機械学習 決定木

管理工学科 篠沢 佳久

資料の内容

- 決定木
 - □ 分類のための指標(特徴選択)
 - エントロピー, ゲイン, ジニ係数
- 決定木作成アルゴリズム
 - CART
- 回帰木
- 実習
 - □ Irisデータセット(クラス分類)
 - □ Bostonデータセット(回帰木)

決定木

決定木(decision Tree)

- ノード
 - □分類のための質問
- 葉
 - □分類結果

決定木の目的 ① 分類精度の向上 決定木 ② 分類のためのルールの抽出 天気 if 天気 == 晴れ and 気温 == 高い 熱中症 else if 天気 == 晴れ and 気温 == 低い 雨 晴れ 風邪 湿度 気温 なぜ、その結果になるのか 説明が可能 低い 低い 高い 高い 熱中症 胃腸炎 風邪 頭痛

決定木の例

- ■「頭痛」の日の判定
- 目的変数
 - □ 頭痛 ••• yes, no
- 説明変数(特徴量)
 - □ 天気・・・ 晴れ, 曇り, 雨
 - □ 気温・・・暑い, 適温, 寒い
 - □ 湿度 ••• 高い, 適当, 低い
 - □ 講義 ••• yes, no

学習データ

	天気	気温	湿度	講義	頭痛
1	晴れ	寒い	低い	yes	yes
2	曇り	暑い	高い	no	yes
3	晴れ	暑い	低い	no	no
4	雨	適温	高い	yes	no
5	雨	寒い	高い	no	no
6	晴れ	適温	適当	no	yes
7	曇り	暑い	低い	yes	no
8	雨	寒い	高い	no	no
9	曇り	適温	低い	yes	yes
10	曇り	適温	適当	no	no
11	晴れ	暑い	適当	yes	yes
12	晴れ	適温	高い	no	no
13	雨	暑い	低い	no	no
14	雨	寒い	適当	yes	yes
15	曇り	適温	低い	yes	no
16	晴れ	暑い	適当	no	yes
17	晴れ	寒い	高い	yes	yes
18	曇り	適温	高い	yes	no
19	曇り	適温	適当	no	no
20	雨	寒い	適当	no	yes

「悪い(?)」決定木

- 可能な分岐を全て考慮した場合
- → 学習データの精度は100%
- → 一般的なルールを抽出したことにはならない

学習データを「きれいに」分類し、 一般的なルールを抽出

20通りの分岐

「きれいに」分類するとは?

- 二値分類
- **■** データ
 - □ 正例 20個, 負例 20個
 - □ 特徴量1, 特徴量2で分類した結果

分類のための指標(1)

エントロピー(平均情報量)

$$E(D) = -P_{+} \log P_{+} - P_{-} \log P_{-}$$

P+: 分類後の正例の割合

P.: 分類後の負例の割合

 $E(D_1) = -\frac{20}{20} \log \frac{20}{20} - \frac{0}{20} \log \frac{0}{20} = 0$

 D_2

 D_1

$$E(D_2) = -\frac{0}{20}\log\frac{0}{20} - \frac{20}{20}\log\frac{20}{20} = 0$$

エントロピーが0に近いほど、「きれいに」 分類される

分類のための指標②

エントロピー(平均情報量)

$$E(D) = -P_{+} \log P_{+} - P_{-} \log P_{-}$$

P+: 分類後の正例の割合

P_: 分類後の負例の割合

 $E(D_1) = -\frac{10}{20}\log\frac{10}{20} - \frac{10}{20}\log\frac{10}{20} = 1$

 $E(D_2) = -\frac{10}{20} \log \frac{10}{20} - \frac{10}{20} \log \frac{10}{20} = 1$

エントロピーが1に近いほど,「きれいに」 分類されない

頭痛の場合

- データ数(20個)
 - □ yes:9個, no:11個
- 開始時のエントロピー

$$E(D) = -\frac{9}{20}\log\frac{9}{20} - \frac{11}{20}\log\frac{11}{20} = 0.992$$

	天気	気温	湿度	講義	頭痛
1	晴れ	寒い	低い	yes	yes
2	曇り	暑い	高い	no	yes
6	晴れ	適温	適当	no	yes
9	曇り	適温	低い	yes	yes
11	晴れ	暑い	適当	yes	yes
14	雨	寒い	適当	yes	yes
16	晴れ	暑い	適当	no	yes
17	晴れ	寒い	高い	yes	yes
20	雨	寒い	適当	no	yes
3	晴れ	暑い	低い	no	no
4	雨	適温	高い	yes	no
5	雨	寒い	高い	no	no
7	曇り	暑い	低い	yes	no
8	雨	寒い	高い	no	no
10	曇り	適温	適当	no	no
12	晴れ	適温	高い	no	no
13	雨	暑い	低い	no	no
15	曇り	適温	低い	yes	no
18	曇り	適温	高い	yes	no
19	曇り	適温	適当	no	no

■ 分岐数は2*

天気で分類した場合

晴れ

$$E(D_1) = -\frac{5}{7}\log\frac{5}{7} - \frac{2}{7}\log\frac{2}{7} = 0.863$$

no:2個

晴れでない

$$E(D_1) = -\frac{5}{7}\log\frac{5}{7} - \frac{2}{7}\log\frac{2}{7} = 0.863$$
 $E(D_2) = -\frac{4}{13}\log\frac{4}{13} - \frac{9}{13}\log\frac{9}{13} = 0.890$

no:9個

湿度

高い

高い

天気

雨

気温

適温

寒い

講義

yes

no

no

頭痛

no

no

^{*「}晴れと晴れでない」以外に、「雨と雨でない」、「曇りと曇りでない」とも分岐できます 分岐については後ほど、CARTアルゴリズムで説明します

分岐数は3も可能

_	天気	気温	湿度	講義	頭痛
4	雨	適温	高い	yes	no
5	雨	寒い	高い	no	no
8	雨	寒い	高い	no	no
13	雨	暑い	低い	no	no
14	雨	寒い	適当	yes	yes
20	雨	寒い	適当	no	ves
3	晴れ	暑い	低い	no	no
12	晴れ	適温	高い	no	no
1	晴れ	寒い	低い	yes	yes
6	晴れ	適温	適当	no	yes
11	晴れ	暑い	適当	yes	yes
16	晴れ	暑い	適当	no	yes
17	店 カ	寒い	高い	yes	VAS
7	曇り	暑い	低い	yes	no
10	曇り	適温	適当	no	no
15	曇り	適温	低い	yes	no
18	曇り	適温	高い	yes	no
19	曇り	適温	適当	no	no
2	曇り	暑い	高い	no	yes
9	曇り	適温	低い	yes	yes

yes:5個 no:2個

yes:2個

no:5個

no:4個

晴れ

$$E(D_1) = -\frac{5}{7}\log\frac{5}{7} - \frac{2}{7}\log\frac{2}{7} = 0.863$$

雨

$$E(D_3) = -\frac{2}{6}\log\frac{2}{6} - \frac{4}{6}\log\frac{4}{6} = 0.918$$

曇り

$$E(D_2) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$

気温で分類した場合

	天気	気温	湿度	講義	頭痛
5	雨	寒い	高い	no	no
8	雨	寒い	高い	no	no
14	雨	寒い	適当	yes	yes
20	雨	寒い	適当	no	yes
1	晴れ	寒い	低い	yes	yes
17	晴れ	寒い	高い	yes	yes
13	雨	暑い	低い	no	no
3	晴れ	暑い	低い	no	no
7	曇り	暑い	低い	yes	no
11	晴れ	暑い	適当	yes	yes
16	晴れ	暑い	適当	no	yes
2	曇り	暑い	高い	no	yes
4	雨	適温	高い	yes	no
12	晴れ	適温	高い	no	no
10	曇り	適温	適当	no	no
15	曇り	適温	低い	yes	no
18	曇り	適温	高い	yes	no
19	曇り	適温	適当	no	no
6	晴れ	適温	適当	no	yes
9	曇り	適温	低い	yes	yes

yes:5個

no:9個

yes:4個 D_2

no:2個

寒くない

$$E(D_1) = -\frac{5}{14}\log\frac{5}{14} - \frac{9}{14}\log\frac{9}{14} = 0.940$$
 $E(D_2) = -\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6} = 0.918$

寒い

$$E(D_2) = -\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6} = 0.918$$

湿度で分類した場合

	天気	気温	湿度	講義	頭痛
5	雨	寒い	高い	no	no
8	雨	寒い	高い	no	no
4	雨	適温	高い	yes	no
12	晴れ	適温	高い	no	no
18	曇り	適温	高い	yes	no
17	晴れ	寒い	高い	yes	yes
2	曇り	暑い	高い	no	yes
13	雨	暑い	低い	no	no
3	晴れ	暑い	低い	no	no
7	曇り	暑い	低い	yes	no
15	曇り	適温	低い	yes	no
1	晴れ	寒い	低い	yes	yes
9	曇り	適温	低い	yes	yes
10	曇り	適温	適当	no	no
19	曇り	適温	適当	no	no
14	雨	寒い	適当	yes	yes
20	雨	寒い	適当	no	yes
11	晴れ	暑い	適当	yes	yes
16	晴れ	暑い	適当	no	yes
6	晴れ	適温	適当	no	yes

yes:7個

no:6個

高い

高くない

$$E(D_1) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$

$$E(D_1) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$
 $E(D_2) = -\frac{7}{13}\log\frac{7}{13} - \frac{6}{13}\log\frac{6}{13} = 0.995$

講義で分類した場合

講義=yes

$$E(D_1) = -\frac{5}{9}\log\frac{5}{9} - \frac{4}{9}\log\frac{4}{9} = 0.991$$

講義=no

$$E(D_1) = -\frac{5}{9}\log\frac{5}{9} - \frac{4}{9}\log\frac{4}{9} = 0.991$$
 $E(D_2) = -\frac{4}{11}\log\frac{4}{11} - \frac{7}{11}\log\frac{7}{11} = 0.945$

湿度

高い

高い

気温

寒い

寒い

天気

5

講義

no

no

頭痛

特徴の選択方法

- エントロピーが最も小さくなる特徴を選択
- ゲイン*

ゲインが最大となる特徴を選択

天気で分類した場合

晴れ

晴れでない

$$E(D_1) = -\frac{5}{7}\log\frac{5}{7} - \frac{2}{7}\log\frac{2}{7} = 0.863 \qquad E(D_2) = -\frac{4}{13}\log\frac{4}{13} - \frac{9}{13}\log\frac{9}{13} = 0.890$$

$$Gain(D) = E(D) - \frac{7}{20}E(D_1) - \frac{13}{20}E(D_2)$$

$$= 0.992 - \frac{7}{20} \times 0.863 - \frac{13}{20} \times 0.890 = 0.111$$

気温で分類した場合

寒くない

$$E(D_1) = -\frac{5}{14}\log\frac{5}{14} - \frac{9}{14}\log\frac{9}{14} = 0.940$$
 $E(D_2) = -\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6} = 0.918$

$$Gain(D) = E(D) - \frac{14}{20}E(D_1) - \frac{6}{20}E(D_2)$$
$$= 0.992 - \frac{14}{20} \times 0.979 - \frac{6}{20} \times 0.811 = 0.059$$

寒い

$$E(D_2) = -\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6} = 0.918$$

湿度で分類した場合

高い

$$E(D_1) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$

$$E(D_1) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$
 $E(D_2) = -\frac{7}{13}\log\frac{7}{13} - \frac{6}{13}\log\frac{6}{13} = 0.995$

$$Gain(D) = E(D) - \frac{7}{20}E(D_1) - \frac{13}{20}E(D_2)$$
$$= 0.992 - \frac{7}{20} \times 0.863 - \frac{13}{20} \times 0.995 = 0.043$$

講義で分類した場合

講義=yes

$$E(D_1) = -\frac{5}{9}\log\frac{5}{9} - \frac{4}{9}\log\frac{4}{9} = 0.991$$

講義=no

$$E(D_1) = -\frac{5}{9}\log\frac{5}{9} - \frac{4}{9}\log\frac{4}{9} = 0.991$$
 $E(D_2) = -\frac{4}{11}\log\frac{4}{11} - \frac{7}{11}\log\frac{7}{11} = 0.945$

$$Gain(D) = E(D) - \frac{9}{20}E(D_1) - \frac{11}{20}E(D_2)$$
$$= 0.992 - \frac{9}{20} \times 0.991 - \frac{11}{20} \times 0.945 = 0.026$$

分類するための特徴選択

- 天気で分類した場合 → ゲイン = 0.111
- 最大
- 気温で分類した場合 → ゲイン = 0.059
- 湿度で分類した場合 → ゲイン = 0.043
- 講義で分類した場合 → ゲイン = 0.026

■ 天気で分類

次の特徴選択は?

- Greedyアルゴリズム
 - □ 現時点でゲインが最大となる特徴を選択

さらに特徴選択(1)

17	晴れ	寒い	高い	yes	yes
1	晴れ	寒い	低い	yes	yes
3	晴れ	暑い	低い	no	no
16	晴れ	暑い	適当	no	yes
11	晴れ	暑い	適当	yes	yes
12	晴れ	適温	高い	no	no
•	n= L	' ☆ '□	ゝ 立 た 、」		

気温で分類した場合

寒くない

 D_3

yes:3個

no:2個

yes:5個 no:2個

/

 $E(D_1) = -\frac{5}{7}\log\frac{5}{7} - \frac{2}{7}\log\frac{2}{7} = 0.863$

寒い

yes:2個

no:0個

 D_4

$$E(D_3) = -\frac{3}{5}\log\frac{3}{5} - \frac{2}{5}\log\frac{2}{5} = 0.971$$

$$Gain(D_1) = E(D_1) - \frac{5}{7}E(D_3) - \frac{2}{7}E(D_4)$$

$$=0.863 - \frac{5}{7} \times 0.971 - \frac{2}{7} \times 0.0 = 0.169$$

$$E(D_4) = -\frac{2}{2}\log\frac{2}{2} - \frac{0}{2}\log\frac{0}{2} = 0$$

ves

さらに特徴選択(2)

12	晴れ	適温	高い	no	no
17	晴れ	寒い	高い	yes	yes
3	晴れ	暑い	低い	no	no
1	晴れ	寒い	低い	yes	yes
16	晴れ	暑い	適当	no	yes
11	晴れ	暑い	適当	yes	yes
6	晴れ	適温	適当	no	yes

yes:4個

no:1個

 D_4

$$E(D_3) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = 1$$

$$E(D_4) = -\frac{4}{5}\log\frac{4}{5} - \frac{1}{5}\log\frac{1}{5} = 0.721$$

$$Gain(D_1) = E(D_1) - \frac{2}{7}E(D_3) - \frac{5}{7}E(D_4)$$
$$= 0.863 - \frac{2}{7} \times 1 - \frac{5}{7} \times 0.721 = 0.061$$

さらに特徴選択(3)

12	晴れ	適温	高い	no	no
3	晴れ	暑い	低い	no	no
16	晴れ	暑い	適当	no	yes
6	晴れ	適温	適当	no	yes
17	晴れ	寒い	高い	yes	yes
1	晴れ	寒い	低い	yes	yes
11	晴れ	暑い	適当	ves	ves

$$E(D_3) = -\frac{3}{3}\log\frac{3}{3} - \frac{0}{3}\log\frac{0}{3} = 0$$

$$E(D_4) = -\frac{2}{4}\log\frac{2}{4} - \frac{2}{4}\log\frac{2}{4} = 1$$

 D_4

$$Gain(D_1) = E(D_1) - \frac{3}{7}E(D_3) - \frac{4}{7}E(D_4)$$
$$= 0.863 - \frac{3}{7} \times 0 - \frac{4}{7} \times 1 = 0.291$$

特徴選択の結果

- 気温で分類した場合 → ゲイン = 0.169
- 湿度で分類した場合 → ゲイン = 0.061
- 講義で分類した場合 → ゲイン = 0.291

最大

■ 講義で分類

さらに特徴選択(4)

yes:2個 no:2個

yes:2個

no:7個

$$D_6$$

寒い

高い

no

$$E(D_5) = -\frac{2}{4}\log\frac{2}{4} - \frac{2}{4}\log\frac{2}{4} = 1$$

$$E(D_6) = -\frac{2}{9}\log\frac{2}{9} - \frac{7}{9}\log\frac{7}{9} = 0.764$$

$$Gain(D_2) = E(D_2) - \frac{4}{13}E(D_5) - \frac{9}{13}E(D_6)$$
$$= 0.890 - \frac{4}{13} \times 1.0 - \frac{9}{13} \times 0.764 = 0.053$$

さらに特徴選択(5)

$$E(D_5) = -\frac{1}{5}\log\frac{1}{5} - \frac{4}{5}\log\frac{4}{5} = 0.721$$

$$E(D_6) = -\frac{3}{8}\log\frac{3}{8} - \frac{5}{8}\log\frac{5}{8} = 0.954$$

$$E(D_6) = -\frac{3}{8}\log\frac{3}{8} - \frac{5}{8}\log\frac{5}{8} = 0.954$$

寒い

寒い

雨

8

高い

高い

高い

no

no

yes

no

$$Gain(D_2) = E(D_2) - \frac{5}{13}E(D_5) - \frac{8}{13}E(D_6)$$
$$= 0.890 - \frac{5}{13} \times 0.721 - \frac{8}{13} \times 0.954 = 0.025$$

さらに特徴選択(6)

8

13

20

$$E(D_5) = -\frac{2}{6}\log\frac{2}{6} - \frac{4}{6}\log\frac{4}{6} = 0.918$$

$$E(D_6) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$

$$Gain(D_2) = E(D_2) - \frac{5}{13}E(D_5) - \frac{8}{13}E(D_6)$$
$$= 0.890 - \frac{6}{13} \times 0.918 - \frac{7}{13} \times 0.863 = 0.002$$

$$E(D_6) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$

寒い

寒い

暑い

寒い

高い

高い

低い

no

no

no

no

no

特徴選択の結果

- 気温で分類した場合 → ゲイン = 0.053
- 最大
- 湿度で分類した場合 → ゲイン = 0.025
- 講義で分類した場合 → ゲイン = 0.002

■ 気温で分類

生成された決定木

以下、「きれいに」分類されるまで繰り返す

最終的に生成された決定木

決定木の学習アルゴリズム

D:学習データ

決定木の学習(D): →理想はエントロピーが0 if 停止条件を満たしている: ←── 停止 Dを分類するための特徴選択 ← - ゲイン最大となる特徴 D₁ , D_R ← 分類結果 決定木の学習(D₁) 再帰的に学習 決定木の学習(D_R)

D₁: 左ノードで対象となるデータ

D_R:右ノードで対象となるデータ

分類のための指標

- エントロピー(平均情報量)
 - □ クラス c=1,2,・・・,C
 - □ クラス c_i の生起確率 p_i

$$E = -\sum_{i=1}^{C} p_i \log p_i$$

■ジニ係数

$$G = 1 - \sum_{i=1}^{C} (p_i)^2$$

ジニ係数①

$$G = 1 - \sum_{i=1}^{C} (p_i)^2$$

$$G(D_1) = 1 - \left(\frac{20}{20}\right)^2 - \left(\frac{0}{20}\right)^2 = 0$$

$$G(D_2) = 1 - \left(\frac{0}{20}\right)^2 - \left(\frac{20}{20}\right)^2 = 0$$

ジニ係数が0に近いほど、「きれいに」分類される

ジニ係数②

$$G = 1 - \sum_{i=1}^{C} (p_i)^2$$

$$G(D_1) = 1 - \left(\frac{10}{20}\right)^2 - \left(\frac{10}{20}\right)^2 = 0.5$$

$$G(D_2) = 1 - \left(\frac{10}{20}\right)^2 - \left(\frac{10}{20}\right)^2 = 0.5$$

ジニ係数が大きいほど、「きれいに」分類 されない

ジニ係数を用いる場合①

$$G(D_1) = 1 - \left(\frac{5}{7}\right)^2 - \left(\frac{2}{7}\right)^2 = 0.408$$

$$G(D_2) = 1 - \left(\frac{4}{13}\right)^2 - \left(\frac{9}{13}\right)^2 = 0.426$$

$$Gain(D) = G(D) - \frac{7}{20}G(D_1) - \frac{13}{20}G(D_2)$$
$$= 0.495 - \frac{7}{20} \times 0.408 - \frac{13}{20} \times 0.426 = 0.075$$

*ジニ係数によるゲインをジニ指標とも呼ばれますが、資料ではゲインで統一して使います

ジニ係数を用いる場合②

$$G(D_1) = 1 - \left(\frac{5}{14}\right)^2 - \left(\frac{9}{14}\right)^2 = 0.459$$

$$Gain(D) = G(D) - \frac{14}{20}G(D_1) - \frac{6}{20}G(D_2)$$
$$= 0.495 - \frac{14}{20} \times 0.459 - \frac{6}{20} \times 0.444 = 0.04$$

$$G(D_2) = 1 - \left(\frac{4}{6}\right)^2 - \left(\frac{2}{6}\right)^2 = 0.444$$

ジニ係数を用いる場合③

$$G(D_1) = 1 - \left(\frac{2}{7}\right)^2 - \left(\frac{5}{7}\right)^2 = 0.408$$

$$G(D_2) = 1 - \left(\frac{7}{13}\right)^2 - \left(\frac{6}{13}\right)^2 = 0.497$$

$$Gain(D) = G(D) - \frac{7}{20}G(D_1) - \frac{13}{20}G(D_2)$$
$$= 0.495 - \frac{7}{20} \times 0.408 - \frac{13}{20} \times 0.497 = 0.029$$

ジニ係数を用いる場合(4)

$$G(D_1) = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 = 0.493$$

$$G(D_2) = 1 - \left(\frac{4}{11}\right)^2 - \left(\frac{7}{11}\right)^2 = 0.462$$

$$Gain(D) = G(D) - \frac{9}{20}G(D_1) - \frac{11}{20}G(D_2)$$
$$= 0.495 - \frac{9}{20} \times 0.493 - \frac{11}{20} \times 0.462 = 0.018$$

ジニ係数を用いた特徴選択

- 天気で分類した場合 → ゲイン = 0.075
- 最大
- 気温で分類した場合 → ゲイン = 0.04
- 湿度で分類した場合 → ゲイン = 0.029
- 講義で分類した場合 → ゲイン = 0.018

- 天気で分類
 - □ エントロピーによる特徴選択と同じ結果

エントロピーとジニ係数

■ 二値分類の場合

データ数が1個になるまで繰り返すべきか

データ数が1個になるまで分類した場合

データ数が1個になるまで分類した 場合

- → 学習データ特有のルールを抽出
- → 一般的なルールを抽出したことに はならない

20通りの分岐

停止条件②

- データ数が1個になるまで繰り返した場合
 - □ テストデータに対する精度が低下(過学習*)

枝の長さ(葉ノード数)

- ある程度, 個数が絞られた段階で停止
 - □ 枝刈り

^{*}過適合(over fitting), 過剰適合とも呼ばれます

枝刈り(Pruning)

枝刈りの方法(1)

- 評価指標による枝刈り
 - □ 生成した決定木による誤分類率: e(T)
 - □ ペナルティ:п
 - □ 葉ノードの数:k
 - □ データ数:N

決定木の評価指標

$$\hat{e}(T) = \frac{e(T) + k\pi}{N} = \frac{e(T)}{N} + \frac{k\pi}{N}$$

決定木の複雑さ(葉ノードの個数) をペナルティとする

評価指標による枝刈り

誤分類率: 3/20

ペナルティ: 0.5

葉ノードの数:7

データ数:20

$$\hat{e}(T_1) = \frac{3/20 + 7 \times 0.5}{20} = 0.1825$$

weather <= 1.5

誤分類率: 1/20

ペナルティ: 0.5

葉ノードの数:10

データ数:20

$$\hat{e}(T_2) = \frac{1/20 + 10 \times 0.5}{20} = 0.2525$$

枝刈りの方法②

検証用データ(Validation)の利用

検証用データによる枝刈り

決定木作成のアルゴリズム(1)

- ID3(Iterative Dichotomiser 3)
 - □ 説明変数はカテゴリカル変数(離散値)
 - □ 多分岐が可能
 - □ 分類指標はエントロピーによるゲインを利用
- C4.5(近年はC5.0)
 - □ ID3の改良アルゴリズム
 - □ 特徴量はカテゴリカル変数でなくてよい
 - □ 多分岐が可能
 - □ 分類前後のエントロピーの比(ゲイン比)を利用

決定木作成のアルゴリズム②

- CART(Classification and Regression Tree)
 - □ 特徴量はカテゴリカル変数でなくてよい
 - □二分岐のみ
 - □ 分類の指標はジニ係数によるゲインを利用
 - □ 目的変数が数値データにも対応(回帰木)

多分岐

$$E(D_1) = -\frac{5}{7}\log\frac{5}{7} - \frac{2}{7}\log\frac{2}{7} = 0.863$$

$$\boxed{\boxed{\$}} \qquad E(D_3) = -\frac{2}{6}\log\frac{2}{6} - \frac{4}{6}\log\frac{4}{6} = 0.918$$

$$E(D_2) = -\frac{2}{7}\log\frac{2}{7} - \frac{5}{7}\log\frac{5}{7} = 0.863$$

CART

- 二分岐
- 分類の評価指標
 - □ ジニ係数によるゲイン

熱中症

■ 目的変数が数値データにも対応(回帰木)

連続値の場合の閾値の求め方①

データ	特徴量1	目的変数
1	7.2	クラス1
2	2.3	クラス2
3	4.2	クラス2
4	3.5	クラス1
5	6.1	クラス2
6	0.5	クラス1
7	2.7	クラス1
8	4.2	クラス1
9	9.1	クラス2
10	8.5	クラス2

データ	特徴量1	閾値の候補	目的変数
6	0.5		クラス1
2	2.3	1.4	クラス2
7	2.7	2.5	クラス1
4	3.5	3.1	クラス1
3	4.2	3.85	クラス2
8	4.2	4.2	クラス1
5	6.1	5.15	クラス2
1	7.2	6.65	クラス1
10	8.5	7.85	クラス2
9	9.1	8.8	クラス2

(例) 特徴量1<3.1

① 特徴量1でソート

- ② 閾値の候補を求める 上下同士の平均値(中央値)
- ③ 閾値の候補で特徴選択 (この場合, 9箇所)
- → ジニ係数によるゲインを求める

特徴量1<1.4 特徴量1<2.5

•

特徴量1<7.85 特徴量1<8.8 9箇所

連続値の場合の閾値の求め方②

データ	特徴量1	目的変数
1	7.2	クラス1
2	2.3	クラス2
3	4.2	クラス2
4	3.5	クラス1
5	6.1	クラス2
6	0.5	クラス1
7	2.7	クラス1
8	4.2	クラス1
9	9.1	クラス2
10	8.5	クラス2

データ	特徴量1	閾値の候補	目的変数
6	0.5		クラス1
2	2.3	1.4	クラス2
7	2.7	2.5	クラス1
4	3.5	3.1	クラス1
3	4.2	3.85	クラス2
8	4.2	4.2	クラス1
5	6.1	5.15	クラス2
1	7.2	6.65	クラス1
10	8.5	7.85	クラス2
9	9.1	8.8	クラス2

(例) 特徴量1<3.1

① 特徴量1でソート

- ② 閾値の候補を求める 上下同士の平均値(中央値)
- ③ 閾値の候補で特徴選択
- → ジニ係数によるゲインを求める (この場合, 9箇所)
- ④ ゲインが最大となる特徴量, 閾値で分類

回帰木(Regression Tree)

^{*}クラス分類を目的とする決定木は分類木とも呼ばれます

回帰木の例

分類のための指標

分散

$$V(D) = \frac{1}{N} \sum_{d_i \in D} (d_i - \bar{d})^2$$

平均值

ゲイン

$$Gain(D, a) = V(D) - \frac{N_L}{N}V(D_L) - \frac{N_R}{N}V(D_R)$$

D_L: 左ノードのデータ N_I: 左ノードのデータ数

D_R:右ノードのデータ

N_R:右ノードのデータ数

分散最小

→平均値が近いデータが各ノードに集まる

練習問題

- 初期のエントロピーを求めなさい。
- ② D1のエントロピーを求めなさい.
- 3 D2のエントロピーを求めなさい。
- 4 天気で分類した際のゲインを求めなさい。

対数の計算はExcelでして下さい* =log(値, 2)

^{*}特徴ごとでゲインの大小を比較するのが目的なので,対数の底は2でなくもかまいません

決定木の学習

Irisデータセット(クラス分類) Bostonデータセット(回帰木)

Iris dataset

■アヤメの分類問題

用途	クラス分類
データ数	150
特徴量	4
目的変数	3

クラス名	データ数
setosa	50
versicolor	50
virginica	50

Irisデータセットの分類

```
import numpy
                                                                          Iris_Tree.py
from sklearn import datasets
                                                  パッケージのimport
from sklearn.model_selection import train_test_split
from sklearn import tree
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
                              importが必要
# データのロード
iris = datasets.load_iris()
# 種類( setosa , versicolor , virginica )
name = iris.target names
#特徵量
feature name = iris.feature names
# データ(説明変数)
data = iris.data
```

```
#目的変数(setosa:0, versicolor:1, virginica:2)
label = iris.target
# 学習データ. テストデータ
train data, test data, train label, test label = train test split(data, label, test size=0.5,
random_state=None)
print( test_label )
                   クラス分類用の決定木
                   DecisionTreeClassifier
#決定木
model = tree.DecisionTreeClassifier(criterion="gini", max_depth=3)
#学習
                                                             決定木の深さ=3
                                   指標はジニ係数
model.fit(train_data, train_label)
                                   エントロピーを用いる場合
                                   criterion="entropy"
#予測
predict = model.predict(test_data)
                                   テストデータの予測
print( predict )
print( " [ 予測結果 ]" )
print( classification_report(test_label, predict) )
```

```
print( "¥n [ 正解率 ]" )
print( accuracy_score(test_label, predict) )

print( "¥n [ 混同行列 ]" )
print( confusion_matrix(test_label, predict) )

tree.export_graphviz(model, out_file="tree.dot",feature_names=feature_name, class_names=name,filled=True, rounded=True)
```

決定木の描画のために必要

決定木を描画(画像化)するためには...

- ① Graphviz(https://www.graphviz.org/)をインスールして下さい*
- ② コマンドプロンプト上で, > dot -T png tree.dot -o tree.png - 画像(png形式)で保存

上記のプログラムで指定したファイル(dot形式)

DecisionTreeClassifier

from sklearn import tree

tree.DecisionTreeClassifier(criterion=分類指標,max_depth=決定木の深さ)

model = tree.DecisionTreeClassifier(criterion="gini", max_depth=3)

指標はジニ係数 エントロピーを用いる場合 criterion="entropy" 決定木の深さ=3

実行結果

```
テストデータのラベル(正解値)
C:¥Windows¥system32¥cmd.exe
C:\home\shino\ML-2019\Tree\program>python Iris_Tree.py
                20200010212100200
  20022000101000221
020022000101000221111100210201
 [ 予測結果 ]
                                                予測結果
          precision
                     recall
                           f1-score
                                    support
              1.00
                      1.00
                               1.00
                                        29
        0
              0.86
                      1.00
                              0.92
                                        24
                      0.82
                              0.90
                                        22
              1.00
avg / total
              0.95
                      0.95
                              0.95
                                        75
 [ 正解率 ]
0.94666666666666
  混同行列 ]
      07
  0 24
      0]
      18]]
            III
```

生成された決定木(1)

決定木の画像化 > dot -T png tree.dot -o tree.png

生成された決定木②

tree.dot

```
- 0 X
C:¥home¥shino¥ML-2019¥Tree¥program¥tree.dot - EmEditor
                                                                                                                   ツール
 ファイル(<u>F</u>) 編集(<u>F</u>) 検索(<u>S</u>) 表示(<u>V</u>) ツール(<u>T</u>) ウィンドウ(<u>W</u>) ヘルプ(<u>H</u>)
 ウィンドウ m tree.dot
bligraph Tree {↓
node [shape=box, style="filled, rounded", color="black", fontname=helvetica];↓
edge [fontname=helvetica];↓
1 [label="gini = 0.0¥nsamples = 27¥nvalue = [27, 0, 0]¥nclass = setosa", fillcolor="#e58139ff"];↓
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"];
2 [label="petal length (cm) <= 4.95\forall girls = 0.499\forall nsamples = 48\forall nsamples = [0, 25, 23]\forall nclass = versicolor", fillcolor="#39e58114"] :↓
0 -> 2 [labeldistance=2.5, labelangle=-45, headlabel="False"]:
3 [label="petal width (cm) <= 1.65¥ngini = 0.074¥nsamples = 26¥nvalue = [0, 25, 1]¥nclass = versicolor", fillcolor="#39e581f5"]:↓
2 -> 3 : \
4 [label="gini = 0.0¥nsamples = 25¥nyalue = [0, 25, 0]¥nclass = versicolor", fillcolor="#39e581ff"];↓
5 [label="gini = 0.0¥nsamples = 1¥nyalue = [0, 0, 1]¥nclass = virginica", fillcolor="#8139e5ff"];↓
3 -> 5 :↓
6 [label="gini = 0.0¥nsamples = 22¥nvalue = [0, 0, 22]¥nclass = virginica", fillcolor="#8139e5ff"];↓
2 -> 6: \
1.092 バイト、17 行。
                                                                                         Text 1行, 1桁
                                                                                                    日本語(自動選択)
```

Boston dataset

■ボストンの住宅価格の回帰問題

用途	回帰
データ数	506
特徴量	13
目的変数	1

Bostonデータセットの学習(回帰木)

import numpy

from sklearn import datasets

from sklearn.model_selection import train_test_split

パッケージのimport

from sklearn import tree

from sklearn.metrics import classification_report, accuracy_score, confusion_matrix

import matplotlib.pyplot as plt

散布図の描画

データのロード

boston = datasets.load_boston()

特徴量(13次元)

feature_name = boston.feature_names

#データ

data = boston.data

価格

price = boston.target

学習データ, テストデータ

train_data, test_data, train_price, test_price = train_test_split(data, price, test_size=0.5, random_state=None)

#回帰木

model = tree.DecisionTreeRegressor(criterion="mse", max_depth=3)

#学習

model.fit(train_data, train_price)

指標は平均二乗誤差

決定木の深さ=3

予測(テストデータ)

predict = model.predict(test_data)

R²を求める

train_score = model.score(train_data, train_price)
test_score = model.score(test_data, test_price)

相関係数の二乗(R²)の計算

print(" 学習データ:", train_score) print(" テストデータ:", test_score)

```
# 散布図の描画(保存)
```

```
fig = plt.figure()
plt.scatter( test_price , predict )
```

plt.xlabel("Correct")

plt.ylabel("Predict")

fig.savefig("result.png")

「result.png」に保存

x軸:正解値

tree.export_graphviz(model, out_file="tree.dot",

feature_names=boston.feature_name,filled=True, rounded=True)

回帰木の描画のために必要

DecisionTreeRegressor

from sklearn import tree

tree.DecisionTreeRegressor(criterion=分類指標, max_depth=決定木の深さ)

model = tree.DecisionTreeRegressor(criterion="mse", max_depth=3)

指標は平均二乗誤差

決定木の深さ=3

実行結果

生成された回帰木

回帰木の画像化

> dot -T png tree.dot -o tree.png

回帰木での予測結果

- 予測らしい予測になっていない
- 改良方法
 - □ アンサンブル学習
 - ランダムフォレスト
 - □ 複数個の回帰木によって予測→平均値を予測値とする

参考文献

- Tom M Michell: Machine Learning, 1990
- 加藤直樹他:データマイニングとその応用,朝倉書店,2009
- 平井有三:はじめてのパターン認識, 森北出版株式会社, 2012
- 後藤正幸他:入門パターン認識と機械学習、コロナ社、 2014
- 株式会社システム計画研究所編: Pythonによる機械学習入門, オーム社, 2016
- 竹村彰通他:機械学習, 朝倉書店, 2017
- 荒木雅弘:機械学習入門, 森北出版株式会社, 2018

参考文献

- DecisionTreeClassifier
 - https://scikitlearn.org/stable/modules/generated/sklear n.tree.DecisionTreeClassifier.html
- DecisionTreeRegressor
 - https://scikitlearn.org/stable/modules/generated/sklear n.tree.DecisionTreeRegressor.html

理工学ITCのPCで決定木を描画する場合

- Graphviz.zip をダウンロード
- tree.dot のあるフォルダーに展開

- コマンドプロンプト上で、
- Solution
 Solution</p