UNIVERSITÉ de BORDEAUX

ANNÉE UNIVERSITAIRE 2015/2016 Session 1 d'Automne

Master Sciences et Technologies, Mention Mathématiques ou Informatique

Spécialité Cryptologie et Sécurité Informatique

UE M1MA7W01 : Arithmétique

Responsable : M. Jean-Paul Cerri Date : 15/12/2015. Durée : 3h.

Exercice 1 - Soit p un nombre premier.

- 1) On se propose d'abord de démontrer que $X^4 + 1$ n'est pas irréductible dans $\mathbb{F}_p[X]$.
 - a) Examiner le cas p = 2.

On suppose désormais que p > 2.

- b) Montrer que $8 \mid p^2 1$.
- c) En déduire qu'il existe dans $\mathbb{F}_{p^2}^{\times}$ un élément d'ordre 8.
- d) Établir que dans $\mathbb{F}_{p^2}[X]$, le polynôme X^8-1 est scindé à racines simples.
- e) En déduire que $X^4 + 1$ a toutes ses racines dans \mathbb{F}_{p^2} et conclure.
- $p \equiv 1 \mod 8$, dans $\mathbb{F}_p[X]$ le polynôme $X^4 + 1$ est scindé (à racines simples si $p \neq 2$), et que sinon, il est produit de deux irréductibles de degré 2 de $\mathbb{F}_p[X]$.
- 3) Factoriser $X^4 + 1$ dans $\mathbb{F}_3[X]$ et dans $\mathbb{F}_{17}[X]$. Soit maintenant p un premier impair et soit P(X) un diviseur irréductible de $X^4 + 1$ dans $\mathbb{F}_p[X]$. Soit d son degré. On note K le corps $\mathbb{F}_p[X]/(P(X))$ et α la classe de X dans K.
 - 4) Quelle est la caractéristique de K? Quel est son cardinal?
 - 5) Montrer que $\alpha \in K^{\times}$ et que $(\alpha + \alpha^{-1})^2 = 2$.
 - 6) Montrer que 2 est un carré dans \mathbb{F}_p , i.e. il existe $x \in \mathbb{F}_p$ tel que $2 = x^2$, si et seulement si $\alpha + \alpha^{-1} \in \mathbb{F}_p$.
 - 7) Montrer que $\alpha^3 + \alpha^{-3} \neq \alpha + \alpha^{-1}$.
 - 8) En déduire que 2 est un carré dans \mathbb{F}_p si et seulement si $p \equiv \pm 1 \mod 8$.

Exercice 2 -

- 1) Soit $P(X) \in \mathbb{F}_5[X]$ défini par $P(X) = X^3 + X^2 + 2X + 2$. Factoriser P(X) dans $\mathbb{F}_5[X]$ et en déduire que l'anneau $A = \mathbb{F}_5[X]/(P(X))$ n'est pas un corps.
- 2) À l'aide du théorème chinois, déterminer le cardinal de A×.
- 3) Le groupe A× est-il cyclique?
- 4) Soit $Q(X) \in \mathbb{F}_5[X]$ défini par $Q(X) = X^3 + X^2 + 2$. Montrer que l'anneau $B = \mathbb{F}_5[X]/(Q(X))$ est un corps.
- 5) Combien y a-t-il de polynômes unitaires irréductibles de degré 3 dans $\mathbb{F}_5[X]$?
- 6) Combien y a-t-il de polynômes unitaires irréductibles primitifs de degré 3 dans $\mathbb{F}_5[X]$?
- 7) Le polynôme Q(X) est-il primitif? *Indication*: si α est la classe de X dans B, on pourra calculer α^4 puis α^{62} en se servant de l'automorphisme de Frobenius.
- 8) Soit d un entier naturel divisant $|B^{\times}|$. Combien y a-t-il dans B^{\times} d'éléments d'ordre d? Exprimer ces éléments en fonction de α .