工科数学分析

贺 丹 (东南大学)

6.2 第一型曲面积分

本章主要内容:

- 曲面的面积
- 第一型曲面积分的概念
- 第一型曲面积分的积分方法

设光滑曲面 Σ 的方程为z = f(x, y), Σ 在Oxy 面上的投影区域为D, 函数f(x, y)在D上有一阶连续的偏导数, 求曲面 Σ 的面积S.

设光滑曲面 Σ 的方程为 $z=f(x,y), \Sigma$ 在Oxy 面上的投影区域为D, 函数f(x,y)在D上有一阶连续的偏导数, 求曲面 Σ 的面积S.

在D上任取一个直径很小的子域 $d\sigma$, ($d\sigma$ 也代表该子域的面积), 在 $d\sigma$ 上任取一点P(x,y), 对应地有曲面上的一点M(x,y,f(x,y)).

设光滑曲面 Σ 的方程为 $z=f(x,y), \Sigma$ 在Oxy 面上的投影区域为D, 函数f(x,y)在D上有一阶连续的偏导数, 求曲面 Σ 的面积S.

在D上 任 取 一 个 直 径 很 小 的子域 $d\sigma$, ($d\sigma$ 也代表该 子域的面积), $\mathbf{E} d\sigma$ 上任取 一点P(x,y),对应地有曲面 上的一点M(x, y, f(x, y)).过 点M作切平面T, 它被以 $d\sigma$ 的 边界曲线为准线, 母线平行 于z 轴的柱面割下的部分 为dS,则相应于 $d\sigma$ 的小曲面 部分, 其面积可用dS来近似.

设光滑曲面 Σ 的方程为z = f(x, y), Σ 在Oxy 面上的投影区域为D, 函数f(x, y)在D上有一阶连续的偏导数, 求曲面 Σ 的面积S.

在D上任取一个直径很小 的子域 $d\sigma$, ($d\sigma$ 也代表该 子域的面积), $\mathbf{E} d\sigma$ 上任取 一点P(x,y),对应地有曲面 上的一点M(x, y, f(x, y)).过 点M作切平面T, 它被以 $d\sigma$ 的 边界曲线为准线, 母线平行 于z 轴的柱面割下的部分 为dS,则相应于 $d\sigma$ 的小曲面 部分, 其面积可用dS来近似.

设曲面z = f(x,y)在点M处的法向量n与z轴正向的夹角为 γ ,则

设曲面z=f(x,y)在点M处的法向量n与z轴正向的夹角为 γ ,则 $|\cos\gamma|\mathrm{d}S=\mathrm{d}\sigma,$

设曲面z = f(x, y)在点M处的法向量n与z轴正向的夹角为 γ , 则

$$|\cos \gamma| dS = d\sigma$$
, $\mathbb{D} dS = \frac{1}{|\cos \gamma|} d\sigma$

设曲面z=f(x,y)在点M处的法向量n与z轴正向的夹角为 γ , 则

$$|\cos \gamma| dS = d\sigma$$
, $\mathbb{E} dS = \frac{1}{|\cos \gamma|} d\sigma$

曲面z = f(x, y)在点M的法向量为 $n = \{f_x(x, y), f_y(x, y), -1\},\$

设曲面z = f(x,y)在点M处的法向量n与z轴正向的夹角为 γ ,则

$$|\cos \gamma| dS = d\sigma$$
, $\mathbb{E} dS = \frac{1}{|\cos \gamma|} d\sigma$

曲面z = f(x, y)在点M的法向量为 $n = \{f_x(x, y), f_y(x, y), -1\},\$

故
$$\cos \gamma = \frac{1}{\sqrt{1 + f_x^2(x, y) + f_y^2(x, y)}}$$
,即

设曲面z=f(x,y)在点M处的法向量n与z轴正向的夹角为 γ ,则

$$|\cos \gamma| dS = d\sigma$$
, \square $dS = \frac{1}{|\cos \gamma|} d\sigma$

曲面z = f(x, y)在点M的法向量为 $n = \{f_x(x, y), f_y(x, y), -1\},\$

故
$$\cos \gamma = \frac{1}{\sqrt{1+f_x^2(x,y)+f_y^2(x,y)}}$$
,即
$$\mathrm{d}S = \sqrt{1+f_x^2(x,y)+f_y^2(x,y)}\mathrm{d}\sigma,$$

设曲面z = f(x,y)在点M处的法向量n与z轴正向的夹角为 γ ,则

$$|\cos \gamma| dS = d\sigma$$
, \square $dS = \frac{1}{|\cos \gamma|} d\sigma$

曲面z = f(x, y)在点M的法向量为 $n = \{f_x(x, y), f_y(x, y), -1\},\$

故
$$\cos \gamma = \frac{1}{\sqrt{1 + f_x^2(x, y) + f_y^2(x, y)}}$$
, 即

$$\mathrm{d}S = \sqrt{1 + f_x^2(x, y) + f_y^2(x, y)} \mathrm{d}\sigma,$$

称为曲面z = f(x, y) 的<mark>面积元素</mark>.

设曲面z = f(x, y)在点M处的法向量n与z轴正向的夹角为 γ , 则

$$|\cos \gamma| dS = d\sigma$$
, \square $dS = \frac{1}{|\cos \gamma|} d\sigma$

曲面z = f(x, y)在点M的法向量为 $n = \{f_x(x, y), f_y(x, y), -1\},\$

故
$$\cos \gamma = \frac{1}{\sqrt{1 + f_x^2(x, y) + f_y^2(x, y)}}$$
, 即

$$dS = \sqrt{1 + f_x^2(x, y) + f_y^2(x, y)} d\sigma,$$

称为曲面z = f(x, y) 的面积元素.

于是所求曲面的面积为

设曲面z = f(x,y)在点M处的法向量n与z轴正向的夹角为 γ , 则

$$|\cos \gamma| dS = d\sigma$$
, $\mathbb{R} dS = \frac{1}{|\cos \gamma|} d\sigma$

曲面z = f(x, y)在点M的法向量为 $n = \{f_x(x, y), f_y(x, y), -1\},\$

故
$$\cos \gamma = \frac{1}{\sqrt{1 + f_x^2(x, y) + f_y^2(x, y)}}$$
, 即

$$dS = \sqrt{1 + f_x^2(x, y) + f_y^2(x, y)} d\sigma,$$

称为曲面z = f(x, y) 的面积元素.

于是所求曲面的面积为

$$S = \iint\limits_{D_{xy}} \sqrt{1 + f_x^2(x, y) + f_y^2(x, y)} dxdy.$$

• 若曲面 Σ 的方程为x=g(y,z) 或y=h(x,z),

• 若曲面 Σ 的方程为x = g(y, z) 或y = h(x, z), 则将 Σ 投影到Oyz 面或Oxz 面,得到曲面的面积为

• 若曲面 Σ 的方程为x = g(y, z) 或y = h(x, z), 则将 Σ 投影到Oyz 面或Oxz 面,得到曲面的面积为

$$S = \iint\limits_{D_{yz}} \sqrt{1 + g_y^2(y, z) + g_z^2(y, z)} dydz$$

• 若曲面 Σ 的方程为x = g(y, z) 或y = h(x, z),

则将 Σ 投影到Oyz 面或Oxz 面, 得到曲面的面积为

$$S = \iint\limits_{D_{yz}} \sqrt{1 + g_y^2(y,z) + g_z^2(y,z)} \mathrm{d}y \mathrm{d}z$$
 或
$$S = \iint \sqrt{1 + h_x^2(x,z) + h_z^2(x,z)} \mathrm{d}x \mathrm{d}z$$

• 若曲面 Σ 的方程为x=g(y,z) 或y=h(x,z), 则将 Σ 投影到Oyz 面或Oxz 面,得到曲面的面积为

$$S = \iint\limits_{D_{yz}} \sqrt{1 + g_y^2(y,z) + g_z^2(y,z)} \mathrm{d}y\mathrm{d}z$$
或
$$S = \iint\limits_{D} \sqrt{1 + h_x^2(x,z) + h_z^2(x,z)} \mathrm{d}x\mathrm{d}z$$

• 若曲面 Σ 的方程为隐式方程F(x,y,z)=0, 且 $F_z\neq 0$,

• 若曲面 Σ 的方程为x=g(y,z) 或y=h(x,z), 则将 Σ 投影到Oyz 面或Oxz 面,得到曲面的面积为

$$S = \iint\limits_{D_{yz}} \sqrt{1 + g_y^2(y,z) + g_z^2(y,z)} \mathrm{d}y\mathrm{d}z$$
更以 $S = \iint\limits_{D_{xz}} \sqrt{1 + h_x^2(x,z) + h_z^2(x,z)} \mathrm{d}x\mathrm{d}z$

• 若曲面 Σ 的方程为隐式方程F(x,y,z)=0, 且 $F_z\neq 0,$ 则 $\frac{\partial z}{\partial x}=-\frac{F_x}{F_z},$ $\frac{\partial z}{\partial y}=-\frac{F_y}{F_z},$ 于是曲面的面积为

• 若曲面 Σ 的方程为x = g(y, z) 或y = h(x, z), 则将 Σ 投影到Oyz 面或Oxz 面,得到曲面的面积为

$$S = \iint\limits_{D_{yz}} \sqrt{1 + g_y^2(y, z) + g_z^2(y, z)} dydz$$
或
$$S = \iint\limits_{D} \sqrt{1 + h_x^2(x, z) + h_z^2(x, z)} dxdz$$

• 若曲面 Σ 的方程为隐式方程F(x,y,z)=0, 且 $F_z\neq 0,$

则
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$, 于是曲面的面积为

$$S = \iint\limits_{D_{xy}} \frac{\sqrt{F_x^2 + F_y^2 + F_z^2}}{|F_z|} \mathrm{d}x \mathrm{d}y$$

答: 设球面方程为 $x^2 + y^2 + z^2 = R^2$, 其第一卦限的部分面积为 S_1 , 则 $S_1: z = \sqrt{R^2 - x^2 - y^2}$,

答: 设球面方程为 $x^2 + y^2 + z^2 = R^2$, 其第一卦限的部分面积为 S_1 , 则 $S_1: z = \sqrt{R^2 - x^2 - y^2}$,

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}, \ \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{R^2 - x^2 - y^2}},$$

答: 设球面方程为 $x^2 + y^2 + z^2 = R^2$, 其第一卦限的部分面积为 S_1 , 则 $S_1: z = \sqrt{R^2 - x^2 - y^2}$,

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}, \ \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{R^2 - x^2 - y^2}},$$

其中 $D_{xy}=\{(x,y)|x^2+y^2\leqslant R^2,x\geqslant 0,y\geqslant 0\},$

答: 设球面方程为 $x^2 + y^2 + z^2 = R^2$, 其第一卦限的部分面积为 S_1 , 则 $S_1: z = \sqrt{R^2 - x^2 - y^2}$,

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}, \ \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{R^2 - x^2 - y^2}},$$

其中 $D_{xy}=\{(x,y)|x^2+y^2\leqslant R^2,x\geqslant 0,y\geqslant 0\},$

故
$$S = 8S_1 = 8 \iint_{D_{xy}} \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} dxdy$$

答: 设球面方程为 $x^2+y^2+z^2=R^2$, 其第一卦限的部分面积为 S_1 , 则 $S_1:z=\sqrt{R^2-x^2-y^2}$,

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}, \, \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{R^2 - x^2 - y^2}},$$

其中 $D_{xy}=\{(x,y)|x^2+y^2\leqslant R^2,x\geqslant 0,y\geqslant 0\},$

故
$$S = 8S_1 = 8 \iint_{D_{xy}} \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} dxdy$$
$$= 8 \iint_{D} \sqrt{1 + \frac{x^2 + y^2}{R^2 - x^2 - y^2}} dxdy$$

答: 设球面方程为 $x^2+y^2+z^2=R^2$, 其第一卦限的部分面积为 S_1 , 则 $S_1:z=\sqrt{R^2-x^2-y^2}$,

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}, \ \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{R^2 - x^2 - y^2}},$$

其中 $D_{xy}=\{(x,y)|x^2+y^2\leqslant R^2, x\geqslant 0, y\geqslant 0\},$

故
$$S = 8S_1 = 8 \iint_{D_{xy}} \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} dxdy$$

$$= 8 \iint_{D_{xy}} \sqrt{1 + \frac{x^2 + y^2}{R^2 - x^2 - y^2}} dxdy$$

$$= 8 \int_0^{\frac{\pi}{2}} d\varphi \int_0^R \frac{R}{\sqrt{R^2 - \rho^2}} \rho d\rho = 4\pi R^2.$$

M:
$$\Sigma : z = x^2 + y^2$$
, $D_{xy} = \{(x,y)|x^2 + y^2 \le 1\}$,

解:
$$\Sigma : z = x^2 + y^2$$
, $D_{xy} = \{(x, y) | x^2 + y^2 \le 1\}$,
$$dS = \sqrt{1 + 4x^2 + 4y^2} dx dy$$

解:
$$\Sigma : z = x^2 + y^2$$
, $D_{xy} = \{(x,y)|x^2 + y^2 \le 1\}$,
$$dS = \sqrt{1 + 4x^2 + 4y^2} dxdy$$
 故 $S = \iint_{\Sigma} dS = \iint_{\Sigma} \sqrt{1 + 4x^2 + 4y^2} dxdy$

解:
$$\Sigma : z = x^2 + y^2, D_{xy} = \{(x, y) | x^2 + y^2 \le 1\},$$

$$dS = \sqrt{1 + 4x^2 + 4y^2} dx dy$$
故 $S = \iint_{\Sigma} dS = \iint_{D_{xy}} \sqrt{1 + 4x^2 + 4y^2} dx dy$

$$= \int_0^{2\pi} d\varphi \int_0^1 \sqrt{1 + 4\rho^2} \rho d\rho$$

曲面的面积 第一型曲面积分的计算

例2. 求旋转抛物面 $z = x^2 + y^2$ 上在平面z = 1下面的一部分曲面的面积.

解:
$$\Sigma : z = x^2 + y^2, D_{xy} = \{(x, y) | x^2 + y^2 \le 1\},$$

$$dS = \sqrt{1 + 4x^2 + 4y^2} dx dy$$
故 $S = \iint_{\Sigma} dS = \iint_{D_{xy}} \sqrt{1 + 4x^2 + 4y^2} dx dy$

$$= \int_0^{2\pi} d\varphi \int_0^1 \sqrt{1 + 4\rho^2} \rho d\rho$$

$$= 2\pi \cdot \frac{1}{8} \cdot \frac{2}{3} [(1 + 4\rho^2)^{\frac{3}{2}}] \Big|_0^1$$

曲面的面积 第一型曲面积分的计算

例2. 求旋转抛物面 $z = x^2 + y^2$ 上在平面z = 1下面的一部分曲面的面积.

解:
$$\Sigma : z = x^2 + y^2, D_{xy} = \{(x,y)|x^2 + y^2 \le 1\},$$

$$dS = \sqrt{1 + 4x^2 + 4y^2} dx dy$$
故 $S = \iint_{\Sigma} dS = \iint_{D_{xy}} \sqrt{1 + 4x^2 + 4y^2} dx dy$

$$= \int_0^{2\pi} d\varphi \int_0^1 \sqrt{1 + 4\rho^2} \rho d\rho$$

$$= 2\pi \cdot \frac{1}{8} \cdot \frac{2}{3} [(1 + 4\rho^2)^{\frac{3}{2}}] \Big|_0^1 = \frac{\pi}{6} (5\sqrt{5} - 1).$$

例3. 求圆柱面 $x^2 + y^2 = 1$ 位于平面z = 0上方与z = y下方那部分的侧面积.

例3. 求圆柱面 $x^2 + y^2 = 1$ 位于平面z = 0上方与z = y下方那部分的侧面积.

答案: 2.

▶ 若曲面∑的方程为参数方程:

$$r = r(u, v) = (x(u, v), y(u, v), z(u, v)),$$

其中 $(u, v) \in (\sigma) \subseteq \mathbf{R}^2$.

从几何上看, 曲面 Σ 是uOv 参数平面上的区域 (σ) 在映射r 下的像.

此时曲面 Σ 的面积为 $S = \iint_{(\sigma)} \parallel \textbf{\textit{r}}_u \times \textbf{\textit{r}}_v \parallel \mathrm{d}u\mathrm{d}v.$

▶ 若曲面∑的方程为参数方程:

$$r = r(u, v) = (x(u, v), y(u, v), z(u, v)),$$

其中 $(u, v) \in (\sigma) \subseteq \mathbf{R}^2$.

从几何上看, 曲面 Σ 是uOv 参数平面上的区域 (σ) 在映射r 下的像.

此时曲面 Σ 的面积为 $S = \iint\limits_{(\sigma)} \parallel \textbf{\textit{r}}_u \times \textbf{\textit{r}}_v \parallel \mathrm{d}u\mathrm{d}v.$

例. 求半径为R的球面面积S.

定义

函数 f 为空间有界曲面 Σ 上有界. 将 Σ 任意分割成 n 个小部 分 $\Delta S_i (i=1,2,\cdots,n)$, 其第 i 小块曲面的面积为 ΔS_i .

定义

函数 f 为空间有界曲面 Σ 上有界. 将 Σ 任意分割成 n 个小部 分 $\Delta S_i (i=1,2,\cdots,n)$, 其第 i 小块曲面的面积为 ΔS_i . 记 $d = \max_{1 \leqslant i \leqslant n} \{\Delta S_i$ 的直径 $\}$,任取点 $(\xi_i, \eta_i, \zeta_i) \in \Delta S_i$,作和 式 $\sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$,

定义

函数 f 为空间有界曲面 Σ 上有界. 将 Σ 任意分割成 n 个小部 分 $\Delta S_i (i=1,2,\cdots,n)$, 其第 i 小块曲面的面积为 ΔS_i .

记 $d = \max_{1 \leqslant i \leqslant n} \{\Delta S_i$ 的直径 $\}$,任取点 $(\xi_i, \eta_i, \zeta_i) \in \Delta S_i$,作和

式 $\sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$, 如果无论将 Σ 如何分割, 点 (ξ_i, η_i, ζ_i) 如何选

取, 当 $d \to 0$ 时, 上述和式有确定的极限, 则称函数 f 在 Σ 上可积, 极限值为 f 在 Σ 上的第一型曲面积分, 即

$$\iint_{\Sigma} f(x, y, z) dS = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$

定义

函数 f 为空间有界曲面 Σ 上有界. 将 Σ 任意分割成 n 个小部分 $\Delta S_i (i=1,2,\cdots,n)$, 其第 i 小块曲面的面积为 ΔS_i .

记 $d = \max_{1 \leqslant i \leqslant n} \{\Delta S_i$ 的直径 $\}$,任取点 $(\xi_i, \eta_i, \zeta_i) \in \Delta S_i$,作和

式 $\sum_{i=1}^n f(\xi_i, \eta_i, \zeta_i) \Delta S_i$, 如果无论将 Σ 如何分割, 点 (ξ_i, η_i, ζ_i) 如何选

 \mathbf{p} , 当 $d \to 0$ 时, 上述和式有确定的极限, 则称函数 f 在 Σ 上<mark>可积</mark>, 极限值为 f 在 Σ 上的第一型曲面积分, 即

 \mathbf{W} 队阻力 f 在 Σ 上的 \mathbf{s} 一 空 田 山 枳 \mathbf{f} , 即

$$\iint_{\Sigma} f(x, y, z) dS = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$

其中f(x,y,z)称为被积函数, Σ 称为积分曲面.

◆ロ > ◆昼 > ◆ 種 > ◆ 種 > ● ● の Q ®

• 当f(x,y,z)在分片光滑曲线 Σ 上连续时,f的第一型曲面积分必存在。

- 当f(x,y,z)在分片光滑曲线 Σ 上连续时,f的第一型曲面积分必存在.
- 面密度为连续函数 $\mu(x,y,z)$ 的光滑曲面 Σ 的质量为:

- 当f(x,y,z)在分片光滑曲线 Σ 上连续时,f的第一型曲面积分必存在.
- 面密度为连续函数 $\mu(x,y,z)$ 的光滑曲面 Σ 的质量为:

$$m = \iint_{\Sigma} f(x, y, z) dS$$

- 当f(x,y,z)在分片光滑曲线 Σ 上连续时,f的第一型曲面积分必存在.
- 面密度为连续函数 $\mu(x,y,z)$ 的光滑曲面 Σ 的质量为:

$$m = \iint\limits_{\Sigma} f(x, y, z) \mathrm{d}S$$

• 当 $f(x, y, z) \equiv 1$ 时,第一型曲面积分即为曲面的面积,即:

- 当f(x,y,z)在分片光滑曲线 Σ 上连续时,f的第一型曲面积分必存在。
- 面密度为连续函数 $\mu(x,y,z)$ 的光滑曲面 Σ 的质量为:

$$m = \iint\limits_{\Sigma} f(x, y, z) \mathrm{d}S$$

• 当 $f(x,y,z) \equiv 1$ 时,第一型曲面积分即为曲面的面积,即:

曲面
$$\Sigma$$
的面积 $=\iint\limits_{\Sigma}\mathrm{d}S$

利用曲面的面积元素,将第一型曲面积分化为二重积分来计算.

利用曲面的面积元素,将第一型曲面积分化为二重积分来计算. 设 Σ 为分片光滑曲面,函数 f 在 Σ 上连续,

利用曲面的面积元素,将第一型曲面积分化为二重积分来计算。 设 Σ 为分片光滑曲面,函数f在 Σ 上连续,

• 若曲面 Σ 的方程为 $z = z(x,y), (x,y) \in D_{xy},$ 则

利用曲面的面积元素,将第一型曲面积分化为二重积分来计算. 设 Σ 为分片光滑曲面,函数f在 Σ 上连续,

• 若曲面 Σ 的方程为 $z=z(x,y),(x,y)\in D_{xy},$ 则

$$\iint\limits_{\Sigma} f(x, y, z) dS = \iint\limits_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + z_x^2 + z_y^2} dx dy$$

利用曲面的面积元素,将第一型曲面积分化为二重积分来计算.

初用曲面的面积元素,符第一空曲面积分化为二重积分米订算。 设 Σ 为分片光滑曲面,函数f在 Σ 上连续,

• 若曲面 Σ 的方程为 $z=z(x,y),(x,y)\in D_{xy},$ 则

$$\iint\limits_{\Sigma} f(x,y,z) \mathrm{d}S = \iint\limits_{D_{xy}} f(x,y,z(x,y)) \sqrt{1 + z_x^2 + z_y^2} \mathrm{d}x \mathrm{d}y$$

• 若曲面 Σ 的方程为 $x = x(y, z), (y, z) \in D_{yz},$ 则

利用曲面的面积元素,将第一型曲面积分化为二重积分来计算. 设 Σ 为分片光滑曲面, 函数f在 Σ 上连续,

• 若曲面 Σ 的方程为 $z=z(x,y),(x,y)\in D_{xy},$ 则

$$\iint\limits_{\Sigma} f(x, y, z) dS = \iint\limits_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + z_x^2 + z_y^2} dx dy$$

• 若曲面 Σ 的方程为 $x = x(y, z), (y, z) \in D_{yz},$ 则

$$\iint\limits_{\Sigma} f(x, y, z) dS = \iint\limits_{D_{yz}} f(x(y, z), y, z) \sqrt{1 + x_y^2 + x_z^2} dy dz$$

利用曲面的面积元素,将第一型曲面积分化为二重积分来计算. 设 Σ 为分片光滑曲面,函数f在 Σ 上连续,

• 若曲面 Σ 的方程为 $z=z(x,y),(x,y)\in D_{xy},$ 则

$$\iint\limits_{\Sigma} f(x, y, z) dS = \iint\limits_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + z_x^2 + z_y^2} dx dy$$

• 若曲面 Σ 的方程为 $x=x(y,z),(y,z)\in D_{yz},$ 则

$$\iint\limits_{\Sigma} f(x,y,z) \mathrm{d}S = \iint\limits_{D_{yz}} f(x(y,z),y,z) \sqrt{1 + x_y^2 + x_z^2} \mathrm{d}y \mathrm{d}z$$

• 若曲面 Σ 的方程为 $y = y(x, z), (x, z) \in D_{xz},$

利用曲面的面积元素,将第一型曲面积分化为二重积分来计算. 设 Σ 为分片光滑曲面, 函数f在 Σ 上连续,

• 若曲面 Σ 的方程为 $z=z(x,y),(x,y)\in D_{xy},$ 则

$$\iint\limits_{\Sigma} f(x,y,z)\mathrm{d}S = \iint\limits_{D_{xy}} f(x,y,z(x,y)) \sqrt{1+z_x^2+z_y^2} \mathrm{d}x\mathrm{d}y$$

• 若曲面 Σ 的方程为 $x = x(y, z), (y, z) \in D_{uz},$ 则

$$\iint\limits_{\Sigma} f(x,y,z) \mathrm{d}S = \iint\limits_{D_{yz}} f(x(y,z),y,z) \sqrt{1 + x_y^2 + x_z^2} \mathrm{d}y \mathrm{d}z$$

• 若曲面 Σ 的方程为 $y = y(x, z), (x, z) \in D_{xz},$

$$\iint\limits_{\Sigma} f(x, y, z) dS = \iint\limits_{D_{xz}} f(x, y(x, z), z) \sqrt{1 + y_x^2 + y_z^2} dx dz$$

例1. 计算
$$\iint\limits_{\Sigma} \frac{\mathrm{d}S}{z},$$
 其中 Σ 为球面 $x^2+y^2+z^2=a^2$ 被平面 $z=h$

例1. 计算
$$\iint\limits_{\Sigma} \frac{\mathrm{d}S}{z}$$
, 其中 Σ 为球面 $x^2+y^2+z^2=a^2$ 被平面 $z=h$

$$\mathbf{R}$$: $\Sigma : z = \sqrt{a^2 - x^2 + y^2}$, $D_{xy} = \{(x, y) | x^2 + y^2 \le a^2 - h^2 \}$,

例1. 计算
$$\iint_{\Sigma} \frac{\mathrm{d}S}{z}$$
, 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面 $z = h$

M:
$$\Sigma : z = \sqrt{a^2 - x^2 + y^2}$$
, $D_{xy} = \{(x, y) | x^2 + y^2 \leqslant a^2 - h^2 \}$,
$$dS = \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy$$

例1. 计算
$$\iint_{\Sigma} \frac{\mathrm{d}S}{z}$$
, 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面 $z = h$

解:
$$\Sigma : z = \sqrt{a^2 - x^2 + y^2}$$
, $D_{xy} = \{(x, y) | x^2 + y^2 \leqslant a^2 - h^2 \}$,
$$dS = \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy$$

故 $\iint_{\Sigma} \frac{\mathrm{d}S}{z}$

例1. 计算
$$\iint_{\Sigma} \frac{\mathrm{d}S}{z}$$
, 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面 $z = h$

解:
$$\Sigma : z = \sqrt{a^2 - x^2 + y^2}$$
, $D_{xy} = \{(x, y) | x^2 + y^2 \leqslant a^2 - h^2 \}$,
$$dS = \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy$$

故
$$\iint_{\Sigma} \frac{\mathrm{d}S}{z} = \iint_{D_{Ty}} \frac{a}{a^2 - x^2 - y^2} \mathrm{d}x \mathrm{d}y$$

例1. 计算
$$\iint_{\Sigma} \frac{\mathrm{d}S}{z}$$
, 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面 $z = h$

解:
$$\Sigma : z = \sqrt{a^2 - x^2 + y^2}$$
, $D_{xy} = \{(x, y) | x^2 + y^2 \leqslant a^2 - h^2 \}$,
$$dS = \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy$$

故
$$\iint\limits_{\Sigma} \frac{\mathrm{d}S}{z} = \iint\limits_{D_{xy}} \frac{a}{a^2 - x^2 - y^2} \mathrm{d}x \mathrm{d}y$$

$$= a \int_0^{2\pi} d\varphi \int_0^{\sqrt{a^2 - h^2}} \frac{\rho}{a^2 - \rho^2} d\rho$$

例1. 计算
$$\iint_{\Sigma} \frac{\mathrm{d}S}{z}$$
, 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面 $z = h$

M:
$$\Sigma : z = \sqrt{a^2 - x^2 + y^2}$$
, $D_{xy} = \{(x, y) | x^2 + y^2 \le a^2 - h^2 \}$,
$$dS = \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy$$

故
$$\iint_{\Sigma} \frac{\mathrm{d}S}{z} = \iint_{D_{Ty}} \frac{a}{a^2 - x^2 - y^2} \mathrm{d}x \mathrm{d}y$$

$$= a \int_0^{2\pi} d\varphi \int_0^{\sqrt{a^2 - h^2}} \frac{\rho}{a^2 - \rho^2} d\rho$$

$$= 2\pi a \cdot \left(-\frac{1}{2}\ln(a^2 - \rho^2)\right|_0^{\sqrt{a^2 - h^2}}) = 2\pi a \ln \frac{a}{h}.$$

例2. 计算曲面积分
$$\iint\limits_{\Sigma}(z+y)\mathrm{d}S,$$
 其中 Σ 是由 $z=0,\;\;z=1$

与
$$z^2 + 1 = x^2 + y^2$$
 所围成的立体的表面.

例2. 计算曲面积分
$$\iint_{\Sigma} (z+y) dS$$
, 其中 Σ 是由 $z=0$, $z=1$

与
$$z^2 + 1 = x^2 + y^2$$
 所围成的立体的表面.

M:
$$\Sigma_1: z = 0$$
, $D_{xy} = \{(x,y)|x^2 + y^2 \le 1\}$, $dS = dxdy$,

例2. 计算曲面积分 $\iint\limits_{\Sigma}(z+y)\mathrm{d}S,$ 其中 Σ 是由 $z=0,\;\;z=1$

与 $z^2 + 1 = x^2 + y^2$ 所围成的立体的表面.

\mathbf{M}: $\Sigma_1: z = 0$, $D_{xy} = \{(x, y)|x^2 + y^2 \le 1\}$, dS = dxdy,

$$\iint_{\Sigma_1} (z+y) \mathrm{d}S$$

例2. 计算曲面积分
$$\iint_{\Sigma} (z+y) dS$$
, 其中 Σ 是由 $z=0$, $z=1$

与
$$z^2 + 1 = x^2 + y^2$$
 所围成的立体的表面.

$$\mathbf{M}$$: $\Sigma_1: z = 0$, $D_{xy} = \{(x, y)|x^2 + y^2 \le 1\}$, $dS = dxdy$,

$$\iint_{\Sigma_1} (z+y) dS = \iint_{x^2+y^2 \leqslant 1} y dx dy = 0,$$

例2. 计算曲面积分 $\iint_{\Sigma} (z+y) dS$, 其中 Σ 是由z=0, z=1

与 $z^2 + 1 = x^2 + y^2$ 所围成的立体的表面.

\mathbf{M}: $\Sigma_1: z = 0$, $D_{xy} = \{(x, y)|x^2 + y^2 \le 1\}$, dS = dxdy,

$$\iint_{\Sigma_1} (z+y) dS = \iint_{x^2+y^2 \leqslant 1} y dx dy = 0,$$

 $\Sigma_2: z = 1, \ D_{xy} = \{(x, y) | x^2 + y^2 \le 2\}, \ dS = dxdy,$

例2. 计算曲面积分 $\iint_{\Sigma} (z+y) dS$, 其中 Σ 是由z=0, z=1

与 $z^2 + 1 = x^2 + y^2$ 所围成的立体的表面.

\mathbf{M}: $\Sigma_1: z = 0$, $D_{xy} = \{(x, y)|x^2 + y^2 \le 1\}$, dS = dxdy,

$$\iint\limits_{\Sigma_1}(z+y)\mathrm{d}S=\iint\limits_{x^2+y^2\leqslant 1}y\mathrm{d}x\mathrm{d}y=0,$$

 $\Sigma_2 : z = 1, \ D_{xy} = \{(x, y) | x^2 + y^2 \le 2\}, \ dS = dxdy,$

$$\iint_{\Sigma_2} (z+y) \mathrm{d}S$$

例2. 计算曲面积分 $\iint_{\Sigma} (z+y) dS$, 其中 Σ 是由z=0, z=1

与 $z^2 + 1 = x^2 + y^2$ 所围成的立体的表面.

\mathbf{M}: $\Sigma_1: z = 0$, $D_{xy} = \{(x, y)|x^2 + y^2 \le 1\}$, dS = dxdy,

$$\iint\limits_{\Sigma_1}(z+y)\mathrm{d}S=\iint\limits_{x^2+y^2\leqslant 1}y\mathrm{d}x\mathrm{d}y=0,$$

 $\Sigma_2 : z = 1, \ D_{xy} = \{(x, y) | x^2 + y^2 \le 2\}, \ dS = dxdy,$

$$\iint_{\Sigma_2} (z+y) dS = \iint_{x^2+y^2 \le 2} (1+y) dx dy = 2\pi,$$

$$\Sigma_3: z = \sqrt{x^2 + y^2 - 1}, \ D_{xy} = \{(x, y) | 1 \le x^2 + y^2 \le 2\},$$

$$\Sigma_3: z = \sqrt{x^2 + y^2 - 1}, \ D_{xy} = \{(x, y) | 1 \leqslant x^2 + y^2 \leqslant 2\},$$

$$\mathrm{d}S = \sqrt{\frac{2x^2 + 2y^2 - 1}{x^2 + y^2 - 1}} \mathrm{d}x \mathrm{d}y, \ \mathrm{例}$$

$$\Sigma_3: z = \sqrt{x^2 + y^2 - 1}, \ D_{xy} = \{(x, y) | 1 \leqslant x^2 + y^2 \leqslant 2\},$$

$$dS = \sqrt{\frac{2x^2 + 2y^2 - 1}{x^2 + y^2 - 1}} dx dy,$$
 則

$$\iint_{\Sigma_3} (z+y) \mathrm{d}S$$

$$\Sigma_3: z=\sqrt{x^2+y^2-1},\ D_{xy}=\{(x,y)|1\leqslant x^2+y^2\leqslant 2\},$$

$$\mathrm{d}S=\sqrt{\frac{2x^2+2y^2-1}{x^2+y^2-1}}\mathrm{d}x\mathrm{d}y,$$
 則

$$\iint_{\Sigma_3} (z+y) dS = \iint_{1 \le x^2 + y^2 \le 2} (\sqrt{x^2 + y^2 - 1} + y) \cdot \sqrt{\frac{2x^2 + 2y^2 - 1}{x^2 + y^2 - 1}} dx dy$$

$$\begin{split} \Sigma_3: z &= \sqrt{x^2 + y^2 - 1}, \ D_{xy} = \{(x,y) | 1 \leqslant x^2 + y^2 \leqslant 2\}, \\ \mathrm{d}S &= \sqrt{\frac{2x^2 + 2y^2 - 1}{x^2 + y^2 - 1}} \mathrm{d}x \mathrm{d}y, \, \text{II} \\ \iint\limits_{\Sigma_3} (z + y) \mathrm{d}S &= \iint\limits_{1 \leqslant x^2 + y^2 \leqslant 2} (\sqrt{x^2 + y^2 - 1} + y) \cdot \sqrt{\frac{2x^2 + 2y^2 - 1}{x^2 + y^2 - 1}} \mathrm{d}x \mathrm{d}y \end{split}$$

 $= \iint \sqrt{2x^2 + 2y^2 - 1} dx dy = (\sqrt{3} - \frac{1}{3})\pi,$

 $1 \le x^2 + y^2 \le 2$

$$\Sigma_3: z = \sqrt{x^2 + y^2 - 1}, \ D_{xy} = \{(x, y) | 1 \leqslant x^2 + y^2 \leqslant 2\},$$

$$\mathrm{d}S = \sqrt{\frac{2x^2 + 2y^2 - 1}{x^2 + y^2 - 1}} \mathrm{d}x \mathrm{d}y,$$
則

$$\iint_{\Sigma_3} (z+y) dS = \iint_{1 \leqslant x^2 + y^2 \leqslant 2} (\sqrt{x^2 + y^2 - 1} + y) \cdot \sqrt{\frac{2x^2 + 2y^2 - 1}{x^2 + y^2 - 1}} dx dy$$
$$= \iint_{1 \leqslant x^2 + y^2 \leqslant 2} \sqrt{2x^2 + 2y^2 - 1} dx dy = (\sqrt{3} - \frac{1}{3})\pi,$$

故
$$\iint_{\Sigma} (z+y) dS = 2\pi + (\sqrt{3} - \frac{1}{3})\pi = (\sqrt{3} + \frac{5}{3})\pi.$$

例3. 计算
$$\iint\limits_{\Sigma} \frac{\mathrm{d}S}{x^2 + y^2 + z^2},$$

其中
$$\Sigma : x^2 + y^2 = a^2, 0 \leqslant z \leqslant h \ (a > 0, h > 0).$$

例3. 计算
$$\iint_{\Sigma} \frac{\mathrm{d}S}{x^2 + y^2 + z^2}$$
,

其中
$$\Sigma: x^2 + y^2 = a^2, 0 \leqslant z \leqslant h \ (a > 0, h > 0).$$

解: 由对称性知
$$\iint_{\Sigma} \frac{\mathrm{d}A}{x^2 + y^2 + z^2} = 4 \iint_{\Sigma_1} \frac{\mathrm{d}A}{a^2 + z^2}$$
, 其中 Σ_1 为 Σ

在第一卦限的部分.

例3. 计算
$$\iint_{\Sigma} \frac{\mathrm{d}S}{x^2 + y^2 + z^2},$$

其中
$$\Sigma : x^2 + y^2 = a^2, 0 \leqslant z \leqslant h \ (a > 0, h > 0).$$

解: 由对称性知
$$\iint_{\Sigma} \frac{\mathrm{d}A}{x^2 + y^2 + z^2} = 4 \iint_{\Sigma_1} \frac{\mathrm{d}A}{a^2 + z^2}$$
, 其中 Σ_1 为 Σ

在第一卦限的部分.

$$\Sigma_1 : x = \sqrt{a^2 - y^2}, \ D_{yz} = \{(x, y) | 0 \le y \le a, 0 \le z \le h\},\$$

例3. 计算
$$\iint\limits_{\Sigma} \frac{\mathrm{d}S}{x^2 + y^2 + z^2},$$

其中
$$\Sigma: x^2+y^2=a^2, 0\leqslant z\leqslant h\ (a>0, h>0).$$

解: 由对称性知
$$\iint_{\Sigma} \frac{\mathrm{d}A}{x^2 + y^2 + z^2} = 4 \iint_{\Sigma_1} \frac{\mathrm{d}A}{a^2 + z^2}$$
, 其中 Σ_1 为 Σ

在第一卦限的部分

$$\Sigma_1 : x = \sqrt{a^2 - y^2}, \ D_{yz} = \{(x, y) | 0 \le y \le a, 0 \le z \le h\},$$

$$dS = \frac{a}{\sqrt{a^2 - y^2}} dy dz,$$

例3. 计算
$$\iint\limits_{\Sigma} \frac{\mathrm{d}S}{x^2 + y^2 + z^2},$$

其中
$$\Sigma : x^2 + y^2 = a^2, 0 \leqslant z \leqslant h \ (a > 0, h > 0).$$

解: 由对称性知
$$\iint_{\Sigma} \frac{\mathrm{d}A}{x^2 + y^2 + z^2} = 4 \iint_{\Sigma_1} \frac{\mathrm{d}A}{a^2 + z^2}$$
, 其中 Σ_1 为 Σ

在第一卦限的部分

$$\Sigma_1 : x = \sqrt{a^2 - y^2}, \ D_{yz} = \{(x, y) | 0 \le y \le a, 0 \le z \le h\},$$

$$dS = \frac{a}{\sqrt{a^2 - y^2}} dy dz,$$

故原式 =
$$4\iint\limits_{D_{yz}} \frac{1}{a^2 + z^2} \cdot \frac{a}{\sqrt{a^2 - y^2}} \mathrm{d}y \mathrm{d}z$$

例3. 计算
$$\iint\limits_{\Sigma} \frac{\mathrm{d}S}{x^2 + y^2 + z^2},$$

其中
$$\Sigma: x^2 + y^2 = a^2, 0 \leqslant z \leqslant h \ (a > 0, h > 0).$$

解: 由对称性知
$$\iint_{\Sigma} \frac{\mathrm{d}A}{x^2 + y^2 + z^2} = 4 \iint_{\Sigma_1} \frac{\mathrm{d}A}{a^2 + z^2}$$
, 其中 Σ_1 为 Σ

在第一卦限的部分

$$\Sigma_1 : x = \sqrt{a^2 - y^2}, \ D_{yz} = \{(x, y) | 0 \le y \le a, 0 \le z \le h\},$$

$$dS = \frac{a}{\sqrt{a^2 - y^2}} dy dz,$$

故原式 =
$$4\iint\limits_{D} \frac{1}{a^2 + z^2} \cdot \frac{a}{\sqrt{a^2 - y^2}} \mathrm{d}y \mathrm{d}z = 2\pi \arctan\frac{h}{a}.$$

说明

说明

• 对第一型曲面积分,被积函数f(x,y,z)是定义在 Σ 上的,应满足曲线 Σ 的方程,故可以利用 Σ 的方程来化简被积函数.

- 对第一型曲面积分,被积函数f(x,y,z)是定义在 Σ 上的,应满足曲线 Σ 的方程,故可以利用 Σ 的方程来化简被积函数.
- 将第一型曲线积分化为二重积分的过程为:

- 对第一型曲面积分, 被积函数 f(x,y,z) 是定义在 Σ 上的, 应满足曲线 Σ 的方程, 故可以利用 Σ 的方程来化简被积函数.
- 将第一型曲线积分化为二重积分的过程为:
 - (1) 分析被积曲面 Σ , 写成显式方程, 找其投影区域, 并求面积元素;

- 对第一型曲面积分,被积函数f(x,y,z)是定义在 Σ 上的,应满足曲线 Σ 的方程,故可以利用 Σ 的方程来化简被积函数.
- 将第一型曲线积分化为二重积分的过程为:
 - (1) 分析被积曲面 Σ , 写成显式方程, 找其投影区域, 并求面积元素;
 - (2) 将曲面方程代入被积函数,将积分区域换成投影区域,将积分微元换成面积元素,转化为二重积分.

- 对第一型曲面积分,被积函数f(x,y,z)是定义在 Σ 上的,应满足曲线 Σ 的方程,故可以利用 Σ 的方程来化简被积函数.
- 将第一型曲线积分化为二重积分的过程为:
 - (1) 分析被积曲面 Σ , 写成显式方程, 找其投影区域, 并求面积元素;
 - (2) 将曲面方程代入被积函数,将积分区域换成投影区域,将积分微元换成面积元素,转化为二重积分.
- 第一型曲面积分具有和三重积分类似的奇偶对称性和轮换对 称性.

例4. 设
$$\Sigma: z = \sqrt{4 - x^2 - y^2}$$
,则
$$\iint \frac{\mathrm{d}S}{1 + \sqrt{x^2 + y^2 + z^2}} = \underline{\hspace{1cm}}$$

例4. 设
$$\Sigma:z=\sqrt{4-x^2-y^2},$$
 则
$$\iint \frac{\mathrm{d}S}{1+\sqrt{x^2+y^2+z^2}} = \underline{\qquad}.(\frac{8}{3}\pi)$$

例4. 设
$$\Sigma: z = \sqrt{4 - x^2 - y^2}$$
,则
$$\iint \frac{\mathrm{d}S}{1 + \sqrt{x^2 + y^2 + z^2}} = \underline{\qquad} . (\frac{8}{3}\pi)$$

例5. 计算
$$\iint_{\Sigma} (x + |y|) dS$$
, 其中 $\Sigma : |x| + |y| + |z| = 1$.

例4. 设
$$\Sigma:z=\sqrt{4-x^2-y^2}$$
, 则
$$\iint \frac{\mathrm{d}S}{1+\sqrt{x^2+y^2+z^2}} = \underline{\qquad}.(\frac{8}{3}\pi)$$

例5. 计算
$$\iint_{\Sigma} (x + |y|) dS$$
, 其中 $\Sigma : |x| + |y| + |z| = 1$. $(\frac{4\sqrt{3}}{3})$

例6. 计算
$$\iint_{\Sigma} (xy + yz + zx) dS$$
, 其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 被柱

面 $x^2 + y^2 = 2ax(a > 0)$ 所截得的部分.

例6. 计算
$$\iint_{\Sigma} (xy + yz + zx) dS$$
, 其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 被柱

面 $x^2 + y^2 = 2ax(a > 0)$ 所截得的部分.

解: 由对称性知 $\iint_{\Sigma} xy dS = \iint_{\Sigma} yz dS = 0$,

例6. 计算
$$\iint_{\Sigma} (xy + yz + zx) dS$$
, 其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 被柱

解: 由对称性知
$$\iint xy dS = \iint yz dS = 0$$
,

面 $x^2 + y^2 = 2ax(a > 0)$ 所截得的部分.

而
$$\iint_{\Sigma} zx dS$$

例6. 计算
$$\iint_{\Sigma} (xy + yz + zx) dS$$
, 其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 被柱

面
$$x^2 + y^2 = 2ax(a > 0)$$
所截得的部分.

解: 由对称性知
$$\iint_{\Sigma} xy dS = \iint_{\Sigma} yz dS = 0$$
,

曲面的面积 第一型曲面积分的计算

例6. 计算
$$\iint_{\Sigma} (xy + yz + zx) dS$$
, 其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 被柱

面 $x^2 + y^2 = 2ax(a > 0)$ 所截得的部分.

解: 由对称性知 $\iint_{\Sigma} xy dS = \iint_{\Sigma} yz dS = 0$,

$$\overline{\text{m}} \iint\limits_{\Sigma} zx dS = \sqrt{2} \iint\limits_{x^2 + y^2 \leqslant 2ax} \sqrt{x^2 + y^2} x dx dy = \frac{64\sqrt{2}}{15} a^4.$$