

02477 - Bayesian Machine Learning: Lecture 12

Michael Riis Andersen

Technical University of Denmark, DTU Compute, Department of Applied Math and Computer Science

Variational inference in modern machine learning

- Variational inference (VI) has been the topic for the last two weeks
- Variational inference has many applications in modern machine learning
 - 1. Variational autoencoders (VAEs)
 - 2. Diffusion models
 - 3. Bayesian neural networks
 - 4. ...
- Common challenges
 - 1. Highly non-linear models
 - 2. Large-scale models
 - 3. Hugh datasets
- Last bits of VI theory today: *Black-box variational inference* (BBVI)

Figure 2: The directed graphical model considered in this work.

From Jonathan Ho et al (2020)

Outline

- Variational inference and divergences
 - Properties of the KL-divergence
 - KL-divergences in other contexts (detour)

- Black-box variational inference
 - The evidence lower bound and entropy
 - Dealing with expectations
 - Stochastic gradients
 - A few words on stochastic optimization
 - Mini-batching for large scale inference

Variational inference and divergences

Variational inference and divergences: Properties of the KL-divergence

Measuring distance between probability distributions

■ How do we measure "distance" between probability distributions $\mathbb{D}[q, p]$?

שוע

Measuring distance between probability distributions

- How do we measure "distance" between probability distributions $\mathbb{D}[q, p]$?
- The choice of "distance" affects the properties of the approximation

Measuring distance between probability distributions

- How do we measure "distance" between probability distributions $\mathbb{D}[q, p]$?
- The choice of "distance" affects the properties of the approximation
- The Kullback-Leibler divergence (for continuous R.V.) is defined as

$$\mathsf{KL}\left[q||p
ight] = \int q(\mathbf{z}) \log \left[rac{q(\mathbf{z})}{p(\mathbf{z})}
ight] \mathsf{d}\mathbf{z}$$

Measuring distance between probability distributions

- How do we measure "distance" between probability distributions $\mathbb{D}[q, p]$?
- The choice of "distance" affects the properties of the approximation
- The Kullback-Leibler divergence (for continuous R.V.) is defined as

$$\mathsf{KL}\left[q||p
ight] = \int q(\mathbf{z}) \log \left[rac{q(\mathbf{z})}{p(\mathbf{z})}
ight] \mathsf{d}\mathbf{z}$$

- Properties
 - 1. Identity of indiscernibles

$$\mathsf{KL}\left[q||p\right] = 0 \qquad \iff \qquad p = q \quad (\mathsf{a.e})$$

Measuring distance between probability distributions

- How do we measure "distance" between probability distributions $\mathbb{D}[q, p]$?
- The choice of "distance" affects the properties of the approximation
- The Kullback-Leibler divergence (for continuous R.V.) is defined as

$$\mathsf{KL}\left[q||p
ight] = \int q(\mathbf{z}) \log \left[rac{q(\mathbf{z})}{p(\mathbf{z})} \right] \mathsf{d}\mathbf{z}$$

- Properties
 - 1. Identity of indiscernibles

$$\mathsf{KL}\left[q||p
ight] = 0 \qquad \iff \qquad p = q \quad (\mathsf{a.e})$$

2. Non-negativity

$$\mathsf{KL}\left[q||p
ight] \geq 0$$

Measuring distance between probability distributions

- How do we measure "distance" between probability distributions $\mathbb{D}[q, p]$?
- The choice of "distance" affects the properties of the approximation
- The Kullback-Leibler divergence (for continuous R.V.) is defined as

$$\mathsf{KL}\left[q||p
ight] = \int q(\mathbf{z}) \log \left[rac{q(\mathbf{z})}{p(\mathbf{z})}
ight] \mathsf{d}\mathbf{z}$$

- Properties
 - 1. Identity of indiscernibles

$$\mathsf{KL}\left[q||p\right] = 0 \qquad \iff \qquad p = q \quad (\mathsf{a.e})$$

2. Non-negativity

$$\mathsf{KL}\left[q||p
ight] \geq 0$$

3. Asymmetric

$$\mathsf{KL}\left[q||p\right] \neq \mathsf{KL}\left[p||q\right]$$

lacktriangle The *variational approximation q* for target distribution ppprox q is defined as

$$q_* = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}\left[q||p\right], \qquad \qquad \mathsf{KL}\left[q||p\right] = \int q(z) \log \left[\frac{q(z)}{\rho(z)}\right] \mathrm{d}z$$

lacksquare Approximating a general Gaussian $p(oldsymbol{w}) = \mathcal{N}(oldsymbol{w} | oldsymbol{\mu}, oldsymbol{\Sigma})$ with a mean-field Gaussian

$$q(\mathbf{w}) = \mathcal{N}(w_1|m_1, v_1)\mathcal{N}(w_2|m_2, v_2)$$

■ Which approximation q (in red) has the smallest KL [q||p] divergence? (a) or (b)?

The approximation q in red The target p distribution in green

■ The variational approximation q for target distribution $p \approx q$ is defined as

$$q_* = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}\left[q||p\right], \qquad \qquad \mathsf{KL}\left[q||p\right] = \int q(\mathbf{z}) \log \left[\frac{q(\mathbf{z})}{p(\mathbf{z})}\right] \mathrm{d}\mathbf{z}$$

lacksquare Approximating a general Gaussian $p(oldsymbol{w}) = \mathcal{N}(oldsymbol{w} | oldsymbol{\mu}, oldsymbol{\Sigma})$ with a mean-field Gaussian

$$q(\mathbf{w}) = \mathcal{N}(w_1|m_1, v_1)\mathcal{N}(w_2|m_2, v_2)$$

■ Which approximation q (in red) has the smallest KL [q||p] divergence? (a) or (b)?

The approximation q in red The target p distribution in green

 \blacksquare (a) will be the minimizer of KL [q||p] (mode-seeking behavour)

■ The variational approximation q for target distribution $p \approx q$ is defined as

$$q_* = \arg\min_{q \in \mathcal{Q}} \mathsf{KL}\left[q||p\right], \qquad \qquad \mathsf{KL}\left[q||p\right] = \int q(\mathbf{z}) \log \left[\frac{q(\mathbf{z})}{p(\mathbf{z})}\right] \mathrm{d}\mathbf{z}$$

lacksquare Approximating a general Gaussian $p(oldsymbol{w}) = \mathcal{N}(oldsymbol{w} | oldsymbol{\mu}, oldsymbol{\Sigma})$ with a mean-field Gaussian

$$q(\mathbf{w}) = \mathcal{N}(w_1|m_1, v_1)\mathcal{N}(w_2|m_2, v_2)$$

■ Which approximation q (in red) has the smallest KL [q||p] divergence? (a) or (b)?

The approximation q in red The target p distribution in green

- \blacksquare (a) will be the minimizer of KL [q||p] (mode-seeking behavour)
- (b) will be the minimizer of KL[p||q] (mass-covering behavour)

Common approximation properties

The *variational approximation q* for target distribution $p \approx q$ is defined as $q_* = \arg\min_{q \in \mathcal{Q}} \mathbb{D}\left[q||p\right]$

$$\mathsf{KL}\left[q||p
ight] = \int q(\pmb{z}) \log \left[rac{q(\pmb{z})}{p(\pmb{z})}
ight] \mathsf{d}\pmb{z}$$

$$\mathsf{KL}\left[p||q\right] = \int p(z) \log \left[\frac{p(z)}{q(z)}\right] dz$$

 The variational approximation (green) often covers to posterior mass of target (yellow) better than the Laplace approximation (red)

0.4 0.2 0.2 0.2 -i 0 i 2

2. For the combination of *factorized variational families and KL* [q||p], the variational approximation (red) often *underestimates* the variance of the target distribution (green)

3. Approximations (red) based on KL[q||p] are often said to be *mode-seeking*, whereas KL[p||q] are often said to be *mass-covering*

The α -divergence

■ The Kullback-Leibler divergence is not the only possible choice for the divergence

$$\mathsf{KL}\left[q||p
ight] = \int q(\mathbf{z}) \log rac{q(\mathbf{z})}{p(\mathbf{z})} \mathsf{d}\mathbf{z}$$

■ The α -divergence is defined as

$$\mathbb{D}_{\alpha}\left[\rho||q\right] = \frac{1}{\alpha(1-\alpha)} \int \alpha \rho(\mathbf{z}) + (1-\alpha)q(\mathbf{z}) - \rho(\mathbf{z})^{\alpha}q(\mathbf{z})^{1-\alpha} d\mathbf{z}$$

■ Some interesting special cases

$$\lim_{\alpha \to 0} \mathbb{D}_{\alpha} \left[p || q \right] = \mathsf{KL} \left[q || p \right]$$

$$\lim_{\alpha \to 1} \mathbb{D}_{\alpha} \left[p || q \right] = \mathsf{KL} \left[p || q \right]$$

$$\mathbb{D}_{\frac{1}{2}}\left[p||q\right] = 2\int \left(\sqrt{p(z)} - \sqrt{q(z)}\right) dz$$

(Hellinger distance)

lacksquare lpha determines the properties of the resulting approximation $q^* = \arg\min_q \mathbb{D}_{lpha}\left[p||q
ight]$

 $\alpha = 0.5$

T. Minka, 2005: Divergence measures and message passing

Variational inference and divergences: KL-divergences in other contexts (detour)

■ Suppose we have a data set $\mathcal{D} = \{x_i\}_{i=1}^N$, where $x_i \sim p_D$. Assume we want to fit some parametric distribution $p(x|\theta)$ with parameters θ to the data \mathcal{D} .

$$\mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\mathbf{\theta})\right] = \mathbb{E}_{p_D(\mathbf{x})}\left[\log \frac{p_D(\mathbf{x})}{p(\mathbf{x}|\mathbf{\theta})}\right]$$

■ Suppose we have a data set $\mathcal{D} = \{x_i\}_{i=1}^N$, where $x_i \sim p_D$. Assume we want to fit some parametric distribution $p(\mathbf{x}|\boldsymbol{\theta})$ with parameters $\boldsymbol{\theta}$ to the data \mathcal{D} .

$$\begin{aligned} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})\right] &= \mathbb{E}_{p_D(\mathbf{x})}\left[\log\frac{p_D(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})}\left[\log p_D(\mathbf{x})\right] + \mathbb{E}_{p_D(\mathbf{x})}\left[\log\frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \end{aligned}$$

■ Suppose we have a data set $\mathcal{D} = \{x_i\}_{i=1}^N$, where $x_i \sim p_D$. Assume we want to fit some parametric distribution $p(x|\theta)$ with parameters θ to the data \mathcal{D} .

$$\begin{aligned} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})\right] &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{p_D(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log p_D(\mathbf{x})\right] + \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] + K \end{aligned}$$

■ Suppose we have a data set $\mathcal{D} = \{x_i\}_{i=1}^N$, where $x_i \sim p_D$. Assume we want to fit some parametric distribution $p(\mathbf{x}|\boldsymbol{\theta})$ with parameters $\boldsymbol{\theta}$ to the data \mathcal{D} .

$$\begin{aligned} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})\right] &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{p_D(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log p_D(\mathbf{x})\right] + \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] + K \\ &= -\mathbb{E}_{p_D(\mathbf{x})} \left[\log p(\mathbf{x}|\boldsymbol{\theta})\right] + K \end{aligned}$$

■ Suppose we have a data set $\mathcal{D} = \{x_i\}_{i=1}^N$, where $x_i \sim p_D$. Assume we want to fit some parametric distribution $p(x|\theta)$ with parameters θ to the data \mathcal{D} .

$$\begin{aligned} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})\right] &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{p_D(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log p_D(\mathbf{x})\right] + \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] + K \\ &= -\mathbb{E}_{p_D(\mathbf{x})} \left[\log p(\mathbf{x}|\boldsymbol{\theta})\right] + K \\ &= -\frac{1}{N} \sum_{N=1}^{N} \log p(\mathbf{x}_n|\boldsymbol{\theta}) + K \end{aligned}$$

■ Suppose we have a data set $\mathcal{D} = \{x_i\}_{i=1}^N$, where $x_i \sim p_D$. Assume we want to fit some parametric distribution $p(x|\theta)$ with parameters θ to the data \mathcal{D} .

$$\begin{aligned} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})\right] &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{p_D(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log p_D(\mathbf{x})\right] + \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] + K \\ &= -\mathbb{E}_{p_D(\mathbf{x})} \left[\log p(\mathbf{x}|\boldsymbol{\theta})\right] + K \\ &= -\frac{1}{N} \sum_{N=1}^{N} \log p(\mathbf{x}_n|\boldsymbol{\theta}) + K \end{aligned}$$

Therefore,

$$\hat{ heta}^* = \arg\min_{ heta} \mathsf{KL}\left[p_D(\pmb{x})||p(\pmb{x}|\pmb{ heta})
ight]$$

■ Suppose we have a data set $\mathcal{D} = \{x_i\}_{i=1}^N$, where $x_i \sim p_D$. Assume we want to fit some parametric distribution $p(\mathbf{x}|\theta)$ with parameters θ to the data \mathcal{D} .

$$\begin{aligned} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})\right] &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{p_D(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log p_D(\mathbf{x})\right] + \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})} \left[\log \frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] + K \\ &= -\mathbb{E}_{p_D(\mathbf{x})} \left[\log p(\mathbf{x}|\boldsymbol{\theta})\right] + K \\ &= -\frac{1}{N} \sum_{N=1}^{N} \log p(\mathbf{x}_n|\boldsymbol{\theta}) + K \end{aligned}$$

Therefore,

$$\hat{\theta}^* = \arg\min_{\theta} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\theta)\right] \approx \arg\max_{\theta} \sum_{N=1}^{N} \log p(\mathbf{x}_n|\theta)$$

■ Suppose we have a data set $\mathcal{D} = \{x_i\}_{i=1}^N$, where $x_i \sim p_D$. Assume we want to fit some parametric distribution $p(x|\theta)$ with parameters θ to the data \mathcal{D} .

$$\begin{aligned} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})\right] &= \mathbb{E}_{p_D(\mathbf{x})}\left[\log\frac{p_D(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})}\left[\log p_D(\mathbf{x})\right] + \mathbb{E}_{p_D(\mathbf{x})}\left[\log\frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})}\left[\log\frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] + K \\ &= -\mathbb{E}_{p_D(\mathbf{x})}\left[\log p(\mathbf{x}|\boldsymbol{\theta})\right] + K \\ &= -\frac{1}{N}\sum_{N=1}^{N}\log p(\mathbf{x}_n|\boldsymbol{\theta}) + K \end{aligned}$$

Therefore,

$$\hat{ heta}^* = rg\min_{ heta} \mathsf{KL}\left[p_D(m{x})||p(m{x}|m{ heta})
ight] pprox rg\max_{ heta} \sum_{N=1}^N \log p(m{x}_n|m{ heta}) \equiv \hat{ heta}_\mathsf{MLE}$$

De-tour: KL-divergences and maximum likelihood

■ Suppose we have a data set $\mathcal{D} = \{x_i\}_{i=1}^N$, where $x_i \sim p_D$. Assume we want to fit some parametric distribution $p(\mathbf{x}|\boldsymbol{\theta})$ with parameters $\boldsymbol{\theta}$ to the data \mathcal{D} .

$$\begin{aligned} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})\right] &= \mathbb{E}_{p_D(\mathbf{x})}\left[\log\frac{p_D(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})}\left[\log p_D(\mathbf{x})\right] + \mathbb{E}_{p_D(\mathbf{x})}\left[\log\frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] \\ &= \mathbb{E}_{p_D(\mathbf{x})}\left[\log\frac{1}{p(\mathbf{x}|\boldsymbol{\theta})}\right] + K \\ &= -\mathbb{E}_{p_D(\mathbf{x})}\left[\log p(\mathbf{x}|\boldsymbol{\theta})\right] + K \\ &= -\frac{1}{N}\sum_{N=1}^{N}\log p(\mathbf{x}_n|\boldsymbol{\theta}) + K \end{aligned}$$

■ Therefore.

$$\hat{ heta}^* = \arg\min_{ heta} \mathsf{KL}\left[p_D(\mathbf{x})||p(\mathbf{x}|m{ heta})
ight] pprox \arg\max_{ heta} \sum_{N=1}^N \log p(\mathbf{x}_n|m{ heta}) \equiv \hat{ heta}_\mathsf{MLE}$$

■ Asymptotically $(N \to \infty)$, maximum likelihood learning is equivalent to minimizing the KL divergence between the true data distribution $p_D(x)$ and your model $p(x|\theta)$.

De-tour: Information gain

- Consider some Bayesian model with prior p(w) and posterior $p(w|\mathcal{D})$
- The KL divergence between the posterior and the prior is also sometimes called information gain

$$\mathsf{KL}\left[p(\mathbf{w}|\mathcal{D})||p(\mathbf{w})\right]$$

- ... and quantifies how much information we gain by moving from the prior to the posterior
- Often used in active learning and optimal experiment design to choose the most informative subset of data for more data-efficient learning.

Li et al, 2018: Reversed Active Learning based Atrous DenseNet for Pathological Image Classification

https://www.kdnuggets.com/2018/10/introduction-active-learning.html

Free-form and fixed-form variational infernece

■ In free-form VI, we use a factorized approximation for approximating the target distribution $p \equiv p(w|y)$

$$q(\mathbf{w}) = \prod_{j=1}^J q(\mathbf{w}_j), \quad \text{where} \quad \mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_J]$$

■ In fixed-form VI we choose a specific family distributions, e.g.

$$q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m},\mathbf{V})$$

Free-form and fixed-form variational infernece

■ In free-form VI, we use a factorized approximation for approximating the target distribution $p \equiv p(w|y)$

$$q(\mathbf{w}) = \prod_{j=1}^J q(\mathbf{w}_j), \quad \text{where} \quad \mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_J]$$

■ In fixed-form VI we choose a specific family distributions, e.g.

$$q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m},\mathbf{V})$$

Free-form and fixed-form variational infernece

■ In free-form VI, we use a factorized approximation for approximating the target distribution $p \equiv p(w|y)$

$$q(\mathbf{w}) = \prod_{j=1}^J q(\mathbf{w}_j), \quad \text{where} \quad \mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_J]$$

■ In fixed-form VI we choose a specific family distributions, e.g.

$$q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m},\mathbf{V})$$

Free-form and fixed-form variational infernece

■ In free-form VI, we use a factorized approximation for approximating the target distribution $p \equiv p(w|y)$

$$q(\mathbf{w}) = \prod_{j=1}^{J} q(\mathbf{w}_j), \text{ where } \mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_J]$$

■ In *fixed-form* VI we choose a specific family distributions, e.g.

$$q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m},\mathbf{V})$$

 \blacksquare ... and then evaluate and optimize the ELBO wrt. $q(\mathbf{w})$

$$\mathcal{L}[q] = \mathbb{E}_q[\log p(\mathbf{y}, \mathbf{w})] - \mathbb{E}_q[\log q(\mathbf{w})]$$

■ In free-form VI, we use a factorized approximation for approximating the target distribution $p \equiv p(w|y)$

$$q(\mathbf{w}) = \prod_{j=1}^{J} q(\mathbf{w}_j), \text{ where } \mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_J]$$

■ In fixed-form VI we choose a specific family distributions, e.g.

$$q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}, \mathbf{V})$$

 \blacksquare ... and then evaluate and optimize the ELBO wrt. $q(\mathbf{w})$

$$\mathcal{L}[q] = \mathbb{E}_q[\log p(\mathbf{y}, \mathbf{w})] - \mathbb{E}_q[\log q(\mathbf{w})]$$

- $+ \ \, {\sf Optimal \ functional \ form \ given \ assumptions} \\ \ \, ({\sf CAVI})$
- + Fast optimization

- Requires model-specific derivations
- Required integrals may be intractable
- Optimal forms may not be "known" distributions

■ How can we avoid the need for model-specific derivations? How can we avoid the restrictions on the choice of models we can approximate?

- How can we avoid the need for model-specific derivations? How can we avoid the restrictions on the choice of models we can approximate?
- Again, we use fixed-form families for continuous parameters, e.g. mean-field or full-rank Gaussians

$$q_{\mathsf{MF}}(oldsymbol{w}) = \prod_{i=1}^D \mathcal{N}(w_i|m_i,v_i) \qquad \qquad q_{\mathsf{FR}}(oldsymbol{w}) = \mathcal{N}(oldsymbol{w}|oldsymbol{m},oldsymbol{V})$$

- How can we avoid the need for model-specific derivations? How can we avoid the restrictions on the choice of models we can approximate?
- Again, we use fixed-form families for continuous parameters, e.g. mean-field or full-rank Gaussians

$$q_{\mathsf{MF}}(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i | m_i, v_i)$$
 $q_{\mathsf{FR}}(\mathbf{w}) = \mathcal{N}(\mathbf{w} | \mathbf{m}, \mathbf{V})$

■ Optimize ELBO wrt. *variational parameters* $\lambda = \{m, V\}$

$$\boldsymbol{\lambda}^* = \arg\max_{\boldsymbol{\lambda}} \mathcal{L}\left[q_{\boldsymbol{\lambda}}\right] = \arg\max_{\boldsymbol{\lambda}} \left\{ \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log p(\boldsymbol{y}, \boldsymbol{w})] - \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log q_{\boldsymbol{\lambda}}(\boldsymbol{w})] \right\}$$

Black-box variational inference

- How can we avoid the need for model-specific derivations? How can we avoid the restrictions on the choice of models we can approximate?
- Again, we use fixed-form families for continuous parameters, e.g. mean-field or full-rank Gaussians

$$q_{\mathsf{MF}}(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i | m_i, v_i)$$
 $q_{\mathsf{FR}}(\mathbf{w}) = \mathcal{N}(\mathbf{w} | \mathbf{m}, \mathbf{V})$

lacktriangle Optimize ELBO wrt. *variational parameters* $oldsymbol{\lambda} = \{ oldsymbol{m}, oldsymbol{V} \}$

$$\boldsymbol{\lambda}^* = \arg\max_{\boldsymbol{\lambda}} \mathcal{L}\left[q_{\boldsymbol{\lambda}}\right] = \arg\max_{\boldsymbol{\lambda}} \left\{ \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log p(\boldsymbol{y}, \boldsymbol{w})] - \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log q_{\boldsymbol{\lambda}}(\boldsymbol{w})] \right\}$$

- We want to find an "automatic" method for
 - 1. evaluating $\mathcal{L}[q_{\lambda}]$
 - 2. computing gradients of $\mathcal{L}\left[q_{\lambda}\right]$

Black-box variational inference

- How can we avoid the need for model-specific derivations? How can we avoid the restrictions on the choice of models we can approximate?
- Again, we use fixed-form families for continuous parameters, e.g. mean-field or full-rank Gaussians

$$q_{\mathsf{MF}}(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i | m_i, v_i)$$
 $q_{\mathsf{FR}}(\mathbf{w}) = \mathcal{N}(\mathbf{w} | \mathbf{m}, \mathbf{V})$

lacktriangle Optimize ELBO wrt. *variational parameters* $oldsymbol{\lambda} = \{ oldsymbol{m}, oldsymbol{V} \}$

$$\boldsymbol{\lambda}^* = \arg\max_{\boldsymbol{\lambda}} \mathcal{L}\left[q_{\boldsymbol{\lambda}}\right] = \arg\max_{\boldsymbol{\lambda}} \left\{ \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log p(\boldsymbol{y}, \boldsymbol{w})] - \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log q_{\boldsymbol{\lambda}}(\boldsymbol{w})] \right\}$$

- We want to find an "automatic" method for
 - 1. evaluating $\mathcal{L}[q_{\lambda}]$
 - 2. computing gradients of $\mathcal{L}[q_{\lambda}]$
- ... allowing us to easily prototype, implement and test different models

Black-box variational inference: The evidence lower bound and entropy

lacksquare The evidence lower bound $\mathcal{L}\left[q
ight]$ is defined as

$$\mathcal{L}\left[q
ight] = \mathbb{E}_q\left[\log p(oldsymbol{y},oldsymbol{w})
ight] - \mathbb{E}_q\left[\log q(oldsymbol{w})
ight]$$

lacksquare The evidence lower bound $\mathcal{L}\left[q
ight]$ is defined as

$$\mathcal{L}\left[q\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] - \mathbb{E}_q\left[\log q(\boldsymbol{w})\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] + \mathcal{H}\left[q\right]$$

lacksquare The evidence lower bound $\mathcal{L}\left[q
ight]$ is defined as

$$\mathcal{L}\left[q\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] - \mathbb{E}_q\left[\log q(\boldsymbol{w})\right] \\ = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] + \mathcal{H}\left[q\right]$$

lacksquare Second term is called the (differential) *entropy* of q, i.e. $\mathcal{H}[q] \equiv -\mathbb{E}_q[\log q(oldsymbol{w})]$

■ The evidence lower bound $\mathcal{L}[q]$ is defined as

$$\mathcal{L}\left[q\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] - \mathbb{E}_q\left[\log q(\boldsymbol{w})\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] + \mathcal{H}\left[q\right]$$

- Second term is called the (differential) *entropy* of q, i.e. $\mathcal{H}[q] \equiv -\mathbb{E}_q[\log q(w)]$
- For "named" distributions, like Gaussians, the entropy is often easy to calculate or can be looked up.

lacktriangle The evidence lower bound $\mathcal{L}\left[q\right]$ is defined as

$$\mathcal{L}\left[q\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] - \mathbb{E}_q\left[\log q(\boldsymbol{w})\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] + \mathcal{H}\left[q\right]$$

- Second term is called the (differential) *entropy* of q, i.e. $\mathcal{H}[q] \equiv -\mathbb{E}_q[\log q(w)]$
- For "named" distributions, like Gaussians, the entropy is often easy to calculate or can be looked up.
- If $q(w_i) = \mathcal{N}(w_i|m_i, v_i)$, then

$$\mathcal{H}\left[q(w_i)\right] \equiv -\mathbb{E}_{q(w_i)}[\log q(w_i)] = rac{1}{2}\log(2\pi e v_i)$$

■ The evidence lower bound $\mathcal{L}[q]$ is defined as

$$\mathcal{L}\left[q\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] - \mathbb{E}_q\left[\log q(\boldsymbol{w})\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] + \mathcal{H}\left[q\right]$$

- Second term is called the (differential) *entropy* of q, i.e. $\mathcal{H}[q] \equiv -\mathbb{E}_q[\log q(w)]$
- For "named" distributions, like Gaussians, the entropy is often easy to calculate or can be looked up.
- If $q(w_i) = \mathcal{N}(w_i|m_i, v_i)$, then

$$\mathcal{H}\left[q(w_i)\right] \equiv -\mathbb{E}_{q(w_i)}[\log q(w_i)] = \frac{1}{2}\log(2\pi e v_i)$$

■ The entropy term and its gradient can often be computed analytically

■ The evidence lower bound $\mathcal{L}[q]$ is defined as

$$\mathcal{L}\left[q\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] - \mathbb{E}_q\left[\log q(\boldsymbol{w})\right] = \mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] + \mathcal{H}\left[q\right]$$

- Second term is called the (differential) *entropy* of q, i.e. $\mathcal{H}[q] \equiv -\mathbb{E}_q[\log q(w)]$
- For "named" distributions, like Gaussians, the entropy is often easy to calculate or can be looked up.
- If $q(w_i) = \mathcal{N}(w_i|m_i, v_i)$, then

$$\mathcal{H}[q(w_i)] \equiv -\mathbb{E}_{q(w_i)}[\log q(w_i)] = \frac{1}{2}\log(2\pi e v_i)$$

- The entropy term and its gradient can often be computed analytically
- Therefore, we will focus on dealing with the expected log joint term: $\mathbb{E}_q[\log p(y, w)]$

Quiz

Quiz time!

Spend 4 minutes answering the following questions in the quiz

DTU Learn - Quiz - Lecture12: Variational families

Black-box variational inference: Dealing with expectations

How to deal with the expected log joint

■ We can approximate the first term using Monte Carlo samples:

$$\mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] \approx \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}^{(s)}),$$

where

$$oldsymbol{w}^{(s)} \sim q_{oldsymbol{\lambda}}(oldsymbol{w}) \quad ext{for} \quad s=1,\ldots,S$$

שוע

How to deal with the expected log joint

■ We can approximate the first term using Monte Carlo samples:

$$\mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] \approx \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}^{(s)}),$$

where

$$oldsymbol{w}^{(s)} \sim q_{oldsymbol{\lambda}}(oldsymbol{w}) \quad ext{for} \quad s = 1, \dots, S$$

■ Example: if $q_{\lambda}(w) = \mathcal{N}(w|m, V)$, we sample $w^{(s)} \sim \mathcal{N}(w|m, V)$ and plug them into the sum above

How to deal with the expected log joint

■ We can approximate the first term using Monte Carlo samples:

$$\mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] \approx \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}^{(s)}),$$

where

$$\mathbf{w}^{(s)} \sim q_{\lambda}(\mathbf{w})$$
 for $s = 1, \dots, S$

- Example: if $q_{\lambda}(w) = \mathcal{N}(w|m, V)$, we sample $w^{(s)} \sim \mathcal{N}(w|m, V)$ and plug them into the sum above
- Easy to implement and fits the bill
 - 1. All we need is to be able to evaluate to the log joint p(y, w)
 - 2. Not restricted by existence of closed-form analytical results for expectations
 - 3. No model-specific derivations

How to deal with the expected log joint

■ We can approximate the first term using Monte Carlo samples:

$$\mathbb{E}_q\left[\log p(\boldsymbol{y}, \boldsymbol{w})\right] \approx \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}^{(s)}),$$

where

$$\mathbf{w}^{(s)} \sim q_{\lambda}(\mathbf{w})$$
 for $s = 1, \dots, S$

- Example: if $q_{\lambda}(w) = \mathcal{N}(w|m, V)$, we sample $w^{(s)} \sim \mathcal{N}(w|m, V)$ and plug them into the sum above
- Easy to implement and fits the bill
 - 1. All we need is to be able to evaluate to the log joint p(y, w)
 - 2. Not restricted by existence of closed-form analytical results for expectations
 - 3. No model-specific derivations
- How about the gradients?

$$\nabla_{\lambda} \mathbb{E}_{q_{\lambda}} [\log p(\mathbf{y}, \mathbf{w})]$$

Black-box variational inference: Stochastic gradients

■ First, we can use *Leibniz'* rule to change order of the gradient and the integral

$$abla_{oldsymbol{\lambda}} \mathbb{E}_{q_{oldsymbol{\lambda}}}[\log p(oldsymbol{y}, oldsymbol{w})] \equiv
abla_{oldsymbol{\lambda}} \int q_{oldsymbol{\lambda}}(oldsymbol{w}) \log p(oldsymbol{y}, oldsymbol{w}) doldsymbol{w}$$

■ First, we can use *Leibniz'* rule to change order of the gradient and the integral

$$\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log p(\boldsymbol{y}, \boldsymbol{w})] \equiv \nabla_{\boldsymbol{\lambda}} \int q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) d\boldsymbol{w}$$
$$= \int \nabla_{\boldsymbol{\lambda}} q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) d\boldsymbol{w}$$

First, we can use *Leibniz'* rule to change order of the gradient and the integral

$$abla_{\lambda} \mathbb{E}_{q_{\lambda}}[\log p(\mathbf{y}, \mathbf{w})] \equiv \nabla_{\lambda} \int q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) d\mathbf{w}$$

$$= \int \nabla_{\lambda} q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) d\mathbf{w}$$

■ We can't estimate the gradients directly using MC sampling. Why not?

■ First, we can use *Leibniz'* rule to change order of the gradient and the integral

$$\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log p(\boldsymbol{y}, \boldsymbol{w})] \equiv \nabla_{\boldsymbol{\lambda}} \int q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) d\boldsymbol{w}$$
$$= \int \nabla_{\boldsymbol{\lambda}} q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) d\boldsymbol{w}$$

- We can't estimate the gradients directly using MC sampling. Why not?
- In order to estimate a quantity using MC, we need to able to express it as an expectation. For example,

$$\mathbb{E}_q\left[\log p(\mathbf{y}, \mathbf{w})\right] = \int q(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) d\mathbf{w} \approx \frac{1}{S} \sum_{s=1}^{S} \log p(\mathbf{y}, \mathbf{w}^{(s)}),$$

First, we can use *Leibniz'* rule to change order of the gradient and the integral

$$\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log p(\boldsymbol{y}, \boldsymbol{w})] \equiv \nabla_{\boldsymbol{\lambda}} \int q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) d\boldsymbol{w}$$
$$= \int \nabla_{\boldsymbol{\lambda}} q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) d\boldsymbol{w}$$

- We can't estimate the gradients directly using MC sampling. Why not?
- In order to estimate a quantity using MC, we need to able to express it as an expectation. For example,

$$\mathbb{E}_q\left[\log p(\mathbf{y}, \mathbf{w})\right] = \int q(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) d\mathbf{w} \approx \frac{1}{S} \sum_{s=1}^{S} \log p(\mathbf{y}, \mathbf{w}^{(s)}),$$

lacksquare To generate samples, we need a distribution, but $abla_{\pmb{\lambda}}q_{\pmb{\lambda}}(\pmb{w})$ is not a distribution

Log-derivative trick: Using the chain-rule on the $\log q_{\lambda}(\mathbf{w})$ yields

$$abla_{oldsymbol{\lambda}} \log q_{oldsymbol{\lambda}}(oldsymbol{w}) = rac{1}{q_{oldsymbol{\lambda}}(oldsymbol{w})}
abla_{oldsymbol{\lambda}} q_{oldsymbol{\lambda}}(oldsymbol{w})$$

Log-derivative trick: Using the chain-rule on the $\log q_{\lambda}(\mathbf{w})$ yields

$$abla_{oldsymbol{\lambda}} \log q_{oldsymbol{\lambda}}(oldsymbol{w}) = rac{1}{q_{oldsymbol{\lambda}}(oldsymbol{w})}
abla_{oldsymbol{\lambda}} q_{oldsymbol{\lambda}}(oldsymbol{w})$$

$$\nabla_{\lambda} \mathbb{E}_{q_{\lambda}}[\log p(\mathbf{y}, \mathbf{w})] \equiv \int \nabla_{\lambda} q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) d\mathbf{w}$$

Log-derivative trick: Using the chain-rule on the $\log q_{\lambda}(\mathbf{w})$ yields

$$abla_{oldsymbol{\lambda}} \log q_{oldsymbol{\lambda}}(oldsymbol{w}) = rac{1}{q_{oldsymbol{\lambda}}(oldsymbol{w})}
abla_{oldsymbol{\lambda}} q_{oldsymbol{\lambda}}(oldsymbol{w})$$

$$\nabla_{\lambda} \mathbb{E}_{q_{\lambda}}[\log p(\mathbf{y}, \mathbf{w})] \equiv \int \nabla_{\lambda} q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) d\mathbf{w}$$
$$= \int \frac{q_{\lambda}(\mathbf{w})}{q_{\lambda}(\mathbf{w})} \nabla_{\lambda} q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) d\mathbf{w}$$

Log-derivative trick: Using the chain-rule on the $\log q_{\lambda}(\mathbf{w})$ yields

$$abla_{\lambda} \log q_{\lambda}(\mathbf{w}) = \frac{1}{q_{\lambda}(\mathbf{w})}
abla_{\lambda} q_{\lambda}(\mathbf{w})$$

$$\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log p(\boldsymbol{y}, \boldsymbol{w})] \equiv \int \nabla_{\boldsymbol{\lambda}} q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) d\boldsymbol{w}$$

$$= \int \frac{q_{\boldsymbol{\lambda}}(\boldsymbol{w})}{q_{\boldsymbol{\lambda}}(\boldsymbol{w})} \nabla_{\boldsymbol{\lambda}} q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) d\boldsymbol{w}$$

$$= \int q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \frac{1}{q_{\boldsymbol{\lambda}}(\boldsymbol{w})} \nabla_{\boldsymbol{\lambda}} q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) d\boldsymbol{w}$$

Log-derivative trick: Using the chain-rule on the $\log q_{\lambda}(\mathbf{w})$ yields

$$\nabla_{\pmb{\lambda}} \log q_{\pmb{\lambda}}(\pmb{w}) = \frac{1}{q_{\pmb{\lambda}}(\pmb{w})} \nabla_{\pmb{\lambda}} q_{\pmb{\lambda}}(\pmb{w})$$

$$\begin{split} \nabla_{\pmb{\lambda}} \mathbb{E}_{q_{\pmb{\lambda}}}[\log p(\pmb{y}, \pmb{w})] &\equiv \int \nabla_{\pmb{\lambda}} q_{\pmb{\lambda}}(\pmb{w}) \log p(\pmb{y}, \pmb{w}) \mathrm{d} \pmb{w} \\ &= \int \frac{q_{\pmb{\lambda}}(\pmb{w})}{q_{\pmb{\lambda}}(\pmb{w})} \nabla_{\pmb{\lambda}} q_{\pmb{\lambda}}(\pmb{w}) \log p(\pmb{y}, \pmb{w}) \mathrm{d} \pmb{w} \\ &= \int q_{\pmb{\lambda}}(\pmb{w}) \frac{1}{q_{\pmb{\lambda}}(\pmb{w})} \nabla_{\pmb{\lambda}} q_{\pmb{\lambda}}(\pmb{w}) \log p(\pmb{y}, \pmb{w}) \mathrm{d} \pmb{w} \\ &= \int q_{\pmb{\lambda}}(\pmb{w}) \nabla_{\pmb{\lambda}} \log q_{\pmb{\lambda}}(\pmb{w}) \log p(\pmb{y}, \pmb{w}) \mathrm{d} \pmb{w} \quad \text{(log-derivative trick)} \end{split}$$

Log-derivative trick: Using the chain-rule on the $\log q_{\lambda}(\mathbf{w})$ yields

$$abla_{\lambda} \log q_{\lambda}(\mathbf{w}) = \frac{1}{q_{\lambda}(\mathbf{w})}
abla_{\lambda} q_{\lambda}(\mathbf{w})$$

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log p(\boldsymbol{y}, \boldsymbol{w})] &\equiv \int \nabla_{\boldsymbol{\lambda}} q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) \mathrm{d}\boldsymbol{w} \\ &= \int \frac{q_{\boldsymbol{\lambda}}(\boldsymbol{w})}{q_{\boldsymbol{\lambda}}(\boldsymbol{w})} \nabla_{\boldsymbol{\lambda}} q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) \mathrm{d}\boldsymbol{w} \\ &= \int q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \frac{1}{q_{\boldsymbol{\lambda}}(\boldsymbol{w})} \nabla_{\boldsymbol{\lambda}} q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) \mathrm{d}\boldsymbol{w} \\ &= \int q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \nabla_{\boldsymbol{\lambda}} \log q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w}) \mathrm{d}\boldsymbol{w} \quad \text{(log-derivative trick)} \\ &= \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\nabla_{\boldsymbol{\lambda}} \log q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \log p(\boldsymbol{y}, \boldsymbol{w})] \quad \text{(Def. of expectation)} \end{split}$$

Log-derivative trick: Using the chain-rule on the $\log q_{\lambda}(\mathbf{w})$ yields

$$\nabla_{\pmb{\lambda}} \log q_{\pmb{\lambda}}(\pmb{w}) = \frac{1}{q_{\pmb{\lambda}}(\pmb{w})} \nabla_{\pmb{\lambda}} q_{\pmb{\lambda}}(\pmb{w})$$

$$\begin{split} \nabla_{\lambda} \mathbb{E}_{q_{\lambda}}[\log p(\mathbf{y}, \mathbf{w})] &\equiv \int \nabla_{\lambda} q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) \mathrm{d}\mathbf{w} \\ &= \int \frac{q_{\lambda}(\mathbf{w})}{q_{\lambda}(\mathbf{w})} \nabla_{\lambda} q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) \mathrm{d}\mathbf{w} \\ &= \int q_{\lambda}(\mathbf{w}) \frac{1}{q_{\lambda}(\mathbf{w})} \nabla_{\lambda} q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) \mathrm{d}\mathbf{w} \\ &= \int q_{\lambda}(\mathbf{w}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w}) \mathrm{d}\mathbf{w} \quad \text{(log-derivative trick)} \\ &= \mathbb{E}_{q_{\lambda}}[\nabla_{\lambda} \log q_{\lambda}(\mathbf{w}) \log p(\mathbf{y}, \mathbf{w})] \qquad \text{(Def. of expectation)} \\ &\approx \frac{1}{5} \sum_{s=1}^{5} \nabla_{\lambda} \log q_{\lambda}(\mathbf{w}^{s}) \log p(\mathbf{y}, \mathbf{w}^{s}) \qquad \text{where} \qquad \mathbf{w}^{s} \sim q_{\lambda} \end{split}$$

Log-derivative trick: Using the chain-rule on the $\log q_{\lambda}(\mathbf{w})$ yields

$$\nabla_{\pmb{\lambda}} \log q_{\pmb{\lambda}}(\pmb{w}) = \frac{1}{q_{\pmb{\lambda}}(\pmb{w})} \nabla_{\pmb{\lambda}} q_{\pmb{\lambda}}(\pmb{w})$$

■ We can use this to re-write the gradient

$$\begin{split} \nabla_{\pmb{\lambda}} \mathbb{E}_{q_{\pmb{\lambda}}}[\log p(\pmb{y}, \pmb{w})] &\equiv \int \nabla_{\pmb{\lambda}} q_{\pmb{\lambda}}(\pmb{w}) \log p(\pmb{y}, \pmb{w}) d\pmb{w} \\ &= \int \frac{q_{\pmb{\lambda}}(\pmb{w})}{q_{\pmb{\lambda}}(\pmb{w})} \nabla_{\pmb{\lambda}} q_{\pmb{\lambda}}(\pmb{w}) \log p(\pmb{y}, \pmb{w}) d\pmb{w} \\ &= \int q_{\pmb{\lambda}}(\pmb{w}) \frac{1}{q_{\pmb{\lambda}}(\pmb{w})} \nabla_{\pmb{\lambda}} q_{\pmb{\lambda}}(\pmb{w}) \log p(\pmb{y}, \pmb{w}) d\pmb{w} \\ &= \int q_{\pmb{\lambda}}(\pmb{w}) \nabla_{\pmb{\lambda}} \log q_{\pmb{\lambda}}(\pmb{w}) \log p(\pmb{y}, \pmb{w}) d\pmb{w} \quad \text{(log-derivative trick)} \\ &= \mathbb{E}_{q_{\pmb{\lambda}}}[\nabla_{\pmb{\lambda}} \log q_{\pmb{\lambda}}(\pmb{w}) \log p(\pmb{y}, \pmb{w})] \qquad \text{(Def. of expectation)} \\ &\approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\pmb{\lambda}} \log q_{\pmb{\lambda}}(\pmb{w}^s) \log p(\pmb{y}, \pmb{w}^s) \qquad \text{where} \qquad \pmb{w}^s \sim q_{\pmb{\lambda}} \end{split}$$

■ This is called the score function gradient estimator

The score function gradient estimator

■ The score function gradient estimator is defined as

$$abla_{\pmb{\lambda}} \mathbb{E}_{q_{\pmb{\lambda}}}[\log p(\pmb{y}, \pmb{w})] pprox \frac{1}{S} \sum_{s=1}^{S}
abla_{\pmb{\lambda}} \log q_{\pmb{\lambda}}(\pmb{w}^s) \log p(\pmb{y}, \pmb{w}^s) \qquad \text{where} \qquad \pmb{w}^s \sim q_{\pmb{\lambda}}(\pmb{w})$$

DTU

The score function gradient estimator

■ The score function gradient estimator is defined as

$$abla_{\lambda} \mathbb{E}_{q_{\lambda}}[\log p(\mathbf{y}, \mathbf{w})] pprox \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q_{\lambda}(\mathbf{w}^{s}) \log p(\mathbf{y}, \mathbf{w}^{s}) \quad \text{where} \quad \mathbf{w}^{s} \sim q_{\lambda}(\mathbf{w})$$

lacktriangledown $\nabla_{\lambda} \log q_{\lambda}$ can easily be calculated by hand or using automatic differentiation (e.g. Pytorch, Tensorflow, Autograd etc.)

שוע

The score function gradient estimator

■ The score function gradient estimator is defined as

$$abla_{\lambda} \mathbb{E}_{q_{\lambda}}[\log p(\mathbf{y}, \mathbf{w})] pprox \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q_{\lambda}(\mathbf{w}^{s}) \log p(\mathbf{y}, \mathbf{w}^{s}) \quad \text{where} \quad \mathbf{w}^{s} \sim q_{\lambda}(\mathbf{w})$$

- lacktriangledown $\nabla_{\lambda} \log q_{\lambda}$ can easily be calculated by hand or using automatic differentiation (e.g. Pytorch, Tensorflow, Autograd etc.)
- \blacksquare Only need to be able to evaluate $\log p(y, w)$. No need for model-specific derivations

DTU

The score function gradient estimator

■ The score function gradient estimator is defined as

$$\nabla_{\lambda} \mathbb{E}_{q_{\lambda}}[\log p(\mathbf{y}, \mathbf{w})] \approx \frac{1}{5} \sum_{s=1}^{S} \nabla_{\lambda} \log q_{\lambda}(\mathbf{w}^{s}) \log p(\mathbf{y}, \mathbf{w}^{s})$$
 where $\mathbf{w}^{s} \sim q_{\lambda}(\mathbf{w})$

- lacktriangledown $\nabla_{\lambda} \log q_{\lambda}$ can easily be calculated by hand or using automatic differentiation (e.g. Pytorch, Tensorflow, Autograd etc.)
- \blacksquare Only need to be able to evaluate $\log p(y, w)$. No need for model-specific derivations
- General properties
 - 1. Very general and unbiased
 - 2. Applies to both continuous and discrete parameters
 - 3. Often high variance
- Big picture: approximating posterior distributions of general models
 - 1. We have chosen a variational family
 - 2. We aim to maximize the ELBO using gradient-based methods
 - Estimate gradients using the score function estimator without the need for model-specific derivations
 - 4. Drawback: stochastic gradients

The BBVI algorithm

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. score function estimator

■ Initialize variational parameters $\lambda_1 = \{ m_1, \log v_1 \}$

The BBVI algorithm

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. score function estimator

- \blacksquare Initialize variational parameters $\pmb{\lambda}_1 = \{\pmb{m}_1, \log \pmb{v}_1\}$
- For iteration t = 1, ..., T (or until convergence)

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. score function estimator

- lacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ \emph{\textbf{m}}_1, \log \emph{\textbf{v}}_1 \}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\mathbf{w}^{(s)} \sim q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_t, \mathbf{v}_t)$ for $s = 1, \dots, S$

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. score function estimator

- lacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ oldsymbol{m}_1, \log oldsymbol{v}_1 \}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\mathbf{w}^{(s)} \sim q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_t, \mathbf{v}_t)$ for $s = 1, \dots, S$
 - 2. Estimate ELBO

$$\hat{\mathcal{L}}[q] = \frac{1}{S} \sum_{s=1}^{S} \log p(\mathbf{y}, \mathbf{w}^{(s)}) + \mathcal{H}[q]$$

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. score function estimator

- lacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ \emph{\textbf{m}}_1, \log \emph{\textbf{v}}_1 \}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\mathbf{w}^{(s)} \sim q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_t, \mathbf{v}_t)$ for $s = 1, \dots, S$
 - 2. Estimate ELBO

$$\hat{\mathcal{L}}[q] = \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}^{(s)}) + \mathcal{H}[q]$$

3. Estimate gradient

$$abla_{\lambda} \hat{\mathcal{L}}[q] pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\lambda} \log q_{\lambda}(\mathbf{w}^{s}) \log p(\mathbf{y}, \mathbf{w}^{s}) +
abla_{\lambda} \mathcal{H}[q]$$

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. score function estimator

- lacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ oldsymbol{m}_1, \log oldsymbol{v}_1 \}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\mathbf{w}^{(s)} \sim q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_t, \mathbf{v}_t)$ for $s = 1, \dots, S$
 - 2. Estimate ELBO

$$\hat{\mathcal{L}}[q] = \frac{1}{S} \sum_{s=1}^{S} \log p(\mathbf{y}, \mathbf{w}^{(s)}) + \mathcal{H}[q]$$

3. Estimate gradient

$$abla_{\lambda} \hat{\mathcal{L}}[q] pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\lambda} \log q_{\lambda}(\mathbf{w}^{s}) \log p(\mathbf{y}, \mathbf{w}^{s}) +
abla_{\lambda} \mathcal{H}[q]$$

4. Update variational parameters to get $\lambda_{t+1} = \{ m_{t+1}, \log v_{t+1} \}$ using gradient estimate

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. score function estimator

- lacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ \emph{\textbf{m}}_1, \log \emph{\textbf{v}}_1 \}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\mathbf{w}^{(s)} \sim q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_t, \mathbf{v}_t)$ for $s = 1, \dots, S$
 - 2. Estimate ELBO

$$\hat{\mathcal{L}}[q] = \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}^{(s)}) + \mathcal{H}[q]$$

3. Estimate gradient

$$\nabla_{\lambda} \hat{\mathcal{L}}[q] \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q_{\lambda}(\mathbf{w}^{s}) \log p(\mathbf{y}, \mathbf{w}^{s}) + \nabla_{\lambda} \mathcal{H}[q]$$

- 4. Update variational parameters to get $\lambda_{t+1} = \{ m_{t+1}, \log v_{t+1} \}$ using gradient estimate
- Predictions & model checking: Evaluate training error, validation errors etc

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{N} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. score function estimator

- lacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ \emph{\textbf{m}}_1, \log \emph{\textbf{v}}_1 \}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\mathbf{w}^{(s)} \sim q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_t, \mathbf{v}_t)$ for $s = 1, \dots, S$
 - 2. Estimate ELBO

$$\hat{\mathcal{L}}[q] = \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}^{(s)}) + \mathcal{H}[q]$$

3. Estimate gradient

$$abla_{\lambda}\hat{\mathcal{L}}\left[q
ight]pproxrac{1}{\mathcal{S}}\sum_{s=1}^{\mathcal{S}}
abla_{\lambda}\!\log q_{\lambda}(\pmb{w}^{s})\,\log p(\pmb{y},\pmb{w}^{s})+
abla_{\lambda}\mathcal{H}\left[q
ight]$$

- 4. Update variational parameters to get $\lambda_{t+1} = \{ m_{t+1}, \log v_{t+1} \}$ using gradient estimate
- Predictions & model checking: Evaluate training error, validation errors etc
- Go back and refine model if needed

Example: Robust regression I

$$p(\mathbf{y}, \mathbf{w}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_n | \mathbf{w}^{\mathsf{T}} \mathbf{x}_i, \sigma^2) \mathcal{N}(\mathbf{w} | \mathbf{0}, \kappa^2 \mathbf{I})$$

Example: Robust regression II

$$p(\mathbf{y}, \mathbf{w}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_n | \mathbf{w}^T \mathbf{x}_i, \sigma^2) \mathcal{N}(\mathbf{w} | \mathbf{0}, \kappa^2 \mathbf{I})$$

■ Running BBVI with S = 5 samples for 2000 iterations

Example: Robust regression III

$$p_{\mathsf{gauss}}(\boldsymbol{y}, \boldsymbol{w}) = \prod_{n=1}^{N} \mathcal{N}(y_n | \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i, \sigma^2) \mathcal{N}(\boldsymbol{w} | \boldsymbol{0}, \kappa^2 \boldsymbol{I})$$

$$p_{\mathsf{student-t}}(\boldsymbol{y}, \boldsymbol{w}) = \prod_{n=1}^{N} t_2(y_n | \boldsymbol{w}^T \boldsymbol{x}_i, \sigma^2) \mathcal{N}(\boldsymbol{w} | \boldsymbol{0}, \kappa^2 \boldsymbol{I})$$

Example: Robust regression IV

$$\begin{aligned} p_{\text{gauss}}(\mathbf{y}, \mathbf{w}) &= \prod_{n=1}^{N} \mathcal{N}(y_n | \mathbf{w}^T \mathbf{x}_i, \sigma^2) \mathcal{N}(\mathbf{w} | \mathbf{0}, \kappa^2 \mathbf{I}) \\ p_{\text{student-t}}(\mathbf{y}, \mathbf{w}) &= \prod_{i=1}^{N} t_2(y_n | \mathbf{w}^T \mathbf{x}_i, \sigma^2) \mathcal{N}(\mathbf{w} | \mathbf{0}, \kappa^2 \mathbf{I}) \end{aligned}$$

■ Running BBVI with S = 5 samples for 2000 iterations

Text classification: Spam detection

- In the exercise notebook, we will build a simple spam detector based on an SMS dataset
- Text examples
 - "urgent! your mobile number has been awarded with a £2000 prize guaranteed. call 09061790121 from land line. claim 3030. valid 12hrs only 150ppm"
 - 2. "do we have any spare power supplies"
 - 3. "merry christmas to u too annie!"

Text classification: Spam detection

- In the exercise notebook, we will build a simple spam detector based on an SMS dataset
- Text examples
 - "urgent! your mobile number has been awarded with a £2000 prize guaranteed. call 09061790121 from land line. claim 3030. valid 12hrs only 150ppm"
 - 2. "do we have any spare power supplies"
 - 3. "merry christmas to u too annie!"
- Transfer learning: Embed texts using FastText embedding (www.fasttext.cc)

Text classification: Spam detection

- In the exercise notebook, we will build a simple spam detector based on an SMS dataset
- Text examples
 - "urgent! your mobile number has been awarded with a £2000 prize guaranteed. call 09061790121 from land line. claim 3030. valid 12hrs only 150ppm"
 - 2. "do we have any spare power supplies"
 - 3. "merry christmas to u too annie!"
- Transfer learning: Embed texts using FastText embedding (www.fasttext.cc)

■ Which likelihood to use to gain robustness to outliers?

$$p(\mathbf{y}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n | \mathbf{x}_n, \mathbf{w}) \mathcal{N}(\mathbf{w} | \mathbf{0}, \alpha^{-1} \mathbf{I})$$

Black-box variational inference: A few words on stochastic optimization

■ Suppose $q(w) = \mathcal{N}(w|\lambda, I)$ and $\log p(y, w) = -w^T w$ $J(\lambda) = \mathbb{E}_{q_{\lambda}}[\log p(y, w)] = \mathbb{E}_{q_{\lambda}}[-w^T w]$

■ Suppose $q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{\lambda}, \mathbf{I})$ and $\log p(\mathbf{y}, \mathbf{w}) = -\mathbf{w}^T \mathbf{w}$

$$J(\lambda) = \mathbb{E}_{q_{\lambda}}[\log p(\mathbf{y}, \mathbf{w})] = \mathbb{E}_{q_{\lambda}}[-\mathbf{w}^{T}\mathbf{w}]$$

 \blacksquare We optimize J using gradient ascent with step-size $\rho=0.1$

$$oldsymbol{\lambda}^{t+1} = oldsymbol{\lambda}^t +
ho \hat{oldsymbol{g}}(oldsymbol{\lambda}^t)$$

■ Suppose $q(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{\lambda}, \mathbf{I})$ and $\log p(\mathbf{y}, \mathbf{w}) = -\mathbf{w}^T \mathbf{w}$

$$J(\boldsymbol{\lambda}) = \mathbb{E}_{q_{\boldsymbol{\lambda}}}[\log p(\boldsymbol{y}, \boldsymbol{w})] = \mathbb{E}_{q_{\boldsymbol{\lambda}}}\left[-\boldsymbol{w}^T\boldsymbol{w}\right]$$

We optimize J using gradient ascent with step-size ho=0.1 $\lambda^{t+1}=\lambda^t+
ho\hat{g}(\lambda^t)$

Using the score function gradient estimator

$$\hat{g} = \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q_{\lambda}(\mathbf{w}_{s}) \log p(\mathbf{y}, \mathbf{w}_{s}) = \frac{1}{S} \sum_{s=1}^{S} 2(\mathbf{w}_{s} - \lambda) \mathbf{w}_{s}^{T} \mathbf{w}_{s}$$

where $m{w}_s \sim q_{m{\lambda}}(m{w})$

Gradient ascent does not converge with constant step size

- Gradient ascent does not converge with constant step size
- \blacksquare The number of samples S trades off gradient variance vs computational cost

Stochastic gradient descent (SGD)

■ The gradient ascent update with constant step-size n

$$oldsymbol{\lambda}^{t+1} = oldsymbol{\lambda}^t + \eta \hat{oldsymbol{g}}(oldsymbol{\lambda}^t)$$

 In stochastic gradient ascent the step-size is decreased in each iterations

$$oldsymbol{\lambda}^{t+1} = oldsymbol{\lambda}^t +
ho_t \eta \hat{oldsymbol{g}}(oldsymbol{\lambda}^t)$$

■ The *Robbins-Monro conditions* guarentees convergence in probability if the gradient estimator is unbiased (and under regularity conditions)

$$\sum_{t=1}^{\infty}
ho_t = \infty$$
 and

$$\sum_{t=1}^{\infty} \rho_t^2 \le \infty$$

■ Example: $\tau > 0$ and $\kappa \in (0.5, 1]$

$$\rho_t = (t + \tau)^{-\kappa}$$

Robbins & Monro (1951): A stochastic approximation method

A zoo of stochastic optimizers

- Many recent methods for stochastic optimization: Adam, RMSProp, AdaGrad, AdaDelta etc
- Several key ideas for faster and more robust optimization

Kingma & Ba (2014): Adam: A Method for Stochastic Optimization (70k+ citations in 2021, 170k+ today)

A zoo of stochastic optimizers

- Many recent methods for stochastic optimization: Adam, RMSProp, AdaGrad, AdaDelta etc
- Several key ideas for faster and more robust optimization
- Momentum: use gradient from previous iteration (rolling ball analogy)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$\lambda_{t+1} = \lambda_t + \eta m_t$$

A zoo of stochastic optimizers

- Many recent methods for stochastic optimization: Adam, RMSProp, AdaGrad, AdaDelta etc
- Several key ideas for faster and more robust optimization
- Momentum: use gradient from previous iteration (rolling ball analogy)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$\lambda_{t+1} = \lambda_t + \eta m_t$$

 Adaptive learning rates: Adaptive learning rate based on magnitude of gradient

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$
$$\lambda_{t+1} = \lambda_t + \eta \frac{m_t}{\sqrt{v_t} + \epsilon}$$

A zoo of stochastic optimizers

- Many recent methods for stochastic optimization: Adam, RMSProp, AdaGrad, AdaDelta etc
- Several key ideas for faster and more robust optimization
- Momentum: use gradient from previous iteration (rolling ball analogy)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$\lambda_{t+1} = \lambda_t + \eta m_t$$

 Adaptive learning rates: Adaptive learning rate based on magnitude of gradient

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$
$$\lambda_{t+1} = \lambda_t + \eta \frac{m_t}{\sqrt{v_t} + \epsilon}$$

 Individual learning: Each parameter is allowed to have it is adaptive learning rate

Kingma & Ba (2014): Adam: A Method for Stochastic Optimization (70k+ citations in 2021, 170k+ today)

A zoo of stochastic optimizers

- Many recent methods for stochastic optimization: Adam, RMSProp, AdaGrad, AdaDelta etc
- Several key ideas for faster and more robust optimization
- Momentum: use gradient from previous iteration (rolling ball analogy)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$\lambda_{t+1} = \lambda_t + \eta m_t$$

 Adaptive learning rates: Adaptive learning rate based on magnitude of gradient

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$
$$\lambda_{t+1} = \lambda_t + \eta \frac{m_t}{\sqrt{v_t} + \epsilon}$$

- Individual learning: Each parameter is allowed to have it is adaptive learning rate
- The ADAM optimizer combines all these ideas (along with a bias-correction) and is often a good first choice

Kingma & Ba (2014): Adam: A Method for Stochastic Optimization (70k+ citations in 2021, 170k+ today)

A zoo of stochastic optimizers

- Many recent methods for stochastic optimization: Adam, RMSProp, AdaGrad, AdaDelta etc
- Several key ideas for faster and more robust optimization
- Momentum: use gradient from previous iteration (rolling ball analogy)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$\lambda_{t+1} = \lambda_t + \eta m_t$$

 Adaptive learning rates: Adaptive learning rate based on magnitude of gradient

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$
$$\lambda_{t+1} = \lambda_t + \eta \frac{m_t}{\sqrt{v_t} + \epsilon}$$

- Individual learning: Each parameter is allowed to have it is adaptive learning rate
- The ADAM optimizer combines all these ideas (along with a bias-correction) and is often a good first choice

Kingma & Ba (2014): Adam: A Method for Stochastic Optimization (70k+ citations in 2021, 170k+ today)

Quiz time

Quiz time!

DTU Learn - Quiz - Lecture 12 - BBVI quiz

The re-parametrization trick: gradient estimator with lower variance

 Gradient estimators with lower variance leads to faster optimization, because higher variance requires smaller step-sizes. Often we can do better than the score function gradient

- Gradient estimators with lower variance leads to faster optimization, because higher variance requires smaller step-sizes. Often we can do better than the score function gradient
- If $q(w) = \mathcal{N}(w|m, V)$ is Gaussian and if $\epsilon \sim \mathcal{N}(0, I)$, then $w = m + L\epsilon \sim \mathcal{N}(w|m, V)$, where L is the Cholesky factorization (matrix square root) of $V = LL^T$.

- Gradient estimators with lower variance leads to faster optimization, because higher variance requires smaller step-sizes. Often we can do better than the score function gradient
- If $q(w) = \mathcal{N}(w|m, V)$ is Gaussian and if $\epsilon \sim \mathcal{N}(0, I)$, then $w = m + L\epsilon \sim \mathcal{N}(w|m, V)$, where L is the Cholesky factorization (matrix square root) of $V = LL^T$.
- We re-parametrize $m{w}$ as $m{w}_\epsilon = g(m{\lambda}, m{\epsilon}) = m{m} + m{L}m{\epsilon}$ $\nabla_{m{\lambda}} \mathbb{E}_{q_{m{\lambda}}(m{w})}[\log p(m{y}, m{w})]$

The re-parametrization trick: gradient estimator with lower variance

- Gradient estimators with lower variance leads to faster optimization, because higher variance requires smaller step-sizes. Often we can do better than the score function gradient
- If $q(w) = \mathcal{N}(w|m, V)$ is Gaussian and if $\epsilon \sim \mathcal{N}(0, I)$, then $w = m + L\epsilon \sim \mathcal{N}(w|m, V)$, where L is the Cholesky factorization (matrix square root) of $V = LL^T$.
- We re-parametrize w as $\mathbf{w}_{\epsilon} = \mathbf{g}(\lambda, \epsilon) = \mathbf{m} + \mathbf{L}\epsilon$

$$\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q_{\boldsymbol{\lambda}}(\boldsymbol{w})}[\log p(\boldsymbol{y}, \boldsymbol{w})] = \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\boldsymbol{\epsilon})}[\log p(\boldsymbol{y}, \boldsymbol{w}_{\boldsymbol{\epsilon}})]$$

(Re-parametrization)

The re-parametrization trick: gradient estimator with lower variance

- Gradient estimators with lower variance leads to faster optimization, because higher variance requires smaller step-sizes. Often we can do better than the score function gradient
- If $q(w) = \mathcal{N}(w|m, V)$ is Gaussian and if $\epsilon \sim \mathcal{N}(0, I)$, then $w = m + L\epsilon \sim \mathcal{N}(w|m, V)$, where L is the Cholesky factorization (matrix square root) of $V = LL^T$.
- We re-parametrize w as $\mathbf{w}_{\epsilon} = \mathbf{g}(\lambda, \epsilon) = \mathbf{m} + \mathbf{L}\epsilon$

$$\nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q_{\boldsymbol{\lambda}}(\boldsymbol{w})}[\log p(\boldsymbol{y}, \boldsymbol{w})] = \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{q(\boldsymbol{\epsilon})}[\log p(\boldsymbol{y}, \boldsymbol{w}_{\boldsymbol{\epsilon}})]$$

(Re-parametrization)

- Gradient estimators with lower variance leads to faster optimization, because higher variance requires smaller step-sizes. Often we can do better than the score function gradient
- If $q(w) = \mathcal{N}(w|m, V)$ is Gaussian and if $\epsilon \sim \mathcal{N}(0, I)$, then $w = m + L\epsilon \sim \mathcal{N}(w|m, V)$, where L is the Cholesky factorization (matrix square root) of $V = LL^T$.
- $\begin{tabular}{l} \blacksquare & \begin{tabular}{l} \begin{tabular}{l} \blacksquare & \begin{tabular}{l} \b$

- Gradient estimators with lower variance leads to faster optimization, because higher variance requires smaller step-sizes. Often we can do better than the score function gradient
- If $q(w) = \mathcal{N}(w|m, V)$ is Gaussian and if $\epsilon \sim \mathcal{N}(0, I)$, then $w = m + L\epsilon \sim \mathcal{N}(w|m, V)$, where L is the Cholesky factorization (matrix square root) of $V = LL^T$.
- $\begin{array}{l} \blacksquare \text{ We } \textit{re-parametrize } \textbf{\textit{w}} \text{ as } \textbf{\textit{w}}_{\epsilon} = g(\lambda, \epsilon) = \textbf{\textit{m}} + \textbf{\textit{L}}\epsilon \\ & \nabla_{\lambda} \mathbb{E}_{q_{\lambda}(\textbf{\textit{w}})}[\log p(\textbf{\textit{y}}, \textbf{\textit{w}})] = \nabla_{\lambda} \mathbb{E}_{q(\epsilon)}[\log p(\textbf{\textit{y}}, \textbf{\textit{w}}_{\epsilon})] \\ & = \nabla_{\lambda} \int q(\epsilon) \log p(\textbf{\textit{y}}, \textbf{\textit{w}}_{\epsilon}) \mathrm{d}\epsilon \\ & = \int q(\epsilon) \nabla_{\lambda} \log p(\textbf{\textit{y}}, \textbf{\textit{w}}_{\epsilon}) \mathrm{d}\epsilon \end{array} \qquad \text{(Def. of expectation)}$

- Gradient estimators with lower variance leads to faster optimization, because higher variance requires smaller step-sizes. Often we can do better than the score function gradient
- If $q(w) = \mathcal{N}(w|m, V)$ is Gaussian and if $\epsilon \sim \mathcal{N}(0, I)$, then $w = m + L\epsilon \sim \mathcal{N}(w|m, V)$, where L is the Cholesky factorization (matrix square root) of $V = LL^T$.
- We re-parametrize \mathbf{w} as $\mathbf{w}_{\epsilon} = g(\lambda, \epsilon) = \mathbf{m} + \mathbf{L}\epsilon$ $\nabla_{\lambda} \mathbb{E}_{q_{\lambda}(\mathbf{w})}[\log p(\mathbf{y}, \mathbf{w})] = \nabla_{\lambda} \mathbb{E}_{q(\epsilon)}[\log p(\mathbf{y}, \mathbf{w}_{\epsilon})] \qquad \qquad \text{(Re-parametrization)}$ $= \nabla_{\lambda} \int q(\epsilon) \log p(\mathbf{y}, \mathbf{w}_{\epsilon}) d\epsilon \qquad \qquad \text{(Def. of expectation)}$ $= \int q(\epsilon) \nabla_{\lambda} \log p(\mathbf{y}, \mathbf{w}_{\epsilon}) d\epsilon \qquad \qquad \text{(Leibniz' rule)}$ $= \mathbb{E}_{q(\epsilon)}[\nabla_{\lambda} \log p(\mathbf{y}, \mathbf{w}_{\epsilon})] \qquad \qquad \text{(Def. of expectation)}$

- Gradient estimators with lower variance leads to faster optimization, because higher variance requires smaller step-sizes. Often we can do better than the score function gradient
- If $q(w) = \mathcal{N}(w|m, V)$ is Gaussian and if $\epsilon \sim \mathcal{N}(0, I)$, then $w = m + L\epsilon \sim \mathcal{N}(w|m, V)$, where L is the Cholesky factorization (matrix square root) of $V = LL^T$.
- We re-parametrize \mathbf{w} as $\mathbf{w}_{\epsilon} = g(\lambda, \epsilon) = \mathbf{m} + \mathbf{L}\epsilon$ $\nabla_{\lambda} \mathbb{E}_{q_{\lambda}(\mathbf{w})}[\log p(\mathbf{y}, \mathbf{w})] = \nabla_{\lambda} \mathbb{E}_{q(\epsilon)}[\log p(\mathbf{y}, \mathbf{w}_{\epsilon})] \qquad \qquad \text{(Re-parametrization)}$ $= \nabla_{\lambda} \int q(\epsilon) \log p(\mathbf{y}, \mathbf{w}_{\epsilon}) \mathrm{d}\epsilon \qquad \qquad \text{(Def. of expectation)}$ $= \int q(\epsilon) \nabla_{\lambda} \log p(\mathbf{y}, \mathbf{w}_{\epsilon}) \mathrm{d}\epsilon \qquad \qquad \text{(Leibniz' rule)}$ $= \mathbb{E}_{q(\epsilon)}[\nabla_{\lambda} \log p(\mathbf{y}, \mathbf{w}_{\epsilon})] \qquad \qquad \text{(Def. of expectation)}$ $\approx \frac{1}{S} \sum_{i=1}^{S} \nabla_{\lambda} \log p(\mathbf{y}, \mathbf{w}_{\epsilon_{S}}) \qquad \text{where} \qquad \epsilon_{S} \sim q(\epsilon)$
- The re-parametrized gradient estimator requires the transformation g and p(y, w) to be differentiable, which rules out discrete variables.

Simple example revisited

Score function gradient estimator

Re-parametrized gradient estimator

- Comparison of the score function gradient estimator and the re-parametrized gradient estimator
- Using gradient ascent with fixed step-size for the purpose of illustration
- Score function is more general, but suffers from larger variance
- The re-parametrized gradient is less general and applies only to continuous variables, but has much lower variance

Reparametrized gradients

■ Many variational families can be re-parametrized

Target	$p(z;\theta)$	Base $p(\epsilon)$	One-liner $g(\epsilon; \theta)$
Exponential	$\exp(-x); x > 0$	$\epsilon \sim [0;1]$	$ln(1/\epsilon)$
Cauchy	$\frac{1}{\pi(1+x^2)}$	$\epsilon \sim [0;1]$	$tan(\pi\epsilon)$
Laplace	$\mathcal{L}(0;1) = \exp(- x)$	$\epsilon \sim [0; 1]$	$\ln(\frac{\epsilon_1}{\epsilon_2})$
Laplace	$\mathcal{L}(\mu;b)$	$\epsilon \sim [0; 1]$	$\mu - bsgn(\epsilon) \ln (1 - 2 \epsilon)$
Std Gaussian	$\mathcal{N}(0;1)$	$\epsilon \sim [0; 1]$	$\sqrt{\ln(\frac{1}{\epsilon_1})}\cos(2\pi\epsilon_2)$
Gaussian	$\mathcal{N}(\mu; RR^{\top})$	$\epsilon \sim \mathcal{N}(0;1)$	$\mu + R\epsilon$
Rademacher	$Rad(\frac{1}{2})$	$\epsilon \sim Bern(\tfrac{1}{2})$	$2\epsilon - 1$
Log-Normal	$\ln \mathcal{N}(\mu; \sigma)$	$\epsilon \sim \mathcal{N}(\mu;\sigma^2)$	$\exp(\epsilon)$
Inv Gamma	$iG(k;\theta)$	$\epsilon \sim \mathcal{G}(k;\theta^{-1})$	$\frac{1}{\epsilon}$

Shakir Mohamed: http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Black-box variational inference: Mini-batching for large scale inference

Assuming a model of the form

$$p(\boldsymbol{y}, \boldsymbol{w}) = \prod_{n=1}^{N} p(y_n | \boldsymbol{w}) p(\boldsymbol{w})$$

Assuming a model of the form

$$p(\mathbf{y}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n | \mathbf{w}) p(\mathbf{w})$$

■ Let $w^s \sim q_{\lambda}$ be samples from the variational approximation, then

$$\begin{split} \mathcal{L}\left[q\right] &\approx \frac{1}{S} \sum_{s=1}^{S} \left[\log p(\boldsymbol{y}, \boldsymbol{w}^{s}) \right] + \mathcal{H}\left[q\right] \\ &= \frac{1}{S} \sum_{s=1}^{S} \left[\sum_{n=1}^{N} \log p(y_{n}, \boldsymbol{w}^{s}) + \log p(\boldsymbol{w}^{s}) \right] + \mathcal{H}\left[q\right] \end{split}$$

Assuming a model of the form

$$p(\mathbf{y}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n | \mathbf{w}) p(\mathbf{w})$$

■ Let $\mathbf{w}^s \sim q_{\lambda}$ be samples from the variational approximation, then

$$\begin{split} \mathcal{L}\left[q\right] &\approx \frac{1}{S} \sum_{s=1}^{S} \left[\log p(\mathbf{y}, \mathbf{w}^{s})\right] + \mathcal{H}\left[q\right] \\ &= \frac{1}{S} \sum_{s=1}^{S} \left[\sum_{n=1}^{N} \log p(y_{n}, \mathbf{w}^{s}) + \log p(\mathbf{w}^{s}) \right] + \mathcal{H}\left[q\right] \end{split}$$

Evaluating the ELBO and its gradients becomes slow for large N

Assuming a model of the form

$$p(\mathbf{y}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n | \mathbf{w}) p(\mathbf{w})$$

■ Let $\mathbf{w}^s \sim q_{\lambda}$ be samples from the variational approximation, then

$$\mathcal{L}\left[q\right] \approx \frac{1}{S} \sum_{s=1}^{S} \left[\log p(\mathbf{y}, \mathbf{w}^{s})\right] + \mathcal{H}\left[q\right]$$
$$= \frac{1}{S} \sum_{s=1}^{S} \left[\sum_{n=1}^{N} \log p(y_{n}, \mathbf{w}^{s}) + \log p(\mathbf{w}^{s})\right] + \mathcal{H}\left[q\right]$$

- Evaluating the ELBO and its gradients becomes slow for large N
- lacktriangledown Mini-batching: Let $\mathcal M$ be a random sample of the data points of size $\mathcal M$, then the following is an unbiased estimator of the ELBO

$$\mathcal{L}[q] \approx \frac{1}{S} \sum_{s=1}^{S} \left[\frac{N}{M} \sum_{n \in \mathcal{M}} \log p(y_n, \mathbf{w}^s) + \log p(\mathbf{w}^s) \right] + \mathcal{H}[q]$$

Assuming a model of the form

$$p(\boldsymbol{y}, \boldsymbol{w}) = \prod_{n=1}^{N} p(y_n | \boldsymbol{w}) p(\boldsymbol{w})$$

lacktriangle Let $oldsymbol{w}^s \sim q_{oldsymbol{\lambda}}$ be samples from the variational approximation, then

$$\mathcal{L}\left[q\right] \approx \frac{1}{S} \sum_{s=1}^{S} \left[\log p(\mathbf{y}, \mathbf{w}^{s})\right] + \mathcal{H}\left[q\right]$$

$$= \frac{1}{S} \sum_{s=1}^{S} \left[\sum_{n=1}^{N} \log p(y_{n}, \mathbf{w}^{s}) + \log p(\mathbf{w}^{s})\right] + \mathcal{H}\left[q\right]$$

- Evaluating the ELBO and its gradients becomes slow for large N
- lacktriangledown Mini-batching: Let $\mathcal M$ be a random sample of the data points of size $\mathcal M$, then the following is an unbiased estimator of the ELBO

$$\mathcal{L}[q] \approx \frac{1}{S} \sum_{s=1}^{S} \left[\frac{N}{M} \sum_{n \in M} \log p(y_n, \mathbf{w}^s) + \log p(\mathbf{w}^s) \right] + \mathcal{H}[q]$$

We can use the same ideas to speed up the calculations of the gradients, but the price is increased variance

Summary

DTU

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. the re-parametrized gradient

lacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ oldsymbol{m}_1, \log oldsymbol{v}_1 \}$

Summary

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. the re-parametrized gradient

- \blacksquare Initialize variational parameters $\pmb{\lambda}_1 = \{\pmb{m}_1, \log \pmb{v}_1\}$
- For iteration t = 1, ..., T (or until convergence)

Summary

DTU

Putting everything together

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. the re-parametrized gradient

- \blacksquare Initialize variational parameters $\pmb{\lambda}_1 = \{\pmb{m}_1, \log \pmb{v}_1\}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\epsilon_s \sim \mathcal{N}(\epsilon|\mathbf{0}, \mathbf{I})$ for $s=1,\ldots,S$

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. the re-parametrized gradient

- \blacksquare Initialize variational parameters $\pmb{\lambda}_1 = \{\pmb{m}_1, \log \pmb{v}_1\}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\epsilon_s \sim \mathcal{N}(\epsilon | \mathbf{0}, \mathbf{I})$ for $s = 1, \dots, S$
 - 2. Estimate ELBO (use mini-batching if necessary)

$$\hat{\mathcal{L}}\left[q
ight] = rac{1}{S} \sum_{s=1}^{S} \log p(\mathbf{y}, \mathbf{w}_{\epsilon_{S}}) + \mathcal{H}\left[q
ight], \qquad ext{where} \quad \mathbf{w}_{\epsilon_{S}} = \mathbf{m}_{t} + \mathbf{L}_{t} \epsilon_{s}$$

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. the re-parametrized gradient

- \blacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ oldsymbol{m}_1, \log oldsymbol{v}_1 \}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\epsilon_s \sim \mathcal{N}(\epsilon | \mathbf{0}, \mathbf{I})$ for $s = 1, \dots, S$
 - 2. Estimate ELBO (use mini-batching if necessary)

$$\hat{\mathcal{L}}\left[q\right] = \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}_{\epsilon_{S}}) + \mathcal{H}\left[q\right], \qquad \text{where} \quad \boldsymbol{w}_{\epsilon_{S}} = \boldsymbol{m}_{t} + \boldsymbol{L}_{t} \epsilon_{s}$$

3. Estimate gradient (use mini-batching if necessary)

$$abla_{oldsymbol{\lambda}} \hat{\mathcal{L}}\left[q
ight] pprox rac{1}{S} \sum_{s=1}^{S}
abla_{oldsymbol{\lambda}} \log p(oldsymbol{y}, oldsymbol{w}_{\epsilon_{S}}) +
abla_{oldsymbol{\lambda}} \mathcal{H}\left[q
ight]$$

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. the re-parametrized gradient

- \blacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ oldsymbol{m}_1, \log oldsymbol{v}_1 \}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\epsilon_s \sim \mathcal{N}(\epsilon | \mathbf{0}, \mathbf{I})$ for $s = 1, \dots, S$
 - 2. Estimate ELBO (use mini-batching if necessary)

$$\hat{\mathcal{L}}\left[q\right] = \frac{1}{S} \sum_{s=1}^{S} \log p(\mathbf{y}, \mathbf{w}_{\epsilon_{S}}) + \mathcal{H}\left[q\right], \qquad \text{where} \quad \mathbf{w}_{\epsilon_{S}} = \mathbf{m}_{t} + \mathbf{L}_{t} \epsilon_{s}$$

3. Estimate gradient (use mini-batching if necessary)

$$abla_{m{\lambda}}\hat{\mathcal{L}}\left[q
ight]pproxrac{1}{S}\sum_{s=1}^{S}
abla_{m{\lambda}}\log p(m{y},m{w}_{\epsilon_{S}})+
abla_{m{\lambda}}\mathcal{H}\left[q
ight]$$

4. Update variational parameters to get $\lambda_{t+1} = \{ m_{t+1}, \log v_{t+1} \}$ using gradient estimate

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. the re-parametrized gradient

- \blacksquare Initialize variational parameters $\pmb{\lambda}_1 = \{\pmb{m}_1, \log \pmb{v}_1\}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\epsilon_s \sim \mathcal{N}(\epsilon|\mathbf{0}, \mathbf{I})$ for $s=1,\ldots,S$
 - 2. Estimate ELBO (use mini-batching if necessary)

$$\hat{\mathcal{L}}\left[q\right] = \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}_{\epsilon_{S}}) + \mathcal{H}\left[q\right], \qquad \text{where} \quad \boldsymbol{w}_{\epsilon_{S}} = \boldsymbol{m}_{t} + \boldsymbol{L}_{t} \epsilon_{s}$$

3. Estimate gradient (use mini-batching if necessary)

$$abla_{oldsymbol{\lambda}} \hat{\mathcal{L}}\left[q
ight] pprox rac{1}{S} \sum_{s=1}^{S}
abla_{oldsymbol{\lambda}} \log p(oldsymbol{y}, oldsymbol{w}_{\epsilon_{S}}) +
abla_{oldsymbol{\lambda}} \mathcal{H}\left[q
ight]$$

- 4. Update variational parameters to get $\lambda_{t+1} = \{ m_{t+1}, \log v_{t+1} \}$ using gradient estimate
- Predictions & model checking: Evaluate training error, validation errors etc

Given a model and variational family (e.g. mean-field Gaussians)

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}),$$
 $q(\mathbf{w}) = \prod_{i=1}^{D} \mathcal{N}(w_i|m_i, v_i)$

Black-box variational inference w. the re-parametrized gradient

- lacksquare Initialize variational parameters $oldsymbol{\lambda}_1 = \{ oldsymbol{m}_1, \log oldsymbol{v}_1 \}$
- For iteration t = 1, ..., T (or until convergence)
 - 1. Generate samples $\epsilon_s \sim \mathcal{N}(\epsilon|\mathbf{0}, \mathbf{\textit{I}})$ for $s=1,\ldots,S$
 - 2. Estimate ELBO (use mini-batching if necessary)

$$\hat{\mathcal{L}}\left[q\right] = \frac{1}{S} \sum_{s=1}^{S} \log p(\boldsymbol{y}, \boldsymbol{w}_{\epsilon_{S}}) + \mathcal{H}\left[q\right], \qquad \text{where} \quad \boldsymbol{w}_{\epsilon_{S}} = \boldsymbol{m}_{t} + \boldsymbol{L}_{t} \epsilon_{s}$$

3. Estimate gradient (use mini-batching if necessary)

$$abla_{m{\lambda}}\hat{\mathcal{L}}\left[q
ight]pproxrac{1}{S}\sum_{\epsilon=1}^{S}
abla_{m{\lambda}}\log p(m{y},m{w}_{\epsilon_{S}})+
abla_{m{\lambda}}\mathcal{H}\left[q
ight]$$

- 4. Update variational parameters to get $\lambda_{t+1} = \{ m_{t+1}, \log v_{t+1} \}$ using gradient estimate
- Predictions & model checking: Evaluate training error, validation errors etc
- Go back and refine model if needed