Table of Contents

1.0 Problem Analysis	2
1.1 Problem Statements	2
1.2 Objectives of the Study	3
1.3 Scope of the Study	3
1.4 Methodology of the Study	3
2.0 Solution Development	5
2.1 Data Pipeline in SAS Enterprise Miner	5
2.2 Metadata of Dataset	5
2.3 Exploratory Data Analysis (EDA)	9
2.3.1 EDA using StatExplore	9
2.3.2 EDA using MultiPlot	13
2.4 Data Preparation	32
2.5 Predictive Modelling	35
2.5.1 Tree-Based Models	35
2.5.2 Neural Networks Models	41
2.6 Model Interpretation	47
2.6.1 Interpretation and Recommendations (Tree-Based Model)	47
2.6.2 Interpretation and Recommendations (Neural Network Model)	50
2.7 Summary	52

References

1.0 Problem Analysis

This chapter presents the problem statements corresponding to the study, the objectives, scope, and the methodology adopted in the study. It sets the stage for the subsequent chapter where the predictive solutions implemented are discussed and documented.

1.1 Problem Statements

The growing number of customer churns for credit card services presents itself as a concerning problem to bank managers. While customer churn is no stranger to most sectors even before two decades ago (Saradhi and Palshikar, 2011), its implications however, are much more prominent in markets that face intense competition, and in cases where the acquisition of new customers is much costlier than the retention of those that are existing. According to Kumar (2022), industry studies demonstrated that efforts aimed at acquiring new customers are five to seven times costlier than that of retaining current customers. The banking sector is one case of such sectors. The most upfront repercussions of customer churn for banks would be the loss in revenue that could have been gained had the customer stayed. The reputation and perception of the bank in the public's eyes would also suffer as a consequence of customers leaving because increasing churn rates would signal to the public that there exist intrinsic problems with the bank, for instance, in terms of its banking processes, customers' experiences which might be sub-optimal, or a lack of competitive offerings by the banks to name a few (Pahul Preet Singh et al., 2024).

Following the abovementioned discussions, it is thereby crucial for bank managers to be able to monitor and manage the customer churn rates in their banks, both of which could be done through the comprehensive understanding of the preferences, needs, and concerns of their customers. In the case of the credit card services in the banking context, these valuable insights obtained would then serve to help banks predict which customers is likely to discontinue their credit card services in the near future. Following that, intervening measures such as direct engagement with the customers could then be introduced and implemented by the banks in the attempt to prevent the churning of those customers (Wu & Li, 2021). While manual analysis has traditionally been the norm with its downside of human errors and the inability to accommodate for scalable solutions, the advancement in advanced analytics and machine learning techniques on the other hand, provides for far more accurate and timely predictions (Fatema Akbar Mohamed & Ali Khalifa Al-Khalifa, 2023). Having said that, the development of models for the purpose of credit card churn predictions will be documented and discussed

in this report. Implications of the models' results in the context of bank's credit card services will also be addressed.

1.2 Objectives of the Study

In accordance with the problems identified, the objectives of this study are as follows:

- 1. To develop a machine learning model for the prediction of customer churn in the credit card domain.
- 2. To identify factors that significantly influence customer churn rates in the said domain.
- 3. To equip bank managers with actionable insights and recommendations in better managing credit card churn rates.

1.3 Scope of the Study

The boundary of this study is confined within the area of prediction of customer churn rates in the credit card service domain within the banking sector. The dataset used in this study is from Goyal (2021). The steps involved in the analysis of this study are exploratory data analysis, data preprocessing, predictive modelling, model evaluation, and lastly model interpretation. The preprocessing done on the dataset includes, undersampling, logarithmic transformation, feature selection, data sampling, and data partitioning. All of the preprocessing steps were performed on SAS Enterprise Miner (version 15.2). Hyperparameter tuning was performed on each of the models selected and the details of the tuned parameters will be further elaborated upon in *Section 2.5*. Modelling techniques are limited to tree-based models (Decision Tree, Extreme Gradient Boosting, High-Performance Tree, and High-Performance Forest) and neural networks models (standard Neural Network model and High-Performance Neural Network models). Lastly, the evaluation measures of this study are namely, F1 Score, Precision, Recall, Specificity, Sensitivity, Misclassification Rates (MISC) and the Receiver Operating Characteristic (ROC) curve.

1.4 Methodology of the Study

In this study, the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology was employed. Due to its systematic approach to data mining that aligns closely with the processes of data analytics, the framework is often adopted not just in the technology domain, but also in many business contexts (Plotnikova et al., 2020). While there are six stages to the framework, this study will only employ the first five stages of the methodology as the deployment stage is out of the study's scope. The five stages are as follows:

1. Business Understanding:

The initial phase of the framework involves a deep dive into the area of credit card services, with the focus being primarily on the retention of customers. The problems to be addressed, as outlined in the section above, were identified and the objectives and scope of the study are set to correspond to the problems stated.

2. Data Understanding:

In this phase, exploratory data analysis is performed on the dataset. The purpose is to examine the structure of the dataset, uncover any problematic entries, as well as to explore how the variables relate to one another, especially in relation to the target variable (customer attrition). Descriptive statistics namely the measures of central tendencies (mean, median, and mode), the measure of dispersion (standard deviation), and skewness will be examined in this study. The detection of missing values and inconsistent entries will also be performed in this stage.

3. Data Preparation:

Once exploratory data analysis has been performed, the dataset will then be cleansed accordingly to prepare it for the next step of modelling. Imputation will be done should there be any missing values detected. If the distributions of the continuous variables are found to be highly skewed, transformation will then be performed. Finally, the dataset will be portioned into training and validation sets, according to the desired train-test ratio, for the subsequent modelling and evaluation stages.

4. Modelling:

Various predictive models will be generated at this stage using the in-built modelling tools of SAS Enterprise Miner. The models generated can be classified into two general model types namely, tree-based models and neural network models. Each model will then undergo hyperparameter optimization.

5. Evaluation:

At this last stage of the methodology in the case of this study, each model within the two groups will be evaluated against the chosen performance metrics namely, the F1 score, precision, recall, specificity, sensitivity, the ROC curve, and the AUC statistics to ensure that there is a balanced view of the models' performances. The results of the best models among each group will then be interpreted from a business standpoint. Subsequently, recommendations will be made, highlighting crucial factors influencing customer attrition prediction.

2.0 Solution Development

This chapter presents the process flow of the data analysis done in SAS Enterprise Miner, beginning with the initial exploratory data analysis of the dataset, and ending with the interpretation of the models' results in a business context, alongside the corresponding recommendations based on the model outcomes.

2.1 Data Pipeline in SAS Enterprise Miner

Figure 1: Data Pipeline

The figure above shows the workflow of the data analysis of this study. The process begins with the importing of the Comma-Separated Value (CSV) file into the SAS Enterprise Miner's environment. Following importation, an initial exploratory data analysis is performed using the StatExplore and MultiPlot built-in functions. Preprocessing will the follow where the relevant variables are transformed, dropped, undersampled, and subsequently partitioned into training and validation datasets. Following that, the each of the models shown in the figure will be modelled. Finally, the workflow ends with the Model Comparison node where performances of each model within their respective groups are compared to one another.

2.2 Metadata of Dataset

The dataset contains 16998 records across 21 variables, categorized into 1 ID variable, 19 input variables, and 1 binary target variable. Among the input variables, 5 are nominal, while the rest are interval. The descriptions of what each variable represents are detailed in the table below (*Table 1*). SAS Enterprise Miner displays this similar metadata as well in *Figure 2*, providing a comprehensive overview of the dataset for analysis.

Table 1: Metadata

No.	Name of Variable	Role	Type of	Description
			Data	
1	CLIENTNUM	ID	Nominal	The identification number for
				each customer that owns a credit
				card account.
2	Attrition_Flag	Target	Binary	'1' represents that the account has
				been closed while '0' represents
				that the account is still active.
3	Customer_Age	Input	Interval	The age of the customers (in
				years).
4	Gender	Input	Nominal	M=Male, F=Female
5	Dependent_count	Input	Ordinal	The total number of dependents of
				the account holder.
6	Education_Level	Input	Ordinal	Academic qualification of the
				account holder (College,
				Doctorate, Graduate, 'High
				School', Post-Graduate,
				Uneducated, and Unknown).
7	Marital_Status	Input	Nominal	Marital status of the account
				holder (Married, Single,
				Divorced, or Unknown).
8	Income_Category	Input	Ordinal	Yearly earnings bracket for the
				account holder ('\$120K +', '\$40K
				- \$60K', '\$60K - \$80K', '\$80K -
				\$120K', 'Less than \$40K', and
				Unknown).
9	Card_Category	Input	Nominal	Category that the credit card
				belongs to (Blue, Silver, Gold, or
				Platinum).
10	Months_on_book	Input	Ordinal	Duration of relationship with
				banks (in months).

11	Total_Relationship_Count	Input	Ordinal	Amount of the bank's products
				owned by the customer.
12	Months_Inactive_12_mon	Input	Ordinal	Number of months that the
				account holder is inactive in the
				last 12 months.
13	Contacts_Count_12_mon	Input	Ordinal	The number of contacts the
				account holder had with the bank
				in the last 12 months.
14	Credit_Limit	Input	Interval	Maximum spending limit
				available on the card.
15	Total_Revolving_Bal	Input	Interval	Total balance carried over on the
				credit card from month to month.
16	Avg_Open_To_Buy	Input	Interval	Available credit for purchases
				(average of last 12 months).
17	Total_Amt_Chng_Q4_Q1	Input	Interval	Difference in transaction amount
				(Q4 over Q1).
18	Total_Trans_Amt	Input	Interval	Sum of transaction amount (past
				12 months).
19	Total_Trans_Ct	Input	Interval	Number of transactions made by
				the account holder (past 12
				months).
20	Total_Ct_Chng_Q4_Q1	Input	Interval	Difference in transaction count
				(Q4 over Q1).
21	Avg_Utilization_Ratio	Input	Interval	Card utilization ratio on average.

Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
Attrition_Flag	Target	Binary	No		No		
Avg_Open_To_Buy	Input	Interval	No		No		
Avg_Utilization_Ratio	Input	Interval	No		No		
CLIENTNUM	ID	Nominal	No		No		
Card_Category	Input	Nominal	No		No		
Contacts_Count_12_mon	Input	Ordinal	No		No		
Credit_Limit	Input	Interval	No		No		
Customer_Age	Input	Interval	No		No		
Dependent_count	Input	Ordinal	No		No		
Education_Level	Input	Ordinal	No		No		
Gender	Input	Nominal	No		No		
Income_Category	Input	Ordinal	No		No		
Marital_Status	Input	Nominal	No		No		
Months_Inactive_12_mon	Input	Ordinal	No		No		
Months_on_book	Input	Ordinal	No		No		
Total_Amt_Chng_Q4_Q1	Input	Interval	No		No		
Total_Ct_Chng_Q4_Q1	Input	Interval	No		No		
Total_Relationship_Count	Input	Ordinal	No		No		
Total_Revolving_Bal	Input	Interval	No		No		
Total_Trans_Amt	Input	Interval	No		No		
Total_Trans_Ct	Input	Interval	No		No		

Figure 2: Metadata Displayed in SAS Enterprise Miner's Environment

2.3 Exploratory Data Analysis (EDA)

2.3.1 EDA using StatExplore

This section documents the steps performed for the exploratory data analysis of the dataset.

Table 2: EDA using StatExplore

Exploration				Result	s of Exp	oloration				Findings
Summary	Class V	ariable Summary Statistics							-	 No missing values were detected
Statistics for	(maximu	m 500 observations printed)								and the roles for each variable
Class	Data Ro	le=TRAIN								were correctly assigned.
Variables				Number						■ The most common card category
	Data Role	Variable Name	Role	of Levels	Missing	Mode	Mode Percentage	Mode2	Mode2 Percentage	is 'Blue' (93.18%).
										■ Most customers contacted the
	TRAIN	Card_Category	INPUT	4	0	Blue	93.18	Silver	5.48	bank 3 times in the last 12
	TRAIN	Contacts_Count_12_mon	INPUT	7	0	3	33.38	2	31.87	bank 5 times in the last 12
	TRAIN	Dependent_count	INPUT INPUT	6	0	3 Craduata	26.98	2 High Cabasi	26.22	months and most of them have a
	TRAIN TRAIN	Education_Level Gender	INPUT	2	0	Graduate v	30.89 52.91	High School M	19.88 47.09	total of 3 dependents.
	TRAIN	Income Category	INPUT	6	0	Less than \$40K	35.16	140K - \$60K	17.68	total of 3 dependents.
	TRAIN	Marital Status	INPUT	4	0	Married	46.28	Single	38.94	• 'Graduate' (30.89%) is the most
	TRAIN	Months_Inactive_12_mon	INPUT	7	0	3	37.98	2	32.41	prevalent academic attainment in
	TRAIN	Months_on_book	INPUT	44	0	36	24.32	37	3.54	prevalent academic attainment in
	TRAIN	Total_Relationship_Count	INPUT	6	0	3	22.76	4	18.88	the pool of credit card account
	TRAIN	Attrition_Flag	TARGET	2	0	0	83.93	1	16.07	holders, followed by 'High
										School' (19.88%).

Class Variable Summary Statistics (maximum 500 observations printed)

Data Role=TRAIN

Data			Number of			Mode		Mode2
Role	Variable Name	Role	Levels	Missing	Mode	Percentage	Mode2	Percentage
TRAIN	Card_Category	INPUT	4	0	Blue	93.18	Silver	5.48
TRAIN	Contacts_Count_12_mon	INPUT	7	0	3	33.38	2	31.87
TRAIN	Dependent_count	INPUT	6	0	3	26.98	2	26.22
TRAIN	Education_Level	INPUT	7	0	Graduate	30.89	High School	19.88
TRAIN	Gender	INPUT	2	0	F	52.91	M	47.09
TRAIN	Income_Category	INPUT	6	0	Less than \$40K	35.16	\$40K - \$60K	17.68
TRAIN	Marital_Status	INPUT	4	0	Married	46.28	Single	38.94
TRAIN	Months_Inactive_12_mon	INPUT	7	0	3	37.98	2	32.41
TRAIN	Months_on_book	INPUT	44	0	36	24.32	37	3.54
TRAIN	Total_Relationship_Count	INPUT	6	0	3	22.76	4	18.88
TRAIN	Attrition_Flag	TARGET	2	0	0	83.93	1	16.07

- The gender distribution is almost equal with females showing slightly higher percentage (52.91%) than males (47.09%).
- Most customers (35.16%) have yearly earnings lesser than \$40K.
- Most customers are married (51.79%) and most of them remained inactive for a duration of 3 months within the past year.
- Most of the customers maintained their relationships with the bank for a period of 36 months and the majority of them own 3 products with the bank.
- There is a significant class imbalance among the classes of the target variable, which is 83.93% of those who have not churned against 16.07% of those

												who	have	churned	l. Class
												bala	ncing		through
												unde	ersamplin	g will be p	performed
													ection 2.4		
Summary	Interval Variable Summa	rv Statis	tics									■ No.1	niccing v	alues were	e detected
•	(maximum 500 observatio	-											_		
Statistics for		·										and	the roles	s for each	variable
Interval	Data Role=TRAIN											were	e correctly	y assigned	l.
Variables				Standard	Non							■ Mos	t variable	es follow	an almost
	Variable	Role	Mean	Deviation	Missing	Missing	Minimum	Median	Maximum	Skeumess	Kurtosis	norr	nal distril	oution.	
						,						■ Vari			ald
	Avg_Open_To_Buy	INPUT	7469.14	9090.685	10127	0	3	3474	34516	1.661697	1.798617	- vari	ables	with	skewed
	Avg_Utilization_Ratio	INPUT	0.274894	0.275691	10127	0	0	0.176	0.999	0.718008	-0.79497	dist	ibutions	are	namely,
	Credit_Limit	INPUT	8631.954	9088.777	10127	0	1438.3	4549	34516	1.666726	1.808989	Avo	_Open_T	'o Buy	
	Customer_Age	INPUT	46.32596	8.016814	10127	0	26	46	73	-0.03361	-0.28862		-	•	
	Total_Amt_Chng_Q4_Q1	INPUT	0.759941	0.219207	10127	0	0	0.736	3.397	1.732063	9.993501	Cred	lit_Limit,	,	
	Total_Ct_Chng_Q4_Q1	INPUT	0.712222	0.238086	10127	0	0	0.702	3.714	2.064031	15.68929	Tota	ıl Amt C	Chng_Q4_	O1.
	Total_Revolving_Bal	INPUT	1162.814	814.9873	10127	0	0	1276	2517	-0.14884	-1.14599				_
	Total_Trans_Amt	INPUT	4404.086	3397.129	10127	0	510	3899	18484	2.041003	3.894023	Tota	ıl_Ct_Chi	ng_Q4_Q	1, and
	Total_Trans_Ct	INPUT	64.85869	23.47257	10127	0	10	67	139	0.153673	-0.36716	Tota	ıl_Trans_	Amt.	These
												vari	ables wil	l be trea	ted using
												loga	rithmic t	ransforma	tion. The
												thre	shold se	et for ic	dentifying
												skev	vness in	the distri	ibution is
												betv	veen -1 ar	nd 1.	

2.3.2 EDA using MultiPlot

In this subsection, the MultiPlot built-in function of SAS Enterprise Miner is employed to perform the necessary EDA. All the graphs generated below represents the distribution of each variable grouped by the target variable of customer attrition. The blue bars in the histogram represent customers who have not churned while the red bars represent customers who have churned.

Table 3: EDA using MultiPlot

Name of Variable	Results of Exploration	Findings
Avg_Open_To_Buy	Avg_Open_To_Buy by Attrition_Flag	■ The distribution is skewed to
	9000 -	the right, with most customers
		being concentrated at the lower
		Avg_Open_To_Buy range.
	2000 -	■ The frequencies generally
		decrease as
	E N C C Y	Avg_Open_To_Buy values
		increase for both attrition
		categories.
		■ Individuals with no attrition
	6 1 3 4 5 6 7 9 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3	(attrition flag 0) are more
	0 8 0 2 4 6 8 0 0 1 2 3 5 6 7 8 9 1 2 3 4 5 7 8 9 0 1 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	frequent in lower
	Avg_Open_To_Buy MIDPOINT	Avg_Open_To_Buy values
	Attrition_Flag 0 1	than those with attrition

(attrition flag 1), implying that customers who stayed with the bank tend to have lower average available credit in comparison to those who have left.

- Higher Avg_Open_To_Buy values are uncommon among both attrition groups.
- The general trend is homogenous for individuals regardless of attrition status, with most customers having lower Avg_Open_To_Buy capacity.

- Discussion on the skewness of the distribution will not be relevant for the Income_Category variable because it is a non-continuous variable.
- Across all income brackets, the number of customers who have not churned outnumbered those who have churned, indicating higher customer retention rates across all income levels.
- While the income bracket of 'Less than \$40 K' makes up the majority of the bank's customers, this income bracket also had the largest number of customers who have churned compared to the rest of the brackets.

- The distribution follows an almost normal distribution.
- The majority of the churned customers are found in the lower
- Customers with higher number of transaction counts tend to have lower attrition tendencies, as seen by the larger blue bars in the higher transaction count midpoints.
- There are considerably lesser customers with very low or very high number of transactions.
- Churn rates are considerably higher in the lower range of transaction count values as compared to higher ranges.
- The overall pattern suggests that an increased in transaction

	count may lead to an increased
	in customer retention.

In summary, consistent with the findings in the Variable Worth diagram, results from the Multiplot analysis demonstrates that variables namely, Total_Trans_Amt, Total_Trans_Ct, Total_Revolving_Bal, Total_Ct_Chng_Q4_Q1, Avg_Utilization_Ratio, Total_Amt_Chng_Q4_Q1 and Contacts_Count_12_mon were found to have considerable predictive power on the outcomes of customer attrition.

2.4 Data Preparation

Considering that there were no missing values detected in the dataset, imputation is hence not needed. Instead, transformation of the variables with skewed distributions,, followed by feature selection, the undersampling of the dataset, and finally the portioning of the dataset, all of which will be performed in the sequence that they are listed.

Table 4: Preprocessing Steps

Type of Data			Output		Explanation
Preparation					
Transform Variables	Source	Method	Variable Name	Skewness	 Logarithmic transformation is applied to the 5 variables with skewed distribution which were
variables	Input Input Input Input Input Output Output Output Output Output Output	Original Original Original Original Original Computed Computed Computed Computed Computed	Avg_Open_To_Buy Credit_Limit Total_Amt_Chng_Q4_Q1 Total_Ct_Chng_Q4_Q1 Total_Trans_Amt LOG_Avg_Open_To_Buy LOG_Credit_Limit LOG_Total_Amt_Chng_Q4_Q1 LOG_Total_Ct_Chng_Q4_Q1 LOG_Total_Trans_Amt	1.661697 1.666726 1.732063 2.064031 2.041003 -0.0953 0.457303 0.64844 0.510172 0.26278	previously identified in <i>Section 2.3.1</i> . Outputs of the transformation procedure shows that skewness for all of the problematic variables has been reduced and are within the acceptable range of -1 to 1.
Drop		Dropped ROLE HIDDEN INPUT INPUT INPUT	l Variables Summary LEVEL COUNT 5 INTERVAL 1 NOMINAL 3 ORDINAL 4		 In this step, and according to the Variable Worth diagram in <i>Section 2.3.1</i>, variables which are found to have minimal contributions in predicting the attrition of the bank's customers will be dropped from the dataset. This is to ensure that model performance could be optimized by removing any redundant or irrelevant data. 8 variables were removed, and they are namely, Customer_Age, Months_on_book, Gender, Income_Category, Education_Level,

Sampling	Summary Statis (maximum 500 ol Data=DATA Variable Attrition_Flag Attrition_Flag	bservations Numeric Value	_	Frequency Count 8500 1627	Percent 83.9340 16.0660	Label	Car Und data with	pendent_count, rd_Category. dersampling techn aset to solve the hin the target variatially, number of	issue of class able. observations was	blied to the imbalance s 8500 for
Data	Data=SAMPLE Variable Attrition_Flag Attrition_Flag	Numeric Value 0 1	Formatted Value 0 1	Frequency Count 1627 1627	Percent 50 50	Label	the	number of observe equal, with 1627	vations for both observations in e	groups are
Data Partitioning	Data=TRAIN Variable Attrition_Flag Attrition_Flag Data=VALIDATE	Numeric Value 0 1	Formatted Value 0 1	Frequency Count 1138 1139	Percent 49.9780 50.0220)	vali The mod	ally, the dataset is idation ratio. e purpose of the spudelling, after which used to assess the identification in the second control of the second contro	olit is to prepare the hand the validation of model's performan	he data for lataset will
	Variable Attrition_Flag Attrition_Flag	Numeric Value 0 1	Formatted Value 0 1	Frequency Count 489 488	Percent 50.0512 49.9488		asse	ess if overfitting is	s present.	

2.5 Predictive Modelling

The models included in this study are namely tree-based and neural network models. There will be a total of 5 variations done for each group of models, as could be seen in the table below. The tree-based models consisted of Decision Tree, two variations of Extreme Gradient Boosting, HP Tree, HP Forest. The neural network category however consisted of 1 conventional neural network model, and 4 other variations of HP neural network models. The following subsections will present the models mentioned, accompanied by their respective optimization properties and the validation outputs of the results.

2.5.1 Tree-Based Models

The 5 tree-based models are as follows.

Table 5: Tree-Based Modelling

Model	Optimization		Validati	ion I	Results		
	Properties						
Decision	Predefined	Misclassification Rati	e v				
Tree	Settings:						
	 Significance 	0.4					
	Level (0.2)	0.4					
	Maximum						
	Branch (2)	0.2					
	Maximum						
	D (1 (C)						
	Depth (6)	4					
	Depth (6)	0	10		20	30	
	■ Leaf Size (5)	0	Num		Leaves) oto
	_	0					2ate
	_	0 Fit Statistics	Num		Leaves		≀ate
	_	Fit Statistics NOBS_	Num Train: Misclassification R Statistics Label Sum of Frequencies		Leaves Valid: Misclas Train 2277	ssification R	977
	_	Fit Statistics NOBS_ MISC_	Num Train: Misclassification R Statistics Label Sum of Frequencies Misclassification Rate		Leaves Valid: Misclas Train 2277 0.07993	Saification R	97
	_	Fit Statistics NOBS MISC MAX	Num Train: Misclassification R Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error		Leaves Valid: Misclas Train 2277	Ssification R	97 0.0808 0.98811
	_	Fit Statistics NOBS_ MISC_	Num Train: Misclassification R Statistics Label Sum of Frequencies Misclassification Rate		Train 2277 0.07993 0.988115	validation	
	_	Fit Statistics NOBS_ MISC_ MAX_ SSE_ ASE_ RASE_	Num Train: Misclassification R Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Errors Average Squared Error Root Average Squared Error	ate —	Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404	validation	97' 0.08086 0.98811! 139.3544 0.07131! 0.26705-
	_	Fit Statistics NOBS_ MISC_ MAX_ SSE_ ASE_ RASE_ DIV_	Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Error Average Squared Error Root Average Squared Error Divisor for ASE	ate —	Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404 4554	validation R	97' 0.08080 0.98811! 139.3540 0.07131!
	_	Fit Statistics NOBS_ MISC_ MAX_ SSE_ ASE_ RASE_	Num Train: Misclassification R Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Errors Average Squared Error Root Average Squared Error	ate —	Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404	validation R	97' 0.0808' 0.98811: 139.354' 0.07131: 0.26705
	_	Fit Statistics NOBS_ MISC_ MAX_ SSE_ ASE_ RASE_ DIV_ DFT_	Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Error Average Squared Error Root Average Squared Error Divisor for ASE	ate —	Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404 4554 2277	validation R	97 0.0808 0.98811 139.354 0.07131 0.26705 195
	_	Fit Statistics NOBS_ MISC_ MAX_ SSE_ ASE_ RASE_ DIV_ DFT_	Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Error Average Squared Error Root Average Squared Error Divisor for ASE	Parte	Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404 4554 2277	Validation	97 0.0808 0.98811 139.354 0.07131 0.26705 195
	_	Fit Statistics NOBS_ MISC_ MAX_ SSE_ ASE_ RASE_ DIV_ DFT_	Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Error Average Squared Error Root Average Squared Error Divisor for ASE	ate —	Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404 4554 2277	validation R	97 0.0808 0.98811 139.354 0.07131 0.26705 195
	_	Fit Statistics NOBS_ MISC_ MAX_ SSE_ ASE_ PASE_ DIV_ DFT_ Variable Name Total_Trans_Ct	Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Errors Average Squared Error Root Average Squared Erro Divisor for ASE Total Degrees of Freedom	Number of Splitting Rules	Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404 4554 2277	Validation Validation Importance 1.0000	97 0.0808 0.98811 139.354 0.07131 0.26705 195 Patio o Validatio
	_	Fit Statistics NOBS_ MISC_ MAX_ SSE_ ASE_ PASE_ DIV_ DFT_ Variable Name Total_Trans_Ct 100_Total_Trans_Aat	Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Errors Average Squared Error Root Average Squared Error Divisor for ASE Total Degrees of Freedom	Number of Splitting Rules	Valid: Misclas Valid: Misclas Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404 4554 2277 Importance 1.0000 0.5426	Validation Validation Validation Inportance 1.0000 0.5862	97 0.0808 0.98811 139.354 0.07131 0.26705 195 Ratio o Validatio to Trainin Importance 1.000
	_	Fit Statistics NOBS MISC MAX SSE ASE ASE DIV DFT Variable Name Total Trans_Ct 106_Total Trans_Aat Total Revolving Bal Total Relationship_Count	Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Error Average Squared Error Root Average Squared Erro Divisor for ASE Total Degrees of Freedom Label Transformed Total_Trans_Amt	Number of Splitting Fules 4 5 1 1	Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404 4554 2277 Importance 1.0000 0.5426 0.3842 0.2992	Validation Validation Importance 1.0000 0.5862 0.4360 0.2761	97 0.0808 0.98811 139.354 0.07131 0.26705 195 Ratio o Validatio to Trainin Importance 1.000 1.000 1.134 0.922
	_	Fit Statistics NOBS_ MISC_ MAX_ SSE_ ASE_ RASE_ DIV_ DFT_ Variable Name Total_Trans_Ct 106_Total_Trans_Ant Total_Trans_Ant Total_Revolving_Bal	Statistics Label Sum of Frequencies Misclassification Rate Maximum Absolute Error Sum of Squared Errors Average Squared Error Root Average Squared Erro Divisor for ASE Total Degrees of Freedom	Number of Splitting Fules 4 5 1	Train 2277 0.07993 0.988115 311.1837 0.068332 0.261404 4554 2277 Importance 1.0000 0.5426 0.3842	Validation Validation Importance 1.0000 0.5862 0.4360	97 0.0808 0.98811 139.354 0.07131 0.26705 195

		Data Role=VALIDATE Target Variable=Attrition_Flag Target Label=' '							
		Target	Outcome	Target Percentage	Outcome Percentage		requency Count	Tot Percer	
		0 1 0	0 0 1 1	92.1811 7.8189 8.3503 91.6497	91.6155 7.7869 8.3845 92.2131		448 38 41 450		3895 1965
Gradient	Predefined	Misclassification	Rate]~]					
Boosting	ting Settings:								
	N Iterations (5)	0.20 -		\					
	Maximum	ration Ra							
	Branch (2)	Misclassification Rate							
	Maximum	0.10 -			Charles and the second				
	Depth (2)					~		~~	
	 Leaf Fraction 	0		10	20 Iteration	30		40	50
(0.001)									
		Fit Statistics NOBS_		atistics Label m of Frequencies		Train	2277	Validation	977
		SUMW_ MISC_ MAX_ SSE_ ASE_ RASE_ DIV_ DFT_	Sur Mis Ma: Sur Ave Ro Div	m of Case Weights classification Rate ximum Absolute Err m of Squared Errors erage Squared Error of Average Squared isor for ASE al Degrees of Freed	Error		4554 0.066315 0.924925 287.894 0.063218 0.251432 4554 2277		1954 0.073695 0.91524 134.2106 0.068685 0.262078 1954
		2 Total_F 3 L0G_Tot 4 L0G_Tot 5 Total_F 6 L0G_Tot 7 Months_ 8 Contact 9 L0G_Cre	ctance Frams_Ct kevolving_Bal cal_Trams_Mat cal_tc_Chng_Q4_0! kelationship_Cou cal_Mat_Chng_Q4_0 Inactive_12_aon cdt_Limit Lization_Ratio	nt Ql Transformed Total	_Trans_Amt Ct_Chng_04_01 Amt_Chng_04_01	MRULES 40 21 41 10 10 7 7 1	IMPORTANCE 1.00000 0.61483 0.99548 0.33987 0.31029 0.22358 0.21686 0.14657 0.03450 0.02126	VIMPORTANCE 1.00000 0.60574 0.65794 0.32090 0.23923 0.21173 0.20258 0.08032 0.00000 0.00000	RATIO 1.00000 0.98522 1.10490 0.94420 0.77098 0.94698 0.93417 0.54798 0.00000
		Data Role=VALIDATE Target Variable=Attrition_Flag Target Label=' '							
		Target	Outcome	Target Percentage	Outcome Percentag		Frequency Count	To Perce	tal ntage
		0 1 0	0 0 1 1	93.3472 6.6528 8.0645 91.9355	91.8200 6.5574 8.1800 93.4426	Į I	449 32 40 456	3. 4.	9570 2753 0942 6735

HP Tree Predefined Settings:

- Significance Level (0.2)
- MaximumBranch (2)
- MaximumDepth (10)
- Leaf Size (5)

Fit Statistics	Statistics Label	Train	Validation
ASE	Average Squared Error	0.038345	0.075054
DIV	Divisor for ASE	4554	1954
MAX	Maximum Absolute Error	0.994413	1
NOBS	Sum of Frequencies	2277	977
RASE	Root Average Squared Error	0.195819	0.27396
SSE	Sum of Squared Errors	174.6229	146.6561
DISF	Frequency of Classified Cases	2277	977
MISC	Misclassification Rate	0.046113	0.087001
WRONG	Number of Wrong Classifications	105	85

Variable Name	Importance	Validation Importance ▲
LOG_Avg_Open_To_Buy	0.104126	0
LOG_Credit_Limit	0	0
Avg_Utilization_Ratio	0.134643	0.03852
Contacts_Count_12_mon	0.045616	0.046165
LOG_Total_Amt_Chng_Q4_Q1	0.210449	0.103309
Months_Inactive_12_mon	0.224374	0.131757
Total_Relationship_Count	0.324341	0.275342
LOG_Total_Ct_Chng_Q4_Q1	0.30413	0.279913
Total_Revolving_Bal	0.408928	0.429212
LOG_Total_Trans_Amt	0.562102	0.559685
Total_Trans_Ct	1	1

Data Role=VALIDATE Target Variable=Attrition_Flag Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	90.8907	91.8200	449	45.9570
1	0	9.1093	9.2213	45	4.6059
0	1	8.2816	8.1800	40	4.0942
1	1	91.7184	90.7787	443	45.3429

HP Forest

Predefined Settings:

- MaximumNumber ofTrees (100)
- MaximumDepth (50)
- Significance Level (0.05)
- Leaf Size (5)
- VariableImportanceMethod: LossReduction

Fit Statistics	Statistics Label	Train	Validation
ASE	Average Squared Error	0.01021	0.051287
DIV	Divisor for ASE	4554	1954
MAX	Maximum Absolute Error	0.512698	0.923667
NOBS	Sum of Frequencies	2277	977
RASE	Root Average Squared Error	0.101045	0.226467
SSE	Sum of Squared Errors	46.49694	100.2151
DISF	Frequency of Classified Cases	2277	977
MISC	Misclassification Rate	.0004392	0.06346
WRONG	Number of Wrong Classifications	1	62

Loss Reduction Variable Importance

	Number		00B	Valid		00B	Valid
Variable	of Rules	Gini	Gini	Gini	Margin	Margin	Margin
Total_Trans_Ct	2914	0.147575	0.10076	0.10163	0.295151	0.250128	0.251284
LOG_Total_Trans_Amt	2238	0.094256	0.06133	0.07059	0.188511	0.154489	0.161218
Total_Revolving_Bal	1754	0.062450	0.03356	0.03215	0.124899	0.095271	0.094082
Avg_Utilization_Ratio	1017	0.037653	0.02048	0.01990	0.075305	0.058410	0.057702
Total_Relationship_Count	612	0.019967	0.01402	0.00920	0.039934	0.034288	0.028619
LOG Total Ct Chng Q4 Q1	2021	0.049367	0.01309	0.01408	0.098733	0.063191	0.065766
Months Inactive 12 mon	382	0.007939	0.00490	0.00512	0.015877	0.012531	0.013107
Contacts Count 12 mon	401	0.007773	0.00273	0.00152	0.015545	0.010073	0.009241
LOG_Total_Amt_Chng_Q4_Q1	1626	0.030996	0.00207	-0.00001	0.061993	0.032615	0.033055
LOG Avg Open To Buy	1446	0.016084	-0.00896	-0.00758	0.032168	0.006903	0.007737
LOG_Credit_Limit	1695	0.018085	-0.01098	-0.01270	0.036169	0.006745	0.004296

Data Role=VALIDATE Target Variable=Attrition_Flag Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	94.3867	92.8425	454	46.4688
1	0	5.6133	5.5328	27	2.7636
0	1	7.0565	7.1575	35	3.5824
1	1	92.9435	94.4672	461	47.1853

Summary Comparisons of Tree-Based Models

Fit Statistics

Model Selection based on Valid: Misclassification Rate (_VMISC_)

				Train:		Valid:
			Valid:	Average	Train:	Average
Selected			Misclassification	Squared	Misclassification	Squared
Model	Model Node	Model Description	Rate	Error	Rate	Error
Y	Boost2	Gradient Boosting (2)	0.055271	0.021974	0.019763	0.042129
	HPDMForest	HP Forest	0.063460	0.010210	0.000439	0.051287
	Boost	Gradient Boosting	0.073695	0.063218	0.066315	0.068685
	Tree	Decision Tree	0.080860	0.068332	0.079930	0.071318
	HPTree	HP Tree	0.087001	0.038345	0.046113	0.075054

Event Classification Table

 ${\tt Model Selection \ based \ on \ Valid: \ Misclassification \ Rate \ (_VMISC_)}$

		Data		Target	False	True	False	True
Model Node	Model Description	Role	Target	Label	Negative	Negative	Positive	Positive
Boost2	Gradient Boosting (2)	TRAIN	Attrition_Flag		8	1101	37	1131
Boost2	Gradient Boosting (2)	VALIDATE	Attrition_Flag		27	462	27	461
Tree	Decision Tree	TRAIN	Attrition_Flag		75	1031	107	1064
Tree	Decision Tree	VALIDATE	Attrition_Flag		38	448	41	450
Boost	Gradient Boosting	TRAIN	Attrition_Flag		53	1040	98	1086
Boost	Gradient Boosting	VALIDATE	Attrition_Flag		32	449	40	456
HPTree	HP Tree	TRAIN	Attrition_Flag		51	1084	54	1088
HPTree	HP Tree	VALIDATE	Attrition_Flag		45	449	40	443
HPDMForest	HP Forest	TRAIN	Attrition_Flag			1137	1	1139
HPDMForest	HP Forest	VALIDATE	Attrition_Flag		27	454	35	461

2.5.2 Neural Networks Models

The 5 neural networks models are as follows.

Table 6: Neural Network Modelling

Properties Predefined Settings: Method Selection Criterion (Profit/Loss)	Misclassification 0.4 - 0.2 -	Sta Aka Ave Ave Deg Divi Erro	rain: Misclassification iistics Label A ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	Train	200 d: Misclassification 1212.214 0.230174 0.068673 2195 45554 1048.214	Validation
Settings: Method Selection Criterion	0.4	Sta Aka Ave Ave Deg Divi Erro	100 Train: Misclassification tistics Label ke's Information Criter age Error Function age Squared Error rees of Freedom for Es or for ASE r Function	n Rate Vali	d: Misclassification 1212.214 0.230174 0.088673 2195 4554	Validation
MethodSelectionCriterion	0.2 - 0.2 -	Sta Aka Avei Avei Divi Erro Fina	Train: Misclassification tistics Label ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	n Rate Vali	d: Misclassification 1212.214 0.230174 0.088673 2195 4554	Validation
Selection Criterion	0.2 - 0.2 -	Sta Aka Avei Avei Divi Erro Fina	Train: Misclassification tistics Label ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	n Rate Vali	d: Misclassification 1212.214 0.230174 0.088673 2195 4554	Validation
Criterion	0.2 - 0.2 -	Sta Aka Avei Avei Divi Erro Fina	Train: Misclassification tistics Label ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	n Rate Vali	d: Misclassification 1212.214 0.230174 0.088673 2195 4554	Validation
	Fit Statistics _AICAVERRASEDIFEDIVERRRFPEMAX	Sta Aka Avei Avei Divi Erro Fina	Train: Misclassification tistics Label ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	n Rate Vali	d: Misclassification 1212.214 0.230174 0.088673 2195 4554	Validation
(Profit/Loss)	Fit Statistics _AICAVERRASEDIFEDIVERRRFPEMAX	Sta Aka Avei Avei Divi Erro Fina	Train: Misclassification tistics Label ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	n Rate Vali	d: Misclassification 1212.214 0.230174 0.088673 2195 4554	Validation
	Fit Statistics _AICAVERRASEDFEDIVERRFPEMAX	Sta Aka Avei Avei Divi Erro Fina	Train: Misclassification tistics Label ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	n Rate Vali	d: Misclassification 1212.214 0.230174 0.088673 2195 4554	Validation
	Fit Statistics _AICAVERRASEDFEDIVERRFPEMAX	Sta Aka Avei Avei Divi Erro Fina	Train: Misclassification tistics Label ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	n Rate Vali	d: Misclassification 1212.214 0.230174 0.088673 2195 4554	Validation
	AIC _AVERR_ _ASE_ _DFE_ _DIV_ _ERR_ _FPE_ _MAX_	Sta Aka Avei Avei Divi Erro Fina	rain: Misclassification iistics Label A ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	n Rate Vali	d: Misclassification 1212.214 0.230174 0.068673 2195 4554	Validation
	AIC _AVERR_ _ASE_ _DFE_ _DIV_ _ERR_ _FPE_ _MAX_	Aka Aver Aver Deg Divi Erro Fina	ke's Information Criter age Error Function age Squared Error rees of Freedom for E sor for ASE r Function	ion	0.230174 0.068673 2195 4554	0.248434 0.073587 1954
	AVERR _ASE_ _DFE_ _DIV_ _ERR_ _FPE_ _MAX_	Aver Aver Deg Divi Erro Fina	age Error Function age Squared Error rees of Freedom for E sor for ASE r Function		0.230174 0.068673 2195 4554	0.248434 0.073587 1954
	MSE _MMSC_ _DFM_ _NW_ _WRONG_ _RASE_ _RFPE_ _RMSE_ _SBC_ _SUMW_ _NOBS_ _SSE_ _DFT_ Data Role	Mea Misi Mood Nur Nur Rood Rood Sch Sur Sur Sur Tota	t Mean Squared Error warz's Bayesian Criter of Case Weights Tim of Frequencies of Squared Errors I Degrees of Freedom	ghts cations or fine	0.073804 0.997498 0.071238 0.089592 82 22 204 0.262055 0.271668 0.266905 1682.124 4554 2277 312.736	0.996357 0.073587 0.095189 93 0.271268 0.271268 1954 977 143.7881
		RFPE _RMSE_ _SBC_ _SUMW_ _NOBS_ _SSE_ _DFT_ Data Role Target 0 1 0	RFPE	RFPE	RFPE	RFPE_ Root Final Prediction Error 0.271668 RMSE_ Root Mean Squared Error 0.266905 SBC_ Schwarz's Bayesian Criterion 1682.124 SUMW_ Sum of Case Weights Times Freq 4554 NOBS_ Sum of Frequencies 2277 SSE_ Sum of Squared Errors 312.736 DFT_ Total Degrees of Freedom 2277 Data Role=VALIDATE Target Variable=Attrition_Flag Target Lai Target

HP Predefined Neural Settings: Architecture (One Layer) Number of Hidden Neurons (3) Number of Hidden Layers (3) Target 0.7 -Activation 0.6 Function 0.5 (Identity) 0.4 Number of 0.3 Tries (2) 100 125 Maximum Iteration **Iterations** Avg Training Error — — Avg Validation Error (300)Fit Statistics Statistics Label ▼ Validation SSE Sum of Squared Errors 298.2675 151.8091 NOBS_ Sum of Frequencies 2277 _RASE_ Root Average Squared Error 0.255921 0.278732 _WRONG_ Number of Wrong Classifications 197 0.086517 _MISC_ Misclassification Rate 0.101331 _MAX_ Maximum Absolute Error 0.994613 0.993345 _DISF_ Frequency of Classified Cases 2277 977 _DIV_ Divisor for ASE 4554 1954 Average Squared Error 0.065496 0.077691 _ASE_ Data Role=VALIDATE Target Variable=Attrition_Flag Target Label=' ' Target Outcome Frequency Total Target Outcome Percentage Percentage Count Percentage 45.7523 0 0 88.6905 91.4110 447 11.3095 1 0 11.6803 57 5.8342 8.8795 4.2989 0 1 8.5890 42 1 1 91.1205 88.3197 431 44.1146

Summary Comparisons of Neural Network Models

Fit Statistics

Model Selection based on Valid: Misclassification Rate (_VMISC_)

				Train:		Valid:
			Valid:	Average	Train:	Average
Selected	Model	Model	Misclassification	Squared	Misclassification	Squared
Model	Node	Description	Rate	Error	Rate	Error
Y	Neural	Neural Network	0.09519	0.068673	0.08959	0.073587
	HPNNA	HP Neural	0.10133	0.065496	0.08652	0.077691
	HPNNA3	HP Neural (3)	0.10747	0.068382	0.09530	0.078503
	HPNNA4	HP Neural (4)	0.11054	0.073832	0.10452	0.079541
	HPNNA2	HP Neural (2)	0.11157	0.073410	0.10321	0.080346

Event Classification Table

 ${\tt Model Selection \ based \ on \ Valid: \ Misclassification \ Rate \ (_VMISC_)}$

Model	Model	Data		Target	False	True	False	True
Node	Description	Role	Target	Label	Negative	Negative	Positive	Positive
HPNNA2	HP Neural (2)	TRAIN	Attrition_Flag		109	1012	126	1030
HPNNA2	HP Neural (2)	VALIDATE	Attrition_Flag		60	440	49	428
HPNNA	HP Neural	TRAIN	Attrition_Flag		97	1038	100	1042
HPNNA	HP Neural	VALIDATE	Attrition_Flag		57	447	42	431
Neural	Neural Network	TRAIN	Attrition_Flag		91	1025	113	1048
Neural	Neural Network	VALIDATE	Attrition_Flag		48	444	45	440
HPNNA3	HP Neural (3)	TRAIN	Attrition_Flag		113	1034	104	1026
HPNNA3	HP Neural (3)	VALIDATE	Attrition_Flag		61	445	44	427
HPNNA4	HP Neural (4)	TRAIN	Attrition_Flag		122	1022	116	1017
HPNNA4	HP Neural (4)	VALIDATE	Attrition Flag		54	435	54	434

2.6 Model Interpretation

Before delving into the evaluation and interpretation of the models created for each of the model group separately, it is important to understand the meaning of the performance metrics in the context of this study, which is the prediction of customer churn for the credit card services domain. In the said domain, the Precision metric measures the accuracy of correctly predicted churn cases against all predicted churns. Recall or also known as sensitivity on the other hand, examines the model's ability to capture all actual churns, underscoring the model's efficacy in identifying churn cases. The metric of specificity emphasizes on accurately capturing non-churned customers. Lastly, the F1 score acts to mediate the precision and recall metrics, thereby making it an important metric for when there is an imbalanced class, just like the case of this study.

Given the above, the more severe error in the case of this study would be the false negatives or Type II error where the model has failed to predict churn. This failure is critical because it represents a forgone opportunity for engagement to retain the customers, possibly resulting in the explicit loss of revenue and the continuing values that the customer could have contributed to the bank. That said, while false positive is undesirable as well, it is the lesser evil because it involves wrongfully predicting that customers will churn when in fact they would not, essentially leading to wasted resources on retention efforts. While such efforts might be costly to the bank, it is however less severe as it does not undermine customer relationships like how a false negative would. In essence, the goal is to select a model that minimizes false negatives to boost customer retention and to secure the bank's revenue. Also, referring back to the *Section 1.1*, it should be noted that research indicates that acquiring new customers in the case of the banking sector is significantly much costlier than retaining existing customers, once again justifying for the severity of false negatives in this study.

2.6.1 Interpretation and Recommendations (Tree-Based Model)

From the Fit Statistics Table under the 'Summary Comparisons of Tree-Based Models' part in *Section 2.5.1*, it is evident that misclassification rate was the lowest in the Boost2 model. While there is some disparity between the misclassification rates for the training (0.019763) and validation (0.055271) dataset, the difference (roughly 3.55%) is within the acceptable threshold of 5%. Hence, it can be concluded that the Boost2 model is likely generalizing well with unseen data, and that there is no issue of overfitting present. Despite being compared to HP Tree and HP Forest which are known to be more powerful than any conventional tree-based models, the

Gradient Boosting model (Boost2) with minimal modifications (N Iterations (150), and Maximum Branch (4)) was able to outperform its high-performance counterparts. The Subseries Plot for the Boost2 model demonstrates that misclassification rate achieved its lowest at 149th iteration. In the ROC curve diagram shown below (*Figure 3*), it is apparent that the Gradient Boosting (2) (Boost2) model, as depicted by the brown line, is closest to the top left corner of the square for the validation dataset. The AUC for the Boost2 model is also the largest among all the other tree-based models.

From the Event Classification Table under the 'Summary Comparisons of Tree-Based Models' part in Section 2.5.1 and remembering that the objective is to minimize false negatives, the Boost2 model in the validation set is the model that has the lowest number of false negatives (27), implying that the model is the best at identifying true churn cases among the other competing models. In other words, the Boost2 model was found to have the highest Recall value among the rest. At the same time, the Boost2 model has also shown an equal number of false positive (27), suggesting that a good balance is maintained between sensitivity and precision. In terms of the variable importance, which is one of the objectives of this study, insights can be drawn form the Variable Importance statistics generated in Section 2.5.1 of the Gradient Boosting (2) model. The top 5 factors with high variable worth are namely, LOG_Total_Trans_Amt, Total_Trans_Ct, Total Revolving Bal, LOG_Total_Ct_Chng_Q4_Q1, and LOG_Total_Amt_Chng_Q4_Q1. As these factors are ranked highest in both Training Importance and Validation Importance, it is proposed that these factors are indeed indicative of the churn of credit card customers in the banking sector.

Given the identified factors, several recommendations are formulated to mitigate customer attrition and they are as follows:

- 1. The bank could enhance customer engagement by introducing personalized offerings and rewards that are based on the customer's transaction amounts and counts to incentivize them to further increase their transaction amount and the number of transactions that they will make, ultimately reducing their potential of churning.
- 2. The bank could equip customers with better tools such as frequent balance alerts in order to help them better manage their total revolving balance. At the same time, banks could incentivize their customers with lower interest rates on their revolving balances with the aim of fostering responsible credit usage, all of which could help to reduce customer attrition for the banks.

- 3. Banks could also keep a close eye on any drastic changes in their customers' transaction behaviours as denoted by LOG_Total_Ct_Chng_Q4_Q1 and LOG_Total_Amt_Chgn_Q4_Q1 so that proactive measures and support could be introduced promptly as and when drastic changes are detected, once again minimizing the risk of customer churns.
- 4. Besides that, banks could also strengthen customer relationships by providing benefits for longer tenure or more frequent interactions, as indicated by Total_Relationship_Count and Months_Inactive_12_mon, to encourage continued business with the bank.
- 5. Lastly, for accounts with lower card utilization ratio, banks could introduce programs that encourage the use of available credit without promoting unmanageable debt, yet at the same time, improving customer loyalty and perceived value of the banks' services.

Figure 3: ROC Curve of Tree-Based Models

2.6.2 Interpretation and Recommendations (Neural Network Model)

When making comparisons between the neural network models created and based on the Fit Statistics Table under the under the 'Summary Comparisons of Neural Network Models' in Section 2.5.2, findings are that the Neural Network model has had the lowest misclassification rate (0.09519) among the rest of the models, for its validation dataset. Differences between the model's misclassification rates for the validation (0.09519) and training dataset (0.08959) were also not significantly different from one another, hence implying that the model does generalize well with unseen data and that there is no issue of overfitting. This finding shed light on the adequacy of a conventional neural network in managing the given classification task effectively, demonstrating that, for this particular dataset, the introduction of more complex hyperparameter-optimized neural networks does not translate into substantial performance gains. Referring to the Event Classification Table under the similar sections previously mentioned, conclusions on the best model are found to be consistent with the above findings. While the above evaluation looks at the misclassification rates, the Event Classification Table calls for focus to be placed on the number of false negatives contained within the model. At the same time, consideration has to be given to the number of false positives as well to ensure that a balance is stroked as targeting too many customers senselessly with retention efforts would mean wasted resources, and hence is undesirable.

Following the expectations set on the false positives and negatives of the analysis, comparisons between the neural network models created indicates that the "Neural Network" model is indeed the best model as it has the lowest number of false negatives (48) and an almost equal number of false positive (45) in its validation dataset. The worst model however will be the HP Neural (3) model where false negative was the highest (61) and the false negative had the largest disparity between the false positive (44). Nonetheless, it is important to recognize that the HP Neural (3) model's performance, while not optimal, still holds up reasonably well when evaluated against the other contenders. In the ROC curve diagram shown below (*Figure 4*), it is apparent that consistent with the claims above, the Neural Network model, as depicted by the blue line, is closest to the top left corner of the square for the validation dataset. The AUC for that model is also the largest among all the other competing models.

Figure 4: ROC Curve of Neural Network Models

Before proceeding with the interpretation of the best neural network identified (Neural Network), it is important to address the black box issue of neural networks. Neural networks are considered as black boxes because they exhibit the characteristics of having hidden layers which makes understanding and interpreting their decision-making process complicated and challenging. Hence, to aid in the interpretation of these complex models, a surrogate model ("Description Tree") was introduced into the data pipeline of this study. The surrogate model's insights into variable importance are intriguing, as there is consensus between the tree-based and neural network models on the significance of four variables (LOG_Total_Trans_Amt, Total_Trans_Ct, Total_Revolving_Bal, and LOG_Total_Ct_Chng_Q4_Q1). However, a divergence arises in their respective fifth-ranked variable - the Gradient Boosting (2) model prioritizes LOG_Total_Amt_Chng_Q4_Q1 (Section 2.5.1), whereas the Neural Network model highlights Total_Relationship_Count as a top-five factor (Figure 5). Hence, this variation suggests that while this study can confidently focus on the four agreed-upon variables for immediate strategies to address customer churn, the fifth variable identified by each model—LOG_Total_Amt_Chng_Q4_Q1 by the Gradient Boosting (2) model and Total_Relationship_Count by the Neural Network model, warrants further detailed analysis in future investigations to fully understand their respective contributions to the prediction model.

Variable Importance

		Number of Splitting		Validation	Ratio of Validation to Training
Variable Name	Label	Rules	Importance	Importance	Importance
Total_Trans_Ct		8	1.0000	1.0000	1.0000
Total_Revolving_Bal		2	0.5281	0.5742	1.0873
Total_Relationship_Count		3	0.3881	0.3971	1.0231
LOG_Total_Trans_Amt	Transformed Total_Trans_Amt	4	0.3873	0.4408	1.1381
LOG_Total_Ct_Chng_Q4_Q1	Transformed Total_Ct_Chng_Q4_Q1	1	0.2562	0.3066	1.1965
Months_Inactive_12_mon		1	0.1844	0.2167	1.1750

Figure 5: Variable Importance Table (Description Tree)

2.7 Summary

From the analysis conducted using both tree-based and neural network models, substantial findings have been obtained that respond directly to the aims of this study. The tree-based models, particularly the Gradient Boosting 2 (Boost2) model, have demonstrated superior performance with the lowest misclassification rates, effectively fulfilling the first objective of developing a predictive model for customer churn in the credit card domain. The Boost2 model, with its fine-tuned parameters, achieved the lowest misclassification rate and maintained a strong balance between sensitivity and precision, indicating it as the best model among its peers for generalizing well to unseen data without overfitting. In line with the second objective, the study identified critical factors influencing customer churn rates through variable importance analysis. Both model types concurred on the significance of four key variables: LOG_Total_Trans_Amt, Total_Trans_Ct, Total_Revolving_Bal, and LOG_Total_Ct_Chng_Q4_Q1. The fifth variable differed between the models, highlighting an area for subsequent analysis to elucidate its impact fully.

The insights derived from these predictive models have been translated into actionable recommendations, addressing the third objective. Banks are advised to enhance customer engagement strategies focused on transaction behaviour and revolving balances. Alerting customers to significant transaction changes and fostering stronger relationships through targeted benefits can also aid in reducing attrition. For accounts with low card utilization, the introduction of programs to encourage responsible credit use without accruing unsustainable debt could improve customer retention. However, future studies are encouraged to delve deeper into the divergent fifth variable to consolidate the understanding of its influence on customer churn. Overall, this study has successfully met its three-fold objectives, offering a robust model for churn prediction, identifying pivotal churn determinants, and furnishing bank managers with evidence-based recommendations for strategic decision-making.

References

- Fatema Akbar Mohamed, & Ali Khalifa Al-Khalifa. (2023). A review of machine learning methods for predicting churn in the telecom sector. 2023 International Conference On Cyber Management And Engineering (CyMaEn) (pp. 164-170). IEEE. https://doi.org/10.1109/cymaen57228.2023.10051108
- Goyal, S. (2021). *Credit Card customers* [Data file]. Retrieved from https://www.kaggle.com/datasets/sakshigoyal7/credit-card-customers
- Kumar, S. (2024, February 20). Customer retention versus customer acquisition. Forbes. https://www.forbes.com/sites/forbesbusinesscouncil/2022/12/12/customer-retention-versus-customer-acquisition/?sh=79763d821c7d
- Pahul Preet Singh, Fahim Islam Anik, Rahul Senapati, Sinha, A., Nazmus Sakib, & Hossain, E. (2024). Investigating customer churn in banking: A machine learning approach and visualization app for data science and management. *Data Science and Management*, 7(1), 7–16. https://doi.org/10.1016/j.dsm.2023.09.002
- Plotnikova, V., Dumas, M., & Milani, F. (2020). Adaptations of data mining methodologies:

 A systematic literature review. *PeerJ Comput Sci*, 6, e267.
 - https://doi.org/10.7717/peerj-cs.267
- Saradhi, V. V., & Palshikar, G. K. (2011) Employee churn prediction. *Expert Systems With Applications*, *38*, 19-30. https://doi.org/10.1016/j.eswa.2010.07.134
- Wu, Z., & Li, Z. (2021). Customer churn prediction for commercial banks using customer-value-weighted machine learning models. *Journal of Credit Risk*, 17(4), 15-42. DOI: 10.21314/JCR.2021.011