LSA 511: Computational Models of Sound Change

James Kirby & Morgan Sonderegger

2 Jul 2013

Today

- Last week: what might cause merger/neutralization between perceptually adjacent categories?
- Local, similarity-based positive feedback: All else being equal, ambiguous percepts more likely to be mapped to a more active category than a less active category, even without lenition
- Feedback is local: no explicit forces keeping categories apart
- Why might we want such a thing?

Some reasons

- Contrast preservation/maintenance
- · Anti-homophony effects
- · Categories seem to be 'optimally' dispersed

Anti-homophony effects

 Sound change is more likely to be inhibited when it would result in the neutralization of a lexically or morphologically informative contrast (Martinet 1952, Blevins 1998, Kingston 2007, Blevins & Wedel 2009, Silverman 2010...)

Anti-homophony effects: Estonian

- Loss of final -n in Estonian, inhibited in NEst dialects in just those cases when it would have led to homophony between verbal inflections
- In SEst dialects, sound change took place across the board, presumably not inhibited in this same context b/c retention of —? meant that the verbal forms could still be distinguished:

Northern Estonian	Southern Estonian	Proto-Balt	o-Finnic
kannan	kanna	*kanna-n	'I carry'
kanna	kanna?	*kanna-?	'Carry!'

Table: Estonian verb forms after loss of 7 and n. After Campbell (1998).

Anti-homophony: Banoni (Lincoln 1976, Blevins & Wedel 2009)

Proto-Oceanic	Banoni	gloss
*pupu *paqoRun *poñu	$\begin{array}{c} \text{vuu} \sim \text{vu} \\ \text{voom} \sim \text{vom} \\ \text{vom} \end{array}$	'fish trap' 'new' 'turtle'

g poss glo	ss
nuu 'ha	her/my father' ir/my hair' other/my brother'
	naa 'fat nuu 'ha

'Variant trading' (Wedel 2004, Blevins & Wedel 2009)

- Exemplar model w/ fixed-length lists, Gaussian noise
- ullet Likelihood that target is labeled category c proportional to distance to category mean
- Variant trading: outputs are always stored back as their intended category (English 'cook' vs. 'cooked')
- http://dingo.sbs.arizona.edu/~wedel/simulations/ 1DVariantTrading.html

'Variant trading': Questions

- · Does the lack of activation weighting matter?
- · How about the fixed length lists?
- What is the necessary relation of word to subword representations here?
- Does the P model display this kind of behaviour? Should it?

'Variant trading': Assessment

- Suggests a slightly more complex knowledge state...
- · ... as well as assumptions about communication
- Learning strategy? Qualitative predictions?

Dispersion

 An observation: phoneme inventories seem to like to be dispersed evenly throughout the perceptual space.

from Boersma & Hamann (2008).

Typology of dispersion

- Preference for center (if 1 category, then centered)
- Excluded center (if 2 categories, then not centered)
- Equal distances (categories prefer to be perceptually distinct)
- Larger inventory \rightarrow larger space
- Fewer categories \rightarrow more variation
- · Chain shifts

Explaining dispersion

- Ohala (1981), Blevins (2004), etc.: sound change is caused by reanalysis of imperfectly transmitted (perceived) sounds
- 'Sound change through misperception ... can only hope to account for neutralization, not dispersion or enhancement' (Flemming 2005:173)
- Vanilla OT markedness & faithfulness constraints can't account for 'excluded center' effects (*[i] >> *[u] > *[i])

Goal-oriented: Dispersion contraints

1		MINDIST = F1:2		MAXIMIZE CONTRASTS		
a.	i-a			√ √ !		
b.	ræ i-e-a			///	**	**
c.	i-ę-ε-a		*!**	////	***	*****

From Flemming, 2001

Is there another way?

- Along with Padgett (2001), Sanders (2003), these works evaluate not input forms, but entire inventories or languages
- But: what if dispersion constraints, while expressing surface-true observations about sound systems, are epiphenomenal of an underlyingly non-goal-oriented mechanism (Padgett 2003)?

Boersma & Hamann 2008

- Want to explain auditory dispersion 'without resorting to exemplar theory' (218)
- Instead, use Boermsa's bidirectional model (with some notion of articulatory ease)
- · 'Observationally optimising but underlyingly non-telelogical'

Framework: Bidirectional phonetics

- Same grammar is used in both production and comprehension
- · Why model phonetics with constraints?

Framework: Bidirectional phonetics

 'The output of the perception process tends to be restricted by the same structural constraints that have been proposed for phonological production' (227)

Types of constraints

- STRUCT constraints (e.g. ONSET): evaluate phonological form only
- CUE constraints (e.g. *[long vowel duration] /obs, -voice/): evaluate relation between phonetic and phonological form
- ART constraints (e.g. *31 Erb): evaluate phonetic form only
- Here, mainly concerned with the CUE and ART constraints

Case studies: sibilant dispersion

Primary acoustic continuum: spectral center of gravity or spectral mean

Learning a perceptual grammar

Given a fixed distribution of tokens along an acoustic dimension...

Learning a perceptual grammar

- ...learn the optimal ranking of cue constraints for that distribution:
- (2) A perception tableau for classifying tokens with a spectral mean in English

[26.6	Erb]	*[26·5]/s/	*[26·6]/s/	*[26·7]/s/	*[26·7]/ʃ/	*[26.6]/ʃ/	*[26·5]/ʃ/
a. /s/			*!				
☞ b. /ʃ/						*	

Lexicon-driven perceptual learning

- Learner optimally re-ranks cue constraints consistent w/input,
 via the GRADUAL LEARNING ALGORITHM (Boersma & Hayes 2001)
- All constraints favouring the correct category are moved up, and those favouring the incorrect category are moved down:
- (3) A learner's perception tableau with reranking of cue constraints

	[26·6 Erb]	*[26·5]/s/	*[26·7]/ʃ/	*[26.6]/ʃ/	*[26·5]/ʃ/	*[26·6]/s/	*[26·7]/s/
D 3	F a. /s/					← *	
1	′ b. /ʃ/			*!→			

Lexicon-driven perceptual learning

- Learners come to display maximum-likelihood behaviour with respect to unambiguous inputs...(what is this?)
- ...and probability match with respect to ambiguous inputs (i.e. those that fall in the overlap between the two distributions)
- (3) A learner's perception tableau with reranking of cue constraints

[26·6 Erb]	*[26·5]/s/	*[26·7]/ʃ/	*[26·6]/ʃ/	*[26·5]/ʃ/	*[26·6]/s/	*[26·7]/s/
☞ a. /s/					← *	
√ b./ʃ/			*!→			

Lexicon-driven perceptual learning

- These simulations crucially assume random prelexical perception but perfect lexical storage
- Learners know how many sibilants the language has, but not where their distributions lie within the frequency continuum.
- (3) A learner's perception tableau with reranking of cue constraints

[26·6 Erb]	*[26·5]/s/	*[26·7]/ʃ/	*[26.6]/ʃ/	*[26·5]/ʃ/	*[26·6]/s/	*[26·7]/s/
☞ a. /s/					← *	
√ b. /ʃ/			*!→			

Demo: English perception

- Start with 322 equally ranked cue constraints
- · 1m data points drawn randomly from each distribution
- Rerank constraints if perceived category \neq lexical category

Demo: English perception

Figure 7

A virtual learner acquiring the perception of the two sibilant categories of English: perception grammars after 2,000, 20,000, 200,000 and 2,000,000 input tokens.

Demo: English perception

Figure 8
Identification curves for the virtual listener of Fig. 7 (final state).

A side-effect: prototypes

 When just cue constraints are involved, listener-turned-talker tends to prefer to produce tokens at the periphery:

A side-effect: prototypes

• When just cue constraints are involved, listener-turned-talker tends to prefer to produce tokens at the periphery:

A side-effect: prototypes

 This is because production is based on sampling from the learned perception grammar (with evaluation noise) rather than from the distribution of actually learned examples

(4) A production tableau with cue constraints only

/s/	*30.6	*30.7	*30.8	*31.5	*30-9	*31.4	*31.3	*31·0	*31.2	*31.1
	/s/									
a. [30·6 Erb]	*!									
b. [30·7 Erb]		*!								
c. [30·8 Erb]			*!							
d. [30·9 Erb]					*!					
e. [31·0 Erb]								*!		
r f. [31·1 Erb]										*
g. [31·2 Erb]									*!	
h. [31·3 Erb]							*!			
i. [31·4 Erb]						*!				
j. [31·5 Erb]				*!						

*ART(iculatory) constraints

• By hypothesis, production involves more than cue constraints.

(5) A production tableau with cue constraints and articulatory constraints

/s/	*31	*31	*31	*30	*30	*30	*30	*30	*30	*30	*30	*31	*31	*31
	·2	•1	.0	.9	:6	⋅8	:7	·7	:8	٠6	.9	:0	:2	:1,
					/s/		/s/		/s/		/s/	/s/	/s/	/s/
a. [30·6Erb]					*!					*				
r b. [30·7Erb]							*	*						
c. [30·8Erb]						*!			*					
d. [30·9Erb]				*							*			
e. [31·0Erb]			*!									*		
f. [31·1 Erb]		*!												*
g. [31·2Erb]	*!												*	

• B&H assume a relationship between auditory peripherality and articulatory effort: the more peripheral, the harder to produce.

*ART(iculatory) constraints

• Modeled by (universally ranked) ART(iculatory) constraints:

(5) A production tableau with cue constraints and articulatory constraints

/s/		*31	*31	*31	*30	*30	*30	*30	*30	*30	*30	*30	*31	*31	*31
		•2	∙1	.0	.9	.6	⋅8	.7	.7	.8	٠6	.9	.0	•2	•1
						/s/		/s/		/s/		/s/	/s/	/s/	/s/
a. [30·6	Erb]					*!					*				
rs b. [30·7	Erb]							*	*						
c. [30·8	Erb]						*!			*					
d. [30·9	Erb]				*!							*			
e. [31·0	Erb]			*!									*		
f. [31·1	Erb]		*!												*
g. [31·2	Erb]	*!												*	

 Notice how the CUE constraints can be re-ranked among the ART constraints.

*ART(iculatory) constraints

Simulating sound change: English

- · Parameters:
 - transmission noise, evaluation noise, number of examples, decision strategy
- · Stable English
- · Exaggerated English
- · Skewed English

Simulating sound change: Polish

- Old Polish: asymmetric sibilant inventory /ʃ s^j s/ (Carlton 1991)
- Modern Polish: basically symmetric sibilant inventory /s & s/
- Around the 13th century, $[s^j] > [c]...$
- ...300 years later, [ʃ] > [s]
- Polish (decision strategies, transmission noise, 10 examples...)

Discussion

- · 'Doomed to success'?
- · Where do cue constraints come from?
- Does the B&H model make different predictions from exemplar-theoretic models?
- · Population dynamics?
- What about merger? How could this be implemented?

Standard Eastern Norwegian

- Starting from CScand $\frac{1}{5} \int \frac{1}{5}$, predicts $[\frac{1}{5} \int \frac{1}{5}]$ instead of $[\frac{1}{5} \int \frac{1}{5}]$
- Fails to predict attested mergers of $\langle \xi \rangle$, $\langle \xi \rangle$ and $\langle \xi \rangle$, $\langle \zeta \rangle$ [$\zeta \rangle$]

Figure 3
The evolution of the three initial standard eastern Norwegian sibilants over 20 generations

(B&H's) summary

- · Optimal dispersion effects can emerge 'innocently'
- · Bidirectionality predicts listener-oriented effects
- Suggests a larger role for general constraint-based theories of language processing

Our summary

- 1. Knowledge state of individuals
- 2. Network/social structure
- 3. Assumptions about communication
- 4. Learning algorithm

What have we learned?

- (Non-)existence proof(s)?
- Explicitness?
- · Counterintuitive results?
- Qualitative predictions?
- · Baseline?