COM1009 Introduction to Algorithms and Data Structures

Topic 04: Divide-and-Conquer

Reading: Section 2.3

(optional: lots more details and advanced material in Chapter 4)

Aims of this lecture

- To introduce the divide-and-conquer design paradigm.
- To introduce the MergeSort algorithm a recursive algorithm using divide-and-conquer.
- To show how to prove correctness of a recursive algorithm
- To show how to analyse the runtime of a recursive algorithm using recurrence equations.

Design Paradigms

- InsertionSort used an incremental approach:
 - Having sorted the subarray A[1..j-1], we inserted A[j] into its proper place, yielding the sorted subarray A[1..j].
 - Idea: incrementally build up a solution to the problem.
- Alternative design approach: divide-and-conquer
 - **1. Divide:** Break the problem into smaller subproblems, smaller instances of the original problem.
 - 2. Conquer: Solve these problems recursively.
 - **3. Combine** the solutions to subproblems into the solution for the original problem.
 - Coming up: correctness and runtimes for recursive algorithms.

► MergeSort

- MergeSort sorting using divide-and-conquer:
 - 1. Divide the n-element sequence to be sorted into two subsequences of n/2 elements each.
 - 2. Conquer: Sort the two subsequences recursively using MergeSort.
 - **3. Combine:** merge the two subsequences to produce the sorted answer.
 - The recursion stops when the sequence is just 1 element.
 - The key here is the procedure Merge
 - Tedious bit: copying elements between arrays.

Merge(A, p, q, r)

- Assume subarrays A[p ... q] and A[q + 1 ... r] are sorted.
- Copy these subarrays to new arrays L and R.
- Both L and R contain an additional element ∞ at the end ("sentinel"), so we don't have to check for end of array.
- Merge L and R back into A

Merge(A, p, q, r)

Runtime = $\Theta(n) + \Theta(n)$. $\Theta(1) = \Theta(n)$

```
1: n_1 = q - p + 1

2: n_2 = r - q

3: let L[1 ... n_1 + 1] and R[1 ... n_2 + 1] be new arrays

4: for i = 1 to n_1 do

5: L[i] = A[p + i - 1] \Theta(n)

6: for j = 1 to n_2 do

7: R[j] = A[q + j]

8: L[n_1 + 1] = \infty

9: R[n_2 + 1] = \infty
```

Set up arrays L and R (boring)

- 10: i = 1
- 11: j = 1
- 12: for k = p to r do lterate $\Theta(n)$ times
- 13: if $L[i] \leq R[j]$ then
- 14: A[k] = L[i]
- 15: i = i + 1
- 16: **else**
- 17: A[k] = R[j]
- 18: j = j + 1

 $\Theta(1)$ each time

Actual merge

What does this look like in practice? (see Mike's Videos)

► Correctness of Merge: The Invariant

- Loop invariant: At the start of the k'th iteration of the merge
 - the subarray $A[p \dots k-1]$ contains the k-p smallest elements of $L[1 \dots n_1+1]$ and $R[1 \dots n_2+1]$, in sorted order and
 - L[i] and R[j] are the smallest elements of their arrays that have not been copied back to A.

Correctness of Merge: Initialisation

• Loop invariant: the subarray A[p ... k - 1] contains the k - p smallest elements of $L[1 ... n_1 + 1]$ and $R[1 ... n_2 + 1]$, in sorted order; and L[i] and R[j] are the smallest elements of their arrays that have not been copied back to A.

▶ Correctness of Merge: Maintenance

end of
one iteration
=
start of
next iteration

▶ Correctness of Merge: Termination

• Loop invariant: the subarray A[p ... k - 1] contains the k - p smallest elements of $L[1 ... n_1 + 1]$ and $R[1 ... n_2 + 1]$, in sorted order; and L[i] and R[j] are the smallest elements of their arrays that have not been copied back to A.

And now everything has been sorted correctly

MergeSort: The Complete Algorithm

Notation: $\lfloor x \rfloor$ means "floor of x" (rounding down).

```
MERGESORT(A, p, r)
```

```
1: if p < r then
2: q = |(p+r)/2|
```

- 3: MERGESORT(A, p, q)
- 4: MERGESORT(A, q + 1, r)
- 5: MERGE(A, p, q, r)

Initial call: MERGESORT(A, 1, A.length)

► MergeSort: Runtime Analysis

- Looking for time T(n): time for MergeSort to sort n elements.
- Assume for simplicity that n is an exact power of 2.

$\overline{\mathrm{MergeSort}(A,p,r)}$		Time	Time for
1: if $p < r$ then		$\Theta(1)$	(1) / MergeSort $)$
2:	$q = \lfloor (p+r)/2 \rfloor$	$\Theta(1)$	to sort <i>n/2</i> elements.
3:	MergeSort(A, p, q)	T(n/2)	elements.
4:	MergeSort(A, q + 1, r)	T(n/2)	
5:	Merge(A, p, q, r)	$\Theta(n)$	

Yields a recurrence equation where T(n) depends on T(n/2)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 2^0 = 1\\ 2T(n/2) + \Theta(n) & \text{if } n = 2^k, \text{ for } k \ge 1 \end{cases}$$

• "The time for MergeSort to sort n elements is twice the time for MergeSort to sort n/2 elements plus $\Theta(n)$ time (for Merge)."

► How to Solve a Recurrence Equation

$$T(n) = \begin{cases} d & \text{if } n = 2^{0} \\ 2T(n/2) + cn & \text{if } n = 2^{k}, \text{ for } k \ge 1 \end{cases}$$

- 1. Substitution method (Sec 4.3): guess a solution and verify using induction (over k).
 - Tutorial exercise.
- 2. Draw a recursion tree (Sec 4.4), add times across the tree.
- 3. Use the **Master Theorem** (Sec 4.5) to solve a general recurrence equation in the shape of:

$$T(n) = aT(n/b) + f(n).$$

(this is out of the scope of this module and not examinable)

Runtime Visualised as Recursion Tree (d=c)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 2^0 = 1\\ 2T(n/2) + \Theta(n) & \text{if } n = 2^k, \text{ for } k \ge 1 \end{cases}$$

$$T(n) = \begin{cases} d & \text{if } n = 2^0 \\ 2T(n/2) + cn & \text{if } n = 2^k, \text{ for } k \geq 1 \end{cases} \qquad \text{(in our case d} \approx c)$$

COM1009 Introduction to Algorithms and Data Structures

"lg" here means log₂

Comparison with InsertionSort

- MergeSort always runs in time $\Theta(n \log n)$.
- Way better than worst case and average case of $\Theta(n^2)$ for InsertionSort.
- Worse than the best-case time $\Theta(n)$ of InsertionSort.
 - InsertionSort might be faster if your array is almost sorted.
- MergeSort needs more space than InsertionSort:
 - MergeSort always stores $\Omega(n)$ elements outside the input.
 - InsertionSort only needs O(1) additional space.
 - We say that InsertionSort sorts in place:

A sorting algorithm sorts in place if it only uses O(1) additional space.

▶Summary

- The divide-and-conquer design paradigm
 - Divides a problem into smaller sub-problems of the same kind
 - Solves these sub-problems recursively, and then
 - Combines these solutions to an overall solution.
- MergeSort uses divide-and-conquer to sort in time $\Theta(n \log n)$ (best case = worst case).
- It's possible to sort n elements in worst-case time $\Theta(n \log n)$.
- Drawback: MergeSort does not sort in place.
 - "In place": sorting using only O(1) additional space.
- The runtime of recursive algorithms can be analysed by solving a **recurrence equation**.