Iterative Closest Point(ICP) with Genetic Algorithm

1. What is ICP?

< Example of ICP >

- ICP is an algorithm to minimize the difference between two 3D objects(Mesh, point cloud, etc.) for 3D object fitting.
- ICP is used to measure an error of moldings and 3D-printed objects, or to reverse-engineer.

```
Input: 3D object M_1 (point p_1, p_2, \dots, p_n),
        3D object M_2 (point q_1, q_2, \dots, q_m)
Step1 : Find q<sub>i</sub>'s closet points p<sub>i</sub>.
          (1 \le i \le n, 1 \le j \le m)
 Step2: Compute optimal transformation,
           Rotation vector V_r(\mathbf{r}_x, \mathbf{r}_y, \mathbf{r}_z),
          Translation vector V_t(t_x, t_y, t_z)
Step3 : Update M_2 using V_r, V_t.
          q'_j = Matrix_{rotation} * q_j + V_t  (1 \le j \le n)
 Step4 : Check a stopping criteria.
           if ( CheckCriteria() )
                finish algorithm
           else
                repeat Step1 ∼ Step3
```

Output: 3D object M_1 (point p_1, p_2, \dots, p_n),

3D object M_2 (point q_1', q_2', \dots, q_m')


```
Input: 3D object M_1 (point p_1, p_2, \dots, p_n),
       3D object M_2 (point q_1, q_2, \dots, q_m)
Step1 : Find q_i's closet points p_i.
         (1 \le i \le n, 1 \le j \le m)
Step2: Compute optimal transformation,
         Rotation vector V_r(r_x, r_y, r_z),
         Translation vector V_t(t_x, t_y, t_z)
Step3: Update M_2 using V_r, V_t.
         q'_j = Matrix_{rotation} * q_j + V_t  (1 \le j \le n)
Step4 : Check a stopping criteria.
          if ( CheckCriteria() )
              finish algorithm
          else
              repeat Step1 ∼ Step3
```

Output: 3D object M_1 (point p_1, p_2, \dots, p_n),

3D object M_2 (point q'_1 , q'_2 , \cdots , q'_m)


```
Input: 3D object M_1 (point p_1, p_2, \dots, p_n),
        3D object M_2 (point q_1, q_2, \dots, q_m)
Step1 : Find q<sub>i</sub>'s closet points p<sub>i</sub>.
          (1 \le i \le n, 1 \le j \le m)
 Step2: Compute optimal transformation,
           Rotation vector V_r(\mathbf{r}_x, \mathbf{r}_y, \mathbf{r}_z),
          Translation vector V_t(t_x, t_y, t_z)
Step3 : Update M_2 using V_r, V_t.
          q'_j = Matrix_{rotation} * q_j + V_t  (1 \le j \le n)
 Step4 : Check a stopping criteria.
           if ( CheckCriteria() )
                finish algorithm
           else
                repeat Step1 ∼ Step3
```

Output: 3D object M_1 (point p_1, p_2, \dots, p_n),

3D object M_2 (point q'_1 , q'_2 , ..., q'_m)


```
Input: 3D object M_1 (point p_1, p_2, \dots, p_n),
        3D object M_2 (point q_1, q_2, \dots, q_m)
Step1 : Find q<sub>i</sub>'s closet points p<sub>i</sub>.
          (1 \le i \le n, 1 \le j \le m)
 Step2: Compute optimal transformation,
           Rotation vector V_r(\mathbf{r}_x, \mathbf{r}_y, \mathbf{r}_z),
          Translation vector V_t(t_x, t_y, t_z)
 Step3 : Update M_2 using V_r, V_t.
          q'_j = Matrix_{rotation} * q_j + V_t  (1 \le j \le n)
 Step4 : Check a stopping criteria.
           if ( CheckCriteria() )
                finish algorithm
           else
                repeat Step1 ∼ Step3
```


Output: 3D object M_1 (point p_1, p_2, \dots, p_n), 3D object M_2 (point q_1', q_2', \dots, q_m')

```
Input: 3D object M_1 (point p_1, p_2, \dots, p_n),
       3D object M_2 (point q_1, q_2, \dots, q_m)
Step1 : Find q<sub>i</sub>'s closet points p<sub>i</sub>.
          (1 \le i \le n, 1 \le j \le m)
Step2: Compute optimal transformation,
          Rotation vector V_r(\mathbf{r}_x, \mathbf{r}_y, \mathbf{r}_z),
          Translation vector V_t(t_x, t_y, t_z)
Step3 : Update M_2 using V_r, V_t.
          q'_j = Matrix_{rotation} * q_j + V_t  (1 \le j \le n)
 Step4 : Check a stopping criteria.
           if (CheckCriteria())
               finish algorithm
           else
               repeat Step1 ∼ Step3
```

Output: 3D object M_1 (point p_1, p_2, \dots, p_n),

3D object M_2 (point q_1', q_2', \dots, q_m')

 M_2

```
Input: 3D object M_1 (point p_1, p_2, \dots, p_n),
       3D object M_2 (point q_1, q_2, \dots, q_m)
Step1 : Find q<sub>i</sub>'s closet points p<sub>i</sub>.
          (1 \le i \le n, 1 \le j \le m)
Step2: Compute optimal transformation,
          Rotation vector V_r(r_x, r_y, r_z),
          Translation vector V_t(t_x, t_y, t_z)
Step3 : Update M_2 using V_r, V_t.
          q'_j = Matrix_{rotation} * q_j + V_t  (1 \le j \le n)
 Step4 : Check a stopping criteria.
          if (CheckCriteria())
               finish algorithm
          else
               repeat Step1 ∼ Step3
```

Output: 3D object M_1 (point p_1, p_2, \dots, p_n),

3D object M_2 (point q_1', q_2', \dots, q_m')


```
Input: 3D object M_1 (point p_1, p_2, \dots, p_n),
       3D object M_2 (point q_1, q_2, \dots, q_m)
Step1 : Find q_i's closet points p_i.
          (1 \le i \le n, 1 \le j \le m)
Step2: Compute optimal transformation,
          Rotation vector V_r(\mathbf{r}_x, \mathbf{r}_y, \mathbf{r}_z),
          Translation vector V_t(t_x, t_y, t_z)
Step3 : Update M_2 using V_r, V_t.
          q'_{j} = Matrix_{rotation} * q_{j} + V_{t} (1 \le j \le n)
 Step4: Check a stopping criteria.
          if ( CheckCriteria() )
               finish algorithm
          else
               repeat Step1 ∼ Step3
```

Output: 3D object M_1 (point p_1, p_2, \dots, p_n),

3D object M_2 (point q'_1, q'_2, \dots, q'_m)

Use Genetic Algorithm

for finding two vector, V_r , V_t .

3. Genetic algorithm for ICP

3D object M_1

- Utah teapot
- The number of points is 4,716.

3D object M_2

- Each M_2 is sampling point set of Utah teapot.
- The number of points of M_2 is $170 \sim 200$.

3. Genetic algorithm for ICP

Individual

- Each individual has 6 value, $\{r_x, r_y, r_z, t_x, t_y, t_z\}$, and $0.0 \le r_x, r_y, r_z \le 359.9, AreaBoxMin.xyz \le t_x, t_y, t_z \le AreaBoxMax.xyz.$
- AreaBox is a clipping box of interest-area, and the size of AreaBox is one and a half times larger than clipping box of 3D object M_1 .

Population

- Population size is 2,000, changed from 1,000 to 2,000.

Crossover

- Selection operator for crossover is 'random selection'.
- Crossover operator is an exchange $\{r_x, r_y, r_z\}$ or $\{t_x, t_y, t_z\}$ between two population.

3. Genetic algorithm for ICP

Fitness function

- Fitness function is the function to compute average value of closest point distance.
- Closest point distance is a shortest distance between two points, each points belong to different object(3D mesh or point cloud).

Fitness Function =
$$\frac{\sum_{j=0}^{m} d_j}{m}$$

Mutation

- N best individuals are mutated. (N = $2/10 * POP_SIZE$)
- Mutation operator changes each value in an individual to 50%.
 - For N/2 best individuals, mutation adds or subtracts a small random value to the value.
 - For next N/2 best individuals, this function change the value to random value.

Generational selection

Elitism, maintain half the individual and make new individuals randomly.

4. Result of Genetic algorithm for ICP

5. How to solve local minimum problem

< Step1 : divide the area >

< Step2 : Sort the nextPop >

Area1 i_{12} Area2 i_3 i_6 i_7 i_9 Area3 i_1 i_2 i_4 i_5 i_8 i_{10} i_{11} Area9 i_{13}

- < Step3 : Maintain best individual>
- I think there are too many similar individuals in population throughout some generations.
- New elitism: Divide the total area and maintain 100~200 best individual in each partial area.
- After crossover and mutation, add some step for new elitism.

6. Result of Genetic algorithm for ICP

7. Conclusion

- ❖ ICP with genetic algorithm can find the best answer.
 - But this algorithm takes long time and is easy to find a local minimum answer.
 - For minimizing the local minimum problem, this algorithm need more time.
- ❖ If GE is modularized and use 2 or more GE module, the calculation time will be reduced.
 - But it is hard to find a good and global threshold for changing GE module.