- Expected value and Variance of a linear function of RVs X and Y: Let the linear function h(X) = aX + bY. $E(aX + bY) = a \cdot E(X) + b \cdot E(Y),$ $V(aX + bY) = a^2 \cdot V(X) + b^2 \cdot V(Y)$
- $X \sim Bin(n,p), f(x) = P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}, for x = 0, 1, 2, ..., n. E[X] = np, V(X) = np(1-p)$
- $X \sim Unif(a,b)$ (Discrete): $f(x) = \frac{1}{b-a+1}$, $\mu = EX = \frac{(a+b)}{2}$, $V(X) = \frac{(b-a+1)^2-1}{12}$
- $X \sim Unif(a,b)$ (Continuous): $f(x) = \frac{1}{b-a}$ for $a \le x \le b$, $\mu = EX = \frac{(a+b)}{2}$, $V(X) = \frac{(b-a)^2}{12}$
- $X \sim \mathcal{N}(\mu, \sigma^2), f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty, E[X] = \mu, V(X) = \sigma^2$
- If X_1, X_2, \dots, X_p are random variables, and $Y = c_1 X_1 + c_2 X_2 + \dots + c_p X_p$, then $EY = c_1 EX_1 + c_2 EX_2 + \dots + c_p EX_p, \ V(Y) = c_1^2 V(X_1) + c_2^2 V(X_2) + \dots + c_p^2 V(X_p) + 2 \sum_{i < j} \sum c_i c_j \cdot Cov(X_i, X_j)$
- If $X_1, X_2, ..., X_p$ are independent: $V(Y) = c_1^2 V(X_1) + c_2^2 V(X_2) + ... + c_p^2 V(X_p)$

- If $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ for $i=1, \ldots, p \to Y = \sum_i c_i X_i \sim \mathcal{N}(\sum_i c_i \mu_i, \sum_i c_i^2 \sigma_i^2)$. $\bar{x} = \frac{\sum_{i=1}^n x_i}{n}, \quad s^2 = \frac{\sum_{i=1}^n (x_i \bar{x})^2}{n-1} = \frac{(\sum_{i=1}^n x_i^2) n\bar{x}^2}{n-1}$ Central Limit Theorem: If X_1, X_2, \ldots, X_n is a random sample of size n taken from a population (either finite or infinite) with mean μ and finite variance σ^2 , and if \bar{X} is the sample mean, the limiting form of the distribution of $Z=\frac{\bar{X}-\mu}{\sigma(\sqrt{x})}$ as $n \rightarrow \infty$, is the standard normal distribution.
- If we have two independent populations with means μ_1 & μ_2 and variances σ_1^2 & σ_2^2 and if \bar{X}_1 & \bar{X}_2 are the sample means of two independent random samples of size $n_1 \& n_2$ from these populations, then the sampling distribution of $Z=\frac{\bar{X}_1-\bar{X}_2-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} \ \ \text{is approximately standard normal}.$
- The point estimator $\hat{\theta}$ is an unbiased estimator of the parameter θ if $E(\hat{\theta}) = \theta$.
- $MSE(\widehat{\Theta}) = E(\widehat{\Theta} \theta)^2 = V(\widehat{\Theta}) + Bias(\widehat{\Theta})^2$, $Bias(\widehat{\Theta}) = E(\widehat{\Theta}) \theta$
- Relative efficiency of $\hat{\theta}_2$ to $\hat{\theta}_1$ is defined as $RE = \frac{MSE(\hat{\theta}_1)}{MSE(\hat{\theta}_2)}$
- If \bar{x} is the sample mean of a random sample of size n from a normal population with known variance σ^2 , a $100 \cdot$ $(1-\alpha)\%$ CI on μ is given by $\bar{x}-z_{\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\leq\mu\leq\bar{x}+z_{\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}$
- CI on μ for a large sample $(n \ge 40)$
 - 1. Known population variance σ^2 : $\bar{x} z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$
 - 2. Unknown population variance σ^2 : $\bar{x} z_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$
- If \bar{x} and s are the mean and sample standard deviation of a random sample (n < 40) from a normal distribution with unknown variance σ^2 , a 100(1-lpha)% confidence interval on μ is given by

$$\bar{x} - t_{\frac{\alpha}{2}, n-1} \cdot \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2}, n-1} \cdot \frac{s}{\sqrt{n}}$$

- If s^2 is the sample variance from a random sample of n observations from a normal distribution with unknown variance σ^2 , then a $100(1-\alpha)\%$ confidence interval on σ^2 is $\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2},n-1}^2} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2},n-1}^2}$
- If \hat{p} is the proportion of observations in a random sample of size n that belongs to a class of interest, an approximate $100(1-\alpha)\%$ confidence interval on the proportion p of the population that belongs to this class is $\hat{p}-z_{-1}^{\alpha}\Big|\frac{\hat{p}(1-\hat{p})}{n}\le$ $p \le \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$, where np > 5 and n(1-p) > 5
- Type I error: Rejecting the null hypothesis H_0 when it is true.
- Type II error: Failing to reject the null hypothesis H_0 when it is false.
- $\alpha = P(Type\ I\ Error), \ \beta = P(Type\ II\ Error), \ Power = 1 \beta$
- [Note] When you calculate your test statistics, always assume H_0 is true.

• Large sample ($n \ge 40$): $z_0 = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ or $z_0 = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$

• Small Sample: Normally distributed

1. Known population variance: $z_0 = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$

2. Unknown population variance: $t_0 = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$

• HT on variance: $\chi_0^2 = \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$

• HT on proportion: similar to large sample: $\hat{p} = \frac{x}{n} \sim N\left(p, \frac{p(1-p)}{n}\right)$, $z_0 = \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} = \frac{n\hat{p}-np}{\sqrt{np(1-p)}}$

 $\bullet \quad \text{Large sample } (n \geq 40) \colon z_0 = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \ or \ z_0 = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \ if \ \sigma_1^2 \text{, } \sigma_2^2 \ unknown.$

• Small Sample: Normally distributed

1. Known population variances: $z_0 = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$

2. Unknown population variance:

I. Equal Variance Assumption: $t_0=\frac{(\bar{x_1}-\bar{x_2})-(\mu_1-\mu_2)}{S_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t_{n_1+n_2-2}$, where $S_p^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}$

II. Unequal Variance Assumption: $t_0 = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t_v \text{, where } v = \frac{\left(\frac{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{\frac{s_1^2}{n_1}}{n_1} - \frac{t}{n_2}\right)^2}}{\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{n_1 - 1} + \frac{t}{n_2}}$