Name:	
Klasse/Jahrgang:	

Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung

Angewandte Mathematik Probeklausur 2014 Teil A

Bearbeitungshinweise

Im vorliegenden Aufgabenheft befinden sich insgesamt fünf Aufgaben (Teil A), die aus unterschiedlich vielen Teilaufgaben bestehen.

Zur Bearbeitung der Aufgaben sind eine für Ihren Schultyp approbierte Formelsammlung sowie jeglicher Taschenrechner bzw. jegliches Mathematikprogramm ohne Internetanbindung zugelassen.

Alle Teilaufgaben sind unabhängig voneinander lösbar, sodass Sie sich mit jeder einzelnen Teilaufgabe separat beschäftigen können.

Sie haben 120 Minuten für die Bearbeitung der Aufgaben Zeit.

Viel Erfolg!

Impfstoff

Verschiedene Pharmaunternehmen produzieren Impfstoffe, die in Packungen verkauft werden.

a) Unternehmen A hat einen neuen Impfstoff entwickelt. Unternehmen B möchte diesen Impfstoff auch vertreiben.

Es stehen 2 Möglichkeiten für diesen Vertrieb zur Auswahl:

- 1. Unternehmen *B* kauft die Rechte von Unternehmen *A* um € 10 Millionen. Außerdem fallen laufende Produktionskosten in Höhe von € 25 pro Packung an.
- 2. Unternehmen B kauft das Produkt direkt von Unternehmen A um € 50 pro Packung.
- Stellen Sie die beiden Funktionsgleichungen auf, die den Zusammenhang zwischen der Anzahl der erzeugten Packungen x und den entstehenden Gesamtkosten K (in Euro) für Unternehmen B beschreiben. [2 Punkte]
- b) Ein weiteres Pharmaunternehmen untersucht ebenfalls 2 Möglichkeiten des Vertriebs eines Impfstoffes. Dabei liegen die folgenden Gewinnfunktionen vor:

$$G_1(x) = 120x$$

 $G_2(x) = 250x - 750000$

 $x \dots$ Anzahl der verkauften Packungen

 $G_1(x)$, $G_2(x)$... Gewinn bei x verkauften Packungen in Euro

- Stellen Sie diejenige Gleichung auf, mit der berechnet werden kann, bei welcher Anzahl an verkauften Packungen des Impfstoffes die Gewinne gleich sind. [1 Punkt]
- Berechnen Sie, ab welcher Anzahl an verkauften Packungen die Gewinnfunktion G_2 für das Unternehmen besser ist als die Gewinnfunktion G_1 . [1 Punkt]
- c) In der untenstehenden Abbildung sind die Graphen von 2 Gewinnfunktionen dargestellt.

 Lesen Sie ab, für welche Anzahl von verkauften Packungen der Unterschied der Gewinnwerte € 10.000 beträgt. [1 Punkt]

Leistungskurve

Die *Leistungskurve*, auch *Arbeitskurve* genannt, ist die Darstellung der Arbeitsleistung einer Arbeitnehmerin/eines Arbeitnehmers in Abhängigkeit von der Tageszeit unter Berücksichtigung seiner Durchschnittsleistung (100 Prozent). Auf einer Webseite findet man folgende Grafik:

Quelle: http://wirtschaftslexikon.gabler.de/Archiv/85252/leistungskurve-v9.html

- a) Lesen Sie ab, in welchen Zeitintervallen die Leistungsbereitschaft abnimmt. [1 Punkt]
- b) Skizzieren Sie den Graphen der 1. Ableitungsfunktion der Leistungsbereitschaft im Zeitintervall von 15 Uhr bis 3 Uhr. Achten Sie dabei auf ein korrektes Einzeichnen der Extremstellen und des Monotonieverhaltens. [2 Punkte]
- c) Um 9 Uhr beträgt die Leistungsbereitschaft einer Arbeitnehmerin 110 %. Um 12 Uhr beträgt sie 140 %. Im Zeitintervall von 12 Uhr bis 14 Uhr beträgt die mittlere Änderungsrate der Leistungsbereitschaft –12 % pro Stunde.
 - Berechnen Sie die mittlere Änderungsrate der Leistungsbereitschaft im Zeitintervall von 9 Uhr bis 12 Uhr. [1 Punkt]
 - Berechnen Sie die Leistungsbereitschaft um 14 Uhr. [1 Punkt]
- d) Die Leistungsbereitschaft eines Arbeitnehmers kann im Zeitintervall von 0 Uhr bis 6 Uhr durch die Funktion *f* beschrieben werden. Dabei gilt:

$$f(t) = \frac{10}{3} \cdot t^2 - 20 \cdot t + 40$$

t ... Zeit in Stunden, $0 \le t \le 6$

f(t) ... Leistungsbereitschaft zur Zeit t in Prozent

- Berechnen Sie die 1. Ableitung der Leistungsbereitschaft um 2:30 Uhr. [1 Punkt]
- Erklären Sie die Bedeutung der 1. Ableitung im Sachzusammenhang. [1 Punkt]

Leuchtmittel

In einem Betrieb werden Leuchtmittel erzeugt. Untersuchungen haben ergeben, dass 5 % der erzeugten Leuchtmittel fehlerhaft sind. Die übrigen Leuchtmittel funktionieren einwandfrei. Nun wird eine Stichprobe vom Umfang n = 100 untersucht.

- a) Erklären Sie, warum die Binomialverteilung hier als Modell zur Berechnung von Wahrscheinlichkeiten verwendet werden kann. [1 Punkt]
- b) Berechnen Sie die Wahrscheinlichkeit, dass 6 oder 7 fehlerhafte Leuchtmittel in der Stichprobe zu finden sind. [1 Punkt]
- c) Beschreiben Sie, welche Wahrscheinlichkeit durch den Ausdruck

$$0.05^4 \cdot 0.95^{96} \cdot \binom{100}{4}$$

berechnet wird. [1 Punkt]

- d) Die Wahrscheinlichkeit, dass in einer Stichprobe 5 fehlerhafte Leuchtmittel gefunden werden, beträgt 18 %.
 - Berechnen Sie die Wahrscheinlichkeit, dass in 2 unabhängigen Stichproben gleichen Umfangs jeweils 5 fehlerhafte Leuchtmittel gefunden werden. [1 Punkt]

Skipiste

Im italienischen Skisportort Bormio findet jährlich ein Abfahrtsrennen auf der *Pista Stelvio* im Rahmen des Skiweltcups statt. Die Abfahrtsstrecke ist insgesamt 3 186 Meter lang.

- a) Berechnen Sie die mittlere Geschwindigkeit eines Rennläufers in km/h, der die Strecke in
 1 Minute 58,62 Sekunden bewältigt. [1 Punkt]
- b) Fahrer A bewältigt die Strecke mit einer mittleren Geschwindigkeit von 20 m/s. Fahrer B startet 30 Sekunden später und fährt mit einer mittleren Geschwindigkeit von 25 m/s.
 - Berechnen Sie, wie viele Meter vor dem Ziel Fahrer B Fahrer A einholt. [2 Punkte]
- c) Die größte Steigung der Strecke beträgt 63 %.
 - Erklären Sie anhand einer Skizze, was man unter einer Steigung von 63 % versteht.
 [1 Punkt]
 - Berechnen Sie den zugehörigen Steigungswinkel. [1 Punkt]

Weitsprung

Bei einem Weitsprungwettbewerb einer Schulklasse werden die Sprungweiten (in Metern) von 12 Mädchen aufgezeichnet:

4.40	4.15	3.73	3,72	3.63	3.52	3.29	3.00	2.28	2.50	4.30	4.80
.,	.,	, ,,, ,		, -,	-,	, -,	-,	_,	_,-,	.,	, .,

- a) Berechnen Sie den arithmetischen Mittelwert und die Standardabweichung der Sprungweiten. [1 Punkt]
- b) Die Sprungweiten werden in die Noten im Gegenstand *Bewegung und Sport* eingearbeitet. Es gilt die folgende Notenskala:

Sehr gut	ab 4 m				
Gut	3,5 m – 3,99 m				
Befriedigend	3,0 m – 3,49 m				
Genügend	2,5 m – 2,99 m				
Nicht genügend	unter 2,5 m				

- Erstellen Sie ein Säulen- oder Balkendiagramm, in welchem die Häufigkeiten der jeweiligen Noten dargestellt werden. [1 Punkt]
- c) In der untenstehenden Abbildung ist der Boxplot der Sprungweiten dargestellt.

- Lesen Sie aus dem Boxplot den Median und das 1. Quartil ab. [1 Punkt]
- Erklären Sie deren Bedeutung. [1 Punkt]
- d) In dieser Schulklasse beträgt die Standardabweichung der Sprungweiten bei den Mädchen an einem anderen Wettbewerbstag 0,70 Meter und bei den Burschen 0,49 Meter.
 - Erklären Sie, was die beiden Werte im Vergleich über die Leistungen der beiden Gruppen aussagen. [1 Punkt]

