Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Национальный исследовательский университет ИТМО

Расчетно-графическая работа №1

по дисциплине: «Дифференциальные уравнения»

Выполнил: студент группы R3243 Сайфуллин Д.Р.

Проверил: Танченко Ю.В.

Условие задачи

Численно решить дифференциальное уравнение:

$$y' = \frac{y}{x} - 12x^3$$
, $y(1) = 4$,

на отрезке [1;2] с шагом h=0.2 методами:

- Эйлера,
- модифицированным методом Эйлера,
- аналитическим методом.

Сравнить значения точного и приближённого решений в точке x=2, найти абсолютную и относительную погрешности.

Решение задачи

Метод Эйлера

Метод Эйлера использует приближение значений функции через касательную в текущей точке. Для данной задачи это означает, что значение y_{i+1} находится по формуле:

$$y_{i+1} = y_i + hf(x_i, y_i),$$

где $f(x,y) = \frac{y}{x} - 12x^3$.

Начальные условия заданы как $x_0 = 1.0$ и $y_0 = 4.0$. Рассчитаем значение $f(x_0, y_0)$:

$$f(x_0, y_0) = \frac{4.0}{1.0} - 12 \cdot (1.0)^3 = 4 - 12 = -8$$

Теперь вычислим y_1 :

$$y_1 = y_0 + hf(x_0, y_0) = 4.0 + 0.2 \cdot (-8) = 4.0 - 1.6 = 2.4$$

Перейдем к следующей точке: теперь $x_1 = 1.2$ и $y_1 = 2.4$. Рассчитаем $f(x_1, y_1)$:

$$f(x_1, y_1) = \frac{2.4}{1.2} - 12 \cdot (1.2)^3 \approx -18.7360$$

Вычислим y_2 :

$$y_2 = y_1 + hf(x_1, y_1) = 2.4 + 0.2 \cdot (-18.7360) = -1.3472$$

Значение y_2 становится отрицательным из-за быстрого уменьшения f(x,y). На следующем шаге $x_2 = 1.4$ и $y_2 = -1.3472$. Рассчитаем $f(x_2, y_2)$:

$$f(x_2, y_2) = \frac{-1.3472}{1.4} - 12 \cdot (1.4)^3 \approx -33.8903$$

Вычислим y_3 :

$$y_3 = y_2 + hf(x_2, y_2) = -1.3472 + 0.2 \cdot (-33.8903) = -8.1253$$

Значение y_3 продолжает уменьшаться из-за отрицательной функции f(x,y). Рассчитаем значения для оставшихся шагов аналогично. Итоговая таблица:

i	x_i	y_i	$f(x_i, y_i)$	$\Delta y_i = hf(x_i, y_i)$
0	1,0000	4,0000	-8,0000	-1,6000
1	1,2000	2,4000	-18,7360	-3,7472
2	1,4000	-1,3472	-33,8903	-6,7781
3	1,6000	-8,1253	-54,2303	-10,8461
4	1,8000	-18,9713	-80,5236	-16,1047
5	2,0000	-35,0760	-113,5380	-22,7076

Модифицированный метод Эйлера

Модифицированный метод Эйлера использует уточнение направления перехода на каждом шаге, вводя промежуточные значения. Формула для расчёта:

$$x_{i+\frac{1}{2}} = x_i + \frac{h}{2},$$

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2}f(x_i, y_i),$$

$$y_{i+1} = y_i + hf(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}),$$

где $f(x,y) = \frac{y}{x} - 12x^3$. Начальные условия заданы как $x_0 = 1.0$ и $y_0 = 4.0$. Рассчитаем значение $f(x_0, y_0)$ и промежуточные значения:

$$f(x_0, y_0) = \frac{4.0}{1.0} - 12 \cdot (1.0)^3 = 4 - 12 = -8$$

$$x_{0+\frac{1}{2}} = x_0 + 0.1 = 1.1$$

$$y_{0+\frac{1}{2}} = y_0 + 0.1 \cdot (-8) = 3.2$$

$$f(x_{0+\frac{1}{2}}, y_{0+\frac{1}{2}}) = \frac{3.2}{1.1} - 12 \cdot (1.1)^3 \approx -13.0629$$

$$\Delta y_0 = h f(x_{0+\frac{1}{2}}, y_{0+\frac{1}{2}}) = 0.1 \cdot (-13.0629) = -2.6126$$

Теперь вычислим y_1 :

$$y_1 = y_0 + \Delta y_0 = 4.0 - 3.1165 = 1.3874$$

Модифицированный метод уточняет значение y_1 за счёт использования промежуточных данных. Перейдем к следующей точке. Теперь $x_1 = 1.2$ и $y_1 = 1.3874$. Рассчитаем $f(x_1, y_1)$ и промежуточные значения:

$$f(x_1, y_1) = \frac{1.3874}{1.2} - 12 \cdot (1.2)^3 \approx -19.5798$$

$$x_{1+\frac{1}{2}} = x_1 + 0.1 = 1.3$$

$$y_{1+\frac{1}{2}} = y_1 + 0.1 \cdot (-19.5798) = -0.5706$$

$$f(x_{1+\frac{1}{2}}, y_{1+\frac{1}{2}}) = \frac{-0.5706}{1.3} - 12 \cdot (1.3)^3 \approx -26.8029$$

$$\Delta y_1 = hf(x_{1+\frac{1}{2}}, y_{1+\frac{1}{2}}) = 0.1 \cdot (-26.8029) = -5.3606$$

Теперь вычислим y_2 :

$$y_2 = y_1 + \Delta y_1 = 0.8835 - 5.3606 = -3.9732$$

На следующем шаге $x_2=1.4$ и $y_2=-3.9732$. Рассчитаем $f(x_2,y_2)$ и промежуточные значения:

$$f(x_2, y_2) = \frac{-3.9732}{1.4} - 12 \cdot (1.4)^3 \approx -35.7660$$

$$x_{2+\frac{1}{2}} = x_2 + 0.1 = 1.5$$

$$y_{2+\frac{1}{2}} = y_2 + 0.1 \cdot (-35.7660) = -7.5498$$

$$f(x_{2+\frac{1}{2}}, y_{2+\frac{1}{2}}) = \frac{-7.5498}{1.5} - 12 \cdot (1.5)^3 \approx -45.5332$$

$$\Delta y_2 = hf(x_{2+\frac{1}{2}}, y_{2+\frac{1}{2}}) = 0.1 \cdot (-45.5332) = -9.1066$$

Теперь вычислим y_3 :

$$y_3 = y_2 + \Delta y_2 = -4.8537 - 9.1066 = -13.0798$$

Рассчитаем значения для оставшихся шагов аналогично. Итоговая таблица:

i	x_i	y_i	$f(x_i, y_i)$	$x_{i+\frac{1}{2}}$	$y_{i+\frac{1}{2}}$	y_{i+1}
0	1,0000	4,0000	1,1000	-11,7500	2,8250	-3,1165
1	1,2000	0,8835	1,3000	-19,3777	-1,0543	-5,5194
2	1,4000	-4,6359	1,5000	-33,2300	-7,9589	-8,1377
3	1,6000	-12,7736	1,7000	-49,2773	-17,7014	-11,8104
4	1,8000	-24,5840	1,9000	-70,0572	-31,5898	-16,4736
5	2,0000	-41,0577	2,1000	-96,0487	-50,6625	-22,2347

Аналитическое решение

Рассмотрим дифференциальное уравнение:

$$y' = \frac{y}{x} - 12x^3$$

Преобразуем уравнение:

$$y' - \frac{y}{x} = -12x^3$$

Это линейное дифференциальное уравнение первого порядка. Найдём общий множитель:

$$\mu(x) = e^{\int -\frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x}$$

Умножим обе части уравнения на $\mu(x) = \frac{1}{x}$:

$$\frac{1}{x}y' - \frac{1}{x^2}y = -12x^2$$

Левая часть теперь является производной произведения:

$$\frac{d}{dx}\left(\frac{y}{x}\right) = -12x^2$$

Интегрируем обе части:

$$\frac{y}{x} = \int -12x^2 \, dx = -4x^3 + C_1$$

Умножим на x, чтобы найти общее решение:

$$y(x) = x\left(C_1 - 4x^3\right)$$

Учтём начальное условие y(1) = 4:

$$4 = 1 \cdot (C_1 - 4 \cdot 1^3) C_1 = 8$$

Подставим значение C_1 в общее решение:

$$y(x) = x\left(8 - 4x^3\right).$$

Сравнение точного и приближенных решений

Для анализа результатов численного решения дифференциального уравнения, представим сравнение точного решения с результатами методов Эйлера и модифицированного метода Эйлера. Итоговые значения и погрешности представлены в таблице:

	reper reference and remain in not permitted in the Actual remains.							
Решение	x = 1.2	x = 1.4	x = 1.6	x = 1.8	x = 2.0	в точке $x = 2.0$		
						Абсолют.	Относит.	
Точное	1.3056	-4.1664	-13.4144	-27.5904	-48.0000	-	-	
решение								
Метод	2.4000	-1.3472	-8.1253	-18.9713	-35.0760	12.9240	26.92%	
Эйлера								
Модиф.	1.3874	-3.9732	-13.0798	-27.0842	-47.2919	0.7081	1.48%	
метод								
Эйлера								

Выводы

На основании выполненных расчетов и сравнений можно сделать следующие выводы:

- 1. Метод Эйлера демонстрирует значительные отклонения от точного решения на больших значениях x, с абсолютной погрешностью 12.9240 и относительной погрешностью 26.92% в точке x=2.0.
- 2. Модифицированный метод Эйлера показал более точные результаты благодаря учёту промежуточных значений, с абсолютной погрешностью 0.7081 и относительной погрешностью 1.48% в точке x=2.0.
- 3. Абсолютная погрешность модифицированного метода Эйлера существенно ниже, что делает его предпочтительным для использования на данном интервале.
- 4. Модифицированный метод Эйлера рекомендуется для решения задач, требующих высокой точности на ограниченных интервалах.