Principes de fonctionnement des machines binaires

2020-2021

Matthieu Picantin

- numération et arithmétique
- numération et arithmétique en machine
- codes, codages, compression,
- contrôle d'erreur (détection, correction)
- logique et calcul propositionnel
- circuits numériques

Fig. 1-Schematic diagram of a general communication system.

 juste assez de redondance pour que le récepteur puisse détecter d'éventuelles erreurs & demander une retransmission

Correction

 suffisamment de redondance pour que le récepteur puisse corriger d'éventuelles erreurs

Redondance et mots de code

- mot de code (*n* bits) = données (*m* bits) + contrôle (*r* bits)
- 2^m mots de code (légaux) parmi 2ⁿ mots possibles

Fig. 1-Schematic diagram of a general communication system.

- juste assez de redondance pour que le récepteur puisse détecter d'éventuelles erreurs & demander une retransmission
- adapté sur canal fiable

Correction

- suffisamment de redondance pour que le récepteur puisse corriger d'éventuelles erreurs
- adapté sur canal bruité

Redondance et mots de code

- mot de code (n bits) = données (m bits) + contrôle (r bits)
- 2^m mots de code (légaux) parmi 2ⁿ mots possibles

Fig. 1-Schematic diagram of a general communication system.

- juste assez de redondance pour que le récepteur puisse détecter d'éventuelles erreurs & demander une retransmission
- adapté sur canal fiable

Correction

- suffisamment de redondance pour que le récepteur puisse corriger d'éventuelles erreurs
- adapté sur canal bruité

Redondance et mots de code

- mot de code (*n* bits) = données (*m* bits) + contrôle (*r* bits)
- ◆ 2^m mots de code (légaux) parmi 2ⁿ mots possibles

Fig. 1-Schematic diagram of a general communication system.

- juste assez de redondance pour que le récepteur puisse détecter d'éventuelles erreurs & demander une retransmission
- adapté sur canal fiable

Correction

- suffisamment de redondance pour que le récepteur puisse corriger d'éventuelles erreurs
- adapté sur canal bruité

Redondance et mots de code

- mot de code (*n* bits) = données (*m* bits) + contrôle (*r* bits)
- 2^m mots de code (légaux) parmi 2ⁿ mots possibles

Fig. 1-Schematic diagram of a general communication system.

- juste assez de redondance pour que le récepteur puisse détecter d'éventuelles erreurs & demander une retransmission
- adapté sur canal fiable

Correction

- suffisamment de redondance pour que le récepteur puisse corriger d'éventuelles erreurs
- adapté sur canal bruité

Redondance et mots de code

- mot de code (n bits) = données (m bits) + contrôle (r bits)
- ◆ 2^m mots de code (légaux) parmi 2ⁿ mots possibles

A Mathematical Theory of Communication by C. E. Shannon (1948)

- nombre de bits différents entre 2 mots
- somme des 1 du XOR des 2 mots
- nombre minimum d'erreurs simples pour passer d'un mot à l'autre

Distance de Hamming d'un code distance minimale entre deux mots du code:

 $d_H(\mathcal{C}) = \min \left\{ d_H(u, v) : u \neq v \in \mathcal{C} \right\}$

Qualité d'un code

- un code \mathcal{C} vérifiant $d_H(\mathcal{C}) \geq k+1$ permet de détecter k erreurs
- un code C vérifiant $d_H(C) \ge 2k + 1$ permet de corriger k erreur

L'ajout d'un bit de parité produit un code de distance de Hamming 2

- nombre de bits différents entre 2 mots
- somme des 1 du XOR des 2 mots
- nombre minimum d'erreurs simples pour passer d'un mot à l'autre

Distance de Hamming d'un code

distance minimale entre deux mots du code:

$$\textit{d}_{\textit{H}}(\mathcal{C}) = \min \left\{ \textit{d}_{\textit{H}}(\textit{u}, \textit{v}) : \textit{u} \neq \textit{v} \in \mathcal{C} \right\}$$

Qualité d'un code

- un code C vérifiant $d_H(C) \ge k + 1$ permet de détecter k erreurs
- un code \mathcal{C} vérifiant $d_H(\mathcal{C}) \geq 2k+1$ permet de corriger k erreurs

L'ajout d'un bit de parité produit un code de distance de Hamming 2

- nombre de bits différents entre 2 mots
- somme des 1 du XOR des 2 mots
- nombre minimum d'erreurs simples pour passer d'un mot à l'autre

Distance de Hamming d'un code

distance minimale entre deux mots du code:

$$\textit{d}_{\textit{H}}(\mathcal{C}) = \min \left\{ \textit{d}_{\textit{H}}(\textit{u}, \textit{v}) : \textit{u} \neq \textit{v} \in \mathcal{C} \right\}$$

Qualité d'un code

- un code \mathcal{C} vérifiant $d_H(\mathcal{C}) \geq k+1$ permet de détecter k erreurs
- un code C vérifiant $d_H(C) \ge 2k + 1$ permet de corriger k erreurs

L'ajout d'un bit de parité produit un code de distance de Hamming 2

28 30/09/2020

- nombre de bits différents entre 2 mots
- somme des 1 du XOR des 2 mots
- nombre minimum d'erreurs simples pour passer d'un mot à l'autre

Distance de Hamming d'un code

distance minimale entre deux mots du code:

$$\textit{d}_{\textit{H}}(\mathcal{C}) = \min \left\{ \textit{d}_{\textit{H}}(\textit{u}, \textit{v}) : \textit{u} \neq \textit{v} \in \mathcal{C} \right\}$$

Qualité d'un code

- un code C vérifiant $d_H(C) \ge k+1$ permet de détecter k erreurs
- un code C vérifiant $d_H(C) \ge 2k + 1$ permet de corriger k erreurs

L'ajout d'un bit de parité produit un code de distance de Hamming 2

28 30/09/2020

- nombre de bits différents entre 2 mots
- somme des 1 du XOR des 2 mots
- nombre minimum d'erreurs simples pour passer d'un mot à l'autre

Distance de Hamming d'un code

distance minimale entre deux mots du code:

$$d_H(\mathcal{C}) = \min \left\{ d_H(u, v) : u \neq v \in \mathcal{C} \right\}$$

Qualité d'un code

- un code C vérifiant $d_H(C) \ge k+1$ permet de détecter k erreurs
- un code C vérifiant $d_H(C) \ge 2k + 1$ permet de corriger k erreurs

Un code 1-détecteur

L'ajout d'un bit de parité produit un code de distance de Hamming 2

- nombre de bits différents entre 2 mots
- somme des 1 du XOR des 2 mots
- nombre minimum d'erreurs simples pour passer d'un mot à l'autre

Distance de Hamming d'un code

distance minimale entre deux mots du code:

$$d_H(\mathcal{C}) = \min \left\{ d_H(u, v) : u \neq v \in \mathcal{C} \right\}$$

Qualité d'un code

- un code C vérifiant $d_H(C) \ge k + 1$ permet de détecter k erreurs
- un code C vérifiant $d_H(C) \ge 2k + 1$ permet de corriger k erreurs

Un code 1-détecteur

L'ajout d'un bit de parité produit un code de distance de Hamming 2

- nombre de bits différents entre 2 mots
- somme des 1 du XOR des 2 mots
- nombre minimum d'erreurs simples pour passer d'un mot à l'autre

Distance de Hamming d'un code

distance minimale entre deux mots du code:

$$d_H(\mathcal{C}) = \min \left\{ d_H(u, v) : u \neq v \in \mathcal{C} \right\}$$

Qualité d'un code

- un code C vérifiant $d_H(C) \ge k + 1$ permet de détecter k erreurs
- un code C vérifiant $d_H(C) \ge 2k + 1$ permet de corriger k erreurs

Un code 1-détecteur

L'ajout d'un bit de parité produit un code de distance de Hamming 2

- nombre de bits différents entre 2 mots
- somme des 1 du XOR des 2 mots
- nombre minimum d'erreurs simples pour passer d'un mot à l'autre

Distance de Hamming d'un code

distance minimale entre deux mots du code:

$$d_H(\mathcal{C}) = \min \left\{ d_H(u, v) : u \neq v \in \mathcal{C} \right\}$$

Qualité d'un code

- un code C vérifiant $d_H(C) \ge k + 1$ permet de détecter k erreurs
- un code \mathcal{C} vérifiant $d_H(\mathcal{C}) \geq 2k+1$ permet de corriger k erreurs

Un code 1-détecteur

L'ajout d'un bit de parité produit un code de distance de Hamming 2

Un code 2-correcteur

Pouvoir corriger toute erreur simple pour *m* bits de données demande r bits de contrôle avec $m + r < 2^r$

picantin@irif.fr Amphi#05 28 30/09/2020 7/11

Pouvoir corriger toute erreur simple pour *m* bits de données demande r bits de contrôle avec $m + r < 2^r$

En pratique : la méthode de Hamming (condition suffisante)

bits numérotés de 1 à n = m + r de gauche à droite

Pouvoir corriger toute erreur simple pour m bits de données demande r bits de contrôle avec $m+r<2^r$

- bits numérotés de 1 à n = m + r de gauche à droite
- ◆ r bits de contrôle aux positions puissances de 2 (1, 2, 4, 8, 16, ...)

Codes correcteurs d'erreur simple

En théorie: de l'espace pour les boules (condition nécessaire)

Pouvoir corriger toute erreur simple pour m bits de données demande r bits de contrôle avec $m+r<2^r$

- bits numérotés de 1 à n = m + r de gauche à droite
- r bits de contrôle aux positions puissances de 2 (1, 2, 4, 8, 16, ...)
- m bits de données aux autres positions (3,5-7,9-15,17,18...)

Codes correcteurs d'erreur simple

En théorie: de l'espace pour les boules (condition nécessaire)

Pouvoir corriger toute erreur simple pour m bits de données demande r bits de contrôle avec $m+r<2^r$

- bits numérotés de 1 à n = m + r de gauche à droite
- ◆ r bits de contrôle aux positions puissances de 2 (1, 2, 4, 8, 16, ...)
- • m bits de données aux autres positions (3,5−7,9−15,17,18...)
- bits de contrôle = calcul de parité sur les bits de données aux positions dont la décomposition en somme de puissances de 2 fait intervenir la position du bit de contrôle concerné

Pouvoir corriger toute erreur simple pour m bits de données demande r bits de contrôle avec $m+r<2^r$

- bits numérotés de 1 à n = m + r de gauche à droite
- r bits de contrôle aux positions puissances de 2 (1, 2, 4, 8, 16, ...)
- • m bits de données aux autres positions (3,5−7,9−15,17,18...)
- bits de contrôle = calcul de parité sur les bits de données aux positions dont la décomposition en somme de puissances de 2 fait intervenir la position du bit de contrôle concerné

Pouvoir corriger toute erreur simple pour m bits de données demande r bits de contrôle avec $m+r<2^r$

- bits numérotés de 1 à n = m + r de gauche à droite
- r bits de contrôle aux positions puissances de 2 (1, 2, 4, 8, 16, ...)
- • m bits de données aux autres positions (3,5−7,9−15,17,18...)
- bits de contrôle = calcul de parité sur les bits de données aux positions dont la décomposition en somme de puissances de 2 fait intervenir la position du bit de contrôle concerné

Pouvoir corriger toute erreur simple pour m bits de données demande r bits de contrôle avec $m+r<2^r$

- bits numérotés de 1 à n = m + r de gauche à droite
- r bits de contrôle aux positions puissances de 2 (1, 2, 4, 8, 16, ...)
- • m bits de données aux autres positions (3,5−7,9−15,17,18...)
- bits de contrôle = calcul de parité sur les bits de données aux positions dont la décomposition en somme de puissances de 2 fait intervenir la position du bit de contrôle concerné

Pouvoir corriger toute erreur simple pour m bits de données demande r bits de contrôle avec $m+r<2^r$

- bits numérotés de 1 à n = m + r de gauche à droite
- r bits de contrôle aux positions puissances de 2 (1, 2, 4, 8, 16, ...)
- • m bits de données aux autres positions (3,5−7,9−15,17,18...)
- bits de contrôle = calcul de parité sur les bits de données aux positions dont la décomposition en somme de puissances de 2 fait intervenir la position du bit de contrôle concerné
- détection du bit erroné (et correction) par somme des positions des bits de contrôle non conformes à la parité

Pouvoir corriger toute erreur simple pour m bits de données demande r bits de contrôle avec $m+r<2^r$

- bits numérotés de 1 à n = m + r de gauche à droite
- • r bits de contrôle aux positions puissances de 2 (1, 2, 4, 8, 16, ...)
- • m bits de données aux autres positions (3,5−7,9−15,17,18...)
- bits de contrôle = calcul de parité sur les bits de données aux positions dont la décomposition en somme de puissances de 2 fait intervenir la position du bit de contrôle concerné
- détection du bit erroné (et correction) par somme des positions des bits de contrôle non conformes à la parité

00110010000

- valable seulement pour une erreur simple (1 bit)
 - correction de rafale d'erreurs à l'aide d'un matrice

- valable seulement pour une erreur simple (1 bit)
 - correction de rafale d'erreurs à l'aide d'une matrice

- valable seulement pour une erreur simple (1 bit)
 - correction de rafale d'erreurs à l'aide d'un matrice

- valable seulement pour une erreur simple (1 bit)
 - correction de rafale d'erreurs à l'aide d'une matrice

- valable seulement pour une erreur simple (1 bit)
- correction de rafale d'erreurs à l'aide d'une matrice

ASCII

caractère

Le code de Hamming pour de l'ASCII

- valable seulement pour une erreur simple (1 bit)
- correction de rafale d'erreurs à l'aide d'un matrice

Н	1001000			
a	1100001			
m	1101101			
m	1101101			
i	1101001			
n	1101110			
g	1100111			
	0100000			
С	1100011			
0	1101111			
d	1100100			
е	1100101			

bits de contrôle 00110010000 10111001001 11101010101 11101010101 01101011001 01101010110 01111001111 10011000000 11111000011 10101011111 11111001100 00111000101

ASCII

caractère

- valable seulement pour une erreur simple (1 bit)
- correction de rafale d'erreurs à l'aide d'une matrice

Н	1001000
а	1100001
m	1101101
m	1101101
i	1101001
n	1101110
g	1100111
	0100000
С	1100011
0	1101111
d	1100100
е	1100101

ASCII

caractère

Le code de Hamming pour de l'ASCII

- valable seulement pour une erreur simple (1 bit)
- correction de rafale d'erreurs à l'aide d'une matrice

Н	1001000
а	1100001
m	1101101
m	1101101
i	1101001
n	1101110
g	1100111
	0100000
С	1100011
0	1101111
d	1100100
е	1100101

bits de contrôle 00119010000 1011#001001 1110 \$ 010101 1110 \$ 010101 01101011001 01181010110 011 1001111 111 \$ 1000011 101 1011111 001 100 0101

ordre de transmission des bits

- correspondance entre rang des bits et degré des monômes
 - le mot 10011 code le polynôme $x^4 + x + 1$
- arithmétique polynomiale (soustraction modulo 2 et division euclidienne)

Utilisation d'un polynôme générateur G(x)

• G(x) de degré r et message M(x)

picantin@irif.fr PF1 Amphi#05 28⊔30/09/2020 9 / 11

- correspondance entre rang des bits et degré des monômes
 - ▶ le mot 10011 code le polynôme $x^4 + x + 1$
- arithmétique polynomiale (soustraction modulo 2 et division euclidienne)

Utilisation d'un polynôme générateur G(x)

- G(x) de degré r et message M(x)
- ajout de r bits à **0** après le bit de poids faible de M(x)
- division de $x^r M(x)$ par G(x): reste R(x)
- envoi de $T(x) = x^r M(x) R(x)$
- T(x) est divisible par G(x) (à vérifier par le récepteur !)

- correspondance entre rang des bits et degré des monômes
 - ▶ le mot 10011 code le polynôme $x^4 + x + 1$
- arithmétique polynomiale (soustraction modulo 2 et division euclidienne)

Utilisation d'un polynôme générateur G(x)

- G(x) de degré r et message M(x)
- ajout de r bits à $\mathbf{0}$ après le bit de poids faible de M(x)
- division de $x^r M(x)$ par G(x): reste R(x)
- envoi de $T(x) = x^r M(x) R(x)$
- T(x) est divisible par G(x) (à vérifier par le récepteur!)

picantin@irif.fr PF1 Amphi#05 28⊔30/09/2020 9 / 11

- correspondance entre rang des bits et degré des monômes
 - ▶ le mot 10011 code le polynôme $x^4 + x + 1$
- arithmétique polynomiale (soustraction modulo 2 et division euclidienne)

Utilisation d'un polynôme générateur G(x)

- G(x) de degré r et message M(x)
- ajout de r bits à $\mathbf{0}$ après le bit de poids faible de M(x)
- division de $x^r M(x)$ par G(x): reste R(x)
- envoi de $T(x) = x^r M(x) R(x)$
- T(x) est divisible par G(x) (à vérifier par le récepteur !

- correspondance entre rang des bits et degré des monômes
 - ▶ le mot 10011 code le polynôme $x^4 + x + 1$
- arithmétique polynomiale (soustraction modulo 2 et division euclidienne)

Utilisation d'un polynôme générateur G(x)

- G(x) de degré r et message M(x)
- ajout de r bits à $\mathbf{0}$ après le bit de poids faible de M(x)
- division de $x^r M(x)$ par G(x): reste R(x)
- envoi de $T(x) = x^r M(x) R(x)$
- T(x) est divisible par G(x) (à vérifier par le récepteur!)

picantin@irif.fr PF1 Amphi#05 28⊔30/09/2020 9 / 11

- correspondance entre rang des bits et degré des monômes
 - ▶ le mot 10011 code le polynôme $x^4 + x + 1$
- arithmétique polynomiale (soustraction modulo 2 et division euclidienne)

Utilisation d'un polynôme générateur G(x)

- G(x) de degré r et message M(x)
- ajout de r bits à $\mathbf{0}$ après le bit de poids faible de M(x)
- division de $x^r M(x)$ par G(x): reste R(x)
- envoi de $T(x) = x^r M(x) R(x)$
- T(x) est divisible par G(x) (à vérifier par le récepteur !)

picantin@irif.fr PF1 Amphi#05 28⊔30/09/2020 9 / 11

picantin@irif.fr PF1 Amphi#05 28\(\)30/09/2020 10 / 11

sortie -	- R3 -	■ R2	← R1 ←	RO) ← entrée
	0	0	0	0	1101101011 0000
0	0	0	0	1	101101011 0000
00	0	0	1	1	01101011 0000
000	0	1	1	0	1101011 0000
0000	1	1	0	1	101011 0000
00001	1	0	0	0	01011 0000
000011	0	0	1	1	1011 0000
0000110	0	1	1	1	011 0000
00001100	1	1	1	0	11 0000
000011001	1	1	1	0	10000
0000110011	1	1	1	0	0000
00001100111	1	1	1	1	000
000011001111	1	1	0	1	00
0000110011111	1	0	0	1	0
00001100111111	0	0	0	1	

\oplus	0	1
0	0	1
1	1	0

picantin@irif.fr PF1 Amphi#05 28⊔30/09/2020 11 / 11