Technische Universität München

Optimisation Geometry Paper Review

Emre Faik Gökce, Hamza Imamovic, Wen Perng

Electrical Engineering

15 July 2024

- 1 Introduction
 - Motivation Fibre Bundle Optimisation Problem
- 2 Real-Time Algorithm
- **3** Conclusion

Classic Optimisation

- Developed to scale well.
- One-time use.

Manifold Optimisation

- Leverage topology of the family of cost functions.
- Offline computation for the whole family of functions.
- lacktriangle Online computation for specific pair of parameters heta.

we are interested in given a θ :

$$\left\{x_* \in X \mid f(x_*; \theta) = \min_x f(x; \theta)\right\}$$

Problem Formulation

Given input $\theta \in \Theta$ algorithm returns $g(\theta) \in \Theta \times X$

$$f(g(\theta)) = \min_{x} f(x; \theta)$$

BUT hard to find $g(\theta)$ explicitly

Simplest example:

$$f(x; \theta) = h(x - \theta)$$

 $x = g(\theta) = x_* + \theta$

Definition 1: Fibre Bundle Optimisation Problem

Let $\mathcal M$ be a smooth fibre bundle over the base space Θ with typical fibre X and canonical projection $\pi:\mathcal M\to\Theta$. Let $f:\mathcal M\to\mathbb R$ be a smooth function. The fibre bundle optimisation problem is to devise an algorithm computing an optimising function $g:\Theta\to\mathcal M$ that satisfies:

- $(\pi \circ g)(\theta) = \theta \text{ for all } \theta \in \Theta.$
- $(f \circ g)(\theta) = \min_{p \in \pi^{-1}(\theta)} f(p) \text{ for all } \theta \in \Theta.$

- 1 Introduction
- 2 Real-Time Algorithm
 - Morse Functions Homotopy-Based Algorithm Lifting of Path
- **3** Conclusion

During optimisation, we would like to work with nice functions that guarantees convergence to critical points.

Morse Function

A function is Morse if all its critical points are non-degenerate, i.e. the critical points are isolated.

Def 10. Fibre-Wise Morse Function

A function $f: \mathcal{M} \to \mathbb{R}$ on the fibre bundle $\pi: \mathcal{M} \to \Theta$ is fibre-wise Morse if its restriction on a fibre $f|_{\pi^{-1}(\theta)}$ is Morse.

Lemma 12

The set N of fibre-wise critical points is a submanifold of \mathcal{M} with the same dimension as Θ , intersecting each fibre transversally.

Fibre Bundle Optimisation Problem on a Torus

Consider base $\Theta \cong S^1$ and fibre $X \cong S^1$. A function $f: \Theta \times X \to \mathbb{R}$ has fibre-wise critical points N. N intersects each fibre an equal amount of times: $N \cap \pi^{-1}(\theta)$ is the same size for all θ .

Each connected component of N doesn't change index.

Preparation stage:

- 1. Produce list of connected components N_i of N. Let \tilde{N} be the union of the local minimas in N_i .
- 2. Choose a set of starting θ_i 's, and find $\tilde{N} \cap \pi^{-1}(\theta_i)$.
- 3. Compute bounds on certain higher derivatives.

Optimisation stage: when a θ is given,

- 1. Determine a starting θ_i and curve $\gamma:[0,1]\to\Theta$ with $\gamma(0)=\theta_i$ and $\gamma(1)=\theta$.
- 2. For each $p \in \tilde{N} \cap \pi^{-1}(\theta_i)$, lift γ to $\tilde{\gamma}: [0,1] \to \tilde{N}$ such that $\tilde{\gamma}(0) = p$. The lifting uses the bounds.
- 3. Analyze all $\tilde{\gamma}(1)$ to find global minima.

Topological complexity based on the amount of N_i and $\tilde{\gamma}_i$ tracked.

Lifting is not so easy, we need an approximating method.

Definition 15: Approximate Critical Point

Let $h: \mathbb{R}^n \to \mathbb{R}$ be a smooth function with a non-degenerate critical point at the origin: $\mathsf{D}h(0) = 0$ and $\mathsf{D}^2h(0)$ is non-singular.

A point x is an approximate critical point if, when started at $x_0 = x$, the Newton iterates x_k at least double in accuracy per iteration: $||x_{k+1}|| \le \frac{1}{2}||x_k||$.

Importance for the homotopy-based algorithm

If a bound $\rho>0$ can be calculated, such that every point in interval $[-\rho,\rho]$ are approximate critical points are approximate critical points, a fast approximation can be guaranteed.

For each $p \in \tilde{N} \cap \pi^{-1}(\theta_i)$:

- 1. Start from p_0 of $\gamma(t_0=0)$
- 2. Use Newton's method to get to \hat{p}_1 of $\gamma(t_1)$
- 3. Repeat 2 until \hat{p}_N of $\gamma(t_N=1)$

The advantages of this algorithm:

- 1. p_0 's are pre-calculated
- 2. t_i are so defined that \hat{p}_i 's are approximate critical points of p_{i+1} 's
- 3. 1 and 2 guarantees that p_N can be approximated efficiently

- 1 Introduction
- 2 Real-Time Algorithm
- **3** Conclusion

1. Real-time optimisation problems are formulated as fibre bundle optimisation problems.

$$f:\Theta\times X\to\mathbb{R}$$

- 2. The fibre-wise critical points lie on a finite number of submanifolds N_i , which allow a smooth search through lifts of γ .
- 3. It is possible to pre-calculate critical points of a set $\{\theta_1,...,\theta_n\}$, along with the bounds for approximate critical points, so that the real-time optimisation can be done efficiently.

- [Man12] Jonathan H. Manton. *Optimisation Geometry*. 2012. arXiv: 1212.1775 [math.OC]. URL: https://arxiv.org/abs/1212.1775.
- [PM17] Michael Pauley and Jonathan H Manton. "Optimisation geometry and its implications for optimisation algorithms". In: 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). 2017, pp. 1–5. DOI: 10.1109/CAMSAP.2017.8313169.