Methods for solving nonlinear equations

$|\mathbf{A}|$

- 1. Approximate $\sqrt[4]{2}$ using 2 iterations of Newton's method and the starting point $x_0 = 1$. (Hint: You may use the equation $x^4 = 2$).
- 2. Compute the next two iterates of the secant, false position and bisection methods to solve the equation $x^3 2x^2 = 2$, using $x_0 = 1$, $x_1 = 4$.
- 3. Show that the function $g(x) = 2 + \frac{5}{x^2}$ has a unique fixed point in the interval $\left[\frac{5}{2}, 3\right]$. How many iterations are necessary to find a fixed point that is accurate to within 10^{-3} ? Starting with $x_0 = 3$, compute x_1 and x_2 .

Facultative:

• Consider Newton's method for finding the positive square root of A > 0. Assuming that $x_0 > 0$, $x_0 \neq \sqrt{A}$, show that the sequence of iterates can be written as

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{A}{x_n} \right).$$

• Suppose that a is a zero of multiplicity m of f, where $f^{(m)}$ is continuous on an open interval that contains a. Show that the following fixed-point method has g'(a) = 0:

$$g(x) = x - m \frac{f(x)}{f'(x)}.$$

В

- 1. Approximate $\sqrt[4]{3}$ using 2 iterations of Newton's method and the starting point $x_0 = 1$. (Hint: You may use the equation $x^4 = 3$).
- 2. Compute the next two iterates of the secant, false position and bisection methods to solve the equation $x^3 + 3x^2 = 1$, using $x_0 = -3$, $x_1 = -2$.
- 3. Show that the function $g(x) = 2 + \frac{5}{x^2}$ has a unique fixed point in the interval $[\frac{5}{2}, 3]$. How many iterations are necessary to find a fixed point that is accurate to within 10^{-3} ? Starting with $x_0 = 3$, compute x_1 and x_2 .

Facultative:

• Consider Newton's method for finding the positive square root of A > 0. Assuming that $x_0 > 0$, $x_0 \neq \sqrt{A}$, show that the sequence of iterates can be written as

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{A}{x_n} \right).$$

• Suppose that a is a zero of multiplicity m of f, where $f^{(m)}$ is continuous on an open interval that contains a. Show that the following fixed-point method has g'(a) = 0:

$$g(x) = x - m \frac{f(x)}{f'(x)}.$$