Assignment 4 (ML-II)

IRIS Dataset (Example 3)

Wali Ullah (09745)

```
import numpy as np
In [2]:
         import pandas as pd
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans, DBSCAN, AffinityPropagation, MeanShift, estimate ba
         from sklearn.cluster import AgglomerativeClustering, OPTICS, cluster_optics_dbscan, Bir
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.decomposition import PCA
         from sklearn import metrics
         from sklearn.mixture import GaussianMixture
         # Load Data
In [3]:
         def load data(file name):
             def readcsv(file name):
                 return pd.read_csv(file_name)
             def readexcel(file name):
                 return pd.read excel(file name)
             func map = {
                 "csv": readcsv,
                 "xlsx": readexcel,
             # default reader = readcsv
             reader = func map.get("csv")
             for k,v in func_map.items():
                 if file name.endswith(k):
                     reader = v
                     break
```

Data Set

```
In [4]: FILE_NAME = "Iris.csv"
    #FILE_NAME = "banksim_adj.csv"
    #LABEL_COL = "fraud"
    df = load_data(FILE_NAME)
    display(df.head())
    print(df.shape)
    print(df.dtypes)
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa

return reader(file_name)

	sepal_length	sepal_width	petal_length	petal_width	species
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
(150, 5) sepal_length float64 sepal_width float64 petal_length float64 petal_width float64 species object dtype: object					

In [5]: df.sample(5)

Out[5]:

	sepal_length	sepal_width	petal_length	petal_width	species
100	6.3	3.3	6.0	2.5	virginica
128	6.4	2.8	5.6	2.1	virginica
31	5.4	3.4	1.5	0.4	setosa
19	5.1	3.8	1.5	0.3	setosa
59	5.2	2.7	3.9	1.4	versicolor

```
In [6]: df.groupby('species').size().plot.bar()
   plt.show()
```



```
In [7]: X = df.copy()
    X = X.drop('species', axis=1)
    X.describe()
```

Out[7]:

	sepai_iengtn	sepai_widtn	petal_lengtn	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161

	sepal_length	sepal_width	petal_length	petal_width
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [8]: # Normalize X

mms = MinMaxScaler()
mms.fit(X)
Xnorm = mms.transform(X)
Xnorm.shape
Out[8]: (150, 4)
```

K-Mean Clustering

ELBOW method for finding the optimal # of clusters k

```
# Not knowing the number of clusters (3) we try a range such 1,10
 In [9]:
          # For the ELBOW method check with and without init='k-means++'
          Sum_of_squared_distances = []
          for k in range(1,10):
              km = KMeans(n clusters=k, init='k-means++')
              km = km.fit(Xnorm)
              Sum of squared distances.append(km.inertia)
         C:\Users\waliullah\Anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:881: UserWarni
         ng: KMeans is known to have a memory leak on Windows with MKL, when there are less chunk
         s than available threads. You can avoid it by setting the environment variable OMP_NUM_T
         HREADS=1.
          warnings.warn(
In [10]:
          plt.plot(range(1,10), Sum of squared distances, 'bx-')
          plt.xlabel('k')
          plt.ylabel('Sum_of_squared_distances')
          plt.title('Elbow Method For Optimal k')
          plt.show()
```



```
In [11]: # Knowing from the ELBOW method that k=3 ...
kmeans3 = KMeans(n_clusters=3, init='k-means++').fit(Xnorm)
KM_clustered = Xnorm.copy()
KM_clustered = pd.DataFrame(KM_clustered)
KM_clustered.loc[:,'Cluster'] = kmeans3.labels_ # append labels to points
frames = [df['species'], KM_clustered['Cluster']]
result = pd.concat(frames, axis = 1)
print(result.shape)
result.sample(5)
(150, 2)
```

Out[11]:

	species	Cluster
118	virginica	2
1	setosa	1
138	virginica	0
37	setosa	1
17	setosa	1

Assigning a label to each cluster

- As there's no relation between a cluster number and the true label we need to map a cluster to the one label which appears most in that cluster
- These corrected predicted labels are needed below to calculate model performance vs the the true labels

```
In [12]: for ClusterNum in range(3):
    OneCluster = pd.DataFrame(result[result['Cluster'] == ClusterNum].groupby('species'
    OneCluster.columns=['Size']
    NewDigit = OneCluster.index[OneCluster['Size'] == OneCluster['Size'].max()].tolist(
    NewDigit[0]
    rowIndex = result.index[result['Cluster'] == ClusterNum]
    result.loc[rowIndex, 'TransLabel'] = NewDigit[0]
    print(ClusterNum, NewDigit[0])
```

```
0 versicolor
         1 setosa
         2 virginica
          # Check performance of classification to 3 clusters
In [13]:
          print('K-Means performance')
          print('-'*60)
          Correct = (df['species'] == result['TransLabel']).sum()
          Accuracy = round(Correct/df.shape[0],3)
          print('Accuracy ', Accuracy)
          # METRICS for clustering algorithms
          print('silhouette: ', round(metrics.silhouette_score(Xnorm, result['TransLabel'],metric
          print('homogeneity_score: ', round(metrics.homogeneity_score(df['species'], result['Tra
          print('completeness_score: ', round(metrics.completeness_score(df['species'], result['T
          print('v_measure_score: ', round(metrics.v_measure_score(df['species'], result['TransLa
          print('adjusted_rand_score: ', round(metrics.adjusted_rand_score(df['species'], result[
          print('adjusted_mutual_info_score: ', round(metrics.adjusted_mutual_info_score(df['spec
         K-Means performance
         Accuracy 0.887
         silhouette: 0.696
         homogeneity score: 0.736
         completeness_score: 0.747
         v measure score: 0.742
         adjusted rand score: 0.716
         adjusted mutual info score: 0.739
```

DBSCAN

```
# Compute DBSCAN
# played with eps and min samples ... till I got num clustrers = 3 and lowest number of
db = DBSCAN(eps=0.078).fit(Xnorm)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
Estimated number of clusters: 3
Estimated number of noise points: 114
```

Affinity Propagation

```
OneCluster = pd.DataFrame(result[result['Cluster'] == ClusterNum].groupby('species'
   OneCluster.columns=['Size']
   NewDigit = OneCluster.index[OneCluster['Size'] == OneCluster['Size'].max()].tolist(
   NewDigit[0]
   rowIndex = result.index[result['Cluster'] == ClusterNum]
   result.loc[rowIndex, 'TransLabel'] = NewDigit[0]
   print(ClusterNum, NewDigit[0])
```

```
Estimated number of clusters: 3
0 setosa
1 versicolor
2 virginica
C:\Users\waliullah\Anaconda3\lib\site-packages\sklearn\cluster\_affinity_propagation.py:
148: FutureWarning: 'random_state' has been introduced in 0.23. It will be set to None s tarting from 1.0 (renaming of 0.25) which means that results will differ at every functi on call. Set 'random_state' to None to silence this warning, or to 0 to keep the behavior of versions <0.23.

warnings.warn(
```

```
In [16]: # Check performance of classification to 3 clusters
    print('Affinity propagation performance')
    print('-'*60)
    Correct = (df['species'] == result['TransLabel']).sum()
    Accuracy = round(Correct/df.shape[0],3)
    print('Accuracy ', Accuracy)
    # METRICS for clustering algorithms
    print('silhouette: ', round(metrics.silhouette_score(Xnorm, result['TransLabel'],metric
    print('homogeneity_score: ', round(metrics.homogeneity_score(df['species'], result['Tra
    print('completeness_score: ', round(metrics.completeness_score(df['species'], result['TransLa
    print('v_measure_score: ', round(metrics.v_measure_score(df['species'], result['TransLa
    print('adjusted_rand_score: ', round(metrics.adjusted_rand_score(df['species'], result[
    print('adjusted_mutual_info_score: ', round(metrics.adjusted_mutual_info_score(df['species']))
```

Affinity propagation performance

```
Accuracy 0.9
silhouette: 0.696
homogeneity_score: 0.77
completeness_score: 0.786
v_measure_score: 0.778
adjusted_rand_score: 0.745
adjusted_mutual_info_score: 0.775
```

Mean Shift

```
In [17]:
          # Compute clustering with MeanShift
          # The following bandwidth can be automatically detected using
          bandwidth = estimate bandwidth(Xnorm, quantile=0.2) # Manually set the quantile to get
          ms = MeanShift(bandwidth=bandwidth, bin seeding=True)
          ms.fit(Xnorm)
          labels = ms.labels
          cluster centers = ms.cluster centers
          labels unique = np.unique(labels)
          n clusters = len(labels unique)
          print("number of estimated clusters : %d" % n clusters )
          Clustered = Xnorm.copy()
          Clustered = pd.DataFrame(Clustered)
          Clustered.loc[:, 'Cluster'] = ms.labels_ # append labels to points
          frames = [df['species'], Clustered['Cluster']]
          result = pd.concat(frames, axis = 1)
```

```
number of estimated clusters : 3
          for ClusterNum in range(3):
In [18]:
              OneCluster = pd.DataFrame(result[result['Cluster'] == ClusterNum].groupby('species')
              OneCluster.columns=['Size']
              NewDigit = OneCluster.index[OneCluster['Size'] == OneCluster['Size'].max()].tolist(
              NewDigit[0]
              rowIndex = result.index[result['Cluster'] == ClusterNum]
              result.loc[rowIndex, 'TransLabel'] = NewDigit[0]
              print(ClusterNum, NewDigit[0])
         0 versicolor
         1 setosa
         2 virginica
In [19]:
          # Check performance of classification to 3 clusters
          print('Mean shift performance')
          print('-'*60)
          Correct = (df['species'] == result['TransLabel']).sum()
          Accuracy = round(Correct/df.shape[0],3)
          print('Accuracy ', Accuracy)
          # METRICS for clustering algorithms
          print('silhouette: ', round(metrics.silhouette score(Xnorm, result['TransLabel'],metric
          print('homogeneity_score: ', round(metrics.homogeneity_score(df['species'], result['Tra
          print('completeness_score: ', round(metrics.completeness_score(df['species'], result['T
          print('v_measure_score: ', round(metrics.v_measure_score(df['species'], result['TransLa
          print('adjusted_rand_score: ', round(metrics.adjusted_rand_score(df['species'], result[
          print('adjusted mutual info score: ', round(metrics.adjusted mutual info score(df['spec
         Mean shift performance
         Accuracy 0.793
         silhouette: 0.635
         homogeneity_score: 0.673
         completeness_score: 0.77
         v measure score: 0.718
         adjusted rand score: 0.593
         adjusted mutual info score: 0.714
```

Spectral Clustering

```
# Compute clustering with SpectralClustering
In [20]:
          sc = SpectralClustering(n clusters = 3)
          sc.fit(Xnorm)
          labels = ms.labels_
          labels unique = np.unique(labels)
          n clusters = len(labels unique)
          print("number of estimated clusters : %d" % n clusters )
          Clustered = Xnorm.copy()
          Clustered = pd.DataFrame(Clustered)
          Clustered.loc[:, 'Cluster'] = sc.labels_ # append labels to points
          #Clustered.sample(5)
          frames = [df['species'], Clustered['Cluster']]
          result = pd.concat(frames, axis = 1)
          #print(result.shape)
          #result.sample(5)
          for ClusterNum in range(3):
              OneCluster = pd.DataFrame(result[result['Cluster'] == ClusterNum].groupby('species')
              OneCluster.columns=['Size']
              NewDigit = OneCluster.index[OneCluster['Size'] == OneCluster['Size'].max()].tolist(
              NewDigit[0]
```

```
rowIndex = result.index[result['Cluster'] == ClusterNum]
              result.loc[rowIndex, 'TransLabel'] = NewDigit[0]
              print(ClusterNum, NewDigit[0])
         number of estimated clusters : 3
         0 versicolor
         1 setosa
         2 virginica
          # Check performance of classification to 3 clusters
In [21]:
          print('Spectral clustering performance')
          print('-'*60)
          Correct = (df['species'] == result['TransLabel']).sum()
          Accuracy = round(Correct/df.shape[0],3)
          print('Accuracy ', Accuracy)
          # METRICS for clustering algorithms
          print('silhouette: ', round(metrics.silhouette_score(Xnorm, result['TransLabel'],metric
          print('homogeneity_score: ', round(metrics.homogeneity_score(df['species'], result['Tra
          print('completeness_score: ', round(metrics.completeness_score(df['species'], result['T
          print('v_measure_score: ', round(metrics.v_measure_score(df['species'], result['TransLa
          print('adjusted_rand_score: ', round(metrics.adjusted_rand_score(df['species'], result[
          print('adjusted_mutual_info_score: ', round(metrics.adjusted_mutual_info_score(df['spec
         Spectral clustering performance
         Accuracy 0.84
         silhouette: 0.661
         homogeneity_score: 0.651
         completeness_score: 0.666
         v_measure_score: 0.658
         adjusted rand score: 0.623
         adjusted_mutual_info_score: 0.654
          # Agglomerative Clustering
In [22]:
          sc = AgglomerativeClustering(n clusters = 3)
          sc.fit(Xnorm)
          labels = sc.labels
          labels_unique = np.unique(labels)
          n clusters = len(labels unique)
          print("number of estimated clusters : %d" % n clusters )
          Clustered = Xnorm.copy()
          Clustered = pd.DataFrame(Clustered)
          Clustered.loc[:,'Cluster'] = sc.labels_ # append Labels to points
          #Clustered.sample(5)
          frames = [df['species'], Clustered['Cluster']]
          result = pd.concat(frames, axis = 1)
          #print(result.shape)
          #result.sample(5)
          for ClusterNum in range(3):
              OneCluster = pd.DataFrame(result[result['Cluster'] == ClusterNum].groupby('species')
              OneCluster.columns=['Size']
              NewDigit = OneCluster.index[OneCluster['Size'] == OneCluster['Size'].max()].tolist(
              NewDigit[0]
              rowIndex = result.index[result['Cluster'] == ClusterNum]
              result.loc[rowIndex, 'TransLabel'] = NewDigit[0]
              print(ClusterNum, NewDigit[0])
         number of estimated clusters : 3
         0 versicolor
         1 setosa
         2 virginica
          # Check performance of classification to 3 clusters
In [23]:
```

```
print('Agglomerative clustering performance')
print('-'*60)
Correct = (df['species'] == result['TransLabel']).sum()
Accuracy = round(Correct/df.shape[0],3)
print('Accuracy ', Accuracy)
# METRICS for clustering algorithms
print('silhouette: ', round(metrics.silhouette_score(Xnorm, result['TransLabel'],metric print('homogeneity_score: ', round(metrics.homogeneity_score(df['species'], result['Tra print('completeness_score: ', round(metrics.completeness_score(df['species'], result['T print('v_measure_score: ', round(metrics.v_measure_score(df['species'], result['TransLa print('adjusted_rand_score: ', round(metrics.adjusted_rand_score(df['species'], result[
print('adjusted_mutual_info_score: ', round(metrics.adjusted_mutual_info_score(df['species']))
```

Gaussian Mixture

• Tried w covariance_type='tied' acc = 0.9, 'full' DEFAULT acc = 0.97, 'diag' acc = 0.93, 'spherical' acc = 0.89

```
# Gaussian Mixture clustering
In [24]:
          sc = GaussianMixture(n components=3, covariance type='full')
          y pred = sc.fit predict(Xnorm)
          print("number of estimated clusters : %d" % len(set(y pred)))
          Clustered = Xnorm.copy()
          Clustered = pd.DataFrame(Clustered)
          Clustered.loc[:,'Cluster'] = y pred # append labels to points
          #Clustered.sample(5)
          frames = [df['species'], Clustered['Cluster']]
          result = pd.concat(frames, axis = 1)
          #print(result.shape)
          #result.sample(5)
          for ClusterNum in range(3):
              OneCluster = pd.DataFrame(result[result['Cluster'] == ClusterNum].groupby('species')
              OneCluster.columns=['Size']
              NewDigit = OneCluster.index[OneCluster['Size'] == OneCluster['Size'].max()].tolist(
              rowIndex = result.index[result['Cluster'] == ClusterNum]
              result.loc[rowIndex, 'TransLabel'] = NewDigit[0]
              print(ClusterNum, NewDigit[0])
         number of estimated clusters : 3
         0 virginica
         1 versicolor
         2 setosa
In [25]:
          # Check performance of classification to 3 clusters
          print('Gaussian mixture clustering performance')
          print('-'*60)
          Correct = (df['species'] == result['TransLabel']).sum()
          Accuracy = round(Correct/df.shape[0],3)
```

print('Accuracy ', Accuracy)

```
# METRICS for clustering algorithms
print('silhouette: ', round(metrics.silhouette_score(Xnorm, result['TransLabel'],metric
print('homogeneity_score: ', round(metrics.homogeneity_score(df['species'], result['Tra
print('completeness_score: ', round(metrics.completeness_score(df['species'], result['T
print('v_measure_score: ', round(metrics.v_measure_score(df['species'], result['TransLa
print('adjusted_rand_score: ', round(metrics.adjusted_rand_score(df['species'], result[
print('adjusted_mutual_info_score: ', round(metrics.adjusted_mutual_info_score(df['spec
Gaussian mixture clustering performance
```

Accuracy 0.967
silhouette: 0.606
homogeneity_score: 0.898
completeness_score: 0.901
v_measure_score: 0.9
adjusted_rand_score: 0.904
adjusted_mutual_info_score: 0.898

BIRCH Clustering

```
In [26]: sc = Birch(n_clusters = 3)
    sc.fit(Xnorm)
    labels = sc.labels_
    labels_unique = np.unique(labels)
    n_clusters_ = len(labels_unique)
    print("number of estimated clusters : %d" % n_clusters_)

number of estimated clusters : 2
C:\Users\waliullah\Anaconda3\lib\site-packages\sklearn\cluster\_birch.py:647: Convergence eWarning: Number of subclusters found (2) by BIRCH is less than (3). Decrease the thresh old.
    warnings.warn(
```

Mini Batch K-Means

```
# Mini Batch K-Means Clustering
In [27]:
          sc = MiniBatchKMeans(n clusters = 3)
          sc.fit(Xnorm)
          labels = sc.labels
          labels_unique = np.unique(labels)
          n clusters = len(labels unique)
          print("number of estimated clusters : %d" % n clusters )
          Clustered = Xnorm.copy()
          Clustered = pd.DataFrame(Clustered)
          Clustered.loc[:, 'Cluster'] = sc.labels_ # append labels to points
          #Clustered.sample(5)
          frames = [df['species'], Clustered['Cluster']]
          result = pd.concat(frames, axis = 1)
          #print(result.shape)
          #result.sample(5)
          for ClusterNum in range(3):
              OneCluster = pd.DataFrame(result[result['Cluster'] == ClusterNum].groupby('species'
              OneCluster.columns=['Size']
              NewDigit = OneCluster.index[OneCluster['Size'] == OneCluster['Size'].max()].tolist()
              NewDigit[0]
              rowIndex = result.index[result['Cluster'] == ClusterNum]
              result.loc[rowIndex, 'TransLabel'] = NewDigit[0]
              print(ClusterNum, NewDigit[0])
```

```
number of estimated clusters : 3
0 versicolor
1 setosa
2 virginica
C:\Users\waliullah\Anaconda3\lib\site-packages\s
```

C:\Users\waliullah\Anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:887: UserWarni
ng: MiniBatchKMeans is known to have a memory leak on Windows with MKL, when there are 1
ess chunks than available threads. You can prevent it by setting batch_size >= 2048 or b
y setting the environment variable OMP_NUM_THREADS=1
warnings.warn(

```
In [28]: # Check performance of classification to 3 clusters
    print('Mini Batch K-Means clustering performance')
    print('-'*60)
    Correct = (df['species'] == result['TransLabel']).sum()
    Accuracy = round(Correct/df.shape[0],3)
    print('Accuracy ', Accuracy)
    # METRICS for clustering algorithms
    print('silhouette: ', round(metrics.silhouette_score(Xnorm, result['TransLabel'],metric
    print('homogeneity_score: ', round(metrics.homogeneity_score(df['species'], result['TransLabel'])
    print('completeness_score: ', round(metrics.completeness_score(df['species'], result['TransLabel'])
    print('v_measure_score: ', round(metrics.v_measure_score(df['species'], result['TransLabel'])
    print('adjusted_rand_score: ', round(metrics.adjusted_rand_score(df['species'], result['print('adjusted_mutual_info_score: ', round(metrics.adjusted_mutual_info_score(df['species']))
```

Mini Batch K-Means clustering performance

Accuracy 0.893
silhouette: 0.662
homogeneity_score: 0.735
completeness_score: 0.736
v_measure_score: 0.736
adjusted_rand_score: 0.728

adjusted mutual info score: 0.732

Hierarchial Clustering

```
In [29]: iris = pd.read_csv("Iris.csv")
    iris.head()
```

Out[29]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

Out[31]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

```
iris_SP.describe()
In [32]:
```

```
Out[32]:
```

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [33]: # calculate full dendrogram
           from scipy.cluster.hierarchy import dendrogram, linkage
           # generate the linkage matrix
           Z = linkage(iris_SP, 'ward')
           # set cut-off to 150
           max d = 7.08
                                            # max d as in max distance
           plt.figure(figsize=(25, 10))
           plt.title('Iris Hierarchical Clustering Dendrogram')
           plt.xlabel('Species')
           plt.ylabel('distance')
            dendrogram(
                truncate_mode='lastp', # show only the last p merged clusters
                p=150, # Try changing values of p
leaf_rotation=90., # rotates the x axis labels
leaf_font_size=8., # font size for the x axis labels
            plt.axhline(y=max_d, c='k')
            plt.show()
```



```
In [34]:
           # calculate full dendrogram for 50
           from scipy.cluster.hierarchy import dendrogram, linkage
           # generate the linkage matrix
           Z = linkage(iris SP, 'ward')
           # set cut-off to 50
           max d = 7.08
                                          # max d as in max distance
           plt.figure(figsize=(25, 10))
           plt.title('Iris Hierarchical Clustering Dendrogram')
           plt.xlabel('Species')
           plt.ylabel('distance')
           dendrogram(
               Ζ,
               truncate_mode='lastp', # show only the last p merged clusters
               p=50,
                                        # Try changing values of p
               leaf_rotation=90.,  # rotates the x axis labels
leaf_font_size=8.,  # font size for the x axis labels
           plt.axhline(y=max_d, c='k')
           plt.show()
```


CONCLUSION

Even when working on the same dataset, the results obtained from using different hierarchical clustering algorithms can vary a lot. Wich algorithm to use seems to depend on how evident is the

grouping criteria between the variables.

k-Means and Mini Batch k-Means accuracy: 0.89 ... silhouette: 0.696

DBSCAN and Optics accuracy: with 3 clusters there are 114 outliers with DBSCAN and similar w OPTICS (?!)

Affinity Propagation accuracy: 0.90 ... silhouette: 0.696

Mean Shift accuracy: 0.79 ... silhouette: 0.635

Spectral Clustering accuracy: 0.84 ... silhouette: 0.661

Agglomerative Clustering accuracy: 0.89 ... silhouette: 0.688

Gaussian Mixture Clustering accuracy: 0.97 ... silhouette: 0.606

Birch finds only 2 clusters