Magnetic materials

Dr. Shail Pandey
Department of Physics
SVNIT Surat

Summary

- Source of magnetic field magnetic moment
- In materials, magnetic moment arises due to electron
 - Orbital angular momentum
 - Spin angular momentum
- In the presence of external magnetic field (H), orbital and spin magnetic moment (m_l, m_s) get changed such that
 - $\Delta \overrightarrow{m_l} \propto \overrightarrow{H}$
 - $\Delta \overrightarrow{m_s} \propto \overrightarrow{H}$ and
 - $\Delta \overrightarrow{m_S} \gg \Delta \overrightarrow{m_l}$
- Classification
 - Diamagnetic material
 - Paramagnetic material
 - Ferromagnetic material

Classification

Diamagnetic material

- Fully filled orbitals
- $\Delta \overrightarrow{m_s} = 0$ while $\Delta \overrightarrow{m_l} \propto -\overrightarrow{H}$: distortion of orbitals
- Magnetization $\vec{M} \propto -\vec{H}$
- \blacksquare $\overrightarrow{B_{in}} < \overrightarrow{B_{out}}$
- Negative susceptibility (χ)
- Independent of temperature

Paramagnetic material

- Unpaired electrons in orbital : exists dipole moment of atoms
- $\Delta \overrightarrow{m_s} \neq 0$: alignment of moment in the direction of field
- Magnetization $\vec{M} \propto \vec{H}$
- \blacksquare $\overrightarrow{B_{in}} > \overrightarrow{B_{out}}$
- Positive susceptibility
- Temperature dependent , $\chi(T) = C/T$

Magnetic materials

- Definition of terms
- Classification of magnetic materials and properties
- Domain theory of ferromagnetism
- Hard and soft magnetic materials
- Conductors: Classical free electron theory (Lorentz-Drude theory), Electrical conductivity
- Superconductors: Definition, Meissner effect, Type I & II superconductors.

Ferromagnetic material

- Spontaneous magnetization
- Show hysteresis
- $\chi(T) = C/(T T_c)$: Curie-Weiss law

Domain theory of ferromagnetic material

Hysteresis Loop

Hard and soft magnetic materials

- Magnetic materials with strong Coercivity are called hard magnets
 - Cannot easily demagnetized
 - Large BH product/hysteresis loss
 - Used as permanent magnets
 - Ex- Iron-nickel-aluminum alloy, copper-nickel-cobalt alloy, coppernickel-iron alloy
- Magnets with weak Coercivity are called soft magnets
 - Can easily be demagnetized
 - Small BH product/hysteresis loss
 - Used in electromagnet in a motor, cores of transformer, Radars
 - Iron, Iron-silicon alloy, ferrous-nickel alloy, ferrites

Material	Initial Relative Permeability	
Magnetite, powdered	1.5	
Steel	50	
Cobalt	70	
Nickel	110	
Iron (99.8%) annealed	150	
78 Permalloy	8,000	
Mu-metal	20,000	
Ferrites (various)	100 - 20,000	

Room temperature magnetic susceptibility

Diamagnetics		Paramagnetics	
Material	Susceptibility χ_m (volume) (SI units)	Material	Susceptibility χ_m (volume) (SI units)
Aluminum oxide	-1.81×10^{-5}	Aluminum	2.07×10^{-5}
Copper	-0.96×10^{-5}	Chromium	3.13×10^{-4}
Gold	-3.44×10^{-5}	Chromium chloride	1.51×10^{-3}
Mercury	-2.85×10^{-5}	Manganese sulfate	3.70×10^{-3}
Silicon	-0.41×10^{-5}	Molybdenum	1.19×10^{-4}
Silver	-2.38×10^{-5}	Sodium	8.48×10^{-6}
Sodium chloride	-1.41×10^{-5}	Titanium	1.81×10^{-4}
Zinc	-1.56×10^{-5}	Zirconium	1.09×10^{-4}

Summary

Magnetic material

- Definition of terms
- Classification of magnetic materials
- Properties of magnetic materials
- Domain theory of ferromagnetism
- Hard and soft magnetic materials