USP-ICMC - Ciência da Computação Resolução da Prova 1 - Turma C - 22/9/2009

Teoria da Computação e Linguagens Formais - SCC-0205^a

RESOLUÇÃO

- 1. Considere a seguinte linguagem $L_1 = \{0^n 1^m 0^n \mid n, m > 0\}$. Responda:
- $\binom{1}{2}$ (a) Qual é o tipo de menor complexidade de L_1 ? Explique.

Solução:

Tipo 2, pois pelo Lema do Bombeamento, uv^iwx^iy , $u=y=\lambda$, v=0, $w=1^m$ e x=0.

 $\binom{1}{2}$ (b) Qual é a gramática de menor complexidade que gera L_1 ?

Solução:

 $S \rightarrow 0S0 \mid 0A0$ $A \rightarrow 1A \mid 1$

(2) (c) Escreva o processador **determinístico** de menor poder computacional (AFD ou APN) M_1 que processa L_1 .

(½) (d) Verifique como M_1 age com as entradas 0110 e 011 por meio de transições entre descrições instantâneas.

Solução:

 $(*,0110,Z)\Rightarrow (*,110,BA)\Rightarrow (*,10,A)\Rightarrow (*,0,A)\Rightarrow (*,\lambda,\lambda)$: pilha vazia - aceita.

 $(*,011,Z)\Rightarrow (*,11,BA)\Rightarrow (*,1,A)\Rightarrow (*,\lambda,A)$: pilha não vazia - rejeita.

$\begin{array}{c} \text{ICMC-USP} \\ \text{Resolução P1, } 22/9/2009 \\ \text{SCC-0205}^a \text{ (continuação)} \end{array}$

2. Considere a seguinte linguagem:

$$L_2 = \{(ab)^n a, \ n \ge 0\}$$

(1) (a) Se possível, escreva o autômato finito mínimo que processa L_2 . Se não for possível explique o porquê.

(1) (b) Se possível, escreva o autômato de pilha determinístico de um estado que processa L_2 . Se não for possível explique o porquê.

Solução:

GLD (já na FNG):

$$S \to aA \mid a$$
$$A \to bS$$

O APN determinístico de um estado não é possível, pois quando o autômato vê um a na cadeia de entrada, esse a pode terminar a cadeia ou ser seguido por um b. Segue o APN de um estado **não-determinístico**:

 $\binom{1}{2}$ (c) Escreva a expressão regular E_2 equivalente à L_2 , se possível.

$$E_2 = (ab)^* a$$

$\begin{array}{c} \text{ICMC-USP} \\ \text{Resolução P1, } 22/9/2009 \\ \text{SCC-0205}^a \text{ (continuação)} \end{array}$

- 3. Seja a linguagem $L_3 = \{w \mid w \in \{a, b\}^* \text{ e } w \text{ começa com } b \text{ e termina com } a\}$. Escreva:
- $\binom{1}{2}$ (a) o autômato finito determinístico M_3 que processa L_3 , se possível. Se não for possível explique o porquê.

Resolução

 $\binom{1}{2}$ (b) a expressão regular E_3 equivalente à L_3 , se possível. Se não for possível explique o porquê.

$$E_3 = bb^*aa^*(a^*bb^*aa^*)^* = b(a+b)^*a$$

 $\binom{1}{2}$ (c) a gramática G_3 que gera L_3 .

Solução:

$$S \to bA$$

$$A \rightarrow bA|aB$$

$$B \rightarrow aB |bA|\lambda$$

 $\binom{1}{2}$ (d) o autômato de pilha de um estado P_3 que processa a linguagem L_3 , se possível. Se não for possível explique o porquê.

Resolução:

ICMC-USP Resolução P1, 22/9/2009SCC- 0205^a (continuação)

(2) 4. Considere a seguinte linguagem:

$$L_4 = \{ w \mid w \in (1+2+3)^* \text{ e } w \text{ contém a subcadeia } 321 \}$$

Exemplo: a cadeia 11132322231 $\not\in L_4$, enquanto que a cadeia 1123223213 $\in L_4$. Se possível, escreva o autômato de pilha de um estado que processa L_4 . Se não for possível explique o porquê.

Resolução:

Autômato Finito:

Autômato de Pilha de 1 estado:

3, B; A 3, A; A 1, B; C 1, Z; Z 1, A; C 2, A; B 2, C; C 2, Z; Z 3, C; Z 2, B; Z