- Bài 1 : Cho tam giác ABC nội tiếp (O). A_0,B_0,C_0 lần lượt là chân 3 đường cao của tam giác ABC. $A_1,A_2\in$ (O) sao cho $(A_1B_0C_0)$ và $(A_2B_0C_0)$ cùng tiếp xúc với (O).Tương tự ta có B_1,B_2,C_1,C_2 .Chứng minh rằng A_1A_2,B_1B_2,C_1C_2 đồng quy tai một điểm thuộc OH (H là trực tâm ΔABC)
- Bài 2 : Cho tứ giác ABCD nội tiếp (O), AC \cap BD = I. (ABI) \cap (CDI) = L. Chứng minh rằng $\angle OLI$ = 90
- Bài 3 : Cho tứ giác ABCD nội tiếp (O), tiếp tuyến tại A của (O) cắt CD tại E, tiếp tuyến tại C của (O) cắt AB tịa F. Chứng minh rằng AC, BD, EF đồng quy
- Bài 4 : Cho (O), (O_1) , (O_2) , (O_3) , (O_4) , (O_5) , (O_6) lần lượt tiếp xúc với nhau và tiếp xúc trong với (O) tại A_1,A_2,A_3,A_4,A_5,A_6 . Chứng minh rằng A_1A_4,A_2A_5,A_3A_6 đồng quy
- Bài 5 : Cho ΔABC nội tiếp (O). D \in (O) và AD là phân giác của $\angle BAC$, I là tâm nội tiếp. Đường thẳng qua I vuông góc với AD cắt BC tại M. $MH \perp OI(H \in OI)$.CMR: A,D,M,H đồng viên
- Bài 6 : Cho ΔABC , I là tâm nội tiếp , IE song song với BC, E \in AB, $\angle ABC=60$ $F\in[AC], \frac{AF}{AC}=\frac{1}{3}.$ CMR : $\angle AEF=\frac{\angle A}{2}$
- Bài 7: Cho ΔABC , 2 điểm P, Q nằm trên đoạn thẳng BC .CMR : $r(ABP)=r(ACQ)\Leftrightarrow r(ABQ)=r(APC)$
- Bài 8 : Cho ΔABC . M nằm trong mặt phẳng tam giác. Tìm tất cả vị trí M sao cho $\angle BAM + \angle ACM + \angle CBM = 90$
- Bài 9 : Cho ΔABC , I và O lần lượt là tâm nội tiếp và ngoại tiếp.(I) tiếp xúc với BC tại D. $OI \perp AD$.CMR : AD là đường đối trung của ΔABC
- Bài 10 : Cho ΔABC nội tiếp (O). $A_2\in (O), AA_2//BC$, trung tuyến AM của ΔABC cắt (O) tại A_1 . Xác định tương tự các điểm B_1, B_2, C_1, C_2 .CMR : A_1A_2, B_1B_2, C_1C_2 đồng quy
- Bài 11: Cho ΔABC , M chạy trên tia đối của tia CB.CMR :trục đẳng phương của hai đường tròn nội tiếp các ΔABM , ΔACM luôn đi qua 1 điểm cố định

Bài 12 : Cho ΔABC , dựng ra phía ngoài tam giác các hình vuông ACZT, ABVU, BCYX. Dựng điểm K nằm ngoài hình vuông BCYX sao cho XYK vuông cân tại K.

CMR: AK,XT, YU đồng quy

Bài 13 : Cho ΔABC , M nằm trong mặt phẳng tam giác sao cho $\angle AMB - \angle C = \angle AMC - \angle B. \text{CMR} : \text{Đường thẳng nối tâm các đường tròn nội tiếp } \Delta ABM, \Delta ACM luôn đi qua 1 điểm cố định}$

Bài 14 : Cho ΔABC , dựng ra phía ngoài các tam giác cân ACB_1, BCA_1, BAC_1 (cân tại B_1, A_1, C_1) cùng có số đo góc ở đỉnh α ($\alpha \neq 120$). Ta có $\Delta A_1B_1C_1$ đều. Cmr : ΔABC đều

Bài 15: Cho tứ giác ABCD nội tiếp, $AC\cap BD=I$. Gọi I_1 là tâm nội tiếp ΔIAB , I_2 là tâm nội tiếp ΔIBC , I_3 là tâm nội tiếp ΔICD , I_4 là tâm nội tiếp ΔIDA . CMR $I_1I_2I_3I_4$ nội tiếp $\Leftrightarrow ABCD$ ngoại tiếp

Bài 16 : Cho hình vuông ABCD , M nằm trên cạnh BC, N nằm trên cạnh CD sao cho $\angle MAN=45$. Tính $\frac{S_{AEF}}{S_{AMN}}$

Bài 17: Cho $\triangle ABC$, dựng ra ngoài các tam giác AYC, BCX, ABZ sao cho $\angle YAC = \angle BAZ = 30, \angle ZBA = \angle YCA = 45, \angle XBC = \angle XCB = 15.$ CMR: XYZ vuông cân

Bài 18 : Cho lục giác ABCDEF nôi tiếp (O;R) có AB= CD= EF= R. Gọi M,N,P lần lượt là trung điểm của BC, DE, FA .CMR : MNP đều

Bài 19 :Cho tứ giác ABCD, dụng ra ngoài tứ giác các tam giác đều ABX, BCY, CDZ, DAT, O là tâm ΔCDZ , E và F làn lượt là trùn điểm của AT và BY.Chứng minh rằng $XO \perp EF$.Hãy tính $\frac{XO}{EF}$

Bài 20: Cho ΔABC , đường tròn (ω) tiếp xúc với AB,AC và tiếp xúc (O) cắt BC tại A_1,A_2 . Tiếp tuyến của (ω) tại A_1,A_2 cắt nhau tại A_3 . Tương tự ta có các điểm B_3,C_3 . CMR : AA_3,BB_3,CC_3 đồng quy