ECE 2300 Recitation Class 5

Renxiang Guan

Pre-class

- Make-up Lecture on Sunday!
 - We are not meeting in person on Thursday (June 22nd)
 - Make-up Lecture arranged on Sunday original time
- Quiz this week!
 - After Sunday lecture (8:00 pm 8:40 pm)
 - Same format as last quiz. Online student need to turn on at least one camara.
 - If you want to take online quiz, notify us beforehand!

5.1 Boundary Value Problem

■ Laplace's Equation: ∇^2 : Laplace operator = $\nabla \cdot \nabla$

$$\nabla^2$$
: laplace operator = $\nabla \cdot \nabla$

$$\frac{\partial^2 x}{\partial y} + \frac{\partial^2 y}{\partial y} + \frac{\partial^2 y}{\partial y} = -\frac{\xi}{\xi}$$

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\epsilon}$$
no free charge
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$
simple medium

in cartesian coordinate

assume
$$V(x) = \chi(x) Y(y) Z(z)$$

$$f(x) + f(y) + f(z) = 0$$

true for x, y, z .

$$Y(y) Z(z) \frac{d^2 X}{dx^2} + X(x) Z(z) \frac{d^2 Y(y)}{dy^2} + X(x) Y(y) \frac{d^2 Z(z)}{dz^2} = 0$$

$$f(x)$$
, $f(y)$, $f(z) \Rightarrow \omega nstant$.

$$f(x) = \frac{1}{X(x)} \frac{d^2X(x)}{dx^2} + \underbrace{\frac{1}{Y(y)} \frac{d^2Y(y)}{dy^2} + \underbrace{\frac{1}{Z(z)} \frac{d^2Z(z)}{dz^2} = 0}_{1}}_{0}$$

5.1 Boundary Value Problem

$$\Rightarrow \frac{df(x)}{dx} = \frac{df(y)}{dy} = \frac{df(t)}{dt} = 0$$

$$\Rightarrow \frac{d}{dx} \left[\frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} \right] = 0$$

f(x)
$$\frac{1}{\chi(x)} = C \Rightarrow \text{denote } C = -kx^2$$

$$\frac{d^2X(x)}{dx^2} + k_x^2X(x) = 0$$

$$f(x) + f(y) + f(z) = 0.$$

$$-kx^{2} - ky^{2} - kz^{2} = 0.$$

$$kx^{2} + ky^{2} + kz^{2} = 0.$$

5.1 Boundary Value Problem

Possible Solutions of $X''(x) + k_x^2 X(x) = 0$

k_{x}^{2}	k_x	X(x)	Exponential forms [†] of $X(x)$
0 +	0 k jk	$A_0x + B_0$ $A_1 \sin kx + B_1 \cos kx$ $A_2 \sinh kx + B_2 \cosh kx$	$\frac{C_1 e^{jkx} + D_1 e^{-jkx}}{C_2 e^{kx} + D_2 e^{-kx}}$

k is real number

ABCD will be determined by the boundary conditions.

This is why taking square form.

two semi-infinite plate

find the inner voltage distribution

For y:

(i)
$$V=0$$
 when $y=0$. $V(x,0)=0$

(ii)
$$V=0$$
 when $y=\alpha$. $V(x, \alpha)=0$

For x:

(iii)
$$V = V_0$$
 when $x = 0$ $V(0, y) = V_0$

* Voltage distribution independent of 2

$$\frac{9x_r}{9,\Lambda} + \frac{9,\lambda}{9,\Lambda} = 0$$

$$\left\{ \frac{d^{2}X}{dx^{2}} + X \frac{d^{2}Y}{dy^{2}} = 0 \right\}$$

$$\left\{ \frac{1}{X} \frac{d^{2}X}{dx^{2}} + \frac{1}{Y} \frac{d^{2}Y}{dy^{2}} = 0 \right\}$$

$$\left\{ \frac{1}{X} \frac{d^{2}X}{dx^{2}} + \frac{1}{Y} \frac{d^{2}Y}{dy^{2}} = 0 \right\}$$

$$\left\{ \frac{1}{X} \frac{d^{2}X}{dx^{2}} + \frac{1}{Y} \frac{d^{2}Y}{dy^{2}} = 0 \right\}$$

$$\left\{ \frac{1}{X} \frac{d^{2}X}{dx^{2}} + \frac{1}{Y} \frac{d^{2}Y}{dy^{2}} = 0 \right\}$$

$$\left\{ \frac{1}{X} \frac{d^{2}X}{dx^{2}} + \frac{1}{Y} \frac{d^{2}Y}{dy^{2}} = 0 \right\}$$

$$\left\{ \frac{1}{X} \frac{d^{2}X}{dx^{2}} + \frac{1}{Y} \frac{d^{2}Y}{dy^{2}} = 0 \right\}$$

$$\left\{ \begin{array}{l}
\frac{d^{2}X}{dx^{2}} + X \frac{d^{2}Y}{dy^{2}} = 0 \\
\frac{1}{X} \frac{d^{2}X}{dx^{2}} + \frac{1}{Y} \frac{d^{2}Y}{dy^{2}} = 0
\end{array} \right\}$$

$$\left\{ \begin{array}{l}
\frac{d^{2}Y}{dx^{2}} - C_{1}X = 0 \\
\frac{d^{2}Y}{dy^{2}} - C_{2}X = 0
\end{array} \right\}$$

$$\left\{ \begin{array}{l}
\frac{d^{2}Y}{dy^{2}} = K^{2}X \\
\frac{d^{2}Y}{dy^{2}} = -K^{2}Y
\end{array} \right\}$$

$$\left\{ \begin{array}{l}
\frac{d^{2}Y}{dy^{2}} - C_{2}X = 0
\end{array} \right\}$$

$$\left\{ \begin{array}{l}
\frac{d^{2}Y}{dy^{2}} = -K^{2}Y \\
\frac{d^{2}Y}{dy^{2}} = -K^{2}Y
\end{array} \right\}$$

$$\Rightarrow X(x) = A \cdot e^{Kx} + B \cdot e^{-Kx}$$

$$\{Y(y) = C \cdot sinky + D \cdot cosky.$$

$$\Rightarrow V(x,y) = (Ae^{Kx} + Be^{-Kx})(C\cdot sinky + D\cdot cosky)$$

$$cond.(iv), A=0$$

$$cond(i) D=0$$

$$= \bigvee (x,y) = \beta \cdot e^{-kx} \cdot C \cdot sinky$$

$$= C \cdot e^{-kx} \cdot sinky.$$

cond (ii)

$$\Rightarrow$$
 $V(x, a) = C_n \cdot e^{-kx} sinka = 0$
true for all x .

$$\Rightarrow Sinkb=0 \Rightarrow k=\frac{n\pi}{a} \quad n=1,2,3...$$

$$V(x,y) = \sum_{n=1}^{\infty} C_n \cdot e^{-kx} \sin \frac{n\pi}{\alpha} \cdot y$$

$$V(0,y) = \sum_{N=1}^{\infty} C_N \sin \frac{n\pi}{\alpha} y = V_0$$

Using Fourier Transformation.

$$\sum_{n=1}^{\infty} C_n \int_0^{\infty} \sin(\frac{n\pi}{a}y) \cdot \sin(n'\frac{\pi}{a}y) dy$$

$$= \int_0^a Vosin(\frac{ni\pi}{a}y) dy$$

$$\Rightarrow C_{N} = \frac{2}{\alpha} \int_{0}^{\alpha} V_{0} \sin(\frac{n\tau}{\alpha} y) dy$$

Steps for solving similar problems:

- (i) boundary conditions.
- (ii) write out the Laplace equation form
- (iii) Use possible solution of X''(x) + kx X(x) = 0to find solution's general form.
- (ii) Use the boundary conditions to find constants.
- (V) (alculate auordingly.

5.2.1 Steady Electric Currents

Current Density:

The amount of current flows through a unit surface.

$$I = \int_{S} J \cdot dS$$

charges free charge $J = N \cdot q \cdot u = \rho \cdot u \quad \text{density} \quad \rho = N \cdot q .$

Number of charge carrier

5.2.2 Steady Electric Currents

Ohm' s Law:

$$J = \sigma \cdot E$$
 (A/m²)

conductivity

 $\sigma = \rho_e \mu e$

charge density

 $\rho = -\mu e$

electron

 $\rho = -\nu e$

electron

 $\rho = -\nu e$
 $\rho = -\nu e$

=> Materials have J= o E characteristic Phnic Material. $R = \frac{l}{rS} \Rightarrow length$ $G = \frac{l}{R} = \frac{rS}{l}$

5.2.3 Kirchhoff's Laws

Voltage Law:

Along the circuit, emf change (voltage rises) equals voltage drop auross resistance.

$$\sum_{j} V_{j} = \sum_{k} R_{k} \cdot I_{k}$$
algebraic sum algebraic sum
of emf.
on resistor pot.

Reason behind it: conservativeness of electric field.

$$\oint_{C} E \cdot d\ell = 0 \implies \oint_{C} \frac{1}{\sigma} \cdot d\ell = 0$$

5.2.3 Kirchhoff's Laws

Current Law:

Algebraic Sum of all currents flowing out of a junction in an electric Circuit is zero:
$$\sum_{j} I_{j} = 0$$

Reasons behind it: No charge/electrons were generated within each junction

$$\nabla \cdot J = -\frac{\partial \rho}{\partial t}$$
 $\xrightarrow{\text{steady}}$ $\nabla \cdot J = 0$

5.2.4 Joule's Law

This is a Law about power and heat generated on (a) resistor(s)

$$P = \int_{V} E \cdot J dV$$

$$P = \int_{L} E dl \int_{S} J \cdot ds = V \cdot I = I^{2}R.$$

$$V \qquad I$$

5.2.5 Boundary conditions

Steady current density:

Differential Form:

$$\nabla \cdot J = 0$$
 \longrightarrow Kirchoff's current Law.
 $\nabla x \left(\frac{J}{L} \right) = 0$

Integral Form:

$$\oint_{S} J \cdot ds = 0 \qquad \Rightarrow \text{ Kirchaff's voltage Law}.$$

5.2.5 Boundary conditions

At the connecting surface of different conductors:

- Normal: $J_{in} = J_{2n}$
- Tangential: $\frac{J_{1} t}{J_{2} t} = \frac{\sigma_{1}}{\sigma_{2}}$

would be verified by cheeking voltage.

$$\begin{cases} J_{1n} = J_{2n} \implies \sigma_1 E_{1n} = \sigma_2 E_{2n} \\ D_{1n} - D_{2n} = \rho_s \implies \varepsilon_1 E_{1n} = \varepsilon_2 E_{2n} \end{cases}$$

Thank You

Credit to Deng Naihao for this slides & information