Metoda lui Newton

Efectuat: Rașcov Victoria

clasa a XII-a "T"

IPLT "Mircea Eliade"

În analiză numerică, metoda lui Newton (de asemenea, cunoscută sub numele de metoda tangentei sau metoda lui Newton-Raphson), este o metodă de determinare a rădăcinii unei funcții reale.

Scurt istoric

Numele "Metoda lui Newton" este derivat din faptul că Isaac Newton a descris un caz special al metodei în *De analysi per aequationes numero terminorum infinitas* (scris în 1669, publicat în 1711 de către William Jones) și în *De metodis fluxionum et serierum infinitarum* (scrisă în 1671, tradus și publicat ca *Metoda fluctuațiilor* în 1736 de către John Colson). Metoda lui Isaac Newton poate fi derivată de la o metodă similară, dar mai puțin precisă, metoda lui Vieta.

Metoda lui Newton a fost publicată prima dată în 1685, în Tratat istoric și practic de algebră de John Wallis. În 1690, Joseph Raphson a publicat o descriere simplificată în Analysis aequationum universalis.

Arthur Cayley în 1879, în *Problema imaginar Newton-Fourier* a fost primul care a observat dificultăți în generalizarea metodei lui Newton la rădăcinile complexe de polinoame cu un grad mai mare de 2 și valorile inițiale complexe. Acest lucru a deschis calea pentru studiul teoriei iterațiilor funcțiilor raționale.

Descrierea metodei.

Având o funcție reală f, iar derivata ei, f', vom începe cu stabilirea unei valori inițiale pentru x_0 pentru o rădăcină a funcției f. O aproximare mai bună pentru rădăcina funcției este:

$$X1=X0-f(X0)/f'(X0)$$

Geometric, $(x_1, 0)$ este la intersecția cu axa x a tangentei funcției f în punctul (x_0) .

Procesul se repetă

Xn+1=Xn-f(Xn)/f'(Xn)

până se atinge o valoare suficient de precisă.

Vom începe procesul cu o valoare inițială arbitrară x_0 .

In calitate de prima aproximare x_0 se alege acel capat al intervalului [a, b] cu solutia separata (daca acesta se cunoaste), sau alt careva punct din apropiere, pentru care f(x) are acelasi semn ca si derivata de ordinul doi f''(x).

Funcția f este marcată cu culoarea albastră, iar tangenta cu culoarea roșie. Se vede că x_{n+1} este o aproximare mai bună decât x_n pentru rădăcina x a funcției f.

Algoritm:

Pasul 1. Verificam daca la capetele intervalului functia ia valori de semn opus.

Pasul 2. Alegem o aproximatie initiala pe intervalul [a, b]. Notam prin x_0 , capatul intervalului, unde f''(x) > 0.

Pasul 3. Calculam x_1 punctul de intersectie al tangentei duse la graficul functiei in punctul $(x_0, f(x_0))$ cu axa Ox.(Pentru a determina acest punct, vom scrie ecuatia dreptei tangenta la grafic in punctul de coordonate $(x_0, f(x_0))$, si anume: $y-f(x_0)=f'(x_0)(x-x_0)$. Daca in ecuatia de mai sus punem y=0, obtinem un numar x_1 reprezentind abscisa punctului de intersectie al dreptei cu axa Ox: $f(x_0)=-f'(x_0)(x_1-x_0)$ de unde rezulta: $x_1=-(f(x_0)/f'(x_0))+x_0$

Pasul 4. Daca $f(x_1)=0$, atunci este radacina cautata, altfel se duce tangenta in punctul $(x_1, f(x_1))$.

Pasul 5. Daca $b/2/a|x_0-x_1|^2 < e$, atunci oprim executia algoritmului, iar in calitate de solutie se va lua valoarea x_1 . In caz contrar iteram procesul pentru urmatoarea aproximare.

Eroarea metodei

Procesul iterativ de calcul poate fi oprit fie după repetarea unui număr prestabilit de ori, fie după atingerea unei exactități cerute.

Exemplu:

Fie dată funcția $f(x)=x^3-2x^2+x-3$. Se cere să se calculeze soluția aproximativă a ecuației f(x) 0 = pe segmentul [2; 15] pentru 10 aproximări succesive, utilizînd metoda Newton.

Rezolvare.

Preprocesarea matematică. Se determină f '(x).

$$f'(x) = 3x^2-4x+1$$

Programul. Deoarece numărul de aproximări succesive este fixat, iar extremitățile segmentului cunoscute, atribuirile necesare se vor realiza direct în corpul programului.

```
program cn008;
var a, b, x, c : real; i, n: integer;
function f(z:real):real;
begin f:=z^*z^*z-2^*z^*z+z-3; end;
function fd1(z:real):real;
begin fd1:=3*z*z-4*z+1; end;
begin
a:=2.1; b:=15; n:=10; i:=0;
c:=a-(f(a))/(f(b)-f(a))*(b-a);
if f(c)*f(a)>0 then x:=a else x:=b;
while i<n do
begin
i:=i+1;
x := x - f(x) / fd1(x);
writeln('i=',i:2,' x=',x:15:12, 'f=',f(x):15:12); end;
end.
```

Rezultate.

$$\checkmark$$
i= 1 x= 10.23214285700 f=869.11072454000

$$\checkmark$$
i= 6 x= 2.32879157830 f= 1.11191715150

$$\checkmark$$
i= 2 x= 7.06207637180 f=256.52261987000

$$\checkmark$$
i= 7 x= 2.18900944530 f= 0.09469778945

$$\checkmark$$
i= 3 x= 4.96579746180
f= 75.09982542600

$$\checkmark$$
i= 8 x= 2.17470302090 f= 0.00093182281

$$\checkmark$$
i= 4 x= 3.60317646350
f= 21.41702511300

$$\checkmark$$
i= 9 x= 2.17455942470
f= 0.00000009329

$$\checkmark$$
i= 5 x= 2.76447507070 f= 5.60684004000

$$\checkmark$$
i=10 x= 2.17455941030 f= 0.00000000001

Vă mulțumesc pentru atenție!

Bibliografie.

- •http://www.math.md/stireal/informatica/candidat/calcul_numeric_3.pdf
- •https://ro.wikipedia.org/wiki/Metoda_tangentei
- •http://www.creeaza.com/referate/matematica/Metoda-Newton487.php