МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра БЖД

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ по дисциплине «Безопасность жизнедеятельности» ВАРИАНТ: 12

Студент гр. 8391	 Орещенко Н.В
Преподаватель	 Смирнова Н.В

Санкт-Петербург 2021

Фамилия И. О. Орещенко Н.В.	Номер студенческого билета
12	839113

Определите класс условий труда, если шум на рабочем месте превышает нормативные требования по эквивалентному уровню звука на 4 дБА, а освещённость составляет 60 % от нормируемой освещённости. Остальные факторы находятся в пределах установленных нормативов.

На химически опасном объекте, расположенном на некотором расстоянии от университета, произошла авария ёмкости с химически опасным веществом. Определите степень и разряд химической опасности объекта; радиус первичного очага поражения; глубину распространения облака с пороговой концентрацией; площади очага поражения и заражения по следу; ширину и высоту подъёма ядовитого облака; время, за которое опасные вещества достигнут объекта и совершат поражающее действие. Оцените возможное число жертв студентов и сотрудников университета. Исходя из характера отравляющего вещества, выберите средства индивидуальной защиты и наиболее целесообразные действия по защите людей. Исходные данные для заданий формируются в виде набора букв и чисел, соответствующих позиции и её значениям, приведённым в табл. 2 справочной информации. Вариант 3-1-1-1-1-6-2-1-1-3-3-1

Для травмированного работника заполните акт о несчастном случае на производстве по форме H-1. Вариант придумайте сами.

Оценим условия труда работника по факторам среды соответствии с документом Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда».

Условие: шум на рабочем месте превышает нормативные требования по эквивалентному уровню звука на 4 дБА.

Рассмотрим градацию условий труда при воздействии на работников шума. Для того, чтобы определить класс условий труда, воспользуемся таблицей 4 «Классы условий труда в зависимости от уровней шума, локальной, общей вибрации, инфра- и ультразвука на рабочем месте».

Таблица 4

Название фактора, показатель, единица измерения	Класс условий труда					
	Допустимый		Вредный			
	2	3.1	3.2	3.3	3.4	4
	Превыше	ние ПД	У дод	Б/раз (вк	лючител	іьно):
Шум, эквивалентный уровень звука, дБА	ПДУ	<mark>5</mark>	15	25	35	35
Вибрация локальная, эквивалентный корректированный уровень (значение) виброскорости, виброускорения (дБ/раз)	пду	3/1,4	6/2	9/2,8	12/4	12/4
Вибрация общая, эквивалентный корректированный уровень виброскорости, виброускорения (дБ/раз)	ПДУ	6/2	12/4	18/6	24/8	24/8
Инфразвук, общий уровень звукового давления, дБ/Лин	ПДУ	5	10	15	20	20
Ультразвук воздушный, уровни звукового давления в 1/3 октавных полосах частот, дБ	ПДУ	10	20	30	40	40
Ультразвук контактный, уровень виброскорости, дБ	ПДУ	5	10	15	20	20

Следовательно, класс условий труда — вредный 3.1.

Условие: освещённость составляет 60 % от нормируемой освещённости.

Оценка параметров световой среды по естественному и искусственному освещению проводится по критериям, приведенным в табл.12 (классы условий труда в зависимости от параметров световой среды).

Таблица 12

Фактор, показатель		Кла	сс условий труда	a
		допустимый	вредны	й - 3
			1 степени	2 степени
		2	3.1	3.2
1		2	3	4
	Естественное	освещение:		
Коэффициент естественной осве	ещенности	≥0,5*	0,1-0,5*	< 0,1
KEO, %				
]	Искусственное	е освещение:		
Освещенность рабочей	І-ІІІ, А, Б1	Ен**	0,5Eн≤ - <eн< td=""><td>0,5 Ен</td></eн<>	0,5 Ен
поверхности (Е, лк) для				
разрядов зрительных работ:				
	IV-XIV,	Ен**	<e<sub>H</e<sub>	
	Б2, В, Г,			
	Д, Е, Ж			
Прямая блесткость***		Отсутствие	Наличие	
Коэффициент пульсации освеще	Кпн**	>Кпн		
%)				

Класс условий труда — вредный 1 степени.

Задание №2.

Вариант 3-1-1-1-6-2-1-1-3-3-1

Наименование химически опасного вещества: Хлор

Масса: 1 т.

Условие хранения: Наземное (необвалованная емкость)

Время суток: Утро

Атмосферные условия: Ясно

Скорость ветра: 5 м/с

Температура воздуха: $0~^{\circ}\mathrm{C}$

Местность: Открытая

Условия защиты людей: Открытая местность

Обеспеченность людей противогазами: 40 %

Расстояние от места аварии до объекта: 5 километров

Расстояние от места аварии до реки: 1 километр

Решение задачи:

1. Степень и разряд химической опасности объекта.

$$M_3 = 0.8 - 50 \text{ т} - 3 \text{ степень} - \text{рассматриваемый случай.}$$

$$M_2 = 50 - 250 \text{ т} - 2 \text{ степень};$$

$$M_1 > 250$$
 т -1 степень.

2. Степень вертикальной устойчивости атмосферы (СВУА):

Скорость	Но	чь	Утро		Де	НЬ	Вечер	
ветра,	ясно,	сплошная	ясно,	сплошная	ясно,	сплошная	ясно,	сплошная
м/с	переменная	облачность	переменная	облачность	переменная	облачность	переменная	облачность
	облачность		облачность		облачность		облачность	
< 2	ИН	И3	ИЗ (ИН)	ИЗ	К (ИЗ)	И3	ИН	ИЗ
2 - 3,9	ИН	И3	ИЗ (ИН)	ИЗ	И3	ИЗ	ИЗ (ИН)	ИЗ
> 4	ИЗ	И3	И3	ИЗ	И3	ИЗ	И3	ИЗ

Рис. 1. Таблица для определения степени вертикальной устойчивости воздуха по прогнозу погоды, где ИН – инверсия; ИЗ – изотермия; К – конвекция

Исходные данные: v = 5 м/с, утро и ясно. Следовательно, можно сделать вывод, что СВУА – изотермия.

3. Разряд химической опасности объекта (PXO), исходя из объема возможных химических потерь людей, %:

$$K = \frac{M_1 A_1 Y_1}{100 \Pi Д K_1 Z_1}$$
, где:

M – масса AXOB = 1 т.;

 Π ДК — предельно допустимая концентрация в рабочей зоне = 1 мг/м3;

Z – коэффициент, учитывающий условия хранения AXOB;

A - процент AXOB в продукте = 100 %;

У — коэффициент, учитывающий расположение склада относитель-но водоема (У = 10 при L < 1,0 км; У = 3 при L = от 1 до 3 км; У = 1 при L > 3 км);

$$K = \frac{M_1 A_1 Y_1}{100 \Pi \coprod K_1 Z_1} = \frac{1 * 100 * 3}{100 * 1 * 1} = 3 \%$$

При K > 100 — особо опасное химическое предприятие 1-го разряда (потери людей более 50%);

K = 11-100 — высокоопасное химическое предприятие 2-го разряда (потери людей 20–50%);

K < 10 — опасное химическое предприятие 3-го разряда (потери людей 10—20%).

4. Определим размеры очага первичного химического поражения местности

$$R_0 = 6\sqrt{1} = 6\sqrt{1} = 6 \text{ M}$$

где M — масса AXOB, т; Очагом первичного поражения считается площадь круга (S_o) с плотностью заражения $0.01\ \text{T/M}^2$.

5. Определим глубину распространения облака с пороговой концентрацией $\Gamma_{o \delta \ o m \kappa}$, км:

$$\Gamma_{\text{об отк}} = \Gamma_{\text{т отк}} * K_{\text{B}} * K_{t},$$
где:

 Γ_T – табличное значение глубины распространения облака

К_В – поправочный коэффициент измерения скорости ветра

 K_t – коэффициент изменения температуры воздуха

 $\Gamma_{\text{об отк}} = \Gamma_{\text{об отк}} * K_{\text{B}} * K_{t} = 2.1 * 0.475 * 0.8 = 0.798 км$ Глубина распространения AXOB с пороговыми концентрациями на открытой местности ($\Gamma_{\text{T отк}}$), км (скорость ветра 1 м/с), $t = 20^{\circ}\text{C}$, емкости не обвалованы.

Hamsayanawa AVOD			Macc	a AX	OB 1	в емко	ости, т		
Наименование АХОВ	1	5	10	25	50	75	100	500	1000
Изотермия									
Хлор, фосган	2,1	5,3	8,0	14	22	28	34	80	80
Синильная кислота	3,6	9,6	15	29	42	52,5	63	80	80
Аммиак	0,4	0,9	1,3	2,1	3,2	3,8	4,6	12	26,5
Сернистый ангидрид	1,1	2,8	4,2	7	11	13	16	47	60
Сероводород	0,3	0,8	1,2	1,7	3,0	3,5	4,4	12	22
Сероуглерод	0,2	0,8	0,6	1,0	1,4	1,7	2,1	5,0	7,0
Двуокись азота	1,1	2,8	4,2	6,0	11	14	17	47	60
Хлорпикрин	3,1	8,3	13	20	35	42	56	80	80

Поправочный коэффициент Кв.

C	Скорость ветра, м/с							
Состояние атмосферы	1	2	3	4	6	7		
Инверсия	1	0,60	0,45	0,38	_	1		
Изотермия	1	0,71	0,55	0,50	0,45	0,38		
Конвекция	1	0,70	0,62	0,55	_	_		

Значение коэффициента K_t , учитывающего изменение температуры воздуха.

AXOB			Темпера	атура во	здуха, °(J	
АЛОВ	-30	-20	-10	0	10	20	30
Хлор, аммиак х Хлор, аммиак хх Фосген Окислы азота Синильная кислота Окись углерода Сернистый	0,3 0,1 0 0 0 0 1,0	0,5 0,2 0 0 0 1,0	0,7 0,4 0 0 0 1,0	0,8 0,6 0 0 0 1,0 0,6	0,9 0,8 0,3 0 0 1,0 0,8	1,0 1,0 1,0 0 0 1,0 1,0	1,1 1,2 1,4 1,0 1,0 1,0 1,2
ангидрид	0	0	0	0,0	0,0	1,0	1,2

6. Определим площадь очага поражения (S_o) , ширину облака (Ш), площадь заражения по следу (S_3) , высоту подъема облака (H_{ob}) :

$$S_0 = \pi R_0^2 = 3.14*6^2 = 113.04~\mathrm{m}^2$$
 Ш = 0.15 * $\Gamma_{\mathrm{o}6} = 0.15*0.798 = 0.1197~\mathrm{кm} = 119.7~\mathrm{m}$ $S_3 = 0.5*\Gamma_{\mathrm{o}6}*$ Ш = 0.5 * 0.798 * 1000 * 119.7 = 47760.3 m^2 $H_{\mathrm{o}6} = 0.03*\Gamma_{\mathrm{o}6} = 0.03*0.798 = 0.024~\mathrm{km} = 23.94~\mathrm{m}$

7. Определим время, за которое опасные вещества достигнут объекта и совершат поражающее действие:

Рассчитаем время подхода к объекту $t_{\text{под}}$, мин. по формуле:

$$t_{\text{под}} = \frac{L}{60V_{\text{п}}} = \frac{5000}{60 * 7.5} = 2.87$$
 мин.

где V_{Π} – скорость переноса.

Расстояние от места аварии до объекта: 5 километров

Скорость переноса переднего фронта облака зараженного воздуха в зависимости от скорости ветра.

		Удалени	не объекта о	т очага АХ(ОВ, км			
V _B , M/c	До 10 км	До 10 км > 10 км До 10 км > 10 км До 10 км > 10 км						
	Инве	рсия	Изом	етрия	Конве	кция		

1	2,0	2,2	1,5	2,0	1,5	1,8
2	4,0	4,5	3,0	4,0	3,0	3,5
3	6,0	7,0	4,5	6,0	4,5	5,0
4	_	_	6,0	8,0	_	_
5	_	_	7,5	10	_	_
8	_	_	12	16	_	_

Рассчитаем время поражения t_{nop} , мин. по формуле:

$$t_{\text{пор}} = t_{\text{исп}} * K_{\text{исп}} = 1.3 * 0.37 = 0.481 \,\text{ч.} = 28.86 \,\text{мин}$$

где $t_{\text{исп}}$ — время испарения, $K_{\text{исп}}$ — поправочный коэффициент, учитывающий время испарения AXOB при различной скорости ветра.

Время испарения АХОВ при скорости ветра 1 м/с.

	Время исп	арения tисп
Вид АХОВ	Необвалованная	Обвалованная
	емкость	емкость
Хлор, фосген	1,3	22
Сероуглерод	3,0	45
Сернистый ангидрид, аммиак,	1,2	20
сероводород		
Синильная кислота	1,3	20
Хлорпикрин	41	25 суток
Окислы азота	1,9	30

Поправочный коэффициент $K_{\text{исп}}$, учитывающий время испарения АХОВ при различной скорости ветра, приводится ниже.

Поправочный коэффициент (Кисп).

$V_{\rm B}$, M/c	1	2	3	4	5	6	7	8
Ки	1	0,7	0,55	0,43	0,37	0,32	0,28	0,25

8. Определим возможные химические потери (XII %) людей в очаге поражения:

Для определения химических потерь необходимо знать обеспеченность людей средствами индивидуальной защиты (противогазами) и условия их защиты (открытая местность, укрытия).

Возможные потери людей в очаге поражения.

Variabug payyyry	Обеспеченность противогазами (п), %								
Условия защиты	0	20	40	50	70	90	100		
Открытая местность	90–100	75	50	50	35	18	5–10		
Укрытия, здания	50	40	30	27	18	9	4		

 Π р и м е ч а н и е. 1. Структура потерь: легкая степень — 25%, средняя тяжесть — 40%, смертельные поражения — 35%. 2. При фактической оценке потерь людей необходимо учесть вид АХОВ при условии отсутствия средств защиты (табл. ниже).

Процент поражения при отсутствии средств защиты во время распространения первичного облака.

Вид АХОВ	Количество пораженных, %
Окись углерода	10–20
Хлор, аммиак, сернистый газ	20–30
Синильная кислота, фосген	30–40
Окись этилена	50–60

В таком случае фактические потери людей при обеспеченности противогазами равной 40% составит:

$$X\Pi = 50 * 0.3 = 15\%$$

9. Определим возможное число жертв:

Определение числа погибших людей при выбросе облака AXOB можно провести по формуле

$$N_{\Pi O T} = N_{cM}^{y\partial} M = 0,5 * 1 = 1$$
 чел.,

где N_{cM}^{yo} — средняя удельная смертность при воздействии делимого АХОВ, чел/т (см. ниже), М — масса выброса АХОВ, т.

Наименование вещества	N ^{уд} см, чел./т
Хлор, фосген, хлорпикрин	0,50
Сероводород	0,20
Сернистый ангидрид	0,12
Аммиак	0,05
Сероуглерод	0,02
Метилизоцианат	12,5

10. Определим средства индивидуальной защиты и наиболее целесообразные действия по защите людей:

Хлор – газ желто-зеленого цвета, с резким запахом (запах хлорной извести), в 2,5 раза тяжелее воздуха, поэтому при утечках хлор прежде всего заполняет овраги, подвалы, первые этажи зданий, стелется по полу.

При вдыхании хлор вызывает судорожный, мучительный кашель, в тяжёлых случаях происходит спазм голосовых связок и отёк лёгких. Хлор раздражающе

действует на влажную кожу, вызывая её покраснение, могут иметь место химические ожоги и обморожение. Также хлор оказывает сковывающее воздействие на центральную нервную систему.

Первыми явными признаками отравления хлором являются:

- резкая боль в груди,
- сухой кашель,
- рвота,
- резь в глазах (слезотечение),
- нарушение координации движений.

Средства защиты. В первую очередь необходимо защитить органы дыхания и поверхность тела. Лицо, нос и рот можно защитить с помощью противогазов всех типов, марлевой повязки, смоченной водой или 20% раствором соды (1 чайная ложка на стакан воды). Средством защиты кожи может послужить любая накидка.

Организационные действия по защите людей.

- 1. Покинуть район аварии в направлении, указанном в сообщении. Вне помещения выходить из зоны химического заражения следует в сторону, перпендикулярную направлению ветра. Необходимо избегать перехода через туннели, овраги и т.п., так как в низких местах концентрация хлора будет выше.
- 2. Если из опасной зоны выйти невозможно, нужно остаться в помещении и произвести его герметизацию: плотно закрыть окна, двери, вентиляционные отверстия, дымоходы, уплотните щели в окнах и на стыках рам. Входные двери зашторить, используя одеяла и любые плотные ткани. При возможности подняться на верхние этажи здания. Нельзя укрываться на первых этажах многоэтажных зданий, в подвальных и полуподвальных помещениях.
- 3. Оказавшись вне опасной зоны, нужно снять верхнюю одежду и оставить её на улице.
 - 4. Как можно быстрее принять душ, промыть глаза и носоглотку.

•	5.	Наблю	одать	за (своим	само	чувст	вием,	при	первом	появлении	признаков
отј	рав.	ления (обраті	итьс	я к вр	ачу.						