Билет 1

Множество – является исходным неопределяемым понятием. Своими словами множество можно описать как совокупность каких либо элементов имеющих что-то общее.

Операции над множествами:

Объединением двух множеств X и Y называется множество, обозначаемое X ∪ Y и состоящее из элементов, принадлежащих хотя бы одному из множеств X или Y:

 $X \cup Y = \{x \mid x \in X$ или $x \in Y\}.$

Пример. Рассмотрим два множества $X = \{1,3,5\}$ и $Y = \{3,5,9\}$. Их объединением $X \cup Y$ будет множество $\{1,3,5,9\}$.

Пересечением множеств X и Y называется множество, обозначаемое X ∩ Y состоящее из элементов, принадлежащих каждому из множеств X и Y:

 $X \cap Y = \{x \mid x \in X \cup x \in Y\}.$

Пример. Рассмотрим два множества $X = \{1,3,5\}$ и $Y = \{3,5,9\}$. Тогда пересечением этих множеств будет $X \cap Y = \{3,5\}$.

Разностью множеств X и Y называется множество, обозначаемое $X \setminus Y$ и состоящее из всех элементов X, не принадлежащих Y: $X \setminus Y = \{x \mid x \in X \text{ и } x \notin Y\}.$

Пример. Рассмотрим два множества $X = \{1,3,5\}, Y = \{3,8,9\}.$ Разностью этих множеств будет множество $X \setminus Y = \{1,5\}.$

Симметричной разностью множеств X и Y называется множество $X \Delta Y = (X \setminus Y) \cup (Y \setminus X)$

 $X \Delta Y = \{x \mid (x \in X \cup x \notin Y) \cup (x \notin X \cup x \in Y)\}.$

Дополнением к множеству X относительно универсального множества U называется множество $X' = U \setminus X : X' = \{x \mid x \notin X\}$

Разбиением множества Y называется набор его попарно непересекающихся подмножеств $X\alpha$, $\alpha \in A$, где A – некоторое множество индексов, такой, что $Y = \bigcup X\alpha$, $\alpha \in A$.

Типология множеств:

По признакам нормализованности множества можно разбить на два следующих класса:

Нормализованное множество - множество, каждый элемент которого является знаком множества, будем называть нормализованным множеством. Нормализованное множество достаточно хорошо "подготовлено" к его изображению или описанию в виде текста того или иного языка, т.к. в нормализованном множестве все его элементы являются знаками, которые вместе со знаком самого этого множества могут быть изображены произвольным образом в соответствии с требованиями любого языка.

Ненормализованное множество - множество, среди элементов которого имеется по крайней мере один объект, не являющийся знаком множества.

Почти нормализованное множество - множество, которое является ненормализованным, ни один элемент которого не является множеством (т.е. элементами множества могут быть только знаки множеств и предметы). Каждый элемент множества, являющийся знаком ненормализованного множества, представляет собой знак пары принадлежности, соединяющей знак предметного множества с соответствующим предметом (т.е. других ненормализованных множеств в составе множества нет) и для каждого элемента множества, являющегося предметом, существует пара принадлежности, соединяющая указанный предмет со знаком соответствующего предметного множества, причем знак указанной пары принадлежности, а также знак указанного предметного множества, являются элементами множества.

По признаку наличия многократного вхождения элементов множества делятся на:

Канторовское или классическое множество (множество без кратных элементов) - множество, все элементы которого входят в это множество однократно.

Мультимножество (множество с кратными элементами) - множество, некоторые элементы которого входят в это множество многократно.

По признаку вхождения в число элементов множества собственного знака множества делятся на:

Рефлексивное множество - множество, которое включает в число своих элементов собственный знак. **Нерефлексивное множество** – множество, которое не включает в

число своих элементов собственный знак.

По мощности множества:

Пустое множество (0-мощное множество) – множество, не имеющее элементов.

Одномощное множество – множество, имеющее мощность, равную единице (это 1-элементное множество с однократным вхождением этого единственного элемента).

Пара (2-мощное множество, би-мощное множество) – множество, имеющее мощность, равную двум (это либо 1-элементное множество с двукратным вхождением этого единственного элемента, либо двухэлементное множество с однократным вхождением каждого элемента).

Тройка (3-мощное множество)

и т.д.

В языке SC явно представить (изобразить) можно только нормализованное множество. При этом любое ненормализованное множество можно привести к нормализованному виду. Мощность нормализованного множества в языке SC определяется количеством дуг принадлежности, выходящих из знака этого множества.