

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

MARINE SCIENCE 9693/01

Paper 1 AS Structured Questions

May/June 2011
1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough work.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
Total	

This document consists of 15 printed pages and 1 blank page.

1 (a) Fig. 1.1 shows a marine food web.

For Examiner's Use

Fig. 1.1

(i) Name the producers shown in Fig.1.	(i)	Name the	producers	shown	in F	ig.1.	1
--	-----	----------	-----------	-------	------	-------	---

...... and[2]

(ii) Explain what the arrows between the organisms in Fig. 1.1 represent.

.....

.....[2]

(iii) The giant clam is a predator.

Name **two** of its prey organisms.

1

2[2]

[3]
[3]
. [3]
. [3]
. [3]
. [3]
. [3]
. [3]

2	(a)	State three factors involved in the formation of atolls.	For
		1	Examiner's Use
		2	
		3[3]	
	(b)	State two methods used to date reefs.	
		1	
		2[2]	
	(c)	Table 2.1 shows the percentage of reef islands that are more than 2 metres higher than mean sea level.	
			1

Table 2.1

reef islands	percentage of reef islands that are more than 2 metres higher than mean sea level	percentage of reef islands that are less than 2 metres higher than mean sea level
Cocos	33	67
Maldives	4	
Chagos	18	82
Marakei	32	68
Tuvalu	34	66

(i) Complete Table 2.1 for the Maldive Islands.

[1]

(ii) Draw a bar chart to show the percentage of reef islands that are less than 2 metres higher than mean sea level. [4]

(d) Fig. 2.1 shows cross sections of two reefs, Fenua Tapu and Fongafale.

KEY

sand ••• rubble conglomerate platform

Fig. 2.1

(e) The list below gives some of the stages in the formation of an atoll.

For
Examiner's
1100

- barrier reef forms
- island subsides
- fringing reef develops on a volcanic island
- atoll forms

Write these stages in the correct sequence in the table.

sequence	stage
1	
2	
3	
4	

[3]

3	(a)	State what is meant by the term salinity.	For
			Examiner's Use
		[1]	
	(b)	Table 3.1 shows some of the ions present in fresh water and sea water.	

Table 3.1

tuno of ion	percentage of total ion content		
type of ion	sea water	fresh water	
iron	trace	0.74	
calcium	1.19	16.62	
magnesium	3.72	4.54	
sodium	30.53	6.98	
potassium	1.11	2.55	
bicarbonate	0.42	31.9	
sulphate	7.67	12.41	
chloride	55.16	8.64	
nitrate	trace	1.11	
bromide	0.2	trace	

Use the information in Table 3.1 to calculat	te the difference in the sodium chloride content
of fresh water and sea water.	
	[1]
	•

(c) Fig. 3.1 shows how rainfall and salinity vary with latitude.

Fig. 3.1

Use Fig. 3.1 to find each of the following.

(i) the rainfall at 70° North

.....[1]

(ii) the range of salinity

......[1]

For Examiner's Use

((iii)	Describe the changes in salinity between 40° North and 40° South.
		TO I
((iv)	State the relationship between salinity and rainfall at latitudes 0° to 80° North.
		[1]
	(v)	State two factors, other than rainfall, that affect the salinity of seawater.
		1
		2[2]
(d)		gest how global warming may affect the salinity of the oceans. e an explanation for your answer.
		[4]

2			[2]
	ole 4.1 shows the relationship between amount of rainfall.	he distance from the cer	ntre of a cyclone and
	Table 4.	1	
	distance from centre of cyclone/km	rainfall/mm	
	55	864	
	110	336	
	220	108	
	310	30	
	370	10	
(i) (ii)	Use the information in Table 4.1 to defrom the centre of the cyclone and rai	scribe the relationship b	
(ii)	from the centre of the cyclone and rai Estimate the rainfall at 340 km from the	escribe the relationship benfall.	[2]
(ii)	Estimate the rainfall at 340 km from the	escribe the relationship benfall.	[2]
(ii) Sta 1	Estimate the rainfall at 340 km from the	escribe the relationship benfall. e centre of the cyclone. opical cyclones.	[2]
(ii) Sta 1 2	from the centre of the cyclone and rai Estimate the rainfall at 340 km from the two features, other than rainfall, of tr	escribe the relationship benfall. e centre of the cyclone. opical cyclones.	[2]
(ii) Sta 1 2	from the centre of the cyclone and rain Estimate the rainfall at 340 km from the two features, other than rainfall, of tree.	e centre of the cyclone.	[2]
(ii) Sta 1 2 Trop	from the centre of the cyclone and rain Estimate the rainfall at 340 km from the two features, other than rainfall, of training pical cyclones develop over the sea.	scribe the relationship benfall. e centre of the cyclone. opical cyclones.	[2]
(ii) Sta 1 2 Trop	from the centre of the cyclone and rain from the Estimate the rainfall at 340 km from the two features, other than rainfall, of the two features develop over the sea. State three destructive effects that cannot be considered as the cyclones.	scribe the relationship benfall. e centre of the cyclone. opical cyclones.	[2]
(ii) Sta 1 2 Trop	from the centre of the cyclone and rain from the Estimate the rainfall at 340 km from the two features, other than rainfall, of the two features develop over the sea. State three destructive effects that cannot be considered as the cyclones.	scribe the relationship benfall. e centre of the cyclone. opical cyclones.	[2][1][2] reaches land.

(ii)	Suggest one beneficial effect that may occur when a cyclone reaches land.		
			Examiner's
	[1	1]	Use

5

locations.

(a) (ı)	State two biological reasons why the concentration of oxygen in seawater varies.	For Examiner's
	1	Use
	2	
	[2]	
(ii)	State three physical reasons why the concentration of oxygen in seawater varies.	
	1	
	2	
	3	
	[3]	
(b) Tab	le 5.1 shows the oxygen concentration at different depths in the sea at three different	

Table 5.1

depth/metres	oxygen concentration/mg per dm ³				
deptil/metres	location 1	location 2	location 3	mean	
0	7.24	6.92	4.94	6.36	
50	7.27	6.99	5.12	6.46	
100	7.24	6.81	5.06	6.37	
200	6.70	6.84	4.85		
800	6.98	6.60	5.23	6.27	
1000	6.96	6.64	3.68	5.76	
1500	6.99	6.39	3.65	5.67	
2000	6.85	6.39	3.53	5.59	
2500	6.53	6.28	3.67	5.49	

(i) Calculate the mean oxygen concentration at a depth of 200 metres. Write your answer in Table 5.1.

[1]

(11)	several times.	For Examiner's Use
	[2]	

(a)	Des	scribe the theory of plate tectonics.	F
			Exam U
		[4]	
(b)	Tec	tonic processes lead to the formation of mid-ocean ridges, tsunamis and abyssal	
` ,	plai	ns. scribe each of these features and explain how they are formed by tectonic	
		cesses.	
	(i)	mid-ocean ridges	
		[2]	
	(ii)	tsunamis	
		[2]	
((iii)	abyssal plains	
		[2]	

C)	Exp	Explain why water coming from hydrothermal vents is not and rich in minerals.		
	(i)	hot	For Examiner's Use	
	()	[4]		
		[1]		
	(ii)	rich in minerals		
		[1]		

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.