

Microcontroladores

Arquitectura Interna del PIC18F4550

Contenido del Curso

- Conocer la arquitectura interna del microcontrolador PIC18F4550.
- Aprender las características principales.
- Aprender el correcto funcionamiento de los diferentes tipos de memoria del PIC18F4550.
- Conocer los tipos de reloj permitidos por el microcontrolador.

1.- Arquitectura Interna

2.- Propiedades

Sucesora de la familia PIC16.

Mantiene un procesador de 8 bits y compatibilidad en los registros de configuración.

Tiene mejoras en la arquitectura.

Velocidad máxima de operación: 48MHz

Tiene un conjunto específico de instrucciones.

Optimización para la programación en lenguaje C.

3.- Herramientas de Desarrollo

- Herramienta IDE o Software de Desarrollo (MPLAB X)
- Programador/Depurador
- MPLAB ICD 3 (Incluye conector RJ11) PicKit 3
- Sistema Embebido o Target

4.- Características

4.- Características

4.- Características

CARACTERISTICAS	PIC18F2455	PIC18F2450	PIC18F4455	PIC18F4450
Frecuencia de Operación	Hasta 48MHz	Hasta 48MHz	Hasta 48MHz	Hasta 48MHz
Memoria de Programa (bytes)	24.576	32.768	24.576	32.768
Memoria RAM de Datos (bytes)	2.048	2.048	2.048	2.048
Memoria EEPROM Datos (bytes)	256	256	256	256
Interrupciones	19	19	20	20
Líneas de E/S	24	24	35	35
Temporizadores	4	4	4	4
Módulos de Comparación/Captura/PWM (CCP)	2	2	1	1
Módulos de Comparación/Captura/PWM mejorado (ECCP)	0	0	1	1
Canales de Comunicación Serie	MSSP,EUSART	MSSP,EUSART	MSSP,EUSAR	MSSP,EUSART
Canal USB	1	1	1	1
Puerto Paralelo de Transmisión de Datos (SPP)	0	0	1	1
Canales de Conversión A/D de 10 bits	10 Canales	10 Canales	13 Canales	13 Canales
Comparadores analógicos	2	2	2	2
Juego de instrucciones	75 (83 ext.)	75 (83 ext.)	75 (83 ext.)	75 (83 ext.)
Encapsulados	PDIP 28 pines SOIC 28 pines	PDIP 28 pines SOIC 28 pines	PDIP 40 pines QFN 40 pines TQFP 40 pines	PDIP 40 pines QFN 40 pines TQFP 40 pines

5.- Distribución de pines

6.- Diagrama de Bloques

7.- Organización de la memoria

- Hay cuatro tipos de memoria en los PIC18:
 - Memoria de programa
 - Memoria de datos
 - EEPROM de datos
 - La Pila
- Como dispositivos de arquitectura Harvard, los buses la memoria de datos y del programa están separados.
- Esto permite el acceso a la vez en las dos memorias.
- La EEPROM de datos, en la práctica, se puede utilizar como un dispositivo periférico, puesto que se maneja a través de un sistema de registros de control.

Registro 0
Registro 1
Registro 2
Registro 3
Registro 2n - 1

Posee un contador de programa (Program Counter - PC) de 21bits que trata 2Mb de memoria de programa.

Tiene 32kb de la memoria flash y puede almacenar hasta 16.384 instrucciones de palabra única.

Los dispositivos PIC18 tienen dos vectores de interrupción. En el reset, la dirección del vector está en 0000h y los vectores de interrupción están en las direcciones 0008h y 0018h.

- El microcontrolador PIC18F4550 dispone de una memoria de programa de 32.768 bytes de memoria de programa (0000H – 7FFFH).
- Las instrucciones ocupan 2 bytes (excepto CALL, MOVFF, GOTO y LFSR, que ocupan 4).
- Direcciones especiales:
 - Reset es 0000H.
 - Interrupciones de alta prioridad: 0008H.
 - Interrupciones de baja prioridad: 0018H.

8.1.- Almacenamiento de Instrucciones

- Primero se almacena la parte baja de la instrucción y luego la parte alta (para las instrucciones de 4 bytes primero los bytes menos significativos y luego los más significativos)
- Las instrucciones siempre empiezan en direcciones pares.

MOVLW 55H	55H	0020H
	0FH	0021H
CPFSEQ 20H	20H	0022H
	63H	0023H
	88H	0024H
GOTO 0110H	EFH	0025H
	00H	0026H
INCF 20H	F0H	0027H
	20H	0028H
	2BH	0029H

8.2.- Contador de Programa(PC):

Es un puntero de 21 bits que indica la dirección en memoria de programa de la instrucción que se debe ejecutar.

Está compuesto por 3 bytes:

- PCU: Parte superior del PC, registro no directamente accesible, las operaciones RD/WR sobre este registro se hacen a través del PCLATU.
- PCH: Parte alta del PC, registro no directamente accesible, las operaciones RD/WR sobre este registro se hacen a través del PCLATH.
- PCL: Parte baja del PC, registro directamente accesible. Una operación de lectura sobre PCL provoca que los valores de PCU y PCH pasen a PCLATU y PCLATH respectivamente.

8.2.- Contador de Programa(PC):

- Es de tipo RAM estática (SRAM)
- Cada registro de esta memoria posee 8 bits.
- Es capaz de direccionar 4096 registro de 1 byte.
- Esta dividida en 16 bancos de 256 bytes cada uno.
- Contiene registros de función especial (SFR)
- Contiene registros de propósito general (GPR)
- Almacenan datos.
- Realizan operaciones con el usuario.
- Lectura en una dirección no implementada: 0x00.

- Los bancos 4 a 7 de la memoria de datos están mapeados a un puerto dual especial de RAM.
- Cuando el módulo USB se encuentra habilitado, la memoria en estos bancos se asigna como RAM de almacenamiento intermedio para las operaciones del USB.

- Para acceder a un byte de la memoria RAM de datos primero debe seleccionarse el banco al que pertenece el byte mediante el registro de selección de banco (BSR) y a continuación direccionar el byte dentro del banco.
- Además existe una modalidad de acceso rápido a las 96 posiciones de la parte baja del banco 0 y a los 160 bytes de SFRs (banco de acceso rápido).

8.1.- Registros de función especial (SFR):

 Los SFRs son los registros mediante los cuales se pueden monitorizar el funcionamiento del CPU y de las unidades funcionales del uC.

Se distinguen dos conjuntos de SFRs:

- SFRs asociados con el núcleo del microcontrolador:
 - CPU: WREG, STATUS, BSR, etc.
 - Interrupciones, Reset: RCON
- SFRs asociados con las unidades funcionales:
 - Timers: T0CON, TMR1H, TMR1L, T1CON, etc
 - Convertidor A/D: ADRESH, ADRESL, ADCONO, ADCON1
 - Puertos de E/S: TRISA, PORTA, TRISB, PORTB, etc.

9.- Memoria EEPROM:

La EEPROM es una matriz de memoria permanente, separada de la RAM de datos y de la memoria de programa, se utiliza en almacenamientos de larga duración de los datos del programa. No está mapeada directamente en los registros de archivo o en la memoria del programa, sino que se trata indirectamente a través de los registros especiales de la función (SFRs).

Cuatro SFRs se utilizan para leer y para escribir los datos en la EEPROM así como la memoria del programa. Son:

9.- Memoria EEPROM:

Los datos EEPROM permiten la lectura y escritura de bytes. Cuando se conecta al bloque de la memoria de datos, el EEDATA sostiene los 8bits de datos para la lectura/escritura y el registro EEADR lleva a cabo el direccionamiento de la localización de la EEPROM.

La memoria de datos EEPROM se clasifica como muy resistente a los ciclos de escritura/borrado. Un byte escribe y automáticamente borra la localización y escribe los datos nuevos (borrar-antes-escribir). El tiempo de escritura se controla por un contador de tiempo en el chip; variará con la tensión y la temperatura así como de chip a chip.

10.- Reloj del sistema

- En este microcontrolador, el oscilador puede ser externo al igual que en el resto de microcontroladores pero también puede ser interno, ya que cuenta con uno.
- El oscilador interno tiene la posibilidad de funcionar desde los 31KHz hasta su máxima velocidad que es de 8MHz.

¿PREGUNTAS?