Билет № 19. Теорема об обратной функции

Лемма. $f:X \to Y$ обратима на X, когда f - инъекция и сюръекция.

Доказательство:

- 1) Пусть f инъекция и сюръекция. Докажем, что она обратима. Рассмотрим $y \in Y$. Т.к. f сюръекция, то существует $x \in X$: f(x) = y. Но т.к. f инъекция, то этот x единственен. Определим $f^{-1}(y) = x$.
- 2) Пусть f обратима. Существует $f^{-1}: Y \to X \Rightarrow f$ сюръекция. Для любого $y \in Y$: существует $x = f^{-1}(y)$. Тогда $f(f^{-1}(y)) = y$. Покажем, что f инъекция. Возьмем $x_1, x_2 \in X$: $f(x_1) = f(x_2) = y \Rightarrow f^{-1}(f(x_1)) = f^{-1}(f(x_2)) = f^{-1}(y)$. $\Rightarrow x_1 = x_2$.

Теорема. $X \subset \mathbb{R}, X$ - непустое множество. f строго монотонна на X. Тогда существует f^{-1} , которая имеет тот же характер монотонности на f(X) = Y.

Доказательство: докажем для строго возрастающей, для строго убывающей аналогично. f - инъекция $\Rightarrow x_1 < x_2$, $f(x_1) < f(x_2)$. Т.к. Y - образ, то f - сюръекция на Y. Тогда из предыдущей леммы существует $f^{-1}: Y \to X$. Покажем, что обратная функция строго возрастает. Возьмем произвольные $y_1, y_2: y_1 < y_2.$ $f^{-1}(y_1) = x_1, f^{-1}(y_2) = x_2.$ $x_1 \neq x_2$, т.к. f^{-1} инъекция. Если предположить, что $x_1 > x_2: f(x_1) > f(x_2), y_1 > y_2$. Противоречие. Значит, $x_1 < x_2. \Rightarrow f^{-1}$ строго возрастает на Y.

Теорема об обратной функции.

Пусть $f \in C([a,b])$ и строго монотонна на [a,b]. Тогда существует $f^{-1} \in C([m,M])$, где $m = \min_{[a,b]} f$, $M = \max_{[a,b]} f$, при этом f^{-1} имеет тот же характер строгой монотонности, что и f.

Доказательство. Из предыдущей теоремы получаем: существует $\min f$ на [a,b], $\max f$ на [a,b] и более того f([a,b]) = [m,M] и существует обратная функция $f^{-1}: [m,M] \to [a,b]$ и имеет тот же характер строгой монотонности. Рассмотрим случай строгого возрастания $f.\ m = f(a), M = f(b).$

Докажем непрерывность f^{-1} для $\forall y_0 \in (m, M)$. Т.к. в концевых точках доказательство аналогично. Фиксируем $\varepsilon > 0$. Без ограничения общности считаем, что $[x_0 - \varepsilon, x_0 + \varepsilon] \subset (a, b)$ (Мы всегда сможем найти такой ε , например, если $\varepsilon = \frac{1}{2} \min\{|x_0 - a|, |x_0 - b|\}$).

В силу непрерывности и строгой монотонности f переведет $[x_0 - \varepsilon, x_0 + \varepsilon]$ в какой-то отрезок $[f(x_0 - \varepsilon), f(x_0 + \varepsilon)]$. Значит, y_0 лежит на интервале $(f(x_0 - \varepsilon), f(x_0 + \varepsilon))$. Тогда возьмем $\delta(\varepsilon)$ равный $\min\{|f(x_0 - \varepsilon) - y_0|, |f(x_0 + \varepsilon) - y_0|\}$. Тогда $U_{\delta(\varepsilon)}(y_0) \subset (f(x_0 - \varepsilon), f(x_0 + \varepsilon))$. Тогда $f^{-1}(U_{\delta(\varepsilon)}(y_0)) \subset (x_0 - \varepsilon, x_0 + \varepsilon)$

Определение непрерывности функции в точке по Коши

Функция g непрерывна в точке y_0 , если:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \quad \forall y \in U_{\delta(\varepsilon)}(y_0) \Rightarrow |g(y) - g(y_0)| < \varepsilon$$

Имеем: f^{-1} и $f^{-1}(y_0)=x_0,\, \varepsilon>0$ фиксировано, $\delta(\varepsilon)=\min\{|f(x_0-\varepsilon)-y_0|,|f(x_0+\varepsilon)-y_0|\}$:

$$\forall y \in U_{\delta(\varepsilon)}(y_0) \Rightarrow |f^{-1}(y) - x_0| < \varepsilon$$

 \Leftrightarrow \forall у $\in U_{\delta(\varepsilon)}(y_0)$ выполнено, что $f^{-1}(y)$ лежит в ε -окрестности точки x_0 .

Значит, f^{-1} непрерывна в точке y_0 . Но y_0 выбрана произвольно. Значит, f^{-1} непрерывна на (m, M).

Доказательство непрерывности в концевых точках:

Случай 1: Непрерывность f^{-1} в точке y = m = f(a).

Фиксируем $\varepsilon>0$. Рассмотрим правую ε -окрестность точки $a\colon [a,a+\varepsilon]\subset [a,b].$

В силу непрерывности и строгой монотонности f переведет $[a, a + \varepsilon]$ в отрезок $[m, f(a + \varepsilon)]$.

Возьмем $\delta(\varepsilon) = |f(a+\varepsilon) - m| = f(a+\varepsilon) - m > 0.$

Тогда $\forall y \in U_{\delta(\varepsilon)}(m) \cap [m,M]$ (т.е. $y \in [m,m+\delta(\varepsilon))$):

 $f^{-1}(y) \in [a, a + \varepsilon) \subset U_{\varepsilon}(a).$

Следовательно, f^{-1} непрерывна справа в точке m.

Случай 2: Непрерывность f^{-1} в точке y = M = f(b).

Фиксируем $\varepsilon > 0$. Рассмотрим левую ε -окрестность точки b: $[b-\varepsilon,b] \subset [a,b]$.

f переведет $[b-\varepsilon,b]$ в отрезок $[f(b-\varepsilon),M]$.

Возьмем $\delta(\varepsilon) = |M - f(b - \varepsilon)| = M - f(b - \varepsilon) > 0.$

Тогда $\forall y \in U_{\delta(\varepsilon)}(M) \cap [m, M]$ (т.е. $y \in (M - \delta(\varepsilon), M]$):

 $f^{-1}(y) \in (b - \varepsilon, b] \subset U_{\varepsilon}(b).$

Следовательно, f^{-1} непрерывна слева в точке M.

Итог: f^{-1} непрерывна на всем отрезке [m, M]:

- Непрерывна на (m, M) (доказано ранее)
- Непрерывна справа в m
- \bullet Непрерывна слева в M

Следовательно, $f^{-1} \in C([m,M])$.