Виявлення шахрайських транзакцій в потокових даних

Виконав: студент групи ІП-43мп Гриценко Андрій

Вступ

Мета роботи:

• Розробка системи для виявлення шахрайських транзакцій у режимі near real-time з використанням Apache Spark Streaming.

Основні завдання:

- Аналіз ефективності виявлення шахрайства за допомогою різних алгоритмів.
- Дослідження швидкодії системи за різних сценаріїв навантаження.

Джерело даних:

- Dataset: "Credit Card Fraud Detection"
- Платформа: Kaggle
- URL:
 https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

Огляд набору даних

- 1. Time (час) кількість секунд, які пройшли з моменту першої транзакції у наборі даних.
- 2. V1 до V28 анонімізовані числові ознаки, отримані за допомогою аналізу головних компонент (PCA).
- 3. Amount (сума) відображає грошову суму транзакції, без прив'язки до валюти
- 4. Class (Клас) цільова мітка, (1 шахрайська) та 0 звичайна транзакція

Матриця кореляції

- 0.6

- 0.4

Огляд набору даних

Характеристики шахрайський транзакцій

V2	V4	V11	Time	Class	Amount	summary
		+	+	+	+	
492	492	492	492	2 492	492	count
23778101982281	4.542029104423093 3	3.8001729113746077	0746.80691056911	1.0 80	2.2113211382114	mean 122
29121562613748	2.8733176878992315	2.678604522510197	7835.36513767505	0.0 47	6.6832882977121	stddev 256
40215367768915	-1.31327481447103 -	-1.70222840135659	406.0) 1	0.0	min
.0577289904909	12.1146718424589	12.0189131816199	170348.0	7 1	2125.87	max

Характеристики звичайних транзакцій

V2	V4	V11	Time	Class	Amount	summary
		+	+-	+		+
284315	284315	284315	284315	284315	284315	count
-0.00627085741580	0.00785986782046	0.00657610422382	8.20225805884 -	0.0 94838.	29102242231271	mean 88.
1.6361460525689606	1.3993332348712215	1.003111906961151	4.01578555089	0.0 47484.	10509222589235	stddev 250.
-72.7157275629303	-5.68317119816995	-4.79747346479757	0.0	Θ	0.0	min
18.9024528401249	16.8753440335975	10.0021902173471	172792.0	0	25691.16	max

Архітектура системи

- Джерело даних: Потокове зчитування даних з файлів, розділених від основного набору.
- Обробка даних:
 - Попередня обробка: очищення та нормалізація.
 - Методи: статистичний аналіз (IQR), класифікація (Random Forest), виявлення аномалій (Isolation Forest).
- Зберігання результатів: Запис результатів у InfluxDB з тегами для ідентифікації методів виявлення шахрайства.

```
spark = SparkSession.builder \
    .appName("RealTimeAnomaliesDetection)" \
    .master("spark://localhost:7077" \
    .config('spark.executor.memory, '15g') \
    .config('spark.driver.memory, '15g') \
    .config('spark.sql.shuffle.partitions, '200') \
    .getOrCreate()
```

Візуалізація роботи методів для виявлення аномалій

- Синій графік IQR
- Помаранчевий графік RandomForest
- Фіолетовий графік IsolationForest

Візуалізація роботи статистичного методу IQR

Матриця помилок для Random Forest

Візуалізація роботи методу Isolation Forest

	Amount	V11	V4	V2
count	2849.000000	2849.000000	2849.000000	2849.000000
mean	948.650232	0.766566	1.586276	-2.620376
std	1613.803997	2.371457	3.285752	9.881965
min	0.000000	-4.797473	-5.266509	-72.715728

Тестування продуктивності

```
stream_data = spark.readStream \
    .format("csv") \
    .option("header", "true") \
    .option("maxFilesPerTrigger", 1) \
    .schema(data.schema) \
    .load("file:///opt/spark/data/stream_data")
query = stream_data.writeStream \
    .foreachBatch(process_batch) \
    .outputMode("append") \
    .trigger(processingTime="5 seconds") \
    .start()
```



```
query = stream_data.writeStream \
    .foreachBatch(process_batch) \
    .outputMode("append") \
    .start()
```



```
stream_data = spark.readStream \
    .format("csv") \
    .option("header", "true") \
    .schema(data.schema) \
    .load("file:///opt/spark/data/stream_data")
```

