

MAS: Betriebssysteme

Interruptverarbeitung in Betriebssystemen

T. Pospíšek

Gesamtüberblick

- 1. Einführung in Computersysteme
- 2. Entwicklung von Betriebssystemen
- 3. Architekturansätze
- 4. Interruptverarbeitung in Betriebssystemen
- 5. Prozesse und Threads
- 6. CPU-Scheduling
- 7. Synchronisation und Kommunikation
- 8. Speicherverwaltung
- 9. Geräte- und Dateiverwaltung
- 10. Betriebssystemvirtualisierung

Zielsetzung

- Konzepte und Abläufe der Interruptverarbeitung in Betriebssystemen kennenlernen und verstehen
- Unterscheidung der verschiedenen Interrupt-Klassen vornehmen können
- Ablauf eines asynchronen Interrupts erläutern können
- Ablauf eines (synchronen) Systemcalls erläutern können

Überblick

1. Begriffe und Klassifizierung

- 2. Zusammenspiel der Komponenten
- 3. Systemdienste und Systemcalls

Polling

Polling => Busy Waiting (aktives Warten)

```
while() {
    for (alle Geräte) {
        if (Gerät[i].Ready-Bit == 1 ) {
             doAction();
        }
    }
}
Ready-Bit = 1 bedeutet, Gerät ist bereit, es sind z.B. Daten abzuholen
```


Polling

- Polling ist eine problematische Technik
- "Code Smell"

- Verallgemeinerung des Problems:
 - Kooperation und Synchronisation
 - Pull vs Push

Interrupt

- Interrupt = Unterbrechung = Trap
- Abgrenzung zu Polling
 - Kein aktives Abfragen von Ereignisquellen
- Gründe für Interrupts:
 - Betriebssystembedingungen
 - Asynchrone Ereignisse
- Verursacher: Hardware oder Software
- Abschaltung (Maskierung) von Interrupts ist möglich, sollte aber für sehr kurze Zeit sein
 - Manchmal unbedingt erforderlich (siehe später → Interrupt Service Routinen)

Synchron und asynchron

- Synchrone Interrupts: Von der CPU ausgelöste Ausnahmen (für das laufende Programm gedacht)
 - Division durch 0
 - Speicherzugriffsverletzung
- Asynchrone Interrupts: Treten unabhängig davon auf, was das System gerade ausführt
 - Netzwerkadapter meldet ankommende Nachricht
 - Plattenspeicher meldet Zustellung eines Blocks

Interrupt-Klassifizierung

Überblick

- 1. Begriffe und Klassifizierung
- 2. Zusammenspiel der Komponenten
- 3. Systemdienste und Systemcalls

Interrupt-Bearbeitung: Zusammenspiel

- Interrupts führen dazu, dass Code außerhalb des normalen Programmflusses ausgeführt wird
- Steuerung wird an eine definierte Position im Kernel übergeben
 - → Interrupt-Service-Routine (ISR)

Interrupt-Bearbeitung: Befehlszyklus

- Prüfung, ob Interrupt anliegt, ist Teil des Befehlszyklus
- Prüfung am Ende eines Maschinenbefehls

- Bei Multiprozessoren bzw. Mehrkernprozessoren:
 - Dispatching eines
 Prozessors/Kerns notwendig, um anstehenden Interrupt zu bearbeiten

Interrupt-Vektor-Tabelle und Adressierung

- Interrupt Request (IRQ) wird vom Gerät gesendet und identifiziert das Gerät
- Abbildung IRQ → Int-Nr durch Hardware in einem Interrupt Controller
 - Int-Nr ist der Index f\u00fcr die Interrupt-Vektor-Tabelle (IVT)
 - Die IVT wird über die CPU adressiert
- IVT-Aufbau durch Prozessor vorgegeben:
 - Bei Intel 256 IVT-Einträge für Exceptions,
 Systemcalls (Traps) und Geräteinterrupts

Interrupt-Service-Routine (ISR)

Interrupt-Bearbeitung: Ablauf

Speichern des Zustands bei Interrupt

- damit Interrupt bearbeitet werden kann ohne das ausgeführte Programm zu beeinflussen, muss dessen Zustand abgespeichert werden
- manche Prozessoren machen dies automatisch und haben dafür einen eigenen, speziellen Stack
- bei anderen Prozessoren muss der Interrupt-Handler den Zustand selbst abspeichern

Beispiel: Intel 8259A-Controller

- Intel 8259A PIC = Programmable Controller = Multiplexer für Hardware-Interrupts
 - Ein integrierter Schaltkreis zur Verwaltung mehrerer Hardware-Interrupts
 - Aufgabe: Überwacht Interrupt-Leitungen (IRQ), speichert sie und gibt sie an die CPUs weiter
 - 8 Interrupt-Eingänge: Eingang 0 hat höchste Priorität
 - Seit IBM PC XT eingesetzt (1983)
 - Oft wurden zwei PICs in einem PC genutzt

Neuere Versionen

Bild: https://en.wikipedia.org/wiki/File:Ibm_px_xt_color.jpg

- APIC = Advanced PIC mit 256 Interrupt-Eingängen wird bei x86-Architekturen eingesetzt
- SAPIC = Streamlined Advanced Programmable Interrupt Controller wird bei IA64-Architekturen eingesetzt

Gerät - Interrupt-Controller - CPU - Betriebssystem

Übertragung der Interrupt-Request-Nummer, Mapping IRQ→ Int-Nr.

Beispiel: Intel 8259A-Controller

Innenleben Intel 8259A, vereinfacht

Beispiel: Intel 8259A-Controller kaskadiert aw

- PIC = Programmable Interrupt Controller
- APIC = Advanced PIC

Interrupt-Dispatching bei Mehrkernprozessoren

 Dispatching-Algorithmus im Interrupt-Dispatcher wählt einen Kern aus, der den Interrupt bearbeiten soll

Fallbeispiel: Windows, Interrupt-Bearbeitung (1)

Interrupt-Service-Routinen

Fallbeispiel: Windows, Interrupt-Bearbeitung (2)

- Windows hat eine eigene Interrupt-Verwaltung
- Über sog. Interrupt Request Levels (IRQL) ordnet der Kernel den Interrupts eigene Prioritäten zu
- Nur Interrupts mit h\u00f6herem IRQL k\u00f6nnen Interruptbearbeitung auf niedrigerem IRQL unterbrechen
- Über eine Interrupt Dispatch Tabelle (IDT) wird festgehalten, welche ISR für welchen Interrupt zuständig ist

Fallbeispiel: Windows, Interrupt-Bearbeitung (3)

Interrupt Request Levels (IRQLs) in der IA32-Architektur

IRQL	Bezeichnung	Beschreibung
31	High-Level	Maschinen-Check und katastrophale Fehler
30	Power-Level	Strom/Spannungsproblem
29	IPI-Level	Interprocessor Interrupt
28	Clock-Level	Clock-Interrupt
27	Sync-Level	Prozessorübergreifende Synchronisation
3-26	Device-Levels	Abbildung auf IRQs der Geräte je nach verbautem Interrupt-Controller
2	Dispatch/DPC-Level	Dispatching und Ausführung von Deferred Procedure Calls
1	APC-Level	Ausführung von Asynchronous Procedure Calls nach Ein-/Ausgabe-Requests
0	Passive-Level	Normale Threadausführung

Fallbeispiel: Windows, Interrupt-Bearbeitung (4)

Interrupt Request Levels (IRQLs) in der x64und der IA64-Architektur

IRQL	Bezeichnung	Beschreibung
15	High-Level	Maschinen-Check und katastrophale Fehler
14	Power-Level	Strom/Spannungsproblem und Interprozessor-Interrupt
13	Clock-Level	Clock-Interrupt
12	Synch-Level	Prozessorübergreifende Synchronisation
3-11	Device-Levels	Abbildung auf IRQs der Geräte je nach verbautem Interrupt-Controller
2	Dispatch/DPC- Level	Dispatching und Ausführung von Deferred Procedure Calls
1	APC-Level	Ausführung von Asynchronous Procedure Calls
0	Passive-Level	Normale Threadausführung

Fallbeispiel: Windows, Interrupt-Bearbeitung (5)

...

Abarbeitung in IRQL 2

IRQL-Nutzung am Beispiel, Singleprozessor

Fallbeispiel: Windows, Interrupt-Bearbeitung (6)

- Bei x86-Systemen unterbricht der Interrupt-Controller (meist 8259-Baustein) die CPU auf einer Leitung (Hardware)
- Die CPU fragt den Controller ab, um eine Unterbrechungsanforderung (IRQ) zu erhalten (Hardware)
- Interrupt-Controller übersetzt IRQ in eine Interrupt-Nummer (Hardware)
- Aus Interrupt-Nummer wird IRQL ermittelt (Software, Windows)
- Die IDT enthält Adresse der anzustoßenden Interruptverteilroutine

Fallbeispiel: Windows, Interrupt-Bearbeitung (7)

- Interruptverteilroutine wird aufgerufen und ermitteln die Adresse der ISR
- ISR wird aufgerufen
- ISR erzeugt meist nur ein **DPC-Objekt** (Deferred Procedure Call) und hängt es in eine DPC-Queue ein
 - Kurze Bearbeitungszeiten in der ISR wird angestrebt
 - Kurze Bearbeitung in hoher Prioritätsstufe (IRQL)
 - Systembelastung gering halten
- DPC-Routine wird dann später mit niedrigerer Priorität (IRQL = 2) aufgerufen und ist unterbrechbar(er)

Fallbeispiel: Windows, APC-Bearbeitung (8)

- APC = Asynchronous Procedure Call
- Anwendungsbeispiel:
 - Bei read-Aufrufen an eine Festplatte wird die Threadbearbeitung zunächst unterbrochen
 - Nachdem der read-Aufruf vom Kernel abgearbeitet wurde, wird ein APC-Objekt erzeugt und in die APC-Queue des rufenden Threads eingehängt
 - Die nachfolgende Bearbeitung der APC-Queue erfolgt dann mit IRQL 1
- Je eine APC-Queue pro Thread im Kernel- und im Usermodus, je nachdem, von wo der read-Aufruf abgesetzt wurde

Hinweis: Threads sind leichtgewichtige Prozesse (später mehr dazu)

Fallbeispiel: Linux

- Linux nutzt auch eine Tabelle mit Referenzen auf die Interrupt-Handler (ISR)
- Jeder Interrupt-Request wird auf eine Interrupt-Nummer (= Index in der Tabelle) abgebildet
- Meist wird in der ISR nur ein Tasklet erzeugt
- Tasklets dienen der schnellen Behandlung von Interrupts (ähnlich dem Windows-DPC-Mechanismus)

Fallbeispiel: Linux, Interrupt-Vektor-Tabelle

Die Interrupt-Vektor-Tabelle ist im System wie folgt definiert:

```
extern irq_desc_t irq_desc [NR_IRQS];
```

Aufbau eines Tabelleneintrags:

Fallbeispiel: Linux, Action-Liste

- action = Action-Descriptor, Struktur mit
 Verweis auf eigentliche ISR
- Verkettete Liste

```
struct irqaction {

// Verweis auf Interrupt-Service-Routine
void (*handler)(int, void *, struct pt_regs *);

unsigned long flags;
const char *name
void *dev_id;
// Eigenschaften des Interrupt-Handlers
// Name des Interrupt-Handlers
void *dev_id;
// Eindeutige Identifikation des
// Interrupt-Handlers
struct irqaction *next;
// Verweis auf nächsten Eintrag in der
// Action-Liste
};
```

Fallbeispiel: Linux, Datenstrukturen im Kernel

Überblick

- 1. Begriffe und Klassifizierung
- 2. Zusammenspiel der Komponenten
- 3. Systemdienste und Systemcalls

Wiederholung: Interrupt-Klassifizierung

Dienste des Betriebssystems

- Anwendungsprogramme nutzen die **Dienste** des Betriebssystems, die über sog. Systemcalls aufgerufen werden
- Wohldefinierte Einsprungpunkte ins Betriebssystem
- Spezieller Aufrufmechanismus für einen Systemcall
 - Software-Interrupt (als Trap bezeichnet) oder
 Supervisor Call (SVC)
 - Vorteil: Anwendungsprogramm muss Adressen der Systemroutinen nicht kennen
- Alle Systemcalls zusammen bilden die Schnittstelle der Anwendungsprogramme zum Betriebssystemkern
 - Zugang zu Systemcalls wird meist in Bibliotheken bereitgestellt

Umschaltung in den Kernelmodus

- Systemcalls werden im **Kernelmodus** ausgeführt
- Beim Aufruf wird durch den Prozessor vom Usermodus in den Kernelmodus umgeschaltet

Systemcall-Ablauf

Befehlsfolge eines Systemaufrufs

Systemcall-Ablauf unter Linux/x86-CPUs (1)

```
x86-Befehl:
int n
             // Aufruf des Interrupts mit der Interrupt-Vektor-Nummer n
int $0x80
             // Trap, Systemcall
C-Code:
main()
open("mandl.txt",1); // Datei zum Lesen öffnen
Maschinencode: (gcc-Compiler):
.LCO:
.string "mandl.txt"
.text
.globl main
main:
call open
```


Systemcall-Ablauf unter Linux/x86-CPUs (2)

Open-Routine in der Linux C-Library:

```
_libc_open:
...

mov 0xc(%esp,1), %ecx // Parameter für Open in Register laden

mov ...

mov $0x5, %eax // Systemcall-Code für open-Funktion

int $0x80 // Systemcall

// - CS (Code Segment) Register auf Stack gepusht

// - IP (Instruction Pointer) auf Stack gepusht

...

iret // zurück aus dem Interrupt zum Aufrufer

// - CS und IP werden von Stack gepopt
```

- Interrupt-Vektor-Nummer \$0x80 ist Index f\u00fcr die Adressierung der Interrupt-Vektor-Tabelle (IVT)
- (CS,IP) → Adresse der nächsten Anweisung

Systemcall-Ablauf unter Linux/x86-CPUs (3)

- IVT = Interrupt-Vektor-Tabelle,
- SVR = Serviceroutine, bearbeitet Systemcall
- Systemcall-Tabelle verweist auf Implementierungen der Systemdienste

Systemcall-Ablauf unter Linux: Sequenzdiagramm

 Systemcall-Tabelle enthält alle Verweise auf Systemcalls (struct sys_call_table)

Systemcall-Ablauf unter Linux: Sequenzdiagramm

Anwendungs programm

C-Library

Kernel-Verteilroutine Syscall-Impl. für open()

Usermode

Kernelmode

 Systemcall-Tabelle enthält alle Verweise auf Systemcalls (struct sys_call_table)

Vergleichbare Befehle in anderen Prozessoren

- EPC-Befehl = Enter Privileged Mode in IA64
 - Übergabe von max. 8 Parametern in Registern und die restlichen Parameter im Kernelstack
- syscall-Befehl in x64
 - Übergabe der Systemcall-Nr. im EAX-Register
 - Max. 8 Parameter in Registern und die restlichen Parameter im Kernelstack
- sysenter-Befehl in x86 Pentium II
- SVC-Befehl in ARM-Architektur
 - früher SWI = Software-Interrupt

Systemcalls bei POSIX

- Systemcalls sind standardisiert in IS 9945-1
- POSIX-Konformität erfüllen die meisten Unix-Derivate

Beispiele:

fork() : Prozesserzeugung

- execve() : Aufruf eines Programms

- exit() : Beenden eines Prozesses

- open() : Datei öffnen

- close() : Datei schließen

- read() : Daten aus Datei lesen

write() : Daten in Datei schreiben

POSIX = **P**ortable **O**perating **S**ystem Unix

Systemcalls bei Win32-API

- In Windows-Systemen sind die Systemcalls in der Windows-API (Application Programming Interface) definiert
- Es gibt einige 1000 API-Funktionen, einige davon sind Systemcalls
- Beispiele:
 - CreateProcess(): Prozesserzeugung
 - exitProcess(): Beenden eines Prozesses
 - CreateFile(): Erzeugen und Öffnen einer Datei
 - CloseHandle(): Datei schließen
 - ReadFile(): Daten aus Datei lesen
 - WriteFile(): Daten in Datei schreiben

Systemcall-Ablauf unter Windows

Überblick

- 1. Begriffe und Klassifizierung
- 2. Zusammenspiel der Komponenten
- 3. Systemdienste und Systemcalls

Zusammenfassung Interruptverarbeitung

- Polling und Interrupts
- Synchrone und asynchrone Interrupts
- Interrupt-Requests (IRQ) und Interrupt-Bearbeitung
- Interrupt-Vektor-Tabelle (IVT) zur Adressierung von Interrupt-Service-Routinen (ISR) für synchrone und asynchrone Interrupts
- Systemcalls = synchrone Software-Interrupts, (oft auch, etwas verwirrend als Traps bezeichnet)

Gesamtüberblick

- ✓ Einführung in Computersysteme
- Entwicklung von Betriebssystemen
- ✓ Architekturansätze
- ✓ Interruptverarbeitung in Betriebssystemen
- 5. Prozesse und Threads
- 6. CPU-Scheduling
- 7. Synchronisation und Kommunikation
- 8. Speicherverwaltung
- 9. Geräte- und Dateiverwaltung
- 10. Betriebssystemvirtualisierung