Classification Assignment

1.) Identify your problem statement

The goal of this project is to build a predictive model that can classify whether a patient is suffering from Chronic Kidney Disease (CKD) based on a set of clinical parameters provided by the hospital.

- 2.) Tell basic info about the dataset (Total number of rows, columns)
- Total number of rows: 399
- Total number of columns: 28
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)
- · pd.get_dummies() converts **categorical string columns** into multiple **binary columns** (one-hot encoding).
- The parameter drop_first=True drops the first category to avoid dummy variable trap (redundant columns).

· Feature Scaling:

Numerical features were standardized using **StandardScaler** to ensure features are on a similar scale, which helps some algorithms (like SVM or KNN) perform better.

· Train-Test Split:

The dataset was split into training and testing subsets to evaluate the model performance on unseen data.

4.) Develop a good model with good evaluation metric. You can use any

machine learning algorithm; you can create many models. Finally, you

have to come up with final model.

SVC model's report:

The report:

precision recall f1-score support False 1.00 1.00 1.00 51 1.00 1.00 1.00 82 True 1.00 133 accuracy 1.00 1.00 1.00 133 macro avg 1.00 1.00 133 weighted avg 1.00

- **Precision** of 1.00 indicates the model never misclassified negatives as positives, and vice versa.
- **Recall** of 1.00 means the model identified all positive and negative cases correctly.
- **F1-score** of 1.00 reflects a perfect balance between precision and recall.

5.) All the research values of each algorithm should be documented. (You

can make tabulation or screenshot of the results.) SCV:

The report:

precision recall f1-score support 1.00 False 1.00 1.00 51 1.00 1.00 1.00 82 True 1.00 133 accuracy 1.00 macro avg 1.00 1.00 133 weighted avg 1.00 1.00 1.00 133

Decision Tree:

The report:

pre	cision	recall	f1-score	support
False True	0.83 0.99	0.98 0.88		51 82
accuracy			0.92	133

macro avg	0.91	0.93	0.91	133
weighted avg	0.93	0.92	0.92	133

Random Forest:

The report:			24		
precision		recall	fl-sco	re supp	ort
False	0.98	0.98	0.98	51	
True	0.99	0.99	0.99	82	,
accuracy			0.98	133	
macro avg	0.98	3 0.9	98 0.	.98	133
weighted avg	0.9	0 88	.98 ().98	133

Logistic Regression: The report:

port
1
2
133 133

KNN:

The report:

precision		recall	f1-scor	e sup	support	
False True	0.94 1.00	1.00 0.96	0.97 0.98	5 8	1 2	
accuracy macro avg weighted avg	0.97 0.9			133 98 .98	133 133	

6.) Mention your final model, justify why u have chosen the same.

Both **Support Vector Classifier (SVC)** and **Logistic Regression** achieved perfect evaluation metrics (precision, recall, f1-score all equal to 1.00) on the test set, indicating excellent performance for both models.

However, SVC was selected as the final model