Displacement mapping shader Per-pixel displacement mapping with distance functions

Kévin Bannier Clémentine Delambily Nicolas Laboureur Amaury Louarn

Parcours Imagerie Numérique École supérieure d'ingénieurs de Rennes 1 Université de Rennes 1

15 Janvier 2016

Sommaire

- Introduction
 - Concept
 - Différence avec le bump mapping
 - Implémentations
- 2 Fonctionnement
 - Carte des distances
 - Ray marching
- Application
 - Problèmes rencontrés
 - Résultats

Présentation

- Ajouter des détails à un mesh
- Modification de la position perçue des pixels

Différence avec le bump mapping

Bump mapping

Displacement mapping

Différentes manières

- Tesselation
 - Déplacement « physique »
 - Ajout de vertex dans un mesh
 - Implémentation inégale
 - DirectX ≥ 11
 - OpenGL ≥ 4
 - Indisponible pour webGL
- Ray tracing avec fonctions distances
 - Déplacement « virtuel »

Displacement mapping avec tessellation

Tessellation off

Tessellation on

Sommaire

- Introduction
 - Concept
 - Différence avec le bump mapping
 - Implémentations
- 2 Fonctionnement
 - Carte des distances
 - Ray marching
- 3 Application
 - Problèmes rencontrés
 - Résultats

Carte des distances

• Transformation d'une carte des hauteurs 2D (heightmap) en carte de distances en 3 dimensions (distance map)

Ray marching

- Suivi du parcours d'un rayon
- Parcours depuis la surface du triangle
- Parcours pas-à-pas grâce à la distance map

Sommaire

- Introduction
 - Concept
 - Différence avec le bump mapping
 - Implémentations
- 2 Fonctionnement
 - Carte des distances
 - Ray marching
- 3 Application
 - Problèmes rencontrés
 - Résultats

Problèmes rencontrés

- Pas de prise en charge des textures 3D sous webGL
- atomicGL pas adapté pour gérer des tableaux de textures 2D
- Limitation du nombre d'appels à texture2D par fragment shader
- Impossibilité d'accéder simplement aux valeurs des pixels d'une image en javascript

Résultats

