Lecture 26

Ciprian M Crainiceanu

Table of contents

Outline

Nonparametri tests

Sign tes

Signed rank test

Monte Carlo

Independent

Mann/Whitney

Aonte Carlo

Permutation

Lecture 26

Ciprian M Crainiceanu

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

September 8, 2020

Table of contents

Table of contents

Name ----

tests

Signed rank

Monte Carl

Independent groups

Mann/Whitney test

Permutation

- 1 Table of contents
- 2 Outline
- 3 Nonparametric tests
- 4 Sign test
- **5** Signed rank test
- 6 Monte Carlo
- Independent groups
- 8 Mann/Whitney test
- Monte Carlo
- Permutation tests

Outline

tests

Signed rank

Monte Carlo

Independent groups

Mann/Whitney test

D........

Permutatior tests

- Distribution-free tests
- 2 Sign test
- 3 Sign rank test
- A Rank sum test
- 5 Discussion of non-parametric tests

Sign tes

Signed ran test

Monte Carlo

Independent groups

Mann/Whitney test

Permutation

Nonparametric tests

- "Distribution free" methods require fewer assumptions than parametric methods
- Focus on testing rather than estimation
- Not sensitive to outlying observations
- Especially useful for cruder data (like ranks)
- "Throws away" some of the information in the data
- May be less powerful than parametric counterparts, when the parametric assumptions are true
- For large samples, are equally efficient to parametric counterparts

Lecture 26

Ciprian M Crainicean

Table of contents

Outline

Nonparametric tests

Sign test

test

Monte Carlo

Independent groups

Mann/Whitne test

Monte Carlo

Fish	SR	P	Diff	Sgn rank	Fish	SR	P	Diff	Sng rank
1	.32	.39	.07	+15.5	13	.20	.22	.02	+6.5
2	.40	. 47	.07	+15.5	14	.31	.30	01	-2.5
3	.11	.11	.00		15	.62	.60	02	-6.5
4	.47	.43	04	-11.0	16	.52	.53	.01	+2.5
5	.32	.42	.10	+20.0	17	.77	.85	.08	+17.5
6	.35	.30	05	-13.5	18	.23	.21	02	-6.5
7	.32	.43	.11	+20.0	19	.30	.33	.03	+9.0
8	.63	.98	.35	+23.0	20	.70	.57	13	-21.0
9	.50	.86	.36	+24.0	21	.41	.43	.02	+6.5
10	.60	.79	.19	+22.0	22	.53	.49	04	-11.0
11	.38	.33	05	-13.5	23	.19	.20	.01	+2.5
12	.46	.45	01	-2.5	24	.31	.35	.04	+11.0
					25	.48	.40	08	-17.5

Measurements are mecury levels in fish (ppm)

Data from Rice Mathematical Statistics and Data Analysis; second edition

Alternatives to the paired t-test

- Let D_i = difference (P SR)
- Let θ be the population median of the D_i
- $H_0: \theta = 0$ versus $H_a: \theta \neq 0$ (or > or <)
- Notice that $\theta = 0$ iff p = P(D > 0) = .5
- Let X be the number of times D > 0
 - X is then binomial(n, p)
- The sign test tests wether H_0 : p = .5 using X

Table of contents

N - - - - - - - -

Sign test

Signed rank test

Monte Carlo

Independent

Mann/Whitney test

Permutation

• $\theta = \text{median difference p - sr}$

- $H_0: \theta = 0$ versus $H_a: \theta \neq 0$
- Number of instances where the difference is bigger than 0 is 15 out of 25 trials
- binom.test(15, 25) p-value = 0.4244
- Or we could have used large sample tests for a binomial proportion prop.test(15, 25, p = .5)
 X-squared = 0.64, df = 1, p-value = 0.4237

Sign test

Signed rank test

Monte Carlo

Independent groups

test

Permutation

Discussion

- Magnitude of the differences is discarded
 - Perhaps too much information lost
- Could easily have tested $H_0: \theta = \theta_0$ by calculating the number of times $D > \theta_0$ and performing a binomial test
 - We can invert these tests to get a distribution free confidence interval for the median

Signed rank test

Signed rank test

- Wilcoxon's statistic uses the information in the signed ranks of the differences
- Saves some of the information regarding the magnitude of the differences
- Still tests H_0 : $\theta = 0$ versus the three alternatives
- Appropriately normalized, the test statistic follows a normal distribution
- Also the exact small sample distribution of the signed rank statistic is known (if there are no ties)

Independent

Mann/Whitney test

Permutation

Signed rank procedure

- 1 Take the paired differences
- 2 Take the absolute values of the differences
- 3 Rank these absolute values, throwing out the 0s
- 4 Multiply the ranks by the sign of the difference (+1 for a positive difference and -1 for a negative difference)
- **5** Cacluate the rank sum W_+ of the positive ranks

Signed rank

test

Independent groups

test

Monte Carlo

Permutatior

Signed rank procedure

- If $\theta > 0$ then W_+ should be large
- If $\theta < 0$ then W_+ should be small
- Properly normalized, W_+ follows a large sample normal distribution
- ullet For small sample sizes, W_+ has an exact distribution under the null hypothesis
- Can get critical values from tables in the textbook

Table of contents

Outillic

Sign test

Monte Carlo

Independent groups

Mann/Whitney test

Permutation

- Assume no ties
- Simulate n observations from any distribution that has $\theta=0$ as its median
- Rank the absolute value of the data, retain the signs, calculate the signed rank statistic
- Apply this procedure over and over, the proportion of time that the observed test statistic is larger or smaller (depending on the hypothesis) is a Monte Carlo approximation to the P-value

Outline

tests

Signed rai

Monte Carlo

Independent groups

Mann/Whitney test

Permutation

 Here's a slightly more elegant way to simulate from the null distribution

- Consider the ranks $1, \ldots, n$
- Randomly assign the signs as binary with probability .5 of being positive and .5 of being negative
- Calculate the signed rank statistic
- Apply this procedure over and over, the proportion of time that the observed test statistic is larger or smaller (depending on the hypothesis) is a Monte Carlo approximation to the P-value

Large sample distribution of W_{+}

- Under H_0 and if there are no ties
 - $E(W_+) = n(n+1)/4$
 - $Var(W_+) = n(n+1)(2n+1)/24$
 - $TS = \{W_+ E(W_+)\}/Sd(W_+) \to Normal(0,1)$
- There is a correction term necessary for ties
- Without ties, it's possible to do an exact (small sample) test

 $diff \leftarrow c(.07, .07, .00, -.04, ...)$ wilcox.test(diff, exact = FALSE)

- H_0 : Med diff = 0 vesus H_a : Med diff $\neq 0$
- $W_{\perp} = 194.5$
- $E(W_{\perp}) = 24 \times 25/4 = 150$
- $Var(W_+) = 24 \times 25 \times 49/24 = 1,225$
- $TS = (194.5 150)/\sqrt{1.224} = 1.27$
- P-value = 20
- R's P-value (uses correction for ties) = 0.21

Outillic

tests

Signed ran test

Monte Carlo

Independent groups

Mann/Whitn test

Monte Carlo

Permutation

Comparing two measuring techniques A and B Units are in deg C per gram

Meth	od A	Method B
79.98	80.05	80.02
80.04	80.03	79.94
80.02	80.02	79.98
80.04	80.00	79.97
80.03	80.02	79.97
80.03		80.03
80.04		79.95
79.97		79.97

Data from Rice Mathematical Statistics and Data Analysis; second edition

Signed ran test

Monte Carlo

Independent groups

Mann/Whitney test

Dannantation

The Mann/Whitney test

- Tests whether or not the two treatments have the same location
- Assumes independent identically distributed errors, not necessarily normal
- Null hypothesis can also be written more generally as a stochastic shift for two arbitrary distributions
- Test uses the sum of the ranks obtained by discarding the treatment labels
- Also called the Wilcoxon rank sum test

Sign tes

test

Monte Carlo

Independent groups

Mann/Whitney test

Monte Carlo

The Mann-Whitney test

Procedure

- 1 Discard the treatment labels
- 2 Rank the observations
- 3 Calculate the sum of the ranks in the first treatment
- 4 Either
 - calculate the asymptotic normal distrubtion of this statistic
 - compare with the exact distribution under the null hypothesis

Table of contents

Outline

Nonparamet tests

Sign tes

Signed rank test

Monte Carlo

Independent groups

Mann/Whitney test

Monte Carl

Permutation tests

Meth	od A	Method B
7.5	21.0	11.5
19.0	15.5	1.0
11.5	11.5	7.5
19.0	9.0	4.5
15.5	11.5	4.5
15.5		15.5
19.0		2.0
4.5		4.5
18	30	51

Sum has to add up to $21 \times 22/2 = 231$

Table of contents

Nonparametr

Signed rank

Monte Carlo

Independent groups

Mann/Whitney test

Permutation

Gauss supposedly came up with this in grade school

$$x = 1 + 2 + 3 + 4 + \dots + n$$

 $x = n + n-1 + n-2 + n-3 + \dots + 1$

Therefore

$$2x = n+1 + n+1 + n+1 + n+1 + \dots + n+1$$

So
$$2x = n (n + 1) / 2$$

So
$$x = n (n + 1) / 2$$

Mann/Whitney test

- Let W be the sum of the ranks for the first treatment (A)
- Let n_A and n_B be the sample sizes
- Then
 - $E(W) = n_A(n_A + n_B + 1)/2$
 - $Var(W) = n_A n_B (n_A + n_B + 1)/12$
 - $TS = \{W E(W)\}/Sd(W) \to N(0,1)$
- Also the exact distribution of W can be calculated

Independent

Mann/Whitney test

Permutation

• W = 51

•
$$E(W) = 8(8+13+1)/2 = 88$$

•
$$Sd(W) = \sqrt{8 \times 13(8+13+1)/12} = 13.8$$

•
$$TS = (51 - 88)/13.8 = -2.68$$

- Two-sided P-value= .007
- R function wilcox.test will perform the test

- Note that under H_0 , the two groups are exchangeable
- Therefore, any allocation of the ranks between the two groups is equally likely
- Procedure: Take the ranks $1, \ldots, N_A + N_B$ and permute them
- Take the first N_A ranks and allocate them to Group A; allocate the remainder to Group B
- Calculate the test statistic
- Repeat this process over and over; the proportion of times the test statistic is larger or smaller (depending on the alternative) than the observed value is an exact P-value

Notes about nonpar tests

- Tend to be more robust to outliers than parametric counterparts
- Do not require normality assumptions
- Usually have exact small-sample versions
- Are often based on ranks rather than the raw data
- Loss in power over parametric counterparts is often not bad
- Nonpar tests are not assumption free

Outline

tests

Signed ran test

Monte Carlo

Independent groups

test

Monte Carlo

Permutation tests

Permutation tests

- Permutation tests are similar to the rank-sum tests, though they use the actual data rather than the ranks
- That is, consider the null hypothesis that the distribution of the observations from each group is the same
- Then, the group labels are irrelevant
- We then discard the group levels and permute the combined data
- Split the permuted data into two groups with n_A and n_B observations (say by always treating the first n_A observations as the first group)
- Evaluate the probability of getting a statistic as large or large than the one observed
- An example statistic would be the difference in the averages between the two groups; one could also use a t-statistic

Nonparamet tests

Signed ranl

Monte Carlo

Independent groups

Mann/Whiti

Monte Carlo

Permutation tests

- This is an easy way to produce a null distribution for a test of equal distributions
- Similar in flavor to the bootstrap
- This procedure produces an exact test
- Less robust, but more powerful than the rank sum tests
- Very popular in genomic applications

Lecture 26

Ciprian M Crainiceanu

Table of

Outline

Nonparametr

ign tes

Signed ran

Monte Carlo

Independent

groups

Permutation tests

Histogram of simTheta

