

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-117013-1

Client Project/Site: Gold King Mine - Region 8

For:

Weston Solutions, Inc. 1435 Garrison Street Suite 100 Lakewood, Colorado 80215

Attn: Moira Pryhoda

Authorized for release by: 9/24/2015 6:17:29 PM

Sheila Hoffman, Project Manager II (912)354-7858 e.3004

hele Hoffman

sheila.hoffman@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

//

6

7

8

000000

11/2

Definitions/Glossary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Q	1 8	2	į	š	f	i	۵	r	C
CHE!	u	a	Ř	ř	8	١	v	8	O

GC/MS VOA

Qualifier	Qualifier Description					
U	Indicates the analyte was analyzed for but not detected					

Surrogate is outside control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier	Description
-----------	-----------	-------------

Indicates the analyte was analyzed for but not detected.

Metals	
Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
F3	Duplicate RPD exceeds the control limit
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

General Chemistry

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Definitions/Glossary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Glossary (Continued)

Abbreviation

These commonly used abbreviations may or may not be present in this report.

TEQ

Toxicity Equivalent Quotient (Dioxin)

Sample Summary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
680-117013-1	CC06_09212015_1300	Solid	09/21/15 13:00 09/23/15 00:00
680-117013-2	Trip Blank	Water	09/21/15 13:00 09/23/15 00:00

Case Narrative

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Job ID: 680-117013-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Weston Solutions, Inc.

Project: Gold King Mine - Region 8

Report Number: 680-117013-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 09/23/2015; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 0.6° C and 2.4° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample CC06_09212015_1300 (680-117013-1) was analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared and analyzed on 09/23/2015.

Surrogate recovery for the following sample was outside control limits: CC06_09212015_1300 (680-117013-1). Re-analysis was performed with concurring results. The original analysis has been reported.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 680-401060 and analytical batch 680-402348.

Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample Trip Blank (680-117013-2) was analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 09/23/2015.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 680-401060 and analytical batch 680-402348.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

POLYCHLORINATED BIPHENYLS (PCBS)

Sample CC06_09212015_1300 (680-117013-1) was analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082A. The samples were prepared and analyzed on 09/23/2015.

This method incorporates 2nd column confirmation. Corrective action is not taken for surrogate/spike compounds unless results from both columns are unacceptable. Results outside criteria are qualified.

DCB Decachlorobiphenyl failed the surrogate recovery criteria low for 400-110975-C-31-B MS. DCB Decachlorobiphenyl failed the surrogate recovery criteria low for 400-110975-C-31-C MSD.

Case Narrative

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Job ID: 680-117013-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

PCB-1260 failed the recovery criteria low for the MSD of sample 400-110975-31 in batch 680-402546.

The presence of the '4' qualifier indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Sample CC06_09212015_1300 (680-117013-1) was analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 09/23/2015 and analyzed on 09/23/2015 and 09/24/2015.

Several analytes failed the recovery criteria low for the MS of sample CC06_09212015_1300MS (680-117013-1) in batch 680-402754. Copper failed the recovery criteria high.

Several analytes failed the recovery criteria low for the MSD of sample CC06_09212015_1300MSD (680-117013-1) in batch 680-402754. Arsenic and Copper exceeded the RPD limit.

Vanadium, Copper and Zinc exceeded the RPD limit for the duplicate of sample CC06_09212015_1300DU (680-117013-1).

Refer to the QC report for details.

Sample CC06_09212015_1300 (680-117013-1)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY

Sample CC06_09212015_1300 (680-117013-1) was analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The samples were prepared and analyzed on 09/23/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

AMMONIA

Sample CC06_09212015_1300 (680-117013-1) was analyzed for ammonia in accordance with EPA Method 350.1. The samples were prepared and analyzed on 09/23/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL KJELDAHL NITROGEN

Sample CC06_09212015_1300 (680-117013-1) was analyzed for total kjeldahl nitrogen in accordance with EPA Method 351.2. The samples were prepared on 09/23/2015 and analyzed on 09/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL CYANIDE

Sample CC06_09212015_1300 (680-117013-1) was analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared on 09/23/2015 and analyzed on 09/24/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9056 ANIONS

1805700

Sample CC06_09212015_1300 (680-117013-1) was analyzed for 9056 Anions in accordance with EPA SW846 Method 9056 (DI Leach). The samples were leached on 09/23/2015 and analyzed on 09/24/2015.

~ - - - -

TestAmerica Savannah

TestAmerica Job ID: 680-117013-1

Case Narrative

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Job ID: 680-117013-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Sample CC06_09212015_1300 (680-117013-1) was analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 09/23/2015.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Client Sample ID: CC06_09212015_1300

Lab Sample ID: 680-117013-1 Date Collected: 09/21/15 13:00 Matrix: Solid Date Received: 09/23/15 00:00 Percent Solids: 17.6

Method: 8260B - Volatile Org Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	16	U	34	16	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
1,1,1-Trichloroethane	4.0	U	34	4.0	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
1,1,2,2-Tetrachloroethane	11	U	34	11	ug/Kg	Φ	09/23/15 11:41	09/23/15 14:24	
1,1,2-Trichloroethane	8.7	U	34	8.7	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
1,1-Dichloroethane	7.4	U	34	7.4	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
1,1-Dichloroethene	10	U	34	10	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
1,1-Dichloropropene	6.4	U	34	6.4	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
1,2,3-Trichlorobenzene	11	U	34	11	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
1,2,3-Trichloropropane	16	U	34	16	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
1,2,4-Trichlorobenzene	6.0	U	34	6.0	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
1,2,4-Trimethylbenzene	9.4	U	34	9.4	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
1,2-Dibromo-3-Chloropropane	30	U	67	30	ug/Kg	Ф	09/23/15 11:41	09/23/15 14:24	
1,2-Dichlorobenzene	8.7	U	34		ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
1,2-Dichloroethane	7.4	U	34		ug/Kg	₩	09/23/15 11:41	09/23/15 14:24	
1,2-Dichloroethene, Total	4.2	U	67		ug/Kg	≎	09/23/15 11:41		
1,2-Dichloropropane	5.8		34		ug/Kg	≎	09/23/15 11:41		
1,3,5-Trimethylbenzene	11		34	11	ug/Kg	φ	09/23/15 11:41		
1,3-Dichlorobenzene	11		34		ug/Kg	₩	09/23/15 11:41		
1,3-Dichloropropane	12		34		ug/Kg	☆	09/23/15 11:41		
I.4-Dichlorobenzene	5.0		34	5.0	ug/Kg	₩	09/23/15 11:41		
2,2-Dichloropropane	7.4		34		ug/Kg	₽	09/23/15 11:41		
-Chlorotoluene	13		34		ug/Kg ug/Kg	\$	09/23/15 11:41		
2-Hexanone	22		170		ug/Kg ug/Kg		09/23/15 11:41		
I-Chlorotoluene	11		34	11	• •	φ.	09/23/15 11:41	09/23/15 14:24	
			340			Ť	09/23/15 11:41		
Acetone	170 4.9				ug/Kg ug/Kg	~ \$	09/23/15 11:41	09/23/15 14:24	
Benzene			34			₩			
Bromobenzene	11		34	11	ug/Kg		09/23/15 11:41		
Bromochloromethane	22		34		ug/Kg		09/23/15 11:41		
Bromoform	10		34		ug/Kg	\$	09/23/15 11:41		
Bromodichloromethane	6.5		34		ug/Kg	\$	09/23/15 11:41		
Bromomethane	10	U	34	10	ug/Kg	:D:	09/23/15 11:41		
Carbon disulfide	7.4		34		ug/Kg	÷\$:	09/23/15 11:41		
Carbon tetrachloride	5.6		34		ug/Kg	.	09/23/15 11:41		
Chlorobenzene	6.5		34		ug/Kg	₽.	09/23/15 11:41		
Chloroethane	18		34		ug/Kg	₽		09/23/15 14:24	
Chloroform	7.4		34	7.4	ug/Kg	Ď.	09/23/15 11:41	09/23/15 14:24	
Chloromethane	6.7		34		ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
cis-1,2-Dichloroethene	9.4	U	34	9.4	ug/Kg	₽		09/23/15 14:24	
sis-1,3-Dichloropropene	5.6	U	34	5.6	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
Dibromochloromethane	11	U	34	11	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
Dibromomethane	11	U	34	11	ug/Kg	₩	09/23/15 11:41	09/23/15 14:24	
Dichlorodifluoromethane	6.3	U	34	6.3	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
thylbenzene	8.7	U	34	8.7	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
sopropylbenzene	13	U	34	13	ug/Kg	-\$-	09/23/15 11:41	09/23/15 14:24	
n-Xylene & p-Xylene	17	U	34	17	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
Methyl tert-butyl ether	6.7	U	34		ug/Kg	Ď.	09/23/15 11:41	09/23/15 14:24	
Methylene Chloride	6.6	U	34		ug/Kg	₩		09/23/15 14:24	
I-Methyl-2-pentanone	28		170		ug/Kg	☆		09/23/15 14:24	
2-Butanone	16		170		ug/Kg	Ö.		09/23/15 14:24	

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

 Date Collected: 09/21/15 13:00
 Matrix: Solid

 Date Received: 09/23/15 00:00
 Percent Solids: 17.6

Method: 8260B - Volatile Orga			, ,			_	_		- · · -
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	10		34		ug/Kg	<u>.</u> ∓	09/23/15 11:41	09/23/15 14:24	
n-Butylbenzene		U	34		ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
N-Propylbenzene	18	U	34		ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
o-Xylene	7.4	U	34	7.4	ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
o-Isopropyltoluene	15	U	34	15	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
sec-Butylbenzene	14	U	34	14	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
Styrene	6.3	U	34	6.3	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
ert-Butylbenzene	12	U	34	12	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
Tetrachloroethene	13	U	34	13	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
「oluene	5.6	U	34	5.6	ug/Kg	≎	09/23/15 11:41	09/23/15 14:24	
rans-1,2-Dichloroethene	4.2	U	34	4.2	ug/Kg	₩	09/23/15 11:41	09/23/15 14:24	
rans-1,3-Dichloropropene	5.9	U	34	5.9	ug/Kg	₽	09/23/15 11:41	09/23/15 14:24	
richloroethene	8.7	U	34	8.7		☼	09/23/15 11:41	09/23/15 14:24	
richlorofluoromethane	8.1	U	34	8.1	ug/Kg	章	09/23/15 11:41	09/23/15 14:24	
/inyl acetate	17	U	67	17		Þ	09/23/15 11:41	09/23/15 14:24	
/inyl chloride	10	U	34	10		₽	09/23/15 11:41	09/23/15 14:24	
ý (ylenes, Total	7.4	U	67		ug/Kg	☆	09/23/15 11:41	09/23/15 14:24	
,,		_	-		-99				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
oluene-d8 (Surr)	97		70 - 130				09/23/15 11:41	09/23/15 14:24	
,2-Dichloroethane-d4 (Surr)	81		70 - 130				09/23/15 11:41	09/23/15 14:24	
Dibromofluoromethane (Surr)	87		70 - 130				09/23/15 11:41	09/23/15 14:24	
	134	X	70 - 130				09/23/15 11:41	09/23/15 14:24	
Method: 8082A - Polychlorina	ted Bipheny	/Is (PCBs)	by Gas Chro	-		n			Dil F
Method: 8082A - Polychlorina Analyte	ted Bipheny	/Is (PCBs) Qualifier		MDL	aphy Unit ug/Kg	D 萊	Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016	ted Bipheny Result	/Is (PCBs) Qualifier	by Gas Chro	MDL 62	Unit		Prepared	Analyzed	Dil F
Method: 8082A - Polychlorina nalyte PCB-1016 PCB-1221	ted Bipheny Result	/Is (PCBs) Qualifier U	by Gas Chro	MDL 62	Unit ug/Kg	- \$	Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232	ted Bipheny Result 62 85	/Is (PCBs) Qualifier U U U	by Gas Chro RL 190 190	MDL 62 85	Unit ug/Kg ug/Kg ug/Kg	— □ ₩	Prepared 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina nalyte PCB-1016 PCB-1221 PCB-1232 PCB-1242	ted Bipheny Result 62 85 29	/Is (PCBs) Qualifier U U U	by Gas Chro RL 190 190 190	MDL 62 85 29 28	Unit ug/Kg ug/Kg ug/Kg	\$ \$ \$	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	ted Bipheny Result 62 85 29 28	VIS (PCBs) Qualifier U U U U U	by Gas Chro RL 190 190 190	MDL 62 85 29 28	Unit ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	ted Bipheny Result 62 85 29 28 46	VIS (PCBs) Qualifier U U U U U U	by Gas Chro RL 190 190 190 190 190	MDL 62 85 29 28 46 57	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	ted Bipheny Result 62 85 29 28 46 57	VIS (PCBs) Qualifier U U U U U U U U	by Gas Chro RL 190 190 190 190 190 190	MDL 62 85 29 28 46 57	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	ted Bipheny Result 62 85 29 28 46 57 54	VIS (PCBs) Qualifier U U U U U U U U	190 190 190 190 190 190 190 190	MDL 62 85 29 28 46 57	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1254 PCB-1254 PCB-1260 Surrogate	Result 62 85 29 28 46 57 54	VIS (PCBs) Qualifier U U U U U U U U	190 190 190 190 190 190 190 190 190	MDL 62 85 29 28 46 57	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed	Dil Fa
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1254 PCB-1250 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl	Result 62 85 29 28 46 57 54 %Recovery 54 62	VIs (PCBs) Qualifier U U U U U U U U U U	by Gas Chro RL 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133	MDL 62 85 29 28 46 57	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12	
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl	Result 62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr	VIs (PCBs) Qualifier U U U U U U U U U U	by Gas Chro RL 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133	MDL 62 85 29 28 46 57 54	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina nalyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl	Result 62 85 29 28 46 57 54 %Recovery 54 62 Chromatogr	VIs (PCBs) Qualifier U U U U U Qualifier aphy - Sol Qualifier	by Gas Chro RL 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133	MDL 62 85 29 28 46 57 54	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	**************************************	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 09/23/15 23:12	
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Canalyte	Result 62 85 29 28 46 57 54 62 Chromatogram Result 2.5	VIs (PCBs) Qualifier U U U U U U Qualifier aphy - Sol Qualifier U	by Gas Chro RL 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 uble RL 5.6	MDL 62 85 29 28 46 57 54	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Canalyte Jitrate as N Jitrate Nitrite as N	**Recovery** Chromatogr Result 2.5	VIS (PCBs) Qualifier U U U U U Qualifier Qualifier U U U U U U U U U U U U U U U U U U U	by Gas Chro RL 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 uble RL 5.6 5.6	MDL 62 85 29 28 46 57 54 MDL 2.5 2.5	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	**************************************	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Canalyte Jitrate as N Jitrate Nitrite as N	Result 62 85 29 28 46 57 54 62 Chromatogram Result 2.5	VIS (PCBs) Qualifier U U U U U Qualifier Qualifier U U U U U U U U U U U U U U U U U U U	by Gas Chro RL 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 uble RL 5.6	MDL 62 85 29 28 46 57 54 MDL 2.5 2.5	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	- D	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Method: 9056A - Anions, Ion Canalyte Witrate as N Witrate Nitrite as N Witrite as N Witrite as N Witrite as N	Result 62 85 29 28 46 57 54 **Recovery 62 Chromatogr Result 2.5 2.5 2.5	VIs (PCBs) Qualifier U U U U U Qualifier Qualifier U U U U U U U U U U U U U U U U U U U	by Gas Chro RL 190 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 uble RL 5.6 5.6 5.6	MDL 62 85 29 28 46 57 54 MDL 2.5 2.5 2.5	Unit ug/Kg	- D A A A	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/24/15 09:30 09/24/15 09:30 09/24/15 09:30	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1254 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Canalyte Mitrate as N Mitrite as N Method: 6010C - Metals (ICP) Analyte	### Result Figure Result	VIS (PCBs) Qualifier U U U U U Qualifier U U Qualifier U U U Qualifier	by Gas Chro RL 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 uble RL 5.6 5.6 5.6	MDL 62 85 29 28 46 57 54 MDL 2.5 2.5	Unit ug/Kg Unit	- D	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 Prepared Prepared Prepared	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 Analyzed 09/23/15 23:12 Analyzed 09/23/15 09:30 09/24/15 09:30 09/24/15 09:30 09/24/15 09:30	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1254 PCB-1254 PCB-1260 Surrogate Fetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Canalyte Witrate as N Witrite as N Witrite as N Method: 6010C - Metals (ICP) Analyte	Result 62 85 29 28 46 57 54 **Recovery 62 Chromatogr Result 2.5 2.5 2.5	VIS (PCBs) Qualifier U U U U U Qualifier U U Qualifier U U U Qualifier	by Gas Chro RL 190 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 uble RL 5.6 5.6 5.6 6 6 RL 100	MDL 62 85 29 28 46 57 54 MDL 2.5 2.5 2.5	Unit ug/Kg	- D A A A	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 Analyzed 09/23/15 23:12 Analyzed 09/23/15 09:30 09/24/15 09:30 09/24/15 09:30 09/24/15 09:30	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Fetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Canalyte Ulitrate as N Vitrate Nitrite as N Vitrite as N Method: 6010C - Metals (ICP) Analyte Antimony Selenium	## Result Figure Result Result	VIs (PCBs) Qualifier U U U U U Qualifier U U Qualifier U U U U U U U U U U U U U U U U U U U	by Gas Chro RL 190 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 uble RL 5.6 5.6 5.6 5.6 RL 100 130	MDL 62 85 29 28 46 57 54 MDL 2.5 2.5 2.5	Unit ug/Kg	- D	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 Prepared Prepared 09/23/15 12:39 Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 Analyzed 09/23/15 09:30 09/24/15 09:30 09/24/15 09:30 Analyzed 09/24/15 13:38 09/24/15 13:38	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 Surrogate Fetrachloro-m-xylene PCB Decachlorobiphenyl Method: 9056A - Anions, Ion Canalyte Ulitrate as N Vitrate Nitrite as N Vitrite as N Method: 6010C - Metals (ICP) Analyte Antimony Selenium	## Result Figure Result Result	VIs (PCBs) Qualifier U U U U U Qualifier U U Qualifier U U U U U U U U U U U U U U U U U U U	by Gas Chro RL 190 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 uble RL 5.6 5.6 5.6 6 6 RL 100	MDL 62 85 29 28 46 57 54 MDL 2.5 2.5 2.5	Unit ug/Kg	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 Prepared Prepared 09/23/15 12:39 Prepared 09/23/15 12:39	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 Analyzed 09/23/15 09:30 09/24/15 09:30 09/24/15 09:30 Analyzed 09/24/15 13:38	Dil F
Method: 8082A - Polychlorina Analyte PCB-1016 PCB-1232 PCB-1232 PCB-1242 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Method: 9056A - Anions, Ion Canalyte Nitrate as N Nitrite as N Nitrite as N Nitrite as N Selenium Nickel Lead	## Result Figure Result Result	VIs (PCBs) Qualifier U U U U U Qualifier U U Qualifier U U U U U U U U U U U U U U U U U U U	by Gas Chro RL 190 190 190 190 190 190 190 190 Limits 46 - 130 54 - 133 uble RL 5.6 5.6 5.6 5.6 RL 100 130	MDL 62 85 29 28 46 57 54 MDL 2.5 2.5 2.5 2.5 2.5	Unit ug/Kg	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Prepared 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 09/23/15 12:39 Prepared 09/23/15 12:39 Prepared Prepared 09/23/15 11:52 09/23/15 11:52 09/23/15 11:52 09/23/15 11:52	Analyzed 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 09/23/15 23:12 Analyzed 09/23/15 23:12 Analyzed 09/23/15 09:30 09/24/15 09:30 09/24/15 09:30 Analyzed 09/24/15 13:38 09/24/15 13:38	Dil F

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Client Sample ID: CC06_09212015_1300

TestAmerica Job ID: 680-117013-1

Lab Sample ID: 680-117013-1

Matrix: Solid

Date Collected: 09/21/15 13:00 Date Received: 09/23/15 00:00 Percent Solids: 17.6

Method: 6010C - Metals (IC Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	210		51	5.1	mg/Kg	<u> </u>	09/23/15 11:52	09/24/15 13:38	10
Iron	530000		1000	270	mg/Kg	Φ	09/23/15 11:52	09/24/15 13:38	10
Potassium	13	U	510	13	mg/Kg	☆	09/23/15 11:52	09/23/15 16:45	1
Chromium	16	J	51	11	mg/Kg	₩	09/23/15 11:52	09/24/15 13:38	10
Copper	1800	F2	130	8.7	mg/Kg	Þ	09/23/15 11:52	09/24/15 13:38	10
Barium	8.2	U F1	51	8.2	mg/Kg	₩	09/23/15 11:52	09/24/15 13:38	10
Beryllium	0.19	J	2.1	0.051	mg/Kg	₽	09/23/15 11:52	09/23/15 16:45	1
Silver	3.1	U	51	3.1	mg/Kg	Ď.	09/23/15 11:52	09/24/15 13:38	10
Aluminum	3600		1000	160	mg/Kg	₽	09/23/15 11:52	09/24/15 13:38	10
Arsenic	340	F2	100	41	mg/Kg	≎	09/23/15 11:52	09/24/15 13:38	10
Cadmium	5.1	U F1	26	5.1	mg/Kg	Þ	09/23/15 11:52	09/24/15 13:38	10
Calcium	270	U	2600	270	mg/Kg	☆	09/23/15 11:52	09/24/15 13:38	10
Cobalt	5.1	U	51	5.1	mg/Kg	☼	09/23/15 11:52	09/24/15 13:38	10
Sodium	2500	U F1	10000	2500	mg/Kg	Þ	09/23/15 11:52	09/24/15 13:38	10
Thallium	31	U	130	31	mg/Kg	☼	09/23/15 11:52	09/24/15 13:38	10
Vanadium	71		5.1	0.51	mg/Kg	≎	09/23/15 11:52	09/23/15 16:45	1
Zinc	340		100	36	mg/Kg	Ď.	09/23/15 11:52	09/24/15 13:38	10
Method: 7471A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.039	U	0.098	0.039	mg/Kg	<u> </u>	09/23/15 13:48	09/23/15 16:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia	0.71	U	1.6	0.71	mg/Kg	<u> </u>	09/23/15 13:47	09/23/15 14:50	1
Nitrogen, Kjeldahl	140	U	230	140	mg/Kg	☼	09/23/15 16:15	09/24/15 10:50	1
Cyanide, Total	1.2	U	2.7	1.2	mg/Kg	☼	09/23/15 11:45	09/24/15 04:44	1

Client Sample ID: Trip Blank Lab Sample ID: 680-117013-2 Date Collected: 09/21/15 13:00 Matrix: Water

Date Received: 09/23/15 00:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			09/23/15 13:12	1
1,1,1-Trichloroethane	0.37	U	1.0	0.37	ug/L			09/23/15 13:12	1
1,1,2,2-Tetrachloroethane	0.62	U	1.0	0.62	ug/L			09/23/15 13:12	1
1,1,2-Trichloroethane	0.33	U	1.0	0.33	ug/L			09/23/15 13:12	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			09/23/15 13:12	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			09/23/15 13:12	1
1,1-Dichloropropene	0.34	U	1.0	0.34	ug/L			09/23/15 13:12	1
1,2,3-Trichlorobenzene	2.5	U	5.0	2.5	ug/L			09/23/15 13:12	1
1,2,3-Trichloropropane	0.39	U	1.0	0.39	ug/L			09/23/15 13:12	1
1,2,4-Trichlorobenzene	2.5	U	5.0	2.5	ug/L			09/23/15 13:12	1
1,2,4-Trimethylbenzene	0.47	U	1.0	0.47	ug/L			09/23/15 13:12	1
1,2-Dibromo-3-Chloropropane	1.1	U	5.0	1.1	ug/L			09/23/15 13:12	1
1,2-Dichloroethane	0.50	U	1.0	0.50	ug/L			09/23/15 13:12	1
1,2-Dichloroethene, Total	0.37	U	2.0	0.37	ug/L			09/23/15 13:12	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			09/23/15 13:12	1
1,3,5-Trimethylbenzene	0.31	U	1.0	0.31	ug/L			09/23/15 13:12	1

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Client Sample ID: Trip Blank

Date Collected: 09/21/15 13:00 Date Received: 09/23/15 00:00 Lab Sample ID: 680-117013-2

Matrix: Water

Method: SM 6200B - SM 62 Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,3-Dichloropropane	0.34	U	1.0	0.34	ug/L			09/23/15 13:12	-
2,2-Dichloropropane	0.37	U	1.0	0.37	ug/L			09/23/15 13:12	
2-Chloroethyl vinyl ether	5.0	U	10	5.0	ug/L			09/23/15 13:12	• • • • • • • • • • • • • • • • • • • •
2-Chlorotoluene	0.27	U	1.0	0.27	ug/L			09/23/15 13:12	
2-Hexanone	2.0	U	10	2.0	ug/L			09/23/15 13:12	
4-Chlorotoluene	0.45	U	1.0	0.45	ug/L			09/23/15 13:12	•
Acetone	7.0	U	10	7.0	ug/L			09/23/15 13:12	
Benzene	0.43	U	1.0	0.43	ug/L			09/23/15 13:12	
Bromobenzene	0.50	U	1.0	0.50	ug/L			09/23/15 13:12	•
Bromochloromethane	0.45	U	1.0	0.45	ug/L			09/23/15 13:12	
Bromoform	0.43	U	1.0		ug/L			09/23/15 13:12	
Bromodichloromethane	0.44	U	1.0		ug/L			09/23/15 13:12	
Bromomethane	2.5		5.0		ug/L			09/23/15 13:12	
Carbon disulfide	1.0		2.0		ug/L			09/23/15 13:12	
Carbon tetrachloride	0.33		1.0	0.33				09/23/15 13:12	
Chlorobenzene	0.26		1.0	0.26				09/23/15 13:12	
Chloroethane	2.5		5.0		ug/L			09/23/15 13:12	
Chloroform	0.50		1.0		ug/L			09/23/15 13:12	
Chloromethane	0.40		1.0	0.40	-			09/23/15 13:12	
cis-1,2-Dichloroethene	0.41		1.0		ug/L			09/23/15 13:12	
cis-1,3-Dichloropropene	0.40		1.0	0.40	-			09/23/15 13:12	
Dibromochloromethane	0.40		1.0		-			09/23/15 13:12	
Dibromocritoromethane	0.32		1.0		ug/L			09/23/15 13:12	
					ug/L				
Dichlorodifluoromethane	0.60		1.0		ug/L			09/23/15 13:12	•
Ethylbenzene	0.33		1.0		ug/L			09/23/15 13:12	
Isopropylbenzene	0.35		1.0		ug/L			09/23/15 13:12	
m-Xylene & p-Xylene	0.35		1.0		ug/L			09/23/15 13:12	•
Methyl tert-butyl ether	0.30		10		ug/L			09/23/15 13:12	
Methylene Chloride	2.5		5.0		ug/L			09/23/15 13:12	
4-Methyl-2-pentanone	2.1		10		ug/L			09/23/15 13:12	
2-Butanone	3.4		10		ug/L			09/23/15 13:12	
1,2-Dibromoethane	0.44		1.0		ug/L			09/23/15 13:12	•
n-Butylbenzene	0.47		1.0	0.47	_			09/23/15 13:12	•
N-Propylbenzene	0.38		1.0	0.38	-			09/23/15 13:12	•
o-Xylene	0.23		1.0		ug/L			09/23/15 13:12	•
p-lsopropyltoluene	0.48		1.0		ug/L			09/23/15 13:12	
sec-Butylbenzene	0.42		1.0		ug/L			09/23/15 13:12	
Styrene	0.27		1.0		ug/L			09/23/15 13:12	•
tert-Butylbenzene	0.45	U	1.0	0.45	ug/L			09/23/15 13:12	
Tetrachloroethene	0.74	U	1.0	0.74	ug/L			09/23/15 13:12	
Toluene	0.48	U	1.0	0.48	ug/L			09/23/15 13:12	
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			09/23/15 13:12	•
trans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			09/23/15 13:12	
Trichloroethene	0.48	U	1.0	0.48	ug/L			09/23/15 13:12	
Trichlorofluoromethane	0.42	U	1.0		ug/L			09/23/15 13:12	•
Vinyl acetate	0.81		2.0		ug/L			09/23/15 13:12	
Vinyl chloride	0.50		1.0		ug/L			09/23/15 13:12	
Xylenes, Total	0.23		1.0		ug/L			09/23/15 13:12	

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Client Sample ID: Trip Blank Lab Sample ID: 680-117013-2 Date Collected: 09/21/15 13:00

Matrix: Water

Date Received: 09/23/15 00:00

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	100	70 - 130	09/23/15 13:12	
1,2-Dichloroethane-d4 (Surr)	99	70 - 130	09/23/15 13:12	1
Dibromofluoromethane (Surr)	101	70 - 130	09/23/15 13:12	1
4-Bromofluorobenzene (Surr)	111	70 - 130	09/23/15 13:12	1

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-402406/6 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 402406	MO	MD							
A made of a		MB	D.	MATOL	11	_	Duamanad	A i	Dil 5
Analyte	2.4	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane			4.9		ug/Kg			09/23/15 13:22 09/23/15 13:22	1
1,1,1-Trichloroethane	0.58		4.9		ug/Kg			09/23/15 13:22	1
1,1,2,2-Tetrachloroethane	1.6		4.9		ug/Kg				1
1,1,2-Trichloroethane	1.3	U	4.9		ug/Kg			09/23/15 13:22	1
1,1-Dichloroethane	1.1		4.9		ug/Kg			09/23/15 13:22	1
1,1-Dichloroethene	1.5		4.9		ug/Kg			09/23/15 13:22	1
1,1-Dichloropropene	0.94		4.9		ug/Kg			09/23/15 13:22	1
1,2,3-Trichlorobenzene	1.6		4.9		ug/Kg			09/23/15 13:22	1
1,2,3-Trichloropropane	2.4		4.9		ug/Kg			09/23/15 13:22	1
1,2,4-Trichlorobenzene	0.88		4.9		ug/Kg			09/23/15 13:22	1
1,2,4-Trimethylbenzene	1.4		4.9		ug/Kg			09/23/15 13:22	1
1,2-Dibromo-3-Chloropropane	4.3		9.9		ug/Kg			09/23/15 13:22	1
1,2-Dichlorobenzene	1.3		4.9		ug/Kg			09/23/15 13:22	1
1,2-Dichloroethane	1.1		4.9		ug/Kg			09/23/15 13:22	1
1,2-Dichloroethene, Total	0.62		9.9		ug/Kg			09/23/15 13:22	1
1,2-Dichloropropane	0.85		4.9		ug/Kg			09/23/15 13:22	1
1,3,5-Trimethylbenzene	1.7		4.9		ug/Kg			09/23/15 13:22	1
1,3-Dichlorobenzene	1.6		4.9		ug/Kg			09/23/15 13:22	1
1,3-Dichloropropane	1.8		4.9		ug/Kg			09/23/15 13:22	1
1,4-Dichlorobenzene	0.73		4.9		ug/Kg			09/23/15 13:22	1
2,2-Dichloropropane	1.1	U	4.9		ug/Kg			09/23/15 13:22	1
2-Chlorotoluene	2.0	U	4.9		ug/Kg			09/23/15 13:22	1
2-Hexanone	3.3	U	25		ug/Kg			09/23/15 13:22	1
4-Chlorotoluene	1.7	U	4.9	1.7	ug/Kg			09/23/15 13:22	1
Acetone	11	U	49	11	ug/Kg			09/23/15 13:22	1
Benzene	0.72	U	4.9	0.72	ug/Kg			09/23/15 13:22	1
Bromobenzene	1.7	U	4.9	1.7	ug/Kg			09/23/15 13:22	1
Bromochloromethane	3.3	U	4.9	3.3	ug/Kg			09/23/15 13:22	1
Bromoform	1.5	U	4.9	1.5	ug/Kg			09/23/15 13:22	1
Bromodichloromethane	0.96	U	4.9	0.96	ug/Kg			09/23/15 13:22	1
Bromomethane	1.5	U	4.9	1.5	ug/Kg			09/23/15 13:22	1
Carbon disulfide	1.1	U	4.9	1.1	ug/Kg			09/23/15 13:22	1
Carbon tetrachloride	0.82	U	4.9	0.82	ug/Kg			09/23/15 13:22	1
Chlorobenzene	0.95	U	4.9	0.95	ug/Kg			09/23/15 13:22	1
Chloroethane	2.7	U	4.9	2.7	ug/Kg			09/23/15 13:22	1
Chloroform	1.1	U	4.9	1.1	ug/Kg			09/23/15 13:22	1
Chloromethane	0.99	U	4.9	0.99	ug/Kg			09/23/15 13:22	1
cis-1,2-Dichloroethene	1.4	U	4.9		ug/Kg			09/23/15 13:22	1
cis-1,3-Dichloropropene	0.82	U	4.9	0.82	ug/Kg			09/23/15 13:22	1
Dibromochloromethane	1.7	U	4.9	1.7	ug/Kg			09/23/15 13:22	1
Dibromomethane	1.7	U	4.9		ug/Kg			09/23/15 13:22	1
Dichlorodifluoromethane	0.93	U	4.9		ug/Kg			09/23/15 13:22	1
Ethylbenzene	1.3		4.9		ug/Kg			09/23/15 13:22	1
Isopropylbenzene	1.9		4.9		ug/Kg			09/23/15 13:22	1
m-Xylene & p-Xylene	2.6		4.9		ug/Kg			09/23/15 13:22	1
Methyl tert-butyl ether	0.99		4.9		ug/Kg			09/23/15 13:22	1
Methylene Chloride	0.97		4.9		ug/Kg			09/23/15 13:22	1
4-Methyl-2-pentanone	4.1		25		ug/Kg			09/23/15 13:22	1
	***				33				•

Client Sample ID: Method Blank

Client: Weston Solutions, Inc.
Project/Site: Gold King Mine - Region 8

Lab Sample ID: MB 680-402406/6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid								Prep Type: To	otal/NA
Analysis Batch: 402406									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone	2.4	U	25	2.4	ug/Kg			09/23/15 13:22	1
1,2-Dibromoethane	1.5	U	4.9	1.5	ug/Kg			09/23/15 13:22	1
n-Butylbenzene	2.4	U	4.9	2.4	ug/Kg			09/23/15 13:22	1
N-Propylbenzene	2.7	U	4.9	2.7	ug/Kg			09/23/15 13:22	1
o-Xylene	1.1	U	4.9	1.1	ug/Kg			09/23/15 13:22	1
p-Isopropyltoluene	2.2	U	4.9	2.2	ug/Kg			09/23/15 13:22	1
sec-Butylbenzene	2.1	U	4.9	2.1	ug/Kg			09/23/15 13:22	1
Styrene	0.92	U	4.9	0.92	ug/Kg			09/23/15 13:22	1
tert-Butylbenzene	1.8	U	4.9	1.8	ug/Kg			09/23/15 13:22	1
Tetrachloroethene	1.9	U	4.9	1.9	ug/Kg			09/23/15 13:22	1
Toluene	0.83	U	4.9	0.83	ug/Kg			09/23/15 13:22	1
trans-1,2-Dichloroethene	0.62	U	4.9	0.62	ug/Kg			09/23/15 13:22	1
trans-1,3-Dichloropropene	0.86	U	4.9	0.86	ug/Kg			09/23/15 13:22	1
Trichloroethene	1.3	U	4.9	1.3	ug/Kg			09/23/15 13:22	1
Trichlorofluoromethane	1.2	U	4.9	1.2	ug/Kg			09/23/15 13:22	1
Vinyl acetate	2.5	U	9.9	2.5	ug/Kg			09/23/15 13:22	1
Vinyl chloride	1.5	U	4.9	1.5	ug/Kg			09/23/15 13:22	1
Xylenes, Total	1.1	U	9.9	1.1	ug/Kg			09/23/15 13:22	1

	MB	MB			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130	09/23/15 13:22	
1,2-Dichloroethane-d4 (Surr)	87		70 - 130	09/23/15 13:22	1
Dibromofluoromethane (Surr)	88		70 - 130	09/23/15 13:22	1
4-Bromofluorobenzene (Surr)	121		70 - 130	09/23/15 13:22	1

Lab Sample ID: LCS 680-402406/3

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 402406

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 49.8 1,1,1,2-Tetrachloroethane 48.9 98 70 _ 130 ug/Kg 1,1,1-Trichloroethane 49.8 46.1 ug/Kg 93 70 - 130 1.1.2.2-Tetrachloroethane 49.8 49.5 ug/Kg 99 70 - 13049.8 49.7 100 1,1,2-Trichloroethane ug/Kg 70 - 130 1,1-Dichloroethane 49.8 46.4 93 70 - 130 ug/Kg 91 70 _ 130 1,1-Dichloroethene 49.8 45.4 ug/Kg 1,1-Dichloropropene 49.8 46.6 ug/Kg 94 70 - 130 1,2,3-Trichlorobenzene 49.8 42.6 86 70 - 130 ug/Kg 98 1,2,3-Trichloropropane 49.8 48.6 70 - 130 ug/Kg 1,2,4-Trichlorobenzene 49.8 44.3 89 70 - 130 ug/Kg 70 - 130 1,2,4-Trimethylbenzene 49.8 50.9 ug/Kg 102 1,2-Dibromo-3-Chloropropane 49.8 48.8 ug/Kg 98 40 - 160 1,2-Dichlorobenzene 49.8 48.8 98 70 - 130 ug/Kg 1,2-Dichloroethane 49.8 50.4 101 70 - 130 ug/Kg 1,2-Dichloroethene, Total 99.6 98.8 99 70 - 130 ug/Kg 49.8 51.2 103 70 - 130 1,2-Dichloropropane ug/Kg 101 1,3,5-Trimethylbenzene 49.8 50.4 ug/Kg 70 - 130 1,3-Dichlorobenzene 49.8 48.7 ug/Kg 70 - 130

Client: Weston Solutions, Inc.
Project/Site: Gold King Mine - Region 8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-402406/3 Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 402406 LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 70 - 130 1,3-Dichloropropane 49.8 50 4 ug/Kg 101 1,4-Dichlorobenzene 49.8 49.0 ug/Kg 98 70 - 130 49.8 46.5 93 70 - 130 2,2-Dichloropropane ug/Kg 2-Chlorotoluene 49.8 47.6 ug/Kg 96 70 - 130 2-Hexanone 249 252 ug/Kg 101 40 - 160 49.8 48.1 97 70 - 130 4-Chlorotoluene ug/Kg 249 184 74 40 - 160 Acetone ug/Kg Benzene 49.8 48.4 ug/Kg 97 70 - 13047.3 Bromobenzene 49.8 ug/Kg 95 70 - 130 95 Bromochloromethane 49.8 47.5 ug/Kg 70 - 130 Bromoform 49.8 51.7 ug/Kg 104 70 - 130 Bromodichloromethane 49.8 48.8 ug/Kg 98 70 - 130 Bromomethane 49.8 41.4 83 40 - 160 ug/Kg Carbon disulfide 49.8 90 40 - 160 44.7 ug/Kg Carbon tetrachloride 49.8 47.6 96 70 - 130 ug/Kg 49.8 46.4 93 Chlorobenzene ug/Kg 70 - 130Chloroethane 49.8 46.8 ug/Kg 94 40 - 160 ug/Kg 96 Chloroform 49.8 47.8 70 - 130 76 Chloromethane 498 37.7 40 - 160 ug/Kg 49.8 49.3 99 70 - 130 cis-1,2-Dichloroethene ug/Kg 104 49.8 51.6 70 - 130cis-1,3-Dichloropropene ug/Kg Dibromochloromethane 49.8 50.5 ug/Kg 101 70 - 130 Dibromomethane 49.8 50.1 ug/Kg 101 70 - 130 Dichlorodifluoromethane 49.8 31.0 ug/Kg 62 40 - 160 Ethylbenzene 49.8 46.9 ug/Kg 94 70 - 130 Isopropylbenzene 49.8 48.3 ug/Kg 97 70 - 130 96 m-Xylene & p-Xylene 49.8 47.8 ug/Kg 70 - 130 107 Methyl tert-butyl ether 49.8 53.3 ug/Kg 70 - 130 49.8 45.5 91 70 - 130 Methylene Chloride ug/Kg 4-Methyl-2-pentanone 249 249 ug/Kg 100 40 - 160 2-Butanone 249 258 104 40 - 160 ug/Kg 1,2-Dibromoethane 49.8 52.8 ug/Kg 106 70 - 130 n-Butylbenzene 49.8 55.0 ug/Kg 111 70 - 130 49.8 97 70 - 130 N-Propylbenzene 48.3 ug/Kg o-Xylene 49.8 47.0 ug/Kg 94 70 - 130 49.8 50.8 102 70 - 130 p-Isopropyltoluene ug/Kg sec-Butylbenzene 49.8 48.7 ug/Kg 98 70 - 13049.8 96 Styrene 47.9 ug/Kg 70 - 130 97 tert-Butylbenzene 49.8 48.4 ug/Kg 70 - 130 Tetrachloroethene 49.8 46.9 ug/Kg 94 70 - 130 Toluene 49.8 48.6 98 70 - 130 ug/Kg 99 trans-1,2-Dichloroethene 49.8 49.5 70 - 130 ug/Kg trans-1,3-Dichloropropene 49.8 50.8 102 70 - 130 ug/Kg 49.8 97 70 _ 130 Trichloroethene 48.4 ug/Kg Trichlorofluoromethane 49.8 41.7 ug/Kg 84 40 - 160 99.6 74 Vinyl acetate 74.1 ug/Kg 70 - 130 Vinyl chloride 49.8 40.7 ug/Kg 82 70 _ 130 Xylenes, Total 99.6 94.8 ug/Kg 95 70 - 130

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-402406/3

Matrix: Solid

Analysis Batch: 402406

LCS LCS

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	200	200	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		70 - 130
1,2-Dichloroethane-d4 (Sur	r) 103		70 - 130
Dibromofluoromethane (Sui	r) 101		70 - 130
4-Bromofluorobenzene (Sui	r) 99		70 - 130

Lab Sample ID: LCSD 680-402406/4 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 402406

Analysis Batch: 402406	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	48.9	51.0		ug/Kg		104	70 - 130	4	20
1,1,1-Trichloroethane	48.9	47.3		ug/Kg		97	70 - 130	3	20
1,1,2,2-Tetrachloroethane	48.9	49.7		ug/Kg		102	70 - 130	0	20
1,1,2-Trichloroethane	48.9	49.9		ug/Kg		102	70 - 130	0	20
1,1-Dichloroethane	48.9	49.2		ug/Kg		101	70 - 130	6	20
1,1-Dichloroethene	48.9	48.7		ug/Kg		99	70 - 130	7	20
1,1-Dichloropropene	48.9	49.0		ug/Kg		100	70 - 130	5	20
1,2,3-Trichlorobenzene	48.9	42.3		ug/Kg		86	70 - 130	1	20
1,2,3-Trichloropropane	48.9	50.9		ug/Kg		104	70 _ 130	5	20
1,2,4-Trichlorobenzene	48.9	43.1		ug/Kg		88	70 - 130	3	20
1,2,4-Trimethylbenzene	48.9	52.5		ug/Kg		107	70 - 130	3	20
1,2-Dibromo-3-Chloropropane	48.9	46.0		ug/Kg		94	40 - 160	6	20
1,2-Dichlorobenzene	48.9	49.2		ug/Kg		101	70 - 130	1	20
1,2-Dichloroethane	48.9	50.5		ug/Kg		103	70 - 130	0	20
1,2-Dichloroethene, Total	97.8	100		ug/Kg		103	70 - 130	2	20
1,2-Dichloropropane	48.9	51.4		ug/Kg		105	70 - 130	0	20
1,3,5-Trimethylbenzene	48.9	51.2		ug/Kg		105	70 - 130	2	20
1,3-Dichlorobenzene	48.9	49.1		ug/Kg		100	70 - 130	1	20
1,3-Dichloropropane	48.9	50.9		ug/Kg		104	70 - 130	1	20
1,4-Dichlorobenzene	48.9	48.7		ug/Kg		100	70 - 130	1	20
2,2-Dichloropropane	48.9	47.8		ug/Kg		98	70 - 130	3	20
2-Chlorotoluene	48.9	50.1		ug/Kg		102	70 - 130	5	20
2-Hexanone	245	250		ug/Kg		102	40 - 160	1	20
4-Chlorotoluene	48.9	51.3		ug/Kg		105	70 - 130	6	20
Acetone	245	210		ug/Kg		86	40 - 160	13	20
Benzene	48.9	49.7		ug/Kg		102	70 - 130	3	20
Bromobenzene	48.9	48.5		ug/Kg		99	70 - 130	2	20
Bromochloromethane	48.9	47.8		ug/Kg		98	70 - 130	1	20
Bromoform	48.9	52.5		ug/Kg		107	70 - 130	2	20
Bromodichloromethane	48.9	50.4		ug/Kg		103	70 - 130	3	20
Bromomethane	48.9	50.0		ug/Kg		102	40 - 160	19	20
Carbon disulfide	48.9	47.1		ug/Kg		96	40 - 160	5	20
Carbon tetrachloride	48.9	49.3		ug/Kg		101	70 - 130	3	20
Chlorobenzene	48.9	49.2		ug/Kg		101	70 - 130	6	20
Chloroethane	48.9	48.6		ug/Kg		99	40 - 160	4	20
Chloroform	48.9	48.7		ug/Kg		100	70 - 130	2	20
Chloromethane	48.9	38.8		ug/Kg		79	40 - 160	3	20
cis-1,2-Dichloroethene	48.9	49.5		ug/Kg		101	70 - 130	0	20

Client: Weston Solutions, Inc.
Project/Site: Gold King Mine - Region 8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-402406/4

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 402406

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,3-Dichloropropene	48.9	53.1		ug/Kg		108	70 - 130	3	20
Dibromochloromethane	48.9	50.9		ug/Kg		104	70 - 130	1	20
Dibromomethane	48.9	50.8		ug/Kg		104	70 - 130	2	20
Dichlorodifluoromethane	48.9	32.4		ug/Kg		66	40 - 160	4	20
Ethylbenzene	48.9	49.6		ug/Kg		101	70 - 130	6	20
Isopropylbenzene	48.9	50.7		ug/Kg		104	70 - 130	5	20
m-Xylene & p-Xylene	48.9	50.4		ug/Kg		103	70 - 130	5	20
Methyl tert-butyl ether	48.9	52.1		ug/Kg		106	70 - 130	2	20
Methylene Chloride	48.9	48.4		ug/Kg		99	70 - 130	6	20
4-Methyl-2-pentanone	245	247		ug/Kg		101	40 - 160	1	20
2-Butanone	245	241		ug/Kg		99	40 - 160	7	20
1,2-Dibromoethane	48.9	52.1		ug/Kg		107	70 - 130	1	20
n-Butylbenzene	48.9	54.2		ug/Kg		111	70 - 130	2	20
N-Propylbenzene	48.9	51.5		ug/Kg		105	70 - 130	6	20
o-Xylene	48.9	49.0		ug/Kg		100	70 - 130	4	20
p-lsopropyltoluene	48.9	50.9		ug/Kg		104	70 - 130	0	20
sec-Butylbenzene	48.9	50.9		ug/Kg		104	70 - 130	4	20
Styrene	48.9	50.3		ug/Kg		103	70 - 130	5	20
tert-Butylbenzene	48.9	50.6		ug/Kg		103	70 - 130	4	20
Tetrachloroethene	48.9	48.8		ug/Kg		100	70 - 130	4	20
Toluene	48.9	49.2		ug/Kg		101	70 - 130	1	20
trans-1,2-Dichloroethene	48.9	50.8		ug/Kg		104	70 - 130	3	20
trans-1,3-Dichloropropene	48.9	50.6		ug/Kg		104	70 - 130	0	20
Trichloroethene	48.9	50.5		ug/Kg		103	70 - 130	4	20
Trichlorofluoromethane	48.9	46.3		ug/Kg		95	40 - 160	10	20
Vinyl acetate	97.8	74.5		ug/Kg		76	70 - 130	1	20
Vinyl chloride	48.9	43.1		ug/Kg		88	70 - 130	6	20
Xylenes, Total	97.8	99.4		ug/Kg		102	70 - 130	5	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		70 _ 130
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130

Method: SM 6200B - SM 6200B

Lab Sample ID: MB 680-402348/9

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 402348

MI	3 MB							
Analyte Resu	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane 0.3	7 U	1.0	0.37	ug/L			09/23/15 09:18	
1,1,1-Trichloroethane 0.3	7 U	1.0	0.37	ug/L			09/23/15 09:18	1
1,1,2,2-Tetrachloroethane 0.6	2 U	1.0	0.62	ug/L			09/23/15 09:18	1
1,1,2-Trichloroethane 0.3	3 U	1.0	0.33	ug/L			09/23/15 09:18	1
1,1-Dichloroethane 0.3	3 U	1.0	0.38	ug/L			09/23/15 09:18	1
1,1-Dichloroethene 0.3	6 U	1.0	0.36	ug/L			09/23/15 09:18	1

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: MB 680-402348/9 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis	Batch:	402348
----------	--------	--------

Analysis Batch: 402348	MB	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	0.34		1.0	0.34		<u>-</u>		09/23/15 09:18	1
1,2,3-Trichlorobenzene	2.5		5.0		ug/L			09/23/15 09:18	1
1,2,3-Trichloropropane	0.39		1.0	0.39				09/23/15 09:18	1
1,2,4-Trichlorobenzene	2.5		5.0		ug/L			09/23/15 09:18	1
1,2,4-Trimethylbenzene	0.47		1.0	0.47				09/23/15 09:18	1
1,2-Dibromo-3-Chloropropane	1.1		5.0		ug/L			09/23/15 09:18	1
1,2-Dichloroethane	0.50	_	1.0	0.50				09/23/15 09:18	1
1,2-Dichloroethene, Total	0.37		2.0	0.37	-			09/23/15 09:18	1
1,2-Dichloropropane	0.67		1.0	0.67				09/23/15 09:18	1
1,3,5-Trimethylbenzene	0.31		1.0	0.31				09/23/15 09:18	· ······ 1
1,3-Dichloropropane	0.34		1.0	0.34				09/23/15 09:18	. 1
2-Chloroethyl vinyl ether	5.0		10		ug/L			09/23/15 09:18	1
2,2-Dichloropropane	0.37		1.0	0.37				09/23/15 09:18	1
2-Chlorotoluene	0.27		1.0	0.27				09/23/15 09:18	1
2-Hexanone	2.0		1.0		ug/L			09/23/15 09:18	1
4-Chlorotoluene	0.45		1.0	0.45				09/23/15 09:18	1
Acetone	7.0		1.0		ug/L ug/L			09/23/15 09:18	1
Benzene	0.43		1.0					09/23/15 09:18	1
	0.43			0.43	-			09/23/15 09:18	1
Bromobenzene Bromobleremethene	0.30		1.0	0.50					1
Bromochloromethane			1.0	0.45	_			09/23/15 09:18	1
Bromoform	0.43		1.0	0.43				09/23/15 09:18	1
Bromodichloromethane	0.44		1.0		ug/L			09/23/15 09:18	1
Bromomethane	2.5		5.0		ug/L			09/23/15 09:18	1
Carbon disulfide	1.0		2.0		ug/L			09/23/15 09:18	1
Carbon tetrachloride	0.33		1.0	0.33				09/23/15 09:18	1
Chlorobenzene	0.26		1.0	0.26	-			09/23/15 09:18	1
Chloroethane	2.5		5.0		ug/L			09/23/15 09:18	1
Chloroform	0.50		1.0	0.50				09/23/15 09:18	1
Chloromethane	0.40		1.0	0.40	_			09/23/15 09:18	1
cis-1,2-Dichloroethene	0.41		1.0	0.41	-			09/23/15 09:18	1
cis-1,3-Dichloropropene	0.40		1.0	0.40	-			09/23/15 09:18	1
Dibromochloromethane	0.32		1.0	0.32	-			09/23/15 09:18	1
Dibromomethane	0.35	U	1.0	0.35				09/23/15 09:18	1
Dichlorodifluoromethane	0.60		1.0		ug/L			09/23/15 09:18	1
Ethylbenzene	0.33		1.0	0.33				09/23/15 09:18	1
Isopropylbenzene	0.35		1.0	0.35				09/23/15 09:18	1
m-Xylene & p-Xylene	0.35	U	1.0	0.35	ug/L			09/23/15 09:18	1
Methyl tert-butyl ether	0.30	U	10	0.30	ug/L			09/23/15 09:18	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			09/23/15 09:18	1
4-Methyl-2-pentanone	2.1	U	10	2.1	ug/L			09/23/15 09:18	1
2-Butanone	3.4	U	10	3.4	ug/L			09/23/15 09:18	1
1,2-Dibromoethane	0.44	U	1.0	0.44	ug/L			09/23/15 09:18	1
n-Butylbenzene	0.47	U	1.0	0.47	ug/L			09/23/15 09:18	1
N-Propylbenzene	0.38	U	1.0	0.38	ug/L			09/23/15 09:18	1
o-Xylene	0.23	U	1.0	0.23	ug/L			09/23/15 09:18	1
p-Isopropyltoluene	0.48	U	1.0	0.48	ug/L			09/23/15 09:18	1
sec-Butylbenzene	0.42	U	1.0	0.42	ug/L			09/23/15 09:18	1
Styrene	0.27		1.0		ug/L			09/23/15 09:18	1

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: MB 680-402348/9 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 402348

restory was moreover removed									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
tert-Butylbenzene	0.45	U	1.0	0.45	ug/L			09/23/15 09:18	1
Tetrachloroethene	0.74	U	1.0	0.74	ug/L			09/23/15 09:18	1
Toluene	0.48	U	1.0	0.48	ug/L			09/23/15 09:18	1
trans-1,2-Dichloroethene	0.37	U	1.0	0.37	ug/L			09/23/15 09:18	1
trans-1,3-Dichloropropene	0.42	U	1.0	0.42	ug/L			09/23/15 09:18	1
Trichloroethene	0.48	U	1.0	0.48	ug/L			09/23/15 09:18	1
Trichlorofluoromethane	0.42	U	1.0	0.42	ug/L			09/23/15 09:18	1
Vinyl acetate	0.81	U	2.0	0.81	ug/L			09/23/15 09:18	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			09/23/15 09:18	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			09/23/15 09:18	1

мв мв

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102	70 - 130		09/23/15 09:18	1
1,2-Dichloroethane-d4 (Surr)	99	70 _ 130		09/23/15 09:18	1
Dibromofluoromethane (Surr)	102	70 _ 130		09/23/15 09:18	1
4-Bromofluorobenzene (Surr)	114	70 - 130		09/23/15 09:18	1

Lab Sample ID: LCS 680-402348/4

Matrix: Water

Analysis Batch: 402348

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	47.1		ug/L		94	80 - 120	
1,1,1-Trichloroethane	50.0	52.4		ug/L		105	74 - 128	
1,1,2,2-Tetrachloroethane	50.0	54.9		ug/L		110	72 - 128	
1,1,2-Trichloroethane	50.0	58.7		ug/L		117	79 - 125	
1,1-Dichloroethane	50.0	48.2		ug/L		96	80 - 120	
1,1-Dichloroethene	50.0	46.1		ug/L		92	74 - 125	
1,1-Dichloropropene	50.0	49.7		ug/L		99	78 - 127	
1,2,3-Trichlorobenzene	50.0	41.9		ug/L		84	61 - 151	
1,2,3-Trichloropropane	50.0	55.7		ug/L		111	70 - 132	
1,2,4-Trichlorobenzene	50.0	41.1		ug/L		82	77 - 131	
1,2,4-Trimethylbenzene	50.0	47.3		ug/L		95	80 - 124	
1,2-Dibromo-3-Chloropropane	50.0	42.5		ug/L		85	59 - 141	
1,2-Dichloroethane	50.0	56.8		ug/L		114	75 - 130	
1,2-Dichloroethene, Total	100	103		ug/L		103	80 - 120	
1,2-Dichloropropane	50.0	56.0		ug/L		112	80 - 123	
1,3,5-Trimethylbenzene	50.0	50.0		ug/Ľ		100	80 - 120	
1,3-Dichloropropane	50.0	59.3		ug/L		119	78 - 127	
2-Chloroethyl vinyl ether	50.0	61.0		ug/L		122	10 - 190	
2,2-Dichloropropane	50.0	51.0		ug/L		102	72 - 133	
2-Chlorotoluene	50.0	49.9		ug/L		100	77 - 121	
2-Hexanone	250	301		ug/L		120	70 - 141	
4-Chlorotoluene	50.0	50.7		ug/L		101	80 - 120	
Acetone	250	253		ug/L		101	60 - 154	
Benzene	50.0	52.4		ug/L		105	73 - 131	
Bromobenzene	50.0	51.2		ug/L		102	79 - 124	
Bromochloromethane	50.0	49.7		ug/L		99	77 - 122	

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: LCS 680-402348/4

Matrix: Water

Analysis Batch: 402348

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylenes, Total

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. **Analyte** Added Result Qualifier Unit D %Rec Limits Bromoform 50.0 46.7 ug/L 93 69 - 135 Bromodichloromethane 50.0 60.7 ug/L 121 77 - 129Bromomethane 50.0 49.8 100 20 - 180 ug/L Carbon disulfide 50.0 42.2 ug/L 84 73 - 127 Carbon tetrachloride 50.0 52.6 ug/L 105 75 - 130 50.0 50.6 101 Chlorobenzene ug/L 80 - 120Chloroethane 50.0 50.6 ug/L 101 50 - 151 Chloroform 50.0 54.2 ug/L 108 79 - 122 Chloromethane 50.0 42.5 ug/L 85 63 - 126 106 cis-1,2-Dichloroethene 50.0 52.9 ug/L 80 - 122 cis-1,3-Dichloropropene 50.0 60.7 ug/L 121 80 - 133 Dibromochloromethane 50.0 52.0 ug/L 104 71 - 136 Dibromomethane 50.0 58.2 ug/L 116 80 - 122 Dichlorodifluoromethane 50.0 42.6 85 51 - 140 ug/L Ethylbenzene 50.0 50.1 100 80 - 120 ug/L 50.0 50.0 100 Isopropylbenzene ug/L 80 - 120m-Xylene & p-Xylene 50.0 49.5 ug/L 99 80 - 120 Methyl tert-butyl ether 50.0 58.8 ug/L 118 74 - 135 Methylene Chloride 50.0 46.9 ug/L 94 76 - 129 4-Methyl-2-pentanone 250 305 122 75 - 135 ug/L 250 114 2-Butanone 286 ug/L 75 - 133 1,2-Dibromoethane 50.0 58.5 ug/L 117 77 - 131n-Butvlbenzene 50.0 45.3 ug/L 91 78 - 124 N-Propylbenzene 50.0 49.4 ug/L 99 80 - 120 ug/L o-Xylene 50.0 51.3 103 80 - 120 50.0 40.4 ug/L 81 80 - 120 p-Isopropyltoluene 50.0 sec-Butylbenzene 44.5 ug/L 89 76 - 125 50.0 108 Styrene 53.8 ug/L 80 - 122 50.0 45.2 90 80 - 120 tert-Butylbenzene ug/L Tetrachloroethene 50.0 50.5 ug/L 101 77 - 123Toluene 50.0 53.1 ug/L 106 80 - 122 trans-1,2-Dichloroethene 50.0 49.8 ug/L 100 78 - 123

50.0

50.0

50.0

100

50.0

100

53.0

51.7

44.8

87.2

45.0

101

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

106

103

90

87

90

101

74 - 140

80 - 123

58 - 145

15 _ 190

68 - 132

80 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	106		70 - 130
1,2-Dichloroethane-d4 (Surr)	111		70 - 130
Dibromofluoromethane (Surr)	108		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: LCSD 680-402348/5 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 402348	Spike	LCCD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	%Rec.	RPD	Limit
1,1,1,2-Tetrachloroethane	50.0	47.1	Quantici	ug/L		94	80 - 120	0	20
1,1,1-Trichloroethane	50.0	53.3		ug/L ug/L		107	74 - 128	2	20
1,1,2,2-Tetrachloroethane	50.0	55.8		ug/L		112	72 - 128	2	20
1,1,2-Trichloroethane	50.0	56.3		ug/L ug/L		113	79 - 125	4	20
1,1-Dichloroethane	50.0	45.7		ug/L ug/L		91	80 - 120	5	20
1,1-Dichloroethene	50.0	45.4		ug/L ug/L		91	74 - 125	2	20
1,1-Dichloropropene	50.0	52.0		ug/L		104	78 - 127	4	20
1,2,3-Trichlorobenzene	50.0	42.6		ug/L ug/L		85	61 - 151	2	40
1,2,3-Trichloropropane	50.0	56.3		ug/L ug/L		113	70 - 132	1	30
1,2,4-Trichlorobenzene	50.0	42.0		ug/L ug/L		84	70 - 132 77 - 131	2	20
1,2,4-Trimethylbenzene	50.0	48.7				97	80 - 124	3	20
•	50.0	42.3		ug/L		97 85	59 - 141	1	30
1,2-Dibromo-3-Chloropropane				ug/L					
1,2-Dichloroethane	50.0	54.3		ug/L		109	75 ₋ 130	4	20
1,2-Dichloroethene, Total	100	102		ug/L		102	80 - 120	0	20
1,2-Dichloropropane	50.0	54.0		ug/L		108	80 - 123	4	20
1,3,5-Trimethylbenzene	50.0	52.6		ug/L		105	80 - 120	5	20
1,3-Dichloropropane	50.0	56.8		ug/L		114	78 - 127	4	20
2-Chloroethyl vinyl ether	50.0	59.0		ug/L		118	10 - 190	3	50
2,2-Dichloropropane	50.0	52.4		ug/L		105	72 - 133	3	20
2-Chlorotoluene	50.0	51.7		ug/L		103	77 - 121	4	20
2-Hexanone	250	297		ug/L		119	70 - 141	1	40
4-Chlorotoluene	50.0	52.4		ug/L		105	80 - 120	3	20
Acetone	250	250		ug/L		100	60 - 154	1	40
Benzene	50.0	52.7		ug/L		105	73 - 131	1	30
Bromobenzene	50.0	52.0		ug/L		104	79 - 124	2	20
Bromochloromethane	50.0	47.4		ug/L		95	77 - 122	5	20
Bromoform	50.0	46.7		ug/L		93	69 - 135	0	20
Bromodichloromethane	50.0	58.4		ug/L		117	77 - 129	4	20
Bromomethane	50.0	48.8		ug/L		98	20 - 180	2	40
Carbon disulfide	50.0	43.2		ug/L		86	73 - 127	2	20
Carbon tetrachloride	50.0	55.1		ug/L		110	75 _ 130	5	20
Chlorobenzene	50.0	51.1		ug/L		102	80 - 120	1	20
Chloroethane	50.0	52.9		ug/L		106	50 - 151	5	30
Chloroform	50.0	53.4		ug/L		107	79 - 122	1	20
Chloromethane	50.0	41.2		ug/L		82	63 - 126	3	30
cis-1,2-Dichloroethene	50.0	52.1		ug/L		104	80 - 122	1	20
cis-1,3-Dichloropropene	50.0	58.6		ug/L		117	80 - 133	3	20
Dibromochloromethane	50.0	51.4		ug/L		103	71 - 136	1	20
Dibromomethane	50.0	55.9		ug/L		112	80 - 122	4	20
Dichlorodifluoromethane	50.0	43.0		ug/L		86	51 - 140	1	40
Ethylbenzene	50.0	51.9		ug/L		104	80 - 120	3	20
Isopropylbenzene	50.0	53.4		ug/L		107	80 - 120	7	20
m-Xylene & p-Xylene	50.0	52.5		ug/L		105	80 - 120	6	20
Methyl tert-butyl ether	50.0	56.8		ug/L		114	74 - 135	4	20
Methylene Chloride	50.0	45.4		ug/L		91	76 - 129	3	20
4-Methyl-2-pentanone	250	300		ug/L		120	75 - 135	2	30
2-Butanone	250	271		ug/L		108	75 - 133	5	30
1,2-Dibromoethane	50.0	56.5		ug/L		113	77 ₋ 131	3	30

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: SM 6200B - SM 6200B (Continued)

Lab Sample ID: LCSD 680-402348/5

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 402348

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
n-Butylbenzene	50.0	47.9		ug/L		96	78 - 124	6	20
N-Propylbenzene	50.0	52.9		ug/L		106	80 - 120	7	20
o-Xylene	50.0	53.0		ug/L		106	80 - 120	3	20
p-Isopropyltoluene	50.0	42.3		ug/L		85	80 - 120	5	20
sec-Butylbenzene	50.0	47.7		ug/L		95	76 - 125	7	30
Styrene	50.0	54.4		ug/L		109	80 - 122	1	20
tert-Butylbenzene	50.0	48.6		ug/L		97	80 - 120	7	20
Tetrachloroethene	50.0	51.5		ug/L		103	77 - 123	2	20
Toluene	50.0	52.9		ug/L		106	80 - 122	0	20
trans-1,2-Dichloroethene	50.0	50.4		ug/L		101	78 - 123	1	20
trans-1,3-Dichloropropene	50.0	51.4		ug/L		103	74 - 140	3	20
Trichloroethene	50.0	52.6		ug/L		105	80 - 123	2	20
Trichlorofluoromethane	50.0	45.2		ug/L		90	58 - 145	1	30
Vinyl acetate	100	80.9		ug/L		81	15 - 190	7	50
Vinyl chloride	50.0	44.5		ug/L		89	68 - 132	1	30
Xylenes, Total	100	106		ug/L		106	80 - 120	5	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Surr)	109		70 - 130
Dibromofluoromethane (Surr)	106		70 - 130
4-Bromofluorobenzene (Surr)	101		70 - 130

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 680-402448/9-A

Matrix: Solid

Analysis Batch: 402546

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 402448

MB ME

	IVIB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	11	U	33	11	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1221	15	U	33	15	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1232	5.2	U	33	5.2	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1242	5.0	U	33	5.0	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1248	8.2	U	33	8.2	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1254	10	U	33	10	ug/Kg		09/23/15 12:39	09/23/15 22:26	1
PCB-1260	9.6	U	33	9.6	ug/Kg		09/23/15 12:39	09/23/15 22:26	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	64		46 - 130	09/23/15 12:39	09/23/15 22:26	
DCB Decachlorobiphenyl	69		54 - 133	09/23/15 12:39	09/23/15 22:26	1

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 680-4	402448/10-A					Clie	nt Sar	nple ID	: Lab Con		
Matrix: Solid									Prep Typ	oe: Tot	al/N/
Analysis Batch: 402546									Prep Ba	itch: 40	0244
•			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
PCB-1016			400	347		ug/Kg		87	43 - 130		
PCB-1260			400	320		ug/Kg		80	45 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
etrachloro-m-xylene	87		46 - 130								
DCB Decachlorobiphenyl	72		54 - 133								
_ab Sample ID: LCSD 680)-402448/19-	A			(Client Sa	mple	ID: Lab	Control :		
Matrix: Solid									Prep Typ		
Analysis Batch: 402546									Prep Ba	itch: 40	
			Spike	LCSD					%Rec.	_	RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
PCB-1016			400	320		ug/Kg		80	43 - 130	8	50
PCB-1260			400	309		ug/Kg		77	45 - 130	4	50
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
「etrachloro-m-xylene	72		46 - 130								
DCB Decachlorobiphenyl	71		54 - 133								
Lab Sample ID: 400-11097	75-C-31-B M	S					CI	ient Sa	mple ID: I	Vlatrix :	Spike
Matrix: Solid									Prep Typ	oe: Tot	al/NA
Analysis Batch: 402546									Prep Ba		
•	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
PCB-1016	12	U	424	365		ug/Kg	_ ₹	86	43 - 130		
PCB-1260	63	F1	424	266		ug/Kg	≎	48	45 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	93		46 - 130								
DCB Decachlorobiphenyl	43	X	54 - 133								
Lab Sample ID: 400-11097	75-C-31-C M	SD				Client	Samn	le ID: N	atrix Spik	re Dun	licate
Matrix: Solid		**************************************						X W THEF E BE	Prep Tyr	*	
Analysis Batch: 402546									Prep Ba		
THAT DATE !!	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	=	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
\nalvte			,	count	A			,		5	
			424	296		ua/Ka	— ∓	70	43 _ 130	21	50
PCB-1016	12		424 424	296 182	F1	ug/Kg ug/Kg	— ⇔	70 28	43 ₋ 130 45 ₋ 130	21 37	50 50
Analyte PCB-1016 PCB-1260	12 63	U			F1						

TestAmerica Savannah

Surrogate

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

%Recovery Qualifier

50 p

23 X

Limits 46 - 130

54 - 133

QC Sample Results

Client: Weston Solutions. Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 680-402521/1-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Soluble

Analysis Batch: 402647

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.45	U	1.0	0.45	mg/Kg			09/24/15 08:43	1
Nitrate Nitrite as N	0.45	U	1.0	0.45	mg/Kg			09/24/15 08:43	1
Nitrite as N	0.45	U	1.0	0.45	mg/Kg			09/24/15 08:43	1

Lab Sample ID: LCS 680-402521/2-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble

Analysis Batch: 402647

LCS LCS Spike %Rec. **Analyte** Added Result Qualifier Unit D %Rec Limits Nitrate as N 20.0 20.0 mg/Kg 100 75 - 125 Nitrate Nitrite as N 39.9 39.3 mg/Kg 98 75 - 125 Nitrite as N 19.9 19.3 97 75 - 125 mg/Kg

Lab Sample ID: LCSD 680-402521/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Soluble

Matrix: Solid

Analysis Batch: 402647

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	20.0	21.0		mg/Kg		105	75 - 125	5	30
Nitrate Nitrite as N	39.9	41.2		mg/Kg		103	75 - 125	5	30
Nitrite as N	19.9	20.2		mg/Kg		101	75 - 125	5	30

Lab Sample ID: 680-117013-1 MS Client Sample ID: CC06_09212015_1300 Prep Type: Soluble

Matrix: Solid

Analysis Batch: 402647

•	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Nitrate as N	2.5	U	116	117		mg/Kg	— <u>₹</u>	101	75 - 125
Nitrate Nitrite as N	2.5	U	231	210		mg/Kg	✡	91	75 - 125
Nitrite as N	2.5	U	115	93.2		mg/Kg	☆	81	75 - 125

Lab Sample ID: 680-117013-1 MSD Client Sample ID: CC06_09212015_1300 Prep Type: Soluble

Matrix: Solid

Analysis Batch: 402647

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	2.5	U	115	117		mg/Kg	<u></u> →	102	75 - 125	0	30
Nitrate Nitrite as N	2.5	U	230	210		mg/Kg	⇔	92	75 - 125	0	30
Nitrite as N	2.5	U	115	93.3		mg/Kg	≎	81	75 - 125	0	30

Lab Sample ID: 680-117013-1 DU Client Sample ID: CC06_09212015_1300 Prep Type: Soluble

Matrix: Solid

Analysis Databy 102617

Analysis Batch: 402647								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Nitrate as N	2.5	U	2.6	U	mg/Kg	_ \ \	NC	30
Nitrate Nitrite as N	2.5	U	2.6	U	mg/Kg	≎	NC	30
Nitrite as N	2.5	U	2.6	U	mg/Kg	₩	NC	30

QC Sample Results

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Lab Sample ID: MB 680-402446/1-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 402630

Prep Batch: 402446 MR MR

	IND	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	8.6	U	49	8.6	mg/Kg		09/23/15 11:52	09/23/15 16:36	1
Potassium	2.4	U	97	2.4	mg/Kg		09/23/15 11:52	09/23/15 16:36	1
Beryllium	0.0097	U	0.39	0.0097	mg/Kg		09/23/15 11:52	09/23/15 16:36	1
Vanadium	0.097	U	0.97	0.097	mg/Kg		09/23/15 11.52	09/23/15 16:36	1

Lab Sample ID: MB 680-402446/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Total/NA Analysis Batch: 402754 Prep Batch: 402446

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.80	U	1.9	0.80	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Selenium	0.94	U	2.4	0.94	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Nickel	0.37	U	3.9	0.37	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Lead	0.33	U	0.97	0.33	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Manganese	0.097	U	0.97	0.097	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Iron	5.1	U	19	5.1	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Chromium	0.20	U	0.97	0.20	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Copper	0.17	U	2.4	0.17	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Barium	0.16	U	0.97	0.16	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Silver	0.058	U	0.97	0.058	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Aluminum	3.0	U	19	3.0	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Arsenic	0.78	U	1.9	0.78	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Cadmium	0.097	U	0.49	0.097	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Calcium	5.0	U	49	5.0	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Cobalt	0.097	U	0.97	0.097	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Sodium	47	U	190	47	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Thallium	0.58	U	2.4	0.58	mg/Kg		09/23/15 11:52	09/24/15 13:29	1
Zinc	0.68	U	1.9	0.68	mg/Kg		09/23/15 11:52	09/24/15 13:29	1

Lab Sample ID: LCS 680-402446/2-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

Analysis Batch: 402630 Prep Batch: 402446

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Magnesium	472	475		mg/Kg		101	80 - 120	
Potassium	472	494		mg/Kg		105	80 - 120	
Beryllium	4.72	5.01		mg/Kg		106	80 - 120	
Vanadium	9.43	9.48		mg/Kg		101	80 - 120	

Lab Sample ID: LCS 680-402446/2-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 402754 Prep Batch: 402446

Trialy of a saconi - roar or	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	4.72	4.99		mg/Kg		106	80 - 120
Selenium	9.43	9.59		mg/Kg		102	80 - 120
Nickel	9.43	9.75		mg/Kg		103	80 - 120
Lead	47.2	47.7		mg/Kg		101	80 - 120
Manganese	47.2	49.6		mg/Kg		105	80 - 120

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-402446/2-A Matrix: Solid			Client Sample ID: Lab Control Sa							
Analysis Batch: 402754		100					Prep Type: Total/NA Prep Batch: 402446			
	Spike	LCS	LCS				%Rec.			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Iron	472	475		mg/Kg		101	80 - 120			
Chromium	9.43	9.99		mg/Kg		106	80 - 120			
Copper	9.43	9.83		mg/Kg		104	80 - 120			
Barium	9.43	9.77		mg/Kg		104	80 - 120			
Silver	4.72	4.88		mg/Kg		104	80 - 120			
Aluminum	472	459		mg/Kg		97	80 - 120			
Arsenic	9.43	10.3		mg/Kg		109	80 - 120			
Cadmium	4.72	5.04		mg/Kg		107	80 - 120			
Calcium	472	489		mg/Kg		104	80 - 120			
Cobalt	4.72	5.03		mg/Kg		107	80 - 120			
Sodium	472	500		mg/Kg		106	80 - 120			
Thallium	3.77	3.98		mg/Kg		105	80 - 120			

Lab Sample ID: 680-117013-1 MS

Matrix: Solid

Zinc

Analysis Batch: 402630

Client Sample ID: CC06_09212015_1300

105 80 - 120

Prep Type: Total/NA Prep Batch: 402446

,	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Magnesium	100	J	2480	2520		mg/Kg	_ ₹	97	75 - 125
Potassium	13	U	2480	2670		mg/Kg	≎	108	75 - 125
Beryllium	0.19	J	24.8	27.2		mg/Kg	≎	109	75 - 125
Vanadium	71		49.5	109		mg/Kg	≎	76	75 - 125

9.43

9.87

mg/Kg

Lab Sample ID: 680-117013-1 MS

Matrix: Solid

Client Sample ID: CC06_09212015_1300

Prep Type: Total/NA

Analysis Batch: 402754	Sample	Sample	Spike	MS	MS				Prep Batch: 402446 %Rec.
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	42	U	24.8	41	U	mg/Kg	<u>₩</u>	NC	75 - 125
Selenium	50	U F1	49.5	48.9	J	mg/Kg	≎	99	75 - 125
Nickel	20	U	49.5	39.6	J	mg/Kg	☼	80	75 - 125
Lead	80		248	308		mg/Kg	♡	92	75 - 125
Manganese	210		248	432		mg/Kg	≎	90	75 - 125
Iron	530000		2480	524000	4	mg/Kg	≎	-389	75 - 125
Chromium	16	J	49.5	67.1		mg/Kg	₩	102	75 - 125
Copper	1800	F2	49.5	2280	4	mg/Kg	≎	1004	75 - 125
Barium	8.2	U F1	49.5	34.1	JF1	mg/Kg	₩	69	75 - 125
Silver	3.1	U	24.8	25.1	J	mg/Kg	₩	101	75 - 125
Aluminum	3600		2480	5630		mg/Kg	≎	81	75 - 125
Arsenic	340	F2	49.5	312	4	mg/Kg	☆	-53	75 - 125
Cadmium	5.1	U F1	24.8	16.3	JF1	mg/Kg	₩	66	75 - 125
Calcium	270	U	2480	1870	J	mg/Kg	≎	75	75 - 125
Cobalt	5.1	U	24.8	24.9	J	mg/Kg	≎	101	75 - 125
Sodium	2500	U F1	2480	2400	U F1	mg/Kg	₩	Ò	75 - 125
Thallium	31	U	19.8	30	U	mg/Kg	≎	NC	75 - 125
Zinc	340		49.5	350	4	mg/Kg	☆	19	75 - 125

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 680-117013 Matrix: Solid Analysis Batch: 402630		Client	Samı	ole ID: (CC06_092 Prep Tyl Prep Ba	pe: Tota	al/NA				
, tridiy did addorn i daddo	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Magnesium	100	J	2570	2620		mg/Kg	₩	98	75 - 125	4	20
Potassium	13	U	2570	2790		mg/Kg	≎	109	75 - 125	4	20
Beryllium	0.19	J	25.7	28.1		mg/Kg	✡	109	75 - 125	4	20
Vanadium	71		51.3	128		mg/Kg	₩	111	75 - 125	16	20

Client Sample ID: CC06 09212015 1300 Lab Sample ID: 680-117013-1 MSD

Matrix: Solid

Ciletit	Sample	IL.	CC00_	U3Z IZ'	015	1300
			Prep	Type:	Tota	al/NA

Analysis Batch: 402754									Prep Ba	atch: 40	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	42	U	25.7	49.7	J	mg/Kg	_ ₹	NC	75 - 125	NC	20
Selenium	50	U F1	51.3	50	U F1	mg/Kg	₩	0	75 - 125	NC	20
Nickel	20	U	51.3	41.3	J	mg/Kg	₩	80	75 - 125	4	20
Lead	80		257	314		mg/Kg	₩	91	75 - 125	2	20
Manganese	210		257	445		mg/Kg	₩	92	75 - 125	3	20
Iron	530000		2570	533000	4	mg/Kg	₩	-36	75 - 125	2	20
Chromium	16	J	51.3	66.1		mg/Kg	♦	97	75 - 125	2	20
Copper	1800	F2	51.3	1750	4 F2	mg/Kg	₩	-52	75 - 125	26	20
Barium	8.2	U F1	51.3	33.7	JF1	mg/Kg	₩	66	75 - 125	1	20
Silver	3.1	U	25.7	23.6	J	mg/Kg	₽	92	75 - 125	6	20
Aluminum	3600		2570	5620		mg/Kg	₩	78	75 - 125	0	20
Arsenic	340	F2	51.3	396	4 F2	mg/Kg	₩	112	75 - 125	24	20
Cadmium	5.1	U F1	25.7	17.0	J F1	mg/Kg	₽	66	75 - 125	4	20
Calcium	270	U	2570	1960	J	mg/Kg	₩	77	75 - 125	5	20
Cobalt	5.1	U	25.7	24.9	J	mg/Kg	☼	97	75 - 125	0	20
Sodium	2500	UF1	2570	2500	U F1	mg/Kg	₩	Ö	75 - 125	NC	20
Thallium	31	U	20.5	31	U	mg/Kg	✡	NC	75 - 125	NC	20
Zinc	340		51.3	332	4	mg/Kg	✡	-15	75 - 125	5	20

Lab Sample ID: 680-117013-1 DU

Matrix: Solid

Analysis Batch: 402630

Client Sample ID: CC06_09212015_1300

Prep Type: Total/NA

Prep Batch: 402446 DU DU Sample Sample **RPD** Result Qualifier Result Qualifier Unit RPD Limit Analyte 75 Magnesium 100 J 117 J mg/Kg 13 Potassium 13 U 13 U mg/Kg NC 20 Beryllium 0.19 J 0.166 J mg/Kg ☼ 13 20 Vanadium 71 110 F3 mg/Kg

Lab Sample ID: 680-117013-1 DU

Matrix: Solid

Client	Sample	ID:	CC06	0921	2015 1	300

Prep Type: Total/NA

Analysis Batch: 402/54							Prep Batch: 40	02446
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	42	U	43	U	mg/Kg	— 	NC NC	20
Selenium	50	U F1	51	U	mg/Kg	\$	NC	20
Nickel	20	U	20	U	mg/Kg	❖	NC	20
Lead	80		73.9		mg/Kg	Ŏ.	8	20
Manganese	210		212		mg/Kg	❖	1	20

35

20

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Method: 6010C - Metals (ICP) (Continued)	
Lab Sample ID: 680-117013-1 DU	Client Sample ID: CC06_09212015_1300

Lab Sample ID: 680-117013-1	DO				Client	Sample I	D: CC06_03212015	_1300
Matrix: Solid							Prep Type: Tot	:al/NA
Analysis Batch: 402754							Prep Batch: 40	02446
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Iron	530000		470000		mg/Kg	- ☆	13	20
Chromium	16	J	18.1	J	mg/Kg	❖	10	20
Copper	1800	F2	965	F3	mg/Kg	❖	59	20
Barium	8.2	U F1	8.4	U	mg/Kg	♦	NC	20
Silver	3.1	U	3.1	U	mg/Kg	₩	NC	20
Aluminum	3600		3500		mg/Kg	❖	3	20
Arsenic	340	F2	348		mg/Kg	\$	3	20
Cadmium	5.1	U F1	5.2	U	mg/Kg	❖	NC	20
Calcium	270	U	270	U	mg/Kg	\$	NC	20
Cobalt	5.1	U	5.2	U	mg/Kg	❖	NC	20
Sodium	2500	U F1	2500	U	mg/Kg	₩	NC	20
Thallium	31	U	31	U	mg/Kg	≎	NC	20

Method: 7471A - Mercury (CVAA)

340

Zinc

Lab Sample ID: MB 680-402360/13-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA

239 F3

mg/Kg

Prep Batch: 402360 Analysis Batch: 402533 мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0073	U	0.018	0.0073	mg/Kg		09/23/15 08:28	09/23/15 15:32	1

Lab Sample ID: LCS 680-402360/14-A				Clier	าt Sar	nple ID): Lab Control Sa	mple
Matrix: Solid							Prep Type: Tota	al/NA
Analysis Batch: 402533							Prep Batch: 40	2360
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.223	0.232		mg/Kg		104	80 - 120	

Lab Sample ID: 680-11683 Matrix: Solid Analysis Batch: 402533	0-B-1-C MS						CI	ient Sa	mple ID: Matrix Spike Prep Type: Total/NA Prep Batch: 402360
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury	0.017	J	0.107	0.126		mg/Kg	— ☆	101	80 - 120

Lab Sample ID: 680-116830)-B-1-D MS	D				Client Sa	amp	le ID: N	/latrix Spil	ce Dup	licate
Matrix: Solid									Prep Typ	oe: Tot	al/NA
Analysis Batch: 402533									Prep Ba	itch: 40	2360
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.017	J	0.113	0.135		mg/Kg	- \$	104	80 - 120	7	20

TestAmerica Savannah

QC Sample Results

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Analysis Batch: 402534	Lab Sample ID: MB 680-402	2487/1-A						Clie	ent Sam _l	ple ID: Meti		
Malayte	Matrix: Solid											
Analyte	Analysis Batch: 402534		MD MD							Prep Batc	n: 40	248
Ammonia	Analysta	D.			DI I	MDI Unit				Anabaad		ii Fa
Client Sample ID: Lab Control Samp Result Client Sample ID: Lab Control Samp Prep Type: Total/N Prep Batch: 40248 Analyte	-								•	•		
Matrix: Solid Analysis Batch: 402534 Spike Analysis Batch: 402534 Analysis Batch: 402534 Analysis Batch: 402534 Analysis Batch: 402534 Sample Sampl	Ammonia		0.13 0		0.30	0.13 mg/K	3	09/2	3/15 13:47	09/23/15 14:	50	
Matrix: Solid Analysis Batch: 402534 Spike Analysis Batch: 402534 Analysis Batch: 402534 Analysis Batch: 402534 Analysis Batch: 402534 Sample Sampl	Lah Sample ID: LCS 680-40	12/187/2_A					Clies	nt Sar	mnle ID:	Lab Contro	al Sar	nnl
Analysis Batch: 402534	-	Z-1011Z-M					Ollei	it Oai	uhie in.			
Spike Added Adde												
Analyte	Allalysis Batcil. 402004			Snike	LCS	LCS				•	II. 4V	L-+U
Ammonia S.00	Δnalvte			•			Unit	ח	%Rec			
Client Sample ID: CC06_09212015_130 Client Sample ID: CC06_09212015_130 Prep Type: TotalNA						- Cuamici						
Matrix: Solid Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Added Result Qualifier Added Result Qualifier Mission Miss	Attitionia			0.00	4.70		mg/rtg		30	70-120		
Matrix: Solid Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Added Result Qualifier Added Result Qualifier Mission Miss	Lab Sample ID: 680-117013	-1 MS					Client	Sami	ole ID: C	C06 09212	015	1300
Analysis Batch: 402534	-									NAME OF TAXABLE PARTY.		
Sample Sample Sample Sample Sample Result Qualifier Added Result Qualifier Unit D Mec Limits Missing Mis												
Analyte	rendry or and core round r	Sample	Sample	Spike	MS	MS				*		
Ammonia 0.71 U 28.5 22.1 mg/kg	Analyte	-	-	=	Result	Qualifier	Unit	D	%Rec	Limits		
Client Sample ID: CC06_09212015_130	Ammonia	0.71	U —	28.5	22.1		mg/Kg	— <u>\$</u>	78	75 - 125		
Matrix: Solid Analysis Batch: 402534 Sample Sample Sample Result Qualifier Added Result Qualifier Matrix: Solid Result Qualifier Added Result Qualifier Matrix: Solid Result Qualifier Rt MDL Unit D Rec Matrix: Matrix: Solid Result Qualifier Rt MDL Unit D Rec Matrix: Matrix: Solid Result Qualifier Rt MDL Unit D Rec Matrix: Mat							0 0					
Analysis Batch: 402534	Lab Sample ID: 680-117013	-1 MSD					Client	Sami	ple ID: C	C06_09212	015_	1300
Sample Sample Spike MSD MS	Matrix: Solid									Prep Type:	Tota	I/N/
Analyte	Analysis Batch: 402534									Prep Batc	h: 40	2487
Ammonia 0.71 U 28.4 22.2 mg/Kg 78 75-125 0 International Prep	-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPI
Client Sample ID: MB 680-402518/1-A	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits I	RPD	Limi
Lab Sample ID: MB 680-402518/1-A Matrix: Solid Analysis Batch: 402670 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Only 23/15 16:15 09/24/15 10:48 Lab Sample ID: LCS 680-402518/2-A Matrix: Solid Analysis Batch: 402670 Spike LCS LCS Prep Batch: 40251 Analyte Nitrogen, Kjeldahl Client Sample ID: Lab Control Sample ID: Matrix: Solid Prep Batch: 40251 Lab Sample ID: 680-117013-1 MS Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Prep Batch: 40251 Sample Sample Spike MS MS MS Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Ammonia	0.71	<u>U</u>	28.4	22.2		mg/Kg	☼	78	75 - 125	0	30
Lab Sample ID: MB 680-402518/1-A Matrix: Solid Analysis Batch: 402670 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Only 23/15 16:15 09/24/15 10:48 Lab Sample ID: LCS 680-402518/2-A Matrix: Solid Analysis Batch: 402670 Spike LCS LCS Prep Batch: 40251 Analyte Nitrogen, Kjeldahl Client Sample ID: Lab Control Sample ID: Matrix: Solid Prep Batch: 40251 Lab Sample ID: 680-117013-1 MS Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Prep Batch: 40251 Sample Sample Spike MS MS MS Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	·											
Matrix: Solid Prep Type: Total/N Analysis Batch: 402670 MB MB Analyte Result Qualifier RL MDL Unit D Prepared 09/23/15 16:15 09/24/15 10:48 Analyzed Dil Frep Type: Total/N Lab Sample ID: LCS 680-402518/2-A Client Sample ID: Lab Control Sample Natrix: Solid Prep Type: Total/N Analyte Spike LCS LCS (Rec. Added Result Qualifier Unit Dil Matrix: Solid Analysis Batch: 402670 Watch Sample ID: CC06_09212015_130 Lab Sample ID: 680-117013-1 MS Client Sample ID: CC06_09212015_130 Matrix: Solid Analysis Batch: 402670 Prep Type: Total/N Sample Sample Sample Sample Result Qualifier Added Result Qualifier Unit D Rec Limits Prep Batch: 40251	Method: 351.2 - Nitroge	n, Total I	Kjeldahl									
Matrix: Solid Prep Type: Total/N Analysis Batch: 402670 MB MB Analyte Result Qualifier RL MDL Unit D Prepared 09/23/15 16:15 09/24/15 10:48 Analyzed Dil Frep Type: Total/N Lab Sample ID: LCS 680-402518/2-A Client Sample ID: Lab Control Sample Natrix: Solid Prep Type: Total/N Analyte Spike LCS LCS (Rec. Added Result Qualifier Unit Dil Matrix: Solid Analysis Batch: 402670 Watch Sample ID: CC06_09212015_130 Lab Sample ID: 680-117013-1 MS Client Sample ID: CC06_09212015_130 Matrix: Solid Analysis Batch: 402670 Prep Type: Total/N Sample Sample Sample Sample Result Qualifier Added Result Qualifier Unit D Rec Limits Prep Batch: 40251										8 1 DWG 18 40 4 8	K 2000	
Analysis Batch: 402670 MB MB MB MB MB MB MB M	-	!518/1-A						CIIE	ent Sam _l			
Mailyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fall Fall												
Analyte	Analysis Batch: 4026/0		MD MD							Prep Batc	h: 40	2578
Nitrogen, Kjeldahl 30 U 50 30 mg/Kg 09/23/15 16:15 09/24/15 10:48			MR MR				_			A b		
Lab Sample ID: LCS 680-402518/2-A Matrix: Solid Analysis Batch: 402670 Spike Analyte Analyte Nitrogen, Kjeldahl Lab Sample ID: Lab Control Sample Spike Added Result Qualifier Mit Mit Mit Mit Mit Mit Mit Mi		_	4 0 00						renared	Anaivzed		·
Matrix: Solid Prep Type: Total/N Analysis Batch: 402670 Spike LCS LCS KRec. Resc. Acc. Acc. MRec. MRec. MRec. MRec. Limits MRec.		Re	•				_		•	-		
Matrix: Solid Prep Type: Total/N Analysis Batch: 402670 Spike LCS LCS KRec. Resc. Acc. Acc. MRec. MRec. MRec. MRec. Limits MRec.		Re	•				_		•	-		il Fac
Analysis Batch: 402670 Spike LCS LCS	Nitrogen, Kjeldahl		•]	09/2	3/15 16:15	09/24/15 10:	48	,
Spike LCS LCS	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40		•]	09/2	3/15 16:15	09/24/15 10:	48 ol Sar	nple
Analyte Added Result Qualifier Unit D %Rec Limits Nitrogen, Kjeldahl 400 416 mg/Kg 104 75 - 125 Lab Sample ID: 680-117013-1 MS Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid		•]	09/2	3/15 16:15	09/24/15 10: Lab Contro Prep Type:	48 ol Sar Tota	nple
Nitrogen, Kjeldahl Aud 416 mg/Kg 104 75 - 125 Lab Sample ID: 680-117013-1 MS Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Analyte Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670		•	Snika	50	30 mg/Kg]	09/2	3/15 16:15	D9/24/15 10: Lab Contro Prep Type: Prep Batc	48 ol Sar Tota	nple
Lab Sample ID: 680-117013-1 MS Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670		•		50 LCS	30 mg/Kg	Clie	09/2	3/15 16:15 mple ID:	O9/24/15 10: Lab Contro Prep Type: Prep Batc %Rec.	48 ol Sar Tota	nple
Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte		•	Added	50 LCS Result	30 mg/Kg	Clier	09/2	3/15 16:15 mple ID: %Rec	09/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits	48 ol Sar Tota	nple
Matrix: Solid Analysis Batch: 402670 Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte		•	Added	50 LCS Result	30 mg/Kg	Clier	09/2	3/15 16:15 mple ID: %Rec	09/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits	48 ol Sar Tota	nple
Analysis Batch: 402670 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl	2518/2-A	•	Added	50 LCS Result	30 mg/Kg	Clier Unit mg/Kg	09/2	3/15 16:15 mple ID: **Rec** 104	09/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits 75 - 125	ol Sar Tota h: 402	mple II/N/ 2518
Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl Lab Sample ID: 680-117013	2518/2-A	•	Added	50 LCS Result	30 mg/Kg	Clier Unit mg/Kg	09/2	3/15 16:15 mple ID: **Rec** 104	09/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits 75 - 125 C06_09212	48 ol Sar Tota h: 402	mple 1/N/ 2518
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl Lab Sample ID: 680-117013 Matrix: Solid	2518/2-A	•	Added	50 LCS Result	30 mg/Kg	Clier Unit mg/Kg	09/2	3/15 16:15 mple ID: **Rec** 104	O9/24/15 10: Lab Control Prep Type: Prep Batc %Rec. Limits 75 - 125 CO6_09212 Prep Type:	48 ol Sar Tota h: 402 015_ Tota	mple il/N/ 2518
	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl	2518/2-A -1 MS	30 U	Added 400	LCS Result 416	30 mg/Kg	Clier Unit mg/Kg	09/2	3/15 16:15 mple ID: **Rec** 104	O9/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits 75 - 125 CO6_09212 Prep Type: Prep Batc	48 ol Sar Tota h: 402 015_ Tota	mple il/NA 2518
(MICOURE EXTERNAL)	Nitrogen, Kjeldahl Lab Sample ID: LCS 680-40 Matrix: Solid Analysis Batch: 402670 Analyte Nitrogen, Kjeldahl Lab Sample ID: 680-117013 Matrix: Solid Analysis Batch: 402670	-1 MS	30 U	Added 400 Spike	LCS Result 416	30 mg/Kg LCS Qualifier	Clien Unit mg/Kg Client	09/2 nt Sar D Samp	3/15 16:15 mple ID: **Rec 104 ple ID: C	O9/24/15 10: Lab Contro Prep Type: Prep Batc %Rec. Limits 75 - 125 CO6_09212 Prep Type: Prep Batc %Rec.	48 ol Sar Tota h: 402 015_ Tota	mple il/NA 2518

QC Sample Results

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Lab Sample ID: 680-117013-1 MSD	Client Sample ID: CC06_09212015_1300
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 402670	Prep Batch: 402518

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Analyte Result Qualifier Unit D Limits RPD Limit %Rec 1990 140 U 2 Nitrogen, Kjeldahl 2140 mg/Kg 108 75 - 125 40

Method: 9012B - Cyanide, Total andor Amenable

Method: 351.2 - Nitrogen, Total Kjeldahl (Continued)

Lab Sample ID: MB 680-402456/1-A

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 402573

MB MB

Prep Batch: 402456

 Analyte
 Result
 Qualifier
 RL
 MDL voit
 Unit
 D voic
 Prepared
 Analyzed
 Dil Factor

 Cyanide, Total
 0.21
 U
 0.50
 0.21
 mg/Kg
 09/23/15 11:45
 09/24/15 04:42
 1

Lab Sample ID: LCS 680-402456/2-A

Client Sample ID: Lab Control Sample
Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 402573 Prep Batch: 402456 Spike LCS LCS %Rec.

AnalyteAddedResultQualifierUnitD%RecLimitsCyanide, Total5.004.87mg/Kg9775 - 125

Lab Sample ID: 680-117013-1 MS Client Sample ID: CC06_09212015_1300

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 402573

Sample Sample Spike MS MS S %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits

 Cyanide, Total
 1.2 U
 27.1
 27.0
 mg/Kg
 \$ 99
 75 - 125

Lab Sample ID: 680-117013-1 MSD Client Sample ID: CC06_09212015_1300

Matrix: Solid
Analysis Batch: 402573
Sample Sample Spike MSD MSD SD SPIKE RPD
Prep Type: Total/NA
Prep Batch: 402456
%Rec. RPD

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Cyanide, Total 1.2 U 27.1 26.6 mg/Kg \$\frac{1}{27}\$ 98 75 - 125 1 30

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Prep Batch

GC/MS VOA		 	

Analysis Batch: 40	2348			
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method
680-117013-2	Trip Blank	Total/NA	Water	SM 6200B

 LCS 680-402348/4
 Lab Control Sample
 Total/NA
 Water
 SM 6200B

 LCSD 680-402348/5
 Lab Control Sample Dup
 Total/NA
 Water
 SM 6200B

 MB 680-402348/9
 Method Blank
 Total/NA
 Water
 SM 6200B

Analysis Batch: 402406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	8260B	402440
LCS 680-402406/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-402406/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 680-402406/6	Method Blank	Total/NA	Solid	8260B	

Prep Batch: 402440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 402448

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-110975-C-31-B MS	Matrix Spike	Total/NA	Solid	3546	
400-110975-C-31-C MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	
680-117013-1	CC06_09212015_1300	Total/NA	Solid	3546	
LCS 680-402448/10-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 680-402448/19-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 680-402448/9-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 402546

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-110975-C-31-B MS	Matrix Spike	Total/NA	Solid	8082A	402448
400-110975-C-31-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8082A	402448
680-117013-1	CC06_09212015_1300	Total/NA	Solid	8082A	402448
LCS 680-402448/10-A	Lab Control Sample	Total/NA	Solid	8082A	402448
LCSD 680-402448/19-A	Lab Control Sample Dup	Total/NA	Solid	8082A	402448
MB 680-402448/9-A	Method Blank	Total/NA	Solid	8082A	402448

HPLC/IC

Leach Batch: 402521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Soluble	Solid	DI Leach	
680-117013-1 DU	CC06_09212015_1300	Soluble	Solid	DI Leach	
680-117013-1 MS	CC06_09212015_1300	Soluble	Solid	DI Leach	
680-117013-1 MSD	CC06_09212015_1300	Soluble	Solid	DI Leach	
LCS 680-402521/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 680-402521/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
MB 680-402521/1-A	Method Blank	Soluble	Solid	DI Leach	

Client: Weston Solutions, Inc. Project/Site: Gold King Mine - Region 8

eston Solutions, Inc.
TestAmerica Job ID: 680-117013-1

HPLC/IC	(Continued)
---------	-------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Soluble	Solid	9056A	402521
680-117013-1 DU	CC06_09212015_1300	Soluble	Solid	9056A	402521
680-117013-1 MS	CC06_09212015_1300	Soluble	Solid	9056A	402521
680-117013-1 MSD	CC06_09212015_1300	Soluble	Solid	9056A	402521
LCS 680-402521/2-A	Lab Control Sample	Soluble	Solid	9056A	402521
LCSD 680-402521/3-A	Lab Control Sample Dup	Soluble	Solid	9056A	402521
MB 680-402521/1-A	Method Blank	Soluble	Solid	9056A	402521

Metals

Prep Batch: 402360

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-116830-B-1-C MS	Matrix Spike	Total/NA	Solid	7471A	
680-116830-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	
680-117013-1	CC06_09212015_1300	Total/NA	Solid	7471A	
LCS 680-402360/14-A	Lab Control Sample	Total/NA	Solid	7471A	
MB 680-402360/13-A	Method Blank	Total/NA	Solid	7471A	

Prep Batch: 402446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	3050B	
680-117013-1 DU	CC06_09212015_1300	Total/NA	Solid	3050B	
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	3050B	
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	3050B	
LCS 680-402446/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 680-402446/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 402533

Lab Sample ID 680-116830-B-1-C MS	Client Sample ID Matrix Spike	Prep Type Total/NA	Matrix Solid	Method 7471A	Prep Batch 402360
680-116830-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	402360
680-117013-1	CC06_09212015_1300	Total/NA	Solid	7471A	402360
LCS 680-402360/14-A	Lab Control Sample	Total/NA	Solid	7471A	402360
MB 680-402360/13-A	Method Blank	Total/NA	Solid	7471A	402360

Analysis Batch: 402630

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 DU	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	6010C	402446
LCS 680-402446/2-A	Lab Control Sample	Total/NA	Solid	6010C	402446
MB 680-402446/1-A	Method Blank	Total/NA	Solid	6010C	402446

Analysis Batch: 402754

Lab Sample ID 680-117013-1	Client Sample ID CC06 09212015 1300	Prep Type Total/NA	Matrix Solid	Method 6010C	Prep Batch 402446
680-117013-1 DU	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	6010C	402446
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	6010C	402446

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

Analysis Batch: 4027	754 (Continued)					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl	
LCS 680-402446/2-A	Lab Control Sample	Total/NA	Solid	6010C	402446	
MB 680-402446/1-A	Method Blank	Total/NA	Solid	6010C	402446	
General Chemist	ry					
Analysis Batch: 4024	136					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
680-117013-1	CC06_09212015_1300	Total/NA	Solid	Moisture		
Prep Batch: 402456						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl	
680-117013-1	CC06 09212015 1300	Total/NA	Solid	9012B		
680-117013-1 MS	CC06 09212015 1300	Total/NA	Solid	9012B		
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	9012B		
LCS 680-402456/2-A	Lab Control Sample	Total/NA	Solid	9012B		
MB 680-402456/1-A	Method Blank	Total/NA	Solid	9012B		
Prep Batch: 402487						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl	
680-117013-1	CC06 09212015 1300	Total/NA	Solid	3-154	_ Trep Bate	
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	3-154		
680-117013-1 MSD	CC06 09212015 1300	Total/NA	Solid	3-154		
LCS 680-402487/2-A	Lab Control Sample	Total/NA	Solid	3-154		
MB 680-402487/1-A	Method Blank	Total/NA	Solid	3-154		
Prep Batch: 402518						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
680-117013-1	CC06_09212015_1300	Total/NA	Solid	Digestion	_ ·•	
680-117013-1 MS	CC06 09212015 1300	Total/NA	Solid	Digestion		
680-117013-1 MSD	CC06 09212015 1300	Total/NA	Solid	Digestion		
LCS 680-402518/2-A	Lab Control Sample	Total/NA	Solid	Digestion		
MB 680-402518/1-A	Method Blank	Total/NA	Solid	Digestion		
- Analysis Batch: 4025	534					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl	
680-117013-1	CC06_09212015_1300	Total/NA	Solid	350.1	40248	
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	350.1	40248	
680-117013-1 MSD	CC06 09212015 1300	Total/NA	Solid	350.1	40248	
LCS 680-402487/2-A	Lab Control Sample	Total/NA	Solid	350.1	40248	
MB 680-402487/1-A	Method Blank	Total/NA	Solid	350.1	40248	
- \nalysis Batch: 4025	573					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
680-117013-1	CC06_09212015_1300	Total/NA	Solid	9012B	402456	
680-117013-1 MS CC06_09212015_1300		Total/NA	Solid	9012B	40245	
680-117013-1 MSD CC06_09212015_1300		Total/NA	Solid	9012B	40245	
LCS 680-402456/2-A	Lab Control Sample	Total/NA		Solid 9012B		
MB 680-402456/1-A	Method Blank	Total/NA	Solid	9012B	402456 402456	

TestAmerica Savannah

TestAmerica Job ID: 680-117013-1

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

General Chemistry (Continued)

Analysis Batch: 402670

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-117013-1	CC06_09212015_1300	Total/NA	Solid	351.2	402518
680-117013-1 MS	CC06_09212015_1300	Total/NA	Solid	351.2	402518
680-117013-1 MSD	CC06_09212015_1300	Total/NA	Solid	351.2	402518
LCS 680-402518/2-A	Lab Control Sample	Total/NA	Solid	351.2	402518
MB 680-402518/1-A	Method Blank	Total/NA	Solid	351.2	402518

Lab Chronicle

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Client Sample ID: CC06_09212015_1300 Lab Sample ID: 680-117013-1

Date Collected: 09/21/15 13:00 Matrix: Solid

Date Received: 09/23/15 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			402436	09/23/15 11:25	FES	TAL SAV

Client Sample ID: CC06_09212015_1300

Lab Sample ID: 680-117013-1 Date Collected: 09/21/15 13:00 Matrix: Solid Date Received: 09/23/15 00:00 Percent Solids: 17.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.235 g	5 mL	402440	09/23/15 11:41	FES	TAL SAV
Total/NA	Analysis Instrume	8260B nt ID: CMSB		1	4.235 g	5 mL	402406	09/23/15 14:24	DJK	TAL SAV
Total/NA	Prep	3546			15.10 g	10 mL	402448	09/23/15 12:39	KAC	TAL SAV
Total/NA	Analysis Instrume	8082A nt ID: CSGZ		1	15.10 g	10 mL	402546	09/23/15 23:12	JCK	TAL SAV
Soluble	Leach	DI Leach			5.05 g	100 mL	402521	09/23/15 12:40	AJO	TAL SAV
Soluble	Analysis Instrume	9056A nt ID: CICG		1	5 mL	5 mL	402647	09/24/15 09:30	RSW	TAL SAV
Total/NA	Prep	3050B			1.11 g	100 mL	402446	09/23/15 11:52	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		1	1.11 g	100 mL	402630	09/23/15 16:45	ВСВ	TAL SAV
Total/NA	Prep	3050B			1.11 g	100 mL	402446	09/23/15 11:52	CDD	TAL SAV
Total/NA	Analysis Instrume	6010C nt ID: ICPE		10	1.11 g	100 mL	402754	09/24/15 13:38	ВСВ	TAL SAV
Total/NA	Prep	7471A			0.58 g	50 mL	402360	09/23/15 13:48	JKL	TAL SAV
Total/NA	Analysis Instrume	7471A nt ID: LEEMAN2		1	0.58 g	50 mL	402533	09/23/15 16:24	BCB	TAL SAV
Total/NA	Prep	3-154			20.80 g	100 mL	402487	09/23/15 13:47	JER	TAL SAV
Total/NA	Analysis Instrume	350.1 nt ID: KONELAB1		1	20.80 g	100 mL	402534	09/23/15 14:50	JER	TAL SAV
Total/NA	Prep	Digestion			0.2471 g	40 mL	402518	09/23/15 16:15	JRJ	TAL SAV
Total/NA	Analysis Instrume	351.2 nt ID: LACHAT3		1	0.2471 g	40 mL	402670	09/24/15 10:50	CRW	TAL SAV
Total/NA	Prep	9012B			1.04 g	50 mL	402456	09/23/15 11:45	DAM	TAL SAV
Total/NA	Analysis Instrume	9012B nt ID: LACHAT1		1	1.04 g	50 mL	402573	09/24/15 04:44	DAM	TAL SAV

Lab Sample ID: 680-117013-2 Client Sample ID: Trip Blank

Date Collected: 09/21/15 13:00 Matrix: Water Date Received: 09/23/15 00:00

Prep Type Total/NA	Batch Type Analysis	Batch Method SM 6200B	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 402348	Prepared or Analyzed 09/23/15 13:12	Analyst JD1	Lab TAL SAV
	Instrumer	nt ID: CMSA2								

Lab Chronicle

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Certification Summary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Laboratory: TestAmerica Savannah

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Colorado	State Program	8	N/A	12-31-15

Method Summary

Client: Weston Solutions, Inc.

Project/Site: Gold King Mine - Region 8

TestAmerica Job ID: 680-117013-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
SM 6200B	SM 6200B	SM21	TAL SAV
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL SAV
9056A	Anions, Ion Chromatography	SW846	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
7471A	Mercury (CVAA)	SW846	TAL SAV
350.1	Nitrogen, Ammonia	MCAWW	TAL SAV
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL SAV
9012B	Cyanide, Total andor Amenable	SW846	TAL SAV
Moisture	Percent Moisture	FPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

MCAVW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM21 = Standard Methods For The Examination Of Water And Wastewater, 21st Edition

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Chain of Custody Rec	ord		Temp	ler ID 🗜 erature o ing Water	n Receij								ICC) TE	ESTAME F ESS YA	RICA- HRVADA KLOW ST CO 8000T
Address POS GRA City LAVEW UDD Project Name and Location Contract/Purchase Order/Q	CALISON ST State (State) White No.'	UTONS E 100, ZID COOLE BOUS	Project Site Co.	t Manager. CARY one Number ontact //Waybill Nu	Mo PAR r (Area Co	de)/Fax	Number Contact Contact	tainers & ervative.	ACH HOD	/svoc	0.8/PO.	Date 1/2/2 Lab Number A Kitages (Attaces space is Space i	I/IS JADA	C	hain of Custod 1905 age	ly Number
CCO6_092120 TRIP GUHNK		9 2 1 5 9 2 1 1 5	1300 1300	Air	Post Tost	12	H2SO4 H2SO4 H1NO3	HOBIN 2	Nach (C) Mach	680-1	17013 Ct	nain of Cus	stody			
Turn Around Time Required 24 Hours	ammable Skin Irritant urs 7 Days 14	Days 21 Day	Date 7/2 Pate 9/3 Date	n Reti		LE	QC Requi	ved By Ped	s (Specify) Ley		Lar		(A fee may be longer than	1 month)	Date Plate	Time Time Time Time Time

1 1 0 9 8 7 6 5 4 3 2 4 2 4 3

Website: www.testamericainc.com Phone: (912) 354-7858 **TestAmerica** Fax: (912) 352-0165 Alternate Laboratory Name/Location Phone: THE LEADER IN ENVIRONMENTAL TESTING 6824 7007 Fax: PROJECT LOCATION PROJECT REFERENCE PROJECT NO. MATRIX PAGE OF REQUIRED ANALYSIS GOLD KING MUE TAL (LAB) PROJECT MANAGER (STATE) TYPE CONTRACT NO. STANDARD REPORT P.O. NUMBER DELIVERY CLIENT (SITE) PM MOIRA

CLIENT PHONE

303-19

CLIENT F-MAIL

CLIENT F-MAIL NONAQUEOUS LIQUID (OIL, SOLVENT, -0 OR GRAB (G) INDICA CLIENT FAX DATE DUE 303-729.6100 7 NO 108 AND EXPEDITED REPORT 3 **DELIVERY** 6 (SURCHARGE) SOLID OR SEMISOLID
AIR CLIENT ADDRESS
1435 FOUNSON ST. Ste 100
COMPANY CONTRACTING THIS WORK (if applicable) DATE DUE ASAP AQUEOUS (WATER) B ANOS NUMBER OF COOLERS SUBMITTED PER SHIPMENT: SAMPLE SAMPLE IDENTIFICATION NUMBER OF CONTAINERS SUBMITTED REMARKS DATE TIME CC06-092115-1300 1300 *FASTEST POSSIBLE THT FASTEST POSSIBLE LEVEL 4 DATA PICG * RELINQUISHED BY: (SIGNATURE) RELINQUIS/JEB BY: (SIGNATURE) TIME DATE TIME DATE 9/43/15 RELINQUISHED/BY: (SIGNATURE 14:30 1500 16:40 TIME TIME DATE TIME "Miche ATI RECEIVED BY: (SIGNATURE) 9:10 LABORATORY USE ONLY PRECEIVED FOR LABORATORY BY: CUSTODY INTACT TIME LABORATORY REMARKS DATE SAVANNAH CUSTODY (SIGNATURE) LOG NO. YES 🔘 SEAL NO. 0.1505 +01/4mg 9/2015

NO \bigcirc

ED_000792_00006857-00040

TAL8240-680 (1008)

Login Sample Receipt Checklist

Client: Weston Solutions, Inc.

Job Number: 680-117013-1

Login Number: 117013 List Source: TestAmerica Savannah

List Number: 1

Creator: Daughtry, Beth A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	False	Did not receive the water portion for this sample
Samples are received within Holding Time.	False	Waters: cr-6/NO3 OFH
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	