TR Global Convergence 0610

Jiaxin Hu

06/10/2020

GLOBAL CONVERGENCE PROPERTY FOR TR ALGORITHM 1

Here we study the global convergence property of iterates generated by Algorithm 1. For simplicity, let \mathcal{A} denote the decision variables $(\mathcal{C}, \{M_k\})$.

Theorem 1 (Global Convergence). Assume the set $\{A \mid \mathcal{L}(A) \geq \mathcal{L}(A^{(0)})\}$ is compact and the stationary points of $\mathcal{L}(A)$ are isolated module equivalence. Then any sequence $A^{(t)}$ generated by alternating algorithm converges to a stationary point of $\mathcal{L}(A)$ up to equivalence.

PROOF

Pick an arbitrary iterate $\mathcal{A}^{(t)}$. Because of the compactness of set $\{\mathcal{A} | \mathcal{L}(\mathcal{A}) \geq \mathcal{L}(\mathcal{A}^{(0)})\}$, the domain of $\mathcal{A}^{(t)}$ is bounded and thus there exists convergent sub-sequences of $\mathcal{A}^{(t)}$. Let \mathcal{A}^* denote a limiting points of $\mathcal{A}^{(t)}$. Since $\mathcal{L}(\mathcal{A}^{(t)})$ increases monotonically along with $t \to \infty$, then \mathcal{A}^* is a stationary point of $\mathcal{L}(\mathcal{A})$. Let $\mathcal{S} = \{\mathcal{A}^*\}$ denote the set of all the limiting points of $\mathcal{A}^{(t)}$. We have $\mathcal{S} \subset \{\mathcal{A} | \mathcal{L}(\mathcal{A}) \geq \mathcal{L}(\mathcal{A}^{(0)})\}$ and thus \mathcal{S} is a compact set. According to [Lange, 2012], \mathcal{S} is also connected.

Consider the equivalence of Tucker tensor representation. We define the equivalent class of \mathcal{A} as:

$$\mathcal{E}(\mathcal{A}) = \{ \mathcal{A}' | \ M_k' = M_k P_k^T, \mathcal{C}' = \mathcal{C} \times \{ P_k \}, \text{ where } P_k^T \in \mathbb{O}_{r_k}, \forall k \in [K] \}.$$

Notice that, for arbitrary \mathcal{A} , $\mathcal{E}(\mathcal{A})$ is a non-empty open set. For arbitrary two non-equivalent points \mathcal{A}_1 and \mathcal{A}_2 , we have $\mathcal{E}(\mathcal{A}_1) \cap \mathcal{E}(\mathcal{A}_2) = \emptyset$ and thus $\mathcal{E}(\mathcal{A}_1) \cup \mathcal{E}(\mathcal{A}_2)$ is not connected. Using the definition of equivalent class, let \mathcal{S}_E denote the enlarged set of \mathcal{S} , such that:

$$\mathcal{S}_E = \bigcup_{\mathcal{A} \in \mathcal{S}} \mathcal{E}(\mathcal{A}).$$

The enlarged set S_E satisfies below two properties:

- 1. [Union of Stationary Point] The set S_E is an union of equivalent classes generated by the stationary points in S.
- 2. [Connectedness model equivalence] The set S_E is connected between different equivalent classes.

Property 1 is obtained by rewriting the definition of S_E . Property 2 is concluded by the connectedness of S.

The isolation of stationary points and Property 1 imply that S_E only contains finite number of different equivalent classes. Otherwise, there is a sequence of non-equivalent stationary points whose

limit is not isolated. Combined the definition of equivalent class and Property 2, we can conclude that S_E only contains a single equivalent class; i.e. $S_E = \mathcal{E}(\mathcal{A}^*)$, where \mathcal{A}^* is a stationary point of $\mathcal{L}(\mathcal{A})$. Therefore, all the convergent subsequences of $\mathcal{A}^{(t)}$ converge to one stationary point \mathcal{A}^* up to equivalence.

In other words, any iterate $\mathcal{A}^{(t)}$ generated by Algorithm 1 converges to a stationary point of $\mathcal{L}(\mathcal{A})$ up to equivalence.