SEQUENCE LISTING

8.00

<110> Jacobs, Kenneth McCoy, John M LaVallie, Edward R Racie, Lisa A Evans, Cheryl Merberg, David Treacy, Maurice Spaulding, Vikki <120> SECRETED PROTEINS AND POLYNUCLEOTIDES ENCODING THEM <130> 00766.000091.10 <150> 09/746,783 <151> 2000-12-21 <160> 231 <170> PatentIn version 3.2 <210> 1 <211> 2043 <212> DNA <213> Homo sapiens <400> ctgaatgccc catgcgcacc ccacagctcg cgctcctgca agtgttcttt ctggtgttcc 60 ccgatggcgt ccggcctcag ccctcttcct ccccatcagg ggcagtgccc acqtctttqq 120 agetgeageg agggaeggat ggeggaacce tecagtecee tteagaggeg actgeaacte 180 gcccggccgt gcctggactc cctacagtgg tccctactct cqtqactccc tcqqccctq 240 ggaataggac tgtggacctc ttcccagtct taccgatctg tgtctgtgac ttgactcctg 300 gageetgega tataaattge tgetgegaea gggaetgeta tetteteeat eegaggaeag 360 ttttctcctt ctgccttcca ggcagcgtaa ggtcttcaag ctgggtttgt gtagacaact 420 ctgttatctt caggagtaat tccccgtttc cttcaagagt tttcatggat tctaatggaa 480 tcaggcagtt ttgtgtccat gtgaacaact caaacttaaa ctatttccag aagcttcaaa 540 aggtcaatgc aaccaacttc caggccctgg ttgcagagtt tggaggcgaa tcattcactt 600 caacattcca aactcaatca ccaccatctt tttacagggc cggggacccc attcttactt 660 acttececaa gtggtetgta ataagettge tgagacaace tgeaggagtt ggagetgggg 720 gactotgtgc tgaaagcaat cotgoaggtt tootagagag taaaagtaca acttgcacto 780 gtttttttca agaacctggc tagtagctgt accttggatt cagccctcaa tgctgcctct 840 tactataact tcacagtctt aaaggttcca agaagcatga ctgatccaca gaatatggag 900 ttccaggttc ctgtaatact tacctcacag gctaatgctc ctctgttggc tggaaacact 960

tgtcagaatg tagtttctca ggtcacctat gagatagaga ccaatgggac ttttggaatc 1020 1080 caqaaaqttt ctqtcaqttt qqqacaaacc aacctgactg ttgagccagg cgcttcctta cagcaacact tcatccttcg cttcagggct tttcaacaga gcacagctgc ttctctcacc 1140 agtcctagaa gtgggaatcc tggctatata gttgggaagc cactcttggc tctgactgat 1200 1260 gatataagtt actcaatgac cctcttacag agccagggta atggaagttg ctctgttaaa 1320 agacatgaag tgcagtttgg agtgaatgca atatctggat gcaagctcag gttgaagaag gcagactgca gccacttgca gcaggagatt tatcagactc ttcatggaag gcccagacca 1380 gagtatgttg ccatctttgg taatgctgac ccagcccaga aaggagggtg gaccaggatc 1440 ctcaacaggc actgcagcat ttcagctata aactgtactt cctgctgtct cataccagtt 1500 1560 tccctggaga tccaggtatt gtgggcatat gtaggtctcc tgtccaaccc gcaagctcat 1620 gtatcaggag ttcgattcct ataccagtgc cagtctatac aggattctca gcaagttaca 1680 gaagtatett tgacaactet tgtgaacttt gtggacatta cecagaagee acageeteea aggggccaac ccaaaatgga ctggaaatgg ccattcgact tctttccctt caaagtggca 1740 ttcagcagag gagtattctc tcaaaaatgc tcagtctctc ccatccttat cctgtgcctc 1800 1860 ttaqaacttq qaqttctcaa cctagagact atgtgaagaa aagaaaataa tcagatttca gttttcccta tgagaaactc tgaggcagcc acttatcttg gctaaataga acctcacctg 1920 1980 ctcatqacca qaqaqcattt aggataatag aggacctaac tgaaggaatc cttgtatatg 2040 2043 aaa

<210> 2

<211> 263

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Thr Pro Gln Leu Ala Leu Leu Gln Val Phe Phe Leu Val Phe 1 5 10 15

Pro Asp Gly Val Arg Pro Gln Pro Ser Ser Ser Pro Ser Gly Ala Val 20 25 30

Pro Thr Ser Leu Glu Leu Gln Arg Gly Thr Asp Gly Gly Thr Leu Gln 35 40 45

Ser Pro Ser Glu Ala Thr Ala Thr Arg Pro Ala Val Pro Gly Leu Pro 50 55 60

Thr Val Val Pro Thr Leu Val Thr Pro Ser Ala Pro Gly Asn Arg Thr

Val Asp Leu Phe Pro Val Leu Pro Ile Cys Val Cys Asp Leu Thr Pro

Gly Ala Cys Asp Ile Asn Cys Cys Cys Asp Arg Asp Cys Tyr Leu Leu 105

His Pro Arg Thr Val Phe Ser Phe Cys Leu Pro Gly Ser Val Arg Ser 120

Ser Ser Trp Val Cys Val Asp Asn Ser Val Ile Phe Arg Ser Asn Ser 135

Pro Phe Pro Ser Arg Val Phe Met Asp Ser Asn Gly Ile Arg Gln Phe 150 155

Cys Val His Val Asn Asn Ser Asn Leu Asn Tyr Phe Gln Lys Leu Gln 170

Lys Val Asn Ala Thr Asn Phe Gln Ala Leu Val Ala Glu Phe Gly Gly 185

Glu Ser Phe Thr Ser Thr Phe Gln Thr Gln Ser Pro Pro Ser Phe Tyr 200

Arg Ala Gly Asp Pro Ile Leu Thr Tyr Phe Pro Lys Trp Ser Val Ile 210

Ser Leu Leu Arg Gln Pro Ala Gly Val Gly Ala Gly Gly Leu Cys Ala 225

Glu Ser Asn Pro Ala Gly Phe Leu Glu Ser Lys Ser Thr Thr Cys Thr 250

Arg Phe Phe Gln Glu Pro Gly 260

<210> 3

<211> 1263

<212> DNA

<213> Homo sapiens

gagcagctca tcaacccctt tggagaggat gatgatgatt ttgagaccaa ctggattgtc 60

gacaggaatt tgcaggtgtc cctgttggct gtggatgaga tgcaccagga cctgcctcgg 120 atggagccgg acatgtactg gaataagccc gagccacagc ccccctacac agctgcttcc 180 gcccagttcc gtcgagcctc ctttatgggc tccaccttca acatcagcct gaacaaagag 240 gagatggagt tccagcccaa tcaggaggac gaggaggatg ctcacgctgg catcattggc 300 360 cgcttcctag gcctgcagtc ccatgatcac catcctccca gggcaaactc aaggaccaaa ctactqtqqc ccaaqaggga atcccttctc cacqagggcc tgcccaaaaa ccacaaggca 420 480 qccaaacaqa acqttaqqqq ccaggaagac aacaaggcct ggaagcttaa ggctgtggac gccttcaagt ctgccccact gtatcagagg ccaggctact acagtgcccc acagacgccc 540 ctcagcccca ctcccatgtt cttcccccta gaaccatcag cgccgtcaaa gcttcacagt 600 gtcacaggca tagacaccaa agacaaaagc ttaaagactg tgagttctgg ggccaagaaa 660 720 agttttgaat tgctctcaga gagcgatggg gccttgatgg agcacccaga agtatctcaa gtgaggagga aaactgtgga gtttaacctg acggatatgc cagagatccc cgaaaatcac 780 ctcaaagaac ctttggaaca atcaccaacc aacatacaca ctacactcaa agatcacatg 840 gatccttatt gggccttgga aaacagggat gaagcacatt cctaacctgc ttcctaatgg 900 ggatgcttcg ccagccaggt cctcacctgt gtgtacacca gcaggacact gatccagtca 960 cagccataca gctgtccaca ctgaagaaca tgtcctacaa cagcctgaat caaatggcta 1020 1080 qcttaataqa taaaaatccc agactacttc agcctttaat gccttttatt cataaaaact gtgaaagcta gactgaacca ttggaaacat ttaactcaga ctctggattc agagtcggga 1140 accettagtt ctatetgaat ccaagacage cacacettag tatactgece aaactaatga 1200 1260 1263 aaa

<210> 4

<211> 261

<212> PRT

<213> Homo sapiens

<400> 4

Met His Gln Asp Leu Pro Arg Met Glu Pro Asp Met Tyr Trp Asn Lys 1 5 10 15

Pro Glu Pro Gln Pro Pro Tyr Thr Ala Ala Ser Ala Gln Phe Arg Arg 20 25 30

Ala Ser Phe Met Gly Ser Thr Phe Asn Ile Ser Leu Asn Lys Glu Glu 35 40 45

Met Glu Phe Gln Pro Asn Gln Glu Asp Glu Glu Asp Ala His Ala Gly Ile Ile Gly Arg Phe Leu Gly Leu Gln Ser His Asp His His Pro Pro Arg Ala Asn Ser Arg Thr Lys Leu Leu Trp Pro Lys Arg Glu Ser Leu Leu His Glu Gly Leu Pro Lys Asn His Lys Ala Ala Lys Gln Asn Val Arg Gly Gln Glu Asp Asn Lys Ala Trp Lys Leu Lys Ala Val Asp Ala 120 Phe Lys Ser Ala Pro Leu Tyr Gln Arg Pro Gly Tyr Tyr Ser Ala Pro 135 Gln Thr Pro Leu Ser Pro Thr Pro Met Phe Pro Leu Glu Pro Ser 155 150 Ala Pro Ser Lys Leu His Ser Val Thr Gly Ile Asp Thr Lys Asp Lys 170 165 Ser Leu Lys Thr Val Ser Ser Gly Ala Lys Lys Ser Phe Glu Leu Leu 180 Ser Glu Ser Asp Gly Ala Leu Met Glu His Pro Glu Val Ser Gln Val 200 Arg Arg Lys Thr Val Glu Phe Asn Leu Thr Asp Met Pro Glu Ile Pro 215 210 Glu Asn His Leu Lys Glu Pro Leu Glu Gln Ser Pro Thr Asn Ile His 235 225 230 Thr Thr Leu Lys Asp His Met Asp Pro Tyr Trp Ala Leu Glu Asn Arg 250 245 Asp Glu Ala His Ser

<210> 5 <211> 894 <212> DNA 260

<213> Homo sapiens

400 5						
<400> 5 ctttgagggt	tttttgtttt	ttgtttttc	taggatttca	ttgtgatgtt	ttggttttgt	60
tttttgcttt	ttgtttaagt	tgtgctgaca	ccaaacacat	ccagtttata	atcagtacat	120
tggaaagctg	gtattgatgt	agaaccagtg	cataactttt	tatggggttt	tgttattggt	180
ttttttttg	taaagtgtga	ataaaaggta	tgtttactca	tttttcctga	acactgtgtt	240
ggtaatgtgc	atcatgacaa	tttccagtga	aggtgagctg	gagctggttg	gactaatgag	300
actgaggaag	cagcttttcc	tacgatctgc	attatgtaat	cacaggtcca	gagagcttta	360
tggaagcggg	agaggaggag	cacttactca	tgttgtattt	gttaatggag	gatgtcatct	420
tttcatagat	gctggaacta	gagtgcactt	gttagatgct	aaaggtttga	gctttacaca	480
aaatgtcttc	atctgtattt	gttattgtct	acaatatatt	tgaatttggg	gcagcatatt	540
aagatgtaat	gccctgttat	gtctggaaaa	aacttgtttt	gcttcttcca	ggcaaagggc	600
attttgtgga	tcagtttgaa	cagcttctcc	accttatttg	gacagtgata	aattgaacca	660
agagtgtaga	tttacaagtg	taaccttcaa	aagaggaaga	actatttggg	gtctgtaggt	720
aatgaacagt	cacaccaaaa	tagactatga	tgcttttgtt	aagaaaggtt	tcatgtttta	780
gatattttcc	gtgtcctaaa	taattttcaa	taatctataa	tccctaaaat	gcaataaaaa	840
ctagtatgtt	ttcaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaa	894

<210> 6

<211> 92

<212> PRT

<213> Homo sapiens

<400> 6

Met Cys Ile Met Thr Ile Ser Ser Glu Gly Glu Leu Glu Leu Val Gly 1 5 10 15

Leu Met Arg Leu Arg Lys Gln Leu Phe Leu Arg Ser Ala Leu Cys Asn 20 25 30

His Arg Ser Arg Glu Leu Tyr Gly Ser Gly Arg Gly Gly Ala Leu Thr 35 40 45

His Val Val Phe Val Asn Gly Gly Cys His Leu Phe Ile Asp Ala Gly 50 55 60

Thr Arg Val His Leu Leu Asp Ala Lys Gly Leu Ser Phe Thr Gln Asn 65 70 75 80

Val Phe Ile Cys Ile Cys Tyr Cys Leu Gln Tyr Ile 85 90

<211> 784 <212> DNA <213> Homo sapiens <400> gcggccgcag gtctacttgt ggcgagcagt ccagcacagc ctcacagtgc agagcatgag 60 ctttggagcc tgccccacc ctagctttgt gaccttaagt gagctacata gcttctcatg 120 tgtaaactac tcatcataat ggttctgacc tcagtggttt gttgtgttct aggaaatgat 180 gccagtgaat gcgtagtccc agcctcagca caggggagcc accttgaagc tctcaaatat 240 cactgttgtg aatacagaga gggaaaacca actgtaacgt gccacccaaa ttttttcaga 300 360 ttaatacatc attcatcaga cttcattcgt gatctcgaag agtgacatca gtcttccttg 420 480 attitattit atgittitig gtacagaaag cicattacta giccigicca gcaacgigcc 540 tctcctqqcc ctagaqttct tggaaatagc ccaggccaaa gagaaggcct ttctccccat 600 qqtcaqccac acqttccaca tgcgcacaga ggagtctgat gcctcacagg agggcgatga 660 cctacccaaq tcctcaqcaa acaccagcca tcccaagcag gatgacagcc ccaagtcctc agaagaaacc atccagccca aggagggtga catccccaag gccccagaag aaaccatcca 720 atccaagaag gaggacctcc ccaagtcctc ggaaaaagcc atccagccca aagagagtaa 780 784 catc

<210> 8

<210>

7

<211> 140

<212> PRT

<213> Homo sapiens

<400> 8

Met Lys Arg Ile Ser Leu Val Leu Leu Leu His Phe Tyr Leu Ile Tyr 1 5 10 15

Phe Ile Leu Phe Tyr Phe Met Phe Phe Gly Thr Glu Ser Ser Leu Leu 20 25 30

Val Leu Ser Ser Asn Val Pro Leu Leu Ala Leu Glu Phe Leu Glu Ile 35 40 45

Ala Gln Ala Lys Glu Lys Ala Phe Leu Pro Met Val Ser His Thr Phe 50 55 60

His Met Arg Thr Glu G		Ala Ser Gln 75	Glu Gly Asp	Asp Leu 80
Pro Lys Ser Ser Ala A	sn Thr Ser I	His Pro Lys 90	Gln Asp Asp	Ser Pro 95
Lys Ser Ser Glu Glu T 100		Pro Lys Glu 105	Gly Asp Ile 110	
Ala Pro Glu Glu Thr I	le Gln Ser 1 120	Lys Lys Glu	Asp Leu Pro 125	Lys Ser
Ser Glu Lys Ala Ile G	ln Pro Lys (135	Glu Ser Asn	Ile 140	
<210> 9 <211> 75 <212> DNA <213> Homo sapiens				
<400> 9			222222222	aaaaaaaaaa 60
aaaaaaaaaa aaaaaaaaaa	aaaaaaaaaa	aaadaaaaa	aadaaaaaaa	
aaaaaaaaa aaaaa				75
<210> 10 <211> 939 <212> DNA <213> Homo sapiens				
<400> 10 cgaagaagta gaagcatcga	aagcgttgga	gaggtgttac	cggaacggcg	gcgacaaggg 60
tgttcccgaa ctagagtggg	gcatacataa	tcttgctgct	atgcttcgaa	gctgtagtct 120
gaatcaacct aagttttaaa	cagaaggtga	acctctgaga	tagaaaatca	agtatatttt 180
aaaagaaggg atgtgggatc	aaggaggaca	gccttggcag	cagtggccct	tgaaccagca 240
acaatggatg cagtcattcc	agcaccaaca	ggatccaagc	cagattgatt	gggctgcatt 300
ggcccaagct tggattgccc	aaagagaagc	ttcaggacag	caaagcatgg	tagaacaacc 360
accaggaatg atgccaaatg	gacaagatat	gtctacaatg	gaatctggtc	caaacaatca 420
tgggaatttc caaggggatt	caaacttcaa	cagaatgtgg	caaccagaat	ggggaatgca 480
tcagcaaccc ccacaccccc	ctccagatca	gccatggatg	ccaccaacac	caggcccaat 540
ggacattgtt cctccttctg				
caacaggcat atatttaacg				

agtggggcca gtgaaccagt ttgactatca ggacctccag gacctccagc acctccccag 720
aatcgaagag aaaggccatc atcattcagg gatcgtcagc gttcacctat tgcacttcct 780
gtgaagcagg agcctccaca aattgacgca gtaaaacgca ggactcttcc cgcttggatt 840
cgcgaaggtc ttgaaaaaat ggaacgtgaa aagcagaaga aattggagaa agaaagaatg 900
gaacaacaac gttcacaatt gtccaaaaaa aaaaaaaaa 939

<210> 11

<211> 197

<212> PRT

<213> Homo sapiens

<400> 11

Met Trp Asp Gln Gly Gly Gln Pro Trp Gln Gln Trp Pro Leu Asn Gln 1 5 10 15

Gln Gln Trp Met Gln Ser Phe Gln His Gln Gln Asp Pro Ser Gln Ile 20 25 30

Asp Trp Ala Ala Leu Ala Gln Ala Trp Ile Ala Gln Arg Glu Ala Ser 35 40 45

Gly Gln Gln Ser Met Val Glu Gln Pro Pro Gly Met Met Pro Asn Gly 50 55 60

Gln Asp Met Ser Thr Met Glu Ser Gly Pro Asn Asn His Gly Asn Phe 65 70 75 80

Gln Gly Asp Ser Asn Phe Asn Arg Met Trp Gln Pro Glu Trp Gly Met 85 90 95

His Gln Gln Pro Pro His Pro Pro Pro Asp Gln Pro Trp Met Pro Pro 100 105 110

Thr Pro Gly Pro Met Asp Ile Val Pro Pro Ser Glu Asp Ser Asn Ser 115 120 125

Gln Asp Ser Gly Glu Phe Ala Pro Asp Asn Arg His Ile Phe Asn Gln 130 135 140

Asn Asn His Asn Phe Gly Gly Pro Pro Asp Asn Phe Ala Val Gly Pro 145 150 155 160

Val Asn Gln Phe Asp Tyr Gln Asp Leu Gln Asp Leu Gln His Leu Pro 165 170 175

Arg Ile Glu Glu Lys Gly His His His Ser Gly Ile Val Ser Val His 185

Leu Leu His Phe Leu 195

<210> 12

<211> 2343 <212> DNA <213> Homo sapiens

<400> 12 aggagagcag	ccggcagcgc	ctggaggccc	tgagagagct	gcaataaagg	aagaaacaga	60
				gcccttaaaa		120
				gatgtaagaa		180
				aataaatcag		240
				aattctaagc		300
						360
		,		attgactccc		
				gcagatcacc		420
ggacattgtt	accataggaa	tgctgtcctt	gccttgtggc	tggctatgta	cagccatagg	480
attgcctaca	atgtttggtt	atattatttg	tggtgtactt	ctgggacctt	caggactaaa	540
tagtattaag	tctattgtgc	aagtggagac	attaggagaa	tttggggtgt	tttttactct	600
ttttcttgtt	ggcttagaat	tttctccaga	aaagctaaga	aaggtgtgga	agatttcctt	660
acaagggccg	tgttacatga	cactgttaat	gattgcattt	ggcttgctgt	gggggcatct	720
cttgcggatc	aaacccacgc	agagcgtctt	catttccacg	tgtctgtcct	tgtcaagcac	780
acccctcgtg	tccaggttcc	tcatgggcag	tgctcggggt	gacaaagaag	gcgacattga	840
ctacagcacc	gtgctcctcg	gcatgctggt	gacgcaggac	gtgcagctcg	ggctcttcat	900
				tcttctagca		960
				tcactagcgg		1020
						1080
				tatcggaagc		
aagcaagggg	aacaaagaaa	tcctgatctt	gggaatatct	gcctttatct	tcttaatgtt	1140
aacggtcacg	gagctgctgg	acgtctccat	ggagctgggc	tgtttcctgg	ctggagcgct	1200
cgtctcctct	cagggccccg	tggtcaccga	ggagatcgcc	acctccatcg	aacccatccg	1260
cgacttcctg	gccatcgttt	tcttcgcctc	catagggctc	cacgtgttcc	ccacgtttgt	1320
ggcgtacgag	ctcacggtgc	tggtgttcct	caccttgtca	gtggtggtga	tgaagtttct	1380

1440 cctggcggcg ctggtcctgt ctctcattct gccgaggagc agccagtaca tcaagtggat cgtctctgcg gggcttgccc aggtcagcga gttttccttt gtcctgggga gccgggcgcg 1500 aagagcgggc gtcatctctc gggaggtgta cctccttata ctgagtgtga ccacgctcag 1560 cctcttgctc gccccggtgc tgtggagagc tgcaatcacg aggtgtgtgc ccagaccgga 1620 gagacggtcc agcctctgat ggctcggaga tgatggaccg tggaagggaa gcgtctgtgg 1680 ggagtgagcg cttagatggc cagcagctgc tccttctggg aagctcgcac cttggcaaca 1740 gaacagccct ctagcagagc gtcagtgcag tcgtgttatc ccggctttta cagaatattc 1800 ttgtcctatt ttagaatttt ccggagtagt ttatttgcag tctgttgatt atgtgcagta 1860 gacccgggac actgcgtttt accgatcacc ttgaatgtgg tgcctggatg tgcctttttt 1920 ttttttccct gaaattatta ttaattttct atkgkgagtt catcagttca tagtttttt 1980 agtaaagaag caaaattaaa aggcttttaa aaatgtacaa cttcagaatt ataatctgtt 2040 agtcaaatat ttgttattaa acatttctgt aatatgaagt tgtaatcctg gccgtgagct 2100 tggaagctta cttttgattc ttaaagccta tgttttctaa aatgagacaa atacggatgt 2160 ctatttgcct tttattgtaa cttttaaatg aaataatttc atgtcaattt ctattagata 2220 tatcacttaa aatatttggt tttaaatcac aagaatatgt attctttaat aaagataatt 2280 2340 tatgatcatg gtataattaa ttgaaattta ttaaaatctg tttttattaa aaaaaaaaa 2343 aaa

<210> 13

<211> 524

<212> PRT

<213> Homo sapiens

<400> 13

Met Glu Leu Leu Ala Ala Glu Lys His Gln Val Glu Ala Leu Lys Asn 1 5 10 15

Met Gln His Gln Asn Gln Ser Leu Ser Met Leu Asp Glu Ile Leu Glu 20 25 30

Asp Val Arg Lys Ala Ala Asp Arg Leu Glu Glu Glu Ile Glu Glu His 35 40 45

Ala Phe Asp Asp Asn Lys Ser Val Lys Gly Val Asn Phe Glu Ala Val 50 55 60

Leu Arg Val Glu Glu Glu Glu Ala Asn Ser Lys Gln Asn Ile Thr Lys 65 70 75 80

Arg Glu Val Glu Asp Asp Leu Gly Leu Ser Met Leu Ile Asp Ser Gln 85 Asn Asn Gln Tyr Ile Leu Thr Lys Pro Arg Asp Ser Thr Ile Pro Arg 105 Ala Asp His His Phe Ile Lys Asp Ile Val Thr Ile Gly Met Leu Ser 120 Leu Pro Cys Gly Trp Leu Cys Thr Ala Ile Gly Leu Pro Thr Met Phe 135 Gly Tyr Ile Ile Cys Gly Val Leu Leu Gly Pro Ser Gly Leu Asn Ser 150 Ile Lys Ser Ile Val Gln Val Glu Thr Leu Gly Glu Phe Gly Val Phe 170 Phe Thr Leu Phe Leu Val Gly Leu Glu Phe Ser Pro Glu Lys Leu Arg 185 Lys Val Trp Lys Ile Ser Leu Gln Gly Pro Cys Tyr Met Thr Leu Leu 200 Met Ile Ala Phe Gly Leu Leu Trp Gly His Leu Leu Arg Ile Lys Pro Thr Gln Ser Val Phe Ile Ser Thr Cys Leu Ser Leu Ser Ser Thr Pro 235 225 Leu Val Ser Arg Phe Leu Met Gly Ser Ala Arg Gly Asp Lys Glu Gly 250 Asp Ile Asp Tyr Ser Thr Val Leu Leu Gly Met Leu Val Thr Gln Asp 265 260 Val Gln Leu Gly Leu Phe Met Ala Val Met Pro Thr Leu Ile Gln Ala 285 280 275 Gly Ala Ser Ala Ser Ser Ser Ile Val Val Glu Val Leu Arg Ile Leu 295 300 290 Val Leu Ile Gly Gln Ile Leu Phe Ser Leu Ala Ala Val Phe Leu Leu 315 310 305

Cys Leu Val Ile Lys Lys Tyr Leu Ile Gly Pro Tyr Tyr Arg Lys Leu 325 330 335

His Met Glu Ser Lys Gly Asn Lys Glu Ile Leu Ile Leu Gly Ile Ser 340 345 350

Ala Phe Ile Phe Leu Met Leu Thr Val Thr Glu Leu Leu Asp Val Ser 355 360 365

Met Glu Leu Gly Cys Phe Leu Ala Gly Ala Leu Val Ser Ser Gln Gly 370 375 380

Pro Val Val Thr Glu Glu Ile Ala Thr Ser Ile Glu Pro Ile Arg Asp 385 390 395 400

Phe Leu Ala Ile Val Phe Phe Ala Ser Ile Gly Leu His Val Phe Pro 405 410 415

Thr Phe Val Ala Tyr Glu Leu Thr Val Leu Val Phe Leu Thr Leu Ser 420 425 430

Val Val Met Lys Phe Leu Leu Ala Ala Leu Val Leu Ser Leu Ile 435 440 445

Leu Pro Arg Ser Ser Gln Tyr Ile Lys Trp Ile Val Ser Ala Gly Leu 450 455 460

Ala Gln Val Ser Glu Phe Ser Phe Val Leu Gly Ser Arg Ala Arg Arg 465 470 475 480

Ala Gly Val Ile Ser Arg Glu Val Tyr Leu Leu Ile Leu Ser Val Thr 485 490 495

Thr Leu Ser Leu Leu Leu Ala Pro Val Leu Trp Arg Ala Ala Ile Thr 500 505 510

Arg Cys Val Pro Arg Pro Glu Arg Arg Ser Ser Leu 515 520

<210> 14

<211> 324

<212> DNA

<213> Homo sapiens

<400> 14

cgcagcccgg gccatgccgc acggctgctg accgcacgca ggggccggcc ccgaggacac

atgcggcggc	ctttgccgcc	tegeceetga	ccctctgccc	tgttctccat	gttgcatttc	120
tcgtcagttt	ctcgggcggt	gtagctgccg	ctgccaccag	agccggcggg	gcatcgcgct	180
gctcattcat	ccggccgcac	tttcttttcc	gtttccaccc	atcccttccc	atttccttct	240
ccctttcccc	gccagcttcg	catccatctc	ccccaccccg	taacccctcc	tgcctccatc	300
caccggggct	attgccgcaa	aaga				324
	o sapiens					
<400> 15 gctgaacatt	tcagaaatac	agaagttgaa	gcagcagctt	atgcaggtag	agcgggaaaa	60
ggccattctt	ttggccaacc	tacaggagtc	acagacacag	ctggaacaca	ccaagggggc	120
actgacggag	cagcatgagc	gggtgcaccg	gctcacagag	cacgtcaatg	ccatgagggg	180
cctgcaaagc	agcaaggagc	tcaaggctga	gctggacggg	gagaagggcc	gggactcagg	240
ggaggaggcc	catgactatg	aggtggacat	caatggttta	gagatccttg	aatgcaaata	300
cagggtggca	gtaactgagg	tgattgatct	gaaagctgaa	attaaggcct	taaaggagaa	360
atataataaa	tctgtagaaa	actacactga	tgagaaggcc	aagtatgaga	gtaaaatcca	420
gatgtatgat	gagcaggtga	caagccttga	gaagaccacc	aaggagagtg	gtgagaagat	480
ggcccacatg	gagaaggagt	tgcaaaagat	gaccagcata	gccaacgaaa	atcacagtac	540
ccttaatacg						550
<210> 16 <211> 170 <212> PRT <213> Home	o sapiens					
<400> 16						
Met Gln Va 1	l Glu Arg G 5	lu Lys Ala	Ile Leu Leu 10	Ala Asn Leu	ı Gln Glu 15	
Ser Gln Th	r Gln Leu G 20	lu His Thr	Lys Gly Ala 25	Leu Thr Glu	ı Gln His	
Glu Arg Va 35	_	eu Thr Glu 40	His Val Asn	Ala Met Arg	g Gly Leu	

Gln Ser Ser Lys Glu Leu Lys Ala Glu Leu Asp Gly Glu Lys Gly Arg 50 55 60

Asp Ser Gly Glu Glu Ala His Asp Tyr Glu Val Asp Ile Asn Gly Leu 65 Glu Ile Leu Glu Cys Lys Tyr Arg Val Ala Val Thr Glu Val Ile Asp Leu Lys Ala Glu Ile Lys Ala Leu Lys Glu Lys Tyr Asn Lys Ser Val Glu Asn Tyr Thr Asp Glu Lys Ala Lys Tyr Glu Ser Lys Ile Gln Met 115 Tyr Asp Glu Gln Val Thr Ser Leu Glu Lys Thr Thr Lys Glu Ser Gly 135 130 Glu Lys Met Ala His Met Glu Lys Glu Leu Gln Lys Met Thr Ser Ile 155 150 145 Ala Asn Glu Asn His Ser Thr Leu Asn Thr 165 <210> 17 <211> 505 <212> DNA <213> Homo sapiens <400> 17 ttccatgagt gaattcatcc aagggcacgg gttcagcaag gaaaaaaggt taaccgtggt 60 tccaccagca aaaagagatt gtcagcagcc tgtgcttccg taccgccaca gtgttcacaa 120 ctagccggga ggcaagactg cccaactgtc agtcctgaca cagctctccc tgaggagcag 180 ccacattcca gctcccagtg cgcccctctc cactgtctct ccaagcctcc tcacccctag 240 tetteatete etgtggacaa acatetgggg tggaagtttt gtagecacae acaggataet 300 gcccaagatc cagcgggtgt tttcttctcg gttgttagat gtacaattgg attaatgtcc 360 atcgttttgg aagacgagag aaagttgaga agaacacgaa gcacagaccc tgatgtgata 420 aaacattttg tggtttctct gagtcacaga taaacttctg ccatcaaatg gctacagttc 480 505 atttaaattt aaaaaaaaaa aaaaa <210> 18 <211> 481 DNA <213> Homo sapiens <400> 18 ggatactgta ataaatagga gacagctaca gtgatccaac taaaccaaca ggggattttc

<210> 19

<211> 107

<212> PRT

<213> Homo sapiens

<400> 19

Met Val Gln Ile Ile Lys Asp Thr Asn Glu Phe Lys Thr Phe Leu Thr 1 5 10 15

Ala Ala Gly His Lys Leu Ala Val Val Gln Phe Ser Ser Lys Arg Cys 20 25 30

Gly Pro Cys Lys Arg Met Phe Pro Val Phe His Glu Leu Ala Glu Thr 35 40 45

Cys His Ile Lys Thr Ile Pro Thr Phe Gln Met Phe Lys Lys Ser Gln 50 55 60

Lys Val Thr Leu Phe Ser Arg Ile Lys Arg Ile Ile Cys Cys Tyr Arg 65 70 75 80

Ser Gly Phe Met Ser Asn Leu Ile Phe Glu Phe Cys Gly Ala Asp Ala 85 90 95

Lys Lys Leu Glu Ala Lys Thr Gln Glu Leu Met 100 105

<210> 20

<211> 1864

<212> DNA

<213> Homo sapiens

<400> 20

ggccaaagag gcctattcct gtgtgcaatc agtaccttga aggcagaaca ttctgaataa

60

120 agttggaaaa agaacagctt tgctttgcaa agattgatga cagactggtt cctcagaggc ctaggctacc cgtcacccct ttttccagag cgagggcctg gaatgaaggc agtttatcct 180 240 ctgtccctgg agcctggggt ttgctttggc tccttgaggt ggaagagact aagagggcag ctgcccagag cagctgtgtg tacctggctc ctctcaggct tcctgatccc ttccattgca 300 360 ctgcgcctta tccctcagcc agccagacag cctccctgct cctgaccagc agatacgttt cggagtggtt ggtgtggttt ttgtgatgag ggcagcacgt ggtggccaag gtggcaagct 420 gagtctcaca ggctcactcc ctcgttggtt ccctgtggga atggtaggcc aggcccarta 480 540 agccatgccc caacacgtcc tctcctccgg aggaagggcc agctgccarc tgartcagca 600 gctagtccat agcacagect tataactgta aagccaggca ttgcccatga gcagagctgg 660 aaccagagct tcagtcagta agagggagga ttaccttcag gagaaggcaa ggaagaaaac 720 tggctgctat ctttatagtt ccactgccct aaccaagtgt ccacattcta aatgtgtagt gtccatccct tatgtaatag tggtttcccg cccaaagtga gactttcctt ttaattggag 780 aagggtatag aggtagtcca ggtgggaacg ccagaagtgc tgattgccca gccattggga 840 900 ccacctgttc ttgccccact accctctagt gggaggccaa agtaaaggct ggctggtggg tgtctgtgga ttgaggatgt ggcagggact ggtcctccca cctccctctg gccaaagatg 960 ggctttgccc gctgtgtgcc tgtcaccacc caccagcagt catgccctgg gcttcccaaa 1020 tggagaggta gcaggcaacg tttttaaaaa gaaagaaaac aggaaactgt attgtgtcgg 1080 1140 gggaggcggg agggagatga ggaaacggtt tggattttgt gtgtgggagg gtattttttg 1200 qqqqtaqttq tctgtaactt tcctaagtgc tttttttcct tttcttttt aaagtaagtt gcaggctttg gcttggaaaa ccccaggggg atggggggca gaaacctgag gctgctgccc 1260 tttatctgcc ttcacggtac tgtccccttc ccccagctcc tccctgaccc catgggccag 1320 1380 gcctcagacc ttccagctaa ccgcttccca tgagccacta ctctgatgtc agcctataac caaaggaget ggggggteca ggeetggtga ccaacettte teageeeact caateagggt 1440 1500 getececace tgeaggeagg aggeaacace etatetgeta ceateagece ettecagage ccatctgccc cgcccagccc tgccctgccc agccataccc tgctctgccc catctggggg 1560 tgccctgctc agggatgggc tggcagggct gtacccagcc tccctggtaa gcagagactc 1620 1680 aagaaacctc tggggtcctg ttttctggtc gtgtgatccc aggggtgcac atgggcccct 1740 tgggtgtctg aacagaaggg catgggaggg agggctgcac ccctgcagtc ttactctgct 1800 ggtgtagcgg gcagmtgccc actcccaccc caccctgcac cgcgggctcc tgagtcggca 1860

aaaa 1864

<210><211><212><213>	21 102 PRT Homo	sapi	iens												
<400>	21														
Val Le	u Pro	Thr	Cys 5	Arg	Gln	Glu	Ala	Thr 10	Pro	Tyr	Leu	Leu	Pro 15	Ser	
Ala Pr	o Ser	Arg 20	Ala	His	Leu	Pro	Arg 25	Pro	Ala	Leu	Pro	Cys 30	Pro	Ala	
Ile Pr	o Cys 35	Ser	Ala	Pro	Ser	Gly 40	Gly	Ala	Leu	Leu	Arg 45	Asp	Gly	Leu	
Ala Gl 50	-	Tyr	Pro	Ala	Ser 55	Leu	Val	Ser	Arg	Asp 60	Ser	Arg	Asn	Leu	
Trp Gl 65	y Pro	Val	Phe	Trp 70	Ser	Cys	Asp	Pro	Arg 75	Gly	Ala	His	Gly	Pro 80	
Leu Gl	y Cys	Leu	Asn 85	Arg	Arg	Ala	Trp	Glu 90	Gly	Gly	Leu	His	Pro 95	Cys	
Ser Le	eu Thr	Leu 100	Leu	Val											
<210><211><211><212><213>	22 1041 DNA Homo	sap:	iens												
<400>	22 cqta	ctqai	tttc	ca t	cgtt	gcat	t ta	caac	tgct	acaa	aaaa	tgc ·	cagca	actcca	60
														acccag	120
														agaaaa	180
acggtt	gcct	gtga	tgat	gg a	tgaa	gctc	t ga	gcta	tgta	gag	aaga	gac	agaa	acgaga	240
tcctg	gttc	actt	atga	ag t	gata	gtag	t tg	atga	tggc	agt	aaag	atc	agac	ctcaaa	300
ggtage	ctttt	aaat	attg	cc a	gaaa	tatg	g aa	gtga	caaa	gta	cgtg	tga	taac	cctggt	360
gaagaa	atcgt	ggaa	aagg	tg g	agcg	atta	g aa	tggg	tata	ttc	agtt	ctc	gagg	agaaaa	420
gatcci	ttatg	gcag	atgc	tg a	tgga	gcca	c aa	agtt	tcca	gat	gttg	aga	aatt	agaaaa	480

ggggctaaat gatctacagc cttggcctaa tcaaatggct atagcatgtg gatctcgagc 540 tcatttagaa aaagaatcaa ttgctcagcg ttcttacttc cgtactcttc tcatgtatgg 600 gttccacttt ctggtgtggt tcctttgtgt caaaggaatc agggacacac agtgtgggtt 660 caaattattt actcgagaag cagcttcacg gacgttttca tctctacacg ttgaacgatg 720 ggcatttgat gtagaactac tgtacatagc acagttcttt aaaattccaa tagcagaaat 780 tgctgtcaac tggacagaaa ttgaaggttc taaattagtt ccattctgga gctggctaca 840 aatgggtaaa gacctacttt ttatacgact tcgatatttg actggtgcct ggaggcttga 900 gcaaactcgg aaaatgaatt aggttgtttg cagtcttcag ttgtgttctt atgcttcagt 960 gtcacatttc atttcatttg aaactaaaat tttaagtaaa gctgaaataa acttcttgtc 1020 1041 attgtcaaaa aaaaaaaaa a

<210> 23

<211> 291

<212> PRT

<213> Homo sapiens

<400> 23

Met Pro Ala Leu His Arg His Glu Glu Glu Lys Phe Phe Leu Asn Ala 1 5 10 15

Lys Gly Gln Lys Glu Thr Leu Pro Ser Ile Trp Asp Ser Pro Thr Lys 20 25 30

Gln Leu Ser Val Val Val Pro Ser Asn Asn Glu Glu Lys Arg Leu Pro 35 40 45

Val Met Met Asp Glu Ala Leu Ser Tyr Val Glu Lys Arg Gln Lys Arg 50 55 60

Asp Pro Ala Phe Thr Tyr Glu Val Ile Val Val Asp Asp Gly Ser Lys 70 75 80

Asp Gln Thr Ser Lys Val Ala Phe Lys Tyr Cys Gln Lys Tyr Gly Ser 85 90 95

Asp Lys Val Arg Val Ile Thr Leu Val Lys Asn Arg Gly Lys Gly Gly
100 105 110

Ala Ile Arg Met Gly Ile Phe Ser Ser Arg Gly Glu Lys Ile Leu Met 115 120 125 Ala Asp Ala Asp Gly Ala Thr Lys Phe Pro Asp Val Glu Lys Leu Glu 130 135 140

Lys Gly Leu Asn Asp Leu Gln Pro Trp Pro Asn Gln Met Ala Ile Ala 145 150 155 160

Cys Gly Ser Arg Ala His Leu Glu Lys Glu Ser Ile Ala Gln Arg Ser 165 170 175

Tyr Phe Arg Thr Leu Leu Met Tyr Gly Phe His Phe Leu Val Trp Phe 180 185 190

Leu Cys Val Lys Gly Ile Arg Asp Thr Gln Cys Gly Phe Lys Leu Phe 195 200 205

Thr Arg Glu Ala Ala Ser Arg Thr Phe Ser Ser Leu His Val Glu Arg 210 215 220

Trp Ala Phe Asp Val Glu Leu Leu Tyr Ile Ala Gln Phe Phe Lys Ile 225 230 235 240

Pro Ile Ala Glu Ile Ala Val Asn Trp Thr Glu Ile Glu Gly Ser Lys 245 250 255

Leu Val Pro Phe Trp Ser Trp Leu Gln Met Gly Lys Asp Leu Leu Phe 260 265 270

Ile Arg Leu Arg Tyr Leu Thr Gly Ala Trp Arg Leu Glu Gln Thr Arg 275 280 285

Lys Met Asn 290

<210> 24

<211> 29

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (2)...(2)

<223> n is a, c, g, or t

<400> 24

cnccatcggg gaacaccaga aagaacact

<210> 25

```
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 25
                                                                       29
tntctggcat atccgtcagg ttaaactcc
<210> 26
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 26
                                                                       29
cnctggttct acatcaatac cagctttcc
<210> 27
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 27
                                                                       29
tnacaacagt gatatttgag agcttcaag
<210> 28
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 28
                                                                       29
cngtaacacc tctccaacgc tttcgatgc
<210> 29
```

```
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 29
                                                                     29
gncaaggaca gacacgtgga aatgaagac
<210> 30
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 30
                                                                     29
angtccacct catagtcatg ggcctcctc
<210> 31
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 31
                                                                     29
tntcagccag ctcatggaaa acaggaaac
<210> 32
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 32
                                                                     29
cntgggaagc ggttagctgg aaggtctga
```

<210> 33

```
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 33
tntcttcttc atgtcgatgg agtgctggc
<210> 34
<211> 359
<212> PRT
<213> Homo sapiens
<400> 34
Arg Val Lys Val Gln Leu Ala Leu Val Phe Phe Lys Asn Leu Ala Ser
Ser Cys Thr Leu Asp Ser Ala Leu Asn Ala Ala Ser Tyr Tyr Asn Phe
Thr Val Leu Lys Val Pro Arg Ser Met Thr Asp Pro Gln Asn Met Glu
Phe Gln Val Pro Val Ile Leu Thr Ser Gln Ala Asn Ala Pro Leu Leu
Ala Gly Asn Thr Cys Gln Asn Val Val Ser Gln Val Thr Tyr Glu Ile
Glu Thr Asn Gly Thr Phe Gly Ile Gln Lys Val Ser Val Ser Leu Gly
Gln Thr Asn Leu Thr Val Glu Pro Gly Ala Ser Leu Gln Gln His Phe
                                105
            100
Ile Leu Arg Phe Arg Ala Phe Gln Gln Ser Thr Ala Ala Ser Leu Thr
                            120
                                                125
Ser Pro Arg Ser Gly Asn Pro Gly Tyr Ile Val Gly Lys Pro Leu Leu
    130
Ala Leu Thr Asp Asp Ile Ser Tyr Ser Met Thr Leu Leu Gln Ser Gln
```

29

155

150

145

Gly Asn Gly Ser Cys Ser Val Lys Arg His Glu Val Gln Phe Gly Val 170 Asn Ala Ile Ser Gly Cys Lys Leu Arg Leu Lys Lys Ala Asp Cys Ser 185 His Leu Gln Gln Glu Ile Tyr Gln Thr Leu His Gly Arg Pro Arg Pro 200 195 Glu Tyr Val Ala Ile Phe Gly Asn Ala Asp Pro Ala Gln Lys Gly Gly 210 215 Trp Thr Arg Ile Leu Asn Arg His Cys Ser Ile Ser Ala Ile Asn Cys 235 225 Thr Ser Cys Cys Leu Ile Pro Val Ser Leu Glu Ile Gln Val Leu Trp 250 245 Ala Tyr Val Gly Leu Leu Ser Asn Pro Gln Ala His Val Ser Gly Val 265 260 Arg Phe Leu Tyr Gln Cys Gln Ser Ile Gln Asp Ser Gln Gln Val Thr 280 275 Glu Val Ser Leu Thr Thr Leu Val Asn Phe Val Asp Ile Thr Gln Lys 295 290 Pro Gln Pro Pro Arg Gly Gln Pro Lys Met Asp Trp Lys Trp Pro Phe 315 305 310 Asp Phe Phe Pro Phe Lys Val Ala Phe Ser Arg Gly Val Phe Ser Gln 325 Lys Cys Ser Val Ser Pro Ile Leu Ile Leu Cys Leu Leu Glu Leu Gly 345 340 Val Leu Asn Leu Glu Thr Met 355 <210> 35 <211> 2696 <212> DNA

<400> 35 gttgtaccat tcttgccaac ttctgggctg gcagtatgga gtcatctccc tatctttcat

<213> Homo sapiens

60

120 tgcctgtgtg aaatctactt tctgaattct gccatttccc tcttcacact gtctcctggg 180 ttatctttgc ttcctcacat ccctatctct cttcctataa actggctccc gtcacttcca 240 tgatcccttc agtggcttct gagctggtct ccctgacccc aaagcctcag ccttccagtc tccctacaaa atctcagcaa gttcatttta ggttaaaatt tggacatatt ttaaatacgg 300 ctcaccactt catgtgaaaa tgatggcacc ctaccaagca gtttgcagag ttacggtaac 360 tgtttcatgc taatgatgtt attcatccag ttacaatttt ctcaaaactc ctttgggcac 420 tctttatttt taatcaaatt ttaaagccaa tatttcattt tgagaatatg aattaaattg 480 ggaaattcat ccttgtggta cagtttacag atttttaatg tttacccatt tatcctgttt 540 tttgatatat taatttccca tatagctcca gagttatgtg atattatttc tttgccagta 600 660 tattagaaaa tgattaattt ctcatgacca acttctgaaa agaaagaccc aatgcaaaat 720 gcaatctatt acaattattt ttttgaataa aaaagaatat attatagttc tttaacattt gatattttaa atttgacata ttcttgatat ttgtaagaaa tttccactga atgaatttta 780 cacaattcag atactaccaa ttaactaatt ctagcctaaa caaataacat tattttaaa 840 900 taacaaaatc tttaaaaata attttctatt ttgaactttt agccataatg taagaaaata 960 aaattttcta gcagaataat caaagagtga aacaaagttc caacatgttt tttctttgca 1020 attaaacatg gcacttttac agttatttat tattcatatc agtgcactta ccgacttcat 1080 attttcaaat caaaatacag tgtttttctc cagtgaaatc cttattctca tgactgatag aaaacattgc caattttgat atttccagag ttaatgttaa attatttgaa agaaaattat 1140 1200 ttaaaataat aaaaatagac atttcaagac tatttcttat cacataattc aaaaagtact tggatcaaat cctacagagt ttctccacta aaattctact tgtgcagagg gcattgaaac 1260 1320 gcatgaaaat caacagcagc ttagttaggt taattaattc ggttaattaa gcacctacta 1380 catgctcagc tctatgctag gtgtcatgag gaattaaaag gacatgtaat gcacattttc tgatttcaag gagctttaaa tattattgtg tagaaaaagt taacatctat gaaaatagaa 1440 1500 gtggggcaat tttgtgctta attccatggt ccagatacat caaaaaatca atgtgggctg tcaaagaagg tttcttgata gtcatgagtc agcctgattc ttgaaaggat atgtggaata 1560 taaaatttta tttatattcc ttttgagaaa atactgagaa aaccatcttc cctggaaaag 1620 agaacgtatt gtaaagaaag tacatgaaat tgaaggttga atatccaaca tcccccacac 1680 tgccccagtg tctctgctcc cttactgagc cttactatta ttcttcatag ccctatcact 1740 acctagtcta gtattcactg aactgtgtca tccactagaa tatgagcata atgagagcag 1800 1860 agactacacc tgtcggttca gtattctatc ctcagcacat agaatggtac ctggcacata

1920 gcagatgcta aaataaaatt taaatgaata aattaattca atcaacaact tcaaggtgtt 1980 attattacct acaactattg tttacaagag gtatgcaccg tggaagatcc tggagacaca acaatgaata aagccaagcc agttcctgcc cccgtggagc ttgtagtcaa gacattgaac 2040 aagtgatcag aaagatgttg actgctgcag cagagggttg caagctgctc atgagtatat 2100 aacaagtagc cctaaccaaa gcattctctc ccttggttta atgtccaccc attgaggtga 2160 ctgctaaata ctaatccatg actctatccc ttggcattca aactcacaca tccacttacc 2220 tgcctctcca acctcatctc cctccactca caagagccca tcatattatt catcaaaatg 2280 aaactgcacc cagttcttct gaacatatta ccttacaaaa ctttcattta tgcctggtga 2340 ctctcatcag gcattcaaaa gctttccctc agtgcttcag ggctcttcct tttcttccct 2400 ttatacatac acctttatgt atcttcatac gtaccctgca taacctcata tatcttagca 2460 tttaccatat tctgttgaaa aactgtttcc atttctcttt acttactaga atgtaaacag 2520 atgcacaatg ttgagaaaat gaaaagtgac aactttgttt acaagtttag aaattatcag 2580 attctcacyt aagctctagt ctctgtaaag tccacaacta ctyaataaaa gtgaagaaaa 2640 atgttaacag agagggagga atcaaaaaca aagaactatt taaaaaaaaa aaaaaa 2696

<210> 36

<211> 112

<212> PRT

<213> Homo sapiens

<400> 36

Met Thr Leu Ser Leu Gly Ile Gln Thr His Thr Ser Thr Tyr Leu Pro 1 5 10 15

Leu Gln Pro His Leu Pro Pro Leu Thr Arg Ala His His Ile Ile His 20 25 30

Gln Asn Glu Thr Ala Pro Ser Ser Ser Glu His Ile Thr Leu Gln Asn 35 40 45

Phe His Leu Cys Leu Val Thr Leu Ile Arg His Ser Lys Ala Phe Pro 50 55 60

Gln Cys Phe Arg Ala Leu Pro Phe Leu Pro Phe Ile His Thr Pro Leu 65 70 75 80

Cys Ile Phe Ile Arg Thr Leu His Asn Leu Ile Tyr Leu Ser Ile Tyr 85 90 95

His Ile Leu Leu Lys Asn Cys Phe His Phe Ser Leu Leu Thr Arg Met 105 100

<210> 37 <211> 3614 <212> DNA <213> Homo sapiens

<400> 37

cgcgctaact	gtgctcctcc	ggggccctcc	gcctgctccc	agccatggtg	gcctggcgct	60
cggcgttcct	tgtctgcctc	gctttctcct	tggccaccct	ggtccagcga	ggatctgggg	120
actttgatga	ttttaacctg	gaggatgcag	tgaaagaaac	ttcctcagta	aagcgatcac	180
tgtaaggatg	acatgggagg	agccatgtga	agcactcagc	acagtccttg	gaacaagagc	240
catgggacca	caccaccacc	accacaacca	ataggccagg	aaccaccaga	gctccggcaa	300
aacctccagg	tagtggattg	gacttggctg	atgctttgga	tgatcaagat	gatggccgca	360
ggaaaccggg	tataggagga	agagagagat	ggaaccatgt	aaccaccacg	accaagaggc	420
cagtaaccac	cagagctcca	gcaaatactt	taggaaatga	ttttgacttg	gctgatgccc	480
tggatgatcg	aaatgatcga	gatgatggcc	gcaggaaacc	aattgctgga	ggaggaggtt	540
tttcagacaa	ggatcttgaa	gacatagtag	ggggtggaga	atacaaacct	gacaagggta	600
aaggtgatgg	ccggtacggc	agcaatgacg	accctggatc	tggcatggtg	gcagagcctg	660
gcaccattgc	cggggtggcc	agcgccctgg	ccatggccct	catcggtgcc	gtctccagct	720
acatctccta	ccagcagaag	aagttctgct	tcagcattca	gcagggtctc	aacgcagact	780
acgtgaaggg	agagaacctg	gaagccgtgg	tatgtgagga	accccaagtg	aaatactcca	840
cgttgcacac	gcagtctgca	gagccgccgc	cgccgcccga	accagcccgg	atctgagggc	900
cctgtccagc	tgcaggcatg	cacaatggtg	ccaccgcttg	tcacccggct	cccccaccc	960
cttcatttgg	acccgcagct	gctgtgctgc	tctgtgccgt	cggctccttg	ttggtctgag	1020
tttcccggat	gagctctggg	tgtttgtgag	tttggtttct	ctgccctgcc	ccaagcgtgc	1080
tgagacttgg	tgccgaaatt	caagagccag	ctctgataga	aagccagcac	cagcctcggg	1140
agctgctgag	ccaccaactc	ccaaagccag	cctgcctcca	gctttactga	gcacaggatg	1200
cgggggccaa	gatgatgctg	aggcctgatg	acatttatgc	ttaggggaca	agagtttgaa	1260
ctcaagggac	tgtgacccct	gcacactgga	gtggctcatt	gtggcaggtt	tctgccaata	1320
gacagcccct	gacagtggcc	tcaaggagct	gcaggtgggg	ggctcagcct	gcacccactt	1380
ggagcccctg	caaggagcga	accggtcagc	accaagtaac	accacacaca	cgcagcaccc	1440
aggatgatgg	tttcacttca	gtcttcccca	tcccaggttt	tatgttgctg	ggcttccgga	1500

1560 gagccggtcc aagcggaggc tttcagtgat ttaagtacaa acatgcatct cgtgatagtc 1620 ctgccttgag agcttaggaa tcttccggat aagtatgaag caattcgtag gcctgtttcc catctgattc catagggggc tgggtgtggc ttcgggttga catgagaaag gtctttagca 1680 1740 atcatttctg caccggagat gagttttatc ctgtgttggg gagaggtgct caccctccac cctgtgtccc tgttttggta gcaagagtga ccgatgtcaa gaacgagcat caaagccaga 1800 atcctgcttg tttgcttaaa aatgtaattg ggggcggcgg gggaggagag gggaaagaga 1860 1920 cattcgcttg gtttagtgaa acgcaggtga ctttgtagct ctgtggtcag cctacttgtc 1980 tgctctgagg gagagtgcgt ggggagccat gctcaccgtg gcaaacacag gaaccccatg actogococt cacotggogt ggagotgcot ggtttgggot ggagoagago tggtttcotg 2040 2100 gaatgtteet ttggeecaca tatggttetg teeeggtgag etetgttgte agaggeteae 2160 gggacagaac cacatgctag ggtctagggc ccctgtctac tgatagtcag tttgctgtgt cagaaagcac ttctgaaagc agatatgagt caccagacag gcaggatctt acaaaactca 2220 2280 cgggcctctt tggtctgcat gatggcccca tgcgtttcat aggctgtcca ctgagcggga 2340 ttgtctgctg agtgggatga gccaactcca gtttcttaag gaaaccactg gaatctgcag 2400 ccccacatg catctgtcta acgcatgcct cgtgttcgtt ttgcaaacat gcctgtggtg 2460 gagggtggtc agttgtagcc ctgtgcgtct caaggctgcc ttgtgaggcc attcccagtg 2520 cgtgcccttg agctccttac cacccctttt cctgctcggc cctttaatcc ctgacagacc 2580 tggactgtgt ggctgaaggg ggacctgcag cactgcagaa atgcctctgc gtggtgccat 2640 gaaggaaaga aaccttggcc tggtctcgag aagcttccca tgcttcagga agttagtaag 2700 ggtggggtgg cttgcaggat tggcctgttt ccagggcctc ccacactcat tggccagatt 2760 gtgaactttg tcaggcttgt ccctccctga taccaagtat gtcgagaacc gatggcccca 2820 ccctctggct ggtgctgggc cggaggtggc tatggaggat tttggcatgc gtggcctgtc 2880 gccacctgga cagcgtgacc tcaggggttg tccactttac ctttatggtg aggcctgtcg 2940 gatggctaag tccttgaaac cctagagctg tgacgtagaa tatgtgctgt ctgtgagacc 3000 gtgttcccag gagcactgac tgcagttgag agagacccat tttgctctcc cttaccgccc cccgccccgg gtgctttctg cacaaagcct agagcctggc actcaagccc accggtggca 3060 gctcctagtg actggacatg cctggaagac ccctcagcct tctgtttgca gaacgttcat 3120 3180 ttcaggagct tctccttccc acagacatct tacacttgct cgacactgcc acctgcagaa 3240 gcctggcggg ctctggtcac catgtgtcta tctgaaggtt gcactggcca gcatgggcct 3300 gtcccaagcg agaggggaga cacagtggac tgaaaggact ggttgaaagt ggccaatctc

tgtcagctta atttggcaga gaaaatttgt aacaactctg agcacatgct gggtgaagtc 3360 acagctcaag gaaagataaa gctgggcgga aggaggtgtg cgtggcttct ggggtgggac 3420 ccagagggga ggctctggga caggggctgg ggttcagtgc cagggccctg aggaagaaat 3480 ggggactgat ctcaaaattc cagaattccc tgtacatctg ttcacgtgct tgtgtccagg 3540 tgtgacttgt aaactgtcta gtgtttgcat taaataaaat ggcaccgagc aaaaaaaaa 3600 aaaaaaaaaa aaaa 3614

<210> 38

<211> 229

<212> PRT

<213> Homo sapiens

<400> 38

Val Lys His Ser Ala Gln Ser Leu Glu Gln Glu Pro Trp Asp His Thr 1 5 10 15

Thr Thr Thr Thr Asn Arg Pro Gly Thr Thr Arg Ala Pro Ala Lys
20 25 30

Pro Pro Gly Ser Gly Leu Asp Leu Ala Asp Ala Leu Asp Asp Gln Asp 35 40 45

Asp Gly Arg Arg Lys Pro Gly Ile Gly Gly Arg Glu Arg Trp Asn His 50 55 60

Val Thr Thr Thr Lys Arg Pro Val Thr Thr Arg Ala Pro Ala Asn 65 70 75 80

Thr Leu Gly Asn Asp Phe Asp Leu Ala Asp Ala Leu Asp Asp Arg Asn 85 90 95

Asp Arg Asp Gly Arg Arg Lys Pro Ile Ala Gly Gly Gly Phe 100 105 110

Ser Asp Lys Asp Leu Glu Asp Ile Val Gly Gly Glu Tyr Lys Pro 115 120 125

Asp Lys Gly Lys Gly Asp Gly Arg Tyr Gly Ser Asn Asp Asp Pro Gly 130 135 140

Ser Gly Met Val Ala Glu Pro Gly Thr Ile Ala Gly Val Ala Ser Ala 145 150 155 160 Leu Ala Met Ala Leu Ile Gly Ala Val Ser Ser Tyr Ile Ser Tyr Gln 165 170 175

Gln Lys Lys Phe Cys Phe Ser Ile Gln Gln Gly Leu Asn Ala Asp Tyr 180 185 190

Val Lys Gly Glu Asn Leu Glu Ala Val Val Cys Glu Glu Pro Gln Val 195 200 205

Lys Tyr Ser Thr Leu His Thr Gln Ser Ala Glu Pro Pro Pro Pro Pro 210 215 220

Glu Pro Ala Arg Ile 225

<210> 39

<211> 1077

<212> DNA

<213> Homo sapiens

<400> 39 aatcgggagt cccaacagcg ttaggttttt ttttttgttt gtttgtttgt tttgttttt 60 tccaaccctc tttcggatgg acgggggaaa gagagaaaga aaaacgaggg aaaatcaaca 120 aaatgtgcga tgcaaagagt cgattttcgc ggggtttgtc aacttcgcca ctgccgcacg 180 240 cgaatcgacg tcgtcacgtg acggtctgcc tccgccctta ttaactctca gcccagcggc 300 ggtttccagg acctcagact ttttgccgag gcggcagtcc ctagacgaag cgaaggaggc ggcgcctgcc ccgcccacaa gagctgccgc gcgcgggtgt tatagctcca ccccatctgc 360 aaaggaaggg ggagcggaaa gagcgggatc tagcgtggga taaaagtggg actactacag 420 tgtaactggg catgcgccc tcctagaaat gatgggaatg caaaagccct tgactgctcc 480 540 aggactcgag ggatcctcgg tgccaggatg ctgggtcaag cgctccgccg ggacagagga ctcataccag ggaaatggag cccagcctcg tgataaacta cgacccaagc tgggggagga 600 acctagtttt cgaaaggaaa ataatatgcg caagctttaa ctgagcagtg ggatggtctt 660 aaataccaaa ggaatgactt taaatcttgc tggatgggac tgccactcac cgctagaaat 720 cggggatcaa cagcaaactc tggatgaccc tgtaaccaca tctccagttc agcccggcga 780 ggggcatcct cacccaccag caaagtacca tccaccttat tgatgacagg gatccgggtc 840 tccaggtcca catcaaggtg attaggctct tccatgcact ccacctccag ctgcaaaccc 900 960 aqaatccacc cccatgagca catactcttc tttgggggag ggagggaggg ggagcagggc 1020 caatggtagt catgaaatga ctctagtatt ttccattccc ccagtcccac tgccttcatc

420

480

<210> 40 <211> 108 <212> PRT <213> Homo sapiens
<400> 40
Met Asp Gly Gly Lys Arg Glu Arg Lys Thr Arg Glu Asn Gln Gln Asn 1 5 10 15
Val Arg Cys Lys Glu Ser Ile Phe Ala Gly Phe Val Asn Phe Ala Thr 20 25 30
Ala Ala Arg Glu Ser Thr Ser Ser Arg Asp Gly Leu Pro Pro Pro Leu 35 40 45
Leu Thr Leu Ser Pro Ala Ala Val Ser Arg Thr Ser Asp Phe Leu Pro 50 55 60
Arg Arg Gln Ser Leu Asp Glu Ala Lys Glu Ala Ala Pro Ala Pro Pro 70 75 80
Thr Arg Ala Ala Arg Gly Cys Tyr Ser Ser Thr Pro Ser Ala Lys 85 90 95
Glu Gly Gly Ala Glu Arg Ala Gly Ser Ser Val Gly 100 105
<210> 41 <211> 588 <212> DNA <213> Homo sapiens
<400> 41 taagaattaa aaatgtcatc caaacaagaa ataatgagtg accagcggtt tagacgggtt 60
agatttcgag ccatgtttca tgacaagaag ttcaagttga actatgccgt ggataaaaga 180
gggcgcccca ttagccatag cactacagag gatttgaagc gtttttacga cctttcagat 240
totgattoca atotototgg tgaagatago aaagcattga gtoaaaagaa aataaagaag 300
aaaaaaaccc agactaaaaa agaaatcgat tcaaaaaatc tagttgagaa aaagaaagaa 360

accaagaagg ctaatcacaa gggttctgaa aataaaactg atttagataa ttctatagga

attaaaaaaa tgaaaacctc atgtaaattt aagatagatt caaacataag tccgaagaag

<210> 42 <211> 163 <212> PRT

<213> Homo sapiens

<400> 42

Met Ser Ser Lys Gln Glu Ile Met Ser Asp Gln Arg Phe Arg Arg Val 1 5 10 15

Ala Lys Asp Pro Arg Phe Trp Glu Met Pro Glu Lys Asp Arg Lys Val 20 25 30

Lys Ile Asp Lys Arg Phe Arg Ala Met Phe His Asp Lys Lys Phe Lys 35 40 45

Leu Asn Tyr Ala Val Asp Lys Arg Gly Arg Pro Ile Ser His Ser Thr 50 55 60

Thr Glu Asp Leu Lys Arg Phe Tyr Asp Leu Ser Asp Ser Asp Ser Asn 65 70 75 80

Leu Ser Gly Glu Asp Ser Lys Ala Leu Ser Gln Lys Lys Ile Lys Lys 85 90 95

Lys Lys Thr Gln Thr Lys Lys Glu Ile Asp Ser Lys Asn Leu Val Glu 100 105 110

Lys Lys Glu Thr Lys Lys Ala Asn His Lys Gly Ser Glu Asn Lys 115 120 125

Thr Asp Leu Asp Asn Ser Ile Gly Ile Lys Lys Met Lys Thr Ser Cys 130 135 140

Lys Phe Lys Ile Asp Ser Asn Ile Ser Pro Lys Lys Asp Ser Lys Glu 145 150 155 160

Phe Thr Gln

<210> 43 <211> 2773

<212> DNA

<213> Homo sapiens

<400> 43 60 gtatattttg gtttacttac tcctctattt cagaaattga aaaagatccc caaggatctg ttactactgc atttccttct tgctctgtct acagcctagg ccaactagtc agggtctgga 120 catgcatctc ctaaaggaag aactgtgtag caccattgat cacaatgtaa catttccatg 180 ctgcattaag ggtgtctctc tctaatcatg attgtacctg tctcttcctg ggtaaaggga 240 gattttttt ttttaatgtg taaagaattg atgcsagcca ggaacatgtc tgtagtccca 300 gctacttggg cacacgcctg tagtccmscg ccactcgagc acacacctgt agtaccagct 360 420 actctggagg ctgaggcagg aggatcactt gagcccagga gattaagact gtagtatact atgatcgtgc ctgtggctag ccactgtgct ccagcctggg caacaccatc gtaaaaataa 480 540 ataaataaat aaataaattg gggaggacag cctcactggt atcagactta caggaccaga 600 tagacaagat gggtataagg ggagctgaag tctgtgttca tatgaggaag agaagaccaa 660 gccctgggac tttggctgaa ttcctccgtg gggctggacg gcagtgatct cctgttccct atgtgtaaac aaagattcca gggcgtggtt ttgcactcct gttgtactct tttagaggtg 720 780 gaaaagaggt ggatactgag atctaagagg aaaggatagt cattcacgtt ctgagatatg cgctctctct attgttctcg wacacaaagg gatagtctct tttctggagc tgatgtccct 840 900 gcttggaggt tagccccaaa acatggctct tgtattgttc taagagaaaa ggctttcatt 960 ttggttcttc tgattggtgt tacctactgc ctaatatgtg ttcatttttt gacagagagg cagactattg aaaaagtctg tgtgaacaga gagcagttca ttaagcccat tgctttcagt 1020 1080 aatgtggcct tgaccccttc tgcttccccc ttctcccatg gagcatggca gggcttggtt atttagagtc catacatgca agccattgag agacttgttt gctcaaatgc aagtttgctc 1140 aaaaacaggt cctgaaggct tgcttaggat tacagggatg ctgggtaaga acaccgttcc 1200 tctctctcgc tggagaaatc cctgtttctc tgactccctt tgtgatcctc acagtaatgt 1260 1320 attctgtgcc actgtaggac acaaggctct gggccagtag aacaggcaga gaggtgacac 1380 tgggcagcaa gctgagagct ctttctaaat ggagtgaagg aattcagtgg cctagtttcg 1440 ccattctcta atgagaaacc aaggccaggc tgaaaagtgc aattagatgt ggtggattgt ggtaacggcc tccagataaa ggggttatcc ctgtggaagt gacttttccc catttgatcc 1500 1560 cttttcaact ctaaatggcc aggcccagag cagaagaagg gttgggtctg gaaggaaggc 1620 tccaaaggat gaaagcttct ccctgatcat aaggaagtgc atctttatag aattgttgtg cataatgtca gtaaatccct ctcacttgac aagggactgg attcatcttg ccttgagacg 1680 1740 ggccagtagt tatcagtgag tcaaagcaaa gtgaaagttt caggagatgg gaccaatggt 1800 gcaatgctcg ccataacaaa attccttaaa aataaaaaag ctaatgttat agcaacaaaa

aaagactgaa gcaaaaccac actgaaatgc atcccactcc aggagaggaa ttcttagcgt 1860 1920 aacactctaa ataaatqqaa qqaatcatca ccttccttat tttacccctg ccttgttcac caggctgccc agtgcttacc atgcagaaag cagtcagctg tactctggaa gtttctgttc 1980 ttctttcctg gggcttagga tattctggga gctgtctgag ccttgtgcct aaggcttatc 2040 2100 aggtgatata atcttcctgt tctgggctgc ttgctggagg aataggaagt gacatttata agacacaggc ggtgtgagca tccatgtgtg gtcttggtct aaaccagctc ttgaacaggt 2160 2220 taaaqcaaac aqcaataaca aaacaaaaac tactgatgct gagcgttttg atcctagtaa tatttcaaat attgtccttc tgcatatgtt ctatccatat ttgattccaa tatacattat 2280 taagctttct tgggtactat tttgctgggg ctcttgcgtg aaggtggtac ctgtctcatg 2340 atccttaaaa gagagaggct tttttcatcc aaagctgtag tgttgggaac tggggtggga 2400 2460 qaqqcacttt ttqqaattct gaaagaatca tatctgtgta tatacatact gagtggggaa ggatggggt tggcaggggt tgagggaggt gggaacaaac agtgagtatg ggaacaggca 2520 gtcacctcga gtgtgggagg tcacctgggt ccgtcgtctt ccttctgtat ggtgttgggt 2580 ttatgtacac actataacac ttcctgtgtg agttcatgta cctgtctgtg agtgctttgg 2640 tgtattgagc ctcagtacac tccaagggca ttaaagtcaa gaactagaac ctggaaaaaa 2700 2760 2773 aaaaaaaaa aaa

<210> 44

<211> 102

<212> PRT

<213> Homo sapiens

<400> 44

Met Arg Ser Leu Tyr Cys Ser Arg Thr Gln Arg Asp Ser Leu Phe Ser 1 10 15

Gly Ala Asp Val Pro Ala Trp Arg Leu Ala Pro Lys His Gly Ser Cys 20 25 30

Ile Val Leu Arg Glu Lys Ala Phe Ile Leu Val Leu Leu Ile Gly Val 35 40 45

Thr Tyr Cys Leu Ile Cys Val His Phe Leu Thr Glu Arg Gln Thr Ile 50 60

Glu Lys Val Cys Val Asn Arg Glu Gln Phe Ile Lys Pro Ile Ala Phe 65 70 75 80

Trp Gln Gly Leu Val Ile 100

<210> 45 <211> 3119 <212> DNA

<213> Homo sapiens

<400> 45 ggaaacatta	tggatctgtg	gagctgctta	tttccagtga	tgctgatgga	gccatccaaa	60
gggctggaag	attcagagtg	gaaaatggct	cttcagatga	gaatgcaact	gccctgcctg	120
gtacttggcg	aagaacagac	gtgcacttag	agaacccaga	ataccacacc	agatggtatt	180
tcaaatattt	tttaggacaa	gtccatcaga	actacattgg	aaacgatgcc	gagaagagcc	240
cttcttctt	gtccgtgacc	ctttctgacc	aaaacaatca	acgtgtccct	caataccgtg	300
caattctttg	gagaaaaaca	ggtacccaga	aaatatgcct	tccctacagt	cccacaaaaa	360
ctctttctgt	gaagtccatc	ttaagtgcca	tgaatctgga	caaatttgag	aaaggcccca	420
gggaaatttt	tcatcctgaa	atacaaaagg	acttgctggt	tcttgaagaa	caagagggct	480
ctgtgaattt	caagtttggg	gttctttttg	ccaaagatgg	gcagctcact	gatgatgaga	540
tgttcagcaa	tgaaattgga	agcgagcctt	ttcaaaaatt	tttaaatctt	ctgggtgaca	600
caatcactct	aaagggctgg	acgggctacc	gtggcggtct	ggataccaaa	aatgatacca	660
cagggataca	ttcagtttat	actgtgtacc	aagggcatga	gatcatgttt	catgtttcca	720
ccatgttgcc	atattccaaa	gagaacaaac	agcaggtgga	aaggaaacgc	cacattggaa	780
acgatatcgt	caccattgtg	ttccaagaag	gagaggaatc	ttctcctgcc	tttaagcctt	840
ccatgatccg	ctcccacttt	acacatattt	ttgccttagt	gagatacaat	caacaaaatg	900
acaattacag	gctgaaaata	ttttcagaag	agagcgtacc	actctttggc	cctcccttgc	960
caactccacc	agtgtttaca	gaccaccagg	aattcaggga	ctttttgcta	gtgaaattaa	1020
ttaatggtga	aaaagccact	ttggaaaccc	caacatttgc	ccagaaacgt	cggcgtaccc	1080
tggatatgtt	gattagatct	ttacaccagg	atttgatgcc	agatttgcat	aagaacatgc	1140
ttaatagacg	atcttttagt	gatgtcttac	cagagtcacc	caagtcagcg	cggaagaaag	1200
aggaggcccg	ccaggcggag	tttgttagaa	tagggcaggc	actaaaactg	aaatccattg	1260
tgagagggga	tgctccatca	agcttggcag	cttcagggat	ctgtaaaaaa	gagatgacct	1320
tccatcagtg	cccgtgtttg	acagaactct	gccagtgaag	caaatgcatg	tgcttgagac	1380

1440 cctggacctt ctggttctca gagcagacaa aggaaaagat gctcgcctct ttgtcttcag gctaagtgct ctgcaaaagg gccttgaggg gaagcaggct gggaagagca ggtctgactg 1500 1560 cagagaaaac aagttggaga aaacaaaagg ctgccacctg tatgctatta acactcacca cagcagagag ctgaggattg tggttgcaat tcggaataaa ctgcttctga tcacaagaaa 1620 acacaacaag ccaagegggg tcaccagcac ctcattgtta tctcccctgt ctgagtcacc 1680 tgttgaagaa ttccagtaca tcagggagat ctgtctgtct gactctccca tggtgatgac 1740 cttagtggat gggccagctg aagagagtga caatctcatc tgtgtggctt atcgacacca 1800 atttgatgtg gtgaatgaga gcacaggaga agccttcagg ctgcaccacg tggaggccaa 1860 cagggttaat tttgttgcag ctattgatgt gtacgaagat ggagaagctg gtttgctgtt 1920 1980 qtqttacaac tacagttgca tctataaaaa ggtttgcccc tttaatggtg gctcttttt 2040 ggttcaacct tctgcgtcag atttccagtt ctgttggaac caggctccct atgcaattgt ctgtgctttc ccgtatctcc tggccttcac caccgactcc atggagatcc gcctggtggt 2100 2160 gaacgggaac ctggtccaca ctgcagtcgt gccgcagctg cagctggtgg cctccaggtc 2220 ggatatatac ttcacagcaa ctgcagctgt gaatgaggtc tcatctggag gcagctccaa 2280 gggggccagt gcccgaaatt ctcctcagac accccgggc cgagatactc cagtatttcc 2340 ttcttccctg ggggaaggtg aaattcaatc aaaaaatctg tacaagattc cacttagaaa 2400 cctcgtgggc agaagcatcg aacgacctct gaagtcaccc ttagtctcca aggtcatcac 2460 cccacccact cccatcagtg tgggccttgc tgccattcca gtcacgcact ccttgtccct gtctcgcatg gagatcaaag aaatagcaag caggacccgc agggaactac tgggcctctc 2520 ggatgaaggt ggacccaagt cagaaggagc gccaaaggcc aaatcaaaac cccggaagcg 2580 2640 gttagaagaa agccaaggag gccccaagcc aggggcagtg aggtcatcta gcagtgacag 2700 gatcccatca ggctccttgg aaagtgcttc tacttccgaa gccaaccctg aggggcactc 2760 agccagetet gaccaggace etgtggcaga cagagaggge agcceggtet eeggcageag 2820 ccccttccag ctcacggctt tctccgatga agacattata gacttgaagt aacagagttg 2880 aatctcattt gccatcttta gttttcttat ggaggtttat actctttaaa cagttctgat 2940 gtaatttctc aacaaaatgt ggcttttagc ctgtcagtga tctattggac caaaccttct gcacactcgg ccagttccct ctccaatgtc cggtgccatc tttcctgacc tttgtttctt 3000 3060 tctgttcagg aaccatcagt ccccttgtaa taaaggtggt agatttcatt gaggttttag 3119

<211> 322

<212> PRT

<213> Homo sapiens

<400> 46

Met Asn Leu Asp Lys Phe Glu Lys Gly Pro Arg Glu Ile Phe His Pro 1 5 10 15

Glu Ile Gln Lys Asp Leu Leu Val Leu Glu Glu Gln Glu Gly Ser Val 20 25 30

Asn Phe Lys Phe Gly Val Leu Phe Ala Lys Asp Gly Gln Leu Thr Asp 35 40 45

Asp Glu Met Phe Ser Asn Glu Ile Gly Ser Glu Pro Phe Gln Lys Phe 50 60

Leu Asn Leu Leu Gly Asp Thr Ile Thr Leu Lys Gly Trp Thr Gly Tyr 65 70 75 80

Arg Gly Gly Leu Asp Thr Lys Asn Asp Thr Thr Gly Ile His Ser Val 85 90 95

Tyr Thr Val Tyr Gln Gly His Glu Ile Met Phe His Val Ser Thr Met 100 105 110

Leu Pro Tyr Ser Lys Glu Asn Lys Gln Gln Val Glu Arg Lys Arg His
115 120 125

Ile Gly Asn Asp Ile Val Thr Ile Val Phe Gln Glu Gly Glu Glu Ser 130 135 140

Ser Pro Ala Phe Lys Pro Ser Met Ile Arg Ser His Phe Thr His Ile 145 150 155 160

Phe Ala Leu Val Arg Tyr Asn Gln Gln Asn Asp Asn Tyr Arg Leu Lys 165 170 175

Ile Phe Ser Glu Glu Ser Val Pro Leu Phe Gly Pro Pro Leu Pro Thr 180 185 190

Pro Pro Val Phe Thr Asp His Gln Glu Phe Arg Asp Phe Leu Leu Val

Lys Leu Ile Asn Gly Glu Lys Ala Thr Leu Glu Thr Pro Thr Phe Ala 210 215 220

Gln Lys Arg Arg Arg Thr Leu Asp Met Leu Ile Arg Ser Leu His Gln 225 230 235 240

Asp Leu Met Pro Asp Leu His Lys Asn Met Leu Asn Arg Arg Ser Phe 245 250 255

Ser Asp Val Leu Pro Glu Ser Pro Lys Ser Ala Arg Lys Lys Glu Glu 260 265 270

Ala Arg Gln Ala Glu Phe Val Arg Ile Gly Gln Ala Leu Lys Leu Lys 275 280 285

Ser Ile Val Arg Gly Asp Ala Pro Ser Ser Leu Ala Ala Ser Gly Ile 290 295 300

Cys Lys Lys Glu Met Thr Phe His Gln Cys Pro Cys Leu Thr Glu Leu 305 310 315 320

Cys Gln

<210> 47

<211> 1592

<212> DNA

<213> Homo sapiens

<400> 47

gacttttata aaaaagtcaa gcagtacaaa agggtgtaaa gtgaagttac tgtccttccc 60 ctccataaac cccctgacct tgggaaactg ttgttaacag ttacttgggt aacttttcag 120 atattttgta tgcatgtaca aatgtgagta tctaatgtaa aaaaatcaaa ccaagataaa 180 gtgtaaactg ctatgatgga atcctgcctt gttctgctat tagtcttctg tttaataatc 240 agctttggta ttaggacagt ggtaggaaga agccagtatg tcctgcaaca taatttgtgg 300 ttctggactg gtcaggattt cctgaatgca gcctttatct ggaagctctg cccttctcca 360 tctgggatac gctttttcat ccatcaaaac tgtcatctcc ctctgtgaag ccttccctga 420 ctattctctg tccctctttc ctctcttccc acaaacacaa ctgtgtacgc gtgtcaccaa 480 agagttaatc gtgcttttct ctgtgctact tttatacsta gtatatggtc cattgttttg 540 cacttaatac actctcttgt aatgatttgt ttacatgtca gtctcccagc cagactgaga 600 gctcaccaag ggcagaagcc gtgttttgtt tactgctgta ttcctggtac ctggtacaat 660 gcttggcata cagttggatg aacgggaaag taatctgagc tgccggtgct gtggcagtgc 720 aaagtgggca tatttgtgcc cttggaccag atgtagccct tgatgcattt tgcaggaaca 780

```
840
cggcttagtt attgtttact ttgaagccct tttgcctcta ctctcccca tatatcttct
cctgacaggg tgaagtcacc tatagcattt cctagtgtat ggaagtatta atttctttct
                                                                      900
ttactggaag agctactagc ttttcttcat acagtttcct ctgctccagt ttcataagtt
                                                                      960
                                                                     1020
totttttqqc ttqtatctqt ttaggatcag gtgatatggc ttcatttctc atgactgaag
cccggcaaca taacactgaa attcgaatgg cagtcagcaa agtggctgat aaaatggatc
                                                                     1080
atctcatgac taaggttgaa gagttacaga aacatagtgc tggcaattcc atgcttattc
                                                                     1140
ctagcatgtc agttacaatg gaaacaagca tgattatgag caacatccag cgaatcattc
                                                                     1200
aggccaaggt gacagaggag ttagcagcgg ccactgcaca gktctctcat ctgcagctga
                                                                     1260
                                                                     1320
aaatqacttq ctcaccaaaa aaaggaaaca gagctgcaga tgcagctgac agaaagcctg
aaggagacag atcttctcag gggccagctc accaaagtgc aggcaaagct ctcagagctc
                                                                     1380
                                                                     1440
caaqaaacyt ctqaqcaaqc acagtccaaa ttcaaaagtg aaaagcagaa ccggaaacaa
ctgqaactca aggtgacatc cctggaggag gaactgactg accttcgagt tgagaaggag
                                                                     1500
tccttggaaa aggtaagctc tacaacccag tttgccagaa ttagctgttt aataaacatt
                                                                     1560
                                                                     1592
tttattttcc ttttacaaaa aaaaaaaaaa aa
```

```
<210> 48
```

<400> 48

Met Glu Val Leu Ile Ser Phe Phe Thr Gly Arg Ala Thr Ser Phe Ser 1 5 10 15

Ser Tyr Ser Phe Leu Cys Ser Ser Phe Ile Ser Phe Phe Leu Ala Cys 20 25 30

Ile Cys Leu Gly Ser Gly Asp Met Ala Ser Phe Leu Met Thr Glu Ala 35 40 45

Arg Gln His Asn Thr Glu Ile Arg Met Ala Val Ser Lys Val Ala Asp

<211> 171

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<222> (122)..(122)

<223> Xaa can be any naturally occurring amino acid

<220>

<221> misc feature

<222> (171)..(171)

<223> Xaa can be any naturally occurring amino acid

50 55 60

Lys Met Asp His Leu Met Thr Lys Val Glu Glu Leu Gln Lys His Ser 65 70 75 80

Ala Gly Asn Ser Met Leu Ile Pro Ser Met Ser Val Thr Met Glu Thr 85 90 95

Ser Met Ile Met Ser Asn Ile Gln Arg Ile Ile Gln Ala Lys Val Thr 100 105 110

Glu Glu Leu Ala Ala Ala Thr Ala Gln Xaa Ser His Leu Gln Leu Lys 115 120 125

Met Thr Cys Ser Pro Lys Lys Gly Asn Arg Ala Ala Asp Ala Ala Asp 130 135 140

Arg Lys Pro Glu Gly Asp Arg Ser Ser Gln Gly Pro Ala His Gln Ser 145 150 155 160

Ala Gly Lys Ala Leu Arg Ala Pro Arg Asn Xaa 165 170

<210> 49

<211> 1694

<212> DNA

<213> Homo sapiens

<400> 49

gggaaacggg aagccgctgc aagtccaccg cctcagctac ccagattggg atctgcccag 60 georgettta tggactagtg tgggeggeag geteetttee gteeetgeee tgetgtaeee 120 cgctccttgg agaccccctg tatccctccc gcaaggtgga atccgcaggc tggaggctcc 180 caggggaggc aaacgcctgg ccctgccctg ccccacgccg caccatgacc ctcctgctgc 240 300 tgccccttct gctgqcctct ctgctcgcgt cctgctcctg taacaaagcc aacaagcaca 360 agccatggat tgaggcagag taccagggca tcgtcatgga gaatgacaac acggtcctac tgaatccacc actctttgcc ttggacaagg atgccccgct gcgctatgca ggtgagatct 420 480 geggetteeg geteeatggg tetggggtge cetttgagge tgtgateett gacaaggega caggagaggg gctgatccgg gccaaggagc ctgtggactg cgaggcccag aaggaacaca 540 ccttcaccat ccaggcctat gactgtggcg agggccccga cggggccaac accaagaagt 600 cccacaaggc cactgtgcat gtgcgggtca acgatgtgaa cgagtttgcc ccagtgtttg 660 tggaacggct gtatcgtgcg gctgtgacag aggggaagct gtacgatcgc atcctgcggg 720 tggaagccat tgacggtgac tgctccccc agtacagcca gatctgctac tatgagattc 780 840 tcacacccaa caccctttc ctcattgaca atgacgggaa cattgagaac acagagaagc tgcagtacag tggtgagagg ctctataagt ttacagtgac agcttatgac tgtgggaaga 900 agegggeage agatgatget gaggtggaga tteaggtgaa geceaeetgt aaaceeaget 960 ggcaaggctg gaacaaaagg atcgaatatg caccaggtgc tgggagcttg gctttgttcc 1020 ctggtatccg cctggagacc tgtgatgaac cactctggaa cattcaggcc accatagagc 1080 tgcagaccag ccatgtggcc aagggctgtg accgtgacaa ctactcagag cgggcgctgc 1140 ggaaactctg tggtgctgcc actggggagg tggatctgtt gcccatgcct ggccccaatg 1200 ccaactggac agcaggactc tcggtgcact acagccagga cagcagcctg atctactggt 1260 tcaatggcac ccaggctgtg caggtgcccc tgggtggccc cagtgggctg ggctctgggc 1320 cccaggacag cctcagtgac cacttcaccc tgtccttctg gatgaagcat ggcgtaactc 1380 ccaacaaggg caagaaggaa gaggaaacca tcgtatgtaa cactgtccag aatggtgagc 1440 ctcccctcca ggcactagcc agagggggaa actggcttct tgtcccgcct ctgtcactgc 1500 ccagtgtgtg actgtgaaca ggtcacttcc cctctcttca tttgtgaggt gcaagtgcca 1560 ggtgtgatat gccttgattc tgtgctttat ccccaacatg acatgttgga tcgtaaaaaa 1620 1680 1694 aaaaaaaaa aaaa

<210> 50

<211> 428

<212> PRT

<213> Homo sapiens

<400> 50

Met Thr Leu Leu Leu Leu Pro Leu Leu Leu Ala Ser Leu Leu Ala Ser 1 5 10 15

Cys Ser Cys Asn Lys Ala Asn Lys His Lys Pro Trp Ile Glu Ala Glu 20 25 30

Tyr Gln Gly Ile Val Met Glu Asn Asp Asn Thr Val Leu Leu Asn Pro 35 40 45

Pro Leu Phe Ala Leu Asp Lys Asp Ala Pro Leu Arg Tyr Ala Gly Glu 50 55 60

Ile Cys Gly Phe Arg Leu His Gly Ser Gly Val Pro Phe Glu Ala Val 65 70 75 80

	11e	Leu	Asp	гАг	85	Inr	GIÀ	GIU	GIY	90	116	Arg	AIG	цуз	95	110
•	Val	Asp	Cys	Glu 100	Ala	Gln	Lys	Glu	His 105	Thr	Phe	Thr	Ile	Gln 110	Ala	Tyr
	Asp	Cys	Gly 115	Glu	Gly	Pro	Asp	Gly 120	Ala	Asn	Thr	Lys	Lys 125	Ser	His	Lys
	Ala	Thr 130	Val	His	Val	Arg	Val 135	Asn	Asp	Val	Asn	Glu 140	Phe	Ala	Pro	Val
	Phe 145	Val	Glu	Arg	Leu	Tyr 150	Arg	Ala	Ala	Val	Thr 155	Glu	Gly	Lys	Leu	Tyr 160
	Asp	Arg	Ile	Leu	Arg 165	Val	Glu	Ala	Ile	Asp 170	Gly	Asp	Cys	Ser	Pro 175	Gln
	Tyr	Ser	Gln	Ile 180	Cys	Tyr	Tyr	Glu	Ile 185	Leu	Thr	Pro	Asn	Thr 190	Pro	Phe
	Leu	Ile	Asp 195	Asn	Asp	Gly	Asn	Ile 200	Glu	Asn	Thr	Glu	Lys 205	Leu	Gln	Tyr
	Ser	Gly 210	Glu	Arg	Leu	Tyr	Lys 215	Phe	Thr	Val	Thr	Ala 220	Tyr	Asp	Cys	Gly
	Lys 225	Lys	Arg	Ala	Ala	Asp 230	Asp	Ala	Glu	Val	Glu 235	Ile	Gln	Val	Lys	Pro 240
	Thr	Cys	Lys	Pro	Ser 245	Trp	Gln	Gly	Trp	Asn 250	Lys	Arg	Ile	Glu	Tyr 255	Ala
	Pro	Gly	Ala	Gly 260	Ser	Leu	Ala	Leu	Phe 265	Pro	Gly	Ile	Arg	Leu 270	Glu	Thr
	Cys	Asp	Glu 275	Pro	Leu	Trp	Asn	Ile 280		Ala	Thr	Ile	Glu 285	Leu	Gln	Thr
	Ser	His 290	Val	Ala	Lys	Gly	Cys 295		Arg	Asp	Asn	Tyr 300	Ser	Glu	Arg	Ala
	Leu 305	_	Lys	Leu	Cys	Gly 310	Ala	Ala	Thr	Gly	Glu 315		Asp	Leu	Leu	Pro 320

Met Pro Gly Pro Asn Ala Asn Trp Thr Ala Gly Leu Ser Val His Tyr 325 330 335

Ser Gln Asp Ser Ser Leu Ile Tyr Trp Phe Asn Gly Thr Gln Ala Val 340 345 350

Gln Val Pro Leu Gly Gly Pro Ser Gly Leu Gly Ser Gly Pro Gln Asp 355 360 365

Ser Leu Ser Asp His Phe Thr Leu Ser Phe Trp Met Lys His Gly Val 370 380

Thr Pro Asn Lys Gly Lys Lys Glu Glu Glu Thr Ile Val Cys Asn Thr 385 390 395 400

Val Gln Asn Gly Glu Pro Pro Leu Gln Ala Leu Ala Arg Gly Gly Asn 405 410 415

Trp Leu Leu Val Pro Pro Leu Ser Leu Pro Ser Val 420 425

<210> 51

<211> 1309

<212> DNA

<213> Homo sapiens

<400> 51 ctggtcctcc tttgcagagg tggtgcggag ctcctgtttg acggtattaa gaaacatcga 60 gtcactttgc ctggacagga ggaaccctgg gacatccgga acctgctcat ctggatcaag 120 aagaatttgc taaaagagcg gccagagttg ttcatccagg gagacagcgt gcggccagga 180 240 attctggtgc tgattaacga tgccgactgg gagctactgg gtgagctgga ctaccagctt 300 caggaccagg acagcgtect etteatetee actetgeacg geggetgagg gecettetet gggcctgggc accettagag gggagaacga agcaatcaga catcccettg ggccctgctt 360 420 ccaggtetee etgteceet tgeetgeett ettecetget etgteceeta ageteeetee aggcagggaa aagaggccag gtgctaaaaa tgagcctttc tcaagcacgt gagcagcgga 480 aggcagacag gcgccagagc ccagcactcc cttttccagc agctgtggtg ggggagggtt 540 600 cccctccagt ttgtcaagag ttgaaggagg ctctgtggcc aggtgacctg gctgccttcc actccttgta cctcagtcta aacatggagt ggccgctgac aaggcgctcc agccccagag 660 ccagcgtctt catggggaag atgaatggac ctgagtagct gaaggaaggc ccctccctac 720 780 ccaaagactg gaggettete agecteaatt teeetgtetg tacagetgag ggetetgeet

gtcccccact	gctatcagta	tggaacccca	gctggggtcc	cctattgagt	gccgactccc	840
cccaccgcca	gcagctgctc	ctccagccac	acccttcctg	ctcccccac	ccytagccct	900
tgaccctggc	tggcctgccc	cgctccacag	gccaccagat	gggctcctga	gaccctcccc	960
aggctgctta	cagctcattc	tgctgggggt	agagatgagg	ggagggagta	agttaaacct	1020
tggactagca	agtagaagcc	tggggggatg	cgtgtgcctc	agtttcctcc	tccacaactg	1080
aatatagtgg	ctgaaaactg	gggagatact	tgatggcgcg	aatgtccgtt	ttctctccct	1140
tcccacctcc	tgcaggaagc	aggacggggc	aggcagcacc	tggtaggcac	agtgctttgc	1200
ccctcctccc	cttcccttct	ggaagtcttg	gggcctcagt	gcttgcaaca	gccggccttg	1260
ggcaaataaa	agactaggtt	gtttactaaa	aaaaaaaaa	aaaaaaaa		1309
.210. 52						
<210> 52						
<211> 54						

<212> PRT

<213> Homo sapiens

<400> 52

Met Ala Arg Met Ser Val Phe Ser Pro Phe Pro Pro Pro Ala Gly Ser 5 15

Arg Thr Gly Gln Ala Ala Pro Gly Arg His Ser Ala Leu Pro Leu Leu 20 25

Pro Phe Pro Ser Gly Ser Leu Gly Ala Ser Val Leu Ala Thr Ala Gly 35

Leu Gly Gln Ile Lys Asp 50

<210> 53

<211> 1740

<212> DNA

<213> Homo sapiens

<400> 53

ggcccgtgcg ctccatcaac cacgccagcc tcatctctgc actctcccgg gactatcgca 60 acctgaagcc cagtgctgtt gccccacaga gaaagatgcc actggatgac accaaactga 120 ttatccacca gacactcagc gtcttagaag atattgtgga gaatatctcg ggggagtcca 180 ccaagteteg acagatttge taccagtege tgeaggaate tgtteaggte teeetggeee 240 tctttccagc ttttatccat cagtcagatg tgactgatga gatgctgagc ttcttcctca 300 ctctgtttcg aggccttaga gtacagatgg gtgtgccttt cactgagcaa atcatacaga 360

```
ctttcctcaa catgtttacc agagagcagt tagccgagag catcctccac gagggcagca
                                                                      420
                                                                      480
caqqctqccq qqtqqtqqaq aaqtttctga agatcctgca ggtggtggtc caggagccag
gccaggtgtt caagcccttc ctccccagca tcatcgccct gtgcatggag caagtgtatc
                                                                      540
                                                                      600
ccatcattqc cgagcgtccc tcccctgatg tgaaggccga gctgtttgag ctccttttcc
                                                                      660
ggacgeteca teacaactgg aggtaettet teaagtecae egtgetggee agtgtecaga
qqqqatcqc tqaqqaqcaq atqqaqaatq agccccagtt cagtgccatc atgcaggctt
                                                                      720
teggacagte etttetecag ecegacatee acetttttaa acaaaatete ttetaettgg
                                                                      780
agacteteaa caccaageag aagetgtace acaagaagat etteeggaet gecatgetgt
                                                                      840
tccagtttgt gaacgtgctg ctccaggtcc tggtccacaa gtcccatgat cttctgcagg
                                                                      900
                                                                      960
aggagattgg catcgccatc tacaacatgg cctcagtcga ctttgatggc ttctttgccg
                                                                     1020
ccttcctccc agagttcctg accagctgtg atggtgtgga tgccaaccag aaaagtgtgc
tggggcggaa tttcaagatg gatcgggacc tgccctcatt cacccagaat gtgcacaggc
                                                                     1080
tggtcaacga cctgcgctac tacagactct gcaacgacag cctgcccct ggcactgtga
                                                                     1140
agetetagge etgetactge etggggacae ggaettetge tgetgeeace tgegeeagee
                                                                     1200
ctacetteca ccacaqatqt ctcccaqatq ggccttggtc acactecttg gcttctccca
                                                                     1260
ccgcaagcaa cgctgcctgc ctctgccgct cctccacatc ttgccgctgc ccagcagagc
                                                                     1320
                                                                     1380
tqqcttctqq qtccacctqa qcactggacg gtgctcccag ggcgttggag caggcggagg
                                                                     1440
ggtgtgtggc caggtactag gaggcaccag gaaatcccgc ggggtggccc atgcagacca
                                                                     1500
qqcqcacqtq gctcatgggg cagaattgcc aaggacagct cacgacagtg cmaccttctc
                                                                     1560
accattccaq ccaaqqaqaq atgtgacgtt ggaamtgyty tggcamttyt gtcaagcctc
ccccqccca attqccttqa ratytytgct ctttgtcaga gatttgcaaa gactcamgtt
                                                                     1620
                                                                     1680
tttqttqttt tctcatcatt ccattgtgat actaagaaac taagaagctt aatgaaaaga
                                                                     1740
aataaaatqc ctatqttqtt qttctaggrr aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
```

Met Pro Leu Asp Asp Thr Lys Leu Ile Ile His Gln Thr Leu Ser Val 1 5 10 15

Leu Glu Asp Ile Val Glu Asn Ile Ser Gly Glu Ser Thr Lys Ser Arg
20 25 30

<210> 54

<211> 350

<212> PRT

<213> Homo sapiens

<400> 54

Gln	Ile	Cys 35	Tyr	Gln	Ser	Leu	Gln 40	Glu	Ser	Val	Gln	Val 45	Ser	Leu	Ala
Leu	Phe 50	Pro	Ala	Phe	Ile	His 55	Gln	Ser	Asp	Val	Thr 60	Asp	Glu	Met	Leu
Ser 65	Phe	Phe	Leu	Thr	Leu 70	Phe	Arg	Gly	Leu	Arg 75	Val	Gln	Met	Gly	Val 80
Pro	Phe	Thr	Glu	Gln 85	Ile	Ile	Gln	Thr	Phe 90	Leu	Asn	Met	Phe	Thr 95	Arg
Glu	Gln	Leu	Ala 100	Glu	Ser	Ile	Leu	His 105	Glu	Gly	Ser	Thr	Gly 110	Cys	Arg
Val	Val	Glu 115	Lys	Phe	Leu	Lys	Ile 120	Leu	Gln	Val	Val	Val 125	Gln	Glu	Pro
Gly	Gln 130	Val	Phe	Lys	Pro	Phe 135	Leu	Pro	Ser	Ile	Ile 140	Ala	Leu	Cys	Met
Glu 145	Gln	Val	Tyr	Pro	Ile 150	Ile	Ala	Glu	Arg	Pro 155	Ser	Pro	Asp	Val	Lys 160
Ala	Glu	Leu	Phe	Glu 165	Leu	Leu	Phe	Arg	Thr 170	Leu	His	His	Asn	Trp 175	Arg
Tyr	Phe	Phe	Lys 180	Ser	Thr	Val	Leu	Ala 185	Ser	Val	Gln	Arg	Gly 190	Ile	Ala
Glu	Glu	Gln 195	Met	Glu	Asn	Glu	Pro 200	Gln	Phe	Ser	Ala	Ile 205	Met	Gln	Ala
Phe	Gly 210	Gln	Ser	Phe	Leu	Gln 215	Pro	Asp	Ile	His	Leu 220	Phe	Lys	Gln	Asn
Leu 225	Phe	Tyr	Leu	Glu	Thr 230	Leu	Asn	Thr	Lys	Gln 235	Lys	Leu	Tyr	His	Lys 240
Lys	Ile	Phe	Arg	Thr 245	Ala	Met	Leu	Phe	Gln 250	Phe	Val	Asn	Val	Leu 255	Leu
Gln	Val	Leu	Val 260	His	Lys	Ser	His	Asp 265	Leu	Leu	Gln	Glu	Glu 270	Ile	Gly

```
Ile Ala Ile Tyr Asn Met Ala Ser Val Asp Phe Asp Gly Phe Phe Ala
                            280
        275
Ala Phe Leu Pro Glu Phe Leu Thr Ser Cys Asp Gly Val Asp Ala Asn
    290
                        295
Gln Lys Ser Val Leu Gly Arg Asn Phe Lys Met Asp Arg Asp Leu Pro
                                        315
                   310
305
Ser Phe Thr Gln Asn Val His Arg Leu Val Asn Asp Leu Arg Tyr Tyr
                325
                                   330
Arg Leu Cys Asn Asp Ser Leu Pro Pro Gly Thr Val Lys Leu
                                345
<210> 55
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 55
                                                                      29
antgtcttga ctacaagctc cacgggggc
<210> 56
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 56
                                                                      29
tngccaagga gaaagcgagg cagacaagg
<210> 57
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
```

<223> n is a, c, g, or t

```
<400> 57
                                                                        29
anatcgactc tttgcatcgc acattttgt
<210> 58
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 58
                                                                        29
cnttcttcgg acttatgttt gaatctatc
<210> 59
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 59
                                                                        29
cnttcctctt agatctcagt atccacctc
<210> 60
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 60
                                                                        29
cncagacagg ggagataaca atgaggtgc
<210> 61
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
```

```
<400> 61
                                                                     29
tnctataggt gacttcaccc tgtcaggag
<210> 62
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 62
                                                                     29
tnttacagga gcaggacgcg agcagagag
<210> 63
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 63
                                                                     29
antcagttgt ggaggaggaa actgaggca
<210> 64
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 64
                                                                     29
cntcgaaaca gagtgaggaa gaagctcag
<210> 65
<211> 262
<212> PRT
<213> Homo sapiens
<400> 65
Met Val Ala Trp Arg Ser Ala Phe Leu Val Cys Leu Ala Phe Ser Leu
                                   10
               5
```

Ala	Thr	Leu	Val 20	Gln	Arg	Gly	Ser	Gly 25	Asp	Phe	Asp	Asp	Phe 30	Asn	Leu
Glu	Asp	Ala 35	Val	Lys	Glu	Thr	Ser 40	Ser	Val	Lys	Gln	Pro 45	Trp	Asp	His
Thr	Thr 50	Thr	Thr	Thr	Thr	Asn 55	Arg	Pro	Gly	Thr	Thr 60	Arg	Ala	Pro	Ala
Lys 65	Pro	Pro	Gly	Ser	Gly 70	Leu	Asp	Leu	Ala	Asp 75	Ala	Leu	Asp	Asp	Gln 80
Asp	Asp	Gly	Arg	Arg 85	Lys	Pro	Gly	Ile	Gly 90	Gly	Arg	Glu	Arg	Trp 95	Asn
His	Val	Thr	Thr 100	Thr	Thr	Lys	Arg	Pro 105	Val	Thr	Thr	Arg	Ala 110	Pro	Ala
Asn	Thr	Leu 115	Gly	Asn	Asp	Phe	Asp 120	Leu	Ala	Asp	Ala	Leu 125	Asp	Asp	Arg
Asn	Asp 130	Arg	Asp	Asp	Gly	Arg 135	Arg	Lys	Pro	Ile	Ala 140	Gly	Gly	Gly	Gly
Phe 145	Ser	Asp	Lys	Asp	Leu 150	Glu	Asp	Ile	Val	Gly 155	Gly	Gly	Glu	Tyr	Lys 160
Pro	Asp	Lys	Gly	Lys 165	Gly	Asp	Gly	Arg	Tyr 170	Gly	Ser	Asn	Asp	Asp 175	Pro
Gly	Ser	Gly	Met 180	Val	Ala	Glu	Pro	Gly 185	Thr	Ile	Ala	Gly	Val 190	Ala	Ser
Ala	Leu	Ala 195	Met	Ala	Leu	Ile	Gly 200	Ala	Val	Ser	Ser	Tyr 205	Ile	Ser	Tyr
Gln	Gln 210	Lys	Lys	Phe	Cys	Phe 215	Ser	Ile	Gln	Gln	Gly 220		Asn	Ala	Asp
Tyr 225	Val	Lys	Gly	Glu	Asn 230	Leu	Glu	Ala	Val	Val 235	Cys	Glu	Glu	Pro	Gln 240
Val	Lys	Tyr	Ser	Thr		His	Thr	·Gln	Ser 250		Glu	Pro	Pro	Pro 255	Pro

Pro Glu Pro Ala Arg Ile 260

<210> 66

<211> 482

<212> PRT

<213> Homo sapiens

<400> 66

Met His Val Leu Glu Thr Leu Asp Leu Leu Val Leu Arg Ala Asp Lys
1 5 10 15

Gly Lys Asp Ala Arg Leu Phe Val Phe Arg Leu Ser Ala Leu Gln Lys 20 25 30

Gly Leu Glu Gly Lys Gln Ala Gly Lys Ser Arg Ser Asp Cys Arg Glu 35 40 45

Asn Lys Leu Glu Lys Thr Lys Gly Cys His Leu Tyr Ala Ile Asn Thr 50 55 60

His His Ser Arg Glu Leu Arg Ile Val Val Ala Ile Arg Asn Lys Leu 65 70 75 80

Leu Leu Ile Thr Arg Lys His Asn Lys Pro Ser Gly Val Thr Ser Thr 85 90 95

Ser Leu Leu Ser Pro Leu Ser Glu Ser Pro Val Glu Glu Phe Gln Tyr 100 105 110

Ile Arg Glu Ile Cys Leu Ser Asp Ser Pro Met Val Met Thr Leu Val 115 120 125

Asp Gly Pro Ala Glu Glu Ser Asp Asn Leu Ile Cys Val Ala Tyr Arg 130 135 140

His Gln Phe Asp Val Val Asn Glu Ser Thr Gly Glu Ala Phe Arg Leu 145 150 155 160

His His Val Glu Ala Asn Arg Val Asn Phe Val Ala Ala Ile Asp Val 165 170 175

Tyr Glu Asp Gly Glu Ala Gly Leu Leu Leu Cys Tyr Asn Tyr Ser Cys 180 185 190

Ile Tyr Lys Lys Val Cys Pro Phe Asn Gly Gly Ser Phe Leu Val Gln

195 200 205

Pro	Ser	Ala	Ser	Asp	Phe	Gln	Phe	Cys	Trp	Asn	Gln	Ala	Pro	\mathtt{Tyr}	Ala
	210					215					220				

- Ile Val Cys Ala Phe Pro Tyr Leu Leu Ala Phe Thr Thr Asp Ser Met 225 230 235 240
- Glu Ile Arg Leu Val Val Asn Gly Asn Leu Val His Thr Ala Val Val 245 250 255
- Pro Gln Leu Gln Leu Val Ala Ser Arg Ser Asp Ile Tyr Phe Thr Ala 260 265 270
- Thr Ala Ala Val Asn Glu Val Ser Ser Gly Gly Ser Ser Lys Gly Ala 275 280 285
- Ser Ala Arg Asn Ser Pro Gln Thr Pro Pro Gly Arg Asp Thr Pro Val 290 295 300
- Phe Pro Ser Ser Leu Gly Glu Gly Glu Ile Gln Ser Lys Asn Leu Tyr 305 310 315
- Lys Ile Pro Leu Arg Asn Leu Val Gly Arg Ser Ile Glu Arg Pro Leu 325 330 335
- Lys Ser Pro Leu Val Ser Lys Val Ile Thr Pro Pro Thr Pro Ile Ser 340 345 350
- Val Gly Leu Ala Ala Ile Pro Val Thr His Ser Leu Ser Leu Ser Arg 355 360 365
- Met Glu Ile Lys Glu Ile Ala Ser Arg Thr Arg Arg Glu Leu Leu Gly 370 375 380
- Leu Ser Asp Glu Gly Gly Pro Lys Ser Glu Gly Ala Pro Lys Ala Lys 385 390 395 400
- Ser Lys Pro Arg Lys Arg Leu Glu Glu Ser Gln Gly Gly Pro Lys Pro 405 410 415
- Gly Ala Val Arg Ser Ser Ser Ser Asp Arg Ile Pro Ser Gly Ser Leu
 420 425 430
- Glu Ser Ala Ser Thr Ser Glu Ala Asn Pro Glu Gly His Ser Ala Ser

435 440 445

Ser Asp Gln Asp Pro Val Ala Asp Arg Glu Gly Ser Pro Val Ser Gly 450 455 460

Ser Ser Pro Phe Gln Leu Thr Ala Phe Ser Asp Glu Asp Ile Ile Asp 465 470 475 480

Leu Lys

<210> 67 <211> 1748 <212> DNA

<213> Homo sapiens

<400> 67 gtttagtgat acgacacaag atcgggagat ttttgatcac catactgaag aggatataga 60 taaaagtgct aacagtgtat tgataaaaaa cctgagcagg accccatcta gttgcagcag 120 ctctctggat tcaatcaagg ctgatgggac ctctctggac ttcagcactt accgcagtag 180 240 tcaaatqqaa tcacaqtttc tcagagatac tatttgtgaa gagagcttga gggagaaact ccaagatggg agaataacaa taagggagtt ctttatactt ctccaggtcc acatcttgat 300 360 acagaaaccc cgacagagca atctcccagg caattttact gtaaacacac cacctactcc agaagacctg atgttaagtc aatatgttta ccgacccaag atacagattt atagagaaga 420 ttgtgaggct cgtcgccaaa agattgaaga attaaagctt tctgcatcga accaagataa 480 gctgttggtt gatataaata agaacctgtg ggaaaaaatg agacactgct ctgacaaaga 540 gctgaaggcc tttggaattt atcttaacaa aataaagtca tgttttacca agatgactaa 600 660 aqtcttcact caccaaggaa aagtggctct gtatggcaag ctggtgcagt cagctcagaa tgagagggag aaacttcaaa taaagataga tgagatggat aaaatactta agaagatcga 720 780 taactgcctc actgagatgg aaacagaaac taagaatttg gaggatgaag agaaaaacaa tcctgtggaa gaatgggatt ctgaaatgag agctgcagaa aaagaattgg aacagctgaa 840 aactgaagag gaggagcttc aaagaaatct cttagaactg gaggtaccaa aagagcagac 900 960 ccttgctcaa atagacttta tgcaaaaaca aagaaataga actgaagagc tactggatca gttgagcttg tctgagtggg atgtcgttga gtggagtgat gatcaagctg tattcacctt 1020 tgtttatgac acgatacaac tcaccatcac ctttgaagag tcagttgttg gtttcccttt 1080 cctggacaag cgttatagga agattgttga tgtcaatttt caatctctgt tagatgagga 1140 tcaagctcct ccttcctccc ttttagttca taagcttatt ttccagtacg ttgaagaaaa 1200 ggaatcctgg aagaagacat gtacaaccca gcatcagtta cccaagatgc ttgaagaatt 1260 ctcactggta gtgcaccatt gcagactcct tggagaggag attgagtatt taaagagatg 1320 gggaccaaat tataacctaa tgaacataga tattaataat aatgaattga gacttttatt 1380 ctctagctcc gcagcatttg caaagtttga aataactttg tttctctcag cctattatcc 1440 atctgtacca ttaccttcca ccattcagaa tcacgttggg aacactagcc aagatgatat 1500 tqctaccatt ctatctaaag tgccactgga gaacaactac ctgaagaatg tagtcaagca 1560 aatttaccaa gatctgtttc aggactgcca tttctaccac tagacccttg gaccaccatt 1620 ggaacaacca agcagaatgt acttgatatt atttcagggt cccattgctg ttcagccttt 1680 gtttttacgt cattacaagc tgagtaaaat tccttctgat gatgttataa aaaaaaaaa 1740 1748 aaaaaaa

<210> 68

<211> 472

<212> PRT

<213> Homo sapiens

<400> 68

Met Glu Ser Gln Phe Leu Arg Asp Thr Ile Cys Glu Glu Ser Leu Arg 1 5 10 15

Glu Lys Leu Gln Asp Gly Arg Ile Thr Ile Arg Glu Phe Phe Ile Leu 20 25 30

Leu Gln Val His Ile Leu Ile Gln Lys Pro Arg Gln Ser Asn Leu Pro 35 40 45

Gly Asn Phe Thr Val Asn Thr Pro Pro Thr Pro Glu Asp Leu Met Leu 50 55 60

Ser Gln Tyr Val Tyr Arg Pro Lys Ile Gln Ile Tyr Arg Glu Asp Cys 65 70 75 80

Glu Ala Arg Arg Gln Lys Ile Glu Glu Leu Lys Leu Ser Ala Ser Asn 85 90 95

Gln Asp Lys Leu Leu Val Asp Ile Asn Lys Asn Leu Trp Glu Lys Met 100 105 110

Arg His Cys Ser Asp Lys Glu Leu Lys Ala Phe Gly Ile Tyr Leu Asn 115 120 125

Lys	Ile 130	Lys	Ser	Cys	Phe	Thr 135	Lys	Met	Thr	Lys	Val 140	Phe	Thr	His	Gln
Gly 145	Lys	Val	Ala	Leu	Tyr 150	Gly	Lys	Leu	Val	Gln 155	Ser	Ala	Gln	Asn	Glu 160
Arg	Glu	Lys	Leu	Gln 165	Ile	Lys	Ile	Asp	Glu 170	Met	Asp	Lys	Ile	Leu 175	Lys
Lys	Ile	Asp	Asn 180	Cys	Leu	Thr	Glu	Met 185	Glu	Thr	Glu	Thr	Lys 190	Asn	Leu
Glu	Asp	Glu 195	Glu	Lys	Asn	Asn	Pro 200	Val	Glu	Glu	Trp	Asp 205	Ser	Glu	Met
Arg	Ala 210	Ala	Glu	Lys	Glu	Leu 215	Glu	Gln	Leu	Lys	Thr 220	Glu	Glu	Glu	Glu
Leu 225	Gln	Arg	Asn	Leu	Leu 230	Glu	Leu	Glu	Val	Pro 235	Lys	Glu	Gln	Thr	Leu 240
Ala	Gln	Ile	Asp	Phe 245	Met	Gln	Lys	Gln	Arg 250	Asn	Arg	Thr	Glu	Glu 255	Leu
Leu	Asp	Gln	Leu 260	Ser	Leu	Ser	Glu	Trp 265	Asp	Val	Val	Glu	Trp 270	Ser	Asp
Asp	Gln	Ala 275	Val	Phe	Thr	Phe	Val 280	Tyr	Asp	Thr	Ile	Gln 285	Leu	Thr	Ile
Thr	Phe 290	Glu	Glu	Ser	Val	Val 295	Gly	Phe	Pro	Phe	Leu 300	Asp	Lys	Arg	Tyr
Arg 305	Lys	Ile	Val	Asp	Val 310	Asn	Phe	Gln	Ser	Leu 315	Leu	Asp	Glu	Asp	Gln 320
Ala	Pro	Pro	Ser	Ser 325	Leu	Leu	Val	His	Lys 330	Leu	Ile	Phe	Gln	Tyr 335	Val
Glu	Glu	Lys	Glu 340	Ser	Trp	Lys	Lys	Thr 345	Cys	Thr	Thr	Gln	His 350	Gln	Leu
Pro	Lys	Met 355		Glu	Glu	Phe	Ser 360		Val	Val	His	His 365	Cys	Arg	Leu

Leu Gly Glu Glu Ile Glu Tyr Leu Lys Arg Trp Gly Pro Asn Tyr Asn Leu Met Asn Ile Asp Ile Asn Asn Asn Glu Leu Arg Leu Phe Ser 385 395 400 Ser Ser Ala Ala Phe Ala Lys Phe Glu Ile Thr Leu Phe Leu Ser Ala 405 410 Tyr Tyr Pro Ser Val Pro Leu Pro Ser Thr Ile Gln Asn His Val Gly 425 420 Asn Thr Ser Gln Asp Asp Ile Ala Thr Ile Leu Ser Lys Val Pro Leu 435 Glu Asn Asn Tyr Leu Lys Asn Val Val Lys Gln Ile Tyr Gln Asp Leu 450 455 Phe Gln Asp Cys His Phe Tyr His 465 470 <210> 69 <211> 2298 DNA <212> Homo sapiens <213> <400> cttttctttg attgtctctg ctttagcgtc tctaaatccg gtcaccatgt cggaccccga 60 aggcgagacc ttgcgaagca cctttccctc ttatatggcc gaaggcgagc ggctctacct 120 gtgcggggaa ttttctaaag ccgcgcagag cttcagcaac gctctttacc ttcaggatgg 180 agacaagaac tgcctggttg ctcgctcaaa gtgcttcctg aagatgggag acttggagag 240 atccctqaaq qatqctqarq cttcqctcca qagtgaccca gctttctgta aggggatttt 300 gcaaaaggct gagacactgt acaccatggg agactttgag tttgccttgg tattctatca 360

tcgargctac aagctgargc ctgatcggga attcarartt ggcattcaga aagcccagga

agccatcaac aactcagtgg gaagtccttc ttccattaag ctggagaaca aaggggacct

ctccttctta agcaagcagg ctgagaatat aaaagcccag cagaagcctc agcccatgaa

acacetetta caceceacca agggagagee caagtggaag geetegetea agagtgagaa

gactgtccgc cagcttctgg gggagctcta cgtggacaaa gagtatttgg agaagctcct

attggatgaa gacctgatca aaggcaccat gaagggcggc ctgactgtgg aggacctcat

catgacggc atcaactacc tggatactca cagcaacttc tggaggcagc agaagccgat

420

480

540

600

660

720

780

ctacgccagg	gagcgggacc	ggaagctgat	gcaagagaaa	tggctgcggg	accacaaacg	840
ccgtccctca	cagacagccc	attacatcct	caagagcctg	gaggacattg	atatgttgct	900
cacaagtggc	agtgctgaag	ggagtcttca	gaaagctgag	aaagtgctga	agaaggtact	960
ggaatggaac	aaggaagagg	tacccaacaa	ggatgaactg	gttggaaact	tgtatagctg	1020
catagggaat	gcccagattg	agctggggca	gatggaggca	gccctgcaga	gccacagaaa	1080
ggacytggag	atcgccaagg	aatatgacct	tcctgatgca	aaatcgagag	cccttgacaa	1140
cattggcaga	gtttttgcca	gagttgggaa	attccagcaa	gccattgaca	cgtgggaaga	1200
aaagatccct	ctggcaaaaa	ccaccctgga	gaagacctgg	ctgttccacg	agatcggccg	1260
ctgctacttg	gagctggacc	aggcctggca	ggcccagaat	tatggcgaga	agtcccagca	1320
gtgtgccgag	gaggaagggg	acattgagtg	gcaactgaat	gccagtgttc	tggtggccca	1380
ggcacaagtg	aagctgagag	acttcgagtc	agccgtgaac	aattttgaga	aggccctgga	1440
gagagcaaag	cttgtgcata	acaacgaggc	gcagcaggcc	atcatcagtg	ccttggacga	1500
tgccaacaag	ggtatcatca	gagaactgag	gaaaaccaac	tacgtggaga	atctcaaaga	1560
aaaaagcgag	ggagaagctt	cactgtatga	agatagaata	ataacaagag	agaaggacat	1620
gaggagagtg	agagatgagc	ccgagaaggt	ggtgaagcag	tgggaccata	gtgaggatga	1680
gaaagagaca	gatgaggacg	atgaggcttt	tggggaagct	ctgcagagcc	cagcaagcgg	1740
aaagcagagt	gtggaagcag	gaaaagccag	aagcgatttg	ggagcagttg	ccaagggcct	1800
gtcaggagaa	ttaggcacaa	gatcaggaga	aacaggcagg	aagctactag	aagctggcag	1860
aagagagtca	agagaaattt	ataggaggcc	ttcgggagaa	ttagagcaaa	gactctcagg	1920
agaattcagc	agacaggaac	cagaagaact	aaagaaactt	tcagaagtgg	gcagaagaga	1980
sccagaagaa	ytgggaaaaa	cacaatttgg	agaaatagga	gaaacgaaaa	aaacaggaaa	2040
tgagatggaa	aaggaatatg	aatgaagcca	tcggtagaga	tgaggatcag	gaagctggtg	2100
ttcagaggga	tcatgggatt	ttattaaact	ggattttcaa	gcgatttgtc	tgttatagga	2160
aaaatgaggg	tttacttyt	gctgctttcc	atcactattt	tgccattaaa	taggtgtctt	2220
tcactcttgc	maaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2280
aaaaaaaaa	aaaaaaaa					2298

<210> 70 <211> 672 <212> PRT <213> Homo sapiens

```
<221> misc feature
<222> (107)..(107)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (111)..(111)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
      (117)..(118)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
      (645)..(645)
<222>
<223> Xaa can be any naturally occurring amino acid
<400> 70
Met Ser Asp Pro Glu Gly Glu Thr Leu Arg Ser Thr Phe Pro Ser Tyr
Met Ala Glu Gly Glu Arg Leu Tyr Leu Cys Gly Glu Phe Ser Lys Ala
Ala Gln Ser Phe Ser Asn Ala Leu Tyr Leu Gln Asp Gly Asp Lys Asn
Cys Leu Val Ala Arg Ser Lys Cys Phe Leu Lys Met Gly Asp Leu Glu
Arg Ser Leu Lys Asp Ala Glu Ala Ser Leu Gln Ser Asp Pro Ala Phe
                    70
65
Cys Lys Gly Ile Leu Gln Lys Ala Glu Thr Leu Tyr Thr Met Gly Asp
Phe Glu Phe Ala Leu Val Phe Tyr His Arg Xaa Tyr Lys Leu Xaa Pro
            100
Asp Arg Glu Phe Xaa Xaa Gly Ile Gln Lys Ala Gln Glu Ala Ile Asn
                            120
        115
Asn Ser Val Gly Ser Pro Ser Ser Ile Lys Leu Glu Asn Lys Gly Asp
    130
                        135
Leu Ser Phe Leu Ser Lys Gln Ala Glu Asn Ile Lys Ala Gln Gln Lys
                    150
                                        155
```

145

Pı	ro	Gln	Pro	Met	Lys 165	His	Leu	Leu	His	Pro 170	Thr	Lys	Gly	Glu	Pro 175	Lys
Tı	rp	Lys	Ala	Ser 180	Leu	Lys	Ser	Glu	Lys 185	Thr	Val	Arg	Gln	Leu 190	Leu	Gly
G:	lu	Leu	Туг 195	Val	Asp	Lys	Glu	Tyr 200	Leu	Glu	Lys	Leu	Leu 205	Leu	Asp	Glu
As	sp	Leu 210	Ile	Lys	Gly	Thr	Met 215	Lys	Gly	Gly	Leu	Thr 220	Val	Glu	Asp	Leu
	le 25	Met	Thr	Gly	Ile	Asn 230	Tyr	Leu	Asp	Thr	His 235	Ser	Asn	Phe	Trp	Arg 240
G:	ln	Gln	Lys	Pro	Ile 245	Tyr	Ala	Arg	Glu	Arg 250	Asp	Arg	Lys	Leu	Met 255	Gln
G:	lu	Lys	Trp	Leu 260	Arg	Asp	His	Lys	Arg 265	Arg	Pro	Ser	Gln	Thr 270	Ala	His
T	yr	Ile	Leu 275	Lys	Ser	Leu	Glu	Asp 280	Ile	Asp	Met	Leu	Leu 285	Thr	Ser	Gly
S	er	Ala 290	Glu	Gly	Ser	Leu	Gln 295	Lys	Ala	Glu	Lys	Val 300	Leu	Lys	Lys	Val
	eu 05	Glu	Trp	Asn	Lys	Glu 310	Glu	Val	Pro	Asn	Lys 315	Asp	Glu	Leu	Val	Gly 320
A	sn	Leu	Tyr	Ser	Cys 325	Ile	Gly	Asn	Ala	Gln 330	Ile	Glu	Leu	Gly	Gln 335	Met
G	lu	Ala	Ala	Leu 340	Gln	Ser	His	Arg	Lys 345	Asp	Leu	Glu	Ile	Ala 350	Lys	Glu
T	yr	Asp	Leu 355	Pro	Asp	Ala	Lys	Ser 360	Arg	Ala	Leu	Asp	Asn 365	Ile	Gly	Arg
V	al	Phe 370	Ala	Arg	Val	Gly	Lys 375	Phe	Gln	Gln	Ala	Ile 380	Asp	Thr	Trp	Glu
	lu 85	Lys	Ile	Pro	Leu	Ala 390	Lys	Thr	Thr	Leu	Glu 395	Lys	Thr	Trp	Leu	Phe 400

His	Glu	Ile	Gly	Arg 405	Cys	Tyr	Leu	Glu	Leu 410	Asp	Gln	Ala	Trp	Gln 415	Ala
Gln	Asn	Tyr	Gly 420	Glu	Lys	Ser	Gln	Gln 425	Cys	Ala	Glu	Glu	Glu 430	Gly	Asp
Ile	Glu	Trp 435	Gln	Leu	Asn	Ala	Ser 440	Val	Leu	Val	Ala	Gln 445	Ala	Gln	Val
Lys	Leu 450	Arg	Asp	Phe	Glu	Ser 455	Ala	Val	Asn	Asn	Phe 460	Glu	Lys	Ala	Leu
Glu 465	Arg	Ala	Lys	Leu	Val 470	His	Asn	Asn	Glu	Ala 475	Gln	Gln	Ala	Ile	Ile 480
Ser	Ala	Leu	Asp	Asp 485	Ala	Asn	Lys	Gly	Ile 490	Ile	Arg	Glu	Leu	Arg 495	Lys
Thr	Asn	Tyr	Val 500	Glu	Asn	Leu	Lys	Glu 505	Lys	Ser	Glu	Gly	Glu 510	Ala	Ser
Leu	Tyr	Glu 515	Asp	Arg	Ile	Ile	Thr 520	Arg	Glu	Lys	Asp	Met 525	Arg	Arg	Val
Arg	Asp 530	Glu	Pro	Glu	Lys	Val 535	Val	Lys	Gln	Trp	Asp 540	His	Ser	Glu	Asp
545					550					555				Leu	560
				565					570					Arg 575	
_			580					585					590	Thr	
		595					600					605		Glu	
	610					615					620			Leu	
Gly		Phe	Ser	Arg	Gln 630	Glu	Pro	Glu	Glu	Leu 635	Lys	Lys	Leu	Ser	Glu 640

Val Gly Arg Arg Xaa Pro Glu Glu Leu Gly Lys Thr Gln Phe Gly Glu 645 650 655

Ile Gly Glu Thr Lys Lys Thr Gly Asn Glu Met Glu Lys Glu Tyr Glu 660 665 670

<210> 71 <211> 1010 <212> DNA

<213> Homo sapiens

<400> 71 ggaagagcca ccatccctgc ccccgttttc ccaccgggga gtctgtacag agatttttct 60 acqtttttat tttttgcctc agagggatgg gattggggag gaggggatgg gcagcggagg 120 180 qttqqqqqca tqqtctqcag gctcatctgt gtccgccttt cactccacta atgctgtctc 240 agtgttttct ctctctctct ttcgagcttg cactccggta cccgacccgg cgccctggcc catcccatgc cggggggcca gtggaaagaa gacaggccgt ccagcccgtg cccgcctgcg 300 gegggggcae ccageaagee egeceaeege eegetgeete acetgetteg ccaeagaete 360 420 480 ccqtcctcqq cccccaccc tqaagtgcca gcaccaccag caccagatct tccgccgcca caccgcattg aggacacgcc ggccgggccg cttcgtctca agttgtataa agttgtctcc 540 gtgtcccctc ctccctctgc ccccagtgtt tcttctgatt tttttttccc ctttccctcc 600 ctccctctcc gcattcttcc cttggttcag cacaggtaaa acggttcccc tccctccctg 660 720 ccttcatgga tcaccagetc acgtcatgtt gccttctctt ttctttgtgt gtgtgtttat 780 gccatgtaac tggaggatgt gctatgagtt tgcaaacagc tggactgtca ggctgctttt 840 900 ccttcctttc cttggagcac tgagcaccat ttggaagctt gagagaaacc aaaattaaag 960 1010

<210> 72 <211> 205 <212> PRT <213> Homo sapiens

<400> 72

Met Gly Ser Gly Gly Leu Gly Ala Trp Ser Ala Gly Ser Ser Val Ser

1 10 15

Ala	Phe	His	Ser 20	Thr	Asn	Ala	Val	Ser 25	Val	Phe	Ser	Leu	Ser 30	Leu	Phe		
Arg	Ala	Cys 35	Thr	Pro	Val	Pro	Asp 40	Pro	Ala	Pro	Trp	Pro 45	Ile	Pro	Cys		
Arg	Gly 50	Ala	Ser	Gly	Lys	Lys 55	Thr	Gly	Arg	Pro	Ala 60	Arg	Ala	Arg	Leu		
Arg 65	Arg	Gly	His	Pro	Ala 70	Ser	Pro	Pro	Thr	Ala 75	Arg	Cys	Leu	Thr	Cys 80		
Phe	Ala	Thr	Asp	Ser 85	Cys	Ser	Gln	Pro	Leu 90	Gly	Ala	Ser	Val	Phe 95	Gly		
Val	Gly	Glu	Leu 100	Leu	Arg	Asp	Cys	Ala 105	Arg	Pro	Arg	Pro	Pro 110	Thr	Leu		
Lys	Cys	Gln 115	His	His	Gln	His	Gln 120	Ile	Phe	Arg	Arg	His 125	Thr	Ala	Leu		
Arg	Thr 130	Arg	Arg	Pro	Gly	Arg 135	Phe	Val	Ser	Ser	Cys 140	Ile	Lys	Leu	Ser		
Pro 145	_	Pro	Leu	Leu	Pro 150	Leu	Pro	Pro	Val	Phe 155	Leu	Leu	Ile	Phe	Phe 160		
Ser	Pro	Phe	Pro	Pro 165	Ser	Leu	Ser	Ala	Phe 170	Phe	Pro	Trp	Phe	Ser 175	Thr		
Gly	Lys	Thr	Val 180	Pro	Leu	Pro	Pro	Cys 185	Leu	His	Gly	Ser	Pro 190	Ala	His		
Val	Met	Leu 195		Ser	Leu	Phe	Phe 200	Val	Cys	Val	Phe	Ile 205					
<21 <21 <21 <21	1> 2>	73 2409 DNA Homo	sap	iens													
<40 att		73 tca	tcaa	cctc	at t	atag	aaca	t at	gatt	tgtg	ata	caga	tcc	tgaa	cttgga	6	(
gga	gcag	tcc .	agct	tatg	gg c	ctgc	ttcg	a ac	ttta	gttg	acc	caga	gaa	catg	ctagcc	12	(
act	qccm	ata .	aaac	asaa	aa q	actq	aatt	t ct	gggt	ttct	tct	acaa	gca	ctgta	atgcat	18	(

240 gttctcwctg ctcctttact agcaaataca acagaagaca aacctagtaa agatgatttt 300 cagactgccc aactattggc acttgtattg gaattgttaa cattttgtgt ggagcaccat acctaccaca taaagaacta cattattaat aaggatatcc tccggagagt gctagttctt 360 atggcctcga agcatgcttt cttggcatta tgtgcccttc gttttaaaag aaagattatt 420 ggattaaaag atgagtttta caaccgctac ataatgaaaa gttttttgtt tgaaccagta 480 gtgaaagcat ttctcaacaa tggatcccgc tacaatctga tgaactctgc cataatagag 540 600 atqtttqaat ttattagagt ggaagatata aaatcattaa ctgctcatgt aattgaaaat 660 tactggaaag cactggaaga tgtagattat gtacagacat ttaaaggatt aaaactgaga tttgaacaac aaagagaaag gcaagataat cccaaacttg acagtatgcg ttccattttg 720 780 aggaatcaca gatatcgaag agatgccaga acactagaag atgaagaaga gatgtggttt 840 aacacagatg aagatgacat ggaagatgga gaagctgtag tgtctccatc tgacaaaact aaaaatgatg atgatattat ggatccaata agtaaattca tggaaaggaa gaaattaaaa 900 gaaagtgagg aaaaggaagt gcttctgaaa acaaaccttt ctggacggca gagcccaagt 960 ttcaagcttt ccctgtccag tggaacgaag actaacctca ccagccagtc atctacaaca 1020 aatctgcctg gttctccggg atcacctgga tccccaggat ctccaggctc tcctggatcc 1080 1140 gtacctaaaa atacatctca gacggcagct attactacaa agggaggcct cgtgggtctg 1200 gtagattatc ctgatgatga tgaagatgat gatgaggatg aagataagga agatacgtta 1260 ccattqtcaa aqaaagcaaa atttgattca taataatggc aacggcctag gatcagtacc tgttgaaaaa aactggttct ccacccctcc cccatacaaa atccacaaaa aagcgcagtg 1320 gtctcttgtg aatgactgac acagatcagc ctcttacact tgacttctgc tcatcaagtg 1380 ccaattcaat ggagcaggag gaggggatat catatattta ggggaaagac ttaagccttt 1440 1500 gageteteca gettggacca cacattgece tttteteagg gaaggaaatg gaaacaaaaa gccaacaggg caggggtttt gtaagtggaa ctctggattg actggtcagt tgctacaatc 1560 1620 agaatatgct ttcttggacc atgtttgaga ctcagaagaa tggcctttct gccataattc ttcactagtc aagaatgcca gcagtttctt tgtataaaga gacctgcctt taaaatcata 1680 cattctgaac attttagtca agctacaaca ggtttggaaa acctctgtgg gggaggggcg 1740 1800 agtataaagt tttcctcttt tttaactgtt ccctttgccc ttcaaactgc agatattttt 1860 ttttttaagt ggggacttct ccctacttga ttaaagattg agtggaattc tagatgtggt 1920 1980 tgtatgctta gttgttgagt atatatattt gggaccatta aaactttttt tgatgtaata

taacctaacg ttgtgctggt acctgtttta ccatgtgtaa tttttgttct acatcacagt 2040 2100 tcttaatttg tttagagttt tatgaaagat ggtatagttt ttattgacaa aagcaaagta atcttacaac tatgtgcata caaaagcaat actattttgt gactaaatat tttatattaa 2160 aatttacatc agcaactgtc ttgagaattc agggaaatag aatggaattt aaaacttcaa 2220 cagttttgtt aaatctagaa acatgaaatt rgtattccaa agagattctg aaatttcttt 2280 tctkqqqqaa atgacggtac attaaatcaa aattgrggat ggatgattta aaaacatttg 2340 2400 2409 aaaaaaaa

- <210> 74
- <211> 400
- <212> PRT
- <213> Homo sapiens
- <220>
- <221> misc feature
- <222> (33)..(33)
- <223> Xaa can be any naturally occurring amino acid
- <220>
- <221> misc feature
- <222> (36)..(36)
- <223> Xaa can be any naturally occurring amino acid
- <220>
- <221> misc_feature
- <222> (53)..(53)
- <223> Xaa can be any naturally occurring amino acid
- <400> 74

Met Ile Cys Asp Thr Asp Pro Glu Leu Gly Gly Ala Val Gln Leu Met
1 5 10 15

Gly Leu Leu Arg Thr Leu Val Asp Pro Glu Asn Met Leu Ala Thr Ala 20 25 30

Xaa Lys Thr Xaa Lys Thr Glu Phe Leu Gly Phe Phe Tyr Lys His Cys 35 40 45

Met His Val Leu Xaa Ala Pro Leu Leu Ala Asn Thr Thr Glu Asp Lys 50 55 60

Pro Ser Lys Asp Asp Phe Gln Thr Ala Gln Leu Leu Ala Leu Val Leu 65 70 75 80

C	3lu	Leu	Leu	Thr	Phe 85	Cys	Val	Glu	His	His 90	Thr	Tyr	His	ше	ьув 95	Asn
כ	Гуг	Ile	Ile	Asn 100	Lys	Asp	Ile	Leu	Arg 105	Arg	Val	Leu	Val	Leu 110	Met	Ala
5	Ser	Lys	His 115	Ala	Phe	Leu	Ala	Leu 120	Cys	Ala	Leu	Arg	Phe 125	Lys	Arg	Lys
-	Ile	Ile 130	Gly	Leu	Lys	Asp	Glu 135	Phe	Tyr	Asn	Arg	Tyr 140	Ile	Met	Lys	Ser
	Phe 145	Leu	Phe	Glu	Pro	Val 150	Val	Lys	Ala	Phe	Leu 155	Asn	Asn	Gly	Ser	Arg 160
•	ſyr	Asn	Leu	Met	Asn 165	Ser	Ala	Ile	Ile	Glu 170	Met	Phe	Glu	Phe	Ile 175	Arg
1	Val	Glu	Asp	Ile 180	Lys	Ser	Leu	Thr	Ala 185	His	Val	Ile	Glu	Asn 190	Tyr	Trp
	Lys	Ala	Leu 195	Glu	Asp	Val	Asp	Tyr 200	Val	Gln	Thr	Phe	Lys 205	Gly	Leu	Lys
	Leu	Arg 210	Phe	Glu	Gln	Gln	Arg 215	Glu	Arg	Gln	Asp	Asn 220	Pro	Lys	Leu	Asp
	Ser 225	Met	Arg	Ser	Ile	Leu 230	Arg	Asn	His	Arg	Tyr 235	Arg	Arg	Asp	Ala	Arg 240
•	Thr	Leu	Glu	Asp	Glu 245	Glu	Glu	Met	Trp	Phe 250	Asn	Thr	Asp	Glu	Asp 255	Asp
				260					265					Thr 270		
			275					280					285	Arg		
		290					295					300		Asn		
	Gly		Gln	Ser	Pro	Ser 310		Lys	Leu	Ser	Leu 315		Ser	Gly	Thr	Lys 320

Thr Asn Leu Thr Ser Gln Ser Ser Thr Thr Asn Leu Pro Gly Ser Pro 330 325 Gly Ser Pro Gly Ser Pro Gly Ser Pro Gly Ser Pro Gly Ser Val Pro 345 340 Lys Asn Thr Ser Gln Thr Ala Ala Ile Thr Thr Lys Gly Gly Leu Val 355 360 Gly Leu Val Asp Tyr Pro Asp Asp Asp Glu Asp Asp Glu Asp Glu 375 370 Asp Lys Glu Asp Thr Leu Pro Leu Ser Lys Lys Ala Lys Phe Asp Ser 390 385 <210> 75 <211> 951 <212> DNA <213> Homo sapiens <400> 75 gccaggcagg gtgtgggggc agctgtgcca atctacctca caggcccacc ccctgccggg 60 catgccgtgg gatcatgggc agggaaggct ctgggggtcg gagacaccgc tgcttagcac 120 180 ccccagccag aacaccctga gggtctcggg gctctggaga gagtggggcg ggaggaagaa 240 ttggcacctt cctagggaag gagacgagcg cttcgccttg attctccgag aagcctccga 300 gaagtgettt aagtgtgttt geatgeseca ggeggtggge agegggggee tgtecareee 360 tetecegeca teetteecca agtgaegtee actgeettgt caccagegae etgeetgtea tgcccacccc ctgaggaagc atggggaccc taacaccctg gtgccctgca ccagacaggc 420 cgtggtcagg cccaggccac cggccgggtt ctgccacarc ttcccacgtg cttgctgaca 480 540 tgcstgtgcc tgtgtgtggt gtctgttgct gtgtcgtgaa actgtgacca tcactcagtc

<210> 76

caaacaagtg agtggcccts gaggccacag ttatgcaact ttcagtgtgt gtcataacga

cgtcactgct ttttaaactc gataactctt tattttagta aaatgcccag gagtcctgga

agctacgcgg acttgcagag gttttatttt ttggccttag aatctgcaga aattaggagg

caccgagccc agcgcagcag cctcggaccc ggattgcgtt tgccttagcg gatatgttta

tacagatgaa tataaaatgt ttttttcttt gggctttttg cttcttttt cccccccttc

tcaccttccc ttctccctga ccccaccccc caaaaaagct acttcttcat tccgtggtac

600

660

720

780

840

900

951

<211> 87 <212> PRT <213> Homo sapiens <220> <221> misc feature <222> (69)..(69) <223> Xaa can be any naturally occurring amino acid <220> <221> misc feature <222> (79)..(79) <223> Xaa can be any naturally occurring amino acid <400> 76 Met Pro Trp Asp His Gly Gln Gly Arg Leu Trp Gly Ser Glu Thr Pro Leu Leu Ser Thr Pro Ser Gln Asn Thr Leu Arg Val Ser Gly Leu Trp Arg Glu Trp Gly Gly Arg Lys Asn Trp His Leu Pro Arg Glu Gly Asp 40 Glu Arg Phe Ala Leu Ile Leu Arg Glu Ala Ser Glu Lys Cys Phe Lys Cys Val Cys Met Xaa Gln Ala Val Gly Ser Gly Gly Leu Ser Xaa Pro 70 Leu Pro Pro Ser Phe Pro Lys <210> 77 <211> 1899 <212> DNA <213> Homo sapiens ggccgcttgt gtccacggga cgcgggcgga tcttctccgg ccatgaggaa gccagccgct 60 ggetteette ceteaeteet gaaggtgetg eteetgeete tggeaeetge egeageeeag 120 gattcgactc aggcctccac tccaggcagc cctctctctc ctaccgaata cgaacgcttc 180 240 ttcqcactqc tqactccaac ctggaaggca gagactacct gccgtctccg tgcaacccac ggctgccgga atcccacact cgtccagctg gaccaatatg aaaaccacgg cttagtgccc 300 gatggtgctg tctgctccaa cctcccttat gcctcctggt ttgagtcttt ctgccagttc 360

actcactacc gttgctccaa ccacgtctac tatgccaaga gagtcctgtg ttcccagcca

420

```
480
gtctctattc tctcacctaa cactctcaag gagatagaag cttcagctga agtctcaccc
                                                                      540
accacgatga cctcccccat ctcaccccac ttcacagtga cagaacgcca gaccttccag
ccctggcctg agaggctcag caacaacgtg gaagagctcc tacaatcctc cttgtccctg
                                                                      600
                                                                      660
ggaggccagg agcaagcgcc agagcacaag caggagcaag gagtggagca caggcaggag
ccgacacaag aacacaagca ggaagagggg cagaaacagg aagagcaaga agaggaacag
                                                                      720
gaagaggagg gaaagcagga agaaggacag gggactaagg agggacggga ggctgtgtct
                                                                      780
cagctgcaga cagactcaga gcccaagttt cactctgaat ctctatcttc taacccttcc
                                                                      840
tcttttgctc cccgggtacg agaagtagag tctactccta tgataatgga gaacatccag
                                                                      900
gagctcattc gatcagccca ggaaatagat gaaatgaatg aaatatatga tgagaactcc
                                                                      960
                                                                     1020
tactggagaa accaaaaccc tggcagcctc ctgcagctgc cccacacaga ggccttgctg
                                                                     1080
gtgctgtgct attcgatcgt ggagaatacc tgcatcataa cccccacagc caaggcctgg
aagtacatgg aggaggagat cettggttte gggaagtegg tetgtgacag eettgggegg
                                                                     1140
cgacacatgt ctacctgtgc cctctgtgac ttctgctcct tgaagctgga gcagtgccac
                                                                     1200
                                                                     1260
tcagaggcca gcctgcagcg gcaacaatgc gacacctccc acaagactcc ctttgtcagc
                                                                     1320
cccttgcttg cctcccagag cctgtccatc ggcaaccagg tagggtcccc agaatcaggc
                                                                     1380
cgcttttacg ggctggattt gtacggtggg ctccacatgg acttctggtg tgcccggctt
                                                                     1440
gccacgaaag gctgtgaaga tgtccgagtc tctgggtggc tccagactga gttccttagc
                                                                     1500
ttccaggatg gggatttccc taccaagatt tgtgacacag actatatcca gtacccaaac
                                                                     1560
tactgttcct tcaaaagcca gcagtgtctg atgagaaacc gcaatcggaa ggtgtcccgc
atgagatgtc tgcagaatga gacttacagt gcgctgagcc tggcaaaagt gaggacgttg
                                                                     1620
                                                                     1680
tgctttcgat ggagccagga gttcagcacc ttgactctag gccagttcgg atgagctkgs
                                                                     1740
gtttattttg cccacaccc agcccaacct gcccasgttc tctattgttt tgagacccca
                                                                     1800
ttgctttcag gctgcccctt ctgggtctgt tactcggccc ctamtcacat ttccttgggt
                                                                     1860
tggagcaaca gtcccagaga gggccacggt gggagctgcg ccctccttaa aagatgactt
                                                                     1899
tacataaaat gttgatcttc aaaaaaaaa aaaaaaaaa
```

```
<210> 78
<211> 543
<212> PRT
<213> Homo sapiens
```

<400> 78

Met Arg Lys Pro Ala Ala Gly Phe Leu Pro Ser Leu Leu Lys Val Leu

Leu Leu Pro Leu Ala Pro Ala Ala Gln Asp Ser Thr Gln Ala Ser Thr Pro Gly Ser Pro Leu Ser Pro Thr Glu Tyr Glu Arg Phe Phe Ala Leu Leu Thr Pro Thr Trp Lys Ala Glu Thr Thr Cys Arg Leu Arg Ala Thr His Gly Cys Arg Asn Pro Thr Leu Val Gln Leu Asp Gln Tyr Glu Asn His Gly Leu Val Pro Asp Gly Ala Val Cys Ser Asn Leu Pro Tyr Ala Ser Trp Phe Glu Ser Phe Cys Gln Phe Thr His Tyr Arg Cys Ser 100 Asn His Val Tyr Tyr Ala Lys Arg Val Leu Cys Ser Gln Pro Val Ser 120 Ile Leu Ser Pro Asn Thr Leu Lys Glu Ile Glu Ala Ser Ala Glu Val 135 Ser Pro Thr Thr Met Thr Ser Pro Ile Ser Pro His Phe Thr Val Thr 150 155 Glu Arg Gln Thr Phe Gln Pro Trp Pro Glu Arg Leu Ser Asn Asn Val 170 165 Glu Glu Leu Leu Gln Ser Ser Leu Ser Leu Gly Gly Gln Glu Gln Ala 180 185 Pro Glu His Lys Gln Glu Gln Gly Val Glu His Arg Gln Glu Pro Thr 195 200 Gln Glu His Lys Gln Glu Glu Gly Gln Lys Gln Glu Glu Gln Glu Glu 210 215 Glu Gln Glu Glu Gly Lys Gln Glu Gly Gln Gly Thr Lys Glu 230 225 Gly Arg Glu Ala Val Ser Gln Leu Gln Thr Asp Ser Glu Pro Lys Phe 250 245

His	Ser	Glu	Ser 260	Leu	Ser	Ser	Asn	Pro 265	Ser	Ser	Phe	Ala	270	Arg	Val
Arg	Glu	Val 275	Glu	Ser	Thr	Pro	Met 280	Ile	Met	Glu	Asn	Ile 285	Gln	Glu	Leu
Ile	Arg 290	Ser	Ala	Gln	Glu	Ile 295	Asp	Glu	Met	Asn	Glu 300	Ile	Tyr	Asp	Glu
Asn 305	Ser	Tyr	Trp	Arg	Asn 310	Gln	Asn	Pro	Gly	Ser 315	Leu	Leu	Gln	Leu	Pro 320
His	Thr	Glu	Ala	Leu 325	Leu	Val	Leu	Cys	Tyr 330	Ser	Ile	Val	Glu	Asn 335	Thr
Cys	Ile	Ile	Thr 340	Pro	Thr	Ala	Lys	Ala 345	Trp	Lys	Tyr	Met	Glu 350	Glu	Glu
Ile	Leu	Gly 355	Phe	Gly	Lys	Ser	Val 360	Cys	Asp	Ser	Leu	Gly 365	Arg	Arg	His
Met	Ser 370	Thr	Cys	Ala	Leu	Cys 375	Asp	Phe	Cys	Ser	Leu 380	Lys	Leu	Glu	Gln
Cys 385	His	Ser	Glu	Ala	Ser 390	Leu	Gln	Arg	Gln	Gln 395	Cys	Asp	Thr	Ser	His 400
Lys	Thr	Pro	Phe	Val 405	Ser	Pro	Leu	Leu	Ala 410	Ser	Gln	Ser	Leu	Ser 415	Ile
_			420		Ser			425					430		
		435			His		440					445			
_	450				Val	455					460				
465					Gly 470					475					480
Tyr	Ile	Gln	Tyr	Pro 485	Asn	Tyr	Cys	Ser	Phe 490	Lys	Ser	Gln	Gln	Cys 495	Leu

Met Arg Asn Arg Asn Arg Lys Val Ser Arg Met Arg Cys Leu Gln Asn 500 Glu Thr Tyr Ser Ala Leu Ser Leu Ala Lys Val Arg Thr Leu Cys Phe 520 525 515 Arg Trp Ser Gln Glu Phe Ser Thr Leu Thr Leu Gly Gln Phe Gly 535 530 <210> 79 <211> 722 <212> DNA <213> Homo sapiens <400> 79 cgaccttccc agcaatatgc atcttgcacg tctggtcggc tcctgctccc tccttctgct 60 actgggggcc ctgtctggat gggcggccag cgatgacccc attgagaagg tcattgaagg 120 gatcaaccga gggctgagca atgcagagag agaggtgggc aaggccctgg atggcatcaa 180 cagtggaatc acgcatgccg gaagggaagt ggagaaggtt ttcaacggac ttagcaacat 240 ggggagccac accggcaagg agttggacaa aggcgtccag gggctcaacc acggcatgga 300 caaggttgcc catgagatca accatggtat tggacaagca ggaaaggaag cagagaagct 360 tggccatggg gtcaacaacg ctgctggaca gggcaaccat caaagcggat cttccagcca 420 tcaaggaggg gccacaacca cgccgttagc ctctggggcc tcggtcaaca cgcctttcat 480 caaccttccc gccctgtgga ggagcgtcgc caacatcatg ccctaaactg gcatccggcc 540 ttgctgggag aataatgtcg ccgttgtcac atcagctgac atgacctgga ggggttgggg 600 gtgggggaca ggtttctgaa atccctgaag ggggttgtac tgggatttgt gaataaactt 660 720 722 aa <210> 80 <211> 169 <212> PRT<213> Homo sapiens <400> 80 Met His Leu Ala Arg Leu Val Gly Ser Cys Ser Leu Leu Leu Leu 5

Gly Ala Leu Ser Gly Trp Ala Ala Ser Asp Asp Pro Ile Glu Lys Val

Lys Ala Leu Asp Gly Ile Asn Ser Gly Ile Thr His Ala Gly Arg Glu 50 Val Glu Lys Val Phe Asn Gly Leu Ser Asn Met Gly Ser His Thr Gly 75 70 65 Lys Glu Leu Asp Lys Gly Val Gln Gly Leu Asn His Gly Met Asp Lys 85 Val Ala His Glu Ile Asn His Gly Ile Gly Gln Ala Gly Lys Glu Ala 105 100 Glu Lys Leu Gly His Gly Val Asn Asn Ala Ala Gly Gln Gly Asn His 120 115 Gln Ser Gly Ser Ser Ser His Gln Gly Gly Ala Thr Thr Pro Leu 130 135 Ala Ser Gly Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu 155 145 150 Trp Arg Ser Val Ala Asn Ile Met Pro 165 <210> 81 <211> 1240 <212> DNA <213> Homo sapiens <400> 81 aatggctttt cttccttcct gggtttgtgt actagttggt tccttttctg cttccttagc 60 agggacttcc aatctctcag agacagagcc ccctctgtgg aaggagagtc ctggtcagct 120 cagtgactac agggtggaga acagcatgta cattattaat ccctgggtat accttgagag 180 aatggggatg tataaaatca tattgaatca gacagccagg tattttgcaa aatttgcacc 240 agataatgaa cagaatattt tatgggggtt gcctctgcag tatggctggc aatataggac 300 360 aggcagatta gctgatccaa cccgaaggac aaactgtggc tatgaatctg gagatcatat gtgcatctct gtggacagtt ggtgggctga tttgaattat tttctgtctt cattaccctt 420 480 tcttgctgcg gttgattctg gtgtaatggg gatatcatca gaccaagtca ggcttttgcc cccacccaag aatgagagga agttttgtta tgatgtttct agctgtcgtt catccttccc 540

Ile Glu Gly Ile Asn Arg Gly Leu Ser Asn Ala Glu Arg Glu Val Gly

tgagacaatg aacaagtgga acacctttta ccagtatttg cagtcacctt ttagtaagtt 600 tgatgatctg ttgaagtact tatgggctgc acacacttca accttggcag ataatatcaa 660 aagttttgaa gacagatatg attattattc taaagcagaa gcgcattttg agagaagttg 720 780 ggtactggct gtggatcatt tagctgcagt cctctttcct acaaccttga ttagatcata taagttccag aagggcatgc caccacgaat tcttcttaat actgatgtag cccctttcat 840 cagtgacttt actgcttttc agaatgtagt cctggttctt ctaaatatgc ttgacaatgt 900 ggataaatct ataggttatc tttgtacaga aaaatctaat gtatatagag atcattcgga 960 atctagctct agaagttatg gaaataactc ctgaaacatt taacttcaaa cttcaggaaa 1020 tgattaatga attaaaaatg aaaaactcga acttgacaat cagtaatttc aaaaaattaa 1080 tgtcatcatg accatgtagt ttattctttc tgatattttt gatttatgct tatttgttaa 1140 1200 1240 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa

<210> 82

<211> 330

<212> PRT

<213> Homo sapiens

<400> 82

Met Ala Phe Leu Pro Ser Trp Val Cys Val Leu Val Gly Ser Phe Ser 1 10 15

Ala Ser Leu Ala Gly Thr Ser Asn Leu Ser Glu Thr Glu Pro Pro Leu 20 25 30

Trp Lys Glu Ser Pro Gly Gln Leu Ser Asp Tyr Arg Val Glu Asn Ser 35 40 45

Met Tyr Ile Ile Asn Pro Trp Val Tyr Leu Glu Arg Met Gly Met Tyr 50 55 60

Lys Ile Ile Leu Asn Gln Thr Ala Arg Tyr Phe Ala Lys Phe Ala Pro 70 75 80

Asp Asn Glu Gln Asn Ile Leu Trp Gly Leu Pro Leu Gln Tyr Gly Trp 85 90 95

Gln Tyr Arg Thr Gly Arg Leu Ala Asp Pro Thr Arg Arg Thr Asn Cys 100 105 110 Gly Tyr Glu Ser Gly Asp His Met Cys Ile Ser Val Asp Ser Trp Trp 120 Ala Asp Leu Asn Tyr Phe Leu Ser Ser Leu Pro Phe Leu Ala Ala Val 135 140 130 Asp Ser Gly Val Met Gly Ile Ser Ser Asp Gln Val Arg Leu Leu Pro 150 Pro Pro Lys Asn Glu Arg Lys Phe Cys Tyr Asp Val Ser Ser Cys Arg 170 165 Ser Ser Phe Pro Glu Thr Met Asn Lys Trp Asn Thr Phe Tyr Gln Tyr 185 Leu Gln Ser Pro Phe Ser Lys Phe Asp Asp Leu Leu Lys Tyr Leu Trp 195 Ala Ala His Thr Ser Thr Leu Ala Asp Asn Ile Lys Ser Phe Glu Asp 215 210 Arg Tyr Asp Tyr Tyr Ser Lys Ala Glu Ala His Phe Glu Arg Ser Trp 235 225 230 Val Leu Ala Val Asp His Leu Ala Ala Val Leu Phe Pro Thr Thr Leu 245 Ile Arg Ser Tyr Lys Phe Gln Lys Gly Met Pro Pro Arg Ile Leu Leu 265 260 Asn Thr Asp Val Ala Pro Phe Ile Ser Asp Phe Thr Ala Phe Gln Asn 285 280 275 Val Val Leu Val Leu Leu Asn Met Leu Asp Asn Val Asp Lys Ser Ile 290 295 Gly Tyr Leu Cys Thr Glu Lys Ser Asn Val Tyr Arg Asp His Ser Glu 315 305 Ser Ser Ser Arg Ser Tyr Gly Asn Asn Ser 325 <210> 83

<211> 2261

<212> DNA

<213> Homo sapiens

<400> 83 gcagcaccag ccgtctgcag ctccggccgc cacttgcgcc tctccagcct ccgcaggccc 60 aaccgccgcc agcaccatgg ccagcaccat ttccgcctac aaggagaaga tgaaggagct 120 180 gtcggtgctg tcgctcatct gctcctgctt ctacacacag ccgcacccca ataccgtcta ccagtacggg gacatggagg tgaagcagct ggacaagcgg gcctcaggcc agagcttcga 240 ggtcatcctc aagtcccctt ctgacctgtc cccagagagc cctatgctct cctccccacc 300 caagaagaag gacacctccc tggaggagct gcaaaagcgg ctggaggcag ccgaggagcg 360 gaggaagacg caggaggcgc aggtgctgaa gcagctggcg gagcggcgcg agcacgagcg 420 480 cgaggtgctg cacaaggcgc tggaggagaa taacaacttc agccgccagg cggaggagaa 540 gctcaactac aagatggagc tcagcaagga gatccgcgag gcacacctgg ccgcactgcg 600 cqaqcqqctg cqcgagaagg agctgcacgc ggccgaggtg cgcaggaaca aggagcagcg agaagagatg tegggetaag ggeeegggae gggeggeee cateetgega cagaacaegt 660 tcgggttttg gttttgtttc gttcacctct gtctagatgc aacttttgtt cctcctcccc 720 caccccagcc cccagcttca tgcttctctt ccgcactcag ccgccctgcc ctgtcctcgt 780 ggtgagtcgc tgaccacggc ttcccctgca ggagccgccg ggcgtgagac gcggtccctc 840 900 ggtgcagaca ccaggccggg cgcggctggg tcccccgggg gccctgtgag agaggtggcg gtgaccgtgg taaacccagg gcggtggcgt gggatcgcgg gtccttacgc tgggctgtct 960 ggtcagcacg tgcaggtcag ggcaggtcct ctgagccggc gcccctggcc agcaggcgag 1020 1080 qctacagtac ctgctgtctt tccaggggga aggggctccc catgagggag gggcgacggg 1140 qqaqqqqqt gatggtgcct gggagcctgc gtgtgcagcc ggtgcttgtt gaactggcag 1200 qcqqqtqqqt qgggqctgca gctttcctta atgtggttgc acaggggtcc tctgagacca 1260 cctqqcqtqa qqtgqacacc ctgggccttc ctggaagcct gcagttgggg gcctgccctg agtctgctgg ggagtgggca ttctctgcca gggacccatg agcaggctgc atggtctaga 1320 1380 ggttgtgggc agcatggaca gtcccccact cagaagtgca agagttccaa agagcctctg 1440 gcccaggccc ctccccacca gggctttgca gatgtccttg aaagacccac cctagagccc 1500 tttqqaqtqc tggccctcc tgtgccctct gccctggtgg aagcggcagc cacaagtcct cctcagggag ccccaagggg gattttgtgg gaccgctgcc cacagatcca ggtgttggaa 1560 1620 qqqcaqcqqq taaggttccc aagccagccc caacaccctt cccacttggc acccagaggg 1680 ggctgtgggt ggaggcctga ctccaggcct ctcctgccca caccctctgg gctgagttcc ttctttccct tggacgccca gtgctggcct tggaggacgg tcagctggag gatggcggtg 1740 1800 ggggaggctg tctttgtacc actgcagcat ccccacttc tccacggaag ccccatccca

aagctgctgc ctggcccctt gctgtaaagt gtgaaggggg cggctgagtt ctcttaggac 1860 ccagagccag ggccctcaac ttccatcctg cgggaggcct tggccgggca ctgccagtgt 1920 cttccagagc cacacccagg gaccacggga ggatcctgac ccctgcaggg ctcaggggtc 1980 2040 aqcaqqqacc cactqcccca tctccctctc cccaccaaga cagccccaga aggagcagcc agctgggatg ggaacccaag gctgtccaca tctggctttt gtgggactca gaaagggaag 2100 cagaactgag ggctgggata ttcctcatgg tggcagcgct catagcgaaa gcctactgta 2160 atatgcaccc atctcatcca cgtagtaaag tgaacttaaa aattcaatca aatgaacaat 2220 2261

<210> 84

<211> 180

<212> PRT

<213> Homo sapiens

<400> 84

Met Ala Ser Thr Ile Ser Ala Tyr Lys Glu Lys Met Lys Glu Leu Ser 1 5 10 15

Val Leu Ser Leu Ile Cys Ser Cys Phe Tyr Thr Gln Pro His Pro Asn 20 25 30

Thr Val Tyr Gln Tyr Gly Asp Met Glu Val Lys Gln Leu Asp Lys Arg 35 40 45

Ala Ser Gly Gln Ser Phe Glu Val Ile Leu Lys Ser Pro Ser Asp Leu 50 55 60

Ser Pro Glu Ser Pro Met Leu Ser Ser Pro Pro Lys Lys Lys Asp Thr 65 70 75 80

Ser Leu Glu Glu Leu Gln Lys Arg Leu Glu Ala Ala Glu Glu Arg Arg 85 90 95

Lys Thr Gln Glu Ala Gln Val Leu Lys Gln Leu Ala Glu Arg Arg Glu
100 105 110

His Glu Arg Glu Val Leu His Lys Ala Leu Glu Glu Asn Asn Asn Phe 115 120 125

Ser Arg Gln Ala Glu Glu Lys Leu Asn Tyr Lys Met Glu Leu Ser Lys 130 135 140 Glu Ile Arg Glu Ala His Leu Ala Ala Leu Arg Glu Arg Leu Arg Glu 145 150 155 160

Lys Glu Leu His Ala Ala Glu Val Arg Arg Asn Lys Glu Gln Arg Glu 165 170 175

Glu Met Ser Gly 180

<210> 85 <211> 3109 <212> DNA

<213> Homo sapiens

<400> 85

60 ggccaaagag gcctaggagc ctcgtggctg cgtcaccgcc gccccccag acaagatgga caccgcggag gaagacatat gtagagtgtg tcggtcagaa ggaacacctg agaaaccgct 120 ttatcatcct tgtgtatgta ctggcagtat taagtttatc catcaagaat gcttagttca 180 atggctgaaa cacagtcgaa aagaatactg tgaattatgc aagcacagat ttgcttttac 240 accaatttat totocagata tgoottcacg gottccaatt caagacatat ttgotggact 300 qqttacaagt attggcactg caatacgata ttggtttcat tatacacttg tggcctttgc 360 420 atggttggga gttgttcctc ttacagcatg ccgcatctac aagtgcttgt ttactggctc ccgtgagctc actactgacg ctgcccatta gatatgctgt caaccggaaa atttgttggc 480 agattgtttg cagggttgtt ttgtggtgac gtgcacactg tgtgcattca tcagcctggt 540 600 qtqqttqaqa qaqcaqataq tccatggggg agcaccaatt tggttggagc atgctgcccc 660 accettcaat gctgcggggc atcaccaaaa tgaggctcca gcaggaggaa atggtgcaga aaatgttgct gctgatcagc ctgctaaccc accagctgag aacgcagtgg tgggggaaaa 720 ccctgatgcc caggatgacc aggcagaaga ggaggaggag gacaatgagg aggaagatga 780 cgctggtgtg gaggatggcg gcagatgcta ataacggagc ccaggatgac atgaattgga 840 900 atgctttaga atgggaccga gctgctgaag agcttacatg ggaaagaatg ctaggacttg atggatcact agtttttctg gaacatgtct tctgggtggt atctttaaat acactgttca 960 ttcttgtttt tgcattttgc ccttaccata ttggtcattt ctcccttgtt ggtttgggat 1020 ttgaagaaca cgtccaagca tctcattttg aaggcctaat cacaaccata gttgggtata 1080 1140 tacttttagc aataacactg ataatttgtc atggcttggc aactcttgtg aaatttcata 1200 qatctcqtcq cttactggga gtctgctata ttgttgttaa ggtctctttg ttagtggtgg tagaaattgg agtattccct ctcatttgtg gttggtggct ggatatctgt tccttggaaa 1260

1320 tgtttgatgc tactctgaaa gatcgagaac tgagctttca gtcggctcca ggtactacca tgtttctgca ttggctagtg ggaatggtat atgtcttcta ctttgcctcc ttcattctat 1380 1440 tactgagaga ggtacttcga cctggtgtcc tgtggtttct aaggaatttg aatgatccag atttcaatcc agtacaggaa atgatccatt tgccaatata taggcatctc cgaagattta 1500 ttttgtcagt gattgtcttt ggctccattg tcctcctgat gctttggctt cctatacgta 1560 1620 taattaagag tgtgctgcct aattttcttc catacaatgt catgctctac agtgatgctc 1680 cagtgagtga actgtccctc gagctgcttc tgcttcaggt tgtcttgcca gcattactcg aacagggaca cacgaggcag tggctgaagg ggctggtgcg agcgtggact gtgaccgccg 1740 gatacttgct ggatcttcat tcttatttat tgggagacca ggaagaaaat gaaaacagtg 1800 1860 caaatcaaca agttaacaat aatcagcatg ctcgaaataa caacgctatt cctgtggtgg gagaaggeet teatgeagee caceaageea tactecagea gggagggeet gttggettte 1920 agccttaccg ccgaccttta aattttccac tcaggatatt tctgttgatt gtcttcatgt 1980 gtataacatt actgattgcc agcctcatct gccttacttt accagtattt gctggccgtt 2040 2100 ggttaatgtc gttttggacg gggactgcca aaatccatga gctctacaca gctgcttgtg gtctctatgt ttgctggcta accataaggg ctgtgacggt gatggtggca tggatgcctc 2160 2220 agggacgcag agtgatcttc cagaaggtta aagagtggtc tctcatgatc atgaagactt 2280 tgatagttgc ggtgctgttg gctggagttg tccctctcct tctggggctc ctgtttgagc 2340 tggtcattgt ggctcccctg agggttccct tggatcagac tcctcttttt tatccatggc aggactgggc acttggagtc ctgcatgcca aaatcattgc agctataaca ttgatgggtc 2400 ctcagtggtg gttgaaaact gtaattgaac aggtttacgc aaatggcatc cggaacattg 2460 2520 accttcacta tattgttcgt aaactggcag ctcccgtgat ctctgtgctg ttgctttccc 2580 tgtgtgtacc ttatgtcata gcttctggtg ttgttccttt actaggtgtt actgcggaaa tgcaaaactt agtccatcgg cggatttatc catttttact gatggtcgtg gtattgatgg 2640 2700 caattttgtc cttccaagtc cgccagttta agcgccttta tgaacatatt aaaaatgaca 2760 agtaccttgk gggtcaasga ctcggtgaac tacgaacgga aatctgggca aacaaggctc atctccacca cctccacagt catcccaaga ataaagtagt tgtctcaaca acttgacctt 2820 2880 cccctttaca tgtccttttt tgtggacttc tctcttkgga gatttttccc agtgatctct 2940 cagcgtkgtt tttaagttaa akgtattkga cttgtgttct cagcattcag agagcagcgg 3000 tgtaagattc tgctgttctc cctggatctt ctgacatkac tgctgtctga gatttgtata 3060 tgkgtaaata caagttoott gatacootaa aacottggat taaacagaat gtgcatkgta

```
<210> 86
<211> 750
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<222> (716)..(716)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (719)..(719)
<223> Xaa can be any naturally occurring amino acid
<400> 86
Met Gly Glu His Gln Phe Gly Trp Ser Met Leu Pro His Arg Ser Met
Leu Arg Gly Ile Thr Lys Met Arg Leu Gln Glu Glu Met Val Gln
Lys Met Leu Leu Leu Ile Ser Leu Leu Thr His Gln Leu Arg Thr Gln
                            40
Trp Trp Gly Lys Thr Leu Met Pro Arg Met Thr Arg Gln Lys Arg Arg
Arg Arg Thr Met Arg Arg Lys Met Thr Leu Val Trp Arg Met Ala Ala
Asp Ala Asn Asn Gly Ala Gln Asp Asp Met Asn Trp Asn Ala Leu Glu
Trp Asp Arg Ala Ala Glu Glu Leu Thr Trp Glu Arg Met Leu Gly Leu
            100
                                105
Asp Gly Ser Leu Val Phe Leu Glu His Val Phe Trp Val Val Ser Leu
                            120
Asn Thr Leu Phe Ile Leu Val Phe Ala Phe Cys Pro Tyr His Ile Gly
    130
                        135
His Phe Ser Leu Val Gly Leu Gly Phe Glu Glu His Val Gln Ala Ser
```

150

155

F	Iis	Phe	Glu	Gly	Leu 165	Ile	Thr	Thr	Ile	Val 170	GIÀ	Tyr	lle	Leu	Leu 175	Ala
3	[le	Thr	Leu	Ile 180	Ile	Cys	His	Gly	Leu 185	Ala	Thr	Leu	Val	Lys 190	Phe	His
I	Arg	Ser	Arg 195	Arg	Leu	Leu	Gly	Val 200	Cys	Tyr	Ile	Val	Val 205	Lys	Val	Ser
I	Leu	Leu 210	Val	Val	Val	Glu	Ile 215	Gly	Val	Phe	Pro	Leu 220	Ile	Cys	Gly	Trp
	rp 225	Leu	Asp	Ile	Cys	Ser 230	Leu	Glu	Met	Phe	Asp 235	Ala	Thr	Leu	Lys	Asp 240
7	Arg	Glu	Leu	Ser	Phe 245	Gln	Ser	Ala	Pro	Gly 250	Thr	Thr	Met	Phe	Leu 255	His
7	Frp	Leu	Val	Gly 260	Met	Val	Tyr	Val	Phe 265	Tyr	Phe	Ala	Ser	Phe 270	Ile	Leu
]	Leu	Leu	Arg 275	Glu	Val	Leu	Arg	Pro 280	Gly	Val	Leu	Trp	Phe 285	Leu	Arg	Asn
]	Leu	Asn 290	Asp	Pro	Asp	Phe	Asn 295	Pro	Val	Gln	Glu	Met 300	Ile	His	Leu	Pro
	Ile 305	Tyr	Arg	His	Leu	Arg 310	Arg	Phe	Ile	Leu	Ser 315	Val	Ile	Val	Phe	Gly 320
:	Ser	Ile	Val	Leu	Leu 325	Met	Leu	Trp	Leu	Pro 330	Ile	Arg	Ile	Ile	Lys 335	Ser
7	Val	Leu	Pro	Asn 340	Phe	Leu	Pro	Tyr	Asn 345	Val	Met	Leu	Tyr	Ser 350	Asp	Ala
:	Pro	Val	Ser 355	Glu	Leu	Ser	Leu	Glu 360	Leu	Leu	Leu	Leu	Gln 365	Val	Val	Leu
	Pro	Ala 370	Leu	Leu	Glu	Gln	Gly 375	His	Thr	Arg	Gln	Trp 380	Leu	Lys	Gly	Leu
	Val 385	Arg	Ala	Trp	Thr	Val 390	Thr	Ala	Gly	Tyr	Leu 395	Leu	Asp	Leu	His	Ser 400

Tyr	Leu	Leu	Gly	Asp 405	Gln	Glu	Glu	Asn	Glu 410	Asn	Ser	Ala	Asn	Gln 415	Gln
Val	Asn	Asn	Asn 420	Gln	His	Ala	Arg	Asn 425	Asn	Asn	Ala	Ile	Pro 430	Val	Val
Gly	Glu	Gly 435	Leu	His	Ala	Ala	His 440	Gln	Ala	Ile	Leu	Gln 445	Gln	Gly	Gly
Pro	Val 450	Gly	Phe	Gln	Pro	Tyr 455	Arg	Arg	Pro	Leu	Asn 460	Phe	Pro	Leu	Arg
Ile 465	Phe	Leu	Leu	Ile	Val 470	Phe	Met	Cys	Ile	Thr 475	Leu	Leu	Ile	Ala	Ser 480
Leu	Ile	Cys	Leu	Thr 485	Leu	Pro	Val	Phe	Ala 490	Gly	Arg	Trp	Leu	Met 495	Ser
Phe	Trp	Thr	Gly 500	Thr	Ala	Lys	Ile	His 505	Glu	Leu	Tyr	Thr	Ala 510	Ala	Cys
Gly	Leu	Tyr 515	Val	Cys	Trp	Leu	Thr 520	Ile	Arg	Ala	Val	Thr 525	Val	Met	Val
Ala	Trp 530	Met	Pro	Gln	Gly	Arg 535	Arg	Val	Ile	Phe	Gln 540	Lys	Val	Lys	Glu
Trp 545	Ser	Leu	Met	Ile	Met 550	Lys	Thr	Leu	Ile	Val 555	Ala	Val	Leu	Leu	Ala 560
Gly	Val	Val	Pro	Leu 565	Leu	Leu	Gly	Leu	Leu 570	Phe	Glu	Leu	Val	Ile 575	Val
			580					585					Tyr 590		
		595					600					605	Ala		
	610					615					620		Glu		
Tyr		Asn	Gly	Ile	Arg 630		Ile	Asp	Leu	His 635	Tyr	Ile	Val	Arg	Lys 640

Leu Ala Ala Pro Val Ile Ser Val Leu Leu Ser Leu Cys Val Pro 645 650 Tyr Val Ile Ala Ser Gly Val Val Pro Leu Leu Gly Val Thr Ala Glu Met Gln Asn Leu Val His Arg Arg Ile Tyr Pro Phe Leu Leu Met Val 680 675 Val Val Leu Met Ala Ile Leu Ser Phe Gln Val Arg Gln Phe Lys Arg 695 690 Leu Tyr Glu His Ile Lys Asn Asp Lys Tyr Leu Xaa Gly Gln Xaa Leu 705 Gly Glu Leu Arg Thr Glu Ile Trp Ala Asn Lys Ala His Leu His His 730 725 Leu His Ser His Pro Lys Asn Lys Val Val Val Ser Thr Thr 745 740 <210> 87 <211> 29 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (2)..(2) <223> n is a, c, g, or t <400> 87 29 tntttgaagt ttctccctct cattctgag <210> 88 <211> 29 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (2)..(2) <223> n is a, c, g, or t <400> 88 29 gnttctccac gtagttggtt ttcctcagt <210> 89

<211> 29

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 89
                                                                     29
cnacatgacg tgagctggtg atccatgaa
<210> 90
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 90
                                                                     29
anttgggctc tgccgtccag aaaggtttg
<210> 91
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 91
                                                                     29
gnagctacgc ggacttgcag aggttttat
<210> 92
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
                                                                     29
tnggtgagag aatagagact ggctgggaa
<210> 93
<211> 29
```

```
<212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
<222> (2)..(2)
 <223> n is a, c, g, or t
 <400> 93
                                                                          29
 angagccgac cagacgtgca agatgcata
 <210> 94
<211> 29
<212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (2)..(2)
 <223> n is a, c, g, or t
 <400> 94
                                                                          29
 anctgaccag gactctcctt ccacagagg
 <210> 95
 <211> 29
 <212> DNA
 <213> Homo sapiens
 <220>
<221> misc_feature
 <222> (2)..(2)
 <223> n is a, c, g, or t
 <400> 95
                                                                          29
 tntaggcgga aatggtgctg gccatggtg
 <210> 96
 <211> 29
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (2) ...(2)
 <223> n is a, c, g, or t
 <400> 96
                                                                          29
 anatatccag ccaccaacca caaatgaga
 <210> 97
 <211> 1425
```

<212> DNA <213> Homo sapiens

<400> 97						
gctaatttga	gaagaaaaca	agtaggattt	ttgttttgtt	ttgcattttg	caatatggag	60
gagaaatgat	tagaccttag	gaagtgccag	tgggttggtc	ctttcatgaa	catgccatca	120
gtaaaagccc	tggaaacaag	gtcataccag	agattcattg	tgccttgtca	caactgcaaa	180
caatatctga	gtggaatatt	caaaaacttg	cttagaaaga	aaactctagg	acagatggct	240
ccactgaagt	tattccaaat	atttaataaa	taaagcatac	caggctttta	taaactcttc	300
tagaagaaaa	aagttggaac	ttttccaatt	cagtttttca	ggccagtgca	accttgatac	360
caaaaccaat	aaaacaaaca	aacaaacaaa	aaacataaag	ctatagacca	aagtctcata	420
gatttagatg	caaaatccta	aaattgaaaa	aaaaagtcta	gtcatatcca	taaactgtat	480
catcaccaag	agatgtttat	tagggcaatc	aaaagatgat	ttattatttt	ttaaaaaatc	540
aatgtggcct	tcccttcctc	tttcttttga	ttcccctctt	tgagttttta	tgtgtctctt	600
ttgccttccc	ttcccagagt	ggaggagtta	gacctgcatt	gtgggatgag	aggagttgtg	660
gctatgtgtc	tgctggcacc	aagagggctg	agggtgaggt	gtggaaggga	cagggggagg	720
agatgggcag	cattgttaag	agattggtac	cactgagcaa	atatgttgag	aatgatgatg	780
gcaaggtttc	tccctgttag	agaaggtatt	tgtagaaata	ggaatgagga	gagctagaaa	840
acctggagtg	tgggattaga	atagaactca	tatcttttaa	atacatagga	acaatagaga	900
aattgttggg	tgtgcccata	tacatatatt	ttgtgattca	ttctaccgag	aggacataaa	960
tgcagtcaca	gctcagtaac	agtaaacaca	ccaactgcca	agttattatt	tcctaaatac	1020
tatccacaaa	aaaggggacc	agggatgatt	cctagtcgga	gattgggaga	aaaagaagat	1080
gagcctgaat	catttcatgt	acctaacaga	aagaaaatac	tctggctggg	ctcagwggct	1140
catgtttgta	attctagcat	gttaggaggt	cgaggtgggt	gtgttgcttg	agcccaggag	1200
tttgagacca	gcccaggcaa	catggcaaaa	ctgtctctac	aaaaaatata	aaagttagcc	1260
aggcgtggtg	gcatgcgcct	gtcgtccgag	atactcggga	ggcagagagg	tgggaggatc	1320
acttgagcct	gggagattga	gactgcatcg	agctgtggtc	atgccactgc	actccagcct	1380
ggaggacaga	gtgagaccct	gtctcaggaa	aaaaaaaaaa	aaaaa		1425

<210> 98 <211> 94 <212> PRT <213> Homo sapiens

<400> 98

Met Ile Tyr Tyr Phe Leu Lys Asn Gln Cys Gly Leu Pro Phe Leu Phe 1 5 10 15

Leu Leu Ile Pro Leu Phe Glu Phe Leu Cys Val Ser Phe Ala Phe Pro 20 25 30

Ser Gln Ser Gly Gly Val Arg Pro Ala Leu Trp Asp Glu Arg Ser Cys 35 40 45

Gly Tyr Val Ser Ala Gly Thr Lys Arg Ala Glu Gly Glu Val Trp Lys 50 55 60

Gly Gln Gly Glu Glu Met Gly Ser Ile Val Lys Arg Leu Val Pro Leu 65 70 75 80

Ser Lys Tyr Val Glu Asn Asp Asp Gly Lys Val Ser Pro Cys 85 90

<210> 99

<211> 2859

<212> DNA

<213> Homo sapiens

<400> 99

cgcacccage cgcgccggcg aggacatggg cagccgcggc gcgcccaccc cccgcgccga 60 tgtgaattat taaaaagaaa atggcccaac ggagcactgt atttccttct cgtgtcacca 120 180 aggaaaggta taatatatgg aaaatatgca tctaaggcga gtgagaacca tgccccgaca 240 caqccaqtcc ctqaccatqq caccatactc atctgtaagc ctcgtggagc agctggaaga caggatecte tgecatgaga aaaceaeege egecetegta gageaegeet tteggattaa 300 360 agatgacatt gtcaacagtt tgcagaaaat gcaaaacaaa gggggaggtg accgcttggc 420 caggetttte ttggaggage atateagaaa cataactgee atagtgaage aacttaateg ggatatcgag gtactccagg agcagattcg tgctcgggac aacattagct atggaactaa 480 540 ttctgcctta aagaccctgg agatgcgcca gctctccggt ttgggagatc ttcgaggaag agtggcaaga tgtgatgcca gcatagctag actttctgca gagcacaaaa cgacctatga 600 ggggctccag cacttgaaca aagaacagca ggctgccaaa cttatcttgg aaacgaaaat 660 caaagatgca gagggacaga tttctcagct tttgaacaga gtggacttgt caatatcaga 720 gcagagcacc aaactgaaga tgtctcacag agacagtaac caccagcttc agcttttgga 780 840 cactaaattt aaaqqtacaq ttqaqqaact cagtaaccag atattatctg cacggagttg 900 gttgcaacag gaacaagaac ggatagaaaa agagctttta cagaaaattg atcagctttc

960 cttgattgtt aaggaaaaca gtggagccag tgaaagggat atggagaaga agctcagcca gatgtcagcc aggcttgaca aaatagaaga gggtcaaaag aagacttttg atggtcagag 1020 1080 aacaaggcaa gaagaggaga agatgcacgg gcgaatcacc aagctggagt tacagatgaa ccagaacatc aaggaaatga aagcagaagt taatgctggg tttacagccg tctatgaaag 1140 cataggatcc ctcaggcaag ttctcgaggc caagatgaag ctggacaggg accagctaca 1200 gaagcaaatc cagctgatgc agaagccaga gacccccatg tgaagggagc tgggacaagg 1260 1320 tcctaaaaga cagttttgcc agtggggcta ggagccggat acctctgtag ccaggccatc gctgcattca ggattgttcc atccatggcg tgcatgtgcc aagaaatgtg tttttatggg 1380 tctaaatgtt taccttgagt cttgaaaata ctcttttgtt aaaagtatga aatacagttt 1440 1500 ttaccagttt atttcacttc tctaaattca atggaaatcc cccgccctgg attttgaaag gcttttatct tcttcatttt acgaatggaa agacgacaat ttttcttcaa tgcttgatgc 1560 actaatgaag actgtttact attttgaaaa atgtcatggg gatttttttt taattaagaa 1620 1680 actaatgaat catcacagga atgtgttgct cctcacccta aattaagaga atgtcccagt agattagact tcaacctttg agtccaattt ggattttatt atcgttgtct atgcacttct 1740 1800 tatattggtt atcttcttgt aaatcttctg tcttttgtaa ggggaaagga tttaacattt 1860 agaataaacc ccaccattta tgtaatggaa atagtttaaa aattgctaac tgccatgtgg 1920 attqcaaatt aaatggaaac ttatttagat aacgtaaggc tcaatatctg cgttgaccac 1980 ctagatatta caggitttaa tatttaaaac tattittgaa ttatccacaa ccigitatagi 2040 gatagccata tatttaataa tggaatggtg gttaacagtc tatttactgc acaattaatt gttcactaat caaatagaat gtggtaattt ttcagacttt atgatctgtt tccaaaattg 2100 2160 gcacaaagtg ctagggttta tatacactta tcgtaactgt atttttgtgc cttggtttta 2220 tcatqtcaat gcactgtact ctgtaaaagt tttgcagaca aaatagaaag tatgataatc 2280 cqtcaqaaqt atqatgtaaa actggaatcc tctgtatttt ttaaatgttc taaaaatttt 2340 atcgctgtta aggtattaat cattcagtat tactaatgga atagaaattc atacttttgt 2400 atggacaaca aattgatatt gcatttatag cactgtaaga aactttcatc ttgagcaact 2460 ttgtagatga tgggtgtttt attttcaatc gccatatttg atcagtcatt gaaaattggc 2520 cccagtgctg tttgttcatc tctgtatgta aaaactgaca gtgagacaca actttctgaa ctgtgagggt gtcccaggaa aaagaaaaac aggaatactt taacaattaa aaagaaaaaa 2580 atgttttttg tttgccaagg actcaggaaa ataaaaagca ttttctattt ttaggacaaa 2640 tcacaaatga agtgtctaac tggctattac tgtttaccca tataaaatat gctgctaaag 2700

atatagggac tatattatcc aacacatatt ttcttatttt gccacaaatt tccacttaa															
aaat	aaataaaaaa aggcgaatgc tgttttgcaa aaaaaaaaa														
<210> 100 <211> 368 <212> PRT <213> Homo sapiens															
<400)> :	100													
Met 1	Glu	Asn	Met	His 5	Leu	Arg	Arg	Val	Arg 10	Thr	Met	Pro	Arg	His 15	Ser
Gln	Ser	Leu	Thr 20	Met	Ala	Pro	Tyr	Ser 25	Ser	Val	Ser	Leu	Val 30	Glu	Gln
Leu	Glu	Asp 35	Arg	Ile	Leu	Cys	His 40	Glu	Lys	Thr	Thr	Ala 45	Ala	Leu	Val
Glu	His 50	Ala	Phe	Arg	Ile	Lys 55	Asp	Asp	Ile	Val	Asn 60	Ser	Leu	Gln	Lys
Met 65	Gln	Asn	Lys	Gly	Gly 70	Gly	Asp	Arg	Leu	Ala 75	Arg	Leu	Phe	Leu	Glu 80
Glu	His	Ile	Arg	Asn 85	Ile	Thr	Ala	Ile	Val 90	Lys	Gln	Leu	Asn	Arg 95	Asp
Ile	Glu	Val	Leu 100	Gln	Glu	Gln	Ile	Arg 105	Ala	Arg	Asp	Asn	Ile 110	Ser	Tyr
Gly		Asn 115			Leu	_			Glu	Met	Arg	Gln 125	Leu	Ser	Gly
Leu	Gly 130		Leu	Arg	Gly	Arg 135	Val	Ala	Arg	Cys	Asp 140	Ala	Ser	Ile	Ala
Arg 145		Ser	Ala	Glu	His 150	Lys	Thr	Thr	Tyr	Glu 155	Gly	Leu	Gln	His	Leu 160
Asn	Lys	Glu	Gln	Gln 165	Ala	Ala	Lys	Leu	Ile 170	Leu	Glu	Thr	Lys	Ile 175	Lys
Asp	Ala	Glu	Gly 180	Gln	Ile	Ser	Gln	Leu 185	Leu	Asn	Arg	Val	Asp	Leu	Ser

tacatatttt gctgtcaatg gcttgacaat tttttttttc aaatttggac atgagaggtt

2760

2820

2859

His	Gln 210	Leu	Gln	Leu	Leu	Asp 215	Thr	Lys	Phe	Lys	Gly 220	Thr	Val	Glu	Glu	
Leu 225	Ser	Asn	Gln	Ile	Leu 230	Ser	Ala	Arg	Ser	Trp 235	Leu	Gln	Gln	Glu	Gln 240	
Glu	Arg	Ile	Glu	Lys 245	Glu	Leu	Leu	Gln	Lys 250	Ile	Asp	Gln	Leu	Ser 255	Leu	
Ile	Val	Lys	Glu 260	Asn	Ser	Gly	Ala	Ser 265	Glu	Arg	Asp	Met	Glu 270	Lys	Lys	
Leu	Ser	Gln 275	Met	Ser	Ala	Arg	Leu 280	Asp	Lys	Ile	Glu	Glu 285	Gly	Gln	Lys	
Lys	Thr 290	Phe	Asp	Gly	Gln	Arg 295	Thr	Arg	Gln	Glu	Glu 300	Glu	Lys	Met	His	
Gly 305	Arg	Ile	Thr	Lys	Leu 310	Glu	Leu	Gln	Met	Asn 315	Gln	Asn	Ile	Lys	Glu 320	
Met	Lys	Ala	Glu	Val 325	Asn	Ala	Gly	Phe	Thr 330	Ala	Val	Tyr	Glu	Ser 335	Ile	
Gly	Ser	Leu	Arg 340	Gln	Val	Leu	Glu	Ala 345	Lys	Met	Lys	Leu	Asp 350	Arg	Asp	
Gln	Leu	Gln 355	Lys	Gln	Ile	Gln	Leu 360	Met	Gln	Lys	Pro	Glu 365	Thr	Pro	Met	
<210 <210 <210 <210	1> ! 2> !	101 933 DNA Homo	sap:	iens												
<400 tgc		101 gag	accgi	taag	ga ta	attg	atga	c cat	tgag	atcc	ctg	ctca	gaa	CCCC	cttcct	60
															agccag	120
															gtacgt	180
															ggcaag	
ggc	atgc	cca (gtcc.	LCCE.	LE C	CEEC	LLCC	ı gı	LLCE	acgg	CLC	city	aca		tcaagg	300

Ile Ser Glu Gln Ser Thr Lys Leu Lys Met Ser His Arg Asp Ser Asn 195 200 205

360 atgattetta tteettattq ceaectataa gteaggtatt ettttteat eattgtatea 420 caggtggaag atctttaggc ccaaatgggg cacattactt gtctgaatcc ggtctctcct ttttttcacc acaqacaqac acacacat acaaatagac acacaggtac acatacacag 480 tcatagtagc agaatccaga aaatagctaa ggtttcttga ctataacaag acctttttta 540 aatcaacaca ttcaaacatt gaatcatttg ttgcagcttt tgtcttgggc cagttagcct 600 cacgcattat actcggttat cctttgtttt taaggctggg tgcagtggct cacacctgta 660 720 atcccaqtgc tttgggaggc tgaggcaggt ggattacttg agcccaggaa ttcgagacca 780 qcctaqqcaa tataqqqaaa acctgtctct aytaaaaaat tgcaaaaaat tagctggatg tggcaqtaca tgcctatggt cccagctact tggggggctg aagtgggaga atcaamtgag 840 cttgggaagt tgaggctaca atgagccaag atcacgctcc tgcactccag cctgggtggc 900 933 agagtgagac cctgtctcaa aaaaaaaaaa aaa

<210> 102

<211> 92

<212> PRT

<213> Homo sapiens

<400> 102

Met Thr Met Arg Ser Leu Leu Arg Thr Pro Phe Leu Cys Gly Leu Leu 1 5 10 15

Trp Ala Phe Cys Ala Pro Gly Ala Arg Ala Glu Glu Pro Ala Ala Ser 20 25 30

Phe Ser Gln Pro Gly Ser Met Gly Leu Asp Lys Asn Thr Val His Asp 35 40 45

Gln Glu Tyr Val Phe Ser Pro Gly Cys Gly Pro Val Ala Ser Pro Ser 50 55 60

Ser Ala Ala Glu Pro Ala Ala Arg Ala Cys Ser Val Leu Leu Ser Phe 70 75 80

Phe Leu Phe Leu Trp Leu Leu Asp Ile Leu Gln Gly 85 90

<210> 103

<211> 2956

<212> DNA

<213> Homo sapiens

<400> 103

60 ggtgtgtggt ggtttaagaa tgtatatcat agggtcaggt ggcctgggtt cattccccag 120 ctacqtaacc tttctatgcc tgagtttcct catctataaa acaaggataa taatagtgtg 180 tacttcttag gattgttttg gagactcata aatgagaaat acgtgaaaaa ctccctcaag gcagtgcttg acacataatg agcactcagt tatcatggtc atcatggtca tcatcactgc 240 taccaccact gctgctgcta ttaccactct acctcttccc cctgaaactc taatcactta 300 ccctagaaac agttaaatta cacttcagtg ggaaggatct cagatttctt aatggcacct 360 420 gcatttatat aatgttgata ttgcacgttc ctagaaaaca tatcaagaag aaaccaaaat 480 qtqtttctgt actttgtaaa cctgtacaat agttagaggat tagaggacct ttataatcta 540 ctactaatta ctgtgaaagt aaacattgtt taatatacca gttcttaaag aaatattttg 600 tctagtcatt aatattctag ttcatctcaa agcttccatt tgacaattta aaattactta aattttaata ttaaaggaaa cagttttcct gattctcatg aaagttccta tttgcactga 660 agatgactaa accttttagt catagtttta gaagaattgg cttttttata gccattttat 720 ttacatatgg gtactgcata gcaaaggcag cagattagcc ctgtttgttt tgcagggatg 780 aaaggtagca ttcccagaga ttaagttgtt cttgctattc ccattctctg ctacatttgc 840 ctacattett tggteettte tattatttgt ttetttggtg gaateeeett gttgettatg 900 960 gctggatatt gttattcagc agatgaatca caagtttagc ctgagggccc taaagcatca 1020 gaaataaatt agagccgagc aaagtttaac ttctctggaa cttgcacctt tagtttccat 1080 gtatttctgg aaccaagata tttcaaaggc ttactttatt tcagacacct attatcttca agtcacagat aactattgat totgtaaagt gtttcaaaga tttttgtcca ctagacattt 1140 1200 ttaaatttgt tcaactcctc ctcatcattt tagaaattat ttctgttagg taaaattaaa 1260 actaacaatg tattttagtt tatttttcta atgataccag tcacctttcg gggctaacta aacattttgt gcagcattct cttagtttac atcctccttt ctttcagtct tcctgtttat 1320 taaggctgtc ctgtagcaaa caaaagagtg actcatgtta aaagtatttt aactgctcta 1380 1440 atatatctga ggaagaataa ctttctaaat taaagtaatg tattttatta aatattaaaa 1500 aaaatatgct aaatttagat tttagagcaa tatataggga gatatgtcac aaatttctac 1560 attttggtta aattattagt attttttat attcaaatgt gccttgatat ttaaataata 1620 tactgaatgc agaatttatg ttatgtgaac cattatggaa aatgttaatg ttaacaaaat 1680 1740 gaggtgtatt gacttttcaa caatgtaaat taaagatggt acatctactg tttaagggca 1800 gaggaattaa aagagtatag atactgaaat gtatcactta ctagtagtgt ggctataatc

```
aaattaatta atctctctct aggctttagc ttcctcatct tagtttgttc aggctactgt
                                                                 1860
                                                                 1920
aacaaaataa catagattat gtacttttaa atgacagaag tttattcggc atggtttggg
agactaggaa gtctaagatt aaagaaccag caaatttggt gtctgatgag gacccattcc
                                                                 1980
tttgttcaca gatgatgcct tctcattgtg ttttcaaatg ttagaaggag ctagctagct
                                                                 2040
ttctggggtc tcttttgtaa aggcactaat cccagtcatt agggcaaatt ggctcctaca
                                                                 2100
qqcccacct atctcctaat accatcacct tgaggattaa gatttctaca tatgaatgaa
                                                                 2160
gcaggtgttg tagaaggtca gtcagttaga ccatagcacc atctgtaaaa ttgaatagta
                                                                 2220
                                                                 2280
atttactqcc tcattqqatg tcaggattaa aggagataag attttattag ttactagtta
ccatagtggt tttttttta cactataatg ttcgtttttt tgtttcatgc ttgtaccttc
                                                                 2340
aacatttcct tccatttgaa tacttctttt gtctcctgta ggcctgtctg tccacttagg
                                                                 2400
tgtaagatgt gtttttgtgt caggaatgat ggtgcaatgc taatgttcca ttgccctatt
                                                                 2460
tggcaatact ctgatcatta actataaaga ataacaccag tgttaactaa ctctccttgc
                                                                 2520
ctgacagtag tgctgccact attccttgtt tctgtggtaa tagatgaggt ttgtatggtc
                                                                 2580
ctgttattcc agcctccaga caccattcca gatcaactgg tgccytcwac gcccccgaag
                                                                 2640
tgtatggggc ctcaggtgaa ggatgagwac attttcacta tcatctggca ttcatctcag
                                                                 2700
attttatcct tttcagtttc cattaaataa tattcatgtt ttaaaattga tttttatta
                                                                 2760
                                                                 2820
2880
cccctttagc aactgtattg agcatttttc tcactggtat atggacattt ttttgtataa
cctqttqtqt catttttaaa tatagaattg tttttatgtt ctcatctttg tatatatgtt
                                                                 2940
                                                                 2956
taaaaaaaa aaaaaa
```

```
<210> 104
```

<400> 104

Met Thr Lys Pro Phe Ser His Ser Phe Arg Arg Ile Gly Phe Phe Ile 1 5 10 15

Ala Ile Leu Phe Thr Tyr Gly Tyr Cys Ile Ala Lys Ala Ala Asp 20 25 30

<211> 31

<212> PRT

<213> Homo sapiens

<210> 105

<211> 1325

<212> DNA

<213> Homo sapiens

<400> 105 aatcgggaaa	aaaagccatg	tattctttcg	tttctctcta	aaagaagaaa	aatataattt	60
aaaaatacat	tgcgtatttt	ctaaaacaat	aaatttatag	tgttaatatt	catagggtca	120
atcaaaatga	agcttctcct	ttgggcctgc	attgtatgtg	ttgcttttgc	aaggaagaga	180
cggttcccct	tcattggtga	ggatgacaat	gacgatggtc	acccacttca	tccatctctg	240
aatattcctt	atggcatacg	gaatttacca	cctcctctt	attatcgccc	agtgaataca	300
gtccccagtt	accctgggaa	tacttacact	gacacagggt	taccttcgta	tccctggatt	360
ctaacttctc	ctggattccc	ctatgtctat	cacatccgtg	gttttccctt	agctactcag	420
ttgaatgttc	ctcctctccc	tcctaggggt	ttcccgtttg	tccctccttc	aaggttttt	480
tcagcagctg	cagcacccgc	tgccccacct	attgcagctg	agcctgctgc	agctgcacct	540
cttacatcca	cacctgtagc	atctgagcct	gctgcagggg	cccctgttgc	agctgagcct	600
gctgcagagg	cacctgttgg	agctgagcct	gctgcagagg	cacctgttgc	agctgagcct	660
gctgcagagg	cacctgttgg	agtggagcca	gctgcagagg	aaccttcacc	agctgagcct	720
gctacagcca	agcctgctgc	cccagaacct	cacccttctc	cctctcttga	acaggcaaat	780
cagtgaaatt	ctctagaaga	gtaccatggg	ttcatttcta	tactgatgca	gaaataagtg	840
aaatctacaa	aagttttctt	tcttttccaa	agactatttc	attctgtagt	attcagagta	900
ttcatctcac	tacatagatt	tgtttgtggt	agttatttcc	ttggacttaa	tttatattga	960
aaaaacattg	ataattaaat	aaataaaata	gataatttag	accaatggtg	ataaggtctg	1020
gatgaaaact	acgctatgga	ggactgaaat	ggcaatcatt	cagcctagcc	tggagtctga	1080
ttatacagct	actataggat	gatgttagta	ttggttttga	gtgcaatagg	ttttttccta	1140
aacaaacata	ttttgtagtc	aatgaacttt	ttgtcacaaa	acagtaaaac	atctgtgttt	1200
aacctatggt	aaacaacatg	ttaatgaact	atgctatcca	tgacttaatg	gacagttcaa	1260
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	1320
aaaaa						1325

<210> 106

Met Lys Leu Leu Trp Ala Cys Ile Val Cys Val Ala Phe Ala Arg 1 5 10 15

Lys Arg Arg Phe Pro Phe Ile Gly Glu Asp Asp Asn Asp Gly His

<211> 219

<212> PRT

<213> Homo sapiens

<400> 106

20 25 30

Pro Leu His Pro Ser Leu Asn Ile Pro Tyr Gly Ile Arg Asn Leu Pro 35 40 45

Pro Pro Leu Tyr Tyr Arg Pro Val Asn Thr Val Pro Ser Tyr Pro Gly 50 55 60

Asn Thr Tyr Thr Asp Thr Gly Leu Pro Ser Tyr Pro Trp Ile Leu Thr 65 70 75 80

Ser Pro Gly Phe Pro Tyr Val Tyr His Ile Arg Gly Phe Pro Leu Ala 85 90 95

Thr Gln Leu Asn Val Pro Pro Leu Pro Pro Arg Gly Phe Pro Phe Val 100 105 110

Pro Pro Ser Arg Phe Phe Ser Ala Ala Ala Ala Pro Ala Ala Pro Pro 115 120 125

Ile Ala Ala Glu Pro Ala Ala Ala Ala Pro Leu Thr Ser Thr Pro Val 130 135 140

Ala Ser Glu Pro Ala Ala Gly Ala Pro Val Ala Ala Glu Pro Ala Ala 145 150 155 160

Glu Ala Pro Val Gly Ala Glu Pro Ala Ala Glu Ala Pro Val Ala Ala 165 170 175

Glu Pro Ala Ala Glu Ala Pro Val Gly Val Glu Pro Ala Ala Glu Glu 180 185 190

Pro Ser Pro Ala Glu Pro Ala Thr Ala Lys Pro Ala Ala Pro Glu Pro 195 200 205

His Pro Ser Pro Ser Leu Glu Gln Ala Asn Gln 210 215

<210> 107

<211> 225

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (13)..(13)

```
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (17)..(17)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (83)..(83)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (128)..(128)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (164)..(164)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (188)..(188)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (209)..(209)
<223> n is a, c, g, or t
<400> 107
tgcgggctca cangaanagt ctcacctcag tgccaagggg tgtcagagat gctcactgcc
                                                                     60
ctcctctcct tggggttgca tgnaggcatg atggcgcttg gccgtggcag ggtaaggaac
                                                                    120
cggcgacnga ggcccatcac gtgttcacat gctctcctgc gtcngtgctt gggagatatg
                                                                    180
                                                                    225
gactgtcntg tccttagacc acatttatnt caaggcaagg ggagc
<210> 108
<211> 533
<212> DNA
<213> Homo sapiens
<400> 108
ggttcaaaat gaggcaaaga taggaaagtg cttcttacag ataattttca aggccagtga
                                                                      60
ctggagagag gggtaggtct gtcaatcgag tgcttgctga ctgcacatat cacagggcgt
                                                                     120
gtgacgactg ctgggagagg aaagcgagac atcattccaa ccctccagaa gctaaagatc
                                                                     180
ctggaactca aggggaaaac taacgtaagt gcgaaagcga acaagcaaac atgtcctcaa
                                                                     240
                                                                     300
cggggcaggc aggctgtcgg ggtacagagc tgggatctgg gaaggaacag agagggccgc
                                                                     360
tcagggagag gaagcacagt gccaccggag gcacgcactc agcaggcact cgcaggctgg
```

gcagaggtag agaagcagcg ctgcacaggc aggcagctga	a cccagggctc ttagagccgg 420
gcaggagagc tggtgtggga cctgggagga ggacaggag	c cttcaaagca gcaccgcctg 480
attgcagcca ggagggtagc atcaaggaag atggaactg	c ggccaggcca cat 533
<210> 109 <211> 101 <212> PRT <213> Homo sapiens	
<400> 109	
Met Ser Ser Thr Gly Gln Ala Gly Cys Arg Gl	y Thr Glu Leu Gly Ser 15
Gly Lys Glu Gln Arg Gly Pro Leu Arg Glu Arg 20 25	g Lys His Ser Ala Thr 30
Gly Gly Thr His Ser Ala Gly Thr Arg Arg Let 35 40	u Gly Arg Gly Arg Glu 45
Ala Ala Leu His Arg Gln Ala Ala Asp Pro Gl 50 55	y Leu Leu Glu Pro Gly 60
Arg Arg Ala Gly Val Gly Pro Gly Arg Arg Th 65 70 75	r Gly Ala Phe Lys Ala 80
Ala Pro Pro Asp Cys Ser Gln Glu Gly Ser Il 85 90	e Lys Glu Asp Gly Thr 95
Ala Ala Arg Pro His 100	
<210> 110 <211> 458 <212> DNA <213> Homo sapiens	
<400> 110 taggcagtca tctttgtaaa cctccactgg tgctggctg	c gtttagaaca tactccatat 60
aaaacaggcc ctgggattac aggcatgagc taccgtgcc	t ggcccccttt tttttaatta 120
cagagaaata agttacacct tagtatcaga tattaattt	t cttcagtgtt caggcaatta 180
gtatttagaa agctcttgtc atgagatggc tctgggatg	t gatgatgatt gttgggattg 240
aaaaaatggt agtatcatgg agagatcata ataaattct	t agtattaaaa gtggttttgc 300
tttcagttag ggagaaaaat tagattgtac tatttttcc	et ctatgatttc cttcagttat 360

cttccaaatg ttgttttttc cccacagccc ccttaacatt gttctctatg cacttctcaa	420
tacattttca tttgtttctc aaaaaaaaa aaaaaaaa	458
<210> 111 <211> 1350 <212> DNA <213> Homo sapiens	
<400> 111 ttttttttt tttttgtaga gacagggtct tgccattttg cccaggttgg tctcaaactt	60
ctgageteag getatetgee eacettggee teceaaagtg etgggattae aggtgtgage	120
cactgtgccc ggcctgtatt gttttaagtt acacttattc cttttaaaat tcagaatttg	180
ttaagcattt aaaacaaatt cataaattaa aacctccttg agataccatt taccatgtag	240
tttgatgaac ataatacatg gtgcattaca ttggcaaaag cagtggggaa aaagatgctt	300
ttataaatgt ctggtgggag ttaaattgtg taacttctat tacacttttg taatagctac	360
caaaatatgt tatttctatc tacctctctc tctctgactc aacagttcca tttctaggtt	420
ttgtgttgtg gatattcttg aacattgtga aatgtataca gggaggcttc acagcagcac	480
tgtttgtttc aaatgatttg aaaacaacct ctccataaac gagataggct aaatcaagca	540
tggcacacct atacaatgga tgcggccatt aaaaagaaca aggcagctca tatgcatcaa	600
tataaaaagg tctataaact atactatcaa atgaaaatag caagatgcta ccatttatat	660
taaaaagagg acaaaatatt aatatattca tggttgcttg tctatgtgga atatttctgg	720
atatatacat aagaagttac attggttacc tatgggcagg ttactactgg gtggcttgtg	780
ggtgagggca ggaagagctt actttccatg gtaaaccttt ttgtatattt tgcagcattc	840
aaaaattcta atttaaagtt tattttagaa aaatgccccc atgtatacaa gtgatttcca	900
agttcctcct tcaatatttt taatgattat ggaacacact gaacttcttt tttattattc	960
tagetgtgaa etetgtetge tgtetacatg cacatatata atetatgtaa tatttaaatt	1020
tatatccttt atatgtcagt tgggtggtga gtaaaagaaa aatatattt tatcagcaaa	1080
cttggtaaat tgttgaggtt tctgatatag tcagaggtag ttgcttatca caacattagg	1140
taagttttta aaracaccta tttaaaacac actgatgtat atatatattg gtctgttttc	1200
atgctgctga taaagacata tccaagactg ggaagaaaaa gaggtttaat tgggcttata	1260
gttccacatg gctggggagg cctcagaatc attgcgggag gcaaaaggca cttcttacat	1320
ggcagtggca agagaaaaaa aaaaaaaaaa	1350

<210> 112 <211> 46

```
<212> PRT
<213> Homo sapiens
<400> 112
Met Leu Pro Phe Ile Leu Lys Arg Gly Gln Asn Ile Asn Ile Phe Met
Val Ala Cys Leu Cys Gly Ile Phe Leu Asp Ile Tyr Ile Arg Ser Tyr
Ile Gly Tyr Leu Trp Ala Gly Tyr Tyr Trp Val Ala Cys Gly
                            40
<210> 113
<211> 1598
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (705)..(705)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (711)..(711)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (722)..(722)
<223> n is a, c, g, or t
<220>
<221> misc_feature
\langle 222 \rangle (776) ... (776)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (782)..(782)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (784)..(784)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (807)..(807)
<223> n is a, c, g, or t
<220>
```

<221> misc_feature

```
<222>
      (811)..(811)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (814)..(814)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (826)..(826)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1050)..(1050)
<223> n is a, c, g, or t
<400> 113
tcgggacact acatgaagtc ctgaaaataa cagagaaact gttatatctt tttaatgatt
                                                                    60
tatttgcaag tattgaggtt gacctgaaaa acaatgaaac acatgaacac acttccgatt
                                                                   120
                                                                   180
ttctcctcqc tgattagctt cctgcctgct gtcagtgctg gacgaagtgc tataactact
                                                                   240
ttatqtaaca ttacagaaca gctagaggtc ctggggtaag agaaaaaaag cacatcacaa
caaatqtqaa aqccttcatt attacacgtt ccagtttgtc tcgctgtgta ggcataagct
                                                                   300
                                                                   360
aatqqtttat tttcaqaaag ctgcctgaaa cgttgctttg tattcttcta ggaagaactt
                                                                   420
taattectee tqaqqaacte taetttetga gecaaactge taattttetg eggaactgte
                                                                   480
aaaaaaaaag gtttttcccg gcctttgaac attttgccta tgagagtttt gcatatattt
                                                                   540
                                                                   600
tatacttqaq taqacaactt taataatcca tatttatact atcgcagaag taagcatttg
                                                                   660
qcaaacqttc aqccattagc actcatttaa ccctgttagc aatattcttt tgaaaaaagt
                                                                   720
qccaqtcctt atqtqataaa ctaagaagcc cattgaatat aaaantgtgt nggactgaaa
engtgacett atattattge taagggaata tgagattaac tteetacagg ggecanaace
                                                                   780
ananaaaggc ttccagcaac ttcgatnaaa ntantttggc cacatntcaa gccaattgtt
                                                                   840
tgtactattt atgtaccttt ttcataactg gaattgccaa ataagcatgg agatctaaat
                                                                   900
graaaaaaaa aaaaaaaaa aaagcggccg caggtctaga attcaatcgg aaaaaacaaa
                                                                   960
                                                                  1020
qaqaaqaaac atactgcccc atcttgtttg catgaaactc tagaatctgg tgtttctcta
                                                                  1080
tttatctqct ccctctttgc ctaccttggn atttcttttt ttttttcttt gtaactatgg
                                                                  1140
tttttaccta aagtttaaac tttttattat tattttctct ctaaattctt gctagttaat
                                                                  1200
aacattatta acttcaagat tttagaagag cagtgatgat agtaatgatc gataactaga
ctatcgagtt tcagaagaaa cttccaagta tatataatgt ttgacatagc ctttatttct
                                                                  1260
```

acaaatctac tacctgtaaa ctaacatttt aaaatacctg tatatggctg ggtgtggtgg 1320 cttacacctg taatcccagc agtttgggag cctgaggtgg gcagattgct tgagcccagg 1380 1440 aqttqqaqac aaqcctggac aaaatagacc tctctctaca aaaagtacaa aaaattggct gggtgtggtg gcacacgcct gtggtcccag ctactcggga ggctgaggtg ggaggattgc 1500 ctgagcccgg gagatggtgg ttgcagtgag ctgagatcac cccattgcac tccagcctgg 1560 1598 ataacagaat aagatgctgt cttaaaaaaa aaaaaaaa <210> 114 <211> 41 <212> PRT <213> Homo sapiens <400> 114 Met Lys His Met Asn Thr Leu Pro Ile Phe Ser Ser Leu Ile Ser Phe 5 10 Leu Pro Ala Val Ser Ala Gly Arg Ser Ala Ile Thr Thr Leu Cys Asn 20 Ile Thr Glu Gln Leu Glu Val Leu Gly 35 <210> 115 <211> 1257 <212> DNA <213> Homo sapiens <400> 115 catggcgtcc aggtctaagc ggcgtgccgt ggaaagtggg gttccgcagc cgccggatcc 60 cccagtccag cgcgacgagg aagaggaaaa agaagtcgaa aatgaggatg aagacgatga 120 180 tgacagtgac aaggaaaagg atgaagagga cgaggtcatt gacgaggaag tgaatattga 240 atttqaaqct tattccctat caqataatqa ttatgacgga attaagaaat tactgcagca

gctttttcta aaggctcctg tgaacactgc agaactaaca gatctcttaa ttcaacagaa

ccatattggg agtgtgatta agcaaacgga tgtttcagaa gacagcaatg atgatatgga

tgaagatgag gtttttggtt tcataagcct tttaaattta actgaaagaa agggtaccca

qtqtqttqaa caaattcaaq agttggttmt acgcttctgt gagaagaact gtgaaaagag

catggttgaa cagctggaca agtttttaaa tgacaccacc aagcctgtgg gccttctcct

aagtgaaaga ttcattaatg tccctccaca gatcgctctg cccatgtacc agcagcttca

gaaagaactg kcgggggcac acagaaccaa taagccatgt gggaagtgct acttttacct

300

360

420

480

540

600

660

tctgattagt aagacatttg tggaaqcagg aaaaaacaat tccaaaaaga aacctagcaa 720 caaaaagaaa gctgcgttaa tgtttgcaaa tgcagaggaa gaatttttct atgagaaggc 780 aattctcaag ttcaactact cagtgcagga ggagagcgac acttgtctgg gaggcaaatg 840 gtcttttgat gacgtaccaa tgacgccctt gcgaactgtg atgttaattc caggcgacaa 900 gatgaacgaa atcatggata aactgaaaga atatctatct gtctaaccca tttccaatgg 960 acagtgatgg gcttgttttt gtaaaattac cagaaaactc agtggagatt tactgaaaaa 1020 ctcagacttt attcagatta agttcctcta caaaaagtag ggttctgtcc catgtgtytc 1080 tgacacattt acaaaatacc agttttttaa aattttggtc aaattatgag tggttgattt 1140 aaaaactttt ccaagaagaa gaaaagcatg gagtagtaat ttaaagaact caataaaaac 1200 1257

<210> 116

<211> 314

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<222> (150)..(150)

<223> Xaa can be any naturally occurring amino acid

<220>

<221> misc_feature

 $\langle 222 \rangle$ $(204) \dots (204)$

<223> Xaa can be any naturally occurring amino acid

<400> 116

Met Ala Ser Arg Ser Lys Arg Arg Ala Val Glu Ser Gly Val Pro Gln 1 5 10 15

Pro Pro Asp Pro Pro Val Gln Arg Asp Glu Glu Glu Glu Lys Glu Val 20 25 30

Glu Asn Glu Asp Glu Asp Asp Asp Ser Asp Lys Glu Lys Asp Glu
35 40 45

Glu Asp Glu Val Ile Asp Glu Glu Val Asn Ile Glu Phe Glu Ala Tyr
50 55 60

Ser Leu Ser Asp Asn Asp Tyr Asp Gly Ile Lys Lys Leu Leu Gln Gln 65 70 75 80

Leu Phe Leu Lys Ala Pro Val Asn Thr Ala Glu Leu Thr Asp Leu Leu

 85
 90
 95

Ile Gln Gln Asn His Ile Gly Ser Val Ile Lys Gln Thr Asp Val Ser
100 105 110

Glu Asp Ser Asn Asp Asp Met Asp Glu Asp Glu Val Phe Gly Phe Ile 115 120 125

Ser Leu Leu Asn Leu Thr Glu Arg Lys Gly Thr Gln Cys Val Glu Gln 130 135 140

Ile Gln Glu Leu Val Xaa Arg Phe Cys Glu Lys Asn Cys Glu Lys Ser 145 150 155 160

Met Val Glu Gln Leu Asp Lys Phe Leu Asn Asp Thr Thr Lys Pro Val 165 170 175

Gly Leu Leu Ser Glu Arg Phe Ile Asn Val Pro Pro Gln Ile Ala 180 185 190

Leu Pro Met Tyr Gln Gln Leu Gln Lys Glu Leu Xaa Gly Ala His Arg 195 200 205

Thr Asn Lys Pro Cys Gly Lys Cys Tyr Phe Tyr Leu Leu Ile Ser Lys 210 215 220

Thr Phe Val Glu Ala Gly Lys Asn Asn Ser Lys Lys Lys Pro Ser Asn 225 230 235 240

Lys Lys Lys Ala Ala Leu Met Phe Ala Asn Ala Glu Glu Glu Phe Phe 245 250 255

Tyr Glu Lys Ala Ile Leu Lys Phe Asn Tyr Ser Val Gln Glu Glu Ser 260 265 270

Asp Thr Cys Leu Gly Gly Lys Trp Ser Phe Asp Asp Val Pro Met Thr 275 280 285

Pro Leu Arg Thr Val Met Leu Ile Pro Gly Asp Lys Met Asn Glu Ile 290 295 300

Met Asp Lys Leu Lys Glu Tyr Leu Ser Val 305

<210> 117

<211> 1544 <212> DNA <213> Homo sapiens

<400> 117

<400> 117						
	cacacaagct	gggcggcgga	ggccacgcag	ccgggccttc	ttctctctgg	60
gaccctccgc	cagcgcatag	ccgcaggccg	gtgtgacttc	tgcaccctcg	gttctgaggg	120
tacggtgacc	cctagtgggc	agtttgcaaa	atgtgattcc	ttcttcccaa	ctccccatcc	180
ccccttccct	tcccgtcacg	tcctgtttgg	gggttaattc	ggttttttct	ctgttgcatc	240
gcgcctactg	tgcgtgtgcg	atarcgtgtg	tgggggtgag	agtttgtttt	ctggaatggt	300
aggtgctggg	aggaggagtt	tgatggaggg	cttcctggct	gcttctggcc	ctcacctcgt	360
ggaggccttc	acagagaccc	tgtgggccct	ggccctgtgc	tggcactgtg	ccagtcatga	420
ggcagctctg	atcacttccc	cactgtggaa	acaggactga	cccagccttc	agtgtgggct	480
gctgaagcta	tcctcctcag	gcctcaggga	tgacctcctg	cctgagcctc	tcacaggctg	540
gctgtgggcc	agtttcatct	gctttcctgt	tgggggtccc	gggcctctgc	tgtccttgac	600
ccactggtgt	tctgtgcaag	gcttcttccc	attcaccaag	tgcacacctt	gcatctgccg	660
ctcggcatgc	accagttcca	cacaccatcc	cattttacag	acaaggacgc	tgaggcctgc	720
agcagcagtg	tgacttgctc	aaggtccagt	gagtgacctc	attccccaga	aaaggctcct	780
cccacaccag	agtacagcct	gggtaggggg	aaaatcagtt	ctttcagcta	ccacccatcc	840
aacctttggg	cctatgtgaa	aagaaaggaa	ctaagctggg	tgtgttctgt	ctggacctgg	900
ggaggcccct	gaaggcaaag	agggaaactg	tcccagctgt	tctgtcctag	gggagggga	960
catagcccta	gcaggagctc	ccagcccctc	ttggcactct	gacacacaag	tacacccatc	1020
tggggcccgc	tttgccacga	agagctgggc	aggcctgcag	ggtgtgggga	aggaggacac	1080
aacctcaaga	aaggaagcgt	gaaccccagg	gaacagcggg	tcccttccct	cctcagacac	1140
aagccacctc	agcttgtggc	tcttggcccc	cagccccacc	aacccacctg	ttcatttatt	1200
caacagacaa	tgacagctga	tatttattgg	acatttgcac	catgccaagc	attcggcttg	1260
gattatccca	tttgtttctc	acagccggta	tttattgtct	gctcctctgt	gccaggtgct	1320
gtgctctggg	caggggcact	gcatgggctg	cctgccctgg	tggagcttgt	ggtctgatgg	1380
gtgaggctga	cccaagccca	ccccattgcc	aacagggcca	gggcaagagt	acacacaggg	1440
gcctcatacc	atatgtctaa	atatttaaaa	gttatcaatc	aagctaacaa	ctgttaaata	1500
aaatatgttc	tattctccta	ctttgaaaaa	aaaaaaaaa	aaaa		1544

<210> 118 <211> 72

```
<212> PRT
<213> Homo sapiens
<400> 118
Met Pro Ser Ile Arg Leu Gly Leu Ser His Leu Phe Leu Thr Ala Gly
Ile Tyr Cys Leu Leu Cys Ala Arg Cys Cys Ala Leu Gly Arg Gly
Thr Ala Trp Ala Ala Cys Pro Gly Gly Ala Cys Gly Leu Met Gly Glu
Ala Asp Pro Ser Pro Pro His Cys Gln Gln Gly Gln Gly Lys Ser Thr
His Arg Gly Leu Ile Pro Tyr Val
<210> 119
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature <222> (2)..(2)
<223> n is a, c, g, or t
<400> 119
cnatgcaggt ctaactcctc cactctggg
                                                                          29
<210> 120
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 120
tnagtttggt gctctgctct gatattgac
                                                                          29
<210> 121
<211> 29
<212> DNA
```

<213> Homo sapiens

```
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 121
gncatcaata tccttacggt ctccgaagc
                                                                              29
<210> 122
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 122
gnaaatagga actttcatga gaatcagga
                                                                              29
<210> 123
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 123
anacaatgca ggcccaaagg agaagcttc
                                                                              29
<210> 124
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 124
gnttgcttgt tcgctttcgc acttacgtt
                                                                              29
<210> 125
<211> 29
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 125
antggtagca tcttgctatt ttcatttga
                                                                                          29
<210> 126
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 126
tnggaagtgt gttcatgtgt ttcattgtt
                                                                                          29
<210> 127
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 127
gncctcgtcc tcttcatcct tttccttgt
                                                                                          29
<210> 128
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2) ...(2)
<223> n is a, c, g, or t
<400> 128
ancacctggc acagaggagc agacaataa
                                                                                          29
<210> 129
<211> 2271
<212> DNA
<213> Homo sapiens
<400> 129
```

ggcgagcctt tgaggggaac gacttgtcgg agccctaacc aggggtatct ctgagcctgg 60 tgggatcccc ggagcgtcac atcactttcc gatcacttca aagtgtaagg ggggccctac 120 tgaccettgg aatttagggg ggctacceta ggcggcatce acaacagaga gaattceett 180 ggagagggga ccctggtgct cggctgtccc tctcatccgc gtagaaagtc cctcatctgg 240 gggctcccga actcagccct ctcacattgt ggccggcttt actgaccctc acagacccag 300 gctgggccct cccgatagag gccagccaaa ggttcactca gcctctcttt caaggctggt 360 gtatetetaa atettagaee eteeteegtt aeegteagee aggtgggatg eeeaegtttt 420 ggagagaaac cgttctgagg aacccgggcc tctgggtccc agctggctct ccggccccca 480 ggttatgtat tetgggttgg ceacaaacag tggaatteta ggeacteeeg ggacagggtg 540 ggactgctgt cctcattcat gcaaccagca aatattcacg gcaccttgtt tgtgccagac 600 660 agcagaccga ggacacggtt gttaccaaga ccaggctgtt gccttggaag agcccagagc gtgtcaaggg agacagccac atcacgccag aaatacatga cagctggatt agccctggga 720 gagggaggcc cagatgtggg agctcagggg aggtgcagct caacgtggag tttggaggag 780 gctaccttga cctttgaatg ccaagtggga gccagccaga tgaaaggggt taaaaactaa 840 tatttatatg acagaagaaa aagatgtcat toogtaaagt aaacatcatc atottggtco 900 960 tggctgttgc tctcttctta ctggttttgc accataactt cctcagcttg agcagtttgt taaggaatga ggttacagat tcaggaattg tagggcctca acctatagac tttgtcccaa 1020 atgeteteeg acatgeagta gatgggagac aagaggagat teetgtggte ategetgeat 1080 ctgaagacag gcttgggggg gccattgcag ctataaacag cattcagcac aacactcgct 1140 ccaatgtgat tttctacatt gttactctca acaatacagc agaccatctc cggtcctggc 1200 tcaacagtga ttccctgaaa agcatcagat acaaaattgt caattttgac cctaaacttt 1260 tggaaggaaa agtaaaggag gatcctgacc agggggaatc catgaaacct gtgatattct 1320 tgccctttac aatacagcac tgaagccagg acatgcagct gcattttcag aagattgtga 1380 ttcagcctct actaaagttg tcatccgtgg agcaggaaac cagtacaatt acattggcta 1440 tettgaetat aaaaaggaaa gaattegtaa gettteeatg aaageeagea ettgeteatt 1500 taatcctgga gtttttgttg caaacctgac ggaatggaaa cgacagaata taactaacca 1560 actggaaaaa tggatgaaac tcaatgtaga agagggactg tatagcagaa ccctggctgg 1620 tagcatcaca acacctcctc tgcttatcgt attttatcaa cagcactcta ccatcgatcc 1680 tatgtggaat gtccgccacc ttggttccag tgctggaaaa cgatattcac ctcagtttgt 1740 aaaggctgcc aagttactcc attggaatgg acatttgaag ccatggggaa ggactgcttc 1800

atatactgat gtttgggaaa aatggtatat tccagaccca acaggcaaat tcaacctaat 1860 ccgaagatat accgagatct caaacataaa gtgaaacaga atttgaactg taagcaagca 1920 tttctcagga agtcctggaa gatagcatgc gtgggaagta acagttgcta ggcttcaatg 1980 cctatcggta gcaagccatg gaaaaagatg tgtcagctag gtaaagatga caaactgccc 2040 tgtctggcag tcagcttccc agacagacta tagactataa atatgtctcc atctgcctta 2100 ccaagtgttt tcttactaca atgctgaatg actggaaaga agaactgata tggctagttc 2160 agctagctgg tacagataat tcaaaactgc tgttggtttt aattttgtaa cctgtggcct 2220 2271

<210> 130

<211> 159

<212> PRT

<213> Homo sapiens

<400> 130

Met Ser Phe Arg Lys Val Asn Ile Ile Ile Leu Val Leu Ala Val Ala 1 5 10 15

Leu Phe Leu Leu Val Leu His His Asn Phe Leu Ser Leu Ser Ser Leu 20 25 30

Leu Arg Asn Glu Val Thr Asp Ser Gly Ile Val Gly Pro Gln Pro Ile 35 40 45

Asp Phe Val Pro Asn Ala Leu Arg His Ala Val Asp Gly Arg Gln Glu 50 55 60

Glu Ile Pro Val Val Ile Ala Ala Ser Glu Asp Arg Leu Gly Gly Ala 65 70 75 80

Ile Ala Ala Ile Asn Ser Ile Gln His Asn Thr Arg Ser Asn Val Ile 85 90 95

Phe Tyr Ile Val Thr Leu Asn Asn Thr Ala Asp His Leu Arg Ser Trp
100 105 110

Leu Asn Ser Asp Ser Leu Lys Ser Ile Arg Tyr Lys Ile Val Asn Phe 115 120 125

Asp Pro Lys Leu Leu Glu Gly Lys Val Lys Glu Asp Pro Asp Gln Gly 130 135 140

Glu Ser Met Lys Pro Val Ile Phe Leu Pro Phe Thr Ile Gln His 145 150 155

<211> 1425 <212> DNA <213> Homo sapiens <400> 131 gccgaccgaa gaggctggac atgacaccag tggcatatca cggccatggg gtctcagcat 60 teegetgetg etegeceete eteetgeagg egaaageaag aagatgacag ggaeggtttg 120 ctggctgaac gagagcagga agaagccatt gctcagttcc catatgtgga attcaccggg 180 agagatagca tcacctgtct cacgtgccag gggacaggct acattccaac agagcaagta 240 300 aatgagttgg tggctttgat cccacacagt qatcaqagat tgcqccctca qcqaactaaq caatatgtcc tcctgtccat cctgctttgt ctcctggcat ctggtttggt ggttttcttc 360 ctgtttccgc attcagtcct tgtggatgat gacggcatca aagtggtgaa agtcacattt 420 aataagcaag actcccttgt aattctcacc atcatggcca ccctgaaaat caggaactcc 480 aacttctaca cggtggcagt gaccagcctg tccagccaga ttcagtacat gaacacagtg 540 gtgaatttta ccgggaaggc cgagatggga ggaccgtttt cctatgtgta cttcttctgc 600 acggtacctg agatectggt gcacaacata gtgatettea tgcgaactte agtgaagatt 660 tcatacattg gcctcatgac ccagagetec ttggagacac atcactatgt ggattgtgga 720 ggaaattcca cagctattta acaactgcta ttggttcttc cacacagcgc ctgtagaaga 780 gagcacagca tatgttccca aggcctgagt tctggaccta ccccacgtg gtgtaagcag 840 900 aggaggaatt ggttcactta actcccagca aacatcctcc tgccacttag gaggaaacac ctccctatgg taccatttat gtttctcaga accagcagaa tcagtgccta gcctgtgccc 960 agcaaatagt tggcactcaa taaagatttg cagaatttaa tacagatctt ttcagctgtt 1020 cttagggcat tataaatgga aatcataacg tggttctagg ttatcaaacc atggagtgat 1080 gtggagctag gattgtgagt gacctgcagg ccattatcag tgcctcatct gtgcagaagt 1140 ggcagcagag agggaccatc caaataccta agagaaaaca gacctagtca ggatatgaat 1200 ttgtttcagc tgttcccaaa ggcctgggag ctttttgaaa agaaagaaaa aagtgtgttg 1260 gctttttttt tttttagaaa gttagaattg tttttaccaa gagtctatgt ggggcttgat 1320 tcacccttca tccattggct ggaacatgga ttggggattt gatagaaaaa taaaccctgc 1380

<210>

131

1425

ttttgattca aaaaaaaaa aaaaaaaaaa aaaaa

<211> 231 <212> PRT <213> Homo sapiens

<400> 132

Met Gly Ser Gln His Ser Ala Ala Ala Arg Pro Ser Ser Cys Arg Arg

Lys Gln Glu Asp Asp Arg Asp Gly Leu Leu Ala Glu Arg Glu Gln Glu

Glu Ala Ile Ala Gln Phe Pro Tyr Val Glu Phe Thr Gly Arg Asp Ser

Ile Thr Cys Leu Thr Cys Gln Gly Thr Gly Tyr Ile Pro Thr Glu Gln

Val Asn Glu Leu Val Ala Leu Ile Pro His Ser Asp Gln Arg Leu Arg 70

Pro Gln Arg Thr Lys Gln Tyr Val Leu Leu Ser Ile Leu Leu Cys Leu

Leu Ala Ser Gly Leu Val Val Phe Phe Leu Phe Pro His Ser Val Leu 100

Val Asp Asp Asp Gly Ile Lys Val Val Lys Val Thr Phe Asn Lys Gln 115

Asp Ser Leu Val Ile Leu Thr Ile Met Ala Thr Leu Lys Ile Arg Asn 130 135

Ser Asn Phe Tyr Thr Val Ala Val Thr Ser Leu Ser Ser Gln Ile Gln 145 150

Tyr Met Asn Thr Val Val Asn Phe Thr Gly Lys Ala Glu Met Gly Gly 175 165

Pro Phe Ser Tyr Val Tyr Phe Phe Cys Thr Val Pro Glu Ile Leu Val 180 185 190

His Asn Ile Val Ile Phe Met Arg Thr Ser Val Lys Ile Ser Tyr Ile 195 200 205

Gly Leu Met Thr Gln Ser Ser Leu Glu Thr His His Tyr Val Asp Cys 210 215

```
Gly Gly Asn Ser Thr Ala Ile
<210> 133
      1921
<211>
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1307)..(1307)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1332)..(1332)
<223> n is a, c, g, or t
<400> 133
cttccaaaga gcgactctta ctgtttctca tggtgagaag acaatatttg ctttctcttt
                                                                      60
ttcctttctt ccggatgaga ggctaagcca taatagaaag aatggagaat tattgattga
                                                                     120
ccgtctttat tctgtgggct ctgattctcc aatgggaata ccaagggatg gttttccata
                                                                     180
ctggaaccca aaggtaaaga cactcaaaga cagacatttt tggcagagca tagatgaaaa
                                                                     240
tggcaagttc cctggctttc cttctgctca actttcatgt ctccctcctc ttggtccagc
                                                                     300
tgctcactcc ttgctcagct cagttttctg tgcttggacc ctctgggccc atcctggcca
                                                                     360
tggtgggtga agacgctgat ctgccctgtc acctgttccc gaccatgagt gcagagacca
                                                                     420
tggagctgaa gtgggtaagt tccagcctaa ggcaggtggt gaatgtgtat gcagatggaa
                                                                     480
aggaagtgga agacaggcag agtgcaccgt atcgagggag aacttcgatt ctgcgggatg
                                                                     540
gcatcactgc agggaaggct gctctccgaa tacacaacgt cacagcctct gacagtggaa
                                                                     600
agtacttgtg ttatttccaa gatggtgact tctatgaaaa agccctggtg gagctgaagg
                                                                     660
ttgcagcact gggttctaat cttcacgtcg aagtgaaggg ttatgaggat ggagggatcc
                                                                     720
acctggagtg caggtccacc ggctggtacc cccaacccca aatacagtgg agcaacgcca
                                                                     780
agggagagaa catcccagct gtggaagcac ctgtggttgc agacggagtg ggcctatatg
                                                                     840
                                                                     900
aagtagcagc atctgtgatc atgaaaggcg gctccgggga gggtgtatcc tgcatcatca
gaaattccct cctcggcctg gaaaagacag ccagcatttc catcgcagac cccttcttca
                                                                     960
ggagegeeca geeetggate geageeetgg eagggaeeet geetatettg etgetgette
                                                                    1020
tegeeggage cagttactte ttgtggagae tacagaagga aataactget etgteeagtg
                                                                    1080
```

1140

agatagaaag tgagcaagag atgaaagaaa tgggatatgc tgcaacagag cgggaaataa

qcctaaqaqa qaqcctccaq qaqqaactca aqaqqaaaaa aatccaqtac ttqactcqtq 1200 gagaggagtc ttcgtccgat accaataagt cagcctgatg ctctaatgga aaaatggccc 1260 tetteaagee tgeetgattt tteetgeatg ggaagagege acatgtngee etgaggttee 1320 cttcccagga cngctccagg atcgagatca ctgtgagtgg ttgtggagtt aagaccccta 1380 tggactcctt cccagctgat tatcagagcc ttagacccag cactccttgg attggctctg 1440 cagagtgtct tggttgagag aataacgttg cagttcccac agggcatgtg actttgaaag 1500 agactaaagg ccacactctg ttaataatgg ggcacatatg tgttcccacc ccacaaatgt 1560 gataagtgat cgtgcagcca gagccagcct tccttcagtc aaggtttcca ggcagagcaa 1620 ataccctaga gattctctgt aatattggta atttggatga aggaagctag aagaattaca 1680 gggatgtttt taatcccact atggactcag tctcctggaa aaggatctgt ccactcctgg 1740 tcattggtgg atgttaaacc catatteett teaactgetg cetgetaggg aaaactgete 1800 ctcattatca tcactattat tgctcaccac tgtatcccct ctactgggca agtgcttgtc 1860 1920 a 1921

<210> 134

<211> 334

<212> PRT

<213> Homo sapiens

<400> 134

Met Lys Met Ala Ser Ser Leu Ala Phe Leu Leu Asn Phe His Val 1 5 10 15

Ser Leu Leu Val Gln Leu Leu Thr Pro Cys Ser Ala Gln Phe Ser 20 25 30

Val Leu Gly Pro Ser Gly Pro Ile Leu Ala Met Val Gly Glu Asp Ala 35 40 45

Asp Leu Pro Cys His Leu Phe Pro Thr Met Ser Ala Glu Thr Met Glu 50 55 60

Leu Lys Trp Val Ser Ser Ser Leu Arg Gln Val Val Asn Val Tyr Ala 70 75 80

Asp Gly Lys Glu Val Glu Asp Arg Gln Ser Ala Pro Tyr Arg Gly Arg 85 90 95

Thr	Ser	Ile	Leu 100	Arg	Asp	Gly	Ile	Thr 105	Ala	Gly	Lys	Ala	Ala 110	Leu	Arg
Ile	His	Asn 115	Val	Thr	Ala	Ser	Asp 120	Ser	Gly	Lys	Tyr	Leu 125	Cys	Tyr	Phe
Gln	Asp 130	Gly	Asp	Phe	Tyr	Glu 135	Lys	Ala	Leu	Val	Glu 140	Leu	Lys	Val	Ala
Ala 145	Leu	Gly	Ser	Asn	Leu 150	His	Val	Glu	Val	Lys 155	Gly	Tyr	Glu	Asp	Gly 160
Gly	Ile	His	Leu	Glu 165	Cys	Arg	Ser	Thr	Gly 170	Trp	Tyr	Pro	Gln	Pro 175	Gln
Ile	Gln	Trp	Ser 180	Asn	Ala	Lys	Gly	Glu 185	Asn	Ile	Pro	Ala	Val 190	Glu	Ala
Pro	Val	Val 195	Ala	Asp	Gly	Val	Gly 200	Leu	Tyr	Glu	Val	Ala 205	Ala	Ser	Val
Ile	Met 210	Lys	Gly	Gly	Ser	Gly 215	Glu	Gly	Val	Ser	Cys 220	Ile	Ile	Arg	Asn
Ser 225	Leu	Leu	Gly	Leu	Glu 230	Lys	Thr	Ala	Ser	Ile 235	Ser	Ile	Ala	Asp	Pro 240
Phe	Phe	Arg	Ser	Ala 245	Gln	Pro	Trp	Ile	Ala 250	Ala	Leu	Ala	Gly	Thr 255	Leu
Pro	Ile	Leu	Leu 260	Leu	Leu	Leu	Ala	Gly 265	Ala	Ser	Tyr	Phe	Leu 270	Trp	Arg
Leu	Gln	Lys 275	Glu	Ile	Thr	Ala	Leu 280	Ser	Ser	Glu	Ile	Glu 285	Ser	Glu	Gln
Glu	Met 290	Lys	Glu	Met	Gly	Tyr 295	Ala	Ala	Thr	Glu	Arg 300	Glu	Ile	Ser	Leu
Arg 305	Glu	Ser	Leu	Gln	Glu 310	Glu	Leu	Lys	Arg	Lys 315	Lys	Ile	Gln	Tyr	Leu 320
Thr	Arg	Gly	Glu	Glu 325	Ser	Ser	Ser	Asp	Thr 330	Asn	Lys	Ser	Ala		

<210> 135 <211> 1865 <212> DNA

<213> Homo sapiens

<400> 135 aatggttcca gccttaatgg agaagccagt ttcttttttc ttgttgtttt attgttttta 60 agectetete tggtttteag tagagtttga cettaaatat catetttgat taetattggt 120 gtccttgtag ttaaggtctt tgcaaaagtt tgagtgcaag ttttaagcta aaaacacgtt 180 tttaaacttt cacaaatttt gtaagatgac aatagcattc tgtaacatag acattatggt 240 aatagtgatt ttctctccat ccctattttg tccagcgatt tccaagttat aagacgtgaa 300 taagactaac cgctcacttc caccagcagc tgacctggtg ggcttttgag ttcaaagagt 360 catttettea tettacetee ageactgeag ggeegtgtga cettgeagag cettgttet 420 cattgatgaa aggagctcat gcctcatgaa gccactggta agggccatgg agctcacggg 480 ccatcaagct teetteecat caettgtggg tggaattgac attaccegat gagetettee 540 tggggtcacc tgggagggag tggcccatgg gtggtatgac aaaatctcat agtcagtctt 600 tgcagttttc tccacaggta aaatgagatt ttggaaaatt ttcatttgtt tgtatttgtc 660 ccaaggtgag tcttacatat tttgagcaac aaaacgaaga tcattatgaa aatgtcctta 720 tggaagcact ctagggccat tgctcatttt tatgagtcct cgtgctaagt ccctgagtac 780 tgtggctcat gtcttagctg gctaaatcac agtcaaaatt ctcttcttaa gcctcaaaat 840 aagctgctga ttatactgcc tgttggccag actaatcaaa tacatttgat gttttagctg 900 actocagata cttttccttc ctcctccttg gttctttaac tgtcatccca gatctgcgac 960 atgcaataag gaaaactgag tcagggagga agtaggattc cttttgctgc taggaaccac 1020 gttagctttg gattgtccat agaatgcacc cttaacagtt cttggaaaat ggatgatatt 1080 tggttcctgc cccatgttca gtgttctttg gcagctgcaa agcatatcct agctagaatc 1140 cttatcgtct tgaagttcat caaagatttt gaacagtcat ggtggagata caacctaagt 1200 acattcatgc ccattgagac aatcctttgg tttgagcgac ggaaggagga ataaacacat 1260 gaatgtattt tattgaatcc cagagaccct gaaacaccaa gactcattaa tatatgcata 1320 catggatggc agaataataa acctcacctg acctgtcagt gtactctcag tttttaaggt 1380 tctcccaaaa cagggaaact gaaaaatact tgggcagaaa gaaaatatca tcaaataaca 1440 cctatttctt ttcagctata gagatggctg gatatcaaaa gcaccacggg agctttgcaa 1500 tttgctgctc ttttcagccc tcagcttgac tctcagtttt caagagggag aaaatgaatg 1560

1620

tttcccagca ttctctgtcc tttgctccaa agaagagagc aggtgttggc ttccaaacct

tccgtatttt cttattgctg ttagggggat caactgcatg tttcctgagg qaaaaqqqtq 1680 gctcactgac ctacttgaag gcattctctc agtggaagct gggcaagaga atccagggat 1740 ttcttttgca ggtttctgcg cagtgcccct gccatcaagc tgcctaaaat gtgaatattg 1800 cttccctgcg tttcagaggt ggtaatattg gggcaagtgg tggaggatct aaaaaaaaa 1860 aaaaa 1865 <210> 136 <211> 77 <212> PRT <213> Homo sapiens <400> 136 Met Asn Val Ser Gln His Ser Leu Ser Phe Ala Pro Lys Lys Arg Ala Gly Val Gly Phe Gln Thr Phe Arg Ile Phe Leu Leu Leu Gly Gly Ser Thr Ala Cys Phe Leu Arg Glu Lys Gly Gly Ser Leu Thr Tyr Leu Lys Ala Phe Ser Gln Trp Lys Leu Gly Lys Arg Ile Gln Gly Phe Leu Leu Gln Val Ser Ala Gln Cys Pro Cys His Gln Ala Ala 65 <210> 137 2094 <211> <212> DNA <213> Homo sapiens <400> 137 tatgtatttg acagcatggt ataatgaaaa gagcagttgg accagaaggt aaattctagt 60 ccagattttg acatttagat gtgtatatat gggaaagttt cttaaaactt cgagttaatt 120 tttctcatct gtgaaataaa gggattggac tagatactct ttaatagata ttccttatat 180 gettgtetee ttetaggtet aaaattetga teetttagta gtttataaat gattattggt 240 atcattttca tcattttagg agctcttttt taaaaaatta ttattatttt ttttgctctg 300 tagcccattt ctagaacatc ttgggagttc taattatgtt ttagataaca taaaaagcat 360 agaatcagac atagttaagc aagaatttca cttagttccc tagtttttac agtctaaata 420 catttttctt tctttaaaac tggaggttac tgataccacc attttcgtca ccaacagcct 480

aataattcac	aaagctattt	gctaattttt	gacacttttt	tctttgccag	taccattaag	540
ggatttgaat	ttttttgagg	ttccatgttt	atttctttag	ttatgagtat	gaccttggac	600
aagttacttc	tctgtacctg	taaagtgaga	gtaaaataac	atctagttca	tagggttgtt	660
gactagtacc	tggcccatgg	taatcactgt	gtcatgttgg	ctgttactac	cctttaacat	720
gatttgctcc	cctccctgtg	gtaaaaagta	ttcattggca	ctactaatta	atctgttagc	780
tcaacatata	ctaaccaaaa	tggaaatttg	ttttgtgaaa	tacaattgtc	agttcctttt	840
cattataaga	aacgttagtt	tattagtagt	atatacccct	gagaaagcac	taatttattt	900
tgaaattgag	tggattaatt	cataatatga	aagctgagaa	tgtagattgt	cttctttctc	960
tattttgaat	agttcataga	ataatttatt	tcttttatct	gggaacaaaa	ataactggtc	1020
taatttgtga	cattctcaaa	catattttac	aagtttagat	aagttgagaa	tggcaaaaac	1080
cacaattact	tttgcaacaa	tctaatactt	ttagaagaaa	aatctatctt	accttatttt	1140
atactaaaaa	aaaaaaaaa	ggccaaagag	gcctacagga	ttttgagatg	gaggaacaca	1200
tatttaattc	ccctttatgc	cttggttctt	gctcctcttt	ccacgttgga	taacaatttt	1260
ttggttgttt	tgtttaagtt	ggtgctctga	agcttaatct	cagtaccctt	tactctgaat	1320
tgtcaaattt	tgataaaacg	tgccattttc	tttggtaaga	gaaagcaggt	cttaatgtct	1380
gccagaacac	aatttatatg	ccttattggc	ttcattaaac	ttttagaaaa	ctttagcatt	1440
tgttactttt	ttccattgca	tttactttca	aatgcaccta	atgaattcgt	cacccagtcg	1500
caacttttcc	cttctctgtc	ccattgcttt	ctcctttccc	cgacgcacag	aataaacatg	1560
aagctcagca	gtagaagcgt	aatgatttcc	ctcaggaaaa	acttctgaca	gctaggtttt	1620
tcaagggttt	ccctgtgcta	gctgagatgc	aaaacaaatc	atggaagatt	gcatacctgt	1680
gtggtatttt	aaaaacaagt	tgactttttc	agtttcttga	acggttaagg	gtggatttaa	1740
aaactagaca	gtttagtttt	ggggaacaga	agctctcttc	gtcttaagcc	agattctctg	1800
attcttttag	acgtcatagc	tccttagttc	tgctcctgtc	gccctaactt	ggcatgggca	1860
agttgaagtt	catccttaga	ctgcagcgtt	ctgagcatgg	ctgaagtatt	aaaatgttta	1920
atattttta	gagcaaaatt	gatggaaagc	atttggctga	atctaaagac	ctgcagtcag	1980
attcttcaat	gtggtttacc	caactggagt	agtgataaac	accttaatca	taaaatgaat	2040
aaaaacaaaa	aaaccaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaa	2094

<210> 138 <211> 77 <212> PRT <213> Homo sapiens

<400> 138

Met Ser Ala Arg Thr Gln Phe Ile Cys Leu Ile Gly Phe Ile Lys Leu
1 5 10 15

Leu Glu Asn Phe Ser Ile Cys Tyr Phe Phe Pro Leu His Leu Leu Ser 20 25 30

Asn Ala Pro Asn Glu Phe Val Thr Gln Ser Gln Leu Phe Pro Ser Leu 35 40 45

Ser His Cys Phe Leu Leu Ser Pro Thr His Arg Ile Asn Met Lys Leu 50 55 60

Ser Ser Arg Ser Val Met Ile Ser Leu Arg Lys Asn Phe 65 70 75

<210> 139

<211> 2069

<212> DNA

<213> Homo sapiens

<400> 139

aaattcaaca taaacccaaa tctgtacttc tccagaggag cagctctgag gtagaaatta 60 caacgatgaa aagagcacaa cgtacaaaac caagaaagag tctgttgtgt gaagggtcat 120 tcgatgaaga agettetgea cagteettte aggaagtgtt aagteaatgg agaaceggaa 180 atcatgatga caacaagaaa cagaatttac atgcagcagt aaaagactca ttggaagaat 240 300 gcgaagtaca gactaatctg aaaatttgga gagaaccact taatattgaa cttaaagaag acattetate etatatggaa aaattatgge ttaaaaaaaca caggagaact eeacaagage 360 aactttttaa aatgctacca gatacgttcc cacatccaca tgaaaccact ggtgatgcac 420 agtgttctca aaatgaaaac gatgaagata gtgatggtga ggagaccaaa gtacaacaca 480 cagetetttt attgecagta gaaacattaa acatagagag acetgaacca tetetaaaga 540 tagtcgaact ggatgatact tatgaagagg aatttgaaga agcagaaaat attgtgcctt 600 acaaagttaa attagctgat gcagacagtc aacgaagttg tgcttttcat gattgtcaga 660 agaatagctt tccatatgaa aatggcatcc atcaacatca tgttttcgat aagggaaaga 720 gagacttett aaatetttgt etgagaaaca getataetta ttataaagat aatteaaaag 780 cagaaacttc aaacacagat tttgacaaca tcgtggatcc tgatgtgtat tcttctgaca 840 ttgaaaaaat tgaggaaagc acctcctttg aaagaaattt aaaggagaaa aatataggtt 900 tagaaagtaa tcaaaagtct gatgattcct gtgtatcact tgaaagcaag gacactttgc 960 taggtagaga tttagaaaaa qctcccattq aggagaaatt atctcaagac atcaaagaat 1020 ccttggaatt gagcaatctg tataagaggc caagctttga agaatcaaaa actacaaaqt 1080 catcactgtt gttacaagaa atagcctgca gaagtaagcc tataacaaaa caatatcaag 1140 gacttgagag attctttatt tttgatacaa atgaaagact caacttactt ccttctcatc 1200 gtttagaatg caacaattcc agtactagga ttacacttgc agaagacaga gaatggattc 1260 cagaccatag cttaagtgaa tatgctgata atgcaattgt cttgggtgtt ctgcagggtg 1320 ctcagagtcc atcatcaagt agaaaacagc aaaagatggg tcagaaatca cagagacctt 1380 caacagcaaa ttttccactt tccaactctg ttaaagaaag ctccagttgc ctttcatcct 1440 ctcatcctcg atcaagaagt gcagctgctc aatcatcatc tagagctgct tctgaaattt 1500 cagaaattga atatattgat attactgacc agaatgagct ttccttagat gacactactg 1560 atcaacatac tttagacaat ttggaaaaag aattacaagt gctgagatct cttgcagata 1620 cttcagaaaa gctttacagc ttaacctcag aagagttccc agatttcagc agccaatcac 1680 tgaatataag tcagatttcc acagatttcc ttaagacctc acatgtgagg ggtccctgtg 1740 gagttgagga attgagctgt tctggaagag ataccaaaat tcagtctttg ctgtcacttt 1800 ctgagagcag tacagatgag gaggaggaag attttctcaa caagcaacat gtcatcacac 1860 taccgtggtc aaagagtact taaagattat ttgttcatta ctgtttccat tttgtaccca 1920 gagtaaagca aacaactgag aaaagtaacc aagtgattac ctatccaagt gctggagatt 1980 ttgattacta atgtctttga tgtttcaagg ctacaaacta ataaaagtaa aattataagt 2040 2069 tcaaaaaaa aaaaaaaaa aaaaaaaaa

<210> 140

<211> 605

<212> PRT

<213> Homo sapiens

<400> 140

Met Lys Arg Ala Gln Arg Thr Lys Pro Arg Lys Ser Leu Leu Cys Glu 1 5 10 15

Gly Ser Phe Asp Glu Glu Ala Ser Ala Gln Ser Phe Gln Glu Val Leu 20 25 30

Ser Gln Trp Arg Thr Gly Asn His Asp Asp Asn Lys Lys Gln Asn Leu 35 40 45

His Ala Ala Val Lys Asp Ser Leu Glu Glu Cys Glu Val Gln Thr Asn 50 55 60

Leu 65	Lys	Ile	Trp	Arg	Glu 70	Pro	Leu	Asn	Ile	Glu 75	Leu	Lys	Glu	Asp	Ile 80
Leu	Ser	Tyr	Met	Glu 85	Lys	Leu	Trp	Leu	Lys 90	Lys	His	Arg	Arg	Thr 95	Pro
Gln	Glu	Gln	Leu 100	Phe	Lys	Met	Leu	Pro 105	Asp	Thr	Phe	Pro	His 110	Pro	His
Glu	Thr	Thr 115	Gly	Asp	Ala	Gln	Cys 120	Ser	Gln	Asn	Glu	Asn 125	Asp	Glu	Asp
Ser	Asp 130	Gly	Glu	Glu	Thr	Lys 135	Val	Gln	His	Thr	Ala 140	Leu	Leu	Leu	Pro
Val 145	Glu	Thr	Leu	Asn	Ile 150	Glu	Arg	Pro	Glu	Pro 155	Ser	Leu	Lys	Ile	Val 160
Glu	Leu	Asp	Asp	Thr 165	Tyr	Glu	Glu	Glu	Phe 170	Glu	Glu	Ala	Glu	Asn 175	Ile
Val	Pro	Tyr	Lys 180	Val	Lys	Leu	Ala	Asp 185	Ala	Asp	Ser	Gln	Arg 190	Ser	Cys
Ala	Phe	His 195	Asp	Cys	Gln	Lys	Asn 200	Ser	Phe	Pro	Tyr	Glu 205	Asn	Gly	Ile
His	Gln 210	His	His	Val	Phe	Asp 215	Lys	Gly	Lys	Arg	Asp 220	Phe	Leu	Asn	Leu
Cys 225	Leu	Arg	Asn	Ser	Tyr 230	Thr	Tyr	Tyr	Lys	Asp 235	Asn	Ser	Lys	Ala	Glu 240
Thr	Ser	Asn	Thr	Asp 245	Phe	Asp	Asn	Ile	Val 250	Asp	Pro	Asp	Val	Tyr 255	Ser
Ser	Asp	Ile	Glu 260	Lys	Ile	Glu	Glu	Ser 265	Thr	Ser	Phe	Glu	Arg 270	Asn	Leu
Lys	Glu	Lys 275	Asn	Ile	Gly	Leu	Glu 280	Ser	Asn	Gln	Lys	Ser 285	Asp	Asp	Ser
Cys	Val 290	Ser	Leu	Glu	Ser	Lys 295	Asp	Thr	Leu	Leu	Gly 300	Arg	Asp	Leu	Glu

305	АІА	Pro	IIe	Glu	310	гуѕ	Leu	Ser	GIn	315	IIe	гÀв	Glu	Ser	320
Glu	Leu	Ser	Asn	Leu 325	Tyr	Lys	Arg	Pro	Ser 330	Phe	Glu	Glu	Ser	Lys 335	Thr
Thr	Lys	Ser	Ser 340	Leu	Leu	Leu	Gln	Glu 345	Ile	Ala	Cys	Arg	Ser 350	Lys	Pro
Ile	Thr	Lys 355	Gln	Tyr	Gln	Gly	Leu 360	Glu	Arg	Phe	Phe	Ile 365	Phe	Asp	Thr
Asn	Glu 370	Arg	Leu	Asn	Leu	Leu 375	Pro	Ser	His	Arg	Leu 380	Glu	Cys	Asn	Asn
Ser 385	Ser	Thr	Arg	Ile	Thr 390	Leu	Ala	Glu	Asp	Arg 395	Glu	Trp	Ile	Pro	Asp 400
His	Ser	Leu	Ser	Glu 405	Tyr	Ala	Asp	Asn	Ala 410	Ile	Val	Leu	Gly	Val 415	Leu
Gln	Gly	Ala	Gln 420	Ser	Pro	Ser	Ser	Ser 425	Arg	Lys	Gln	Gln	Lys 430	Met	Gly
Gln	Lys	Ser 435	Gln	Arg	Pro	Ser	Thr 440	Ala	Asn	Phe	Pro	Leu 445	Ser	Asn	Ser
Val	Lys 450	Glu	Ser	Ser	Ser	Cys 455	Leu	Ser	Ser	Ser	His 460	Pro	Arg	Ser	Arg
Ser 465	Ala	Ala	Ala	Gln	Ser 470	Ser	Ser	Arg	Ala	Ala 475	Ser	Glu	Ile	Ser	Glu 480
Ile	Glu	Tyr	Ile	Asp 485	Ile	Thr	Asp	Gln	Asn 490	Glu	Leu	Ser	Leu	Asp 495	Asp
Thr	Thr	Asp	Gln 500	His	Thr	Leu	Asp	Asn 505	Leu	Glu	Lys	Glu	Leu 510	Gln	Val
Leu	Arg	Ser 515	Leu	Ala	Asp	Thr	Ser 520	Glu	Lys	Leu	Tyr	Ser 525	Leu	Thr	Ser
Glu	Glu 530	Phe	Pro	Asp	Phe	Ser 535	Ser	Gln	Ser	Leu	Asn 540	Ile	Ser	Gln	Ile

Ser Thr Asp Phe Leu Lys Thr Ser His Val Arg Gly Pro Cys Gly Val 545 550 555 560

Glu Glu Leu Ser Cys Ser Gly Arg Asp Thr Lys Ile Gln Ser Leu Leu 565 570 575

Ser Leu Ser Glu Ser Ser Thr Asp Glu Glu Glu Glu Asp Phe Leu Asn 580 585 590

Lys Gln His Val Ile Thr Leu Pro Trp Ser Lys Ser Thr 595 600 605

<210> 141

<211> 4337

<212> DNA

<213> Homo sapiens

<400> 141

gtcctggatg gcggagcctt gggttccggg ggcctgggac ctgcaactct ttctacaaga 60 tatcaagtta ttctagtaca accatataaa taaataatac ctgaagtctc aqtqtaacat 120 ggacaattaa cagtgatgac agataaatac agacgcatgg ggatcaaata ctaggcaaaa 180 cgctttttaa aagtgtatca ggcttttaag aaacactgca ggatcctgtc tatcttaatg 240 ctgatagagc tcagctaaaa atttaggagg ttctagtatt cttcatggct gaagctgaga 300 gagtctgaaa ccctgatgct taagctccat tctagatcat agctccaact ccttcaggat 360 ataaggaaaa gagattatat ttccacaatg atagatcttt ggttgtacag gtttcccaat 420 gagtggatca tgatgaccgt attgtaggga cttgccatag tatggctgct tcccgatcta 480 ctcgtgttac magatcaaca gtggggttaa acggcttgga tgaatctttt tgtggtagaa 540 ctttaaggaa tcgtagcatt gcgcatcctg aagaaatctc ttctaattct caagtacgat 600 caagatcacc aaagaagaga ccagagcctg tgccaattca gaaaggaaat aataatggga 660 gaaccactga tttaaaacag cagagtaccc gagaatcatg ggtaagccct aggaaaagag 720 gactttcttc ttcagaaaag gataacatag aaaggcaggc tatagaaaat tgtgagagaa 780 ggcaaacaga acctgtttca ccagttttaa aaagaattaa gcgttgtctt agatctgaag 840 caccaaacag ttcagaagaa gattctccta taaaatcaga caaggagtca gtagaacaga 900 ggagtacagt agtggacaat gatgcagatt ttcaagggac taaacgagct tgtcgatgtc 960 ttatactgga tgattgtgag aaaagggaaa ttaaaaaggt gaatgtcagt gaggaagggc 1020 cacttaattc tgcagtagtt gaagaaatca caggctattt ggctgtcaat ggtgttgatg 1080 acagtgattc agctgttata aactgtgatg actgtcagcc tgatgggaac actaaacaaa 1140

atagcattgg ttcctatgtg ttacaggaaa aatcagtagc tgaaaatggg gatacggata 1200 cccaaacttc aatgttcctt gatagtagga aggaggacag ttatatagac cataaggtgc 1260 cttgcacaga ttcacaagtg caggtcaagt tggaggacca caaaatagta actgcctgct 1320 tgcctgtgga acatgttaat cagctgacta ctgagccagc tacagggccc ttttctgaaa 1380 ctcagtcatc tttaagggat tctgaggagg aagtagatgt ggtgggagat agcagtgcct 1440 caaaagagca gtgtaaagaa aacaccaata acgaactgga cacaagtctt gagagtatgc 1500 cagcctccgg agaacctgaa ccatctcctg ttctagactg tgtatcagct caaatgatgt 1560 ctttatcaga acctcaagaa catcgttata ctctgagaac ctcaccacga agggcagccc 1620 ctaccagagg tagtcccact aaaaacagtt ctccttacag agaaaatgga caatttgagg 1680 1740 agaataatct tagtcctaat gaaacaaatg caactgttag tgataatgta agtcaatctc 1800 ctacaaatcc tggtgaaatt tctcaaaatg aaaaagggat atgttgtgac tctcaaaata atggaagtga aggagtaagt aaaccaccct cagaggcaag actcaatatt ggacatttgc 1860 catctgccaa agagagtgcc agtcagcaca ttacagaaga ggaagatgat gatcctgatg 1920 tttattactt tgaatcagat catgtggcac tgaaacacaa caaagattat cagagactat 1980 tacagacgat tgctgtactc gaggetcagc gttctcaagc agtccaagac cttgaaagtt 2040 taggcaggca ccagagagaa gcactgaaaa atcccattgg atttgtggaa aaactccaga 2100 agaaggetga tattgggett ccatatecae agagagttgt teaattgeet gagategtat 2160 gggaccaata tacccatagc cttgggaatt ttgaaagaga atttaaaaaat cgtaaaagac 2220 atactagaag agttaagcta gtttttgata aagtaggttt acctgctaga ccaaaaagtc 2280 ctttagatcc taagaaggat ggagagtccc tttcatattc tatgttgcct ttgagtgatg 2340 gtccagaagg ctcaagcagt cgtcctcaga tgataagagg acgcttgtgt gatgatacca 2400 aacctgaaac atttaaccag ttgtggactg ttgaagaaca gaaaaagctg gaacagctac 2460 tcatcaaata ccctcctgaa gaagtagaat ctcgacgctg gcagaagata gcagatgaat 2520 tgggcaacag gacagcaaaa caggttgcca gccgagtaca gaagtatttc ataaaqctaa 2580 ctaaagctgg cattccagta ccaggcagaa caccaaactt atatatatac tccaaaaagt 2640 cttcaacaag cagacgacag caccetetta ataagcatet etttaageet tecaetttea 2700 tgacttcaca tgaaccgcca gtgtatatgg atgaagatga tgaccgatct tgttttcata 2760 gccacatgaa cactgctgtt gaagatgcat cagatgacga aagtattcct atcatgtata 2820 ggaatttacc tgaatataaa gaactattac agtttaaaaa gttaaagaag cagaaacttc 2880 agcaaatgca agctgaaagt ggatttgtgc aacatgtggg ctttaagtgt gataactgtg 2940

```
gcatagaacc catccagggt gttcggtggc attgccagga ttgtcctcca gaaatgtctt
                                                                     3000
tggatttctg tgattcttgt tcagactgtc tacatgaaac agatattcac aaggaagatc
                                                                     3060
accaattaga acctatttat aggtcagaga cattcttaga cagagactac tgtgtgtctc
                                                                     3120
agggcaccag ttacaattac cttgacccaa actactttcc aqcaaacaqa tqacatqqaa
                                                                     3180
gagaacatca tttactagtc ctcttcaaca catagcaatg gtatcattgt taattatgtg
                                                                     3240
cacagtttgg aaagattctc tgctttccca gaaatgacac tcacagcatg agagcttcct
                                                                     3300
gagtgttctc gtcaagtaca gctctgcacc gttgtggctc tagatcactg ttcagcagct
                                                                     3360
gaacatteet ggtgageaaa ggttteeetg gtgaattttt caccactgeg ttttaggtgg
                                                                     3420
tgatcttaaa tgggtgagat ggaacgagag cacacattaa agagagagta aattccaaag
                                                                     3480
gtttcaaaga acttggtcat aaatatgata atgagaagac aaagtattta tattaaaaca
                                                                     3540
gtttagtagc cttcagtttt gtgaaaatag ttttcagcac agaaactgac ttctttagac
                                                                     3600
aaagttttaa ccaatgatgg tgtttgcttc taggatatac actttaaaag aactcactgt
                                                                     3660
cccagtggtg gtcattgatg gcctttagta aattggagct gcttaatcat attgatatct
                                                                     3720
aatttetttt aaccacaatg aattgteett aattaccaac agtgaagcac tacaggagge
                                                                     3780
aactgtggca ttgcttcctt aaccagctca tggtgtgtga atgttataaa attgtcactc
                                                                     3840
agatatattt tttaaatgta atgttatata agatgatcat gtgatgtgta caaactatgg
                                                                     3900
tgaaaagtgc cagtggtagt aactgtgtaa agtttctaat tcacaacatt aattccttta
                                                                     3960
aaatacacag cettetgeet etgtatttgg agttgteagt acaacteate aaagaaaact
                                                                     4020
gcctaatata aaaatcatat atatggtaat aatttccctc ttttgtagtc tgcacaagat
                                                                     4080
ccataaaaga ttgtattttt attactattt aaacaagtga ttaaatttag tctgcacagt
                                                                     4140
gagcaagggt tcacatgcat tcttttatac tgctggattt tgttgtgcat catttaaaac
                                                                     4200
attitigtatg titictictta totigtigtata cagtatigtic titigaatigatig ticattitigtic
                                                                     4260
aggagaactg tgagaaataa actatgtgga tactgtctgt ttmtrtcaaa aaaaaaaaaa
                                                                     4320
aaaaaaaaa aaaaaaa
                                                                     4337
```

```
<210> 142
<211> 903
```

Met Ala Ala Ser Arg Ser Thr Arg Val Thr Arg Ser Thr Val Gly Leu

1 10 15

<212> PRT

<213> Homo sapiens

<400> 142

Asn	Gly	Leu	Asp 20	Glu	Ser	Phe	Cys	Gly 25	Arg	Thr	Leu	Arg	Asn 30	Arg	Ser
Ile	Ala	His 35	Pro	Glu	Glu	Ile	Ser 40	Ser	Asn	Ser	Gln	Val 45	Arg	Ser	Arg
Ser	Pro 50	Lys	Lys	Arg	Pro	Glu 55	Pro	Val	Pro	Ile	Gln 60	Lys	Gly	Asn	Asn
Asn 65	Gly	Arg	Thr	Thr	Asp 70	Leu	Lys	Gln	Gln	Ser 75	Thr	Arg	Glu	Ser	Trp 80
Val	Ser	Pro	Arg	Lys 85	Arg	Gly	Leu	Ser	Ser 90	Ser	Glu	Lys	Asp	Asn 95	Ile
Glu	Arg	Gln	Ala 100	Ile	Glu	Asn	Cys	Glu 105	Arg	Arg	Gln	Thr	Glu 110	Pro	Val
Ser	Pro	Val 115	Leu	Lys	Arg	Ile	Lys 120	Arg	Cys	Leu	Arg	Ser 125	Glu	Ala	Pro
Asn	Ser 130	Ser	Glu	Glu	Asp	Ser 135	Pro	Ile	Lys	Ser	Asp 140	Lys	Glu	Ser	Val
Glu 145	Gln	Arg	Ser	Thr	Val 150	Val	Asp	Asn	Asp	Ala 155	Asp	Phe	Gln	Gly	Thr 160
Lys	Arg	Ala	Cys	Arg 165	Cys	Leu	Ile	Leu	Asp 170	Asp	Cys	Glu	Lys	Arg 175	Glu
Ile	Lys	Lys	Val 180	Asn	Val	Ser	Glu	Glu 185	Gly	Pro	Leu	Asn	Ser 190	Ala	Val
Val	Glu	Glu 195	Ile	Thr	Gly	Tyr	Leu 200	Ala	Val	Asn	Gly	Val 205	Asp	Asp	Ser
Asp	Ser 210	Ala	Val	Ile	Asn	Cys 215	Asp	Asp	Cys	Gln	Pro 220	Asp	Gly	Asn	Thr
Lys 225	Gln	Asn	Ser	Ile	Gly 230	Ser	Tyr	Val	Leu	Gln 235	Glu	Lys	Ser	Val	Ala 240
Glu	Asn	Gly	Asp	Thr 245	Asp	Thr	Gln	Thr	Ser 250	Met	Phe	Leu	Asp	Ser 255	Arg

Lys	Glu	Asp	Ser 260	Tyr	Ile	Asp	His	Lys 265	Val	Pro	Cys	Thr	Asp 270	Ser	Gln
Val	Gln	Val 275	Lys	Leu	Glu	Asp	His 280	Lys	Ile	Val	Thr	Ala 285	Cys	Leu	Pro
Val	Glu 290	His	Val	Asn	Gln	Leu 295	Thr	Thr	Glu	Pro	Ala 300	Thr	Gly	Pro	Phe
Ser 305	Glu	Thr	Gln	Ser	Ser 310	Leu	Arg	Asp	Ser	Glu 315	Glu	Glu	Val	Asp	Val 320
Val	Gly	Asp	Ser	Ser 325	Ala	Ser	Lys	Glu	Gln 330	Cys	Lys	Glu	Asn	Thr 335	Asn
Asn	Glu	Leu	Asp 340	Thr	Ser	Leu	Glu	Ser 345	Met	Pro	Ala	Ser	Gly 350	Glu	Pro
Glu	Pro	Ser 355	Pro	Val	Leu	Asp	Cys 360	Val	Ser	Ala	Gln	Met 365	Met	Ser	Leu
Ser	Glu 370	Pro	Gln	Glu	His	Arg 375	Tyr	Thr	Leu	Arg	Thr 380	Ser	Pro	Arg	Arg
Ala 385	Ala	Pro	Thr	Arg	Gly 390	Ser	Pro	Thr	Lys	Asn 395	Ser	Ser	Pro	Tyr	Arg 400
Glu	Asn	Gly	Gln	Phe 405	Glu	Glu	Asn	Asn	Leu 410	Ser	Pro	Asn	Glu	Thr 415	Asn
Ala	Thr	Val	Ser 420	Asp	Asn	Val	Ser	Gln 425	Ser	Pro	Thr	Asn	Pro 430	Gly	Glu
Ile	Ser	Gln 435	Asn	Glu	Lys	Gly	Ile 440	Cys	Cys	Asp	Ser	Gln 445	Asn	Asn	Gly
Ser	Glu 450	Gly	Val	Ser	Lys	Pro 455	Pro	Ser	Glu	Ala	Arg 460	Leu	Asn	Ile	Gly
His 465	Leu	Pro	Ser	Ala	Lys 470	Glu	Ser	Ala	Ser	Gln 475	His	Ile	Thr	Glu	Glu 480
Glu	Asp	Asp	Asp	Pro 485	Asp	Val	Tyr	Tyr	Phe 490	Glu	Ser	Asp	His	Val 495	Ala

Leu	ьys	HIS	500	гуа	Asp	Tyr	GIN	505	ьeu	ьeu	GIn	Tnr	510	Ala	Val
Leu	Glu	Ala 515	Gln	Arg	Ser	Gln	Ala 520	Val	Gln	Asp	Leu	Glu 525	Ser	Leu	Gly
Arg	His 530	Gln	Arg	Glu	Ala	Leu 535	Lys	Asn	Pro	Ile	Gly 540	Phe	Val	Glu	Lys
Leu 545	Gln	Lys	Lys	Ala	Asp 550	Ile	Gly	Leu	Pro	Tyr 555	Pro	Gln	Arg	Val	Val 560
Gln	Leu	Pro	Glu	Ile 565	Val	Trp	Asp	Gln	Tyr 570	Thr	His	Ser	Leu	Gly 575	Asn
Phe	Glu	Arg	Glu 580	Phe	Lys	Asn	Arg	Lys 585	Arg	His	Thr	Arg	Arg 590	Val	Lys
Leu	Val	Phe 595	Asp	Lys	Val	Gly	Leu 600	Pro	Ala	Arg	Pro	Lys 605	Ser	Pro	Leu
Asp	Pro 610	Lys	Lys	Asp	Gly	Glu 615	Ser	Leu	Ser	Tyr	Ser 620	Met	Leu	Pro	Leu
Ser 625	Asp	Gly	Pro	Glu	Gly 630	Ser	Ser	Ser	Arg	Pro 635	Gln	Met	Ile	Arg	Gly 640
Arg	Leu	Cys	Asp	Asp 645	Thr	Lys	Pro	Glu	Thr 650	Phe	Asn	Gln	Leu	Trp 655	Thr
Val	Glu	Glu	Gln 660	Lys	Lys	Leu	Glu	Gln 665	Leu	Leu	Ile	Lys	Tyr 670	Pro	Pro
Glu	Glu	Val 675	Glu	Ser	Arg	Arg	Trp 680	Gln	Lys	Ile	Ala	Asp 685	Glu	Leu	Gly
Asn	Arg 690	Thr	Ala	Lys	Gln	Val 695	Ala	Ser	Arg	Val	Gln 700	Lys	Tyr	Phe	Ile
Lys 705	Leu	Thr	Lys	Ala	Gly 710	Ile	Pro	Val	Pro	Gly 715	Arg	Thr	Pro	Asn	Leu 720
Tyr	Ile	Tyr	Ser	Lys	Lys	Ser	Ser	Thr	Ser	Arg	Arg	Gln	His	Pro	Leu

Pro Val Tyr Met Asp Glu Asp Asp Asp Asg Ser Cys Phe His Ser His 755 760 Met Asn Thr Ala Val Glu Asp Ala Ser Asp Asp Glu Ser Ile Pro Ile 770 775 Met Tyr Arg Asn Leu Pro Glu Tyr Lys Glu Leu Leu Gln Phe Lys Lys 785 795 Leu Lys Lys Gln Lys Leu Gln Gln Met Gln Ala Glu Ser Gly Phe Val 805 810 Gln His Val Gly Phe Lys Cys Asp Asn Cys Gly Ile Glu Pro Ile Gln 820 825 Gly Val Arg Trp His Cys Gln Asp Cys Pro Pro Glu Met Ser Leu Asp 835 840 Phe Cys Asp Ser Cys Ser Asp Cys Leu His Glu Thr Asp Ile His Lys 850 855 Glu Asp His Gln Leu Glu Pro Ile Tyr Arg Ser Glu Thr Phe Leu Asp 865 870 875 880 Arg Asp Tyr Cys Val Ser Gln Gly Thr Ser Tyr Asn Tyr Leu Asp Pro 885 890 895 Asn Tyr Phe Pro Ala Asn Arg 900 <210> 143 <211> 1299 <212> DNA <213> Homo sapiens <400> 143 aatcgggacc ccatccccca aatcactgga tcctgcagcc ccacatccta aggtggatcc 60 cacgettece tgtgececet actggatect ggacetetac gtettaacca etggatecea 120 cacaaatcag tgaatggatc ccaacacccc aaccacagga gcacggattc cctgtacctc 180 aacacccaga ccctgcctcc ctcaggcacc agatccagtg tcctagtgaa acgctggatc 240 ctagatecee aaccecagat ecceatgeet egageeetgg atetecaage teagetgetg 300

Asn Lys His Leu Phe Lys Pro Ser Thr Phe Met Thr Ser His Glu Pro
740 745 750

qattctqqat qtcaacaaac ctcaccactq qatcctqaca accacaatqc ctqqatcctq 360 gggcccccat cactggatcc cagatcccct cactccaccc actggattcc tgcattqqtt 420 tttggttttt tgttttttt ttaacctcga cactgggtct cagatccttc tgctgactgc 480 cagatecetg cattteaage actaegeett ceaececeag geaetggate eeagatteee 540 aagcetteac ccaccagatt ctggeteeta aaacaagtge gggggeeeca gtggeacage 600 aagtggatcc tggcaactgc agctgctgga ttccagattc tgggtcccca atccctctgc 660 ccagtccctc aatgttgaaa cctcatctct tgaaggcaga tcctgatatt ccaaggcact 720 gaatcccaag ccctgaatcc ccggtttctg atctgaatct tccaggcgcc gggtcccaaa 780 tgttcaggcc ccaagtctag atcctggcag cccagtcaca gagtatccca cacacactgg 840 tgcccagagc cggcttctca tgacatgaaa ttgcatggtc gagggagtct gtggggaagg 900 aagcccaggt cctggctgca acctgcacgg atgctggatt ccccctcacc ccacctctgc 960 atggccaccc cctcccagcc ctgtggggaa actgttccct ggaaccactc cactccctgc 1020 atcoccacac ttcacagcat cttccatccc cctcccactt ctaggcgaat agtccccaga 1080 gctgtgttcc tccaaggggt ccgaggaatc actcactcct ggaggctggc aaggagacag 1140 tctgaggcca gggacacatg aagggatgtc cccaccccag cactatcagg gcctccccag 1200 gcttccagag ttgaaagcca ggagaaaatc ggcaaagacc accettccct aaacccaagc 1260 1299 acccaatgat gcraaaaaaa aaaaaaaaa aaaaaaaaa

<210> 144

<211> 96

<212> PRT

<213> Homo sapiens

<400> 144

Met Lys Leu His Gly Arg Gly Ser Leu Trp Gly Arg Lys Pro Arg Ser 1 10 15

Trp Leu Gln Pro Ala Arg Met Leu Asp Ser Pro Ser Pro His Leu Cys
20 25 30

Met Ala Thr Pro Ser Gln Pro Cys Gly Glu Thr Val Pro Trp Asn His 35 40 45

Ser Thr Pro Cys Ile Pro Thr Leu His Ser Ile Phe His Pro Pro Pro 50 55 60

Thr Ser Arg Arg Ile Val Pro Arg Ala Val Phe Leu Gln Gly Val Arg 65 70 75 80

Gly Ile Thr His Ser Trp Arg Leu Ala Arg Arg Gln Ser Glu Ala Arg

<210> 145 <211> 791 <212> DNA <213> Homo sapiens	
<400> 145 ctcctctgtc cactgctttc gtgaagacaa gatgaagttc acaattgtct ttgctggact	60
tcttggagtc tttctagctc ctgccctagc taactataat atcaacgtca atgatgacaa	120
caacaatgct ggaagtgggc agcagtcagt gagtgtcaac aatgaacaca atgtggccaa	180
tgttgacaat aacaacggat gggactcctg gaattccatc tgggattatg gaaatggctt	240
tgctgcaacc agactctttc aaaagaagac atgcattgtg cacaaaatga acaaggaagt	300
catgccctcc attcaatccc ttgatgcact ggtcaaggaa aagaagcttc agggtaaggg	360
accaggagga ccacctccca agggcctgat gtactcagtc aacccaaaca aagtcgatga	420
cctgagcaag ttcggaaaaa acattgcaaa catgtgtcgt gggattccaa catacatggc	480
tgaggagatg caagaggcaa gcctgttttt ttactcagga acgtgctaca cgaccagtgt	540
actatggatt gtggacattt ccttctgtgg agacacggtg gagaactaaa caattttta	600
aagccactat ggatttagtc atctgaatat gctgtgcaga aaaaatatgg gctccagtgg	660
tttttaccat gtcattctga aatttttctc tactagttat gtttgatttc tttaagtttc	720
aataaaatca tttagccttg aaaaaaaaaa aaaaaaaaaa	780
aaaaaaaaa a	791

<210> 146 <211> 185 <212> PRT <213> Homo sapiens

<400> 146

Met Lys Phe Thr Ile Val Phe Ala Gly Leu Leu Gly Val Phe Leu Ala

Pro Ala Leu Ala Asn Tyr Asn Ile Asn Val Asn Asp Asp Asn Asn

Ala Gly Ser Gly Gln Gln Ser Val Ser Val Asn Asn Glu His Asn Val

Ala Asn Val Asp Asn Asn Asn Gly Trp Asp Ser Trp Asn Ser Ile Trp

50 55 60

Asp Tyr Gly Asn Gly Phe Ala Ala Thr Arg Leu Phe Gln Lys Lys Thr Cys Ile Val His Lys Met Asn Lys Glu Val Met Pro Ser Ile Gln Ser Leu Asp Ala Leu Val Lys Glu Lys Lys Leu Gln Gly Lys Gly Pro Gly Gly Pro Pro Pro Lys Gly Leu Met Tyr Ser Val Asn Pro Asn Lys Val 120 Asp Asp Leu Ser Lys Phe Gly Lys Asn Ile Ala Asn Met Cys Arg Gly 135 Ile Pro Thr Tyr Met Ala Glu Glu Met Gln Glu Ala Ser Leu Phe Phe 150 Tyr Ser Gly Thr Cys Tyr Thr Thr Ser Val Leu Trp Ile Val Asp Ile 170 Ser Phe Cys Gly Asp Thr Val Glu Asn 180 <210> 147 <211> 2012 <212> DNA <213> Homo sapiens <400> 147

ctcaagttca tcattgtcct gagagagagg agcagcggg ttctcggccg ggacagcaga 60 acgccagggg accctcacct gggcgcgccg gggcacgggc tttgattgtc ctggggtcgc 120 ggagaccege gegeetgeee tgeacgeegg geggeaacet ttgeagtege gttggetget 180 gcgatcggcc ggcgggtccc tgccgaaggc tcggctgctt ctgtccacct cttacacttc 240 ttcatttatc ggtggatcat ttcgagagtc cgtcttgtaa atgtttggca ctttgctact 300 ttattgcttc tttctggcga cagttccagc actcgccgag accggcggag aaaggcagct 360 gagcccggag aagagcgaaa tatggggacc cgggctaaaa gcagacgtcg tccttcccgc 420 ccgctatttc tatattcagg cagtggatac atcagggaat aaattcacat cttctccagg 480 cgaaaaggtc ttccaggtga aagtctcagc accagaggag caattcacta gagttggagt 540 ccaggtttta gaccgaaaag atgggtcctt catagtaaga tacagaatgt atgcaagcta 600

```
caaaaatctg aaggtggaaa ttaaattcca agggcaacat gtggccaaat ccccatatat
                                                                      660
tttaaaaggg ccggtttacc atgagaactg tgactgtcct ctgcaagata gtgcaqcctg
                                                                      720
gctacgggag atgaactgcc ctgaaaccat tgctcagatt cagagagatc tgqcacattt
                                                                      780
ccctgctgtg gatccagaaa agattgcagt agaaatccca aaaagatttg gacagaggca
                                                                      840
gagcctatgt cactacacct taaaggataa caaggtttat atcaagactc atggtgaaca
                                                                      900
tgtaggtttt agaattttca tggatgccat actactttct ttgactagaa aggtgaagat
                                                                      960
gccagatgtg gagctctttg ttaatttggg agactggcct ttggaaaaaa agaaatccaa
                                                                     1020
ttcaaacatc catccgatct tttcctggtg tggctccaca gattccaagg atatcgtgat
                                                                     1080
gcctacgtac gatttgactg attctgttct ggaaaccatg ggccgggtaa gtctggatat
                                                                     1140
gatgtccgtg caagctaaca cgggtcctcc ctgggaaagc aaaaattcca ctgccgtctg
                                                                     1200
gagagggcga gacagccgca aagagagact cgagctggtt aaactcagta gaaaacaccc
                                                                     1260
agaactcata gacgctgctt tcaccaactt tttcttcttt aaacaggatg aaaacctgta
                                                                     1320
tggtcccatt gtgaaacata tttcattttt tgatttcttc aagcataagt atcaaataaa
                                                                     1380
tatcgatggc actgtagcag cttatcgcct gccatatttg ctagttggtg acagtgttgt
                                                                     1440
gctgaagcag gattccatct actatgaaca tttttacaat gagctgcagc cctggaaaca
                                                                     1500
ctacattcca gttaagagca acctgagcga tctgctagaa aaacttaaat gggcgaaaga
                                                                     1560
tcacgatgaa gaggccaaaa agatagcaaa agcaggacaa gaatttgcaa gaaataatct
                                                                     1620
catgggcgat gacatattct gttattattt caaactyttc caggaatatg ccaatttaca
                                                                     1680
agtgagtgag ccccaaatcc gagaggcat gamaagggta gaaccacaga ctgaggacga
                                                                     1740
cctcttccst tgtacttgcc ataggaaaaa gaccaaagat gaactstgat atgcaaaata
                                                                     1800
actictatta gaataatggt gctctgaaga ctcttcttaa ctaaaaagaa gaattttttt
                                                                     1860
aagtattaat tooatggaca atataaaato tgtgtgattg tttgcagtat gaagacacat
                                                                     1920
ttctacttat gcagtattct catgactgta ctttaaagta catttttaga attttataat
                                                                     1980
aaaaccacct ttattttaaa aaaaaaaaaa aa
                                                                     2012
```

<210> 148

<211> 502

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<222> (478)..(478)

<223> Xaa can be any naturally occurring amino acid

<220>

<221> misc_feature

<222> (490)..(490)

<223> Xaa can be any naturally occurring amino acid

<400> 148

Met Phe Gly Thr Leu Leu Tyr Cys Phe Phe Leu Ala Thr Val Pro 1 5 10 15

Ala Leu Ala Glu Thr Gly Gly Glu Arg Gln Leu Ser Pro Glu Lys Ser 20 25 30

Glu Ile Trp Gly Pro Gly Leu Lys Ala Asp Val Val Leu Pro Ala Arg
35 40 45

Tyr Phe Tyr Ile Gln Ala Val Asp Thr Ser Gly Asn Lys Phe Thr Ser 50 55 60

Ser Pro Gly Glu Lys Val Phe Gln Val Lys Val Ser Ala Pro Glu Glu 65 70 75 80

Gln Phe Thr Arg Val Gly Val Gln Val Leu Asp Arg Lys Asp Gly Ser 85 90 95

Phe Ile Val Arg Tyr Arg Met Tyr Ala Ser Tyr Lys Asn Leu Lys Val 100 105 110

Glu Ile Lys Phe Gln Gly Gln His Val Ala Lys Ser Pro Tyr Ile Leu 115 120 125

Lys Gly Pro Val Tyr His Glu Asn Cys Asp Cys Pro Leu Gln Asp Ser 130 135 140

Ala Ala Trp Leu Arg Glu Met Asn Cys Pro Glu Thr Ile Ala Gln Ile 145 150 155 160

Gln Arg Asp Leu Ala His Phe Pro Ala Val Asp Pro Glu Lys Ile Ala 165 170 175

Val Glu Ile Pro Lys Arg Phe Gly Gln Arg Gln Ser Leu Cys His Tyr 180 185 190

Thr Leu Lys Asp Asn Lys Val Tyr Ile Lys Thr His Gly Glu His Val 195 200 205

Gly Phe Arg Ile Phe Met Asp Ala Ile Leu Leu Ser Leu Thr Arg Lys

- Val Lys Met Pro Asp Val Glu Leu Phe Val Asn Leu Gly Asp Trp Pro 225 230 235 240
- Leu Glu Lys Lys Ser Asn Ser Asn Ile His Pro Ile Phe Ser Trp
 245 250 255
- Cys Gly Ser Thr Asp Ser Lys Asp Ile Val Met Pro Thr Tyr Asp Leu 260 265 270
- Thr Asp Ser Val Leu Glu Thr Met Gly Arg Val Ser Leu Asp Met Met 275 280 285
- Ser Val Gln Ala Asn Thr Gly Pro Pro Trp Glu Ser Lys Asn Ser Thr 290 295 300
- Ala Val Trp Arg Gly Arg Asp Ser Arg Lys Glu Arg Leu Glu Leu Val 305 310 315 320
- Lys Leu Ser Arg Lys His Pro Glu Leu Ile Asp Ala Ala Phe Thr Asn 325 330 335
- Phe Phe Phe Lys Gln Asp Glu Asn Leu Tyr Gly Pro Ile Val Lys 340 345 350
- His Ile Ser Phe Phe Asp Phe Phe Lys His Lys Tyr Gln Ile Asn Ile 355 360 365
- Asp Gly Thr Val Ala Ala Tyr Arg Leu Pro Tyr Leu Leu Val Gly Asp 370 380
- Ser Val Val Leu Lys Gln Asp Ser Ile Tyr Tyr Glu His Phe Tyr Asn 385 390 395 400
- Glu Leu Gln Pro Trp Lys His Tyr Ile Pro Val Lys Ser Asn Leu Ser 405 410 415
- Asp Leu Leu Glu Lys Leu Lys Trp Ala Lys Asp His Asp Glu Glu Ala 420 425 430
- Lys Lys Ile Ala Lys Ala Gly Gln Glu Phe Ala Arg Asn Asn Leu Met 435 440 445
- Gly Asp Asp Ile Phe Cys Tyr Tyr Phe Lys Leu Phe Gln Glu Tyr Ala

450 455 460

```
Asn Leu Gln Val Ser Glu Pro Gln Ile Arg Glu Gly Met Xaa Arg Val
                    470
Glu Pro Gln Thr Glu Asp Asp Leu Phe Xaa Cys Thr Cys His Arg Lys
                                    490
Lys Thr Lys Asp Glu Leu
           500
<210> 149
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 149
gnaagaagag agcaacagcc aggaccaag
                                                                     29
<210> 150
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 150
cncaggctag gcactgattc tgctggttc
                                                                     29
<210> 151
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 151
gnagacatga aagttgagca gaaggaaag
                                                                     29
```

```
<210> 152
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 152
gnggtgcttt tgatatccag ccatctcta
                                                                                   29
<210> 153
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature <222> (2)..(2)
<223> n is a, c, g, or t
<400> 153
cntggaaaga ggagcaagaa ccaaggcag
                                                                                   29
<210> 154
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 154
                                                                                   29
tnggttttgt acgttgtgct cttttcatc
<210> 155
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 155
tnatggtcta tataactgtc ctccttcct
                                                                                   29
```

```
<210> 156
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 156
cnacactggg tctcagatcc ttctgctga
                                                                       29
<210> 157
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 157
gnctccaaga agtccagcaa agacaattg
                                                                       29
<210> 158
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 158
antgccaaac atttacaaga cggactctc
                                                                       29
<210> 159
<211> 1776
<212> DNA
<213> Homo sapiens
ageteacagt ageceggegg eccagggeaa teegaceaca ttteactete acegetgtag
                                                                      60
gaatccagat gcaggccaag tacagcagca cgagggacat gctggatgat gatggggaca
                                                                     120
ccaccatgag cctgcattct caagectctg ccacaactcg gcatccagag ccccggcgca
                                                                     180
cagageacag ggetecetet teaaegtgge gaceagtgge cetgaceetg etgactttgt
                                                                      240
gcttggtgct gctgataggg ctggcagccc tggggctttt gttttttcag tactaccagc
                                                                     300
```

```
tctccaatac tggtcaagac accatttctc aaatggaaga aagattagga aatacgtccc
                                                                      360
aagagttgca atctcttcaa gtccagaata taaagcttgc aggaagtctg caqcatqtqq
                                                                      420
ctgaaaaact ctgtcgtgag ctgtataaca aagctggagc acacaggtgc agcccttgta
                                                                      480
cagaacaatg gaaatggcat ggagacaatt gctaccagtt ctataaagac agcaaaagtt
                                                                      540
gggaggactg taaatatttc tgccttagtg aaaactctac catgctgaag ataaacaaac
                                                                      600
aagaagacct ggaatttgcc gcgtctcaga gctactctga gtttttctac tcttattgga
                                                                      660
cagggetttt gegeeetgae agtggeaagg eetggetgtg gatggatgga acceetttea
                                                                      720
cttctgaact gttccatatt ataatagatg tcaccagccc aagaagcaga gactgtgtgg
                                                                      780
ccatccttaa tgggatgatc ttctcaaagg actgcaaaga attgaagcgt tgtgtctgtg
                                                                      840
agagaagggc aggaatggtg aagccagaga gcctccatgt ccccctgaa acattagqcq
                                                                      900
aaggtgactg attcgccctc tgcaactaca aatagcagag tgagccaggc ggtgccaaag
                                                                      960
caagggctag ttgagacatt gggaaatgga acataatcag gaaagactat ctctctgact
                                                                     1020
agtacaaaat gggttctcgt gtttcctgtt caggatcacc agcatttctg agcttgggtt
                                                                     1080
tatgcacgta tttaacagtc acaagaagtc ttatttacat gccaccaacc aacctcagaa
                                                                     1140
acceataatg teatetgeet tettggetta gagataaett ttagetetet ttetteteaa
                                                                     1200
tgtctaatat cacctccctg ttttcatgtc ttccttacac ttggtggaat aagaaacttt
                                                                     1260
ttgaagtaga ggaaatacat tgaggtaaca tccttttctc tgacagtcaa gtagtccatc
                                                                     1320
agaaattggc agtcacttcc cagattgtac cagcaaatac acaaggaatt ctttttgttt
                                                                     1380
gtttcagttc atactagtcc cttcccaatc catcagtaaa gaccccatct gccttgtcca
                                                                     1440
tgccgtttcc caacagggat gtcacttgat atgagaatct caaatctcaa tgccttataa
                                                                     1500
gcatteette etgtgteeat taagaetetg ataattgtet eeeeteeata ggaatttete
                                                                     1560
ccaggaaaga aatatatccc catctccgtt tcatatcaga actaccgtcc ccgatattcc
                                                                     1620
cttcagagag attaaagacc agaaaaaagt gagcctcttc atctgcacct gtaatagttt
                                                                     1680
cagttcctat tttcttccat tgacccatat ttataccttt caggtactga agatttaata
                                                                     1740
ataataaatg taaatactgt gaaaaaaaaa aaaaaa
                                                                     1776
```

```
<210> 160
<211> 280
```

Met Gln Ala Lys Tyr Ser Ser Thr Arg Asp Met Leu Asp Asp Gly 1 5 10 15

<212> PRT

<213> Homo sapiens

<400> 160

Asp	Thr	Thr	Met 20	Ser	Leu	His	Ser	Gln 25	Ala	Ser	Ala	Thr	Thr 30	Arg	His
Pro	Glu	Pro 35	Arg	Arg	Thr	Glu	His 40	Arg	Ala	Pro	Ser	Ser 45	Thr	Trp	Arg
Pro	Val 50	Ala	Leu	Thr	Leu	Leu 55	Thr	Leu	Cys	Leu	Val 60	Leu	Leu	Ile	Gly
Leu 65	Ala	Ala	Leu	Gly	Leu 70	Leu	Phe	Phe	Gln	Tyr 75	Tyr	Gln	Leu	Ser	Asn 80
Thr	Gly	Gln	Asp	Thr 85	Ile	Ser	Gln	Met	Glu 90	Glu	Arg	Leu	Gly	Asn 95	Thr
Ser	Gln	Glu	Leu 100	Gln	Ser	Leu	Gln	Val 105	Gln	Asn	Ile	Lys	Leu 110	Ala	Gly
Ser	Leu	Gln 115	His	Val	Ala	Glu	Lys 120	Leu	Cys	Arg	Glu	Leu 125	Tyr	Asn	Lys
Ala	Gly 130	Ala	His	Arg	Cys	Ser 135	Pro	Cys	Thr	Glu	Gln 140	Trp	Lys	Trp	His
Gly 145	Asp	Asn	Cys	Tyr	Gln 150	Phe	Tyr	Lys	Asp	Ser 155	Lys	Ser	Trp	Glu	Asp 160
Cys	Lys	Tyr	Phe	Cys 165	Leu	Ser	Glu	Asn	Ser 170	Thr	Met	Leu	Lys	Ile 175	Asn
Lys	Gln	Glu	Asp 180	Leu	Glu	Phe	Ala	Ala 185	Ser	Gln	Ser	Tyr	Ser 190	Glu	Phe
Phe	Tyr	Ser 195	Tyr	Trp	Thr	Gly	Leu 200	Leu	Arg	Pro	Asp	Ser 205	Gly	Lys	Ala
Trp	Leu 210	Trp	Met	Asp	Gly	Thr 215	Pro	Phe	Thr	Ser	Glu 220	Leu	Phe	His	Ile
Ile 225	Ile	Asp	Val	Thr	Ser 230	Pro	Arg	Ser	Arg	Asp 235	Cys	Val	Ala	Ile	Leu 240
Asn	Gly	Met	Ile	Phe 245	Ser	Lys	Asp	Cys	Lys 250	Glu	Leu	Lys	Arg	Cys 255	Val

Cys Glu Arg Arg Ala Gly Met Val Lys Pro Glu Ser Leu His Val Pro 260 265 270

Pro Glu Thr Leu Gly Glu Gly Asp 275 280

<210> 161 <211> 947 <212> DNA <213> Homo sapiens <400> 161

caactatccc ataatttatt tattcttctt caatgtttgt aaagtgcatg agtcatgttc 60 acacttgaag totagtagtg cactgtaata attcattttt taaaagatta tttaatqccc 120 atttcaaaat acagtagttt acacagctac agaaacaatt tggggcaagt tttaaaacac 180 tgaaacagta atagttattg gtgtcacata aaactgattt gttttttaca gccaaacctc 240 tgtcagtcag aggcattcat tagttttata catgtaattt gaaaatcact aaacctcgtt 300 ttctcagcag caataattta agaggcttca aaaatataat ttcactctta tttagtattt 360 tttcctgggg ggatttttac gtaatttttt tatgaaaaga caaatgcatg ttgagataac 420 ttctgggatt aaaatagtct tttgctttac ttttttggtt tcctaaaaca actttattga 480 cttttagtcc atactgttat atttttgtct taaagaaaat ttaaactaca aataccaaaa 540 gaaaacattt taaatttagg gatgagactt tggtgtatcg tgggtctagg tttaatgaac 600 acatotgggg ttaagttggc atttcttcac atctccacac ccacaccaac catcacagcc 660 ccccaccaac cttctcccaa ccccaaaagc attgtccagg gatatagatt ttaccaaagg 720 cttcctggga agacgaggga gcaacacttt agattaaatg tgatcagact ttcctattag 780 atatggetet tetgtetett gttateecee tgacagetet gecataaagt eeetteteet 840 catcettece aaacaggetg tataagtget ttgaggtaat taaactettt cetecagttt 900 947

<210> 162 <211> 72 <212> PRT <213> Homo sapiens

<400> 162

Met Arg Leu Trp Cys Ile Val Gly Leu Gly Leu Met Asn Thr Ser Gly 1 5 10 15

Val Lys Leu Ala Phe Leu His Ile Ser Thr Pro Thr Pro Thr Ile Thr 20 25 30

Ala Pro His Gln Pro Ser Pro Asn Pro Lys Ser Ile Val Gln Gly Tyr

Arg Phe Tyr Gln Arg Leu Pro Gly Lys Thr Arg Glu Gln His Phe Arg

Leu Asn Val Ile Arg Leu Ser Tyr

<210> 163 <211> 2120 <212> DNA <213> Homo sapiens

<400> 163

<400> 163 cgctgacttg	ggcaatgggg	ccggtggggt	ttgggggcgg	aagagaccct	cggggttgag	60
aagtatgtgg	tggcctttcg	tcccctgtaa	aacattgtca	cacggtgtgg	ggcggcagcg	120
ctggatcttt	gcaaggctat	tttggcattc	tgctggatat	atgttcgtaa	ataccaaagt	180
cggcgggaaa	gtgaagttgt	ctccaccata	acagcaattt	tttctctagc	aattgcactt	240
atcacatcag	cacttctacc	agtggatata	tttttggttt	cttacatgaa	aaatcaaaat	300
ggtacattta	aggactgggc	taatgctaat	gtcagcagac	agattgagga	cactgtatta	360
tacggttact	atactttata	ttctgttata	ttgttctgtg	tgttcttctg	gatccctttt	420
gtctacttct	attatgaaga	aaaggatgat	gatgatacta	gtaaatgtac	tcaaattaaa	480
acggcactca	agtatacttt	gggatttgtt	gtgatttgtg	cactgcttct	tttagttggt	540
gcctttgttc	cattgaatgt	tcccaataac	aaaaattcta	cagagtggga	aaaagtgaag	600
tccctatttg	aagaacttgg	aagtagtcat	ggtttagctg	cattgtcatt	ttctatcagt	660
tctctgacct	tgattggaat	gttggcagct	ataacttaca	cagcctatgg	catgtctgcg	720
ttacctttaa	atctgataaa	aggcactaga	agcgctgctt	atgaacgttt	ggaaaacact	780
gaagacattg	aagaagtaga	acaacacatt	caaacgatta	aatcaaaaag	caaagatggt	840
cgacctttgc	cagcaaggga	taaacgcgcc	ttaaaacaat	ttgaagaaag	gttacgaaca	900
cttaagaaga	gagagaggca	tttagaattc	attgaaaaca	gctggtggac	aaaattttgt	960
ggcgctctgc	gtcccctgaa	gatcgtctgg	ggaatatttt	tcatcttagt	tgcattgctg	1020
tttgtaattt	ctcttttctt	gtcaaattta	gataaagctc	ttcattcagc	tggaatagat	1080
tctggtttca	taatttttgg	agctaacctg	agtaatccac	tgaatatgct	tttgccttta	1140
ctacaaacag	ttttccctct	tgattatatt	cttataacaa	ttattattat	gtactttatt	1200
tttacttcaa	tggcaggaat	tcgaaatatt	ggcatatggt	tcttttggat	tagattatat	1260

aaaatcagaa gaggtagaac caggccccaa gcactccttt ttctctqcat qatacttctq 1320 cttattgtcc ttcacactag ctacatgatt tatagtcttg ctccccaata tgttatgtat 1380 ggaagccaaa attacttaat agagactaat ataacttctq ataatcataa agqcaattca 1440 accetttetg tgccaaagag atgtgatgca gatgeteetg aagateagtg tactgttace 1500 cggacatacc tattccttca caagttctgg ttcttcagtg ctgcttacta ttttggtaac 1560 tgggcctttc ttggggtatt tttgattgga ttaattgtat cctgttgtaa agggaagaaa 1620 teggttattg aaggagtaga tgaagattea gacataagtg atgatgagee etetgtetat 1680 totgottgac agoottotgt ottaaaggtt ttataatgct gactgaatat otgttatgca 1740 tttttaaagt attaaactaa cattaggatt tgctaactag ctttcatcaa aaatgggagc 1800 atggctataa gacaactata ttttattata tgttttctga agtaacattg tatcatagat 1860 taacatttta aattaccata atcatgctat gtaaatataa gactactggc tttgtgaggg 1920 aatgtttgtg caaaattttt tcctctaatg tataatagtg ttaaattgat taaaaatctt 1980 ccagaattaa tattcccttt tgtcactttt tgaaaacata ataaatcatt tgtatctgtg 2040 2100 aaaaaaaaa aaaaaaaaa 2120

Met Lys Asn Gln Asn Gly Thr Phe Lys Asp Trp Ala Asn Ala Asn Val 1 5 10 15

Ser Arg Gln Ile Glu Asp Thr Val Leu Tyr Gly Tyr Tyr Thr Leu Tyr 20 25 30

Ser Val Ile Leu Phe Cys Val Phe Phe Trp Ile Pro Phe Val Tyr Phe 35 40 45

Tyr Tyr Glu Glu Lys Asp Asp Asp Thr Ser Lys Cys Thr Gln Ile 50 55 60

Lys Thr Ala Leu Lys Tyr Thr Leu Gly Phe Val Val Ile Cys Ala Leu 65 70 75 80

Leu Leu Val Gly Ala Phe Val Pro Leu Asn Val Pro Asn Asn Lys
85 90 95

<210> 164

<211> 464

<212> PRT

<213> Homo sapiens

<400> 164

Asn	Ser	Thr	Glu 100	Trp	Glu	Lys	Val	Lys 105	Ser	Leu	Phe	Glu	Glu 110	Leu	Gly
Ser	Ser	His 115	Gly	Leu	Ala	Ala	Leu 120	Ser	Phe	Ser	Ile	Ser 125	Ser	Leu	Thr
Leu	Ile 130	Gly	Met	Leu	Ala	Ala 135	Ile	Thr	Tyr	Thr	Ala 140	Tyr	Gly	Met	Ser
Ala 145	Leu	Pro	Leu	Asn	Leu 150	Ile	Lys	Gly	Thr	Arg 155	Ser	Ala	Ala	Tyr	Glu 160
Arg	Leu	Glu	Asn	Thr 165	Glu	Asp	Ile	Glu	Glu 170	Val	Glu	Gln	His	Ile 175	Gln
Thr	Ile	Lys	Ser 180	Lys	Ser	Lys	Asp	Gly 185	Arg	Pro	Leu	Pro	Ala 190	Arg	Asp
Lys	Arg	Ala 195	Leu	Lys	Gln	Phe	Glu 200	Glu	Arg	Leu	Arg	Thr 205	Leu	Lys	Lys
Arg	Glu 210	Arg	His	Leu	Glu	Phe 215	Ile	Glu	Asn	Ser	Trp 220	Trp	Thr	Lys	Phe
Cys 225	Gly	Ala	Leu	Arg	Pro 230	Leu	Lys	Ile	Val	Trp 235	Gly	Ile	Phe	Phe	Ile 240
Leu	Val	Ala	Leu	Leu 245	Phe	Val	Ile	Ser	Leu 250	Phe	Leu	Ser	Asn	Leu 255	Asp
Lys	Ala	Leu	His 260	Ser	Ala	Gly	Ile	Asp 265	Ser	Gly	Phe	Ile	Ile 270	Phe	Gly
Ala	Asn	Leu 275	Ser	Asn	Pro	Leu	Asn 280	Met	Leu	Leu	Pro	Leu 285	Leu	Gln	Thr
Val	Phe 290	Pro	Leu	Asp	Tyr	Ile 295	Leu	Ile	Thr	Ile	Ile 300	Ile	Met	Tyr	Phe
Ile 305	Phe	Thr	Ser	Met	Ala 310	Gly	Ile	Arg	Asn	Ile 315	Gly	Ile	Trp	Phe	Phe 320
Trp	Ile	Arg	Leu	Tyr	Lys	Ile	Arg	Arg	Gly	Arg	Thr	Arg	Pro	Gln 335	Ala

Tyr Met Ile Tyr Ser Leu Ala Pro Gln Tyr Val Met Tyr Gly Ser Gln 360 Asn Tyr Leu Ile Glu Thr Asn Ile Thr Ser Asp Asn His Lys Gly Asn 370 375 Ser Thr Leu Ser Val Pro Lys Arg Cys Asp Ala Asp Ala Pro Glu Asp 385 390 395 Gln Cys Thr Val Thr Arg Thr Tyr Leu Phe Leu His Lys Phe Trp Phe 415 405 410 Phe Ser Ala Ala Tyr Tyr Phe Gly Asn Trp Ala Phe Leu Gly Val Phe 420 425 Leu Ile Gly Leu Ile Val Ser Cys Cys Lys Gly Lys Lys Ser Val Ile 435 440 445 Glu Gly Val Asp Glu Asp Ser Asp Ile Ser Asp Asp Glu Pro Ser Val 455 450 460 <210> 165 <211> 2487 <212> DNA <213> Homo sapiens <400> 165 gttccgaaat aaaagatttt gcaaaccact ttcctacgta cgtccactgt agtttttgca 60 gatacaacac tagctgtagc aaagcctatg taaatcatat gatgagcttt catagtaacc 120 gtccaagcaa aaggttttgt atttttaaga agcattcaga aaatctccgg ggcattactc 180 tagtgtgcct taattgtgat ttcctaagtg atgtttctgg cttagataat atggctacac 240 acttaagtca acataaaact catacttgcc aagttgtaat gcagaaagtt tctgtttgta 300 tcccaacttc tgagcacctt tctgaattaa aaaaagaagc tcccgcaaag gaacaagaac 360 . ctgtgtctaa ggaaattgca agacctaaca tggctgaaag agaaacagaa acatcaaatt 420 ctgaaagtaa acaagataaa gctgcttctt caaaagaaaa aaatggatgt aatgcaaatt 480 catttgaagg ctcatcaaca acaaaaagtg aagaaagcat aacagtttca gataaggaaa 540 atgaaacctg tcttgcagac caggaaactg gctcaaaaaa catcgtcagt tgtgattcaa 600 660 atattggtgc agataaagtg gaaaagaaaa aacaaataca acacgtttgt caggaaatgg

Leu Leu Phe Leu Cys Met Ile Leu Leu Leu Ile Val Leu His Thr Ser

agttgaagat gtgccaaagt tcagaaaaca taatcttatc tgatcagatt aaagatcaca 720 actocagtga agocagattt tottoaaaga atattaagga tttgcgatta qoatcagata 780 atgtaagcat tgatcagttt ttgagaaaaa gacatgaacc tgaatctgtt agttctgatg 840 ttagcgagca aggcagtatt catttggaac ctctgactcc atccgaggta cttgagtatg 900 aagccacaga gattetteag aaaggtagtg gtgateette agccaagaet gatgaagtag 960 tgtctgatca aacagatgac attcctggag gaaataaccc tagcacaaca gaggcaacag 1020 tagacctgga agatgaaaaa gaaagaagtt gaaattagtc attttaagtt tcagtgtacc 1080 aacgataagg gcatttggaa cagtgctatc aggtgagctc agtggtgctg ttgtaggttc 1140 agaaatggaa atatgtaagg gaggtcacac atacacttta cctgtatgtt caacctatgt 1200 tatcaaacaa atcaattcac caataatagc atgattagta gggattccca aaaaqttttt 1260 aaaaacacga acaggatttt aatgataatt aaatttgcag tggaaaggtc tcatttaatg 1320 gttttcaagg aaatgggatt tggttgctga catgaattga tgatattagt aatatttata 1380 aagcetttea aactteeate aateetaage taaaaatett tattaeetgt atateetttt 1440 cagttaactg agaggaaggg atttggaaac catgtacttt tggggagtaa ttgattaaaa 1500 acaatggctg attggcattg ttaatgaagg ctttatttgt gaggatgatg ctggtaaatg 1560 gagcatgctt agagtactaa attgatctaa tgagaatttg gatgaacata aacttaattt 1620 tggatttaat ataacattcc agtcagacgc atgtaaacag aatatttgaa tctttgtacc 1680 tccatacaag tgttagcctg ccaggctgta agcttacctt aattaaactt tcagtgaaag 1740 1800 tggaattatt aagatataaa tttatatttg tgctttttgt cagtgtgtaa gctgtgtaga aattetttga tgtattagtt gtattaatgt aaagtagaaa cccattgttg aaacteetgt 1860 agctattatg cttttaatat tgttttaatg atcttcctta gaaataggcc cataaaaatg 1920 1980 gtctggaagc caaaccaaag tatggtataa tgtagatatt gtaaagcagt aaactgaaaa 2040 catgtcctgg catgtattca gccatgttta agtgactttt ctgtaattgt aaaataaaaa 2100 cttcaaatgg gacctaaaac agtgatgtaa aagaactggt tttggaaatt tagcctaatt tatctataag atggctgcta aattgatttt tcagttcttt ttatcatcta gaatataata 2160 gatatagaaa tgaataatat gaagaacagt agtttgcttt gaaatactaa taaactttta 2220 tttaaaatgc ttcattttta cttcttaaaa tgtgctttgg attcttaaat tttgtttcac 2280 tgaatgttca atgttttaaa tggcgattaa aatactctgc tgtatatagt agtttttgag 2340 2400 2460

- <210> 166
- <211> 317
- <212> PRT
- <213> Homo sapiens
- <400> 166
- Met Met Ser Phe His Ser Asn Arg Pro Ser Lys Arg Phe Cys Ile Phe 1 5 10 15
- Lys Lys His Ser Glu Asn Leu Arg Gly Ile Thr Leu Val Cys Leu Asn 20 25 30
- Cys Asp Phe Leu Ser Asp Val Ser Gly Leu Asp Asn Met Ala Thr His
 35 40 45
- Leu Ser Gln His Lys Thr His Thr Cys Gln Val Val Met Gln Lys Val 50 55 60
- Ser Val Cys Ile Pro Thr Ser Glu His Leu Ser Glu Leu Lys Lys Glu 65 70 75 80
- Ala Pro Ala Lys Glu Gln Glu Pro Val Ser Lys Glu Ile Ala Arg Pro 85 90 95
- Asn Met Ala Glu Arg Glu Thr Glu Thr Ser Asn Ser Glu Ser Lys Gln
 100 105 110
- Asp Lys Ala Ala Ser Ser Lys Glu Lys Asn Gly Cys Asn Ala Asn Ser 115 120 125
- Phe Glu Gly Ser Ser Thr Thr Lys Ser Glu Glu Ser Ile Thr Val Ser 130 135 140
- Asp Lys Glu Asn Glu Thr Cys Leu Ala Asp Gln Glu Thr Gly Ser Lys 145 150 155 160
- Asn Ile Val Ser Cys Asp Ser Asn Ile Gly Ala Asp Lys Val Glu Lys 165 170 175
- Lys Lys Gln Ile Gln His Val Cys Gln Glu Met Glu Leu Lys Met Cys 180 185 190
- Gln Ser Ser Glu Asn Ile Ile Leu Ser Asp Gln Ile Lys Asp His Asn 195 200 205

Ser Ser Glu Ala Arg Phe Ser Ser Lys Asn Ile Lys Asp Leu Arg Leu 210 215 220

Ala Ser Asp Asn Val Ser Ile Asp Gln Phe Leu Arg Lys Arg His Glu 225 230 235 240

Pro Glu Ser Val Ser Ser Asp Val Ser Glu Gln Gly Ser Ile His Leu 245 250 255

Glu Pro Leu Thr Pro Ser Glu Val Leu Glu Tyr Glu Ala Thr Glu Ile
260 265 270

Leu Gln Lys Gly Ser Gly Asp Pro Ser Ala Lys Thr Asp Glu Val Val 275 280 285

Ser Asp Gln Thr Asp Asp Ile Pro Gly Gly Asn Asn Pro Ser Thr Thr 290 295 300

Glu Ala Thr Val Asp Leu Glu Asp Glu Lys Glu Arg Ser 305 310 315

<210> 167

<211> 3495

<212> DNA

<213> Homo sapiens

<400> 167

tttatttttc aaatcataat tttaaaatga tagataccat tttgtgataa caacaattca 60 gaaaacaatt ttctatcctc ttagttgaaa gaatgtaggt acagtttgga tacttgtact 120 ttaattttag agtaaacatc tgcattatac tcttatagat aatagaatta tttagttaag 180 aaattottta cagtaaatga gataatgtgt gaaaaagtat tttgtaaatg ctgaggatto 240 tacaaatgat agttgttatt ttcatgtgta tttgtaagat catgtccatt tcatgaatat 300 aggacttcac ataaaaaaag actttctcaa gacaacttta tattctagta tttttctgtt 360 gtaaaaagta ttaactattt acttttattt tgttatacat ttattttaat atccatgtgt 420 ttattatagt aaatttgaaa tgaaatcctg aaaaacagaa tttttttaaa cacagacctc 480 acaccaatat taattttttc tctacataat ttaaaactac ataaattaag tacttaaaat 540 ttatattgaa ggccaccaag aacttaggtt gaatcttaga aaatttaaat aactatttt 600 aaagttaccc aacttaatat tttaattttt taatatttat cttcctttac taattcttqa 660 taaataatag cattagactt gataaaataa aaaagaattt tagagtagaa ttaatatatc 720 aaaaggggta tatcaaccaa attggtgtca gattgtattc attctctcat cacataaaqa 780

tttttctttt gataggtgat gctcatatga acctttggtt tagaatctat atatgtacat 840 gtgtatgtat gtagatagta tggttgtata cacacatata taccaaacac catgaatttt 900 agcagtctgt gatgatcagc aaaaaagcac ataaagtaaa attagttgac catgctaaat 960 tcaattctgg aattttttt tatttgggca tttctagaac tttttacatt tgaaagtaca 1020 tgatgagtat tagtaacgat gacttatgta taatcagaat ctttatgaca atttagtttt 1080 acaaggtcag aagagatgag tttgctaaac ccagctgtga tacctcagtt ggaaagggaa 1140 ttcaaaggta tgctttgtag aacagaaaag tatagttttt ttttcatgaa ctttaatcat 1200 tttctgtttt tcctctatgt gagtcagcta caaaagtggt ctaattttta caacagtaga 1260 1320 acttectect tttetactgt aatetteeca etgactttae tgeacaggta tgaaatacta 1380 gtgtattgga tcttcagtaa cctttttatt tcctagatga ttgaaatata ggtatttact ccatttaaac caggtgataa gatgatgtaa atactcaggg agggtattaa cttgttactt 1440 ttgctcgttt ggggtgtaaa gtgccatgac tgaataatct tcaattcatg attctagagt 1500 aagtttaatt tggaaaaagg ggcttcacac atggtggtgg ttgaacattg attcttttat 1560 acttaaaaag atgaaaatgt tttgtggact gatacatttt atcttactga atatgaattg 1620 tttatgtatc tctactgtca aatagccttt ttgaaactca ggaaagacaa aggttcaatt 1680 acaccacttt tgtcaataag caaaccaggt atttttttt tctcctgttg tctggatatg 1740 gcaatagatt ttttaaattg ctgtgagaac ccatatatga aaagagagga gttgaattgt 1800 gtgtgccttt tatgtcttga gatttatatg tggaaaagac gacatctact tcaaactgta 1860 tttttttcgt ttttttttt tttttgggga aggggggaga acggggtctt gctctgtcgc 1920 ccaggctgga gtgcagtggc gcgatctcag ctgactgcaa cctccacctc ccgggttcaa 1980 2040 gggattctgc ctcagcctcc cgagtagctg agaccacagg tgcgtgccac cacacccggc taattttttt gtatttttag tagagacggg gtttagtaga gacggatcac tcctgaccac 2100 gtgatccgcc cacctcggcc tcccaaagtg ctgggattac aggcgtgagc caccacccc 2160 ggcctgtatt ttcagagagg agagcttggt gtttttgtgg tgccaagtgg taagataatg 2220 tctctttgag gcttcctatg gactgccttt attttagtaa actcaagaca ccagttaacc 2280 tcaacagagt tttggcctta ttagaatttg ttgtgcatct tattgaaagc caggtttaca 2340 tcacctcacc ccattattct ttttagttaa ataaatttac catgccaagt aaccagaatg 2400 gagcaaattg gttgatcttt aaggcagtag gtttgactag ctagctatca ttattgtcac 2460 atctaatgct aggcaccaga aaccatttga gccaggagtg tgaatgaata attcccagag 2520 acactttaga cattttttaa tgttttatat gacattttac atttgtgtga ttgccttaga 2580

tattaaattt teetagtget gataaaaaca geaacattea taacttattt tatatattqt 2640 tccaaagaaa agaatttgtt ttaatggttt caaaataact gcacctgaat ttgtttatgt 2700 gccttaagtt ctctagtgct atttcaactt ttttttcaat ctaaatgaag cttaccttag 2760 ataaggttca tatttgtttc ctatagagta aataaacttc cccttcttaa attgtgtaat 2820 aagcaccaac gtgtggttgc ttggcagaat gagaatgtta agggagattg ttggatgttt 2880 ggagtttcat tatatttttt gtttttattt tttgatacct aggtgctttt taaaatattc 2940 agacaaatat ctatcttaca ttgattaaac ccgtgtaaat tcatttgcag tatctacatc 3000 gaatgtcaaa aaagtatact tatttttgtt ccatacttat gtacaatttt ttccctcttc 3060 aggettttte atttacettt ttgaaaaage acttactete eeetteeeta teacceetee 3120 cccaaggttt ctttatttaa atttttattg agagttgttg gagctctaag acaatacaaa 3180 tttagagttg aacaaaagta taatctgctt tacaactagt atagacctaa ggtcatttgc 3240 tttcaattag aggctccaga gtcttcatag tggaaagaat gctttgtatt taattgttct 3300 tagttaagtt gtagcacgtg aatacttact tacatgtttt gtttaaatat acttcttgca 3360 tagtttaatt ttttaaaagt tgtatctaat aaaatgtctt ttaaccatta ttacttgact 3420 3480 aaaaaaaaa aaaaa 3495

<210> 168

<211> 45

<212> PRT

<213> Homo sapiens

<400> 168

Met Ser Lys Lys Tyr Thr Tyr Phe Cys Ser Ile Leu Met Tyr Asn Phe 1 5 10 15

Phe Pro Leu Gln Ala Phe Ser Phe Thr Phe Leu Lys Lys His Leu Leu 20 25 30

Ser Pro Ser Leu Ser Pro Leu Pro Gln Gly Phe Phe Ile 35 40 45

<210> 169

<211> 1398

<212> DNA

<213> Homo sapiens

<400> 169

gttgatccat ctgagaaagg gatcatgaac tagacagaat gaacagcctt agaggcacag 60

acticttgaac gggacggtgg tggtatgact agtgcagagt gtttagagat cactcagttt 120 ttaaagactg gcctttatcg tgtctcagtg cagccgaggc agagcctttg aaggatgcga 180 tgttgtcatt cttactaatc tagtccagcc gctgaggtga ctttcaacgg cagaccgtct 240 cctgagcgcc ccaggtagaa tttcaaaagt ctccgggacc attatggcag tcaagtggac 300 gggtgggcat tetteteetg teetetgeet gaatgeaagt aaagaaggge tgetggette 360 tggagcagag ggcggagatc tcacggcttg gggtgaagat ggaactccat taggacacac 420 geggttecaa ggggetgatg atgttaccag tgtettattt teteceteet gteceaecaa 480 gctctatgcc tcacatggag aaaccattag tgtactggat gtcaggtccc tcaaaqattc 540 cttggaccat tttcatgtga atgaagaaga aatcaattgt ctttcattga atcaaacgga 600 aaacctgctg gcttctgctg acgactctgg ggcaatcaaa atcctagact tggaaaacaa 660 gaaagttatc agatcettga agagacattc caatatetge teeteagtgg etttteggee 720 tcagaggcct cagagcctgg tgtcatgtgg actggatatg caggtgatgc tgtggagtct 780 tcaaaaagcc cgaccactct ggattacaaa tttacaggag gatgaaacag aagaaatgga 840 aggeceacag teacetggte agetettaaa eeetgeeeta geeeatteta tetetgtgge 900 ttegtgtggt aatattttta gttgtggtge agaagatggt aaggttegaa tetttegggt 960 gatgggagtt aagtgtgaac aggaactggg atttaagggc cacacttcag gggtatccca 1020 ggtctgcttt ctcccagaat cctatttgct gcttactgga gggaatgatg ggaagatcac 1080 gttgtgggat gcaaacagtg aagttgagaa aaaacagaag agtcccacaa aacgtaccca 1140 caggaagaaa cctaaaagag gaacttgcac caagcagggt ggaaatacta acgcttcagt 1200 aacagatgag gaagaacatg gcaacatttt accgaagcta aatattgaac atggagaaaa 1260 agtgaactgg ctcttgggta caaaaataaa gggacaccaa aatatattag tagctgatca 1320 aactagttgt atatctgtat accccttaaa tgaattttaa atccaataaa aacatttgaa 1380 1398 qaaaaaaaa aaaaaaaa

<210> 170

<211> 358

<212> PRT

<213> Homo sapiens

<400> 170

Met Ala Val Lys Trp Thr Gly Gly His Ser Ser Pro Val Leu Cys Leu
1 10 15

Asn Ala Ser Lys Glu Gly Leu Leu Ala Ser Gly Ala Glu Gly Gly Asp
20 25 30

Leu	Thr	Ala 35	Trp	Gly	Glu	Asp	Gly 40	Thr	Pro	Leu	Gly	His 45	Thr	Arg	Phe
Gln	Gly 50	Ala	Asp	Asp	Val	Thr 55	Ser	Val	Leu	Phe	Ser 60	Pro	Ser	Cys	Pro
Thr 65	Lys	Leu	Tyr	Ala	Ser 70	His	Gly	Glu	Thr	Ile 75	Ser	Val	Leu	Asp	Val 80
Arg	Ser	Leu	Lys	Asp 85	Ser	Leu	Asp	His	Phe 90	His	Val	Asn	Glu	Glu 95	Glu
Ile	Asn	Cys	Leu 100	Ser	Leu	Asn	Gln	Thr 105	Glu	Asn	Leu	Leu	Ala 110	Ser	Ala
Asp	Asp	Ser 115	Gly	Ala	Ile	Lys	Ile 120	Leu	Asp	Leu	Glu	Asn 125	Lys	Lys	Val
Ile	Arg 130	Ser	Leu	Lys	Arg	His 135	Ser	Asn	Ile	Cys	Ser 140	Ser	Val	Ala	Phe
Arg 145	Pro	Gln	Arg	Pro	Gln 150	Ser	Leu	Val	Ser	Cys 155	Gly	Leu	Asp	Met	Gln 160
Val	Met	Leu	Trp	Ser 165	Leu	Gln	Lys	Ala	Arg 170	Pro	Leu	Trp	Ile	Thr 175	Asn
Leu	Gln	Glu	Asp 180	Glu	Thr	Glu	Glu	Met 185	Glu	Gly	Pro	Gln	Ser 190	Pro	Gly
Gln	Leu	Leu 195	Asn	Pro	Ala	Leu	Ala 200	His	Ser	Ile	Ser	Val 205	Ala	Ser	Cys
Gly	Asn 210	Ile	Phe	Ser	Cys	Gly 215	Ala	Glu	Asp	Gly	Lys 220	Val	Arg	Ile	Phe
Arg 225	Val	Met	Gly	Val	Lys 230	Cys	Glu	Gln	Glu	Leu 235	Gly	Phe	Lys	Gly	His 240
Thr	Ser	Gly	Val	Ser 245	Gln	Val	Cys	Phe	Leu 250	Pro	Glu	Ser	Tyr	Leu 255	Leu
Leu	Thr	Gly	Gly 260	Asn	Asp	Gly	Lys	Ile 265	Thr	Leu	Trp	Asp	Ala 270	Asn	Ser

Glu Val Glu Lys Lys Gln Lys Ser Pro Thr Lys Arg Thr His Arg Lys 275 280 285

Lys Pro Lys Arg Gly Thr Cys Thr Lys Gln Gly Gly Asn Thr Asn Ala 290 295 300

Ser Val Thr Asp Glu Glu Glu His Gly Asn Ile Leu Pro Lys Leu Asn 305 310 315 320

Ile Glu His Gly Glu Lys Val Asn Trp Leu Leu Gly Thr Lys Ile Lys 325 330 335

Gly His Gln Asn Ile Leu Val Ala Asp Gln Thr Ser Cys Ile Ser Val 340 345 350

Tyr Pro Leu Asn Glu Phe 355

<210> 171

<211> 2132

<212> DNA

<213> Homo sapiens

<400> 171

coggaggtag ctaccacggc ctgtgtcaac gactaaagct ccagtacagc ggcgccctca 60 gacagetggg agggtggete tggeegggag eggeggeegg tgagetaeeg egaggaggag 120 cggcggaggc gacctcggcc cggccctgca ctggccgccc ggcaggcgcg acatgagcct 180 ggtctggcat ccgcgggatg ctccttaagc cccttctccg gctgttaacc tccggggaac 240 ggttgtgacc acaccgacac gtattttaca gataaatcat tcttgcggcg gcgggtcgaa 300 cacgtttatt tatttttat tttctcaaca agcttttacc cagcacctgt ccagtgaaac 360 aacttgataa tegtttegag gggegteege egggttagga ageeactgee tggeagettg 420 tggaagcete atttgcaaag ccaccetta gatgttttga agategtgae gtettgtaae 480 tagcagtgtg tgcacagaat cctactcaag gaacgtcttg gcccagcgat gcaaagaact 540 gaagtttcaa gctggaagag cctgtattgt cctcacaata gtatagaaga attcaagaga 600 ggagagagag acagcaccga atgaagactg taaaagaaaa gaaggaatgc cagagattga 660 gaaaatctgc caagactagg agggtaaccc agaggaaacc gtcttcaggg cctgtttgct 720 ggctatgcct tcgagaacct ggggatcccg aaaaattagg ggaatttctt cagaaagaca 780 atatcagcgt gcattatttc tgtcttatct tatctagtaa gctgcctcag aggggccagt 840 ccaacagagg tttccatgga tttctgcctg aagacatcaa aaaggaggca gcccgggctt 900 ctaggaagat ctgctttgtg tgcaagaaaa agggagctgc tatcaactgc cagaaggatc 960 agtgcctcag aaacttccat ctgccttgtg gccaagaaag gggttgcctt tcacaatttt 1020 ttggagagta caaatcattt tgtgacaaac atcgcccaac acagaacatc caacatgggc 1080 atgtggggga ggaaagctgc atcttatgtt gtgaagactt atcccaacag agtgttgaga 1140 acatccagag cccgtgttgt agtcaagcca tctaccaccg caagtgcata cagaaatatg 1200 cccacacatc agcaaagcat ttcttcaaat gtccacagtg taacaatcga aaagagtttc 1260 ctcaagaaat gctgagaatg ggaattcata ttccagacag agatgctgcc tgggaactcg 1320 agccaggggc tttctcagac ttatatcagc gctatcagca ctgtgatgcc cccatctgtc 1380 cgtatgaaca aggcagagac agctttgagg atgaagggag gtggtgcctc attctgtgtg 1440 ctacatgcgg atcccacgga acccacaggg actgctcctc tcttagattt aacagtaaga 1500 aatgggagtg tgaggagtgt tcacctgctg cagccacaga ctacatacct gaaaactcaq 1560 gggacatccc ttgctgcagc agcaccttcc accctgagga acatttctgc agagacaaca 1620 ccttggaaga gaatccgggc ctttcttgga ctgattggcc agaaccttcc ttattagaaa 1680 agccagagtc ctctcgtggc aggaggagct actcctggag gtccaagggt gtcagaatca 1740 ctaacagctg caaaaaatcc aagtaacacc ttctgagtag ctgctgtccc acacaatagg 1800 gtatgaagct gegeteetee ategggtttg gggagggage aetetgggae tgtgagaeaa 1860 ggaagcaggg ccagcagtga gactatgagc caagcaaaga gaagtctcag tggagcatga 1920 ggagggagca gtccagatgc caacaaggaa atgcgtttat ggctacaaga gtgcctctgc 1980 tttctcctcc tctcctccca ccaaggattc ttccacctta atcttgtttt catatgcctc 2040 2100 aaaaaaaaa aaaaaaaaa aa 2132

Met Lys Thr Val Lys Glu Lys Glu Cys Gln Arg Leu Arg Lys Ser 1 5 10 15

Ala Lys Thr Arg Arg Val Thr Gln Arg Lys Pro Ser Ser Gly Pro Val

Cys Trp Leu Cys Leu Arg Glu Pro Gly Asp Pro Glu Lys Leu Gly Glu 35 40 45

<210> 172

<211> 381

<212> PRT

<213> Homo sapiens

<400> 172

Phe	Leu 50	Gln	Lys	Asp	Asn	Ile 55	Ser	Val	His	Tyr	Phe 60	Cys	Leu	Ile	Leu	•
Ser 65	Ser	Lys	Leu	Pro	Gln 70	Arg	Gly	Gln	Ser	Asn 75	Arg	Gly	Phe	His	Gly 80	
Phe	Leu	Pro	Glu	Asp 85	Ile	Lys	Lys	Glu	Ala 90	Ala	Arg	Ala	Ser	Arg 95	Lys	
Ile	Cys	Phe	Val 100	Cys	Lys	Lys	Lys	Gly 105	Ala	Ala	Ile	Asn	Cys 110	Gln	Lys	
Asp	Gln	Cys 115	Leu	Arg	Asn	Phe	His 120	Leu	Pro	Сув	Gly	Gln 125	Glu	Arg	Gly	
Cys	Leu 130	Ser	Gln	Phe	Phe	Gly 135	Glu	Tyr	Lys	Ser	Phe 140	Cys	Asp	Lys	His	
Arg 145	Pro	Thr	Gln	Asn	Ile 150	Gln	His	Gly	His	Val 155	Gly	Glu	Glu	Ser	Cys 160	
Ile	Leu	Cys	Cys	Glu 165	Asp	Leu	Ser	Gln	Gln 170	Ser	Val	Glu	Asn	Ile 175	Gln	
Ser	Pro	Cys	Cys 180	Ser	Gln	Ala	Ile	Tyr 185	His	Arg	Lys	Cys	Ile 190	Gln	Lys	
Tyr	Ala	His 195	Thr	Ser	Ala	Lys	His 200	Phe	Phe	Lys	Cys	Pro 205	Gln	Cys	Asn	
Asn	Arg 210	Lys	Glu	Phe	Pro	Gln 215	Glu	Met	Leu	Arg	Met 220	Gly	Ile	His	Ile	
Pro 225	Asp	Arg	Asp	Ala	Ala 230	Trp	Glu	Leu	Glu	Pro 235	Gly	Ala	Phe	Ser	Asp 240	
Leu	Tyr	Gln	Arg	Tyr 245	Gln	His	Cys	Asp	Ala 250	Pro	Ile	Cys	Pro	Tyr 255	Glu	
Gln	Gly	Arg	Asp 260	Ser	Phe	Glu	Asp	Glu 265	Gly	Arg	Trp	Cys	Leu 270	Ile	Leu	
Cys	Ala	Thr 275	Cys	Gly	Ser	His	Gly 280	Thr	His	Arg	Asp	Cys 285	Ser	Ser	Leu	

Arg Phe Asn Ser Lys Lys Trp Glu Cys Glu Glu Cys Ser Pro Ala Ala Ala Thr Asp Tyr Ile Pro Glu Asn Ser Gly Asp Ile Pro Cys Cys Ser 305 315 Ser Thr Phe His Pro Glu Glu His Phe Cys Arg Asp Asn Thr Leu Glu 325 330 Glu Asn Pro Gly Leu Ser Trp Thr Asp Trp Pro Glu Pro Ser Leu Leu 345 Glu Lys Pro Glu Ser Ser Arg Gly Arg Arg Ser Tyr Ser Trp Arg Ser 355 360 Lys Gly Val Arg Ile Thr Asn Ser Cys Lys Lys Ser Lys 370 <210> 173 <211> 984 <212> DNA <213> Homo sapiens <400> 173 gtcacgtgga acctcttaat ctcagcatcc ggagctccag gaagggaaaa tttcaagtca 60 gatagaattc tatatatacc atttctttgg aaccttcagc cctcaagatt ccaacatcat 120 gacctcagtt tcaacacagt tgtccttagt cctcatgtca ctgcttttgg tgctgcctgt 180 tgtggaagca gtagaagccg gtgatgcaat cgcccttttg ttaggtgtgg ttctcagcat 240 tacaggcatt tgtgcctgct tgggggtata tgcacgaaaa agaaatggac agatgtgact 300 ttgaaaggcc tactgagtca aacctcaccc tgaaaacctt tgcgctttag aggctaaacc 360 tgagatttgg tgtgtgaaag gttccaagaa tcagtaaata agggagtttc acatttttca 420 ttgtttccat qaaatggcaa caaacataca tttataaatt gaaaaaaaa tgttttcttt 480 acaacaaata atgcacagaa aaatgcagcc tataatttgc tagttaggta gtcaaagaag 540 taagatggct gaaatttaca taagtaatat ttcataatct tagaattctc tcaaagcatg 600 tgaaatagga agaaggaagt tottgcccag aatottagga aatcaccact gttcggttat 660 aatcactgcc tcctgaatcg ttgaggagtc ttttaaatta gatttttgtt ttgttgtctc 720

780

840

900

ccaagttaat attatattta gatatcagag agtcaggcaa aaaggaaaac ttttatctct

agggaaaaaa catttagaaa aatgtattca gtgtatctaa tactgaaatg cggaaaaaaa

tttaatgtta aaaaaaact atagacattg acatggaaaa gagatttaat gttttgaaaa

aaaaac	ttta	tatta	aact	ga g	taac	atcc	t cc	tgat	gaga	agt	acta	tat	taaa	tataaa	960
cccatt	atgt	tataa	aaaa	aa aa	aaa										984
<210><211><211><212><213>	174 59 PRT Homo	sap:	iens												
<400>	174														
Met Th 1	r Ser	Val	Ser 5	Thr	Gln	Leu	Ser	Leu 10	Val	Leu	Met	Ser	Leu 15	Leu	
Leu Va	l Leu	Pro 20	Val	Val	Glu	Ala	Val 25	Glu	Ala	Gly	Asp	Ala 30	Ile	Ala	
Leu Le	u Leu 35	Gly	Val	Val	Leu	Ser 40	Ile	Thr	Gly	Ile	Cys 45	Ala	Cys	Leu	
Gly Va 50	_	Ala	Arg	Lys	Arg 55	Asn	Gly	Gln	Met						
<210><211><211><212><213>	175 28 DNA Homo	sapi	iens												
<400> gttcct	175 acag	cggtg	gagag	gt ga	aaatq	gtg									28
<210><211><211><212><213>	176 28 DNA Homo	sapi	iens												
<400> ccgata	176 cacc a	aaagt	ctca	at co	cctaa	aat									28
<210><211><212><213>	177 28 DNA Homo	sapi	iens												
<400>	177	~~~	.		. ~ ~										20
gagcta	gtgt (gaagg	gacaa	at aa	agcas	gaa									28
<210><211><212><212><213>	178 28 DNA Homo	sapi	lens												

<400> 178 gtcgctaaca tcagaactaa cagattca	28
<210> 179 <211> 28 <212> DNA <213> Homo sapiens	
<400> 179 gagatactgc aaatgaattt acacgggt	28
<210> 180 <211> 28 <212> DNA <213> Homo sapiens	
<400> 180 gtcacactta actcccatca cccgaaag	28
<210> 181 <211> 28 <212> DNA <213> Homo sapiens	
<400> 181 tctgaggcac tgatccttct ggcagttg	28
<210> 182 <211> 28 <212> DNA <213> Homo sapiens	
<400> 182 tgagggctga aggttccaaa gaaatggt	28
<210> 183 <211> 1528 <212> DNA <213> Homo sapiens	
<400> 183 cgcttttttt tttttttga caagatggcg gcaggaggca gtggcgttgg tgggaagcgc	60
agctcgaaaa gcgatgccga ttctggtttc ctggggctgc ggcccacttc ggtggaccca	120
gcgctgaggc ggcggcggcg aggcccaaga aataagaagc ggggctggcg gcggcttgct	180
caggagccgc tggggctgga ggttgaccag ttcctggaag acgtgcggct acaggagcgc	240
acgagcggtg gcttgttgtc agaggcccca aatgaaaaac tcttcttcgt ggacactggc	300
tccaaggaaa aagggctgac aaagaagaga accaaagtcc agaagaagtc actgcttctc	360
aagaaacccc ttcgggttga cctcatcctc gagaacacat ccaaagtccc tgccccaaa	420

gacgtcctcg cccaccaggt ccccaacgcc aagaagctca ggcggaagga gcagctatgg 480 gagaagetgg ceaageaggg egagetgeee egggaggtge geagggeeea ggeeeggete 540 600 ctcaaccctt ctgcaacaag ggccaagccc gggccccagg acaccgtaga gcggcccttc 660 tacgacctct gggcctcaga caaccccctg gacaggccgt tggttggcca ggatgagttt 720 ttcctggagc agaccaagaa gaaaggagtg aagcggccag cacgcctgca caccaagccg 780 tcccaggcgc ccgccgtgga ggtggcgcct gccggagctt cctacaatcc atcctttgaa gaccaccaga ccctgctctc agcggcccac gaggtggagt tgcagcggca gaaggaggcg 840 gagaagctgg agcggcagct ggccctgccc gccatggagc aggccgccac ccaggagtcc 900 acattccagg agetgtgcga ggggetgctg gaggagtcgg atggtgaggg ggagccaggc 960 cagggcgagg ggccggaggc tggggatgcc gaggtctgtc ccacgcccgc ccgcctggcc 1020 accacagaga agaagacgga gcagcagcgg cggcgggaga aggctgtgca caggctgcgg 1080 gtacagcagg ccgcgttgcg ggccgcccgg ctccggcacc aggagctgtt ccggctgcgc 1140 gggatcaagg cccaggtggc cctgaggctg gcggagctgg cgcggcggcg gaggcggcgg 1200 caggegege gggaggetga ggetgacaag ceeegaagge tgggaegget caagtaceag 1260 gcacctgaca tcgacgtgca gctgagctcg gagctgacag actcgctcag gaccctgaag 1320 cccgagggca acatectteg agaceggtte aagagettee agaggaggaa tatgategag 1380 1440 cctcgagaga gagccaagtt caaacgcaag tacaaggtga agctggtgga gaagcgggcg 1500 ttccgtgaga tccagttgta gctgccatca gatgccggag actcgccctt caataaaaaa tctcttctag ctgaaaaaaa aaaaaaaa 1528

<210> 184

<211> 478

<212> PRT

<213> Homo sapiens

<400> 184

Met Ala Ala Gly Gly Ser Gly Val Gly Gly Lys Arg Ser Ser Lys Ser 1 5 10 15

Asp Ala Asp Ser Gly Phe Leu Gly Leu Arg Pro Thr Ser Val Asp Pro 20 25 30

Ala Leu Arg Arg Arg Arg Gly Pro Arg Asn Lys Lys Arg Gly Trp 35 40 45

Arg Arg Leu Ala Gln Glu Pro Leu Gly Leu Glu Val Asp Gln Phe Leu 50 60

Glu 65	Asp	Val	Arg	Leu	Gln 70	Glu	Arg	Thr	Ser	Gly 75	Gly	Leu	Leu	Ser	Glu 80
Ala	Pro	Asn	Glu	Lys 85	Leu	Phe	Phe	Val	Asp 90	Thr	Gly	Ser	Lys	Glu 95	Lys
Gly	Leu	Thr	Lys 100	Lys	Arg	Thr	Lys	Val 105	Gln	Lys	Lys	Ser	Leu 110	Leu	Leu
Lys	Lys	Pro 115	Leu	Arg	Val	Asp	Leu 120	Ile	Leu	Glu	Asn	Thr 125	Ser	Lys	Val
Pro	Ala 130	Pro	Lys	Asp	Val	Leu 135	Ala	His	Gln	Val	Pro 140	Asn	Ala	Lys	Lys
Leu 145	Arg	Arg	Lys	Glu	Gln 150	Leu	Trp	Glu	Lys	Leu 155	Ala	Lys	Gln	Gly	Glu 160
Leu	Pro	Arg	Glu	Val 165	Arg	Arg	Ala	Gln	Ala 170	Arg	Leu	Leu	Asn	Pro 175	Ser
Ala	Thr	Arg	Ala 180	Lys	Pro	Gly	Pro	Gln 185	Asp	Thr	Val	Glu	Arg 190	Pro	Phe
Tyr	Asp	Leu 195	Trp	Ala	Ser	Asp	Asn 200	Pro	Leu	Asp	Arg	Pro 205	Leu	Val	Gly
Gln	Asp 210	Glu	Phe	Phe	Leu	Glu 215	Gln	Thr	Lys	Lys	Lys 220	Gly	Val	Lys	Arg
Pro 225	Ala	Arg	Leu	His	Thr 230	Lys	Pro	Ser	Gln	Ala 235	Pro	Ala	Val	Glu	Val 240
Ala	Pro	Ala	Gly	Ala 245	Ser	Tyr	Asn	Pro	Ser 250	Phe	Glu	Asp	His	Gln 255	Thr
Leu	Leu	Ser	Ala 260	Ala	His	Glu	Val	Glu 265	Leu	Gln	Arg	Gln	Lys 270	Glu	Ala
Glu	Lys	Leu 275	Glu	Arg	Gln	Leu	Ala 280	Leu	Pro	Ala	Met	Glu 285	Gln	Ala	Ala
Thr	Gln 290	Glu	Ser	Thr	Phe	Gln 295	Glu	Leu	Cys	Glu	Gly 300	Leu	Leu	Glu	Glu

Asp	Ala	Glu	Val	Cys 325	Pro	Thr	Pro	Ala	Arg 330	Leu	Ala	Thr	Thr	Glu 335	Lys	
Lys	Thr	Glu	Gln 340	Gln	Arg	Arg	Arg	Glu 345	Lys	Ala	Val	His	Arg 350	Leu	Arg	
Val	Gln	Gln 355	Ala	Ala	Leu	Arg	Ala 360	Ala	Arg	Leu	Arg	His 365	Gln	Glu	Leu	
Phe	Arg 370	Leu	Arg	Gly	Ile	Lys 375	Ala	Gln	Val	Ala	Leu 380	Arg	Leu	Ala	Glu	
Leu 385	Ala	Arg	Arg	Arg	Arg 390	Arg	Arg	Gln	Ala	Arg 395	Arg	Glu	Ala	Glu	Ala 400	
Asp	Lys	Pro	Arg	Arg 405	Leu	Gly	Arg	Leu	Lys 410	Tyr	Gln	Ala	Pro	Asp 415	Ile	
Asp	Val	Gln	Leu 420	Ser	Ser	Glu	Leu	Thr 425	Asp	Ser	Leu	Arg	Thr 430	Leu	Lys	
Pro	Glu	Gly 435	Asn	Ile	Leu	Arg	Asp 440	Arg	Phe	Lys	Ser	Phe 445	Gln	Arg	Arg	
Asn	Met 450	Ile	Glu	Pro	Arg	Glu 455	Arg	Ala	Lys	Phe	Lys 460	Arg	Lys	Tyr	Lys	
Val 465	Lys	Leu	Val	Glu	Lys 470	Arg	Ala	Phe	Arg	Glu 475	Ile	Gln	Leu			
<210 <211 <212 <213	l> 1 2> [185 1472 DNA Homo	sapi	iens												
<400 acaa		.85 ggc g	gcgc	ccgaa	ıg gg	gago	ctct	ggg	gtgag	gac	ccaa	actgo	ggg (ctccc	egeege	60
tgct	gctg	gct g	gacca	atggo	c tt	ggco	ggag	g gtt	cggg	gac	cgct	tcgg	gct g	gaago	catttg	120
acto	ggto	ett g	ggtg	gatad	g go	gtct	tgcc	acc	gggg	ctg	tcag	gttga	acc t	acco	ccttgc	180
acac	cctac	ccc t	aagg	gaaga	ıg ga	gttg	gtaco	g cat	gtca	ıgag	aggt	tgca	agg d	ctgtt	ttcaa	240
tttg	gtcac	gtt t	gtgg	gatga	it go	gaatt	gact	: taa	atco	Jaac	taaa	ttgg	gaa t	gtga	atctg	300

Ser Asp Gly Glu Gly Glu Pro Gly Gln Gly Glu Gly Pro Glu Ala Gly 305 310 315 320

catgtacaga agcatattcc caatctgatg agcaatatgc ttgccatctt ggttgccaga 360 atcagctgcc attcgctgaa ctgagacaag aacaacttat gtccctgatg ccaaaaatgc 420 acctactett teetetaaet etggtgaggt cattetggag tgacatgatg gacteegeae 480 agagetteat aacetettea tggaettttt atetteaage egatgaegga aaaatagtta 540 600 tattccagtc taagccagaa atccagtacg caccacattt ggagcaggag cctacaaatt tgagagaatc atctctaagc aaaatgtcct cagatctgca aatgagaaat tcacaagcgc 660 acaggaattt tettgaagat ggagaaagtg atggettttt aagatgeete tetettaaet 720 ctgggtggat tttaactaca actettgtee teteggtgat ggtattgett tggatttgtt 780 gtgcaactgt tgctacagct gtggagcagt atgttccctc tgagaagctg agtatctatg 840 900 gtqacttqga gtttatqaat gaacaaaagc taaacagata tccagcttct tctcttgtgg 960 ttgttagatc taaaactgaa gatcatgaag aagcagggcc tctacctaca aaagtgaatc ttgctcattc tgaaatttaa gcatttttct tttaaaagac aagtgtaata gacatctaaa 1020 attecactee teatagaget tttaaaatgg ttteattgga tataggeett aagaaateae 1080 tataaaatgc aaataaagtt actcaaatct gtgaagactg tatttgctat aactttattg 1140 gtattgtttt tgtagtaatt taagaggtgg atgtttggga ttgtattatt attttactaa 1200 tatctgtage tattttgttt tttgetttgg ttattgtttt tttccctttt cttagctatg 1260 agctgatcat tgctccttct cacctcctgc catgatactg tcagttacct tagttaacaa 1320 gctgaatatt tagtagaaat gatgcttctg ctcaggaatg gcccacaaat ctgtaatttg 1380 aaatttagca ggaaatgacc tttaatgaca ctacattttc aggaactgaa atcattaaaa 1440 ttttatttga ataattaaaa aaaaaaaaaa aa 1472

<210> 186

<211> 320

<212> PRT

<213> Homo sapiens

<400> 186

Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr Gln Leu Gly Leu 1 5 10 15

Pro Pro Leu Leu Leu Thr Met Ala Leu Ala Gly Gly Ser Gly Thr 20 25 30

Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp Thr Ala Ser Cys 35 40 45

His	Arg 50	Ala	Cys	Gln	Leu	Thr 55	Tyr	Pro	Leu	His	Thr 60	Tyr	Pro	Lys	Glu
Glu 65	Glu	Leu	Tyr	Ala	Cys 70	Gln	Arg	Gly	Cys	Arg 75	Leu	Phe	Ser	Ile	Cys 80
Gln	Phe	Val	Asp	Asp 85	Gly	Ile	Asp	Leu	Asn 90	Arg	Thr	Lys	Leu	Glu 95	Cys
Glu	Ser	Ala	Cys 100	Thr	Glu	Ala	Tyr	Ser 105	Gln	Ser	Asp	Glu	Gln 110	Tyr	Ala
Cys	His	Leu 115	Gly	Cys	Gln	Asn	Gln 120	Leu	Pro	Phe	Ala	Glu 125	Leu	Arg	Gln
Glu	Gln 130	Leu	Met	Ser	Leu	Met 135	Pro	Lys	Met	His	Leu 140	Leu	Phe	Pro	Leu
Thr 145	Leu	Val	Arg	Ser	Phe 150	Trp	Ser	Asp	Met	Met 155	Asp	Ser	Ala	Gln	Ser 160
Phe	Ile	Thr	Ser	Ser 165	Trp	Thr	Phe	Tyr	Leu 170	Gln	Ala	Asp	Asp	Gly 175	Lys
Ile	Val	Ile	Phe 180	Gln	Ser	Lys	Pro	Glu 185	Ile	Gln	Tyr	Ala	Pro 190	His	Leu
Glu	Gln	Glu 195	Pro	Thr	Asn	Leu	Arg 200	Glu	Ser	Ser	Leu	Ser 205	Lys	Met	Ser
Ser	Asp 210	Leu	Gln	Met	Arg	Asn 215	Ser	Gln	Ala	His	Arg 220	Asn	Phe	Leu	Glu
Asp 225	Gly	Glu	Ser	Asp	Gly 230	Phe	Leu	Arg	Cys	Leu 235	Ser	Leu	Asn	Ser	Gly 240
Trp	Ile	Leu	Thr	Thr 245	Thr	Leu	Val	Leu	Ser 250	Val	Met	Val	Leu	Leu 255	Trp
Ile	Cys	Cys	Ala 260	Thr	Val	Ala	Thr	Ala 265	Val	Glu	Gln	Tyr	Val 270	Pro	Ser
Glu	Lys	Leu 275	Ser	Ile	Tyr	Gly	Asp 280	Leu	Glu	Phe	Met	Asn 285	Glu	Gln	Lys

Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Val Arg Ser Lys Thr 290 295 300

Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr Lys Val Asn Leu Ala 305 310 315 320

<210> 187 <211> 1573 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (1524)..(1524) <223> n is a, c, g, or t <220> <221> misc feature <222> (1526)..(1526) <223> n is a, c, g, or t <400> 187 gtgattggta cagtaggttt ataaacagaa gtttaaactt gtaagcttaa gcttccgttt 60 ataaacagaa gtttaaaatt ataggtcctg tttaacattc agctctgtta actcactcat 120 ctttttgtgt ttttacactt tgtcaagatt tctttacata ttcatcaatg tctgaagaag 180 ttacttatgc agatcttcaa ttccagaact ccagtgagat ggaaaaaatc ccagaaattg 240 gcaaatttgg ggaaaaagca cctccagctc cctctcatgt atggcgtcca gcagccttgt 300 ttctgactct tctgtgcctt ctgttgctca ttggattggg agtcttggca agcatgtttc 360 atgtaacttt gaagatagaa atgaaaaaaa tgaacaaact acaaaacatc agtgaagagc 420 tccagagaaa tatttctcta caactgatga gtaacatgaa tatctccaac aagatcagga 480 acctctccac cacactgcaa acaatagcca ccaaattatg tcgtgagcta tatagcaaag 540 aacaagagca caaatgtaag ccttgtccaa ggagatggat ttggcataag gacagctgtt 600 attteetaag tgatgatgte caaacatgge aggagagtaa aatggeetgt getgeteaga 660 atgecageet gttgaagata aacaacaaaa atgeattgga atttataaaa teecagagta 720 gatcatatga ctattggctg ggattatctc ctgaagaaga ttccactcgt ggtatgagag 780 tggataatat aatccactcc tctgcctggg ttataagaaa cgcacctgac ttaaataaca 840 tgtattgtgg atatataaat agactatatg ttcaatatta tcactgcact tataaacaaa 900 gaatgatatg tgagaagatg gccaatccag tgcagcttgg ttctacatat tttagqgagq 960

1020

1080

catgaggcat caatcaaata cattgaagga gtgtaggggg tgggggttct aggctatagg

taaatttaaa tattttctgg ttgacaatta gttgagtttg tctgaagacc tgggatttta

tcatgcagat gaaacatcca ggtagcaagc ttcagagaga atagactgtg aatgttaatg 1140 ccagagaggt ataatgaagc atgtccmacy tcccactttc catcatggcy tqaaccykgg 1200 rggaagagga agtccattca gatagttgtg gggggcctts gaattttcat tttcatwwac 1260 gttcttcccc ttctggccaa gatttgccag aggcaacatc aaaaaccagc aaattktaat 1320 tttgtcccac agsgttgcta gggtggcatg gytccccatt tsgggtccat cctawacttc 1380 catgggactc cctatggctg aaggccttat gagtcaaagg acttatagcc aattgattgt 1440 tttaggccag gtaagaatgg atatggacat gcatttatta cytyttaaaa ttattatttt 1500 1560 aaaaaaaaa aaa 1573

<210> 188

<211> 265

<212> PRT

<213> Homo sapiens

<400> 188

Met Ser Glu Glu Val Thr Tyr Ala Asp Leu Gln Phe Gln Asn Ser Ser 1 5 10 15

Glu Met Glu Lys Ile Pro Glu Ile Gly Lys Phe Gly Glu Lys Ala Pro 20 25 30

Pro Ala Pro Ser His Val Trp Arg Pro Ala Ala Leu Phe Leu Thr Leu 35 40 45

Leu Cys Leu Leu Leu Ile Gly Leu Gly Val Leu Ala Ser Met Phe 50 55 60

His Val Thr Leu Lys Ile Glu Met Lys Lys Met Asn Lys Leu Gln Asn 65 70 75 80

Ile Ser Glu Glu Leu Gln Arg Asn Ile Ser Leu Gln Leu Met Ser Asn 85 90 95

Met Asn Ile Ser Asn Lys Ile Arg Asn Leu Ser Thr Thr Leu Gln Thr
100 105 110

Ile Ala Thr Lys Leu Cys Arg Glu Leu Tyr Ser Lys Glu Gln Glu His 115 120 125

Lys Cys Lys Pro Cys Pro Arg Arg Trp Ile Trp His Lys Asp Ser Cys 130 135 140

Cys Ala Ala Gln Asn Ala Ser Leu Leu Lys Ile Asn Asn Lys Asn Ala 170 Leu Glu Phe Ile Lys Ser Gln Ser Arg Ser Tyr Asp Tyr Trp Leu Gly Leu Ser Pro Glu Glu Asp Ser Thr Arg Gly Met Arg Val Asp Asn Ile 200 Ile His Ser Ser Ala Trp Val Ile Arg Asn Ala Pro Asp Leu Asn Asn 215 220 Met Tyr Cys Gly Tyr Ile Asn Arg Leu Tyr Val Gln Tyr Tyr His Cys 230 235 Thr Tyr Lys Gln Arg Met Ile Cys Glu Lys Met Ala Asn Pro Val Gln 245 250 Leu Gly Ser Thr Tyr Phe Arg Glu Ala 260 <210> 189 <211> 618 <212> DNA <213> Homo sapiens <400> 189 gagttatatg acactcaaag gaaaagcaaa agagcattaa gaagtgtctg tttttgttat 60 tgccatttca taaatatttt agtaggtgtt caatttcatt ggatattctt ttttttaat 120 tgtctttgta cctatgattg aaaacagtag ttggtctatg acttttgagg agagggagaa 180 ccqaaqatta caggaqqcca qcatqaqqtt qqaacaaqaq aatqatqacc ttqcccatqa 240 actagtaaca agcaaaattg ctctacggaa tgacttggat caggcagaag acaaggcaga 300 tgtgttgaat aaagagctcc ttttgaccaa acagaggctg gtggagactg aagaggagaa 360 gaggaagcaa gaggaagaga ctgcccagct aaaagaagtc ttcaqqaaac agctaqagaa 420 ggcagaatat gaaataaaga agactacagc tatcattgct gagtataaac aggtaatgta 480 cttctgtggc acatagagct agttatagtt tgctgctata aaagtaattt tttttttt 540 ttgcttgagg ccaggagttt gagactagcc tgagcaacat agcaggactc cqtcccaagg 600 aaaaaaaaa aaaaaaaa 618

Tyr Phe Leu Ser Asp Asp Val Gln Thr Trp Gln Glu Ser Lys Met Ala

<211> 120 <212> PRT <213> Homo sapiens <400> 190 Met Ile Glu Asn Ser Ser Trp Ser Met Thr Phe Glu Glu Arg Glu Asn 5 10 Arg Arg Leu Gln Glu Ala Ser Met Arg Leu Glu Gln Glu Asn Asp Asp 20 25 Leu Ala His Glu Leu Val Thr Ser Lys Ile Ala Leu Arq Asn Asp Leu 35 Asp Gln Ala Glu Asp Lys Ala Asp Val Leu Asn Lys Glu Leu Leu Leu 50 55 Thr Lys Gln Arg Leu Val Glu Thr Glu Glu Glu Lys Arg Lys Gln Glu 65 70 Glu Glu Thr Ala Gln Leu Lys Glu Val Phe Arg Lys Gln Leu Glu Lys 85 Ala Glu Tyr Glu Ile Lys Lys Thr Thr Ala Ile Ile Ala Glu Tyr Lys 100 Gln Val Met Tyr Phe Cys Gly Thr <210> 191 <211> 510 <212> DNA <213> Homo sapiens <400> 191 tgcagaatcc agaatggatg tcctctttgt agccatcttt gctgtgccac ttatcctggg 60 acaagaatat gaggatgaag aaagactggg agaggatgaa tattatcagg tggtctatta 120 ttatacagtc accccagtt atgatgactt tagtgcagat ttcaccattg attactccat 180 atttgagtca gaggacaggc tgaacaggtt ggataaggac ataacagaag caatagagac 240 taccattagt cttgaaacag cacgtgcaga ccatccgaag cctgtaactg tgaaaccagt 300 aacaacggaa cctagtccag atctgaacga tgccgtgtcc agtttgcgaa gtcctattcc 360 cctcctcctg tcgtgtgcct ttgttcaggt ggggatgtat ttcatgtaga aggtggaaga 420

<210> 190

agg	ctgc	tat q	gact	cttt	gg a	tggg	agtc	t gg	caag	agga	aat	tgga	aga	taaaa	ataaat	480
aat	aagt	gaa a	ataa	aaaa	aa aa	aaaa	aaaa	a								510
<21: <21: <21: <21:	1> 2>	192 131 PRT Homo	sap:	iens												
<40	0 >	192														
Met 1	Asp	Val	Leu	Phe 5	Val	Ala	Ile	Phe	Ala 10	Val	Pro	Leu	Ile	Leu 15	Gly	
Gln	Glu	Tyr	Glu 20	Asp	Glu	Glu	Arg	Leu 25	Gly	Glu	Asp	Glu	Tyr 30	Tyr	Gln	
Val	Val	Tyr 35	Tyr	Tyr	Thr	Val	Thr 40	Pro	Ser	Tyr	Asp	Asp 45	Phe	Ser	Ala	
Asp	Phe 50	Thr	Ile	Asp	Tyr	Ser 55	Ile	Phe	Glu	Ser	Glu 60	Asp	Arg	Leu	Asn	
Arg 65	Leu	Asp	Lys	Asp	Ile 70	Thr	Glu	Ala	Ile	Glu 75	Thr	Thr	Ile	Ser	Leu 80	
Glu	Thr	Ala	Arg	Ala 85	Asp	His	Pro	Lys	Pro 90	Val	Thr	Val	Lys	Pro 95	Val	
Thr	Thr	Glu	Pro 100	Ser	Pro	Asp	Leu	Asn 105	Asp	Ala	Val	Ser	Ser 110	Leu	Arg	
Ser	Pro	Ile 115	Pro	Leu	Leu	Leu	Ser 120	Cys	Ala	Phe	Val	Gln 125	Val	Gly	Met	
Tyr	Phe 130	Met														
<210 <211 <212 <213	L> { 2> I	193 883 DNA Homo	sapi	iens												
<400 cato		193 cca t	ccat	atco	a at	gtto	ctcat	: tta	aaca	atta	ccca	igcat	ca 1	ttgtt	tataa	60
												_		_	jcagca	120
gtat	ggag	ggg a	aggat	ttta	at gg	gagaa	atgo	g gga	atagt	ctt	cato	jacca	ıca a	aataa	ataaa	180

ggaaaactaa gctgcattgt gggttttgaa aaggttatta tacttcttaa caattctttt 240 tttcagggac ttttctagct gtatgactgt tacttgacct tctttgaaaa gcattcccaa 300 aatgctctat tttagataga ttaacattaa ccaacataat tttttttaga tcgagtcagc 360 ataaatttct aagtcagcct ctagtcgtgg ttcatctctt tcacctqcat tttatttqqt 420 gtttgtctga agaaaggaaa gaggaaagca aatacgaatt gtactatttg taccaaatct 480 ttgggattca ttggcaaata atttcagtgt ggtgtattat taaatagaaa aaaaaaattt 540 tgtttcctag gttgaaggtc taattgatac gtttgactta tgatgaccat ttatgcactt 600 tcaaatgaat ttgctttcaa aataaatgaa gagcagctgt ccttctttcc tcttttaaqt 660 gttcagctgt ggcatgctca gaggttcctg ctggattcca gctggagcgg tgtgataccc 720 ttctttttca gctgttcgtg ccttcctttc ttgtatccac caaagtggag acaaatacat 780 gatctcaaag atacacagta cctacttaat tccagctgat gggagaccaa agaatttgca 840 agtggatggt ttggtatcac tgtaaataaa aagagggcct ggg 883 <210> 194 <211> 79 <212> PRT <213> Homo sapiens

<400> 194

Met Met Thr Ile Tyr Ala Leu Ser Asn Glu Phe Ala Phe Lys Ile Asn 5

Glu Glu Gln Leu Ser Phe Phe Pro Leu Leu Ser Val Gln Leu Trp His 20 25

Ala Gln Arg Phe Leu Leu Asp Ser Ser Trp Ser Gly Val Ile Pro Phe 35 45

Phe Phe Ser Cys Ser Cys Leu Pro Phe Leu Tyr Pro Pro Lys Trp Arg 50

Gln Ile His Asp Leu Lys Asp Thr Gln Tyr Leu Leu Asn Ser Ser 70

<210> 195

<211> 110

<212> DNA

<213> Homo sapiens

<400> 195

60

aaaaaaaaa	aaaaaaaga	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	110
<210> 196 <211> 861 <212> DNA <213> Home	o sapiens				
<400> 196					
taggcctctt	tggccggtgc	tgcctgagaa	ggattggcac	gggcacagac ca	actgccccc 60
acctgccctg	cgccatctac	ccaagaaggc	tcggcacggg	caccaaccac to	gcctccaac 120
tgccccatgc	tgcctgagaa	ggcactgcac	ggccaccccc	aactgccccg ca	actgtccct 180
acccgggcag	ccatgcgagc	ggctggaact	ctgctggcct	tctgctgcct gg	gtcttgagc 240
accactgggg	gcccttcccc	agatacttgt	tcccaggacc	ttaactcacg to	gtgaagcca 300
ggatttccta	aaacaataaa	gaccaatgac	ccaggagtcc	tccaagcagc ca	agatacagt 360
gttgaaaagt	tcaacaactg	cacgaacgac	atgttcttgt	tcaaggagtc co	cgcatcaca 420
agggccctag	ttcagatagt	gaaaggcctg	aaatatatgc	tcgargtgga aa	attggcaga 480
actacctgca	agaaaaacca	gcacctgcgt	ctggatgact	gtgacttcca aa	accaaccac 540
accttgaagc	agactctgag	ctgctactct	gaagtctggg	tegtgeeetg ge	ctccagcac 600
				ttcagcaaga co	
				gcywsrtgac co	
				maytgggtsa cr	
				trgatcacat g	
			acagreeaaa	cryaccacac g	_
aattraaaaa	aaaaaaaaaa	a			861
<210> 197 <211> 167 <212> PRT <213> Home	o sapiens				
<400> 197					
Met Leu Pro 1	o Glu Lys A	la Leu His (Gly His Pro 10	Gln Leu Pro A	Arg Thr 15
Val Pro Th	r Arg Ala A	_	Ala Ala Gly 25	Thr Leu Leu A	Ala Phe
Cys Cys Let	ı Val Leu So	er Thr Thr (Gly Gly Pro	Ser Pro Asp 3	Thr Cys

Ser Gln Asp Leu Asn Ser Arg Val Lys Pro Gly Phe Pro Lys Thr Ile

50 55 60

Lys Thr Asn Asp Pro Gly Val Leu Gln Ala Ala Arg Tyr Ser Val Glu

70 Lys Phe Asn Asn Cys Thr Asn Asp Met Phe Leu Phe Lys Glu Ser Arg Ile Thr Arg Ala Leu Val Gln Ile Val Lys Gly Leu Lys Tyr Met Leu Glu Val Glu Ile Gly Arg Thr Thr Cys Lys Lys Asn Gln His Leu Arg Leu Asp Asp Cys Asp Phe Gln Thr Asn His Thr Leu Lys Gln Thr Leu Ser Cys Tyr Ser Glu Val Trp Val Val Pro Trp Leu Gln His Phe Glu 150 Val Pro Val Leu Arg Cys His 165 <210> 198 <211> 29 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (2)..(2) <223> n is a, c, g, or t <400> 198 anccagaatc ggcatcgctt ttcgagctg 29 <210> 199 <211> 29 <212> DNA <213> Homo sapiens <220> <221> misc_feature

<400> 199 tntggtgcgt actggatttc tggcttaga

<223> n is a, c, g, or t

<222> (2)..(2)

29

```
<210> 200
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature <222> (2)..(2)
<223> n is a, c, g, or t
<400> 200
gntaacagag ctgaatgtta aacaggacc
                                                                         29
<210> 201
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 201
tntcctcaaa agtcatagac caactactg
                                                                         29
<210> 202
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 202
gntcagcctg tcctctgact caaatatgg
                                                                         29
<210> 203
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 203
tnacctgcat tttatttggt gtttgtctg
                                                                         29
```

```
<210>
      204
<211>
<212>
      DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
      (2)..(2)
<223> n is a, c, g, or t
<400> 204
tnaacactgt atctggctgc ttggaggac
                                                                       29
<210> 205
<211>
      2556
<212> DNA
<213> Homo sapiens
<400> 205
gcaagatttg gcctggattc ttctgaggat gtgaagtaat ggaaacagta agactgttcc
                                                                       60
agactagggg aagactagag acctaatagc tggattccat gtgatctttt gttggacttt
                                                                      120
gggattggag gtgagagtag agaaggcata atgcacgttt ttgagacgag ggaaatgtga
                                                                      180
atatageetg tatgeetaca eteaagtetg aagacatgtw aaccatgtet ataetaacca
                                                                      240
gccaaatatt tgaacactaa aaggaagaat tttcttaatg tggtaatggt wtcatggttg
                                                                      300
tatagaatgt teeteetett gggagatgtg tgttgaaaat agggtttgae gtetaaaeet
                                                                      360
attttgtttt ggcaaaaagg acgtgtgtct gtacaaaaga agtggagcca gtatggcaaa
                                                                      420
atgtttacma ggactctggg tgagargtwc ataggtgctt actatactgt tttgtttctg
                                                                      480
aatttggaat ttctcaaaat taaaaaaata tctactgagg agcttttcgt tttaactggt
                                                                      540
ggggaatggg ttctgggtgg ttttgcccct tttcttttta gattcaagaa atccatggtg
                                                                      600
aaaggtttgg attcctatga agaaaaggag gataaagtga tcaaggagat ggcagctcag
                                                                      660
atccgtgagg tggagcagag ccgacaggag gtggttcggt ctgtcttaga ggttggtttc
                                                                      720
ceteggagga tecagaceae eteaggeagt geeagaceea gaagaggget etteageace
                                                                      780
tagaagetgg aaagggatga acaggtaaga etattaggga atetettgtt gggaatttga
                                                                      840
catcttagaa cattctgcaa ccttttgcct gggaaatgga aacagatcta atctttacca
                                                                      900
ccctcatggc tcaaggacct catctggcag cctggctcat gtttttcagc caagtagctt
                                                                      960
ccagcttaca gcagccctca aatttggacc tgccaccagc tccagagctt gactggatgg
                                                                     1020
agacaggacc atctctgaca ttcattggcc atcaggtaca aaggataagc aagccagaag
                                                                     1080
agggccaatg gtccctcagg tctcaggacc cctttctcct gattttctac ctattcaagc
                                                                     1140
cactgctgcc tccactgcag gcttttcctt cttccttcac tgttccctag tagtgttctc
                                                                     1200
```

agacetette teaceeteca aagegateet atteacatgt attgacaett aggagtgeca actectaaat ettgeeetet gtagaactea tagtteeaac teaacacagg acattaaata 1320 tcccacaggc atctgaaact aacccccacc actcctatat ttccaatcac tagatgcaga 1380 teettteett tteeatetee catateetgt caacaagegg teaattttaa eetgtetgee 1440 tccattcagc ctttgggcaa tttctactcc cccttcaatc ctgcctcaca aacagaaaat 1500 cattgtacca cttatgattt tactctacac ttcagctgta ttgtgttgct tcgggctttt 1560 gcagttgcca ttgtctaaaa catgctttcc ttccctcatc acctagttta ccttcaactg 1620 ttagctcaaa tgtcactttt tcataaaagg cttatctgaa caggttatct ctatttcaag 1680 tggatgtagc accatgtaaa gttgcaaatg taatttacgt aacttgtgct taatgctctt 1740 ccccaattat atgtatgctg tgagggcaag gttttgctcc cctggcatgt aatagccact 1800 ctacttacag acatetecae tgttatgaet gtgagettee tgaggaeagg gttgtettag 1860 agtgacttac tgtgctttca aagtttaaca tcagctgggg tgcagaatta gcattgtggc 1920 agcagtcaca cccacctctt ttaaagtgtg ctttgtctat cgtttctagg attttttttt 1980 ttaatcatgc ctagacttta actagcactt tttttcccat ttccaactac aggatatacc 2040 aggagttggt aacatccact caggtgccac acctccctgg atgatccaag atgaagaata 2100 cattgctggg aaccaagaaa taggaccatc ctatgaagaa tttcttaaag aaaaggaaaa 2160 acagaagttg aaaaaactcc ccccagaccg agttggggcc aactttgatc acagctccag 2220 gaccagtgca ggctggctgc cctcttttgg ccgtgtctgg aataatggac gccgctggca 2280 2340 gtccagacat caattcaaaa ctgaagctgc agcaatgaag aagcagtcac atacagaaaa aagctaatca tgctctctac caactaccat gaggctaaaa gcaaagtcaa caaaccccta 2400 ttataccttc caccaaattc tttatcattg tctttcttag gaaacagaca tactcattca 2460 tttgatttaa taaagtttta tttttccaaa tgtacagctg gttggacctg taaaaaaaaa 2520 2556 ttaaaagaat cagaaccata aaaaaaaaa aaaaaa

<210> 206

<211> 104

<212> PRT

<213> Homo sapiens

<400> 206

Met Glu Thr Asp Leu Ile Phe Thr Thr Leu Met Ala Gln Gly Pro His 1 5 10 15

Leu Ala Ala Trp Leu Met Phe Phe Ser Gln Val Ala Ser Ser Leu Gln 20 25 30

Gln Pro Ser Asn Leu Asp Leu Pro Pro Ala Pro Glu Leu Asp Trp Met
35 40 45

Glu Thr Gly Pro Ser Leu Thr Phe Ile Gly His Gln Val Gln Arg Ile 50 55 60

Ser Lys Pro Glu Glu Gly Gln Trp Ser Leu Arg Ser Gln Asp Pro Phe 70 75 80

Leu Leu Ile Phe Tyr Leu Phe Lys Pro Leu Leu Pro Pro Leu Gln Ala 85 90 95

Phe Pro Ser Ser Phe Thr Val Pro

<210> 207

<211> 1276

<212> DNA

<213> Homo sapiens

<400> 207

ttcatcttct ccctqtaact gagatttcta ccacaccttt gaacaatgtt ctttcccttc 60 tggttatctq aagactgtcc tgaaaggaag acataagtgt tgtgattagt agaagctttc 120 180 tagtagacca tatttcttct ggattgtaat aaaattgtta gtagctcctt ttactttgtt cctgtctctg gaaagccatt tttgaattgc tgattacttt ggctttaatc agtggtcacc 240 tagaaaaagc tttgtaatca taacacaatg agtaattctt gataaaagtt cagatacaaa 300 aggagcactg taaaactggt aggagctatg gtttaagagc attggaagta gttacaactc 360 aaggattttg gtagaaaggt atgagtttgg tcgaaaaaatt aaaatagtgg caaaataaga 420 tttagttgtg ttttctcaga gccgccacaa gattgaacaa aatgttttct gtttgggcat 480 cctgaggaag ttgtattagc tgttaatgct ctgtgagttt agaaaaagtc ttgatagtaa 540 atctagtttt tgacacagtg catgaactaa gtagttaaat atttacatat tcagaaagga 600 atagtggaaa aggtatcttg gttatgacaa agtcattaca aatgtgacta agtcattaca 660 aatgtgactg agtcattaca gtggaccctc tgggtgcatt gaaaagaatc cgttttatat 720 ccaggtttca gaggacctgg aataataata agctttggat tttgcattca gtgtagttgg 780 attttgggac cttggcctca gtgttattta ctgggattgg catacgtgtt cacaggcaga 840 gtagttgatc tcacacaacg ggtgatctca caaaactggt aagtttctta tgctcatgag 900 ccctcccttt ttttttttaa tttggtgcct gcaactttct taacaatgat tctacttcct 960 gggctatcac attataatgc tcttggcctc ttttttgctg ctgttttgct attcttaaac 1020 ttaggccaag taccaatgtt ggctgttaga agggattctg ttcattcaac atgcaacttt 1080
agggaatgga agtaagttca tttttaagtt gtgttgtcag taggtgcggt gtctagggta 1140
gtgaatcctg taagttcaaa tttatgatta ggtgacgagt tgacattgag attgtccttt 1200
tccctgatca aaaaatgaat aaagcctttt taaacaaaaa aaaaaaaaa 1260
aaaaaaaaaa aaaaaa

<210> 208

<211> 48

<21.2> PRT

<213> Homo sapiens

<400> 208

Met Ile Leu Leu Pro Gly Leu Ser His Tyr Asn Ala Leu Gly Leu Phe 1 5 10 15

Phe Ala Ala Val Leu Leu Phe Leu Asn Leu Gly Gln Val Pro Met Leu 20 25 30

Ala Val Arg Arg Asp Ser Val His Ser Thr Cys Asn Phe Arg Glu Trp
35 40 45

<210> 209

<211> 1108

<212> DNA

<213> Homo sapiens

<400> 209

ggggetegte tgttecagga gecetgaace aaagageage ggagtttgag aageeageag 60 cteggggttc ggcagcagcg gtcccatcgg ctgaagttcg gggggggtgg ggcgccgagc 120 gcgcggggtg ggggggtcc tggtctttgg cttctcgact cggtcctgtt tcgacagcga 180 acatgtcgcg gcctgtcaga aataggaagg ttgttgatta ctcacagttt caggaatctg 240 300 atgatqcaqa tqaaqattat qqaaqaqatt cggqccctcc cactaaqaaa attcgatcat ctccccgaga agctaaaaat aagaggcgat ctggaaagaa ttcacaggaa gatagtgagg 360 actcagaaga caaagatgtg aagaccaaga aggatgattc tcactcagca gaggatagtg 420 aagatgaaaa agaagatcat aaaaatgtgc gccaacaacg gcaggcggca tctaaagcag 480 cttctaaaca gagagagatg ctcatggaag atgtgggcag tgaggaagaa caagaagagg 540 aggatgaggc accattccag gagaaagatt ccggcagcga tgaagatttc ctaatggaag 600 atgatgacga tagtgactat ggcagttcga aaaagaaaaa caaaaagatg gttaagaagt 660 ccaaacctga aagaaaagaa aagaaaatgc ccaaacccag actaaaggct acagtgacgc 720

caagtccagt	gaaaggcaaa	gggaaagtgg	gtcgccccac	agcttcaaag	gcatcaaagg	780
aaaagactcc	ttctcccaaa	gaagaagatg	aggaaccgga	aagcccgcca	gaaaagaaaa	840
catctacaag	cccccaccc	gagaaatctg	gggatgaagg	gtctgaagat	gaagcccctt	900
ctggggagga	ttaaaagtga	tgatggtctg	gggagagatt	ttattaaaaa	aaaaaagaaa	960
aaaaaagaaa	aaagagggag	gaaaaaaaag	aacctactta	agatagaaca	tggttttggc	1020
tatggcttga	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1080
aaaaaaaaa	aaaaaaaaa	aaaaaaa				1108

<210> 210

<211> 240

<212> PRT

<213> Homo sapiens

<400> 210

Met Ser Arg Pro Val Arg Asn Arg Lys Val Val Asp Tyr Ser Gln Phe 1 5 10 15

Gln Glu Ser Asp Asp Ala Asp Glu Asp Tyr Gly Arg Asp Ser Gly Pro 20 25 30

Pro Thr Lys Lys Ile Arg Ser Ser Pro Arg Glu Ala Lys Asn Lys Arg 35 40 45

Arg Ser Gly Lys Asn Ser Gln Glu Asp Ser Glu Asp Ser Glu Asp Lys 50 55 60

Asp Val Lys Thr Lys Lys Asp Asp Ser His Ser Ala Glu Asp Ser Glu 65 70 75 80

Asp Glu Lys Glu Asp His Lys Asn Val Arg Gln Gln Arg Gln Ala Ala 85 90 95

Ser Lys Ala Ala Ser Lys Gln Arg Glu Met Leu Met Glu Asp Val Gly
100 105 110

Ser Glu Glu Glu Glu Glu Glu Glu Asp Glu Ala Pro Phe Gln Glu Lys 115 120 125

Asp Ser Gly Ser Asp Glu Asp Phe Leu Met Glu Asp Asp Asp Asp Ser 130 135 140

Asp Tyr Gly Ser Ser Lys Lys Lys Asn Lys Lys Met Val Lys Lys Ser 145 150 155 160

Lys Pro Glu Arg Lys Glu Lys Lys Met Pro Lys Pro Arg Leu Lys Ala 165 170 175

Thr Val Thr Pro Ser Pro Val Lys Gly Lys Gly Lys Val Gly Arg Pro 180 185 190

Thr Ala Ser Lys Ala Ser Lys Glu Lys Thr Pro Ser Pro Lys Glu Glu
195 200 205

Asp Glu Glu Pro Glu Ser Pro Pro Glu Lys Lys Thr Ser Thr Ser Pro 210 215 220

Pro Pro Glu Lys Ser Gly Asp Glu Gly Ser Glu Asp Glu Ala Pro Ser 225 230 235 240

<210> 211

<211> 2952

<212> DNA

<213> Homo sapiens

<400> 211

asttcraatt cggccttcat ggmctagcac ggactctgcc ttctaaaagt ggaaccccmc 60 agtmccagct gttgcctmag sgtggacasa tcagscgaag ctcctgccct gcctgttggc 120 agemtecatg ggecaagete ttgeetetea ceatectete caggeceagt actgttteca 180 geoggeetet ceaggeecaa etetecetet eagetgtgee tgeoggeeca getectaeet 240 cgcaaaagcc acgttcggcc cagctcctgc ccagctcctg gcagcctttg taaaccccag 300 gateetetaa gteaggeett teaggeeetg cetttggete eeeggtggea tggagaggee 360 cageteetge etgacagegg cetetecagg eccagetett geeteaegtt ggeeteeetg 420 ggccacgttt ccgcctgcct cgcggcagcc ccgacaatcc cggctcctgc ctcccgatgg 480 catctttagg ctcatctcgt gcctcaccac ggcctgcacc aggccacact cctgcctttc 540 ggtggcctcc gcgggcctga ctcctgcgtc ccaatggcct ctttaggccc ggctcgtgcc 600 tegeogegge etectgagge ceaectitge eetictggea geeteteeag geecaggaet 660 tecteaagte ggeetetgee ageeeagtgg cegeeteeeg geeteetete egggeeeage 720 teettgeteg tggetgegee egegggeeea geteetgeet etgaacatee teetgtgaet 780 eggeteetge eeageteeca geggeeteeg tagaceegaa geeteeteeg gteeagetet 840 ccaggeetge etectgeete gtggeggeet teeceggeea tgetegtgee ggetteeegg 900 cageeteeae gageeegget eetgeeteae gegggeeeet eeaqgeeeag etegtgeete 960 geggeggeet etecaggeee ggeteeegee cageeegaeg gegteteeea geeeaagget 1020

cccttcctca acgtcggccc ctctgggccc agctcctgcc tcccgctgat ggcctgtgcg 1080 ggcccacccg aggcggcccg aagtcggcct cgccaggccc agctcctgcc tggcgtaggc 1140 ccctgggggc acggcctctg cccmacagtg gcccctccgg gcccagctcg tgcctcggct 1200 tggccgcctc aggcccagct cctgcctgtg ggcggcctct ctccagaccc ggctctcgcc 1260 teceggeate etetecagge ecagagetgt ttecagttge tagaceattt ttgtgeetge 1320 ctcgttgcag catctccaag cccagctttt gcttttctgc agtttcttga ggccgaactc 1380 catttttcga atggcttatt taggcccagc tcttgcgttt gcattgtccc ttcaggccca 1440 gaactttctc acgtcatcgt caccaggcct agcttctgca tctggtcagc cttttaaggc 1500 ccagcttttg cctcataaac tcagctcctg tttaatggcg gcctcccagg tcccaccttc 1560 tgccttcctg tgtccactcc aggcccagct actgccttgg tgctcttttt aagtcaataa 1620 ttttttccag tcgacctctc caggcccaac ttgtacctct gagtgtcctc taggatctca 1680 gettetgeet aacaatgace tetttagaet cageteattt teaetgetae atetteaage 1740 cattetectg cetettggca acctetagtg geocagette tgceteacag cageetetee 1800 atgcatgcct agetectgce tetttaggga aettacagge etaaaaettt ettaatttgg 1860 getteteaag eccageteet geettetgtt gggetetaea ggeetggeat eateetttea 1920 acageetett taggeeegge eteteeagga eeaaaaeate ettaagteaa eeteaeeagg 1980 eceggeteet gteteettge ggeeteeaga ggeegagett ttgeetgeea atggeetete 2040 tagececage tittgeetge caatggeete tetageeeca gettetgeet tieateggte 2100 tetecagget tageteettt etetteaegg eetetgeagg eetaaaaett eeteaatttg 2160 gcatctccag gcccagctcc tgcctccagg ccgcctctgc aggcctatct caagccttac 2220 aacageetet ttaeceecag eteetttete egaettgtet eteeaggeet agaaetteet 2280 catgittace teaceaggee caecteetge ettecagtag egictacaag titiggeteet 2340 gcctcccatg gatctctcca ggccccaaac tttctcaagt caacctcacc aggcccggct 2400 tetecettte ateageette caaaggeeag ettttgette atgtetgeet teegagteee 2460 ageteetgtt ttatggeage eteetgagge ceageteetg ceteetagtg geetettttg 2520 gcccaactct ttcctcacca gggccttcca gaccacgttc ctgcctttta gcagccacta 2580 caggeceage tttgegteet tteaagagte etgeeteaca gtggeeteec aagggeaact 2640 ttetgeetea tgteageete ttgtgeeetg gteetgette etggtagaet etgeaggeee 2700 tgctcctgcc ttacgttgcc ccttttataa agatccagtt cctgcctcct ggctgcctct 2760 atgageccaa atectgeeta acaacaacet gtttttgeec ageteetget teetggeage 2820

ctccttaggc caaaaatttc cttcagttga cctctccagg cccagctcct gcctctcagc	2880
accetettta ggeecagete etgeettaat aaatttgaat aaattattgt tatgtgaaaa	2940
aaaaaaaaa aa	2952
<210> 212 <211> 73 <212> PRT <213> Homo sapiens	
<400> 212	
Met Ala Tyr Leu Gly Pro Ala Leu Ala Phe Ala Leu Ser Leu Gln Ala 1 5 10 15	
Gln Asn Phe Leu Thr Ser Ser Ser Pro Gly Leu Ala Ser Ala Ser Gly 20 25 30	
Gln Pro Phe Lys Ala Gln Leu Leu Pro His Lys Leu Ser Ser Cys Leu 35 40 45	
Met Ala Ala Ser Gln Val Pro Pro Ser Ala Phe Leu Cys Pro Leu Gln 50 55 60	
Ala Gln Leu Leu Pro Trp Cys Ser Phe 65 70	
<210> 213 <211> 1294 <212> DNA <213> Homo sapiens	
<400> 213	
gtgccccgcc gctgctgtca cccccggccg ctgctgccct ccccgccgag gttctactgc	60
totoottott aagaagggtg ggaggcacto ggtototoco cacacototo gootgaggco	120
aggegecagg tgtegeetga agecagacag ceggtttggg agegageetg aggteaacea	180
atcaatggct cagacagata agccaacatg catcccgccg gagctgccga aaatgctgaa	240
ggagtttgcc aaagccgcca ttcgggcgca gccgcaggac ctcatccagt ggggggccga	300 360
ttattttgag geeetgteee gtggagagae geeteeggtg agagageggt etgagegagt	420
cgctttgtgt aactgggcag agctaacacc tgagctgtta aagatcctgc attctcaggt	480
tgctggcaga ctgatcatcc gtgcagagga gctggcccag atgtggaaag tggtgaatct	
cccaacagat ctgtttaata gtgtgatgaa tgtgggtcgc ttcacggagg agatcgagtg	540

600

gctgaagttt ttagcccttg cttgcagcgc tctgggagtt gtaagttagc ttgactgttt

tttgttcctg aaggggaaat ctccctctgg gcctggaagg gcagtgcatc tatacacgcg 660 gtcaactctg cagggctgat gataaacatg cctcttctcc tattgtcctt ctcctcta 720 aagcaaggtc atttctgtgc tcgtcaggca gtggcagggg ttgggaggag gagagaggga 780 aacactgtgg tcaggctctg gggagagttg actacagtgt agctcttgga ttatttatga 840 atattgccct cagatttatt ttcactctgc tccttccatt catattccca gagacaacca 900 agagccgact gtagaaaaag acttccagac acctagaata tatatcaata gacactgttt 960 aaaaggggta caatcttata gaaaactatg taataaacag aattggatgc agaactcaga 1020 cataagaaag caaaaacaaa gagagatgag gctatttctg aatttagtca tgacatctcc 1080 atggatacag gatgttcata cagatttatg ccttttccaa atttgacttg tttgatattg 1140 gaaaaacaat tttactgttt tgaagccaaa gatgttgaaa tcagtttata tgtatagata 1200 tttaaagctt gggtatctta tatgtggact tacattgtta aacattgtta aaataaaatg 1260 aatcaaaaac atggttttta aaaaaaaaaa aaaa 1294

<210> 214

<211> 134

<212> PRT

<213> Homo sapiens

<400> 214

Met Ala Gln Thr Asp Lys Pro Thr Cys Ile Pro Pro Glu Leu Pro Lys

1 10 15

Met Leu Lys Glu Phe Ala Lys Ala Ala Ile Arg Ala Gln Pro Gln Asp 20 25 30

Leu Ile Gln Trp Gly Ala Asp Tyr Phe Glu Ala Leu Ser Arg Gly Glu
35 40 45

Thr Pro Pro Val Arg Glu Arg Ser Glu Arg Val Ala Leu Cys Asn Trp 50 55 60

Ala Glu Leu Thr Pro Glu Leu Leu Lys Ile Leu His Ser Gln Val Ala 65 70 75 80

Gly Arg Leu Ile Ile Arg Ala Glu Glu Leu Ala Gln Met Trp Lys Val 85 90 95

Val Asn Leu Pro Thr Asp Leu Phe Asn Ser Val Met Asn Val Gly Arg
100 105 110

Ala Leu Gly Val Val Ser 130

<210> 215 <211> 1354 <212> DNA <213> Homo sapiens

<400> 215

<400> 215 ttttttttt	tttttgtata	gcaatggaag	aatggcctcg	tacacacgct	agagtggaaa	60
gtcccaggca	ccaaggcttc	ccaccctaga	agcaagctca	gggctttctc	ttcatccttc	120
cagggagagc	actgagagat	gatggggggt	tggcaggggg	catcccttgg	attatcattc	180
tccagactta	ggcttggagg	ggagggtgga	gaagtggatt	tctgggtctg	gtccacctca	240
cctgttttct	cagcttctca	cccactcaga	gctcttgccc	caattctccc	tttcatcctg	300
cagatccctg	cgcctgactc	atctcaggcg	aggaggcaaa	tcatcagtta	tctcaggcag	360
cagcaggacg	agactccttt	ctgattttct	ccttccctgg	ccacctctcc	ccaccccata	420
ttcactcatt	ccaaacctct	ggcctcccca	gcaactctac	atcctcatct	ccacctgttc	480
cctctctcga	tgctgtgggt	gacgttggag	agggaagccc	ggagccctga	cctagtccgg	540
cgtggagaga	ggaatggaaa	gcagtgtccc	ttttgagaag	gcaaatttac	agctggcttt	600
tgtaatccta	gctattttt	gtttgtttgc	taagtctttg	atagtcccca	gtgtggtttg	660
tctgccagtg	atctcagcac	caccagagag	cttgttagaa	atgcggcatc	ccaaccccac	720
cacagecete	ccaagtcaga	tactgccacc	tcacgaggcc	ccccagggat	ccacaagttc	780
attaaagttt	caggaatcca	attctactac	aaaatataca	tttataatta	ggaaaaggat	840
agttctttta	aatggtagaa	cttccccaat	gagtcagcta	cctgtatttc	tggcctgtca	900
ggctagacac	tggagaccat	tctgcataga	attgtacctc	cctgaactac	tgttaggcct	960
tagggtgggg	attcatcttt	cccttctccc	caccatggag	acaaaatcct	cttaaacata	1020
tccgggcctg	gcatggtggy	tmacgcctcg	gcctcccaaa	gttctgggat	tacaggcatg	1080
agccaytgtg	cccagccacc	cgtcacctgy	tagtgtagac	aaatgaataa	acttagacaa	1140
gcacatgggc	tccctctata	ccagcctaga	ctttgacact	gaaactccat	gagtctgggc	1200
cacttcctgc	cacaagtgtg	aatggaaaat	aaatcatttt	ccaaggaacc	caaaatcact	1260
aagccaagga	gtcaagctga	gaactttcag	gcaaacctgc	ccccatttt	atttcctaaa	1320
taagagagct	acaaagatta	aaaaaaaaa	aaaa			1354

<210> 216 <211> 153 <212> PRT <213> Homo sapiens <400> 216 Met Glu Ser Ser Val Pro Phe Glu Lys Ala Asn Leu Gln Leu Ala Phe Val Ile Leu Ala Ile Phe Cys Leu Phe Ala Lys Ser Leu Ile Val Pro Ser Val Val Cys Leu Pro Val Ile Ser Ala Pro Pro Glu Ser Leu Leu 40 Glu Met Arg His Pro Asn Pro Thr Thr Ala Leu Pro Ser Gln Ile Leu 55 Pro Pro His Glu Ala Pro Gln Gly Ser Thr Ser Ser Leu Lys Phe Gln 70 Glu Ser Asn Ser Thr Thr Lys Tyr Thr Phe Ile Ile Arg Lys Arg Ile Val Leu Leu Asn Gly Arg Thr Ser Pro Met Ser Gln Leu Pro Val Phe 100 105 Leu Ala Cys Gln Ala Arg His Trp Arg Pro Phe Cys Ile Glu Leu Tyr 115 120 Leu Pro Glu Leu Leu Gly Leu Arg Val Gly Ile His Leu Ser Leu 135 Leu Pro Thr Met Glu Thr Lys Ser Ser 145 150 <210> 217 <211> 1628 <212> DNA <213> Homo sapiens <400> 217 ccccggtccc cgccgcagcc gctgcatcct ccgtgcccgg cctgagctgg agtcccccgc geocceegeg treegeoogg coatggetge ggtggegetg atgecacege egetgetget getgetgetg ttggegtege egecegeege eteegegeeg teegeeegeg atecettege

cccccagete ggggacacge agaactgeca getgeggtge egegacegeg aceteggece

60

120

180

240

300 gcagccctcg caggcgggc tggagggcgc ctccgagtct ccctatgaca gagccgttct gatcageget tgcgagcgtg gctgccgcct cttctccatc tgccgatttg tggccagaaq 360 ctccaagccc aatgccaccc aaactgagtg tgaagcagcc tgcgtggaag cctatgtgaa 420 480 ggaggcagar cagcaggcct gtagccacgg ctgctggagc cagcccgcgg agcctgagcc ggarcagaag agaaaggtcc tggaggctcc aagtggggcc ctctccctct tggacttgtt 540 ttccaccctc tgcaatgacc ttgtcaactc agcccaggga tttgtctcct ccacctggac 600 atactacttg cagactgaca atgggaaagt ggtggtgttt cagactcagc ccatagtgga 660 gageetegge ttecaggggg geegtetgea gegegtggag gtgaeetgge gaggeteeea 720 ccctgaagcc ctggaggtgc acgtggaccc tgtaggcccc ctggacaagg tgaggaaggc 780 caagatccga gtcaagacca gcagcaaggc caaggtggag tctgaagagc cacaggacaa 840 tgacttecte agttgcatgt eeeggegete gggtetgeet egetggatee tggeetgetg 900 cetettecte teegtgetgg tgatgetgtg getgagetge teeaccetgg tgacegegee 960 tggccagcac ctcaagttcc agcctctgac cctggagcag cacaagggct tcatgatgga 1020 georgattgg cocctgtace egeogeogte ceaegeotgt gaggacagee taccacceta 1080 caagetgaag etggacetga ecaagetgta ggeetecaet ggeeceatea etgecaaetg 1140 cagggggccc ctcgggcctc acttgccctg agcccaggag tccaagggca gggtgggtcc 1200 agegttgage cectecace ccaaateett ceteteetee cagteccace cettgeecca 1260 cggagtcctg gggacgcagt gccccagctg ggaagagggc gggatcgggc actggttcct 1320 ccttgtcccc gctttcttgg gggcttgcta ctttttgtct tctattgtgt ggctttctga 1380 gtatttgaac cccagtcctg tgtcaccttc ctttttcctt ctatgtcccc tctctgcggg 1440 gggggegetg aggetgaggg ggagetgegt ettgetaggg ettececett etceceatee 1500 cggtctccag agacccagct tctgagagac agggtgtggg catctccatg cccctataaa 1560 1620 gcgtgcctgg ggcttgtctg gggctgggga ggaataaacc atgtatataa aagaaaaaaa 1628 aaaaaaaa

```
<210> 218
<211> 342
```

<212> PRT

<213> Homo sapiens

<400> 218

Met Ala Ala Val Ala Leu Met Pro Pro Pro Leu Leu Leu Leu Leu 1 5 10 15

Leu	Ala	Ser	Pro 20	Pro	Ala	Ala	Ser	Ala 25	Pro	Ser	Ala	Arg	Asp 30	Pro	Phe
Ala	Pro	Gln 35	Leu	Gly	Asp	Thr	Gln 40	Asn	Cys	Gln	Leu	Arg 45	Cys	Arg	Asp
Arg	Asp 50	Leu	Gly	Pro	Gln	Pro 55	Ser	Gln	Ala	Gly	Leu 60	Glu	Gly	Ala	Ser
Glu 65	Ser	Pro	Tyr	Asp	Arg 70	Ala	Val	Leu	Ile	Ser 75	Ala	Cys	Glu	Arg	Gly 80
Cys	Arg	Leu	Phe	Ser 85	Ile	Cys	Arg	Phe	Val 90	Ala	Arg	Ser	Ser	Lys 95	Pro
Asn	Ala	Thr	Gln 100	Thr	Glu	Cys	Glu	Ala 105	Ala	Cys	Val	Glu	Ala 110	Tyr	Val
Lys	Glu	Ala 115	Glu	Gln	Gln	Ala	Cys 120	Ser	His	Gly	Cys	Trp 125	Ser	Gln	Pro
Ala	Glu 130	Pro	Glu	Pro	Glu	Gln 135	Lys	Arg	Lys	Val	Leu 140	Glu	Ala	Pro	Ser
Gly 145	Ala	Leu	Ser	Leu	Leu 150	Asp	Leu	Phe	Ser	Thr 155	Leu	Cys	Asn	Asp	Leu 160
Val	Asn	Ser	Ala	Gln 165	Gly	Phe	Val	Ser	Ser 170	Thr	Trp	Thr	Tyr	Tyr 175	Leu
Gln	Thr	Asp	Asn 180	Gly	Lys	Val	Val	Val 185	Phe	Gln	Thr	Gln	Pro 190	Ile	Val
Glu	Ser	Leu 195	Gly	Phe	Gln	Gly	Gly 200	Arg	Leu	Gln	Arg	Val 205	Glu	Val	Thr
Trp	Arg 210	Gly	Ser	His	Pro	Glu 215	Ala	Leu	Glu	Val	His 220	Val	Asp	Pro	Val
Gly 225	Pro	Leu	Asp	Lys	Val 230	Arg	Lys	Ala	Lys	Ile 235	Arg	Val	Lys	Thr	Ser 240
Ser	Lys	Ala	Lys	Val 245	Glu	Ser	Glu	Glu	Pro 250	Gln	Asp	Asn	Asp	Phe 255	Leu

Ser Cys Met Ser Arg Arg Ser Gly Leu Pro Arg Trp Ile Leu Ala Cys Cys Leu Phe Leu Ser Val Leu Val Met Leu Trp Leu Ser Cys Ser Thr 280 Leu Val Thr Ala Pro Gly Gln His Leu Lys Phe Gln Pro Leu Thr Leu 290 295 Glu Gln His Lys Gly Phe Met Met Glu Pro Asp Trp Pro Leu Tyr Pro 305 310 315 Pro Pro Ser His Ala Cys Glu Asp Ser Leu Pro Pro Tyr Lys Leu Lys 325 330 Leu Asp Leu Thr Lys Leu 340 <210> 219 <211> 671 <212> DNA <213> Homo sapiens <400> 219 tegggeggeg gagtageaag tggeeatggg gageeteage ggtetgegee tggeaqeagg 60 aagctgtttt aggttatgtg aaagagatgt ttcctcatct ctaaggctta ccagaagctc 120 tgatttgaag agaataaatg gattttgcac aaaaccacag gaaagtcccg gagctccatc 180 ccgcacttac aacagagtgc ctttacacaa acctacggat tggcagaaaa agatcctcat 240 atggtcaggt cgcttcaaaa aggaagatga aatcccagag actgtctcgt tggagatgct 300 tgatgctgca aagaacaaga tgcgagtgaa gatcagctat ctaatgattg ccctgacggt 360 ggtaggatgc atcttcatgg ttattgaggg caagaaggct gcccaaagac acgagacttt 420 aacaagcttg aacttagaaa agaaagctcg tctgaaagag gaaqcaqcta tqaaqqccaa 480 aacagagtag cagaggtatc cgtgttggct ggattttgaa aatccaggaa ttatgttata 540 acgtgcctgt attaaaaagg atgtggtatg aggatccatt tcataaagta tgatttgccc 600 aaacctgtac catttccgta tttctgctgt agaagtagaa ataaattttc ttaaataaaa 660 aaaaaaaaa a 671 <210> 220 <211> 154 <212> PRT <213> Homo sapiens

20

Met 1	Gly	Ser	Leu	Ser 5	Gly	Leu	Arg	Leu	Ala 10	Ala	Gly	Ser	Cys	Phe 15	Arg	
Leu	Cys	Glu	Arg 20	Asp	Val	Ser	Ser	Ser 25	Leu	Arg	Leu	Thr	Arg 30	Ser	Ser	
Asp	Leu	Lys 35	Arg	Ile	Asn	Gly	Phe 40	Cys	Thr	Lys	Pro	Gln 45	Glu	Ser	Pro	
Gly	Ala 50	Pro	Ser	Arg	Thr	Tyr 55	Asn	Arg	Val	Pro	Leu 60	His	Lys	Pro	Thr	
Asp 65	Trp	Gln	Lys	Lys	Ile 70	Leu	Ile	Trp	Ser	Gly 75	Arg	Phe	Lys	Lys	Glu 80	
Asp	Glu	Ile	Pro	Glu 85	Thr	Val	Ser	Leu	Glu 90	Met	Leu	Asp	Ala	Ala 95	Lys	
Asn	Lys	Met	Arg 100	Val	Lys	Ile	Ser	Tyr 105	Leu	Met	Ile	Ala	Leu 110	Thr	Val	
Val	Gly	Cys 115	Ile	Phe	Met	Val	Ile 120	Glu	Gly	Lys	Lys	Ala 125	Ala	Gln	Arg	
His	Glu 130	Thr	Leu	Thr	Ser	Leu 135	Asn	Leu	Glu	Lys	Lys 140	Ala	Arg	Leu	Lys	
Glu 145	Glu	Ala	Ala	Met	Lys 150	Ala	Lys	Thr	Glu							
<210 <211 <212 <213	L> 1 2> I	221 L056 DNA Homo	sapi	iens												
<400		221 gga g	gttad	cttgt	t c	cagco	ctcct	: gtg	gtgga	actg	cttt	ccta	atc a	aaago	cacctt	60
agad	catgo	cac g	gagga	aagaa	aa ta	ataca	accto	tct	tcag	gtgg	gata	agcco	ag o	cacca	agacac	120
ttad	ccaga	aaa t	tgtct	gtct	t c	caaca	aato	g tto	cagga	agca	tgct	gtct	tg t	gate	ggtgat	180
ttca	atgto	gtt t	ttctg	gcato	aa aa	attat	taad	gg	catco	catt	ttct	tggg	gag t	caag	gttgtt	240
gcag	ggtgt	cc a	accat	tgcg	ga to	gcago	cagca	a aga	aaaa	actc	atco	caaca	aag a	agago	ggcact	300

360

gctaaacttt acagaatgga agagaagctg tgcccttcag atgaaatatt gccaagcctt

catgcaaaac tcattaagtt caggatttta tcactggcag cttgaggaag attaaaggaa 420 gctatgatta ctgggtgggg ttgtctcagg atggacacag cggacqctqq ctttqqcaaq 480 atggeteete teetteteet ggeetgttge cageagagag ateceagtea getaaceaag 540 tetgtggata egtgaaaage aatteeette tttegtetaa etgeageaeg tggaagtatt 600 ttatctgtga gaagtatgcg ttgagatcct ctgtctgaaa gaaattgtgt tcaaagtgtt 660 ctattacact gttatttgga gcatgccatt ggaaaaccca ccccacccc ccctcaaaaa 720 aacagaacag taaaccaaaa tgtgggccat gaaattagca acctgggact caataataca 780 cttgggaata ttcttccaca ccgtccagat ttcatttgat gttgttcaca ttgcaagagt 840 aaaacttatt tagagctaca gaagacaaaa ccctgaagag ttaagaacaa acgcaaggaa 900 ataattttta ttgtttaaag cccggaatga ctgtaacttt cacacaaggt acgcatctat 960 gtttttgggg gaggtgatgt agttacagct gactaatatt tttaaaataa ataaataaat 1020 ttggccttta aaactcaaaa aaaaaaaaa aaaaaa 1056

<210> 222

<211> 116

<212> PRT

<213> Homo sapiens

<400> 222

Met His Glu Glu Glu Ile Tyr Thr Ser Leu Gln Trp Asp Ser Pro Ala 1 5 10 15

Pro Asp Thr Tyr Gln Lys Cys Leu Ser Ser Asn Lys Cys Ser Gly Ala
20 25 30

Cys Cys Leu Val Met Val Ile Ser Cys Val Phe Cys Met Gly Leu Leu 35 40 45

Thr Ala Ser Ile Phe Leu Gly Val Lys Leu Leu Gln Val Ser Thr Ile 50 55 60

Ala Met Gln Gln Gln Glu Lys Leu Ile Gln Gln Glu Arg Ala Leu Leu 65 70 75 80

Asn Phe Thr Glu Trp Lys Arg Ser Cys Ala Leu Gln Met Lys Tyr Cys 85 90 95

Gln Ala Phe Met Gln Asn Ser Leu Ser Ser Gly Phe Tyr His Trp Gln
100 105 110

```
Leu Glu Glu Asp
        115
<210> 223
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature <222> (2)..(2)
<223> n is a, c, g, or t
<400> 223
anattagatc tgtttccatt tcccaggca
                                                                             29
<210> 224
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2) ...(2)
<223> n is a, c, g, or t
<400> 224
                                                                             29
tngcgtgaga tcaactactc tgcctgtga
<210> 225
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2) ...(2)
<223> n is a, c, g, or t
<400> 225
                                                                            29
anacaggacc gagtcgagaa gccaaagac
<210> 226
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
```

<223> n is a, c, g, or t

```
<400> 226
                                                                            29
angggacaat gcaaacgcaa gagctgggc
<210> 227
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature <222> (2)..(2)
<223> n is a, c, g, or t
<400> 227
angaggcatg tttatcatca gccctgcag
                                                                            29
<210> 228
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 228
                                                                            29
anatttgcct tctcaaaagg gacactgct
<210> 229
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
<400> 229
                                                                            29
gntgggactg ggaggagagg aaggatttg
<210> 230
<211> 29
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2)..(2)
<223> n is a, c, g, or t
```

/400>		
gnaaco	gccat aagcatgtcc ttctaatgt	29
<210>	231	
<211>	29	
<212>		
<213>	Homo sapiens	
<220>		
<221>	misc_feature	
<222>	(2)(2)	
<223>	n is a, c, g, or t	
<400>	231	
	aatca ccatcacaag acagcatgo	29
CIILGAa	ialea eealeacaay acaycalyo	22