On the Correspondence Between Classic Coding Theory and Machine Learning

Julia Rechberger Bachelor Thesis Presentation

August 18, 2021

1/19

Rechberger August 18, 2021

Key Question

How can a neural network advance decoding?

Coding Theory in a Nutshell

Message m is encoded to codeword w, w is corrupted by the channel and arrives as r, decoding produces approximation \overline{w} .

Channels: Error Pattern Modelling

Additive White Gaussian Noise (AWGN)

- lacktriangledown apply binary phase-shift keying (BPSK): 0-bit ightarrow 1, 1-bit ightarrow -1
- 2 add Gaussian distributed independent noise
- 3 recover bit from a non-binary value with a hard decision HD

$$HD(value) = \begin{cases} 0, & \text{if value } > 0 \\ 1, & \text{if value } < 0. \end{cases}$$

Message Passing Decoding on a Tanner Graph

Probabilistic Decoding - Sum-Product Algorithm (SPA)

Idea: use probability for a certain bit value instead the bit value itself

Why use a neural network?

SPA...

- is correct if graph is a tree, otherwise approximative
- can't adapt to specific channel properties

Begin the transformation!

- Unfold Tanner graph
- Oerive weight matrices representing edges from unfolded graph
- Transform message calculation into activation functions

Unfolded Tanner graph for 2 SPA iterations

- O_{v_i,c_i} message sent from variable node to check node
- \bullet E_{c_i,v_j} message sent from check node to variable node

Neural network for 2 SPA iterations

Activation Functions - Odd Layer

$$O_{v_j,c_i} = anh\left(rac{1}{2}\cdot\left(r_j + \sum_{c_t \in extit{adj}(v_j) \setminus c_i} E_{c_t,v_j}
ight)
ight)$$

Calculation for odd layer output vector $\overrightarrow{X_i}$ of size |E| for iteration T_i :

 $\overrightarrow{X}_0 = \overrightarrow{0}$ no initial information from check nodes

$$\overrightarrow{X}_i = tanh\left(\frac{1}{2} \cdot \left(W_{in2odd}^T \cdot \overrightarrow{R} + W_{even2odd}^T \cdot \overrightarrow{X}_{i-1}\right)\right)$$

 \overrightarrow{X}_{i-1} : output vector of previous hidden even layer and \overrightarrow{R} : vector of size n with input LLR channel information for each bit.

Cross Entropy Loss Function (CEL)

Definition

$$CEL(\mathbb{P}(x=0),y) = -\frac{1}{N} \sum_{n=1}^{N} y_n \cdot \ln(1 - \mathbb{P}(x_n=0)) + (1 - y_n) \cdot \ln(\mathbb{P}(x_n=0))$$

N : length of both codewords

y: binary vector of target codeword

 y_n : nth bit of the target codeword

 $\mathbb{P}(x_n = 0)$: prediction for n-th bit of input vector being a zero

Metrics

Signal-to-Noise ratio in dB (SNR_{dB})

$$\mathsf{SNR}_{\mathsf{dB}} = 10 \cdot \mathit{log}_{10} \left(\frac{\mathit{P}_{\mathsf{signal}}}{\mathit{P}_{\mathsf{noise}}} \right) \mathit{dB}$$

• Bit-Error Rate (BER) divide incorrect bits b_e by total bits B:

$$\mathsf{BER} \approx \frac{b_\mathsf{e}}{B}$$

 Normalized-Validation Score (NVS) to compare SPA and Neural Network Decoder (NND)

$$\mathsf{NVS} = \frac{1}{|S|} \cdot \sum_{s \in S} \frac{\mathsf{BER}_{\mathsf{NND}}(D(s))}{\mathsf{BER}_{\mathsf{SPA}}(D(s))}$$

S = a set of different SNR_{dB} D(s) = a dataset created by using $s \in S$.

4D > 4P > 4B > 4B > B = 990

Training Strategy and Hyperparameters

Fixed

- 5 Iterations
- Supervised Learning
- Activation and Loss Functions
- Optimizer: RMSProp (Learning Rate 0.001, α 0.99)

Part of Experiments

- Training Dataset: Size, Codewords (CW), SNR_{dB}
- Batchsize
- Architecture: Feed Forward Neural Network, Recurrent Neural Network

All-Zero Codeword

It does not matter if the all-zero codeword only or randomly picked codewords are used in the training data set.

- SPA independent of transmitted CW, NND keeps information flow
- slight difference: random NVS_{test} 0.487, zero NVS_{test} 0.486
- Culprit: Loss Function

SNR_{dR} Combinations

Training on only one SNR_{dB} leads to results equivalent to using a range of SNR_{dB} in the training data set.

- single SNR_{dB} (NVS_{test} 0.49) close to SNR_{dB} combo [0, 1, 2] with NVS_{test} 0.487
- optimal single SNR_{dB} is 2 or 3

On the fly (OTF) generated Training Dataset

An on the fly created training dataset using one SNR_{dB} trains the network better than a fixed dataset.

- use validation set to cope with fluctuations
- 260 CW biggest improvement: fixed NVS_{test} 0.566, OTF NVS_{test} 0.49
- Neural network converges after few epochs

Feed-Forward (FNN) vs. Recurrent Neural Network (RNN)

FNN architecture leads to a better result than RNN architecture.

- RNN converges faster
- FNN more precise (FNN NVS_{test} 0.492, RNN NVS_{test} 0.498)

Why use a neural network for decoding?

- BER performance increase for short codes
- same computational complexity as Sum-Product algorithm (SPA)
- easy training data creation using the all-zero codeword
- learn channel and linear code at the same time

Thank you!

Main Sources

- AGRAWAL, Navneet: Machine Intelligence in Decoding of Forward Error Correction Codes. Stockholm, Sweden, KTH Royal Institute of Technology School of Electrical Engineering, Diss., 2017.
- JOHNSON, Sarah J.: Introducing Low-Density Parity-CheckCodes.
 In: School of Electrical Engineering and Computer Science
- MACKAY, David J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003
- NACHMANI, Eliya; MARCIANO, Elad; LUGOSCH, Loren; GROSS, Warren J.; BURSHTEIN, David; BE'ERY, Yair: Deep Learning Methods for Improved Decoding of Linear Codes. In: CoRR abs/1706.07043 (2017). http://arxiv.org/abs/1706.07043

Codes

Construct codes that correct maximal errors while using minimal redundancy with efficient encoding and decoding procedures.

• Encode message m of length k with canonical generator matrix $G_C = [I_k, A]$ of code C. Producing unique codewords w of length n.

$$m \cdot G_C = w \in C$$

• Check for errors in the received word r with canonical parity check matrix $H_C = [A, I_{n-k}]$.

$$r \in C \Leftrightarrow H_C \cdot r = \overrightarrow{0}$$
.

• Transform matrices by using the relationship

$$H_C = [A, I_{n-k}] \Leftrightarrow G_C = [I_k, A^T]$$

4□ > 4□ > 4 = > 4 = > 2□

Rechberger Codes C August 18, 2021 2 / 17

Binary Symmetric Channel (BSC)

Bit flip with probability p

Naive Approach: A Fully Connected Neural Network

Bit-Flipping-Algorithm

Idea: Variable node v_j bit is determined by a **Majority Vote** on values received from adjacent check nodes c_i .

Bit-Flipping-Algorithm

- **1** Iteration counter $c_T = 0$, initialize graph with received word r
- 2 Evaluate parity check equations, if ...

 - $c_T = T_{\text{max}}$, **return:** error.
 - **3** $\exists c_i \neq 0$: continue.
- **3** Calculate messages E_{c_i,v_j} , send from c_i to v_j

$$E_{c_i,v_j} = \sum_{n \in adj(c_i) \setminus v_j} v_n \mod 2$$

Majority vote for variable nodes v_j:

$$v_{j} = \begin{cases} 1, & \text{if } (\# \ E_{adj(v_{j})} = 1) > \ (\# \ E_{adj(v_{j})} = 0) \\ 0, & \text{if } (\# \ E_{adj(v_{j})} = 1) < \ (\# \ E_{adj(v_{j})} = 0) \\ v_{j}, & \text{if } (\# \ E_{adj(v_{j})} = 1) = \ (\# \ E_{adj(v_{j})} = 0). \end{cases}$$

5 $c_T = c_T + 1$, jump to 2.

SPA I - Initialization

- 1 Iteration counter $c_T = 0$
- ② Determine a priori probability for every bit $r' = (r'_1, ..., r'_n)$ to initialize Tanner graph by calculating LLR for received bits $r = (r_1, ..., r_n)$.

$$LLR(bit(v_j)|r_j) = \ln\left(\frac{\mathbb{P}(bit(v_j) = 0|r_j)}{\mathbb{P}(bit(v_j) = 1|r_j)}\right)$$

 $priori(v_j) = LLR(bit(v_j)|r_j) = r'_j$ Retrieve bit value from LLR by making a hard decision HD

$$HD(r'_j) = \left\{ \begin{array}{ll} 0, & \text{if } r'_j > 0 \\ 1, & \text{if } r'_j < 0. \end{array} \right.$$

 $bit(v_j) = HD(r_j')$ Initialize $value(v_j) = 0$ which holds LLR of current iteration.

SPA II - Iteration

- Execute parity check, if ...
 - **1** $c_T = T_{\text{max}}$, **return:** error and approximation $\overline{w} = (bit(v_1), ..., bit(v_n))$
 - $\Theta \ H \cdot (bit(v_1),...,bit(v_n)) = \overrightarrow{0}, \ \mathbf{return:} \ \overline{w} = (bit(v_1),...,bit(v_n))$
 - $H \cdot (bit(v_1), ..., bit(v_n)) \neq \overrightarrow{0} : continue.$
- Calculate E_{c_i,v_i} for all nodes and send them

$$E_{c_i,v_j} = \ln \left(\frac{\frac{1}{2} + \frac{1}{2} \cdot \prod_{v_t \in adj(c_i) \setminus v_j} \left(1 - 2 \cdot \frac{e^{-value(v_t)}}{1 + e^{-value(v_t)}} \right)}{\frac{1}{2} - \frac{1}{2} \cdot \prod_{v_t \in adj(c_i) \setminus v_j} \left(1 - 2 \cdot \frac{e^{-value(v_t)}}{1 + e^{-value(v_t)}} \right)} \right)$$

5 Update $value(v_j)$ with received messages E_{c_i,v_j}

$$value(v_j) = priori(v_j) + \sum_{c_i \in Adj(v_j)} E_{c_i,v_j}$$

- **1** Update $bit(v_j) = HD(value(v_j))$
- **O** Calculate O_{v_i,c_i} , send them, $c_T=c_T+1$, and jump to **3**

$$O_{v_j,c_i} = r'_j + \sum_{c_t \in adj(v_j) \setminus c_i} E_{c_t,v_j}$$

Weight matrices representing unfolded graphs edges

- W_{in2odd} for input layer to odd hidden layer
- ullet $W_{odd2even}$ for odd hidden layer to even hidden layer
- \bullet $W_{even2odd}$ for even hidden layer to odd hidden layer
- $W_{even2out}$ for even hidden layer to output layer

e.g. $W_{odd2even}$: edges along which messages from variable nodes to check node are sent

Definition

$$W_{odd2even}(O_{(v_j,c_i)},E_{(c_i',v_j')}) = \begin{cases} 1, & c_i = c_i' \text{ and } v_j \neq v_j' \\ 0, & \text{otherwise} \end{cases}$$

with rows $O_{(v_j,c_i)}$ where $(v_j,c_i) \in E$, E being the edges of the Tanner graph and columns $E_{(c_i',v_i')}$ where $(c_i',v_i') \in E$.

$W_{odd2even}$

	E_{c_1, v_1}	$E_{c_1, \frac{v_3}{2}}$	$E_{c_1, \frac{V_4}{}}$	$E_{c_1, \frac{v_5}{2}}$	E_{c_2,v_1}	E_{c_2,v_2}	E_{c_2,v_3}	E_{c_2,v_6}	E_{c_3,v_2}	E_{c_3,v_3}	E_{c_3,v_4}	E_{c_3,v_7}
$O_{\mathbf{v_1},c_1}$	0	1	1	1	0	0	0	0	0	0	0	0
O_{v_3,c_1}	1	0	1	1	0	0	0	0	0	0	0	0
O_{v_4,c_1}	1	1	0	1	0	0	0	0	0	0	0	0
O_{v_5,c_1}	1	1	1	0	0	0	0	0	0	0	0	0
O_{v_1,c_2}	0	0	0	0	0	1	1	1	0	0	0	0
O_{v_2,c_2}	0	0	0	0	1	0	1	1	0	0	0	0
O_{v_3,c_2}	0	0	0	0	1	1	0	1	0	0	0	0
O_{v_6,c_2}	0	0	0	0	1	1	1	0	0	0	0	0
O_{ν_2,c_3}	0	0	0	0	0	0	0	0	0	1	1	1
O_{v_3,c_3}	0	0	0	0	0	0	0	0	1	0	1	1
O_{v_4,c_3}	0	0	0	0	0	0	0	0	1	1	0	1
O_{v_7,c_3}	0	0	0	0	0	0	0	0	1	1	1	0

Figure: If c_i is equal to c'_i it will be highlighted blue but only if v_j is **not** equal to v'_j a 1 is entered.

Activation Functions - Even Layer

Use relationship $2 \cdot tanh^{-1}(p) = ln\left(\frac{1+p}{1-p}\right)$ to transform E_{c_i,v_j}

$$E_{c_i,v_j} = 2 \cdot tanh^{-1} \left(\prod_{v_t \in adj(c_i) \setminus v_j} (1 - 2 \cdot \mathbb{P}^{(\mathsf{in})}(v_t = 1))
ight)$$

Calculation for even layer output vector $\overrightarrow{X_i}$ of size |E| for iteration T_i :

- **1** Repeat T_{i-1} odd layer output as a column |E| times to get M_{i-1}
- ② $M_{i-1}^* = W_{odd2even} \odot M_{i-1}$, where \odot is element-wise multiplication
- **3** Replace zeros in M_{i-1}^* with ones
- Calculate $\overrightarrow{X^*}_{i-1}$ by multiplying along the column elements of M^*_{i-1} .

$$\overrightarrow{X_i} = 2 \cdot tanh^{-1} \left(\overrightarrow{X^*}_{i-1}\right)$$

Activation Functions - Output Layer

$$\overline{w}_j = r_j + \sum_{c_t \in adj(v_j)} E_{c_t,v_j}$$

Output layer $\frac{\longrightarrow}{W_i}$ of size n:

$$\overrightarrow{\overline{W}_i} = \sigma(\overrightarrow{R} + W_{even2out}^T \cdot \overrightarrow{X}_{i-1})$$

 \overrightarrow{R} : vector of size n with input LLR channel information for each bit \overrightarrow{X}_{i-1} : output of previous even hidden layer of size |E|.

Datasets

Generate random message m

2 Encode m: $w = G \cdot m$

3 Map w's bits: $0 \rightarrow 1$ and $1 \rightarrow -1$

ullet Add Gaussian noise w to generate received word r, variance depending on ${\sf SNR_{dB}}$

Dataset	Codewords	SNR _{dB}	CW Seed	Noise Seed
Training	Experiment	Experiment	0	11
	dependent	dependent		
Validation	500	same as	4	5
		experiment		
Test S5	54000	[-5.0, -4.5,, 8]	5	5
Test S4	54000	[-5.0, -4.5,, 8]	4	4

13 / 17

Training Dataset Size

The bigger the fixed training dataset size the better the performance of the trained neural network.

- 260 CW: overfitting (NVS_{test} 0.566)
- 5200 CW for 48 learnable parameters too big (NVS_{test} 0.487)

Batch Size

Code size and batch size share a linear dependency.

Batchsize	NVS testset S5	NVS testset S4
16	0.489	0.492
32	0.488	0.49
64	0.492	0.489
128	0.49	0.495
256	0.489	0.487

15 / 17

Rechberger Training Dataset Size August 18, 2021

SNR_{dB} Combinations

- Left: Validation dataset with 140 CW per SNR_{dB} not representative
- Right: Validation dataset with 500 CW per SNR_{dB}

Implementation Lessons Learned

- don't use numpy in custom activation functions
- debug backwards pass using torch.autograd.detect_anomaly
- test edge cases
- use already existing modules and libraries

