- 9. Pe un site de cumpărături au intrat 10 vizitatori. Probabilitatea ca un vizitator să cumpere este 0.2.
 - a) Să se determine probabilitatea ca exact doi clienți să cumpere de pe acest site.
 - b) Care este probabilitatea ca cel mult 4 clienți să facă cumpărături?

a)
$$\gamma \sim \text{lim} (M = 10, \Lambda = 0, 2)$$

 $P(\gamma = 2) = C_{10}^{2} (0, 2)^{2} (0, 8)^{8}$

$$b) P(y \le 4) = \sum_{h=0}^{4} C_{10} (0,2)^{h} (0,8)^{10-h}$$

10. Fie $X \sim Geom(p)$. Să se determine M(X) şi $M(\frac{1}{2X})$.

$$M(x) = \sum_{h=1}^{\infty} h \rho \left(1-\rho\right) = \rho \sum_{h=1}^{\infty} h \cdot g = 0$$

$$\sum_{k=0}^{\infty} q^{k} = \frac{1}{1-q} \qquad |q| < 1 \qquad doiv > \sum_{k=1}^{\infty} hg^{k-1} = \frac{1}{(1-q)^{\frac{1}{2}}}$$

$$\sum_{h=1}^{\infty} hg^{h-1} - \frac{1}{(1-g)^2} = \frac{1}{r^2}$$

$$= M(x) - \rho \cdot \frac{1}{r^2} = \frac{1}{r}$$

$$= M(x) - \rho \cdot \frac{1}{\rho^2} = \frac{1}{\rho}$$

$$M(\frac{1}{x}) - \sum_{h=1}^{\infty} \frac{1}{2^h} \rho(1-\rho)^{h-1}$$

