Engineering Mechanics: Statics

Chapter 5: Equilibrium of a Rigid Body

5.4 Two- and Three-Force Members

Two-Force Members.

- When forces are applied at only two points on a member, the member is called a two-force member
- Only force magnitude must be determined
- For any two-force member to be in equilibrium, the two forces acting on the member *must have the same magnitude*, act in opposite directions, and have the same line of action, directed along the line joining the two points where these forces act.

Two- and Three-Force Members

Three-Force Members.

- If a member is subjected to only three forces, it is called a three-force member.
- Moment equilibrium can be satisfied only if the three forces form a *concurrent* or *parallel* force system.
- Consider the member subjected to the three forces F₁, F₂, and F₃, shown in Fig. 5–21a. If the lines of action of F₁ and F₂ intersect at point O, then the line of action of F₃ must also pass through point O so that the forces satisfy ΣM_O = 0. As a special case, if the three forces are all parallel, Fig. 5–21b, the location of the point of intersection, O, will approach infinity.

Three-force member

5.5 Free-Body Diagrams

• The first step in solving three-dimensional equilibrium problems, as in the case of two dimensions, is to draw a free-body diagram.

Support Reactions.

As in the two-dimensional case:

- If a <u>support prevents translation</u> of a body in a given direction, then <u>a force is developed</u> on the body in the opposite direction.
- A couple moment is developed when rotation of the attached member is prevented
- The force's orientation is defined by the coordinate angles α , β and γ

Free-Body Diagrams

Free-Body Diagrams

Free-Body Diagrams

Free-Body Diagrams

Support Reactions.

single journal bearing with square shaft

Five unknowns. The reactions are two force and three couple-moment components. *Note*: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

single thrust bearing

Five unknowns. The reactions are three force and two couple-moment components. *Note*: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

single smooth pin

Five unknowns. The reactions are three force and two couple-moment components. *Note*: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

Free-Body Diagrams

Free-Body Diagrams

Support Reactions.

Applications.

This ball-and-socket joint provides a connection for the housing of an earth grader to its frame. (4) (© Russell C. Hibbeler)

The journal bearings support the ends of the shaft. (5) (© Russell C. Hibbeler)

This thrust bearing is used to support the drive shaft on a machine. (7) (© Russell C. Hibbeler)

This pin is used to support the end of the strut used on a tractor. (8) (© Russell C. Hibbeler)

Example-1a

Consider the two rods and plate, along with their associated free-body diagrams shown in Fig. 5–23. The x, y, z axes are established on the diagram and the $\frac{unknown}{reaction}$ components are indicated in the $\frac{positive\ sense}{reaction}$. The weight is neglected.

Actual Figure.

FBD.

The force reactions developed by the bearings are sufficient for equilibrium since they prevent the shaft from rotating about each of the coordinate axes.

Example-1b

Actual Figure.

FBD.

Example-1c

Actual Figure.

FBD.

Only force reactions are developed by the bearing and hinge on the plate to prevent rotation about each coordinate axis. No moments at the hinge are developed.

5.6 Equations of Equilibrium

• The conditions for equilibrium of a rigid body subjected to a three-dimensional force system require that both the *resultant* force and *resultant* couple moment acting on the body be equal to *zero*.

Vector Equations of Equilibrium.

The two conditions for equilibrium of a rigid body may be expressed mathematically in vector form as

$$\Sigma \mathbf{F} = \mathbf{0}$$
$$\Sigma \mathbf{M}_O = \mathbf{0}$$

Scalar Equations of Equilibrium. If all the external forces and couple moments are expressed in Cartesian vector form; we have

$$\Sigma \mathbf{F} = \Sigma F_x \mathbf{i} + \Sigma F_y \mathbf{j} + \Sigma F_z \mathbf{k} = \mathbf{0}$$

$$\Sigma \mathbf{M}_O = \Sigma M_x \mathbf{i} + \Sigma M_y \mathbf{j} + \Sigma M_z \mathbf{k} = \mathbf{0}$$

$$\Sigma F_x = 0$$

$$\Sigma F_y = 0$$

$$\Sigma F_z = 0$$

$$\Sigma M_x = 0$$

$$\Sigma M_y = 0$$

$$\Sigma M_z = 0$$

Equations of Equilibrium

• Six scalar equations are required to express the conditions for the equilibrium of a rigid body in the general three dimensional case.

$$\sum_{x} F_{x} = 0 \qquad \sum_{y} F_{y} = 0 \qquad \sum_{z} F_{z} = 0$$
$$\sum_{x} M_{x} = 0 \qquad \sum_{z} M_{z} = 0$$

- These equations can be solved for no more than 6 unknowns which generally represent reactions at supports or connections.
- The scalar equations are conveniently obtained by applying the vector forms of the conditions for equilibrium,

$$\sum \vec{F} = 0$$
 $\sum \vec{M}_O = \sum (\vec{r} \times \vec{F}) = 0$

Example-2

The boom is used to support the 75-lb flowerpot in Fig. 5–30*a*. Determine the tension developed in wires *AB* and *AC*.

SOLUTION (VECTOR ANALYSIS)

Free-Body Diagram. The free-body diagram of the boom is shown in Fig. 5–30*b*.

SOLUTION

Equations of Equilibrium. Here the cable forces are directed angles with the coordinate axes, so we will use a vector analysis

$$\mathbf{F}_{AB} = F_{AB} \left(\frac{\mathbf{r}_{AB}}{r_{AB}} \right) = F_{AB} \left(\frac{\{2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}\} \text{ ft}}{\sqrt{(2\text{ ft})^2 + (-6\text{ ft})^2 + (3\text{ ft})^2}} \right)$$
$$= \frac{2}{7} F_{AB} \mathbf{i} - \frac{6}{7} F_{AB} \mathbf{j} + \frac{3}{7} F_{AB} \mathbf{k}$$

$$\mathbf{F}_{AC} = F_{AC} \left(\frac{\mathbf{r}_{AC}}{r_{AC}} \right) = F_{AC} \left(\frac{\{-2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}\} \text{ ft}}{\sqrt{(-2 \text{ ft})^2 + (-6 \text{ ft})^2 + (3 \text{ ft})^2}} \right)$$
$$= -\frac{2}{7} F_{AC} \mathbf{i} - \frac{6}{7} F_{AC} \mathbf{j} + \frac{3}{7} F_{AC} \mathbf{k}$$

SOLUTION

We can eliminate the force reaction at *O* by writing the moment equation of equilibrium about point *O*.

$$\Sigma \mathbf{M}_{0} = \mathbf{0}; \qquad \mathbf{r}_{A} \times (\mathbf{F}_{AB} + \mathbf{F}_{AC} + \mathbf{W}) = \mathbf{0}$$

$$(6\mathbf{j}) \times \left[\left(\frac{2}{7} F_{AB} \mathbf{i} - \frac{6}{7} F_{AB} \mathbf{j} + \frac{3}{7} F_{AB} \mathbf{k} \right) + \left(-\frac{2}{7} F_{AC} \mathbf{i} - \frac{6}{7} F_{AC} \mathbf{j} + \frac{3}{7} F_{AC} \mathbf{k} \right) + (-75\mathbf{k}) \right] = \mathbf{0}$$

$$\left(\frac{18}{7} F_{AB} + \frac{18}{7} F_{AC} - 450 \right) \mathbf{i} + \left(-\frac{12}{7} F_{AB} + \frac{12}{7} F_{AC} \right) \mathbf{k} = \mathbf{0}$$

$$\Sigma \mathbf{M}_{x} = 0; \qquad \frac{18}{7} F_{AB} + \frac{18}{7} F_{AC} - 450 = 0$$

$$\Sigma \mathbf{M}_{y} = 0; \qquad 0 = 0$$
(1)

Solving Eqs. (1) and (2) simultaneously,

 $\Sigma M_z = 0;$ $-\frac{12}{7}F_{AB} + \frac{12}{7}F_{AC} = 0$

$$F_{AB} = F_{AC} = 87.5 \text{ lb}$$

(2)

Home Assignment

• Example 5-18 & 5-19.