1.	设 $A = \{x x^2 - 6x + 5 \le 0\}, B = \{2, 3, 4, 5, 6, 7\}, $ 则 $A \cap B = $			
2.	已知函数 $f(x) = \lg(x+1)$ 的反函数为 $y = f^{-1}(x)$, 则 $f^{-1}(2) =$			
3.	设 i 是虚数单位, 若 $z+2\overline{z}=3+4\mathrm{i}$, 则 $2z+\overline{z}=$			
4.	若 $f(x)$ 是奇函数, 且当 $x \ge 0$ 时, $f(x) = x^2 + x$, 则当 $x < 0$ 时, $f(x) =$.			
5.	设 A,B,C 是三角形的三个内角,若 $(\sin A + \sin B)^2 - \sin^2 C = 3\sin A\sin B$,则 $C =$			
6.	若一组数据 $2,3,a,b,7,9$ 的中位数为 8 , 则 $a+b$ 的最小值为			
7.	$(2+x)^6$ 的二项展开式中,系数最大的项的系数为			
8.	设 A,B 是一条斜率为 4 的直线与抛物线 $y^2=x$ 的两个交点,则线段 AB 的中点的坐标可能是(写 出一个可能的点的坐标).			
9.	等差数列 $\{a_n\}$ 中, $a_{20}<0$, $a_{21}>0$, 且 $a_{20}+a_{21}>0$. 设 S_n 是数列 $\{a_n\}$ 的前 n 项和, 若 $S_k>0$, 则正整数 k 的最小值为			
10.	过点 $P(2,3)$ 的直线 l 分别交 x 轴、 y 轴的正半轴于 A 、 B 两点, 则当 $ PA \cdot PB $ 取到最小值时, l 的方程为			
11.	已知实数 $r>0$,圆 $(x-3)^2+(y-4)^2=r^2$ 上有且仅有两点到直线 $3x-4y-2=0$ 的距离为 1 ,则半径 r 的取值范围为			
12.	已知集合 $A=\{x x=2n-1,\ n\in {\bf N}^*\},\ B=\{x x=2^k,\ k\in {\bf N}^*\}.$ 将 $A\cup B$ 的所有元素从小到大依次排列构成一个数列 $\{a_n\}$. 记 S_n 为数列 $\{a_n\}$ 的前 n 项和, 则使得 $a_n\in A$ 与 $S_{n-1}>100a_n$ 同时成立的正整数 n 的最小值为			
13.	"函数 $y=f(x),\;x\in\mathbf{R}$ 是增函数" 是"函数 $y=2-f(x),\;x\in\mathbf{R}$ 是减函数"的 ().			
	A. 充分非必要条件	B. 必要非充分条件	C. 充要条件	D. 既非充分又非必要条件
14.	4. 银行一年定期的年利率为 r, 五年定期的年利率为 q, 银行为吸收长期资金, 鼓励储户存五年定期的存款, 那么 q 的值应略大于 ().			
	A. $\sqrt[5]{(1+r)^5-1}$	B. $\frac{1}{5}((1+r)^5-1)$	C. $(1+r)^5 - 1$	D. <i>r</i>
15.	. 设 m 是正实数, 若椭圆 $mx^2 + (m+1)y^2 = 1$ 的两焦点的距离为 3 , 则 m 的值为 $($).			
	A. $\frac{\sqrt{13} - 3}{6}$	B. $\frac{\sqrt{21}-3}{6}$	C. $\frac{1}{3}$	D. $\frac{\sqrt{33} - 3}{6}$
16.	已知 $\overline{a},\overline{b},\overline{e}$ 是平面向量, \overline{e} 是单位向量. 若非零向量 \overline{a} 与 \overline{e} 的夹角为 $\frac{\pi}{3}$, 向量 \overline{b} 满足 $\overline{b}^2-4\overline{e}\cdot\overline{b}+3=0$, 则			
	$ \overline{a}-\overline{b} $ 的最小值为 $($ $).$			
	A. $\sqrt{3} - 1$	B. $\sqrt{3} + 1$	C. 2	D. $2 - \sqrt{3}$

17. 在直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle ABC = 90^{\circ}$, AB = BC = 1.

- (1) 若该直三棱柱的表面积为 $3+\sqrt{2}$, 求直线 A_1C 与平面 ABC 所成的角的大小;
- (2) 若异面直线 BC 与 AC_1 所成的角的大小为 60° , 求该直三棱柱的体积.
- 18. 已知 a 是常数, 设函数 $f(x) = (a-2)x^2 + 2(a-2)x 4$.
 - (1) 解不等式: f(x) > -4;
 - (2) 求实数 a 的取值范围, 使得 f(x) < 0 对任意 $x \in [1,3]$ 恒成立;
- 19. 设函数 $f(x) = \cos^2 x 2\sin x \cos x + 3\sin^2 x$.
 - (1) 求使 f(x) 取得最大值的 x 的集合;
 - (2) 设 $x_1, x_2 \in \mathbf{R}^+$, 且 $f(x_1) + f(x_2) = 4$. 求证: $x_1 + x_2 \ge \frac{\pi}{2}$
- 20. 若无穷数列 $\{a_n\}$ 满足: 只要 $a_p=a_q\;(p,q\in{\bf N}^*)$, 必有 $a_{p+1}=a_{q+1}$, 则称 $\{a_n\}$ 具有性质 P.
 - (1) 设数列 $\{a_n\}$ 的通项公式为 $a_n = \cos \frac{n\pi}{6}$, 判断 $\{a_n\}$ 是否具有性质 P, 并说明理由;
 - (2) 若 $\{a_n\}$ 具有性质 P, 且 $a_1=1$, $a_2=2$, $a_4=3$, $a_5=2$, $a_6+a_7+a_8=12$, 求 a_3 ;
 - (3) 设无穷数列 $\{b_n\}$ 的前三项依次成等比数列, 无穷数列 $\{c_n\}$ 是等差数列, $b_1=c_3=1$, $b_3=c_1=9$. 设 $a_n=b_n+c_n\ (n\in \mathbf{N}^*)$. 若 $\{a_n\}$ 具有性质 P, 求 $b_1+b_2+\cdots+b_{30}$.
- 21. 已知抛物线 C 的方程为 $y^2 = x$, 圆 M 的方程为 $(x-2)^2 + y^2 = 1$.
 - (1) 设 P 是抛物线 C 上的动点, 证明: P 在圆 M 外;
 - (2) 设斜率为 1 的直线 l 与圆 M 相切, 且与抛物线 C 交于 Q_1, Q_2 两点, 求 $|Q_1Q_2|$ 的值;
 - (3) 设 A_1, A_2, A_3 是抛物线 C 上的三点, 直线 A_1A_2 , 直线 A_1A_3 均与圆 M 相切, 判断直线 A_2A_3 与圆 M 的位置关系, 说明理由.
- 22. 方程 $2^x = 3$ 的解为 $x = ____$
- 23. 设 $z = \frac{2-i}{1+i}$, 则 |z| =_____.
- 24. 若角 α 的终边过点 P(4,-3), 则 $\sin(\frac{3\pi}{2} + \alpha) =$ _____.
- 25. 为了解 300 名学生的视力情况, 采用系统抽样的方法从中抽取容量为 20 的样本, 则分段的间隔为_____
- 26. 已知线性方程组的增广矩阵为 $\begin{pmatrix} 2 & 0 & m \\ 1 & n & 2 \end{pmatrix}$, 解为 $\begin{cases} x=1, & \text{则 } m+n=\underline{\qquad} \\ y=1, & \end{cases}$
- 27. 一平面截一球得到直径是 6cm 的圆面, 球心到这个平面的距离是 4cm, 则该球的体积是_____cm³.

 $\begin{bmatrix} 1 & y & 7 \\ 1 & 5 & \frac{1}{x-1} \\ -1 & 6 & 1 \end{bmatrix}$ 中元素 y 的代数余子式的值大于 0, 则 x 的范围是_____.

- 29. 甲、乙、丙三位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是______.
- 30. 在平面直角坐标系 xOy 中,圆 C 的方程为 $x^2 + y^2 8x + 15 = 0$,若直线 y = kx 2 上至少存在一点,使得以该点为圆心,1 为半径的圆与圆 C 有公共点,则 k 的最大值是______.
- 31. 已知 f(x) = m(x-2m)(x+m+3), $g(x) = 2^x 2$, 满足对于任意的 $x \in \mathbb{R}$, f(x) < 0 或 g(x) < 0, 则 m 的 取值范围是______.
- 32. 已知常数 $k,b,t\in \mathbf{R}$ 直线 f(x)=kx+b 与曲线 $g(x)=\frac{t^2}{x}$ 交于点 $M(m,-1),\,N(n,2),\,$ 则不等式 $f^{-1}(x)\geq g^{-1}(x)$ 的解集为______.
- 33. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $a_n + a_{n+1} = \frac{1}{2^n}$, 若数列 $\{S_n\}$ 收敛于常数 A, 则首项 a_1 取值的集合为_______.
- 34. 设 α, β 是两个不同的平面, 直线 m 在平面 α , 则 " $m \parallel \beta$ " 是 " $\alpha \parallel \beta$ " 的 ().
 - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

35. 在等差数列 $\{a_n\}$ 中, $a_{10} < 0$, $a_{11} > 0$ 且 $a_{11} > |a_{10}|$, 则在 S_n 中最大的负数为 ().

A. S_{17}

B. S_{18}

C. S_{19}

D. S_{20}

36. 已知点 O 是坐标原点, 点 A(0,2) 点 P 是抛物线 $y=4x^2$ 上的点, 则使得 OPA 是等腰三角形的点 P 为 ().

A. 2

B. 4

C. 6

D. 8

37. 已知正方体 $ABCD - A_1B_1C_1D_1$, 点 P 是棱 CC_1 的中点, 设直线 AB 为 a, 直线 A_1D_1 为 b. 对于下列两个命题: ① 过点 P 有且只有一条直线 l 与 a、b 都相交; ② 过点 P 有且只有一条直线 l 与 a、b 都成 45° 角. 以下判断正确的是 ().

A. ① 为真命题, ② 为真命题

B. ① 为真命题, ② 为假命题

C. ① 为假命题, ② 为真命题

D. ① 为假命题, ② 为假命题

38. 如左图, 在 Rt $\triangle ABC$ 中, $\angle C = 90^{\circ}$, BC = 3, AC = 6, D、E 分别为 AC、AB 上的点, 且 $DE \parallel BC$, DE = 2, 将 $\triangle ADE$ 沿 DE 折起到 $\triangle A_1DE$ 的位置, 使 $A_1C \perp CD$, 如右图.

- (1) 求证: $A_1C \perp$ 平面 BCDE;
- (2) 若 M 是 A_1D 的中点, 求 CM 与平面 A_1BE 所成角的大小.
- 39. 在 $\triangle ABC$ 中, a, b, c 分别是角 A, B, C 的对边, 且 $8\sin^2\frac{B+C}{2} 2\cos 2A = 7$.
 - (1) 求角 A 的大小;
 - (2) 若 $a = \sqrt{3}$, b + c = 3, 求 b 和 c 的值.
- 40. 如图, A、B、C 三地有直道相通, AB=5 千米, AC=3 千米, BC=4 千米, 现甲、乙两警员同时从 A 地出 发匀速前往 B 地, 经过 t 小时, 他们之间的距离为 f(t)(单位: 千米), 甲的路线是 AB, 速度为 5 千米/小时, 乙的路线是 ACB, 速度为 8 千米/小时, 乙到 B 地后在原地等待, 设 $t=t_1$ 时乙到达 C 地.

- (1) 求 t_1 及 $f(t_1)$ 的值;
- (2) 已知警员的对讲机的有效通话距离是 3 千米, 当 $t_1 \le t \le 1$ 时, 求 f(t) 的表达式, 并判断 f(t) 在 $[t_1, 1]$ 上的最大值是否超过 3? 说明理由.
- 41. 已知双曲线 $\Gamma: \frac{x^2}{2} \frac{y^2}{4} = 1$ 的右顶点为 A, 点 B 的坐标为 $(1, \sqrt{2})$.
 - (1) 设双曲线 Γ 的两条渐近线的夹角为 θ , 求 $\cos \theta$;
 - (2) 设点 D 是双曲线 Γ 上的动点, 若点 N 满足 $\overrightarrow{BN} = \overrightarrow{ND}$, 求点 N 的轨迹方程;
 - (3) 过点 B 的动直线 l 交双曲线 Γ 于 PQ 两个不同的点, M 为线段 PQ 的中点, 求直线 AM 的斜率的取值范围.
- 42. 记无穷数列 $\{a_n\}$ 的前 n 项中最大值为 M_n , 最小值为 m_n , 令 $b_n = \frac{M_n + m_n}{2}$.
 - (1) 若 $a_n = 2^n 3n$, 写出 b_1, b_2, b_3, b_4 的值;

- (2)设 $a_n=2^n-\lambda n,$ 若 $b_3=-3,$ 求 λ 的值, 及 $n\geq 4$ 时数列 $\{b_n\}$ 的前 n 项和 $S_n;$
- (3) 求证:"数列 $\{a_n\}$ 是等差数列"的充要条件是"数列 $\{b_n\}$ 是等差数列".