Átváltások

v[m/s] = v[km/h] : 3,6 $\alpha[\text{radián}] = \alpha[^{\circ}] \cdot \frac{\pi}{180^{\circ}}$ $E[J] = E[\text{Wh}] \cdot 3600$ $T[K] = T[^{\circ}C] + 273$ $p[\text{Pa}] = p[\text{atm}] \cdot 101325$ $V[\text{m}^{3}] = V[\text{liter}] \cdot 10^{-3}$ $E[J] = E[\text{eV}] \cdot 1,6 \cdot 10^{-19}$

Állandók, fontosabb adatok

Atomi tömegegység: $u = 1,6606 \cdot 10^{-27} \text{ kg}$

Atommag sűrűsége: $\rho \approx 10^{17} \frac{\text{kg}}{\text{m}^3}$

Avogadro-szám: $N_A = 6.02 \cdot 10^{23} \frac{1}{\text{mol}}$

Boltzmann-állandó: $k = 1.38 \cdot 10^{-23} \frac{J}{K}$

Coulomb-törvény arányossági tényezője: $k = 9 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$

Vákuum dielektromos állandója: $\varepsilon_0 = \frac{1}{4\pi \cdot 9 \cdot 10^9} \frac{A \cdot s}{V \cdot m}$

Elektron fajlagos töltése: $\frac{Q_{e^-}}{m} = -1.76 \cdot 10^{11} \frac{C}{kg}$

Elektron töltése: $Q_{\rm e} = -1.6 \cdot 10^{-19} \, {\rm C}$ Elektron tömege: $m_{\rm e} = 9.1 \cdot 10^{-31} \, {\rm kg}$

Elemi töltés: $e = 1,6 \cdot 10^{-19} \text{ C}$ Fényév: 1 fényév $\approx 9,468 \cdot 10^{15} \text{ m}$

Fénysebesség vákuumban (és levegőben): $c = 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$

A Föld közepes átmérője: $d_{\text{Föld}} = 1,274 \cdot 10^7 \text{ m}$

A Föld közepes távolsága a Naptól: $r_{\text{Föld}} = 1,496 \cdot 10^{11} \text{ m}$

A Föld tömege: $m_{\text{Föld}} = 5,974 \cdot 10^{24} \text{ kg}$

Gravitációs állandó: $\gamma = 6.67 \cdot 10^{-11} \frac{N \cdot m^2}{kg^2}$

A Nap átmérője: $d_{\text{Nap}} = 1,392 \cdot 10^9 \text{ m}$

A Nap tömege: $m_{\text{Nap}} = 1,983 \cdot 10^{30} \text{ kg}$

Nehézségi gyorsulás Magyarországon: $g = 9.81 \frac{\text{m}}{\text{s}^2}$

Neutron tömege: $m_{n^0} = 1,6749 \cdot 10^{-27} \text{ kg}$

Vákuum permeabilitása: $\mu_0 = 4\pi \cdot 10^{-7} \frac{V \cdot s}{A \cdot m}$

Planck-állandó: $h = 6.6 \cdot 10^{-34} \text{ J} \cdot \text{s}$

Proton töltése: $Q_{p^+} = 1.6 \cdot 10^{-19} \text{ C}$

Proton tömege: $m_{p^+} = 1,6726 \cdot 10^{-27} \text{ kg}$

Univerzális gázállandó: $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$

Newton II. törvénye, lendület

 \Rightarrow Lendület: $\underline{I} = m \cdot \underline{y} \left[\text{kg} \cdot \frac{\text{m}}{\text{s}} \right]$

 $\Rightarrow A \qquad \text{dinamika} \qquad \text{alapegyenlete:}$ $\sum \underline{F} = m \cdot \underline{a} = \frac{\Delta \underline{I}}{t} \qquad [F] = N$

 $\Rightarrow \text{ Lendületmegmaradás} \qquad \text{(zárt rendszerben):} \\ I_1 + I_2 + ... = \text{állandó}$

⇒ Erőlökés: F·t

Erőfajták

- \Rightarrow Gravitációs erő: $F_{\rm grav} = \gamma \cdot \frac{m_1 \cdot m_2}{r^2}$, ahol γ a gravitációs állandó, r pedig az m_1 és m_2 tömegű testek közti távolság.
- \Rightarrow Nehézségi erő: $\underline{F}_{neh} = m \cdot g$
- \Rightarrow Lejtő által kifejtett gyorsító erő: $F_{\text{lejtő}} = m \cdot g \cdot \sin \alpha$, ahol α a lejtő vízszintessel bezárt szöge.
- Rugóerő: $F_r = D \cdot x$, ahol $D = \left[\frac{N}{m} \right]$ a rugóállandó vagy direkciós erő, x pedig a megnyúlás.
- \Rightarrow Súly(erő): $\underline{G} = m \cdot (\underline{g} \underline{a})$, ahol \underline{a} a test alátámasztásának vagy felfüggesztésének lefelé irányuló gyorsulása.
- \Rightarrow Súrlódási erő: $F_{\rm s} = \mu \cdot F_{\rm ny}$, ahol $F_{\rm ny}$ a két érintkező felületet összenyomó erő nagysága, μ pedig a súrlódási együttható.
- \Rightarrow Tapadási súrlódási erő maximális értéke: $F_{\max} = \mu_0 \cdot F_{\text{nv}}$, ahol μ_0 a tapadási súrlódási együttható.

Minden mozgásra

- $\Rightarrow \text{ Átlagsebesség: } v_{\text{átlag}} = \frac{s_{\text{összes}}}{t_{\text{összes}}} \left[\frac{\text{m}}{\text{s}} \right]$
- ⇒ A megtett út egyenlő a sebesség-idő grafikon alatti területtel.

Egyenletes mozgás

 \Rightarrow Sebesség: $v = \frac{s}{t} \left[\frac{m}{s} \right]$

Egyenletesen változó mozgás

- \Rightarrow Átlagsebesség: $v_{\text{átlag}} = \frac{v_0 + v}{2}$
- \Rightarrow Gyorsulás: $a = \frac{v v_0}{t} \left[\frac{\text{m}}{\text{s}^2} \right]$
- \Rightarrow Pillanatnyi sebesség: $v = v_0 + a \cdot t$
- $\Rightarrow \quad \text{Út: } s = v_0 \cdot t + \frac{a}{2} \cdot t^2 \quad [m]$

Hajítások

⇒ Ha feldobjuk a testet, akkor

- felfelé irányuló sebessége: $v_{\text{fel}} = v_0 - g \cdot t$,

- elmozdulása: $y = v_0 \cdot t - \frac{g}{2} \cdot t^2$,

- az emelkedés ideje: $t_{\rm em} = \frac{v_0}{g}$,

- az emelkedés magassága: $h = \frac{v_0^2}{2g}$.

⇒ Ha ledobjuk a testet, akkor

- lefelé irányuló sebessége: $v_{le} = v_0 + g \cdot t$,

- elmozdulása: $y = v_0 \cdot t + \frac{g}{2} \cdot t^2$

⇒ Vízszintes hajításkor a test

- vízszintes irányú sebessége: $v_x = v_0$,

- vízszintes irányú elmozdulása: $x = v_0 \cdot t$,

- függőleges irányú sebessége: $v_y = g \cdot t$,

- függőleges irányú elmozdulása: $y = \frac{g}{2} \cdot t^2$,

- sebessége: $v = \sqrt{v_0^2 + (g \cdot t)^2}$,

- sebességének vízszintessel bezárt szögére: $\operatorname{tg} \alpha = \frac{g \cdot t}{v_o},$

- elmozdulása: $\Delta r = \sqrt{\left(v_0 \cdot t\right)^2 + \left(\frac{g}{2} \cdot t^2\right)^2}$

Egyenletes körmozgás

 \Rightarrow Szögelfordulás: $\alpha = \frac{i}{r}$ [(radián)], ahol i a befutott ívhossz, r pedig a körpálya sugara.

 \Rightarrow Szögsebesség: $\omega = \frac{\alpha}{t} \left[\frac{1}{s} \right]$

 \Rightarrow Kerületi sebesség: $v_k = \frac{i}{t} = r \cdot \omega$

 \Rightarrow Periódusidő: $T = \frac{1}{f} = \frac{2\pi}{\omega} = \frac{2\pi \cdot r}{v_k}$

 \Rightarrow Fordulatszám: $f = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{v_k}{2\pi \cdot r} \left[\frac{1}{s} \text{ vagy Hz} \right]$

 \Rightarrow Centripetális erő: $F_{cp} = m \cdot r \cdot \omega^2 = m \cdot r \cdot \frac{4\pi^2}{T^2} = m \cdot \frac{v_k^2}{r}$

 \Rightarrow Centripetális gyorsulás: $a_{cp} = r \cdot \omega^2 = r \cdot \frac{4\pi^2}{T^2} = \frac{v_k^2}{r}$

Harmonikus rezgőmozgás

 \Rightarrow Körfrekvencia: $\omega = \frac{2\pi}{T} = 2\pi \cdot f = \sqrt{\frac{D}{m}} \left[\frac{1}{s}\right]$

 \Rightarrow Rezgésidő: $T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \cdot \sqrt{\frac{m}{D}}$ [s]

 \Rightarrow Frekvencia: $f = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \cdot \sqrt{\frac{D}{m}} \left[\frac{1}{s} \text{ vagy Hz} \right]$

 \Rightarrow Kitérés: $y = A \cdot \sin(\omega \cdot t) = A \cdot \sin(\frac{2\pi}{T} \cdot t)$, ahol A az amplitúdó.

 $\Rightarrow \text{ Sebesség: } v = A \cdot \omega \cdot \cos(\omega \cdot t) = A \cdot \omega \cdot \cos\left(\frac{2\pi}{T} \cdot t\right)$

⇒ Gyorsulás:

 $a = -A \cdot \omega^2 \cdot \sin(\omega \cdot t) = -A \cdot \omega^2 \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) = -\omega^2 \cdot y$

 \Rightarrow Maximális sebesség (az egyensúlyi helyzetnél): $\left|v_{\mathrm{max}}\right| = A \cdot \omega$

 \Rightarrow Maximális gyorsulás (a szélső helyzeteknél): $|a_{\max}| = A \cdot \omega^2$

 \Rightarrow Rezgőmozgást végző test mechanikai energiája: $E_{\rm rezgő} = \frac{1}{2} D \cdot A^2$

 \Rightarrow Fázis: $\varphi = \omega \cdot t$ [(radián)]

- Két időpillanatban a fázisok egyenlők, ha $\varphi_1 = \varphi_2 + 2\mathbf{k}\cdot\boldsymbol{\pi}, \ \mathbf{k}\in Z$ ·

- Két időpillanatban a fázisok ellentétesek, ha $\varphi_1=\varphi_2+(2{\bf k}+1)\cdot \pi,\ {\bf k}\in Z$ ·

Matematikai inga

 \Rightarrow Lengésidő: $T = 2\pi \cdot \sqrt{\frac{l}{g}}$, ahol l a fonál hossza.

Mechanikai hullámok

 \Rightarrow Hullámhossz: $\lambda = c \cdot T = \frac{c}{f}$, ahol c a hullám terjedési sebessége.

 $\Rightarrow \text{ Interferencia: ha az azonos fázisban induló hullámok útkülönbsége } k \cdot \lambda \text{, akkor maximális erősítés jön létre,} \\ \text{ha pedig } \left(k + \frac{1}{2}\right) \cdot \lambda \text{, akkor kioltás, ahol } k \in Z \text{.}$

A határfelületre merőlegesen érkező hullám nem törik meg.

 \Rightarrow Törési törvény: $\frac{\sin \alpha}{\sin \beta} = \frac{c_1}{c_2}$, ahol α és β az 1. illetve a

2. közegbeli beesési és törési szög.

 \Rightarrow Az 1. közeg 2. közegre vonatkozó törésmutatója: $n_{1,2} = \frac{c_2}{c}$

 $\Rightarrow \quad n_{1,2} = \frac{1}{n_{2,1}}$

 \Rightarrow A határszögre: $\sin \alpha_{\rm h} = n_{2,1}$, ahol $\alpha_{\rm h}$ az 1. közegbeli beesési szög.

Munka

 $\Rightarrow W = F \cdot s$ [J], ha az erő és az elmozdulás iránya megegyezik,

 $\Rightarrow W = F \cdot s \cdot \cos \alpha$, ha az erő és az elmozdulás által bezárt szög α .

A munka egyenlő az erő-út grafikon alatti területtel.

 \Rightarrow Emelési munka: $W_{\rm em} = m \cdot g \cdot (h - h_0)$, ahol h a választott 0-szint feletti magasság.

 \Rightarrow Gyorsítási munka: $W_{gy} = \frac{1}{2} m \cdot (v^2 - v_0^2)$

 \Rightarrow Rugó nyújtásakor végzett munka: $W_{\rm r} = \frac{1}{2} D \cdot \left(x^2 - x_0^2\right)$, ahol D a rugóállandó, x pedig a megnyúlás.

 \Rightarrow Súrlódási munka: $W_s = \mu \cdot F_{ny} \cdot s$, ahol F_{ny} a súrlódó felületeket összenyomó erő nagysága, μ pedig a felületek közti súrlódási együttható.

Mechanikai energiák [J]

Helyzeti energia: $E_h = m \cdot g \cdot h$

Mozgási vagy kinetikus energia: $E_{\rm m} = \frac{1}{2} m \cdot v^2$

Rugó energiája: $E_{\rm r} = \frac{1}{2}D \cdot x^2$

A mechanikai energia megmaradásának tétele (konzervatív erőtérben): $E_{\rm m}+E_{\rm h}+E_{\rm r}=E_{\rm m}'+E_{\rm h}'+E_{\rm r}'$

Munkatétel: $W_{gv} = \Delta E_{m}$, ahol W_{gv} a gyorsítóerők munkája.

Teljesítmény

 $P = \frac{W}{t}$ [W]

Egyenletes mozgásnál: $P = F \cdot v$, ahol \underline{F} a test \underline{v} sebességével párhuzamos mozgató erő.

Hatásfok: $\eta = \frac{W_{\text{hasznos}}}{W_{\text{befektetett}}} = \frac{W_{\text{hasznos}}}{E_{\text{befektetett}}} = \frac{E_{\text{termelt}}}{E_{\text{befektetett}}}$

Egyensúly

 \Rightarrow Pontszerű test egyensúlyának feltétele: $\sum F = 0$

Forgatónyomaték: $M = F \cdot k \ [N \cdot m]$, ahol k az erőkar (a tengely és az erő hatásvonalának távolsága).

Erőpár forgatónyomatéka: $M = F \cdot d$, ahol d a két erő távolsága.

Merev test egyensúlyának feltételei: $\sum M = 0$ és

Stabil egyensúly: a testet kicsit elmozdítva, visszatér egyensúlyi helyzetébe.

Semleges egyensúly: a testet kicsit elmozdítva, új egyensúlyi helyzetet vesz fel.

Labilis egyensúly: a testet kicsit elmozdítva, kibillen egyensúlyi helyzetéből.

Hőtágulás

 \Rightarrow Lineáris hőtágulás: $\Delta l = l_0 \cdot \alpha \cdot \Delta T$, ahol Δl a hosszváltozás, l_0 a test kezdeti hossza, α az anyag lineáris hőtágulási együtthatója, ΔT pedig a hőmérsékletváltozás.

Térfogati hőtágulás: $\Delta V = V_0 \cdot \beta \cdot \Delta T$, ahol ΔV a térfogatváltozás, V_0 a test kezdeti térfogata, β pedig az anyag térfogati hőtágulási együtthatója.

 \Rightarrow $\beta \approx 3\alpha$

Molekuláris gázelmélet

Anyagmennyiség: $n = \frac{N}{N_{\Delta}} = \frac{m}{M}$ [mol], ahol M a molá-

ris tömeg, N pedig a részecskeszám.

1 mol normálállapotú gáz térfogata: $V_{\text{norm}} = 0.0224 \text{ m}^3$

A gáz nyomása: $p = \frac{1}{3} \rho \cdot v_{\text{dil}}^2$, ahol ρ a gáz sűrűsége, $v_{
m ád}$ pedig a gázrészecskék átlagos sebessége.

 \Rightarrow A gáz hőmérséklete: $T = \frac{1}{3} \frac{m \cdot v_{\text{átd}}^2}{k}$, ahol m egy gázrészecske tömege, k a Boltzmann-állandó, T pedig a gáz hőmérséklete.

Gáztörvények, állapotegyenlet

 \Rightarrow Nyomás: $p = \frac{F}{A}$ [Pa], ha F erőt fejtünk ki az A felület-

re. Sűrűség: $\rho = \frac{m}{V} \left[\frac{\text{kg}}{\text{m}^3} \right]$, ahol V a test térfogata.

Boyle-Mariotte-törvény: ha $T = \text{álland} \hat{o}$, $p_1 \cdot V_1 = p_2 \cdot V_2$, ahol T [K] a gáz hőmérséklete.

Gay-Lussac I. törvénye: ha p = állandó, akkor $\frac{V_1}{T_1} = \frac{V_2}{T_2}$.

Gay-Lussac II. törvénye: ha V =állandó, akkor

 $\Rightarrow \quad \text{Egyesített gáztörvény:} \ \, \frac{p_1 \cdot V_1}{T_1} = \frac{p_2 \cdot V_2}{T_2} \\ \Rightarrow \quad \text{Az} \qquad \text{ideális} \qquad \text{gáz} \qquad \text{állapotegyenlete:} \\ p \cdot V = n \cdot R \cdot T \bigg(= \frac{m}{M} \cdot R \cdot T = N \cdot k \cdot T \bigg), \text{ ahol } R \text{ az univer-}$ zális gázállandó, k pedig a Boltzmann-állandó.

Munka, belső energia, a hőtan I. főtétele

Ha $p = \text{álland}\acute{o}$, akkor a ΔV térfogatváltozáson áteső gázon végzett munka: $W = -p \cdot \Delta V$, a gáz által végzett munka pedig $W_{\text{gáz}} = p \cdot \Delta V$.

A munka abszolút értéke egyenlő a nyomás-térfogat grafikon alatti területtel.

Szabadsági fok: f = 3 egyatomos gázra, f = 5 kétatomosra, $f \ge 6$ többatomosra

energia: $E_{\rm b} = \frac{f}{2} \cdot n \cdot R \cdot T = \frac{f}{2} \cdot \frac{m}{M} \cdot R \cdot T = \frac{f}{2} \cdot N \cdot k \cdot T$

 \Rightarrow I. főtétel: $\Delta E_{\rm b} = Q + W$, ahol Q [J] a folyamat során közölt hő,

zárt rendszerben: 0 = O + W,

izobar (p = állandó) folyamatra: $\Delta E_b = Q - p \cdot \Delta V$,

izochor (V = állando) folyamatra: $\Delta E_{k} = Q$,

izoterm (T = állandó) folyamatra: 0 = O + W,

adiabatikus (Q=0) folyamatra: $\Delta E_{\rm b} = W$.

Hőerőgép munkája: $W = Q_{\text{felvett}} - Q_{\text{leadot}}$

 $\Rightarrow \quad \text{H\"{o}er\"{o}g\'{e}p hat\'{a}sfoka:} \ \, \eta = \frac{W}{Q_{\text{felvett}}} = 1 - \frac{Q_{\text{leadott}}}{Q_{\text{felvett}}} \leq 1 - \frac{T_{\text{hideg}}}{T_{\text{meleg}}}$

Halmazállapot-változások, hő

- Termikus kölcsönhatáskor: $Q_{\text{felvett}} = -Q_{\text{leadott}}$
- Hőmérsékletváltozáskor:

$$Q = C \cdot \Delta T = c \cdot m \cdot \Delta T = c \cdot m \cdot \Delta T$$
, ahol $C = \left[\frac{J}{K} \right]$ a test

hőkapacitása,
$$_{c}$$
 $\left[\frac{\mathrm{J}}{\mathrm{kg}\cdot\mathrm{K}} \right]$ a fajhője, $_{c}*$ $\left[\frac{\mathrm{J}}{\mathrm{mol}\cdot\mathrm{K}} \right]$ pe-

dig a mólhője

$$\Rightarrow c_{\rm p} = \left(\frac{f}{2} + 1\right) \cdot \frac{R}{M}$$

- \Rightarrow $c_{\rm V} = \frac{f}{2} \cdot \frac{R}{M}$, ahol $c_{\rm p}$ és $c_{\rm V}$ a gáz fajhője állandó nyomás illetve térfogat mellett.
- Olvadáshoz szükséges hő: $Q = L_0 \cdot m$, ahol $L_0 = \left| \frac{J}{kg} \right|$ az olvadáshő.
- Fagyáskor felszabaduló hő: $Q = L_{\mathrm{fagyás}} \cdot m$, ahol $L_{\text{fagyás}} = -L_{\text{o}}$ a fagyáshő.
- Forráshoz szükséges hő: $Q = L_{\rm f} \cdot m$, ahol $L_{\rm f} \left[\frac{\rm J}{\rm kg} \right]$ a forráshő.
- Lecsapódáskor felszabaduló hő: $Q = L_1 \cdot m$, ahol
- $L_{\rm l}=-L_{\rm f}\ \ {\rm a\ lecsap\acute{o}d\acute{a}si\ h\~o}.$ \Rightarrow Párolgáshoz szükséges hő: $Q=L_{\rm p,T}\cdot m\,,$ ahol $L_{
 m p,T} \; \left| \; rac{{
 m J}}{{
 m k}\, \sigma} \;
 ight| \;$ a párolgáshő.

Elektromos mező

- Coulomb-törvény: $F = k \cdot \frac{Q_1 \cdot Q_2}{r^2}$, ahol F a Q_1 és Q_2 töltések közt ható erő nagysága, k az arányossági tényező, r pedig a töltések távolsága.
- \Rightarrow Térerősség: $\underline{E} = \frac{F}{Q}$, $[E] = \frac{N}{Q}$, ahol Q [C] a töltés, \underline{F} pedig a töltésre ható erő.
- Ponttöltés elektromos terének erőssége a töltéstől r távolságra: $E = k \cdot \frac{Q}{r^2}$
- Homogén mezőben az erővonalakra merőleges A felület fluxusa: $\Psi = E \cdot A$
- Az A és B pont közti feszültség: $U_{AB} = \frac{W_{AB}}{O}$ [V], ahol

 $W_{_{\mathrm{AB}}}$ a mező munkája, miközben a Q töltést A-ból Bbe viszi.

- Munkatétel: U feszültség hatására a Q töltés $E_{\rm m} = Q \cdot U$ mozgási energiára és $v = \sqrt{\frac{2Q \cdot U}{v}}$ sebességre tesz szert.
- $U_{\rm AB}$ = $U_{\rm A}$ $U_{\rm B}$, ahol $U_{\rm A}$ az A, $U_{\rm B}$ pedig a B pont po-
- Kondenzátor kapacitása: $C = \frac{Q}{R}$
- Kondenzátor energiája: $E = \frac{1}{2}Q \cdot U = \frac{1}{2}C \cdot U^2 = \frac{1}{2}\frac{Q^2}{C}$
- Síkkondenzátorban térerősség $E = \frac{Q}{\varepsilon_0 \cdot \varepsilon_r \cdot A}$, ahol ε_0 a vákuum dielektromos állandó-

- ja, ¿ a lemezek közti közeg relatív dielektromos állandója, $\it A$ pedig a lemezfelület.
- Síkkondenzátor kapacitása: $C = \frac{\mathcal{E}_0 \cdot \mathcal{E}_r \cdot A}{J}$, ahol d a lemeztávolság.

Egyenáram

- Áramerősség: $I = \frac{Q}{4}$ [A], ahol Q a vezető keresztmetszetén átáramló töltésmennyiség.
- Ellenállás: $R = \frac{U}{I}$ [Ω]
- Fajlagos ellenállás: $\rho = R \cdot \frac{A}{I} [\Omega \cdot m]$, ahol A a vezető keresztmetszete, l pedig a hossza.
- Ohm-törvény teljes $\mathcal{E} = I \cdot (R_{k} + R_{b}) = U_{k} + U_{b}$, ahol \mathcal{E} az elektromotoros erő, $R_{\rm k}$ a külső, $R_{\rm h}$ a belső ellenállás, $U_{\rm k}$ a kapocsfeszültség, $U_{\rm h}$ pedig a belső ellenálláson eső feszült-
- \Rightarrow Munka: $W = U \cdot I \cdot t = I^2 \cdot R \cdot t = \frac{U^2}{R} \cdot t$
- \Rightarrow Teljesítmény: $P = U \cdot I = I^2 \cdot R = \frac{U^2}{R}$
- Ellenállások soros kapcsolásakor:
- eredő ellenállás: $R_e = R_1 + R_2 + ...$
- áramerősség: $I = I_1 = I_2 = ...$
- feszültség: $U = U_1 + U_2 + \dots$
- feszültségek aránya: $U_1:U_2:...=R_1:R_2:...$
- Ellenállások párhuzamos kapcsoláskor:
- eredő ellenállás: $\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
- feszültség: $U = U_1 = U_2 = ...$
- áramerősség: $I = I_1 + I_2 + ...$
- áramerősségek aránya: $I_1:I_2:...=\frac{1}{R}:\frac{1}{R}:...$
- Aramforrások soros kapcsolásakor:
- eredő elektromotoros erő: $\mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2 + \dots$
- eredő belső ellenállás: $R_{\rm b,e} = R_{\rm b,1} + R_{\rm b,2} + \dots$
- Egyforma elektromotoros erejű áramforrások párhuzamos kapcsolásakor:
- elektromotoros erő: $\boldsymbol{\mathcal{E}} = \boldsymbol{\mathcal{E}}_1 = \boldsymbol{\mathcal{E}}_2 = ...$
- eredő belső ellenállás: $\frac{1}{R_{\mathrm{b,e}}} = \frac{1}{R_{\mathrm{b,1}}} + \frac{1}{R_{\mathrm{b,2}}} + \dots$
- Faraday-törvény: ha az elektrolitba t időn keresztül I áramot vezetünk, akkor az elektródákon kiváló, Z anyagmennyisége: ionok $n = \frac{I \cdot t}{96500Z} \cdot \frac{\text{mol}}{\text{C}}$

Mágneses mező

- $\Rightarrow \quad \text{Indukció:} \quad B = \frac{M_{\text{max}}}{N \cdot I \cdot A} \quad \text{[T]}, \text{ ahol } \quad M_{\text{max}} \quad \text{az } N \text{ menetszámú, } A \text{ keresztmetszetű tekercsre ható maximális forgatónyomaték, ha a tekercsben } I \text{ nagyságú áram folyik.}$
- \Rightarrow Az indukcióvonalakra merőleges A felület mágneses fluxusa: $\phi = B \cdot A$ [Wb].
- Egyenes tekercs (szolenoid) belsejében az indukció: $B = \frac{\mu_0 \cdot \mu_r \cdot I \cdot N}{l} \,, \text{ ahol } \, \mu_0 \, \text{ a vákuum permeabilitása, } \, \mu_r \,$ pedig a tekercsbeli közeg (pl. vasmag) relatív permeabilitása.
- \Rightarrow Körtekercs (toroid) belsejében az indukció: $B = \frac{\mu_0 \cdot \mu_{\rm r} \cdot I \cdot N}{2R \cdot \pi}$, ahol R a toroid középvonalának suga-
- \Rightarrow Hosszú, áramjárta vezeték keltette indukció a vezetéktől r távolságban: $_{B}=\frac{\mu_{0}\cdot\mu_{r}\cdot I}{2r\cdot\pi}$.
- \Rightarrow Áramhurok keltette indukció a hurok közepén: $B = \frac{\mu_0 \cdot \mu_r \cdot I}{2R}$, ahol R a körhurok sugara.
- \Rightarrow Egy nagyon hosszú és egy vele párhuzamos, tőle r távolságra levő, l hosszúságú áramjárta vezeték közt ható erő: $F = \frac{\mu_0 \cdot \mu_{\rm r} \cdot I_1 \cdot I_2 \cdot l}{2r \cdot \pi}$.
- \Rightarrow l hosszúságú áramjárta vezetékre ható Lorentz-erő nagysága, ha a vezeték merőleges az indukcióvonalakra: $F = l \cdot I \cdot B$.
- \Rightarrow Lorentz-erő (mozgó töltésre ható erő), ha a Q töltés \underline{v} sebessége merőleges az indukcióvonalakra: $F = Q \cdot v \cdot B$.
- \Rightarrow Az indukcióvonalakra merőlegesen haladó töltés körpályájának sugara: $_{r}=\frac{m\cdot v}{B\cdot Q}$.
- \Rightarrow Mozgási indukció: $U_{\mathrm{ind}} = B \cdot l \cdot v$, ahol U_{ind} az l hosszúságú, \underline{v} sebességű vezeték végei közt indukálódó feszültség, ha a sebesség merőleges az indukcióvonalakra.
- $\Rightarrow \quad \text{Faraday-féle indukciós törvény:} \quad U_{\text{ind}} = -N \cdot \frac{\Delta \Phi}{t}, \text{ ahol} \\ U_{\text{ind}} \quad \text{az } N \text{ menetszámú tekercs végei közt indukálódó} \\ \text{feszültség, ha } \Delta \Phi \quad \text{a tekercs keresztmetszetének} \\ \text{fluxusváltozása.}$
- \Rightarrow Önindukció: $U_{\mathrm{ind}} = -L \cdot \frac{\Delta I}{t}$, ahol U_{ind} az L [H] önindukciós együtthatójú tekercs végei közt ΔI áramerősség-változás hatására indukálódó feszültség.
- \Rightarrow Tekercs mágneses mezejének energiája: $E = \frac{1}{2}L \cdot I^2$

Váltakozó áram

- ⇒ Induktív ellenállás: $X_L = L \cdot \omega$, ahol L a tekercs önindukciós együtthatója, ω pedig az áram körfrekvenciája.
- \Rightarrow Kapacitív ellenállás: $X_{\rm C} = \frac{1}{C \cdot \omega}$, ahol C a kondenzátor kapacitása.
- \Rightarrow Soros rezgőkör impedanciája: $Z = \sqrt{R^2 + (X_L X_C)^2}$ [Ω]

- \Rightarrow Az áramerősség fáziskésésére: $\operatorname{tg} \varphi = \frac{X_{L} X_{C}}{R}$
- \Rightarrow Saját-körfrekvencia (Thomson-képlet): $\omega_0 = \sqrt{\frac{1}{C \cdot L}}$
- \Rightarrow Sajátfrekvencia: $f_0 = \frac{1}{2\pi} \cdot \sqrt{\frac{1}{C \cdot L}}$
- \Rightarrow Effektív feszültség: $U_{\it eff} = \frac{U_{\it max}}{\sqrt{2}}$, ahol $U_{\it max}$ a váltakozó
 - feszültség maximális értéke.
- \Rightarrow Effektív áramerősség: $I_{eff} = \frac{I_{\text{max}}}{\sqrt{2}}$
- $\Rightarrow \quad \text{Effektív teljesítmény:} \ \ P_{\text{eff}} = U_{\text{eff}} I_{\text{eff}} = \frac{P_{\text{max}}}{2}$
- \Rightarrow Hatásos teljesítmény: $P_{\rm h} = I^2 \cdot R = U_{\rm eff} \cdot I_{\rm eff} \cdot \cos \varphi$
- $\begin{array}{ll} \Rightarrow & \text{Transzformátor primer \'es szekunder tekercsének} \\ & \text{feszültsége, \'aramerőssége \'es menetszáma közti \"oszszefüggések: } \frac{U_{\text{p}}}{U_{\text{sz}}} = \frac{I_{\text{sz}}}{I_{\text{p}}} = \frac{N_{\text{p}}}{N_{\text{sz}}} \cdot \end{array}$

Optika

- A határfelületre merőlegesen érkező fény nem törik meg.
- \Rightarrow Törési törvény vagy Snellius-Descartes-törvény: $\frac{\sin\alpha}{\sin\beta} = \frac{c_1}{c_2}$, ahol c a fény terjedési sebessége, α és β
 - pedig az 1. illetve a 2. közegbeli beesési és törési szög.
- ⇒ Az 1. közeg 2. közegre vonatkozó törésmutatója:

$$n_{1,2} = \frac{c_2}{c_1}$$

$$\Rightarrow n_{1,2} = \frac{1}{n_{2,1}}$$

- \Rightarrow A közeg abszolút törésmutatója: $n = \frac{c_{
 m vákuum}}{c_{
 m közeg}}$
- $\Rightarrow n_{1,2} = \frac{n_1}{n_2}$
- \Rightarrow A határszögre: $\sin \alpha_{\rm h} = n_{2,1}$, ahol $\alpha_{\rm h}$ az 1. közegbeli beesési szög.
- \Rightarrow Résen való elhajláskor, ha λ a fény hullámhossza, d pedig a rés szélessége:
- a kioltási irányok: $\sin \alpha = \frac{k \cdot \lambda}{d}$ $k \in \mathbb{Z}$;
- az intenzitásmaximumok irányai: $\sin\alpha = \frac{(2k-1)}{d} \cdot \frac{\lambda}{2} \quad k \in \mathbb{Z} \cdot$
- ⇒ Rácson való elhajláskor, ha λ a fény hullámhossza, d a rácsállandó, L a középső és a vele szomszédos (k=1) fényfolt távolsága, D pedig az ernyő és a rács távolsága:
- a maximális erősítés irányai: $\sin \alpha = \frac{k \cdot \lambda}{d}$ $k \in \mathbb{Z}$;
- a fény hullámhossza: $\lambda = \frac{d \cdot L}{D}$.
- \Rightarrow Gömbtükör fókusztávolsága: $f = \frac{r}{2}$, ahol r a tükör sugara.
- \Rightarrow Lencserendszer fókusztávolsága: $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \dots$

 \Rightarrow Leképezési törvény: $\frac{1}{f} = \frac{1}{t} + \frac{1}{k}$, ahol f pozitív homorú

tükör és domború lencse esetén, különben negatív; t a tárgytávolság, k a képtávolság. k pozitív, ha valódi a kép, negatív, ha virtuális.

- \Rightarrow Nagyítás: $N = \frac{K}{T} = \frac{k}{t}$, ahol N és k negatív, ha virtuális a kép; K a kép, T pedig a tárgy nagysága.
- \Rightarrow Dioptria: $D = \frac{1}{f} \left[\frac{1}{m} \right]$

A speciális relativitáselmélet következményei

idődilatáció: $\Delta t = \frac{\Delta t'}{\sqrt{1 - \frac{v^2}{c^2}}}$, ahol Δt a nyugvó megfigye-

lő szerint eltelt, Δt pedig a ν sebességgel mozgó testhez rögzített rendszerben mért idő.

 \Rightarrow Hosszúságkontrakció: $l = l \cdot \sqrt{1 - \frac{v^2}{c^2}}$, ahol l a nyugvó

megfigyelő szerinti, *l'* pedig a *v* sebességgel mozgó testhez rögzítet rendszerben mért hossz.

 \Rightarrow Tömegnövekedés: $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$, ahol m a mozgó test

tömege, m_0 a nyugalmi tömeg.

Arr Tömeg-energia ekvivalencia: $E = m \cdot c^2$, ahol E a test összenergiája.

Kvantumfizika

- \Rightarrow Foton energiája: $\varepsilon = h \cdot f = \frac{h \cdot c}{\lambda}$, ahol h a Planckállandó, f a foton frekvenciája, λ a hullámhossza, c pedig a fénysebesség.
- ⇒ Fotoeffektus:
- Einstein-egyenlet: $h \cdot f = W_{\rm ki} + E_{\rm m}$, ahol $W_{\rm ki}$ a kilépési munka, $E_{\rm m}$ pedig a fémlemezből kilépő elektronok mozgási energiája.
- határfrekvencia: $f_{\rm h} = \frac{W_{\rm ki}}{h}$
- határhullámhossz: $\lambda_h = \frac{c \cdot h}{W_{k_i}}$
- ⇒ Kvantumszámok:
- fő: n = 1,2,3,...
- mellék: l = 0(s), 1(p), 2(d), 3(f), ..., n-1
- mágneses: $m = 0, \pm 1, \pm 2, \pm 3, ..., \pm l$
- spin: $s = \pm \frac{1}{2}$
- \Rightarrow Ha egy elektron az n-edik pályáról az m-edikre ugrik, akkor az elnyelt vagy kibocsátott foton energiája: $\varepsilon = h \cdot f = \frac{h \cdot c}{\lambda} = |E_n E_m|$
- A H-atombeli elektronra:
- Az alapállapotbeli elektron energiája: $E_1 = -2.19 \cdot 10^{-18} \text{ J}$
- Az *n*-edik energiaszint: $E_n = \frac{E_1}{n^2}$
- A legbelső elektronpálya sugara: $r_1 = 5.26 \cdot 10^{-11} \text{ m}$
- Az n-edik elektronpálya sugara: $r_n = r_1 \cdot n^2$
- \Rightarrow Foton tömege: $m = \frac{h \cdot f}{c^2} = \frac{h}{c \cdot \lambda}$

- \Rightarrow Foton lendülete: $I = \frac{h \cdot f}{c} = \frac{h}{\lambda}$
- \Rightarrow Részecskenyaláb hullámhossza (de Brogliehullámhossz): $\lambda = \frac{h}{I} = \frac{h}{m \cdot v}$, ahol I a lendülete, m a tömege, v pedig a sebessége egy részecskének.
- \Rightarrow Heisenberg-féle határozatlansági reláció: $\Delta x \cdot \Delta I_x \geq \frac{\hbar}{2}$, ahol Δx a részecske x-koordinátájának, ΔI_x pedig lendülete x irányú komponensének bizonytalansága; $\hbar = \frac{h}{2\pi} \cdot$

Atom- és magfizika

- \Rightarrow Az atom tömege: $m = A_r \cdot u$, ahol A_r a relatív atomtömeg, u pedig az atomi tömegegység.
- \Rightarrow α -sugárzás egyenlete: ${}_{Z}^{A}X \rightarrow_{Z-2}^{A-4}Y + {}_{2}^{4}$ He, ahol Z a rendszám, A pedig a tömegszám.
- $\Rightarrow \beta^-$ -sugárzás egyenlete: ${}_Z^A X \rightarrow {}_{Z+1}^A Y + e^-$
- $\Rightarrow \beta^+$ -sugárzás egyenlete: ${}_Z^A X \rightarrow {}_{Z-1}^A Y + e^+$
- \Rightarrow γ -sugárzás egyenlete: ${}_{7}^{A}X \rightarrow {}_{7}^{A}X + \gamma$
- \Rightarrow Tömegdeffektus: $\Delta m = m_{\text{mag}} [Z \cdot m_{n^+} + (A Z) \cdot m_{n^0}]$
- \Rightarrow Kötési energia: $E_{\rm k} = \Delta m \cdot c^2$
- \Rightarrow Fajlagos kötési energia: $\overline{E}_k = \frac{E_k}{A}$
- \Rightarrow Aktivitás: $A = \frac{\Delta N}{t}$ [Bq], ahol ΔN a t idő alatt elbomló részecskék száma.
- \Rightarrow Bomlási törvény, ha A_0 és N_0 a kezdeti aktivitás és részecskeszám, $T_{1/2}$ pedig a felezési idő:
- $\rightarrow A = A_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}},$
- $\rightarrow N = N_0 \cdot \left(\frac{1}{2}\right)^{\frac{1}{T_{1/2}}} \cdot$
- \Rightarrow Elnyelt dózis: $D = \frac{E_{\text{sugárzási}}}{m}$ [Gy], ahol $E_{\text{sugárzási}}$ az m tömegű test által elnyelt sugárzási energia.
- \Rightarrow Dózisegyenérték: $H = Q \cdot D$ [Sv], ahol Q a sugárzás minőségi tényezője.
- Rákos megbetegedés valószínűsége: $R = 0.0165 \frac{1}{S_V} \cdot H$