Package 'msImpute'

July 28, 2020

Type Pa	ckage					
Title Pe	otide imputation in label-free proteomics					
Version	1.2.0					
Description msImpute provides tools for matrix completion in label-free proteomics quantification at the peptide-level. Currently, msImpute completes missing values by low-rank approximation of the underlying data matrix.						
Imports	softImpute					
License	MIT					
Encodin	g UTF-8					
LazyDa	a true					
Roxyger	<pre>nts https://github.com/DavisLaboratory/msImpute/issues Note 7.0.2 cs documented:</pre>					
Index	CPD 1 KNC 2 KNN 3 msImpute 3 scaleData 5 selectFeatures 6					
CPD	CPD					

Description

Spearman correlation between pairwise distances in the original data and imputed data. CPD quantifies preservation of the global structure after imputation. Requires complete datasets - for developers/use in benchmark studies only.

2 KNC

Usage

```
CPD (xorigin, ximputed)
```

Arguments

xorigin numeric matrix. The original data. Can not contain missing values.

ximputed numeric matrix. The imputed data. Can not contain missing values.

Value

numeric

KNC

k-nearest class means (KNC)

Description

The fraction of k-nearest class means in the original data that are preserved as k-nearest class means in imputed data. KNC quantifies preservation of the mesoscopic structure after imputation. Requires complete datasets - for developers/use in benchmark studies only.

Usage

```
KNC (xorigin, ximputed, class, k = 3)
```

Arguments

xorigin numeric matrix. The original data. Can contain missing values.

ximputed numeric matrix. The imputed data.

class factor. A vector of length number of columns (samples) in the data specifying

the class/label (i.e. experimental group) of each sample.

k number of nearest class means. default to k=3.

Value

numeric The proportion of preserved k-nearest class means in imputed data.

KNN 3

KNN	k-nearest neighbour (KNN)	

Description

The fraction of k-nearest neighbours in the original data that are preserved as k-nearest neighbours in imputed data. KNN quantifies preservation of the local, or microscopic structure. Requires complete datasets - for developers/use in benchmark studies only.

Usage

```
KNN (xorigin, ximputed, k = 3)
```

Arguments

xorigin numeric matrix. The original data. Can not contain missing values. ximputed numeric matrix. The imputed data. Can not contain missing values. k number of nearest neighbours. default to k=3.

Value

numeric The proportion of preserved k-nearest neighbours in imputed data.

Description

Returns a completed peptide intensity matrix where missing values (NAs) are imputated by low-rank approximation of the input matrix. Non-NA entries remain unmodified. msImpute requires at least 4 non-missing measurements per peptide across all samples. It is assumed that peptide intensities (DDA), or MS1/MS2 normalised peak areas (DIA), are log2-transformed and normalised (e.g. quantile normalisation).

Usage

```
msImpute(object, rank.max = NULL, lambda = NULL, thresh = 1e-05,
   maxit = 100, trace.it = FALSE, warm.start = NULL,
   final.svd = TRUE)
```

Arguments

object	Numeric matrix where missing values are denoted by NA. Rows are peptides, columns are samples.
rank.max	Numeric. This restricts the rank of the solution. is set to min(dim(object)-1) by default.

4 msImpute

lambda	Numeric. Nuclear-norm regularization parameter. Controls the low-rank property of the solution to the matrix completion problem. By default, it is determined at the scaling step. If set to zero the algorithm reverts to "hardImputation", where the convergence will be slower.
thresh	Numeric. Convergence threshold. Set to 1e-05, by default.
maxit	Numeric. Maximum number of iterations of the algorithm before the algorithm is converged. 100 by default.
trace.it	Logical. Prints traces of progress of the algorithm.
warm.start	List. A SVD object can be used to initialize the algorithm instead of random initialization.
final.svd	Logical. Shall final SVD object be saved? The solutions to the matrix completion problems are computed from U, D and V components of final SVD.

Details

msImpute operates on the softImpute-ALS algorithm. For more details on the underlying algorithm, please see softImpute package.

Value

Missing values are imputed by low-rank approximation of the input matrix. If input is a numeric matrix, a numeric matrix of identical dimensions is returned. If x is a MAList object, the E component is replaced with the completed matrix, and the updated MAList object is returned. Non-NA entries remain unmodified.

See Also

selectFeatures, scaleData

Examples

```
set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
xna <- scaleData(xna)
xcomplete <- msImpute(object=xna)</pre>
```

scaleData 5

scaleData	Standardize a matrix to have optionally row means zero and variances one, and/or column means zero and variances one.

Description

Standardize a matrix to have optionally row means zero and variances one, and/or column means zero and variances one.

Usage

```
scaleData(object, maxit = 20, thresh = 1e-09, row.center = TRUE,
row.scale = TRUE, col.center = TRUE, col.scale = TRUE,
trace = FALSE)
```

Arguments

object	numeric matrix where missing values are denoted by NA. Rows are peptides, columns are samples.
maxit	numeric. maximum iteration for the algorithm to converge (default to 20). When both row and column centering/scaling is requested, iteration may be necessary.
thresh	numeric. Convergence threshold (default to 1e-09).
row.center	logical. if row.center==TRUE (the default), row centering will be performed resulting in a matrix with row means zero. If row.center is a vector, it will be used to center the rows. If row.center=FALSE nothing is done.
row.scale	if row.scale==TRUE, the rows are scaled (after possibly centering, to have variance one. Alternatively, if a positive vector is supplied, it is used for row centering.
col.center	Similar to row.center
col.scale	Similar to row.scale
trace	logical. With trace=TRUE, convergence progress is reported, when iteration is needed.

Details

Standardizes rows and/or columns of a matrix with missing values, according to the biScale algorithm in Hastie et al. 2015.

Value

A list of two components: E and E.scaled. E contains the input matrix, E.scaled contains the scaled data

See Also

selectFeatures, msImpute

6 selectFeatures

Examples

```
set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
xna <- scaleData(xna)</pre>
```

selectFeatures

Select features with high biological dropout rate

Description

Fits a linear model to peptide dropout rate against peptide abundance. The selected features (peptides) can be used to determine if data is Missing Not At Random (MNAR). Users should note that msImpute assumes peptides are Missing At Random (MAR).

Usage

```
selectFeatures(object, n_features = 500, suppress_plot = FALSE)
```

Arguments

Numeric matrix where missing values are denoted by NA. Rows are peptides, columns are samples.

n_features
Numeric, number of features with high dropout rate. 500 by default.

suppress_plot

Logical show plot of dropouts vs abundances.

Value

A data frame with a logical column denoting the selected features

See Also

scaleData, msImpute

Examples

```
set.seed(101)  n=800   p=100   J=50   np=n*p   missfrac=0.3   x=matrix(rnorm(n*J),n,J) %*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
```

selectFeatures 7

```
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna[imiss]=NA
rownames(xna) <- 1:nrow(xna)</pre>
hdp <- selectFeatures(xna, n_features=500, suppress_plot=FALSE)
# construct matrix M to capture missing entries
M <- ifelse(is.na(xna),1,0)</pre>
M <- M[hdp$msImpute_feature,]</pre>
# plot a heatmap of missingness patterns for the selected peptides
library(ComplexHeatmap)
hm <- Heatmap (M,
column_title = "dropout pattern, columns ordered by dropout similarity",
             name = "",
              col = c("#8FBC8F", "#FFEFDB"),
              show_row_names = FALSE,
              show_column_names = TRUE,
              cluster_rows = TRUE,
              cluster_columns = TRUE,
              show_column_dend = FALSE,
              show_row_dend = FALSE,
              row_names_gp = gpar(fontsize = 7),
              column_names_gp = gpar(fontsize = 8),
              heatmap_legend_param = list(#direction = "horizontal",
              heatmap_legend_side = "bottom",
              labels = c("observed", "missing"),
              legend_width = unit(6, "cm")),
hm <- draw(hm, heatmap_legend_side = "left")</pre>
```

Index

```
CPD, 1

KNC, 2

KNN, 3

msImpute, 3

scaleData, 5
selectFeatures, 6
softImpute, 4
```