Введение

Допустим, аргумент функции y=f(x) изменяется на число Δx . Тогда сама функция изменяется на число Δy . Записать это изменение можно следующим образом:

$$\Delta y = f(x + \Delta x) - f(x) \tag{1}$$

Это называется реальным изменением функции при приращении аргумента Δx .

Производная

Производной называется мгновенная скорость изменения функции, т.е. скорость изменения функции за очень короткий промежуток времени.

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x},\tag{2}$$

где Δy – реальное изменение функции (Уравнение 1), а Δx – приращение аргумента функции, стремящееся к нулю.

Поскольку приращение стремится к нулю, но не достигает его, то остается очень маленький остаток. Следовательно, изменение функции при данном приращении можно записать следующим образом:

$$\Delta y = f'(x) \cdot \Delta x + o(\Delta x) \tag{3}$$

Здесь линейной частью приращения функции является $f'(x)\cdot \Delta x$.

Дифференциал

Под *дифференциалом* подразумевается линейная часть приращения функции (Уравнение 3).

Запишем Уравнение 3 в новом виде:

ПРИМЕР

Элементарная работа A, совершаемая силой \vec{F} при бесконечно малом перемещении $\mathrm{d}\vec{r}$, равна $\mathrm{d}\vec{r}$

¹В данном случае подразумевается скалярное произведение векторов.

$$dA = \vec{F} \cdot d\vec{r} = F \cdot |dr| \cdot \cos(\Theta)$$
 (5)

Получается, \vec{F} – это производная функции A. Т.е. за мгновенную скорость изменения работы силы отвечает эта сила.

