Prototypes and Matrix Relevance Learning in Complex Fourier Space

M. Straat, M. Kaden, M. Gay, T. Villmann, A. Lampe, U. Seiffert, M. Biehl, and F. Melchert

June 26, 2017

Overview

- A study of classification of time series.
- In Fourier space: Vectors in \mathbb{C}^n .
- Generalized Matrix Learning Vector Quantization (GMLVQ) on complex-valued data.
- Evaluation and interpretation of the Fourier-space classifiers.

Learning Vector Quantization (LVQ)

- Dataset of vectors $\mathbf{x}^m \in \mathbb{R}^N$, each carrying class label $\sigma^m \in \{1, 2, ..., C\}$
- Training: For each class σ , identify prototype(s) $\mathbf{w}^i \in \mathbb{R}^N$ in feature space that are typical representatives for that class.
- Aim: Classify novel vectors \mathbf{x}^{μ} , assigning them to the class of the nearest prototype.

Figure: LVQ with 5 prototypes per class. Initialized with K-means on each class. *Black line*: Piece-wise linear decision boundary.

$$d(x, w) = (x - w)^T (x - w)$$
, sq. Euclidean distance.

```
1: procedure LVQ

2: for each training epoch do

3: for each labeled vector \{x, \sigma\} do

4: \{w^*, S^*\} \leftarrow \operatorname{argmin}_i \{d(x, w^i)\}

5: w^* \leftarrow w^* + \eta \Psi(S^*, \sigma)(x - w^*)
```

$$\Psi(S,\sigma) = \left\{ egin{array}{ll} +1, & ext{if } S = \sigma \ -1, & ext{otherwise} \end{array}
ight\}$$

Classification of novel data point x^{μ} :

Closest prototype
$$\{ \boldsymbol{w}^*, S^* \} \leftarrow \underset{i}{\operatorname{argmin}} \{ d(\boldsymbol{x}^{\mu}, \boldsymbol{w}^i) \}$$

Classify \boldsymbol{x}^{μ} in class $S^* : \{ \boldsymbol{x}^{\mu}, \sigma^{\mu} = S^* \}$

GMLVQ

- Learn feature relevance and adapt d accordingly.
 - Adaptive quadratic distance measure: $d_{\Omega}(\mathbf{x}, \mathbf{w}) = (\mathbf{x} \mathbf{w})^T \Omega^T \Omega(\mathbf{x} \mathbf{w}).$

• Update two prototypes upon presentation of
$$\{x, \sigma\}$$
.

- w^+ : Closest prototype of the same class as x.
- w^- : Closest prototype of a different class than x.

Cost one example x^m

$$e^m = rac{d_{\Omega}[\mathbf{w}^+] - d_{\Omega}[\mathbf{w}^-]}{d_{\Omega}[\mathbf{w}^+] + d_{\Omega}[\mathbf{w}^-]} \in [-1, 1].$$

Learning is minimization of the cost with gradient descent:

$$\mathbf{w}^{\pm} \leftarrow \mathbf{w}^{\pm} - \eta_w \nabla_{\mathbf{w}^{\pm}} e^m$$

 $\Omega \leftarrow \Omega - \eta_{\Omega} \nabla_{\Omega} e^m$

Time series

$$f(t) \to f(i\Delta T), i = 0, 1, ..., N-1$$

- Vectors $\mathbf{x} \in \mathbb{R}^N$.
- Temporal order of dimensions.

Training in coefficient space

Approximate $f(t) = \sum_{i=1}^{n} c_i g_i(t)$:

- Using Chebyshev basis.
- Using Fourier basis: $\mathbf{x} \in \mathbb{R}^N \to \mathbf{x}_f \in \mathbb{C}^n$.
- ullet Prototypes $oldsymbol{w}^i \in \mathbb{C}^n$ and relevances $oldsymbol{\Lambda}$ Hermitian.

Figure: 5 Chebyshev basis functions

Figure: Fourier complex sinusoid

F. Melchert, U. Seiffert, and M. Biehl, Polynomial Approximation of Spectral Data in LVQ and Relevance Learning, in Workshop on New Challenges in Neural Computation 2015

Fourier: Time \leftrightarrows Frequency

Matrix $extbf{\emph{F}} \in \mathbb{C}^{n \times N}$ with rows $\mathrm{e}^{-j2\pi k n/N}, k = 0, 1, 2, ..., N-1.$

Forward (DFT):

$$\mathbf{x}_f = \mathbf{F}\mathbf{x} \in \mathbb{C}^n$$

Backward (iDFT):

$$oldsymbol{x} = rac{1}{N} oldsymbol{F}^H oldsymbol{x}_f \in \mathbb{R}^N$$

GMLVQ complex-valued data

Quadratic distance measure

$$d_{\mathbf{\Lambda}}[\mathbf{x}_f, \mathbf{w}_f] = (\mathbf{x}_f - \mathbf{w}_f)^H \mathbf{\Omega}^H \mathbf{\Omega}(\mathbf{x}_f - \mathbf{w}_f) \in \mathbb{R}_{\geq 0}$$
.

Cost one example x_f^m

$$e^m = \frac{d_{\boldsymbol{\Lambda}}[\boldsymbol{w}_f^+] - d_{\boldsymbol{\Lambda}}[\boldsymbol{w}_f^-]}{d_{\boldsymbol{\Lambda}}[\boldsymbol{w}_f^+] + d_{\boldsymbol{\Lambda}}[\boldsymbol{w}_f^-]} \in [-1, 1].$$

Compute gradients w.r.t. \mathbf{w}_f^+ , \mathbf{w}_f^- and Ω for learning:

$$\nabla_{\mathbf{w}_f^+} \mathbf{e}^{\mu} = \frac{\partial \mathbf{e}^{\mu}}{\partial d_{\mathbf{\Lambda}}^+} \frac{\partial d_{\mathbf{\Lambda}}}{\partial \mathbf{w}_f^+}$$

Wirtinger derivatives

- $f(z): \mathbb{C} \to \mathbb{R}$.
- Operators $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} i \frac{\partial}{\partial y} \right)$ and $\frac{\partial}{\partial z^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$
- $f(z) = z \cdot z^*$, then $\frac{\partial f}{\partial z} = z^*$ and $\frac{\partial f}{\partial z^*} = z$.

Wirtinger gradients

$$\frac{\partial}{\partial \mathbf{z}} = \begin{pmatrix} \frac{\partial}{\partial z_1} & , ..., & \frac{\partial}{\partial z_N} \end{pmatrix}^T$$
 and $\frac{\partial}{\partial \mathbf{z}^*} = \begin{pmatrix} \frac{\partial}{\partial z_1^*} & , ..., & \frac{\partial}{\partial z_N^*} \end{pmatrix}^T$

Using the Wirtinger gradient:

$$\frac{\partial}{\partial \mathbf{z}^*}(\mathbf{z}^H \mathbf{A} \mathbf{z}) = \mathbf{A} \mathbf{z}$$

M. Gay, M. Kaden, M. Biehl, A. Lampe, and T. Villmann, "Complex variants of GLVQ based on Wirtinger's calculus"

Learning rules

Complex-valued GMLVQ (Wirtinger)

$$abla_{oldsymbol{w}_f^*} d_{oldsymbol{\Lambda}}[oldsymbol{x}_f, oldsymbol{w}_f] = -\Omega^H \Omega(oldsymbol{x}_f - oldsymbol{w}_f) \,,$$

$$abla_{\Omega^*} d_{\Lambda}[\mathbf{x}_f, \mathbf{w}_f] = \Omega(\mathbf{x}_f - \mathbf{w}_f)(\mathbf{x}_f - \mathbf{w}_f)^H.$$

Relevance matrix $\Lambda = \Omega^H \Omega$ is Hermitian.

Real-valued GMLVQ

$$\nabla_{\mathbf{w}} d_{\mathbf{\Lambda}}[\mathbf{x}, \mathbf{w}] = -2\Omega^{T} \Omega(\mathbf{x} - \mathbf{w}),$$

$$\nabla_{\Omega} d_{\mathbf{\Lambda}}[\mathbf{x}, \mathbf{w}] = \Omega(\mathbf{x} - \mathbf{w})(\mathbf{x} - \mathbf{w})^{T}.$$

Relevance matrix $\mathbf{\Lambda} = \mathbf{\Omega}^T \mathbf{\Omega}$ is symmetric (also Hermitian).

After each epoch, normalize Λ such that $tr(\Lambda) = 1$.

The testing scenarios

- **1** GMLVQ in original time domain on vectors $x \in \mathbb{R}^N$.
- **2** GMLVQ (Wirtinger) in complex Fourier space on vectors $\mathbf{x}_f \in \mathbb{C}^n$ with n = [6, 11, ..., 51].
- **3** GMLVQ in Fourier space on vectors $\mathbf{x}_f \in \mathbb{R}^{2n}$, real and imaginary concatenated.
- **•** GMLVQ on smoothed time domain vectors $\hat{x} \in \mathbb{R}^N$.

Before training...

- All dimensions z-score transformed.
- One prototype per class. Initialization prototype class i: $\mathbf{w}^i \approx \text{mean}(\{(\mathbf{x}, y)|y == i\})$.
- $\Lambda = cI$.

Plane dataset

- 210 labeled vectors $(\mathbf{x}, y) \in R^{144} \times \{1, 2, ..., 7\}$
- 105/105 train/val vectors.

Plane - Classification performance

Accuracies of the 4 testing scenarios on validation set

Time domain

- Complex Fourier
- □ Concatenated Fourier
- X Smooth time domain

Interpreting the classifier

- Prototypes $\mathbf{w}_f^i \in \mathbb{C}^n$
- ullet Matrix $oldsymbol{\Lambda}_f$ is Hermitian: $oldsymbol{\Lambda}_f = oldsymbol{\Lambda}_f^H$

- Map prototypes to time domain with iDFT: $\mathbf{w}^i = \frac{1}{N} \mathbf{F}^H \mathbf{w}_f^i$.
- Relevance matrix to time domain: $d[x_f, w_f] = (x - w)^H F^H \Lambda_f F(x - w).$

Plane - Prototypes and feature relevance

Time domain training vs. 21 coefficient Fourier space

Symbols dataset

- 1020 feature vectors $(\mathbf{x},y) \in \mathbb{R}^{398} \times \{1,2,...,6\}$
- 25/995 train/validation vectors.

Symbols - Classification performance

Accuracies of the 4 testing scenarios on validation set

Time domain

- Complex Fourier
 - Concatenated Fourier
- X Smooth time domain

Mallat dataset

- 2400 feature vectors $(\mathbf{x}, y) \in \mathbb{R}^{1024} \times \{1, 2, ..., 8\}$
- 55/2345 train/validation vectors.

Mallat - Classification performance

Accuracies of the 4 testing scenarios on validation set

Time domain

- Complex Fourier
- ☐ Concatenated Fourier
- X Smooth time domain

Mallat - Classification error curves

Error development on the training and validation set

Discussion

Learning in complex Fourier-coefficient space...

- can be an effective method for classification of periodic functional data.
- can provide an efficient low-dimensional representation.
- has the potential to improve classification accuracy.

For future research: How to obtain close to optimal accuracy with the least number of adaptive parameters.