Deep
learning
in
Medical Image
Analysis

Lecture 5 Semen Kiselev

Recap

Unsupervised Learning Supervised Learning

Discrete classification or clustering categorization Continuous dimensionality regression reduction

Logistic Input (features) classifier

Logistic Regression

Experiment	Code

Idea

Classifier	Precision	Recall	
A	95%	90%	
В	98%	85%	Actual Class

	Positive	Negative	
Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
	$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

Agenda

- 1. Convolution
- 2. Kernels
- 3. Convolution
- 4. Max-pooling
- 5. Flatten
- 6. CNNs
- 7. Train loop (optional)

Convolution

"In terms of deep learning, (image) convolution is an element-wise multiplication of two matrices followed by a sum"

- i. Take **two matrices** (both have the same dimensions).
- ii. **Multiply** them, element-by-element (i.e., not the dot product, simple **element-to-element** multiplication).
- iii. **Sum** the elements of the resultant Matrix.

The matrix by which the input matrix is multiplied is called **kernel** or **filter**.

Convolution to 2D matrix

Applying convolution **to** a gray-scale image (**2D matrix**)

i. Applying the filter to the matrix of size (*in_d*, *in_d*) is done using a **sliding window** approach.

7	2	3	3	8						100	3 0
4	5	3	8	4		1	0	-1		6	
3	3	2	8	4	*	1	0	-1	=		
2	8	7	2	7		1	0	-1			
5	4	4	5	4		2x0-	-5x0-	+3x1+ +3x0+ 1+2x-1			

We will denote the dimension of the output matrix by out_d . In this example: $in_d = 5$, $out_d = 3$.

Convolution hyper-parameters

- i. Filter size (f): usually is chosen to be odd in order to have a well-defined origin (center) of filter
- ii. **Stride** (s): defines the number of items (pixels), the convolution **window** is **shifted** on each step

iii. **Padding** (p): **after** applying **convolution**, the resulting matrix is shrunk **(out_d < in_d)**. The padding is used in order **to preserve the size of the input matrix**. Essentially, padding an image means **adding some number of rows on each side of an image**.

Constant padding

Fill additional rows with some constant value.

i. Zero padding with p = 1, s = 1, f = 3

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	1
0	101	98	104	102	100	
0	99	101	106	104	99	I
0	104	104	104	100	98	

Remer Matrix				
0	-1	0		
-1	5	-1		
0	-1	0		

Kernel Matrix

320			
			8000
			W 1-96
			800
		Di	

Image Matrix

$$0*0+0*-1+0*0$$
 Output Matrix $+0*-1+105*5+102*-1$ $+0*0+103*-1+99*0=320$

Convolution with horizontal and vertical strides = 1

Replicative padding

Duplicate border pixels *p* times.

i. Replicative padding with p = 1, s = 1, f = 3

Valid vs. Same convolution

- i. **Valid** convolution: **no padding** of input matrix (p=0)
- i. **Same** convolution: apply the padding of the size **enough to keep the dimensions** of the output matrix the same as the dimensions of the input matrix (p = f // 2; $in_d = out_d$)

TASK:

- 1. given $in_d = 16$, s = 1. f = 4 compute the dimensions of output matrix after application of valid convolution
- 2. given $in_d = 24$, s = 2, f = 5 compute the dimensions of output matrix after application of same convolution

Valid vs. Same convolution

- i. **Valid** convolution: **no padding** of input matrix (p=0)
- i. Same convolution: apply the padding of the size enough to keep the dimensions of the output matrix the same as the dimensions of the input matrix (p = f // 2; $in_d = out_d$)

In general you can rely on this formula to compute the output matrix dimensions. out $d = (in \ d + 2*p - f) //s + 1$

TASK:

- 1. given $in_d = 16$, s = 1. f = 3 compute the dimensions of output matrix after application of valid convolution = 14
- 2. given $in_d = 24$, s = 2, f = 5 compute the dimensions of output matrix after application of same convolution = 12

Convolution to 3D matrix

i. Applying the filter to the matrix of size (*in_d*, *in_d*, *ch*) is done using a sliding window approach using **3D filters** of shape (**f**, **f**, **ch**)

You multiply $f \times f \times ch$ values, and then add the result of all multiplications

Application of 2 different filters to the same input volume.

Convolution to 3D matrix (optional)

Kernel applications: Edge detection

Vertical

0

0

0

0

0

1	0	-1
1	0	-1
1	0	-1

-1

Horizontal

0

-1

Vertical edges

10 10 10 0

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

What is wrong with this pictures?

Why edges on the one side are better detected than on the other side?

Vertical edges

Kernel applications: Smoothing & Sharpening

1	1	1
1	1	1
1	1	1

Unweighted 3x3 smoothing kernel

0	1	0
1	4	1
0	1	0

Weighted 3x3 smoothing kernel with Gaussian blur

0	-1	0
-1	5	-1
0	-1	0

Kernel to make image sharper

-1	-1	-1
-1	9	-1
-1	-1	-1

Intensified sharper image

Gaussian Blur

Kernel applications: Feature Extractor

Kernel as a feature extractor ↓

- i. **Edges represent the boundary** of an object in an image
- ii. We can use them to **identify the objects**: face, car, street signs, etc
- iii. Thus, an **image containing edges** can be thought of **as feature map** (i.e.input values to our model)
- iv. In general: **Kernels** (or filters) and **Convolution** can **help** us **find features** in a given input.
- v. **Thus** Kernels (or filters) can be thought of as **feature detectors**.

Idea: can we learn kernels from the data instead of hand-designing them?

Kernel: learning

- i. In deep-learning, **filters are** represented by the **parameters** which we want **to optimize**.
- ii. In other words, we **learn** those **filters that** help us discover features that **improve the task** (e.g. classification).

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	W ₉

Convolution layer

ReLU is just for example, you can apply any other activation function

Pooling layer

Processes a region of size (f, f) and reduces it to a single value.

- a. **Max-pooling**: reduces to the maximum value in that region
- b. **Min-pooling**: reduces to the minimum value in that region
- c. **Average-pooling**: reduces to the mean of the values in that region

	Inp	out				
7	3	5	2		Out	put
8	7	1	6	maxpool	8	6
4	9	3	9		9	9
0	8	4	5			

- It is also parametrized by **stride**. Usually, the stride is set to be equal to the size of the polling filter
- Pooling is applied for each 2D activation map separately!

Flatten layer

Flatten volume/tensor of feature maps and use it as input to ordinal Fully Connected Neural Network

- a. Tensor of shape (64,64,8) becomes tensor of shape (32768,1)
- b. Tensor of shape (3,3,1) becomes tensor of shape (9,1)

1	1	0
4	2	1
0	2	1

۰	1		
	ı		

Convolutional Neural Networks (CNNs)

CNNs are constructed using the following layers

- i. Convolutional
- ii. Pooling
- iii. Fully connected

TASK:

Given

- 1. Input volume of shape (228, 228, **228**)
- 2. **32 filters** of size **(3,3)**

Compute the number of parameters in this Conv layer

Convolutional Neural Networks (CNNs)

CNNs are constructed using the following layers

- i. Convolutional
- ii. Pooling
- iii. Fully connected

TASK:

Given

- 1. Input volume of shape (228, 228, **228**)
- 2. **32 filters** of size **(3,3)**

Compute the number of parameters in this Conv layer = [(3 * 3 * 228) + 1] * 32 = 65696

Architectures: AlexNet

Basic conv net ever

Architectures: ResNet

Authors proposed the idea of **residual connections**, which allowed to train Ultra-deep Conv nets (hundreds of layers)

1. Residual block

34-layer residual

Architectures: Inception

Authors proposed idea of applying **several** convolution **filters of different size** in one layer, which allowed for better feature extraction

Architectures: DenseNet

Authors proposed idea of densely connected blocks,

i.e. **concatenation of results** of all previous layers inside block with current layer result.

Architectures: Unet

Based on the autoencoder concept.

Authors proposed an idea of **skip-connections**, which allowed for better reconstruction of input image features.

PyTorch: train loop (Optional)


```
for batch idx, batch data in enumerate(train loader):
     data, target = batch data["image"], batch data["target"]
     data, target = data.to(device), target.to(device)
     output = model(data)
      optimizer.zero grad()
     loss = criterion(output, target) # objective function
     loss.backward()
                                 # compute partial derivatives wrt. each parameter of the model
     optimizer.step()
                                 # update each model parameter using gradient descent
     train loss /= len(train loader)
   if isinstance(scheduler, torch.optim.lr scheduler.StepLR):
                                 # update learning rate according to some predefined algorithm
     scheduler.step()
```

Спасибо за внимание

IMOBOLIS

