20180116 COGS 118 Lecture Notes

Cabinet Cogs118a Lecture Notes

20180116 COGS 118 Lecture Notes

Supervised Classification
Three key variables

Vector Calculus

Distance to the decision boundary

Vector Derivatives

Probability

Supervised Classification

Three key variables

1. Input: $x = (x_1, x_2, ...)$

2. Label: $y \in 0, 1$

3. Model Parameter: \boldsymbol{W}

Vector Calculus

- Addition
- Scaling
- L2 Norm: $||a||_2 = \sqrt{\sum_{i=1}^n a_i^2}$, $||a||^2 = \sum_{i=1}^n a_i^2$
- L1 Norm (sparse): $||a||_1 = \sum_{i=1}^n |a_i|$
- · Projection (inner product/dot product)
 - Note that it is a scalar
 - Important bc every sample lies in high dimensional space and the problem of matching is analogous to finding a projection of 0. Quantified similarity.
- Decision boundary: $\{x_i, f(x_i) = 0\}$, $f(x) = a \times x_1 + b \times x_2 c$
 - The boundary is a set.

http://marxi.co/

• Also,
$$\frac{a}{c} x_1 + \frac{b}{c} x_2 + 1 = 0$$

o Also,
$$\frac{a}{\sqrt{a^2+b^2}} x_1 + \frac{b}{\sqrt{a^2+b^2}} x_2 + \frac{c}{\sqrt{a^2+b^2}} = 0$$

$$f(x, w) = \langle w, x \rangle + \frac{c}{\|w\|_2}$$

$$^{\circ}\ f(x)=0\Rightarrow \frac{f(x)}{c}=0$$

- For linear transformation, there is a direction and a translation.
- \circ w is orthgonal (normal) to the boundary.

Distance to the decision boundary

Compute the projection of the normal (w) with the input (x):

$$w^T x = \langle w, x \rangle$$

Now determine if $w^T x < 0$ or $w^T x > 0$

In higher dimenstions, this line becomes a **Hyper-plane**.

Vector Derivatives

- · Vector-by-scalar
- Vector-by-vector
- · Matrix-by-scalar
- · Scalar-by-vector

Probability

- Deterministic
- Random
- Axioms of probability
- · Independence of events
- Baye's theorem