RQ3: DL Refresher

- Due Jan 31 at 4:59pm
- Points 4

0.4 / 0.4 pts

- Questions 10
- Time Limit 15 Minutes
- · Allowed Attempts Unlimited

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	6 minutes	3.6 out of 4

(!) Correct answers are hidden.

Score for this attempt: 3.6 out of 4
Submitted Jan 31 at 4:43pm
This attempt took 6 minutes.

...
Question 1

Consider this simple PyTorch model for regression:

```
import torch
import torch.nn as nn

class SimpleMLP(nn.Module):
    def __init___(self):
        super(SimpleMLP, self).__init___()
        self.fc1 = nn.Linear(4, 3) # from 4 inputs to 3 neurons
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(3, 1) # from 3 neurons to 1 output

def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x
```

How many trainable parameters (weights + biases) does this model contain in total?

Hint: For nn.Linear(a,b), there are $a \times b$ weights and b biases.

- **12**
- O 22

15 iii Question 2 0.4 / 0.4 pts
You have the sentence: "I love to [MASK] every morning." and your BERT-based model must predict the missing word. Which statement correctly describes BERT's approach in this scenario?
 BERT is an autoregressive model that generates tokens one at a time, each conditioned on previous tokens. BERT uses Masked Language Modeling, attending to all surrounding tokens to infer the [MASK]. BERT is an autoregressive model that generates tokens one at a time, each conditioned on previous tokens. BERT ignores the context and focuses purely on final-layer hidden states. Question 3 0.4 / 0.4 pts
Neural networks are said to be "biologically inspired," yet they differ greatly from real brains. Which statement best explains one key difference?
 Biological neurons have more complex connectivity and signaling patterns than typical artificial neurons. Biological neurons rely exclusively on matrix multiplication to transmit signals. Artificial neurons use chemical neurotransmitters for activations, unlike real neurons. Artificial networks are only trained with linear activations, whereas biology uses nonlinear signals. Question 4 0.4 / 0.4 pts
Some claim that "using only linear activations in multiple layers is not beneficial" because it collapses to a single linear operation. Why is stacking purely linear layers generally ineffective?
 Multiple linear layers combine into the same transform, providing no additional representation power. Linear layers inherently cause vanishing gradients. Purely linear networks can only handle binary classification. Nonlinear layers slow down training, so fewer are better. Question 5 0.4 / 0.4 pts
You have two 300-dimensional word embeddings, v1 and v2. You want to measure how closely they match in meaning. Which measure is most commonly used to assess their similarity?
Cosine similarity

19

Euclidean distance

 Mean squared error Cross-entropy loss Question 6
0.4 / 0.4 pts
You discover that your model can be fooled by carefully crafted inputs, causing nonsensical outputs. In LLM terminology, such deceptive or misleading inputs are known as:
Hint: These are maliciously designed prompts or inputs to break or confuse the model
Adversarial examples
Instruction-tuned prompts
Autoregressive prompts
 Vocabulary collisions
Question 7
0.4 / 0.4 pts
You are building a neural network to predict housing prices (a continuous value). Which two activation functions are generally suitable at the output layer for a continuous prediction task?
☐ Sigmoid
✓ Linear
Softmax
✓ ReLU
Question 8
0.4 / 0.4 pts
In a typical feed-forward neural network architecture (with an input layer, one or more hidden layers, and an output layer), which of the following is not a usual term for a component in that architecture?
O Neurons
Axons
Layers
 Activation function
Question 9
0.4 / 0.4 pts
You have a large pre-trained language model and want it to follow specific user instructions (e.g., "turn these notes into a summary"). Which method refers to training a model explicitly with instruction-

oriented examples?

Hint: One approach uses tasks posed as explicit instructions (e.g., in a Q&A or summarization format).
Increasing the Context Window
Fine-Tuning on unstructured text
O Prompt Engineering

Instruction TuningIncorrectQuestion 100 / 0.4 pts

Assume a feed-forward network with 4 input features, then a single hidden layer of 5 neurons, and an output layer of size 1 for regression. All hidden neurons use ReLU. How many weight parameters (not counting biases) connect the input layer to the hidden layer?

- $4 \times 5 = 20$
- 4 + 5 = 9
- $4 \times 5 + 5 = 25$
- $0.5 \times 1 = 5$

Quiz Score: 3.6 out of 4