122 ____710 LO JAN 2005

PCT/JP 2004/003054 10. 3. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 3月11日

出 願 番 号 Application Number:

特願2003-065708

[ST. 10/C]:

[JP2003-065708]

REC'D 2 2 APR 2004

WIPO PCT

出 願 人
Applicant(s):

シャープ株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 4月 8日

分井康

【書類名】

特許願

【整理番号】

03J00260

【提出日】

平成15年 3月11日

【あて先】

特許庁長官

殿

【国際特許分類】

B41J 2/045

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号シャープ株式

会社内

【氏名】

坂本 泰宏

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号シャープ株式

会社内

【氏名】

相良 智行

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号シャープ株式

会社内

【氏名】

垣脇 成光

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号シャープ株式

会社内

【氏名】

的場 宏次

【特許出願人】

【識別番号】

000005049

【氏名又は名称】 シャープ株式会社

【代理人】

【識別番号】

100084548

【弁理士】

【氏名又は名称】 小森 久夫

【選任した代理人】

【識別番号】 100120330

【弁理士】

【氏名又は名称】 小澤 壯夫

【手数料の表示】

【予納台帳番号】 013550

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0208961

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】インクジェットヘッド、インクジェットヘッドモジュール及びその製造方法

【特許請求の範囲】

【請求項1】 複数列の溝状に並設された各インク室の両側を仕切る隔壁に設けた駆動用電極を外部回路に接続するための外部回路接続用電極が、前記各インク室に充填された導電性材料のヘッド後端部における露出面に形成され、かつ、前記露出面が、前記インク室における溝幅方向の断面積よりも広い面積を有することを特徴とするインクジェットヘッド。

【請求項2】 前記導電性材料は、前記インク室におけるヘッド後端部に部 、 分的に深く形成された深溝部に充填されることを特徴とする請求項1記載のイン クジェットヘッド。

【請求項3】 前記導電性材料は、前記インク室におけるヘッド後端部に部分的に広く形成された形成された幅広溝に充填されることを特徴とする請求項1 記載のインクジェットヘッド。

【請求項4】 前記外部回路接続用電極は、前記インク室に充填された導電性材料の上部露出面に形成されることを特徴とする請求項1に記載のインクジェットヘッド。

【請求項5】 前記導電性材料の露出面の面積が $3960 \mu m^2$ 以上であることを特徴とする請求項1ないし4のいずれかに記載のインクジェットヘッド。

【請求項6】 複数列の溝状に並設された各インク室の両側を仕切る隔壁に設けた駆動用電極を外部回路に接続するための外部回路接続用電極が、前記各インク室に充填された導電性材料のヘッド後端部における露出面に形成され、かつ、前記露出面が、前記インク室における溝幅方向の断面積よりも広い面積を有し、前記導電性材料の露出面は、少なくとも5つ以上の異方性導電材料の導電粒子を介して、前記外部回路と電気的に接続されることを特徴とするインクジェットヘッドモジュール。

【請求項7】 前記外部回路との接続部の面積は、前記外部回路接続用電極の面積よりも大きく設定されていることを特徴とする請求項6に記載のインクジ

エットヘッドモジュール。

【請求項8】 厚さ方向に分極処理が行われた圧電材料ウエハに、所定ピッチで複数のインク室溝を形成する工程と、

前記インク室のヘッド後端部となる部分に、部分的に深く形成された深溝部を形成する工程と、

前記インク室の両側を仕切る隔壁内に駆動用電極を形成する工程と、

前記深溝部に導電性材料を充填する工程と、

前記導電性材料を硬化させる工程と、

前記圧電材料ウエハとカバーウエハとを接着する工程と、

前記接着された圧電材料ウエハとカバーウエハを小片化する工程と、

を含むことを特徴とするインクジェットヘッドの製造方法。

【請求項9】 厚さ方向に分極処理が行われた圧電材料ウエハに、所定ピッチで複数のインク室溝を形成する工程と、

前記インク室のヘッド後端部となる部分に、部分的に広く形成された広溝部を 形成する工程と、

前記インク室の両側を仕切る隔壁内に駆動用電極を形成する工程と、

前記広溝部に導電性材料を充填する工程と、

前記導電性材料を硬化させる工程と、

前記圧電材料ウエハとカバーウエハとを接着する工程と、

前記接着された圧電材料ウエハを小片化する工程と、

を含むことを特徴とするインクジェットヘッドの製造方法。

【請求項10】 厚さ方向に分極処理が行われた圧電材料ウエハに、所定ピッチでインク室溝を形成する工程と、

前記インク室の両側を仕切る隔壁内に駆動用電極を形成する工程と、

前記インク室内の駆動用電極に導通するように前記インク室溝に導電性材料を充填する工程と、

前記導電性材料を硬化させる工程と、

充填された前記導電性材料の上部の少なくとも一部が空間を有する状態で圧電 材料ウエハとカバーウエハとを接着する工程と、 前記接着された圧電材料ウエハを前記導電性材料の上部の少なくとも一部のカバーウエハを削除して小片化する工程と、

を含むことを特徴とするインクジェットヘッドの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、インクジェットヘッド、インクジェットヘッドモジュール及びその 製造方法に係り、特に、外部取り出し電極まわりの構造及びその製造方法に関す る。

[0002]

【従来の技術】

圧電材料のシェアモードを利用してインクを吐出するようにしたインクジェットヘッドが従来より提案されている(例えば、特許文献1参照)。このような従来のインクジェットヘッドは、例えば、図13に示すように、厚さ方向に分極処理を施した圧電材料を分極方向が相反する方向になるように貼り合わせた圧電材料に複数の溝が形成されたアクチュエータ部材100と、インク供給口111及び共通インク室112が形成されたカバー部材110と、ノズル孔121が開けられたノズルプレート120と、を貼り合わせることで、複数の溝によりインク室112が形成されており、その各インク室112を仕切る隔壁には、電界を印加するための電極101が形成されている。

[0003]

インク室112の後半部102は、その底面がR形状に加工されており、さらに、外部回路との接続のための電極引き出し部として平坦部103が形成されている。また、支持基板140上に配置されたインクジェットヘッドと駆動用IC130は、平坦部103上に形成された電極104とワイヤボンディング技術によりアルミニウムワイヤ131で電気的な接続を行っている。その他、例えば駆動用IC130が接続されているフレキシブル基板などに形成された外部電極とACF(Anisotropic Conductive Film: 異方性導電フィルム)接続技術により接続することもできる。

[0004]

次に、従来のインクジェットヘッドのインク室内電極を平坦部に延出させる方法について、図14により説明する。まず、アクチュエータ部材100の主表面にドライフィルムレジスト150をラミネートして硬化させる。次に、ダイサーのダイシングプレード160を用いて圧電材料をハーフダイスすることにより、後にインク室になる溝を形成し、ダイシングプレード160を上昇させてダイシングプレードの直径に対応したインク室後半部102のR形状部を形成し、その後平坦部ではドライフィルムレジスト150のみをカットする。

[0005]

このようにして、インク室アレイを形成した後に、インク室内にスパッタリング技術やめっき技術を用いてAIやCuなどの金属電極材料を形成する。また、インク室後半部102のR形状部及び平坦部のドライフィルムレジスト150の開口部分にも同様に金属膜形成が行われ、外部回路との接続電極となる。

[0006]

このように形成されたアクチュエータ部材100は、インク室を仕切る隔壁に 形成された電極において、隔壁を介して向い合う電極に逆位相の電位を印加する ことでシェアモード駆動を行う。つまり、厚さ方向で分極方向を対称に貼り合わ されたインク室隔壁の貼り合わせた境目でインク室隔壁が"く"の字に変形し、 インク室内の容積変化、それに伴うインク室内のインク圧力変化を利用してイン ク室先端部に配置した微小なノズルからインク液滴が吐出される。

[0007]

上記のような従来のインクジェットヘッド構造では、図13に示すように、インクの吐出動作に寄与するいわゆるアクティブ領域は、インク供給孔111及び共通インク室112より先端側(前半部)のみであり、インク供給孔111を含む後端側(後半部)はインクを供給するための領域であり、さらに大きなR部分及び平坦部103はインク室内の電極101を外部回路に接続するための取り出し電極とし、平坦部103で駆動用IC130に導通した電極との電気的接続を行うための領域である。

[0008]

このようなインクジェットヘッドの構成では、本来インク吐出に寄与するアクティブエリア以外の部分が非常に大きく、そのため、材料コストが高くなり、インクジェットヘッドを安価に製造できないという問題があった。

[0009]

また、高い誘電率を有するPZTなどの圧電材料上で平坦部分103までインク室内の電極101を延出させる必要があるため、インクジェットヘッドの静電容量が大きくなりアクチュエータ駆動に際して、印加駆動パルス波形が鈍ることで高速駆動による高速印字が困難になるという問題があった。

[0010]

この印加駆動波形の鈍りは、印加電圧を上昇させることで改善できるが、印加電圧を上げることでアクチュエータの駆動による発熱量が増大してアクチュエータの温度が上昇することによりインク粘度が変化し、安定で高精度な印字が行えないという問題や高い電圧を印加できる駆動用ICがコスト高になるという問題、高電圧印加が原因で早期の圧電材料特性劣化による耐久性の問題、低消費電力化が困難であるという問題があった。

[0011]

このため、アクチュエータのインク室内電極101のアクティブエリア以外の部分では、圧電材料と電極との間に低誘電膜を予め製膜することで、アクティブエリア以外の部分での静電容量をほぼ無視できるレベルにすることが行われる。しかし、約200℃という低温度のキューリー点を有する圧電材料であるPZTに対して、低温のプロセスで低誘電率のSi-N膜などを形成するためには非常に高価なECR-CVD装置が必要であり、製造コストが上昇して安価なインクジェットヘッドを製造できなくなるという問題があった。

[0012]

このような問題に対処するために、例えば、図15に示すように、インク供給 孔及びインク室内電極を延出させるための領域を圧電素子の長手方向に求めない ようにした構造のものが提案されている(例えば、特許文献2参照)。この提案 では、インクを供給するために、圧電材料のアクティブエリアの後端部にインク 供給孔を設け、インク室112内の電極101をインク供給側側面もしくはイン ク吐出側側面に延長させ、駆動用IC170に導通する電極171との電気的な接続を行っている。

[0013]

この場合、アクチュエータ100のアクティブエリア以外の部分が少ないため、圧電材料の材料コストの低減化は図られるが、インク室112内の電極101をアクチュエータ側面に略直角に折曲させて電極の引き出しを行わなければならない。そのためには、個々のアクチュエータ100に小片化してからインク室112内の電極101に導通するようにアクチュエータ側面に金属膜を形成する必要がある。このような金属膜の形成方法は、きわめて非能率である。

[0014]

また、引き出した電極間を分離するためには、予めレジストパターニングもしくはベタ電極に引き出した後にダイシングやYAGレーザーによる電極分離工程を必要とし、工程が非常に煩雑となり、生産性が低く、生産歩留りが低下し、生産コストが高くなるという問題があった。また、引き出した電極も、インク室112からアクチュエータ側面に引き出される屈曲部分で、後の工程や搬送で断線(破断)する可能性が高く、生産歩留りが低下するという問題や環境信頼性が低いという問題があった。

[0 0 1 5]

さらに、このような難点を解消することを課題として、本出願人によって、外部接続用の電極がインク室内に充填された導電性材料により形成されたインクジェットヘッドも提案されている(例えば、特許文献3参照)。

[0016]

この提案では、図16に示すように、外部接続用の電極がインク室内に充填された導電性材料105により形成されているため、従来のようにインク室内電極を実装するためにインク室外に引き出す必要がなくなり、アクチュエータ100のアクティブエリア以外の部分がほとんど不要となるため、材料コストの削減を実現できる。

[0017]

また、静電容量が低減することにより、駆動周波数を高くできるため高速印字

が可能となり、かつ、駆動電圧を低減できるため駆動用ICの低耐電圧化が可能となり、駆動用ICコストと駆動消費電力の低減化を図ることもできる。

[0018]

【特許文献1】

特開平04-259563号公報(段落「0018」, 図4)

【特許文献2】

特開平09-094954号公報(段落「0008」, 図1)

【特許文献3】

特開2002-178518号公報(段落「0067」~「0072 」,図1)

[0019]

【発明が解決しようとする課題】

しかしながら、さらなる材料コストの低減化及び高速印字の要求により、インクジェットヘッドのインク室アレイの狭ピッチ化が進展した結果、それに伴い、図16に示すような構成では、外部回路との電気的な接続のための電極面積が小さくなる。

[0020]

そのため、インクジェットヘッドとフレキシブル基板などの外部回路との電気 的接続において大きな接続抵抗の増加やばらつきを引き起こし、環境信頼性が低 下するという問題、及び、アクチュエータ駆動に際して、印加駆動波形が鈍り高 速駆動による高速印字が困難になるという問題が発生した。

[0021]

本発明は、このような実情に鑑みてなされ、インク室アレイが狭ピッチ化されても、外部回路と低い接続抵抗で安定に接続することができ、環境信頼性に優れ、高速印字が可能で安価なインクジェットヘッドを提供することを目的とする。

[0022]

【課題を解決するための手段】

本発明は、上述の課題を解決するための手段を、以下のように構成している。

[0023]

(1)複数列の溝状に並設された各インク室の両側を仕切る隔壁に設けた駆動 用電極を外部回路に接続するための外部回路接続用電極が、前記各インク室に充 填された導電性材料のヘッド後端部における露出面に形成され、かつ、前記露出 面が、前記インク室における溝幅方向の断面積よりも広い面積を有することを特 徴とする。

[0024]

この構成においては、外部回路と接続するための外部回路接続用電極は、溝幅 方向のインク室断面積よりも広い断面積を持ち、かつインク室に通ずる溝に充填 された導電性材料のヘッド後端部における露出面に形成されている。

[0025]

従って、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能となり、材料コスト削減を実現できる。

[0026]

また、アクティブエリア以外の部分の大幅な減少により、インクジェットヘッドの静電容量が低減する。これにより、駆動周波数を高くすることができるため、高速印字を実現することができる。また、駆動電圧を低減できるため、駆動用ICの低耐電圧化が可能となり、駆動用ICコストのと駆動消費電力の低減化を実現できる。

[0027]

さらに、充填導電性材料の外部回路接続用電極は、インク室断面積よりも広い 断面積を有するため、狭ピッチインクジェットヘッドであっても広い面積で外部 回路電極との電気的接続を行え、低い接続抵抗で安定して接続することができる 。これにより、優れた環境信頼性を確保することができ、かつ、駆動用電極に対 して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる

[0028]

(2) 前記導電性材料は、前記インク室におけるヘッド後端部に部分的に深く

形成された深溝部に充填されることを特徴とする。

[0029]

この構成においては、インクジェットヘッドの外部回路接続用電極は、インク 室におけるヘッド後端部に部分的に深く形成された深溝部に充填された導電性材 料の露出面に形成される。

[0030]

従って、従来では、インク室内電極を実装するためにインク室外に引き出して いたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分が ほとんど不要となるため、アクチュエータのコンパクト化が可能となり、材料コ スト削減を実現できる。

[0031]

また、アクティブエリア以外の部分の大幅な減少により、インクジェットヘッ ドの静電容量が低減する。これにより、駆動周波数を高くすることができるため 高速印字が可能となり、また、駆動電圧を低減できるため駆動用ICの低耐電圧 化が可能となり、駆動用ICコスト及び駆動消費電力の低減化を実現することが できる。

[0032]

そして、インク室のヘッド後端部に部分的に深く形成された深溝部に導電性材 料を充填し、その断面を外部回路接続用電極とするため、狭ピッチインクジェッ トヘッドであっても大面積で外部回路との電気的接続が行えるため、低い接続抵 抗で安定して接続することが可能となる。これにより、優れた環境信頼性を確保 することができ、かつ、駆動用電極に対して高周波数で安定した駆動波形を送る ことができるため、高速印字が可能となる。

[0033]

(3) 前記導電性材料は、前記インク室におけるヘッド後端部に部分的に広く 形成された形成された幅広溝に充填されることを特徴とする。

[0034]

この構成においては、外部回路接続用電極は、インク室に通じるインク室幅よ りも幅広に形成された溝(幅広溝)に充填された導電性材料のインクジェットへ

ッド後端部の導電性材料露出面に形成される。

[0035]

従って、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能となり、材料コスト削減を実現できる。

[0036]

また、インクジェットヘッドの静電容量を低減できるため、駆動周波数を高くすることができ、高速印字が可能となる。そして、駆動用ICの低耐電圧化が可能となり、駆動用ICコストの低減化及び駆動消費電力の削減化を実現することができる。

[0037]

さらに、インク室幅よりも幅広の溝に導電性材料を充填し、その断面を外部回路接続用電極とするため、狭ピッチインクジェットヘッドであっても大面積で外部回路との電気的接続が行えることから、低い接続抵抗で安定して接続することができる。これにより、優れた環境信頼性を確保することができ、かつ、駆動用電極に対して高周波数の安定した駆動波形を送ることができるため、高速印字が可能となる。

[0038]

(4) 前記外部回路接続用電極は、前記インク室に充填された導電性材料の上 部露出面に形成されることを特徴とする。

[0039]

この構成においては、外部回路接続用電極は、インク室に充填された導電性材料の上部の露出面に形成される。従って、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能となり、材料コストの削減を実現できる。

[0040]

また、インクジェットヘッドの静電容量の低減により、駆動周波数を高くする

ことができるため、高速印字が可能となり、かつ、駆動電圧を低減できるため、 駆動用ICの低耐電圧化が行え、駆動用ICコストと駆動消費電力の低減化を実 現することもできる。

[0041]

そして、インク室に充填された導電性材料上部の露出面を外部回路接続用電極とするため、インク室アレイの長手方向に所望の電極面積で外部回路との電気的な接続が行える。従って、狭ピッチインクジェットヘッドであっても大面積で外部回路との電気的接続が行えるため、低い接続抵抗で安定して接続することができる。これにより、優れた環境信頼性を確保でき、かつ、駆動用電極に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる。

[0042]

(5) 前記導電性材料の露出面の面積が $3960 \mu m^2$ 以上であることを特徴とする。

[0043]

この構成においては、インクジェットヘッドの外部回路接続用電極は、外部回路接続用電極として有効な充填導電性材料の露出面積が3960 μ m² 以上である。従って、外部回路との電気的な接続において、十分な電極面積を確保できるため、接続抵抗が低くばらつきの少ない安定な外部回路接続を行うことができる。これにより、優れた環境信頼性を確保することができ、かつ、駆動用電極に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる

[0044]

(6)複数列の溝状に並設された各インク室の両側を仕切る隔壁に設けた駆動 用電極を外部回路に接続するための外部回路接続用電極が、前記各インク室に充 填された導電性材料のヘッド後端部における露出面に形成され、かつ、前記露出 面が、前記インク室における溝幅方向の断面積よりも広い面積を有し、前記導電 性材料の露出面は、少なくとも5つ以上の異方性導電材料の導電粒子を介して、 前記外部回路と電気的に接続されることを特徴とする。

[0045]

この構成においては、外部回路との接続は、異方性導電材料を介して外部回路 接続用電極である導電性材料の露出面と外部回路とを少なくとも5個以上の異方 性導電材料の導電粒子で電気的に接続するように行われる。

[0046]

従って、外部回路との電気的な接続において、十分な異方性導電材料の導電粒子が介在するため、接続抵抗が低くばらつきの少ない安定な外部回路接続を行うことができる。これにより、優れた環境信頼性を確保でき、かつ、駆動用電極に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる。

[0047]

(7) 前記外部回路との接続部の面積は、前記外部回路接続用電極の面積よりも大きく設定されていることを特徴とする。

[0048]

外部回路との電気的な接続において、インクジェットヘッドの外部回路接続用電極の形状及び面積と外部回路の形状及び面積とが同じ場合は、インクジェットヘッドの外部回路接続用電極と外部回路との接続位置合わせを高精度に行う必要があり、そのために、生産歩留まりの低下が懸念される。

[0049]

しかし、この構成においては、インクジェットヘッドモジュールの外部回路と の接続部は、インクジェットヘッドの外部回路接続用電極の面積よりも大きい。

[0050]

従って、接続位置合わせのマージンを大きく確保することができるため、外部回 路接続用電極全体を安定して電気的接続に利用することができる。

[0051]

これにより、生産性の向上が実現し、かつ、接続抵抗が低くばらつきの少ない 安定した外部回路接続を行うことができる。また、優れた環境信頼性を確保でき 、かつ、駆動用電極に対して高周波数で安定な駆動波形を送ることができるため 、高速印字が可能となる。

[0052]

(8) 厚さ方向に分極処理が行われた圧電材料ウエハに、所定ピッチで複数のインク室溝を形成する工程と、前記インク室のヘッド後端部となる部分に、部分的に深く形成された深溝部を形成する工程と、前記インク室の両側を仕切る隔壁内に駆動用電極を形成する工程と、前記深溝部に導電性材料を充填する工程と、前記導電性材料を硬化させる工程と、前記圧電材料ウエハとカバーウエハとを接着する工程と、前記接着された圧電材料ウエハとカバーウエハを小片化する工程と、を含むことを特徴とする。

[0053]

上述の工程により形成されるインクジェットヘッドは、外部回路と接続するための外部回路接続用電極が、溝幅方向のインク室断面積よりも広い断面積を持ち、かつインク室に通ずる溝に充填された導電性材料のヘッド後端部における露出面に形成されている。

[0054]

従って、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能とり、材料コスト削減を実現できる。

[0055]

また、アクティブエリア以外の部分がほとんど不要となるため、静電容量を低減することもできる。静電容量の低減により、駆動周波数を高くすることができるため、高速印字が可能となる。また、駆動電圧を低減でき、かつ、駆動用ICの低耐電圧化が可能になるため、駆動用ICコスト及び駆動消費電力の低減化を図ることができる。

[0056]

そして、上述の工程は、特に、インク室のヘッド後端部となる部分に、部分的 に深く形成された深溝部を形成する工程と、その深溝部に導電性材料を充填する 工程と、を含む。

[0057]

従って、その深溝部に充填された導電性材料の外部回路接続用電極は、インク

室断面積よりも広い断面積を持つため、後に行う外部回路との電気的な接続をより安定に行うことができ、狭ピッチインクジェットヘッドであっても大面積で外部回路との電気的接続が行える。

[0058]

これにより、安定して低い接続抵抗で接続することができるため、優れた環境 信頼性を確保することができ、かつ、駆動用電極に対して高周波数で安定した駆 動波形を送ることができるため、高速印字が可能となる。

[0059]

(9)厚さ方向に分極処理が行われた圧電材料ウエハに、所定ピッチで複数のインク室溝を形成する工程と、前記インク室のヘッド後端部となる部分に、部分的に広く形成された広溝部を形成する工程と、前記インク室の両側を仕切る隔壁内に駆動用電極を形成する工程と、前記広溝部に導電性材料を充填する工程と、前記導電性材料を硬化させる工程と、前記圧電材料ウエハとカバーウエハとを接着する工程と、前記接着された圧電材料ウエハを小片化する工程と、を含むことを特徴とする。

[0060]

上述の工程により形成されるインクジェットヘッドは、外部回路と接続するための外部回路接続用電極が、溝幅方向のインク室断面積よりも広い断面積を持ち、かつインク室に通ずる溝に充填された導電性材料のヘッド後端部における露出面に形成されている。

[0061]

従って、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能とり、材料コスト削減を実現できる。

[0062]

また、アクティブエリア以外の部分がほとんど不要となるため、静電容量を低減することもできる。静電容量の低減により、駆動周波数を高くすることができるため、高速印字が可能となる。また、駆動電圧を低減でき、かつ、駆動用IC

の低耐電圧化が可能になるため、駆動用ICコスト及び駆動消費電力の低減化を 図ることができる。

[0063]

そして、上述の工程は、特に、インク室のヘッド後端部となる部分に、部分的 に広く形成された広溝部を形成する工程と、前記広溝部に導電性材料を充填する 工程と、を含む。

[0064]

従って、その広溝部に充填された導電性材料の外部回路接続用電極は、インク 室断面積よりも広い断面積を持つため、後に行う外部回路との電気的な接続をよ り安定に行うことができ、狭ピッチインクジェットヘッドであっても大面積で外 部回路との電気的接続が行える。

[0065]

これにより、安定して低い接続抵抗で接続することができるため、優れた環境 信頼性を確保することができ、かつ、駆動用電極に対して高周波数で安定した駆 動波形を送ることができるため、高速印字が可能となる。

[0066]

(10)厚さ方向に分極処理が行われた圧電材料ウエハに、所定ピッチでインク室溝を形成する工程と、前記インク室の両側を仕切る隔壁内に駆動用電極を形成する工程と、前記インク室内の駆動用電極に導通するように前記インク室溝に導電性材料を充填する工程と、前記導電性材料を硬化させる工程と、充填された前記導電性材料の上部の少なくとも一部が空間を有する状態で圧電材料ウエハとカバーウエハとを接着する工程と、前記接着された圧電材料ウエハを前記導電性材料の上部の少なくとも一部のカバーウエハを削除して小片化する工程と、を含むことを特徴とする。

[0067]

上述の工程により形成されるインクジェットヘッドの外部回路接続用電極は、インク室に充填された導電性材料の上部の露出面に形成される。従って、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要とな

るため、アクチュエータのコンパクト化が可能となり、材料コストの削減を実現できる。

[0068]

また、インクジェットヘッドの静電容量の低減により駆動周波数を高くすることができるため、高速印字が可能となり、かつ、駆動電圧を低減できるため、駆動用ICの低耐電圧化が行え、駆動用ICコストと駆動消費電力の低減化を実現することもできる。

[0069]

そして、インク室に充填された導電性材料上部の露出面を外部回路接続用電極とするため、インク室アレイの長手方向に所望の電極面積で外部回路との電気的な接続が行える。従って、狭ピッチインクジェットヘッドであっても大面積で外部回路との電気的接続が行えるため、低い接続抵抗で安定して接続することができる。これにより、優れた環境信頼性を確保でき、かつ、駆動用電極に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる。

[0070]

【発明の実施の形態】

以下に、本発明の実施の形態に係るインクジェットヘッド、インクジェットヘッドモジュール及びその製造方法について図面を参照しつつ詳細に説明する。

[0071]

《実施の形態1》

図1は、インクジェットヘッドの断面図である。このインクジェットヘッドは、PZT圧電材料からなるアクチュエータ20の後端部(ヘッド後端部)21のインク室22に通ずる溝23内にAg導電性フィラーを含有する導電性樹脂10が充填されており、アクチュエータ20の後端部21で導電性樹脂10が切断された端面において導電性樹脂10が露出した部分(露出面)が、外部回路接続用電極としての導電性樹脂電極11となっている。

[0072]

また、インク室22はアクチュエータ20の後端側で溝深さが深くなっており (図1(c)参照)、その深溝部23の溝深さは、インク室深さ100μmに対 して後端部 2 1 では 1 1 0 μ m に設定されている。また、インク室 2 2 0 幅は 3 6 μ m に設定されている。従って、導電性樹脂 1 0 0 露出面積は 3 9 6 0 μ m^2 になる。

[0073]

本実施の形態では、PZT圧電材料はお互いに逆向きに分極処理されたPZT 基板を貼り合わせたシェブロンタイプの圧電材料ウエハを用いており、インク室 22の深さは 100μ mであり、各インク室22は 84.65μ mピッチ(3000 DPI相当)でアレイ状に形成され、インク室22の上部半分(50μ m)と下部半分(50μ m)で分極方向が逆向きになっている。

[0074]

インク室22内、つまりインク室22アレイのインク室22を仕切るインク室隔壁24のインク室内表面及びインク室22の溝底面には、アクチュエータ駆動用電極(本発明の駆動用電極)25が形成されており、充填された導電性樹脂10と該アクチュエータ駆動用電極25は導通状態に接続されている。

[0075]

また、アクチュエータ20のインク吐出面26には、微小なノズル40を有するノズルプレート41が接着されており、アクチュエータ20の後端部21の上方にはカバー部材43に予め形成されたインク供給口42が配設されている。

[0076]

このような構成で、アレイ状に並ぶ各インク室22は圧電材料からなるインク室隔壁24によって仕切られており、各隔壁24に形成されたアクチュエータ駆動用電極25に導通した導電性樹脂10が外部接続用電極として後の工程において外部回路電極(本発明の外部回路)と接続される。

[0077]

インク室隔壁24の上部半分と下部半分とが厚さ方向に逆向きに分極されているため、インク室隔壁24の表裏で対向する電極に逆位相の電圧印加を行うことによって、隔壁24がシェアモードで駆動するアクチュエータの役目をしてインク室22内のインク圧力をコントロールすることにより、ノズル40からインク微小液滴を吐出させることができる。

そして、図2に示すように、このインクジェットヘッドは、駆動用IC50に 導通したTABテープ51上に形成されたアウタリード52とアクチュエータ2 0の後端部21の導電性樹脂電極11において、詳細を図示しないBステージで 安定なエポキシ系樹脂バインダー中に φ 5 μ mのプラスチック粒子の表面にNi 及びAuめっきを施した導電粒子を分散含有したACF(Anisotropic Conducti ve Film:異方導電性フィルム)53を介して、電気的、機械的に接続すること ができる。

[0079]

このとき、インクジェットヘッドの外部回路接続用電極として形成した導電性 樹脂電極 11 の露出面積は、前述したように、 $3960 \mu m^2$ に設定しており、 表 1 に示すように、安価で市販されている通常の分散導電粒子量を含有する、例 えばソニーケミカル株式会社製FP 16613 やFP 13413、または日立化 成工業株式会社製AC-7073 などのACFを用いた接続において、低コスト で、低い接続抵抗で安定に電気的な接続を行うことができるために、優れた環境 信頼性を確保することができる。また、駆動用電極 25 に対して、高周波数で安 定な駆動波形を送ることができるため高速印字が可能なインクジェットヘッドを 得ることができる。

[0080]

【表1】

導電性樹脂電極面積とACF接続抵抗の関係

	溝幅 (μm)	満深さ (μm)	導電性樹脂電極 11の面積 (μm²)	接続抵抗 (Ω)	良否
サンプルA	3 6	100	3600	0.5~500	×
サンプルB	3 6	110	3960	0.01~0.05	0
サンプルC	3 6	1 2 0	4 3 2 0	0.01~0.04	0
サンブルD	3 6	150	5 4 0 0	0.01~0.04	0

[0081]

表1に示すように、サンプルAの場合には、導電性樹脂電極11の面積が36

 $0.0~\mu\,\mathrm{m}^2$ であるため、接続抵抗(Ω)はかなり高い値となっているが、サンプルB,C,Dの各場合には、いずれも導電性樹脂電極1.1の面積が $3.9.6.0~\mu\,\mathrm{m}$ 2以上に設定されているため、接続抵抗(Ω)は充分に低い値となっている。

[0082]

また、インクジェットヘッドとTABテープ51の外部回路リード52とのA CF接続において、前述した通常の分散導電粒子量を含有する安価なACFを用 いた接続では、インクジェットヘッドの外部回路接続用電極である導電性樹脂電 極11の露出面と外部回路電極であるアウタリード52とを少なくとも5個以上 のACF中に含まれる導電粒子で電気的接続が行われているため、良好な接続性 を示すことが判った。

[0083]

これを受けて、ACF中に分散する導電粒子数を通常のACFよりも多く分散させたACFを作製して用いることで、単位面積当りの電気的接続において有効な導電粒子数を増加させることができ、例えば、表2に示すように、導電性樹脂電極11の面積で3960μm²以下であっても、ACF接続における導電粒子数が5個以上であれば、安定な電気的接続を行うことができ、導電性樹脂電極11の縮小化に対応する有効な手段であることを確認することができる。

[0084]

【表2】

導電粒子数とACF接続抵抗の関係

	導電性樹脂電 極12の面積 (μm²)	ACFの種類	電気的接続に寄 与するACF導電 粒子数(最少値)	接続抵抗(Ω)	良否
サンプルA	3600	通常品	3	0.5~500	×
サンプルB	3960	通常品	5	0.01~0.05	0
サンブルC	4 3 2 0	通常品	5	0.01~0.04	0
サンプルD	5400	通常品	7	0.01~0.04	0
サンプルE	3600	導電粒子 高分散品	6	0.01~0.05	0
サンプルF	3960	導電粒子 高分散品	1 0	0.01~0.04	0

[0085]

表 2 において、サンプルEの場合には、導電性樹脂電極 1 1 の面積が 3 6 0 0 μ m^2 であるにもかかわらず、導電粒子数を 6 に設定しているため、接続抵抗(Ω)は充分に低い値となっていることを確認することができる。但し、ACFのコスト上昇により、インクジェットヘッドのコスト上昇を招くという問題があるが、特にハイエンド機種に関しては、さらに高信頼性化が要求されるため、通常品よりも多くの導電粒子を分散した高価なACFを利用して、狭ピッチのインクジェットヘッドでの電極接続において確実に 5 個以上のACF 導電粒子で電気的接続を行うことが得策である。

[0086]

つまり、低コストヘッドを実現するためには、安価なACFで接続安定性が得られる条件として、 $3960 \mu m^2$ 以上の導電性樹脂電極11の面積に設計すべきである。そして、コストよりも信頼性を最優先させて、さらなる狭ピッチインクジェットヘッドを実現するためには、高価な高分散導電粒子を含むACFを選択して接続に寄与する導電粒子を5個以上確保できるように電極面積の設計を行う必要がある。

[0087]

また、本実施の形態では、インクジェットヘッドの導電性樹脂電極11の面積よりも外部回路電極52における接続に有効な面積の方が大きい。言い換えれば、外部回路電極52の電極リード幅が導電性樹脂電極11のピッチ方向の幅(溝幅)よりも広く、また導電性樹脂電極11の溝深さ方向で平行に外部回路電極52のリードが接続される場合は導電性樹脂電極11の溝底部から溝上端まですべての領域で外部回路電極52の長手方向で重なるように導電性樹脂電極11と外部回路電極52とを接続することで、ACF接続プロセスでの位置合わせの精度が緩和されるため、生産歩留まりが向上して低コストで、低い接続抵抗で安定に電気的な接続を行うことができる。これにより、優れた環境信頼性を確保することができ、駆動用電極25に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能なインクジェットヘッドを実現することができる。

[0088]

次に、インクジェットヘッドの製造方法について図3により説明する。まず、図3 (a) に示すように、ダイサーのダイシングブレード60を用いて相反する方向に分極処理した50μm厚の圧電材料70及び71を貼り合わせたシェブロンタイプの圧電材料ウエハ72をハーフダイスすることにより後にインク室22になる100μm深さの溝を形成する。

[0089]

次いで、図3 (b) に示すように、後に導電性樹脂10を供給する部分の溝を さらに10μmだけ深くするために、同じダイシングブレード60を用いて、溝 直上からブレードを降下させてチョッパー研削加工を行う。このとき、インク室 形成時に深溝部23を一連の工程で同時に形成することもできる。

[0090]

さらに、図4(a)に示すように、スパッタリング技術によって、AuやNi, Al, Cuなどの電極材料になる金属膜73をインク室内全面に製膜する。そして、図4(b)に示すように、圧電材料ウエハ72のインク室22のアレイに対して直交方向に液状導電性樹脂10をディスペンサー61を用いて0.5mm幅でインク室22上及びインク室隔壁24上に一文字に塗布供給する。このとき、導電性樹脂10の粘度を500~1500cpsに調整することで、自然にインク室22の底部まで充填される。

[0091]

また、粘度の比較的高い導電性樹脂を使用しても、ディスペンス後に硬化反応 があまり進行しない適当な温度に調整したホットプレート上で放置することによ り、導電性樹脂 1 0 の低粘度化に伴って自然にインク室 2 2 の底までの充填が可 能である。

[0092]

その後、加熱して導電性樹脂10を硬化させる。このとき、加熱硬化を行わずに室温で反応が進行する樹脂をバインダーとした導電性樹脂では室温放置にて硬化させることもできる。

[0093]

そして、図5 (a) に示すように、インク室隔壁24上で短絡している金属膜

[0094]

次に、インク供給口42用のザグリを形成した圧電材料から成るカバーウエハ74を用意する。これは、後にインクジェットヘッドに構成されたときにインク供給口42を形成し、インク室22の上部を封じるカバー部材43になる。

[0095]

通常、カバーウエハ74はインク室22を形成するアクチュエータとの熱膨張率のマッチングを良くするためにインク室22を構成する圧電材料と同じ材料を使うが、熱膨張率が比較的近い安価なアルミナセラミックを用いてもよい。

[0096]

そして、インク室22アレイを形成したインク室ウエハ72とカバーウエハ74とを市販の接着剤で接着する。このとき、導電性樹脂10が充填された部分はカバーウエハ74のインク供給口42のためのザグリ部分中央部に来るように位置合わせを行い、図5(b)の断面図に示すように両者を貼り合わせる。

[0097]

その後、図5(b)に破線で示すダイシングラインで、カバーウエハ74のインク供給口用ザグリ部分でインク室ウエハ72の導電性樹脂充填部分を図示しないダイサーのダイシングプレードにより、個々のアクチュエータ(インクジェットヘッド)に小片化する。

[0098]

切断されたアクチュエータの切断面には、導電性樹脂10の切断面がアクチュエータ側面の片方に露出しおり、後に接続される駆動用ICに導通した外部回路電極との電気的接続用電極、すなわち外部回路接続用電極11となる。導電性樹脂10が露出しないもう一方の側面はインク室22の上面がカバー部材43で封じられてインク室内の圧力コントロールをするための駆動部分となっており、その側面にノズルプレート41を貼り付けて、先に説明した図1、図2に示すアクチュエータ(インクジェットヘッド又はインクジェットヘッドモジュール)が完

[0099]

本実施の形態における構成では、外部回路接続用電極11は、インク室アレイ 直交方向のインク室22の断面積よりも広い断面積を持ち、かつインク室22に 通ずる溝に充填された導電性樹脂10のインクジェットヘッド後端部21におけ る露出面に形成される。

[0100]

従って、従来インク室内電極を実装のためにインク室外に引き出していたが、 その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど 不要となるため、材料コスト削減を大幅に実現することができる。

[0101]

また、静電容量が低減されるため、駆動周波数を高くすることができるため高速印字が可能となり、駆動電圧を低減できるため駆動用ICの低耐電圧化が可能となることから、駆動用ICコスト及び駆動消費電力の低減化が可能となる。

[0102]

そして、充填された導電性樹脂10の切断面に形成される外部回路接続用電極 11は、インク室断面積よりも広い断面積を持つため、狭ピッチインクジェット ヘッドであっても大面積で外部回路電極52との電気的接続を行え、安定して低 い接続抵抗で接続することができる。これにより、優れた環境信頼性を有し、イ ンクジェットヘッドに高周波数で安定な駆動波形を送ることができるため、高速 印字が可能となる。

[0103]

また、外部回路電極 5 2 と接続される外部回路接続用電極 1 1 は、その接続面となる導電性樹脂 1 0 の露出面積を 3 9 6 0 μ m² 以上確保することができる。従って、インクジェットヘッドと外部回路電極 5 2 との電気的な接続において、導電粒子分散量が比較的少ない安価な A C F を用いた接続においても、十分な電極面積を持つため、低接続抵抗で接続抵抗ばらつきが少なく、安定な外部回路接続を行うことができる。これにより、優れた環境信頼性を確保することができ、駆動用電極 2 5 に対して高周波数で安定な駆動波形を送ることができるため、高

速印字が可能となる。

[0104]

一方、インクジェットヘッドと、駆動用IC50に接続した外部回路電極52 との接続体であるインクジェットヘッドモジュールは、インクジェットヘッドと 外部回路電極52との接続において、異方性導電材料を介してインクジェットヘッドの外部回路接続用電極11である導電性材料露出面と外部回路電極52とを 少なくとも5個以上の異方性導電材料の導電粒子で電気的な接続が行われている。

[0105]

従って、インクジェットヘッドと外部回路電極52との電気的な接続において 十分な異方性導電材料の導電粒子が介在するため、低接続抵抗で接続抵抗ばらつ きが少なく、安定な外部回路接続を行うことができ、これにより、優れた環境信 頼性を確保することができ、駆動用電極25に対して、高周波数で安定した駆動 波形を送ることができるため、高速印字が可能となる。

[0106]

また、インクジェットヘッドモジュールの外部回路電極52の接続部の面積は、インクジェットヘッドの外部回路接続用電極11の面積よりも大きい。従って、接続位置合わせのマージンを大きく確保することができ、接続位置精度が緩和されるため、インクジェットヘッドの外部回路接続用電極全体を安定して電気的接続に利用することができる。従って、生産性向上が実現し、低接続抵抗で接続抵抗ばらつきが少なく、安定な外部回路接続を行うことができる。これにより、優れた環境信頼性を確保することができ、駆動用電極25に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる。

[0107]

なお、インクジェットヘッドと外部回路電極52との電気的な接続において、インクジェットヘッドの外部回路接続用電極11の形状及び面積と外部回路電極52の形状が同じで面積が等しい場合には、インクジェットヘッドの外部回路接続用電極11と外部回路電極52との接続位置合わせに高い精度が必要とされるため、生産歩留まりが低下する。

このようなインクジェットヘッドは、少なくとも以下のような工程を含む製造 方法で製作することができる。すなわち、厚さ方向に分極処理が行われた圧電材 料ウエハを所定ピッチでインク室溝を形成する工程と、前記インク室溝に通ずる インク室溝よりも深い溝を形成する工程と、前記インク室溝及び前記インク室溝 よりも深い溝内部に駆動用電極を形成する工程と、前記インク室溝内の電極に導 通するように前記インク室溝よりも深い溝に導電性材料を充填する工程と、前記 導電性材料を硬化する工程と、前記圧電材料ウエハとカバーウエハとを接着する 工程と、前記接着された圧電材料ウエハを小片化する工程と、を含む製造工程で 製作することができる。

[0109]

このような製造方法で製作されたインクジェットヘッドは、前述したように、 充填導電性材料の外部回路接続用電極11は、インク室断面積よりも広い断面積 を持つため、後に行う外部回路電極52との電気的な接続を安定に行える。すな わち、狭ピッチインクジェットヘッドであっても大面積の接続用電極で外部回路 電極11との電気的接続が行えるため、安定して低い接続抵抗で接続することが できる。これにより、優れた環境信頼性を確保することができ、インクジェット ヘッドに高周波数で安定な駆動波形を送ることができるため、高速印字が可能と なる。

[0110]

また、インク室22よりも深い溝23に導電性樹脂10を充填して、後にインクジェットヘッド小片化切断面に露出する導電性樹脂電極11の面積を拡大しているが、図6に示すように、溝幅をインク室22よりも広くして幅広溝27に形成することでも同様の効果を期待することができる。

[0 1 1 1]

図 6 に示すインク室 2 2 の深さは 1 0 0 μ m であり、導電性樹脂電極 1 1 の断面形状は深さ 9 0 μ m に加工されており、インク室幅 3 6 μ m に対して後端部では溝幅 4 5 μ m に加工されており、導電性樹脂電極 1 1 の面積としてはインク室 2 2 2 よりも大きく、 3 9 6 0 μ m 2 に設定しているため、図 7 に示すように、駆

動用IC50に接続された外部回路リード52とを安価なACF53を用いて低コストで安定した外部回路接続が実現できる。また、溝幅が広いため、導電性樹脂10の充填性も良好で、導電性樹脂10の充填工程における生産歩留まり向上が実現できる。

[0112]

このようなインクジェットヘッドは、少なくとも以下のような工程を含む製造 方法で製作することができる。すなわち、厚さ方向に分極処理が行われた圧電材 料ウエハを所定ピッチでインク室溝を形成する工程と、前記インク室溝に通ずる インク室溝よりも幅広の溝を形成する工程と、前記インク室溝及び前記インク室 溝よりも幅広の溝内部に駆動用電極を形成する工程と、前記インク室溝内の電極 に導通するように前記インク室溝よりも幅広の溝に導電性材料を充填する工程と 、前記導電性材料を硬化する工程と、前記圧電材料ウエハとカバーウエハとを接 着する工程と、前記接着された圧電材料ウエハを小片化する工程と、を含む製造 工程で製作することができる。

[0113]

このような製造方法で製作されたインクジェットヘッドは、充填導電性材料の外部回路接続用電極11は、インク室22の断面積よりも広い断面積を持つため、後に行う外部回路電極52との電気的な接続をより安定に行える。すなわち、狭ピッチインクジェットヘッドであっても大面積の接続用電極で外部回路電極52との電気的接続が行え、安定して低い接続抵抗で接続することができる。これにより、優れた環境信頼性を有し、インクジェットヘッドに高周波数で駆動波形を安定に送ることができるため、高速印字が可能となる。

[0114]

《実施の形態2》

次いで、本発明の別の実施の形態について図面を用いて説明する。図8は、インクジェットヘッドの断面図である。このインクジェットヘッドは、P2T圧電材料からなるアクチュエータ28の後端部にAg導電性フィラーを含有する導電性樹脂10が充填されており、アクチュエータ28の後端部の導電性樹脂10が充填された上面において導電性樹脂10が露出している部分を外部回路接続用電

極12としている。

[0115]

また、インク室22はアクチュエータ28の後端側で溝深さが浅くなっているが、深く均一なインク室形状よりもインク室隔壁を挟んだ電極面積が小さくなるため、不要な静電容量を小さくすることができる。これにより、駆動消費電力の低減や駆動波形の鈍りをさらに効果的に防止でき、かつ、インクがアクチュエータ後端部近傍のカバーウエハのインク供給口44から供給されるため、インクの流れがスムーズにすることができる。

[0116]

そして、インク室 22 の深さ 100 μ mに対して導電性樹脂 10 が充填される後端部では溝深さを 50 μ m、インク室幅を 36 μ mに設定している。また、導電性樹脂 10 の充填上部 29 の導電性樹脂 10 の露出面の寸法は、幅 36 μ mで長さ 600 μ mであることから、後に行う外部回路電極との接続では、長さが 10 μ m以上あれば 3960 μ m² 以上の接続面積を確保できるため、実施の形態 1 で説明したように、低コストで安定な電気的接続を行うことができる。

[0117]

インク室22内には二つのアクチュエータ駆動用電極30,30がインク室22内で向い合った状態で形成されており、充填された導電性樹脂10を介して、一つのインク室22内で二つの電極は導通状態が得られている。また、アクチュエータ28のインク吐出面には、微小なノズル40を有するノズルプレート41が接着されており、アクチュエータ28の後端部の上方には、カバー部材45に予め形成されたインク供給口44が配設されている。

[0118]

このような構成で、アレイ状に並ぶインク室22は圧電材料からなるインク室隔壁によって仕切られており、各隔壁の上部半分(アクチュエータ後端部近傍では50μm深さの浅溝であるため、溝底部までの隔壁面全面に電極が形成される)に配置した電極を導電性樹脂10で一つの外部接続用電極として集約させたアクチュエータ後端部上面29に露出した導電性樹脂電極12に電圧を印加し、インク室隔壁32の表裏で対向する電極に逆位相の電圧印加を行うことによって隔

壁32がインク室内電極を形成している境目で折れ曲がるようにシェアモードで 駆動する。これにより、アクチュエータとしての機能が発揮され、インク室22 内のインク圧力をコントロールすることによって、ノズル40からインク微小液 滴を叶出させることができる。

[0119]

本実施の形態のインクジェットヘッドは、図9に示すように、駆動用IC50 に導通したTABテープ51上に形成されたアウタリード52とアクチュエータ 28の後端部上面の導電性樹脂電極12とを、ACF53等を介して、電気的、 機械的に接続し、インクジェットヘッドモジュールとすることができる。

[0120]

次いで、上記インクジェットヘッドの製造方法について図10を用いて説明する。まず、図10(a)に示すように、ダイサーのダイシングブレード60を用いて圧電材料ウエハ75に、後にインク室22になる溝を36μm幅で形成する。このとき、図10(b)に示すように、後に導電性樹脂10を充填する部分は、インク室22部分よりも浅くすることで、導電性樹脂10の充填性が良好となり、導電性樹脂10の充填工程のマージンを大きくとることができるため、生産管理が容易になり、生産歩留まりの向上を実現することができる。

[0121]

このようにして、インク室アレイを形成した後に、図11 (a) に示すように、インク室22の長手方向に対して直交方向斜め上方からA1やCuなどの電極材料になる金属を斜め蒸着する。この作業をインク室22の長手方向に対して左右二方向から行うことでインク室隔壁32の表面に金属電極76が形成され、各々のインク室隔壁32のシャドーイング効果により、インク室22の深さ方向で約1/2まで金属膜76の形成が行われ、後に導電性樹脂10を充填する浅溝領域は、およそ溝底部まで電極形成が行われる。このとき、インク室22内で向かい合う電極30及び31が駆動用電極となる。

[0122]

次に、図11(b)に示すように、圧電材料ウエハ75のインク室22アレイに対して直交方向に液状導電性樹脂をディスペンサー61を用いて、2.0mm

幅でインク室22上及びインク室隔壁32上に一文字に塗布供給し、その後に導電性樹脂10を硬化させる。

次に、図12(a)に示すように、インク室隔壁32上で斜方蒸着した金属膜76及び導電性樹脂10が各インク室22で短絡しているので、インク室隔壁32上の金属膜76及び導電性樹脂10を図示しないエンドミル等を利用して研削機械加工等によって取り除く。

[0123]

次に、インク供給口44用の貫通穴77及び後に導電性樹脂電極12になる導電性樹脂10充填上面29部分の全てを覆わないように逃げザグリ部78を形成した圧電材料から成るカバーウエハ79を用意する。このカバーウエハ79は、後に、インクジェットヘッドに小片化されたときに、インク室22の上部を封じ、アクチュエータ後端部の導電性樹脂電極12を除くインク室22の後端を封じるカバー部材になる。

[0124]

次に、図12(b)の断面図に示すように、インク室アレイを形成したインク室ウエハ75とカバーウエハ79とを市販の接着剤を用いて、両者を貼り合わせる。このとき、インク室後端部内側で導電性樹脂10充填上面29の一部をカバーウエハ79(カバー部材45)でインク室22を封じるようにしており、前述した実施の形態1とは異なり、インクはカバー部材45の貫通穴77(インク供給口44)から供給されることとなり、カバー部材45と導電性樹脂10の充填上面29との接着部分を除く導電性樹脂10の充填上面29との接続を行うこととなる。

[0125]

その後、図12(b)の破線で示すダイシングラインで、導電性樹脂電極12を避けた位置に設定されているザグリ78部分のみをダイシングで除去して外部回路接続用電極12の直上を開放し、同時に太破線部で示したカバーウエハ79のザグリ78部分及びインク室22の上部が封じられているインク室駆動部分の中央部で図示しないダイサーのダイシングプレードにより、個々のアクチュエータ28に小片化し、アクチュエータ28が完成する。

[0126]

本実施の形態では、インクジェットヘッドの外部回路接続用電極は、インク室 アレイに充填された導電性材料充填上部の露出面に形成される。従って、材料コスト削減を実現でき、また静電容量の低減により、駆動周波数を高くすることができるため高速印字が可能となり、駆動電圧を低減できるため駆動用ICの低耐電圧化が可能となり、駆動用ICコスト及び駆動消費電力の低減化を実現することができる。

[0127]

また、インク室アレイに充填された導電性材料の上部の露出面を外部回路接続 用電極とするため、インク室アレイの長手方向に所望の電極面積を確保して、外 部回路電極との電気的な接続が行えるため、狭ピッチインクジェットヘッドであ っても大面積の接続用電極で外部回路電極との電気的接続が行え、安定して低い 接続抵抗で接続することができる。これにより、優れた環境信頼性を確保するこ とができ、インクジェットヘッドに高周波数で安定した駆動波形を送ることがで きるため、高速印字が可能となる。

[0 1 2 8]

このようなインクジェットヘッドは、少なくとも以下のような工程を含む製造 方法で製作できる。すなわち、厚さ方向に分極処理が行われた圧電材料ウエハを 所定ピッチでインク室溝を形成する工程と、前記インク室溝内部に駆動用電極を 形成する工程と、前記インク室溝内の電極に導通するように前記インク室溝に導 電性材料を充填する工程と、前記導電性材料を硬化する工程と、前記導電性材料 充填上部の少なくとも一部が充填上部に空間を有する状態で圧電材料ウエハとカ バーウエハとを接着する工程と、前記接着された圧電材料ウエハを前記導電性材 料充填上部の少なくとも一部のカバーウエハを削除して小片化する工程と、を含 む製造工程で製作することができる。

[0129]

このような製造方法で製作されたインクジェットヘッドは、インク室アレイに 充填された導電性材料の充填上部の導電性材料露出面を外部回路接続用電極とす るため、インク室アレイの長手方向に所望の電極面積を確保することができる。 従って、狭ピッチインクジェットヘッドであっても大面積の接続用電極で外部回路との電気的接続が行え、安定して低い接続抵抗で接続することができる。これにより、優れた環境信頼性を確保することができ、駆動用電極に高周波数で安定した駆動波形を送ることができるため、高速印字が可能となる。

[0130]

なお、本発明は、上記各実施の形態によって限定されるものではなく、本発明 の要旨を逸脱しない限りにおいて、設計変更や改良、工程変更等は自由である。

[0131]

【発明の効果】

以上の説明から明らかなように、本発明は、以下の効果を奏する。

[0132]

(1) インクジェットヘッドの外部回路接続用電極は、溝幅方向のインク室断面積よりも広い断面積を持ち、かつインク室に通ずる溝に充填された導電性材料のヘッド後端部における露出面に形成されているため、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンバクト化が可能となり、材料コスト削減を実現できる。

[0133]

また、アクティブエリア以外の部分の大幅な減少により、インクジェットヘッドの静電容量が低減する。これにより、駆動周波数を高くすることができるため、高速印字を実現することができる。また、駆動電圧を低減できるため、駆動用ICの低耐電圧化が可能となり、駆動用ICコストのと駆動消費電力の低減化を実現できる。

[0134]

さらに、充填導電性材料の外部回路接続用電極は、インク室断面積よりも広い 断面積を有するため、狭ピッチインクジェットヘッドであっても広い面積で外部 回路電極との電気的接続を行え、低い接続抵抗で安定して接続することができる 。これにより、優れた環境信頼性を確保することができ、かつ、駆動用電極に対 して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる

[0135]

(2) インクジェットヘッドの外部回路接続用電極は、インク室におけるヘッド後端部に部分的に深く形成された深溝部に充填された導電性材料の露出面に形成されるため、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能となり、材料コスト削減を実現できる。

[0136]

また、アクティブエリア以外の部分の大幅な減少により、インクジェットヘッドの静電容量が低減する。これにより、駆動周波数を高くすることができるため高速印字が可能となり、また、駆動電圧を低減できるため駆動用ICの低耐電圧化が可能となり、駆動用ICコスト及び駆動消費電力の低減化を実現することができる。

[0137]

そして、インク室のヘッド後端部に部分的に深く形成された深溝部に導電性材料を充填し、その断面を外部回路接続用電極とするため、狭ピッチインクジェットヘッドであっても大面積で外部回路との電気的接続が行えるため、低い接続抵抗で安定して接続することが可能となる。これにより、優れた環境信頼性を確保することができ、かつ、駆動用電極に対して高周波数で安定した駆動波形を送ることができるため、高速印字が可能となる。

[0138]

(3) インクジェットヘッドの外部回路接続用電極は、インク室に通じるインク室幅よりも幅広に形成された溝(幅広溝)に充填された導電性材料のインクジェットヘッド後端部の導電性材料露出面に形成されるため、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能となり、材料コスト削減を実現できる。

[0139]

また、インクジェットヘッドの静電容量を低減できるため、駆動周波数を高くすることができ、高速印字が可能となる。そして、駆動用ICの低耐電圧化が可能となり、駆動用ICコストの低減化及び駆動消費電力の削減化を実現することができる。

[0140]

さらに、インク室幅よりも幅広の溝に導電性材料を充填し、その断面を外部回路接続用電極とするため、狭ピッチインクジェットヘッドであっても大面積で外部回路との電気的接続が行えることから、低い接続抵抗で安定して接続することができる。これにより、優れた環境信頼性を確保することができ、かつ、駆動用電極に対して高周波数の安定した駆動波形を送ることができるため、高速印字が可能となる。

[0141]

(4) インクジェットヘッドの外部回路接続用電極は、インク室に充填された 導電性材料の上部の露出面に形成されるため、従来では、インク室内電極を実装 するためにインク室外に引き出していたが、その必要がなくなり、アクチュエー タのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータの コンパクト化が可能となり、材料コストの削減を実現できる。

[0142]

また、インクジェットヘッドの静電容量の低減により、駆動周波数を高くすることができるため、高速印字が可能となり、かつ、駆動電圧を低減できるため、駆動用ICの低耐電圧化が行え、駆動用ICコストと駆動消費電力の低減化を実現することもできる。

[0143]

そして、インク室に充填された導電性材料上部の露出面を外部回路接続用電極とするため、インク室アレイの長手方向に所望の電極面積で外部回路との電気的な接続が行える。従って、狭ピッチインクジェットヘッドであっても大面積で外部回路との電気的接続が行えるため、低い接続抵抗で安定して接続することができる。これにより、優れた環境信頼性を確保でき、かつ、駆動用電極に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる。

[0144]

(5) インクジェットヘッドの外部回路接続用電極は、外部回路接続用電極として有効な充填導電性材料の露出面積が3960 μ m² 以上であるため、外部回路との電気的な接続において、十分な電極面積を確保できる。従って、接続抵抗が低くばらつきの少ない安定な外部回路接続を行うことができる。これにより、優れた環境信頼性を確保することができ、かつ、駆動用電極に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる。

[0145]

(6) このインクジェットヘッドモジュールにあっては、インクジェットヘッドと外部回路との接続は、異方性導電材料を介して外部回路接続用電極である導電性材料の露出面と外部回路とを少なくとも5個以上の異方性導電材料の導電粒子で電気的に接続するように行われる。

[0146]

従って、外部回路との電気的な接続において、十分な異方性導電材料の導電粒子が介在するため、接続抵抗が低くばらつきの少ない安定な外部回路接続を行うことができる。これにより、優れた環境信頼性を確保でき、かつ、駆動用電極に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる。

[0147]

(7) このインクジェットヘッドモジュールの外部回路との接続部は、インクジェットヘッドの外部回路接続用電極の面積よりも大きいため、接続位置合わせのマージンを大きく確保することができるため、外部回路接続用電極全体を安定して電気的接続に利用することができる。

[0148]

これにより、生産性の向上が実現し、かつ、接続抵抗が低くばらつきの少ない安定した外部回路接続を行うことができる。また、優れた環境信頼性を確保でき、かつ、駆動用電極に対して高周波数で安定な駆動波形を送ることができるため、高速印字が可能となる。

[0 1 4 9]

(8) このインクジェットヘッドの製造方法は、厚さ方向に分極処理が行われた圧電材料ウエハに、所定ピッチで複数のインク室溝を形成する工程と、前記インク室のヘッド後端部となる部分に、部分的に深く形成された深溝部を形成する工程と、前記インク室の両側を仕切る隔壁内に駆動用電極を形成する工程と、前記深溝部に導電性材料を充填する工程と、前記導電性材料を硬化させる工程と、前記圧電材料ウエハとカバーウエハとを接着する工程と、前記接着された圧電材料ウエハとカバーウエハとを接着する工程と、前記接着された圧電材料ウエハとカバーウエハを小片化する工程と、を含むため、この製造方法で製作されたインクジェットヘッドは、外部回路と接続するための外部回路接続用電極が、溝幅方向のインク室断面積よりも広い断面積を持ち、かつインク室に通ずる溝に充填された導電性材料のヘッド後端部における露出面に形成されている。

[0150]

従って、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能とり、材料コスト削減を実現できる。

[0151]

また、アクティブエリア以外の部分がほとんど不要となるため、静電容量を低減することもできる。静電容量の低減により、駆動周波数を高くすることができるため、高速印字が可能となる。また、駆動電圧を低減でき、かつ、駆動用ICの低耐電圧化が可能になるため、駆動用ICコスト及び駆動消費電力の低減化を図ることができる。

[0152]

そして、上述の工程は、特に、インク室のヘッド後端部となる部分に、部分的に深く形成された深溝部を形成する工程と、その深溝部に導電性材料を充填する工程と、を含むため、その深溝部に充填された導電性材料の外部回路接続用電極は、インク室断面積よりも広い断面積を持つため、後に行う外部回路との電気的な接続をより安定に行うことができ、狭ピッチインクジェットヘッドであっても大面積で外部回路との電気的接続が行える。

[0153]

これにより、安定して低い接続抵抗で接続することができるため、優れた環境 信頼性を確保することができ、かつ、駆動用電極に対して高周波数で安定した駆 動波形を送ることができるため、高速印字が可能なインクジェットヘッドを提供 することができる。

[0154]

(9) このインクジェットヘッドの製造方法は、厚さ方向に分極処理が行われた圧電材料ウエハに、所定ピッチで複数のインク室溝を形成する工程と、前記インク室のヘッド後端部となる部分に、部分的に広く形成された広溝部を形成する工程と、前記インク室の両側を仕切る隔壁内に駆動用電極を形成する工程と、前記広溝部に導電性材料を充填する工程と、前記導電性材料を硬化させる工程と、前記圧電材料ウエハとカバーウエハとを接着する工程と、前記接着された圧電材料ウエハを小片化する工程と、を含むため、この製造方法で製作されたインクジェットヘッドは、外部回路と接続するための外部回路接続用電極が、溝幅方向のインク室断面積よりも広い断面積を持ち、かつインク室に通ずる溝に充填された導電性材料のヘッド後端部における露出面に形成されている。

[0155]

従って、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能とり、材料コスト削減を実現できる。

[0156]

また、アクティブエリア以外の部分がほとんど不要となるため、静電容量を低減することもできる。静電容量の低減により、駆動周波数を高くすることができるため、高速印字が可能となる。また、駆動電圧を低減でき、かつ、駆動用ICの低耐電圧化が可能になるため、駆動用ICコスト及び駆動消費電力の低減化を図ることができる。

[0157]

そして、上述の工程は、特に、インク室のヘッド後端部となる部分に、部分的 に広く形成された広溝部を形成する工程と、前記広溝部に導電性材料を充填する

工程と、を含むため、その広溝部に充填された導電性材料の外部回路接続用電極は、インク室断面積よりも広い断面積を持つため、後に行う外部回路との電気的な接続をより安定に行うことができ、狭ピッチインクジェットヘッドであっても 大面積で外部回路との電気的接続が行える。

[0158]

これにより、安定して低い接続抵抗で接続することができるため、優れた環境 信頼性を確保することができ、かつ、駆動用電極に対して高周波数で安定した駆 動波形を送ることができるため、高速印字が可能なインクジェットヘッドを提供 することができる。

[0159]

(10) このインクジェットヘッドの製造方法は、厚さ方向に分極処理が行われた圧電材料ウエハに、所定ピッチでインク室溝を形成する工程と、前記インク室内の駆動用電極を形成する工程と、前記インク室内の駆動用電極に導通するように前記インク室溝に導電性材料を充填する工程と、前記導電性材料を硬化させる工程と、充填された前記導電性材料の上部の少なくとも一部が空間を有する状態で圧電材料ウエハとカバーウエハとを接着する工程と、前記接着された圧電材料ウエハを前記導電性材料の上部の少なくとも一部のカバーウエハを削除して小片化する工程と、を含むため、この製造方法で製作されたインクジェットヘッドの外部回路接続用電極は、インク室に充填された導電性材料の上部の露出面に形成される。従って、従来では、インク室内電極を実装するためにインク室外に引き出していたが、その必要がなくなり、アクチュエータのアクティブエリア以外の部分がほとんど不要となるため、アクチュエータのコンパクト化が可能となり、材料コストの削減を実現できる。

[0160]

また、インクジェットヘッドの静電容量の低減により駆動周波数を高くすることができるため、高速印字が可能となり、かつ、駆動電圧を低減できるため、駆動用ICの低耐電圧化が行え、駆動用ICコストと駆動消費電力の低減化を実現することもできる。

[0161]

【図面の簡単な説明】

- 【図1】本発明の実施形態に係るインクジェットヘッドの断面図である。
- 【図2】同駆動用ICと接続されたインクジェットヘッドモジュールの断面図である。
 - 【図3】 同インクジェットヘッドの製造方法の説明図である。
 - 【図4】同説明図である。
 - 【図5】同説明図である。
 - 【図6】同異なる実施形態に係るインクジェットヘッドの断面図である。
- 【図7】同駆動用ICと接続された異なる実施形態に係るインクジェットヘッドモジュールの断面図である。
 - 【図8】 同別の実施の形態に係るインクジェットヘッドを示す断面図である。
- 【図9】同駆動用ICと接続された別の実施の形態に係るインクジェットヘッドモジュールの断面図である。
- 【図10】同別の実施の形態に係るインクジェットヘッドの製造方法の説明図である。
 - 【図11】同説明図である。
 - 【図12】同説明図である。
 - 【図13】従来例のインクジェットヘッドの一例を示す断面図である。
 - 【図14】 同製造方法の説明図である。
 - 【図15】同インクジェットヘッドの異なる例を示す断面図である。
 - 【図16】同インクジェットヘッドの別の例を示す断面図である。

【符号の説明】

- 10-導電性材料
- 11,12-外部回路接続用電極
- 21-ベッド後端部
- 22ーインク室
- 23一深溝部
- 2 4 隔壁
- 25-駆動用電極
- 27一幅広溝
- 72,75-圧電材料ウエハ
- 74, 79ーカバーウエハ

【書類名】 図面

【図1】

【図3】

[図4]

(a)

Auスパッタリング

【図5】

(a)

[図9]

【図10】

(a)

[図12]

(a)

【図14】

(a)

スパッタリング

ページ: 14/

【要約】

【課題】インク室アレイが狭ピッチ化されても、外部回路と低い接続抵抗で安定 に接続することができ、環境信頼性に優れ、高速印字が可能で安価なインクジェ ットヘッドを提供する。

【解決手段】複数列の溝状に形成された各インク室22の両側を仕切る隔壁24 に設けた駆動用電極25を外部回路に接続するための外部回路接続用電極11が、各インク室22に充填された導電性材料10のヘッド後端部における露出面に形成され、かつ、前記露出面が、インク室アレイ直交方向のインク室断面積よりも広い面積を有する。

【選択図】図1

ページ: 1/E

特願2003-065708

出願人履歴情報

識別番号

[000005049]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

大阪府大阪市阿倍野区長池町22番22号

シャープ株式会社 氏 名.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.