This question paper contains 4 printed pages]

ф				-
Roll N	lo.			
140.	عليا	The Barrel		

S. No. of Question Paper: 52

Unique Paper Code

32341502

Name of the Paper

Theory of Computation

Name of the Course

B.Sc. (H.) Computer Science

Semester

V

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Instructions for Candidates:

- (1) All questions from Part A are compulsory. Attempt any four questions from Part B.
- (2) Assume $\Sigma = \{a \ b\}$ is the underlying alphabet unless mentioned otherwise. Parts of a question must be answered together.

Part A

1. (a) Prove that for all sets S, $(S^+)^*=S^*$.

2

(b) Give regular expression for the language of all strings that do not end with double letter.

ndergos	(c)	Show that (ab)*a and a(ba)* defines the same language
		over alphabet {a b}.
	(d)	Build an FA that accepts only those words that have
		exactly four letters. 4
	(e)	Build an FA that accepts only those words that do not
		end with ba.
	(f)	Find a CFG for the language Trailing count={salength(s
		for all s in (a+b)*}.
	(g)	Use the pumping lemma to show that the language
		Square={a ⁿ where n is a square} is non-regular. 4
	(h)	Show that if L_1 and L_2 are regular language then so are
		L_1+L_2 , L_1L_2 and L_1* .
	(1)	Construct a PDA for the language $L=\{a^nb^{2n} n=0\}$
		1 2 3}.
	(j)	Design a right shifting turing machine.

Part B

(a)	Define Regular Expression.
(b)	Build a regular expression for all words that have odd
	no. of b's.
(c)	Build an FA that accepts all strings that start and end
	with different letters.
_ (a)	For languages, $L_1=(a+b)*a$ and $L_2=(a+b)*aa(a+b)*$, find
	the deterministic finite automata for L_1+L_2 .
(b)	Show that the following context free grammar is
	ambiguous:
	S->aSb Sb Sa a.
(a)	Use the pumping lemma to show that the language anbar
	where n=1 2 3 is non-regular.
(b)	For the given, $L_1=(a+b)*a$ and $L_2=b(a+b)*$, find the
	automata and regular expression for $L_1 \cap L_2$.
(a)	Construct a PDA for the language anbmambn where
	$m, n \ge 1$.
(b)	Construct a CFG for the language (ba+ab)*. 4
	(b) (c) (a) (b) (b)

6.	(a)	Prove that a recursive language is also recursively				
		enumerable.				
	(b)	Using pumping lemma prove that the language anbnan				
		for n=1 2 3 is non-context free.				
7.	(a)	Design a turing machine for the language anbncn where				
		n=1 2 36				
	(b)	Describe "Universal Turing Machine". 4				