```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

In [19]: df=pd.read\_csv(r"C:\Users\manasa\Downloads\fiat500\_VehicleSelection\_Dataset (3).csv")
df

## Out[19]:

|      | ID   | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       | price |
|------|------|--------|--------------|-------------|--------|-----------------|-----------|-----------|-------|
| 0    | 1    | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  | 8900  |
| 1    | 2    | рор    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 | 8800  |
| 2    | 3    | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 | 4200  |
| 3    | 4    | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 | 6000  |
| 4    | 5    | рор    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 | 5700  |
|      |      |        |              |             |        |                 |           |           |       |
| 1533 | 1534 | sport  | 51           | 3712        | 115280 | 1               | 45.069679 | 7.704920  | 5200  |
| 1534 | 1535 | lounge | 74           | 3835        | 112000 | 1               | 45.845692 | 8.666870  | 4600  |
| 1535 | 1536 | рор    | 51           | 2223        | 60457  | 1               | 45.481541 | 9.413480  | 7500  |
| 1536 | 1537 | lounge | 51           | 2557        | 80750  | 1               | 45.000702 | 7.682270  | 5990  |
| 1537 | 1538 | рор    | 51           | 1766        | 54276  | 1               | 40.323410 | 17.568270 | 7900  |

1538 rows × 9 columns

```
In [20]: df=df[['engine_power','age_in_days']]
df.columns=['eng','age']
```

```
In [21]: sns.lmplot(x="eng",y="age",data=df,order=2,ci=None)
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x16917519350>



In [22]: df.describe()

# Out[22]:

|       | eng         | age         |
|-------|-------------|-------------|
| count | 1538.000000 | 1538.000000 |
| mean  | 51.904421   | 1650.980494 |
| std   | 3.988023    | 1289.522278 |
| min   | 51.000000   | 366.000000  |
| 25%   | 51.000000   | 670.000000  |
| 50%   | 51.000000   | 1035.000000 |
| 75%   | 51.000000   | 2616.000000 |
| max   | 77.000000   | 4658.000000 |

# In [23]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 2 columns):
    # Column Non-Null Count Dtype
--- 0 eng 1538 non-null int64
1 age 1538 non-null int64
dtypes: int64(2)
memory usage: 24.2 KB
```

```
In [24]: df.fillna(method='ffill',inplace=True)
```

C:\Users\manasa\AppData\Local\Temp\ipykernel\_24456\4116506308.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

```
df.fillna(method='ffill',inplace=True)
```

```
In [25]: x=np.array(df['eng']).reshape(-1,1)
y=np.array(df['age']).reshape(-1,1)
```

### In [26]: | df.dropna(inplace=True)

C:\Users\manasa\AppData\Local\Temp\ipykernel\_24456\1379821321.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [27]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

#### 0.09511507783533979

```
In [28]: y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```



```
In [29]: df500=df[:][:500]
sns.lmplot(x="eng",y="age",data=df500,order=1,ci=None)
```

Out[29]: <seaborn.axisgrid.FacetGrid at 0x169175f4610>



```
In [35]: df500.fillna(method="ffill",inplace=True)
    x=np.array(df500['eng']).reshape(-1,1)
    y=np.array(df500['age']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.08633689908802478



In [36]: from sklearn.linear\_model import LinearRegression
 from sklearn.metrics import r2\_score
 model=LinearRegression()
 model.fit(x\_train,y\_train)
 y\_pred=model.predict(x\_test)
 r2=r2\_score(y\_test,y\_pred)
 print("R2 score:",r2)

R2 score: 0.08633689908802478

```
In [ ]: #step-9 conclusion
    #dataset we have taken is poor for linear model but with the smaller data works well with linear mode
```