Redes Neurais Convolucionais na Segmentação Semântica de Imagens Aéreas para o Mapeamento da Cobertura da Terra em Áreas de Proteção Ambiental

Fabricio Bizotto 0

■ Universidade Tecnológica Federal do Paraná (UTFPR)
 Câmpus Ponta Grossa (PG)
 Departamento Acadêmico de Informática (DAINF)

 Programa de Pós-Graduação em Ciência da Computação (PPG-CC)
 ☑ mIsguario@utfpr.edu.br
 Orientadora: Profa. Dra. Mauren L Andrade

Sumário

- Introdução
 - Objetivo Geral
 - Objetivos Específicos
 - Trabalhos Relacionados
- Material e Métodos
 - Metodologia Proposta
 - Estudos sobre a APA-Petrópolis
 - Configuração do ambiente de Trabalho
 - Aquisição do Conjunto de Dados
 - Seleção e Rotulagem
 - Implementação e Adaptações na Rede SegNet e U-NET
 - Treinamento e Teste
- Resultados e Discussão
 - Cenários
- 4 Conclusões
 - Considerações finais

Sumário

ConclusõesTrabalhos futuros

6 Referências

Agradecimentos

- Área de Proteção Ambiental (APA)
 - Ferramenta de Conservação da Natureza.
 - ▶ Destinada à proteção ambiental e ao uso sustentável dos recursos naturais.
 - ► Objetivo: Conservação x Desenvolvimento Econômico.
 - ▶ Gestão governamental, como o Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio).
 - ▶ Regulamenta as atividades humanas de acordo com as características ambientais da região.

Principais desafios no monitoramento da APA

- Grandes equipes de trabalho especializada
- Deslocamento à regiões de difícil acesso
- Alto custo para manutenção das equipes
- Perigos associados as características de fauna e flora de cada região

A Fig. 1 representa a área da APA-Petrópolis, região serrana do Rio de Janeiro.

Figura 1 – APA-Petrópolis.

Fonte: Google Earth; 2023empty citation.

APA-Petrópolis

- \circ \approx 60.000 hectares
- Ações de conservação realizadas pelo ICMBio:
 - Monitoramento Ambiental
 - Manutenção de trilhas ecológicas
 - Recuperação de áreas degradadas
 - Combate a incêndios
 - Proteção de espécies ameaçadas de extinção
 - Invasão de terras

Sensoriamento Remoto

- Alternativa de baixo custo
- Acesso a base de dados de imagens para diferentes regiões
- Acesso a áreas de difícil acesso via solo
- Estudos começam a exploraram a aplicação das Redes Neurais Convolucionais (RNC) na análise da cobertura da terra com resultados promissores (HU et al.; 2013); (LI et al.; 2020).

Possibilidades

- Imagens de satélite disponíveis gratuitamente
- VANT (Veículo Aéreo não Tripulado) (custo alto)
- Imagens Aéreas RGB da plataforma Google Earth

Objetivo Geral

O objetivo geral deste trabalho é o desenvolvimento de uma nova metodologia para segmentação semântica de imagens de sensoriamento remoto do Google a fim de gerar o mapa de cobertura e uso do solo da região da APA-Petrópolis, Rio de Janeiro por meio de RNC

Objetivos Específicos

Para atender o objetivo geral deste trabalho, foram propostos os seguintes objetivos específicos:

Objetivos Específicos

- Capturar e rotular imagens de sensoriamento remoto da área de proteção ambiental de Petrópolis, Rio de Janeiro.
- Comparar o desempenho de redes neurais do tipo SegNet e U-NET no conjunto de dados criado.
- Comparar diferentes funções de custo a fim de avaliar a que melhor se adapte ao conjunto de dados.
- Utilizar métricas para analisar e comparar o desempenho dos modelos.
- Comparar os resultados obtidos com trabalhos relacionados.

Trabalhos Relacionados

1. Construção de mapas digitais a partir de imagens aéreas do Google, usando a arquitetura EfficientNet-B0 como codificador para extrair as características geográficas e U-Net como decodificador para reconstruir o mapa de características.

Figura 2 – Resultado da segmentação semântica no conjunto de dados do Google com a arquitetura proposta.

Fonte: Adaptado de (NGUYEN-KHANH; NGUYEN-NGOC-YEN; DINH-QUOC, 2021).

Trabalhos Relacionados

2. Aplicação de RNC, na tarefa de segmentação semântica de imagens obtidas por sensoriamento remoto. Duas arquiteturas de RNC, SegNet e U-net, são aprimoradas por meio da introdução de *index pooling* para melhorar essas arquiteturas, permitindo a preservação de informações espaciais cruciais durante a ampliação da resolução. (ALAM et al., 2021).

Fonte: Adaptado de (ALAM et al., 2021).

Trabalhos Relacionados

3. Arquitetura U-Net para segmentar estufas agrícolas de plástico em imagens de sensoriamento remoto de alta resolução. A abordagem foi dividida em três etapas: coleta e anotação de imagens, treinamento da rede U-Net e pós-processamento para remover elementos confundíveis com as estufas (CHEN et al., 2021).

Figura 4 – Dificuldade em extrair estufas densamente distribuidas.

Fonte: (CHEN et al., 2021).

Metodologia Proposta

A Fig. 5 apresenta a metodologia utilizada para a realização dos objetivos propostos.

Configuração Aguisição do Estudos sobre a Seleção e do Ambiente de Conjunto de APA-Petrópolis Rotulagem Trabalho Dados Implementação Avaliação dos e Adaptação da Treinamento Model Resultados Rede Neural Convolucional

Figura 5 – Metodologia Proposta.

Fonte: Autoria Própria.

Estudos sobre a APA-Petrópolis

- $\bullet \approx 60.000$ hectares (5,69%) da Mata Atlântica.
- Região urbanizada.
- Plano de manejo que define ações e restrições.
- Petrópolis e municípios adjacentes.

Fonte: Adaptado de Google Earth; 2023empty citation.

Configuração do ambiente de Trabalho

- Processador: Intel(R) Xeon(R) CPU E5-2666v3 @ 2.90GHz 2.90 GHz;
- Memória RAM: 32 GB;
- Placa de Vídeo: NVIDIA GIGABYTE RTX 3060 EAGLE OC – 12GB dedicada;
- Sistema Operacional: Microsoft Windows 10 PRO 64 bits.

A Tab. 1 apresenta o conjunto de ferramentas utilizado durante o trabalho.

Tabela 1 – Conjunto de Ferramentas Utilizadas.

Python	(VAN ROSSUM, 2009)
PyTorch	(PASZKE et al., 2017)
Cuda Toolkit	(NVIDIA CORPORATION, 2023)
Miniconda	(INC, 2023)
ArcGis Pro (parceria com UFMS)	(ESRI INC., 2023)
Computer Vision Annotation Tool	(CVAT.AI, 2023)

Fonte: Autoria própria.

Aquisição do Conjunto de Dados

- Plataforma Google Earth (ArcGis Pro).
- Entre Maio/2022 e Dezembro/2022.
- Seleção aleatória da área.

Fonte: Adaptado de Google Earth; 2023empty citation.

Aquisição do Conjunto de Dados

Tabela 2 – Separação das imagens no conjunto de dados.

Grupo	Quantidade
Treinamento Teste Descontinuadas Total	214 (\approx 67%) 42 (\approx 13%) 66 (\approx 20%) 322

Fonte: Autoria própria.

Mais Detalhes

- RGB (TIFF).
- Resolução padrão de 2048x2048 pixels.

Figura 8 – Amostras do Conjunto de Dados.

Fonte: Adaptado de Google Earth; 2023empty citation.

Seleção e Rotulagem

Seleção - Rotulagem

- Delimitar as regiões de interesse.
- Definido em conjunto com equipe do ICMBio.
- 8 classes
 - Área Desenvolvida
 - Floresta
 - Sombra
 - Área em Regeneração
 - Solo Exposto
 - Água
 - Rocha
 - Agricultura
 - Piscina

Fonte: Adaptado de Google Earth; 2023empty citation.

Seleção e Rotulagem

Seleção - Rotulagem

- Auxílio de um profissional do ICMBio.
- Critério rígido.
- Ferramentas
 - ArcGis (semi-automático, manual)
 - CVAT (manual)

Fonte: Autoria própria.

Metodologia Aplicada no Desbalanceamento de Classes

Seleção e Rotulagem

- Método proposto por (BRESSAN et al., 2022).
- Calcular o peso para cada classe (treinamento).

$$\varphi(c) = \frac{m}{C * n^c}$$

Tabela 3 – Pesos calculados para o conjunto de treinamento

Classe	Peso
Área Desenvolvida	1,1472
Floresta	0,3832
Sombra	2,0468
Área em Regeneração	0,4436
Agricultura	1,4859
Rocha	2,4287
Solo Exposto	5,2043
Água	2,0031

Fonte: Autoria própria.

em que m é o número de pixels de todas as imagens de treinamento, C é o número de classes, e n^c é o número de pixels que pertencem à classe c.

Implementação e Adaptações na Rede SegNet e U-NET

- MPSegnet proposta por SOUZA BRITO et al.; 2021empty citation
- Uma nova estratégia de multi-pooling, substituindo o max-pooling por Discrete Wavelet Transform (DWT) e unpooling por *Inverse Discrete Wavelet Transform* (IWT).
- Conjunto de dados utilizado nos experimentos
 - 2D Semantic Labeling Contest Potsdam
 - IRRG: 3 canais (IR-R-G)

Implementação e Adaptações na Rede SegNet e U-NET

- U-NET sugerida no artigo de Nguyen-Khanh et al. (2021)empty citation.
- Combinação de EfficientNet-B0 (TAN; LE, 2019) (ENCODER) para extração de características com U-NET Ronneberger et al. (2015)empty citation (DECODER) para reconstrução do mapa de características.
- Conjunto de dados utilizado nos experimentos
 - Imagens Aéreas (Google Earth GE)
 - RGB: 3 canais (Red-Green-Blue)

Tabela 4 – Comparativo entre encoder e funções de custo.

ENCODER	Parâmetros	Categorical Cross Entropy Loss	Dice Loss	Average Loss
VGG11	32M	1.194	0.770	1.066
ResNet18	18M	1.191	0.770	1.065
EffNet-B0	4M	1.110	0.731	0.997
EffNet-B1	6.5M	1.374	0.806	1.204
EffNet-B2	8M	1.134	0.747	1.018

Fonte: Adaptado de Nguyen-Khanh et al. (2021)empty citation.

Treinamento e Teste

- Conjunto de dados dividido em treinamento e teste (Ver Tabela 2).
- Pré-processamento: Protocolo de janelas deslizantes adotado também no trabalho de (DE SOUZA BRITO et al., 2021).
- 10.000 amostras de 256x256.
- Inicialização dos pesos: Pesos pré-treinados na ImageNet (DENG et al., 2009).

Treinamento

- Conjunto de dados embaralhado.
- Aumento de dados
 - Espelhamento horizontal e vertical

Teste

- Conjunto de dados não é embaralhado.
- Sem aumento de dados.
- Protocolo de janelas deslizantes com passo de 32 pixels para evitar inconsistências na segmentação, especialmente nas bordas (FARHANGFAR; REZAEIAN, 2019).
- Maior esforço computacional.

Treinamento e Teste - Mais detalhes de implementação.

Número de classes: 8

• Épocas de treinamento: 100

Tamanho do batch: 8

• Taxa de aprendizagem: 1e-2

► Escalonamento: redução de 10 vezes nas 25°, 35° e 45° épocas

Decaimento: limitado a 1e-5

Otimizador: SGD (Stochastic Gradient Descent)

Momentum: 0,9Weight Decay: 1e-5

• Weight Decay: 1e-5

Observações

Os detalhes de implementação acima foram utilizados em ambos os modelos e consideraram as escolhas de de Souza Brito et al. (2021).

Função de Custo - Entropia Cruzada

Mede a diferença entre a distribuição de probabilidade prevista (p_i) e o ground truth dos rótulos para a classe (y_i) , comumente expressa pela Equação 1 (LI et al., 2019).

$$L_{CE} = -\frac{1}{M} \sum_{i=1}^{M} \left(y_i^T log\left(p_i\right) \right)$$
(1)

onde M é o número total de classes, L_{CE} é a função de entropia cruzada, y_i^T é o vetor (ground truth) transposto de y_i , p é o vetor de probabilidades atribuídas a cada classe.

Função de Custo - Focal Loss

É uma modificação da função de entropia cruzada que visa resolver o problema de desbalanceamento de classes, dando maior peso às classes minoritárias. A função é definida pela Equação 2 (LIN et al., 2017).

$$FL(p_t) = -\sum_{i=1}^{C} (1 - p_{ti})^{\gamma} \cdot \log(p_{ti})$$
 (2)

onde:

- C é o número de classes.
- ullet $p_t i$ é a probabilidade prevista da classe verdadeira.
- \bullet γ é um parâmetro de foco ajustável.
- O termo $(1-p_ti)^{\gamma}$ reduz o peso da perda para exemplos bem classificados, focando mais nos exemplos difíceis e mal classificados.
- ullet Quando p_t está próximo de 1 (indicando uma previsão confiante e correta), a perda é reduzida.

Isso ajuda a reduzir o impacto de pixels fáceis de classificar e permite que o modelo se concentre mais em regiões desafiadoras.

Cenários

- Cenário 1: SegNet Modificada, usando a função de custo Entropia Cruzada.
 - Experimento 1: pesos iguais (1).
 - Experimento 2: pesos ponderados.
 - Utilização de 9 classes (8 classes + piscina).
- Cenário 2: SegNet Modificada, usando a função de custo Entropia Cruzada.
 - Experimento 1: com aumento de dados.
 - Experimento 2: sem aumento de dados.
 - Ambos usam pesos ponderados na função de custo.
- Cenário 3: U-NET, usando a função de custo Entropia Cruzada com pesos ponderados.
 - ► Experimento 1: com aumento de dados.
 - Experimento 2: sem aumento de dados.
- Cenário 4: SegNet Modificada e U-NET, usando a função de custo Focal Loss.
 - Experimento 1: SegNet Modificada com aumento de dados.
 - ► Experimento 2: U-NET com aumento de dados.

Cenário 1 - Distribuição de pesos na função de custo

Tabela 5 – Pesos ponderados para a função de custo no cenário 1.

Classe	Peso		
Área Desenvolvida Floresta	0,9786 0,3264		
Piscina	51,3827		
Sombra	1,7031		
Área em Regeneração	0,3702		
Agricultura	1,2344		
Rocha	2,0176		
Solo Exposto	4,8396		
Água	10,5859		

Fonte: Autoria própria.

Observações

- Piscina: maior peso.
- Os demais cenários consideram os pesos calculados e apresentados na Tabela 3.

Cenário 1 - Análise dos Resultados

Tabela 6 – Resultados da SegNet no cenário 1 com pesos iguais.

Classe	Prec	Sens	F1-Score	loU
Desenvolvida Floresta	0.79 0.89	0.80 0.87	0.80 0.88	0.66 0.78
Piscina	0.18 a	0.89	0.30	0.17
Sombra	0.86	0.80	0.83	0.70
Regeneração	0.73	0.89	0.80	0.66
Agricultura	0.82	0.83	0.82	0.70
Rocha	0.86	0.45	0.59	0.42
Solo Exposto	0.56	0.20	0.29	0.17
Água	0.45	0.06	0.11	0.05
Acurácia	0.81 ^b		loU	0.48

Fonte: Autoria própria.

Tabela 7 - Resultados da SegNet no cenário 2 com pesos ponderados.

Classe	Prec	Sens	F1-Score	loU
Desenvolvida	0.71	0.76	0.73	0.57
Floresta	0.89	0.67	0.76	0.61
Piscina	0.18	0.99	0.30	0.18
Sombra	0.60	0.86	0.71	0.55
Regeneração	0.80	0.44	0.56	0.39
Agricultura	0.66	0.76	0.70	0.54
Rocha	0.37	0.69	0.48	0.31
Solo Exposto	0.09	0.40	0.14	0.08
Água	0.46	0.73	0.56 ^b	0.39 ^c
Acurácia	0.65		loU	0.40

Fonte: Autoria própria.

^a Proporção de VP mantida em ambos os experimentos.

^b Ponderação nos pesos pode ter afetado a acurácia.

^a Redução significativa nos falsos negativos

^b Melhor equilíbrio entre precisão e sensibilidade

^c Melhoria na sobreposição entre Ground Truth e previsão na segmentação.

Cenário 1 - Matriz de Confusão

Figura 12 – Matriz de confusão do cenário 1 com pesos iguais.

Fonte: Autoria própria.

Figura 13 - Matriz de confusão do cenário 2 com pesos ponderados.

Fonte: Autoria própria.

Cenários

- Cenário 1: SegNet Modificada, usando a função de custo Entropia Cruzada.
 - Experimento 1: pesos iguais (1).
 - Experimento 2: pesos ponderados.
 - ► Utilização de 9 classes (8 classes + piscina).
- Cenário 2: SegNet Modificada, usando a função de custo Entropia Cruzada.
 - Experimento 1: com aumento de dados.
 - Experimento 2: sem aumento de dados.
 - Ambos usam pesos ponderados na função de custo.
- Cenário 3: U-NET, usando a função de custo Entropia Cruzada com pesos ponderados.
 - ► Experimento 1: com aumento de dados.
 - Experimento 2: sem aumento de dados.
- Cenário 4: SegNet Modificada e U-NET, usando a função de custo Focal Loss.
 - ► Experimento 1: SegNet Modificada com aumento de dados.
 - Experimento 2: U-NET com aumento de dados.

Aumento de dados: **Espelhamento horizontal e vertical**.

Cenário 2 - Análise dos Resultados

Tabela 8 – Resultados da SegNet no cenário 2 com aumento de dados. Tabela 9 – Resultados da SegNet no cenário 2 sem aumento de dados.

Classe	Prec	Sens	F1-Score	loU
Desenvolvida	0.83	0.77	0.80	0.66
Floresta	0.94	0.77	0.85	0.74
Sombra	0.69	0.93	0.79	0.66
Regeneração	0.83	0.66	0.73	0.58
Agricultura	0.83	0.77	0.80	0.66
Rocha	0.50	0.77	0.61	0.43
Solo Exposto	0.17	0.79	0.28	0.16
Água	0.72	0.89	0.79	0.66
Acurácia	0.76		loU	0.57

Fonte: Autoria própria.

Classe	Prec	Sens	F1-Score	loU	
Desenvolvida	0.84	0.84	0.84	0.72	
Floresta	0.95	0.76	0.85	0.73	
Sombra	0.70	0.92	0.80	0.67	
Regeneração	0.88	0.65	0.75	0.60	
Agricultura	0.72	0.93	0.81	0.69	
Rocha	0.55	0.83	0.66	0.50	
Solo Exposto	0.27	0.73	0.40	0.25	
Água	0.89	0.95	0.92	0.85	
Acurácia	0.79		IoU	0.62	

Fonte: Autoria própria.

Cenário 2 - Matriz de Confusão

Figura 14 – Matriz de confusão do cenário 2 com aumento de dados. Figura 15 – Matriz de confusão do cenário 2 sem aumento de dados.

Fonte: Autoria própria.

Fonte: Autoria própria.

Cenários

- Cenário 1: SegNet Modificada, usando a função de custo Entropia Cruzada.
 - Experimento 1: pesos iguais (1).
 - Experimento 2: pesos ponderados.
 - ▶ Utilização de 9 classes (8 classes + piscina).
- Cenário 2: SegNet Modificada, usando a função de custo Entropia Cruzada.
 - Experimento 1: com aumento de dados.
 - Experimento 2: sem aumento de dados.
 - Ambos usam pesos ponderados na função de custo.
- Cenário 3: U-NET, usando a função de custo Entropia Cruzada com pesos ponderados.
 - Experimento 1: com aumento de dados.
 - Experimento 2: sem aumento de dados.
- Cenário 4: SegNet Modificada e U-NET, usando a função de custo Focal Loss.
 - ► Experimento 1: SegNet Modificada com aumento de dados.
 - Experimento 2: U-NET com aumento de dados.

Cenário 3 - Análise dos Resultados

Tabela 10 – Resultados da U-NET no cenário 3 com aumento de dados. Tabela 11 – Resultados da U-NET no cenário 3 sem aumento de dados.

Classe	Prec	Sens	F1-Score	loU
Desenvolvida	0.89	0.81	0.85	0.73
Floresta	0.96	0.80	0.87	0.77
Sombra	0.68	0.94	0.79	0.65
Regeneração	0.86	0.64	0.73	0.58
Agricultura	0.80	0.96	0.87	0.77
Rocha	0.52	0.91	0.66	0.49
Solo Exposto	0.31	0.73	0.43	0.28
Água	0.96	0.93	0.95	0.90
Acurácia	0.81		loU	0.65

Classe	Prec	Sens	F1-Score	loU	
Desenvolvida	0.89	0.87	0.88	0.79	_
Floresta	0.92	0.89	0.91	0.83	
Sombra	0.87	0.83	0.85	0.73	
Regeneração	0.82	0.88	0.85	0.74	
Agricultura	0.86	0.95	0.90	0.82	
Rocha	0.80	0.71	0.75	0.60	
Solo Exposto	0.70	0.42	0.52	0.35	
Água	0.98	0.88	0.93	0.86	
Acurácia	0.87		loU	0.72	

Fonte: Autoria própria.

Fonte: Autoria própria.

Cenário 3 - Matriz de Confusão

Figura 16 – Matriz de confusão do cenário 3 com aumento de dados. Figura 17 – Matriz de confusão do cenário 3 sem aumento de dados.

Fonte: Autoria própria.

Cenários

- Cenário 1: SegNet Modificada, usando a função de custo Entropia Cruzada.
 - Experimento 1: pesos iguais (1).
 - Experimento 2: pesos ponderados.
 - ▶ Utilização de 9 classes (8 classes + piscina).
- Cenário 2: SegNet Modificada, usando a função de custo Entropia Cruzada.
 - Experimento 1: com aumento de dados.
 - Experimento 2: sem aumento de dados.
 - Ambos usam pesos ponderados na função de custo.
- Cenário 3: U-NET, usando a função de custo Entropia Cruzada com pesos ponderados.
 - ► Experimento 1: com aumento de dados.
 - Experimento 2: sem aumento de dados.
- Cenário 4: SegNet Modificada e U-NET, usando a função de custo Focal Loss.
 - Experimento 1: SegNet Modificada com aumento de dados.
 - Experimento 2: U-NET com aumento de dados.

Cenário 4 - Análise dos Resultados

Tabela 12 – Resultados da SegNet no cenário 4 com Focal Loss.

Classe	Prec Sens		F1-Score	loU	
Desenvolvida	0.85	0.86	0.86	0.75	
Floresta	0.89	0.90	0.89	0.81	
Sombra	0.89	0.74	0.81	0.68	
Regeneração	0.75	0.89	0.81	0.68	
Agricultura	0.85	0.85	0.85	0.74	
Rocha	0.61	0.53	0.57	0.40	
Solo Exposto	0.52	0.22	0.31	0.18	
Água	0.98	0.43	0.60	0.42	
Acurácia	0.83		loU	0.58	

Fonte: Autoria própria.

Tabela 13 - Resultados da U-NET no cenário 4 com Focal Loss.

Classe	Prec	Sens	F1-Score	loU	
Desenvolvida	0.90	0.86	0.88	0.79	
Floresta	0.91	0.91	0.91	0.83	
Sombra	0.89	0.80	0.84	0.73	
Regeneração	0.80	0.88	0.84	0.72	
Agricultura	0.85	0.94	0.89	0.81	
Rocha	0.81	0.67	0.74	0.58	
Solo Exposto	0.75	0.36	0.49	0.32	
Água	0.99	0.89	0.94	0.88	
Acurácia	0.87		loU	0.71	

Cenário 4 - Matriz de Confusão

Figura 18 - Matriz de confusão do cenário 4 com Focal Loss.

Fonte: Autoria própria.

Figura 19 - Matriz de confusão do cenário 4 com Focal Loss.

Comparação dos Resultados - Acurácia

Tabela 14 – Comparativo de acurária dos experimentos em cada cenário.

	Cenário 1	Cenário 2	Cenário 3	Cenário 4
Experimento 01	0.81	0.76	0.81	0.83
Experimento 02	0.65	0.79	0.87 1	0.87 ²

Fonte: Autoria própria.

		Cenário 4

¹ U-NET com função de custo de entropia cruzada e pesos ponderados. Sem aumento de dados

U-NET com função de custo Focal Loss. Com aumento de dados

Comparação dos Resultados - IoU

Cenário 1		

Fonte: Autoria própria

Tabela 15 – Comparativo de IoU dos experimentos em cada cenário.

	Cenário 1	Cenário 2	Cenário 3	Cenário 4
Experimento 01	0.48	0.40	0.65	0.58
Experimento 02	0.40	0.62	0.72 1	0.71 2

¹ U-NET com função de custo de entropia cruzada e pesos ponderados. Sem aumento de dados

U-NET com função de custo Focal Loss. Com aumento de dados

Comparação dos Resultados - Medida f

Tabela 16 – Resultados da medida f dos experimentos nos melhores cenários

Classe	Cena	ário 3	Cenário 4	
Classe	Exp 1	Exp 2 ¹	Exp 1	Exp 2 ²
Área Desenvolvida	0.85	0.88	0.86	0.88
Floresta	0.87	0.91	0.89	0.91
Sombra	0.79	0.85	0.81	0.84
Área em Regeneração	0.73	0.85	0.81	0.84
Agricultura	0.87	0.90	0.85	0.89
Rocha	0.66	0.75	0.57	0.74
Solo Exposto	0.43	0.52	0.31	0.49
Água	0.95	0.93	0.60	0.94

 $^{^{1}}$ U-NET com função de custo de entropia cruzada e pesos ponderados. Sem aumento de dados

U-NET com função de custo Focal Loss. Com aumento de dados

Comparação dos Resultados - Medida IoU

Tabela 17 – Resultados da medida IoU dos experimentos nos melhores cenários

Classe	Cena	ário 3	Cenário 4	
Classe	Exp 1	Exp 2 ¹	Exp 1	Exp 2 ²
Área Desenvolvida	0.73	0.79	0.75	0.79
Floresta	0.77	0.83	0.81	0.83
Sombra	0.65	0.73	0.68	0.73
Área em Regeneração	0.58	0.74	0.68	0.72
Agricultura	0.77	0.82	0.74	0.81
Rocha	0.49	0.60	0.40	0.58
Solo Exposto	0.28	0.35	0.18	0.32
Água	0.90	0.86	0.42	0.88

U-NET com função de custo de entropia cruzada e pesos ponderados. Sem aumento de dados

U-NET com função de custo Focal Loss. Com aumento de dados

Comparação dos Resultados - Análise Visual

Figura 20 – Comparativo entre as Imagens do Conjunto de Teste

Comparação dos Resultados - Análise Visual

Figura 22 – Comparativo entre as Imagens do Conjunto de Teste

Comparação com trabalhos relacionados

Figura 24 — Resultado da segmentação semântica no conjunto de dados do Google com a arquitetura proposta.

Fonte: Adaptado de (NGUYEN-KHANH; NGUYEN-NGOC-YEN; DINH-QUOC, 2021).

- Arquitetura baseada na U-NET Encoder-Decoder.
- Segmentação semântica usando imagens de satélite de alta resolução do Google Earth.
- Anotação manual com a ferramenta CVAT (CVAT.AI, 2023).
- Conjunto de dados com 13 classes.
- Comparação do resultado com diferentes funções de custo (EfficientNet-B0)
- Não apresentaram métricas de avaliação.

Conclusões

Considerações finais

- Propomos uma metodologia de baixo custo.
- Imagens RGB do Google Earth.
- Desempenho superior da U-NET em relação à SegNet Modificada.
- Tempo de treinamento e teste com a rede U-NET é menor que o da SegNet Modificada.
- Aumento de performance a cada novo cenário proposto.
- Junção da classe Piscina com a classe Área Desenvolvida a partir do cenário 2.

Conclusões

Trabalhos futuros

- Ampliar o conjunto de dados.
- Utilizar técnicas de pós-processamento para melhorar a segmentação.
- Contribuir no mapeamento do uso e cobertura da terra em áreas de proteção ambiental.

Referências

- ALAM, M. et al. Convolutional Neural Network for the Semantic Segmentation of Remote Sensing Images. Mobile Networks and Applications, v. 26, n. 1, p. 200–215, fev. 2021.
- BRESSAN, P. O. et al. Semantic segmentation with labeling uncertainty and class imbalance applied to vegetation mapping. International Journal of Applied Earth Observation and Geoinformation, v. 108, p. 102690, 2022. ISSN 1569-8432. DOI: https://doi.org/10.1016/j.jag.2022.102690. Disponível em: 🗹.
- CVAT.Al. opencv/cvat: v2.4.0. [S.l.]: Zenodo, mar. 2023. DOI: 10.5281/zenodo.7739965. Disponível em: 🗗
- DE SOUZA BRITO, A. et al. Combining max-pooling and wavelet pooling strategies for semantic image segmentation. **Expert Systems with Applications**, v. 183, p. 115403, 2021. ISSN 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2021.115403. Disponível em:
- DENG, J. et al. ImageNet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.]. 2009. P. 248–255. DOI: 10.1109/CVPR.2009.5206848.
- ESRI INC. ArcGIS Pro. Acesso em: 24 mar 2023. 2023. Disponível em: .
- FARHANGFAR, S.; REZAEIAN, M. Semantic Segmentation of Aerial Images using FCN-based Network. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE). [S.I.: s.n.], 2019. P. 1864–1868. DOI: 10.1109/IranianCEE.2019.8786455.
- INC, A. Anaconda Documentation: Release 2.0. Acesso em: 24 mar 2023. 2023. Disponível em: 🗹.
- LI, X. et al. Dual Cross-Entropy Loss for Small-Sample Fine-Grained Vehicle Classification. IEEE Transactions on Vehicular Technology, v. 68, n. 5, p. 4204–4212, 2019. DOI: 10.1109/TVT.2019.2895651.

Referências

- LIN, T.-Y. et al. Focal Loss for Dense Object Detection. [S.l.: s.n.], 2017.
- NGUYEN-KHANH, L.; NGUYEN-NGOC-YEN, V.; DINH-QUOC, H. U-Net Semantic Segmentation of Digital Maps Using Google Satellite Images. In: 2021 8th NAFOSTED Conference on Information and Computer Science (NICS). [S.I.: s.n.], 2021. P. 386–391. DOI: 10.1109/NICS54270.2021.9701566.
- NVIDIA CORPORATION. CUDA Toolkit Documentation 12.1. Acesso em: 24 mar 2023. 2023. Disponível em: 🗹.
- PASZKE, A. et al. Automatic Differentiation in PyTorch. In: NIPS Autodiff Workshop. [S.l.: s.n.], 2017.
- TAN, M.; LE, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. CoRR, abs/1905.11946, 2019. arXiv: 1905.11946. Disponível em: 🗗.
- VAN ROSSUM, G. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009. ISBN 978-1441412690.

REDES NEURAIS CONVOLUCIONAIS NA SEGMENTAÇÃO SEMÂNTICA DE IMAGENS AÉREAS PARA O MAPEAMENTO DA COBERTURA DA TERRA EM ÁREAS DE PROTEÇÃO AMBIENTAL

Fabricio Bizotto

17 de novembro de 2023