

Large Scale Decision Tree Learning

Instructor: Jesse Davis

Decision Tree Representation

Numeric Attributes

DT Learning as Search

- Nodes: Decision Trees:
 - 1) Internal: Attribute-value test
 - 2) Leaf: Class label
- Operators: Tree Refinement: Sprouting the tree
- Initial node: Smallest tree possible: a single leaf
- Heuristic: Information Gain
- Goal: Best tree possible (???)

Splitting the Data

Intuition: Disorder is bad and homogeneity is good

Gain(S,A) = Entropy(S) - $\Sigma(|S_v| / |S|)$ Entropy(S_v)

Where Entropy(S) = -P $log_2(P)$ - N $log_2(N)$

Basic Decision Tree Algorithm

```
BuildTree(TraingData)
      Split(TrainingData)
Split(D)
      If (all points in D are of the same class)
             Then Return
      For each attribute A
             Evaluate splits on attribute A
             Use best split to partition D into D1, D2
             Split(D1)
             Split(D2)
```

Example: Good Day For Tennis

- Attributes of instances
 - Outlook = {rainy (r), overcast (o), sunny (s)}
 - Temperature = {cool (c), medium (m), hot (h)}
 - Humidity = {normal (n), high (h)}
 - Wind = {weak (w), strong (s)}
- Class value
 - Play Tennis? = {don't play (n), play (y)}
- Sample instance
 - outlook=sunny, temp=hot, humidity=high, wind=weak

Experience: "Good day for tennis"

Day	Outlook	Temp	Humid	Wind	PlayTennis?
d1	S	h	h	W	n
d2	S	h	h	S	n
d3	O	h	h	W	y
d4	r	m	h	W	y
d5	r	c	n	W	y
d6	r	c	n	S	n
d7	O	C	n	S	y
d8	S	m	h	W	n
d9	S	c	n	W	y
d10	r	m	n	W	y
d11	S	m	n	S	y
d12	O	m	h	S	y
d13	O	h	n	W	y
d14	r	m	h	S	n

Initial Tree

Good day for tennis?

Resulting Tree

Recurse

One Step Later

Recurse Again

One Step Later: Final Tree

Group Activity

• Question: When would this basic decision tree learning algorithm be inefficient?

Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 8 —

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University

©2011 Han, Kamber & Pei. All rights reserved.

Random Forest (Breiman 2001)

Random Forest:

- Each classifier in the ensemble is a decision tree classifier and is generated using a random selection of attributes at each node to determine the split
- During classification, each tree votes and the most popular class is returned