

Dual RX DPHY GEN2 Aggregation: 2 x RX2L → 1 x RX4L

PCB Implementation

Gen2 DPHY Implementation

for 2 x RX2L → 1 x RX4L application scenario

- Two independent RX clock lanes used, single TX clock lane source
 - Silicon validated in-house and by customer on previous DPHY Generation (Gen2)
 - Input DDR clock is provided to two clock lanes

Previous DPHY generation – silicon validated

Package Implementation

Workaround

- Adds PCB complexity and cost
 - Sets an inferior limit on cost efficiency of PCB: 2000hm differential impedance translates to
 - Thin line width
 - Additional layer for thicker dielectric between signal plane and ground plane
 - Large line space
 - Needs careful analysis on SI issues
 - Clock Jitter → PHY performance
 - EMI
 - Noise
 - Cross-talk
- Consideration of cost efficiency may impede dual RX aggregation in practice

Package Implementation

Workaround

- Split clock lane on package substrate instead
 - -Concept:
 - -100Ω differential impedance clock lane on PCB
 - Clock lane split to two 200Ω differential impedance traces for matched impedance
 - Pros: reduced PCB complexity and cost
 - Cons: increased package complexity and cost

Package Implementation

Workaround

- To reduce complexity/cost furthermore
 - -200Ω differential impedance can be optional, if a stub < 5mm after clock split point
 - No showstopper impact is expected based on first-order analysis
 - SI simulation is still mandatory to give pass/fail result for assessment of IP performance

First-order Analysis

Impact of short stub

- Example: FR4 dielectric constant = 4.5
- tpd = $\frac{\sqrt{4.5}}{3 \times 10^8}$ = 7.07 ns/m
- In a typical microstrip configuration the dielectric constant is a "mix" between $\mathbf{\epsilon}_{air} = \mathbf{1}$ and $\mathbf{\epsilon}r = \mathbf{4.5}$

- In a typical transmission line the phase of the signal is not constant across the path:
 - signal wavelength << line length</p>
 - There is a finite velocity for the propagation of the signal, usually specified as the propagation delay:

$$- \text{ tpd} = \frac{\sqrt{\mathbf{\epsilon}r}}{c}$$
, $c = \text{velocity of light}$

 There is a characteristic impedance of the line that is "seen" by the signal. This impedance is real (purely resistive) and depends on the geometry of the lines.

First-order Analysis

Impact of short stub

- Transmission lines can be simplified into a discrete element if the length is "electrically small",
 i.e. the signal phase is constant across the element
 - Criteria 1 − Rule of thumb − stub should be smaller that ¼ wavelength of fmax (fmax up to 5th harmonic for high speed serial links):
 - Example: fclk= 0.75GHz → fmax = 3.75Ghz → period = 0.266ns
 - tpd = 5.6 ns/m
 - $-\frac{1}{4}$ wavelength = 0.266/(4*5.6) = 11.8 mm
 - -Criteria 2 Conservative estimate stub should be smaller than $\frac{1}{16}$ of signal "risetime"
 - Example: fclk= 0.75GHz → risetime = 333ps
 - tpd = 5.6 ns/m
 - risetime "length" = 0.333/5.6 = 59.6mm
 - 1/16 of risetime "length" = 3.7mm

Thank You

