

Position sensors

KON-C2004 Mechatronics Basics

Raine Viitala 29.10.2024

Learning outcomes

After the lecture, student should

- understand what sensor is
- understand the basic operating principles of typical position sensors
- understand response time, linearity and accuracy vs. resolution
- know the limitations of different sensor types
- know many everyday position sensors

Important terms

Sensor Detects a parameter and reports it in other form

Response time Rise time of the output signal (often 10-90 %)

Range Minimum and maximum amplitude of the measurement (on the linear and accurate area of the sensor)

Linearity How linearly the output of the sensor follows the measured quantity change

Response time = Rise time

Linearity

Accuracy vs. precision vs. resolution

Accuracy

 The ability to produce a response or a reading that is close to the true value

Precision

Random variation is minimized

Resolution

Smallest detectable change

Switches

Binary switches (on/off)

• Signal changes when circuit is opened or closed

Potentiometer

Angular or linear position

• Single or multi-turn

Low cost

Can wear out

LVDT

Linear Variable Differential Transformer

High accuracy down to micrometers – depending on the quality of the interfacing electronics

High reliability

Displacement < 1 m

29.10.2024

11

RVDT

Rotary Variable Differential Transformer

http://www.synchroconverters.com/rvdt.html

Incremental optical encoder

Measures change in angular position Simple design, good precision

Two signals with different phase

- Two detectors
- One ring with phase shifted detectors or two phase shifted rings

Quadrature encoding; Detect rising and falling edges from both signals

Absolute optical encoder

Several rings & detectors

Unique signal combination for each angular position

Number of possible angular positions 2^(number of rings)

Usually uses gray-coding instead of binary coding

- Only one bit at a time changes
- Smaller risk for errors

More complex design

Other encoder types

Magnetic, inductive, mechanical... Linear versions of incremental and absolute encoders

Precision linear encoder

Accuracies up to 0.1 µm

Interferential scanning principle (optics schematics)

- C Grating period
- w Phase shift of the light wave when passing through the scanning reticle
- Ω Phase shift of the light wave due to motion X of the scale

Old stuff: Resolver, synchro, tachogenerator

Resolver and synchro are analogue position sensors

- AC excitation via transformer
 – AC output
- Reliable no mechanical wear
- Multi-turn
- Very similar to RVDT

Tachogenerator is an analogue speed sensor

"inverted DC motor"

https://en.wikipedia.org/wiki/Resolver %28electrical%29

Proximity sensor

Binary switches (on/off)

- Change state when object is at a preset distance
 Range usually a couple of centimeters
 Based on different mechanisms
- Optical
- Capacitive
- Inductive

Proximity sensor example

Short range displacement sensors

Eddy current

Range some millimeters, difficult environments

Capacitive

- Range some millimeters, only conductive targets
- Subnanometer resolution possible

White light

- Short range
- Very accurate, resolution down to nm
- Works also with glass

Time of flight principle

Distance derived from the time taken for a reflected beam to return Multiple echos possible

Time of flight sensors

Radar (Radio detection and ranging) Ultrasound

• Not very fast (cycle time ~50 ms)

Laser

Triangulation principle

https://www.lap-laser.com/metals-industries/products/ctg-ctlwg/measurement-principles/

Triangulation sensors

Laser triangulation

very accurate, up to 0.01 µm

Infrared

- Cheap ~20 euros
- Only for short distances (some meters)
- Can be disturbed by external light etc.

Lecture exercise

In small groups (2-4), discuss what kind of position sensors could be used in a robot vacuum cleaner.

2D scanner

Rotating time of flight distance sensor

Laser (Lidar)

Most used

Radar

- More robust than laser
- Not as accurate
- No accurate functionality in one plane

Machine Vision

High accuracy possible

Low cost

Depends on computing power and algorithms

3D laser scanner (lidar)

3D laser scanner (lidar)

3D lidar

Stereo vision & structured light

Stereo vision = two cameras Structured light = camera & projector

Kinect 1

Structured light

http://library.isr.ist.utl.pt/docs/roswiki/kinect_calibration(2f)technical.html

Kinect 2: Time-of-flight camera

Simultaneous sampling of distance to all pixels

3D simultaneous localization and mapping with TOF camera

GPS

Global satellite positioning

Not usable inside

Standard GPS

accuracy <10 m

Differential GPS (DGPS)

Accuracy from some meters to centimeters

Real Time Kinematic GPS (RTK GPS)

Accuracy down to 1 cm, receivers (2 pcs) cost ~400€

Other beacon positioning systems

Indoors

- Shopping centers
- Warehouses

Outdoors

 Between tall buildings where GPS struggles

Technologies

- Wifi
- Bluetooth
- Cell phone towers
- Dedicated beacons

Example: Tesla autopilot

GPS

Global

Radar

- Mid-range
- Only forward
- Robust

Camera

Three views

Ultrasound

- Close range
- 360°

Example: Tesla autonomous hardware

GPS

Global

Radar

- Mid-range
- Only forward
- Robust

Camera

8 cameras, 360 °

Ultrasound

- Redundancy
- 360 °

Aalto autonomous & mobility lab: A!ex

Sensors:

- 2x Mako G-319C cameras forward for stereo vision
- 1x Velodyne VLP32c lidar
- 1x Delphi ESR 2.5 24V radar
- 1x Novatel PwrPak7D-E2, RTK corrections available + 2x NovAtel 502 Low Profile Dual-frequency antennas GPS
- 1x IMU-IGM-S1/STIM300 inertial measurement unit

My Volvo autopilot

General considerations

Absolute or incremental position

Disturbance to process from a mechanical contact

Possible wearing

Sensitivity to external disturbances

- Temperature
- Sunlight
- Dirt, water, impacts

Accuracy vs. price

Sensor fusion

Comparison of position sensors

	Accuracy	Range	Reliability	Price
Laser	+++	0,001 m ->	++	€€-€€€
Ultrasound	+	0,1 - 10 m	++	€
Infrared	+	0,1 - 5 m	+	€
LVDT	++	0,01 - 1 m	+++	€€
Potentiometer	+	0,01 - 1 m	++	€ - €€
Optical encoder	+++	<- 10 m	++	€€
GPS	+	1 m->	++	€

Warning! Contains rough generalizations.