ENGR-233 Winter 2021

Sample final exam.

Problem 1. Using the Green's formula, find $\oint_C (x^2 - y^2) dx + (x^2 + y^2) dy$ if the contour C consists of the segment $x = 1, 0 \le y \le 1$, the segment $y = 1, 0 \le x \le 1$, and the portion of the circle $x^2 + y^2 = 1$ in the first quadrant.

Problem 2. Let the vector field $\mathbf{F} = (2x-2z)\mathbf{i} + z\mathbf{j} + (y-2x)\mathbf{k}$. Find $\int_{(1,2,3)}^{(3,2,1)} \mathbf{F} \cdot d\mathbf{r}$ along any curve C connecting the points (1,2,3) and (3,2,1).

Problem 3. Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F}(x,y,z) = (z^2,xy,2y)$, and the contour C consists of the piece of the circle $x^2 + y^2 = 1$, z = 0 in the first quadrant, and the segment of the line connecting the points (0,1,0) and (0,0,1).

Problem 4. Using the Stokes Theorem, find $\oint_C \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F}(x,y,z) = (y,-2x+z,x)$, and the contour C is the intersection of the surface $z=x^2-2y^2$ and the cylinder $x^2+y^2=4$.

Problem 5. Using the Divergence Theorem find the flux of the field F(x, y, z) = -x y i + 2 y z j + 3 x z k through the surface of the body $B: x \ge 0$, $y \ge 0$, $z \ge 0$, $x + y + z \le 1$.

Problem 6. Find the moment of inertia I_z relative to the z - axis of the ball of radius R with a cylindrical hole of radius a whose axis is the z - axis if the density od the ball is δ .

Problem 7. Using the change of variables, find $\iint_D x y dA$ if D is the domain bounded by the curves $y=a_1x^2$, $y=a_2x^2$, $y=b_1x$, $y=b_2x$ ($a_1 < a_2$, $b_1 < b_2$).

Problem 8. The *cycloid* is the curve traced by a point on the wheel rolling along the x - axis. Its parametric equations are

$$x=t-\sin(t/R)$$
, $y=R(1-\cos(t/R))$.

- (a) Find the curvature of the cycloid as a function of t.
- (b) What happens with the curvature as $t \rightarrow 0$?

Problem 9. Find the volume of the domain B defined by the inequalities $B: x^2+y^2+z^2 \le 1, \ x^2+y^2-z^2 \ge 0$.