

Outline

- Hdf5 file format
- Optimizers
- Training a binary model for DDoS attack detection
- Laboratory: implement a multi-class model for DDoS attack detection

Hdf5 file format

Optimizers

Optimizers are algorithms or methods used to change the parameters of your neural network (e.g., weights and learning rate) in order to reduce the loss.

Learning Rate defines how big/small the steps are gradient descent takes into the direction of the local minimum are determined by the learning rate.

Gradient Descent

- Batch gradient descent: all the data used into a single step per training epoch. We take the average of the gradients of all the training samples.
 Vectorization can be used to leverage parallel computation.
- Stochastic gradient descent: one sample for each step. The parameters are updated more frequently.
- Mini-batch gradient descent: steps with minibatches of samples. Multiple steps each epoch, with the gain in speed thanks to vectorization.

Source: sebastianraschka.com

$$w_t = w_{t-1} - \eta \frac{\partial L}{\partial w_{t-1}}$$

Gradient Descent with Momentum

- Momentum is a hyper-parameter (like the learning rate) that has been introduced to:
 - Faster escape from plateaus
 - Escape from a local mimima
 - Tune the updates based on past gradients
 - Momentum $\beta = 0.9$ works well in practice

Learning rate

$$w_t = w_{t-1} - \alpha \cdot m_t$$

$$m_t = \beta m_{t-1} + (1 - \beta) \frac{\partial J}{\partial w_{t-1}}$$

Exponential moving average

Adam (adaptive momentum estimation)

- Adam is an optimisation algorithm that can be used instead of the classical stochastic gradient descent
- The algorithm calculates an **exponential moving average** of the gradient and the squared gradient, and the parameters β_1 and β_2 control the decay rates of these moving averages (usually set to $\beta_1=0.9$ and $\beta_2=0.999$).
- Converges faster than SGD on large problems in terms of data and parameters

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot \frac{\partial J}{\partial w_{t-1}}$$
 $v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot \left[\frac{\partial J}{\partial w_{t-1}}\right]^2$

Training a binary classifier

- CNN model
- Pre-processed balanced dataset of benign and DDoS attack traffic (HTTP attack from the CIC-IDS2017 dataset, generated with the LOIC tool https://www.imperva.com/learn/ddos/low-orbit-ion-cannon/)
- Make it run and play with the hyper-parameters
- Change the optimizer
- Change the model (e.g., replace the CNN with a MLP)

Architecture of the CNN model

Hyperparameters

- *f*=11
- *n*=10
- *k*=32
- *h*=3
- Learning rate = 0.01

Lab: implement a 2-class classifier

- Same CNN model with different output
- Replace the binary classifies with a 2-class classifier
- Pay attention to the format of the labels

Architecture of the multi-class CNN model

Hyperparameters

- *f*=11
- *n*=10
- *k*=32
- *h*=3
- Learning rate = 0.01