

Tools for FPGA Development

Brahim HAMADI CHAREF Joyce Ng Hackware V5.0

FPGA Market 2016

Vendor	2015		2016			
	FPGA Total	Market share	FPGA Total	Market share	Growth CY15-CY16	
Xilinx	\$2,044	53%	\$2,167	53%	6%	
Intel (Altera)	\$1,389	36%	\$1,486	36%	7%	
Microsemi	\$301	8%	\$297	7%	-1%	
Lattice	\$124	3%	\$144	3%	16%	
QuickLogic	\$19	0%	\$11	0%	-40%	
Others	\$2	0%	\$2	0%	0%	
TOTAL	\$3,879	100%	\$4,112	100%	6%	

FPGA development life-cycle

FPGA Tools

- Xilinx ISE and Vivado
 https://www.xilinx.com/products/design-tools/vivado.html
- Altera / Intel Quartus
 https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/download.html
- Lattice Diamond Suite
 https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLD
 S/LatticeDiamond
- Microsemi Libero
- https://www.microsemi.com/product-directory/services/3711-fpga-socdesign
- Verilator
 https://www.veripool.org/wiki/verilator
- Yosys Open SYnthesis Suite http://www.clifford.at/yosys/

Xilinx ISE Design Suite

ISE Design Suite: WebPACK Edition delivers a complete, front-to-back design flow providing instant access to the ISE features and functionality at no cost.

ISE Design Suite: WebPACK Edition

https://www.xilinx.com/products/design-tools/ise-design-suite.html

Xilinx ISE Features

Features	ISE WebPACK	Embedded Edition	System Edition
Device Support	Limited	All	All
ChipScope™ Pro and the ChipScope Pro Serial I/O Toolkit	✓	✓	✓
CORE Generator™	✓	✓	✓
<u>Design Preservation</u>	✓	✓	√
Embedded IP Peripherals	✓	✓	✓
ISE Simulator (ISim)	Limited	✓	✓
MicroBlaze Soft Processor	✓	✓	✓
Partial Reconfiguration*	Option	Option	Option
<u>PlanAhead™</u>	✓		
Platform Studio	✓	✓	✓
Power Optimization	✓	✓	✓
Project Navigator	✓	✓	✓
Software Development Kit (SDK)	✓	✓	✓
System Generator for DSP			✓
Timing Driven Place & Route, SmartGuide, and SmartXplorer	✓	✓	✓
XST Synthesis	✓	✓	✓

Xilinx Vivado Design Suite

Vivado Design Suite - HLx Editions

https://www.xilinx.com/products/design-tools/vivado.html

Xilinx Vivado Design Suite

Altera bought by Intel

Intel Completes Acquisition of Altera

SANTA CLARA, Calif., Dec. 28, 2015 – Intel Corporation ("Intel") today announced that it has completed the acquisition of Altera Corporation ("Altera"), a leading provider of field-programmable gate array (FPGA) technology. The acquisition complements Intel's leading-edge product portfolio and enables new classes of products in the high-growth data center and Internet of Things (IoT) market segments.

https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/

Why Intel will spend \$16.7 billion on Altera

https://fortune.com/2015/08/27/why-intel-altera/

Altera / Intel Quartus

Intel Quartus Prime Design Software

Release date: September, 2018 / Latest Release: v18.1

https://www.intel.com/content/www/us/en/software/programmable/overview.html

Pro Edition The Intel® Quartus® Prime Pro Edition Software supports the advanced features in Intel's next-generation FPGAs and SoCs with the Intel® Stratix® 10, Intel® Arria® 10, and Intel® Cyclone® 10 GX device families.

http://fpgasoftware.intel.com/?edition=pro (paid license required)

Standard Edition The Intel® Quartus® Prime Standard Edition software includes extensive support for earlier device families in addition to the Intel® Cyclone® 10 LP device family. http://fpgasoftware.intel.com/?edition=standard (paid license required)

Lite Edition The Intel® Quartus® Prime Lite Edition software supports Intel's low-cost FPGA device families

http://fpgasoftware.intel.com/?edition=lite (free, no license required)

Lattice Diamond Suite

Support for ECP5 / ECP5-5G LatticeECP3 MachXO3 MachXO2 LatticeXP2

Features Complete

GUI based FPGA design and verification environment, Design exploration in a single project with multiple implementations and settings strategies, Graphical environment for managing and navigating timing and power results

Lattice Diamond Suite

https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/LatticeDiamon

Microsemi Libero

Libero® SoC Design Suite offers high productivity with its comprehensive, easy-to-learn, easy-to-adopt development tools for designing with Microsemi's PolarFire, IGLOO2, SmartFusion2, RTG4, SmartFusion, IGLOO, ProASIC3 and Fusion families. The suite integrates industry standard Synopsys Synplify Pro® synthesis and Mentor Graphics ModelSim® simulation

Microsemi

https://www.microsemi.com/product-directory/fpga-soc/1637-design-resources

Verilator

Verilator is the fastest free Verilog HDL simulator, and outperforms most commercial simulators. Verilator compiles synthesizable SystemVerilog (generally not test-bench code), plus some SystemVerilog and Synthesis assertions into single- or multithreaded C++ or SystemC code. Verilator is designed for large projects where fast simulation performance is of primary concern, and is especially well suited to generate executable models of CPUs for embedded software design teams

https://www.veripool.org/wiki/verilator

Verilator Installation
Verilator Documentation
Verilator FAQ

Yosys Open SYnthesis Suite

Yosys is a framework for Verilog RTL synthesis. It currently has extensive Verilog-2005 support and provides a basic set of synthesis algorithms for various application domains. Selected features and typical applications:

- Process almost any synthesizable Verilog-2005 design
- Converting Verilog to BLIF / EDIF/ BTOR / SMT-LIB / simple RTL Verilog / etc.
- Built-in formal methods for checking properties and equivalence
- Mapping to ASIC standard cell libraries (in Liberty File Format)
- Mapping to Xilinx 7-Series and Lattice iCE40 FPGAs
- Foundation and/or front-end for custom flows

Yosys can be adapted to perform any synthesis job by combining the existing passes (algorithms) using synthesis scripts and adding additional passes as needed by extending the Yosys C++ code base. Yosys is free software licensed under the ISC license (a GPL compatible license that is similar in terms to the MIT license or the 2-clause BSD license).

http://www.clifford.at/yosys/ - https://github.com/YosysHQ/yosys

FPGA Popularity

- FPGA-based ASIC prototype
- FPGA-based RISC-V
- FPGA-based Deep Learning
- FPGA-based Cryptocurrency Mining
- FPGA-based Internet of Things (IoT)

FPGA – ASIC Prototyping

Controlling the Complexity of FPGA Based ASIC Emulation

https://www.intrinsix.com/blog/controlling-the-complexity-of-fpga-based-asic-emulation

FPGA - RISC-V cluster

GRVI is an FPGA-efficient RISC-V RV321 soft processor. Phalanx is a parallel processor and accelerator array framework. Groups of processors and accelerators form shared memory clusters. Clusters are interconnected with each other and with extreme bandwidth I/O and memory devices by a 300- bit-wide Hoplite NOC. Example Kintex UltraScale KU040 system has 400 RISC-V cores, peak throughput of 100,000 MIPS, peak shared memory bandwidth of 600 GB/s, NOC bisection bandwidth of 700 Gbps, and uses 13 W.

GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator Accelerator

Jan Gray, Gray Research LLC

https://arxiv.org/abs/1606.01037

FPGA - RISC-V cluster

Amazon F1.16xlarge Instance

RISC-V Cores and SoC Overview

Name	Links	Priv. spec	User spec	License	Supplier
rocket	<u>GitHub</u>	1.11-draft	2.3-draft	BSD	SiFive, UCB Bar
freedom	<u>GitHub</u>	1.11-draft	2.3-draft	BSD	SiFive
Berkeley Out-of-Order Machine (BOOM)	<u>GitHub</u>	1.11-draft	2.3-draft	BSD	Esperanto, UCB Bar
ORCA	<u>GitHub</u>		RV32IM	BSD	VectorBlox
RISCY	<u>GitHub</u>		RV32IMC	Solderpad Hardware License v. 0.51	ETH Zurich, Università di Bologna
Zero-riscy	<u>GitHub</u>		RV32IMC	Solderpad Hardware License v. 0.51	ETH Zurich, Università di Bologna
Ariane	Website, GitHub		RV64IMC	Solderpad Hardware License v. 0.51	ETH Zurich, Università di Bologna
Riscy Processors	Website, GitHub			MIT	MIT CSAIL CSG
Minerva	<u>GitHub</u>	1.10	RV32I	BSD	LambdaConcept
OPenV/mriscv	<u>GitHub</u>		RV32I(?)	MIT	OnChipUIS
VexRiscv	<u>GitHub</u>		RV32I[M][C]	MIT	SpinalHDL
Roa Logic RV12	<u>GitHub</u>	1.9.1	2.1	Non-Commercial License	Roa Logic
SCR1	<u>GitHub</u>	1.10	2.2, RV32I/E[MC]	Solderpad Hardware License v. 0.51	Syntacore
Hummingbird E200	<u>GitHub</u>	1.10	2.2, RV32IMAC	Apache 2.0	Bob Hu
Shakti	Website, GitLab	1.11	2.2, RV64IMAFDC	BSD	IIT Madras
ReonV	<u>GitHub</u>			GPL v3	
PicoRV32	<u>GitHub</u>		RV32I/E[MC]	ISC	Clifford Wolf
MR1	<u>GitHub</u>		RV32I	Unlicense	Tom Verbeure

FPGA – Deep Learning

Compute Acceleration Products by BittWare

https://www.bittware.com/fpga/intel/boards/

FPGA – Al Inference

Virtex® UltraScale+™ VU9P FPGA

- > 16nm TSMC FF+ FPGA
- > 2.5M System Logic Cells
- > 6840 DSP Blocks (18x27 MACs)
- > 382 Mbit On-Die SRAM
- > 4 DDR4-2400 x72 Channels
- > VU9P Virtex UltraScale+ FPGA
- > 21 TOPS (INT8)
- > 382 Mbit on-chip SRAM
- > 64 GByte on-board DRAM
- > 75W

XILINX UNVEILS XDNN FPGA ARCHITECTURE FOR AI INFERENCE

August 27, 2018 Nicole Hemsoth

https://www.nextplatform.com/2018/08/27/xilinx-unveils-xdnn-fpga-architecture-for-ai-inference/

FPGA – Crypto Mining

FPGA ultra-low-power IoT

An ultra-low-power FPGA for IoT applications

He Qi, Oluseyi Ayorinde, Benton H. Calhoun Proceedings of the 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S2017) https://doi-org/10.1109/S3S.2017.8308753

Abstract: The rapid development of the Internet-of-Things requires hardware that is both energy-efficient and flexible, and an ultra-low-power Field-Programmable-Gate-Array (FPGA) is a very promising solution. This paper presents a near/sub-threshold FPGA with low-swing global interconnect, folded switch box (SB), per-path voltage scaling, and power-gating. A fully programmable 512-look-up-table FPGA chip is fabricated in 130nm CMOS. When implementing a 4bit-adder, the measured energy of the proposed FPGA is 15% less than the normalized energy of the state-of-the-art. When implementing fifteen selected low-power applications, the estimated energy of the proposed FPGA is on average 75x lower than Microsemi IGLOO.