1

Assignment-1

AI24BTECH11012- Pushkar Gudla

SECTION-A

F. MATCH THE FOLLOWING

1) Match the following:

(2006-6M)

- (A) $\int_0^{\frac{\pi}{2}} (\sin x)^{\cos x} \left(\cos x \cot x \log (\sin x)^{\sin x}\right) dx$ (B) Area bounded by $-4y^2 = x$ and $x 1 = -5y^2$
- (C) Cosine of the angle of intersection of curves
- $y = 3^{x-1} \log x$ and $y = x^x 1$ is (D) Let $\frac{dy}{dx} = \frac{6}{x+y}$ where y(0) = 0 then value of y when x + y = 6 is
- 2) Match the integrals in Column I with the values in Column II and indicate your answer by darkening the appropriate bubbles in the 4x4 matrix given in the ORS. (2007-6M)

Column I

(A)
$$\int_{-1}^{1} \frac{dx}{1+x^2}$$

(A)
$$\int_{-1}^{1} \frac{dx}{1+x^2}$$

(B) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$
(C) $\int_{2}^{3} \frac{dx}{1-x^2}$
(D) $\int_{1}^{2} \frac{dx}{x\sqrt{x^2-x^2}}$

(C)
$$\int_{2}^{3} \frac{dx}{1-x^2}$$

(D)
$$\int_{1}^{22} \frac{dx}{x\sqrt{x^2-1}}$$

3)

- (JEE Adv. 2014) List-I
- P. The number of polynimials f(x) with nonnegative integer coeffecients of $degree \leq 2$, satisfying f(0) = 0 and $\int_0^1 f(x) dx = 1$, is Q. The number of points in the interval
- $\left|-\sqrt{13}, \sqrt{13}\right|$ at which $f(x) = \sin x^2 +$ $\cos x^2$ attains its maximum value is R. $\int_{-2}^{2} \frac{3x^2}{(1+e^x)} dx$ equals

S.
$$\frac{\left(\int_{-\frac{1}{2}}^{\frac{1}{2}}\cos 2x \log\left(\frac{1+x}{1-x}\right) dx\right)}{\left(\int_{0}^{\frac{1}{2}}\cos 2x \log\left(\frac{1+x}{1-x}\right) dx\right)}$$

Column II

- (p) $\frac{1}{2}\log\left(\frac{2}{3}\right)$
- (q) $2\log\left(\frac{2}{3}\right)$
- (r) $\frac{\pi}{3}$

(p) 1 (q) 0 (r) 6ln2

(s) $\frac{4}{3}$

(s) $\frac{\pi}{2}$

List-II

- a) 8
- b) 2
- c) 4
- d) 0

PORS

- (a) 3 2 4 1
- (c) 3 2 1 4

PQRS

- (b) 2 3 4 1
- (a) 2 3 1 4

SECTION-B JEE MAIN/AIEEE

- 1) The area (insq.units) of the region $\{(x, y) : x \in \mathbb{R}^n \mid (x, y) : x \in \mathbb{R}^n \}$ $y^2 \ge 2x$ and $x^2 + y^2 \le 4x$, $x \ge 0$, $y \ge 0$ } is: [JEE] M 2016]
 - (a) $\pi \frac{4\sqrt{2}}{3}$

 - (c) π –
 - (d) π –
- 2) The area (insq.units) of the region $\{(x, y) : x \in \mathbb{R}^n \mid (x, y) = x \in \mathbb{R}^n \}$ $x \ge 0, x + y \le 3, x^2 \le 4y$ and $y \le 1 + \sqrt{x}$ is: [JEE M 2017]

 - (a) $\frac{5}{2}$ (b) $\frac{59}{12}$ (c) $\frac{3}{2}$ (d) $\frac{7}{3}$
- 3) The integral $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x}$ is equal to: [JEE M 2017]
 - (a) -1
 - (b) -2
 - (c) 42
 - (d) 4
- 4) Let $g(x) = \cos x^2$, $f(x) = \sqrt{x}$, and α , $\beta(\alpha < 1)$ β) be the roots of the quadratic equation $18x^2 - 9\pi x + \pi^2 = 0$. Then the area (insq.units) bounded by the curve y = (gof)(x) and the lines $x = \alpha$, $x = \beta andy = 0$, is:[JEE M 2018]

 - (a) $\frac{1}{2} \left(\sqrt{3} + 1 \right)$ (b) $\frac{1}{2} \left(\sqrt{3} \sqrt{2} \right)$ (c) $\frac{1}{2} \left(\sqrt{2} 1 \right)$ (d) $\frac{1}{2} \left(\sqrt{3} 1 \right)$
- 5) The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1+2^x} dx$ is: [JEE M 2018]
 - (a) $\frac{\pi}{2}$
 - (b) $\bar{4}\pi$
 - (c) $\frac{\pi}{4}$
 - (d) $\frac{\dot{\pi}}{8}$
- 6) The value of $\int_0^{\pi} |\cos x|^3 dx$ is: 2019-9 Jan(M)] [JEE M
 - (a) 0

 - (b) $\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $\frac{-2}{3}$
- 7) The area (insq.units) bounded by the parabola $y = x^2 - 1$, the tangent at the point (2,3) to it and the y-axis is: 2019-9Jan(M)]

- (a) $\frac{8}{3}$ (b) $\frac{32}{3}$ (c) $\frac{56}{3}$ (d) $\frac{14}{3}$
- 8) The value of $\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx$ is: 2019-9 April(M)] [JEE M

 - (a) $\frac{\pi-2}{8}$ (b) $\frac{\pi-1}{4}$ (c) $\frac{\pi-2}{4}$ (d) $\frac{\pi-1}{2}$
- 9) The area (insq.units) of the region A = $\{(x, y) : x^2 \le y \le x + 2\}$ is: [JEE M 2019-9 April(M)]

 - (a) $\frac{10}{3}$ (b) $\frac{9}{2}$ (c) $\frac{31}{6}$ (d) $\frac{13}{6}$