Chapter 2 Flows on the Line

§ 2.2 Fixed Points and Stability

Ex 2.2.1 Find all fixed points of $\dot{x} = f(x) = x^2 - 1$ and classify their stability.

The fixed points are x^* s.t. $0=f(x^*)$.

$$0 = (\chi^*)^2 - 1$$

 $\chi^* = \pm 1$

Their stability can be analyzed graphically:

The flow is to the right where $x^2-1>0$ and to the left where $x^2-1<0$. This means $x^*=-1$ is stable and $x^*=1$ is unstable.

Ex 2.2.3 sketch the phase portrait for $\dot{x} = x - \cos x$.

Instead of graphing x-cosx,

graph x, cosx on the same
axes. The flow is to the right
where x>cosx and to the
left where x<cosx. This
shows there is one fixed
Point x* where x*=cosx*

and this fixed Point is unstable.

§ 2.3 Population Growth

Let N(t) be the number of organisms at time t70. Assuming the per capita growth rate N/N decreases linearly with N leads to the logistic equation

r: growth rate K: carrying capacity

Unstable fixed point $N^*=0$, Stable fixed point $N^*=K$, Maximum positive flow at N=K/2, N=rK/4.

If No = N(0) > K, N(t)
decreases asymptotically
to K. If No < K, N(t)
increases asymptotically

to K. Note that for $0 < N_0 < K/2$, N(t) has an inflection point when N(t) = K/2. If $N_0 = 0$ or $N_0 = K$, N(t) is constant (at equilibrium).

§ 2.4 Linear Stability Analysis

Let x^* be a fixed point and $\eta(t) = x(t) - x^*$ a small perturbation away from x^* .

$$\dot{\eta} = \dot{x} = f(x) = f(x^* + \eta) = f(x^*) + \eta f'(x^*) + \Theta(\eta^2)$$

Since $f(x^*) = 0$, $\dot{n} = \eta f'(x^*) + \theta(\eta^2) \approx \eta f'(x^*)$ for $f'(x^*) \neq 0$. This linearization shows that

the perturbation n grows exponentially if $f(x^*) > 0$ and decays exponentially if $f(x^*) < 0$. So $f(x^*) > 0$ means x is unstable and $f(x^*) < 0$ means x^* is stable.

If $f(x^*) = 0$, the $O(\eta^2)$ terms are not negligible and linear stability analysis fails. Consider $\dot{x} = -x^3$, $\dot{x} = x^3$, $\dot{x} = x^2$, $\dot{x} = 0$, which all have $f'(x^*) = 0$.

§ 2.5 Existence and Uniqueness

Existence & Uniqueness Theorem: Consider the initial value problem

$$\dot{x} = f(x)$$
, $x(o) = x_o$

Suppose f(x) and f'(x) are continuous on an open interval R of the x-axis and $x_0 \in \mathbb{R}$. Then the IVP has a unique solution x(t) on some interval (-T,T) about the origin.

Ex 2.5.2 Discuss the existence and uniqueness of solutions to $\dot{x} = 1 + x^2$, $\chi(0) = \chi_0$. Do solutions exist for all time?

 $f(x) = 1 + x^2$ and f'(x) = 2x are continuous on any open interval R. Unique solutions exist for any x_0 , but may not exist $\int \frac{1}{1+x^2} dx = \int dt \qquad \text{for all } t. \text{ For example, if } x_0 = 0,$ arctan x = t + C $\chi(t) = t$ and on $-\pi/2 < t < \pi/2$. arctan $x_0 = C$ $\chi(t) = t$ and $(t + arctan x_0)$

§ 2.7 Potentials

For a first order system $\dot{x} = f(x)$, we define the potential V(x) by $f(x) = -\frac{dV}{dx}$.

Since x = x(t),

$$\frac{dV}{dt} = \frac{dV}{dx}\frac{dx}{dt} = \frac{dV}{dx}f(x) = -\left(\frac{dV}{dx}\right)^2 \le 0$$

Thus V decreases along any trajectory x(t) to lower potential. Note dV/dx = 0 iff $\dot{x} = 0$, so the equilibria of V occur at fixed points x^* .

The local minima of V correspond to stable fixed points and the local maxima correspond to unstable fixed points.

Ex 2.7.2 Graph the potential for the system $\dot{x} = x - x^3$ and identify all equilibrium points.

$$\frac{dV}{dx} = \chi^3 - \chi \longrightarrow V(\chi) = \frac{1}{4}\chi^4 - \frac{1}{2}\chi^2 \quad (\text{set } + C = 0).$$

The critical points of V(x) are $x^3-x=0 \rightarrow x=0,\pm 1$. V(x) has minima at $x=\pm 1$ with $V(\pm 1)=-1/4$. The stable

fixed points of $\dot{x} = x - x^3$ are $x^* = \pm 1$ and the unstable fixed point of $\dot{x} = x - x^3$ is $x^* = 0$.

V(x) shown here is called a <u>double-welled</u> Potential and $\dot{x} = x - x^3$ is <u>bistable</u>.