Math 531 - Partial Differential Equations Review of Ordinary Differential Equations

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Spring 2020

Outline

- Review Second Order Differential Equation
 - First Order System of DEs
 - Boundary Value Problem
- 2 Definitions and Theorems
 - Linear Independence
 - Existence and Uniqueness
- 3 Harmonic Oscillator
 - Initial Value Problem
 - Boundary Value Problem
 - General Case

Second Order Differential Equation

Consider the initial value problem (IVP):

$$y'' - y = 0$$
, $y(0) = y_0$, and $y'(0) = yp_0$.

This is a second order linear homogeneous differential equation.

Solve this by attempting the solution $y(t) = ce^{\lambda t}$, which results in

$$c\lambda^2 e^{\lambda t} - ce^{\lambda t} = ce^{\lambda t}(\lambda^2 - 1) = 0.$$

This results in the *characteristic equation*

$$\lambda^2 - 1 = (\lambda + 1)(\lambda - 1) = 0$$
, so $\lambda = \pm 1$,

which gives the general solution:

$$y(t) = c_1 e^t + c_2 e^{-t}$$
.

Second Order Differential Equation

The initial value problem (IVP):

$$y'' - y = 0$$
, $y(0) = y_0$, and $y'(0) = yp_0$.

has the solution

$$y(t) = c_1 e^t + c_2 e^{-t}.$$

From the initial conditions,

$$c_1 + c_2 = y_0,$$

 $c_1 - c_2 = yp_0,$

which has the unique solution $c_1 = \frac{y_0 + yp_0}{2}$ and $c_2 = \frac{y_0 - yp_0}{2}$.

Thus,

$$y(t) = \frac{y_0 + yp_0}{2}e^t + \frac{y_0 - yp_0}{2}e^{-t} = y_0 \cosh(t) + yp_0 \sinh(t).$$

First Order System of DEs

Consider the ODE

$$y'' - y = 0.$$

Let
$$y_1(t) = y(t)$$
 and $y_2(t) = y'(t) = y'_1(t)$, so $y'_2(t) = y''(t) = y_1(t)$.

The $second\ order\ DE$ can be written as the $first\ order\ system$ of ODEs:

$$\left(\begin{array}{c}y_1'(t)\\y_2'(t)\end{array}\right)=\left(\begin{array}{cc}0&1\\1&0\end{array}\right)\left(\begin{array}{c}y_1(t)\\y_2(t)\end{array}\right)$$

The *characteristic equation* of the matrix satisfies

$$\det |A - \lambda I| = \det \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - 1 = 0,$$

which is the same as for the ODE before.

Once again the associated eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = -1$

First Order System of DEs

Consider the eigenvalue $\lambda_1 = 1$ for the matrix

$$A = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

The associated eigenvector is easily seen to be $\xi_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Similarly associated eigenvector for $\lambda_2 = -1$ is $\xi_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

It follows that the solution to the system of DEs

$$\dot{\mathbf{y}} = A\mathbf{y},$$

is

$$\mathbf{y} = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}$$

Phase Portrait

The results above give the general solution

$$\begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}$$

This is a saddle node.

Solutions move toward the origin in the direction $\xi_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and move away from origin in the direction $\xi_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ for larger t

Boundary Value Problem

Consider the boundary value problem (BVP):

$$y'' - y = 0$$
, $y(0) = A$, and $y(1) = B$,

which again has the general solution $y(t) = c_1 e^t + c_2 e^{-t}$.

With algebra, the unique solution becomes

$$y(t) = -\frac{(Ae - B)e^{-t}}{e^{-1} - e} + \frac{(Ae^{-1} - B)e^{t}}{e^{-1} - e}$$

Since $\sinh(t)$ and $\sinh(1-t)$ are linearly independent combinations of e^t and e^{-t} , we could write

$$y(t) = d_1 \sinh(t) + d_2 \sinh(1-t).$$

The algebra makes it much easier to see that

$$y(t) = \frac{B}{\sinh(1)}\sinh(t) + \frac{A}{\sinh(1)}\sinh(1-t).$$

Linear Independence

Below is the definition of **Linear Independence**.

Definition (Linear Independence)

Let V be the **vector space** of all real valued functions of a real variable x. A set of functions, $\{f_i(x)\}_{i=1}^n$, is **linearly independent** if and only if a linear combination of those functions,

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$
, for all x ,

implies that all the constants, $c_i = 0$.

Consider the set of functions, $\{e^t, e^{-t}\}$ and assume that

$$c_1 e^t + c_2 e^{-t} = 0, \quad \text{for all} \quad t.$$

(9/14)

Solving this equation gives $c_1e^{2t}=-c_2$, for all t, which only occurs when $c_1 = 0$. It follows that c_2 is also zero.

Existence and Uniqueness

Below is an important theorem about the **initial value problem**:

$$y' = f(t, y), \quad \text{with} \quad y(0) = 0 \tag{1}$$

Theorem (Existence and Uniqueness)

If f and $\partial f/\partial y$ are continuous in a rectangle $R: |t| \leq a, |y| \leq b$, then there is some interval $|t| \leq h \leq |a|$ in which there exists a unique solution $y = \phi(t)$ of the initial value problem (1).

This theorem states that assuming the function f is smooth, then the *first order differential equation* has a *unique solution* through a specific *initial condition*.

Since we are primarily considering f(t,y) **linear** in y, this theorem is satisfied.

Does this theorem hold for boundary value problems?

Harmonic Oscillator

Example (Harmonic Oscillator): Consider the IVP:

$$y'' + y = 0,$$
 $y(0) = A,$ $y'(0) = B$

The *characteristic equation* for this ODE is $\lambda^2 + 1 = 0$, which has solutions $\lambda = +i$

It follows that the general solution is

$$y(t) = c_1 \cos(t) + c_2 \sin(t).$$

The initial conditions are easily solved to give the *unique solution*

$$y(t) = A\cos(t) + B\sin(t),$$

which is the classic harmonic undamped oscillator.

Harmonic Oscillator

Example (Harmonic Oscillator): Now consider the BVP:

$$y'' + y = 0,$$
 $y(0) = A,$ $y(1) = B,$

which again has the general solution

$$y(t) = c_1 \cos(t) + c_2 \sin(t).$$

The boundary conditions are easily solved to give

$$y(t) = A\cos(t) + \frac{B - A\cos(1)}{\sin(1)}\sin(t).$$

This again gives a *unique solution*, but the denominator of sin(1) suggests potential problems at certain t values.

Harmonic Oscillator

Example (Harmonic Oscillator): Now consider the BVP:

$$y'' + y = 0,$$
 $y(0) = A,$ $y(\pi) = B,$

which again has the general solution

$$y(t) = c_1 \cos(t) + c_2 \sin(t).$$

The condition y(0) = A implies $c_1 = A$. However, $y(\pi) = B$ gives

$$y(\pi) = A\cos(\pi) + c_2\sin(\pi) = -A = B.$$

This only has a solution if B = -A. Furthermore, if B = -A, the arbitrary constant c_2 remains undetermined, so takes any value.

- If $B \neq -A$, then no solution exists.
- If B = -A, then **infinity many solutions exist** and satisfy

$$y(t) = A\cos(t) + c_2\sin(t)$$
, where c_2 is arbitrary.

General Case

Theorem (Boundary Value Problem)

Consider the second order linear BVP

$$y'' + py' + qy = 0,$$
 $y(a) = A,$ $y(b) = B,$

where $p, q, a \neq b, A$, and B are constants. Exactly one of the following conditions hold:

- There is a unique solution to the BVP.
- There is **no solution** to the BVP.
- There are infinity many solutions to the BVP.

The previous example demonstrates this theorem well, and this theorem will be critical to solving many of our PDEs this semester.

