Complementary-Similarity Learning using Quadruplet Network Mansi Ranjit Mane, Stephen Guo, Kannan Achan

E-commerce Recommender Systems

Nancy eCommerce Customer

Millions of items in eCommerce Catalog/Warehouse

Item Relationships

- Similarity/ Substitutes
 - Show similar items during exploration phase

- Complementary
 - Show after purchase add example e.g. if someone has purchased dress, additional suggestions like sandals, purse etc

Traditional Methods

- Popularity Based
 - Always show popular items
 - Challenges:
 - Does not address item level relationship
- Customers who bought X also bought Y
 - based on co-counts
 - Challenges:
 - Cold-start items

Traditional Methods

- Factorization Inspired Approaches -Factorize the Item-Item Co-Occurrence Matrix to learn low dimensional dual item latent factors
 - Challenges:
 - Cold Start
 - Does not address transitivity

	Item 1	Item 2	Item 3	Item 4
Item 1	1			2
Item 2		5	4	
Item 3				3
Item 4	9		6	

Other Methods

- Triple2vec
 - Maximize dot product between item pairs and user vectors
 - Challengers:
 - Transitivity leads to similar items in recommendations
 - Does not handle Cold-start items

Other Methods

Quality-Aware Neural Complementary Item Recommendation

$$P_{comp} = \sigma\left(d(a_f, c_f)\right) = \frac{1}{1 + e^{d(a_f, c_f) - \eta}} [4]$$

Challenges:

Transitivity

- Cold-start items
- Diversity
- Differentiate between similar and complementary items

Dataset

- Amazon Clothing, Shoes, and Jewelry data[2]
 - Category information and title
 - Complementary pairs: bought together by users from different categories
 - Similar pairs: items that lie in same category
 - Negative items: Randomly sample items which do not meet above criteria
 - Quads: anchor, complementary, similar, negative items
 - Train quads: 3.3M, Test quads: 0.3M

Amazon Dataset Attribute Availability

Attribute	Coverage		
Image	99.99		
Description	5.68		
Title	99.95		
Price	38.29		
Brand	6.25		

Example Quad

Anchor

Lee Dungarees Men's Big, Tall Carpenter Jean

Complementary

Key Apparel Men's Big-Tall Short Sleeve Heavyweight Pocket Tee Shirt

Similar

Wrangler Men's Rugged Wear Relaxed Straight Fit Jean

Negative

Black and White Herringbone Wool Suiting Extra Long Tie

Motivation

Why not just optimize for complementary items?

$$\mathsf{P}_{\mathsf{comp}} = \sigma\left(d(a_f, c_f)\right) = \frac{1}{1 + e^{d(a_f, c_f) - \eta}} [4]$$

Wonder Nation Twist-Front Graphic T-Shirt

Women's Knit Skinny Cargo Pant

Motivation

Goal

 Learn representation space which can differentiate between similar and complementary items

Problem Formulation

- a: Anchor item
- c: Complementary item to anchor item
- s: Similar item to anchor item
- n: Negative item to anchor item
- a_f' , c_f' , s_f' , n_f' : Normalized learnt feature representation for a, c, s, n

Feature Representation

Universal Sentence Encoder [1]

Wonder Nation Twist-Front Graphic T-Shirt

Similarity Loss

• $L_{sim} = \max(d(a'_f - s'_f) - m_s, 0)$ s_f , Wonder Nation Twist-Front Graphic T-Shirt m_s a_{f_i} Wonder Nation Graphic Hi-Lo T-Shirt

Complementary Loss

Negative Loss

Quadruplet Loss

- $L_{sim} = \max(d(a'_f s'_f) m_s, 0)$
- $L_{comp} = \max(d(a'_f, c'_f) m_c, 0) + \max(m_s d(a'_f, c'_f), 0)$
- $L_{neg} = \max(m_n d(a'_f, n'_f), 0)$
- $L_{quad} = L_{sim} + L_{comp} + L_{neg} + \lambda L_{l2}$

Architecture

Hyperparameters

- Input feature dimension: 512
- Epochs: 50
- Weight Initialization: Xavier
- Learning rate: 0.001
- $m_S : 0.1$
- m_n : 0.4
- m_c :0.8
- Mapping function:

 GUSE

 FC1+RelU

 FC2

512

256

128

Distance Distribution

Distance Distribution

	Similar		Complementary		Negative	
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Train Data Before training	0.82119	0.17611	0.81975	0.15910	0.99804	0.13286
Test Data Before training	0.82752	0.17853	0.83086	0.15937	1.0037	0.12949
Train Data After training	0.24069	0.11226	0.45845	0.11485	0.86774	0.27724
Test Data After training	0.24772	0.11485	0.45181	0.09963	0.86023	0.27182

Method	Ranking Acc	Complementary Acc	Similarity Acc
Universal Sentence Encoder	37.68	_	-
Veit et al. [2]	14.92	91.05	56.45
Quadruplet Network	67.15	86.92	68

- Ranking accuracy is calculated as: d_s < d_c < d_n
- Complementary Accuracy: margin_s < d_c < margin_c
- Similarity Accuracy: d_s < margin_s

- Modelling asymmetry between relationships
- Large scale experiments on Amazon dataset with more evaluation metrics
- Clustering analysis on learnt embedding space

References

- 1. Cer, Daniel, et al. "Universal sentence encoder." arXiv preprint arXiv:1803.11175 (2018).
- 2. Veit, Andreas, et al. "Learning visual clothing style with heterogeneous dyadic cooccurrences." *Proceedings of the IEEE International Conference on Computer Vision*. 2015.
- 3. Vasileva, Mariya I., et al. "Learning type-aware embeddings for fashion compatibility." *Proceedings of the European Conference on Computer Vision (ECCV)*. 2018.
- 4. Zhang, Yin, et al. "Quality-aware neural complementary item recommendation." *Proceedings of the 12th ACM Conference on Recommender Systems*. ACM, 2018.
- 5. McAuley, Julian, Rahul Pandey, and Jure Leskovec. "Inferring networks of substitutable and complementary products." Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2015
- 6. Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. Representing and recommending shopping baskets with complementarity, compatibility and loyalty. In CIKM, pages 1133–1142, 2018.

Stepen Guo: sguo@walmartlabs.com

Mansi Mane: mansi.mane@walmartlabs.com,

mansimane5@gmail.com