12.2 习题

张志聪

2025年1月17日

12.2.1

任意 $x_0 \in X$,要么 $x_0 \in E$ 要么 $x_0 \notin E$ 。

- x₀ ∈ E
 任意 0 < r < 1, 由 d_{disc} 度量的定义可知, B(x₀,r) = {x₀}, 所以 B(x₀,r) ⊆ E, 所以 x₀ 是 E 的内点。
- x₀ ∉ E
 任意 0 < r < 1, 由 d_{disc} 度量的定义可知, B(x₀,r) = {x₀}, 所以 B(x₀,r) ∩ E = Ø, 所以 x₀ 是 E 的外点。

12.2.2

证明路径: $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (a)$

• $(a) \implies (b)$

由闭包的定义(定义 12.2.9)可知,如果 (a) 成立,那么对任意的半径 r>0,球 $B(x_0,r)$ 与 E 的交集总是非空的。所以 x_0 不可能是 E 的外点。

球 $B(x_0,r)$ 与 E 的交集总是非空的,于是有两种情况。

情况 1: $B(x_0,r) \subseteq E$,此时 x_0 是 E 的内点。

情况 2: 存在 $x \in B(x_0, r), x \notin E$, 此时 x_0 是 E 的边界点。

综上, (b) 成立。

- $(b) \implies (c)$
 - (b) 成立。
 - $-x_0$ 是 E 的内点 那么可以把序列 $(x_n)_{n=1}^{\infty}$ 设置为常量序列 $(x_0)_{n=1}^{\infty}$.
 - $-x_0$ 是 E 的边界点

那么任意 r > 0,都有 $B(x_0, r) \cap E \neq \emptyset$ (因为如果 $B(x_0, r) \cap E = \emptyset$,那么 x_0 是 E 的外点)。

仿照引理 8.4.5 的证明,构造序列。

对于任意的正整数 n, 设 X_n 表示集合

$$X_n := \{ x \in E : x \in B(x_0, \frac{1}{n}) \}$$

由之前的分析可得,对每一个 n 都有 X_n 是非空的。利用选择公理(或者可数选择公理),能够找到一个序列 $(x_n)_{n=1}^{\infty}$ 使得 $x_n \in X_n$ 对所有的 $n \ge 1$ 均成立。特别地,对所有的 n 均有 $x_n \in E \cap B(x_0, \frac{1}{n})$,于是

$$0 \le d(x_0, x_n) \le \frac{1}{n}$$

根据夹逼定理(推论 6.4.14)有 $\lim_{n\to\infty}d(x_0,x_n)=0$,所以序列 $(x_n)_{n=1}^\infty$ 依度量 d 收敛于点 x_0 。

- $(c) \implies (a)$
 - (c) 成立,由收敛定义(定义 12.1.14)可知,对任意 $\epsilon>0$,存在一个 $N\geq 1$ 使得

$$d(x_n, x_0) < \epsilon$$

对所有 $n \ge N$ 均成立(注意: 这里的把定义中的 \le 改成了 <,并不影响正确性)。

做一下变形,把 ϵ 看做半径,球 $B(x_0,\epsilon)$ 与 E 的交集是非空的,这是因为对 $n \geq N$ 的 x_n 我们有 $d(x_n,x_0) < \epsilon$,所以 $x_n \in B(x_0,\epsilon)$ 且 $x_n \in E$ 。

由 ϵ 的任意性可知, x_0 是 E 的附着点。

12.2.3

说明 1. 先证明以下命题:

设 (X,d) 是一个度量空间,E 是 X 的子集,并设 x_0 是 X 中的一个点。那么 x_0 要么是 E 的内点,要么是 E 的外点,要么是 E 的边界点(存在三歧性)。

证明: 以下的情况是互斥的:

• $x_0 \in E$

首先 x_0 不可能是 E 的外点,如果 x_0 是 E 的外点,那么存在 r>0 使得 $B(x_0,r)\cap E=\varnothing$,因为 $d(x_0,x_0)=0$ 所以 $x_0\in B(x_0,r)$,于是 $x_0\notin E$,存在矛盾。

以下的情况是互斥的:

- $-x_0$ 是 E 的边界点 由定义 12.2.5 可知, x_0 不可能同时是 E 的内点。
- $-x_0$ 不是 E 的边界点 之前已经说明 x_0 不是 E 的外点, 假设 x_0 也不是 E 的内点, 那么 x_0 就是 E 的边界点,存在矛盾,所以 x_0 是 E 的内点。
- $x_0 \notin E$

首先 x_0 不可能是 E 的内点,如果 x_0 是 E 的内点,那么存在 r>0 使得 $B(x_0,r)\subseteq E$,因为 $x_0\in B(x_0,r)$,所以 $x_0\in E$,这 与 $x_0\notin E$ 矛盾。

以下的情况是互斥的:

- $-x_0$ 是 E 的外点
- $-x_0$ 不是 E 的外点 由定义 12.2.5 可知, x_0 既不是 E 的内点也不是 E 的外点, 所以 x_0 是 E 的边界点。

综上, $x_0 \in E$, x_0 要么是 E 的内点, 要么是 E 的边界点; $x_0 \notin E$, x_0 要么是 E 的外点, 要么是 E 的边界点。命题得证。

• (a)

 $- \Rightarrow$

由注 12.2.6 可知 $int(E) \subseteq E$ 。

任意 $x_0 \in E$,因为 E 是开的,那么 E 不包含自身的任意边界点,所以 $x_0 \notin \partial E$;由 $d(x_0, x_0) = 0$ 可知 $x_0 \notin ext(E)$ 。于是由说明 1 可知 $x_0 \in int(E)$,所以 $E \subseteq int(E)$ 。

所以 E = int(E)

 $- \Leftarrow$

E = int(E),那么任意 $x_0 \in E$,都有 $x_0 \in int(E)$,即 E 中不包含边界点,由定义 12.2.12 可知,E 是开的。

• (b)

 $- \Rightarrow$

反证法,假设存在 x_0 是附着点且 $x_0 \notin E$ 。 x_0 是 E 的附着点,那么由定义 12.2.9 可知,对任意的半径 r>0,球 $B(x_0,r)\cap E\neq\varnothing$,所以可得 x_0 不可能是 E 的外点。又由说明 1 可得 x_0 要么是 E 的边界点,要么是 E 的边界点,要么是 E 的边界点,由于 E 是闭的,所以 $x_0\in E$,与假设矛盾;如果 x_0 是 E 的内点,于是 $x_0\in E$,与假设矛盾。

综上, 假设不成立。

- <

反证法,假设 E 不是闭的,即存在边界点 $x_0 且 x_0 \notin E$ 。由推论 12.2.11 可知 $x_0 E$ 的附着点,由题设可知 $x_0 \in E$,与假设矛盾。

• (c)

- 球 $B(x_0,r)$ 是开集

对任意的 $x \in B(x_0, r)$,都有 $d(x_0, x) < r$,令 $r' = r - d(x_0, x)$,于是 $B(x, r') \subseteq B(x_0, r)$,因为任意 $y \in B(x, r')$,都有

$$d(x_0, y) \le d(x_0, x) + d(x, y) < d(x_0, x) + r' = r$$

由 (a) 可知, 球 $B(x_0,r)$ 是开集。

- 闭球是闭集

 $B:=\{x\in X: d(x,x_0)\leq r\}$,让 $(x_n)_{n=m}^\infty$ 是 B 中任意一个收敛序列,假设 $\lim_{n\to\infty}x_n=b\notin E$,于是 $d(x_0,b)>r$,令 $\epsilon=d(x_0,b)-r>0$,于是存在 $N\geq m$ 使得

$$d(x_n, b) < \epsilon$$

$$d(x_n, b) < d(x_0, b) - r$$

$$r < d(x_0, b) + d(x_n, b)$$

$$r < d(x_0, x_n)$$

对所有 $n \ge N$ 均成立,这与 $x_n \in B$ 矛盾。于是 $b \in B$,由(b)可知,B是闭集。

• (d)

令 $E := \{x_0\}$, E 中的任意一个收敛序列 $(x_n)_{n=m}^{\infty}$ 都是与 $(x_0)_{n=m}^{\infty}$ 相等,所以 $\lim_{n\to\infty} x_n = x_0 \in E$ 。由 (b) 可知,E 是闭集。

• (e) 由于 $int(E) = ext(X \setminus E), ext(E) = int(X \setminus E)$, 于是可得 $\partial E = \partial (X \setminus E)$ 。

$- \Rightarrow$

E 是开的,则 $\partial E \cap E = \emptyset$,于是可得 $\partial E \subseteq (X \setminus E)$,即 $\partial E = \partial (X \setminus E) \subseteq (X \setminus E)$,所以 $X \setminus E$ 是闭的。

$- \Leftarrow$

 $X \setminus E$ 是闭的,则 $\partial(X \setminus E) \subseteq (X \setminus E)$,由 $\partial E = \partial(X \setminus E)$ 可得 $\partial E \cap E = \emptyset$,所以 E 是开的。

• (f)

(f.1)

使用 (a) 可知,对任意 $x \in E_1 \cap E_2 \cap ... \cap E_n$,对任意 $E_i (1 \le i \le n)$ 存在一个 $r_i > 0$ 使得 $B(x, r_i) \subseteq E_i$ 。

由于 n 是有限的,所以可取 $r = \min\{r_1, r_2, ..., r_n\}$,此时 $B(x, r) \subseteq E_i$,于是再次利用 (a) 可得, $E_1 \cap E_2 \cap ... \cap E_n$ 是开的。

(f.2)

 $F_1,...,F_2$ 是闭的,由 (e) 可知, $X \setminus F_1,...,X \setminus F_n$ 是开的, $F_1 \cup F_2 \cup ... \cup F_n = X \setminus ((X \setminus F_1) \cap (X \setminus F_2) \cap ... \cap (X \setminus F_n))$,再次利用 (e) 可知, $F_1 \cup F_2 \cup ... \cup F_n$ 是闭的。

• (g)

(g.1)

任意 $x \in \bigcup_{\alpha \in I} E_{\alpha}$, 那么,存在某个 $\alpha \in I$ 使得 $x \in E_{\alpha}$, 又因为 E_{α} 是 开的,所以存在 r > 0 使得 $B(x,r) \subseteq E_{\alpha} \in \bigcup_{\alpha \in I} E_{\alpha}$, 所以 $\bigcup_{\alpha \in I} E_{\alpha}$ 是开的。

(g.2)

• (h)

(h.1)

反证法, 假设 int(E) 不是包含在 E 中的最大开集, 即存在 $V \subseteq E, V \not\subseteq int(E)$ 。

由假设可知,存在 $x \in V, x \notin int(E)$,由于 $V \subseteq E$,所以 $x \in E$,于 是 $x \in int(E)$ 或 $x \in \partial E$,因为 $x \notin int(E)$,所以 $x \in \partial E$ 。

由于 V 是开集,所以存在 r > 0,使得 $B(x,r) \subseteq V \subseteq E$,于是 x 是 E 的内点,即 $x \in int(E)$,存在矛盾。

(h.2)

反证法, 假设 \overline{E} 不是包含 E 的最小闭集, 即存在 $K \supset E, K \not\supset \overline{E}$ 。

由假设可知,存在 $x \in \overline{E}, x \notin K$ 。因为 x 是 E 的附着点,于是由命题 12.2.10(c) 可知在 E 中(也在 K 中)构造一个收敛于 x 的序列 $(x_n)_{n=m}^{\infty}$,但 $x \notin K$,这与 (b) 矛盾。

12.2.4

• (a)

反证法, 假设存在 $x \in \overline{B}, x \notin C$ 。

 $x \notin C$, 可知 $x \in X \setminus C$, 而 $X \setminus C = \{x \in X : d(x, x_0) > r\}$, 那么 $d(x, x_0) > r$ 。

因为 $x \in \overline{B}$,所以对任意半径 r' > 0 都有 $B(x, r') \cap B \neq \emptyset$,于是令 $r' = d(x_0, x) - r > 0, y \in B(x, r') \cap B$ 。

按照定义 12.1.2 我们有

$$d(x_0, x) \le d(x_0, y) + d(x, y)$$
$$d(x_0, x) - d(x_0, y) \le d(x, y)$$

因为 $y \in B(x, r')$ 于是 d(x, y) < r', 所以

$$d(x_0, x) - d(x_0, y) \le d(x, y) < r' = d(x_0, x) - r$$
$$d(x_0, x) - d(x_0, y) < d(x_0, x) - r$$
$$r < d(x_0, y)$$

这与 $y \in B$ 矛盾。

• (b)

在离散度量 d_{disc} 中, $B := B(x_0, 1)$,是单点集,由命题 12.2.15(d) 可知,B 是闭集,由命题 12.2.15(b) 可知, $B = \overline{B}$ 。

而 $C:=\{x\in X: d_{disc}(x_0,x)\leq 1\}$ 就是 X 本身,此时 $B\subset C$ 。