第2节 椭圆的焦点三角形相关问题(★★★)

强化训练

1.(★)已知 F_1 , F_2 是椭圆C: $\frac{x^2}{a^2} + y^2 = 1(a > 1)$ 的左、右焦点,P 是椭圆C上一点,若 $|PF_1| = 2$,且 $PF_1 \perp PF_2$,

则 $a = ____$.

答案: $\frac{3}{2}$

解析:如图,涉及椭圆上的点与两个焦点,想到椭圆定义,

由椭圆定义, $|PF_1| + |PF_2| = 2a$,

又 $|PF_1|=2$,所以 $|PF_2|=2a-|PF_1|=2a-2$,

再来翻译 $PF_1 \perp PF_2$,用勾股定理即可建立关于a的方程,

由题意, $c = \sqrt{a^2 - 1}$,所以 $|F_1F_2| = 2c = 2\sqrt{a^2 - 1}$,

因为 $PF_1 \perp PF_2$,所以 $|PF_1|^2 + |PF_2|^2 = |F_1F_2|^2$,

即 $4+(2a-2)^2=4(a^2-1)$,解得: $a=\frac{3}{2}$.

2.(2022 •内蒙古包头模拟 •★★)已知 $F_1(-c,0)$, $F_2(c,0)$ 是椭圆 E 的两个焦点,P 是 E 上一点,若 $\overline{PF_1} \cdot \overline{PF_2} = 0$, 且 $S_{\Delta PF_1F_2} = c^2$,则椭圆 E 的离心率为()

(A)
$$\frac{2\sqrt{5}}{5}$$
 (B) $\frac{\sqrt{6}}{3}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

$$(B) \frac{\sqrt{6}}{3}$$

(C)
$$\frac{\sqrt{2}}{2}$$

$$(D) \frac{\sqrt{3}}{2}$$

答案: C

解析: $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2} = 0 \Rightarrow PF_1 \perp PF_2$, 如图,设 $\left| PF_1 \right| = m$, $\left| PF_2 \right| = n$,则 $S_{\Delta PF_1F_2} = \frac{1}{2}mn = c^2$,所以 $mn = 2c^2$ ①;

 ΔPF_1F_2 ,是焦点三角形,考虑用椭圆定义,并用勾股定理翻译 $PF_1 \perp PF_2$,

又
$$\begin{cases} m+n=2a & ② \\ m^2+n^2=|F_1F_2|^2=4c^2 & ③ \end{cases}$$
,由③可得 $(m+n)^2-2mn=4c^2$,

结合①②得
$$4a^2 - 4c^2 = 4c^2 \Rightarrow a^2 = 2c^2 \Rightarrow e = \frac{c}{a} = \frac{\sqrt{2}}{2}$$
.

- 3.(2023・全国模拟・★★)设 F_1 , F_2 分别为椭圆 $\frac{x^2}{\alpha} + \frac{y^2}{\alpha} = 1$ 的左、右焦点,点P在椭圆上,若线段 PF_1 的中点M在y轴上,则 $\frac{|PF_2|}{|PF_1|}$ 的值为()
- (A) $\frac{5}{13}$ (B) $\frac{4}{5}$ (C) $\frac{2}{7}$ (D) $\frac{4}{9}$

答案: C

解析:条件涉及中点,先看看有没有中位线,

如图, PF_1 的中点M在y轴上,O为 F_1F_2 的中点,

所以 $OM//PF_2$, 因为 $OM \perp x$ 轴,所以 $PF_2 \perp x$ 轴,

我们发现 $|PF_2|$ 是半通径长,可代公式计算, $|PF_1|$ 可由椭圆定义来算,

$$|PF_2| = \frac{b^2}{a} = \frac{4}{3}$$
, $\sum |PF_1| + |PF_2| = 2a = 6$, $|\text{MU}| |PF_1| = 6 - |PF_2| = \frac{14}{3}$, $|\text{W}| \frac{|PF_2|}{|PF_1|} = \frac{2}{7}$.

4. (2022・江西模拟・★★★) 设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,点 M,N 在 C上,且M,N关于原点O对称,若 $|MN| = |F_1F_2|$, $|NF_2| = 3|MF_2|$,则椭圆C的离心率为_____.

答案: $\frac{\sqrt{10}}{4}$

解析: 先由已知条件分析四边形 MF_1NF_2 的形状,如图,因为 M, N 关于原点对称,且 $|MN| = |F_1F_2|$, 所以四边形 MF_1NF_2 是矩形,故 $MF_1 \perp MF_2$,且 $|MF_1| = |NF_2|$,

要求离心率,可把条件转换到 ΔMF_1F_2 ,中来,结合椭圆定义处理,

又 $|NF_2|=3|MF_2|$,所以 $|MF_1|=3|MF_2|$,可设 $|MF_2|=m$,则 $|MF_1|=3m$,

所以 $|F_1F_2| = \sqrt{|MF_2|^2 + |MF_1|^2} = \sqrt{10}m$,故椭圆 C 的离心率 $e = \frac{c}{a} = \frac{2c}{2a} = \frac{|F_1F_2|}{|MF_1| + |MF_2|} = \frac{\sqrt{10}m}{m + 3m} = \frac{\sqrt{10}}{4}$.

5. $(2022 \cdot 福建质检 \cdot ★★★)$ 已知点 F_1 , F_2 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点,过 F_2 的直线交

椭圆于 A, B 两点,且 $AF_1 \perp AB$, $\frac{|AF_1|}{|AB|} = \frac{4}{3}$, 则该椭圆的离心率是()

$$(A) \frac{2}{3}$$

(B)
$$\frac{\sqrt{5}}{3}$$

(A)
$$\frac{2}{3}$$
 (B) $\frac{\sqrt{5}}{3}$ (C) $\frac{\sqrt{3}}{3}$ (D) $\frac{\sqrt{6}}{3}$

(D)
$$\frac{\sqrt{6}}{3}$$

答案: B

解析:如图, ΔAF_iF_i ,和 ΔBF_iF_i ,都是焦点三角形,可结合椭圆定义处理,先由已知条件设一下边长,

因为 $\frac{|AF_1|}{|AB|} = \frac{4}{3}$,所以可设 $|AF_1| = 4m$,|AB| = 3m,

因为 $AF_1 \perp AB$,所以 $|BF_1| = \sqrt{|AF_1|^2 + |AB|^2} = 5m$,故 ΔABF_1 的周长 $L = |AF_1| + |BF_1| + |AB| = 12m$,

又 $L = |AF_1| + |AF_2| + |BF_1| + |BF_2| = 4a$,所以 12m = 4a,从而 $m = \frac{a}{3}$,故 $|AF_1| = \frac{4a}{3}$, $|AF_2| = 2a - |AF_1| = \frac{2a}{3}$,

要求离心率,可到 ΔAF_1F_2 中用勾股定理来建立方程,

在 Δ AF_1F_2 中, $|AF_1|^2 + |AF_2|^2 = |F_1F_2|^2$,所以 $\frac{16a^2}{9} + \frac{4a^2}{9} = 4c^2$,整理得: $\frac{c^2}{a^2} = \frac{5}{9}$,故离心率 $e = \frac{c}{a} = \frac{\sqrt{5}}{3}$.

6. (2023 •山西模拟 •★★)已知 F_1 , F_2 是椭圆 C 的两个焦点,P 是 C 上一点,若 $|PF_1| = |F_1F_2|$, $\cos \angle PF_2F_1 = \frac{1}{4}$,

则 C 的离心率为 ()

(A)
$$\frac{3}{4}$$
 (B) $\frac{2}{3}$ (C) $\frac{1}{2}$ (D) $\frac{1}{3}$

(B)
$$\frac{2}{3}$$

(C)
$$\frac{1}{2}$$

(D)
$$\frac{1}{2}$$

答案: B

解析:如图,已知 $\cos \angle PF_{2}F_{1}$,只要把 $\Delta PF_{1}F_{2}$ 的三边用a,b,c表示,就能用余弦定理建立方程求离心率,

由题意, $|PF_1| = |F_1F_2| = 2c$,又 $|PF_1| + |PF_2| = 2a$,所以 $|PF_2| = 2a - |PF_1| = 2a - 2c$,

在 ΔPF_1F_2 中, $|PF_1|^2 = |PF_2|^2 + |F_1F_2|^2 - 2|PF_2| \cdot |F_1F_2| \cdot \cos \angle PF_2F_1$,

所以 $4c^2 = (2a-2c)^2 + 4c^2 - 2(2a-2c) \cdot 2c \cdot \frac{1}{4}$

结合a > c整理得: 2a - 3c = 0,所以离心率 $e = \frac{c}{2} = \frac{2}{3}$.

7. (2022 • 广西南宁模拟 • ★★★) 已知 F 是椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左焦点,过原点的直线 l 与椭 圆 E 相交于 P, Q 两点,若 |PF| = 5|QF|,且 $\angle PFQ = 120^{\circ}$,则椭圆的离心率为(

$$(A) \frac{\sqrt{7}}{6}$$

$$(B) \frac{1}{3}$$

(A)
$$\frac{\sqrt{7}}{6}$$
 (B) $\frac{1}{3}$ (C) $\frac{\sqrt{21}}{6}$ (D) $\frac{\sqrt{21}}{5}$

(D)
$$\frac{\sqrt{21}}{5}$$

答案: C

解析:看到过原点的直线与椭圆交于P,Q两点,想到与焦点构成平行四边形,

如图,设右焦点为F',则四边形PFQF'为平行四边形,

为了运用椭圆的定义,将条件转移到 $\Delta PFF'$ 中来,|PF'|=|QF|,又|PF|=5|QF|,所以|PF|=5|PF'|①, 由椭圆定义,|PF|+|PF'|=2a,结合①可得 $|PF|=\frac{5a}{3}$, $|PF'|=\frac{a}{3}$,

还剩 $\angle PFQ = 120^{\circ}$ 这个条件没用,可据此求出 $\angle FPF'$,在 $\Delta PFF'$ 中由余弦定理建立方程求离心率,

 $\angle FPF' = 180^{\circ} - \angle PFQ = 60^{\circ}$, |FF'| = 2c , 由余弦定理, $|FF'|^2 = |PF|^2 + |PF'|^2 - 2|PF| \cdot |PF'| \cdot \cos \angle FPF'$, 所以 $4c^2 = \frac{25a^2}{9} + \frac{a^2}{9} - 2 \times \frac{5a}{3} \times \frac{a}{3} \times \cos 60^\circ$,整理得: $\frac{c^2}{a^2} = \frac{7}{12}$,故离心率 $e = \frac{c}{a} = \frac{\sqrt{21}}{6}$.

8. (2014•安徽卷•★★★) 若 F_1 , F_2 分别是椭圆 $E: x^2 + \frac{y^2}{b^2} = 1(0 < b < 1)$ 的左、右焦点,过点 F_1 的直线 交椭圆 E 于 A, B 两点,若 $|AF_1|=3|F_1B|$, $AF_2 \perp x$ 轴,则椭圆 E 的方程为_____.

答案:
$$x^2 + \frac{3y^2}{2} = 1$$

解析:如图,条件中有 $|AF_1|=3|F_1B|$,可用它构造相似三角形,通过相似比求点B的坐标,

由题意,长半轴长a=1,作 $BM \perp x$ 轴于点M,则 $\Delta BMF_1 \hookrightarrow \Delta AF_2F_1$,所以 $\frac{|MF_1|}{|F_1F_2|} = \frac{|BM|}{|AF_2|} = \frac{|BF_1|}{|AF_1|} = \frac{1}{3}$ ①,

所以
$$|MF_1| = \frac{1}{3}|F_1F_2| = \frac{2c}{3}$$
, $|OM| = |MF_1| + |OF_1| = \frac{5c}{3}$,故 $x_B = -\frac{5c}{3}$,

再通过求|BM|算 y_B ,由①知 $|BM| = \frac{1}{3}|AF_2|$,可联立直线 AF_2 和椭圆的方程来求A的纵坐标,得到 $|AF_2|$,

联立
$$\begin{cases} x = c \\ x^2 + \frac{y^2}{b^2} = 1 \end{cases}$$
 解得: $y = \pm b\sqrt{1 - c^2}$, 所以 $y_A = b\sqrt{1 - c^2}$, 又 $a = 1$, 所以 $1 - c^2 = a^2 - c^2 = b^2$, 故 $y_A = b^2$,

所以 $|AF_2| = b^2$,结合①可得 $|BM| = \frac{b^2}{3}$,故 $B(-\frac{5c}{3}, -\frac{b^2}{3})$,

代入椭圆方程得: $\frac{25c^2}{9} + \frac{b^2}{9} = 1$, 结合 $b^2 + c^2 = 1$ 解得: $b^2 = \frac{2}{3}$, 所以椭圆 E 的方程为 $x^2 + \frac{3y^2}{2} = 1$.

9. $(2022 \cdot 湖南长沙模拟 \cdot \star \star \star \star)$ 已知 F_1 , F_2 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点,点 A(0,b) ,点 B 在椭圆 C 上,且 $\overrightarrow{AF_1} = 2\overrightarrow{F_1B}$, D , E 分别是 AF_2 , BF_2 的中点,且 ΔDEF_2 的周长为 4,则椭圆 C 的方程为(

(A)
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
 (B) $\frac{x^2}{4} + \frac{3y^2}{8} = 1$ (C) $\frac{x^2}{4} + \frac{3y^2}{4} = 1$ (D) $x^2 + \frac{3y^2}{2} = 1$

答案: B

解析: 由 $\overline{AF}_{1} = 2\overline{F_{1}B}$ 可求得点B的坐标,代入椭圆建立一个方程;

如图,作
$$BG \perp x$$
轴于点 G ,则 $\Delta AOF_1 \hookrightarrow \Delta BGF_1$,所以 $\frac{|BG|}{|OA|} = \frac{|GF_1|}{|OF_1|} = \frac{|BF_1|}{|AF_1|} = \frac{1}{2}$,

故 $|BG| = \frac{1}{2}|OA| = \frac{b}{2}$, $|GF_1| = \frac{1}{2}|OF_1| = \frac{c}{2}$,所以 $B(-\frac{3c}{2}, -\frac{b}{2})$,代入椭圆方程整理得: $a^2 = 3c^2$ ①,

再来看 ΔDEF_2 的周长,可利用中点转化成 ΔABF_2 的周长,结合定义计算,

因为 D, E 分别是 AF_2 , BF_2 的中点,所以 |AB| = 2|DE|, $|AF_2| = 2|DF_2|$, $|BF_2| = 2|EF_2|$,故 $|AB| + |AF_2| + |BF_2| = 2(|DE| + |DF_2| + |EF_2|) = 8$,又由椭圆定义, $|AB| + |AF_2| + |BF_2| = 4a$,

所以 4a=8,故 a=2,代入①可求得 $c^2=\frac{4}{3}$,所以 $b^2=a^2-c^2=\frac{8}{3}$,故椭圆 C 的方程为 $\frac{x^2}{4}+\frac{3y^2}{8}=1$.

10. (2022・江西萍乡三模・ $\star\star\star$)设 F_1 , F_2 是椭圆 $C:y^2+\frac{x^2}{t}=1$ (0<t<1)的焦点,若椭圆C上存在点P,满足 $\angle F_1PF_2=120^\circ$,则t的取值范围是()

(A)
$$(0,\frac{1}{4}]$$
 (B) $[\frac{1}{4},1)$ (C) $(0,\frac{\sqrt{2}}{2}]$ (D) $[\frac{\sqrt{2}}{2},1)$

答案: A

解法 1: 先把 $\angle F_1 PF_2 = 120^\circ$ 的情形画出来,如图 1,在焦点三角形中,首先考虑椭圆定义,

设 $|PF_1|=m$, $|PF_2|=n$,由题意,椭圆的长半轴长a=1,半焦距 $c=\sqrt{1-t}$,所以m+n=2a=2 ①,

还有角度的条件,可在 ΔPF_1F_2 中用余弦定理, $|F_1F_2|^2 = |PF_1|^2 + |PF_2|^2 - 2|PF_1| \cdot |PF_2| \cdot \cos \angle F_1PF_2$,

所以 $4(1-t) = m^2 + n^2 - 2mn\cos 120^\circ$,故 $4(1-t) = m^2 + n^2 + mn$ ②,

要求t的范围,应建立关于t的不等式,结合式①知可对式②配方,用不等式 $mn \le (\frac{m+n}{2})^2$ 来实现,

所以 $4(1-t) = (m+n)^2 - mn \ge (m+n)^2 - (\frac{m+n}{2})^2 = \frac{3(m+n)^2}{4}$,将式①代入可得 $4(1-t) \ge 3$,故 $t \le \frac{1}{4}$,

当且仅当m=n=1时取等号,又0 < t < 1,所以 $t \in (0,\frac{1}{4}]$.

解法 2: 也可直接用最大张角结论,当 P 在椭圆上运动时, $\angle F_1 PF_2$ 的最大值在短轴端点处取得,

要使椭圆上存在点P,满足 $\angle F_1PF_2=120^\circ$,只需图 2 所示的 $\angle F_1PF_2\geq 120^\circ$ 即可,即图中 $\alpha\geq 60^\circ$,

所以 $\cos \alpha = \frac{|OP|}{|PF_1|} = \frac{\sqrt{t}}{1} \le \frac{1}{2}$, 结合 0 < t < 1可解得: $0 < t \le \frac{1}{4}$.

11. $(2022 \cdot 山东模拟 \cdot \star \star \star \star)$ 已知椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右焦点分别为 F_1 , F_2 ,点 P 在椭圆上且在 x 轴的下方,若线段 PF_2 的中点 T 在以 F_1F_2 ,为直径的圆上,则直线 PF_2 的倾斜角为(

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

答案: C

解析: 由题意, a=2, $b=\sqrt{3}$, 所以半焦距 $c=\sqrt{a^2-b^2}=1$, $|F_1F_2|=2c=2$,

如图,因为PF,的中点T在以 F_1F ,为直径的圆上,所以 $TF_1 \perp TF$,

直线 PF_2 的倾斜角与 $\angle F_1F_2T$ 相等,由于 $|F_1F_2|$ 已知,故只要求出 $|F_1T|$ 或 $|F_2T|$,就能求得 $\angle F_1F_2T$ 的一个三

角函数值,进而求出该角,涉及中点,不妨看看有没有中位线,

因为 O 是 F_1F_2 的中点, T 是 PF_2 的中点, 所以 $|PF_1| = 2|OT| = 2$,

又
$$|PF_1| + |PF_2| = 2a = 4$$
,所以 $|PF_2| = 4 - |PF_1| = 2$,从而 $|F_2T| = \frac{1}{2}|PF_2| = 1$,故 cos $\angle F_1F_2T = \frac{|F_2T|}{|F_1F_2|} = \frac{1}{2}$,

所以 $\angle F_1F_2T = \frac{\pi}{3}$,故直线 PF_2 的倾斜角为 $\frac{\pi}{3}$.

【反思】本题点 P 的位置比较特殊,按上述解法求出 $|PF_1|=2$ 后,也可由椭圆定义求得 $|PF_2|=2$,从而发现 ΔPF_1F_2 是正三角形,也能得出 $\angle F_1F_2T=\frac{\pi}{3}$.

《一数•高考数学核心方法》