Number 4 (heat_formula_mixture)

You are making iced coffee at Dunkin Donuts!.

You have 0.15 kg of ice at an initial temperature of 0°C.

You have $0.40~\rm kg$ of coffee at an initial temperature of 85 °C. Assume that the coffee has the same specific heat as WATER.

What will be the final temperature of the iced coffee.

I will give you the formula to solve this problem. You must figure out each portion and solve it.

The released by the ice = The heat absorbed by the water.

$$m_1 H_f + m_1 C_1 (T_f - T_{i1}) = m_2 C_2 (T_f - T_{i2})$$

Α Β Γ

Piece A: this is the heat energy needed to melt the ice

Piece B: this is the heat energy that heats up the COLD water (after the ice is melted.

Piece Γ : This the heat energy that COOLS down the hot water (the coffee).

The FINAL TEMPERUTE T_f is the SAME for both the hot and cold parts of the equation, because two items reach thermal equilibrium at the same temperature!>

Looking for:

$$T_{f-} = ?$$

Already Know:

 $m_1 =$

 $m_2 =$

 $H_f =$

 $C_1 =$

 $C_2 =$

 $T_{i1} =$

 $T_{i2} =$

When solving this problem, make sure to use the DISTRIBUTIVE PROPERTY from algebra.