Approximating posterior distribution and some samplers

Kaiden Liu

11/08/2021

Bayes' theorem

- 1) prior: $p(parameter values) p(\theta)$
- 2) likelihood: $p(\text{data values} \mid \text{parameter values}) p(D|\theta)$
- 3) posterior: $p(parameter values | data values) p(\theta|D)$

Bayes' theorem Cont.

$$p(D, \theta) = p(\theta) \cdot p(D|\theta)$$
$$= p(D) \cdot p(\theta|D)$$
$$p(D) \cdot p(\theta|D) = p(\theta) \cdot p(D|\theta)$$

We can conclude that:

$$p(heta|D) = rac{p(heta) \cdot p(D| heta)}{p(D)}$$
 $p(heta|D) \propto p(heta) \cdot p(D| heta)$
(Shape of)posterior = prior · likelihood

Grid approximation

- 1. Define a discrete grid of possible θ values.
- 2. Evaluate the prior pdf $f(\theta)$ and likelihood function $L(\theta|D)$ at each θ grid value.
- 3. Obtain a discrete approximation of posterior pdf $f(\theta|D)$ by:
- lacktriangle calculating the product $f(\theta)L(\theta|D)$ at each θ grid value
- lacktriangle normalizing the products so that they sum to 1 across all heta.
- 4. Randomly sample n θ grid values with respect to their corresponding normalized posterior probabilities.

Figure 1: rainbow

2) Rejection Sampling

Sample data from a complicated distribution

- ► Target (distribution) function f(x) The "difficult to sample from" distribution. Our distribution of interest!
- Proposal (distribution) function g(x) The proxy distribution from which we can sample.

Figure 2: Target Function

Figure 3: Proposal Function

Figure 4: Constant

Optimal c = 6.898

Output

n

The number/length of data which must be generated/simulated from (f_X) (TARGET) density.

Optimal c = 6.898

The numbers of Rejections = 1295

 ${\sf Ratio\ of\ Rejections} = 0.866$

Example_DNA

Optimal c = 1069.962

Limitation

- ► Selecting the appropriate proposal function & finding its scaling constant
- ▶ Requires that the PDF of the target function is known
- ► Generally inefficient especially in higher dimensions

2.5) Adaptive Rejection Sampling

Define our proposal distribution in log space

.

¹Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 41(2), 337-348.

sample 2000 values from the normal distribution N(2,3)

```
library("ars")

f<-function(x,mu=0,sigma=1){-1/(2*sigma^2)*(x-mu)^2}
fprima<-function(x,mu=0,sigma=1){-1/sigma^2*(x-mu)}
mysample<-ars(2000,f,fprima,mu=2,sigma=3)
hist(mysample, breaks=30)</pre>
```


Monte Carlo

Relies on repeated random sampling to obtain numerical result

Ex) $\theta_t \sim \text{Normal } (0.5, \sigma)$

Monte Carlo Trace Plot

Figure 5: Trace Plot

50000 iteratons

Figure 6: 50000

Markov property

Given the present, the future does not depend on the past.

$$P(X_n = x_n \mid X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = P(X_n = x_n \mid X_{n-1} = x_{n-1}).$$

Figure 7: markovproperty

Ex)
$$\theta_t \sim \text{Normal } (\theta_{t-1}, \sigma)$$

Depends on the previous number on a sequence

Trace Plot

Figure 8: Trace Plot

50000 entries

Draw
$$\theta_t \sim \text{Normal}(\theta_{t-1}, \sigma)$$

Normal(0.836, σ) = 0.820

3) Metropolis Hasting

The Metropolis–Hastings algorithm can draw samples from any probability distribution f(x), provided that we know a function q(x) proportional to the density of f and the values of q(x) can be calculated. The requirement that q(x) must only be proportional to the density

1. Compute
$$\rho(x,y) = min\left\{\frac{f(y)}{f(x)} \times \frac{q(x|y)}{q(y|x)}, 1\right\}$$

2. If $\rho(x,y) < 1$ then generate $U_t \sim \mathsf{Uniform}(0,1)$.

$$\text{3. Set} \quad X^{(t+1)} = \begin{cases} y & \text{if} \quad \rho(x,y) = 1 \quad \text{or} \quad U_t < \rho(x,y) \\ x & \text{if} \quad U_t \geq \rho(x,Y_t) \end{cases}$$

Figure 9: mh

Intuition

```
\alpha = min\{\frac{f(b)}{f(a)}, 1\}
x = seq(-3,3, by=0.1)
y = dnorm(x)
plot(x, 2*y, type="l", col="blue")
lines(x,y, col="red")
legend("topleft", legend = c("Proposal", "Target"),
text.col = c('blue', 'red'), bty = "n")
```


Limitation

- ► Dependence on starting value
 - ► Burn-in period
- ► Autocorrelation due to the Markov Chain properties

Gibbs Sampling

```
initialize Y^0, X^0
for j = 1, 2, 3, ... do
    sample X^j \sim p(X|Y^{j-1})
    sample Y^j \sim p(Y|X^j)
end for
```

Figure 10: Gibbs

Limitation

	0	1
1 0	0 1/2	$\begin{array}{c} \frac{1}{2} \\ 0 \end{array}$

Limitation

E. 44 L. . . .

Goodness of fit

```
goodness_of_fit <- function(lc,lr){
   kij_c_star <- rpois(length(lc),mean(lc))
   kij_r_star <- rpois(length(lc),mean(lr))
   kij_star <- kij_r_star+kij_c_star
   hist(kij_star,
        main=paste("Goodness of fit for",deparse(substitute(lr))) , breaks =30, xlab="counts")
   abline(v=as.numeric(gammaPrior_Cont[[sam]]$kij[taxa]))
}</pre>
```

Grid Approximation

```
#goodness_of_fit(lc,post_lr)
# actual observed counts
k
## [1] 2197
# point estimation
mean(lc) + lr_ga
## [1] 2192.639
```

Metropolis-Hasting

goodness_of_fit(lc,lr_star)

Rejection Sampling

goodness_of_fit(lc,lr_rs)

