

Segundo examen opcional. Matemáticas discretas II Duración 2 horas

Carlos Andres Delgado S, Ing *
20 de Diciembre de 2017

- 1. (10 puntos) Diseñe un AFD con $\Sigma = \{a, b, c\}$ para reconocer la expresión $((a \cup b)a^*b^+cb^*a^+)^*$. Muestre la tabla de transiciones.
- 2. (10 puntos) Diseñe un AFN con $\Sigma = \{a, b, c, d\}$ para reconocer la expresión $(a^*(b \cup c)^+(c \cup (a \cup d))b^*a^+)^*$. Muestre la tabla de transiciones.
- 3. (10 puntos) Diseñe una gramática en la forma Backus-Naur que permita construir cadenas con $\Sigma = \{a,b,c,d,f,g,p,q,t,z\}$, que cumplan estos requisitos:
 - Deben iniciar en **a** o en **bb**.
 - \blacksquare Después de ${\bf c}$ debe seguir ${\bf afd}$ o ${\bf att}$.
 - Deben terminar en zz.
- 4. Para las cadenas binarias que:
 - Inician en 0
 - Puede tener cualquier cantidad de 0 o 1 (Excepto las reglas que siguen)
 - Después de la secuencia 10 debe seguir 111.
 - Después de la secuencia 01 debe seguir 1111.
 - Termina con cuatro ceros.
 - a) (10 puntos) Construya las reglas de producción para gramática tipo III
 - b) (10 puntos) Construya las reglas de producción para gramática tipo II. No debe ser tipo III.

¡Éxitos!

 $^{{\}rm *carlos. and res. delgado@correounivalle. edu. co}$