Homework 4

April 22, 2022

1. Suppose $\mathbf{v}_1,...,\mathbf{v}_m$ is a list of vectors in V. Define $T \in \mathcal{L}(\mathbb{R}^m,V)$ by

$$T(\mathbf{x}) = x_1 \mathbf{v}_1 + \dots + x_m \mathbf{v}_m,$$

for $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \in \mathbb{R}^m$. (Injective or Surjective.)

- (a) What property of T corresponds to $\mathbf{v}_1, ..., \mathbf{v}_m$ spanning V? Why?
- (b) What property of T corresponds to $\mathbf{v}_1, ..., \mathbf{v}_m$ being linearly independent? Why?
- 2. (a) Suppose $T \in \mathcal{L}(V, W)$ is injective and $\mathbf{v}_1, ..., \mathbf{v}_n$ is linearly independent in V. Prove that $T(\mathbf{v}_1), ... T(\mathbf{v}_n)$ is linearly independent in W.
 - (b) Suppose $\mathbf{v}_1, ..., \mathbf{v}_n$ spans V and $T \in \mathcal{L}(V, W)$. Prove that the list $T(\mathbf{v}_1), ... T(\mathbf{v}_n)$ spans $T(V)(\operatorname{range} T)$.
 - (c) Suppose V is finite-dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \operatorname{null} T = \{0\}$ and T(V) = T(U). Find a basis.
- 3. (a) Suppose V and W are both finite-dimensional. Prove that there exists an injective linear transfomation from V to W if and only if $\dim V \leq \dim W$.
 - (b) Suppose V and W are both finite-dimensional. Prove that there exists an surjective linear transforation from V onto W if and only if $\dim V \ge \dim W$.
 - (c) Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that $\operatorname{null} T = U$ if and only if $\dim U \geq \dim V \dim W$.
- 4. Find the standard matrices of the following linear transformations.

(a)
$$T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$$
 with $T(x) = \begin{bmatrix} x_1 - x_2 \\ -2x_1 + x_2 \\ x_1 \end{bmatrix}$ for $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

- (b) $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ is a horizontal shear transformatin that leaves \mathbf{e}_1 unchanged and maps \mathbf{e}_2 into $\mathbf{e}_2 + 3\mathbf{e}_1$.
- (c) $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ first performs a vertical shear transformatin that leaves \mathbf{e}_2 unchanged and maps \mathbf{e}_1 into $\mathbf{e}_1 2\mathbf{e}_2$ and then reflects points through the line $x_2 = -x_1$.
- 5. Let

$$\mathbf{b}_1 = egin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{b}_2 = egin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{b}_3 = egin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

and let L be the linear transformation from \mathbb{R}^2 into \mathbb{R}^3 define by

$$L(\mathbf{x}) = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + (x_1 + x_2) \mathbf{b}_3,$$

find the matrix A representing L with respect to the ordered bases $\{e_1, e_2\}$ and $\{b_1, b_2, b_3\}$.

6. Let

$$\mathbf{y}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{y}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{y}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

and let \mathcal{I} be the identity operator on \mathbb{R}^3 .

- (a) Find the coordinates of $\mathcal{I}(\mathbf{e}_1)$, $\mathcal{I}(\mathbf{e}_2)$, and $\mathcal{I}(\mathbf{e}_3)$ with respect to $\{\mathbf{y}_1,\mathbf{y}_2,\mathbf{y}_3\}$.
- (b) Find a matrix A such that A \mathbf{x} is the coordinate vector of \mathbf{x} with respect to $\{\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3\}$.