Chapitre 2 Cohésion et rigidité des matériaux

Plan

Rigidité des matériaux (strength of materials) Energie élastique L'élasticité et les atomes Les liaisons

Les liaisons fortes...

Les liaisons faibles...

Forces de cohésion interne

Modèle élecrtostatique: élasticité, Dilatation thermique

Conductibilité électrique

Notion de limite d'èlasticité

Rigidité des matériaux (strength of materials)

- La mesure de la rigidité du matériau est en fait la constante de proportionnalité E.
 - Pour une valeur donnée de la contrainte, un matériau est d'autant plus rigide que sa déformation élastique est faible.
- En cas de cisaillement la rigidité → G.
- La rigidité est fonction de l'intensité des liaisons qui existent entre les atomes.
- En général, la rigidité est une matrice qui lie la matrice déformation à la matrice contrainte.

Energie élastique

L'énergie élastique de déformation stockée dans un solide élastique par unité de volume est l'aire sous la courbe du diagramme de traction

Donc il suffit d'intégrer la fonction σ =f(ϵ) sur d ϵ .

$$U_{el} = \int_{\text{(elastique)}} \sigma \cdot d \epsilon$$

La matière est composée d'atomes. Dans un solide, les atomes sont liés entre eux. Le type de liaison déterminera en grande partie le comportement macroscopique du matériau solide.

Les liaisons fortes

... des électrons de valence

* Liaison covalente

- partage d'électrons de valence entre 2 atomes
- liaison directionnelle et très stable
- la couche extérieure des éléments doit être au moins à moitié pleine
- la liaison est d'autant plus forte que les atomes périphériques sont près
- ex. : le diamant Si, Ge, C, Fe

* Liaison ionique

- perte ou gain d'électrons de valence
- attraction entre les ions de signes différents
- liaison non-directionnelle

- très stable (couches remplies)
- liaison d'autant plus forte que les atomes périphériques sont près du noyau et que Δ électronégativité est
- liaison entre les éléments qui ont beaucoup et peu d'électrons de valence
- ex.1: NaCl ⇔ Na⁺ + Cl⁻ le sodium cède son é- au chlore
- ex.2 : les oxydes métalliques (MgO, Al₂O₃, Fe₂O₃, etc.)

*Liaison métallique

- abandon, délocalisation des électrons de valence
- formation d'une structure d'ions + noyés dans un gaz d'électrons
- concerne des éléments possédant peu d'é- de valence ou très éloignés du noyau
- les é- mobiles expliquent les conductibilités thermique et électrique | des métaux

- ex.: Ni, Fe, Cu, Al, etc.

* Note importante

- en réalité, les liaisons sont mixtes

liaison covalente pure	H — • -	1
liaison mixte	H)
liaison ionique	Na —• C	

Les liaisons faibles

- * Modification minime de la position des électrons
- * Les liaisons faibles sont crées par les interactions électrostatiques entre les dipôles électriques.
- * Dipôle électrique
 - dans une molécule, le centre des charges + n'est pas confondu avec celui des charges -
 - (1) création d'un dipôle induit (a, b et c)
 - (2) dipôle permanent (d)

- * Liaison de Van der Waals
 - liaison entre 2 molécules polarisées
 - ex.: les polymères, le graphite
- * Pont hydrogène
 - cas particulier, lorsque l'hydrogène est impliqué
 - ex.: formation de glace

* Conséquences des différentes liaisons

	Liaisons				
Propriétés	Covalente	Ionique	Métallique	Van der Waals	
Rigidité Module d'Young	1	1	1	1	
Température de fusion	1	1	1	1	
Coefficient de dilatation	1	1	\	1	
Conductibilité	0	≈0 🔰	1	0	

Forces et énergie de cohésion interne

Contraction latérale en traction

→ coefficient de Poisson

Forces et énergie de cohésion interne

* Modèle électrostatique

$$E = -\frac{A}{r^m} + \frac{B}{r^n}$$

(n=8 à 12) et *m* dépend du type de liaison (de 1 à 8 selon le type de liaison)

* Modèle électrostatique

- U_o énergie de cohésion atomique
- a_o distance inter-atomique au zéro absolu
- ρ rayon de courbure
- U_a potentiel électrostatique d'attraction
- U_r potentiel électrostatique de répulsion

* Modèle électrostatique

- ullet pic pointu, profondeur U_o élevée, pente raide
 - liaisons covalentes, ioniques, métalliques
- ullet pic évasé, profondeur U_o faible, courbe évasée
 - force de Van der Waals

Explication de la résistance à la traction théorique, de la rigidité, de la dilatation thermique et de la température de fusion / sublimation

Minimum de U(r)

$$\frac{|E|}{|r|} = m \frac{A}{r_o^{m+1}} - n \frac{B}{r_o^{n+1}} = 0$$

$$\left(\frac{nB}{mA}\right)^{1/n - m}$$

$$E_{\min} = -\frac{A}{ro^m} + \frac{B}{ro^n}$$

L'existence de ce minimum a plusieurs conséquences

- ro est l'état le plus stable
 Liaison ionique (NaCl : r_o =5.63 A^o)
 Liaison Van der Waals ro~100nm.
- Si m augmente $\rightarrow r_0$ diminue. Plus la liaison est forte, plus le matériau est dense.
- Si m diminue, valeur absolue de E_{min} diminue → l'énergie à fournir pour séparer les atomes est plus faible → température de fusion ou de transition vitreuse plus faible

Modèle électrostatique et élasticité

- Pour étudier l'origine du comportement élastique il est fondamental d'étudier les différents types de liaisons
- •Deux atomes séparés par r0,
- •Une section unité (1m²) il y a r_0^{-2} atomes (1/ r_0^2).
- •Soient deux demi-cristaux face à face séparés de r (différent de r0).
- •Le système étant hors de l'équilibre une force extérieure doit être appliquée.
- •Supposons qu'au voisinage de r_0 existe une relation $F = k(r-r^0)$ avec k raideur.

divisant F par la section unité r_0^2 on obtient la contrainte moyenne.

$$F = k(r - r_0) \Longrightarrow F \frac{1}{r_0^2} = \sigma = \frac{k}{r_0} \frac{r - r_0}{r_0} = \frac{k}{r_0} \epsilon$$

Dilatation thermique selon le modèle électro-statique

- •Terme d'énergie cinétique W $\leftarrow \rightarrow$ lié à l'agitation thermique.
- •un atome vibre entre deux positions
- •la courbe U(r) n'étant pas symétrique (m et n sont différents) on obtient une variation de la position d'équilibre des atomes lorsque l'on modifie la température.
- •C'est l'origine de la dilatation thermique α .
- •Plus importante pour une faible énergie de liaison à l'équilibre
- •corrélation entre module d'élasticité et coefficient de dilatation thermique

Conductibilité électrique

 Les cristaux covalents et ioniques sont isolants car tous les électrons sont liés

 Par contre les métaux ont un nuage d'électrons de valence qui peuvent se déplacer : un courant électrique traverse le métal. Le maximum en terme d'effort est atteint pour une distance r_{max} correspondant à une déformation ε₀ avec

$$\epsilon_0 = \ln \left(\frac{r_{max}}{r_0} \right)$$

Si F et σ sont telles qu'elles dépassent ce r_{max} pour chaque liaison, la rupture est inévitable

hypothèse
$$\sigma = \sigma_0 \sin\left(\frac{\pi \, \epsilon}{2 \, \epsilon_0}\right)$$

On obtient alors
$$E = \frac{d\sigma}{d\epsilon} \bigg|_{\epsilon = 0}$$

La déformation critique ε_0 est typiquement de l'ordre de 0,25, ce qui donne :

$$\frac{\sigma_0}{E} \approx \frac{1}{2\pi}$$

la contrainte maximale supportable par le réseau supposé parfait? Celle-ci correspond au point d'inflexion de la courbe U(r) entre le point U(r0) et $U(\infty)$.

Pour U de la forme:
$$U = -\frac{q^{\grave{2}}}{4\pi\epsilon_0 r^2} + \frac{B}{r^n} \quad \Longrightarrow \quad \sigma = E\left\{\left(\frac{n+1}{2}\right)^{\frac{1}{n-1}} - 1\right\}$$

Si
$$n \sim 4 \rightarrow \sigma \sim E$$

Dans la pratique σ ~ E/1000.

D'autres mécanismes interviennent pour expliquer déformations permanentes et contraintes de ruptures.

