Canonical PDEs	Dynamics	Data	Results discovered by S^3 d	MSE-STD
FitzHugh-Nagumo $u_t = u_{xx} - u + u^2 - u^3 - w$ $w_t = 0.002u - 0.001w$		U ^{512 ×401} : 10000 10000 18000 27000	$\begin{split} u_t &= 1.0023 u_{xx} - 1.9910 u + 1.2004 u^2 \\ &- 1.0031 u^3 - 1.0050 w \\ w_t &= 0.001999 u - 0.000993 w \\ u_t &= 1.0025 u_{xx} - 1.9810 u + 1.1762 u^2 \\ &- 0.9499 u^3 - 0.9920 w \\ w_t &= 0.001952 u - 0.001004 w \end{split}$	0.2649%±0.2462% 1.6795%±1.6690%
Klein-Gordon $u_{tt} = u_{xx} - u - u^3$		$U^{101 \times 1001}:1000$ 15500	$u_{tt} = 0.9994u_{xx} - 0.9995u - 0.9998u^3$ $u_{tt} = 0.9987u_{xx} - 0.9833u - 1.0303u^3$	0.0426%±0.0220% 1.6100%±1.4513%
Fisher's equation $u_t = 0.1u_{xx} + u - u^2$		$U^{201 \times 1000}: 10000$ 10000	$u_t = 0.0997u_{xx} + 0.9998u - 1.0002u^2$ $u_t = 0.0971u_{xx} + 1.0053u - 1.0079u^2$	0.0960%±0.1342% 1.4104%±1.3007%
Kuramoto Sivashinsky $u_t = -u_{xx} - uu_x - u_{xxxx}$		<i>U</i> ^{2048×1001} : 14203 59210	$u_t = -1.0000u_{xx} - 1.0000uu_x - 1.0000u_{xxxx}$ $u_t = -0.9214u_{xx} - 0.9095uu_x - 0.9238u_{xxxx}$	0.0022%±0.0010% 8.1781%±0.7678%
Navier Stokes $w_t = 0.01w_{xx} + 0.01w_{yy} -uw_x - vw_y$	6	<i>U</i> ^{100 ×100×1001} : 10000	$\begin{aligned} w_t &= 0.0100w_{xx} + 0.0100w_{yy} - 1.0068uw_x \\ &- 0.9987vw_y \\ w_t &= 0.0100w_{xx} + 0.0097w_{yy} - 1.0051uw_x \\ &- 1.0012vw_y \end{aligned}$	0.3700%±0.2305% 0.9447%±1.3498%
Korteweg-de Vries $u_t = -0.000484uu_{xx} + u_{xxx}$		$U^{256 \times 1301}:10000$ 18750	$u_t = -0.000484uu_{xx} - 0.999247u_{xxx}$ $u_t = -0.000483uu_{xx} - 0.982950u_{xxx}$	0.0855%±0.0145% 0.9982%±0.9995%
Sine-Gordon equation $u_{tt} = u_{xx} - \sin(u)$	*	<i>U</i> ^{512 ×256} :10	$u_{tt} = 0.9999u_{xx} - 0.9987\sin(u)$ $u_{tt} = 0.9920u_{xx} - 0.9982\sin(u)$	0.0706%±0.0895% 0.4874%±0.4407%
Schrödinger equation $u_t = \frac{10}{3}iu - \frac{10}{3}i u ^2u$ $-0.3iu_{xx}$		<i>U</i> ^{512 ×501} : 10000 10000	$\begin{split} u_t &= -3.3333iu + 3.3333i u ^2u + 0.3000iu_{xx} \\ u_t &= -3.3187iu + 3.2947i u ^2u + 0.3013iu_{xx} \end{split}$	0.0011%±0.0007% 0.6775%±0.4162%