Partie I: Diagonalisation de $f_{A,B}$

1. Supposons que B est diagonalisable, alors il existe une matrice D diagonale et $P \in GL_n(\mathbb{R})$ telles que $B = PDP^{-1}$. Par transposition $B^T = (P^{-1})^T D^T P^T$ et on termine par les égalités $D^T = D$ et $(P^{-1})^T = (P^T)^{-1}$, du coup B^T est diagonalisable.

Inversement si B^{T} est diagonalisable, alors $B = (B^{\mathrm{T}})^{\mathrm{T}}$ est diagonalisable

2. Soit $M, N \in M_n(\mathbb{K})$ et $\alpha \in \mathbb{K}$, on a :

$$f_{A,B}(\alpha M + N) = A(\alpha M + N) - (\alpha M + N)B$$

$$= \alpha AM + AN - \alpha MB - NB$$

$$= \alpha (AM - MB) + AN - NB$$

$$= \alpha f_{A,B}(M) + f_{A,B}(N)$$

Donc $f_{A,B}$ est linéaire

3. (a) Soit X est un vecteur propre de A assoncié à α et Y un vecteur propre de B^{T} associé à β , alors

$$f_{A,B}(XY^{T}) = AXY^{T} - XY^{T}B$$

$$= (AX)Y^{T} - X(B^{T}Y)^{T}$$

$$= \alpha XY^{T} - \beta XY^{T} = (\alpha - \beta) XY^{T}$$

Par définition
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \neq 0$$
 et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \neq 0$, alors il existe $i_0, j_0 \in \llbracket 1, n \rrbracket$ tels que $x_{i_0} \neq 0$ et $y_{j_0} \neq 0$.

Ainsi la matrice $XY^{\mathrm{T}} = (x_i y_j)_{1 \leq i,j \leq n}$ est non nulle car son coefficient de position (i_0,j_0) est $x_{i_0} y_{j_0} \neq 0$

- (b) Soit $\lambda \in \operatorname{Sp}(A)$ et $\mu \in \operatorname{Sp}(B) = \operatorname{Sp}(B^{\mathrm{T}})$, alors il existe un vecteur propre X de A associé à λ et un vecteur propre Y de B^{T} associé à μ . D'après la question précédente XY^{T} est un vecteur propre de f associé à $\lambda \mu$. Ainsi $\lambda \mu \in \operatorname{Sp}(f_{A,B})$, puis l'inclusion $\{\lambda \mu, (\lambda, \mu) \in \operatorname{Sp}(A) \times \operatorname{Sp}(B)\} \subset \operatorname{Sp}(f_{A,B})$
- 4. (a) Raisonnons par récurrence sur $k \in \mathbb{N}$.
 - Le résultat est évidemnt vrai pour k = 0; Noter bien que $M^0 = (\alpha I_n + B)0 = I_n$
 - Soit $k \in \mathbb{N}$. Supposons $A^k M = M(\alpha I_n + B)^k$ et montrons que $A^{k+1} M = M(\alpha I_n + B)^{k+1}$. On a d'abord $f_{A,B}(M) = \alpha M$, donc $AM MB = \alpha M$ et on trouve $AM = M(\alpha I_n + B)$. Donc $A^{k+1} M = AA^k M = AM(\alpha I_n + B)^k = M(\alpha I_n + B)^{k+1}$.
 - (b) Soit un polynôme P, à coefficients dans \mathbb{K} , on écrit $P(X) = \sum_{k=0}^{d} a_k X^k$, et donc $P(A)M = \sum_{k=0}^{d} a_k A^k M = \sum_{k=0}^{d} a_k A^k M$

$$\sum_{k=0}^{d} a_k M(\alpha I_n + B)^k = M \sum_{k=0}^{d} a_k (\alpha I_n + B)^k = MP(\alpha I_n + B).$$

- (c) i. D'aprés le théorème de Cayley-Hamilton, $\chi_A(A)=0$ donc $M\chi_A(\alpha I_n+B)=0$ notons $S=X_A(\alpha I_n+B)$). Si S était inversible, alors $MS=0 \Longrightarrow MSS^{-1}=M=0$ ce qui est impossible puisque M est un vecteur propre, donc la matrice $\chi_A(\alpha I_n+B)$ n'est pas inversible .
 - ii. Un produit de matrices $\chi_A(\alpha I_n + B) = \prod_{\lambda \in \operatorname{Sp}(A)} ((\alpha \lambda)I_n + B)^{m_\lambda}$ n'est pas inversible alors l'une au moins des matrices intervenant dans ce produit n'est pas inversible, donc $\exists a \in Sp_{\mathbb{K}}(A)$ tel que $(\alpha a)I_n + B$ n'est pas inversible
- 5. Posons $b = a \alpha \in \operatorname{Sp}(B)$. Ainsi on a pu écrire $\alpha = a b$ pour un certain couple $(a, b) \in \operatorname{Sp}(A) \times \operatorname{Sp}(B)$, donc l'inclusion $\operatorname{Sp}(f_{A,B}) \subset \{\lambda \mu, \ (\lambda, \mu) \in \operatorname{Sp}(A) \times \operatorname{Sp}(B)\}$
- 6. Applications:
 - (a) \Rightarrow) Supposons que $f_{A,B}$ est nilpotent, alors $\operatorname{Sp}(f_{A,B}) = \{0\}$, donc il existe $\lambda \in \mathbb{C}$ tel que $\operatorname{Sp}(A) = \operatorname{Sp}(B) = \{\lambda\}$, donc $\operatorname{Sp}(A \lambda I_n) = \operatorname{Sp}(B \lambda I_n) = \{0\}$ et les deux matrices sont nilpotentes

- \Leftarrow) S'il existe $\lambda \in \mathbb{C}$ tel que les deux matrices $\operatorname{Sp}(A \lambda I_n) = \operatorname{Sp}(B \lambda I_n) = \{0\}$ sont nilpotentes, alors $\operatorname{Sp}(A) = \operatorname{Sp}(B) = \{\lambda\}$ et par suite $\operatorname{Sp}(f_{A,B}) = \{0\}$, ainsi $f_{A,B}$ est nilpotent
- (b) \Rightarrow) S'il existe $\lambda \in \mathbb{K}$ tel que $A = B = \lambda I_n$, alors $f_{A,B} = 0$
 - \Leftarrow) Supposons que $f_{A,B}=0$, alors pour toute matrice $M\in M_n(\mathbb{K})$, on a AM=MB. Écrivons A= $\sum_{1 \leq i,j \leq n} a_{i,j} E_{i,j} \text{ et } B = \sum_{1 \leq i,j \leq n} b_{i,j} E_{i,j} \text{ dans la base canonique de } M_n(\mathbb{K}), \text{ pour } i,j \in [1,n], \text{ on a}$

$$AE_{i,j} = \sum_{1 \le k, \ell \le n} a_{k,\ell} E_{k,\ell} E_{i,j} = \sum_{k=1}^{n} a_{k,i} E_{k,j}$$

et

La réciproque est bien évidente.

$$E_{i,j}B = \sum_{1 \le k, \ell \le n} b_{k,\ell} E_{i,j} E_{k,\ell} = \sum_{\ell=1}^{n} b_{j,\ell} E_{i,\ell}$$

L'égalité $AE_{i,j}=E_{i,j}B$ montre que $a_{i,i}=b_{j,j}$ et pour $k\neq i$ et $\ell\neq j$, on a $a_{k,i}=b_{j,\ell}=0$, ceci est vrai pour out $i, j \in [1, n]$, alors en posant $\lambda = a_{1,1} = b_{1,1}$, on a bien $A = B = \lambda I_n$

- 7. Supposons que $\sum_{i=1}^{r} Y_i^{\ t} Z_i = 0$, on multiplie cette égalité à droite par un \overline{Z}_j où $1 \leqslant j \leqslant p$ fixe, mais quelconque d'où $\sum_{i=1}^p a_i Y_i = 0$ où $a_i = {}^t Z_i \overline{Z} j$, or (Y_1, \dots, Y_p) une famille libre de $M_{n,1}(\mathbb{K})$ donc les a_i sont tous nuls en particulier $a_j = {}^t Z_j \overline{Z}_j = \| Z_k \|_2^2 = 0$ et donc $\forall j \in [\![1,p]\!]$, $Z_j = 0$.
- 8. (a) Soit $(\alpha_{i,j})_{i,j\in \llbracket 1,n\rrbracket}\in \mathbb{K}^{n^2}$ tels que $\sum_{1\leqslant i,j\leqslant n}\alpha_{i,j}X_i{}^tY_j=0$ et pour $i\in \llbracket 1,n\rrbracket$ posons $Z_i=\sum_{j=1}^n\alpha_{i,j}Y_j$. On a alors $\sum_{i=1}^r X_i^t Z_i = 0$ et la famille (X_1, \dots, X_n) est une base de $\mathcal{M}_{n,1}(\mathbb{K})$ donc les Z_i sont tous nuls. La famille (Y_1, \dots, Y_n) est une base de $\mathcal{M}_{n,1}(\mathbb{K})$ donc les $\alpha_{i,j}$ sont tous nuls. La famille $(X_i^t Y_j)_{1 \leq i,j \leq n}$ est libre de cardinal n^2 qui est la dimension de $M_n(\mathbb{K})$, donc c'est bien une base de $M_n(\mathbb{K})$
 - (b) La base $(X_i^t Y_j)_{1 \leqslant i,j \leqslant n}$ est formée par des vecteurs propres de $f_{A,B}$, donc $f_{A,B}$ est diagonalisable
- 9. (a) Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et $\mu \in \operatorname{Sp}_{\mathbb{C}}(B)$, alors $\overline{\lambda} \in \operatorname{Sp}_{\mathbb{C}}(A)$, car la matrice A est réelle, donc $\overline{\lambda} \mu \in \operatorname{Sp}(f_{A,B})$
 - (b) Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et $\mu \in \operatorname{Sp}_{\mathbb{C}}(B)$. Les valeurs propres de $f_{A,B}$ sont réelles, en particulier $\lambda \mu$ et $\overline{\lambda} \mu$ sont réelles et par différence $2i\mathrm{Im}(\lambda)=\lambda-\overline{\lambda}\in\mathbb{R}$. Ainsi λ est réel et $\mathrm{Sp}_{\mathbb{C}}\left(A\right)\subset\mathbb{R}$, donc χ_A est scindé. De même χ_B est aussi scindé
 - (c) Par hypothèse $f_{A,B}(M) = \alpha M$ et $BX = \mu X$, donc

$$A(MX) = f_{A,B}(M)X + MBX$$
$$= \alpha MX + \mu MX$$
$$= (\alpha + \mu) MX$$

(d) Soit $X \in M_{n,1}(\mathbb{C}) \setminus \{0\}$, l'application $E \longrightarrow M_{n,1}(\mathbb{R})$, $M \longmapsto MX$ est clairement linéaire. Soit $Y \in M$ $M_{n,1}(\mathbb{R})$, comme $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ est non nulle, alors il existe $i_0 \in [1, n]$ tel que $x_{i_0} \neq 0$. Soit M la matrice

dont la i_0 -ème colonne vaut $\frac{1}{x_{i_0}}Y$ et dont toutes les autres colonnes sont nulles , on a bien MX=Y

- (e) Soit X un vecteur propre de B et (M_1, \dots, M_{n^2}) une base de diagonalisation de $f_{A,B}$ et posons $Y_i = M_i X$ pour tout $i \in [[1, n^2]]$. D'après la surjection précédente (Y_1, \dots, Y_{n^2}) est une famille génératrice de $M_{n,1}(\mathbb{R})$ dont on peut extraire une base β . D'après la question 9c une telle base est constituée de vecteurs propres de A. Donc A est diagonalisable
- 10. (a) $T: E \longrightarrow E, M \longmapsto M^{T}$ est linéaire vérifiant $T^{2} = \mathrm{id}_{E},$ donc T est un automorphisme de E

(b) Soit $M \in E$, on a:

$$T \circ f_{A,B} \circ T^{-1}(M) = T \circ f_{A,B}(^{t}M)$$
$$= T(A^{t}M - {}^{t}MB)$$
$$= M^{t}A - {}^{t}BM$$
$$= f_{-^{t}B,-^{t}A}(M)$$

Donc $f_{-B^{\mathrm{T}},-A^{\mathrm{T}}}$ et $f_{A,B}$ sont semblables

- (c) \Leftarrow) D'après la question 8
 - \Rightarrow) A est diagonalisable, d'après la question 9.

Les deux applications $f_{-B^{\mathrm{T}},-A^{\mathrm{T}}}$ et $f_{A,B}$ sont semblables donc $f_{-B^{\mathrm{T}},-A^{\mathrm{T}}}$ est diagonalisable, et toujours d'après la question 9, tB est diagonalisable, donc B l'est aussi

Partie II: Étude via les translations

11. Dans la suite on note les endomorphismes de E suivants :

$$g_A: M \longmapsto AM$$
 et $d_B: M \longmapsto MB$

- (a) On vérifie par récurrence simple sur $k \in \mathbb{N}$ que $g_A^k = g_{A^k}$ et $d_B^k = d_{B^k}$, puis par linéarité pour tout $P \in \mathbb{K}[X] : P(g_A) = g_{P(A)}$ et $P(d_B) = d_{P(B)}$
- (b) D'après la question précédente un polynôme est annulateur de A si, et seulement, s'il est annulateur de g_A . g_A est diagonalisable si, et seulement, s'il existe un polynôme P scindé à racines simples annulateur de g_A si, et seulement, s'il existe un polynôme P scindé à racines simples annulateur de A si, et seulement, si A est diagonalisable.

De même pour B

- 12. (a) u et v commutent, alors les sous-espaces propres de l'un sont stables par l'autre
 - (b) L'endomorphisme induit d'un endomorphisme diagonalisable est diagonalisable
 - (c) Posons Sp $(u) = \{\lambda_1, \dots, \lambda_p\}$, m_i l'ordre de multiplicité de λ_i , $F_i = \text{Ker}(u \lambda_i \text{Id}_F)$, \mathcal{B}_i base de F_i et $\mathcal{B} = \bigcup_{i=1}^p \mathcal{B}_i$ base adaptée à la décomposition $F = \bigoplus_{i=1}^p F_i$. Alors

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \lambda_1 I_{m_1} & & & & & & \\ & \lambda_2 I_{m_2} & & & & \\ & & & \ddots & & \\ & & & & \lambda_p I_{m_p} \end{pmatrix}$$

Or pour tout $i \in [\![1,p]\!]$, l'endomorphisme v_{λ_i} est diagonalisable, donc il existe une base \mathcal{C}_i de F_i pour laquelle $D_i = \operatorname{Mat}_{\mathcal{C}_i}(v_{\lambda_i})$ est diagonale. Soit finalement $\mathcal{C} = \bigcup_{i=1}^p \mathcal{C}_i$, alors $\operatorname{Mat}_{\mathcal{C}}(u) = \operatorname{Mat}_{\mathcal{B}}(u)$ et

$$\operatorname{Mat}_{\mathcal{C}}(v) = \begin{pmatrix} \boxed{D_1} & & & & (0) \\ & \boxed{D_2} & & & \\ & & \ddots & & \\ (0) & & & \boxed{D_p} \end{pmatrix}$$

ce qui montre que \mathcal{C} est une base de diagonalisation de u et v.

13. Si A et B sont diagonalisables, alors g_A et d_B le sont aussi, avec g_A et d_B commutent, il vient qu'ils sont simultanément diagonalisables, donc $f_{A,B} = g_A - d_B$ est diagonalisable

14. (a) Pour $p \ge 1$, les deux endomorphismes g_A et d_B commutent, donc, d'après la formule de binôme de Newton

$$\begin{split} f_{A,B}^p &= & (g_A - d_B)^p \\ &= & \sum_{k=0}^p (-1)^{p-k} C_p^k g_A^k d_B^{p-k} \\ &= & \sum_{k=0}^p (-1)^{p-k} C_p^k g_{A^k} d_{B^{p-k}} \end{split}$$

(b) Si A et B sont nilpotentes alors $A^n = B^n = 0$ et, par suite, $f_{A,B}^{2n} = \sum_{k=0}^{p} (-1)^{p-k} C_p^k g_{A^k} d_{B^{2n-k}}$. Or pour tout $k \in [0, 2n]$, l'un des entiers k et 2n - k est supérieur ou égal à n, donc tous les termes figurant dans le second membre de l'égalité précédente sont nuls

Partie III: Rang de la composée des translations

- 15. (a) $A_{u,v}$ est une partie non vide de $\mathcal{L}(F)$, stable par combinaison
 - (b) Soit $b \in A_{u,v}$, alors il existe $a \in \mathcal{L}(F)$ tel que b = uav et, par suite,

$$\operatorname{Ker} v \subset \operatorname{Ker} b$$
 et $\operatorname{Im} b \subset \operatorname{Im} u$

- (c) Soit $x \in F$, on décompose $v(x) = \sum_{i=1}^{r} \lambda_i e_i$ d'où $a(v(x)) = \sum_{i=1}^{r} \lambda_i u_i$ et $u(a(v(x))) = \sum_{i=1}^{r} \lambda_i u(u_i) = \sum_{i=1}^{r} \lambda_i b(v_i) = b\left(\sum_{i=1}^{r} \lambda_i v_i\right) = b(y)$ avec $y = \sum_{i=1}^{r} \lambda_i v_i$. Par ailleurs, $v(y) = \sum_{i=1}^{r} \lambda_i e_i = v(x)$, donc $x y \in \text{Ker}(v) \subset \text{Ker}(b)$, soit b(x) = b(y) = (uav)(x)
- (d) Considérons l'application $\Phi: \left\{ \begin{array}{ccc} A_{u,v} & \longrightarrow & \mathcal{L}(G,\operatorname{Im}(u)) \\ b & \longmapsto & b_{\mid G} \end{array} \right.$. Φ est clairement linéaire et si $b \in \operatorname{Ker}(\Phi)$ alors $\operatorname{Ker}(b)$ contient G et $\operatorname{Ker}(v)$, d'où b=0 puisque $G \oplus \operatorname{Ker}(v)=F$. Ainsi Φ est injective. De plus, si $\psi \in \mathcal{L}(G,\operatorname{Im}(u))$, soit b l'application linéaire sur F définie par $b_{\mid G}=\psi$ et $b_{\mid \operatorname{Ker}(v)}=0_{\mathcal{L}(\operatorname{Ker}(v),\operatorname{Im}(u)}$. On a $\operatorname{Ker}(v) \subset \operatorname{Ker}(b)$, $\operatorname{Im}(b) \subset \operatorname{Im}(u)$ et $b_{\mid G}=\psi$ par construction, d'où $b \in A_{u,v}$ et $\Phi(b)=\psi$, ce qui prouve que Φ est surjective et finalement c'est un isomorphisme. On en déduit que $\dim(A_{u,v})=\operatorname{rg}(u) \times \operatorname{rg}(v)$

16. Etude d'une application :

- (a) Calcul
- (b) Question précédente
- (c) $\varphi_{A,B}$ est inversible si, et seulement, si $\mathbf{rg}(\varphi_{A,B}) = n^2$ si, et seulement, si $\mathbf{rg}(A) = \mathbf{rg}(B) = n$ si, et seulement, si A et B sont inversibles. Auquel cas

$$\varphi_{A,B}^{-1} = \varphi_{A^{-1},B^{-1}}$$

(d) $\varphi_{A,B}=0$ si, et seulement, si $\mathbf{rg}(A)\mathbf{rg}(B)=0$, soit si et seulement si A=0 ou B=0

Partie IV: Produit de Kronecker

17. Soit $i, j \in [1, n]^2$, alors $E_{i,j}$ représente le n.i + j-ème vecteur de la base \mathcal{B} . En écrivant $A = (a_{i,j})_{1 \le i, j \le n}$ et $b = (b_{i,j})_{1 \le i, j \le n}$, alors

$$\varphi_{A,B}(E_{i,j}) = \sum_{1 \leqslant k,\ell,p,q \leqslant n} a_{k,\ell} b_{q,p} E_{k,\ell} E_{i,j} E_{p,q}$$
$$= \sum_{1 \leqslant k,q \leqslant n} a_{k,i} b_{q,j} E_{k,q}$$

Donc la ni + j-ème colonne de Mat $(\varphi_{A,B})$ vaut

Le second membre vaut la ni + j-ème colonne de $A \otimes B$, donc les deux matrices $\mathop{\mathrm{Mat}}_{\mathcal{B}}(\varphi_{A,B})$ et $A \otimes B$ coincident, puisque elles sont de même type et elles ont les mêmes colonnes

- 18. De même que la question précédente
- 19. La relation $(A \otimes B)$ $(C \otimes D) = (AC) \otimes (BD)$ résulte de la relation $\varphi_{A,B} \circ \varphi_{C,D} = \varphi_{AC,BD}$
- 20. $I_n \otimes B$ est diagonale par blocs avec n blocs diagonaux égaux à B, donc $\det(I_n \otimes B) = \det(B)^n$ – $A \otimes I_n$ et $I_n \otimes A$ sont semblables dont ont même déterminant. D'où $\det(A \otimes I_n) = \det(I_n \otimes A) = \det(A)^n$ – Enfin, $A \otimes B = (A \otimes I_n) \cdot (I_n \otimes B)$ d'où $\det(A \otimes B) = \det(A)^n \det(B)^n$
- 21. Si $A = \operatorname{diag}(a_1, \dots, a_n)$ et $B = \operatorname{diag}(b_1, \dots, b_n)$ alors $A \otimes B = \operatorname{diag}(a_1b_1, \dots, a_1b_n, \dots, a_nb_1, \dots, a_nb_n)$. Si $A = PA_1P^{-1}$ et $B = QB_1Q^{-1}$ avec A_1 et B_1 sont diagonales, alors

$$A \otimes B = (PA_1P^{-1}) \otimes (QB_1Q^{-1})$$
$$= (P \otimes Q)(A_1 \otimes B_1) (P^{-1} \otimes Q^{-1})$$
$$= (P \otimes Q)(A_1 \otimes B_1)(P \otimes Q)^{-1}$$

22. On a bien $M = A \otimes B$ avec $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}$.

La matrice A est réelle symétrique, donc elle est diagonalisable et $P_1^{-1}AP_1=\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$ avec $P_1=\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$.

La matrice B est diagonalisable, car $\chi_B = X^2 - X - 2 = (X - 2)(X + 1)$ est scindé à racines simples, et $P_2^{-1}BP_2 = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$ avec $P_2 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$. Donc M est diagonalisable et $P^{-1}MP = \mathbf{diag}(0,0,-2,4)$ avec

$$P = P_1 \otimes P_2 = \begin{pmatrix} 1 & 0 & 1 & 0 \\ -1 & 1 & -1 & 1 \\ -1 & 0 & 1 & 0 \\ 1 & -1 & -1 & 1 \end{pmatrix}$$

23. Si A et B sont triangulaires supérieures alors $A \otimes B$ est triangulaire supérieure par blocs et les blocs diagonaux sont les multiples de B donc sont aussi triangulaires supérieurs.

Si $A = PA_1P^{-1}$ et $B = QB_1Q^{-1}$ avec A_1 et B_1 sont triangulaires supérieures, alors $A \otimes B = (P \otimes Q)(A_1 \otimes B_1)(P \otimes Q)^{-1}$, donc $A \otimes B$ est trigonalisable dont la diagonale vaut $(a_1b_1, \dots, a_1b_n, \dots, a_nb_1, \dots, a_nb_n)$.

Donc
$$\chi_{A\otimes B}(X) = \chi_{A_1\otimes B_1}(X) = \prod_{(i,j)\in [1,n]^2} (X - \lambda_i \mu_j)$$

24. Soit $M \in E$, on a

$$f_{A,B}(M) = AM - MB$$

$$= AMI_n - I_nM^t(^tB)$$

$$= \varphi_{A,I_n}(M) - \varphi_{I_n,^tB}(M)$$

$$= (\varphi_{A,I_n} - \varphi_{I_n,^tB})(M)$$

Donc $f_{A,B} = \varphi_{A,I_n} - \varphi_{I_n,{}^tB}$, en conséquence les deux endomorphismes ont même matrice dans la base \mathcal{B} , alors $\operatorname{Mat}(f_{A,B}) = A \otimes I_n - I_n \otimes B^{\mathrm{T}}$

25. Tr
$$(f_{A,B}) = n(\operatorname{Tr}(A) - \operatorname{Tr}(B))$$