0.1 Matroid

Definition 0.1. An *independence system* is a pair (E, \mathcal{S}) , where E is a set and \mathcal{S} is a collection of sets satisfying:

- (I1) \mathscr{S} is non-empty.
- (I2) \mathscr{S} is a hereditary subset of the power set of E.

The elements of $\mathcal S$ are called the *independent sets*.

Definition 0.2. A matroid is a pair (E, \mathscr{I}) with finite ground set E and \mathscr{I} being a collection of independent subsets of E satisfying the following conditions:

- (I1): The empty set is always independent
- (I2): Every subset of an independent set is independent
- (I3): If A and B are two independent sets of \mathscr{I} and |A| > |B|, then there exists $x \in A \setminus B$ such that $B \cup \{x\}$ is in \mathscr{I}

Lemma 0.1. Prove that (E, \mathcal{I}) is a matroid if and only if \mathcal{I} satisfies (I2) and the following two conditions:

 $(I1)'\mathscr{I}\neq\emptyset$

(I3)' If I_1, I_2 are in $\mathscr I$ and $|I_2| = |I_1| + 1$, then there is an element $e \in I_2 \setminus I_1$ such that $I_1 \cup \{e\} \in \mathscr I$

Proof. Suppose (E, \mathscr{I}) is a matroid. Then by hypothesis, \mathscr{I} satisfies (I2).

By (I1) the empty set is laways contained in \mathscr{I} , so \mathscr{I} is always non-empty. \Longrightarrow (I1)' holds.

Let $I_1, I_2 \in \mathscr{I}$ and $|I_2| > |I_1|$ then by (I3) there exists $e \in I_2 \setminus I_1$ such that $I_1 \cup \{e\} \in \mathscr{I}$ by (I3).

But by (I2) there is an I_2' such that $e \in I_2'$ and $|I_2'| = |I_1| + 1$ as a matorid is hereditary and $I_2' \subset I_2$. $\Longrightarrow \exists e \in I_2' \setminus I_1$ such that $I_1 \cup \{e\} \in \mathscr{I}$.

Conversely, Suppose \mathscr{I} satisfies (I2), (I1)', (I3)'

By (I1)', \mathscr{I} is always non-empty. (I2) and (I3) hold by hypothesis.

Example 0.1. Let M_1, M_2 be matroids on a set E. Let $E = \{1, 2, 3, 4\}$

Let $\mathcal{I}_1 = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{2, 4\}, \{3, 4\}\}\$

Let $\mathscr{I}_2 = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 3\}, \{3, 4\}\}\$

let $(E, \mathscr{I}_1 \cap \mathscr{I}_2)$ be a pair, is it a matroid?

Let $I_1 = \{1, 2\}$ and $I_2 = \{3\}$

If $\exists e \in I_1$ such that $I_2 \cup \{e\} \in \mathscr{I}$ then we have a matroid.

 $I_2 \cup \{1\} = \{1,3\} \notin \mathscr{I},$

 $I_2 \cup \{2\} = \{2,3\} \notin \mathscr{I}$

 $\implies (E, \mathscr{I}_1 \cap \mathscr{I}_2)$ is not a matroid.