CSC373 Worksheet 5 Solution

August 9, 2020

1. Proof. Assume that a flow network G = (V, E) violates the assumption that the network contains a path $s \leadsto v \leadsto t$ for all vertices $v \in V$. Let u be a vertex for which there is no path $s \leadsto u \leadsto t$.

I must show such that there is no flow at vertex u. That is, there exists a maximum flow f in G such that f(u,v) = f(v,u) = 0 for all vertices $v \in V$.

Assume for the sake of contradiction that there is some vertex u with flow f. That is, there exists some vertices $v \in V$ such that f(u,v) > 0 or f(v,u) > 0.

I see that three cases follows, and I will prove each separately.

1. Cases 1: f(u, v) = 0 and f(v, u) > 0

Here, assume that f(u, v) = 0 for all $v \in V$ and f(v, u) > 0 for some $v \in V$.

Then, we can write $\sum_{v \in V} f(u, v) = 0$ and $\sum_{v \in V} f(v, u) > 0$

But this violates the flow conservation property (i.e $\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$)

Thus, by proof by contradiction, f(u,v)=0 and f(v,u)=0 for all $v\in V$ and all $u\in V$ with no path $s\leadsto u\leadsto t$.

2. Cases 2: f(u, v) > 0 and f(v, u) = 0

Here, assume that f(u, v) > 0 for some $v \in V$ and f(v, u) = 0 for all $v \in V$.

1

Then, by similar work as case 1, the same result follows.

3. Cases 3: f(u,v) > 0 and f(v,u) > 0

Here, assume that f(u, v) > 0 and f(v, u) > 0 for some $v \in V$.

Since $s \leadsto v \leadsto t$ and u is connected by some vertices v, we can write $s \leadsto u \leadsto t$.

Then, this violates the fact in header that the vertex u has no path $s \rightsquigarrow u \rightsquigarrow t$.

Thus, by proof by contradiction, f(u,v)=0 and f(v,u)=0 for all $v\in V$ and all $u\in V$ with no path $s\leadsto u\leadsto t$.

Notes

• Maximum Flow:

- Finds a flow of maximum value [1]

Example

Here, the maximum flow is 10 + 5 + 13 = 28

• Flow Network:

- -G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$.
- Two vertices must exist: **source** s and **sink** t
- path from source s to vertax v to sink t is represented by $s \leadsto v \leadsto t$

• Capacity:

- Is a non-negative function $f: V \times V \to \mathbb{R}_{\geq 0}$
- Has capacity constraint where for all $u, v \in V$ $0 \le f(u, v) \le c(u, v)$
 - * Means flow cannot be above capacity constraint

• Flow:

- Is a real valued function $f: V \times V \to \mathbb{R}$ in G
- Satisfies capacity constraint (i.e for all $u, v \in V$, $0 \le f(u, v) \le c(u, v)$)
- Satisfies flow conservation

For all $u \in V - \{s, t\}$, we require

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \tag{1}$$

Means flow into vertex u is the same as flow going out of vertex u. [1]

Example:

References

- 1) Princeton University, Network Flow 1, link
- 2. I need to formulate the problem of determining whether both of professor Adam's two children can go to the same school as maximum-flow problem.

The problem statement tells us the following:

- 1. There is 1 supersource (location of home)
- 2. There is 1 sink (location of school)
- 3. There are two sources $(s_1 \text{ as child } 1, s_2 \text{ as child } 2)$
- 4. Edge (u, v) has capacity of 0 or more (0 representing unavailable sidewalk, 1 for sidewalk with capacity of 1, 2 for street with capacity of 2 and so on)
- 5. Each vertex represents corner of intersection, and two children can have their paths crossing here.
- 6. Has flow of 2, 1 or 0 (1 is where one of the two children walking on the road. 0 is none.)

Here we are to find whether children must go on to a vertex and out to the same edge with the flow of 2, or determine whether there is only edge to school with capacity of 1 or less.

If none, then both children can safely go to school.

Notes:

• Cross at a Corner

- Means to walk across the street at a corner of the intersection.

• Multiple Sources and Sinks

– Has edges (s, s_i) where i = 1...n and (t_j, t) where j = 1...n with capacity of ∞

Example:

Lucky Puck Company having a set of m factories $\{s_1, s_2, ..., s_m\}$, and a set of n warehourses and n warehouses $\{t_1, t_2, ..., t_n\}$

These two are the same

3. I need to show how to transform a flow network G = (V, E) with vertex capacities into an equivalent flow network G' = (V', E') without vertex capacities.

For each vertex capacities, change as follows.

After transformation, there will be m more edges and verticies, where m represents the number of vertex capacities in G.

Notes:

• Vertex Capacities

- Each vertex v has limit l(v) on how much flow can pass through v

4. <u>Notes:</u>

• Ford-Fulkerson Method

- Is a greedy algorithm that solves the maximum-flow problem
 - * Detects maximum flow from start vertex to sink vertex in a graph
- Called method (not algorithm) because several different implementations with different running time is used

FORD-FULKERSON-METHOD (G, s, t)

- 1 initialize flow f to 0
- 2 while there exists an augmenting path p in the residual network G_f
- 3 augment flow f along p
- 4 return f

• Residual Graph

- Indicates how muh more flow is allowed in each edge in the network graph [1]

Steps

1) Flow = Capacity: Opposite arrow

- 2) Flow < Capacity:
 - Flow: Oppisite Arrow
 - Capacity Flow: Current Arrow

References

1) Hacker Earth, Maximum Flow, link