

按原理图制作一个10s定时电路。调节 R_p 使电路定时为10s一个周期。发光二极管的亮灭,表示定时的开始和结束。

操作步骤

接通+5V电源(555时基电路第8脚接电源正极,第1脚接电源负极);

按下按键,观察发光二极管亮灭情况;

调节 R_P 使电路定时为10s一个周期。

(旋动 R_P ,增大阻值,延长定时时间;反之,减少定时时间)

万用表 测各点 电位	555时基电路 第1脚/V	555时基电路 第3脚/V (发光二极管灭时)	555时基电路 第3脚/V (发光二极管亮时)	555时基电路 第8脚/V		
数据	0	0	3.64	5.11		
	555时基电路在本电路中构成什么电路?					
问题	单稳态触发器					

按原理图制作双音报警器,并完成相应的数据测量和电路功能分析。

操作步骤

接通+5V电源(555时基电路第8脚接电源正极,第1脚接电源负极);

电路正常工作时,扬声器就会产生双音交替的报警声。

注意: 调试时, 先连线后接电源, 拆线或改线时一定要先断电源。

万用表 测各点 电位	IC1 第1脚/V	IC1 第8脚/V	IC2 第1脚/V	IC2 第8脚/V		
数据	0	5.07	0	5.07		
问题	555时基电路在本电路中构成什么电路? IC1和IC2均构成多谐振荡器					

由电路图可知,IC1和IC2接成典型的多谐振荡器。IC2的控制电压受IC1输出振荡电压控制。

当IC1输出为高电平时,IC2控制端电位高于 $\frac{2}{3}$ V_{CC} ,此时电容 C_3 充放电时间变长,振荡周期增大,频率降低。

当IC1输出为低电平时,IC2控制端电位低于 $\frac{2}{3}V_{CC}$,此时电容 C_3 充放电时间变短,振荡周期减小,频率升高。

555时基电路的应用十分广泛,只需外接少量阻容元件,就可构成多谐振荡器、单稳 态触发器、施密特触发器等应用电路。

在分析555应用电路功能时,需仔细观察它各个引脚的接法,特别是第2、6、7引脚。

谢谢!