해양쓰레기 이대로 괜찮은가요?

12132309 류원탁

Contents

001 해양쓰레기란 002 상황분석 003 해결방안제시 004 결론

■ 사회적인 비용

001

해양쓰레기란

001 해양쓰레기란

해양쓰레기는 무엇인가?

표착 쓰레기

표류 쓰레기

해저 쓰레기

해안으로 밀려온 쓰레기를 '표착 쓰레기'라 합니다. 그 밖에 해면이나 바닷속을 흐름을 타고 표류하는 것을 '표류 쓰레기', 해저에 침하되어 퇴적한 것을 '해저 쓰레기'라 하며, 이것들을 통틀어 '**해양 쓰레기**(바다 쓰레기)'라 합니다.

002

상황분석

해양쓰레기의 폐해

미세플라스틱, 결국 사람 똥에서도 나왔다 FR 2018-10-24 11:33 +월:2016-10-24 21:34 1주일 추세 결과 참가자 모두에게서 검을 다면 10g마다 평균 20개~편차 10비나 돼

의원에 들어 있는 의료들러스턴 및 2001 및 FICTOR 교이스

국내 시판 중인 천일염을 조사한 목포대 보고서에 따르면, 한국 국민 1인당 1년 소금 섭취 추정량 3.5kg을 기준으로 매년 500~8000개의 미세플라스 틱을 섭취할 가능성이 있다.

하지만 미세플라스틱을 섭취하더라도 크기가 150µm 이상이면 체내에 흡수되지 않고 곧바로 배설되는 것으로 알려졌다.

 150μ m 미만이면 혈관과 조직을 연결하는 림프계를 통해 체내에 흡수될 가능성은 있지만, 실제 흡수될 확률은 0.3% 이하로 낮은 것으로 보고되고 있다.

또, 림프계로 넘어가더라도 0.2μ m보다 큰 입자는 비장에서 여과작용으로 제거되는 것으로 알려져 있다.

[출처: 중앙일보] 미세플라스틱, 얼마나 위험한지 몰라서 더 걱정스럽다

국내 해양쓰레기 관련 예산비용

중앙일보

"3년간 해양쓰레기 20만톤...수거비용 1500억원"

[뉴시스] 입력 2016.10.14 11:06 수정 2016.10.14 12:24

2017년 해양쓰레기 수거.처리 실적

(단위 : 톤)

종류		
부유쓰레기	4,460	
침적쓰레기	29,662	
해안쓰레기	48,053	
총 합계	82,175	

출처: 해양수산부

[쌀 한포대 : 80kg]

1.000,000

해외 해양쓰레기이슈

미국해양교육협회(SEA) 캐라 라벤다 연구교수는 추산치를 480만t으로 잡아도 세계 연간 참치 어획량 약500만t과 엇비슷한 수준이라며 "우리는 바다에서 참치를 꺼내고 그 자리에 플라스틱을 채우는 셈"이라고 말했다. 논문의 대표 저자인 잼백 교수는 플라스틱 쓰레기를 채운 비닐 봉지 한 개를 들어 보이며 "세계의 해안을 한 발자국 걸을 때마다 이런 비닐 봉지가 5개씩 나올 수 있을 정도 쓰레기 양이다"고 말했다.

해양쓰레기 문제를 어떻게 바라보고 있나?

G	해양수산부	보	도자료			
		배포 일시	2018. 7. 25. (수) 총 3매 (본문 2, 참고 1)			
담당	해양보전과	담 당 자	·과장 김창수, 사무관 명상순, 주무관 이희재 ☎ (044)200-5300, 5301, 5302			
부서	해양환경공단 해양쓰레기 대응센터	담 당 자	·센터장 이승한, 차장 신민섭 ☎ (02)3498-8571, 8573			
<u> </u>	보도일시 2018년 7월 26일(목) 조간부터 보도하여 주시기 바랍니다 ※ 통신.방송.인터넷은 7. 25(수) 11:00 이후 보도 가능					

어업인의 참여를 독려하고자 한다.

먼 바다 해양쓰레기, 정부와 어업인이 함께 해결한다

- 7.26 업무협약 체결... 7.30부터 먼 바다 해양쓰레기 수거 시범사업 실시 -

해양수산부(장관 김영춘)는 어업인이 조업 중에 건져 올린 해양쓰레기를 수거해 오면, 정부에서 처리를 지원하는 '먼 바다 해양쓰레기 수거시범사업'을 7월 30일(월)부터 실시한다고 밝혔다.

003

해결방안

해양쓰레기 지도를 만들자

- 각 일정 지역별로 오염도를 제공하여, 해양쓰레기에 대한 정보를 제공한다.
- 초록색은 청정지역을 의미한다.
- 붉은색은 오염지역을 의미한다.
- 해당지역의 오염도를 자세히 나타낼 수록, 정부는 해양쓰레기 수거사업에 대한 방향을 제시할 수 있고, 어업인들은 이러한 정보를 활용하여, 더 적절하게 쓰레기 수거사업에 참여할 수 있다.

Object_Detection 모델 학습시키기

Object detection이란

사물인식은 디지털 이미지와 비디오에 존재하는 특정 사물을 인식하는 컴퓨터 비전과 이미지 처리와 관련된 컴퓨터 기술이다. 사물인식에 관한 연구로는 얼굴 인식과 보행자 인식 등이 있으며, 이미지 검색과 비디오 감시 등 다양한 컴퓨터 비전분야에 사용되고 있다.

문제에 대한 분석 및 가정

- 해양쓰레기의 모습은 기존의 다른 물체보다 더 다양하며, 일관성이 없다.
- ➡ 단순하게 개,고양이를 detection하는 모델보다 복잡한 모델이 필요할 것이다.
 - 바다 및 해변이라는 특수한 환경에서 촬영한다.
- ➡ 파란 배경의 다른 색의 물체는 모두 쓰레기로 인식할 수 도 있다. Ex) diver
 - 다이버 및 물고기와 같은 다른 종류의 물체가 있다.

Data 수집: google images download

Dataset의 부재로 직접 데이터를 수집하였습니다.

약 300개의 이미지 수집

Data Labeling

labellmg program을 활용하여, bbox 데이터 만들기

1. Ocean_litter

2. fish

3. human

Model 선정: transfer learning

Transfer learning

- 기존의 만들어진 모델을 사용하여 새로운 모델을 만들시 학습을 빠르게 하며, 예측을 더 높이는 방법입니다.
- 실질적으로 Convolution network을 처음부터 학습시키는 일은 많지 않습니다. 대부분의 문제는 이미 학습된 모델을 사용해서 문제를 해결할 수 있습니다.
- 복잡한 모델일수록 학습시키기 어렵습니다. 어떤 모델은 2주정도 걸릴수 있으며, 비싼 GPU 여러대를 사용하기도 합니다.
- layers의 갯수, activation, hyper parameters등등 고려해야 할 사항들이 많으며, 실질적으로 처음부터 학습시키려면 많은 시 도가 필요합니다.
- 결론적으로 이미 잘 훈련된 모델이 있고, 특히 해당 모델과 유사한 문제를 해결시 transfer learining을 사용합니다.

Model 선정: faster rcnn

• 풀어야 되는 문제의 복잡성과 모델의 복잡도를 고려하여, faster rcnn_resnet101 모델을 선택하였습니다.

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

COCO-trained models

Model name	Speed (ms)	COCO mAP[^1]	Outputs
ssd_mobilenet_v1_coco	30	21	Boxes
ssd_mobilenet_v1_0.75_depth_coco ☆	26	18	Boxes
ssd_mobilenet_v1_quantized_coco ☆	29	18	Boxes
ssd_mobilenet_v1_0.75_depth_quantized_coco ☆	29	16	Boxes
ssd_mobilenet_v1_ppn_coco ☆	26	20	Boxes
ssd_mobilenet_v1_fpn_coco ☆	56	32	Boxes
ssd_resnet_50_fpn_coco ☆	76	35	Boxes
ssd_mobilenet_v2_coco	31	22	Boxes
ssd_mobilenet_v2_quantized_coco	29	22	Boxes
ssdlite_mobilenet_v2_coco	27	22	Boxes
ssd_inception_v2_coco	42	24	Boxes
faster_rcnn_inception_v2_coco	58	28	Boxes
faster_rcnn_resnet50_coco	89	30	Boxes
faster_rcnn_resnet50_lowproposals_coco	64		Boxes
rfcn_resnet101_coco	92	30	Boxes
faster_rcnn_resnet101_coco	106	32	Boxes
faster_rcnn_resnet101_lowproposals_coco	82		Boxes
faster_rcnn_inception_resnet_v2_atrous_coco	620	37	Boxes
faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco	241		Boxes
faster_rcnn_nas	1833	43	Boxes
faster_rcnn_nas_lowproposals_coco	540		Boxes

Model 선정이유

학습결과

tensor board를 이용하여 확인하기

Total loss

Total loss= classifier+localization

proposal loss

* 시행착오

* 시행착오

모델 활용방안 : 해양오염측정기

해양드론

수중드론

다이버

프레임당 쓰레기 빈도를 통한 오염도 제시

모델 활용방안: 해양오염측정기

- 동영상 파일 선택 기능
 - Tkinter (교수님 강의 참고)
- 모델을 통한 bbox 형성 영상 재생기능
 - 학습한 모델 사용
 - Threading 기능을 통한 Frame 재생
- 해당 동영상의 오염도 측정 기능
 - 오염도=Num_unit * score/frame 길이
 - MinMax 정규화 (오염도-min)/(max-min)

004

결론

004 결론

프로젝트 활용방안

• 현재 해양환경 조사사업을 수작업을 하는 것이 아니라, 자동화 시킬 수 있다.

• 해상의 쓰레기 사진 데이터를 모아, 지상드론을 적극적으로 활용할 수 있다

004 결론

느낀점 및 보안사항

- 학습한 모델을 바탕으로 새로운 어플리케이션을 만드는 것은 생각보다 많은 이슈를 다뤄야 한다.
- 해양쓰레기 탐지기의 성능을 높이기 위해서는 더 많은 데이터 셋이 필요하다.
- 일반적으로 object-detectio과 쓰레기를 구분하는 것은 조금 다른 과업이다. Pretrained된 모델 말고 처음부터 학습시키는 시도도 해보았으면...