

Fig. 1

Specification of the rotor-stator contraction ratio QRS and the axial-gap contractions KX1, KX2

ARI =
$$\pi$$
 ($R_2^2 - R_1^2$)
ARA = π ($R_4^2 - R_3^2$)
ASI = π ($R_6^2 - R_5^2$)
ASA = π ($R_8^2 - R_7^2$)
ARI2 = π ($R_{10}^2 - R_{9}^2$

0.8 < KX2 < 1.0

0.8 < KX1 < 1.0

Fig. 2

Total Stage Contraction

Example of a multi-stage turbomachine with increased rotor-stator contraction ratio (present invention in comparison with the state of the art)

Example of a multi-stage turbomachine with axial-gap contractions below 1.0 invention in comparison with the state of the art) (present

