# Impulse Efficiency of Model Rocket Motors

December 7 2022

Derek Duling, Jacob Auman, Olive Patterson, Ian Kelly, Nyack Hartley



#### Question:

Which model rocket motor is the most fuel efficient in terms of thrust generation and pre-launch mass.





#### Overview:

The plan for our project is to test rockets motors and collect data for force over time by using a specialized force sensor and rocket motors that we found or purchased.

| Class<br>(Base 26) | Total Impulse<br>(N·s) | Total Impulse<br>(Ibf·s) |
|--------------------|------------------------|--------------------------|
| Micro              | 0-0.3125               | 0-0.07                   |
| 1/4A               | 0.3126-0.625           | 0.071-0.14               |
| 1/2A               | 0.626-1.25             | 0.141-0.28               |
| Α                  | 1.26-2.50              | 0.281-0.56               |
| В                  | 2.51–5.00              | 0.561-1.12               |
| С                  | 5.01–10.0              | 1.121–2.25               |
| D                  | 10.01–20.0             | 2.251–4.5                |





#### **Safety Considerations**



**Source**: https://estesrockets.com/edu-safety-data-sheets/

#### **Experimental Setup**



## **Example Trial**









# Manufacturer Data Vs. Experimental Results

#### A8-3



Source: Thrustcurve.org



#### B4-2



Source: Thrustcurve.org



#### B6-4

#### Predicted



Source: Thrustcurve.org



#### C6-0





#### C11-0



Source: Thrustcurve.org



#### C11-7



Source: Thrustcurve.org



#### **Total Impulse Trend Of Each Class**



Class A, Class B, Class C

#### The specific impulse is:

$$I_{sp} = u_{eq}/g_e$$

where

 $I_{sp}$  = Specific implulse  $u_{eq}$  = Total impulse / mass of expelled propellan  $g_e$  = Acceleration at Earth's surface (9.8 m/s<sup>2</sup>)

## **Conclusion and Error**



# Thank you

