Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Курс: системы и средства параллельного программирования.

Отчёт № 3.

Параллельный алгоритм поиска простых чисел в заданном диапазоне с помощью "решета Эратосфена".

Работу выполнил **Шахворостов** Д. О.

Постановка задачи и формат данных.

Задача: Реализовать параллельный алгоритм поиска простых чисел в заданном диапазоне с помощью "решета Эратосфена". Оценить: суммарное время выполнения для всех процессов и максимальное время выполнения среди всех процессов в зависимости от числа процессов. Во время выполнения не включать время ввода/вывода.

Формат командной строки: <первое число из диапазона> <последнее число из диапазона> <имя выходного файла для хранения списка простых чисел в текстовом виде через пробелы>.

Результаты выполнения.

Оценить: суммарное время выполнения для всех процессов и максимальное время выполнения среди всех процессов в зависимости от числа процессов. Во время выполнения не включать время ввода/вывода.

Проводились тесты по замеру суммарного времени для всех процессов и максимального времени выполнения среди всех процессов в зависимости от числа процессов на диапазоне [1,10^8].

Результаты:

Кол-во процессов	8	16	32	64
Суммарное время выполнения для всех процессов	2451.06 сек	2619.72 сек	2736.03 сек	2874.09 сек
Максимальное время выполнения среди всех процессов	362.752 сек	227.751 сек	105.338 сек	56.8289 сек

Основные выводы

Исследования показывают, что при большем количестве процессов скорость работы одного процесса повышается, но скорость работы программы растет из-за накладных расходов.