Optimization notes

Ying Jia Lin

National Cheng Kung University

May 3rd, 2021

Directional derivative

From a starting point \underline{x}_0 and a given direction \underline{u} :

- $\underline{x}(\lambda) = \underline{x}_0 + \lambda \underline{u}$
 - λ is a scalar.
- $d\underline{x} = \underline{u}d\lambda$
 - For a small change in λ .
- $F(\lambda) = f(\underline{x}_0 + \lambda \underline{u})$

$$dF = df = (\nabla f(\underline{x}))^{\top} d\underline{x}$$
$$= (\nabla f(\underline{x}))^{\top} \underline{u} d\lambda = \nabla^{\top} f \underline{u} \lambda$$

- $\frac{df}{d\lambda} = \nabla^{\top} f \underline{u}$
 - If f is minimized at $\underline{x}^* = \underline{x}_0 + \lambda \underline{u}$, then:
 - $\nabla f(\underline{x}^*))^{\top} f\underline{u} = 0$
 - gradient f evaluated at the minimum point is orthogonalto \underline{u} .

Weierstrass Theorem

If $f(\underline{x})$ is continuous on a nonempty feasible set that is cloased and bounded, then $f(\underline{x})$ has a global minimum in this set.

- ▶ A set *S* is bounded if for any point \underline{x} in *S*, we have $\underline{x}^{\top}\underline{x} < c$
 - c is a finite positive number.