MTH 511 HW 2

Brandyn Tucknott

Due 16 October 2025

1. Let V be a vector space and d a metric on V satisfying $d(x,y) = d(x-y,0), d(\alpha x, \alpha y) = |\alpha|d(x,y)$ for all $x,y \in V$ and scalar α . Show that ||x|| = d(x,0) defines a norm on V. Give an example of a metric on a vector space \mathbb{R} that fails to be associated with a norm in this way.

Proof. First, we check the given norm satisfies all the properties of norms.

$$\begin{aligned} \|x\| &= d(x,0) = 0 \text{ iff } x = 0 \text{ since } d \text{ is a metric,} \\ \|\alpha x\| &= d(\alpha x,0) = |\alpha|d(x,0) = |\alpha| \|x\|, \\ \|x+y\| &= d(x+y,0) = d(x,-y) \le d(x,0) + d(-y,0) = \|x\| + \|y\|, \end{aligned}$$

thus ||x|| is a norm. Now consider the discrete metric. Generally speaking, the property $d(\alpha x, 0) \neq |\alpha|d(x, 0)$ does not hold, so a norm cannot be associated with this metric.

2. If x is a limit point of A, show that every neighborhood of x contains infinitely many points of A.

Proof. We show this by contradiction. Let x a limit point of A and suppose $B_{\varepsilon}(x) \subset A$ contained finitely many points from A. Denote such points as $a_i \in_{\varepsilon} (x), i = 1, 2, ..., n$. Let $D = \min\{a_i\}$. Then for $\varepsilon < D$,

$$(B_{\varepsilon}(x) \setminus \{x\}) \cap A = \emptyset,$$

and x is not a limit point. This is a contradiction, so we conclude our assumption that $B_{\varepsilon}(x)$ contained only finitely many points from A is incorrect.

3. Let A' be the set of limit points of a set A. Show that A' is closed, $\overline{A} = A' \cup A$, and $A' \cup A \subset \longleftrightarrow A$ is closed.

Proof. First we show that A' is closed. By theorem 4.9, we equivalently show for all $\varepsilon > 0$, $B_{\varepsilon}(x) \cap A' \neq \emptyset$, then $x \in A'$. If $x \in A'$ we are done, so suppose $x \in A'$. Then

$$B_{\varepsilon}(x) \cap A' = (B_{\varepsilon}(x) \setminus \{x\}) \cap A' \neq \emptyset.$$

But this is the definition of a limit point, so $x \in A'$. This contradicts our original assumption, so it must be that $x \in A'$, and thus A' is closed.

Next, we will show that $\overline{A} = A' \cup A$. Observe that for all $\varepsilon > 0$,

$$x \in A \to x \in \overline{A}$$
, and
 $x \in A' \to (B_{\varepsilon}(x)) \cap A \neq \emptyset$
 $\to B_{\varepsilon}(x) \cap A \neq \emptyset, x \in \overline{A}$

by proposition 4.10, and so $A' \cup A \subseteq \overline{A}$.

Similarly, for all $\varepsilon > 0$, we have that

$$x \in \overline{A} \to B_{\varepsilon}(x) \cup A \neq \emptyset.$$

Here we have two cases. If $x \in A$, then certainly $x \in A' \cup A$, and we are done. Suppose that $x \notin A$. Then by proposition 4.10, for all $\varepsilon > 0$, $B_{\varepsilon}(x) \cap A = (B_{\varepsilon}(x) \setminus \{x\}) \cap A \neq \emptyset$, which by definition of a limit points means $x \in A'$. Thus $\overline{A} \subseteq A' \cup A$.

Since $\overline{A} \subseteq A' \cup A$ and $A' \cup A \subseteq \overline{A}$, we conclude $\overline{A} = A' \cup A$.

It remains to show that $A' \subset A \longleftrightarrow A$ is closed. First we show $A' \subset A$ implies A is closed. Since $A' \subset A$, for all $\varepsilon > 0$,

$$(B_{\varepsilon}(x) \setminus \{x\}) \cap A \neq \emptyset \rightarrow B_{\varepsilon}(x) \cap A \neq \emptyset, x \in A.$$

Thus by theorem 4.9 A is closed. Now suppose A is closed. Contrapositively, we will equivalently show that given $x \in A'$ but $x \notin A$, then A is not closed. Since $x \in A'$, by definition for all veps > 0, we have that

$$(B_{\varepsilon}(x) \setminus \{x\}) \cap A \neq \emptyset,$$

 $B_{\varepsilon}(x) \cap A \neq \emptyset$ (equal since $x \notin A$),

and since $x \notin A$ by theorem 4.9 we conclude A is not closed.

4. Let E be a subset of a metric space M. Show that the complement of the interior of E is the closure of the complement of E.

Proof. Recall that the interior A^o is the largest open set contained in A, and \overline{A} is the smallest closed set containing A. Note that A^o is open, so $(A^o)^c$ is closed, and certainly the closure of a closed set is closed $(\overline{(A^o)^c} = (A^o)^c)$. With some set algebra, we have that

$$A^{o} \subseteq A$$

$$(A^{o})^{c} \supseteq A^{c}$$

$$(A^{o})^{c} \supseteq \overline{A^{c}}$$

$$(A^{o})^{c} \supseteq \overline{A^{c}}.$$

Similarly, note that $(\overline{A})^c = M \backslash \overline{A} \to \overline{(\overline{A})^c} = M \backslash A = (A^o)^c$.

$$\overline{A} \supseteq A$$
$$\left(\overline{A}\right)^{c} \subseteq A^{c}$$
$$\overline{\left(\overline{A}\right)^{c}} \supseteq \overline{A^{c}}$$
$$\left(A^{o}\right)^{c} \supseteq \overline{A^{c}}.$$

We conclude that $(A^o)^c = \overline{A^c}$.

5. Show that a point $x \in A$ is an isolated point of A if and only if $(B_{\varepsilon}(x) \setminus \{x\}) \cap A = \emptyset$ for some $\varepsilon > 0$. Prove that a subset of \mathbb{R} can have at most countably many isolated points, thus showing that every uncountable subset of \mathbb{R} has a limit point.

Proof. By definition of a limit point, for all $\varepsilon > 0$, $(B_{\varepsilon}(x)\backslash X) \cap A \neq \emptyset$, and if x is not a limit point, then this definition is negated:

there exists
$$\varepsilon > 0$$
, $(B_{\varepsilon}(x) \setminus \{x\}) \cap A = \emptyset$.

For the other claim, suppose $A \subseteq \mathbb{R}$, and denote the isolated points of A as I(A). For arbitrary $\varepsilon > 0$, consider the interval $(x - \varepsilon, x + \varepsilon)$. By density of \mathbb{Q} in \mathbb{R} , there exist $a, b \in \mathbb{Q}$ with a < b such that a < x < b. Choose a, b such that $(a, b) \subset (x - \varepsilon, x + \varepsilon)$. Define $\phi : I(A) \to \mathbb{Q}^2$ with $\phi(x) = (a, b)$. We wish to show that ϕ is injective. WLOG, let $x, y \in I(A)$ and x < y. We choose two rationals for each point: a_x, b_x, a_y, b_y . If $x < a_y$, then $a_x < x < a_y$, and $(a_x, b_x) \neq (a_y, b_y)$. If $x \ge a_y$, then $x \in B_{\varepsilon}(y)$, a contradiction since y is supposed to be isolated. Thus $(a_x, b_x) \neq (a_y, b_y)$, and ϕ is injective.

Since ϕ is injective and \mathbb{Q} is countable, there exist at most countable isolated points of A.

- 6. Verify each of the following formulas, where bdry(A) denotes the set of boundary points of A. (For my own ease, let A denote the boundary of A.)
 - (a) $A = A^c$.

Proof. By definition,

$$A^{c} = \{x : B_{\varepsilon}(x) \cap A^{c} \neq \emptyset \text{ and } B_{\varepsilon}(x) \cap (A^{c})^{c} \neq \emptyset\}$$
$$= \{x : B_{\varepsilon}(x) \cap A^{c} \neq \emptyset \text{ and } B_{\varepsilon}(x) \cap A \neq \emptyset\}$$
$$= A.$$

(b) $\overline{A} = A \cup A^o$

Proof. Let $U = A \cup A^o$. We will prove the given equality by showing $\overline{A} \subseteq U$ and $U \subseteq \overline{A}$. It is obvious that if $x \in A^o$ or $x \in A$, then $x \in \overline{A}$. Thus $U \subset \overline{A}$. Now suppose $x \in \overline{A}$. If $x \in A^o$ we are done, so suppose $x \notin A^o$. Negating the definition of an interior point gives us

$$B_{\varepsilon}(x) \cap A \not\subseteq A \longrightarrow$$

$$B_{\varepsilon}(x) \cap A^{c} \neq \emptyset$$
and $B_{\varepsilon}(x) \cap A \neq \emptyset$ by definition of $x \in \overline{A}$.

Then our collection is the set

$$\{x: B_{\varepsilon}(x) \cap A \neq \emptyset \text{ and } B_{\varepsilon}(x) \cap A^{c} \neq \emptyset\},\$$

for all $\varepsilon > 0$, which is by definition A. Thus $\overline{A} \subseteq U$, and we conclude $\overline{A} = U$.

(c) $M = A^o \cup A \cup (A^c)^o$

Proof. Let $U = A^o \cup A \cup (A^c)^o$. Obviously $x \in U$ implies $x \in M$, so $U \subseteq M$. Suppose there existed $x \in M$ with $x \notin U$. Note that $\overline{A} = A \cup A^o$ and $A \cup (A^c)^o = \overline{A^c}$. Then

$$x \notin U$$

$$x \notin \overline{A} \cup \overline{A^c}$$

$$x \notin M.$$

This is a contradiction, so clearly $x \in U$, and $M \subseteq U$. Thus M = U.