

LG Advanced Data Scientists Program Deep Learning

[8: Introduction to Reinforcement Learning]

Prof. Sungroh Yoon

Electrical & Computer Engineering | Seoul National University

© 2020 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 21:16:00 on 2020/02/26)

Outline

Introduction

Markov Decision Process

Summary

References

- books/papers:
 - ► Reinforcement Learning (2nd edition)¹ ► Link
 - Artificial Intelligence: A Modern Approach²
 - ► A brief survey of deep reinforcement learning³
- online resources:
 - Silver UCL class ► Link & ICML tutorial ► Link
 - Schulman MLSS tutorial Link
 - Abbeel & Schulman NIPS tutorial Link
 - ▶ UC Berkeley CS188 (AI) Link & CS294 (DRL) Link
 - ► Stanford CS234 (RL) ► Link

¹Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

²Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited

³Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866

Outline

Introduction

Markov Decision Process

Summary

AlphaGo Zero Starting from seratch

⁴Silver, D. et al. (2017). Mastering the game of go without human knowledge. *Nature*, 550(7676):354

Reinforcement learning in a nutshell (Silver, 2016)

- RL: a general-purpose framework for _______
 - RL is for an agent with the capacity to act
 - each action influences the agent's future state
 - success is measured by a scalar reward signal
 - goal: select actions to maximize future reward

(source: Schulman and Abbeel)

Core issues in RL (Littman, 2009)

- generalize experience ("learn by interaction")
 - use knowledge gained in similar situations
 - "learning"
- sequential decisions
 - deal properly with delayed gratification
 - ▶ "planning"
- exploration/exploitation
 - must strike a
 - exploration-exploitation trade-off

(source: [Sutton and Barto, 2018]⁵)

⁵Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

When to use RL

- Pineau (2017):
 - data in the form of
 - need to make a sequence of (related) decisions
 - observe (partial, noisy) feedback to choice of actions
 - tasks that require both learning and planning

Many faces of RL

(source: Silver)

Agent and environment

- at each step t, :
 - ightharpoonup executes action a_t
 - ightharpoonup receives observation o_t
 - lacktriangleright receives scalar reward r_t

environment:

- ightharpoonup receives action a_t
- ightharpoonup emits observation o_{t+1}
- ightharpoonup emits scalar reward r_{t+1}

Experience and state

- experience:
 - ▶ a sequence of observations, rewards, actions

$$o_1, r_1, a_1, \ldots, a_{t-1}, o_t, r_t$$

- state:
 - ▶ a of experience

$$s_t = f(o_1, r_1, a_1, \dots, a_{t-1}, o_t, r_t)$$

▶ in a fully observed environment

$$s_t = f(\mathbf{o_t})$$

Elements of RL

• an agent may include one or more of the following components:

- 1. policy
 - agent's behavior function
- 2. value function
 - how good is each state and/or action
- 3. model
 - agent's representation of the ______

Element #1: Policy

- a policy: the agent's behavior
- it is a map from state to _____
 - deterministic policy: $a = \pi(s)$
 - stochastic policy: $\pi(a \mid s) = \mathbb{P}(a \mid s)$

Element #2: Value function

- a prediction of future _____
 - ▶ "how much reward will I get from action *a* in state *s*?
- two types⁶
 - 1. state value function: V(s)
 - 2. state-action value function: $Q(s, \mathbf{a})$

⁶ advantage function (slide 28): A(s, a) = Q(s, a) - V(s)

Element #3: Model

model:

- ▶ learned from experience
- acts as proxy for environment

• agent:

▶ interacts with model

Approaches to RL

- value-based
 - lacktriangleright estimate optimal value function $\underbrace{V^*(s) \text{ or } Q^*(s,a)}_{}$ maximum value achievable under any policy
 - ▶ DP learning, TD learning, Sarsa (on-policy), Q-learning (off-policy)
- policy-based
 - lacktriangleright search directly for optimal policy $\underline{\pi}^*$ policy achieving maximum future reward

- ▶ policy (PG), actor-critic/A3C, TRPO, PPO, DDPG⁷
- model-based
 - build a model of environment
 - plan (e.g. by lookahead) using the model

⁷A3C: asynchronous advantage actor-critic, TRPO: trust region policy optimization [Schulman et al., 2015], PPO: proximal policy optimization [Schulman et al., 2017], DDPG: deep deterministic PG [Silver et al., 2014]

Model-based vs model-free RL (Pineau, 2017)

- model-based:
 - collect large amounts of observed trajectories
 - ▶ learn an approximate model of dynamics (e.g. with supervised learning)
 - pretend the model is correct and apply value iteration
- model-free:
 - use data to learn value function or optimal policy

Deep RL

- use deep neural nets to represent
 - value function
 - policy
 - model
- optimize loss function by _____

(source: [Mnih et al., 2015]⁸)

⁸Mnih, V. et al. (2015). Human-level control through deep reinforcement learning. *Nature*, 518(7540):529

Outline

Introduction

Markov Decision Process

Summary

Markov decision process (MDP)

- Markov property (memorylessness)
 - ightharpoonup state s_t is Markov iff

$$\mathbb{P}[s_{t+1} \mid \underbrace{s_1, \dots, s_{t-1}}_{\text{history}}, s_t] = \mathbb{P}[s_{t+1} \mid s_t]$$

- state captures all relevant information from
- "the future is independent of the past given the present"
- Markov decision process (MDP)
 - can formalize almost all RL problems
 - describes a (fully observable) environment for RL

the current state completely characterizes the process

- MDP definition: a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - S a finite set of Markov states
 - \mathcal{A} a finite set of actions
 - \mathcal{P} a transition probability matrix \rightarrow transition model/dynamics

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[s_{t+1} = s' \mid s_t = s, a_t = a] \triangleq \mathbf{T}(s, a, s')$$

 \mathcal{R} a _____ function \rightarrow immediate/instantaneous reward

$$\mathcal{R}_{ss'}^{a} = \mathbb{E}[r_t \mid s_t = s, a_t = a] \triangleq r(s, a)$$

$$\mathcal{R}_{ss'}^{a} = \mathbb{E}[r_t \mid s_t = s, a_t = a, s_{t+1} = s'] \triangleq r(s, a, s')$$

- γ a discount factor $(\gamma \in [0,1])$
- MDP search tree
 - ▶ *s* : a *state*
 - \triangleright (s,a): a q-state
 - \triangleright (s, a, s'): a transition

Example: grid world⁹

- a maze-like problem
 - agent lives in a grid
 - walls block agent's path
- movement
 - actions do not always go as planned

(source: Abbeel & Klein)

- ullet agent receives rewards r(s) each time step
 - small "living" reward each step (can be negative)
 - big rewards come at the end (good or bad)
- goal: maximize sum of rewards

⁹Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited

• deterministic grid world

• stochastic grid world

(source: Abbeel & Klein)

Policies

- policy π :
 - fully defines the behavior of an agent
 - stochastic policy: _____ over actions given states

$$\pi(a \mid s) = \mathbb{P}[a_t = a \mid s_t = s]$$

deterministic policy: function of given state

$$a = f(s)$$

- MDP policies
 - depend on the current state (not history)
 - i.e. stationary (time-independent)

• example: grid world

(source: Abbeel & Klein)

▶ a policy π for the 4×3 world¹⁰

 $^{^{10}}$ the policy shown above happens to be optimal when r(s)=-0.03 for all non-terminal states

Return

ullet return R_t : total discounted reward from time step t

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$$

- discount $\gamma \in [0,1]$: to estimate the present value of future rewards
 - (value of receiving reward r after k time steps) = $\gamma^k r$
- we value immediate reward above delayed reward
 - $\gamma \approx 0$ leads to "myopic" evaluation
 - ho $\gamma pprox 1$ leads to " \qquad " evaluation

* goal of RL: find optimal policy π^* that maximizes the expected return

$$\pi^* = \operatorname*{argmax}_{\pi} \mathbb{E}[R \,|\, \pi]$$

- why discount?
 - ▶ sooner rewards probably do have higher utility than later rewards
 - also helps our algorithms

(source: Abbeel & Klein)

Value function

- ullet gives the ${f value}$ of state s
- 1. state-value function $V^{\pi}(s)$:
 - lacktriangle expected return, starting from state s, and then following policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_t \mid s_t = s]$$

- 2. action-value function $Q^{\pi}(s, a)$:
 - \triangleright expected return, starting from s, taking action a, and then following π

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[R_t \mid s_t = s, a_t = a]$$

- 3. advantage function A^{π}
 - \blacktriangleright measures how much better action a is than what policy π would've done

$$A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$$

• example: grid world

- (left) a policy π for the 4×3 world¹²
- lacktriangle (right) values of the states, given policy π

¹¹Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited

 $^{^{12}}$ this π happens to be optimal when r(s)=-0.04 for all non-terminal states and no discounting

Bellman equations

- value function can be decomposed into two parts:
 - 1. immediate reward r_t
 - 2. discounted value of successor state $\gamma V(s_{t+1})$

$$V(s) = \mathbb{E}[R_t \mid s_t = s]$$

$$= \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots \mid s_t = s]$$

$$= \mathbb{E}[r_t + \gamma (r_{t+1} + \gamma r_{t+2} + \dots) \mid s_t = s]$$

$$= \mathbb{E}[r_t + \gamma R_{t+1} \mid s_t = s]$$

$$= \mathbb{E}\underbrace{\begin{bmatrix} r_t + \gamma V(s_{t+1}) \\ 0 \end{bmatrix}} \mid s_t = s$$

Solving Bellman equations

- Bellman equation: a _____ equation
 - can be solved directly

$$\begin{bmatrix} V(1) \\ \vdots \\ V(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \cdots & \mathcal{P}_{1n} \\ \vdots & \ddots & \vdots \\ \mathcal{P}_{n1} & \cdots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} V(1) \\ \vdots \\ V(n) \end{bmatrix}$$
$$\mathbf{V} = \mathbf{R} + \gamma \mathbf{P} \mathbf{V}$$
$$= (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathbf{R}$$

- ▶ $O(n^3)$ complexity for n states \Rightarrow possible only for *small* problems
- iterative methods for large MDPs
 - dynamic programming (DP)
 - Monte-Carlo (MC) evaluation
 - temporal difference (TD) learning

Optimal value function

- optimal value function specifies the best possible performance
 - ▶ an MDP is "solved" when we know the optimal ____ function
- optimal state-value function $V^*(s)$
 - the maximum value function over all policies

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

- ullet optimal action-value function $Q^*(s,a)$
 - the maximum action-value function over all policies

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a)$$

Optimal policy

- theorem: for any MDP
 - there exists an optimal policy π*
 - \triangleright is better than or equal to all other policies¹³: $\pi^* \geq \pi, \forall \pi$
 - ightharpoonup achieves the optimal value function: $V^{\pi^*}(s) = V^*(s)$
 - $\,\,{}^{}_{}_{}_{}^{}$ achieves the optimal action-value function: $\,Q^{\pi^*}(s,a)=\,Q^*(s,a)\,$
- optimal policy can be found by maximizing over $Q^*(s,a)$
 - if we know $Q^*(s, a)$, we immediately have the optimal policy

$$\pi^*(a \mid s) = \begin{cases} 1 & \text{if } a = \operatorname*{argmax}_{a \in \mathcal{A}} Q^*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

¹³ partial ordering over policies: $\pi \geq \pi'$ if $V^{\pi}(s) \geq V^{\pi'}(s), \forall s$

• example: grid world

(source: [Russell and Norvig, 2016]14)

- (a) an optimal policy for the stochastic environment with $r(s) = -0.04^{15}\,$
- (b) optimal policies for four different ranges of $\boldsymbol{r}(\boldsymbol{s})$

¹⁴Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited

¹⁵in the nonterminal states

Clarification

- similar but distinct concepts:
 - reward: 1-step numerical feedback
 - return: sum of rewards over the agent's trajectory
 - value: expected sum of rewards over the agent's trajectory (= avg _____)
- episodic vs continuing:
 - episodic task
 - □ consider return over finite horizon (e.g. games, maze)
 - continuing task
 - □ consider return over infinite horizon (e.g. juggling, balancing)

Outline

Introduction

Markov Decision Process

Summary

Summary

- reinforcement learning (RL): "learn by interaction"
 - a general-purpose framework for decision making
 - elements: policy (agent behavior), value (utility of state/action), model
 - ▶ deep RL: use of neural nets + backprop for any of these elements
- approaches to reinforcement learning
 - lacktriangle value-based: estimate optimal value function $V^*(s)$ or $Q^*(s,a)$
 - DP learning, TD learning, Sarsa (on-policy), Q-learning (off-policy)
 - lacktriangle policy-based: search directly for optimal policy π^*
 - ▶ policy gradient, actor-critic/A3C, TRPO, PPO, DDPG
 - model-based: build a model of environment and plan using it
- deep reinforcement learning (DRL): use deep neural nets
 - ▶ to represent value function, policy, and/or model (trained via SGD)