Statistical inference in high-dimension & application to brain imaging

Imaging and machine learning workshop

Bertrand Thirion,

bertrand.thirion@inria.fr

Cognitive neuroscience

How are cognitive activities affected or controlled by neural circuits in the brain?

The brain, the mind and the scanner

The brain, the mind and the scanner

Encoding: mapping cognitive functions to brain activity

03/04/2019 Bertrand Thirion

Resolution increases

2007: 3 mm

2014: 1.5 mm 2021: 0.5 mm ?

$$p = 50,000$$

$$p = 400,000$$

$$p = 10^7$$

better estimators for large-scale brain imaging

- A causal framework for brain activity decoding
- Dimension reduction for images
- Fast regularized ensembles of models
- Statistical inference for high-dimensional models

03/04/2019 Bertrand Thirion

Causal interpretation

$$X_i \perp \!\!\! \perp T$$

Encoding: causal

Decoding: anti-causal

$$\mathbf{X_i} \perp \!\!\! \perp \!\!\! \mathbf{T} | \left(\mathbf{X_j}, \mathbf{j} \neq \mathbf{i} \right)$$

$$X_i \perp \!\!\! \perp B$$

Encoding: anti-causal

Decoding: causal

$$\mathbf{X_i} \perp \!\!\! \perp \!\!\! \mathbf{B} | (\mathbf{X_j}, \mathbf{j} \neq \mathbf{i})$$

[Weichwald et al. NIMG 2015]

	Feature X	; relevant?	
	Encoding	Decoding	Causal interpretation
	×		$T \perp \!\!\! \perp X_i \Rightarrow X_i$ is no effect of T
setting Task			$T \not\perp \!\!\! \perp X_i \Rightarrow X_i$ is an effect of T
Se T		×	$T \perp X_i X \setminus X_i \Rightarrow \text{inconclusive}$
Ital		$\sqrt{}$	$T \not\perp X_i X \setminus X_i \Rightarrow \text{inconclusive}$
=xperimental 3ehaviour	×		$B \perp \!\!\! \perp X_i \Rightarrow X_i$ is no cause of B
xperime ehaviour			$B \not\perp X_i \Rightarrow \text{inconclusive}$
xpe eha		×	$B \perp \!\!\! \perp X_i X \setminus X_i \Rightarrow \text{inconclusive}$
Щ Ж			$B \not\perp X_i X \setminus X_i \Rightarrow \text{inconclusive}$

		Feature X_i	relevant?	
		Encoding	Decoding	Causal interpretation
al paradigm Task		×	×	X_i is no effect of T
	X		×	X_i is an indirect effect of T
	L	X		X_i provides context
				X_i is an effect of T
Experimental Behaviour	ur	×	×	X_i is no cause of B
	Vio		×	X_i is no direct cause of B
	eha	×		X_i provides context
	B			inconclusive

[Weichwald et al. NIMG 2015]

Joint encoding and decoding

"Encoding"

"Decoding"

[Schwartz et al. NIPS 2013, Varoquaux et al. PCB 2018]

Decoding maps

Joint encoding and decoding

[Schwartz et al. NIPS 2013, Varoquaux et al. PCB 2018]

Statistical associations and causal reasoning

Problems:

- Establish non-independence based on finite datasets → statistical tests
- Large number of conditioning variables
- Encoding models: Multiple comparison issues
- Decoding problem: statistical tests in multiple regression

Brain activity decoding

behavior = f (brain activity)

$$\mathbf{y} = \mathbf{X} \mathbf{w}^* + \sigma_* \boldsymbol{\varepsilon}$$
 • error vector: $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$

- noise magnitude: $\sigma_* > 0$

18

- prediction: find $\hat{\boldsymbol{w}}$ that minimizes $\|\mathbf{X}\hat{\boldsymbol{w}} \mathbf{X}\boldsymbol{w}^*\|_2$
- estimation: find $\hat{\boldsymbol{w}}$ with control on $|\hat{w}_j w_i^*|$ for all $j \in [p]$

Outline

- A causal framework for brain activity decoding
- Dimension reduction for images
- Fast regularized ensembles of Models
- Statistical inference for high-dimensional models

Compression in the image domain

- Reduce the complexity of learning algorithms: $p \rightarrow k \ll p$
- Random projections = fast generic solution, but
 - Sub-optimal for structured signals
 - Not invertible when p and k are large
- Local redundancy → feature grouping strategies / clustering: "super-pixels"
 - Fast clustering procedures needed (large-k regime)

Superpixels as an image operator

Crafting good image compression

Key assumption: signal of interest L-Lipschitz

$$|\mathbf{x}_i - \mathbf{x}_j| \le L \operatorname{dist}_{\mathcal{G}}(v_i, v_j), \quad \forall (i, j) \in [p]^2$$

- Feature grouping matrix $\mathbf{\Phi}_{\mathsf{FG}} \in \mathbb{R}^{k imes p}$
- almost trivially: $\|\mathbf{x}\|^2 L^2 \sum_{q=1}^k |\mathcal{C}_q|^3 \leq \|\mathbf{\Phi}_{\mathsf{FG}} \ \mathbf{x}\|^2 \leq \|\mathbf{x}\|^2$
- Worst case $\|\mathbf{x}\|_2^2 kL^2 \max_{q \in [k]} \{|\mathcal{C}_q|^3\} \le \|\mathbf{\Phi}_{\mathsf{FG}} \mathbf{x}\|_2^2 \le \|\mathbf{x}\|_2^2$

Need a fast method to learn balanced clusters

Denoising properties

Noisy signal model

$$x = s + n$$

$$ext{MSE}_{ ext{approx}} \leq L^2 \sum_{q=1}^k |\mathcal{C}_q| \operatorname{diam}_{\mathcal{G}}(\mathcal{C}_q)^2 + \frac{k}{p} \operatorname{MSE}_{ ext{orig}}$$

Denoising

$$MSE_{approx} \leq MSE_{orig}$$

$$L^{2} \leq \frac{(p-k)}{\sum_{q=1}^{k} |\mathcal{C}_{q}| \operatorname{diam}_{\mathcal{G}}(\mathcal{C}_{q})^{2}} \sigma^{2}$$

Equal-size clusters

$$MSE_{approx} \le p \left(\frac{L}{k}\right)^2 + \frac{k}{p} MSE_{orig} = O\left(\max\left\{\frac{p}{k^2}, \frac{k}{p}\right\}\right)$$

Recursive neighbor Agglomeration

[Thirion et al. Stamlins 2015, Hoyos Idrobo PAMI 2018]

Based on local decisions = fast (linear time) – avoid percolation

Effect on data analysis tasks

Impressive speed-up and increased accuracy with respect to non-compressed representation

Clustering has a denoising effect

[Hoyos Idrobo IEEE PAMI 2018]

Outline

- A causal framework for brain activity decoding
- Dimension reduction for images
- Fast regularized ensembles of Models
- Statistical inference for high-dimensional models

Bagging of clustered models

Computationally efficient structure

"fast regularized ensembles of models"

State of the art solution: not very stable, but cheap

Computationally efficient structure

03/04/2019 Bertrand Thirion 29

Effect on prediction accuracy

[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017, PAMI 2018]

"fast regularized ensembles of models"

More results

[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017, PAMI 2018]

Outline

- A causal framework for brain activity decoding
- Dimension reduction for images
- Fast regularized ensembles of Models
- Statistical inference for high-dimensional models

Statistical inference on w

- Inference: find {j: w_j > 0} with some statistical guarantees
- Standard solutions for high-dimensional linear models ($p \approx n$)
 - Corrected ridge [Bühlmann 2013]
 - Desparsified Lasso [Zhang & Zhang 2014, Montanari 2014]
 - Multi-split [Meinshausen 2009], knockoffs [Candès 2015+]
- Fail for p ≫ n

Desparsified Lasso

- Objective: construct confidence bounds on the coefficients of w^*
- Principle:

[Zhang & Zhang 2014 Series B Stat Meth]

- construct an unbiased estimator of \mathbf{w}^* (generalization of $\hat{\mathbf{w}}^{OLS}$)
- compute its covariance matrix
- Heuristic argument: in low dimension we can prove that:

$$\hat{w}_{j}^{\mathsf{OLS}} = rac{\mathbf{z}_{j}^{\top}\mathbf{y}}{\mathbf{z}_{i}^{\top}\mathbf{x}_{j}}$$
,

where \mathbf{z}_j is the residual of the OLS regression of \mathbf{x}_j versus $\mathbf{X}^{(-j)}$:

$$\mathbf{z}_j = \mathbf{x}_j - \mathbf{P}_{\mathbf{X}^{(-j)}}\mathbf{x}_j$$
,

where $\mathbf{P}_{\mathbf{X}^{(-j)}}$ is the projection onto $\mathsf{Span}(\mathbf{X}^{(-j)}) \subset \mathbb{R}^{p-1}$

Desparsified Lasso

• **Desparsified Lasso estimator:** when n < p, \mathbf{z}_j is the residual of a Lasso-CV regression of \mathbf{x}_j vs $\mathbf{X}^{(-j)}$ and the debiased estimator is:

$$\hat{w}_j = \frac{\mathbf{z}_j^{\top} \mathbf{y}}{\mathbf{z}_j^{\top} \mathbf{x}_j} - \sum_{k \neq j} \frac{\mathbf{z}_j^{\top} \mathbf{x}_k \hat{w}_k^{(init)}}{\mathbf{z}_j^{\top} \mathbf{x}_j} ,$$

where $\hat{\boldsymbol{w}}^{(init)}$ is an initial non linear estimator of \boldsymbol{w}^* (e.g., Lasso)

• Covariance: the covariance matrix of this estimator is:

$$\Omega_{jk} = \frac{n\mathbf{z}_j^{\top}\mathbf{z}_k}{(\mathbf{z}_j^{\top}\mathbf{x}_j)(\mathbf{z}_k^{\top}\mathbf{x}_k)}$$

• Confidence bounds: under few assumptions (Dezeure et al. [2015]):

$$\sigma_*^{-1}(\Omega_{jj})^{-1/2}(\hat{w}_j - w_j^*) \sim \mathcal{N}(0, 1)$$

Preliminary assessment

Comparing OLS and Desparsified Lasso solutions:

OLS regression when $p \approx n$

Desparsified Lasso when $p \approx n$

Large p → **need dimension reduction**

Large p kills statistical power

CDL tames variance

[Chevalier et al. subm. To MICCAI]

Adaptation to brain imaging

Step 1: compression by clustering

Step 2: inference on compressed representations

$$\sigma_*^{-1}(\Omega_{jj})^{-1/2}(\hat{w}_j - w_j^*) \sim \mathcal{N}(0, 1)$$

Clustered
Desparsified
Lasso

Step 3: ensembling iterate with different parcellations *Ensemble of*

→ aggregate p-values (see also FReM)

Ensemble of Clustered Desparsified Lasso

From CDL to ECDL

DL p-values from different clusterings

ECDL for brain imaging

δ-error control

Definition (δ -null region)

The set of covariates that verify the δ -null hypothesis in the true model is called the δ -null region and is denoted by N^{δ} :

$$N^{\delta} = \{j \in [p] : \forall k \in [p], d(j,k) \leq \delta \implies \mathbf{w}_k^* = 0\}$$
.

Definition (Rejection region)

Given a family of p-values $\hat{p} = (\hat{p}_j)_{j \in [p]}$ and a threshold $\alpha \in (0,1)$, we call rejection region at level α for the family \hat{p} the indexes of covariates whose corresponding p-value are lower than α and denote it by $R_{\alpha}(\hat{p})$:

$$R_{\alpha}(\hat{p}) = \{j \in [p] : \hat{p}_j \leq \alpha\}$$
.

δ-error control

Definition (δ -type 1 error region)

Given a family of p-values $\hat{p} = (\hat{p}_j)_{j \in [p]}$ and a threshold $\alpha \in (0,1)$, the δ -type 1 error region (or erroneous rejection region with tolerance δ) at level α is the set of covariates indexes belonging both to the δ -null region and to the rejection region at level α :

$$\mathscr{E}_{\alpha}^{\delta}(\hat{p}) = \mathsf{N}^{\delta} \cap \mathsf{R}_{\alpha}(\hat{p})$$
.

Definition (δ -family wise error rate)

Given a family of p-values $\hat{p} = (\hat{p}_j)_{j \in [p]}$ and a threshold $\alpha \in (0,1)$, the δ -FWER, denoted FWER $_{\alpha}^{\delta}(\hat{p})$, is the probability that the δ -type 1 error region at level α is not empty:

$$\mathit{FWER}_{\alpha}^{\delta}(\hat{p}) = \mathbb{P}(|\mathscr{E}_{\alpha}^{\delta}(\hat{p})| \geq 1) = \mathbb{P}(\min_{j \in \mathsf{N}^{\delta}} \hat{p}_{j} \leq \alpha) \enspace .$$

δ-FWER control

Definition (δ -FWER control)

We say that the family of p-values $\hat{p} = (\hat{p}_j)_{j \in [p]}$ controls the δ -FWER if, for all $\alpha \in (0,1)$:

$$FWER^{\delta}_{\alpha}(\hat{p}) \leq \alpha$$
.

Proposition

Under the assumptions for the vanilla Desparsified Lasso and assumptions on the weight map and on the data structure we have the following result:

If the diameters of the clusters are all smaller than δ then the p-value family computed through the ECDL algorithm controls the δ -FWER.

δ-FWER-control

Cluster containing positive weights

Cluster containing negative weights

Simulations: ECDL > CDL

- Parameters: n = 400, H = 50, $p = H^3 = 125\,000$, $\sigma_{\rm smth} = 2$
- Noise: $SNR_v = 3$ by taking $\sigma_* = 8$
- Hyperparameters: C = 500 and B = 25
- Weights:

(a) weight vector: **w***

[Chevalier et al. MICCAI 2018]

Experiments: PR and FWER control

$$Recall = \frac{Number of true positive}{Size of the active set} Precision = \frac{Number of true positive}{Number of discoveries}$$

 $FWER = Prob(Number of false positive \geq 1)$

Better PR with ECDL

+ More accurate FWER control

[Chevalier et al. MICCAI 2018]

Effects on real data

HCP dataset, n=900

Social cognition

Visual feature discrimination

Language vs maths

[Nguyen et al. IPMI 2019, Chevalier et al. MICCAI 2018]

Conclusion

- Causal reasoning → conditional association analysis
- Large-p data bring challenges:
 - Computation cost
 - Difficulty of statistical inference
- Solutions: ensembling, subsampling, compression
- Efficient stochastic regularizers
- Ongoing comparison with knockoff

[Nguyen et al. IPMI 2019]

WIP

- Classification setting
- Use of bootstrap

[Aydore et al. subm]

From good ideas to good practices: software

- Machine learning for neuroimaging http://nilearn.github.io
- BSD, Python, OSS
 - Classification of (neuroimaging) data
 - Network analysis

Parietal

- G. Varoquaux,
- A. Gramfort,
- P. Ciuciu,
- D. Wassermann,
- D. Engemann,
- B. Nguyen
- A.L. Grilo Pinho,
- E. Dohmatob,
- A. Mensch,
- J.A. Chevalier,
- A. Hoyos idrobo,
- D. Bzdok,
- J. Dockès,
- P. Cerda,
- C. Lazarus
- D. La Rocca
- G. Lemaitre
- L. El Gueddari
- O. Grisel
- M. Massias
- P. Ablin
- H. Janati
- J. Massich
- K. Dadi
- H. Richard
- C. Petitot

HP

Acknowledgements

Human Brain Project

UNIVERSITE

50

03/04/2019 Bertrand Thirion