Logic and Set Theory

February 9, 2018

CC	ONTENTS	2
Contents		
0	Miscellaneous	3
1	Propositional logic	4
2	Syntactic implication	6
3	Well-Orderings and Ordinals	10
4	Ordinals	14
	4.1 Successors and limits	16

5 Posets and Zorn's lemma

0 Miscellaneous

Some introductory speech

1 Propositional logic

Let P denote a set of primitive proposition, unless otherwise stated, $P = \{p_1, p_2, ...\}$.

Definition. The *language* or *set of propositions* L = L(P) is defined inductively by:

- (1) $p \in L \ \forall p \in P$;
- (2) $\perp \in L$, where \perp is read as 'false';
- (3) If $p, q \in L$, then $(p \implies q) \in L$. For example, $(p_1 \implies L)$, $((p_1 \implies p_2) \implies (p_1 \implies p_3))$.

Note that at this point, each proposition is only a finite string of symbols from the alphabet $(,), \Longrightarrow, \bot, p_1, p_2, ...$ and do not really mean anything (until we define so).

By inductively define, we mean more precisely that we set $L_1 = P \cup \{\bot\}$, and $L_{n+1} = L_n \cup \{(p \implies q) : p, q \in L_n\}$, and then put $L = L_1 \cup L_2 \cup ...$

Each proposition is built up *uniquely* from 1) and 2) using 3). For example, $((p_1 \Longrightarrow p_2) \Longrightarrow (p_1 \Longrightarrow p_3))$ came from $(p_1 \Longrightarrow p_2)$ and $(p_1 \Longrightarrow p_3)$. We often omit outer brackets or use different brackets for clarity.

Now we can define some useful things:

- $\neg p \pmod{p}$, as an abbreviation for $p \Longrightarrow \bot$;
- $p \lor q \ (p \text{ or } q)$, as an abbreviation for $(\neg p) \implies q$;
- $p \wedge q$ (p and q), as an abbreviation for $\neg (p \implies (\neg q))$.

These definitions 'make sense' in the way that we expect them to.

Definition. A valuation is a function $v: L \to \{0, 1\}$ s.t. (1) $v(\bot) = 0$; (2)

$$v(p \implies q) = \left\{ \begin{array}{ll} 0 & v(p) = 1, v(q) = 0 \\ 1 & else \end{array} \right. \forall p,q \in L$$

Remark. On $\{0,1\}$, we could define a constant \bot by $\bot = 0$, and an operation \Longrightarrow by $a \Longrightarrow b = 0$ if a = 1, b = 0 and 1 otherwise. Then a valuation is a function $L \to \{0,1\}$ that preserves the structure (\bot and \Longrightarrow), i.e. a homomorphism.

Proposition. (1) If v, v' are valuations with $v(p) = v'(p) \ \forall p \in P$, then v = v' (on L).

(2) For any $w: P \to \{0,1\}$, there exists a valuation v with $v(p) = w(p) \ \forall p \in P$. In short, a valuation is defined by its value on p, and any values will do.

Proof. (1) We have $v(p) = v'(p) \ \forall p \in L_1$. However, if v(p) = v'(p) and v(q) = v'(q) then $v(p \Longrightarrow q) = v'(p \Longrightarrow q)$, so v = v' on L_2 . Continue inductively we have v = v' on $L_n \forall n$.

(2) Set $v(p) = w(p) \ \forall p \in P \ \text{and} \ v(\bot) = 0$: this defines v on L_1 . Having defined v on L_n , use the rules for valuation to inductively define v on L_{n+1} so we can extend v to L.

Definition. We say p is a tautology, written $\vDash p$, if $v(p) = 1 \ \forall$ valuations v. Some examples:

(1) $p \implies (q \implies p)$: a true statement is implies by anything. We can verify this by:

So we see that this is indeed a tautology;

(2) $(\neg \neg p) \implies p$, i.e. $((p \implies \bot) \implies p$, called the "law of excluded middle";

(3) $[p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow [(p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)]$. Indeed, if not then we have some v with $v(p \Longrightarrow (q \Longrightarrow r)) = 1$, $v(\Longrightarrow (p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)) = 0$. So $v(p \Longrightarrow q) = 1$, $v(p \Longrightarrow r) = 0$. This happens when v(p) = 1, v(r) = 0, so also v(q) = 1. But then $v(q \Longrightarrow r) = 0$, so $v(p \Longrightarrow (q \Longrightarrow r)) = 0$.

Definition. For $S \subset L$, $t \in L$, say S entails or semantically implies t, written $S \models t$ if $v(s) = 1 \forall s \in S \implies v(t) = 1$, for each valuation v. ("Whenever all of S is true, t is true as well.")

For example, $\{p \Longrightarrow q, q \Longrightarrow r\} \vDash (p \Longrightarrow r)$. To prove this, suppose not: so we have v with $v(p \Longrightarrow q) = v(q \Longrightarrow r) = 1$ but $v(p \Longrightarrow r) = 0$. So v(p) = 1, v(r) = 0, so v(q) = 0, but then $v(p \Longrightarrow q) = 0$.

If v(t) = 1 we say t is true in v or that v is a model of t.

For $S \subset L$, v is a model of S if $v(s) = 1 \ \forall s \in S$. So $S \vDash t$ says that every model of S is a model of t. For example, in fact $\vDash t$ is the same as $\phi \vDash t$.

2 Syntactic implication

For a notion of 'proof', we will need axioms and deduction rules. As axioms, we'll take:

1. $p \Longrightarrow (q \Longrightarrow p) \, \forall p, q \in L;$ 2. $[p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow [(p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)] \, \forall p, q, r \in L;$ 3. $(\neg \neg p) \Longrightarrow p \, \forall p \in L.$

Note: these are all tautologies. Sometimes we say they are 3 axiom-schemes, as all of these are infinite sets of axioms.

As deduction rules, we'll take just modus ponens: from p, and $p \implies q$, we can deduce q.

For $S \subset L$, $t \in L$, a proof of t from S cosists of a finite sequence $t_1, ..., t_n$ of propositions, with $t_n = t$, s.t. $\forall i$ the proposition t_i is an axiom, or a member of S, or there exists j, k < i with $t_j = (t_k \implies t_i)$.

We say S is the *hypotheses* or *premises* and t is the *conclusion*.

If there exists a proof of t from S, we say S proves or syntactically implies t, written $S \vdash t$.

If $\phi \vdash t$, we say t is a theorem, written $\vdash t$.

Example. $\{p \implies q, q \implies r\} \vdash p \implies r$. we deduce by the following:

- $(1) [p \implies (q \implies r)] \implies [(p \implies q) \implies (p \implies r)]; (axiom 2)$
- (2) $q \implies r$; (hypothesis)
- $(3) \ (q \implies r) \implies (p \implies (q \implies r)); \ (\text{axiom 1})$
- $(4) p \implies (q \implies r); (mp \text{ on } 2,3)$
- (5) $(p \implies q) \implies (p \implies r)$ (mp on 1,4);
- (6) $p \implies q$; (hypothesis)
- (7) $p \implies r$. (mp on 5,6)

Example. Let's now try to prove $\vdash p \implies p$. Axiom 1 and 3 probably don't help so look at axiom 2; if we make $(p \implies q)$ and $p \implies (q \implies r)$ something that's a theorem, and make $p \implies r$ to be $p \implies p$ then we are done. So we need to take $p = p, q = (p \implies p), r = p$. Now:

- $(1) [p \Longrightarrow ((p \Longrightarrow p) \Longrightarrow p)] \Longrightarrow [(p \Longrightarrow (p \Longrightarrow p)) \Longrightarrow (p \Longrightarrow p)];$ (axiom 2)
- $(2) p \implies ((p \implies p) \implies p); (axiom 1)$
- $(3) (p \implies (p \implies p)) \implies (p \implies p); (mp \text{ on } 1,2)$
- $(4) p \implies (p \implies p); (axiom 1)$
- (5) $p \implies p$. (mp on 3,4)

Proofs are made easier by:

Proposition. (2, deduction theorem) Let $S \subset L$, $p, q \in L$. Then $S \vdash (p \implies q)$ if and only if $(S \cup \{p\}) \vdash q$.

Proof. Forward: given a proof of $p \implies q$ from S, add the lines p (hypothesis), q (mp) to optaion a proof of q from $S \cup \{p\}$.

Backward: if we have proof $t_1, ..., t_n = q$ of q from $S \cup \{p\}$. We'll show that $S \vdash (p \implies t_i) \forall i$, so $p \implies t_n = q$.

If t_i is an axiom, then we have $\vdash t_i \implies (p \implies t_i)$, so $\vdash p \implies t_i$;

If $t_i \in S$, write down $t_i, t_i \implies (p \implies t_i), p \implies t_i$ we get a proof of $p \implies t_i$ from S;

If $t_i = p$: we know $\vdash (p \implies p)$, so done;

If t_i obtained by mp: in that case we have some earlier lines t_j and $t_j \implies t_i$. By induction, we may assume $S \vdash (p \implies t_j)$ and $S \vdash (p \implies (t_j \implies t_i))$. Now we can write down $[p \implies (t_j \implies t_i)] \implies [(p \implies t_j) \implies (t_i)]$ by axiom $2, p \implies (t_j \implies t_i), p \implies t_j) \implies (p \implies t_i)$ (mp), $p \implies t_j$, $p \implies t_i$ (mp) to obtain $S \vdash (p \implies t_i)$.

These are all of the cases. So $S \vdash (p \implies q)$.

This is why we chose axiom 2 as we did – to make this proof work.

Example. To show $\{p \implies q, q \implies r\} \vdash (p \implies r)$, it's enough to show that $\{p \implies q, q \implies r, p\} \vdash r$, which is trivial by mp.

Now, how are \vdash and \vDash related? We are going to prove the *completeness theorem*: $S \vdash t \iff S \vDash t$.

This ensures that our proofs are sound, in the sense that everything it can prove is not absurd $(S \vdash t \text{ then } S \vDash t)$, and are adequate, i.e. our axioms are powerful enough to define every semantic consequence of S, which is not obvious $(S \vDash t \text{ then } S \vdash t)$.

Proposition. (3)

Let $S \subset L$, $t \in L$. Then $S \vdash t \implies S \vDash t$.

Proof. Given a valuation v with $v(s) = 1 \ \forall s \in S$, we want v(t) = 1.

We have $v(p) = 1 \ \forall p$ axiom as our axioms are all tautologies (proven earier); $v(p) = 1 \ \forall p \in S$ by definition of v; also if v(p) = 1 and $v(p \Longrightarrow q) = 1$, then also v(q) = 1 (by definition of \Longrightarrow). So v(p) = 1 for each line p of our proof of t from S.

We say $S \subset L$ consistent if $S \not\vdash \bot$. One special case of adequacy is: $S \vDash \bot \Longrightarrow S \vdash \bot$, i.e. if S has no model then S inconsistent, i.e. if S is consistent then S has a model. This implies adequacy: given $S \vDash t$, we have $S \cup \{\neg t\} \vDash \bot$, so by our special case we have $S \cup \{\neg t\} \vdash \bot$, i.e. $S \vdash ((\neg t) \Longrightarrow t)$ by deduction theorem, so $S \vdash \neg \neg t$. But $S \vdash ((\neg \neg t) \Longrightarrow t)$ by axiom $S \vdash S \vdash T$, i.e.

Theorem. (4)

Let $S \subset L$ be consistent, then S has a model.

The idea is that we would like to define valuation v by $v(p) = 1 \iff p \in S$, or more sensibly, $v(p) = 1 \iff S \vdash p$.

But maybe $S \not\vdash p_3, S \not\vdash \neg p_3$, but a valuation maps half of L to 1, so we want to 'grow' S to contain one of p or $\neg p$ for each $p \in L$, while keeping consistency.

Proof. Claim: for any consistent $S \subset L$, $p \in L$, $S \cup \{p\}$ or $S \cup \{\neg p\}$ consistent. *Proof of claim.* If not, then $S \cup \{p\} \vdash \bot$ and $S \cup \{\neg p\} \vdash \bot$, then $S \vdash (p \Longrightarrow \bot)$ (deduction theorem), i.e. $S \vdash \not p$, so $S \vdash \bot$ contradiction.

Now L is countable as each L_n is countable, so we can list L as t_1, t_2, \ldots Put $S_0 = S$; set $S_1 = s_0 \cup \{t_1\}$ or $s_0 \cup (\neg t_1\}$ so that S_1 is consistent. Then set $S_2 = S_1 \cup \{t_2\}$ or $S_1 \cup \{\neg t_2\}$ so that S_2 is consistent, and continue likewise. Set $\bar{S} = S_0 \cup S_1 \cup S_2 \cup \ldots$ Then $\bar{S} \supset S$, and \bar{S} is consistent (as each S_n is, and each proof is finite). $\forall p \in L$, we have either $p \in S$ or $(\neg p) \in S$. Also, \bar{S} is deductively closed, meaning that is $\bar{S} \vdash p$ then $p \in \bar{S}$: if $p \notin \bar{S}$ then $(\neg p) \in \bar{S}$, so $\bar{S} \vdash p$, $\bar{S} \vdash (p)$ so $\bar{S} \vdash \bot$ contradiction.

Define $v: L \to \{0,1\}$ by $p \to 1$ if $p \in \bar{S}$, 0 otherwise. Then v is a valuation: $v(\bot) = 0$ as $\bot \notin \bar{S}$; for $v(p \Longrightarrow q)$:

If v(p) = 1, v(q) = 0: We have $p \in \bar{S}$, $q \notin \bar{S}$, and want $v(p \implies q) = 0$, i.e. $(p \implies q \notin \bar{S}$. But if $9p \implies q) \in \bar{S}$ then $\bar{S} \vdash q$ contradiction;

If v(q) = 1: have $q \in \bar{S}$, and want $v(p \implies q) = 1$, i.e. $(p \implies q) \int \bar{S}$. But $\vdash q \implies (p \implies q)$ so $\bar{S} \vdash (p \implies q)$;

If v(p) = 0: have $p \notin \bar{S}$, i.e. $(\neg p) \in \bar{S}$ and want $(p \implies q) \in \bar{S}$. So we need $(p \implies \bot) \vdash (p \implies q)$, i.e. $p \implies \bot, p \vdash q$ (deduction theorem). Thus it's enough to show that $\bot \vdash q$. But $(\neg \neg q) \implies q$, and $\vdash (\bot \implies (\neg \neg q))$ (axiom 3 and 1 – to see the second one, write \neg explicitly using \implies and \bot), so $\vdash (\bot \implies q)$, i.e. $\bot \vdash q$.

Remark. Sometimes this is called 'completeness theorem'. The proof used P being countable to get L countable; in fact, result still holds if P is uncountable (see chapter 3).

By remark before theorem 4, we have

Corollary. (5, adequacy) Let $S \subset L$, $t \in L$. Then if $S \models t$ then $S \vdash t$.

And hence,

Theorem. (6, completeness theorem) Let $S \subset L$, $t \in L$. Then $S \vdash t \iff S \models t$.

Some consequences:

Corollary. (7, compactness theorem) Let $S \subset L$, $t \in L$ with $S \models t$. Then \exists finite $S' \subset S$ with $S' \models t$. This is trivial if we replace \models by \vdash (as proofs are finite).

Special case for $t = \perp$: If S has no model then some finite $S' \subset S$ has no model. Equivalently,

Corollary. (7', compactness theorem, equivalent form) Let $S \subset L$. If every finite subset of S has a model then S has a model. This isi equivalent to corollary 7 because $S \vDash t \iff S \cup \{\neg t\}$ has no model and $S' \vDash t \iff S' \cup (\neg t)$ has no model.

Corollary. (8, decidability theorem)

There is an algorithm to determine (in finite time) whether or not, for a given finite $S \subset L$ and $t \in L$, we have $S \vdash t$.

This is highly non-obviuos; however it's trivial to decide if $S \vDash t$ just by drawing a truth table, and $\vDash \iff \vdash$.

3 Well-Orderings and Ordinals

Definition. A total order or linear order on a set X is a relation < on X, such that

- (1) Irreflexive: Not $x < x \ \forall x \in X$;
- (2) Transitive: $x < y, y < z \implies x < z \ \forall x, y, z \in X$;
- (3) Trichotomous: x < y or x = y or $y < x \ \forall x, y \in X$.

Note: two of (iii) cannot hold: if x < y, y < x then x < x by transitivity.

Write $x \le y$ if x < y or x = y, and y > x if x < y.

We can also define total order in terms of \leq :

- (1) Reflexive: $x \le x \ \forall x \in X$;
- (2) Transitive: $x \le y, y \le z \implies x \in z \ \forall x, y, z \in X$;
- (3) Antisymmetric: $x \le y, y \le x \implies x = y \ \forall x, y \in X$;
- (4) 'Tri'chotomous (although it's only two): $x \leq y$ or $y \leq x \ \forall x, y \in X$.

Example. $\mathbb{N}, \mathbb{Q}, \mathbb{R}$ with the usual orders are all total orders.

 \mathbb{N}^+ the relation 'divides' is not a total order: for example we don't have any of 2|3,3|2 or 2=3.

 $\mathcal{P}(S)$ for some S (with $|S| \geq 2$ to be rigorous), with $x \leq y$ if $x \subseteq y$ is not a total order for the same reason.

A total order is a well-ordering if every (non-empty) subset has a least element, i.e. $\forall S \subset X, S \neq \phi \implies \exists x \in S, x \leq y \forall y \in S$.

Example. 1. \mathbb{N} with the usual < is a well ordering.

 $2.\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ with the usual < are not well orderings.

 $3.\mathbb{Q}^+ \cup \{0\}$ with the usual < is not a well ordering (e.g. $(0,\infty) \subset \mathbb{Q}^+ \cup \{0\}$).

4.The set $\{1-\frac{1}{n}:n=2,3,...\}$ as a subset of $\mathbb R$ with the usual ordering is a well ordering. 5.The set $\{1-\frac{1}{n}:n=2,3,...\}\cup\{1\}$ as a subset of $\mathbb R$ with the usual ordering is a well ordering. 6.The set $\{1-\frac{1}{n}:n=2,3,...\}\cup\{2-\frac{1}{n}:n=2,3,...\}$ (same assumption) is a well ordering.

Remark. X is well-ordered iff there is no $x_1 > x_2 > x_3 > ...$ in X.

Clearly if there is such a sequence then $S = \{x_1, x_2, ...\}$ has no least element. Conversely, if $S \subset X$ has no least element, then for each element $x \in S$ there exists a $x' \in S$ with x' < x, so we can just pick x, x', ... inductively.

Definition. We say total orders X, Y are isomorphic if there exists a bijection $f: X \to Y$ that is order-preserving, i.e. $x < y \iff f(x) < f(y)$.

For example, 1 and 4 above are isomorphic; 5 and 6 are isomorphic; 4 and 5 are not isomorphic (one has a greatest element, and the other doesn't).

Here comes the first reason why well orderings are useful:

Proposition. (1, Proof by induction)

Let X be well-ordered, and let $S \subset X$ be s.t. if $y \in S \ \forall y < x \ \text{then} \ x \in S$ (each $x \in X$). Then S = X.

Equivalently, if p(x) is a property s.t. $\forall x$: if $p(y)\forall y < x$ then p(x), then $p(x)\forall x$. (I think we must assert S to be non-empty here, but the lecturer didn't agree with me; need to check later.)

Proof. If $S \neq X$ then let x be the least element of $X \setminus S$. Then $x \notin S$. But $y \in S \ \forall y < x$, contradiction.

A typical use:

Proposition. Let X, Y be isomorphic well-orderings. Then there is a *unique* isomorphism from X to Y.

Proof. Let f,g be isomorphisms. We'll show $f(x) = g(x) \ \forall x$ by induction. Thus we may assume $f(y) = g(y) \ \forall y < x$, and want f(x) = g(x). Let a be the least element of $Y \setminus \{f(y) : y < x\}$. Then we must have f(x) = a: if f(x) > a, then some x' > x has f(x') = a by surjectivity, contradiction. The same shows g(x) =least element of $Y \setminus \{g(y) : y < x\}$, but this is the same as a. So f(x) = g(x).

Remark. This is false for total orders in general. One example is, consider from $\mathbb{Z} \to \mathbb{Z}$, we could either take identity, or $x \to x - 5$; or from \mathbb{R} to \mathbb{R} we could take identity or $x \to x - 5$ or $x \to x^3$...

Definition. In a total order X, an *initial segment* I is a subset of X such that $x \in I, y < x \implies y \in I$.

Example. For any $x \in X$, set $I(x) = \{y \in X : y < x\}$. Then this is an initial segment.

Obviously, not every initial segment is of this form: for example, in \mathbb{R} we can take $\{x:x\leq 3\}$; or in \mathbb{Q} , take $\{x:x^2< 2\}\cup \{x< 0\}$ (this cannot be written as above form as $\sqrt{2}\not\in\mathbb{Q}$.

Note: in a well-ordering, every proper initial segment is of the above form: let x be the least elemnt of $X \setminus I$. Then $y < x \implies y \in I$. Conversely, if $y \in I$, then we must have y < x: otherwise $x \in I$, contradiction.

Our aim is to show that every subset of a well-ordered X is isomorphic to an initial segment.

Note: this is very false for total orders: e.g. $\{1,5,9\} \subset \mathbb{Z}$, or $\mathbb{Q} \subset \mathbb{R}$. If we have $S \subset X$, Wwe would like to define $f: S \to X$ that sends the smallest of S to the smallest of X, then remove them from both sets and send the smallest of the remaining to the smallest of the remaining, etc... But to do this we need a theorem.

Theorem. (3, definition by recursion)

Let X be well-ordered, Y be a set, and $G: \mathcal{P}(X \times Y) \to Y$. Then $\exists f: X \to Y$ s.t. $f(x) = G(f|_{I_x})$ for all $x \in X$. Moreover, such f is unique.

Here we define the restriction as: for $f: A \to B$, and $C \subset A$, the restriction of f to C is $f|_C = \{(x, f(x)) : x \in C\}$. (I think the lecturer is regarding a function as subset of a cartesian product)

In defining f(x), make use of $f|_{I_x}$, i.e. the values of f(y), y < x.

Proof. Existence: define 'h is an attempt' to mean: $h: I \to Y$, some initial segment I of X, and $\forall x \in I$ we have $h(x) = G(h|_{I_X})$. Note that is h, h' are

attempts, both defined at x, then h(x) = h'(x) by induction on x. Since if $h(y) = h'(y) \forall y < x$ then h(x) = h'(x).

Also, $\forall x \in X$ there exists an attempt defined at x by induction on x: we want attempt definde at x, given $\forall y < x$ there exists attempt defined at y. For each y < x, we have unique attempt h_y defined on $\{z : z \le y\}$ (unique by what we just showed).

Let $h = \bigcup_{y < x} h_y$: an attempt defined on I_x . This is single-valued by uniqueness, so is indeed a function.

So $h' = h \cup \{(x, G(h))\}$ is an attempt defined at x.

Now set f(x) = y if \exists attempt h, defined at x, with h(x) = y (single-valued). Uniqueness: if f, f' suitable then $f(x) = f'(x) \forall x \in X$ (induction on X) – since if $f(y) = f'(y) \forall y < x$ then f(x) = f'(x).

A typical application:

Proposition. (4, subset collapse)

Let X be well-ordered, $Y \subset X$. Then Y is isomorphic to an initial segment of X. Moreover, such initial segment is unique.

Proof. To have f an isomorphism from y to an initial segment of X, we need precisely that $\forall x \in Y : f(x) = \min X \setminus \{f(y) : y < x\}$. So done (existence and uniqueness) by theorem 3.

Note that $X \setminus \{f(y) : y < x\} \neq \phi$, e.g. because $f(y) \leq y \ \forall y$ (induction), so $x \notin \{f(y) : y < x\}$.

In particular, a well-ordered X cannot be isomorphic to a proper initial segment of X – by uniqueness in subset collapse, as X is isomorphic to X.

How do different well-orderings relate to each other?

We say $X \leq Y$ if X is isomorphic to an initial segment of Y. For example, $\mathbb{N} \leq \{1 - \frac{1}{n} : n = 2, 3, ...\} \cup \{1\}.$

Theorem. (5)

Let X, Y be well-orderings. Then $X \leq Y$ or $Y \leq X$.

Proof. Suppose $Y \not \leq X$. To obtain $f: X \to Y$ that is an isomorphism with an initial segment of Y, need $\forall x \in X: f(x) = \min Y \setminus \{f(y): y < x\}$. So we are done by theorem 3.

Note that we cannot have $\{f(y) : y < x\} = X$, as then Y is isomorphic to I_x . \square

Proposition. (6)

Let X, Y be well-orderings with $X \leq Y$ and $Y \leq X$. Then X and Y are isomorphic.

Proof. We have isomorphism f from X to an isomorphism of Y, and g the other way round. Then $g \circ f : X \to X$ is an isomorphism from X to an initial segment of X (i.s. of i.s. is i.s.), but that is impossible unless the initial segment is X

itself. So $g \circ f$ is identity (by uniqueness in subset collapse). Similarly, $f \circ g$ is identity on Y.

New well-orderings from old:

Write X < Y if $X \le Y$ but X not isomorphic to Y. Equivalently, X < Y iff X is isomorphic to a proper initial segment of Y. For example, if $X = \mathbb{N}$, $Y = \{1 - \frac{1}{n}\} \cup \{1\}$ then X < Y.

Make a bigger one: given well-ordered X, choose $x \notin X$, and set x > y for all $y \in X$. This is a well-ordering on $X \cup \{x\}$: written X^+ . Clearly $X < X^+$.

Put some together:

Let $(X, <_X)$ and $(Y, <_Y)$ be well-orderings. Say Y extends X if $X \subset Y$, and $<_X$, $<_Y$ agree on X, and X an initial segment of $(Y, <_Y)$. Well-orderings $(X_i : i \in I)$ are nested if $\forall i, j \in I : X_i$ extends X_j or X_j extends

Proposition. (7)

 X_i .

Let $(X_i : i \in I)$ be a nested family of well-orderings. Then there exist well-ordering X with $X \geq X_i \ \forall i$.

Proof. Let $X = \bigcup_{i \in I} X_i$, with x < y if $\exists i$ with $x, y \in X_i$ and $x <_i y$, Then < is a well-defined total order on X. given $S \subset X$, $S \neq \phi$, choose i with $S \cap X_i \neq \phi$. Then $S \cap X_i$ has a minimal element (as X_i is well-ordered), which must also be a minimal element of S (as X_i an i.s. of X). Also, $X \geq X_i \forall i$.

4 Ordinals

Are the well-orderings themselves well-ordered?

An ordinal is a well-ordered set, with two sell-ordered sets regarded as the same if they are isomorphic. (Just as a rational is an expression $\frac{M}{N}$, with $\frac{M}{N}$, $\frac{M'}{N'}$ regarded as the same if MN' = M'N. But, unlike for \mathbb{Q} , we cannot formalise by equivalence classes – see later).

If X is a well-ordering corresponding to ordinal X, say X has order-type α .

Example. For each $k \in \mathbb{N}$, write k for the order-type of the (unique) well-ordering of a set of size k, and write ω for order-type of \mathbb{N} . So, in \mathbb{R} , $\{1,3,7\}$ has order-type 3. $\{1-\frac{1}{n}:n=2,3,...\}$ has order-type ω . For X of o-t α and Y of o-t β , write $\alpha \leq \beta$ if $X \leq Y$ (this is independent of choice of X,Y). Similarly for $\alpha < \beta$ etc.

We know: $\forall \alpha, \beta, \alpha \leq \beta$ or $\beta \leq \alpha$, and if $\alpha \leq \beta, \beta \leq \alpha$ then $\alpha = \beta$.

Theorem. Let α be an ordinal. Then the ordinals $< \alpha$ form a well-ordered set of order-type α . e.g. the ordinals $< \omega$ are 0, 1, 2, 3, ...

Proof. Let X have o-t α . the well-orderings < X are precisely (up to isomorphism) the proper initial segments of X, i.e. the $I_x, x \in X$. But these are isomorphic to X itself, via $x \to I_x$.

We often write I_{α} to be the set of ordinals less than α .

Proposition. (9)

Let S be a non-empty set of ordinals. Then S has a least element.

Proof. Choose $\alpha \in S$. If α minimal in S then done. If not, then $S \cap I_{\alpha} \neq \phi$, so have a minimal element of $S \cap I_{\alpha}$, which is therefore minimal in S.

Theorem. (10, Burali-Forti paradox): The ordinals do not form a set.

The ordinals do not form a set.

Proof. Suppose not, let X be set of all ordinals. Then X is a well-orderings, say order-type α . So X is isomorphic to I_{α} . But I_{α} is a proper i.s. of X.

Given α , we have $\alpha^+ > \alpha$. Also, if $\{\alpha_i : i \in I\}$ is a set of ordinals, then there exists α with $\alpha \ge \alpha_i \forall i$ (by applying prop 7 to the nested family of $I_{\alpha_i}; i \in I$).

In fact, there is therefore a least upper bound for $\{\alpha_i : i \in I\}$ by applying prop 9 to the set $\{\beta \leq \alpha : \beta \text{ an upper bound for the } \alpha_i\}$. This is written $\sup\{\alpha_i : i \in I\}$, e.g. $\sup\{2, 4, 6, 8, \ldots\} = \omega$.

Some ordinals: $0, 1, 2, ..., \omega, \omega + 1$ (officially ω^+), $\omega + 2, ..., \omega + \omega = \omega = \sup\{\omega + 1, \omega + 2, ..., \}, \omega^2 + 1, \omega^2 + 2, ...,$

However, although this thing looks quite magnificent, they are all just countable (as we have just done it). Is there an uncountable ordinal? In other words, is there an uncountable well-ordered set?

Theorem. (11)

There is an uncountable ordinal.

Proof.

IDEA: take sup of all countable ordinals. However, this might not be a set.

Let $R = \{A \in \mathcal{P}(\mathbb{N} \times \mathbb{N})\}$ s.t. A is a well-ordering of a subset of \mathbb{N} . Let S be image of R under 'order-type', i.e. S is the set of all order-types of well-orderings of some subset of \mathbb{N} . Then S is the set of all countable ordinals. Let ω_1 be $\sup S$. Then ω_1 is uncountable: otherwise, then $\omega_1 \in S$, so ω_1 would be the greatest member of S. But then $\omega_1 + 1$ is also in S.

Note that, by contradiction, ω_1 is the *least* uncountable ordinal. ω_1 has some strange properties, e.g.

- 1. ω_1 is uncountable, but for any $\alpha < \omega_1$, we have $\{\beta : \beta < \alpha\}$ countable.
- 2. If $\alpha_1, \alpha_2, ... < \omega_1$ is any sequence, then it is bounded in ω_1 : sup $\{\alpha_1, ..., \alpha_2\}$ is countable, so is less than ω_1 .

Similarly we have

Theorem. (11', Hartogs' lemma)

For any set X, there is an ordinal that does not inject into X.

To see that, just replace $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ by $\mathcal{P}(X \times X)$ in the previous proof.

Write $\gamma(X)$ for the least such ordinal – e.g. $\gamma(\omega) = \omega_1$.

4.1 Successors and limits

Given ordinal α , does α (any set of order-type α , e.g. I_{α}) have a greatest element?

If yes: say β is that greatest element. Then $\gamma < \beta$ or $\gamma = \beta \implies \gamma < \alpha$, and $\gamma < \alpha \implies \gamma < \beta$ or $\gamma = \beta$ (as we can't have $\gamma > \beta$). In other words, $\alpha = \beta^+$. In that case, we call α a *successor*;

If not: then $\forall \beta < \alpha$, $\exists \gamma < \alpha$ s.t. $\gamma > \beta$. So $\alpha = \sup\{\beta : \beta < \alpha\}$. (this is false in general, e.g. $\omega + 5$). We call α a *limit*.

For example, 5 is a successor, $\omega + 5$ is a successor, ω is a limit, $\omega + \omega$ is a limit. (0 is a limit as well).

For ordinals α, β , define $\alpha + \beta$ by recursion on β (α fixed) by: $\alpha + 0 = \alpha$, $\alpha + \beta^+ = (\alpha + \beta)^+$, $\alpha + \lambda = \sup{\alpha + \gamma : \gamma < \lambda}$ for λ a non-zero limit.

For example, $\omega + 1 = (\omega + 0)^+ = \omega^+$, $\omega + 2 = \omega^{++}$, $1 + \omega = \sup\{1 + \gamma : \gamma < \omega\} = \omega$ – so addition is not commutative.

Officially, by 'recursion on the ordinals', we mean: define $\alpha + \gamma$ on $\{\gamma : \gamma \leq \beta\}$ (a set) recursively, plus uniqueness. Similarly for induction: if know $p(\beta) \forall \beta < \alpha \implies p(\alpha)$ (for each α), then must have $p(\alpha) \forall \alpha$. If not, say $p(\alpha)$ false: then look at $\{\beta \leq \alpha : p(\beta) \text{ false }\}$.

Note that $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ (induction on γ). Also, $\beta < \gamma \implies \alpha + \beta < \alpha + \gamma$. Indeed, $\gamma \geq \beta^+$, so $\alpha + \gamma \geq \alpha + \beta^+ = (\alpha + \beta)^+ > \alpha + \beta$. However, 1 < 2, but $1 + \omega = 2 + \omega$.

Proposition. (12)

 $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma \forall \alpha, \beta, \gamma \text{ ordinals.}$

Proof. Induction on γ :

0: $\alpha + (\beta + 0) = \alpha + \beta = (\alpha + \beta) + 0$.

Successors: $(\alpha + \beta) + \gamma^+ = ((\alpha + \beta) + \gamma)^+ = (\alpha + (\beta + \gamma))^+ = \alpha + (\beta + \gamma)^+ = \alpha + (\beta + \gamma)^+$

 λ a non-zero limit: $(\alpha+\beta)+\lambda=\sup\{(\alpha+\beta)+\gamma:\gamma<\lambda\}=\sup\{\alpha+(\beta+\gamma):\gamma<\lambda\}.$

Claim: $\beta + \lambda$ is a limit.

Proof of claim: We have $\beta + \gamma = \sup\{\beta + \gamma : \gamma < \lambda\}$. But $\gamma < \lambda \implies \exists \gamma' < \lambda$ with $\gamma < \gamma' \implies \beta + \gamma < \beta + \gamma'$. So $\{\beta + \gamma : \gamma < \lambda\}$ does not have a greatest element.

Back to the main proof, now $\alpha + (\beta + \gamma) = \sup\{\alpha + \delta : \delta < \beta + \lambda\}$. So want $\sup\{\alpha + (\beta + \gamma) : \gamma < \lambda\} = \sup\{\alpha + \delta : \delta < \beta + \lambda\}$.

 $\leq: \gamma < \lambda \implies \beta + \gamma < \beta + \lambda$, so LHS \subset RHS;

 \geq : $\delta < \beta + \lambda \implies \delta < \beta + \gamma$, some $\gamma < \lambda$ (definition of $\beta + \lambda$). So $\alpha + \delta \leq \alpha + (\beta + \gamma)$.

Alternative viewpoint:

Above is the 'inductive' definition of +. There is also a synthetic definition: $\alpha + \beta$ is the order-type of $\alpha \sqcup \beta$ (α disjoint union β), with all of α coming before all of β .

Clearly we have $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ with this definition (same order-type). We need:

Proposition. (13)

The synthetic and inductive definition of + coincide.

Proof. Write $\alpha + \beta$ for inductive, $\alpha + \beta$ for synthetic. Do induction on β (α fixed).

```
0: \alpha + 0 = \alpha = \alpha + ' 0:

Successors: \alpha + '\beta^+ = (\alpha + '\beta)^+ = (\alpha + \beta)^+ = \alpha + \beta^+;

\lambda a non-zero limit: \alpha + '\gamma = \text{order-type of } \alpha \sqcup \lambda = \sup of order-type of \alpha \sqcup \gamma,

\gamma < \lambda (nest union, so order-type of union = \sup – this was proved before) = \sup(\alpha + '\gamma : \gamma < \lambda) = \sup(\alpha + \gamma : \gamma < \lambda) = \alpha + \lambda.
```

Normally we prefer to use synthetic than inductive, if we do have a synthetic definition available.

Ordinal multiplication:

Define $\alpha\beta$ recursively by:

```
\begin{array}{l} \alpha 0=0,\,\alpha(\beta^+)=\alpha\beta+\alpha,\,\alpha\lambda=\sup\{\alpha\gamma:\gamma<\lambda\} \text{ for }\lambda\text{ a non-zero limit. e.g.}\\ \omega 1=\omega 0+\omega=0+\omega=\omega;\\ \omega 2=\omega 1+\omega=\omega+\omega;\\ \omega\omega=\sup\{0,\omega,\omega+\omega,\omega+\omega+\omega,\ldots\} \text{ (as in our big picture)}\\ 2\omega=\sup\{2\gamma:\gamma<\omega\}=\omega, \text{ so multiplication is not commutative.} \end{array}
```

Similarly, this also has a synthetic definition: $\alpha\beta$ is the order-type of $\alpha \times \beta$, with (x,y) < (z,t) if either y < t or y = t and x < z. We can check that these coincide on the previous examples. Also we can see $\alpha(\beta\gamma) = (\alpha\beta)\gamma$ etc.

We can define ordinal exponentiation, powers, etc. Similarly. For example, let's define exponentiation:

$$\alpha^0 = 1$$
, $\alpha^{\beta^+} = \alpha^{\beta} \cdot \alpha$, $\alpha^{\lambda} = \sup\{\alpha^{\gamma} : \gamma < \lambda\}$ for λ a non-zero limit.

Note that $\omega^1 = \omega$, $\omega^2 = \omega \cdot \omega$, and $2^\omega = \sup\{2^\gamma : \gamma < \omega\} = \omega$ (and is countable). This is different to what we expect from cardinality, but the notation in cardinality and here is different.

5 Posets and Zorn's lemma

A Partially ordered set or poset is a pair (X, \leq) where X is a set and \leq is a relation on X that is reflexive, transitive and antisymmetric. Write x < y if $x \leq y, x \neq y$. In terms of <, a poset is irreflexive and transitive.

For example, any total order is a partial order; \mathbb{N}^+ with divides; for any set S, $\mathcal{P}(S)$, with $x \leq y$ if $x \subset y$; for any $X \subset \mathcal{P}(S)$, with same relation of $x \leq y$ if $x \subset y$ (e.g. all subspaces of a given vector space).

In general, a hasse diagram for a poset X consists of a drawing of the posets of X, with an upward line from x to y if y covers x, i.e. y > x, but no z that y > z > x.

Hasse diagrams can be useful to visualize a poset (e.g. \mathbb{N} , usual order), or useless (e.g. \mathbb{Q} , usual order).

In a poset X, a *chain* is a set $S \subset X$ that is totally ordered $(\forall x, y \in S : x \leq y \text{ or } y \leq x)$.

Note: chains can be uncountable, e.g. in (\mathbb{R}, \leq) take \mathbb{R} .

We say $S \subset X$ is an antichain if no two elmeent are related.

For $S \subset X$, an upper bound for S is an $x \in X$ s.t. $x \ge y \ \forall y \in S$.

Say X is a least upper bound, or supremum for S, if x is an upper bound for S, and $x \leq y$ for every upper bound y of S.

Write $x = \sup S$ or $x = \vee S$.

e.g. In \mathbb{R} , $\{x: x^2 < 2\}$ has 7 as least upper bound, and $\sup = \sqrt{2}$ (so $\sup S$ need not be in S). In \mathbb{R} , \mathbb{Z} has no upper bound. In \mathbb{Q} , $\{x: x^2 < 2\}$ has 7 as an upper bound, but no least upper bound.