A practical evaluation of recent methods in high-dimensional inference

Charles Zheng

Stanford University

May 7, 2015

Problem and motivation

- $x \in \mathbb{R}^p, y \in \mathbb{R}$ have a joint distribution P where $y|x \sim N(x^T\beta, \sigma^2)$
- Observe $X = (x_1, ..., x_n)^T$, $Y = (y_1, ..., y_n)$ iid
- Problem: test H_i : $\beta_0 = i$ for i = 1, ..., p
- Motivation: x are SNPs (mutations), y is phenotype

Methods

	Control	<i>p</i> > <i>n</i>
Classical inference (Pearson 1930)	Marginal	No
Debiased lasso (Javanmard et al. 2014)	Marginal	Yes
Knockoffs (Barber et al. 2014)	FDR	?
Covariance test (Lockhart et al. 2014)	??	Yes
+ FDR control (G'Sell et al. 2013)	FDR	Yes

The LASSO path

All three methods share an association with LASSO:

$$\hat{\beta}_{\lambda} = \operatorname{argmin}_{\beta} \frac{1}{2} ||X\beta - Y||^2 + \lambda ||\beta||_1$$

(Image credit: ??)

Debiased regularized M-estimators

- (2014) Javanmard and Montanari
- Standard assumptions + sparsity condition on β + large n and p asymptotics

Knockoff filter

- (2014) Barber and Candés
- Finite sample $Y \sim N(X\beta, \sigma^2 I)$, $n \leq p$, control FDR
- Extension to p > n, FWER control, etc. forthcoming...

lweight 22.5652 lcavol 20.5199 svi 4.4871 lbph 1.1865 age 0.0829 gleason 0.0387 lcp -0.2359 pgg45 -3.3742

Covariance test

- (2014) Lockhart, Taylor, Tibshirani (x 2)
- Standard assumptions $Y \sim N(X\beta, \sigma^2 I) + \text{large } p$ asymptotics
- See also non-asymptotic exact test (Lee, Sun x 2, Taylor 2015)
- What kind of Type I error does it control?

Step	Predictor entered	Forward stepwise	Lasso
1	lcavol	0.000	0.000
2	lweight	0.000	0.052
3	svi	0.041	0.174
4	lbph	0.045	0.929
5	pgg45	0.226	0.353
6	age	0.191	0.650
7	lcp	0.065	0.051
8	gleason	0.883	0.978

FDR control for covariance test

- G'Sell, Wager, Chouldechova, Tibshirani (2013)
- Two methods to control FDR for convariance test... but under a different definition of Type I error
- Type I error is defined according to the incremental null (next slide)

• For a subset E of the variables, define $\beta^E = (X_E^T X_E)^{-1} X_E^T X \beta$

- For a subset E of the variables, define $\beta^E = (X_E^T X_E)^{-1} X_E^T X \beta$
- The full model null. Test multiple hypotheses H_i : $\beta_i = 0$

- For a subset E of the variables, define $\beta^E = (X_E^T X_E)^{-1} X_E^T X \beta$
- The full model null. Test multiple hypotheses H_i : $\beta_i = 0$
- Selective inference. Condition on a randomly selected subset E, test hypotheses $H_i: \beta_i^E = 0$ for all $i \in E$

- For a subset E of the variables, define $\beta^E = (X_E^T X_E)^{-1} X_E^T X \beta$
- The full model null. Test multiple hypotheses H_i : $\beta_i = 0$

• Incremental null. (Informal explanation). I consider adding variables one at a time; I make a mistake whenever I add a variable to the model which doesn't improve the fit of the model (and is redundant). If I reject multiple variables, the false rejections are the variables which were already redundant at the time I added them. However, if a variable is initially useful and only becomes redundant as more variables are added, it is not considered a mistake.

- For a subset E of the variables, define $\beta^E = (X_E^T X_E)^{-1} X_E^T X \beta$
- The full model null. Test multiple hypotheses H_i : $\beta_i = 0$
- In this talk, we define type I errors according to full model null...

Methods

But what's actually used in practice?

	Control	p > n
Classical inference (Pearson 1930)	Marginal	No
Debiased lasso (Javanmard et al. 2014)	Marginal	Yes
Knockoffs (Barber et al. 2014)	FDR	?
Covariance test (Lockhart et al. 2014)	??	Yes
+ FDR control (G'Sell et al. 2013)	FDR	Yes
Marginal screening	???	Yes

Statistical Validation

- These procedures are derived under strong assumptions (linearity, gasusianity, homoscedasticty)
- How well do they work in real data where these assumptions are violated?
- We could validate inference procedures in real data if only we knew the 'true' β , (re)defined as

$$\beta = \mathbf{E}[\mathbf{x}\mathbf{x}^T]^{-1}\mathbf{E}[\mathbf{y}\mathbf{x}]$$

Statistical Validation

- These procedures are derived under strong assumptions (linearity, gasusianity, homoscedasticty)
- How well do they work in real data where these assumptions are violated?
- We could validate inference procedures in real data if only we knew the 'true' β , (re)defined as

$$\beta = \mathbf{E}[\mathbf{x}\mathbf{x}^T]^{-1}\mathbf{E}[\mathbf{y}\mathbf{x}]$$

• Possibility: take a dataset with large p and $humongous\ n$, so we can get an extremely precise estimate of β using OLS. Then test the high-dimensional inference procedures on subsamples of size $n_0 \le p < n$ of the data

- Data with p = 163 survey questions from an online personality test, n = 49086 (after processing)
- Predict self-reported age of respondent, y, from their responses
- Is n large enough for us to confidently say which $\beta_i = 0$ (for use as ground truth?)

Coefficient estimates \pm 3 sd

Consider declaring all variables whose intervals cross 0 to be null. Then $p_1=105$ (out of 163)

- If n were large enough, then for the selected model S we should have $\hat{y} = \sum_{i=1}^{p} X \hat{\beta}_i$ close to $\hat{y}_S = \sum_{i \in S} X_i \hat{\beta}_i$
- But...

- Here n is not large enough for p = 163
- If we reduce the dimensionality to 15 by subsampling columns, it looks more convincing that we selected the correct 10 variables

Dillemma

- It is by no means *impossible* to get large enough data to estimate high-dimensional β , with say, p > 100
- But if were *easy* to get such large *n* data... we wouldn't need these new inference techniques in the first place!

Why not use simulations?

- Simulations can be used to test robustness of the procedure
- In simulations, we can add all the nonlinearities, nongaussianity, etc.
 that we want

Why not use simulations?

- Advantage: In simulations, we not only know β , but exactly how the data is generated
- Advantage: We can vary simulation parameters and get a lot of insight about the procedure being tested

Why not use simulations?

- Advantage: In simulations, we not only know β , but exactly how the data is generated
- Advantage: We can vary simulation parameters and get a lot of insight about the procedure being tested
- **Disadvantage:** Are these simulations relevant? How can we tell the simulated models are realistic?

Idea

I give you real data mixed in with noise variables

• Can you identify the original columns from the noise columns?

Idea

I give you real data *mixed in* with noise variables

- Can you identify the original columns from the noise columns?
- I can test your procedure this way, because I know the ground truth!

Idea

I give you real data *mixed in* with noise variables

- Can you identify the original columns from the noise columns?
- I can test your procedure this way, because I know the ground truth!
- Caveat: this test is unrealistically 'easy' (due to lack of correlations)

- Synthetic negative controls (SNCs) are artificial columns which are correlated to X, yet still have zero (population) regression coefficients
- Suppose I give you real data + SNCs, then you apply high-dimensional inference. If you reject any SNCs, we know these are errors!
- This gives us some measure of performance on "real" data (maybe?)

- Given random vector $x \in \mathbb{R}^p$, let e be noise in \mathbb{R}^p independent of x.
- Let Γ be a fixed $p \times q$ matrix. Define synthetic negative controls $z \in \mathbb{R}^q$ by by

$$z = x'\Gamma + e$$

and let $\tilde{x} = (x, z)$, so that

$$\tilde{x}_1 = x_1, \ldots, \tilde{x}_p = x_p$$

$$\tilde{x}_{p+1}=z_1,\ldots,\tilde{x}_{p+q}=z_q$$

- Given random vector $x \in \mathbb{R}^p$, let e be noise in \mathbb{R}^p independent of x.
- Let Γ be a fixed $p \times q$ matrix. Define synthetic negative controls $z \in \mathbb{R}^q$ by by

$$z = x'\Gamma + e$$

and let $\tilde{x} = (x, z)$, so that

$$\tilde{x}_1 = x_1, \ldots, \tilde{x}_p = x_p$$

$$\tilde{x}_{p+1} = z_1, \dots, \tilde{x}_{p+q} = z_q$$

Let

$$\beta = \mathbf{E}[xx^T]^{-1}\mathbf{E}[yx], \quad \tilde{\beta} = \mathbf{E}[\tilde{x}\tilde{x}^T]^{-1}\mathbf{E}[y\tilde{x}]$$

- Given random vector $x \in \mathbb{R}^p$, let e be noise in \mathbb{R}^p independent of x.
- Let Γ be a fixed $p \times q$ matrix. Define synthetic negative controls $z \in \mathbb{R}^q$ by by

$$z = x'\Gamma + e$$

and let $\tilde{x} = (x, z)$, so that

$$\tilde{x}_1 = x_1, \dots, \tilde{x}_p = x_p$$

$$\tilde{x}_{p+1} = z_1, \dots, \tilde{x}_{p+q} = z_q$$

Let

$$\beta = \mathbf{E}[xx^T]^{-1}\mathbf{E}[yx], \quad \tilde{\beta} = \mathbf{E}[\tilde{x}\tilde{x}^T]^{-1}\mathbf{E}[y\tilde{x}]$$

Then

$$\forall i \in \{1, \dots, p\} : \beta_i = \tilde{\beta}_i$$
$$\forall i \in \{p+1, \dots, p+q\} : \tilde{\beta}_i = 0$$

- Recall that $\hat{\beta}_i$ is the *univariate regression* coefficient of Y on $X_{i|-i}$, where $X_{i|-i}$ is the *residual of* X_i after X_i is regressed on the other columns..
- Population version: $\beta_i = 0$ if the projection of X_i on the null space of the other covariates is uncorrelated with Y

- Population version: $\beta_i = 0$ if the projection of X_i on the null space of the other covariates is uncorrelated with Y
- For $i = 1, \ldots, q$, we have

$$\tilde{X}_{p+i} = x'\Gamma_i + E_i$$

where here \tilde{X}_{p+1} denotes the random variable (not the column of the design matrix)

- Population version: $\beta_i = 0$ if the projection of X_i on the null space of the other covariates is uncorrelated with Y
- For $i = 1, \ldots, q$, we have

$$\tilde{X}_{p+i} = x'\Gamma_i + E_i$$

where here \tilde{X}_{p+1} denotes the random variable (not the column of the design matrix)

ullet The orthogonal projection P_X^\perp of $ilde X_{p+1}$ is

$$P_X^{\perp} \tilde{X} = P_X^{\perp} X \Gamma_i + P_X^{\perp} E_i = 0 + E_i$$

since $P_X^{\perp}X = 0$; meanwhile since $E_i \perp X$, $P_X^{\perp}E_i = E_i$.

• Population version: $\beta_i = 0$ if the projection of X_i on the null space of the other covariates is uncorrelated with Y

 \bullet The orthogonal projection P_X^\perp of \tilde{X}_{p+1} is

$$P_X^{\perp} \tilde{X} = P_X^{\perp} X \Gamma_i + P_X^{\perp} E_i = 0 + E_i$$

since $P_X^{\perp}X = 0$; meanwhile since $E_i \perp X$, $P_X^{\perp}E_i = E_i$.

• Since $E_i \perp y$, we have $Cor(P_X^{\perp} \tilde{X}_{p+i}, y) = 0$, hence $\tilde{\beta}_{p+i} = 0$

• Population version: $\beta_i = 0$ if the projection of X_i on the null space of the other covariates is uncorrelated with Y

- Since $E_i \perp y$, we have $\operatorname{Cor}(P_X^{\perp} \tilde{X}_{p+i}, y) = 0$, hence $\tilde{\beta}_{p+i} = 0$
- And since $\beta_j = 0$ for all the added variables $j = p + 1, \dots p + q$, it follows that $\tilde{\beta}_i$ is unchanged for $i = 1, \dots, p$.

Using SNCs to evaluate procedures

- Take low-dimensional real data mixed with SNCs (synthetic negative controls), apply inference procedure
- Proxy for Type I error: Rejected SNCs
- Proxy for Power: Rejected original variables

A step-by-step tutorial (in R)

1. Take the prostate data

2. Construct 20 synthetic negative controls

```
> GAMMA <- matrix(rnorm(8 * 20), 8, 20)
> E <- matrix(rnorm(97 * 20), 97, 20)
> sncs <- as.matrix(x) %*% GAMMA + 2 * E
> sncs <- data.frame(sncs)
> colnames(sncs)
  [1] "X1" "X2" "X3" "X4" "X5" "X6" ...
[19] "X19" "X20"
```

- 3. Create combined design matrix
- $> x2 \leftarrow cbind(x, sncs)$

4. Try marginal screening

```
5. Try covariance test
> library(covTest)
> covTest(lars(as.matrix(x2), y), as.matrix(x2), y)
$results
Predictor_Number Drop_in_covariance P-value
                               69.0292
                                         0.0000
                 1
                 5
                                1.5390 0.2219
                                6.8094 0.0020
                11
                                0.8559 0.4294
(Numbers 1, 5, 2 are original, 11 is a SNC)
```

```
6. Try debiased lasso (code at
http://web.stanford.edu/ montanar/sslasso/)
> res <- SSLasso(as.matrix(x2), y)
[1] "10% done"
...
[1] "90% done"
> rej <- (res$up < 0) | (res$low > 0)
> names(x2)[rej]
[1] "lcavol" "lweight" "svi"
```

Disclaimer!

- I am not proposing SNCs as a methodology for inference
- There is a danger of inferring that Type I error has been controlled from lack of rejection of SNCs. There are no formal guarantees of this!
- One should interpret results from experiments with SNCs in the same way one interprets simulation results with purely synthetic data

More Experiments!

Data	n	p_1	Linear?	Gaussian?	Constant σ^2 ?
Personality	3000	163	No	No	No
fMRI	1750	53	No	OK	No
HIV	842	207	No	Yes?	OK?
Galaxy	323	4	No	OK	No

- We add $n/2 p_1$ synthetic negative controls
- X is scaled, Γ is a gaussian matrix, Var(E) is chosen to yield 'interesting' results
- Personality data is subsampled

Marginal Screening

Legend: 0 = False positives, 1 = True positives

Ordinary Least Squares

"Rel. power" = TP/(max number of TPs at $\alpha = 0.5$ for any method)

Legend: P = Personality, F = fMRI, H = HIV, G = Galaxy

Debiased Lasso

Can you spot the difference from the previous slide?

Legend: P = Personality, F = fMRI, H = HIV, G = Galaxy

Covariance Test

Forward Stop: reject first \hat{k} , where $-\frac{1}{\hat{k}} \sum_{i=1}^{\hat{k}} \log(1-p_i) \leq \alpha$

Covariance Test

Strong Stop: reject first \hat{k} , where $\frac{m}{\hat{k}}e^{\sum_{j=\hat{k}}^{p}\log(p_{j})/j}\leq \alpha$

Knockoffs

Using Knockoff+ threshhold

Knockoffs

Note:
$$FDR^* = \mathbf{E}[FP/(FP + TP + 1/\alpha)]$$

Variable Ranking Criteria

- Forget about Type I error for a second...
- Use procedures to rank variables by p-value
- Easy to compare procedures with different Type I criteria and also non-inference variable selection
- (Optional) score by Area Under Curve (AUC), etc.

Variable Ranking: Personality

Variable Ranking: fMRI

Variable Ranking: HIV

Variable Ranking: Galaxy

Commentary

- We should not conclude too much from four experiments with rather arbitrary generation parameters...
- Debiased lasso similiar to OLS but more conservative, less powerful
- Knockoffs vs covariance test:
 - Knockoffs may control FDR more robustly than Covariance test (especially at small α)
 - Knockoffs and covariance are similar in power overall but have different case-by-case behavior
- Knockoffs tend to be conservative, but have good variable ranking in some cases (Personality, fMRI)
- Marginal screening remains annoyingly effective...

Another look at covTest

Strong stop type I error

• Why did this negative control get rejected in the fMRI data at such a low α ?

(thanks to Stefan!)

Another look at covTest

Strong stop type I error

- According to the incremental null, the negative control was not a mistake... it is the best single predictor by far!
- The particular negative control took an average of the original columns

(thanks to Stefan!)

Another look at covTest

Strong stop type I error

(thanks to Stefan!)

• It is true that $\beta_i = 0$ for the rejected variable... but should we really disregard such strong "proxy" variables?

Low sample size

Data	n	р	p_1	Linear?	Gaussian?	Constant σ^2 ?
Personality	100	1500	163	No	No	No
fMRI	100	875	53	No	OK	No
HIV	100	421	207	No	Yes?	OK?
Galaxy	100	161	4	No	OK	No

- Reduce the sample size to 100, so that p >> n
- Same number of negative controls, but larger added noise (easier)
- Covariance test requires estimate $\hat{\sigma}$: "cheat" by using OLS estimate from *original* data

Debiased Lasso

Legend: P = Personality, F = fMRI, H = HIV, G = Galaxy

Covariance Test

Forward Stop: reject first \hat{k} , where $-\frac{1}{\hat{k}} \sum_{i=1}^{\hat{k}} \log(1-p_i) \leq \alpha$

Legend: P = Personality, F = fMRI, H = HIV, G = Galaxy

Covariance Test

Strong Stop: reject first \hat{k} , where $\frac{m}{\hat{k}}e^{\sum_{j=\hat{k}}^{p}\log(p_{j})/j} \leq \alpha$

Commentary

- Debiased lasso and Covariance test + forward stop continue to control Type I error while finding true positives
- Covariance test + strong stop appears too conservative

Are these experiments actually that realistic!?

- Here we are implicitly assuming that real data always consists of a few "active variables" and many null variables
- If that's true, it seems reasonable to model the distribution of the inactive variables conditional on knowing a superset of the active variables

Are these experiments actually that realistic!?

- Here we are implicitly assuming that real data always consists of a few "active variables" and many null variables
- If that's true, it seems reasonable to model the distribution of the inactive variables conditional on knowing a superset of the active variables
- But how do we know that β is really sparse?
- Even more importantly, how do we know that inferring coefficients of the *full model* β are a meaningful objective? E.g. should we consider the covariance test to have made a mistake in the fMRI data?

Are these experiments actually that realistic!?

- Here we are implicitly assuming that real data always consists of a few "active variables" and many null variables
- If that's true, it seems reasonable to model the distribution of the inactive variables conditional on knowing a superset of the active variables
- But how do we know that β is really sparse?
- Even more importantly, how do we know that inferring coefficients of the *full model* β are a meaningful objective? E.g. should we consider the covariance test to have made a mistake in the fMRI data?
- How can we decide between the full model null, the incremental null, or an entirely different framework altogether?
- Feedback from the practitioner is the only way we can tell if we have the right formulation for any particular application

Questions to consider

- Why is OLS more powerful than lasso in some of these experiments even when β is sparse? Look at covariance conditions in the theory of LASSO...
- Why do knockoffs or lasso beat marginal screening/OLS in the HIV data? Was it due to how we generated the SNCs or is due to something special about the data itself?
- Suppose we wanted to validate selective inference or the incremental null. How can we do this with synthetic negative controls (other than pure noise?)

Closing thoughts

"Both the client and the statistician... must base their thinking on a recognition that their assumptions will always require review and reappraisal..."

John Tukey

Acknowledgements

Thanks to Will Fithian and Stefan Wager for useful discussions.

References

- Barber, R., and Candes, E. (2014). Controlling the False Discovery Rate via Knockoffs. arXiv Preprint arXiv:1404.5609, 127. Retrieved from http://arxiv.org/abs/1404.5609
- GSell, Max Grazier. Wager, Stefan Chouldechova, Alexandra. Tibshirani, Robert. Sequential Selection Procedures and False Discovery Rate Control. (2013): 31. Web. 7 May 2015.
- Javanmard, A., and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. The Journal of Machine Learning Research, 15, 28692909. Retrieved from http://dl.acm.org/citation.cfm?id=2697057
- Lockhart, R., Taylor, J., Tibshirani, R. J., and Tibshirani, R. (2014).
 a Significance Test for the Lasso. Annals of Statistics, 42(2), 413468.
 doi:10.1214/13-AOS1175