Reaction Map: Reactions of Alkanes, Alkyl Halides, Alkenes, and Alkynes

Reaction	Name	Typical Conditions	Notes [1°, 2° and 3° refers to primary, secondary, tertiary]	Reacti
1	Free radical chlorination	Cl ₂ , hγ	Not highly selective	29
2	Free radical bromination	Br ₂ , hγ	Highly selective for tertiary C-H	(30)
3	Elimination [E2]	⊖ RO /ROH	Best for 2° and 3°, anti stereochemistry	
4	Elimination [E1]	polar solvent, heat	Competes with S _N 1	(31)
5	Alcohol Formation [S _N 2]	⊖ _{OH / H₂O}	Best for 1° alkyl halides; 2° can compete w/ E2	(32)
6	Alcohol Formation [S _N 1] "Solvolysis"	H ₂ O	Best for 3° alkyl halides; rearr possible w/ 2°	(33)
7	Ether Formation [S _N 2] ["Williamson Ether Synthesis	RO ∕ROH	Best for 1° alkyl halides; 2° can compete w/ E2	(34)
8	Ether Formation [S _N 1] "Solvolysis"	ROH	Best for 3° alkyl halides; rearr possible w/ 2°	35)
9	Thiol formation [S _N 2]	[⊖] sh	S _N 2; best for 1° alkyl halides, 2° OK	37
(10)	Sulfide formation [S _N 2]	⊖ _{SR}	S _N 2; best for 1° alkyl halides, 2° OK	(38)
(11)	Ester formation [S _N 2]	RCO ₂ in polar	S _N 2; best for 1° alkyl halides, 2° OK	(39)
(12)	Azide formation [S _N 2]	N ₃ aprotic solvent	S _N 2; best for 1° alkyl halides, 2° OK	40
(13)	Nitrile formation [S _N 2]	⊖ CN	S _N 2; best for 1° alkyl halides, 2° OK	41
(14)	Alkyne formation [S _N 2]	a−c≡c [⊖]	Best for 1° alkyl halides; 2° can compete w/ E2	42
\sim	Addition of H-Cl To Alkenes	H-CI	Markovnikov-selective; rearr. possible	(43)
(15)	Addition of H-Br To Alkenes	H–Br	Markovnikov-selective; rearr. possible	(44)
(16)	Addition of H-I To Alkenes	H-I	Markovnikov-selective; rearr. possible	\sim
(17)	Radical addition of H–Br to	HBr, hy	anti-Markovnikov-selective; radical process	(45) (46)
(18)	alkenes Hydrogenation of alkenes	Pd/C, H ₂	syn- selective	\sim
(19)	Alkene chlorination	Cl ₂ , CCl ₄	anti- selective	(47)
(21)	Alkene bromination	Br ₂ , CCl ₄	anti- selective	(48)
(22)	Alkene iodination	I ₂ , CCI ₄	anti- selective	(49)
(23)	Chlorohydrin formation	Cl ₂ , H ₂ O	anti- selective; Markovnikov selective, water	(50)
(24)	Bromohydrin formation	or NCS Br ₂ , H ₂ O	is solvent. Alcohol solvent gives ether anti- selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether	
(25)	lodohydrin formation	or NBS Cl ₂ , H ₂ O	anti- selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether	(52)
26	Epoxidation of alkenes	or NIS RCO ₃ H	anti- selective; Markovnikov selective, water is solvent. Alcohol solvent gives ether	(53)
(27)	Dihydroxylation of alkenes	(e.g. <i>m</i> -CPBA) OsO₄, KHSO ₃	syn-selective. KHSO ₃ helps remove Os	54
(28)	with OsO ₄ Dihydroxylation of alkenes	(e.g. <i>m</i> -CPBA) KMnO₄, NaOH	syn- selective. Important to keep cold,	(55)
\bigcirc	(cold KMnO ₄)	(cold, dilute)	otherwise oxidative cleavage occurs (see 31)	_

Reactio	on Name	Typical Conditions	Notes [1°, 2° and 3° refers to primary, secondary, tertiary]
29	Ozonolysis (reductive workup)	O ₃ , then Zn/H ⁺ or (CH ₃) ₂ S	cleaves C=C to give two carbonyls. Alkenyl C-H bonds remain
30	Ozonolysis (oxidative workup)	O ₃ , then H ₂ O ₂	cleaves C=C to give two carbonyls. Alkenyl C-H bonds oxidized to C-OH
31	Oxidative cleavage with KMnO ₄	KMnO ₄ , acid, heat	cleaves C=C to give two carbonyls. Alkenyl C-H bonds oxidized to C-OH
32	Cyclopropanation (Simmons- Smith)	Cu/Zn, CH ₂ I ₂	syn-selective
33	Dichlorocyclopropanation	CHCI ₃ , KOH	syn-selective
34	Acid-catalyzed ether formation	H ₂ SO ₄ , ROH	Markovnikov selective, rearr. possible
35	Oxymercuration	Hg(OAc) ₂ , ROH, then NaBH ₄	Markovnikov selective, alcohol is solvent
36	Oxymercuration	Hg(OAc) ₂ , H ₂ O, then NaBH ₄	Markovnikov selective, water is solvent
37	Hydroboration	BH ₃ , then NaOH, H ₂ O ₂	anti-Markovnikov selective, syn-selective
38	Acid-catalyzed hydration	H ₂ SO ₄ , H ₂ O ("H ₃ O+")	Markovnikov selective; rearr possible
39	Partial hydrogenation (Lindlar)	Lindlar, H ₂	syn-selective
40	Partial hydrogenation (sodium reduction)	Na/NH ₃	anti-selective
41	Alkyne hydroboration	BH ₃ , then NaOH, H ₂ O ₂	anti-Markovnikov selective; tautomerization
42	Alkyne Oxymercuration	HgSO ₄ , H ₂ O, H ₂ SO ₄	Markovnikov selective; tautomerization
43	Alkyne Ozonolysis	O ₃	Carboxylic acids formed; terminal alkynes give CO_2
44	Alkyne Ox. Cleavage [KMnO _{4]}	KMnO ₄ , H ⁺	same as ozonolysis
45	Hydrogenation	Pd/C, H ₂	Adds twice to alkynes
46	Alkyne double halogenation	Cl ₂ , Br ₂ , or l ₂ (2 equiv)	Each individual reaction is anti-selective
47	Halogenation	Cl ₂ , Br ₂ , or l ₂ (1 equiv)	anti-selective
48	Addition of H–Cl to Alkynes	H-CI	Markovnikov selective
49	Addition of H-Br to Alkynes	H–Br	Markovnikov selective
50	Addition of H-I to Alkynes	H-I	Markovnikov selective
51	Addition of H–X to haloalkenes	H–CI, H–Br, or H–I	Markovnikov selective
52	Double addition of H–Cl to Alkynes	H-CI [2 equiv]	Adds twice to alkyne; Markovnikov selective
53	Double addition of H-Br to Alkynes	H-Br [2 equiv]	Adds twice to alkyne; Markovnikov selective
54	Double addition of H–I to Alkynes	H-I [2 equiv]	Adds twice to alkyne; Markovnikov selective
55	Elimination of dihalides to give alkynes	NaNH ₂ [2 equiv]	vicinal or geminal dihalides; for terminal alkynes, 3 equiv NaNH ₂ required