

Ljupka Titizova

Detection and Positioning of Barriers to Augment Indoor Maps

Master's Thesis Defense Dresden // Friday, 18. September 2020

Motivation

- Outdoor positioning
- Indoor positioning
- Visually and mobility-impaired people (VMIP) in indoor environment
- Up-to-date maps
- Indoor map augmentation

Indoor Positioning Approaches

- Radio Frequency Indoor Positioning
 - Wi-Fi
 - Bluetooth Beacons
- Sensor-based IPS
- Hybrid Technologies
- Computer Vision-based IPS

Components of the proposed Indoor Positioning System

- 1. Object detection
- 2. Indoor positioning based on evacuation plans
- 3. Object augmentation into indoor maps

Evacuation plans for indoor positioning

Indoor Positioning Procedure

Images Source: Indor Object Detection Dataset

Object Detection

Objects to be detected

- CV approach
- Features: used for positioning
- Evacuation plan objects and symbols
- Barriers: obstacles for the VMIP
- Ground-level, body-level, head-level objects
- Stairways, doorways, ramps, elevators

Object Detection

NN

Detected Objects: fire extinguisher

Indoor Positioning

Evacuation plan-based positioning

Use case 1

Ambiguous cases

- 2 fire extinguishers on 1. floor
- Position?
- 50 % certainty

Use case 2

Ambiguous cases

- 2 Fire extinguishers on 1. floor
- Position?
- Exit sign next to one fire extinguisher
- → position unique = 100% certainty

EVACUATION PLAN

What if no further detected objects?

- (image, position) pairs
- Procedure:
 - 1. Capture image
 - 2. Select most similar image in the database

Similarity Learning

■ Triplets (query image, similar image, dissimilar image)

Augmenting an indoor map

- Same procedure as Indoor Positioning
- Ambiguous cases
- Similarity Learning probably ineffective
- Images of whole building costly
- Wi-Fi Fingerprinting considerable

Implementation Details

Neural Network

- Object Detection NN
- Faster R-CNN ResNet-50 FPN
- Pretrained on COCO Dataset

COCO Classes

```
COCO_INSTANCE_CATEGORY_NAMES = [
    '__background__', 'person', 'bicycle', 'car',
'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire
hydrant', 'N/A', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'N/A',
'backpack', 'umbrella', 'N/A', 'N/A',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
'snowboard', 'sports ball',
    'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket',
    'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife',
'spoon', 'bowl',
    'banana', 'apple', 'sandwich', 'orange', 'broccoli',
'carrot', 'hot dog', 'pizza',
    'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'N/A', 'dining table',
    'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse',
'remote', 'keyboard', 'cell phone',
    'microwave', 'oven', 'toaster', 'sink', 'refrigerator',
'N/A', 'book',
    'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
'toothbrush'
```


Indoor Object Detection Dataset

- 7 classes
- Fire extinguisher
- Exit
- Chair
- Clock
- Screen
- Printer
- Bin

Source: https://arxiv.org/abs/1807.03142,

Accessed: 31.07.2020

TRANSFER OF LEARNING

The application of skills, knowledge, and/or attitudes that were learned in one situation to another **learning** situation (Perkins, 1992)

Source: https://serengil.wordpress.com/2017/12/10/transfer-learning-in-keras-using-inception-v3/,

Accessed: 31.07.2020

Finetuning

Results

Category	AP
fire extinguisher	0.9978
chair	0.9996
exit	0.9836
clock	0.9995
trashbin	0.8485
screen	0.7405
printer	0.6911

Metric	Result
AP @[IoU = 0.50]	0.9985
AP @[IoU = 0.75]	0.9682
AP @[IoU = 0.50:0.95]	0.7949

Images of the Indoor Object Detection Dataset

Images of APB at TU Dresden

Images of APB at TU Dresden

Prototype

Indoor Positioning System

Determining map position

- Type of object, coordinates
- Radius as a proximity metric

Prototype Architecture

Demo

Problems

- Red objects, rectangular areas, lighting conditions etc.
- FP in the image → false positioning
- Double detection of fire extinguishers
- Navigational Symbols

Future improvements

 Augmenting with building-specific features, room numbers etc.

- Map-based positioning: augmented objects as prospective features
- Spatial relations between the objects, photogrammetry
- Similarity Learning / Wi-Fi Positioning can be omitted

Summary

- Indoor Positioning System:
 - **Hybrid approach**: Object Detection NN + information from evacuation plans + Similarity Learning / Wi-Fi / Bluetooth

Summary

- Object detection with NN
- Works well on unseen data from APB of TU Dresden.
- Frequent indoor map augmentation → Up-to-date indoor maps
- Information from evacuation plans for indoor positioning
- Accurate results only when unique objects or object clusters detected
- Augmented objects as prospective features
- Additional positioning methods required for ambiguous cases
- Additional positioning methods can be omitted by enriching the indoor maps

Thank you for your attention!

Questions?

Precision-Recall Curves

Average Precision

$$AP = \sum_{n} (R_n - R_{n-1})P_n$$

 R_n , P_n - the precision and recall at the n-th threshold.

AP = precision-recall curve as the weighted mean of precisions achieved at each threshold, with the increase in recall from the previous threshold used as the weight

No confidence score filtering

Predictions

		no obj.	screen	clock	chair	trash bin	exit	printer	fire ext.
	no object	N/A	314	0	350	87	122	59	151
	screen	1	52	0	0	0	5	0	0
truth	clock	1	0	59	0	0	0	0	0
trı	chair	0	0	0	565	0	0	0	0
pu	trash bin	3	1	0	0	41	0	3	0
Ground	exit	0	0	2	0	0	227	0	0
9	printer	0	4	0	0	1	0	14	0
	fire extinguisher	2	0	0	0	0	0	0	595

Confidence score > 50 % filtering

Predictions

		no obj.	screen	clock	chair	trash bin	exit	printer	fire ext.
	no object	N/A	44	0	17	12	31	5	43
	screen	8	45	0	0	0	5	0	0
ICII	clock	1	0	59	0	0	0	0	0
Grouna tru	chair	1	0	0	564	0	0	0	0
	trash bin	6	0	0	0	41	0	1	0
	exit	3	0	0	0	0	226	0	0
	printer	2	0	0	0	0	0	17	0
	fire extinguisher	6	0	0	0	0	0	0	591

Confidence score > 90 % filtering

Predictions

		no obj.	screen	clock	chair	trash bin	exit	printer	fire ext.
	object detection	N/A	0	0	8	2	16	1	14
	screen	28	26	0	0	0	4	0	0
IIII	clock	1	0	59	0	0	0	0	0
Ground tru	chair	3	0	0	562	0	0	0	0
	trash bin	7	0	0	0	41	0	0	0
	exit	7	0	0	0	0	222	0	0
	printer	6	0	0	0	0	0	13	0
	fire extinguisher	8	0	0	0	0	0	0	589

Prototype

Outline

- Motivation
- Indoor Positioning Approaches
- Proposed Indoor Positioning System (IPS)
 - Object Detection
 - Indoor Positioning
- Implementation Details
 - Neural Network Implementation
 - Prototype
- Problems and Future Improvements
- Summary

