3.7 (4) Существование главной универсальной вычислимой функции.

Теорема 1: Существует вычислимая функция двух аргументов, являющаяся универсальной функцией для класса вычислимых функций одного аргумента.

▲ Запишем все программы, вычисляющие функции одного аргумента, в вычислимую последовательность p_0, p_1, \ldots (например, в порядке возрастания их длины). Положим U(i,x) равным результату работы i-ой программы на входе x. Тогда функция U и будет искомой вычислимой универсальной функцией. \blacksquare

Теорема 2: Существует главная универсальная функция.

 \blacktriangle Заметим сначала, что существует вычислимая функция трёх аргументов, универсальная для класса вычислимых функций двух аргументов, то есть такая функция T, что при фиксации первого аргумента среди функций $T_n(u,v) = T(n,u,v)$ встречаются все вычислимые функции двух аргументов.

Такую функцию можно построить так. Фиксируем некоторую вычислимую нумерацию пар, то есть вычислимое взаимно однозначное соответствие $(u,v) \leftrightarrow [u,v]$ между $\mathbb{N} \times \mathbb{N}$ и \mathbb{N} ; число [u,v], соответствующее паре (u,v), мы будем называть номером этой пары.

Если теперь R — двуместная вычислимая универсальная функция для вычислимых одноместных функций (существует по теореме 1), то вычислимая функция T, определённая формулой T(n,u,v) = R(n,[u,v]), будет универсальной для вычислимых двуместных функций. В самом деле, пусть F — произвольная вычислимая функция двух аргументов. Рассмотрим вычислимую одноместную функцию f, определённую соотношением f([u,v]) = F(u,v). Поскольку R универсальна, найдётся число n, для которого R(n,x) = f(x) при всех x. Для этого n выполнены равенства T(n,u,v) = R(n,[u,v]) = f([u,v]) = F(u,v). Итак, универсальная функция трёх аргументов построена.

Теперь используем её для определения главной универсальной функции U двух аргументов. Положим U([n,u],v)=T(n,u,v) и проверим, что функция U будет главной. Для любой вычислимой функции V двух аргументов можно найти такое n, что V(u,v)=T(n,u,v) (так как T - универсальна) для всех u и v. Тогда V(u,v)=U([n,u],v) для всех u и v и потому функция s, определённая формулой s(u)=[n,u], удовлетворяет требованиям из определения главной универсальной функции. \blacksquare