# IN74HC14A

# **Hex Schmitt-Trigger Inverter High-Performance Silicon-Gate CMOS**

The IN74HC14A is identical in pinout to the LS/ALS14, LS/ALS04. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALSTTL outputs.

The IN74HC14A is useful to "square up" slow input rise and fall times. Due to the hysteresis voltage of the Schmitt trigger, the IN74HC14A finds applications in noisy environments.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices



#### LOGIC DIAGRAM



## PIN $14 = V_{CC}$ PIN 7 = GND

#### PIN ASSIGNMENT

| <b>A</b> 1 [ | 1• |    | $v_{cc}$ |
|--------------|----|----|----------|
| <b>Y</b> 1 [ | 2  | 13 | A6       |
| A2 [         | 3  | 12 | □ Y6     |
| Y2 [         | 4  | 11 | A5       |
| <b>А</b> 3 [ | 5  | 10 | Y5       |
| <b>Y</b> 3 [ | 6  | 9  | A4       |
| gnd [        | 7  | 8  | Y4       |
|              |    |    |          |

#### **FUNCTION TABLE**

| Inputs | Output |
|--------|--------|
| A      | Y      |
| L      | Н      |
| Н      | L      |



### MAXIMUM RATINGS\*

| Symbol    | Parameter                                                                        | Value                    | Unit |
|-----------|----------------------------------------------------------------------------------|--------------------------|------|
| $V_{CC}$  | DC Supply Voltage (Referenced to GND)                                            | -0.5 to +7.0             | V    |
| $V_{IN}$  | DC Input Voltage (Referenced to GND)                                             | -1.5 to $V_{CC}$ +1.5    | V    |
| $V_{OUT}$ | DC Output Voltage (Referenced to GND)                                            | $-0.5$ to $V_{CC} + 0.5$ | V    |
| $I_{IN}$  | DC Input Current, per Pin                                                        | ±20                      | mA   |
| $I_{OUT}$ | DC Output Current, per Pin                                                       | ±25                      | mA   |
| $I_{CC}$  | DC Supply Current, V <sub>CC</sub> and GND Pins                                  | ±50                      | mA   |
| $P_{D}$   | Power Dissipation in Still Air, Plastic DIP+<br>SOIC Package+                    | 750<br>500               | mW   |
| Tstg      | Storage Temperature                                                              | -65 to +150              | °C   |
| $T_{L}$   | Lead Temperature, 1 mm from Case for 10 Seconds<br>(Plastic DIP or SOIC Package) | 260                      | °C   |

<sup>\*</sup>Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

SOIC Package: : - 7 mW/°C from 65° to 125°C

### RECOMMENDED OPERATING CONDITIONS

| Symbol            | Parameter                                            | Min | Max          | Unit |
|-------------------|------------------------------------------------------|-----|--------------|------|
| $V_{CC}$          | DC Supply Voltage (Referenced to GND)                | 2.0 | 6.0          | V    |
| $V_{IN}, V_{OUT}$ | DC Input Voltage, Output Voltage (Referenced to GND) | 0   | $V_{CC}$     | V    |
| $T_A$             | Operating Temperature, All Package Types             | -55 | +125         | °C   |
| $t_r$ , $t_f$     | Input Rise and Fall Time (Figure 1)                  | -   | No<br>Limit* | ns   |

<sup>\*</sup> When  $V_{IN} \approx 50\% \ V_{CC}$ ,  $I_{CC} > 1 mA$ 

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation,  $V_{IN}$  and  $V_{OUT}$  should be constrained to the range  $GND \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{\text{CC}}$ ). Unused outputs must be left open.



<sup>+</sup>Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

|                              |                                                       |                                                                                                                                                                      | $V_{CC}$          | Guaranteed Limit     |                      |                      |      |
|------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------------------|----------------------|------|
| Symbol                       | Parameter                                             | Test Conditions                                                                                                                                                      | V                 | 25 °C<br>to<br>-55°C | ≤85<br>°C            | ≤125<br>°C           | Unit |
| V <sub>T</sub> +max          | Maximum Positive-<br>Going Input Threshold<br>Voltage | $V_{OUT}$ =0.1 V $I_{OUT}$ $\leq$ 20 $\mu$ A                                                                                                                         | 2.0<br>4.5<br>6.0 | 1.5<br>3.15<br>4.2   | 1.5<br>3.15<br>4.2   | 1.5<br>3.15<br>4.2   | V    |
| V <sub>T</sub> +min          | Minimum Positive-<br>Going Input Threshold<br>Voltage | $V_{OUT}$ =0.1 V $I_{OUT}$ $\leq 20 \mu A$                                                                                                                           | 2.0<br>4.5<br>6.0 | 1.0<br>2.3<br>3.0    | 0.95<br>2.25<br>2.95 | 0.95<br>2.25<br>2.95 | V    |
| V <sub>T</sub> -max          | Maximum Negative-<br>Going Input Threshold<br>Voltage | $\begin{vmatrix} V_{\text{OUT}} = V_{\text{CC}} - 0.1 \text{ V} \\  I_{\text{OUT}}  \le 20  \mu\text{A} \end{vmatrix}$                                               | 2.0<br>4.5<br>6.0 | 0.9<br>2.0<br>2.6    | 0.95<br>2.05<br>2.65 | 0.95<br>2.05<br>2.65 | V    |
| V <sub>T</sub> -min          | Minimum Negative-<br>Going Input Threshold<br>Voltage | $\begin{vmatrix} V_{\text{OUT}} = V_{\text{CC}} - 0.1 \text{ V} \\  I_{\text{OUT}}  \le 20  \mu\text{A} \end{vmatrix}$                                               | 2.0<br>4.5<br>6.0 | 0.3<br>0.9<br>1.2    | 0.3<br>0.9<br>1.2    | 0.3<br>0.9<br>1.2    | V    |
| V <sub>H</sub> max<br>Note 1 | Maximum Hysteresis<br>Voltage                         | $V_{OUT}$ =0.1 V or $V_{CC}$ -0.1 V $I_{OUT}$ $\leq$ 20 $\mu$ A                                                                                                      | 2.0<br>4.5<br>6.0 | 1.2<br>2.25<br>3.0   | 1.2<br>2.25<br>3.0   | 1.2<br>2.25<br>3.0   | V    |
| V <sub>H</sub> min<br>Note 1 | Minimum Hysteresis<br>Voltage                         | $V_{OUT}$ =0.1 V or $V_{CC}$ -0.1 V $I_{OUT}$ $\leq$ 20 $\mu$ A                                                                                                      | 2.0<br>4.5<br>6.5 | 0.2<br>0.4<br>0.5    | 0.2<br>0.4<br>0.5    | 0.2<br>0.4<br>0.5    | V    |
| V <sub>OH</sub>              | Minimum High-Level<br>Output Voltage                  | $V_{IN} \le V_T$ -min $I_{OUT} \le 20 \mu A$                                                                                                                         | 2.0<br>4.5<br>6.0 | 1.9<br>4.4<br>5.9    | 1.9<br>4.4<br>5.9    | 1.9<br>4.4<br>5.9    | V    |
|                              |                                                       | $ \begin{aligned} & V_{\text{IN}} \leq V_{\text{T}} - \text{min} \\ &   I_{\text{OUT}}   \leq 4 \text{mA} \\ &   I_{\text{OUT}}   \leq 5.2 \text{mA} \end{aligned} $ | 4.5<br>6.0        | 3.98<br>5.48         | 3.84<br>5.34         | 3.7<br>5.2           |      |
| V <sub>OL</sub>              | Maximum Low-Level<br>Output Voltage                   | $\begin{vmatrix} V_{\text{IN}} \ge V_{\text{T}} + \max \\ I_{\text{OUT}} \end{vmatrix} \le 20 \ \mu\text{A}$                                                         | 2.0<br>4.5<br>6.0 | 0.1<br>0.1<br>0.1    | 0.1<br>0.1<br>0.1    | 0.1<br>0.1<br>0.1    | V    |
|                              |                                                       |                                                                                                                                                                      | 4.5<br>6.0        | 0.26<br>0.26         | 0.33<br>0.33         | 0.4<br>0.4           |      |
| $I_{\rm IN}$                 | Maximum Input<br>Leakage Current                      | V <sub>IN</sub> =V <sub>CC</sub> or GND                                                                                                                              | 6.0               | ±0.1                 | ±1.0                 | ±1.0                 | μΑ   |
| $I_{CC}$                     | Maximum Quiescent<br>Supply Current<br>(per Package)  | $V_{IN}=V_{CC}$ or GND $I_{OUT}=0\mu A$                                                                                                                              | 6.0               | 1.0                  | 10                   | 40                   | μΑ   |

Note: 1  $V_H$ min>( $V_T$ +min)-( $V_T$ -max);  $V_H$ max=( $V_T$ +max)-( $V_T$ -min)



57

### $\textbf{AC ELECTRICAL CHARACTERISTICS}(C_L = 50 pF, Input \ t_i = t_f = 6.0 \ ns)$

|                    |                                            | $V_{CC}$ | Guaranteed Limit |       |        |      |
|--------------------|--------------------------------------------|----------|------------------|-------|--------|------|
| Symbol             | Parameter                                  | V        | 25 °C            | ≤85°C | ≤125°C | Unit |
|                    |                                            |          | to               |       |        |      |
|                    |                                            |          | -55°C            |       |        |      |
| $t_{PLH}, t_{PHL}$ | Maximum Propagation Delay, Input A to      | 2.0      | 95               | 120   | 145    | ns   |
|                    | Output Y (Figures 1 and 2)                 | 4.5      | 19               | 24    | 29     |      |
|                    |                                            | 6.0      | 16               | 20    | 25     |      |
| $t_{TLH}, t_{THL}$ | Maximum Output Transition Time, Any Output | 2.0      | 75               | 95    | 110    | ns   |
|                    | (Figures 1 and 2)                          | 4.5      | 15               | 19    | 22     |      |
|                    |                                            | 6.0      | 13               | 16    | 19     |      |
| $C_{IN}$           | Maximum Input Capacitance                  | -        | 10               | 10    | 10     | pF   |

| pF |  |
|----|--|
|    |  |



Figure 1. Switching Waveforms



\*Includes all probe and jig capacitance.

Figure 2. Test Circuit

