ENERGIAS ALTERNATIVAS

Fabricio Kita Jhonley Carriel Neemias Borges Professora: Paula

SUMARIO

- O Que é?
- Métodos
 - eólica
 - Solar
 - Nuclear

- Biomassa
- Energia maremotriz
- Quadro atual
 - Previsões para o Brasil

O QUE É?

A energia alternativa é a energia derivada de fontes sem consequências indesejáveis inerentes à utilização de combustíveis fósseis, particularmente as emissões de dióxido de carbono (gás com efeito estufa – um fator importante no aquecimento global)

MÉTODOS

- Hidroelétrica
- Nuclear
- Éolica

- Solar
- o Biomassa
- Energiamaremotriz

Hidroelétrica

- Utilização do movimento de rios (força hidráulica) para a geração de energia.
- Não emite gases
- Abundância da água não é condição suficiente para gerar energia hidrelétrica.
- quando chove pouco não é possivel gerar enegia
- é necessário modificar o ambiente

Éolica

- Geração energia que utiliza a força dos ventos
- Custo baixo
- Não emite gases poluentes nem gera resíduos
- Para construir um parque eólico é necessário modificar o ambiente
- Aves frequentemente batem nas pás

Solar

- Energia que provém do calor e da luz solar
- Diminuição do valor da conta de luz
- Valorização do imóvel
- Custa no mínimo R\$ 4.663,00
- Não é possível armazenar toda energia gerada
- Gera muito pouca energia a noite

Biomassa

- Geração de energia através de decomposição de matérias orgânicas (esterco, restos de alimentos, resíduos agrícolas entre outros).
- A não emissão de dióxido de enxofre
- Falta de incentivo do governo
- Depende do bagaço de cana

Maremotriz

- Trata-se de uma fonte de energia renovável e limpa;
- Os riscos ao meio ambiente são mínimos;
- A geração de energia das marés depende do vento e das condições do mar
- Só é possível instalar centrais de captação de energia das marés em locais que atendam 100% das

Nuclear

- Não libera gases
- Alta produção de energia
- Exigência de pequena área para construção da usina;
- Grande disponibilidade do combustível
- Independência de fatores climáticos (ventos; chuvas)
- Mais cara, quando comparada a outras formas;
- Risco de acidentes nucleares;

Usina	Tipo de combustível	Geração bruta (MWmed)	Geração bruta (MWh)	Custo do combustível (R\$/MWh)	Custo da geração (R\$)
Angra 1	Nuclear	468,27	4.102.082	25,38	104.110.853,57
Angra 2	Nuclear	1.222,17	10.706.183	20,12	215.408.403,53
Total Nuclear	Nuclear	1.690,44	14.808.266	21,58	319.519.257,10
NO.FLUMINENSE 1	Gas	456,71	4.000.780	37,80	151.229.468,88
NO.FLUMINENSE 2	Gas	293,15	2.567.994	58,89	151.229.166,66
TERMOPERNAMBUCO	Gas	362,30	3.173.748	69,00	218.988.612,00
UT.MARANHAO 4	Gas	130,99	1.147.472	69,00	79.175.595,60
UT.MARANHAO 5	Gas	115,37	1.010.641	69,00	69.734.242,80
CANDIOTA III	Carvao	175,58	1.538.081	69,72	107.234.993,38
PORTO PECEM I	Carvao	156,34	1.369.550	69,72	95.484.995,81
Total Térmicas Convencionais			14.808.266	58,96	873.077.075,13

Death rates from energy production per TWh

Death rates from air pollution and accidents related to energy production, measured in deaths per terawatt hours (TWh)

Source: Markandya and Wilkinson (2007) OurWorldInData.org/energy-production-and-changing-energy-sources/ • CC BY-SA Note: Figures include deaths resulting from accidents in energy production and deaths related to air pollution are dominant, typically accounting for greater than 99% of the total.

NO BRASIL

O grande número de variáveis envolvido no planejamento energético requer a existência de políticas energéticas complexas. A importância dessas políticas é crescente, visto que o setor energético depende de investimentos privados. Portanto, o papel do governo cada vez mais se restringe ao gerenciamento da expansão, cabendo-lhe a tarefa de definir políticas de interesse da sociedade que nem sempre estariam entre as prioridades do setor privado.

Figura 1 - Mapa de geração de energia, Atlas do Brasil, Hervé Théry e Neli Aparecida de Mello-Théry

MÉTODOS NO BRASIL

Usinas Hidrelétricas

Usinas Eólicas e

Carvão e Nuclear

MÉTODOS NO BRASIL

Devido a grande quantidade de rios as hidrelétricas domina toda a extensão territorial do país, mas devemos nos questionar até que ponto o uso dos métodos atuais para a construção de uma hidrelétrica se tornam justificáveis, como podemos ver toda a polêmica envolvendo a usina de Belo Monte

Figura 2: Matriz energética brasileira. Fontes de Energia Primárias no Brasil. Fonte: Ministério de Minas e Energia (2010)

Para Pensar (Belo Monte)

- Começou a ser discutida em meados dos anos 70
- Diversas reviravoltas rodeiam a usina nas últimas três décadas
 - 1989: O governo aprova o projeto e ocorre um protesto em Altamira organizado pelos indígenas caiapós
 - 1994: O projeto é remodelado para agradar investidores estrangeiros e ambientalistas (diminuição do tamanho do reservatório indo de 1.225 KM₂ para 400 KM₂
 - 2001: Ministério da ciência anuncia um plano que inclui a construção de 15 Usinas (incluindo Belo Monte), que no final foi suspendido pelo ministério público por licitação irregular.

Para Pensar (Belo Monte)

- 2007: Governo federal inclui Belo monte no PAC e busca derrubar na justiça todos os impedimentos para o licenciamento da obra
- 2010: Governo consegue a licença ambiental para a usina e concede a construção para a empresa Norte Energia
- 2011 O presidente do Ibama, Abelardo Bayma, demite-se em protesto à liberação da licença definitiva do projeto. As obras são iniciadas.

Impactos ambientais e sociais

- Corrupção envolvida na construção
- Desvio do rio forçou ribeirinhos a se mudarem
- Muitos programas que tinham a função de melhorar as vidas afetadas pela construção, não foram acabados ou não foram bem executados.
- Afetou também poços artesianos

Referencias Bibliograficas

SILVA, Rodrigo Guerreiro e. **A GERAÇÃO DE ENERGIA MAREMOTRIZ E SUAS OPORTUNIDADES NO BRASIL.** 2012. Disponível em: http://sistemas.ib.unicamp.br/be310/nova/index.php/be310/article/viewFile/337/265. Acesso em: 28 ago. 2019.

FIGUEIREDO, Pedro José Diniz de. **A Geração de Energia Nuclear no Brasil:** Lançamento do Caderno de Energia Nuclear - FGV. 2016. Disponível em: https://fgvenergia.fgv.br/sites/fgvenergia.fgv.br/files/arquivos/6_-_pedro_figueiredo_fgv_27-04-2016.pdf. Acesso em: 28 ago. 2019.

TUNDISI, JosÉ Galizia. **Exploração do potencial hidrelétrico da Amazônia.** 2007. Disponível em: http://www.scielo.br/pdf/%0D/ea/v21n59/a08v2159.pdf>. Acesso em: 28 ago. 2019.

OBRIGADO!

• Alguma pergunta?

