반도체 운전 조건 최적화를 통한 수율 향상

B3조

경수민, 박정빈, 우정아, 윤석희, 정규섭, 주연지

INDEX

- 1. 반도체 사업 특성
- 2. 반도체 특성
- 3. 추진 배경
- 4. 분석계획
- 5. 분석결과
- 6. 개선안
- 7. 시현
- 8. 과제 수행 모습
- 9. 소감

반도체 공정

반도체

- 일정한 조건에서 전기전도성을 띄는 도체와 부도체(절연체) 사이의 물질
- 반도체 기업의 종류에는 IDM, 칩리스, 팹리스, 파운드리, OSAT가 있다.
- 당사의 경우 파운드리 기업에 해당한다.

반도체 기업 종류

	설계	웨이퍼 생산	패키징, 테스트	판매, 유통
IDM				
칩리스				
팹리스				
파운드리				
OSAT				

추진 배경

AI 및 차량에 사용되는 반도체 수요가 급속히 증가함에도 불구하고 당사의 매출 상승률은 감소함에 따라 지속적인 경쟁 우위 확보를 위한 수율 향상 필요

츠저 되고//pi\	가중치	현수준	목표 수		
측정 지표(KPI)			23년	24년	25년
수율	-	0.927	0.930	0.934	0.939

수율 = 양품 웨이퍼/전체 웨이퍼

데이터 분석 계획

목적	분석계획			
국식	분석방법	주요 내용		
	히스토그램	각 공정별 변수들의 분포 및 이상치 확인		
공정별 데이터의 분포 특성 파악	Box Plot	역 6 6 2 한구글의 군도 뜻 이용시 확인		
	막대그래프	path별 Chamber의 양품/ 불량품 확인		
각 공정별 주요 파라미터간의 관계 파악	scatter plot Correlation	[주요 파라미터 확인] Oxidation 공정 : thickness에 따른 분포 Photo_softbake 공정: resist_target에 따른 분포 Photo_lithography 공정 : Line_CD에 따른 분포 Etching 공정 : Selectivity에 따른 분포 Ion_Implantation 공정 : 이온 주입량에 따른 분포		
	Heatmap	각 공정별로 주요 변수들 간의 상관관계 파악		
	ANOVA	path에 관한 파생변수와 양품/불량품 간의 상관을 검정		
	막대그래프	Date time별 chamber의 공정 횟수로 과부화 여부 판단		
전체 파라미터와의 불량률 관계 파악	ANOVA	모든 공정을 합친 데이터셋을 생성한 후, 파라미터와 불량률의 상관을 검정		
선제 피다미너되의 물정률 선계 피덕	Correlation	ANOVA를 통해 선정한 유의한 파라미터로 중요도 파악		
	로지스틱 회귀분석			
	의사결정나무			
,,,,,,,,에 따르 서비 브라르 ㅂㄹ ㅁ데 개바	랜덤포레스트	path별 불량에 영향을 미치는 주요 요인의 양품/불량품 분류 모델링		
path에 따른 설비 불량률 분류 모델 개발	Gradient Boosting	평가 지표를 종합적으로 고려하여 가장 높은 모형 선정		
	XGBoost			
	LightGBM			

프로세스의 안정성 검증 결과

프로세스의 안정화 여부에 따른 불량률 분석결과 불안정한 공정에서의 불량률이 높게 나타남에 따라 공정의 안정화 활동 필요

	0.041	0.049
구분	안정	불안정
불량칩	982	4,151
정상칩	23,018	79,849

[카이제곱 검정 결과]

 H_0 : 프로세스 안정화 여부에 따른 불량률 차이가 없다 H_1 : 프로세스 안정화 여부에 따른 불량률 차이가 있다

chisq: 29.605

p: 0.000

프로세스 과부하에 따른 불량률 검증 결과

공정흐름별 생산부하에 따른 불량률 분석결과 생산부하가 높을수록 불량률이 높게 나타남에 따라 공정흐름별 부하를 고려한 생산체제 운영 필요

	0.051	0.053
구 분	안정	불안정
불량	32,936	7,637
양품	613,064	136,363

[카이제곱 검정 결과]

 H_0 : 프로세스 과부하 여부에 따른 불량률 차이가 없다 H_1 : 프로세스 과부하 여부에 따른 불량률 차이가 있다

chisq: 10.117 p: 0.001

⇒ 따라서, 공정 횟수를 34회 이상 진행하는 것을 지양

투입경로에 따른 불량률

조업실적을 반영하여 불량률을 최신화하여 최적의 투입경로 조합 추천

투입 경로에 따른 불량률						
구 분	Path 1	Path 2	Path 3	불량률 (%)		
1	12233	21311	33122	3.527		
2	12133	21211	33322	3.687		
:	:	÷	:	i		
215	13122	22333	31211	6.701		
216	12322	23133	31211	6.767		

투입된 Wafer에 따른 불량률 결과

현장의 공정 상황을 고려해, 공정 중 다음 단계 공정 진행 시 Wafer를 나누어 넣는 경우 표에서 제시하는 Wafer장 수를 각 챔버에 투입할 것을 추천함.

각 챔버 별 추천 Wafer 투입 개수

이를 통해 생산성 감소를 방지함.

Chamber	Oxid	ation	Pho soft	oto_ bake	Photo_ lithography	Etching	lon Implantaion
1	3~9	34~38	5~12	34~36	-	17 ~ 18	17 ~ 18
2	12 , 1	7 , 34	10 -	~ 11	11 ~ 18	10 ~ 18	15 ~ 18
3	8 ~	· 11	34 ~ 38		18 ~ 20	17 ~ 20	17 ~ 20

운전 파라미터 최적화

운전요인		개선전	개선후	
Ovidation	ppm	21.07 ~ 49.91(ppm)	45.89 ~ 49.91(ppm)	
Oxidation	Pressure	0.18 ~ 0.229(Torr)	0.18 ~ 0.192(Torr)	
	N2_HMDS	9.497 ~ 23.573(ppm)	20.702 ~ 23.573(ppm)	
	Pressure_HMDS	14.776 ~ 15.281(Torr)	15.165 ~ 15.281(Torr)	
Photo coftbako	Temp_HMDS	19.986 ~ 20.012(°C)	20.01 ~ 20.012(°C)	
Photo_softbake	Temp_HMDS_bake	191.209 ~ 209.521(°C)	205.294 ~ 209.521(°C)	
	Spin2	3864.82 ~ 4208.68(rpm)	4105.87 ~ 4208.68(rpm)	
	Photoresist_bake	4.765 ~ 5.239(ml)	5.135 ~ 5.239(ml)	
Photo_Lithography	Energy_Exposure	103.407 ~ 112.069(mJ/cm ²)	111.486 ~ 112.069(mJ/cm ²)	
Etching	Source_Power	49.342 ~ 53.272(W)	52.568 ~ 53.272(W)	
	Temp_Etching	68.15 ~ 73.081(°C)	72.784 ~ 73.081(°C)	
Ion_Implanation	Input_Energy	29604.262 ~ 33675.551	32773.393 ~ 33675.551	
	Temp_Implantation	97.744 ~ 107.376(°C)	97.744 ~ 100.253(°C)	
	Furnace_Temp	854 ~ 944(°C)	933 ~ 944(℃)	
	RTA_Temp	148 ~ 162(°C)	148 ~150, 160 ~ 162(°C)	