Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 20

- 1. Пусть $z=1+\sqrt{3}i$. Вычислить значение $\sqrt[7]{z^2}$, для которого число $\frac{\sqrt[7]{z^2}}{2\sqrt{3}+2i}$ имеет аргумент $-\frac{17\pi}{14}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-4-i) + y(-3+13i) = -168 + 59i \\ x(-9+12i) + y(11+6i) = -166 + 224i \end{cases}$$

- 3. Найти корни многочлена $2x^6 24x^5 + 116x^4 264x^3 + 144x^2 + 1120x 3200$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = 4 2i, \, x_2 = 1 3i, \, x_3 = -2$.
- 4. Даны 3 комплексных числа: 8+4i, -16-22i, -2-17i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 4$, $z_2 = -2 + 2\sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z-4| < 2\\ |arg(z-3)| < \frac{\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-7, -2, -8), b = (-3, 0, 2), c = (5, 1, 4). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(8,4,-9) и плоскость P:42x-18y-34z+1052=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-13, -8, -12), $M_1(0, 5, 10)$, $M_2(-35, -2, 10)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 28x + 5y - 24z - 41 = 0 \\ 17x - 16z - 19 = 0 \end{cases} \qquad L_2: \begin{cases} 11x + 5y - 8z - 1282 = 0 \\ -7x + 3y + 14z + 1034 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.