

Universidad de los Andes Facultad de Ciencias Departamento de Física Laboratorio de Física Aplicada

Búsqueda de agrupaciones en data proveniente de electrocardiogramas (ECG), mediante el Análisis de Componentes Principales (PCA) y el uso de Redes Neuronales.

Trabajo especial de grado.

Br. Abrahan David Quintero Teran

Tutor: Prof. Juan Villegas

Jurados: Prof. Marcos Rodríguez Prof. John Ferreira

Mérida – Venezuela 2024

Resumen

Este es el resumen de mi tesis.

Índice general

1	El problema	2
	1.1. Justificación	3
	1.2. Objetivos	3
2	Marco Teórico	5
	2.1. Antecedentes	5
	2.2. Conceptos básicos	14
	2.3. Conceptos específicos	26
3	Marco experimental	32
4	Resultados	33
Ι	Conclusiones	34
5	Conclusiones	35
Bi	ibliografía	36

Introducción

Capítulo 1

El problema

El electrocardiograma (ECG) es una técnica no invasiva que permite registrar y medir las señales eléctricas generadas por el corazón. Consiste en la captación de la variación temporal del potencial bioeléctrico durante cada ciclo cardíaco, utilizando electrodos colocados en la superficie cutánea del paciente que registran dicha actividad eléctrica y producen un gráfico que muestra el ritmo y la fuerza de los latidos del corazón, este produce un patrón muy específico, y cualquier anomalía puede indicar un problema cardíaco [1]. El análisis del ECG proporciona datos sobre el sistema cardiovascular, en particular, el corazón, lo que permite detectar diversas enfermedades que pueden afectar su funcionamiento óptimo. Estas enfermedades incluyen arritmias cardíacas, obstrucción de arterias, insuficiencia cardíaca y ataques al corazón [2].

Según la organización mundial de la salud [3], las enfermedades cardiovasculares (ECV) son las principal causa de muerte en hombres y mujeres en el mundo, con alrededor de 17,9 millones de personas que mueren al año a causa de estas. Entre los numerosos factores que llevan a esta consecuencia, se encuentran los errores provenientes de la interpretación manual de los electrocardiogramas (ECGs), por lo general, los médicos emplean características heurísticas diseñadas manualmente o utilizan arquitecturas de aprendizaje de características superficiales, esto puede generar como consecuencia, variabilidad entre los diagnósticos de los observadores e identificación de anomalías incorrectas que pueden llevar a ocasionar diagnósticos imprecisos y en consecuencia, tratamientos inadecuados. Además estos métodos manuales que utilizan arquitecturas de aprendizaje de características superficiales, descartan información relevante del ECG inmersa dentro de características que no son superficiales, lo que provee una baja exactitud en el diagnostico a partir de las señales por lo que siempre será necesario de la supervisión de un experto con el fin de corregir estos errores, además algunas enfermedades cardíacas, como la enfermedad de las arterias coronarias en etapa temprana, pueden no ser detectables en un ECG, también se debe resaltar, que el ECG se puede ver afectado por factores externos, como el movimiento del paciente, las interferencias electromagnéticas, la incorrecta colocación de los electrodos, estados ansiosos de los pacientes al momento de aplicarles el examen o el uso de medicamentos.

1.1. Justificación

La interpretación manual de los ECGs está sujeta a errores humanos por fatiga, sesgos o variabilidad interobservador, lo que puede generar diagnósticos incorrectos y por ende, tratamientos inadecuados. Además, el ECG contiene información oculta (como edad, sexo o incluso identidad del paciente) que el ojo humano no puede cuantificar o identificar sistemáticamente. Aunque existen herramientas digitales para análisis de ECG, la mayoría se limitan a detectar arritmias básicas y no aprovechan el potencial que tiene el ECG como biomarcador para extraer caracteristicas clínicas no evidentes e incluso llegar a identificar a cada paciente, es por esto que resulta importante desarrollar herramientas que puedan procesar los ECG para reducir o eliminar la presencia de ruidos e interferencias y así minimizar los errores manuales mediante algoritmos robustos y adaptables, descubriendo patrones clínicos con modelos profundos y hasta siendo capaz de identificar pacientes usando el ECG como firma biológica

1.2. Objetivos

Objetivo General

Analizar los datos provenientes de electrocardiogramas mediante la aplicación de análisis de componentes principales (PCA) y redes neuronales, con el objetivo de identificar agrupaciones en dicha data.

Objetivos específicos

- 1. Implementar técnicas avanzadas de filtrado y eliminación de artefactos para obtener señales de electrocardiogramas más limpias.
- 2. Desarrollar un marco metodológico solido que combine el análisis de componentes principales (PCA) y redes neuronales perceptrónicas para la identificación de grupos de datos.

3. Evaluar el rendimiento de los modelos propuestos utilizando los datasets de electrocardiogramas de las bases de datos de Physionet.

Capítulo 2

Marco Teórico

2.1. Antecedentes

La electrocardiografía sigue siendo uno de los bastiones en lo que se basa la cardiología moderna para el diagnostico de cardiopatías, el electrocardiograma (ECG) suele ser el primer examen que se le realiza a cada paciente cuando se examina a profundidad, ya que es capaz de arrojar información importante del funcionamiento del sistema circulatorio y podría rociar indicios de problemas que pudieran estar pasando en otros sistemas importantes del cuerpo humano. La ciencia siempre ha acompañado la innovación y creación de nuevas tecnologías y la física, como baluarte entre las ciencias naturales, se ha interesado en contribuir en el mejoramiento de estas tecnologías, aportando eficacia y rendimiento desde ángulos no antes vistos. Esto ha conducido a investigar referentes, que permiten ampliar el panorama científico que hay detrás de un ECG. Ahora se presentan una serie de investigaciones que continúan con esta linea de investigación, que consiste en aplicar métodos computaciones a la salud, creciente interés que ha incrementado desde finales del siglo pasado.

A Real-Time QRS Detection Algorithm [4]

Autores: Pan, Jiapu; Tompkins, Willis J.

Publicación: IEEE Transactions on Biomedical Engineering DOI: 10.1109/TBME.1985.325532

Resumen: Pan y Tompkins presentan el primer algoritmo para detectar en tiempo real el complejo QRS de las señales de ECG. Este algoritmo es capaz de reconocer con fiabilidad los complejos QRS basándose en análisis digitales de la pendiente, la amplitud y la anchura. Además, se plantan las bases de filtrado que se le debe hacer a una señal de ECG para reducir las falsas detecciones

causadas por los distintos tipos de interferencias presentes en las señales de ECG, aumentando así la sensibilidad de la detección.

Metodología:

- 1. Filtro pasa-banda: Como primer paso, se aplica un filtro pasa-banda, a la señal del ECG, para incrementar la relación señal-ruido, se sugiere un filtro con un ancho de banda de 5-15 Hz para maximizar el QRS y también reducir el ruido producido por el movimiento de los músculos y el desplazamiento de la linea base.
- 2. Filtro derivativo: Se aplica un filtro derivativo para proveer información acerca de la pendiente del QRS.
- 3. Cuadratura e integración: La señal filtrada se eleva al cuadrado para realzar los picos dominantes (QRS) y reducir la posibilidad de reconocer erróneamente una onda T como pico R. A continuación, se aplica un filtro de media móvil para proporcionar información sobre la duración del complejo QRS.

Hallazgos clave:

- La serie de filtros aplicados resaltan el contenido frecuencial de la rápida despolarización cardíaca y elimina el ruido de fondo.
- Identifica los QRS en tiempo real con un costo computacional bajo.
- Se reportó que el porcentaje de acierto del QRS fue de 99.3 %

A Wavelet-Based ECG Delineator: Evaluation on Standard Databases [5]

Autores: Martínez, J. P.; Almeida, R.; Olmos, S.; Rocha, A. P., Laguna, P.

Europea [8] y otras bases de datos, desarrolladas para propósitos de validación.

Publicación: IEEE Transactions on Biomedical Engineering DOI: 10.1109/TBME.2003.821031 Resumen: En este artículo, desarrollan y evalúan un robusto sistema de delineación de ECG de una sola derivación basado en las transformada de ondícula (WT, por sus siglas en inglés). Primeramente, detectan los complejos QRS para luego delimitar cada QRS, detectando e identificando los picos de las ondas individuales, así como también, los inicios y finales de cada complejo QRS. Finalmente, se realiza la determinación de los picos, inicios y finales de las ondas P y T. Posteriormente, se evalúa este algoritmo en varias bases de datos anotadas manualmente, como MIT-BIH Arritmia [6], QT [7], ST-T

Metodología:

- Usando la transformada de ondícula discreta (DWT, por sus siglas en inglés), pueden detectar las ondas presentes en un ECG que están compuestas por pendientes y máximos (o mínimos) locales a diferentes escalas, ocurriendo a diferentes instantes de tiempo dentro del ciclo cardíaco.
- Primero, se detecta el complejo QRS para luego detectar e identificar las ondas individuales presentes en este; y posteriormente, determinar los limites del complejo QRS.
- Por ultimo se detectan y delimitan las ondas T y P respectivamente.

Hallazgos clave:

- El algoritmo propuesto por Martínez et al. es capaz de identificar y ubicar en función del tiempo las ondas individuales de cada latido.
- Este método es lo suficiente robusto como para permitir la aplicación directa de este sobre señales de ECG sin previo filtrado.
- Obtuvieron un porcentaje de detección superior al 99,86 % para la base de datos MIT-BIH Arritmia [6] y del 99,88 % para la base de datos QT [7].

Feature extraction for heartbeat classification using independent component analysis and matching pursuits [9]

Autores: Herrero, G.G.; Gotchev, A.; Christov, I.; Egiazarian, K. Publicación: IEEE DOI: 10.1109/ICASSP.2005.1416111

Resumen: En esta investigación, se presenta un método basado en el algoritmo de búsqueda de coincidencias para la extracción de caracteristicas de tiempo-frecuencia que pueden ser usadas para la clasificación de varios tipos de latidos anormales. Luego de esto, investigan sobre la usabilidad del análisis de componentes independientes (ICA, por sus siglas en inglés) para extraer caracteristicas espaciales de grabaciones de electrocardiogramas de varias derivaciones. El rendimiento de estos diferentes conjuntos de caracteristicas es evaluado usando las grabaciones de la base de datos MIT-BIH Arritmia [6].

Metodología:

 Habiendo detectado los latidos anotados en la base de datos y usando las dos derivaciones presentes en dicha base de datos, el bloque de ICA estima para cada latido, una matriz de proyección que minimiza la dependencia estadística entre las dimensiones proyectadas.

- Las componentes de la matriz antes mencionadas, son usadas como caracteristicas para la etapa de clasificación.
- La extracción de caracteristicas de tiempo-frecuencia proyecta cada latido en conjuntos diferentes de paquetes de onda que se seleccionan para que coincidan con las estructuras caracteristicas de los distintos tipos de latidos que se intentan clasifican.
- Por ultimo, las características de tiempo-frecuencia e ICA se clasifican mediante redes neuronales.

Hallazgos clave:

- Introducen ICA como extractor de caracteristicas para el procesamientos de los ECGs.
- El rendimiento del sistema tuvo una precisión superior al 95 % en la clasificación de 5 tipos de latidos anormales.
- La potencia computacional requerida para el sistema propuesto es bastante alta durante el entrenamiento del extractor de características

Sistema de adquisición multicanal y análisis de la señal electrocardiográfica de alta resolución aplicado a pacientes chagásicos [10]

Autores: Dugarte, N.; Cuadros, J.; Medina, R.; Rojas, R.; Jugo, D. Nuñez, T.

Publicación: Conferencia: XI Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas

Resumen: En este trabajo, se reporta el desarrollo de un sistema integral para adquisición y posterior análisis de la señal electrocardiográfica de alta resolución (ECGAR) de pacientes chagásicos, en el cual utilizan maquinas de soporte vectorial de mínimos cuadrados (LSSVM, por sus siglas en inglés) para determinar el inicio del complejo QRS y el final de la onda T, para estimar los intervalos QT y QT corregido (QTc) y comparan su efectividad usando algoritmos de procesamiento implementados en la aplicación Cardiosoft [11].

Metodología:

■ Se les realizó un registro ECGAR a 20 pacientes chagásicos, excluyendo pacientes con otras patologías y 20 pacientes de control.

- Utilizan LSSVM para determinar el inicio del complejo QRS y el final de la onda T, entrenadas en base a atributos extraídos de la señal preprocesada y de señales obtenidas mediante descomposiciones con Wavelets.
- Se estiman tanto el intervalo QT y el QT corregido (QTc) con el uso de las técnicas antes mencionadas.

Hallazgos clave:

- Estudian la efectividad de este análisis en el reconocimiento de pacientes chagásicos al procesar, 20 pacientes chagásicos y 20 sujetos de control.
- Los resultados muestran diferencias estilísticamente significativas entre ambos grupos.
- Validan los algoritmos de procesamiento implementados utilizando como referencia una aplicación denominada Cardiosoft [11].

A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification [12].

Autores: Khorrami, H.; Moavenian M.

Publicación: Expert Systems with Applications DOI: 10.1016/j.eswa.2010.02.033

Resumen: En este estudio, se sugiere y comparan el uso de transformadas ondículas discretas (CWT, por sus siglas en inglés), transformadas ondículas discretas (DWT) y transformada discreta del coseno (DCT, por sus siglas en inglés), que ya están en uso, con el fin de mejorar la capacidad de dos clasificadores de patrones en clasificación de arritmias en señales de ECG. Se utilizan como clasificadores, redes neuronales perceptrónicas y máquinas de soporte vectorial. Las señales de ECG usadas son tomadas de la base de datos Arritmia del MIT-BIH que son usadas para clasificar cuatro diferentes tipos de arritmias.

Metodología:

- Las técnicas de extracción de caracteristicas CWT, DWT y DCT son aplicadas separadamente a la base de datos antes de su clasificación.
- Utilizan estas características extraídas para clasificar los tipos de arritmia de cada señal de ECG, usando redes neuronales perceptrónicas (NN, por sus siglas en inglés) y máquinas de soporte vectorial (SVM, por sus siglas en inglés).

 Comparan el rendimiento del entrenamiento, el rendimiento de las pruebas y el tiempo de entrenamiento de cada clasificador.

Hallazgos clave:

- Los resultados muestran que el mejor método de extracción de caracteristicas dependerá del valor sustancial que se considere para el tiempo de entrenamiento y rendimiento en el entrenamiento y las pruebas.
- El rendimiento de las pruebas, usando sólo la derivación II de la señal de ECG usada muestra superioridad sobre las SVM.
- El modelo que utiliza como extractor de caracteristicas las DWT y una NN como clasificador es el que tiene mejor rendimiento tanto en entrenamiento y pruebas, como en tiempo de entrenamiento.

Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network [13].

Autores: Ceylan, R.; Özbay, Y.

Publicación: Expert Systems with Applications. DOI: 10.1016/j.eswa.2006.05.014

Resumen: Este articulo presenta un estudio comparativo de la eficacia en la clasificación de señales ECG usando 4 tipos de estructuras que incluyen poderosas técnicas de reducción de dimensionalidad, como lo son PCA, WT y agrupamiento c-medios difuso (FCM, por sus siglas en inglés); también usan redes neuronales perceptrónicas (NN) para clasificar tipos de arritmias, usando MIT-BIH Arritmia [6], estas son entrenadas para clasificar 10 diferentes tipos de arritmias.

Metodología:

- Utilizando PCA y WT para reducción de caracteristicas en adición de FCM; y NN para clasificar los tipos de arritmia en las señales de ECG, comparan el desempeño de 4 tipos de estructuras propuestas, FCM-NN, PCA-NN, FCM-PCA-NN y WT-NN.
- Prueban cada uno de los modelos propuestos con las señales de ECG tomadas de MIT-BIH Arritmia[6].

Hallazgos clave:

 Proponen como nuevo método de clasificación, la estructura FCM-PCA-NN.

- Las pruebas realizadas sugieren que la estructura FCM-PCA-NN puede generalizar mejor que PCA-NN y mucho más rápido de las demás estructuras propuestas.
- Si bien, la estructura FCM-PCA-NN presenta el menor error (5,05 × 10⁻⁹ %) al clasificar los tipos de arritmias, es importante señalar que el modelo PCA-NN no se queda atrás en desempeño, teniendo un error de (4,98×10⁻⁹ %). Esta mínima diferencia sugiere que ambas arquitecturas, podrían considerarse alternativas viables.

Baseline wander removal of ECG signals using Hilbert vibration decomposition [14].

Autores: Sharma, H.; Sharma, K. K.

Publicación: Electronics Letters. DOI: 10.1016/j.eswa.2010.02.033

Resumen: En este estudio, se propone una técnica para remover el desplazamiento de la línea base (BW, por sus siglas en inglés) de las señales de ECG utilizando la descomposición vibracional de Hilbert (HVD, por sus siglas en inglés). Se plantea que la primera componente (la componente de más alta energía) usando HVD en la señal de ECG corresponde al BW de la señal. La técnica propuesta es comparada con otro método basado en descomposición modal empírica (EMD, por sus siglas en inglés) y matemática morfológica, en términos de criterios de correlación y relación señal-ruido.

Metodología:

- Para lograr remover el desplazamiento de la línea base, primero se descompone la señal ECG usando HVD en sus diversas componentes, siendo la primera de estas, la de más alta energía y por ende, la correspondiente al BW.
- Luego corrigen la señal de ECG, sustrayendo la primera componente de la HVD de la señal original.
- Para evaluar el desempeño de la técnica propuesta, se usan las señales electrocardiográficas de MIT-BIH Arritmia [6] y le introducen un BW artificial obtenido de un filtrado paso bajo de señales aleatoriamente generadas.

Hallazgos clave:

 La técnica propuesta en este articulo, tiene un mejor desempeño que la aproximación basada en EMD para remover el BW.

- También se observa que la HVD es computacionalmente eficiente.
- El método propuesto es capaz de desempeñarse mejor bajo condiciones de severa distorsión de la linea base sin afectar la morfología real del ECG.

Heart failure classification using deep learning to extract spatiotemporal features from ECG [15]

Autores: Zhang, C.; Yuan, Lu.; Tang, F.; Cai, H.; Qian, Y.; Wang, C. Publicación: BMC Medical Informatics and Decision Making. DOI: 10.1186/s12911-024-02415-4

Resumen: La insuficiencia cardíaca es un síndrome con complejas manifestaciones clínicas. Debido al creciente envejecimiento de la población, la insuficiencia cardíaca se ha convertido en uno de los mayores problemas alrededor del mundo. Este estudio, se usa la base de datos pública MIMIC-III para extraer las caracteristicas temporales y espaciales de las señales ECG de paciencias con insuficiencias cardíacas.

Metodología:

- Desarrollan un modelo de clasificación de insuficiencias cardíacas según el encasillado de la Asociación del Corazón de Nueva York (NYHA, por sus siglas en inglés), basado en un método de aprendizaje profundo.
- Introducen un mecanismo integrativo de atención basado en el modelo CNN-LSTM-SE, segmentando los ECG en segmentos de entre 2 y 20 segundos.

Hallazgos clave:

- Experimentos mostraron que los segmentos de 12 segundos podrían ser usados con el modelo de aprendizaje profundo propuesto para clasificación de latidos cardíacos.
- La precisión del modelo propuesto fue de 99,09 %.
- El desempeño del modelo propuesto excede el rendimiento de métodos similares y podría ser usado para prestar asistencia en diagnósticos clínicos.

Clasificación de arritmias cardíacas usando redes neuronales convolucionales en muestras de ECG [16]

Autores: Astudillo-Delgado, V. M.; Revelo-Luna, D. A.; Muñoz-Chaves, J. A.

Publicación: Revista EIA. DOI: 10.24050/reia.v21i41.1719

Resumen: Con el objetivo de mejorar la precisión en la identificación de arritmias cardíacas, esta investigación se enfocó en el desarrollo de modelos basados en redes neuronales convolucionales (CNN, por sus siglas en inglés). Se entrenaron 5 modelos de estas, con el mismo numero de muestras e hiperparámetros, para posteriormente evaluar su desempeño, consiguiendo que la arquitectura VGG16 es la más eficaz en la clasificación de arritmias.

Metodología:

- Utilizando datos provenientes de la MIT-BIH Arritmia [6] y datos adquiridos por el simulador de arritmias Bio-Tek BP Pump NIBP y se entrenaron cinco modelos con diferentes arquitecturas, entre estos; VGG16, ResNet-50, AlexNet y dos arquitecturas propuestas por los autores.
- Todos estos modelos fueron entrenaros con el mismo numero de muestras y configuración de hiperparámetros.
- Evalúan el desempeño de cada modelo, utilizando métricas comunes como exactitud, recall, F1-score y precisión (accuracy).

Hallazgos clave:

- Los resultados demostraron que la arquitectura VGG16 fue la más eficaz en la clasificación de arritmias cardíacas, alcanzando una exactitud del 98,8 % en el conjunto de datos arritmia [6].
- \blacksquare Al evaluar los datos de prueba del simulador Bio-Tek BP Pump NIBP, el modelo customize-2, propuesto por los autores, demostró el mejor rendimiento con una exactitud del 96.3 %
- Los modelos desarrollados en esta investigación podrían ser una herramienta útil para los médicos en la detección temprana y el tratamiento adecuado de estas afecciones cardiovasculares.

2.2. Conceptos básicos

El corazón

El corazón es un órgano musculoso del tamaño aproximado de un puño. Funcionalmente se puede dividir en corazón derecho e izquierdo. El corazón derecho consta de aurícula y ventrículos derechos, que se comunican entre sí a través de la válvula tricúspide. El corazón izquierdo está compuesto por la aurícula y el ventrículo izquierdos, que se comunican entre sí a través de la válvula mitral. Su movimiento se divide en dos períodos: sístole y diástole. Durante la sístole el corazón se contrae, expulsando su contenido de sangre. El ventrículo derecho expulsa sangre desoxigenada que proviene de los tejidos hacia los pulmones a través de la arteria pulmonar. El ventrículo izquierdo expulsa sangre oxigenada a todo el organismo (incluyendo las arterias que llevan sangre al propio corazón) a través de la arteria aorta.

Durante la diástole el corazón se relaja —aunque necesite más energía en este período que durante la sístole— y ambos ventrículos comienzan a llenarse de sangre. En el caso del izquierdo, la sangre procede de las venas pulmonares (sangre recién oxigenada en los pulmones) a través de la aurícula izquierda. En el caso del ventrículo derecho, se trata de sangre desoxigenada (procedente de todo el organismo y recogida por las venas cavas) que llega a través de la aurícula derecha. Con la expulsión de nuevo de la sangre almacenada en ambos ventrículos, tiene lugar un nuevo ciclo cardíaco. Cada periodo del ciclo cardíaco tiene su correlación en el electrocardiograma, lo cual es de gran utilidad a la hora de diagnosticas muchas enfermedades del corazón.[17]

Introducción al Electrocardiograma (ECG)

La humanidad siempre, en su continuo deseo de aprender y entender más, ha querido desentrañar los secretos del cuerpo humano entendiendo su funcionamiento interno. Al principio con técnicas invasivas acordes a la tecnología disponible a la época, pero evolucionando continuamente, creando así exámenes cada vez menos invasivos, con el fin de mejorar el diagnostico, siendo mas preciso y oportuno. Entre esos exámenes se destaca el electrocardiograma (ECG) el cual es una representación visual de la actividad eléctrica del corazón en función del tiempo, que se obtiene desde la superficie corporal, con un electrocardiógrafo, este es el instrumento principal de la electrofisiología cardíaca y tiene una función relevante en el cribado y diagnóstico de las enfermedades cardiovasculares, alteraciones metabólicas y demás utilidades.

El primer «electrograma» humano fue publicado en 1887 por el fisiólogo británico Augustus Desiré Waller, de la St. Mary's Medical School de Londres. Utilizó un electrómetro capilar de Lipmann con electrodos aplicados a la espalda y el tórax del sujeto. Demostró que la contracción ventricular precedía a la actividad eléctrica. En su primer informe sobre un registro de la electricidad cardíaca realizado en la superficie corporal, Waller utilizó el término «cardiógrafo».

Einthoven empezó a experimentar con el potencial del capilar para captar corrientes eléctricas diminutas. En 1895 demostró cinco deflexiones que denominó *ABCDE* en 1895. Creó un ajuste matemático para tener en cuenta la inercia del sistema capilar, lo que produjo las curvas de corriente que vemos hoy en día. Siguiendo la tradición matemática establecida por Descartes, utilizó la parte terminal de la serie parte alfabética (PQRST) para denominar estas ondas.

El pionero de la electrocardiografía, Waller dijo a finales de 1911: «No creo que la electrocardiografía vaya a tener un uso extensivo en los hospitales. A lo sumo puede tener un uso raro y ocasional para proporcionar un registro de alguna anomalía de la actividad cardíaca». Sin embargo, diez años de los estudios clínicos de Einthoven con los galvanómetros de cuerda transformaron este curioso fenómeno fisiológico en un dispositivo de registro clínico indispensable. Las asociaciones de la inversión de la onda T con la angina de pecho y la arteriosclerosis, en 1910, junto con otras arritmias, como el bigeminismo, bloqueo cardíaco completo, hipertrofia ventricular derecha e izquierda, fibrilación y aleteo auricular y demás ejemplos de diversas cardiopatías. Con su nueva técnica, estandarizó los trazados y formuló el concepto de «triángulo de Einthoven» relacionando matemáticamente las 3 derivaciones (Derivación III = Derivación II - Derivación I). En 1924, el «Padre de la electrocardiografía» recibió el Premio Nobel de Medicina [18].

En 1957, el médico estadounidense Norman Jefferis Holter inventó el ECG dinámico (DCG), a menudo conocido como Holter, en uno de los primeros intentos de combinar monitorización clínica y movilidad. Creó una mochila que pesaba unos 38 kg y tenía un dispositivo que podía registrar la actividad cardíaca del participante. Este portátil permite la monitorización continua de actividad eléctrica del sistema cardiovascular durante 24 horas, lo que ayuda a estudiar las arritmias y a localizar el lugar de la isquemia miocárdica. Reconociendo los beneficios potenciales de un dispositivo de monitorización de este tipo, Holter consiguió convertir su idea en una valiosa herramienta de diagnós-

tico reduciendo el tamaño y el peso a 1 kg con ayuda de Del Mar Avionics, un conocido fabricante de equipos aeronáuticos [18].

Durante las tres primeras décadas del siglo 20, el ECG de tres derivaciones periféricas fue largamente usado, especialmente luego de mejoras que lo hicieron más portable. A pesar de que el ECG de tres derivaciones era una manera fiable de evaluar arritmias, pronto se reconoció que el corazón incluía «zonas silenciosas» en las que un infarto de miocardio podría no ser detectado. En 1942, Emanuel Goldberger construyó las derivaciones precordiales (unipolares) usando el promedio de las diferencias de potencial de las tres derivaciones periféricas como terminal de referencia, que inicialmente fue creado por Frank N. Wilson, al cual se le conoce como terminal central de Wilson, que ahora se denominan como derivaciones precordiales (V1-V6), donde en 1938, la Asociación Americana del Corazón (AHA) y la Sociedad Cardiaca de Gran Bretaña recomendaron la estandarización del posicionamiento de los electrodos en el pecho para dichas derivaciones. También Goldberger propuso una manera de obtener lo que ahora se llaman derivaciones aumentadas, conocidas por las siglas a-VL, a-VR, y a-VF. 8 años después la AHA recomendó la estandarización del ECG de 12 derivaciones. [18]

En la era digital, la tecnología del silicio y los circuitos impresos han hecho posible la miniaturización de electrónicos. Desde hace algún tiempo, la tecnología ha ganado popularidad en el campo de la medicina y la necesidad de los clientes de controlar su salud ha sido el principal motor. La influencia de los "vestibles" (wearables) ha hecho inevitable la continua investigación y desarrollo de nuevas funciones que pueden evaluar y transmitir datos biométricos en tiempo real.

Como se observa en la figura 2.1 el ECG consta de varias ondas representativas de cada etapa de un latido cardíaco, estas son:

- Onda P: registra la despolarización auricular.
- Complejo QRS: Es la despolarización ventricular.
- Onda T: representa la repolarización ventricular.

Hoy en día el electrocardiograma es un estándar y uno de los primeros exámenes que se le hacen a los pacientes enfermos al ingresar a un centro clíni-

Figura 2.1: ECG con ritmo sinusal normal y las partes de este debidamente identificadas

co, este es registrado en un formato especialmente adaptado (tiras de papel milimetrado), estos no suelen durar más de 30 segundos. También puede ser registrada y visualizada de manera continua en un monitor similar a una pantalla de televisión, que suele ser una opción utilizada fundamentalmente en unidades de transporte sanitario medicalizadas y en unidades coronarias o de cuidados intensivos.

Para intentar comprender los principios básicos que explican las oscilaciones en las líneas del ECG conviene conocer, si bien de forma somera, los fundamentos por los cuales se produce el movimiento del corazón, generado a través de microcorrientes eléctricas. De ellos es responsable el sistema de conducción eléctrica del corazón.

El sistema de conducción

Los impulsos eléctricos en el corazón se conducen mediante un tejido especializado al que se le denomina como sistema de conducción, este se puede describir como una intrincada red de cables a través de los cuales, y de un manera organizada, se realiza la transmisión de las microcorrientes eléctricas que generas el movimiento del corazón. La representación gráfica de estos impulsos (de estas microcorrientes) es el ECG.

En el corazón normal, la frecuencia cardíaca debe ajustarse a las necesidades

concretas que en un determinado momento se precisen (no tenemos las mismas pulsaciones durante el sueño que después de subir cuatro pisos). Por otro lado, las diferentes cámaras (aurículas y ventrículos) deben tener un movimiento sincronizado para que el latido cardíaco resulte eficaz. La sincronía del latido cardíaco, así como la fuerza en la contracción del corazón, se encuentran reguladas, entre otros factores, por el sistema de conducción, que consta de los siguientes elementos:

- Nodo sinoauricular (nodo SA).
- Nodo auriculoventricular (nodo AV).
- Sistema de His-Purkinje.

El nodo sinoauricular (nodo SA)

Está situado en el surco terminal entre la unión lateral de la vena cava superior con la aurícula derecha. Tiene una forma de huso con una cola larga dirigida hacia abajo por el surco terminal y en dirección del orificio de la vena cava inferior, está irrigado por la arteria nodal, rama de la arteria coronaria derecha en el 55 % de las veces y el resto por una rama de la arteria circunfleja. La conducción del impulso generado en el nodo, y que llega al nódulo auriculoventricular, se produce a través del músculo miocárdico auricular que por su disposición geométrica favorece la conducción preferencial [17].

El nodo auriculoventricular (nodo AV)

Está localizado en el componente auricular del tabique auriculoventricular muscular, se halla subendocárdico y a la altura del vértice del triángulo delineado por el tendón de Todaro y en la inserción de la valva septal de la válvula tricúspide, estructuras que se unen en el cuerpo fibroso central. Aquí el nodo se continúa como el fascículo auriculoventricular que penetra el cuerpo fibroso y alcanza la cresta del tabique interventricular muscular debajo del septo membranoso y se bifurca en una rama derecha e izquierda. La rama derecha con un fascículo redondeado que hacia adelante se continúa hasta la región apical, penetra en la trabécula septomarginal y alcanza la pared ventricular y al musculo papilar anterior. Sus fibras forman el plexo subendocárdico de Purkinje en los músculos papilares y la pared del ventrículo derecho. Su tamaño es la mitad que el del nodo SA. Durante el paso por el nodo AV, la onda de activación eléctrica sufre una pausa de aproximadamente una décima de segundo, permitiendo así que las aurículas se contraigan y vacíen su contenido de sangre en los ventrículos antes de producirse la propia contracción ventricular. El

nodo AV ejercería de esta forma un *efecto embudo* en la canalización de los impulsos eléctricos en su viaje desde las aurículas a los ventrículos [17].

Sistema de His-Purkinje

Después de atravesar el nodo AV, el impulso cardíaco se propaga por el haz de His y sus ramas —una serie de fibras especializadas en la conducción eléctrica que discurren de arriba hacia abajo a lo largo del tabique interventricular; dicho haz de His de divide, después de un tronco común, en dos ramas, izquierda y derecha—. Cuando se emplea la expresión bloqueo de rama izquierda o bloqueo de rama derecha se hace referencia a la interrupción de la transmisión de los impulsos eléctricos en el corazón en este nivel. Después de atravesar el haz de His, el impulso eléctrico se distribuye por toda la masa ventricular gracias a una red de microfibrillas denominadas fibras de Purkinje; se produce entonces la contracción (y consiguiente expulsión de la sangre) de ambos ventrículos [17].

Figura 2.2: Sistema de conducción del corazón [17].

Actividad eléctrica de la célula miocárdica

La célula cardíaca posee, como las demás, una membrana celular que tiene en reposo una diferencia de voltaje entre sus dos lados. En condiciones normales y reposo, esta diferencia es de 90 milivoltios (mV). Debido a las propiedades intrínsecas de la célula, si esta es excitada, se desencadena una serie de cambios en la membrana que generan una corriente eléctrica que recorre la membrana celular y transmite el impulso eléctrico por los discos intercalares, que son membranas de baja resistencia eléctrica, entre las células, generando el potencial de acción. En el corazón normal este impulso se inicia en el nodo sinusal, debido a que tiene la descarga espontánea intermitente de frecuencia más alta en el corazón, gracias a las propiedades peculiares de la primera fase del potencial de acción en ese tejido. La disminución del potencial negativo de reposo despolariza la célula y luego se repolariza por la acción de mecanismos energéticos transmembrana que restablecen las concentraciones relativas de los iones, consumiendo energía (figura 2.3) [19].

Figura 2.3: Potencial de acción-relaciones de componentes [19].

Este potencial de acción conducido en forma adecuada es el estímulo para obtener una contracción cardíaca sincronizada. En reposo, el sodio está en el espacio extracelular en mayor concentración, al igual que el calcio, mientras que el potasio predomina en el espacio intracelular. Esto significa que la mem-

brana tendrá una carga positiva por fuera y negativa por dentro. Al iniciarse la despolarización, ocurren cambios de la permeabilidad al sodio, lo cual permite su entrada al espacio intracelular, se invierte la carga interna, que se vuelve positiva (+20 mV) y la forma la fase 0 del potencial de acción. La pendiente de su ascenso regula la velocidad de conducción del tejido. Posteriormente, el cloro entra en persecución del sodio y disminuve levemente la positividad interior (fase 1). Luego baja drásticamente la permeabilidad al sodio y calcio y estos iones comienzan a disminuir su velocidad de entrada, la cual se hace básicamente a través de los canales lentos, que son voltaje dependientes y de tipo receptor de membrana que consume energía, y que inscriben una fase en meseta en el potencial de acción (Fase 2). Los canales lentos de calcio son altamente selectivos para este ion, aunque permiten la entrada también de sodio. Este mecanismo en la membrana del retículo sarcoplásmico asegura, además, que la concentración intracelular de calcio sea suficiente para los procesos contráctiles. Inmediatamente sale potasio de la célula para lograr el equilibrio de cargas eléctricas, al parecer por un súbito aumento de la permeabilidad de la membrana para este ion, disminuve la positividad y logra un potencial negativo intenso intracelular, saliendo calcio al retículo sarcoplásmico nuevamente (Fase 3). Esto repolariza la célula. Pero luego entran en acción las bombas de sodio y calcio, dependientes de ATP, que sacan Na y CA y lo intercambian por potasio, lo cual incrementa levemente el potencial intracelular (Fase 4).

La velocidad de ascenso de la fase 4 es lo que regula la excitabilidad y es más pronunciado en los tejidos de excitación automática. El calcio que entra en la fase 2 es aclarado de la célula por varios mecanismos como son: las bombas de calcio dependientes de ATP, el fosfolamban, y la captación de calcio hacia el interior de la mitocondria, en un proceso que también es dependiente de energía. El potencial de acción tiene una duración variable (entre 200 y 400 ms) y durante ese período, la célula se hace total o parcialmente refractaria a una excitación adicional, al parecer por la presencia de sodio dentro de la célula. El periodo refractario absoluto ocupa las fases 0, 1, 2 y 3, es decir, mientras el sodio es aún intracelular. Una vez que el sodio comienza a salir de la célula, está parcialmente disponible para volver a entrar rápidamente, por lo que la fase 4 y la parte final de la fase 3 son el período refractario relativo. El potencial más negativo que se alcanza durante la fase 4 se atenúa en presencia de Acidosis, hipocalemia isquemia y fibrosis y se aumenta con los medicamentos antiarrítmicos en su mayoría. Existen diferencias en la configuración del potencial de acción según el tejido analizado dentro del corazón: en las células automáticas, las fases 1 y 2 son cortas y la fase 4 es plana y en las células de conducción, la fase 0 es rápida, y la fase 2 es de mayor duración. Las fases 0 y 1 corresponden a la onda P y el complejo QRS. La fase 2 corresponde al segmento ST y la fase 3 a la onda T. La fase 4 corresponde a la diástole eléctrica. La deflexión descendente de la onda T corresponde al período refractario relativo, que tiene 2 subfases: la vulnerable que es durante la cual un estímulo de suficiente intensidad es capaz de desencadenar arritmias severas, y la subfase súper-normal, que corresponde a una hiperpolarización "muy refractaria", pues no hay potasio intracelular en cantidad abundante. La velocidad a la cual se transmite el impulso varía de acuerdo con la pendiente de la fase 0, con la altura del potencial de acción, con la duración de las fases 2 y 4. Dicha velocidad en el nodo sinusal es de 5cm/s, en las aurículas es de 80-100cm/s, en el nodo AV es de 5cm/s, en el haz de His es de 100cm/s, en las fibras de Purkinje es de 400cm/s y en el músculo de 90cm/s

Las células miocárdicas tienen varias propiedades únicas, entre ellas está la Automaticidad que no es más que la capacidad de descarga espontánea a una frecuencia fija, dependiente de la pendiente de la fase 4; La Excitabilidad es esa capacidad de respuesta al estímulo; y por último, la Conductividad que es esa capacidad de transmitir el impulso de una célula a otra.

Interpretación de un electrocardiograma

El ECG presenta como línea guía la denominada línea isoeléctrica o línea basal, que puede identificarse fácilmente como la línea horizontal existente entre cada latido. Los latidos cardíacos quedan representados en el ECG normal por las diferentes oscilaciones de la línea basal en forma de ángulos, segmentos, ondas e intervalos, constituyendo una imagen característica que se repite con una frecuencia regular a lo largo de la tira de papel del ECG. Como se ha comentado, entre latido y latido va discurriendo la línea base.

El recorrido en sentido horizontal hace referencia al tiempo transcurrido, y la distancia en sentido vertical (amplitud) al voltaje que se está produciendo. El papel por el que discurre el registro de la línea se encuentra milimetrado. Cada cuadrado pequeño del papel mide 1mm y al observarlo con detenimiento puede comprobarse que cinco cuadrados pequeños forman un cuadrado grande, remarcado por un grosor mayor en la tira de papel de ECG. Para conocer cómo transcurren los tiempos durante la actividad del corazón, basta con recordar que cinco cuadrados grandes en sentido horizontal equivalen exactamente a un segundo.

En un ECG *normal*, cada complejo consta de un a serie de deflexiones (ondas del ECG) que alternan con la línea basal. Realizando la lectura de izquierda a derecha, se distinguen la onda P, sel segmento P-R, el complejo QRS, el segmento ST y finalmente la onda T, véase la figura 2.1.

Onda P

Es la primera deflexión hacia arriba que aparece en el ECG. Su forma recuerda a una mezcla entre una U y una V invertidas. Suele durar entre 80-100ms y esta representa el momento en que las aurículas se están contrayendo y enviando sangre hacia los ventrículos.

Segmento P-R

Es el tramo de la línea basal (línea isoeléctrica) que se encuentra entre el final de la onda P y la siguiente deflexión —que puede ser hacia arriba (positiva) o hacia abajo (negativa)— del ECG. Durante este período, las aurículas terminan de vaciarse y se produce una relativa desaceleración en la transmisión de la corriente eléctrica a través del corazón, justo antes del inicio de la contracción de los ventrículos.

Complejos QRS

Corresponde con el momento en que los ventrículos se contraen y expulsan su contenido sanguíneo. Como su nombre indica, consta de las ondas Q, R y S. La onda Q no siempre está presente. Se identifica por ser la primera deflexión negativa presente después del segmento P-R. Toda la deflexión positiva que aparezca después del segmento P-R corresponde ya a la onda R propiamente dicha y, como se ha comentado anteriormente, el hecho de que no vaya precedida por una onda Q no es en absoluto patológico. De hecho, y siempre en relación con una ECG normal, las ondas Q deben ser de pequeño tamaño —no mayores que un cuadrado pequeño en el papel milimetrado, tanto en longitud (duración) como en profundidad (voltaje)— y encontrarse presentes sólo en ciertas derivaciones. La onda R es muy variable en altura, ya que puede llegar a medir desde 2mm hasta 8-10mm en el caso de personas jóvenes deportistas. La onda S se observa como continuación directa de la onda R y comienza a partir del punto en que esta última, en su fase decreciente, se hace negativa. En conjunto, el complejo formado por las ondas Q, R y S no debe exceder en duración más de dos cuadrados pequeños.

Segmento ST

En el trazado de la línea basal que se encuentra entre el final de la onda S y el comienzo de la onda T. Su elevación o descenso en relación con la línea basal puede significar insuficiencia en el riego del corazón, especialmente si dichas oscilaciones coinciden con sintomatología característica que pueda expresar

afectación en el aporte de oxígeno al corazón. En este sentido, su valor como herramienta diagnóstica resulta insustituible.

Onda T

Se inscribe a continuación del segmento ST. Consiste en una deflexión normalmente positiva que asemeja el relieve de una montaña más o menos simétrica. Su duración suele estar entre 0,1-0,25s y no debe exceder los 0,3s. La onda T representa el momento en que el corazón se encuentra en un período de relajación, una vez que ha expulsado la sangre que se hallaba en los ventrículos.

Realización de un electrocardiograma

Realizar un ECG es un procedimiento sencillo. Se necesitan un electrocardiógrafo, parches de ECG que actúan como sensores sobre la piel, comportándose como si fueran electrodos, y un sistema de cables que transmiten las microcorrientes recogidas por los parches al electrocardiógrafo, el cual se encargará de amplificarlas. El paciente se coloca boca arriba sobre una camilla. La postura ideal es completamente horizontal; en caso de no tolerar bien esta posición, la camilla podría elevarse unos treinta grados.

Un enfermero, un técnico o un médico le colocarán un total de 10 parches (electrodos). Se coloca uno en cada extremidad, formando así las seis derivaciones llamadas de los miembros. Los restantes seis parches se colocan en seis puntos específicos del pecho en la denominada región precordial, y hacen referencia a las seis derivaciones precordiales. Una derivación electrocardiográfica está constituida por la unión de dos electrodos. De esta forma, es posible conseguir un total de 12 derivaciones. Cada una permite obtener una visión electrocardiográfica diferente, representando 12 ventanas o puntos de observación distintos. Así, una anomalía que afecta a una parte concreta del corazón puede no ser advertida desde una derivación (ventana) y sí desde otra. Esta característica confiere valor al ECG para localizar la zona del corazón que puede encontrarse dañada. Cada derivación presenta un patrón del ECG característico con el que el médico está familiarizado, pero los principios expuestos en la descripción del ECG son aplicables a todas las derivaciones.

Una vez que el paciente se encuentra tumbado y con los 10 cables que conectan el ECG con su parche (electrodo) correspondiente, se puede comenzar el registro del ECG, cuya duración aproximada es de 10 segundos. El registro obtenido —gracias a la impresora que lleva incorporado el propio ECG— constituye el ECG del paciente.

Es importante tener en cuenta que desde el momento en que el operador indica que va a comenzar el registro, el paciente debe moverse lo menos posible, ya que incluso el temblor muscular fino (por ejemplo, por frío o intranquilidad) puede interferir con la señal del registro, y en el caso de resultar excesivamente distorsionada será preciso repetir el ECG. Asimismo, el contacto entre los parches y la piel del enfermo debe ser lo más estrecho posible y, en este sentido, al realizar un ECG hay que evitar la utilización previa de cremas o lociones que interfieran en dicho contacto. Es frecuente que el operador tenga que emplear una gasa suavemente impregnada en alcohol, ya que la propia grasa de la piel puede interferir con la nitidez del registro, y aplicarla sobre los puntos donde serán situados los parches.

Éstos llevan un gel autoadhesivo cuya composición favorece la transmisión de las pequeñas corrientes eléctricas desde la piel al electrocardiógrafo. Este gel conductor tiene una caducidad relativamente temprana y ocasionalmente puede ocurrir que la señal eléctrica no pueda ser recogida por el electrocardiógrafo debido a anomalías o defectos del parche. En este caso, en el papel del ECG no aparecerá ningún tipo de señal, ninguna línea. Naturalmente, la situación queda subsanada en cuanto se desprendan los parches defectuosos y se repita el ECG utilizando los adecuados.

Hoy en día, un ECG puede ser realizado en cualquier sitio debido tanto a la reducción en el tamaño de los equipos como, sobre todo, a la posibilidad de disponer el electrocardiógrafos portátiles. De esta forma, el ECG llega al domicilio de pacientes que no se pueden desplazar o al lugar donde se ha producido un accidente y, naturalmente, se puede disponer de monitorización con ECG continua durante el transporte sanitario. Pese a todo, lo más frecuente es que el ECG se realice dentro del medio hospitalario o bien a nivel ambulatorio en centros de salud o consultorios médicos.

Existen otras formas de realizar un ECG aparte de la convencional en reposo. Fundamentalmente son dos: el ECG de esfuerzo que consiste en caminar en una cinta sin fin o pedalear en una bicicleta especialmente adaptada, mientas un médico valore el ECG realizado durante el ejercicio, y el Holter-ECG, en el que se registra el ECG del paciente mediante un sistema de grabación especialmente diseñado, durante un tiempo aproximado de 24 horas; posteriormente, es analizado por un software específico y este, se utiliza principalmente para el estudio de arritmias [19].

El ECG es una prueba diagnóstica asequible, segura y sencilla de realizar, que proporciona una gran cantidad de información con relación al estado del corazón. Fundamentalmente, se utiliza para detectar trastornos del ritmo cardíaco (arritmias) y en el diagnóstico de trastornos del flujo coronario, como lo son las cardiopatías coronarias. Asimismo, el ECG es el método de

elección en el diagnóstico de los bloqueos cardíacos, en los cuales la transmisión del impulso ha quedado parcial o completamente interrumpida en algún de su recorrido a través del sistema de conducción. El ECG también se utiliza, aunque en menor medida, en el diagnóstico del aumento de tamaño de las cavidades del corazón. Este hecho se observa muy frecuentemente en la hipertensión arterial, en la cual el corazón tiene que bombear contra una resistencia que se encuentra aumentada. También, algunos trastornos de los electrolitos sanguíneos, especialmente el calcio y el potasio, tienen también su reflejo en el ECG, que naturalmente su nivel exacto se obtendrá a través de un análisis de sangre, pero el ECG puede resultar orientativo en cuanto al grado de gravedad de la alteración. Finalmente, el ECG también resulta útil en el seguimiento de las enfermedades cardíacas al establecerse una comparación con los electros previos del paciente. Así, ayuda al médico a valorar el desarrollo evolutivo de una determinada patología y, en ocasiones, es de gran utilidad a la hora de establecer un tratamiento concreto o de modificar la dosis de algún medicamento que el paciente pueda estar tomando.

Para efectuar un ECG no se precisa ninguna preparación en concreto, además que no existen riesgos en la realización de un ECG, ya que es una prueba segura y exenta de ellos. La actividad eléctrica reflejada en el papel es generada por el propio organismo, de ahí que el paciente no sienta nada durante el registro.

2.3. Conceptos específicos

Aprendizaje Automático

El aprendizaje automático se ha vuelto uno de los más importantes temas hoy en día, constantemente se busca la manera de sacar el mayor provecho de los datos que se tengan recopilados con el fin de desarrollar estrategias que ayuden a tener un nivel superior de entendimiento de estos. Con los modelos de aprendizaje automático apropiados, se tiene la habilidad de hacer predicciones precisas en el mundo real y a medida que nueva data es constantemente agregada, se asegura que los modelos continúen rindiendo eficientemente y siendo capaces de adaptarse a los problemas del mundo real.

El aprendizaje automático es una de las ramas de la Inteligencia Artificial (IA) que le permite a un sistema aprender de los datos que se le dan en lugar de programarle explícitamente la tarea que debe desempeñar.

El aprendizaje automático usa una variedad de algoritmos que interactivamente aprenden de los datos, para mejorar, describir datos e incluso, predecir resultados. Como estos algoritmos constantemente ingieren datos de entrenamiento, es entonces posible producir modelos más precisos basados con esta data. El aprendizaje automático engloba tantos algoritmos que es necesario agruparlos por categorías o paradigmas de aprendizaje, estos se dividen en función de la salida de los mismos.

Análisis de Componentes Principales (PCA).

Los grandes conjuntos de datos están cada vez más extendidos en muchas disciplinas. Para interpretarlos, se necesitan métodos que reduzcan drásticamente su dimensionalidad de forma interpretable, de modo que se conserve la mayor parte de la información contenida en los datos. Se han desarrollado muchas técnicas con este fin, pero el análisis de componentes principales (PCA) es una de las más antiguas y utilizadas. Su idea es sencilla: reducir la dimensionalidad de un conjunto de datos conservando la mayor cantidad posible de «variabilidad», es decir, de información estadística.

Esto significa que «preservar tanta variabilidad como sea posible» se traduce en encontrar nuevas variables que sean funciones lineales de las del conjunto de datos original, que maximicen sucesivamente la varianza y que no estén correlacionadas entre sí. PCA usa álgebra lineal para transformar datos a unas variables llamadas componentes principales (PC). Estas se encuentras calculando los autovectores (direcciones) y autovalores (importancia) de una matriz de covarianza. PCA selecciona los componentes principales con los autovalores más altos y proyecta los datos sobre ellos, para simplificar el conjunto de datos. Para esto se debe:

1. Estandarizar los datos.

Las diferentes caracteristicas que están presentes en el conjunto de datos pueden tener diferentes unidades y escalas. Para comparar estas equitativamente, primero se debe estandarizar los datos haciendo que cada característica tenga:

- Una media de 0.
- Una desviación estándar de 1.

$$Z = \frac{X - \mu}{\sigma} \tag{2.1}$$

donde:

• μ es la media de las caracteristicas independientes $\mu = \{\mu_1, \mu_2, \cdots, \mu_m\}$

- σ es la desviación estándar de las caracteristicas independientes $\sigma = \{\sigma_1, \sigma_2, \cdots, \sigma_m\}$
- 2. Calcular la matriz de covarianza.

Es necesario calcular la matriz de covarianza para ver como las caracteristicas se relacionan entre sí, si estas aumentan o disminuyen juntas. La matriz de covarianza entre dos caracteristicas x_1 y x_2 es:

$$cov(x1, x2) = \frac{\sum_{i=1}^{n} (x1_i - \bar{x}1) (x2_i - \bar{x}2)}{n-1}$$
 (2.2)

donde:

- \bar{x}_1 y \bar{x}_2 son los valores medios de las características x_1 y x_2 .
- \bullet *n* es el numero total de datos.

El valor de la covarianza puede ser positivo, negativo o cero.

- 3. Encontrar las componentes principales. PCA identifica los *nuevos ejes* donde la varianza de los datos es mayor:
 - 1er Componente Principal (PC1): La dirección donde está la mayor dispersión de los datos.
 - 2da Componente Principal (PC2): La siguiente mejor dirección, perpendicular a PC1 y así sucesivamente.

Estas direcciones vienen de los autovectores de la matriz de covarianza y su importancia es medida por los autovalores. Para una matriz A, un autovector X (un vector no nulo) y su correspondiente autovalor λ satisface:

$$AX = \lambda X \tag{2.3}$$

Esto significa:

- Cuando A actuá sobre X sólo estira o encoge X por el escalar λ .
- La dirección de X no cambia, por lo que los autovectores definen «direcciones estables» de A.
- 4. Selecciona las mejores direcciones y transforma los datos. Después de calcular los autovalores y autovectores, PCA clasifica estos por la cantidad de información que ellos capturan. Entonces:
 - Selecciona los k componentes principales que capturan la mayor parte de la varianza, como el 95 %.

 Transforma el conjunto de datos original proyectándolo sobre los mejores componentes principales.

Esto significa que se reduce el numero de caracteristicas (dimensiones) mientras se mantienen los patrones importantes que están implícitos de los datos.

Hasta que no se generalizó el uso de ordenadores electrónicos, que fue posible utilizarlo con conjuntos de datos que no fueran trivialmente pequeños. Desde entonces, su uso se ha multiplicado y se han desarrollado numerosas variantes en muchas disciplinas diferentes.

Incrustación de vecinos estocásticos distribuidos en t (t-SNE)

La incrustación de vecinos estocásticos comienza convirtiendo las distancias Euclidianas altas dimensionales entre los puntos de datos en probabilidades condicionales que representan similaridades. Según van der Maaten y Hinton: "La similaridad entre el punto x_i x_j es proporcional a la probabilidad condicional $p_{i|j}$ de que x_i escoja a x_j como su vecino si los vecinos se eligieran en proporción a su densidad de probabilidad bajo una gaussiana centrada en x_i ". Para puntos de datos cercanos, $p_{i|j}$ es relativamente alta, mientras que para puntos de datos muy separados, $p_{i|j}$ será casi infinitesimal (para valores razonables de la varianza en la gaussiana, σ_i). Matemáticamente, la probabilidad condicional $p_{i|j}$ es dada por:

$$p_{j|i} = \frac{\exp\left(-\|x_i - x_j\|^2 / 2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / 2\sigma_i^2\right)},$$
(2.4)

donde σ_i es la varianza de la Gaussiana que está centrada en el punto x_i . Debido a que estamos interesados en modelar las similaridades entre pares, se establece $p_{i|j}=0$. Observe que el denominador anterior garantiza $\sum_j p_{j|i}=1$ para todas las i. Para las contrapartes de baja dimensionalidad y_i y y_j de los puntos altos dimensionales x_i y x_j , es posible calcular una probabilidad condicional similar, la cual se denotará por $q_{j|i}$. De ahí que, se modela la similaridad de un punto cartográfico y_i con el punto cartográfico y_i por:

$$q_{j|i} = \frac{\exp\left(-\|y_i - y_j\|^2\right)}{\sum_{k \neq i} \exp\left(-\|y_i - y_k\|^2\right)}$$
(2.5)

Al igual que en el caso anterior, como sólo se está interesado en el modelado de las similaridades en cada par de puntos, se establece $q_{i|i} = 0$. Las probabilidades condicionales $q_{i|i}$ y $p_{i|i}$ serán iguales siempre y cuando los puntos cartográficos y_i y y_j modelen correctamente la similaridad entre los puntos alto dimensiones x_i y x_j .

En este caso, se utiliza una distribución t
 de Student de colas gruesas para medir las similitudes entre puntos cartográficos de baja dimensión, con el fin de permitir que los objetos se modelen muy separados entre si. Se busca una representación bajo dimensional de los datos que minimice la disparidad entre $q_{i|i}$ y $p_{i|i}$, para lograr esto, se usa como medida de fidelidad entre $q_{i|i}$ y $p_{i|i}$, la divergencia de Kullback-Leibler. Haciendo uso del método de gradiente descendiente t-SNE, minimiza la suma de las divergencias de Kullback-Leibler sobre todos los puntos, teniendo una función de costo dada por:

$$C = \sum_{i} KL(P_i || Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}},$$
(2.6)

en la cual P_i representa la distribución de probabilidad condicional sobre todos los puntos de datos, dado el punto x_i , y Q_i representa la distribución de probabilidad condicional sobre todos los puntos de datos, dado el punto y_i y es el resultado de esta optimización, un mapa que refleja las similitudes entre las entradas de alta dimensión.

K-means

Redes Neuronales

Una red neuronal artificial es un grupo de neuronas artificiales interconectadas que interactúan entre sí de forma concertada. Se trata de hecho un procesador distribuido masivamente paralelo que tiene una propensión natural a almacenar el conocimiento experiencial y ponerlo disponible para su uso. Se parece al cerebro humano en dos aspectos: La red adquiere los conocimientos mediante un proceso de aprendizaje. El conocimiento lo adquiere la red mediante un proceso de aprendizaje, y para almacenarlo se utilizan las intensidades de conexión interneuronal, denominadas pesos. Los modelos de redes neuronales artificiales pueden utilizarse como método alternativo en análisis y predicciones. Funcionan como un modelo de «caja negra», que no requiere información detallada sobre el sistema. Imitan en cierto modo el proceso de aprendizaje de un cerebro humano porque aprenden la relación entre los parámetros de entrada, las variables controladas y no controladas estudiando datos registrados previamente. En este sentido, funcionan de forma similar a la

regresión no lineal, pero son mucho más potentes que el análisis de regresión. Las redes neuronales son capaces de manejar sistemas grandes y complejos con muchos parámetros interrelacionados. Parece que simplemente ignoran el exceso de parámetros de entrada que tienen una importancia mínima y se concentran en los más importantes. mas tema

Capítulo 3

Marco experimental

...

Capítulo 4

Resultados

...

Parte I Conclusiones

Capítulo 5

Conclusiones

...

Bibliografía

- [1] L. Zhang, M. Karimzadeh, M. Welch, C. McIntosh, and B. Wang, "Chapter 7 analytics methods and tools for integration of biomedical data in medicine," in *Artificial Intelligence in Medicine* (L. Xing, M. L. Giger, and J. K. Min, eds.), pp. 113–129, Academic Press, 2021.
- [2] M. National Library of Medicine, "Electrocardiogram," 2020.
- [3] O. Organizacion Mundial de la Salud, "Enfermedades cardiovasculares (cvds)," 2021.
- [4] J. Pan and W. J. Tompkins, "A real-time qrs detection algorithm," *IEEE Transactions on Biomedical Engineering*, vol. BME-32, no. 3, pp. 230–236, 1985.
- [5] J. P. Martínez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, "A wavelet-based ecg delineator: Evaluation on standard databases," *IEEE transactions on bio-medical engineering*, vol. 51, pp. 570–81, 05 2004.
- [6] G. Moody and R. Mark, "The impact of the mit-bih arrhythmia database," *IEEE Engineering in Medicine and Biology Magazine*, vol. 20, no. 3, pp. 45–50, 2001.

[7]

- [8] A. TADDEI, G. DISTANTE, M. EMDIN, P. PISANI, G. B. MOODY, C. ZEELENBERG, and C. MARCHESI, "The european st-t database: standard for evaluating systems for the analysis of st-t changes in ambulatory electrocardiography," *European Heart Journal*, vol. 13, pp. 1164–1172, 09 1992.
- [9] G. Herrero, A. Gotchev, I. Christov, and K. Egiazarian, "Feature extraction for heartbeat classification using independent component analysis

- and matching pursuits," in *Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.*, vol. 4, pp. iv/725–iv/728 Vol. 4, 2005.
- [10] N. Dugarte Jerez, R. Medina Molina, and R. Rojas Sulbarán, "Sistema para la adquisición de la señal electrocardiógrafica de alta resolución," Universidad, Ciencia y TecnologÃa, vol. 15, pp. 206 – 215, 12 2011.
- [11] Cardiosoft, "hfqrs-ecg high frequency qrs electrocardiograph."
- [12] H. Khorrami and M. Moavenian, "A comparative study of dwt, cwt and dct transformations in ecg arrhythmias classification," *Expert Syst. Appl.*, vol. 37, pp. 5751–5757, 08 2010.
- [13] R. Ceylan and Y. Özbay, "Comparison of fcm, pca and wt techniques for classification ecg arrhythmias using artificial neural network," *Expert Systems with Applications*, vol. 33, no. 2, pp. 286–295, 2007.
- [14] H. Sharma and K. Sharma, "Baseline wander removal of ecg signals using hilbert vibration decomposition," *Electronics Letters*, vol. 51, pp. 447–449, 03 2015.
- [15] C.-J. Zhang, Yuan-Lu, F.-Q. Tang, H.-P. Cai, Y.-F. Qian, and Chao-Wang, "Heart failure classification using deep learning to extract spatiotemporal features from ecg," BMC Medical Informatics and Decision Making, vol. 24, 01 2024.
- [16] V. Astudillo, D. Luna, and J. Muñoz Chaves, "Clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ecg," *Revista EIA*, vol. 21, pp. 1 – 22, 01 2024.
- [17] A. Luis, "El electrocardiograma," in *Libro de la salud del hospital clínico* San Carlos y la Fundación BBVA, pp. 49–56, Editorial Nerea, S.A., 2009.
- [18] R. Vincent, "From a laboratory to the wearables: a review on history and evolution of electrocardiogram," *Iberoamerican Journal of Medicine*, vol. 4, no. 4, pp. 248–255, 2022.
- [19] F. M. Correa, M. P.; Arbeláez, "Fisiología cardiovascular," in *Texto de cardiología*, pp. 72–74, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, 2007.

[20] I. T. Jolliffe and J. Cadima, "Principal component analysis: a review and recent developments.," *Philosophical transaction. Series A, Mathematical, physical, and engineering sciences*, 2016.