

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CHEMISTRY 0620/42

Paper 4 Theory (Extended) February/March 2024

MARK SCHEME

Maximum Mark: 80

Question	Answer	Marks	Guidance
			For equations: Unless stated, A multiples I state symbols
1a	coke	1	I graphite/diamond/coal/charcoal
1aii	provide heat	1	A Provide carbon dioxide / CO ₂ A provide (thermal) energy / generate high temperature / increase the temperature I oxidation of C I Produce carbon monoxide / CO I equations R to reduce iron (oxide)
1bi	M1 rfm of $Fe_2O_3 = 160$ M2 mass of $Fe = 2 \times 56$ = 112 and percentage $Fe = 100 \times 112/160$ = 70.(0)%	2	A 2 marks for 70 / 1 mark for 35 A (2 x 56) + (3 x 16) for M1 if 160 is not seen but if evaluated must be correct An 'unspecified' 160 can be seen anywhere (but should not be contradicted) If M1 is not awarded A for M2 a correctly evaluated sum for Fe = 100 x 112/ Mr greater than 112 even if it means doing the Mr calculation for them I SF/rounding beyond whole numbers R use of atomic numbers for M1 and M2
1bii	hematite	1	A haematite or heamatite A phonetically correct near miss versions eg hemetite, hemmatite Not 'ide' or 'ate'
1biii	by reduction of carbon dioxide	1	A Correct Equation A reaction of C/coke with CO ₂ A incomplete combustion of C / equation I oxidation of carbon I 'redox'
1biv	Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ M1 species M2 correct equation	2	A Fe ₂ O ₃ + 3C → 2Fe + 3CO A 2Fe ₂ O ₃ + 3C → 4Fe + 3CO ₂
1bv	reduction	1	I redox I e gain/loss/equations showing e gain loss I oxidation number changes
1c	thermal decomposition	1	I 'decomposition' alone I 'endothermic'

Question	Answer	Marks	Guidance
di	M1 CaO is basic		A CaO is an alkali for M1
	M2 SiO ₂ is acidic		A silicon oxide / silica / incorrect oxidation state of Si
		2	For 1 salvage mark: A CaO is acidic and SiO ₂ is basic. A Metal oxides are basic and non-metal oxides are acidic (non specific) A CaO is a metal oxide and SiO ₂ is a non-metal oxide A It is a reaction between a metal oxide and a non-metal oxide I it is a neutralisation I answer in term of proton gain / loss I Ca is a metal Si is a non-metal I "salt" e.g. calcium oxide is a basic salt would get M1
dii	M1 Silicon(IV) oxide		A Silicon dioxide / A Silica A silicon(IV) dioxide I silicon oxide but R incorrect oxidation numbers
	M2 slag	2	A calcium silicate
ei	Aluminium is above carbon in the reactivity series or aluminium is more reactive than carbon	1	Answer needs to be reactivity based But A Temperature would need to be too high Assume 'it' is Al I Melting point comments I 'Al can't be reduced/displaced by C/CO' I Al is too reactive I Al more reactive than Fe I It's uneconomic
eii	electrolysis	1	A Hall-Heroult (process) I reduction/redox
fi	2,8	1	A 2 8 2/8 2:8 etc A 1s ² 2s ² 2p ⁶ I diagrams
fii	M1 26p M2 23e	2	A salvage for M2 = M1 – 3
		19	

Question	Answer	Marks	Guidance
2a	fluor ine	1	A F ₂ / F
2b	red-brown and liquid	1	A 'red' or 'brown'. R 'orange' and any other colour for the liquid I shades I comments about vapour
2c	M1 Ts M2 7 M2 must be linked to M1	2	A TS ('T' must be capital) A tennissine (be generous with spelling) A M2 if M1 is a period 7 element. A ECF for M2 if M1 is a halogen eg At = 6 I = 5 Br = 4 CI = 3 F = 2
2di	M1 pair of electrons		For pair A two A M1 for covalent bonds are pairs of electrons R M1 for 'one or more pairs of electrons'
	M2 electron(s) shared between two atoms	2	Shared = attracted and Atoms = nuclei For M2 A electrons between two atoms / two nuclei For M2 R ions / charged atoms / IMFs I strength of bonds I reference to non-metals eg electrons shared between two non-metal atoms gets M2 A 1 salvage mark for: electrons shared between (two) atoms / nuclei (2 is not needed but any other number loses the mark) or (two) atoms / nuclei sharing electrons (2 is not needed but any other number loses the mark)
2dii	lod ide / Astat ide / Teness ide	1	A I-/At-/Ts- I lodine ion I lodied R 'iodine/iodide' R 'iodine/I-' (hedging their bets) R any compound. Eg sodium iodide for iodide etc
2diii	bromine is more reactive than iodine / astatine / tenessine	1	Both halogens must be seen and correct relative reactivity applied ORA Halogen must match halogen of halide in 2dii For brom ine , \mathbf{A} Br ₂ / Br For iod ine \mathbf{A} I ₂ / I / Astat ine / At ₂ / At / Teness ine / Ts ₂ / Ts Assume 'It' = bromine I unqualified group trends in reactivity \mathbf{A} bromine / Br ₂ / Br higher in reactivity (series) than iod ine / I ₂ / I \mathbf{A} Bromine is a stronger oxidising agent than iodine etc If CI/F used in 2dii \mathbf{A} Br less reactive than CI/F as ECF

Question	Answer	Marks	Guidance
2e	M1 cobalt(II) chloride		A CoCl ₂ I lack of Roman numerals R incorrect Roman numerals
	M2 anhydrous	2	M2 is stand alone
2f	M1 eight crosses in third shell of Ca M2 7 dots and 1 cross in third shell of both Cl M3 '2+' charge on Ca on correct answer line and '-' charge on both Cl ions on correct answer line	3	I empty fourth shell of Ca A M2 as ECF if both Cl have 8 dots in 3 rd and Ca has 8 dots in 3 rd shell A 'Ca ²⁺ ' and 'Cl ⁻ ' as charges R M1 If e appear in Ca 4 th shell and Cl 3 rd shell (usually with transfer arrows)
2gi	lead(II) nitrate	1	A correct formula but name takes precedence over a formula I lack of Roman numerals but R incorrect Roman numerals A (Lead) nitrate A (Lead) ethanoate/acetate
2gii	Pb ²⁺ (aq) + 2Cl ⁻ (aq) → PbCl ₂ (s) M1 PbCl ₂ as only product	3	M1 R ionic charges on PbCl ₂ eg Pb ²⁺ 2Cl ⁻ M1 R other products and product spectator ions / electrons for M1 A 2PbCl ₂ / 3PbCl ₂ etc as part of M1
	M2 Pb ²⁺ + 2Cl ⁻ as only reactants		A Pb+2 / Pb++ No ECF for incorrect lead(II)chloride formula eg Pb ₂ CI
	M3 states		R AQ / Aq / aQ for aq A M3 (states) for any +ve lead ion and any negative chloride ion and any lead chloride formula Eg Pb⁺(aq) + Cl²⁻(aq) → Pb₂Cl(s)
			As a special case: Max 2 marks for full equation: M1 correct equation (including correct formulae and balancing) Equation must 'work' ie soluble lead salt + soluble chloride (inc HCl here) − does not have to be the same reagent as 2gi M3 states (ie (aq) + (aq) → PbCl₂(s) + (aq)
			R charges eg Na+Cl– etc in full equations If full equation is incorrect no M3 is awarded.

Question	Answer	Marks	Guidance
			If ionic equation does not balance award up to 2 marks eg Pb²+(aq) + 2Cl⁻(aq) → 2PbCl₂(s) But correctly balanced multiples would get 3 marks eg 2Pb²+(aq) + 4Cl⁻(aq) → 2PbCl₂(s)
2giii	silver chloride	1	A Formula A silver (chloride) I Ag / Ag+ A Mercury(I) (chloride)
		18	

Question	Answer	Marks	Guidance
3a	proton acceptor	1	A H ⁺ acceptor/hydrogen ion acceptor A 'receiver' etc for 'acceptor' I references to pH/indicators/reactions/alkalis/electron pair transfer/oxides etc
3b	a soluble base	1	A soluble proton acceptor or soluble any other term acceptable in 3a (doesn't have to be the one used in 3a) A soluble oxides or hydroxide of a metal A produces OH ions in (aqueous) solution A an aqueous base I 'alkalis are soluble' I pH references
3c	M1 blue M2 colourless	2	I shades
3di	M1 HNO ₃ M2 lowest pH	2	A nitric acid I incorrect name provided it doesn't contradict the answer by naming one of the others M2 I It is most acidic (must use info in table) I it has a pH of (only) 1 I refence to acid strength
3dii	universal indicator	1	A 'UI'
3e	(CH ₃ COOH) ⇌ CH ₃ COO ⁻ + H ⁺ M1 H ⁺ M2 CH ₃ COO ⁻		I additional reactants and products for M1 R multiples of H+ eg 4H+ A C ₂ H ₃ O ₂ - R any third product for M2
	M3 use of ⇌	3	 A ≒ or ≒ or ⇄ I '=' for '≓' A Answers which show total equation on the answer line so CH₃COOH appears twice A up to 3 marks for CH₃COOH + H₂O ⇌ CH₃COO⁻ + H₃O⁺
3f	H ⁺ + OH [−] → H ₂ O	1	R full equation for formation of water from alkali + acid eg NaOH + CH₃COOH

Question	Answer	Marks	Guidance
3g	M1 mol of Ca(OH) ₂ = 0.0150 x 20.0/1000 = $0.0003(00) / 3.00 \times 10^{-4}$ M2 mol of HNO ₃ = M1 x 2 = $3.00 \times 10^{-4} \times 2 = 0.0006 / 6.00 \times 10^{-4}$ M3 concentration HNO ₃ = M2 x 1000/25.0 = $6.00 \times 10^{-4} \times 1000/25.0 = 0.0240 \text{ (mol / dm}^3)$		Mark M1, M2 and M3 Then M4/M5 I fractions once as answers for M1, M2 and M3
	M4 M _r HNO ₃ = 63 M5 concentration HNO ₃ = M3 x 63 = 0.0240 x 63 = 1.51(2) (g / dm ³)	5	M4 can be seen anywhere in the answer unless contradicted in stated <i>M</i> _r of the M4 mark A M4 and M5 for (incorrect M3) x 63, even if 63 is left as 1 + 14 + (3 x 16) R M5 as a fraction, but A 'numerical' M5 (and M4) for correct 63 x fraction in M3 A ECF from M3 to M5 if incorrect M _r is stated (not simply left as a sum) R (for M4 and M5) if '24' as stated <i>M</i> _r A sig figs / incorrect rounding / truncation errors when awarding ECF A M4 and M5 if M5 is 63 x M3 If the 'correct' M _r of nitric acid is left as an unevaluated sum and not used to multiply M3, then no M4 can be awarded If an 'incorrect' M _r of nitric acid is left as an unevaluated sum and used to multiply M3, then no M4 or M5 can be awarded A truncation / rounding to 1 DP unless whole number. le 1.5 (if this is M3 x 63) A 5 marks for correct final answer if nothing else is seen.
		16	The mane is select man anower it nothing dies to door.

Question	Answer	Marks	Guidance
4ai	structural	1	I 'carboxylic acid' A Condensed structural formula I structured
4aii	CH ₂ O ₂	1	A Any order A HCOOH = CH ₂ O ₂ ie they have attempted working
4b	M1 ethyl methanoate M2 ester link		M1 A ethyle /ethy / 'ethly' A: methonoate/methnoate R: methenoate/ methanote
	M3 correct displayed formula of ethyl methanoate	3	M2 is given for any ester linkage with all atoms and all bonds (R is of course 'H' but could be C for M2) A -CH ₂ -CH ₃ A -C ₂ H ₅ but ester link must be displayed A ECF for M3 if methyl ethanoate is named in M1 A M2 and M3 if seen as a product of an equation.
4ci	nothing can enter or leave	1	A just 'enter' or just 'leave' A alternatives such as no reactants or no products / particles / gases etc can escape A only heat/energy can be exchanged/transferred' I phrases which repeat the question eg 'fully enclosed reaction system' / 'closed environment' / 'sealed system' I comments with reference to 'air not entering/leaving' I External interactions
4cii	M1 The rate of forward reaction equals (the rate of the) reverse reaction		M1 A both reactions occur at the same rate A 'Reactants and products are formed at the same rate' I comments on making and breaking bonds I forward reaction = backward/reverse reaction (no rate)
	M2 concentrations of reactants and products are constant	2	M2 A concentration(s) are constant/no change in concentration/ concentrations stay or remain the same A concentration(s) of reactants are constant A concentration(s) of products are constant I concentration of reactants and products are the same (could mean either constant or equal)

Question	Answer	Marks	Guidance
			A moles/amounts/masses as alternative to concentration R concentrations (of reactants and products) are equal I Closed system A no change in macroscopic properties
4ciii	M1 increases M2 decreases M3 decreases M4 no effect	4	A Synonyms or vertical arrows I equilibrium shifts
		12	

Question	Answer	Marks	Guidance
5a	(but-1-ene) has lower relative molecular mass	1	A lowest for lower (must be comparative or superlative) A lower M_r / molar mass / relative formula mass / molecular mass / lighter molecules R (relative) atomic mass / lighter atoms / mass number A But-1-ene has Mr of 58 and butane has M_r of 60. I incorrect M_r I lower particle mass / lower mass / less dense / lighter gas / smaller molecules
5b	carbon dioxide and water	1	A name or correct formulae R incorrect name / formulae A steam / water vapour A CO ₂ and H ₂ O as only products of attempt at an equation I heat/energy
5ci	photochemical	1	A Photodecomposition A close attempts eg. Photochemic I photochromic I UV reaction I substitution
5cii	to provide activation energy	1	A to provide E to break the CI-CI bond (must be the CI-CI bond, not just 'bonds') A To provide E to start/initiate reaction/to create radicals/to allow reaction to occur A To provide E to increase rate I 'provide E' alone R catalyst R 'heat' for 'energy' A to provide E to overcome Ea
5ciii	substitution	1	I photochemical I chlorination / halogenation / (free) radical I electrophilic/nucleophilic references
5civ	2	1	
5di	acid		A phosphoric acid or sulfuric acid as 'acid' I 'dilute' / conc' A H ₃ PO ₄ / H ₂ SO ₄ without term acid but I incorrect formulae if name is used. R Ni/V ₂ O ₅ /Fe/Pt etc R enzyme
		1	

Question	Answer	Marks	Guidance
5dii	M1 Displayed formula of butan-1-ol		Mark fully displayed formulae first. All atoms and all bonds are needed but see below
	M2 Displayed formula of butan-2-ol		A any order of fully displayed formulae. Name must match fully displayed formulae
			If any formula is not fully displayed (likely to be $-O-H$ shown as $-OH$), mark any not fully displayed isomer first (no first mark). A ECF from first not fully displayed isomer if second isomer is not fully displayed and unambiguous structures of both C ₄ H ₉ OH isomers are seen For ECF to be applied for use of $-OH$ to second structure, connectivity must be correct in both structures
	M3 Butan-1-ol (as either name) M4 Butan-2-ol (above displayed formula of butan-2-ol)		If structure is unambiguous in M1/M2 but not fully displayed A correct names for M3/M4 If no structure is seen in M1 and/or M2 A butan-1-ol and butan-2-ol as names If neither displayed formula is creditworthy A butan-1-ol and butan-2-ol as names in either order. A n-butyl alcohol / 1-butanol / 1-hydroxybutane for butan-1-ol
		4	A isobutyl alcohol / 2-butanol / 2-hydroxybutane for butan-2-ol
5ei	addition (polymerisation)	1	I additional
5eii	M1 chain of 6 C atoms joined by single bonds in a chain		I side chains, incorrect CH and or CH₂ in C chain for M1 I valency of C for M1 ie A 6 C in a row bonded with single bonds
	M2 three correctly placed C₂H₅ groups		M2 A $-C_2H_5$ as $-CH_2-CH_3$ or fully displayed A any possible arrangement (idio/ iso / syntactic etc) and be lenient on connectivity errors to C_2H_5 I brackets and/or 'n' / other numbers / other products
	M3 Correct structure and continuation bonds	3	Special cases If anything other than three repeat units, A up to two marks for M2 and M3 if structure is completely correct. One repeat unit of poly(but-1-ene) could get M2 and M3 Polybut-2-ene could score M1 and M3 if all C in chain have H and CH ₃
		15	