LAB 3 - Report

VARUN AGGARWAL

RMSE Residual: 1.62E-02

Lab 2: $\widehat{\sigma_0^{1/2}} = 1.47e - 02$

	c (mm)	Х0	Y0	Z 0	omega(deg)	phi(deg)	kappa(deg)
Lab 1	8.167E+00	1.890E+00	3.036E+00	3.735E+00	-1.918E+01	-4.345E+00	2.050E+00
Lab 2	8.167E+00	1.890E+00	3.036E+00	3.735E+00	-1.918E+01	-4.345E+00	2.050E+00
Lab 3	7.177E+00	1.923E+00	2.712E+00	3.351E+00	-1.627E+01	-4.304E+00	2.084E+00
Delta from Lab 1	9.906E-01	3.371E-02	3.239E-01	3.836E-01	2.914E+00	4.088E-02	3.375E-02
Delta from Lab 2	9.906E-01	3.371E-02	3.239E-01	3.836E-01	2.914E+00	4.088E-02	3.375E-02

Image No	Residual X (mm)	Residual Y (mm)
Image 1	-6.00E-02	4.91E-03
Image 2	-7.96E-03	8.17E-03
Image 3	2.34E-02	-7.01E-03
Image 4	9.42E-03	-1.59E-02
Image 5	-1.07E-02	-8.20E-03
Image 6	-8.74E-03	-2.47E-02
Image 7	6.24E-03	-1.45E-02
Image 8	1.29E-02	-1.05E-02
Image 9	8.02E-03	3.14E-03
Image 10	-3.07E-04	1.77E-02
Image 11	3.45E-02	-3.67E-04
Image 12	7.49E-03	2.66E-03
Image 13	-1.36E-05	-3.77E-03
Image 14	1.67E-03	8.93E-03
Image 15	-5.98E-03	2.32E-02
Image 16	2.54E-02	3.03E-02
Image 17	1.83E-03	1.64E-02
Image 18	-2.78E-03	3.62E-03
Image 19	1.60E-03	2.14E-03
Image 20	-4.20E-03	1.78E-02
Image 21	-1.03E-02	1.64E-02
Image 22	-1.68E-02	-9.85E-03
Image 23	-6.42E-03	-3.21E-02
Image 24	1.00E-03	-2.42E-02
Image 25	-1.89E-03	-6.29E-03

RMSE Residual: 1.56E-02

Lab 2: $\widehat{\sigma_0^{1/2}} = 6.50e - 03$

	c (mm)	X0	Y0	ZO	omega(deg)	phi(deg)	kappa(deg)
Lab 1	8.167E+00	1.680E+00	2.166E+00	3.509E+00	-4.149E-01	-4.937E+00	9.248E+01
Lab 2	8.167E+00	1.680E+00	2.166E+00	3.509E+00	-4.149E-01	-4.937E+00	9.248E+01
Lab 3	8.167E+00	1.603E+00	2.155E+00	3.514E+00	-2.673E-01	-6.055E+00	9.250E+01
Delta from Lab 1	0.000E+00	7.767E-02	1.039E-02	5.673E-03	1.475E-01	1.118E+00	2.109E-02
Delta from Lab 2	0.000E+00	7.769E-02	1.039E-02	5.668E-03	1.476E-01	1.118E+00	2.104E-02

Image No	Residual X (mm)	Residual Y (mm)
Image 1	1.65E-02	2.97E-02
Image 2	2.10E-02	-1.99E-03
Image 3	-3.04E-03	-1.99E-02
Image 4	-2.15E-02	2.09E-04
Image 5	-1.80E-02	2.90E-02
Image 6	-1.28E-02	1.94E-02
Image 7	-1.29E-02	-4.44E-03
Image 8	2.31E-03	-1.23E-02
Image 9	7.45E-03	-6.82E-03
Image 10	1.54E-02	1.99E-03
Image 11	-2.21E-02	-1.92E-02
Image 12	-1.06E-02	-8.07E-03
Image 13	1.78E-03	-6.08E-03
Image 14	1.11E-02	-1.08E-02
Image 15	1.82E-02	-1.77E-02
Image 16	1.12E-02	-3.06E-02
Image 17	1.41E-03	9.95E-03
Image 18	-9.56E-04	1.13E-02
Image 19	1.81E-03	-9.65E-04
Image 20	1.16E-02	-5.38E-03
Image 21	3.58E-02	-7.95E-03
Image 22	-1.15E-02	2.51E-02
Image 23	-2.67E-02	1.94E-02
Image 24	-1.53E-02	5.99E-03

RMSE Residual: 9.87E-03

Lab 2: $\widehat{\sigma_0^{1/2}} = 8.50e - 03$

	c (mm)	X0	Y0	ZO	omega(deg)	phi(deg)	kappa(deg)
Lab 1	8.167E+00	1.010E+00	2.533E+00	2.806E+00	-8.940E+00	-1.705E+01	9.118E+01
Lab 2	8.167E+00	1.010E+00	2.533E+00	2.806E+00	-8.940E+00	-1.705E+01	9.118E+01
Lab 3	7.976E+00	1.010E+00	2.475E+00	2.753E+00	-8.072E+00	-1.729E+01	9.138E+01
Delta from Lab 1	1.915E-01	7.311E-05	5.828E-02	5.291E-02	8.678E-01	2.353E-01	2.032E-01
Delta from Lab 2	1.915E-01	8.080E-05	5.826E-02	5.290E-02	8.675E-01	2.351E-01	2.031E-01

Image No	Residual X (mm)	Residual Y (mm)
Image 3	2.44E-02	-1.56E-02
Image 4	-8.49E-03	1.13E-02
Image 5	-2.62E-03	2.86E-02
Image 7	-3.84E-03	8.49E-03
Image 8	1.29E-03	-1.22E-02
Image 9	1.05E-03	-6.84E-03
Image 10	8.02E-03	-3.36E-03
Image 12	-2.29E-02	-3.49E-03
Image 13	-7.96E-03	-8.25E-03
Image 14	-3.13E-03	-8.00E-03
Image 15	-3.15E-04	-1.63E-02
Image 17	-3.51E-03	1.66E-03
Image 18	2.67E-03	6.43E-03
Image 19	1.99E-03	6.37E-03
Image 20	-4.48E-03	-4.06E-03
Image 22	1.21E-02	4.70E-03
Image 23	6.18E-03	6.20E-03
Image 24	3.66E-03	6.21E-03
Image 25	-4.61E-03	-2.30E-03

RMSE Residual: 1.76E-02

Lab 2: $\widehat{\sigma_0^{1/2}} = 1.17e - 02$

	c (mm)	X0	Y0	ZO	omega(deg)	phi(deg)	kappa(deg)
Lab 1	8.167E+00	2.102E+00	1.195E+00	3.700E+00	1.337E+01	1.466E+00	9.023E+01
Lab 2	8.167E+00	2.102E+00	1.195E+00	3.700E+00	1.337E+01	1.465E+00	9.023E+01
Lab 3	8.167E+00	2.012E+00	1.181E+00	3.711E+00	1.352E+01	2.426E-01	9.042E+01
Delta from Lab 1	8.167E+00	8.993E-02	1.319E-02	1.132E-02	1.542E-01	1.223E+00	1.921E-01
Delta from Lab 2	8.167E+00	8.992E-02	1.318E-02	1.133E-02	1.542E-01	1.223E+00	1.921E-01

Image No	Residual X (mm)	Residual Y (mm)		
Image 1	1.94E-02	2.10E-02		
Image 2	2.16E-02	5.96E-06		
Image 3	-5.28E-03	-1.51E-02		
Image 4	-3.17E-02	-3.27E-03		
Image 5	-3.84E-02	1.46E-02		
Image 6	-3.38E-03	1.50E-02		
Image 7	-2.62E-03	-6.08E-04		
Image 8	8.73E-03	-3.19E-03		
Image 9	7.55E-03	-4.01E-03		
Image 10	9.98E-03	-3.92E-03		
Image 11	-1.91E-02	-1.29E-02		
Image 12	-5.80E-03	4.01E-03		
Image 13	1.20E-02	7.04E-03		
Image 14	2.13E-02	-4.94E-03		
Image 15	2.59E-02	-2.45E-02		
Image 16	-3.61E-03	-4.02E-02		
Image 17	-2.22E-03	1.08E-02		
Image 18	2.63E-03	2.09E-02		
Image 19	8.50E-03	3.46E-03		
Image 20	1.63E-02	-2.09E-02		
Image 21	1.75E-02	-3.74E-02		
Image 22	-1.97E-02	2.41E-02		
Image 23	-2.96E-02	3.19E-02		
Image 24	-1.90E-02	1.52E-02		
Image 25	8.04E-03	3.58E-03		

Issues and Explanation

- The EOPs for all the images, when compared to output of BASC and Lab 2, the difference is of the order of $10^0\ to\ 10^{-2}$
- The principal distance, c, when compared to output of BASC and Lab 2, the difference is of the order of 10^{-1}
- The difference between the values can be attributed to the assumption that object plane is flat
- The residuals are of the order of 10^{-3}
- The RMSE when compared to Lab 2's square root of variance are very close
- For image 10 and 18, the c was imaginary. It would occur in instances when images are very vertical.
- To address this issue, c was manually set to 8.16
- The major issue for this lab was with debugging the code
- While coding the mathematical equations, a misplaced plus or minus within the code let to wrong output
- Debugging required a lot of focus because of the number of equations and variables in the model

Computer Pseudo Code

main.m

Declare common parameters -> IOPs, Ground coordinates of targets

For each image:

Get image co-ordinates for each image

Call LSA.m function

LSA.m

Remove distortions from image co-ordinates **remove_dist.m**Calculate A matrix by calling **calc_A.m**Calculate y matrix by calling **calc_y.m**Calculate x_hat by calling **calc_x_hat.m**Calculate c, X0, Y0, Z0

Calculate S matrix by calling calc_S.m
Calculate omega phi kappa by calling calc_opk.m
Calculate residuals by calling residuals.m

Code on Github:

https://github.com/Salazar-Prime/photogrammetry/tree/master/Project%203

Computer Pseudo Code

remove_dist.m

Calculate radial distortion
Calculate de-centering lens distortion
Subtract from image co-ordiantes

Calc_A.m

Calculate A for both X and Y

Calc_y.m

Calculate y by alternating xi and yi without distortions

Calc_x_hat.m

 $x_hat = inv(A'*A)*A'*y;$

Calc_S.m

Loop over all GCPs

get xi quaternion and normalize it get Xi quaternion and normalize it multiply C for both quaternions to get Si sum Si to get the S matrix

Code on Github:

https://github.com/Salazar-Prime/photogrammetry/tree/master/Project%203

Computer Pseudo Code

Calc_opk.m

Get eigenvalue and eigenvector for S
Get the eigen vector against maximum eigenvalue
Get rotation matrix
Calculate Omega, Phi, kappa from rotation matrix

Compute Code – main.m

```
%% Common Parameters
% IOPs
 IOP = [6.7451660984e-2, -1.1709829919e-1, 8.1671200690];
dist = [-2.9350008918e-4, 9.2190322166e-6, -2.2562559450e-7, 6.1878890685e-
5,-7.2907688047e-5,0];
% Ground co-ordinates of targets
XA = [-
0.044038221723;0.89829592555;1.8428648416;2.7928032424;3.731135328;-
0.036927916146; 0.90108606018; 1.8511589932; 2.8010339963; 3.7422959221; -
0.037704361429; 0.90892725171; 1.8588605461; 2.8062554595; 3.7520655984; -
0.024722332105; 0.91454137562; 1.8596674595; 2.8078118825; 3.7544680979; 0; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.91826; 0.9182
263914178;1.8642980884;2.8111736654;3.7628755375];
YA =
[3.751130948;3.7594793917;3.7736433303;3.7823238561;3.7801397656;2.805767
5589;2.8180218203;2.8257925207;2.8332144474;2.8378518827;1.8634346772;1.8
678901457;1.8758730363;1.8838128654;1.8922797004;0.91840024749;0.92066047
041;0.92760553219;0.93553829291;0.94557055946;0;-0.00026178267339;-
0.0021390199929; -0.0019752230297; 01;
ZA = [0.072640804133; 0.048121990404; 0; -0.047649472361; -
0.070838477818;0.054102199693;0.026008316122;0.0059282538012;-
0.023295585379;-
0.044574905144; 0.016369939657; 0.010208246675; 0.0071618170061; -
0.0096698096332;-0.020910207448;-
0.0091692255168; 0.003877584251; 0.003049069041; -0.0030509411619; -
0.0098127723745;0;0.017342094476;0.016047411487;0.006582607018;0];
%% Image 1 - image 09
[EOP basc, xa, ya] = data(9); % get data for image 9
[c, EOP, res x, res y] = LSA(xa, ya, XA, YA, ZA, IOP, dist)
%% Image 1 - image 10
[EOP basc, xa, ya] = data(10); % get data for image 10
[c, EOP, res x, res y] = LSA(xa, ya, XA(1:24), YA(1:24), ZA(1:24), IOP, dist)
%% Image 1 - image 14
[EOP basc, xa, ya] = data(14); % get data for image 14
[c, EOP, res x, res y] =
LSA(xa,ya,XA([3:5,7:10,12:15,17:20,22:25]),YA([3:5,7:10,12:15,17:20,22:25
]), ZA([3:5,7:10,12:15,17:20,22:25]), IOP, dist);
%% Image 1 - image 18
[EOP basc, xa, ya] = data(18); % get data for image 18
[c,EOP,res_x,res_y] = LSA(xa,ya,XA,YA,ZA,IOP,dist)
```

Compute Code – LSA.m

```
function [c,EOP,res x,res y] = LSA(xa,ya,XA,YA,ZA,IOP,dist)
%% parameters
num GCP = length(xa);
% Unpack IOPs
[xp,yp,\sim] = assign IOP(IOP);
%% A and y matrix
[xa,ya] = remove dist(xa,ya,dist,xp,yp);
[A] = calc A(num GCP, xa, ya, XA, YA);
[y] = calc y(xa, ya);
%% calculate x hat
[C1,C2,C3,C4,C5,C6,C7,C8] = calc x hat(A,y);
%% calculate c
c = sqrt(-1 * (C1*C2+C4*C5)/(C7*C8));
if not(isreal(c))
    c = 8.1671200690;
end
%% calculate A'*A
[C1, C4, C7; C2, C5, C8; C3, C6, 1] * [1, 0, 0; 0, 1, 0; 0, 0, c*c] * [C1, C2, C3; C4]
,C5,C6;C7,C8,1];
%% calculate EOP (X0,Y0,Z0)
X0 = -A(1,3)/A(1,1);
Y0 = - A(2,3)/A(1,1);
Z0 = sqrt(A(3,3)/A(1,1) - X0^2 - Y0^2);
%% calculate EOP (omega, phi, kappa)
S = calc S(num GCP, xa, ya, xp, yp, c, XA, YA, ZA, X0, Y0, Z0);
[omega, phi, kappa] = calc opk(S);
EOP = [X0,Y0,Z0,rad2deg(omega),rad2deg(phi),rad2deg(kappa)];
%% residuals
[res x, res y] =
residuals (C1, C2, C3, C4, C5, C6, C7, C8, xa, ya, XA, YA);
```

Compute Code – calc_A.m

```
function [A] = calc_A(num_GCP, xa, ya, XA, YA)
% create an empty A matrix
A = zeros(num_GCP*2,8);
% loop over all ground control points
for i=1:num_GCP

    A(2*i-1,:) = [XA(i),YA(i),1, 0,0,0, -
1*xa(i)*XA(i), -1*xa(i)*YA(i)];
    A(2*i, :) = [0,0,0, XA(i),YA(i),1, -
1*ya(i)*XA(i), -1*ya(i)*YA(i)];
end
```

Compute Code – calc_y.m

```
function [y] = calc_y(xa,ya)
% alternate merge in order : xa, ya
y = [xa ya]';
y = y(:);
end
```

Compute Code – calc_S.m

```
function [S] =
calc S(num GCP, xa, ya, xp, yp, c, XA, YA, ZA, X0, Y0, Z0)
S = zeros(4,4);
for i=1:num GCP
    xi = [0, xa(i), ya(i), -c];
    xi = xi/norm(xi);
    Xi = [0, XA(i) - X0, YA(i) - Y0, ZA(i) - Z0];
    Xi = Xi/norm(Xi);
    mat1 = [xi(1), -xi(2), -xi(3), -xi(4);
             xi(2), xi(1), xi(4), -xi(3);
             xi(3), -xi(4), xi(1), xi(2);
             xi(4), xi(3), -xi(2), xi(1)];
    mat2 = [Xi(1), -Xi(2), -Xi(3), -Xi(4);
             Xi(2), Xi(1), -Xi(4), Xi(3);
             Xi(3), Xi(4), Xi(1), -Xi(2);
             Xi(4), -Xi(3), Xi(2), Xi(1)];
    S = S + mat1'*mat2;
    trace(mat1*mat2)
end
end
```

Compute Code – calc x hat.m

```
function [C1,C2,C3,C4,C5,C6,C7,C8] = calc_x_hat(A,y)

x_hat = inv(A'*A)*A'*y;
C1 = x_hat(1);
C2 = x_hat(2);
C3 = x_hat(3);
C4 = x_hat(4);
C5 = x_hat(5);
C6 = x_hat(6);
C7 = x_hat(7);
C8 = x_hat(8);
```

Compute Code – calc_opk.m

```
function [omega,phi,kappa] = calc_opk(S)

[V,D] = eig(S);
[~,id] = sort(diag(D),'descend');
ev = V(:,id(1));
% quat2rotm(ev')
r13 = 2*ev(2)*ev(4) + 2*ev(1)*ev(3);
r12 = 2*ev(2)*ev(3) - 2*ev(1)*ev(4);
r11 = ev(2)^2 + ev(1)^2 - ev(3)^2 - ev(4)^2;
r23 = 2*ev(3)*ev(4) - 2*ev(1)*ev(2);
r33 = ev(4)^2 + ev(1)^2 - ev(3)^2 - ev(2)^2;

phi = asin(r13); % r13
kappa = atan2(-r12/cos(phi),r11/cos(phi))
omega = atan2(-r23/cos(phi),r33/cos(phi))
end
```

Compute Code – residuals.m

```
function [res_x,res_y] =
residuals(C1,C2,C3,C4,C5,C6,C7,C8,xa,ya,XA,YA)
    res_x = xa - (C1*XA + C2*YA +
C3)./(C7*XA+C8*YA+1);
    res_y = ya - (C4*XA + C5*YA +
C6)./(C7*XA+C8*YA+1);
end
```

Compute Code – data.py

```
function [EOP basc, xa, ya] = data(image no)
    switch image no
        case 9
            EOP basc = [1.88968674, 3.03586621, 3.73500036, -19.1841784, -
4.34497759,2.050149031;
            xa = [-5.3877; -2.92187; -0.49439; 1.79834; 3.93369; -5.04787; -
2.77407; -0.55643; 1.5572; 3.55246; -4.71235; -2.63868; -
0.61275;1.34004;3.19895;-4.43154;-2.5313;-0.66436;1.1514;2.88537;-
4.19557; -2.4407; -0.70131; 0.99217; 2.62277];
            ya =
[4.93742;4.84433;4.68172;4.49867;4.29866;2.42494;2.3434;2.23887;2.1432;2
.04441;0.30738;0.24322;0.17794;0.13305;0.09228;-1.49013;-1.53833;-
1.5756; -1.59753; -1.59671; -3.02777; -3.06606; -3.09871; -3.09563; -3.07743];
            EOP basc = [1.68045678e+000 2.16587520e+000]
3.50855335e+000 -4.14855263e-001 -4.93725230e+000 9.24769326e+001;
[4.2568;4.0854;3.8851;3.68;3.479;1.9221;1.7977;1.6796;1.555;1.4339;-
0.3967; -0.4724; -0.5334; -0.5915; -0.6454; -2.6632; -2.71; -2.7285; -2.7338; -
2.7224; -4.81; -4.8779; -4.8782; -4.8346];
            va= [4.6788;2.3093;0.0418;-2.0823;-
4.0521; 4.7589; 2.3888; 0.1175; -2.0216; -4.02; 4.8045; 2.45; 0.1921; -1.9492; -
3.9707;4.8258;2.5321;0.2918;-1.8528;-3.8693;4.8076;2.5851;0.3697;-
1.76261;
        case 14
            EOP basc = [1.00952899e+000]
                                            2.53318361e+000
2.80635782e+000 -8.94008150e+000 -1.70515538e+001
                                                        9.11810993e+0011;
            xa = [5.0408; 4.5063; 4.0613; 2.4057; 2.1457; 1.9236; 1.7394; -
0.5466; -0.5072; -0.48; -0.4562; -3.1775; -2.9114; -2.6867; -2.495; -5.4743; -
5.0707; -4.6992; -4.374];
            ya = [-0.3354; -2.7179; -4.6482; 2.6935; -0.1767; -2.5023; -
4.414;2.7038;-0.0294;-2.2763;-4.1595;2.7274;0.1323;-2.0413;-
3.8797;2.7125;0.2538;-1.841;-3.63121;
            EOP basc = [2.10162316e+000]
                                            1.19465520e+000
3.69958966e+000 1.33667830e+001 1.46559054e+000 9.02308070e+001];
[3.2893; 3.295; 3.2772; 3.2471; 3.2149; 1.5691; 1.574; 1.5795; 1.5697; 1.557; -
0.3378; -0.3441; -0.3375; -0.3381; -0.3412; -2.4459; -2.481; -2.4964; -2.5036; -
2.4987; -4.7066; -4.8269; -4.8928; -4.9179; -4.8917];
            va = [3.8357; 2.0059; 0.1629; -1.6697; -
3.476; 4.0453; 2.1277; 0.1844; -1.7649; -3.6961; 4.2673; 2.2563; 0.2058; -
1.8635; -3.9356; 4.4805; 2.4023; 0.2466; -1.9536; -
4.1554; 4.6783; 2.5441; 0.2765; -2.0524; -4.369];
    end
end
```

Compute Code – assign_IOP.py

```
function [xp,yp,c]=assign_IOP(IOP)
    xp = IOP(1);
    yp = IOP(2);
    c = IOP(3);
end
```