

Cálculo 1 - HONORS - CM311

Teorema do Confronto

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br

Proposição 1.1.

Sejam f,g funções definidas em um intervalo aberto I exceto, possivelmente, em $a \in I$. Se $f(x) \leq g(x)$ para todo $x \in I - \{a\}$ e $\lim_{x \to a} f(x)$ e $\lim_{x \to a} g(x)$ existem, então vale que $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

Teorema 1.2 (Teorema do Confronto).

- Resultados análogos valem trocando $x \to a$ por $x \to a^{\pm}$.
- Um bom exercício é pensar se o Teorema do Confronto vale se tivermos limites iguais à $\pm\infty$.

Proposição 1.1.

Sejam f,g funções definidas em um intervalo aberto I exceto, possivelmente, em $a \in I$. Se $f(x) \leq g(x)$ para todo $x \in I - \{a\}$ e $\lim_{x \to a} f(x)$ e $\lim_{x \to a} g(x)$ existem, então vale que $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

Teorema 1.2 (Teorema do Confronto).

- Resultados análogos valem trocando $x \to a$ por $x \to a^{\pm}$.
- Um bom exercício é pensar se o Teorema do Confronto vale se tivermos limites iguais à $\pm\infty$.

Proposição 1.1.

Sejam f,g funções definidas em um intervalo aberto I exceto, possivelmente, em $a \in I$. Se $f(x) \leq g(x)$ para todo $x \in I - \{a\}$ e $\lim_{x \to a} f(x)$ e $\lim_{x \to a} g(x)$ existem, então vale que $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

Teorema 1.2 (Teorema do Confronto).

- Resultados análogos valem trocando $x \to a$ por $x \to a^{\pm}$.
- Um bom exercício é pensar se o Teorema do Confronto vale se tivermos limites iguais à $\pm\infty$.

Proposição 1.1.

Sejam f,g funções definidas em um intervalo aberto I exceto, possivelmente, em $a \in I$. Se $f(x) \leq g(x)$ para todo $x \in I - \{a\}$ e $\lim_{x \to a} f(x)$ e $\lim_{x \to a} g(x)$ existem, então vale que $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

Teorema 1.2 (Teorema do Confronto).

- Resultados análogos valem trocando $x \to a$ por $x \to a^{\pm}$.
- Um bom exercício é pensar se o Teorema do Confronto vale se tivermos limites iguais à $\pm\infty$.

Exemplo 1.3.

Sabendo que $4x - 9 \le f(x) \le x^2 - 4x + 7$ para $x \ge 0$, calcule $\lim_{x \to 4} f(x)$.

Exemplo 1.4.

Calcule $\lim_{x\to 0} x^4 \operatorname{sen}\left(\frac{1}{x}\right)$

Definição 1.5

Uma função f é dita limitada em um conjunto $I \subset \mathbb{R}$ se existir M > 0 tal que $|f(x)| \leq M$ para todo $x \in I$.

Proposição 1.6.

Considere f,g definidas em um intervalo aberto I, exceto em $a \in I$, possivelmente. Se f é limitada e $\lim_{x \to a} g(x) = 0$, então $\lim_{x \to a} f(x).g(x) = 0$.

Exemplo 1.3.

Sabendo que $4x - 9 \le f(x) \le x^2 - 4x + 7$ para $x \ge 0$, calcule $\lim_{x \to 4} f(x)$.

Exemplo 1.4.

Calcule $\lim_{x\to 0} x^4 \operatorname{sen}\left(\frac{1}{x}\right)$.

Definição 1.5

Uma função f é dita limitada em um conjunto $I \subset \mathbb{R}$ se existir M > 0 tal que $|f(x)| \leq M$ para todo $x \in I$.

Proposição 1.6.

Considere f,g definidas em um intervalo aberto I, exceto em $a \in I$, possivelmente. Se f é limitada e $\lim_{x \to a} g(x) = 0$, então $\lim_{x \to a} f(x).g(x) = 0$.

Exemplo 1.3.

Sabendo que $4x - 9 \le f(x) \le x^2 - 4x + 7$ para $x \ge 0$, calcule $\lim_{x \to 4} f(x)$.

Exemplo 1.4.

Calcule $\lim_{x\to 0} x^4 \operatorname{sen}\left(\frac{1}{x}\right)$.

Definição 1.5.

Uma função f é dita limitada em um conjunto $I \subset \mathbb{R}$ se existir M > 0 tal que $|f(x)| \leq M$ para todo $x \in I$.

Proposição 1.6.

Considere f, g definidas em um intervalo aberto I, exceto em $a \in I$, possivelmente. Se f é limitada e $\lim_{x \to a} g(x) = 0$, então $\lim_{x \to a} f(x).g(x) = 0$

Exemplo 1.3.

Sabendo que $4x - 9 \le f(x) \le x^2 - 4x + 7$ para $x \ge 0$, calcule $\lim_{x \to 4} f(x)$.

Exemplo 1.4.

Calcule $\lim_{x\to 0} x^4 \operatorname{sen}\left(\frac{1}{x}\right)$.

Definição 1.5.

Uma função f é dita limitada em um conjunto $I \subset \mathbb{R}$ se existir M > 0 tal que $|f(x)| \leq M$ para todo $x \in I$.

Proposição 1.6.

Considere f,g definidas em um intervalo aberto I, exceto em $a \in I$, possivelmente. Se f é limitada e $\lim_{x \to a} g(x) = 0$, então $\lim_{x \to a} f(x).g(x) = 0$.

Proposição 1.7.

Seja função f definidas em um intervalo aberto I, exceto em $a \in I$, possivelmente. Se $\lim_{x \to a} |f(x)| = 0$ então $\lim_{x \to a} f(x) = 0$.

Observação 1.8.

A proposição acima não vale se $\lim_{x \to a} |f(x)| \neq 0$. Por exemplo, considere a função abaixo

$$f(x) = \begin{cases} 1, & \text{se } x \in \mathbb{Q} \\ -1, & \text{se } x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

- $\lim |f(x)| = 1$.
 - $\lim_{x \to a} f(x)$ não existe

Proposição 1.7.

Seja função f definidas em um intervalo aberto I, exceto em $a \in I$, possivelmente. Se $\lim_{x \to a} |f(x)| = 0$ então $\lim_{x \to a} f(x) = 0$.

Observação 1.8.

A proposição acima não vale se $\lim_{x \to a} |f(x)| \neq 0$. Por exemplo, considere a função abaixo

$$f(x) = \begin{cases} 1, & \text{se } x \in \mathbb{Q} \\ -1, & \text{se } x \in \mathbb{R} - \mathbb{Q}. \end{cases}$$

- $\lim_{x \to a} |f(x)| = 1$.
 - $\lim_{x \to a} f(x)$ não existe.

Proposição 1.7.

Seja função f definidas em um intervalo aberto I, exceto em $a \in I$, possivelmente. Se $\lim_{x \to a} |f(x)| = 0$ então $\lim_{x \to a} f(x) = 0$.

Observação 1.8.

A proposição acima não vale se $\lim_{x \to a} |f(x)| \neq 0$. Por exemplo, considere a função abaixo

$$f(x) = \begin{cases} 1, & \text{se } x \in \mathbb{Q} \\ -1, & \text{se } x \in \mathbb{R} - \mathbb{Q}. \end{cases}$$

- $\bullet \lim_{x \to a} |f(x)| = 1.$
 - $\lim_{x \to a} f(x)$ não existe.

Proposição 1.7.

Seja função f definidas em um intervalo aberto I, exceto em $a \in I$, possivelmente. Se $\lim_{x \to a} |f(x)| = 0$ então $\lim_{x \to a} f(x) = 0$.

Observação 1.8.

A proposição acima não vale se $\lim_{x \to a} |f(x)| \neq 0$. Por exemplo, considere a função abaixo

$$f(x) = \begin{cases} 1, & \text{se } x \in \mathbb{Q} \\ -1, & \text{se } x \in \mathbb{R} - \mathbb{Q}. \end{cases}$$

- $\lim_{x \to a} |f(x)| = 1$.
 - $\lim_{x \to a} f(x)$ não existe.

- Vamos mostrar continuidade das funções trigonométricas assumindo alguns fatos/propriedades básicas que vimos no ensino médio.
- Círculo trigonométrico:

5/8

- Vamos mostrar continuidade das funções trigonométricas assumindo alguns fatos/propriedades básicas que vimos no ensino médio.
- Círculo trigonométrico:

5/8

- Vamos mostrar continuidade das funções trigonométricas assumindo alguns fatos/propriedades básicas que vimos no ensino médio.
- Círculo trigonométrico:

- Vamos mostrar continuidade das funções trigonométricas assumindo alguns fatos/propriedades básicas que vimos no ensino médio.
- Círculo trigonométrico:

- Vamos mostrar continuidade das funções trigonométricas assumindo alguns fatos/propriedades básicas que vimos no ensino médio.
- Círculo trigonométrico:

- Vamos mostrar continuidade das funções trigonométricas assumindo alguns fatos/propriedades básicas que vimos no ensino médio.
- Círculo trigonométrico:

- Vamos mostrar continuidade das funções trigonométricas assumindo alguns fatos/propriedades básicas que vimos no ensino médio.
- Círculo trigonométrico:

Proposição 1.9.

Para todo θ suficientemente próximo de 0, vale $| \operatorname{sen} \theta | \le | \operatorname{tg} \theta |$.

- Identidades importantes:
 - ightharpoonup cos² x + sen² x = 1.
 - ightharpoonup sen $(A+B)=\sin A.\cos B+\sin B.\cos A.$
 - $ightharpoonup \cos(A+B) = \cos A \cdot \cos B \sin A \cdot \sin B$
 - ightharpoonup sen $2D \sin 2E = 2 \sin(D E) \cos(D + E)$

Proposição 1.10

Todas as funções trigonométricas são contínuas em seus domínios.

Proposição 1.9.

Para todo θ suficientemente próximo de 0, vale $| \operatorname{sen} \theta | \leq |\theta| \leq |\operatorname{tg} \theta|$.

Identidades importantes:

- $\cos^2 x + \sin^2 x = 1.$
- $ightharpoonup \operatorname{sen}(A+B) = \operatorname{sen} A. \cos B + \operatorname{sen} B. \cos A.$
- cos(A + B) = cos A. cos B sen A. sen B.
- $\Rightarrow \operatorname{sen} 2D \operatorname{sen} 2E = 2 \operatorname{sen} (D E) \cos(D + E).$

Proposição 1.10

Todas as funções trigonométricas são contínuas em seus domínios.

Proposição 1.9.

Para todo θ suficientemente próximo de 0, vale $| \operatorname{sen} \theta | \le |\theta| \le |\operatorname{tg} \theta|$.

- Identidades importantes:
 - $\cos^2 x + \sin^2 x = 1.$
 - $ightharpoonup \operatorname{sen}(A+B) = \operatorname{sen} A. \cos B + \operatorname{sen} B. \cos A.$
 - $ightharpoonup \cos(A+B) = \cos A \cdot \cos B \sin A \cdot \sin B$.
 - $\Rightarrow \operatorname{sen} 2D \operatorname{sen} 2E = 2 \operatorname{sen} (D E) \cos(D + E).$

Proposição 1.10

Todas as funções trigonométricas são contínuas em seus domínios.

Proposição 1.9.

Para todo θ suficientemente próximo de 0, vale $| \operatorname{sen} \theta | \leq |\theta| \leq |\operatorname{tg} \theta|$.

- Identidades importantes:
 - $\cos^2 x + \sin^2 x = 1.$
 - $ightharpoonup \operatorname{sen}(A+B) = \operatorname{sen} A. \cos B + \operatorname{sen} B. \cos A.$
 - $ightharpoonup \cos(A+B) = \cos A \cdot \cos B \sin A \cdot \sin B$.
 - $\Rightarrow \operatorname{sen} 2D \operatorname{sen} 2E = 2 \operatorname{sen} (D E) \cos(D + E).$

Proposição 1.10.

Todas as funções trigonométricas são contínuas em seus domínios.

Proposição 1.9.

Para todo θ suficientemente próximo de 0, vale $| \operatorname{sen} \theta | \leq |\theta| \leq |\operatorname{tg} \theta|$.

- Identidades importantes:
 - $\cos^2 x + \sin^2 x = 1.$
 - $ightharpoonup \operatorname{sen}(A+B) = \operatorname{sen} A. \cos B + \operatorname{sen} B. \cos A.$
 - cos(A+B) = cos A. cos B sen A. sen B.
 - $\Rightarrow \operatorname{sen} 2D \operatorname{sen} 2E = 2 \operatorname{sen} (D E) \cos(D + E).$

Proposição 1.10

Todas as funções trigonométricas são contínuas em seus domínios.

Proposição 1.9.

Para todo θ suficientemente próximo de 0, vale $| \operatorname{sen} \theta | \le |\theta| \le |\operatorname{tg} \theta|$.

- Identidades importantes:
 - $\cos^2 x + \sin^2 x = 1.$
 - $ightharpoonup \operatorname{sen}(A+B) = \operatorname{sen} A. \cos B + \operatorname{sen} B. \cos A.$
 - cos(A+B) = cos A. cos B sen A. sen B.
 - $\Rightarrow \operatorname{sen} 2D \operatorname{sen} 2E = 2 \operatorname{sen} (D E) \cos(D + E).$

Proposição 1.10.

Todas as funções trigonométricas são contínuas em seus domínios.

Proposição 1.9.

Para todo θ suficientemente próximo de 0, vale $| \operatorname{sen} \theta | \leq |\theta| \leq |\operatorname{tg} \theta|$.

- Identidades importantes:
 - $\cos^2 x + \sin^2 x = 1.$
 - $ightharpoonup \operatorname{sen}(A+B) = \operatorname{sen} A. \cos B + \operatorname{sen} B. \cos A.$
 - cos(A+B) = cos A. cos B sen A. sen B.
 - $\Rightarrow \operatorname{sen} 2D \operatorname{sen} 2E = 2 \operatorname{sen} (D E) \cos(D + E).$

Proposição 1.10.

Todas as funções trigonométricas são contínuas em seus domínios.

Proposição 1.9.

Para todo θ suficientemente próximo de 0, vale $| \operatorname{sen} \theta | \leq |\theta| \leq |\operatorname{tg} \theta|$.

- Identidades importantes:
 - $\cos^2 x + \sin^2 x = 1.$
 - $ightharpoonup \operatorname{sen}(A+B) = \operatorname{sen} A. \cos B + \operatorname{sen} B. \cos A.$
 - cos(A+B) = cos A. cos B sen A. sen B.
 - $\Rightarrow \operatorname{sen} 2D \operatorname{sen} 2E = 2\operatorname{sen}(D E)\cos(D + E).$

Proposição 1.10.

Todas as funções trigonométricas são contínuas em seus domínios.

Proposição 1.9.

Para todo θ suficientemente próximo de 0, vale $| \operatorname{sen} \theta | \leq |\theta| \leq |\operatorname{tg} \theta|$.

- Identidades importantes:
 - $\cos^2 x + \sin^2 x = 1.$
 - $ightharpoonup \operatorname{sen}(A+B) = \operatorname{sen} A. \cos B + \operatorname{sen} B. \cos A.$
 - cos(A+B) = cos A. cos B sen A. sen B.
 - $\Rightarrow \operatorname{sen} 2D \operatorname{sen} 2E = 2 \operatorname{sen} (D E) \cos(D + E).$

Proposição 1.10.

Todas as funções trigonométricas são contínuas em seus domínios.

• Seja $a \in \mathbb{R}$. Vamos mostrar que para todo x suficientemente próximo de a, vale

$$|\operatorname{sen} x - \operatorname{sen} a| \le |x - a|.$$

• Assim, pelo teorema do confronto, teremos que $\lim_{x \to a} |\sin x - \sin a| = 0$, e então

$$\lim_{x \to a} \operatorname{sen} x - \operatorname{sen} a = 0 \Leftrightarrow \lim_{x \to a} \operatorname{sen} x = \operatorname{sen} a.$$

Analogamente a função cosseno é contínua (lista 1).

Exemplo 1.11.

Pelas propriedades de limites temos

$$\lim_{x \to a} \frac{3x^2 - x^3 + \sqrt{x} - \sin^3 x}{1 + \cos^2 x} = \frac{3a^2 - a^3 + \sqrt{a} - \sin^3 a}{1 + \cos^2 a}$$

• Seja $a \in \mathbb{R}$. Vamos mostrar que para todo x suficientemente próximo de a, vale

$$|\operatorname{sen} x - \operatorname{sen} a| \le |x - a|.$$

• Assim, pelo teorema do confronto, teremos que $\lim_{x\to a}|\sin x - \sin a| = 0$, e então

$$\lim_{x\to a} \operatorname{sen} x - \operatorname{sen} a = 0 \Leftrightarrow \lim_{x\to a} \operatorname{sen} x = \operatorname{sen} a.$$

Analogamente a função cosseno é contínua (lista 1).

Exemplo 1.11.

Pelas propriedades de limites temos

$$\lim_{x \to a} \frac{3x^2 - x^3 + \sqrt{x} - \sin^3 x}{1 + \cos^2 x} = \frac{3a^2 - a^3 + \sqrt{a} - \sin^3 a}{1 + \cos^2 a}$$

• Seja $a \in \mathbb{R}$. Vamos mostrar que para todo x suficientemente próximo de a, vale

$$|\operatorname{sen} x - \operatorname{sen} a| \le |x - a|.$$

• Assim, pelo teorema do confronto, teremos que $\lim_{x \to a} |\sin x - \sin a| = 0$, e então

$$\lim_{x\to a} \operatorname{sen} x - \operatorname{sen} a = 0 \Leftrightarrow \lim_{x\to a} \operatorname{sen} x = \operatorname{sen} a.$$

Analogamente a função cosseno é contínua (lista 1).

Exemplo 1.11.

Pelas propriedades de limites temos

$$\lim_{x \to a} \frac{3x^2 - x^3 + \sqrt{x} - \sin^3 x}{1 + \cos^2 x} = \frac{3a^2 - a^3 + \sqrt{a} - \sin^3 a}{1 + \cos^2 a}$$

• Seja $a \in \mathbb{R}$. Vamos mostrar que para todo x suficientemente próximo de a, vale

$$|\operatorname{sen} x - \operatorname{sen} a| \le |x - a|.$$

• Assim, pelo teorema do confronto, teremos que $\lim_{x \to a} | \operatorname{sen} x - \operatorname{sen} a | = 0$, e então

$$\lim_{x \to a} \operatorname{sen} x - \operatorname{sen} a = 0 \Leftrightarrow \lim_{x \to a} \operatorname{sen} x = \operatorname{sen} a.$$

Analogamente a função cosseno é contínua (lista 1).

Exemplo 1.11.

Pelas propriedades de limites temos

$$\lim_{x \to a} \frac{3x^2 - x^3 + \sqrt{x} - \sin^3 x}{1 + \cos^2 x} = \frac{3a^2 - a^3 + \sqrt{a} - \sin^3 a}{1 + \cos^2 a}$$

• Seja $a \in \mathbb{R}$. Vamos mostrar que para todo x suficientemente próximo de a, vale

$$|\operatorname{sen} x - \operatorname{sen} a| \le |x - a|.$$

• Assim, pelo teorema do confronto, teremos que $\lim_{x\to a}|\sec x - \sec a| = 0$, e então

$$\lim_{x\to a} \operatorname{sen} x - \operatorname{sen} a = 0 \Leftrightarrow \lim_{x\to a} \operatorname{sen} x = \operatorname{sen} a.$$

Analogamente a função cosseno é contínua (lista 1).

Exemplo 1.11.

Pelas propriedades de limites temos

$$\lim_{x \to a} \frac{3x^2 - x^3 + \sqrt{x} - \sin^3 x}{1 + \cos^2 x} = \frac{3a^2 - a^3 + \sqrt{a} - \sin^3 a}{1 + \cos^2 a}$$

Limite Fundamental $\lim_{x\to 0} \frac{\operatorname{sen} x}{x}$

• Com este desenvolvimento, também podemos provar que

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

• Sendo $x \neq 0$, suficientemente próximo de 0:

$$|\operatorname{sen} x| \le |x| \le |\operatorname{tg} x| \Rightarrow |\cos x| \le \left|\frac{\operatorname{sen} x}{x}\right| \le 1.$$

• Pela simetria das funções seno e cosseno, temos para todo $x \neq 0$, suficientemente próximo de 0:

$$\cos x \le \frac{\sin x}{x} \le 1.$$

• Pelo teorema do confronto, o resultado segue.

Exemplo 1.12.

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{se } x \neq 0 \\ 1, & \text{se } x = 0 \end{cases}$$

• Com este desenvolvimento, também podemos provar que

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

• Sendo $x \neq 0$, suficientemente próximo de 0:

$$|\operatorname{sen} x| \le |x| \le |\operatorname{tg} x| \Rightarrow |\cos x| \le \left|\frac{\operatorname{sen} x}{x}\right| \le 1.$$

• Pela simetria das funções seno e cosseno, temos para todo $x \neq 0$, suficientemente próximo de 0:

$$\cos x \le \frac{\sin x}{x} \le 1.$$

• Pelo teorema do confronto, o resultado segue.

Exemplo 1.12

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{se } x \neq 0 \\ 1, & \text{se } x = 1 \end{cases}$$

• Com este desenvolvimento, também podemos provar que

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

• Sendo $x \neq 0$, suficientemente próximo de 0:

$$|\operatorname{sen} x| \le |x| \le |\operatorname{tg} x| \Rightarrow |\cos x| \le \left|\frac{\operatorname{sen} x}{x}\right| \le 1.$$

• Pela simetria das funções seno e cosseno, temos para todo $x \neq 0$, suficientemente próximo de 0:

$$\cos x \le \frac{\sin x}{x} \le 1.$$

Pelo teorema do confronto, o resultado segue.

Exemplo 1.12.

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{se } x \neq 0 \\ 1, & \text{se } x = 1 \end{cases}$$

• Com este desenvolvimento, também podemos provar que

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

• Sendo $x \neq 0$, suficientemente próximo de 0:

$$|\operatorname{sen} x| \le |x| \le |\operatorname{tg} x| \Rightarrow |\cos x| \le \left| \frac{\operatorname{sen} x}{x} \right| \le 1.$$

• Pela simetria das funções seno e cosseno, temos para todo $x \neq 0$, suficientemente próximo de 0:

$$\cos x \le \frac{\sin x}{x} \le 1.$$

• Pelo teorema do confronto, o resultado segue.

Exemplo 1.12.

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{se } x \neq 0 \\ 1, & \text{se } x = 1 \end{cases}$$

• Com este desenvolvimento, também podemos provar que

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

• Sendo $x \neq 0$, suficientemente próximo de 0:

$$|\operatorname{sen} x| \le |x| \le |\operatorname{tg} x| \Rightarrow |\cos x| \le \left|\frac{\operatorname{sen} x}{x}\right| \le 1.$$

• Pela simetria das funções seno e cosseno, temos para todo $x \neq 0$, suficientemente próximo de 0:

$$\cos x \leq \frac{\sin x}{x} \leq 1.$$

• Pelo teorema do confronto, o resultado segue.

Exemplo 1.12.

$$f(x) = \begin{cases} \frac{\operatorname{sen} x}{x}, & \text{se } x \neq 0 \\ 1, & \text{se } x = 1 \end{cases}$$