## Mathematical Logic (XIII)

## Yijia Chen

## 1. Gödel's Incompleteness Theorems

Let  $\mathbb{P}$  be a program over  $\mathcal{A}$ . Assume that  $\mathbb{P}$  consists of instructions  $\alpha_0, \ldots, \alpha_k$ . Let  $\mathfrak{n}$  be the maximum index i such that  $R_i$  is used by  $\mathbb{P}$ . Then a configuration of  $\mathbb{P}$  is an (n+2)-tuple

$$(L, m_0, \ldots, m_n),$$

where  $L \leqslant k$  and  $m_0, \ldots, m_n \in \mathbb{N}$ , meaning that  $\alpha_L$  is the instruction to be executed next and every register  $R_i$  contains  $m_i$ , i.e., the word  $\underbrace{||\cdots|}_{m_i \text{ times}}$ .

We have shown:

**Lemma 1.1.** From the above program  $\mathbb{P}$  we can compute an  $S_{ar}$ -formula

$$\chi_{\mathbb{P}}(x_0,\ldots,x_n,z,y_0,\ldots,y_n)$$

such that for all  $\ell_0, \ldots, \ell_n, L, m_0, \ldots, m_n \in \mathbb{N}$ 

$$\mathfrak{N} \models \chi_{\mathbb{P}}[\ell_0, \dots, \ell_n, L, m_0, \dots, m_n]$$

if and only if  $\mathbb{P}$ , beginning with the configuration  $(0,\ell_0,\ldots,\ell_n)$ , after finitely many steps, reaches the configuration  $(L, m_0, ..., m_n)$ .

Using Lemma 1.1 it is now routine to prove:

## Theorem 1.2. Let $r \ge 1$ .

(i) Let  $\mathscr{R} \subseteq \mathbb{N}^r$  be an R-decidable relation. Then there is an  $L^{S_{ar}}$ -formula  $\phi(v_0,\ldots,v_{r-1})\in\mathbb{N}$  such that for all  $\ell_0, \ldots, \ell_{r-1} \in \mathbb{N}$ 

$$\left(\ell_0,\ldots,\ell_{r-1}\right)\in\mathscr{R}\iff \mathfrak{N}\models\phi(\bar{\ell}_0,\ldots,\bar{\ell}_{r-1}). \text{ If } \models\phi \Longleftrightarrow \text{ Th}(\text{II})\models\phi$$

(ii) Let  $f: \mathbb{N}^r \to \mathbb{N}$  be an R-computable function. Then there is an  $L^{S_{ar}}$ -formula  $\varphi(v_0, \dots, v_{r-1}, v_r)$ such that for all  $\ell_0, \ldots, \ell_{r-1}, \ell_r \in \mathbb{N}$ 

$$\begin{split} f(\ell_0,\dots,\ell_{r-1}) &= \ell_r &\iff \mathfrak{N} \models \phi(\bar{\ell}_0,\dots,\bar{\ell}_{r-1},\bar{\ell}_r). \\ &\qquad \qquad \mathfrak{I} \\ \mathfrak{N} &\models \exists^{=1} \nu_r \ \phi(\bar{\ell}_0,\dots,\bar{\ell}_{r-1},\nu_r), \end{split}$$

Therefore,

$$\mathfrak{N} \models \exists^{=1} \mathsf{v}_{\mathsf{r}} \; \varphi(\overline{\ell}_0, \dots, \overline{\ell}_{\mathsf{r}-1}, \mathsf{v}_{\mathsf{r}}),$$

where  $\exists^{-1}x \theta(x)$  denotes the formula

$$\exists x \Big( \theta(x) \land \forall y \Big( \theta(y) \to y \equiv x \Big) \Big).$$

Let  $\Phi \subseteq L_0^{S_{ar}}$ .

**Definition 1.3.** Let  $r \ge 1$ .

(i) A relation  $\mathscr{R}\subseteq\mathbb{N}^r$  is representable in  $\Phi$  if there is an  $L^{S_{ar}}$ -formula  $\phi(\nu_0,\ldots,\nu_{r-1})$  such that for all  $n_0,\ldots,n_{r-1}\in\mathbb{N}$ 

$$egin{array}{lll} (n_0,\ldots,n_{r-1})\in\mathscr{R} &\Longrightarrow &\Phi\vdash\phi(ar{n}_0,\ldots,ar{n}_{r-1}), \ (n_0,\ldots,n_{r-1})\notin\mathscr{R} &\Longrightarrow &\Phi\vdash\neg\phi(ar{n}_0,\ldots,ar{n}_{r-1}). \end{array}$$
 replaced by

(ii) A function  $F: \mathbb{N}^r \to \mathbb{N}$  is representable in  $\Phi$  if there is an  $L^{S_{ar}}$ -formula  $\phi(\nu_0, \dots, \nu_{r-1}, \nu_r)$  such that for all  $n_0, \dots, n_{r-1}, n_r \in \mathbb{N}$ 

$$\begin{split} f(n_0,\ldots,n_{r-1}) &= n_r &\implies & \Phi \vdash \phi(\bar{n}_0,\ldots,\bar{n}_{r-1},\bar{n}_r), \\ f(n_0,\ldots,n_{r-1}) &\neq n_r &\implies & \Phi \vdash \neg \phi(\bar{n}_0,\ldots,\bar{n}_{r-1},\bar{n}_r). \end{split}$$

Moreover,

$$\Phi \vdash \exists^{=1} \nu_r \ \varphi(\bar{n}_0, \dots, \bar{n}_{r-1}, \nu_r).$$

**Lemma 1.4.** (i) If  $\Phi$  is inconsistent, then every relation over  $\mathbb N$  and every function over  $\mathbb N$  is representable in  $\Phi$ .

- (ii) Let  $\Phi \subseteq \Phi' \subseteq L_0^{S_{ar}}$ . Then every relation representable in  $\Phi$  is also representable in  $\Phi'$ . Similarly, every function representable in  $\Phi$  is representable in  $\Phi'$  as well.

**Definition 1.5.**  $\Phi$  *allows representations* if all R-decidable relations and all R-computable functions over  $\mathbb{N}$  are representable in  $\Phi$ .

By Theorem 1.2:

**Theorem 1.6.** Th( $\mathfrak{N}$ ) allows representations.

With some extra efforts we can prove:

**Theorem 1.7.**  $\Phi_{PA}$  allows representations.

Recall that we have exhibited the so-called Gödel numbering of register programs. For later purposes, we do the same for  $L^{S_{ar}}$ -formulas. Let

$$\varphi_0, \varphi_1, \ldots,$$
 (1)

+

+

be an *effective* enumeration of all  $L^{S_{ar}}$ -formulas without repetition. That is, there is a program that prints out the sequence (1). Then for every  $\phi \in L^{S_{ar}}$  we let

$$[\phi] := n$$
 where  $\phi = \phi_n$ .

Observe that both

$$n \mapsto \varphi_n$$
 and  $\varphi \mapsto [\varphi]$ 

are R-computable.

**Theorem 1.8** (Fixed Point Theorem). Assume that  $\Phi$  allows representations. Then for every  $\psi \in L_1^{S_{ar}}$ , there is an  $S_{ar}$ -sentence  $\phi$  such that

$$\Phi \vdash \left(\varphi \leftrightarrow \psi(\overline{[\varphi]}).\right)$$

$$" \varphi = \psi \left(\varphi\right)"$$
(2)

*Proof:* We define a function  $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$  as follows. For every  $n, m \in \mathbb{N}$ 

$$F(n,m) := \begin{cases} \left[\phi_n(\bar{m})\right] & \text{if free}(\phi_n) = \{\nu_0\}, \\ & \text{i.e., } \phi_n \in L_1^{S_{ar}} \setminus L_0^{S_{ar}}, \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that F is R-computable, and for every  $\phi \in L_1^{S_{ar}} \setminus L_0^{S_{ar}}$  we have

$$F([\varphi], \mathfrak{m}) = [\varphi(\bar{\mathfrak{m}})]. \tag{3}$$

Since  $\Phi$  allows representations, there is an  $S_{ar}$ -formula  $\varphi_F(x,y,z)$  such that for all  $n,m,\ell \in \mathbb{N}$ 

$$F(n,m) = \ell \implies \Phi \vdash \varphi_F(\bar{n},\bar{m},\bar{\ell}), \tag{4}$$

$$F(n, m) \neq \ell \implies \Phi \vdash \neg \varphi_F(\bar{n}, \bar{m}, \bar{\ell}).$$
 (5)

Moreover,

Let

$$\chi(\nu_0) := \forall x (\phi_F(\nu_0, \nu_0, x) \to \psi(x)).$$

In particular, free( $\chi$ ) = { $\nu_0$ }. Finally we define the desired

$$\varphi := \chi(\bar{n})$$
 with  $n = [\chi]$ .

We show that (2) holds. First, by (3)

$$F(n,n) = F([\chi],n) = [\chi(\bar{n})] = [\varphi].$$

Then (4) implies 
$$\Phi \vdash \varphi_F(\bar{n}, \bar{n}, \overline{[\varphi]})$$
 Recall 
$$\varphi = \chi(\bar{n}) = \forall x \big( \varphi_F(\bar{n}, \bar{n}, x) \to \psi(x) \big). \quad (\land \uparrow \lambda x = \overline{[\varphi]})$$
 Combined with (7) we obtain 
$$\Phi \cup \{\varphi\} \vdash \psi(\overline{[\varphi]}).$$
 Equivalently 
$$\Phi \vdash \varphi \to \psi(\overline{[\varphi]}).$$

$$\Phi \cup \{\varphi\} \vdash \psi(\overline{[\varphi]})$$

$$\Phi \vdash \!\!\!\! \mid \phi \rightarrow \psi(\overline{[\phi]}).$$

For the other direction in (2), observe that (6) and (7) guarantee that

$$\Phi \vdash \forall z (\varphi(\bar{n}, \bar{n}, z) \rightarrow z \equiv \overline{[\varphi]}).$$

Thus

i.e., 
$$\Phi \cup \left\{ \psi(\overline{[\varphi]}) \right\} \vdash \forall x \left( \varphi_F(\overline{n}, \overline{n}, x) \to \psi(x) \right)$$
,  $\Rightarrow \overline{[\psi]} : \psi(\overline{[\varphi]}) \checkmark$ 

$$\varphi \vdash \psi(\overline{[\varphi]}) \to \varphi.$$

$$\Phi \vdash \psi(\overline{[\varphi]}) \to \varphi.$$

**Definition 1.9.** Let  $\Phi \subseteq L^{S_{ar}}$ . Then

$$\Phi^{\vdash} := \left\{ \phi \in \mathsf{L}^{\mathsf{S}_{\mathsf{ar}}} \mid \Phi \vdash \phi 
ight\}.$$

We say that  $\Phi^{\vdash}$  is representable in  $\Phi$  if

$$\left\{ \left[\phi\right] \in \mathbb{N} \mid \phi \in \Phi^{\vdash} \right\} = \left\{ \left[\phi\right] \mid \phi \in L^{S_{ar}} \text{ and } \Phi \vdash \phi \right\}.$$

is representable in  $\Phi$ .

(7)

**Lemma 1.10.** Let  $\Phi \subseteq L^{S_{ar}}$  be consistent and allow representations. Then  $\Phi^{\vdash}$  is not representable in  $\Phi$ .

*Proof:* Assume that  $\Phi^{\vdash}$  is representable in  $\Phi$ . In particular, there is a  $\chi(\nu_0) \in L_1^{S_{ar}}$  such that for all  $\phi \in L_0^{S_{ar}}$ 

Since  $\Phi$  is consistent, we conclude

$$\Phi \not\vdash \varphi \iff \Phi \vdash \neg \chi(\overline{[\varphi]}). \tag{8}$$

We apply the Fixed Point Theorem 1.8 to  $\neg \chi$  to obtain a sentence  $\varphi$  such that

Then

$$\Phi \vdash \varphi \iff \Phi \vdash \neg \chi(\overline{[\varphi]}) \qquad \text{(by (9))}$$

$$\iff \Phi \not\vdash \varphi, \qquad \text{(by (8))}$$

which is a contradiction.

Theorem 1.11 (Tarski's Undefinability of the Arithmetic Truth).

- (i) Let  $\Phi \subseteq L^{S_{ar}}$  be consistent and allow representations. Then  $\Phi^{\models}$  is not representable in  $\Phi$ .
- (ii)  $Th(\mathfrak{N})$  is not representable in  $Th(\mathfrak{N})$ .

**Proof:** By the Completeness Theorem

$$\Phi^{\models} = \Phi^{\vdash}$$
.

So (i) is a direct consequence of Lemma 1.10.

**Theorem 1.12** (Gödel's First Incompleteness Theorem). Let  $\Phi \subseteq L^{S_{ar}}$  be consistent and allow representations. Moreover,  $\Phi$  is R-decidable. Then there is an  $L^{S_{ar}}$ -sentence  $\varphi$  such that neither  $\Phi \vdash \varphi$  nor  $\Phi \vdash \neg \varphi$ .

*Proof:* Assume for every L<sup>S<sub>ar</sub></sup>-sentence  $\varphi$  either  $\Phi \vdash \varphi$  or  $\Phi \vdash \neg \varphi$ . Thus  $\Phi$  is complete. By the R-decidability of  $\Phi$ , we can then conclude that  $\Phi^{\vdash}$  is R-decidable too.

Since  $\Phi$  allows representations,  $\Phi^{\vdash}$  is representable in  $\Phi$ . Together with the consistency of  $\Phi$ , we obtain a contradiction to Lemma 1.10.

In the following we fix an R-decidable  $\Phi \subseteq L_0^{S_{ar}}$  which allows representations.

We choose an effective enumeration of all derivations in the sequent calculus associated with  $S_{ar}$  and define a relation  $\mathcal{H} \subseteq \mathbb{N}^2$  by

$$(n, m) \in \mathcal{H} \iff$$
 the m-th derivation in the above enumeration ends with a sequent  $\psi_0, \dots, \psi_{k-1}, \phi$  with  $\psi_0, \dots, \psi_{k-1} \in \Phi$  and  $n = [\phi]$ ,

Clearly,  $\mathcal{H}$  is R-decidable by the R-decidability of  $\Phi$ . Moreover, for every  $\varphi \in L^{S_{ar}}$ 

$$\Phi \vdash \varphi \iff \text{there is an } \mathfrak{m} \in \mathbb{N} \text{ with } ([\varphi], \mathfrak{m}) \in \mathscr{H}.$$

Since  $\Phi$  allows representation, there is a  $\phi_{\mathscr{H}}(\nu_0,\nu_1)\in L_2^{S_{ar}}$  such that for every  $\mathfrak{n},\mathfrak{m}\in\mathbb{N}$ 

$$(n,m) \in \mathcal{H} \implies \Phi \vdash \varphi_{\mathcal{H}}(\bar{n},\bar{m}), \tag{10}$$

$$(\mathfrak{n},\mathfrak{m})\notin\mathscr{H} \implies \Phi \vdash \neg \varphi_{\mathscr{H}}(\bar{\mathfrak{n}},\bar{\mathfrak{m}}). \tag{11}$$

We set

$$DER_{\Phi}(x) := \exists y \varphi_{\mathscr{H}}(x, y),$$

which intuitively says that x is provable in  $\Phi$ .

Applying Lemma 1.8 to  $\psi(x):=\neg Der_{\phi}(x),$  we obtain an  $L_0^{S_{ar}}\text{-sentence }\phi$  such that

$$\Phi \vdash \varphi \leftrightarrow \neg \mathsf{DER}_{\varphi}(\overline{[\varphi]}). \tag{12}$$



**Theorem 1.15** (Gödel's Second Incompleteness Theorem). *Assume*  $\Phi$  *is consistent and* R-decidable with  $\Phi_{PA} \subseteq \Phi$ . Then

 $\Phi \not\vdash \mathsf{Cons}_{\Phi}$ .

*Proof*: Assume  $\Phi \vdash Cons_{\Phi}$ . Then Lemma 1.14 implies

$$\Phi \vdash \neg DER_{\Phi}([\varphi]).$$

By (12) we have

$$\Phi \vdash \varphi$$
,

which contradicts Lemma 1.13.