

Онлайн образование

Проверить, идет ли запись

Меня хорошо видно **&&** слышно?

Тема вебинара

Блокировки

Коробков Виктор

Консультант команды технологического обеспечения ООО «ИТ ИКС5 Технологии»

Telegram: @Korobkov_Viktor

Преподаватель

Виктор Коробков

более 20 лет в IT

специализация: проектирование баз данных (СУБД PostgreSQL, MS SQLServer)

В OTUS веду занятия на курсах: СУБД, PostgreSQL, SQL Server Developer, noSQL, Программист С

Правила вебинара

Активно участвуем

Off-topic обсуждаем в Slack

Задаем вопрос в чат или голосом

Вопросы вижу в чате, могу ответить не сразу

Условные обозначения

Индивидуально

Время, необходимое на активность

Пишем в чат

Говорим голосом

Документ

Ответьте себе или задайте вопрос

Маршрут вебинара

Общие понятияБлокировки отношенийБлокировки строкБлокировки других объектов

Цели вебинара

После занятия вы сможете

- 1. Понимать как работают блокировки
- 2. Находить проблемные места связанные с блокировками

Общие понятия

Проблема - как одновременно получить доступ к одному объекту?

Решение - упорядочение конкурентного доступа к разделяемым ресурсам

- перед обращением к данным процесс захватывает блокировку
- после обращения освобождает, другой процесс начинает ожидать освобождения ресурса
- блокировки приводят к очередям

Дальнейшее развитие

- многоверсионность несколько версий данных, не избавляет от всех проблем
- оптимистичные блокировки процессы не блокируются, но при неудачном стечении обстоятельств возникает ошибка

Что подразумевается под ресурсом?

• все, что можно идентифицировать

Примеры ресурсов

- реальные хранимые объекты: страницы, таблицы, строки и т. п.
- структуры данных в общей памяти (хеш-таблицы, буферы...)
- абстрактные ресурсы (число)

Факторы, влияющие на производительность:

Гранулярность блокировки

- степень детализации, уровень в иерархии ресурсов
- например: таблица ightarrow страница ightarrow строки, хеш-таблица ightarrow корзины
- выше гранулярность больше возможностей для параллелизма

Режимы блокировок

- совместимость режимов определяется матрицей
- больше совместимых режимов больше возможностей для параллелизма

По типу:

- исключительные (exclusive)
- разделяемыми / совместные (shared)

По времени жизни: Долговременные блокировки

- обычно захватываются до конца транзакции и относятся к хранимым данным (например таблицы и отношения)
- большое число режимов
- развитая «тяжеловесная» инфраструктура, мониторинг

Краткосрочные блокировки

- обычно захватываются на доли секунды (управляются автоматически)
- относятся к структурам в оперативной памяти
- минимум режимов
- «легковесная» инфраструктура, мониторинг может отсутствовать

Блокировки объектов. Виды блокировок

Типы ресурсов (столбцом locktype в pg_locks):

- Relation Блокировки отношений
- Transactionid транзакция
- Virtualxid виртуальная транзакция
- Tuple версия строки
- Extend добавление страниц к файлу отношения
- Object не отношение: база данных, схема и т. п.
- Page страница (используется некоторыми типами индексов)
- Advisory рекомендательная блокировка

Информация в общей памяти сервера

- представление pg_locks:
- locktype тип блокируемого ресурса,
- mode режим блокировки

Инфраструктура

- очередь ожидания: ждущие процессы не потребляют ресурсы
- обнаружение взаимоблокировок

Ограниченное количество

- max_locks_per_transaction × max_connections
- при этом 1 транзакция может превысить max_locks_per_transaction

Текущие блокировки

- представление select * from pg_locks;
- функция select pg_blocking_pids(pid);

Вывод сообщений в журнал сервера

- параметр SHOW log_lock_waits;
- выводит сообщение об ожидании дольше deadlock_timeout или log_min_duration_statement

Максимальное время ожидания блокировки

lock timeout

Блокировки объектов: предикатные блокировки

Задача: реализация уровня изоляции Serializable

- используются в дополнение к обычной изоляции на снимках данных
- оптимистичные блокировки, название сложилось исторически

Информация в общей памяти сервера

• представление pg_locks со специальным режимом SIReadLock

Ограниченное количество

max_pred_locks_per_transaction × max_connections

Повышение количества блокировок (автоэкскалация)

- max_pred_locks_per_relation
- max_pred_locks_per_page

Режимы

Access Share SELECT

Row Share
SELECT FOR UPDATE/SHARE

Row Exclusive UPDATE, DELETE, INSERT

Share Update Exclusive VACUUM, ALTER TABLE,

CREATE INDEX CONCURRENTLY

Share CREATE INDEX

Share Row Exclusive CREATE TRIGGER, ALTER TABLE

Exclusive REFRESH MAT. VIEW CONCURRENTLY

Access Exclusive
DROP, TRUNCATE, VACUUM FULL,

LOCK TABLE, ALTER TABLE, REFRESH MAT. VIEW

3	Текущий режим блокировки								
Запрашиваемый режим блокировки	ACCESS SHARE	ROW SHARE	ROW EXCLUSIVE	SHARE UPDATE EXCLUSIVE	SHARE	SHARE ROW EXCLUSIVE	EXCLUSIVE	ACCESS EXCLUSIVE	
ACCESS SHARE								х	
ROW SHARE							×	×	
ROW EXCLUSIVE					Х	x	×	×	
SHARE UPDATE EXCLUSIVE				Х	х	Х	х	х	
SHARE			x	х		x	х	x	
SHARE ROW EXCLUSIVE			Х	Х	Х	Х	Х	Х	
EXCLUSIVE		Х	x	х	×	x	х	х	
ACCESS EXCLUSIVE	х	х	x	Х	Х	Х	×	×	

Блокировки объектов: блокировка строк

- информация только в страницах данных
- поле хтах заголовка версии строки + информационные биты
- неограниченное количество (могут быть миллиарды строк)
- большое число минимально отражается на производительности
- очередь ожидания организована с помощью блокировок объектов (пропорционально числу процессов, а не строк)

Режимы: Исключительный и разделяемый

Исключительный:

UPDATE - удаление строки или изменение всех полей

- SELECT FOR UPDATE
- UPDATE (с изменением ключевых полей)
- DELETE

NO KEY UPDATE - изменение любых полей, кроме ключевых

- SFI FCT FOR NO KFY UPDATE
- UPDATE (без изменения ключевых полей все внешние ключи без изменений)

Режимы: Исключительный и разделяемый

Разделяемый:

SHARE - запрет изменения любых полей строки

SELECT FOR SHARE

KEY SHARE - запрет изменения ключевых полей строки

- SELECT FOR KEY SHARE
- UPDATE (без изменения ключевых полей)

2	Текущий режим блокировки					
Запрашиваемый режим блокировки	FOR KEY SHARE	FOR SHARE	FOR NO KEY UPDATE	FOR UPDATE		
FOR KEY SHARE				Х		
FOR SHARE			Х	Х		
FOR NO KEY UPDATE		Х	Х	Х		
FOR UPDATE	X	Х	X	X		

- исключительные режимы конфликтуют между собой;
- разделяемые режимы совместимы между собой;
- разделяемый режим FOR KEY SHARE совместим с исключительным режимом FOR NO KEY UPDATE (то есть можно одновременно обновлять неключевые поля и быть уверенным в том, что ключ не изменится).

Структура строки в Исключительном режиме

1000	xmin
1001	xmax (номер блокирующей транзакции)
t	xmin_commited
	xmin_aborted
	xmax_committed
	xmax_aborted
	xmax_lock_only (select for update данные еще актуальны, хоть и заблокированы)
	keys_updated (изменились ли значения ключевых полей)
(0,1)	ctid (физическое местоположение строки в таблице)
мама мыла раму	данные

Структура строки в Разделяющем режиме, когда пришла вторая транзакция

1000	xmin
???	xmax (номер блокирующей транзакции)
t	xmin_committed
	xmin_aborted
	xmax_commited
	xmax_aborted
	xmax_lock_only (select for update)
	keys_updated (изменились ли значения ключевых полей)
(0,1)	ctid (физическое местоположение строки в таблице)
мама мыла раму	данные

Структура строки в Разделяющем режиме

1000	xmin	
2	хтах (номер блокирующей МУЛЬТИ транзакции)	1001
t	xmin_committed	1020
	xmin_aborted	
	xmax_committed	
t	xmax_is_multi	
(0,1)	ctid	
мама мыла раму	данные	

\$PGDATA\pg_multixact

1001	KEY SHARE	
1020	NO KEY UPDATE	

1000	xmin				
1001	xmax	•	SHARE	T1001	 xid 1001
	xmax_commited				
	xmax_aborted				
	xmax_lock_only				
	keys_updated				
(0,1)	ctid				
мама мыла раму	данные				

Как это происходит

Как это происходит

Как это происходит

Взаимоблокировки

postgres строит граф связей для выявления таких ситуаций deadlock_timeout

Блокировки в памяти

Блокировки объектов: в памяти

Блокировки в памяти. Spin блокировки

Spinlock

- устанавливаются на очень короткое время, несколько инструкций процессора
- используются атомарные инструкции процессора
- единственный режим исключительный
- нет возможности мониторинга
- нет обнаружения взаимоблокировок
- цикл активного ожидания

Блокировки в памяти. Легкие блокировки

LightWeightLock

- устанавливаются на короткое время, обычно доли секунды
- исключительный и разделяемый режимы
- есть мониторинг
- нет обнаружения взаимоблокировок
- пассивное ожидание
- при освобождении ресурса возникает состояние гонки, выигрывает случайный процесс

Блокировки в памяти. Закрепление буфера

BufferPin

- устанавливается на время работы с буфером, возможно длительное
- исключительный и разделяемый режимы
- есть мониторинг
- есть обнаружение взаимоблокировок
- пассивное ожидание, но обычно закрепленный буфер пропускается

Блокировки в памяти. Мониторинг

Когда процесс ожидает чего-либо, этот факт отражается в представлении pg_stat_activity:

- wait_event_type тип ожидания
- wait_event имя конкретного ожидания
- информация может быть не полна
- охвачены не все места в коде, в которых могут быть ожидания
- информация только на текущий момент
- единственный способ получить картину во времени семплинг
- достоверная картина только при большом числе измерений

Вывод в файл медленных запросов

log_min_duration_statement (integer) в миллисекундах

ДЗ

Домашнее задание

- 1. Настройте сервер так, чтобы в журнал сообщений сбрасывалась информация о блокировках, удерживаемых более 200 миллисекунд. Воспроизведите ситуацию, при которой в журнале появятся такие сообщения.
- 2. Смоделируйте ситуацию обновления одной и той же строки тремя командами UPDATE в разных сеансах. Изучите возникшие блокировки в представлении pq_locks и убедитесь, что все они понятны. Пришлите список блокировок и объясните, что значит каждая.
- 3. Воспроизведите взаимоблокировку трех транзакций. Можно ли разобраться в ситуации постфактум, изучая журнал сообщений?
- 4. Могут ли две транзакции, выполняющие единственную команду UPDATE одной и той же таблицы (без where), заблокировать друг друга?
- * Попробуйте воспроизвести такую ситуацию.

Рефлексия

Рефлексия

С какими впечатлениями уходите с вебинара?

Заполните, пожалуйста, опрос о занятии по ссылке в чате

Спасибо за внимание!

Приходите на следующие вебинары

Коробков Виктор