Funktionale und objektorientierte Programmierkonzepte Übungsblatt 07

Gesamt: 36 Punkte

Entwurf

Achtung: Dieses Dokument ist ein Entwurf und ist noch nicht zur Bearbeitung/Abgabe freigegeben. Es kann zu Änderungen kommen, die für die Abgabe relevant sind. Es ist möglich, dass sich alle Aufgaben noch grundlegend ändern. Es gibt keine Garantie, dass die Aufgaben auch in der endgültigen Version überhaupt noch vorkommen und es wird keine Rücksicht auf bereits abgegebene Lösungen genommen, die nicht die Vorgaben der endgültigen Version erfüllen.

Hausübung 07 Lambda-Ausdrücke

-NoValue-

Verbindliche Anforderungen für die gesamte Hausübung:

- Auch in dieser Hausübung fordern wir wieder Dokumentation mittels JavaDoc. Informationen dazu finden Sie unter anderem auf Übungsblatt 03.
- Schreiben Sie für die einzelnen Komponenten Ihrer Lösung immer sofort Tests und wenden Sie sie auch sofort zur eigenen Kontrolle an, wie Sie es von den früheren Übungsblättern her gewohnt sein sollten!

Einleitung

In der letzten Hausübung ging es primär um Methodenimplementationen, also Anweisungen und Ausdrücke, davor ging es um Klassen und Interfaces. Jetzt kommen wir zu einem "Schmankerl", welches beides miteinander verbindet: *Lambda-Ausdrücke*. Das ist eine der vielen schönen und nützlichen programmiersprachlichen Konstrukte, die in funktionalen Sprachen (wie Racket) entwickelt und in anderen Programmiersprachen (wie Java) übernommen worden sind. Leider leidet die Schönheit bei einer solchen Übertragung zwangsläufig, ist vielleicht aber immer noch sichtbar. Die Nützlichkeit ist jedenfalls, wie Sie sehen werden, auch in Programmiersprachen wie Java hoch.

Um Sie in dieser Hausübung also diesem, vielleicht anfangs etwas überfordernd wirkendem, Thema anzunähern, werden Sie den direkten Vergleich zwischen standardmäßigen Implementieren von Interfaces zur Nutzung von Lambda-Ausdrücke für Selbiges direkt sehen.

In der ersten Aufgabe werden Sie dabei zunächst einige Klassen, die ein Interface implementieren, wie gewohnt vervollständigen, indem Sie die übergebene Methode des Interfaces selbst implementieren. Die zweite Aufgabe verläuft dabei völlig analog: Auch hier vervollständigen Sie Klassen, die ein Interface implementieren.

Erst in der dritten Aufgabe erhalten Sie den ersten konkreten Kontakt mit Lambda-Ausdrücken. Hier werden Sie die Funktionalitäten der Methoden aus der ersten Aufgabe nicht in standardmäßiger Form, sondern eben mittels Lambda-Ausdrücken implementiert. Dabei haben Sie dann einen direkten Vergleich zwischen der Ihnen bereits bekannten Art und Weise und dieser nun neu eingeführten, praktischeren Methode.

Als vierte Aufgabe vervollständigen Sie dann die letzten Reste einer Fabrik, die Ihnen, anhand der ihr übergebenen

1

Übungsblatt 07 – Lambda-Ausdrücke

Spezifikationen, einen Operator zurückliefert.

H1: Unäre und binäre Operatoren auf "Array von double" als Functional Interfaces Punkte

10

Hinweis:

Alle in dieser Aufgabe relevanten Klassen und Methoden befinden sich im Package arrayoperators.

Sie finden in der Vorlage zunächst drei Interfaces:

- Ein Interface namens DoubleArrayUnaryOperatorGivingArray mit einer funktionalen Methode applyAsDoubleArray, die einen Parameter vom formalen Typ "Array von double" und Rückgabetyp "Array von double" hat. Die Hauptfunktionalität von implementierenden Klassen soll es sein, eine einfache *Filteroperation* auf dem gegebenen Array zu implementieren, die ggf. dieses Array modifiziert und zurückliefert.
- Ein Interface namens DoubleArrayBinaryOperatorGivingArray mit der selben funktionalen Methode applyAsDoubleArray, die allerings zwei Parameter vom formalen Typ "Array von double" aufweist und ebenfalls Rückgabetyp "Array von double" hat. Ziel einer implementierenden Klasse ist es hierbei, die Methode so zu implementieren, dass eine gewisse *Vergleichsoperation* auf beiden aktualen Parameterwerten stattfindet. Das Resultat dieser Vergleichsoperation wird dann zurückgeliefert.
- Zuletzt noch ein Interface namens DoubleArrayBinaryOperatorGivingDouble, abermals mit der funktionalen Methode applyAsDoubleArray. Diese hat einen formalen Parameter vom Typ "Array von double" und hat als Rückgabetyp double. Implementierende Klassen sollten hierbei mittels applyAsDoubleArray eine Faltungsoperation auf einem Array implementieren, die lediglich einen Wert zurückliefert.

Unbewertete Verständnisfrage:

In den folgenden drei Teilaufgaben ist von "Filter", "Map" und "Fold" die Rede. Können Sie sich vorstellen, was diese drei Teilaufgaben mit dem zu tun haben, was in Kapitel 04c als "Filter", "Map" und "Fold" bezeichnet wird?

H1.1: Unäre Filter-Klasse auf "Array von double"

3 Punkte

Bepunktung: 1 Punkt für korrekte Rückgabe von null

Bepunktung: 0.5 Punkte für korrekte Länge des Arrays

Bepunktung: 0.5 Punkte für korrekte Reihenfolge in Ergebnissen.

Bepunktung: 1 Punkt für korrekte Ergebnisse (bei Verwendung)

Passend zum ersten Interface finden Sie in der Codevorlage die Klasse ReduceDoubleArray, die das Interface DoubleArrayUnaryOperatorGivingArray implementiert. Folglich, wie Sie es bereits von Interfaces kennen, muss die Methode applyAsDoubleArray des Interfaces implementiert werden. Ein Objekt dieser Klasse hat darüber hinaus, ein Objektattribut "predicate" vom Typ DoublePredicate¹.

Nun implementieren Sie die geerbte Methode applyAsDoubleArray wie folgt: Falls einer der beiden aktualen Parameterwerte der Methode applyAsDoubleArray gleich null ist, liefert diese Methode null zurück. Andernfalls liefert die Methode ein Array zurück, das höchstens so lang ist wie der aktuale Parameter (die Länge der Rückgabe kann auch 0 sein). Dabei enthält die Rückgabe alle Komponenten, für die die Methode test des Prädikats predicate true liefert. Diese Komponenten sind in der Rückgabe in derselben Reihenfolge, wie auch schon im aktualen Parameter. Darüber hinaus hat die Rückgabe keine weiteren Komponenten.

Dabei geht Ihre Methode applyAsDoubleArray geht zweimal durch den aktualen Parameter: einmal, um die Länge der Rückgabe zu bestimmen, und ein zweites Mal, um die Komponenten des zurückzuliefernden Arrays zu setzen.

¹Gemeint ist natürlich java.util.function.DoublePredicate.

Anmerkung:

Hierbei empfiehlt es sich die Zählung der Komponenten der Rückgabe in einer separaten Methode zu zählen, ist aber nicht zwangsläufig notwendig.

H1.2: Binäre Map-Klasse auf "Array von double"

3 Punkte

Bepunktung: 1 Punkt für korrekte Rückgabe von null

Bepunktung: 1 Punkt für korrekte Länge des Arrays

Bepunktung: 1 Punkt für korrekte Ergebnisse (bei Verwendung)

Des Weiteren finden Sie in der Codevorlage die Klasse PairwiseDoubleArrayBinaryOperatorGivingArray, passend zum Interface DoubleArrayBinaryOperatorGivingArray. Ein Objekt dieser Klasse hat ein Objektattribut vom Typ DoubleBinaryOperator² namens "operator".

Die Implementation der Methode applyAsDoubleArray verläuft nun anders als in der vorhergehenden Aufgabe. Falls einer der beiden aktualen Parameterwerte der Methode gleich null ist, liefert diese Methode null zurück. Ist dies nicht der Fall, liefert sie ein Array zurück, das genauso lang ist, wie das *kürzere* der beiden aktualen Parameter.

Das Array wird nun wie folgt befüllt: An jedem Index i des zurückgelieferten Arrays steht das Ergebnis der Anwendung des Attributs operator auf den Wert am selben Index i in den beiden aktualen Parametern. Hierbei ist die Reihenfolge dieselbe. Der erste aktuale Parameter von applyAsDouble ist aus dem ersten aktualen Parameter von applyAsDoubleArray entnommen, der Zweite entsprechend aus dem Zweiten.

Unbewertete Verständnisfrage:

Ist dieser binäre Operator auf Arrays kommutativ? Wenn ja wann?

H1.3: Binäre Fold-Klasse auf "Array von double"

4 Punkte

Benunktung: 2 Punkte für korrekte Ergebnisse (bei Verwendung)

Renunktung: 1 Punkt für keine Rekursion

Bepunktung: 1 Punkt für eine einzige for-Schleife

Als letzte Klasse dieser Aufgabe finden Sie PairwiseDoubleArrayBinaryOperatorGivingScalar, die zum vorher erwähnten Interface DoubleArrayBinaryOperatorGivingScalar passt. Ein Objekt dieser Klasse hat zwei Objektattribute namens "operator1" und "operator2" vom Typ DoubleBinaryOperator sowie ein Objektattribut init vom Typ double.

Im Folgenden bezeichnet der **erste** binäre Operator operator 1 die *Komponentenverknüpfung* und der **zweite** binäre Operator operator 2 die *Faltungsoperation*.

Die Implementation der Methode applyAsDoubleArray übersetzt die folgende Logik aus der Programmiersprache Racket in Java, wobei join-fct die Komponentenverknüpfung, fold-fct die Faltungsoperation und init das

²Gemeint ist natürlich java.util.function.DoubleBinaryOperator

double-Attribut von PairwiseDoubleArrayBinaryOperatorGivingScalar ist:

Verbindliche Anforderung:

Die Methode applyAsDoubleArray von PairwiseDoubleArrayBinaryOperatorGivingScalar wird durch eine einzige Schleife realisiert, das heißt, Rekursion ist nicht erlaubt und mehr als eine Schleife ist ebenfalls nicht erlaubt.

Unbewertete Verständnisfragen:

- Dieses Auswertungsschema ist linksassoziativ auf den beiden Listen in Racket bzw. Arrays in Java. Was bedeutet dies und wie würde man Rechtsassoziativität in Java erreichen? (Siehe bspw. https://de.wikipedia.org/wiki/Operatorassoziativit%C3%A4t#Linksassoziative_Operatoren.)
- Im Aufruf von fold-fct finden Sie wieder fold-fct. Ist das jetzt Rekursion oder was ist das sonst?

H2: Binäre Operatoren auf double als Functional Interfaces

6 Punkte

Hinweis:

 ${\it Alle}$ in dieser Aufgabe relevanten Klassen befinden sich im Packge doubleoperators.

H2.1: Erste binäre Operatorklasse auf double

2 Punkte

Renunktung: 1 Dunkt für korrekte Ergebnisse (bei Verwendung)

Bepunktung: 1 Punkt für korrekte Reihenfolge der Produkte

In der Codevorlage finden Sie nun eine Klasse DoubleSumWithCoefficientsOp³, die das Interface DoubleBinaryOperator implementiert.

Klasse DoubleSumWithCoefficientsOp besitzt noch zwei Attribute, coeff1 und coeff2, vom primitiven Datentyp double. Darüber hinaus erhält die Methode applyAsDouble ebenfalls zwei double Werte als Parameter, nämlich left als den Ersten und right als den Zweiten.

Konkret soll Ihre Methode applyAsDouble ihren ersten Parameter left mit coeff1 und ihren zweiten Parameter right mit coeff2 multiplizieren und die Summe dieser beiden Produkte zurückliefern.

Unbewertete Verständnisfrage:

Ist dieser binäre Operator kommutativ? Was ist im Fall coeff1 == coeff2?

³Siehe z.B. https://de.wikipedia.org/wiki/Koeffizient für die Namensgebung.

FOP im Wintersemester 22/23 bei Prof. Karsten Weihe

Übungsblatt 07 – Lambda-Ausdrücke

H2.2: Zweite binäre Operatorklasse auf double

1 Punkt

Bepunktung: 1 Punkt für richtige Ergebnisse (bei Verwendung)

Sie finden in der Vorlage außerdem noch die Klasse EuclideanNorm, die ebenfalls das Interface DoubleBinaryOperator implementiert. applyAsDouble implementieren Sie hier so, dass sie für ihre aktualen Parameterwerte x und y vom Typ double den eindimensionalen euklidischen Abstand⁴, also konkret den Wert $\sqrt{x^2 + y^2}$, mit Hilfe der Klassenmethode sgrt von Klasse Math⁵ zurückliefert.

H2.3: Dritte binäre Operatorklasse auf double

1 Punkt

Bepunktung: 1 Punkt für richtige Ergebnisse (bei Verwendung)

Als dritte Operatorklasse finden Sie noch DoubleMaxOfTwo, die abermals das Interface DoubleBinaryOperator implementiert. Diese liefert in ihrer Methode applyAsDouble, wie der Name der Klasse bereits vermuten lässt, das Maximum ihrer beiden aktualen Parameterwerte, left und right zurück.

H2.4: Vierte binäre Operatorklasse auf double

2 Punkte

Bepunktung: 1 Punkt für korrekte Ergebnisse (bei Verwendung)

Bepunktung: 1 Punkt für korrekte Reihenfolge der Operatoren

Als letzte der vier Operatorklassen, implementieren Sie noch die applyAsDouble Methode der Klasse ComposedDoubleBinaryOperator. Ein Objekt dieser Klasse besitzt selbst drei Objektattribute vom Typen DoubleBinaryOperator.

Konkret ist die Funktionalität ihrer applyAsDouble Methode nun wie folgt: Zunächst wird der erste Operator op1 die beiden aktualen Parameterwerte x und y angewandt und separat davon auch noch der zweite Operator op2 auf die selben übergebenen double-Werte (in der selben Reihenfolge). Schließlich wird nun der dritte Operator op3 auf das Ergebnis dieser beiden Operatoren angewandt und das Resultat von der Methode zurückgeliefert.

Unbewertete Verständnisfrage:

Was gilt bezüglich Kommutativität bei diesem Operator?

H3: Lambda-Ausdrücke in Kurzform und Standardform

11 Punkte

Hinweise:

- Auch die für diese Aufgabe relevante Klasse, DoubleBinaryOperatorFactory befindet sich im Package doubleoperators. Darüber hinaus befinden sich in diesem Package zwei Klassen, PairOfDoubleCoefficients und TripleOfDoubleBinaryOperators. Die Klasse PairOfDoubleCoefficients weist zwei public-Objektattributen "coeff1" und "coeff2" vom Typ double auf. TripleOfDoubleBinaryOperators besitzt drei public-Objektattributen "op1", "op2" und "op3" vom Typ DoubleBinaryOperator. Diese werden in der folgenden Aufgabe benötigt.
- Im Folgenden bezieht sich die **Standard-** und die **Kurzform** eines Lambda-Ausdruckes auf die Darstellungen gemäß Kapitel 04c, Folien 89-97 der FOP

⁴https://de.wikipedia.org/wiki/Euklidischer_Abstand

⁵Gemeint ist natürlich java.lang.Math.

H3.1: Lambda-Ausdruck anstelle von DoubleSumWithCoefficientsOp

2.5 Punkte

Benunktung: 1 Punkt für richtigen Lambda-Ausdruck

Bepunktung: 1 Punkt für richtige Ergebnisse (bei Verwendung)

Bepunktung: 0.5 Punkte für null

In der Klasse DoubleBinaryOperatorFactory finden Sie die Methode doubleSumWithCoefficientsOpAsLambda. Diese erhält einen aktualen Parameter vom Typ Object und liefert ein DoubleBinaryOperator-Objekt zurück.

Die Methode implementieren Sie wie folgt: Sollte der dynamische Typ des aktualen Parameters PairOfDoubleCoefficients oder ein Subtyp davon sein, erstellen Sie die Rückgabe mittels eines Lambda-Ausdrucks in *Standardform*. Dabei ist die Logik dieser Rückgabe äquivalent zu der Funktion der Methode applyAsDouble von DoubleSumWithCoefficientsOp. Die Koeffizienten entnehmen Sie dabei 1 zu 1 aus dem PairOfDoubleCoefficients-Objekt im aktualen Parameter.

Andernfalls wird null von doubleSumWithCoefficientsOpAsLambda zurückgeliefert.

H3.2: Lambda-Ausdruck anstelle von EuclideanNorm

2 Punkte

Benunktung: 1 Punkt für richtige Ergebnisse (bei Verwendung)

Sie finden außerdem eine Methode namens euclideanNormAsLambda in der Klasse DoubleBinaryOperatorFactory. Die Rückgabe dieser Methode erstellen Sie wieder mittels eines Lambda-Ausdrucks in *Standardform*. Dabei ist die Logik dieses Ausdrucks äquivalent zu der Funktion der Methode applyAsDouble in EuclideanNorm.

H3.3: Lambda-Ausdruck anstelle von DoubleMaxOfTwo

4 Punkte

Bepunktung: 1 Punkt Lambda-Ausdruck bei true

Bepunktung: 1 Punkt bei korrekter Verwendung von <

Bepunktung: 1 Punkt Methodenreferenz bei false

Bepunktung: 1 Punkt für richtige Ergebnisse (bei Verwendung)

Bepunktung: 0,5 Punkte für null

Als nächstes implementieren Sie die Methode doubleMaxOfTwoAsLambda. Diese erhält wie auch schon die Methode doubleSumWithCoefficientsOpAsLambda einen aktualen Parameter vom Typ Object und auch hier entscheidet sich die Art der Rückgabe anhand dieses Objektes.

Ist der dynamische Typ des aktualen Parameters gleich Boolean, wird anhand des in diesem Objekt eingekapselten bool'schen Wertes die Rückgabe bestimmt: Kapselt das Objekt true ein, wird hier der Lambda-Audruck nicht in *Standardform*, sondern in *Kurzform* gebildet, wobei hier die Maximumsberechnung keine Methode verwendet, sondern mit Hilfe des Bedingungsoperators "<" bestimmt wird.

Kapselt das Boolean-Objekt hingegen false ein, soll im Lambda-Ausdruck eine Methodenreferenz mit der Methode max von Klasse Math verwendet werden (siehe dazu Kapitel 04c, Folien 186-213 der FOP).

Ist der dynamische Typ des aktualen Parameters nicht Boolean, liefert diese Methode null zurück.

H3.4: Lambda-Audruck anstelle von ComposedDoubleBinaryOperator

2.5 Punkte

Bepunktung: 1 Punkt für richtigen Lambda-Ausdruck

Bepunktung: 1 Punkt für richtige Ergebnisse (bei Verwendung)

Bepunktung: 0.5 Punkte für nul

Zuletzt fehlt noch die Methode composedDoubleBinaryOperatorAsLambda. Auch sie erhält einen aktualen Parameter vom Typ Object und auch hier entscheidet sich die Art der Rückgabe anhand dieses Objektes.

Sollte der dynamische Typ des aktualen Parameters TripleOfDoubleBinaryOperators oder ein Subtyp davon sein, erstellen Sie die Rückgabe mittels eines Lambda-Ausdrucks in *Kurzform*. Dabei ist die Logik dieser Rückgabe äquivalent zu der Funktion der Methode applyAsDouble von ComposedDoubleBinaryOperator. Die Koeffizienten entnehmen Sie dabei 1 zu 1 aus dem TripleOfDoubleBinaryOperators-Objekt im aktualen Parameter.

Andernfalls wird null von composedDoubleBinaryOperatorAsLambda zurückgeliefert.

H4: Das Bauen von Operatoren mit Hilfe der Klasse DoubleBinaryOperatorFactory Punkte

9

In der vorhergehenden Aufgabe haben Sie vielleicht schon die Schönheit von Lambda-Ausdrücken erkannt. Anstatt lästig ein Interface zu implementieren und ein Objekt dieser implementierenden Klasse zu erstellen haben Sie hier einfach einen völlig äquivalenten Ausdruck innerhalb von einer einzigen Zeile erstellt. In dieser Aufgabe soll dieser Vorteil nun noch einmal zur Geltung kommen, denn hier erstellen Sie die eigentliche Fabrik, die Ihnen anhand gewisser Spezifikationen Operatoren erstellt und zurückgeliefert. Dabei werden einmal die von Ihnen in Aufgabe H3 implementierten Klassen mittels new erstellt und auf der anderen Seite einfach die soeben implementierten Methoden aufgerufen. Spätestens danach erkennen Sie den Nutzen von Lambda-Ausdrücken.

H4.1: Die Methode buildOperator

2 Punkte

Benunktung: 1 Punkt für richtige Rückgabe

Benunktung: 1 Punkt für richtige Unterscheidung zwischen true und false

Sie finden also in der Klasse DoubleBinaryOperatorFactory noch eine weitere Methode namens buildOperator. Diese erwartet mehrere Spezifikationen als aktuale Parameter. Der erste aktuale Parameter vom Typ String legt die Art des DoubleBinaryOperator-Objektes fest, die die Fabrik zurückliefert. Der zweite aktuale Parameter vom Typ Object⁶ legt, unter Umständen, eine bestimmte Initialisierung des zurückgelieferten DoubleBinaryOperator-Objektes fest und der dritte, bool'sche, aktuale Parameter entscheidet über die Art und Weise, wie der Operator erstellt wird.

Die Rückgabe der Methode ist null, sollte der erste aktuale Parameter keiner der vier Strings "Coeffs", "Euclidean", "Max" oder "Composed" beinhaltet.

Sollte der dritte Parameter nun "true" eingekapseln, ruft buildOperator die Methode buildOperatorWithNew auf. Dabei werden die ersten beiden aktualen Parameter von buildOperator einfach für buildOperatorWithNew übernommen.

Ist der Wert des dritten Parameters allerdings false, wird stattdessen die Methode buildOperatorWithLambda aufgerufen. Auch diese erhält die selben Parameter, wie auch schon buildOperatorWithNew.

⁶Warum wir diesen Typen absichtlich so flexibel gehalten haben, erfahren Sie gleich.

H4.2: Operatoren mittels new

4 Punkte

Bepunktung: 0.5 Punkte für jede richtige Rückgabe

Bepunktung: 1 Punkt für Nutzung von new

Bepunktung: 1 Punkt für switch-Block

Nun implementieren Sie zunächst die Methode buildOperatorWithNew. Wir unterscheiden die Art des zurückgelieferten Operators dabei wie folgt anhand des ersten aktualen Parameters operator:

- "Coeffs": Nun entscheidet der zweite aktuale Parameter über die Rückgabe. Ist der dynamische Typ des Parameters PairOfDoubleCoefficients oder ein Subtyp davon ist, ist der dynamische Typ der Rückgabe DoubleSumWithCoefficientsOp und die zwei Koeffizienten entnehmen Sie aus dem zweiten aktualen Parameter. Andernfalls liefert buildOperator null zurück.
- "Euclidean": Hier wird der zweite aktuale Parameter der Methode ignoriert. Der dynamische Typ der Rückgabe ist einfach EuclideanNorm.
- "Max": Auch hier wird der zweite aktuale Parameter der Methode ignoriert. Der dynamische Typ der Rückgabe ist einfach DoubleMaxOfTwo.
- "Composed": Hier entscheidet der zweite aktuale Parameter wieder. Falls der dynamische Typ des zweiten aktualen Parameters gleich TripleOfDoubleBinaryOperators oder ein Subtyp davon ist, ist der dynamische Typ der Rückgabe ComposedDoubleBinaryOperator und die drei Operatoren werden, wie bereits im ersten Fall, aus dem zweiten aktualen Parameter geholt. Andernfalls wird wieder null von buildOperator zurückgeliefert.

Verbindliche Anforderung:

Die Fallunterscheidung anhand des ersten Parameters soll in einer einzigen switch-Anweisung (siehe Kapitel 03c, Folien 214-226 der FOP) geschehen.

H4.3: Operatoren mittels Lambda-Ausdrücken

3 Punkte

Bepunktung: 0.5 Punkte für jede richtige Rückgabe

Bepunktung: 1 Punkt für switch-Block

Die Methode buildOperatorWithLambda funktioniert nun ziemlich analog zur Methode buildOperatorWithNew. Auch hier machen Sie eine Fallunterscheidung anhand des ersten Parameters operator. Allerdings wird hier nun die Rückgabe der Methode in jedem der Fälle durch einen Aufruf der in Aufgabe H3 implementierten Methoden gewährleistet:

- "Coeffs": Sie liefern die Rückgabe des Aufrufs der Methode doubleSumWithCoefficientsOpAsLambda zurück. Dabei übergeben Sie der Methode den zweiten aktualen Parameter der Methode buildOperatorWithLambda.
- "Euclidean": Sie liefern die Rückgabe des Aufrufs der Methode euclideanNormAsLambda zurück.
- "Max": Sie liefern die Rückgabe des Aufrufs der Methode doubleMaxOfTwoAsLambda zurück. Dabei übergeben Sie der Methode erneut den zweiten aktualen Parameter der Methode buildOperatorWithLambda.
- "Composed": Sie liefern die Rückgabe des Aufrufs der Methode composedDoubleBinaryOperatorAsLambda zurück. Dabei übergeben Sie, völlig analog zum ersten Fall, der Methode den zweiten aktualen Parameter der Methode buildOperatorWithLambda.

Verbindliche Anforderungen:

- In dieser Aufgabe dürfen keine Objekte mittels des Operators new erstellt werden.
- Verwenden Sie abermals eine einzige switch-Anweisung.

Anhand dieser Aufgabe haben Sie die eigentliche Stärke von Lambda-Ausdrücken kennen gelernt. Um bisher beispielsweise die relativ simple Funktionalität der oben eingeführten Operatoren zu implementieren, brauchten wir bisher eine Klasse, die eine Methode (hier applyAsDouble) eines Interfaces (hier DoubleBinaryOperator) implementiert. Wie Sie jetzt in dieser Aufgabe gelernt haben, geht dies auch wesentlich eleganter von statten, ohne große Implementationen oder ohne lästiges Erstellen von Objekten, nämlich einfach mit einem einzigen Lambda-Ausdruck in Standardoder Kurzform. Diese wundervolle Funktionalität der Programmiersprache Java wird Ihnen immer wieder über den Weg laufen, beispielsweise beim Umgang mit Listen (Stichwort Sortierung, Filterung, etc.).

Unbewertete Verständnisfragen:

- Sehen Sie hier irgendwo Closure gemäß Kapitel 04c, Folien 68-70 der FOP?
- Dieses Design mit einem zusätzlichen Parameter vom Typ Object für fallspezifische, optionale Zusatzinformationen ist offensichtlich sehr flexibel. Es wird auch an verschiedenen Stellen in der Java-Standardbibliothek angewandt. Welches Risiko steckt darin?
- Sie lesen oben mehrfach "oder ein Subtyp davon". Warum? Bei einem Parameter vom formalen Typ String oder Boolean können wir uns gewiss sein, dass String bzw. Boolean auch der aktuale Typ ist. Warum? Was ist die hilfreiche Konsequenz aus dieser Gewissheit, wenn Sie mit instanceof testen wollen, ob der dynamische Typ gleich String bzw. Boolean ist?