Numerical Differentiation

1. Forward Difference Formula:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\zeta)$$

 ζ lies between x_0 and $x_0 + h$

2. Backward Difference Formula:

$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + \frac{h}{2}f''(\zeta)$$

 ζ lies between $x_0 - h$ and x_0

3. Three Point Endpoint Formula:

$$f'(x_0) = \frac{1}{2h}(-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)) + \frac{h^2}{3}f'''(\zeta_0)$$

for right end point approximation replace h by -h

 ζ lies between x_0 and $x_0 + 2h$

4. Three point Midpoint Formula:

$$f'(x_0) = \frac{1}{2h}(f(x_0 + h) - f(x_0 - h)) + \frac{h^2}{6}f'''(\zeta_1)$$

 ζ lies between $x_0 + h$ and $x_0 - h$

5. Five point Endpoint Formula:

$$f'(x_0) = \frac{1}{12h}(-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h)) + \frac{h^4}{5}f^{(5)}(\zeta)$$
for right end point approximation replace h by - h

 ζ lies between x_0 and $x_0 + 4h$

6. Five point Midpoint Formula:

$$f'(x_0) = \frac{1}{12h} (f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)) + \frac{h^4}{30} f^{(5)}(\zeta)$$

$$\zeta \text{ lies between } x_0 - 2h \text{ and } x_0 + 2h$$

7. Second Derivative Midpoint Formula:

$$f''(x_0) = \frac{1}{h^2} \left(f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right) - \frac{h^2}{12} f^{(4)}(\zeta)$$

 ζ lies between $x_0 - h$ and $x_0 + h$

Problems related to Numerical Differentiation (Ex # 4.1)

 Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables.

a.	x	f(x)	f'(x)		
	0.5	0.4794			
	0.6	0.5646			
	0.7	0.6442			

b. <i>x</i>		f(x)	f'(x)
	0.0	0.00000	
	0.2	0.74140	
	0.4	1.3718	

2. Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables.

a.	x	f(x)	f'(x)	
	-0.3	1.9507		
	-0.2	2.0421		
	-0.1	2.0601		

b.	x	f(x)	f'(x)
	1.0	1.0000	
	1.2	1.2625	
	1.4	1.6595	

5. Use the most accurate three-point formula to determine each missing entry in the following tables.

a.	x	f(x)	f'(x)
	1.1	9.025013	
	1.2	11.02318	
	1.3	13.46374	
	1.4	16.44465	

b.	x	f(x)	f'(x)	
	8.1	16.94410		
	8.3	17.56492		
	8.5	18.19056		
	8.7	18.82091		

1.4 | 16.44465 |
$$f(x)$$
 | $f'(x)$ | 2.9 | -4.827866 | 3.0 | -4.240058 | 3.1 | -3.496909 | 3.2 | -2.596792

6. Use the most accurate three-point formula to determine each missing entry in the following tables.

a.	x	f(x)	f'(x)
	-0.3	-0.27652	
	-0.2	-0.25074	
	-0.1	-0.16134	
	0	0	
	100		

		0	,
b.	x	f(x)	f'(x)
	7.4	-68.3193	
	7.6	-71.6982	
	7.8	-75.1576	
	8.0	-78.6974	

c.
$$x$$
 $f(x)$ $f'(x)$
1.1 1.52918
1.2 1.64024
1.3 1.70470
1.4 1.71277

L
$$x$$
 $f(x)$ $f'(x)$

-2.7 0.054797

-2.5 0.11342

-2.3 0.65536

-2.1 0.98472

18. Consider the following table of data:

x	0.2	0.4	0.6	0.8	1.0
f(x)	0.9798652	0.9177710	0.808038	0.6386093	0.3843735

- **a.** Use all the appropriate formulas given in this section to approximate f'(0.4) and f''(0.4).
- **b.** Use all the appropriate formulas given in this section to approximate f'(0.6) and f''(0.6).
- 25. In Exercise 10 of Section 3.4 data were given describing a car traveling on a straight road. That problem asked to predict the position and speed of the car when t = 10 s. Use the following times and positions to predict the speed at each time listed.

Time	0	3	5	8	10	13
Distance	0	225	383	623	742	993

26. In a circuit with impressed voltage $\mathcal{E}(t)$ and inductance L, Kirchhoff's first law gives the relationship

$$\mathcal{E}(t) = L\frac{di}{dt} + Ri,$$

where R is the resistance in the circuit and i is the current. Suppose we measure the current for several values of t and obtain:

where t is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the resistance is 0.142 ohms. Approximate the voltage $\mathcal{E}(t)$ when t = 1.00, 1.01, 1.02, 1.03, and 1.04.