Quicksort

- Quicksort is more widely used than any other sort.
- Quicksort is well-studied, not difficult to implement, works well on a variety of data, and consumes fewer resources that other sorts in nearly all situations.
- Quicksort is O(n*log n) time, and O(log n) additional space due to recursion.

Partitioning Array

Given a pivot, partition the elements of the array such that the resulting array consists of:

- 1. One sub-array that contains elements >= pivot
- 2. Another sub-array that contains elements < pivot

The sub-arrays are stored in the original data array.

Partitioning loops through, swapping elements below/above pivot.

Example

We are given array of n integers to sort:

40 20 10 80 60 50 7 30 100	40	20	10	80	60	50	7	30	100
--	----	----	----	----	----	----	---	----	-----

Pick Pivot Element

There are a number of ways to pick the pivot element. In this example, we will use the first element in the array:

40	20	10	80	60	50	7	30	100
----	----	----	----	----	----	---	----	-----

Partitioning Array

Given a pivot, partition the elements of the array such that the resulting array consists of:

- 1. One sub-array that contains elements >= pivot
- 2. Another sub-array that contains elements < pivot

The sub-arrays are stored in the original data array.

Partitioning loops through, swapping elements below/above pivot.

1. While data[too_big_index] <= data[pivot] ++too_big_index

1. While data[too_big_index] <= data[pivot] ++too_big_index

1. While data[too_big_index] <= data[pivot] ++too_big_index

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- → 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- → 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- → 4. While too_small_index > too_big_index, go to 1.

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot]--too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- → 1. While data[too_big_index] <= data[pivot] ++too_big_index
 - 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- → 2. While data[too_small_index] > data[pivot] --too_small_index
 - 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- → 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
 - 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- → 4. While too_small_index > too_big_index, go to 1.

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot]--too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.
- → 5. Swap data[too_small_index] and data[pivot_index]

- 1. While data[too_big_index] <= data[pivot] ++too_big_index
- 2. While data[too_small_index] > data[pivot] --too_small_index
- 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
- 4. While too_small_index > too_big_index, go to 1.
- → 5. Swap data[too_small_index] and data[pivot_index]

Partition Result

Recursion: Quicksort Subarrays

- Assume that keys are random, uniformly distributed.
- What is best case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays of size n/2
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(log₂n)
 - Number of accesses in partition? O(n)

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?

Quicksort: Worst Case

- Assume first element is chosen as pivot.
- Assume we get array that is already in order:

- Assume that keys are random, uniformly distributed.
- Best case running time: O(n log₂n)
- Worst case running time?
 - Recursion:
 - 1. Partition splits array in two sub-arrays:
 - one sub-array of size 0
 - the other sub-array of size n-1
 - 2. Quicksort each sub-array
 - Depth of recursion tree? O(n)
 - Number of accesses per partition? O(n)

- Assume that keys are random, uniformly distributed.
- Best case running time: $O(n \log_2 n)$
- Worst case running time: O(n²)!!!