

دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران) دانشکده مهندسی کامپیوتر و فناوری اطلاعات

پروژه کارشناسی گرایش فناوری اطلاعات

مروری بر پروژه کارشناسی - پیادهسازی ابزار مبتنی وب به منظور سجنش استفادهپذیری رابط کاربری سامانههای مبتنی بر وب به روش جمعسپاری

> نگارش امیرحقیقتی ملکی

استاد راهنما استاد احمد عبدالهزاده بارفروش

مرداد ۱۳۹۷

با بررسی مدلهای کیفیتی ارائه شده از سال ۱۹۷۰ تا به اکنون، با تقریب خوبی میتوان گفت تمامی مدلهای کیفی نرمافزار، استفادهپذیری را جزو مشخصههای اصلی کیفیت یک نرمافزار مطرح میکنند. وجه مشترک تعاریف متعددی که برای استفادهپذیری مطرح می شود، در سه بعد کاربر، انجام یک فعالیت مشخص و تعامل با یک واسط برای انجام آن فعالیت، قابل بیان است. به عنوان یک مهندس نرمافزار، افزایش کیفیت در محصولات و کاهش هزینههای ناشی از خرابیها و یا درخواستهای تغییر، چالشی تامل برانگیز است. وباپلیکیشنها به عنوان نوعی محصول نرمافزاری که در آنها زیبایی، واسط کاربری و نحوه تعامل کاربران مهم است، به دلیل استفاده گستردهشان، میتوانند تاثیر شگرفی در موفقیت یک پروژه صنعتی، کسبوکارهای نوپا و یا تسهیل زندگی روزمره با استفاده از نرمافزارها داشته باشند. از جمله نقاط ضعف بیشتر وباپلیکیشنها، طراحی نهچندان کاربرپسندانه واسط کاربری آنهاست که موجب شده تا در بسیاری از موارد، کاربران، علاقهمندی استفاده از محصول مبتنی وب یک سازمان را در عین سرمایهگذاریهای زیاد آن سازمان برای جذب کاربر، از دست بدهند و در نتیجه متضرر شوند. گرچه، به صورت ایدهآل، تمامی تصمیمگیریهای مدیریتی و کلان (از قبیل اتخاذ مدلهای فرایندی مناسب برای تولید نرمافزار با هزینه کم) با نهایت دقت و تجربه انجام میشوند، ولی در بسیاری از موارد همچون پروژه تقویم شرکت گوگل، مواردی ملاحظه میشود که واسط کاربری ناکارآمد، به ناچار، هزینههای گاهاً زیادی به تیم مهندسی نرمافزار تحمیل کرده است. با مروری بر منابع مختلف، ارزیابی و تست روی نمونههای اولیه رابط کاربری وباپلیکیشنها به منظور رفع نواقص آنها، امری واضح به نظر میرسد. اما پاسخ دادن به این سوال که «چه واسط کاربریای خوب است؟» همیشه آسان نبوده و با تغییر فناوری و گذشت زمان شاهد تغییر سریع در نیازمندیها هستیم که شاید چکلیستها و توصیهها نیز پاسخگوی دقیقی برای آنها نباشند. بررسی مدلهای کیفیتی مختلف از سال ۱۹۷۰ تا به امروز و مقایسه تطبیقی آنها، نشان میدهد که در جهت افزایش استفاده پذیری، خصیصههای مهمی مطرح شدهاند که از جمله آنها خصیصههای مطرح شده در سال ۲۰۱۳ بود. با در نظر داشتن این خصیصهها ابزارهای موجود را مورد بررسی قرار دادیم و متوجه شدیم که تقریبا تمامی ابزارهای مطرح، تنها بخشی از این خصیصهها را استفاده میکنند. در نهایت به پیادهسازی ابزاری به جهت تست و سنجش استفاده پذیری پرداختیم که به کاربر سامانه، امکان تست و سنجش استفاده پذیری طراحی سامانه مبتنی بر وب خود را میدهد و از سکوهای جمعسپاری نیز به منظور دستیابی به دادهها استفاده میکند.

واژههای کلیدی:

استفاده پذیری، مدلهای کیفیتی، جمعسپاری، سامانههای کاربردی مبتنی بر وب

لب	مطا	ست	فهر
·			√

صفحه	عنوان
١	۱ مقدمه
۲	۱-۱ کیفیت در نرمافزار
٣	۱-۱-۱ تضمین و کنترل کیفیت
۴	۱-۱-۲ کیفیت در سامانههای نرمافزاری مبتنی بر وب
۴	۲-۱ مشخصههای کیفی نرمافزار ۲۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰
۴	۱-۲-۱ کارآیی
۶	۱-۳ چرخه طراحی سامانههای مبتنی بر وب
٧	۱-۳-۱ تلفیق نگاه مهندسی و هنری
٨	۱-۴ جمعسپاری
٨	۱-۴-۱ جمع سپاری برای جمع آوری داده
١.	۲ شیوه پژوه <i>ش</i>
۱۳	۳ مروری بر کارهای گذشته، روشها و ابزارهای موجود
14	۳–۱ مدلهای کیفیتی
14	۳-۱-۳ مدلهای سلسلهمراتبی
18	۳-۱-۳ مدلهای مبتنی بر متامدل ۲-۱۰۰۰ مدلهای مبتنی بر متامدل
18	۳-۱-۳ مدلهای آماری و ضمنی ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، مدلهای آماری و ضمنی
18	۳-۲ تمرکز بر استفادهپذیری روی مدلهای کیفیتی
۱۸	۳-۳ مطالعه استفادهپذیری و ارزیابی تجربه کاربری
۱۹	۳-۳-۱ ارزیابی خرد
۲۰	۳–۳–۲ ارزیابی کلان
۲۰	۳–۳–۳ اهداف کاربری
۲۵	۳-۴ سناریوهای سنجش استفادهپذیری و خصیصههای هرکدام
78	۳-۴-۳ سناریوهای مطرح در مطالعه استفادهپذیری ۲۰۰۰، ۲۰۰۰، سناریوهای مطرح در مطالعه استفادهپذیری
49	۳-۴-۳ موفقیتآمیز بودن وظیفه
79	٣-٣-٣ زمان انجام وظیفه
79	۳-۴-۳ خطاها
79	۵-۴-۳ بهرهوری ۵۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
٣٠	۳–۴–۶ یادگیری پذیری
٣٠	۳-۴-۳ خصیصههای موردی
۳۰	۳-۴-۸ خصیصههای خود اعلامی

هرست مطالب	الب	مط	ست	ٔ ف
------------	-----	----	----	-----

٣٩																																	نگ	ه ا	, د	_	ا, ر	, ف	cd	نام	اژ ه	ه ا
٣٣		•	•	•	•	•	•					•		 	•			•		•			•		•		ی	ذير	.ەپ	فاه	ست	ل ا	جثر	سن	ی	هاء	ش	رونا	, () - \	٣	
٣١																								•			ی	ساز	ب	رته	م م	ای	گوه	ال	١	۲-	۴-	۲-				
٣١																						(گ	ارنً	لاد	، ب	بت	سا	وب	ی	ها	صه	صي	خ	١	١-	۴-	۲-				
٣١																					C	،ای	سه	نايد	مة	و	بی	کی	تر	ای	، ھ	صه	صي	خ	١	0 -	۴-	۲-				
٣١								•		•		•		 •	•	•	•			(ری	نتا	رف	و	ئى	یک	لوژ	ريو	في	ی	ها	صه	صي	خ		٩-	۴-	۲-	•			

فحه	ص														ر	Il	ک	ئن	اۂ	(ت	u	ٍس	﴾ر	ف												شكل
۲							 													ل	ەح	را	نه	دام	، و	ىئلە	مس	امنه	ن د	ں بی	پلو	وان	عن	ر به	م افزار	نر٠	1-1
۵							 		د	ش	ی	دها	جا	٠ ر	ف.	ىاد	تص	و	ی	ذير	دەپ	تفا		.م ا	عا	به	نجر	ن م	ب آ	ناس	نام	ب	نص	که	لويي	تاب	7-1
۶	•						 																			ب	ر ور	نی ب	مبت	ای	نەھ	اما	ے س	إحو	م طر	هر	۲-۱
٧							 																	•				ار .	مافز	ر نر	ے د	رابي	. خ	ىديد	ل تث	مد	4-1
11					•	•	 										آن	ى	ها;	گام	و گ	ند	ما	هوش	ی ه	هاء	ستم	سي	ىگاە	ايث	آزه	ش	رُوھ	ں پڑ	دلوژې	مت	1-7
14							 																				٠ ر	فيتر	ی ک	هاء	ىدل	ئه ه	ارا	انی	لا زم	خه	۱-۳
۱۵							 								ن	تبح	ىرا	لە	لس	, س	فی	کیا	ل	مد	ک	ن ي	ىنوار	به ء	کال	ک	م	ئيفى	ل ک	ِمد	ختار	سا	۲-۳
۱۵							 									L	نھ	ما	ساز	ر س	ه د	شد	ه ن	نفاد	اسن	ی ا	يفيت	ی ک	بەھا	اروب	ها/	مدل	ع	انوا	یسی	برر	٣-٣
۱٩							 																	للان	و ک	ِد و	، خر	تلف	، مخ	ابی	رزي	ع ا	۔ نو	ز دو	الى ا	مث	4-4
22							 																								نو	ی کا	مدا	از	بیری	تع	۵-۳
74							 																								ئانو	ل ک	مد	از	سيري	تف	۶-۳
٣٢							 														ےی	ذير	دەپ	تفاد	اسـ	در	زی	لسر	ىرتىر	ها ه	گوه	و ال	ها	ىت	یر تہ	تاث	٧-٣

صفحه	فهرست جداول	جدو
١٢ .	۱ کلیدواژههای به دست آمده از دانش زمینه	-۲
۱۷ .	۱ مقایسه تطبیقی مدلهای کیفیتی ارائه شده با تمرکز بر استفادهپذیری	-٣
79.	۲ سناریوهای متداول مطالعه استفادهپذیری و متریکهایی که میتوان برای هرکدام در نظر گرفت ۲۰۰۰۰	-٣
٣٣ .	۳ بحث در مورد نحوه انجام مطالعه استفادهبذیری با توجه به روشهای مختلف مطالعه ۲۰۰۰، ۰۰۰، ۳۰۰۰	۳–۲

٥

فهرست نمادها

فصل اول مقدمه

خریداری یا استفاده از یک محصول با این پیشزمینه و تفکر که محصول مورد نظر نیاز خاصی را برطرف خواهد کرد، خود به خود انتظار برطرف کردن نیازمندیهای ذهن مصرفکننده را در وی میانگیزد [۱]. در ابتدا شاید صرفا رفع نیاز مصرفکنندگان، به هر روش ممکن – و نه الزاما با بالاترین کیفیت – دغدغه اصلی تولیدکننده باشد اما به مرور و با گذشت زمان که نیازمندیها پختهتر میشوند و ارتقا مییابند، کیفیت نیز در آنها دخیل میشود. از طرفی، وجود نامونشانهای متعدد و متنوع در بسیاری از صنایع نیز، منجر به ایجاد رقابت میان فعالان هر عرصه شده است؛ رقابتی که کیفیت تعیینکننده ترین عامل برد و باخت در آن است [۲]. صنعت نرمافزار نیز، به عنوان یکی از صنایع نوین که محصولاتش امروزه سهم قابل توجهی از بازار را در مصارف روزمره اداری و شخصی به خود اختصاص داده است، از این قاعده مستثنی نیست. بنابراین در تولید و توسعه یک محصول نرمافزاری نیز به منظور موفقیت هرچه بیشتر، میبایست به کیفیت، نگاه جدی داشته باشیم.

به طور خاص، در سامانههای کاربردی مبتنی بر وب و موبایل که جامعه کاربریشان هر روز بیشتر و بیشتر می شود، نیازمندی های مختلفی در طول چرخه عمر نرم افزار بروز پیدا می کنند. از طرفی در دنیای نرم افزار، گسترده تر شدن دامنه دسترسی به یک محصول نرم افزاری، الزاماتی برای آن فراهم می آورد که برای مثال، می توان گفت محصول نرم افزاری می بایست توسط یک فرد عادی از جامعه هدف مشتریان، قابل استفاده باشد. قابل استفاده بودن و استفاده پذیری را نه در دانش فنی کاربران سیستم، بلکه در قابل فهم بودن رابط میان سیستم و کاربران تعریف می کنیم [۳].

البته ناگفته نماند دانش فنی و مهارت استفاده از ابزارهای فناوری محور، بخش غیرقابل اغماضی از توانایی استفاده از یک محصول نرم افزاری را ممکن میسازد؛ ولی امروزه، در مورد محصولات و سامانه های نرم افزاری تحت وب که به طور معمول با تعداد کاربران زیادی مواجه هستند، قابل استفاده بودن و استفاده پذیری آن ها در هنگام کار یک کاربر عادی، یکی از معیارهای مهم کیفیتی به شمار می رود.

۱-۱ کیفیت در نرمافزار

کیفیت یک نرمافزار، یک ویژگی ثابت و مشخص کلی نیست. بلکه به انتظارات و نیازمندیهای ذینفعان بستگی زیادی دارد؛ برای قرار دادن کیفیت در اولویتهای تولید نرمافزار، میبایست، در همان ابتدای کار و قبل از شروع هرچیز دیگری، یک تعریف مدون و کاملا مشخص از کیفیت داشته باشیم.

شکل ۱-۱: نرم افزار به عنوان پلی بین دامنه مسئله و دامنه راه حل [۴]؛ توسعه در یک دامنه، به طور خودکار توسعه در دامنه دیگر را می طلبد و در نتیجه میباید از فناوری ها و تکنولوژی ها به نحو احسنت بهره جست تا نیازهای حوزه مسئله را منطبق بر سیستم ها و ماشین های به روز کرد.

Applications Web\

بسیاری از تحقیقات در سالهای گذشته، صرف به دست آوردن فرآیندهای نرمافزاری با کیفیت شده است؛ البته که فرآیندهای باکیفیت در نهایت منجر به تولید محصولی با کیفیت می شود، ولی برای بروز کیفیت در فرآیندها نیز خصیصههای کیفی محصول نرمافزاری هدف، باید به طور مشخص قید شوند [۵]. هرچند که داشتن یک تعریف مدون و مشخص از کیفیت، لازمه کار هر فرآیند مهندسی نرمافزار است، نکته حائز اهمیتی که بسیاری از محققین و پژوهشگران در آثار خود از جمله آقایان پرسمن [۲]، سامرویل [۵] و واگنر [۴] به آن اشاره کردهاند، بیانگر این موضوع است که داشتن یک توصیف کیفیتی کامل و دقیق از سیستم هدف نیز، به تنهایی، کافی نیست؛ چرا که همین توصیف کیفیتی نیز با گذر زمان، دچار تغییر و تحول خواهد شد و دیگر نیزمندیهای کیفیتی، معتبر نخواهند بود.

همانطور که در شکل ۱-۱ ملاحظه می شود، نرم افزار میان دو دامنه مسئله و راه حل ارتباط برقرار می کند و می بایست پلی بین فرآیندهای کسبوکاری و پلتفرمهای فناوری (سیستمهای عامل، سخت افزارها و نرم افزارهای مختلف) ایجاد کند. اما توجه به این نکته حائز اهمیت است که هم فرآیندهای کسبوکار و هم پلتفرمهای فناوری، در طول زمان دچار تغییر می شوند؛ به خصوص که سرعت تغییرات در عصر حاضر به شدت زیاد است. سخت افزارها منسوخ می شوند، سیستمهای عامل به نسخههای جدیدتری ارتقا پیدا می کنند، زبانهای برنامه نویسی پیشرفته تر می شوند، ابزارهای جدیدی تولید می شوند و کسبوکارها در نتیجه این تغییرات، خود را به روز می کنند و فرآیندهای کسبوکاری نیز می بایست بتوانند این تغییرات را پشتیبانی کنند و در نتیجه تغییر می کنند [۴].

در نتیجه ویژگیها و نیازمندیهای کیفی نرمافزار نیز تغییر پیدا میکند و اگر خود نرمافزار مطابق این تغییرات به روز رسانی نشود، سیستم کمکیفیتی خواهیم داشت.

۱-۱-۱ تضمین و کنترل کیفیت

همانطور که پرسمن در کتابش [۲] مطرح میکند، رسیدن به یک محصول با کیفیت در مهندسی نرمافزار، به صورت ضمنی و خود به خود ممکن نیست؛ بلکه نتیجه بازنگری در چهار بعد کلی در فرآیند مهندسی نرمافزار و اِعمال مجموعه آنها است:

- روشهای مهندسی نرمافزار
- تكنيكهاي مديريت پروژه
- فعالیتهای کنترل کیفیت
- فعالیتهای تضمین کیفیت

طبق این اظهار نظر، با فرض اِعمال شدن روشهای درست و بهرهور مهندسی نرمافزار و تکنیکهای موثر در مدیریت پروژه تولید نرمافزار – که با تقریب خوبی هر دو را میتوان جزو روشهای مدیریتی و در حوزه تصمیمگیریهای کلان سیستم دانست – بدیهی است که همچنان کنترل کیفیت و تضمین آن، دو بعد فنی و جزئیتر رسیدن به نرمافزار با کیفیت را تشکیل میدهند. بنابراین میبایست روشهای موثر به منظور انجام فرایندهای کنترل کیفیت و تضمین رسیدن به آن، توسط تیم مهندسی نرمافزار اتخاذ شود.

اما، مشابه هر فرایند و فعالیت دیگری، رسیدن به کیفیت نیز هزینههای خاص خود را دارد. هزینه کیفیت در نرمافزار، مطابق اظهارنظر پرسمن، به سه دسته هزینههای پیشگیری، هزینههای ارزیابی و هزینههای خرابی تقسیم میشود. هرکدام از این هزینهها،

⁷ Metrics

در صورت پیشبینی و رفع نواقص محتمل/پیشآمده در هر مرحله از طراحی و پیادهسازی، بدون اینکه وارد مرحله بعدی شویم، میتواند با نرخ بسیار زیادی کاهش یابد [۲].

۱-۱-۲ کیفیت در سامانههای نرمافزاری مبتنی بر وب

یکی از علل عدم رضایت کاربران و مشتریان از وباپلیکیشنها – که درنتیجه این نارضایتی، آمار کاربران وباپلیکیشنهای کسبوکارها دستخوش تغییرات نامطلوب شده و حتی هزینههای گزافی به تیم مهندسی نرمافزار به خاطر اعمال تغییر پس از تحویل، وارد می شود – طراحی نه چندان کاربر پسندانه واسط کاربری و زیبایی آنهاست [۶]؛ بدیهی است که استفاده از مدلهای فرایندی چابک و تکراری می تواند در کاهش هزینههای طراحی مجدد پس از تحویل و یا اعمال تغییر در رابطهای موجود، موثر باشد [۲]، اما هنوز یک سوال بدون پاسخ خواهد ماند: «چه رابطی برای کاربران وباپلیکیشن (محصول) من مناسب است و طبق نیازمندی های فعلی حداکثر کیفیت را تامین خواهد کرد؟» برای پاسخ به این سوال، چکلیستها و توصیههای فراوانی ارائه شده است [۲]، [۵] که هرکدام به نحوی در افزایش کیفیت رابطهای کاربری تاثیرگذار بودهاند، اما برای تست یک رابط کاربری به صورت کمی، تحلیل و یافتن نقاط ضعف در زیبایی و همچنین ریزبینی در مورد استفاده پذیری یک واسط کاربری، به نظر می رسد که بررسی بیشتری مورد نیاز است [۳].

۱-۲ مشخصههای کیفی نرمافزار

۱-۲-۱ کارآیی

به تعبیر نویسندگان مرجع [۳] هر کاربر میتواند برای خودش تعریفی از کارآیی ارائه نماید. در ادامه بررسی مفصل و مقایسه تطبیقی از مدلهای کیفی مختلف و کارآیی در هرکدام انجام شده است ولی در اینجا به طور مختصر به ارائه و مقایسه سه نوع دیدگاه از تعریف کارآیی میپردازیم:

- ۱. سازمان بین المللی استانداردها (ایزو ۱۱-۹۲۴) کارآیی را در سه حوزه تعریف میکند: «میزان سودی که استفاده از یک محصول در رسیدن به اهداف مورد نظر کاربران در رابطه با کاربردی مشخص، که همراه با تاثیرگذاری، بهرهوری و رضایت باشد، کارآیی آن محصول نامیده می شود.»
- 7. جامعه متخصصین کارآیی ا بیشتر روی فرایند تولید و توسعه محصول تمرکز میکنند و با بیان استفادهپذیری به عنوان «یک روش برای کاستن هزینهها و تولید ابزارهایی که مختص کاربرانشان باشد»، از ویژگی مرتبط بودن همواره استفادهپذیری با کاربران، استفاده میکند.
- ۳. استیو کورگ در کتاب خود، کاری نکن که من به فکر کردن بیفتم تعریف عامیانه تری را ارائه میدهد؛ وی معتقد است که استفاده پذیری به معنی اطمینان حاصل کردن از کار کردن خوب محصول نهایی است. با این توضیح که یک فرد با دانش، توانمندی و تجربه کم نیز بایستی بتواند از محصول به راحتی استفاده کند و نیازهای خود را برطرف سازد.

با بررسیهای مرجع [۳] تمامی تعاریف مطرح برای استفادهپذیری، شامل سه زمینه کلیدی و مهم هستند:

۱. کاربری وجود دارد.

[\]Usability Professionals Association

۲. این کاربر مشغول انجام کاری است.

۳. کاربر در حین کار خود، با یک سیستم یا محصول نرمافزاری در تعامل است.

یکی از عوامل بسیار تاثیرگذار در استفادهپذیری هر محصولی، رابط کاربری آن است؛ از طرفی وجهی که در طرف کاربران قرار دارد و کاربران با آن در ارتباط هستند، در کاربردهای حساس، اهمیتی دو چندان مییابد.به عنوان مثال تابلویی که در شکل ۱-۲ قابل مشاهده است به دلیل استفادهپذیر نبودن منجر به تلفات جانی شده. طبق اظهاراتی که در مرجع [۳] از این حادثه شده است، گرچه استفادهپذیری در ابتدا موردی سطحی و غیر ضروری به نظر میرسد اما عدم وجود آن در برخی از کاربردهای حساس می تواند منجر به آسیبها و خسارتهای زیادی شود.

شکل ۱-۲: تابلویی که نصب نامناسب آن منجر به عدم استفادهپذیری و تصادف جادهای شد؛ این تابلو (تابلوی بزرگ سفیدرنگ) که به خاطر نصب در جای نامناسب و استفادهپذیری پایینش، راه منتهی به مسیری را نشان میدهد که یک طرفه است و در اصل هدف از قرار دادن این تابلو، نشان دادن خروجی در چند متر جلوتر بود [۷].

اینکه کاربر در طول دوره کاریاش با سیستم به طور دقیق به چه موارد منفی یا مثبت یا حتی خنثی برخورده، نقش مهمی در تجربه کاربری وی خواهد داشت.

استفادهپذیری به طور کلی به توانایی کاربر در انجام موفق یک کار مشخص دلالت دارد، در حالی که تجربه کاربری به جنبه وسیعتری پرداخته و شامل احساسات، عواطف و ادراکات کاربر در حین کار با سیستم می شود [۳]. در بخشهای بعدی و با بررسی مدلهای کیفی مختلف که به منظور سنجش کمی کیفیت نرمافزار ارائه شدهاند، خواهیم دید که استفادهپذیری نرمافزار، به عنوان یکی از مشخصههای اصلی در اغلب این مدلها و به صورت صریح بیان شده است. با بررسی پژوهشها و کارهای گذشته و همچنین نکاتی از مرجع [۲]، می توان گفت از سال ۱۹۷۰ تا به اکنون، تقریبا در هر مدل کیفی ارائه شده برای نرمافزار و به طور خاص برای سامانههای کاربری تحت وب، استفادهپذیری به صورت صریح به عنوان یک مشخصه اصلی بیان شده است؛

بنابراین میتوان ادعا کرد استفادهپذیری یک نرمافزار، از جمله ویژگیهای مهم کیفی در دستیابی و کنترل کیفیت نرمافزار است.

استفادهپذیری و لایههای طراحی سامانههای مبتنی بر وب

استفادهپذیری در وباپلیکیشنها - که امروزه نقش مهمی در ارائه محتوا و سرویس به کاربران دارند - به عنوان یکی از ابعاد و مشخصههای اصلی و مهم در کیفیت مطرح است [۲]. رسیدن به کیفیت بالا نیازمند صرف هزینه (تلاش و زمان) است؛ صرفا با در نظر گرفتن بعد کارآیی، پرواضح است که هرچه مشکلات و نواقص رابطهای کاربری زودتر پیدا شده و مرتفع گردند، با پرداخت هزینه (تلاش و زمان) کمتر به کیفیت بیشتری رسیده ایم؛ لایههای طراحی سامانههای مبتنی بر وب، هر کدام تمرکز جدایی دارند که در ادامه به طور مختصر قید شده اند. هر کدام از این لایهها، به نوعی کارآیی نهایی محصول را تامین میکنند و در تضمین کیفیت باید به هر لایه به طور جداگانه توجه ویژه ای را معطوف نمود.

۱-۳ چرخه طراحی سامانههای مبتنی بر وب

از جمله مراحل هرم طراحی وباپلیکیشن [۲]، طراحی واسط کاربری است. همانطور که در شکل ۱-۳ مشاهده می شود، طراحی زیبایی، محتوا، پیمایش، معماری و همچنین مولفه نیز در فرایند طراحی می بایست انجام شوند که هرکدام نکات خاص خود را دارند و می توانند در استفاده پذیری سامانه کاربردی مبتنی بر وب تاثیرگذار باشند.

شکل ۱-۳: هرم طراحی سامانههای مبتنی بر وب [۲] که نشاندهنده لایهها، مراحل و اجزای ساخت یک سامانه مبتنی بر وب است.

همچنین شایان ذکر است که لایههای مختلف این هرم، هرکدام توجه جداگانهای دارند و میبایست در تامین کیفیت، به در هر لایه سیاستهای به خصوصی اتخاذ شود. قبل از تولید کد وباپلیکیشن، واسط کاربری، به صورت یک نمونه اولیه و در قالب طرحهای ابتدایی، ماکتهای مفهومی و یا چارچوبهای کلی توصیف و طراحی میشوند. پس از رسیدن به توافق با مشتری (در صورت نیاز) و یا اعمال تغییرات متعدد تا رسیدن به توافق، این طراحی به کد قابل اجرا و پیادهسازی روی وباپلیکیشن تبدیل می شود و نهایتا به تولید واسط کاربری آن می انجامد [۵].

شکل ۱-۴: مدل تشدید خرابی در نرمافزار [۲] نشاندهنده تاثیرگذاری خرابیهای مراحل قبل در هر مرحله از توسعه محصول میباشد. طبق این مدل، هرچه بتوان درصد بیشتری از خطاها را هنگام مرور و بررسی هر مرحله شناخت، خرابیهای کمتری به مراحل بعدی راه پیدا کرده و در نتیجه محصول نهایی با کیفیت تر خواهد بود.

مطابق شکل ۱-۴ خرابیها و خطاها در صورتی که برطرف نشوند و وارد مرحله بعد شوند، میتوانند در تولید وباپلیکیشن مشکلات جدیای ایجاد کنند؛ چرا که این خطاها تشدید میشوند و دچار خرابی کار سایر لایهها نیز میگردند و در نهایت منجر به افت کیفیت محصولات نهایی میگردند. از جمله خطاها و خرابیهای مطرح در حوزه طراحی رابط کاربری، ناکارآمد بودن ایدههای اولیه و چکش نخورده است. مطابق آنچه در قسمت تضمین و کنترل کیفیت گفته شد، در صورت ارزیابی، تحلیل و رفع ایرادات مربوط به استفاده پذیری رابط کاربری، در همان مراحل ابتدایی و پس از تولید نمونه اولیه، میتوان هزینههای بعدی را به طور قابل ملاحظه ای کمتر کرد.

مانند هر روش کیفی دیگری در تضمین کیفیت نرم افزار، به منظور دستیابی به استفاده پذیری قابل قبول (مطابق نیازهای مشتری) در واسط کاربری و باپلیکیشن ها (همچون هر مشخصه اصلی دیگری) می بایست فاکتورها، معیارها و مولفههای مختلفی به منظور خرد و قابل اندازه گیری کردن این مفهوم کلان مطرح شود؛ به طوری که بتوان در قالب مقادیر کمی، نیازمندی ها را با داده های به دست آمده از ارزیابی رابط کاربری و باپلیکیشن مقایسه و تحلیل کرد. اما در بسیاری از موارد، همانطور که [۳]، [۶]، [۸] ذکر میکنند، حقیقت محض و یا تخمینی تضمین کننده ای ای رسیدن به یک رابط کاربری «خوب» وجود ندارد و طراحی های استفاده پذیر و موثر، موفقیت خود را اغلب یا به روشهای تجربی، که الزاماً با روشهای علمی به اثبات نرسیده اند، و یا به ذوق هنری طراح مدیون اند.

۱-۳-۱ تلفیق نگاه مهندسی و هنری

دور از ذهن نیست که بگوییم یکی از فاکتورهای محبوبیت یک اثر هنری، جذابیت اثر در دید مخاطبانش است. بنابراین پرواضح است که در مورد رابطهای کاربری، که در ابتدای کار و هنگامی که هنوز توسعه سامانه در فازهای ابتدایی و مذاکرات ابتدایی است به صورت یک طرح مفهومی بوده و اثر یک طراح -که الزاما شاید سررشتهای از مهندسی نداشته باشد- هستند، نظر کاربران و استفاده کنندگان آن طرح مفهومی و نحوه تعاملشان با طرح مفهومی، یکی از مشخصههای تعیینکننده برای موفقیت رابط کاربری هدف و تضمین کیفت آن است.

در نتیجه به نظر میرسد اندازهگیری نظرات کاربران و داشتن یک دید مهندسی در نقطه نظرات کاربران و واکنشهای آنها هنگام کار با یک طرح مفهومی که به منظور استفاده در یک رابط کاربری ساخته شده است، امری لازم و مثبت خواهد بود و درکل منجر به افزایش اطلاعات تیم طراح و تیم توسعه از نیازهای کاربران خواهد شد.

Heuristic Promising\

۱-۴ جمعسپاری

تا سال ۲۰۱۲، با بررسیهای مرجع [۹]، حدود ۴۰ تعریف مختلف در مقالات و پژوهشهای علمی، حتی گاهی تعاریف متناقض با هم، برای جمعسپاری ارائه شده است. نویسندگان آن اثر، با درنظر گرفتن ابعاد مطرح در تعاریف مختلف، در نهایت تعریف نسبتا مفصلی از این مفهوم ارائه می دهند که ترجمه آزاد آن در ادامه ذکر شده است:

جمع سپاری که ترجمه شده عبارت Crowdsourcing است، نوعی فعالیت برخط ا مشارکتی است که طی آن یک فرد، یا یک سازمان با ابزارهای کافی به گروهی از افراد با سطح دانش متغیر و گونههای متفاوت و با تعداد نامعلومی به انجام فعالیتهایی می پردازند. در این کار دو سر برد، کارگران انجام دهنده کار ^۲ به دلیل داوطلبانه بودن مشارکتشان، از انجام کار خود احساس رضایت می کنند؛ چه به خاطر پولی که در ازای انجام کار دریافت می کنند و چه به خاطر توسعه مهارتهای شخصی و یا سایر انگیزهها؛ افراد جمعسپارنده هم از مشارکت افراد در حل مسائل پیچیده کمک جسته و سودآوری خود را خواهند داشت. یکی از انگیزههای استفاده از جمعسپاری، جمعآوری داده ۳ است. در این استفاده، از کارگران جمعسپاری شده بهره گرفته می شود تا بتوان به مجموعه عظیمی از دیتاستها و یا دادههای جدید دست پیدا کرد.

۱-۴-۱ جمعسپاری برای جمعآوری داده

انگیزه اصلی استفاده از جمعسپاری در این پروژه، جمعآوری داده است. ابزار هدف، قادر خواهد بود تا با استفاده از جمعسپاری، بتواند نتایج تستهای تعریفشده توسط مشتریان را از کارگران جمعآوری کرده و روی آنها تحلیل و پردازش انجام دهد. عدم وجود یک حقیقت محض قابل اتکا ^۴ در رابطه با خوب بودن و یا بد بودن یک طراحی رابط کاربری و سلیقهای بودن آن، مهمترین انگیزه استفاده از جمعسپاری است؛ همچنین مبتنی بودن تصمیمات و دادهها بر دادههای کاربران مخاطب، میتواند منجر به موفقیت حداکثری یک محصول در سازمان شود.

همچنین به عنوان یک مهندس، همواره بر آنیم که روشهای مهندسی و رویکردهای قابل تکرار داشته باشیم. بنابراین نتیجه تلاش در استفاده از یک روش مهندسی برای مدیریت نظرات، استفاده از جمع سپاری خواهد بود.

[\]Online

Crowd Workers

^{*}Data Collection

^{*}Ground Truth

f

فصل دوم شیوه پژوهش در ابتدای پژوهش و با کسب دانش زمینه مورد نیاز، به جستجوی پراکنده پرداختیم و برخی تعاریف و مفاهیم را از منابع مختلفی که در بخش مراجع ذکر شده آند استخراج کردیم اما به منظور انجام این پژوهش، نیازمند یک روش ساختارمند و مشخص در تحقیق بودیم که بتوانیم استدلال قوی تر و نتیجه گیری موثق تری داشته باشیم.

. به زمینه تحقیقاتی	گام اول: به دست آوردن دانش زمینه (CK) و کلیدواژههای (K) مهم مربوط
فعالیت: مطالعه مراجع برتر و کسب دانش از دروس مختلف	خروجی: دانش زمینه و کلیدواژههای مرتبط مهم
(R) و مقالات (P)	گام دوم: ساختن لیست ابتدایی از ژورنالها (J)، کنفرانسها (C)، محققین
فعاليت: ساخت ليست اوليه از موارد ذكر شده	خروجي: ليست اوليه ژورنالها، كنفرانسها، محققين و مقالات
	گام سوم: اضافه کردن ژورنالهای مرتبط، به لیست J
فعالیت: مقداردهی لیست J با ژورنالهای به دست آمده از KK و K	خروجی: لیست ابتدایی ژورنالهای یافت شده با K و CK های تشخیص داده شده
	7
	گام چهارم: بهروزرسانی لیست J با حذف ژورنالهای غیرشاخص
فعالیت: بررسی دقیق مقالات منتشر شده در شمارههای آخر ژورنالهای موجود در لیست	خروجی: لیست ثانویه J که از بررسی مجدد برخی ژورنالها به دست آمده
	<u> </u>
	J با انتخاب مقالات از P گام پنجم: مقداردهی اولیه به لیست
فعالیت: انتخاب مقالات مرتبط و شاخص، در حین بررسی ژورنالها	خروجی: لیست ابتدایی P که از بررسی مقالات ژورنالی به دست آمده
P	گام ششم: مقداردهی اولیه به لیست R با انتخاب پژوهشگران مهم از لیست
فعالیت: انتخاب پژوهشگران مهم، با مطالعه مقالات	خروجی: لیست ابتدایی R که از مطالعه مقالات به دست آمده
	<u> </u>
	گام هفتم: بهروزرسانی P با اضافه کردن مقالات قبلی پژوهشگران
فعالیت: بەروزرسانی لیست P با اضافه کردن مقالات قبلی پژوهشگران	خروجی: لیست بهروزشده P که شامل برخی از پژوهشهای قبلی R نیز میشود
	<u> </u>
	گام هشتم: مقداردهی اولیه به لیست C با بررسی مقالات قبلی پژوهشگران
فعالیت: پیدا کردن کنفرانسهایی که مقالات P در آنها منتشر شده	خروجي: ليست ابتدايي C كه با مقالات P به دست آمده
	<u> </u>
	گام نهم: بهروزرسانی لیست P با اضافه کردن مقالات مرتبط منتشر شده در C
فعالیت: بهروزرسانی لیست P با اضافه کردن مقالات مرتبط منتشر شده در C	خروجي: ليست بهروزشده P كه شامل مقالات كنفرانسي نيز هست
	7
	گام دهم: بهروزرسانی لیستهای R ،C ،J و P با بررسی مراجع P
فعالیت: بررسی و ارزیابی مراجع P و سپس بهروزرسانی P و R ،C ،J	خروجی: لیستهای نهایی R ، C ، J و P که دیگر تغییر نخواهند کرد

شکل ۲-۱: متدلوژی پژوهش آزمایشگاه سیستمهای هوشمند و گامهای آن

به عبارتی دیگر برای انجام این پژوهش، میبایست ژورنالها (J) ، کنفرانسها (R) ، محققین (R) و مقالههای (P) مرتبط

و موثر را شناسایی میکردیم.

با رجوع به شیوه پژوهش آزمایشگاه سیستمهای هوشمند ۱ که یکی از شیوههای پژوهش موثر در مطالعات و پژوهشهای موردی، در حال استفاده توسط پژوهشگران این آزمایشگاه است [نیازمند مرجع - شیوه ارائه شده توسط آقای نظریانی]، درمی یابیم که میبایست در چند تکرار و به صورت تکاملی منابع مورد نیاز برای پژوهش خود را آماده سازیم.

بدین منظور، مطابق شکل 1-1 ابتدا به جمعآوری دانش موضوعی (CK) در زمینه مورد نظر پرداختیم و سپس شروع به یافتن کلیدواژههای مطرح (K) در این زمینه نحقیقاتی کردیم؛ از جمله این فعالیتها میتوان به مطالعه منابعی چون [T]، [T]، [A] و همچنین اخذ درسهایی مانند مهندسی نرمافزار نام برد (گام اول).

جدول ۲-۱: کلیدواژههای به دست آمده از دانش زمینه

كليدواژه	ردیف
Business Data Processing	١
Crowd	۲
Crowdsourcing	٣
Crowdsourced Data Cleaning	*
Interaction	۵
Online Experiment	۶
Software Quality	٧
Usability	٨
Usability Evaluation	٩
Usability Quality Metrics	10
Usability Study	11
Usablity Quality Model	١٢
User Experience	١٣
User Interface	14
Web Usability	۱۵

سپس، چند لیست تهی برای ذخیره اطلاعات ژورنالها، کنفرانسها، پژوهشگران و همچنین مقالات مختلف مرتبط و موثر در این حوزه تحقیقاتی ساختیم، که بهطور خلاصه با حروف R C G J و P از آنها یاد میکنیم (گام دوم). با استفاده از دانش زمینه به دست آمده و همچنین کلیدواژههای شناخته شده که گزیدهای از آنها در جدول ۲-۱ قابل مشاهده است، لیستهای J R و P را به طور مرتب و به با تکرارهای متعدد، بهروزرسانی کردیم (گامهای سوم تا دهم) تا اینکه به منابع ذکر شده در این سند رسیدیم و منابع مورد نیاز پژوهشی و با استفاده از ابزارهایی چون [۱۰] و نیز [۱۲] پیدا کردیم. پس از شناخت دامنه و به دست آوردن منابع لازم، یک تعریف نیازمندی برای ابزار تست مورد نظر ارائه دادیم که بر اساس آن سیستم هدف و ابزار مطرح در این پژوهش ساخته شد.

[\]ISLAB Research Methodology

⁷Context Knowledge

فصل سوم مروری بر کارهای گذشته، روشها و ابزارهای موجود

۱-۳ مدلهای کیفیتی

با یک نگاه اجمالی بر منابعی همچون [*]، [*]، [*] و همچنین [*] که به بررسی و مقایسه تطبیقی مدلهای کیفی پرداختهاند، به این نکته پی میبریم که صحبت از کیفیت و پژوهش در مورد مدلهای کیفی از همان ابتدا و به صورت همزمان با پژوهشهای مربوط به توسعه نرمافزار و متدولوژیها مورد توجه بوده است. در شکل [*] ملاحظه میشود که از سال [*] کمکم مدلهای عاممنظورهای همچون مدلهای مککال و درومی [*] کمرنگتر شدند و شاهد معرفی شدن مدلهای خاصمنظوره بودیم.

* Open Source Quality Model

شکل $^{-1}$: خط زمانی ارائه برخی از مدلهای کیفیتی [$^{\Lambda}$]؛ با پیچیده شدن نیازمندیها و گسترش آنها، دستهای از مدلها تحت عنوان مدلهای کیفیتی Tailored در شکل مشخص شدهاند که به طور خاص و برای یک نیازمندی خاصی ساخته شدند، مدلهای Basic اما به عنوان پایه مدلهای کیفیتی عمل میکندد و تقریبا تمامی مدلها از روی این مدلهای اصلی اقتباس شدهاند.

مدلهای عاممنظوره که در شکل با نام Basic شناخته می شوند، ابعاد کلی کیفیت نرم افزار را هدف قرار داده اند و تقریبا می توانند در هر نرم افزاری مورد استفاده قرار بگیرند؛ مدلهای بعدی که ارائه شدند، روی ابعاد خاصی از سازمان یا محصول نرم افزاری تمرکز داشته اند. این مدلها در نتیجه افزایش پیچیدگی محصولات نرم افزاری و فرایندهای سازمانی، برای استفاده در کاربردهای خاص و برای سازمانهای خاص توسعه داده شدند [۸].

در بررسی مدلهای کیفی، مرجع [۴] دستهبندی ای را ارائه داده است که بر اساس آن، مدلهای کیفی را میتوان به سه دسته سلسلهمراتبی، مبتنی بر متامدل و همچنین مدلهای ضمنی تقسیمبندی کرد که توضیحات هرکدام در ادامه به صورت مختصر قید شده است.

۱-۱-۳ مدلهای سلسلهمراتبی

روشهای Boehm [۱۴] و مککال [۱۵] در ارائه مدل کیفی، تشابه زیادی باهم دارند؛ هر دو در خرد کردن مفهوم کیفیت، از یک روش سلسلهمراتبی استفاده کردند و مطابق شکل ۲-۳ کیفیت را به خصیصههای مشخصی (که از آنها با نام فاکتورهای کیفیت یاد می شود) تقسیم کرده اند. این گونه مدلها در طول زمان دچار تغییراتی شدند و تفاوت نحوه تقسیم بندی آنها، تفاوت مدلها را پدید آورده است. به تعبیر واگنر [۴] رویکرد این نوع مدلهای کیفی، خرد کردن کیفیت به معیارهای قابل اندازه گیری و در نهایت

[\]Dromev

اندازهگیری و مقایسه آنهاست. همچنین واگنر در بررسی خود، از نقدهایی همچون «مبهم بودن برخی از این تقسیمبندیها و شفاف نبودن آنها به طور کامل» یاد میکند که از عوامل مهم ناکارآمدی برخی از آنهاست؛ همچنین وی در سال ۲۰۱۲ این نکته را متذکر شد که تنها کمتر از ۲۸٪ سازمانهای فعال در حوزه نرم افزار، از مدلهای استاندارد در تضمین کیفیت فعالیتها و محصولاتشان استفاده میکنند و ۷۱٪ این سازمانها، مدلهای کیفی خود را از روی این مدلهای کیفی، گلچین کرده و شخصیسازی میکنند

شکل ۳-۲: ساختار مدل کیفی مککال به عنوان یک مدل کیفی سلسلهمراتبی [۱۷]؛ این دسته از مدلها کیفیت را به خصیصههای خردتری تقسیم میکنند و مجددا هر خصیصه را به زیرخصیصههای خردتر تقسیم کرده و به همین منوال تا جایی پیش میروند که بتوان زیرخصیصه کیفی را به آسانی اندازهگیری و شاخصی برای آن تعیین کرد.

همانطور که در شکل ۳-۳ مشاهده می شود، طی این بررسی، ۷۹ سازمان مدلهای کیفیتی شخصی سازی شده توسط سازمان خود را در اولویت قرار داده و از آنها استفاده می کنند. طبق اظهارات این بررسی و همچنین بسیاری از منابع دیگر همچون [۲] و [۵]، نیاز برای شخصی سازی مدلهای کیفیتی استاندارد وجود دارد. چرا که این مدلهای سلسله مراتبی، به صورت تجریدی بیان شده اند و نیازمند دقیق شدن روی متربکها و روشهای اندازه گیری هر متربک هستند.

شکل ۳-۳: بررسی انواع مدل/رویههای کیفیتی استفاده شده در سازمانها [۱۶]؛ ملاحظه می شود که ۸۹ شرکت (اکثریت) فعال در حوزه فناوری اطلاعات در آلمان، به منظور تضمین کیفیت محصولات خود، مدل کیفیتی مختص به خود را توسعه دادهاند. اما در توسعه این مدلها، همواره مدلهای اصلی مورد اقتباس واقع شدهاند و از آنها استفاده شده است.

۲-۱-۲ مدلهای مبتنی بر متامدل

با آشکار شدن این نیاز که میبایست مدلهای پایهای را بیشتر شفافسازی کرد و آنها را بر نیازمندیها تطبیق بیشتری داد، ایده ارائه متامدلها مطرح شد. متامدل در اصل مدلی از یک مدل کیفی است؛ قواعد و ساختارهایی که برای توصیف دقیق یک مدل کیفی نیاز داریم (همچون متریکها و نحوه اندازهگیری آنها)، توسط متامدل تعیین میگردند [۱۸]. به عبارت دیگر، توصیف اینکه چگونه یک مدل کیفی میتواند بر نیازمندیها منطبق شود، به عهده متامدل است [۲]. درومی به عنوان مثال، در سال ۱۹۹۵ متامدل نسبتا مفصلی ارائه داد که ذیل آن، میان مولفههای محصول نرمافزاری (که باید حامل کیفیت باشند – مانند کد منبع نرمافزار) و ویژگیهای عملیاتی نرمافزار تفاوت و تمایز قائل شد [۱۹].

۳-۱-۳ مدلهای آماری و ضمنی

این مدلها سعی در ترجمه مفهوم اطمینانپذیری سختافزار و استفاده آن در حوزه نرمافزار را دارند. ایده اصلی استفاده از این مدلها، مشاهده خرابیها در قبیده است. به منظور دستیابی به خصیصههای کیفیتی مشخصی که برای نیازهای توسعه محور بیان شده،در برخی از مدلها سعی شده از دادههای آماری برای به دست آوردن برخی از ویژگیها و متریکها استفاده شود.

به عنوان مثالی برای این نوع مدلها میتوان به مدلهای رشد اعتمادپذیری [۲۰] اشاره کرد. مدلهایی که از الگوریتمها و روشهای یادگیری ماشین برای تخمین موارد مختلف، از قبیل مولفههای آسیبپذیر و یا غیر کارا و مولفههایی که دارای برخی از ویژگیهای کیفی خاص نیستند نیز از این نوعاند که نمونهای از این مدلها در مرجع [۲۱] تحت عنوان Vulture یاد شده؛ این مدل، از روشهای یادگیری ماشین و از یک پایگاه دانش آسیبپذیری استفاده میکند تا در طول زمان و با گسترش نرمافزار، بتواند مولفههای آسیبپذیر نرمافزار را پیشربینی کند.

همچنین به تعبیر مرجعهای [۵] و [۴]، ابزارها و روشهای مرور، داشبوردهای مدیریتی و مصورسازی داده، ابزارهای شناخت الگوی رخداد خطا در کد منبع نرمافزار و چکلیستها، که شاید در ظاهر به طور مستقیم ارتباطی با مدلهای کیفی نداشته باشند، اما در نهایت به یک یا چند متریک کیفی در ذیل یک مدل کیفی ختم میشوند؛ این اشاره به مدلهای کیفی به صورت ضمنی و غیرصریح بوده و اغلب به طور دقیق ارتباط خود با مدلها را مشخص نکردهاند. در نتیجهی تمام موارد ذکر شده، تضمین و کنترل کیفیت به واسطه این سازوکارهای غیرصریح و مدلهایی که به طور ضمنی مطرح هستند، منجر به پیچیدگی بیشتر و سختی کار خواهد شد.

۲-۳ تمرکز بر استفادهپذیری روی مدلهای کیفیتی

در جدول ۲-۲^۲ مقایسهای تطبیقی میان مدلهای مطرح از سال ۱۹۷۰ تا ۲۰۱۱ انجام شده است که در انجام این مقایسه، به طور خاص، روی خصیصه استفادهپذیری این مدلها تمرکز داشتیم. مدلهای عاممنظوره در کنار سایر مدلها به مقایسه درآمدهاند تا خصیصههای استفادهپذیری در هرکدام از آنها بررسی شود؛ مدلهای خاص منظوره به خاطر نیاز سازمان خاصی به وجود آمدهاند که مشتریان مخصوص به خود را داشتند که در صورت تعویض محصول و مشتری و استفاده مدل مفروض در یک سازمان دیگر، الزاما به جواب بهینه منتهی نخواهد شد. در حقیقت ویژگی اصلی مدلهای کیفیتی مبتنی بر متامدل و دلیل گستردگی آنها،

[\]Reliability Growth Models

۲ متریکهای ذکر شده در جدول، همگی ترجمه شده عبارات لاتین هستند و در صورت داشتن ابهام در مورد هرکدام میتوان به واژهنامه [°]جوع کرد.

متفاوت بودن نیازهای مشتریان و شرایط سازمانهاست [۵].

ارائه این مدلها تا سال ۲۰۱۳ یکی از موضوعات پرطرفدار و داغ تحقیقاتی بوده اما به طور تدریجی و از سال ۲۰۱۳، با داشتن مراجعی همچون [۳] میتوان مطالعه استفادهپذیری و رسیدن به یک محصول استفادهپذیر را با چکلیستها و مطالعات آزمایشگاهی نیز تامین کرد. به خصوص که مرجع [۱۶] از کسبوکارهای زیادی نام میبرد که از هیچکدام از مدلهای کیفیتی ارائه شده پیشین استفاده نمیکنند و از قضا سودآوری زیادی نیز دارند و موفقیت محصولاتشان از سایر رقبا بیشتر است. توجه به این نکته حائز اهمیت است که با ارائه و بحث در مورد خصیصههایی همچون خصیصههای مطرح در مرجع [۳] میتوان انواع مطالعات مطرح در حوزه استفادهپذیری را انجام داد و تقریبا سناریویی نخواهد ماند که توسط این خصیصهها مورد پوشش واقع نشوند. بنابراین با توجه به جدول ۳-۱ میتوان نتیجهگیری کرد که این خصیصهها، به طور خاص برای بررسی، مطالعه و در نهایت بیشینه کردن استفادهپذیری رابطهای کاربری و همچنین تجربه کاربری، کفایت میکنند.

جدول ۳-۱: مقایسه تطبیقی مدلهای کیفیتی ارائه شده با تمرکز بر استفاده پذیری^۲؛ مدلهای کیفیتی بسیاری از سالهای ۱۹۷۰ تا به امروز ارائه شده اندکی از آنها به عنوان مدلهای اصلی کیفیتی قلمداد می شوند و سلسه مراتبی هستند. این مدلهای پایه ای، در ادامه به عنوان پایه و اساس برای توسعه مدلهای کیفیتی دیگر (مبتنی برمتامدل) قرار داده شده اند که می توان گفت شمار زیادی از مدلهای ارائه شده از این نوع هستند. بر این اساس، مدلهایی که بیشترین ارجاع در سالهای گذشته به آنها وجود داشته را طی این جدول بررسی کرده ایم.

	قايسه تطبيقي مدلهاي كيفيتي	۸		
مرجع	متریکهای استفادهپذیری	سال ارائه	مدل كيفيتي	ردیف
[۱۵]	عملیاتی بودن، آموزش، ارتباطاتی بودن	1970	McCall	١
[14]	ترابرپذیری، نگهداریپذیری	1948	Boehm	۲
[٢٢]	فهمپذیری، آسانی یادگیری، ارتباطاتی بودن	1990	IEEE 1061	٣
[٢٣]	تاثیرگذاری، یادگیریپذیری، انعطافپذیری، نگرش مثبت	1991	Shackel	*
[44]	گونه محصول، گونه كاربر، راحتى استفاده، قابليت پذيرش	1991	Bevan	۵
[۲۵]	فاکتورهای انسانی، زیبایی، مستندسازی، مفاد آموزشی	1997	FURPS	۶
[٢۶]	یادگیریپذیری، بهرهوری، خاطرسپاریپذیری، خطا، رضایت	1994	Nielsen	٧
[۲۷]	درکپذیری، یادگیریپذیری، عملیاتی بودن، جذابیت، قبول استفادهپذیری	7001	ISO 9126	٨
[۲۸]	درکپذیری، یادگیریپذیری، عملیاتی بودن	7007	Bertoa	٩
[٢٩]	پشتیبانی، یادگیری پذیری، بهروز بودن مستندات، کمک برخط، سازگاری	7004	Georgiadou	10
[٣٠]	بهرهوری، تاثیرگذاری، رضایت، یادگیریپذیری، امنیت	7004	Abran	11
[٣١]	اصلاحپذیری، مقیاسپذیری، قابلیت استفاده مجدد، کارایی، امنیت	۲۰۰۳	Bass	١٢
[٣٢]	زمان آموزش، سرعت کارایی، نرخ خطاهای کاربر، بقای کاربران، رضایت منحصر به فرد	۲۰۰۵	Schneiderman	١٣
[٣٣]	درکپذیری، یادگیریپذیری، عملیاتی بودن، پیچیدگی	Y008	Rawashdeh	14
[٣۴]	تناسب، شناساییپذیری، یادگیریپذیری، عملیاتی بودن، جلوگیری از خطای کاربری، زیبایی رابط کاربری، دسترسپذیری	۲۰۰۸	ISO 25010	۱۵
	ادامه جدول در صفحه بعد	<u> </u>		

	ادامه جدول ۳–۱			
مرجع	متریکهای استفادهپذیری	سال ارائه	مدل كيفيتي	ردیف
[۳۶]، [۳۶]	درکپذیری، یادگیریپذیری، عملیاتی بودن	Y 0 1 0	Alvaro	18
[٣٧]	داناییپذیری، عملیاتی بودن، بهرهوری، استحکام، ایمنی، رضایت منحصر به فرد	Y 0 1 0	Alonso-Rios و بقيه	١٧
[٣٨]	تاثیرگذاری، بهرهوری، رضایت، یادگیریپذیری	7017	Dubey	١٨
[٣]	موفقیت آمیز بودن وظیفه، زمان انجام وظیفه، خطاها، بهرهوری، یادگیری پذیری، خصیصههای موردی، خصیصههای خوداعلامی، خصیصههای فیزیولوژیکی و رفتاری، خصیصههای ترکیبی و مقایسهای، خصیصههای وبسایت بلادرنگ، الگوهای مرتبسازی	701 m	Tullis	19

شایان ذکر است که در همه مدلهای ذکر شده، الزاما به استفادهپذیری به عنوان یک خصیصه اصلی در محصول اشاره نشده است؛ در بعضی از مدلها همچون ISO 25010 استفادهپذیری یکی از سطوح اصلی بوده، در اولین سطح سلسهمراتبی مدل قرار داشته و جزئی از محصول نهایی است و در برخی دیگر همچون Boehm، به طور صریح و مشخص به استفادهپذیری اشارهای نشده است اما در فرآیندهای توسعه محصول روی آن توجه زیادی وجود دارد.

همچنین از بررسی مدلهای کیفیتی مختلف که صرفا برای توسعه سامانههای مبتنی بر وب این نتیجه برمیآید که هر متامدل میبایست در زمینه مربوط به خود مورد استفاده قرار گیرد و نه جای دیگر [۳۹]. نتیجه پیشین به این معنی است که در توسعه سامانههای مبتنی بر وب، محدوده کاربران، دانش قبلی آنها، تخصص هرکدام، سن و سایر متغیرهای غیرقابل کنترل توسط توسعهدهنده نیز در استفادهپذیر بودن این سامانه مبتنی بر وب تاثیرگذار است؛ بنابراین در طراحی رابط کاربری هر سامانه مبتنی بر وب، میبایست به این نکات نیز توجه داشت و از آخرین توصیههای مربوط به توسعه این نوع سامانهها استفاده کرد [۳]. از جمله این توصیهها و پیشنهادهای طراحی، توصیههای گوگل برای ساخت سامانههای کاربردی مبتنی بر وب پیشروا [۴۰] است که در سال ۲۰۱۷ مطرح شده و طبق بررسیهای انجام شده آیندهای روشن در انتظار این نوع از سامانههای کاربردی است.

۳-۳ مطالعه استفاده پذیری و ارزیابی تجربه کاربری

متریکهایی که در مطالعه استفادهپذیری و به طور خاص هنگام بررسی تجربه کاربری، اندازهگیری میشوند و مورد سنجش قرار میگیرند دادههایی را به دست ما میدهند که در بررسی و استفاده از این دادهها میتوان دو رویکرد کلی داشت [۳]: ارزیابی خرد و ارزبابی کلان۲.

همانطور که در شکل ۴-۳ دیده می شود، می توان این دو نوع ارزیابی را به چشیدن غذایی بدیل کرد که توسط آشپز و مشتری انجام می شوند؛ آشپز در فرآیند پختن غذا به طور مرتب ممکن است غذا را بچشد تا در نهایت خروجی مطلوبی به دست مشتری برسد و غذا از کیفیت لازم برخوردار باشد. در حالی که مشتری در نهایت، محصول نهای را مشاهده می کند و صرفا نظر خود در

[\]Progressive Web Applications

^۲ در سال ۱۹۸۶ و طی مقالهای با عنوان «نقش ارزیابی مستمر و چرخشی در طراحی سیستمها برای کیفیت» [۴]، دو اصطلاح برای مطالعه تجربه کاربری و استفاده پذیری Formative و Summative مورد استفاده قرار گرفتند که هر دو از مفاهیم کلاس درسی برداشت شدهاند؛ یک ارزیابی مستمر (Formative) به معنی پرسیدن سوال در سر کلاس درس توسط معلم بوده و به صورت تدریجی و خرد خرد است؛ در حالی که یک ارزیابی کلان (Summative) بررسیای است که در انتهای هر بازه (مثلا هنگام امتحانات پایان ترم) و با برگزاری آزمونی خاص، ارزیابیها انجام می شوند. در مقاله ذکر شده همچنین این مورد مطرح می شود که که ارزیابی مستمر و خرد برای رسیدن به دقت بالا در برآورد نیازهای مشتری، بهتر است؛ چرا که طبق مدل تشدید خرابی و خطا که پیش تر بررسی شد، خرابی ها هرچه کمتر بوده و نیازمندیهای مشتری از همان ابتدا در نظر گرفته شوند و برآورده شوند، کیفیتی بیشتر با صرف هزینهای کمتر خواهیم داشت.

شکل ۳-۴: مثالی از دو نوع ارزیابی مختلف خرد و کلان [۴۲]؛ در این مثال که توسعه دهنده نرم افزار به آشپز و محصول نهایی به غذای پخته شده توسط آشپز تشبیه شده، تفاوت دو نوع ارزیابی خرد و کلان مطرح شده؛ هنگامی که غذا در حین پخت و توسط آشپز به صورت خرد خرد و در فواصل زمانی کوتاه مورد سنجش قرار می گیرد شاهد ارزیابی خرد هستیم و در صورتی که غذا پس از پخت توسط یک منتقد یا مشتری مورد سنجش قرار گیرد، شاهد ارزیابی کلان خواهیم بود.

مورد آن غذا و یا کیفیت رستوران را اعلام میکند. ذکر این نکته در همینجا خالی از لطف نیست که به وضح میتوان دریافت که هزینه اعمال تغییرات در صورت درخواست مشتری از آشپز زیاد خواهد بود؛ به طور مشابهی، در صورت عرضه محصول نرمافزاری، هزینه تعمیر یک خرابی به مراتب بیشتر از مرور در حین تولید است.

۳-۳-۱ ارزیابی خرد

در یک مطالعه استفادهپذیری با رویکرد ارزیابی خرد، محقق به طور مستمر و به صورت دورهای، محصول نهایی را مورد بررسی قرار میدهد و در تمامی مراحل تولید نواقص آن را سنجیده و کشف میکند و پیشنهاداتی برای رفع آن نواقص ارائه میدهد؛ این روند تا آن جا ادامه پیدا میکند که نهایتا یک محصول تقریبا ایدهآل و یا یک محصول خوب به اندازه کافی به دست آید. درواقع هدف در این نوع مطالعه هدف بهبود مستمر و رفع ایرادات محصول قبل از عرضه نهایی آن است؛ در نتیجه با بررسی فرآیندهای نرمافزاری و همچنین مطالعاتی از قبیل [۵]، [۳۳] و [۳] به نظر میرسد که هرچه ارزیابی خرد زودتر رخ دهد، تاثیر بیشتری روی محصول نهایی و افزایش کیفیت آن خواهد داشت.

با اتخاذ این رویکرد، برخی از سوالاتی که میتوان در فرایند طراحی پرسید عبارتند از:

- مهمترین مواردی که کاربران را از رسیدن به اهدافشان منع میکند و یا به عدم کارایی آنها میشود چیست؟
 - نقاط قوت و ضعف محصول از نقطه نظر كاربران حيست؟
 - اشتباهات متداول كاربران هنگام كار با محصول حول چه مواردي است؟

[\] Good Enough

- آیا بهبودهای مطرح شده توسط محققین تجربه کاربری، در هر نسخه از طراحی رابط کاربری، مورد استفاده و توجه قرار میگیرند؟
 - پس از عرضه نهایی محصول، چه مواردی در رابطه با استفاد پذیری به نظر میرسد که هنوز جای کار خواهد داشت؟

شایان ذکر است که در صورتی که فرصت اصلاح طراحی واسط کاربری وجود نداشته باشد، استفاده از این روش ارزیابی به نظر میرسد که کارایی چندانی نداشته باشد و بیشتر باعث هدررفت منابع شود.

۳-۳-۲ ارزیابی کلان

در این روش، محقق همچون یک منتقد، محصول نهایی را از زوایای مختلف مورد بررسی قرار میدهد و حتی با محصولهای دیگر مقایسه میکند تا نقدی بر آن وارد سازد. نکته حائز اهمیت این است که در اینجا محصول ارائه شده است و دیگر در فاز توسعه و تولید نیست. هدف از انجام این نوع ارزیابی، پی بردن به این نکته است که این محصول خاص چهقدر خوب می تواند به نیازمندیهای کاربران پاسخ دهد و به چه میزان با آنها هم جهت است. بر خلاف ارزیابی خرد، این روش، مبتنی بر اصول و قواعد و چکلیستهای مشخصی است که در نهایت محصول با آنها بررسی می شود. در مقایسه محصولات مختلف نیز مجددا این اصول و قواعد مبنا قرار می گیرند. با بررسی منابع مختلفی از قبیل [۵] و [۲] می توان به این نکته پی برد که سوالاتی از قبیل سوالات زیر بیشتر مناسب انجام این نوع ارزیابی هستند:

- آیا اهداف استفادهپذیری پروژه (مطرح شده در نیازمندیهای پروژه) رعایت شدهاند؟
 - استفادهپذیری کلی سیستم در چه سطحی است؟
- نقاط ضعف و قوت محصول مورد نظر در مقایسه با سایر رقبا چیست و چگونه میتوان در صورت داشتن ضعف، آن را ارتقا داد؟
 - آیا بهبودهای مطرح برای هر نسخه از نرم افزار، پس از عرضه نسخه جدید، اعمال میشوند؟

در نهایت فراموش نکنیم که همواره تغییر نیازمند صرف هزینه و زمان است؛ بنابراین در صورت استفاده از این روش ارزیابی میبایست در نظر داشت که برخی فعالیتهای پسا ارزیابی نیز باید در پس ذهن مدیر پروژه باشد؛ چرا که ممکن است حتی در صورت نیاز پروژهای برای برطرف کردن مشکلات استفاده پذیری یک سیستم تعریف شود که خود این پروژه هزینه بر باشد.

۳-۳-۳ اهداف کاربری

سوالاتی همچون «آیا محصول مورد نظر نیاز روزانه کاربران را برآورده خواهد کرد و کاربران به طور متداول با این محصول نرمافزاری در ارتباط خواهند بود؟» و نیز «آیا کارایی کاربران و بهرهوری آنها در طول انجام یک وظیفه مشخص در هنگام کار با این نرمافزار مهم است؟ چگونه میتوان آن را بهبود داد؟» به قسمتی از محصول توجه دارند که با نیازمندیهای کاربر درگیر است. با بررسی مراجعی همچون [۳]، [۳۹]، [۴۱] و [۳۰] میتوان به این نکته پیبرد که همه این قبیل سوالات که به نیازهای ضمنی و نه الزاما صریح کاربر، در تعامل با رابط کاربری می پردازند، به دو متریک اساسی و قابل اندازهگیری از نیاز کاربران اشاره

میکنند۱: کارایی۲ و رضایت کاربر۳.

کارایی به عنوان یک متریک کیفیتی به طور خاص در رابطه با تجربه کاربری، به اندازهگیری توانایی کاربران در انجام وظایف مشخصی میپردازد؛ در این راستا، اندازهگیریهای جنبی نیز اهمیت زیادی پیدا میکنند. از جمله این اندازهگیریها میتوان به موارد زیر اشاره کرد که به طور غیر مستقیم در کارایی تاثیرگذار هستند:

- زمان سیری شده برای انجام وظیفه
- میزان تلاش برای انجام وظیفه (برای مثال تعداد کلیکها و یا توان ذهنی مصرف شده)
- زمانی که طول میکشد تا کاربر با وظیفه آشنا شود و بدون صرف تلاش خاصی آن را انجام دهد (یادگیری)

اندازهگیریهای مربوط به متریک کارایی یک رابط کاربری، اهمیت زیادی دارند چرا که اگر کاربران نتوانند وظایف اصلی در رابطه با تعامل با سیستم را به درستی و با موفقیت به انجام برسانند، در عمل محصول نرمافزاری به شکست منتهی شده است و یا حداقل رابط کاربری خوبی ندارد و امکان تعامل موفق کاربر وجود نخواهد داشت.

رضایت درواقع نظر نهایی کاربر در مورد تعاملش با سیستم است؛ قضاوتی که کاربر در مورد سیستم و نحوه تعاملش با آن می کند می تواند با جملات مختلفی مانند «استفاده از آن سخت/آسان بود»، «گیج کننده/ساده بود» و … بیان شود. البته که این تعبیرات غیردقیق هستند اما می توان با اعطای درجههای آزادی خاصی به کاربران، در حین تعامل با سیستم برخی از متریکها را از آنها به طور خوداعلامی از کاربران گزارش عددی گرفت؛ چه بسا که به گفته مراجعی همچون [۳]، [۳۷] و [۱۳] این متریکها در سامانههای کاربردی مبتنی بر وب - که هدف اصلی این پروژه هستند - بسیار مهم و تاثیرگذارند. اما باید به این نکته توجه کرد که در محدوده سامانههای مبتنی بر وب، رضایت کاربر الزاما همیشه همراه با کارایی حداکثری وی در تعامل با سامانه نیست؛ فاکتورهای بسیاری از قبیل زیبایی و وجود تکنولوژیهای مختلف، بر این رضایت تاثیر مستقیم دارند و چه بسا که کاربری با رضایت حداکثری از یک سامانه استفاده کند ولی کارایی عملیات وی بسیار یایین باشد.

ویژگیهای محصولی که کاربر با آن در تعامل است به عنوان یکی از اصلی ترین مدخلها به بحث رضایت کاربری اهمیت دارند. در درجه دوم اما، کیفیت تعامل به عوامل دیگری همچون دانش قبلی کاربر و سن و جنسیت و غیره وابسته است. در ادامه مدلی برای تشخیص دادن ویژگیهای محصول نهایی و اینکه کدام یک از آنها و در چه شرایطی منجر به رضایت کاربری خواهند شد معرفی می شود.

مدل کانو که در سال ۱۹۸۴ و توسط آقای کانو [۴۴] برای تمییز دادن ویژگیهای اشتیاق برانگیز و صریح و همچنین ویژگیهای ضمنی و بایدی یک محصول، ارائه شد. طی این مدل، کیفیت محصول نهایی در گرو پنج دسته از نیازمندیهای زیر است که رسیدن به هر دسته از اینها نیازمند اتخاذ سیاستهای مختلف در طول ساخت محصول است:

۱ البته باید توجه کرد که کارایی کاربر و رضایت کاربر در اینجا اشاره به دید کاربر به سامانه هدف دارند و نه اینکه متریکهای اصلی مدل کیفیتی باشند. اینجا کارایی و رضایت از دید کاربر و به عنوان نظر وی در مورد سامانه، مورد نظر هستند.

⁷Performance

 $^{^{}r}$ Satisfaction

[\]Self-reported Metrics

شکل ۳-۵: تعبیری از مدل کانو [۴۵]

- نیازمندیهای بایدی: که مشتریان به طور ضمنی خواستار آنها هستند و ممکن است صریحا بیان نشوند. به عنوان مثال اینکه یک سامانه کاربردی مبتنی بر وب همیشه با یک آدرس اینترنتی خاص URL در دسترس باشد.
- نیازمندیهای تکبعدی: که در صورت وجودشان کاربر احساس رضایتمندی و در صورت عدم وجودشان در محصول نهایی، کاربر احساس عدم رضایت از محصول را خواهد داشت. برای نمونه میتوان به واکنشگرا بودن یک سامانه مبتنی بر وب روی پلتفرم موبایل اشاره کرد؛ که گفتنی است این روزها به یکی از ویژگیهای اصلی موفقیت بسیاری از کسبوکارهای فعال در ایران تبدیل شده است.
- نیازمندیهای اشتیاقبرانگیز: که در صورتی که به طور کامل پیادهسازی شوند، منجر به رضایتمندی کاربران خواهند شد ولی در صورت عدم پیادهسازی، رضایت کاربران از بین نخواهد رفت. به عنوان مثال اینکه یک سامانه پست الکترونیکی مبتنی بر وب در کنار لیست ایمیلهای دریافتی، وضعیت آبوهوا و زمان فعلی و گزیدهای از اخبار را نشان دهد میتواند یک ویژگی اشتیاق برانگیز باشد.
- نیازمندی های بی تفاوت: بودن و نبودنشان تفاوتی در رضایت مشتری نخواهد کرد. به عنوان مثال در بسیاری از پروژههای منتهی به یک سامانه کاربردی مبتنی بر وب، پلتفرم و زبان مورد استفاده برای توسعه سامانه، تفاوتی در رضایت مشتریان ایجاد نخواهد کرد.
- نیازمندیهای معکوس: به دستهای از نیازمندیها اشاره دارد که پرداختن بیشازحد به آنها باعث کاهش رضایت کاربران می شود. به عنوان مثال برخی از کاربران ممکن است از ابزارهایی که امکانات زیادی به آنها در داشبورد مدیریتی میدهند خوششان بیاید و در مقابل برخی از کاربران از پیچیدگی بیش از حد ابزار گلایه کنند.

در شکل ۳-۵ ملاحظه می شود که بسیاری از ویژگیهای جذاب محصول که هنوز به عنوان نیازمندی مطرح هستند و هنوز پیادهسازی نشدهاند و درنتجیه کاربر امکان انجام عملیات مورد نظر خود را ندارد، انگیزهای برای ساخت سامانه هستند و پس از

 $^{^{\ }}$ Webmail

اینکه این ویژگیهای عملیاتی (منحی قرمز رنگ) در محصول پدیدار میشوند، رضایت کاربران از محصول افزایش پیدا میکند؛ گرچه الزاما شاید این ویژگیها، کارایی بالایی از دید کاربران نداشته باشند. به مرور زمان که فناوری پیشرفت میکند، نیازمندیهای فعلی آهسته به بایدهای سامانه تبدیل میشوند (منحنی سبز رنگ).

همچنین در مرجع [۴۶] از خط آبی قابل مشاهده در شکل ۳-۵، به عنوان نیازمندیهای تکبعدی یاد شده است که مشتری فقط به طور صریح و مشخص، این دسته از نیازمندیها را مطرح میکند و بقیه نیازمندیها معمولا به طور ضمنی مطرح می شوند؛ در نتیجه نقش تجربه در مهندسی نرمافزار و تولید سیستمهای باکیفیت را می توان کمابیش مشاهده کرد؛ هرچه دانش بیشتری به بدیهیات و سهلهای ممتنع موجود در نیازمندیها داشته باشیم و اظهارمندی نیازمندی شفاف و مدون تری در دست باشد، محصول نهایی باکیفیت تر و هزینه و وقت صرف شده کم تر خواهد بود.

شکل ۳-۶: تفسیری از مدل کانو که نشان دهنده ارتباط رضایت کاربر و ویژگیهای محصول است [۴۷]؛ نیازمندیهای اشتیاق برانگیز کاربر، خواسته کاربران نیست ولی در صورت پیاده سازی موفق، موج بزرگی از رضایت را در بر خواهد داشت (آ). نیازمندیهای تکبعدی در صورت عدم پیاده سازی، موجب نارضایتی خواهد بود (ب). نیازمندیهای بایدی که درواقع خواسته اصلی کاربران بوده و باید به طور کامل پیاده سازی شوند تا رضایت حداقلی کسب شود (ج). نیازمندیهای بیتفاوت نیز بود و نبودشان در محصول نهایی تفاوتی در رضایت مشتری ایجاد نخواهد کرد (د). نیازمندیهای معکوس نشان داده اند که هرچه بیشتر به آنها پرداخته شود، باعث بروز نارضایتی بیشتری خواهند شد (ه). در واقع هر ویژگیای از محصول نهایی، مادامی که پیاده سازی نشده است، دچار انگیزش کاربر می شود. نیازمندی های تکبعدی پس از اینکه به کاملی پیاده سازی شد و کاربر از آن استفاده کرد، دچار افزایش رضایتمندی کاربر شده و در نهایت و پس از گذشت اندک زمانی، این ویژگی به یک ویژگی بایدی تبدیل می شود که کاربر حتی شاید به طور صریح به آن اشاره نکند ولی نبود آن در محصول باعث عدم رضایتمندی خواهد شد (و).

تعاریف انواع نیازمندیهای مطرح شده توسط کانو به جهت اهمیتی که در شناخت خصیصههای کیفیتی این پروژه دارند، بار دیگر در شکل ۲-۶ ذکر شده است. مطابق این شکل، ممکن است با برهم زدن معاملات و همواره با تحویل دادن نیازمندیهای شگفتانگیز، مشتریان خود را غافلگیر کنیم و برای کسب رضایت موقتی، آنها را از نیازمندیهای اصلی دور کنیم، اما باید همواره در خاطر داشت که این استراتژی محکوم به شکست است چرا که محلول زمان در نهایت اشتیاق کاربران را در خود حل کرده و غافلگیریهای دیروز تبدیل به بایدهای امروز خواهند بود و دیگر نمیتوان ارزش افزودهای نسبت به سایر رقیبان و یا نسبت به وضعیت دیروز سازمان خودمان، ارائه داد.

نتیجه نهایی از دو بحث پیشین در مورد رضایت کاربر از سامانه و کارایی کاربر در تعامل با سامانه، اینکه این دو خصیصه الزاما دارای همبستگی خاصی نیستند؛ ولی همواره باید در انداز،گیری استفادهپذیری مدنظر قرار بگیرند چرا که طبق تعریف استفادهپذیری، در یک سیستم استفادهپذیر، کاربر میبایست در نهایت از سیستم راضی بوده باشد و تجربه کاربری خوبی (کارایی در هنگام استفاده از محصول) داشته باشد.

سناریوهای سنجش استفادهپذیری و خصیصههای هرکدام

با مقایسه تطبیقی انجام شده در جدول ۳-۱ در رابطه با مدلهای کیفیتی مختلف و همچنین با بررسی مراجعی همچون [۱۶]، [۲] و [۳] میتوان نتیجه گرفت که در زمان انتخاب خصیصه های اندازه گیری استفاده پذیری در یک محصول (و نه الزاما یک محصول نرم افزاری)، میبایست به نکاتی از قبیل اهداف مطالعه استفادهپذیری^۱، اهداف کاربری محصول^۲، فناوریها و ابزارهای موجود برای جمعآوری داده و همچنین بودجه و زمان موجود برای تحقیق درباره استفادهپذیری، میبایست توجه کرد.

به تعبیر مرجع [۳]، در دنیای کنونی که نیازمندی ها بسیار گسترده و مفصل شدهاند و جزئی ترین تغییرات در نیازمندی های مشتری ممكن است دامنه و حوزه مخاطبان يک سامانه را عوض كند و همچنين از آنجايي كه در هر مطالعه استفادهپذيري، ويژگيها و خصیصههای خاص آن مطالعه مدنظر قرار میگیرند -که الزاما با اهداف سایر مطالعات استفادهپذیری یکسان نیستند- نمیتوان مجموعهای از متریکهای مشخص و شسته رفته ای برای اندازه گیری و سنجش استفاده پذیری در تمام سامانه های کاربردی مبتنی بر وب ارائه داد؛ در حقیقت، طبق ادعای مرجع [۱۶] بیش از ۷۰٪ سازمانهای فعال در حوزه فناوری اطلاعات، به منظور تامین و تضمین کیفیت در محصولات نرمافزاری خود، مدلهای گلچین شده و سفارشیسازی شده خود را استفاده میکنند. بنابراین این پندار که برای تمامی سامانههای مبتنی بر وب میتوان یک مدل کیفیتی ثابت ارائه کرد، غیرمنطقی به نظر میرسد. در عوض میتوان با بررسی سرگذشت تاریخی مدلهای کیفی و از طریق مقایسه تطبیقی آنها در جدول ۳-۱ و نیز مطالعه مراجع مختلفی همچون [۳۷]، [۲۱]، [۲۴]، [۲]، [۵] و [۳] که در زمینه تجربه کاربری و استفادهپذیری نتایج تحقیقات ارزشمندی را ارائه کردهاند، به این نتیجه دست یافت که دستهبندیهای کلیای از انواع مطالعات استفادهپذیری میتوان ارائه نمود، که در هر دسته، با توجه به اهداف و نتایج مورد نیاز مطالعه، متریکهای خاصی اهمیت بیشتری پیدا میکنند و میتوان به آنها پرداخت.

یکی از انواع متامدلها که بر مبنای مدلهای سلسهمراتبی و به طور خاص برای استفادهپذیری سامانههای کاربردی مبتنی بر وب ساخته شده است در مرجع [۳] ذکر شده است منظوره که انجام گرفته روی انواع مدلهای کیفیتی عام و خاص منظوره که

اینکه برای ارتقای محصول نهایی و ساخت یک نسخه دیگر است یا برای پیشگیری از بروز خرابیهای بعدی و ... اینکه کاربر چه هدفی را از استفاده کردن از این محصول دنبال میکند

[&]quot; البته تمامی خصیصههای مطرح برای استفادهپذیری در این مدل به طور کامل شرح و بسط داده نشدهاند؛ چرا که به گفته ارائه دهنده، بسیاری از اقدامات به زمینه مورد مطالعه و تست وابسته بوده و در نتیجه مشخص کردن جزییات نهایی با تیم تضمین کیفیت (تست و ارزیابی استفادهپذیری) است. همچنین شایان ذکر است که هیچگاه منبع ذکر شده از خصیصههایی که عنوان کرده به عنوان یک چارچوب و یا متامدل یاد نکرده است؛ اما به جهت اهمیت استدلال و بررسیهای این منبع و همچنین ارجاعات زیاد به آن، چه در صنعت و ابزارهایی همچون UsabilityHub و چه در دنیای تحقیقات، اهمیت این خصیصههای کیفیتی را به عنوان یک متامدل کیفیتی دو چندان میکند.

در موقعیتهای مختلف ارائه شدهاند، ده سناریوی مهم برای مطالعه استفادهپذیری در وباپلیکیشنها مطرح هستند؛ که میتوان عناوین هرکدام و خصیصههای مناسب هر سناریو را در جدول ۲-۲ مشاهده کرد. در ادامه به بررسی هرکدام از این ده سناریو میپردازیم.

الگوهای مرتبسازی	خصیصههای وبسایت بلادرنگ	خصیصههای ترکیبی و مقایسهای	صیصههای فیزیولوژیکی و رفتاری	خصيصەهاي خوداعلامي	خصیصههای موردی	يا دگيرى پذيرى	بهر،وري	स्वीश	زمان انجام وظيفه	موفقيتآميز بودن وظيفه	هدف و سناریوی مطالعه استفادهپذیری
	×			×	×		×			×	انجام یک تراکنش
		×		×			×			×	مقايسه محصولات
				×		×	×		×	×	ارزیابی استفاده مکرر از محصول
×							×	×		×	ارزیابی پیمایش و معماری اطلاعات سامانه
	×		×	×							افزایش آگاهی
				×	×						کشف مشکل

×

جدول ۳-۲: سناریوهای متداول مطالعه استفادهپذیری و متریکهایی که میتوان برای هرکدام در نظر گرفت [۳]

.7

×

×

نکته قابل تامل و مهم این است که در هر کدام از این ده سناریوی مطرح شده، الزاما به تمام ابعاد کیفیتی نگاه نمی شود؛ هرچیزی که باعث می شود استفاده پذیری تحت تاثیر قرار بگیرد اهمیت داشته و به جز آن بررسی نمی شود. حتی ممکن است در یک سناریو، مواردی از قبیل طراحی پیمایش و طراحی مولفه (رجوع شود به هرم طراحی سامانه های کاربردی مبتنی بر وب، شکل ۱-۳) نیز مورد بحث و بررسی قرار گیرند. در ادامه به بررسی هرکدام از سناریوهای ذکر شده در جدول ۲-۲ پرداخته شده و پس از آن توضیح هر خصیصه ذکر شده است.

۳-۴-۳ سناریوهای مطرح در مطالعه استفاده پذیری انجام یک تراکنش

حداکثرسازی استفادهپذیری یک محصول

حیاتی ایجاد تجربه کاربری مثبت

ارزیابی تاثیرات تغییرات جزئی و نامحسوس مقایسه طراحیهای مختلف

برخی از مطالعات استفادهپذیری به جهت افزایش بهرهوری بیشتر، بهبود و هموارتر شدن روند انجام یک تراکنش هستند؛ این تراکنش میتواند «تغییر گذرواژه»، «انجام یک خرید» و یا هر فرایند دیگری باشد. اساسا یک تراکنش دارای یک نقطه آغاز و یک نقطه پایان مشخص و واضح است؛ مثلا در یک سایت خرید و فروش برخط کالا، قرار دادن یک قلم کالا در سبد خرید و

اتمام خرید و تایید شدن سفارش، به ترتیب، نقاط شروع و پایان تراکنش هستند.

مقايسه محصولات

هدف از برخی مطالعات استفادهپذیری، مقایسه بین یک نسخه از یک محصول و یک نسخه از محصول دیگر و یا نسخههای قبلی همان محصول، به منظور یافتن نقاط ضعف و قوت هر کدام در طراحی و استفادهپذیری است. بنابراین میتوان گفت که با مقیاسه محصولات میتوان ارزیابی خوبی از استفادهپذیری سامانه هدف، در مقایسه با رقبا داشت و پتانسیلهای موجود برای افزایش استفادهپذیری را شناخت. البته که در این مقایسه میبایست امتیازدهی به خصیصههای مختلف انجام شود و سپس برترین گزینه انتخاب شود؛ اما انتخاب خصیصهها به این آسانیها هم نیست، چرا که به کاربرد و محدوده سامانه هدف بسیار وابسته است. برخی از سامانهها به منظور افزایش بهرهوری کاربران ساخته شدهاند در حالی که برخی دیگر فقط روی تجربهکاربری مثبت تمرکز کردهاند.

ارزیابی استفاده مکرر از محصول

بسیاری از محصولات و سامانههای نرمافزاری از جمله وبسایتهای شبکههای اجتماعی، سامانههای اتوماسیون و … برای استفاده مکرر در طول روز ساخته شدهاند و برای رسیدن به همین هدف میبایست هم استفاده از آنها آسان باشد و هم بهرهوری زیادی داشته باشند؛ بنابراین در این سناریوی بررسی و با شمردن اهداف پیشین، به نظر میرسد که زمان صرف شده برای انجام یک وظیفه از جمله مهمترین خصیصهها برای اندازهگیری استفادهپذیری به شمار میآید.

ارزیابی پیمایش و معماری اطلاعات سامانه

به تعبیر مرجع [۳] این سناریو معروفترین سناریو برای سنجش استفادهپذیری سامانههای مبتنی بر وب است. در انجام مطالعه استفادهپذیری طبق این سناریو، میتوان مواردی همچون «اطمینان از اینکه کاربران حتما چیزی را که میخواهند پیدا میکنند»، «در صفحات مختلف به آسانی پیمایش میکنند» و مواردی از این دست را نیز جزوی از اهداف مطالعه دانست. به طور معمول این مطالعات شامل طرحهای مفهومی قبل از پیادهسازی هستند که هدف اصلی در این پروژه نیز بررسی و سنجش استفادهپذیری این طرحهای مفهومی است؛ درواقع در این طرحهای مفهومی نحوه بدست آوردن اطلاعات و طراحی پیمایش و تجربه ابتدایی کاربری به قدری مهم است که باید قبل از هر چیزی، و در اولین وهله، تعیین تکلیف شوند. از جمله خصیصههای مهم در این سناریو، موفقیت انجام وظیفههای مختلف است.

افزایش آگاهی

گاهی اوقات تغییرات در رابطهای کاربری، فقط به جهت افزایش بهرهوری کاربر نیست؛ بلکه هدف از اعمال تغییرات در سامانه، افزایش آگاهی نسبت به یک قسمت خاص است. این مسئله در مورد تبلیغات برخط درست است؛ علاوه بر آن، در مواردی هم که پتانسیلهای کارکردی یک سامانه، به تمامی مورد استفاده قرار نمیگیرند نیز این مسئله صادق است.

كشف مشكل

در این نوع مطالعه هدف پیدا کردن مشکلات عمده در استفاده پذیری محصول است. گاهی اوقات به دلایل مختلفی از جمله سهل ممتنع بودن و یا مخفی بودن مشکلات استفاده پذیری در چشم توسعه دهنده، عملا تیم توسعه و تولید محصول قادر به کشف

مشکلات استفادهپذیری محصول نیستند، در حالی که مشتریان از این نوع مشکلات گلایه میکنند. معمولا این نوع مطالعهها انتهای باز دارند و نتیجهگیری قاطعی نمیشود از آنها کرد.

حداکثر سازی استفادهپذیری یک محصول حیاتی

اگرچه تولیدکنندگان بررخی از محصولات و سامانهها، همچون شبکههای اجتماعی، وبلاگها و ... به دنبال آسان کردن هرچه بیشتر نحوه تعامل کاربران و راحتی کار آنها هستند، برخی از محصولات و سامانههای حساس استفاده داشته باشند. از جمله این سامانهها میتوان به سامانههای رایگیری، سامانههای خروج اضطراری هواپیماها و ... اشاره کرد. فلسفه وجودی سامانههای حساس، همچون سایر سامانهها، این است که کاربر میبایست در مجموع چند کار بسیار محدود را با آنها انجام دهد. اما تفاوت آنها با سامانههای عادی در این است که کاربر میبایست در تعامل با سامانههای حساس و حیاتی، حتما وظایفش را با صددرصد موفقیت و اطمینان انجام دهد و در صورت عدم موفقیت در انجام و یا صرف زمان بیشازحد و یا وجود هر مشکل استفادهپذیری دیگری، ممکن است خسارت جانی و مالی وی را تهدید کند. بنابراین استفادهپذیری بالا در این سامانهها میبایست طی آزمایشهای مختلف و در انواع شرایط مختلف، و نه فقط به صورت محدود در فضای آزمایشگاه، سنجیده شده و اثبات شود.

ایجاد تجربه کاربری مثبت

در برخی از سامانهها، اینکه تجربه کاربری و تجربه تعامل مثبتی با سامانه داشته باشد هدف اصلی سازمان تولیدکننده محصول است. در این سامانهها معمولا ویژگیهایی از قبیل اشتیاقانگیزی در کاربر، اجین کردن احساسات و عواطف کاربر، مشغول کردن وی و همچنین کمی ایجاد اعتیاد به استفاده از سامانه در وی، از ویژگیهای بارز و قابل مشاهده در محصول نهایی است. برخی مطالعات استفاده پذیری به منظور افزایش این تجربه کاربری و تقویت این ویژگیها در محصول نهایی انجام میشوند. به عنوان مثال یکی از مدیران اسبق فیسبوک، از طراحی معتادکننده این شبکه اجتماعی خبر میدهد [۴۸] که به گفته وی آگاهانه بوده و در جهت افزایش سوددهی این شرکت بوده است.

ارزیابی تاثیرات تغییرات جزئی و نامحسوس

گاهی تغییرات اعمال شده در طراحی رابط کاربری و در کل در سامانه کاربردی به قدری کوچکاند که کاربر آنها را حس نمیکند و نمیتوان تاثیر این تغییرات را در رفتار کاربران سنجید. اما به تجربه [۳] میتوان گفت که حتی تغییر اندازه قلم نوشتههای رابط کاربری یک سامانه کاربردی مبتنی بر وب در یک شبکه اجتماعی با تعداد کاربران نسبتا زیاد، منجر به تغییرات بزرگ و گاها هزینهبر در تجربه کاربری کاربران میشود. با مقدمه فوق، برخی از مطالعات استفادهپذیری پس از اعمال تغییراتی در محصول، با هدف سنجش تاثیر این تغییرات روی تجربه کاربری انجام میشوند.

مقايسه طراحيهاي مختلف

هدف در این نوع مطالعه، مقایسه طرح فعلی با سایر طراحیهای موجود، و نه الزاما یک طرح، است. این مطالعه نیز از جمله مطالعههای مشهور استفادهپذیری است. به طور معمول و طبق بررسیهای منبع [۳] این نوع مطالعه نیز در مراحل اولیه تولید و با در دست داشتن طرحهای مفهومی و به منظور سنجش «خوب بودن» طرح فعلی در مقایسه با سایر طراحیها انجام میشود.

طی این مطالعه معمولا تیمهای مختلف طراحی، نمونههای اولیه خود را به کارزار مقایسه و ارزیابی وارد میکنند و با استفاده از خصیصههای از پیش تعیین شده ای شروع به سنجش و مقایسه آنها میکنند.

چالش انجام این نوع مطالعات معمولا در مشابه بودن طراحیها است؛ البته همین شباهت زیاد باعث می شود که بتوان نکات مثبت طراحیها را الهام گرفت و در طراحی، آنها را پیاده سازی کرد. درخواست انجام یک عمل مشخص در تمامی طراحیها و نتایج برآمده از آنها معمولا نمی تواند معیار مناسبی در این مطالعه باشد.

خصیصههای مرتبط با کارایی مستقل از فناوری روز دنیا در تولید محصولات و سامانههای نرمافزاری، هر کاربری برای تعامل با آنها، میبایست حتما با یک رابط کار کند؛ حتی در صورت کار کردن با فرمان صوتی نیز، نرمافزار تشخیص صدا در واقع همان رابط کاربر خواهد بود. در نتیجه کارا بودن این تعامل یکی از عوامل موفقیت آن رابط خواهد بود که به استفادهپذیری بالای محصول خواهد انجامید. خصیصههای مرتبط به کارایی رابط کاربری به طور کلی و با طبقهبندی مرجع [۳] به پنج دسته تقسیم میشوند که در ادامه مطرح شدهاند.

٣-٤-٣ موفقيت آميز بودن وظيفه

این خصیصه شاید یکی از معروفترین خصیصهها در اندازهگیری کارا بودن فعالیتها باشد؛ اینکه کاربران تا چه اندازه در انجام وظایف محوله به ایشان، موفق بودند توسط این خصیصه اندازهگیری میشود. دو نوع موفقیت کلی در اینجا مطرح است که اولی موفقیت دودویی^۱، که به معنای موفقیت قطعی و یا شکست قطعی است، و دومی موفقیت سطحبهسطح که به معنای درصد موفقیت در انجام یک کار مشخص است. شایان ذکر است که میتوان شکست را هم با همین تعریف سنجید.

۳-۴-۳ زمان انجام وظیفه

همانطور که از عنوان برمی آید، زمان مورد نیاز برای انجام یک وظیفه و کار مشخص را بیان میکند.

۳-۴-۳ خطاها

خطاهای رخ داده در طول انجام یک وظیفه را عنوان میکنند. این خصیصه میتواند در مشخص کردن نقاط ضعف عمده واسط نقش بزرگی داشته باشد.

۳-۴-۳ بهرهور*ي*

با در نظر گرفتن میزان تلاش و هزینهای که کاربر برای انجام وظایف مشخصی صرف میکند میتوان به این خصیصه مقدار داد. به عنوان مثال میتوان به تعداد کلیکهای صورت گرفته برای کامل کردن یک وظیفه و یا تعداد صفحاتی که کاربر برای انجام یک سناریو مشاهده میکند، اشاره کرد.

[\]Prototype

[\]Binary Success

۳-۴-۳ یادگیری پذیری

معیاری است که نشان میدهد کارایی کاربر در طول زمان و با آشنایی بیشتر کاربر با سامانه چگونه تغییر میکند. خصیصههای بعدی که در ادامه ذکر شدهاند به کارایی کاربر و بهرهوری در ارتباطش با سامانه الزاما ارتباطی ندارند و جدا هستند.

۳-۴-۳ خصیصههای موردی

بسیاری از مواقع وابستگی زیاد محصول به کاربر و هدف، باعث می شود که نتوان قواعد کلی و خصیصه های کلی برای افزایش استفاده پذیری آن مطرح کرد؛ در نتیجه شاهد این هستیم که در دنیای کنونی بسیاری از متخصصین استفاده پذیری، برای استخراج همین خصیصه ها در شرکتهای مختلف به کار گرفته می شوند. موارد و مشکلاتی هستند که هم از دید طراح و هنرمند و هم از دید مهندس سازنده مخفی می شوند؛ در نتیجه می بایست برای این موارد و مشکلات طراحی خصیصه هایی مطرح شود که بتوان با اندازه گیری هرکدام، بد بودن یا خوب بودن طراحی را اثبات کرد و برای چگونه برطرف کردن آن ها برنامه ارائه داد. به پیشنهاد مرجع [۳] مواردی که می بایست در استخراج این نوع خصیصه ها به آن ها توجه داشت، عبارتند از:

- ۱. آسانترین راه شناخت موارد مرتبط به استفادهپذیری استفاده از تستهای آزمایشگاهی (در ابعاد کوچک) است.
- ۲. در درستی آزمایی خصیصه ها و مشکلات، همواره باید به این نکته توجه داشت که بین آنچه که کاربر بیان میکند و آنچه که رفتار وی نشان می دهد، می بایست یک ارتباط منطقی و پایدار وجود داشته باشد.

-4-8 خصیصههای خود اعلامی

این نوع خصیصهها در اصل مربوط به دادههایی هستند که کاربران در حین کار با سامانه گزارش میدهند و یا اینکه با درخواست از ایشان، میتوان از آنها نتایج این دادهها را خواست. نتایج به دست آمده از این خصیصهها از این جهت برای ما اهمیت دارند که به طور مستقیم از تجربه کاربر حکایت میکنند. بنابراین با بررسیهای مرجع [۳] و [۲] میبایست در به دست آوردن این دادهها و خصایص، به نکات زیر توجه کنیم:

- میبایست در جمعآوری این نوع دادهها هم به فرصتهای به وجود آمده در انتهای هر جلسه توجه کرد و هم به فرصتهای موجود پس از انجام هر وظیفه کوچک؛ در انتهای انجام هر فرایند و وظیفه، میتوان نقاط و فرصتهای بهبود فرایند را بررسی و شناسایی کرد و در انتهای هر جلسه نیز میتوان یک شناخت کلی از استفادهپذیری به دست آورد.
- ۲. هنگامی که در یک آزمایشگاه مشغول انجام تست و مطالعه استفاده پذیری هستیم، میبایست استفاده از پرسشنامههای استاندارد همچون گستره استفاده پذیری سیستم (SUS) را در اولویت قرار دهیم چرا که حتی با وجود شرکتکنندگان کم در تست، تحلیلهای معناداری میتوان از روی دادههای به دست آمده از این پرسشنامهها به دست آورد.
- ۳. هنگام مطالعه و تست استفاده پذیری مربوط به یک وبسایت برخط، حتما از دادهها و بنچمارکهای موجود باید به منظور قیاس هرچه دقیق تر استفاده کرد. از جمله ابزارهای مطرح در این حوزه می توان به ابزار تحلیل دادههای وبسایت گوگل^۱، مخزن تحلیل و اندازه گیری وبسایت و شاخص رضایت مشتریان آمریکا اشاره کرد.

[\] System Usability Scale

 $^{^{\}intercal}$ Google Analytics

[♥] Website Analysis and Measurement Inventory (WAMMI)

 $^{^{\}dagger}$ The American Customer Satisfaction Index

۳-۴-۹ خصیصههای فیزیولوژیکی و رفتاری

در اندازهگیری و تعیین تکلیف کردن این خصیصه مهم و بسیار تاثیرگذار، می اوان از تکنیکهایی همچون دنبال کردن چشم کاربر، تحلیل احساسات وی در هنگام کار با سامانه، نقشه حرارت ساختن از روی کلیکها و به طور کلی هر سنجشی که به نوعی به دنبال کردن جزئی ترین رفتارهای کاربران می انجامد، مهم تلقی می شود. البته باید توجه داشت که تعیین کردن زیرخصیصههای کیفیتی برای این خصیصه، در مطالعات برخط دشوار تر خواهد بود؛ چرا که دسترسی فیزیکی به کاربر سخت تر و تحت نظر گرفتنش نیز همچنین، دشوار تر خواهد بود.

۳-۴-۰۱ خصیصه های ترکیبی و مقایسهای

دادههای به دست آمده از مطالعات استفادهپذیری میتوانندگاهی اوقات به منظور ساختن خصیصههای جدید استفاده شوند؛ ممکن است این سوال مطرح شود که چرا باید خصیصههای جدید را مطرح کنیم؟ در پاسخ کافی است به خصیصههایی همچون زمان انجام یک وظیفه خاص و یا نرخ موفقیت وظایف، به تنهایی، نگاه کنیم. برخی از آنها به طور کامل بیانکننده استفادهپذیری یک سامانه کاربری نیستند. بنابراین میتوان از این دادهها به طور ترکیبی و برای بیان یک خصیصه واحد استفاده کرد که درک بهتری نیز داشته باشد.

با بررسیهای مرجع [۳] دو روش معمول برای ساختن خصیصههای ترکیبی جدید وجود دارد: اولی، استفاده از چندین خصیصه و ترکیب کردن آنها برای ساختن یک خصیصه واحد و دومی، مقایسه دادههای موجود با بنچمارکها و نتایج مختلف و بعضا ایدهآل. هر دو روش در نهایت سعی در ساده تر کردن مفهوم استفاده پذیری دارند.

۳-۴-۳ خصیصههای وبسایت بلادرنگ

در سامانههای مبتنی بر وب، دادههایی همچون ترافیک فعلی کاربران، صفحاتی که هماکنون در حال مشاهده هستند و کلیکهای آنها جزو دادههایی محسوب میشوند که معمولا به صورت خام معنی خاصی ندارند ولیکن میتوان با تجمیع آنها و تفسیرشان از یک دید کلی تر، معانی و مفاهیم بیشتری به دست آورد. ابزارهای زیادی برای این منظور وجود دارند که هماکنون به صورت پیشرفتهای تحلیلها و آمار مرتبط با سامانه مبتنی بر وب را ارائه میکنند. از جمله این ابزارها میتوان به ابزار تحلیل دادههای وبسایت گوگل که به صورت رایگان در اختیار سازمانها و افراد قرار دارد، اشاره کرد؛ این ابزار امکانات تحلیل پیشرفتهای همچون مدت زمان هر جلسه کاربر (و نرخ بازگشت کاربران ارائه میدهد.

۳-۴-۳ الگوهای مرتبسازی

مرتبسازی کارت، روشی است که از ابتدای مطرح شدن سنجش استفادهپذیری به عنوان یک راه برای بهینهتر کردن رابط کاربری مطرح شد. بر اساس این تکنیک، همانطور که در شکل ۲-۷ قابل مشاهده است، برای رسیدن به یک چینش محتوای خوب و بهینه، میتوان محتوا را در قالب کارتهایی آماده کرد که در حین تست، از شرکتکنندگان درخواست مرتبسازی، دستهبندی و چینش این کارتها را داشته باشیم. با این روش و تحلیل دادههای بدست آمده (مانند درصد افرادی که به چینش نوع اول متمایل هستند و یا تعداد دفعاتی که کارت مشخصی در یک جای مشخص قرار میگیرد) میتوان به الگوها و دادههایی دست یافت که میتوان گفت بهترین نوع چینش و نمایش محتوا را برای ما به ارمغان خواهند آورد.

[\] Session Time

Y Bounce Rate

(آ) نمونهای از یک طراحی صفحه نمایش محصولات که شاید در ابتدا چندان کارا به نظر نرسد

(ب) تبدیل محتوا به کارتهای قابل مرتبسازی توسط کاربران و محول کردن دستهبندی و مرتبسازی به کاربران سامانه به منظور تست و کشف الگوهای فکری کاربران

(ج) استفاده از الگوها و دادههای استخراج شده از پاسخ کاربران در مرتبسازی کارتها و نهایتا بهینه کردن ظاهر واسط کاربری

شکل ۳-۷: تاثیر تستها و الگوها مرتبسازی در استفادهپذیری [۴۹]؛ به منظور به دست آوردن دادههای مرتبسازی، می بایست محتوای مورد نظر (آ) را در قالب کارتهایی درآورد و سپس از شرکتکنندگان خواست که هرگونه که متمایل اند به مرتبسازی و دسته بندی این دادهها بپردازند. از پاسخهای برآمده از شرکتکنندگان می توان الگوهایی را استخراج کرد که بهینه ترین حالت چینش محتوا، از نظر کاربران، در رابط کاربری را می تواند نشان دهد (ج).

۲-۵ روشهای سنجش استفادهپذیری

تفادهپذیری با توجه به روشهای مختلف مطالعه [۳]	جدول ۳-۳: بحث در مورد نحوه انجام مطالعه اسن
---	---

ابتدا مطالعه برخط و سپس مطالعه آزمایشگاهی	ابتدا مطالعه آزمایشگاهی و سپس انجام مطالعه برخط
ابتدا بزرگترین و اصلی ترین مشکلات را با دادههای به دست آمده از مطالعه برخط، شناسایی میکنیم و سپس از مطالعات آزمایشگاهی استفاده میکنیم تا دانش کیفی بیشتری در مورد این مشکلات و مسائل به دست آوریم	مشکلات ساده و کوچک را پیدا کرده یا حل میکنیم و بقیه مسائل و بحثها به نمونههایی با اندازه بزرگتر سپرده میشود
مصاحبهها، تصاویر ویدیویی و نقل قولهای مستقیم زیادی باید از کاربران جمع شود تا بتوان راهحلهای جدید مطرح کرد و سپس در آزمایشگاه و در فضایی کوچکتر، با آن راهحلها مسئله را حل کرد	راهحلها، ایدهها و طرحهای جدید با استفاده از تست آزمایشگاهی تولید میشوند و سپس توسط مطالعه برخط، مورد ارزیابی، سنجش و درستیآزمایی واقع میشوند
باید تمامی خصیصهها در مورد کیفیت طراحی مورد پرسش و نظرسنجی قرار گیرند و اگر نتیجه نهایی مثبت بود، نیازی به انجام مطالعه آزمایشگاهی نیست	بازخورد کاربران و نحوه تعامل آنها به صورت حضوری مورد بررسی و ارزیابی قرار میگیرد

به لطف فناوری وب و شبکه، امروزه محدود به یک روش سنجش و ارزیابی نیستیم. همانطور که از بررسی منابعی همچون [۶]، [۵۰] و [۳۹] برمیآید، میتوان خصیصهها و اندازهگیریهای مربوط به آنها را تقریبا از هر روشی که ارزیابی بعدی از این دادهها را تضمین کند، به دست آورد. جمله پیشین به این معنی است که در مطالعه، سنجش و ارزیابی استفادهپذیری، نه تنها محدود به مشاهدات و آزمایشات آزمایشگاهی (که به معنای تعداد کم شرکتکنندگان و صرف زمان و هزینه زیاد است) نیستیم، بلکه میتوانیم از روشهایی همچون مطالعات برخط استفاده کرده و حجم زیادی از تفاسیر و تحلیلها را در زمان کمی به دست آوریم ۲.

مطالعات برخط میتوانند هم برای جمعآوری دادههای کیفی و هم برای جمعآوری دادههای کمی استفاده شوند؛ از طرفی دیگر

ا به منظور مطالعه بیشتر می توان به مرجع [۵۱] مراجعه نمود که مروری روی انگیزهها، روشها و چالشهای جمعسپاری می کند و از جمعسپاری به عنوان یک راه جمع آوری داده برای انجام ارزیابیها و سنجشهای مختلف نام می برد؛ در این منبع همچنین به دفعات متعدد اثبات شده است که هزینه استفاده از جمع سپاری برای جمع آوری داده به مراتب از روشهایی همچون روشهای آزمایشگاهی کمتر بوده و با استفاده از این روش می توان با صرف زمان و هزینه کمتر، به نتایج گسترده تری رسید.

آنکته قابل تامل از این نتیجهگیری این است که سازمانها، کسبوکارها و شبکههای اجتماعی می توانند از قدرت کاربران خود استفاده کنند تا برای جمع آوری داده راهی هموارتر، که به دنبال آن سودآوری بیشتر خواهد آمد، داشته باشند. این به این معناست که همین پروژه می تواند در صورت پیادهسازی تجاری جمع آوری داده راهی هموارتر، که به دنبال آن سودآوری بیشتر خواهد آمد، داشته باشند. این به این معناست که همین پروژه می تواند در صورت پیادهسازی توسط یک سازمان دارای کسبوکاری از نوع (Business to Client) و سریسهای مبتنی بر وب ارائه می دهند، همگی مایل اند که با صرف حداقل مبتنی بر وب جدید را در نظر بگیرید. همه این کسبوکارها که سرویس خود را با کمک سامانههای مبتنی بر وب ارائه می دهند، همگی مایل اند که با صرف حداقل هزینه، به بهترین محصول برای شروع کسبوکار خود برسند. سازمان ارائه دهنده سرویس سنجش استفاده پذیری برای کسبوکارهای نوپا می تواند با استفاده نریر با از کاربران خود و با بهرهگیری از روشهای جمعسپاری و خردکردن تستها به میکرووظایف، دادههای مربوط برای تست و سنجش استفاده پذیری محصولات نرم افزاری کسبوکارهای نوپا را فراهم کند. بنابراین این پروژه می تواند به عنوان یک طرح کسبوکاری (Business Plan) اولیه برای سازمانهای درگیر با کاربران نهایی (B2C) و همچنین کسبوکارها (B2C) Business to Business) باشد.

در این نوع مطالعات میتوان هم روی نگرش و هم روی رفتار شرکتکنندگان تامل کرد. به گفته مراجعی همچون [۵۲] برخی از پژوهشگرانِ استفادهپذیری، ایده نوعی مطالعه ترکیبی را مطرح میکنند که در ادامه میتوان به مطالعه برخط نیز آن را تعمیم داد. با در نظر گرفتن ایدههای مختلفی، مرجع [۳] بررسی جامعی در مورد چگونگی مطالعه استفادهپذیری و در نهایت سنجش استفادهپذیری و جمعآوری داده و تحلیل آنها انجام داده است که در جدول ۳-۳ قابل مشاهده است.در این جدول یک نگاه کلی به دو روش شده است که الزاما نمیتوان گفت کدام یک بهتر است به اما نکته حائز اهمیت این است که هر دو روش مطالعات برخط و آزمایشگاهی نقاط ضعف و قوت خود را دارند که می بایست در انجام مطالعات استفادهپذیری، این موارد و اینکه چگونه می توان از ترکیب هر دو نوع مطالعه بیشترین بازدهی را کسب کرد، در نظر گرفت.

در انجام مطالعه استفادهپذیری، بدیهی است که انجام مطالعه برخط، در صورت بهرهور نبودن، هزینه و زمان بسیاری را خواهد طلبید. همانطور که در بخش مقدمه مطرح شد، یکی از راههای کمهزینه برای جمعآوری داده زیاد با صرف هزینه کم و از طرفی بسیار قابل اطمینان [۵۱] ، جمعسپاری است که در ساخت این ابزار نیز به عنوان یک روش اصلی برای مطالعه استفادهپذیری و پیدا کردن مشکلات اصلی استفادهپذیری در نظر گرفته شده است.

۳ چرا که این مورد بسته به کاربرد بوده و در جایی که مثلا حل کردن مشکلات کوچک اهمیت زیادی دارد، میبایست در ابتدا مطالعه آزمایشگاهی و در مقیاس کوچک انجام دهیم؛ در موقعیتی هم که یافتن مسائل اصلی از اهمیت بالایی برخوردار است، میبایست از مطالعه برخط و سپس مطالعه آزمایشگاهی (به منظور ارائه راهحل) استفاده کنیم.

منابع و مراجع

- نشر آدینه : تهران .اول ,کلیات متدولوژی تامین کیفیت ,عبدالهزاده بارفروش، احمد [1]
- R. S. Pressman, Software engineering: A practitioner's approach, Eighth edition. New York,
 NY: McGraw-Hill Education, 2015, 941 pp., ISBN: 978-0-07-802212-8.
- [3] W. Albert and T. Tullis, Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics, 2nd ed. Elsevier: Morgan Kaufmann, Jul. 17, 2013, 320 pp., ISBN: 978-0-08-055826-4.
- [4] S. Wagner, Software Product Quality Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, ISBN: 978-3-642-38570-4 978-3-642-38571-1. DOI: 10.1007/978-3-642-38571-1. [Online]. Available: http://link.springer.com/10.1007/978-3-642-38571-1 (visited on 07/11/2018).
- [5] I. Sommerville, Software engineering, Tenth edition, global edition, ser. Always learning. Boston, Mass. Amsterdam Cape Town: Pearson Education Limited, 2016, 810 pp., OCLC: 934508916, ISBN: 978-1-292-09613-1.
- [6] R. Agarwal and V. Venkatesh, "Assessing a firm's web presence: A heuristic evaluation procedure for the measurement of usability," *Information Systems Research*, vol. 13, no. 2, pp. 168–186, Jun. 2002, ISSN: 1047-7047, 1526-5536. DOI: 10.1287/isre.13.2.168.84. [Online]. Available: http://pubsonline.informs.org/doi/abs/10.1287/isre.13.2.168.84 (visited on 07/08/2018).
- [7] Bluffton university bus crash, in Wikipedia, Page Version ID: 843580777, May 30, 2018. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Bluffton_University_bus_crash&oldid=843580777 (visited on 07/08/2018).
- [8] J. P. Miguel, D. Mauricio, and G. Rodríguez, "A review of software quality models for the evaluation of software products," *International Journal of Software Engineering & Applications*, vol. 5, no. 6, pp. 31–53, Nov. 30, 2014, ISSN: 09762221, 09759018. DOI: 10.5121/ijsea.2014. 5603. [Online]. Available: http://airccse.org/journal/ijsea/papers/5614ijsea03.pdf (visited on 04/21/2018).
- [9] E. Estellés-Arolas and F. González-Ladrón-De-Guevara, "Towards an integrated crowdsourcing definition," J. Inf. Sci., vol. 38, no. 2, pp. 189–200, Apr. 2012, ISSN: 0165-5515. DOI: 10.1177/0165551512437638. [Online]. Available: http://dx.doi.org/10.1177/0165551512437638 (visited on 07/09/2018).
- [10] (). Computing research & education, [Online]. Available: http://www.core.edu.au/ (visited on 07/08/2018).

- [11] (). Dblp: Computer science bibliography, [Online]. Available: https://dblp.uni-trier.de/ (visited on 07/08/2018).
- [12] (). Scimago journal & country rank, [Online]. Available: https://www.scimagojr.com/ (visited on 07/08/2018).
- [13] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda, "Usability measurement and metrics: A consolidated model," Software Quality Journal, vol. 14, no. 2, pp. 159–178, Jun. 1, 2006, ISSN: 0963-9314, 1573-1367. DOI: 10.1007/s11219-006-7600-8. [Online]. Available: https://link.springer.com/article/10.1007/s11219-006-7600-8 (visited on 07/08/2018).
- [14] B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative evaluation of software quality," in *Proceedings of the 2nd international conference on Software engineering*, IEEE Computer Society Press, 1976, pp. 592–605.
- [15] J. A. McCall, P. K. Richards, and G. F. Walters, Factors in software quality, 3 vols. General Electric, 1977, vol. 1,2,3.
- [16] S. Wagner, K. Lochmann, S. Winter, A. Goeb, M. Klaes, and S. Nunnenmacher, "Software quality models in practice survey results," *Technical Report TUM-I128*, p. 24, 2012.
- [17] R. E. Al-Qutaish, "Quality models in software engineering literature: An analytical and comparative study," p. 10, 2010.
- [18] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, "Software quality models: Purposes, usage scenarios and requirements," in *Software Quality*, 2009. WOSQ'09. ICSE Workshop on, IEEE, 2009, pp. 9–14.
- [19] R. G. Dromey, "A model for software product quality," *IEEE Transactions on software engineering*, vol. 21, no. 2, pp. 146–162, 1995.
- [20] J. D. Musa, Software reliability engineering: More reliable software, faster and cheaper. Tata McGraw-Hill Education, 2004.
- [21] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, "Predicting vulnerable software components," in *Proceedings of the 14th ACM conference on Computer and communications security*, ACM, 2007, pp. 529–540.
- [22] J. Radatz, A. Geraci, and F. Katki, "IEEE standard glossary of software engineering terminology," IEEE Std, vol. 610121990, no. 121990, p. 3, 1990.
- [23] B. Shackel, "Usability-context, framework, definition, design and evaluation," Human factors for informatics usability, pp. 21–37, 1991.
- [24] N Bevan, J Kirakowski, and J Maissel, "What is usability?" In Proceedings of the 4th international Conference on HCI, 1991.
- [25] R. B. Grady, Practical Software Metrics for Project Management and Process Improvement. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992, ISBN: 978-0-13-720384-0.
- [26] J. Nielsen, Usability engineering. Elsevier, 1994.
- [27] I. Organization, ISO/IEC 9126: Information Technology Software Product Evaluation Quality Characteristics and Guidelines for Their Use. 1991. [Online]. Available: https://books.google.com/books?id=_NvIZwEACAAJ.

- [28] M. F. Bertoa and A. Vallecillo, "Quality attributes for COTS components," 2002.
- [29] E. Georgiadou, "GEQUAMO—a generic, multilayered, customisable, software quality model," Software Quality Journal, vol. 11, no. 4, pp. 313–323, 2003.
- [30] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, "Usability meanings and interpretations in ISO standards," *Software quality journal*, vol. 11, no. 4, pp. 325–338, 2003.
- [31] L. Bass and B. E. John, "Linking usability to software architecture patterns through general scenarios," *Journal of Systems and Software*, vol. 66, no. 3, pp. 187–197, 2003.
- [32] B. Shneiderman and C. Plaisant, Designing the User Interface: Strategies for Effective Human-Computer Interaction, 4th ed. Pearson Addison Wesley, 2004, ISBN: 978-0-321-19786-3.
- [33] A. Rawashdeh and B. Matalkah, "A new software quality model for evaluating COTS components," *Journal of Computer Science*, vol. 2, no. 4, pp. 373–381, Apr. 1, 2006, ISSN: 15493636. DOI: 10.3844/jcssp.2006.373.381. [Online]. Available: http://www.thescipub.com/abstract/?doi=jcssp.2006.373.381 (visited on 07/24/2018).
- [34] (). ISO 25010, [Online]. Available: http://iso25000.com/index.php/en/iso-25000-standards/iso-25010 (visited on 07/26/2018).
- [35] A. Alvaro, "Quality attributes for a component quality model," p. 8, 2005.
- [36] A. Alvaro, E. Santana de Almeida, and S. Romero de Lemos Meira, "A software component quality framework," SIGSOFT Softw. Eng. Notes, vol. 35, no. 1, pp. 1–18, Jan. 2010, ISSN: 0163-5948. DOI: 10.1145/1668862.1668863. [Online]. Available: http://doi.acm.org/10.1145/1668862.1668863 (visited on 07/26/2018).
- [37] D. Alonso-Ríos, A. Vázquez-García, E. Mosqueira-Rey, and V. Moret-Bonillo, "Usability: A critical analysis and a taxonomy," *International Journal of Human-Computer Interaction*, vol. 26, no. 1, pp. 53–74, 2009.
- [38] S. KumarDubey, A. Rana, and A. Sharma, "Usability evaluation of object oriented software system using fuzzy logic approach," *International Journal of Computer Applications*, vol. 43, no. 19, pp. 1–6, Apr. 30, 2012, ISSN: 09758887. DOI: 10.5120/6208-8778. [Online]. Available: http://research.ijcaonline.org/volume43/number19/pxc3878778.pdf (visited on 07/26/2018).
- [39] (Jul. 2018). Measuringu: The user experience of university websites, [Online]. Available: https://measuringu.com/ux-university/ (visited on 07/26/2018).
- [40] (). Progressive web apps | web | google developers, [Online]. Available: https://developers.google.com/web/progressive-web-apps/ (visited on 07/26/2018).
- [41] T. T. Hewett, "The role of iterative evaluation in designing systems for usability," in *Proceedings of the Second Conference of the British Computer Society, Human Computer Interaction Specialist Group on People and Computers: Designing for Usability,* New York, NY, USA: Cambridge University Press, 1986, pp. 196–214, ISBN: 0-521-33259-1. [Online]. Available: http://dl.acm.org/citation.cfm?id=17324.24085.
- [42] (). Formative and summative evaluation, Emily Burritt's E-Portfolio, [Online]. Available: http://emilyburritt.weebly.com/formative-and-summative-evaluation.html (visited on 07/29/2018).

- [43] S. Krug, Don't make me think!: A common sense approach to Web usability, 1st ed. Pearson Education India, 2000.
- [44] N. KANO, "Attractive quality and must-be quality," *Hinshitsu (Quality, the Journal of Japanese Society for Quality Control)*, vol. 14, pp. 39–48, 1984. [Online]. Available: https://ci.nii.ac.jp/naid/10025070768/en/.
- [45] Kano model, in Wikipedia, Page Version ID: 847738497, Jun. 27, 2018. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Kano_model&oldid=847738497 (visited on 07/30/2018).
- [46] E. Sauerwein, F. Bailom, K. Matzler, and H. H. Hinterhuber, "The kano model: How to delight your customers," in *International Working Seminar on Production Economics*, vol. 1, 1996, pp. 313–327.
- [47] (Oct. 9, 2012). Leveraging the kano model for optimal results | UX magazine, [Online]. Available: https://uxmag.com/articles/leveraging-the-kano-model-for-optimal-results (visited on 08/03/2018).
- [48] (). Sean parker says facebook was designed to be addictive, [Online]. Available: http://adage.com/article/digital/sean-parker-worries-facebook-rotting-children-s-brains/311238/ (visited on 08/03/2018).
- [49] (). Card sorting software | optimal workshop, [Online]. Available: https://www.optimalworkshop.com/optimalsort (visited on 08/13/2018).
- [50] S. Krug, Don't make me think!: Web & Mobile Usability: Das intuitive Web. MITP-Verlags GmbH & Co. KG, Jan. 25, 2018, 290 pp., ISBN: 978-3-95845-766-9.
- [51] G. Li, J. Wang, Y. Zheng, and M. J. Franklin, "Crowdsourced data management: A survey," IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 9, pp. 2296-2319, Sep. 1, 2016, ISSN: 1041-4347. DOI: 10.1109/TKDE.2016.2535242. [Online]. Available: http://ieeexplore.ieee.org/document/7420720/ (visited on 08/03/2018).
- [52] M. Walker, L. Takayama, and J. A. Landay, "High-fidelity or low-fidelity, paper or computer? choosing attributes when testing web prototypes," Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 46, no. 5, pp. 661–665, Sep. 2002, ISSN: 1541-9312. DOI: 10.1177/154193120204600513. [Online]. Available: http://journals.sagepub.com/doi/10.1177/154193120204600513 (visited on 08/11/2018).

واژهنامهی فارسی به انگلیسی

ترابرپذیری	الف
Approprateness تناسب	ارتباطاتی بودن Commucativeness
ث	ارزشیابی خرد Formartive Evaluation
جمعسپاری	Summative Evaluation ارزشیابی کلان
جبے سپری دوری دوری کی	Ease of Learning
ζ	استفادهپذیری
Ż	Robustness
خاطرسپاریپذیری	اصلاح پذیری
خصیصه کیفی	الگوهای مرتبسازی Card-Sorting Data
خصیصههای ترکیبی و مقایسهای	آموزش
Comparative Metrics	ايمنى Safety
خصیصههای خوداعلامیself-Reported Metrics	ب
خصیصههای فیزیولوژیکی و رفتاری & Behavioral Physiological Metrics	Efficiency
خصیصههای موردی	Ų
Live Website Metricsخصیصههای وبسایت بلادرنگ	يايا Invariant
٥	ت
Knowability	تاثیرگذاری

واژهنامهی فارسی به انگلیسی

Operability	درکپذیری
غ	ذ
ف	ر
Comprehensibilityفهم پذیری	واحتى استفاده
ق	Satisfaction
Reusability قابلیت استفاده مجدد	
ی	رضایت منحصر به فرد Subjective Satisfaction
Performance	ز
Crowd Worker كارگر جمع سپارى	Aesthetic
گ	زمان انجام وظیفه
ل	ڗٛ
٢	س
مفاد آموزشی Training Material	سازگاری
مقیاسپذیری	سامانه کاربردی
موفقيتآميز بودن وظيفهTask Success	
ڹ	سامانه کاربردی تحت وب Web Application
نرخ بازگشتBounce Rate	ش
ى . د نگرش مثبت	Recognizability
- نگەدارىپذىرى	ص
و	صادقانه Faithful
وظیفهوظیفه	ض
ه	ط
ی	ظ
یادگیریپذیریدوranability	٤

Abstract

Reviewing the quality models presented from 1970 to now, it is determined, with a high approximately, that every quality model acknowledges the usability as a main factor of quality of software. What is common in multiple definitions of the term "usability", is that there is always three items included: the user, doing a specific task, an interface which the user interacts with to do the task. As a software engineer, increasing the quality and the decreasing the cost of the defects or change requests is a great challenge which requires a lot of effort. Web applications, being a software product that aesthetics, interface, and the communication protocol of them are crucial, have a very widespread usage these days. Hence they can play a major role in multiple aspects of our lives, including the success of industrial projects, startups or improving everyday life. It is proven that one of the main cons of web application, is their not-so-much user-friendly design, which leads to major costs in businesses. Although, ideally all the administrative decisions, including selecting the proper software process, are being made based on the valuable experiences and cautiously, it is seen in most of the cases, like Google's calendar, a not-usable user interface, would lead to major costs to the whole software engineering team. Hence, with a look into a few resources, doing a pre-test (before the release) in all the aspects, including the UI design itself, is crucial for the success of every software product. But mockups and sketches, due to their artistic nature, are very hard to evaluate and the answer to a question like "Which UI is a good one?" will be a very hard one. Besides, the technology is changing quickly and as time goes on, we will see major changes in the requirements. So checklists and guidelines which are introduced in some references are not a good answer to these types of questions. Conducting a comparative study on quality models being proposed from 1970, it is easy to say that they are multiple metrics introduced for usability in every quality model; One of the very recent models was proposed in 2013 which we took it as a basis for this project due to it's focus on usability. Reviewing the available tools for measuring the usability of software products, we can see that none of these tools consider the metrics introduced in this model as a whole and instead they use only a partial model. So we have implemented a usability testing tool which considers all the metrics introduced in 2013 and gives the user the ability to perform the tests using crowdsourcing platforms.

Key Words:

Usability, Quality Models, Crowdsourcing, Web Applications

Amirkabir University of Technology (Tehran Polytechnic)

Department of Computer Engineering and Information Technology

BSc Project

Implementing a Usability Testing Tool for Web Applications Using a Crwodsourced Approach

By Amir HaghighatiMaleki

Supervisor
Prof. Ahmad Abdollahzadeh Barforoush

August 2018