# Almacenes de datos (DWH- Data Warehouse)

ITAM - Bases de Datos

- Las bases de datos relacionales:
  - 1. Apoyan las funciones diarias de las empresas con aplicaciones de negocios que almacenan y analizan datos con confiabilidad y precisión.
  - Los sistemas que conforman también se conocen como de OLTP (On Line Transaction Processing).
  - 3./ Son las fuentes de datos con las que se lleva el día a día de las empresas, sin las cuales éstas no funcionarían.
  - 4. Sin embargo, los sistemas OLTP no son muy apropiados para realizar análisis de datos.

- DWH (también conocido como OLAP On Line Analytic Processing):
  - Es un conjunto de conceptos, lenguajes y productos cuyo objetivo central es facilitar el análisis de datos.
  - 2. Ejemplos: planeación de recursos, presupuestos, análisis de ventas, análisis financieros, etc.
  - 3. En general los usuarios de DWH no trabajan con una transacción de datos a la vez, sino con cientos de ellas.
  - 4. Normalmente el interés no está en saber, p. ej., qué producto compró un cliente, sino cuáles fueron las ventas del producto la última semana o mes.

# Comparación entre actividades OLTP vs. OLAP

| Actividades operacionales                               | Actividades de análisis                            |
|---------------------------------------------------------|----------------------------------------------------|
| Más frecuentes                                          | Más frecuentes                                     |
| Más predecibles                                         | Menos predecibles                                  |
| Cantidades de datos más pequeñas accedidas por consulta | Grandes cantidades de datos accedidas por consulta |
| Consultas mayoritarias sobre datos "sin procesar"       | Consultas mayoritarias sobre datos derivados       |
| Requieren datos actuales mayoritariamente               | Requieren datos pasados, presentes y proyectados   |
| Si hay derivaciones complejas normalmente son pocas     | Muchas derivaciones complejas                      |

ITAM - Bases de Datos



Figure 1-7: Core elements of the Kimball DW/BI architecture.

Figura tomada de [4].

- Sistemas fuente operacionales: son los que capturan las transacciones del negocio.
- Sistema ETL (Extracción, Transformación y Carga): es cualquier (sub) sistema entre los fuente y el área de presentación del DWH.
- Área de presentación del DWH: es dónde los datos son organizados y almacenados, quedando disponibles para las labores de análisis.
- Aplicaciones de BI: es la parte relacionada con los procesos y la presentación de los datos, los cuales sirven para hacer las decisiones analíticas.

## Una arquitectura alterna para DWH



Figure 1-8: Simplified illustration of the independent data mart "architecture."

Figura tomada de [4].

### Arquitectura de Data Marts independientes

- En este enfoque los datos son desplegados tomando como base la organización departamental de las empresas.
- El Data Mart satisface los requerimientos analíticos de un departamento.
- Normalmente no se consideran aspectos de compartición e integración de información a través de la empresa.
- Es muy difícil el integrar la información de la empresa con Data Marts independientes.

- Es un modelo para conceptualizar y visualizar los datos como un conjunto de variables (dimensiones) que son definidas por aspectos comunes del negocio.
- Es especialmente útil para resumir y reordenar los datos en diferentes vistas de los mismos con el fin de realizar su análisis.
- El análisis dimensional se enfoca principalmente en datos numéricos como: valores, medidas y ocurrencias.

- Se usa el término hipercubo (o cubo, de manera abreviada) para describir un espacio de datos multidimensional.
- El cubo puede tener cualquier cantidad de dimensiones, cada una, posiblemente, con un tamaño distinto.
- El cubo contiene una cantidad discreta (esto es, no continua) de valores en cada dimensión.

ITAM - Bases de Datos

#### Definiciones relacionadas con los cubos

#### 11

- Una dimensión describe algún elemento en los datos que el negocio quiere analizar.
- Un elemento (o miembro) corresponde a un punto dentro de una dimensión.
- Un atributo es una colección completa de elementos.
- Una dimensión puede tener varios atributos; entre éstos, se escoge uno como atributo clave.
- El tamaño, o cardinalidad, de un atributo es la cantidad de elementos que contiene.

ITAM - Bases de Datos





- Un espacio de hechos, datos de hechos o, simplemente, hechos, es el conjunto de puntos en el espacio de datos. Por ejemplo, una venta realizada sería un hecho.
- El tamaño máximo del espacio de hechos es la multiplicación del tamaño de cada dimensión.
- Una tupla es una coordenada en el espacio multidimensional.
- Una rebanada (del inglés, slice) es una sección del espacio multidimensional (sinónimo: subcubo).



Una jerarquía de una dimensión es un tipo de agrupación de sus atributos. Una jerarquía normalmente tiene varios niveles (fig. 3).



- Una dimensión puede tener más de una jerarquía, aunque todas usar el mismo atributo clave (por ejemplo, los días o los meses del año). Ejemplo (si el atributo clave fueran los días):
  - Jerarquía 1: años, trimestres, meses, días (cuatro niveles).
  - Jerarquía 2: años, semanas, días (tres niveles).

- Cada nivel de una jerarquía define un conjunto de puntos en el espacio multidimensional.
- Los únicos puntos reales (esto es, que existen) son los del espacio de hechos.
- Los otros puntos forman un espacio lógico de datos y se obtienen sólo por medio de cálculos (por ejemplo, las ventas en un año o en un trimestre).
- El espacio "completo" de datos del cubo está formado por el de hechos más el lógico. Cada punto en este espacio se llama celda.

ITAM - Bases de Datos





#### Más definiciones sobre cubos

#### 18

- Una medida es el valor de una celda. Una celda puede tener varias medidas, por ejemplo: el monto de una venta o la cantidad de unidades vendidas de un producto.
- Estas medidas pueden verse como una dimensión de medidas, cada medida con tipo de datos, unidad, etc.
- Las funciones de agregación son las que calculan los valores de las celdas del espacio lógico de datos, pudiendo ser simples o complejas.

ITAM - Bases de Datos



### Modelos de diseño para los cubos

20

- Modelo de Estrella (Star).
  - Es la estructura básica para un cubo.
  - Se compone de una gran tabla central (llamada tabla de hechos) y de un conjunto de tablas más pequeñas (las tablas de las dimensiones) concentradas alrededor de la tabla de hechos.



#### Modelos de diseño para los cubos

21

- Modelo de Copo de nieve (Snowflake).
  - Es el resultado de descomponer una jerarquía de una dimensión en una o más tablas.
  - Los vínculos entre estas tablas normalmente serán uno a muchos.



# Operaciones básicas con los cubos

#### 22

- Operación de Slice
  - Consiste en mostrar una sección del cubo
- Operación de Dice
  - Consiste en mostrar los datos del cubo desde otra dimensión (también se usa el término "rotar" para esta operación).
- Operación de Drill down
  - onsiste en navegar hacia los niveles inferiores (más detallados) de una jerarquía.
- peración de Drill up
  - Consiste en navegar hacia los niveles superiores (más agregados) de una jerarquía.