COMP1003 Computer Organization

Lecture 3 Boolean Algebra: From Bits to Logic

United International College

From Bits to Boolean Logic

- Computers represent information by bit (Binary digit)
- A bit has two possible values, namely 0 and 1.
- A bit can be used to represent a truth value, true and false.
- Therefore <u>bits operations</u> correspond to the <u>logical</u> <u>operations</u> in <u>Boolean Algebra</u>.

- Algebra is the study of mathematical symbols and the rules for manipulating these symbols.
- The word comes from the Arabic language from the title of the book Ilm al-jabr wa'l-mukābala by al-Khwarizmi.
- The original meaning of algebra (al-jabr) is "reunion of broken parts"

George Boole (1815-1864)

- Logic was not considered as part of mathematics
- In 1854 Boole published An investigation into the Laws of Thought, on Which are founded the Mathematical Theories of Logic and Probabilities.
- He pointed out the analogy between algebraic symbols and those that represent logical forms.
- It began the algebra of logic called Boolean algebra

Boolean Algebra

Algebra is a branch of mathematics that substitutes letters for numbers.

Boolean algebra, sometimes referred to as the algebra of logic, is a two-valued system of algebra that represents logical relationships and operations.

- Boolean variables are variables that can take only two values: true/false; or 1/0
 - \bullet A,B,C = {0, 1}
- Boolean Operators

 - OR (A OR B, A+B, A v B)
 - \circ NOT NOT A, A', $\neg A$

Venn diagrams

	AND) _
Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

	OR	
Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

NO	TC
Α	K
0	1
1	0

Boolean Functions

- A function is a relation that uniquely associates members of one set with members of another set
- A Boolean function has
 - At least one Boolean variable
 - At least one Boolean operator
 - At least one input from the set {0,1}
- It produces an output that is also a member of the set {0,1}
- $_{o}$ F = X+YZ'

Precedence of Boolean Operators

- There might be many Boolean operators in one Boolean function.
- Which operator to apply first?
- The rules of precedence
 - NOT top priority,
 - followed by AND
 - then OR

$$F = X + YZ'$$

Truth Table of a Boolean Function

	0	0	0	0
	0	0	1	0
F = X+YZ'	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	1

Exercise

Write the truth table for

$$F = A' + B'$$

Write the truth table for

$$Q = A.B.\overline{C} + A.\overline{B}.C + \overline{A}.B.C$$

Simplify a Boolean Function

- Digital computers contain circuits that implement Boolean functions
- The simpler that we can make a Boolean function, the smaller the circuit that will result
- Simpler circuits are cheaper to build, consume less power, and run faster than complex circuits.
- With this in mind, we always want to reduce our Boolean functions to their simplest form.
- There are a number of Boolean identities that help us to do this.

9

Boolean Identities

1)
$$X \cdot 0 = 0$$
 10A) $X \cdot Y = Y \cdot X$ Commutative Law

2) $X \cdot 1 = X$ 10B) $X + Y = Y + X$ Associative Law

3) $X \cdot X = X$ 11B) $X + (Y + Z) = (X + Y) + Z$ Associative Law

4) $X \cdot \overline{X} = 0$ 12A) $X(Y + Z) = XY + XZ$ Distributive Law

5) $X + 0 = X$ 13B) $(X + Y)(W + Z) = XW + XZ + YW + YZ$ Distributive Law

6) $X + 1 = 1$ 13B) $\overline{X} + XY = \overline{X} + Y$ Consensus Theorem

7) $X + X = X$ 13C) $X + \overline{X}\overline{Y} = X + \overline{Y}$ Consensus Theorem

8) $X + \overline{X} = 1$ 13D) $\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$ DeMorgan's 14A) $\overline{X}\overline{Y} = \overline{X} + \overline{Y}$

How to Prove These Boolean Identities

- All of the above identities can be proved using truth tables
- To do this, you use truth tables to show all of the possible values of both sides of the equation
- If they are identical, then the identity is true

Proof of (X + Y)' = X'Y'

Simplifying Boolean Expression

Which identity is used at each step?

$$X'Y' + XYZ + X'Y = X'Y' + X'Y + XYZ$$

$$= X'(Y' + Y) + XYZ$$

$$= X'(1) + XYZ$$

$$= X' + XYZ$$

$$= X' + YZ$$

(A+B+C)(A+B+C)(A+B+C)

 $A(A+\overline{B}+C)(A+B+\overline{C})+\overline{B}(A+\overline{B}+C)(A+B+\overline{C})+\overline{C}(A+\overline{B}+C)(A+B+\overline{C})$

 $(\mathsf{AA} + \mathsf{AB} + \mathsf{AC})(\mathsf{AA} + \mathsf{AB} + \mathsf{AC}) + (\mathsf{AB} + \mathsf{BB} + \mathsf{BC})(\mathsf{AB} + \mathsf{BB} + \mathsf{BC}) + (\mathsf{AC} + \mathsf{BC} + \mathsf{CC})(\mathsf{AC} + \mathsf{BC} + \mathsf{CC})$

AA = A (Idempotent Law)

 $\overline{BB} = \overline{CC} = 0$ (Complement Law)

 $(A+A\overline{B}+AC)(A+AB+A\overline{C}) + (A\overline{B}+\overline{B}+\overline{B}\overline{C})(A\overline{B}+0+\overline{B}\overline{C}) + (A\overline{C}+\overline{B}\overline{C}+0)(A\overline{C}+B\overline{C}+\overline{C})$

A + AB = A (Absorption Law)

A + AC = A (Absorption Law)

A + 0 = A (Identity Law)

(A+AC)(A+AB+AC) + (AB+B+BC)(AB+BC) + (AC+BC)(AC+BC+C)

 $A(A+AB+A\overline{C}) + (\overline{B}+\overline{B}\overline{C})(A\overline{B}+\overline{B}\overline{C}) + (A\overline{C}+\overline{B}\overline{C})(B\overline{C}+\overline{C})$

 $A(A+A\overline{C}) + \overline{B}(A\overline{B}+\overline{B}\overline{C}) + \overline{C}(A\overline{C}+\overline{B}\overline{C})$

 $AA + (A\overline{B} + \overline{B} \overline{B} \overline{C}) + (A\overline{C} \overline{C} + \overline{B} \overline{C} \overline{C})$

 $A + (A\overline{B} + \overline{B}\overline{C}) + (A\overline{C} + \overline{B}\overline{C})$

 $A + (A\overline{B}) + (\overline{B}\overline{C}) + (A\overline{C})$

 $A + (\overline{B} \overline{C}) + (A\overline{C})$

 $A + (\overline{B} \overline{C})$

Complements

- Sometimes it is more economical to build a circuit using the complement of a function
- DeMorgan's law provides an easy way of finding the complement of a Boolean function

$$\overline{(XY)} = \overline{X} + \overline{Y}, \quad \overline{(X+Y)} = \overline{X} \cdot \overline{Y}$$

 \circ F = X'+YZ', what is F'?

$$\overline{\overline{X} + Y\overline{Z}} \rightarrow X(\overline{Y} + Z)$$

Canonical Forms

- There are many ways of representing the same Boolean expression
- Logically equivalent expressions have identical truth tables. For example, (X+Y)' = X'Y'
- In order to eliminate confusion, designers express Boolean functions in standardized or canonical form
- There are two canonical forms
 - Sum-of-products
 - Product-of-sums

Sum-of-Products

- different "product" terms from inputs are "summed" together
- Also called Disjunctive Normal Form (DNF)

	Inputs		Output	Product
С	В	А	Q	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	A.B.C
1	0	0	0	
1	0	1	1	A.B.C
1	1	0	1	Ā.B.C
1	1	1	0	

$$Q = A.B.\overline{C} + A.\overline{B}.C + \overline{A}.B.C$$

Example

Write the sum-of-products expression

	Inputs		Output
С	В	А	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- different "sum" terms from inputs are "product-ed" together
- Also called Conjunctive Normal Form (CNF)

	Inputs		Output	Product
С	В	А	Q	
0	0	0	0	A+B+C
0	0	1	1	
0	1	0	0	A + B + C
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	0	A+B+C
1	1	1	1	

$$Q = (A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C})$$

Example

Write the product-of-sums expression

	Inputs		Output
С	В	А	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Binary Addition

- Binary arithmetic operations are different from Boolean operations
- Mow to express binary addition in Boolean algebra?
 - 1. Draw the truth table
 - 2. Write out the expression in standard form
 - 3. Simplify it

$$o S = ?$$

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Both SOP and POS may not be the simplest form; only guarantee a standard form
- The expression must eventually be converted to its simplest form
 - A one-to-one correspondence exists between a Boolean expression and its implementation using electrical circuits
 - Unnecessary product terms in the expression lead to unnecessary components in the physical circuit, which in turn yield a more expensive circuit.

The Karnaugh map (KM or K-map 卡诺图) is a method of simplifying Boolean algebra expressions introduced by Maurice Karnaugh (1924∼) in 1953.

			A,	В	
		0, 0	0, 1	1, 1	1, 0
	1,0	0	0	1	1
٥	1.1	0	0	1	1
C, D	0, 1	0	0	0	1
	0,0	0	1	1	1

Be careful of the order!

Example

Out =
$$\overline{ABCD}$$
 + \overline{ABCD} + \overline{ABCD}

What's Next

How to physically build the logic device to compute Boolean functions?

