Akıllı Termostat Deneyi

Deneyin Amacı

Bu deneyde, sıcaklık değerlerini ölçerek bir ısıtıcı veya soğutucunun kontrol edilmesi sağlanacaktır. LM35 sıcaklık sensöründen alınan veriler, LCD ekranında görüntülenecek ve bir röle yardımıyla ısıtıcı/sogutucu devreye girecektir. Deney, Arduino'nun dijital ve analog pinlerini, sıcaklık sensörü, LCD ekran, röle ve transistör gibi temel elektronik bileşenleri birleştirerek bir akıllı sistemin nasıl çalıştığını göstermeyi amaçlar.

Devrede Kullanılan Elemanlar ve Görevleri

1. Arduino UNO

- Görevi:
- Sistemin ana kontrol birimidir. Sıcaklık sensöründen gelen verileri işler, LCD ekrana yazdırır ve röleyi kontrol eder.
 - o Analog pinden sıcaklık verisi alır.
 - o Dijital çıkışları ile röleye ve LCD ekrana sinyal gönderir.

2. LM35 Sıcaklık Sensörü

• Görevi:

Çevrenin sıcaklığını ölçer ve analog bir voltaj sinyali olarak Arduino'ya iletir.

- o 10 mV/°C hassasiyete sahiptir.
- o Ölçülen sıcaklık, Arduino tarafından Celsius'a dönüştürülür.

3. 16x2 LCD Ekran

• Görevi:

Kullanıcıya sıcaklık bilgisini ve sistem durumunu gösterir (ör. "Temp: 23.5°C", "Heater ON").

o LCD ekran, Arduino üzerinden kontrol edilir ve 16 sütun, 2 satır şeklinde bilgi görüntüler.

4. Röle Modülü

• Görevi:

Yüksek güç gerektiren cihazları (ör. ısıtıcı veya soğutucu) kontrol etmek için düşük güçle çalışan bir anahtar görevi görür.

o Arduino'dan gelen sinyale göre elektrik devresini açar veya kapatır.

5. NPN Transistör (ör. BC547)

• Görevi:

Röleyi kontrol etmek için Arduino'nun çıkış voltajını yükseltir.

o Arduino'nun dijital çıkışı doğrudan röleyi çalıştırmaya yeterli olmadığından, transistör bir anahtar gibi davranır.

6. 10k Ohm Direnç

• Görevi:

Transistörün tabanına gelen akımı sınırlayarak transistörün doğru çalışmasını sağlar.

o Transistörün korunması ve doğru anahtarlama işleminin yapılması için kullanılır.

o

Devre Elemanlarının Bağlantıları Ve Deneyin Yapılışı

Devre elemanları seçilerek deneye başlanır.

1. Arduino ile LM35 Bağlantısı

- LM35'in VCC pini (1. pin): Arduino'nun 5V çıkışına bağlanır.
- LM35'in GND pini (3. pin): Arduino'nun GND pinine bağlanır.
- LM35'in VOUT pini (2. pin): Arduino'nun analog giriş pini olan A0'a bağlanır.

2. Arduino ile LCD Ekran Bağlantısı

- LCD'nin VSS pini (1. pin): Arduino'nun GND pinine bağlanır.
- LCD'nin VDD pini (2. pin): Arduino'nun 5V çıkışına bağlanır.
- **LCD'nin RW pini (5. pin):** Arduino'nun GND pinine bağlanır (sadece yazma modunda kullanılacağı için).
- LCD'nin RS pini (4. pin): Arduino'nun dijital pin 2'sine bağlanır.
- LCD'nin E pini (6. pin): Arduino'nun dijital pin 3'üne bağlanır.
- LCD'nin D4 pini (11. pin): Arduino'nun dijital pin 4'üne bağlanır.
- LCD'nin D5 pini (12. pin): Arduino'nun dijital pin 5'ine bağlanır.
- LCD'nin D6 pini (13. pin): Arduino'nun dijital pin 6'sına bağlanır.
- LCD'nin D7 pini (14. pin): Arduino'nun dijital pin 7'sine bağlanır.

Arduino ile Röle ve Transistör Bağlantısı

- Rölenin GND pini: Arduino'nun GND pinine bağlanır.
- **Rölenin VCC pini:** Harici bir 5V güç kaynağına veya Arduino'nun 5V pinine bağlanır (röle modülüne bağlı olarak).
- Rölenin IN pini: NPN transistörün kolektör ucuna bağlanır.
- **NPN Transistörün Tabanı:** Arduino'nun dijital pin **8**'ine, 10k direnç üzerinden bağlanır.
- NPN Transistörün Emitörü: GND'ye bağlanır.

Çalışma Prensibi

1. Sıcaklık Okuma:

2. LM35, sıcaklığı analog bir voltaj değeri olarak ölçer. Arduino'nun analog pinine bağlı LM35, sıcaklık değerini okur ve Celsius'a dönüştürür.

3. LCD Ekran:

Ölçülen sıcaklık değeri, LCD ekranın ilk satırında görüntülenir.

4. Röle Kontrolü:

- a. Sıcaklık 20°C'nin altına düştüğünde, röle aktif hale gelir ve "Heater ON" mesajı görüntülenir.
- b. Sıcaklık **25°C'nin üzerine çıktığında**, röle pasif hale gelir ve "Cooler ON" mesajı görüntülenir.
- c. Aralıkta kaldığında ise "System Idle" mesajı gösterilir.

5. Kod Akışı:

Arduino, sıcaklık ölçümü ve röle kontrolünü 1 saniyelik döngülerle tekrar eder.

Deney kodları ve açıklaması

1. Kütüphane ve Değişken Tanımlamaları

#include <LiquidCrystal.h>

- Açıklama:
- Arduino'nun 16x2 LCD ekranını kontrol etmek için kullanılan standart bir kütüphanedir. LCD ile iletişim kurmayı sağlar.

```
const int rs=2, en = 3, d4 = 4, d5 = 5, d6 = 6, d7 = 7;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
```

Açıklama:

- o **rs, en, d4, d5, d6, d7:** LCD'nin dijital pinlerle bağlantısını temsil eder.
- o **LiquidCrystal 1cd:** LCD'nin bu pinler üzerinden kontrol edilmesi için bir nesne oluşturur.

```
float temp;
const int relayPin = 8;
```

• Açıklama:

o **temp:** LM35'ten alınan sıcaklık değerini saklayan bir değişken.

o relayPin: Röle modülüne bağlı olan Arduino dijital pinini tanımlar.

2. setup() Fonksiyonu

```
void setup() {
   Serial.begin(9600);
   analogReference(INTERNAL);
   lcd.begin(16, 2);
   pinMode(relayPin, OUTPUT);
   digitalWrite(relayPin, LOW);
}
```

Açıklama:

o Serial.begin(9600);

Arduino'nun seri haberleşme protokolünü başlatır. Sıcaklık verileri seri port üzerinden gözlemlenebilir.

o analogReference(INTERNAL);

LM35 için referans voltajını iç referans (1.1V) olarak ayarlar. Bu, düşük voltajlı sensörler için daha hassas ölçüm sağlar.

o lcd.begin(16, 2);

16 sütun ve 2 satırdan oluşan LCD ekranı başlatır.

o pinMode(relayPin, OUTPUT);

Röle pinini çıkış olarak ayarlar.

o digitalWrite(relayPin, LOW);

Rölenin başlangıçta kapalı (pasif) olmasını sağlar.

3. loop() Fonksiyonu

Sıcaklık Verisinin Okunması ve Hesaplanması

```
temp = analogRead(A0);
temp = temp * 1100 / (1024 * 10);
```

Açıklama:

o analogRead(A0);

LM35'ten gelen analog sıcaklık verisini okur. Bu veri 0 ile 1023 arasında bir değerdir.

```
o temp * 1100 / (1024 * 10);
```

Okunan analog veriyi sıcaklığa dönüştürür:

- ♣ LM35, sıcaklık başına 10 mV üretir.
- Arduino'nun ADC'si (Analog-Dijital Dönüştürücü), 1024 adımlık bir çözünürlüğe sahiptir.
- 1.1V referans kullanıldığından, her bir adım yaklaşık 1.074 mV'a eşittir.

Bu formül ile sıcaklık °C cinsinden hesaplanır.

LCD Ekranda Sıcaklık Bilgisinin Gösterilmesi

Sıcaklık birimini gösterir ve ekranın temiz görünmesini sağlar.

Röle Kontrolü ve Sistem Durumu

```
if (temp < 20) {
    digitalWrite(relayPin, HIGH);
    lcd.setCursor(0, 1);
    lcd.print("Heater ON ");
} else if (temp > 25) {
    digitalWrite(relayPin, LOW);
    lcd.setCursor(0, 1);
    lcd.print("Cooler ON ");
} else {
    lcd.setCursor(0, 1);
    lcd.print("System Idle ");
    digitalWrite(relayPin, LOW);
```

```
}
```

Açıklama:

Bu bölüm, sıcaklığa göre röleyi kontrol eder ve durumu LCD ekranına yazar.

- o Sıcaklık 20°C'nin altındaysa:
 - ♣ digitalWrite(relayPin, HIGH);

Röle aktif hale getirilir (örneğin, bir ısıtıcı çalıştırılır).

. lcd.print("Heater ON");

LCD ekranın 2. satırına "Heater ON" yazılır.

- o Sıcaklık 25°C'nin üzerindeyse:
 - ♣ digitalWrite(relayPin, LOW);

Röle pasif hale getirilir (örneğin, ısıtıcı kapatılır).

. lcd.print("Cooler ON");

LCD ekranın 2. satırına "Cooler ON" yazılır.

- o Sıcaklık 20°C ile 25°C arasındaysa:
 - Röle kapalı tutulur ve sistemin bekleme durumunda olduğu belirtilir: lcd.print("System Idle");

Döngü ve Ekranın Temizlenmesi

```
delay(1000);
lcd.clear();
```

- Açıklama:
 - o delay(1000);

Kodun her döngüde 1 saniye beklemesini sağlar.

o lcd.clear();

LCD ekranı bir sonraki ölçüm döngüsü için temizler.