In [27]: # Importing Libraries

import pandas as pd

from sklearn.linear_model import LinearRegression as LR

from sklearn.model_selection import train_test_split as TTS

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error as MSE,r2_score as RS,accuracy_

import numpy as np

In [2]: # Load Dataset

df=pd.read_csv(r'D:\Student_Marks.csv')

In [3]: df.head()

Out[3]:

	number_courses	time_study	Marks
0	3	4.508	19.202
1	4	0.096	7.734
2	4	3.133	13.811
3	6	7.909	53.018
4	8	7.811	55.299

In [4]: df.tail()

Out[4]:

	number_courses	time_study	Marks
95	6	3.561	19.128
96	3	0.301	5.609
97	4	7.163	41.444
98	7	0.309	12.027
99	3	6.335	32.357

In [5]: df.describe()

Out[5]:

	number_courses	time_study	Marks
count	100.000000	100.000000	100.000000
mean	5.290000	4.077140	24.417690
std	1.799523	2.372914	14.326199
min	3.000000	0.096000	5.609000
25%	4.000000	2.058500	12.633000
50%	5.000000	4.022000	20.059500
75%	7.000000	6.179250	36.676250
max	8.000000	7.957000	55.299000

```
In [6]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 100 entries, 0 to 99
          Data columns (total 3 columns):
               Column
                                Non-Null Count
                                                  Dtype
                                 -----
           0
               number courses 100 non-null
                                                  int64
               time_study
                                100 non-null
                                                  float64
           1
           2
               Marks
                                100 non-null
                                                  float64
          dtypes: float64(2), int64(1)
          memory usage: 2.5 KB
 In [7]:
          df.describe()
Out[7]:
                 number_courses
                                time_study
                                               Marks
           count
                      100.000000
                                100.000000
                                           100.000000
                       5.290000
                                  4.077140
           mean
                                            24.417690
                                  2.372914
             std
                       1.799523
                                            14.326199
                       3.000000
                                  0.096000
                                             5.609000
            min
            25%
                       4.000000
                                  2.058500
                                            12.633000
            50%
                       5.000000
                                  4.022000
                                            20.059500
            75%
                       7.000000
                                  6.179250
                                            36.676250
                       000000.8
                                  7.957000
                                            55.299000
            max
 In [8]: # Split The Data To Train And Test
          x=df.drop(['Marks'],axis=1)
          y=df['Marks']
In [12]: x_train,x_test,y_train,y_test=TTS(x,y,test_size=0.2,random_state=10)
In [13]:
          # Fit The Model With LinearRegression
          lm=LR()
          lm.fit(x_train,y_train)
Out[13]: LinearRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust
          On GitHub, the HTML representation is unable to render, please try loading this page with
          nbviewer.org.
```

In [14]: y pred=lm.predict(x test)

```
In [18]: # evaluate its performance using metrics like mean squared And R2 Score
    mse=MSE(y_test,y_pred)
    print(f"Mean Squared error = {mse}")
    rs=RS(y_test,y_pred)
    print(f"R2 Score = {rs}")
```

Mean Squared error = 13.744931448338658 R2 Score = 0.9393161544337274

```
In [22]: # Visualize the regression line and actual vs. predicted values
plt.scatter(y_test,y_pred)
plt.title('Actual And Predict Values')
plt.show()
```



```
In [21]: plt.plot(y_test,y_pred)
    plt.title('Actual And Predict Values')
    plt.show()
```



```
In [30]: # Inserting New Data To Predict
new = np.array([[7,9]])
pred = lm.predict(new)
print(f"Predict New Values = {pred[0]}")
```

Predict New Values = 54.20909421097954

C:\Users\nikhil\anaconda3\Lib\site-packages\sklearn\base.py:464: UserWarning:
X does not have valid feature names, but LinearRegression was fitted with fea
ture names

warnings.warn(