Répondez directement sur l'énoncé en détaillant vos calculs et justifiant vos raisonnements.

Nom: CORRIGÉ

1. Soit $\mathcal{M}_2(\mathbf{R})$ l'ensemble des matrices 2×2 à coefficients dans \mathbf{R} . Montrer que la fonction $\varphi : \mathbf{R} \to \mathcal{M}_2(\mathbf{R})$,

$$\varphi(x) := \begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix},$$

est un morphisme de (\mathbf{R}, \cdot) vers $(\mathcal{M}_2(\mathbf{R}), \cdot)$.

Deux choses à vérifier :

•
$$\varphi(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \checkmark$$

$$\bullet \ \ \varphi(xy) = \begin{bmatrix} xy & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & 0 \\ 0 & 1 \end{bmatrix} = \varphi(x) \, \varphi(y) \, \checkmark$$

2. La fonction φ précédente est-elle un morphisme de $(\mathbf{R}, +)$ vers $(\mathcal{M}_2(\mathbf{R}), +)$?

Non : par exemple $\varphi(0) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \neq O$.

3. Soit E un ensemble muni d'une loi de composition \star . Rappeler la définition d'élément absorbant dans E.

a est absorbant si $a \star x = a = x \star a$ pour tout $x \in E$.

4. Montrer que * ne peut admettre au maximum qu'un seul élément absorbant.

Soient a et a' deux éléments absorbants pour \star . Alors :

 $a = a \star a'$ car a est absorbant = a' car a' est absorbant. 5. Si $\psi:(E,\star)\to(F,\dagger)$ est un morphisme surjectif et a un élément absorbant dans E, montrer que $\psi(a)$ est un élément absorbant dans F.

Soit y un élément que lconque de F. Puisque ψ est surjectif, on sait qu'il existe un élément $x \in E$ pour lequel $y = \psi(x)$. Alors

$$\psi(a) \dagger y = \psi(a) \dagger \psi(x) = \psi(a \star x) = \psi(a)$$

et de même on vérifie que $y \dagger \psi(a) = \psi(a)$.

6. L'énoncé précédent reste-t-il vrai si on retire l'hypothèse de surjectivité?

Non : par exemple pour le morphisme $\varphi: (\mathbf{R}, \cdot) \to (\mathcal{M}_2(\mathbf{R}), \cdot)$, 0 est absorbant dans \mathbf{R} mais $\varphi(0)$ ne l'est pas dans $\mathcal{M}_2(\mathbf{R})$.

7. Si (E, \star) admet à la fois un élement neutre e et un élément absorbant a, montrer que |E| = 1.

Rappel : tel quel l'énoncé est bien sûr faux, par exemple le monoïde multiplicatif de tout anneau A contient un élément neutre 1 et un élément absorbant 0! Pour le plus petit contrexemple on peut prendre $A = \mathbb{Z}_2$.

Par contre : si E contient un élément e à la fois neutre et absorbant, alors |E| = 1.

En effet, pour tout $x \in E$ on a

 $x = x \star e$ car e est neutre = e car e est absorbant.

8. Existe-t-il un élément absorbant dans (\mathcal{F}_n, \circ) , où $\mathcal{F}_n := \mathcal{F}(\llbracket 1, n \rrbracket)$? Justifier.

Il y a des éléments absorbants à gauche, ce sont les fonctions constantes f_c définies par $f_c(i) = c$ pour tout $i \in \mathcal{F}_n$. En effet :

$$(f_c \circ g)(i) = f_c(g(i)) = c = f_c(i)$$
 pour tout $i \in \mathcal{F}_n$

(et toute fonction absorbante à gauche est constante : par exemple en prenant g = (i j) on voit qu'on doit avoir f(i) = f(j)).

Mais ces éléments ne sont pas absorbants à droite dès qu'il existe deux constantes $c \neq d$: en effet, par exemple

$$f_c \circ f_d = f_c \neq f_d$$
.

Conclusion : \mathcal{F}_n ne contient d'élément absorbant que si $n \leq 1$ (auquel cas $\mathcal{F}_n = \{id\}$).