2-8 Probabilistic Analysis

Hengfeng Wei

hfwei@nju.edu.cn

May 09, 2020

Compactation (Problem 10.3 - 4)

Keep all elements of a doubly linked list compact in storage, using the first m index locations in the multiple-array representation.

Allocate-Object Free-Object

Using the array implementation of a stack.

Compactify-List (Problem
$$10.3 - 5$$
)

Compactify-List(L, F)

L: doubly linked list, |L| = n

F: doubly linked free list, |F| = m - n

$$\Theta(n)$$

1 2 3 4 5 6 7 8 9

Swap (0,1) pairs

 $\Theta(n)$

HOARE-PARTITION

Recursive Binary Tree Traversal (Problem 10.4 - 2)

procedure Recursive-DFS(t) print t.key

if $t.left \neq NIL$ then RECURSIVE-DFS(t.left)

if $t.right \neq \text{NIL then}$ RECURSIVE-DFS(t.right)

RECURSIVE-DFS(T.root)

Non-recursive Binary Tree Traversal (Problem 10.4 - 2)

procedure Iterative-DFS(t) $S.Push(t) \Rightarrow S: stack$

while $S \neq \emptyset$ do $v \leftarrow S.Pop()$ print v.key

if $v.right \neq \text{NIL then}$ S.Push(v.right)if $v.left \neq \text{NIL then}$ S.Push(v.left)

ITERATIVE-DFS(T.root)

"LCRS" Tree Traversal (Problem 10.4 - 2)

procedure

Recursive-

DFS(t)

print t.key

if $t.lc \neq \text{NIL then}$ RECURSIVE-DFS(t.lc)

if $t.rs \neq \text{NIL then}$ RECURSIVE-DFS(t.rs)

RECURSIVE-DFS(T.root)

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn