Pick an election and a VTD. Let \boldsymbol{x} represent a specific candidate.

Hierachial model

- votes_x = hisp_votes_x + white_votes_x + other_votes_x
 - hisp_votes_x = hisp_votes_{total} * hisp_preference_x
 - hisp_votes_{total} = hisp_vap * hisp_participation_rate
 - white_votes_x = white_votes_{total} * white_preference_x
 - white_votes_{total} = white_vap * white_participation_rate
 - other_votes_x = other_votes_{total} * other_preference_x
 - other_votes_{total} = other_vap * other_participation_rate

(vap = voting age population)

Have data for:

- votes_x
- hisp_vap
- white_vap
- other_vap

Have equations for:

- hisp_votes_x
- hisp_votes_{total}
- white_votes_x
- white_votes_total
- other_votes_x
- other_votes_{total}

Need expressions based on census data for:

- hisp_preference_x
- hisp_participation_rate
- white_preference_x
- white_participation_rate
- other_preference_x
- other_participation_rate