- 1. Merkitään kirjaimilla a, b, c kolmion A korkeusjanoja.
 - 1. Olkoon r>0 reaaliluku. Osoita, että on olemassa kolmio A, jonka pintaala on $\frac{1}{2}$, ja jolle abc < r.
 - 2. Osoita, että kaikilla kolmioilla A, joiden pinta-ala on $\frac{1}{2}$, pätee että abc < 1.
- 2. Etsi kaikki funktiot, jotka toteuttavat ehdon

$$f(y \cdot f(x)) = \frac{y+1}{y} - \frac{1}{y(x+1)}$$

kaikille sellaisille reaaliluvuille x, y, joille $y \neq 0$, $x \neq 0$ ja $x \neq -1$.

3. $N \times N$ -"shakkilaudalla" ($N \geq 3$ jokainen ruutu on väritetty valkoiseksi. Yhdellä kerralla voidaan muuttaa viiden ruudun väri (valkoisten ruutujen väri muuttuu mustaksi ja mustien valkoiseksi) seuraavan kuvion mukaisesti:

Kuviota voi kääntää. Millä ehdoilla laudan koolle N voidaan kaikki ruudut muuttaa mustiksi äärellisellä määrällä kuvion mukaisia muutoksia?

4. Tiedetään, että $(20+25)^2=2025$. Etsi kaikki yhtälön

$$(x+y)^2 = 100x + y$$

positiiviset kokonaislukuratkaisut.

5. Kolmiossa ABC pätee AB > AC. Sen sisäänpiirretty ympyrä sivuaa janoja AB ja AC pisteissä D ja E tässä järjestyksesä. Jana BE kohtaa sisäympyrän toisen kerran pisteessä K. Olkoon piste L janan BE jatkeella siten, että $AL \perp BE$. Piste H on kolmion KML korkeusjanojen leikkauspiste, kun M on janan DE keskipiste. Osoita, että $\angle AHK = 90^{\circ}$ ja että $\angle LKA = \angle MKD$.