

Helwan University
Faculty of Computers and Artificial
Intelligence

Computer Science Department 2022/2023

CS 396 Selected Topics in CS-2 Research Project

Team ID No. 50

	ID	Name	Grade
1.	201900437	عبدالرحمن محمد فكري ثابت	
2.	201900435	عبدالرحمن محمد فاروق فؤاد	
3.	201900499	عمر احمد شعبان محمد	
4.	201900833	مصطفی محمود محمد عطا	
5.	201900544	عمرو مصطفى محمد أحمد	
6.	202000693	مارو عادل شمعون مقار	
7.	202000082	احمد محمود عرفات عبد الحميد	

Paper Details

• Authors Name:

Name: Raghad Raied Mahmood

• Name: Dr. Majid Dherar Younus

• Name: Dr. Emad Atiya Khalaf

Paper Name:

Name: Currency Detection for Visually Impaired Iraqi Banknote as a Study Case

Paper Link:

https://pdfs.semanticscholar.org/6243/5b14553080ada4234e6c5a754af0b26831e6.pdf

Publisher Name:

Turkish Journal of Computer and Mathematics Education

Year of Publishing:

2021

The implemented Algorithm: Yolov3

Results:

Table 1 shows the evaluation results of the proposed system performance. The YOLOv3 based Iraqi banknote detection and recognition system achieves 97.405% mAP on different images.

No	Denomination of the banknote	No. of test images	Average Precision AP(%)	
1	250 Dinar	250	93.544%	
2	500 Dinar	250	94.209%	
3	1000 Dinar	250	99.995%	
4	5000 Dinar	250	98.876%	
5	10000 Dinar	250	99.454%	
6	25000 Dinar	250	97.384%	
7	50000 Dinar	250	98.374%	
mAP50		97.405%		

Table 1. Evaluation Performance of The System

Project Description

a. General Information on the selected dataset:

Dataset name: Egyptian Currency

Link: https://www.kaggle.com/datasets/egyptiris/egyptiancurrency

Total Number Of Samples in the dataset:

Dataset consists of 10k Images, each 1000 images are loaded to a separate file

The Dimension of images:

1080*1080

Number of Classes:

The original dataset on kaggle has 6 classes

[5, 10, 20, 50, 100, 200]

B. Implementation details

The dataset is divided into 70% train, 20 % validation, 10 % testing

And this is summary for training:

custom_YOLOv5s summary:	182 layers	, 7278882 pa	arameters,	0 gradients				
Class	Images	Instances	P	R	maps0	mAP50-95:	100% 13/13 [00:05<00:00,	2.40it/s]
all	391	545	0.878	0.718	0.796	0.731		
1 pound m	391	47	0.98	0.553	0.575	0.548		
1 pound	391	3	0.451	1	0.995	0.895		
10 pound new	391	82	0.959	0.866	0.924	0.845		
10 pound	391	21	1	0.74	0.846	0.771		
100 pounds	391	77	0.833	0.71	0.751	0.713		
20 pounds	391	76	0.872	0.632	0.682	0.614		
200 pounds	391	81	0.984	0.746	0.862	0.78		
5 pounds	391	82	0.963	0.64	0.829	0.767		
50 pounds	391	76	0.862	0.579	0.695	0.643		
Results saved to runs/t	rain/yolov5	s results3						

391 image for every class in the the training dataset

this is the model configuration used from yolov5 Rebo

```
# parameters
nc: {num_classes} # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
 - [10,13, 16,30, 33,23] # P3/8
 - [30,61, 62,45, 59,119] # P4/16
 - [116,90, 156,198, 373,326] # P5/32
# YOLOV5 backbone
backbone:
  # [from, number, module, args]
 [[-1, 1, Focus, [64, 3]], # 0-P1/2
  [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
  [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
  [-1, 9, BottleneckCSP, [512]],
  [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
  [-1, 3, BottleneckCSP, [1024, False]], # 9
 [[-1, 1, Conv, [512, 1, 1]],
  [-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]], # 13
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]], # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]], # cat head P4
   [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]], # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
   [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
```

Hyperparameters: SGD used with yolo algorithm

Results Details:

