In [6]:

```
import numpy as np
import pandas as pd
```

In [7]:

```
dataset=pd.read_csv(r"C:\Users\kotha\Downloads\bank.csv")
```

In [8]:

```
dataset.head()
```

Out[8]:

	age	job	marital	education	default balance		housing loan		contact day		month	(
0	59	admin.	married	secondary	no	2343	yes	no	unknown	5	may	
1	56	admin.	married	secondary	no	45	no	no	unknown	5	may	
2	41	technician	married	secondary	no	1270	yes	no	unknown	5	may	
3	55	services	married	secondary	no	2476	yes	no	unknown	5	may	
4	54	admin.	married	tertiary	no	184	no	no	unknown	5	may	
4											•	•

In [9]:

```
dataset.isnull().any()
```

Out[9]:

age	False				
job	False				
marital	False				
education	False				
default	False				
balance	False				
housing	False				
loan	False				
contact	False				
day	False				
month	False				
duration	False				
campaign	False				
pdays	False				
previous	False				
poutcome	False				
deposit	False				
dtype: bool					

```
7/20/2020
                                     K.Nithya 17UK1A0544 Assignment7 - Jupyter Notebook
  In [10]:
  dataset.head(1)
  Out[10]:
                marital education default balance housing loan
     age
            iob
                                                              contact day
                                                                         month dura
      59
         admin. married secondary
                                     no
                                           2343
                                                    yes
                                                          no
                                                             unknown
                                                                       5
                                                                            may
  In [11]:
  print(dataset["job"].unique())
  print(dataset["marital"].unique())
  print(dataset["education"].unique())
  print(dataset["default"].unique())
  print(dataset["housing"].unique())
  print(dataset["loan"].unique())
  print(dataset["contact"].unique())
  print(dataset["month"].unique())
  print(dataset["poutcome"].unique())
  ['admin.' 'technician' 'services' 'management' 'retired' 'blue-collar'
   'unemployed' 'entrepreneur' 'housemaid' 'unknown' 'self-employed'
   'student']
  ['married' 'single' 'divorced']
  ['secondary' 'tertiary' 'primary' 'unknown']
  ['no' 'yes']
  ['yes' 'no']
  ['no' 'yes']
  ['unknown' 'cellular' 'telephone']
  ['may' 'jun' 'jul' 'aug' 'oct' 'nov' 'dec' 'jan' 'feb' 'mar' 'apr' 'sep']
  ['unknown' 'other' 'failure' 'success']
  In [12]:
  from sklearn.preprocessing import LabelEncoder
  le=LabelEncoder()
  dataset["job"]=le.fit transform(dataset["job"])
  dataset["marital"]=le.fit transform(dataset["marital"])
  dataset["education"]=le.fit_transform(dataset["education"])
  dataset["default"]=le.fit_transform(dataset["default"])
  dataset["housing"]=le.fit_transform(dataset["housing"])
```

```
dataset["loan"]=le.fit_transform(dataset["loan"])
dataset["contact"]=le.fit_transform(dataset["contact"])
dataset["month"]=le.fit transform(dataset["month"])
dataset["poutcome"]=le.fit_transform(dataset["poutcome"])
dataset["deposit"]=le.fit transform(dataset["deposit"])
```

```
In [13]:
```

```
dataset.head(5)
```

Out[13]:

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration
0	59	0	1	1	0	2343	1	0	2	5	8	1042
1	56	0	1	1	0	45	0	0	2	5	8	1467
2	41	9	1	1	0	1270	1	0	2	5	8	1389
3	55	7	1	1	0	2476	1	0	2	5	8	579
4	54	0	1	2	0	184	0	0	2	5	8	673

```
←
```

In [21]:

```
x=dataset.iloc[:,0:16].values
y=dataset.iloc[:,16:17].values
```

In [22]:

```
x.shape
```

Out[22]:

(11162, 16)

In [23]:

```
y.shape
```

Out[23]:

(11162, 1)

In [15]:

```
from sklearn.preprocessing import OneHotEncoder
one=OneHotEncoder()
z=one.fit_transform(x[:,1:2]).toarray()
t=one.fit_transform(x[:,2:3]).toarray()
u=one.fit_transform(x[:,3:4]).toarray()
v=one.fit_transform(x[:,8:9]).toarray()
w=one.fit_transform(x[:,10:11]).toarray()
b=one.fit_transform(x[:,15:16]).toarray()
x=np.delete(x,[1,2,3,8,10,12,15],axis=1)
x=np.concatenate((b,w,v,u,t,z,x),axis=1)
```

```
In [16]:
Z
Out[16]:
array([[1., 0., 0., ..., 0., 0., 0.],
       [1., 0., 0., ..., 0., 0., 0.]
       [0., 0., 0., \ldots, 1., 0., 0.],
       [0., 0., 0., ..., 1., 0., 0.],
       [0., 0., 0., \ldots, 1., 0., 0.],
       [0., 0., 0., ..., 1., 0., 0.]]
In [17]:
x.shape
Out[17]:
(11162, 47)
In [24]:
y.shape
Out[24]:
(11162, 1)
In [18]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
In [19]:
x_train.shape
Out[19]:
```

(8929, 47)

In [25]:

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x_train
```

Out[25]:

```
array([[-0.35031555, -0.22657536, -0.32939951, ..., -0.2483547, -0.48428507, -0.35888264],
[-0.35031555, -0.22657536, -0.32939951, ..., -0.31759131, -0.48428507, -0.35888264],
[-0.35031555, -0.22657536, -0.32939951, ..., 1.76816153, -0.48428507, -0.35888264],
...,
[-0.35031555, -0.22657536, -0.32939951, ..., -1.03015141, -0.48428507, -0.35888264],
[-0.35031555, -0.22657536, -0.32939951, ..., -0.41856137, -0.48428507, -0.35888264],
[-0.35031555, -0.22657536, -0.32939951, ..., 1.0296377, -0.48428507, -0.35888264]])
```

In [26]:

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_test=sc.fit_transform(x_test)
x_test
```

Out[26]:

```
array([[ 2.80376731, -0.21765422, -0.31106004, ..., -0.77542752, 2.62409874, 0.62465525],
[-0.35666298, -0.21765422, 3.21481343, ..., -0.42011029, 1.30248101, 1.63872661],
[-0.35666298, -0.21765422, -0.31106004, ..., -0.54045968, -0.46885387, -0.38941612],
...,
[-0.35666298, -0.21765422, -0.31106004, ..., 3.37949177, -0.46885387, -0.38941612],
[-0.35666298, -0.21765422, -0.31106004, ..., -0.88431506, -0.46885387, -0.38941612],
[-0.35666298, -0.21765422, -0.31106004, ..., -0.13356413, -0.46885387, -0.38941612]])
```

```
In [27]:
```

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
y_train=sc.fit_transform(y_train)
y_train
Out[27]:
array([[-0.95541123],
       [ 1.04666971],
       [ 1.04666971],
       [-0.95541123],
       [-0.95541123],
       [ 1.04666971]])
In [28]:
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
y_test=sc.fit_transform(y_test)
y_test
Out[28]:
array([[-0.92364064],
       [ 1.08267215],
       [-0.92364064],
       [ 1.08267215],
       [ 1.08267215],
       [-0.92364064]])
In [ ]:
```