

# Chip Scale Packaging, Dual SPDT Analog Switch

#### **Features**

• CMOS Technology for Bus and Analog Applications

Low On-Resistance: 0.5Ω.
 Wide V<sub>CC</sub> Range: 1.65V to 5.5V

• Rail-to-Rail Signal Range

• Control Input Overvoltage Tolerance: 5.5V min.

• High Off Isolation: -42dB

• Crosstalk Rejection Reduces Signal Distortion: -70dB

• Low THD  $(0.05\% @ V_{CC} = 2.7V)$ 

· Break-Before-Make Switching

• Extended Industrial Temperature Range: -40°C to 85°C

• Packaging (Pb-free & Green):

- 10-ball Chip Scale Packaging (CSP)

## **Applications**

- Cell Phones
- PDAs
- MP3 players
- Portable Instrumentation
- Computer Peripherals
- Speaker Headset Switching
- Power Routing
- Relay Replacement
- Audio and Video Signal Routing
- PCMCIA Cards
- Modems

## **Description**

Pericom Semiconductor's PI5A4684 is a dual high-bandwidth, fast single-pole double throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage, 1.65V to 5.5V, the PI5A4684 has a maximum On-Resistance of  $0.5\Omega$  at +2.7V.

Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

The control input,  $IN_X$ , tolerates input drive signals up to 6.0V, independent of supply voltage.

## Pin Configuration/ Block Diagram (top view) CSP



## **Pin Description**

| Pin #<br>CSP | Name                                    | Description                 |
|--------------|-----------------------------------------|-----------------------------|
| A4, C4       | $NO_X$                                  | Data Port (Normally open)   |
| B1           | GND                                     | Ground                      |
| A1, C1       | $NC_X$                                  | Data Port (Normally closed) |
| A3, C3       | COM <sub>X</sub> Common Output / Data I |                             |
| B4           | V <sub>CC</sub>                         | Postive Power Supply        |
| A2, C2       | $IN_X$                                  | Logic Control               |

## **Logic Function Table**

| Logic Input (IN <sub>X</sub> ) | Function                                      |
|--------------------------------|-----------------------------------------------|
| 0                              | NC <sub>X</sub> Connected to COM <sub>X</sub> |
| 1                              | NO <sub>X</sub> Connected to COM <sub>X</sub> |

Note:

1. x = 1, or 2

06-0062 1 PS8792B 05/09/06



## Absolute Maximum Ratings(1)

| Supply Voltage V <sub>CC</sub> 0.5V to +7V                  |
|-------------------------------------------------------------|
| DC Switch Voltage $(V_S)^{(2)}$ 0.5V to $V_{CC}$ +0.5V      |
| DC Input Voltage $(V_{IN})^{(2)}$ 0.5V to +7.0V             |
| Continuous Current NO_NC_COM±500m/                          |
| Peak Current NO_NC_COM_                                     |
| (pulsed at 1ms 50% duty cycle)±650m/                        |
| Peak Current NO NC COM                                      |
| (pulsed at 1ms 10% duty cycle)±800m/                        |
| Storage Temperature Range (T <sub>STG</sub> )65°C to +150°C |
| Junction Temperature under Bias (T <sub>J</sub> )150°C      |
| Junction Lead Temperature (T <sub>L</sub> )                 |
| (Soldering, 10 seconds)260°C                                |
| Power Dissipation (P <sub>D</sub> ) @ +85°C250mV            |

# **Recommended Operating Conditions**(3)

| Supply Voltage Operating (V <sub>CC</sub> )                | 1.65V to 5.5V     |
|------------------------------------------------------------|-------------------|
| Control Input Voltage $(V_{IN})$                           | $0V$ to $V_{CC}$  |
| Switch Input Voltage (V <sub>IN</sub> )                    | $0V$ to $V_{CC}$  |
| Output Voltage (V <sub>OUT</sub> )                         | $0V$ to $V_{CC}$  |
| Operating Temperature (T <sub>A</sub> )                    | . −40°C to +85°C  |
| Input Rise and Fall Time (t <sub>r</sub> ,t <sub>f</sub> ) |                   |
| Control Input $V_{CC} = 2.3V - 3.6V$                       | . 0ns/V to 10ns/V |
| Control Input $V_{CC} = 4.5V - 5.5V$                       | 0ns/V to 5ns/V    |
| Thermal Resistance $(\theta_{JA})\dots\dots$               | 350°C/W           |
| Lead Temperature (soldering 10s)                           | +300°C            |
| Bump Temperature (soldering notes)                         |                   |
| Infared (15s)                                              | +220°C            |
| Vanor Phase (60ns)                                         |                   |

#### **Notes:**

- 1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the inut and output diode current ratings are observed.
- 3. Control input must be held HIGH or LOW; it must not float.

06-0062 2 PS8792B 05/09/06



DC Electrical Characteristics +3V Supply  $(V_{CC} = 2.7V \text{ to } 3.3V, T_A = -40 \text{ C to } +85 \text{ C}, \text{ unless otherwise noted}.$  Typical values are at 3V and +25°C.)

| Parameter                               | Symbol Test Conditions                                 |                                                                                        | Min. | Тур. | Max.            | Units |  |
|-----------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|------|------|-----------------|-------|--|
| Analog Switch                           |                                                        |                                                                                        |      |      |                 |       |  |
| Analog Signal Range                     | $\begin{matrix} V_{NO},V_{NC},\\ V_{COM} \end{matrix}$ |                                                                                        | 0    |      | V <sub>CC</sub> | V     |  |
| NC On-Resistance                        | R <sub>ON(NC)</sub>                                    | $V_{CC} = 2.7V$ , $I_{COM} = 100$ mA,<br>$V_{NC} = 0$ to $V_{CC}$                      |      | 0.5  | 0.6             |       |  |
| NO On-Resistance                        | R <sub>ON(NO)</sub>                                    | $V_{CC} = 2.7V$ , $I_{COM} = 100$ mA,<br>$V_{NC} = 0$ to $V_{CC}$                      |      | 0.4  | 0.5             |       |  |
| On-Resistance Match<br>Between Channels | $\Delta R_{ m ON}$                                     | $V_{CC} = 2.7V, I_{COM} = 100 \text{mA},$<br>$V_{NO}$ or $V_{NC} = 1.5V$               |      | 0.01 | 0.06            | Ω     |  |
| NC On-Resistance<br>Flatness            | R <sub>ONF(NC)</sub>                                   | $V_{CC} = 2.7V$ , $I_{COM} = 100$ mA,<br>$V_{NC} = 0$ to $V_{CC}$                      |      |      | 0.25            |       |  |
| NO On-Resistance<br>Flatness            | R <sub>ONF(NO)</sub>                                   | $V_{CC} = 2.7V$ , $I_{COM} = 100$ mA,<br>$V_{NO} = 0$ to $V_{CC}$                      |      |      | 0.15            |       |  |
| NO or NC Off<br>Leakage Current         | I <sub>OFF (NO)</sub> or<br>I <sub>OFF (NC)</sub>      | $V_{CC} = 3.3V$ , $V_{NO}$ or $V_{NC} = 3V$ , $0.3V$ , $V_{COM} = 0.3V$ , $3V$         | -80  |      | 80              | A     |  |
| COM On Leakage<br>Current               | I <sub>COM (ON)</sub>                                  | $V_{CC} = 3.3V$ , $V_{NO}$ or $V_{NC} = 3V$ , 0.3V, $V_{COM} = 0.3V$ , 3V, or floating | -160 |      | 160             | nA    |  |
| Digital I/O                             |                                                        |                                                                                        |      |      |                 |       |  |
| Input Logic High                        | $V_{\mathrm{IH}}$                                      |                                                                                        | 1.3  |      |                 | W     |  |
| Input Logic Low                         | $V_{\rm IL}$                                           |                                                                                        |      |      | 0.6             | V     |  |
| Input Hysteresis                        | $V_{\rm H}$                                            | $V_{CC} = 3.3V$                                                                        |      | 200  |                 | mV    |  |
| IN Input Leakage<br>Current             | I <sub>IN</sub>                                        | $V_{\rm IN} = 0$ or $V_{\rm CC}$                                                       | -1   |      | 1               | μА    |  |
| Power Supply                            |                                                        |                                                                                        |      |      |                 |       |  |
| Power-Supply Range                      | $V_{CC}$                                               |                                                                                        | 1.65 |      | 5.5             | V     |  |
| Supply Current                          | I <sub>CC</sub>                                        | $V_{CC} = 5.5V$ , $V_{IN} = 0$ or $V_{CC}$                                             |      |      | 200             | nA    |  |



## **Switch and AC Characteristics**

(Vcc = 2.7V to 3.3V, Ta = -40 C to +85 C, unless otherwise noted. Typical values are at 3V and +25°C C, unless otherwise noted.

| Parameter                  | Symbol            | Test Conditions                                                                                                     |  | Тур. | Max. | Units |
|----------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------|--|------|------|-------|
| Turn-On Time               | t <sub>ON</sub>   | $V_{CC} = 2.7V$ , $V_{NO}$ or $V_{NC} = 1.5V$ , $R_L = 50\Omega$ , $C_L = 35$ pF, See Test Circuit Figure 1 & 2.    |  | 25   | 60   |       |
| Turn-Off Time              | t <sub>OFF</sub>  | $V_{CC} = 2.7V$ , $V_{NO}$ or $V_{NC} = 1.5V$ , $R_L = 50\Omega$ , $C_L = 35$ pF, See Test Circuit Figure 1 & 2.    |  | 7    | 20   | ns    |
| Break-Before-Make<br>Delay | t <sub>BBM</sub>  | $V_{CC} = 2.7V$ , $V_{NO}$ or $V_{NC} = 1.5V$ , $R_L = 50\Omega$ , $C_L = 35pF$ , $See\ Test\ Circuit\ Figure\ 3$ . |  | 25   |      |       |
| Charge Injection           | Q                 | $COM = 0$ , $R_S = 0$ , $C_L = 1nF$ ,<br>See Test Circuit Figure 4.                                                 |  | 54   |      | рC    |
| Off-Isolation              | O <sub>IRR</sub>  | $C_L = 5 p F, R_L = 50 \Omega, f = 100 k H z,$<br>$V_{COM} = 1 V_{RMS}, ,$<br>See Test Circuit Figure 5.            |  | -42  |      | dB    |
| Crosstalk                  | X <sub>TALK</sub> | $C_L = 5 p F, R_L = 50 \Omega, f = 100 k H z,$<br>$V_{COM} = 1 V_{RMS},$<br>See Test Circuit Figure 6.              |  | -70  |      | UD    |
| 3dB Bandwidth              | f <sub>3dB</sub>  | See Test Circuit Figure 9.                                                                                          |  | 27   |      | MHz   |
| Total Harmonic Distortion  | THD               | $R_L = 32\Omega$ , $V_{IN} = 3.5V$ , $V_{CC} = 4.5V$<br>f = 20Hz to 20kHz                                           |  | 0.07 |      |       |
|                            |                   | $R_L = 32\Omega$ , $V_{IN} = 2.0V$ , $V_{CC} = 3.4V$<br>f = 20Hz to 20kHz                                           |  | 0.06 |      | %     |
|                            |                   | $R_L = 32\Omega$ , $V_{IN} = 1.5V$ , $V_{CC} = 2.7V$<br>f = 20Hz to 20kHz                                           |  | 0.05 |      |       |

## Capacitance

| Parameter          | Symbol                | Test Conditions                      | Min. | Тур. | Max. | Units |
|--------------------|-----------------------|--------------------------------------|------|------|------|-------|
| NC Off Capacitance | C <sub>NC (OFF)</sub> | f = 1MHz, See Test Circuit Figure 7. |      | 84   |      |       |
| NO Off Capacitance | C <sub>NO (OFF)</sub> | f = 1MHz, See Test Circuit Figure 7. |      | 65   |      | nE    |
| NC On Capacitance  | C <sub>NC</sub> (ON)  | f = 1MHz, See Test Circuit Figure 8. |      | 240  |      | pF    |
| NO On Capacitance  | C <sub>NO</sub> (ON)  | f = 1MHz, See Test Circuit Figure 8. |      | 225  |      |       |



## **Test Circuits and Timing Diagrams**



Notes:

Unused input (NC or NO) must be grounded.

Figure 1. AC Test Circuit



Figure 2. AC Waveforms



Figure 3. Break Before Make Interval Timing

06-0062 5 PS8792B 05/09/06





Figure 4. Charge Injection Test



Figure 5. Off Isolation



Figure 6. Crosstalk



Figure 7. Channel Off Capacitance



Figure 8. Channel On Capacitance





Figure 9. Bandwidth





## **Ordering Information**

| Ordering Code | Packaging Code | ing Code Package Type        |  |
|---------------|----------------|------------------------------|--|
| PI5A4684GAE   | GA             | Pb-free & Green, 10-ball CSP |  |

#### **Notes:**

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- Adding an X suffix = Tape & Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com