4 Quantum Number n ~ PRINCIPAL ~ 1,2,3,... l ~ ANGULAR MOMENTUM ~ 0,1,...,n-1 Me ~ MAGNETIC ~ -l,...,+l Ms ~ SPIN ~ -\frac{1}{2},+\frac{1}{2} n ~ SHELL n,l ~ SUBSHELL n,l,Me ~ ORBITAL

Q. How many e's can occupy a particular substitut?

- PAULIA PRINCIPLE.

- each e has its own unique set of 4 ON's.

```
ex: any s-substall (1s,2s,3s,...)
\Rightarrow m_{\ell} = -l, ..., +l = 0
 n, L=0, m,=0, => m,=====
ex: Is subshell and hold (2e's.)
```


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 7.2		Relation Between Quantum Numbers and Atomic Orbitals		
n	l	m_ℓ	Number of Orbitals	Atomic Orbital Designations
1	0	0	1	1s
2	0	0	1	2s
	1	-1, 0, 1	3	$2p_x$, $2p_y$, $2p_z$
3	0	0	1	3s
	1	-1, 0, 1	3	$3p_x$, $3p_y$, $3p_z$
	2	-2, -1, 0, 1, 2	5	$3d_{xy}$, $3d_{yz}$, $3d_{xz}$,
				$3d_{x^2-y^2}$, $3d_{z^2}$
:	:			

Electron Configuration / Orbital Diagrams - Place es in Lower energy orbitals before higher energy orbitals. - Building-up principle. - Auf BAM principle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Energy 2s -Energy levels in multielectron atoms depend on both n and I 1s -

Hydrogen Z=1 |p+, le- (atom)

le- occupies |s orbibs

e-constiguation: |s'
orbital diagram | 15

Be Z=4

4e's: 2e ~ |s

2e ~ 2s

[s² 2s² | | | | | | | | | | |

e rends

B Z=5

5e's: $2e^- \rightarrow 1s$ $2e^- \rightarrow 2s$ $1e^- \rightarrow 2p$ $1s^2 2s^2 2p'$ $e^- \text{ config}$ orbital diagram 2p n=2 n=2

Hund's Rule e's prefer to be unpaired in the same subshell, before paining up. ex: Nitrogen, Z=7 15²25²2p³
E config orbibl diagram

N atom on PARAMAGNETIC ex: 0, Z=8 1522522P4 er: F, 2=9 152252ps 15 25 2p6

No Z=11

Is^2s^2p^63s' = [Ne] 3s'

arranged just
the Neon
(noble gas)

slable
'all' subslalls
are fucl