# CH E 572 - Time Series Modelling Workshop

Problem #1

### <u>Introduction</u>

• The actual process model is:

$$y_{t} = \frac{z^{-2}}{1 - 0.7 z^{-1}} u_{t} + \frac{1}{(1 - 0.5 z^{-1})(1 - z^{-1})} \varepsilon_{t}, \quad \varepsilon_{t} \in N(0,1)$$

- Plant experiments:
  - First,
    - steps of various heights,
  - Second,
    - plant excited with a white noise  $(u_t \in N(0,0.25))$ ,
    - switch time chosen as 1 minute,
    - 4097 data points collected.

# Step Testing





# White Noise Input - Raw Data



#### Output from CRA



### Correlation Functions - Raw Data





# White Noise Input - Differenced Data







# Correlation Functions - Differenced Data





### **Results**

- Estimated model order:
  - plant (1,0,1),
  - noise (1,1,0).
- Estimated parameters (using BJ):
  - raw data,

$$y_{t} = \frac{(0.9551 \pm 0.0292)z^{-2}}{1 - (0.6564 \pm 0.0293)z^{-1}}u_{t} + \frac{1 - (0.0021 \pm 0.0309)z^{-1}}{1 - (0.5038 \pm 0.0266)z^{-2}}\varepsilon_{t}$$

- differenced data,

$$y_{t} = \frac{(0.9459 \pm 0.0269)z^{-2}}{1 - (0.6712 \pm 0.0219)z^{-1}}u_{t} + \frac{1 - (0.0035 \pm 0.0309)z^{-1}}{(1 - (0.5030 \pm 0.0267)z^{-1})(1 - z^{-1})}\varepsilon_{t}$$