Capstone Design 1 2nd Presentation

Group: JYP

박영진 지도교수님 박연수 Wabi Demeke 조현근 장신원 부준호 김경서 손기영

Outline

New Concept

Subsystem Integration

Engineering Problems

Plans Ahead

New Concept

Previous Concept

Why change though?

New Concept

Assembly

Subsystem Integration

Subsystems

Subsystem Integration

Subsystem Integration

Engineering Problems throughout the Project

Ball Collecting Arm Design

Component Assembly

Heat Management

Vibration Management

Ball Collecting Arm Design

Ball Collecting Arm Design

Front View Top View

Component Assembly

<side view of the worst case>

Condition: $d \ge 50$ cm, r(ball radius) = 3.75cm, webcam angle = 78°

Assumption: detecting distance $\cong 4m$

Component Assembly 2

Heat Management

Vibration Management

Vibration Management

Plans Ahead

Plans Ahead

Practice & Improvement

- 1) Collection Accuracy
- 2) Submission Accuracy
- 3) Automation

Thank You

Appendix

What is the minimum height of webcam?

Condition: $d \ge 50$ cm, r = 3.75cm, webcam angle = 78°

Assumption: detecting distance $\cong 4m$

 $h \ge 34.35cm$

Proof of minimum height from the worst case

Circles' equations

$$(x - x_1)^2 + (y - r)^2 = r^2,$$

$$(x - x_2)^2 + (y - r)^2 = r^2$$

Tangent line equation

$$: y - ax - h = 0$$

$$\frac{|ax_1 - r + h|}{\sqrt{a^2 + 1}} = \frac{|ax_2 - r + h|}{\sqrt{a^2 + 1}} = r \qquad h = \frac{r(x_1 + x_2)}{\sqrt{(x_2 - x_1)^2 - 4r^2}} + r$$

$$x_1 = 202cm, x_2 = 259cm, r = 3.75cm$$

$$\therefore h = 34.35cm$$

```
blue_ball_detect;
robot_move;
ball_collect;
int i=0;
while(1)
      if(i<2)
            robot_rotate_blue; //rotate with blue_ball_detect
            robot_move;
            ball_collect;
            i++;}
      else
            robot_rotate_full; //rotate once
            if(blue ball>=1)
                  robot_rotate_blue; //rotate with blue_ball_detect
                  robot_move;
                  ball_collect;}
            else
                  robot_rotate_green; //rotate with green_ball_detect
                  robot_move;
                  ball_submit;
                  break;
```

Distinguish the balls in a ball

