Universidad de las Fuerzas Armadas E.S.P.E.

LABORATORIO #8
INDUCTOR Y CAPACITOR

LOPEZ DAVID CORREA MARIÚ

Cálculos Laboratorio 8.

Procedimiento:

- 1. Construya en el protoboard el circuito mostrado en la Figura 1.
- a) Utilice el osciloscopio para observar el voltaje Vo variando la frecuencia entre los valores de 0, 10, 50, 100, 500, 1000 Hz. Anote los valores pico de las ondas observadas.
- b) Utilice un multímetro para medir el voltaje Vo variando la frecuencia entre los valores de 0, 10, 50, 100, 500, 1000 Hz. Anote los resultados.
- c) Utilice un multímetro para medir la corriente que atraviesa la resistencia variando la frecuencia entre los valores 0, 10, 50, 100, 500, 1000 Hz. Anote los resultados.

1.- Calculo teórico de Vo y corriente en la figura 1

Valor del capacitor:

$$C_{eq} = C_1 + C_2$$

$$C_{eq} = 10\mu F + 10\mu F$$

$$C_{eq} = 20\mu F = 20 * 10^{-6} F$$

- Para
$$f = 0Hz$$

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 0$$

$$\omega = 0$$

$$C_{eq} = -\frac{1}{\omega \cdot 20 \cdot 10^{-6}}$$

$$C_{eq} = -\frac{1}{0 \cdot 20 \cdot 10^{-6}}$$

$$C_{eq} = \infty$$

- Para f = 10Hz

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 10$$

$$\omega = 20\pi$$

$$C_{eq} = -\frac{1}{\omega \cdot 20 \cdot 10^{-6}}$$

$$C_{eq} = -\frac{1}{20\pi \cdot 20 \cdot 10^{-6}}$$

$$C_{eq}=-795,77~\Omega$$

Malla 1

$$-5\sqrt{2} \not \sim 0^0 + 100\bar{l}_1 \, - \, j795,77\bar{l}_2 = 0$$

Malla 2

$$Vo - j795,77\bar{I}_2 = 0$$

$$Vo = j795,77\bar{I}_2$$

Nodo

$$\bar{I}_1 - \bar{I}_2 - \bar{I}_3 = 0$$

$$\bar{I}_3 = 0$$

$$\bar{I}_1 = \bar{I}_2$$

$$-5\sqrt{2} \not \le 0^{0} + 100\bar{I}_{1} - j795,77\bar{I}_{2} = 0$$

$$(100 - 795,77)\bar{I}_{1} = 5\sqrt{2} \not \le 0^{0}$$

$$\bar{I}_{1} = -\frac{5\sqrt{2} \not \le 0^{0}}{802,03 \not \le -82,84^{0}}$$

$$\bar{I}_{1} = 8,816 \cdot 10^{-3} \not \le 82,84^{0}$$

$$\bar{I}_{2} = 8,816 \cdot 10^{-3} \not \le 82,84^{0}$$

Malla 2

$$Vo = j795,77(8,816 \cdot 10^{-3} 482,84^{0})$$

 $Vo = (795,77490^{0})(8,816 \cdot 10^{-3} 482,84^{0})$
 $Vo = 7,015 4172,84^{0} V$

- Para
$$f = 50Hz$$

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 50$$

$$\omega = 100\pi$$

$$C_{eq} = -\frac{1}{\omega \cdot 20 \cdot 10^{-6}}$$

$$C_{eq} = -\frac{1}{100\pi \cdot 20 \cdot 10^{-6}}$$

$$C_{eq}=-159,15~\Omega$$

Malla 1

$$-5\sqrt{2} \angle 0^0 + 100\bar{I}_1 - j159,15\bar{I}_2 = 0$$

Malla 2

$$Vo - j159,15\bar{I}_2 = 0$$

$$Vo = j159,15\bar{I}_2$$

Nodo

$$\bar{I}_1 - \bar{I}_2 - \bar{I}_3 = 0$$

$$\bar{I}_3 = 0$$

$$\bar{I}_1 = \bar{I}_2$$

$$-5\sqrt{2} \angle 40^0 + 100\bar{I}_1 - j159,15\bar{I}_2 = 0$$

$$(100 - j159,15)\bar{l}_1 = 5\sqrt{2} \not\le 0^0$$

$$\bar{I}_1 = -\frac{5\sqrt{2} \not \downarrow 0^0}{187,96 \not \downarrow -57,86^0}$$

$$\bar{I}_1 = 0.0376 457,86^0$$

$$\bar{I}_2 = 0.0376 457,86^0$$

$$Vo = j159,15(0,0376 \pm 57,86^{\circ})$$

$$Vo = (159,15490^{\circ})(0,0376457,86^{\circ})$$

$$Vo = 5,984 \pm 147,86^{\circ} V$$

- Para
$$f = 100Hz$$

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 100$$

$$\omega = 200\pi$$

$$C_{eq} = -\frac{1}{\omega \cdot 20 \cdot 10^{-6}}$$

$$C_{eq} = -\frac{1}{200\pi \cdot 20 \cdot 10^{-6}}$$

$$C_{eq}=-79,58\,\Omega$$

Malla 1

$$-5\sqrt{2} \angle 40^0 + 100\bar{I}_1 - j79,58\bar{I}_2 = 0$$

Malla 2

$$Vo - j79,58\bar{I}_2 = 0$$

$$Vo = j79,58\bar{I}_2$$

Nodo

$$\bar{I}_1 - \bar{I}_2 - \bar{I}_3 = 0$$

$$\bar{I}_3 = 0$$

$$\bar{I}_1 = \bar{I}_2$$

$$-5\sqrt{2} \angle 0^0 + 100\bar{l}_1 - j79,58\bar{l}_2 = 0$$
$$(100 - j79,58)\bar{l}_1 = 5\sqrt{2} \angle 0^0$$

$$\bar{I}_1 = -\frac{5\sqrt{2} \not 40^0}{127,8 \not 4 - 38,51^0}$$

$$\bar{I}_1 = 0.055 438,51^0$$

$$\bar{I}_2 = 0.055 438,51^0$$

$$Vo = j79,58(0,055 438,51^{0})$$

 $Vo = (79,58 490^{0})(0,055 438,51^{0})$
 $Vo = 4,377 4128,51^{0} V$

- Para
$$f=\mathbf{500}H\mathbf{z}$$
 $\omega=2\pi\cdot f$

$$\omega=2\pi\cdot 500$$

$$\omega = 1000\pi$$

$$C_{eq} = -\frac{1}{\omega \cdot 20 \cdot 10^{-6}}$$

$$C_{eq} = -\frac{1}{1000\pi \cdot 20 \cdot 10^{-6}}$$

$$C_{eq}=-15{,}92\,\varOmega$$

Malla 1

$$-5\sqrt{2} \not= 0^0 + 100\bar{I}_1 - j15,92\bar{I}_2 = 0$$

Malla 2

$$Vo - j15,92\bar{l}_2 = 0$$

 $Vo = j15,92\bar{l}_2$

Nodo

$$\bar{I}_1 - \bar{I}_2 - \bar{I}_3 = 0$$
 $\bar{I}_3 = 0$
 $\bar{I}_1 = \bar{I}_2$

Malla 1

$$-5\sqrt{2} \not \preceq 0^{0} + 100\bar{I}_{1} - j15,92\bar{I}_{2} = 0$$

$$(100 - j15,92)\bar{I}_{1} = 5\sqrt{2} \not \preceq 0^{0}$$

$$\bar{I}_{1} = -\frac{5\sqrt{2} \not \preceq 0^{0}}{101,26 \not \preceq -9,04^{0}}$$

$$\bar{I}_1 = 0.0698 49.04^0$$

 $\bar{I}_2 = 0.0698 49.04^0$

$$Vo = j15,92(0,0698 \pm 9,04^{0})$$

 $Vo = (15,92 \pm 90^{0})(0,0698 \pm 9,04^{0})$

$$Vo = 1,111 499,04^{\circ} V$$

- Para
$$f = 1000Hz$$

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 1000$$

$$\omega = 2000\pi$$

$$C_{eq} = -\frac{1}{\omega \cdot 20 \cdot 10^{-6}}$$

$$C_{eq} = -\frac{1}{2000\pi \cdot 20 \cdot 10^{-6}}$$

$$C_{eq}=-7,96\,\Omega$$

$$-5\sqrt{2} \not \preceq 0^0 + 100\bar{I}_1 - j7,96\bar{I}_2 = 0$$

Malla 2

$$Vo - j7,96\bar{I}_2 = 0$$

$$Vo = j7,96\bar{I}_2$$

Nodo

$$\bar{I}_1 - \bar{I}_2 - \bar{I}_3 = 0$$

$$\bar{I}_3 = 0$$

$$\bar{I}_1 = \bar{I}_2$$

Malla 1

$$-5\sqrt{2} \angle 40^0 + 100\bar{I}_1 - j7,96\bar{I}_2 = 0$$

$$(100 - j7,96)\bar{I}_1 = 5\sqrt{2} \not\leq 0^0$$

$$\bar{I}_1 = -\frac{5\sqrt{2} \not = 0^0}{100,32 \not = -4,55^0}$$

$$\bar{I}_1 = 0.0705 44,55^0$$

$$\bar{I}_2 = 0.0705 44,55^0$$

$$Vo = j7,96(0,070544,55^0)$$

$$Vo = (7,96 \pm 90^{\circ})(0,0705 \pm 4,55^{\circ})$$

 $Vo = 0,561 \pm 94,55^{\circ} V$

Tabla de cálculos teóricos:

Frecuencia (Hz)	Vo (V)	Intensidad (mA)
0	-	0
10	7,015	8,816
50	5,984	37,6
100	4,377	55
500	1,111	69,8
1000	0,561	70,5

- 2. Construya en el protoboard el circuito mostrado en la Figura 2.
- d) Utilice el osciloscopio para observar el voltaje Vo variando la frecuencia entre los valores de 0, 10, 50, 100, 500, 1000 Hz. Anote los valores pico de las ondas observadas.
- e) Utilice un multímetro para medir el voltaje Vo variando la frecuencia entre los valores de 0, 10, 50, 100, 500, 1000 Hz. Anote los resultados.
- f) Utilice un multímetro para medir la corriente que atraviesa la resistencia variando la frecuencia entre los valores 0, 10, 50, 100, 500, 1000 Hz. Anote los resultados.

Valor del Inductor:

$$\begin{split} \frac{1}{L_{eq}} &= \frac{1}{L_1} + \frac{1}{L_2} \\ \frac{1}{L_{eq}} &= \frac{L_1 + L_2}{L_1 L_2} \\ L_{eq} &= \frac{L_1 L_2}{L_1 + L_2} \\ L_{eq} &= \frac{L_1 L_2}{L_1 + L_2} \\ L_{eq} &= \frac{0.1 * 0.1}{0.1 + 0.1} \\ L_{eq} &= 0.05 \; Hz \end{split}$$

2- Calculo de Vo y corriente en la figura 2

- Para
$$f = \mathbf{0}H\mathbf{z}$$

 $\omega = 2\pi \cdot f$
 $\omega = 2\pi \cdot 0$
 $\omega = 0$
 $L_{eq} = \omega \cdot 0.05$
 $L_{eq} = 0 \cdot 0.05$
 $L_{eq} = 0$

$$-5\sqrt{2} \cancel{4}0^{0} + 100\bar{I}_{1} = 0$$

$$100\bar{I}_{1} = 5\sqrt{2} \cancel{4}0^{0}$$

$$\bar{I}_{1} = \frac{5\sqrt{2} \cancel{4}0^{0}}{100}$$

$$\bar{I}_{1} = 0,0707 \cancel{4}0^{0}$$

$$Vo = 0$$

- Para
$$f = 10Hz$$

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 10$$

$$\omega = 20\pi$$

$$L_{eq} = \omega \cdot 0.05$$

$$L_{eq}=20\pi\cdot0,05$$

$$L_{eq} = \pi \Omega$$

$$-5\sqrt{2} \angle 0^0 + 100\bar{I}_1 + j\pi\bar{I}_2 = 0$$

Malla 2

$$Vo + j\pi \bar{I}_2 = 0$$

$$Vo = -j\pi \bar{I}_2$$

Nodo

$$\bar{I}_1 - \bar{I}_2 - \bar{I}_3 = 0$$

$$\bar{I}_3 = 0$$

$$\bar{I}_1 = \bar{I}_2$$

Malla 1

$$-5\sqrt{2} \not \le 0^0 + 100\bar{I}_1 + j\pi\bar{I}_2 = 0$$

$$(100 + j\pi)\bar{I}_1 = 5\sqrt{2} \not \le 0^0$$

$$\bar{I}_1 = \frac{5\sqrt{2} \not\preceq 0^0}{100,049 \not\preceq 1,8^0}$$

$$\bar{I}_1 = 0.076 \cdot 10^{-3} 4 - 1.8^0$$

$$\bar{I}_2 = 0.076 \cdot 10^{-3} \preceq -1.8^0$$

$$Vo = -j\pi(0.076 \cdot 10^{-3} 4 - 1.8^{0})$$

$$Vo = (\pi 4 - 90^{\circ})(0.076 \cdot 10^{-3} 4 - 1.8^{\circ})$$

$$Vo = 0.2224 - 91.8^{\circ} V$$

- Para f = 50Hz

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 50$$

$$\omega = 100\pi$$

$$L_{eq} = \omega \cdot 0.05$$

$$L_{eq}=20\pi\cdot0,05$$

$$L_{eq} = 5\pi \Omega$$

Malla 1

$$-5\sqrt{2} \angle 0^0 + 100\bar{I}_1 + j5\pi\bar{I}_2 = 0$$

Malla 2

$$Vo + j5\pi \bar{I}_2 = 0$$

$$Vo = -j5\pi \bar{I}_2$$

Nodo

$$\bar{I}_1 - \bar{I}_2 - \bar{I}_3 = 0$$

$$\bar{I}_3 = 0$$

$$\bar{I}_1 = \bar{I}_2$$

Malla 1

$$-5\sqrt{2} \angle 0^0 + 100\bar{l}_1 + j5\pi\bar{l}_2 = 0$$

$$(100 + j5\pi)\bar{I}_1 = 5\sqrt{2} \not = 0$$

$$\bar{I}_1 = \frac{5\sqrt{2} 40^0}{101,2348,93^0}$$

$$\bar{I}_1 = 0.0698 4 - 8.93^0$$

$$\bar{I}_2 = 0.06984 - 8.93^0$$

Malla 2

$$Vo = -j5\pi(0,06984 - 8,93^{\circ})$$

$$Vo = (5\pi 4 - 90^{\circ})(0,06984 - 8,93^{\circ})$$

$$Vo = 1,0964 - 98,93^{\circ} V$$

- Para f = 100Hz

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 100$$

$$\omega = 200\pi$$

$$L_{eq} = \omega \cdot 0.05$$

$$L_{eq} = 200\pi \cdot 0.05$$

$$L_{eq} = 10\pi \,\Omega$$

$$-5\sqrt{2} \not \preceq 0^0 + 100 \bar{I}_1 \ + \ j 10\pi \bar{I}_2 = 0$$
 Malla 2
$$Vo \ + \ j 10\pi \bar{I}_2 = 0$$

$$Vo \ = \ -j 10\pi \bar{I}_2$$
 Nodo
$$\bar{I}_1 - \bar{I}_2 - \bar{I}_3 = 0$$

$$\bar{I}_3 = 0$$

$$\bar{I}_1 = \bar{I}_2$$

Malla 1

$$-5\sqrt{2} \not = 0$$

$$(100 + j10\pi)\bar{I}_1 + j10\pi\bar{I}_2 = 0$$

$$(100 + j10\pi)\bar{I}_1 = 5\sqrt{2} \not = 0$$

$$\bar{I}_1 = \frac{5\sqrt{2} \not = 0}{104,82 \not = 17,44^0}$$

$$\bar{I}_1 = 0,0675 \not = -17,44^0$$

$$\bar{I}_2 = 0,0675 \not = -17,44^0$$

$$Vo = -j10\pi(0.06754 - 17.44^{0})$$

$$Vo = (10\pi4 - 90^{0})(0.06754 - 17.44^{0})$$

$$Vo = 2.124 - 107.44^{0} V$$

Para
$$f = 500Hz$$

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 500$$

$$\omega = 1000\pi$$

$$L_{eq} = \omega \cdot 0.05$$

$$L_{eq} = 1000\pi \cdot 0.05$$

$$L_{eq} = 50\pi \Omega$$

$$-5\sqrt{2} \not \le 0^0 + 100\bar{I}_1 + j50\pi\bar{I}_2 = 0$$

Malla 2

$$Vo + j50\pi \bar{l}_2 = 0$$

$$Vo = -j50\pi \bar{l}_2$$

Nodo

$$\begin{split} \bar{I}_1 - \bar{I}_2 - \bar{I}_3 &= 0 \\ \bar{I}_3 &= 0 \\ \bar{I}_1 &= \bar{I}_2 \end{split}$$

Malla 1

$$-5\sqrt{2} \angle 0^{0} + 100\bar{I}_{1} + j50\pi\bar{I}_{2} = 0$$

$$(100 + j50\pi)\bar{I}_{1} = 5\sqrt{2} \angle 0^{0}$$

$$\bar{I}_{1} = \frac{5\sqrt{2} \angle 0^{0}}{186,21 \angle 57,52^{0}}$$

$$\bar{I}_1 = 0.03797 4 - 57.52^0$$

 $\bar{I}_2 = 0.03797 4 - 57.52^0$

Malla 2

$$Vo = -j50\pi(0.03797 \pm -57.52^{0})$$

 $Vo = (50\pi \pm -90^{0})(0.03797 \pm -57.52^{0})$
 $Vo = 5.96 \pm -147.52^{0} V$

- Para
$$f = 1000Hz$$

$$\omega = 2\pi \cdot f$$

$$\omega = 2\pi \cdot 1000$$

$$\omega = 2000\pi$$

$$L_{eq} = \omega \cdot 0.05$$

$$L_{eq} = 2000\pi \cdot 0.05$$

$$L_{eq} = 100\pi \Omega$$

$$-5\sqrt{2} \not \le 0^0 + 100\bar{I}_1 + j100\pi\bar{I}_2 = 0$$

$$Vo + j100\pi \bar{I}_2 = 0$$

$$Vo = -j100\pi \bar{I}_2$$

Nodo

$$ar{I}_1 - ar{I}_2 - ar{I}_3 = 0$$
 $ar{I}_3 = 0$
 $ar{I}_1 = ar{I}_2$

Malla 1

$$-5\sqrt{2} \not \preceq 0^{0} + 100\bar{I}_{1} + j100\pi\bar{I}_{2} = 0$$

$$(100 + j100\pi)\bar{I}_{1} = 5\sqrt{2} \not \preceq 0^{0}$$

$$\bar{I}_{1} = \frac{5\sqrt{2} \not \preceq 0^{0}}{329,69 \not \preceq 72,34^{0}}$$

$$\bar{I}_{1} = 0,0214 \not \preceq -72,34^{0}$$

$$\bar{I}_{2} = 0,0214 \not \preceq -72,34^{0}$$

Malla 2

$$Vo = -j7,96(0,0214 \pm -72,34^{0})$$

 $Vo = (7,96 \pm -90^{0})(0,0214 \pm -72,34^{0})$
 $Vo = 6,72 \pm -162,34^{0} V$

Tabla de cálculos teóricos:

Frecuencia (Hz)	Vo (V)	Intensidad (mA)	
0	0	0	
10	0,222	70,6	
50	1,096	69,8	
100	2,12	67,5	
500	5,96	37,97	
1000	6,72	21,4	

Calculo para hallar el valor del capacitor que se utilizará en la simulación:

$$\begin{split} C_{eq} &= C_1 + C_2 \\ C_{eq} &= 10 \mu F + 10 \mu F \\ C_{eq} &= 20 \mu F = 20 * 10^{-6} F \end{split}$$

3. Análisis de resultados

 Para cada uno de los circuitos anteriores, elabore una tabla con los resultados de las diferentes mediciones de voltaje realizadas con el osciloscopio y multímetro. Compare y comente los resultados obtenidos tomando en cuenta las distintas frecuencias utilizadas.

Circuito Uno:

Frecuencia (Hz)	Vo con osciloscopio	Vo con multímetro	Intensidad (mA)
	(V)	(V)	
0	0	0	0
10	9,81	7,04	8,88
50	8,40	6	37,7
100	6,10	4,38	55,4
500	1,54	1,10	69,7
1000	0,775	0,55	70,4

Cálculo de la Reactancia y tabla:

Frecuencia (Hz)	Reactancia $x = \frac{v_0}{I}$
0	0
10	0,7928
50	0,1592
100	0,0791
500	0,0158
1000	0,00781

La ecuación de la Reactancia es:

$$x = \frac{v_0}{I}$$

$$x = \frac{v_0 \ con \ multimetro}{Intensidad}$$

Circuito 2:

Calculo para hallar el valor del Inductor que se utilizará en la simulación:

$$\begin{split} \frac{1}{L_{eq}} &= \frac{1}{L_1} + \frac{1}{L_2} \\ \frac{1}{L_{eq}} &= \frac{L_1 + L_2}{L_1 L_2} \\ L_{eq} &= \frac{L_1 L_2}{L_1 + L_2} \\ L_{eq} &= \frac{L_1 L_2}{L_1 + L_2} \\ L_{eq} &= \frac{0.1 * 0.1}{0.1 + 0.1} \\ L_{eq} &= 0.05 \; Hz \end{split}$$

Frecuencia (Hz)	Vo con osciloscopio	Vo con multímetro	Intensidad (mA)
	(V)	(V)	
0	0	0	0
10	0,312	0,22	70,2
50	1,56	1,1	69,8
100	3,03	2,14	67,3
500	8,43	5,97	37,6
1000	9,48	6,73	21,2

Cálculo de la Reactancia y tabla:

Frecuencia (Hz)	Reactancia $x = \frac{v_0}{I}$
0	0
10	0,0031
50	0,0158
100	0,0318
500	0,159
1000	0,31745

Calculo del error:

Circuito 1:

Vo:

%error1 =
$$\frac{v_E - v_T}{v_T} * 100 = \frac{0 - 0}{0} * 100 = 0\%$$

%error2 = $\frac{v_E - v_T}{v_T} * 100 = \frac{7,04 - 7,015}{7,015} * 100 = 0,36\%$
%error3 = $\frac{v_E - v_T}{v_T} * 100 = \frac{6 - 5,984}{5,984} * 100 = 0,267\%$

%error4 =
$$\frac{v_E - v_T}{v_T} * 100 = \frac{4,38 - 4,377}{4,377} * 100 = 0,07\%$$

%error5 = $\frac{v_E - v_T}{v_T} * 100 = \frac{1,1 - 1,111}{1,111} * 100 = -0,99\%$
%error6 = $\frac{v_E - v_T}{v_T} * 100 = \frac{0,55 - 0,561}{0,561} * 100 = -1,96\%$

Intensidad:

$$\%error1 = \frac{v_E - v_T}{v_T} * 100 = \frac{0 - 0}{0} * 100 = 0\%$$

$$\%error2 = \frac{v_E - v_T}{v_T} * 100 = \frac{8,88 - 8,816}{8,816} * 100 = 0,73\%$$

$$\%error3 = \frac{v_E - v_T}{v_T} * 100 = \frac{37,7 - 37,6}{37,6} * 100 = 0,266\%$$

$$\%error4 = \frac{v_E - v_T}{v_T} * 100 = \frac{55,4 - 55}{55} * 100 = 0,73\%$$

$$\%error5 = \frac{v_E - v_T}{v_T} * 100 = \frac{69,7 - 69,8}{69,8} * 100 = -0,14\%$$

$$\%error6 = \frac{v_E - v_T}{v_T} * 100 = \frac{70,4 - 70,5}{70.5} * 100 = -0,142\%$$

Circuito 2:

Vo:

$$\%error1 = \frac{v_E - v_T}{v_T} * 100 = \frac{0 - 0}{0} * 100 = 0\%$$

$$\%error2 = \frac{v_E - v_T}{v_T} * 100 = \frac{0,22 - 0,222}{0,222} * 100 = -0,9\%$$

$$\%error3 = \frac{v_E - v_T}{v_T} * 100 = \frac{1,1 - 1,096}{1,096} * 100 = 0,365\%$$

$$\%error4 = \frac{v_E - v_T}{v_T} * 100 = \frac{2,14 - 2,12}{2,12} * 100 = 0,94\%$$

$$\%error5 = \frac{v_E - v_T}{v_T} * 100 = \frac{5,97 - 5,96}{5,96} * 100 = 0,17\%$$

$$\%error6 = \frac{v_E - v_T}{v_T} * 100 = \frac{6,73 - 6,72}{6,72} * 100 = 0,15\%$$

Intensidad:

%error1 =
$$\frac{v_E - v_T}{v_T} * 100 = \frac{0 - 0}{0} * 100 = 0\%$$

%error2 = $\frac{v_E - v_T}{v_T} * 100 = \frac{70,2 - 70,6}{70,6} * 100 = -0,57\%$

$$\%error3 = \frac{v_E - v_T}{v_T} * 100 = \frac{69,8 - 69,8}{69,8} * 100 = 0\%$$

$$\%error4 = \frac{v_E - v_T}{v_T} * 100 = \frac{67,3 - 67,5}{67,5} * 100 = -0,296\%$$

$$\%error5 = \frac{v_E - v_T}{v_T} * 100 = \frac{37,6 - 37,97}{37,97} * 100 = -0,97\%$$

$$\%error6 = \frac{v_E - v_T}{v_T} * 100 = \frac{21,2 - 21,4}{21,4} * 100 = -0,935\%$$