S.SANTHOSH KUMAR

Data Structures Odyssey: Exploring the Foundations of Computing

Write a C program to create a hash table and perform collision resolution using the following techniques.

- (i) Open addressing
- (ii) Closed Addressing
- (iii) Rehashing

Algorithm:

1. Open Addressing:

- 1. Compute the hash of the key to be inserted.
- 2. Check the computed hash index in the hash table.
- 3. If the slot is empty, insert the key.
- 4. If the slot is occupied, then it means a collision has occurred. In this case, move to the next slot in the hash table.
- 5. Repeat the process until an empty slot is found.

2. Closed Addressing (Separate Chaining):

- 1. Compute the hash of the key to be inserted.
- 2. Check the computed hash index in the hash table.
- 3. If the slot is empty, insert the key.
- 4. If the slot is occupied, then it means a collision has occurred. In this case, add the new key to the linked list at that slot.

3. Rehashing:

- 1. When the load factor of the hash table reaches a certain threshold (typically > 0.7), create a new hash table of larger size.
- 2. Compute the hash of each key in the old table.
- 3. Insert each key into the new table.
- 4. Delete the old table.

PROGRAM:

```
A. OPEN ADDRESSING:
#include <stdio.h>
#define max 10
int a[11] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44, 0 }; int
b[10];
void merging(int low, int mid, int high) { int
I1, I2, i;
for(I1 = low, I2 = mid + 1, i = low; I1 <= mid && I2 <= high; i++) {
if(a[11] \le a[12]) b[i] = a[11++]; else
b[i] = a[l2++]; 
while(I1 <= mid) b[i++]
= a[11++];
while(I2 <= high) b[i++]
= a[12++];
for(i = low; i <= high; i++)
a[i] = b[i]; 
void sort(int low, int high) { int
mid;
if(low < high) { mid =
(low + high) / 2;
sort(low, mid);
sort(mid+1, high);
merging(low, mid, high);
} else { return;
}
}
int main() { int
i;
printf("List before sorting\n");
for(i = 0; i <= max; i++)
printf("%d ", a[i]);
sort(0, max);
```

```
printf("\nList after sorting\n");
for(i = 0; i <= max; i++)
printf("%d ", a[i]);
}</pre>
```

B. CLOSED ADDRESSING;

```
#include <stdio.h>
#define max 10
int a[11] = { 10, 14, 19, 26, 27, 31, 33, 35, 42, 44, 0 }; int
b[10];
void merging(int low, int mid, int high) {
int I1, I2, i;
for(I1 = low, I2 = mid + 1, i = low; I1 <= mid && I2 <= high; i++) {
if(a[11] \le a[12]) b[i] = a[11++]; else b[i] = a[12++];
while(I1 <= mid) b[i++]
= a[I1++]; while(I2 <=
high) b[i++] = a[l2++];
for(i = low; i \le high; i++)
a[i] = b[i];
}
void sort(int low, int high) { int
mid;
if(low < high) { mid =
(low + high) / 2;
sort(low, mid);
sort(mid+1, high);
merging(low, mid, high);
} else { return;
}
}
int main() { int
i;
printf("List before sorting\n");
for(i = 0; i \le max; i++)
printf("%d ", a[i]);
sort(0, max);
printf("\nList after sorting\n");
```

```
for(i = 0; i \le max; i++) printf("%d")
", a[i]);
C. REHASHING:
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int key; int value;
struct Node* next;
} Node;
typedef struct HashTable {
int size; int count; Node**
table:
} HashTable;
Node* createNode(int key, int value) { Node*
newNode = (Node*)malloc(sizeof(Node));
newNode->key = key; newNode->value = value;
newNode->next = NULL; return newNode;
HashTable* createTable(int size) {
HashTable* newTable = (HashTable*)malloc(sizeof(HashTable));
newTable->size = size; newTable->count = 0;
newTable->table = (Node**)malloc(sizeof(Node*) * size); for
(int i = 0; i < size; i++) {
newTable->table[i] = NULL;
return newTable;
}
int hashFunction(int key, int size) { return
key % size;
void insert(HashTable* hashTable, int key, int value);
void rehash(HashTable* hashTable) {
int oldSize = hashTable->size; Node**
oldTable = hashTable->table;
// New size is typically a prime number or double the old size int
newSize = oldSize * 2;
hashTable->table = (Node**)malloc(sizeof(Node*) * newSize);
hashTable->size = newSize; hashTable->count = 0;
for (int i = 0; i < newSize; i++) {
hashTable->table[i] = NULL;
}
```

```
for (int i = 0; i < oldSize; i++) {
Node* current = oldTable[i]; while
(current != NULL) {
insert(hashTable, current->key, current->value);
Node* temp = current;
current = current->next; free(temp);
}
free(oldTable);
void insert(HashTable* hashTable, int key, int value) { if
((float)hashTable->count / hashTable->size >= 0.75) {
rehash(hashTable);
int hashIndex = hashFunction(key, hashTable->size);
Node* newNode = createNode(key, value); newNode->next
= hashTable->table[hashIndex]; hashTable-
>table[hashIndex] = newNode; hashTable->count++;
}
int search(HashTable* hashTable, int key) { int
hashIndex = hashFunction(key, hashTable->size);
Node* current = hashTable->table[hashIndex];
while (current != NULL) { if
(current->key == key) {
return current->value;
current = current->next;
return -1;
void delete(HashTable* hashTable, int key) { int
hashIndex = hashFunction(key, hashTable->size);
Node* current = hashTable->table[hashIndex]; Node*
prev = NULL;
while (current != NULL && current->key != key) { prev
= current;
current = current->next;
if (current == NULL) { return;
if (prev == NULL) {
hashTable->table[hashIndex] = current->next;
} else {
prev->next = current->next;
free(current);
```

```
hashTable->count--;
void freeTable(HashTable* hashTable) {
for (int i = 0; i < hashTable > size; i++) {
Node* current = hashTable->table[i];
while (current != NULL) { Node* temp =
current; current = current->next;
free(temp);
}
}
free(hashTable->table); free(hashTable);
int main() {
HashTable* hashTable = createTable(5);
insert(hashTable, 1, 10); insert(hashTable,
2, 20); insert(hashTable, 3, 30);
insert(hashTable, 4, 40); insert(hashTable,
5, 50);
insert(hashTable, 6, 60); // This should trigger rehashing
printf("Value for key 1: %d\n", search(hashTable, 1)); printf("Value
for key 2: %d\n", search(hashTable, 2)); printf("Value for key 3:
%d\n", search(hashTable, 3)); printf("Value for key 4: %d\n",
search(hashTable, 4)); printf("Value for key 5: %d\n",
search(hashTable, 5)); printf("Value for key 6: %d\n",
search(hashTable, 6));
delete(hashTable, 3);
printf("Value for key 3 after deletion: %d\n", search(hashTable, 3));
freeTable(hashTable);
return 0;
}
```

OUTPUT:

```
aim1231501167@cselab:~$ gcc program16C.c
aim1231501167@cselab:~$ ./a.out
Value for key 1: 10
Value for key 2: 20
Value for key 3: 30
Value for key 4: 40
Value for key 5: 50
Value for key 6: 60
Value for key 3 after deletion: -1
aim1231501167@cselab:~$
```

```
Value for key 1: 10

Value for key 2: 20

Value for key 12: 30

Value for key 3: -1

Value for key 2 after deletion: -1

aiml231501167@cselab:~$
```

```
aiml231501167@cselab:~$ gcc programl6A.c
aiml231501167@cselab:~$ ./a.out
List before sorting
10 14 19 26 27 31 33 35 42 44 0
List after sorting
0 10 14 19 26 27 31 33 35 42 44 aiml231501167@cselab:~$
```