Elementary Functions Complex Powers

Complex Powers

Complex Powers

- Complex powers, such as $(1+i)^i$, are defined in terms of the complex exponential and logarithmic functions.
- Recall from that $z = e^{\ln z}$, for all nonzero complex numbers z.
- Thus, when n is an integer, z^n can be written as

$$z^n = (e^{\ln z})^n = e^{n \ln z}.$$

• This formula, which holds for integer exponents n, suggests the following definition for the complex power z^{α} , for any complex exponent α :

Definition (Complex Powers)

If α is a complex number and $z \neq 0$, then the complex power z^{α} is defined to be: $z^{\alpha} = e^{\alpha \ln z}$

Complex Power Function

- $z^{\alpha} = e^{\alpha \ln z}$ gives an infinite set of values because the complex logarithm $\ln z$ is multiple-valued.
- When n is an integer, the expression is single-valued (in agreement with fact that z^n is a function when n is an integer).

```
To see this, note z^n=e^{n\ln z}=e^{n[\log_e|z|+i\arg(z)]}=e^{n\log_e|z|}e^{n\arg(z)i}. If \theta=\mathrm{Arg}(z), then \arg(z)=\theta+2k\pi, where k is an integer. So e^{n\arg(z)i}=e^{n(\theta+2k\pi)i}=e^{n\theta i}e^{2nk\pi i}. But, by definition, e^{2nk\pi i}=\cos(2nk\pi)+i\sin(2nk\pi). Because n and k are integers, we have 2nk\pi is an even multiple of \pi, and so \cos(2nk\pi)=1 and \sin(2nk\pi)=0. Consequently, e^{2nk\pi i}=1 and we get z^n=e^{n\log_e|z|}e^{n\mathrm{Arg}(z)i}, which is single-valued.
```

- In general, $z^{\alpha} = e^{\alpha \ln z}$ defines a multiple-valued function.
- It is called a complex power function.

Computing Complex Powers

• Find the values of the given complex power:

(a)
$$i^{2i}$$
 (b) $(1+i)^i$.

(a) We have seen that $\ln i = \frac{(4n+1)\pi}{2}i$. Thus, we obtain:

$$i^{2i} = e^{2i \ln i} = e^{2i[(4n+1)\pi i/2]} = e^{-(4n+1)\pi},$$

for
$$n = 0, \pm 1, \pm 2, ...$$

(b) We have also seen that $\ln(1+i) = \frac{1}{2}\log_e 2 + \frac{(8n+1)\pi}{4}i$, for $n=0,\pm 1,\pm 2,\ldots$ Thus, we obtain:

$$(1+i)^{i} = e^{i \ln (1+i)} = e^{i[(\log_{e} 2)/2 + (8n+1)\pi i/4]},$$

$$(1+i)^{i} = e^{-(8n+1)\pi/4 + i(\log_{e} 2)/2},$$

for $n = 0, \pm 1, \pm 2, ...$

or

Properties of Complex Powers

- Complex powers satisfy the following properties that are analogous to properties of real powers:
 - $z^{\alpha_1}z^{\alpha_2}=z^{\alpha_1+\alpha_2}$:

 - $(z^{\alpha})^n = z^{n\alpha}$, for $n = 0, \pm 1, \pm 2, ...$
- Each of these properties can be derived from the definition of complex powers and the algebraic properties of the complex exponential function e^z :
 - For example, by the definition, $z^{\alpha_1}z^{\alpha_2}=e^{\alpha_1\ln z}e^{\alpha_2\ln z}$. By using properties of the exponential, $z^{\alpha_1}z^{\alpha_2}=e^{\alpha_1\ln z+\alpha_2\ln z}=e^{(\alpha_1+\alpha_2)\ln z}$. By the definition, $e^{(\alpha_1+\alpha_2)\ln z}=z^{\alpha_1+\alpha_2}$. Thus, $z^{\alpha_1}z^{\alpha_2}=z^{\alpha_1+\alpha_2}$.

Principal Value of a Complex Power

- The complex power z^{α} is, in general, multiple-valued because it is defined using the multiple-valued complex logarithm $\ln z$.
- We can assign a unique value to z^{α} by using the principal value of the complex logarithm Lnz in place of ln z.
- This value of the complex power is called the **principal value** of z^{α} .
- Example: Since $\operatorname{Ln} i = \frac{\pi}{2}i$, the principal value of i^{2i} is $i^{2i} = e^{2i\operatorname{Ln} i} = e^{2i\frac{\pi}{2}i} = e^{-\pi}$.

Definition (Principal Value of a Complex Power)

If α is a complex number and $z \neq 0$, then the function defined by:

$$z^{\alpha} = e^{\alpha L n z}$$

is called the **principal value of the complex power** z^{α} .

• Notation: z^{α} will be used to denote both the multiple-valued power function $F(z) = z^{\alpha}$ and the **principal value power function**.

Computing the Principal Value of a Complex Power

• Find the principal value of each complex power:

(a)
$$(-3)^{i/\pi}$$
 (b) $(2i)^{1-i}$.

(a) For z=-3, we have |z|=3 and $Arg(-3)=\pi$, and so $Ln(-3)=\log_e 3+i\pi$. Thus, we obtain:

$$(-3)^{i/\pi} = e^{(i/\pi)\mathsf{Ln}(-3)} = e^{(i/\pi)(\log_e 3 + i\pi)} = e^{-1 + i(\log_e 3)/\pi}.$$

Finally, since $e^{-1+i(\log_e 3)/\pi} = e^{-1}[\cos\frac{\log_e 3}{\pi} + i\sin\frac{\log_e 3}{\pi}],$ $(-3)^{i/\pi} = e^{-1}[\cos\frac{\log_e 3}{\pi} + i\sin\frac{\log_e 3}{\pi}].$

(b) For z=2i, we have |z|=2 and $\text{Arg}(z)=\frac{\pi}{2}$, and so $\text{Ln}2i=\log_e 2+i\frac{\pi}{2}$. Thus, we obtain:

$$(2i)^{1-i} = e^{(1-i)\operatorname{Ln}2i} = e^{(1-i)(\log_e 2 + i\pi/2)} = e^{\log_e 2 + \pi/2 - i(\log_e 2 - \pi/2)}.$$

Since $(2i)^{1-i} = e^{\log_e 2 + \pi/2} [\cos(\log_e 2 - \frac{\pi}{2}) - i\sin(\log_e 2 - \frac{\pi}{2})]$, we finally get $(2i)^{1-i} = e^{\log_e 2 + \pi/2} [\cos(\log_e 2 - \frac{\pi}{2}) - i\sin(\log_e 2 - \frac{\pi}{2})]$.

Analyticity

- In general, the principal value of a complex power z^{α} is not a continuous function on the complex plane because the function Lnz is not continuous on the complex plane.
- The function $e^{\alpha z}$ is continuous on the entire complex plane and the function Lnz is continuous on the domain |z| > 0, $-\pi < \arg(z) < \pi$, so z^{α} is continuous on the domain |z| > 0, $-\pi < \arg(z) < \pi$.
- Using polar coordinates r = |z| and $\theta = \arg(z)$, we have found that $f_1(z) = e^{\alpha(\log_e r + i\theta)}, -\pi < \theta < \pi$ is a branch of $F(z) = z^{\alpha} = e^{\alpha \ln z}$.
- It is called the **principal branch of the complex power** z^{α} . Its branch cut is the non-positive real axis, and z = 0 is a branch point.
- The branch f_1 agrees with the principal value z^{α} on the domain |z| > 0, $-\pi < \arg(z) < \pi$. Consequently, the derivative of f_1 can be found using the chain rule:

$$f_1'(z) = \frac{d}{dz} e^{\alpha \mathsf{Ln} z} = e^{\alpha \mathsf{Ln} z} \frac{d}{dz} [\alpha \mathsf{Ln} z] = e^{\alpha \mathsf{Ln} z} \frac{\alpha}{z}.$$
 Using the principal value $z^\alpha = e^{\alpha \mathsf{Ln} z}$, we find $f_1'(z) = \frac{\alpha z^\alpha}{z} = \alpha z^{\alpha - 1}$.

Derivative of a Power Function

• Find the derivative of the principal value z^i at the point z=1+i. Because the point z=1+i is in the domain |z|>0, $-\pi<\arg(z)<\pi$, it follows that $\frac{d}{dz}z^i=iz^{i-1}$, and so, $\frac{d}{dz}z^i\big|_{z=1+i}=iz^{i-1}\big|_{z=1+i}=i(1+i)^{i-1}$. We can rewrite this value as:

$$i(1+i)^{i-1} = i(1+i)^{i}(1+i)^{-1} = i(1+i)^{i}\frac{1}{1+i} = \frac{1+i}{2}(1+i)^{i}.$$

Moreover, the principal value of $(1+i)^i$ is: $(1+i)^i = e^{-\pi/4 + i(\log_e 2)/2}$, and so

$$\frac{d}{dz}z^{i}\Big|_{z=1+i} = \frac{1+i}{2}e^{-\pi/4+i(\log_{e}2)/2}.$$

Remarks

- (i) There are some properties of real powers that are not satisfied by complex powers. One example of this is that for complex powers, $(z^{\alpha_1})^{\alpha_2} \neq z^{\alpha_1 \alpha_2}$ unless α_2 is an integer.
- (ii) As with complex logarithms, some properties that hold for complex powers do not hold for principal values of complex powers. For example, we can prove that $(z_1z_2)^{\alpha}=z_1^{\alpha}z_2^{\alpha}$, for any nonzero

complex numbers z_1 and z_2 . However, this property does not hold for principal values of these complex powers:

If $z_1=-1$, $z_2=i$, and $\alpha=i$, then the principal value of $(-1\cdot i)^i$ is $e^{i\operatorname{Ln}(-i)}=e^{\pi/2}$. On the other hand, the product of the principal values of $(-1)^i$ and i^i is $e^{i\operatorname{Ln}(-1)}e^{i\operatorname{Ln}i}=e^{-\pi}e^{-\pi/2}=e^{-3\pi/2}$.