Линейная Алгебра и Геометрия

Лекторий ПМИ ФКН

3-4 июня 2016

Определения

1. Алгебраическая форма комплексного числа. Сложение, умножение и деление комплексных чисел в алгебраической форме.

Запись z=a+bi, где $a,b\in\mathbb{R}$, называется алгебраической формой комплексного числа $z\in\mathbb{C}.$

 $a = \operatorname{Re} z$ — действительная часть числа z.

 $b = \operatorname{Im} z$ — мнимая часть числа z.

Сложение:

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$

Умножение:

$$(a+bi)(c+di) = ac + adi + bci + bdi^2 = (ac - bd) + (ad + bc)i.$$

Деление:

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2}, \quad (c+di) \neq 0.$$

В делении используется формула обратного элемента:

$$\frac{1}{a+bi} = \frac{\overline{a+bi}}{|a+bi|^2} = \frac{a-bi}{a^2+b^2}.$$

2. Комплексное сопряжение и его свойства: сопряжение суммы и произведения комплексных чисел.

Отображение $\mathbb{C} \to \mathbb{C} : a + bi \mapsto a - bi$ называется (комплексным) сопряжением. Само число $\overline{z} = a - bi$ называется (комплексно) сопряженным к числу z = a + bi.

Для любых двух комплексных числе $z,w\in\mathbb{C}$ выполняется, что

- (a) $\overline{z+w} = \overline{z} + \overline{w}$;
- (b) $\overline{zw} = \overline{z} \cdot \overline{w}$.

3. Геометрическая модель комплексных чисел, интерпретация в ней сложения и сопряжения.

Заметим, что поле комплексных числе $\mathbb{C} = \{(a,b) \mid a,b \in \mathbb{R}\}$ равно \mathbb{R}^2 . Следовательно, комплексные числа можно представить как точки на действительной плоскости \mathbb{R}^2 , или сопоставить их векторам.

В таком представлении сложение комплексных чисел сопоставляется со сложением векторов, а сопряжение — с отражением относительно оси $Ox(\operatorname{Re} z)$.

4. Модуль комплексного числа и его свойства: неотрицательность, неравенство треугольника, модуль произведения двух комплексных чисел.

Модулем комплексного числа z=a+bi называется длина соответствующего вектора. Обозначение: $|z|; |a+bi| = \sqrt{a^2+b^2}$.

Свойства модуля:

- (a) $|z| \ge 0$, причем |z| = 0 тогда и только тогда, когда z = 0;
- (b) $|z + w| \le |z| + |w|$ неравенство треугольника;
- (c) $z \cdot \overline{z} = |z|^2$;
- (d) $|zw| = |z| \cdot |w|$;

5. Аргумент комплексного числа.

Аргументом комплексного числа $z \neq 0$ называется всякий угол φ такой что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}; \quad \sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

6. Тригонометрическая форма комплексного числа.

Используя аргумент, можно представить комплексное число следующим образом:

$$\begin{vmatrix} a = |z|\cos\varphi \\ b = |z|\sin\varphi \end{vmatrix} \Rightarrow z = a + bi = |z|\cos\varphi + i|z|\sin\varphi = |z|(\cos\varphi + i\sin\varphi)$$

Запись $z=|z|(\cos\varphi+i\sin\varphi)$ называется тригонометрической формой комплексного числа z.

7. Формула Муавра.

Пусть $z = |z| (\cos \varphi + i \sin \varphi)$. Тогда:

$$z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi)) \quad \forall n \in \mathbb{Z}.$$

8. Извлечение корней из комплексных чисел.

Пусть $n \in \mathbb{N}$ и $n \geqslant 2$.

Корнем n-й степени из числа z называется всякое $w \in \mathbb{C}$: $w^n = z$. То есть

$$\sqrt[n]{z} = \{ w \in \mathbb{C} \mid w^n = z \}.$$

2

9. Решение квадратных уравнений с комплексными коэффициентами.

Пусть дано квадратное уравнение $az^2 + bz + c = 0$, где $a, b, c \in \mathbb{C}$ и $a \neq 0$. Тогда имеем:

$$z^{2} + \frac{b}{a}z + \frac{c}{a} = 0$$

$$z^{2} + 2\frac{b}{2a}z + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

$$\left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$z + \frac{b}{2a} \in \sqrt{\frac{b^{2} - 4ac}{4a^{2}}} = \frac{\sqrt{b^{2} - 4ac}}{2a}$$

То есть все решения — это $z_1=\frac{-b+d_1}{2a},\ z_2=\frac{-b+d_2}{2a},$ где $\{d_1,d_2\}=\sqrt[3]{b^2-4ac}.$ В частности, квадратное уравнение всегда имеет комплексный корень, а при $b^2-4ac\neq 0$ два корня.

10. Основная теорема алгебры комплексных чисел.

Всякий многочлен $P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$ степени n, где $n \ge 1$, $a_n \ne 0$, и $a_0, \ldots, a_n \in \mathbb{C}$ имеет корень.

11. Овеществление комплексного векторного пространства и его размерность.

V — векторное пространство над $\mathbb C$. Овеществление пространства V — это то же пространство V, рассматриваемое как пространство над $\mathbb R$. Обозначение: $V_{\mathbb R}$.

Пусть dim $V < \infty$. Тогда dim $V_{\mathbb{R}} = 2 \dim V$.

12. Комплексификация вещественного векторного пространства и его размерность.

Пусть W — пространство над \mathbb{R} . Комплексификация пространства W — это множество $W \times W = W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\}$ с операциями $(u_1,v_1) + (u_2,v_2) = (u_1+u_2,v_1+v_2),$ (a,b)(u,v) = (au-bv,av+bu).

 $\dim W^{\mathbb{C}} = \dim W$, где $W^{\mathbb{C}}$ — пространство над \mathbb{C} .

13. Сумма двух подпространств векторного пространства.

Пусть V — конечномерное векторное пространство, а U и W — подпространства.

Сумма подпространств U и W — это множество.

$$U + W = \{u + w \mid u \in U, w \in W\}$$

14. Теорема о связи размерности суммы двух подпространств с размерностью их пересечения.

Пусть V — конечномерное векторное пространство, а U и W — подпространства.

 $\dim (U \cap W) = \dim U + \dim W - \dim (U + W)$

15. **Прямая сумма двух подпространств векторного пространства.** Пусть V — конечномерное векторное пространство, а U и W — подпространства.

Если $U \cap W = \{0\}$, то U + W называется прямой суммой.

16. Матрица перехода от одного базиса векторного пространства к другому.

3

Пусть V — векторное пространство, $\dim V = n$, вектора e_1, \ldots, e_n — базис, а e'_1, \ldots, e'_n — некий набор из n векторов. Тогда каждый вектор из этого набора линейно выражается через базис.

$$e'_{j} = \sum_{i=1}^{n} c_{ij} e_{i}, \quad c_{ij} \in F$$

$$(e'_{1}, \dots, e'_{n}) = (e_{1}, \dots, e_{n}) \cdot C, \quad C = (c_{ij})$$

То есть мы получили матрицу, где в j-ом столбце стоят коэффициенты линейного разложения вектора e_j' в базисе (e_1, \ldots, e_n) . Теперь пусть e_1', \ldots, e_n' — тоже базис в V.

Матрица C называется матрицей перехода от базиса (e_1, \ldots, e_n) к базису (e'_1, \ldots, e'_n) .

17. Формула преобразования координат вектора при замене базиса векторного пространства.

Имеем два базиса пространства $V, (e_1, \ldots, e_n)$ и (e'_1, \ldots, e'_n) , и матрицу перехода C такую, что $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C$. Возьмем некий вектор v и разложим его по обоим базисам.

$$v \in V \Rightarrow v = x_1 e_1 + \dots + x_n e_n, \quad x_i \in F$$

 $v = x_1' e_1' + \dots + x_n' e_n', \quad x_i' \in F$

Формула преобразования координат при переходе к другому базису:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} \qquad \text{или} \qquad x_i = \sum_{j=1}^n c_{ij} x_j'$$

18. Линейное отображение.

Пусть V и W — два векторных пространства над полем F.

Отображение $f:V\to W$ называется линейным, если:

- (a) $f(u_1 + u_2) = f(u_1) + f(u_2), \quad \forall u_1, u_2 \in V;$
- (b) $f(\alpha u) = \alpha f(u)$, $\forall u \in V, \forall \alpha \in F$.

19. Изоморфизм векторных пространств. Изоморфные векторные пространства.

Пусть V и W — два векторных пространства над полем F.

Отображение $\varphi:V\to W$ называется изоморфизмом, если φ линейно и биективно. Обозначение: $\varphi:V\stackrel{\sim}{\to} W$.

Два векторных пространства V и W называются изоморфными, если существует изоморфизм $\varphi:V\stackrel{\sim}{\to} W$ (и тогда существует изоморфизм $V\stackrel{\sim}{\leftarrow} W$). Обозначение: $V\simeq W$ или $V\cong W$.

20. Критерий изоморфности двух конечномерных векторных пространств.

Два конечномерных векторных пространства V и W изоморфны тогда и только тогда, когда $\dim V = \dim W$.

21. Матрица линейного отображения.

Пусть V и W — векторные пространства, $e = (e_1, \dots, e_n)$ — базис V, $f = (f_1, \dots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение. Тогда:

$$\varphi(e_j) = a_{1j}f_1 + \ldots + a_{mj}f_m = \sum_{i=1}^m a_{ij}f_i.$$

Матрица $A = (a_{ij}) \in Mat_{m \times n}(F)$ называется матрицей линейного отображения φ в базисах e и f (или по отношению к базисам e и f).

22. Сумма двух линейных отображений и её матрица.

Пусть $\varphi, \psi \in \text{Hom}(V, W)$.

Отображение $\varphi + \psi \in \text{Hom}(V, W)$ — это $(\varphi + \psi)(v) := \varphi(v) + \psi(v)$ — сумма отображений.

Пусть $e = (e_1, \dots, e_n)$ — базис V, $f = (f_1, \dots, f_m)$ — базис W, φ , $\psi \in \text{Hom}(V, W)$. При этом A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица для ψ , $A_{\varphi+\psi}$ — для $\varphi + \psi$.

Тогда $A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$.

23. Произведение линейного отображения на скаляр и его матрица.

Пусть $\varphi, \psi \in \text{Hom}(V, W)$.

Отображение $\alpha \in F, \alpha \varphi \in \text{Hom}(V, W)$ — это $(\alpha \varphi)(v) := \alpha(\varphi(v))$ — произведение линейного отображения на скаляр.

Пусть $e = (e_1, \dots, e_n)$ — базис V, $f = (f_1, \dots, f_m)$ — базис W, φ , $\psi \in \text{Hom}(V, W)$. При этом A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица для ψ , $A_{\alpha\varphi}$ — для $\alpha\varphi$.

Тогда $A_{\alpha\varphi} = \alpha A_{\varphi}$.

24. Композиция линйных отображений и её матрица.

Возьмем три векторных пространства — U,V и W размерности n,m и k соответственно, и их базисы e,f и g. Также рассмотрим цепочку линейных отображений $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$.

Отображение $\varphi \circ \psi \in \text{Hom}(U,W)$ – это $(\varphi \circ \psi)(v) := \varphi(\psi(v))$ – композиция линейных отображений.

Пусть A — матрица φ в базисах ${\mathbb F}$ и ${\mathbb F}$, B — матрица ψ в базисах ${\mathbb F}$ и ${\mathbb F}$, C — матрица $\varphi \circ \psi$ в базисах ${\mathbb F}$ и ${\mathbb F}$.

Тогда C = AB.

25. Ядро и образ линейного отображения.

Пусть V и W — векторные пространства с линейным отображением $\varphi:V\to W$.

Ядро φ — это множество $\operatorname{Ker} \varphi := \{ v \in V \mid \varphi(v) = 0 \}.$

Образ φ — это множество $\operatorname{Im} \varphi := \{ w \in W \mid \exists v \in V : \varphi(v) = w \}.$

26. Критерий инъективности линейного отображения в терминах его ядра.

Пусть $\varphi \colon V \to W$ — линейное отображение.

Отображение φ инъективно тогда и только тогда, когда $\operatorname{Ker} \varphi = \{0\}.$

27. Связь между рангом матрицы линейного отображения и размерностью его образа.

Пусть V, W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис $V, f = (f_1, \ldots, f_m)$ — базис W, A — матрица φ по отношению k e, f.

Тогда dim Im $\varphi = \operatorname{rk} A$.

28. Критерий изоморфности линейного отображения в терминах его матрицы.

Пусть $\varphi \colon V \to W$ — линейное отображение.

Если $\dim V = \dim W = n$, то φ — изоморфизм тогда и только тогда, когда $\det A \neq 0$. Тогда A — квадратная.

29. Ранг произведения двух матриц.

Пусть $A \in \operatorname{Mat}_{k \times m}$, $B \in \operatorname{Mat}_{m \times n}$. Тогда $\operatorname{rk} AB \leqslant \min \{\operatorname{rk} A, \operatorname{rk} B\}$.

30. Теорема о связи размерностей ядра и образа линейного отображения.

Пусть $\varphi \colon V \to W$ — линейное отображение.

Тогда $\dim \operatorname{Im} \varphi = \dim \varphi - \dim \operatorname{Ker} \varphi$.

31. Линейный оператор.

Пусть V — конечномерное векторное пространство.

Линейным оператором (или линейным преобразованием) называется всякое линейное отображение $\varphi \colon V \to V$, то есть из V в себя. Обозначение: $L(V) = \operatorname{Hom}(V, V)$.

32. Матрица линейного оператора.

Пусть $e = (e_1, \dots, e_n)$ — базис в V и $\varphi \in L(V)$. Тогда:

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)A,$$

где A — матрица линейного оператора в базисе е. В столбце $A^{(j)}$ стоят координаты $\varphi(e_j)$ в базисе е. Матрица A — квадратная.

33. Формула изменения матрицы линейного оператора при переходе к другому базису.

Пусть $\varphi \in L(V)$, A — матрица φ в базисе $e = (e_1, \ldots, e_n)$. Пусть $e' = (e'_1, \ldots, e'_n)$ — другой базис, причём $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$, где C — матрица перехода, и A' — матрица φ в базисе e'.

Тогда $A' = C^{-1}AC$.

34. Подобные матрицы.

Две матрицы $A', A \in M_n(F)$ называются подобными, если существует такая матрица $C \in M_n(F)$, $\det C \neq 0$, что $A' = C^{-1}AC$.

35. Подпространство, инвариантное относительно линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Подпространство $U\subseteq V$ называется инвариантным относительно φ (или φ -инвариантным), если $\varphi(U)\subseteq U$. То есть $\forall u\in U\colon \varphi(u)\in U$.

36. Матрица линейного оператора в базисе, дополняющем базис инвариантного подпространства.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Пусть $U\subset V-\varphi$ -инвариантное подпространство. Также пусть (e_1,\dots,e_k) — базис в U. Дополним его до базиса $V\colon \ \mathbb{e}=(e_1,\dots,e_n)$. Тогда

$$\underbrace{A(\varphi,\,\mathbf{e})}_{ ext{Матрица c углом нулей}} = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}, \quad \text{где } B \in M_k$$

37. Собственный вектор линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Ненулевой вектор $v \in V$ называется собственным для V, если $\varphi(v) = \lambda v$ для некоторго $\lambda \in F$.

6

38. Собственное значение линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Если ненулевой вектор $v \in V$ – co6cm6ennuй для V, то $\varphi(v) = \lambda v$ для некоторго $\lambda \in F$. Это число λ называется собственным значением линейного оператора φ , отвечающим собственному вектору v.

39. Собственное подпространство линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Множество $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda v\}$ называется собственным подпространством линейного оператора, отвечающим собственному значению λ .

40. Диагонализуемый линейный оператор.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Линейный оператор φ называется диагонализуемым, если существует базис e в V такой, что $A(\varphi, e)$ диагональна.

41. Критерий диагонализуемости линейного оператора в терминах собственных векторов.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Отображение φ диагонализуемо тогда и только тогда, когда в V существует базис из собственных векторов.

42. Характеристический многочлен линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Многочлен $\chi_{\varphi}(t) = (-1)^n \det(\varphi - t \mathrm{id})$ называется характеристическим.

43. Связь собственных значений линейного оператора с его характеристическим многочленом.

 λ — собственное значение линейного оператора φ тогда и только тогда, когда $\chi_{\varphi}(\lambda) = 0$.

44. Алгебраическая кратность собственного значения линейного оператора.

Кратностью корня a_i называется число k_i такое, что в многочлене

$$G(x) = b_n(x - a_1)^{k_1} \dots (x - a_s)^{k_s}$$
 множитель $(x - a_i)$ имеет степень k_i .

Если k — кратность корня характеристического многочлена, то k — алгебраическая кратность собственного значения.

45. Геометрическая кратность собственного значения линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Пусть λ — собственное значение φ и $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda v\}$ — собственное подпространство, то есть пространство, состоящее из собственных векторов с собственным значением λ и нуля.

Тогда $\dim V_{\lambda}(\varphi)$ — геометрическая кратность собственного значения λ .

46. Связь между алгебраической и геометрической кратностями собственного значения линейного оператора.

Геометрическая кратность не больше алгебраической кратности.

47. Сумма нескольких подпространств векторных пространств.

Пусть U_1, \ldots, U_k — подпространства векторного пространства V. Суммой нескольких пространств называется $U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}$.

48. Прямая сумма нескольких подпространств векторных пространств.

Пусть U_1, \ldots, U_k — подпространства векторного пространства V.

Прямой суммой нескольких пространств называется $U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}$, причём из условия $u_1 + \ldots + u_k = 0$ следует, что $u_1 = \ldots = u_k = 0$. Обозначение: $U_1 \oplus \ldots \oplus U_k$.

49. Эквивалентные условия, определяющие прямую сумму нескольких подпространств векторного пространства.

Пусть $U_1, \ldots, U_k \subseteq V$ — векторные пространства.

Следующие условия эквивалентны:

- (a) Сумма $U_1 + ... + U_k$ прямая;
- (b) Если e_i базис U_i , то $e = e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$;
- (c) $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$.
- 50. Сумма собственных подпространств линейного оператора, отвечающих попарно различным собственным значениям.

Пусть V — векторное пространство над полем $F, \varphi \in L(V), \lambda_1, \ldots, \lambda_k$ — набор собственных значений φ , где $\lambda_i \neq \lambda_j$ при $i \neq j$, и $V_{\lambda_i}(\varphi) \subseteq V$ — соответствующее собственное подпространство.

Тогда сумма $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_k}(\varphi)$ является прямой.

51. Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена и кратностей собственных значений.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Линейный оператор φ диагонализируем тогда и только тогда, когда

- (a) $\chi_{\varphi}(t)$ разлагается на линейные множители;
- (b) Если $\chi_{\varphi}(t) = (t \lambda_1)^{k_1} \dots (t \lambda_s)^{k_s}$, где $\lambda_i \neq \lambda_j$ при $i \neq j$, то dim $V_{\lambda_i}(\varphi) = k_i \, \forall i$ (то есть для любого собственного значения V равны геометрическая и алгебраическая кратности).
- 52. Корневой вектор линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Вектор $v \in V$ называется корневым вектором линейного оператора φ , отвечающим значению $\lambda \in F$, если существует $m \geqslant 0$ такое, что $(\varphi - \lambda \mathrm{id})^m(v) = 0$.

Наименьшее такое m называют высотой корневого вектора v.

53. Корневое подпространство линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Множество $V^{\lambda}(\varphi)=\{v\in V\mid \exists m\geqslant 0: (\varphi-\lambda\mathrm{id})^m(v)=0\}$ называется корневым пространством для $\lambda\in F$.

54. Характеристический многочлен ограничения линейного оператора на корневое подпространство.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Будем обозначать как $\varphi \mid_W$ ограничение линейного оператора на пространство W.

Характеристический многочлен линейного отображения $\varphi \mid_{V^{\lambda}(\varphi)}$ равен $(t-\lambda)^{k_m}$.

55. Размерность корневого подпространства линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Если λ — собственное значение φ , то dim $V^{\lambda}(\varphi)$ равна алгебраической кратности λ .

56. Сумма корневых подпространств линейного оператора, отвечающих попарно различным собственным значениям.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Если $\lambda_1, \ldots, \lambda_k$, где $\lambda_i \neq \lambda_j$ при $i \neq j$ — собственные значения φ , то сумма $V^{\lambda_1}(\varphi) + \ldots + V^{\lambda_k}(\varphi)$ — прямая.

57. Признак разложимости пространства в прямую сумму корневых подпространств линейного оператора.

Пусть $\varphi \colon V \to V$ — линейный оператор.

Если характеристический многочлен $\chi_{\varphi}(t)$ разлагается на линейные множители, причём $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, то $V = \bigoplus_{i=1}^s V^{\lambda_i}(\varphi)$.

58. Жорданова клетка.

Пусть $\lambda \in F$. Жордановой клеткой порядка n, отвечающей значению λ , называется матрица вида:

$$J_{\lambda}^{n} = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix} \in M_{n}(F).$$

59. Теорема о Жордановой нормальной форме линейного оператора.

Пусть V — векторное пространство, φ — линейный оператор.

Пусть $\chi_{\varphi}(t)$ разлагается на линейные множители. Тогда существует базис е в V такой, что

$$A(\varphi, e) = \begin{pmatrix} J_{\mu_1}^{n_1} & 0 & \dots & 0 \\ 0 & J_{\mu_2}^{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\mu_p}^{n_p} \end{pmatrix} \quad (*)$$

Кроме того, матрица (*) определена однозначно с точностью до перестановок жордановых клеток.

Матрица (*) называется жордановой нормальной формой линейного оператора.

60. Линейная функция.

Линейной функцией (формой, функционалом) на векторном пространстве V называется всякое линейное отображение $\sigma\colon V\to F$, где F — одномерное векторное пространство.

Обозначение: $V^* = \text{Hom}(V, F)$.

61. Двойственный (сопряжённый) базис пространства линейных функций.

9

Пусть е = (e_1, \ldots, e_n) — базис V. Рассмотрим линейные формы $\varepsilon_0, \ldots, \varepsilon_n$ такие, что $\varepsilon_i(e_j) = \delta_{ij}$, где $\delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$ — символ Кронекера.

To есть
$$\varepsilon_i = (\delta_{i1}, \dots, \delta_{ii}, \dots, \delta_{in}) = (0, \dots, 1, \dots, 0).$$

Тогда $(\varepsilon_1, \ldots, \varepsilon_n)$ — базис в V^* , называющийся двойственным (сопряжённым) к базису е.

62. Билинейная функция.

Билинейной функцией (формой) на векторном пространстве V называется всякое билинейное отображение $\beta\colon V\times V\to F.$ То есть это отображение, линейное по каждому аргументу:

- (a) $\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y);$
- (b) $\beta(\lambda x, y) = \lambda \beta(x, y);$
- (c) $\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2);$
- (d) $\beta(x, \lambda y) = \lambda \beta(x, y)$.

63. Матрица билинейной функции.

Пусть V — векторное пространство, $\dim V < \infty$, $\beta \colon V \times V \to F$ — билинейная функция. Матрицей билинейной функции в базисе $e = (e_1, \dots, e_n)$ называется матрица $B = (b_{ij})$, где $b_{ij} = \beta(e_i, e_j)$. Обозначение: $B(\beta, e)$.

64. Формула для вычисления значений билинейной функции в координатах.

Пусть (e_1, \ldots, e_n) — базис $V, x = x_1e_1 + \ldots + x_ne_n \in V$ и $y = y_1e_1 + \ldots + y_ne_n \in V$. Тогда:

$$\beta(x,y) = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

65. Формула изменения матрицы билинейной функции при переходе к другому базису.

Пусть $e = (e_1, \ldots, e_n)$ и $e' = (e'_1, \ldots, e'_n)$ — два базиса V, β — билинейная функция на V. Пусть также e' = eC, где C — матрица перехода, также $B(\beta, e) = B$ и $B(\beta, e') = B'$. Тогда $B' = C^T BC$.

66. Ранг билинейной функции.

Пусть $B(\beta, e)$ — матрица билинейной функции β в базисе e.

Число $\operatorname{rk} B$ называется рангом билинейной функции β . Обозначение: $\operatorname{rk} \beta$.

67. Симметричная билинейная функция.

Билинейная функция β называется симметричной, если $\beta(x,y) = \beta(y,x)$ для любых $x,y \in V$.

68. Квадратичная форма.

Пусть $\beta: V \times V \to F$ — билинейная функция. Тогда $Q_{\beta}: V \to F$, заданная формулой $Q_{\beta}(x) = \beta(x,x)$, называется квадратичной функцией (формой), ассоциированной с билинейной функцией β .

69. Соответствие между симметричными билинейными функциями и квадратичными формами.

Пусть $\beta \colon V \times V \to F$ — симметричная билинейная функция.

Тогда отображение $\beta\mapsto Q_\beta$ является биекцией между симметричными билинейными функциями на V и квадратичными функциями на V.

Кроме того, значения билинейной функции однозначно задаются соответствующей квадратичной функцией.

70. Матрица квадратичной формы.

Пусть V — векторное пространство, $\dim V < \infty, \ \beta \colon V \times V \to F$ — билинейная функция, $Q_\beta \colon V \times F$ — ассоциированная с ней квадратичная форма.

Матрица Q_{β} равна матрице β .