

Data Collection and Preprocessing Phase

Date	10 June 2024
Team ID	-
Project Title	Golden Harvesting: A Predictive Model For Apple Quality Assurance
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

This report examines a dataset of 4001 rows and 9 columns, addressing data quality concerns such as missing values and duplicates, and implements strategies for accurate analysis. It employs univariate, bivariate, and multivariate analyses to assess apple quality attributes and utilizes preprocessing techniques to optimize predictive modeling for quality assurance.

ection D
D d d d d d d d d d d d d d d d d d d d

		criptive Sta	tistics					
	data.	lescribe()	Weight	Sweetness	Crunchiness	Juiciness	Ripeness	Acidity
	count	4000.000000	4000.000000	4000.000000	4000,000000	4000.000000	4000.000000	4000.000000
	mean	-0.502695	-0.991229	-0.472248	0.984194	0.513127	0.498102	0.076639
	std	1.917446	1.574517	1.931684	1.369437	1.917024	1.866614	2.101441
	min	-5.750201	-5.075890	-5.548946	-2.684440	-4.757179	-4.578510	-5.709299
	25%	-1.816765	-2.011770	-1.738425	0.062764	-0.801286	-0.771677	-1.377424
	50%	-0.513703	-0.984736	-0.504758	0.998249	0.534219	0.503445	0.022609
	75%	0.805526	0.030976	0.801922	1.894234	1.835976	1.766212	1.510493
	max	4.738963	3.095097	4.612442	4.641439	5.791870	5.573044	5.842368
Univariate Analysis	plt.f.	uptitle("His	e=(15,7)) , figsize=(1	THE RESERVE OF THE PARTY OF THE	or='c') atures", y=1	.02)		
Bivariate Analysis	<pre>plt.figure(figsize=(10, 6)) sns.scatterplot(x='Sweetness', y='Crunchiness', hue='Quality', palette='coolwarm', data=data, s= sns.regplot(x='Sweetness', y='Crunchiness', data=data, scatter=False, color='blue') plt.title('Scatter Plot of Sweetness vs. Crunchiness by Quality') plt.xlabel('Sweetness') plt.ylabel('Crunchiness') plt.show()</pre>							
Multivariate Analysis	<pre># Multivariate analysis pair_plot = sns.pairplot(data, hue="Quality", diag_kind="kde", palette='coolwarm') pair_plot.fig.suptitle("Pairplot of Features by Quality", y=1.02) plt.show()</pre>							
	Handling outliers for the column Size							
Outliers and Anomalies	<pre>quant = data 'Size' .quantile(q=[0.75,0.25]) print(quant) Q3 = quant.loc[0.75] print("Q3(75th percentile)->",Q3) Q1 = quant.loc[0,25] print("Q1(25th percentile)->",Q1) IQR = Q3 - Q1 print("IQR(InterQuartile Range)->",IQR) maxwhisker = Q3 + 1.5 * IQR print("Max outliers->",maxwhisker) minwhisker = Q1 - 1.5 * IQR print("Min outliers->",minwhisker) data 'Size' = np.where(data 'Size' < 4.73896291425, d.73896291425, data 'Size') data 'Size' = np.where(data 'Size' < -5.750200999175, data 'Size') sns.boxplot(data 'Size')</pre>							

Handling outliers for the column Weight

```
quant = data['Weight'].quantile(q=[0.75,0.25])
print(quant)
Q3 = quant.loc[0.75]
print("Q3(75th percentile)->",Q3)
Q1 = quant.loc[0.25]
print("Q1(25th percentile)->",Q1)
IQR = Q3 - Q1
print("IQR(InterQuartile Range)->",IQR)
maxwhisker = Q3 + 1.5 * IQR
print("Max outliers->",maxwhisker)
minwhisker = Q1 - 1.5 * IQR
print("Min outliers->",minwhisker)
data['Weight'] = np.where(data['Weight'] > 3.0950965391249996, 3.0950965391249996, data['Weight'])
data['Weight'] = np.where(data['Weight'] < -5.075890391874999, -5.075890391874999, data['Weight'])
sns.boxplot(data['Weight'])</pre>
```

Handling outliers for the column Sweetness

```
quant = data['Sweetness'].quantile(q=[0.75,0.25])
print(quant)
Q3 = quant.loc[0.75]
print("Q3(75th percentile)->",Q3)
Q1 = quant.loc[0.25]
print("Q1(25th percentile)->",Q1)
IQR = Q3 - Q1
print("IQR(InterQuartile Range)->",IQR)
maxwhisker = Q3 + 1.5 * IQR
print("Max outliers->",maxwhisker)
minwhisker = Q1 - 1.5 * IQR
print("Min outliers->",minwhisker)
data['Sweetness'] = np.where(data['Sweetness'] > 4.61244239625, 4.61244239625, data['Sweetness'])
data['Sweetness'] = np.where(data['Sweetness'] < -5.54894553775, -5.54894553775, data['Sweetness'])
sns.boxplot(data['Sweetness'])</pre>
```

Handling outliers for the column Crunchiness

```
quant = data['Crunchiness'].quantile(q=[0.75,0.25])
print(quant)
Q3 = quant.loc[0.75]
print("Q3(75th percentile)->",Q3)
Q1 = quant.loc[0.25]
print("QI(25th percentile)->",Q1)
IQR = Q3 - Q1
print("IQR(InterQuartile Range)->",IQR)
maxwhisker = Q3 + 1.5 * IQR
print("Max outliers->", maxwhisker)
mirwhisker = Q1 - 1.5 * IQR
print("Min outliers->",minwhisker)
data['Crunchiness'] = np.where(data['Crunchiness'] > 4.641438949625, 4.641438949625, data['Crunchiness'])
data['Crunchiness'] = np.where(data|'Crunchiness'] < -2.6844403373750003, -2.6844403373750003,
                               data[ 'Crunchiness'])
sns.boxplot(data['Crunchiness'])
```


Handling outliers for the column Juiciness

```
quant = data('Juiciness').quantile(q=[0.75,0.25])
print(quant)
Q3 = quant.loc[0.75]
print("Q3(75th percentile)->",Q3)
Q1 = quant.loc 0.25
print("Q1(25th percentile)->",Q1)
IOR = Q3 - Q1
print("IQR(InterQuartile Range)->",IQR)
maxwhisker = Q3 + 1.5 * IQR
print("Max outliers->", maxowhisker)
minwhisker = Q1 - 1.5 * IQR
print("Min outliers->", minwhisker)
data['Juiciness'] = np.where(data['Juiciness'] > 5.791869691624999, 5.791869691624999, data['Juiciness'])
data['Juiciness'] = np.where(data|'Juiciness') < -4.7571791193749995, -4.7571791193749995,
                             data['Juiciness'])
sns.boxplot(data['Juiciness'])
```

Handling outliers for the column Ripeness

```
quant = data['Ripeness'].quantile(q=[0.75,0.25])
print(quant)
Q3 = quant.loc[0.75]
print("Q3(75th percentile)->",Q3)
Q1 = quant.loc[0.25]
print("Q1(25th percentile)->",Q1)
IQR = Q3 - Q1
print("IQR(InterQuartile Range)->",IQR)
maxwhisker = Q3 + 1.5 * IQR
print("Max outliers->",maxwhisker)
minwhisker = Q1 - 1.5 * IQR
print("Min outliers->",minwhisker)
data['Ripeness'] = np.where(data['Ripeness'] > 5.573044401624999, 5.573044401624999, data['Ripeness'])
data['Ripeness'] = np.where(data['Ripeness'] < -4.578509627375, -4.578509627375, data['Ripeness'])
sns.boxplot(data['Ripeness'])</pre>
```

Handling outliers for the column Acidity

```
data['Acidity'] = pd.to_numeric(data['Acidity'], errors='coerce')
data = data.dropna(subset=['Acidity'])
quant = data['Acidity'].quantile(q=[0.75, 0.25])
print(quant)
Q3 = quant.loc 0.75
print("Q3 (75th percentile) ->", Q3)
Q1 = quant.loc[0.25]
print("Q1 (25th percentile) ->", Q1)
IQR = Q3 - Q1
print("IQR (InterQuartile Range) ->", IQR)
maxwhisker = Q3 + 1.5 * IQR
print("Max outliers ->", maxwhisker)
minwhisker = Q1 - 1.5 * IQR
print("Min outliers ->", minwhisker)
data['Acidity'] = np.where(data['Acidity'] > maxwhisker, maxwhisker, data['Acidity'])
data['Acidity'] = np.where(data['Acidity'] < minwhisker, minwhisker, data['Acidity'])
sns.boxplot(data['Acidity'])
```


Data Preprocessing Code Screenshots # Read The Dataset data = pd.read_csv('apple_quality.csv') data.head() A id Weight Sweetness Crunchiness Juiciness Ripeness Acidity Quality 0.0 -3.970049 -2.512336 5.346330 -1.012009 1.844900 0.329840 -0.491590483 good Loading Data 1.0 -1.195217 -2.839257 3.664059 1.588232 0.853286 0.867530 -0.722809367 good 2.0 -0.292024 -1.351282 -1.738429 -0.342616 2.838636 -0.038033 2.621636473 2 bad 3.0 -0.657196 -2.271627 1.324874 -0.097875 3.637970 -3.413761 0.790723217 good 4.0 1.364217 -1.296612 -0.384658 -0.553006 3.030874 -1.303849 0.501984036 good data.isnull().sum() A id 1 Size Weight Handling Sweetness 1 Missing Data Crunchiness 1 Juiciness Ripeness 1 Acidity 0 Quality dtype: int64 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() x = scaler.fit_transform(x) array([[-1.79842417, -0.95037339, 2.99342063, ..., 0.69054495, -0.08987211, -0.26941526], [-0.35906018, -1.15440431, 2.12769769, ..., 0.17676683, 0.1970196 , -0.37899737], [0.1094454 , -0.22575916, -0.65250727, ..., 1.20542179, -0.28615565, 1.20604367], [-1.1056547 , -0.71690397, -1.01378401, ..., 0.87437918, 2.27595716, -0.66895013], Data [-1.81811235, -0.49290842, 1.45990059, ..., 0.85454883, Transformation -0.15141937, -1.09317096], [0.40540882, -0.45307081, 0.30449592, ..., 0.39095445, -0.68021237, 0.72176064]]) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(y) C:\Users\fs22a\anaconda3\Lib\site-packages\sklearn\preprocessing\ label.py:114: DataConver sionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). y = column_or_1d(y, warn=True) array([1, 1, 0, ..., 0, 1, 1])

Feature Engineering	data.dropna(inplace=True) data.shape (4000, 9)
Save Processed Data	Saved the cleaned and processed data in 'X' and 'y' (variables) for future use.