DTW (Dynamic Time Warping)

计算两个序列之间的距离,比如可以用来做语音识别、股票相似K线的计算,任意不等长序列之间的距离计算。这个问题也叫做sequential alignment.

Applications

逻辑回归

Classification Problem

年龄	工资	学历	逾期
20	4000	本科	YES
25	5000	专科	NO
21	6000	本科	NO
25	5000	专科	YES
28	8000	本科	NO
27	7000	本科	?

• 学习输入到输出的映射 $f: X \to Y$

• X: 输入

• Y: 输出

Classification Problem

• 怎么去表示 P(Y|X)? 这相当于用模型来捕获输入X和输出Y之间的关系

• 可不可以用线性回归来表示 $P(Y|X) = w^T x + b$? 为什么?

Logistic Function

$$y = \frac{1}{1 + e^{-x}}$$

$$x:(-\infty,+\infty)$$

可不可以把线性回归 $w^Tx + b$ 改进一下使得值域映射到 (0, 1)区间?

Logistic Function

年龄	工资	学历	逾期
20	4000	本科	YES
25	5000	专科	NO
21	6000	本科	NO
25	5000	专科	YES
28	8000	本科	NO
27	7000	本科	?

Logistic Function

对于二分类问题:

$$p(y = 1|x, w) = \frac{1}{1 + e^{-w^T x + b}}$$

$$p(y = 0|x, w) = \frac{e^{-w^T x + b}}{1 + e^{-w^T x + b}}$$

两个式子可以合并成:

$$p(y|x, w) = p(y = 1|x, w)^{y}[1 - p(y = 1|x, w)]^{1-y}$$

Logistic Regression is Linear Classifier

$$p(y = 1|x, w) = \frac{1}{1 + e^{-w^{T}x + b}}$$

$$p(y = 0|x, w) = \frac{e^{-w^{T}x + b}}{1 + e^{-w^{T}x + b}}$$

Objective Function

假设我们拥有数据集 $D = \{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, \quad y_i \in \{0, 1\}$

而且我们已经定义了:

$$p(y|x,w) = p(y = 1|x,w)^{y}[1 - p(y = 1|x,w)]^{1-y}$$

我们需要最大化目标函数:

$$\widehat{w}_{MLE}$$
, $\widehat{b}_{MLE} = argmax_w \prod_{i=1}^n p(y_i|x_i, w, b)$

Objective Function

我们需要最大化目标函数:

$$\widehat{w}_{MLE}$$
, $\widehat{b}_{MLE} = argmax_{w,b} \prod_{i=1}^{n} p(y_i|x_i, w, b)$

Objective Function

$$argmin_{w,b} - \sum_{i=1}^{n} \log p(y_i|x_i, w, b)$$

Minimizing the Function

求使得f(w)值最小的参数w

- 是否凸函数
- 最优化算法

Gradient Descent

求使得f(w)值最小的参数w

```
初始化w^1
for t = 1,2,...:
w^{t+1} = w^t - \eta \nabla f(w^t)
```

例子: 求解函数 $f(w) = 4w^2 + 5w + 1$ 的最优解

Gradient Descent for Logistic Regression

$$p(y = 1|x, w) = \frac{1}{1 + e^{-w^{T}x + b}}$$

$$argmin_{w,b} - \sum_{i=1}^{n} y \log p(y = 1|x, w) + (1 - y) \log(1 - p(y = 1|x, w))$$

Gradient Descent for Logistic Regression

Stochastic Gradient Descent for Logistic Regression

Stochastic Gradient Descent for Logistic Regression

加入正则—L2 Norm

$$\widehat{w}_{MLE}$$
, $\widehat{b}_{MLE} = argmin_{w,b} - \sum_{i=1}^{n} \log p(y_i|x_i, w, b) + \lambda ||w||_2^2$

Gradient Descent

$$\widehat{w}_{MLE}$$
, $\widehat{b}_{MLE} = argmin_{w,b} - \sum_{i=1}^{n} \log p(y_i|x_i, w, b) + \lambda ||w||_2^2$

Stochastic Gradient Descent

$$\widehat{w}_{MLE}$$
, $\widehat{b}_{MLE} = argmin_{w,b} - \sum_{i=1}^{n} \log p(y_i|x_i, w, b) + \lambda ||w||_2^2$

Model Complexity

Generalization Capability

Training Data

Test Data

Regularized Objective Function

Commonly Used Regularization Terms

L1 L2

Geometric Interpretation of L1 vs L2

Some Applications of L1 Regularization

How to Select λ?

$$\widehat{w}_{MLE}, \quad \widehat{b}_{MLE} = argmax_{w,b} \prod_{i=1}^{n} p(y_i|x_i, w) + \lambda ||w||_2^2$$

Model Parameter vs Hyperparameter

$$\hat{w}_{MLE}$$
, $\hat{b}_{MLE} = argmax_{w,b} \prod_{i=1}^{n} p(y_i|x_i, w, b) + \lambda ||w||_2^2$

Cross Validation - Selecting Hyperparameter

Intuition

把训练数据进一步分成训练数据(Training Data)和验证集(Validation Data)。选择在验证数据里最好的超参数组合。

训练数据

测试数据

训练数据

验证数据

测试数据

5-Fold Cross Validation

测试数据

训练数据 验证数据 训练数据 验证数据 训练数据 训练数据 验证数据 训练数据 训练数据 训练数据 验证数据 验证数据 训练数据

Very Important Note!

绝对不能用测试数据来引导(guide)模型的训练!

绝对不能用测试数据来引导(guide)模型的训练!

绝对不能用测试数据来引导(guide)模型的训练!

L1+L2 Regularized Logistic Regression

$$L = \prod_{i=1}^{n} p(y_i|x_i, w, b) + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2$$

How to search for λ_1 and λ_2 ?

Grid Search

$$L = \prod_{i=1}^{n} p(y_i|x_i, w, b) + \lambda_1 ||\mathbf{w}||_1 + \lambda_2 ||\mathbf{w}||_2^2$$

Heuristic Search

- 随机搜索 (Random Search)
- 遗传算法 (Genetic/Evolutionary Algorithm)
- 贝叶斯优化 (Bayesian Optimization)

Neuro-Science

Time-Aware Recommendation

Summary

- 好的模型拥有高的泛化能力
- 越复杂的模型越容易过拟合
- 添加正则项是防止过拟合的一种手段
- L1正则会带来系数特性
- 选择超参数时使用交叉验证
- 参数搜索过程最耗费资源