Topologie et Calcul différentiel : Fonctions convexes – TD 3

Exercice 1 : Fonctions convexes?

Parmi les fonctions suivantes, lesquelles sont convexes? Justifier. (On pourra utiliser Python).

$$f_1(x) = |x| \quad \text{sur } \mathbb{R}$$

$$f_2(x) = \max\left(1, x^2\right) \quad \text{sur } \mathbb{R}$$

$$f_3(x) = \ln\left(1 + x^2\right) \quad \text{sur } \mathbb{R}$$

$$f_4(x) = \arctan\left(\ln\left(1 + x^2\right)\right) \quad \text{sur } \mathbb{R}$$

$$f_5(x) = \begin{cases} f_3(x) - f_3(1) & \text{si } x \in [-1, 1] \\ f_2(x) - f_2(1) & \text{si } x \in \mathbb{R} \setminus [-1, 1] \end{cases}$$

Exercice 2 : Composée de fonctions convexes

Soit f et g deux fonctions convexes sur \mathbb{R} , g croissante. Montrer que $g \circ f$ est convexe sur \mathbb{R} .

Exercice 3: Fonction convexe bornée

- 1. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ convexe et bornée. Montrer que f est décroissante.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ convexe et bornée. Montrer que f est constante.

Exercice 4

Soit $f: \mathbb{R} \to \mathbb{R}$ convexe. Soit h > 0 fixé.

1. Montrer que pour tout $(x, y) \in \mathbb{R}^2$ vérifiant x < y, on a

$$f(y+h) - f(x+h) \ge f(y-h) - f(x-h)$$
.

2. Montrer que la fonction

$$g: x \mapsto \frac{1}{2h} \times \int_{x-h}^{x+h} f(t) dt$$

est convexe.

Exercice 5 : Inégalité de convexité

Soit x_1, x_2, \ldots, x_n des réels strictement positifs. Comparer :

$$m = \frac{x_1 + x_2 + \dots + x_n}{n}, \quad g = \sqrt[n]{x_1 \times x_2 \times \dots \times x_n}, \quad h = \frac{n}{1/x_1 + 1/x_2 + \dots + 1/x_n}.$$

Exercice 6 : Inégalité de convexité discrète

Soit x_1, \ldots, x_n des nombres réels strictement positifs, p, q, r des nombres réels vérifiant 0 .On pose

$$\forall k \in \{1, p, q, r\}, \ m_k = \sqrt[k]{\frac{1}{n} \sum_{j=1}^n x_j^k}$$

- 1. Comparer les m_k pour $k \in \{1, p, q, r\}$.
- 2. Placer g et h par rapport aux $m_k, k \in \{1, p, q, r\}$ lorsque

$$g = \sqrt[n]{\prod_{j=1}^{n} x_j} \text{ et } \frac{n}{h} = \sum_{j=1}^{n} \frac{1}{x_j}$$

Exercice 7 : Inégalité de convexité

Soit a, b et c trois nombres réels > 0, montrer en utilisant une inégalité de convexité que

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} \geqslant \frac{a+b+c}{2}$$

Exercice 8 : Inégalité de convexité discrète

Dans cet exercice, il suffit d'appliquer l'inégalité de convexité discrète à des fonctions convexes (ou concaves) bien choisies.

Soit $(x_1, x_2, \dots, x_n) \in (\mathbb{R}_+^*)^n$ et $(y_1, y_2, \dots, y_n) \in (\mathbb{R}_+^*)^n$

1. Démontrer que :

$$\frac{x_1 + x_2 + \dots + x_n}{n} \geqslant \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

2. Démontrer que :

$$1 + (x_1 x_2 \dots x_n)^{\frac{1}{n}} \le (1 + x_1)^{\frac{1}{n}} (1 + x_2)^{\frac{1}{n}} \dots (1 + x_n)^{\frac{1}{n}}$$

(On pourra démontrer que la fonction $x \mapsto \ln(1 + e^x)$ est convexe sur \mathbb{R} .)

3. Démontrer à l'aide de l'inégalité précédente que :

$$(x_1x_2...x_n)^{\frac{1}{n}} + (y_1y_2...y_n)^{\frac{1}{n}} \le (x_1+y_1)^{\frac{1}{n}} (x_2+y_2)^{\frac{1}{n}} ... (x_n+y_n)^{\frac{1}{n}}$$

Exercice 9 : Inégalité de Hölder

Soit $I \subseteq \mathbb{R}$ un intervalle de \mathbb{R} . Pour tout $1 \leq p \leq +\infty$, on définit l'ensemble $\mathcal{L}(I)$ par

$$\mathcal{L}^p(I) := \{ f : I \to \mathbb{R}, \int_I |f(x)|^p dx < +\infty \}$$

- 1. Soient $f, g \in \mathcal{L}^3(\mathbb{R})$. Démontrer que f^2g est intégrable.
- 2. Soit $p, q, r \ge 1$ tels que 1/p + 1/q = 1/r. Soit $f \in \mathcal{L}^p(\mathbb{R})$ et $g \in \mathcal{L}^q(\mathbb{R})$. Démontrer que $fg \in \mathcal{L}^r(\mathbb{R})$.
- 3. Soit $(a,b) \in \mathbb{R}^2$ tels que a < b. Si $1 \le p < q \le +\infty$, montrer l'inclusion $\mathcal{L}^q([a,b]) \subseteq \mathcal{L}^p(\mathbb{R})$. Si [a,b] = [0,1], montrer que l'inclusion est stricte.

Exercice 10 : Propriétés asymptotiques des fonctions convexes

Soit $f:[0,+\infty[$ $\longrightarrow \mathbb{R}$ convexe. Montrer que l'une des propriétés suivantes est satisfaite

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \in \mathbb{R} \quad \text{et} \quad \lim_{x \to +\infty} \left(f(x) - ax \right) = -\infty$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \in \mathbb{R} \quad \text{et} \quad \lim_{x \to +\infty} \left(f(x) - ax \right) = b \in \mathbb{R}$$

Exercice 11: Fonctions log-convexes

On dit que $f: \mathbb{R} \longrightarrow]0, +\infty[$ est log-convexe si, et seulement si, $\ln \circ f$ est convexe.

- 1. Montrer que lorsque f et q sont de classe \mathscr{C}^2 et log-convexes alors f+q est log-convexe.
- 2. Montrer que c'est encore vrai en général. (On pourra utiliser la midconvexité).

Exercice 12 : Dérivation d'un équivalent

Soit $f: [a, b] \longrightarrow \mathbb{R}$ convexe, de classe \mathscr{C}^1 et telle que

$$f(x) \sim \frac{1}{b^{-}} \frac{1}{(b-x)^{\alpha}}, \ \alpha \in \mathbb{R}_{+}^{*}$$

Montrer que

$$f'(x) \underset{b^-}{\sim} \frac{\alpha}{(b-x)^{\alpha+1}}$$

Trouver un contre-exemple lorsque f n'est plus convexe.

Exercice 13: Transformation de Legendre

Soit ϕ une fonction définie sur un intervalle non vide $I \subset \mathbb{R}$, à valeurs dans \mathbb{R} , continue sur I. On définit la transformée de Legendre de ϕ par

$$\forall y \in \mathbb{R}, \ \widetilde{\phi}(y) = \sup_{x \in \mathbb{R}} (x y - \phi(x)) \in]-\infty, +\infty]$$

et on s'intéresse à

$$J = \left\{ y \in \mathbb{R}, \ \widetilde{\phi}(y) \neq +\infty \right\}$$

- 1. Soit $p \in]1, +\infty[$, $\phi: x \longmapsto |x|^p/p$ définie sur $I = \mathbb{R}$, calculer $\widetilde{\phi}$ et J. Quelle inégalité du cours retrouve-t-on?
- 2. Montrer que J est un intervalle de $\mathbb R$ et que $\widetilde{\phi}$ est convexe sur J.
- 3. On suppose que $\phi \in \mathscr{C}^2(\mathbb{R}, \mathbb{R})$ est telle que

$$\forall x \in \mathbb{R}, \ \phi''(x) > 0 \text{ et } \phi'(\mathbb{R}) = \mathbb{R}$$

montrer alors que

$$\widetilde{\widetilde{\phi}} = \phi$$