CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL PHYSICAL CONSTANTS: 2014

NIST SP 961 (Sept/2015) Values from: P. J. Mohr, D. B. Newell, and B. N. Taylor, arXiv:1507.07956

A more extensive listing of constants is available in the above reference and on the NIST Physics Laboratory Web site physics.nist.gov/constants. The number in parentheses is the one-standard-deviation uncertainty in the last two digits of the given value.

Quantity	Symbol	Numerical value	Unit	Quantity	Symbol	Numerical value	Unit
speed of light in vacuum	c, c_0	299 792 458 (exact)	$\mathrm{m}\ \mathrm{s}^{-1}$	muon g-factor $-2(1+a_{\mathfrak{u}})$	g_{μ}	-2.0023318418(13)	
magnetic constant	μ_0	$4\pi \times 10^{-7}$ (exact)	$N A^{-2}$	muon-proton magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345142(71)	
		$= 12.566370614 \times 10^{-7}$	$N A^{-2}$	proton mass	$m_{ m p}$	$1.672621898(21) \times 10^{-27}$	kg
electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817 \times 10^{-12}$	$\mathrm{F}~\mathrm{m}^{-1}$	in u		1.007276466879(91)	u
Newtonian constant of gravitation	G	$6.67408(31) \times 10^{-11}$	$m^{3} kg^{-1} s^{-2}$	energy equivalent in MeV	$m_{ m p}c^2$	938.272 0813(58)	MeV
Planck constant	h	$6.626070040(81)\times10^{-34}$	Js	proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.152 673 89(17)	
in eV s		$4.135667662(25) \times 10^{-15}$	eV s	proton magnetic moment	$\mu_{ m p}$	$1.4106067873(97)\times10^{-26}$	$J T^{-1}$
$h/2\pi$	\hbar	$1.054571800(13)\times10^{-34}$	Js	to nuclear magneton ratio	$\mu_{ m P}/\mu_{ m N}$	2.7928473508(85)	
in eV s		$6.582119514(40) \times 10^{-16}$	eV s	proton magnetic shielding correction $1 - \mu_{\rm p}'/\mu$	$\iota_{\mathrm{p}} \; \sigma'_{\mathrm{p}}$	$25.691(11) \times 10^{-6}$	
elementary charge	e	$1.6021766208(98) \times 10^{-19}$	C	(H ₂ O, sphere, 25 °C)	•		
magnetic flux quantum $h/2e$	Φ_0	$2.067833831(13)\times10^{-15}$	Wb	proton gyromagnetic ratio $2\mu_{\rm p}/\hbar$	$\gamma_{ m p}$	$2.675221900(18)\times10^8$	$s^{-1} T^{-1}$
Josephson constant $2e/h$	$K_{ m J}$	$483597.8525(30) \times 10^9$	$Hz V^{-1}$		$\gamma_{ m p}/2\pi$	42.577 478 92(29)	$ m MHz~T^{-1}$
von Klitzing constant $h/e^2 = \mu_0 c/2\alpha$	$R_{\mathbf{K}}$	25 812.807 4555(59)	Ω	shielded proton gyromagnetic ratio $2\mu'_{p}/\hbar$	$\gamma_{_{\mathrm{D}}}^{\prime}$	$2.675153171(33)\times10^8$	$s^{-1} T^{-1}$
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$927.4009994(57) \times 10^{-26}$	$\rm J~T^{-1}$	(H ₂ O, sphere, 25 °C)	r		
in eV^T^{-1}		$5.7883818012(26) \times 10^{-5}$	$eV T^{-1}$, , ,	$\gamma_{_{ m D}}^{\prime}/2\pi$	42.576 385 07(53)	$ m MHz~T^{-1}$
nuclear magneton $e\hbar/2m_{\rm p}$	$\mu_{ m N}$	$5.050783699(31) \times 10^{-27}$	$\rm J~T^{-1}$	neutron mass in u	m	1.008 664 915 88(49)	u
in eV T^{-1}	-	$3.1524512550(15) \times 10^{-8}$	$eV T^{-1}$	energy equivalent in MeV	$m_{ m n}c^2$	939.565 4133(58)	MeV
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525664(17) \times 10^{-3}$		neutron-proton mass ratio	$m_{ m n}/m_{ m p}$	1.001 378 418 98(51)	
inverse fine-structure constant	α^{-1}	137.035 999 139(31)		neutron magnetic moment	$\mu_{ m n}$	$-0.96623650(23)\times10^{-26}$	$J T^{-1}$
Rydberg constant $\alpha^2 m_{\rm e} c/2h$	R_{∞}	10 973 731.568 508(65)	m^{-1}	to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304273(45)	
	$R_{\infty}c$	$3.289841960355(19)\times10^{15}$	$_{ m Hz}$	deuteron mass in u	m_{-1}	2.013 553 212 745(40)	u
energy equivalent in eV	$R_{\infty}hc$	13.605 693 009(84)	eV	energy equivalent in MeV	$m_{ m d}c^2$	1875.612 928(12)	MeV
Bohr radius $\alpha/4\pi R_{\infty} = 4\pi\epsilon_0 \hbar^2/m_e e^2$	a_0	$0.52917721067(12)\times10^{-10}$	m	deuteron-proton mass ratio	$m_{ m d}/m_{ m p}$	1.999 007 500 87(19)	
Hartree energy $e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc = \alpha^2 m_e c^2$	$E_{ m h}$	$4.359744650(54) \times 10^{-18}$	J	deuteron magnetic moment	$\mu_{ m d}$	$0.4330735040(36)\times10^{-26}$	$J T^{-1}$
in eV		27.211 386 02(17)	eV	to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m N}$	0.8574382311(48)	
electron mass	$m_{ m e}$	$9.10938356(11) \times 10^{-31}$	kg	helion (³ He nucleus) mass in u	$m_{ m h}$	3.01493224673(12)	u
in u		$5.48579909070(16) \times 10^{-4}$	u	energy equivalent in MeV	$m_{ m h}c^2$	2808.391 586(17)	MeV
energy equivalent in MeV	$m_{ m e}c^2$	0.5109989461(31)	MeV	shielded helion magnetic moment	$\mu_{ m h}'$	$-1.074553080(14)\times10^{-26}$	$J T^{-1}$
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633170(11) \times 10^{-3}$		(gas, sphere, 25 °C)			
electron-proton mass ratio	$m_{ m e}/m_{ m p}$	$5.44617021352(52) \times 10^{-4}$		to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.158671471(14) \times 10^{-3}$	
electron charge to mass quotient	$-e/m_{ m e}$	$-1.758820024(11) \times 10^{11}$	$\rm C~kg^{-1}$	to nuclear magneton ratio	$\mu_{ m h}^7/\mu_{ m N}$	-2.127497720(25)	
Compton wavelength $h/m_{\rm e}c$	$\lambda_{ m C}$	$2.4263102367(11) \times 10^{-12}$	m	alpha particle mass in u	222	4.001 506 179 127(63)	u
$\lambda_{\rm C}/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$	λ_{C}	$386.15926764(18) \times 10^{-15}$	m	energy equivalent in MeV	$m_{\alpha}c^2$	3727.379 378(23)	MeV
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.8179403227(19) \times 10^{-15}$	m	Avogadro constant	$N_{ m A}, L$	$6.022140857(74)\times10^{23}$	mol^{-1}
Thomson cross section $(8\pi/3)r_e^2$	$\sigma_{ m e}$	$0.66524587158(91)\times10^{-28}$	m^2	atomic mass constant $\frac{1}{12}m(^{12}C) = 1$ u	$m_{ m u}$	$1.660539040(20)\times10^{-27}$	kg
electron magnetic moment	$\mu_{ m e}$	$-928.4764620(57) \times 10^{-26}$	$J T^{-1}$	energy equivalent in MeV	$m_{ m u}c^2$	931.494 0954(57)	MeV
to Bohr magneton ratio	$\mu_{ m e}/\mu_{ m B}$	-1.00115965218091(26)		Faraday constant $N_A e$	F	96 485.332 89(59)	$C \text{ mol}^{-1}$
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m N}$	-1838.28197234(17)		molar gas constant	R	8.314 4598(48)	$\mathrm{J} \; \mathrm{mol}^{-1} \; \mathrm{K}^{-1}$
electron magnetic moment anomaly $ \mu_e /\mu_B - 1$	$a_{ m e}$	$1.15965218091(26) \times 10^{-3}$		Boltzmann constant $R/N_{\rm A}$	k	$1.38064852(79) \times 10^{-23}$	$\rm J~K^{-1}$
electron g-factor $-2(1+a_e)$	$g_{ m e}$	-2.00231930436182(52)		in eV K ⁻¹		$8.6173303(50) \times 10^{-5}$	${ m eV~K^{-1}}$
electron-proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.2106866(20)		molar volume of ideal gas RT/p	$V_{ m m}$	$22.413962(13) \times 10^{-3}$	$m^3 \text{ mol}^{-1}$
muon mass in u	m_{μ}	0.1134289257(25)	u	(T = 273.15 K, p = 101.325 kPa)		_	
energy equivalent in MeV	$m_{\mu}c^2$	105.658 3745(24)	MeV	Stefan-Boltzmann constant $\pi^2 k^4/60\hbar^3 c^2$	σ	$5.670367(13) \times 10^{-8}$	${ m W} { m m}^{-2} { m K}^{-4}$
muon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.768 2826(46)		first radiation constant $2\pi hc^2$	c_1	$3.741771790(46) \times 10^{-16}$	$W m^2$
muon magnetic moment	μ_{μ}	$-4.49044826(10) \times 10^{-26}$	$J T^{-1}$	second radiation constant hc/k	c_2	$1.43877736(83) \times 10^{-2}$	m K
to Bohr magneton ratio	$\mu_{ m \mu}/\mu_{ m B}$	$-4.84197048(11) \times 10^{-3}$		Wien displacement law constant			
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	-8.89059705(20)		$b = \lambda_{\max} T = c_2 / 4.965114231$	b	$2.8977729(17) \times 10^{-3}$	m K
muon magnetic moment anomaly		_		Cu x unit: $\lambda(\text{Cu K}\alpha_1)/1537.400$		$1.00207697(28)\times10^{-13}$	m
$ \mu_{ m \mu} /(e\hbar/2m_{ m \mu})-1$	a_{μ}	$1.16592089(63) \times 10^{-3}$		Mo x unit: $\lambda(\text{Mo K}\alpha_1)/707.831$	$\mathrm{xu}(\mathrm{Mo}\mathrm{K}\alpha_1)$	$1.00209952(53)\times10^{-13}$	m
Energy equivalents							
$(1 \text{ m}^{-1})c = 299792458 \text{ Hz} \qquad (1 \text{ Hz})h/k = 4.7992447(28) \times 10^{-11} \text{ K} \qquad (1 \text{ J}) = 6.241509126(38) \times 10^{18} \text{ eV} \qquad (1 \text{ eV})/c^2 = 1.0735441105(66) \times 10^{-9} \text{ u}$							
$(1 \text{ m}^{-1}) hc/k = 1.43877736(83) \times 10^{-2} \text{ K}$		Hz) $h = 4.135667662(25) \times 10^{-12}$		(1 eV) = 0.241303120(38) × 10 eV (1 eV) = 1.6021766208(98) × 10 ⁻¹⁹ J		$= 6.022140857(74) \times 10^{26}$	
$(1 \text{ m}^{-1})hc = 1.2398419739(76) \times 10^{-6} \text{ eV}$		$(12)h = 4.133007002(23) \times 1$ $(3)k/hc = 69.503457(40) m^{-1}$	· · · · · · · · · · · · · · · · · · ·	$(1 \text{ eV})/hc = 8.065544005(50) \times 10^5 \text{ m}^{-1}$	(1 kg) (1 u)	$= 0.022140337(74) \times 10^{-2}$ $= 1.660539040(20) \times 10^{-2}$	7 kg
$(1 \text{ m}^{-1})h/c = 1.333 \ 025 \ 049 \ 00(61) \times 10^{-15} \ \text{u}$		$\zeta k/h = 03.303437(40) \text{ m}$ $\zeta k/h = 2.0836612(12) \times 10^{10}$	Hz	$(1 \text{ eV})/hc = 8.003344003(30) \times 10^{-10} \text{ m}$ $(1 \text{ eV})/h = 2.417989262(15) \times 10^{14} \text{ Hz}$		$a = 7.5130066166(34) \times 10^{1}$	
$(1 \text{ Hz})/c = 1.33562964360(01) \times 10^{-9} \text{ m}^{-1}$		$\zeta(k) = 8.6173303(50) \times 10^{-1}$		$(1 \text{ eV})/k = 2.417363262(16) \times 10^{-112}$ $(1 \text{ eV})/k = 1.16045221(67) \times 10^{4} \text{ K}$	(1 u)c/n $(1 \text{ u})c^2$	$= 931.4940954(57) \times 10^6 \epsilon$	
(1112)/6 = 0.000 010 001 × 10 III	(11	= 0.011 0000(00) × 10	٠,	(1 0 ,)/ = 1.100 102 21(01) × 10 11	(1 4)0	551.151 5551(51) × 10 €	•