CZ4042 Tutorial 2 ___Regression

1. Design a linear neuron to perform the following mapping:

$\boldsymbol{x} = (x_1, x_2, x_2)$		у
(0.09	-0.44 -0.15	-2.57
(0.69	-0.99 -0.76)	-2.97
(0.34	0.65 -0.73	0.96
(0.15	0.78 -0.58)	1.04
(-0.63)	-0.78 -0.56	-3.21
(0.96	0.62 -0.66	1.05
(0.63	-0.45 -0.14)	-2.39
(0.88	0.64 - 0.33	0.66

Show one iteration of learning of the neuron with

- (a) Stochastic gradient descent learning
- (b) Gradient descent learning

Initialize the weights randomly and biases to 0.0 and use a leaning factor $\alpha = 0.01$.

Plot the learning curves (mean square error vs. epochs) until convergence and find the learned weights and biases and the predicted values of y by the neuron.

2. Design a perceptron to approximate the function y:

$$y = 0.5 + x_1 + 3x_2^2$$

for inputs $0 \le x_1, x_2 \le 1$.

- (a) Divide the input space into a grid of squares of size 0.1×0.1 and use the grid points as training data.
- (b) Use gradient descent learning to train the perceptron with a learning rate $\alpha = 0.01$. Plot the mean square error against epochs until convergence
- (c) Plot the targets and the predicted data points, and estimate the mean square error of the prediction.
- (d) Repeat above (a)-(c) with stochastic gradient descent learning and compare the performance.

3. Train a linear neuron to learn the following function ϕ :

$$\phi(x,y) = 1.5 + 3.3x - 2.5y + 0.2xy$$

for $0 \le x, y \le 1$.

- (a) Sample 25 data points randomly from the input space for training.
- (b) Use the gradient descent algorithm to train a linear neuron
- (c) Compute the training error and plot the function approximated by the linear neuron.
- (d) Repeat (b) and (c) for a perceptron and compare the results with those of the linear neuron.