

Machine Learning

BITS Pilani

Pilani Campus

Dr. Monali Mavani

achieve

Disclaimer and Acknowledgement

- These content of modules & context under topics are planned by the course owner Dr. Sugata, with grateful acknowledgement to many others who made their course materials freely available online
- We here by acknowledge all the contributors for their material and inputs.
- We have provided source information wherever necessary
- Students are requested to refer to the textbook w.r.t detailed content of the presentation deck shared over canvas
- We have reduced the slides from canvas and modified the content flow to suit the requirements of the course and for ease of class presentation

Slide Source / Preparation / Review:

From BITS Pilani WILP: Prof.Sugata, Prof.Chetana, Prof.Rajavadhana, Prof.Monali,

Prof.Sangeetha, Prof.Swarna, Prof.Pankaj

External: CS109 and CS229 Stanford lecture notes, Dr. Andrew NG and many others who made their course materials freely available online

Contents

lead

• Evaluation metrics - classification

Actualy previoo

pravonensis von Text data = ? Musion Stalnaker MST-PMST-MAT-MAT-PL 2 Rati P2 Confusion matrix binan Zmilication

Confusion matrix: 2 by 2 table

What happened vs What should have happened

	Dron			
	→ML system says			
acted		Class=Yes	Class=No	
Ground	Class=Yes	a (TP)	(FN)	
truth	Class=No	(FP)	d (TN)	

Mistakes: FN and FP

Question: Which mistakes are worse than other mistakes?

• Accuracy is the fraction of predictions
our model got right. Formally, accuracy
has the following definition:

Number of correct predictions	15
Accuracy Total number of predictions	

• From rate Number of wrong predictions n also be calculated in terms of positives and negatives as follows:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy publisher of the second of the secon

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

chieve

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because this trivial model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	OTP	10
CLASS	Class=No	07-7	990 -> TN

Which model is better?

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Mileage (in kmpl)	Car Price (in cr)
9.8	High
9.12	Low
9.5	High
10	Low

Unsee	n Data	
Mileage	Car Pi	rice
(in kmpl)	(in c	r)
7.5	Higl	n
10	Low	,
		•

	PREDICTED		
		Class=Y	Class=N
ACTUAL	Class=Y	0	10 FM
	Class=N	0	990 J N

CarPrice =
$$\frac{\text{Model 1}}{1+e^{-8.5} + 0.5 \text{ Mileage} - 1.5 \text{ Mileage}^2}$$

Accuracy: 99%

Model 2
CarPrice =
$$\frac{1}{1+e^{5.5-1.5 \text{ Mileage}}}$$
Accuracy: 50%

Alternative Measures

	PREDICTED CLASS			
	Class=Yes Class=No			
ACTUAL	Class=Yes	a (TP)	b (FN)	
	Class=No	c (FP)	d (TN)	

Two widely used metrics used where successful detection of one of the classes is considered more significant than detection of the other classes

positives correct / # labelled positive

positives correct / # actually positive

- What proportion of positive identifications was actually correct?
- It is the accuracy of the positive predictions
- A model that produces no false positives has a precision of 1.0.
- A system with high precision might leave some good items out but, what it returns of high quality e.g. book recommender system, safe video recommender system for kids
- Also called *sensitivity* or true positive rate
- What proportion of actual positives was identified correctly?
- This is the ratio of positive instances that are correctly detected by the classifier
- A model that produces no false negatives has a recall of 1.0
- A system with high recall might give you lot of bad items but, it also returns most of the good items e.g robbing the shop, candidate hiring, detect shoplifters on surveillance images

- Sensitivity: the ability of a test to correctly identify patients with a disease.
- Specificity: the ability of a test to correctly identify people without the disease.

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN Rate = \frac{TN}{TN + FP}$$

	ML system says		
		Class=Yes	Class=No
Ground	Class=Yes	a (TP)	b (FN)
truth	Class=No	c (FP)	d (TN)

Precision and Recall

- Precision/recall tradeoff: increasing precision reduces recall, and vice versa.
- F_1 score:
 - Suitable for class imbalance cases
 - high F₁ score if both recall and precision are High
 - F-score of 1.0, indicating perfect precision and recall

	ML system says		
		Class=Yes	Class=No
Ground truth	Class=Yes	a (TP)	b (FN)
uaui	Class=No	c (FP)	d (TN)

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

Low FN rate

	ML system says		
Ground truth		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
uoui	Class=No	c (FP)	d (TN)

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	10 TP	0
	Class=No	10 FP	980

ŀ	Precision (p) = $\frac{10}{10+10} = 0.5$
	$\operatorname{Rec}_{\underline{all}(\mathbf{r})} = \frac{10}{10+0} = 1$
I	F - measure (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
ŀ	Accuracy $=\frac{990}{1000} = 0.99$

- FN to be minimized useRECALL
 - Want to make sure all people with cancer will be caught
- FP to be minimized use (Precision)
 - Want to say confidently that a person has cancer

	PREDICTED CLASS				
	Class=Yes Class=No				
ACTUAL CLASS	Class=Yes	1(19)	9		
	Class=No	0	990		

Precision (p) =
$$\frac{1}{1+0} = \frac{1}{1+0}$$

Recall (r) = $\frac{1}{1+9} \neq 0.1$
F - measure (F) = $\frac{2*0.1*1}{1+0.1} \neq 0.18$
Accuracy = $\frac{991}{1000} = 0.991$

Which Classifier is better? – SPAM email prediction

Low FP rate

	ML system says		
Ground		Class=Yes	Class=No
	Class=Yes	(T P)	b (FN)
truth	Class=No	(FP)	d (TN)

ľ		PREDICTED CLASS			
			Class=Yes	Class=No	
	ACTUAL	Class=Yes	10	0	
	CLASS	Class=No	10	980	

Precision (p) = $\frac{10}{10+10}$ = 0.5
Recall (r) = $\frac{10}{10+0}$ =1
F - measure (F) = $\frac{2*1*0.5}{1+0.5}$ = $\frac{0.62}{1}$
Accuracy $=\frac{990}{1000} = 0.99$

- FN to be minimized use RECALL
 - Want to make sure all SPAM emails are filtered
- FP to be minimized use PRECISION
 - Want to confidently say email is SPAM

	PREDICTED CLASS				
	Class=Yes Class=No				
ACTUAL CLASS	Class=Yes	1	9		
	Class=No	0	990		

Precision (p) =
$$\frac{1}{1+0}$$
 = 1
Recall (r) = $\frac{1}{1+9}$ = 0.1
F-measure (F) = $\frac{2*0.1*1}{1+0.1}$ = 0.18

Accuracy $=\frac{991}{1000} = 0.991$

Which Classifier is better? Low Skew

	PREDICTED CLASS			
	Class=Yes			
ACTUAL	Class=Yes	a (TP)	b (FN)	
	Class=No	c (FP)	d (TN)	

F1 score favors classifiers that have similar precision and recall i.e. low false positives and low false negatives

T1	PREDICTED CLASS		
		Class=Yes	Class=No
A OTHAI	Class=Yes	50 17	50
ACTUAL CLASS	Class=No	1	99 TN

	Precis				
100	TPR	$=$ R ϵ	ecall	(r)	=0.5
IM	FPR	= 0.0	01		

F1=0.94

F1=0.66

Precision (p) =
$$0.9$$

TPR = Recall (r) = 0.99
FPR = 0.1

Т3	PREDICTED CLASS			
	Class=No			
ACTUAL CLASS	Class=Yes	99	1	
	Class=No	1	99	

Precision (p) =
$$0.99$$

TPR = Recall (r) = 0.99
FPR = 0.01

F1=0.99

Which Classifier is better? Medium Skew case

	PREI	DICTED C	LASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

T1	PR	REDICTED CLA	SS	
		Class=Yes	Class=No	
AOTHAI	Class=Yes	50 TP	50	ia
ACTUAL CLASS	Class=No	10 F	990	10

Precisi	on	(p)	= 0.	83
TDD	D	11	()	

TPR = Recall
$$(r) = 0.5$$

$$FPR = 0.01$$

T2	PR	REDICTED CLA	SS
		Class=Yes	Class=No
	Class=Yes	99	1
ACTUAL CLASS	Class=No	100 FP	900

T3	PR	REDICTED CLA	SS	
		Class=Yes	Class=No	1
A OTHAL	Class=Yes	5 99 TP	1	1
ACTUAL CLASS	Class=No	LOFP	990	١

Precision
$$(p) = 0.9$$

TPR = Recall
$$(r) = 0.99$$

$$FPR = 0.01$$

Which Classifier is better? High Skew case

	T1	PR	REDICTED CLA	SS
			Class=Yes	Class=No
•	A OTHAL	Class=Yes	50	50
	ACTUAL CLASS	Class=No	100	9900

Precision	on	(p)	= 0.3	
TDD	D	11	()	

TPR = Recall (r) = 0.5

FPR = 0.01

F1=0.375

	T2	PF	REDICTED CLA	SS
			Class=Yes	Class=No
Ī		Class=Yes	99	1
	ACTUAL	Class=No	1000	9000

CLASS

Precision (p) = 0.09

TPR = Recall (r) = 0.99

FPR = 0.1

F1=0.165

T3	PR	REDICTED CLA	SS
		Class=Yes	Class=No
A OTHAL	Class=Yes	99	1
ACTUAL CLASS	Class=No	100	9900

Precision (p) = 0.5

TPR = Recall (r) = 0.99

FPR = 0.01

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
- TPR: fraction of positive examples predicted correctly by the mode
- *FPR:* fraction of negative examples predicted as a positive class

ROC Curve

sensitivity, recall, hit rate, or true positive rate (TPR)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

fall-out or false positive rate (FPR)

$$FPR = \frac{FP}{N} = \frac{(FP)}{FP + (TN)} = 1 - TNR$$

- Critical points along an ROC curve (TPR,FPR)
- (0,0): Model predicts every instance to be a negative class
- (1,1): Model predicts every instance to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class\
- Higher the recall (TPR), the more false positives

Comparing classifiers using AUC

Area Under Curve (AUC)

- Integrate Area under the curve
- Perfect score is 1
- Higher scores allow for generally better tradeoffs
- AUC of 0.5 indicates model is essentially randomly guessing
- AUC of < 0.5 indicates you're doing something wrong...
- Scikit-Learn provides a function to compute the ROC-AUC:

from sklearn.metrics import roc_auc_score

 For model comparison, AUC of ROC should be larger for the model to be superior or better performing

How to Construct an ROC curve

	M.	
Instance	Score	True Class
→ 1	0.95 +	+
2	0.93	+
3	0.87 +	-
4	> 0.85 _	<u>-</u>
5	0.85 _	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	_
10	0.25	+

- Use a classifier that produces a continuousvalued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

How to construct an ROC curve

ROC Curve: 0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Insta nce	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	r- :
8	0.53	+
9	0.43	100
10	0.25	+

- No model consistently outperforms the other
 - M1 is better than M2 when FPR is less than 0.36
 - *M*2 is superior when *FPR* is greater than 0.36

Example

The table below shows the probability value (column 3) returned by a probabilistic classifier for each of the 10 tuples in a test set, sorted by decreasing probability order. The corresponding ROC is given on right hand side.

	Tuple #	Class	Prob.	TP	FP	TN	FN	TPR	FPR
ᢣᢆ	1	P	0.90	Q	0	5	4	0.2	0
	2	P	0.80	2	0	5	3	0.4	0
	3	N	0.70	2	1	4	3	0.4	0.2
	4	P	0.60	3	1	4	2	0.6	0.2
	5	P	0.55	4	1	4	1	0.8	0.2
	6	N	0.54	4	2	3	1	0.8	0.4
	7	N	0.53	4	3	2	1	0.8	0.6
	8	N	0.51	4	4	1	1	0.8	0.8
	9	P	0.50	5	4	0	1	1.0	0.8
	10	N	0.40	5	5	0	0	1.0	1.0

Solution to Class Imbalance

Generate Synthetic Samples

- New samples based on the distances between the point and its nearest neighbors E.g. Synthetic Minority Oversampling Technique, or **SMOTE** class in sklearn
- Change the performance metric: Use Recall, Precision or ROC curves instead of accuracy
- Try different algorithms : Some algorithms as Support Vector Machines and Tree-Based algorithms may work better with imbalanced classes.

Logistic Regression – Additional Practice Exercises

CGPA	IQ	IQ	Job Offered
5.5	6.7	100	1
5	7	105	0
8	6	90	1
9	7	105	1
6	8	120	0
7.5	7.3	110	0

Hyper parameters:

Learning Rate = 0.8 Initial Weights = (-0.1, 0.2,-0.5) Regularization Constant = 10

For this similar problem discussed in class note that the hyper parameters are different

- 1. Formulate the gradient descent update equations for this problem
- 2. Repeat the GD for two iterations
- 3. Find the Loss at every iterations and interpret your observation
- 4. Using the results of second iteration answer below questions:
 - a) Interpret the influence of the CGPA in the response variable
 - b) Predict if a new candidates with IQ=5 and CGPA = 9 will be offered job or not?
- 5. Repeat the steps 2 to 4 by using stochastic gradient descent instead of batch gradient descent for 4 iterations. (Take any random sample from among 6 instances for these 4 iterations)

Evaluation of Classifiers-Additional Practice Exercises

Given below is a confusion matrix for medical data where the class values are yes and no for a class label attribute, cancer. Answer the following questions.

Classes	yes	no	Total	Recognition (%)
yes	90	210	300	30.00
no	140	9560	9700	98.56
Total	230	9770	10,000	96.40

Confusion matrix for the classes cancer = yes and cancer = no.

- 1. Calculate the Precision , Recall, F-Score, Error-rate, F-Score
- Brainstorm on the use case / scenarios w.r.t given example, where precision is preferred over recall.
- Brainstorm on the use case / scenarios w.r.t given example, where recall is preferred over precision.

References

- Ch 1,3 Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron
- Ch 5 Introduction to Data Mining by Pang-Ning Tan Michael Steinbach Vipin Kumar
- https://developers.google.com/machine-learning/crash-course/classification/rocand-auc