	1	CLAIMS
	2	We claim:
	3	A memory cell comprising:
	4	a steering element for providing enhanced current flow in one direction through the
	5	steering element;
	6	a state change element for retaining a programmed state, connected in series with
	7	the steering element such that the steering element and state change element provide a two
	8	terminal cell;
	9	the steering element and state change element being vertically aligned with one
41	10	another.
Art was are in the same and are in the same ar	11	
	12	2. The cell defined by claim 1 wherein the steering element is fabricated from
	13	polysilicon.
	14	
	15	3. The cell defined by claim 2 wherein the polysilicon is doped so as to form a
	16	diode.
i est	17	
	18	4. The cell defined by claim 1 wherein the steering element is a metal-
	19	semiconductor Schottky diode.
	20	
	21	The cell defined by claim 1 wherein the steering element is a junction field-
	22	effect transistor with a gate connected to one of a source or drain region.
	23	

1	6.	The cell defined by claim 1 wherein the steering element is a field-effect
2	transistor havir	ng an insulated gate connected to one of a source or drain regions
3		
4	7.	The cell defined by claim 1 wherein the steering element is a PN junction
5	diode formed in	n amorphous semiconductor.
6		
7	8.	The cell defined by claim 1 wherein the steering element is a Zener diode.
8		
9	9.	The cell defined by claim 1 wherein the seering element is an avalanche
10	diode.	
11		\mathcal{L}
12	10.	The cell defined by claim 1 wherein the steering element is a tunnel diode.
13		
14	11.	The cell defined by claim 1 wherein the steering element is a four -layer
15	diode (SCR).	
16		
17	12.	The cell defined by claim 1 wherein the state change element is an antifuse.
18		
19	13.	The cell defined by claim 12 wherein the antifuse is formed from polysilicon.
20	٥	
21	14.	The cell defined by claim 12 wherein the antifuse includes silicon dioxide.
22		
23	1 5.	The cell defined by claim 1 wherein the state change element is a dielectric-
24	rupture antifus	e. ·

1		
2	16.	The cell defined by claim 1 wherein the state change element is a
3	polycrystalline	semiconductor antifuse.
4		
5	17.	The cell defined by claim 1 wherein the state change element is an
6	amorphous ser	miconductor antifuse.
7		
8	18.	The cell defined by claim 1 wherein the state change element is a metal
9	filament electro	omigration fuse.
10		
11	19.	The cell defined by claim 1 wherein the state change element is a
12	polysilicon resis	stor-fuse.
13		
14	20.	The cell defined by claim 1 wherein the state change element employs trap-
15	induced hyster	esis.
16		
17	21.	The cell defined by claim 1 wherein the state change element employs a
18	ferroelectric ca	pacitor.
19		
20	22.	The cell defined by claim 1 wherein the state change element employs a
21	Hall effect devi	ce.
22		

		/
1	23.	The cell defined by claim 1 wherein the steering element comprises a diode
2	and the state	e change element comprises an antifuse, and where the diode is able to carry a
3	sufficient cu	rrent to change the state of the antifuse.
4		
5	24. The	cell defined by claim 1 wherein the steering element comprises a recrystallized
6	semiconduc	tor.
7		
8	25.	The cell defined by claim 1 wherein the steering element and state change
9	element incl	ude amorphous silicon.
10		
11	26.	The cell defined by claim 1 wherein one of the terminals of the cell is
12	connected to	o a word line.
13		
14	27.	The cell defined by claim 26 wherein the other of the terminals of the cell is
15	connected to	o a bit line.
16		
17	28.	A memory cell comprising:
18	a p	llar having a generally rectangular cross-section and having at one end a
19	steering eler	ment which more readily conducts current in one direction, and a state change
20	element loca	ated at the other end of the pillar, the state change element for recording a
21	state.	
22		
23	26.	The memory cell defined by claim 28 wherein the steering element
24	comprises a	diode.
	,	

1		
2	30.	The memory cell defined by claim 29 wherein the diode comprises
3	polysilicon.	
4		
5	31.	The memory cell defined by claim 28 wherein the state change element
6	comprises a ,	dielectric rupture antifuse.
7		
8	32.	The memory cell defined by claim 31 wherein the antifuse comprises a
9	silicon dioxide	layer sandwiched between two layers of polysilicon.
10		
11	33.	The memory cell defined by claim 28 having a first conductor in contact with
12	the steering e	ement, the first conductor having a width approximately equal to one
13	dimension of t	he rectangular cross-section.
14		
15	34.	The memory cell defined by claim 33 having a second conductor in contact
16	with the state	change element, the second conductor having a width approximately equal to
17	the other dime	ension of the rectangular cross-section.
18		
19	35.	A memory array comprising:
20	a first	plurality of spaced-apart, parallel, substantially coplanar conductors;
21	a sec	ond plurality of spaced-apart, parallel, substantially coplanar conductors
22	disposed gene	erally vertically above and spaced-apart from the first conductors, said first and
23	second condu	ctors being generally orthogonal to one another; and

1	a plurality of first memory cells, each cell disposed between one of the first and one		
2	of the second conductors and located where a vertical projection of the first conductors		
3	intersects the second conductors, the cells being vertically aligned with at least one of the		
4	conductors.		
5			
6	36. The array defined by claim 35 wherein the cells are aligned with both the		
7	first and second conductors.		
8			
9	37. The array defined by claim 35 wherein the cells each comprise a steering		
10	element and a state change element.		
11	\mathcal{Y}		
12	38. A memory array comprising:		
13	a first plurality of spaced-apart, parallel, substantially coplanar conductors;		
14	a second plurality of spaced-apart, parallel, substantially coplanar conductors		
15	disposed generally vertically above and spaced-apart from the first conductors, said first and		
16	second conductors being generally orthogonal to one another; and		
17	a plurality of first memory cells, each cell disposed between one of the first and one		
18	of the second conductors and located where a vertical projection of the first conductors		
19	intersects the second conductors;		
20	third plurality of spaced-apart, parallel, substantially coplanar conductors disposed		
21	generally vertically above and spaced-apart from the second conductors, the third		
22	conductors running in the same direction as the first conductors;		

		,	
1	a plura	lity of second memory cells, each cell disposed between one of the second	
2	conductors and one of the third conductors and located where a vertical projection of the		
3	second conduc	etors intersects the third conductors.	
4	•		
5	39.	The array defined by claim 38 wherein first cells and second cells are in	
6	vertical alignme	ent with one another.	
7			
8	40.	The array defined by claim 38 wherein the first cells and second cells are	
9	staggered from	one another.	
10			
11	41.	The array defined by claim 38 wherein each of the first cells and the second	
12	cells comprise	a steering element and a state change element.	
13			
14	42.	The array defined by claim 41 wherein the steering elements of the first and	
15	second cells ar	e connected to the second conductors.	
16			
17	43.	The array defined by claim 41 wherein the state change elements of the	
18	first and secon	d cells are connected to the second conductors.	
19			
20	44.	The array defined by claim 38 wherein the first and second cells have a	
21	generally recta	ngular cross-section.	
22			
23	4 5.	The array defined by claim 38 wherein the first and second cells comprise	
24	polysilicon and	silicon dioxide.	
	7		

1		
2	46.	The array defined by claim 38 wherein the first and second cells comprise
3	polysilicon.	
4		
5	47.	The array defined by claim 38 wherein the array is fabricated on a silicon
6	substrate.	
7		
8	48.	The array defined by claim 47 includes a first contact extending from one of
9	the second con	ductors to a first region in the substrate.
10		
11	49.	The array defined by claim 48 including a second contact extending from
12	one of the first	conductors to a second region in the substrate.
13		
14	50.	The array defined by claim 38 wherein the first and second conductors
15	include a refrac	etory metal.
16		
17	51.	The array defined by claim 50wherein the refractory metal is tungsten.
18		
19	52.	The array defined by claim 38 wherein the first and second conductors are
20	a silicide.	
21		
22	53.	A memory array comprising:
23	a plura	lity of conductors on levels 1, 2, 3, 4 where the levels are parallel and
24	spaced-apart, t	he conductors in the odd numbered levels 1, 3 running in a first direction,

1	the levels in the	e even numbered levels 2, 4 running in a second direction, generally
2	perpendicular t	to first direction, and
3	a plurality of m	emory cells each having an input terminal and an output terminal, the cells
4	being disposed	between conductors in each of the levels 1, 2, 3, 4
5		
6	54.	The array defined by claim 53 wherein the input terminals of the cells are
7	connected to the	ne conductors in the odd numbered levels 1, 3 and the output terminals of
8	the cells are co	onnected to the conductors in the even numbered levels 2, 4
9		
10	55.	The array defined by claim 53 wherein the output terminal of the cells are
11	connected to the	ne conductors in the odd numbered levels 1, 3 and the input terminal of the
12	cells are conne	ected to the conductors in the even numbered levels 2, 4
13	•	
14	56.	The array defined by daims 54 or 55 wherein the cells include a steering
15	element and a	state change element coupled between the input and output terminals.
16		
17	57.	The array defined by claim 53 wherein the cells have a generally
18	rectangular cro	ess-section.
19		
20	58.	The array defined by claim 53 wherein the cells comprise silicon and silicon
21	dioxide.	
22		
23	5 9.	The array defined by claim 53 wherein the conductors of levels 1, 3 are in
24	vertical alignme	ent with one another.

1		/
2	60.	The array defined by claim 53 wherein the conductors in one of the sets of
3	levels 1, 3 a	and levels 2, 4 are staggered in the vertical direction.
4		
5	61.	The array defined by claim 53 wherein the conductors comprise polysilicon.
6		
7	62.	The array defined by claim 53 wherein the array is fabricated on a silicon
8	substrate.	
9		
10	63.	The array defined by claim 62 including a contact extending from one of the
11	conductors in t	he odd numbered levels 1, 3, to the substrate.
12		X
13	64.	The array defined by claim 62 including a contact extending from one of the
14	conductors in t	he even numbered levels 2, 4, to the substrate.
15		
16	65.	The array defined by claim 62 including at least one contact extending from
17	the highest lev	el to the substrate.
18		
19	66.	The array defined by claim 62 wherein a contact is made up of several
20	contacts, one f	for each of the layers.
21		
22	67.	A process for fabricating a memory array comprising:
23	(a) for	ming a first layer of conductive material;
24	(b) for	ming a plurality of second layers for defining memory cells on the first layer;

1	(c) patterning the second layers into a plurality of parallel, spaced-apart strips;
2	(d) etching the first layer in alignment with the strips formed from the second layers;
3	(e) forming insulating material between the strips of first layer material and the strips
4	formed from the second layers;
5	(f) forming a third layer of conductive material on the insulating material and the
6	strips formed from the second layer;
7	(g) forming a plurality of fourth layers for defining memory cells of the second level;
8	(h) patterning the fourth layers into a plurality of parallel, spaced-apart strips, the
9	strips formed from the fourth layers running generally perpendicular to the strips formed
10	from the first layer;
11	(i) etching the third layer and the strips formed from the second layers in alignment
12	with the strips formed from the fourth layers.
13	
14	68. The process defined by claim 67 including forming a fifth layer of conductive
15	material on the strips formed from the fourth layer;
16	patterning the fifth layer into a plurality of parallel, spaced-apart conductors running
17	generally perpendicular to the strips in the fourth layer; and,
18	etching the strips formed from the fourth layer in alignment with the conductors
19	thereby defining additional memory cells.
20	
21	69. The process of claim 67 repeating steps (a) through (i).
22	
23	70. The process defined by claim 69 with the steps of claim 68.
24	

1	71.	The process defined by claim 67 repeating the steps (a) through (1) a
2	plurality of time	es.
3		
4	72 .	The process defined by claim 71 with the steps of claim 68.
5	٠	
6	73.	The process defined by claim 67 wherein a dielectric is applied and a
7	planarization s	tep occurs after the etching of the first layer and prior to the forming of the
8	third layer.	
9		
10	74.	The process defined by claim 73wherein the planarization comprises
11	chemical-mech	nanical polishing.
12		
13	75.	The process defined by claim 67 including depositing an insulator and
14	etching it back	to planarize the structure and opening electrical contacts to the strips formed
15	from the secon	nd layer between steps (d) and (e).
16		
17	76.	The process defined by claim 67 wherein the plurality of second layers and
18	plurality of four	th layers each comprise layers of polysilicon and silicon dioxide.
19		
20	77.	The process defined by claim 76 wherein the polysilicon is doped such that
21	each memory	cell includes a diode.
22		
23	7/8.	The process defined by claim 76 wherein the silicon dioxide in each layer
24	forms part of a	n antifuse.
	,	

1			
2	79.	The process defined by claims 67 or 73 wherein a planarization step occurs	
3	after the formi	ng of the second layers and before the forming of the third layer.	
4			
5	80.	The process defined by claim 79 wherein the planarization is performed by	
6	chemical-mecl	hanical polishing.	
7			
8	81.	The process defined by claim 79 including forming openings for contacts	
9	after the planarization.		
10			
11	82.	The process defined by claim 76 wherein the polysilicon is deposited at low	
12	temperature us	sing chemical vapor deposition.	
13			
14	83.	The process defined by claim 67 including the deposition of a barrier metal	
15	layer after the forming of the first layer and prior to the forming of the second layers.		
16			
17	84.	The process defined by claim 67 including the deposition of a barrier metal	
18	layer after the	forming of the third layer and prior to the forming of the fourth layer.	
19			
20	85.	The process defined by claim 67 wherein the fabrication includes the	
21	fabrication of o	contacts and where contact openings are made followed by the deposition of	
22	silicon into the	openings.	
23			
24	% 6.	The process defined by claim 67 including the use of ion implanted silicon.	
	,		

1			
2	87.	The process defined by claim 67 including the use of in-situ doped silicon.	
3			
4	88.	The process defined by claim 87 wherein the silicon is deposited using	
5	LPCVD.		
6			
7	89.	The process defined by claim 87 wherein the silicon is deposited using	
8	PECVD.		
9			
10	90.	The process defined by claim 87 wherein the silicon is deposited using	
11	PVD.		
12			
13	91.	The process defined by claim 87 wherein the silicon is deposited using	
14	UHVCVD.		
15			
16	92.	A memory comprising:	
17		a monocrystalline silicon substrate with row address decoders and column	
18	address decod	ers and input/output circuitry formed on and in the substrate;	
19	a mem	ory array having a plurality of column conductors and row conductors formed	
20	above the substrate and being electrically coupled to the decoders and input/output circuitry.		
21	the arra	ay comprising a first plurality of levels each having spaced-apart, parallel,	
22	generally copla	nar row conductors;	

	1	a seco	nd plurality of levels interleaved with the first plurality of levels, each beving	
	2	spaced-apart, p	parallel, generally coplanar column conductors generally perpendicular to the	
	3	row conductors		
	4	and a plurality of memory cells between each of the levels, each cell being		
	5	5 connected to one of the row conductors and one of the column conductors.		
	6			
	7	93.	The memory defined by claim 92 wherein the column decoders and	
	8	input/output cire	cuitry are folded under the array and coupled to the column conductors.	
	9			
	10	94.	The memory defined by claim 92 wherein the array is divided into a plurality	
	11	of subarrays.		
A.		A		
il:		ADD		
		— ,		