Hand Written Work With Steps

```
Question 1
X=[2132173422133467322332]
a) y_1 = \frac{2+1+3+2+1}{5} = 1.8

y_2 = \frac{1+3+2+1+7}{6} = 2.8
Y=[1.8, 2.8, 3.2, 3.4, 3.4, 3.6, 2.4, 2.4, 2.2, 2.6, 3.4, 4.6, 4.6, 4.4,
     4,3.4,2.6,2.4]
b) Y_1 = \frac{(0 \times 2)^2 (1 \times 1)^2 (2 \times 3)^2 (1 \times 2)^2 (0 \times 1)^2}{0 \times 10^2 (2 \times 2)^2 (1 \times 1)^2 (0 \times 1)^2} = \frac{9}{4}
V=[4,2,2.75,4,5,4.25,3.75,25,1.75,1.75,2.5,3.25,4.25,5.75
   5.75,3.75,2.25,2.25,2.75,2.75)
c) y_1 = median(2,1,3,21) = 2
 y== median(1,3,2,1,7)=2
  y_3 = median(3,2,1,7,3) = 3
 ect
 Y=[2233332223344433332
d) y(t) = 0.3 \times X(t) + 0.7 \times y(t-1)
 YCI] = 0.3*(1)+0.7*(0)=0.3
V[2]=0.3*(3)+0.7*(0.3)=1.11
to compute HPF use Hpf = 1-Lpf
 X - YLPF = YHPF
a) YHPF[1] = 3-1.8 = 1.2 YHPF[2] = 2-2.8 = 0.2
b) YHPF[1]= 3-2.25 = 0.75 YHPF[2] =2-2-0
```

Moving Average

X		2	1	3	2	1	7	3	4	2	2	1	3	3	4	6	7	3	2	2	3	3	2
MA (Low P	ass)			1.8	2.8	3.2	3.4	3.4	3.6	2.4	2.4	2.2	2.6	3.4	4.6	4.6	4.4	4	3.4	2.6	2.4		
MA (Low P	ass)			1.2	-0.8	-2.2	3.6	-0.4	0.4	-0.4	-0.4	-1.2	0.4	-0.4	-0.6	1.4	2.6	-1	-1.4	-0.6	0.6		

FIR

X	2	1	3	2	1	7	3	4	2	2	1	3	3	4	6	7	3	2	2	3	3	2
FIR (low pass)			2.25	2	2.75	4.5	4.25	3.25	2.5	1.75	1.75	2.5	3.25	4.25	5.75	5.75	3.75	2.25	2.25	2.75		
FIR (high pass)			0.75	0	-1.75	2.5	-1.25	0.75	-0.5	0.25	-0.75	0.5	-0.25	-0.25	0.25	1.25	-0.75	-0.25	-0.25	0.25		

IIR

y[0]		0
y[1]		0.3
	2	1.11
	3	1.377
	4	1.2639
	5	2.98473
	6	2.989311
	7	3.292518
	8	2.904762
	9	2.633334
1	0	2.143334
1	1	2.400333
1	2	2.580233
1	.3	3.006163
1	4	3.904314
1	.5	4.83302
1	6	4.283114
1	.7	3.59818
1	8.	3.118726
		3.083108
		3.058176
		2.740723

Filter B:

Use [1,2,3,2,1]

Filter D:

Use
$$y(t) = 0.1 * x(t) + 0.4 * y(t - 1)$$

Question 3 $\frac{1+1+2}{3} = \frac{4}{3}$ $\sigma_{x} = \sqrt{\frac{1}{2}(1-\frac{4}{3})^2 + (1-\frac{4}{3})^2 + (2-\frac{4}{3})^2}$
1 4 5 14 = 3 5
= 1.5275
$M_{x_3} = \frac{5 + 079}{3} = \frac{14}{3} \qquad \sigma_{x_3} = \sqrt{\frac{1}{2} \left(\left(5 - \frac{14}{3} \right)^2 + \left(9 - \frac{14}{3} \right)^2 \right)}$
= 4.5092
X= -0.572 0.8707 0.0733
-0.572 -1.093 -1.0350
[1.161 0.2160 0.961]
$\bar{X}^{T} = \begin{bmatrix} -0.572 & -0.572 & 1.161 \end{bmatrix}$
0.8707 -1.093 0.2160
0.0733 -1.0350 0.961
777 2 2773 2 2773
$Cov(\bar{X}^TX) = -0.572 - 0.572 $
0.807 -1.043 0.2100 -3.372 -1.043 (.0500)
10.0.00 0.10.11 1.10 0.00.00
= 2,002 0.3779 1.663
0.3779 1.994 1.4027
1.6658 1.4027 2.001

```
Question 4

a) X_1 = [1, 2, N_0N, 3, 3, N_0N, 0, 2, -2, -2, 1, 5, N_0N, 9]

X_2 = [N_0N, -1, 2, N_0N, -2, -1, 3, 2, -2, N_0N, -4, 1]

Zero Padding

X_1 = [1, 2, 0, 3, 3, 0, 0, 2, -2, -2, 1, 5, 0, 9]

X_2 = [0, -1, 2, 0, -2, -1, 3, 2, -2, 0, -4, 1]

Sample & Hold

X_1 = [1, 2, 2, 3, 3, 3, 0, 2, -2, -2, 1, 5, 5, 9]

X_2 = [0, -1, 2, 2, -2, -1, 3, 2, -2, -2, -4, 1]

Lassuming this is zero

Interpolation

X_1 = [1, 2, 2, 5, 3, 3, 1, 5, 0, 2, -2, -2, 1, 5, 7, 9]

X_2 = [0, -1, 2, 0, -2, -1, 3, 2, -2, -3, -4, 1]

Lassuming this is zero
```

```
X1 = [1 \ 2 \ NaN \ 3 \ 3 \ NaN \ 0 \ 2 \ -2 \ -2 \ 1 \ 5 \ NaN \ 9];
X1 SH = [1 2 2 3 3 3 0 2 -2 -2 1 5 5 9];
X1 LI = [1 2 2.5 3 3 1.5 0 2 -2 -2 1 5 7 9];
X1 ZP = [1 2 0 3 3 0 0 2 -2 -2 1 5 0 9];
std X1 = std(X1, 'omitnan')
std X1 SH = std(X1 SH, 'omitnan')
std X1 LI = std(X1 LI, 'omitnan')
std X1 ZP = std(X1 ZP, 'omitnan')
X2 = [NaN -1 \ 2 \ NaN -2 -1 \ 3 \ 2 -2 \ NaN -4 \ 1];
X2 SH = [0 -1 2 2 -2 -1 3 2 -2 -2 -4 1];
X2 LI = [0 -1 2 0 -2 -1 3 2 -2 -3 -4 1];
X2 ZP = [0 -1 2 0 -2 -1 3 2 -2 0 -4 1];
std X2 = std(X2, 'omitnan')
std X2 SH = std(X2 SH, 'omitnan')
std X2 LI = std(X2 LI, 'omitnan')
std X2 ZP = std(X2 ZP, 'omitnan')
```


The blue boxes represent the standard deviations in the data with no data imputation.

The orange boxes represent the standard deviations with a sample and hold data imputation method.

The green boxes represent the standard deviations with a linear interpolation data imputation method.

The black boxes represent the standard deviations with a zero padding data imputation method.

As we can see when using the sample and hold method there is a decrease in standard deviation on both datasets. The same can be said for a linear interpolation data imputation method and a zero padding one.

However, for data set 1 a sample and hold method works the best, followed by zero padding and then lastly linear interpolation.

For data set 2 the zero padding method works the best followed by linear interpolation and then sample and hold.

Question 5
X=[13450111-13-256]
a) x = [1395010x2-13-2560]
Lpadding
x_max = [4,5,11,11,5,6]
b) x = [03 45,01 11 (-) 3 0 5 6,00]
A and duna
X-min = [1,0,-1,-2,-2,0]
c) X = [13450,1,11-13-25,600
1 paddina
λ -median = $[3,0,3,0]$
x-mean= $[2.6, 3.2, 3.2, 1.8]$
d) X=[134501,11-13,-256,]
X_range = [3,5,12,8]

Window	1	2	3	4	5	6
Max Value	4	5	11	11	5	6
Min Value	1	0	-1	-2	-2	0
Median	3	0	3	0		
Mean	2.6	3.2	3.2	1.8		
Range	3	5	12	8		

