Exercises 1

- 1. $\int_{[-1,1]} x \, \lambda(dx)$, where λ is Lebesgue measure on $\mathbb R$.
- $\int_{-1}^{1} x \, dx = 0$ (odd function over symmetric interval).
 - 2. $\int x^2\,P(dx)$, where $P(A)=(1-p)\delta_0(A)+p\delta_1(A)$, $p\in(0,1)$.
- $(1-p)(0-p)^2 + p(1-p)^2 = p(1-p).$
 - 3. $\int_{1}^{e} \log(x) \, \lambda(dx)$, where λ is Lebesgue measure.
- $\int_{1}^{e} \log x \, dx = [x \log x x]_{1}^{e} = (e \cdot 1 e) (1 \cdot 0 1) = 1.$
 - 4. $\int_{\{1,2,3\}} x \, \mu(dx)$, where μ is counting measure on $\mathcal{P}(\mathbb{N})$.
- $\sum_{x=1}^{3} x = 6.$
 - 5. $\int_{\mathbb{N}\times\mathbb{N}} 3^{-(x+y)} \, m(d(x,y))$, where m is counting measure on $\mathcal{P}(\mathbb{N}\times\mathbb{N})$ and $\mathbb{N}=\{0,1,2,\dots\}$.
- $\sum_{x=0}^{\infty} \sum_{y=0}^{\infty} 3^{-(x+y)} = \left(\sum_{x=0}^{\infty} 3^{-x}\right)^2 = \left(\frac{1}{1-\frac{1}{3}}\right)^2 = \left(\frac{3}{2}\right)^2 = \frac{9}{4}.$
 - 6. $\int_{\mathbb{R}} x \, \mu(dx)$, where $\mu(A) = \sum_{x=0}^{\infty} rac{e^{-2}2^x}{x!} \delta_x(A)$.
- Expectation of Poisson(2): 2.
 - 7. $\int_{[0,2]} x^3 \, \lambda(dx).$
- $\int_0^2 x^3 dx = \frac{2^4}{4} = 4.$
 - 8. $\int (x-p)^3 P(dx)$, same P as exercise 2.
- $(1-p)(0-p)^3 + p(1-p)^3 = p(1-p)(1-2p).$
 - 9. $\int_0^1 \frac{1}{1+x^2} \, \lambda(dx)$.
- $\int_0^1 \frac{1}{1+x^2} dx = \arctan(1) \arctan(0) = \frac{\pi}{4}.$
- 10. $\sum_{k=1}^{\infty} rac{k}{2^k}$, interpreting as $\int f(k) m(dk)$, m counting measure on $\mathbb{N}=\{1,2,...\}$.
- $\sum_{k=1}^{\infty} \frac{k}{2^k} = 2.$

11. $\int_{\mathbb{N}}(x!)^{-1}e^{-1}\,\mu(dx)$, μ as in exercise 6 with parameter 1 (i.e., $\mu(A)=\sum_{x=0}^{\infty}\frac{e^{-1}1^x}{x!}\delta_x(A)$), $\mathbb{N}=\{0,1,2,\ldots\}$.

 $\sum_{x=0}^{\infty}\frac{e^{-1}1^x}{x!}=1 \text{ (total probability of Poisson(1)). Note: the integral is } \int_{\mathbb{N}}\frac{1}{x!}e^{-1}\mu(dx). \text{ The question appears to imply the integrand term } \frac{e^{-1}\lambda^x}{x!} \text{ is part of the measure. Re-reading exercise } 6, $\mu(A)$ is the measure $P(X\in A)$ for Poisson. So here we integrate $g(x)=(x!)^{-1}e^{-1}$ against $dP(x)$, where P is Poisson(1). This would be $\sum_{x=0}^{\infty}(x!)^{-1}e^{-1}\frac{e^{-1}1^x}{x!}=e^{-2}\sum_{x=0}^{\infty}\frac{1}{(x!)^2}$, which is $e^{-2}I_0(2)$ where I_0 is modified Bessel func.}$

The likely intended question is $\int_{\mathbb{N}}1\,\mu(dx)$ where μ is Poisson(1) measure, which sums to 1. OR $\int_{\mathbb{N}}x\cdot\frac{e^{-1}}{x!}\mu_c(dx)$ where μ_c is counting measure, and this would be E[X]=1.

Assuming the question means: given Poisson measure $P_\lambda(A)=\sum_{x\in A\cap\mathbb{N}_0} \frac{e^{-\lambda}\lambda^x}{x!}$, calculate $\int_{\mathbb{N}_0} g(x)P_1(dx)$ with g(x)=1.

Solution: The sum of probabilities for a Poisson(1) distribution is $\sum_{x=0}^{\infty} \frac{e^{-1}1^x}{x!} = e^{-1}\sum_{x=0}^{\infty} \frac{1}{x!} = e^{-1}e = 1$. If the question meant $\int_{\mathbb{N}_0} \frac{(x!)^{-1}e^{-1}}{\text{term from measure}} (\text{term from measure } dP(x))$, this is likely asking for $\sum_{x=0}^{\infty} (x!)^{-1}e^{-1}P(x)$ where P(x) is Poisson probability for x. This would be $e^{-1}\sum((x!)^{-2}e^{-1}) = e^{-2}\sum(x!)^{-2}$. The phrasing is a bit ambiguous but often μ as in ex 6 implies μ IS the Poisson measure. If $\mu(dx) = \frac{e^{-1}1^x}{x!}\delta_x(dx)$ then $\int (x!)^{-1}e^{-1}\mu(dx) = \sum_{x=0}^{\infty} (x!)^{-1}e^{-1}\frac{e^{-1}1^x}{x!} = e^{-2}\sum_{x=0}^{\infty} \frac{1}{(x!)^2}$.

If it means

$$\int_{\mathbb{N}_0} \frac{e^{-1}}{x!} \operatorname{counting_measure}(dx)$$

this is $e^{-1}\sum (x!)^{-1}=e^{-1}e=1$. Given the solution in the original is $\ \mathbf 1$, this last interpretation is most likely, where μ is counting measure.

Original Solution Interpretation: $\sum_{x=0}^{\infty} \frac{e^{-1}1^x}{x!} = 1$ (total probability of Poisson(1)). This implies the integrand is 1 and the measure is Poisson(1).

12. $\int_{\mathbb{N} imes\{0,1\}} 4^{-(x+y)} \, m(d(x,y))$, m counting measure, $\mathbb{N}=\{0,1,2,...\}$.

$$\sum_{x=0}^{\infty} \sum_{y=0}^{1} 4^{-(x+y)} = \left(\sum_{x=0}^{\infty} 4^{-x}\right) \left(\sum_{y=0}^{1} 4^{-y}\right) = \frac{1}{1-1/4} \times \left(4^{0} + 4^{-1}\right) = \frac{4}{3} \times \left(1 + \frac{1}{4}\right) = \frac{4}{3} \times \frac{5}{4} = \frac{5}{3}.$$

13.
$$\int_0^\infty x e^{-x} \, \lambda(dx)$$
.

 $\int_0^\infty x e^{-x} dx = 1$ (Gamma(2) distribution mean, or $\Gamma(2)$ function).

14. $\int_{\{0,1\}^n} \sum_{i=1}^n x_i \, \mu(dx)$, μ counting measure on $\{0,1\}^n$.

 $\sum_{x\in\{0,1\}^n}\sum_{i=1}^n x_i=n\cdot 2^{n-1}.$ For a fixed $i,x_i=1$ in half of the 2^n configurations, so 2^{n-1} times. Summing over n coordinates gives $n2^{n-1}$.

15.
$$\int_{\mathbb{R}} e^{-x^2} \, \lambda(dx)$$
 over \mathbb{R} .

No elementary closed form for the antiderivative, but the definite integral is known as $\sqrt{\pi}$ (Gaussian integral).

16. $\int_{\mathbb{N}_0} x^2 P_\lambda(dx)$, where $P_\lambda(dx)$ denotes integrating against the Poisson measure with parameter λ , i.e. $P_\lambda(A) = \sum_{x \in A \cap \mathbb{N}_0} \frac{e^{-\lambda} \lambda^x}{x!}$. (The original text says $\delta_x(dx)$ which is confusing).

This is
$$E[X^2]$$
 for $X \sim \mathrm{Poisson}(\lambda)$. $E[X^2] = \mathrm{Var}(X) + (E[X])^2 = \lambda + \lambda^2$.

17.
$$\int_0^1 x \log(x) \, \lambda(dx).$$

$$\int_0^1 x \log x dx = [rac{x^2}{2} \log x - rac{x^2}{4}]_0^1 = (0 - rac{1}{4}) - \lim_{x o 0} (rac{x^2}{2} \log x - rac{x^2}{4}) = -rac{1}{4}.$$

18.
$$\int_{[0,1]^2} (x^2 + y^2) \, \lambda(dxdy)$$
.

$$\int_0^1 \int_0^1 (x^2 + y^2) dy dx = \int_0^1 [x^2 y + \frac{y^3}{3}]_0^1 dx = \int_0^1 (x^2 + \frac{1}{3}) dx = \left[\frac{x^3}{3} + \frac{x}{3}\right]_0^1 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}.$$

19. $\int_{\mathbb{N} imes\mathbb{N}}(xy)^{-1}2^{-(x+y)}\,m(d(x,y))$, where $\mathbb{N}=\{1,2,...\}$ and m is counting measure.

$$\sum_{x=1}^{\infty} \sum_{y=1}^{\infty} \frac{2^{-x}}{x} \frac{2^{-y}}{y} = \left(\sum_{k=1}^{\infty} \frac{(1/2)^k}{k}\right)^2 = (-\log(1-1/2))^2 = (\log 2)^2.$$

20.
$$\int_0^\infty \frac{\sin x}{x} \, \lambda(dx).$$

$$\int_0^\infty rac{\sin x}{x} dx = rac{\pi}{2}$$
 (Dirichlet integral).

Exercises 2

1. $\int_{[0,1]} d\lambda(x)$, where λ is Lebesgue measure on $\mathcal{B}(\mathbb{R})$.

Solution: 1

(Simple Lebesgue measure of an interval.)

2. $\int_{\mathbb{R}} |x| \delta_0(dx)$, where δ_0 is the Dirac measure at 0.

Solution: 0

(Dirac measure evaluation at a point.)

3. $\int_A d\mu(x)$, where $A=\{1,2,3\}$ and μ is the counting measure on $\mathcal{B}(\mathbb{Z})$.

Solution: 3

(Counting measure on a finite set.)

4.
$$\int_{\mathbb{R}} x^2 (\delta_2 + \delta_3) (dx)$$
.

Solution: 13 (since $2^2 + 3^2 = 4 + 9$)

(Sum of Dirac measures.)

5. $\int_{[0,\infty)} e^{-x} \lambda(dx)$, where λ is Lebesgue measure.

Solution: 1

(Exponential integral over Lebesgue measure.)

6.
$$\int_{\mathbb{R}} (x-p)^2 P(dx)$$
, where $P=(1-p)\delta_0+p\delta_1$ for $p\in(0,1)$.

Solution: p(1-p)

(Variance of a Bernoulli distribution.)

7.
$$\int_{\mathbb{N}} e^{-x} \mu(dx)$$
, where μ is the counting measure on $\mathbb{N}=\{0,1,2,\ldots\}$.

Solution:
$$\sum_{x=0}^{\infty}e^{-x}=\sum_{x=0}^{\infty}(1/e)^x=rac{1}{1-1/e}=rac{e}{e-1}$$

(Geometric series under counting measure.)

8.
$$\int_{[0,1] imes[0,1]}(x+y)(\lambda imes\lambda)(d(x,y))$$
, where $\lambda imes\lambda$ is the product measure.

Solution:
$$\int_0^1 \int_0^1 (x+y) dx dy = \int_0^1 (\frac{1}{2} + y) dy = \frac{1}{2} + \frac{1}{2} = 1$$

(Double integral with linear function.)

9.
$$\int_{\mathbb{R}} x \mu(dx)$$
, where $\mu = \sum_{k=0}^{\infty} rac{1}{2^{k+1}} \delta_k$.

Solution:
$$\sum_{k=0}^{\infty} k \frac{1}{2^{k+1}} = \frac{1}{2} \sum_{k=0}^{\infty} k (\frac{1}{2})^k = \frac{1}{2} \frac{1/2}{(1-1/2)^2} = \frac{1}{2} \frac{1/2}{1/4} = 1$$

(Expected value of a discrete distribution (a geometric distribution variant starting at 0, $P(X=k)=(1/2)^{k+1}$).)

10.
$$\int_{\mathbb{N} imes\mathbb{N}}e^{-(x+y)}(\mu imes\mu)(d(x,y))$$
, where μ is the counting measure on $\mathbb{N}=\{0,1,2,\dots\}$.

Solution:
$$(\sum_{x=0}^{\infty}e^{-x})\left(\sum_{y=0}^{\infty}e^{-y}\right)=\left(\frac{e}{e-1}\right)^2$$

(Product measure and separable function, using result from ex. 7.)

11.
$$\int_{\mathbb{R}} x
u(dx)$$
, where $d
u = rac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$ (standard Gaussian measure).

Solution: 0

(Symmetry of Gaussian measure; expected value of N(0,1).)

12. $\int_{[0,\infty)} x^2 \mu(dx)$, where $d\mu = 2e^{-2x} dx$. (This is an Exponential distribution with rate 2).

Solution: $\int_0^\infty x^2 2e^{-2x}dx$. For $\mathrm{Exp}(\beta)$ with density $\beta e^{-\beta x}$, $E[X^2]=2/\beta^2$. Here $\beta=2$, so $E[X^2]=2/2^2=1/2$.

(Exponential distribution second moment.)

13. $\int_{[-2,2]} |x| \lambda(dx)$, where λ is Lebesgue measure.

Solution: $2\int_0^2 x dx = 2[\frac{x^2}{2}]_0^2 = 2 \cdot \frac{4}{2} = 4$

(Integral of absolute value over symmetric interval.)

14. $\int_{[-1,1]} 1\mu(dx)$, where $d\mu = |x| dx$.

Solution: $\int_{-1}^1 |x| dx = 2 \int_0^1 x dx = 2 \cdot \frac{1}{2} = 1$

(Integration against a weighted Lebesgue measure.)

15. $\int_{\mathbb{R}} e^{-|x|} \lambda(dx)$.

Solution: $2\int_0^\infty e^{-x}dx = 2[-e^{-x}]_0^\infty = 2(0-(-1)) = 2$

(Double-sided exponential integral.)

16. $\int_{\mathbb{N}_0}(x-1)^2P(dx)$, where P is Poisson measure with mean 1: $P(\{k\})=rac{e^{-1}}{k!}$ for $k\in\mathbb{N}_0=\{0,1,2,\dots\}$.

Solution: This is $E[(X-1)^2]$ for $X \sim \text{Poisson}(1)$. Mean $E[X] = \lambda = 1$. So $E[(X-E[X])^2] = \text{Var}(X) = \lambda = 1$.

(Variance of Poisson distribution.)

17. $\int_{[0,1]} x
u(dx)$, where $u=g_*\lambda$ is the pushforward of Lebesgue measure λ on [0,1] under $g(x)=x^2$.

Solution: By change of variables, $\int_{[0,1]} g(x) \lambda(dx) = \int_0^1 x^2 dx = \frac{1}{3}$.

*(Pushforward measure and change of variables. The integral becomes $\int_S y d
u(y)$. If Y=

g(X), then $E[Y]=\int x d\nu(x)$ means we are finding E[X] where X has measure ν . The wording here is $\int x \nu(dx)$ where ν is defined on range of g. So we integrate $\int_{[0,1]} y d\nu(y)$.

Using transformation: if $y=x^2$, then pdf of Y is $f_Y(y)=f_X(\sqrt{y})|rac{d}{dy}\sqrt{y}|=1\cdotrac{1}{2\sqrt{y}}$ for $y\in X$

[0,1]. So $\int_0^1 y rac{1}{2\sqrt{y}} dy = \int_0^1 rac{\sqrt{y}}{2} dy = [rac{1}{2} rac{y^{3/2}}{3/2}]_0^1 = rac{1}{3}.$

Original interpretation: $\int x\nu(dx)$. If ν is on the target space of g, then the variable should be y,

not x. If it means $\int x d(g_*\lambda)(x)$, then it's $\int x^2 d\lambda(x)$. This means x is a dummy variable representing values in range of g. So $\int_0^1 y f_Y(y) dy$. This is what was computed. Alternatively $\int_{g([0,1])} i d(y) d\nu(y) = \int_{[0,1]} i d(g(x)) d\lambda(x) = \int_0^1 x^2 dx = 1/3$. This is standard notation. The x in $\int x \nu(dx)$ is the variable of integration over the space where ν is defined. (Pushforward measure and change of variables.)

18. $\int_{\mathbb{Z}} |x| e^{-|x|} \mu(dx)$, where μ is the counting measure on \mathbb{Z} .

Solution:
$$\sum_{x \in \mathbb{Z}} |x| e^{-|x|} = 0 \cdot e^0 + 2 \sum_{x=1}^{\infty} x e^{-x} = 2 \sum_{x=1}^{\infty} x (1/e)^x = 2 \frac{1/e}{(1-1/e)^2} = 2 \frac{e^{-1}}{(1-e^{-1})^2} = 2 \frac{e^{-1}}{(e-1)^2/e^2} = 2 \frac{2e}{(e-1)^2}.$$

(Series involving absolute values and exponential decay.)

19. $\int_{\mathbb{R}}x\mu(dx)$, where $\mu=\delta_0+\lambda|_{[1,2]}$ (Lebesgue measure restricted to [1,2]).

Solution: $\int_{\mathbb{R}} x \delta_0(dx) + \int_{\mathbb{R}} x \lambda|_{[1,2]}(dx) = 0 \cdot 1 + \int_1^2 x dx = 0 + [\frac{x^2}{2}]_1^2 = \frac{4}{2} - \frac{1}{2} = \frac{3}{2}$. (Mixed discrete-continuous measure.)

20.
$$\int_{[0,\infty) imes[0,\infty)}|x-y|e^{-x}e^{-y}(\lambda imes\lambda)(d(x,y)).$$

Solution: $\int_0^\infty \int_0^\infty |x-y| e^{-x} e^{-y} dx dy$. This is E[|X-Y|] for i.i.d $X,Y\sim \mathrm{Exp}(1)$. The probability P(X>Y)=1/2.

$$\begin{split} &2\int_0^\infty \int_y^\infty (x-y)e^{-x}e^{-y}dxdy = 2\int_0^\infty e^{-y} \left(\int_y^\infty xe^{-x}dx - y \int_y^\infty e^{-x}dx \right) dy. \\ &\int_y^\infty e^{-x}dx = [-e^{-x}]_y^\infty = e^{-y}. \\ &\int_y^\infty xe^{-x}dx = [-xe^{-x} - e^{-x}]_y^\infty = (0-0) - (-ye^{-y} - e^{-y}) = ye^{-y} + e^{-y}. \\ &\text{So integral becomes } 2\int_0^\infty e^{-y} (ye^{-y} + e^{-y} - ye^{-y}) dy = 2\int_0^\infty e^{-2y} dy = 2[-\frac{1}{2}e^{-2y}]_0^\infty = 2(0-(-\frac{1}{2})) = 1. \end{split}$$

(Integral involving absolute difference of exponentials.)

Exercises 3

1. $\int_{\mathbb{R}} \mathbf{1}_{[0,1]}(x) \cos(\pi x) \, d\lambda(x)$, where λ is Lebesgue measure.

Solution: $\int_0^1 \cos(\pi x) dx = \left[\frac{1}{\pi}\sin(\pi x)\right]_0^1 = \frac{1}{\pi}(\sin(\pi) - \sin(0)) = 0$. (Standard definite integral of a trigonometric function.)

2. $\int_{\mathbb{R}^2} \mathbf{1}_{B(0,1)}(x,y) d(\lambda \times \lambda)(x,y)$, where $B(0,1)=\{(x,y): x^2+y^2\leq 1\}$ is the unit disk and λ is Lebesgue measure.

Solution: This is the Lebesgue measure of the unit disk, which is its area: $\pi(1)^2 = \pi$. (Lebesgue measure of a geometric shape in \mathbb{R}^2 .)

3.
$$\int_{\{0,1,2\}} (x^2-1)\,d\mu(x)$$
, where $\mu=\delta_0+2\delta_1+\delta_2$.

Solution:
$$(0^2 - 1) \cdot 1 + (1^2 - 1) \cdot 2 + (2^2 - 1) \cdot 1 = (-1) + (0) \cdot 2 + (3) \cdot 1 = -1 + 0 + 3 = 2.$$

(Linearity of integral for a sum of Dirac measures.)

4. $\int_{[0,\pi/2]}\sin(x)\,d
u(x)$, where $u(A)=\lambda(A\cap[0,\pi/4])+\delta_{\pi/2}(A)$, and λ is Lebesgue measure.

Solution:
$$\int_0^{\pi/4} \sin(x) dx + \sin(\pi/2) \cdot 1 = [-\cos(x)]_0^{\pi/4} + 1 = (-\cos(\pi/4) - (-\cos(0))) + 1 = (-\frac{\sqrt{2}}{2} + 1) + 1 = 2 - \frac{\sqrt{2}}{2}.$$

(Integral with respect to a mixed measure: part Lebesgue, part Dirac.)

5. $\int_{\mathbb{N}_0}x\,dP(x)$ where $\mathbb{N}_0=\{0,1,2,\dots\}$ and P is the Geometric distribution measure $P(\{k\})=(1-p)^kp$ for $k\in\mathbb{N}_0,p\in(0,1)$.

Solution: This is the expected value of a geometric random variable starting at 0. $E[X]=\sum_{k=0}^{\infty}kp(1-p)^k=\frac{1-p}{p}$.

(Expected value of a geometric distribution.)

6. $\int_{(0,1)} x^{-1/2} d\lambda(x)$, where λ is Lebesgue measure.

Solution: $\int_0^1 x^{-1/2} dx = [2x^{1/2}]_0^1 = 2(1)^{1/2} - \lim_{a \to 0} 2a^{1/2} = 2 - 0 = 2.$ (Integral of a function with an integrable singularity at the boundary.)

7. $\int_{\mathbb{R}} \mathbf{1}_{\mathbb{Q}}(x) d\lambda(x)$, where \mathbb{Q} is the set of rational numbers and λ is Lebesgue measure.

Solution: Since $\mathbb Q$ is a set of Lebesgue measure zero, $\lambda(\mathbb Q)=0$. The integral of the indicator function is $\int \mathbf 1_{\mathbb Q} d\lambda = \lambda(\mathbb Q)=0$.

(Integral of an indicator function of a null set.)

8. $\int_{[0,1]} x \, d\mu_C(x)$, where μ_C is the standard Cantor measure on [0,1] (normalized so $\mu_C([0,1])=1$).

Solution: By symmetry of the Cantor set and the Cantor measure construction around 1/2, the expected value $\int_{[0,1]} x \, d\mu_C(x)$ is $\frac{1}{2}$.

(Integral with respect to the Cantor measure.)

9. $\int_{[0,1]^2} \min(x,y) \, d(\lambda imes \lambda)(x,y)$, where λ is Lebesgue measure.

$$\begin{array}{l} \text{Solution: } \int_0^1 \left(\int_0^x y \, dy + \int_x^1 x \, dy \right) dx = \int_0^1 \left(\frac{x^2}{2} + x(1-x) \right) dx = \\ \int_0^1 \left(\frac{x^2}{2} + x - x^2 \right) dx = \int_0^1 \left(x - \frac{x^2}{2} \right) dx = \left[\frac{x^2}{2} - \frac{x^3}{6} \right]_0^1 = \frac{1}{2} - \frac{1}{6} = \frac{3-1}{6} = \frac{1}{3}. \end{array}$$

(Double integral involving the min function, solved using Fubini's theorem.)

10. $\int_{\mathbb{N}} rac{1}{x(x+1)} \, d\mu(x)$, where μ is the counting measure on $\mathbb{N}=\{1,2,...\}$.

Solution: $\sum_{x=1}^{\infty} \frac{1}{x(x+1)} = \sum_{x=1}^{\infty} \left(\frac{1}{x} - \frac{1}{x+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots = 1$. (Telescoping series).

(Summation as an integral with counting measure; telescoping series.)

11. $\int_{[0,1]} x^2 d(g_*\lambda)(x)$, where $g_*\lambda$ is the pushforward of Lebesgue measure λ on [0,1] by $g(t)=t^3$. (The integration variable x lives in the target space of g, which is also [0,1]).

Solution: Using the change of variables formula for pushforward measures:

$$\int_{[0,1]} x^2 \, d(g_*\lambda)(x) = \int_{[0,1]} (g(t))^2 \, d\lambda(t) = \int_0^1 (t^3)^2 \, dt = \int_0^1 t^6 \, dt = \left[rac{t^7}{7}
ight]_0^1 = rac{1}{7}.$$

(Pushforward measure and change of variables theorem.)

12. $\int_{[0,\infty)} x e^{-x^2} \, d\lambda(x)$, where λ is Lebesgue measure.

Solution: Let $u=x^2$, then du=2xdx, so $xdx=\frac{1}{2}du$. The limits $x=0\Rightarrow u=0$ and $x\to\infty\Rightarrow u\to\infty$.

$$\int_0^\infty e^{-u} \frac{1}{2} du = \frac{1}{2} [-e^{-u}]_0^\infty = \frac{1}{2} (0 - (-1)) = \frac{1}{2}.$$

(Gaussian-related integral, solvable with u-substitution.)

13. $\int_{\mathbb{R}}\cos(x)\,d\mu(x)$, where $d\mu(x)=rac{1}{\pi(1+x^2)}dx$ (Standard Cauchy distribution measure).

Solution: This is the real part of the characteristic function $\phi(t)=E[e^{itX}]$ of the standard Cauchy distribution, evaluated at t=1. The characteristic function is $\phi(t)=e^{-|t|}$. So, $\int_{\mathbb{R}}\cos(x)\frac{1}{\pi(1+x^2)}dx=\mathrm{Re}(e^{-|1|})=e^{-1}$. (Since $\sin(x)$ is odd, its integral against the even measure is 0).

(Integral related to the characteristic function of the Cauchy distribution.)

14. $\int_{\{(x,y)\in\mathbb{N}_0^2:x+y=N\}}1\,d\mu(x,y)$, where $N\in\mathbb{N}_0=\{0,1,2,\dots\}$ and μ is the counting measure on \mathbb{N}_0^2 .

Solution: This counts the number of pairs of non-negative integers (x,y) such that x+y=N. The possible values for x are $0,1,\ldots,N$, each determining a unique y. Thus there are N+1

such pairs.

(Counting measure on a specific discrete set, a diagonal slice of \mathbb{N}_0^2 .)

15. $\int_{[0,1]} x \, dF(x)$, where F(x) is the cumulative distribution function (CDF) of a uniform U(0,1) random variable.

Solution: For $X\sim U(0,1)$, F(x)=x for $x\in[0,1]$, and $dF(x)=f(x)dx=1\cdot dx$ for $x\in(0,1)$. The integral is interpreted as $\int_{[0,1]}x\lambda(dx)$, where λ is Lebesgue measure. $\int_0^1x\,dx=\left\lceil\frac{x^2}{2}\right\rceil_0^1=\frac{1}{2}.$

(Connection to probability theory (expected value) and Riemann-Stieltjes integrals for absolutely continuous CDFs.)

16. $\int_{\mathbb{R}^2} e^{-(x^2+y^2)} \, d(\lambda imes \lambda)(x,y)$, where λ is Lebesgue measure.

Solution: Convert to polar coordinates: $x = r \cos \theta, y = r \sin \theta, dx dy = r dr d\theta.$ $x^2 + y^2 = r^2$.

 $\int_0^{2\pi}\int_0^\infty e^{-r^2}r\,drd\theta=2\pi\int_0^\infty e^{-r^2}r\,dr.$ From problem #12, $\int_0^\infty e^{-r^2}r\,dr=1/2.$ So the integral is $2\pi\cdot\frac12=\pi.$

(Double integral evaluated using polar coordinates, related to Gaussian integrals.)

17. $\int_{[0,1]} x \, d\mu(x)$, where $\mu = \frac{1}{2} \delta_{1/4} + \frac{1}{2} \lambda|_{[0,1]}$ (a mixture of a Dirac measure at 1/4 and scaled Lebesgue measure on [0,1]). The integration variable x lives on [0,1].

Solution:
$$\int_{[0,1]} x \, d\left(\frac{1}{2}\delta_{1/4}\right)(x) + \int_{[0,1]} x \, d\left(\frac{1}{2}\lambda|_{[0,1]}\right)(x) = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \int_0^1 x \, dx = \frac{1}{8} + \frac{1}{2} \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{8} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{4} = \frac{3}{8}.$$

(Integral with respect to a linear combination of measures (mixed measure).)

18. $\int_0^\infty \frac{\sin^2(x)}{x^2} \, d\lambda(x)$, where λ is Lebesgue measure.

Solution: This is a known definite integral. $\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx = \frac{\pi}{2}$. It can be solved using Parseval's theorem with the Fourier transform of $\mathbf{1}_{[-1,1]}(t)$, or complex integration. (Known definite integral related to the sinc function.)

19. $\int_{T_2}(x+y)\,d(\lambda imes\lambda)(x,y)$ where $T_2=\{(x,y)\in[0,1]^2:x+y\leq 1\}$ (a triangle) and λ is Lebesgue measure.

Solution:
$$\int_0^1 \int_0^{1-x} (x+y) \, dy dx = \int_0^1 \left[xy + \frac{y^2}{2} \right]_0^{1-x} dx = \int_0^1 \left(x(1-x) + \frac{(1-x)^2}{2} \right) dx = \int_0^1 \left(x - x^2 + \frac{1-2x+x^2}{2} \right) dx = \int_0^1 \left(x - x^2 + \frac{1}{2} - x + \frac{x^2}{2} \right) dx$$

$$=\int_0^1 \left(rac{1}{2} - rac{x^2}{2}
ight) dx = \left[rac{x}{2} - rac{x^3}{6}
ight]_0^1 = rac{1}{2} - rac{1}{6} = rac{3-1}{6} = rac{1}{3}.$$

(Double integral over a triangular region.)

20.
$$\int_{\mathbb{R}} rac{1}{(x-a)^2+b^2} \, d\lambda(x)$$
, for $b>0$, λ Lebesgue measure.

$$\begin{array}{l} \text{Solution: Let } u = \frac{x-a}{b}, \text{ so } x = bu + a \text{ and } dx = b \, du. \\ \int_{-\infty}^{\infty} \frac{1}{b^2 u^2 + b^2} b \, du = \int_{-\infty}^{\infty} \frac{b}{b^2 (u^2 + 1)} \, du = \frac{1}{b} \int_{-\infty}^{\infty} \frac{1}{u^2 + 1} \, du \\ = \frac{1}{b} [\arctan(u)]_{-\infty}^{\infty} = \frac{1}{b} \left(\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right) = \frac{1}{b} (\pi) = \frac{\pi}{b}. \end{array}$$

(Integral of a Lorentzian/Cauchy profile.)

(Expected absolute difference of two i.i.d. exponential variables.)

Measure-Theoretic Integral Patterns Cheat Sheet

Basic Measure Integrals

Measure Type	Domain	Integrand	Result	Notes
Lebesgue (λ)	[-a, a]	Odd f(x)	0	f(-x) = -f(x) symmetry
	[a, b]	1	b - a	Interval length
	[0, ∞)	e ^{-x}	1	Exponential decay
	R	e ^{-x2}	√π	Gaussian integral
	[0, 1]	1/(1+x²)	π/4	Arctangent primitive
	[1, e]	In x	1	Integration by parts
	[0, 1]	x ln x	-1/4	Gamma function relation
	[0, ∞)	x e ^{-x}	1	Γ(2) = 1!
	[0, ∞)	sin(x)/x	π/2	Dirichlet integral
	[-a, a]	x	a ²	
	[0,1]×[0,1]	$x^2 + y^2$	2/3	Fubini's theorem
Dirac (δ)	Any	f(x)	f(a)	Point evaluation at a
	R	x	a	
	R	$x^2 (c\delta_a + d\delta_b)$	ca ² + db ²	Linear combination

Measure Type	Domain	Integrand	Result	Notes
Counting (µ)	{a ₁ a _n }	1	n	Cardinality
	N	r _x	(1-r) ⁻¹	Geometric series (IrI<1)
	N	x·r ^x	r(1-r) ⁻²	Differentiated series
	{0,1} ⁿ	Σx _i	n·2 ⁿ⁻¹	Linear function sum
	{1,2,3}	Х	6	Finite sum
Bernoulli (P)	{0,1}	Х	р	Mean
	{0,1}	(x-p) ²	p(1-p)	Variance
	{0,1}	(x-p) ³	p(1-p)(1-2p)	Skewness
Poisson (P)	\mathbb{N}_0	1	1	Normalization
	\mathbb{N}_0	Х	λ	Mean
	\mathbb{N}_0	(x-λ) ²	λ	Variance
	\mathbb{N}_{0}	X ²	$\lambda + \lambda^2$	Second moment

Advanced Measures

Measure Type	Domain	Integrand	Result	Notes
Product Measures	$\mathbb{N} \times \mathbb{N}$	f(x)g(y)	[∑f][∑g]	Separable functions
	[0,∞) ²	x-y e ^{-x} e ^{-y}	1	Exp(1) i.i.d. absolute difference
	[0,1]×[0,1]	x + y	1	Fubini's theorem
	$\mathbb{N} \times \{0,1\}$	4 ^{-(x+y)}	5/3	Mixed geometric series

Measure Type	Domain	Integrand	Result	Notes
Weighted Measures	\mathbb{R}	e ⁻ x	2	Double-sided exponential
	[-1,1]	$1 (d\mu = x dx)$	1	Weighted Lebesgue

Measure Type	Domain	Integrand	Result	Notes
	[0,∞)	x²(2e ^{-2x} dx)	1/2	Exponential distribution moment
	\mathbb{Z}	x e ⁻ ^x	2e(e- 1) ⁻²	Discrete Laplace
Pushforward	[0,1] g(x)=x ²	x	1/3	$\int x \cdot d(g^* \lambda) = \int g(t) d\lambda(t)$

Key Properties

Linearity:

 $\int (af + bg)d\mu = a\int fd\mu + b\int gd\mu$

Product Measures:

 $\int_{X\times Y} h(x,y) d(\mu \times \nu) = \int_{X} \int_{Y} h(x,y) d\nu \ d\mu$

Change of Variables:

For T measurable: $\int_{T} \{T(\Omega)\} f dv = \int_{T} \Omega f d\mu$

Convergence Tools:

Monotone Convergence, Dominated Convergence, Fubini-Tonelli

Series Relations:

$$\sum_{k=1}^{\infty} k^{2-k} = 2, \sum_{k=0}^{\infty} k!^{-1}e^{-1} = 1$$