Artificial Intelligence EDAP01

Lecture 8.2: Natural Language for Communication

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

February 12, 2021

Syntax

Grammar is the focus of natural language processing in the textbook (Russell and Norvig 2010, Chapter 23).

Two main (modern) traditions: constituent grammars (Chomsky, main advocate) and dependency grammars (Tesnière).

Constituent grammars are still dominant for English, although declining. But they do not work well for Swedish, as well as many other languages.

Dependency grammars are more or less universal

Phrase-Structure Grammars
Probabilistic Context-Free Grammars
Semantic Parsing
Dependency Grammars

Constituents

The waiter brought the meal to the table The waiter brought the meal to the day

Phrase-Structure Grammars Probabilistic Context-Free Grammars Semantic Parsing

Syntactic Trees

Phrase-Structure Grammars Probabilistic Context-Free Grammars Semantic Parsing Dependency Grammars

Syntactic Trees

Lexicon (DCG)

```
noun --> [stench] ; [breeze] ; [glitter] ; [nothing] ;
  [wumpus] ; [pit] ; [pits] ; [gold] ; [east].
verb --> [is] ; [see] ; [smell] ; [shoot] ; [feel] ;
  [stinks]; [go]; [grab]; [carry]; [kill]; [turn].
adjective --> [right]; [left]; [east]; [south]; [dead];
  [back]; [smelly].
adverb --> [here]; [there]; [nearby]; [ahead]; [right];
  [left] ; [east] ; [south] ; [back].
pronoun --> [me]; [you]; ['I']; [it]; [she]; [he].
pnoun --> ['John'] ; ['Mary'] ; ['Boston'] ; ['UCB'] ;
  ['PAJC'].
article --> [the]; [a]; [an].
preposition --> [to] ; [in] ; [on] ; [near].
conjunction --> [and]; [or]; [but].
 Pierre Nugues
                Artificial Intelligence EDAP01
                                               February 12, 2021
```

Grammar Rules (DCG)

```
s --> np, vp. % I + feel a breeze
s --> s, conjunction, s.
np --> pronoun. %I
np --> pnoun.
np --> noun. %pits
np --> article, noun. %the + wumpus
np --> digit, digit. %3 4
np --> np, pp. %the wumpus + to the east
np --> np, rel_clause. %the wumpus + that is smelly
vp --> verb. %stinks
vp --> vp, np. %feel + a breeze
vp --> vp, adjective. %is + smelly
vp --> vp, pp. %turn + to the east
vp --> vp, adverb. %go + ahead
```

Parsing and Generation

Parsing tells if a sentence is correct according to the grammar

```
?-s([the, wumpus, is, dead], []).
yes.
?- s([the, wumpus, that, stinks, is, in, 2, 2], []).
yes.
```

The parser can generate all the solutions

```
?- s(L, []).
L = [me, is];
L = [me, see];
L = [me, smell];
L = [me, shoot];
L = [me, feel];
L = [me, stinks];
```

Phrase-Structure Grammars Probabilistic Context-Free Grammar Semantic Parsing

The Prolog Search

Phrase-Structure Grammars Probabilistic Context-Free Grammars Semantic Parsing Dependency Grammars

Ambiguity

Left-Recursive Rules

```
np --> np, pp.
```

The sentence:

The wumpus in the pit is dead

traps the parser in an infinite recursion.

We can use auxiliary symbols to remove left recursion:

```
npx --> det, noun.
np --> npx.
np --> npx, pp.
```


Variables

Overgeneration:

```
?- s(X, []).

X = [me, is];

X = [me, see];

X = [me, smell];
```

Solution: Add variables to differentiate between subject and object pronouns.

```
s --> np(s), vp.
np(Case) --> pronoun(Case).
pronoun(s) --> [you] ; ['I'] ; [it]; [she]; [he].
pronoun(o) --> [me] ; [you] ; [it].
```

February 12, 2021

Probabilistic Context-Free Grammars

$$P(T, S) = \prod_{rule(i) \text{producing } T} P(rule(i)).$$

where

$$P(lhs \rightarrow rhs_i | lhs) = \frac{Count(lhs \rightarrow rhs_i)}{\sum_{j} Count(lhs \rightarrow rhs_j)}.$$

An Example of PCFG

Rules			Р	Rules			P
S	>	np vp	0.8	det	>	the	1.0
S	>	vp	0.2	noun	>	waiter	0.4
np	>	det noun	0.3	noun	>	meal	0.3
np	>	det adj noun	0.2	noun	>	day	0.3
np	>	pronoun	0.3	verb	>	bring	0.4
np	>	np pp	0.2	verb	>	slept	0.2
vp	>	v np	0.6	verb	>	brought	0.4
vp	>	v np pp	0.1	pronoun	>	he	1.0
vp	>	v pp	0.2	prep	>	of	SPAG SI
vp	>	٧	0.1	prep	>	to o	10.4VMQ
pp	>	prep np	1.0	adj	>	big (3)	407
						1) &	

Parse Trees of Bring the meal of the day

Parse trees

February 12, 2021

Computing the Probabilities

```
\begin{split} &P(T_1, \text{Bring the meal of the day}) = \\ &P(\textit{vp} \rightarrow \textit{v}, \textit{np}) \times P(\textit{v} \rightarrow \textit{Bring}) \times P(\textit{np} \rightarrow \textit{np}, \textit{pp}) \times \\ &P(\textit{np} \rightarrow \textit{det}, \textit{noun}) \times P(\textit{det} \rightarrow \textit{the}) \times P(\textit{noun} \rightarrow \textit{meal}) \times \\ &P(\textit{pp} \rightarrow \textit{prep}, \textit{np}) \times P(\textit{prep} \rightarrow \textit{of}) \times P(\textit{np} \rightarrow \textit{det}, \textit{noun}) \times \\ &P(\textit{det} \rightarrow \textit{the}) \times P(\textit{noun} \rightarrow \textit{day}) = \\ &0.6 \times 0.4 \times 0.2 \times 0.3 \times 1.0 \times 0.3 \times 1.0 \times 0.6 \times 0.3 \times 1.0 \times 0.3 = 0.00023328 \end{split}
```

Computing the Probabilities

Semantic Parsing

Converts sentences to first-order logic or predicate-argument structures Example:

Mr. Schmidt called Bill

to

```
called('Mr. Schmidt', 'Bill').
```

Assumption: We can compose sentence fragments (phrases) into logical

forms while parsing

This corresponds to the compositionality principle

February 12, 2021

Semantic Composition

Semantic composition can be viewed as a parse tree annotation

Getting the Semantic Structure

```
Bill rushed rushed ('Bill').
```

The verb rushed is represented as a lambda expression: $\lambda x.rushed(x)$ Beta reduction: $\lambda x.rushed(x)(Bill) = rushed(Bill)$ Lambda expressions are represented in Prolog as X^rushed(X).

> The patron ordered a meal ordered(patron, meal) ordered a meal ordered

X^ordered(X. meal) Y^X^ordered(X, Y)

The Current Approach: Dependencies

A graph of dependencies and functions:

Conventions: Each word has a head and the main word is linked to an artificial root:

Parsing Dependencies

Generate all the pairs:

Which sentence root?

Algorithms: Extensions to shift-reduce or graph optimization trained in

annotated corpora.

Corpora: https://universaldependencies.org/

Machine Translation

Natural language processing was born with machine translation Massive advance when the US government decided to fund large-scale translation programs to have a quick access to documents written in Russian

IBM teams pioneered statistical models for machine translation in the early 1990s

Their work that used the English (e) and French (f) parallel versions of the Canadian Hansards is still the standard reference in the field.

Parallel Corpora (Swiss Federal Law)

German	French	Italian
Art. 35 Milchtransport	Art. 35 Transport du	Art. 35 Trasporto del
	lait	latte
1 Die Milch ist schonend	1 Le lait doit être trans-	1 II latte va trasportato
und hygienisch in den	porté jusqu'à l'entreprise	verso l'azienda di trasfor-
Verarbeitungsbetrieb	de transformation avec	mazione in modo accu-
zu transportieren. Das	ménagement et con-	rato e igienico. Il veicolo
Transportfahrzeug ist	formément aux normes	adibito al trasporto va
stets sauber zu hal-	d'hygiène. Le véhicule	mantenuto pulito. Con
ten. Zusammen mit	de transport doit être	il latte non possono es-
der Milch dürfen keine	toujours propre. Il ne	sere trasportati raminali
Tiere und milchfremde	doit transporter avec	e oggetti eztranieli, che
Gegenstände trans-	le lait aucun animal ou	potrebbero preginde arms
portiert werden, welche	objet susceptible d'en	la qualità.
die Qualität der Milch	altérer la qualité.	

Alignment (Brown et al. 1993)

Canadian Hansard

Machine Translation Algorithms

A statistical model:

$$P(f,d|e) = \prod_{i} P(f_i|e_i)P(d_i),$$

where d measures the distortion, how much reassembling is needed from English to French.

Distortion has the form of a right-to-left or left-to-right shift. Steps to build a machine translation system:

- Build parallel corpora
- Segment and align sentences
- Align phrases
- Extract distortions
- Improve estimates

Recently, recurrent neural network architectures improved considerable the performance of machine translation.

Neural Networks: Representation

Another representation of the perceptron:

The base network: An input layer and an output layer

Neural Networks: Activation Function

And logistic regression:

The logistic function is the activation function of the node

Neural Networks: Hidden Layers

Demonstration: http://playground.tensorflow.org/

Recurrent Neural Networks

A simple recurrent neural network; the dashed lines represent connections.

The Unfolded RNN Architecture

The network unfolded in time. Equation used by implementations

$$\mathbf{y}_{(t)} = \mathsf{tanh}(\mathbf{W} \cdot \mathbf{x}_{(t)} + \mathbf{U} \cdot \mathbf{y}_{(t-1)} + \mathbf{b})$$

LSTMs

Simple RNNs use the previous output as input. They have then a very limited feature context.

Long short-term memory units (LSTM) are an extension to RNNs that can remember, possibly forget, information from longer or more distant sequences.

Given an input at index t, \mathbf{x}_t , a LSTM unit produces:

- ullet A short term state, called $oldsymbol{h}_t$ and
- ullet A long-term state, called ${f c}_t$ or memory cell.

The short-term state, \mathbf{h}_t , is the unit output, i.e. \mathbf{y}_t ; but both the long-term and short-term states are reused as inputs to the negative

February 12, 2021

The LSTM Architecture

An LSTM unit showing the data flow, where \mathbf{g}_t is the unit input jate, \mathbf{f}_t , the forget gate, and \mathbf{o}_t , the output gate. The functions have been omitted

Speech Recognition

Conditions to take into account:

- Number of speakers
- Fluency of speech.
- Size of vocabulary
- Syntax
- Environment

Structure of Speech Recognition

Words:

$$W = w_1, w_2, ..., w_n$$
.

Acoustic symbols:

$$A = a_1, a_2, ..., a_m,$$

$$\hat{W} = \arg\max_{W} P(W|A).$$

Using Bayes' formula,

$$P(W|A) = \frac{P(A|W)P(W)}{P(A)}.$$

Two-Step Recognition

Signals

Fourier Transforms

Time domain Frequency domain (Fourier Transforms)

Unit constant function: f(x) = 1

Delta function, perfect impulse at 0: $\delta(x)$ \longrightarrow

Speech Spectrograms

Speech Signals

The boys I saw yesterday morning

Speech Parameters

Recognition devices derive a set of acoustic parameters from speech frames.

Parameters should be related to "natural" features of speech: voiced or unvoiced segments.

A simple parameter giving a rough estimate of it: the energy: the darker the frame, the higher the energy.

$$E(F_k) = \sum_{n=m}^{m+N-1} s^2(n).$$

Linear prediction coefficients:

$$\hat{s}(n) = a(1)s(n-1) + a(2)s(n-2) + a(3)s(n-3) + \dots + a(m)s(n-1)$$

Extraction of Speech Parameters

Features are extracted every 10 ms over a 20 s frame

Automata

Markov Chains

Hidden-Markov Models

Solving Problems with Hidden-Markov Models

Given a hidden-Markov model, the main problems to solve are to:

- Estimate the probability of an observed sequence. It corresponds to the sum of all the paths producing the observation. It is solved using the forward algorithm.
- Determine the most likely path of an observed sequence. It is a decoding problem. It is solved using the Viterbi algorithm.
- Determine (learn) the parameters given a set of observations. It is used to build models to recognize speech. It is solved using the forward-backward algorithm.

February 12, 2021

HMM and Phones

Modeling phones: Simple model

A more complex model due to Lee

Neural Networks for Speech Recognition(I)

From 2015-2016, neural network architectures started to overtake HMM. Most current systems use variants of recurrent neural networks. A historical model from Waibel et al., Phoneme recognition using time-delay neural networks, 1989.

- Three phonemes B, D, and G
- An input vector consists of 16 melscale coefficients from a Fourier transform of a speech window of 10 ms: Energy at certain frequencies
- The context is modeled as a sequence of three such input vegtors.
- Two hidden layers

Neural Networks for Speech Recognition(II)

Fig. 1. A Time-Delay Neural Network (TDNN) unit.

From Waibel et al., Phoneme recognition using time-delay new networks. IEEE Transactions of Acoustics. Speech and Signal

Neural Networks for Speech Recognition (III)

From Waibel et al., Phoneme recognition using time-delay neutral

networks IFFE Transactions of Acoustics Speech and Signal Pierre Nugues Artificial Intelligence EDAP01 February 12, 2021