Problem Set 1

Problems marked (T) are for discussions in Tutorial sessions.

- 1. If A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix, then show that A(BD) = (AB)D (Associativity holds).
- 2. If A is an $m \times n$ matrix, B and C are $n \times p$ matrices and D is a $p \times s$ matrix, then show that
 - (a) A(B+C) = AB + AC (Distributive law holds).
 - (b) (B+C)D = BD + CD (Distributive law holds).
- 3. **(T)** Let A and B be 2×2 real matrices such that $A \begin{bmatrix} x \\ y \end{bmatrix} = B \begin{bmatrix} x \\ y \end{bmatrix}$ for all $(x, y) \in \mathbb{R}^2$. Prove that A = B.
- 4. Let A and B be $m \times n$ real matrices such that $A\mathbf{x} = B\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Then, A = B
- 5. $(A+B)^* = A^* + B^*$ and $(AB)^* = B^*A^*$ whenever A+B and AB are defined.
- 6. Let $A \in \mathbb{M}_n(\mathbb{C})$. Then A = S + T, where $S^* = S$ (Hermitian matrix) and $T^* = -T$ (skew-Hermitian matrix).
- 7. Give examples of 3×3 non zero matrices A and B such that $A^2 = 0$ and $B^3 = B$.
- 8. Show by an example that if $AB \neq BA$ then $(A+B)^2 = A^2 + 2AB + B^2$ need not hold.
- 9. Let $A, B \in \mathbb{M}_n(\mathbb{C})$ be invertible matrices. Then $(AB)^{-1} = B^{-1}A^{-1}$.
- 10. Let $A \in \mathbb{M}_n(\mathbb{C})$ be a nilpotent matrix. Then show that I + A is invertible.
- 11. (T) Let $A, B \in \mathbb{M}_n(\mathbb{C})$. Define $\operatorname{Tr}(A) = \sum_{i=1}^n a_{ii}$. Then show that $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$. Hence or otherwise, show that if A is invertible then $\operatorname{Tr}(ABA^{-1}) = \operatorname{Tr}(B)$. Furthermore, show that there do not exist matrices A and B such that AB BA = cI, for any $c \neq 0$.
- 12. Let $A \in \mathbb{M}_n(\mathbb{C})$. If $AA^* = \mathbf{0}$ then show that $A = \mathbf{0}$.
- 13. **(T)** The parabola $y = a + bx + cx^2$ goes through the points (x, y) = (1, 4), (2, 8) and (3, 14). Find and solve a matrix equation for the unknowns (a, b, c).
- 14. (**T**) Let $J = \mathbf{11}^*$. Then each entry of J equals 1. Determine condition(s) on a and b such that $bJ + (a-b)I_n$ is invertible. Find α and β in terms of a and b such that the inverse has the form $\alpha J + \beta I$.
- 15. (T) Let $\mathbf{x} \in \mathbb{M}_{3,1}(\mathbb{R})$. Then find $\mathbf{y}, \mathbf{z} \in \mathbb{M}_{3,1}(\mathbb{R})$ such that $\mathbf{x}^T \mathbf{y} = 0$ and $\mathbf{x}^T \mathbf{z} = 0$.
- **16.** (T) Let A be an upper triangular matrix. If $AA^* = AA^*$ then A is a diagonal matrix.