In [2]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df=pd.read_csv(r"C:\Users\DHEEPAK\Desktop\fiat500_VehicleSelection_Dataset.csv")
print(df)
```

	ID	model	engine_	power	age_in_days	km	previous_owners	
0	1	lounge		51	882	25000	1	\
1	2	pop		51	1186	32500	1	
2	3	sport		74	4658	142228	1	
3	4	lounge		51	2739	160000	1	
4	5	pop		73	3074	106880	1	
		• • •						
1533	1534	sport		51	3712	115280	1	
1534	1535	lounge		74	3835	112000	1	
1535	1536	рор		51	2223	60457	1	
1536	1537	lounge		51	2557	80750	1	
1537	1538	рор		51	1766	54276	1	
		lat	lon	price				
0	44.90	7242 8	3.611560	8900				
1	45.66	6359 12	2.241890	8800				
2	45.50	3300 11	L.417840	4200				
3	40.63	3171 17	7.634609	6000				
4	41.90	3221 12	2.495650	5700				
1533	45.06	9679	7.704920	5200				
1534	45.84	5692 8	3.666870	4600				
1535	45.48		.413480	7500				
1536	45.00		7.682270	5990				
1537	40.32		7.568270	7900				
,		·						

[1538 rows x 9 columns]

In [3]:

```
df.head(10)
```

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	рор	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	рор	73	3074	106880	1	41.903221	12.495650
5	6	рор	74	3623	70225	1	45.000702	7.682270
6	7	lounge	51	731	11600	1	44.907242	8.611560
7	8	lounge	51	1521	49076	1	41.903221	12.495650
8	9	sport	73	4049	76000	1	45.548000	11.549470
9	10	sport	51	3653	89000	1	45.438301	10.991700
4		-						—

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	ID	1538 non-null	int64
1	model	1538 non-null	object
2	engine_power	1538 non-null	int64
3	age_in_days	1538 non-null	int64
4	km	1538 non-null	int64
5	previous_owners	1538 non-null	int64
6	lat	1538 non-null	float64
7	lon	1538 non-null	float64
8	price	1538 non-null	int64

dtypes: float64(2), int64(6), object(1)
memory usage: 108.3+ KB

In [5]:

df.describe()

Out[5]:

li	previous_owners	km	age_in_days	engine_power	ID	
1538.00000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	count
43.54136	1.123537	53396.011704	1650.980494	51.904421	769.500000	mean
2.13351	0.416423	40046.830723	1289.522278	3.988023	444.126671	std
36.85583	1.000000	1232.000000	366.000000	51.000000	1.000000	min
41.80299	1.000000	20006.250000	670.000000	51.000000	385.250000	25%
44.39409	1.000000	39031.000000	1035.000000	51.000000	769.500000	50%
45.46796	1.000000	79667.750000	2616.000000	51.000000	1153.750000	75%
46.79561	4.000000	235000.000000	4658.000000	77.000000	1538.000000	max
•					_	4

In [6]:

df.columns

Out[6]:

In [7]:

#EDA

sns.pairplot(df)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x121a4346650>

In [8]:

```
sns.displot(['Price'])
```

Out[8]:

<seaborn.axisgrid.FacetGrid at 0x121aa0e35d0>

In [9]:

```
sns.displot(df['price'])
```

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x121a9cf0890>

In [10]:

```
sns.displot(df['engine_power'])
```

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x121a9df5ad0>

In [11]:

```
fiatdf=df[['ID', 'engine_power', 'age_in_days', 'km', 'previous_owners',
    'lat', 'lon','price']]
sns.heatmap(fiatdf.corr())
```

Out[11]:

<Axes: >

In [12]:

```
fiatdf=df[['ID', 'engine_power', 'age_in_days', 'km', 'previous_owners',
    'lat', 'lon']]
sns.heatmap(fiatdf.corr())#without price
```

Out[12]:

<Axes: >

In [13]:

```
X=fiatdf[['ID', 'engine_power', 'age_in_days', 'km', 'previous_owners',
    'lat', 'lon']]
y=df['price']
```

In [14]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=101)
from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(X_train,y_train)
print(regr.intercept_)
```

In [15]:

```
coeff_df=pd.DataFrame(regr.coef_,X.columns,columns=['coefficient'])
coeff_df
```

Out[15]:

	coefficient
ID	-0.046704
engine_power	11.646408
age_in_days	-0.898018
km	-0.017232
previous_owners	26.400886
lat	32.189709
lon	0.161073

In [16]:

```
predictions=regr.predict(X_test)
plt.scatter(y_test,predictions)
```

Out[16]:

<matplotlib.collections.PathCollection at 0x121ac3a9310>

In [17]:

sns.displot((y_test,predictions),bins=50)#without semicolon

Out[17]:

<seaborn.axisgrid.FacetGrid at 0x121aa130790>

In [18]:

```
sns.displot((y_test,predictions),bins=50);#with semicolon
```


In [19]:

```
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MSE:',metrics.mean_squared_error(y_test,predictions))
print('MAE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 593.0876179519931 MSE: 551442.6799691801 MAE: 742.5918663500026

In [20]:

```
#accuracy
regr=LinearRegression()
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
print(regr.score(X_test,y_test))
```

0.8597136704308868

In [21]:

```
df.fillna(method='ffill',inplace=True)
```

In [22]:

```
x=np.array(df['age_in_days']).reshape(-1,1)
y=np.array(df['km']).reshape(-1,1)
df.dropna(inplace=True)
```

In [23]:

```
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
```

Out[23]:

```
LinearRegression
LinearRegression()
```

In [24]:

```
y_pred=regr.predict(X_test)
plt.scatter(X_test,y_test,color='y')
plt.plot(X_test,y_pred,color='b')
plt.show()
```


In [25]:

```
#elasticnet
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(x,y)
print(regr.coef_)
print(regr.intercept_)
y_pred_elastic=regr.predict(X_train)
mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
print("Mean Squared Error on test set",mean_squared_error)

[25.89689696]
[10640.73996329]
Mean Squared Error on test set 2725683166.086014

In []:
In []:
```