Minimisation (suite)

Problème 2

- Donnée : A un AFD complet dont chaque état est accessible depuis l'état initial
- Problème : construire un AFD minimal qui reconnaisse le même langage que A.
- **Idée** : fusionner les états équivalents. En pratique, l'algorithme est fondé sur un principe de *séparation des états* ...

2

Équivalence d'états

Étant donné A un AFD, p et $q \in Q$ sont équivalents $(p \approx q)$ si

∀w∈Σ*

$$\delta(p,w) \in F \text{ et } \delta(q,w) \in F$$
ou
 $\delta(p,w) \notin F \text{ et } \delta(q,w) \notin F$

Exemple $\forall w \in \Sigma^* \begin{cases} \delta(p,w) \in F \text{ et } \delta(q,w) \in F \\ \text{ou} \\ \delta(p,w) \notin F \text{ et } \delta(q,w) \notin F \end{cases}$ $0 \Rightarrow 1? \text{ Non car } 0 \notin F \text{ et } 1 \in F$ $3 \approx 6? \text{ Oui car } 3,6 \in F, \delta(3,a) = \delta(6,a) \text{ et } \delta(3,b) = \delta(6,b)$

Exemple $\forall w \in \Sigma^* \begin{cases} \delta(p,w) \in F \text{ et } \delta(q,w) \in F \\ \text{ou} \\ \delta(p,w) \notin F \text{ et } \delta(q,w) \notin F \end{cases}$ $2 \approx 5? \text{ Oui car } 2,5 \notin F, \ \delta(2,a) = \delta(5,a) \text{ et } \delta(2,b) = \delta(5,b)$

Classe d'équivalence et automate associé La relation ≈ est une relation d'équivalence (elle est réflexive, symétrique, transitive).

Si q est un état, on note [q] l'ensemble des états qui lui sont équivalents et on définit l'automate des classes d'équivalence :

10

Classe d'équivalence et automate associé

Étant donné un AFD $A = (\Sigma, Q, \delta, q_0, F)$, l'automate minimal associé à A est :

$$\mu A = (\Sigma, Q', \delta', [q_0], F')$$

- $Q' = \{[q], q \in Q\}$
- $F' = \{ [f], f \in F \}$
- δ' = $\{([p],\sigma,[q]) \text{ tels que } \exists \ p' \in [p], \exists \ q' \in [q] \ (p',\sigma,q') \in \delta \}$

Justification

- ■3 étapes:
 - * L'automate μA des classes d'équivalence de A est bien défini, réduit et $L(\mu A) = L(A)$.
 - ❖ Pour tout AFD B tel que L(B) = L(A), #états(B) ≥ #états(µA)
 - Tout automate minimal B tel que L(B) = L(A), est isomorphe à A

Il existe une bijection ϕ entre les états de A et ceux de B qui préserve

- les états spéciaux (initial et d'acceptation)
- les transitions : $\forall p,q \in Q_A$, $\delta_A(p,a) = q \Leftrightarrow \delta_B(\phi(p),a) = \phi(q)^2$

μA est bien défini, réduit et $L(\mu A)=L(A)$

- Soient p et q deux états de A, p≈q :
- •p et q sont tous deux soit dans F soit dans Q\F. Les états terminaux de μA sont bien définis.
- •Si $L_p(A)$ = $L_q(A)$ alors $\forall \alpha \in \Sigma$, $L_{\delta(p,\alpha)}(A)$ = $L_{\delta(q,\alpha)}(A)$. Les transitions de μA sont bien définies.
- •Si $w=w_1...w_n \in \Sigma^*$, et $q_k = \delta(i,w_1...w_k)$ alors $[q_k] = \delta'([i],w_1...w_k). \Rightarrow L(A) = L(\mu A)$
- •µA est un automate réduit par construction

Pour tout AFD B tel que L(B)=L(A), #états(B)\rightarrow\text{#états(\$\mu A\$)}

 On suppose tous les états de B accessibles et B complet.

Soit B = $<\Sigma$, Q_B , i_B , F_B , δ_B > tel que L(B)=L(A).

■ Soit g: $Q_B \rightarrow Q'$ l'application définie par $\forall q \in Q_B$, $\exists u \in \Sigma^* : \delta_B(i_B, u) = q$. $q(q) := \delta_{i,A}([i], u)$

■ Comme μA est réduit et $L(\mu A) = L(A) = L(B)$, cette application est bien définie et surjective

(donc # $Q_B \ge \#Q'$)

13

Tout automate minimal B tel que L(B)=L(A), est isomorphe à μA

 En ce cas, comme g surjective et #états(μA)=#états(Β)
 g définit une bijection

µA et B sont isomorphes

Reste à construire l'automate réduit

15

Sur les quotients gauches

- L'automate Q(L) des quotients gauches défini comme $\{L_a(A):q\in Q\}=Q(L)$ est-il bien minimal?
- Supposons, par l'absurde qu'il ne le soit pas.
 Alors il existe au moins p et q, deux états de l'automate tels que L_p(A)=L_q(A), par définition de Q(L).
 - Si tel est le cas, par définition de l'équivalence, p ≈ q.
 - Il s'ensuit que p et q peuvent être fusionnés, contredisant la minimalité de l'automate des quotients gauches.

1.

Regroupement d'états

- Pour chaque paire d'états, il faut considérer l'ensemble des mots de longueur n sur Σ.
 O(n²) paires d'états
 |Σ|ⁿ mots de longueur n
 (n = nombre d'états de l'AFD)
- Algorithme en $O(n^2 |\Sigma|^n)$... catastrophique
- Trouver un meilleur algorithme!

Principe

- Au lieu de fusionner les états équivalents,
 - on groupe tous les états;
 - on sépare inductivement les états non équivalents;
 - quand on ne peut plus séparer on a terminé.
- La séparation inductive se fait en construisant inductivement ≈

Construction inductive de ≈

Base:

 $p \approx_0 q \Leftrightarrow (p \in F \land q \in F) \lor (p \notin F \land q \notin F)$

■ Règle :

$$p \approx_i q \Leftrightarrow (p \approx_{i-1} q) \land (\forall a \in \Sigma, \delta(p,a) \approx_{i-1} \delta(q,a))$$

La base permet de partitionner Q La règle affine la partition de Q

Remarque : p ≈; q si on ne peut pas séparer p de q par un mot de longueur au plus i.

Cas d'arrêt

dès que 2 équivalences successives coïncident

$$\approx_i = \approx_{i+1} \Rightarrow \forall k, \approx_i = \approx_{i+k}$$

Par hypothèse, ≈; = ≈;+1. Alors

$$p\approx_i q$$
 et $\forall a\in \Sigma$, $\delta(p,a)\approx_i \delta(q,a)\Leftrightarrow p\approx_{i+1} q$
 $p\approx_{i+1} q$ et $\forall a\in \Sigma$, $\delta(p,a)\approx_{i+1} \delta(q,a)\Leftrightarrow p\approx_{i+2} q$

 Conséquence : dès qu'il y a coïncidence de 2 équivalences successives, on a obtenu l'automate minimal

20

Cas d'un AFD déjà minimal

Aucune paire d'états n'est équivalente.

$$\approx = \approx_{n-2} \text{ pour n} = |Q|$$

≈ ≈ partitionne Q en deux classes;

puisque $\forall i \approx_i \neq \approx_{i+1}$

 $^{\bullet}$ $\approx_{\mathrm{i+1}}$ partitionne Q avec au moins une classe de plus que \approx_{i}

on ne peut avoir plus de n classes (n = |Q|), donc

 \approx = \approx_{n-2} .

Minimisation de $A=\langle Q,\Sigma,\delta,i,T\rangle$

• un des états terminaux

• un des autres

Répéter

construire un nouvelle partition ∏' en séparant les états Si ∏≠∏' alors ∏←∏' fsi

Jusqu'à ∏=∏'

Terminer

2

Minimisation de $A=\langle Q,\Sigma,\delta,i,T\rangle$

La séparation des états est définie par :

- Pour chaque classe G de ∏ faire
 - p et q sont dans des classes d'équivalence différentes SSI

 $\exists a \in \Sigma : \delta(p,a)$ et $\delta(q,a)$ sont dans des classes différentes

• Remplacer G par les sous-groupes ainsi formés.

Terminer

 ullet Choisir un état [p] représentant chaque classe de Π

Pour chaque transition $\delta(p,a)=q$ de A, ajouter une transition de [p] vers [q] étiquetée par a.

■État initial : l'état représentant la classe de i

 États terminaux : les état représentant les classes contenant des terminaux de A.

24

Complexité

- La définition inductive fournit un algorithme en $O(n^2|\Sigma|)$ pour n=|Q|, qui détermine les classes d'équivalence et construit donc l'AFD minimal.
- Avec quelques améliorations, on peut construire l'AFD minimal en $O(n \log n |\Sigma|)$

25

