

Computer Science Department

2021/2022

CS 396 Selected Topics in CS-2 Research Project

Report Submitted for Fulfillment of the Requirements and ILO's for Selected Topics in CS-2 course for Fall 2021

Team ID No. 24

	ID	Name	Grade
1.	201900845	ممدوح عمر ممدوح عمر مشعل	
2.	201900344	سلمی احمد عیسی	
3.	201900855	مهر ان اشر ف محمد مصطفی	
4.	201900435	عبدالرحمن محمد فاروق فؤاد	
5.	201900348	سلمى سمير عبدالفتاح محمد	
6.	201900500	عمر احمد عبدالعزيز يونس	

Delivered to:

Dr. Wessam El-Behaidy

Eng. Salma Doma

Eng. Ahmed Nady

Paper Details

• Authors Name:

Name: Qasem Abu Al-Haija.

Email: Qabualha@Tnstate.edu

Name: Mahmoud A.Smadi

• Email: Smadi@hu.edu.jo

Name: Saleh Zein-Sabatto

Email: Mzein@Tnstate.edu

Paper Name:

Name: Multi-Class Weather Classification Using ResNet-18 CNN for Autonomous IoT and CPS Applications.

Paper Link: https://american-cse.org/sites/csci2020proc/pdfs/CSCI2020-6SccvdzjqC7bKupZxFmCoA/762400b586/762400b586.pdf

Publisher Name:

International Conference on Computational Science and Computational Intelligence (CSCI)

Year of Publishing:

2020

Dataset used in paper: Weather Recognition dataset with 4 Classes

The implemented Algorithm: ResNet18

Results:

Fig. 8. (a) Training/Testing Accuracy/Loss vs. number of epochs (b) Confusion Matrix and Summery of Evaluation metrics

Research Method	/ Year	Accuracy (%)	Enhancement %
C. Zheng et. al.	[4] / 2016	94.00 %	≈ 105%
W. Chu, et. al.	[33] / 2017	96.30 %	≈ 102%
Z. Zhu et. al.	[34] / 2017	95.46 %	≈ 103%
Y. Shi et. al.	[35] / 2018	94.71 %	≈ 104%
L. Kang et. al.	[36] / 2018	92.00 %	≈ 107%
O. Luwafemi et. al.	[37] / 2019	86.00 %	≈ 114%
M. Ibrahim et. al.	[38] / 2019	97.69 %	≈ 101%
Y. Wang et. al.	[39] / 2020	81.25 %	≈ 121%
J. Xia et. al.	[40] / 2020	96.03 %	≈ 102%
Proposed Model	/ 2020	98.22 %	

Project Description

a. General Information on the selected dataset:

Dataset name: Weather Classification

Link: https://www.kaggle.com/code/kamalkhumar/weather-

classification-with-augmentation/data

Total Number Of Samples in the dataset: 1500

The Dimension of images: (224,224,3)

Number of Classes:

There are 5 classes ['cloudy', 'foggy', 'rainy', 'shine', 'sunrise']

B. Implementation details

we divided the dataset into train and validation(Testing) by ratio of 75% to the train data

number of images in each:

train:

```
Training cloudy images are: 225
Training foggy images are: 225
Training rainy images are: 225
Training shine images are: 187
Training sunrise images are: 262
Total: 1124
Validation(testing data):
```

Valid cloudy images are: 75 Valid foggy images are: 75 Valid rainy images are: 75 Valid shine images are: 63 Valid sunrise images are: 88 Total:376

Block Diagram:

Hyperparameters: stochastic Gradient Descent with momentum and decay

Optimizers: Adam

{opt = SGD(learning rate=0.15,momentum=0.9,decay = 1e-04)}

Results Details:

Learning Curves:

Accuracy:

Loss:

Testing accuracy:

Confusion Matrix:

