PN junction

- 1. P-N junction: structure
- 2. P-N junction in equilibrium
- 3. Polarized P-N junction
- 4. Characteristic curve I-V
- 5. LEDs
- 6. Circuits with diodes

Recommended readings

• https://www.electronics-tutorials.ws/diode/diode_2.html

1. p-n junction: structure

A p-n junction consists of a union a n-type and p-type semiconductors (a single semiconductor crystal with two doped regions).

Basic properties:

- Depending on the voltage applied, the junction between the two doped regions can become depleted of mobile charge carriers (called **depletion region**), leaving ionized impurities left, hence becoming non-conductive.
- As a result of having a depletion region, a p-n junction diode allows electric charges to flow in one direction, but not in the opposite direction; electrons can easily flow through the junction from n to p but not from p to n, while the reverse holds for holes. A **diode** is a circuit element defined by **allowing a flow of electricity in one direction but not the the opposite**. **Forward bias** is defined in the direction of easy current flow, while **reverse bias** is in the direction of little or no current flow.

It's crucial to understand how a p-n junction works, because it is the essential building block used in practically all kind of electronic devices: diodes, transistors, solar cells, LEDs, rectifiers...

2. p-n junction in equilibrium

2.1 Reaching the steady state

I. Before the junction, we have two separate band diagrams, with two different Fermi levels.

Conduction band		
Fermi level Ef		
	E_i	
Valence band		Fermi level Ef
n-type		p-type

II. After the junction, there exists a strong **gradient of concentration** of impurities, which originates a current flux of carriers

- electrons e^- from n to p
- holes h^+ from p to n

III. Such diffusion current holds as long as there exists a gradient of concentrations. Each e^- that abandons the n-type region leaves behind a fixed positive ion. Similarly, each h^+ leaves behind a negative ion. As a result, a **depletion region** is created around the junction where there is a spatial separation of positive and negative charges, with **charge density** $\rho(x)$.

IV. Such charge density $\rho(x)$ leads to an **electric field** \vec{E} from n to p. Such electric field will **drift** electrons e^- from p to n and holes h^+ from n to p.

IV. At equilibrium, we reach a *dynamical balance* by which diffusion currents equal drift currents,

$$egin{aligned} \left. J_n
ight|_{ ext{dri}} &= \left. J_n
ight|_{ ext{dif}} \ \left. J_p
ight|_{ ext{dri}} &= \left. J_p
ight|_{ ext{dif}} \end{aligned}$$

with a constant depletion region around the junction of width W. Such **inhomogeneous charge distribution** is associated with an electric field, and consequently, a potential difference across the junction, called **built-in potential** V_{bi} .

Convention: we define V(x)=0 on the n side: all potential is applied to the p side, so $V_{bi}=V_p-V_n>0$

2.2 Band diagram in equilibrium

Recall: a band diagram is a representation of the energy of electrons.

The Fermi level must be constant along the junction. There must be a difference of energy between the two regions due to the built-in potential, which makes energy of e^- in the n-type semiconductor diminish with respect to electrons in the p-type (recall potential and energy have opposite signs!).

Typically, at room temperature the voltage across the depletion layer for silicon is about 0.6 - 0.7 volts and for germanium is about 0.3 - 0.35 volts.

3. Polarized p-n junction

3.1 Band diagram

Forward bias: applying a positive voltage V (to the p-type side). Net voltage will be $=V-V_{bi}$.

We decrease the net potential in the depletion region \implies net E decreases \implies width W decreases.

Equilibrium was reached when the built-in electric field compensated diffusion. The external electric field opposes this field, **favoring diffusion** \implies net current $I \neq 0$; current flows **from p to n**

Reverse bias: applying a negative voltage (p region). Net voltage $V - (-V_{bi})$.

Opposite case

- ullet W increases
- applied electric field opposes diffusion. I=0

4. Characteristic curve I-V: Shockely equation

The basic mathematical model of a p-n junction was developed by Shockley in 1949 link.

Using some theoretical assumptions Shockley was able to derive what now is called the Shockely ideal diode equation (characteristic curve I-V),

$$I = I_0 \left[\exp \! \left(rac{eV}{k_B T}
ight) - 1
ight]$$

the voltage and the current do not have a linear relationship, it is a nonohmic device!

 $V_{th}=rac{k_BT}{e}$ is usually called *thermal voltage*, which is 26mV at room temperature

5. LEDs

A *light emitting diode* is a special type of diode, which emits light when is forward biased. The characteristic curve is the same as a normal diode, but the built-in potential is usually in the interval 1.7-2.7 volts.

Symbol

6. Circuits with diodes

6.1 Ideal diode

6.2 Piecewise-linear approximation

The diode equation is nonlinear, which forces us to solve nonlinear equations to solve a circuit. One can simplify the analysis by approximating the equation by a piecewise-linear function.

See more here

6.3 How to solve circuits with diodes?

We shall assume the piecewise-linear approximation, by which we will be able to leverage the methods learned for linear circuits (like mesh analysis) when the diode is assume to be functioning in a given regime.

- 1. Make an hypothesis about the functioning of the diode.
- 2. Replace the diode by the corresponding circuit model (voltage source or open circuit).
- 3. Solve the circuit.
- 4. Check whether the result is consistent with the condition for the functioning selected.
- 5. In case of not being consistent, restart the process with another hypothesis.

6.4 Example

Assuming forward bias

Mesh analysis:

$$(30+10)I_1 + (-10)I_2 = 12$$

 $(-10)I_1 + (10+15)I_2 = -0.7$

The current going through the diode is I=0.102A>0. The diode is in forward biased, so it is consistent.

```
import numpy as np
from numpy.linalg import solve
A=np.matrix('40,-10;-10,25')
b=np.matrix('12;-0.7')
x=solve(A,b)
print(x)
```

[[0.32555556] [0.10222222]]