MATH3423 - Statistical Inference Assignment 3

- 1. $X_1, X_2, ..., X_n$ are observations of a random sample of size n from the exponential distribution with mean $1/\theta$, i.e., $X_i \sim exp(\theta)$. Find the distribution of $2\theta \sum_{i=1}^n X_i$.
- 2. Q55 in Exercise 1
- 3. Q56 in Exercise 1
- 4. Let X_1, \ldots, X_n be i.i.d. r.v.'s from the $U(\theta, 2\theta), \theta \in \Omega = (0, \infty)$ distribution.
 - (a) Find the p.d.f. of Y_1 , $E(Y_1)$ and $Var(Y_1)$, where $Y_1 = \min(X_1, \dots, X_n)$.
 - (b) Find the p.d.f. of Y_n , $E(Y_n)$ and $Var(Y_n)$, where $Y_n = \max(X_1, \dots, X_n)$.
- 5. Q23 in Exercise 2
- 6. Q5 in the midterm exam of 2015/2016

Consider a random sample $\{X_1, X_2\}$ from density

$$f_X(x|\theta) = \frac{3x^2}{\theta^3} I_{(0 < x < \theta)},$$

where $\theta > 0$.

- (a) Are $\hat{\theta}_1 = \frac{2}{3}(X_1 + X_2)$ and $\hat{\theta}_2 = \frac{7}{6}\max(X_1, X_2)$ unbiased for θ ?
- (b) Find the mean squared errors (MSEs) of $\hat{\theta}_1$ and $\hat{\theta}_2$, and compare those estimators.
- (c) Prove that in the sense of MSE, $T_{8/7}$ is the best estimator of θ among the estimators in form of $T_c = c \max(X_1, X_2)$.