Algoritmos e Programação

Aula 02
Desenvolvimento de Algoritmos
Representação de Algoritmos
Fluxogramas

• E se utilizarmos um Algoritmo para fazer Algoritmos?

- E se utilizarmos um Algoritmo para fazer Algoritmos?
 - 4 passos básicos
 - Pode ser adaptado para problemas gerais

Algoritmo: FAZER_ALGORITMO

Passo 1: Entender o Problema

Passo 2: Elaborar o Algoritmo

Passo 3: Implementar o Algoritmo

Passo 4: Verificar os Resultados

Fim_Algoritmo

ENTENDER O PROBLEMA

- Definir o problema
- Qual o OBJETIVO fundamental?
- O que é preciso FAZER? O que é preciso encontrar?
- Quais são os dados de ENTRADA?
- Quais são os dados de SAÍDA?

Dicas

- Examinar um caso mais simples do problema (entendimento)
- Listar os casos especiais/exceções (do problema e do usuário)

Observação

– Entender o problema é uma parte crucial. Influi diretamente no resultado! Se você começar mal, terminará como? Será que vai terminar?

ELABORAR O ALGORITMO

- IDENTIFICAR as ETAPAS na resolução do problema
- DETALHAR CADA UMA delas até encontrar uma sequência de operações básicas (abordagem topdown)

• <u>Dicas</u>

- Fazer tabelas/diagramas/equações para formalizar as ideias
- Não esquecer casos especiais (tratamento diferente)

Observações

- A maior parte do tempo é 'gasta' nesta etapa. Quanto melhor for o resultado desta etapa, menos tempo será perdido nos próximos passos!
- Projeto ruim = Implementação Prejudicada!

IMPLEMENTAR O ALGORITMO

- ESCREVER o algoritmo na linguagem escolhida
 - A linguagem deve ser adequada ao problema
- MODULARIZAR o programa
 - Utilização de funções
- Favorecer a LEGIBILIDADE do código escrito
- Dica
 - USAR IDENTAÇÃO!! (jamais esqueça disto)
 - Usar comentários
- Observação
 - Use SEMPRE: PASSOS SIMPLES

VERIFICAR OS RESULTADOS

- Interpretar a solução
 - Verificar sua adequação ao problema original
- Testar o algoritmo para diversos casos (exaustivamente, inclua os casos especiais/exceções)
- Dica
 - NÃO ESQUEÇA DOS CASOS ESPECIAIS/EXCEÇÕES!
- Observação
 - Verificação é a parte mais delicada
 - Após esta etapa o software pode parar nas mãos do cliente...

- São apenas 4 passos
 - Mas não é simples...

Algoritmo: FAZER_ALGORITMO

Passo 1: Entender o Problema

Passo 2: Elaborar o Algoritmo

Passo 3: Implementar o Algoritmo

Passo 4: Verificar os Resultados

Fim_Algoritmo

- PRESTE MUITA ATENÇÃO
 - Estes passos podem ser adequados para qualquer área
 - Nesta disciplina
 - Problemas simples
 - No mundo real
 - Problemas com dimensões MUITO maiores!
 - Na computação
 - Equipes distintas para cada etapa.

Representação de Algoritmos usando Fluxogramas

aula passada...

Representações de Algoritmos

- NARRATIVA
 - Representação puramente textual
 - Usa linguagem natural (no nosso caso, pt-br)
 - Problema da ambiguidade

AULA PASSADA

- FLUXOGRAMA
 - Representação gráfica
 - Mais legível para humanos

HOJE

- PSEUDOCÓDIGO
 - Representação textual
 - Mais próxima do computador
 - Linguagem de programação em pt-br

FUTURO

- LINGUAGEM DE PROGRAMAÇÃO
 - Adequada ao computador
 - Adequada a programadores

FUTURO

Fluxogramas

Representam algoritmos de forma gráfica

Leia(N1) Veremos em detalhes → NÃO SIM N1 > 0 Escreva("Não é positivo") Escreva("É positivo")

Fluxogramas

Representam algoritmos de forma gráfica

- Quais as vantagens?
 - Facilita a compreensão
 - Útil para representação de algoritmos em alto nível de abstração

- Quais as desvantagens?
 - É necessário aprender a simbologia dos fluxogramas
 - Difícil de corrigir
 - Pode ser muito extenso para algoritmos mais complexos

Fluxogramas: Símbolos usados

nício ou Fim do Fluxograma

Indica onde **começa** e onde **termina**)

Operação de Entrada de Dados (Usada para leitura de dados)

Não será usado. Usaremos Atribuição

Operação de **Atribuição**

usada para atribuir um valor ou realizar uma operação)

Operação de **Decisão** usada para fazer **testes**)

Operação de Saída de Dados Jusada para escrita de dados) Não será usado. Usaremos Atribuição

Fluxogramas: Operações

Leia(X)

Recebe um valor do usuário e armazena na variável X.

Escreva(X)

Imprime o valor armazenado na variável X.

X = Expressão

Armazena o resultado da Expressão na variável X.

Variáveis são espaços de memória onde podemos armazenar números, textos etc.

Fluxogramas

Mas, e as setas??

FLUXOgrama

Diagrama de Fluxo

Para que servem as setas?

Informar a direção

Determinar o fluxo de execução do algoritmo

Ligam o INÍCIO ao FIM do fluxograma

Exemplos de Fluxogramas

Fluxograma: Exemplo 1

 Algoritmo para <u>trocar a</u> <u>lâmpada queimada</u>!

 Losango representa uma decisão!

- Fluxo de execução:
 - Se afirmação VERDADEIRA segue seta com SIM
 - Se afirmação FALSA segue seta com NÃO

Se afirmação
VERDADEIRA
Se lâmpada piscou
segue seta com SIM

Exemplo 1: Caso 1

Exemplo 1: Caso 2

Se afirmação FALSA
Se lâmpada não piscou segue seta com SIM

Fluxograma: Exemplo 2

Algoritmo que lê dois números N1 e N2, e imprime (escreve) o maior deles.

Fluxograma: Exemplo 2

Algoritmo que lê dois números N1 e N2, e imprime (escreve) o maior deles.

N1 = 1° número

N2 = 2° número

OBS:

Se os números forem iguais, então a variável N2 será escrita.

Exemplo 2: Caso 1

Se (N1 > N2)

N1 = 10

N2 = 5

Saída:

10

Exemplo 2: Caso 2

Se (N1 > N2)

N1 = 7

N2 = 13

Saída:

13

Fluxograma: Exemplo 3

Algoritmo que <u>conta</u> <u>até 5</u>, e escreve o valor sendo contado.

Fluxograma: Exemplo 3

Algoritmo que <u>conta</u> <u>até 5</u>, e escreve o valor sendo contado.

cont = contador auxiliar

FLUXOgrama
Siga o fluxo das setas

INÍCI

TESTE	SAÍDA	CONT
		0

Saída:

TESTE	SAÍDA	CONT
		0
F	0	1

INÍCI

Saída: 0

TESTE	SAÍDA	CONT
		0
F	0	1
F	1	2

INÍCI

Saída: 01

TESTE	SAÍDA	CONT
		0
F	0	1
F	1	2
F	2	3

INÍCI

Saída: 0 1 2

TESTE	SAÍDA	CONT
		0
F	0	1
F	1	2
F	2	3
F	3	4

INÍCI

Saída: 0 1 2 3

Exemplo 3

TESTE	SAÍDA	CONT
		0
F	0	1
F	1	2
F	2	3
F	3	4
F	4	5

INÍCI

Saída: 0 1 2 3 4

Exemplo 3

TESTE	SAÍDA	CONT	
		0	
F	0	1	
F	1	2	
F	2	3	
F	3	4	
F	4	5	
F	5	6	

INÍCI

Saída: 0 1 2 3 4 5

Exemplo 3

TESTE	SAÍDA	CONT	
		0	INÍCI O
F	0	1	
F	1	2	
F	2	3	
F	3	4	
F	4	5	
F	5	6	
V		6	FIM

Saída: 0 1 2 3 4 5

Fluxograma: Exemplo 4

Algoritmo que <u>lê três</u> <u>números</u> N1, N2 e N3, e <u>escreve o maior</u> deles

Fluxograma: Exemplo 4

Algoritmo que <u>lê três</u> <u>números</u> N1, N2 e N3, e <u>escreve o maior</u> deles

N1 = 1° número

N2 = 2° número

N3 = 3° número

SE(N1 > N3 > N2)

N1 = 7

N2 = 3

N3 = 4

Saída:

SE(N3 > N1 > N2)

N1 = 4

N2 = 3

N3 = 7

Saída:

SE(N2 > N3 > N1)

N1 = 3

N2 = 7

N3 = 4

Saída:

SE(N3 > N2 > N1)

N1 = 3

N2 = 4

N3 = 7

Saída:

Exercícios de Fluxograma

Fluxograma: Exercício A

 Desenhe um fluxograma para o algoritmo que compara dois números (N1 e N2), e escreve/imprime a relação entre eles.

Use os textos "N1>N2", "N1<N2", ou "N1=N2" para imprimir as saídas.

Exercício A

Vamos ver caso a caso...

Exercício A: Caso 1

SE(N1 > N2)

N1 = 8

N2 = 4

Saída:

N1 > N2

Exercício A: Caso 2

SE(N2 > N1)

N1 = 4

N2 = 8

Saída:

N1 < N2

Exercício A: Caso 3

SE(N1 = N2)

N1 = 4

N2 = 4

Saída:

N1 = N2

Fluxograma: Exercício B

 Desenhe um fluxograma para o algoritmo que lê três números (N1, N2 e N3), calcula a média entre eles e escreve o resultado.

Exercício B

Recebe 3 números, calcula e imprime a média.

Exercício B: Exemplos

Exemplo 1:

Exemplo 2:

Se:

$$N1 = 2$$

$$N2 = 4$$

$$N3 = 60$$

Saída:

22

Se:

$$N1 = 6$$

$$N2 = 7$$

$$N3 = 8$$

Saída: