EPS - CA 1

Necessary Imports:

In this project, we are going to use <code>numpy</code> and <code>scipy.stats</code> for computational work, and <code>matplotlib.pyplot</code> for visualizing our workd with plots and histograms.

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import poisson, binom, norm
import math
```

Q₁

The goal of this question is to compare expection and variance in action and in theory. Let's start by comparing E[X] in action and theory for a Bin(500, p) distribution where $0 \le p \le 1$ with step = 0.01:

```
n = 500
m = 5000
exp_in_action = []
exp_in_theory = []
for p in range(101):
   p /= 100
   test = np.reshape(np.array(np.random.choice(2, n * m, p=[1 - p, p])), (m, n))
    exp_in_action.append(np.sum(test) / m)
   exp_in_theory.append(n * p)
plt.title("Expectation")
plt.xlabel("p")
plt.ylabel("E[X]")
plt.plot(range(101), exp_in_action, color="green", label="E[X] in action")
plt.plot(range(101), exp_in_theory, color="red", label="E[X] in theory (npq)", linestyle='-
plt.legend()
plt.show()
```

png

As you can see, when m is big, the expectation in theory and in action are exactly the same. Now let's get to their variances:

```
var_in_action = []
var_in_theory = []
for p in range(101):
    p /= 100
    test = np.reshape(np.array(np.random.choice(2, n * m, p=[1 - p, p])), (m, n))
    var_in_action.append(np.var(np.sum(test, axis=1)))
```

```
var_in_theory.append(n * p * (1 - p))

plt.title("Variance")
plt.xlabel("p")
plt.ylabel("var[X]")
plt.plot(range(101), var_in_action, color="green", label="var[X] in action")
plt.plot(range(101), var_in_theory, color="red", label="var[X] in theory (npq)", linestyle=
plt.legend()
plt.show()
```

png

As you can see, the green plot gets out of expected variance plot near p = 0.5. Let's see why.

When p is near 0.5, the chance of success times being close to expectation increases **AND ALSO** the chance of the date spreading out and getting further from expectation gets more, so the variance oscillates around expectation.

Q2

Let's define some functions to draw normal, poisson and binomial plots/histograms with their paramteres:

```
def draw_norm(mu, sigma, only_positive = False):
            x = np.arange(0 if only_positive else mu - 3 * sigma, mu + 3 * sigma, 0.01)
             y = 1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(- (x - mu)**2 / (2 * sigma**2))
            plt.plot(x, y, color="green", label="X ~ N({}, {:.2f})".format(mu, sigma))
def draw_pois(lamb, l = 0, r = 9):
            x = np.arange(1, r, 1)
            y = poisson.pmf(x, lamb)
            plt.plot(x, y, color="red", label="X ~ Poi({})".format(lamb))
def draw_bin(n, p):
            x = np.arange(binom.ppf(0.01, n, p), binom.ppf(0.99, n, p))
            plt.plot(x, binom.pmf(x, n, p), color="orange", ms=8, label='X ~ Bin({}, {})'.format(n, plot(x, binom.pmf(x, n, p), color="orange", ms=8, label='X ~ Bin({}, {})'.format(n, plot(x, binom.pmf(x, n, p), color="orange", ms=8, label='X ~ Bin({}, {})'.format(n, plot(x, plot(x, p), plot
def draw_random_bin(n, p, size):
            data = np.random.binomial(n, p, size)
            num\_bins = 50
            counts, bins = np.histogram(data, bins=num_bins)
            bins = bins[:-1] + (bins[1] - bins[0])/2
            probs = counts/float(counts.sum())
            plt.bar(bins, probs, 1.0/num_bins, color="blue", label="Randomized Bin({}, {})".format(
```

Now we'll call these functions to see and compare normal and poisson distribution over binomal samples to see which one is a better prediction:

```
n = 250
p = 0.008
m = 5000
```

```
draw_norm(n * p, math.sqrt(n * p * (1 - p)), only_positive=True)
draw_pois(n * p)
draw_bin(n, p)
draw_random_bin(n, p, m)

plt.title("Binomail preidiction with Normal and Poisson distributions")
plt.xlabel("x")
plt.ylabel("P(X = x)")
plt.legend()
plt.show()
```

png

As you can see, because p is close to 0 (and not to 0.5), Poisson predition is better and more accurate than normal prediction. If p was around 0.5, then normal distribution would be a much better option (as we'll see in Q4)

Q3

In this question, we're gonna need to find x where norm.cdf(x) = k (k is known). For that, I've written a function that uses binary search to find x with accuracy of 0.5:

```
def norm_cdf_bs(mu, sigma, cdf):
    1, r = 0, mu + 2000
    while (r - 1 > 0.5):
        mid = (1 + r) / 2
        if (norm.cdf((mid - mu) / sigma) > cdf):
            r = mid
        else:
            1 = mid
    return (r + 1) / 2
```

And answer the question easily:

```
mu = 80
sigma = 12
min_grade = norm_cdf_bs(mu, sigma, 0.9)

x = np.arange(mu - 3 * sigma, mu + 3 * sigma, 0.01)
y = 1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(- (x - mu)**2 / (2 * sigma**2))
plt.plot(x, y, color="green", label="X ~ N({}, {})".format(mu, sigma))
plt.fill_between(x, y, where=(x < min_grade), color='green', alpha=0.3, label="F(x) = 0.9,

second_fourth_start = norm_cdf_bs(mu, sigma, 0.25)
third_fourth_end = norm_cdf_bs(mu, sigma, 0.75)
plt.fill_between(x, y, where=(x < third_fourth_end) & (x > second_fourth_start), color='red
plt.fill_between(x, y, where=(x < 90) & (x > 80), color='blue', alpha=0.3, label="P(80 < X)
plt.title("Normal Distribution")
plt.xlabel("x")</pre>
```

```
plt.ylabel("P(X = x)")
plt.legend()
plt.show()
```

png

Results:

Q1	Q2	Q2
x ~= 95.34	72 ~< x ~< 88	$P{80 < X < 90} \sim 0.3$

Q3 - Bonus

We'll create 3 samples of size 20_000 and draw their histograms. Then, we'll draw a fourth histograms, showing pmf of their sum:

```
size = 20000
1, r = 0, 20 + 1
physics = np.random.randint(1, r, size)
plt.hist(physics, 21, density=True, color="green", label="Phy \sim U(\{\}, \{\})".format(l, r - 1)
lamb = 5
ap = np.random.exponential(lamb, size=size)
plt.hist(ap, 21, density=True, color="blue", label="AP ~ Exp({})".format(lamb), alpha=0.3)
lamb = 15
dm = np.random.poisson(lamb, size=size)
plt.hist(dm, 21, density=True, color="red", label="DM ~ Poi({})".format(lamb), alpha=0.3)
plt.hist(np.sum([physics, ap, dm], axis=0), 20, density=True, color="yellow", label="Phy +
plt.title("Sum of Poisson, Exponential and Uniform distributions")
plt.xlabel("x")
plt.ylabel("P(X = x)")
plt.legend()
plt.show()
```

png

No matter what the range of our grades or parameteres that we use in our 3 samples distribution, the result of their sum (yellow histogram) gets closer to normal distributions as we increase the size of our samples. For example, here the expections for 3 samples are:

Distribution x	E[X]
Phy \sim U(0, 20)	10
AP ~ Exp(5)	0.2

Distribution x	E[X]
DM ~ Pois(15)	15

But the result of their sum anyway is a normal distribution.

Q4

Just like what we did in **Q2** but this time p is closer to 0.5, so normal prediction would be a better and more accurate prediction than poisson prediction. We'll use the same functions We've defined in **Q2**:

```
n = 7072
p = 0.45
m = 40000
draw_norm(n * p, math.sqrt(n * p * (1 - p)))
draw_pois(n * p, 1 = 3056, r = 3308)
draw_bin(n, p)

data = np.random.binomial(n, p, m)
plt.hist(data, bins=np.arange(n * p - 150, n * p + 150) - 0.5, density=True, color='blue',

plt.title("Binomail prediction with Normal and Poisson distributions")
plt.xlabel("x")
plt.ylabel("P(X = x)")
plt.legend()
plt.show()
```

png

Kourosh Alinaghi, 810101476