EE206

Solutions - Assignment 2

- 1. Solve the following first-order equations
 - (a) $y' + 3x^2y = x^2$; by using variation of parameters. [2] First we solve the homogeneous equation $y' + 3x^2y = 0$, by separation of variables.

$$y' = -3x^2y \implies \frac{1}{y}dy = -3x^2dx$$

Integrating we find:

$$\ln(y) = -x^3 + c \quad \text{or} \quad y_c = Ae^{-x^3}$$

Now let $y_p = u(x)y_c$, $y'_p = u'y_c + uy'_c$. Subbing into the original equation:

$$u'y_c + u(y'_c + 3x^2y_c) = x^2$$

Recall that y_c satisfies $y'_c + 3x^2y_c = 0$, so:

$$u'y_c = x^2$$
 or $du = \frac{1}{A}x^2e^{x^3}dx$

Integrating again using a substitution we find that:

$$u = \frac{1}{3A}e^{x^3} \implies y_p = \frac{1}{3A}e^{x^3}Ae^{-x^3} = \frac{1}{3}$$

Of course we probably could've noticed at the beginning that $y = \frac{1}{3}$ is a solution since y' = 0 and $\frac{1}{3}3x^2 = x^2$.

Our general solution is then

$$y = y_c + y_p = Ae^{-x^3} + \frac{1}{3}.$$

(b) $\cos^2(x)\sin(x)\frac{dy}{dx} + \cos^3(x)y = \sin(x)$; solve using an integrating factor. [2] We want to put this in the standard form: $\frac{dy}{dx} + P(x)y = f(x)$, so dividing by $\cos^2(x)\sin(x)$ we have:

$$\frac{dy}{dx} + \cot(x)y = \sec^2(x)$$

The integrating factor is given by $e^{\int p(x)dx}$. Recalling that:

$$\int p(x)dx = \int \cot(x)dx = \ln(\sin(x))$$

which you can re-check by making the appropriate substitution, our equation becomes:

$$\frac{d}{dx}\left(e^{\ln(\sin(x))}y\right) = e^{\ln(\sin(x))}\sec^2(x)$$

or:

$$\frac{d}{dx}(\sin(x)y) = \frac{\sin(x)}{\cos^2(x)}$$

1

Thus:

Next integrating by substitution gives:

 $\sin(x)y = \frac{1}{\cos(x)} + c$

 $y = \frac{1}{\sin(x)\cos(x)} + \frac{c}{\sin(x)}$

2. Solve the given Bernoulli equations by using an appropriate substitution.

We want to get it in the form:
$$\frac{dy}{dx} + P(x)y = f(x)y^n$$
 which is:

(b) $\frac{dy}{dx} = y(xy^4 - 1)$ [2]

$$\frac{dy}{dx} + y = xy^5$$

Now letting $u = y^{1-n} = y^{-4}$, we have that

$$\frac{du}{dx} = -4y^{-5}\frac{dy}{dx}$$
 or $\frac{dy}{dx} = -\frac{1}{4}y^{5}\frac{du}{dx}$

$$-\frac{1}{4}y^5 \frac{du}{dx} + y = xy^5$$
$$\frac{du}{dx} + -4y^{-4} = -4x$$
$$\frac{du}{dx} + -4u = -4x$$

Now using the integrating factor e^{-4x} we find:

$$\frac{d}{dx} \left(e^{-4x} u \right) = -4xe^{-4x}$$

$$e^{-4x} u = xe^{-4x} - \int e^{-4x} dx$$

$$u = x + \frac{1}{4} + ce^{4x}$$

Where we have used integration by parts, u = -4x, $dv = e^{-4x}dx$, du = -4, $v = (-1/4)e^{-4x}$

Finally then:

$$y^{-4} = x + \frac{1}{4} + ce^{4x}$$
$$y = \frac{1}{\sqrt[4]{x + 1/4 + ce^{4x}}}$$

or

(c)
$$y' + \frac{y}{x} - \sqrt{y} = 0$$
; $y(4) = 1/9$ [2]

We can rewrite it in the usual form:

$$y' + \frac{y}{x} = y^{1/2}$$
 $n = \frac{1}{2}$

We again make the substitution $u = y^{1-n} = y^{1/2}$ so:

$$\frac{du}{dx} = \frac{1}{2}y^{-1/2}\frac{dy}{dx} \quad \text{or} \quad \frac{dy}{dx} = 2y^{1/2}\frac{du}{dx}$$

Subbing back in:

$$2y^{1/2}\frac{du}{dx} + \frac{y}{x} = y^{1/2}$$
$$\frac{du}{dx} + \frac{y^{1/2}}{2x} = \frac{1}{2}$$
$$\frac{du}{dx} + \frac{u}{2x} = \frac{1}{2}$$

Once again the integrating factor is $e^{\frac{1}{2}\ln(x)} = x^{1/2}$, so the equation becomes:

$$\frac{d}{dx}\left(ux^{1/2}\right) = \frac{1}{2}x^{1/2}$$

$$ux^{1/2} = \frac{1}{3}x^{3/2} + c$$

$$u = \frac{1}{3}x + cx^{-1/2}$$

$$y^{1/2} = \frac{1}{3}x + cx^{-1/2}$$

Finally $y(4) = \frac{1}{9}$ so

$$\frac{1}{3} = \frac{4}{3} + c\frac{1}{2} \implies c = -2.$$

Thus:

$$y^{1/2} = \frac{1}{3}x - 2x^{-1/2}$$
$$y = \left(\frac{1}{3}x - 2x^{-1/2}\right)^2$$
$$y = \frac{1}{9}x^2 - \frac{4}{9}x^{1/2} + 4x^{-1}$$

3. Solve the following differential equations.

(a)
$$\frac{dy}{dx} = \tan^2(x+y)$$
 [2]
 $u = x + y$, $\frac{du}{dx} = 1 + \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{du}{dx} - 1$
 $\frac{du}{dx} - 1 = \tan^2 u$
 $\frac{du}{dx} = \tan^2 u + 1 = \frac{1}{\cos^2 u}$ (recalling $\sin^2(u) + \cos^2(u) = 1$)
 $\cos^2 u \ du = dx$
 $\frac{1 + \cos(2u)}{2} du = dx$
 $(1 + \cos(2u)) du = 2 dx$
 $\int (1 + \cos(2u)) du = 2 \int dx$
 $u + \frac{\sin(2u)}{2} = 2x + c$; $u = x + y$
 $x + y + \frac{\sin(2(x+y))}{2} = 2x + c$
 $y - x + \frac{\sin(2(x+y))}{2} = c$

(b)
$$\frac{dy}{dx} = (x+y+1)^2$$
 [2]

$$u = x + y + 1 \qquad \frac{du}{dx} = 1 + \frac{dy}{dx} \qquad \Rightarrow \frac{dy}{dx} = \frac{du}{dx} - 1$$

$$\frac{du}{dx} - 1 = u^2$$

$$\frac{du}{dx} = u^2 + 1$$

$$\frac{1}{u^2 + 1} du = dx$$

$$\int \frac{1}{u^2 + 1} du = \int 1 dx$$

$$\tan^{-1}(u) = x + c$$

$$u = \tan(x + c); \quad u = x + y + 1$$

$$x + y + 1 = \tan(x + c)$$

$$y(x) = \tan(x + c) - x - 1$$

following differential equations. eq: separation of variables, linear first-order, substitution (Bernoulli, reduction to

4. State the type of differential equation, or type of technique required to solve the

separation of variables)

- (a) $y^2 \frac{dy}{dx} = x$ Separation of Variables [2]
- (b) $\frac{dy}{dx} = \sin(x+y)$ Reduction to Separation of Variables [2]
- (c) $x \frac{dy}{dx} y = x^2 \sin x$ Linear First Order [2]
- (d) $x\frac{dy}{dx} (1+x)y = xy^2$ Bernoulli [2]