Rearrangements of Functions

Jiewen Hu and Braden Yates

Carnegie Mellon University

September 10, 2022

Outline

- Introduction
 Definitions
 Existing Results
 Statement of Main Results
- 2 Preliminaries
- 3 Proof of Main Results
- 4 References

Distribution Function and Rearrangement

Definition

Let $n \in \mathbb{N}$. We let $\mathcal{L}_n : \mathcal{L}(\mathbb{R}^n) \to [0, \infty]$ be the Lebesgue measure on \mathbb{R}^n , where $\mathcal{L}(\mathbb{R}^n)$ is the set of Lebesgue measurable subsets of \mathbb{R}^n .

Definition

Let $f: \mathbb{R} \to [0, \infty)$ be Lebesgue measurable. We define the distribution function of f, $\mu_f: [0, \infty) \to [0, \infty]$ via

$$\mu_f(t) = \mathcal{L}_1(\{x \in \mathbb{R} : f(x) > t\}).$$

Definition

Let $f: \mathbb{R} \to [0, \infty)$ be Lebesgue measurable. We say that f^* is a rearrangement of f if $\mu_f = \mu_{f^*}$.

Preservation of Integral

A core motivation for this construction is the equality between the integrals of any two rearrangements f and f^* :

$$\int_{\mathbb{R}^n} f(x)dx = \int_0^\infty \mu_f(t)dt = \int_0^\infty \mu_{f^*}(t)dt = \int_{\mathbb{R}^n} f^*(x)dx.$$

Our project focuses on the preservation of other function characteristics (variation and absolute continuity) for some specific rearrangements (symmetric decreasing and two-point).

Symmetric Decreasing Rearrangement

Definition

Let $f: \mathbb{R} \to [0, \infty)$ be Lebesgue measurable. We define the symmetric decreasing rearrangement of f, $f^\#: \mathbb{R} \to [0, \infty)$, via

$$\begin{split} f^{\#}(x) &= \int_0^\infty \chi_{U_t}(x) \ dt, \ \textit{where} \ U_t = \left(-\frac{\mu_f(t)}{2}, \frac{\mu_f(t)}{2}\right) \\ &= \sup\{t \in \mathbb{R} : |x| < \mu_f(t)/2\}. \end{split}$$

Definition

Let $f: \mathbb{R} \to [0, \infty)$ and $\alpha \in \mathbb{R}$. We set

We let $\sigma: \mathbb{R} \to \mathbb{R}$ be the reflection map about α , i.e. $\sigma(x) = 2\alpha - x$. We then define the two-point rearrangement across α , $f^{\sigma}: \mathbb{R} \to \mathbb{R}$, via

$$f^{\sigma}(x) = \begin{cases} \max\{f(x), f(\sigma(x))\} & x \in I_{+} \\ \min\{f(x), f(\sigma(x))\} & x \in \mathbb{R} \setminus I_{+} \end{cases}$$

Functions of Bounded Variation

Definition

Let $E \subseteq \mathbb{R}^n$ and $f : \mathbb{R} \to E$. We define the variation of f as

$$Var(f) = \sup \left\{ \sum_{i=1}^{N} |f(x_i) - f(x_{i-1})| \right\}$$

with the supremum taken over all increasing finite sequences $\{x_0,\ldots,x_N\}\subseteq\mathbb{R}$. We can also write $Var_I(f)$ given an interval I to represent the same expression with the restriction that $\{x_0,\ldots,x_N\}\subseteq I$. We say that $f\in BV(I;E)$ (or simply BV(I) when $E=\mathbb{R}$) if $Var_I(f)<\infty$.

Length of Curves

Definition

Let $f:[a,b] \to \mathbb{R}^n$ define a curve in \mathbb{R}^n . We define the length of such curve to be the variation of f.

To find the length of a curve, we can approximate it with progressively more accurate polygonal curves. Using pointwise variation also allows us to deal with some "messier" functions.

Modulus of Absolute Continuity

Definition

Let $f \in AC(\mathbb{R})$. We define $AC_f: (0,\infty) \to (0,\infty)$ via

$$AC_f(\delta) = \sup \left\{ \sum_{k=1}^{\ell} |f(b_k) - f(a_k)|
ight\},$$

with the supremum taken over all finite collections of nonoverlapping open intervals $\{(a_k,b_k)\}_{k=0}^{\ell}$ with combined length less than δ .

Remark

For a general $f: \mathbb{R} \to \mathbb{R}$, f is absolutely continuous if and only if $\lim_{\delta \to 0} AC_f(\delta) = 0$.

Absolute Continuity and FToC

Theorem

Let $f:[a,b] \to \mathbb{R}$. Then f is absolutely continuous in [a,b] iff f is differentiable \mathcal{L}_1 -a.e. in [a,b], f' is Lebesgue integrable, and the fundamental theorem of calculus is valid, that is, for all $x, x_0 \in [a,b]$,

$$f(x) = f(x_0) + \int_{x_0}^{x} f'(t) dt.$$

Theorem (Hilden (5))

Let $f \in W^{1,p}(\mathbb{R}^n)$ be non-negative. Then $f^\# \in W^{1,p}(\mathbb{R}^n)$ and

$$\left\| \nabla f^{\#} \right\|_{L^{p}} \leq \left\| \nabla f \right\|_{L^{p}} \text{ for all } 1 \leq p \leq \infty.$$

(Here $W^{1,p}(\mathbb{R}^n)$ represents a Sobelev Space.)

Theorem (Spencer (1))

Let $f \in C_c^{\infty}(\mathbb{R}^n)$ be non-negative. Then

$$\left\| \nabla f^{\#} \right\|_{L^{p}} \leq \left\| \nabla f \right\|_{L^{p}} \text{ for all } 1 \leq p \leq \infty.$$

Theorem (Main Result 1)

Let $u \in BV(\mathbb{R}; [0, \infty))$. Then $u^{\#} \in BV(\mathbb{R}; [0, \infty))$ and $Var(u^{\#}) \leq Var(u)$.

Theorem (Main Result 2)

Let $u \in AC(\mathbb{R}; [0, \infty))$. Then $u^{\#} \in AC(\mathbb{R}; [0, \infty))$ and $AC_{u^{\#}} \leq AC_{u}$.

We will draw conclusions about the symmetric decreasing rearrangement using an approximation with a series of two-point rearrangements.

Theorem (Hardy-Littlewood Inequality for Two-Point Rearrangements)

Let $f,g\in L^1(\mathbb{R}^n;[0,\infty))$ and σ be a reflection map. Then

$$\int_{\mathbb{R}^n} f(x)g(x) \ dx \leq \int_{\mathbb{R}^n} f^{\sigma}(x)g^{\sigma}(x) \ dx,$$

with equality iff $(f(x) - f(\sigma(x)))(g(x) - g(\sigma(x))) = 0$ for \mathcal{L}_1 -a.e. $x \in \mathbb{R}$.

Theorem (Helly's Selection Theorem)

Let $I \subseteq \mathbb{R}$ be an interval and $\{f_n\}_{n=0}^{\infty} \subseteq BV(I;\mathbb{R})$ be a sequence of functions such that $\sup\{Var(f_n): n \in \mathbb{N}\} < \infty$ and $\{f_n(x): n \in \mathbb{N}\}$ is bounded for some $x \in I$. Then there exists a subsequence $\{f_{n_k}\}_{k=0}^{\infty}$ and a function $f \in BV(I;\mathbb{R})$ such that $f_{n_k} \to f$ pointwise as $n \to \infty$.

Lemma

Let
$$(a, b, c, d) \in \mathbb{R}^4$$
. Then $|a - c| + |b - d| \ge |\max\{a, b\} - \max\{c, d\}| + |\min\{a, b\} - \min\{c, d\}|$.

Lemma

Let
$$f \in BV(\mathbb{R}; [0, \infty))$$
. Then $f^{\sigma} \in BV(\mathbb{R}; [0, \infty))$ and $Var(f^{\sigma}) \leq Var(f)$.

Lemma

Let
$$f \in AC(\mathbb{R}; [0, \infty))$$
. Then $f^{\sigma} \in AC(\mathbb{R}; [0, \infty))$ and $AC_{f^{\sigma}} \leq AC_{f}$.

It often proves useful to refine our collections of points/intervals to be more symmetric with respect to σ .

Proof Sketch of BV Lemma

Lemma

Let
$$f \in BV(\mathbb{R}; [0, \infty))$$
. Then $f^{\sigma} \in BV(\mathbb{R}; [0, \infty))$ and $Var(f^{\sigma}) \leq Var(f)$.

It suffices to show that for an arbitrary increasing sequence $\{x_0,\ldots,x_N\}\subseteq\mathbb{R}$ that

$$\sum_{i=1}^{N} |f^{\sigma}(x_i) - f^{\sigma}(x_{i-1})| \leq \mathsf{Var}(f).$$

Towards that end, we refine to a collection $\{y_0, \ldots, y_{2\ell}\}$ which is symmetric with respect to σ and use this new sequence in conjunction with the first lemma.

Lemma

Let $\{f_n\}_{n=0}^{\infty}$ be such that $f_n \to f$ pointwise as $n \to \infty$. Then for any reflection σ , we have that $(f_n)^{\sigma} \to f^{\sigma}$ pointwise as $n \to \infty$.

Lemma

Let $\{f_n\}_{n=0}^{\infty}\subseteq AC(\mathbb{R})$ and $g:(0,\infty)\to (0,\infty)$ such that $AC_{f_n}\leq g$ for all $n\in\mathbb{N}$. Further suppose that $f_n\to f$ pointwise as $n\to\infty$. Then f is absolutely continuous and $AC_f\leq g$.

Lemma

Let $f \in BV(\mathbb{R}, [0, \infty))$. The following are equivalent:

- **1** $f^{\sigma} = f$ a.e. for all reflections σ , f is right continuous on $[0, \infty)$, and f is left continuous on $(-\infty, 0]$.
- **2** $f^{\sigma} = f$ for all reflections σ , f is right continuous on $[0, \infty)$, and f is left continuous on $(-\infty, 0]$.
- **3** f is even and f is nonincreasing and right continuous on $[0,\infty)$.
- **4** $f^{\#} = f$.

Theorem (Main Result 1)

Let $u \in BV(\mathbb{R}; [0,\infty))$. Then $u^\# \in BV(\mathbb{R}; [0,\infty))$ and $Var(u^\#) \leq Var(u)$.

For $u \in BV(\mathbb{R}; [0,\infty))$, the symmetric decreasing rearrangement satisfies

$$Var(u^{\#}) = 2(u^{\#}(0) - \lim_{x \to \infty} u^{\#}(x)).$$

If $u^{\#}$ is constant, the result is trivial. Otherwise, for sufficiently small $\varepsilon>0$ we can set

$$t_0 = u^\#(0) - rac{arepsilon}{4}$$
 and $t_1 = \lim_{x o \infty} u^\#(x) + rac{arepsilon}{4}$

and observe that both $\mu_u(t_0)$ and $\mu_u(t_1)$ are nonzero and finite.

Proof Sketch of BV Result

Theorem (Main Result 1)

Let $u \in BV(\mathbb{R}; [0,\infty))$. Then $u^\# \in BV(\mathbb{R}; [0,\infty))$ and $Var(u^\#) \leq Var(u)$.

We therefore can find $\{x_0, x_1, x_2\}$ such that

$$u(x_0) \le t_1, \ u(x_1) \ge t_0, \ \text{and} \ u(x_2) \le t_1.$$

We then bound

$$Var(u) \ge |u(x_1) - u(x_0)| + |u(x_2) - u(x_1)|$$

 $\ge 2(t_0 - t_1) = Var(u^\#) + \varepsilon$

and deduce that $u^{\#} \in BV(\mathbb{R}; [0, \infty))$ and $Var(u^{\#}) \leq Var(u)$.

Proof Sketch of AC Result

We build ourselves up to all of $AC(\mathbb{R}; [0, \infty))$ in four steps:

- $u \in AC(\mathbb{R}; [0, \infty))$ with compact support
- $au \in AC(\mathbb{R}; [0, \infty))$ with constant $c \ge 0$ such that $u \ge c$ and u = c outside of a finite interval
- $autrightarrow u\in AC(\mathbb{R};[0,\infty))$ with constant $c\geq 0$ such that $u\geq c$ and $u(x)\to c$ as $x\to\pm\infty$
- ightarrow General $u \in AC(\mathbb{R}; [0, \infty))$

Let $u \in AC(\mathbb{R}; [0, \infty))$ have compact support. Then $u^{\#} \in AC(\mathbb{R}; [0, \infty))$ and $AC_{u^{\#}} \leq AC_{u}$.

We set

$$\mathcal{P}_u = \{u^{\sigma_1 \dots \sigma_n} : \sigma_i \text{ reflections}, \ n \in \mathbb{N}\}.$$

We also let $f:[0,\infty)\to [0,\infty)$ be a strictly decreasing, bounded, integrable function such that $f(t)\to 0$ as $t\to \infty$. We then set $g:\mathbb{R}\to [0,\infty)$ via g(x)=f(|x|). Then for any reflection σ we have $g^\sigma=g$.

Let $u \in AC(\mathbb{R}; [0, \infty))$ have compact support. Then $u^{\#} \in AC(\mathbb{R}; [0, \infty))$ and $AC_{u^{\#}} \leq AC_{u}$.

We then consider

$$F(w) = \int_{\mathbb{R}} w(x)g(x) \ dx.$$

Note that

$$w(x) \leq ||u||_{\infty} \implies F(w) \leq ||u||_{\infty} \int_{\mathbb{R}} g(x) dx.$$

We therefore can define $\ell = \sup_{w \in \mathcal{P}_u} F(w)$ and find $\{w_n\}_{n=0}^{\infty} \subseteq \mathcal{P}_u$ such that $F(w_n) \to \ell$ as $n \to \infty$.

Lemma

Let $f \in BV(\mathbb{R}; [0, \infty))$. Then $f^{\sigma} \in BV(\mathbb{R}; [0, \infty))$ and $Var(f^{\sigma}) \leq Var(f)$.

Theorem (Helly's Selection Theorem)

Let $I \subseteq \mathbb{R}$ be an interval and $\{f_n\}_{n=0}^{\infty} \subseteq BV(I;\mathbb{R})$ be a sequence of functions such that $\sup\{Var(f_n): n \in \mathbb{N}\} < \infty$ and $\{f_n(x): n \in \mathbb{N}\}$ is bounded for some $x \in I$. Then there exists a subsequence $\{f_{n_k}\}_{k=0}^{\infty}$ and a function $f \in BV(I;\mathbb{R})$ such that $f_{n_k} \to f$ pointwise as $n \to \infty$.

We obtain a subsequence $\{v_m\}_{m=0}^{\infty} \subseteq \{w_n\}_{n=0}^{\infty}$ and $v \in BV(\mathbb{R}; [0, \infty))$ such that $v_m \to v$ pointwise as $m \to \infty$.

Let $u \in AC(\mathbb{R}; [0, \infty))$ have compact support. Then $u^{\#} \in AC(\mathbb{R}; [0, \infty))$ and $AC_{u^{\#}} \leq AC_{u}$.

Properties of v:

- $Var(v) \leq Var(u)$ as $Var(v_m) \leq Var(u)$ for $m \in \mathbb{N}$
- $F(v) = \int_{\mathbb{R}} v(x)g(x) dx = \ell$
- $\mu_{V} = \mu_{U} \implies v^{\#} = u^{\#}$
- For any reflection σ , $(v_n)^{\sigma} \rightarrow v^{\sigma}$
- $F(v^{\sigma}) = \ell$ (Use of Hardy-Littlewood Inequality)
- $(v(x) v(\sigma(x)))(g(x) g(\sigma(x))) = 0$ for \mathcal{L}_1 -a.e. $x \in \mathbb{R}$
- $v^{\sigma}(x) = v(x)$ for \mathcal{L}_1 -a.e. $x \in \mathbb{R}$.

Let $u \in AC(\mathbb{R}; [0, \infty))$ have compact support. Then $u^{\#} \in AC(\mathbb{R}; [0, \infty))$ and $AC_{u^{\#}} \leq AC_{u}$.

We now let ψ be the function obtained by making v right continuous on $[0,\infty)$ and left continuous on $(-\infty,0]$. This manipulation ensures that $\psi^\#=\psi$, and we can deduce the desired bound:

$$\mathsf{Var}(\psi) \le \mathsf{Var}(v) \le \mathsf{Var}(u)$$
 and $\psi = \psi^\# = v^\# = u^\#$ $\Longrightarrow u^\# \in \mathcal{B}V(\mathbb{R}; [0,\infty))$ and $\mathsf{Var}(u^\#) \le \mathsf{Var}(u)$.

Corollary

Let $u \in AC(\mathbb{R}; [0, \infty))$, $c \geq 0$, and $R \geq 0$ be such that $u \geq c$ and u = c outside of (-R, R). Then $u^{\#} \in AC(\mathbb{R}; [0, \infty))$ and $AC_{u^{\#}} \leq AC_{u}$.

This follows when we consider $v \in AC(\mathbb{R}; [0, \infty))$ defined via v(x) = u(x) - c. We have that $v^{\#}(x) = u^{\#}(x) - c$, and as v vanishes at infinity we can apply the previous proposition and obtain the desired result for $u^{\#}$.

Let $u \in AC(\mathbb{R}; [0, \infty))$ and $c \geq 0$ be such that $u \geq c$ and $\lim_{x \to \infty} u(x) = \lim_{x \to -\infty} u(x) = c$. Then $u^\# \in AC(\mathbb{R}; [0, \infty))$ and $AC_{u^\#} \leq AC_u$.

For $n \in \mathbb{N}$ we define $u_n : \mathbb{R} \to [0, \infty)$ via

$$u_n(x) = \begin{cases} u(x) & |x| \le n \\ c & |x| > n \end{cases}$$

We let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that $c \le u(x) < c + \varepsilon/2$ outside of (-N, N). Doing so ensures that $AC_{u_n} < AC_u + \varepsilon$ for $n \ge N$. We then can apply the previous corollary to find

$$AC_{u_n^\#} \leq AC_{u_n} < AC_u + \varepsilon \text{ for } n \geq N.$$

Let $u \in AC(\mathbb{R}; [0, \infty))$ and $c \geq 0$ be such that $u \geq c$ and $\lim_{x \to \infty} u(x) = \lim_{x \to -\infty} u(x) = c$. Then $u^\# \in AC(\mathbb{R}; [0, \infty))$ and $AC_{u^\#} \leq AC_u$.

We know $u_n \to u$ pointwise as $n \to \infty$, and some analysis of these functions yields that $u_n^\# \to u^\#$ pointwise as $n \to \infty$.

Lemma

Let $\{f_n\}_{n=0}^{\infty} \subseteq AC(\mathbb{R})$ and $g:(0,\infty) \to (0,\infty)$ such that $AC_{f_n} \leq g$ for all $n \in \mathbb{N}$. Further suppose that $f_n \to f$ pointwise as $n \to \infty$. Then f is absolutely continuous and $AC_f \leq g$.

We then apply this lemma to see that $AC_{u^{\#}} \leq AC_{u} + \varepsilon$. As this holds for all $\varepsilon > 0$, we conclude that $AC_{u^{\#}} \leq AC_{u}$.

Theorem

Let
$$u \in AC(\mathbb{R}; [0, \infty))$$
. Then $u^{\#} \in AC(\mathbb{R}; [0, \infty))$ and $AC_{u^{\#}} \leq AC_{u}$.

We set

$$c = \max\{\lim_{x \to \infty} u(x), \lim_{x \to -\infty} u(x)\}.$$

and define $v : \mathbb{R} \to [0, \infty)$ via $v(x) = \max\{u(x), c\}$. As the maximum of two functions, we can bound

$$AC_v \leq AC_u + AC_c = AC_u$$
.

The previous proposition grants us that $AC_{v^\#} \leq AC_v$. The construction of v ensures that $v^\# = u^\#$, and as such we deduce that $u^\# \in AC(\mathbb{R}; [0,\infty))$ and $AC_{u^\#} \leq AC_u$.

- **1** E. Spencer, Jr., *Symmetrisierung für funktionen mehrerer reeller variablen*, manuscripta math. 11 (1974) 159-170.
- F. Brock A. Y. Solynin, An approach to symmetrization via polarization, Trans. Amer. Math. Soc. 352 (1999) 1759-1796.
- **3** G. Talenti, *Elliptic equations and rearrangements*, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e srie 3 (1976) 697-718.
- 4 G. Talenti, *The Art of Rearranging*, Milan J. Math. 84 (2016) 105-157.
- **6** K. Hildén, Symmetrization of functions in Sobelev spaces and the isoperimetric inequality, manuscripta math. 18 (1976) 215-235.