CSIE 5432 — Machine Learning Foundations

Name: 李吉昌 Homework 2

Student Number: r08922a27 **Due Date:** November 6 2020, 13:00

Perceptrons

1. Answer: [c]

由 Lecture 7 slides 的第 12 頁可得, 若 data sample 和 bias 項 $(x_0 = 1)$ 構成的矩陣為 $X \circ \diamondsuit X$ 為 d筆資料, 給定任一 label $y \in \{-1, +1\}^d$ 。若 X 可逆, 則一定找得到一組參數 w 使得 Xw = y。 Xw = y成立則 sign(Xw) = y 必成立, 即該組 data sample 必定可以被 shatter。選項中僅有 [c] 為可逆方陣, 得 [c] 的 data sample 可以被 shatter。

$$X = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 1 & 7 & 8 & 9 \\ 1 & 15 & 16 & 17 \\ 1 & 21 & 23 & 25 \end{pmatrix}, \ X^{-1} = \begin{pmatrix} 0 & \frac{9}{8} & \frac{7}{8} & -1 \\ \frac{1}{2} & \frac{-11}{8} & \frac{11}{8} & \frac{-1}{2} \\ -1 & \frac{7}{4} & \frac{-3}{4} & 0 \\ \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \end{pmatrix}$$

2. Answer: [d]

因為平行 x 和 y 軸的 hypothesis 的結果互相獨立, 在不討論全為 positive/negative 的情況下, growth function 可以看成是各軸 decision stump 的 growth function 的疊加, 各軸為 2N-2, 共 4N-4, 加上 全為 positive/negative 的 2 種情況, 答案是 4N-2。

3. Answer: [c]

Stage 1:

由下圖所示, 在 N=2, 可以找到一組被 shatter 的 sample 組合, 得 $d_{vc} \geq 2$ 。

令三個 sample 為 $\mathbf{x1}, \mathbf{x2}, \mathbf{x3} \in \mathbb{R}^2$, 向量之間 pairwise independent(若沒有該性質則兩相依 sample 的 hypothesis 結果差別為乘上 scalar, 考量可否 shatter 的情況, 兩個相依 sample 會出現的結果只會被一

mypothesis 結果を別為衆工 scalar, 写重可否 snatter 的情况, 网面相似 sample 曾由現的結果只曾被一個 sample 決定, 等價於討論
$$N=2$$
 的 shatter 情況, 由上述已知 $N=2$ 可找到被 shatter 的情況, 無須再考慮 $N=2$ 可否被 shatter), 三個 sample 包含 bias 項構成矩陣為 $X=\begin{pmatrix} 1, & -\mathbf{x}\mathbf{1}^T - \\ 1, & -\mathbf{x}\mathbf{2}^T - \\ 1, & -\mathbf{x}\mathbf{3}^T - \end{pmatrix}$, X 的

row vector 線性獨立; 令 $\mathbf{w}' \in \mathbb{R}^2$ 為 2D-perceptron 的 weight, bias 為一 scalar w_0 , 構成參數向量 w = $\begin{pmatrix} w_0 \\ \mathbf{w'} \end{pmatrix} \in \mathbb{R}^3$, 則 hypothesis 預測結果分別為 $\operatorname{sign}(w_0 + \mathbf{w'}^T \mathbf{x_1})$, $\operatorname{sign}(w_0 + \mathbf{w'}^T \mathbf{x_2})$, $\operatorname{sign}(w_0 + \mathbf{w'}^T \mathbf{x_3})$ °

由於 \mathbb{R}^2 空間維度為 2, 三個向量必為線性相依, 一定可以找到一組系數 α, β 使得 $\mathbf{x_3} = \alpha \cdot \mathbf{x_1} + \beta \cdot \mathbf{x_2}$ 。 在 $\alpha \cdot \mathbf{w'}^T \mathbf{x_1} > 0, \beta \cdot \mathbf{w'}^T \mathbf{x_2} > 0$ 的情況下, 則 $\mathbf{w'}^T \mathbf{x_3} = \alpha \cdot \mathbf{w'}^T \mathbf{x_1} + \beta \cdot \mathbf{w'}^T \mathbf{x_2} > 0$, 配合題意 $w_0 > 0$, 得 $\mathbf{w'}^T \mathbf{x_3} + w_0 > 0$, 可推得 $\operatorname{sign}(\mathbf{w'}^T \mathbf{x_3} + w_0) > 0$, 綜上述可得知 x_3 在 $\mathbf{w'}^T \mathbf{x_1}, \mathbf{w'}^T \mathbf{x_2}$ 和 α, β 同號時已被決定結果, 必定不能被 shatter, 故 $d_{vc} \leq 2$ 。

由 Stage 1 和 Stage 2 結果得 $d_{vc} = 2$ 。

Ring Hypothesis Set

4. Answer: [b]

將座標進行球座標轉換,令 $\begin{cases} x_1 = \rho \sin \theta \cos \phi \\ x_2 = \rho \sin \theta \sin \phi \\ x_3 = \rho \cos \theta \end{cases}, \ x_1^2 + x_2^2 + x_3^2 = \rho^2 \ , \ \textit{θ a $\le \rho^2$ $\le b$, $\$$ 件限制與$

球座標角度無關, 等同於在求取區間為 \sqrt{a} 至 \sqrt{b} , 以 ρ 為數線軸的 Positive Intervals 問題, growth function 和 Positive Intervals 的一樣。

5. Answer: [b]

同上題所述, Positive Intervals 的 VC dimension 為 2, 得 ring hypothesis set 為 2。

Deviation from Optimal Hypothesis

6. Answer: [d]

令 $\Delta = \sqrt{\frac{8}{N} \ln{(\frac{4m_{\mathcal{H}}(2N)}{\delta})}}$, 由 Lecture 7 slides 的第 24 頁可得, 對任意 $h \in \mathcal{H}$, 皆成立 $E_{in}(h) - \Delta \leq E_{out}(h) \leq E_{in}(h) + \Delta$, 將 g 和 g^* 代入:

$$\begin{cases} E_{in}(g) - \Delta \le E_{out}(g) \le E_{in}(g) + \Delta \\ E_{in}(g^*) - \Delta \le E_{out}(g^*) \le E_{in}(g^*) + \Delta \end{cases}$$

下式同乘負號可得, $-E_{in}(g^*) - \Delta \le -E_{out}(g^*) \le -E_{in}(g^*) + \Delta$,兩式相加合併可得下面結果, $(E_{in}(g) - E_{in}(g^*)) - 2 \cdot \Delta \le E_{out}(g) - E_{out}(g^*) \le (E_{in}(g) - E_{in}(g^*)) + 2 \cdot \Delta, \tag{1}$ 因為 $E_{in}(g) \le E_{in}(g^*)$,得 $(E_{in}(g) - E_{in}(g^*)) \le 0$,則 $(E_{in}(g) - E_{in}(g^*)) + 2 \cdot \Delta \le 2 \cdot \Delta$,

得
$$E_{out}(g) - E_{out}(g^*) \le 2\Delta = 2\sqrt{\frac{8}{N}\ln\left(\frac{4m_{\mathcal{H}}(2N)}{\delta}\right)}$$

The VC Dimension

7. Answer: [d]

在二元分類中, VC dimension 為 d_{vc} , 表示一定存在 d_{vc} 個 sample 可以被 shatter, 則表示 \mathcal{H} 至少具備 $2^{d_{vc}}$ 種 dichotomy, 則 $|\mathcal{H}| \geq 2^{d_{vc}}$ 。 因為 d_{vc} 為整數, 兩邊取對數後, 以 floor 求取符合不等式最大整數, 代入 $|\mathcal{H}| = M$, 可得 $d_{vc} \leq \lfloor \log_2 M \rfloor$ 。

8. Answer: [d]

令輸入數量為 N 種, 當 $N \le k+1$ 時, 可以選擇 sample 出 $0 \le N$ 個 1 的數量的不同輸入, 這個情況 hypothesis 可以一對一給出其對應的 label, 故一定可以被 shatter, 得 $d_{vc} \ge k+1$; 當 N > k+1 時, 必然存在兩種以上具備一樣 1 數量的輸入的情況, 一樣 1 數量的輸入對應的 label 被限制只能有一種, 因此一定沒辦法 shatter 其同類型輸入不同 label 的情況, 得 $d_{vc} \le k+1$, 綜上述可歸納出 $d_{vc} = k+1$ 。

9. Answer: [c]

根據 Lecture 7 slides 的第 5 頁的描述, d_{vc} 為 d, 表示在 \mathcal{H} 内必存在 d 個 distinct input 可以被 shatter, 但不一定適用所有 d 個 distinct input 的情況, 且 d 為 distinct input 可以被 shatter 的最大數量, 亦即超過 d 個 distinct input 一定不能被 shatter。 綜上所述, 「 d_{vc} 為 d」 發生時必發生 「some set of d distinct inputs is shattered by \mathcal{H} 」 以及 「any/some set of d+1 distinct inputs is not shattered by \mathcal{H} 」。

10. Answer: [c]

答案為 [c], 證明如下:

令待 shatter 的 data sample pair 為 $\{(\mathbf{x_i},y_i)|i=1,2,...,N\}$, 其中 $\mathbf{x_i}=2\pi 10^{-i}$, $y_i\in\{-1,+1\}$ 為 $\mathbf{x_i}$ 對應的 label, 並將 α 令為 $\alpha=\frac{1}{2}(1+\sum_{i=1}^N\frac{1-y_i}{2}10^i)=\frac{1}{2}(1+\sum_{i:y_i=-1}10^i)$ 。 證明方法為分別討論 label y_i 分別為 -1 或 +1 的時候, 當 y_i 為 -1 而 $\sin{(\alpha\cdot\mathbf{x_i})}$ 永遠為負且 y_i 為 +1 而 $\sin{(\alpha\cdot\mathbf{x_i})}$ 永遠為正時, 表示 h_{α} 永遠可以 shatter 所有情況, 則其 VC dimension 為 ∞ °

Stage 1:

任一 sample x_j 的 $y_j = -1$, 則:

$$\alpha \cdot x_{j} = \frac{1}{2} \left(1 + \sum_{i:y_{i}=-1} 10^{i} \right) \cdot 2\pi 10^{-j}$$

$$= \pi \left(10^{-j} + \sum_{i:y_{i}=-1} 10^{i-j} \right)$$

$$= \pi \left(10^{-j} + 1 + \sum_{\substack{i:y_{i}=-1\\i > j}} 10^{i-j} + \sum_{\substack{i:y_{i}=-1\\i < j}} 10^{i-j} \right), \sum_{\substack{i:y_{i}=-1\\i > j}} 10^{i-j} \stackrel{\text{A}}{\Rightarrow} 2 \stackrel{\text{and}}{\Rightarrow} 2 \stackrel{\text{A}}{\Rightarrow} 2k, \qquad (2)$$

$$= \pi \left(10^{-j} + 1 + \sum_{\substack{i:y_{i}=-1\\i < i}} 10^{i-j} \right) + 2k\pi$$

其中
$$\sum_{\substack{i:y_i=-1\\i< j}} 10^{i-j} < \sum_{\substack{i=1\\i< j}}^{\infty} 10^{-i} = \sum_{\substack{i=0\\10}}^{\infty} 10^{-i} - 1 = \frac{1}{1-0.1} - 1 = \frac{1}{9}$$
 且 $10^{-j} \le 10^{-1} = \frac{1}{10}$, 令 $10^{-j} + \sum_{\substack{i:y_i=-1\\i< j}} 10^{i-j}$ 為 ϵ ,由上述可得 ϵ 範圍, $0 < \epsilon < \frac{1}{9} + \frac{1}{10} = \frac{19}{90} < 1$,

由於 $\sin(\alpha \cdot x_j) = \sin(\pi(1+\epsilon) + 2k\pi) = \sin(\pi(1+\epsilon))$,僅需討論 $\pi(1+\epsilon)$ 的範圍,由上述可得, $\pi < \pi(1+\epsilon) < 2\pi$,在該區間内 $\sin(\pi(1+\epsilon)) < 0$,當 y_j 為 -1 的情況永遠可以預測正確。

Stage 2:

任一 sample x_i 的 $y_i = +1$, 則:

$$\alpha \cdot x_{j} = \pi (10^{-j} + \sum_{\substack{i: y_{i} = -1 \\ i > j}} 10^{i-j})$$

$$= \pi (10^{-j} + \sum_{\substack{i: y_{i} = -1 \\ i > j}} 10^{i-j} + \sum_{\substack{i: y_{i} = -1 \\ i < j}} 10^{i-j}), \sum_{\substack{i: y_{i} = -1 \\ i > j}} 10^{i-j} 為 2 倍數的正整數, 令為 2k,$$

$$= \pi (10^{-j} + \sum_{\substack{i: y_{i} = -1 \\ i < j}} 10^{i-j}) + 2k\pi,$$
(3)

代入 $\epsilon = 10^{-j} + \sum_{\substack{i: y_i = -1 \ i < j}} 10^{i-j}$, 則 $\alpha \cdot x_j = \pi \cdot \epsilon + 2k\pi$,

由於 $\sin{(\alpha \cdot x_j)} = \sin{(\pi \cdot \epsilon + 2k\pi)} = \sin{(\pi \cdot \epsilon)}$, 僅需討論 $\pi \cdot \epsilon$ 的範圍,由 Stage 1 可得 $0 < \epsilon < 1$, 則 $0 < \pi \cdot \epsilon < \pi$,在該區間内 $\sin{(\pi \cdot)} > 0$,當 y_j 為 +1 的情況永遠可以預測正確。

綜合 Stage 1 和 Stage 2, 在 label 不同的條件下, 在 $\alpha = \frac{1}{2}(1 + \sum_{i=1}^{N} \frac{1-y_i}{2} 10^i)$ 時必能將所有情況預測 正確,將其 shatter。

Noise and Error

11. Answer: [d]

在 τ 機率干擾下, 看到 $\llbracket h(\mathbf{x}) \neq y
brace$ 發生有可能來自兩種情況, 分別是 y 沒被 flip 且 $h(\mathbf{x})$ 答錯以及 y被 flip 且 $h(\mathbf{x})$ 答對的情況, 因此, $E_{out}(h,\tau)$ 可以拆成兩情況的疊加, 如下式:

$$E_{out}(h,\tau) = (1-\tau) \cdot \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{P}_0} \llbracket h(\mathbf{x}) \neq y \rrbracket + \tau \cdot \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{P}_0} \llbracket h(\mathbf{x}) = y \rrbracket \rrbracket,$$
代入 $\mathbb{E}_{(\mathbf{x},y)\sim\mathcal{P}_0} \llbracket h(\mathbf{x}) = y \rrbracket \rrbracket = 1 - \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{P}_0} \llbracket h(\mathbf{x}) \neq y \rrbracket \rrbracket$ 以及 $E_{out}(h,0) = \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{P}_0} \llbracket h(\mathbf{x}) \neq y \rrbracket \rrbracket,$

$$E_{out}(h,\tau) = (1-\tau) \cdot E_{out}(h,0) + \tau \cdot (1-E_{out}(h,0)),$$
經移項整理可得 $E_{out}(h,0) = \frac{E_{out}(h,\tau) - \tau}{1-2\tau}$

12. Answer: [b]

所有 x, y 產生的 $err(f(\mathbf{x}), y)$ 需要分成 $f(\mathbf{x}) = 1$, $f(\mathbf{x}) = 2$ 和 $f(\mathbf{x}) = 3$ 三種情況討論, 如下式:

13. Answer: [b]

同上題所述, 需分段討論在 $f(\mathbf{x})$ 不同的情況下對應的 $f_*(\mathbf{x})$ 和機率:

當
$$f(\mathbf{x}) = 1$$
 時: $P(y|\mathbf{x}) = \begin{cases} 0.7, y = 1\\ 0.1, y = 2\\ 0.2, y = 3 \end{cases}$ 得 $f_*(\mathbf{x}) = 1 \cdot 0.7 + 2 \cdot 0.1 + 3 \cdot 0.2 = 1.5$

當
$$f(\mathbf{x}) = 3$$
 時: $P(y|\mathbf{x}) = \begin{cases} 0.1, y = 1 \\ 0.2, y = 2 \\ 0.7, y = 3 \end{cases}$ 得 $f_*(\mathbf{x}) = 1 \cdot 0.1 + 2 \cdot 0.2 + 3 \cdot 0.7 = 2.6$

$$\Delta(f, f_*) = \mathbb{E}_{\mathbf{x} \sim P(\mathbf{x})} (f(\mathbf{x}) - f_*(\mathbf{x}))^2$$

$$= \mathbb{P}[f(\mathbf{x}) = 1] \cdot \mathbb{E}_{\mathbf{x} \sim P(\mathbf{x}|f(\mathbf{x}) = 1)} (f(\mathbf{x}) - f_*(\mathbf{x}))^2$$

$$+ \mathbb{P}[f(\mathbf{x}) = 2] \cdot \mathbb{E}_{\mathbf{x} \sim P(\mathbf{x}|f(\mathbf{x}) = 2)} (f(\mathbf{x}) - f_*(\mathbf{x}))^2$$

$$+ \mathbb{P}[f(\mathbf{x}) = 3] \cdot \mathbb{E}_{\mathbf{x} \sim P(\mathbf{x}|f(\mathbf{x}) = 3)} (f(\mathbf{x}) - f_*(\mathbf{x}))^2$$

$$= \frac{1}{3} \cdot (1 - 1.5)^2 + \frac{1}{3} \cdot (2 - 1.9)^2 + \frac{1}{3} \cdot (3 - 2.6)^2 = 0.14$$
(6)

Decision Stump

14. Answer: [d]

由 Lecture 7 slides 的第 4 頁可得 $\delta = 4m_{\mathcal{H}}(2N) \exp\left(-\frac{1}{8}\epsilon^2 N\right)$, 代入 $m_{\mathcal{H}}(2N) = 2(2N) = 4N$, $\epsilon = 0.1$ 以及 $\delta = 0.1$, 得 $0.1 = 16 \cdot N \cdot exp(-0.00125 \cdot N)$ °

$$16 \cdot N \cdot exp(-0.00125 \cdot N) \approx \begin{cases} 53.096(>\delta), N = 6000 \\ 5.8112(>\delta), N = 8000 \\ 0.5963(>\delta), N = 10000 \end{cases}, 得 N = 12000 時為滿足條件最小値。
$$\begin{cases} 0.0587(<\delta), N = 12000 \\ 0.0056(<\delta), N = 14000 \end{cases}$$$$

15. Answer: [b]

須分成 $\theta > 0$ 和 $\theta < 0$ 的兩種情形討論, 如下式:

$$E_{out}(h_{+1,\theta},0) = \mathbb{P}[\theta > 0] \cdot \mathbb{E}_{\mathbf{x} \sim \mathcal{P}}[x \in (0,\theta]|\theta > 0] + \mathbb{P}[\theta \leq 0] \cdot \mathbb{E}_{\mathbf{x} \sim \mathcal{P}}[x \in [\theta,0)|\theta \leq 0]$$

因為 \mathbf{x} 為平均分布, 則 $\theta \sim \mathcal{P}_{\theta}$ 亦為平均分布, 得 $\mathbb{P}[\theta > 0] = \mathbb{P}[\theta \leq 0] = \frac{1}{2}$,

由下圖所示, 右半和左半邊綠色區塊和整個定義域 [-1,+1] 的比例即為不同情況下發生錯誤的機率,

當
$$\theta>0$$
, 右半邊綠色區塊的機率為 $\mathbb{E}_{\mathbf{x}\sim\mathcal{P}}[\![x\in(0,\theta]|\theta>0]\!]=\frac{1}{2}\cdot\theta=\frac{1}{2}|\theta|,$

當 $\theta \leq 0$, 左半邊綠色區塊的機率為 $\mathbb{E}_{\mathbf{x} \sim \mathcal{P}}[x \in [\theta, 0) | \theta \leq 0] = \frac{1}{2} \cdot (-\theta) = \frac{1}{2} |\theta|$,

得
$$E_{out}(h_{+1,\theta},0) = \frac{1}{2} \cdot \frac{1}{2}|\theta| + \frac{1}{2} \cdot \frac{1}{2}|\theta| = \frac{1}{2}|\theta|$$

(7)

Experiment

程式碼實作細節如下, 可以透過 parser 的 --mode 参數決定用 closed form 或 simulation 求取 $E_{out}(h_{s,\theta},\tau)$:

```
import numpy as np
import random
from scipy.stats import bernoulli
import argparse
Define Function
def generate_data(size, tau):
   x = np.sort(np.random.uniform(-1, 1, size))
   y = np.zeros(size).astype(int)
   y[x > 0] = 1
   y[x <= 0] = -1
   noisy_idx = bernoulli.rvs(tau, size=size) > 0
   y[noisy_idx] = -y[noisy_idx]
   return x, y
def get_g_Ein(x, y):
   theta_set = ([-1] + list(((x[1:] + x[:-1]) / 2))) * 2
    s_{s} = [-1] * len(x) + [1] * len(x)
   hypothesis_set = np.array(
        sorted(tuple(zip(s_set, theta_set)), key=lambda x: x[0] + x[1]))
   g, Ein = (-1, -1), 1
    for hypothesis in hypothesis_set:
        err = get_err(hypothesis, x, y)
        if Ein > err:
           g, Ein = hypothesis, err
        if Ein == 0:
           break
   return g, Ein
def get_err(hypothesis, x, y):
    s, theta = hypothesis
   pred = np.ones(len(y)).astype(int)
    if s > 0:
       pred[x \le theta] = -1
    else:
        pred[x > theta] = -1
   return (y != pred).sum() / len(y)
```

```
def get_Eout(hypothesis, tau, IsSimulate=False):
    if IsSimulate:
        x_tst, y_tst = generate_data(100000, tau)
        Eout = get_err(hypothesis, x_tst, y_tst)
        return Eout
    else:
        s, theta = hypothesis
        Eout = 0.5 * np.abs(theta) if s > 0 else 1 - 0.5 * np.abs(theta)
        return (1 - 2 * tau) * Eout + tau
def get_answer(exp_num, size, tau, IsSimulate=False):
    ans = []
    for _ in range(exp_num):
        random.seed(random.randint(1, 10000))
        x_tra, y_tra = generate_data(size, tau)
        g, Ein = get_g_Ein(x_tra, y_tra)
        Eout = get_Eout(g, tau, IsSimulate)
        ans.append(Eout - Ein)
    return np.mean(ans)
def main():
   Parsing
   parser = argparse.ArgumentParser(
        description='Argument Parser for MLF HW1.')
   parser.add_argument('--mode', default='closedform',
                        choices=['closedform', 'simulate'])
    args = parser.parse_args()
    if args.mode == 'simulate':
        is_simulate = True
        print("Tesing by simulation!")
    elif args.mode == 'closedform':
        is_simulate = False
        print("Tesing by closed form!")
    Answer questions
    111
   print('RUNNING Q16...')
   print('Answer of Q16 : {:.4f}\n'.format(get_answer(
        exp_num=10000, size=2, tau=0, IsSimulate=is_simulate)))
   print('RUNNING Q17...')
   print('Answer of Q17 : {:.4f}\n'.format(get_answer(
```

```
exp_num=10000, size=20, tau=0, IsSimulate=is_simulate)))
    print('RUNNING Q18...')
    print('Answer of Q18 : {:.4f}\n'.format(get_answer(
        exp_num=10000, size=2, tau=0.1, IsSimulate=is_simulate)))
    print('RUNNING Q19...')
    print('Answer of Q19 : {:.4f}\n'.format(get_answer(
        exp_num=10000, size=20, tau=0.1, IsSimulate=is_simulate)))
    print('RUNNING Q20...')
    print('Answer of Q20 : {:.4f}\n'.format(get_answer(
        exp_num=10000, size=200, tau=0.1, IsSimulate=is_simulate)))
if __name__ == "__main__":
    main()
  16. Answer: [d]
                   17. Answer: [b]
                                     18. Answer: [e]
                                                      19. Answer: [c]
                                                                        20. Answer: [a]
```

0.3671

0.0519

0.0051

0.2930

0.0243