หน่วยที่ 3

การให้นิยามวัตถุและ UML Diagram (1)

Abstraction and UML Diagram (1)

เรื่องที่จะศึกษา

- 3.1 Classification Abstraction
- 3.2 Aggregation Abstraction

Concept หลักของ OOP

- Encapsulation
- O Inheritance
- Polymorphism

3.1 Classification Abstraction

Concept: Encapsulation

Classification Abstraction

- o อธิบายหลักการในการกำหนด Problem Domain ได้
- O สามารถหา Object ใน Domain
- O สามารถใช้หลักการของ Classification Abstraction ในการสร้าง Class จาก Object ที่กำหนดให้ได้
- สามารถบอกหลักการ Encapsulation และ Information Hiding ของ Class
 ได้

การกำหนด Problem Domain

- O Problem Domain คือ ขอบเขตของสิ่งที่กำลังจะพิจารณา
- O Problem Domain สามารถกำหนดได้จากการสอบถามความต้องการ (Requirement) จากผู้ใช้ระบบงานนั้น ๆ
- O ถึงแม้ว่าในขั้นตอนการวิเคราะห์ระบบจะยังไม่สามารถกำหนด Problem Domain ที่ ชัดเจน ก็ขอให้กำหนด Big Picture ของ Problem Domain ให้ได้ออกมาก่อน
- O ถ้ากำหนดภาพรวมของ Problem Domain ไม่ได้ ก็จะมี class จำนวนมากมาย มหาศาลเกิดขึ้น จนยากที่จะออกแบบ software ที่ดีได้

การค้นหา Object ใน Domain

- o ทำได้โดยการค้นหาคำนามทั้งหมดที่มีใน Problem Domain
- o แยกแยะว่าสิ่งใดคือ Object และสิ่งใดคือ Attribute
- 🔾 ระวัง!! คำนามบางคำก็เป็น Object แต่บางคำเป็น Attribute

ความยากในการทำ Classification

- โดยทั่วไป เราแยกแยะวัตถุโดยใช้เงื่อนไขบางอย่างมากำหนดเป็นกรอบ
 - แล้ว ขอบเขตของแขน ขา อยู่ตรงไหน????
 - เราแยกเสียงเครื่องดนตรีในเพลงได้ใหม???
 - ในเอกสารหนึ่งชิ้น เราใช้อะไรแยกแยะประเภทของเอกสาร????

มะเขือ เป็น ผัก หรือ ผลไม้ ???

ในทางพฤกษศาสตร์

ในทางโภชนาการ

จงทำ classification ของรถไฟในภาพ

ประเภทของ Object

- สิ่งที่มีตัวตนสามารถจับต้องได้ (Tangible Objects)
 - คน สุนัข รถยนต์
 - อื่น ๆ (ให้นักศึกษายกตัวอย่าง)
- สิ่งที่ไม่มีตัวตนและไม่สามารถจับต้องได้ (Intangible Objects)
 - บทบาท เหตุการณ์ ปฏิสัมพันธ์
 - อื่น ๆ (ให้นักศึกษายกตัวอย่าง)

ตัวอย่างที่ 1

"หนังสือเล่มหนึ่ง ปกสีเหลือง ภายในประกอบด้วยเนื้อหาเกี่ยวกับ Object
 Orientation หนังสือเล่มนี้มีจำนวน 50 หน้า"

ตัวอย่างที่ 1 : การวิเคราะห์ (1)

- ขั้นตอนที่ 1 : หาคำนาม
 - หนังสือเล่มหนึ่ง
 - ปกสีเหลือง
 - o เนื้อหาเกี่ยวกับ Object Orientation
 - 0 หน้า

ตัวอย่างที่ 1 : การวิเคราะห์ (2)

- ขั้นตอนที่ 2 : แยกประเภทของคำนาม
 - o หนังสือเล่มหนึ่ง : Object
 - ปกสีเหลือง : Attribute
 - o เนื้อหาเกี่ยวกับ Object Orientation : Attribute
 - o หน้า : Attribute

การระบุ Class และ Object

O ในบาง Problem Domain อาจจะได้ทั้ง Class และ Object ในเวลาเดียวกัน ดังนั้น จำเป็นต้องระบุให้แน่ชัดว่าสิ่งใดคือ Class และสิ่งใดคือ Object

ตัวอย่างที่ 2

"พยาบาลชื่อ ปราณี ฉีดยาป้องกันโรคบาดทะยักให้แก่คนไข้ชื่อ กิตติ"

ตัวอย่างที่ 2 : การวิเคราะห์ (1)

- ุ > ขั้นตอนที่ 1 : หาคำนาม
 - พยาบาลชื่อปราณี
 - ยาป้องกันโรคบาดทะยัก
 - คนไข้ชื่อกิตติ

ตัวอย่างที่ 2 : การวิเคราะห์ (2)

- ขั้นตอนที่ 2 : แยกประเภทของคำนาม
 - พยาบาล : Class
 - o ปราณี : Object หนึ่งใน Class พยาบาล
 - O คนใช้ : Class
 - o กิตติ : Object หนึ่งใน Class คนใช้
 - o ยาป้องกันโรคบาดทะยัก : Class / Object

ตัวอย่างที่ 2 : การวิเคราะห์ (3)

- ยาป้องกันโรคบาดทะยัก : Class
 - เพราะเป็นการบอกอย่างกว้าง ๆ ว่าเป็นยาป้องกันบาดทะยัก แต่ไม่ได้ระบุยี่ห้อยา
- o ยาป้องกันโรคบาดทะยัก : Object
 - o ถือเป็น Object หนึ่งใน Class ยา

Classification Abstraction

- o เป็นกระบวนการในการค้นหาว่ามี Object ใดบ้างใน Problem Domain
- o เป็นการจำแนกแยกแยะว่า Object แต่ละตัวจัดอยู่ใน Class ใดบ้าง
- การทำ Classification Abstraction แสดงด้วยสัญลักษณ์ ลูกศรประที่ลากจาก
 Objects ไปยัง Class

ตัวอย่างที่ 3 การทำ Classification

ปรับปรุงการทำ Classification ของหมาและแมว

ตัวอย่างที่ 4 Classification ของ Class คน

การสร้างวัตถุจาก Class คน

Encapsulation

Encapsulation

- Encapsulation เปรียบเสมือนกับการนำเปลือกมาครอบ Attributes และ Function ของ Class เอาไว้
 - ○ลักษณะของเปลือก
 - เปลือกใส จะสามารถมองได้จากภายนอก
 - เปลือกทีบ จะไม่สามารถเห็นได้จากภายนอก
- o ภาพของ Class ที่มองเห็นได้จากภายนอกนั้นเรียกว่า Outside View

Outside View ของ Class คน

คน อายุ บอกอายุ ()

Class คน

คน บอกอายุ ()

Outside View ของ Class คน

การขอดู Attribute โดยการใช้ Method

ในบางภาษาเช่น C++ จะเรียก Method ว่า Member Function

การเขียน Function ที่ถูกใช้งาน

สมศักดิ์ : คน

อายุ

บอกอายุ ()

สมศรี : คน

อายุ

บอกอายุ ()

ส่วนของ Function นิยมเขียนด้วยตัวเอียง

Information Hiding

- o การซ่อนคุณสมบัติของ Object
- o เมื่อต้องการเข้าถึง Attribute บางตัวของ Object นั้น จะต้องทำผ่าน method ที่สามารถมองเห็นและเรียกใช้ได้เท่านั้น
 - O Attributes/Properties ควรหุ้มด้วยเปลือกทึบ
 - O Functions/Methods ควรหุ้มด้วยเปลือกใส

ประเภทของ Attribute และ Methods

- จำแนกตามความสามารถในการเห็นและเข้าถึง Attributes และ Methods เหล่านั้น (Visibility) ได้ 3 ประเภท
 - Private Attributes and Functions
 - Protected Attributes and Functions
 - O Public Attributes and Functions

Private Attributes and Methods

- o เป็น Attributes และ Method ที่ไม่สามารถเห็นได้เลยจากภายนอก
- o การเข้าถึง Attribute เหล่านี้ได้ต้องผ่านทาง Method ที่มีไว้เท่านั้น
- o จะใช้เครื่องหมาย (-) กำกับไว้หน้า Private Attribute และ Private Method
 - เช่น อายุของคน

Protected Attributes and Functions

- เป็น Attributes และ Methods ที่ไม่สามารถเห็นได้จากภายนอกแต่เป็นส่วนที่สามารถส่ง
 ต่อให้ Inherited Class ได้เท่านั้น
- 🔾 จะใช้เครื่องหมาย (#) กำกับไว้หน้า Protected Attribute และ Protected Methods
 - o เช่น ลักษณะทางกรรมพันธุ์ที่ลูกสืบทอดมาจากพ่อแม่

Public Attributes and Functions

- เป็น Attributes และ Methods ที่สามารถมองเห็นได้และสามารถเรียกใช้ได้โดยตรง
 จากภายนอก
- o จะใช้เครื่องหมาย (+) กำกับไว้หน้า Public Attribute และ Public Method
 - เช่น สีผม สีผิว

Classification ของ Class คน

3.2 Aggregation Abstraction

3.2 Aggregation Abstraction

- o อธิบายหลักการแยกและประกอบคลาสด้วยวิธีการ Aggregation Association ได้
- O อธิบายและใช้งาน Cardinality, Required และ Optional Components ได้

Aggregation Abstraction

- ในโลกความจริง วัตถุจะเกิดจากการประกอบกันเข้าของวัตถุหลายๆ ชนิด
 - ประกอบแบบไม่สามารถแยกชิ้นส่วน (มาใช้งาน) ได้
 - เช่น คอนกรีต ประกอบด้วยหิน ทราย ปูนซิเมนต์ และ น้ำ (เราไม่สามารถเอา ปูนซิเมนต์ออกมาจากคอนกรีต เพื่อใช้งานใหม่ได้)
 - ประกอบแบบแยกชิ้นส่วน (มาใช้งาน) ได้
 - เช่น โคมไฟ ประกอบหลอดไฟ สวิตช์ สายไฟ สตาร์ทเตอร์ บัลลาสต์ (เรา สามารถแยกส่วนประกอบต่างๆ ไปใส่ในโคมไฟอื่น หรือนำไปใช้ที่อื่นได้ หากมี ขนาดเท่ากัน)

กรณีศึกษา

- ให้นักศึกษา List วัตถุที่เกิดจากการรวมกันของวัตถุอื่น
 - แบบแยกส่วนนำมาใช้ใหม่ได้
 - แบบไม่สามารถแยกส่วนนำมาใช้ใหม่ได้

Concept ของวัตถุแบบ Aggregation

- o เมื่อนำ Class มาประกอบกันแบบ Aggregation จะทำให้เกิด Concept ที่ต่างออกไป แก่ Class ใหม่
 - การนำ ทราย หิน ปูน น้ำ มาประกอบเป็นคอนกรีต จะได้วัตถุที่มี Concept ต่างไปโดยสิ้นเชิง
 - การนำ โต๊ะ เก้าอี้ กระดาน มาประกอบเป็นห้องเรียน จะต่างจากการนำโต๊ะ เก้าอี้ มาประกอบ กันเป็นห้องรับประทานอาหาร

Composition VS. Decomposition

- O Composition : การนำ Class มาประกอบกันเพื่อให้ได้ Class ใหม่ตาม Concept ที่ กำหนด
 - 🔾 การนำ ล้อรถ เครื่องยนต์ ตัวถัง ระบบขับเคลื่อน มารวมกัน จะทำให้ได้คลาส รถยนต์
- O Decomposition : การจำแนก Class เพื่อให้รู้ว่า Class ที่มี Concept นั้น ประกอบด้วย คลาสอะไรบ้าง
 - เมื่อกำหนด Concept ของรถยนต์ เราก็จะทราบว่า ควรมีล้อ เครื่องยนต์ ฯลฯ

ตัวอย่าง 5

 "ห้องเรียนประกอบไปด้วย กระดานดำ 1 กระดาน มีโต๊ะและเก้าอี้จำนวนหนึ่ง มี นักเรียน มีครู"

Composition

จากข้อความข้างต้น สามารถสรุปได้ว่า class กระดานดำ class โต๊ะ class เก้าอื้
 class นักศึกษา class อาจารย์ เมื่อนำมารวมกันจะได้ class ใหม่ คือ class ห้องเรียน
 (Concept ต่างไปจากเดิม)

Decomposition

- O Class ห้องเรียนสามารถแบ่งออกได้เป็น
 - O Class กระดานดำ
 - O Class โต๊ะ
 - O Class เก้าอื้
 - O Class นักศึกษา
 - O Class อาจารย์

Diagram ของ Aggregation Abstraction

ใช้เส้นตรงที่มีหัวสี่เหลี่ยมขนมเปียกปูน

o ลากจาก Class ย่อย ไปยัง Class หลัก

Advances Aggregation Abstraction

o อาจมี Class ที่เป็น Class ย่อยของหลายๆ คลาสใหญ่ซึ่งมี Concept ต่างกัน

สรุป Aggregation Abstraction

- O คือ การ พยายามตอบคำถามที่ว่า มี class ใดเป็นส่วนประกอบ (Is part of) ของ class อื่นหรือไม่ และที่สำคัญ "การประกอบกันของ class ต้องทำให้เกิด class ใหม่ ซึ่งมี concept ใหม่ด้วย"
- ในทาง object orientation นั้น การแสดงสัญลักษณ์เพื่อแสดง Aggregation
 Abstraction ของ class นั้น ทำได้โดยการโยงลูกศรเป็นสี่เหลี่ยมขนมเปียกปูน จาก class ย่อยหรือ class ที่เป็นส่วนประกอบ (Composite class) ไปยัง Class หลัก (Main Class)

กิจกรรม

- ให้นักศึกษาวาดแผนภาพ Composition ของเครื่องคอมพิวเตอร์
- ให้นักศึกษาวาดแผนภาพ Decomposition ของหนังสือ 1 เล่ม

Cardinality, Required & Optional Components

- o การประกอบกันของ class หรือความสัมพันธ์เชิง is part of
 - o อาจจะประกอบไปด้วย class ย่อย (Composite class) ชนิดที่หนึ่ง เพียงชิ้นเดียว
 - O class ย่อยชนิดที่สอง จำนวน 4 ชิ้นขึ้นไป
 - O Class ย่อยชนิดที่สาม ไม่จำกัดจำนวน (หรืออาจไม่มีเลยก็ได้)
- สิ่งที่ใช้ในการแสดงจำนวนสมาชิกของ Object ในความสัมพันธ์ ดังกล่าวนี้เรียกว่า
 Cardinality

Cardinality, Required & Optional Components

- ในทาง Object-Oriented นิยมเรียก Class ย่อย ว่า Component
 - o ส่วนประกอบที่<mark>จำเป็น</mark>ต้องมี เรียกว่า Required หรือ Mandatory Component
- รถยนต์จำเป็นต้องมีเครื่องยนต์ ถ้าไม่มีเครื่องยนต์ รถยนต์ก็ไม่สามารถวิ่งได้
 - o ส่วนประกอบที่ไม่จำเป็นต้องมี เรียกว่า Optional Component
 - เครื่องปรับอากาศในรถยนต์ไม่จำเป็นต้องมีก็ได้ ถึงไม่มีเครื่องปรับอากาศรถยนต์ก็ยังสามารถวิ่งได้

Cardinality, Required & Optional Components

Cardinality

Maximum & Minimum Cardinality

- Maximum Cardinality (Max-card): จำนวนมากที่สุดของ Components ที่สามารถมีได้
 เท่ากับ N
- O Minimum Cardinality (Min-card): จำนวนน้อยที่สุดของ Components ที่สามารถมีได้
 - เท่ากับ 0 (ศูนย์)

การอ่าน Cardinality

- <maximum | minimum> Cardinality ของ <ชื่อ Component> ใน
 aggregation <ชื่อ Class หลัก>-<ชื่อ component> มีค่าเท่ากับ <ค่าของ
 cardinality> เช่น
 - O Minimum Cardinality ของ ประตู ใน Aggregation รถ-ประตู, มีค่าเป็น 2 และ Maximum Cardinality ของ ประตู ใน Aggregation รถ-ประตู, มีค่าเป็น 2
 - O Minimum Cardinality ของ นักเรียน ใน aggregation ห้องเรียน-นักเรียน มีค่าเป็น 0 และ Maximum Cardinality ของ นักเรียน ใน aggregation ห้องเรียน-นักเรียน มีค่าเป็น n เมื่อ n เป็นจำนวนใดๆ

ตัวอย่าง 6 Aggregation ของคลาส หนังสือ (1)

ให้นักศึกษาอธิบาย cardinality เป็นประโยคคำพูด

ตัวอย่าง Aggregation ของคลาส หนังสือ (2)

เพิ่ม Attribute และ Method ให้กับ Class หนังสือ

การบ้าน

References

- O กิตติพงษ์ กลมกล่อม, "พื้นฐานการวิเคราะห์และออกแบบระบบเชิงวัตถุด้วย UML", สำนักพิมพ์ เคทีพี, 2552.
- O พนิดา พานิชกุล, "การพัฒนาระบบเชิงวัตถุด้วย UML", สำนักพิมพ์ เคทีพี, 2552.
- o พนิดา พานิชกุล, "Object-Oriented ฉบับพื้นฐาน" , สำนักพิมพ์ เคทีพี, 2548.