

Rapport du Projet Mathématique

12 Avril 2022

Adib HABBOU Adel KEBLI Rabab KHATIB Parte 1:

Modèle de Cox-Ross-Rubinstein

Table des matières

1	Mod	Modèle de Cox-Ross-Rubinstein								
	1.1	Question 1 - Probabilité risque-neutre q_N								
	1.2	Question 2 - $Prix_{Rin}^{(N)}$								
		Question 3 - fonction pricer_1								
	1.4	Question 4 - test pricer_1								
	1.5	Question 5 - fonction pricer_2								
	1.6	Question 6 - test pricer_2								
	1.7	Question 7 - comparaison pricer_1 et pricer_2								
	1.8	Question 8 - Système d'équations pour f								
	1.9	Question 9 - Système d'équations pour v_k								
	1.10	Question 10 - Couverture à la date 0 et à la date 1								

1 Modèle de Cox-Ross-Rubinstein

1.1 Question 1 - Probabilité risque-neutre q_N

On exprime dans un premier temps $\mathbb{E}_{\mathbb{Q}}[T_1^{(N)}]$:

$$\mathbb{E}_{\mathbb{Q}}[T_1^{(N)}] = (1 + h_N) \times \mathbb{Q}(T_1^{(N)} = 1 + h_N) + (1 + b_N) \times \mathbb{Q}(T_1^{(N)} = 1 + b_N)$$

Sachant que $\mathbb{E}_{\mathbb{Q}}[T_1^{(N)}] = 1 + r_N$:

$$1 + r_N = (1 + h_N)q_N + (1 + b_N)(1 - q_N)$$

$$1 + r_N = (1 + h_N)q_N + 1 + b_N - (1 + b_N)q_N$$

$$r_N - b_N = (h_N - b_N)q_N$$

Donc:

$$q_N = \frac{r_N - b_N}{h_N - b_N}$$

1.2 Question 2 - $Prix_{Bin}^{(N)}$

Nous avons $Prix_{Bin}^{(N)} = \frac{1}{(1+r_N)^N} \mathbb{E}_{\mathbb{Q}}[f(S_{t_N}^{(N)})]$. Donc :

$$\begin{split} Prix_{Bin}^{(N)} &= \frac{1}{(1+r_N)^N} \, \mathbb{E}_{\mathbb{Q}}[f(S_{t_N}^{(N)})] \\ Prix_{Bin}^{(N)} &= \frac{1}{(1+r_N)^N} \, \mathbb{E}_{\mathbb{Q}}[f(s.\prod_{i=1}^N T_i^{(N)})] \\ Prix_{Bin}^{(N)} &= \frac{1}{(1+r_N)^N} \mathbb{E}_{\mathbb{Q}}[f(s.(1+h_N)^X.(1+b_N)^{N-X})] \end{split}$$

Pour tout $i \in \mathbb{N}_N$, $T_i^{(N)}$ vaut soit $(1+h_N)$ soit $(1+b_N)$. Les $T_i^{(N)}$ sont des variables aléatoires pour lesquelles on pose le succès à $(1+h_N)$. Soit X le nombre de fois qu'on obtient $T_i^{(N)} = (1+h_N)$: comme on répétera N fois l'expérience du choix de X avec à chaque fois deux issues possibles, on aura $X \sim \mathcal{B}(q_N,N)$, avec $q_N = \mathbb{Q}(T_1^{(N)} = 1+h_N)$ la probabilité risqueneutre. Donc, $\forall k \in \mathbb{N}_N$, $\mathbb{P}(X=k) = \binom{N}{k} q_N^k (1-q_N)^{N-k}$. Ce qui nous donne :

$$Prix_{Bin}^{(N)} = \frac{1}{(1+r_N)^N} \sum_{k=0}^{N} {N \choose k} q_N^k (1-q_N)^{N-k} f(s.(1+h_N)^k.(1+b_N)^{N-k})$$

1.3 Question 3 - fonction pricer 1

Nous nous appuyions sur trois fonctions auxiliaires :

- une fonction ${\tt qN}$ implémentant la relation trouvée à la question 1;
- une fonction fact calculant la factorielle d'un entier n positif ou nul;
- une fonction coeff_binom calculant le coefficient binomiale.

La fonction pricer_1 va traduire l'expression de $Prix_{Bin}^{(N)}$ trouvée à la question 2, en calculant d'abord la somme dans la formule, puis en renvoyant enfin $Prix_{Bin}^{(N)}$.

1.4 Question 4 - test pricer 1

On code la fonction $f: x \mapsto \max(x - 110, 0)$.

Pour les paramètres donnés, à savoir s = 100, $h_N = 0.05$, $b_N = -0.05$, $r_N = 0.02$ et N=20, la fonction pricer_1 renvoie :

$$Prix_{Bin}^{(N)} = 26.616941360258558 \ \textcircled{1}$$

1.5 Question 5 - fonction pricer 2

Algorithme

À l'étape 1, on a :
$$v_N(S_{t_N}^{(N)}) = f(S_{t_N}^{(N)})$$

À l'étape k, on a donc :
$$v_k(S_{t_k}^{(N)}) = \frac{1}{1+r_N} \mathbb{E}_{\mathbb{Q}}[v_{k+1}(S_{t_{k+1}}^{(N)})|S_{t_k}^{(N)}]$$

On fixe le prix de l'actif risqué $S_{t_k}^{(N)}$ tel que $S_{t_k}^{(N)}=S.$ On obtient alors :

$$\begin{aligned} v_k(S_{t_k}^{(N)}) &= \frac{1}{1+r_N} \mathbb{E}_{\mathbb{Q}}[v_{k+1}(S_{t_{k+1}}^{(N)}) | S_{t_k}^{(N)} = S] \\ v_k(S_{t_k}^{(N)}) &= \frac{1}{1+r_N} \mathbb{E}_{\mathbb{Q}}[v_{k+1}(S_{t_{k+1}}^{(N)})] \\ v_k(S_{t_k}^{(N)}) &= \frac{1}{1+r_N} \mathbb{E}_{\mathbb{Q}}[v_{k+1}(S \times T_{k+1})] \end{aligned}$$

Par le théorème de transfert, on a donc :

$$v_k(S_{t_k}^{(N)}) = \left(\frac{1 - q_N}{1 + r_N} \times v_{k+1}(S(1 + b_N)) + \frac{q_N}{1 + r_N} \times v_{k+1}(S(1 + h_N))\right)$$

Fonction pricer 2

Pour implémenter la fonction $\texttt{pricer_2}$, on remplit tout d'abord une liste avec touts les éléments initiaux $v_N(S_{t_N}^{(N)}) = f(S_{t_N}^{(N)})$. Comme nous avons une relation entre des éléments qui se "suivent" (v_k dépendant de v_{k+1} d'après l'expression donnée par l'algorithme), pour remonter à $v_0(S_{t_0}^{(N)})$, il nous suffit de parcourir l'arbre de probabilité des valeurs de droite à gauche. En parcourant cet arbre, pour remonter aux valeurs de l'étape précédente, on applique la formule ci-dessus à chaque itération : ainsi on obtient le nouveau v_k qu'on stocke d'abord dans une liste w, avant de tout copier dans la liste v. Ceci nous permettra de ne pas perdre les valeurs de l'étape N-1. Une fois parcourue l'entièreté de l'arbre, on se retrouve à la racine qui contient $v_0(S_{t_0}^{(N)}) = Prix_{Bin}^{(N)}$, la valeur souhaitée.

```
1 def pricer_2 (N, rN, hN, bN, s, f):
2    v = []
3    for k in range (N + 1):
4        v.append(f(s * ((1 + hN)**k) * (1 + bN)**(N - k)))
5    q = qN(rN, hN, bN)
6    v0 = (1 - q) / (1 + rN)
7    v1 = q / (1 + rN)
8    while (len(v) != 1):
9    w = []
10    for i in range (len(v) - 1):
11        w.append(v0 * v[i] + v1 * v[i + 1])
12    v = w.copy()
13    return v[0]
```

Script Python de la fonction pricer_2

1.6 Question 6 - test pricer 2

On code la fonction $g: x \mapsto max(x - 100, 0)$.

La fonction pricer_2 nous permet d'obtenir :

$$Prix_{Bin}^{(N)} = 7.063436197239376$$
 €

Arbre des valeurs de v_k

$$v_1(S_{t_1}^{(N)})$$
 $v_2(S_{t_2}^{(N)})$ $v_3(S_{t_3}^{(N)})$

1.7 Question 7 - comparaison pricer 1 et pricer 2

On utilise la fonction randint pour générer un N aléatoire entre 5 et 15. On renvoie la valeur absolue de la différence des valeurs obtenues avec pricer_1 et pricer_2. On enregistre toutes les valeurs obtenues dans un data frame et on remarque que les différences sont bien proches de 0 : les deux pricers permettent pratiquement la même précision.

N	5	6	7	8	9	10
comparaison	8.881784e-16	8.881784e-16	8.881784e-16	0.0	0.0	8.881784e-16

N	11	12	13	14	15
comparaison	8.881784e-16	3.552714e-15	0.0	1.776357e-15	1.776357e-15

Data frames de comparaison selon la valeur de N

1.8 Question 8 - Système d'équations pour f

On a le système d'équations suivant :

$$\begin{cases} f(S_{t_N}^{(N)}) &= \alpha_{N-1}(S_{t_{N-1}}^{(N)})S_{t_N}^{(N)} + \beta_{N-1}(S_{t_{N-1}}^{(N)})(1+r_N)^N \\ S_{t_N}^{(N)} &= (1+h_N)S_{t_{N-1}}^{(N)} \\ S_{t_N}^{(N)} &= (1+b_N)S_{t_{N-1}}^{(N)} \end{cases}$$

Ce qui se résume à :

$$\begin{cases} \alpha_{N-1}(S_{t_{N-1}}^{(N)})(1+h_N)S_{t_{N-1}}^{(N)} + \beta_{N-1}(S_{t_{N-1}}^{(N)})(1+r_N)^N & = f((1+h_N)S_{t_{N-1}}^{(N)}) \\ \alpha_{N-1}(S_{t_{N-1}}^{(N)})(1+b_N)S_{t_{N-1}}^{(N)} + \beta_{N-1}(S_{t_{N-1}}^{(N)})(1+r_N)^N & = f((1+b_N)S_{t_{N-1}}^{(N)}) \end{cases}$$

Donc, en soustrayant la deuxième ligne à la première et en isolant le $\alpha_{N-1}(S_{t_{N-1}}^{(N)})$, on obtient :

$$\alpha_{N-1}(S_{t_{N-1}}^{(N)}) = \frac{f((1+h_N)S_{t_{N-1}}^{(N)}) - f((1+b_N)S_{t_{N-1}}^{(N)})}{S_{t_{N-1}}^{(N)}(h_N - b_N)}$$

De même, on multiplie la deuxième équation par $(1 + h_N)$ puis on la divise par $(1 + b_N)$. En soustrayant la deuxième équation à la première, on obtient :

$$\beta_{N-1}(S_{t_{N-1}}^{(N)})\ (1+r_N)^N\ (1-\tfrac{1+h_N}{1-b_N}) = f((1+h_N)S_{t_{N-1}}^{(N)}) - \tfrac{1+h_N}{1-b_N}\ f((1+b_N)S_{t_{N-1}}^{(N)})$$

On en déduit que :

$$\beta_{N-1}(S_{t_{N-1}}^{(N)}) = \frac{1}{(1+r_N)^N (b_N - h_N)} \left((1+b_N) f((1+h_N) S_{t_{N-1}}^{(N)}) - (1+h_N) f((1+b_N) S_{t_{N-1}}^{(N)}) \right)$$

1.9 Question 9 - Système d'équations pour v_k

Pour tout $k \in \{0, ..., N-1\}$, on a le système suivant :

$$\begin{cases} v_k(S_{t_k}^{(N)}) &= \alpha_{k-1}(S_{t_{k-1}}^{(N)})S_{t_k}^{(N)} + \beta_{k-1}(S_{t_{k-1}}^{(N)})(1+r_N)^k \\ S_{t_k}^{(N)} &= (1+h_k)S_{t_{k-1}}^{(N)} \\ S_{t_k}^{(N)} &= (1+b_k)S_{t_{k-1}}^{(N)} \end{cases}$$

De manière analogue, pour tout $k \in \{0,...,N-1\}$, on peut retrouver les expressions suivantes :

$$\alpha_k(S_{t_k}^{(N)}) = \frac{v_{k+1}((1+h_N)S_{t_k}^{(N)}) - v_{k+1}((1+b_N)S_{t_k}^{(N)})}{S_{t_k}^{(N)}(h_N - b_N)}$$

$$\beta_k(S_{t_k}^{(N)}) = \frac{1}{(1+r_N)^{k+1}(b_N-h_N)} \left((1+b_N) v_{k+1}((1+h_N) S_{t_k}^{(N)}) - (1+h_N) v_{k+1}((1+b_N) S_{t_k}^{(N)}) \right)$$

1.10 Question 10 - Couverture à la date 0 et à la date 1

Les fonctions alpha et beta appliquent les formules trouvées aux questions précédentes.

On effectue ensuite le calcul pour la date 0 avec $S_{t_0} = s$ puis pour la date 1 avec $S_{t_1} = s \times T_1$.

On utilise donc une fonction qui calcule T_1 avec la formule suivante :

$$T_1 = q_N \times (1 + h_N) + (1 - q_N) \times (1 + b_N)$$

Nombre d'actifs, risqués et non, à la date
$$0: \begin{cases} \alpha_0(S_{t_0}^{(N)}) &= 0.5\\ \beta_0(S_{t_0}^{(N)}) &= -44.77330568385333 \end{cases}$$

Nombre d'actifs, risqués et non, à la date 1 :
$$\begin{cases} \alpha_1(S_{t_1}^{(N)}) &= 0.7912621359223306\\ \beta_1(S_{t_1}^{(N)}) &= -91.78527665189932 \end{cases}$$

Nous remarquons que β peut prendre une valeur négatif : étant β le nombre d'actifs sans risque, ceci peut correspondre à une dette contractée pour pouvoir acheter α actifs risqués, que dans ce cas ci sont positifs.