Chapter 6 상향식 파싱 알고리즘 - Part II

Table of Contents

- Overview of Bottom-Up Parsing
- ■Finite Automata of LR(0) items and LR(0) Parsing
- ■SLR(1) Parsing
- ■General LR(1) and LALR(1) Parsing

SLR(1) Parsing

■ Simple LR(1)

- DFA of sets of LR(0) items
- uses the <u>next token</u> in the input string
 - consults the input token <u>before</u> a shift
 - 해당 transition 존재 여부를 확인
 - ◆ 진짜 그런 기호가 입력에 있니?
- uses the Follow set of a nonterminal
 - reduction 실행 여부를 결정
 - ◆ 이렇게 reduction 하는 게 정말 맞는 거니?
- 이렇게만 해도 LR(0)에 비해 엄청난 power-up!!!

SLR(1) Parsing Algorithm (1/3)

- 현재 상태 n 이
- 1. shift item $A \rightarrow \alpha$.X β 을 갖고 있는 경우
 - X가 terminal 이고, <u>입력에서 읽어 온 token 도 X 이면</u>,
 - *shift* action : *input token* X를 stack에 push
 - $A \rightarrow \alpha X$. β 의 item을 포함하는 상태 번호(m)를 push

Parsing Stack			<u>Input</u>	
\$		n	$(\mathbf{x})\dots$	\$
\$		n X m	• • •	\$

SLR(1) Parsing Algorithm (2/3)

- 현재 상태 n 이
- 2. complete item $A \rightarrow \gamma$. 을 갖고 있는 경우
 - <u>입력에서 읽어 온 token이 Follow(A)에 속하면</u>,
 - *reduce* action: reduction by $A \rightarrow \gamma$
 - stack에서 기호(γ) 와 상태 번호를 함께 제거(pop)
 - stack에 nonterminal ⊿를 push
 - $B \rightarrow \alpha$. $A\beta$ 에서 reduction직후의 item $B \rightarrow \alpha$ A . β 를 포함하는 상태 번호를 push

SLR(1) Parsing Algorithm (3/3)

- 현재 상태 n 이
- 2. complete item $S' \rightarrow S$. 을 갖고 있는 경우
 - <u>입력 버퍼가 비어 있으면(LOOKAHEAD='\$')</u>
 - → Parsing은 여기서 멈춤
 - → The input sentence is syntactically correct for a given grammar.

SLR(1) Grammar

- A grammar is *SLR*(1) grammar if and only if the following two conditions are satisfied: for any state s,
- 1. no *shift-reduce conflict*
 - For any <u>shift</u> item $A \to \alpha.X\beta$ in **s** with X a *terminal*,
 - there is *no <u>complete</u>* item $B \to \gamma$. in **s with X** in Follow(B).
- 2. no reduce-reduce conflict
 - For any two *complete* items $A \to \alpha$. and $B \to \beta$. in **s**,
 - Follow(A) \cap Follow(B) is *empty*.

What's the difference?

What's the difference?


```
Why?

shift item E \rightarrow E .+ n

reduce item E' \rightarrow E.
```

SLR(1) Parsing Table (1/2)

■ SLR(1) parsing table 구성

기호	ACTION 표	GOTO 표
상태	$V_T \cup \{\$\}$	V_N
0	shift	
1	reduce	상태 번호
2	accept	경대 인오
:	error	

4 semantic actions

1. Shift : ACTION[S_m , a_i] = shift S

2. **Reduce**: ACTION[$S_{m'}$ a_i] = reduce by $A \rightarrow \alpha$

3. Accept : ACTION[S_{m} , a_i] = accept

4. Syntax error : ACTION[$S_{m'}$, a_i] = error (No action defined!)

State	input			goto	
	n	+	\$	E	
0	s2			1	
1		s3			
2					같은 상태에
3	s4		함께 포함될 <i>shift</i> actio	! 구 있음 on + 상태번의	ž → s2
4					

$$E' \rightarrow E$$
 $E \rightarrow E + n \mid n$

FOLLOW(E') = {\$}

FOLLOW(E) = {+, \$}

Stata		input		
State	n	+	\$	E
0				1
1			accept	
2		$r(E \rightarrow n)$	$r(E \rightarrow n)$	
3				
4		$r(E \rightarrow E+n)$	$r(E \rightarrow E+n)$	<i>reduce</i> acti

State	input			goto
	n	+	\$	E
0	s2			1
1		s3	accept	
2		$r(E \rightarrow n)$	$r(E \rightarrow n)$	
3	s4			
4		$r(E \rightarrow E+n)$	$r(E \rightarrow E+n)$	

What was changed?

State		Input		Goto
	n	+	\$	E
0	s2			1
1		s3	accept	
2		$r(E \rightarrow n)$	accept r(E→n)	
3	s4			
4		r(E→E+n)	r(E→E+n)	

SLR(1)

	State	Action	Rule	Input		Goto	
				(a)	A
	0	shift		3	2		1
	1	reduce	$A' \rightarrow A$				
LR(0)	2	reduce	A → a				
<u> </u>	3	shift		3	2		4
	4	shift				5	
	5	reduce	$A \rightarrow (A)$				

Parsing Actions for Example 10

State	Input			Goto
	n	+	\$	E
О	s2			1
1		s3	accept	
2		$r(E \rightarrow n)$	$r(E\rightarrow n)$	
3	s4			
4		$r(E \rightarrow E + n)$	r(E→E+n)	

]	Parsing Stack	<u>Input</u>	<u>Action</u>
1	\$0	n+n+n\$	shift 2
2	\$0n2	+n+n\$	reduce by $E \rightarrow n$
3	\$0E1	+n+n\$	shift 3
4	\$0E1+3	n+n\$	shift 4
5	\$0E1+3n4	+n\$	reduce E→E+n
6	\$0E1	+n\$	shift 3
7	\$0E1+3	n\$	shift 4
8	\$0E1+3n4	\$	reduce by $E \rightarrow E + n$
9	\$0E1	\$	accept

State	Input			Goto
	()	\$	S
0	s2	r (<i>S</i> →ε)	r (<i>S</i> →ε)	1
1			accept	
2	s2	$r(S \rightarrow \varepsilon)$	$r(S \rightarrow \varepsilon)$	3
3		s4		
4	s2	r (<i>S</i> →ε)	r (<i>S</i> →ε)	5
5		$r(S \rightarrow (S) S)$	$r(S \rightarrow (S) S)$	

Parsing Actions for Example 7

State	Input			Goto
	()	\$	S
0	s2	$r(S \rightarrow \epsilon)$	$r(S \rightarrow \varepsilon)$	1
1			accept	
2	s2	r(S→ε) s4	r (<i>S</i> →ε)	3
3		s4		
4	s2	$r(S \rightarrow \epsilon)$	$r(S \rightarrow \epsilon)$	5
5		$r(S \rightarrow (S) S)$	$r(S \rightarrow (S) S)$	

) S
) S

예 12 : SLR(1) parsing - C₀

- \blacksquare C_0 : Canonical Collection of LR(0) items
- $[\mathfrak{A}]$ 1. $E \rightarrow E + T$ 2. $E \rightarrow T$ 3. $T \rightarrow T * F$ 4. $T \rightarrow F$ 5. $F \rightarrow (E)$ 6. $F \rightarrow id$
 - 확장 문법(augmented grammar)

$$0. S' \rightarrow E \quad 1. E \rightarrow E + T \quad 2. E \rightarrow T \quad 3. T \rightarrow T \quad * F \quad 4. T \rightarrow F \quad 5. F \rightarrow (E) \quad 6. F \rightarrow id$$

$$10 = CLOSURE([S' \rightarrow \bullet E])$$

$$= \{[S' \rightarrow \bullet E], [E \rightarrow \bullet E + T], [E \rightarrow \bullet T], [T \rightarrow \bullet T * F], [T \rightarrow \bullet F], [F \rightarrow \bullet (E)], [F \rightarrow \bullet id]\}$$

```
GOTO(I0, E) = I1 = {[S' \rightarrow E•], [E \rightarrow E• + T]}

GOTO(I0, T) = I2 = {[E \rightarrow T•], [T \rightarrow T• * T]}

GOTO(I0, F) = I3 = {[T \rightarrow F•]}

GOTO(I0, ( ) = I4 = CLOSURE([F \rightarrow (•E)])

= {[F \rightarrow (•E)], [E \rightarrow•E + T], [E \rightarrow•T], [T \rightarrow•T * F], [T \rightarrow•F], [F \rightarrow•(E)], [F \rightarrow•id]}

GOTO(I0, id) = I5 = {[F \rightarrow id•]}
```

Canonical Collection of LR(0) items - C₀

- Canonical 은 무슨 뜻?
 - Canon law: 교회의 권위에 의해 만들어진 일련의 조례 및 규정

■ Canonical Collection → 표준 모음(Standard Collection)

예 12 : SLR(1) parsing - DFA of LR(0) items

예 12 : SLR(1) parsing – parsing table

0.	S' → E
1.	$E \rightarrow E + T$
2.	$E \rightarrow T$
3.	$T \rightarrow T * F$
4.	$T \rightarrow F$
5.	$F \to (E)$
6.	F → id

상태	구문	분석기	행동				GO	TO 함	<u> </u>	
경대	id	+	*	()	\$	Е	Т	F	
0	s5			s4			1	2	3	lo
1		s6				acc				[S'→·I [E→·E . [E→·7
2		r2	s7		r2	r2				[T→•T [T→•F
3		r4	r4		r4	r4				[F→·ic
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				id
6	s5			s4				9	3	
7	s5			s4			6		10	100
8		s6		1	s11					
9		r1	s7		r1	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	r5				


```
FOLLOW(E) = {$, +, )}
FOLLOW(T) = {*, +, ), $}
FOLLOW(F) = {*, +, ), $}
```

예 12: SLR(1) parsing – syntax analysis (1/2)

표 6-3 SLR 파싱표

상태	구문	구문 분석기 행동							GOTO 함수		
	id	+	*	()	\$	Е	T	F		
0	s5			s4			1	2	3		
1		s6				acc					
2		r2	s7		r2	r2					
3		r4	r4		r4	r4					
4	s5			s4			8	2	3		
5		r6	r6		r6	r6					
6	s5			s4				9	3		
7	s5			s4					10		
8		s6		1	s11						
9		r1	s7		r1	r1					
10		r3	r3		r3	r3					
11		r5	r5		r5	r5					

단계	스택	입력 기호	구문 분석 내용
0	0	id * (id * id)\$	이동 5
1	0id5	* (id * id)\$	감축 6
2	OF	* (id * id)\$	GOTO 3
3	0F3	* (id * id)\$	감축 4
4	ОТ	* (id * id)\$	GOTO 2
5	0T2	* (id * id)\$	이동 7
6	0T2 * 7	(id * id)\$	이동 4
7	0T2 * 7(4	id * id)\$	이동 5
8	0T2 * 7(4id5	* id)\$	감축 6
9	0T2 * 7(4F	* id)\$	GOTO 3

예 12: SLR(1) parsing – syntax analysis (2/2)

표 6-3 SLR 파싱표

상태	구문	구문 분석기 행동							GOTO 함수		
	id	+	*	()	\$	Е	Т	F		
0	s5			s4			1	2	3		
1		s6				acc					
2		r2	s7		r2	r2					
3		r4	r4		r4	r4					
4	s5			s4			8	2	3		
5		r6	r6		r6	r6					
6	s5			s4				9	3		
7	s5			s4			1		10		
8		s6		3	s11				8		
9		r1	s7		r1	r1					
10		r3	r3		r3	r3	40				
11		r5	r5		r5	r5					

단계	스택	입력 기호	구문 분석 내용
10	0T2 * 7(4F3	* id)\$	감축 4
11	0T2 * 7(4T	* id)\$	GOTO 2
12	0T2 * 7(4T2	* id)\$	이동 7
13	0T2 * 7(4T2 * 7	id)\$	이동 5
14	0T2 * 7(4T2 * 7id5)\$	감축 6
15	0T2 * 7(4T2 * 7F)\$	GOTO 10
16	0T2 * 7(4T2 * 7F10)\$	감축 3
17	0T2 * 7(4T)\$	GOTO 2
18	0T2 * 7(4T2)\$	감축 2
19	0T2 * 7(4E)\$	GOTO 8
20	0T2 * 7(4E8)\$	이동 11
21	0T2 * 7(4E8)11	\$	감축 5
22	0T2 * 7F	\$	GOTO 10
23	0T2 * 7F10	\$	감축 3
24	OT TO	\$	GOTO 2
25	0T2	\$	감축 2
26	0E	\$	GOTO 1
27	0E1	\$	수락

Disambiguating Rules for Parsing Conflicts

■ shift-reduce conflicts 해결 방법

- always prefer the shift over the reduce
 - incorporates the *most closely nested rule* for the dangling else ambiguity in **if**-statement
- 자연스러운 해결 방법
 - 문법에 모호함이 있더라도 이런 방식으로 해결 가능

reduce-reduce conflicts

■ 대부분 문법 자체에 오류가 있는 경우 발생

예13

■ Grammar with *dangling-else* ambiguity

```
S \rightarrow I \mid \text{other}
I \rightarrow \text{if } S \mid \text{if } S \text{ else } S
```

- DFA를 구성하면 parsing conflict이 발생하는 상태 존재
 - shift item과 reduce item이 같은 상태에 포함됨

```
    I → if S .
    FOLLOW(I) = { else, $ }
    I → if S . else S
    다음 토큰이 else 일 때 shift action
```

- shift action을 우선 적용 → resolve the shift-reduce conflict
 - else는 가장 가까운 if와 짝을 이룸(most closely nested rule)

예 13: SLR(1) Parsing Table

State			Go	to		
	if	else	other	\$	S	I
0	s4		s3		1	2
1				accept		
2		rl		r1		
3		r2		r2		
4	r4		s3		5	2
5		-(s6)		r3		
6	s 4		s3		7	2
7		r4		r4		

$$(1)$$
 S \rightarrow I

$$(3) I \rightarrow if S$$

(2)
$$S \rightarrow other$$

(4) I
$$\rightarrow$$
 if S else S

Limits of SLR(1) Parsing Power (1/3)

- "phony" problem (장난 전화)
 - 실제 입력에서 절대로 나타날 수 없는 상황 때문에 conflict가 발생
 - caused by the weakness of the SLR(1) method
- ■SLR(1) parsing을 적용할 수 없는 예

```
stmt \rightarrow call-stmt \mid assign-stmt
call-stmt \rightarrow [identifier]
assign-stmt \rightarrow var := exp
var \rightarrow var [exp] \mid [identifier]
exp \rightarrow var \mid number
```

■ 호출문 (call-stmt)과 할당문(assign-stmt) 모두 identifier로 시작 := 를 읽어오기 전까지는 호출문인지 할당문인지 알 수 없음

Limits of SLR(1) Parsing Power (2/3)

시작 상태

reduce-reduce

conflict

$$V \rightarrow id$$

$$FOL(V) = \{ :=, \$ \}$$

Limits of SLR(1) Parsing Power (3/3)

$$S \rightarrow id \mid V := E$$

$$V \rightarrow id$$

$$E \rightarrow V \mid n$$

절대 올 수 없는 기호 때문에 parsing conflict 발생

예 14: Limits of SLR(1) Parsing Power (1/3)

- **문법:** 1. $S \rightarrow L = R$ 2. $S \rightarrow R$ 3. $L \rightarrow *R$ 4. $L \rightarrow id$ 5. $R \rightarrow L$
- 확장 문법: 0. S' → S 1. S → L = R 2. S → R 3. L → * R 4. L → id 5. R → L

예 14: Limits of SLR(1) Parsing Power (2/3)

shift-reduce conflict

예 14: Limits of SLR(1) Parsing Power (3/3)

상태	구문 분석	^{석기 행동}	N.		GO	GOTO 함수		
	=	*	id	\$	S	R	L	
0		s4	s5		1	3	2	
1				acc		S1 21		
2	r5, s6			r5				
3			100	r2				
4		s4	s5			7	8	
5	r4			r4				
6		s4	s5			9	8	
7	r3			r3				
8	r5			r5				
9				r1		8		

0.
$$S' \rightarrow S$$

1. $S \rightarrow L = R$
2. $S \rightarrow R$
3. $L \rightarrow R$
4. $L \rightarrow id$
5. $R \rightarrow L$

LR Parsing

- SLR(*Simple* LR)
- LALR (*Lookahead* LR)
 - more general (used in Yacc)
- ■CLR (*Canonical* LR) 또는 general LR

SLR(1) *versus* LR(1)

■SLR(1)의 경우

- DFA를 구성하고 나서 lookahead를 적용
 - 즉, DFA를 구성할 때 lookahead를 무시

■LR(1)의 경우

- DFA를 구성할 때부터 lookahead를 포함시킴
 - LR(0) item + *lookahead* = LR(1) item

■ 엉뚱한 기호 말고 진짜 나타날 기호는 무엇?

- 식당에서 full-course 요리를 시켰을 때
 - 전채(appetizer) 를 먹고 나면 다음 번엔?
 - 후식 ?

SLR(1) Parsing 단점

SLR(1) treats all occurrences of a RHS on stack as identical. Only a few of these reductions may lead to a successful parse.

Example:

$$I_0 = \{[S' \to \bullet \ S], [S \to \bullet \ A \mathtt{a} A \mathtt{b}], [S \to \bullet \ B \mathtt{b} B \mathtt{a}], [A \to \bullet], [B \to \bullet]\}$$

Since FOLLOW(A) = FOLLOW(B), we have reduce/reduce conflict in state 0.

LR(1) Item Sets

Construct LR(1) items of the form $[A \rightarrow \alpha \bullet \beta, a]$, which means:

The item $A \rightarrow \alpha \bullet \beta$, can be chosen when the next token on input stream is α .

An example LR(1) item set:

$$I_0 = \{ [S' \to ullet S, \$], [S \to ullet A a A b, \$], [S \to ullet B b B a, \$], \ [A \to ullet a, a], [B \to ullet b, b] \}.$$

어떤 input symbol 에 대해 reduce 할 것인가?

Finite Automata of LR(1) Items(1/2)

■LR(1) item

- ■[*A* → α β, *a*] 로 표기
 - $A \rightarrow \alpha \bullet \beta \models LR(0)$ item, $A \rightarrow \alpha\beta \in P$
 - $a = lookahead (token), a \in \{V_T \cup \$\}$

■ Definition of LR(1) transitions

Start State: $[S' \rightarrow \bullet S, \$]$

Finite Automata of LR(1) Items(2/2)

■ Definition of LR(1) transitions

예 14 (1/2)

kernel item [A'→.A,\$]의 closure item 구하기

$$[A' \to \bullet A, \$] \longrightarrow [A \to \bullet(A), \$]$$

$$B = A, \gamma = \varepsilon, a = \$$$

$$First (\gamma a) = First (\varepsilon \$) = \{\$\}$$

$$[A \to \alpha \bullet B\gamma, a] \longrightarrow [B \to \bullet \beta, First (\gamma a)]$$

예 14 (2/2)

예 15: CLR(1) parsing (1/4) – Canonical Collection of LR(1) items

■ 문법

1.
$$S \rightarrow CC$$
 2. $C \rightarrow cC$ 3. $C \rightarrow d$

■ 확장 문법

$$0. S' \rightarrow S$$
 $1. S \rightarrow CC$ $2. C \rightarrow cC$ $3. C \rightarrow d$

Canonical Collection of LR(1) items

I0 = CLOSURE([S'
$$\rightarrow \bullet S$$
, \$])
= {[S' $\rightarrow \bullet S$, \$], [S $\rightarrow \bullet CC$, \$], [C $\rightarrow \bullet cC$, c/d], [C $\rightarrow \bullet d$, c/d]}
CLOSURE(I0, S) = I1 = {[S' $\rightarrow S \bullet$, \$]}
CLOSURE(I0, C) = I2 = {[S $\rightarrow C \bullet C$, \$], [C $\rightarrow \bullet cC$, \$], [C $\rightarrow \bullet d$, \$]}
CLOSURE(I0, c) = I3 = {[C $\rightarrow c \bullet C$, c/d], [C $\rightarrow \bullet cC$, c/d], [C $\rightarrow \bullet d$, c/d]}
CLOSURE(I0, d) = I4 = {[C $\rightarrow d \bullet$, c/d]}

예 15: CLR(1) parsing (2/4) - DFA of LR(1) items

예 15: CLR(1) parsing (3/4) – parsing table

상태	구문	분석기 행	동	GOT	O 함수
'경대	С	d	\$	S	С
0	s3	s4		1	2
1			acc		1
2	s6	s7			5
3	s3	s4			8
4	r3	r3	1.		Els.
5			r1		
6	s6	s7			9
7			r3		1
8	r2	r2			
9			r2		

예 15: CLR(1) parsing (4/4) – syntax analysis

단계	스택	입력 기호	구문 분석 내용
0	0	ccdd\$	이동 3
1	0c3	cdd\$	이동 3
2	0c3c3	dd\$	이동 4
3	0c3c3d4	d\$	감축 3
4	0c3c3C	d\$	GOTO 8
5	0c3c3C8	d\$	감축 2
6	0c3C	d\$	GOTO 8
7	0c3C8	d\$	감축 2
8	0C	d\$	GOTO 2
9	0C2	d\$	이동 7
10	0C2d7	\$	감축 3
11	0C2C	\$	GOTO 5
12	0C2C5	\$	감축 1
13	0S	\$	GOTO 1
14	0S1	\$	수락

상태	구문 분	로석기 행	동	GOT	TO 함수	
경대	С	d	\$	S	С	
0	s3	s4		1	2	
1			acc			
2	s6	s7			5	
3	s3	s4			8	
4	r3	r3			E E	
5			r1			
6	s6	s7			9	
7			r3		11	
8	r2	r2				
9			r2			

General LR(1) Parsing Algorithm (1/3)

- 현재 상태 n 이
- 1. $[A \rightarrow \alpha \bullet X\beta, a]$ 형태의 item을 갖고 있는 경우
 - X가 terminal이고, 입력에서 읽어 올 next token 도 X 이면,
 - *shift* action : *input lookahead* 를 stack에 push
 - 다음 상태 m은 $[A \rightarrow \alpha X \bullet \beta, a]$ 의 item을 포함

General LR(1) Parsing Algorithm (2/3)

- 현재 상태 n 이
- 2. complete item [$A \rightarrow \alpha \bullet$, a] 을 가지며, 입력에서 읽어 온 token이 a이면,
 - *reduce* action: reduction by $A \rightarrow \alpha$
 - Stack에서 기호(a) 와 상태 번호를 함께 제거(pop)
 - nonterminal A를 stack에 push
 - $B \rightarrow \alpha A \bullet \beta (B \rightarrow \alpha \bullet A\beta)$ 에서 reduction직후의 item) 를 포함하는
 - 상태 번호 *m* 을 push

General LR(1) Parsing Algorithm (3/3)

- 현재 상태 n 이
- 2. complete item [*S'* → S •, \$] 을 가지며, 입력에서 읽어 온 기호가 \$ 이면 accept!

LR(1) Grammar

- A grammar is LR(1) <u>if and only if</u> the following two conditions are satisfied: for any state s,
- 1. no *shift-reduce conflict*
 - For any item $[A \to \alpha \bullet X\beta, a]$ in s with X a terminal,
 - there is no complete item $[B \to \gamma \bullet, X]$ in s.

2. no reduce-reduce conflict

- There are no two items in s of the form
 - $[A \rightarrow \alpha \bullet, a]$ and $[B \rightarrow \beta \bullet, a]$.

예 16: General LR(1) Parsing Table

	Inp	ut		Goto
(а)	\$	A
s2	s3			1
			accept	
s5	s6			4
			r2	
		(a s3	s2 s3	(a) \$ s2 s3 accept s5 s6

 $(1) A \rightarrow (A) \qquad (2) A \rightarrow a$

예 17 (1/2)

초기 상태(0)에서 kernel item [S'→ S,\$]의 Closure item 구하기

$$[S \rightarrow \bullet \ V := E, \$] \qquad \qquad [V = \bullet \ id, :=]$$

$$\alpha = \varepsilon, B = V, \gamma = :=$$

$$[A \rightarrow \alpha \bullet B\gamma, a] \qquad \qquad \varepsilon$$

$$[B \rightarrow \bullet \beta, First (\gamma a)]$$

예 17 (2/2)

예 18: CLR(1) parsing (1/4)

■ 문법

1.
$$S \rightarrow L = R$$
 2. $S \rightarrow R$ 3. $L \rightarrow R$ 4. $L \rightarrow Id$ 5. $R \rightarrow L$

Augmented grammar

$$0. S' \rightarrow S$$
 $1. S \rightarrow L = R$ $2. S \rightarrow R$ $3. L \rightarrow *R$ $4. L \rightarrow id$ $5. R \rightarrow L$

예 18: CLR(1) parsing (2/4) – DFA of LR(1) items

예 18: CLR(1) parsing (3/4) – parsing table

상태	구문 !	분석기 행동	5	GOTO 함수			
	=	*	id	\$	S	R	L
0		s4	s5		1	3	2
1				acc			
2	s6			r5			
3			5:	r2			Pr Pr
4		s4	s5			7	8
5	r4						21
6		s11	s12			9	10
7	r3			r3			
8	r5			r3			
9			17.	r1		1,1	
10			1	r5		10	
11		s11	s12			13	10
12			6:	r4			
13				r3			

예 18: CLR(1) parsing (4/4) – syntax analysis

단계	스택	입력 기호	구문 분석 내용
0	0	* id = id\$	0동 4
1	0 * 4	id = id\$	이동 5
2	0 * 4id5	= id\$	감축 4
3	0 * 4L	= id\$	GOTO 8
4	0 * 4L8	= id\$	감축 5
5	0 * 4R	= id\$	GOTO 7
6	0 * 4R7	= id\$	감축 3
7	OL	= id\$	GOTO 2
8	0L2	= id\$	0동6
9	0L2=6	id\$	0동 12
10	0L2 = 6id12	\$	감축 4
11	0L2=6L	\$	GOTO 10
12	0L2 = 6L10	\$	감축 5
13	0L2=6R	\$	GOTO 9
14	0L2=6R9	\$	감축 1
15	0S	\$	GOTO 1
16	0S1	\$	수락

상태	구문	분석기 행성	동		GOTO 함수		
64I	=	*	id	\$	S	R	L
0		s4	s5		1	3	2
1				acc			
2	s6			r5			
3				r2			
4		s4	s5			7	8
5	r4						
6		s11	s12			9	10
7	r3			r3			
8	r5			r3			
9			17	r1		11,0	
10		C	10	r5			
11		s11	s12			13	10
12				r4			Si
13				r3			

What's the problem?

LALR(1) Parsing

■ LR(1) has so many states!

- LR(0) item은 같지만, *lookahead* 만 다른 상태들이 많음
 - 이 상태들을 모두 합치면 LR(0) item으로 이루어진 DFA로 축약됨.
- LR(0) item으로 이루어진 DFA와 LR(1) item 으로 이루어진 DFA의 차이점은
 - lookahead 포함 여부

■상태 수를 줄이기 위해

- core item이 같은 상태들을 merge 시킴
 - lookahead 가 달라 따로 취급했던 상태들을 하나의 상태로 합침
- DFA of LALR(1) items

LALR(1) Parsing

Identifying states 2 and 4 gives the state of LALR(1) items

예 19: DFA of LALR(1) items

예 20: CLR table을 LALR table로 바꾸기 (1/2)

표 6-5 CLR 파싱표

VICII	구문	로석기 행	기 행동	GOT	TO 함수
상태	С	d	\$	S	С
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			5-2
5			r1		
6	s6	s7			9
7		0	r3		5-
8	r2	r2			
9			r2		

그림 6-7 CLR 정규 항목 집합과 GOTO 그래프

$$13 \cup 16 \Rightarrow 136 = \{[C \to c \cdot C, c/d/\$], [C \to \cdot cC, c/d/\$], [C \to \cdot d, c/d/\$]\}$$

$$14 \cup 17 \Rightarrow 147 = [[C \rightarrow d\bullet, c/d/\$]]$$

$$18 \cup 19 \Rightarrow 189 = \{[C \rightarrow cC \cdot, c/d/\$]\}$$

예 20: CLR table을 LALR table로 바꾸기 (2/2)

표 6-5 CLR 파싱표

상태	구문	분석기 행	동	GOT	O 함수
'6대	С	d	\$	S	С
0	s3	s4		1	2
1			acc		1
2	s6	s7			5
3	s3	s4			8
4	r3	r3			Ti di
5			r1		
6	s6	s7			9
7			r3		1.
8	r2	r2			
9			r2		

표 6-8 LALR 파싱표

상태	구문 분	석기 행동	GOTO 함수		
041	С	d	\$	S	С
0	s36	s47		1	2
1		14	acc		il de la companya de
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		.1.

LR(1) and LALR(1) Parsing

LR(1) parsing: Parse tables built using LR(1) item sets.

LALR(1) parsing: <u>Look Ahead</u> LR(1)

Merge LR(1) item sets; the build parsing table.

Typically, LALR(1) parsing tables are much smaller than LR(1) parsing table.

 $SLR(1) \subset LALR(1) \subset LR(1)$.

 $LL(1) \not\subseteq SLR(1)$, but $LL(1) \subset LR(1)$.

Construct the DFA of LR(0) items for the following grammar

$$P \rightarrow b D; S e$$

 $D \rightarrow d; D \mid d$
 $S \rightarrow s; S \mid s$