Recall: the tensor product: a vector space VBW and a bilinear map VxW->VBW

if Se3 SG3 have I Value Sca G3 have EVBW

(v,w) +> VBW

· if {ei}, {fi} boses of V and W, {ei@fi} basis of VOW

• {bilinear maps $V*W \longrightarrow U$ } \simeq { linear maps $V*W \longrightarrow U$ } b(V,W) \simeq $\varphi(V*W)$

· rank of a tensor = minimal # of pure tensors needed to express it as \(\subseteq \tensors \) i=1

• $V^e \otimes W \simeq Hom(V, W)$ $l \otimes w \mapsto (v \mapsto l(v)w)$ $e_i^* \otimes f_j \mapsto linear map where makes has 1 in partial (j, i), 0 everywhere else.$

· V" ⊗ W" ~ (V ⊗ W)" ~ { bilinear maps V ∈ W → k}

- Hom(V, W) ≈ V^{*}⊗W ≈ (W^{*})^{*}⊗V^{*}≈ Hom(W^{*}, V^{*})
 This is achially the <u>transpose</u> conduction φ∈ Hom(V, W) +> φ[†]: W^{*}→V^{*}.
 (easiest to check on rank 1 φ(v) = l(v) w «> φ[†](α) = α·φ = α(w) l = ev (α) l)
 low «> ev ω l.
- We can now properly define the trace of a linear operator! In "ordnary" linear algebra classes, one define the trace of an norm matrix $A = (a_{ij})$ to be $tr(A) = \sum_{i=1}^{n} a_{ii}$ sum of diagonal entries, then noting that $tr(AB) = \sum_{i=1}^{n} a_{ij}b_{ji} = tr(BA)$ we have tr(P'AP) = tr(A) and so the trace of $T:V \rightarrow V$ is defined to be the trace of M(T) in any basis. We could also try to define the trace via eigenvalues and their multiplicities, over an alg. closed field: in a basis where M(T) is thingular it is manifest that $tr(T) = \sum_{i=1}^{n} \lambda_i$
- We can do better (conceptually), by using $Hom(V,V) \simeq V \otimes V$, and the contraction linear map $V'' \otimes V \longrightarrow k$. Namely, there's a natural bilinear pairing $ev: V'' \times V \longrightarrow k$ and it determines $tr: V \otimes V \longrightarrow k$ (l, $v) \mapsto l(v)$ on pure tensors, $l \otimes v \mapsto l(v)$. This is indeed equivalent to the usual def^{-1} : Choosing a basis (e_i) and the dual basis (e_i) , $tr(e_i \otimes e_j) = e_i(e_j) = \delta_{ij} \iff trace of the matrix with single entry 1 in ps. <math>(j,i)$.

Symmetric algebra:

Remember: we've seen the space of bilinear forms $B(V) \simeq V^* \otimes V^*$ decomposes into $B(V) = B_{symm} \oplus B_{skew}$ (symmetric & skew-symme bilinear forms).

Equivalently: there is an involution $\varphi \colon B(V) \to B(V)$ taking $b(x,y) \mapsto b(y,x)$ or an $V^* \otimes V^* \colon l \otimes l \mapsto l' \otimes l$. φ has eigenvalues ± 1 and eigenspaces $\ker(\varphi - I) = B_{symm}$, $\ker(\varphi + I) = B_{skew}$.

Ue can also do the same on higher tensor powers of V or V^* (the latter = multilizer forms).

There is an arthorn of the symmetric group S_d on $V^{\otimes d}$, i.e. each permutation $\sigma \in S_d$ defines a linear map $V^{\otimes d} \xrightarrow{\sigma} V^{\otimes d} + l'$ this defines a group homomorphism $S_d \to Aut(V^{\otimes d})$ $V_l \otimes ... \otimes V_d \mapsto V_{\sigma(l)} \otimes V_{\sigma(d)} + M_{\sigma(l)} \otimes V_{\sigma(d)} \otimes V_{\sigma(d)} = \{symmetric tensors\} \subset V^{\otimes d} \ subsequent$

eg. Sym (V") = { symmetric multilinear forms m: Ve... «V -> k}

ie. m(v₆₍₁₎,...,v_{6(d)}) = m(v₁,...,v_d)

If char(k)=0, the symmetric part of a tensor can be determined by (3) averaging: $\alpha: V^{\otimes d} \longrightarrow Sym^{d} V$ linear on pure tensors, $\alpha(v_{1}\otimes...\otimes v_{d}) = \frac{1}{d!} \sum_{\sigma \in Sd} v_{\sigma(1)} \otimes...\otimes v_{\sigma(d)}$.

* Shill assuming char(k)=0, we could instead define $Syn^{d}(V)$ as the quotient of

* Still assuming char(k)=0, we could instead before Synd(V) as the quotient of Vod by the subspace spanned by elements of the form y-o(y), yeVod 6 ESd explicitly v, & V_2 & V_3 & . & V_2 & V_3 & . & V_4 & same for swapping (since transpositions generate Sd)

The factors.

This is liftered from (but isomorphic to) the presions definition

* to settle the question of which definition (as quotient us subspace of VOd) is Letter: the best def- is again by a universal property.

Recall V^{od} comes with a multilear map $\mu: V^d \to V^{\text{od}}$ and is characterized by:

Hom $(V^{\text{od}}, U) \simeq \{\text{relities map}; V^d \to U\}$ using $\gamma \mapsto \gamma \circ \mu$

Now Symd V comes with a symmetric multilinear map Vd-s Symd V and is characterized by:

Hom (Symd V, U) = { symmetric multilinear Vd-sU}.

* The product operations $V^{\otimes k} \times V^{\otimes l} \longrightarrow V^{\otimes k+l}$ induce a product $Sym^k V \times Sym^l V \longrightarrow Sym^{k+l} V$ (using \otimes followed by averaging \propto).

These combine to a product operation on $Sym(V) := \bigoplus Sym^d(V)$, called the symmetric algebra of V.

Syn'(V) is a commotive ring (+ vector space over k: a k-algebra)

(check: product is shill accorative depite symmetrization by averaging: $\alpha(\alpha(u\otimes v)\otimes w) = \alpha(u\otimes \alpha(v\otimes w)) = \alpha(u\otimes v\otimes w)$)

Concretely: if $e_1 \dots e_n$ basis of V, then $Syn^*(V) = k[e_1 \dots e_n]$ polynomial expressions in formal variables $e_1 \dots e_n$.

(simply: denoting $\propto (e_{i_1} \otimes ... \otimes e_{i_k})$ by $e_{i_1}...e_{i_k}$ and considering finite linear combinations of all these)

More explicitly: if e_1 ... e_n basis of V, then any linear form on V. $l \in V^{\kappa}$, is of the form $v = \sum x_i e_i \longmapsto \ell(v) = \sum a_i x_i$ deg 1 polynomial

Symmetric multitrear forms $\eta \in Sym^d V^*$ are, likewisk, polynomials (with only degree d terms): $v = \sum x_i e_i \mapsto \eta(v_1...,v) = \sum a_{i_1...i_d} x_{i_1...i_d} x_{i_2...x_{i_d}}$.

So: $Sym^*(V^*) \simeq k[x_1,...,x_n]$ polynomials in a variables (where, by a sleight of hand, x_i denotes the in coordinate of a vector in V as a linear (degree 1 polynomial) function on V, i.e. really this is another name for $e_i^* \in V^*$.)

Exterior algebra: do the same thing for skew-symmetric, also attending, multilinear forms.

Def: $\gamma \in V^{\text{od}}$ is alterating if $\sigma(\gamma) = (-1)^{\sigma} \gamma$ $\forall \sigma \in S_d$. $\Lambda^d(V) = \{\text{alterating tensors}\} \subset V^{\text{od}}$ sign of $\sigma :: -1$ for transpositions a probable of odd # of them.

. In characteristic zero, we can view $\Lambda^d(V)$ as the image of steer-symmetrization operator $\beta: V \otimes d \longrightarrow \Lambda^d(V)$

 $\beta(v_1 \otimes ... \otimes v_d) = \frac{1}{d!} \sum_{\sigma \in S_d} (-1)^{\sigma} v_{\sigma(1)} \otimes ... \otimes v_{\sigma(d)} \cdot = : v_1 \wedge ... \wedge v_d.$

This is zero whenever $v_i = v_j$ for some $i \neq j$... and so by multilinearity, whenever $v_i ... v_d$ are linearly dependent. Thus $\Lambda d(V) = 0$ whenever d > lin V!

· Alternative definitions $\Lambda^d(V) = quotient of V^{\otimes d}$ by the subspace spanned by $v_1 \otimes v_2 \otimes v_3 \otimes ... \otimes v_d + v_2 \otimes v_1 \otimes v_3 \otimes ... \otimes v_d$ and similarly for suapping any two factors

Oc: $\Lambda^d(V)$ with sace elemetrical

Or: $\Lambda^{d}(V)$ vector space with an alterating multilinear map $V \times ... \times V \longrightarrow \Lambda^{d} V$ $(v_1 \wedge v_2 = -v_2 \wedge v_4) \mapsto v_4 \wedge ... \wedge v_d$ $(v_1 \wedge v_2 = -v_2 \wedge v_4) \mapsto v_4 \wedge ... \wedge v_d$

and univeral for alterating multilinear maps on Vx.xV.

- · If (e,,, en) are a basis of V then eign. neig, i, <... < id basis of NV.
- We have a product $\Lambda^k V \sim \Lambda^k V \longrightarrow \Lambda^{k+\ell} V$ induced by tenor algebra + skew symmetrization. $(v_1 \wedge ... \wedge v_k) \wedge (w_1 \wedge ... \wedge w_\ell) = v_1 \wedge ... \wedge v_k \wedge w_1 \wedge ... \wedge v_\ell$.

This makes the exterior algebra $\bigwedge^{o}V = \bigoplus_{d \geq 0} \bigwedge^{d}V$ into a (skew-commutative) ring ie. if $\gamma \in \bigwedge^{b}V$, $\xi \in \bigwedge^{b}V$ then $\gamma \wedge \xi = (-1)^{b}U \xi \wedge \gamma$. (check: $\dim \bigwedge^{o}V = 2^{\dim V}$)