

FOUNDATION MODELS IN HEALTHCARE

PRESENTED BY:

Abdessamed Qchohi, Alessio Giuffrida

- 01 Foundation Models
- 02 DinoV2
- 03 Experiments

Foundation Models

Self-supervision

A form of unsupervised learning where the model generates its own labels from the input data. Learning signals are created using patterns within the data.

At Scale

Training involves vast amounts of data and computational resources to achieve generalization and robustness.

Goal

Start with a shared foundation model and adapt it for specific applications, unifying multiple tasks with shared pre-trained knowledge.

How to use?

Pre-Training

The model processes inputs and extracts features

Linear Probing

A new model is trained on top of the extracted features without updating the foundation model's parameters (frozen features).

Fine-Tuning

All model parameters are updated to better fit a specific task. This requires more memory and it is likely to overfit.

Model Robustness

In-Distribution (ID)

- Inputs are drawn from the same distribution as the model's training data
- Fine-tuning typically performs better than linear probing when the dataset closely resembles the pretraining data.

Out-Of-Distribution (OOD)

- Inputs are significantly different from the training data
- Linear probing often performs better. This happens when the pretrained features are high quality and the distribution shifts are large.

Dinov2

Learning Robust Visual Features without Supervision

- **DINOv2** explores whether **self-supervised learning**, when scaled with large curated datasets, can produce **general-purpose visual features** that work across diverse tasks.
- Unlike **text-guided vision models (e.g., CLIP)**, which rely on captions, **DINOv2** learns features directly from images without supervision.

Framework

- **Core idea**: train a *student* network to match the output of a *teacher* network on various views (augmentations) of the same input image using a cross-entropy loss on softmax-normalized outputs.
- **Probability outputs** are computed by applying a temperature-scaled softmax over the model outputs. These encourage either smoother or sharper distributions depending on the temperature.

• Training process:

- Multiple augmented views of an image are created-two global crops and several smaller local ones.
- All views go through the student, whereas only the global ones go through the teacher.
- The student is trained to align with the teacher's output across these local-global view pairs.
- **Loss**: cross-entropy between student and teacher outputs for all view combinations (excluding identical ones).

Framework

Framework

Teacher update:

• The teacher is not fixed, it's updated as an exponential moving average (EMA) of the student (momentum encoder). This ensures that the teacher always provides a more stable target.

• Architecture:

• Both student and teacher use the same network (e.g., ViT or ResNet) with different weights.

Avoiding collapse:

- DINO avoids the common SSL issue of collapse not by contrastive loss, but by:
 - Centering the teacher's output → subtracting the batch mean
 - Sharpening → lowering the teacher softmax temperature
- These balance each other: centering avoids dominant dimensions; sharpening avoids flat outputs.

Loss Functions

• DINO loss: cross-entropy between student and teacher network

$$oxed{\mathcal{L}_{DINO} = -\sum p_t \log p_s}$$

• **iBOT loss:** patch-based learning with masking, again a cross-entropy loss between the two networks

$$\left(\mathcal{L}_{iBOT} = -\sum_{i} p_{ti} \log p_{si}
ight)$$

Semantic segmentation

Approach used:

- Dinov2 is a feature extractor
- The weights are frozen and a segmentation head is added on top
- The head can be either pre-trained or not

Experiments

01 FoodSeg

02 BraTS - 3 modalities

03 BraTS - 1 modality

04 Fine-Tuning Rein-LoRa

FoodSeg

First attempt at using DINOv2 for semantic segmentation

Approach used:

- Dataset with 104 classes
- DINOv2 as backbone + linear classifier on top implemented as a 1x1 convolutional filter
- Trained only for 10 epochs to test the effectiveness of the model

Results achieved:

- Cross-Entropy Loss: 0.9028
- Mean IoU = 0.5120

Problems:

Struggles to segment the background

FoodSeg

PyTorch-based, open-source framework for deep learning in healthcare imaging

- Flexible pre-processing for multi-dimensional medical imaging data
- Domain-specific implementations for networks, losses and evaluation metrics

Dice Loss is complementary to the Dice score

Brain Tumor Segmentation

- Modality: Multimodal multisite MRI data (FLAIR, T1w, T1gd,T2w)
- Size: 750 4D volumes (484 Training, 110 Validation, 156 Test)
- Source: BRATS 2016 and 2017 datasets.

Approach with three modalities

- BraTS dataset provides four MRI modalities: FLAIR, T1w, T1gd, and T2w.
- The task is to segment Tumor Core (TC), Whole Tumor (WT) and Enhancing Tumor (ET).
- DINOv2 requires 3-channel RGB input: only three modalities are selected to match this constraint.
- The T1w modality was excluded since there are two T1 variants and T1gd is better at distinguishing enhancing tumor.
- The remaining modalities (FLAIR, T1gd, T2w) were mapped to the three input channels and fed to the backbone as a pseudo-RGB image.
- Linear classifier on top for segmentation

Data preprocessing & transformation

- Images and labels were preprocessed to ensure consistent orientation, resolution, and spatial size.
- Data augmentation techniques such as random flipping and intensity adjustments were applied to improve model robustness.
- For training and validation, the 3D images were transformed into 2D slices resembling RGB images, combining the selected modalities and normalizing them.
- Ground truth labels were converted into a multi-channel format that highlights the main tumor regions (tumor core, whole tumor, enhancing tumor).

Results

Best result on a single image from the validation set during 10 epochs training:

• Dice score: 0.1280

Single-Modality Approach (FLAIR only)

- A second approach was explored by using only the FLAIR modality, inspired by the methodology presented in the paper "Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation?".
- The same preprocessing pipeline was applied as in the previous approach, but the input was reduced to a single-channel (FLAIR) image, which was repeated across the three RGB channels to match the model's input format.
- To further simplify the task, the label space was reduced to two classes: background and lesion, instead of the original three tumor regions.
- This simplification was motivated by the difficulty DINOv2 showed when handling the full 3-modality setting, aiming to make the segmentation task easier and potentially improve model performance.

Results

Best result on a single image from the validation set during 10 epochs training:

• Dice score: 0.2392

Key Challenges

- Long training times
- Large domain gap
- Adapting the inputs to the 3-channel format required by Dinov2 implies loss of information
- Operating on 2D slices leads to loss of 3D context
- Dice score is very sensitive to small structures (like enhancing tumor core), so a small prediction error can cause a large drop in Dice score

Fine-Tuning

Rein-LoRA method

- Parameter-Efficient Fine-Tuning (PEFT) method designed to improve model generalization while keeping the number of trainable parameters low.
- It combines LoRA (Low-Rank Adaptation) with re-injection of learned representations into the model, allowing better adaptation to downstream tasks.
- The method injects task-specific features at multiple layers, enhancing the model's capacity to specialize without full fine-tuning.
- This leads to a balance between model adaptability and parameter efficiency, making it suitable for large vision foundation models.

Fine-Tuning

Rein-LoRA Fine-Tuning Attempt

- Based on the results presented in the paper "Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation?", where Rein-LoRA shows competitive finetuning performance, this method was also attempted on our model to potentially improve segmentation accuracy.
- However, several challenges were encountered when using the official repository.
- The environment setup was complex due to the large number of library dependencies and version conflicts, making reproducibility difficult.
- Moreover, the data loading and preprocessing required by the repository significantly differed from our pipeline, causing further integration issues.
- These obstacles limited the feasibility of fully applying Rein-LoRA fine-tuning in our experiments.

Final considerations

- DINOv2 shows promise as a feature extractor
- However, adapting it to medical imaging presents integration and data representation challenges
- The loss of 3D context and having to work on 2D slices may be too limiting for multi-class segmentation tasks

Thank you!