PRIMITIVES DE FONCTIONS USUELLES

Dans ce tableau F est une primitive de f.

	f(ax) $[g(x)]$			~	X X	Ů	2	arcs	агсо	arct	агсс	arcs	arcc	arcta	arcc	ZX	a ² -
F(x)	F[g(x)] In $ g(x) $	ax	x u	$\frac{2}{3} x \sqrt{x}$	$\frac{-1}{(n-1)x^{n-1}} (n = 1)$	$x(\ln x - 1)$	$x(\log_a x - \log_a e)$	- cos x	sin x	- In cos x	In sin x	cosh x	sinh x	In cosh x	In sinh x	$\frac{1}{a-b} \ln \left \frac{x-a}{x-b} \right (a \neq b)$	$\frac{1}{a}\arctan\frac{x}{a} (a = 0)$
f(x)	$f[g(x)]g'(x)$ $\frac{g'(x)}{g(x)}$	a	- 1 x	1/x	$\frac{1}{x^n}$	ln x	$\log_a x$	sin x	x soo	tan x	cot x	x quis	cosh x	tanh x	coth x	$\frac{1}{(x-a)(x-b)}$	$\frac{1}{a^2 + x^2}$

<i>x</i>)	(a = 0)		(m = -1)	3 America (1.0 America) (1.0 A	- 000tt (1889-)454	$\frac{-bc}{2}$ $\ln cx+d $			$\sqrt{1-x^2}$	$\sqrt{1-x^2}$	$\frac{1}{2}\ln(1+x^2)$	$\frac{1}{2}\ln(1+x^2)$	$\sqrt{x^2 + 1}$	$\sqrt{x^2 - 1}$	$\frac{1}{2}\ln(1-x^2)$	$\frac{1}{2}\ln(x^2-1)$		
F(x)	$\frac{1}{a}F(ax+b)$	$\frac{\left[g(x)\right]^{a+1}}{a+1}$	$\frac{x^{m+1}}{m+1}$	×	$2\sqrt{x}$	$\frac{ax+b}{c} - \frac{ad-c}{c}$	٠ ×	$\frac{a^x}{\ln a}$	$x \arcsin x + 1$	x arccos x -	x arctan x -	x arccot x +	x arcsinh x -	x arccosh x -	x arctanh x +	x arccoth x +	$\frac{1}{2a} \ln \left \frac{x - a}{x + a} \right $	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $
f(x)	f(ax+b)	$[g(x)]^a g'(x)$	wX	- 12	- 1 <u>x</u>	$\frac{ax+b}{cx+d}$	e, X	a^{x}	arcsin x	arccos x	arctan x	arccot x	arcsinh x	arccosh x	arctanh x	arccoth x	$\frac{1}{x^2 - a^2}$	$\frac{1}{a^2 - x^2}$

Primitives (suite)

F(x)	$\ln x+\sqrt{x^2-a^2} $	$\frac{x}{a}$ arcsin $\frac{x}{a}$	$\ln(x+\sqrt{x^2+a^2})$	- cot x	tan <i>x</i>	$\frac{x}{2}$	$\ln\left \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right $	$-\cot\left(\frac{x}{2}-\frac{\pi}{4}\right)$	$-\cot\frac{x}{2}$	$\left(\frac{1}{-x} - \frac{1}{z}\right) e^{ax}$,	$\frac{x^2}{2}\ln(ax) - \frac{x^2}{4}$		
f(x)	$\frac{1}{\sqrt{x^2-a^2}}$	$\frac{1}{\sqrt{a^2-x^2}}$	$\frac{1}{\sqrt{x^2 + a^2}}$	$\frac{1}{\sin^2 x}$	$\frac{1}{\cos^2 x}$	$\frac{1}{\sin x}$	$\frac{1}{\cos x}$	$\frac{1}{1-\sin x}$	$\frac{1}{1-\cos x}$	x e _{ax}			X III (aX)	
F(x)	$\frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2} \ln x + \sqrt{x^2 - a^2} $	$\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\arcsin\frac{x}{a}$	$\frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}\ln(x + \sqrt{x^2 + a^2})$	$\frac{1}{2}(x - \sin x \cos x)$	$\frac{1}{2}(x + \sin x \cos x)$	$\tan x - x$	$- \cot x - x$	$\tan\left(\frac{x}{2} - \frac{\pi}{4}\right)$	$\frac{x}{2}$	$\frac{e^{ax}}{a^2 + b^2} \left[a \sin(bx) - b \cos(bx) \right]$	$\frac{e^{ax}}{a^2 + b^2} \left[a \cos \left(bx \right) + b \sin \left(bx \right) \right]$	$-\frac{1}{a}x\cos(ax) + \frac{1}{a^2}\sin(ax)$	$\frac{1}{a}x\sin(ax) + \frac{1}{a^2}\cos(ax)$	
f(x)	$\sqrt{x^2-a^2}$	$\sqrt{a^2 - x^2}$	$\sqrt{x^2+a^2}$	$\sin^2 x$	x ₂ soo	tan²x	cot ² x	$\frac{1}{1+\sin x}$	$\frac{1}{1+\cos x}$	e^{ax} sin (bx)	$e^{ax}\cos(bx)$	x sin (ax)	x cos (ax)	

Applicazioni del calcolo integrale alla geometria

Si considera un arco di curva di equazione cartesiana y = f(x) con $a \le x \le b$.

$$l = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^{2}} \, dx$$

Baricentro dell'arco
$$x_G = \frac{1}{l} \int_a^b x \sqrt{1 + (f'(x))^2} dx$$
$$y_G = \frac{1}{l} \int_a^b f(x) \sqrt{1 + (f'(x))^2} dx$$

Area della superficie
$$\mathcal{A} = \int_a^b f(x) \, dx$$

Baricentro della superficie

$$x_G = \frac{1}{A} \int_a^b x f(x) dx$$
$$y_G = \frac{1}{2A} \int_a^b (f(x))^2 dx$$

Area della superficie laterale del solido di rotazione

$$\mathcal{A}_{\text{lat}} = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^{2}} dx \qquad \text{se } f$$

Volume del solido di rotazione

$$\mathcal{V} = \pi \int_{a}^{b} (f(x))^{2} dx$$

Baricentro del solido di rotazione
$$x_G = \frac{\pi}{\mathcal{V}} \int_a^b x \big(f(x)\big)^2 dx$$

Si considera un arco di curva di equazioni parametriche $\begin{cases} x=g(t) \\ y=h(t) \end{cases}$ con $t_1 \leq t \leq t_2$

Lunghezza dell'arco $l = \int_{t_1}^{t_2} \sqrt{\left(g'(t)\right)^2 + \left(h'(t)\right)^2} \, dt$

Baricentro dell'arco
$$x_G = \frac{1}{l} \int_{t_1}^{t_2} g(t) \sqrt{\left(g'(t)\right)^2 + \left(h'(t)\right)^2} dt$$
$$y_G = \frac{1}{l} \int_{t_1}^{t_2} h(t) \sqrt{\left(g'(t)\right)^2 + \left(h'(t)\right)^2} dt$$

Per le formule seguenti si suppone che g sia monotona crescente e che h sia positiva in $[t_1;t_2]$

$$\mathcal{A} = \int_{t_1} h(t)g'(t) dt$$

Baricentro della superficie
$$x_G = \frac{1}{\mathcal{A}} \int_{t_1}^{t_2} g(t)h(t)g'(t) dt$$

$$y_G = \frac{1}{2\mathcal{A}} \int_{t_1}^{t_2} \left(h(t)\right)^2 g'(t) dt$$

 $G(x_G;y_G)$

 $g(t_2)$

Area della superficie laterale del solido di rotazione

$$A_{\text{lat}} = 2\pi \int_{t_1}^{t_2} h(t) \sqrt{(g'(t))^2 + (h'(t))^2} dt$$

Volume del solido di rotazione

$$\mathcal{V} = \pi \int_{t_1}^{t_2} \left(h(t) \right)^2 g'(t) dt$$

Baricentro del solido di rotazione

$$x_G = \frac{\pi}{\mathcal{V}} \int_{t_1}^{t_2} g(t) (h(t))^2 g'(t) dt$$

$$y_G = z_G = 0$$

Si considera un arco di curva di equazione polare $r=f(\varphi)$ con $\alpha \leq \varphi \leq \beta$

Lunghezza dell'arco
$$l = \int_{\alpha}^{\beta} \sqrt{\left(f(\varphi)\right)^2 + \left(f'(\varphi)\right)^2} d\varphi$$

Area della superficie
$$A = \frac{1}{2} \int_{\alpha}^{\beta} (f(\varphi))^2 d\varphi$$

Baricentro di una figura piana racchiusa tra due funzioni

$$x_G = \frac{1}{A} \int_a^b x [f(x) - g(x)] dx,$$

$$y_G = \frac{1}{2A} \int_a^b [f(x) + g(x)] \cdot [f(x) - g(x)] dx$$

$$dove A = \int_a^b [f(x) - g(x)] dx$$

