2018년 실전문제해결형 S-HERO 참여연구팀 신청서

연구주제	Informatic Mobility for Visual field Person				연구	팀명	I_MVP	
신청분야	1. 스마트소재/시스템			v	2. 바0	오/헬스	≟케어	
(본인체크) 3. 사물 인공지능					4. 자율주제			
주제발굴경로	1. 산업체 제공 주제				2. 수요분석을 통한 자율 주제 v			
(본인체크)	3. 기타						(기)	<i>별작성)</i>
활용관심분야	활용관심분야 논문 게재 특전			허/실용신안 창업아이템				
(본인체크)	과제 발굴	٧		기타		(개별작		

A 7 5 7 7	성명	황 ㅇ ㅇ (인)	학번	000000000
연구팀장 (대학원생)	소속	성균관대학교	000	과 2학기(석사)
	연락처(HP)	000-0000-0000	이메일	oooo@gmail.com
	성명	남 ㅇ ㅇ (인)	학번	000000000
연구팀원1	소속	성균관대학교	000)과 3학년
	연락처(HP)	000-0000-0000	이메일	oooo@gmail.com
	성명	윤 ㅇ ㅇ (인)	학번	000000000
연구팀원2	소속	성균관대학교	000)과 4학년
	연락처(HP)	000-0000-0000	이메일	oooo.@naver.com
	성명	박 ㅇ ㅇ (인)	학번	000000000
연구팀원3	소속	성균관대학교	000)과 4학년
	연락처(HP)	000-0000-0000	이메일	oooo.@naver.com
	성명	김 ㅇ ㅇ (인)	학번	000000000
연구팀원4	소속	성균관대학교	000)과 4학년
	연락처(HP)	000-0000-0000	이메일	oooo@gmail.com
지도교수	성명	한 ㅇ ㅇ (인)	연락처(HP)	000-0000-0000
ハエルナ	소속	성균관대학교 ㅇㅇㅇ학과	이메일	oooo@skku.edu
산업체멘토	성명	문 ㅇ ㅇ (인)	연락처(HP)	000-0000-0000
	소속	ㅇㅇㅇ 연구소 / 소장	이메일	oooo@elimopt.co.kr

본인은 상기 연구과제를 성실히 수행하고 귀 사업단에서 정한 사업 관련 사항을 준수할 것을 서약하며 위와 같이 신청합니다.

2018년 4월 1일

연구팀 대표 : 황 규 영 (인)

성균관대학교 실전문제해결 S-Hero 사업단장 귀하

S-HERO 연구계획서

① 연구추진 요약서 (1매)

연구주제	Informatic Mobility for Visual field detect Person						
연구요약	시각장애인 중 시야 협착 증상을 가진 저시력자에게 이동 중 필요한 환경 정보를 맞춤형으로 제공하고 이동에 편의를 제공하는 개인용 이동수단을 개발하고자 한다. 시각장애인에게 맞춤형 정보를 제공하기 위해서는 시각장애인의 시야 맹점에서 발생하는 장애물을 인공지능 기반 영상처리로 판단해야한다. 장애물로 판단이 되면 이 정보를 시각장애인에게 직관적인 경보알림시스템으로 장애물의 거리정보와 방향정보를 전달한다.						
연구목적	시각장애인 중 시야협착 증상을 가진 저시력자의 이동편의성을 향상시키기 위한 서비스를 개발하고자 한다. 저시력자는 증상에 따라서 시야범위가 사람마다 다르다. 또한 저시력자는 이동 중에 보행자와 부딪치는 것을 가장 두려워 한다는 인터뷰 결과가 있다. 따라서 우리는 저시력자가 이동 중 필요한 환경 정보를 맞춤형으로 제공하고 이동에 편의를 줄 수 있는 개인용 이동수단을 개발하고자 한다.						
연구내용	Information Systems Informat						
기대효과	인구는 전 세계에 약 2억 8000만 명이며, 이중 4,500만 명이 완전 실명상태(2011년 국제실명예방기구)라는 조사 결과 국제실명예방기구에 따르면 시각장애 인구의 90%가 의료 환경이 열악한 빈국에 거주하고 있으며 WHO에 따르면 이러한 추세라면 2020년에는 약 7,600만 명의 사람들이 실명에 이를 것이라고 한다. 이동 중 보행자와 충돌을 가장 두려워하는 저시력자에게 개인 맞춤형 위험 정보를 직관적인 제공함으로써 이동의 불편함을 조금이나마 해결해 줄 수 있다. 또한 인공지능 기반 I_MVP 알고리즘은 학습을 하면서 비장애인이 사용할 수 있는 보편적 시스템이 될 수 있다.						

② S-Hero 연구 추진계획서(3쪽 이내)

* 아래 사항에 대하여 구체적으로 기술하여 주시기 바랍니다.

1. 연구목적과 필요성

[그림] 국내 엔터프라이즈 모빌리티 사장 전망, 2012-2017 (단위: 십억원)

- Source: IDC, 2013
- 2012년 이후부터 모빌리티 통계는 성장률은 소폭 감소했으나, 모빌리티의 시장전망은 7조6000억 이상으로 충분한 시장이 형성됨을 알 수 있음
- 이룸센터 시각장애인 상담사 '최정금'씨 인터뷰를 진행하고 시각장애인이 이동할 때 어려운 부분이 많다는 얘기를 들음
- 특히, 시각장애인은 보행자와 부딪치는 것을 가장 두려워한다고 함
- 고령화가 진행될수록 시야질환을 가진 환자의 비율이 높아지고 저시력자 비율도 높아짐
- 현재 저시력자는 이동할 때 도움을 줄 수 있는 제대로 된 수단이 없어서 불편을 겪고 있음

2. 연구방법

- I_MVP의 전체 시스템은 인지한 장애물을 직관적으로 전달하는 Information System,
- 장애물이 보행자인지 아닌지, 위험한 상황인지 아닌지 판단하는 Autonomous System
- 시각장애인이 보행자를 피하지 못했을 때 차체를 제어해주는 Driving Control System으로 이루어짐

[Information System]

[Autonomous System]

- 저시력자 시야 맹점에서 충돌이 예상되는 보행자가 나타나면 OpenCV 영상처리로 보행자를 판단하고 신호를 전달함
- 자율주행 시스템은 이미지 분류와 딮러닝으로 나뉨

[Driving Control System]

- 저시력자가 대처하기 힘든 경우나 긴급 상황의 경우 초음파센서로 물체의 거리를 판단해서 멈추거나 회피하는 제어를 함

3. 연구 추진일정

월 연구내용	4	5	6	7	8	9	10	11	12
OPENCV 환경구축									
시장조사									
자율주행 퍼스널 모빌리티 플랫폼 제작									
청각정보 전달 효용성 실험									
통신 구현 및 자율주행 테스트									
비즈니스 플랜 작성									
최종보고서 작성 및 발표									

4. 연구결과의 기대효과 및 활용방안

- 영상처리 기반 자율주행이 가능한 개인용 이동수단 특허 등록
- 개인용 이동수단에 적용된 직관적인 사운드 시스템으로 사고예방기능 특허

5. 추후연구

- Information system의 외부 환경을 고려한 주파수대역, 정보전달의 직관성 실험 및 보완
- 영상처리 범위와 초음파 범위의 최적화 실험
- 야간에 대응하기 힘든 영상처리의 한계점을 보완할 시스템 구현

③ S-Hero 연구팀 분담표

구 분	성 명	소 속	역 할
연구팀장 (대학원생)	황ㅇㅇ	성균관대학교 ㅇㅇㅇ과	- 총괄 팀 운영 - 지원금 관리 - 시장조사
	남ㅇㅇ	성균관대학교 ㅇㅇㅇ과	- 자율주행 개인용 이동수단 플랫폼 설계 및 제작
CH TEIN	윤ㅇㅇ	성균관대학교 ㅇㅇㅇ과	- 시장조사 및 인터뷰 - 비즈니스 플랜 작성 - 통계 및 데이터 분석
연구팀원	박ㅇㅇ	성균관대학교 ㅇㅇㅇ과	- 직관적인 정보전달 방법 구상 - 청각 정보 전달 시스템의 인간공학적 평가
	김ㅇㅇ	성균관대학교 ㅇㅇㅇ과	- 인공지능 알고리즘 구현 - 영상처리 오픈소스 활용 - 밸런싱 제어 및 통신 구현
지도교수	한ㅇㅇ	성균관대학교 ㅇㅇㅇ과	- 기술자문
산업체멘토		ㅇㅇㅇ 연구소 / 소장	- 시장분석 - 기술자문 의하고는 주도표가 및 호하이 부가는하

^{*} 참여 연구자는 연구종료 전까지 부득이한 사정을 제외하고는 중도포기 및 휴학이 불가능함

④ 예산집행 계획(안)

						(단위: 원)	
예산세목	지원금액	산출근거					
		내용	용도	단가	수량	금액 (VAT포함)	사용금액
		연구팀장	연구수당	1,000,000	1	1,000,000	2,000,000
연구수당	2,000,000	지도교수	연구수당	500,000	1	500,000	
		산업체멘토	연구수당	500,000	1	500,000	
		NVDIA TX 자율주행 보드	소모품	500,000	1	500,000	
		스트레오 카메라	소모품	300,000	1	300,000	
		BLDC 모터	소모품	300,000	4	1,200,000	
		리튬이온 베터리	소모품	80,000	4	320,000	
		라이다 센서	소모품	500,000	1	500,000	
		프레임 주문제작	소모품	600,000	2	1,200,000	
연구장비/ 재료비	5,000,000						4,020,000
연구활동비		-	-				0
연구과제		회의비	회의식대	140,000	4	560,000	770,000
추진비		교통비 및 여비	산업체방문	35,000	6	210,000	, , 0,000
총계	7,000,000						6,790,000