Math 310

Homework 7

Due: 10/9/2024

Name: Gianluca Crescenzo

Exercise 1. Let $D \subseteq \mathbb{R}$ and suppose $c \in \mathbb{R}$. Show that the following are equivalent:

- (i) c is a cluster point of D;
- (ii) There is a sequence $(x_n)_n$ in $D \setminus \{c\}$ with $(x_n)_n \to c$.

Proof. (\Rightarrow) Let c be a cluster point of D. By definition:

$$(\forall \delta > 0)(\dot{V}_{\delta}(c) \cap D \neq \emptyset).$$

By induction, we have that $x_n \in \dot{V}_{\frac{1}{n}}(c) \cap D$. Hence $x_n \neq c$, $x_n \in D$, and $0 < |x_n - c| < \frac{1}{n}$, giving $(x_n)_n \to c$.

(\Leftarrow) Let $(x_n)_n \in (D \setminus \{c\})^\mathbb{N}$ with $(x_n)_n \to c$. Let $\delta > 0$ be given. Then for N large, $n \ge N$ implies $0 < |x_n - c| < \varepsilon$. Whence $x_N \in \dot{V}_\delta(c) \cap D$. Thus c is a cluster point.

Exercise 2. Show that f can have at most one limit at c.

Proof. Suppose towards contradiction that f has more than one limit, that is,

$$\lim_{x \to c} f = L_1, \text{ and}$$

$$\lim_{x\to c}f=L_2.$$

where $L_1 \neq L_2$. Then for all sequences $(x_n)_n$ in D, $(x_n)_n \to c$ implies $(f(x_n))_n \to L_1$ and $(f(x_n))_n \to L_2$. This is a contradiction, as sequences can only have at most one limit. Thus f must have at most one limit.

Exercise 3. Show that the following are equivalent:

- (i) $\lim_{x \to c} f = L$;
- (ii) For every sequence $(x_n)_n$ in $D \setminus \{c\}$ satisfying $(x_n)_n \to c$, we have $(f(x_n))_n \to L$.

Proof. (\Rightarrow) Suppose $\lim_{x\to c} f(x) = L$. Let $(x_n)_n$ be in D with $x_n \ne c$ and $(x_n)_n \to c$. Given $\epsilon > 0$, we know there exists $\delta > 0$ such that $x \in D$ and $0 < |x-c| < \delta$ implies $|f(x)-L| < \epsilon$. We know there exists some $N \in \mathbb{N}$ with $n \ge N$ implying $|x_n-c| < \delta$. Whence $|f(x_n)-L| < \epsilon$; i.e., $(f(x_n))_n \to L$.

(⇐) Towards a contradiction, suppose that for every sequence $(x_n)_n$ in D such that $x_n \neq c$ and $(x_n)_n \rightarrow c$, it holds that $(f(x_n))_n \rightarrow L$, yet $\lim_{x\rightarrow c} f(x) \neq L$. Then by definition:

$$(\exists \varepsilon_0 > 0) (\forall \delta > 0) \ni (x \in \dot{V}_\delta(c) \cap D \ \land \ f(x) \notin V_{\varepsilon_0}(L)).$$

1

So for each $\delta = \frac{1}{n}$, we can find $x_n \in \dot{V}_{\frac{1}{n}}(c) \cap D$ and $f(x_n) \notin V_{\varepsilon_0}(L)$, or equivalently $(x_n)_n \to c$ and $(f(x_n))_n \to L$. This is a contradiction, since $(x_n)_n \to c$ implies $(f(x_n))_n \to L$. This establishes that $\lim_{x \to c} f(x) = L$.

Exercise 4. If $\lim_{x\to c} f = L$ exists, show that there is a $\delta > 0$ such that:

$$\sup_{0<|x-c|<\delta}|f(x)|<\infty,$$

that is, f is bounded on a deleted neighborhood of c.

Proof. Let $\epsilon = 1$. Then for all $x \in \dot{V}_{\delta}(c) \cap D$, $0 < |x - c| < \delta$ implies:

$$|f(x)| = |f(x) - L + L|$$

$$\leq |f(x) - L| + |L|$$

$$< 1 + |L|$$

$$< \infty.$$

Whence $\sup_{0 < |x-c| < \delta} |f(x)| = 1 + |L| < \infty$.

Exercise 5. Establish the following limits.

(a)
$$\lim_{x \to 1} \frac{3x}{1+x} = \frac{3}{2}$$
.

Proof. Observe that:

$$|f(x) - L| = \left| \frac{3x}{1+x} - \frac{3}{2} \right|$$
$$= \frac{3}{2} \left| \frac{x-1}{x+1} \right|.$$

If $|x-1| < \frac{1}{2}$, then $\frac{1}{2} < x < \frac{3}{2}$ implies $\frac{2}{3} > \frac{1}{x+1} > \frac{2}{5}$. Thus:

$$\frac{3}{2} \left| \frac{x-1}{x+1} \right| < \frac{3}{2} \cdot \frac{2}{3} |x-1|$$
$$= |x-1|.$$

Formally, given $\epsilon > 0$, let $\delta = \min \left\{ \frac{1}{2}, \epsilon \right\}$. If $0 < |x - 1| < \delta$, then by the work above $|f(x) - L| < \epsilon$.

(b)
$$\lim_{x\to 6} \frac{x^2 - 3x}{x+3} = 2.$$

Proof. Observe that:

$$|f(x) - L| = \left| \frac{x^2 - 3x}{x + 3} - 2 \right|$$
$$= \left| \frac{x^2 - 5x - 6}{x + 3} \right|$$
$$= \left| \frac{x + 1}{x + 3} \right| \cdot |x - 6|.$$

If |x-6| < 1, then 6 < x+1 < 8 and $\frac{1}{8} > \frac{1}{x+1} > \frac{1}{11}$. Thus:

$$\left| \frac{x+1}{x+3} \right| \cdot |x-6| < \frac{8}{8}|x-6|$$
$$= |x-6|.$$

Formally, given $\epsilon > 0$, let $\delta = \min\{1, \epsilon\}$. If $0 < |x - 6| < \delta$, then by the work above $|f(x) - L| < \epsilon$.

(c) $\lim_{x \to 0} x \mathbb{1}_{\mathbb{Q}}(x) = 0.$

Proof. Let $\epsilon > 0$ be given. Let $\delta = \epsilon$. If $0 < |x - 0| < \delta$, then $0 < |x| < \epsilon$. Whence $|f(x) = 0||f(x)| \le |x| < \epsilon$.

(d) $\lim_{x \to 0} \frac{x^2}{|x|} = 0.$

Proof. Observe that:

$$\left| \frac{x^2}{|x|} - 0 \right| = \frac{|x|^2}{|x|}$$
$$= |x|.$$

Given $\epsilon > 0$, set $\delta = \epsilon$. If $0 < |x - 0| < \delta$, then $\left| \frac{x^2}{|x|} - 0 \right| = |x| < \delta = \epsilon$.

Exercise 6. For which values of $k \in \mathbb{N}_0$ does:

$$\lim_{x \to 0} x^k \sin\left(\frac{1}{x}\right)$$

exist?

Proof. For $k \ge 1$, observe that:

$$-x^{k} \leq x^{k} \sin\left(\frac{1}{x}\right) \leq x^{k}$$

$$\iff$$

$$\lim_{x \to 0} -x^{k} \leq \lim_{x \to 0} x^{k} \sin\left(\frac{1}{x}\right) \leq \lim_{x \to 0} x^{k}$$

$$\iff$$

$$0 \leq \lim_{x \to 0} x^{k} \sin\left(\frac{1}{x}\right) \leq 0.$$

So by the Squeeze Theorem, $\lim_{x\to 0} x^k \sin\left(\frac{1}{x}\right) = 0$.

If k = 0, then $\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$ does not exist.

Exercise 7. Assume $f(x) \ge 0$ for all $x \in D$ and suppose $\lim_{x\to c} f := L$ exists. Show that $L \ge 0$ and that:

$$\lim_{x \to c} \sqrt{f} = \sqrt{L}.$$

Proof. Since $\lim_{x\to c} f = L$ exists:

$$(\forall (x_n)_n \in (D \setminus \{c\})^N)((x_n)_n \to c \implies (f(x_n))_n \to L).$$

Since $f(x) \ge 0$ for all x, $L \ge 0$. Moreover, $(f(x_n))_n \to L$ implies $\left(\sqrt{f(x_n)}\right)_n \to \sqrt{L}$. Thus $\lim_{t \to c} \sqrt{f} = \sqrt{L}$.

Exercise 8. Assume $f : \mathbb{R} \to \mathbb{R}$ is such that f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If $\lim_{x \to 0} f := L$ exists, show that L = 0 and show that $\lim_{x \to c} f$ exists for all $c \in \mathbb{R}$.

Proof. Since f(x + y) = f(x) + f(y), observe that:

$$f(1) = f\left(n \cdot \frac{1}{n}\right)$$
$$= n \cdot f\left(\frac{1}{n}\right).$$

So $f\left(\frac{1}{n}\right) = \frac{1}{n}f(1)$. Since $\lim_{x\to 0} f = L$ exists, $\left(\frac{1}{n}\right)_n \to 0$ implies $\left(f\left(\frac{1}{n}\right)\right)_n \to L$. But $\left(f\left(\frac{1}{n}\right)\right)_n = \left(\frac{1}{n}f(1)\right)_n \to 0$. Thus L = 0.

Let $(x_n)_n \to c$, $x_n \neq c$. Then $(x_n - c)_n \to 0$. Observe that:

$$(f(x_n))_n = (f(x_n - c + c))_n$$

$$= (f(x_n - c) + f(c))_n$$

$$= (f(x_n - c))_n + (f(c))_n$$

$$\xrightarrow{n \to \infty} 0 + f(c)$$

$$= f(c).$$

Thus $\lim_{x\to c} f = f(c)$ exists.

Exercise 10. Suppose $f(0, \infty) \to \mathbb{R}$. Show that the following are equivalent:

- (i) $\lim_{x \to \infty} f = L$ (where L can be ∞);
- (ii) For every sequence $(x_n)_n$ in $(0, \infty)$ with $(x_n)_n \to \infty$ we have $(f(x_n))_n \to L$.

Proof. (\Rightarrow) We proceed by cases.

Case 1: L < ∞ . Let ε > 0 be given. Since $\liminf_{x\to\infty} f = L$ exists, there exists α > 0 such that $x \ge \alpha$ implies $|f(x) - L| < \varepsilon$. Since $(x_n)_n \to \infty$, there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $x_n \ge \alpha$. Whence $|f(x_n) - L| < \varepsilon$, giving $(f(x_n))_n \to L$.

Case 2: L = ∞ . Let M > 0 be given. Since $\lim_{x\to\infty} f = \infty$ exists, there exists $\alpha > 0$ such that $x \ge \alpha$ implies $f(x) \ge M$. Since $(x_n)_n \to \infty$, there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $x_n \ge \alpha$. Whence $f(x_n) \ge M$, giving $(f(x_n))_n \to \infty$.

 (\Leftarrow) Suppose towards contradiction $\lim_{x\to\infty} f \neq L$. We proceed by cases.

Case 1: $L < \infty$. Then by the sequential definition of limits:

$$(\exists (x_n)_n \in (0,\infty)^{\mathbb{N}})((x_n)_n \to \infty \land (f(x_n))_n \nrightarrow L).$$

But this contradicts our assumption that for all $(x_n)_n$, $(x_n)_n \to \infty$ implies $(f(x_n))_n \to L$.

Case 2: $L = \infty$. Then by the sequential definition of limits:

$$(\exists (x_n)_n \in (0,\infty)^{\mathbb{N}})((x_n)_n \to \infty \land f(x_n) \leqslant M)$$

But this contradicts our assumption that for all $(x_n)_n$, $(x_n)_n \to \infty$ implies $(f(x_n))_n \to \infty$.

Exercise 11. If $f:(\alpha,\infty)\to\mathbb{R}$ is such that $\lim_{x\to\infty}xf(x):=L$ exists, show that:

$$\lim_{x \to \infty} f(x) = 0.$$

Proof. Let $(x_n)_n \to \infty$. We want to show that $(f(x_n))_n \to 0$.

We know that $(x_n f(x_n))_n \to L$, so it is bounded. That is, there exists c > 0 such that $|x_n f(x_n)| \le c$ for all n. Observe that:

$$|f(x_n)| = \left| \frac{x_n f(x_n)}{x_n} \right|$$

$$\leq \frac{c}{|x_n|}.$$

Since $\left(\frac{c}{|x_n|}\right)_n \to 0$, we have $(f(x_n))_n \to 0$. Thus, by Exercise 10, $\lim_{x\to\infty} f(x) = 0$.

Exercise 12. Suppose $f, g: (0, \infty) \to \mathbb{R}$ are such that $\lim_{x\to\infty} f:= L > 0$, and $\lim_{x\to\infty} g = \infty$. Show that $\lim_{x\to\infty} fg = \infty$. Does this hold if L = 0 as well?

Proof. Let $(x_n)_n \to \infty$. Let M > 0 be given. There exists N_1 such that $n \ge N_1$ implies $f(x) \ge \frac{L}{2}$. There exists N_2 such that $n \ge N_2$ implies $g(x) \ge \frac{2M}{L}$. So for $n \ge \max\{N_1, N_2\}$, $f(x_n)g(x_n) \ge \frac{L}{2}\frac{2M}{L} = M$.

Note this does not hold for L = 0. Take $f(x) = \frac{1}{x}$ and g(x) = x. Then $\lim_{x \to \infty} fg = 1$.