CM A – Estruturas Cristalinas

Felipe B. Pinto 61387 – MIEQB

2 de novembro de 2023

Conteúdo

Questão 1	2	Questão 4
Questão 2	3	Questão 5
Ouestão 3	 6	Ouestão 6

Para as estruturas cúbica simples (CS), cúbica de corpo centrado (CCC) e cúbica de faces centradas (CFC), calcule:

Q1 a.

A relação entre o parâmetro de rede a e o ráio atómico

(iii)

CFC

 $a_{\text{CFC}} = 4 r \cos(\pi/4) = 2 r \sqrt{2}$

Resposta

$$a_{\text{CS}} = 2 \, r$$

(ii) CCC

$$a_{\text{CCC}}^2 + (a_{\text{CCC}}\sqrt{2})^2 = (4r)^2 \implies$$

 $\implies a_{\text{CCC}} = 4r/\sqrt{3}$

Q1 b.

O número de átomos por célula unitária

Resposta

(i) CSC

$$n_{CS} = 8 * 1/8 = 1$$

(ii) CCC

$$n_{CCC} = 1 + 8 * 1/8 = 2$$

(iii) CFC

$$n_{CFC} = 6 * 1/2 + 8 * 1/8 = 4$$

Q1 c.

O espaço ocupado por um átomo em cada estrutura

Resposta

(i) CS

$$\frac{1 * \pi r^3 4/3}{a^3} = \frac{\pi r^3 4/3}{(2r)^3} = \frac{\pi}{6} \approx 52.4\%$$

(ii) CCC

$$\frac{2\pi r^3 4/3}{a^3} = \frac{\pi r^3 8/3}{(4r/\sqrt{3})^3} = \frac{\pi \sqrt{3}}{8} \approx 68.0 \%$$

(iii) CFC

$$\frac{2\pi r^3 4/3}{a^3} = \frac{2\pi r^3 4/3}{(r\sqrt{2^3})^3} =$$

$$= \frac{\pi}{3*2^{3*3/2-3}} = \frac{\pi}{3*2^{3/2}} \cong$$

$$\cong 37.0\%$$

Calcule o fator de empacotamento atómico das estruturas CS, CCC e CFC

O3 a.

A densidade do Al é 2.70 g/cm³. O peso atómico é 26.98 g/mol. Calcular os parâmetros da rede CFC do Al

O3 b.

A densidade do Fe $-\alpha$ é 7.87 g/cm 3 . O peso atómico é 55.85 g/mol. Calcular os parâmetros da rede CCC do Fe $-\alpha$

O3 c.

A densidade do Mg é 1.741 g/cm³. O peso atómico é 24.31 g/mol. Calcular os parâmetros da rede HC do Mg

Considere a estrutura cúbica simples:

Q4 a.

Desenhe os planos com os seguintes índices de miller

i: (001)

ii: (110)

iii: (111)

Q4 b.

Sobre os planos anteriores desenhe, respectivamente, as direções:

i: [2 1 0]

ii: [111]

iii: $[10\bar{1}]$

body

O Pb possui estrutura Cúbica de Faces Centradas (CFC) e o seu parâmetro de rede é $a_{\rm Pb}=4.95\,{\rm \AA}$. Quantos átomos por mm² existem nos planos (100) e (111) do chumbo?

O cobre tem uma estrutura CFC e um raio atómico de 1.278 Å. Quantas camadas de planos $\{1\,0\,0\}$ existem ao longo da espessura de uma película de $1\,\mu\mathrm{m}$ de espessura. Suponha que os planos $(0\,0\,1)$ são paralelos às superfícies superior e inferior da película.

