Smoothness-Adaptive Dynamic Pricing with Nonparametric Demand Learning

Hansheng Jiang

Rotman School of Management University of Toronto

Joint work with Zeqi Ye (Nankai→Northwestern)

INFORMS RMP Conference Los Angeles

One of the core problems in modern revenue management

One of the core problems in modern revenue management

Examples: online retailing, transportation (ride-hailing, airline), hospitality (hotel pricing)

One of the core problems in modern revenue management

Examples: online retailing, transportation (ride-hailing, airline), hospitality (hotel pricing)

Typical procedure in practice

- 1. Collect price and demand data
- 2. Estimate a parametric or nonparametric demand model
- 3. Optimize price based on current demand estimates
- 4. Observe consumer responses to prices and repeat the above two steps

One of the core problems in modern revenue management

Examples: online retailing, transportation (ride-hailing, airline), hospitality (hotel pricing)

Typical procedure in practice

- 1. Collect price and demand data
- 2. Estimate a parametric or nonparametric demand model
- 3. Optimize price based on current demand estimates
- 4. Observe consumer responses to prices and repeat the above two steps

Naturally, the estimation method and pricing performances correspond to demand assumptions

▶ Price-setting monopolist decision variable $p_t \in \mathcal{P}$

- ▶ Price-setting monopolist decision variable $p_t \in \mathcal{P}$
- **Consumer demand** random demand d_t and $\mathbb{E}[d_t|p_t=p]=f(p)$

- ▶ **Price-setting monopolist** decision variable $p_t \in \mathcal{P}$
- ▶ Consumer demand random demand d_t and $\mathbb{E}[d_t|p_t = p] = f(p)$
 - o nonparametric demand with regularity assumptions

- ▶ Price-setting monopolist decision variable $p_t \in \mathcal{P}$
- ullet Consumer demand random demand d_t and $\mathbb{E}[d_t|p_t=p]=f(p)$
 - o nonparametric demand with regularity assumptions
- Pricing policy $\pi=(p_1,p_2,\dots)$ non-anticipating

- ▶ Price-setting monopolist decision variable $p_t \in \mathcal{P}$
- ullet Consumer demand random demand d_t and $\mathbb{E}[d_t|p_t=p]=f(p)$
 - o nonparametric demand with regularity assumptions
- Pricing policy $\pi=(p_1,p_2,\dots)$ non-anticipating
- \blacktriangleright Regret $R^\pi(T) = \mathbb{E}^\pi \left[\sum_{t=1}^T \{ p^* f(p^*) p_t f(p_t) \} \right]$

Canonic parametric demand model

▶ Linear demand $f(p) = a + b \cdot p$, where a, b are unknown parameters

Canonic parametric demand model

- ▶ Linear demand $f(p) = a + b \cdot p$, where a, b are unknown parameters
- lacktriangleright Revenue function $p\cdot f(p)$ is concave and thus unimodal

Canonic parametric demand model

- ▶ Linear demand $f(p) = a + b \cdot p$, where a, b are unknown parameters
- lacktriangleright Revenue function $p \cdot f(p)$ is concave and thus unimodal
- \blacktriangleright Optimal regret rate is $\widetilde{O}(\sqrt{T})$

Canonic parametric demand model

- ▶ Linear demand $f(p) = a + b \cdot p$, where a, b are unknown parameters
- lacktriangleright Revenue function $p \cdot f(p)$ is concave and thus unimodal
- $lackbox{Optimal regret rate is } \widetilde{O}(\sqrt{T})$

Lipschitz demand model

▶ Demand function f(p) is Lipschitz

Canonic parametric demand model

- ▶ Linear demand $f(p) = a + b \cdot p$, where a, b are unknown parameters
- lacktriangleright Revenue function $p\cdot f(p)$ is concave and thus unimodal
- \blacktriangleright Optimal regret rate is $\widetilde{O}(\sqrt{T})$

- ▶ Demand function f(p) is Lipschitz
- $lackbox{Optimal regret rate is } \widetilde{O}(T^{2/3})$

Canonic parametric demand model

- ▶ Linear demand $f(p) = a + b \cdot p$, where a, b are unknown parameters
- lacktriangleright Revenue function $p \cdot f(p)$ is concave and thus unimodal
- ▶ Optimal regret rate is $\widetilde{O}(\sqrt{T})$

- ▶ Demand function f(p) is Lipschitz
- \blacktriangleright Optimal regret rate is $\widetilde{O}(T^{2/3})$

Canonic parametric demand model

- ▶ Linear demand $f(p) = a + b \cdot p$, where a, b are unknown parameters
- lacktriangleright Revenue function $p \cdot f(p)$ is concave and thus unimodal
- $lackbox{Optimal regret rate is } \widetilde{O}(\sqrt{T})$

- ▶ Demand function f(p) is Lipschitz
- \blacktriangleright Optimal regret rate is $\widetilde{O}(T^{2/3})$

Canonic parametric demand model

- ▶ Linear demand $f(p) = a + b \cdot p$, where a, b are unknown parameters
- ightharpoonup Revenue function $p \cdot f(p)$ is concave and thus unimodal
- $lackbox{Optimal regret rate is } \widetilde{O}(\sqrt{T})$

- ▶ Demand function f(p) is Lipschitz
- lacksquare Optimal regret rate is $\widetilde{O}(T^{2/3})$

$$\left| f^{(w(\beta))}(p) - f^{(w(\beta))}(p') \right| \le L \cdot \left| p - p' \right|^{\beta - w(\beta)}$$

▶ Hölder-smooth demand function $f(p) \in \mathcal{H}(\beta, L)$ for some $\beta, L > 0$ if

$$\left| f^{(w(\beta))}(p) - f^{(w(\beta))}(p') \right| \le L \cdot \left| p - p' \right|^{\beta - w(\beta)}$$

▶ Role of smoothness parameter β

$$\left| f^{(w(\boldsymbol{\beta}))}(p) - f^{(w(\boldsymbol{\beta}))}(p') \right| \le L \cdot \left| p - p' \right|^{\boldsymbol{\beta} - w(\boldsymbol{\beta})}$$

- ▶ Role of smoothness parameter β
 - o optimal regret rate $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ rate heavily **relies** on $\beta!$

$$\left| f^{(w(\boldsymbol{\beta}))}(p) - f^{(w(\boldsymbol{\beta}))}(p') \right| \le L \cdot \left| p - p' \right|^{\boldsymbol{\beta} - w(\boldsymbol{\beta})}$$

- ▶ Role of smoothness parameter β
 - o optimal regret rate $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ rate heavily **relies** on $\beta!$
 - o the algorithm design also **relies** on the knowledge of $\beta!$

$$\left| f^{(w(\boldsymbol{\beta}))}(p) - f^{(w(\boldsymbol{\beta}))}(p') \right| \le L \cdot \left| p - p' \right|^{\boldsymbol{\beta} - w(\boldsymbol{\beta})}$$

- **Role** of smoothness parameter β
 - o optimal regret rate $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ rate heavily **relies** on $\beta!$
 - the algorithm design also **relies** on the knowledge of β !

$$\left| f^{(w(\beta))}(p) - f^{(w(\beta))}(p') \right| \le L \cdot \left| p - p' \right|^{\beta - w(\beta)}$$

- **Role** of smoothness parameter β
 - o optimal regret rate $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ rate heavily **relies** on $\beta!$
 - the algorithm design also **relies** on the knowledge of β !

$$\left| f^{(w(\boldsymbol{\beta}))}(p) - f^{(w(\boldsymbol{\beta}))}(p') \right| \le L \cdot \left| p - p' \right|^{\boldsymbol{\beta} - w(\boldsymbol{\beta})}$$

- ▶ Role of smoothness parameter β
 - o optimal regret rate $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ rate heavily **relies** on $\beta!$
 - the algorithm design also **relies** on the knowledge of β !

$$\left| f^{(w(\beta))}(p) - f^{(w(\beta))}(p') \right| \le L \cdot \left| p - p' \right|^{\beta - w(\beta)}$$

- **Role** of smoothness parameter β
 - o optimal regret rate $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ rate heavily **relies** on $\beta!$
 - the algorithm design also **relies** on the knowledge of β !

$$\left| f^{(w(\beta))}(p) - f^{(w(\beta))}(p') \right| \le L \cdot \left| p - p' \right|^{\beta - w(\beta)}$$

- ▶ Role of smoothness parameter β
 - o optimal regret rate $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ rate heavily **relies** on $\beta!$
 - the algorithm design also **relies** on the knowledge of β !

$$\left| f^{(w(\beta))}(p) - f^{(w(\beta))}(p') \right| \le L \cdot \left| p - p' \right|^{\beta - w(\beta)}$$

- **Role** of smoothness parameter β
 - o optimal regret rate $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ rate heavily **relies** on $\beta!$
 - the algorithm design also **relies** on the knowledge of β !

$$\left| f^{(w(\beta))}(p) - f^{(w(\beta))}(p') \right| \le L \cdot \left| p - p' \right|^{\beta - w(\beta)}$$

- **Role** of smoothness parameter β
 - o optimal regret rate $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ rate heavily **relies** on $\beta!$
 - the algorithm design also **relies** on the knowledge of β !

Rely on Smoothness Parameter

Rely on Smoothness Parameter

Rely on Smoothness Parameter

Smoothness-Adaptive

Rely on Smoothness Parameter

Smoothness-Adaptive

Our Contributions

Characterizing adaptivity challenge

Without additional conditions, achieving the optimal regret for functions without knowing the Hölder smoothness parameter is impossible.

Our Contributions

Characterizing adaptivity challenge

Without additional conditions, achieving the optimal regret for functions without knowing the Hölder smoothness parameter is impossible.

Proposing a self-similarity condition to enable adaptivity

This condition does not decrease problem complexity with the same regret lower bound $O(T^{\frac{\beta+1}{2\beta+1}})$

Our Contributions

► Characterizing adaptivity challenge

Without additional conditions, achieving the optimal regret for functions without knowing the Hölder smoothness parameter is impossible.

Proposing a self-similarity condition to enable adaptivity

This condition does not decrease problem complexity with the same regret lower bound $\Omega(T^{rac{\beta+1}{2\beta+1}})$

Optimal minimax regret rate

Our Smoothness-Adaptive Dynamic Pricing (SADP) algorithm enjoys an optimal regret bound $\widetilde{O}(T^{\frac{\beta+1}{2\beta+1}})$

▶ If smoothness parameter β is known, optimal regret rate is achievable by our Hölder-Smooth Dynamic Pricing (HSDP) Algorithm

▶ If smoothness parameter β is known, optimal regret rate is achievable by our Hölder-Smooth Dynamic Pricing (HSDP) Algorithm

HSDP Algorithm Design

▶ If smoothness parameter β is known, optimal regret rate is achievable by our Hölder-Smooth Dynamic Pricing (HSDP) Algorithm

HSDP Algorithm Design

▶ If smoothness parameter β is known, optimal regret rate is achievable by our Hölder-Smooth Dynamic Pricing (HSDP) Algorithm

HSDP Algorithm Design

Characterizing Adaptivity Challenge

▶ It is impossible to achieve adaption without additional assumptions

Characterizing Adaptivity Challenge

▶ It is impossible to achieve adaption without additional assumptions

Theorem

Fix any two positive Hölder smoothness parameters $\alpha>\beta>0$, and parameters $L\left(\alpha\right),L\left(\beta\right)>0$. Suppose that there is a policy π achieves the optimal regret $\widetilde{O}\left(T^{\frac{\alpha+1}{2\alpha+1}}\right)$ over $\mathbb{E}\left[d|p\right]=f\left(p\right)\in\mathcal{H}\left(\alpha,L\left(\alpha\right)\right)$, then there exists a constant C>0 π such that

$$\sup_{f \in \mathcal{H}(\beta, L(\beta))} R^{\pi}\left(T\right) \ge \Omega\left(T^{\frac{\beta+1}{2\beta+1} + \frac{\beta(\alpha-\beta)}{2(2\beta+1)^2(2\alpha+1)}}\right).$$

Self-Similarity Condition

Definition

A function $g:[a,b]\to\mathbb{R}, [a,b]\subseteq[0,1]$ is self-similar on [a,b] with parameters $\beta,l\in\mathbb{Z}^+,M_1\in\mathbb{R}_{\geq 0},M_2\in\mathbb{R}_+$ if for some positive integer $c>M_1$ it holds that

$$\max_{V \in \mathcal{V}_{c}} \sup_{p \in V} \left| \Gamma_{l}^{V} g\left(p\right) - g\left(p\right) \right| \geq M_{2} \cdot \mathbf{2}^{-c\beta},$$

where we define

$$\mathcal{V}_c = \left\{ \left[a + \frac{i}{2^c}, a + \frac{i+1}{2^c} \right] \cap [0, 1], i = 0, 1, \dots 2^c - 1 \right\}$$

for any positive integer c.

Examples of Self-Similar Functions

Example

Let f be any function with continuous first-order derivative uniformly bounded by C_1 . We define the function class \mathcal{F} as

$$\mathcal{F}(f) = \{ f : x \mapsto c_0 \cdot x^{\beta} + f : c_0 \in \mathbb{R}, |c_0| \ge C_1 \},\$$

then all function in $\mathcal{F}(f)$ is self-similar with parameters ,l=0 for some constants M_1,M_2 depending on C_1 and C_2 .

Self-Similarity Condition Doesn't Decrease Complexity

Theorem

For any positive parameters $\beta, M_1, L > 0$, there exists a constant $M_2 > 0$ satisfying that

$$\inf_{\pi} \sup_{f \in \mathcal{H}(\beta, L) \cap \mathcal{S}(\beta, w(\beta), M_1, M_2)} R^{\pi}(T) \ge \Omega(T^{\frac{\beta+1}{2\beta+1}}).$$

Self-Similarity Condition Doesn't Decrease Complexity

Theorem

For any positive parameters $\beta, M_1, L > 0$, there exists a constant $M_2 > 0$ satisfying that

$$\inf_{\pi} \sup_{f \in \mathcal{H}(\beta, L) \cap \mathcal{S}(\beta, w(\beta), M_1, M_2)} R^{\pi}(T) \ge \Omega(T^{\frac{\beta+1}{2\beta+1}}).$$

ightharpoonup Self-similarity does not change the minimax regret rate and therefore does not lower the problem difficulty for any admissible dynamic pricing policy π

Towards Smoothness-Adaptivity

Main idea behind learning smoothness parameter

- ► Employ two distinct levels of granularity to estimate the demand function, indexed by 1 and 2 respectively
- lacktriangleright The difference of two estimates tells information on eta

Lemma (Estimation Accuracy)

With $0<\beta\leq \beta_{\max}$, we can obtain an estimator $\hat{\beta}$ in $2T^{\lfloor\frac{1}{2}+k_1\rfloor}$ periods for $k_1=\frac{1}{2\beta_{\max}+2}$, such that with probability at least $1-O\left(e^{-C\ln^2(T)}\right)$,

$$\hat{\beta} \in \left[\beta - \frac{4(\beta_{\max} + 1)\ln(\ln(T))}{\ln(T)}, \beta\right].$$

Smoothness-Adaptive Dyanmic Pricing Algorithm

AlgorithmSmoothness-AdaptiveDynamicPricing(SADP)

Input: Time horizon T, Hölder smoothness range $[\beta_{\min}, \beta_{\max}]$, minimum price p_{\min} , maximum demand d_{\max} ;

1: Set
$$k_2=\frac{1}{2\beta_{\max}+2}, k_2=\frac{1}{4\beta_{\max}+2}$$
, $K_i=2^{\lfloor k_i\log_2(T)\rfloor}$, for $i=1,2$;

- 2: **for** i = 1, 2 **do**
- 3: Set trial time $T_i = T^{\lfloor \frac{1}{2} + k_i \rfloor}$;
- 4: Fit local polynomial regression \hat{f}_i , respectively, on collected data from pulling T_i times uniformly selected prices;
- 5: end for
- 6: Let $\hat{\beta} = -\frac{\ln(\max \|\hat{f}_2 \hat{f}_1\|_{\infty})}{\ln(T)} \frac{\ln(\ln(T))}{\ln(T)};$
- 7: Call HSDP with $\hat{\beta}$;

Theorem

The cumulative regret of SADP is upper bounded by $\tilde{O}\left(T^{\frac{\beta+1}{2\beta+1}}\right)$.

Numerical Illustration

Figure: The comparison of mean relative regret over 30 experiments.

Takeaway

▶ To make the dynamic pricing algorithm practical, we need more adaptivity, but it is challenging in general

Our contributions

Takeaway

▶ To make the dynamic pricing algorithm practical, we need more adaptivity, but it is challenging in general

Our contributions

▶ We characterize adaptivity challenge

Takeaway

▶ To make the dynamic pricing algorithm practical, we need more adaptivity, but it is challenging in general

Our contributions

- ▶ We characterize adaptivity challenge
- ▶ We develop a smoothness-adaptive dynamic pricing algorithm under self-similarity

Takeaway

▶ To make the dynamic pricing algorithm practical, we need more adaptivity, but it is challenging in general

Our contributions

- ▶ We characterize adaptivity challenge
- ▶ We develop a smoothness-adaptive dynamic pricing algorithm under self-similarity
- ▶ We prove its optimal regret rate

Takeaway

➤ To make the dynamic pricing algorithm practical, we need more adaptivity, but it is challenging in general

Our contributions

- ▶ We characterize adaptivity challenge
- ▶ We develop a smoothness-adaptive dynamic pricing algorithm under self-similarity
- ▶ We prove its optimal regret rate

Paper available at arxiv.org/abs/2310.07558 Accepted to AISTATS 2024

Thank You!

Questions or comments? Contact: hansheng.jiang@rotman.utoronto.ca