Kenmerk: TW09/DWMP/MU/09-05

Cheat Sheet Discrete Mathematics II (152162/152163)

Chapters 4.3, 4.4, and 4.5

- If $a, b \in \mathbb{Z}$, b > 0, there exist unique $k, r \in \mathbb{Z}$ with a = kb + r and $0 \le r < b$
- $gcd(a, b) = min\{as + bt \mid s, t \in \mathbb{Z}, as + bt > 0\}$
- a, b relatively prime $\Leftrightarrow \gcd(a, b) = 1$
- The Euclidean Algorithm computes gcd(a, b)
- Every integer n > 1 has a unique prime factorization, $n = p_1 \cdot p_2 \cdot \dots \cdot p_k$ (where $p_1 \leq \dots \leq p_k$ are primes, not necessarily all p_i different)

Chapters 5.7 and 5.8

- $f: \mathbb{N} \to \mathbb{R}, f \in \mathcal{O}(g) \Leftrightarrow \exists m, n_0 \text{ with } f(n) \leq m \cdot g(n) \ \forall \ n \geq n_0$
- $f: \mathbb{N} \to \mathbb{R}, f \in \Omega(g) \Leftrightarrow \exists m, n_0 \text{ with } f(n) \geq m \cdot g(n) \ \forall \ n \geq n_0$
- $\log(n!) \in O(n \log n)$

Chapters 10.1, 10.2, and 10.3

- If $a_{n+1} = da_n \ \forall n \ge 0$ and $a_0 = A$ then $a_n = Ad^n$
- If $a_{n+2} = a_{n+1} + a_n \ \forall n \ge 0$ and $a_0 = 0, a_1 = 1$, then $a_n = F_n$ (Fibonacci numbers)

Chapters 10.6 and 12.3

- Master Theorem: if f(1) = c and f(n) = af(n/b) + c for all $n = b^k$ $(a, b, c \in \mathbb{Z})$, then for all $n = b^k$
 - 1. $f(n) = c(\log_b n + 1)$ for a = 1
 - 2. $f(n) = \frac{c}{a-1}(an^{\log_b a} 1)$ for $a \ge 2$
- If f is monotone increasing and $f(n) \in O(g(n))$ for all $n = b^k$ $(b \ge 2)$, then
 - 1. if $g \in O(n^r \log n)$ then $f \in O(n^r \log n)$ (r > 0)
 - 2. if $g \in O(n^r)$ then $f \in O(n^r)$ (r > 0)
- For $b, c \in \mathbb{N}$, $b \ge 2$, if $f(1) \le c$ and $f(n) \le b \cdot f(n/b) + c \cdot n$, for all $n = b, b^2, b^3, \ldots$, and f is monotone increasing, then $f \in O(n \log n)$

Chapters 13.1 and 13.2

- If $P = (v_0, v_1, \dots, v_k)$ is a shortest path from v_0 to v_k , then $P_i = (v_0, v_1, \dots, v_i)$ is a shortest path from v_0 to v_i for any $i = 0, \dots, k$
- A spanning tree for a connected graph G = (V, E) is a subgraph of G with |V| 1 edges and without cycles
- In a tree T = (V, E), there is a unique path $P_T(v, w)$ between any two nodes v and w
- In an edge weighted graph G = (V, E, c), T is a minimum spanning tree if and only if for any edge $f = \{v, w\} \notin T$, $c_e \leq c_f \ \forall$ edges $e \in P_T(v, w)$
- In an edge weighted graph G = (V, E, c), T is a minimum spanning tree if and only if for any edge $e \in T$, $c_e \le c_f \ \forall$ edges $f \in C(e)$, where C(e) is the cut induced by removing edge e from T

Chapter 11.4

- A graph G = (V, E) is planar if it can be drawn (embedded) in the plane without edge crossings
- A graph G=(V,E) is bipartite if the nodes V can be partitioned into two sets V_1 and V_2 such that $V_1 \cap e \neq \emptyset$ and $V_2 \cap e \neq \emptyset$ $\forall e \in E$
- K_n is a complete graph on n nodes, and $K_{n,m}$ is a complete bipartite graph with $|V_1| = n$ and $|V_2| = m$
- K_5 and $K_{3,3}$ are not planar
- A graph is planar if and only if it contains no subgraph homeomorphic to K_5 and $K_{3,3}$
- For planar graph G = (V, E) with |V| = v and |E| = e, v e + r = 2, where r is the number of regions of a planar embedding of G
- The dual of a planar graph G = (V, E) with |V| = v and |E| = e has e v + 2 nodes and e edges

Chapters 14.1 and 14.3

- $(R, +, \cdot)$ is a ring if R is closed for "+" and "·", "+" is associative, commutative, has an identity for "+" (0), and each element has a "+"-inverse (-a), "·" is associative, and the distributive law for "·" over "+" holds
- $(R, +, \cdot)$ is a commutative ring if in addition " \cdot " is commutative
- A commutative ring is a field if every element $(\neq 0)$ is a unit (has an inverse for ".")
- In \mathbb{Z}_n , a is a unit if and only if gcd(a, n) = 1
- \mathbb{Z}_n is a field if and only if n is prime
- \mathbb{Z}_n has $\phi(n)$ units, with $\phi(n) = |\{k \mid 1 \le k < n, \gcd(k, n) = 1\}|$

Chapters 16.1, 16.2, and 16.3

- (G, \circ) is a group if G is closed for " \circ " and " \circ " is associative, has an identity for " \circ " (e), and each element a has an inverse for " \circ " (a^{-1})
- If (G, \circ) is a finite group and $H \subseteq G$, then H is a subgroup if and only if H is closed for " \circ "
- A group G is cyclic if there is an $a \in G$ with $b = a^k$ for all $b \in G$
- If G is a finite group and $a \in G$ then $\langle a \rangle$ is a subgroup of G, and $\langle a \rangle = \{a^k \mid k \in \mathbb{Z}\} = \{a, a^2, \dots, a^m = e\}$ for some $m \in \mathbb{N}$
- Lagrange's Theorem: If G is a group with |G| = n and $H \subseteq G$ is a subgroup with |H| = m, then m|n

RSA

- If G is a group and |G| = n then $a^n = e \ \forall a \in G$
- Euler's Theorem: If n > 1 and gcd(a, n) = 1 then $a^{\phi(n)} \equiv 1 \pmod{n}$