Trig Final (Practice v34)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 3.3 radians. The arc length is 68 meters. How long is the radius in meters?

Question 2

Consider angles $\frac{-7\pi}{3}$ and $\frac{9\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-7\pi}{3}\right)$ and $\cos\left(\frac{9\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(-7\pi/3)$

Find $cos(9\pi/4)$

Question 3

If $\sin(\theta) = \frac{21}{29}$, and θ is in quadrant II, determine an exact value for $\cos(\theta)$.

Question 4

A mass-spring system oscillates vertically with an amplitude of 3.15 meters, a frequency of 7.25 Hz, and a midline at y = -4.67 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).