# Support Vector Machine & Kernels

## Recap

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$



$$\mathbf{w}^T \phi(\mathbf{x}_n) \cdot t_n > 0$$



Linearly separable

## Linearly Separable & Margin

Perceptron is guaranteed to find some linear separator





Which of these is optimal?

The separator that maximizes the margin

Margin: the smallest distance between the decision boundary and any data point

# Hard-Margin SVM

## Support Vector Machine (SVM)

#### Assume data are linearly separable

$$y(\mathbf{x}_n) \cdot t_n > 0$$



The distance between any data point x and the hyperplane is

$$\frac{|y(\mathbf{x})|}{\|\mathbf{w}\|_2}$$

The margin is the smallest distance

$$\min_{n} \frac{|y(\mathbf{x}_n)|}{\|\mathbf{w}\|_2}$$

$$= \min_{n} \frac{t_n \cdot y(\mathbf{x}_n)}{\|\mathbf{w}\|_2}$$

#### **SVM** Formulation

margin = 
$$\min_{n} \frac{t_n \cdot y(\mathbf{x}_n)}{\|\mathbf{w}\|_2}$$
; we aim to maximize the margin



Support Vector Machine (SVM): 
$$\max_{\mathbf{w}} \min_{n} \frac{t_n \cdot y(\mathbf{x}_n)}{\|\mathbf{w}\|_2}$$

Challenge to solve!

### **SVM Formulation**

Support Vector Machine (SVM):  $\max_{\mathbf{w}} \min_{n} \frac{t_n \cdot y(\mathbf{x}_n)}{\|\mathbf{w}\|_2}$ 

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \min_{n} \frac{t_n \cdot y(\mathbf{x}_n)}{\|\mathbf{w}\|_2}$$

$$= \arg \max_{\mathbf{w}} \frac{1}{\|\mathbf{w}\|_2} \quad \text{s.t.} \quad \min_{n} t_n y(\mathbf{x}_n) = 1$$

$$= \arg \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_2^2 \quad \text{s.t.} \quad \min_{n} t_n y(\mathbf{x}_n) = 1$$

$$= \arg \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_2^2 \quad \text{s.t.} \quad t_n y(\mathbf{x}_n) \ge 1, \forall n$$



# Quadratic Programming (QP)

Hard Margin SVM:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_2^2 \quad \text{s.t. } t_n y(\mathbf{x}_n) \ge 1, \forall n$$

s.t. 
$$t_n y(\mathbf{x}_n) \ge 1, \forall n$$

Quadratic optimization problem subject to linear constraints

A unique minimum

d variables  $O(d^3)$ 

Inefficient for high-dim data

## Lagrangian Duality

Hard Margin SVM:  $\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||_2^2$  s.t.  $t_n y(\mathbf{x}_n) \ge 1, \forall n$ 

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_2^2$$

$$f_n y(\mathbf{x}_n) \ge 1$$

$$1 - t_n y(\mathbf{x}_n) \le 0$$

$$t_n y(\mathbf{x}_n) \ge 1$$
  $\Longrightarrow$   $1 - t_n y(\mathbf{x}_n) \le 0$   $y(\mathbf{x}_n) = \mathbf{w}^T \mathbf{x}_n + w_0$ 

$$\min_{\mathbf{w}, w_0} \mathcal{L}(\mathbf{w}, w_0; \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|_2^2 + \sum_{n=1}^N \widehat{a_n} (1 - t_n(\mathbf{w}^T \mathbf{x}_n + w_0))$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \qquad \Longrightarrow \qquad \mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

w is a linear combination of the training data

$$\frac{\partial \mathcal{L}}{\partial w} = 0$$

$$0 = \sum_{n=1}^{N} a_n t_n$$

Representer Theorem

## Dual Representation (QP Problem)

Hard Margin SVM: 
$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||_2^2$$
 s.t.  $t_n y(\mathbf{x}_n) \ge 1, \forall n$ 

**Dual:** 

$$\max_{\mathbf{a}} \tilde{\mathcal{L}}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \langle \mathbf{x}_n, \mathbf{x}_m \rangle$$

Inner product

s.t. 
$$a_n \geq 0, \forall n$$

N variables 
$$O(N^3)$$

$$\sum_{n=1}^{N} a_n t_n = 0$$
  $N \ll d$  Efficient for high-dim data

$$N \ll a$$

Only support vectors (which is small) have non-zero a's

## Linearly Separable Again

Data points can be linearly separated

Data points can be linearly separated

Possibly the large margin solution is better







A large margin

A very narrow margin

Even one constraint violated

# Soft-Margin SVM

#### **Introduce Slack Variables**



Slack variable  $\xi_n \geq 0, \forall n$ 

 $\xi$  =0: Support vectors

 $0 < \xi \le 1$  points are between margin and **correct** side of boundary, but margin violation

Small penalty

 $\xi$  > 1 points are **misclassified** Large penalty

 $\xi_n$  indicates penalty

## Soft-Margin SVM: Relaxation

Hard Margin SVM: 
$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||_2^2$$
 s.t.  $t_n y(\mathbf{x}_n) \ge 1, \forall n$ 

Soft Margin SVM:

$$\min_{\mathbf{w}} \min_{\{\xi_n\}} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_{n} [\xi_n]_+ [\xi_n]_+ = \max\{\xi_n, 0\}$$

s.t. 
$$t_n y(\mathbf{x}_n) \ge 1 - \boldsymbol{\xi}_n, \forall n$$

Large C makes constraints hard
to ignore => narrow margin

$$C=\infty$$
  $\Longrightarrow$   $\forall \xi_n=0$  Hard margin SVM

**Small** C makes allows constraints to be ignored => **large** margin

$$C=0$$
  $\Longrightarrow \forall \xi_n \geq 0$  Ignore the data distribution!

# Equivalent Formulation using Hinge Loss

Soft Margin: 
$$\min_{\mathbf{w}, \{\xi_n\}} \frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_n [\xi_n]_+ \text{ s.t. } t_n y(\mathbf{x}_j) \ge 1 - \xi_n, \forall n$$

Unconstrained optimization

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{n} [1 - t_{n} y(\mathbf{x}_{n})]_{+}$$

Hinge loss 
$$\ell_{hinge}(y, \hat{y}) = [1 - \hat{y}y]_+$$

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_{hinge} (y(\mathbf{x}_n), t_n)$$

Regularization Empirical loss



## Property of Hinge Loss

$$\ell_{hinge}(y(\mathbf{x}_n), t_n) = [1 - t_n(\mathbf{w}^T \mathbf{x}_n + w_0)]_+$$

#### An approximation to the 0-1 loss

$$\ell_{0-1}(x) = \begin{cases} 0, & \text{if } x \ge 0; \\ 1, & \text{if } x < 0. \end{cases}$$

#### Non-differentiable (subgradient)

$$\frac{\partial \ell_{hinge}(y(\mathbf{x}_n, t_n))}{\partial \mathbf{w}} = \begin{cases} -t_n \mathbf{x}_n, & \text{if } t_n y(\mathbf{x}_n) < 1; \\ 0, & \text{if } t_n y(\mathbf{x}_n) > 1; \\ [0, -t_n \mathbf{x}_n], & \text{if } t_n y(\mathbf{x}_n) = 1. \end{cases}$$



# Sub-gradient Descent for Soft Margin SVM

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{n} \ell_{hinge}(y(\mathbf{x}_{n}), t_{n})$$

$$= \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{n} [1 - t_{n}(\mathbf{w}^{T}\mathbf{x}_{n} + w_{0})]_{+}$$

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}_t} \mathcal{L}(\mathbf{w}^{(t)})$$

$$= \mathbf{w}^{(t)} - \eta \left(\mathbf{w}^{(t)} + C \sum_{n} \frac{\partial \ell_{hinge}}{\partial \mathbf{w}^{(t)}}\right) \quad \text{Ideally: } t_n y(\mathbf{x}_n) \ge 1, \forall n$$

$$= (1 - \eta) \mathbf{w}^{(t)} + \begin{cases} C \sum_{n} t_n \mathbf{x}_n, & \text{if } t_n y(\mathbf{x}_n) < 1; \\ 0, & \text{otherwise} \end{cases}$$
Focus on small margin or misclassified points

## Example



## **Hard margin:** C = Infinity



# Soft margin: C = 10



## **Dual Representation**

Soft Margin: 
$$\min_{\mathbf{w}, \{\xi_n\}} \frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_n [\xi_n]_+ \text{ s.t. } t_n y(\mathbf{x}_j) \ge 1 - \xi_n, \forall n$$

#### **Dual of hard-margin SVM**

$$\max_{\mathbf{a}} \tilde{\mathcal{L}}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \langle \mathbf{x}_n, \mathbf{x}_m \rangle$$

s.t. 
$$a_n \geq 0, \forall n$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

## **Dual Representation**

Soft Margin: 
$$\min_{\mathbf{w}, \{\xi_n\}} \frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_n [\xi_n]_+ \text{ s.t. } t_n y(\mathbf{x}_j) \ge 1 - \xi_n, \forall n$$

#### **Dual of soft-margin SVM**

$$\max_{\mathbf{a}} \tilde{\mathcal{L}}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \langle \mathbf{x}_n, \mathbf{x}_m \rangle$$

s.t. 
$$0 \le a_n \le C, \forall n$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

#### Prime and Dual for Prediction

**Primal** version of classifier

$$y(\mathbf{x}_t) = \mathbf{w}^T \mathbf{x}_t + w_0$$

**Dual** version of classifier

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n \qquad y(\mathbf{x}_t) = \sum_{n=1}^{N} a_n t_n \langle \mathbf{x}_n, \mathbf{x}_t \rangle + w_0$$

Remember: only support vectors have non-zero a's

## Linear Separators are IMPOSSIBLE



## Kernels

## Map Low-Dim Data into High-dim Feature Space



Feature map  $\Phi: \mathbf{x} \in \mathbb{R}^d o \Phi(\mathbf{x}) \in \mathbb{R}^D$  D > d

# Primal Soft-Margin SVM in High-Dim Space

$$\begin{aligned} & \underset{\mathbf{w} \in \mathbb{R}^D}{\min} \ \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_n [1 - t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + w_0)]_+ \\ & \text{Prediction} \quad y(\mathbf{x}_t) = \mathbf{w}^T \phi(\mathbf{x}_t) + w_0 \end{aligned}$$

- 1. Simply map x to  $\Phi(x)$  where data is separable
- 2. Solve for w in the high D-dim space
- 3. Make predictions in the D-dim space

However, if D >> d there are many more parameters to learn for w In some cases, possibly require infinite dimensional space

## Dual Soft-Margin SVM in High-Dim Space

**Learning** 
$$\max_{\mathbf{a} \in \mathbb{R}^N} \tilde{\mathcal{L}}(\mathbf{a}) = \sum_{n=1}^N a_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N a_n a_m t_n t_m \langle \phi(\mathbf{x}_n), \phi(\mathbf{x}_m) \rangle \qquad \text{s.t. } a_n \ge 0, \forall n$$
$$= \sum_{n=1}^N a_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m) \qquad \sum_{n=1}^N a_n t_n = 0$$

Prediction 
$$y(\mathbf{x}_n) = \sum_{n=1}^{N} a_n t_n \langle \phi(\mathbf{x}_n), \phi(\mathbf{x}_t) \rangle + w_0 = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}_t) + w_0$$

- 1.  $\Phi(x)$  occurs in **pairs**, i.e., inner product  $\langle \Phi(x_i), \Phi(x_j) \rangle$
- 2. Solve for a in the same N-dim space
- 3. Write  $\langle \Phi(x_i), \Phi(x_j) \rangle = k(x_i, x_j)$ . => this is known as a Kernel

Classifier can be learnt and applied without explicitly computing  $\Phi(x)$ 

Only need to define/use a kernel k

## Kernel Example

$$\phi: \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \to \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1 x_2 \end{pmatrix} \in \mathbb{R}^3$$

$$k(\mathbf{x}, \mathbf{z}) = ?$$

$$\phi: \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \to \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \in \mathbb{R}^3 \qquad k(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x}, \mathbf{z} \rangle + c)^2 \qquad \begin{pmatrix} x_1x_1 \\ x_1x_2 \\ x_1x_3 \\ x_2x_1 \\ x_2x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$$

$$\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = (x_1^2, x_2^2, \sqrt{2}x_1x_2) \begin{pmatrix} z_1^2 \\ z_2^2 \\ \sqrt{2}z_1z_2 \end{pmatrix} \qquad \phi(\mathbf{x}) = ? \qquad \phi(\mathbf{x}) = \begin{pmatrix} x_1x_1 \\ x_2x_2 \\ x_2x_3 \\ x_3x_1 \\ x_3x_2 \\ x_3x_3 \\ \sqrt{2}cx_1 \\ \sqrt{2}cx_2 \\ \sqrt{2}cx_3 \\ c \end{pmatrix}$$

$$k(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x}, \mathbf{z} \rangle)^2$$

$$k(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x}, \mathbf{z} \rangle)^2$$

$$k(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x}, \mathbf{z} \rangle + c)^2$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$$

$$\phi(\mathbf{x}) = ?$$
  $\phi(\mathbf{x}) =$ 

$$egin{array}{c} x_1x_1 \ x_1x_2 \ x_1x_3 \ x_2x_1 \ x_2x_2 \ x_2x_3 \ x_3x_1 \ x_3x_2 \ x_3x_3 \ \sqrt{2c}x_1 \ \sqrt{2c}x_2 \ \sqrt{2c}x_3 \ \end{array}$$

### Representative Kernels

- Linear kernels  $k(x_i, x_i) = \langle x_i, x_i \rangle$
- Polynomial kernels  $k(x_i, x_i) = \langle 1 + x_i, x_i \rangle^a$  for any d > 0
  - Contains *all polynomials* terms up to degree d
- Gaussian kernels  $k(x_i, x_i) = \exp(-||x_i x_i||^d/2\sigma^2)$  for  $\sigma > 0$ 
  - *Infinite* dimensional feature space (Hint: Taylor series expansion)

### SVM Classifier with Gaussian Kernel

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \phi(\mathbf{x}_t) + w_0)$$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 / 2\sigma^2\right)$$

#### Radial Basis Function (RBF) Kernel SVM

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n \exp(-\|\mathbf{x} - \mathbf{x}_n\|_2^2 / 2\sigma^2) + w_0$$

## RBF Kernel SVM Example



Data are not linearly separable in original feature space

## RBF Kernel SVM Example (C=100, $\sigma = 1.0$ )



Data are separable via RBF Kernel

## Summary

- Support vector machine (SVM): maximal margin classifier
- Hard-margin SVM
  - Prime: QP problem, solve for **#features** variables
  - Dual: QP problem, solve for #samples variables, efficient for high-dim data
- Soft-margin SVM: Handle a few outliers
  - Prime & Dual (can be rewritten using hinge loss)
  - Hinge loss (approximate 0-1 loss; non-differentiable)
- Kernels: Handle non-linearly separable data
  - Map data from the original space to a linearly separable high-dim space
  - Linear kernel; polynomial kernel; Gaussian/RBF kernel
  - Kernel matrix: semi-definite; computed and stored offline

## Acknowledgement

Some slides are adapted from Andrew Zisserman <a href="https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf">https://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf</a> & Shusen Wang

https://github.com/wangshusen/DeepLearning