Control

OR: Find the best policy

Chapter 5 & 6

Lecture by David Silver

8		

8		

-1	-1	-1	-1
-1	-1	-10	-1
-1	-1	-1	-1
-1	-1	-1	100

model-free

Policy

Policy

Return $\gamma = 1$

83	(84		96		97
65	71		68		94	
	8	85		95		98
70	72		70		95	
						99
68	70		97		99	
						100
90	80		85		100	

Return $\gamma = 1$ Value Estimate

83	84	96	97
73 65	74 74	79 68	95
	85	95	98
70	75 72	78 76	96
			99
68	70	97	99
			100
90	80	85	100

Return $\gamma = 1$ Value Estimate MC-Update

Rewards Value Estimate

Rewards
Value Estimate
TD-Update

Policy

73	74	79	95
70	75	76	96
68	70	97	99
90	80	85	100

New Estimate

New Estimate Greedy - Policy

Compute
$$V=v_{\pi}$$
 (Improve $\pi'=\operatorname{greedy-}\pi$

Assignment 1

8	-1		-1		-1		100
73		-20		79		97	
	-1		-1	-	-10		-1
70		75		76		96	
	-1		-1		-1		-1
68		70		97		95	
	-1		-1		-1		-1
90		80		85		60	

Value-Estimate

Rewards

Where do we converge to? Is it π^* ?

How can you fix this?

Post on Teams

	-1		-1		-1		100
69 86 / 73		-70	1	79		100 100 97	
	-1		-1		-10		-1
74 87 70		75 88 75		87 89 76	7	99 96 96	
	-1		-1		-1		-1
68.		70		94 97		95 95	
	-1		-1		-1		-1
90		80		85		60	

Compute
$$V=v_\pi$$
 () Improve $\pi'=\varepsilon$ -greedy- π

Assignment 2

8 -1	-10	-10	100
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1

Rewards

Where do we converge to? Is it π^* ? How can you fix this?

Post on Teams

```
Compute V=v_\pi )  \text{Improve } \pi'=\varepsilon\text{-greedy-}\pi   \varepsilon\text{-decay}
```

```
Compute V=v_{\pi}
Improve \pi' = \varepsilon-greedy-\pi
 \varepsilon-decay
 too low → not exploring
too high \rightarrow optimize objective
```


Assignment 3

Converging to v_{π} takes very long.

How can we speed-up the policy iteration?

Post on Teams

```
Slightly Improve V \to v_\pi Improve \pi' = \varepsilon-greedy-\pi
```

Slightly Improve
$$V \to v_\pi$$
 Improve $\pi' = \varepsilon\text{-greedy-}\pi$

Only one step using TD-learning

Sample Update

Sample

Assignment 4

model-free

Post on Teams

How to recover π^* ?

What to learn instead of state-value function?

True-Value v*

State-Action-Value Function

State-Action-Value Function

$$q_{\pi}: S \times A \to \mathbb{R}$$
 $q_{\pi}: (s, a) = \mathbb{E} G(s, a)$

Compute
$$Q=q_\pi$$
 () Improve $\pi'=\varepsilon$ -greedy- π

8	

Q-Estimate

Q-Estimate Sample Rewards

Q-Estimate Sample Rewards

Q-Estimate Sample Rewards TD-Update

 $\alpha = 0.1, \quad \gamma = 1$

Q-Estimate Sample Rewards TD-Update

$$\alpha = 0.1, \quad \gamma = 1$$

$$Q(s_1, a_1) = (0.9) \ 95 + (0.1) \ (12 + 153) = 87.5$$

Q-Estimate Sample Rewards TD-Update

$$\alpha = 0.1, \quad \gamma = 1$$

$$Q(s_1, a_1) = (0.9) \ 95 + (0.1) \ (12 + 153) = 87.5$$

Assignment 5

1 Given q_{π} , and the dynamics p, give a formula that describes v_{π} .

2 Given are s,a.

We sample r,s' from the environment.

We sample a' from our policy.

Assume that α, γ are given.

Give a formula that describes the update rule for Q(s,a).

Post on Teams

ideal route

Learn from the best!

exploratory route

See many states.

ideal route

Learn from the best!

exploratory route

See many states.

Decouple exploration exploitation

Q-Learning

$$a_1 = \max_{a'} Q(s'.a')$$

 a_2 determines where we go next.

Q-Learning

$$a_1 = \max_{a'} Q(s'.a')$$

 a_2 determines where we go next.

$$Q(s,a) = Q(s,a) + \alpha(r + \gamma Q(s',a_1) - Q(s,a))$$

Assignment 6

<u>₿</u> -1	-10	-10	100
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1

Rewards

Post on Teams

