Given two reps V, V of G and their characters X, X'; G-OC (X(g)=tr(g:V-V)), Last time: din $Hom_G(V,V') = H(\chi,\chi') = \frac{1}{|G|} \sum_{g \in G} \overline{\chi(g)} \chi(g')$ Kernikan inner product.

Combining with Schur's lemma:

- · character of irred-reps of G are orthonormal for H; H(x; Xj) = Sij. in particular, # irred reps. < # conjugacy classes
- in the decomposition of a rep. W into irreducibles $U \simeq \bigoplus V_i^{\bigoplus G_i}$, the nulliplicities $q_i = H(\chi_{V_i}, \chi_{W})$, and $H(\chi_{U_i}, \chi_{W}) = \sum_{i=1}^{2} ...$
- the dimensions of the irreducible eg's satisfy $|G| = \sum_{i=1}^{n} (d^{i}m^{i})^{2}$.

Ex: S4

	l e	6 (12)	8 (123)	6 (1234)	3 (12)(34)	
U	1	1	1	1	1	trivial
U'	1	-1	1	-1	1	drending
V	3	1	0	-1	-1	standard
٧′	3	-1	0	1	-1	V'= V⊗U'
W	2	O	-1	0	2	found wing \(\side \text{din}^2 = 24 \) and
(has interested as: S>> S>> GL(W))					found using $\Sigma din^2 = 24$ and orthogonalty.	

(her integrated as: $S_4 \xrightarrow{>>} S_3 \xrightarrow{>>} GL(W)$).

by $Z_1/2 \times Z_2/2$ of S_3

* The other option to construct W is to look at VOV: XVOV= XV = (9,1,0,1,1) We have $H(\chi_U,\chi_{VoV}) = 1$, $H(\chi_U,\chi_{VoV}) = 0$, $H(\chi_V,\chi_{VoV}) = \frac{1}{24}(27+6-6-3) = 1$, H(XV1, Xvov) = 1 (27-6+6-3) = 1, so VOV contain UAVAV (Am. 7) and this leaves us are copy of the missing irreducible W. So: VEV=UOVOVOW (and we can find XW by subtracting the other from XVOV).

Ex: A4 alterating subgroup of S4. This has 4 conjugacy classes: {e} I clene (3-cycles are one conj class in { (123) 4 Sq but split in Aq, see bechne 23) { (132) 4 (12)(34) 3

-> We can stat by reducing to Ay the irrel-reg's of S4 - some become isomorphic (eg the attenting rep. U' has elever of A4 acting by (-1) = 1 so = hiral) other might become reducible. This is feasible but hicky (largely W's fault).

-> Or we can go at it dischy! We know there's at nort 4 ind-reps, of \(\sum_{m}^{2} = 12, \end{array} including the trivial rep? of lin 1 => the only option is 12=32+12+12+12. The three 1-dim! representations correspond to $Hom(A_4, \mathbb{C}^4) \ni id$ (thind rep) and two other elevents...

Observe $H = \{id\} \cup \{(i_j)(kl)\}$ normal subgrap, $A_4/H \simeq \mathbb{Z}/3$, so this gives the answer: $Hon(A_4, \mathbb{C}^*) \simeq \mathbb{Z}/3$ $= \{m \mapsto e^{2\pi i/3}, \text{ then the rank 1 rep's ax} :$ Connetely, let $\lambda = e^{2\pi i/3}$, then the rank I rep's ac: V 3 0 0 -1. This is the restricts A4 of the standard rep. of S4! and the lat one by orthogonalty is: * Last time we said but didn't prove: characters of irreducible reg's are actually an othonormal basis (for H) of the space of class fuctions G-s C. The prof was a more great averaging/projection formula. Last time we saw: $\psi_{\nu} = \frac{1}{|G|} \sum_{g \in G} g : V \rightarrow V$ projection onto the invariant subspace V^G (= hilial summands in V) $\frac{P_{np}:}{P_{np}:} \quad \begin{array}{|l|l|l|}\hline Given any class function & \alpha:G \rightarrow \mathbb{C} \\ & \text{and any } rep^2 \ V \ \text{of } G \end{array} \right\}, \quad \begin{array}{|l|l|l|}\hline bt & \forall \alpha, V = \frac{1}{|G|} \ \underbrace{\sum_{j \in G}} \ \alpha(j) \ g: \ V \rightarrow V \\ \hline \hline Then & \forall \alpha, V: \ V \rightarrow V \ \text{is } G \cdot \text{linear (equivarian'}). \end{array}$ $\frac{P_{nof}}{P_{nof}} \cdot \varphi_{\kappa y}(hv) = \frac{1}{|G|} \sum_{g \in G} \alpha(g) g h v$ $=\frac{1}{|G|}\sum_{g'\in G}\alpha(hg'h')\left(hg'h'\right)hv = \frac{1}{|G|}\sum_{g'\in G}\alpha(g')hg'v$ related sum: g = hg'h'. $= h\left(\frac{1}{|G|}\sum_{g'\in G}\alpha(g')g'v\right) = h.\Psi_{\alpha,\nu}(v)$. The character of the irreducible reps of G form an orthonormal basis (for H) of the space of class functions $G \to \mathbb{C}$, and # irred reps = # conjugacy classes. Proof: To show the character X1,..., Xm of the irred reps span all class functions, it suffice to show: $H(\overline{x}, \chi_i) = 0 \ \forall i \Rightarrow x = 0$.

Given any class fuction or and an irreducible rep. V, Viv V as above.

Then by Schu's lemma, $\psi_{\alpha y} = \lambda \cdot id_V$, where $\lambda = \frac{1}{n} \operatorname{tr}(\psi_{\alpha y})$, $n = \dim V$. So: $\lambda = \frac{1}{n} \operatorname{tr}(\psi_{\alpha y}) = \frac{1}{n} \frac{1}{|G|} \sum_{g \in G} \kappa(g) \operatorname{tr}(g) = \frac{1}{n} \frac{1}{|G|} \sum_{g \in G} \kappa(g) \chi_V(g) = \frac{1}{n} H(\alpha, \chi_V)$.

So: if $H(\bar{\alpha}, \chi_{V_i}) = 0$ $\forall V_i$ irreducible, then $\psi_{\kappa, V_i} = 0$ $\forall V_i$, hence by considering direct sums, $\psi_{\kappa, V} = 0$ for all rep's of G, in particular for the regular reproductation R of G (pernutation up. for left-mult on G).

So: for the regular representation, $(\alpha, R(e_1) = \frac{1}{|G|} \sum_{g \in G} \alpha(g) e_g = 0$.

Since the eg are linearly indept, their implies $\alpha(g)=0$ $\forall g \in G$, i.e. $\alpha=0$. \square

Along the way, we found:

For V_i , V_j inducible, look at $V_{\alpha_i, V_j} : V_j \rightarrow V_j$ for $\alpha = \overline{X_{V_i}} : \text{then}$ $V_{\alpha_i, V_j} = \lambda \cdot i d_{V_j} \text{ where } \lambda = \frac{1}{\dim V_j} \operatorname{tr}(\psi_{\alpha_i, V_j}) = \frac{1}{\dim V_j} H(\chi_{V_i}, \chi_{V_j}) = \begin{cases} \frac{1}{\dim V_j} & i = j \\ 0 & i \neq j \end{cases}$ $|| \text{Pops} || \text{ if } V_i \text{ is any read } G_i \text{ and } V_i - G_i \text{ if } G_i \text{ is the sum who in } K_i = 1$

=) $\frac{P_{np}}{I_{np}}$ if V is any rep of G and $V = \bigoplus V_i^{\bigoplus a_i}$ its decomposition into irreducibles, then $\varphi_{V_i} = \frac{\dim V_i}{IGI} \sum_{g \in G} \overline{\chi_{V_i}(g)} g$, $V \rightarrow V$ is the projection arts. The summand $V_i^{\bigoplus a_i}$ (i.e. identity on that summand, O on other).

(The case of the trivial rep? = our previous prjection formula for VG)

The representation ring of G:

Fix a group G and consider the set of (finite dim, IC) representations of G up to isomorphism. There are two operations \oplus and \otimes which are commutative, associative, and distributive $(U \oplus V) \otimes W = (U \otimes W) \oplus (V \otimes W)$. So this is a ring?.. whost! We're missing additive invesses. We'll just add them!

Let $\hat{R} = \{ \sum_{i=1}^{n} |V_i| / a_i \in \mathbb{Z}, V_i \text{ reps of } G \}$ formal linear combinations with integer coefficients of rep's of G and consider the additive subgroup generated by all $[V] + [W] - [V \oplus W]$.

Let R(G) = the quotient of R by this subgroup.

(so, in R(G), [V]+[W] = [V⊕W], Set are can subtract rep's!)

(R(G), \oplus , \otimes) is now a ring - the reprolation ring of G. Restand these operations to formal sums / difference of rep's by linearly! As a set, $R(G) = \begin{cases} \sum_{i=1}^{k} a_i V_i \mid a_i \in \mathbb{Z} \end{cases}$ when $V_i = lhe$ irreducible reprosentation of G (complete reducibility + uniqueness of decomposition into irreps.)

i.e. (R(G), +) is a free abelian group ($\cong \mathbb{Z}^k$, k = Hirreducibles).

General elements $(a_i \in \mathbb{Z})$ are called "righted representations"; actual rep's, ie elements st. $a_i \geq 0$ Vi, form a cone inside it. (ie-subset closed under addition).

When come of rep's inside R(G).

circul rep's.

Next: the character, $V \mapsto \chi_V$, can be extended by liverity to a map $R(G) \longrightarrow \mathbb{C}_{class}(G)$. This is a <u>ring homomorphism!</u>

class functions $(\chi_{U \oplus V} = \chi_V + \chi_V, \chi_{U \oplus V} = \chi_U \chi_V)$

The image of this map = "virtual character" (= { \(\Sigma_i \chi_i \chi_i = a_i \in \mathbb{Z}_i \).

Paping to complex linear combinations instead of integer ones, our roults about inch. charactes forming a basis say:

 $R(G) \otimes \mathbb{C} \xrightarrow{\simeq} \mathbb{C}_{dasj}(G)$ is an isomorphism $\sum_{i=1}^{k} a_i [V_i] \longrightarrow \chi_{\sum a_i V_i} = \sum_{a_i} \chi_{V_i}$ $(a_i \in \mathbb{C} \text{ now})$

(tensor product of (free) Z-modules, works same as for rector spaces).

. There are heavens of Artin and Braner had beside the lattice of virtual characters $\Lambda = \left\{ \sum_{a \in \mathcal{R}_{Ni}} , a \in \mathbb{Z} \right\}$ inside $C_{clay}(G)$. We'll see how after Thanksgiving.

Next time. We'll look at rep's of S_5 and A_5 , for extra practice with characters + to notivate diversion of restriction & induction of representations (reps of $G \longleftrightarrow reps$ of subgroups of G).