Introducción a los espacios de Hilbert

Prueba Objetiva Calificable

Ejercicio 1

Sean \mathcal{H} un espacio prehilbertiano real y $x, y \in \mathcal{H}$ tales que $x, y \neq 0$. Se tiene que ||x + y|| = ||x|| + ||y|| si y sólo si :

- a) existe un número real a > 0 tal que x = ay.
- b) $x \in y$ son linealmente dependientes.
- c) Ninguna de las otras dos opciones.

Ejercicio 2

En el espacio de sucesiones reales

$$\ell^2 := \left\{ \mathbf{x} = \{x_n\}_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}} \text{ tal que } \sum_{n=1}^{\infty} x_n^2 < \infty \right\}$$

se considera el producto interno definido mediante

$$\langle x, y \rangle = \sum_{n=1}^{\infty} \frac{x_n y_n}{n}$$

y la norma $\|\cdot\|$ inducida por dicho producto interno. Consideramos las sucesiones $\{\mathbf{x}^m\}_{m=1}^{\infty}$ y $\{\mathbf{u}^m\}_{m=1}^{\infty} \subset \ell^2$ definidas mediante

$$\mathbf{x}^m = \{\overbrace{1, \dots, 1}^{m \text{ terminos}}, 0, \dots\} \ \mathbf{y} \ \mathbf{u}^m = \{1, \sqrt{2}/2, \dots, \sqrt{m}/m, 0, \dots\}.$$

Se tiene:

- a) Ambas sucesiones, $\{\mathbf{x}^m\}_{m=1}^\infty$ y $\{\mathbf{u}^m\}_{m=1}^\infty$, no son de Cauchy en $(\ell^2,\|\cdot\|)$.
- b) Ambas sucesiones, $\{\mathbf{x}^m\}_{m=1}^{\infty}$ y $\{\mathbf{u}^m\}_{m=1}^{\infty}$, no son convergentes en $(\ell^2, \|\cdot\|)$.
- c) $\ (\ell^2,\|\cdot\|)$ es un espacio completo.

Ejercicio 3

Dada la función $g(t) = 5t^3$, definida para $t \in [-1, 1]$, su proyección ortogonal sobre el subespacio F de $L^2[-1, 1]$, $F = \text{span}\{1, t, t^2\}$, es la función $f \in L^2[-1, 1]$ dada por:

- a) f(t) = 3t.
- b) $f(t) = 3t^2$.
- c) Ninguna de las otras dos opciones.

Ejercicio 4

Partiendo de que la función $f(t) = t^2$ para $t \in [-\pi, \pi)$, extendida con período 2π a todo \mathbb{R} , admite el desarrollo en serie de Fourier,

$$f = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nt$$
 en $L^2[-\pi, \pi]$,

la serie de Fourier de la función $g(t) = t^3 - \pi^2 t$ en $[-\pi, \pi)$ es:

- a) $\pi^3 + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cos nt$.
- b) $12 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \operatorname{sen} nt$.

c) Ninguna de las otras dos opciones.

Ejercicio 5

Sean $\mathcal H$ un espacio de Hilbert de dimensión infinita y $T\colon \mathcal H\to\mathbb C,\, T\neq 0$, una forma lineal acotada. Necesariamente se tiene:

- a) $\dim(\ker(T)) = 1$.
- b) $\dim((\ker(T))^{\perp}) = 1.$
- c) Ninguna de las otras dos opciones.

Ejercicio 1

La opción correcta es la a).

La opción b) no es correcta. Si tomamos los vectores de norma 1, x e y = -x, resulta que ||x + y|| = ||0|| = 0 y sin embargo ||x|| + ||-x|| = 2.

Demostremos la opción a). Observemos en primer lugar que

$$||x + y|| = ||x|| + ||y|| \iff ||x + y||^2 = (||x|| + ||y||)^2$$

 $\iff \langle x, y \rangle = ||x|| ||y||.$

Si $\langle x,y\rangle=\|x\|\|y\|$, en particular se da la igualdad en la desigualdad de Cauchy-Schwarz y por tanto, véase el ejercicio 2.11, se deduce que x e y son linealmente dependientes, es decir existe $a\in\mathbb{R}$ tal que $x=\lambda y$. Como $x,y\neq 0$ resulta que $a\neq 0$. Por otro lado, de $\langle x,y\rangle=\|x\|\|y\|$ se deduce que $\langle x,y\rangle>0$. Por tanto, $a\|y\|^2>0$. En consecuencia, a>0.

Recíprocamente, si existe a > 0 tal que x = ay entonces $\langle x, y \rangle = a \|y\|^2 = \|x\| \|y\|$.

Ejercicio 2

La sucesión $\{\mathbf x^m\}_{m=1}^\infty$ no es de Cauchy pues si $m\geq n$

$$\|\mathbf{x}^m - \mathbf{x}^n\|^2 = \sum_{k=n+1}^m \frac{1}{k}$$

y teniendo en cuenta que la serie de números reales $\sum_k \frac{1}{k}$ es divergente, y por tanto no es una serie de Cauchy, se obtiene que la sucesión $\{\mathbf{x}^m\}_{m=1}^{\infty}$ tampoco es de Cauchy.

Sin embargo, la sucesión $\{\mathbf{u}^m\}_{m=1}^{\infty}$ sí es de Cauchy pues si $m \geq n$

$$\|\mathbf{u}^m - \mathbf{u}^n\|^2 = \sum_{k=n+1}^m \frac{1}{k^2}$$

y teniendo en cuenta que la serie de números reales $\sum_k \frac{1}{k^2}$ es convergente, y por tanto es una serie de Cauchy, se obtiene que la sucesión $\{\mathbf{u}^m\}_{m=1}^{\infty}$ es de Cauchy.

La sucesión $\{\mathbf{x}^m\}_{m=1}^{\infty}$ no es convergente pues no es de Cauchy.

Veamos que la sucesión $\{\mathbf{u}^m\}_{m=1}^{\infty}$ no es convergente en $(\ell^2, \|\cdot\|)$. Si fuera convergente a $\mathbf{u} = \{u_k\}_{k=1}^{\infty} \in \ell^2$ tendríamos que

$$\|\mathbf{u} - \mathbf{u}^n\|^2 = \left(\sum_{k=1}^n \frac{1}{k} \left(u_k - \frac{\sqrt{k}}{k}\right)^2 + \sum_{k=n+1}^\infty \frac{u_k^2}{k}\right) \stackrel{n \to \infty}{\longrightarrow} 0$$

y por tanto $u_k = \frac{\sqrt{k}}{k}$ para todo $k \in \mathbb{N}$. Ahora bien, $\left\{\frac{\sqrt{k}}{k}\right\}_{k=1}^{\infty} \notin \ell^2$.

En consecuencia, $(\ell^2, \|\cdot\|)$ no es un espacio completo pues $\{\mathbf{u}^m\}_{m=1}^{\infty}$ es una sucesión de Cauchy no convergente.

Ejercicio 3

La opción correcta es la a).

Del teorema de la proyección, teorema 3.9, sabemos que la proyección ortogonal de g sobre $F = \text{span}\{1, t, t^2\}$ es la única función f de F tal que $g - f \in F^{\perp}$ que se cumple para f(t) = 3t pues

$$\begin{cases} \int_{-1}^{1} (5t^3 - 3t) dt = 0 \\ \int_{-1}^{1} (5t^3 - 3t) t dt = 0 \\ \int_{-1}^{1} (5t^3 - 3t) t^2 dt = 0 \end{cases}$$

Ejercicio 4

Procediendo como en el ejercicio 3 del capítulo 5 se deduce fácilmente que

$$\int_{-\pi}^{t} x^{2} dx = \frac{\pi^{2}}{3} x \Big|_{-\pi}^{t} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \operatorname{sen} nx \Big|_{-\pi}^{t}$$

uniformemente en el intervalo $[-\pi, \pi]$. Por tanto,

$$\frac{t^3}{3} + \frac{\pi^3}{3} = \frac{\pi^2}{3}t + \frac{\pi^3}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \operatorname{sen} nt,$$

o equivalentemente

$$t^3 - \pi^2 t = 12 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \operatorname{sen} nt$$

uniformemente en el intervalo $[-\pi,\pi]$. En consecuencia, hay convergencia en $L^2[-\pi,\pi]$ y por tanto $12\sum_{n=1}^{\infty}\frac{(-1)^n}{n^3}\operatorname{sen} nt$ es el desarrollo de Fourier de $g(t)=t^3-\pi^2t$ en $L^2[-\pi,\pi]$.

Ejercicio 5

Como $\ker(T)$ es un subespacio vectorial cerrado del espacio de Hilbert \mathcal{H} se tiene que $\mathcal{H} = \ker(T) \oplus \left(\ker(T)\right)^{\perp}$. De $T \neq 0$ se obtiene que $\ker(T) \neq \mathcal{H}$ y por tanto existe $v \in \left(\ker(T)\right)^{\perp}$ tal que $v \neq 0$. Podemos suponer además que ||v|| = 1. Para todo $x \in \mathcal{H}$ se obtiene la descomposición ortogonal

$$x = \left(x - \frac{T(x)}{T(v)}v\right) + \frac{T(x)}{T(v)}v$$

Como $x - \frac{T(x)}{T(v)}v \in \ker(T)$ y la descomposición ortogonal es única se obtiene que si $x \in (\ker(T))^{\perp}$ entonces $x = \frac{T(x)}{T(v)}v$. En consecuencia, $\dim\left(\left(\ker(T)\right)^{\perp}\right) = 1$.

Otra forma de ver que $\dim\left(\left(\ker(T)\right)^{\perp}\right)=1$ es utilizando el teorema de representación de Riesz: sabemos que existe $y\in\mathcal{H}$ tal que $T(x)=\langle x,y\rangle$ para todo $x\in\mathcal{H}$ y obviamente de $T\neq 0$ se obtiene que $y\neq 0$. De esta forma se obtiene que $\ker(T)=\{y\}^{\perp}=(\operatorname{span}\{y\})^{\perp}$. En consecuencia,

$$\left(\ker(T)\right)^{\perp} = (\operatorname{span}\{y\})^{\perp\perp} = \operatorname{span}\{y\}$$

donde la ultima igualdad se deduce del apartado 2 del teorema 3.11 puesto que span $\{y\}$ es un subespacio vectorial cerrado, y por tanto completo, del espacio de Hilbert \mathcal{H} .