(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開登号 特開2000-249915 (P2000-249915A)

(43)公開日 平成12年9月14日(2000.9.14)

(51) Int.CL'		織別配号	FI			テーマコード(参考)
G02B	13/24		G 0 2 B	13/24		2C362
B41J	2,44			13/18		2H076
G 0 2 B	13/18		G 0 3 G	15/04	111	2H087
G 0 3 G	15/04	111	B41J	3/00	D	

審査請求 未請求 菌求項の数6 OL (全 7 頁)

(21)出顯番号	特顧平11−55780	(71) 出願人 000005496
		官士ゼロックス株式会社
(22)出版日	平成11年3月3日(1999.3.3)	克京都港区赤坂二丁目17卷22号
	,	(72) 雅明者 野児山 拳
		神奈川県足柄上郡中共町境430 グリーン
		テクなかい富士ゼロックス株式会社内
		(74)代理人 100071526
		非理士 平田 忠雄
		Fターム(参考) 2C382 AA13 AA34 BA88 BA90 C903
		2H076 AB05 AB08 AB08 AB09 AB18
		DAS3
		2HOS7 KAGS LADI NAD2 PAG2 PAI7
		PB02 QA02 QA04 QA21
		QA32 QA41 RA08 RA35
		איניא אועז דאים איניא

(54) 【発明の名称】 投影光学系および画像形成装置

(57)【要約】

【課題】 レンズの枚数を増加させず、画角を大にでき、高解像度を実現することのできる投影光学系および画像形成装置を提供する。

【解決手段】 複数のレーザビームの第1の方向について収差を結正する第1の形状と、第1の方向と直交する第2の方向について複数のレーザビームの収差を補正する第2の形状を储えた非球面レンズ41、42を有し、物体側をテレセントリックとした結像レンズ部4と、結像レンズ部4と、結像レンズ部4と感光体ドラム3との間に絞り43を有す

【特許請求の範囲】

【請求項1】 画像情報に基づいて画像信号光を出射する光源と、

前記画像信号光の第1の方向について収差を結正する第1の形状と、前記第1の方向と直交する第2の方向について前記画像信号光の収差を結正する第2の形状を備えたレンズを有し、物体側をテレセントリックとした結像レンズ部と、

前記結像レンズ部と投影面との間に絞りを有することを 特徴とする投影光学系。

【請求項2】 前記結像レンズ部は、前記第1の形状に基づいて前記画像信号光の主定資方向又は副定査方向の一方について収差を結正し、前記第2の形状に基づいて前記画像信号光の前記第1の方向と直交する前記第2の方向である主走査方向又は副定査方向について収差を結正する構成の請求項第1項記載の投影光学系。

【請求項3】 前記レンズは、前記第1の方向および前記第2の方向について異なる非球面形状を有する構成の請求項第1項記載の投影光学系。

【請求項4】 アレイ状に配置された複数のレーザ素子 26 を有し、画像情報に基づく複数のレーザビームを出射する光源と、

前記複数のレーザビームを照射されることによって静電 潜像を形成される像担持体と、

前記複数のレーザビームの第1の方向について収差を結正する第1の形状と、前記第1の方向と直交する第2の方向について前記複数のレーザビームの収差を補正する第2の形状を備えたレンズを有し、物体側をテレセントリックとした結像レンズ部と、

前記結像レンズ部と前記像担待体との間に絞りを有することを特徴とする画像形成装置。

【請求項5】 前記結像レンズ部は、前記第1の形状に 基づいて前記複数のレーザビームの主走査方向又は副走 査方向の一方について収差を結正し、前記第2の形状に 基づいて前記複数のレーザビームの前記第1の方向と直 交する前記第2の方向である主走査方向又は副走査方向 について収差を補正する構成の請求項第4項記載の画像 形成装置。

【請求項6】 前記レンズは、前記第1の方向および前 記第2の方向について屋なる非球面形状を有する構成の 46

関平9-193450号公報に示されるものがある。この画像形成装置は、アレイ状に配列された複数のレーザ発光素子を有したレーザアレイと、各レーザ発光素子より出射した複数のレーザ光を集光点に集光させるフィールドレンズと、各レーザ発光素子より出射した複数のレーザ光をそれぞれの結像させるレンズ群からなる投影光学系と、複数のレーザ光のそれぞれの結像点に露光領域を位置させられる感光体ドラムを有し、画像信号に応じて各レーザ発光素子から出射された複数のレーザ光は投影光学系によって集光点に集光され、感光体トラムは副走査方向に所定の速度で回転しており、その表面に画像信号に応じた静電潜像が形成される。この静電潜像はトナーで現像された後、トナー像として記録用紙に

2

【0003】とのような画像形成装置では、レーザアレイから出射される複数のレーザ光を画像形成に必要な所定の光スポット径となるように集光し、感光体上に結像させるために画角が大で高解像度の投影光学系が必要となる。

転写定者されることで記録画像となる。

[0004]

【発明が解決しようとする課題】しかし、従来の画像形成装置によると、投影光学系の画角を大にすると感光体上に結像される光スポットに収差が生じるため、高密度な画像記録を行うことが困難になる。この収差を補正するレンズを設けると部品増になるとともに装置コストが大になる。また、収差を抑えるために画角を小にすると、投影光学系のサイズが光輪方向に拡大して装置全体が大型化するという問題がある。従って、本発明の目的はレンズの枚数を増加させず、画角を大にでき、高解像度を実現することのできる投影光学系および画像形成装置を提供することにある。

[0005]

【課題を解決するための手段】本発明は上記目的を達成するため、画像情報に基づいて画像信号光を出射する光源と、前記画像信号光の第1の方向について収差を補正する第1の形状と、前記第1の方向と直交する第2の方向について前記画像信号光の収差を補正する第2の形状を構えたレンズを有し、物体側をテレセントリックとした結像レンズ部と、前記結像レンズ部と投影面との間に

状に基づいて第1の方向に直交する第2の方向について 収差を結正し、絞りを介して投影面に照射することによって画角を大にし、かつ、高解像度を実現することが可能になる。

【0007】また、本発明は上記目的を達成するため、アレイ状に配置された複数のレーザ素子を有し、画像情報に基づく複数のレーザピームを出射する光源と、前記複数のレーザピームを照射されることによって静電潜像を形成される像担待体と、前記複数のレーザピームの第1の方向について収差を補正する第1の形状と、前記第10小方向と直交する第2の方向について前記複数のレーザピームの収差を結正する第2の形状を備えたレンズを有し、物体側をテレセントリックとした結像レンズ部と、前記結像レンズ部と前記像担待体との間に絞りを有する画像形成装置を提供する。

【①①①8】上記する画像形成装置において、結像レンズ部は、第1の形状に基づいて複数のレーザビームの主 走査方向又は副走査方向の一方について収差を補正し、第2の形状に基づいて複数のレーザビームの第1の方向と直交する第2の方向である主走査方向又は副走査方向について収差を補正する構成とすることが好ましく、レンズは、前記第1の方向および前記第2の方向について収差なる非球面形状を有することが好ましい。上記画像形成装置によれば、第1の形状に基づいて複数のレーザビームの第1の方向について収差を結正し、第2の形状に基づいて第1の方向について収差を指正し、第2の形状に基づいて第1の方向に直交する第2の方向について収差を補正し、絞りを介して像組持体に照射することが可能になる。

[0009]

【発明の実施の形態】図1および図2は、本発明の実施の形態に係る画像形成装置の機略構成を示す。なお、同図において、Xは副走査方向、Yは主走査方向、Zは光韻方向を示す。また、図2は、X2面における概略構成図である。この画像形成装置1は、副走査方向Xおよび主走査方向Yに2次元状に配置された複数のレーザ素子を有し、各レーザ素子から複数のレーザビームを平行に同時に独立して出射可能な半導体レーザアレイ2と、後述するドラム駆動装置5によって回転する感光体ドラム3と、半導体レーザアレイ2の各レーザ素子から平行に

号を出力してレーザ駆動回路8による駆動を制御する制御回路9とを具備している。

【①①10】結像レンズ部4は、副走査方向Xと主定査方向Yで異なる非球面形状で形成される第1アナモフィック非球面レンズ41と、副定査方向Xと主定査方向Yで異なる非球面形状で形成される第2アナモフィック非球面レンズ42と、第2アナモフィック非球面レンズ42の感光体側に配置された絞り43とを備え、物体側はテレセントリックな光学系になっている。

【りり11】また、この画像形成装置1は、図示は省略するが、感光体ドラム3の周囲に帯電器、現像器、転写器等の画像形成手段を設け、転写器の前段には、転写器に記録用紙を供給する給紙部を設け、転写器の後段には、記録用紙に転写されたトナー像を定着する定着器、およびトナー像が定着された記録用紙を排紙する排紙部等を設けている。

【0012】次に、本装置の動作を説明する。信号処理 回路?は、画像メモリ6から画像信号を読み出し、その 画像信号を処理して記録パターンに応じた記録信号をレ ーザ駆動回路8に出力する。ドラム駆動装置5は、感光 体ドラム3を一定の回転速度で回転駆動するとともに、 感光体ドラム3の回転に同期したタイミング信号を制御 回路9に出力する。制御回路9は、ドラム駆動装置5か らのタイミング信号に同期してレーザ駆動回路8に制御 信号を出力する。レーザ駆動回路8は、制御回路8から の制御信号に基づいて信号処理回路?からの記録信号を 入力して半導体レーザアレイ2を駆動する。 半導体レー ザアレイ2は、 各レーザ素子から複数のレーザビームを 光軸方向2に略平行に出射する。半導体レーザアレイ2 から出射された複数のレーザビームは、結像レンズ部4 の横倍率だけ拡大されて、感光体ドラム3上に投影し結 僚される。感光体ドラム3上には、複数の光スポットが 形成され、画像信号に応じた静電潜像が形成される。そ の後、感光体ドラム3上の静電潜像は、現像器によって トナー現像され、そのトナー像は、鉛紙部から鉛紙され た記録用紙に転写器によって転写され、さらに定着器に よって定者され、排紙部に排紙される。このようにして 記録用紙上に高画質な画像が形成される。

【①①13】上記模成によれば、以下の効果が得られる。

(4)

特闘2000-249915

5

(n) 結像レンズ部4の物体側がテレセントリックな光学系となっているため、光源に拡がり角の小さな半導体レーザアレイ2を用いることができ、かつ、高解像度が得られる。

5

(=) 最小のレンズ枚数により構成できるので、結像レンズ部4 および光学系の全光路長を短縮でき、画像形成*

*装置を小型化できる。

[0014]

【実施例】光軸を原点とした水平方向座標をX.垂直方向座標をYとしたとき、2軸に平行な面のサグ量2 (x,y)は、以下に示す数式1によって示される。

【数1】

$$Z(x, y) = \frac{CUX \cdot x^{2} + CUY \cdot y^{2}}{1 + \{1 + (1 + (1 + KX) + CUX^{2} + x^{2} + (1 + KY) + CUY^{2} \cdot y^{2}\}^{1/2}}$$

$$+ AR\{\{1 + AP\} x^{2} + (1 + AP) y^{2}\}^{2}$$

$$+ BR\{\{1 + BP\} x^{2} + (1 + BP) y^{2}\}^{3}$$

$$+ CR\{\{1 + CP\} x^{2} + (1 + CP) y^{2}\}^{4}$$

$$+ DR\{\{1 + DP\} x^{2} + (1 + DP) y^{2}\}^{5}$$

CUX: 水平方向曲率 CUY: 垂直方向曲率 KX: 水平方向円錐係数 KY: 垂直方向円錐係数

AR: 円錐からの4次の変形係数の回転対称成分 BR: 円錐からの6次の変形係数の回転対称成分 CR: 円錐からの0次の変形係数の回転対称成分 DR: 円錐からの10次の変形係数の回転対称成分

AP: 円錐からの4次の変形係数の非回転対称成分 BP: 円錐からの6次の変形係数の非回転対称成分 CP: 円錐からの8次の変形係数の非回転対称成分 DP: 円錐からの10次の変形係数の非回転対称成分

【①①15】表1は、本発明の実施の形態に係る画像形成装置の結像レンズ部4のレンズデータを示す。同表において、#簡は面番号を示しており、#①が半導体レーザアレイ2の出射面を示し、#1から#2が第1アナモフィック非球面レンズ41を示し、#3から#4が第2アナモフィック非球面レンズ42を示し、#5が絞り43を示し、#6が感光体ドラム3の表面、すなわち像面※

※を示している。曲率半径 r の間は、各面の曲率半径を示している。厚み又は面間隔 d の間は、各面から次の面までの距離を示している。屈折率の間は、第1 アナモフィック非球面レンズ41、第2 アナモフィック非球面レン ズ42 をなす付料の屈折率を示している。 【表1】

箇番号#	由密半径	厚み又は罰題帰d	急折略
0	00	67.189	
1	*	17.570	1.850
2	গ্ৰ	34.635	
3	*	13.000	1.850
4	*	24. 367	
5	00	419.232	
6	œ		

表しにあいて、非駄面は米で示しており、数式して定義。46 よって示される。

面番号	係	数
	CUX : 0.019113	CUY : 0, 013449
	RY : - 1. 240197	XX : - 2.070587
# 1	AR : - 0. 167801E-11	BR : - 0. 604504 E -11
	CR : 0.334955E-2G	DR : · 0. 145872E-!5
	AP : - 0. 184854E+03	BP: 0.805771E+09
	EP : • 0. 133272E+04	DP : - 0. 894533E+00
	EUX : - 0. 00084029	CUY : - 0. 0030686
	KY : - 71. 044272	KX: 1224. 332807
# 2	AR : - 0. 181444E-09	BR : 0.310771E-14
	CR : 0. 173885E-13	DR : - 0. 583641E-17
	AP: 0.227562E+02	BP : C. 190537E+02
	EP : - 0. 143542E+60	DP: - 0. 316560E+00
	COX : - 0. 0060863	CUY: -0. 0040841
	KY: 12.059537	KX: -90.128610
#3	AR: 0.13193GE-05	BR : 6. 891203E-08
	CR : 0. 848929E-12	DR : - 0. 1417E-14
i	AP : -0.759795E+00	BP : - 0. 275528E÷00
	CP: -0.1178!1E(0)	DP : - 0. 588875E+00
	CUX : 0.0063105	CUY: - 0.0076567
	KY: - 12.619302	KX: - 87. 275924
#4	AR: 0.127350E-05	BR: 5.555312E-08
	CR: -0.202644E-13	DR : 0. 103265E-14
	AV: -0.847280E+00	BP : - 0. 321139E+00
	CF: 0.914780E+00	DP : - 0. 1854726+00

【①①16】表2に示されるレンズデータを有する結像 レンズ部4において、波長3、焦点距離1、全画角2 *0* 実行FNo、倍率Mは、

7

 λ =775 nm、f=70.000 nm, 2θ =52 de g、FNo=16, M=6 に設定されている。

[①①17] 図3は、上記した結像レンズ部4の収差を示し、図3(a)は、結像レンズ部4の球面収差、図3(b)は、結像レンズ部4の非点収差、図3(c)は、結像レンズ部4の歪面収差を示す。上記した結像レンズ部4によると、同図に示すように収差が抑えられており、このことによって高解像度の回像を得ることができる。同図(b)において、S(破線)は副走査方向の非点収差を示し、T(突線)は主走査方向の非点収差を示している。

[0018] 図4は、MTF (Modulation Transfer Function)曲線を示す図で ある。物体高0mm、15mm、30mmに対応したM TF曲線を示している。図示のように MTF曲線は高 40

ることもできる。また、中間転写体を有する画像形成態 置に適用することもできる。

[0021]

【発明の効果】以上説明したように、本発明によれば、画像信号光の第1の方向について収差を絹正する第1の形状と、第1の方向と直交する第2の方向について画像信号光の収差を補正する第2の形状を構えたレンズを有し、物体側をテレセントリックとし、結像レンズ部と投影面との間に絞りを有する投影光学系としたので、レンズの枚数を増加させず、画角を大にでき、高解像度を実現することができる。

【図面の簡単な説明】

【図1】本発明の真施の形態に係る画像形成装置の機略 構成図

【図2】本発明の実施の形態に係る画像形成装置のX2 面における機略構成図

【図3】本発明の実施の形態に係る投影光学系における収差を示し、(a)は球面収差、(b)は非点収差、(c)は否面収差である

特開2000-249915

10

* 42、第2アナモフィック非球面レンズ 43、絞り

*

(6)

41、第1アナモフィック非球面レンズ

8、レーザ駆動回路

9、制御回路

[図1]

特闘2000-249915

(?)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-249915

(43)Date of publication of application: 14.09.2000

(51)Int.CI.

G02B 13/24

B41J 2/44 G02B 13/18

G03G 15/04

(21)Application number: 11-055780

(71)Applicant : FUJI XEROX CO LTD

(22)Date of filing:

03.03.1999

(72)Inventor: NOMIYAMA TAKASHI

(54) PROJECTION OPTICAL SYSTEM AND IMAGE FORMING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a projection optical system and an image forming device by which a viewing angle can be made large and high resolution is realized without increasing the number of lenses.

SOLUTION: An image forming lens part 4 which is provided with the aspherical-surface lenses 41 and 42 having a 1st shape for correcting the aberration of plural laser beams in the 1st direction and a 2nd shape for correcting the aberration in a 2nd direction orthogonally crossing the 1st direction and whose object side is formed to be telecentric is arranged. Then, a diaphragm 43 is arranged between and the lens part 4 and a photoreceptor drum 3. Thus, the viewing angle can be made large and the high resolution is realized without increasing the number of lenses.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office