

MIERNIK PARAMETRÓW SIECI NA SZYNĘ TYPU N43

INSTRUKCJA OBSŁUGI

Spis treści

1. PRZEZNACZENIE	5
2. ZESTAW MIERNIKA	6
3. WYMAGANIA PODSTAWOWE, BEZPIECZEŃSTWO	
UŻYTKOWANIA	7
4. MONTAŻ	8
5. OPIS PRZYRZĄDU	10
5.1 Wejście prądowe	10
5.2 Wejście napięciowe	10
5.3 Schematy podłączeń	11
6. PROGRAMOWANIE N43	16
6.1 Panel przedni	16
6.2 Komunikaty po wyłączeniu zasilania	18
6.3 Tryby pracy	19
6.4 Tryb pomiaru	20
6.5 Ustawienia parametrów	25
6.5.1 Ustawienia parametrów miernika	28
6.5.2 Ustawienia parametrów wyjść	30

6.5.3 Ustawienia parametrów alarmu	31
6.5.4 Tryb konfiguracji stron	38
7. UAKTUALNIENIE OPROGRAMOWANIA	43
8. INTERFEJSY SZEREGOWE	46
8.1 Interfejs RS-485 - zestawienie parametrów	46
8.2 Interfejs USB - zestawienie parametrów	47
8.3 Przykłady odczytu i zapisu rejestrów	48
8.4 Mapa rejestrów miernika N43	54
9. KODY BŁĘDÓW	76
10. AKCESORIA	77
11. DANE TECHNICZNE	78
12. KOD WYKONAŃ	86

1. ZASTOSOWANIE

Montowany na szynie miernik N43 do pomiarów bezpośrednich i pośrednich jest cyfrowym przyrządem programowalnym przeznaczonym do pomiaru parametrów sieci energetycznych trójfazowych 3 i 4- przewodowych w układach symetrycznych i niesymetrycznych. Wartości zmierzone pokazywane są na dedykowanym wyświetlaczu LCD. Miernik umożliwia sterowanie i optymalizację działania urządzeń energoelektronicznych, systemów i instalacji przemysłowych.

Zapewnia pomiar: wartości skutecznej napięcia i prądu, mocy czynnej, biernej i pozornej, energii czynnej i biernej, współczynników mocy, częstotliwości, THD oraz wielkości uśrednionych P Demand - "strażnik mocy", S Demand, I Demand /15,30 lub 60 minutowe/. Napięcia i prądy mnożone są przez zadawane przekładnie napięciowe i prądowe przekładników pomiarowych /dla podłączeń pośrednich/. Wskazania mocy i energii uwzględniają wartości zaprogramowanych przekładni. Wartość każdej z mierzonych wielkości może być przesłana do systemu nadrzędnego interfejsem RS-485. 3 wyjścia przekaźnikowe sygnalizują przekroczenia wybranych wielkości, a wyjście impulsowe może być wykorzystane do kontroli zużycia 3 – fazowej energii czynnej.

Miernik ma separację galwaniczną pomiędzy poszczególnymi blokami:

- zasilania,
- wejściem napięciowym i prądowym,
- wyjścia RS-485,
- wyjściem USB,
- wyjścia impulsowego OC,
- wyjść alarmowych.

2. ZESTAW MIERNIKA

W skład zestawu wchodza:

- miernik N43	1	szt
- instrukcja obsługi	1	szt
- karta gwarancyjna	1	szt
- płyta CD	1	szt.

WYMAGANIA PODSTAWOWE, BEZPIECZEŃSTWO UŻYTKOWANIA

W zakresie bezpieczeństwa użytkowania odpowiada wymaganiom normy PN-EN 61010-1.

Uwagi dotyczące bezpieczeństwa:

- Instalacji i podłączeń miernika powinien dokonywać wykwalifikowany personel. Należy wziąć pod uwagę wszystkie dostępne wymogi ochrony.
- Przed włączeniem miernika należy sprawdzić poprawność połączeń.
- Przed zdjęciem obudowy miernika należy wyłączyć jego zasilanie i odłączyć obwody pomiarowe.
- Zdjęcie obudowy miernika w trakcie trwania umowy gwarancyjnej powoduje jej unieważnienie.
- Miernik spełnia wymagania dotyczące kompatybilności elektromagnetycznej w środowisku przemysłowym.
- W instalacji budynku powinien być wyłącznik lub wyłącznik automatyczny, umieszczony w pobliżu urządzenia, łatwo dostępny dla operatora i odpowiednio oznakowany.

4. MONTAŻ

Miernik jest przystosowany do montażu w modułowych rozdzielnicach instalacyjnych na wsporniku szynowym 35 mm. Obudowa miernika jest wykonana z tworzywa sztucznego. Wymiary obudowy 105 x 110 x 60 mm. Na zewnątrz miernika znajdują się listwy zaciskowe, śrubowe które umożliwiają przyłączenie przewodów zewnętrznych o przekroju do 5,3 mm² /pomiary pośrednie/ i do 16 mm² /pomiary bezpośrednie/. Mierniki nie powinny być montowane na szynie w bezpośrednim kontakcie z innymi urządzeniami wydzielającymi ciepło (np. kolejnymi miernikami N43). Należy zachować minimalny odstep pomiędzy urządzeniami min 5 mm w celu umożliwienia odpromieniowania ciepła od obudów urządzeń do otoczenia. W przeciwnym razie temperatura otoczenia pracującego w bezpośrednim kontakcie z innymi urządzeniami miernika może przekroczyć temperature pracy określona w znamionowych warunkach użytkowania.

Rys.1. Gabaryty miernika

5. OPIS PRZYRZĄDU

5.1 Wejścia prądowe

Wszystkie wejścia prądowe są izolowane galwanicznie (wewnętrzne przekładniki prądowe). Miernik przystosowany jest do podłączeń bezpośrednich /do 63 A/ lub do współpracy z zewnętrznymi przekładnikami prądowymi /w wykonaniu na 1 A/5 A/. Wyświetlane wartości prądów i wielkości pochodnych automatycznie przeliczane są o wielkość wprowadzonej przekładni zewnętrznego przekładnika.

5.2 Wejścia napięciowe

Wielkości na wejściach napięciowych są automatycznie przeliczane o wielkość wprowadzonej przekładni zewnętrznego przekładnika napięciowego. Wejścia napięciowe określane są w zamówieniu jako 3 x 57.7/100 V ,3 x 230/400 V lub 3 x 290/500 V.

5.3 Schematy podłączeń

 a) Schematy podłączeń miernika w sieci trójfazowej 4 – przewodowej

Pomiar bezpośredni w sieci 4 - przewodowej

2 Pomiar pośredni z wykorzystaniem 3 przekładników prądowych lub 3 przekładników napięciowych w sieci 4 - przewodowej

Schematy podłączeń miernika w sieci trójfazowej
 3 – przewodowej

Pomiar pośredni z wykorzystaniem 2 przekładników prądowych i 2 lub 3 przekłądników napięciowych w sieci 3 - przewodowej

Rys 2. Schematy podłączeń miernika w sieci:

a) trójfazowej 4 – przewodowej,
 b) trójfazowej 3- przewodowej

6. PROGRAMOWANIE N43

6.1 Panel przedni

Rys 3. Panel przedni.

Opis panelu przedniego:

	przycisk zwiększania wartości i przesunięcia w prawo	\	eksport energii czynnej
V	przycisk zmniejszania wartości i przesunięcia w lewo	\Rightarrow	import energii czynnej
1	przycisk akceptacji ENTER	യ്യ	symbol energii / mocy biernej indukcyjnej
	gniazdo USB		symbol energii / mocy biernej pojemnościowej
f1f6	6 pól wyświetlaczy 3-cyfro- wych do odczytów i usta- wień, pola f5 i f6 mogą tworzyć 1 pole 7-cyfrowe		symbol wyjścia impulso- wego
*	jednostki wielkości wyświet- lanych	AL1 AL2 AL3	symbole załączenia alar- mów
	sygnalizacja wyświetlanej fazy	k	kilo = 10 ³
		M	Mega = 10 ⁶

6.2 Komunikaty po włączeniu zasilania

Rys 4. Komunikat po uruchomienia miernika.

Po włączeniu zasilania miernik wykonuje test wyświetlacza i wyświetla nazwę miernika N43, wykonanie oraz aktualną wersję programu i bootloadera.

gdzie: n43 – typ miernika, 5A 230V – rodzaj wykonania rEu rewizja 0.10 nr wersji programu b0.00 nr wersji bootloadera

6.4 Tryb POMIAR

W trybie **Pomiar** wyświetlane są wartości wielkości wg stron zaprogramowanych fabrycznie lub skonfigurowanych przez użytkownika w trybie Programowanie stron **PAG**.

Zmiana strony dokonuje się przez naciśnięcie przycisku Lub . Kolejność wyświetlanych stron wg tablicy utworzonej w trybie PAG.

Wejście w tryb podglądu wartości maksymalnych i minimalnych następuje gdy jednocześnie naciśniemy przycisk i vana conajmniej 3 sekundy. Kasowanie wartości maksymalnych i minimalnych odbywa się przez naciśnięcie przycisku vanaje w czasie podglądu ich wartości.

Alarmy są aktywne, jeśli zostały przydzielone. Należy zauważyć, że alarmy nie muszą być związane z wielkościami wyświetlanymi na stronie, ponieważ zmiana strony powodowałaby akcję na wyjściach dwustanowych.

Kasowanie podtrzymania sygnalizacji wystąpienia alarmów / jeżeli było ustawione w trybie Parametry alarmu Aln / dokonuje się poprzez naciśnięcie przycisków

Przy wyświetlaniu mocy lub energii biernej wyświetlany jest znacznik wskazujący charakter obciążenia indukcyjny lub pojemnościowy

Przy wyświetlaniu energii czynnej wyświetlany jest znacznik import energii czynnej blub eksport energii czynnej.

Rys 6. Formaty wyświetlanych wartości

Przekroczenie górnego lub dolnego zakresu wskazań sygnalizowane jest na wyświetlaczu górnymi poziomymi kreskami. W przypadku pomiaru wielkości uśrednionych (P Demand, S Demand, I Demand) pojedyncze pomiary wykonywane są z kwantem 1 sekundowym, jednak wizualizowane co 15 sekund. Czas uśredniania do wyboru: 15, 30 lub 60 minut. Po uruchomieniu miernika lub wykasowaniu wielkości uśrednionych, pierwsza wartość zostanie wyliczona po 15 sekundach od włączenia miernika lub wykasowania. Do czasu uzyskania wszystkich próbek wielkości uśrednionych, wartości wyliczane są z próbek już zmierzonych.

Wartość prądu w przewodzie neutralnym I(N) wyliczanego z wektorów prądów fazowych jest dostępna w rejestrze 7544 interfejsu szeregowego.

Załączenie alarmu sygnalizowane jest świeceniem napisu Aln (n= 1..3). Zakończenie trwania alarmu przy włączonym podtrzymaniu sygnalizacji alarmu, wskazywane jest przez pulsowanie napisu Aln (n= 1..3).

Wybór wielkości monitorowanej:

Tablica 1

Nr par.	Nazwa wielkości	Oznaczenie	Jednostka	Sygnalizacja	3Ph / 4W	3Ph / 3W	Dostępne pola wyświetlacza
00	Brak wielkości -wyświet- lacz wygaszony	oFF			7	7	f1,f2,f3,f4,f5,f6
01	Napięcie fazy L1	ПΙ	(k)V	L1	√	х	f1
02	Prąd w przewodzie fazo- wym L1	11	(k)A	L1	√	√	f1
03	Moc czynna fazy L1	PI	(M,k)W	L1	√	х	f1
04	Moc bierna fazy L1	91	(M,k)VAr	L1	√	х	f1
05	Moc pozorna fazy L1	5 1	(M,k)VA	L1	√	Х	f1

06	Współczynnik mocy czynnej fazy L1 (PF1=P1/S1)	PF I	PF	L1	√	х	f1
07	Współczynnik tgφ fazy L1 (tg1=Q1/P1)	£6 I	tg	L1	√	х	f1
08	THD napięcia fazy L1	EHdU I	V%	L1	√	х	f1
09	THD prądu fazy L1	EHdi I	A%	L1	√	х	f1
10	Napięcie fazy L2	U2	(k)V	L2	√	х	f2
11	Prąd w przewodzie fazo- wym L2	12	(k)A	L2	√	1	f2
12	Moc czynna fazy L2	P2	(M,k)W	L2	√	х	f2
13	Moc bierna fazy L2	92	(M,k)VAr	L2	√	Х	f2
14	Moc pozorna fazy L2	52	(M,k)VA	L2	√	Х	f2
15	Współczynnik mocy czynnej fazy L2 (PF2=P2/S2)	PF2	PF	L2	V	х	f2
16	Współczynnik tgφ fazy L2 (tg2=Q2/P2)	F65	tg	L2	√	Х	f2
17	THD napięcia fazy L2	FH9N5	V%	L2	1	Χ	f2
18	THD prądu fazy L2	FH4I 5	A%	L2	√	Х	f2
19	Napięcie fazy L3	UЗ	(k)V	L3	√	Х	f3
20	Prąd w przewodzie fazowym L3	13	(k)A	L3	√	√	f3
21	Moc czynna fazy L3	P3	(M,k)W	L3	√	Х	f3
22	Moc bierna fazy L3	93	(M,k)VAr	L3	√	Х	f3
23	Moc pozorna fazy L3	53	(M,k)VA	L3	√	Χ	f3
24	Współczynnik mocy czynnej fazy L3 (PF3=P3/S3)	PF3	PF	L3	1	Х	f3

25	Współczynnik tgφ fazy L3 (tg3=Q3/P3)	£63	tg	L3	√	Х	f3
26	THD napięcia fazy L3	FH4U3	V%	L3	√	Х	f3
27	THD prądu fazy L3	EHdl 3	A%	L3	√	Х	f3
28	Prąd trójfazowy średni *	15	(k)A	ΣL	√	√	f1,f2,f3,f4,f5
29	Moc czynna 3-fazowa	Р	(M,k)W	ΣL	√	√	f1,f2,f3,f4,f6
30	Moc bierna 3-fazowa	9	(M,k)VAr	ΣL	√	√	f1,f2,f3,f4,f6
31	Moc pozorna 3-fazowa	5	(M,k)VA	ΣL	√	1	f1,f2,f3,f4,f5
32	Współczynnik mocy czyn- nej 3-fazowej (PF=P/S)	PF	PF	ΣL	√	V	f1,f2,f3,f4
33	Współczynnik tgφ 3-fazowy średni (tg=Q/P)	Ł9	tg	ΣL	√	1	f1,f2,f3,f4
34	Częstotliwość	F	F	ΣL	√	√	f4
35	Napięcie międzyfazowe L1-L2	N 15	(k)V	L1 L2	√	√	f1
36	Napięcie międzyfazowe L2-L3	U23	(k)V	L2 L3	√	√	f2
37	Napięcie międzyfazowe L3-L1	из і	(k)V	L3 L1	√	√	f3
38	Napięcie międzyfazowe średnie *	U 123	(k)V	ΣL	√	√	f1,f2,f3,f4,f5
39	Moc czynna uśredniona (P Demand)*	Pdt	(M,k)W	ΣL DM	√	V	f4
40	Moc pozorna uśrednio- na (S Demand)*	Sdt	(M,k)VA	ΣL DM	1	√	f4
41	Prąd uśredniony (I Demand) *	l dt	(k)A	ΣL DM	1	√	f4
42	Energia czynna 3-fazo- wa pobierana	EnP	(M,k)Wh	$\stackrel{\SigmaL}{\Longrightarrow}$	1	√	f5-f6

43	Energia czynna 3-fazo- wa oddawana	EnP	(M,k)Wh	₹ <u></u>	√	V	f5-f6
44	Energia bierna 3-fazowa indukcyjna	En9	(M,k)VArh	L Nww	V	V	f5-f6
45	Energia bierna 3-fazowa pojemnościowa	En9	(M,k)VArh	되는	V	√	f5-f6
46	Energia pozorna 3-fa- zowa	En5	(M,k)VAh	ΣL	V	√	f5-f6
47	Czas – godziny, minuty, sekundy	hoUr			1	√	f5-f6

 ^{*} dostępne wartości minimalne i maksymalne na wyświetlaczu oraz w rejestrach interfejsu

6.5 Ustawienia parametrów

Rys 7. Menu setup

Wejście w tryb programowania odbywa się poprzez naciśnięcie i przytrzymanie przycisku przez około 3 sekundy. Wejście w tryb programowania chronione jest kodem dostępu. W przypadku braku kodu lub po wprowadzeniu poprawnego kodu program przechodzi w opcje programowania. Wyświetlany jest napis **SEt** (w pierwszym polu) oraz pierwsza grupa parametrów **PAr**.

W przypadku wprowadzenia błędnego kodu dostępu możliwy jest tylko podgląd parametrów bez możliwości ich zmian. Wyświetlany jest komunikat Err cod, a następnie rE Ad Par. Do konfiguracji mierników N43 można również wykorzystać bezpłatne oprogramowanie eCon dostępne na stronie www.lumel.com.pl.

PRr	SEc	con	col	Erl	ErU	dl E	540	En0	850	dEF
Parametry miernika	Kod dostępu	Rodzaj systemu - układu połączeń	Zakres wejściowy prądowy	Przekładnia prądowa	Przekładnia napięciowa	Czas uśredniania	Synchronizac -ja uśredniania z czasem rzeczywistym	Kasowanie liczników energii	Kasowanie parametrów uśrednionych	Parametr fabryczni
οUE	lon	Rdr	Erb	ьRU	£ . H	dEF				
Parametry wyjść	Ilość impulsów	Adres w sieci MODBUS	Tryb transmisji	Prędkość transmisji	Godzina, minuta	Parametry fabryczne				
AL I	8.0	8.8	RoF	Ron	8tn	REF	8.6	8.5	dEF	
: RL 3 Parametry alarmu	Wielkość na wyjściu alarmowym (tab.5 inst. obsługi)	Typ a l armu	Dolna wartość zakresu wejściowe- go	Górna wartość zakresu wejściowe- go	czasowe załączenia	Opóźnienie czasowe wyłączenia	B l okada ponownego załączenia a l armu	Podtrzyma- nie sygnalizacji wystąpienia alarmu		
P85	LSE	P0 1		₽ 12	d8F					-
Konfigura- cja stron	Podświetlenie wyświetlacza	Wielkości na kolejnych polach strony 1	•••	Wielkości na kolejnych polach strony 12	Strony fabryczne					

Rys 8. Matryca programowania

6.5.1 Ustawienia parametrów miernika

Po wejściu w procedurę **SEt** należy wybrać przyciskiem lub v tryb **Par** i nacisnąć lub v nastawia się żądane wartości. Aktywna pozycja sygnalizowana jest kursorem. Ustaloną wartość należy zaakceptować przyciskiem v . Wyjście z procedury **SEt** następuje poprzez jednoczesne naciśnięcie przycisków lub odczekaniu ok. 15 sekund.

Tablica 2

Lp.	Nazwa parametru	Oznaczenie	Zakres	Uwagi/opis	Wartość fabryczna
1	Wprowadzanie kodu dostępu	SEc	030000	0 – bez kodu	0
2	Układ połączeń	con	3PH-4 3PH-3	3PH-4 – 3faz.,4- przew. 3PH-3 – 3faz.,3- przew.	3PH-4
3	Zakres wejściowy prądowy	rn I	1A, 5A lub 63A	Zakres wejściowy:1A lub 5A (dla wykonań In 1A/5A) albo 63A (dla wyko- nania In 63A)	5 A
4	Przekładnia przekład- nika prądowego	Erl	1 10000		1

5	Przekładnia przekład- nika napięciowego	FrU	0,14000,0		1,0
6	Czas uśredniania /Demand integration time/	di E	t_15, t_30, t_60	Czas uśredniania mocy czynnej P Demand, mocy pozornej S Demand, prądu I Demand t_15, t_30, t_60	t_15
7	Synchronizacja uśredniania z zega- rem rzeczywistym	54n		on/oFF	oFF
8	Kasowanie liczników energii	E∩O	no,En P, En q, En S, En ALL	no – brak czynności, En P – kasowanie energii czynnej, En q – kasowanie energii biernej, En S – kasowanie energii pozornej, En ALL – kasowanie wszystkich energii	no
9	Kasowanie parame- trów uśrednionych	AND		YES/no	no
10	Parametry fabryczne	dEF	no, YES	przywrócenie para- metrów fabrycznych grupy Par	no

Automatyczne kasowanie energii wykonywane jest przy zmianie przekładni napieciowej lub pradowej.

Podczas akceptacji sprawdzane jest czy wartość mieści się w zakresie. W przypadku ustawienia wartości poza zakresem, miernik pozostaje w trybie edycji parametru, natomiast wartość zostaje ustawiona na wartość maksymalną (przy zbyt dużej wartości) lub na minimalną (przy zbyt małej wartości).

6.5.2 Ustawianie parametrów wyjść

W opcjach wybrać tryb **oUt** i wybór zatwierdzić przyciskiem

Tablica 3 Oznaczenie Uwagi/opis **Darametru** Wartość Nazwa 흔 liczba impulsów Ilość impulsów 1 100 20000 1000 1 00 wyjścia OC /1kWh Adres w sieci 2 1 247 Rdc. 1 **MODBUS** r8n2, r8E1, 3 Trvb transmisii 8n2 +ch r8o1, r8n1 4.8 k. 9.6 k. 4 Predkość transmisji ьяц 9.6 k 19.2 k. 38.4 k 5 Godzina, minuta 0.00.. 23.59 00 00 F H przywrócenie parametrów fabrycznych 6 Parametry fabryczne **HFF** no, yES n grupy **Par**

30

6.5.3 Ustawianie parametrów alarmu

W opcjach wybrać tryb ALn i wybór zatwierdzić przyciskiem

Tablica 4

					Tablica 4
Ę.	Nazwa parametru	Oznaczenie	Zakres	Uwagi/opis	Wartość fabryczna
1	Wielkość na wyj- ściu alarmowym	A_n	042	kod wg tab.5	AL1=U123 AL2=IS AL3=P
2	Typ alarmu	A_E	n-on, n-oFF, on,oFF, H-on, H-oFF,	rys .9	n-on
3	Dolna wartość zakresu wejścio- wego	RoF	-144,0144,0	w % wartości znamio- nowej wielkości	90,0
4	Górna wartość zakresu wejścio- wego	Ron	-144,0144,0	w % wartości znamio- nowej wielkości	110,0
5	Opóźnienie czasowe reakcji załączenia	ALn	0 3600	w sekundach	0
6	Opóźnienie czasowe reakcji wyłączenia	ALF	0 3600	w sekundach	0
7	Blokada ponow- nego załączenia alarmu	Я_Ь	0 3600	w sekundach	0

8	Podtrzymanie sygnalizacji wy- stąpienia alarmu	A_5	on, oFF	Gdy funkcja podtrzymania jest załączona, po ustąpieniu stanu alarmowego symbol alarmu nie jest wygaszany, tylko zaczyna pulsować. Sygnalizacja jest do momentu wygaszenia jej za pomocą przycisków (> 3 sek). Funkcja dotyczy tylko i wyłącznie sygnalizacji alarmu, a więc styki przekaźnika będą działały bez podtrzymania zgodnie z wybranym typem alarmu.	oFF
9	Parametry fabryczne	dEF	no, yES	Przywrócenie para- metrów fabrycznych grupy PAr	no

Wpisanie wartości Aon mniejszej niż AoF wyłącza alarm.

Rys 9. Typy alarmów: a) n-on ,b) n-oFF c) On d) OFF.

Pozostałe typy alarmu:

- H-on zawsze załączony;
- H-oFF zawsze wyłączony,

Przykład nr 1 ustawienia alarmu:

Ustawić alarm typu **n-on** dla wielkości monitorowanej P – mocy czynnej 3 – fazowej,

Wykonanie 5 A; 3 x 230/400 V. Załączenie alarmu po przekroczeniu 3800 W, wyłączenie alarmu po obniżeniu 3100 W.

Obliczamy: moc czynna znamionowa 3 - fazowa:

P = 3 x 230 V x 5 A = 3450 W

3450 W - 100 % 3450 W - 100 %

3800 W – Aon % 3100 W – AoF %

Stad: Aon = 110,0 % AoF = 90,0 %

Ustawić: Wielkość monitorowana: P; Rodzaj alarmu: n-on, Aon 110,0, AoF 90,0.

Wybór wielkości na wyjściach alarmowych:

Tablica 5

Lp / wartość w rejestrze 4014, 4022, 4030	Para- metr wy- świetla- ny	Rodzaj wielkości	Wartość do przeliczeń procentowych wartości alarmów (100 %)
00	oFF	brak wielkości /alarm wyłą- czony/	brak
01	U_1	napięcie fazy L1	Un [V] *
02	I_1	prąd w przewodzie fazowym L1	In [A] *
03	P_1	moc czynna fazy L1	Un x In x cos(0°) [W] *
04	q_1	moc bierna fazy L1	Un x In x sin(90°) [VAr] *
05	S_1	moc pozorna fazy L1	Un x In [VA] *
06	PF1	współczynnik mocy PF fazy L1	1
07	tg1	współczynnik tgφ fazy L1	1
08	THDU1	THD napięcia fazy L1	100,00%
09	THDI1	THD prądu fazy L1	100,00%

10	U_2	napięcie fazy L2	Un [V] *
11	I_2	prąd w przewodzie fazowym L2	In [A] *
12	P_2	moc czynna fazy L2	Un x In x cos(0°) [W] *
13	q_2	moc bierna fazy L2	Un x In x sin(90°) [VAr] *
14	S_2	moc pozorna fazy L2	Un x In [VA] *
15	PF2	współczynnik mocy PF fazy L2	1
16	tg2	współczynnik tgφ fazy L2	1
17	THDU2	THD napięcia fazy L2	100,00%
18	THDI2	THD prądu fazy L2	100,00%
19	U_3	napięcie fazy L3	Un [V] *
20	I_3	prąd w przewodzie fazowym L3	In [A] *
21	P_3	moc czynna fazy L3	Un x In x cos(0°) [W] *
22	q_3	moc bierna fazy L3	Un x In x sin(90°) [VAr] *
23	S_3	moc pozorna fazy L3	Un x In [VA] *
24	PF3	współczynnik mocy PF fazy L3	1
25	tg3	współczynnik tgφ fazy L3	1
26	THDU3	THD napięcia fazy L3	100,00%

27	THDI3	THD prądu fazy L3	100,00%
28	U_A	napięcie 3-fazowe średnie	Un [V] *
29	I_A	prąd trójfazowy średni	In [A] *
30	Р	moc czynna trójfazowa (P1+P2+P3)	3 x Un x In x cos(0°) [W] *
31	q	moc bierna trójfazowa (Q1+Q2+Q3)	3 x Un x In x sin(90°) [VAr] *
32	S	moc pozorna trójfazowa (S1+S2+S3)	3x Un x In [VA] *
33	PF_A	współczynnik mocy PF 3- fazowej	1
34	tg_A	współczynnik tgφ 3-fazowy	1
35	FrEq	częstotliwość	100 [Hz]
36	U12	napięcie międzyfazowe L1-L2	√3 Un [V] *
37	U23	napięcie międzyfazowe L2-L3	√3 Un [V] *
38	U31	napięcie międzyfazowe L3-L1	√3 Un [V] *
39	U123	napięcie międzyfazowe średnie	√3 Un [V] *
40	Pdt	moc czynna uśredniona (P Demand)*	3 x Un x In x cos(0°) [W] *
41	Sdt	moc pozorna uśredniona (S Demand)*	3 x Un x In [VA] *
42	ldt	prąd uśredniony (I Demand) *	In [A] *

^{*} Un, In - wartości znamionowe napięć i prądów

6.5.4 Tryb Konfiguracji stron

W mierniku można zaprogramować 1..12 stron użytkownika lub wybrać 12 stron zaprogramowanych fabrycznie. Wielkości monitorowane przedstawiono w tablicy 1.

W opcjach wybrać tryb PAG i wybór zatwierdzić przyciskiem Przyciskami wybrać numer strony do edycji i zaakceptować przyciskiem Przyciskami wybrać numer strony do edycji i zaakceptować przyciskiem Wybrać tryb config i zaakceptować przyciskiem Wybrać (mrugające ---) ustawi się na pierwszym polu f1. Przyciskami wybrać pola f1-f6. Wybór pola akceptujemy przyciskiem Wybór wielkości monitorowanej na wybranym polu dokonujemy przyciskami wybrańzamy przyciskiem Po ustawieniu na polach f1-f6 wymaganych wielkości dokonujemy akceptacji i zapamiętanie strony z wybranymi wielkościami długim (ok. 3 sek.) naciśnięciem przycisku

Rys.10 Widok wyświetlacza w trybie konfiguracji stron.

Programowanie stron

Tablica 6

Lp.	Nazwa parametru	Ozna- czenie	Zakres	Uwagi / opis	Wartość fabrycz- na
1	Podświetle- nie wyświet- lacza	ኒ G E	oFF,160, on	oFF – wyłączone, on – włączone, 160 – czas w sekundach podtrzymania podświet- lenia od naciśnięcia przycisku	on
2	Strona 1	PO I	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
3	Strona 2	P02	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
4	Strona 3	P03	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
5	Strona 4	PO4	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on

6	Strona 5	P05	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
7	Strona 6	P06	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
8	Strona 7	РОЛ	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
9	Strona 8	P08	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
10	Strona 9	P09	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
11	Strona 10	P 10	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
12	Strona 11	PII	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on
13	Strona 12	P 12	oFF, on, config	oFF– wyłączona, on – włączona, config – edycja wybranej strony	on

Nastawy fabryczne przedstawiono poniżej:

P01

UIV	U2 V	U3 V
F	9 VAr	PW

1 -

u≀≥∨	U23 V	U3 I V
U 123 V	9 VAr	PW

P03

ı I A	ı∂A	ΑEı
ı5 A	9 VAr	P W

P04

P02

PIW	P2 W	P3 W
PF	9 VAr	PW

P05

9 I VAr	₽2 VAr	<i>P</i> ∃ VAr
Ł6	9 VAr	PW

P06

5 / VA	52 VA	53 VA
5 VA	En5 H	«VAh

P07

PF I	PF2	PF3
PF	E∩P kWh	\Rightarrow

P08

£6 I	F65	£63
Ł6	EnP kW	'n ←

P09

EHdU I %	EhdU2 %	EhdU∃ %
F	En9 kVA	rh (§

P10

Ehdil%	Ehd i2 %	Ehd i∃
Pdā W	En9 kVArt	n ⊕

P11

P W	9 VAr	5 VA
5dī VA	E∩P kWh	\Rightarrow

P12

P W	9 VAr	9 VA
ıdı. A	hh	_55

Wizualizacja strony fabrycznej P02:

Rys.11 Wizualizacja strony fabrycznej P02

7. UAKTUALNIENIE OPROGRAMOWANIA

W miernikach N43 zaimplementowano funkcję umożliwiającą uaktualnienie oprogramowania z komputera PC z oprogramowaniem eCon. Bezpłatne oprogramowanie eCon oraz pliki aktualizacyjne są dostępne na stronie www.lumel.com.pl. Uaktualnienie można wykonać bezpośrednio poprzez interfejs USB lub poprzez interfejs RS485 przy użyciu konwertera RS485 na USB, np.: konwerter PD10.

Rys. 12. Widok okna programu: a) eCon, b) uaktualniania oprogramowania

Uwaga! Po uaktualnieniu oprogramowania należy ustawić nastawy fabryczne miernika, dlatego zalecane jest wstępne zachowanie parametrów miernika przed uaktualnieniem przy użyciu oprogramowania eCon.

Po uruchomieniu programu eCon należy ustawić w ustawieniach port szeregowy, prędkość, tryb i adres miernika. Następnie wybrać miernik N43 i kliknąć Konfiguruj. Aby odczytać wszystkie ustawienia należy kliknąć ikonę strzałki w dół, następnie ikonę dyskietki aby zapisać ustawienia do pliku (potrzebne do późniejszego ich przywrócenia). Po wybraniu opcji Aktualizuj firmware (w prawym górnym rogu ekranu) otworzone zostanie okno Lumel Updater (LU) - Rys. 12 b. Wcisnąć Connect. W oknie informacyjnym Messages są umieszczane informacje o przebiegu procesu aktualizacji. Przy prawidłowo otwartym porcie wyświetlony jest napis Port opened. W mierniku wejście w tryb uaktualniania wykonywane jest na dwa sposoby: zdalnie przez LU (na podstawie ustawień w eCon – adres, tryb, predkość, port COM) oraz poprzez załączenie zasilania miernika przy wciśniętym przycisku (przy wejściu w tryb bootloadera przyciskiem, uaktualnienie wykonywane jest tylko poprzez interfejs USB – prędkość 9600, RTU8N2, adres 1). Na wyświetlaczu pojawi się napis boot z wersją bootloadera, natomiast w programie LU wyświetlony

zostaje komunikat Device found oraz nazwa i wersja programu podłączonego urządzenia. Należy wcisnąć przycisk ... i wskazać plik aktualizacyjny miernika. Przy prawidłowo otwartym pliku pojawia się informacja File opened. Należy wcisnąć przycisk Send. Po zakończonym pozytywnie uaktualnieniu miernik przechodzi do normalnej pracy, natomiast w oknie informacyjnym pojawia się napis Done oraz czas trwania aktualizacji. W przypadku zakończenia aktualizacji niepowodzeniem, następna aktualizację można wykonać tylko poprzez interfejs USB. Po zamknięciu okna LU, należy przejść do grupy parametrów Przywracanie nastaw fabrycznych, zaznaczyć opcję i wcisnąć przycisk Zastosuj. Następnie należy wcisnąć ikonę folderu, aby otworzyć wcześniej zapisany plik z ustawieniami, i nacisnąć ikonę strzałki w górę aby zapisać ustawienia w mierniku. Aktualną wersję oprogramowania można również sprawdzić poprzez odczytanie komunikatów powitalnych miernika po włączeniu zasilania.

Uwaga! Wyłączenie zasilania w trakcie uaktualniania oprogramowania może skutkować trwałym uszkodzeniem miernika!

8. INTERFEJSY SZEREGOWE

8.1 INTERFEJS RS-485 – zestawienie parametrów

Zaimplementowany protokół jest zgodny ze specyfikacją PI-MBUS-300 Rev G firmy Modicon. Zestawienie parametrów łącza szeregowego miernika N43:

•	identyfikator	0xCF
•	adres miernika	1247
•	prędkość transmisji	4.8, 9.6, 19.2, 38.4 kbit/s,
•	tryb pracy	Modbus RTU,
•	iednostka informacvina	8N2. 8E1. 8O1. 8N1.

maksymalny czas odpowiedzi 600 ms.

maksymalna ilość odczytanych rejestrów w jednym zapytaniu

- 41 rejestrów – 4 bajtowych,

82 rejestrów – 2 bajtowych,

zaimplementowane funkcje 03, 04, 06, 16, 17,

- 03, 04 odczyt rejestrów,

- 06 zapis jednego rejestru,

- 16 zapis n - rejestrów,

- 17 identyfikacja urządzenia.

Ustawienia fabryczne: adres 1, prędkość 9.6 kbit/s, tryb RTU 8N2.

8.2 INTERFEJS USB – zestawienie parametrów

Interfejs USB jest dedykowany tylko do konfiguracji parametrów miernika.

•	identyfikator	0xCF

adres miernika 1

prędkość transmisji
 9.6 kbit/s,

tryb pracy Modbus RTU,

• jednostka informacyjna 8N2

maksymalny czas odpowiedzi 800 ms.

maksymalna ilość odczytanych rejestrów w jednym zapytaniu

- 41 rejestrów – 4 bajtowych,

- 82 rejestrów – 2 bajtowych,

zaimplementowane funkcje 03, 04, 06, 16, 17,

- 03, 04 odczyt rejestrów,

- 06 zapis jednego rejestru,

- 16 zapis n - rejestrów,

- 17 identyfikacja urządzenia.

8.3 Przykłady odczytu i zapisu rejestrów

Odczyt n-rejestrów (kod 03h)

Przykład 1. Odczyt 2 rejestrów 16 bitowych typu integer, zaczynając od rejestru o adresie 0FA0h (4000) - wartości rejestrów 10, 100.

Żądanie:

Adres	Funkcja	Adres r	Adres rejestru		ejestrów	Suma kontrolna CRC	
urzą- dzenia		B1	В0	B1 B0			
01	03	0F	A0	00	02	C7 3D	

Adres urzą- dzenia	unkcja	Liczba bajtów	reje	Wartość z rejestru 0FA0 (4000)		z rejestru (4001)	Suma kontrolna CRC
uzema	Ē	۵۱	B1	В0	B1 B0		CRC
01	03	04	00	0A	00 64		E4 6F

Przykład 2. Odczyt 2 rejestrów 32 bitowych typu float jako złożenie po 2 rejestry 16 bitowe, zaczynając od rejestru o adresie 1B58h (7000) - wartości rejestrów 10, 100.

Żądanie:

Adres		Adres rejestru		Liczba r	Suma	
urzą- Funkcja dzenia		B1	В0	B1	В0	kontrolna CRC
01	03	1B	58	00	04	C3 3E

Adres urządzenia	Funkcja zba bajtów		reje 1E	ość z estru 358 100)	Wartość z rejestru 1B59 (7001)		Wartość z rejestru 1B5A (7002)		Wartość z rejestru 1B5B (7003)		Suma kon- trolna
n an	ш	Liczba	В3	B2	B1	В0	В3	B2	B1	В0	CRC
01	03	08	41	20	00	00	42	C8	00	00	E4 6F

Przykład 3. Odczyt 2 rejestrów 32 bitowych typu float jako złożenie po 2 rejestry 16 bitowe, zaczynając od rejestru o adresie 1770h (6000) - wartości rejestrów 10, 100.

Żądanie:

Adres		Adres r	ejestru	Liczba r	Suma	
urzą- Funkcja dzenia		B1	В0	B1	В0	kontrolna CRC
01	03	17	70	00	04	4066

Adres rządzenia	Funkcja	zba bajtów	War z reje 177 (60	estru 70h	z rejo	tość estru 70h 00)	War z reje 177 (60	estru	War z reje 177 (60	estru	Suma kon- trolna CRC
-		Licz	B1	В0	В3	B2	B1	В0	В3	B2	0.110
01	03	08	00	00	41	20	00	00	42	C8	E4 6F

Przykład 4. Odczyt 2 rejestrów 32 bitowych typu float, zaczynając od rejestru o adresie 1D4Ch (7500) - wartości rejestrów 10, 100.

Żądanie:

Adres		Adres r	ejestru	Liczba r	Suma	
urzą- dzenia	urzą- Funkcja dzenia		В0	B1	В0	kontrolna CRC
01	03	1D	4C	00	02	03 B0

Odpowiedź:

res zenia	kcja	zba :ów	Wa	rtość z 1D4C	•	tru	Wa		z rejes (7501)		Suma kon-
Adre	Funk	Lic	В3	B2	B1	В0	В3	B2	B1	В0	trolna CRC
01	03	08	41	20	00	00	42	C8	00	00	E4 6F

Przykład 5. Zapis wartości 543 (0x021F) do rejestru 4000 (0x0FA0).

Żądanie:

ĺ	Adres urzą- dzenia		Adres r	ejestru	Liczba r	ejestrów	Suma
		Funkcja	B1	В0	B1	В0	kontrolna CRC
ĺ	01	06	0F	A0	02	1F	CA 54

Odpowiedź:

Adres urzą- dzenia		Adres r	ejestru	Liczba r	ejestrów	Suma
	Funkcja	B1	В0	B1	В0	kontrolna CRC
01	06	0F	A0	02	1F	CA 54

Zapis do n-rejestrów (kod 10h)

Przykład 6. Zapis 2 rejestrów zaczynając od rejestru o adresie 0FA3h (4003) Zapisywane wartości 20, 2000.

Żądanie:

Adres urzą- dze-	unkcja	res rej.Hi	es rej.Lo	ba rej. Hi	ba rej. Lo	ba bajtów	Ward dla 0F/ (40	rej. A3	War dla 0F (40	rej. A4	Suma kon- trolna
nia	ш	Adı	Adres	Liczb	Liczba	Licz	В1	В0	B1	В0	CRC
01	10	0F	A3	00	02	04	00	14	07	D0	BB 9A

	Adres urzą- dzenia		Adres r	ejestru	Liczba r	ejestrów	Suma
		Funkcja	B1	В0	B1	В0	kontrolna CRC
Ī	01	10	0F	A3	00	02	B2 FE

Raport identyfikujący urządzenie (kod 11h)

Przykład 7. Identyfikacja urządzenia.

Żądanie:

Adres urzą- dzenia	Funkcja	Suma kontrolna CRC
01	11	C0 2C

Adres urzą- dze- nia	Funkcja	Liczba bajtów	Identyfikator	Stan urządzenia	Pole informacyjne o wersji oprogramowania urządzenia (np. "N43-1.00 b-1.06" - urzą- dzenie N43 z oprogramowa- niem w wersji 1.00 i bootloa- derem w wersji 1.06)	Suma kontrolna CRC
01	11	19	CF	FF	4E 34 33 20 2D 31 2E 30 30 20 20 20 20 20 20 20 62 2D 31 2E 30 36 20	E0 24

8.4 Mapa rejestrów miernika N43

W mierniku N43 dane umieszczone są w rejestrach 16 i 32 bitowych. Zmienne procesowe i parametry miernika umieszczone są w przestrzeni adresowej rejestrów w sposób zależny od typu wartości zmiennej. Bity w rejestrze 16 bitowym numerowane są od najmłodszego do najstarszego(b0-b15). Rejestry 32- bitowe zawierają liczby typu float w standardzie IEEE-754. Kolejność bajtów 3210 – najstarszy jest wysyłany pierwszy.

Tablica 7

Zakres adresów	Typ wartości	Opis
4000 - 4066	Integer (16 bitów)	Wartość umieszczana w jednym rejestrze 16 bitowym. Rejestry do konfiguracji miernika. Opis rejestrów zawiera tablica 6. Rejestry do zapisu i odczytu.
4300 - 4386	Integer (16 bitów)	Wartość umieszczana w jednym rejestrze 16 bitowym. Rejestry do konfiguracji wyświetlanych stron. Opis rejestrów zawiera tablica 7. Rejestry do zapisu i odczytu.
6000 - 6129	Float (2x16 bitów)	Wartość umieszczana w dwóch kolejnych rejestrach 16 bitowych. Rejestry zawierają te same dane, co rejestry 32 bitowe z obszaru 7500 – 7564. Rejestry do odczytu. Kolejność bajtów (1-0-3-2)

7000 7129	Float (2x16 bitów)	Wartość umieszczana w dwóch kolejnych rejestrach 16 bitowych. Rejestry zawierają te same dane, co rejestry 32 bitowe z obszaru 7500 – 7564. Rejestry do odczytu. Kolejność bajtów (3-2-1-0)
7500 - 7564	Float (32 bity)	Wartość umieszczana w jednym rejestrze 32 bitowym. Opis rejestrów zawiera tablica 8. Rejestry do odczytu.

Tablica 8

Adres rejestru	Operacje	Zakres	Opis	Domyślnie
4000	RW	030000	Zabezpieczenie - hasło	0
4001	RW	0	zarezerwowane	0
4002	RW	0	zarezerwowane	0
4003	RW	0 1	Układ połączeń 0 - 3Ph/4W 1 - 3Ph/3W	0

4004	RW	0,1	Zakres wejściowy: 1A lub 5 A: 0 - 1 A, 1 - 5 A (dla wykonań In 1A/5A); 63A: 0 – 63A, 1 -63A (dla wykonań In 63A);	1
4005	RW	110000	Przekładnia przekładnika prądowego	1
4006	RW	140000	Przekładnia przekładnika napięciowego *10	10
4007	RW	02	Czas uśredniania mocy czynnej, pozornej i prądu 0 – 15, 1- 30, 2- 60 minut	0
4008	RW	0,1	Synchronizacja z zegarem rzeczywistym 0 - brak synchronizacji 1 - synchronizacja z zegarem	1
4009	RW		zarezerwowane	
4010	RW	04	Kasowanie liczników energii: 0 – bez zmian, 1- kasuj energie czynne, 2 – kasuj energie bierne, 3 – kasuj energie pozorna, 4 – kasuj wszystkie energie	0

4011	RW	0,1	Kasowanie parametrów uśred- nionych P Demand, S Demand, I Demand	0
4012	RW	0,1	Kasowanie min, max	0
4013	RW	0,1	Kasowanie podtrzymania sygnalizacji alarmu	0
4014	RW	0,142	Wyjście alarmowe 1 - wielkość na wyjściu (kod wg tablicy 5)	38
4015	RW	05	Wyjście alarmowe 1 - typ: 0 – n-on, 1– n-oFF, 2 – on, 3 – oFF, 4 – H-on, 5 – H-oFF	0
4016	RW	-144001440 [°/ _∞]	Wyjście alarmowe 1 - dolna wartość przełączenia alarmu zakresu znamionowego wejścia	900
4017	RW	-144001440 [%]	Wyjście alarmowe 1 - górna wartość przełączenia alarmu zakresu znamionowego wejścia	1100
4018	RW	3600 s	Wyjście alarmowe 1 - opóźnie- nie załączenia	0
4019	RW	3600 s	Wyjście alarmowe 1 - opóźnie- nie wyłączenia alarmu	0

4020	RW	3600 s	Wyjście alarmowe 1 - blokada ponownego załączenia	0
4021	RW	0,1	Podtrzymanie sygnalizacji alarmu 1	0
4022	RW	0,142	Wyjście alarmowe 2 - wielkość na wyjściu (kod wg tablicy 5)	28
4023	RW	05	Wyjście alarmowe 2 - typ: 0 – n-on, 1– n-oFF, 2 – on, 3 – oFF, 4 – H-on, 5 – H-oFF	0
4024	RW	-144001440 [%]	Wyjście alarmowe 2 - dolna wartość przełączenia alarmu zakresu znamionowego wejścia	900
4025	RW	-144001440 [°/ _∞]	Wyjście alarmowe 2 - górna wartość przełączenia alarmu zakresu znamionowego wejścia	1100
4026	RW	3600 s	Wyjście alarmowe 2 - opóźnie- nie załączenia	0
4027	RW	3600 s	Wyjście alarmowe 2 - opóźnie- nie wyłączenia alarmu	0
4028	RW	3600 s	Wyjście alarmowe 2- blokada ponownego załączenia	0

4029	RW	0,1	Podtrzymanie sygnalizacji alarmu 2	0
4030	RW	0,142	Wyjście alarmowe 3 - wielkość na wyjściu (kod wg tablicy 5)	29
4031	RW	05	Wyjście alarmowe 3 - typ: 0 – n-on, 1– n-oFF, 2 – on, 3 – oFF, 4 – H-on, 5 – H-oFF	0
4032	RW	-144001440[°/ ₀₀]	Wyjście alarmowe 3 - dolna wartość przełączenia alarmu zakresu znamionowego wejścia	900
4033	RW	-144001440 [%]	Wyjście alarmowe 3 - górna wartość przełączenia alarmu zakresu znamionowego wejścia	1100
4034	RW	3600 s	Wyjście alarmowe 3 - opóźnie- nie załączenia	0
4035	RW	3600 s	Wyjście alarmowe 3 - opóźnie- nie wyłączenia alarmu	0
4036	RW	3600 s	Wyjście alarmowe 3- blokada ponownego załączenia	0

4037	RW	0,1	Podtrzymanie sygnalizacji alarmu 3	0
4038	RW	10020000	llość impulsów dla wyjścia impulsowego	1000
4039	RW	1247	Adres w sieci MODBUS	1
4040	RW	03	Tryb transmisji: 0->8n2, 1->8e1, 2->8o1, 3->8n1	0
4041	RW	03	Prędkość transmisji: 0->4800, 1->9600, 2->19200, 3->38400	1
4042	RW	0,1	Uaktualnij zmianę parametrów transmisji	0
4043	RW	0,1	Zapis parametrów standardo- wych (wraz w wyzerowaniem energii oraz min, max, i mocy uśrednionej)	0
4044	RW		zarezerwowane	-
4045	RW	02359	Godzina *100 + Minuty	0
4046	RW		Zarezerwowany	-
4047	RW		Zarezerwowany	-
4048	R	0152	Energia czynna pobierana, dwa starsze bajty	0

4049	R	065535	Energia czynna pobierana, dwa młodsze bajty	0
4050	R	0152	Energia czynna oddawana, dwa starsze bajty	0
4051	R	065535	Energia czynna oddawana, dwa młodsze bajty	0
4052	R	0152	Energia bierna indukcyjna, dwa starsze bajty	0
4053	R	065535	Energia bierna indukcyjna, dwa młodsze bajty	0
4054	R	0152	Energia bierna pojemnościowa, dwa starsze bajty	0
4055	R	065535	Energia bierna pojemnościowa, dwa młodsze bajty	0
4056	R	0152	Energia pozorna , dwa starsze bajty	0
4057	R	065535	Energia pozorna , dwa młod- sze bajty	0
4058	R	065535	Rejestr statusu 1– opis poniżej	0
4059	R	065535	Rejestr statusu 2– opis poniżej	0
4060	R		Zarezerwowany	0

4061	R	065535	Numer seryjny dwa starsze bajty	-
4062	R	065535	Numer seryjny dwa młodsze bajty	-
4063	R	065535	Wersja programu (*100)	-
4064	R		Zarezerwowany	0
4065	R		Zarezerwowany	0
4066	R		Zarezerwowany	0

Energie są udostępniane w setkach watogodzin (varogodzin) w podwójnych rejestrach 16-bitowych, dlatego przy przeliczaniu wartości poszczególnych energii z rejestrów należy podzielić je przez 10 tj.:

```
Energia czynna pobierana = (wartość rej.4038 x 65536 + wartość rej. 4039) / 10 [kWh]

Energia czynna oddawana = (wartość rej.4040 x 65536 + wartość rej. 4041) / 10 [kWh]

Energia bierna indukcyjna = (wartość rej.4042 x 65536 + wartość rej. 4043) / 10 [kVarh]

Energia bierna pojemnościowa = (wartość rej.4044 x 65536 + wartość rej. 4045) / 10 [kVarh]
```

```
Rejestr statusu urządzenia (adres 4058, R):
Bit 15 – "1" – uszkodzenie pamięci nieulotnej
Bit 14 – "1" – brak kalibracji lub błędna kalibracja
```

Bit 13 – "1" – błąd wartości parametrów

Bit 12 – "1" – błąd wartości energii

Bit 11 – "1" – błąd kolejności faz

Bit 10 – "0" – zakres prądowy 1 / 5 A~

"1" – zakres prądowy 63 A~ Bit 9 Bit 8 zakres napięciowy

0	0	57,7 V~
0	1	230 V~
1	0	290 V~

1 1 zarezerwowane

Bit 7 – "1" – nie upłynął interwał uśredniania

Bit 6 – "1" – częstotliwość do wyliczania THD spoza przedziałów:

48 – 52 dla częstotliwości 50 Hz,

58 – 62 dla częstotliwości 60 Hz

Bit 5 – "1" – za niskie napięcie do pomiaru częstotliwości

Bit 4 – "1" – za niskie napięcie fazy L3

Bit 3 – "1" – za niskie napięcie fazy L2

Bit 2 – "1" – za niskie napięcie fazy L1

Bit 1 – "1" – zużyta bateria czasu RTC

Bit 0 – "1" – moc bierna 3-fazowa pojemnościowa

Rejestr Statusu 2 – alarmów (adres 4059, R):

Bity 15 ... 7 - zarezerwowane

Bit 6 – "1" – sygnalizacja wystąpienia alarmu 3

Bit 5 – "1" – sygnalizacja wystąpienia alarmu 2

Bit 4 - "1" - sygnalizacja wystąpienia alarmu 1

Bit 2 – "1" – alarm 3 załączony

Bit 1 - "1" - alarm 2 załączony

Bit 0 - "1" - alarm 1 załączony

Tablica 9

Adres rejestru	Operacje	Zakres	Opis	Do- myśl- nie
4300	RW	061	Podświetlenie wyświet- lacza: 0 – wyłączone, 1-60 – czas podświet- lenia w sekundach od naciśnięcia przycisku, 61 – zawsze włączone	61
4301	RW	0 60	Czas automatycznego przełączenia 060s 0 - wyłączone	0
4302	RW	00x0FFF	Włączenie wyświetlania stron Bit0 – strona 1, Bit1 – strona 2,	0x0FFF

4303	RW	0, 0109, 2833, 35, 38	Strona 1 wyświetlacz 1	01
4304	RW	0, 1018, 2833, 36, 38	Strona 1 wyświetlacz 2	10
4305	RW	0,1933, 37, 38	Strona 1 wyświetlacz 3	19
4306	RW	0, 2834, 3841	Strona 1 wyświetlacz 4	34
4307	RW	0, 42 45	Strona 1 wyświetlacz 5-6	0
4308	RW	0, 28, 30, 31, 38	Strona 1 wyświetlacz 5	30
4309	RW	0, 29	Strona 1 wyświetlacz 6	29
4310	RW	0, 0109, 2833, 35, 38	Strona 2 wyświetlacz 1	35
4311	RW	0, 1018, 2833, 36, 38	Strona 2 wyświetlacz 2	36
4312	RW	0,1933, 37, 38	Strona 2 wyświetlacz 3	37
4313	RW	0, 2834, 3841	Strona 2 wyświetlacz 4	38
4314	RW	0, 42 45	Strona 2 wyświetlacz 5-6	0
4315	RW	0, 28, 30, 31, 38	Strona 2 wyświetlacz 5	30
4316	RW	0, 29	Strona 2 wyświetlacz 6	29
4317	RW	0, 0109, 2833, 35, 38	Strona 3 wyświetlacz 1	02

4318	RW	0, 1018, 2833, 36, 38	Strona 3wyświetlacz 2	11
4319	RW	00,1933, 37, 38	Strona 3 wyświetlacz 3	20
4320	RW	00, 2834, 3841	Strona 3 wyświetlacz 4	28
4321	RW	0, 42 45	Strona 3 wyświetlacz 5-6	0
4322	RW	00, 28, 30, 31, 38	Strona 3 wyświetlacz 5	30
4323	RW	00, 29	Strona 3 wyświetlacz 6	29
4324	RW	00, 0109, 2833, 35, 38	Strona 4 wyświetlacz 1	03
4325	RW	00, 1018, 2833, 36, 38	Strona 4 wyświetlacz 2	12
4326	RW	00,1933, 37, 38	Strona 4 wyświetlacz 3	21
4327	RW	00, 2834, 3841	Strona 4 wyświetlacz 4	32
4328	RW	0, 42 45	Strona 4 wyświetlacz 5-6	0
4329	RW	00, 28, 30, 31, 38	Strona 4 wyświetlacz 5	30
4330	RW	00, 29	Strona 4 wyświetlacz 6	29
4331	RW	00, 0109, 2833, 35, 38	Strona 5 wyświetlacz 1	04
4332	RW	00, 1018, 2833, 36, 38	Strona 5 wyświetlacz 2	13

4333	RW	00,1933, 37, 38	Strona 5 wyświetlacz 3	22
4334	RW	00, 2834, 3841	Strona 5 wyświetlacz 4	33
4335	RW	0, 42 45	Strona 5 wyświetlacz 5-6	0
4336	RW	00, 28, 30, 31, 38	Strona 5 wyświetlacz 5	30
4337	RW	00, 29	Strona 5 wyświetlacz 6	29
4338	RW	00, 0109, 2833, 35, 38	Strona 6 wyświetlacz 1	05
4339	RW	00, 1018, 2833, 36, 38	Strona 6 wyświetlacz 2	14
4340	RW	00,1933, 37, 38	Strona 6 wyświetlacz 3	23
4341	RW	00, 2834, 3841	Strona 6 wyświetlacz 4	31
4342	RW	0, 42 45	Strona 6 wyświetlacz 5-6	46
4343	RW	00, 28, 30, 31, 38	Strona 6 wyświetlacz 5	0
4344	RW	00, 29	Strona 6 wyświetlacz 6	0
4345	RW	00, 0109, 2833, 35, 38	Strona 7 wyświetlacz 1	06
4346	RW	00, 1018, 2833, 36, 38	Strona 7 wyświetlacz 2	15
4347	RW	00,1933, 37, 38	Strona 7 wyświetlacz 3	24
4348	RW	00, 2834, 3841	Strona 7 wyświetlacz 4	32

4349	RW	0, 42 45	Strona 7 wyświetlacz 5-6	42
4350	RW	00, 28, 30, 31, 38	Strona 7 wyświetlacz 5	0
4351	RW	00, 29	Strona 7 wyświetlacz 6	0
4352	RW	00, 0109, 2833, 35, 38	Strona 8 wyświetlacz 1	07
4353	RW	00, 1018, 2833, 36, 38	Strona 8 wyświetlacz 2	16
4354	RW	00,1933, 37, 38	Strona 8 wyświetlacz 3	25
4355	RW	00, 2834, 3841	Strona 8 wyświetlacz 4	33
4356	RW	0, 42 45	Strona 8 wyświetlacz 5-6	43
4357	RW	00, 28, 30, 31, 38	Strona 8 wyświetlacz 5	0
4358	RW	00, 29	Strona 8 wyświetlacz 6	0
4359	RW	00, 0109, 2833, 35, 38	Strona 9 wyświetlacz 1	08
4360	RW	00, 1018, 2833, 36, 38	Strona 9 wyświetlacz 2	17
4361	RW	00,1933, 37, 38	Strona 9 wyświetlacz 3	26
4362	RW	00, 2834, 3841	Strona 9 wyświetlacz 4	34
4363	RW	0, 42 45	Strona 9 wyświetlacz 5-6	44
4364	RW	00, 28, 30, 31, 38	Strona 9 wyświetlacz 5	0

4365	RW	00, 29	Strona 9 wyświetlacz 6	0
4366	RW	00, 0109, 2833, 35, 38	Strona 10 wyświetlacz 1	09
4367	RW	00, 0109, 2833, 35, 38	Strona 10 wyświetlacz 2	18
4368	RW	00,1933, 37, 38	Strona 10 wyświetlacz 3	27
4369	RW	00, 2834, 3841	Strona 10 wyświetlacz 4	39
4370	RW	0, 42 45	Strona 10 wyświetlacz 5-6	45
4371	RW	00, 28, 30, 31, 38	Strona 10 wyświetlacz 5	0
4372	RW	00, 29	Strona 10 wyświetlacz 6	0
4373	RW	00, 0109, 2833, 35, 38	Strona 11 wyświetlacz 1	29
4374	RW	00, 0109, 2833, 35, 38	Strona 11 wyświetlacz 2	30
4375	RW	00,1933, 37, 38	Strona 11 wyświetlacz 3	31
4376	RW	00, 2834, 3841	Strona 11 wyświetlacz 4	40
4377	RW	0, 42 45	Strona 11 wyświetlacz 5-6	42
4378	RW	00, 28, 30, 31, 38	Strona 11 wyświetlacz 5	0
4379	RW	00, 29	Strona 11 wyświetlacz 6	0

4380	RW	00, 0109, 2833, 35, 38	Strona 12 wyświetlacz 1	29
4381	RW	00, 0109, 2833, 35, 38	Strona 12 wyświetlacz 2	30
4382	RW	00,1933, 37, 38	Strona 12 wyświetlacz 3	31
4383	RW	00, 2834, 3841	Strona 12 wyświetlacz 4	41
4384	RW	0, 42 45	Strona 12 wyświetlacz 5-6	47
4385	RW	00, 28, 30, 31, 38	Strona 12 wyświetlacz 5	0
4386	RW	00, 29	Strona 12 wyświetlacz 6	0

Tablica 10

Adres rejestrów 16 bit	Adres rejestru 32 bit	Operacje	Opis	Jednostka	3Ph/4W	3Ph/3W
6000/7000	7500	R	Napięcie fazy L1	٧	V	×
6002/7002	7501	R	Prąd fazy L1	А	1	√
6004/7004	7502	R	Moc czynna fazy L1	W	1	х

6006/7006	7503	R	Moc bierna fazy L1	VAr	√	х
6008/7008	7504	R	Moc pozorna fazy L1	VA	1	х
6010/7010	7505	R	Współczynnik mocy czynnej fazy L1 (PF1=P1/S1)	-	1	х
6012/7012	7506	R	współczynnik tgφ fazy L1 (tg1 =Q1/P1)	-	√	х
6014/7014	7507	R	THD U1	V / %	√	х
6016/7016	7508	R	THD I1	A/%	1	х
6018/7018	7509	R	Napięcie fazy L2	٧	1	х
6020/7020	7510	R	Prąd fazy L2	А	1	√
6022/7022	7511	R	Moc czynna w fazie L2	W	1	х
6024/7024	7512	R	Moc bierna fazy L2	VAr	1	х
6026/7026	7513	R	Moc pozorna fazy L2	VA	1	х
6028/7028	7514	R	Współczynnik mocy czynnej fazy L2 (PF2=P2/S2)	-	1	х
6030/7030	7515	R	współczynnik tgφ fazy L2 (tg2 =Q2/P2)	-	√	Х
6032/7032	7516	R	THD U2	V / %	1	х
6034/7034	7517	R	THD I2	A/%	1	х

6036/7036	7518	R	Napięcie fazy L3	V	√	Х
6038/7038	7519	R	Prąd fazy L3	А	1	√
6040/7040	7520	R	Moc czynna fazy L3	W	1	х
6042/7042	7521	R	Moc bierna fazy L3	VAr	1	х
6044/7044	7522	R	Moc pozorna fazy L3	VA	1	х
6046/7046	7523	R	Współczynnik mocy czynnej fazy L3 (PF3=P3/S3)	-	V	х
6048/7048	7524	R	współczynnik tgφ fazy L3 (tg3 =Q3/P3)	-	V	х
6050/7050	7525	R	THD U3	V / %	1	х
6052/7052	7526	R	THD 13	A/%	1	х
6054/7054	7527	R	Napięcie 3-fazowe średnie	٧	1	х
6056/7056	7528	R	Prąd 3-fazowy średni	Α	1	√
6058/7058	7529	R	Moc 3-fazowa czynna (P1+P2+P3)	W	√	V
6060/7060	7530	R	Moc 3-fazowa bierna (Q1+Q2+Q3)	VAr	V	V
6062/7062	7531	R	Moc 3-fazowa pozorna (S1+S2+S3)	VA	√	√

6064/7064	7532	R	współczynnik mocy czynnej 3- fazowej (PF=P/S)	-	1	√
6066/7066	7533	R	współczynnik tgφ 3-fazowy średni (tg=Q/P)	-	1	√
6068/7068	7534	R	Częstotliwość	F	V	\checkmark
6070/7070	7535	R	Napięcie międzyfazowe L ₁₋₂	V	V	√
6072/7072	7536	R	Napięcie międzyfazowe L ₂₋₃	V	V	√
6074/7074	7537	R	Napięcie międzyfazowe L ₃₋₁	V	V	√
6076/7076	7538	R	Napięcie międzyfazowe średnie	V	V	√
6078/7078	7539	R	Moc czynna uśredniona (P Demand)	W	1	√
6080/7080	7540	R	Moc pozorna uśredniona (S Demand)	VA	1	√
6082/7082	7541	R	Prąd uśredniony (I Demand)	А	1	√
6084/7084	7542	R	THD U 3-fazowe średnie	V/%	1	х
6086/7086	7543	R	THD I 3-fazowe średnie	A/%	1	х
6088/7088	7544	R	Prąd w przewodzie neutralnym (wyliczany z wektorów)	А	1	X
6090/7090	7545	R	Energia czynna pobierana 3-fazowa (ilość przepełnień rejestru 7546, zerowana po przekroczeniu 99999,9 MWh)	100 MWh	1	1

6092/7092	7546	R	Energia czynna pobierana 3 –fazowa (licznik zliczający do 99999,9 kWh)	kWh	√	√
6094/7094	7547	R	Energia czynna oddawana 3-fazowa (ilość przepełnień rejestru 7548, zerowana po przekroczeniu 99999,9 MWh)	100 MWh	1	1
6096/7096	7548	R	Energia czynna oddawana 3 –fazowa (licznik zliczający do 99999,9 kWh)	kWh	√	V
6098/7098	7549	R	Energia bierna indukcyjna 3-fazowa (ilość przepełnień rejestru 7550, zerowana po przekroczeniu 99999,9 MVArh)	100 MVArh	1	√
6100/7100	7550	R	Energia bierna indukcyjna 3–fazowa (licznik zliczający do 99999,9 kVArh)	kVArh	√	√
6102/7102	7551	R	Energia bierna pojemnościowa 3-fazowa (ilość przepełnień rejestru 7552, zerowana po przekroczeniu 99999,9 MVArh)	100 MVArh	1	1
6104/7104	7552	R	Energia bierna pojemnościowa 3 –fazowa (licznik zliczający do 99999,9 kVArh)	kVArh	√	1
6106/7106	7553	R	Energia pozorna (ilość przepełnień rejestru 7554, zerowana po przekroczeniu 99999,9 MVAh)	100 MVAh	√	1
6108/7108	7554	R	Energia pozorna (licznik zliczający do 99999,9 kVAh)	kVAh	√	V

6110/7110	7555	R	Czas – sekundy	-	1	1
6112/7112	7556	R	Czas – godziny, minuty	-	√	1
6114/7114	7557	R	Zarezerwowane	-	√	1
6116/7116	7558	R	Zarezerwowane	-	√	1
6120/7118	7559	R	Prąd 3-fazowy średni max	А	1	1
6120/7120	7560	R	Napięcie 3-fazowe fazowe/ międzyfazowe max dla układu 3PH-4 – 3faz., 4-przew max fazowe dla układu 3PH-3 – 3faz., 3-przew - max międzyfazowe	V	√	√
6122/7122	7561	R	Moc czynna uśredniona (P Demand) min	W	1	√
6124/7124	7562	R	Moc czynna uśredniona (P Demand) max	W	1	V
6126/7126	7563	R	Moc pozorna uśredniona (S Demand) max	VA	1	√
6128/7128	7564	R	Prąd uśredniony (I Demand) max	А	V	√

W przypadku przekroczenia (wartość mierzona jest poza zakresem pomiarowym) wpisywana jest wartość 1e20.

9. KODY BŁĘDÓW

Podczas pracy miernika na wyświetlaczu mogą pojawić się komunikaty o błędach. Niżej przedstawiono przyczyny błędów.

 Er1 – gdy zbyt małe jest napięcie lub prąd przy pomiarze:

```
\begin{array}{lll} - \mbox{ PFi, } tg\phi_{\mbox{\tiny I}} \mbox{THDUi,} & \mbox{poniżej } 10\% \mbox{ U}_{\mbox{\tiny n}}, \\ - \mbox{ PFi, } tg\phi_{\mbox{\tiny I}}, & \mbox{poniżej } 0.2\% \mbox{ I}_{\mbox{\tiny n}}, \\ - \mbox{ THDIi,} & \mbox{poniżej } 10\% \mbox{ I}_{\mbox{\tiny n}}, \end{array}
```

- Er2 przy pomiarze THD, gdy wartość częstotliwości jest spoza przedziału 48 – 52 Hz dla 50Hz i 58 – 62 dla 60 Hz;
- Err bat wyświetlane gdy bateria od wewnętrznego zegara RTC jest zużyta. Pomiar wykonywany jest po włączeniu zasilania i codziennie o północy. Komunikat wyłączyć można przyciskiem Wyłączony komunikat pozostanie nieaktywny do ponownego włączenia miernika;
- Err CAL, Err EE wyświetlane gdy pamięć w mierniku uległa uszkodzeniu. Miernik należy odesłać do producenta.

- Err PAr wyświetlane gdy parametry pracy w mierniku są nieprawidłowe. Należy przywrócić nastawy fabryczne (z poziomu menu lub przez RS-485). Komunikat wyłączyć można przyciskiem
- przekroczenie. Wartość mierzona jest poza zakresem pomiarowym.

10. AKCESORIA

Do mierników N43 można zamówić: KABEL USB A/miniUSB - 1m CZARNY; Kod zamówienia 1126-271-028

11. DANE TECHNICZNE

Zakresy pomiarowe i dopuszczalne błędy podstawowe

Tablica 11

Wielkość m	nierzona	Zakres pomiarowy	L1	L2	L3	Σ	Błąd podsta- wowy**
Prąd In	1 A~ 5 A~ 63 A~	0,0021,20 A lub kA* 0,010 6,00 A lub kA* 0,10 76,0A~	•	•	•		±0,5 %
Napięcie L-N	57,7 V~ 230 V~ 290 V~	2,8070,0 V lub kV* 10,0 276 V~ 14,0 348 V~	•	•	•		±0,5 %
Napięcie L-L	100 V~ 400 V~ 500 V~	5,00 120 V lub kV* 20,0 480 V~ 25,0 600 V~	•	•	•		±1 %
Częstotliwość		47,0 63,0 Hz				•	±0,5 %
Moc czynna /pobierana lub oddawana/)	0,00 999 W, kW lub MW	•	•	•	•	±1 %
Moc bierna /pojemnościow indukcyjna/	wa lub	0,00 999 VAr, kVAr lub MVAr	•	•	•	•	±1 %
Moc pozorna		0,00 999 VA, kVA lub MVA	•	•	•	•	±1 %

Energia czynna / pobierana lub oddawana /	0,0 99999,9 kWh lub MWh				•	±1 %
Energia bierna /pojemnościowa lub indukcyjna/	0,0 999999,9 kVArh lub MVArh	•	•	•	•	±1 %
Energia pozorna	0.0 999999,9 kVAh lub MVAh				•	±1 %
Współczynnik mocy czynnej PF	-1 0 1	•	•	•	•	±1 %
Tangens φ	-1,2 01,2	•	•	•	•	±1 %

^{*} Zależnie od ustawionej przekładni trU (przekładnia przekładnika napięciowego: 0,1...4000,0)

oraz trl (przekładnia przekładnika prądowego: 1...10000)

** Liczony do zakresu znamionowego In, Un

Pobór mocy:

- w obwodzie zasilania	\leq 4 VA
- w obwodzie napięciowym	\leq 0,05 VA
- w obwodzie prądowym	≤ 2,00 VA

Pole odczytowe

dedykowany wyświetlacz LCD 3.5",

Wyjścia przekaźnikowe

3 x przekaźnik, styki beznapięciowe zwierne obciążalność 0,5 A 250 V AC; 1 A 30V DC;

Interfejs szeregowy

RS485: adres 1..247
tryb: 8N2, 8E1, 8O1,8N1
prędkość: 4.8, 9.6, 19.2, 38.4 kbit/s
protokół transmisji: Modbus RTU
maksymalny czas do rozpoczęcia
odpowiedzi: 600 ms
USB: 1.1/2.0, adres 1, tryb 8N2;
prędkość 9.6 kbit/s,
protokół transmisji: Modbus RTU,
maksymalny czas do rozpoczęcia
odpowiedzi: 800 ms,
długość przewodu ≤ 3 m

Wyjście impulsowe energii

Wyjście typu OC (NPN), pasywne klasy A wg PN-EN 62053-31;

napięcie zasilania 18...27V, prąd 10...27 mA

Stała impulsów wyjścia typu OC

5000 - 20000 imp./kWh dla wykonań In=1A/5A niezależnie od ustawionych przekładni tr_U, tr_I; 100 – 1000 imp./kWh dla In=63A

Zaciski

	podłączenie bezpośrednie (63A)	podłączenie pośrednie (1/5A)
	2,5 16 mm² 4 16 mm²	0,2 5,3 mm ² 0,2 5,3 mm ²
Śruby zaciskowe	M5	M3,5
Moment dokręcenia	1,2 2,0 Nm	1,0 Nm

Stopień ochrony zapewniany przez obudowę

od strony czołowej IP 50 zacisków IP 00

Masa 0,3 kg

Wymiary 105 x 110 x 60 mm

Warunki odniesienia i znamionowe warunki użytkowania

napięcie zasilania 85..253 V a.c. (40...400) Hz

lub 90..300 V d.c.

20..40 V a.c. (40...400) Hz

lub 20..60 V d.c.

- sygnał wejściowy: 0 ... 0,002..1,2ln; 0,05...1,2Un

dla prądu, napięcia

0...0,002...1,2ln; 0...0,1...1,2Un; dla współczynników PFi ,t ϕ i częstotliwość 47...63 Hz; sinusoidalny (THD $\leq 8\%$)

- współczynnik mocy <u>-1...0...1</u>

- temperatura otoczenia -10..23..+55°C

- temperatura

magazynowania -20...+70°C

wilgotność
 0...95 % (niedopuszczalne skroplenia)

- dopuszczalny współczynnik szczytu :

natężenia prądu 2

- napięcia 2

- zewnętrzne pole magnetyczne 0...40 ...400 A/m

przeciążalność krótkotrwała

wejścia napięciowe 5 sek. 2 Un

wejścia prądowe 1 sek. 50 A

/dla wykonań

In 1A/5A /

1 sek. 630 A

/dla wykonań

In 63A /

pozycja pracy dowolnaczas nagrzewania 5 min.

Bateria zegara czasu

rzeczywistego: CR2032

Błędy dodatkowe:

w % błędu podstawowego

- dla THD > 8% < 100 %

Napięcia probiercze:

- zasilanie i wyjścia alarmowe	2,1 kV d.c
- wejścia napięciowe i prądowe	3,2 kV d.c
- wyjścia USB, RS-485 i OC	0,7 kV d.c

Normy spełniane przez miernik Kompatybilność elektromagnetyczna:

- odporność na zakłócenia wg PN-EN 61000-6-2
- emisja zakłóceń wg PN-EN 61000-6-4

Wymagania bezpieczeństwa:

według normy PN-EN 61010-1

- izolacja między obwodami: podstawowa,
- kategoria instalacji III (dla napięć powyżej 300 V kategoria II)
- stopień zanieczyszczenia 2,

- · maksymalne napięcie pracy względem ziemi:
 - dla obwodów zasilania i wyjść przekaźnikowych 300 V
 - dla wejścia pomiarowego 300 V kat III

(600 V - kat II)

- dla obwodów RS-485, USB, wyjścia impulsowego: 50 V $\,$
- wysokość npm < 2000 m.

12. KOD WYKONAŃ

Kod wykonań miernika parametrów sieci na szynę N43.

Tablica 12

N43	3 -	Х	Х	Х	XX	Х	Х
Prąd wejściowy In:							
1 A/5 A (X/1; X/5)		1					
63 A		2					
Napięcie wejściowe (fazowe/międzyfazow	e)	Un:					
3 x 57,7/100 V			1				
3 x 230/400 V			2				
3 x 290/500 V			3				
Napięcie zasilania:							
85253 V a.c., 90300 V d.c.				1			
2040 V a.c., 2060 V d.c.				2			
Wykonanie:							
standardowe					00		
specjalne*					XX		
Wersja językowa:							
Polska						Р	
Angielska						Е	
inna*						X	
Próby odbiorcze:							
bez dodatkowych wymagań							0
z dodatkowym atestem Konrtoli Jakości							1
wg uzgodnień z odbiorcą*							X

* - tylko po uzgodnieniu z producentem

Przykład zamówienia:

Kod N43 - 2 2 1 00 P 0 oznacza:

- N43 miernik parametrów sieci typu N43
- 2 prąd wejściowy: 63 A
- 2 napięcie wejściowe (fazowe/międzyfazowe) Un = 3 x 230 V/ 400 V
- 1 napięcie zasilania: 85...253 V a.c., 90...300 V d.c.
- 00 wykonanie standardowe
 - P polska wersja językowa
 - 0 bez dodatkowych wymagań.

"LUMEL" S.A.

ul. Słubicka 1, 65-127 Zielona Góra http://www.lumel.com.pl

Dział Sprzedaży Krajowej

<u>Informacja techniczna:</u> tel. 68 45 75 106, 68 45 75 180, 68 45 75 260,

68 45 75 306, 68 45 75 353 e-mail: sprzedaz@lumel.com.pl

<u>Przyjmowanie zamówień:</u>tel. 68 45 75 207, 68 45 75 209, 68 45 75 218,

68 45 75 341

fax 68 32 55 650