Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of the Claims:

1. (Currently amended): A compound of general formula (I)

wherein

 R^1 is $OC(O)(CH_2)_mXR^7$;

R² is hydrogen or a hydroxyl protecting group;

 R^3 is hydrogen, C_{1-4} alkyl or C_{3-6} alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl;

R⁴ is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₆alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substitutents independently selected from optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heteroaryl, OR⁸, S(O)_nR⁸, NR⁸R⁹, CONR⁸R⁹, halogen and cyano;

 $\rm R^5$ is hydroxy, C_{3-6} alkenyloxy optionally substituted by 9 to 10 membered fused bicyclic heteroaryl, or O(CH₂) $_{\rm p}$ O(CH₂) $_{\rm q}$ R 10 .

R6 is hydroxy, or

 ${\sf R}^5$ and ${\sf R}^6$ taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is a bivalent radical selected from -CH $_2$ -, -CH(CN)-, -O-, -N(R 11)- and -CH(SR 11)-:

R⁷ is a heterocyclic group having the following structure:

or

 R^8 and R^9 are each independently selected from hydrogen and $\mathrm{C}_{1\text{--}4}alkyl;$

R¹⁰ is hydrogen or NR⁸R⁹;

 R^{11} is hydrogen or C_{1-4} alkyl substituted by a group selected from optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bievelic heteroaryl:

R¹² is hydrogen, C(O)OR¹⁵, C(O)NHR¹⁵ or C(O)CH₂NO₂;

R¹³ is hydrogen, C₁₋₄alkyl optionally substituted by hydroxy or C₁₋₄alkoxy,

C3_7cycloalkyl, or optionally substituted phenyl or benzyl;

R 14 is halogen, C $_{1_4}$ alkyl, C $_{1_4}$ thioalkyl, C $_{1_4}$ alkoxy, NH $_2$, NH(C $_{1_4}$ alkyl) or N(C $_{1_4}$ alkyl);

R15 is hydrogen or C₁₋₄alkyl optionally substituted by up to three groups independently selected from halogen. C₁₋₄alkovy, OC(O)C₁₋₄alkyl and

OC(O)OC₁₋₄alkyl;

 R^{16} is hydrogen, C_{1-4} alkyl, C_{3-7} cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzyl;

 R^{17} is hydrogen or R^{14} , or R^{17} and R^{13} are linked to form the bivalent radical -O(CH₂)₂- or -(CH₂)₃-;

X is -U(CH₂)₈Z- or X is a group selected from:

$$-N$$
 N $-$

and

U and Z independently are a divalent radical selected from -N(R $^{16})\text{-}$, -O-, -S(O) $_{t^{\text{-}}}$, -

 $N(R^{16})C(O)$ -, $-C(O)N(R^{16})$ - and $-N[C(O)R^{16}]$ -;

W is CR17 or a nitrogen atom;

m is 0 or an integer from 1 to 5;

n, r and t are each independently selected from 0, 1 and 2;

p and q are each independently selected from 1 to 6;

s is an integer from 2 to 8; and

v is 2 or 3;

and or a pharmaceutically acceptable derivatives salt thereof.

- 2. (Currently amended): A compound according to claim 1 wherein \mathbb{R}^2 is hydrogen; or a pharmaceutically acceptable salt thereof.
- (Currently amended): A compound according to claim 1 wherein R³ is hydrogen;
 or a pharmaceutically acceptable salt thereof.
- 4. (Currently amended): A compound according to claim 3 wherein R⁴ is hydrogen or C_{1.4}alkyl optionally substituted by up to three substituents independently selected from optionally substituted 5 or 6 membered heteroaryl, OR⁸, S(O)_nR⁸, NR⁸R⁹, halogen and cyano; or a pharmaceutically acceptable salt thereof.

5. (Currently amended): A compound according to wherein R^5 is hydroxy or $O(CH_2)_pO(CH_2)_qR^{10}$ and R^6 is hydroxy, or R^5 and R^6 taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is the bivalent radical -O-; or a pharmaceutically acceptable salt thereof.

6. (Currently amended): A compound according to claim 5 wherein R⁷ is a heterocyclic group having the following structure:

wherein W is CR¹⁷ where R¹⁷ is hydrogen; or a pharmaceutically acceptable salt thereof.

- 7. (Currently amended): A compound according to claim 6 wherein X is $-U(CH_2)_sZ$ -wherein U and Z are independently -NH- or -O-; or a pharmaceutically acceptable salt thereof.
 - 8. (Cancelled).

erythromycin A,

9. (Currently amended): A compound selected from:

4"-O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11-O-(2-dimethylaminoethoxymethyl)-(9E)-methoximino erythromycin A,

4"-O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11,12-carbonate-(9E)-O-(2-propyl)oximino

4"-O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6quinolinyl) amino]ethyl]amino]propionyl]-11,12-carbonate-(9E)-methoximino erythromycin A. and

4"·O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11,12-carbonate-(9E)-O-(ethoxymethyl)oximino erythromycin A,

or a pharmaceutically acceptable derivative salt thereof.

10. (Currently amended): A process for the preparation of a compound as claimed in claim 1 which comprises:

a) reacting a compound of formula (II)

with a suitable activated derivative of the acid (III), wherein m is an integer 1 to 5, X^a and R^{7a} are X and R^7 as defined in claim 1 or groups convertible to protected forms of X and R^7 , to produce a compound of formula (I) wherein m is an integer 1 to 5;

b) reacting a compound of formula (II), in which the 4" hydroxy is suitably activated, with a compound of formula X^aR^{7a} (IV), wherein R^{7a} is R^{7a} as defined in claim 1 or a <u>protected form of group convertible to R^7 , s and Z have the meanings defined in claim 1 and X^a is - U(CH₂)₈Z-, or a <u>protected form of group convertible to -</u>U(CH₂)₈Z-, in which U is a group</u>

selected from selected from $-N(R^{16})$ -, -O-, and -S-, to produce a compound of formula (I) wherein m is 0 and U is a group selected from $-N(R^{16})$ -, -O- and -S-;

c) reacting a compound of formula (V)

wherein R^{16} has the meaning defined in claim 1 with a suitable activated derivative of the carboxylic acid $HOC(O)(CH_2)_8Z^aR^{7a}$ (VI), wherein R^{7a} and Z^a are R^7 and Z as defined in claim 1 or <u>protected forms of groups convertible to</u> R^7 and Z, to produce a compound of formula (I) wherein m is 0 and U is $-N(R^{16})C(O)$:

- d) reacting a compound of formula (II) with a suitably activated derivative of the carboxylic acid HOC(O)C(O)N(R 16)(CH2)s 2 aR 7a (VIIb) to produce a compound of formula (I) wherein m is 0 and U is $^{-}$ C(O)N(R 16)-;
- e) reacting a compound of formula (VII)

with a compound of formula X^aR^{7a} (IV), wherein R^{7a} and X^a are R^7 and X as defined in claim 1 or groups convertible to protected forms of R^7 and X, U is a group selected from - $N(R^{16})$ -, -O- and -S-, and L is suitable leaving group, to produce a compound of formula (I) wherein m is 1 to 5 and U is a group selected from - $N(R^{16})$ -, -O- and -S-; or

f) reacting a compound of formula (IX), with a compound of formula XaR7a (IV),

wherein R^{7a} and X^{a} are R^{7} and X as defined in claim 1 or groups convertible to protected forms of R^{7} and X, U is a group selected from -N(R^{16})-, -O- and -S-, to produce a compound of formula (1) wherein m is 2 and U is a group selected from -N(R^{16})-, -O- and -S-:

and thereafter, if required, subjecting the resulting compound to one or more of the following operations:

- i) removal of the protecting group R²,
- ii) conversion of XaR7a or ZaR7a to XR7 or ZR7 respectively, and
- iii) conversion of the resultant compound of formula (I) into a pharmaceutically acceptable derivative salt thereof.

Claims 11-13 (Cancelled).

- 14. (Currently amended): A pharmaceutical composition comprising a compound according to claim 1 or a pharmaceutically acceptable derivative salt thereof in admixture with one or more pharmaceutically acceptable carriers or excipients.
- 15. (Currently amended): A method for the treatment of the human or non-human animal body to combat a bacterial microbial infection comprising administration of an effective amount of a compound according to claim 1 or a pharmaceutically acceptable derivative salt thereof.
 - 16. (Currently amended): A compound of general formula (IA)

wherein

 R^1 is $OC(O)(CH_2)_mXR^7$;

R² is hydrogen or a hydroxyl protecting group;

 ${\rm R}^3$ is hydrogen, ${\rm C}_{1-4}$ alkyl or ${\rm C}_{3-6}$ alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl:

R⁴ is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₆alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substitutents independently selected from optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heteroaryl, OR⁸, S(O)_nR⁸, NR⁸R⁹, CONR⁸R⁹, halogen and cyano;

 R^5 is hydroxy, C_{3-6} alkenyloxy optionally substituted by 9 to 10 membered fused bicyclic heteroaryl or $O(CH_2)_pO(CH_2)_qR^{10}$,

R6 is hydroxy, or

 ${\sf R}^5$ and ${\sf R}^6$ taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is a bivalent radical selected from -CH2-, -CH(CN)-, -O-, -N(R 11)- and -CH(SR8)-;

 $\ensuremath{\mathsf{R}}^7$ is a heterocyclic group having the following structure:

or

 ${\sf R}^8$ and ${\sf R}^9$ are each independently selected from hydrogen and $C_{1\text{--}4}alkyl;$

R¹⁰ is hydrogen or NR⁸R⁹;

 R^{11} is hydrogen or C_{1_4} alkyl substituted by a group selected from optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bicyclic heteroaryl;

R¹² is hydrogen, C(O)OR¹⁵, C(O)NHR¹⁵ or C(O)CH₂NO₂;

R13 is hydrogen, C1-4alkyl, C3-7cycloalkyl, or optionally substituted phenyl or benzyl;

 R^{14} is halogen, C_{1-4} alkyl, C_{1-4} thioalkyl, C_{1-4} alkoxy, NH2, NH(C_{1-4} alkyl) or N(C_{1-4} alkyl)2;

R15 is hydrogen or C1_4alkyl;

R¹⁶ is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzyl;

X is -U(CH2)_SZ- or X is a group selected from:

$$-N$$
 N $-$

and

U and Z independently are a divalent radical selected from -N(R 16)-, -O-, -S(O) $_{t^-}$, -

 $N(R^{16})C(O)$ -, - $C(O)N(R^{16})$ - and - $N[C(O)R^{16}]$ -;

W is a carbon or a nitrogen atom;

m is 0 or an integer from 1 to 5;

n, r and t are each independently selected from 0, 1 and 2;

p and q are each independently selected from 1 and 2; and

s is an integer from 2 to 8;

and or a pharmaceutically acceptable salts and solvates salt thereof.