برقی ادوار

خالد خان بوسفر: کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

1																																						نياد	1
1												 	 																	٠,	د با	ىرقى	واور	فيرو	، ر	قى بار	,	1.1	
6																															•	-		-	ب ، ہم	ِ قَی بار انونِ1	;	1.2	
8																																				. رئي. انائي او		1.3	
~																																						1.0	
15																																				ِ قی پر ز		1.4	
15																																				.4.			
17		•					•	•	•								•	•	•			•	•	•	•							بع	البع	۳]	.4.	2		
2.7																																						مزاحمتي	2
- '																																			c	ر انوناه	ازوا ••	رران 2.1	2
27	•		•	٠	•	•	•	•	•	•	•	 	 •	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	• •	•	•	و،م ا	الون! م			
35																																				ا نین ا		2.2	
51																																						2.3	
52												 	 																						إو	تشيم و	j	2.4	
56																																				نعدرس		2.5	
59																																				لسلهو		2.6	
61																																				نواز ی		2.7	
61																																				۔ تشیم رو		2.8	
69																																						2.9	
74	•			•	٠		•			•	•	 		•	•	•	•	•	•		•			•		•	•		٠,	•	•		ن	حمد	مزا	لطيط		2.10	
																																						2.11	
85												 																					زله	اتباد	نكوان	ئارە- "	-	2.12	
92												 																			وار	تےاو	كر_	عال	استه	بع متبع	ľ	2.13	
101																																				, و	· /.	. 6 -	2
101																																			3			بو ڑاور د • • •	3
101																																				زبيه جو			
104																																							
117																																						3.3	
122	2.											 	 														. وار	لےاد	_1	نےو	لر_	نال	إسته	د باو	منبع	برتابع	ġ.	3.4	

132 .														3.5 تابع منبع د باواستعال کرنے والے ادوار .	
139.														3.6 دائری تجزیه	
140.														3.7 غير تابع منبع استعال كرنے والے ادوار .	
148.														3.8 غير تابع منبع رواستعال كرنے والے ادوار	
														3.9 تابع منبع استعال كرنے والے ادوار	
158 .				•										3.10 دائرى تركيب اور تركيب جوڙ كاموازنه .	
161 171 .					٠	•								حىابى يىپلىغائر 4.1 كائل صابى ايمپلىغائر	4

باب4

حساني ايميليفائر

شکل 4.1 میں حسابی ایمپلفائو 1کی علامت دکھائی گئی ہے۔ حسابی ایمپلیفائر کے دو عدد داخلی سرے (پینے) ہیں جنہیں مشبت داخلی سوا 2 اور منفی داخلی سوا 3 کہا جاتا ہے جبکہ اس کا ایک عدد خارجی سوا (پنیا) ہے۔ اس کے علاوہ دو عدد طاقتی پنیے 4 حسابی ایمپلیفائر کو برقی طاقت فراہم کرنے کے لئے استعال کئے جاتے ہیں جن میں ایک پر مثبت د باو اور دو سرے پر مثنی د باو فراہم کی جاتی ہیں جس کی جاتی ہیں۔

operational amplifier, opamp 1 non-inverting pin 2 inverting pin 3 power pins 4

شكل 4.1: حسابی ايمپليفائر کی علامت۔

162 مالياليمياليفائر

شکل 4.2: حیاتی ایمیلیفائر کوطاقت کی فراہمی کے طریقے۔

شکل 4.2-الف میں حسابی ایمپلیفائر کو دو عدد منبع دباوسے طاقت فراہم کی گئی ہے جبکہ شکل -ب میں ایک عدد منبع دباوسے حسابی ایمپلیفائر کو طاقت کی فراہمی کی گئی ہے۔ شبت طاقتی دباو کو V_{CC} اور منفی طاقتی دباو کو V_{EE} کھا جاتا ہے۔ شکل - الف میں $V_{CC}=12\,\mathrm{V}$ اور $V_{EE}=-10\,\mathrm{V}$ بیں۔ عموماً ادوار میں شبت اور منفی طاقتی دباو کے حتی قیمتیں برابر $V_{CC}=12\,\mathrm{V}$ ہوتی ہیں۔ حسابی ایمپلیفائر کے داخلی سروں پر ہوقی اشارات $V_{CC}=12\,\mathrm{V}$ ہوتی جیں۔

$$v_d$$
 عیل ایمپلیفائر داخلی سروں پر فراہم کردہ اشارات v_k اور v_n اور v_k حمالی ایمپلیفائر داخلی سروں پر فراہم کردہ اشارات $v_d=v_k-v_n$

کو A_d گنّا بڑھا کر خارجی پنیا پر خارج کرتاہے۔

$$(4.2) v_0 = A_d v_d = A_d (v_k - v_n)$$

حسابی ایمپلیفائر v_a کو داخلی اشارہ تصور کرتا ہے۔ v_a کو تفوقی اشارہ ⁶ کہتے ہیں۔ داخلی اشارہ بڑھانے کی صلاحت کو افزائش ⁷ کہتے اور A_a سے ظاہر کرتے ہیں۔ حسابی ایمپلیفائر کے ادوار کے اشکال میں عموماً طاقتی پنے نہیں دکھائے جاتے تاکہ اشکال صاف ستھرے نظر آئیں۔ شکل 4.3 میں ایسا ہی کرتے ہوئے حسابی ایمپلیفائر کے طاقتی پنے نہیں دکھائے گئے ہیں۔ شکل 4.4 میں حسابی ایمپلیفائر کے ریاضی تھونے 8کا دور دکھایا گیا ہے جس سے حسابی ایمپلیفائر کی کار کردگی سمجھی جا

electrical signals⁵ difference signal⁶

gain⁷

 $model^8$

شکل 4.3: حسابی ایمپلیفائر داخلی اشارات کے فرق کو بڑھاتاہے۔

شكل 4.4: حساني ايميليفائر كارياضي نمونه _

سکتی ہے۔ اس نمونے سے ظاہر ہے کہ حمالی ایمپلیفائر کے داخلی سروں پر داخلی رو i_d اور دباو v_d راست تناسب کا تعلق رکتے ہیں۔ یہ حقیقت داخلی پنیوں کے مابین مزاحمت $R_i = \frac{v_d}{i_i}$ ظاہر کرتی ہے۔ اس طرح خارجی جانب بھی مزاحمتی اثر پایا جاتا ہے جے R_0 سے ظاہر کیا گیا ہے۔ آئیں حمالی ایمپلیفائر کا دور اس کے ریاضی نمونے کی مدد سے حل کریں۔ شکل 4.5 میں حمالی ایمپلیفائر کے داخلی جانب منفی داخلی پننے پر اشارہ v_s وادر مزاحمت v_s سلسلہ وار جوڑے گئے ہیں جبکہ مثبت پنیا کو زمین کے ساتھ جوڑا گیا ہے۔خارجی جانب حمالی ایمپلیفائر پر مزاحمتی ہو جھ v_s ڈالا گیا ہے۔ داخلی جانب تقسیم دباوے

$$v_d = \left(\frac{R_i}{R_i + R_S}\right) v_s$$

باب.4. حسابي ايميليفائر 164

شكل 4.5: حسانى ايميليفا ئر كادور ـ

لکھا جائے گا۔خارجی جانب تقسیم دیاو سے درج ذیل لکھا جاتا ہے۔

$$v_0 = \left(\frac{R_B}{R_B + R_o}\right) A_d v_d$$

مندرجہ بالا دو مساوات کو ملاتے ہوئے

 A_v ماوات 4.3 میں دونوں قوسین کی قیت اکائی سے کم ہے لہذا A_v کی قیت A_d سے کم ہو گی۔ زیادہ سے زیادہ حاصل کرنے کی خاطر دونوں قوسین کی قیت اکائی کے قریب ترین ہوناضروری ہے۔ابیاتب ممکن ہو گاجب

$$(4.4) R_i \gg R_S$$

$$R_o \ll R_B$$

ہوں۔

حدول 4.1 میں حسابی ایمیلیفائر کے ریاضی نمونے کے متغیرات کی قیمتوں کے عمومی حدود دیے گئے ہیں۔آپ دیکھ سکتے ہیں کہ ایسے حسانی ایمیلیغائر دستیاب ہیں جن کی افنرائش V^{-1} کا 50 000 کے اور ایسے ایمیلیغائر بھی دستیاب ہیں جن

voltage gain⁹

$$R_0(\Omega)$$
 $R_i(\Omega)$ $A_d(VV^{-1})$
 $2-200$ 10^5-10^{12} $50\,000-1\,000\,000$

 $R_S = R_o = 100\,\Omega$ ، $R_i = 10^{12}\,\Omega$ ، $A_d = 100\,000\,\mathrm{V}\,\mathrm{V}^{-1}$ مثال 4.5 شکل 4.5: شکل 4.5 مثال $R_B = 100\,\mathrm{k}\Omega$ ور $R_B = 10\,\mathrm{k}\Omega$ بین دائم بین دائم کی افغرائش د باو

حل: مساوات 4.3 میں دی گئی قیمتیں پُر کرتے ہیں۔

$$A_v = 100\,000 \left(\frac{10\,000}{10\,000 + 100}\right) \left(\frac{10^{12}}{10^{12} + 50\,000}\right) = 99\,010\,\mathrm{V}\,\mathrm{V}^{-1}$$

حمانی ایمپلیفائر کا خارجی اشارہ کسی بھی صورت مثبت طاقتی دباو V_{CC} سے زیادہ نہیں اور منفی طاقتی دباو سے کم نہیں ہو سکتا۔ کئی اقسام کے حمانی ایمپلیفائر کا خارجی اشارہ طاقتی دباو سے چند ملی وولٹ کے فاصلے تک پہنچ پاتا ہے۔ عموماً حمانی ایمپلیفائر ایسا کرنے کی صلاحیت نہیں رکھتے اور ان کا خارجی اشارہ مثبت طاقتی دباو سے 10^{-1} تا 10^{-1} کم اور منفی طاقتی دباو سے 10^{-1} تا 10^{-1} کا دیادہ ہی رہتا ہے۔

$$(4.5) V_{CC} - \Delta_{+} > v_{0} > V_{EE} + \Delta_{-}$$

آئیں اس حقیقت کے اثرات ایک مثال کی مدد سے دیکھیں۔

مثال 4.2: مثال 4.1 مثال 4.2: مثال 4.1 مثال 4.2: مثال 4

حل: مساوات 4.5 کے تحت خارجی اشارے کے حدود درج ذیل ہیں۔

(4.6)
$$12 - 1.5 > v_0 > -12 + 1.2$$
$$10.5 \text{ V} > v_0 > -10.8 \text{ V}$$

ابــــ4.حــالي ايميليفائر

$$v_0 = A_v v_s = 99010 \times 50 \times 10^{-6} = 4.95 \,\mathrm{V}$$
 $(v_s = 50 \,\mathrm{\mu V})$

بو گا۔ اسی طرح $v_s = 200\,\mu V$ کی صورت میں جواب

$$v_0 = 99010 \times 200 \times 10^{-6} = 19.8 \,\mathrm{V}$$
 (اس جواب کورد کیا جاتا ہے)

متوقع ہے۔ مساوات 4.6 کے تحت v_0 کی قیمت 10.5 V سے زیادہ نہیں ہو سکتی۔الی صورت میں حسابی ایمپلیفائر کوشش کرتا ہے کہ اس کا خارجی اشارہ 19.8 V تک پہنچ لیکن ایسا ممکن نہیں ہے لہذا v_0 بڑھتے بڑھتے کر جارکتا ہے۔ یوں درست جواب درج ذیل ہے۔

$$v_0 = 10.5 \,\mathrm{V} \qquad (v_s = 200 \,\mathrm{\mu V})$$

داخلی اشارہ 2V ہونے کی صورت میں $v_0=198\,\mathrm{kV}$ متوقع ہے جو حمالی ایمپلیفائر کے لئے حاصل کرنا نا ممکن ہے لہذا اب بھی

$$v_0 = 10.5 \,\mathrm{V} \qquad (v_s = 2 \,\mathrm{V})$$

ہو گا۔ آخری داخلی اشارے کے لئے $v_0=99010 imes(-150 imes10^{-6})=-14.9\,\mathrm{V}$ متو قع کیکن نا قابل حصول جواب ہے اور یوں

$$v_0 = -10.8 \,\mathrm{V} \qquad (v_s = -150 \,\mathrm{\mu V})$$

ہو گا۔

مثال 4.3: گزشتہ مثال میں مختلف داخلی اشارات مہیا کرتے ہوئے حسابی ایمپلیفائر کا خارجی اشارہ حاصل کیا گیا۔ آپ سے گزارش ہے کہ داخلی اشارے کے وہ حدود حاصل کریں جن کے اندر رہتے ہوئے $v_{\rm s}$ اور $v_{\rm s}$ کا تعلق خطی ہو گا۔

 v_s اور v_s اور v_s افری اشاره مساوات 4.5 میں دیے حدود کے اندر رہتا ہے اس وقت تک v_0 اور v_s خطی تعلق v_0 رکھتے ہیں۔مندرجہ بالا مثال میں بالائی حد

$$v_{s,r}$$
بايدتر $=rac{v_0}{A_d}=rac{10.5}{99010}=106\,\mathrm{\mu V}$

پر اور پیل حد

$$v_{\rm s,r} = \frac{v_0}{A_d} = \frac{-10.8}{99010} = -109 \, \rm \mu V$$

حاصل ہوتے ہیں۔یوں حسابی ایمپلیفائر اس وقت تک داخلی اشارے کو خطی طور پر بڑھاتا ہے جب تک داخلی اشارہ درج ذیل حدود میں رہے۔

$$106 \, \mu \text{V} > v_s > -109 \, \mu \text{V}$$

ان حدود میں رہتے ہوئے v_a کے حدود شکل 4.5 سے بذریعہ تقسیم دباویوں حاصل ہوتے ہیں۔

$$egin{align} v_{d, au, au_i} &= rac{R_i v_s}{R_i + R_S} = rac{10^{12} imes 106 \, \mathrm{\mu V}}{10^{12} + 5 imes 10^4} pprox 106 \, \mathrm{\mu V} \ & \ v_{d, au_i} &= rac{10^{12} imes (-109 \, \mathrm{\mu V})}{10^{12} + 5 imes 10^4} pprox -109 \, \mathrm{\mu V} \ & \ \end{array}$$

يوں جب تک

(4.7)
$$106 \,\mu\text{V} > v_d > -109 \,\mu\text{V}$$

رہے، حسابی ایمپلیفائر خطی رہتا ہے۔

مثال 4.4: شکل 4.6 میں حسابی ایمپلیفائر کو یوں پلٹایا گیا ہے کہ اس کا مثبت سرا نیچے اور منفی سرااوپر ہے۔اس کی افنرائش دباو $A_v = rac{v_0}{v_s}$ حاصل کریں۔

linear relationship 10

عل: شکل 4.6-الف میں حمالی ایمپلیفائر کی جگہ اس کا نمونہ نسب کرنے سے شکل -ب حاصل ہوتا ہے جسے کرخوف کے قوانین سے حل کیا جاسکتا ہے۔ شکل -ب ایمپلیفائر کا مساوی دور ہے۔ منفی داخلی پینے پر کرخوف مساوات رو لکھتے ہیں $\frac{v_n-v_s}{R_1}+\frac{v_n}{R_2}=0$

جے

$$v_n\left(\frac{1}{R_1} + \frac{1}{R_i} + \frac{1}{R_2}\right) = \frac{v_s}{R_1} + \frac{v_o}{R_2}$$

 v_n حاصل کرتے ہیں۔

(4.8)
$$v_n = \frac{\frac{v_s}{R_1} + \frac{v_o}{R_2}}{\frac{1}{R_1} + \frac{1}{R_i} + \frac{1}{R_2}}$$

خارجی جوڑ پر کرخوف مساوات رو لکھتے ہیں

$$\frac{v_0 - v_n}{R_2} + \frac{v_0 - A_d v_d}{R_o} = 0$$

جس میں $v_d=-v_n$ پُر کرتے اور ترتیب دیتے ہوئے

$$v_0 \left(\frac{1}{R_2} + \frac{1}{R_o} \right) = v_n \left(\frac{1}{R_2} - \frac{A_d}{R_o} \right)$$

لکھا جا سکتا ہے۔مساوات 4.8 کی مدد سے اس کو

$$v_0 \left(\frac{1}{R_2} + \frac{1}{R_o} \right) = \frac{\left(\frac{v_s}{R_1} + \frac{v_o}{R_2} \right) \left(\frac{1}{R_2} - \frac{A_d}{R_o} \right)}{\frac{1}{R_1} + \frac{1}{R_i} + \frac{1}{R_2}}$$

L

$$v_0 \left(\frac{1}{R_2} + \frac{1}{R_0} \right) \left(\frac{1}{R_1} + \frac{1}{R_i} + \frac{1}{R_2} \right) = \left(\frac{v_s}{R_1} + \frac{v_o}{R_2} \right) \left(\frac{1}{R_2} - \frac{A_d}{R_0} \right)$$

لعيني

$$v_0 \left(\frac{1}{R_2} + \frac{1}{R_0} \right) \left(\frac{1}{R_1} + \frac{1}{R_i} + \frac{1}{R_2} \right) - \frac{v_0}{R_0} \left(\frac{1}{R_2} - \frac{A_d}{R_0} \right) = \frac{v_s}{R_1} \left(\frac{1}{R_2} - \frac{A_d}{R_0} \right)$$

170 بابــــ4. حساني ايميليفائر

کھا جا سکتا ہے جس کو حل کرتے ہوئے درج ذیل افٹرائش دباو ہے ملتی ہے۔

$$\frac{v_0}{v_s} = A_v = \frac{\frac{1}{R_1} \left(\frac{1}{R_2} - \frac{A_d}{R_o} \right)}{\left(\frac{1}{R_2} + \frac{1}{R_o} \right) \left(\frac{1}{R_1} + \frac{1}{R_i} + \frac{1}{R_2} \right) - \frac{1}{R_2} \left(\frac{1}{R_2} - \frac{A_d}{R_o} \right)}$$

اس کو درج ذیل صورت میں لکھ سکتے ہیں۔

(4.9)
$$\frac{v_0}{v_s} = A_v = \frac{-\frac{R_2}{R_1}}{1 - \left[\frac{\left(\frac{1}{R_2} + \frac{1}{R_0}\right)\left(\frac{1}{R_1} + \frac{1}{R_i} + \frac{1}{R_2}\right)}{\left(\frac{1}{R_2}\right)\left(\frac{1}{R_2} - \frac{A_d}{R_0}\right)}\right]}$$

مثال 4.4 میں عمومی قیمتیں یعنی

 $R_1 = 1 \, \mathrm{k}\Omega$, $R_2 = 10 \, \mathrm{k}\Omega$, $R_i = 10^8 \, \Omega$, $R_o = 100 \, \Omega$, $A_d = 10^5 \, \mathrm{V} \, \mathrm{V}^{-1}$

$$A_v = \frac{-10}{1 - \left[\frac{(0.0101)(0.001101)}{(0.0001)\left(0.0001 - \frac{100000000}{1000}\right)}\right]}$$
$$= -9.99998888 \text{ VV}^{-1}$$

آپ دیکھ سکتے ہیں کہ $\frac{A_d}{R_0}$ جزو کے علاوہ تمام قوسین کی قیمتیں انتہائی چھوٹی ہیں۔ آپ یہ بھی دیکھ سکتے ہیں کہ A_d کی قیمت کور د کیا قیمت کور د کیا جیمت کی وجہ سے چکور قوسین کی قیمت کور د کیا جاسکتا ہے اور یوں مساوات 4.9 کو درج ذیل کھا جاسکتا ہے۔

$$(4.10) A_v = \frac{v_0}{v_s} = -\frac{R_2}{R_1}$$

اس مساوات سے افنرائش دیاو

$$A_v = -\frac{10000}{1000} = -10 \,\mathrm{V} \,\mathrm{V}^{-1}$$

حاصل ہوتی ہے۔بالائی دو جوابات تقریباً برابر ہیں جبکہ نچلا جواب انتہائی آسانی سے حاصل ہوا۔آئیں حسابی ایمپلیفائر حل کرنے کا انتہائی آسان طریقہ سیمیں۔اس طریقے میں کامل حسابی ایمپلیفائر استعال کیا جاتا ہے لہٰذا پہلے کامل حسابی ایمپلیفائر پر غور کرتے ہیں۔ 4.1. كامسل حساني ايميليغائر

4.1 كامل حساني ايميليفائر

ہم نے دیکھا کہ حسابی ایمپلیفائر کے داخلی مزاحمت R_i کی قیمت بڑی مقدار ہے۔ اس طرح A_d کی قیمت بھی بڑی مقدار ہے جبکہ R_0 کی قیمت بیرونی لا گو مزاحمتوں کی نسبت سے بہت کم ہے۔ کامل حسابی ایمپلیفائو R_i میں R_i اور R_0 کو لامحدود جبکہ R_0 کو صفر تصور کیا جاتا ہے۔

$$(4.11) R_i \to \infty$$

$$(4.12) A_d \to \infty$$

$$(4.13) R_0 \to 0$$

مثال 4.3 میں ہم نے v_d کے وہ حدود حاصل کئے جن میں رہتے ہوئے v_s اور v_s کا تعلق خطی ہوتا ہے۔ حسابی ایمپلیفائر کو خطی خطے میں ہی چلایا جاتا ہے۔ مساوات 4.7 میں یہ حدود دیے گئے ہیں جہاں سے واضح ہے کہ کسی بھی حقیقی دور میں v_d کی حتی قیمت تقریباً سو ملی وولٹ رہتی ہے جو نہایت کم مقدار ہے۔ کامل حسابی ایمپلیفائر میں v_d کو صفر تصور کیا جاتا ہے۔

$$(4.14) v_d \to 0$$

چونکہ $v_d = v_k - v_n$ کے برابر ہے لہذا مندرجہ بالا مساوات کو درج ذیل صورت میں بھی کھا جا سکتا ہے۔

$$(4.15) v_k = v_n$$

 $i_d=rac{100\,\mathrm{\mu V}}{10^{12}\,\Omega}pprox 0$ اور $R_i=10^{12}\,\Omega$ لیا جائے تو شکل 4.6-ب میں $v_d=100\,\mathrm{\mu V}$ واسل ہوتا $v_d=100\,\mathrm{\mu V}$ اور کی جاتی ہے۔ یوں کامل حمالی ایمپلیفائر کے دونوں داخلی پنیوں پر روکی قیمت صفر تصور کی جاتی ہے۔

$$(4.16) i_d = 0$$

مثال 4.5: گزشتہ مثال میں شکل 4.6 کو حل کیا گیا جسے یہاں بطور شکل 4.7 دوبارہ پیش کیا گیا ہے۔کامل حسابی ایمپلیفائر تصور کرتے ہوئے اسے حل کریں۔

ideal opamp¹¹

172 مالياليمياليفائر

شكل 4.7: كامل حساني ايميليفائر كاحل_

حل: شکل میں داخلی دیاو v_k اور v_n کی نشاندہی کی گئی ہے۔ ساتھ ہی ساتھ حسابی ایمپلیفائر کی داخلی رو v_k بھی ظاہر کی گئی ہے۔ کامل حسابی ایمپلیفائر کے ادوار حل کرتے ہوئے جوڑ v_k اور v_n پر کرخوف مساوات لکھ کر ان سے v_k اور v_n حاصل کریں۔ مساوات v_n تحت یہ قیمتیں برابر ہونی چاہیں للذاانہیں برابر پُر کرتے ہوئے v_0 کے لئے حل کریں۔ آئیں ایسابی کرتے ہیں۔

چونکہ جوڑ vk زمین کے ساتھ جڑاہے للذااس کے لئے ہم لکھ سکتے ہیں۔

$$v_k = 0$$

جوڑ v_n پر مساوات 4.16 کے تحت $i_d=0$ لیتے ہوئے کرخوف قانون رو ککھتے ہیں۔

$$\frac{v_n - v_s}{R_1} + \frac{v_n - v_0}{R_2} = 0$$

چونکہ $v_k=0$ ہوگا۔ یہ قیمت درج بالا مساوات 4.15 کے تحت $v_n=0$ ہوگا۔ یہ قیمت درج بالا مساوات میں پُر کرتے ہیں۔

$$\frac{0 - v_s}{R_1} + \frac{0 - v_0}{R_2} = 0$$

اس کو حل کرتے ہوئے درج ذیل حاصل ہوتاہے۔

$$\frac{v_0}{v_s} = -\frac{R_2}{R_1}$$

مساوات 4.10 سے موازنہ کریں۔آپ دیکھ سکتے ہیں کہ کامل حسابی ایمپلیفائر تصور کرتے ہوئے جواب نہایت آسانی سے حاصل ہوتا ہے۔

4.1. كامسل حسابي ايميليفائر 173

شكل 4.8: مثبت ايميلىفائر

 12 شکل 4.6 کا دور داخلی اشارہ v_s کو بڑھانے کے ساتھ ساتھ منفی سے ضرب بھی دیتا ہے للمذااس دور کو منفی ایمپلیفائو کہتے ہیں۔

مثال 4.6: مثبت ایمپلیفائو 13 کو شکل 4.8 میں دکھایا گیا ہے۔ افغرائش مثبت ایمپلیفائو 13

حل: مثبت داخلی پنیا کی مساوات لکھتے ہیں۔

$$v_k=v_s$$
 منفی داخلی پنیا پر $i_d=0$ کیتے ہوئے کرخوف مساوات رو لکھ
$$\frac{v_n}{R_1}+\frac{v_n-v_0}{R_2}=0$$

inverting amplifier¹² non-inverting amplifier 13

ابــــ4. حــالي ايمپليغائر

 v_n کے لئے مل کرتے ہیں۔

$$(4.19) v_n = \frac{\frac{v_0}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}}$$

ماوات 4.18 اور مساوات 4.19 میں حاصل کردہ v_n اور v_n کی قیمتیں برابر پُر کرتے ہیں۔

$$v_s = \frac{\frac{v_0}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}}$$

اں کو $\frac{v_0}{v_s}$ کے لئے حل کرتے ہوئے درج ذیل حاصل ہوتا ہے۔

$$(4.20) A_v = \frac{v_0}{v_s} = 1 + \frac{R_2}{R_1}$$