# Nonlinear Dynamic Gravity Model of Bilateral Trade with Flexible Adjustment Speed

Almas Heshmati <sup>1</sup> Nam Seok Kim <sup>2</sup>

<sup>1</sup>Jönköping University

<sup>2</sup>Syracuse University

July 2, 2021, IPDC 2021

- Introduction and Backgrounds
- 2 Dynamic Adjustment Framework
- 3 Econometric Approach
- Data
- Estimation Results
- 6 Discussion and Conclusions

- Introduction and Backgrounds
- 2 Dynamic Adjustment Framework
- 3 Econometric Approach
- 4 Data
- **5** Estimation Results
- 6 Discussion and Conclusions

# Main Findings

- This paper suggests dynamic framework of gravity estimation by implementing flexible adjustment speed.
- Introducing adjustment speed as function of trade policy gives us empirical marginal effects consistent to theoretical predictions of gravity model.
- Decreasing values of adjustment speed indicates the increasing role of trade policy in the magnitude of bilateral trade flow.
- Free trade level of bilateral trade flow can be simultaneously expected within this framework.

#### Motivation and Related Literature

- Implementing dynamic panel data framework to the gravity equation has been introduced in international economics. (International migration: Mayda (2009), International trade: Olivero and Yotov (2012))
- However, recent developments in dynamic panel data estimation of gravity have not been able to quantify heterogeneous adjustment.
- Our framework quantifies the adjustment for each country-pair so that we can see the dynamic nature in deeper aspects.

#### Motivation and Related Literature

- Research on the dynamics of firm-level capital structure have implemented flexible (heterogeneous) adjustment.
- Modigliani and Miller (1958), Marsh (1982)
- Banerjee, Heshmati, and Wihlborg (1999), Heshmati (2001), Lööf (2004), Kim and Heshmati (2019): Implemented flexible adjustment speed term while the endogeneity of lagged dependent variable is not covered.
- Öztekin and Flannery (2012): Linear specification with inflexible adjustment speed. Blundell-Bond dynamic panel estimator.
- Jin, Zhao, and Kumbhakar (2020): Nonlinear specification with flexible adjustment speed. GMM estimator which covers endegeneity of lagged dependent variable.

- Introduction and Backgrounds
- 2 Dynamic Adjustment Framework
- 3 Econometric Approach
- 4 Data
- **5** Estimation Results
- 6 Discussion and Conclusions

## Dynamic Adjustment Framework

$$X_{ij,t} - X_{ij,t-1} = \delta_{ij,t} (X_{ij,t}^* - X_{ij,t-1})$$

- $X_{ij,t}$ : Log of realized bilateral trade flow from country i to country j in year t.
- $X_{ij,t}^*$ : Log of predicted (expected) bilateral trade flow from country i to country j in year t
- $\delta_{ij,t}$ : Adjustment parameter  $\delta_{ij,t}$  explains the differences between  $X_{ij,t}^*$  and the realized level of bilateral trade flow  $X_{ij,t}$ .

$$X_{ij,t}^* = F(A) = b_0 + b_1 A_{i,t} + b_2 A_{j,t} + b_3 A_{ij} + \epsilon^g$$

$$\delta_{ij,t} = G(Z) = d_0 + d_1 Z_{i,t} + d_2 Z_{j,t} + d_3 Z_{ij,t} + \epsilon^{\delta}$$

# Dynamic Adjustment Framework

$$X_{ij,t} - X_{ij,t-1} = \delta_{ij,t} (X_{ij,t}^* - X_{ij,t-1})$$

- The main idea for this dynamic model is that the realized level of bilateral trade flow always tends to be different from the optimal level.
- The difference between realized level and optimal levels is explained by adjustment speed.
- $\delta_{ij,t}$  quantifies the difference between  $X_{ij,t} X_{ij,t-1}$  (realized difference) and  $X_{ij,t}^* X_{ij,t-1}$  (predicted difference).

## Dynamic Adjustment Framework

$$X_{ij,t}^* = F(A) = b_0 + b_1 A_{i,t} + b_2 A_{j,t} + b_3 A_{ij} + \epsilon^g$$
  
 $\delta_{ii,t} = G(Z) = d_0 + d_1 Z_{i,t} + d_2 Z_{i,t} + d_3 Z_{ii,t} + \epsilon^\delta$ 

- $X_{ij,t}^*$  is function of some variables A where  $F(\cdot)$  is linear function. A can be country specific  $(A_{i,t}$  or  $A_{j,t})$  and also country-pair specific  $(A_{ij,t})$ .
- $\delta_{ij,t}$  is function of variable Z where  $G(\cdot)$  is linear function. Z can be country specific  $(Z_{i,t} \text{ or } Z_{j,t})$  and also country-pair specific  $(Z_{ij,t})$ .

- Introduction and Backgrounds
- 2 Dynamic Adjustment Framework
- Seconometric Approach
- 4 Data
- **5** Estimation Results
- 6 Discussion and Conclusions

### Nonlinearity

• If we keep only  $X_{ij,t}$  in the left-hand-side and assume additive error structure, we have following estimation equation.

$$X_{ij,t} = (1 - \delta_{ij,t})X_{ij,t-1} + \delta_{ij,t}X_{ij,t}^* + \mu_{ij} + \lambda_t + \nu_{ij,t}$$

 We further assume that the adjustment speed is the function of trade policy.

$$\delta_{ij,t} = \textit{G}(\textit{Z}) = \textit{d}_0 + \textit{d}_{\textit{RTA}}\textit{RTA}_{ij,t} + \textit{d}_{\textit{MFN}}\textit{MFN}_{j,t} + \epsilon^{\delta}$$

- $RTA_{ij,t}$  is a binary variable where  $RTA_{ij,t}=1$  if a country pair ij shares regional trade agreement. It is based on the official clarification of WTO.
- $MFN_{j,t}$  is simple average of MFN applied tariffs of destination country provided by UNCTAD (average of 5-digit MFN tariff level).

## Nonlinearity

$$X_{ij,t}^* = F(A) = b_0 + b_1 Y_{i,t} + b_2 Y_{j,t} + b_3 Dist_{ij} + b_4 Lang_{ij} + b_5 Colony_{ij} + b_6 Contig_{ij} + \epsilon^g$$

- By assuming that  $X_{ij,t}^*$  is not the function of trade policy, we can interpret  $X_{ij,t}^*$  as the predicted level of trade flow under free trade.
- $Y_{i,t}$  and  $Y_{j,t}$  are logarithmic values of GDP for country i and j, respectively.
- Dist<sub>ij,t</sub> is log of weighted bilateral distance between country i and country j in kilometer.
- Lang<sub>ij,t</sub> is binary variable which indicates whether both countries at each pair share the same official (or primary) language.
- $Colony_{ij,t} = 1$  if a country pair ij has colonial relationship.  $Colony_{ij,t} = 0$  otherwise.
- $Contig_{ij,t}$  is a binary variable who has value of 1 when two countries are geographically contiguous.



## Nonlinearity

$$X_{ij,t} = (1 - \delta_{ij,t})X_{ij,t-1} + \delta_{ij,t}X_{ij,t}^* + \mu_{ij} + \lambda_t + \nu_{ij,t}$$

- The interaction term between  $X_{ij,t}^*$  and  $\delta_{ij,t}$  will make the nonlinearity in terms of coefficients by multiplying coefficients in  $F(\cdot)$  and  $G(\cdot)$  each other.
- Another important issue in this equation is the endogeneity caused by the lagged dependent variable  $X_{ij,t-1}$ . Therefore, we will need to handle this endogeneity while handling two-way fixed effects.
- We are using  $X_{ij,t-2}$  and consequent interaction terms as instrumental variables. Instrumental variable is implemented after the first difference transformation. (Nonlinear 2SLS, Anderson and Hsiao (1982))

- Introduction and Backgrounds
- 2 Dynamic Adjustment Framework
- 3 Econometric Approach
- Data
- Estimation Results
- 6 Discussion and Conclusions

#### Data

• Gravity variables : CEPII

• Trade flow: Comtrade Rev.1, IMF DOT and BACI

• MFN tariff level: UNCTAD

#### Data

Table: Descriptive Statistics, original data (1988 - 2018)

| Variable                   | Mean   | Std. Dev. | Min.   | Max.    | N      |
|----------------------------|--------|-----------|--------|---------|--------|
| $X_{ij,t}$ (Comtrade)      | 7.427  | 4.387     | -6.908 | 20.149  | 492270 |
| $X_{ij,t}$ (IMF)           | 7.652  | 4.319     | -6.908 | 20.106  | 474994 |
| $X_{ij,t}$ (BACI)          | 7.557  | 4.338     | -6.908 | 20.025  | 456408 |
| $X_{ij,t}$ (BACI, manu)    | 7.212  | 4.324     | -6.908 | 20.02   | 447738 |
| $Y_{i,t}$                  | 16.71  | 2.464     | 9.085  | 23.748  | 691308 |
| $Y_{j,t}$                  | 17.475 | 2.271     | 10.368 | 23.748  | 855104 |
| $RTA_{ij,t}$               | 0.124  | 0.33      | 0      | 1       | 848235 |
| $MFN_{j,t}$                | 9.208  | 6.771     | 0      | 113.988 | 884864 |
| $Dist_{ij,t}$              | 8.762  | 0.815     | 0.545  | 9.891   | 769493 |
| $Language_{ij,t}$          | 0.151  | 0.358     | 0      | 1       | 794019 |
| $Colonial_{ij,t}$          | 0.011  | 0.105     | 0      | 1       | 848116 |
| Contiguity <sub>ij,t</sub> | 0.014  | 0.119     | 0      | 1       | 782743 |

 $X_{ij,t}$ ,  $Dist_{ij,t}$  and GDP  $(Y_{i,t}, Y_{j,t})$  went through logarithmic transformation.

#### Data

Table: Descriptive Statistics, 4-year seasonality (1990 - 2018)

| Variable                   | Mean   | Std. Dev. | Min.   | Max.   | N      |
|----------------------------|--------|-----------|--------|--------|--------|
| $X_{ij,t}$ (Comtrade)      | 7.396  | 4.431     | -6.908 | 20.149 | 126976 |
| $X_{ij,t}$ (IMF)           | 7.606  | 4.348     | -6.908 | 20.106 | 124055 |
| $X_{ij,t}$ (BACI)          | 7.529  | 4.36      | -6.908 | 20.025 | 120121 |
| $X_{ij,t}$ (BACI, manu)    | 7.189  | 4.343     | -6.908 | 20.02  | 117879 |
| $Y_{i,t}$                  | 16.739 | 2.466     | 9.085  | 23.748 | 178963 |
| $Y_{j,t}$                  | 17.462 | 2.285     | 10.368 | 23.748 | 220224 |
| $RTA_{ij,t}$               | 0.128  | 0.334     | 0      | 1      | 218604 |
| $MFN_{j,t}$                | 9.231  | 6.985     | 0      | 82.78  | 227664 |
| $Dist_{ij,t}$              | 8.759  | 0.812     | 0.545  | 9.891  | 198758 |
| $Language_{ij,t}$          | 0.151  | 0.358     | 0      | 1      | 204866 |
| $Colonial_{ij,t}$          | 0.011  | 0.105     | 0      | 1      | 218574 |
| Contiguity <sub>ij,t</sub> | 0.015  | 0.12      | 0      | 1      | 201838 |

- Introduction and Backgrounds
- 2 Dynamic Adjustment Framework
- 3 Econometric Approach
- 4 Data
- **5** Estimation Results
- 6 Discussion and Conclusions

- The validity of  $X_{ij,t-2}$  as instrumental variable is revealed at the serial correlation test of differenced error. (Arellano and Bond (1991))
- The differenced error should reject the AR(1) test while AR(2) test should not be rejected.
- When we used every year for estimation, this AR conditions were not satisfied regardless of the source of data (Comtrade, IMF DOT, and BACI)
- Only when we implemented seasonality data of every 4-year, we were able to make sure that the  $X_{ij,t-2}$  is the proper IV.

- Even when we implemented seasonality data of every 4-year, AR conditions are satisfied only when we restricted our information to the manufacturing.
- This is due to the fact that the dynamics of comparative advantage is stable in non-manufacturing industries. (Hanson, Lind, and Muendler (2018), Levchenko and Zhang (2016))
- Trade flow information including every industry includes stable dynamics especially in agricultural sector and natural resources sector.

Table: Nonlinear 2SLS: Dynamic Gravity with Adjustment. 4-year seasonal data, manufacturing only (BACI)

|                  | Coefficient | Std. err. | Z     | P>z   |
|------------------|-------------|-----------|-------|-------|
| $\overline{d_0}$ | 0.8337***   | 0.0206    | 40.32 | 0     |
| $d_{RTA}$        | -0.1201*    | 0.0720    | -1.67 | 0.096 |
| $d_{MFN}$        | -0.0026     | 0.0016    | -1.62 | 0.105 |
| $b_0$            | -10.0703    | 12.9037   | -0.78 | 0.435 |
| $b_{Y,origin}$   | 0.4672***   | 0.0377    | 12.37 | 0     |
| $b_{Y,dest}$     | 0.9379***   | 0.0405    | 23.15 | 0     |
| $b_{Dist}$       | -1.2463     | 1.558     | -0.8  | 0.424 |
| $b_{Lang}$       | 42.9898*    | 25.5228   | 1.68  | 0.092 |
| $b_{Col}$        | -20.457     | 15.5420   | -1.32 | 0.188 |
| $b_{Cont}$       | 30.6846     | 38.5939   | 8.0   | 0.427 |
| * - < 0.10       | ** O OE >   | k** 0 01  |       |       |

<sup>\*</sup> p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

- Arellano-Bond's AR(1) statistics: (Chi(2)), 3639.091
- Arellano-Bond's AR(2) statistics : (Chi(2)), 1.132



Table: Marginal Effect (M.E.) of each variable towards  $X_{ij,t}$ 

| Variable             | Mean of M.E. | Std Dev of M.E. | Min of M.E. | Max of M.E. |
|----------------------|--------------|-----------------|-------------|-------------|
| $RTA_{ij,t}$         | -0.3118      | 1.8813          | -9.6576     | 3.5155      |
| $MFN_{ij,t}$         | -0.0069      | 0.04182         | -0.2147     | 0.07816     |
| $Y_{i,t}$            | 0.3667       | 0.0242          | 0.2886      | 0.38957     |
| $Y_{j,t}$            | 0.7361       | 0.0486          | 0.5793      | 0.7819      |
| Dist <sub>ij</sub>   | -0.9782      | 0.0646          | -1.03911    | -0.7698     |
| Lang <sub>ij</sub>   | 33.74        | 2.2310          | 26.5528     | 35.841      |
| Colony <sub>ij</sub> | -16.0565     | 1.0616          | -17.0551    | -12.6353    |
| Contigij             | 24.0841      | 1.5924          | 18.9524     | 25.5820     |

# Common Break of Korean Comparative Advantage with sectoral labor union



Table: First-difference common break estimator

- Introduction and Backgrounds
- 2 Dynamic Adjustment Framework
- 3 Econometric Approach
- 4 Data
- **5** Estimation Results
- 6 Discussion and Conclusions

#### Discussion and Conclusion

- Decreasing value of  $\delta_{ij,t}$  within (0,1) emphasizes the increasing role of trade policy in international trade. (The realized difference is getting smaller than the predicted difference.)
- As the adjustment term  $\delta_{ij,t}$  is flexible across each country pair, we can make comparison analysis (such as OECD vs non-OECD, across different continents, democracies vs non-democracies, and so on)
- Due to the serial correlation issue related to the dynamics of comparative advantage, results might be sensitive to the scope of sector that researcher decides.

## Thank you very much!

• Thank you very much!