AMENDMENTS TO THE CLAIMS

Docket No.: 66057(71526)

[1] (original) An optically active diamine compound represented by the formula (1):

wherein R^1 and R^2 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, or $-SO_2R^{13}$ (wherein R^{13} represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group), R^3 to R^{12} each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group, or a substituted amino group, and * represents an asymmetric carbon atom, provided that at least one of R^3 to R^7 and R^8 to R^{12} is a substituted amino group.

[2] (original) An optically active transition metal-diamine complex represented by the formula (2):

wherein R^1 and R^2 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, or $-SO_2R^{13}$ (wherein R^{13} represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group), R^3 to R^{12} each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group, or a substituted amino group, M represents a transition metal, X represents a halogen atom, L represents a ligand, and * represents an asymmetric carbon atom, provided that at least one of R^3 to R^7 and R^8 to R^{12} is a substituted amino group.

Docket No.: 66057(71526)

[3] (original) An optically active transition metal-diamine complex obtained by reacting an optically active diamine compound represented by the formula (1):

wherein R^1 and R^2 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, or $-SO_2R^{13}$ (wherein R^{13} represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group), R^3 to R^{12} each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group, or a substituted amino group, and * represents an asymmetric carbon atom, provided that at least one of R^3 to R^7 and R^8 to R^{12} is a substituted amino group;

and a transition metal compound represented by the formula (3):

$$[\mathsf{MX}_{\mathsf{m}}\mathsf{L}_{\mathsf{n}}]_{\mathsf{p}} \tag{3}$$

wherein M represents a transition metal, X represents a halogen atom, L represents a ligand, m represents 2 or 3, n represents 0 or 1, and p represents 1 or 2.

Docket No.: 66057(71526)

- [4] (original) A catalyst for asymmetric synthesis comprising the optically active transition metal-diamine complex according to claim 2 or 3.
- [5] (original) The catalyst for asymmetric synthesis according to claim 4, wherein the catalyst for asymmetric synthesis is a catalyst for asymmetric reduction.
- [6] (original) A catalyst for asymmetric synthesis comprising an optically active diamine compound represented by the formula (1):

wherein R^1 and R^2 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, or $-SO_2R^{13}$ (wherein R^{13} represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group), R^3 to R^{12} each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group, or a substituted amino group, and * represents an asymmetric carbon atom, provided that at least one of R^3 to R^7 and R^8 to R^{12} is a substituted amino group; and a transition metal compound represented by the formula (3):

$$[\mathsf{MX}_{\mathsf{m}}\mathsf{L}_{\mathsf{n}}]_{\mathsf{p}} \tag{3}$$

wherein M represents a transition metal, X represents a halogen atom, L represents a ligand, m represents 2 or 3, n represents 0 or 1, and p represents 1 or 2.

Docket No.: 66057(71526)

- [7] (original) The catalyst for asymmetric synthesis according to claim 6, wherein the catalyst for asymmetric synthesis is a catalyst for asymmetric reduction.
- [8] (original) A process for producing an alcohol, which comprises subjecting a ketone to an asymmetric reduction in an aqueous solvent in the presence of the catalyst for asymmetric reduction of claim 5 or 7.
- [9] (original) The process according to claim 8, wherein the ketone is a prochiral ketone, and the produced alcohol is an optically active alcohol.
- [10] (original) The process according to claim 9, wherein the ketone is a ketone represented by the following formula (4):

$$\begin{array}{ccc}
0 & & & \\
R^{21} & & & R^{22}
\end{array}$$
(4)

wherein R^{21} and R^{22} each independently represent an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, or a ferrocenyl group, provided that $R^{21} \neq R^{22}$, and R^{21} and R^{22} may be bonded to each other to form a cyclic ketone having a substituent, and the resultant optically active alcohol is an optically active alcohol represented by the following formula (5):

$$\begin{array}{c}
\text{OH} \\
R^{21} & * R^{22}
\end{array}$$
(5)

wherein * represents an asymmetric carbon atom and R²¹ and R²² are the same as described above.

[11] (currently amended) The process according to <u>claim 8any one of claims 8</u> to 10, wherein the asymmetric reduction is based on asymmetric transfer hydrogenation.

Docket No.: 66057(71526)

- [12] (currently amended) The process according to <u>claim 8 any one of claims 8</u> to 11, wherein the catalyst for asymmetric reduction is recovered after use.
- [13] (original) The process according to claim 12, wherein the recovery is performed in the form of an aqueous solution.
- [14] (currently amended) The process according to <u>claim 8-any one of claims 8</u> to 13, wherein the recovered catalyst for asymmetric reduction is recycled.
- [15] (original) The process according to claim 14, wherein the recovered catalyst for asymmetric reduction is a catalyst to be recycled in the form of the recovered aqueous solution.
 - [16] (original) A diamine compound represented by the formula (1b):

wherein R² represents a hydrogen atom, an optionally substituted hydrocarbon group, or –SO₂R¹³ (wherein R¹³ represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group), R³ to R¹² each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, an optionally

Application No. National Phase of PCT/JP2005/005728 First Preliminary Amendment Page 7

substituted aryloxy group, an optionally substituted aralkyloxy group, or a substituted amino group, and R¹³ represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group, provided that at least one of R³ to R⁷ and R⁸ to R¹² is a substituted amino group.

Docket No.: 66057(71526)