LLM

16:10 ••• 51

Ø

ChatGPT

Settimana 1 → Fondamenta (Python + ML classico)

of Obiettivo: rispolverare Python e assicurarti che i concetti base di ML siano solidi.

- · Giorni 1-2 (Python + librerie essenziali)
 - · Python: funzioni, classi, gestione file.
 - NumPy: array, operazioni vettoriali, broadcasting.
 - Pandas: caricamento CSV, manipolazione tabelle.
 - Matplotlib: plot base.
- Giorni 3–7 (ML classico con freeCodeCamp)
 - Regressione lineare/logistica.
 - · Classificazione.
 - · Clustering (K-means).
 - Overfitting/underfitting.
 - Train/validation/test split.
 - Mini-progetto: Iris dataset o MNIST → allenare un classificatore semplice.

16:10

ChatGPT

◆ Settimana 2 → Deep Learning conPyTorch

Obiettivo: padroneggiare le basi delle reti neurali moderne con PyTorch.

- Capitoli video FreeCodeCamp PyTorch (solo essenziali)
 - Tensori e autograd.
 - · Dataset + DataLoader.
 - nn.Module e training loop.
 - · Loss e ottimizzatori.
 - · CNN su CIFAR-10.
- · Esercizi pratici
 - MLP su MNIST (classificazione numeri).
 - CNN su CIFAR-10 (immagini a colori).
 - Documenta ogni esperimento (accuracy, loss curve).
- Jay Alammar (lettura rapida)
 - Illustrated Word2Vec.
 - Illustrated RNN/LSTM.
 - — Ti dà contesto storico su NLP.

+

Fai una domanda

16:10 ••• 51

ChatGPT

Settimana 3 → Oltre i prerequisiti (Transformer + HuggingFace)

of Obiettivo: andare oltre i prerequisiti, così arrivi con un piccolo vantaggio.

- Transformer (Jay Alammar)
 - Illustrated Transformer → capire attenzione, positional encoding.
- · HuggingFace Course (sezioni essenziali)
 - Intro + Tokenizers.
 - Usare pipeline pre-addestrate (es. sentiment analysis, traduzione).
 - · Fine-tuning (anche solo leggendo i concetti).
- Mini-progetto finale (1–2 giorni)
 - Carica un modello HuggingFace preaddestrato (es. BERT, DistilBERT).
 - Fai sentiment analysis o classificazione di testo.
 - Documenta il workflow.

ı əctumana*j*

- Jay Alammar (Word2Vec, RNN/LSTM, Transformer).
- HuggingFace Course → solo: intro, tokenizer, pipeline, fine-tuning overview.
- Mini-progetto: carica un modello preaddestrato (es. DistilBERT) e fai sentiment analysis o text classification.

VIDEO PYTORCH:

- ★ Capitoli da seguire (essenziali)
- √ Totale: ~8–10h effettive di studio + pratica.
 - 1. Introduzione a PyTorch e Tensori
 - Creazione e manipolazione di tensori
 - Operazioni matematiche base
 - Autograd (gradiente automatico)
 - Fondamentale per capire come funziona il training.
 - 2. Dataset e DataLoader
 - Creazione dataset personalizzati
 - DataLoader per batch e shuffle
 - Serve per capire come gestire dati reali.
 - 3. Costruire modelli con nn.Module
 - Definire layer sequenziali
 - Funzioni di attivazione
 - Uso di forward()

 - 4. Training loop
 - Forward → Loss → Backward → Optimizer step
 - Funzioni di loss (MSE, CrossEntropy)
 - Devi saper leggere/scrivere un training loop semplice.
 - 5. Classificazione immagini (MNIST, CIFAR-10)
 - Costruire un MLP su MNIST
 - Costruire una CNN su CIFAR-10
 - Ottimo per consolidare tutto: dataset, modello, training.
 - 6. Introduzione agli Embedding
 - Uso di torch.nn.Embedding su sequenze testuali
 - Ti dà l'infarinatura NLP classico che cercavi.

📌 Capitoli da saltare o guardare solo se avanza tempo

• Deployment, salvataggio e caricamento modelli → non ti serve come prerequisito.

- Visione dettagliata su API poco usate (es. funzioni matematiche avanzate di PyTorch).
- Progetti molto lunghi su dataset complessi → rischiano di portarti via tempo senza valore per i prerequisiti.