Mixed effect models to compare dynamic treatment regimens with SMART data

Brook Luers

Department of Statistics, University of Michigan luers@umich.edu

brookluers.com

ENAR March 26, 2019

Summary

Mixed models can be used to make causal comparisons of dynamic treatment regimens using longitudinal data from a SMART.

SMART: multi-stage randomized trial; enables causal comparison of dynamic treatment regimens (sequences of treatment decisions)

Outline

- Background: DTRs, SMARTs
- A mixed model for longitudinal SMARTs
 - o estimation: weighted, pseudo-likelihood
 - inverse probability weights; but they are random
 - mean estimator is robust to misspecified random effects
 - random effects prediction
- Data analysis using example SMART in autism

Background: DTRs, SMARTs

What is a dynamic treatment regimen (DTR)?

A sequence of rules for deciding how to provide treatment over time

Kasari et al. [2014]

Given current patient information, what treatment is provided next?

One treatment regimen, multiple treatment sequences

Three DTRs are embedded in this trial

Three DTRs are embedded in this trial

Three DTRs are embedded in this trial

A treatment sequence observable under two DTRs

Scientific aim: causal comparisons of DTRs

Identify the best dynamic treatment regimen using longitudinal data from a SMART.

Other scientific aims are possible

– e.g. Which first-stage treatment is best?

Statistical framework

for making causal comparisons among DTRs

 $Y_i^{(a_1,a_2)}$: vector of longitudinal potential outcomes under (a_1,a_2)

 (a_1, a_2) : fixed treatment regimen, not a random variable

Compare DTRs by estimating, for each (a_1, a_2) ,

$$\mathbb{E}\left(Y_i^{(a_1,a_2)}\mid L_i\right),\,$$

the mean outcome had the entire population followed (a_1, a_2) .

Marginal over $R_i^{(a_1)}$: "slow/early responder"

 L_i = vector of baseline covariates

Statistical framework: modeling assumptions

Focus on linear models for continuous $Y_i^{(a_1,a_2)}$

$$\mathbb{E}\left(Y_i^{(a_1,a_2)}\mid L_i\right)=X_i^{(a_1,a_2)}\beta$$

 $X_i^{(a_1,a_2)}: n_i \times p$ design matrix for the *i*th participant with n_i observation times t_{i1},\ldots,t_{in_i}

a function of t_{ij} , (a_1, a_2) , and L_i (baseline covariates)

Causal comparisons, e.g.

$$\mathbb{E}\left(Y_i^{(a_1,a_2)}\mid L_i\right) - \mathbb{E}\left(Y_i^{(b_1,b_2)}\mid L_i\right)$$

are functions of β .

A mixed model for longitudinal SMARTs

The model

$$Y_i^{(a_1,a_2)} = X_i^{(a_1,a_2)} \beta + Z_i b_i + \epsilon_i$$

 $Z_i: n_i \times q$ random effects design matrix $b_i: q$ -dimensional random effects vector $\epsilon_i \sim N(0, \sigma^2 I_{n_i})$ is independent of $b_i \sim N(0, G)$

i.e.

$$Y_i^{(a_1,a_2)} \mid L_i, b_i \sim N\left(X_i^{(a_1,a_2)}\beta + Z_ib_i, \sigma^2I_{n_i}\right)$$

$$Y_i^{(a_1,a_2)} \mid L_i \sim N\left(X_i^{(a_1,a_2)}\beta, Z_iGZ_i^{\mathsf{T}} + \sigma^2I_{n_i}\right)$$

Why mixed models?

- Familiar tool for longitudinal data analysis, not yet available for SMARTs
- Flexible parametrization of $\operatorname{Var}\left(Y_{i}^{(a_{1},a_{2})}\mid L_{i}\right)$
 - o function of covariates
 - parsimonious: # parameters does not depend on n_i
 - potential efficiency gains
- Assess subject-to-subject variation
 - subject-specific trajectories via random effects prediction ("BLUP")
 - separate variance parameters for subject-level variation

Model parameters

$$Y_i^{(a_1,a_2)} = X_i^{(a_1,a_2)} \beta + Z_i b_i + \epsilon_i$$

$$\implies V_i := \operatorname{Var} \left(Y_i^{(a_1,a_2)} \mid L_i \right) = Z_i G Z_i^{\mathsf{T}} + \sigma^2 I_{n_i}$$

Parameters:

- β: p-dimensional vector of mean parameters
- α : vector of unique parameters in $V_i = V_i(\alpha)$.

Notation for observed data

Random treatment assignments: A_{1i} , A_{2i}

By design of the SMART,

$$A_{1i}=a_1\in\{1,-1\}$$
 with prob. $\mathbb{P}\left(A_{1i}=a_1
ight)$ $A_{2i}=a_2\in\{1,-1\}$ with prob. $\mathbb{P}\left(A_{2i}=a_2\mid A_{1i},R_i=0
ight)$ (only non-responders are randomized twice)

Denote

$$R_i \in \{0,1\}$$
: observed response status Y_i : observed longitudinal outcome $i=1,\ldots,N$ participants

Estimation: causal assumptions

We do not observe the potential outcomes

$$Y_i^{(a_1,a_2)}, R_i^{(a_1)}$$
 (binary response status)

for all (a_1, a_2) .

So we assume

Estimation: weighted, pseudo-likelihood

If we observed $Y_i^{(a_1,a_2)}$ for all (a_1,a_2) , we could compute MLEs using likelihood for $Y_i^{(a_1,a_2)}$

Since we only observe Y_i , compute

$$\hat{\alpha}, \hat{\beta} = \arg\max_{\alpha, \beta} -\frac{1}{2} \sum_{i} \sum_{a_{1}, a_{2}} \tilde{W}_{i}(A_{1i}, R_{i}, A_{2i}, a_{1}, a_{2}) f_{i}(\alpha, \beta, a_{1}, a_{2})$$

$$\begin{split} f_i(\alpha,\beta,a_1,a_2) := \log \det(V_i(\alpha)) \\ &+ (Y_i - X_i^{(a_1,a_2)}\beta)^\intercal V_i(\alpha)^{-1} (Y_i - X_i^{(a_1,a_2)}\beta) \end{split}$$

Estimation: weighted, pseudo-likelihood

Can solve for $\hat{\beta}$

$$\hat{\beta}(\alpha) = \left(\sum_{i} \sum_{a_{1}, a_{2}} \tilde{W}_{i}(A_{1i}, R_{i}, A_{2i}, a_{1}, a_{2}) X_{i}^{(a_{1}, a_{2})^{\mathsf{T}}} V_{i}(\alpha)^{-1} X_{i}^{(a_{1}, a_{2})}\right)^{-1}$$

$$\left(\sum_{i} \sum_{a_{1}, a_{2}} \tilde{W}_{i}(A_{1i}, R_{i}, A_{2i}, a_{1}, a_{2}) X_{i}^{(a_{1}, a_{2})^{\mathsf{T}}} V_{i}(\alpha)^{-1} Y_{i}\right)$$

In practice,

$$\hat{\alpha} = \arg \max_{\alpha} -\frac{1}{2} \sum_{i} \sum_{a_1, a_2} \tilde{W}_i(A_{1i}, R_i, A_{2i}, a_1, a_2) f_i(\alpha, \hat{\beta}(\alpha), a_1, a_2)$$

$$\hat{\beta} = \hat{\beta}(\hat{\alpha})$$

Weights: a function of $(A_{1i}, R_i, A_{2i}, a_1, a_2)$

The function is known by design, but \tilde{W}_i is a random variable

$$ilde{W}_i(A_{1i}, R_i, A_{2i}, a_1, a_2) = W_i(A_{1i}, R_i, A_{2i}, a_1, a_2)C_i(A_{1i}, R_i, A_{2i}, a_1, a_2)$$
 $W_i(A_{1i}, R_i, A_{2i}, a_1, a_2)$
 $:= \frac{1}{\mathbb{P}(A_{1i} = a_1)} \left(R_i + \frac{(1 - R_i)}{\mathbb{P}(A_{2i} = a_2 \mid A_{1i}, R_i = 0)} \right)$
 $C_i(A_{1i}, R_i, A_{2i}, a_1, a_2)$
 $:= \begin{cases} 1 & \text{if } A_{1i}, R_i, A_{2i} \text{ observable under } (a_1, a_2) \\ 0 & \text{otherwise} \end{cases}$

Weights: a function of $(A_{1i}, R_i, A_{2i}, a_1, a_2)$

Suppose $a_1, a_2 \in \{1, -1\}$, and

$$\mathbb{P}(A_{1i} = a_1) = 0.5, \qquad \mathbb{P}(A_{2i} = a_2 \mid A_{1i}, R_i = 0) = 0.5.$$

For the fixed regimen (a_1, a_2) ,

$$W_i(A_{1i}, R_i, A_{2i}, a_1, a_2) = \begin{cases} 4 & \text{if } R_i = 0 \\ 2 & \text{if } R_i = 1 \end{cases}$$

Properties of $\hat{\beta}$

consistent, asymptotically Gaussian even if V_i misspecified

i.e. random effects $Z_i b_i$ can be misspecified

Estimate of $\operatorname{Var}\left(\hat{\beta}\right)$: $\frac{1}{N}\hat{J}^{-1}\hat{I}\hat{J}^{-1}$

$$\hat{J} = \frac{1}{N} \sum_{i} \sum_{a_1, a_2} \tilde{W}_i(A_{1i}, R_i, A_{2i}, a_1, a_2) X_i^{(a_1, a_2) \mathsf{T}} \hat{V}_i(\hat{\alpha})^{-1} X_i^{(a_1, a_2)}$$

$$\hat{I} = \frac{1}{N} \sum_{i} \hat{U}_{i} \hat{U}_{i}^{\mathsf{T}}$$

$$\hat{U}_i = \sum_{a_1, a_2} \tilde{W}_i(A_{1i}, R_i, A_{2i}, a_1, a_2) X_i^{(a_1, a_2)_T} \hat{V}_i(\hat{\alpha})^{-1} (Y_i - X_i^{(a_1, a_2)} \hat{\beta}).$$

Random effects prediction

Compute a prediction based on the weighted pseudo-likelihood:

$$\begin{split} \hat{b}_i &:= \hat{b}_i(\hat{\alpha}, \hat{\beta}) \\ &= \frac{\sum_{a_1, a_2} \tilde{W}_i(A_{1i}, R_i, A_{2i}, a_1, a_2) \hat{G} Z_i^\mathsf{T} \hat{V}_i^{-1} (Y_i - X_i^{(a_1, a_2)} \hat{\beta})}{\sum_{a_1, a_2} \tilde{W}_i(A_{1i}, R_i, A_{2i}, a_1, a_2)} \end{split}$$

Motivated by

$$\mathbb{E}\left(b_i \mid Y_i^{(a_1,a_2)}, X_i^{(a_1,a_2)}\right) = GZ_i^{\mathsf{T}} V_i^{-1} (Y_i^{(a_1,a_2)} - X_i^{(a_1,a_2)}\beta)$$

Other statistical methods for SMARTs

Longitudinal SMARTs: weighted, GEE-like estimators

- Lu et al. [2016], Li [2017], Seewald et al. [2018], Dziak et al. [2019]
- Working model for variance-covariance, sandwich standard errors

General references

Murphy [2005], Nahum-Shani et al. [2012], Almirall et al. [2014]

Alternative approaches 26

Data analysis: example SMART in autism

Recall the autism SMART design

A piecewise linear model with random intercept

Three DTRs: (1,1), (1,-1), (-1,1)

 Y_{ii} : number of "socially communicative utterances"

$$t_{ij} \in \{0, 12, 24, 36\}$$
 weeks, $N = 61$

$$\mathbb{E}\left(Y_{ij}^{(a_{1},a_{2})} \mid X_{ij}^{(a_{1},a_{2})}, b_{i}\right) = \beta_{0} + t_{j}^{[0,12]} \left(\beta_{1} + \beta_{2} a_{1}\right) + t_{j}^{(12,36]} \left(\beta_{3} + \beta_{4} a_{1} + \beta_{5} \mathbb{1}_{[a_{1}=1]} a_{2}\right) + \beta_{6} \operatorname{age}_{i} + b_{i},$$

where

$$t_{j}^{[0,12]} = \left(t_{j}\mathbb{1}_{\left[t_{j} \leq 12\right]} + 12\mathbb{1}_{\left[t_{j} > 12\right]}\right)$$
 $t_{j}^{(12,36]} = (t_{j} - 12)\mathbb{1}_{\left[t_{j} > 12\right]}$
age _{i} = age at baseline
 $b_{i} \sim N(0, \sigma_{b}^{2})$: random intercept

29

Primary aim: compare DTRs

Estimated mean under each DTR

Primary aim: compare DTRs

Pairwise contrasts with 90% confidence intervals

Person-specific predictions

$$\hat{\sigma} = 21$$

$$\hat{\sigma}_b = 24$$

Next steps

- Prove \hat{b}_i has minimum MSE
- Software implementation
 - o currently using "tricks" valid only with integer weights
- Scenarios when Z_i can include (a_1, a_2) , so that V_i depends on (a_1, a_2)
- Advantages of mixed models for missing data in SMARTs

Thank you

Download slides: brookluers.com/research

Coauthors

Min Qian (Columbia University)

Inbal Nahum-Shani (University of Michigan)

Connie Kasari (University of California, Los Angeles)

Daniel Almirall (University of Michigan)

References

- D. Almirall, I. Nahum-Shani, N. Sherwood, and S.A. Murphy. Introduction to SMART designs for the development of adaptive interventions: with application to weight loss research. *Translational Behavioral Medicine*, 4(3):260–274, 2014.
- John J. Dziak, Jamie Yap, Daniel Almirall, James R. McKay, Kevin G. Lynch, and Inbal Nahum-Shani. A data analysis method for using longitudinal binary outcome data from a SMART to compare adaptive interventions. *Multivariate Behavioral Research*, pages 1–24, 2019. URL https://doi.org/10.1080/00273171.2018.1558042.
- Connie Kasari, Ann Kaiser, Kelly Goods, Jennifer Nietfeld, Pamela Mathy, Rebecca Landa, Susan Murphy, and Daniel Almirall. Communication interventions for minimally verbal children with autism: A sequential multiple assignment randomized trial. *Journal of the American Academy of Child & Adolescent Psychiatry*, 53(6): 635–646, 2014.
- Zhiguo Li. Comparison of adaptive treatment strategies based on longitudinal outcomes in sequential multiple assignment randomized trials. *Statistics in Medicine*, 36(3):403–415, 2017.
- Xi Lu, Inbal Nahum-Shani, Connie Kasari, Kevin G. Lynch, David W. Oslin, William E. Pelham, Gregory Fabiano, and Daniel Almirall. Comparing dynamic treatment regimes using repeated-measures outcomes: modeling considerations in smart studies. Statistics in Medicine, 35(10):1595–1615, 2016.

References (continued)

- S.A. Murphy. An experimental design for the development of adaptive treatment strategies. *Statistics in Medicine*, 24(10):1455–1481, May 2005.
- I. Nahum-Shani, M. Qian, D. Almirall, W.E. Pelham, B. Gnagy, G. Fabiano, J. Waxmonsky, J. Yu, and S.A. Murphy. Experimental design and primary data analysis methods for comparing adaptive interventions. *Psychological Methods*, 17: 457–477, 2012.
- Nicholas J. Seewald, Kelley M. Kidwell, Inbal Nahum-Shani, Tianshuang Wu, James R. McKay, and Daniel Almirall. Sample size considerations for comparing dynamic treatment regimens in a sequential multiple-assignment randomized trial with a continuous longitudinal outcome. *arXiv e-prints*, art. arXiv:1810.13094, Oct 2018.