Python Crash Course Numpy

Scientific Python?

- Extra features required:
 - fast, multidimensional arrays
 - libraries of reliable, tested scientific functions
 - plotting tools
- NumPy is at the core of nearly every scientific Python application or module since it provides a fast N-d array datatype that can be manipulated in a vectorized form.

Arrays - Numerical Python (Numpy)

Lists ok for storing small amounts of one-dimensional data

```
>>> a = [1,3,5,7,9]
>>> print(a[2:4])
[5, 7]
>>> b = [[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]
>>> print(b[0])
[1, 3, 5, 7, 9]
>>> print(b[1][2:4])
[6, 8]
```

```
>>> a = [1,3,5,7,9]

>>> b = [3,5,6,7,9]

>>> c = a + b

>>> print c

[1, 3, 5, 7, 9, 3, 5, 6, 7, 9]
```

- But, can't use directly with arithmetical operators (+, -, *, /, ...)
- Need efficient arrays with arithmetic and better multidimensional tools
- Numpy >>> import numpy as np
- Similar to lists, but much more capable, except fixed size

Numpy – N-dimensional Array manipulations

The fundamental library needed for scientific computing with Python is called NumPy. This Open Source library contains:

- a powerful N-dimensional array object
- advanced array slicing methods (to select array elements)
- convenient array reshaping methods

and it even contains 3 libraries with numerical routines:

- basic linear algebra functions
- basic Fourier transforms
- sophisticated random number capabilities

NumPy can be extended with C-code for functions where performance is highly time critical. In addition, tools are provided for integrating existing Fortran code. NumPy is a hybrid of the older NumArray and Numeric packages, and is meant to replace them both.

- There are a number of ways to initialize new numpy arrays, for example from
 - a Python list or tuples
 - using functions that are dedicated to generating numpy arrays, such as arange, linspace, etc.
 - reading data from files

Numpy – Creating vectors

From lists

numpy.array

```
# as vectors from lists
>>> a = np.array([1,3,5,7,9])
>>> b = np.array([3,5,6,7,9])
>>> c = a + b
>>> print c
[4, 8, 11, 14, 18]

>>> type(c)
(<type 'numpy.ndarray'>)

>>> c.shape
(5,)
```

Numpy – Creating matrices

```
>>> 1 = [[1, 2, 3], [3, 6, 9], [2, 4, 6]] # create a list
>>> a = np.array(l) # convert a list to an array
>>>print(a)
[[1 2 3]
                         #only one type
[3 6 9]
                         >>> M[0,0] = "hello"
[2 4 6]]
                         Traceback (most recent call last):
>>> a.shape
                           File "<stdin>", line 1, in <module>
(3, 3)
                         ValueError: invalid literal for long() with base 10: 'hello'
>>> print(a.dtype) # ge
int64
                         >>> M = np.array([[1, 2], [3, 4]], dtype=complex)
                         >>> M
# or directly as matrix
                         array([[1.+0.j, 2.+0.j],
>>> M = np.array([[1, 2]
                          [3.+0.j, 4.+0.j]
>>> M.shape
(2,2)
>>> M.dtype
dtype('int64')
```

Numpy – Matrices use

```
>>> print(a)
[[1 2 3]
[3 6 9]
[2 4 6]]
>>> print(a[0]) # this is just like a list of lists
[1 2 3]
>>> print(a[1, 2]) # arrays can be given comma separated indices
>>> print(a[1, 1:3]) # and slices
[6 9]
>>> print(a[:,1])
[2 6 4]
>>> a[1, 2] = 7
>>> print(a)
[[1 2 3]
[3 6 7]
[2 4 6]]
>>> a[:, 0] = [0, 9, 8]
>>> print(a)
[[0 2 3]
 [9 6 7]
 [8 4 6]]
```

Generation functions

```
>>> x = np.arange(0, 10, 1) # arguments: start, stop, step
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.linspace(0, 10, 25)
array([ 0. , 0.41666667, 0.83333333, 1.25 ,
       1.66666667, 2.08333333, 2.5 , 2.91666667,
       3.33333333, 3.75 , 4.16666667, 4.58333333,
       5. , 5.41666667, 5.83333333, 6.25 ,
       6.66666667, 7.083333333, 7.5 , 7.91666667,
       8.33333333, 8.75 , 9.16666667, 9.58333333, 10.
>>> np.logspace(0, 10, 10, base=np.e)
array([ 1.00000000e+00, 3.03773178e+00, 9.22781435e+00,
       2.80316249e+01, 8.51525577e+01, 2.58670631e+02,
       7.85771994e+02, 2.38696456e+03, 7.25095809e+03,
       2.20264658e+041)
```

```
# a diagonal matrix
>>> np.diag([1,2,3])
array([[1, 0, 0],
      [0, 2, 0],
       [0, 0, 3]])
>>> b = np.zeros(5)
>>> print(b)
[ 0. 0. 0. 0. 0.]
>>> b.dtype
dtype('float64')
>>> n = 1000
>>> my int array = np.zeros(n, dtype=np.int)
>>> my int array.dtype
dtype('int32')
>>> c = np.ones((3,3))
>>> c
array([[ 1., 1., 1.],
      [ 1., 1., 1.],
       [ 1., 1., 1.]])
```

Numpy – array creation and use

```
>>> d = np.arange(5) # just like range()
>>> print(d)
[0 1 2 3 4]
>>> d[1] = 9.7
>>> print(d) # arrays keep their type even if elements changed
[0 9 2 3 4]
>>> print(d*0.4) # operations create a new array, with new type
[ 0. 3.6 0.8 1.2 1.6]
>>> d = np.arange(5, dtype=np.float)
>>> print(d)
[ 0. 1. 2. 3. 4.]
>>> np.arange(3, 7, 0.5) # arbitrary start, stop and step
array([ 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. , 6.5])
```

Numpy – array creation and use

```
>>> x, y = np.mgrid[0:5, 0:5] # similar to meshgrid in MATLAB
>>> x
array([[0, 0, 0, 0, 0],
     [1, 1, 1, 1, 1],
      [2, 2, 2, 2, 2],
     [3, 3, 3, 3, 3],
      [4, 4, 4, 4, 4]
# random data
>>> np.random.rand(5,5)
array([[ 0.51531133, 0.74085206, 0.99570623, 0.97064334, 0.5819413 ],
      [ 0.2105685 , 0.86289893, 0.13404438, 0.77967281, 0.78480563],
      [ 0.62687607, 0.51112285, 0.18374991, 0.2582663 , 0.58475672],
      [0.72768256, 0.08885194, 0.69519174, 0.16049876, 0.34557215],
      [0.93724333, 0.17407127, 0.1237831, 0.96840203, 0.52790012]])
```

File I/O

```
>>> os.system('head DeBilt.txt')
      >>> np.savetxt('datasaved.txt', data)
      >>> os.system('head datasaved.txt')
      001, 190
     0.000000000000000000e+00 -6.8000000000000000e+01 0.0000000000000000e+00
001, 190
      001, 190
      1.000000000000000000e+00 1.9010102000000000e+07 -2.10000000000000000e+01
001, 190
      001, 190
      -1.300000000000000000e+01 3.000000000000000000e+01
001, 190
     1.0000000000000000000e+00 1.9010103000000000e+07 -2.80000000000000000e+01
001, 190
      0.000000000000000000e+00 -7.9000000000000000e+01 3.00000000000000000e+01
      >>> data
>>> data.shape
(25568, 8)
```

```
>>> M = np.random.rand(3,3)
>>> M
array([[ 0.84188778, 0.70928643, 0.87321035],
      [ 0.81885553, 0.92208501, 0.873464 ],
      [ 0.27111984, 0.82213106, 0.55987325]])
>>>
>>> np.save('saved-matrix.npy', M)
>>> np.load('saved-matrix.npy')
array([[ 0.84188778, 0.70928643, 0.87321035],
      [ 0.81885553, 0.92208501, 0.873464 ],
      [ 0.27111984, 0.82213106, 0.55987325]])
>>>
>>> os.system('head saved-matrix.npy')
NUMPYF{'descr': '<f8', 'fortran order': False, 'shape': (3, 3), }</pre>
Ϊ<
£¾ðê?sy²æ?$÷ÒVñë?Ù4ê?%dn í?Ã[Äjóë?Ä,ZÑ?Ç
îåNê?ó7L{êá?0
>>>
```

Numpy – ndarray attributes

ndarray.ndim

- the number of axes (dimensions) of the array i.e. the rank.

ndarray.shape

- the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For a matrix with n rows and m columns, shape will be (n,m). The length of the shape tuple is therefore the rank, or number of dimensions, ndim.

ndarray.size

the total number of elements of the array, equal to the product of the elements of shape.

ndarray.dtype

an object describing the type of the elements in the array. One can create or specify dtype's using standard Python types. NumPy provides many, for example bool_, character, int_, int8, int16, int32, int64, float , float8, float16, float32, float64, complex , complex64, object .

ndarray.itemsize

the size in bytes of each element of the array. E.g. for elements of type float64, itemsize is 8 (=64/8), while complex32 has itemsize 4 (=32/8) (equivalent to ndarray.dtype.itemsize).

ndarray.data

the buffer containing the actual elements of the array. Normally, we won't need to use this
attribute because we will access the elements in an array using indexing facilities.

Numpy – array creation and use

Two ndarrays are mutable and may be views to the same memory:

```
>>> x = np.array([1,2,3,4])
>>> y = x
>>> x is y
True
>>> id(x), id(y)
(139814289111920, 139814289111920)
>>> x[0] = 9
>>> y
array([9, 2, 3, 4])
>>> x[0] = 1
>>> z = x[:]
>>> x is z
False
>>> id(x), id(z)
(139814289111920, 139814289112080)
>>> x[0] = 8
>>> z
array([8, 2, 3, 4])
```

```
>>> x = np.array([1,2,3,4])
>>> y = x.copy()
>>> x is y
False
>>> id(x), id(y)
(139814289111920, 139814289111840)
>>> x[0] = 9
>>> x
array([9, 2, 3, 4])
>>> y
array([1, 2, 3, 4])
```

Numpy – array creation and use

```
>>> a = np.arange(4.0)
>>> b = a * 23.4
>>> c = b/(a+1)
>>> c += 10
>>> print c
[ 10. 21.7 25.6 27.55]
>>> arr = np.arange(100, 200)
>>> select = [5, 25, 50, 75, -5]
>>> print(arr[select]) # can use integer lists as indices
[105, 125, 150, 175, 195]
>>> arr = np.arange(10, 20)
>>> div by 3 = arr%3 == 0 # comparison produces boolean array
>>> print(div by 3)
[ False False True False False True False True False]
>>> print(arr[div by 3]) # can use boolean lists as indices
[12 15 18]
>>> arr = np.arange(10, 20) . reshape((2,5))
[[10 11 12 13 14]
 [15 16 17 18 19]]
```

Numpy – array methods

```
>>> arr.sum()
145
>>> arr.mean()
14.5
>>> arr.std()
2.8722813232690143
>>> arr.max()
19
>>> arr.min()
10
>>> div by 3.all()
False
>>> div by 3.any()
True
>>> div_by_3.sum()
>>> div by 3.nonzero()
(array([2, 5, 8]),)
```

Numpy – array methods - sorting

```
\Rightarrow arr = np.array([4.5, 2.3, 6.7, 1.2, 1.8, 5.5])
>>> arr.sort() # acts on array itself
>>> print(arr)
[ 1.2 1.8 2.3 4.5 5.5 6.7]
>>> x = np.array([4.5, 2.3, 6.7, 1.2, 1.8, 5.5])
>>> np.sort(x)
array([ 1.2, 1.8, 2.3, 4.5, 5.5, 6.7])
>>> print(x)
[ 4.5 2.3 6.7 1.2 1.8 5.5]
>>> s = x.argsort()
>>> s
array([3, 4, 1, 0, 5, 2])
>>> x[s]
array([ 1.2, 1.8, 2.3, 4.5, 5.5, 6.7])
>>> v[s]
array([ 6.2, 7.8, 2.3, 1.5, 8.5, 4.7])
```

Numpy – array functions

Most array methods have equivalent functions

```
>>> arr.sum()
45
>>> np.sum(arr)
45
```

- Ufuncs provide many element-by-element math, trig., etc. operations
 - e.g., add(x1, x2), absolute(x), log10(x), sin(x), logical_and(x1, x2)

See http://numpy.scipy.org

```
>>> a = np.array([[1.0, 2.0], [4.0, 3.0]])
>>> print a
[[ 1. 2.]
[ 3. 4.]]
>>> a.transpose()
array([[ 1., 3.],
       [ 2., 4.]])
>>> inv(a)
array([[-2., 1.],
       [1.5, -0.5]
>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[ 1., 0.],
      [ 0., 1.]])
>>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot (j, j) # matrix product
array([[-1., 0.],
       [0., -1.]]
```

In addition to the mean, var, and std functions, NumPy supplies several other methods for returning statistical features of arrays. The median can be found:

```
>>> a = np.array([1, 4, 3, 8, 9, 2, 3], float)
>>> np.median(a)
3.0
```

The correlation coefficient for multiple variables observed at multiple instances can be found for arrays of the form [[x1, x2, ...], [y1, y2, ...], [z1, z2, ...], ...] where x, y, z are different observables and the numbers indicate the observation times:

Here the return array c[i,j] gives the correlation coefficient for the ith and jth observables. Similarly, the covariance for data can be found::

Using arrays wisely

- Array operations are implemented in C or Fortran
- Optimised algorithms i.e. fast!
- Python loops (i.e. for i in a:...) are much slower
- Prefer array operations over loops, especially when speed important
- Also produces shorter code, often more readable

```
>>> a = np.array([1,2,3], float)
>>> b = np.array([5, 2, 6], float)
                                  >>> a = np.array([[1, 2], [3, 4], [5, 6]], float)
>>> a + b
                                  >>> b = np.array([-1, 3], float)
array([6., 4., 9.])
>>> a - b
                                  >>> a * a
array([-4., 0., -3.])
                                  array([[ 1., 4.],
>>> a * b
                                         [ 9., 16.],
array([5., 4., 18.])
                                         [ 25., 36.]])
>>> b / a
                                  >>> b * b
array([5., 1., 2.])
                                  array([ 1., 9.])
>>> a % b
                                  >>> a * b
array([1., 0., 3.])
                                  array([[ -1., 6.],
>>> b**a
                                        [ -3., 12.],
array([5., 4., 216.])
                                         [ -5., 18.]])
                                  >>>
>>> a = np.array([[1, 2], [3, 4],
>>> b = np.array([-1, 3], float)
>>> a
array([[ 1., 2.],
       [ 3., 4.],
       [ 5., 6.]])
>>> b
array([-1., 3.])
>>> a + b
array([[ 0., 5.],
       [ 2., 7.],
       [ 4., 9.]])
```

```
>>> A = np.array([[n+m*10 for n in range(5)] for m in range(5)])
>>> v1 = arange(0, 5)
>>> A
array([[ 0, 1, 2, 3, 4],
[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
[30, 31, 32, 33, 34],
[40, 41, 42, 43, 44]])
>>> v1
array([0, 1, 2, 3, 4])
>>> np.dot(A, A)
array([[ 300, 310, 320, 330, 340],
       [1300, 1360, 1420, 1480, 1540],
       [2300, 2410, 2520, 2630, 2740],
       [3300, 3460, 3620, 3780, 3940],
       [4300, 4510, 4720, 4930, 5140]])
>>>
>>> np.dot(A, v1)
array([ 30, 130, 230, 330, 430])
>>> np.dot(v1,v1)
30
>>>
```

Introduction to language

End