LESSON 14

Basic datasets management, Coding in Matlab and Colab, Hard encoding

Lesson outline

- Lesson = Theory + LABORATORY
- Using reference dataset
 - The IRIS dataset
- Hard encoding
- Main points
- LABORATORY (in a separate file): Loading and basic dataset management
 - A Matlab example
 - A Colab example

Step 2 (and ready for Training..)

GOLDEN RULE #1: use a simple well-known dataset to start

- To test your
 - knowledge,
 - data processing tools,
 - Models
 - learning methods
- Do not start with the actual dataset of your application!!
- Start with known and easy dataset with known outputs
 - Plots, accuracy, results are well documented, you can compare your outputs with the literature

Toolboxes The Iris dataset

Start with something known every time you test a new tool.

Example: iris flower

- Classify iris flowers into 3 classes:
 - 1. Setosa
 - 2. Versicolor
 - 3. Virginica
- 4 features:
 - 1. Sepal length in cm
 - 2. Sepal width in cm
 - 3. Petal length in cm
 - 4. Petal width in cm
- 150 samples

"a genius who almost single-handedly created the foundations for modern statistical science"

Data

Iris dataset

 Collected data to quantify the morphologic variation of Iris flowers of three related species

Ronald Fisher

Classes

Iris setosa

Iris versicolor

Iris virginica

Features

Iris dataset

- Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters
- Based on the combination of these four features, Fisher developed a model to distinguish the species from each other.

The iris dataset

Datafile Name: Fisher's Iris

Datafile Subjects: Agriculture, Famous datasets

Story Names: Fisher's Irises

Reference: Fisher, R. A. (1936). The Use of Multiple

Measurements in Axonomic Problems. Annals of Eugenics 7,

179-188.

Authorization: free use

Description: This is a dataset made famous by Fisher, who used it to illustrate principles of discriminant analysis. It

contains 6 variables with 150 observations.

Number of cases: 150

Variable Names:

1.Species_No: Flower species as a code

2.Species_Name: Species name

3.Petal_Width: Petal Width

4.Petal_Length: Petal Length

5. Sepal_Width: Sepal Width

6.Sepal_Length: Sepal Length

The Iris dataset raw data

Iris Setosa

Iris Virginica

Iris Versicolor

Meaning of the 3 classes

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

Y = FUNC(X) that's it!!!

	Senal Length	Cenal Width	Detail Length	Detal Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

 For every dataset in machine learning or toolbox, is all about to create X and Y

1 = «setosa»

The Fischer Iris boxplots

Box Plot

Iris Data - Parallel Plots

The reality....

Harmonization

Using the mean and the std fractions you can harmonize the values

(z score)

mean of all of the values is 0 and the standard deviation is 1

EDA, Parallel Plot: a more complex case

In this case it is harder to understand which feature will better help the classification

EDA, Parallel Plot: a more complex case

EDA, Parallel Plot: a more complex case

Meaningful information and valuable insights can be extracted from this plot just by observation

Iris Data - Correlation Plots

Principal Component Analysis on the Iris Dataset

The PCA is an effective method for **reducing** a dataset's **dimensionality** while keeping spatial characteristics as much as possible (no need for labeled data)

Data harmonization

- No missing data
- No labelling errors
- No scaling needed
- WE WILL USE THE FISCHER IRIS DATESET AS A DEBUG TOOLS!!

- Let's use the Google TensorFlow notation in the next examples
- TensorFlow is a free and open-source software library for dataflow and differentiable programming across a range of tasks from Google.

Fabio Scotti - Università degli Studi di Milano

The (pair)plot

Getting ready to start learning

- 1. Encoding
 - 1. Integer encoding
 - 2. One-Hot encoding
- 2. Prepare the Input Features
- 3. Split Train Test
- 4. TensorFlow Neural Network

THEORY

Integer encoding one-hot encoding

Learning can be affected by the way you <u>list the classes</u>

Integer encoding

- Each unique category value is assigned an integer value. For example,
 - "red" is 1,
 - "green" is 2,
 - and "blue" is 3.
- This is called a label encoding or integer encoding and is easily reversible.
- For some variables, this may be enough.
 - The integer values have a <u>natural ordered relationship</u> between each other, and machine learning algorithms may be able to understand and harness this relationship.

One-Hot Encoding

- For categorical variables where no such ordinal relationship exists, the integer encoding is not enough.
- Using integer encoding and allowing the model to assume a natural ordering between categories may result in poor performance or unexpected results (predictions halfway between categories).

INTEGER ENCODING

"red" \rightarrow 1 "green" \rightarrow 2 and "blue" \rightarrow 3

ONE-HOT ENCODING

1	red,	green,	blue
2	1,	0,	0
3	0,	1,	0
4	0,	0,	1

One Hot Encoding

```
from sklearn.preprocessing import LabelBinarizer
species_lb = LabelBinarizer() Y =
species_lb.fit_transform(dataset.species.values)
```

LabelBinarizer

- We must now one-hot encode the species column from text into a vector that our machine learning algorithm will understand.
- This is why we use one hot encoder to perform "binarization" of the category and include it as a feature to train the model.

Toolboxes Coding Normalization and Train/Test partitions

The basic tools to start

One Hot Encoding in Matlab

```
labels = ["red"; "blue"; "red"; "green"; "yellow"; "blue"]; % 6 elements
labels = categorical(labels); % 4 only different labels
categories(labels)
ans = 4x1 cell
   {'blue' }
   {'green' }
   {'red' }
   {'yellow'}
labels = onehotencode(labels,2)
labels = 6 \times 4
    0
          0
                1
                      0
    1
          0
                0
                      0
    0
          0
                1
                      0
          1
                0
                      0
                0
                      1
    0
          0
    1
          0
                0
                      0
```

Prepare the Input Features

- To improve gradient descent, we will normalize the values utilizing the normalize class
- X_data variable will contain our normalized features we will use to train our neural network.

```
from sklearn.preprocessing import normalize
FEATURES = dataset.columns[0:4]
X_data = dataset[FEATURES].as_matrix() #for compatib.
X_data = normalize(X_data)
```

Split Train Test

- The 2 vectors, X_data and y, contains the data needed to train a neural network with the engine (like Tensorflow).
- Now split this data into a training and a test set in order to prevent overfitting and be able to obtain a better benchmark of our network's performance.

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_data, Y, test_size=0.3,
random_state=1)
```

Split Train Test


```
Sample, sample, ......

5.1

3.5

1.4

0.2

Class ID, or value to be learnt

1 0 3 1
```

```
[55] X train, X test, y train, y test = train_test_split(
            X, y, test_size=0.33, random_state=1)
[56] X_train
    array([[8, 9],
                                      array([[0, 1],
[57] y_train
     [4, 0, 3]
    X_test
    array([[4, 5],
           [2, 3]])
```

Next step is learning

 As you can see in the exercitation in Maltlab and Colab we are now ready to create the first classifiers!

Main points

- The FISHER IRIS dataset as "debug tool"
- One-hot encoding
- Creating the matrices for learning
- Statistical analysis of the data
- Example relevant of plots and charts for ML
- Statistical analysis in needed before to start processing
- Data Visualization is quite useful....