We will cover:

We will cover:

• That SAT is NP-hard.

We will cover:

- That SAT is NP-hard.
- Proving NP-hardness by reduction from SAT.

We will cover:

- That SAT is NP-hard.
- Proving NP-hardness by reduction from SAT.

Theorem

SAT is NP-complete.

We will cover:

- That SAT is NP-hard.
- Proving NP-hardness by reduction from SAT.

Theorem

SAT is NP-complete.

Last lecture, we saw The Cook-Levin theorem part I: SAT is in NP.

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1 \dots w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps.

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1 \dots w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1 \dots w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step | State

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1 \dots w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step | State | Head

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1 \dots w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

$ $ Step $ $ State $ $ Head $ $ T_0 $ $ T_1 $ $ T_2 $ $ $ $ 7	n-1
---	-----

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1 \dots w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

StepStateHead T_0 T_1 T_2 ... T_{n-1} T_n ... T_N

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1 \dots w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step	State	Head	T ₀	T_1	T ₂	 T_{n-1}	T_n	 T_N
0								

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1...w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N=n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n	 T_N
0	q 0							

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1...w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N=n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n	 T_N
0	q 0	0						

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1 \ldots w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T_n	 T_N
0	q 0	0	w ₀	w_1	W ₂	Wn		

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1...w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N=n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step	State	Head	T ₀	T_1	T ₂	 T_{n-1}	T_n	 T_N
0	q 0	0	W ₀	w ₁	W ₂	Wn	Ш	Ш

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1...w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n	 T_N
0	q 0	0	<i>W</i> ₀	w ₁	W ₂	Wn	Ц	Ш
0	q_{i_0}	h_0	w _{0,0}	<i>w</i> _{0,1}	w _{0,2}	$w_{0,n-1}$	<i>w</i> _{0,<i>n</i>}	<i>w</i> _{0,<i>N</i>}

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1...w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n	 T_N
0	q 0	0	<i>w</i> ₀	W ₁	W ₂	Wn	Ш	Ш
0	q_{i_0}	h_0	w _{0,0}	<i>w</i> _{0,1}	w _{0,2}	<i>w</i> _{0,n-1}	<i>w</i> _{0,<i>n</i>}	<i>w</i> _{0,N}
1	q_{i_1}	h_1	w _{1,0}	$w_{1,1}$	w _{1,2}	$w_{1,n-1}$	$w_{1,n}$	$w_{1,N}$

Proof (Cont.)

Let M be a NDTM for L, let $w_0w_1 \dots w_{n-1}$ be the input, and suppose that M is guaranteed to terminate within $N = n^{O(1)}$ steps. We first start with visualizing one possible computation:

Step	State	Head	T_0	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	<i>W</i> ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h_0	w _{0,0}	w _{0,1}	w _{0,2}	$w_{0,n-1}$	$w_{0,n}$		<i>w</i> _{0,<i>N</i>}
1	q_{i_1}	h_1	<i>w</i> _{1,0}	$w_{1,1}$	w _{1,2}	$w_{1,n-1}$	$w_{1,n}$		$w_{1,N}$
2	q_{i_2}	h ₂	<i>W</i> _{2,0}	w _{2,1}	W _{2,2}	$W_{2,n-1}$	$W_{2,n}$		$W_{2,N}$
:								• • •	
Ν	q_{i_N}	h _N	w _{N,0}	$w_{N,1}$	W _{N,2}	$w_{N,n-1}$	W _{N,n}		$w_{N,N}$

2/21

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h_N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

We define binary variable sets:

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

We define binary variable sets:

• For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	П		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	w _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		W _{N,N}

We define binary variable sets:

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- ullet For all $t\in\{0,\ldots,N\},s\in Q$: $y_{t,s}$ is true if $q_{i_t}=s$.

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		$W_{1,N}$
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		W _{N,N}

We define binary variable sets:

• For all
$$t, i \in \{0, ..., N\}, \gamma \in \Gamma$$
: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.

$$ullet$$
 For all $t\in\{0,\ldots,N\},s\in Q$: $y_{t,s}$ is true if $q_{i_t}=s$.

$$ullet$$
 For all $t,h\in\{0,\ldots,N\}$: $z_{t,h}$ is true if $h_t=h$.

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		$W_{1,N}$
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	WN,2	$W_{N,n-1}$	$W_{N,n}$		W _{N,N}

We define binary variable sets:

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.

<u>Goal:</u> constructing a CNF formula ϕ that is satisfiable \iff M accepts w.

A formula's satisfying assignment corresponds to an accepting path.

6/21

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T 2	 T_{n-1}	T _n		T _N
0	q 0	0	W0	W1	W2	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	w _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	hN	WN,0	WN,1	WN,2	WN, n-1	WN,n		WN,N

We define binary variable sets:

• For all
$$t, i \in \{0, ..., N\}, \gamma \in \Gamma$$
: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.

• For all
$$t \in \{0, \dots, N\}, s \in Q$$
: $y_{t,s}$ is true if $q_{i_t} = s$.

• For all
$$t, h \in \{0, \dots, N\}$$
: $z_{t,h}$ is true if $h_t = h$.

<u>Goal:</u> constructing a CNF formula ϕ that is satisfiable \iff M accepts w. <u>Strategy:</u> $\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$, where:

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	W0	W1	W2	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
Ν	q_{i_N}	hN	WN.0	WN,1	WN,2	WN,n-1	WN.n		WN,N

We define binary variable sets:

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}$, $s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.

Goal: constructing a CNF formula ϕ that is satisfiable \iff M accepts w. Strategy: $\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$, where:

• ϕ_1 is true if the first row to correspond to the initial state.

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T 2	 T_{n-1}	T _n		T _N
0	q 0	0	W0	W1	W2	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		$W_{1,N}$
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	hN	WN,0	WN,1	WN,2	WN, n-1	WN.n		WN,N

We define binary variable sets:

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}$, $s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- ullet For all $t,h\in\{0,\ldots,N\}$: $z_{t,h}$ is true if $h_t=h$.

Goal: constructing a CNF formula ϕ that is satisfiable \iff M accepts w. Strategy: $\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$, where:

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	W0	W1	W2	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
Ν	q_{i_N}	hN	WN.0	WN,1	WN,2	WN,n-1	WN.n		WN,N

We define binary variable sets:

• For all
$$t, i \in \{0, ..., N\}, \gamma \in \Gamma$$
: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.

• For all
$$t \in \{0, ..., N\}$$
, $s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.

$$ullet$$
 For all $t,h\in\{0,\ldots,N\}$: $z_{t,h}$ is true if $h_t=h$.

<u>Goal:</u> constructing a CNF formula ϕ that is satisfiable \iff M accepts w. <u>Strategy:</u> $\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$, where:

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ϕ_3 is true if each cell has exactly one value.

Proof (Cont.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	W0	W1	W2	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	w _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W2, N
								14.	
Ν	q_{i_N}	hN	WN.0	WN,1	WN,2	WN,n-1	WN.n		WN.A

We define binary variable sets:

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}$, $s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.

<u>Goal:</u> constructing a CNF formula ϕ that is satisfiable \iff M accepts w. <u>Strategy:</u> $\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$, where:

- ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ϕ_3 is true if each cell has exactly one value.
- ϕ_4 is true if each line but the last can yield the next one.

Proof (ϕ_1) is true if the first row to correspond to the initial state.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
1								14.	
N	q_{i_N}	h _N	W _{N,0}	$w_{N,1}$	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.

• For all $t, h \in \{0, ..., N\}$:

 $z_{t,h}$ is true if $h_t = h$.

$$\phi_1 =$$

Proof (ϕ_1) is true if the first row to correspond to the initial state.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	w _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
1								14.	
N	q_{i_N}	h_N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$w_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.

• For all $t, h \in \{0, ..., N\}$:

 $z_{t,h}$ is true if $h_t = h$.

$$\phi_1 = y_{0,q_0} \wedge$$

Proof (ϕ_1 is true if the first row to correspond to the initial state.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
1								14.	
N	q_{i_N}	h _N	W _{N,0}	$w_{N,1}$	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.

• For all $t, h \in \{0, ..., N\}$:

 $z_{t,h}$ is true if $h_t = h$.

$$\phi_1 = y_{0,q_0} \wedge z_{0,0} \wedge$$

Proof (ϕ_1 is true if the first row to correspond to the initial state.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h_0	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	$w_{0,n}$		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
1								14.	
N	q_{i_N}	h _N	W _{N,0}	$w_{N,1}$	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.

• For all $t, h \in \{0, \dots, N\}$:

 $z_{t,h}$ is true if $h_t = h$.

$$\phi_1 = y_{0,q_0} \wedge z_{0,0} \wedge \left(\bigwedge_{0 \leq i \leq n-1} x_{0,i,w_i} \right) \wedge$$

Proof (ϕ_1) is true if the first row to correspond to the initial state.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
								14.	
N	q_{i_N}	h_N	W _{N,0}	$w_{N,1}$	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.

• For all $t, h \in \{0, ..., N\}$:

 $z_{t,h}$ is true if $h_t = h$.

$$\phi_1 = y_{0,q_0} \wedge z_{0,0} \wedge \left(\bigwedge_{0 \leq i \leq n-1} x_{0,i,w_i} \right) \wedge \left(\bigwedge_{n \leq i \leq N} x_{0,i,\sqcup} \right) .$$

8/21

Proof (ϕ_1 is true if the first row to correspond to the initial state.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
								14.	
N	q_{i_N}	h_N	W _{N,0}	$w_{N,1}$	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.

• For all $t, h \in \{0, ..., N\}$:

 $z_{t,h}$ is true if $h_t = h$.

$$\phi_1 = y_{0,q_0} \wedge z_{0,0} \wedge \left(\bigwedge_{0 \leq i \leq n-1} x_{0,i,w_i} \right) \wedge \left(\bigwedge_{n \leq i \leq N} x_{0,i,\sqcup} \right) .$$

How big is ϕ_1 ?

Proof (ϕ_1) is true if the first row to correspond to the initial state.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	$w_{0,n}$		W _{0,N}
1	q_{i_1}	h ₁	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
1								1.	
Ν	q_{i_N}	h_N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.

• For all $t, h \in \{0, ..., N\}$:

 $z_{t,h}$ is true if $h_t = h$.

$$\phi_1 = y_{0,q_0} \wedge z_{0,0} \wedge \left(\bigwedge_{0 \leq i \leq n-1} x_{0,i,w_i} \right) \wedge \left(\bigwedge_{n \leq i \leq N} x_{0,i,\sqcup} \right) .$$

How big is ϕ_1 ?

$$O(N) = n^{O(1)}.$$

Proof $(\phi_2$ is true if we reach q_Y .)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	$w_{0,n}$		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
:								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$w_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.

• For all $t, h \in \{0, ..., N\}$:

 $z_{t,h}$ is true if $h_t = h$.

$$\phi_2 =$$

Proof $(\phi_2$ is true if we reach q_Y .)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	$w_{0,n}$		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
1								14.	
N	q_{i_N}	h_N	W _{N,0}	$w_{N,1}$	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.

• For all $t, h \in \{0, ..., N\}$:

 $z_{t,h}$ is true if $h_t = h$.

$$\phi_2 = \left(\bigvee_{0 \le t \le N} y_{t,q_Y}\right) \quad .$$

Proof $(\phi_2$ is true if we reach q_Y .)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	$w_{0,n}$		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$w_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}$, $s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- ullet For all $t,h\in\{0,\ldots,N\}$: $z_{t,h}$ is true if $h_t=h$.

$$\phi_2 = \left(\bigvee_{0 \le t \le N} y_{t,q_Y}\right) \quad .$$

How big is ϕ_2 ?

Proof $(\phi_2$ is true if we reach q_Y .)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W2,0	W2,1	W2,2	W2,n-1	W2,n		W2, N
1								14.	
N	q_{i_N}	h_N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- ullet For all $t,h\in\{0,\ldots,N\}$: $z_{t,h}$ is true if $h_t=h$.

$$\phi_2 = \left(\bigvee_{0 \le t \le N} y_{t,q_Y}\right) \quad .$$

How big is ϕ_2 ?

$$O(N) = n^{O(1)}.$$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- ullet For all $t\in\{0,\ldots,N\}, s\in Q:$ $y_{t,s}$ is true if $q_{i_t}=s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For \ all} \ \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ \, y_{t,s} \ \mathsf{is \ true \ if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.

$$\phi_3 = \bigwedge_{0 \le t, i \le N}$$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t,h \in \{0,\dots,N\}: \qquad \qquad z_{t,h} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ h_t = h.$

$$\phi_3 = \bigwedge_{0 \le t, i \le N} \left(\left(\bigvee_{\gamma \in \Gamma} x_{t,i,\gamma} \right) \wedge \right.$$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t,h \in \{0,\dots,N\}: \qquad \qquad z_{t,h} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ h_t = h.$

$$\phi_3 = \bigwedge_{0 \le t, i \le N} \left(\left(\bigvee_{\gamma \in \Gamma} x_{t,i,\gamma} \right) \land \left(\bigwedge_{\gamma,\gamma' \in \Gamma, \ \gamma \ne \gamma'} \left(\overline{x_{t,i,\gamma}} \lor \overline{x_{t,i,\gamma'}} \right) \right) \right)$$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t,h \in \{0,\dots,N\}: \qquad \qquad z_{t,h} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ h_t = h.$

$$\phi_{3} = \bigwedge_{0 \leq t, i \leq N} \left(\left(\bigvee_{\gamma \in \Gamma} x_{t, i, \gamma} \right) \wedge \left(\bigwedge_{\gamma, \gamma' \in \Gamma, \ \gamma \neq \gamma'} \left(\overline{x_{t, i, \gamma}} \vee \overline{x_{t, i, \gamma'}} \right) \right) \right)$$

$$\bigwedge_{0 \leq t \leq N} \left(\left(\bigvee_{s \in Q} y_{t, s} \right) \wedge \left(\bigwedge_{s, s' \in Q, \ s \neq s'} \left(\overline{y_{t, s}} \vee \overline{y_{t, s'}} \right) \right) \right)$$

$$\bigwedge_{0 \leq t \leq N} \left(\left(\bigvee_{0 \leq h \leq N} z_{t, h} \right) \wedge \left(\bigwedge_{0 \leq h, h' \leq N, \ h \neq h'} \left(\overline{z_{t, h}} \vee \overline{z_{t, h'}} \right) \right) \right) .$$

Proof (ϕ_3 is true if each cell has exactly one value.)

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t,h \in \{0,\dots,N\}: \qquad \qquad z_{t,h} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ h_t = h.$

$$\phi_{3} = \bigwedge_{0 \leq t, i \leq N} \left(\left(\bigvee_{\gamma \in \Gamma} x_{t, i, \gamma} \right) \wedge \left(\bigwedge_{\gamma, \gamma' \in \Gamma, \ \gamma \neq \gamma'} \left(\overline{x_{t, i, \gamma}} \vee \overline{x_{t, i, \gamma'}} \right) \right) \right)$$

$$\bigwedge_{0 \leq t \leq N} \left(\left(\bigvee_{s \in Q} y_{t, s} \right) \wedge \left(\bigwedge_{s, s' \in Q, \ s \neq s'} \left(\overline{y_{t, s}} \vee \overline{y_{t, s'}} \right) \right) \right)$$

$$\bigwedge_{0 \leq t \leq N} \left(\left(\bigvee_{0 \leq h \leq N} z_{t, h} \right) \wedge \left(\bigwedge_{0 \leq h, h' \leq N, \ h \neq h'} \left(\overline{z_{t, h}} \vee \overline{z_{t, h'}} \right) \right) \right) .$$

How big is ϕ_3 ?

Proof (ϕ_3 is true if each cell has exactly one value.)

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.

$$\begin{split} \phi_3 &= \bigwedge_{0 \leq t, i \leq N} \left(\left(\bigvee_{\gamma \in \Gamma} x_{t, i, \gamma} \right) \wedge \left(\bigwedge_{\gamma, \gamma' \in \Gamma, \ \gamma \neq \gamma'} \left(\overline{x_{t, i, \gamma}} \vee \overline{x_{t, i, \gamma'}} \right) \right) \right) \\ & \bigwedge_{0 \leq t \leq N} \left(\left(\bigvee_{s \in Q} y_{t, s} \right) \wedge \left(\bigwedge_{s, s' \in Q, \ s \neq s'} \left(\overline{y_{t, s}} \vee \overline{y_{t, s'}} \right) \right) \right) \\ & \bigwedge_{0 \leq t \leq N} \left(\left(\bigvee_{0 \leq h \leq N} z_{t, h} \right) \wedge \left(\bigwedge_{0 \leq h, h' \leq N, \ h \neq h'} \left(\overline{z_{t, h}} \vee \overline{z_{t, h'}} \right) \right) \right) \end{split}.$$

How big is
$$\phi_3$$
? $O(N^3) = n^{O(1)}$.

□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ◆ ○ ○ 10/21

Proof (ϕ_4 is true if each line but the last can yield the next one.)

Step	State	Head	T ₀	T ₁	T ₂		T_{n-1}	T _n		T _N
0	90	0	Wo	W ₁	W ₂		Wn	Ш		Ш
0	q _i	ho	W0,0	W0,1	W0,2	П	W0,n-1	W0,n		W0,N
1	q_{i_1}	h ₁	W _{1,0}	$W_{1,1}$	W _{1,2}		$W_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q _{ia}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}		W _{2,n-1}	W _{2,n}		W _{2,N}
									14.	
N	q _{iv}	hN	WW.0	WN.1	WN,2		WN,n-1	WN.n		WN,N

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ y_{t,s} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.

Proof (ϕ_4 is true if each line but the last can yield the next one.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	90	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q _i	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h ₁	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q _i	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q _{iv}	hN	WW.0	WN.1	WN,2	WN,n-1	WN.n		WN,N

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For \ all} \ \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ \, y_{t,s} \ \mathsf{is \ true \ if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Proof (ϕ_4 is true if each line but the last can yield the next one.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	90	0	w ₀	W ₁	W ₂	Wn	Ш		Ш
0	q _i	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h ₁	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q _i	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		$W_{2,N}$
								14.	
N	q_{i_N}	hN	WW,0	WN,1	WN,2	WN,n-1	WN,n		WN,N

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, ..., N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Let us look at time $t \in \{0, ..., N-1\}$, and break down $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ into

Proof (ϕ_4 is true if each line but the last can yield the next one.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	90	0	Wo	W ₁	W ₂	Wn	Ш		Ш
0	q _i	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h ₁	W _{1,0}	$w_{1,1}$	W _{1,2}	$W_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q _{ia}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		$W_{2,N}$
								14.	
N	q _{iv}	hN	WW.0	WN.1	WN,2	WN,n-1	WN.n		WN,N

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, ..., N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Let us look at time $t \in \{0, ..., N-1\}$, and break down $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ into

Proof (ϕ_4 is true if each line but the last can yield the next one.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	W ₁	W ₂	Wn	Ш		Ш
0	q _i	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h ₁	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q _{ia}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	hN	WW.0	WN.1	WN,2	WN,n-1	WN.n		WN,N

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, ..., N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Let us look at time $t \in \{0, ..., N-1\}$, and break down $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ into

- \bullet ϕ_5 each transition is valid from its starting configuration.
- ullet ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .

Proof (ϕ_4 is true if each line but the last can yield the next one.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	90	0	w ₀	W ₁	W ₂	Wn	Ш		Ш
0	q _i	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h ₁	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q _i	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q _{iv}	hN	WW.0	WN.1	WN,2	WN,n-1	WN.n		WN,N

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Let us look at time $t \in \{0, \dots, N-1\}$, and break down $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ into

- ullet ϕ_5 each transition is valid from its starting configuration.
- lacktriangledown ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .
- ϕ_7 establishes that location h_t is updated correctly.

Proof (ϕ_4 is true if each line but the last can yield the next one.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	90	0	w ₀	W ₁	W ₂	Wn	Ш		Ш
0	q _i	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h ₁	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q _i	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	hN	WW.0	WN.1	WN,2	WN.n-1	WN.n		WN,N

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Let us look at time $t \in \{0, \dots, N-1\}$, and break down $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ into

- ullet ϕ_5 each transition is valid from its starting configuration.
- lacktriangledown ϕ_6 ensures that all the tape is maintained, possibly expect location $h_t.$
- ϕ_7 establishes that location h_t is updated correctly.
- ϕ_8 verifies that the head is moving in the right direction.

Proof (ϕ_4 is true if each line but the last can yield the next one.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	90	0	w ₀	W ₁	W ₂	Wn	Ш		Ш
0	q _i	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h ₁	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q _i	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q _{iv}	hN	WW.0	WN.1	WN,2	WN,n-1	WN.n		WN,N

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, ..., N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Let us look at time $t \in \{0, \dots, N-1\}$, and break down $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ into

- ullet ϕ_5 each transition is valid from its starting configuration.
- lacktriangledown ϕ_6 ensures that all the tape is maintained, possibly expect location $h_t.$
- ϕ_7 establishes that location h_t is updated correctly.
- lacktriangledown ϕ_8 verifies that the head is moving in the right direction.
- ϕ_9 checks that the state changes properly.

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0, N
1	q_{i_1}	h_1	w _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- $\bullet \ \ \mathsf{For \ all} \ t,h \in \{0,\dots,N\}: \qquad \qquad z_{t,h} \ \mathsf{is \ true \ if} \ h_t = h.$
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0, N
1	q_{i_1}	h_1	w _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
Ē								14.	
N	q_{i_N}	h_N	W _{N,0}	$w_{N,1}$	W _{N,2}	$w_{N,n-1}$	$w_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t,h \in \{0,\dots,N\}: \qquad \qquad z_{t,h} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ h_t = h.$
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_5 = \left(\bigwedge_{\substack{0 \le t, i \le N - 1\\ \gamma, \gamma' \in \Gamma\\ s, s' \in Q\\ (s', \gamma', d) \in \delta(s, \gamma)}} \right)$$

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T_N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h_1	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	$w_{2,1}$	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$w_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- $\bullet \ \ \mathsf{For \ all} \ t,h \in \{0,\dots,N\}: \qquad \qquad z_{t,h} \ \mathsf{is \ true \ if} \ h_t = h.$
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_{5} = \left(\bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \vee \right. \right)$$

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0, N
1	q_{i_1}	h_1	W _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h_N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ y_{t,s} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_{5} = \left(\bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \lor \left(x_{t, i, \gamma} \land y_{t, s} \land z_{t, i} \right) \right) \right)$$

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h_1	W _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h_N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ y_{t,s} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_5 = \left(\bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \vee \left(x_{t, i, \gamma} \wedge y_{t, s} \wedge z_{t, i} \right) \right) \right)$$

Proof (ϕ_5 each transition is valid from its starting configuration.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0,N
1	q_{i_1}	h_1	W _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$W_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$w_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_5 = \left(\bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \vee \left(x_{t, i, \gamma} \wedge y_{t, s} \wedge z_{t, i} \right) \right) \right)$$

$$\left(\bigwedge_{\substack{0 \leq t \leq N-1 \\ 0 \leq t \leq N-1}} \operatorname{Exactly one} \ r_{t, i, s, s', \gamma, \gamma', d} \ \text{is true.} \right)$$

This is not a CNF!

Proof (ϕ_5 each transition is valid from its starting configuration.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0, N
1	q_{i_1}	h_1	W _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h_N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ y_{t,s} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_5 = \left(\bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \vee \left(x_{t, i, \gamma} \wedge y_{t, s} \wedge z_{t, i} \right) \right) \right)$$

$$\left(\bigwedge_{\substack{0 \leq t \leq N-1 \\ 0 \leq t \leq N-1}} \operatorname{Exactly one} \ r_{t, i, s, s', \gamma, \gamma', d} \ \text{is true.} \right)$$

This is not a CNF! But we can use the fact that $a \lor (b \land c \land d) = (a \lor b) \land (a \lor c) \land (a \lor d)$.

Proof (ϕ_5 each transition is valid from its starting configuration.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0, N
1	q_{i_1}	h_1	w _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
Ē								14.	
N	q_{i_N}	h_N	W _{N,0}	$w_{N,1}$	W _{N,2}	$w_{N,n-1}$	$w_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_5 = \left(\bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \vee \left(x_{t, i, \gamma} \wedge y_{t, s} \wedge z_{t, i} \right) \right) \right)$$

$$\left(\bigwedge_{\substack{0 \leq t \leq N-1 \\ 0 \leq t \leq N-1}} \operatorname{Exactly one} \ r_{t, i, s, s', \gamma, \gamma', d} \ \text{is true.} \right)$$

This is not a CNF! But we can use the fact that $a \lor (b \land c \land d) = (a \lor b) \land (a \lor c) \land (a \lor d)$. How big is ϕ_5 ?

Proof (ϕ_5 each transition is valid from its starting configuration.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W0,0	W0,1	W0,2	W0,n-1	W0,n		W0, N
1	q_{i_1}	h_1	w _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- $\bullet \ \ \mathsf{For \ all} \ t,h \in \{0,\dots,N\}: \qquad \qquad z_{t,h} \ \mathsf{is \ true \ if} \ h_t = h.$
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_5 = \left(\bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \vee \left(x_{t, i, \gamma} \wedge y_{t, s} \wedge z_{t, i} \right) \right) \right)$$

$$\left(\bigwedge_{\substack{0 \leq t \leq N-1 \\ 0 \leq t \leq N-1}} \operatorname{Exactly one} \ r_{t, i, s, s', \gamma, \gamma', d} \ \text{is true.} \right)$$

This is not a CNF! But we can use the fact that $a \lor (b \land c \land d) = (a \lor b) \land (a \lor c) \land (a \lor d)$. How big is ϕ_5 ? $O(N^3) = n^{O(1)}$.

12 / 21

Proof (ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		П
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	w _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	$w_{1,n}$		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	h_N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
- $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, ..., N\}$:
- $z_{t,h}$ is true if $h_t = h$.

Proof (ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	w _{1,0}	w _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$:
 - $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, ..., N\}, s \in Q$:
- $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, ..., N\}$:
- $z_{t,h}$ is true if $h_t = h$.

$$\phi_6 = \bigwedge_{\substack{0 \le t, i \le N-1 \\ \gamma \in \Gamma}} \left(\overline{z_{t,i}} \vee \overline{x_{t,i,\gamma}} \vee x_{t+1,i,\gamma} \right)$$

How big is ϕ_6 ?

Proof (ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	w _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
Ν	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \text{For all} \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ y_{t,s} \ \text{is true if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.

$$\phi_6 = \bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma \in \Gamma}} \left(\overline{z_{t,i}} \vee \overline{x_{t,i,\gamma}} \vee x_{t+1,i,\gamma} \right)$$

How big is ϕ_6 ? $O(N^2) = n^{O(1)}$.

Proof (ϕ_7 establishes that location h_t is updated correctly.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W2, N
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ y_{t,s} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.

Proof (ϕ_7 establishes that location h_t is updated correctly.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For \ all} \ \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ \, y_{t,s} \ \mathsf{is \ true \ if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Proof (ϕ_7 establishes that location h_t is updated correctly.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
:								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \text{For all} \ \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ \, y_{t,s} \ \text{is true if} \ \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_7 = \bigwedge_{\substack{0 \le t, i \le N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\frac{\left(\overline{t}_{t, i, s, s', \gamma, \gamma', d} \lor x_{t+1, i, \gamma'}\right)}{\left(\overline{t}_{t, i, s, s', \gamma, \gamma', d} \lor x_{t+1, i, \gamma'}\right)} \right)$$

How big is ϕ_7 ?

Proof (ϕ_7 establishes that location h_t is updated correctly.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h ₁	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		$W_{1,N}$
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W2, N
1								100	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$w_{N,n-1}$	$w_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For \ all} \ \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ \, y_{t,s} \ \mathsf{is \ true \ if} \ q_{i_t} = s.$
- $\bullet \ \ \mathsf{For \ all} \ t,h \in \{0,\dots,N\}: \qquad \qquad z_{t,h} \ \mathsf{is \ true \ if} \ h_t = h.$
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_7 = \bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\frac{\left(\overline{r}_{t, i, s, s', \gamma, \gamma', d} \lor x_{t+1, i, \gamma'}\right)}{\left(\overline{r}_{t, i, s, s', \gamma, \gamma', d} \lor x_{t+1, i, \gamma'}\right)} \right)$$

How big is ϕ_7 ?

$$O(N^2) = n^{O(1)}$$
.

Proof (ϕ_8 verifies that the head is moving in the right direction.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	$w_{1,1}$	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h _N	W _{N,0}	$w_{N,1}$	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For \ all} \ \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ \, y_{t,s} \ \mathsf{is \ true \ if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Proof (ϕ_8 verifies that the head is moving in the right direction.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
:								14.	
Ν	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For} \ \mathsf{all} \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ y_{t,s} \ \mathsf{is} \ \mathsf{true} \ \mathsf{if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_{8} = \bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \vee z_{t+1, i+d} \right)$$

Proof (ϕ_8 verifies that the head is moving in the right direction.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- For all $t \in \{0, \dots, N\}, s \in Q$: $y_{t,s}$ is true if $q_{i_t} = s$.
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_{8} = \bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\frac{r_{t, i, s, s', \gamma, \gamma', d}}{r_{t, i, s, s', \gamma, \gamma', d}} \vee z_{t+1, i+d} \right)$$

How big is ϕ_8 ?

$$O(N^2) = n^{O(1)}$$
.

Proof (ϕ_9 checks that the state changes properly.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	W _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
:								14.	
N	q_{i_N}	h_N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For \ all} \ \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ \, y_{t,s} \ \mathsf{is \ true \ if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

Proof (ϕ_9 checks that the state changes properly.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, ..., N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For \ all} \ \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ \, y_{t,s} \ \mathsf{is \ true \ if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_9 = \bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \lor q_{t+1, s'} \right)$$

Proof (ϕ_9 checks that the state changes properly.)

Step	State	Head	T ₀	T ₁	T ₂	 T_{n-1}	T _n		T _N
0	q 0	0	w ₀	w ₁	W ₂	Wn	Ш		Ш
0	q_{i_0}	h ₀	w _{0,0}	W _{0,1}	W _{0,2}	$w_{0,n-1}$	W _{0,n}		W _{0,N}
1	q_{i_1}	h_1	W _{1,0}	W _{1,1}	W _{1,2}	$w_{1,n-1}$	W _{1,n}		W _{1,N}
2	q_{i_2}	h ₂	W _{2,0}	W _{2,1}	W _{2,2}	$w_{2,n-1}$	W _{2,n}		W _{2,N}
1								14.	
N	q_{i_N}	h _N	W _{N,0}	W _{N,1}	W _{N,2}	$W_{N,n-1}$	$W_{N,n}$		$w_{N,N}$

- For all $t, i \in \{0, \dots, N\}, \gamma \in \Gamma$: $x_{t,i,\gamma}$ is true if $w_{t,i} = \gamma$.
- $\bullet \ \ \mathsf{For \ all} \ \ t \in \{0,\dots,N\}, s \in Q: \qquad \ \ \, y_{t,s} \ \mathsf{is \ true \ if} \ q_{i_t} = s.$
- For all $t, h \in \{0, \dots, N\}$: $z_{t,h}$ is true if $h_t = h$.
- For all $t,h \in \{0,\ldots,N-1\}$ and s,s',γ,γ',d such that $(s',\gamma',d) \in \delta(s,\gamma)$ $r_{t,h,s,s',\gamma,\gamma',d}$ is true if the t^{th} transition follows this rule.

$$\phi_9 = \bigwedge_{\substack{0 \leq t, i \leq N-1 \\ \gamma, \gamma' \in \Gamma \\ s, s' \in Q \\ (s', \gamma', d) \in \delta(s, \gamma)}} \left(\overline{r_{t, i, s, s', \gamma, \gamma', d}} \vee q_{t+1, s'} \right)$$

How big is ϕ_9 ?

$$O(N^2) = n^{O(1)}$$
.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

where:

ullet ϕ_1 is true if the first row to correspond to the initial state.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

- where:
 - ullet ϕ_1 is true if the first row to correspond to the initial state.
 - ϕ_2 is true if we reach q_Y .

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ullet ϕ_3 is true if each cell has exactly one value.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ullet ϕ_3 is true if each cell has exactly one value.
- $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ is true if each line but the last can yield the next one.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ullet ϕ_3 is true if each cell has exactly one value.
- $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ is true if each line but the last can yield the next one.
 - \bullet ϕ_5 each transition is valid from its starting configuration.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ϕ_3 is true if each cell has exactly one value.
- $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ is true if each line but the last can yield the next one.
 - ϕ_5 each transition is valid from its starting configuration.
 - ullet ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ϕ_3 is true if each cell has exactly one value.
- $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ is true if each line but the last can yield the next one.
 - ϕ_5 each transition is valid from its starting configuration.
 - ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .
 - ϕ_7 establishes that location h_t is updated correctly.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ϕ_3 is true if each cell has exactly one value.
- $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ is true if each line but the last can yield the next one.
 - ϕ_5 each transition is valid from its starting configuration.
 - ullet ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .
 - ϕ_7 establishes that location h_t is updated correctly.
 - ullet ϕ_8 verifies that the head is moving in the right direction.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ϕ_3 is true if each cell has exactly one value.
- $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ is true if each line but the last can yield the next one.
 - ϕ_5 each transition is valid from its starting configuration.
 - ullet ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .
 - ϕ_7 establishes that location h_t is updated correctly.
 - ϕ_8 verifies that the head is moving in the right direction.
 - ϕ_9 checks that the state changes properly.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

where:

- $lackbox{ } \phi_1$ is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ϕ_3 is true if each cell has exactly one value.
- $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ is true if each line but the last can yield the next one.
 - ϕ_5 each transition is valid from its starting configuration.
 - ullet ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .
 - ϕ_7 establishes that location h_t is updated correctly.
 - ullet ϕ_8 verifies that the head is moving in the right direction.
 - ϕ_9 checks that the state changes properly.

All in all, we received a $n^{O(1)}$ -sized formula that is satisfiable if and only if the underlying NDTM accepts the input.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

where:

- $lackbox{ } \phi_1$ is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ϕ_3 is true if each cell has exactly one value.
- $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ is true if each line but the last can yield the next one.
 - ϕ_5 each transition is valid from its starting configuration.
 - ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .
 - ϕ_7 establishes that location h_t is updated correctly.
 - ullet ϕ_8 verifies that the head is moving in the right direction.
 - ϕ_9 checks that the state changes properly.

All in all, we received a $n^{O(1)}$ -sized formula that is satisfiable if and only if the underlying NDTM accepts the input. Namely, a satisfying assignment corresponds to an accepting run.

Proof (Summary).

We e created a formula:

$$\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4 \qquad ,$$

where:

- ullet ϕ_1 is true if the first row to correspond to the initial state.
- ϕ_2 is true if we reach q_Y .
- ϕ_3 is true if each cell has exactly one value.
- $\phi_4 = \phi_5 \wedge \phi_6 \wedge \phi_7 \wedge \phi_8 \wedge \phi_9$ is true if each line but the last can yield the next one.
 - ϕ_5 each transition is valid from its starting configuration.
 - ϕ_6 ensures that all the tape is maintained, possibly expect location h_t .
 - ϕ_7 establishes that location h_t is updated correctly.
 - ϕ_8 verifies that the head is moving in the right direction.
 - ϕ_9 checks that the state changes properly.

All in all, we received a $n^{O(1)}$ -sized formula that is satisfiable if and only if the underlying NDTM accepts the input. Namely, a satisfying assignment corresponds to an accepting run. But did we make any mistake along the way?

Hint: What if we reach q_Y sooner than time N?

We know SAT \in **NPC**.

Theorem

Let A be a decision problem. If

We know SAT \in **NPC**.

Theorem

Let A be a decision problem. If

 \bullet $A \in \mathbf{NP}$, and

We know SAT \in **NPC**.

Theorem

Let A be a decision problem. If

- \bullet $A \in \mathbf{NP}$, and

then A is NP-complete.

We know SAT \in **NPC**.

Theorem

Let A be a decision problem. If

- \bullet $A \in \mathbf{NP}$, and
- $SAT \leq_p A$

then A is NP-complete.

Proof.

 $A \in \mathbf{NP}$ by (1).

We know SAT \in **NPC**.

Theorem

Let A be a decision problem. If

- \bullet $A \in \mathbf{NP}$, and
- \bigcirc SAT $\leq_p A$

then A is NP-complete.

Proof.

 $A \in \mathbf{NP}$ by (1). For NP-hardness, let $B \in \mathbf{NP}$ be an arbitrary decision problem. We need to show that $B \leq_{p} A$.

We know SAT \in **NPC**.

Theorem

Let A be a decision problem. If

- \bullet $A \in \mathbf{NP}$, and
- $SAT \leq_{p} A$

then A is NP-complete.

Proof.

 $A \in \mathbf{NP}$ by (1). For NP-hardness, let $B \in \mathbf{NP}$ be an arbitrary decision problem. We need to show that $B \leq_p A$.

 $B \leq SAT$ since $SAT \in NPC$

We know SAT \in **NPC**.

Theorem

Let A be a decision problem. If

- \bullet $A \in \mathbf{NP}$, and

then A is NP-complete.

Proof.

 $A \in \mathbf{NP}$ by (1). For NP-hardness, let $B \in \mathbf{NP}$ be an arbitrary decision problem. We need to show that $B \leq_p A$.

$$B \leq \mathbf{SAT}$$
 since $\mathbf{SAT} \in \mathbf{NPC}$
 $\mathbf{SAT} \leq A$ by (2)

We know SAT \in **NPC**.

Theorem

Let A be a decision problem. If

- \bullet $A \in \mathbf{NP}$, and
- \bigcirc SAT $\leq_p A$

then A is NP-complete.

Proof.

 $A \in \mathbf{NP}$ by (1). For NP-hardness, let $B \in \mathbf{NP}$ be an arbitrary decision problem. We need to show that $B \leq_{p} A$.

$$B \leq A$$
 by transitivity of \leq_{R}

November 23, 2022

Which of the following are correct?

• For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.
- SAT has the largest time complexity among all NP problems.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.
- SAT has the largest time complexity among all NP problems.
- If SAT can be solved in polynomial time so is TSDP.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.
- SAT has the largest time complexity among all NP problems.
- If SAT can be solved in polynomial time so is TSDP.
- SAT is EXPTIME-complete.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.
- SAT has the largest time complexity among all NP problems.
- If SAT can be solved in polynomial time so is TSDP.
- SAT is EXPTIME-complete.
- If we can decide if a number is prime in p-time then we can solve SAT in p-time.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.
- SAT has the largest time complexity among all NP problems.
- If SAT can be solved in polynomial time so is TSDP.
- SAT is EXPTIME-complete.
- If we can decide if a number is prime in p-time then we can solve SAT in p-time.
- It is known that $SAT \notin P$.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.
- SAT has the largest time complexity among all NP problems.
- If SAT can be solved in polynomial time so is TSDP.
- SAT is EXPTIME-complete.
- If we can decide if a number is prime in p-time then we can solve SAT in p-time.
- It is known that $SAT \notin P$.
- All problems are either in *P* or *NP*-complete.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.
- SAT has the largest time complexity among all NP problems.
- If SAT can be solved in polynomial time so is TSDP.
- SAT is EXPTIME-complete.
- If we can decide if a number is prime in p-time then we can solve SAT in p-time.
- It is known that $SAT \notin P$.
- All problems are either in *P* or *NP*-complete.
- All problems are either in P or NP-hard.

Which of the following are correct?

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.
- SAT has the largest time complexity among all NP problems.
- If SAT can be solved in polynomial time so is TSDP.
- SAT is EXPTIME-complete.
- If we can decide if a number is prime in *p*-time then we can solve SAT in *p*-time.
- It is known that $SAT \notin P$.
- All problems are either in *P* or *NP*-complete.
- All problems are either in P or NP-hard.

Answer on Mentimeter: https://www.menti.com/8abbpwt5py, enter

1427 4147 on www.menti.com, or scan:

Which of the following are correct?

• For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$.

20 / 21

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$. No (e.g., some problems require super-exponential runtime.)
- SAT has the largest time complexity among all NP problems.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$. No (e.g., some problems require super-exponential runtime.)
- SAT has the largest time complexity among all NP problems.
 NP-hardness does not dictate the problem's actual complexity.
- If SAT can be solved in polynomial time so is TSDP.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$. No (e.g., some problems require super-exponential runtime.)
- SAT has the largest time complexity among all NP problems.
 NP-hardness does not dictate the problem's actual complexity.
- If SAT can be solved in polynomial time so is TSDP. Yes, as we've seen that $TSDP \in NP$.
- SAT is EXPTIME-complete.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$. No (e.g., some problems require super-exponential runtime.)
- SAT has the largest time complexity among all NP problems.
 NP-hardness does not dictate the problem's actual complexity.
- If SAT can be solved in polynomial time so is TSDP. Yes, as we've seen that $TSDP \in NP$.
- SAT is EXPTIME-complete. Probably not. This would imply that NP=EXPTIME which would be surprising.
- If we can decide if a number is prime in p-time then we can solve SAT in p-time.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$. No (e.g., some problems require super-exponential runtime.)
- SAT has the largest time complexity among all NP problems.
 NP-hardness does not dictate the problem's actual complexity.
- If SAT can be solved in polynomial time so is TSDP. Yes, as we've seen that $TSDP \in NP$.
- SAT is EXPTIME-complete. Probably not. This would imply that NP=EXPTIME which would be surprising.
- If we can decide if a number is prime in p-time then we can solve SAT in p-time. Probably not. Primality checking is known to be in P, so SAT∈ P is equivalent to P = NP.
- It is known that $SAT \notin P$.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$. No (e.g., some problems require super-exponential runtime.)
- SAT has the largest time complexity among all NP problems.
 NP-hardness does not dictate the problem's actual complexity.
- If SAT can be solved in polynomial time so is TSDP. Yes, as we've seen that $TSDP \in NP$.
- SAT is EXPTIME-complete. Probably not. This would imply that NP=EXPTIME which would be surprising.
- If we can decide if a number is prime in p-time then we can solve SAT in p-time. Probably not. Primality checking is known to be in P, so SAT∈ P is equivalent to P = NP.
- It is known that $SAT \notin P$. No. This would imply $P \neq NP$ which is an open question.
- All decidable problems are either in *P* or *NP*-complete.

- For any decidable $L \subseteq \Sigma^*$, $L \leq_p SAT$. No (e.g., some problems require super-exponential runtime.)
- SAT has the largest time complexity among all NP problems.
 NP-hardness does not dictate the problem's actual complexity.
- If SAT can be solved in polynomial time so is TSDP. Yes, as we've seen that TSDP∈ NP.
- SAT is EXPTIME-complete. Probably not. This would imply that NP=EXPTIME which would be surprising.
- If we can decide if a number is prime in p-time then we can solve SAT in p-time. Probably not. Primality checking is known to be in P, so SAT∈ P is equivalent to P = NP.
- It is known that $SAT \notin P$. No. This would imply $P \neq NP$ which is an open question.
- All decidable problems are either in P or NP-complete.
 No, e.g., some problems are not in NP.
- All decidable problems are either in *P* or *NP*-hard.

- For any decidable $L \subseteq \Sigma^*$, $L \le_p SAT$. No (e.g., some problems require super-exponential runtime.)
- SAT has the largest time complexity among all NP problems.
 NP-hardness does not dictate the problem's actual complexity.
- If SAT can be solved in polynomial time so is TSDP. Yes, as we've seen that TSDP∈ NP.
- SAT is EXPTIME-complete. Probably not. This would imply that NP=EXPTIME which would be surprising.
- If we can decide if a number is prime in p-time then we can solve SAT in p-time. Probably not. Primality checking is known to be in P, so SAT∈ P is equivalent to P = NP.
- It is known that $SAT \notin P$. No. This would imply $P \neq NP$ which is an open question.
- All decidable problems are either in P or NP-complete.
 No, e.g., some problems are not in NP.
- All decidable problems are either in P or NP-hard.
 Probably not. Some problems (e.g., graph isomorphism) are conjuctured to be in NP \ P but not NP-hard.

Today we saw:

Today we saw:

• The second part of the Cook-Levin theorem: SAT is NP-hard and thus (we saw $SAT \in NP$ in the last lecture) is NP-complete.

Today we saw:

- The second part of the Cook-Levin theorem: SAT is NP-hard and thus (we saw $SAT \in NP$ in the last lecture) is NP-complete.
- We can prove hardness of other problems by reductions from NP-hard problems like SAT.

Today we saw:

- The second part of the Cook-Levin theorem: SAT is NP-hard and thus (we saw $SAT \in NP$ in the last lecture) is NP-complete.
- We can prove hardness of other problems by reductions from NP-hard problems like SAT.

Next lecture: Many NP-hard problems.