ENGG5301 Information Theory Tutorial

Tutorial 5: Midterm Review

Yanxiao Liu

Department of Information Engineering
Oct 25, 2022

Note

- I will review lectures 1-3 today.
- I will focus on the big picture and some practices, and select some important proofs. Details are in lecture slides.
- Important: The course is for you to learn something, we are from different background, it is not a competition!
- Important: No cheating in midterm!!!

Lecture 1 Review: Definitions

Self-information

- Self-information: $\iota_X(x) = \log \frac{1}{\rho_X(x)}$
- Joint pmf $p_{X,Y}$: $\iota_{X,Y}(x,y) = \log \frac{1}{p_{Y,Y}(x,y)}$
 - $\mathbf{1} \iota_X(x) \geq 0$
 - 2 For a function f, $\iota_{f(X)}(f(x)) \leq \iota_X(x)$, equality iff f is injective.
 - **3** (Additive) If X, Y are independent, $\iota_{X,Y}(x,y) = \iota_X(x) + \iota_Y(y)$.
 - 4 $\iota_X(x)$ is constant iff X follows a uniform distribution
 - Weakness: information spectrum is a probability distribution, but we want a single number to summarize the amount of information.

Entropy

- Shannon entropy: $H(X) = \mathbf{E}[\iota_X(X)] = \sum_x p_X(x) \log \frac{1}{p_X(x)}$, which is the average of the self-information.
- Joint entropy: $H(X, Y) = \mathbf{E}[\iota_{X,Y}(X, Y)]$
 - ① Positivity: $H(X) \ge 0$ with equality iff X is a constant.
 - ② Uniform distribution maximizes entropy: For $|\mathcal{X}| < \infty$, $H(X) \leq \log |\mathcal{X}|$.
 - 3 Invariance under relabeling: H(X) = H(f(X)) for any bijective f.
 - 4 Conditioning reduces entropy: $H(X|Y) \leq H(X)$ with equality iff X, Y indpt.
 - **6** Full chain rule: $H(X_1, ..., X_n) = \sum_{i=1}^n H(X_i | X^{i-1}) \le \sum_{i=1}^n H(X_i)$.
 - **6** H(X) is concave in p_X .

Convexity

- $f: S \mapsto \mathbb{R}$ is convex if $f(\alpha x + \bar{\alpha} y) < \alpha f(x) + \bar{\alpha} f(y)$ for $\alpha \in [0, 1]$.
- Jensen's inequality: is f is convex, then for $X \in \mathbb{R}^n$, $f(\mathbf{E}[X]) \leq \mathbf{E}[f(X)]$.
 - 1 If f strictly convex, then $f(\mathbf{E}[X]) = \mathbf{E}[f(X)]$ iff X is constant.

Log sum ineq

For
$$a_1,\ldots,a_n,b_1,\ldots,b_n\geq 0,\, a=\sum_i a_i, b=\sum_i b_i,$$

$$\sum_i a_i \log \frac{a_i}{b_i} \ge a \log \frac{a}{b}$$

Overview

- Venn diagrams: Combinatorics VS information theory
- Conditional entropy
- Concavity of entropy
- Conditional Mutual Information

Lecture 2 Review

- Venn diagrams
 - ① Shannon-type inequality: inequality implied by $I(X; Y|Z) \ge 0$
 - 2 I(X; Y; Z) might be negative!
- Intuitively, information is similar to set.

Random variables as "sets"

Union $A \cup B$ of sets A, B	Joint RV (X,Y) of X,Y
$A,B\subseteq A\cup B$	Both X and Y can be determined (i.e., are functions of) (X,Y)
For any C satisfying $A, B \subseteq C$, we have $A \cup B \subseteq C$	For any Z satisfying that both X, Y are functions of Z , then (X, Y) is a function of Z
$\max\{ A , B \}$ $\leq A \cup B \leq A + B $	$\max\{H(X), H(Y)\}$ $\leq H(X, Y) \leq H(X) + H(Y)$
If A, B disjoint, then $ A \cup B = A + B $	If X, Y indep. ,then $H(X, Y) = H(X) + H(Y)$

Lecture 2 Review

Conditional entropy of Y given X:

$$H(Y|X) = \sum_{x} P_X(x)H(Y|X = x)$$

$$= \mathbf{E} \left[\log \frac{1}{p_{Y|X}(Y|X)} \right]$$

$$= \sum_{x,y} p_{X,Y}(x,y) \log \frac{1}{p_{Y|X}(y|x)}$$

- $oldsymbol{1}$ Average amount of new info in Y if we already know X.
- Conditional entropy vs set difference:

$$H(Y|X) = H(X,Y) - H(X)$$

Concavity of entropy

Lecture 2 Review

- Mutual information: $I(X; Y) = \mathbf{E} \left[\log \frac{\rho_{X,Y}(X,Y)}{\rho_{X}(X)\rho_{Y}(Y)} \right]$.
 - 1 Measures how much information do X, Y share
 - 2 $I(X; Y) \ge 0$

 - (a) $I(X; Y) \le \min\{H(X), H(Y)\}$ (b) I(X; Y) = H(Y) iff Y is a function of X, by I(X; Y) = H(Y) H(Y|X).
- I(X; Y) is convex in p_{Y|X} and concave in p_X

Lecture 2 Review

Conditional mutual information:

$$I(X; Y|Z) = H(X|Z) + H(Y|Z) - H(X, Y|Z)$$

$$= H(Y|Z) - H(Y|X, Z)$$

$$= \sum_{z} p_{Z}(z)I(X; Y|Z = z)$$

$$= \mathbf{E} \left[\log \frac{p_{X,Y|Z}(X, Y|Z)}{p_{X|Z}(X|Z)p_{Y|Z}(Y|Z)} \right]$$

 $I(X; Y|Z) \ge 0$ with equality iff $X \perp \!\!\! \perp Y|Z$.

Condition may increase/decrease mutual information

$$I(X; Y|Z) = H(X|Z) + H(Y|Z) - H(X, Y|Z) = H(Y|Z) - H(Y|X, Z)$$

Information diagram for 4 and 5 RVs

Sets vs RVs

Sets	RVs
Cardinality ···	$H(\cdots)$ or $I(\cdots)$
$A \cup B$	(X,Y) (is an RV)
$A \cap B$	"X; Y" (not an RV!)
$A \backslash B$	"X Y" (not an RV!)
$A \cap B = \emptyset$	$X\perp Y$
$B \subseteq A$	Y is a function of X

- $|A| = |A \cap B| + |A \setminus B|$ becomes H(X) = I(X;Y) + H(X|Y)
- $|A \cap (B \cup C)| = |A \cap B| + |(A \cap C) \setminus B|$ becomes I(X; Y, Z) = I(X; Y) + I(X; Z|Y)
 - Operator precedence: "," then ";" then "|"

Lecture 2 Review

- Chain rule: H(X, Y, Z) = H(X) + H(Y|X) + H(Z|X, Y)
- Generally,

$$H(X_1,...,X_n) = \sum_{i=1}^n H(X_i|X_1,...,X_{i-1})$$

For mutual information,

$$I(X_1,...,X_n;Y) = \sum_{i=1}^n I(X_i;Y|X_1,...,X_{i-1})$$

Markov chain

$$P(X_{i+1} = X_{i+1} | X_1 = X_1, ..., X_i = X_i) = P(X_{i+1} = X_{i+1} | X_i = X_i)$$

Data processing inequality: If $X \to Y \to Z \to W$, then I(X; W) < I(Y; Z).

•
$$I(Y;Z) = I(Y;W) + I(Y;Z|W)$$

= $I(X;W) + I(Y;W|X) + I(Y;Z|W)$

Lecture 2 Review

- Kullback-Leibler divergence: $D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$.
 - **1** D(p||q) > 0 with equality iff p = q.
 - ② $I(X;Y) = D(p_{X,Y}||p_X(x)p_Y(y))$: Mutual information is the divergence between the true joint distribution and the hypothetical joint distribution if X, Y were independent.
 - 3 It is not a distance measure! (not symmetric)
- Total variation distance: $\delta_{TV}(p,q) = \sup_{A \subset \mathcal{X}} |p(A) q(A)|.^a$.
- Pinsker's inequality: $\delta_{TV}(p,q) \leq \sqrt{\frac{1}{2\log e}D(p\|q)}$.

^aRudin, Walter. Principles of mathematical analysis. Vol. 3. New York: McGraw-hill, 1976.

Lecture 3 Review

- If X is uniformly distributed, you need $n \approx H(X) = \log_2 k$ bits to compress X.
- You can do better if you allow n to change according to value of X:
 Variable-length compression
- You should be able to **uniquely decode**: let the decoder know the boundaries of the codewords $m = f(X_1) \| \cdots \| f(X_n)$
- Prefix-free code: can be represented as a binary tree

Kraft's inequality

There exists a prefix-free code with $L(f(x)) = \ell_x$ for $x \in \mathcal{X}$ if and only if $\sum_{x \in \mathcal{X}} 2^{-\ell_x} \le 1$

- Expected length: $\mathbb{E}[L(f(x))] = \mathbb{E}[\ell_x] = \sum_{x} p_X(x)\ell_x$
- Expected length must be at least H(X) (proved in lec3)

16

Huffman coding

- An algorithm for finding the optimal prefix-free code
- Optimality: attains the smallest possible $\mathbb{E}[\ell_X]$ (proved in lec3)

Huffman coding

- An algorithm for finding the optimal prefix-free code
- Maintain a collection of trees
 Initially, each alphabet x ∈ X is its
 - Initially, each alphabet x ∈ X is it own tree
- Repeatedly find two trees with smallest total probabilities, and combine them into one tree (by adding a new root, with the two trees as left and right subtree)
- · Repeat until there is only one tree

Fano's inequality

 X, \hat{X} are r.v. over $\mathcal{X}, P_e = \mathbb{P}(X \neq \hat{X})$, then

$$H(X|\hat{X}) \leq H_b(P_e) + P_e \log(|\mathcal{X}| - 1) \leq 1 + P_e \log|\mathcal{X}|$$

where $H_b(a) = H(Bern(a))$) is the binary entropy function.

Fano's inequality

 X, \hat{X} are r.v. over $\mathcal{X}, P_e = \mathbb{P}(X \neq \hat{X})$, then

$$H(X|\hat{X}) \le H_b(P_e) + P_e \log(|\mathcal{X}| - 1) \le 1 + P_e \log|\mathcal{X}|$$

where $H_b(a) = H(Bern(a))$) is the binary entropy function.

- Let $T = \mathbf{1}\{X \neq \hat{X}\}$ be the indicator of event $X \neq \hat{X}$
- $H(X|\hat{X}) = H(X,T|\hat{X}) \leq H(T) + H(X|\hat{X},T)$ $= H_b(P_e) + P_eH(X|\hat{X},T=1) + (1-P_e)H(X|\hat{X},T=0)$ $\leq H_b(P_e) + P_e\log(|\mathcal{X}|-1)$ since for any \hat{x} , $H(X|\hat{X}=\hat{x},T=1) \leq \log(|\mathcal{X}|-1)$ because X can only take values in $X \setminus \{\hat{x}\}$

Compree X_1, \ldots, X_n i.i.d. following p_X into fixed length codeword $M = \{1, \ldots, \lfloor 2^{nR} \rfloor \}$ with error probability ϵ_n .

Shannon's source coding theorem

If R > H(X), then there is a code with $\epsilon_n \to 0$. If R < H(X), then there does not exist code with $\epsilon_n \to 0$.

Compree X_1, \ldots, X_n i.i.d. following p_X into fixed length codeword $M = \{1, \ldots, \lfloor 2^{nR} \rfloor \}$ with error probability ϵ_n .

Shannon's source coding theorem

If R > H(X), then there is a code with $\epsilon_n \to 0$. If R < H(X), then there does not exist code with $\epsilon_n \to 0$.

- Achievability follows from Huffman coding
- For converse, assume $\epsilon_n \to 0$. By Fano's inequality, $H(X^n | \hat{X}^n) \le 1 + \epsilon_n \log(|\mathcal{X}|^n) = 1 + n\epsilon_n \log|\mathcal{X}|$

•
$$H(X) = \frac{1}{n}H(X^n) \le \frac{1}{n}\Big(H(\hat{X}^n) + H(X^n|\hat{X}^n)\Big)$$

 $\le \frac{1}{n}(H(M) + 1 + n\epsilon_n \log|\mathcal{X}|)$
 $\le R + \frac{1}{n} + \epsilon_n \log|\mathcal{X}| \to R \text{ as } n \to \infty$

Concluding Remarks

- Def of (joint) entropy, properties
- Venn diagrams
- Conditional entropy
- · (Conditional) Mutual Information
- Karnaugh map
- Total variation distance
- Variable-length compression: uniquely decodability, Prefix-free code, Kraft's inequality, Optimality
- Fano's inequality
- Shannon's source coding theorem

Remarks

- Review all the homeworks carefully!
- No cheating, and good luck!