Epreuve écrite

Nom et prénom du candidat

C3

Examen de fin d'études secondaires 2003

c) La délocalisation des électrons

Sec	tion: Bet C REPECHAGO	=
Bra	nrche: Chimie REPECHAGO 14.06.2003	
	1) Les composés organiques oxygénés	12P
	La molécule de menthol a pour formule semi-développée : CH3 CH3 CH3 CH	
^	HO—CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	
	a) Le menthol est utilisé pour fabriquer l'acétate de menthyle, composant des eaux de toil	e tte
	- donner l'équation de la réaction de synthèse à l'aide des formules semi-développées	T2
	 on fait réagir 10 g de menthol et 10 cm³ d'acide acétique (ρ = 1,05 g/ cm³) calculer les quantités de matière (en moles) de chaque réactif calculer le rendement de la synthèse, si on obtient 8,1 g d'acétate de menthyle. 	N3
	- comment a-t-on selon les données de l'expérience amélioré le rendement ? qu'aurait-on pu faire aussi pour améliorer le rendement ?	T1
	b) Le menthol est utilisé pour faire la menthone, agent aromatisant de boissons.	
	- dresser le sytème rédox qui traduit l'oxydation par l'ion permanganate en milieu acide	Т3
	 calculer la masse de menthol que l'on peut oxyder par une solution de 0,16 g de permanganate de potassium dans 40 ml d'eau. 	N2
	- comment peut-on montrer la présence du produit d'oxydation du menthol?	TI
	2) Le cycle benzénique	8P
	Etudier:	or
	a) L'hybridation des atomes de carbone b) La mésomérie c) La délocalisation des électrons	C2 C3

Epreuve écrite

Examen de fin d'études secondaires 2003

Examen de fin d'études secondaires 2003				Nom et prénom du candidat		
Section:	B et C					
Branche:	Chimie					
	3) Les con	iposés organique	es azot	tés		19P
a) E b) E	'. dien l'action	do la triáthylamine	sur l'iod	loéthane	(éq.globale + interprétation) ans l'eau des composés suivant	C4
	n-p	ropylamine	propano	ol-1	butane	
^	t _{éb}	47,8°C	97° (3	-0,5°C	Tr.2
	-	soluble	solub	le	peu soluble	T3
c)	Indiquer l'équ Expliquer la po	ation de la transform osition du deuxième	nation d substitu	u mononi ant à l'aic	trobenzène en dinitrobenzène le des formules contributives	C4
d) (Comment prép Ecrire le bilan	are-t-on la benzamic de la réaction et just	de ? tifier l'us	age du ch	lorure d'acyle et de l'ammonia	c C3
	 écrire sa for dessiner la p 	nn acide α- aminé α nule développée pla rojection de Fischer omposition d'un mé	ne et mo de l'éna	ntrer que ntiomère	D et la structure spatiale de l'ar	itipode
	La condensati conduit à un d	on d'une molécule d ipeptide Ecrire les éd	de valine quations	et d'une des 2 réa	molécule de cystéine (R est HS ctions qui sont possibles.	S-CH ₂ -) T5
1)	Les solution	ns aqueuses d'ac	cides et	de base	es	8P
<u> </u>	Les solution					
a)	Un comprim	é d'aspirine contient t dans 200 ml d'eau.	t 500 mg Le pH d	d'acide a	acétylsalicylique C ₈ H ₇ O ₂ COOF ion obtenue est 2,7	
	Colonlar c. d.	e cette solution				N1
	0 1 1 1 1	- amá da discociation	α et en	déduire le	e pK _a du couple acide-base	N2
	- Calculer le ra	apport [acide]/[base]	dans 1'e	estomac (p	pH 1) et dans l'intestin (pH 5	,3) N2
	Un comprim l'hydrogéno	é d'aspirine efferves	scente con. A que re d'eau	ontient de uoi est dû ? Donne	l'acide acétylsalicylique et de le phénomène d'effervescence r l'équation de la réaction qui e	lorsque
	cause. The			•		

Epreuve écrite

Examen de	e fin d'études secondaires 2003 Nom et prénom du ca	Nom et prénom du candidat		
Section:	B et C			
Branche:	Chimie			
5) T	îtrage acido-basique	13P		
Vitan	eut déterminer la masse d'acide ascorbique C ₆ H ₈ O ₆ présente dans un comprime mine C. Pour cela, on dissout un comprimé dans 100 ml d'eau distillée et l'on d'ent de solution par une solution de NaOH de sodium de concentration 0.32 M	lose ces		
		OH 0,32 M		
	scrire l'équation de la réaction de l'acide ascorbique avec NaOH éduire du graphe V _{b,E} et calculer la concentration molaire de la sol.d'acide asco	T1 rbique		
cal	deuler la masse (en mg) d'acide ascorbique contenue dans un comprimé résultat est-il compatible avec l'indication Vitamine C 500 ?	N4		
	ilculer le pH de la solution initiale d'acide ascorbique	N2		
d) ca	alculer le pH de la solution après addition de 5 ml de NaOH 0,32 M	N3		
e) on	peut déterminer l'équivalence à l'aide d'un indicateur p.ex. le rouge de phéno			
	ustifier le choix de cet indicateur coloré, sachant que son pK _a est 7,9	T1		
	calculer la valeur du rapport [HInd] / [Ind], si on ajoute quelques gouttes de indicateur à la solution initiale d'acide ascorbique	N2		

Corrige

1) Composés organiques oxygénés

Menthol M=156 g mol-1 acitate de meuthyle 11 = 198 p mol -1

 $h_{\text{menthol}} = \frac{109}{156 \text{ prool}^{-1}} = 0.06 \text{ reactif limitant}$

p) noc. acétique = 10,50 (175 r. en excès

nacifate de menthyle = $\frac{8,19}{198 \, \text{pmol}^{-1}} = 0,0409$

rendement en % = oti rielle d'ester = 0,0409 .100 = 63,8%

- pour amélions le rendement on a utilisé un excès d'oc. autique on amaît pu utilise: un excès d'olevorre un désty dustant pour fixer H.O
 - b) Mnog + SE + 8H+ → Mn2+ + 4Hc0 |×2
- Cg H₁₈ CHOH → Cg H₈ CO + w + zH+ 1×5 5 Cg H₁₈ CHOH + zMnO₄ + 6H+ → 5 Cg H₁₈ CO + 8H₂O

P) $M(KMnO_4) = 158 g mol^{-2}$ $n_{MnO_4} = n_{KMnO_4} = \frac{0,16 g}{158 g mol^{-2}} = 0,001042$ $m_{CgH_{18}} Choh = 0,00253.156 = 0,28 g$

(P) précipité jaune en présence de DNPH

- cf P4+5 2) Le cycle benzénique
- 3) les composis organiques arotis
- action des amines sur les halogineures d'allegles a) y. P83 tP)
 - b) association par ponts I entre moléc. de 400 et moléc. d'alcool ou d'amine pas de ponts H' entre molic. de 4,0 et molic. de butane

-> butane mains soluble

polarisation de -4 plus faible que la polarisation de D-H association entre molécules d'emines moins fate que l'assoc. entre 3 P) moli. d'el cools

-> til de l'amine < tib de l'olcool

pas de ponts entre molécules de butane -> plus volatily que l'elcore ou l'amine

c) of P44 + P45 4 P)

3 P)

- équation + tôle de NH3 chlorur d'acyle = forme activer de l'ecide envers les récetifs mudiophiles
- е) СН₃ СН СН СООИ СН₃ NH₂ 0,57

54

- CO04 H - C - NH2 ZP)
- milange racimique de valore = mélange des 2 autiproles 0,50 à parts épales
- (20) $NH_{L}-CH-\omega OH+HNH-CH-COOH\rightarrow H_{L}O+NH_{L}-CH-CO-NH-CH-COC}$ $CH_{L} C_{3}H_{7} I_{3}$ SH

(a)
$$c_0 = \frac{0.5}{180 \cdot 0.2} = 0.0139 \text{ mol } l^{-1}$$

$$\begin{cases} d \cdot C_0 = [H_3O^{+}] & d = \frac{[H_3O^{+}]}{C_0} = \frac{10^{-2.7} \text{ mod } L^{-1}}{O_0O139} \text{ mod } L^{-1} \\ K_Q = \frac{d^2C_0}{1-d} = 3.341 \cdot 10^{-4} \text{ pK}_Q = 3.471 \end{cases}$$

4) he not aq. d'audes et debases

a)
$$c_0 = \frac{0.5}{(80.0.2)} = 0.0139 \text{ mot } l^{-2}$$

AP)

$$\begin{cases}
d \cdot c_0 = [H_30t] & d = \frac{[H_30t]}{6} = \frac{10^{-2.7} \text{ mot } l^{-4}}{0.0139 \text{ mot } l^{-4}} = 0.1435 \\
k_0 = \frac{1^2 c_0}{1 - d} = 3.341.10^4 \text{ pk}_0 = 3.47 \\
pk = pk_0 - log \frac{n_{ac}}{n_{ba} c_j} \\
dans l'intornec : 1 = 3.47 - log \frac{n_{ac}}{n_{ba} c_j} \rightarrow \frac{n_{ac}}{n_{ba} c_j} = \frac{100.1435}{n_{ba} c_j}$$

$$dans l'intornec : 5.5 = 3.47 - log \frac{n_{ac}}{n_{ba} c_j} \rightarrow \frac{n_{ac}}{n_{ba} c_j} = 9.33.10^{-3}$$

b) dans l'intornec : 5.5 = 3.47 - log $\frac{n_{ac}}{n_{ba} c_j} \rightarrow \frac{n_{ac}}{n_{ba} c_j} = 9.33.10^{-3}$

b) digagement de
$$\omega_z$$
 $(_8H_{\mp} O_2 COON + HCO_3^- \Rightarrow co_2 + HcO + (_8H_{\mp} O_2 COO^- be_1)$
 c_1
 c_2
 c_3

le r. est quasi-totale elle peut devenir totale si l'ég se déplace par muite du dégage deloz

PA

d) sol. tampon
$$pH = pK_0 + lop \frac{mbox}{nowde}$$
 $n_{ban} = nb. de mole, de NaOH oj. = 0,32 \cdot 5 \cdot 10^{-3} = 0,0016$
 $n_{acide} = nb. de moles d'ac. ascorb. mitial - nb. de mole, ayant réage
$$= 0,028 \cdot 0,1 - 0,32 \cdot 5 \cdot 10^{-3} = 0,0012$$
 $pH = 4,17 + lop \frac{0,0016}{0,0012} = 4,29$$