AE/ME 5830 Spring 2021, Homework IV, Due Wednesday March 31 by midnight

- 1. Develop a computer routine to minimize a one-dimensional function F(x) in positive x domain. Your routine should include four parts:
 - (a) Finding the bounds on the minimum of the function assuming that the function has a negative slope at x=0.0.
 - (b) Reduction of the original interval found in Part (a) using the golden section algorithm
 - (c) Cubic polynomial fit to the points obtained at the last iteration of the golden section algorithm
 - (d) Determining the location of the minimum (x_{min}) and the corresponding value of the objective function (f_{min}) .

Use your routine to find the minimum of the following function:

$$F(x) = x^4 - x^3 - Sin^2x + Cos^2x + 2 \tag{1}$$

Solve the problem for n = 2, n = 5, n = 10, and n = 15 where n is the number of iterations for the golden section search. For each case, report x_{min} and f_{min} . (Hint: Use a = 0.0 and b = 0.1 for the starting values of the bounds in part (a)).

2. The drag (D) of a wide-body passenger aircraft can be estimated by

$$D = 6.62725\sigma V^2 + \frac{1.31493 \times 10^{-4}}{\sigma} \left(\frac{W}{V}\right)^2 \tag{2}$$

where $\sigma=$ ratio of air density between the flight altitude and sea level, W= weight of the aircraft in Newtons, V= velocity of the aircraft in m/s, and D is obtained in Newtons. In the above equation, the first term corresponds to the drag due to friction and the second term represents the drag due to lift. At a given altitude and aircraft weight, there will be an optimum value of the velocity which will minimize the total drag (e.g., maximize L/D value). Using the optimization routine you have written, determine the minimum drag and the corresponding velocity for this aircraft at cruise weight and altitude ($W=3.7278\times10^6$ N and $\sigma=0.31$). Use 100 m/s $\leq V \leq$ 400 m/s for the initial interval in the golden section search and use a relative convergence criteria of $\epsilon=10^{-3}$ for interval reduction.