1.7 1) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice A + B vaut $a_{ij} + b_{ij}$.

Par conséquent, l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice $\lambda (A + B)$ vaut $\lambda (a_{ij} + b_{ij})$.

Mais, comme dans \mathbb{R} la multiplication est distributive par rapport à l'addition, on a $\lambda(a_{ij} + b_{ij}) = \lambda a_{ij} + \lambda b_{ij}$.

Or cette dernière expression est la somme de l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice λ A avec l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice λ B.

On a donc vérifié l'égalité $\lambda (A + B) = \lambda A + \lambda B$.

2) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice $(\lambda + \mu)$ A vaut $(\lambda + \mu) a_{ij}$.

En vertu de la distributivité de la multiplication par rapport à l'addition dans \mathbb{R} , on a $(\lambda + \mu) a_{ij} = \lambda a_{ij} + \mu a_{ij}$.

En d'autres termes, on a affaire à la somme de l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice λ A avec l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice μ A.

On constate bel et bien l'identité $(\lambda + \mu) A = \lambda A + \mu A$.

3) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice $(\lambda \mu)$ A vaut $(\lambda \mu) a_{ij}$.

Or $(\lambda \mu) a_{ij} = \lambda (\mu a_{ij})$, puisque la multiplication des nombres réels est associative.

Mais $\lambda(\mu a_{ij})$ n'est autre que l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice μ A multiplié par λ . C'est donc l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice $\lambda(\mu A)$.

On a ainsi prouvé l'égalité $(\lambda \mu) A = \lambda (\mu A)$.

4) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice 1 A vaut $1 \cdot a_{ij} = a_{ij}$. Il coïncide donc avec l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice A.

L'égalité 1 A = A est par conséquent vérifiée.

5) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice 0 A vaut $0 \cdot a_{ij} = 0$.

C'est pourquoi 0 A = 0.

6) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice $\lambda\,0$ vaut $\lambda\cdot 0=0.$

On constate dès lors l'identité $\lambda 0 = 0$.