	Boundary conditions:	$Kbrac{d^2h}{dx^2}+R=0$	
		$-Kbrac{dh(x)}{dx}=0\;, \qquad \qquad x=0 \ -Kbrac{dh(x)}{dx}=C\left[h^*-h(x) ight], \qquad x=L$	
	Closed-form solution:		
	Spatial derivatives from differentiation:	Not available Not available	
67]:	<pre>def set_background(color): script = ("var cell = this.closest('.coo "var editor = cell.querySelect "editor.style.background='{}'; "this.parentNode.removeChild(tolor) display(HTML('<img ;"="" onerror="{})</pre></td><td><pre>play de_cell');" pre="" src="" this)").format(color)<="" tor('.input_area');"=""/></pre>		
68]:	<pre>from warnings import filterwarnings filterwarnings("ignore", category=Depr import numpy as np K, R, b, L, BC3h, BC3c, ocol = 10., 16</pre>		
	X = np.arange(L)1. Direct sensitivity	Not available	
	2. Perturbation sensitivity $_{\partial}$	$h(x') = h(x, C_{\Gamma_3} + \Delta C_{\Gamma_3}) - h(x, C_{\Gamma_3})$	(
	2a. Analytical	$rac{\partial h(x')}{\partial C_{\Gamma_3}}pprox rac{h(x,C_{\Gamma_3}+\Delta C_{\Gamma_3})-h(x,C_{\Gamma_3})}{\Delta C_{\Gamma_3}}$	(
101	2b. Semi-analytical from os import getcwd, chdir	Not available	(
	<pre>cwd = getcwd() chdir(r'//timml') import timml chdir(cwd) dpar = 1e-4</pre>		
	<pre>M0 = timml.Model3D(kaq=K, z=[0., -b]) timml.ImpLineDoublet1D(M0, xld=0.) timml.HeadLineSink1D(M0, xls=L, hls=B0 timml.StripAreaSink(M0, 0., L, R) M0.solve(silent=True) H0 = M0.headalongline(X, 0.).flatten()</pre>		
		e', label='forward solution, semi-analytical')	
	<pre>plt.xlabel('\$x\$ (km)') plt.ylabel('\$h\$ (m)') plt.legend(loc=3);</pre>		
	© 20 forward solution, semi-analytical	6 8 10	
102	<pre>x (km) M1 = timml.Model3D(kaq=K, z=[0., -b]) timml.ImpLineDoublet1D(M1, xld=0.) timml.HeadLineSink1D(M1, xls=L, hls=B0 timml.StripAreaSink(M1, 0., L, R)</pre>	C3h, res=(BC3c+BC3c*dpar)/100., wh=1.)	
	M1.solve(silent=True) H1 = M1.headalongline(X, 0.).flatten() dhdBC3c = (H1-H0)/(BC3h*dpar) *matplotlib inline import matplotlib as mpl		
	<pre>import matplotlib.pyplot as plt plt.subplots(figsize=[8,2])</pre>	<pre>='none', label='perturbation sensitivity, semi-analy _{\Gamma_1}\$')</pre>	ytical')
	1050 1025	perturbation sensitivity, semi-analytical	
	1.000	6 8 10	
103	<pre>set_background('rgba(0, 200, 0, 0.2)') print('%.6f'% dhdBC3c[ocol]) 1.000000</pre>		
69]:	2c. Numerical import flopy dpar = 1e-3		
	<pre>nrow, ncol = 1, int(L) M0 = flopy.modflow.Modflow(modelname= flopy.modflow.ModflowDis(M0, nlay=1, n)</pre>	nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=stp=1) p.ones([nrow, ncol]), strt=BC3h*np.ones([nrow, ncol]) a=-999., ss=-999., sy=-999., ipakcb=53)	
	flopy.modflow.ModflowPcg(M0, hclose=16	e-6, rclose=1e-6) riod_data={(0,0): ['save head', 'save budget']}) rue)	
	<pre>%matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2])</pre>	e', label='forward solution, numerical')	
	<pre>plt.xlabel('\$x\$ (km)') plt.ylabel('\$h\$ (m)') plt.legend(loc=3);</pre>		
	(E) 20 forward solution, numerical 0 2 4	6 8 10	
[70]:	<pre>flopy.modflow.ModflowGhb(M1, stress_pe M1.write_input()</pre>	eriod_data={0: [0, 0, ncol-1, BC3h, BC3c+BC3c*dpar]}	})
	<pre>success, buff = M1.run_model(silent=Tr H1 = flopy.utils.binaryfile.HeadFile(dhdBC3c = (H1-H0)/(BC3c*dpar) %matplotlib inline import matplotlib as mpl</pre>		
	<pre>plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial C plt.legend()</pre>	='none', label='perturbation sensitivity, numerical' _{\Gamma_3}\$')	')
	plt.ylim(-1.05, -0.95); -0.950 -0.975 -1.000	perturbation sensitivity, numerical	
	-1.025 - -1.050 0 2 4 x (km	6 8 10 n)	
71]:	print('%.6f'% dhdBC3c[ocol]) -0.999451		
	3. Adjoint sensitivity $\frac{\partial h(x')}{\partial h_{\rm P}} =$	$= \oint\limits_{\Gamma_3} \psi_1^*(x) \ [h_{\Gamma_3} - h(x)] \ dx \ = \ \psi_1^*(\Gamma_3) \ [h_{\Gamma_3} - h(\Gamma_3)]$	(
	Governing equation:	$Kbrac{d\psi_1^*}{dx}+rac{1}{2Kb}\delta(x-x')=0$	(
	Boundary conditions:	$\psi_1^*(x)=0 \ , \qquad \qquad x=0$	(
	Closed-form solution:	$\psi_1(x) = 0 \; , \qquad x = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(
	3a. Analytical	Not available	(
104	3b. Semi-analytical M0 = timml.Model3D(kaq=K, z=[0., -b])	Not available	(
	<pre>timml.ImpLineDoublet1D(M0, xld=0.) timml.HeadLineSink1D(M0, xls=L, hls=0.) timml.LineSink1D(M0, xls=float(ocol), M0.solve(silent=True) A = M0.headalongline(X, 0.).flatten() %matplotlib inline</pre>		
	<pre>import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2])</pre>	', label='adjoint solution, semi-analytical')	
	plt.legend(loc=3);		
	20 - adjoint solution, semi-analytical 0 2 4 x (km)	6 8 10	
105	<pre>dhdBC3h = np.array([M0.disvec(x,0) for %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt</pre>	r x in X])[:,0].flatten()	
	<pre>f,s = plt.subplots(figsize=[8,2]) plt.plot(X/1000., dhdBC3h, 'k', mfc= plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial h plt.legend(loc=4);</pre>	='none', label='adjoint sensitivity, semi-analytical{\Gamma_1}\$')	1')
	1.00 - 0.75 - 1.00 - 0.50 - 0.25 - 0.25 -	adjoint sensitivity, semi-analytical	
107	0.00	6 8 10	
	print('%.6f'% dhdBC3h[-1]) 1.000000 3c. Numerical		
72]:	<pre>flopy.modflow.ModflowDis(M0, nlay=1, n</pre>	nrow=1, ncol=ncol, nper=1, delr=1., delc=1., top=0.,	
	<pre>flopy.modflow.ModflowWel(M0, stress_per flopy.modflow.ModflowPcg(M0, hclose=1er flopy.modflow.ModflowOc(M0, stress_per M0.write_input() success, buff = M0.run_model(silent=Trees)</pre>	eriod_data={0: [0, 0, ocol, 1.]}) e-6, rclose=1e-6) riod_data={(0,0): ['save head', 'save budget']}) rue)	
	<pre>A = flopy.utils.binaryfile.HeadFile('r %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2])</pre>		
	<pre>plt.plot(x/1000., A, 'k', mic='none plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\psi^*_1\$ (T/\$L^2\$)') plt.legend(loc=3);</pre>	', label='adjoint solution, numerical')	
	40 - 27 L 20 - 20 - adjoint solution, numerical		
73]:	<pre>dhdBC3c = np.empty(0) for oc,xp in enumerate(X[::1000]):</pre>	6 8 10	
	M1 = M0	le('model.hds').get_data()[0,0,:]	
	anabese - np.appena (anabese, A)		
	<pre>%matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X[::1000]/1000., dhdBC3c, 'k-</pre>	', mfc='none', label='adjoint sensitivity, numerio	cal')
	<pre>%matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2])</pre>	', mfc='none', label='adjoint sensitivity, numerio	cal')