PC 1 – Sets, Measures and Random Variables

Set theory

Exercise 1

For $n \geq 1$, let

$$A_n = \left[-\frac{1}{n}; 2 + \frac{1}{n} \right], \quad B_n = \left[-\frac{5}{n}; n^2 \right].$$

1. Compute $\bigcup_{n\geq 1} A_n, \bigcap_{n\geq 1} A_n$ and $\limsup_n A_n$, where $\limsup_n A_n$ is defined as

 $\limsup A_n = \bigcap_{n \geq 1} \bigcup_{k \geq n} A_k = \left\{ x \text{ such that " } x \in A_n \text{ for infinitely many } n \text{ " } \right\}.$

- 2. Compute $\bigcup_{n>1} B_n$, $\bigcap_{n>1} B_n$ and $\limsup_n B_n$.
- 3. Evaluate the following set

$$\left\{ x \text{ such that } \sum_{n \ge 1} \mathbf{1}_{A_n}(x) = +\infty \right\}.$$

 $\textbf{Solution 1} \qquad \textit{1. Rappel de la définition}: \limsup_{n \to \infty} A_n = \cap_{k \geq 1} \cup_{n \geq k} A_n. \ \textit{Il s'agit de l'événement où}:$

$$\omega \in \limsup_{n \to \infty} A_n \iff il \ existe \ une \ infinit\'e \ de \ n \ tels \ que \ \omega \in A_n.$$

La suite $(A_n)_{n\geq 1}$ étant monotone décroissante $(A_n\supset A_{n+1} \text{ pour tout } n\geq 1)$, on a pour tout $k\geq 1$, $\cup_{n\geq k}A_n=[-1/k,3+1/k]$. D'une part, on voit que $[0,3]\subset A_k\subset \cup_{n\geq k}A_n$ pour tout k. D'autre part, pour tout s<0 et pour tout t>3 il existe k tel que s<-1/k et t>3+1/k. Donc, $\limsup_{n\to\infty}A_n=[0,3]$.

Independence

Exercise 2 (Independent events)

Let $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$ equipped with the uniform probability distribution \mathbb{P} . Define the events $A = \{\omega_1, \omega_2\}$, $B = \{\omega_1, \omega_3\}$ and $C = \{\omega_2, \omega_3\}$. Show that A, B and C are pairwise independent. Compare $\mathbb{P}(A \cap B \cap C)$ and $\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$.

Solution 2 On a $\mathbb{P}(\{w_i\}) = 1/|\Omega| = 1/4$ pour $i = 1, \ldots, 4$. D'une part, $\mathbb{P}(A) = \mathbb{P}(\{\omega_1\}) + \mathbb{P}(\{\omega_2\}) = 1/2$. De même, $\mathbb{P}(B) = \mathbb{P}(C) = 1/2$. D'autre part, $A \cap B = \{\omega_1\}$ et donc $\mathbb{P}(A \cap B) = 1/4$. Donc, on a montré que $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, d'où l'indépendance de A et B. De même, on montre que A et C sont indépendants et B et C sont indépendants.

Comme $A \cap B \cap C = \emptyset$, on a $\mathbb{P}(A \cap B \cap C) = 0$. En revanche, $\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) = 1/8$. Cela implique que A, B et C ne sont pas mutuellement indépendants.

Exercise 3

Let A_1, \dots, A_n be n events from a probability space (Ω, \mathbb{P}) . Suppose that they are mutually independent. Find an explicit expression for $\mathbb{P}(A_1 \cup \dots \cup A_n)$ depending on the $\mathbb{P}(A_i)$.

Exercise 4

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space. Let $(A_n)_{n\geq 0}$ a series of independent events. We note $A=\limsup_n A_n$. Let assume that $\sum_n \mathbb{P}(A_n)=+\infty$ and we want to prove that $\mathbb{P}(A)=1$.

- 1. Preliminary. Justify that for all x > -1, $\ln(1+x) \le x$.
- 2. Let $n \leq N$. We note $E_{n,N} = \bigcap_{k=n}^{N} \overline{A_k}$ and $E_n = \bigcap_{k>n} \overline{A_k}$.
 - (a) Prove that (n fixed), $\lim_{N\to+\infty} \ln (\mathbb{P}(E_{n,N})) = -\infty$.
 - (b) Deduce that $\mathbb{P}(E_n) = 0$.
 - (c) Deduce that $\mathbb{P}(A) = 1$.

Random variables

Exercise 5

Find two random variables X and Y on a probability space (Ω, \mathbb{P}) (to be specified) having the same distribution, but that are not equal.

Exercise 6

In an oil region, the probability that one drilling leads to an oil slick is 0.1.

- 1. Justify that one drilling can be modeled using a Bernoulli distribution.
- 2. We made 10 oil drillings. Let X be the number of drillings that led to an oil slick.
- (a) Under which assumptions X can be modeled using a binomial distribution? Precise the parameters.
- (b) Assume that X follows a binomial distribution. Compute
- (i) the probability that exactly two drillings lead to oil slicks.
- (ii) the probability that at least one drilling leads to an oil slick.

Exercise 7

Let $\lambda > 0$ be fixed. Let $X_n, n \ge 1$ be random variables with binomial distribution with parameters n and λ/n , and Y be a random variable with Poisson distribution with parameter λ . Show that, for any $k \in \mathbb{N}$,

$$\lim_{n \to +\infty} \mathbb{P}(X_n = k) = \mathbb{P}(Y = k).$$

Hint: Use Striling's approximation: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

We will later see that this result means that X_n converges in distribution to Y, or, to put it differently, that the binomial distribution with parameters n and λ/n converges to the Poisson distribution with parameter λ .

Expectation

Exercise 8

Compute the mean, variance and cumulated distribution function of

1. the binomial distribution Bin(n, p) with $n \ge 1$ and p > 0.

- 2. the Poisson distribution $Poi(\lambda)$ with $\lambda > 0$.
- 3. the uniform distribution U[a, b] with a < b.
- 4. the exponential distribution $\text{Exp}(\lambda)$ with $\lambda > 0$.
- 5. the normal distribution $\mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma > 0$.

Exercise 9

- 1. Show that if X exponential distribution $\text{Exp}(\lambda)$ with $\lambda > 0$, then $\mathbb{E}[X^n] = \frac{n!}{\lambda^n}$;
- 2. Show that if X follows $\mathcal{N}(0,1)$ then $\mathbb{E}\left[X^{2n}\right] = \prod_{k=1}^{n} (2k-1) = \frac{(2n)!}{2^n n!}$.

Solution 3 1. Par intégration par parties :

$$\mathbb{E}\left(X^{n}\right)=\int_{0}^{+\infty}x^{n}\lambda e^{-\lambda x}dx=\int_{0}^{+\infty}x^{n-1}e^{-\lambda x}dx=\frac{n}{\lambda}\mathbb{E}\left(X^{n-1}\right).$$

On en déduit le résultat par récurence immédiate.

2. Par intégration par parties :

$$\mathbb{E}\left(X^{2n}\right) = \int_{\mathbb{R}} x^{2n} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx = \int_{\mathbb{R}} \frac{x^{2n+2}}{2n+1} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx = \frac{1}{2n+1} \mathbb{E}\left(X^{2(n+1)}\right).$$

On en déduit le résultat par récurence immédiate.

Exercise 10

- * Let $X:\Omega\to[0;+\infty]$ (note that $+\infty$ is allowed) be a random variable such that $\mathbb{E}[X]<\infty$.
- 1. Prove that X is finite almost surely (proceed by contradiction).
- 2. Assume that $\mathbb{E}[X] = 0$. Prove that X = 0 almost surely. Hint: use that $X \geq X \mathbf{1}_{X \geq 1/n}$.

Variance Inequalities

Exercise 11

Let X be a random variable such that $\mathbb{E}\left[X^2\right]<+\infty$. Prove that :

- 1. $0 \leq \operatorname{Var}(X) < \infty$
- 2. $\operatorname{Var}(X) = \mathbb{E}\left[X^2\right] (\mathbb{E}[X])^2$
- 3. $Var(X) = 0 \iff \mathbb{P}(X = c) = 1$ for some constant c.
- 4. For any constants $a, b, Var(aX + b) = Var(aX) = a^2 Var(X)$.

Exercise 12

Let X be non-negative $(X \ge 0 \text{ a.s.})$ and a > 0 be a constant.

1. Justify that

$$\forall \omega \in \Omega, \quad a\mathbf{1}_{\{Z(\omega)\geqslant a\}}\leqslant Z(\omega)\mathbf{1}_{\{Z(\omega)\geqslant a\}}\leqslant Z(\omega)$$

2. Prove the Markov's inequality

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

Exercise 13

Assume that $\mathbb{E}\left[X^2\right]<+\infty$. Applying Markov's inequality to $(X-\mathbb{E}[X])^2$ prove that, for any constant a>0,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}$$