

Introduction in Internet of Things

Georgios Z. PAPADOPOULOS

e-mail: georgios.papadopoulos@imt-atlantique.fr

web: www.georgiospapadopoulos.com

twitter: @gzpapadopoulos

youtube: www.youtube.com/c/gzpapadopoulos

OUTLINE

- 1. Introduction in Internet of Things
- 2. IoT-based Applications
- 3. Technical Overview
- 4. IEEE Std 802.15.4-2015 PHY
- 5. Characteristics & Challenges

1. What is loT?

Check the relevant video
"Introduction to Media Layers of IoT Protocol Stack"
on YouTube!

Things are using the Internet

The Internet of Things

Internet des objets (IoT) est un nouveau paradigme dans lequel les objets intelligents, connectés et identifiables de manière unique avec une adresse IPv6, construisent un réseau d'objets.

Ces éléments peuvent communiquer entre eux ou à travers l'infrastructure dans réseau existantant comme Internet.

Ils peuvent être déployés presque partout, dans les maisons, les hôpitaux, les villes, les champs agricoles, même sur les corps humains.

Sensor node architecture

Sensor node

Battery lifetime: some years

Battery lifetime: some years

Wireless sensor node

Bretagne-Pays de la Loire

École Mines-Télécom

2. IoT-Based Applications

LIGHT YOUR HOME IN NEW WAYS

LIGHT YOUR HOME IN NEW WAYS

AVOID DISASTERS

LIGHT YOUR HOME IN NEW WAYS

AVOID DISASTERS

HEAT YOUR HOME EFFICIENTLY (thermostat)

LIGHT YOUR HOME IN NEW WAYS

AVOID DISASTERS

HEAT YOUR HOME EFFICIENTLY (thermostat)

MAKE SURE THE OVEN IS OFF

TRACK DOWN THOSE LOST KEYS

LIGHT YOUR HOME IN NEW WAYS

AVOID DISASTERS

HEAT YOUR HOME EFFICIENTLY (thermostat)

MAKE SURE THE OVEN IS OFF

TRACK DOWN THOSE LOST KEYS

KEEP YOUR PLANTS ALIVE

https://www.youtube.com/watch?v=5Jxo7AGZmMw

KEEP STREETS CLEAN

KEEP STREETS CLEAN
STOP DRIVING IN CIRCLES

KEEP STREETS CLEAN

STOP DRIVING IN CIRCLES

RECEIVE POLLUTION WARNINGS

KEEP STREETS CLEAN

STOP DRIVING IN CIRCLES

RECEIVE POLLUTION WARNINGS

LIGHT STREETS MORE EFFECTIVELY

MAINTAIN QUALITY & REPAIR

MAINTAIN QUALITY & REPAIR

MONITOR

MAINTAIN QUALITY & REPAIR

MONITOR

KEEP TRACK OF YOUR ASSETS

IMT Atlantique Bretagne-Pays de la Loire http://www.postscapes.com/internet-of-things-examples/

MONITOR POLLUTION LEVELS

MONITOR POLLUTION LEVELS

HELP PROTECT WILDLIFE

MONITOR POLLUTION LEVELS

HELP PROTECT WILDLIFE

GET AN ADVANCED WARNING

http://www.postscapes.com/internet-of-things-examples/

The Internet of Things

https://www.youtube.com/watch?v=wL34vK-On3o

3. Technical Overview

IoT Technology Features

Low Energy

Long-range

	range	bitrate	frequency
SigFox	13km	100bps	900MHz
LTE-M	15km	150kbps – 1 Mbps	licensed 900MHz
LoRa	11km	10kbps	900MHz

► Short-range

	range	bitrate	frequency
IEEE 802.15.4 / ZigBee	10-100m	250Kbps	2.4GHz
BLE	10-100m	125Kbps – 2Mbps	2.4GHz

Technology Criteria

4. IEEE Std 802.15.4-2015 PHY

Check the relevant video "IEEE 802.15.4 TSCH MAC protocol" on YouTube!

The 6TiSCH Protocol Stack

IEEE Std 802.15.4-2015 PHY

MAC and PHY layer specifications for Low-Rate and Wireless Personal Area Networks (LR-WPANs) [1]

Frequency (MHz)	Channels	Debits (kb/s)	Area	Modulation
868-868.6	1 channel	20	Europe	BPSK
		250		ASK
		100		O-QPSK
902-928	10 channels Bandwidth: 2MHz	40	USA Canada	BPSK
		250		ASK
		250		O-QPSK
2400-2483	16 channels Bandwidth: 2MHz Guard Freq.: 5MHz	250	World	O-QPSK

IEEE Std 802.15.4-2015 PHY (Radio Channels)

2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 (MHz)

Overlapping with the Wi-Fi (802.11) Technology

2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 (MHz)

5. Characteristics & Challenges

- Dynamic Topology:
 - New links may establish or break the existing ones.

- Dynamic Topology:
 - New links may establish or break the existing ones.
 - May consists of unidirectional and bidirectional.

- Dynamic Topology:
 - New links may establish or break the existing ones.
 - May consists of unidirectional and bidirectional.
 - Nodes are free to move → Mobility level:

Static: sensor networks

Mean: pedestrian, battle field

Rapid: vehicles

Hybrid: combination of previous examples

- ► Bandwidth-constrained & variable link quality:
 - Significantly lower than the wired networks.
 - Sensitive to external interference, multi-path fading, noise etc.
 - Link congestion.

- Bandwidth-constrained & variable link quality:
 - Significantly lower than the wired networks.
 - Sensitive to external interference, multi-path fading, noise etc.
 - Link congestion.
- ► Energy Constraint:
 - Battery-based → hard to replace the batteries (underwater networks).

- Bandwidth-constrained & variable link quality:
 - Significantly lower than the wired networks.
 - Sensitive to external interference, multi-path fading, noise etc.
 - Link congestion.
- ► Energy Constraint:
 - Battery-based → hard to replace the batteries (underwater networks).
- Limited physical security:
 - Prone to physical security threats.
 - Denial-of-Service attacks.

- Bandwidth-constrained & variable link quality:
 - Significantly lower than the wired networks.
 - Sensitive to external interference, multi-path fading, noise etc.
 - Link congestion.
- ► Energy Constraint:
 - Battery-based → hard to replace the batteries (underwater networks).
- Limited physical security:
 - Prone to physical security threats.
 - Denial-of-Service attacks.
- ► Fault Tolerance:

Bretagne-Pays de la Loire

- Nodes can get damaged.
- redundant deployments are necessary.

- Quality of Service:
 - Industrial / multimedia applications : e.g., delay, jitter, availability.

- Quality of Service:
 - Industrial / multimedia applications : e.g., delay, jitter, availability.
- ► Scalability:
 - A loT network can consists of many nodes.
 - → the employed architectures and protocols should be able to scale.

Quality of Service:

- Industrial / multimedia applications : e.g., delay, jitter, availability.

Scalability:

- A IoT network can consists of many nodes.
- → the employed architectures and protocols should be able to scale.

Maintainability & Programmability:

- Nodes should be flexible → the tasks or the environment could change.
- The software should be programmable during the operation.

Introduction in Internet of Things

Georgios Z. PAPADOPOULOS

e-mail: georgios.papadopoulos@imt-atlantique.fr

web: www.georgiospapadopoulos.com

twitter: @gzpapadopoulos

youtube: www.youtube.com/c/gzpapadopoulos