Graph Basics

- **□**Terminologies
- **□**Representations
- **□**Traversals

Seven Bridges of Königsberg

Data Structures

□ Königsberg in Prussia

- Kaliningrad, Russia
- Pregel River
- Two large islands
- Seven bridges

☐ Leonhard Euler [1735]

- Find a walk through the city that would cross each bridge once and exactly once
- The first paper in the history of graph theory

Wikipedia © P. 2

Seven Bridges of Königsberg

- $\square G = \{V, E\}$
 - − V(G): vertex set
 - -E(G): edge set
 - degree
 - **■Number of edges**
- **□** Vertex types
 - Odd or even degrees

$$\sum_{\mathbf{v_i} \in V(G)} \operatorname{degree}(\mathbf{v_i}) = |E(G)| \times 2$$

Seven Bridges of Königsberg

Data Structures

□ Eulerian path (trial) / Euler walk

- visits every edge exactly once
- 0 or 2 nodes with odd degrees (2

What if 1 node with odd degrees?

- begin and end at the same vertex
- 0 node with odd degrees
- **□** Seven bridge problem
 - Q&A?

$$\sum_{\mathbf{v_i} \in V(G)} \operatorname{degree}(\mathbf{v_i}) = |E(G)| \times 2$$

Basic Terminologies

Data Structures

- **□** Undirected graph
- ☐ Directed graph (digraph)
- **□** Adjacent vertices
- □ Edge is *incident* to vertices
- □ Path: a sequence of edges
- ☐ Cycle: begin & end at the same

vertex

- □ Simple path: a path that passes through any vertex only once
- ☐ Simple cycle: a cycle that passes through the other vertices only once

6 degrees of separation from the small world experiment

Basic Terminologies

Nata Structures

- □ Connected graph
 - There is a path between any two vertices
 - Disconnected graph
- \square Complete graph |E|=?
 - There is an edge between any two vertices
- ☐ Strong connected graph
 - For any two vertices on a digraph, there is a path from one vertex to the other
 - Q&A: how to decide it?
- **□** Weighted graph
 - the edges have numeric labels

connected components

Graphs As ADTs

- ☐ Variations of an ADT *graph* are possible
 - Vertices may or may not contain values
 - ■Many problems have no need for vertex values
 - **Relationships** among vertices is what is important
 - Either directed or undirected edges
 - Either weighted or unweighted edges
- ☐ Insertion and deletion operations for graphs apply to vertices and edges
- ☐ Graphs can have traversal operations

ADT graph Operations

```
int numVertices; /** Number of vertices in the graph. */
int numEdges; /** Number of edges in the graph. */
int getNumVertices();
int getNumEdges();
int getWeight(Edge e);
void add(Edge e);
void remove(Edge e);
bool isEdge(Vertex u, Vertex v);
int getDegree(Vertex v);
bool isConnected(Graph g);
edgeList traverse(Graph g);
```

Graph Representations

- **☐** Most common implementations of a graph
 - 1. Adjacency matrix
 - 2. Adjacency list
- Adjacency matrix for a graph that has n vertices numbered 0, 1, ..., n-1
 - An n by n array matrix such that matrix[i][j] indicates whether an edge exists from vertex i to vertex j

Adjacency Matrix: Examples

Data Structures

In-degree vs. Out-degree

	P	Q	R	S	T	W	X	Y	Z
P	0	0	1	0	0	1	0	0	0
Q	0	0	0	0	0	0	1	0	0
R	0	0	0	0	0	0	1	0	0
S	0	0	0	0	1	0	0	0	0
T	0	0	0	0	0	1	0	0	0
W	0	0	0	1	0	0	0	1	0
×	0	0	0	0	0	0	0	0	0
Y	0	0	1	0	0	0	0	0	1
\mathbf{Z}	0	0	0	0	0	0	0	0	0

Adjacency Matrix: Examples

- For an unweighted graph, matrix[i][j] is
 - $\blacksquare 1$ (or true) if an edge exists from vertex i to vertex j
 - $\blacksquare 0$ (or false) if no edge exists from vertex i to vertex j
- For a weighted graph, matrix[i][j] is
 - ■The weight of the edge from vertex i to vertex j
 - $\blacksquare \infty$ (or 0) if no edge exists from vertex *i* to vertex *j*

Adjacency List

- □ Adjacency list for a directed graph that has n vertices numbered 0, 1, ..., n-1
 - An array of n linked lists
 - The ith linked list has a node for vertex j if and only if an edge exists from vertex i to vertex j
 - The list's node can contain either
 - \blacksquare Vertex j's value, if any
 - \blacksquare An *indication* of vertex j's identity

Adjacency List: Examples

Graph Representations

Data Structures

- \square Two common operations on graphs is
 - isEdge(i,j)
 - 1. Determine whether there is an edge from vertex *i* to vertex *j*
 - 2. Find all vertices adjacent to a given vertex i
- **□** Adjacency matrix

getDegree(i)

- Supports operation 1 more efficiently
- **□** Adjacency list
 - Supports operation 2 more efficiently
 - Often requires less space than an adjacency matrix

Practice 1: Adjacency List

Data Structures

□ Draw the *Inverse* Adjacency List

predecessors

Other Graph Representations

Data Structures

■ Mapping from vertex labels to array indices

PQRSTWXYZ 0 1 2 3 4 5 6 7 8

□ Sequential representation

undirected graph: |V|+2|E|+1

Other Graph Representations

Nata Structures

■ Mapping from vertex labels to array indices

ABCD

0 1 2 3

Q&A:
$$[loc] \rightarrow (u,v)$$
?

□ Lower triangular matrix for undirected graph

$$[0] \Leftrightarrow (1,0): 1$$

[0]
$$\Leftrightarrow$$
 (1,0): 1 $(u,v) \rightarrow loc = u*(u-1)/2 + v$

$$[1] \Leftrightarrow (2,0)$$
: 1

$$[2] \Leftrightarrow (2,1): 1$$

$$[3] \Leftrightarrow (3,0): 0$$

$$[4] \Leftrightarrow (3,1): 1$$

$$[5] \Leftrightarrow (3,2): 0$$

	A	В	C	D	
Α	0	1	1	0	
В	1	0	1	1	
C	1	1	0	0	
D	0	1	0	0	

Self-exercise 1

Data Structures

1. Assume that each character, integer or address needs M bytes. Estimate the sizes of the **adjacency matrix** and the **adjacency list** to decide which requires less memory.

	•								
_	P	Q	R	S	T	W	X	Y	Z
P	0	0	1	0	0	1	0	0	0
Q	0	0	0	0	0	0	1	0	0
R	0	0	0	0	0	0	1	0	0
S	0	0	0	0	1	0	0	0	0
T	0	0	0	0	0	1	0	0	0
W	0	0	0	1	0	0	0	1	0
×	0	0	0	0	0	0	0	0	0
Y	0	0	1	0	0	0	0	0	1
Z	0	0	0	0	0	0	0	0	0

Self-exercise 1

Data Structures

2. Draw the **sequential representation** (a single array) of the following graph.

[0]	[1]	[2]	• • •
?	?	?	• • •

