Estruturas de Dados II (DEIN0083) Curso de Ciência da Computação 3ª avaliação

Prof. João Dallyson Sousa de Almeida		Data : 06/04/20)16		
Aluno:	Matrícula:								Т

Regras durante a prova:

- É vetada: a consulta a material de apoio, conversa com colega e a utilização de dispositivos eletrônicos. A não observância de algum dos itens acima acarretará a anulação da prova.
- I. (2.0pt) Marque V para verdadeiro e F para falso para as afirmativas abaixo sobre Grafos. (OBS: 3 respostas erradas anulam 1 certa. Deixar em branco não ganha e nem perde.)
 - a) () Um grafo G(V,E) é Hamiltoniano se existe um ciclo em G que passa por todos as arestas.
 - b) () O algoritmo de Busca em Largura é implementado com o auxílio de uma pilha.
 - c) () O grau de um vértice é o número de arestas incidentes neste vértice.
 - d) () Uma árvore de espalhamento de um grafo ponderado conectado é mínima se a soma dos pesos de todas as arestas for mínima.
 - e) () O algoritmo de Dijkstra utiliza a técnica de relaxamento e produz, ao final de sua execução, uma árvore de caminhos mais curtos entre um vértice origem s para todos os vértices que são alcançáveis a partir de s.
 - f) () O algoritmo de Bellman-Ford não pode ser usado para detectar no grafo a existência de ciclos com pesos negativos.
 - g) () Um componente fortemente conectado de G=(V,E) é um conjunto maximo de vértices $C\subseteq V$ tal que para todo par de vértices u e v em C, u e v são mutuamente alcançáveis.
 - h) () O algoritmo de Busca em Profundidade pode ser utilizado para ordenar topologicamente um grafo acíclico.
 - i) () Um grafo é fortemente conexo se possuir mais de um componente conectado.
 - j) () A quantidade de memória requerida para representar grafos em matriz de adjacências depende da quantidade de arestas.
- II. (2.0pt) Explique o funcionamento do algoritmo de busca em largura. Apresente um exemplo e informe qual estrutura de dados o algoritmo utiliza.
- III. (2.0pt) Mostre o resultado da execução da busca em profundidade na figura abaixo. Considere os vértices ordenados em ordem alfabetica e assuma que cada lista de adjacencia está ordenada alfabeticamente. Mostre o tempo e descoberta e de término de cada vértice, e mostre a classificação de cada aresta (Árvore, retorno, avanço ou cruzamento). Inicie a busca pelo vértice q.

IV. (2.0pt) Considere a seguinte matriz de adjacências (tabela abaixo) de um grafo direcionado ponderado. Determine o caminho mais curto do vértice 1 para todos os outros vértices com o algoritmo apropriado. Justifique sua escolha.

	A	В	C	D	E	
A	0	3	5	∞	6	
В	∞	0	4	-1	4	
C	∞	∞	0	∞	2	
D	∞	∞	4	0	12	
E	7	∞	∞	-5	0	

V. (2.0pt) Explique e escreva o algoritmo básico de Ford-Fulkerson. Mostre a execução do algoritmo sobre o fluxo em rede da figura abaixo, apresentando o fluxo máximo e os grafos residual e aumentado final. Considere S a fonte e T o sorvedouro. Explique a diferença entre o algoritmo de Edmonds-Karp e o algoritmo de Ford-Fulkerson.

