Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 15

виконав студент	пт-15, костін вадим Анатоліиович			
(шифр, прізвище, ім'я, по батькові)				
Перевірив				
(прізвище, ім'я, по батькові)				

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 15

Задача

3 точністю $\varepsilon = 10^{-6}$ обчислити значення функції Ln x :

Ln(1+x) =
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 при $|x| < 1$.

Постановка задачі

В умові задачі дано х та є. Модуль х менший за 1, тому ця послідовність є спадною. Ln(1+x) — це сума елементів цієї послідовності, яка прямує до якогось числа. Процес ітерації треба продовжувати до тих пір, поки різниця двох сусідніх елементів послідовності за модулем не буде менша від є.

Математична модель

У формулі Ln(1+x) нам дана рекурентна формула $(-1)^{n-1}\frac{x^n}{n}$, за якою ми і будемо знаходити кожний наступний член послідовності. Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

3мінна	Тип	Ім'я	Призначення
Аргумент	Дійсний	X	Початкове дане
Точність	Дійсний	3	Початкове дане
Лічильник	Цілий	n	Проміжне дане
Попередній член	Дійсний	a1	Проміжне дане
послідовності			
Поточний член	Дійсний	a2	Проміжне дане
послідовності			
Буфер обміну	Дійсний	С	Проміжне дане
Функція	Дійсний	res	Результат

Крок 2. Деталізуємо дію знаходження функції Ln x з точністю ϵ = 10^{-6} .

Псевдокод

Блок-схеми

Крок 1

Крок 2

Випробування алгоритму

Початок				
x = 0.5				
a1 = 0.5				
a2 = - 0.125				
res = 0.375				
Ітераційний цикл				
a2 = 2.0345052083333333e-06 a1 = -4.359654017857143e-06				
res = 0.4054657568451514				
Кінець				

Висновки

Протягом третьої лабораторної роботи ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій.