PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-259683

(43) Date of publication of application: 12.09.2003

(51)Int.CI.

H02P 6/18 H02P 21/00

(21)Application number : 2003-020676

(71)Applicant : GENERAL MOTORS CORP <GM>

(22) Date of filing:

29.01.2003

(72)Inventor: PATEL NITINKUMAR R

50

(30)Priority

Priority-number : 2002-085595 Priority date : 26.02.2002

Priority country: US

(54) SYSTEM AND METHOD FOR ESTIMATING POSITION OF ROTOR OF PERMANENT MAGNET MOTOR

(57) Abstract:

PROBLEM TO BE SOLVED: To determine the position of a rotor of a permanent magnet motor.

SOLUTION: A rotor position estimating device 42 of the permanent magnet motor having a stator and a rotor is provided with a circuit 58 for generating negative sequence stationary currents (NSSC) of a d-axis and a q-axis. A signal adjusting circuit 64 combines the NSSC signal with first and second feedback signals based on a rotor position estimating signal. A mechanical system simulator 70 connected to the output of the circuit 64 via a regulator 66 generates a rotor position estimating signal θ r on the basis of an instruction torque Te signal. The circuit 64 is provided with a second harmonic amplifier 74 for receiving the signal θ r to output the first

feedback signal, and an opposite saliency model 90 for receiving the signal θ r to output the second feedback signal.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-259683 (P2003-259683A)

(43)公開日 平成15年9月12日(2003.9.12)

(51) Int.Cl.⁷ H 0 2 P 6/18 21/00 識別記号

FΙ

テーマコード(参考)

H 0 2 P 6/02 5/408

371S 5H560

C 5H576

審査請求 有 請求項の数24 OL (全 7 頁)

(21)出顧番号	特顧2003-20676(P2003-20676) 平成15年1月29日(2003.1.29)	(71)出願人	590001407 ゼネラル・モーターズ・コーポレーション
	——————————————————————————————————————		ORATION CORP
(31)優先権主張番号 (32)優先日	10/085595		アメリカ合衆国ミシガン州48265-3000,
(33)優先權主張国	平成14年2月26日(2002.2.26) 米国(US)		デトロイト, ピー・オー・ボツクス 300, ルネッサンス・センター 300, メイル・ コード 482-シー23-ピー21
		(74)代理人	100089705 弁理士 社本 一夫 (外 5 名)
			最終頁に続く

(54) 【発明の名称】 永久磁石モータのロータの位置を推定するためのシステム及び方法

(57)【要約】

【課題】 永久磁石モータのロータの位置を正確に決定すること。

【解決手段】 ステータとロータを有する永久磁石モータのロータ位置推定器42は、d軸及び q軸の負シーケンス静止電流(NSSC)信号を生成する回路58を備える。信号調整回路64はNSSC信号を、ロータ位置推定信号に基づく第1及び第2のフィードバック信号と組み合わせる。レギュレータ66を介して信号調整回路64の出力に接続された機械的システム・シミュレータ70は命令トルクTe信号に基づいてロータ位置推定信号 θ rを生成する。信号調整回路64は、ロータ位置推定信号 θ rを受け取って第1のフィードバック信号を出力する第2高調波増幅器74と、ロータ位置推定信号 θ rを受け取って第2のフィードバック信号を出力する逆突極性モデル90とを備える。

10

【特許請求の範囲】

【請求項1】 ステータとロータとを備えた永久磁石モータのためのロータ位置推定器であって、

d軸及びq軸の負シーケンス静止電流(NSSC)信号を生成する感知回路と、

前記d軸及びq軸のNSSC信号を、ロータ位置推定信号に基づく第1の正フィードバック信号と組み合わせて、修正されたd軸及びq軸のNSSC信号を生成する信号調整回路と、

前記信号調整回路の出力に結合されたレギュレータと、 前記レギュレータの出力に結合されて前記ロータ位置推 定信号を生成する機械的システム・シミュレータと、を 具備するロータ位置推定器。

【請求項2】 前記信号調整回路が、前記修正されたd 軸及び q軸のNSSC信号を、ロータ位置推定信号に基 づく第2の正フィードバック信号と組み合わせる、請求 項1記載の推定器。

【請求項3】 前記機械的システム・シミュレータが要求トルク信号を受け取る、請求項1記載の推定器。

【請求項4】 前記信号調整回路が、前記 d 軸及び q 軸 20 のNSSC信号を受け取る第1の入力を有する第1の乗 算器を備える、請求項1記載の推定器。

【請求項5】 前記信号調整回路が、前記ロータ位置推定信号を受け取る入力と前記第1の正フィードバック信号を前記第1の乗算器の第2の入力へ印加する出力とを有する第2高調波増幅回路を備える、請求項1記載の推定器。

【請求項6】 前記第1の乗算器が、前記第1の正フィードバック信号と前記は軸のNSSC信号との乗算を行って前記修正されたは軸のNSSC信号を生成すると共 30 に、前記第1の正フィードバック信号と前記 q軸のNSSC信号との乗算を行って前記修正された q軸のNSSC信号を生成する、請求項1の発明記載の推定器。

【請求項7】 前記信号調整回路が、前記第1の乗算器から前記 d軸及び q軸のNSSC信号を受け取る第1の入力と前記レギュレータに結合された出力とを有する第2の乗算器を備える、請求項6記載の推定器。

【請求項8】 前記信号調整回路が逆突極性モデルを備え、該逆突極性モデルが、前記ロータ位置推定信号を受け取る入力を備えると共に、前記第2の乗算器の第2の40入力へ出力される前記第2の正フィードバック信号を生成する、請求項7記載の推定器。

【請求項9】 前記レギュレータが、比例(P)レギュレータ、比例積分(PI)レギュレータ、比例積分差分(PDI)レギュレータ及び制限PIレギュレータからなる群から選択される、請求項1記載の推定器。

【請求項10】 ステータとロータとを備えた永久磁石 モータのためのロータ位置を推定する方法であって d軸 及び q軸の負シーケンス静止電流 (NSSC) 信号を生 成するステップと、 ロータ位置推定信号に基づく第1の正フィードバック信号を用いて前記 d軸及び q軸のNSSC信号の信号処理を行うステップと、

信号処理を行う前記ステップからの出力を受け取って前 記ロータ位置推定信号を生成する機械的システム・シミ ュレータを用いるステップと、を備える方法。

【請求項11】 信号処理を行う前記ステップからの出力を調整し、調整された信号を生成してから、前記機械的システム・シミュレータを用いるステップを更に備える、請求項10記載の方法。

【請求項12】 信号処理を行う前記ステップからの出力を、ロータ位置推定信号に基づく第2の正フィードバック信号と組み合わせてから、調整する前記ステップを行う、請求項11記載の方法。

【請求項13】 前記機械的システム・シミュレータが トルク要求信号を受け取る第2入力を備える、請求項1 2記載の方法。

【請求項14】 信号処理を行う前記ステップが、前記 d軸及び q軸のNSSC信号と第2高調波増幅器から出力される前記第1の正フィードバック信号とを乗算して、修正された d軸及び q軸のNSSC信号を生成するステップを備える、請求項13記載の方法。

【請求項15】 前記第2高調波増幅器が、前記ロータ 位置推定信号を受け取る入力を備える、請求項14記載 の方法。

【請求項16】 前記修正された d軸及び q軸のNSS C信号と前記第2の正フィードバック信号とを乗算するステップを更に備える、請求項15記載の方法。

【請求項17】 前記第2の正フィードバック信号が逆 突極性モデルによって生成される、請求項16記載の方 法。

【請求項18】 前記逆突極性モデルが、前記ロータ位 置推定信号を受け取る入力を備える、請求項17記載の 方法

【請求項19】 ステータとロータとを備える永久磁石 モータのためのロータ位置推定器であって、

d軸及び q軸の負シーケンス静止電流 (NSSC) 信号を生成する感知回路と、

前記 d 軸及び q 軸のNSSC信号を、ロータ位置推定信号に基づく第1及び第2の正フィードバック信号と組み合わせる信号調整回路と、

前記信号調整回路の出力に結合されたレギュレータと、 前記レギュレータの出力に結合された第1の入力と要求 トルク信号を受け取る第2の入力とを備え、前記ロータ 位置推定信号を生成する機械的システム・シミュレータ と、を具備する推定器。

【請求項20】 前記信号調整回路が、前記 d軸及び q 軸のNSSC信号を受け取る第1の入力を備える第1の 乗算器を備える、請求項20記載の推定器。

50 【請求項21】 前記信号調整回路が、前記ロータ位置

10

推定信号を受け取って前記第1の正フィードバック信号 を前記第1の乗算器へ出力する第2高調波増幅回路を備 える、請求項20記載の推定器。

【請求項22】 前記第1の乗算器が、修正された d軸 及びq軸のNSSC信号を出力する、請求項21記載の 推定器。

【請求項23】 前記信号調整回路が、前記第1の乗算 器から前記修正されたd軸及びq軸のNSSC信号を受 け取る第1の入力を備えた第2の乗算器を備える、請求 項22記載の推定器。

【請求項24】 前記信号調整回路が、前記ロータ位置 推定信号を受け取って前記第2の正フィードバック信号 を前記第2の乗算器の第2の入力へ出力する逆突極性モ デルを備える、請求項23記載の推定器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、永久磁石モータに 関するものであり、特に、永久磁石モータのための、セ ンサ不要のロータ位置推定器に関する。

[0002]

【従来の技術】一層厳しい排出基準に起因して、電気 (EV) 車両及びハイブリッド (HEV) 車両に対する 興味が増大している。EV車両及びHEV車両は、内燃 (IC)エンジンを搭載した車両と競合するよう、高度 に効率的で信頼性が高く且つ安全な動力伝達装置を必要 とする。効率的なモータドライブや、ロータ位置を導出 するセンサを使用わない技術のような進歩した制御方法 を使用すると、電気的動力伝達装置の重量及びコストを 低減し、EV車両及びHEV車両の動作効率を改善する ことができる。

【0003】内部永久磁石(interior per manent magnet; IPM) モータドライブ は、ロータ位置に対するステータ漏洩インダクタンスの 変動に関係する自然の突極性を有する。突極性に基づく 感知システムは、ロータの位置をロータ位置トランスジ ューサ、ホール効果センサ、又はその他の物理的センサ を用いることなく導出する。換言すると、モータは電磁 レゾルバとして動作する。電力変換器は搬送波周波数電 圧をモータのステータ巻線に印加する。ステータ巻線は ロータ位置と共に変化する高周波電流を生成する。電流 40 の変動は電流センサによって感知される。

【0004】ここで図1を参照すると、ステータ電流信 号の負シーケンス成分(negative seque nce component; NSC) が10で指示さ れている。ステータ電流信号のNSC10は、図1に1 2で指示されるロータ位置信号を生成するよう処理され る。NSCの電流変動は基本ステータ電流(例えば30 0アンペア)に比較して相対的に小さい振幅(例えば3 アンペア)を有する。ステータ電流の過渡状態は、近負

nce) 搬送波信号周波数を含む、全周波数スペクトル にわたる高調波を作る。ステータ電流のNSCの高速フ ーリエ変換(FFT)14は高調波の内容を示す。この 高調波は負シーケンス搬送波信号電流の正確な測定を妨 害する。換言すると、センサを備えない従来のロータ位 置推定器は、ロータ位置の不正確な推定を一時的に生成 する傾向を有する。近負シーケンス搬送波信号周波数は 所望の突極性空間情報を含むので、ロータの位置を正確 に決定することは困難又は不可能である。

【0005】前述のとおり、ステータ電流のNSCは基 本ステータ電流に比べて極めて小さい。小さな振幅の電 流を、ずっと大きな電流レベルに対して調整されたセン サを用いて正確に測定することは極めて困難である。ス テータ・コイルに大きな振幅の電流を注入すると、精度 が向上する可能性がある。小さな電流使用限度の電流セ ンサを用いても精度を向上させることができる。これら のオプションは駆動の応用分野に対しては実行できな い。大電流をステータ・コイルに注入すると、駆動系統 の損失が増大する。定格電流に比較して小さな電流使用 20 限度の電流センサを用いると、駆動系統のトルク生成能 力を制限することになる。

[0006]

【発明が解決しようとする課題】本発明は、上記の課題 を解決するために提案された。

[0007]

【課題を解決するための手段】本発明に係るロータ位置 推定器は、ステータとロータとを有する永久磁石のため のロータ位置を推定する。感知回路はd軸及びq軸の負 シーケンス静止電流 (negative sequen 30 ce stationary current; NSS C)信号を生成する。信号調整回路はd軸及びq軸のN SSC信号を、ロータ位置推定信号に基づく第1の正フ ィードバック信号と結合させて、修正されたd軸及びg 軸のNSSC信号を生成する。レギュレータは信号調整 回路の出力に結合される。機械的システム・シミュレー タはレギュレータの出力に結合されてロータ位置推定信 号を生成する。

【0008】本発明の他の特徴においては、信号調整回 路は修正されたd軸及びa軸のNSSC信号を、ロータ 位置推定信号に基づく第2の正フィードバック信号と組 み合わせる。機械的システム・シミュレータは要求トル ク信号を受け取る。

【0009】別の特徴においては、信号調整回路は、d 軸及びa軸のNSSC信号を受け取る第1の入力を有す る第2の乗算器を備える。信号調整回路は、ロータ位置 推定信号を受け取る入力と第1の正フィードバック信号 を第1の乗算器の第2の入力へ印加する出力とを有する 第2高調波増幅回路を備える。第1の乗算器は、第1の 正フィードバック信号とd軸のNSSC信号との乗算を シーケンス(near netative seque 50 行って、修正されたd軸のNSSC信号を生成する。ま

た、第1の乗算器は、第1の正フィードバック信号と q 軸のNSSC信号との乗算を行って、修正されたg軸N SSC信号を生成する。

【0010】更に別の特徴においては、信号調整回路 は、第1の乗算器からd軸及びq軸のNSSC信号を受 け取る第1の入力とレギュレータに結合された出力とを 有する第2乗算器を備える。信号調整回路は逆突極性モ デルを備え、該逆突極性モデルは、ロータ位置推定信号 を受け取る入力を備えると共に、第2の乗算器の第2の 入力へ出力される第2の正フィードバック信号を生成す 10 る。レギュレータは、比例(P)レギュレータ、比例積 分(PI)レギュレータ、比例積分差分(PDI)レギ ュレータ及び制限PIレギュレータからなる群から選択 されることが好ましい。

【0011】本発明の更なる適用分野は、以下に提供さ れる詳細な説明から明らかになるであろう。理解される ように、詳細な説明及び特定の例は、本発明の好ましい 実施の形態を示してはいるが、単なる例であるにすぎ ず、発明の範囲を限定するものではない。本発明は、詳 細な説明及び添付の図面から一層十分に理解されるであ 20 ろう。

[0012]

【発明の実施の形態】好適な実施の形態についての以下 の記述は本質的に単なる例示であり、発明、応用及び使 用を限定するものではない。

【0013】図2を参照すると、内部永久磁石モータ3 0のための制御システム28が図示されている。制御シ ステム28は、入力として電池電圧VBATT、命令トルク Te及びd軸及びq軸のフィードバック電流を受け取る 電流レギュレータ32を備える。命令トルクT。は、電 気車両のアクセル・ペダルの位置と関係付けられている ことが好ましい。

【0014】電流レギュレータ32は、同期―静止座標 変換回路34の入力にd軸電圧Va及びq軸電圧Vgを出 力する。また、同期一静止座標変換回路34はコントロ ーラ38から θ を受け取る。コントローラ38の入力 は、同期一静止座標変換回路34の出力及び命令トルク Teと接続されている。高周波信号注入型インバータ4 0の入力はコントローラ38の出力に接続される。電流 され、コントローラ38にフィードバックされる。制御 システム28のこれらの構成要素32、38、40の動 作については米国特許第6163127号明細書に記述 されており、同明細書は参照によって本文に援用され

【0015】図3を参照すると、本発明に係るロータ位 置推定器42はコントローラ38の一部を形成する。ロ ータ位置推定器42は電流信号ia、ibからd軸及びq 軸の負シーケンス静止電流(NSSC)信号 Ida -- cnを

報を含む。電流信号ia、ibはローパス・フィルタ50 に加えられる。ローパス・フィルタ50の出力は変換回 路52によって3相から2相へ変換される。

【0016】変換回路52の出力は基本成分フィルタ5 4に入力され、基本成分フィルタ54は、例えばノッチ ・フィルタを用いて、ロータの基本周波数を除去するよ う電流信号及びロータ位置角度信号を処理する。基本成 分フィルタ54は上記信号を静止フレーム正及び負回転 搬送波電流信号へ変換する。静止フレーム正及び負回転 搬送波電流信号及び高周波注入信号角度位置信号は正回 転搬送波電流フィルタ58に入力される。正回転搬送波 電流フィルタ58はd軸及びq軸のNSSC信号を出力

【0017】d軸及びq軸のNSSC信号は信号調整回 路64に入力される。信号調整回路64の出力はレギュ レータ66に入力される。レギュレータ66の出力及び 命令トルクTeは機械的システム・シミュレータ70に 入力される。機械的システム・シミュレータ70は、信 号調整回路64ヘフィードバックされるロータ位置推定 信号θιを生成する。

【0018】信号調整回路64は、機械的システム・シ ミュレータ70によって生成されたロータ位置推定信号 **θ**_zに基づいて第1のフィードバック信号及び第2のフ ィードバック信号を生成する。第1のフィードバック信 号は、機械的システム・シミュレータ70からのロータ 位置推定信号 の を受け取る第2高調波増幅器74によ って生成される。第2高調波増幅器74は例えば信号 I cn * e h θ を生成することによって第2高調波を増幅す る。第2高調波増幅器74の出力は、d軸及びq軸のN SSC信号を入力として受け取る第1の乗算器80に入 力される。第1の乗算器80は第2の乗算器82に対し て、修正された(又は増幅された)d軸及びg軸のNS SC信号 I sdg-cn-amp を出力する。

【0019】第2のフィードバック信号は、ロータ位置 推定信号θェを機械的システム・シミュレータ70から 受け取る逆突極性モデル90によって生成される。逆突 極性モデル90は第2のフィードバック信号を、修正さ れたd軸及びq軸のNSSC信号をも入力として受け取 る第2の乗算器84に出力する。第2の乗算器84の出 信号ia及びibはIPMモータ30の入力端子から感知 40 力はレギュレータ66に入力される。レギュレータ66 は、比例(P)レギュレータ、比例積分(PI)レギュ レータ、比例積分差分(PID)レギュレータ及び制限 PIレギュレータからなる群の中から選択されることが

【0020】使用する場合、ステータ端子電流が感知さ れ、等価の2相電流に静止フレームにおいて変換され る。変換された2相電流は基本成分及び正回転搬送波電 流成分を除去するよう処理される。この処理によって、 負基準フレームにおいて回転する負シーケンス静止電流 生成する。 d軸及び q軸のNSSC信号はロータ位置情 50 成分が生成される。負シーケンス静止電流成分はロータ

位置情報を含む。負基準フレームにおける負シーケンス 静止電流成分 I sag-cnを計算する処理は、パテル等の米 国特許第6163127号明細書に詳細に記載されてい る。

【0021】図3に示すように、機械的システム・シミ ュレータ70は、負基準フレームにおける負回転静止電 流成分 I saq-cnからロータ位置を推定するために使用さ れる。次いで、機械的システム・シミュレータ70から の推定されたロータ位置を用いて、正帰還で信号の増幅 が行われる。負基準フレームにおいて回転する電流の第 10 2高調波成分のみが増幅される。他の高調波が生成され ている過渡状態の場合には、飽和誘導された高調波 (即 ち、第2高調波)電流の振幅は、他の高調波に比較して 相対的に大きい。機械的システム・シミュレータ70は 飽和誘導された高調波信号の位相角を追跡する。他の高 調波に対して第2高調波を入力信号の主成分とすること は、当該特定の信号の追跡を維持するのを助ける。ロー 夕位置推定器の実現は、ディスクリート回路として、プ ロセッサ及びメモリによって実行されるアルゴリズムと して、アプリケーション・スペシフィック集積回路とし 20 位置推定器を示す図である。 て、又は任意の他の好適な方法で可能である。

【0022】ここで図4を参照すると、ロータ位置推定 器42を用いた70KW駆動システムの過渡特性(-1 00%から+100%までのモータ・トルク) が図示さ

れている。波形100は命令トルクTeであり、波形1 02はフィードバック・トルクである。波形104は推 定されたロータ位置であり、波形106は実際のロータ 位置である。ロータ位置推定器42は、他の従来のセン サ不使用ロータ位置推定器と比較して、信頼性の高いロ ータ位置推定信号を提供する。

【0023】当該技術分野の当業技術者が以上の記述か ら理解するように、本発明の広範な教示は種々の形態で 実現可能である。したがって、本発明を特定の例と関連 させて説明したが、本発明の真の範囲は限定されるべき ではない。他の修正が、図面、明細書及び特許請求の範 囲の研究から当業者には明らかであるからである。

【図面の簡単な説明】

【図1】ステータ電流信号のNSCとロータ位置信号と ステータ電流信号のNSCの高速フーリエ変換とを示す 図である。

【図2】永久磁石モータのための制御システムの単純化 された機能ブロック図を示す図である。

【図3】図2のコントローラの一部分を形成するロータ

【図4】図2の制御システムのための命令トルク、フィ ードバック・トルク、推定されたロータ位置及び実際の ロータ位置を示す図である。

【図1】

【図2】

【図3】

【図4】

フロントページの続き

(72)発明者 ニティンクマー・アール・パテル アメリカ合衆国カリフォルニア州90630, サイプレス,アケイシャ・サークル 8125 F ターム(参考) 5H560 AA08 BB17 DA14 DC12 EB01 RR03 TT08 XA02 XA13 5H576 AA15 BB06 CC02 DD07 EE01 GG04 HB02 JJ04 JJ26 LL14 LL22 LL41