MC1556G MC1456G MC1456CG

INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIER

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. For detailed information, see Application Note AN-522.

- Low Input Bias Current 15 nA max
- Low Input Offset Current 2.0 nA max
- Low Input Offset Voltage 4.0 mV max
- Fast Slew Rate 2.5 V/μs typ
- Large Power Bandwidth 40 kHz typ
- Low Power Consumption 45 mW max
- Offset Voltage Null Capability
- Output Short-Circuit Protection
- Input Over-Voltage Protection

OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT

EPITAXIAL PASSIVATED

VOLTAGE-FOLLOWER PULSE RESPONSE INPUT OUTPUT 2 \(\mu \) / OIVISION

5 VOLTS/DIVISION

See Packaging Information Section for outline dimensions.

MC1556G, MC1456G, MC1456CG (continued)

MAXIMUM RATINGS (T _A = +25°C unless otherwis	MC1456G				
Rating	Symbol	MC1556G	MC1456CG	Unit	
Power Supply Voltage	v ⁺	+22	+18	Vdc	
	v ⁻	-22	-18		
Differential Input Signal	V _{in}	±	Volts		
Common-Mode Input Swing	CMVin	±	Volts		
Load Current	IL.		mA		
Output Short Circuit Duration	tS	Cor			
Power Dissipation (Package Limitation)	PD	680		mW	
Derate above T _A = +25°C		1 .	mW/ ^o C		
Operating Temperature Range	TA	-55 to +125	0 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS (V⁺ = +15 Vdc, V⁻ = -15 Vdc, T_A = +25^oC unless otherwise noted)

			MC1556G		MC1456G			MC1456CG				
Characteristic	Fig.	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current		IЬ										nAdc
T _A = +25°C			-	8.0	15	-	15	30	-	15	90	
TA = Tlow to Thigh (See Note 1)		l	_	-	30	-	-	40	_	-	-	
Input Offset Current		lio										nAdc
T _A = +25 ^o C			-	1.0	2.0	-	5,0	10	_	5.0	30	
T _A = +25 ^o C to T _{high}	l		-	-	3.0	-	_	14	-	_	-	
T _A = T _{low} to +25°C			-		5.0	- 1	_	14	_	_	_	
Input Offset Voltage		Vio										mVdc
$T_A = +25^{\circ}C$			-	2.0	4.0	-	5,0	10	-	5.0	12	
TA = T _{low} to T _{high}			_		6.0	_		14	_	_	_	
Differential Input Impedance (Open-Loop, f = 20 Hz)												
Parallel Input Resistance		Rp	-	5.0	-	-	3.0	-	-	3.0	-	Megohms
Parallel Input Capacitance		Cp		6.0	_	_	6.0		-	6.0		pF
Common-Mode Input Impedance (f = 20 Hz)		Z _{in}		250		_	250		-	250	-	Megohms
Common-Mode Input Voltage Swing	1	CMVin	±12	±13	-	±11	±12		±10.5	±12	-	V _{pk}
Equivalent Input Noise Voltage $(A_V = 100, R_s = 10 \text{ k ohms}, f = 1.0 \text{ kHz}, BW = 1.0 \text{ Hz})$	2	e _n	-	45			45	-	-	45	-	nV/(Hz)½
Common-Mode Rejection Ratio (f = 100 Hz)	3	CM _{rej}	80	110	-	70	110	-	-	110	-	dB
Open-Loop Voltage Gain, (Vout = ±10 V, R _L = 2.0 k ohms)	4,5,6	AVOL										V/V
$T_A = +25^{\circ}C$			100,000	200,000	-	70,000	100,000	-	25,000	100,000	-	
TA = Tlow to Thigh			40,000	_		40,000		-	_	_	_	
Power Bandwidth	9	P _{BW}	-	40	-	-	40	-		40	-	kHz
$(A_V = 1, R_L = 2.0 \text{ k ohms, THD} \le 5\%, V_{out} = 20 \text{ Vp-p})$!		İ					1			
Unity Gain Crossover Frequency (open-loop)	5	f _c	_	1,0	-	-	1,0	-	_	1.0	_	MHz
Phase Margin (open-loop, unity gain)	5,7		-	70		-	70	-	_	70	1	degrees
Gain Margin	5,7			18		1	18	_	_	18	-	dB
Slew Rate (Unity Gain)		dV _{out} /dt	-	2.5	-	-	2.5	-	-	2.5	-	V/µs
Output Impedance (f = 20 Hz)		Z _{out}	-	1.0	2.0	-	1.0	2.5	_	1.0	1	kohms
Short-Circuit Output Current	8	Isc	-	-17, +9 .0	-	-	-17, + 9 .0	1	-	-17, +9.0	1	mAdc
Output Voltage Swing (R L = 2.0 k ohms)	10	V _{out}	±12	±13	-	±11	±12	-	±10	±12	_	V _{pk}
Power Supply Sensitivity			1.						ŀ			μV/V
V = constant, R _s ≤ 10 k ohms		S+		50	100	-	75	200	-	75	_	
V ⁺ = constant, R _s ≤ 10 k ohms		S-	* -	50	100		75	200	_	75	-	
Power Supply Current		ID+		1.0 1.0	1.5 1.5	_	1.3 1.3	3.0 3.0	-	1.3 1.3	4.0 4.0	mAdc
DC Quiescent Power Dissipation	11	PD	_	30	45	_	40	90		40	120	mW
(V _{out} = 0)												

Note 1: T_{low}: 0° for MC1456G and MC1456CG -55°C for MC1556G Thigh: +75°C for MC1456G and MC1456CG +126°C for MC1556G

TYPICAL CHARACTERISTICS

 $(V^+ = +15 \text{ Vdc}, V^- = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted})$

FIGURE 2 - SPECTRAL NOISE DENSITY

TYPICAL CHARACTERISTICS (continued)

FIGURE 7 - OPEN-LOOP PHASE SHIFT

FIGURE 8 – OUTPUT SHORT-CIRCUIT CURRENT versus TEMPERATURE

FIGURE 9 - POWER BANDWIDTH

FIGURE 10 – OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 11 – POWER DISSIPATION versus
POWER SUPPLY VOLTAGE

TYPICAL APPLICATIONS

Where values are not given for external components they must be selected by the designer to fit the requirements of the system.

FIGURE 12 - INVERTING FEEDBACK MODEL

FIGURE 13 - NON-INVERTING FEEDBACK MODEL

FIGURE 14 - LOW-DRIFT SAMPLE AND HOLD

FIGURE 15 - HIGH IMPEDANCE BRIDGE AMPLIFIER

6

TYPICAL APPLICATIONS (continued)

FIGURE 16 - LOGARITHMIC AMPLIFIER

FIGURE 17 - VOLTAGE OFFSET NULL CIRCUIT

2 0 MC1456, C MC1556 5

See Application Note AN-261 for further detail.

FIGURE 18 – HIGH INPUT IMPEDANCE, HIGH OUTPUT CURRENT VOLTAGE FOLLOWER

