Linguagens Formais e Autômatos

Aula 25 - A linguagem da diagonalização

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John E.
 Hopcroft, Rajeev Motwani, Jeffrey D. Ullman ; tradução da 2.ed. original de Vandenberg D. de Souza. Rio de Janeiro : Elsevier, 2002 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 9 Seção 9.1
- Introdução à teoria da computação / Michael Sipser; tradução técnica
 Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira. -São Paulo: Thomson Learning, 2007 (Título original: Introduction to the
 theory of computation. "Tradução da segunda edição norte-americana" ISBN 978-85-221-0499-4)
 - Capítulo 4 Seção 4.2

Relembrando a hierarquia de Chomsky

Hierarquia	Gramáticas	Linguagens	Autômato mínimo		
Tipo-0	Recursivamente Enumeráveis ou irrestritas	Recursivamente Enumeráveis	Máquinas de Turing		
Tipo-1	Sensíveis ao contexto	Sensíveis ao contexto	MT com fita limitada		
Tipo-2	Livres de contexto	Livres de contexto	Autômatos de pilha		
Tipo-3	Regulares (Expressões regulares)	Regulares	Autômatos finitos		

Hierarquia de linguagens

Linguagens (problemas) dedicíveis

Linguagens (problemas) indedicíveis

Linguagens (problemas) indecidíveis

Não-recursivamente enumeráveis

Hierarquia de linguagens

Existe uma MT que sempre para (decisor)

Não existe MT

Não-recursivamente

Existe uma MT, mas ela pode entrar em loop (reconhecedor)

enumeráveis

Hierarquia de linguagens

Mas antes, alguns conceitos

- Enumeração de strings binários
 - Veremos como codificar algumas coisas como strings binários
 - A exemplo do que fizemos na codificação das listas do PCP
 - Será útil atribuir inteiros a todos os strings binários possíveis
 - Cada string irá corresponder a um único inteiro
 - E cada inteiro irá corresponder a um único string

1	3
2	0
3	1
4	00
5	01
6	11
i	wi

Mas antes, alguns conceitos

Enumeração de strings binários

 Veremos como codificar algumas coisas como strings binários

> A exemplo do que fizemos na codificação das listas do PCP

 Será útil atribuir inteiros a todos os strings binários possí quinto s

 Cada string irá corresponder a um único inteiro

 E cada inteiro irá corresponder a um único string

1	B					
2	0					
3	1					
4	00					
5	01					
6	11					
string						
i	wi					
	Andre a					

i-ésimo string

segundo string

- Vamos criar um código binário para máquinas de Turing
- Ou seja, representaremos uma máquina de Turing M em uma longa string de 0s e 1s

Atenção! Exemplo meramente ilustrativo. Essa não é uma codificação válida de uma MT!

- Para que codificar uma MT em binário?
- Acabamos de enumerar todos os strings binários
- Poderemos, portanto, enumerar todas as MTs possíveis!
- Essa enumeração será útil na prova da indecidibilidade

Índice	МТ	MT codificada em binário
1	M1	ε
2	M2	0
3	M3	1
4	M4	00
293924	M293924	1011010100010011010101 00100101010010011101
293925	M293925	1011010100010011010101 00100101010010011110
i	Mi	wi

- Para que codificar uma MT em binário?
- Acabamos de enumerar todos os strings binários
- Poderemos, portanto, enumerar todas as MT possíveis!
- Essa enumers /se

Obviamente, as primeiras posições não são códigos "válidos" para MTs

Índice	МТ	MT codificada em binário
1	M1	ε
2	M2	0
3	М3	1
4	M4	00
293924	M293924	1011010100010011010101 00100101010010011101
293925	M293925	1011010100010011010101 00100101010010011110
i	Mi	wi

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - \circ Primeiro: $\Sigma = \{0,1\}$
 - Ou seja, assumimos que a entrada é codificada em binário
- Em seguida, precisamos codificar estados, símbolos de fita e sentidos E e D
 - \circ Q = {q1,q2,...,qr}
 - chamaremos os estados de q1,q2,...,qr, para algum r
 - q1 será o estado inicial (q0)
 - q2 será o único estado de aceitação (F) (é sempre possível converter uma MT com mais de um estado de aceitação para uma que tenha apenas um estado de aceitação)
 - Usaremos um código simples para representar cada qi
 - \blacksquare Ex: q1 = 0, q2 = 00, q3 = 000, q4 = 0000, ...

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - \circ $\Gamma = \{X1, X2, ..., Xs\}$
 - chamaremos os símbolos de fita de X1,X2,...,Xs, para algum
 - X1 será o símbolo 0
 - X2 será o símbolo 1
 - X3 será B, o branco
 - Outros símbolos podem ser atribuídos aos inteiros restantes (4,5,6, ...)
 - Usaremos o código anterior para representar cada Xi
 - \blacksquare Ex: X1 = 0, X2 = 00, X3 = 000, X4 = 0000, ...

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - Sentido E e D:
 - D1 = esquerda
 - D2 = direita
 - Usaremos o código anterior para representar cada Di
 - \blacksquare Ex: D1 = 0, D2 = 00

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - ο δ:
 - Uma regra de transição no formato:

 - É codificada como:
 - \bullet 0ⁱ10^j10^k10^l10^m
 - Nesse código, i,j,k,l e m são no mínimo 1, ou seja, não existirá nenhuma ocorrência de dois ou mais 1s consecutivos dentro de uma única transição

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$
 - **M**:
 - O código para a máquina M será:

- Onde cada um dos C's é o código para uma transição de M
- Obs: nenhum código válido para uma MT possui três
 1s em sequência
 - Isso será útil depois

- Exemplo: para a seguinte MT:
- $M = (\{q1,q2,q3\},\{0,1\},\{0,1,B\},\delta,q1,B,\{q2\})$
- Onde δ é definido pelas regras:
 - \circ $\delta(q_1, 1) = (q_3, 0, D)$
 - \circ $\delta(q_3, 0) = (q_1, 1, D)$
 - \circ $\delta(q_3, 1) = (q_2, 0, D)$
 - \circ $\delta(q_3, B) = (q_3, 1, E)$
- Os códigos para as regras são:
 - 0 1 00 1 000 1 0 1 00
 - 000 1 0 1 0 1 00 1 00
 - 00010010010100
 - 000 1 000 1 000 1 00 1 0
- O código para M é

- Existem muitos códigos "inválidos"
 - o 1, 0, 11, 11111111111, etc
- Nesses casos, assumiremos que a MT possui apenas um estado e nenhuma transição
 - Ou seja, a MT para imediatamente sobre qualquer entrada, sem aceitar
 - Ou seja, a linguagem dessas máquinas é vazia (Ø)

Índice	МТ	MT codificada em binário	Linguagem
1	M1	3	Ø
2	M2	0	Ø
3	M3	1	Ø
4	M4	00	Ø
293924	M293924	0100100010100110 0010101001	L293924 = {11,101,}
293925	M293925	10110110010010 1010010011110	Ø
i	Mi	wi	Li

- Existem muitos códigos "inválidos"
 - 1, 0, 11, 111111111111, etc
- Nesses casos, assumiremos que a MT possui apenas um estado e nenhuma transição
 - Ou seja, a MT para imediatamente sobre qualquer entrada, sem aceitar
 - Ou seja, a linguagem dessas máquinas é vazia (Ø)

Índice	МТ	MT codificada em binário	Linguagem
1	M1	3	Ø
1 (odigo	0	Ø
3 Inv	rálido"	1	Ø
1 (odigo	00	Ø
"inv	álido"		
Cód)	0100100010100110 0010101001	L293924 = {11,101,}
"váli 293925	do" M293925	10110110010010 1010010011110	Ø
	diag		
Código "inválido"		wi	Li

- A linguagem L_d, a linguagem da diagonalização, é o conjunto de strings w_i, tais que w_i não está em L(M_i)
- Vamos destrinchar essa definição:
 - o w_i é uma string:

- A linguagem L_d, a linguagem da diagonalização, é o conjunto de strings w_i, tais que w_i não está em L(M_i)
- Vamos destrinchar essa definição:
 - o w_i é uma string:
 - w_i codifica uma MT ("válida" ou "inválida") chamada M_i

- A linguagem L_d, a linguagem da diagonalização, é o conjunto de strings w_i, tais que w_i não está em L(M_i)
- Vamos destrinchar essa definição:
 - o w_i é uma string:
 - w_i codifica uma MT ("válida" ou "inválida") chamada M_i
 - Usaremos wi como entrada para Mi

- Se M_i aceitar w_i, w_i não faz parte de L_d
- Se M_i não aceitar w_i, w_i faz parte de L_d
- Ou seja, L_d consiste de todos os strings que codificam máquinas de Turing que não aceitam quando recebem a si mesmas como entrada

- Considere a tabela à direita
 - Cada célula diz se uma Máquina de Turing
 M_i aceita o string de entrada w_i
 - 1 significa "sim, M_i aceita w_i"
 - 0 significa "não, M_i não aceita w_i"
- Cada linha i é chamada de vetor característico para a linguagem L(M_i)
 - Cada 1 nessa linha indica uma string que faz parte dessa linguagem
- Exs:
 - M₄ aceita w₂ e w₄
 - M₃ não aceita w₁ nem w₂
 - M₂ aceita w₁ e w₂

			j						
		1	1 2 3 4						
	1	0	1	1	0				
i	2	1	1	0	0				
'	3	0	0	1	1				
	4	0	1	0	1				

Exemplo ilustrativo, pois as primeiras posições não são códigos "válidos" para MTs

- Nessa tabela, a diagonal é interessante
 - Informam as MTs que aceitam a si próprias como entrada
 - Ou seja, o complemento de L_d
- Para construir L_d, basta complementar a diagonal
 - Nesse exemplo: 1000 ...
 - Ou seja:
 - w₁ pertence a L_d
 - w₂ não pertence a L_d
 - w₃ não pertence a L_d
 - w₄ não pertence a L_d
 - Etc...

			j					
		1	1 2 3 4					
	1	0	7	1	0			
i	2	1	1	9/	0			
'	3	0	6	1	7			
	4	0	1	0	1			

- Suponha que L_d fosse L(M)
 para alguma MT M
 - Então existiria uma MT cujo vetor característico é o complemento da diagonal da tabela à direita
 - Ou seja, em alguma linha, por exemplo k, o complemento da diagonal (1000...) iria aparecer

			j						
		1	2	3	4		k		
	1	0	7	1	0				
	2	1	7	9	0	:		:	
	3	0	0	7	Y				
i	4	0	1	0	y	<i>).</i>		:	
						<u> </u>		:	
	k	1	0	0	0		À		

- Observe a célula marcada com "?"
 - Ela fica no encontro entre a diagonal e a linha hipotética k
 - Que valor deveria ser colocado nessa célula?
- Precisamos olhar sob o ponto de vista da linha k e da diagonal
- Devemos analisar o processo de "transposição" da diagonal para a linha k

		j							
		1	2	3	4	5	6		
	1	0	7	1	0	1	1		
	2	1	7	9	0	1	0		
	3	0	6	7	7	1	0		
i	4	0	1	0	1	7	0		
	5	1	1	0	1	9	7		
	6	1	0	0	0	1	\times		

- Acompanhe no exemplo
- Suponha que k = 6
- Suponha que X = 0
 - Diagonal = 011100
 - Complemento = 100011

- Acompanhe no exemplo
- Suponha que k = 6
- Suponha que X = 0
 - Diagonal = 011100
 - Complemento = 100011

- O mesmo aconteceria para qualquer k, e para qualquer X
- Ou seja, há um paradoxo, uma contradição
- Nossa suposição de que M_k existe deve ser falsa
- Portanto, não existe uma máquina de Turing M_k
- Ou seja, a linguagem L_d não é reconhecível por uma máquina de Turing

Ou seja, L_d não é uma linguagem recursivamente enumerável

Uma linguagem não-RE

- O que significa isso?
- O "problema" Ld é indecidível
- Ou seja, dada uma máquina de Turing, é impossível decidir (determinar/resolver) se ela aceita a si mesma como entrada
- Ou seja, não existe um algoritmo que faça isso, para qualquer máquina de Turing

Fim

Aula 25 - Linguagem da diagonalização