

Data Communication (CSX-208) Dr Samayveer Singh

Overview of Network Models

Networks

A network is a set of devices (often referred to as nodes) connected by communication links.

- A node can be a computer, printer, or any other device capable of sending and/or receiving data generated by other nodes on the network.
- > A link can be a cable, air, optical fiber, or any medium which can transport a signal carrying information.

Computer Network Frameworks

- There are some well defined frameworks (i.e., OSI and TCP/IP) to design computer networks so that communication between various devices (of any type) can be done.
- > OSI Model: It is a layered framework which is composed of seven ordered layers.
- Each layer is part of a process, which moves information across a network from one system to another.

Seven layers of the OSI model

Interaction between layers in OSI model

An exchange using OSI model

Physical layer

It is responsible for movement of individual bits from one node to the next node.

Data Link layer

The data link layer is responsible for moving frames from one hop (node) to the next.

Hop-to-hop delivery

Network layer

The network layer is responsible for the delivery of individual packets from the source host to the destination host.

Source-to-destination delivery

Transport layer

The transport layer is responsible for the delivery of a message from one process to another.

Reliable process-to-process delivery of a message

Session layer

The session layer is responsible for dialog control and synchronization.

Presentation layer

The presentation layer is responsible for translation, compression, and encryption.

Application layer

It is responsible for providing services to the user.

Summary of layers

TCP/IP Protocol Suite

- It was developed prior to the OSI model and consists only five layers.
- The layers in the TCP/IP protocol suite do not exactly match those in the OSI model.
- The original TCP/IP protocol suite was defined as having four layers: host-to-network, internet, transport, and application.
- However, when TCP/IP is compared to OSI, we can say that the TCP/IP protocol suite is made of five layers: physical, data link, network, transport, and application.

TCP/IP and OSI model

Physical and Data Link Layers

- > At this layer, TCP/IP does not define any specific protocol. It supports all the standard protocols.
- > A network in a TCP/IP internetwork can be a LAN or WAN.

Network Layer

- > Network layer is responsible for creating a connection between the source computer and destination computer.
- > NL is responsible for host-to-host connection and also responsible to control routers for choosing best routing strategy.
- > NL in the Internet includes a main protocol called Internet Protocol (IP) which defines format of packet (called datagram).
- > IP also perform the routing by passing each datagram through routers unless it reaches the destination.
- > NL also includes unicast and multi-cast routing protocols
 - A routing protocol does not take part in routing (That is the responsibility if IP)
 - It simply creates forwarding tables for routers to help them in routing

IP

- It is an unreliable and connectionless protocol.
 - No flow control
 - No error control
 - No congestion control
- > If any of these services are required by Application, it should rely on transport layer protocol

Axillary Protocols which help IP at NL

- > At Network layer, Some Auxiliary protocols help IP in its work:
 - ICMP
 - IGMP
 - RARP
 - ARP.

ICMP, IGMP and RARP

- Internet Control Message Protocol (ICMP)
 - A mechanism used by host and gateways to send notification of datagram problems back to the sender.
 - It sends query and error reporting messages.
- Internet Group Management Protocol (IGMP)
 - Used to facilitate the simultaneous transmission of a message to a group of recipients
 - It helps IP in multitasking
- Reverse Address Resolution Protocol (RARP)
 - Protocol allows a host to discover its internet address when it knows its physical address.
 - It is used when computer is connected to a network for first time.

ARP

- > Used to associate the logical address with physical address (link-layer address to a host or a router when network layers address is given).
- Each device on the network is identified by physical or station address, usually imprinted on the network interface card
 (NIC).
- > ARP is used to find the physical address of the node when its internet address is known.

Transport Layer

- > Logical connection at Transport Layer is end-to-end
- > It performs the following service:
 - To get a message from application program running on source host
 - Deliver it to corresponding application program at destination host

Transport Layer

- > Responsible for delivery of message from a process to another process
 - TCP (Transmission control Protocol)
 - UDP (User Datagram Protocol)

TCP

- > TCP is a connection oriented protocol
- It first establishes a connection is established between both the ends (source and destination host) before data transmission.
- > At the sending end TCP divides a stream of data into smaller units called segments.
- Each segment includes a sequence number for reordering after receipt, together with acknowledgment no. for the segments received.
- At the receiving end, TCP collects each datagram as it comes in and reorder the transmission based on sequence no.
- > TCP provides:
 - flow control
 - error control
 - congestion control

UDP

- > UDP is a connection-less protocol
 - Transmits user datagram without first creating a logical connection
 - Each datagram from a user is an independent entity
- **>** Does not provide:
 - flow control
 - error control
 - congestion control
- Its is a simple protocol which is attractive to an application program which needs to send short messages and cannot afford the retransmission of packets involved in TCP if a packets is corrupted and lost.

SCTP

- > Stream Control Transmission Protocol
 - provides support for newer applications such as voice over the internet.
 - It combines the best features of UDP & TCP protocol.

Application Layer

- An application is a program running on a computer (which is also termed as a process)
- > Logical connection is end-to-end
 - Two applications exchange messages between each other via a virtual bridge between the two.
 - Physically, communication is performed via all the layers.
- > To communicate, one process sends a request message to other process and gets a reply message
- A number of protocols are predefined but a user can also do the same provided they provide it at both ends.
- Some of the protocols are:
 - HTTP (Hyper Text Markup Language)
 - SMTP (Simple Mail Transfer Protocol)
 - FTP (File Transfer Protocol)
 - TELNET (TErminaLNETwork)
 - SSH (Secure SHell)
 - SNMP (Simple Network Managemnet Protocol)