

Renumbered Claims

24. A method of forming a vertical MOSFET, comprising the steps of:
forming a base region of second conductivity type in a semiconductor
substrate having a drift region of first conductivity type therein that forms a
P-N junction with the base region;
- 5 forming a source region of first conductivity type in the base region;
 forming a deep trench having a first sidewall that extends adjacent the
base region, in the semiconductor substrate;
 lining the deep trench with a first electrically insulating layer;
 refilling the lined deep trench with a trench-based source electrode;
- 10 selectively etching the trench-based source electrode to define a
shallow trench therein and expose a first portion of the first electrically
insulating layer that extends on the first sidewall of the deep trench;
 selectively etching the first portion of the first electrically insulating
layer to expose an upper portion of the first sidewall of the deep trench and
15 reveal the base region;
 lining the shallow trench with a gate insulating layer that extends on
the exposed upper portion of the first sidewall of the deep trench and a
bottom and sidewalls of the shallow trench;
 forming a gate electrode that extends on a surface of the
20 semiconductor substrate and extends into the lined shallow trench; and
 forming a surface source electrode that electrically connects the
trench-based source electrode, source region and base region together.

2

~~25.~~ The method of claim ~~24~~, wherein said step of forming a surface source electrode is preceded by the steps of:

forming a blanket passivation layer on the semiconductor substrate;

and

5 patterning the blanket passivation to define contact holes therein that expose the trench-based source electrode, source region and base region.

3

~~26.~~ The method of claim ~~24~~, wherein the trench-based source electrode comprise polycrystalline silicon; and wherein said step of lining the shallow trench comprises thermally oxidizing the exposed upper portion of the first sidewall at a first rate and the bottom and sidewalls of the shallow trench at a second rate that is higher than the first rate.

4

3

5 ~~27.~~ The method of claim ~~26~~, wherein said thermally oxidizing step comprises thermally oxidizing an upper surface of the trench-based source electrode to define a surface oxide layer thereon; and wherein said step of forming a surface source electrode is preceded by the step of selectively etching a portion of surface oxide layer extending adjacent the gate electrode to expose a portion of the upper surface of the trench-based source electrode.

5

~~28.~~ The method of claim ~~24~~, wherein said step of lining the shallow trench comprises thermally oxidizing the exposed upper portion of the first sidewall at a first rate and the bottom and sidewalls of the shallow trench at a second rate that is at least about equal to the first rate.

6
29. A method of forming a vertical MOSFET, comprising the steps of:
forming a semiconductor substrate having therein a drift region, a
transition region on the drift region, a base region on the transition region
and a source region on the base region;

- 5 forming a deep trench having a first sidewall that extends adjacent the
base, transition and drift regions, in the semiconductor substrate;
 forming a trench-based source electrode in the deep trench;
 forming a shallow trench that exposes the base region and source
region extending along the first sidewall, in the trench-based source
10 electrode;
 forming a gate oxide insulating layer on the exposed base region;
 forming a gate electrode that extends on an upper surface of the
semiconductor substrate and extends into the shallow trench; and
 forming a surface source electrode that electrically connects the
15 trench-based source electrode, source region and base region together.

X *S*
30. The method of claim 28, wherein said step of forming a surface
source electrode is preceded by the steps of:

- 5 forming a blanket passivation layer on the semiconductor substrate;
and
 patterning the blanket passivation to define contact holes therein that
expose the trench-based source electrode, source region and base region.

8

6

31. The method of claim 29, wherein said step of forming a gate electrode comprises forming multiple stripe-shaped gate electrodes that extend across the trench-based source electrode in a direction orthogonal to a lengthwise direction of the deep trench; and wherein the surface source electrode electrically connects the trench-based source electrode, source region and base region at locations extending between the multiple stripe-shaped gate electrodes.

9

6

32. The method of claim 29, wherein the trench-based source electrode is separated from the first sidewall by a first electrically insulating layer; and wherein said step of forming a shallow trench comprises selectively etching a portion of the first electrically insulating layer exposed by the shallow trench using the trench-based source electrode as an etching mask.