tentamen, EE1M21 deel2, 9.00h-11.00h, 26-01-2016

Naam:	
Studienummer:	
Naam docent:	

Tabel van BB en eenvoudig rekenapparaat toegestaan

Kort antwoordvragen:(Alleen antwoord volstaat)

normering: opg1: 3p, opg2: 3p, opg3: 4p, opg4: 3p, opg5: 3p, opg6 4p, opg7: 5p, opg8: 5p, opg9: 8p, opg10: 7p

1. Gegeven het vectorveld $\mathbf{F}(x,y) = \langle \frac{-y}{\sqrt{x^2+y^2}}, \frac{x}{\sqrt{x^2+y^2}} \rangle$

(b) Maak een schets van het vectorveld \mathbf{F} :

2. Bereken $\int_{\mathcal{C}} f(x, y, x) ds$ waarbij \mathcal{C} de kromme $\langle t, \cos(t), \sin(t) \rangle$ is voor $t \in [0, \pi]$, en f(x, y, z) = z.

3. Gegeven het vectorveld $\mathbf{F}(x,y) = \langle y^2, 2xy \rangle$. \mathbf{F} is conservatief en is \mathcal{C} een nette kromme die loopt van A(1,1) naar B(2,3).

4. Gegeven de kromme $C \langle t, t^2 \rangle$ die doorlopen wordt van (0,0) naar (1,1) en het vectorveld $f(x,y) = \langle xy, x \rangle$.

Is $f(x, y)$ conservatief?	Nec	12
$\int_{\mathcal{C}} \mathbf{f} \cdot d\mathbf{r}$ is gelijk aan:	11/12	2

5. Gegeven het vectorveld $\mathbf{F}(x, y, z) = \langle x, y^2, z^3 \rangle$

Dan

$\nabla(\nabla\cdot\mathbf{F}(x,y,z))$ is gelijk aan	(U,2,67)	10
$(\nabla \times \mathbf{F})(x, y, z)$ is gelijk aan	0	الما
Is F conservatief?	fa	11

6. Gegeven het oppervlak S, $y^2 + z^2 = x$, met x tussen 0 en 25.

Een parametrisering van S is	(1, 21056, 25006)
Het bijbehorende domein D is	05052n°,76[0,5]

7. Gegeven het oppervlak $\mathcal S$ waarvan de parametrisering gegeven wordt door $\mathbf r(u,v)=\langle u,v,1-u-v\rangle$ met $0\leq u\leq 1$ en $0\leq v\leq 1-u$. Dan:

$\mathbf{r}_u(u,v) =$	21,0,-17	
$\mathbf{r}_v(u,v) =$	(0,1,-17	1
$(\mathbf{r}_u \times \mathbf{r}_v)(u,v) =$	<1,1,17.	L
$ (\mathbf{r}_u \times \mathbf{r}_v) dudv =$	Bandv	
De oppervlakte van S is	1/2 5	H

8. Gegeven de functie $f(x) = \frac{1}{1+x^2}$. (alle hierna gevraagde ontwikkelingen zijn om x = 0.) Vul de gegeven delen van antwoorden met 3 termen aan.

	De Taylor(reeks)ontwikkeling van	1+x+/2 + x 5 + x 4
	$\frac{1}{1-x}$ is	
1	en dus de Taylor ontwikkeling van	$1-x+$ $\chi^2-\chi^3+\chi^5+$
1	$\frac{1}{1+x}$ is	
-	en dus de Taylor ontwikkeling van	$1-x^2+\dots \times 7-x^6+x^8+\dots$
	$\frac{1}{1+x^2}$ is	
	en dus de Taylor ontwikkeling van	$x - \frac{x^3}{3} + \dots \times \frac{x}{5} - x^7 + x^9$
	arctan(x) is	5 7 4 +
	en dus $\frac{\pi}{4}$ is gelijk aan	$1 - \frac{1}{3} + \dots + \frac{1}{3} + \dots$
	4	5 + 1 9 1

Open vragen: (antwoord met uitwerking volstaat)

- 9. (a) Gegeven de cilinder C, $x^2 + y^2 = 1$ met z tussen 0 en 2, en het vectorveld $\mathbf{F}(x,y,z) = \langle x,y,z \rangle$. De normaal \mathbf{n} op de cilinder is naar buiten gericht. Bereken de flux $\int \int_{C} \mathbf{F} \cdot \mathbf{n} dS$.
 - (b) Gegeven het deel van de cilinder C_1 , $x^2 + y^2 = 1$ tussen de vlakken x + z = 1 en z = 0, de normaal is weer naar buiten gericht Gevraagd wordt de flux $\int \int_{C_1} \mathbf{F} \cdot \mathbf{n} dS$.
 - (c) Gegeven een scheve, "open" kegel \mathcal{K} met top T=(1,1,3) en als "basis" de cirkel in het xy-vlak: $x^2+y^2=1$. De normaal is naar "buiten" gekozen. Het volume van de kegel is gelijk aan π . Gebruik Gauß(divergentie-stelling) voor de berekening van $\int \int_{\mathcal{K}} \mathbf{F} \cdot \mathbf{n} dS$.

1	
1	
-	
1	
1	
1	
1	
1	
1	
1	
1	
1	
-	
-	
1	
1	
- 1	
-	
-	
1	
- 1	
- 1	
-	
1	
-	
-	
	*
- 1	

- 10. Gegeven de vectorfunctie $\mathbf{E} = \frac{\mathbf{r}}{r^3}$ met $\mathbf{r} = \langle x, y, z \rangle$ en $r = \sqrt{x^2 + y^2 + z^2}$.
 - (a) Bereken $\nabla \times \mathbf{E}$.
 - (b) Bereken $\int_{\mathcal{C}} \mathbf{E} \cdot d\mathbf{r}$, waarbij \mathcal{C} de kromme is langs de z-as van P(0,0,1) naar Q(0,0,9).
 - (c) Motiveer met de stelling van Stokes' dat $\int_{\mathcal{K}} \mathbf{E} \cdot d\mathbf{r}$ met \mathcal{K} een willekeurige kromme van P(0,0,1) naar Q(0,0,9) hetzelfde antwoord oplevert als de vorige vraag.

$$\frac{d}{d} = \frac{1}{3} \frac{$$

Γ		
- 1		
- 1		1
-1		
- 1		
- 1		- 1
- 1		- 1
		- 1
- 1		
-1		- 1
- 1		- 1
- 1		- 1
- 1		
- 1		- 1
- 1		
		- 1
- 1		
		1
- 1		
- 1		- 1
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- [
- 1		
1		
- 1		
- 1		
- 1		
- 1		- 3
- 1		
- 1		
- 1		- 1
- 1		- 1
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
	*	