Avaliação de Desempenho

ELC139 - Programação Paralela

João Vicente Ferreira Lima (UFSM)

Universidade Federal de Santa Maria

jvlima@inf.ufsm.br
http://www.inf.ufsm.br/~jvlima

2023/1

Outline

- Métricas de Desempenho
- Leis de Amdahl e Gustafson
- Medindo tempo

Outline

- Métricas de Desempenho
- Leis de Amdahl e Gustafson
- Medindo tempo

Speedup

- Número de processadores/cores = p
- ullet Tempo de execução sequencial $=T_{serial}$
- ullet Tempo de execução paralelo em p processadores $= \mathcal{T}_p$
- Speedup = S

$$S = \frac{T_{serial}}{T_p}$$

Se $T_p = \frac{T_{serial}}{p} \rightarrow$ speedup linear

Eficiência

$$E = rac{S}{
ho} = rac{rac{I_{serial}}{T_{
ho}}}{
ho} = rac{T_{serial}}{
ho * T_{
ho}}$$

Table 2.4 Speedups and Efficiencies of a Parallel Program

p	1	2	4	8	16
S	1.0	1.9	3.6	6.5	10.8
E = S/p	1.0	0.95	0.90	0.81	0.68

Eficiência

Table 2.5 Speedups and Efficiencies of a Parallel Program on Different Problem Sizes

	p	1	2	4	8	16		
Half	S	1.0	1.9	3.1	4.8	6.2		
	E	1.0	0.95	0.78	0.60	0.39		
Original	S	1.0	1.9	3.6	6.5	10.8		
	E	1.0	0.95	0.90	0.81	0.68		
Double	S	1.0	1.9	3.9	7.5	14.2		
	E	1.0	0.95	0.98	0.94	0.89		

Speedup

Eficiência

Speedup

Sobrecusto

- Speedup/eficiência aumenta com o tamanho do problema
- Muitos programas paralelos adicionam um sobrecusto (overhead) de dividir o trabalho

$$T_p = rac{T_{serial}}{p} + T_{overhead}$$

 Uma das formas de medir o sobrecusto paralelo é medindo o tempo do programa paralelo com um processador T₁

$$T_{overhead} = \frac{T_1}{T_{serial}}$$

Speedup

Tempo sequencial T_{serial}

- Qual implementação sequencial?
- Versão base da paralela ou outra versão?
- Exemplo: shell sort paralelo
 - Shell sort sequencial?
 - \bullet T_1 ?
 - Quicksort?
 - Mesmo processador ou outro mais rápido?

Outline

- Métricas de Desempenho
- 2 Leis de Amdahl e Gustafson
- Medindo tempo

Lei de Amdahl

- Observação feita por Gene Amdahl em 1960, mais tarde Lei de Amdahl
- O speedup máximo é limitado independentemente do número de processadores, a menos que a totalidade do programa seja paralelo
 - Speedup máximo de $\frac{1}{7}r$ onde r é a fração não paralela

Exemplo

• 90% do programa é paralelo e $T_{serial} = 20$. Então:

$$T_p = 0.9 * \frac{T_{serial}}{p} + 0.1 * T_{serial} = 18/p + 2$$

$$S = \frac{T_{serial}}{0.9*T_{serial} + 0.1*T_{serial}} = \frac{20}{18/p + 2}$$

Se
$$p
ightharpoonup \infty$$
 então $S <= \frac{T_{serial}}{0.1*T_{serial}} = \frac{20}{10} = 10$

Lei de Gustafson

Há diversas razões para não se preocupar com a lei de Amdahl. Quanto maior o problema menor a parte sequencial na maioria dos problemas.

- Muitos problemas apresentam speedup significativos em sistemas distribuídos.
- Speedup pequeno não é problema, sobretudo quando o esfoço é pequeno.

Escalabilidade

O problema é escalável se a eficiência *E* permaneçe constante quando aumentamos o tamanho do problema e o número de processadores. Se é **escalável** podemos tratar problemas maiores.

- **Escalabilidade forte** a eficiência é mantida se *p* cresce sem aumentar o tamanho do problema.
- **Escalabilidade fraca** a eficiência é mantida se *p* cresce e também aumenta o tamanho do problema.

Outline

- Métricas de Desempenho
- Leis de Amdahl e Gustafson
- Medindo tempo

- Como medir o tempo ?
 - Tempo de processamento
 - Tempo de E/s
 - Tempo de comunicação
 - Tempo de barreira (wall clock time)
- Não estamos interessados no tempo entre começo e fim do programa no geral.
 - Em um bubble sort, estamos interessados no tempo para ordenar as chaves.
 - Não queremos o tempo para ler ou imprimir as chaves.
- Queremos o tempo entre quando o primeiro processo começou a execução do código até quando o último processo terminou a execução.

- Função hipotética que retorna o tempo em segundos desde um tempo fixo.
 - UNIX é 01/01/1970
- As APIs tem uma função de tempo.
 - MPI Wtime
 - omp_get_wtime

```
double start, finish;

start = Get_current_time();

/* Code that we want to time */

finish = Get_current_time();

printf("The elapsed time = %e seconds\n", finish_start
```

A sincronização pode ser garantida por barreiras.

```
double global_elapsed ;
 double my start , my finish , my elapsed;
 /* Synchronize all processes/threads */
4 Barrier ():
 my start = Get current time ();
6 /* Code that we want to time */
7 mv finish = Get current time ();
8 my_elapsed = my_finish - my_start;
 /* Find the max across all processes/threads */
 global_elapsed = Global_max ( my_elapsed );
  if (mv rank == 0)
    printf ("The elapsed time = e seconds\n", g
12
                                            4014701471471
```

Como apresentar os tempos?

- Média μ
- Mediana
- Desvio padrão σ
- Intervalo de confiança

Intervalo de confiança

Chance de 95% da média real estar dentro de $2\frac{\sigma}{\sqrt{n}}$ da média da amostra.

- Assumindo que temos duas alternativas A e B
- Temos as médias μ_A e μ_B e intervalos de confiança
- Os dois intervalos de confiança com 95% não sobrepõem

Então $\mu_A < \mu_B$ com 95% de confiança.

- Assumindo que temos duas alternativas A e B
- Temos as médias μ_A e μ_B e intervalos de confiança
- Os dois intervalos de confiança com 95% se sobrepõem.

Nada podemos concluir!!

- Assumindo que temos duas alternativas A e B
- Temos as médias μ_A e μ_B e intervalos de confiança
- Os dois intervalos de confiança com 95% se sobrepõem.

Nada podemos concluir!!

https://joao-ufsm.github.io/par2023a/

