NeRF: Neural Radiance Fields for view synthesis

Кириллов Дмитрий

Подготовлено на основе статьи NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

https://arxiv.org/abs/2003.08934

Постановка задачи

Реконструкция 3D модели сцены по ее фотографиям

Входные данные: Изображения сцены и направление взгляда на сцену

Постановка задачи

Реконструкция 3D модели сцены по ее фотографиям

Входные данные: Изображения сцены и направление взгляда на сцену

Выходные данные:

- Неформально некоторое представление сцены
- Формально изображение сцены с любого угла

Насколько хорош новый метод

Насколько хорош новый метод

Сэмплирование точек вдоль луча

 $(x,y,z, heta,\phi)$

 $F:(x,y,z, heta,\phi)\mapsto (RGB(x,y,z, heta,\phi),\sigma(x,y,z))$

Непрерывный случай

$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}, t \in [t_{ ext{бл}}, t_{ ext{дал}}]$$
 — луч, выходящий из изображения

Непрерывный случай

$${f r}(t) = {f o} + t{f d}, t \in [t_{
m бл}, t_{
m дал}]$$
 — луч, выходящий из изображения

$$T(t) = \exp(-\int_{t_{arepsilon s}}^t \sigma(\mathbf{r}(s)) ds)$$
 — "прозрачность" луча перед точкой

Непрерывный случай

$${f r}(t) = {f o} + t {f d}, t \in [t_{
m бл}, t_{
m дал}]$$
 — луч, выходящий из изображения

$$T(t) = \exp(-\int_{t_{
m s.r.}}^t \sigma({f r}(s)) ds)$$
 — "прозрачность" луча перед точкой

$$C(\mathbf{r}) = \int_{t_{6\pi}}^{t_{\mathrm{man}}} T(t) \sigma(\mathbf{r}(t)) RGB(\mathbf{r}(t), \mathbf{d}) dt$$

плотность

Дискретный случай

Сэмплируем t вдоль луча:

- 1. Делим луч на N равных частей
- 2. Из каждой части равномерно выбираем точку

$${f r}(t)={f o}+t{f d}, t\in\{t_1,\ldots,t_N\}$$
 — луч, выходящий из изображения $t_i\sim \mathcal{U}[t_{ ext{бл}}+rac{i-1}{N}(t_{ ext{дал}}-t_{ ext{бл}}),t_{ ext{бл}}+rac{i}{N}(t_{ ext{дал}}-t_{ ext{бл}})]$

Дискретный случай

$${f r}(t)={f o}+t{f d}, t\in \{t_1,\dots,t_N\}$$
 — луч, выходящий из изображения

$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_i \delta_i
ight)$$
 — "прозрачность" луча перед точкой точки

Дискретный случай

$${f r}(t)={f o}+t{f d}, t\in \{t_1,\dots,t_N\}$$
 — луч, выходящий из изображения

$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_i \delta_i
ight)$$
 — "прозрачность" луча перед точкой точки

$$C(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - e^{-\sigma_i \delta_i}) RGB_i$$

прозрачность луча между соседними t

Дискретный случай

$${f r}(t) = {f o} + t{f d}, t \in \{t_1, \dots, t_N\}$$
 — луч, выходящий из изображения

$$T_i = \exp\left(-\sum_{i=1}^{i-1} \sigma_i \delta_i
ight)$$
 — "прозрачность" луча перед точкой точки

$$\mathbf{C}(\mathbf{r}) = \sum_{i=1}^N T_i \underbrace{(1-e^{-\sigma_i \delta_i})}_{ ext{"ПЛОТНОСТЬ" ТОЧКИ}} RGB_i$$

Применение метода в исходном виде дает недостаточно хороший результат

Результат по метрикам хуже всех сравниваемых аналогов

Улучшения

Positional encoding

- Нейросети с ReLU склонны выучивать медленно меняющиеся (низкочастотные) функции
- Получаемая модель будет "размытой"
- Применим к данным высокочастотное преобразование
- Нейросеть с той же архитектурой даст более резкую (высокочастотную) модель

Positional encoding

$$\gamma(x) = \left(\sin(2^0\pi x),\cos(2^0\pi x),\ldots,\sin(2^{L-1}\pi x),\cos(2^{L-1}\pi x)
ight)$$

https://people.eecs.berkeley.edu/~bmild/fourfeat/index.html

Hierarchical volume sampling

- Две нейросети: грубая и точная
- Грубая работает как исходный метод
- Грубая дает оценку "важности" каждой точки сцены
- Тонкая работает с более "важными" точками

Hierarchical volume sampling

- 1. Выбираем $N_{\rm rp}$ точек
- 2. Запускаем на них грубую нейросеть
- 3. Получаем изображение

$$\hat{C}_{ ext{rp}}(\mathbf{r}) = \sum_{i=1}^{N_{ ext{rp}}} w_i RGB_i$$

- 4. Использу́ем $\hat{w_i} = w_i / \sum w_i$ как кусочно-постоянную плотность вероятностного распределения
- 5. Из этого распределения выбираем $N_{\text{точн}}$ новых точек
- 6. Получаем выход точной сети $\hat{C}_{ ext{\tiny TOЧH}}(\mathbf{r})$ для всех $N_{ ext{\tiny Fp}}+N_{ ext{\tiny TOЧH}}$ точек

Результаты

Метрики

- **PSNR**(Peak Signal-to-Noise Ratio) $PSNR \sim \log\left(\frac{1}{MSE}\right)$
- SSIM(Structural Similarity) метрика схожести, учитывающая "восприятие ошибки". SSIM $\in [0,1]$ Больше схожесть \Rightarrow больше SSIM
- **LPIPS**(Learned Perceptual Image Patch Similarity) Нейросети (обычно VGGNet), обученные измерять "воспринимаемое различие" Больше схожесть ⇒ меньше **LPIPS**

Сравнение с аналогами

	Рассеянные модели 360°			Реалистичные модели 360°			Реальные сцены (данные из LLFF)		
Метод	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
SRN	33.20	0.963	0.073	22.26	0.846	0.170	22.84	0.668	0.378
NV	29.62	0.929	0.099	26.05	0.893	0.160	_		_
LLFF	34.38	0.985	0.048	24.88	0.911	0.114	24.13	0.798	0.212
NeRF	40.15	0.991	0.023	0.947	0.081	0.081	26.50	0.811	0.250

	Вход	#lm.	L	$(N_{\scriptscriptstyle \Gamma m p}, N_{\scriptscriptstyle m TO H})$	PSNR↑	SSIM↑	LPIPS↓
Базовый метод	xyz	100	-	(256, -)	26.67	0.906	0.136
Без Pos. Encoding	xyzθφ	100	-	(64, 128)	28.77	0.924	0.108
Без угла взгляда	xyz	100	10	(64, 128)	27.66	0.925	0.117
Только гр. сеть	xyzθφ	100	10	(256, -)	30.06	0.938	0.109
Очень мало изобр.	χуzθφ	25	10	(64, 128)	27.78	0.925	0.107
Меньше изобр.	xyzθφ	50	10	(64, 128)	29.79	0.94	0.096
Меньше частотн.	χуzθφ	100	5	(64, 128)	30.59	0.944	0.088
Больше частотн.	xyzθφ	100	15	(64, 128)	30.81	0.946	0.096
Полная модель	χуzθφ	100	10	(64, 128)	31.01	0.947	0.081

	Вход	#Im.	L	$(N_{\scriptscriptstyle \Gamma m p}, N_{\scriptscriptstyle m TO H})$	PSNR↑	SSIM↑	LPIPS↓
Базовый метод	xyz	100	-	(256, -)	26.67	0.906	0.136
Без Pos. Encoding	xyzθφ	100	-	(64, 128)	28.77	0.924	0.108
Без угла взгляда	xyz	100	10	(64, 128)	27.66	0.925	0.117
Только гр. сеть	xyzθφ	100	10	(256, -)	30.06	0.938	0.109
Очень мало изобр.	χуzθφ	25	10	(64, 128)	27.78	0.925	0.107
Меньше изобр.	xyzθφ	50	10	(64, 128)	29.79	0.94	0.096
Меньше частотн.	χуzθφ	100	5	(64, 128)	30.59	0.944	0.088
Больше частотн.	xyzθφ	100	15	(64, 128)	30.81	0.946	0.096
Полная модель	χуzθφ	100	10	(64, 128)	31.01	0.947	0.081

	Вход	#lm.	L	$(N_{\scriptscriptstyle \Gamma m p}, N_{\scriptscriptstyle m TO H})$	PSNR↑	SSIM↑	LPIPS↓
Базовый метод	xyz	100	-	(256, -)	26.67	0.906	0.136
Без Pos. Encoding	xyzθφ	100	-	(64, 128)	28.77	0.924	0.108
Без угла взгляда	xyz	100	10	(64, 128)	27.66	0.925	0.117
Только гр. сеть	xyzθφ	100	10	(256, -)	30.06	0.938	0.109
Очень мало изобр.	xyzθφ	25	10	(64, 128)	27.78	0.925	0.107
Меньше изобр.	xyzθφ	50	10	(64, 128)	29.79	0.94	0.096
Меньше частотн.	χуzθφ	100	5	(64, 128)	30.59	0.944	0.088
Больше частотн.	xyzθφ	100	15	(64, 128)	30.81	0.946	0.096
Полная модель	χуzθφ	100	10	(64, 128)	31.01	0.947	0.081

	Вход	#lm.	L	$(N_{\scriptscriptstyle{\Gamma}\mathrm{p}},N_{\scriptscriptstyle{\mathrm{TOYH}}})$	PSNR↑	SSIM↑	LPIPS↓
Базовый метод	xyz	100	-	(256, -)	26.67	0.906	0.136
Без Pos. Encoding	xyzθφ	100	-	(64, 128)	28.77	0.924	0.108
Без угла взгляда	xyz	100	10	(64, 128)	27.66	0.925	0.117
Только гр. сеть	χуzθφ	100	10	(256, -)	30.06	0.938	0.109
Очень мало изобр.	xyzθφ	25	10	(64, 128)	27.78	0.925	0.107
Меньше изобр.	xyzθφ	50	10	(64, 128)	29.79	0.94	0.096
Меньше частотн.	χуzθφ	100	5	(64, 128)	30.59	0.944	0.088
Больше частотн.	χуzθφ	100	15	(64, 128)	30.81	0.946	0.096
Полная модель	χуzθφ	100	10	(64, 128)	31.01	0.947	0.081

Выводы

- Результаты применения NeRF визуально качественные и превосходят аналоги по значениям рассмотренных метрик
- Простая модель
 - Базовые алгоритмы 3D рендеринга
 - \circ MLP
- Для каждой сцены отдельная сеть
- Обучение для одной сцены занимают до 2 дней на одной NVIDIA V100

Источники

- Сатья Nerf: Representing scenes as neural radiance fields for view synthesis. (2020)
 https://arxiv.org/abs/2003.08934
- Видео-демонстрации, исходный код, данные https://www.matthewtancik.com/nerf