Non Deterministic Automata

1

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

,

Nondeterministic Finite Accepter (NFA)

Alphabet = $\{a\}$

3

Nondeterministic Finite Accepter (NFA)

Alphabet = $\{a\}$

An NFA accepts a string:

when there is a computation of the NFA that accepts the string

AND

all the input is consumed and the automaton is in a final state

An NFA rejects a string:

when there is no computation of the NFA that accepts the string:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

21

Example

a is rejected by the NFA:

All possible computations lead to rejection

aaa is rejected by the NFA: "reject" "q1 a q2 q3 "reject" All possible computations lead to rejection

Lambda Transitions

Input cannot be consumed

"reject"

String aaa is rejected

. .

Language accepted: $L = \{aa\}$

Language accepted

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^+$$

Another NFA Example

59

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10} *$

Remarks:

- •The $\,\lambda\,\,$ symbol never appears on the input tape
- •Simple automata:

$$L(M_1) = \{\}$$

$$L(M_2) = \{\lambda\}$$

61

•NFAs are interesting because we can express languages easier than DFAs

NFA M₁

$$L(M_1) = \{a\}$$

DFA M₂

$$L(M_2) = \{a\}$$

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

- $Q\colon$ Set of states, i.e. $\{q_0,q_1,q_2\}$
- Σ : Input apphabet, i.e. $\{a,b\}$
- δ : Transition function
- q_0 : Initial state
- F: Final states

63

Transition Function δ

$$\mathcal{S}(q_0,1) = \{q_1\}$$

$$\delta^*(q_0,aa) = \{q_4,q_5\}$$

$$q_4$$

$$q_5$$

$$q_5$$

$$q_7$$

$$q_7$$

$$q_8$$

$$q_9$$

Formally

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_j$$

71

The Language of an NFA $\,M\,$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$p$$

$$p$$

$$q_2$$

$$p$$

$$p$$

$$q_3$$

$$\delta * (q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$\delta * (q_0, ab) = \{q_2, q_3, \underline{q_0}\} \quad ab \in L(M)$$

 $F = \{q_0, q_5\}$ q_4 q_5 q_0 q_1 λ q_3

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\}$$
 $aaba \in L(M)$

$$\delta * (q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

 $Q_{4} \qquad Q_{5}$ $a \qquad a$ $A \qquad a$ λ $L(M) = \{\lambda\} \quad \cup \quad \{ab\}^{*} \quad \{aa\} \cup \{ab\}^{*}$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta * (q_0, w_m) = \{q_i, q_j, ..., q_k, ...\}$$

and there is some $q_k \in F$ (final state)

NFAs accept the Regular Languages

79

Equivalence of Machines

Definition for Automata:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

We will prove:

Languages accepted by DFAs

NFAs and DFAs have the same computation power

Step 1

 Languages

 accepted

 by NFAs

 Regular

 Languages

Proof: Every DFA is trivially an NFA

Any language $\,L\,$ accepted by a DFA is also accepted by an NFA

02

Step 2

 Languages

 accepted

 by NFAs

 Regular

 Languages

Proof: Any NFA can be converted to an equivalent DFA _

Any language L accepted by an NFA is also accepted by a DFA

Convert NFA to DFA

DFA M' $\longrightarrow (\{q_0\})$

85

Convert NFA to DFA

