -0.56336851, -0.83024654, 0.41927286],
 [-0.96130021, \ -0.88640526, \ \ 0.7284319 \ , \ -0.83024654, \ -0.86183865], 
[-0.94397949, -0.88640526, -1.06573534, -0.83024654, 0.5745591],
[-0.92665877, -0.88640526, 0.80019859, -0.79032221, 0.18634349],
[-0.90933804, -0.88640526, -0.85043527, -0.79032221, -0.12422899],
[-0.89201732, -0.88640526, -0.70690189, -0.79032221, -0.3183368],
[-0.87469659, -0.88640526, -0.56336851, -0.79032221, -0.3183368],
 \hbox{ $[-0.85737587, -0.88640526, 0.7284319, -0.71047353, 0.06987881],} 
[-0.84005514, 1.12815215, -0.41983513, -0.71047353, 0.38045129],
[-0.82273442, -0.88640526, -0.56336851, -0.6705492, 0.14752193],
[-0.80541369, 1.12815215, 1.4460988, -0.6705492, 0.38045129],
[-0.78809297, -0.88640526, 0.80019859, -0.6705492, -0.20187212],
[-0.77077224, 1.12815215, 0.58489852, -0.6705492, -0.35715836],
[-0.75345152, -0.88640526, 0.87196528, -0.63062486, -0.00776431],
[-0.73613079, 1.12815215, 2.16376569, -0.63062486, -0.16305055],
[-0.71881007, -0.88640526, -0.85043527, -0.55077619, 0.03105725],
[-0.70148935, 1.12815215, 1.01549866, -0.55077619, -0.16305055],
[-0.68416862, 1.12815215, 2.23553238, -0.55077619, 0.22516505],
[-0.6668479 , 1.12815215, -1.42456879, -0.55077619, 0.18634349],
[-0.64952717, -0.88640526, 2.02023231, -0.51085185, 0.06987881],
[-0.63220645, -0.88640526, 1.08726535, -0.51085185, 0.34162973],
[-0.61488572, 1.12815215, 1.73316556, -0.47092751, 0.03105725],
[-0.597565 , 1.12815215, -1.49633548, -0.47092751, 0.34162973],
[-0.58024427, -0.88640526, 0.29783176, -0.47092751, -0.00776431],
[-0.56292355, -0.88640526, 2.091999, -0.47092751, -0.08540743],
[-0.54560282, 1.12815215, -1.42456879, -0.47092751, 0.34162973],
[-0.5282821, -0.88640526, -0.49160182, -0.47092751, -0.12422899],
[-0.51096138, 1.12815215, 2.23553238, -0.43100318, 0.18634349],
```

```
[-0.49364065, -0.88640526, 0.58489852, -0.43100318, -0.3183368],
      [-0.47631993, -0.88640526, 1.51786549, -0.39107884, -0.04658587],
      [-0.4589992 , -0.88640526, 1.51786549, -0.39107884, 0.22516505],
      [-0.44167848, 1.12815215, 1.4460988, -0.23138149, -0.12422899],
      [-0.42435775, 1.12815215, -0.92220196, -0.23138149, 0.14752193],
      [-0.40703703, -0.88640526, 0.44136514, -0.23138149, 0.10870037],
      [-0.3897163, 1.12815215, 0.08253169, -0.23138149, -0.08540743],
      [-0.37239558, -0.88640526, -1.13750203, -0.23138149, 0.06987881],
       [-0.35507485, \ -0.88640526, \ \ 0.7284319 \ , \ -0.23138149, \ -0.3183368 \ ] \, , \\
      [-0.33775413, 1.12815215, 1.30256542, -0.23138149, 0.03105725],
      [-0.3204334, 1.12815215, -0.06100169, -0.23138149, 0.18634349],
      [-0.30311268, 1.12815215, 2.02023231, -0.23138149, -0.35715836],
       [-0.28579196, \ -0.88640526, \ \ 0.51313183, \ -0.23138149, \ -0.24069368], 
      [-0.26847123, -0.88640526, -1.28103541, -0.23138149, 0.26398661],
      [-0.25115051, 1.12815215, 0.65666521, -0.23138149, -0.16305055],
      [-0.23382978, -0.88640526, 1.15903204, -0.11160848, 0.30280817],
      [-0.21650906, -0.88640526, -1.20926872, -0.11160848, 0.18634349],
      [-0.19918833, -0.88640526, -0.34806844, -0.07168415, 0.38045129],
      [-0.18186761, -0.88640526, 0.80019859, -0.07168415, -0.16305055],
      [-0.16454688, -0.88640526, 2.091999, -0.03175981, 0.18634349],
      [-0.14722616, 1.12815215, -1.49633548, -0.03175981, -0.35715836],
      [-0.12990543, 1.12815215, 0.65666521, 0.00816453, -0.04658587],
      [-0.11258471, -0.88640526, 0.08253169, 0.00816453, -0.39597992],
      [-0.09526399, -0.88640526, -0.49160182, 0.00816453, -0.3183368],
[-0.07794326, 1.12815215, -1.06573534, 0.00816453, 0.06987881], [-
0.06062254, -0.88640526, 0.58489852, 0.00816453, -0.12422899],
0.04330181, -0.88640526, -0.85043527, 0.00816453, -0.00776431],
      [-0.02598109, 1.12815215, 0.65666521, 0.04808886, -0.3183368],
      [-0.00866036, 1.12815215, -1.3528021, 0.04808886, -0.04658587],
      [0.00866036, -0.88640526, -1.13750203, 0.0880132, -0.35715836],
      [\ 0.02598109,\ -0.88640526,\ 0.7284319,\ 0.0880132,\ -0.08540743],
       [ 0.04330181, 1.12815215, 2.02023231, 0.0880132, 0.34162973],
   [ 0.06062254, 1.12815215, -0.92220196, 0.0880132 , 0.18634349],
        \hbox{\tt [ 0.07794326, 1.12815215, 0.7284319, 0.0880132, 0.22516505], } 
       [\ 0.09526399,\ -0.88640526,\ -1.28103541,\ 0.0880132\ ,\ -0.3183368\ ],
        \hbox{\tt [ 0.11258471, -0.88640526, 1.94846562, 0.12793754, -0.00776431], } 
       [0.12990543, 1.12815215, 1.08726535, 0.12793754, -0.16305055],
       [0.14722616, 1.12815215, 2.091999, 0.12793754, -0.27951524],
      [ 0.16454688, 1.12815215, 1.94846562, 0.12793754, -0.08540743],
      [ 0.18186761, 1.12815215, 1.87669894, 0.12793754, 0.06987881],
      [0.19918833, -0.88640526, -1.42456879, 0.12793754, 0.14752193],
      [0.21650906, -0.88640526, -0.06100169, 0.16786187, -0.3183368],
      [0.23382978, 1.12815215, -1.42456879, 0.16786187, -0.16305055],
       \hbox{\tt [ 0.25115051, -0.88640526, -1.49633548, 0.20778621, -0.08540743], } 
      [0.26847123, -0.88640526, -1.42456879, 0.20778621, -0.00776431],
      [0.28579196, -0.88640526, 1.73316556, 0.20778621, -0.27951524],
      [0.30311268, -0.88640526, 0.7284319, 0.20778621, 0.34162973],
      [\ 0.3204334\ ,\ -0.88640526,\ 0.87196528,\ 0.28763488,\ -0.27951524],
      [ 0.33775413, -0.88640526, 0.80019859, 0.28763488, 0.26398661],
      [0.35507485, 1.12815215, -0.85043527, 0.28763488, 0.22516505],
      [0.37239558, -0.88640526, -0.06100169, 0.28763488, -0.39597992],
      [ 0.3897163 , -0.88640526, 0.08253169, 0.36748356, 0.30280817],
      [ 0.40703703, 1.12815215, 0.010765 , 0.36748356, 1.58391968],
      [\ 0.42435775,\ -0.88640526,\ -1.13750203,\ 0.40740789,\ -0.82301709],
      [0.44167848, -0.88640526, -0.56336851, 0.40740789, 1.04041783],
      [ 0.4589992 , 1.12815215, 0.29783176, 0.44733223, -0.59008772],
      [0.47631993, 1.12815215, 0.08253169, 0.44733223, 1.73920592],
      [0.49364065, 1.12815215, 1.4460988, 0.44733223, -1.52180518],
      [ 0.51096138, 1.12815215, -0.06100169, 0.44733223, 0.96277471],
```

```
[ 0.5282821 , 1.12815215, 0.58489852, 0.44733223, -1.5994483 ],
      [0.54560282, 1.12815215, 0.010765, 0.44733223, 0.96277471],
      [0.56292355, -0.88640526, -0.99396865, 0.48725657, -0.62890928],
      [0.58024427, -0.88640526, -0.56336851, 0.48725657, 0.80748846],
      [0.597565, 1.12815215, -1.3528021, 0.5271809, -1.75473454],
      [ 0.61488572, -0.88640526, -0.70690189,  0.5271809 ,  1.46745499],
      [ 0.63220645, -0.88640526, 0.36959845, 0.5271809 , -1.67709142],
       \hbox{\tt [ 0.64952717, 1.12815215, -0.49160182, 0.5271809, 0.88513158], } \\
      [ 0.6668479 , 1.12815215, -1.42456879, 0.56710524, -1.56062674],
      [0.68416862, -0.88640526, -0.27630176, 0.56710524, 0.84631002],
      [0.70148935, -0.88640526, 1.30256542, 0.60702958, -1.75473454],
      [ 0.71881007, 1.12815215, -0.49160182, 0.60702958, 1.6615628 ],
      [0.73613079, -0.88640526, -0.77866858, 0.64695391, -0.39597992],
      [ 0.75345152, -0.88640526, -0.49160182, 0.64695391, 1.42863343],
      [0.77077224, 1.12815215, -0.99396865, 0.68687825, -1.48298362],
      [ 0.78809297, 1.12815215, -0.77866858, 0.68687825, 1.81684904],
      [ 0.80541369, 1.12815215, 0.65666521, 0.68687825, -0.55126616],
      [ 0.82273442, -0.88640526, -0.49160182, 0.68687825, 0.92395314],
      [0.84005514, -0.88640526, -0.34806844, 0.72680259, -1.09476801],
      [ 0.85737587, 1.12815215, -0.34806844, 0.72680259, 1.54509812],
      [ 0.87469659, 1.12815215, 0.29783176, 0.72680259, -1.28887582],
      [ 0.89201732, 1.12815215, 0.010765 , 0.72680259, 1.46745499],
[0.90933804, -0.88640526, 0.36959845, 0.72680259, -1.17241113],
                                                                  [
0.92665877, -0.88640526, -0.06100169, 0.72680259, 1.00159627],
                                                                     Γ
0.94397949, -0.88640526, 0.58489852, 0.72680259, -1.32769738],
      [0.96130021, -0.88640526, -0.85043527, 0.72680259, 1.50627656],
       [0.97862094, 1.12815215, -0.13276838, 0.72680259, -1.91002079],
   [0.99594166, -0.88640526, -0.6351352, 0.72680259, 1.07923939],
   [1.01326239, 1.12815215, -0.34806844, 0.72680259, -1.91002079],
       [ 1.03058311, -0.88640526, -0.6351352 , 0.72680259, 0.88513158],
   [ 1.04790384, -0.88640526, 1.23079873, 0.76672692, -0.59008772],
       [1.06522456, -0.88640526, -0.70690189, 0.76672692, 1.27334719],
       [ 1.08254529, 1.12815215, -1.42456879, 0.8465756 , -1.75473454],
       [\ 1.09986601,\ -0.88640526,\ -0.56336851,\ 0.8465756\ ,\ 1.6615628\ ],
        \hbox{\tt [ 1.11718674, 1.12815215, 0.80019859, 1.00627294, -0.93948177],} 
       [ 1.13450746, -0.88640526, -0.20453507, 1.00627294, 0.96277471],
       [ 1.16914891, -0.88640526, -0.41983513, 1.04619728, 1.73920592],
      [ 1.18646963, -0.88640526, -0.20453507, 1.08612162, -0.90066021],
      [ 1.20379036, 1.12815215, -0.49160182, 1.08612162, 0.49691598],
      [ 1.22111108, 1.12815215, 0.08253169, 1.08612162, -1.44416206],
      [ 1.23843181, 1.12815215, -0.77866858, 1.08612162, 0.96277471],
      [ 1.25575253, 1.12815215, -0.20453507, 1.08612162, -1.56062674],
      [ 1.27307326, 1.12815215, -0.20453507, 1.08612162, 1.62274124],
       \hbox{\tt [1.29039398, -0.88640526, 0.94373197, 1.12604595, -1.44416206],} 
      [1.30771471, -0.88640526, -0.6351352, 1.12604595, 1.38981187],
      [ 1.32503543, 1.12815215, 1.37433211, 1.12604595, -1.36651894],
      [ 1.34235616, 1.12815215, -0.85043527, 1.12604595, 0.72984534],
      [ 1.35967688, 1.12815215, 1.4460988 , 1.32566764, -1.4053405 ],
      [ 1.3769976 , 1.12815215, -0.27630176,
                                             1.32566764, 1.54509812],
      [ 1.39431833, -0.88640526, -0.13276838, 1.48536498, -0.7065524 ],
      [1.41163905, -0.88640526, -0.49160182, 1.48536498, 1.38981187],
      [ 1.42895978, 1.12815215, 0.51313183, 1.52528932, -1.36651894],
      [ 1.4462805 , -0.88640526, -0.70690189, 1.52528932, 1.46745499],
      [ 1.46360123, -0.88640526, 0.15429838, 1.56521366, -0.43480148],
      [ 1.48092195, 1.12815215, -0.6351352 , 1.56521366, 1.81684904],
      [ 1.49824268, -0.88640526, 1.08726535, 1.64506233, -1.01712489],
      [ 1.5155634 , 1.12815215, -0.77866858, 1.64506233, 0.69102378],
      [ 1.53288413, -0.88640526, 0.15429838, 1.724911 , -1.28887582],
```

```
[ 1.55020485, -0.88640526, -0.20453507, 1.724911 , 1.35099031], [ 1.56752558, -0.88640526, -0.34806844, 1.724911 , -1.05594645], [ 1.5848463 , -0.88640526, -0.49160182, 1.724911 , 0.72984534], [ 1.60216702, 1.12815215, -0.41983513, 2.12415437, -1.63826986], [ 1.61948775, -0.88640526, -0.06100169, 2.12415437, 1.58391968], [ 1.63680847, -0.88640526, 0.58489852, 2.40362473, -1.32769738], [ 1.6541292 , -0.88640526, -0.27630176, 2.40362473, 1.11806095], [ 1.67144992, -0.88640526, 0.44136514, 2.64317075, -0.86183865], [ 1.68877065, 1.12815215, -0.49160182, 2.64317075, 0.92395314], [ 1.70609137, 1.12815215, -0.49160182, 0.03012291, -1.25005425],
```

Clustering Algorithm

Input:

```
from sklearn.cluster import KMeans
TWSS = [] k = list(range(2,9)) for
i in k:
   kmeans = KMeans(n_clusters = i , init = 'k-means++')
kmeans.fit(df)
  TWSS.append(kmeans.inertia_)
```

TWSS Output:

[381507.64738523855, 268062.55433747417, 191550.08627670942, 153777.55391034693, 119166.15727643928, 101239.32626154403, 85744.90139221892]

Input: plt.plot(k,TWSS,

'ro--') Output:


```
model = KMeans(n_clusters = 4)
Input: model.fit(df) Output:
```

KMeans(n clusters=4)

Input: mb =
pd.Series(model.labels_) df['Cluster'] = mb df

Output:

	CustomerID	Gender	Age Annual Inco		al Incom	e (k\$)	Spending S	Score (1-10	0)	Cluster
				0		1 1	19	15.00	39	2
				1		2 1	21	15.00	81	2
	CustomerID	Gender	Age	Annu	ial Incom	e (k\$)	Spending	Score (1-10	0)	Cluster
				2		3 0	20	16.00	6	2
				3		4 0	23	16.00	77	2
				4		5 0	31	17.00	40	2
										···
195	196	0	3	5	120.00	79	3			
196	197	0	4	.5	126.00	28	1			
197	198	1	3	2	126.00	74	3			
198	199	1	3	2	60.55	18	1			
199	200	1	3	0	60.55	83	3			

 $200 \text{ rows} \times 6 \text{ columns}$