COMP 424 - Artificial Intelligence Lecture 17: Learning Bayesian Networks

Instructor: Jackie CK Cheung (jcheung@cs.mcgill.ca)

Readings: R&N Ch 20

Review: Inference in Bayes nets

Bayes nets encode information about conditional independence between variables.

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | \text{parents}(X_i))$$

- Variable elimination algorithm gives us dynamic programming approach for inferences in Bayes.
- Complexity of inference depends a lot on network's structure.
 - Inference is efficient (poly-time) for tree-structured networks.
 - In worse-case, inference is NP-complete.
- Can leverage DAG structure to facilitate inference.

Constructing Belief Nets: CPDs

P(S F)				
S = 1 S = 0				
F = 0	0.01	0.99		
<i>F</i> = 1	0.90	0.10		

P(R L)				
	R = 1 R = 0			
<i>L</i> = 0	0.01	0.99		
<i>L</i> = 1	0.75	0.25		

Where do these numbers come from?

Parameter Estimation

Option 1: Ask an expert

- Use experts to select Bayes net structure and parameters
 - Experts are often scarce and expensive.
 - Experts can be inconsistent.
 - Experts can be non-existent!

Option 2: Estimate parameters from data

Estimate how the world works by observing samples!

Outline

- Learning with complete data
 - Supervised learning
 - Maximum likelihood estimation
 - Laplace smoothing
- Learning with incomplete data
 - Expectation maximization

Learning in Bayesian networks

Given data in the form of instances:

Tampering	Fire	Smoke	Alarm	Leaving	Report
No	No	No	No	No	No
No	Yes	Yes	Yes	Yes	No

- Create a complete Bayes net!
 - 1. Parameter estimation: Given a graph structure, compute the Conditional Probability Distributions (CPDs). *Do this today!*
 - 2. Structure learning: Figure out the graph structure as well as the numbers in the CPDs.

 Much harder to do!

Parameter estimation with complete data

Given:

- A Bayes network structure G
- A choice of representation for the CPDs: P(X_i | Parents(X_i))

Goal:

- Learn the CPD in each node, such that the network is "closest" to the probability distributions that generated the data.
- For simplicity, assume all random variables in graph are binary.

Solving a Detective Mystery

Your friend just flipped a coin 10 times:

H, T, H, H, H, T, H, H, T (7 heads out of 10 tosses)

They then mixed the coin up with a bunch of other coins.
 You know the biases of the coins. Which one did they flip?

Coin toss example

Your friend just flipped a coin 10 times:

```
H, T, H, H, H, T, H, H, T (7 heads out of 10 tosses)
```

- Which coin did they flip? The one with P(H) =
 - 0.2
 - 0.5
 - 0.7
 - 0.9
- Which of these values is possible? Probable? Likely?

A network with one node

Can model as a one-node Bayesian network, X={head, tail}.

- Let $P(X) = \theta$ be the (unknown) probability of landing on head.
- In this case, X is a Bernoulli random variable.
- Given sequence of tosses $x_1, ..., x_m$, how can we estimate P(X)?

Statistical parameter fitting

- Given instances $x_1, ..., x_m$ that are independently identically distributed (i.i.d.).
 - Set of possible values for each variable in each instance is known.
 - Each instance is obtained independently of the other instances.
 - Each instance is sampled from the same distribution.

The learning problem:

Find a set of parameters θ such that the data can be summarized by a probability $P(x_i \mid \theta)$

• θ depends on the family of probability distributions we consider (e.g. Bernoulli: $\theta = \{p\}$, Gaussian: $\theta = \{\mu, \sigma^2\}$, etc.).

How good is a parameter set?

- It depends on how likely it is to generate the observed data.
- Let D be the data set (all the instances).
- The likelihood of parameter set θ given data set D is defined as:

$$L(\theta \mid D) = P(D \mid \theta)$$

• If the instances are i.i.d. we have:

$$L(\theta \mid D) = P(D \mid \theta) = P(x_1, x_2, ..., x_m \mid \theta) = \prod_{i=1:m} P(x_i \mid \theta)$$

Example: Coin tossing

- Suppose you see the following data: D = H, T, H, T, TRecall $\theta = Pr$ (Coin lands on Head)
- What is the likelihood of this sequence for parameter θ ? $L(\theta \mid D) = \theta (1 \theta) \theta (1 \theta) (1 \theta)$
- Likelihood has a familiar form:

$$L(\theta \mid D) = \theta^{N(H)} (1 - \theta)^{N(T)}$$

where N(H) and N(T) are numbers of heads and tails observed.

Sufficient statistics

- To compute the likelihood in the coin tossing example, we only need to know N(H) and N(T) (number of heads and tails), not the full dataset.
- Here N(H) and N(T) are sufficient statistics for this probabilistic model (Bernoulli distribution).
 - A sufficient statistic of the data is a function of the data that summarizes enough information to compute the likelihood.
- Formally, s(D) is a sufficient statistic if, for any two datasets D and D':

$$s(D) = s(D')$$
 \Rightarrow $L(\theta|D) = L(\theta|D')$

Maximum likelihood estimation (MLE)

- Choose parameters that maximize the likelihood function.
- We want to maximize:

$$L(\theta \mid D) = \prod_{i=1:m} P(x_i \mid \theta)$$

- This is a product and products are hard to maximize!
- Instead, we can maximize:

$$\log L(\theta \mid D) = \sum_{j=1:m} \log P(x_j \mid \theta)$$

• To maximize, take the derivates of this function with respect to θ and set them to 0 (calculus!).

MLE applied to the Bernoulli model

The likelihood is:

$$L(\theta \mid D) = \theta^{N(H)} (1 - \theta)^{N(T)}$$

The log-likelihood is:

$$\log L(\theta \mid D) = N(H) \log \theta + N(T) \log (1 - \theta)$$

Take the derivative of the log-likelihood and set it to 0:

$$d \log L(\theta \mid D) / d\theta = N(H) / \theta - N(T) / (1 - \theta) = 0$$

Solving this gives:

$$\theta = N(H) / (N(H) + N(T))$$

 This is a nice, intuitive answer – it is simply the proportion of times the coin comes up heads!

MLE applied to a categorical distribution

- Can show, with more calculus (including Lagrange multipliers – eek!), that the intuitive MLE answer generalizes to the case when there are k outcomes.
- Assume outcomes are $\{1, 2, ..., k\}$, then parameters are $\theta = \{\theta_1, \theta_2, ..., \theta_k\}$, where $\sum_i \theta_i = 1$
- In a data set of N samples,

$$\theta_i^{MLE} = N_i/N$$

Parameter estimation in a Bayes net

Instances are of the form:

$$x_j = \langle t_j, f_j, a_j, s_j, l_j, r_j \rangle, j = 1,...m$$

What parameters are we trying to estimate?

$$\theta = \{ P(T), P(F), P(A | T, F), P(S | F), P(S | F), P(L | A), P(L | A), P(R | L), P(R | L) \}$$

i.e., Set of parameters in the conditional probability distributions

Alarm example

• Given m instances, how do we compute P(A)? $P(A) = (\text{# instances with } a_i = 1) / m$

• How do we compute $P(L=1 \mid A=1)$?

$$P(L \mid A) = P(L, A) \mid P(A)$$

= (# instances $L=1$ a

= (# instances $I_j=1$ and $a_j=1$) / (# instances $a_j=1$)

• How do we compute $P(A=1 \mid T=1, F=0)$?

$$P(A \mid T, \neg F) = P(A, T, \neg F) / P(T, \neg F)$$

Parameter estimation for general Bayes nets

• Generalizing, for any Bayes net with variables $X_1, ..., X_n$:

$$L(\theta \mid D) = \prod_{j=1...m} P(X_1(j), ..., X_n(j) \mid \theta)$$
 from i.i.d.

$$= \prod_{j=1...m} \prod_{i=1...n} P(X_i(j) \mid Parents(X_i(j)), \theta)$$
 factorization

$$= \prod_{i=1...n} \prod_{j=1...m} P(X_i(j) \mid Parents(X_i(j)), \theta_i)$$
 simplification

$$= \prod_{i=1...n} L(\theta_i \mid D)$$

 The likelihood function decomposes according to the structure of the network, which creates independent estimation problems.

Coin tossing revisited

- Suppose you observed 3 coin tosses, and all come up with tails.
- What is the maximum predictor for θ ?
- Is this a good prediction?

A problem: Zero probabilities

- For problems with lots of variables, it is possible that not all possible values are seen in the data.
 - Especially for very rare events.
- What is the MLE for the corresponding parameters?

E.g. Prob(Heads) after seeing Tails times.

 If a value is not seen, the corresponding MLE value for its parameters is 0.

Laplace smoothing

- Instead of: $\theta = N(H) / (N(H) + N(T))$
- Use: $\theta = (N(H) + 1) / (N(H) + N(T) + 2)$
- Imagine that you have seen at least 1 instance of each type.
 - If you have no data, this estimate is: $\theta = 0.5$

+1 for Heads

- With 3 tails, the estimate is:
- θ = 0.2

+1 for Tails

- With 98 tails, the estimate is: $\theta = 0.01$
- If θ is not a Bernoulli, the "+2" changes, e.g. for a categorical with k possible outcomes, add +k in the denominator (and +1 for each possible outcome).

Exercise

С	S	R	W
Т	Т	F	Т
Т	Т	Т	Т
Т	F	F	F
F	Т	F	Т
F	F	F	F

What is the MLE of this Bayes net?
The estimates after Laplace smoothing?

Answers: MLE

С	S	R	W
Т	Т	F	Т
Т	Т	Т	Т
Т	F	F	F
F	Т	F	Т
F	F	F	F

MLE:

$$P(C) = 3/5$$

 $P(S|C) = 2/3$ $P(S|^{\sim}C) = 1/2$
 $P(R|C) = 1/3$ $P(R|^{\sim}C) = 0/2$
 $P(W|S,R) = 1/1$ $P(W|S,^{\sim}R) = 2/2$
 $P(W|^{\sim}S,R) = 0/0$ $P(W|^{\sim}S,^{\sim}R) = 0/2$

Answers: Laplace Smoothing

С	S	R	W
Т	Т	F	Т
Т	Т	Т	Т
Т	F	F	F
F	Т	F	Т
F	F	F	F

Laplace:

$$P(C) = 4/7$$

 $P(S|C) = 3/5$ $P(S|^{\sim}C) = 2/4$
 $P(R|C) = 2/5$ $P(R|^{\sim}C) = 1/4$
 $P(W|S,R) = 2/3$ $P(W|S,^{\sim}R) = 3/4$
 $P(W|^{\sim}S,R) = 1/2$ $P(W|^{\sim}S,^{\sim}R) = 1/4$

An Intuitive Analogy

 A Bayes net structure is like having a machine with many dials, which correspond to its parameters

Learning

 We know that this machine was used to generate some observed samples, but we don't know what the dial settings were. Learning is to figure out the setting.

MLE vs Laplace

• MLE and Laplace are two alternative criteria to select the dial setting. MLE: pick θ to maximize $P(D \mid \theta)$ Laplace: also care about generalization

Summary of learning in Bayes Nets

- Learning is process of acquiring a model from a data set.
- In Bayes nets, we can learn the parameters of the networks (numbers in the CPDs) or its structure.
- The maximum likelihood principle says that parameters should make the observed data as likely as possible.
- Parameters can be found by taking the gradient of the likelihood function and setting it to 0.
- In the case of simple distributions, the solution is to use "empirical probabilities", based on counting the data.

What have we left out?

Everything about choosing variables and structure

learning!

- Search over model structures (i.e. adding, reversing, deleting arcs) to maximize $L(\theta_{\circ} S \mid D) = P(D \mid \theta_{\circ} S)$
- Need to trade-off between model complexity and data fidelity. Hard!

Summary of parameter estimation

- I.i.d. assumption
- Sufficient statistics
- Computing the maximum likelihood
- Laplace smoothing
- Extension to standard probability distributions (see textbook):
 - e.g., categorical, Gaussian, Poisson, exponential

Learning in Bayesian networks

Given data in the form of instances:

Tampering	Fire	Smoke	Alarm	Leaving	Report
No	No	No	No	No	No
No	Yes	Yes	Yes	Yes	No
	•••		•••	•••	•••

- Goal: Find parameters of the Bayes net.
- We discussed how to do this using maximum likelihood.

Learning in Bayesian networks

Plot twist: Suppose some values are missing!

Tampering	Fire	Smoke	Alarm	Leaving	Report
,	No	No	No	No	No
No	Yes	Yes	Yes	?	No
			•••	•••	•••

- Can we still use MLE?
 - How do we deal with the missing data?

Why do we get incomplete data?

- Some variables may not be assigned values in some instances.
 - E.g. not all patients undergo all medical tests.
- Some variables may not be observed in any of the data items.
 - E.g. viewer preferences for a show may depend on their metabolic cycle (what time they are awake) - which is not usually measured.
- Problem: the fact that a value is missing may be indicative of what the value actually is.
 - E.g. patient did not undergo X-ray because she had no bone problems; so X-ray would likely have come out negative.

Why missing values make life hard

- Consider a simple network $X \to Y$, and suppose we want to learn its parameters from samples $\langle x_1, y_1 \rangle, ..., \langle x_m, y_m \rangle$.
- Which parameters do we need?
- Given all samples values, maximize log-likelihood of: $L(\theta_X, \theta_{Y|X=0}, \theta_{Y|X=1}) = (\theta_X)^{N1} (1-\theta_X)^{N0} (\theta_{Y|X=0})^{N01} (1-\theta_{Y|X=0})^{N00} (\theta_{Y|X=1})^{N11} (1-\theta_{Y|X=1})^{N10}$

• Suppose now that x_1 is missing and $y_1=1$. What can we do?

Why missing values make life hard (2)

- We can consider both settings: $x_1=0$, $x_1=1$.
- For each setting we get a different likelihood.
- Overall likelihood combines both settings (weighted by probability of that setting).

$$L(\theta_{X}, \theta_{Y|X=0}, \theta_{Y|X=1}) = (1 - \theta_{X}) Pr(\langle 0, y_{1} \rangle, \langle x_{2}, y_{2} \rangle, ..., \langle x_{m}, y_{m} \rangle | \theta_{X}, \theta_{Y|X=0}, \theta_{Y|X=1}) + \theta_{X} Pr(\langle 1, y_{1} \rangle, \langle x_{2}, y_{2} \rangle, ..., \langle x_{m}, y_{m} \rangle | \theta_{X}, \theta_{Y|X=0}, \theta_{Y|X=1})$$

• Problem: If we have values missing for x_1 and x_2 , we have to consider all possible values for both instances! Etc.

Missing at random assumption

- The probability that the value of X_i is missing is independent of its actual value, given the observed data.
- If this is not true, for variable X_i , we can introduce an additional Boolean variable, $X_i^{Observed}$ and satisfy the assumption.

Effects of missing data

Complete data

- Parameters of model can be estimated locally and independently.
- Log-likelihood has a unique maximum.
- Under certain
 assumptions, there is a
 nice closed-form solution
 for parameters.

Missing data

- Parameters cannot be estimated independently.
- Many local maxima.
 Maximizing likelihood becomes non-linear optimization problem.
- No closed-form solution.

Two solutions for maximizing likelihood

1. <u>Gradient ascent</u>: Use hill-climbing search through the space of parameters, following the gradient of the likelihood with respect to the parameters.

Gradient ascent

 Basic idea: Move parameters in the direction of the loglikelihood.

Pros:

- Flexible: allows different forms for the Conditional Prob.
 Distributions.
- Easy to compute the gradient at any parameter setting.
- Closely related to other learning methods (e.g., neural nets).

Cons:

- Solution needs to be projected on space of legal parameters (in our case, need to ensure that we get probability distributions.)
- Sensitive to parameters (e.g., learning rate).
- Slow!

Two solutions for maximizing likelihood

- 1. <u>Gradient ascent</u>: hill-climbing search through the space of parameters, following the gradient of the likelihood with respect to the parameters.
- 2. <u>Expectation maximization</u>: use the current parameter settings to construct a local approximation of the likelihood which is "nice" and can be optimized easily.

Expectation Maximization (EM)

- General purpose method for learning from incomplete data (not only Bayes nets), whenever an underlying distribution is assumed.
- Main idea: Alternate between two steps
 - (E-step): For all the instances of missing data, we will "fantasize" how the data should look based on the current parameter setting.
 - This means we compute <u>expected sufficient statistics</u>.
 - 2. (M-step): Then maximize parameter setting, based on these statistics.

Outline of EM

• Initialization:

- Start with some initial parameter setting (e.g. P(T), P(F), P(A|F,T), etc.).
- These can be estimated from all complete data instances.

• Repeat:

- 1. <u>Expectation (E-step)</u>: Complete the data by assigning "values" to the missing items based on current parameter setting.
- 2. <u>Maximization (M-step)</u>: Compute the maximum likelihood parameter setting based on the completed data. This is what we did earlier this lecture.

Convergence:

 Nothing changes in E-step or M-step between 2 consecutive rounds.

EM in our example

• To start, guess the parameters of the network θ (using the known data):

E.g.
$$\theta_{X} = N_{x=1}(2:m) / (m-1)$$

 $\theta_{Y|x=0} = N_{Y=1,X=0}(2:m) / N_{X=0}(2:m)$
 $\theta_{Y|x=1} = N_{Y=1,X=1}(2:m) / N_{X=1}(2:m)$

<u>E-step</u>:

Using initial θ , compute: $P(x_1=0 \mid y_1), P(x_1=1 \mid y_1)$

(Note that this step requires exact inference - so not cheap!)

Complete dataset with most likely value of x_1 .

Call new dataset D*.

M-step:

Compute new parameter vector θ , which maximizes the likelihood given the completed data: $L(\theta \mid D^*) = P(D^* \mid \theta)$

E.g.
$$\theta_{X} = N_{x=1}/m$$

$$\theta_{Y|x=0} = N_{Y=1,X=0} / N_{X=0}$$

$$\theta_{Y|x=1} = N_{Y=1,X=1} / N_{X=1}$$

Repeat E-step and M-step until the parameter vector converges.

Two version of the algorithm

• Hard EM: for each missing data point, assign the value that is most likely.

(This is the version we just saw.)

 Soft EM: for each missing data point, put a weight on each value, equal to its probability, and use the weights as counts.

(This is the most common version.)

Then these numbers are used as real counts, to provide a maximum likelihood estimate for θ .

Soft EM in our example

• To start, guess the parameters of the network θ (using the known data):

E.g.
$$\theta_{X} = N_{x=1}(2:m) / (m-1)$$

 $\theta_{Y|x=0} = N_{Y=1,X=0}(2:m) / N_{X=0}(2:m)$
 $\theta_{Y|x=1} = N_{Y=1,X=1}(2:m) / N_{X=1}(2:m)$

• **E-step**: Using initial θ , compute: $\mathbf{w_0} = \mathbf{P}(\mathbf{x_1} = \mathbf{0} \mid \mathbf{y_1}) \quad \mathbf{w_1} = \mathbf{P}(\mathbf{x_1} = \mathbf{1} \mid \mathbf{y_1})$

Now hypothesize two datasets:
$$D_0 = \langle w_0, y_1 \rangle, \langle x_2, y_2 \rangle, ..., \langle x_m, y_m \rangle$$

$$D_1 = \langle w_1, y_1 \rangle, \langle x_2, y_2 \rangle, ..., \langle x_m, y_m \rangle$$

• M-step: Compute new parameter vector θ , which maximizes the expected likelihood given the completed data: $L(\theta | D^*) = w_0 P(D_0 | \theta) + w_1 P(D_1 | \theta)$

E.g.
$$\theta_{X} = (N_{X=1}(2:m) + w_{1}) / m$$

 $\theta_{Y|X=0} = (N_{Y=1,X=0}(2:m) + w_{0}) / (N_{X=0}(2:m) + w_{0})$
 $\theta_{Y|X=1} = (N_{Y=1,X=1}(2:m) + w_{1}) / (N_{X=1}(2:m) + w_{1})$

Repeat E and M steps!

Comparison of hard EM and soft EM

- Soft EM does not commit to specific value for the missing item.
 - Instead, it considers all possible values, with some probability.
 - This is a pleasing property, given the uncertainty in the value.
- Complexity:
 - Hard EM requires computing most probable values.
 - Soft EM requires computing conditional probabilities for completing the missing values.
 - Same complexity: both require full probabilistic inference which can be expensive!

Properties of EM

- Likelihood function is guaranteed to improve (or stay the same) with each iteration.
 - Algorithm can be stopped when no more improvement is achieved between iterations.
- EM is guaranteed to converge to a local optimum of the likelihood function.
 - Starting with different values of initial parameters is necessary (random re-starts, to avoid local optimum).
- EM is a widely used algorithm in practice!

A harder example

Suppose we have the simple Bayes net $A \to B \to C$, where each node is associated with a Bernoulli random variable. Further suppose we have the following sample data:

- (i) A=1,B=?,C=1
- (ii) A=0,B=1,C=0
- (iii) A=1,B=0,C=0
- (iv) A=1,B=1,C=0
- (v) A=1,B=1,C=0
- (vi) A=0,B=0,C=?

A harder example

Suppose we have the simple Bayes net $A \to B \to C$, where each node is associated with a Bernoulli random variable. Further suppose we have the following sample data:

- (i) A=1,B=?,C=1
- (ii) A=0,B=1,C=0
- (iii) A=1,B=0,C=0
- (iv) A=1,B=1,C=0
- (v) A=1,B=1,C=0
- (vi) A=0,B=0,C=?

$$\begin{aligned} w_{B_1=1} &= P(B_1 = 1|A_1, C_1) \\ &= P(B = 1|A = 1, C = 1) \\ &= \frac{P(A = 1, B = 1, C = 1)}{P(A = 1, C = 1)} \\ &= \frac{P(A = 1, B = 1, C = 1)}{\sum_{b \in 0, 1} P(A = 1, C = 1, B = b)} \\ &= \frac{\theta_A \theta_{B|A=1} \theta_{C|B=1}}{\theta_A \theta_{B|A=1} \theta_{C|B=1}} \\ &= \frac{(0.5)(0.5)(0.5)}{(0.5)(0.5)(0.5)} \\ &= \frac{(0.5)(0.5)(0.5)}{(0.5)(0.5)(0.5)} \\ &= 0.5 \end{aligned}$$

$$w_{B_1=0} = P(B_1 = 0|A_1, C_1) \\ &= P(B = 0|A = 1, C = 1) \\ &= (1 - P(B = 1|A = 1, C = 1)) \\ &= (1 - w_{B_1=1}) \\ &= 0.5 \end{aligned}$$

$$w_{C_6=1} = P(C_6 = 1|A_6, B_6) \\ &= P(C_6 = 1|B_6) \quad \text{by conditional independence} \\ &= P(C = 1|B = 0) \\ &= 0.5 \end{aligned}$$

$$w_{C_6=0} = (1 - w_{C_6=1}) \quad \text{same reasoning as } w_{B_1=0} = (1 - w_{B_1=1}) \\ &= 0.5 \end{aligned}$$

$$\begin{array}{l} \theta_A^{ML} = \frac{N_{A=1}(1:6)}{6} = \frac{4}{6} \approx 0.667 & \text{M-step} \\ \theta_B^{ML} = \frac{N_{B=1|A=1})(2:6) + w_{B_1=1}}{4} = \frac{2 + 0.5}{4} = 0.625 \\ \theta_{B|A=0}^{ML} = \frac{N_{B=1|A=1})(2:6)}{4} = \frac{1}{2} = 0.5 \\ \theta_{C|B=1}^{ML} = \frac{N_{C=1|B=1}(2:4) + w_{B_1=1}}{3 + w_{B_1=1}} = \frac{0.5}{3.5} \approx 0.143 \\ \theta_{C|B=0}^{ML} = \frac{N_{C=1|B=0}(2:4) + w_{B_1=0} + w_{C_6=1}}{2 + w_{B_1=0}} = \frac{0.5 + 0.5}{2.5} = 0.4 \end{array}$$

And repeat...