Shanghai Haili Technology Co., Ltd.

High-performance self-capacitive touch chip

V1.2

Overview

CST820Self-capacitive touch chip, using high-speedMCUKernel and embeddedDSPThe circuit, combined with its own fast self-capacitance sensing technology, can widely support a variety of self-capacitance patterns including triangles, on which single-point gestures and real two-point operations can be realized, achieving extremely high sensitivity and low standby power consumption.

Chip Features

- Built-in fast self-capacitance detection circuit and high performanceDSPModules
 - Support online programming;
 - Built-in watchdog;
 - Multiple key support;
 - Support standby gesture wake-up function;
- Capacitive screen support
 - Maximum support17sensing channels;
 - Channel suspension/pull-down design support;
 - Automatic adjustment of module parameters;
- Performance Indicators
 - Refresh rate>100Hz;
 - Single-point gestures and real two-point operation;
- Power consumption index

- Typical power consumption in dynamic mode1.9mA;
- Typical power consumption in standby mode10uA;
- Typical power consumption in sleep mode2uA;

Communication interfac

- I2CMaster/slave communication interface, rate10Khz~400Khz
 Configurable;
- compatible1.8V/3.3VInterface level.
- Power supply
 - -Single power supply 2.8V ~ 3.6V, power supply ripple <= 50mv;
- Package Type:QFN3X3-24L(P0.35T0.55)

Application

 $Bracelets, watches \ and \ other \ products, TPS ize \ recommendation: 2 in chWithin.$

References

Note:

- CMODThe filter capacitor should be at least10%AccuracyNPO/COGMaterial Capacitor
- CMODThe capacitance value can be selected in the range of 1nFarrive 5.6nFBetween, generally choose 1nFThe specific optimal value is related to the corresponding body capacitance.
- CMODThe filter capacitor must be placed close to the corresponding pins of the chip, and the wiring between the chips should be as short as possible.

Ordering Information

Part Number	Encapsulation	Surface printing	Package
CST820	QFN3X3-24L(P0.35T0.55)	CST820 XXXXXXXXX (Production tracking code)	Taping (5000)

Pinout/Description

name	illustrate	Remark
S01~S17	Sensing channel	
VDDA	power supply	2.8V~3.6V,catch2.2uF~ 10uFcapacitance
CMOD0/CMOD1	Voltage stabilizing capacitor	catch1nF~5.6nFVoltage stabilizing capacitor
INT	Interrupt output	Rising/falling edge selectable
SCL/SDA	I2C	Selectable internal pull-up/open-drain mode
RST	Reset input	Low effective

Remark:

1. CMOD0/CMOD1A voltage stabilizing capacitor must be connected, the size of 1nF \sim 5.6nF;

Functional Description

CST820The self-capacitive touch chip, through its built-in fast self-capacitive sensing module, can realize single-point gestures and real two-point functions on patterns such as triangles without any external devices (except circuit bypass capacitors); while achieving fast response, it has extremely excellent noise resistance, waterproofness, and low power consumption performance.

Power on and reset

The chip has a built-in power-on reset circuit, so there is no need to connect an external reset circuit. The built-in power-on reset module will keep the chip in reset state until the voltage is normal. When the voltage is below a certain threshold, the chip will also be reset.RSTWhen it is low, the entire chip will be reset and the pin can be left floating.

symbol	describe	Minimum	Maximum	unit
Tpor	Chip initialization time after power-on	100	-	mxD
Т	RSTPin delay high time	5	-	mxD
Tron	Chip reinitialization time after reset	100	-	mxD
Trst	Reset pulse time	0.1	-	mxD

Power-on and reset timing description

Working Mode

Dynamic Mode

This mode is used when there are frequent touch operations. In this mode, the touch chip quickly scans the touch screen's self-capacitance to detect touches in a timely manner and report them to the host.

Without touching 2SAfter that, it automatically enters the standby mode. The function of automatically entering the standby mode can be controlled by registers.

Standby mode

In this mode, the touch chip scans the touch screen at a low frequency and enters the dynamic mode after detecting a finger touch. IRQ pin to wake up the host; it is also possible to switch to dynamic mode through the reset pin.

Sleep Mode

When the sleep command is received, it is in this mode; in this mode, the touch chip is in deep sleep state to save power consumption to the maximum extent, and can be switched to dynamic mode through the reset pin.

Channel/Node Configuration

CST820Self-capacitive touch chips can provide up to17Each channel can support self-capacitance scanning without external devices. The range of self-capacitance supported by each channel is: $1pF \sim 400pF$

I2Ccommunication

 $The chip supports standard I2C Communication\ protocol\ standard,\ can\ be\ realized 10 Khz \sim 400 Khz Configurable\ communication\ rate.\ Two I2C Communication\ rate.$

 $Pinout SCL and SDA In addition \ to \ supporting \ open-drain \ mode, it \ also \ supports \ internal \ pull-up \ mode \ for \ flexible \ selection.$

Interrupt mode

The touch chip will only detect a valid touch and report it to the host.IRQpin notifies the host to read valid data to improve efficiency and reduceCPUburden;

The interrupt edge can be configured as rising edge or falling edge as needed; When matching a predefined gesture in standby mode, IRQThe pin is also used to wake up the host.

IICInterface Description

The chip itself supportsIICOperation, you can also useIICPins for simpleIOOperation. Specific functions can be customized by the software according to specific projects.

a)DeviceIICaddress

The 7-bit device address of the chip is generally 0x15, that is, the device write address is 0x2A and the read address is 0x2B. *The device addresses of some* projects may be different, please consult the corresponding project and engineering personnel.

b) IICCommunication speed

In order to ensure the reliability of communication, a maximum communication rate of 400 Kbps is recommended.

c) Write a single byte

Past0x1FRegister Write0x01

d) Write multiple bytes continuously

Past0x1E,0x1FWrite separately0x20,0x01

e) Read a single byte

from0x21Reading a single byte

f) Read multiple bytes continuously

from0x21,0x22,0x23Read3Bytes

g) Timing Description

symbol	illustrate	Minimum	Typical Value	Maximum	unit
F SCLI2C	I2CClock frequency	10	ı	400	kHz
t HDSTAI2C	Retention time (repeated)STARTcondition. After this period of time, the first Clock pulses	0.6	ı	ı	us
tLOWI2C	SCLLow period of the clock	1.3	-	-	us
t HIGHI2C	SCLHigh period of the clock	0.6	-	-	us

t SUSTAI2C	repeatSTARTCondition establishment time	0.6	-	-	us
t SUDATI2C	Data creation time	100	-	-	ns
t SUSTOI2C	STOPCondition establishment time	0.6	-	-	us
tBUFI2C	STOPandSTARTBus idle time between conditions	4.5	ı	ı	us

IICTiming Description

Application Design Specifications

Power supply decoupling capacitor

Generally in the chipVDDandVSSConnect one end0.1uFand10uFThe ceramic capacitor can play the role of decoupling and bypassing. The decoupling capacitor should be placed as close to the chip as possible to minimize the current loop area.

COMDFilter capacitor

The filter capacitor should be at least10%AccuracyNPO/COGMaterial Capacitor, The capacitance value can be selected in the range of InFarrive 5.6nFBetween, generally choose InF.

The specific optimal value is related to the corresponding body capacitance. CMODThe filter capacitor must be placed close to the corresponding pins of the chip, and the wiring between the chips should be as short as possible.

Waterproof precautions

SensorThere should not be large areas of solid ground around the wiring. Large areas of ground must be broken up.

ESDPrecautions

FPCThe design will directly affectESDWhen designing, the following points must be noted:

- FPCTry to use magnetic film for full shielding, and the magnetic film must be grounded.
- FPCNoSensorKeep the pressure and position as far away from the gap of the assembly as possible to reduceESDimpact.
- The power supply access point can be considered to increaseTVSto the ground to enhance resistanceESDInterference performance.

Electromagnetic Interference Considerations

SensorThe wiring must be separated from the lines that are unlikely to cause interference, such as power lines, audio lines, LCDDrive line, Bluetooth antenna, RFAntenna, etc. In particular, TPWhen using a full-fit design, it may be affected LCD interference, at this time TPThe parameters need special debugging.

Ground

The high-precision detection circuit inside the touch chip is sensitive to the ground line. If possible, the user should use star grounding to isolate the noise of other chips. At the same time, insert magnetic beads in series at the ground point as much as possible to enhance the anti-interference ability.

If star grounding is difficult to achieve, users should also try to separate the ground traces of high-current devices from the ground traces of the chip.

Electrical Characteristics

Absolute Maximum Parameters

symbol	illustrate	Minimum	Typical Value	Maximum	unit
Tstg	Storage temperature	- 40	25	125	°C
Та	Working environment temperature when power is on	- 20	-	85	°C
Vdd	Supply voltage relative to Vss	- 0.3	-	+ 3.6	V
Vio	DC input voltage	VSS-0.3	-	VDD+0.3	V
LU	Latch-up Current	-	200	-	mA

Absolute Maximum Parameters

AC electrical performance (*Ambient temperature25 °C,VDDA=3.3V*)

symbol	illustrate	Minimum	Typical Value	Maximum	unit
Fcpu	CPU frequency	- 2%	20	+ 2%	MHz
F32k	Internal low-speed clock frequency	- 5%	32	+ 5%	kHz
txrst	External reset pulse width	-	0.1	-	mxD
tpowerup	Time from POR completion to CPU execution of code	-	4	-	mxD
FGPIO	GPIO switching frequency	-	2	-	MHz
trise	Pin level rise time, Cload=50pF	-	32	-	nS
tFAIL	Pin level fall time, Cload=50pF	-	11.2	-	nS

AC electrical characteristics

DC electrical performance (Ambient temperature25 °C,VDDA=3.3V)

symbol	illustrate	Minimum	Typical Value	Maximum	unit
Vdd	Supply voltage	2.8	3.0	3.6	V
Rpu	Pull-up resistor	-	5	-	ΚΩ
Voh	High level output voltage	0.7*Vdd	-	-	V
Vol	Low level output voltage	-	-	0.3*Vdd	V
loh	High level output current	-	2.0	-	mA
lot	Low level sink current	-	20.0	-	mA
Vil	Input low level voltage	-	-	0.3*Vdd	V
Vi	Input high level voltage	0.7*Vdd	-	-	V
lil	Input leakage current	-	10	-	nA
ldd1	Operating current (dynamic mode)	-	1.9	-	mA
ldd2	Operating current (standby mode)	-	10	-	uA
ldd3	Operating current (sleep mode)	-	2	-	uA
Vddp	Programming voltage	2.8	-	3.6	V

DC electrical characteristics

Product Packaging

TOP VIEW [顶视图]

Revision History

Version	Revisions
V1.2	Modify the material number
V1.1	Revised power consumption data
V1.0	Initial Release

statement

Shanghai Haili Chuang Microelectronics Co., Ltd. is not responsible for the use of any circuits other than our products, nor does it provide patent licenses. Shanghai Haili Chuang Microelectronics Co., Ltd. reserves the right to modify product information and specifications at any time without any notice.

