Chap 1. Database and Database user

Introduction

▮ 개요

• 데이터베이스: 컴퓨터의 활용 범위가 확대됨에 따라 모든 분야에서 사용 (상업, 공학, 의학, 법학, 교육, 도서관,...)

* 정의

- 데이터베이스: 연관된 데이타의 모임 (collection of related data)
- 데이터: 의미를 갖는 사실 (known facts)
 - [전화번호, 주소, 주민등록번호]
- 책의 한 페이지: 관련된 데이타의 모임 => 내포된 성질 정의 필요

Introduction

- * 성질: Implicit properties
 - Universe of Discourse (UoD): mini-world
 - 고유의 의미를 갖고 논리적으로 결합된 데이타 의 모임
 - 특정한 목적을 위해 설계, 구현됨

Introduction

- ✔ 데이터베이스 관리시스템(DataBase Management System: DBMS): 데이터베이스를 정의, 생성, 유지하는 프로그램들의 집합
 - 데이터베이스 정의 : 데이터의 형, 구조, 제약조건 정의
 - 데이터베이스 구축: 저장 매체에 데이터를 저장함
 - 데이터베이스 조작: 특정한 데이터의 질의 및 검색
- · 데이터베이스 시스템
 - DBMS + Application Program + Stored Database
 - + Stored Database Definition

Figure 1.1 A simplified database system environment, illustrating the concepts and terminology discussed in Section 1.1.

STUDENT	Name	StudentNu	mber	Class	Major	manife an			=1 .11 711 01 7
	Smith	17		1	CS				학생개인정
	Brown 8		2	CS		111111			
COURSE	Co	urseName		CourseNu	umber	CreditH	ours	Department	
	Intro to Computer Science		CS1310		4		CS	기모저H	
	Data Structures			CS3320		4		CS	→ 과목정보
	Discrete Mathematics		MATH2410		3		MATH		
	Database		CS3380		3		CS		
SECTION	SectionIdentifier Co		urseNumbe	er Se	emester	Year	r Instructor		
	85		N	ATH2410 F		Fall	98	King	
			(CS1310 I		Fall	98	Anderson	71 01 111
	102			S3320 S		Spring	99	Knuth	→ 강의분반
	112 N		MATH2410		Fall	99	Chang		
	119		CS1310		Fall	99	Anderson		
	135		CS3380 F		Fall	99	Stone		

GRADE_REPORT	StudentNumber	SectionIdentifier	Grade
	17	112	В
	17	119	С
	8	85	Α
	8	92	Α
	8	102	В
	8	135	А

PREREQUISITE	CourseNumber	PrerequisiteNumber	
	CS3380	CS3320	
	CS3380	MATH2410	
	CS3320	CS1310	

An example of a database that stores student records and their Figure 1.2 grades.

선적정보

선수과목정보

/데이터베이스의 정의

- · 레코드 구조 정의 [학생화일 레코드 구조 -이름,학번,학년,전공]
- · 데이터 형 정의
 - 이름: 문자열, 학번: integer
 - 학년: 1=>1학년, 2=>2학년, 3=>3학년, 4=>4학년, 5=>대학원생 (coding scheme)
 - 성적 : 문자 {A, B, C, D, F}

데이터베이스의 정의

- · 데이터베이스 구축: 데이터의 저장
 - 학생 [홍길동, 99999999, 3, CS]

- ▶ 데이터베이스 조작: 검색, 갱신, 첨가, 삭제
 - 홍길동의 1994년도 1학기의 성적은?
 - 홍길동을 2학년으로 바꾸시오

//데이터베이스 방법의 특징

File processing <====> DB approach
(A) 교무처
(B) 재무처

=> 많은 동일한 데이터를 별도로 관리함 저장 공간 및 관리 노력:비효율적

DB System Approach

성적데이터 등록금데이터

성적 및 등록금 입력/출력

교무처 재무처

//데이터베이스 방법의 특징

- Self-describing nature
 - program-data independence
 - program-operation independence (Object-oriented DBMS)
- Insulation between Programs and Data, and Data Abstraction
- Multiple View
- · 데이터 공유 및 다사용자 트랜젝션 처리

//Self-describing nature

- definition of DB + DB
- * catalog(meta-data): 화일들의 구조, 데이터의 형, 제약조건 (성적: E, G, H,... 없음)
- ▶ DBMS와 사용자 참조
 - file processing: 데이터의 정의를 항상 응용프로 그램에서 정의함 (application-dependent)
 - 특정한 응용프로그램에 종속적,
 프로그램간 공유 불가능

Insulation between Programs and Data, and Data Abstraction

- program-data independence
 - file processing : 데이타의 구조가 프로그램에 종속적으로 정의됨.
 - 데이타의 구조 변경 => 프로그램의 변경
 - DB approach : 데이터 구조가 카탈로그에 저장 되어 독립 적으로 관리됨.
- program-operation independence
 - file processing: impossible
 - DB system : object-oriented DBMS
 - operation: interface + implementation (hide implementation details)

Insulation between Programs and Data, and Data Abstraction

Data Abstraction

- Abstracted data type + class Hierarchy
- Data structure & operations
- Abstraction operation
 - calculate_GPA(성적의 평균값 계산) --> student object: user do not need to know how

Support of Multiple Views of the Data

- Multiple Views
 - view: 데이터베이스의 부분 또는 데이터베이스에서 유도 된 가상 데이터
 - 각 사용자가 사용하는 데이터만을 가공하여 보여줌
- Sharing of Data and Multi-user Transaction Processing
 - Concurrency control: control multiple simultaneous updates on the same data
 - 비행기 예약, 호텔 예약

a)	TRANSCRIPT	StudentName	Student Transcript					
			CourseNumber	Grade	Semester	Year	SectionId	
	ALLES MARIANCES A	Production of the second	CS1310	С	Fall	99	119	
		Smith	MATH2410	В	Fall	99	112	
		Brown	MATH2410	А	Fall	98	85	
			CS1310	А	Fall	98	92	
			CS3320	В	Spring	99	102	
			CS3380	А	Fall	99	135	

(b)	PREREQUISITES	CourseName	CourseNumber	Prerequisites	
		Database	CS3380	CS3320	
		Dalabase	C53360	MATH2410	
		Data Structures	CS3320	CS1310	

Figure 1.4 Two views derived from the example database shown in Figure 1.2. (a) The student transcript view. (b) The course prerequisite view.

데이터베이스 사용자군

- DBA: DataBase Administrator
 - 데이터베이스 사용 허가 => 보안 유지(security)
 - 데이터베이스 사용 현황 조절 및 DB 성능 감시 => 성능 관리
 - S/W & H/W 관리
- DB Designer
 - 데이터 정의 및 저장구조 설계
 - => application domain expert

/데이터베이스 사용자군

- * End user: 데이터베이스를 사용하는 사람
 - casual end user: DB 사용 빈도수가 적지만 다양하고 복 잡한 정보를 원하는 사용자 (중급/고급 관리자)
 - naive, parametric end user: 정형화된 질의/갱신 작업을 계속적으로 수행하는 사용자 [은행, 예약]
 - canned transaction : 정형화된 질의 갱신 작업
 - sophisticated end user: 데이터에 복잡한 작업을 수행하는 사용자 (엔지니어, 과학자, 사업 분석자) [증권]
 - stand-alone user: 개인 데이터베이스 사용자
- · 시스템 분석가 및 응용프로그램 개발자
 - 시스템 분석가: 사용자의 요구사항을 분석
 => canned transaction 설계
 - 응용프로그램 개발자: canned transaction 프로그래밍, 디버깅, 시험

//데이터베이스 관리시스템의 사용 목적

- * Redundancy
 - file processing : 모든 화일 을 독립적으로 보관 => 동일한 데이터가 여러 데이터 화일에 저장됨
 - 저장공간 낭비, 복사 및 관리 노력
 - 동일 데이타의 비일치 (두 파일에 저장된 데이터 중 한 개만 갱신할 때 데이터 값이 일치하지 않음)
 - DB System : 데이터 저장 공간 공유
 - 저장공간절약, 데이터일치, 복사 및 관리노력의 감소
- * Security: 데이터의 접근 허가 및 형태 관리 (read/write/privileged)

데이터베이스 관리시스템의 사용 목적

- Multiple User Interface:
 다양한 사용자 유형 및 숙련도 지원
 - casual user: query language
 - application programmer: programming language interface
 - naive user: form
 - stand-alone user: menu-driven, natural language
- Represent complex relationship among data

//데이터베이스 관리시스템의 사용 목적

- Enforcing integrity constraint <= semantics of DB</p>
 - 예제 : 학년: 1 -4, 과목 번호: unique, 모든 분반<-> 과목
 - DBMS에 의한 자동 점검 또는 데이타의 갱신 시 점검
 (한계: 성적 A --> X(거부), A-->C(허용))
- Backup & Recovery
 - H/W 또는 S/W 고장 시 DBMS가 올바른 데이터로 유지
- ▶ 프로그램과 데이터 구조의 영구적 보관
 - 파일처리
 - 프로그램이 파일과 메모리 사이의 데이터를 변환시킴
 - 프로그램 실행 후: 데이터는 파일에 저장되지만 변환필요,
 - → DBMS에 의한 자동 변환.

데이터베이스 시스템 사용의 장점

- * 표준화
 - 명칭, 데이터 포맷, 출력 포맷 등
 - 파일처리: 각 파일의 총체적인 관리 불가능
- 응용프로그램 개발 시간의 단축
 - DBMS에서 데이터베이스가 구축된 후 응용프로그램 개발 시간은 1/6-1/4로 감소,
- + 유동성
 - 새로운 변화에 대처 용이
 - 기존의 데이터/프로그램에 영향 없음
- ★ 최신 데이터 이용 가능
 - 다사용자 환경하에서의 concurrency control (은행, 예약)
- ▶ 경제성: 중복투자, 데이터 관리 인력 감소

DBMS 사용의 범위

- ▶ DBMS 사용: overhead
 - 최초 투자 규모 (H/W, S/W, 교육)
 - DBMS가 지원하는 데이터형의 일반성:
 - => 특정 목적과 불일치
 - overhead for security, concurrency control, recovery, integrity constraint checking
- When not to use DBMS
 - simple, well defined, not expected to change
 - real-time requirement : overhead
 - no multiple user access