EAIiIB	Michał	Kilian	Rok II	Grupa 5a	
Temat:			Numer ćwiczenia:		
Wahadło proste			0		
Data wykonania 10.10.2018r.	Data oddania 12.10.2018r.	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel ćwiczenia

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła pro stego

Wahadło matematyczne to punktowa masa m zawieszona na nieważkiej i nierozciągliwej lince poruszająca w jednorodnym polu grawitacyjnym. W doświadczeniu wykorzystamy bardzo dobre przybliżenie takiego układu jakim jest ciężka metalowa kulka zawieszona na nitce.

Aby znacząco uprościć obliczenia przyjmiemy $\sin\theta\approx\theta$ co jest prawdą dla małych wartości kąta θ zgodnie z twierdzeniem Taylora. Dzięki temu ograniczamy wpływ oporu powietza na wyniki, a z uproszczonego równania ruchu wahadła uzyskujemy następujacą zależność

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

gdzie T - okres drgań, l - długość nici, g - przyspieszenie grawitacyjne. Po przekształceniu otrzymujemy wzór roboczy pozwalający na wyznaczenie wartości przyspieszenia grawitacyjnego dla Ziemi

$$g = \frac{4\pi^2 l}{T^2} \tag{2}$$

2 Wykonanie ćwiczenia

- 1. Zapoznać się z budową mikroskopu
- 2. Na obu powierzchniach płytki zrobić kreski, jedna nad drugą cienkim pisakiem (ewentualnie wykorzystać istniejące kreski)
- 3. Zmierzyć śrubą mikrometryczną grubość płytki d w pobliżu kresek.
- 4. Ustaw badaną płytkę na stoliku mikroskopu w uchwycie i dobierz ostrość tak by uzyskać kontrastowy obraz. Regulując położenie stolika pokrętłem 7a zaobserwuj górny i dolny ślad zaznaczony na płytce.
- 5. Pokrętłem 7b przesuń stolik mikroskopu do momentu uzyskania ostrego obrazu śladu na górnej powierzchni płytki.
- 6. Odczytaj położenie a_g wskazówki czujnika mikrometrycznego.
- 7. Przesuń stolik mikroskopu do położenia, w którym widoczny jest ślad na dolnej powierzchni płytki (pokrętłem 7b).
- 8. Ponownie odczytaj położenie a_d wskazówki czujnika.
- 9. Odczyty zanotuj w tabeli 1, 2 lub 3.

3 Wyniki pomiarów

Indeks	Lp [H]	Lz [H]	odległość[cm]	Indukcyjność wzajemna [H]	Współczynnik sprzężenia k
1	2,69	3,67	0	$0,\!25$	0,43
2	2,69	3,65	0,5	0,24	0,42
3	2,7	3,63	1	0,23	0,40
4	2,71	3,61	1,5	0,23	0,39
5	2,72	3,59	2	0,22	0,38
6	2,74	3,58	2,5	0,21	0,37
7	2,76	3,55	3	0,20	0,34
8	2,78	3,53	3,5	0,19	0,33
9	2,81	3,5	4	0,17	0,30
10	2,83	3,46	4,5	0,16	0,27
11	2,86	3,43	5	0,14	0,25
12	2,88	3,41	5,5	0,13	0,23
13	2,91	3,37	6	0,12	0,20
14	2,94	3,35	6,5	0,10	0,18
15	2,96	3,32	7	0,09	0,16
16	2,99	3,29	7,5	0,08	0,13
17	3,01	3,27	8	0,07	0,11
18	3,03	3,25	8,5	0,06	0,10
19	3,05	3,23	9	0,05	0,08
20	3,06	3,22	9,5	0,04	0,07
21	3,08	3,21	10	0,03	0,06
22	3,09	3,19	10,5	0,03	0,04
23	3,11	3,18	11	0,02	0,03
24	3,11	3,17	11,5	0,02	0,03
25	3,11	3,17	12	0,02	0,03
26	3,12	3,16	12,5	0,01	0,02
27	3,12	3,16	13	0,01	0,02
28	3,12	3,16	13,5	0,01	0,02
29	3,12	3,16	14	0,01	0,02
30	3,12	3,16	14,5	0,01	0,02

Indukcyjność własna $L_1 = 3,00$ Indukcyjność własna $L_2 = 0,11$

4 Opracowanie wyników pomiarów

1. Obliczyć współczynniki indukcji wzajemnej M oraz współczynnika sprzężenia k dla każdego położenia cewek.

Współczynnik M indukcyjności wzajemnej liczony był ze wzoru

$$M = \frac{L_z - L_p}{4}$$

natomiast współczynnik k ze wzoru

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

Wyniki zostały zawarte w tabeli.

2. Dla cewki powietrznej wykonać wykres zależności wypadkowej indukcyjności układu (sprzężenie dodatnie i ujemne) oraz współczynnika sprzężenia k od odległości cewek

Wykresy zostały zamieszczone poniżej

3. Skomentować wyniki

5 Wnioski