Let us first recall some facts on normal linear functionals. If ϕ is a normal linear functional on a W*-algebra M then there exists a partial isometry u \in M and a positive linear functional $|\phi|\in$ M* such that

$$\phi(x) = |\phi|(xu) =: (u|\phi|)(x), x \in M$$

$$u^*u = s(|\phi|),$$

where $s(|\phi|)$ denotes the support projection of $|\phi|$ in M. We refer to this as the <u>polar decomposition</u> of ϕ [Takesaki (1979), Theorem III.4.2]. In addition, $|\phi|$ is uniquely determined by the following two conditions [Takesaki (1979), Proposition III.4.6]:

$$\|\phi\| = \| |\phi| \|,$$

$$|\phi(x)|^2 \le |\phi|(xx^*) \quad (x \in M).$$

For the polar decomposition of ϕ^* , where $\phi^*(x) = \phi(x^*)^*$, we obtain

$$\phi^* = u^* |\phi^*|$$
, $|\phi^*| = u |\phi| u^*$ and $uu^* = s(|\phi^*|)$.

It is easy to see that $u^* \in s(|\phi|)M$.

If Ψ is a subset of the state space of a C*-algebra M , then Ψ is called <u>faithful</u> if $0 \le x \in M$ and $\psi(x) = 0$ for all $\psi \in \Psi$ implies x = 0. Ψ is called <u>subinvariant</u> for a positive map $T \in L(M)$ (resp., positive semigroup T) if $T'\psi \le \psi$ for all $\psi \in \Psi$ (resp., $T(t)'\psi \le \psi$ for all $T(t) \in T$ and $\psi \in \Psi$). Recall that for every positive map $T \in L(M)$ there exists a state ϕ on M such that $T'\phi = r(T)\phi$ [Groh (1981), Theorem 2.1], where r(T) denotes the spectral radius of T.

Let us start our investigation with two lemmas. Recall that Fix(T) is the fixed space of T , i.e. the set { $x \in M : Tx = x$ } .

<u>Lemma</u> 1.1. Suppose M to be a C^* -algebra and $T\in L(M)$ an identity preserving Schwarz map.

(a) Let b: $M \times M \to M$ be a sesquilinear map such that for all $z \in M$ b(z,z) ≥ 0 . Then b(x,x) = 0 for some $x \in M$ if and only if b(x,y) = 0 and b(y,x) = 0 for all $y \in M$.