Негосударственное образовательное частное учреждение дополнительного профессионального образования «Геотэк-Колледж»

УТВЕРЖДАЮ

Директор В.Н.Озмилова

«27 января 2023

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММ

ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

«Технология инструментальных определений входных параметров нелинейных моделей грунтов, используемых в программных комплексах численного моделирования оснований зданий и сооружений»

Руководитель курса: научный руководитель АО «МОСТДОРГЕОТРЕСТ», к. геол.-мин. наук, д. физ.-мат. наук ВМАК, академик Российской академии естественных наук Озмидов Олег Ростиславович

ОГЛАВЛЕНИЕ

I	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	4
II	ЦЕЛЬ И ЗАДАЧИ ПРОГРАММЫ	5
III	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ	6
IV	СОДЕРЖАНИЕ ПРОГРАММЫ	7
IV.1	Учебный план	7
IV.2	Календарный учебный график	8
IV.3	Рабочие программы модулей	9
IV.3.1	Модуль 1. Цифровое грунтоведение – составная часть цифровой эко-	
номики	9	
IV.3.2	Модуль 2. Численное моделирование грунтовых оснований зданий и	
сооружений	. Технологии определения входных параметров математических моде-	
1 2	9	
	Модуль 3. Нелинейные модели грунтов1	0
	Модуль 4. Обеспечение устойчивости зданий и сооружений в усло-	
	ического воздействия. Циклические испытания грунтов10	
	Модуль 5. Геотехнические и фильтрационные расчеты	1
	Модуль 6. Особенности получения исходных данных для численного	
	ния подземных сооружений. Оценка влияния нового строительства на	
	цую застройку1	1
	Модуль 7. Особенности экспертизы материалов инженерных изыска-	
	енных с целью обеспечения исходными данными численного модели-	
	нтовых оснований зданий и сооружений12	
IV.3.8	1 1	
IV.3.9		3
IV.3.1	· · · · · · · · · · · · · · · · · · ·	
	Оценка качества освоения программы. Формы аттестации и оценочны	
_	1	
V	УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ1	
V.1	Материально-техническое обеспечение программы1	
V.2	Кадровое обеспечение	8
V.3	Нормативно-правовое и учебно-методическое обеспечение про-	
	Нормативные правовые акты1	
V.3.2	Учебно-метолическое обеспечение программы	9

І. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная профессиональная программа повышения квалификации «Технология инструментальных определений входных параметров нелинейных моделей грунтов, используемых в программных комплексах численного моделирования оснований зданий и сооружений» (далее — программа) разработана в соответствии с требованиями Федерального закона от 29 декабря 2012 г. № 273-ФЗ "Об образовании в Российской Федерации" и приказа Министерства образования и науки Российской Федерации от 1 июля 2013 г. № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».

Нормативно-правовой и методической основой для разработки программы являются:

- Федеральный закон от 29 декабря 2004 г. № 190-ФЗ «Градостроительный кодекс Российской Федерации»,
- Федеральный закон от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании»,
- Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений»,
- Приказ Министерства регионального развития Российской Федерации от 30 декабря 2009 г. № 624 «Об утверждении Перечня видов работ по инженерным изысканиям, по подготовке проектной документации, по строительству, реконструкции, капитальному ремонту объектов капитального строительства, которые оказывают влияние на безопасность объектов капитального строительства»,
- Приказ Министерства образования и науки Российской Федерации от 12 мая 2016 г. № 548 «Об утверждении федерального государственного образовательного стандарта высшего образования по направлению подготовки 21.05.02 Прикладная геология (уровень специалитета)».

Курс повышения квалификации предназначен для специалистов строительной отрасли в области инженерно-геологических и инженерно-геотехнических изысканий, а также проектировщиков фундаментов зданий и сооружений и сооружений инженерной защиты.

Общими требованиями к обучающимся являются:

- наличие среднего профессионального или высшего образования;
- получение среднего профессионального или высшего образования.

Обучение по программе является одним из условий получения свидетельства о допуске саморегулируемых организаций:

- «Организация управления инженерными изысканиями»
- «Инженерно-геологические изыскания»
- «Инженерно-геотехнические изыскания»
- «Обследование состояния грунтов основания зданий и сооружений».
- «Конструктивные решения»

II ЦЕЛЬ И ЗАДАЧИ ПРОГРАММЫ

Основной целью программы является обновление теоретических и практических знаний руководителей и специалистов в области инженерных изысканий для строительства и проектирования зданий и сооружений в связи с повышением требований к уровню квалификации и необходимостью освоения современных методов решения профессиональных задач.

Материалы программы позволяют ознакомить слушателей с новыми решениями в отечественной и зарубежной практике инженерных изысканий и проектирования зданий и сооружений, совершенствовать знания в области нормативных и правовых аспектов изыскательской и проектной деятельности, современных методов и технических средств производства изысканий и обследования зданий. Слушатели имеют возможность усвоить современные приемы работы с программными комплексами численного моделирования грунтовых оснований и фундаментов зданий и сооружений, а также получить знания по теоретическим и практическим основам лабораторных испытаний грунтов с целью получения их физико-механических характеристик. Практическая часть программы направлена на получение слушателями профессиональных навыков работы с программными комплексами численного моделирования грунтовых оснований PLAXIS и MIDAS GTS и проведения инструментальных определений входных параметров математических моделей грунтов. В результате прохождения программы обучающиеся изучат нелинейные модели грунтов (Hardening Soil, Hardening Soil Small-strain, Soft Soil, Soft Soil Creep, Hoek-Brown и др.), особенности динамических расчетов с применением модели семейства UBC SAND, а также получат навык по составлению технического задания по инженерногеологическим и геотехническим изысканиях для строительства зданий и сооружений..

ІІІ ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

В результате реализации программы происходит совершенствование компетенций (общекультурных – ОК и профессиональных – ПК) (на основании Федерального государственного образовательного стандарта высшего образования по направлению подготовки 21.05.02 Прикладная геология (уровень специалитета)):

- способность к самоорганизации и самообразованию (ОК-7);
- способность проводить технические расчеты по проектам, технико-экономический и функционально-стоимостный анализ эффективности проектов (ПК-11);
- способность планировать и выполнять аналитические, имитационные и экспериментальные исследования, критически оценивать результаты исследований и делать выводы (ПК-14);
- -. способность проводить математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований (ПК-15).

В результате освоения программы обучения слушатель должен знать:

- физические основы моделей грунтов, используемых в современной механике грунтов;
- устройство и принципы работы современного оборудования геотехнической лаборатории;
- закономерности формирования напряженно-деформированного состояния грунтового основания:
- аналитические зависимости, используемые при построении нелинейных моделей грунтов;
- методику моделирования грунтового основания при помощи средств численного моделирования PLAXIS и MIDAS GTS;
- технологию оценки влияния нового строительства на существующую застройку с использованием метода конечных элементов;
- положения нормативной базы по инженерным изысканиям, относящиеся к испытаниям грунтов;
 - особенности международной нормативной базы.

В результате освоения программы обучения слушатель должен уметь:

- подбирать необходимое геотехническое оборудование для выполнения испытаний;
- составлять техническое задание по определению входных параметров нелинейных моделей грунтов лабораторными методами;
- корректно использовать положения нормативной базы применительно к поставленным задачам;
 - выполнять интерпретацию материалов испытаний;
- моделировать грунтовые основания зданий и сооружений при помощи программного средства PLAXIS и MIDAS GTS;
 - оформлять результаты испытаний в виде лабораторных протоколов;
 - составлять текст технического отчета по определению параметров грунтов.

IV СОДЕРЖАНИЕ ПРОГРАММЫ

IV.1 Учебный план

Форма обучения: очная с возможностью применения дистанционных технологий.

Срок обучения: - 72 часа (лекции - 38 час., учебная практика – 26 час., самостоятельная работа - 6).

По окончанию учебного процесса проводится аттестация. По итогам аттестации слушателям, прошедшим курс обучения, выдаются удостоверения о повышении квалификации установленного образца.

№ п/п	Разделы, темы	Всего,	В том числе, часов			Форма контроля
			Л	УП	CP	p
1.	Модуль 1. Цифровое грунтоведение – составная часть цифровой экономики	16	12	4	-	Устный опрос
2.	Модуль 2. Численное моделирование грунтовых оснований зданий и сооружений. Технологии определения входных параметров математических моделей грунтов	12	8	4	-	Устный опрос -
3.	Модуль 3. Нелинейные модели грунтов	12	6	4	2	Устный опрос -
4.	Модуль 4. Обеспечение устойчивости зданий и сооружений в условиях динамического воздействия. Циклические испытания грунтов	6	4	2	-	Устный опрос -
5.	Модуль 5. Геотехнические и фильтрационные расчеты	10	-	6	4	Устный опрос
6.	Модуль 6. Особенности получения исходных данных для численного моделирования подземных сооружений. Оценка влияния нового строительства на существующую застройку	6	1	6	-	Устный опрос
7	Модуль 7. Особенности экспертизы материалов инженерных изысканий, выполненных с целью обеспечения исходными данными численного моделирования грунтовых оснований зданий и сооружений	8	8	-	-	Устный опрос
8.	Модуль 8. Итоговая аттестация.	2	-	2		Зачет
	Итого часов	72	38	28	6	

 $[\]Pi$ – лекции, У Π – учебная практика, СР – самостоятельная работа

IV.2 Календарный учебный график

Компоненты программы	День	1		2	2	3		4	1	5		6	ĺ	7	7	:	8	9	9	1	0	Вс	сего
Аудиторных часов	Л У П	8	4	6	6	8	8	6	2 4	8	6 2	6	4	4	2	8	6	6	2 4	8	6 2	66	38 28
Самостоятельная работа	, часов	-		-		-		-	-	-		2		2	2	2	2		-	-			6
Итоговая аттестация		-			-	-		•	-	-		-			-		-		-	зач	ет		-
Итого		8	}	(6	8		6	5	8		8		(6		3		6	8	3		72

День обучения Модули	1	2	3	4	5	6	7	8	9	10	Всего
Модуль 1. Цифровое грунтоведение – состав- ная часть цифровой экономики.	4Л 4УП	6Л	2Л								12Л 4УП
Модуль 2. Численное моделирование грунтовых оснований зданий и сооружений. Технологии определения входных пара-метров математических моделей грунтов			6Л	2Л 4УП							8Л 4УП
Модуль 3. Нелинейные модели грунтов оснований					6Л 2УП	2УП 2CP					6Л 4УП 2СР
Модуль 4. Обеспечение устойчивости зданий и сооружений в условиях динамического воздействия. Циклические испытания грунтов						2Л 2УП	2Л				4Л 2УП
Модуль 5. Геотехнические и фильтрацион- ные расчеты							2УП 2CP	4УП 2CP			6УП 4СР
Модуль 6. Особенности получения исходных данных для численного моделирования подземных сооружений. Оценка влияния нового строительства на существующую застройку								2УП	4УП		6УП

Модуль 7. Особенности экспертизы ма-териалов инженерных изысканий, выполненных с целью обеспечения исход-ными данными численного моделирования грунтовых оснований зданий и сооружений									2Л	6Л	8Л
Модуль 8. Итоговая аттестация.										2УП	1УП
Итого, часов	8	6	8	6	8	8	6	8	6	8	72

 $[\]Pi$ — лекции, УП — учебная практика, СР — самостоятельная работа

IV.3 Рабочие программы модулей

Модуль IV.3.1 Цифровое грунтоведение-составная часть цифровой экономики

No	Роздани томи	Всег		ом чи часов		Форма
п/п	Разделы, темы	о, ча-	Л	У П	CP	контроля
1.	Модуль 1. Цифровое грунтоведение-составная часть цифровой экономики	16	12	4		-
1.1.	Основные положения федерального законодательства по безопасности зданий и сооружений. Законодательство в области цифривизации производственных процессов. Индустрия 4.0. Актуальные цифровые платформы для глобального ускорения развития технологий инженерных изысканий. Развитие нормативной базы по инженерно-геологическим и геотехническим изысканиям.	2	2	-	-	-
1.2.	Основные принципы цифрового грунтоведения.	2	2	-	-	-
1.3.	Инновационные лабораторные методы определения состава и свойств грунтов оснований зданий и сооружений. Современное оборудование и программное обеспечение геотехнической лаборатории. Испытательное оборудование ведущих мировых производителей. Импортозамещение в геотехнике. Инновационная разработка геотехнического оборудования на базе КБ «ПрогрессГео». Реестр средств измерений РФ. Экскурсия по испытательной лаборатории.	4	-	4	-	-
1.4	Цифровая платформа DigitRock для интерпретации данных лабораторных испытаний грунтов с использование нейротехнологий и технологии BigData. Реализация новых нормативных требований (ГОСТ 12248.32020) при разработки программного обеспечения по интерпретации геотехнических данных.	2	2	-		Контр. вопросы

№	Росунский жоми	Всег		ом чи часов		Форма
п/п	Разделы, темы	о, ча-	Л	У П	СР	контроля
1.5	Основные аспекты развития технологий полевых испытаний грунтов оснований зданий и сооружений. Современные установки глубинного статического зондирования. Демонстрация инновационной установки статического зондирования.	2	2	-	-	
1.6	Определение свойств грунтов методами инженерной геофизики. Перспективы использования геофизических данных в целях численного моделирования грунтовых оснований зданий и сооружений. Комплексирование геотехнических и геофизических технологий в рамках концепций цифрового грунтоведения.	4	4	-	-	

IV.3.2 Модуль 2. Численное моделирование грунтовых оснований зданий и сооружений. Технологии определения входных параметров математических моделей грунтов.

No	Doo жажуу жамуу	Всег		ом чи часов	-	Форма	
п/п	Разделы, темы	о, ча-	Л	У П	СР	контроля	
2.	Модуль 2. Численное моделирование грунтовых оснований зданий и сооружений. Технологии определения входных параметров математических моделей грунтов.	12	8	4	-	-	
2.1.	Использование метода конечных элементов (МКЭ) в расчетах грунтовых оснований. Действующие нормативы по численному моделированию. Требования к составлению программы работ и технического задания. Основные принципы геотехники.	2	2	-	-	-	
2.2.	Понятие расчетных моделей грунта на примере моделей: линейной упругости (LE), Мора-Кулона (МС), уплотняющегося грунта (HS), уплотняющегося	2	2	-	-	-	

№ п/п	Разделы, темы	Всег о, ча-сов		ом чи часов У П		Форма контроля
	грунта при малых деформациях (HSS). Особенности применения моделей SoftSoil (SS), SoftSoil Creep (SSC), NGI-ADP,					
2.3.	Научные и практические основы испытаний грунтов методом трехосных сжатий. Расчет геостатического давления. Метод восстановления фазового состава. Методы ускорения и снижения себестоимости трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов Статический, кинематический и динамический режимы испытаний. Дренированные и недренированные испытания. Особенности диаграмм Мора-Кулона. Принцип Терцаги. Недренированная прочность грунтов.	4	4	-	-	_
2.4.	Методы лабораторного определения входных параметров грунтовых моделей программного комплекса численного моделирования (Plaxis, MIDAS GTS NX). Модель Мора-Кулона (МС), модифицированная модель Мора-Кулона (ММС), упругопластическая модель с уплотнением грунта Hardening Soil (HS). Особенности калибровки нелинейных моделей грунтов.	4	-	4	-	-

IV.3.3 Модуль 3. Нелинейные модели грунтов

№	Разделы, темы	Всег о, ча-		ом чи часов		Форма
п/п	т азделы, темы	сов	Л	У П	СР	контроля
3.	Модуль 3. Нелинейные модели грунтов	12	6	4	2	-
3.1.	Современные представления о расчетном сопротивлении грунтов. Учет истории нагружения и анизотропии напряженно-деформированного состояния грунтового основания при оценке расчетного сопротивления грунтов. Обоснование выбора нелинейной модели грунтового основания с позиций оценки максимального расчетного сопротивления грунтов основания.	4	4			-
3.2.	Особенности нелинейных моделей грунтов. Критерии прочности. Поверхности текучести. Шатровые модели грунтов. Статус пластических точек. Пластический потенциал. Технология определения характеристик переуплотнения (РОР, ОСR, РСР) и показателей дилатансии. Влияние дилатансии на прочностные свойства грунтов. Влияние переуплотнения и дилатансии на параметры шатровых моделей грунтов. Учет дилатансии грунтов при проектировании свайных полей.	4	2	2	-	_
3.3.	Особенности инструментальных определений входных параметров расчетной модели Hardening soil (HS) посредством использования камеры трехосного сжатия типа Б в режиме К0-консолидации. Определение коэффициента бокового давления в состоянии покоя и коэффициента поперечного расширения при повторном нагружении. Коэффициент бокового давления для нормально уплотненных и переуплотненных грунтов. Влияние параметров переуплотнение на формирование напряженно-деформированного состояния подземных сооружений и бортов глубоких котлованов.	4	-	2	2	-

IV.3.4. Модуль 4. Обеспечение устойчивости зданий и сооружений в условиях динамического воздействия. Циклические испытания грунтов

№ п/п	Разделы, темы	Всег о ча-	В том числе, часов Л У СР			Форма контроля
4.	Модуль 4. Обеспечение устойчивости зданий и сооружений в условиях динамического воздействия. Циклические испытания грунтов.	6	4	2		-
4.1.	Научные и практические основы определения динамических свойств грунтов. Современные сервопневматические и сервогидравлические циклические установки трехосного сжатия. Принцип действия резонансной колонки.	2	2	-	-	-
4.2.	Демонстрация трехосных испытаний грунтов в режиме резонанса. Определение деформационных характеристик грунтов G0 и γ0,7 в циклическом режиме малоамплитудных деформаций (microstrain), используемых в модели Hardening Soil Small (HSS). Организация и проведение эксперимента на циклическом сервогидравлическом стабилометре Wille Geotechnik. с целью получения входных параметров модели Hardening Soil Small (HSS).				-	_
4.3.	Расчет НДС грунтового массива, вмещающего транспортный тоннель, при помощи программных комплексов PLAXIS, MIDAS GTS NX. Демонстрация принципа деградации сдвиговой жесткости Гардина-Дрневича.	2	-	2	-	Контр. вопросы
4.4.	Комплексирование геотехнических и геофизических методов.	2	2	-	-	

IV.3.5 Модуль 5 Геотехнические и фильтрационные расчеты

No	Разделы, темы	Всег о, ча-		ом чи	•	Форма
п/п	тазделы, темы	сов	Л	У П	СР	контроля
5.	Модуль 5. Геотехнические и фильтра- ционные расчеты	10		6	4	-
5.1.	Типы поведения моделей: Drained, Undrained A, Undrained B. Особенности определения прочностных и деформационных характеристик грунтов в недренированном режиме. Расчет времени консолидации грунтового основания здания/сооружения. Корректировка темпов возведения сооружения с учетом темпов диссипации порового давления.	2	-	2	2	Контр. вопросы
5.2.	Решение фильтрационной задачи и расчет устойчивости грунтовой плотины. Лабораторные технологии определения коэффициента фильтрации, коэффициентов фильтрационной и вторичной (ползучести) консолидации глинистых грунтов в одометрическом режиме.	2	-	2	2	Контр. вопросы
5.3.	Расчет расхода грунтовых вод через заданное сечение грунтовой плотины в режиме установившейся фильтрации. Модель фильтрации Вангенутхена.	2	-	2	-	Контр. вопросы

IV.3.6 Модуль 6 Особенности получения исходных данных для численного моделирования подземных сооружений. Оценка влияния нового строительства на существующую застройку

№	Разделы, темы	Всег	часов			Форма
п/п	тазделы, темы	сов	Л	У П	СР	контроля
6.	Модуль 6. Особенности получения ис- ходных данных для численного моде- лирования подземных сооружений.	6		6		-

No	№ П/П Разделы, темы Всег о, часов	Всег	В том числе, часов			Форма
п/п		·	Л	У П	СР	контроля
	Оценка влияния нового строительства на существующую застройку					
6.1.	Особенности инженерных изысканий, направленных на получение исходных данных для проектирования подземных сооружений. Анализ влияния типа модели грунтов на параметры напряженнодеформируемого состояния грунтового массива в зоне влияния подземного сооружения	-	-	2	-	Контр. вопросы
6.2.	Оценка влияния нового строительства на существующую застройка. Анализ формирования точек пластического течения и потенциальной поверхности разрушения на этапе строительства котлована.	-	-	4	-	Контр. вопросы

IV.3.7 Модуль 7. Особенности экспертизы материалов инженерных изысканий, выполненных с целью обеспечения исходными данными численного моделирования грунтовых оснований зданий и сооружений.

No	Разделы, темы	Всег о, ча- сов	В том числе, часов			Форма	
п/п			Л	У П	СР	контроля	
7.	Модуль 7. Особенности экспертизы материалов инженерных изысканий, выполненных с целью обеспечения исходными данными численного моделирования грунтовых оснований зданий и сооружений.	8	8		-	-	
7.1.	Особенности инспекционного контроля испытательных лабораторий. Требования к компетентности испытательных лабораторий. Аттестация и аккредитация геотехнических лабораторий. Правовая оценка процедуры аккредитации.	4	4	1	-	-	
7.2.	Типовые нарушения, выявленные в ходе проведения экспертизы материа-	4	4	-	-	-	

No	Разлены темы о ча- Н		В том числе, часов			Форма
п/п		Л	У П	СР	контроля	
	лов инженерно-геологических и геотехнических изысканий. Практические примеры ошибочных построений математических моделей грунтовых оснований зданий и сооружений.					

IV.3.8 Программа лекционных занятий

Тема 1.1. Основные положения федерального законодательства по безопасности зданий и сооружений. Законодательство в области цифривизации производственных процессов. Индустрия 4.0. Актуальные цифровые платформы для глобального ускорения развития технологий инженерных изысканий. Развитие нормативной базы по инженерно-геологическим и геотехническим изысканиям. (2 часа).

Тема 1.2. Основные принципы цифрового грунтоведения (2 часа).

Тема 1.4. Цифровая платформа DigitRock для интерпретации данных лабораторных испытаний грунтов с использование нейротехнологий и технологии BigData. Реализация новых нормативных требований (ГОСТ 12248.3.-2020) при разработки программного обеспечения по интерпретации геотехнических данных. (2 часа).

- **Тема 1.5.** Основные аспекты развития технологий полевых испытаний грунтов оснований зданий и сооружений. Современные установки глубинного статического зондирования. Демонстрация инновационной установки статического зондирования. (2 часа).
- **Тема 1.6.** Определение свойств грунтов методами инженерной геофизики. Перспективы использования геофизических данных в целях численного моделирования грунтовых оснований зданий и сооружений. Комплексирование геотехнических и геофизических технологий в рамках концепций цифрового грунтоведения. (4 часа).
- **Тема 2.1.** Использование метода конечных элементов (МКЭ) в расчетах грунтовых оснований. Действующие нормативы по численному моделированию. Требования к составлению программы работ и технического задания. Основные принципы геотехники (2 часа).
- **Тема 2.2.** Понятие расчетных моделей грунта на примере моделей: линейной упругости (LE), Мора-Кулона (MC), уплотняющегося грунта (HS), уплотняющегося грунта при малых деформациях (HSS). Особенности применения моделей SoftSoil (SS), SoftSoil Creep (SSC), NGI-ADP (**2 часа**).

- **Тема 2.3.** Научные и практические основы испытаний грунтов методом трехосных сжатий. Расчет геостатического давления. Метод восстановления фазового состава. Методы ускорения и снижения себестоимости трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов Статический, кинематический и динамический режимы испытаний. Дренированные и недренированные испытания. Особенности диаграмм Мора-Кулона. Принцип Терцаги. Недренированная прочность грунтов. (4 часа).
- **Тема 3.1.** Современные представления о расчетном сопротивлении грунтов. Учет истории нагружения и анизотропии напряженно-деформированного состояния грунтового основания при оценке расчетного сопротивления грунтов. Обоснование выбора нелинейной модели грунтового основания с позиций оценки максимального расчетного сопротивления грунтов основания. (4 часа).
- **Тема 3.2.** Особенности нелинейных моделей грунтов. Критерии прочности. Поверхности текучести. Шатровые модели грунтов. Статус пластических точек. Пластический потенциал. Технология определения характеристик переуплотнения (POP, OCR, PCP) и показателей дилатансии. Влияние дилатансии на прочностные свойства грунтов. Влияние переуплотнения и дилатансии на параметры шатровых моделей грунтов. Учет дилатансии грунтов при проектировании свайных полей. (2 часа).
- **Тема 4.1.** (Научные и практические основы определения динамических свойств грунтов. Современные сервопневматические и сервогидравлические циклические установки трехосного сжатия. Принцип действия резонансной колонки. **2** часа).
- **Тема 4.4.** Комплексирование геотехнических и геофизических методов. (2 часа).
- **Тема 7.1.** Особенности инспекционного контроля испытательных лабораторий. Требования к компетентности испытательных лабораторий. Аттестация и аккредитация геотехнических лабораторий. Правовая оценка процедуры аккредитации. (**4 часа**).
- **Тема 7.2.** Типовые нарушения, выявленные в ходе проведения экспертизы материалов инженерно-геологических и геотехнических изысканий. Практические примеры ошибочных построений математических моделей грунтовых оснований зданий и сооружений. (**4 часа**).

IV.3.9 Программа учебной практики

Тема 1.3. Инновационные лабораторные методы определения состава и свойств грунтов оснований зданий и сооружений. Современное оборудование и программное обеспечение геотехнической лаборатории. Испытательное оборудование ведущих мировых производителей. Импортозамещение в геотехнике. Инновационная разработка геотехнического оборудования на базе КБ «ПрогрессГео». Реестр средств измерений РФ. Экскурсия по испытательной лаборатории. **(4 часа)**

- **Тема 2.4.** Методы лабораторного определения входных параметров грунтовых моделей программного комплекса численного моделирования (Plaxis, MIDAS GTS NX). Модель Мора-Кулона (МС), модифицированная модель Мора-Кулона (ММС), упругопластическая модель с уплотнением грунта Hardening Soil (HS). Особенности калибровки нелинейных моделей грунтов. (**4 часа**).
- **Тема 3.2.** Особенности нелинейных моделей грунтов. Критерии прочности. Поверхности текучести. Шатровые модели грунтов. Статус пластических точек. Пластический потенциал. Технология определения характеристик переуплотнения (POP, OCR, PCP) и показателей дилатансии. Влияние дилатансии на прочностные свойства грунтов. Влияние переуплотнения и дилатансии на параметры шатровых моделей грунтов. Учет дилатансии грунтов при проектировании свайных полей. (2 часа).
- **Тема 3.3.** Особенности инструментальных определений входных параметров расчетной модели Hardening soil (HS) посредством использования камеры трехосного сжатия типа Б в режиме К0-консолидации. Определение коэффициента бокового давления в состоянии покоя и коэффициента поперечного расширения при повторном нагружении. Коэффициент бокового давления для нормально уплотненных и переуплотненных грунтов. Влияние параметров переуплотнение на формирование напряженно-деформированного состояния подземных сооружений и бортов глубоких котлованов. (2 часа).
- **Тема 4.3.** Расчет НДС грунтового массива, вмещающего транспортный тоннель, при помощи программных комплексов PLAXIS, MIDAS GTS NX. Демонстрация принципа деградации сдвиговой жесткости Гардина-Дрневича. (2 часа).
- **Тема 5.1.** Типы поведения моделей: Drained, Undrained A, Undrained B. Особенности определения прочностных и деформационных характеристик грунтов в недренированном режиме. Расчет времени консолидации грунтового основания здания/сооружения. Корректировка темпов возведения сооружения с учетом темпов диссипации порового давления. (2 часа).
- **Тема 5.2.** Решение фильтрационной задачи и расчет устойчивости грунтовой плотины. Лабораторные технологии определения коэффициента фильтрации, коэффициентов фильтрационной и вторичной (ползучести) консолидации глинистых грунтов в одометрическом режиме. (2 часа).
- **Тема 5.3.** Расчет расхода грунтовых вод через заданное сечение грунтовой плотины в режиме установившейся фильтрации. Модель фильтрации Вангенутхена. (2 часа).
- **Тема 6.1.** Особенности инженерных изысканий, направленных на получение исходных данных для проектирования подземных сооружений. Анализ влияния типа модели грунтов на параметры напряженно-деформируемого состояния грунтового массива в зоне влияния подземного сооружения. (2 часа).
- **Тема 6.2.** Оценка влияния нового строительства на существующую застройка. Анализ формирования точек пластического течения и потенциальной поверхности разрушения на этапе строительства котлована. (4 часа).

IV.3.10 Самостоятельная работа слушателей

Вид самостоятельной работы	Модуль 3	Модуль 5	Всего
Проработка конспектов лекций и подготовка к опросу, часов		4	6
Итого, часов		4	6

Примеры вопросов для проверки самостоятельной подготовки

Модуль 3. Нелинейные модели грунтов

- 1. Почему появилось цифровое грунтоведение как отдельное направление? В чем достоинства и недостатки данного направления?
- 2. Принципы цифрового грунтоведения.
- 3. Норматив, регламентирующий требования к компетентности испытательных лабораторий.
- 4. Виды лабораторного оборудования, применяемого для определения прочностных и деформационных свойств грунтов.
- 5. Лабораторное оборудование, позволяющее определить угол внутреннего трения и удельное сцепление грунтов.
- 6. Принципиальная схема установки трехосного сжатия.
- 7. Основные режимы испытаний грунтов с помощью установки трехосного сжатия.
- 8. Применение статического зондирования в целях оценки параметров нелинейных моделей грунтов.
- 9. Применение метода восстановления фазового состава (ВФС) и противодавления (ПД) для водонасыщения образцов грунтов.
- 10. Характеристики грунтов, определяемые при неконсолидированно-недренированных испытаниях грунтов.
- 11. Методы ускорения трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов.
- 12. Принцип Терцаги. Расчет эффективных напряжений в грунтовом массиве.
- 13. Наименования современных программных средств численного моделирования грунтовых оснований.
- 14. Нормативные документы, регламентирующие применение метода конечных элементов для расчета грунтовых оснований.

Модуль 5. Геотехнические и фильтрационные расчеты

- 1. Основные упругопластические модели, используемые в программном средстве численного моделирования грунтовых оснований PLAXIS.
- 2. Критерии прочности, используемые в механике грунтов.
- 3. Определение упругих и пластических деформаций грунтов. Упруго-идеально пластическая модель грунта Мора-Кулона.

- 4. Основные аналитические зависимости модели уплотняющегося грунта Hardening Soil (HS).
- 5. Особенности модели уплотняющегося грунта при малых деформациях Hardening Soil Small (HSS).
- 6. Полный перечень входных параметров моделей HS и HSS, используемых в программном комплексе PLAXIS.
- 7. Преимущества модели HSS, проявляющиеся при расчете глубины сжимаемой толщи под фундаментом здания.
- 8. Основные принципы моделей Soft Soil (SS) и Soft Soil Creep (SSC). Определение коэффициентов первичной и вторичной консолидации грунтов лабораторными методами.
- 9. Технология определения коэффициента бокового давления в состоянии покоя К0 и коэффициента поперечного расширения v грунтов при помощи камеры трехосной испытаний типа Б.
- 10. Основные принципы калибровки модели грунта. Возможности программного модуля Soil Test.

Критерии оценивания построений в конечно-элементом комплексе

Характеристика ответа	Оценка
Создана конечно-элементная модель, адекватно отражающая пове-	Зачет
дение грунтового массива и конструктивных элементов. Правильно вы-	
браны типы элементов и модели материала. Отсутствует излишняя детали-	
зация, сделаны необходимые, но не излишние упрощения. Положена каче-	
ственная конечно-элементная сетка. Физические допущения, адекватные	
целям расчета. Граничные условия отражают реальные условия нагруже-	
ния и закрепления грунта. Правильно смоделированы и заданы этапы стро-	
ительства. Произведен расчет. Проведен анализ на адекватность получен-	
ных результатов. Обучающийся может обосновать все принятые решения.	
Допущены принципиальные ошибки при моделировании. Произведено из-	Незачет
лишнее упрощение геометрии. Допущена ошибка в разделении на этапы	
строительства. Присутствуют области в конечно-элементной сетке, прово-	
цирующие безосновательные с точки зрения работы грунтового массива	
концентрации напряжений, или неправильно подобранный размер элемен-	
тов в области градиента напряжений. Получен результат расчета, противо-	
речащий физическим законам. Расчет не производится или заканчивается	
ошибкой. Обучающийся не может аргументировать принятые решения мо-	
делирования.	

IV.4 Оценка качества освоения программы. Формы аттестации и оценочные материалы

Оценка качества освоения программы осуществляется при проведении:

- промежуточной аттестации обучающихся в форме опроса и выполнения практических заданий;
 - итоговой аттестации обучающихся в форме зачета.

Промежуточная аттестация проводится в форме опроса или задания практического характера (задачи) по окончании каждого модуля. Промежуточная аттестация должна выявить уровень освоения обучающимися пройденного модуля и тем, изученных в рамках этого модуля, а также наличие профессиональных компетенций, совершенствование и формирование которых проводилось в ходе реализации модулей данной программы.

Промежуточная аттестация осуществляется преподавателем непосредственно на учебных занятиях. Вопросы для опроса и практические задания для промежуточной аттестации готовятся преподавателем.

Итоговая аттестация должна выявить уровень освоения обучающимися данной образовательной программы и наличие у него профессиональных компетенций, формирование и совершенствование которых проводилось в ходе ее реализации. Слушатель допускается к итоговой аттестации после прохождения всех учебных модулей в объеме, предусмотренном учебным планом программы и успешного прохождения промежуточной аттестации в конце каждого модуля.

Итоговая аттестация проводится в форме зачета, в ходе которого обучающемуся предлагается ответить на вопросы билета. Итоговый зачет принимает аттестационная комиссия из трех человек. Состав комиссии утверждается директором. В состав комиссии входит председатель, член экзаменационной комиссии, секретарь. Качество освоения программы обучающихся на зачете осуществляется по двухбалльной системе оценивания: зачет/незачет.

Билеты для проведения итоговой аттестации составляются преподавателем из примерных вопросов и заданий, являющихся частью программы.

Примеры контрольных вопросов для итоговой аттестации:

- **1.** Виды лабораторного оборудования, применяемого для определения прочностных и деформационных свойств грунтов.
- **2.** Основные упругопластические модели, используемые в программном средстве численного моделирования грунтовых оснований PLAXIS.
- **3.** Норматив, регламентирующий требования к компетентности испытательных лабораторий.
 - 4. Основные принципы цифрового грунтоведения.
- **5.** Лабораторное оборудование, позволяющее определить угол внутреннего трения и удельное сцепление грунтов.
- **6.** Применение статического зондирования в целях оценки параметров нелинейных моделей грунтов.
 - 7. Принципиальная схема установки трехосного сжатия.
- **8.** Основные режимы испытаний грунтов с помощью установки трехосного сжатия.
- **9.** Применение метода восстановления фазового состава (ВФС) и противодавления (ПД) для водонасыщения образцов грунтов.
- **10.** Характеристики грунтов, определяемые при неконсолидированно-недренированных испытаниях грунтов.
- **11.** Принцип Терцаги. Расчет эффективных напряжений в грунтовом массиве.
 - 12. Критерии прочности, используемые в механике грунтов.
- **13.** Определение упругих и пластических деформаций грунтов. Упруго-идеально пластическая модель грунта Мора-Кулона.
- **14.** Расчет геостатического давления в грунтовом массиве. Форма эпюры напряжения в грунтовом массиве, включающем в себя водоупорный слой.
- **15.** Методы ускорения трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов.
- **16.** Основные этапы расчета напряженно-деформированного состояния грунтового основания методом конечных элементов.
- **17.** Наименования современных программных средств численного моделирования грунтовых оснований.
- **18.** Нормативные документы, регламентирующие применение метода конечных элементов для расчета грунтовых оснований.
- **19.** Требования к составлению технического задания по определению входных параметров нелинейных моделей грунтов.
- **20.** Основные положения программы работ по расчету грунтовых оснований численными методами.
- **21.** Основные аналитические зависимости модели уплотняющегося грунта Hardening Soil (HS).
- 22. Особенности модели уплотняющегося грунта при малых деформациях Hardening Soil Основные принципы моделей Soft Soil и Soft Soil Стеер. Определение коэффициентов первичной и вторичной консолидации грунтов лабораторными методами.

- 23. Влияние выбора математической модели грунта на результаты расчета осадки здания/сооружения.
- **24.** Технология определения коэффициента бокового давления в состоянии покоя К0 и коэффициента поперечного расширения v грунтов при помощи камеры трехосной испытаний типа Б.
- **25.** Полный перечень входных параметров моделей HS и HSS, используемых в программном комплексе PLAXIS.
- **26.** Преимущества модели HSS, проявляющиеся при расчете глубины сжимаемой толщи под фундаментом здания.
- **27.** Определение деформационных характеристик грунтов G_0 и $\gamma_{0,7}$ при помощи циклического стабилометра и резонансной колонки. Особенности использования сейсмоакустических методов для оценки значения начального модуля сдвига G_0 .
- **28.** Принципиальная схема циклической сервогидравлической установки трехосного сжатия. Возможности сервогидравлических и сервопневматических стабилометров.
- **29.** Основные принципы калибровки модели грунта. Возможности программного модуля Soil Test.
- **30.** Динамические свойства дисперсных грунтов (сейсморазжижение, виброразжижение, виброползучесть, вибропрочность, виброустойчивость). Возможности лабораторного оборудования по определения свойств грунтов в условиях динамического воздействия.

Пример практического задания для итоговой аттестации

Расчет деформаций грунтового основания здания при помощи программного комплекса PLAXIS

Критерии оценивания итоговой аттестации слушателей:

Характеристика ответа	Процент	Оценка
Слушатель глубоко и прочно усвоил материал по программе,	70-100	Зачет
исчерпывающе, последовательно, четко его излагает, сво-		
бодно справляется с вопросами и другими видами примене-		
ния знаний, причем не затрудняется с ответом при видоизме-		
нении заданий, правильно обосновывает принятое решение,		
владеет разносторонними навыками и приемами выполнения		
практических заданий.		
Выставляется слушателю, который не знает значительной ча-	Менее 70	Незачет
сти теоретического материала, допускает существенные		
ошибки, неуверенно, с большими затруднениями выполняет		
практические задания.		

V. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

V.1 Материально-техническое обеспечение программы

Наименование учебного помещения	Вид занятий	Оснащение
Аудитория	Лекция, практические за- нятия	Компьютер, электронная доска, демонстрационный монитор, лицензионное программное средство PLAXIS
Лаборатория	Экскурсия	Компрессионные приборы, установки одноплоскостного среза и трехосного сжатия.

V.2 Кадровое обеспечение

К реализации программы привлекаются педагогические работники, квалификация которых соответствует требованиям Единого квалификационного справочника должностей руководителей, специалистов и служащих, раздел «Квалификационные характеристики должностей работников образования»:

«Высшее профессиональное образование или среднее профессиональное образование по направлению подготовки «Образование и педагогика» или в области, соответствующей преподаваемому предмету, без предъявления требований к стажу работы либо высшее профессиональное образование или среднее профессиональное образование и дополнительное профессиональное образование по направлению деятельности в образовательном учреждении без предъявления требований к стажу работы».

V.3 Нормативно-правовое и учебно-методическое обеспечение программы

V.3.1 Нормативные правовые акты

- 1. Федеральные законы и постановления Правительства Российской Федерации в области градостроительной деятельности:
 - «Градостроительный кодекс РФ»;
 - «Гражданский кодекс РФ»;
 - «О техническом регулировании»;
 - «Технический регламент о безопасности зданий и сооружений»;
 - «О саморегулируемых организациях» и др.
- 2. Постановления Правительства Российской Федерации в области градостроительной деятельности:
 - постановление Правительства РФ от 19 января 2006 г. № 20 «Об инженерных изысканиях для подготовки проектной документации, строительства, реконструкции объектов капитального строительства»;

- постановление Правительства РФ от 16 февраля 2008 г. № 87 «О составе разделов проектной документации и требованиях к их содержанию»;
- постановления Правительства РФ от 05 марта 2007 г. № 145 (с изменениями), от 31 марта 2012 г. № 272;
- распоряжение Правительства РФ от 21 июня 2010 г. № 1047-р;
- приказ Минрегионразвития от 30.12.2009 г. № 624;
- приказы Рос стандарта от 1 июня 2010 г. № 2079 и от 18 мая 2011 г. № 2244 и др.

3. Нормативная литература

- 1) ГОСТ 25100 -2011 Грунты. Классификация.
- 2) ГОСТ 12248-2010 Грунты. Методы лабораторного определения характеристик прочности и деформируемости.
- 3) ГОСТ 20522-2012. Грунты. Методы статистической обработки результатов испытаний.
- 4) ГОСТ 56353-2015. Грунты. Методы лабораторного определения динамических свойств дисперсных грунтов.
- 5) ГОСТ 5180-2015. Грунты. Методы лабораторного определения физических характеристик.
- 6) ГОСТ 12536-2014. Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава.
- 7) СП 22.13330.2011. Основания зданий и сооружений. (актуализированная редакция СНиП 2.02.01-83*)
- 8) СП 23.13330 СП 23.13330.2011 Основания гидротехнических сооружений. Актуализированная редакция СНиП 2.02.02-85. Приложение Б.
- 9) СП 24.133330.2011. Свайные фундаменты. Актуализированная редакция СНиП 2.02.03-85.
- 10) ASTM D 6528 Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils (Withdrawn 2016).
- 11) ASTM D4186. Standard test method for one-dimensional consolidation properties of soil using controlled-strain loading. American Society for Testing and Materials (ASTM).
- 12) ASTM D2435. Standard test method for one-dimensional consolidation properties of soil using incremental loading. American Society for Testing and Materials (ASTM).
- 13) EN 1997-1. Eurecode 7. Geotechnical Design. Part 2: Design assisted by laboratory and field-testing.

V.3.2 Учебно-методическое обеспечение программы

Учебная и научно-исследовательская литература

- 1. Берлинов М.В. Основания и фундаменты. М., Изд-во Высшая школа, 1999.
- 2. Болдырев Г.Г., Малышев М.В. Механика грунтов, основания и фундаменты. Пенза, ПГУАС, 2009.
- 3. Болдырев Г.Г., Скопинцев Д.Г. Методические вопросы определения модулей деформации дисперсных грунтов. Журнал «Инженерные изыскания», № 10-11, 2016, стр. 24-36.

- 4. Болдырев Г.Г. Методы определения механических характеристик грунтов. Состояние вопроса//ПГУАС, Пенза. 2008.- 696с.
- 5. Вознесенский Е.А., Никитин М.С., Сенцова Е.А. Методические вопросы определения параметров моделей, учитывающих повышение жесткости грунтов при малых деформациях. Журнал «Геотехника», №2, 2016, стр. 4-162.
- 6. Кочерженко В.В. Технология возведения подземных сооружений. М., Издво Ассоциации строительных вузов, 2000.
- 7. Ломтадзе В.Д. и др. Методика исследований физико-механических свойств горных пород. Изд-во Недра, 1972.
- 8. Пособие по моделям материалов Plaxis 2D. МИП «Информатика», СПб, 2018.
- 9. Пособие по расчетам MIDAS GTS NX, Midas Information Technology Co. Ltd, 2018.
- 10. Строкова Л.А. Определение параметров начального напряженного состояния грунта К0 и ОСR для нелинейных упругопластических моделей. Журнал «Геотехника». №2 2012.
- 11. Улицкий В.М., Шашкин А.Г., Шашкин К.Г. Гид по геотехнике. СПб, ПИ «Геореконструкция», 2010.
- 13. Федоренко Е.В. Геотехника и геосинтетика в вопросах и ответах. СПб, WWW/DARIKNIGI.RU, 2016. MIDAS Information
- 14. Becker D.E., Crooks J.H.A., Been K., Jefferies M.G. Works as a criterion for determining in-situ and yield stresses in clays // Canadian Geotechnical Journal. 1987. V. 24. № 4. P. 549–564.
- 15. Bishop A.W., Henkel D.J. The Measurement of Soil Properties in the Triaxial Test/A.W. Bishop, D.J. Henkel, Edward Amold-е изд., London:, 1957.
- 16. Bolton M.D. The strength and dilatancy of sands // Geotechnique. 1986. N_{2} 1 (36). C. 65-78.
- 17. Brinkgreve R.B.J., Engin E., Swolfs W.M. Plaxis 3D. Руководство пользователя / R.B.J. Brinkgreve, E. Engin, W.M. Swolfs, Санкт-Петербург: ООО «НИП-Информатика», 2011.
- 18. Duncan J.M., Chang C.. Nonlinear analysis of stress and strain in soil // ASCE Journal of the Soil Mechanics and Foundations. 1970. (96). C. 1629-1653.
- 19. Janbu N. Soil compressibility as determined by oedometer and triaxial tests Wiesbaden:, 1963. 19-25 c.
- 20. Kondner R.L. A hyperbolic stress strain formulation for sands Brazil: 1963. 289-324 c.
- 21. Rowe P.W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact 1962. 500-527 c.
- 22. Schanz T., Vermeer P.A. Angles of friction and dilatancy of sand // Geotechnique. 1996. № 46. C. 145-151.
- 23. Schanz T., Vermeer P.A., Bonnier P.G. The hardening-soil model: Formulation and verification Rotterdam: Brinkgreve R.B.J., 1999. 281-290 c.
- 24. Schanz T. Vermeer P.A., Bonnier P.G. The hardening soil model: formulation and verification.// Beyond 2000 in Computional Geotechnics 10 years of PLAXIS. Balkema, Rotterdam, 1999
- 25. Soos P. von Properties of soil and rock (in German) / P. von Soos, Berlin: Ernst & Sohn, 1990.

26. Vermeer P.A., De Borst R. Non-associated plasticity for soils, concrete and rock / P.A. Vermeer, R. De Borst, Heron, 1984. $62\ c.$