The Power of SLMs

Moore's Law of Language Models

Figure inspired by Microsoft Research Blog: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

THE POWER OF LARGE LANGUAGE MODELS

Figure from "Sparks of Artificial General Intelligence: Early experiments with GPT-4", arXiv preprint arXiv:2303.12712 (2023).

- Can these emergent abilities be achieved at a smaller scale?
- Our line of work with the *Phi* models aims to answer this question
 - SLMs that achieve on par performance with models of much higher scale

- Can these emergent abilities be achieved at a smaller scale?
- Our line of work with the *Phi* models aims to answer this question
 - SLMs that achieve on par performance with models of much higher scale

Python **coding** model with perf. comparable to models 10x larger trained on 100x more data

- Specialist SLMs are possible
- What about a general model?

- Can these emergent abilities be achieved at a smaller scale?
- Our line of work with the *Phi* models aims to answer this question
 - SLMs that achieve on par performance with models of much higher scale

Python **coding** model with perf. comparable to models 10x larger trained on 100x more data

Natural language model with NL comparable to models 10x larger trained on 30x more data and reasoning comparable to models 50x larger.

- Can these emergent abilities be achieved at a smaller scale?
- Our line of work with the *Phi* models aims to answer this question
 - SLMs that achieve on par performance with models of much higher scale

Python **coding** model with perf. comparable to models 10x larger trained on 100x more data

Natural language model with NL comparable to models 10x larger trained on 30x more data and reasoning comparable to models 50x larger.

PHI-2 PERFORMANCE

PHI-2 PERFORMANCE

Gemini Nano 2 (3.25B)

Gemini Ultra

A skier slides down a frictionless slope of height 40m and length 80m. What's the skier's speed at the bottom?

The potential energy of the skier at the top of the slope is given by mgh, where m is the mass of the skier, g is the acceleration due to gravity, and h is the height of the slope. Since the slope is frictionless, all of the potential energy is converted to kinetic energy at the bottom of the slope. The kinetic energy of the skier is given by $(1/2)mv^2$, where v is the speed of the skier at the bottom of the slope. Equating the potential energy and kinetic energy, we get: mgh = $(1/2)mv^2$.

Simplifying, we get: $v^2 = 2gh$

Substituting the given values, we get:

$$v^2 = 2(9.8)(40)$$

$$v^2 = 784$$

$$v = 28 \text{ m/s}$$

Therefore, the skier's speed at the bottom of the slope is 28 m/s.

PHI-2 PERFORMANCE

Gemini Nano

Gemini Ultra

Now we asked a student to give the answer and they replied with this calculation:

Start: E=mgL

End: $E = (1/2)mv^2$ $mgL = (1/2)mv^2$

v=sqrt(2gL)=sqrt(2x9.81x80)=39.6m/s

If the student is wrong, can you correct them?

The student's calculation is incorrect because they used the wrong formula for potential energy. The formula for potential energy is mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height of the object.

WHAT IS THE SECRET SAUCE?

WHAT IS THE SECRET SAUCE?

1- High-Quality Training Data: Textbooks are all you need [1]

TRAINING LANGUAGE MODELS FOR CODING

- Stack dataset: "every source code in GitHub"
- Dataset size: 1T tokens

Random code sample from the Stack

If we have a **small** dataset is focused on "**text-book quality educational content**", we can learn the task **better**, even with a **smaller** model.

```
import re
import typing
class Default (object):
    def __init__(self, vim: Nvim) -> None:
        self._vim = vim
        self._denite: typing.Optional[SyncParent
    ] = None
        self._selected_candidates: typing.List[
        self._candidates: Candidates = []
        self. cursor = 0
        self._entire_len = 0
        self._result: typing.List[typing.Any] =
        self. context: UserContext = {}
        self._bufnr = -1
        self._winid = -1
        self._winrestcmd = ''
        self._initialized = False
        self. winheight = 0
        self._winwidth = 0
        self._winminheight = -1
                         False
```

```
self._statusline_sources = ''
self._titlestring = ''
self._ruler = False
self._prev_action = ''
...
```

False ttern = ''

texts: typing.List[str]

1. Filtering web data:

- GPT-4 can reliably classify documents based on "high educational value".
- Challenge: Stack (Python) is 26B tokens (around \$1M cost in 2023).

• Solution: label small fraction, then train a random forest classifier on it and use

Educational values deemed by the filter

the classifier to filter the rest.

High educational value Low educational value import torch import re import torch.nn.functional as F import typing def normalize(x, axis=-1): """Performs L2-Norm.""" class Default (object): def __init__(self, vim: Nvim) -> None: denom = torch.norm(x, 2, axis, keepdim=True) self._vim = vim $.expand_as(x) + 1e-12$ self._denite: typing.Optional[SyncParent] return num / denom self._selected_candidates: typing.List[int def euclidean_dist(x, y):] = [] """Computes Euclidean distance.""" self._candidates: Candidates = [] self._cursor = 0 m, n = x.size(0), y.size(0)xx = torch.pow(x, 2).sum(1, keepdim=True).self._entire_len = 0 expand(m, n) self._result: typing.List[typing.Any] = [] yy = torch.pow(x, 2).sum(1, keepdim=True).self._context: UserContext = {} $self._bufnr = -1$ expand(m, m).t() dist = xx + yy - 2 * torch.matmul(x, y.t()) $self._winid = -1$ dist = dist.clamp(min=1e-12).sqrt() self._winrestcmd = '' return dist self._initialized = False self._winheight = 0 def cosine_dist(x, y): self._winwidth = 0 """Computes Cosine Distance.""" $self._winminheight = -1$ x = F.normalize(x, dim=1)self._is_multi = False y = F.normalize(y, dim=1)self._is_async = False dist = 2 - 2 * torch.mm(x, y.t())self._matched_pattern = ' return dist

2. Create synthetic data:

- Synthetic textbooks: teach the model coding with natural language
- 1B tokens generated with GPT-3.5
- Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.)
 and low repetition
- Solution: inject creative randomness into the prompt [1]

[1] Eldan, Ronen, and Yuanzhi Li. "TinyStories: How Small Can Language Models Be and Still Speak Coherent English?" arXiv preprint arXiv:2305.0775S (2023).

```
To begin, let us define singular and nonsingular matrices. A matrix is said to be singular if its determinant is zero. On the other hand, a matrix is said to be nonsingular if its determinant is not zero. Now, let's explore these concepts through examples.

Example 1: Consider the matrix A = np.array([[1, 2], [2, 4]]). We can check if this matrix is singular or nonsingular using the determinant function. We can define a Python function, is_singular(A), which returns true if the determinant of A is zero, and false otherwise.

import numpy as np def is_singular(A):
    det = np.linalg.det(A)
    if det == 0:
        return True
    else:
        return False

A = np.array([[1, 2], [2, 4]])
    print(is_singular(A)) # True
```

2. Create synthetic data:

- Synthetic textbooks: teach the model coding with natural language
- 1B tokens generated with GPT-3.5
- Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.)
 and low repetition
- **Solution:** inject creative randomness into the prompt [1]

unfiltered web data

2. Create synthetic data:

- Synthetic textbooks: teach the model coding with natural language
- 1B tokens generated with GPT-3.5
- Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.)
 and low repetition
- **Solution:** inject creative randomness into the prompt

2. Create synthetic data:

- CodeExercises: align the model to perform function completion tasks based on natural language instructions.
- <1M exercises with 0.2B tokens generated with GPT-3.5

```
def valid_guessing_letters(word: str, guesses: List[str]) -> List[str]:
    """
    Returns a list of valid guessing letters, which are letters that have not been guessed yet and are present in the word.
    Parameters:
    word (str): The word to guess.
    guesses (List[str]): A list of letters that have already been guessed.
    Returns:
    List[str]: A list of valid guessing letters.
    """
    valid_letters = []
    for letter in word:
        if letter not in guesses and letter not in valid_letters:
            valid_letters.append(letter)
    return valid_letters
```

2. Create synthetic data:

- CodeExercises: align the model to perform function completion tasks based on natural language instructions.
- <1M exercises with 0.2B tokens generated with GPT-3.5

filtered web data + synthetic textbooks, finetuned on CodeExercises

COMPARISON TO PRIOR MODELS

Date	Model	Model size	Dataset size	HumanEval	MBPP
			(Tokens)	(Pass@1)	(Pass@1)
2021 Jul	$Codex-300M [CTJ^{+}21]$	300M	100B	13.2%	1-
2021 Jul	$Codex-12B [CTJ^+21]$	12B	100B	28.8%	1-
2022 Mar	CodeGen-Mono-350M [NPH ⁺ 23]	350M	577B	12.8%	-
2022 Mar	CodeGen-Mono-16.1B [NPH ⁺ 23]	16.1B	577B	29.3%	35.3%
2022 Apr	$PaLM-Coder [CND^+22]$	540B	780B	35.9%	47.0%
2022 Sep	$CodeGeeX [ZXZ^{+}23]$	13B	850B	22.9%	24.4%
2022 Nov	GPT-3.5 $[Ope23]$	175B	N.A.	47%	-
$2022 \mathrm{Dec}$	SantaCoder [ALK ⁺ 23]	1.1B	236B	14.0%	35.0%
2023 Mar	GPT-4 [Ope23]	N.A.	N.A.	67%	-
$2023~\mathrm{Apr}$	Replit [Rep23]	2.7B	525B	21.9%	-
$2023~\mathrm{Apr}$	Replit-Finetuned [Rep23]	2.7B	525B	30.5%	-
2023 May	CodeGen2-1B [NHX ⁺ 23]	1B	N.A.	10.3%	-
2023 May	CodeGen2-7B [NHX ⁺ 23]	7B	N.A.	19.1%	-
2023 May	StarCoder [LAZ ⁺ 23]	15.5B	1T	33.6%	52.7%
2023 May	StarCoder-Prompted [LAZ ⁺ 23]	15.5B	1T	40.8%	49.5%
2023 May	$PaLM 2-S [ADF^+23]$	N.A.	N.A.	37.6%	50.0%
2023 May	$CodeT5+ [WLG^{+}23]$	2B	52B	24.2%	_
2023 May	$CodeT5+[WLG^{+}23]$	16B	52B	30.9%	-
2023 May	InstructCodeT5+ $[WLG^{+}23]$	16B	52B	35.0%	-
2023 Jun	WizardCoder [LXZ ⁺ 23]	16B	1T	57.3%	51.8%
2023 Aug	Code Llama	34B	2.6T	53.7%	56.2%
2023 Jun	phi-1	1.3B	7B	50.6%	55.5%

among < 10B size models, previous best was 30%

WHAT IS THE SECRET SAUCE?

2- Best Practices to Scale up

SCALING UP

- Training Phi-1 using the "CodeTextbook →CodeExercises" recipe
- Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)
- Training from scratch:

- Reusing weights from Phi-1-small (350M)
- Challenge: how to scale the dimensions?
- 1. Scaling number of layers:
 - # layers: 20 →24

round_int(range(num_layers_new)/num_layers_new * num_layers_old) [1]

- Reusing weights from Phi-1-small (350M)
- Challenge: how to scale the dimensions?
- 2. Scaling attention layer dimensions:
 - d_model: 1024 →2048
 - # heads: $16 \rightarrow 32$

random initialization
Phi-1-small (350M) Weights

Wqkv

- Training Phi-1 using the "CodeTextbook \rightarrow CodeExercises" recipe
- Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)
- Training from Phi-1-small (weight reuse (WR)):

Reusing weights from Phi-1-small (350M)

• Challenge: how to scale the dimensions?

2. Scaling attention layer dimensions:

• d_model: 1024 →2048

• # heads: $16 \rightarrow 32$

random initialization
Phi-1 (350M) Weights

- Training Phi-1 using the "CodeTextbook \rightarrow CodeExercises" recipe
- Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)

• Training from Phi-1-small (weight reuse (WR):5

Model	Model size	Dataset size	HumanEval (pass@1)
Code Llama	34B	2.6T	53.7
Phi-1	1.3B	7B	50.6
Phi-1 (WR + Tile)	1.3B	7B	55.5

SCALING UP PHI-1.5 TO PHI-2

• Better performance with weight reuse

CONCLUSION

- A good, general, SLM is achievable with
 - generation and utilization of data with "textbook quality", in contrast to conventional web data.
 - incorporation of best practices for scaling up to enhance overall performance.