

# Fast-Transient Low-Dropout Regulator

#### **Main Points**

- Introduction
- Design specs
- Design methodology
- Simulation results
- Design challenges

#### Introduction

1. Who are we

2. Our goals Robust power management unit

3. What is an LDO Is it really an LDO?

## Design Specs

## Design Methodology

• LDO Topology

We want a stable fast-transient topology

• Error Amplifier's Topology

How is the input and output's swings?



## Design Methodology

• Static gain error Map it into  $V_{ref}$ ,  $\beta$  and  $A_{v_{error\,amplifier}}$ .

Stability constraints
Hard to achieve. What about Miller compensation?

Load and Line regulation
How to make the current change negligible?

Achieving PSR proposals

#### Simulation Results

- 1. DC operating parameters simulation
- 2. Transient load simulation
- 3. Transient input simulation
- 4. Stability analysis and PSR
- 5. Figure of merit
- 6. Specs achieved

#### DC OP Simulation

#### 1. Max output error

Evaluated at Minimum  $loop\ gain$  (minimum  $V_{in}$  &minimum eta)



1. Load regulation



1. Load regulation

2. Overshoot



1. Load regulation

2. Overshoot

3. Undershoot



#### 1. Line regulation



## Stability Analysis and PSR

#### 1. Phase Margin



## Stability Analysis and PSR

1. Phase Margin

2. PSR



## Figure of Merit

$$FOM = \frac{C_L * \Delta V_{out} * I_Q}{I_{L,max}^2} = 2.16 * 10^{-6} (ns)$$

# **Achieved Specs**

| Spec                              | Required                      | Achieved            |
|-----------------------------------|-------------------------------|---------------------|
| Technology used                   | 45nm CMOS                     |                     |
| Supply Voltage                    | $2.4V \rightarrow 3.5V$       | -                   |
| Output Voltage                    | $0.85  V \rightarrow 1.25  V$ | -                   |
| Untrimmed output voltage accuracy | < ±6%                         | 1%                  |
| Load Current                      | $0.1~mA \rightarrow 150~mA$   | -                   |
| Undershoot/Overshoot              | < 50 mV                       | 27 mV               |
| Phase margin                      | > 45°                         | 490                 |
| Max Load Capacitance              | 1 nF                          | -                   |
| Line Regulation                   | < 2 mV/V                      | 1.7 mV/V            |
| Load Regulation                   | < 50  mV/A                    | 9 mV/A              |
| Power Supply Rejection at 1 MHz   | 30 dB                         | 10 <i>dB</i>        |
| Power Supply Rejection at 10 MHz  | 20 <i>dB</i>                  | 4 <i>dB</i>         |
| FOM                               | -                             | $2.16*10^{-6}$ (ns) |

## Design Challenges

1. PSR

Bypass device length, low-pass filter and El-Nozahy's paper

Load regulationMagical mismatch effect

3. Line regulation

Decrease the bypass current change

### Thank You

Presented by:

**Mohamed Essam** 

Bilal Ramadan

Abdelrahman Abohendy

Mahmoud Saker