2.4.2019 Splines

Dankert/Dankert: Ingenieurmathematik und Technische Mechanik interaktiv

Natürliche Splines

Spline	1	
Punkt	X	У
0	8	6
1	6	8
2	3.5	8
3	2.5	5.5
4	3.5	3.5
5	6	3
6	8	2
7	9	2

Spline 2		
Punkt	X	у
8	8	6
9	6	8
10	3.5	8
11	2.5	5.5
12	3.5	3.5
13	6	3
14	8	2
15	9	2

Spline 3			
Punkt	x	у	
16	8	6	
17	6	8	
18	3.5	8	
19	2.5	5.5	

2.4.2019 Splines

20	3.5	3.5
21	6	3
22	8	2
23	9	2

	$x_1 = 8.00000 - 1.78873 \cdot (t-1) - 0.211268 \cdot (t-1)^3$ $y_1 = 6.00000 + 2.35555 \cdot (t-1) - 0.355548 \cdot (t-1)^3$	1 ≤ t ≤ 2
	$x_2 = 6.00000 - 2.42254 \cdot (t-2) - 0.633803 \cdot (t-2)^2 + 0.556338 \cdot (t-2)^3$ $y_2 = 8.00000 + 1.28890 \cdot (t-2) - 1.06664 \cdot (t-2)^2 - 0.222260 \cdot (t-2)^3$	2 ≤ t ≤ 3
Spline 1	$x_3 = 3.50000 - 2.02113 \cdot (t-3) + 1.03521 \cdot (t-3)^2 - 0.0140845 \cdot (t-3)^3$ $y_3 = 8.00000 - 1.51116 \cdot (t-3) - 1.73342 \cdot (t-3)^2 + 0.744589 \cdot (t-3)^3$	3 ≤ t ≤ 4
(Offener Spline), definiert durch die Punkte	$x_4 = 2.50000 + 0.00704225 \cdot (t-4) + 0.992958 \cdot (t-4)^2$ $y_4 = 5.50000 - 2.74425 \cdot (t-4) + 0.500344 \cdot (t-4)^2 + 0.243902 \cdot (t-4)^3$	4 ≤ t ≤ 5
0 7	$x_5 = 3.50000 + 1.99296 \cdot (t-5) + 0.992958 \cdot (t-5)^2 - 0.485915 \cdot (t-5)^3$ $y_5 = 3.50000 - 1.01185 \cdot (t-5) + 1.23205 \cdot (t-5)^2 - 0.720199 \cdot (t-5)^3$	5 ≤ t ≤ 6
	$x_6 = 6.00000 + 2.52113 \cdot (t-6) - 0.464789 \cdot (t-6)^2 - 0.0563380 \cdot (t-6)^3$ $y_6 = 3.00000 - 0.708348 \cdot (t-6) - 0.928547 \cdot (t-6)^2 + 0.636895 \cdot (t-6)^3$	6 ≤ t ≤ 7
	$x_7 = 8.00000 + 1.42254 \cdot (t-7) - 0.633803 \cdot (t-7)^2 + 0.211268 \cdot (t-7)^3$ $y_7 = 2.00000 - 0.654758 \cdot (t-7) + 0.982137 \cdot (t-7)^2 - 0.327379 \cdot (t-7)^3$	7 ≤ t ≤ 8

Spline 2 (Bézier- Bernstein-Spline), definiert durch die Punkte 8 15	$ \begin{aligned} x &= 8.00000 \cdot (1-t)^7 + 42.0000 \cdot (1-t)^6 \cdot t + 73.5000 \cdot (1-t)^5 \cdot t^2 + \\ &= 87.5000 \cdot (1-t)^4 \cdot t^3 + 122.500 \cdot (1-t)^3 \cdot t^4 + 126.000 \cdot (1-t)^2 \cdot t^5 + \\ &= 56.0000 \cdot (1-t) \cdot t^6 + 9.00000 \cdot t^7 \end{aligned} $ $ \begin{aligned} y &= 6.00000 \cdot (1-t)^7 + 56.0000 \cdot (1-t)^6 \cdot t + 168.000 \cdot (1-t)^5 \cdot t^2 + \\ &= 192.500 \cdot (1-t)^4 \cdot t^3 + 122.500 \cdot (1-t)^3 \cdot t^4 + 63.0000 \cdot (1-t)^2 \cdot t^5 + \\ &= 14.0000 \cdot (1-t) \cdot t^6 + 2.00000 \cdot t^7 \end{aligned} $	0 ≤ t ≤ 1
---	---	-----------

```
\begin{array}{l} \text{Spline 3} \\ \text{(B\'ezier-B-Spline,} \\ \text{Grad m = 3),} \\ \text{definiert durch} \\ \text{die Punkte} \\ 16 \dots 23 \end{array} \\ \begin{array}{l} x = 8.00000 \cdot B_{0,3}(t) + 6.00000 \cdot B_{1,3}(t) + 3.50000 \cdot B_{2,3}(t) + \\ 2.50000 \cdot B_{3,3}(t) + 3.50000 \cdot B_{4,3}(t) + 6.00000 \cdot B_{5,3}(t) + \\ 8.00000 \cdot B_{6,3}(t) + 9.00000 \cdot B_{7,3}(t) \\ y = 6.00000 \cdot B_{0,3}(t) + 8.00000 \cdot B_{1,3}(t) + 8.00000 \cdot B_{2,3}(t) + \\ 5.50000 \cdot B_{3,3}(t) + 3.50000 \cdot B_{4,3}(t) + 3.00000 \cdot B_{5,3}(t) + \\ 2.00000 \cdot B_{6,3}(t) + 2.00000 \cdot B_{7,3}(t) \\ \end{array} \\ \begin{array}{l} 0 \leq t \leq 5 \\ 0 \leq t \leq 5 \\
```

www.tm-interaktiv.de/Splines/