

Unidade Universitária:				
FACULDADE DE COMPUTAÇÃO E INFORMÁTICA				
Curso:			Núcleo Temático:	
CIÊNCIA DA COMPUTAÇÃO			ALGORITMOS E	
			PROGRAMAÇÃO	
Disciplina:			Código da Disciplina:	
ESTRUTURA DE DADOS II			ENEC	
Professor(es):		DRT:	Etapa:	
ANDRE KISHIMOTO		115671-9	04	
JEAN MARCOS LAINE		115337-7		
THIAGO GRAZIANI TRAUE		117213-8		
Carga horária:	(02) Sala de Aula		Semestre Letivo:	
4 h/a	(02) Laboratório		1º Semestre/2024	

Ementa:

Estudo das estruturas de dados não-lineares (árvores binárias, heaps, árvores B, tabelas de dispersão, mapas e dicionários) e suas aplicações. Análise assintótica de operações em estruturas de dados não lineares. Prática de implementação de estruturas de dados não-lineares com linguagem orientada a objetos.

Objetivos:

Fatos e Conceitos	Procedimentos e Habilidades	Atitudes, Normas e Valores
 Continuar o estudo de Tipos Abstratos de Dados (TAD), agora com enfoque em estruturas de dados não-lineares (árvores, tabelas de hashing, mapas, dicionários e conjuntos). Praticar com implementação e aplicação de estruturas de dados não lineares em C++ para resolução eficiente de problemas. 	 Identificar a estrutura de dados adequada para a resolução de problemas. Saber o correto uso das estruturas de dados estudadas e sua eficiência em termos de tempo e espaço. 	 Ampliar a habilidade de solução de problemas. Estabelecer um caráter crítico na resolução de problemas de forma eficiente.

Conteúdo Programático:

0. Apresentação do Plano de Ensino e dos pré-requisitos

0.1. Breve revisão das estruturas de dados lineares

1. Árvores

- 1.1. Conceitos Gerais
- 1.2. Tipos de Árvores
- 1.3. Aplicações

2. Árvores Binárias

- 2.1. Conceitos
- 2.2. Operações Básicas: Inserção, Remoção, Busca etc
- 2.3. Análise de Desempenho da Estrutura e de suas Operações
- 2.4. Aplicações

3. Árvores Binárias de Busca

- 3.1. Conceitos
- 3.2. Operações Básicas: Inserção, Remoção, Busca etc
- 3.3. Análise de Desempenho da Estrutura e de suas Operações
- 3.4. Aplicações

4. Árvores AVL

- 4.1. Conceitos
- 4.2. Operações Básicas: Inserção, Remoção, Busca etc
- 4.3. Análise de Desempenho da Estrutura e de suas Operações
- 4.4. Aplicações

5. Árvores B

- 5.1. Conceitos
- 5.2. Operações Básicas: Inserção, Remoção, Busca etc
- 5.3. Análise de Desempenho da Estrutura e de suas Operações
- 5.4. Aplicações

6. Tabela de Dispersão

- 6.1. Conceitos
- 6.2. Operações Básicas: Inserção, Remoção, Busca etc
- 6.3. Análise de Desempenho da Estrutura e de suas Operações
- 6.4. Aplicações

7. Mapas

- 7.1. Conceitos
- 7.2. Operações Básicas: Inserção, Remoção, Busca etc
- 7.3. Análise de Desempenho da Estrutura e de suas Operações
- 7.4. Aplicações

Metodologia:

- Aula expositiva dialogada
- Aula prática de laboratório
- Exercícios teóricos e práticos

Critério de Avaliação:

Nota do 1º bimestre (N1) composta de:

- Prova parcial I (PP1) escrita, individual e sem consulta (70%)
- Atividades práticas de laboratório (Lab1) (30%)

$$N1 = ((PP1 * 7) + (Lab1 * 3)) / 10$$

Nota do 2º bimestre (N2) composta de:

- Prova parcial II (PP2) escrita, individual e sem consulta (70%)
- Atividades práticas de laboratório (Lab2) (30%)

$$N2 = ((PP2 * 7) + (Lab2 * 3)) / 10$$

Média intermediária (MI) do semestre: MI = (N1 + N2) / 2 + NP

Nota de participação (NP): **até 0,5 ponto** – nota referente à Prova Integrada – definido como obrigatório pela UPM.

Critérios de Aprovação:

Conforme regulamento acadêmico vigente.

Bibliografia Básica:

GOODRICH, M. T.; TAMASSIA, R., MOUNT, M.N. **Data Structures and Algorithms in C++. 2.ed**. New Yok: Wiley, 2011.

SZWARCFITER, J.L.; MARKENZON, L. Estruturas de Dados e seus Algoritmos. 3ª. ed. Rio de Janeiro: LTC, 2010.

ZIVIANI, N. **Projeto de Algoritmos: Com Implementações em Java e C++**. São Paulo: Cengage Learning, 2011.

Bibliografia Complementar:

ASCENCIO, A. F. G.; ARAÚJO, G. S. **Estrutura de dados: algoritmos, análise da complexidade e implementações em Java e C/C++**. São Paulo: Pearson Education do Brasil, 2011.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, L.R. **Introduction to algorithms**. Cambridge: The MIT Press, 2000.

FEOFILOFF, P. Algoritmos em linguagem C. Rio de Janeiro: Elsevier, Campus, 2009.

PUGA, S.; RISSETTI, G. Lógica de programação e estrutura de dados: com aplicações em Java. 2ª ed. São Paulo: Pearson, 2010.

VILLAS, M. V. Estruturas de dados: conceitos e técnicas de implementação. Rio de Janeiro: Campus, 2002.