

1)
$$x^{2} + x + 1 > 0$$
 $\Delta = 1 - 4 = -3 < 0$ $\alpha > 0$
 $S = \mathbb{R}$
 $5^{2} + 5 + 1 = 25 + 5 + 1 = 31 > 0$ $VERO$
 $(-8)^{2} - 8 + 1 = 64 - 8 + 1 = 57 > 0$ $VERO$

Quadrian numes sofituize all x , obtain nimblate $x > 0$

DiMoSuazione Alferrica

Valis dimotrare che se $\alpha > 0 = \Delta < 0$, alora

 $\alpha \times^{2} + b \times + c > 0 \quad \forall x \in \mathbb{R}$ $(x + \frac{b}{2a})^{2}$
 $\times \text{ RUALSUSI!!}$
 $\alpha \times^{2} + b \times + c = \alpha \left(x^{2} + \frac{b}{a} \times + \frac{c}{a}\right) = \alpha \left(x^{2} + \frac{b}{a} \times + \frac{b^{2}}{40^{2}} + \frac{c}{4a^{2}} + \frac{c}{a}\right)$
 $= \alpha \left((x + \frac{b}{2a})^{2} + \frac{-b^{2} + 4ac}{4a^{2}}\right) = \alpha \left((x + \frac{b}{2a})^{2} + \frac{-\Delta}{4a^{2}}\right) > 0$