

1N/FDLL 914/A/B / 916/A/B / 4148 / 4448

LL-34
THE PLACEMENT OF THE EXPANSION GAP
HAS NO RELATIONSHIP TO THE LOCATION
OF THE CATHODE TERMINAL

•				
COL	COLOR BAND MARKING			
DEVICE	1ST BAND	2ND BAND		
FDLL914	BLACK	BROWN		
FDLL914A	BLACK	GRAY		
FDLL914B	BROWN	BLACK		
FDLL916	BLACK	RED		
FDLL916A	BLACK	WHITE		
FDLL916B	BROWN	BROWN		
FDLL4148	BLACK	BROWN		
FDI 14448	BROWN	BLACK		

Small Signal Diode

Absolute Maximum Ratings*

T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{RRM}	Maximum Repetitive Reverse Voltage	100	V
I _{F(AV)}	Average Rectified Forward Current	200	mA
I _{FSM}	Non-repetitive Peak Forward Surge Current Pulse Width = 1.0 second Pulse Width = 1.0 microsecond	1.0 4.0	A A
T _{stg}	Storage Temperature Range	-65 to +200	°C
T _J	Operating Junction Temperature	175	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES

- 1) These ratings are based on a maximum junction temperature of 200 degrees C.
- 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Symbol	Characteristic	Max 1N/FDLL 914/A/B / 4148 / 4448	Units
P_{D}	Power Dissipation	500	mW
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	300	°C/W

Small Signal Diode

(continued)

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
V_R	Breakdown Voltage	$I_R = 100 \mu A$	100		V
		$I_R = 5.0 \mu A$	75		V
V _F	Forward Voltage 1N914B/4448	$I_{\rm F} = 5.0 \text{mA}$	620	720	mV
	1N916B	$I_F = 5.0 \text{ mA}$	630	730	mV
	1N914/916/4148	$I_F = 10 \text{ mA}$		1.0	V
	1N914A/916A	$I_F = 20 \text{ mA}$		1.0	V
	1N916B	$I_F = 20 \text{ mA}$		1.0	V
	1N914B/4448	$I_F = 100 \text{ mA}$		1.0	V
I _R	Reverse Current	V _R = 20 V		25	nA
		$V_R = 20 \text{ V}, T_A = 150^{\circ}\text{C}$		50	μΑ
		$V_R = 75 \text{ V}$		5.0	μΑ
C _T	Total Capacitance				
	1N916A/B/4448	$V_R = 0$, $f = 1.0 \text{ MHz}$		2.0	pF
	1N914A/B/4148	$V_R = 0$, $f = 1.0 \text{ MHz}$		4.0	pF
t _{rr}	Reverse Recovery Time	$I_F = 10 \text{ mA}, V_R = 6.0 \text{ V } (60\text{mA}),$		4.0	ns
		$I_{rr} = 1.0 \text{ mA}, R_{L} = 100\Omega$			

Typical Characteristics

Figure 1. Reverse Voltage vs Reverse Current BV - 1.0 to 100 uA

GENERAL RULE: The Reverse Current of a diode will approximately double for every ten (10) Degree C increase in Temperature

Figure 2. Reverse Current vs Reverse Voltage

IR - 10 to 100 V

Figure 3. Forward Voltage vs Forward Current VF - 1 to 100 uA

Figure 4. Forward Voltage vs Forward Current VF - 0.1 to 10 mA

Small Signal Diode

(continued)

Typical Characteristics (continued)

Figure 5. Forward Voltage vs Forward Current VF - 10 to 800 mA

Forward Current, I_F [mA]
Figure 6. Forward Voltage
vs Ambient Temperature
VF - 0.01 - 20 mA (-40 to +65 Deg C)

Figure 7. Total Capacitance

Figure 8. Reverse Recovery Time vs Reverse Recovery Current

Figure 9. Average Rectified Current ($I_{F(AV)}$) versus Ambient Temperature (T_{A})

Figure 10. Power Derating Curve

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST ® SILENT SWITCHER® UHC™ ACEx™ MICROWIRE™ SMART START™ UltraFET® FASTr™ Bottomless™ OPTOLOGIC® VCX™ SPM™ CoolFET™ FRFET™ OPTOPLANAR™ GlobalOptoisolator™ STAR*POWER™ CROSSVOLT™ PACMAN™ DenseTrench™ GTO™ РОР™ Stealth™ SuperSOT™-3 DOME™ HiSeC™ Power247™ I²CTM SuperSOT™-6 EcoSPARK™ PowerTrench ® SuperSOT™-8 E²CMOSTM ISOPLANAR™ QFET™ QS™ SyncFET™ EnSigna™ LittleFET™ TinyLogic™ FACT™ MicroFET™ QT Optoelectronics™ FACT Quiet Series™ MicroPak™ TruTranslation™ Quiet Series™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.