COMP5048 - Week 2

Colour Characteristics

Perception

- Physical detection (of light)
 - Amplitude, frequencies
- Psychological perception (of whom)
 - · Loudness, pitch of sound
 - Brightness, hue of colour

Visual Perception

Psychological (visual) variable		First-order physical variable	Second-order physical variable	
Brightness	\longmapsto	Light intensity	Wavelength, adaptation of eye	
Hue	├ →	Wavelength	Spectrum structure, peripheral light intensity, and wavelength	
Vividness/saturation	\mapsto	Spectrum structure	Peripheral light	
Contrast Intensity, wavelength, peripheral				

Brightness

- First-order physical
 - Light intensity
- Second-order physical
 - Wavelength, adaptation of eye

Brightness

- First-order physical
 - Light intensity
- Second-order physical
 - Wavelength, adaptation of eye

Square A and B have some brightness, but due to the cylinder creating a shadow. We perceive A to be brighter

Brightness (cont.)

Colour Spaces and Systems

The Commission Internationale de l'Eclairage (CIE) System

CIE-XYZ

- X: non-negative CIE
 RGB value
- Y: luminance
- Z: equivalent to blue

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z} = 1 - x - y$$
You can spearly

any color

CIE-XYZ and RGB Gamut

Recall ... Colour Components

- Hue: wavelength
- Saturation/chroma: amount of white
- Value/brightness: light intensity

HSV and **HLS** Colour Spaces

Difference between HSV and HLS

- Maximum value/brightness in HSV is analogous to shining a white light on a coloured object
- Maximum lightness in HSL is pure white

Munsell Colour System (1905 by Albert Munsell)

- Provides a set of standard colour chips designed to represent equal perceptual spacing in a three-dimensional mesh
- Provides a <u>physical embodiment</u> of a uniform colour space

CIELAB Colour Space

- Based on opponent colour model
- Less uniform in colour axes, but useful for predicting small differences in colour

Colour Perception

Induced contrast

Colour Perception (cont.)

Colour blindness

Applications of Colour in Visualisations

Examples of Utilising Colour in Visualisation

- Colour mapping in 3D visualisation
- Cartography application

Application 1

Colour mapping in 3D visualisation

Volume Visualisation, Part I

Figure 2.1: Voxels constituting a volumetric object after it has been discretised.

Volume Visualisation, Part II

Figure 2.4: A ray casts into voxels of a 3D volume data (40).

Figure 2.5: A ray is discretised to compute intensity analytically (40).

Volume Visualisation, Part III

Maximising visibility by utilising colour/opacity

Figure 2.7: A user interface of transfer function specifications (2).

Volume Rendered Data Set, Example I

Figure 5.9: Depiction of neighboring relationship of "fuel" data set.

Zhou, J., & Takatsuka, M. (2009). <u>Automatic transfer function generation using contour tree controlled residue flow model and color harmonics</u>. *IEEE Transactions on Visualization and Computer Graphics*, *15*(6), 1481–1488.

Volume Rendered Data Set, Example II

Figure 7.4: Comparison of volume rendered CT knee data set with: (a) our approach, and (b) VolView 3.2.

Zhou, J., & Takatsuka, M. (2009). <u>Automatic transfer function generation using contour tree controlled residue flow model and color harmonics</u>. *IEEE Transactions on Visualization and Computer Graphics*, *15*(6), 1481–1488.

Volume Rendered Data Set, Example III

Figure 7.6: Comparison of volume rendered MR tumor head data set with: (a) our approach, and (b) VolView 3.2.

Zhou, J., & Takatsuka, M. (2009). <u>Automatic transfer function generation using contour tree controlled residue flow model and color harmonics</u>. *IEEE Transactions on Visualization and Computer Graphics*, *15*(6), 1481–1488.

Application 2

Application in cartography

ColorBrewer by Cynthia Brewer

Online tool for selecting map colour schemes

• Colorbrewer2

Color Brewer Example

Allows you to
pich the best
Combination based
on visualization
requirements.

Ware, C. (2013). Information visualization: Perception for design. Elsevier Science.

Summary

- Characteristics of colour
 - Hue
 - Brightness
 - Saturation/chroma/vividness
 - Contrast
- Colour spaces and systems
 - RGB, HSV, HLS, Munsell, CIELAB
- Examples of colour applied in data visualisations
 - 3D visualisations
 - Cartography

Differentiating Data

Quantitative vs Qualitative

Quantitative Data, Part I

- Measures of values or counts
- Expressed as numbers
- Data about numeric variables
- For example, how many, how much, or how often

Quantitative Data, Part II

Examples

Data unit	Numeric variable means quantitative data			
A person	How many hours do you work?	37.5 hours per week		
A house	How many square metres is the house?	200 square metres		
A business	How much was the last year's profit?	\$300,000		
A farm	How many ducks are located on the farm?	100 ducks		
A school	How many students are currently enrolled?	5,000 students		

Australian Bureau of Statistics. Statistical language: Quantitative and qualitative data.

Qualitative Data, Part III

- Measures of "types"
- May be represented by a name, symbol, or a number code
- Data about categorical variables
- For example, what type

Qualitative Data, Part IV

Moristically Source Saker Rature

Examples

Data unit	Categorical variable means	qualitative data
A person	Do you work part-time or full-time?	Full-time
A house	In which city is the house located?	Sydney
A business	What type of structure is the business?	Joint-venture
A farm	What is the main activity of the farm?	Poultry
A school	Is it a public or private school?	Public

Australian Bureau of Statistics. Statistical language: Quantitative and qualitative data.

Differentiating Data

Structured vs Unstructured

Structured Data

- Organised information in a database
- Can be fit into a spreadsheet
- Easier to handle

Structured Data (cont.)

- Examples
 - Microsoft Excel files (xls, xlsx, xlsm)
 - Text files (csv, txt, tab, tsv)

4	A price	B date sold	C	D num bath	E	F	G	Н	suburb posi	J	K	L.	M	N	0	Р	Q	R	S	T	U	V	W	
, ,		########		num_bath	num_bea	num_parki		House	7093	29432		-33.4725		suburb_eic		150.9	m_from_ci	ba						
2		*********		2	4	_		House	2538	24752		-33.4725		23	2	150.9	78.54							
4		*********				2		House	2028	31668		-33.3268		3	2	150.9	63.59							
		*********		1		_		House	9835	32292		-34.0538		81	2	150.9	40.12							
		**********		0				Vacant lar		45084		-33.4561		18	2	150.9	49.98							
,		*********		1	3	_		House	7093	29432		-33.4725		24	2	150.9	47.05							
		*********		1	3			House	2545	36764		-33.4723		27	2	150.9	43.91							
3		########		1		2		House	9835	32292		-34.0538		81	2	150.9	40.12							
0		*********		1				House	4550	25844	3,683		151.5432	4	2	150.9	74.11							
1		########		_	_	_		Vacant lan		38740		-33.6797		263	2	150.9	59.15							
2		******			3			House	3731	31772		-33.4402		62	2	150.9	48.17							
3		******		_		3		House	6160	40560	3,859		151.0063	33	2	150.9	22.31							
4	533000	*******	Whalan	3	4	2	695	House	5973	24180	2,429	-33,7557	150.8036	37	2	150.9	39.53							
5	1120500	******	North Roc	2	4	2	904	House	7965	40092	5,462	-33,7757	151.0147	92	2	150.9	20.61							
6	830000	*******	Winmalee	3	6	2	2109	House	6202	38740	9.058	-33.6797	150.6112	263	2	150.9	59.15							
7	675000	########	Bass Hill	3	3	2	263	Townhous	9069	24388	2.929	-33.9003	150.9931	40	2	150.9	20.43							
8	500000	******	Kincumber	1	3	1	791	House	7093	29432	9.914	-33.4725	151.4021	24	2	150.9	47.05							
9	473000	******	Leumeah	1	3	3	581	House	9835	32292	4.055	-34.0538	150.8396	81	2	150.9	40.12							
0	885000	******	Picnic Poir	1	3	2	557	Vacant lan	6160	40560	3.859	-33.973	151.0063	33	2	150.9	22.31							
1	625000	########	Chittaway	2	4	2	555	House	2028	31668	1.116	-33.3268	151.4456	3	2	150.9	63.59							
2	520000	########	Leumeah	1	3	1	651	House	9835	32292	4.055	-34.0538	150.8396	81	2	150.9	40.12							
3	510000	########	Winmalee	1	3	1	993	House	6202	38740	9.058	-33.6797	150.6112	263	2	150.9	59.15							
4	610000	#######	Chittaway	3	5	8	862	House	2028	31668	1.116	-33.3268	151.4456	3	2	150.9	63.59							
5	570000	*******	Winmalee	1	3	2	828	House	6202	38740	9.058	-33.6797	150.6112	263	2	150.9	59.15							
6	555000	********	Bensville	2	4	0	748	House	2545	36764	4.925	-33.4991	151.3905	27	2	150.9	43.91							
7		domain n					000		70.00	40000	E 460	22.7757	454 0447		4	450.0	20.64							

Unstructured Data

- Freeform information
- Cannot be fit into a spreadsheet
- More difficult to handle

Unstructured Data (cont.)

- Examples
 - Videos
 - Audios
 - Images
 - Textual, e.g., emails, text messages
 - Webpages
 - PDFs

Can We Visualise Unstructured Data?

- Machine learning
- Natural language processing

Metadata

- Derived data
- Data that describes other data
- Examples
 - A photo: file name, author, date captured, file size, etc.
 - A book: version, author, publisher details, table of content, etc.
 - An email: subject, from, to, date and time sent, sending and receiving server names and IPs, etc.
 - A spreadsheet: tab names, column names, user comments, etc.

Data Model

Model to Describe Data

Ware, C. (2013). Information visualization: Perception for design. Elsevier Science.

Data Model

Entities and Relationships

Entities

Objects of interest/values

- Can be single
 - People, hurricanes, fish, etc.
- Can be a group
 - A school of fish

Relationships

Structures that relate entities:

- Can be structural and physical
- Can be conceptual
- · Can be causal
- Can be temporal

Data Model

Attributes

Attributes of Entities or Relationships

A property of some entity: not independent

- For example
 - Colour of a lychee is an attribute of lychee
 - Temperature of water
 - Duration of a trip

Dimensions of Attribute

- Scalar
 - Weight of person
- Vector
 - Direction of travel
- Tensor
 - · Direction plus shear force
 - Stressed object
- Field of scalars/vectors/tensors
 - Gravitational field of earth: 3D vector
 - Gravity strength at earth's surface: 2D scalar

Quality of Attribute

Four levels of measurement

- 1. Nominal
 - Labelling purpose
 - Examples?

2. Ordinal

- Can be ordered in a sequence
- Examples?

Quality of Attribute (cont.)

Four levels of measurement

- 3. Interval
 - Able to derive the gap between values
 - Examples?
- 4. Ratio
 - Full expression of a real number
 - Examples?

Quality of Attribute (Computer Programming)

- Category data
 - Nominal scale
- Integer data
 - Ordinal scale
- Real-number data
 - Interval and ratio scale

Data Model

Operation

Operations

What about processes that are performed on entities and relationships? They are also considered as data!

- Mathematical operation on numbers (+ × /)
- Merging lists (two or more into one)
- Inverting a value (creating opposite)
- Bringing an entity/relationship into existence (mean of the set)
- Deleting an entity/relationship (breakups)
- Transforming (froglet to adult frog)
- Forming (pie from apple and pastry)
- Splitting a single entry (disassemble of machine)

Summary

- What are data types?
 - Forms of data for us to visualise
- What are kinds of data we can identify?
 - Quantitative vs qualitative
 - · Structured vs unstructured
 - Attributes vs relationships
 - Nominal, ordinal, interval, and ratio
 - Operation

