

Art of Problem Solving 2015 APMO

APMO 2015

Let ABC be a triangle, and let D be a point on side BC. A line through D intersects side AB at X and ray AC at Y. The circumcircle of triangle BXD intersects the circumcircle ω of triangle ABC again at point Z distinct from point B. The lines ZD and ZY intersect ω again at V and W respectively. Prove that AB = VW

Proposed by Warut Suksompong, Thailand

Let $S = \{2, 3, 4, ...\}$ denote the set of integers that are greater than or equal to 2. Does there exist a function $f: S \to S$ such that

$$f(a)f(b) = f(a^2b^2)$$
 for all $a, b \in S$ with $a \neq b$?

A sequence of real numbers $a_0, a_1, ...$ is said to be good if the following three conditions hold.

(i) The value of a_0 is a positive integer.

(ii) For each non-negative integer i we have $a_{i+1} = 2a_i + 1$ or $a_{i+1} = \frac{a_i}{a_{i+2}}$

(iii) There exists a positive integer k such that $a_k = 2014$.

Find the smallest positive integer n such that there exists a good sequence a_0, a_1, \dots of real numbers with the property that $a_n = 2014$.

Proposed by Wang Wei Hua, Hong Kong

Let n be a positive integer. Consider 2n distinct lines on the plane, no two of which are parallel. Of the 2n lines, n are colored blue, the other n are colored red. Let \mathcal{B} be the set of all points on the plane that lie on at least one blue line, and \mathcal{R} the set of all points on the plane that lie on at least one red line. Prove that there exists a circle that intersects \mathcal{B} in exactly 2n-1 points, and also intersects \mathcal{R} in exactly 2n-1 points.

Determine all sequences a_0, a_1, a_2, \ldots of positive integers with $a_0 \geq 2015$ such that for all integers $n \geq 1$:

(i) a_{n+2} is divisible by a_n ;

(ii) $|s_{n+1} - (n+1)a_n| = 1$, where $s_{n+1} = a_{n+1} - a_n + a_{n-1} - \dots + (-1)^{n+1}a_0$.

Contributors: aditya21, hajimbrak