1 Predicting stomatal responses to the environment from the optimization of photosynthetic

2 gain and hydraulic cost

- 3 John S. Sperry¹, Martin D. Venturas¹, William R.L. Anderegg¹, Maurizio Mencuccini^{2,3}, D. Scott Mackay⁴,
- 4 Yujie Wang¹, and David M. Love¹

SUPPORTING INFORMATION

- 6 **Figure S1.** Shifts of the cost (θ, blue), gain (β, green) and optimization (β-θ, black) functions in relation to
- 7 changes in (a) vapor pressure deficit (D, kPa), (b) air temperature (T_A, °C), (c) atmospheric CO₂
- 8 concentrations (C_a, Pa), (d) maximum carboxylation rate (V_{max25}, μmol s⁻¹ m⁻²), (e) soil water potential (P_s,
- 9 -MPa), and (f) soil-canopy vulnerability curves (Weibull parameters [b,c]). Three representative values
- 10 have been plotted in each panel. All parameters are set to the default value (Table 1) except for the
- tested variable. For the V_{max25} response, k_{max} and G_{max} were held constant at their optima for V_{max25} =
- 12 100 μmol s⁻¹m⁻².

Figure S2. Differences between optimum stomatal control between a sigmoid and an exponential soil-canopy vulnerability curve (Weibull [2,3] and [2,1], respectively) for two soil water potentials, **(a)** P_s =0 and **(b)** P_s =-2 MPa. The gain (β, green), cost (θ, blue) and optimization (β-θ, black) functions of the sigmoid (solid) and exponential (dashed) vulnerability curves produce a different optimum (solid arrow, sigmoid; dashed arrow; exponential). The red arrow indicates how the exponential vulnerability curve closes stomata under wet soil conditions (a) compared to the sigmoid and opens them under dryer soils (b).

