1.1 知识体系 2

第一章 向量

1.1 知识体系

1.2 线性表示的判定与计算

- 1. 设向量组 α, β, γ 与数 k, l, m 满足 $k\alpha + l\beta + m\gamma = 0$ $(km \neq 0)$,则
 - (A) α, β 与 α, γ 等价
 - (B) α, β 与 β, γ 等价
 - (C) α, γ 与 β, γ 等价
 - (D) α 与 γ 等价

- 2. (2004, 数三) 设 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$ 。当 a,b 为何值时,
 - (I) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示
 - (II) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一地线性表示,并求出表示式;
 - (III) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 但表示式不唯一, 并求出表示式。

3. (2019, 数二、三) 设向量组 (I) $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$; 向量组 (II) $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$ 。若向量组 (I) 与 (II) 等价,求 a 的值,并将 β_3 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

1.3 线性相关与线性无关的判定

- 4. (2014, 数一、二、三) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量,则对任意常数 $k, l, \alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3$ 线性无关是 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的
 - (A) 必要非充分条件
 - (B) 充分非必要条件
 - (C) 充分必要条件
 - (D) 既非充分又非必要条件

5. 设 A 为 n 阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 均为 n 维列向量,满足 $A^2\alpha_1=A\alpha_1\neq 0,\,A^2\alpha_2=\alpha_1+A\alpha_2,$ $A^2\alpha_3=\alpha_2+A\alpha_3,\,\,$ 证明 $\alpha_1,\alpha_2,\alpha_3$ 线性无关。

6. 设 4 维列向量 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,与 4 维列向量 β_1,β_2 两两正交,证明 β_1,β_2 线性相 关。

1.4 极大线性无关组的判定与计算

- - (I) 当 a 为何值时,该向量组线性相关,并求其一个极大线性无关组;
 - (II) 当 a 为何值时,该向量组线性无关,并将 $\alpha = (4,1,6,10)^T$ 由其线性表示。

8. 证明:

- (I) 设 A, B 为 $m \times n$ 矩阵, 则 $r(A+B) \le r(A) + r(B)$;
- (II) 设 A 为 $m \times n$ 矩阵,B 为 $n \times s$ 矩阵,则 $r(AB) \le \min\{r(A), r(B)\}$ 。

1.5 向量空间 (数一专题)

Remark. 向量空间

过度矩阵

由基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 到基 $\beta_1, \beta_2, \ldots, \beta_n$ 的过渡矩阵为 $(\beta_1, \beta_2, \ldots, \beta_n) = (\alpha_1, \alpha_2, \ldots, \alpha_n)C$ 即 $C = (\alpha_1, \alpha_2, \ldots, \alpha_n)^{-1}(\beta_1, \beta_2, \ldots, \beta_n)$

坐标转换公式

设向量 γ 在基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 中的坐标为 $x = (x_1, x_2, \ldots, x_n)^T$, 在基 $\beta_1, \beta_2, \ldots, \beta_n$ 中的坐标为 $y = (y_1, y_2, \ldots, y_n)^T$ 则坐标转换公式为 x = Cy

- 8. (2015, 数一) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为 R^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 。
 - (a) (I) 证明向量组 β_1,β_2,β_3 为 R^3 的一个基:
 - (b) (II) 当 k 为何值时,存在非零向量 ξ 在基 $\alpha_1,\alpha_2,\alpha_3$ 与基 β_1,β_2,β_3 下的坐标相同,并求所有的 ξ 。