Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) Technical Papers 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 55 O3 5e. TASK NUMBER OCODP 5f. WORK UNIT NUMBER 549867 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/PRS 11. SPONSOR/MONITOR'S NUMBER(S) 5 Pollux Drive Edwards AFB CA 93524-7048 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 20030206 072 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE OF ABSTRACT OF PAGES **PERSON** Leilani Richardson 1. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code)

classified

Unclassified

Unclassified

(661) 275-5015

99-2:34

/ Spreadsheet

MEMORANDUM FOR PRR (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO)

20 May 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0104

Tay Levine. "AFRL Propulsion Directorate Propulsion Sciences & Advanced Concepts Division"

(Foreign Release

Dist

2

Air Force Research Laboratory

Propulsion Directorate

Propulsion Sciences & Advanced Concepts Division

Rocket-Propulsion Research

- Advanced propellants
- Propulsion materials and components
- Aerophysics

Propulsion Sciences & Advanced **Concepts Division**

Dr. Steve Rodgers Dr. Phil Kessel

525-5230 525-5591

Wright-Patterson AFB OH

Maj Walt Lauderdale, Lubrication 785-5568

Maj Kenneth Phillipart High Speed Systems 785-5221

Maj Mike MacLachlan Propulsion Material Applications

525-5230

Dr. Pat Carrick **Propellants** 525-5883

Applications & Assessmen Dr. Ray Moszee 525-5534 Steve Mozes

Technical Specialties

- Hypersonics
- Lubricants and mechanical systems
- Advanced-concept system analysis
- Fuels and propellants
- Plume phenomenology
- Advanced components

Aerophysics

Rocket Combustion-from Propellant Injection to Plume Dissipation

- Supercritical combustion
- Plumes

Nonequilibrium Flow Phenomena

Microthruster concept (1 to 100 µN thrust range)

Payoff

- Reduced production/launch costs for satellites
- Robust tracking via dual mode IR / UV sensors
- Increased spacecraft lifetime & survivability
- Speed deployment of new energetic propellants

Goals

- Identify the key mechanisms which control:
- The performance characteristics of microthrusters
- The intensity and spectrum of plume radiation signatures
- The decomposition and combustion of emerging energetic materials
- Contamination effects on spacecraft systems
- Design and evaluate novel microthruster concepts
- Provide 3D simulation tools for signature/contamination modeling

Air Force Micropropulsion Mission Requirements

Near-Earth orbital maneuver requirements

– Fast response time ⇒ High thrust

- Kinetic kill

⇒ Very high thrust

Many maneuvers ⇒ High specific impulse

Satellite size requirements

Microsatellites (1 g to 1 kg) ⇒

Communication/surveillance constellations

 Small satellites (> 100 kg) ⇒ Dedicated satellite communication and surveillance

 A whole range of thrusters is needed to fulfill this broad spectrum of requirements ⇒ Chemical, solid, electric, PDE

Critical need for advanced propulsion concepts and Simple scaled-down versions of existing thrusters do not maintain performance levels needed \Rightarrow approaches

Microwave Microthruster

Description

- Electrodeless, vortex-stabilized arcjet thruster Magnetron
- Higher specific impulse than chemical systems; more thrust than higher specific-impulse electric devices
- Reduced erosion; increased payload mass; increased lifetime
- Broad range of propellants: N₂, He, H₂, NH₃, H₂O
- Broad range of power levels: 60 watts 30 kilowatts ⇒ Versatile mission profile

Resonant Cavity

Operation: Magnetron converts electrical energy to microwaves that heat propellant gases to plasma temperatures.

10-cm-diameter thruster operating at 5 kW

Mission Applications

- · Station keeping, attitude control, orbit boost
- Systems: Spartan, Mighty Sat, International Space Station, Shuttle payload boost

Program

- Improve thrust and efficiency by reducing energy loss (heat) to the boundary layer through viscous dissipation
- Joint experimental and analytical effort by AFRL/PRS with Penn State University

Comprehensive Propulsion Research

Airbreathing
Propulsion
Ramjet
Scramjet
TBCC
RBCC
PDE

Rocket
Propulsion
Liquid
Solid
Hybrid
RBCC
PDRE

Aeropropulsion expertise Combined Rocket and

— Air Force Research Laboratory –

Manifold Cross Flow Can Cause Fan Misalignments and Reduce Chamber Lifetime

A variation in discharge coefficient could shift the spray sngle, potentially allowing oxidizer to reach the wall and cause failure or reduce lifetime.

Cant angles as large as 13° have been predicted.

Misalignment in the Fastrac outer row would be 5° at most.

Potential canting

due to cross flow effects

Potential misalignment

Optimum

— Air Force Research Laboratory —

COLD FLOW INJECTOR CHARACTERIZATION FACILITY

<u>Hardware</u>	<u>ire</u>	Data ac
Gas simulants	$N_2(g)$, He(g)	16 Ch
Liquid simulant	$H_2O(1)$	A
Window Purge gas	$N_2(g)$, He(g)	M
N_2 mass flow rate	.20 lbm/s	Allen
He mass flow rate	.20 lbm/s	V
H_2O mass flow rate	4.0 lbm/s	Mech
Max. test art. press.	2000 psi.	27 tuł
Max. Fuel sim. press.	3000 psi.	Optic
Max. Ox sim. press.	3000 psi.	Oxfor
Electrical connections	120V, 208V (1¢:	Innov
	10A, 3\phi 20A and	Inj. se
		`,

Windowed test chamber with 5.5" of axial injector travel and a linear translating injector stage with 5" total radial travel inside chamber.

Ability to simulate manifold cross velocities to 30 ft/s

ata acquisition and control

16 Channel, 12 Bit National Instruments A/D board run by a 486/33 PC running MS Quick Basic.

Allen-Bradley PLC system for Remote

Valve Operation

Mechanical Diagnostics

27 tube traversable linear patternator

Optical Diagnostics

Oxford 20 kHz, 20W Cu vapor laser.

Innova 4W and 10W Argon Ion lasers.

Inj. seed, 2 plse Yag (1.5J at 1064 nm) Continuum ND6000 Dye laser.

Princ. Inst and Stanford gated CCD cams.

Infinity and Questar LD microscopes.

Aerometrics 2 comp. PDPA.

Malvern 2600 particle sizer.

CCD camera with strobelight and VCR

Injector/Combustor Technology

— Air Force Research Laboratory –

SUPERCRITICAL DROP/JET INJECTION FACILITY

Data acquisition and control	64-channel National Instrument AMUX-	64T analog multiplexer with special	provision for temperature sensor.NB-	MIO-16X multifunction I/O board with	analog-to-digital converter for Macintosh	NuBus computer.	Labmaster DMA Counter/timer/ ADC/	Digital I/O	Scion Corp frame grabber	LabView GUI control interface.	Several PC and Power Macintosh	HP programmable timimg/pulse generator	Optics	Infinity long-distance microscope	PL-8010 Continuum Nd: YAG pulsed dye	laser,	high speed strobe light,
Hardware	Stainless	2 facing sapphire	windows of 5.25" dia	2 facing slot-shaped	quartz (4.75"x0.50")	2000 psi	473 K	02, N2, HC, and	mixtures	N2, He, and mixtures	400 mg/s	85 K	up to 10,000 SLPM	02, CO, HC	120V, 208V (1¢:	50A).	
	Chamber	Optical access				Max chamb. press.	Chamb. temp.	Injected fluid		Ambient fluid	Injected mass flow rate	Cryogenic cooler	Mass flowmeters	Gas detection	Electrical connections	20A, 3\psi 30A and	

Injector/Combustor Technology

Interlaced PULNix CCD camera

Princeton Instrument camera,

Valve, Filter, Propellant Tank

 $w \sim 1 \text{ to } 100 \text{ } \mu m$ $T_w \sim 600 \text{ to } 1200 \text{ } K$ $\alpha = 54.74^\circ$ $t \sim 100 - 250 \text{ } \mu m$

Desired: $w = 100 \mu m$ $T_w = 600 \text{ K}$ $\alpha = 54.74^{\circ}$ $t = 200 \mu m$ Slot length = 1 cm Slot length = 1 cm No. of slots = 40

PERSONNEL

Aerophysics Branch Organization

(PRSA)

Branch Chief : Jay Levine

Marietta Krissack : Secretary (Shared with other Branches) Chris Sandstrom : Administration and finance (Shared with other Branches)

Working Groups

 $\frac{N o neg uilibrium}{(Ingrig Wysong)} \underline{Flows}$

1. Andrew Ketsdever

David Campbell
 Dean Wadsworth
 Ghanshyam Vaghjiani
 Angelo Alfano

Combustion Devices (Doug Talley)	 Victor Burnley Rodger Benedict Ed Coy Pete Strakey Cliff Lusby Mike Mckee Richard Cohn
<u>P lu m e s</u> (Tom Smith)	 Marty Venner Dustin Ziegler Rov Hilton Robert Lyon Alan Kawasaki

Robert Lyon
 Alan Kawasaki
 Bill Calhoon

8. Tim Auyeung 9. Mike Griggs 10. Bruce Cheroudi 11. Mark Wilson

Palace K nights Ron Bates: Stanford Mark Archambault: Stanford

66/9

PRESSURE DEPENDENT MIXING LAYER STRUCTURE

Nitrogen/nitrogen system (P_{cr} = 493 psi, T_{cr} = 126 K) $T_{inj} = 128 \text{ K}$, $T_{amb} = 300 \text{ K}$, mass flow = 350 mg/s

Low Pres. Subcritical Droplets

Mod. Pres. Supercritical Ligaments

High Pres. Supercritical Gas layers

High Pressure and Supercritical Combustion (6.1)

Transcritical Oxygen Drops in Nitrogen

OBJECTIVE

Determine the mechanisms which control the breakup, transport, mixing, and combustion of supercritical droplets, jets, and sprays.

APPROACH

- Piezoelectic cryogenic jet and drop generator in chilled helium.
- Produce acoustic waves using metallic actuators, design resonant modes, focus acoustic waves.
- Reduce optical path lengths.
- •Use spontaneous Raman scattering from a frequency doubled Nd-YAG laser.

Basic Research in Nonequilibrium Flow Phenomena

Objectives/Goals

- Identify the key mechanisms which control:
- The performance characteristics of microthrusters
- The intensity and spectrum of plume radiation signatures
- The decomposition and combustion of emerging energetic materials
- Contamination effects on spacecraft systems
- Design and evaluate novel microthruster concepts
 - Provide 3D simulation tools for signature/contamination of missiles and spacecraft