Assignment 2: Adversarial Attack on NN (Due: 2023/10/01 Sunday 23:59)

q1. (30%) Please read the **fast gradient sign method** (FGSM) paper and write pseudocode similar to the following format

Pseudocode Format Example:

q2. (40%) FGSM Attack

- 1. Download the model weights and model reading program form here
- 2. Attack this model by FGSM
- 3. Download your testing data from here
- 4. To convert testing data to images and save them as JPG files (.jpg).
- 5. Experiment with FGSM Attack using testing data, and record the results along with the parameters used.

The **noise magnitude** of q2 will **not affect** the score, please provide a detailed description of parameter settings and implementation in **q3**.

q3. (15%) Write down your <u>experiment setting</u> in English. The setting should include but not be limited to (1) hardware specification, (2) package version and (3) all the experiment parameters and details in **q2**.

The font size is 12, and the page limit is 2 pages.

Submission Guideline

Please compress your files named {SID}_a2.zip (SID in upper case) to the COOL System, such as D111111_a2.zip, with two required files

file 1. {SID}_a2.py

Please submit your source code to the COOL system. The following command can exclude the code

The execution results of {SID}_a2.py

The output of your code is the generated attacked images (testing data original image + the noise), ground truth label and predict of FGSM attack.

Output Format Example

files 2. {SID}_a2_report.pdf

Supplementary Materials

PyTorch installation: https://pytorch.org/ FGSM paper 1412.6572.pdf (arxiv.org)