LANGAGES DE SCÉNARIOS

Utiliser des ordres partiels pour modéliser, vérifier et superviser des systèmes parallèles et répartis

Thomas GAZAGNAIRE

projet DistribCom, IRISA Université de Rennes 1 ENS Cachan, antenne de Bretagne

Soutenance de Thèse 27 mars 2008

Philippe	DARONDEAU	Président du jury
Jean-Michel	Couvreur	Rapporteur
Marc	ZEITOUN	Rapporteur
Thierry	MASSART	Examinateur
Loïc	HÉLOUËT	Co-encadrant
Claude	JARD	Directeur de thèse

Contexte

- Cadre : systèmes parallèles et répartis ;
- Modes d'interactions
 - proches : par mémoire partagée ;
 - à distance : par échange de messages

Contexte

- Cadre : systèmes parallèles et répartis ;
- Modes d'interactions
 - proches : par mémoire partagée ;
 - ▶ à distance : par échange de messages.

Problématique

- Modéliser;
- Vérifier;
- Superviser.

Problématique

- Modéliser;
- Vérifier;
- Superviser.

modèle M

- Propriété φ
- "Est-ce qu'une action qu'effectue le processus bleu est toujours suivie d'une action sur le processus vert?"
- ► $M \models \varphi$

Problématique

- Modéliser;
- Vérifier;
- Superviser.

modèle M

- Propriété φ observation partielle O limitée à Σ_o
- "Est-ce que l'observation permet de déduire que le système a toujours fait une action sur le processus bleu avant de faire une action sur le processus vert ?"
- ▶ $Diag(O, M) \models \varphi$

Approche locale :

- modèles séquentiels où l'on ajoute des actions d'interaction;
 - ► algèbres de processus : CCS | Milner80], π-calcul | Milner92] . .
 - ▶ automates finis : asynchrones [Zielonka87], communicants [Brand81].
- nécessite de calculer les interactions entre les modèles locaux ;
- la vérification et la supervision sont indécidables.

- modélisation globale des interactions ;
 - ordres partiels | Lamport78 |, pomsets | Pratt86, Gischer88 |;
 - structures d'événements | Winskel81 |
- ► langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0] ;
- ▶ permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables [GMSZ02,Genest05]

Approche locale :

- modèles séquentiels où l'on ajoute des actions d'interaction ;
 - ► algèbres de processus : CCS [Milner80], π-calcul [Milner92] ...
 - automates finis : asynchrones [Zielonka87], communicants [Brand81].
- nécessite de calculer les interactions entre les modèles locaux ;
- la vérification et la supervision sont indécidables.

- modélisation globale des interactions ;
 - ordres partiels | Lamport78 |, pomsets | Pratt86, Gischer88 |;
 - structures d'événements | Winskel81 |
- ► langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0] ;
- permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables [GMSZ02,Genest05]

- Approche locale :
 - modèles séquentiels où l'on ajoute des actions d'interaction;
 - ► algèbres de processus : CCS | Milner80 |, π-calcul | Milner92 | ...
 - ► automates finis : asynchrones [Zielonka87], communicants [Brand81].
 - nécessite de calculer les interactions entre les modèles locaux
 - la vérification et la supervision sont indécidables.

- modélisation globale des interactions ;
 - ordres partiels | Lamport78 |, pomsets | Pratt86, Gischer88 |;
 - structures d'événements | Winskel81
- ► langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0] ;
- permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables [GMSZ02,Genest05]

- Approche locale :
 - modèles séquentiels où l'on ajoute des actions d'interaction;
 - ► algèbres de processus : CCS | Milner80 |, π-calcul | Milner92 | ...
 - automates finis : asynchrones [Zielonka87], communicants [Brand81].
 - nécessite de calculer les interactions entre les modèles locaux ;
 - la vérification et la supervision sont indécidables

- modélisation globale des interactions ;
 - ordres partiels | Lamport78 |, pomsets | Pratt86, Gischer88 |;
 - structures d'événements | Winskel81]
- ► langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0]
- permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables [GMSZ02,Genest05]

Approche locale :

- modèles séquentiels où l'on ajoute des actions d'interaction ;
 - ► algèbres de processus : CCS | Milner80 |, π-calcul | Milner92 | ...
 - automates finis : asynchrones [Zielonka87], communicants [Brand81].
- nécessite de calculer les interactions entre les modèles locaux ;
- la vérification et la supervision sont indécidables.

- modélisation globale des interactions ;
 - ordres partiels [Lamport78], pomsets [Pratt86,Gischer88];
 - structures d'événements | Winskel81 |
- ► langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0]
- permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables [GMSZ02,Genest05]

Approche locale :

- modèles séquentiels où l'on ajoute des actions d'interaction ;
 - ► algèbres de processus : CCS | Milner80 |, π-calcul | Milner92 | ...
 - automates finis : asynchrones [Zielonka87], communicants [Brand81].
- nécessite de calculer les interactions entre les modèles locaux ;
- ▶ la vérification et la supervision sont indécidables.

- modélisation globale des interactions ;
 - ordres partiels [Lamport78], pomsets [Pratt86,Gischer88]
 - structures d'événements | Winskel81 |
- ► langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0]
- permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables [GMSZ02,Genest05]

Approche locale :

- modèles séquentiels où l'on ajoute des actions d'interaction;
 - ► algèbres de processus : CCS | Milner80 |, π-calcul | Milner92 | ...
 - ▶ automates finis : asynchrones [Zielonka87], communicants [Brand81].
- nécessite de calculer les interactions entre les modèles locaux;
- la vérification et la supervision sont indécidables.

- modélisation globale des interactions;
 - ▶ ordres partiels [Lamport78], pomsets [Pratt86,Gischer88];
 - structures d'événements | Winskel81
- ► langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0] ;
- permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables [GMSZ02,Genest05].

Approche locale :

- modèles séquentiels où l'on ajoute des actions d'interaction;
 - ► algèbres de processus : CCS | Milner80 |, π-calcul | Milner92 | ...
 - ▶ automates finis : asynchrones [Zielonka87], communicants [Brand81].
- nécessite de calculer les interactions entre les modèles locaux ;
- ▶ la vérification et la supervision sont indécidables.

- modélisation globale des interactions;
 - ▶ ordres partiels [Lamport78], pomsets [Pratt86,Gischer88];
 - structures d'événements [Winskel81].
- ▶ langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0]
- ▶ permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables | GMSZ02,Genest05]

Approche locale :

- modèles séquentiels où l'on ajoute des actions d'interaction ;
 - ► algèbres de processus : CCS [Milner80], π-calcul [Milner92] ...
 - ▶ automates finis : asynchrones [Zielonka87], communicants [Brand81].
- nécessite de calculer les interactions entre les modèles locaux ;
- ▶ la vérification et la supervision sont indécidables.

- modélisation globale des interactions ;
 - ► ordres partiels [Lamport78], pomsets [Pratt86,Gischer88];
 - structures d'événements [Winskel81].
- ▶ langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0];
- permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables [GMSZ02,Genest05].

Approche locale :

- modèles séquentiels où l'on ajoute des actions d'interaction;
 - ► algèbres de processus : CCS [Milner80], π-calcul [Milner92] ...
 - ▶ automates finis : asynchrones [Zielonka87], communicants [Brand81].
- nécessite de calculer les interactions entre les modèles locaux ;
- la vérification et la supervision sont indécidables.

- modélisation globale des interactions;
 - ▶ ordres partiels [Lamport78], pomsets [Pratt86,Gischer88];
 - structures d'événements [Winskel81].
- ▶ langages normalisés de spécification : High-level Message Sequence Charts (HMSC) [ITU-TS,UML2.0];
- permet d'identifier des familles de systèmes non bornés où vérification et supervision sont décidables [GMSZ02,Genest05].

Thèse

Plan de l'exposé

Modèles locaux et leurs interactions globales Interactions par mémoire partagée Interactions par échange de messages Interactions mixtes

Modéliser

HMSC causaux Expressivité Critiques et perspectives

Vérifier

Vérification complète Vérification partielle Critiques et perspectives

Superviser

Diagnostic
Critiques et perspective

Conclusion

Systèmes parallèles qui interagissent par mémoire partagée

modèle local : automates asynchrones [Zielonka87] modèle global : traces de Mazurkiewcz [Mazurkiewicz77]

Systèmes parallèles qui interagissent par mémoire partagée modèle local: automates asynchrones | Zielonka87 |

modèle global : traces de Mazurkiewcz | Mazurkiewicz77]

Systèmes parallèles qui interagissent par mémoire partagée modèle local: automates asynchrones | Zielonka87 |

modèle global : traces de Mazurkiewcz [Mazurkiewicz77]

Systèmes parallèles qui interagissent par mémoire partagée modèle local : automates asynchrones [Zielonka87]

modèle global: traces de Mazurkiewcz | Mazurkiewicz77

relation de dépendance statique entre actions effectuées par des processus qui modifient une même variable partagée : $D = \{...(B,M),(M,R),(V,M),(V,V)...\}$

Systèmes parallèles qui interagissent par échange de messages

```
modèle local : automates communicants [Brand81] modèle global : "Message Sequence Charts" (MSC) [Reniers98,ITU-TS,UML2.0]
```


Systèmes parallèles qui interagissent par échange de messages modèle local : automates communicants | Brand81 |

modèle global : "Message Sequence Charts" (MSC)
| Reniers98.ITU-TS.UML2.0|

Systèmes parallèles qui interagissent par échange de messages

modèle local : automates communicants [Brand81] modèle global : "Message Sequence Charts" (MSC) | Reniers98,ITU-TS,UML2.0]

Systèmes parallèles qui interagissent par échange de messages

modèle local : automates communicants [Brand81] modèle global : "Message Sequence Charts" (MSC) | Reniers98,ITU-TS,UML2.0]

 sur chaque machine les événements sont totalement ordonnés

Modèles d'interactions (3/3) : mixtes

Systèmes parallèles et répartis avec :

- interactions proches : par mémoire partagée ;
- ▶ interactions à distance : par échange de messages.

modèle local : automates mixtes

modèle global : MSC causaux

MSC avec co-régions généralisées [ITU-TS]

ordre causal pour les MSC [AHP96,MP98]

Modèles d'interactions (3/3) : mixtes

Systèmes parallèles et répartis avec :

- interactions proches : par mémoire partagée ;
- ▶ interactions à distance : par échange de messages.

modèle local : automates mixtes

modèle global : MSC causaux

- MSC avec co-régions généralisées [ITU-TS]
- ordre causal pour les MSC [AHP96,MP98]

Les actions des automates locaux :

- modifient des variables partagées;
- modifient l'état des canaux de communication.

Modèles d'interactions (3/3) : mixtes

Systèmes parallèles et répartis avec :

- interactions proches : par mémoire partagée ;
- ▶ interactions à distance : par échange de messages.

modèle local : automates mixtes

modèle global : MSC causaux

- MSC avec co-régions généralisées [ITU-TS]
- ordre causal pour les MSC [AHP96,MP98]

Plan de l'exposé

Modèles locaux et leurs interactions globales

Interactions par mémoire partagée Interactions par échange de messages Interactions mixtes

Modéliser

HMSC causaux

Expressivité

Critiques et perspectives

Vérifier

Vérification complète Vérification partielle Critiques et perspective

Superviser

Diagnostic

Critiques et perspectives

Conclusion

Définition (HMSC causaux | CONCUR'07])

- Relation de dépendance D_i pour chaque machine A_i ;
- Briques de base : MSC causaux ;
- Opérateurs de composition : + choix ; · composition séquentielle ; * itération.

HMSC causal : expression rationnelle de MSC causaux

Exemple: $u \cdot (v + w)^* \cdot u$

MSC causal u

Définition (HMSC causaux | CONCUR'07])

- Relation de dépendance D_i pour chaque machine A_i ;
- Briques de base : MSC causaux ;
- Opérateurs de composition : + choix ; · composition séquentielle ; * itération.

Définition (langage causal d'un HMSC causal)

 $\mathcal{L}(\mathit{M})$: ensemble des MSC causaux engendrés par M

- $\mathcal{L}(u) = \{u\}$ (u MSC causal);
- $L(M+N) = L(M) \cup L(N)$ (M, N HMSC causaux);
- lacksquare $\mathcal{L}(M^*) = \bigcup_{n \geq 0} \mathcal{L}(M)^n \ (M \ \text{HMSC causal}).$

Définition (HMSC causaux [CONCUR'07])

- Relation de dépendance D_i pour chaque machine A_i ;
- Briques de base : MSC causaux ;
- Opérateurs de composition : + choix ; · composition séquentielle ; * itération.

Définition (langage causal d'un HMSC causal)

 $\mathcal{L}(\mathit{M})$: ensemble des MSC causaux engendrés par M

- $\mathcal{L}(u) = \{u\}$ (*u* MSC causal);
- $\mathcal{L}(M+N) = \mathcal{L}(M) \cup \mathcal{L}(N)$ (M, N HMSC causaux);
- $\perp \mathcal{L}(M^*) = \bigcup_{n>0} \mathcal{L}(M)^n (M \text{ HMSC causal})$

Définition (HMSC causaux | CONCUR'07])

- Relation de dépendance D_i pour chaque machine A_i ;
- Briques de base : MSC causaux ;
- Opérateurs de composition : + choix ; · composition séquentielle ; * itération.

Définition (composition | Pratt86])

Paramétrée par ∪ Di

Exemple:

$$D_1 = \{..., (B, B), (R, V), ...\}$$
 sur A_1

Définition (HMSC causaux | CONCUR'07)

- Relation de dépendance D_i pour chaque machine A_i ;
- Briques de base : MSC causaux ;
- Opérateurs de composition : + choix ; · composition séquentielle ; * itération.

Définition (composition [Pratt86])

Paramétrée par ∪ Di

Exemple:

$$D_1 = \{\dots, (B, B), (R, V), \dots\} \text{ sur } A_1$$

$$u \cdot v = w$$

Définition (HMSC causaux | CONCUR'07])

- Relation de dépendance D_i pour chaque machine A_i ;
- Briques de base : MSC causaux ;
- Opérateurs de composition : + choix ; · composition séquentielle ; * itération.

Définition (composition | Pratt86])

Paramétrée par ∪ Di

Exemple:

$$D_1 = \{\dots, (B, B), (R, V), \dots\} \text{ sur } A_1$$

$$u \cdot v = w$$

Modéliser: HMSC causaux (1/2)

Définition (HMSC causaux CONCUR'07)

- Relation de dépendance D_i pour chaque machine A_i ;
- Briques de base : MSC causaux ;
- Opérateurs de composition : + choix ; · composition séquentielle ; * itération.

Définition (langage causal d'un HMSC causal)

 $\mathcal{L}(\mathit{M})$: ensemble des MSC causaux engendrés par M

- $\mathcal{L}(u) = \{u\}$ (*u* MSC causal);
- $\mathcal{L}(M+N) = \mathcal{L}(M) \cup \mathcal{L}(N)$ (M, N HMSC causaux);
- $\mathcal{L}(M \cdot N) = \{u \cdot v \mid u \in \mathcal{L}(M), v \in \mathcal{L}(N)\}$ (M, N HMSC causaux);
- $\mathcal{L}(M^*) = \bigcup_{n>0} \mathcal{L}(M)^n$ (M HMSC causal).

Modéliser: HMSC causaux (1/2)

Définition (HMSC causaux | CONCUR'07])

- Relation de dépendance D_i pour chaque machine A_i ;
- Briques de base : MSC causaux ;
- Opérateurs de composition : + choix ; · composition séquentielle ; * itération.

Définition (langage causal d'un HMSC causal)

 $\mathcal{L}(\mathit{M})$: ensemble des MSC causaux engendrés par M

- $\mathcal{L}(u) = \{u\}$ (*u* MSC causal);
- $\mathcal{L}(M+N) = \mathcal{L}(M) \cup \mathcal{L}(N)$ (M, N HMSC causaux);
- $\mathcal{L}(M \cdot N) = \{u \cdot v \mid u \in \mathcal{L}(M), v \in \mathcal{L}(N)\}$ (M, N HMSC causaux);
- $\mathcal{L}(M^*) = \bigcup_{n \ge 0} \mathcal{L}(M)^n$ (M HMSC causal).

Modéliser: HMSC causaux (2/2)

Définition (cohérence)

Un MSC causal est cohérent si :

- deux événements sont ordonnés ⇒ il existe une chaîne d'interactions qui les relie;
- deux événements ne sont pas ordonnés ⇒ les processus qui les exécutent ne modifient pas une même variable partagée.

Pour les HMSC causaux, il suffit de regarder les briques de bases.

Modéliser: HMSC causaux (2/2)

Définition (cohérence)

Un MSC causal est cohérent si :

- deux événements sont ordonnés ⇒ il existe une chaîne d'interactions qui les relie;
- deux événements ne sont pas ordonnés ⇒ les processus qui les exécutent ne modifient pas une même variable partagée.

Pour les HMSC causaux, il suffit de regarder les briques de bases.

Exemple:
$$D_1 = \{(R, R), (B, B), (R, B), (B, R)\}$$

cohérent

non cohérent

Modéliser: HMSC causaux (2/2)

Définition (cohérence)

Un MSC causal est cohérent si :

- deux événements sont ordonnés ⇒ il existe une chaîne d'interactions qui les relie;
- deux événements ne sont pas ordonnés ⇒ les processus qui les exécutent ne modifient pas une même variable partagée.

Pour les HMSC causaux, il suffit de regarder les briques de bases.

Exemple :
$$D_1 = \{(R, R), (B, B)\}$$

non cohérent

cohérent

On s'intéresse aux exécutions des machines :

1. $\mathit{MSC}(u)$: langage de MSC d'un MSC causal u

On s'intéresse aux exécutions des machines :

- 1. $\mathit{MSC}(u)$: langage de MSC d'un MSC causal u
- 2. MSC(M): langage de MSC d'un HMSC causal M

On s'intéresse aux exécutions des machines :

- 1. MSC(u): langage de MSC d'un MSC causal u
- 2. MSC(M): langage de MSC d'un HMSC causal M

On s'intéresse aux exécutions des machines :

- 1. MSC(u): langage de MSC d'un MSC causal u
- 2. MSC(M): langage de MSC d'un HMSC causal M

Expressivité des HMSC causaux cohérents

- plus expressif que HMSC | Rudolph96,Reniers98]
- incomparable avec HMSC compositionnels sûrs [Genest04]
- incomparable avec EMSO(\prec_m , $(\leq_i)_{A_i}$) |Bollig05]

On s'intéresse aux exécutions des machines :

- 1. MSC(u): langage de MSC d'un MSC causal u
- 2. MSC(M): langage de MSC d'un HMSC causal M

Expressivité des HMSC causaux cohérents

- plus expressif que HMSC [Rudolph96,Reniers98]
- incomparable avec HMSC compositionnels sûrs [Genest04]
- incomparable avec EMSO(\prec_m , $(\leq_i)_{A_i}$) |Bollig05]

On s'intéresse aux exécutions des machines :

- 1. MSC(u): langage de MSC d'un MSC causal u
- 2. MSC(M): langage de MSC d'un HMSC causal M

Expressivité des HMSC causaux cohérents

- plus expressif que HMSC | Rudolph96,Reniers98]
- incomparable avec HMSC compositionnels sûrs | Genest04]
- incomparable avec EMSO(\prec_m , $(\leq_i)_{A_i}$) [Bollig05]

Définition (GI)

 $GI(u,\bigcup D_i)$: Graphe d'Interactions: sommets: actions de u; arêtes: interactions possibles entre les processus qui font ces actions.

$$D_1 = \{(\textcolor{red}{R},\textcolor{red}{R}),(\textcolor{red}{B},\textcolor{red}{B}),\underline{(\textcolor{red}{R},\textcolor{red}{B})},\underline{(\textcolor{red}{B},\textcolor{red}{R})}\}$$

Définition (régularité faible

Soient $(D_i)_{A_i}$ fixées. Un HMSC causal M est faiblement régulier si, pour toutes les sous-expressions N^* de M, pour tous les MSC causaux u de $\mathcal{L}(N)$: $Gl(u,\bigcup D_i)$ est fortement connexe.

Théorème (mise en œuvre)

pour $(D_i)_{A_i}$ fixées

 \mathcal{L} est le langage d'un HMSC causal cohérent et faiblement régulier \Rightarrow \mathcal{L} est le langage d'interactions d'un automate mixte à canaux bornés

Définition (GI)

 $Gl(u,\bigcup D_i)$: Graphe d'Interactions: sommets: actions de u; arêtes: interactions possibles entre les processus qui font ces actions.

$$D_1 = \{(\textcolor{red}{R}, \textcolor{red}{R}), (\textcolor{red}{B}, \textcolor{red}{B}), \textcolor{red}{(\textcolor{red}{R}, \textcolor{red}{B})}, \textcolor{red}{(\textcolor{red}{B}, \textcolor{red}{R})}\}$$

Définition (régularité faible)

Soient $(D_i)_{A_i}$ fixées. Un HMSC causal M est faiblement régulier si, pour toutes les sous-expressions N^* de M, pour tous les MSC causaux u de $\mathcal{L}(N)$: $Gl(u, \bigcup D_i)$ est fortement connexe.

Théorème (mise en œuvre)

pour $(D_i)_{A_i}$ fixées

 \mathcal{L} est le langage d'un HMSC causal cohérent et faiblement régulier \Rightarrow \mathcal{L} est le langage d'interactions d'un automate mixte à canaux bornés

Définition (GI)

 $Gl(u,\bigcup D_i)$: Graphe d'Interactions: sommets: actions de u; arêtes: interactions possibles entre les processus qui font ces actions.

$$D_1 = \{ (\underline{R}, \underline{R}), (\underline{B}, \underline{B}), \underline{(\underline{R}, \underline{B})}, \underline{(\underline{B}, \underline{R})} \}$$

Définition (régularité faible)

Soient $(D_i)_{A_i}$ fixées. Un HMSC causal M est faiblement régulier si, pour toutes les sous-expressions N^* de M, pour tous les MSC causaux u de $\mathcal{L}(N)$: $GI(u,\bigcup D_i)$ est fortement connexe.

Théorème (mise en œuvre)

pour $(D_i)_{A_i}$ fixées :

 ${\mathcal L}$ est le langage d'un HMSC causal cohérent et faiblement régulier \Rightarrow

 \mathcal{L} est le langage d'interactions d'un automate mixte à canaux bornés .

Résumé:

- les HMSC causaux permettent d'exprimer de nouveaux langages de MSC qui correspondent à des modèles locaux mixtes;
- les HMSC causaux cohérents et faiblement réguliers peuvent être mis en œuvres par des automates mixtes à canaux bornés;
 - ▶ adaptation des preuves de | Ochmanski85,MP99,Genest04 |
- Les langage de linéarisations de HMSC causaux cohérents et faiblement réguliers sont reconnaissables par des automates finis :
 - la vérification et la supervision sont décidables.

Perspectives

Résumé:

- les HMSC causaux permettent d'exprimer de nouveaux langages de MSC qui correspondent à des modèles locaux mixtes;
- les HMSC causaux cohérents et faiblement réguliers peuvent être mis en œuvres par des automates mixtes à canaux bornés ;
 - ▶ adaptation des preuves de | Ochmanski85,MP99,Genest04]
- Les langage de linéarisations de HMSC causaux cohérents et faiblement réguliers sont reconnaissables par des automates finis :
 - la vérification et la supervision sont décidables

Perspectives

Résumé:

- les HMSC causaux permettent d'exprimer de nouveaux langages de MSC qui correspondent à des modèles locaux mixtes;
- les HMSC causaux cohérents et faiblement réguliers peuvent être mis en œuvres par des automates mixtes à canaux bornés;
 - ► adaptation des preuves de | Ochmanski85,MP99,Genest04]
- Les langage de linéarisations de HMSC causaux cohérents et faiblement réguliers sont reconnaissables par des automates finis :
 - la vérification et la supervision sont décidables.

Perspectives

Résumé:

- les HMSC causaux permettent d'exprimer de nouveaux langages de MSC qui correspondent à des modèles locaux mixtes;
- les HMSC causaux cohérents et faiblement réguliers peuvent être mis en œuvres par des automates mixtes à canaux bornés;
 - ► adaptation des preuves de Ochmanski85,MP99,Genest04
- Les langage de linéarisations de HMSC causaux cohérents et faiblement réguliers sont reconnaissables par des automates finis :
 - la vérification et la supervision sont décidables.

Perspectives:

Plan de l'exposé

Modèles locaux et leurs interactions globales

Interactions par mémoire partagée Interactions par échange de messages Interactions mixtes

Modéliser

HMSC causaux Expressivité Critiques et perspectives

Vérifier

Vérification complète Vérification partielle Critiques et perspectives

Superviser

Diagnostic
Critiques et perspective

Conclusion

modèle M

- Propriété φ
- "Est-ce qu'une action qu'effectue le processus bleu est toujours suivie d'une action sur le processus vert?"
- \blacksquare $M \models \varphi$

 $modèle M : \blacksquare HMSC causal cohérent;$

 \blacksquare projection d'un HMSC causal cohérent sur $\Sigma_{\phi}.$

propriété φ: HMSC causal cohérent (pas de négation)

Questions :
si φ décrit de mauvaises interactions :

$$MSC(M) \cap MSC(\varphi) = \emptyset$$

si φ décrit de bonnes interactions

$$MSC(M) \subseteq MSC(\varphi)$$

modèle M

- Propriété φ
- "Est-ce qu'une action qu'effectue le processus bleu est toujours suivie d'une action sur le processus vert?"
- $M \models \varphi$

modèle *M* : ■ HMSC causal cohérent;

■ projection d'un HMSC causal cohérent sur Σ_{ϕ} .

propriété φ : HMSC causal cohérent (pas de négation)

Questions : ■ si φ décrit de mauvaises interactions :

$$MSC(M) \cap MSC(\varphi) = \emptyset$$

si φ décrit de bonnes interactions

$$MSC(M) \subseteq MSC(\phi)$$

modèle M

- Propriété φ
- "Est-ce qu'une action qu'effectue le processus bleu est toujours suivie d'une action sur le processus vert?"
- $M \models \varphi$

modèle *M* : ■ HMSC causal cohérent;

 \blacksquare projection d'un HMSC causal cohérent sur $\Sigma_{\phi}.$

propriété φ : HMSC causal cohérent (pas de négation)

Questions : ■ si φ décrit de mauvaises interactions :

$$MSC(M) \cap MSC(\varphi) = \emptyset$$

si φ décrit de bonnes interactions

$$MSC(M) \subseteq MSC(\varphi)$$

modèle M

- Propriété φ
- "Est-ce qu'une action qu'effectue le processus bleu est toujours suivie d'une action sur le processus vert?"
- $M \models \varphi$

modèle *M* : ■ HMSC causal cohérent;

■ projection d'un HMSC causal cohérent sur Σ_{ϕ} .

propriété φ : HMSC causal cohérent (pas de négation)

Questions : ■ si φ décrit de mauvaises interactions :

$$MSC(M) \cap MSC(\varphi) = \emptyset$$

si φ décrit de bonnes interactions :

$$MSC(M) \subseteq MSC(\varphi)$$

Vérification complète (1/2)

Définition (globalement coopératifs)

Soient $(D_i)_{A_i}$ fixées. Un HMSC causal M est globalement coopératif si, pour toutes les sous-expressions N^* de M, pour tous les MSC causaux U de L(N): $Gl(U, \bigcup D_i)$ est connexe.

Vérification complète (1/2)

Définition (globalement coopératifs)

Soient $(D_i)_{A_i}$ fixées. Un HMSC causal M est globalement coopératif si, pour toutes les sous-expressions N^* de M, pour tous les MSC causaux U de L(N): $Gl(U,\bigcup D_i)$ est connexe.

Théorème (vérification) | CONCUR'07]

Soient $(D_i)_{A_i}$ fixées et M, φ HMSC causaux cohérents.

Si φ est globalement coopératif alors :

- Savoir si $MSC(M) \cap MSC(\phi) = \emptyset$ est PSPACE-complet;
- Savoir si $MSC(M) \subseteq MSC(\phi)$ est EXPSPACE-complet.

complexité comparable à la vérification de modèles séquentiels mais avec des modèles exponentiellement plus concis

18/31

Vérification complète (2/2)

il existe un isomorphisme η : HMSC causaux \rightarrow langages rationnels de traces

Vérification partielle (1/1)

Définition (Projection)

 $\pi_{\Sigma_{\varpi}}(u)$ projection d'un MSC causal u sur Σ_{φ} :

- lacktriangle restriction des événements à ceux étiquetés par Σ_{ϕ} ;
- l'ordre est conservé.

Vérification partielle (1/1)

Définition (Projection)

 $\pi_{\Sigma_{\varpi}}(u)$ projection d'un MSC causal u sur Σ_{φ} :

- lacktriangle restriction des événements à ceux étiquetés par Σ_ϕ ;
- l'ordre est conservé.

Problème : les HMSC causaux ne sont pas stables par projection

Vérification partielle (1/2)

Proposition

Soient \emph{M} un HMSC causal cohérent et Σ_ϕ un ensemble d'actions.

On sait décider s'il existe un HMSC causal (pas forcément cohérent) M^\prime tel que :

$$\pi_{\Sigma_{\phi}}(\mathit{MSC}(\mathit{M})) = \mathit{MSC}(\mathit{M}')$$

Théorème (vérification partielle)

Soient $(D_i)_{A_i}$ fixées et M, φ HMSC causaux cohérents.

Si φ est globalement coopératif alors :

■ Savoir si $\pi_{\Sigma_{\varphi}}(\mathsf{MSC}(M)) \subseteq \mathsf{MSC}(\varphi)$ est décidable.

Vérification partielle (1/2)

Proposition

Soient \emph{M} un HMSC causal cohérent et Σ_{ϕ} un ensemble d'actions.

On sait décider s'il existe un HMSC causal (pas forcément cohérent) M^\prime tel que :

$$\pi_{\Sigma_{\phi}}(\mathit{MSC}(\mathit{M})) = \mathit{MSC}(\mathit{M}')$$

Théorème (vérification partielle)

Soient $(D_i)_{A_i}$ fixées et M, φ HMSC causaux cohérents.

Si φ est globalement coopératif alors :

■ Savoir si $\pi_{\Sigma_{\varphi}}(\mathsf{MSC}(M)) \subseteq \mathsf{MSC}(\varphi)$ est décidable.

Résumé:

- les HMSC causaux cohérents permettent de faire de la vérification de systèmes non bornés, vis-à-vis de propriétés données sous la forme de HMSC causaux cohérents et globalement coopératifs
 - ► Adaptation des preuves de [HM00,Morin02,GMSZ02]
 - si ϕ n'est pas conerent : $\mathcal{L}(M) = \mathcal{L}(\phi) \Rightarrow \mathsf{MSC}(M) = \mathsf{MSC}(\phi)$ et donc : $\mathcal{L}(M) \neq \mathcal{L}(\phi) \not\Rightarrow \mathsf{MSC}(M) \neq \mathsf{MSC}(\phi)$
- complexité comparable à la vérification classique mais avec des modèles exponentiellement plus concis

Perspectives

- Faire de la vérification sur les langages de MSC dans le cas nor cohérent;
- Faire de la vérification de HMSC causaux où l'on s'autorise à séparer l'envoi et la réception de certains messages (et à les recoller lors de la composition).

Résumé:

- les HMSC causaux cohérents permettent de faire de la vérification de systèmes non bornés, vis-à-vis de propriétés données sous la forme de HMSC causaux cohérents et globalement coopératifs
 - ► Adaptation des preuves de [HM00,Morin02,GMSZ02]
- si φ n'est pas cohérent :

$$\mathcal{L}(\textit{M}) = \mathcal{L}(\phi) \Rightarrow \mathsf{MSC}(\textit{M}) = \mathsf{MSC}(\phi)$$
 et donc : $\mathcal{L}(\textit{M}) \neq \mathcal{L}(\phi) \not\Rightarrow \mathsf{MSC}(\textit{M}) \neq \mathsf{MSC}(\phi)$

 complexité comparable à la vérification classique mais avec des modèles exponentiellement plus concis

Perspectives

- Faire de la vérification sur les langages de MSC dans le cas non cohérent;
- Faire de la vérification de HMSC causaux où l'on s'autorise à séparer l'envoi et la réception de certains messages (et à les recoller lors de la composition).

Résumé:

- les HMSC causaux cohérents permettent de faire de la vérification de systèmes non bornés, vis-à-vis de propriétés données sous la forme de HMSC causaux cohérents et globalement coopératifs
 - ► Adaptation des preuves de [HM00,Morin02,GMSZ02]
- si φ n'est pas cohérent :

$$\label{eq:loss_loss} \begin{split} \mathcal{L}(\textit{M}) &= \mathcal{L}(\phi) \! \Rightarrow \mathsf{MSC}(\textit{M}) = \mathsf{MSC}(\phi) \\ \text{et donc} : \mathcal{L}(\textit{M}) \neq \mathcal{L}(\phi) \not \Rightarrow \mathsf{MSC}(\textit{M}) \neq \mathsf{MSC}(\phi) \end{split}$$

+ complexité comparable à la vérification classique mais avec des modèles exponentiellement plus concis

Perspectives:

- Faire de la vérification sur les langages de MSC dans le cas nor cohérent;
- Faire de la vérification de HMSC causaux où l'on s'autorise à séparer l'envoi et la réception de certains messages (et à les recoller lors de la composition).

Résumé:

- les HMSC causaux cohérents permettent de faire de la vérification de systèmes non bornés, vis-à-vis de propriétés données sous la forme de HMSC causaux cohérents et globalement coopératifs
 - ► Adaptation des preuves de | HM00, Morin02, GMSZ02]
- si φ n'est pas cohérent :

$$\mathcal{L}(\textit{M}) = \mathcal{L}(\phi) \Rightarrow \mathsf{MSC}(\textit{M}) = \mathsf{MSC}(\phi)$$
 et donc : $\mathcal{L}(\textit{M}) \neq \mathcal{L}(\phi) \not\Rightarrow \mathsf{MSC}(\textit{M}) \neq \mathsf{MSC}(\phi)$

 complexité comparable à la vérification classique mais avec des modèles exponentiellement plus concis

Perspectives:

- Faire de la vérification sur les langages de MSC dans le cas non cohérent ;
- Faire de la vérification de HMSC causaux où l'on s'autorise à séparer l'envoi et la réception de certains messages (et à les recoller lors de la composition).

Résumé:

- les HMSC causaux cohérents permettent de faire de la vérification de systèmes non bornés, vis-à-vis de propriétés données sous la forme de HMSC causaux cohérents et globalement coopératifs
 - ► Adaptation des preuves de [HM00,Morin02,GMSZ02]
- si φ n'est pas cohérent :

$$\mathcal{L}(M) = \mathcal{L}(\varphi) \Rightarrow \mathsf{MSC}(M) = \mathsf{MSC}(\varphi)$$

et donc : $\mathcal{L}(M) \neq \mathcal{L}(\varphi) \not\Rightarrow \mathsf{MSC}(M) \neq \mathsf{MSC}(\varphi)$

+ complexité comparable à la vérification classique mais avec des modèles exponentiellement plus concis

Perspectives:

- Faire de la vérification sur les langages de MSC dans le cas non cohérent ;
- Faire de la vérification de HMSC causaux où l'on s'autorise à séparer l'envoi et la réception de certains messages (et à les recoller lors de la composition).

Plan de l'exposé

Modèles locaux et leurs interactions globales

Interactions par mémoire partagée Interactions par échange de messages Interactions mixtes

Modéliser

HMSC causaux Expressivité Critiques et perspectives

Vérifier

Vérification complète Vérification partielle Critiques et perspectives

Superviser

Diagnostic
Critiques et perspectives

Conclusion

Superviser: contexte

modèle M

- Propriété φ observation partielle O limitée à Σ_o
- "Est-ce que l'observation permet de déduire que le système a toujours fait une action sur le processus bleu avant de faire une action sur le processus vert?"
- $Diag(O, M) \models \varphi$

Architecture

Certains processus sont des capteurs qui envoient à un superviseur :

- les actions effectuées
- les causalités connues

Le superviseur calcule un diagnostic Diag(O, M) et vérifie ϕ

Superviser: contexte

modèle M

- Propriété φ observation partielle O limitée à Σ_o
- "Est-ce que l'observation permet de déduire que le système a toujours fait une action sur le processus bleu avant de faire une action sur le processus vert?"
- $Diag(O, M) \models \varphi$

Architecture

Certains processus sont des capteurs qui envoient à un superviseur :

- les actions effectuées ;
- les causalités connues.

Le superviseur calcule un diagnostic Diag(O, M) et vérifie ϕ

Définition (observation)

une observation est un MSC causal

Définition (M-diagnostic)

u est un M-diagnostic de O si :

- (i) $u \in \mathcal{L}(M)$
- (ii) $\pi_{\Sigma_o}(u)$ est une extension d'ordre de O.

Définition (observation)

une observation est un MSC causal

Définition (*M*-diagnostic)

u est un M-diagnostic de O si :

- (i) $u \in \mathcal{L}(M)$;
- (ii) $\pi_{\Sigma_o}(u)$ est une extension d'ordre de O.

Définition (observation)

une observation est un MSC causal

Définition (*M*-diagnostic)

u est un M-diagnostic de O si :

- (i) $u \in \mathcal{L}(M)$;
- (ii) $\pi_{\Sigma_o}(u)$ est une extension d'ordre de O.

```
\mathcal{L}(Diag(O, M)) = \{ u \mid u \text{ est un } M\text{-diagnostic de } O \}
= \mathcal{L}(M) \cap \pi_{\Sigma_o}^{-1}(\text{ Extensions}(O))
\simeq \widehat{\pi_{\Sigma_o}}(\mathcal{L}(\widehat{\pi}_{\Sigma_o}(M)) \cap \text{ Extensions}(O))
```

$$\mathcal{L}(\textit{Diag}(O, M)) = \{ u \mid u \text{ est un } M\text{-diagnostic de } O \}$$

$$= \mathcal{L}(M) \cap \pi_{\Sigma_o}^{-1}(\text{ Extensions}(O))$$

$$= \pi_{\Sigma_o}(\mathcal{L}(\pi_{\Sigma_o}(M)) \cap \text{Extensions}(O))$$

HMSC causaux encapsulés

Définition (projection)

 $\widehat{\pi}_{\Sigma_o}$: on garde en mémoire la causalité pour chaque action de Σ

$$\mathcal{L}(\textit{Diag}(O, M)) = \{ u \mid u \text{ est un } M\text{-diagnostic de } O \}$$

$$= \mathcal{L}(M) \cap \pi_{\Sigma_o}^{-1}(\text{ Extensions}(O))$$

$$\simeq \widehat{\pi}_{\Sigma_o}^{-1}(\mathcal{L}(\widehat{\pi}_{\Sigma_o}(M)) \cap \text{Extensions}(O)$$

HMSC causaux encapsulés

Définition (composition)

on compose les blocs intermédiaires puis on les efface

Exemple:

$$D_1 = \{...(V, B), (B, V)...\}$$


```
\mathcal{L}(Diag(O, M)) = \{ u \mid u \text{ est un } M\text{-diagnostic de } O \} 
= \mathcal{L}(M) \cap \pi_{\Sigma_o}^{-1}(\text{ Extensions}(O)) 
\simeq \widehat{\pi}_{\Sigma_o}^{-1}(\mathcal{L}(\widehat{\pi}_{\Sigma_o}(M)) \cap \text{Extensions}(O))
```

Théorème (stabilité) | FORTE'07]

Pour tout HMSC causal cohérent M:

$$\mathcal{L}(\widehat{\pi}_{\Sigma_o}(M)) = \widehat{\pi}_{\Sigma_o}(\mathcal{L}(M))$$

```
 \mathcal{L}(\textit{Diag}(O, \textit{M})) = \{u \mid u \text{ est un } \textit{M}\text{-diagnostic de } O \} 
 = \mathcal{L}(\textit{M}) \cap \pi_{\Sigma_o}^{-1}(\text{ Extensions}(O)) 
 \simeq \widehat{\pi}_{\Sigma_o}^{-1}(\mathcal{L}(\widehat{\pi}_{\Sigma_o}(\textit{M})) \cap \text{Extensions}(O))
```

Théorème (stabilité) | FORTE'07]

Pour tout HMSC causal cohérent M:

$$\mathcal{L}(\widehat{\pi}_{\Sigma_o}(M)) = \widehat{\pi}_{\Sigma_o}(\mathcal{L}(M))$$

Théorème (supervision) [WODES'06]

Soient $(D_i)_{A_i}$ fixées et M, φ HMSC causaux cohérents.

Si φ est globalement coopératif alors on peut décider si :

- $MSC(Diag(O, M)) \cap MSC(\phi) = \emptyset$;
- $MSC(Diag(O, M)) \subseteq MSC(\phi)$.

En utilisant le même genre de techniques :

Théorème (corrélation d'événements)

Savoir si deux événements observés sont ordonnés dans toutes les exécutions de *M* est décidable (CoNP-complet).

Théorème (supervision) | WODES'06]

Soient $(D_i)_{A_i}$ fixées et M, φ HMSC causaux cohérents.

Si φ est globalement coopératif alors on peut décider si :

- $MSC(Diag(O, M)) \cap MSC(\phi) = \emptyset$;
- $MSC(Diag(O, M)) \subseteq MSC(\phi)$.

En utilisant le même genre de techniques :

Théorème (corrélation d'événements) | FORTE'07]

Savoir si deux événements observés sont ordonnés dans toutes les exécutions de *M* est décidable (CoNP-complet).

Résumé:

- HMSC causaux *encapsulés* FORTE'07
 - stables par projection
 - structure qui permet d'utiliser des techniques de dépliage pour le diagnostic [BFJH03]
- opérations qui peuvent être précédées par un phase d'abstraction ou de filtrage | NOTERE'07];
- la construction a été mise en œuvre dans un prototype

Perspectives

- faire de la corrélation d'événement probabilisée
- faire de la supervision à la volée.

Résumé:

- HMSC causaux *encapsulés* [FORTE'07]
 - stables par projection
 - structure qui permet d'utiliser des techniques de dépliage pour le diagnostic |BFJH03|
- opérations qui peuvent être précédées par un phase d'abstraction ou de filtrage | NOTERE'07];
- la construction a été mise en œuvre dans un prototype

Perspectives

- faire de la corrélation d'événement probabilisée;
- faire de la supervision à la volée

Résumé:

- HMSC causaux *encapsulés* [FORTE'07]
 - stables par projection
 - structure qui permet d'utiliser des techniques de dépliage pour le diagnostic |BFJH03|
- opérations qui peuvent être précédées par un phase d'abstraction ou de filtrage | NOTERE'07];
- la construction a été mise en œuvre dans un prototype ;

Perspectives

- faire de la corrélation d'événement probabilisée ;
- faire de la supervision à la volée.

Résumé:

- HMSC causaux *encapsulés* FORTE'07
 - stables par projection
 - structure qui permet d'utiliser des techniques de dépliage pour le diagnostic |BFJH03|
- opérations qui peuvent être précédées par un phase d'abstraction ou de filtrage | NOTERE'07];
- la construction a été mise en œuvre dans un prototype ;

Perspectives:

- faire de la corrélation d'événement probabilisée ;
- faire de la supervision à la volée.

Résumé:

- HMSC causaux *encapsulés* [FORTE'07]
 - stables par projection
 - structure qui permet d'utiliser des techniques de dépliage pour le diagnostic [BFJH03]
- opérations qui peuvent être précédées par un phase d'abstraction ou de filtrage | NOTERE'07];
- la construction a été mise en œuvre dans un prototype ;

Perspectives:

- faire de la corrélation d'événement probabilisée ;
- faire de la supervision à la volée.

Résumé

HMSC causaux cohérents et faiblement réguliers : mise en œuvre par des automates mixtes à canaux bornés;

Tous les HMSC causaux cohérents : vérification et supervision pour des propriétés décrites sous la forme de HMSC causaux cohérents globalement coopératifs.

Perspectives

modéliser : mise en œuvre de systèmes non bornés ;

vérifier : vérification de HMSC causaux contextuels ;

superviser : construire un diagnostic à la volée.

Perspectives générales :

- augmenter l'expressivité des modèles en gardant la vérification et la supervision décidables dans le but d'obtenir un modèle qui servirait de sémantique à des programmes parallèles et répartis;
- construction de modèles globaux à partir de programmes existants en utilisant des techniques d'interprétation abstraite pour le comportement des canaux de communication.

Merci de votre attention!