

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Измерение моментов инерции твердых тел с помощью трифилярного подвеса

Работа №1.2.3; дата: 06.12.21

Семестр: 1

1. Аннотация

В данной работе рассматривается так называемый трифилярный подвес, который представляет собой подвешенную на трех тросах платформу. При помощи возбуждения и последующего анализа крутильных колебаний этой платформы можно экспериментально определять моменты инерции тел сложной геометрии.

Цель работы: Измерение момента инерции ряда тел и сравнение результатов с расчетами по теоретическим формулам; проверка аддитивности моментов инерции и справедливости теоремы Гюйгенса-Штейнера.

В работе используются: трифилярный подвес, счетчик числа колебаний, набор тел для измерений (толстостенное кольцо, цилиндр из двух половинок, "крышка брусок).

2. Теоретические сведения

Def 1 (Момент инерции). Моментом инерции тела называется мера его инертности при вращательном движении. Для материальной точки, находящейся на расстоянии ρ от оси вращения $J = m\rho^2$. Соответственно, для протяженного тела формула принимает вид:

$$J = \int_{m} \rho^2 \mathrm{d}m$$

Согласно определению, прямым интегрированием можно получить формулы для некоторых из исследуемых тел, приведем их без вывода.

St 1 (Моменты инерции некоторых тел).

1) Толстостенное кольцо с внешним радиусом R, внуренним радиусом r, массой m относительно оси, проходящей перпендикулярно плоскости кольца через его центр:

$$J = \frac{m(R^2 + r^2)}{2}$$

2) Цилиндр радиуса R и массой т относительно оси, проходящей перпендикулярно плоскости цилиндра через его центр:

$$J = \frac{mR^2}{2}$$

3) Брусок измерениями w, d, h и массой т относительно оси, проходящей перпендикулярно плоскости измерений w и d через геометрический центр сечения:

$$J = \frac{m(w^2 + d^2)}{12}$$

В ходе работы необходимо проверить теорему Гюйгенса-Штейнера, итак, сформулируем ее.

Th 1 (Гюйгенса-Штейнера). Рассмотрим некоторое тело массой т. Пусть O - некоторая ось, проходящая через его центр масс, относительно которой тело имеет момент инерции J_0 . Возьмем некоторую ось O', парамельную оси O и находящуюся на расстоянии d от нее. Тогда момент инерции тела относительно оси O' может быть представлен в виде:

$$J = J_0 + md^2$$

3. Экспериментальная установка

Рис. 1: Трифилярный подвес

Данное устройство состоит из укрепленной на некоторой высоте неподвижной платформы P, и подвешенной на симметрично расположенных нитях AA', BB' и CC' вращающейся платформы P'.

Платформа P снабжена находится на роторе электродвигателя, закрепленного на потолке, при помощи которого можно возбудить крутильные колебания в системе платформ.

После того, как платформа P поворачивается на некоторый угол φ (при этом платформа P' приподнимается) в системе возникает вращающий момент, стремящийся вернуть систему в изначальное положение равновесия. При этом можно записать закон сохранения энергии, если пренебречь (малым) трением о воздух:

$$\frac{J\dot{\varphi}}{2} + mg(z_0 - z) = E = \text{const}$$

Здесь J - момент инерции платформы P' вместе с исследуемым телом, m - масса платформы P' вместе с исследуемым телом, z_0 - координата z платформы P' в положении равновесия, z - координата платформы P' при повороте платформы P на угол φ .

Воспользуемся системой координат, изображенной на рисунке. Координаты точки подвеса одной из нитей C(r,0,0). Нижний конец этой нити C' имеет координаты $(R,0,z_0)$ в положении равновесия, а при повороте P на угол φ переходит в C'' с координатами $(R\cos\varphi,R\sin\varphi,z)$. Тогда расстояние между точками C и C'' равно длине нити L:

$$(R\cos\varphi - r)^2 + R^2\sin^2\varphi + z^2 = L^2$$

Учтем малость крутильных колебаний, при этом $\cos \varphi \approx 1 - \varphi^2/2$:

$$z^{2} = L^{2} - R^{2} - r^{2} + 2Rr\cos\varphi = z_{0}^{2} - 2Rr(1 - \cos\varphi) \approx z_{0}^{2} - 2Rr\varphi^{2}$$

Таким образом:

$$z \approx \sqrt{z_0^2 - 2Rr\varphi} = z_0\sqrt{1 - \frac{2Rr\varphi^2}{z_0^2}} \approx z_0 - \frac{Rr\varphi^2}{2z_0}$$

Подставим данное значение z в уравнение закона сохранения энергии, продифференцируем по времени и сократим на $\dot{\varphi}$. Таким образом и получаем уравнение малых крутильных колебаний нашей системы:

$$\ddot{\varphi} + \frac{mgRr}{Jz_0}\varphi = 0$$

Период этих колебаний, как видно из предыдущего уравнения, равен:

$$T = 2\pi \sqrt{\frac{Jz_0}{mgRr}}$$

То есть можно выразить момент инерции через период:

$$J = \frac{mgRrT^2}{4\pi^2 z_0}$$

Учитывая, что параметры установки в ходе опыта неизменны, можно ввести коэффициент пропорциональности $k=\frac{gRr}{4\pi^2z_0}$, не зависящий от исследуемого тела:

$$J = kmT^2$$

Таким образом, получена формула для определения момента инерции исследуемого тела вместе с подвижной платформой в допущении малости потерь энергии, что, в сущности означает, что период колебаний $T \ll \tau_{1/2}$ времени полузатухания колебаний.

Для счета числа колебаний используется электронный счетчик, состоящий из оптопары (2-3) и собственно счетчика 1. Лепесток, укрепленный на платформе, дважды за период пресекает луч оптопары, что и регистрирует счетчик.

4. Проведение эксперимента

Оценка необходимого времени измерения

Проведем измерение с ненагруженной платформой, по нему рассчитаем необходимое время проведения эксперимента, чтобы считать относительную погрешность не превыщающей 0.5%.

	i, номер	1	2	3	4	5	6	7	8
Ì	20T, c	86.593	86.574	86.571	86.583	86.571	86.410	86.595	86.415

Табл. 1: Пробное измерение

Тогда рассчитаем необходимое время измерений:

$$t = \frac{\varepsilon_t}{\varepsilon_t} \approx 20 \text{ c}$$

Измерение времени затухания колебаний

Измерим время затухания амплитуды колебаний в два раза. Точное время определить проблематично, поэтому приведем приблизительное значение:

$$\tau_{1/2} \approx 320 \text{ c}$$

Таким образом, полученные формулы действительно справедливы, так как все периоды окажутся много меньше.

Диапазон амплитуд колебаний

Рабочий диапазон амплитуд колебаний напрямую определяется областью применимости теоретических формул. Приблизительное значение $\varphi_{max}=10^{\circ}$.

Экспериментальное измерение моментов инерции тел

Вначале составим таблицу параметров системы и вычислим необходимый коэффициент k.

R, mm	r, MM	m, г	z_0 , M	k , $\mathrm{m}^2/\mathrm{c}^2$
114.6 ± 0.5	30.5 ± 0.3	1012.5 ± 0.5	2.152 ± 0.005	$(4.03 \pm 0.18) \cdot 10^{-4}$

Табл. 2: Параметры подвеса

Пустая платформа

Для пустой платформы запишем таблицу измерений:

i	T, c	т, г
1	4.330 ± 0.004	
2	4.329 ± 0.004	
3	4.329 ± 0.004	
4	4.329 ± 0.004	1012.5 ± 0.5
5	4.329 ± 0.004	1012.0 ± 0.0
6	4.321 ± 0.004	
7	4.330 ± 0.004	
8	4.321 ± 0.004	

Табл. 3: Измерение пустой платформы

Тогда усредним период и рассчитаем момент инерции:

$$T = 4.327 \pm 0.004 \text{ c}$$

$$J_0 = (7.64 \pm 0.34) \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

Толстостенное кольцо

Для толстостенного кольца запишем таблицу измерений:

T, c	R, mm	r, MM	т, г	m_{Σ} , г	J_{Σ} , кг · м ²
4.112 ± 0.021	81.0 ± 0.1	74.5 ± 0.2	1049.8 ± 0.1	2262.3 ± 0.6	$(1.41 \pm 0.06) \cdot 10^{-2}$

Табл. 4: Измерение толстостенного кольца

Таким образом, получаем:

$$J_{\rm K} = J_{\Sigma} - J_0 = (6.46 \pm 0.72) \cdot 10^{-3} \; {\rm K} {\rm \Gamma} \cdot {\rm M}^2$$

Данное значение отлично совпадает с теоретическим значением момента инерции:

$$\tilde{J}_{\rm k} = (6.36 \pm 0.01) \cdot 10^{-3} \ {\rm kg \cdot m^2}$$

Этот факт подтверждает аддитивность моментов инерции.

Цилиндр (из половинок)

Для цилиндра запишем таблицу измерений:

T, c	т, г	m_{Σ} , г	J_{Σ} , кг \cdot м ²
3.082 ± 0.015	1416.7 ± 0.1	2429.2 ± 0.6	$9.32 \pm 0.43 \cdot 10^{-3}$

Табл. 5: Измерение цилиндра

Тогда:

$$J_{\text{цил}} = J_{\Sigma} - J_0 = (2.96 \pm 0.55) \cdot 10^{-3} \text{ кг} \cdot \text{м}^2$$

Крышка

Для крышки запишем таблицу измерений:

T, c	т, г	m_{Σ} , г	J_{Σ} , kg·m ²
3.892 ± 0.019	589.6 ± 0.1	1602.1 ± 0.6	$(9.81 \pm 0.45) \cdot 10^{-3}$

Табл. 6: Измерение крышки

Тогда:

$$J_{\text{kp}} = J_{\Sigma} - J_0 = (2.17 \pm 0.56) \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

Брусок

Для бруска запишем таблицу измерений:

T, c	m, г	m_{Σ} , г	J_{Σ} , кг · м ²
3.688 ± 0.018	1206.1 ± 0.1	2218.6 ± 0.6	$(1.22 \pm 0.05) \cdot 10^{-2}$

Табл. 7: Измерение бруска

Тогда:

$$J_{\mathrm{6p}} = J_{\Sigma} - J_{0} = (4.56 \pm 0.60) \cdot 10^{-3} \; \mathrm{kr} \cdot \mathrm{m}^{2}$$

Проверка теоремы Гюйгенса-Штейнера

Для проверки воспользуемся разрезанным пополам цилиндром. Будем раздвигать половинки и измерять соответствующие моменты инерции. Построим график зависимости $J(h^2)$. То есть, зависимость должна быть линейной с коэффициентом, равным массе цилиндра.

h, мм	T, c	$J_{\Sigma} \cdot 10^3$, кг · м ²
0	3.080 ± 0.001	9.31 ± 0.41
5	3.091 ± 0.001	9.37 ± 0.42
10	3.105 ± 0.001	9.46 ± 0.42
15	3.129 ± 0.001	9.61 ± 0.43
20	3.174 ± 0.001	9.88 ± 0.44
25	3.214 ± 0.001	10.13 ± 0.45
30	3.286 ± 0.001	10.60 ± 0.47
35	3.346 ± 0.001	10.99 ± 0.49
40	3.428 ± 0.001	11.52 ± 0.51
45	3.509 ± 0.001	12.08 ± 0.54
50	3.606 ± 0.001	12.76 ± 0.57

Табл. 8: Построение графика $J_{\Sigma}(h^2)$

Рис. 2: График зависимости $J(h^2)$

Итак, график подтверждает наш вывод о характере данной зависимости. Через МНК получим значение коэффициента наклона и значение в нуле:

$$k_J=1.373\pm0.100$$
 кг $J_{0\,\Sigma}=(9.32\pm0.01)\cdot10^{-3}\cdot10^{-3}$ кг \cdot м 2

Таким образом, данные коэффициенты подтверждают теорему Гюйгенса-Штейнера, так как k_J совпадает с массой цилиндра в пределах половины стандартного отклонения, а $J_{0\Sigma}$ совпадает с суммарным моментом инерции платформы и цилиндра в пределах стандартного отклонения.

5. Выводы

В работе произведено измерение моментов инерции ряда тел:

- 1) Толстостенное кольцо $J_{\mbox{\tiny K}} = (6.46 \pm 0.72) \cdot 10^{-3} \ \mbox{K}\mbox{\Gamma} \cdot \mbox{M}^2$
- 2) Цилиндр (из половинок) $J_{\rm цил} = (2.96 \pm 0.55) \cdot 10^{-3} \ {\rm kr \cdot m^2}$
- 3) Крышка $J_{\rm kp} = (2.17 \pm 0.56) \cdot 10^{-3} \; {\rm kf \cdot m^2}$
- 4) Брусок $J_{\rm 6p} = (4.56 \pm 0.60) \cdot 10^{-3} \ {\rm kg \cdot m^2}$

На примере кольца результат сверен с теоретической оценкой, полученной путем вывода формулы прямым интегрированием. Результаты совпадают с точностью значительно меньшей величины стандартного отклонения, поэтому считаю результаты удовлетворительными.

Также это значение для кольца подтверждает аддитивность моментов инерции, поскольку значение момента инерции кольца получено именно в допущении, что моменты инерции аддитивны.

Отдельно выделим экспериментальное подверждение теоремы Гюйгенса-Штейнера, которое также получено с весьма хорошей точностью.