

ارائهٔ پروژهٔ نهایی درس برسی مقدماتی طرح

عنوان: شبیهسازی و برسی اقتصادی واحد تولید گاز سنتز

ارائهدهندگان:

ياسين طاهرى (<u>yasintaheri72@gmail.com</u>) پوريا مطهرى (<u>pooriamotahari@gmail.com</u>) ابوالفضل اخلاقي (<u>abolfazl.akhlaghi81@gmail.com</u>)

> استاد درس: دکتر سعید عینی

بهمن ۱۴۰۲

مقدمه

- فرایند تولید گاز سنتز یک فرایند شیمیایی حیاتی است که تبدیل متان و کربن دیاکسید به گاز سنتز (کربن مونوکسید و هیدروژن) را انجام میدهد.
- گاز سنتز یکی از اجزای مهم در فرایندهای شیمیایی تولید مواد اولیهٔ مختلف است. این گاز بهدلیل امکان تبدیل به سوخت و همچنین استفاده در تولید مواد اولیهٔ شیمیایی، از اهمیت ویژهای برخوردار است.
 - این فرایند عموماً بهمنظور تولید سوخت و مواد شیمیایی مورد استفاده قرار می گیرد.

Online: https://www.nrel.gov/

روشهای تولید گاز سنتز

شکل۳) مواد اولیهٔ مختلف برای تولید گاز سنتز

شکل۴) انواع روش های تولید گاز سنتز

تولیدکنندگان گاز سنتز

جدول ۱) ظرفیت تولید گاز سنتز برخی از شرکتهای جهانی

گاز طبیعی ورودی (m³/d)	ظرفیت گاز سنتز (m³/d)	شركت
9345000	4054	Chevron nigeria
9345000	4054	Sasol/Qatar petroleum, Oryx
45300000	16700	Shell/Qatar petroleum, Pearl
50970000	18360	ExxonMobil Qatar
5663000	2860	PetroSA Mossel Bay
595000	270	World GTL, Trinidad
2832000	1190	Syntroleum Sweetwater
3115000	1750	Shell Bintulu

• برای هر متر مکعب گاز سنتز حدود ۱۸۰۰ تا ۲۸۰۰ متر مکعب گاز طبیعی مصرف می شود.

در منطقهٔ خلیج فارس بهویژه ایران، هزینهٔ تولید گاز طبیعی از میادین مستقل و یا از میادین نفت تقریباً پایین ترین هزینه در جهان است. علل اصلی این امر عبارتند از:

- بزرگی میادین نفتی و نرخ بالای تولید نفت و گاز همراه آنها
 - بزرگی میادین گازی
 - عمق بسیار کم خلیج فارس (حداکثر ۲۰۰ متر)
 - هزينهٔ پايين نيروي کار

شبیهسازی و بررسی فنی

GAS-TO-LIQUID, SMR/DMR PROCESS

شكل۵) نمودار جريان فرايند

راکتورها و زیربخشهای واحد

محصول این واحد گاز سنتز با نسبت هیدروژن – کربن مونوکسید برابر با ۲ است.

بخش SMR در واحد، گاز سنتز با نسبت هیدروژن – کربن مونوکسید برابر با ۳ تولید می کند.

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2$$

بخش DMR در واحد، گاز سنتز با نسبت هیدروژن – کربن مونوکسید برابر با ۱ تولید می کند.

$$CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2$$

راکتورها و زیربخشهای واحد

محصول این واحد گاز سنتز با نسبت هیدروژن – کربن مونوکسید برابر با ۲ است.

بخش SMR در واحد، گاز سنتز با نسبت هیدروژن – کربن مونوکسید برابر با ۳ تولید می کند.

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2$$

راکتورها و زیربخشهای واحد

محصول این واحد گاز سنتز با نسبت هیدروژن – کربن مونوکسید برابر با ۲ است.

بخش DMR در واحد، گاز سنتز با نسبت هیدروژن – کربن مونوکسید برابر با ۱ تولید می کند.

$$CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2$$

انتخاب بستههای ترمودینامیکی مناسب

انتخاب بستههای ترمودینامیکی مناسب

شکل ۸) نمودار مفهومی فرایند

انتخاب بستههای ترمودینامیکی مناسب

• بخش جذب کربن:

Amine Liq-Liq Extraction → Acid Gas – Chemical Solvents FP

• بخشهای دیگر:

Non-Electrolyte Polar Components in High Avg Pressure → Peng-Robinson FP

شکل۹) نمودار نحوهٔ انتخاب بستهٔ ترمودینامیکی برای مواد غیرالکترولیت و قطبی

تغییر بین بستههای ترمودینامیکی

- سنگین بودن بستهٔ ترمودینامیکی Acid Gas Chemical Solvents برای استفادهٔ کلّی
- دقیق نبودن بستهٔ ترمودینامیکی Acid Gas Chemical Solvents برای استفاده در بخشهای دیگر

Sub-Flowsheet

CUT-101

شکل۱۰) بلوکهای مورد استفاده برای تغییر بستهٔ ترمودینامیکی در نرمافزار هایسیس

- شبیهسازی مبدلهای حرارتی و ضریب انتقال حرارت پایین (انتقال حرارت گاز با گاز)
 - شبیهسازی راکتور/کورههای بخشهای SMR و DMR
 - مشکلات و ایرادات مقالهٔ مرجع در دبی، فشار و دمای جریانها
 - برج جذب کربن و برج تقطیر احیای حلال
 - تراکم گازی چند مرحلهای بخش DMR و مدل ترمودینامیکی مخصوص
 - انتگراسیون واحد (امتیازی)
 - چالشهای افزایش ظرفیت دو برابری واحد

• شبیهسازی راکتور/کورههای بخشهای SMR و DMR

شكل ۱۱) شبيه سازى راكتورهاى SMR و DMR

• مشکلات و ایرادات مقالهٔ مرجع در دبی، فشار و دمای جریانها

شكل ۱۲) نمودار جريان فرايند از مقالهٔ مرجع

شکل ۱۳) هیدرولیک برج T-101

- برج جذب کربن و برج تقطیر احیای حلال
- ✓ مشخصات خاص (Specs) برجها برای همگرایی محاسبات جریان بازگشتی و خود برجها
 - و غیره Foaming ، Flooding ، Weeping و غیره \checkmark
- ✔ کاهش فشار خوراک برج تقطیر بازیابی حلال برای دو فازی شدن و همگرایی محاسبات برج
 - ✓ شبیهسازی جداگانه چگالنده و جوش آور برج تقطیر بازیابی حلال

شکل۱۴) انتخاب مشخصههای خاص برای برج T-101

• تراکم گازی چند مرحلهای بخش DMR و مدل ترمودینامیکی مخصوص

شکل۱۶) نمودار مفهومی فرایند و تفاوت تغییر بستهٔ ترمودینامیکی برای فشارهای پایین

• انتگراسیون واحد (امتیازی)

- چالشهای افزایش ظرفیت دو برابری واحد
 - ✓ افزایش دو برابری دبیهای خوراک
- ✓ افزایش دبی حلال جذب کربن و دبی حلال آب جبرانی آن
- ✔ افزایش مشخصات خاص تجهیزات (دبی حلال آب خروجی از جریان مقطره)
 - نتایج افزایش ظرفیت دو برابری واحد
 - ✓ افزایش قطر برجها
 - ✔ افزایش مصرف سوخت و حجم راکتور/کوره و احتمال تغییر طراحی کوره
 - ✓ افزایش مصرف Utility و مساحت انتقال حرارت در مبدلهای حرارتی
- ✔ افزایش بار پمپها و کمپرسورها در نتیجه افزایش هزینه موتور این تجهیزات

مقایسهٔ نتایج و مشخصات جریانات با مقاله مرجع

جدول ۲) مقایسهٔ نتایج و مشخصات تمامی جریانات خروجی نسبت به شبیهسازی

Molar Flow Kmol/h	Gas From SMR	Gas From DMR	Gas to FT	CO ₂ From Carbon Capture	Residue Water
Reference					
Total	24594	21256	45820	1700	11264
Hydrogen	19716	10190	29906	-	-
CO	4478	10522	15000	-	-
CH_4	300	272	544	-	-
H_2O	100	166.8	264	130	11264
CO_2	-	105.2	106	1570	-
Simulation					
Total	24684	21296	45988	1413	11306
Hydrogen	19520	10159	29678	15	-
CO	4452	10533	14984	3	-
CH_4	322	302	624	-	-
$\rm H_2O$	135	187	322	130	11300
CO_2	264	115	379	1265	6

تعیین اندازه و تخمین قیمت تجهیزات

مبدلهای حرارتی

هدف تعیین اندازهٔ مبدلهای حرارتی --- بدست آوردن سطح انتقال حرارت

$$Q = UAF\Delta T_{LMTD} \rightarrow A = \frac{Q}{UF\Delta T_{LMTD}} \rightarrow \begin{cases} Q: Q: D_{LMTD} & F: D_{LMTD} & F: D_{LMTD} & D_{L$$

 $^{\circ}\mathrm{C}$: دمای سیال داغ ورودی $^{\circ}\mathrm{C}$

 $^{\circ}$ C) دمای سیال داغ خروجی: T_2

دمای سیال سرد ورودی ($^{
m C}$): ${
m t}_1$

 $^{\circ}$ C) دمای سیال سرد خروجی t_2

مخازن با انباشت سیال

هدف تعیین اندازهٔ مخازن با انباشت سیال — بدست آوردن قطر و طول

$$V=2(\frac{F_L\tau}{\rho_L})$$

 (m^3) حجم مخزن: V

 $(rac{\mathrm{Kg}}{\mathrm{s}})$ دبی جرمی جریان مایع ورودی به مخزن: $\mathrm{F_L}$

au: زمان ماند (s)

 $\frac{\mathrm{Kg}}{\mathrm{m}^3}$: چگالی جریان مایع ورودی به مخزن (ρ_{L}

فرضیات:

- زمان ماند: ۵ دقیقه
- نسبت طول به قطر: ۴

برج تقطير

هدف تعیین اندازهٔ برج تقطیر:

- بدست آوردن تعداد سینیهای حقیقی
- تعیین اندازهٔ مخزن بازگشتی ← تعیین اندازهٔ مخازن با انباشت سیال
- ۰ تعیین اندازهٔ چگالنده و جوشآور ← تعیین اندازهٔ مبدلهای حرارتی
 - تعیین اندازهٔ پمپهای چگالنده و جوشآور
 - تعیین اندازهٔ بدنهٔ برج تقطیر

بدست آوردن تعداد سینیهای حقیقی:

$$E_0 = 51 - 32.5 \log(\mu_a \alpha_a) \rightarrow \begin{cases} \alpha_{1,2} = \frac{K_1}{K_2} : \frac{K_1}{K_2} : M_{act} = \frac{N_{Ideal}}{E_0} \end{cases}$$
 شبیه سازی

بازدهی کلّی برج: ${
m E}_0$

 $\frac{\text{mNs}}{\text{m}^2}$: گرانروی میانگین مولی که در دمای میانگین برج تخمین زده می شود μ_a

αa: فراریّت نسبی میانگین جزء سبک

هدف تعیین اندازهٔ پمپ بدست آوردن توان مفید

$$W_b = \frac{\dot{m}\Delta P_{Total}}{\rho \eta_p \eta_m}$$

$$Head = \frac{\Delta P_{Total}}{\rho g}$$

(KW) توان مفید پمپ: W_b

(KPa) اختلاف فشار ایجاد شده توسط پمپ ΔP_{Total}

 $\frac{Kg}{s}$: دبی جرمی مایع گذرنده از پمپ \dot{m}

ηρ: بازدهٔ پمپ

بازدهٔ موتور $\eta_{
m m}$

$$(\frac{Kg}{m^3})$$
 چگالی جریان مایع ورودی به پمپ ρ

بدنهٔ برج تقطیر

هدف تعیین اندازهٔ بدنهٔ برج تقطیر — بدست آوردن قطر و طول

$$(\frac{dyne}{cm})$$
 : σ : σ : $\frac{ft}{s}$: σ : U_{nf} : U_{nf} : σ :

بدنهٔ برج تقطیر

$$F_{lv} = (\frac{L'}{V'}).(\frac{\rho_g}{\rho_l})^{0.5}$$

پارامتر جریان:

شکل۱۹) نمودار ثابت طغیان و پارامتر جریان

فهرست و تعداد تجهیزات

- برج تقطیر: ۱
- برج جذب: ١
 - پمپ: ۵
- مبدل حرارتی: ۱۱
- مخزن با انباشت سیال: ۲
 - کمپرسور: ۳
 - کوره (راکتور): ۲

محاسبات مالي

روش Lang

$$\begin{split} C_n = & f_I \Big[E \Big(1 + f_F + f_p + f_m \Big) + E_i + A \Big] \\ & log f_F = 0.635 - 0.154 \, log (0.001E) \, - 0.992 \, \Big(\frac{e}{E} \Big) + 0.506 (\frac{f_V}{E}) \\ & log f_p = -0.266 - 0.014 \, log (0.001E) \, - 0.156 \, \Big(\frac{e}{E} \Big) + 0.556 (\frac{p}{E}) \\ & log f_m = 0.344 - 0.033 \, log (0.001E) \, + 1.194 \, \Big(\frac{t}{E} \Big) \end{split}$$

(دلار) هزینهٔ ثابت سرمایه گذاری واحد مورد نظر ${
m C}_{
m n}$

نات (دلار) تمامی تجهیزات (دلار) ${\rm E}$

e: هزینهٔ تمامی مبدلهای حرارتی (به انضمام کوره) (دلار)

ا: عامل هزينههاي غيرمستقيم (معمولاً $f_{\rm I}$) عامل هزينههاي غيرمستقيم (معمولاً $f_{\rm I}$

(دلار) هزینهٔ مخازن ساخته شده در محل $f_{
m V}$

p: هزينهٔ تمامي پمپها (دلار)

t: هزینهٔ پوستهٔ برجهای تقطیر (دلار)

(دلار) هزينهٔ تجهيزات نصب شده: E_i

A: هزینهٔ آلیاژ مقاوم در برابر خوردگی (دلار)

هزینههای تولید

جدول۴) هزينههاي توليد سالانه

	Production Costs	Range	Value	Cost (\$)
Direct Production costs	Raw Material	-	-	406,567
	Operating Labor (OL)	-	-	51,600
	Direct	-	%15 OL	8,640
	Supervisory and Clerical (DS)			
ucti	Utilities	%10-20 TPC	%15 TPC	0.15TPC
t Prod	Maintenance and Repairs (M&R)	%2-10 FCI	%6	33,420,000
Direc	Operating Supplies	-	%15 M&R	5,013,000
	Laboratory Charges	%10-20 OL	%15 OL	8,640
-	Patent and Royalties	%0-6 TPC	%3 TPC	0.03TPC
s	Depreciation	-	%10 FCI	55,700,000
Fixed Charges	Local Taxes	%1-4 FCI	%2.5 FCI	13,925,000
- 5	Property Insurance	-	%1 FCI	5,570,000
	Plant Overhead	%50-70	%60	20,091,744
	Costs	(OL+M&R+DS)	(OL+M&R+DS)	
	Administrative Expenses	%15-25 OL	%20 OL	11,520
General Expenses	Distribution and Marketing Expenses	%2-20 TPC	%11 TPC	0.11TPC
- щ -	Research and	-	%5 TPC	0.05TPC
	Development			
Total (TPC)				203,352,592

$$\begin{cases}
FCI=557 \text{ million } \$^+\\
WC=0.15\times TCI \$
\end{cases} + FCI+0.15TCI=TCI \rightarrow TCI = \frac{FCI}{0.85} \approx 655 \text{ million } \$$$

جدول ۳) هزینههای سرمایهای (میلیون دلار)

C_{P}	C_{TBM}	C_{TDC}	$\mathbf{C}_{ extbf{TPI}}$	C_{TCI}
۸۱.۴	۵۵۷	۵۴۳.۶۵	7.4.4	۶۵۵

شاخصهای اقتصادی

جدول۵) شاخصهای اقتصادی

ROI (%)	PBP (year)	NPV (M\$)	IRR (%)
۲۳.۴۵	۷۵.۷	471.49	٣.

شکل۲۰) نمودار جریان نقدی پروژه

آناليز حساسيت

شكل ۲۲) تغييرات نرخ بازگشت سرمايه با تغييرات نرخ ماليات

شكل٢١) تغييرات نرخ بازگشت سرمايه با تغييرات قيمت محصول

شکل ۲۳) تغییرات نرخ بازگشت سرمایه با تغییرات هزینهٔ کلّی سرمایه گذاری

نتيجهگيري

ارزیابی اقتصادی و انجام مطالعهٔ امکانسنجی پایهٔ و اساس ساخت یا عدم ساخت تمامی طرحهای فرایندی است که بهدست مهندسین فرایند انجام می شود. برای انجام این کار ابتدا باید فرایند مورد نظر که در این پروژه تولید گاز سنتز است شبیه سازی شود. سپس هزینهٔ تجهیزات فرایندی به کار رفته در فرایند مانند مبدلهای حرارتی، کورهها، راکتورها، مخازن، پمپها، برجهای تقطیر و سمحاسبه شود که از طریق تعیین مشخصات و اندازهٔ آنها انجام می شود. در نهایت با انجام این امور برای واحد تولید گاز سنتز، این نتیجه حاصل می شود که ساخت این واحد سوده است و با نرخ بازگشت سرمایهٔ ۳۰ درصد صرفهٔ اقتصادی خوبی دارد. یکی از دلایل این موضوع ارزان بودن انرژی و گاز طبیعی به عنوان عوامل مهم در واحد تولید گاز سنتز در ایران است. بنابراین اهمیت بررسی شاخصهای اقتصادی نمایان می شود.

منابع و مراجع

- Online: https://www.nrel.gov/
- Online: https://superbloov.life/product_details/35110511.html
- Baltrusaitis, j., Luyben, W. L., "Methane Conversion to Syngas for Gas-to-Liquids (GTL)", ACS Sustainable Chem. Eng., (2015) 2100-2111
- Aspen Technology: Aspen Hysys® V12.1
- Carlson, E. C., "Don't Gamble with Physical Properties for Simulation", Aspen Technology Inc., (1996)
- Baltrusaitis, j., Luyben, W. L., "Methane Conversion to Syngas for Gas-to-Liquids (GTL)", ACS Sustainable Chem. Eng., (2015) 2100-2111
- Seider et al., "Product and Process Design Principles, Analysis, Synthesis and Evaluation", 4th Ed., (2017)
- Biegler, Lorenz T., Ignacio E. Grossmann, and Arthur W. Westerberg. "Systematic methods for chemical process design" (1997)
- Towler, Gavin, and Ray Sinnott. "Chemical engineering design: principles, practice and economics of plant and process design", Butterworth-Heinemann, (2021)
- Peters, Timmerhaus, West, "Plant Design and Economics for Chemical Engineers", 2nd Ed. (2003)
 - بررسی اقتصادی فنآوری GTL، نشریه انرژی ایران، سال هشتم،شماره ۱۸

