Homework 1

Parallel Distributed Num Algorithms

Name: Saurabh Kumar UIN: 926009924

Р	Execution Time	Speed Up	Efficiency	n	ptile
1	0.2455	1	1	10 ⁸	4
2	0.1233	1.9911	.9955	108	4
4	0.0626	3.9217	.9804	108	4
8	0.0313	7.8435	.9804	108	4
16	0.0269	9.1264	.5704	108	4
32	0.0084	29.2262	.9133	108	4
64	0.0560	4.3839	.0685	108	4

1. Plot execution time versus p to demonstrate how time varies with the number of processes. Use a logarithmic scale for the x axis.

2. Plot speedup versus p to demonstrate the change in speedup with p.

3. Using the definition: efficiency = speedup/p, plot efficiency versus p to demonstrate how efficiency changes as the number of processes is increased.

4. What value of p minimizes the parallel runtime?

<u>Answer:</u> P = 32

5. With n=10⁸ and p=64, determine the value of ptile that minimizes the total_time. Plot time versus ptile to illustrate your experimental results for this question.

Answer: The value of ptile which gave me the lowest execution time is ptile=9

ptile	Execution Time N		р
1	0.0943	108	64
2	0.0977	108	64
3	0.0531	108	64
4	0.0511	108	64
5	0.0222	108	64
6	0.0387	10 ⁸	64
7	0.0193	108	64
8	0.0278	108	64
9	0.0163	10 ⁸	64
10	0.0225	108	64

- 6. Repeat the experiments with p=64 for n=10 2 , 10 4 , 10 6 and 10 8 .
- a. Plot the speedup observed w.r.t. p=1 versus n.

Р	Execution Time	Speed Up	Efficiency	n	ptile
64	0.0643	.0016	.000025	10 ²	4
64	0.0716	.0014	.000022	104	4
64	0.0558	.0449	.0007	10 ⁶	4
64	0.0670	3.6627	.0572	108	4
1	.0001	1	1	10 ²	4
1	.0001	1	1	104	4
1	.0025	1	1	10 ⁶	4
1	.2454	1	1	108	4

b. Plot the relative error versus n to illustrate the accuracy of the algorithm as a function of n.

P	Execution Time	Speed Up	Efficiency	n	ptile	Relative Error
64	0.0643	.0016	.000025	10 ²	4	2.65 * 10-6
64	0.0716	.0014	.000022	104	4	2.65 * 10 ⁻¹⁰
64	0.0558	.0449	.0007	10 ⁶	4	2.63 * 10 ⁻¹⁴
64	0.0670	3.6627	.0572	10 ⁸	4	7.07 * 10 ⁻¹⁶

