

Отчет по 3 заданию курса «Суперкомпьютерное моделирование и технологии»

Выполнил:

Студент 627 группы Федяшкин Максим Алексеевич Вариант 3

Оглавление

Математическая постановка	3
Аналитическое решение	
Числовой метод решения	
Краткое описание работ по созданию гибридного решения	5
Создание МРІ версии	
Разбиение на кубы и создание топологии	5
Обмен гало	5
Генерация u0, u1,, un	5
Вычисление точного значения на шаге	5
Подсчет ошибки	5
Итерационный алгоритм	5
Гибридная версия	5
График аналитического решения	7
График решения разностной схемы	10
График погрешности	14
Результаты расчетов	18
Последовательная программа	
Lx = Ly = Lz = 1.0	18
$L_X = L_Y = L_Z = P_1$	18
MPI версия	18
Lx = Ly = Lz = 1.0.	18
Lx = Ly = Lz = Pi	19
MPI + OpenMP	
Lx = Ly = Lz = 1.0.	20
Lx = Ly = Lz = Pi	20

Математическая постановка

В трехмерной заданной области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z]$$

Необходимо найти решение u(x, y, z, t) для $t \in (0, T]$ уравнения в частных производных:

$$\frac{\partial^2 u}{\partial t^2} = \Delta u$$

С начальными условиями 1-го рода:

$$u(0,y,z,t)=0$$
 $u(L_x,y,z,t)$
 $u(x,y,0,t)=0$ $u(x,y,L_z,t)$

И начальными периодическими условиями:

$$u(x,0,z,t)=u(x,L_{y},z,t)$$
 $u_{y}(x,y,0,t)=u_{y}(x,L_{y},z,t)$

Аналитическое решение

$$u(x,y,z,t) = \phi(x,y,z) \cdot \pi \cdot \cos\left(t \cdot \sqrt{\frac{1}{L_x^2} + \frac{4}{L_y^2} + \frac{9}{L_z^2}}\right)$$

$$\phi(x,y,z) = \sin\left(\frac{1 \cdot \pi}{L_x} \cdot x\right) \cdot \sin\left(\frac{2 \cdot \pi}{L_y} \cdot y\right) \cdot \sin\left(\frac{3 \cdot \pi}{L_z} \cdot z\right)$$

Устойчивость схемы можно высчитать по формуле

$$\frac{c \cdot \tau}{h} \le \frac{1}{\sqrt{(3)}} \Leftrightarrow K \ge \sqrt{(3)} \cdot N$$
, $\epsilon \partial e \quad \tau \cdot K = T$

Числовой метод решения

Введем на Ω сетку $w_{h\tau} = \bar{w_h} \times w_{\tau}$ пусть

$$\begin{split} T &= T_0, \\ L_x &= L_{x_0}, L_y = L_{y_0}, L_z = L_{z_0}, \\ \bar{w}_h &= \left[(x_i = i \cdot h_x, y_j = j \cdot h_y, z_k = k \cdot h_z) \quad i, j, k = 0, 1, \dots, N \quad h_X \cdot N = L_x, h_y \cdot N = L_y, h_x \cdot N = L_z \right], \\ w_\tau &= \left\{ t_n = n \cdot \tau, n = 0, 1, \dots, K \quad \tau \cdot K = T \right\} \end{split}$$

Аппроксимация исходного уравнения

$$\frac{u_{ijk}^{n+1}-2\cdot u_{ijk}^{n}+u_{ijk}^{n-1}}{\tau^{2}} = \Delta_{h}u^{n}, \quad (x_{i},y_{j},z_{k}) \in W_{h}, \quad n=1,2,...,K-1$$

$$\Delta_h u^n = \frac{u_{i-1\,jk}^n - 2 \cdot u_{ijk}^n + u_{i+1\,jk}^n}{h^2} + \frac{u_{ij-k}^n - 2 \cdot u_{ijk}^n + u_{ij+1k}^n}{h^2} + \frac{u_{ijk-1}^n - 2 \cdot u_{ijk}^n + u_{ijk+1}^n}{h^2}$$

$$u_{ijk}^{0} = \phi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in W_h$$

$$u_{ijk}^{1} = u_{ijk}^{0} + \frac{\tau}{2} \cdot \Delta_{h} \cdot \phi(x_{i}, y_{j}, z_{k}), \quad (x_{i}, y_{j}, z_{k}) \in W_{h}$$

Разностная аппроксимация для периодического условия по у

$$u_{i0k}^{n+1} = u_{iNk}^{n+1}, \qquad u_{i1k}^{n+1} = u_{i(N+1)k}^{n+1}$$

Краткое описание работ по созданию гибридного решения

Создание МРІ версии

Разбиение на кубы и создание топологии

С помощью метода MPI_Dims_create создается карта разбиение куба. По карте происходит создание виртуальной топологии, цикличной только по у. Каждый процесс обрабатывает свою часть куба и хранит только ее и гало, под гало понимаются смежные стороны соседних кубов глубиной в 1. Соответственно в каждом измерении размерность подкуба увеличена на 2. Генерируется вспомогательная структура, которая хранит границы, смещения, список соседей, и другую информацию упрощающее отображение исходного куба на его часть с гало.

Обмен гало

По каждому измерению четные процессы обмениваются гало с нечетными (если сосед есть). Затем по тому же измерению нечетные обмениваются с четными(если есть сосед). В итоге за 6 итераций происходит полный обмен гало.

Генерация u0, u1, ..., un

Определены методы которые позволяют вычислить u0, u1, un – решение разностной схемы на шаге n. Методы реализуют вычисление значение элементов подкуба (гало не меняются). Логика функций повторяет программную реализацию.

Вычисление точного значения на шаге

Метод который возвращает точное значение решения на шаге в заданной точке. Используется формула точного аналитического решения.

Подсчет ошибки

Вычисляется максимальная локальная ошибка на подкубе путем прохода по всем элементам подкуба и сравнением по модулю с точным аналитическим решением, Затем с помощью MPI_reduce на 0 процессе вычисляется максимальная ошибка и печатается в консоль.

Итерационный алгоритм

Итерации происходят по временным шагам.

- 1. Вычисление un, n = 0,, K
- 2. Подсчет и вывод ошибки
- 3. Обмен гало

Гибридная версия

Все операции над матрицами в циклах являются не зависимыми по данным. С помощью соответствующей директивы #pragma parallel for происходит распараллеливание внешнего

цикла, каждой нити своя часть матрицы. Исключение составляет поиск ошибки в подкубе, где необходимо создать временный массив в котором хранится максимальное значение части подкуба обрабатываемой нитью. После в массиве ищется максимальное значение и возвращается из метода.

График аналитического решения

При построении графиков обнаружено, что визуальной разницы между шагами [t=0,t=20] нет. Поэтому представлены графики для t=20. Для удобства отображаются не все точки а их часть (координаты которой кратны шагу), шаг указан в легенде графика (s).

Диапазон:

Аналитические значения принадлежат диапазону [-1,1] и отображаются в [0, 100]

Фигура 1: L=1, N=128, K=220, T=1, t=20, s=4

Фигура 3: L=1, N=512, K=886, T=1, t=20, s=16

Фигура 4: L=3.14, N=128, K=220, T=1, t=20, s=4

Фигура 5: L=3.14, N=256, K=442, T=1, t=20, s=8

Фигура 6: L=3.14, N=512, K=886, T=1, t=20, s=16

График решения разностной схемы

При построении графиков обнаружено, что визуальной разницы между шагами [t=0,t=20] нет. Поэтому представлены графики для t=20. Для удобства отображаются не все точки а их часть (координаты которой кратны шагу), шаг указан в легенде графика (s).

Диапазон:

Решение разностной схемы принадлежат диапазону [-1,1] и отображаются в [0, 100]

Фигура 7: L=1, N=128, K=220, T=1, t=20, s=4

Фигура 8: L=3.14, N=128, K=220, T=1, t=20, s=4

Фигура 9: L=1, N=256, K=442, T=1, t=20, s=8

Фигура 10: L=3.14, N=256, K=442, T=1, t=20, s=8

Фигура 11: L=1, N=512, K=886, T=1, t=20, s=16

Фигура 12: L=3.14, N=512, K=886, T=1, t=20, s=16

График погрешности

Максимальная погрешность достигается на шаге t == 20. Поэтому представлены графики для t == 20. Для удобства отображаются не все точки а их часть (координаты которой кратны шагу), шаг указан в легенде графика (s).

Диапазон:

Погрешность схемы принадлежат диапазону [0, 0.000056] и отображаются в [0, 100]

Фигура 13: L=1, N=128, K=220, T=1, t=20, s=4

Фигура 14: L=3.14, N=128, K=220, T=1, t=20, s=4

Фигура 15: L=1, N=256, K=442, T=1, t=20, s=8

Фигура 16: L=3.14, N=256, K=442, T=1, t=20, s=8

Фигура 17: L=1, N=512, K=886, T=1, t=20, s=16

Фигура 18: L=3.14, N=512, K=886, T=1, t=20, s=16

Результаты расчетов

Последовательная программа

$$Lx = Ly = Lz = 1.0$$

Число	Число точек	Максимальная погрешность	Время решения Т
точек сетки	сетки по		
N	Т		
128	220	0.0000557521	2.13
256	442	0.0000039918	17.454
512	886	0.0000002568	140.62

Lx = Ly = Lz = Pi

Число	Число точек	Максимальная погрешность	Время решения Т
точек сетки N	сетки по		
1N	1		
128	220	0.0000188797	2.098
256	442	0.0000011774	18.686
512	886	0.0000000733	148.195

МРІ версия

$$Lx = Ly = Lz = 1.0$$

Число МРІ	Число точек	Число точек	Время Решения Т	Ускорение S	Погрешность δ
процессов Np	сетки N	сетки по Т			
1	128	220	1.97	1	0.0000557521
4	128	220	0.72	2.736	0.0000557521
8	128	220	0.41	4.805	0.0000557521
16	128	220	0.34	5.794	0.0000557521
32	128	220	0.34	5.794	0.0000557521
1	256	442	11.19	1	0.0000039918

4	256	442	3.11	3.598	0.0000039918
8	256	442	2.30	4.865	0.0000039918
16	256	442	1.63	6,865	0.0000039918
32	256	442	1.02	10,971	0.0000039918
1	512	886	91.26	1	0.0000002568
4	512	886	23.27	3.921	0.0000002568
8	512	886	12.7	7.186	0.0000002568
16	512	886	6.77	13.48	0.0000002568
32	512	886	5.13	17,789	0.0000002568

Lx = Ly = Lz = Pi

Число МРІ процессов Nр	Число точек сетки N	Число точек сетки по Т	Время Решения Т	Ускорение S	Погрешность δ
1	128	220	1.43	1	0.0000188797
4	128	220	0.57	2.509	0.0000188797
8	128	220	0.34	4.205	0.0000188797
16	128	220	0.26	5.5	0.0000188797
32	128	220	0.28	5.10	0.0000188797
1	256	442	11.57	1	0.0000011774
4	256	442	3.26	3.549	0.0000011774
8	256	442	1.91	6.057	0.0000011774
16	256	442	1.35	8.570	0.0000011774
32	256	442	0.97	11.927	0.0000011774
1	512	886	93.08	1	0.0000000733
4	512	886	24.96	3.729	0.0000000733
8	512	886	12.87	7.232	0.0000000733
16	512	886	8.09	11.505	0.0000000733
32	512	886	4.56	20,412	0.0000000733

MPI + OpenMP

Lx = Ly = Lz = 1.0

Число МРІ процессо в Nр	Число ОрепМР нитей в процессе	Число точек сетки N	Число точек сетки по Т	Время Решения Т	Ускорение S	Погрешность δ
1	4	128	220	1.24	1	0.0000557521
2	4	128	220	0.69	1.797	0.0000557521
4	4	128	220	0.45	2.755	0.0000557521
8	4	128	220	0.37	3.351	0.0000557521
1	4	256	442	10.35	1	0.0000039918
2	4	256	442	4.95	2.090	0.0000039918
4	4	256	442	2.56	4.042	0.0000039918
8	4	256	442	1.44	7.187	0.0000039918
1	4	256	886	79.12	1	0.0000002568
2	4	256	886	39.42	2.007	0.0000002568
4	4	256	886	19.83	3.989	0.0000002568
8	4	256	886	10.82	7.312	0.0000002568

Lx = Ly = Lz = Pi

Число МРІ процессо в Nр	Число ОрепМР нитей в процессе	Число точек сетки N	Число точек сетки по Т	Время Решения Т	Ускорение S	Погрешность δ
1	4	128	220	1.29	1	0.0000188797
2	4	128	220	0.67	1.925	0.0000188797
4	4	128	220	0.40	3.225	0.0000188797
8	4	128	220	0.26	4.961	0.0000188797
1	4	256	442	9.65	1	0.0000011774
2	4	256	442	4.90	1.969	0.0000011774
4	4	256	442	2.62	3.683	0.0000011774
8	4	256	442	1.43	6.748	0.0000011774
1	4	256	886	79.43	1	0.0000000733
2	4	256	886	39.31	2.020	0.0000000733
4	4	256	886	19.66	4.040	0.0000000733
8	4	256	886	10.60	7.493	0.0000000733