Ant Colony Optimization: A New Meta-heuristic

Authors:

Marco Dorigo Gianni A. Di Caro

Presented by:

Md. Zawad Abdullah (1605002)

Bishwajit Bhattacharjee (1605003)

Md. Mahir Shahriyar (1605024)

Department of CSE, Bangladesh University of Engineering and Technology

1 / 26

Problem Definition

The Traveling Salesman Problem

A salesman needs to visit a number of customers located in different cities and return to the starting city using the shortest route.

Input:

Cities

Output:

4 / 26

Backtracking

5 / 26

Backtracking
 Issue - Complexity is exponential.

Backtracking Issue - Complexity is exponential.Not Good Enough!

- Backtracking Issue - Complexity is exponential.Not Good Enough!
- Bitmask DP

- Backtracking Issue - Complexity is exponential.
 Not Good Enough!
- Bitmask DP
 Issue Works efficiently when input is small.

- Backtracking Issue - Complexity is exponential.
 Not Good Enough!
- Bitmask DP
 Issue Works efficiently when input is small.
 Not Good Enough!

Motivation

We will use Ant Colony Optimization (ACO) to solve TSP more efficiently.

Ants collecting food-1

Figure: Paths From Food to Ants' Nest

Ants collecting food-2

Figure: Ants Searching for Food

Ants collecting food-3

Figure: Ants Following An Optimal Path

Previous Works

- In the year 1991, Marco Dorigo proposed an algorithm called "Ant System".
- AS was first applied to the Traveling Salesman Problem.

Figure: Marco Dorigo

| ACO | August 29, 2019 | 14 / 26

Results

The ACO meta-heuristic is the result of an effort to define a common framework for all the versions of AS.

Notations

- $C = \{c_1, c_2, ..., c_{N_C}\}$ is a finite set of *components*.
- $L = \{I_{c_i c_j} \mid (c_i, c_j) \in \tilde{C}\}, \mid L \mid \leq N_C^2$ is a finite set of possible connections/transitions among the elements of \tilde{C} , where \tilde{C} is a subset of the Cartesian product $C \times C$.
- $J_{c_ic_j} \equiv J(I_{c_ic_j}, t)$ is a connection cost function associated to each $I_{c_ic_j} \in L$, possibly parameterized by some time measure t.
- ullet ψ is a *solution* of the problem.
- $J_{\psi}(L,t)$ is a cost associated to each solution ψ . $J_{\psi}(L,t)$ is a function of all the costs $J(c_i,c_j)$ of all the connections belonging to the solution ψ .

Ant Properties

• Every ant has its own memory.

Ant Properties Continued

 An ant chooses the next node to visit from its memory and the ant-routing table

Ant Properties Continued

$$\begin{pmatrix}
0 & 5 & 3 & 1 \\
4 & 0 & 1 & 6 \\
9 & 3 & 0 & 9 \\
12 & 4 & 15 & 0
\end{pmatrix}$$

Here, a_{ij} is a measurement of the quality of the edge from node i to node j.

Ant-routing table, a

Formula for ant-routing table

The formula for updating the ant-routing table is:

$$egin{aligned} a_{ij} &= rac{\left[au_{ij}(t)
ight]^{lpha} \left[\eta_{ij}
ight]^{eta}}{\displaystyle\sum_{l \in \mathcal{N}_i} \left[au_{il}(t)
ight]^{lpha} \left[\eta_{il}
ight]^{eta}} \qquad orall j \in \mathcal{N}_i \end{aligned}$$

- ullet au_{ij} is the intensity of pheromone trail of the edge l_{ij}
- η_{ij} is the heuristic value of the edge between i and j.

$$\eta_{ij} = rac{1}{J_{c_i c_j}}$$

• α and β are two parameters that control the relative weight of pheromone trail and heuristic value.

Dorigo-Caro ACO August 29, 2019 20 / 26

Formula for ant-routing table Continued

The probability $p_{ij}^k(t)$ with which an ant k located in city i chooses the city $j \in \mathcal{N}_i^k$ to move to at the t-th iteration is:

$$p_{ij}^k(t) = \frac{a_{ij}(t)}{\sum_{l \in \mathcal{N}_i^k} a_{il}(t)}$$

where $\mathcal{N}_i^k \subseteq \mathcal{N}_i$ is the feasible neighborhood of node i for ant k.

Dorigo-Caro

Pheromone Trail Evaporation

After pheromone updating has been performed by the ants, pheromone evaporation is triggered: the following rule is applied to all the edges l_{ij} of the graph G

$$\tau_{ij}(t) \leftarrow (1-\rho)\tau_{ij}(t)$$

where $\rho \in (0,1]$ is the pheromone trail decay coefficient.

procedure ACO_meta-heuristic()

procedure generate_ants()

procedure activate_new_ant() {Ant lifecycle}

Conclusions

In this paper we briefly described ACO and its basic applications. We mainly focused on the use in Traveling Salesman Problem.