

Guillermo Luijk overfitting.net Madrid, octubre 2018

Amiga JuggleR. OpenGL con R

- Amiga Juggler
- Motivación
- Paquetes usados
- Geometría
 - Esferas mejoradas
 - Cinemática
 - Cálculo de sombras
- Definición del universo
- Sonido
- Código
- Animaciones

Motivación

- No se usan paquetes novedosos (2004)
- Animar escenas 3D no es un punto fuerte de R
- Codificar la cinemática es ineficiente

Entonces... por qué Amiga JuggleR?

- Practicar con R
- Reto matemático
- Homenaje al Amiga

Paquetes usados

- rg1: "3D Visualization Using OpenGL"

Provides medium to high level functions for 3D interactive graphics, including functions modelled on base graphics (plot3d(), etc.) as well as functions for constructing representations of geometric objects (cube3d(), etc.). Output may be on screen using OpenGL, or to various standard 3D file formats including WebGL, PLY, OBJ, STL as well as 2D image formats, including PNG, Postscript, SVG, PGF.

Dibujar objetos 3D en perspectiva cónica (esferas, cuadrados y elipses)

tuneR: "Analysis of Music and Speech"

Analyze music and speech, extract features like MFCCs, handle wave files and their representation in various ways, read mp3, read midi, perform steps of a transcription, ... Also contains functions ported from the 'rastamat' 'Matlab' package.

Leer y guardar achivos .WAV

Geometría. Esferas mejoradas

Geometría. Cinemática tronco

Sistema ortonormal:

Sistema ortonormal:

$$\hat{\mathcal{U}} = \text{cold}.\hat{\mathcal{X}} - \text{Send}.\hat{\mathcal{Y}}$$
 send = $\frac{C}{L}$ so
 $\hat{\mathcal{Y}} = \text{Send}.\hat{\mathcal{X}} + \text{cold}.\hat{\mathcal{Y}}$ cold = $\frac{a}{L}$ so

$$\overline{P} = h \cdot \hat{y} + (L+\ell) \cdot \hat{y} + d \cdot \hat{u} =$$

$$= h \cdot \hat{y} + (L+\ell) \cdot \text{send} \cdot \hat{x} + (L+\ell) \cdot \cos d \cdot \hat{y} + d \cdot \cos d \cdot \hat{x} - d \cdot \text{send} \cdot \hat{y}$$

$$X = \frac{(L+\ell) \cdot c}{L} + \frac{d \cdot a}{L} = \frac{(L+\ell) \cdot c + d \cdot a}{L}$$

$$Y = h + \frac{(L+\ell) \cdot a}{L} - \frac{d \cdot c}{L} = h + \frac{(L+\ell) \cdot a - d \cdot c}{L}$$

Geometría. Cinemática piernas

(2/3) PIERNAS JUGGLER

$$\overline{P} = J \cdot \hat{x} + a \cdot \hat{v} + c \cdot \hat{u} = J \cdot \hat{x} - a \cdot \text{send} \cdot \hat{x} + a \cdot \cos d \cdot \hat{y} + c \cdot \cos d \cdot \hat{x} + c \cdot \text{send} \cdot \hat{y}$$

$$x = d - a \cdot send + c \cdot cold = d - \frac{ad}{H} + \frac{ch}{H} = d - \frac{ad - ch}{H}$$

$$y = a \cdot cold + c \cdot send = \frac{ah}{H} + \frac{cd}{H} = \frac{ah + cd}{H}$$

Geometría. Cinemática malabares

Geometría. Cálculo de sombras

(3/3) PROYECCIÓN SOMBRAS

$$\frac{\partial}{\partial x_{b}} = \frac{\partial}{\partial x_{b}} \left(x_{b}, y_{b}, \xi_{b}, x_{b}, y_{b}, \xi_{b} \right)$$

$$\frac{\partial}{\partial x_{b}} = \frac{\partial}{\partial x_{b}} \left(x_{b}, y_{b}, \xi_{b}, x_{b}, y_{b}, \xi_{b} \right)$$

$$\frac{\partial}{\partial x_{b}} = \frac{\partial}{\partial x_{b}} \left(x_{b}, y_{b}, \xi_{b}, y_{b}, \xi_{b}, y_{b}, \xi_{b}, \xi_{$$

$$X_{\mathcal{S}} = X_{\mathcal{b}} + \lambda_{\mathcal{S}} \cdot (X_{\mathcal{L}_{\mathcal{P}}} - X_{\mathcal{b}})$$

$$Y_{\mathcal{S}} = Y_{\mathcal{b}} + \lambda_{\mathcal{S}} \cdot (Y_{\mathcal{L}_{\mathcal{P}}} - Y_{\mathcal{b}})$$

2) Por dirección de iluminación (fuente de luz en el
$$\infty$$
)?

$$L = (x_{b_1}y_{b_1} + \lambda) + \lambda \cdot (x_{LJ}, y_{LJ}, \pm_{LJ}) \qquad x = x_b + \lambda \cdot x_{LJ}$$

$$\forall y = y_b + \lambda \cdot y_{LJ}$$

$$\forall z = \pm b + \lambda \cdot \pm_{LJ}$$

$$? \overline{P}(x_{J_1}y_{J_2}) = f(x_{LJ_1}y_{LJ_1}, \pm_{LJ_1}x_{b_1}y_{b_1} \pm_b)$$

$$\exists z = 0 \text{ } f(x_{J_1}y_{J_2}) = f(x_{LJ_1}y_{LJ_1}, \pm_{LJ_1}x_{b_1}y_{b_1} \pm_b)$$

$$\exists z = 0 \text{ } f(x_{J_1}y_{J_2}) = f(x_{LJ_1}y_{LJ_1}, \pm_{LJ_1}x_{b_1}y_{b_1} \pm_b)$$

$$\exists z = 0 \text{ } f(x_{J_1}y_{J_2}) = f(x_{LJ_1}y_{LJ_1}, \pm_{LJ_1}x_{b_1}y_{b_1} \pm_b)$$

$$\exists z = 0 \text{ } f(x_{J_1}y_{J_2}) = f(x_{LJ_1}y_{LJ_1}, \pm_{LJ_1}x_{b_1}y_{b_1} \pm_b)$$

$$\exists z = 0 \text{ } f(x_{J_1}y_{J_2}) = f(x_{LJ_1}y_{LJ_1}, \pm_{LJ_1}x_{b_1}y_{b_1} \pm_b)$$

$$\exists z = 0 \text{ } f(x_{J_1}y_{J_2}) = f(x_{LJ_1}x_{b_1}x_{b_1} \pm_b)$$

?
$$R' = \frac{1}{3} (R_1 \times Ld_1 \times Ld_1 + 2Ld_1)$$

 $Sen d = \frac{R}{R'} = \frac{2Ld}{\sqrt{X_{Ld}^2 + y_{Ld}^2 + 2Ld^2}} /\!\!/ R' = R \cdot \frac{\sqrt{X_{Ld}^2 + y_{Ld}^2 + 2Ld^2}}{2Ld}$

YS = Y & + X3. YLd

Definición del universo

x, y, z: posición

radius: radio

colour: color

alpha: transparencia

ninterp: esferas a interpolar

desc: descripción

> :	jug								
	X	У	Z	radius	colour	alpha	ninterp	desc	
1	0	0	366	56	red2	1.0	5	pecho	
2	0	0	263	45	red2	1.0	0	pelvis	
3	0	0	431	16	cornsilk3	1.0	0	cuello	
4	0	0	480	41	cornsilk3	1.0	0	cabeza	
5	-5	0	485	40	sienna4	1.0	0	kipa	
6	30	-18	485	13	mediumblue	1.0	0	ojo der.	
7	30	18	485	13	mediumblue	1.0	0	ojo izq.	
8	0	-55	400	15	cornsilk3	1.0	6	hombro der.	
9	0	-100	274	15	cornsilk3	1.0	9	codo der.	
10	120	-120	234	7	cornsilk3	1.0	0	mano der.	
11	0	55	400	15	cornsilk3	1.0	6	hombro izq.	
12	0	100	274	15	cornsilk3	1.0	9	codo izq.	
13	120	120	234	7	cornsilk3	1.0	0	mano izq.	
14	0	-42	228	15	cornsilk3	1.0	6	cadera der.	
15	72	-42	126	15	cornsilk3	1.0	7	rodilla der.	
16	30	-42	8	8	cornsilk3	1.0	0	pie der.	
17	0	42	228	15	cornsilk3	1.0	6	cadera izq.	
18	42	42	110	15	cornsilk3	1.0	7	rodilla izq.	
19	-30	42	8	8	cornsilk3	1.0	0	pie izq.	
20	130	0	600	48	blue	0.4	0	bola sup.	
21	130	-110	289	48	blue	0.4	0	bola der.	
22	130	110	289	48	blue	0.4	0	bola izq.	

Sonido

Código

Animación. Clásica

Amiga JuggleR. OpenGL con R – overfitting.net – Madrid, octubre 2018

Amiga JuggleR. OpenGL con R – overfitting.net – Madrid, octubre 2018

Animación. Anaglifo

Amiga JuggleR. OpenGL con R – overfitting.net – Madrid, octubre 2018

gracias

overfitting.net