Лекция L5 Денотационная семантика

Вадим Пузаренко

Лекция L5 Денотационная семантика

Вадим Пузаренко

20 октября 2021 г.

Мотивация

Лекция L5 Денотационная семантика

> Вадим Пузаренко

> > Нашей целью является построение математической модели, соответствующей синтаксическому λ -исчислению. При этом каждый λ -терм должен получить в модели свою интерпретацию. Также проверяются свойства корректности (а именно, равные λ -термы должны получить одно и то же значение) и полноты (а именно, λ -термы, принимающие одно и то же значение во всех моделях, равны).

Предварительные обозначения и понятия

Лекция L5 Денотационная семантика

Вадим Пузаренко

- Σ множество всех типов, построенных из атомарных типов $\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots$
- Будем рассматривать типизированные λ -термы, полагая, что переменные а приори типизированы.
- Если A, B множества, то $(A \to B)$ множество всех функций, действующих из A в B.

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Для каждого атомарного типа σ фиксируем множество D_{σ} . Для более высоких типов определяем $D_{(\sigma \to \tau)}$ как множество функций из D_{σ} в D_{τ} :

$$D_{(\sigma o au)} = D_{\sigma} o D_{ au}$$

Лекция L5 Денотационная семантика

Вадим Пузаренко Для каждого атомарного типа σ фиксируем множество D_{σ} . Для более высоких типов определяем $D_{(\sigma \to \tau)}$ как множество функций из D_{σ} в D_{τ} :

$$D_{(\sigma \to \tau)} = D_{\sigma} \to D_{\tau}$$

Замечание.

Согласно преобразованию Карри, имеем

$$D_{(\tau_1 \to (\tau_2 \to \sigma))} = D_{\tau_1} \to (D_{\tau_2} \to D_{\sigma}) \cong ((D_{\tau_1} \times D_{\tau_2}) \to D_{\sigma})$$

В более общей форме,

$$D_{(\tau_1 \to (\tau_2 \to (\dots (\tau_n \to \sigma)\dots)))} \cong (D_{\tau_1} \times D_{\tau_2} \times \dots \times D_{\tau_n}) \to D_{\sigma}$$

Лекция L5 Денотационная семантика

> Вадим Пузаренко

> > Означиванием переменных называется отображение ϱ , сопоставляющее переменной x^{σ} типа σ элемент $\varrho(x) \in D_{\sigma}$.

Означиванием переменных называется отображение ϱ , сопоставляющее переменной x^{σ} типа σ элемент $\varrho(x) \in D_{\sigma}$.

Пусть ϱ — означивание переменных. Положим (здесь $a\in D_{ au}$)

$$\varrho[y^{ au}\mapsto a](x^{\sigma}) = egin{cases} \varrho(x^{\sigma}), & \text{если } x^{\sigma} \not\equiv y^{ au}; \ a, & \text{если } x^{\sigma} \equiv y^{ au}. \end{cases}$$

Определение

Определим **интерпретацию** $[\![M]\!]_{\varrho}$ λ -терма M индукцией по построению, для любого означивания переменных ϱ .

- ② если λ -термы M, N получили типы $(\sigma \to \tau)$, σ соответственно, а также заданы $[\![M]\!]_{\varrho} \in D_{(\sigma \to \tau)}$, $[\![N]\!]_{\varrho} \in D_{\sigma}$, то $[\![(MN)]\!]_{\varrho} = [\![M]\!]_{\varrho} ([\![N]\!]_{\varrho}) \in D_{\tau}$;
- ullet если λ -терм M получает тип σ , а также уже задано $[\![M]\!]_{\varrho} \in D_{\sigma}$, то $[\![\lambda x^{ au}.M]\!]_{\varrho} = ((a(\in D_{ au}) \mapsto [\![M]\!]_{\varrho[x^{ au}\mapsto a]}): D_{ au} o D_{\sigma}) \in D_{(au o \sigma)}.$

Лекция L5 Денотационная семантика

Вадим Пузаренко

Определение

Определим **интерпретацию** $[\![M]\!]_{\varrho}$ λ -терма M индукцией по построению, для любого означивания переменных ϱ .

- ② если λ -термы M, N получили типы $(\sigma \to \tau)$, σ соответственно, а также заданы $[\![M]\!]_{\varrho} \in D_{(\sigma \to \tau)}$, $[\![N]\!]_{\varrho} \in D_{\sigma}$, то $[\![MN]\!]_{\varrho} = [\![M]\!]_{\varrho} ([\![N]\!]_{\varrho}) \in D_{\tau}$;
- ② если λ -терм M получает тип σ , а также уже задано $[\![M]\!]_{\varrho} \in D_{\sigma}$, то $[\![\lambda x^{\tau}.M]\!]_{\varrho} = ((a(\in D_{\tau}) \mapsto [\![M]\!]_{\varrho[x^{\tau}\mapsto a]}): D_{\tau} \to D_{\sigma}) \in D_{(\tau \to \sigma)}.$

Замечание

Значение $[\![M]\!]_\varrho$ зависит только от значений переменных, входящих свободно в M. А именно, $[\![M]\!]_\varrho = [\![M]\!]_{\varrho'}$, как только $\varrho(x^\sigma) = \varrho'(x^\sigma)$ для любой переменной x, входящей свободно в M.

Лекция L5 Денотационная семантика

> Вадим Тузаренко

Замечание

В частности, если M — замкнутый λ - терм (т.е. без свободных переменных), то $[\![M]\!]_{\varrho}$ не зависит от ϱ (и в этом случае можно записывать как $[\![M]\!]$).

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Замечание

В частности, если M — замкнутый λ - терм (т.е. без свободных переменных), то $[\![M]\!]_\varrho$ не зависит от ϱ (и в этом случае можно записывать как $[\![M]\!]$).

Примеры.

- $[\lambda x^{\sigma}.y^{\tau}]_{\varrho} = (a \mapsto \varrho(y^{\tau})) : D_{\sigma} \to D_{\tau}$ постоянная функция, принимающая значение $\varrho(y^{\tau})$ в случае, когда $y^{\tau} \not\equiv x^{\sigma}$.
- **3** Вычислим значение $\mathbf{n} \equiv \lambda y^{(\sigma \to \sigma)}.\lambda x^{\sigma}.(\underbrace{y(y\ldots(y}{x}))):$

$$[\![\lambda y^{(\sigma \to \sigma)}.\lambda x^{\sigma}.(\underbrace{y(y\ldots(y}x)))]\!] = (f \mapsto [\![\lambda x^{\sigma}.(\underbrace{y(y\ldots(y}x)))]\!]_{y\mapsto f}) : (D_{\sigma} \to D_{\sigma}) \to (D_{\sigma} \to D_{\sigma}),$$

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Упражнение.

- **1** Вычислить $[\![\lambda x^{\sigma}.\lambda y^{\tau}.y]\!]$
- **2** Вычислить $[\![\lambda x^{\sigma}.\lambda y^{\tau}.x]\!]$
- **③** Вычислить $[\![\lambda x^{(\sigma \to \sigma)}.\lambda y^{((\sigma \to \sigma) \to \sigma)}.(x(yx))]\!].$

Лекция L5 Денотационная семантика

Вадим Пузаренко

Сопоставим

- lacktriangle каждому типу σ множество A_{σ} ;
- f 2 каждой паре типов σ , au отображение ${
 m app}_{\sigma, au}:(A_{(\sigma o au)} o(A_\sigma o A_ au));$

в этом случае система $\mathcal{A}=(A_{\sigma},\mathrm{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$ называется структурой представлений. Она называется экстенсиональной, если отображение $\mathrm{app}_{\sigma,\tau}$ инъективно, для всех $\sigma,\,\tau\in\Sigma$.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Сопоставим

- lacktriangle каждому типу σ множество A_{σ} ;
- ullet каждой паре типов σ , au отображение $\mathrm{app}_{\sigma, au}:(A_{(\sigma o au)} o(A_{\sigma} o A_{ au}));$

в этом случае система $\mathcal{A}=(A_{\sigma},\mathrm{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$ называется **структурой представлений**. Она называется **экстенсиональной**, если отображение $\mathrm{app}_{\sigma,\tau}$ инъективно, для всех $\sigma,\, \tau\in\Sigma$.

Экстенсиональность означает, что два различных элемента f, $g\in A_{(\sigma\to\tau)}$ кодируют посредством $\mathrm{app}_{\sigma,\tau}$ две различные функции $A_\sigma\to A_\tau$.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Сопоставим

- lacktriangle каждому типу σ множество A_{σ} ;
- $oldsymbol{2}$ каждой паре типов σ , au отображение $\mathrm{app}_{\sigma, au}:(A_{(\sigma o au)} o(A_{\sigma} o A_{ au}));$

в этом случае система $\mathcal{A}=(A_{\sigma}, \operatorname{app}_{\sigma, \tau})_{\sigma, \tau \in \Sigma}$ называется **структурой представлений**. Она называется **экстенсиональной**, если отображение $\operatorname{app}_{\sigma, \tau}$ инъективно, для всех $\sigma, \ \tau \in \Sigma$.

Экстенсиональность означает, что два различных элемента f, $g\in A_{(\sigma\to\tau)}$ кодируют посредством ${
m app}_{\sigma,\tau}$ две различные функции $A_\sigma\to A_\tau$.

Одним из примеров структуры представлений может служить модель множеств. В этом случае отображения $\mathrm{app}_{\sigma,\tau}$ будут тождественны и, в частности, структура экстенсиональна.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Замечание.

Довольно часто используется модель, в которой $A_{(\sigma \to \tau)}$ является подмножеством множества $A_{\sigma} \to A_{\tau}$ всех функций, действующих из A_{σ} в A_{τ} . В этом случае $\operatorname{app}_{\sigma,\tau}: A_{(\sigma \to \tau)} \to (A_{\sigma} \to A_{\tau})$ будет канонической инъекцией и, следовательно, система является экстенсиональной структурой представлений.

Модель термов I

Лекция L5 Денотационная семантика

Вадим Пузаренко Для произвольного λ —терма M типа σ обозначим через $\langle M \rangle$ класс β —эквивалентности типизированных λ —термов M', содержащий M. По доказанному, все представители данного класса также будут иметь тип σ . Обозначим

$$T_{\sigma} = \{\langle M \rangle | M - \lambda$$
-терм типа $\sigma \}$

Далее, $M:(\sigma \to \tau)=M':(\sigma \to \tau)$, $N:\sigma=N':\sigma$ влечёт $(MN):\tau=(M'N'):\tau$, поэтому можно сопоставить каждому $\langle M \rangle \in T_{(\sigma \to \tau)}$ отображение

$$\langle N \rangle \mapsto \langle (MN) \rangle : T_{\sigma} \to T_{\tau}$$

(это отображение и определяет $\operatorname{app}_{\sigma,\tau}\langle M \rangle$). Тем самым, $\operatorname{app}_{\sigma,\tau}: T_{(\sigma \to \tau)} \to (T_\sigma \to T_\tau)$. Так определённая структура $(T_\sigma, \operatorname{app}_{\sigma,\tau})$ будет называться β –моделью термов.

Модель термов I

Лекция L5 Денотационная семантика

> Вадим Пузаренко

> > Данная структура представлений не экстенсиональна. Возьмём $Q_1 \equiv y^{(\sigma o au)}, \ Q_2 \equiv \lambda x^\sigma. (y^{(\sigma o au)} x^\sigma)$. Тогда для любого $\langle P \rangle \in T_\sigma$ имеем:

$$\begin{array}{l} \operatorname{app}_{\sigma,\tau}(\langle Q_1 \rangle)(\langle P \rangle) = \operatorname{app}_{\sigma,\tau}(\langle y^{(\sigma \to \tau)} \rangle)(\langle P \rangle) = \langle (y^{(\sigma \to \tau)}P) \rangle \\ \operatorname{app}_{\sigma,\tau}(\langle Q_2 \rangle)(\langle P \rangle) = \langle (Q_2P) \rangle = \langle (\lambda x^{\sigma}.(y^{(\sigma \to \tau)}x^{\sigma})P) \rangle = \\ \langle (y^{(\sigma \to \tau)}P) \rangle \end{array}$$

Лекция L5 Денотационная семантика

Вадим Пузаренко $\lambda x.(Px) \Rightarrow_{\eta} P$, где x не входит свободно в P.

Лекция L5 Денотационная семантика

Вадим Пузаренко $\lambda x.(Px) \Rightarrow_{\eta} P$, где x не входит свободно в P.

Пример

Пусть $E \equiv \lambda x.\lambda y.(xy)$; тогда $E \Rightarrow_{\eta} \lambda x.x \equiv I$, если $x \not\equiv y$. λ -Термы E и I находятся в нормальной форме, поэтому $E \not= I$. Однако, $((\mathcal{E}x)y) = (xy)$ и действия λ -термов E и I совпадают на двойных λ -термах.

Лекция L5 Денотационная семантика

Вадим Пузаренко $\lambda x.(Px) \Rightarrow_{\eta} P$, где x не входит свободно в P.

Пример

Пусть $E \equiv \lambda x.\lambda y.(xy)$; тогда $E \Rightarrow_{\eta} \lambda x.x \equiv I$, если $x \not\equiv y$. λ -Термы E и I находятся в нормальной форме, поэтому $E \not\equiv I$. Однако, $((\mathcal{E}x)y) = (xy)$ и действия λ -термов E и I совпадают на двойных λ -термах.

η -Нормальная форма

Будем говорить, что λ -терм t находится в η -нормальной форме, если к нему невозможно применить η -редукцию.

Лекция L5 Денотационная семантика

Вадим Пузаренко $\lambda x.(Px) \Rightarrow_{\eta} P$, где x не входит свободно в P.

Пример

Пусть $E \equiv \lambda x.\lambda y.(xy)$; тогда $E \Rightarrow_{\eta} \lambda x.x \equiv I$, если $x \not\equiv y$. λ –Термы E и I находятся в нормальной форме, поэтому $E \not\equiv I$. Однако, ((Ex)y) = (xy) и действия λ –термов E и I совпадают на двойных λ –термах.

η -Нормальная форма

Будем говорить, что λ -терм t находится в η -нормальной форме, если к нему невозможно применить η -редукцию.

Замечание.

Каждый λ -терм можно привести конечным числом применений η -редукций к η -нормальной форме (почему?)

$\beta\eta$ -редукция

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Конечное число применений β — и η —редукций будем называть $\beta\eta$ —**редукцией**. Будем записывать $M\Rightarrow_{\beta\eta}N$, если существует последовательность $M=M_0,\,M_1,\,\ldots,\,M_k=N$ такая, что для каждого $0\leqslant i< k$ выполняется $M_i\Rightarrow M_{i+1}$ или $M_i\Rightarrow_{\eta}M_{i+1}$.

$eta\eta$ -редукция

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Конечное число применений β — и η —редукций будем называть $\beta\eta$ —**редукцией**. Будем записывать $M\Rightarrow_{\beta\eta}N$, если существует последовательность $M=M_0,\ M_1,\ \ldots,\ M_k=N$ такая, что для каждого $0\leqslant i< k$ выполняется $M_i\Rightarrow M_{i+1}$ или $M_i\Rightarrow_{\eta}M_{i+1}$.

Предложение L5

Отношение $\beta\eta$ -редукции рефлексивно и транзитивно, а также замкнуто относительно контекста. Кроме того, оно замкнуто относительно подстановок термов, т.е.

$$M \Rightarrow_{eta\eta} M', \ N \Rightarrow_{eta\eta} N'$$
 влечет $[M]_N^{ imes} \Rightarrow_{eta\eta} [M']_{N'}^{ imes}$

$eta\eta$ -редукция

Лекция L5 Денотационная семантика

Вадим Пузаренко Конечное число применений β — и η —редукций будем называть $\beta\eta$ —**редукцией**. Будем записывать $M\Rightarrow_{\beta\eta}N$, если существует последовательность $M=M_0,\ M_1,\ \ldots,\ M_k=N$ такая, что для каждого $0\leqslant i< k$ выполняется $M_i\Rightarrow M_{i+1}$ или $M_i\Rightarrow_{\eta}M_{i+1}$.

Предложение L5

Отношение $\beta\eta$ -редукции рефлексивно и транзитивно, а также замкнуто относительно контекста. Кроме того, оно замкнуто относительно подстановок термов, т.е.

$$M \Rightarrow_{eta\eta} M', \ N \Rightarrow_{eta\eta} N'$$
 влечет $[M]_N^{ imes} \Rightarrow_{eta\eta} [M']_{N'}^{ imes}$

Теорема Черча-Россера L9

Отношение $\beta\eta$ —редукции конфлюэнтно. А именно, каковы бы ни были λ —термы M, M_1 и M_2 , для которых выполнено $M\Rightarrow_{\beta\eta}M_1$ и $M\Rightarrow_{\beta\eta}M_2$, найдётся λ —терм N такой, что $M_1\Rightarrow_{\beta\eta}N$ и $M_2\Rightarrow_{\beta\eta}N$.

$eta\eta$ -редукция $^{ extsf{I}}$

Лекция L5 Денотационная семантика

> Вадим Пузаренко

$\beta\eta$ -Нормальная форма

Будем говорить, что λ -терм M находится в $\beta\eta$ -номальной форме, если он одновременно находится и в η -нормальной, и в нормальной формах.

$eta\eta$ -редукция $^{ extsf{I}}$

Лекция L5 Денотационная семантика

Вадим Пузаренко

$\beta\eta$ –Нормальная форма

Будем говорить, что λ -терм M находится в $\beta\eta$ -номальной форме, если он одновременно находится и в η -нормальной, и в нормальной формах.

Следствие L1

Если λ —терм M приводится к нормальной форме, то он приводится и к $\beta\eta$ —нормальной форме. (Справедливо и обратное утверждение.)

$eta\eta$ -редукция

Лекция L5 Денотационная семантика

Вадим Пузаренко

$\beta\eta$ – H ормальная форма

Будем говорить, что λ -терм M находится в $\beta\eta$ -номальной форме, если он одновременно находится и в η -нормальной, и в нормальной формах.

Следствие L1

Если λ –терм M приводится к нормальной форме, то он приводится и к $\beta\eta$ –нормальной форме. (Справедливо и обратное утверждение.)

Следствие L2

Для всякого λ -терма $\beta\eta$ -нормальная форма определяется однозначно, если она существует.

$\beta\eta$ –Эквивалентность

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Два λ -терма M и N будем называть $\beta\eta$ -эквивалентными и обозначать как $M\simeq_{\beta\eta}N$, если найдётся λ -терм P такой, что $M\Rightarrow_{\beta\eta}P$ и $N\Rightarrow_{\beta\eta}P$.

$\beta\eta$ -Эквивалентность

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Два λ -терма M и N будем называть $\beta\eta$ -эквивалентными и обозначать как $M\simeq_{\beta\eta}N$, если найдётся λ -терм P такой, что $M\Rightarrow_{\beta\eta}P$ и $N\Rightarrow_{\beta\eta}P$.

Предложение L6

Отношение $\beta\eta$ —эквивалентности действительно является отношением эквивалентности и замкнуто относительно контекста. Кроме того, оно замкнуто относительно взятия подстановки.

$\beta\eta$ –Эквивалентность

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Два λ -терма M и N будем называть $\beta\eta$ -эквивалентными и обозначать как $M\simeq_{\beta\eta}N$, если найдётся λ -терм P такой, что $M\Rightarrow_{\beta\eta}P$ и $N\Rightarrow_{\beta\eta}P$.

Предложение L6

Отношение $\beta\eta$ —эквивалентности действительно является отношением эквивалентности и замкнуто относительно контекста. Кроме того, оно замкнуто относительно взятия подстановки.

Каждый класс $\beta\eta$ —эквивалентности состоит из нескольких классов относительно отношения =, поскольку M=N влечёт $M\simeq_{\beta\eta}N$.

$\beta\eta$ -Эквивалентность

Лекция L5 Денотационная семантика

Вадим Пузаренко

Предложение L7

- **①** Если x не входит свободно ни в M, ни в N, то $(Nx) \simeq_{\beta\eta} (Mx)$ влечёт $N \simeq_{\beta\eta} M$.
- ② Если $(MP) \simeq_{\beta\eta} (NP)$ для всякого λ -терма P, не имеющего свободные вхождения свободных переменных λ -термов M и N, то $M \simeq_{\beta\eta} N$.

$\beta\eta$ –Эквивалентность

Лекция L5 Денотационная семантика

Вадим Пузаренко

Предложение L7

- Если x не входит свободно ни в M, ни в N, то $(Nx) \simeq_{\beta\eta} (Mx)$ влечёт $N \simeq_{\beta\eta} M$.
- ② Если $(MP) \simeq_{\beta\eta} (NP)$ для всякого λ -терма P, не имеющего свободные вхождения свободных переменных λ -термов M и N, то $M \simeq_{\beta\eta} N$.

Доказательство.

- (1) Если $(Nx) \simeq_{\beta\eta} (Mx)$, то $\lambda x.(Nx) \simeq_{\beta\eta} \lambda x.(Mx)$. Так как x не входит свободно ни в M, ни в N, имеем $\lambda x.(Nx) \simeq_{\beta\eta} N$ и $\lambda x.(Mx) \simeq_{\beta\eta} M$; в силу транзитивности и симметричности, $M \simeq_{\beta\eta} N$.
- (2) Если P переменная, не входящая свободно в M и N, то данное утверждение получаем непосредственно из п. 1.

Модель термов II

Лекция L5 Денотационная семантика

Вадим Пузаренко

Возьмём теперь в качестве $\langle M \rangle_{\beta\eta}$ класс относительно $\simeq_{\beta\eta}$, содержащий M. Обозначим через \mathcal{S}_{σ} множество классов λ -термов типа σ . Определим теперь систему $\mathcal{S} = (\mathcal{S}_{\sigma}, \operatorname{app}_{\sigma,\tau})_{\sigma,\tau \in \Sigma}$, которую будем называть **моделью** $\beta\eta$ -**термов**. Эта структура представлений будет уже экстенсиональной, что следует из предыдущего предложения.

Модель Хенкина

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Пусть $(A_{\sigma}, \operatorname{app}_{\sigma, \tau})_{\sigma, \tau \in \Sigma}$ — экстенсиональная структура представлений. Зададим, как и для модели множеств, интерпретацию $\llbracket \cdot \rrbracket_{\varrho}$ типизированных λ -термов индукцией по построению, для любого фиксированного означивания ϱ переменных $(\varrho(x^{\sigma}) \in A_{\sigma})$:

- ② если P и $Q \lambda$ -термы типов $(\sigma \to \tau)$ и σ соответственно, а по предположению, уже заданы $[\![P]\!]_{\varrho} \in A_{(\sigma \to \tau)}$ и $[\![Q]\!]_{\varrho} \in A_{\sigma}$, то положим $[\![(PQ)\!]_{\varrho}] = (\operatorname{app}_{\sigma,\tau}[\![P]\!]_{\varrho})([\![Q]\!]_{\varrho}) \in A_{\tau}$;
- ② если $Q \lambda$ -терм типа au, а по предположению, уже задано $[\![Q]\!]_{\varrho} \in A_{ au}$, то положим $[\![\lambda x^{\sigma}.Q]\!]_{\varrho}' = (a \mapsto [\![Q]\!]_{\varrho[x^{\sigma}\mapsto a]} : A_{\sigma} \to A_{ au})$.

Лекция L5 Денотационная семантика

Вадим Пузаренко Пусть $(A_{\sigma}, \operatorname{app}_{\sigma, \tau})_{\sigma, \tau \in \Sigma}$ — экстенсиональная структура представлений. Зададим, как и для модели множеств, интерпретацию $\llbracket \cdot \rrbracket_{\varrho}$ типизированных λ -термов индукцией по построению, для любого фиксированного означивания ϱ переменных $(\varrho(x^{\sigma}) \in A_{\sigma})$:

- ② если P и $Q \lambda$ -термы типов $(\sigma \to \tau)$ и σ соответственно, а по предположению, уже заданы $[\![P]\!]_{\varrho} \in A_{(\sigma \to \tau)}$ и $[\![Q]\!]_{\varrho} \in A_{\sigma}$, то положим $[\![(PQ)\!]_{\varrho}] = (\operatorname{app}_{\sigma,\tau}[\![P]\!]_{\varrho})([\![Q]\!]_{\varrho}) \in A_{\tau}$;
- lacktriangledown если $Q \lambda$ -терм типа au, а по предположению, уже задано $[\![Q]\!]_{\varrho} \in A_{ au}$, то положим $[\![\lambda x^{\sigma}.Q]\!]_{\varrho}' = (a \mapsto [\![Q]\!]_{\varrho[x^{\sigma}\mapsto a]}: A_{\sigma} \to A_{ au})$. Хотя мы и задали в качестве интерпретации λ -терма $\lambda x^{\sigma}.Q$ функцию $A_{\sigma} \to A_{\tau}$, мы должны определить элемент $A_{(\sigma \to au)}$. Тем самым, необходимо выполнение дополнительного требования:

Лекция L5 Денотационная семантика

Вадим Пузаренко

При выполнении условия (Н) третье условие приобретает вид

3.
$$[\![\lambda x^{\sigma}.Q]\!]_{\varrho} = \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto [\![Q]\!]_{\varrho[x^{\sigma}\mapsto a]}: A_{\sigma} \to A_{\tau}) = \operatorname{app}_{\sigma,\tau}^{-1}([\![\lambda x^{\sigma}.Q]\!]_{\varrho}').$$

Лекция L5 Денотационная семантика

Вадим Пузаренко

При выполнении условия (H) третье условие приобретает вид 3. $[\![\lambda x^{\sigma}.Q]\!]_{\varrho} = \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto [\![Q]\!]_{\varrho[x^{\sigma}\mapsto a]}: A_{\sigma} \to A_{\tau}) = \operatorname{app}_{\sigma,\tau}^{-1}([\![\lambda x^{\sigma}.Q]\!]_{\varrho}').$

Экстенсиональную структуру представлений, удовлетворяющую условию (Н), назовём моделью Хенкина.

Лекция L5 Денотационная семантика

Вадим Пузаренко

При выполнении условия (H) третье условие приобретает вид 3. $[\![\lambda x^{\sigma}.Q]\!]_{\varrho} = \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto [\![Q]\!]_{\varrho[x^{\sigma}\mapsto a]}: A_{\sigma} \to A_{\tau}) = \operatorname{app}_{\sigma,\tau}^{-1}([\![\lambda x^{\sigma}.Q]\!]_{\varrho}').$

Экстенсиональную структуру представлений, удовлетворяющую условию (H), назовём моделью Хенкина.

Примеры.

Нетрудно понять, что модель множеств является моделью Хенкина. Наша цель — показать, что $\beta\eta$ -модель термов также является моделью Хенкина.

Лекция L5 Денотационная семантика

Вадим Пузаренко Рассмотрим $\beta\eta$ —модель термов $\mathcal{S}=(\mathcal{S}_\sigma,\operatorname{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$. Определим означивание ϱ переменных каждой переменной x^σ , присваивающее класс $\beta\eta$ —эквивалентности подходящего терма M типа σ : сначала каждой переменной x^σ сопоставим λ —терм $r(x^\sigma)$ типа σ и положим $\varrho(x^\sigma)=\langle r(x^\sigma)\rangle_{\beta\eta}$. Определим теперь интерпретацию λ —терма M при означивании ϱ . Обозначим через

$$M[r] = [M]_{r(x_1^{\sigma_1})r(x_2^{\sigma_2})\cdots r(x_n^{\sigma_n})}^{x_1^{\sigma_1}}$$

результат одновременной подстановки λ -терма M, свободными переменными которого являются $x_1^{\sigma_1}$, $x_2^{\sigma_2}$, ..., $x_n^{\sigma_n}$.

Лекция L5 Денотационная семантика

Вадим Пузаренко Рассмотрим $\beta\eta$ -модель термов $\mathcal{S}=(\mathcal{S}_\sigma,\operatorname{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$. Определим означивание ϱ переменных каждой переменной x^σ , присваивающее класс $\beta\eta$ -эквивалентности подходящего терма M типа σ : сначала каждой переменной x^σ сопоставим λ -терм $r(x^\sigma)$ типа σ и положим $\varrho(x^\sigma)=\langle r(x^\sigma)\rangle_{\beta\eta}$. Определим теперь интерпретацию λ -терма M при означивании ϱ . Обозначим через

$$M[r] = [M]_{r(x_1^{\sigma_1})r(x_2^{\sigma_2})\cdots r(x_n^{\sigma_n})}^{x_1^{\sigma_1}}$$

результат одновременной подстановки λ -терма M, свободными переменными которого являются $x_1^{\sigma_1}, x_2^{\sigma_2}, \ldots, x_n^{\sigma_n}$.

Предложение L8

 $eta\eta$ -Модель термов является моделью Хенкина такая, что $[\![M]\!]_{arrho}=\langle M[r]
angle_{eta\eta}$ для любого λ -терма M.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Доказательство.

Доказывать будем индукцией по построению λ -термов.

- $M \equiv (PQ)$: пусть P и $Q \lambda$ -термы типов $(\sigma \to \tau)$ и σ соответственно; тогда $(PQ) = \exp \left(\frac{PQ}{2\pi} \right) \left(\frac{1}{2\pi} \right) \exp \left(\frac{PQ}{2\pi} \right) = \exp \left(\frac{PQ}{2\pi} \right)$

 $M \equiv \lambda x^{\sigma}.Q$: пусть $Q - \lambda$ -терм типа τ ; тогда для всех λ -термов N типа σ имеем

$$\begin{split}
& [\![Q]\!]_{\varrho[x^{\sigma}\mapsto N]} \stackrel{(1)}{=} \langle Q[r[x^{\sigma}\mapsto N]] \rangle_{\beta\eta} \stackrel{(2)}{=} \langle Q[r[x^{\sigma}\mapsto x^{\sigma}][x^{\sigma}\mapsto N]] \rangle_{\beta\eta} = \langle (\lambda x^{\sigma}.Q[r[x^{\sigma}\mapsto x^{\sigma}]]N) \rangle_{\beta\eta} = \langle (\lambda x^{\sigma}.Q[r]N) \rangle_{\beta\eta} = \langle (M[r]N) \rangle_{\beta\eta} = \operatorname{app}_{\sigma,\tau}(\langle M[r] \rangle)(\langle N \rangle).
\end{split}$$

Тем самым, функция $\langle N \rangle_{\beta\eta} \mapsto \llbracket Q \rrbracket_{\varrho[x^{\sigma} \mapsto \langle N \rangle_{\beta\eta}]}$ лежит в образе $\underset{\sigma}{\operatorname{app}}_{\sigma,\tau}$ и $\llbracket \lambda x^{\sigma}.Q \rrbracket_{\varrho} = \langle M[r] \rangle_{\beta\eta}$.

(1) Справедливо по индукционному предположению.

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Доказательство (продолжение).

(2) Здесь используется то, что переменную x^{σ} можно переименовать так, чтобы она не встречалась ни в одном из λ -термов $r(x_i^{\sigma_i})$.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Доказательство (продолжение),

(2) Здесь используется то, что переменную x^{σ} можно переименовать так, чтобы она не встречалась ни в одном из λ -термов $r(x_i^{\sigma_i})$.

Определение.

Модель Хенкина называется **корректной**, если выполняется следующее соотношение:

 $M \simeq_{eta\eta} N \Longrightarrow [\llbracket M \rrbracket_{arrho} = \llbracket N \rrbracket_{arrho}$ для любого означивания переменных arrho.

$\lambda_{eta\eta}$ -исчисление

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Аксиомы

- $(\alpha) \ \lambda x^{\sigma}.M = \lambda y^{\sigma}.[M]_{y}^{x}$, если $y \notin \mathrm{FV}(M)$.
- (β) $(\lambda x^{\sigma}.MN) = [M]_{N}^{x}$, если N свободен для x в M.
- (η) $\lambda x^{\sigma}.(Mx)=M$, если $x^{\sigma}\not\in \mathrm{FV}(M)$.
- $(\varrho) M = M$

Вадим Пузаренко

Аксиомы

- $(\alpha) \lambda x^{\sigma}.M = \lambda y^{\sigma}.[M]_{\nu}^{\times}$, если $y \notin \mathrm{FV}(M)$.
- (β) $(\lambda x^{\sigma}.MN) = [M]_N^{\times}$, если N свободен для x в M.
- $(\eta) \ \lambda x^{\sigma}.(Mx) = M$, если $x^{\sigma} \not\in \mathrm{FV}(M)$.
- $(\varrho) M = M$

Правила вывода

(σ)	$\frac{M=N}{N=M}$	(τ)	$\frac{M=N, N=P}{M=P}$
(μ)	$\frac{M=M'}{(MN)=(M'N)}$	(v)	$\frac{N = N'}{(MN) = (MN')}$
(ξ)	$\frac{M = M'}{\lambda x^{\sigma}.M = \lambda x^{\sigma}.M'}$		

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Теорема о корректности (L10)

Все модели Хенкина в $\lambda_{\beta\eta}$ -исчислении корректны.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Теорема о корректности (L10)

Все модели Хенкина в $\lambda_{\beta\eta}$ -исчислении корректны.

Доказательство.

Для того, чтобы доказать теорему, достаточно показать, что все аксиомы и правила вывода выполняются во всех моделях. Ясно, что аксиома (ρ) и правила (σ) , (τ) выполняются во всех моделях. Справедливость (μ) , (ν) и (ξ) проверяется непосредственно из определения интерпретации λ —термов на моделях Хенкина.

$$(\eta) \ [\![\lambda x^{\sigma}.(Mx)]\!]_{\varrho} = \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto [\![(Mx)]\!]_{\varrho[x^{\sigma}\mapsto a]}) \stackrel{(1)}{=} \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto \operatorname{app}_{\sigma,\tau}([\![M]\!]_{\varrho})([\![x]\!]_{x^{\sigma}\mapsto a})) = \operatorname{app}_{\sigma,\tau}^{-1}(\operatorname{app}_{\sigma,\tau}([\![M]\!]_{\varrho})) = [\![M]\!]_{\varrho}.$$

(1) Здесь используется свойство $x^{\sigma} \notin \mathrm{FV}(M)$.

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Теорема о корректности (L10)

Все модели Хенкина в $\lambda_{\beta\eta}$ -исчислении корректны.

Доказательство.

Для того, чтобы доказать теорему, достаточно показать, что все аксиомы и правила вывода выполняются во всех моделях. Ясно, что аксиома (ρ) и правила (σ) , (τ) выполняются во всех моделях. Справедливость (μ) , (ν) и (ξ) проверяется непосредственно из определения интерпретации λ -термов на моделях Хенкина.

$$\begin{array}{l} (\eta) \ \llbracket \lambda x^{\sigma}.(Mx) \rrbracket_{\varrho} = \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto \llbracket (Mx) \rrbracket_{\varrho[x^{\sigma} \mapsto a]}) \overset{(1)}{=} \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto \operatorname{app}_{\sigma,\tau}^{-1}(\llbracket M \rrbracket_{\varrho})(\llbracket x \rrbracket_{x^{\sigma} \mapsto a})) = \operatorname{app}_{\sigma,\tau}^{-1}(\operatorname{app}_{\sigma,\tau}(\llbracket M \rrbracket_{\varrho})) = \llbracket M \rrbracket_{\varrho}. \\ (1) \ \exists \mathsf{десь} \ \mathsf{используется} \ \mathsf{свойство} \ x^{\sigma} \not\in \mathrm{FV}(M). \end{array}$$

Лемма L10A.

Имеет место $[\![M]_N^x]\!]_\varrho = [\![M]\!]_{\varrho[x^\sigma\mapsto [\![N]\!]_\varrho]}$, если N свободен для x в M.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Упражнение

Доказать лемму.

Доказательство (продолжение).

 (α) Пусть y не входит свободно в M; тогда

$$[\![\lambda y.[M]_y^{\times}]\!]_{\varrho} = \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto [\![M]_y^{\times}]\!]_{\varrho[y \mapsto a]}) \stackrel{(1)}{=} \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto$$

$$\llbracket M \rrbracket_{\varrho[y \mapsto a][x \mapsto a]}) \stackrel{(2)}{=} \operatorname{app}_{\sigma,\tau}^{-1}(a \mapsto \llbracket M \rrbracket_{\varrho[x \mapsto a]}) = \llbracket \lambda x^{\sigma}.M \rrbracket_{\varrho}.$$

$$\begin{array}{ll} (\beta) \ \llbracket (\lambda \mathsf{x}^{\sigma}.\mathsf{M}\mathsf{N}) \rrbracket_{\varrho} = \mathrm{app}_{\sigma,\tau} (\llbracket \lambda \mathsf{x}^{\sigma}.\mathsf{M} \rrbracket_{\varrho}) (\llbracket \mathsf{N} \rrbracket_{\varrho}) = \mathrm{app}_{\sigma,\tau} (\mathrm{app}_{\sigma,\tau}^{-1} (\mathsf{a} \mapsto \llbracket \mathsf{M} \rrbracket_{\varrho[\mathsf{x} \mapsto \mathsf{a}]}) (\llbracket \mathsf{N} \rrbracket_{\varrho}) = \end{array}$$

$$\llbracket M \rrbracket_{\varrho[\mathsf{x} \mapsto \llbracket \mathsf{N} \rrbracket_{\varrho}]} \stackrel{\text{(1)}}{=} \llbracket [M]_{\mathsf{N}}^{\mathsf{x}} \rrbracket_{\varrho}.$$

(1) согласно лемме L10A; (2) выполняется, поскольку $v \notin FV(M)$.

Лекция L5 Денотационная семантика

> Вадим Тузаренко

Определение.

Модель Хенкина называется **полной**, если для произвольных λ -термов M и N выполняется следующее соотношение: $[\![\![M]\!]_{\varrho} = [\![N]\!]_{\varrho}$ для любого означивания переменных $\varrho] \Longrightarrow M \simeq_{\beta\eta} N.$

Лекция L5 Денотационная семантика

Вадим Пузаренко

Определение.

Модель Хенкина называется полной, если для произвольных λ -термов M и N выполняется следующее соотношение: $[\![\![M]\!]_{\varrho} = [\![N]\!]_{\varrho}$ для любого означивания переменных $\varrho] \Longrightarrow M \simeq_{\beta\eta} N.$

Возьмём модель множеств, в которой атомарный тип α в качестве интерпретации D_{α} имеет конечное множество. Тогда эта модель не полна, поскольку λ —термы

$$\mathbf{n} = \lambda y^{(\alpha \to \alpha)} . \lambda x^{\alpha} . (\underbrace{y(y(\ldots(y}x)\ldots))), \ n = 2, 3, \ldots$$

находятся в $\beta\eta$ -нормальной форме и, к тому же, имеют один и тот же тип $((\alpha \to \alpha) \to (\alpha \to \alpha))$. Множество $D_{((\alpha \to \alpha) \to (\alpha \to \alpha))} = (D_\alpha \to D_\alpha) \to (D_\alpha \to D_\alpha)$ содержит лишь конечное число элементов. Итак, бесконечно много λ -термов вида $\mathbf n$ должны иметь одну и ту же интерпретацию.

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Теорема о полноте (L11)

- $lue{}$ Модель $eta\eta$ -термов полна.
- Пусть в модели множеств каждый атомарный тип интерпретируется бесконечным множеством; тогда эта модель полна.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Теорема о полноте (L11)

- $lue{}$ Модель $eta\eta$ -термов полна.
- Пусть в модели множеств каждый атомарный тип интерпретируется бесконечным множеством; тогда эта модель полна.

Доказательство.

(1) Пусть M и $N-\lambda$ -термы, для которых выполняется соотношение $[\![M]\!]_{\varrho}=[\![N]\!]_{\varrho}$ для любого означивания переменных ϱ . Из предложения L8 вытекает, что $\langle M[r] \rangle_{\beta\eta} = \langle N[r] \rangle_{\beta\eta}$, как только $\varrho(x^\sigma)=\langle r(x^\sigma) \rangle_{\beta\eta}$ для каждой переменной x^σ , входящей свободно в M или N. Возьмём $r(x^\sigma)=x^\sigma$ для всех переменных, т. е. $\varrho(x^\sigma)=\langle x^\sigma \rangle_{\beta\eta}$. Тогда M[r]=M и N[r]=N. Таким образом, $\langle M \rangle_{\beta\eta}=\langle N \rangle_{\beta\eta}$, т.е. $M \simeq_{\beta\eta} N$.

Лекция L5 Денотационная семантика

> Вадим Тузаренко

Пусть $\mathcal{A}=(D_{\sigma},\mathrm{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$ — модель Хенкина. В дальнейшем вместо $\mathrm{app}_{\sigma,\tau}(f)$ будем использовать запись \hat{f} .

Лекция L5 Денотационная семантика

Вадим Пузаренко Пусть $\mathcal{A}=(D_{\sigma},\operatorname{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$ — модель Хенкина. В дальнейшем вместо $\operatorname{app}_{\sigma,\tau}(f)$ будем использовать запись \hat{f} .

Определение (Плоткин 1980)

Логический предикат (ЛП) на \mathcal{A} — это семейство $\mathcal{R}=\{R_\sigma\}_{\sigma\in\Sigma}$ подмножеств $R_\sigma\subseteq D_\sigma$, которое строится следующим образом:

- ullet для каждого атомарного типа σ множество R_{α} произвольное фиксированное подмножество D_{α} ;
- ② $R_{(\sigma o au)} = \{f \in D_{(\sigma o au)} | \hat{f}(a) \in R_{ au}$ для всех $a \in R_{\sigma}\}$; другими словами, $f \in R_{(\sigma o au)} \iff \hat{f}(R_{\sigma}) \subseteq R_{ au}$.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Примеры.

- ullet Возьмём $R_{lpha}=D_{lpha}$, где lpha атомарный тип; тогда $R_{\sigma}=D_{\sigma}$ для всех типов $\sigma\in\Sigma$.
- ullet Возьмём $R_lpha=arnothing$, где lpha атомарный тип; тогда

для произвольных типов σ , au и атомарных типов lpha, eta.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Примеры.

- ullet Возьмём $R_{lpha}=D_{lpha}$, где lpha атомарный тип; тогда $R_{\sigma}=D_{\sigma}$ для всех типов $\sigma\in\Sigma$.
- ullet Возьмём $R_lpha=arnothing$, где lpha атомарный тип; тогда

для произвольных типов σ , au и атомарных типов lpha, eta.

Основная теорема о ЛП (L12)

Если $\mathcal{R}=(R_\sigma)_{\sigma\in\Sigma}$ — логический предикат на модели Хенкина, то $[\![M]\!]\in R_\sigma$ для любого замкнутого λ -терма M типа σ .

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Доказательство.

Проводится индукцией по построению λ -терма. Для этих целей докажем вспомогательное утверждение, в котором одновременно учитываются λ -термы, в которых встречаются свободные переменные.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Доказательство.

Проводится индукцией по построению λ -терма. Для этих целей докажем вспомогательное утверждение, в котором одновременно учитываются λ -термы, в которых встречаются свободные переменные.

Предложение L9

Для любых λ -терма M типа σ и означивания переменных ϱ выполняется соотношение $[\![M]\!]_{\varrho}$, как только $\varrho(x^{\tau}) \in R_{\tau}$ для любой переменной x^{τ} , свободно входящей в M.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Доказательство.

Проводится индукцией по построению λ -терма. Для этих целей докажем вспомогательное утверждение, в котором одновременно учитываются λ -термы, в которых встречаются свободные переменные.

Предложение L9

Для любых λ -терма M типа σ и означивания переменных ϱ выполняется соотношение $[\![M]\!]_{\varrho}$, как только $\varrho(x^{\tau}) \in R_{\tau}$ для любой переменной x^{τ} , свободно входящей в M.

Доказательство предложения L9

$$\pmb{M} \equiv \pmb{x}^{\sigma}$$
. Если $\varrho(\pmb{x}^{\sigma}) \in R_{\sigma}$, то и $[\![M]\!]_{\varrho} = \varrho(\pmb{x}^{\sigma}) \in R_{\sigma}$.

Лекция L5 Денотационная семантика

> Вадим Тузаренко

Доказательство предложения L9 (продолжение).

 $M \equiv (N^{(\rho \to \sigma)}P^{\rho})$. Пусть имеет место $\varrho(x^{\tau}) \in R_{\tau}$ для любой переменной x^{τ} , входящей свободно в M. Тогда $\llbracket M \rrbracket_{\varrho} = \llbracket N^{(\rho o \sigma)} \rrbracket_{\varrho} (\llbracket P^{\rho} \rrbracket_{\varrho})$, а по предположению индукции, $\llbracket N^{(
ho o\sigma)}
rbracket_{
ho}\in R_{(
ho o\sigma)}$ и $\llbracket P^
ho
rbracket_{
ho}\in R_
ho$. Из определения $R_{(
ho o\sigma)}$ следует, что $\llbracket M^{\sigma} \rrbracket_{\alpha} \in R_{\sigma}$. $M \equiv \lambda x^{\sigma_1} N^{\sigma_2}$, где $\sigma = (\sigma_1 \to \sigma_2)$. Пусть имеет место $\varrho(y^{\tau}) \in R_{\tau}$ для любой переменной y^{τ} , свободно входящей в M. Рассмотрим $\llbracket M
rbracket_{
ho} = \operatorname{app}_{\sigma_1,\sigma_2}^{-1}(a \mapsto \llbracket N
rbracket_{
ho[x^{\sigma_1} \mapsto a]}) : D_{\sigma_1} \to D_{\sigma_2}$. Чтобы показать, что $\llbracket M
rbracket_{
ho} \in R_{(\sigma_1 o \sigma_2)}$, нам необходимо доказать, что $\llbracket M \rrbracket_o(a) \in R_{\sigma_2}$ для всех $a \in R_{\sigma_1}$. Однако $\llbracket M \rrbracket_o(a) = \llbracket N \rrbracket_{o[x^{\sigma_1} \mapsto a]}$, а по индукциронному предположению, имеем $[\![N]\!]_{o[x^{\sigma_1}\mapsto a]}\in R_{\sigma_2}$, поскольку в означивании $\varrho[x^\sigma\mapsto a]$ всякая свободная переменная y^{τ} удовлетворяет условию $\rho(y^{\tau}) \in R_{\tau}$ (переменные, отличные от x^{σ_1} , свободно входят в M, а $\rho[x^{\sigma_1}\mapsto a](x^{\sigma_1})=a\in R_{\sigma_1}$). Таким образом, $\llbracket M \rrbracket_o \in R_\sigma$.

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Замечание.

Предложение L9 можно проинтерпретировать так, что каждый логический предикат на модели Хенкина сам, в свою очередь, является моделью Хенкина.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Замечание.

Предложение L9 можно проинтерпретировать так, что каждый логический предикат на модели Хенкина сам, в свою очередь, является моделью Хенкина.

Следствие L3

Пусть α , β — атомарные типы.

- lacktriangle Не существует замкнутого λ -терма типа lpha.
- ullet Не существует замкнутого λ —терма типа $((lpha o \sigma) o eta)$, где σ произвольный тип.
- ullet С точностью до $eta\eta$ —эквивалентности существует ровно один замкнутый λ —терм типа (lpha olpha), а именно, $oldsymbol{I}_lpha=\lambda x^lpha.x.$

Лекция L5 Денотационная семантика

Вадим Пузаренко

Доказательство.

(1), (2) Следует рассмотреть логический предикат $\mathcal{R}=(R_\sigma)_{\sigma\in\Sigma}$, где $R_\alpha=\varnothing$ для любого атомарного типа α .

(3) Рассмотрим модель множеств, в которой все базовые множества бесконечны. Пусть M — замкнутый λ —терм и пусть $f = \llbracket M \rrbracket : D_{\alpha} \to D_{\alpha}$. Для каждого $a \in D_{\alpha}$ положим логический предикат \mathcal{R}^a так, что $R^a_{\alpha} = \{a\}$. Тогда из определения следует, что $R^a_{(\alpha \to \alpha)} = \{g \in D_{(\alpha \to \alpha)} | g(a) = a\}$. По теореме L11, $\llbracket M \rrbracket \in R^a_{(\alpha \to \alpha)}$ и, следовательно, f(a) = a. Так как данное условие

 $[\![M]\!] \in R^a_{(\alpha \to \alpha)}$ и, следовательно, f(a) = a. Так как данное условивыполняется для всех $a \in D_\alpha$, имеем $[\![M]\!] = [\![\mathbf{I}_\alpha]\!]$, а из полноты модели множеств вытекает $M \simeq_{\beta\eta} \mathbf{I}_\alpha$.

λ -Определимость

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Определение.

Пусть $\mathcal{A}=(D_{\sigma},\operatorname{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$ — модель Хенкина. Элемент $f\in D_{\alpha}$ называется λ —определимым, если существует замкнутый λ —терм M типа α такой, что $\llbracket M \rrbracket = f$.

λ -Определимость

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Определение.

Пусть $\mathcal{A}=(D_\sigma,\operatorname{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$ — модель Хенкина. Элемент $f\in D_\alpha$ называется λ —определимым, если существует замкнутый λ —терм M типа α такой, что $[\![M]\!]=f$.

Теперь возникает вопрос: можно ли охарактеризовать λ -определимые элементы D_σ , $\sigma \in \Sigma$, с помощью логических предикатов? В следствии L3 показано с помощью логических предикатов, что не существует таких элементов в D_α или $D_{((\alpha \to \sigma) \to \alpha)}$, а во множестве $D_{(\alpha \to \alpha)}$ имеется только один λ -определимый элемент f, при этом удовлетворяющий условию $\hat{f} = \mathrm{id}_{D_\alpha}$ (везде α — атомарный тип, а σ — произвольный тип). Для того, чтобы получить дополнительную информацию, необходимо расширить понятие логического предиката.

Логические отношения

Лекция L5 Денотационная семантика

Вадим Пузаренко

Определение.

Пусть заданы n моделей Хенкина $\mathcal{A}^{(i)} = (D_{\sigma}^{(i)}, \operatorname{app}_{\sigma, \tau}^{(i)})_{\sigma, \tau \in \Sigma}$ $(i=1,2,\ldots,n)$. Логическим отношением между $\mathcal{A}^{(1)}$, $\mathcal{A}^{(2)}$, ..., $\mathcal{A}^{(n)}$ называется семейство $\mathcal{R} = (R_{\sigma})_{\sigma \in \Sigma}$ n-арных отношений $R_{\sigma} \subseteq D_{\sigma}^{(1)} \times D_{\sigma}^{(2)} \times \ldots \times D_{\sigma}^{(n)}$ $(\sigma \in \Sigma)$, которое определяется индуктивно согласно построению типов следующим образом:

- $m{\bullet}$ возьмём произвольное подмножество $R_{lpha}\subseteq D_{lpha}^{(1)} imes D_{lpha}^{(2)} imes \ldots imes D_{lpha}^{(n)}$ для каждого атомарного типа lpha;
- ② $R_{(\sigma o au)} = \{(f_1, f_2, \dots, f_n) \in D_{(\sigma o au)}^{(1)} imes D_{(\sigma o au)}^{(2)} imes \dots imes D_{(\sigma o au)}^{(n)} | (\widehat{f_1}(a_1), \widehat{f_2}(a_2), \dots, \widehat{f_n}(a_n)) \in R_{ au} \text{ для всех } (a_1, a_2, \dots, a_n) \in R_{\sigma} \}.$

Логические отношения

Лекция L5 Денотационная семантика

Вадим Пузаренко

Определение.

Пусть заданы n моделей Хенкина $\mathcal{A}^{(i)} = (D_{\sigma}^{(i)}, \operatorname{app}_{\sigma, \tau}^{(i)})_{\sigma, \tau \in \Sigma}$ $(i=1,2,\ldots,n)$. Логическим отношением между $\mathcal{A}^{(1)}$, $\mathcal{A}^{(2)}$, ..., $\mathcal{A}^{(n)}$ называется семейство $\mathcal{R} = (R_{\sigma})_{\sigma \in \Sigma}$ n-арных отношений $R_{\sigma} \subseteq D_{\sigma}^{(1)} \times D_{\sigma}^{(2)} \times \ldots \times D_{\sigma}^{(n)}$ $(\sigma \in \Sigma)$, которое определяется индуктивно согласно построению типов следующим образом:

- $m{0}$ возьмём произвольное подмножество $R_{lpha}\subseteq D_{lpha}^{(1)} imes D_{lpha}^{(2)} imes \ldots imes D_{lpha}^{(n)}$ для каждого атомарного типа lpha;
- ② $R_{(\sigma \to \tau)} = \{(f_1, f_2, \dots, f_n) \in D_{(\sigma \to \tau)}^{(1)} \times D_{(\sigma \to \tau)}^{(2)} \times \dots \times D_{(\sigma \to \tau)}^{(n)} | (\widehat{f_1}(a_1), \widehat{f_2}(a_2), \dots, \widehat{f_n}(a_n)) \in R_{\tau}$ для всех $(a_1, a_2, \dots, a_n) \in R_{\sigma}\}.$

Логические предикаты — это в точности унарные логические отношения. В случае, когда $\mathcal{A}^{(1)}=\mathcal{A}^{(2)}=\ldots=\mathcal{A}^{(n)}=\mathcal{A}$, будем называть n-местными логическими отношениями на \mathcal{A} .

<u>Логические отношения</u>

Лекция L5 Денотационная семантика

Вадим Пузаренко

Замечание.

Каждое логическое отношение \mathcal{R} между $\mathcal{A}^{(1)}$, $\mathcal{A}^{(2)}$, ..., $\mathcal{A}^{(n)}$ может быть воспринято как логический предикат на модели Хенкина $\mathcal{A} = (D_{\sigma}, \operatorname{app}_{\sigma, \tau})_{\sigma, \tau \in \Sigma}$, где $D_{\sigma} = D_{\sigma}^{(1)} \times D_{\sigma}^{(2)} \times \ldots \times D_{\sigma}^{(n)}$, $\operatorname{app}_{\sigma, \tau} : D_{(\sigma \to \tau)} \to (D_{\sigma} \to D_{\tau}) = D_{(\sigma \to \tau)}^{(1)} \times D_{(\sigma \to \tau)}^{(2)} \times \ldots \times D_{(\sigma \to \tau)}^{(n)} \to (D_{\sigma}^{(1)} \times D_{\sigma}^{(2)} \times \ldots \times D_{\sigma}^{(n)} \to D_{\tau}^{(1)} \times D_{\tau}^{(2)} \times \ldots \times D_{\tau}^{(n)}$). В этом случае $(f_1, f_2, \ldots, f_n) \mapsto ((a_1, a_2, \ldots, a_n) \mapsto (\widehat{f_1}(a_1), \widehat{f_2}(a_2), \ldots, \widehat{f_n}(a_n)))$.

Логические отношения

Лекция L5 Денотационная семантика

Вадим Пузаренко

Замечание.

Каждое логическое отношение \mathcal{R} между $\mathcal{A}^{(1)}$, $\mathcal{A}^{(2)}$, ..., $\mathcal{A}^{(n)}$ может быть воспринято как логический предикат на модели Хенкина $\mathcal{A} = (D_{\sigma}, \operatorname{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$, где $D_{\sigma} = D_{\sigma}^{(1)} \times D_{\sigma}^{(2)} \times \ldots \times D_{\sigma}^{(n)}$, $\operatorname{app}_{\sigma,\tau}: D_{(\sigma\to\tau)} \to (D_{\sigma}\to D_{\tau}) = D_{(\sigma\to\tau)}^{(1)} \times D_{(\sigma\to\tau)}^{(2)} \times \ldots \times D_{(\sigma\to\tau)}^{(n)} \to (D_{\sigma}^{(1)} \times D_{\sigma}^{(2)} \times \ldots \times D_{\tau}^{(n)}) \to (D_{\sigma}^{(1)} \times D_{\sigma}^{(2)} \times \ldots \times D_{\tau}^{(n)})$. В этом случае $(f_1, f_2, \ldots, f_n) \mapsto ((a_1, a_2, \ldots, a_n) \mapsto (\widehat{f_1}(a_1), \widehat{f_2}(a_2), \ldots, \widehat{f_n}(a_n)))$.

Основная теорема о логических отношениях (L13)

Если $\mathcal{R} = (R_{\sigma})_{\sigma \in \Sigma}$ — логическое отношение между моделями Хенкина $\mathcal{A}^{(1)}$, $\mathcal{A}^{(2)}$, ..., $\mathcal{A}^{(n)}$, то для любого замкнутого λ —терма M типа σ имеем $(\llbracket M \rrbracket^{\mathcal{A}^{(1)}}, \llbracket M \rrbracket^{\mathcal{A}^{(2)}}, \ldots, \llbracket M \rrbracket^{\mathcal{A}^{(n)}}) \in R_{\sigma}$.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Замечание.

Каждое логическое отношение \mathcal{R} между $\mathcal{A}^{(1)}$, $\mathcal{A}^{(2)}$, ..., $\mathcal{A}^{(n)}$ может быть воспринято как логический предикат на модели Хенкина $\mathcal{A} = (D_{\sigma}, \operatorname{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$, где $D_{\sigma} = D_{\sigma}^{(1)} \times D_{\sigma}^{(2)} \times \ldots \times D_{\sigma}^{(n)}$, $\operatorname{app}_{\sigma,\tau}: D_{(\sigma\to\tau)} \to (D_{\sigma}\to D_{\tau}) = D_{(\sigma\to\tau)}^{(1)} \times D_{(\sigma\to\tau)}^{(2)} \times \ldots \times D_{(\sigma\to\tau)}^{(n)} \to (D_{\sigma}^{(1)} \times D_{\sigma}^{(2)} \times \ldots \times D_{\sigma}^{(n)} \to D_{\tau}^{(1)} \times D_{\tau}^{(2)} \times \ldots \times D_{\tau}^{(n)})$. В этом случае $(f_1,f_2,\ldots,f_n)\mapsto ((a_1,a_2,\ldots,a_n)\mapsto (\widehat{f_1}(a_1),\widehat{f_2}(a_2),\ldots,\widehat{f_n}(a_n)))$.

Основная теорема о логических отношениях (L13)

Если $\mathcal{R} = (R_{\sigma})_{\sigma \in \Sigma}$ — логическое отношение между моделями Хенкина $\mathcal{A}^{(1)}, \, \mathcal{A}^{(2)}, \, \dots, \, \mathcal{A}^{(n)}$, то для любого замкнутого λ —терма M типа σ имеем $([\![M]\!]^{\mathcal{A}^{(1)}}, [\![M]\!]^{\mathcal{A}^{(2)}}, \dots, [\![M]\!]^{\mathcal{A}^{(n)}}) \in R_{\sigma}$.

Доказательство.

Непосредственно следует из замечания и теоремы L12.

Лекция L5 Денотационная семантика

Вадим Пузаренко В случае, когда $\mathcal{A}^{(1)} = \mathcal{A}^{(2)} = \ldots = \mathcal{A}^{(n)} = \mathcal{A}$ теорема L13 утверждает следующее: Для каждого п-арного логического отношения $\mathcal{R} = (R_{\sigma})_{\sigma \in \Sigma}$ на модели Хенкина \mathcal{A} выполняется соотношение $(\llbracket M \rrbracket, \llbracket M \rrbracket, \ldots, \llbracket M \rrbracket) \in R_{\sigma}$ для любого замкнутого

 λ –терма M типа σ .

Лекция L5 Денотационная семантика

Вадим Пузаренко В случае, когда $\mathcal{A}^{(1)}=\mathcal{A}^{(2)}=\ldots=\mathcal{A}^{(n)}=\mathcal{A}$ теорема L13 утверждает следующее: Для каждого n-арного логического отношения $\mathcal{R}=(R_\sigma)_{\sigma\in\Sigma}$ на модели Хенкина \mathcal{A} выполняется соотношение $(\llbracket M \rrbracket, \llbracket M \rrbracket, \ldots, \llbracket M \rrbracket) \in R_\sigma$ для любого замкнутого

 λ -терма M типа σ .

Теорема L14 (необходимое условие λ –определимости)

Пусть $\mathcal{A}=(D_\sigma,\operatorname{app}_{\sigma,\tau})_{\sigma,\tau\in\Sigma}$ — модель Хенкина. Если $f\in D_\sigma$ — λ —определимый элемент, то выполняется соотношение $\underbrace{(f,f,\ldots,f)}_n\in R_\sigma$ для каждого n—местного логического отношения $\mathcal{R}=(R_\sigma)_{\sigma\in\Sigma}$ на \mathcal{A} .

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Необходимое условие (теорема L14) не является достаточным. Для того, чтобы это понять, следует рассмотреть модель множеств, базовыми множествами которого являются конечными. Однако в специальных случаях можно также показать и достаточность.

Лекция L5 Денотационная семантика

Вадим Пузаренко Необходимое условие (теорема L14) не является достаточным. Для того, чтобы это понять, следует рассмотреть модель множеств, базовыми множествами которого являются конечными. Однако в специальных случаях можно также показать и достаточность.

Определение.

Порядковое число $o(\alpha)$ типа α определяется индуктивно следующим образом:

- **4** $o(\alpha) = 0$, если α атомарный тип;
- $o(\tau \to \sigma) = \max\{o(\tau) + 1, o(\sigma)\}.$

Лекция L5 Денотационная семантика

> Вадим Пузаренко

Примеры.

Пусть lpha — атомарный тип; тогда

- $o(\alpha \rightarrow \alpha) = 1$;
- $o(\alpha \to (\alpha \to \alpha)) = 1$;
- $o((\alpha \rightarrow \alpha) \rightarrow \alpha) = 2$.

Вадим Пузаренко

Примеры.

Пусть lpha — атомарный тип; тогда

- $o(\alpha \rightarrow \alpha) = 1$;
- $o(\alpha \to (\alpha \to \alpha)) = 1$;
- $o((\alpha \to \alpha) \to \alpha) = 2$.

$$o(\sigma) \leqslant 1$$

$$\sigma \equiv (\alpha_1 \to (\alpha_2 \to (\dots (\alpha_{n-1} \to \alpha_n) \dots)))$$
, где α_i , $i = 1, 2, \dots, n-1$ атомарные типы $(n \geqslant 1)$.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Примеры.

Пусть lpha — атомарный тип; тогда

- $o(\alpha \rightarrow \alpha) = 1$;
- $o(\alpha \to (\alpha \to \alpha)) = 1$;
- $o((\alpha \to \alpha) \to \alpha) = 2$.

$o(\sigma) \leqslant 1$

 $\sigma \equiv (\alpha_1 \to (\alpha_2 \to (\dots (\alpha_{n-1} \to \alpha_n) \dots)))$, где α_i , $i = 1, 2, \dots, n$ — атомарные типы $(n \geqslant 1)$.

$$o(\sigma) \leqslant 2$$

$$\sigma \equiv (\tau_1 \to (\tau_2 \to (\dots (\tau_{n-1} \to \alpha_n) \dots)))$$
, где $o(\tau_i) \leqslant 1$ $(i = 1, 2, \dots, n-1)$, α_n — атомарный тип.

Лекция L5 Денотационная семантика

Вадим Пузаренко

Для простоты разберём случай с одним атомарным типом lpha. В модели множеств с базовым множеством D_{lpha} λ -термы интерпретируются следующим образом: $o(\sigma) = 0$. λ -термы типа α элементами $a \in D_{\alpha}$; $o(\sigma)=1$. λ -термы типа $\sigma\equiv (lpha
ightarrow (lpha
ig$ функцией $f: \underline{D_{lpha} o (D_{lpha} o \ldots o (D_{lpha}} o D_{lpha}))$ (или, используя преобразование, обратное преобразованию Карри, функцией $f: D_{\alpha}^n \to D_{\alpha}$); $o(\sigma)=2$. λ -термы типа $\sigma\equiv(\tau_1\to(\tau_2\to\ldots\to(\tau_m\to\alpha)\ldots)),$ где $\tau_i \equiv (\alpha \to (\alpha \to \ldots \to (\alpha \to \alpha)))$, функционалами $F \in D_{\tau_1} \to (D_{\tau_2} \to \ldots \to (D_{\tau_m} \to D_{\alpha})\ldots))$ или, используя преобразование, обратное преобразованию Карри, $F \in D_{\tau_1} \times D_{\tau_2} \times \ldots \times D_{\tau_m} \to D_{\alpha}$

Лекция L5 Денотационная семантика

> Вадим Пузаренко

В настоящий момент известен только частичный результат обращения теоремы L14.

Лекция L5 Денотационная семантика

Вадим Пузаренко В настоящий момент известен только частичный результат обращения теоремы L14.

Теорема L15 (Плоткин 1980)

Пусть заданы простые типы над некоторым атомарным типом α и модель множеств $\mathcal A$ с бесконечным базовым множеством D_α . Для каждого типа σ с порядковым числом $o(\sigma)\leqslant 2$ справедлива следующая эквивалентность:

 $f-\lambda$ -определимый элемент, если и только если $f\in P_\sigma$ для любого логического предиката $\mathcal{P}=(P_\sigma)_{\sigma\in\Sigma}$ на \mathcal{A} и, к тому же, $(f,f)\in R_\sigma$ для любого бинарного логического отношения $\mathcal{R}=(R_\sigma)_{\sigma\in\Sigma}$ на \mathcal{A} .

Лекция L5 Денотационная семантика

Вадим Пузаренко

Замечания к доказательству.

Пусть $\sigma \equiv (\tau_1 \to (\tau_2 \to \ldots \to (\tau_m \to \alpha)\ldots))$.

- **①** Тогда для логического предиката $(P_{\sigma})_{\sigma \in \Sigma}$ имеет место следующая эквивалентность: $f \in P_{\sigma}$, если и только если $(\dots((fh_1)h_2)\dots h_m) \in P_{\alpha}$ для всех $(h_1,h_2,\dots,h_m) \in P_{\tau_1} \times P_{\tau_2} \times \dots \times P_{\tau_m}$.
- $m{O}$ Если $o(au_i)=1$ для всех $i=1,2,\ldots,m$, то не существует замкнутого λ -терма типа σ (достаточно рассмотреть случай, когда $P_{\alpha}=\varnothing$).
- Б. Плоткиным было получено полное описание для λ -определимых типов. Однако для этих целей потребовалось обобщение понятия логического отношения.

Лекция L5 Денотационная семантика

> Вадим Пузаренко

> > Спасибо за внимание.