MULTI OBJECTIVE NEURO-EVOLUTION WITH BACK PROPAGATION ASSISTED LOCAL SEARCH

MINI PROJECT (SEMESTER V)

INTRODUCTION THE ADVENT OF ARTIFICIAL NEURAL NETWORKS AND IMPORTANCE OF EVOLUTIONARY ALGORITHMS

ARTIFICIAL NEURAL NETWORKS

MODELLING HUMAN BRAIN WITH FEED-FORWARD AND BACK-PROPAGATION

DATASETS

Iris

Cards

MNIST

3

COPING WITH OVERFITTING - REGULARIZATION

GENETIC ALGORITHMS

OPTIMIZATION USING INFLUENCE OF THE PRINCIPLES OF NATURE

GENETIC ALGORITHMS – REAL VALUED CHROMOSOMES

Rastrigin Function

Katsuura Function

GENETIC ALGORITHMS – VARIABLE LENGTH CHROMOSOMES

Variation of no. of hidden nodes on PIMA dataset

COMBINING NN AND GA

INITIAL RESULTS

IMPLEMENTING HYBRID GIVES MUCH BETTER RESULTS

INITIAL RESULTS

Back Propagation Only

Hidden Units	Testing Accuracy			Validation
	Average	Best	Standard Deviation	Best
20	66.99%	75.20%	6.7%	68.10%
60	72.20%	76.33%	4.2%	71.20%

Hybrid Algorithm (On < 20 Hidden Units)

Test	Validation Accuracy		
Average	Best	Standard Deviation	Best
74.74%	79.45%	2.0%	77.32%

INITIAL RESULTS – PAIRWISE T-TEST

Hidden Units (for BPA)	T Value	P Value
20	9.703	8.522×10^{-9}
60	7.202	7.690×10^{-7}

CONCLUSION AND FUTURE WORK

- Structural Mutation
- Clustering Algorithm
- Multi-Objective Optimization
- Multi-threaded Architecture
- Evolutionary Algorithms Genetic Programming, Evolutionary Robotics, etc.