EE445M/EE360L.6 Embedded and Real-Time Systems/ Real-Time Operating Systems

Lecture 1: Introduction, TM4C123 Microcontroller, ARM Cortex-M

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6 1

Class Setup

- Class web page
 - http://www.ece.utexas.edu/~gerstl/ee445m s15
- Canvas
 - Announcements, lab report upload, grades
- Communication
 - Piazza for general class discussion
 - Mailing list: <u>s15_ee445m@utlists.utexas.edu</u> (all Professor & TAs)
- Office hours
 - Prof (POB 6.118): T 3-4:30pm, W 2-3:30pm, after class
 - TAs (lab): See online posted Weekly Schedule

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6

3

Embedded Systems

- Reactive, not transformative systems
 - Parallel (interaction with physical world)
 - Real-time (guarantees on reaction time)

Parallel Processing (2)

- Multi-processing
 - Multiple processors, shared memory
 - · Simultaneous execution of two or more software tasks
 - · E.g. multicore CPU, GPU

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6 5

Parallel Processing (2)

- · Multi-threading
 - Single processor/core (in a distributed/multi-processor system)
 - One foreground and multiple background threads (interrupt-driven)
 - Multiple foreground threads using a thread scheduler (operating system, OS)

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6

Course Overview

- Labs (40%)
 - Lab 1: UART, display, ADC (EE445L review)
 - Lab 2: RTOS kernel
 - Lab 3: Scheduling
 - Lab 4: Sensor data acquisition
 - Lab 5: File & disk I/O
 - Lab 6: Networking, robot interfaces
 - Lab 7: Robot racing (last week of classes)
- Exams (60%)
 - Midterm (Thu, 3/12, 5-6:30pm, in class)
 - Final (Thu, 5/14, 7-10pm, reg. scheduled)
- Graduate project (20%)
 - Independent RTOS project (proposal by end of February)

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6 7

Teams of 2

Teams of 3-5

Announcements

- Labs
 - No activities this week
 - TA demos & partner selection next week
 - Lab 1 in week 3
- Equipment to get (needed for Lab 1)
 - TM4C123 LaunchPad board
 - ST7735 LCD display
 - Breadboard, wire stripper, multimeter
- Parts (for later Labs)
 - Get free samples of op amps & shunt ref.
 - Other parts will be handed or checked out
- Setup laptop to be able to work independently
 - Install ARM environment: Keil µVision 4.74 (not 5.x!!)
 - PCB artist (schematics), Putty (terminal)

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6

Lab Access

- Lab space: ECJ 1.318A (basement)
 - Used for checkouts/demos, TA office hours
 - PCs, soldering stations, scopes, logic analyzers, ...
 - Shared with EE445L (will be crowded)
- Additional lab: UTA 0.204 (basement)
 - Free to use 24/7 (UT ID card access)
 - Soldering, scopes, voltmeters (no PCs)
- MakerSpace: ETC 1.222
 - Free for any student
 - Laser cutters, PCB mill, 3D printers, ...

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6

9

Texas Instruments TM4C123 USB ICDI Power selection Reset Breadboard connection: USB device/host 1. Use solid wires RGB user LED · 22 or 24 gauge wire -J4/J2 Attach to bottom LM4F120H5OR 2. Female-male connectors (favorite, attach to top) TM4C123GH6PM m/products/826 DigiKey H1505-ND (Hirose DF11-2428SCA) Reference material http://www.ece.utexas.edu/~gerstl/ee445n http://www.ece.utexas.edu/~valvano/arm/ (starter files, example projects) TI manuals http://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf (TM4C123 data sheet) http://www.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/CortexM InstructionSet.pdf (Cortex-M3 instruction set) **ARM** manuals o/EE345L/Labs/Fall2011/CortexM4_TRM_r0p1.pdf (Cortex-M3 technical reference) Lecture 1 J. Valvano, A. Gerstlauer 10 EE445M/EE380L.6

ARM Thumb Instruction Set

```
Arithmetic/Logic
     AND R1, R2, R3
                                  ; register
     EOR/ORR R1,R2,#-1
                                  ; immediate, 12-bit
     LSR R1,R1,#4
                                 ; logic shift
     ADD{S} R1,R2,R3, LSL #2
                                 ; R1=R2+R3*4 {signed}
     SUB{S} R1,R3, ASR #2
                                 ; R1=R1+R3/4 {signed}
     CMP R2,R3
                                  ; compare
  Data movement
     MOV R0,#100
                                  ; immediate
     ADR R0,Label
                                 ; load address
     LDR R0,=Label
                                  ; uses PC-relative
     STR{H} R1,[R0]
                                  ; indexed {16-bit halfword}
     LDR{{S}H} R1,[R0,#n]
                                 ; offset indexed {{signed} halfword}
  Control
                                 ; unconditional
     B Target
     BEQ/BNE Target
                                 ; (in)quality
     BLO/BLS/BHI/BHS Target
                                 ; unsigned <,<=,>,>=
     BLT/BLE/BGT/BGE Target
                                 ; signed <,<=,>,>=
Lecture 1
                            J. Valvano, A. Gerstlauer
                                                                         13
                              EE445M/EE380L.6
```

Function calls delay **SUB** R0,R0,#0x01 void delay (int cnt){ **BNE** delay while (cnt--); ВХ LR main void main(void) { MOV R0,#0x0A delay(10); BL delay AAPCS: Parameters in R0-R3, return in R0 Follow the link register LR Lecture 1 J. Valvano, A. Gerstlauer 14 EE445M/EE380L.6

General-Purpose I/O (GPIO)

Address	7	6	5	4	3	2	1	0	Name
400F.E608	-	-	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	SYSCTL_RCGCGPIO_R
xxxx.x3FC	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	GPIO_PORTx_DATA_R
xxxx.x400	DIR	DIR	DIR	DIR	DIR	DIR	DIR	DIR	GPIO_PORTx_DIR_R
xxxx.x420	SEL	SEL	SEL	SEL	SEL	SEL	SEL	SEL	GPIO_PORTx_AFSEL_R
xxxx.x510	PUE	PUE	PUE	PUE	PUE	PUE	PUE	PUE	GPIO_PORTx_PUR_R
xxxx.x51C	DEN	DEN	DEN	DEN	DEN	DEN	DEN	DEN	GPIO_PORTx_DEN_R

- Initialization
 - Turn on clock in SYSCTL_RCGCGPIO_R
 - 2. Wait two bus cycles (two NOP instructions)
 - 3. Set DIR to 1 for output or 0 for input
 - 4. Clear AFSEL & AMSEL bits to 0 to select regular I/O
 - 5. Set DEN bits to 1 to enable data pins
- Input/output from pin
 - 6. Read/write GPIO_PORTx_DATA_R

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6 17

Bit-Specific Port I/O

- Bit-specific addressing is used to access port data register
 - Define address offset as 4*2^b, where b is the selected bit position
 - 256 possible bit combinations (0-8)
 - Add offsets for each bit selected to base address for the port
 - Other bits masked during access
 - DATA_R @ base+\$3FC equals all bits

If we wish to access bit	Constant
7	0x0200
6	0x0100
5	0x0080
4	0x0040
3	0x0020
2	0x0010
1	0x0008
0	0x0004

Example: PF4 and PF0

Port F = 0x4005.D000

0x4005.D000+0x0004+0x0040

= 0x4005.D044

Provides friendly and atomic access to port pins

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6

		Inte	rr	upt Ved	ctors		
	Vector address	Number	IRO	ISR name in Startup.s	NVIC	Priority bits	
	0x00000038	Number 14	-2	PendSV Handler	NVIC NVIC SYS PRI3 R	23 - 21	
		15	-1	SysTick Handler	NVIC_SIS_FRI3_R NVIC SYS_PRI3_R		
	0x0000003C	15	-1 0			31 – 29 7 – 5	
	0x00000040 0x00000044	16	1	GPIOPortA_Handler GPIOPortB Handler	NVIC_PRIO_R NVIC PRIO R	7 – 5 15 – 13	
	0x00000044 0x000000048	18	2	GPIOPORCE_Handler	NVIC_PRIO_R NVIC PRIO R	23 – 21	
	0x0000004C	19	3	GPIOPortD Handler	NVIC PRIO R	31 – 29	
	0x00000050	20	4	GPIOPortE_Handler	NVIC_PRI1_R	7 – 5	
	0x00000054	21	5	UARTO_Handler	NVIC_PRI1_R	15 – 13	
	0x00000058	22 23	6 7	UART1_Handler SSI0 Handler	NVIC_PRI1_R	23 – 21 31 – 29	
	0x0000005C 0x00000060	23	8	I2CO Handler	NVIC_PRI1_R NVIC PRI2 R	31 – 29 7 – 5	
	0x00000000	24 25	9	PWMFault Handler	NVIC_FRI2_R NVIC PRI2 R	15 – 13	
	0x000000000	26	10	PWM0 Handler	NVIC PRI2 R	23 – 21	
	0x0000006C	27	11	PWM1_Handler	NVIC_PRI2_R	31 – 29	
	0x00000070	28	12	PWM2_Handler	NVIC_PRI3_R	7 – 5	
	0x00000074	29	13	Quadrature0_Handler	NVIC_PRI3_R	15 – 13	
	0x00000078	30	14	ADC0_Handler	NVIC_PRI3_R	23 – 21	
လ	0x0000007C	31	15	ADC1_Handler ADC2 Handler	NVIC_PRI3_R NVIC PRI4 R	31 – 29 7 – 5	
	0x00000080 0x00000084	32 33	16 17	ADC2_Handler ADC3 Handler	NVIC_PRI4_R NVIC PRI4 R	7 – 5 15 – 13	
<u> </u>	0x00000004 0x000000088	34	18	WDT Handler	NVIC_FRI4_R NVIC PRI4 R	23 – 21	
_ =	0x00000008C	35	19	TimerOA Handler	NVIC PRI4 R	31 – 29	
	0x00000090	36	20	Timer0B_Handler	NVIC_PRI5_R	7 – 5	
Startup	0x00000094	37	21	Timer1A_Handler	NVIC_PRI5_R	15 – 13	
**	0x00000098	38	22 23	Timer1B_Handler	NVIC_PRI5_R	23 – 21	
(C)	0x0000009C 0x000000A0	39 40	23 24	Timer2A_Handler Timer2B Handler	NVIC_PRI5_R NVIC_PRI6_R	31 – 29 7 – 5	
	0x000000A0	40	25	Comp0 Handler	NVIC_PRIG_R NVIC PRIG R	15 – 13	
	0x000000A4	42	26	Compl Handler	NVIC PRI6 R	23 – 21	
	0x000000AC	43	27	Comp2 Handler	NVIC PRI6 R	31 – 29	
	0x000000B0	44	28	SysCtl_Handler	NVIC_PRI7_R	7 – 5	
	0x000000B4	45	29	FlashCtl_Handler	NVIC_PRI7_R	15 – 13	
	0x000000B8	46 47	30 31	GPIOPortF_Handler GPIOPortG Handler	NVIC_PRI7_R	23 – 21 31 – 29	
	0x000000BC 0x000000C0	47	31 32	GPIOPortG_Handler GPIOPortH Handler	NVIC_PRI7_R NVIC PRI8 R	31 – 29 7 – 5	
	0x000000C0	48 49	32	UART2 Handler	NVIC_PRIS_R NVIC PRIS R	15 – 13	
	0x000000C4	50	34	SSI1 Handler	NVIC PRI8 R	23 – 21	
	0x000000CC	51	35	Timer3A_Handler	NVIC_PRI8_R	31 – 29	
	0x000000D0	52	36	Timer3B_Handler	NVIC_PRI9_R	7 – 5	
	0x000000D4	53	37	I2C1_Handler	NVIC_PRI9_R	15 – 13	
	0x000000D8	54	38	Quadraturel_Handler	NVIC_PRI9_R	23 – 21	
	0x000000DC	55	39	CANO_Handler	NVIC_PRI9_R	31 – 29	
	0x000000E0 0x000000E4	56 57	40 41	CAN1_Handler CAN2 Handler	NVIC_PRI10_R NVIC PRI10 R	7 – 5 15 – 13	
	0x000000E4 0x000000E8	58	42	Ethernet Handler	NVIC_PRIIO_R NVIC PRIIO R	23 – 21	
	0x000000EC	59	43	Hibernate Handler	NVIC_PRIIO_R	31 – 29	
Lecture 1	0x000000EC	60	44	USB0 Handler	NVIC PRI11 R	7 – 5	21
Lecture	0x000000F4	61	45	PWM3_Handler	NVIC_PRI11_R	15 – 13	۱ ک
	0x000000F8	62	46	uDMA_Handler	NVIC_PRI11_R	23 – 21	
	0x000000FC	63	47	uDMA_Error	NVIC_PRI11_R	31 – 29	

Nested Vectored Interrupt Controller (NVIC)

• Priorities (global level in BASEPRI)

	. •			•		
Address	31 – 29	23 – 21	15 – 13	7 – 5	Name	
0xE000E400	GPIO Port D	GPIO Port C	GPIO Port B	GPIO Port A	NVIC_PRI0_R	
0xE000E404	SSI0, Rx Tx	UART1, Rx Tx	UARTO, Rx Tx	GPIO Port E	NVIC_PRI1_R	
0xE000E408	PWM Gen 1	PWM Gen 0 PWM Fau		I2C0	NVIC_PRI2_R	
0xE000E40C	ADC Seq 1	ADC Seq 0 Quad Encoder		PWM Gen 2	NVIC_PRI3_R	
0xE000E410	Timer 0A	Watchdog	ADC Seq 3	ADC Seq 2	NVIC_PRI4_R	
0xE000E414	Timer 2A	Timer 1B	Timer 1A	Timer 0B	NVIC_PRI5_R	
0xE000E418	Comp 2	Comp 1	Comp 0	Timer 2B	NVIC_PRI6_R	
0xE000E41C	GPIO Port G	GPIO Port F	Flash Control	System Control	NVIC_PRI7_R	
0xE000E420	Timer 3A	SSI1, Rx Tx	UART2, Rx Tx	GPIO Port H	NVIC_PRI8_R	
0xE000E424	CAN0	Quad Encoder 1	I2C1	Timer 3B	NVIC_PRI9_R	
0xE000E428	Hibernate	Ethernet	CAN2	CAN1	NVIC_PRI10_R	
0xE000E42C	uDMA Error	uDMA Soft Tfr	PWM Gen 3	USB0	NVIC_PRI11_R	
0xE000ED20	SysTick	PendSV		Debug	NVIC_SYS_PRI3_R	

- Interrupt enable
 - NVIC_ENO_R and NVIC_EN1_R

Lecture 1 J. Valvano, A. Gerstlauer EE445M/EE380L.6

SysTick Timer

Address	31-24	23-17	16	15-3	2	1	0	Name
\$E000E010	0	0	0 COUNT		CLK_SRC	INTEN	ENABLE	NVIC_ST_CTRL_R
\$E000E014	0	24-bit RELOAD value						NVIC_ST_RELOAD_R
\$E000E018	0	24-bit CURRENT value of SysTick counter						NVIC_ST_CURRENT_R

Timer/Counter

- 24-bit counter decrements at bus clock frequency
 - · With 80 MHz bus clock, decrements every 12.5 ns
- Counting is from n → 0
 - Setting *n* appropriately will make the counter a modulo *n*+1 counter:
 - next_value = (current_value-1) mod (n+1)Sequence: n,n-1,n-2,n-3... 2,1,0,n,n-1...

Initialization

- 1. Clear ENABLE to stop counter
- 2. Specify the RELOAD value
- 3. Clear the counter via NVIC_ST_CURRENT_R
- 4. Set CLK_SRC=1 and specify interrupt action via INTEN

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6

23

System Tick (Initialization)

```
void SysTick_Init(unsigned long period) { volatile unsigned long delay;
 SYSCTL_RCGC2_R |= SYSCTL_RCGC2_GPIOD; // activate port D
 Counts = 0; delay = SYSCTL_RCGC2_R; // init, allow time to finish
 GPIO PORTD DIR R |= 0x01; // make PD0 output
 GPIO PORTD DEN R |= 0x01; // enable digital I/O on PD0
 NVIC ST CTRL R = 0;
                               // disable SysTick during setup
 NVIC ST RELOAD R = period - 1; // reload value
 NVIC ST CURRENT R = 0;
                               // any write to current clears it
                                // Systick=priority 2
 NVIC_PRI3_R = (NVIC_PRI3_R\&0x00FFFFFF)|0x40000000;
 NVIC ST CTRL R = NVIC ST CTRL ENABLE+NVIC ST CTRL CLK SRC
                   +NVIC_ST_CTRL_INTEN;
 EnableInterrupts();
```

PeriodicSysTickInts 4C123

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6

System Tick

```
void SysTick_Handler(void) {
   GPIO_PD0 = GPIO_PD0^0x01;
   Counts = Counts + 1;
}

void main(void){
...
   SysTick_Init(50000);  // 1msec, assuming 50 MHz bus clock
...
}
```

#define GPIO PD0 (*((volatile unsigned long *) 0x40007004))

Reset debugger:

- stop in ISR and

- single step through ISR

- look at assembly code

PeriodicSysTickInts_4C123

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6 25

Other Peripherals (Lab 1)

- Serial I/O (UART)
 - UARTInts_4C123
- Analog-to-digital conversion (ADC)
 - ADCSWTrigger_4C123
 - ADCT0ATrigger_4C123 (using Timer0A)
- LCD display (ST7735) via GPIO
 - ST7735_4C123

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6

Terminal I/O

- UART0 connected to USB serial port
- How to do terminal input/output?
 - 1. Write your own, like UARTINts
 - 2. Use *sprintf*() to create strings then output string
 - 3. Retarget and link to standard library
 - Output using stdlib function printf()
 - fputc() & _ttywrch() mapped to Your_UART_OutChar()
 - Input using stdlib function getchar()
 - fgetc() mapped to Your_UART_InChar()

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6 27

Stdio Retargeting

```
int fputc(int ch, FILE *f){
    Serial_OutChar(ch);
    return (1);
}

int fgetc (FILE *f){
    return (Serial_InChar());
}

int ferror(FILE *f){
    /* Your implementation of ferror */
    return EOF;
}
```

Starter Code and Driver Lib

- How much code to reuse?
 - Starter files (Valvano) & driverlib (TI) will have fewer bugs than any you or I write
 - You will have to certify all code working in parallel environment (critical sections)
 - Most students will want to fit code into 32k
 - All students must understand everything

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6 29

Summary

- · Setup Laptop & Keil
- Learn ARM assembly language
- Get your board & display
- · Get familiar with TM4C123 microcontoller
- Get started on Lab 1!
 - If you can finish Lab 1 by yourself, you will be fine in this class...

Lecture 1

J. Valvano, A. Gerstlauer EE445M/EE380L.6