MM-Hand: 3D-Aware Multi-Modal Guided Hand Generative Network

for 3D Hand Pose Synthesis

Zhenyu Wu^{1*}, Duc Hoang^{1*}, Shih-Yao Lin², Yusheng Xie³, Liangjian Chen⁴, Yen-Yu Lin⁵, Zhangyang Wang⁶, and Wei Fan²

¹Texas A&M University, ²Tencent America, ³Amazon Web Service, ⁴University of California at Irvine,

⁵National Chiao Tung University, ⁶University of Texas at Austin

The University of Texas at Austin Electrical and Computer Engineering

Cockrell School of Engineering

Methodology

Motivation

- ❖ 3D hand pose estimation is widely used in sign language recognition, HCI, healthcare and entertainment
- Annotation of 3D hand pose on RGB hand images are difficult and prone to errors by humans
- Limitation of using synthetic hand images to train 3D hand pose estimators
- Estimators trained on the synthetic data often fail to generalize due to the visual domain gap between non-photo-realistic synthetic data and real images
- Building hand models with various textures or shapes requires laborious 3D geometric modeling and rendering.
- Two challenges specific to the hand domain
- occlusion: various 3D hand movements will always make some finger parts invisible from 2D images.
- self-similarity: the five fingers of the same hand share similar appearance and structure, making them indistinguishable.

Introduction

- ❖ Our proposed framework, 3D-Aware Multi-modal Guided Hand Generative Network (MM-Hand), carries out the first attempts to generate hand images under the guidance of 3D poses. The proposed MM-Hand is able to improve the realism, increase the diversity, and preserve the 3D pose of the generated images simultaneously.
- MM-Hand is trained with a novel geometry-based curriculum learning strategy. Starting with easy pose-images pairs, we gradually increase the training task difficulty.
- Extensive experiments demonstrate that our generated hand images can consistently improve 3D hand pose estimation, across two strong pose estimators and two hand pose datasets.

Visualization

We randomly pick hand images generated by MM-hand trained on STB

A detailed look into the depth map generator

Training and inference details

* We hypothesize that the level of difficulty to generate target hand image $\widetilde{I_{p_t}}$ from source hand image I_{p_s} is positively correlated with the 3D pose distance between p_s and p_t .

❖ GCT: Geometry-based Curriculum

 In the training stage, MM-Hand is fed by the data loader with hand pairs progressively from the easiest (smallest pose distance) pair to the hardest (largest pose distance) pair.

❖ INNM: Inference with Nearest Neighbor Match

In the inference stage, given a target 3D hand pose p_t , we find the best matched source hand image I_{p_s} in the training hand images whose pose p_s is closest to p_t in pose distance.

Results and ablation studies

Our proposed NDFT-Faster-RCNN network

Non-trainable Modules

Deconvolutional Modules

Convolutional Modules

------> MAB-n

 c_{n-1} fc

MAB-1

	χ_{STB}					χ_{RHP}					
	SSIM↑	IS ↑	mask-SSIM↑	mask-IS ↑	PCKb↑	SSIM↑	IS ↑	mask-SSIM ↑	mask-IS↑	PCKb↑	
CycleGAN	0.002	1.52	0.611	2.49	0.07	0.008	2.08	0.816	2.98	0.015	
Pix2pix	0.027	2.24	0.625	2.632	0.527	0.010	2.67	0.816	2.85	0.119	
PG^2	0.026	2.33	0.638	2.224	0.686	0.021	2.236	0.822	2.762	0.250	
Pose-GAN	0.02	1.01	0.610	1.495	0.05	0.014	1.03	0.808	2.012	0.014	
PATN	0.014	2.371	0.656	2.276	0.564	0.054	2.348	0.830	2.532	0.248	
Ours (MM-Hand)	0.115	2.187	0.677	2.53	0.688	0.078	2.376	0.844	2.747	0.619	

Decoder

DONALD BREN SCHOOL OF

Discriminator

(pose)

Discriminator

(6 stage)

HPM

(1 stage)

INFORMATION AND COMPUTER SCIENCES

Quantitative comparison of the generated hand images using CycleGAN, Pix2pix, PG², Pose-GAN, PATN, and our proposed MM-Hand on the two benchmark datasets STB and RHP.

		χ_{STB}				χ_{RHP}					
		0.2	0.4	0.6	0.8	1.0	0.2	0.4	0.6	0.8	1.0
\mathcal{M}_{Hand3D}	None	60.28	48.84	30.23	18.74	9.81	90.12	60.27	36.58	25.29	20.52
	CycleGAN	80.27	82.57	75.39	72.56	9.81	90.29	78.29	60.29	40.29	20.52
	Pix2pix	72.57	71.27	54.13	50.25	9.81	82.39	76.48	62.16	80.29	20.52
	PG^2	74.27	68.22	58.23	52.28	9.81	85.29	72.83	64.49	40.25	20.52
	PATN	70.28	68.23	50.37	40.57	9.81	84.25	74.49	84.35	60.25	20.52
	Pose-GAN	72.58	69.27	52.85	39.56	9.81	94.59	84.38	67.83	45.59	20.52
	Ours (MM-Hand)	52.39	32.37	27.49	16.48	9.81	80.29	54.38	28.49	24.38	20.52
		0.2	0.4	0.6	0.8	1.0	0.2	0.4	0.6	0.8	1.0
\mathcal{M}_{3D-HPM}	None	64.16	48.91	33.00	35.51	15.71	52.21	50.38	47.36	45.43	35.86
	CycleGAN	111.75	54.55	51.71	47.02	15.71	66.63	59.63	57.59	61.67	35.86
	Pix2pix	99.59	46.71	47.83	46.91	15.71	65.73	64.56	62.31	55.07	35.86
	PG^2	91.03	47.00	47.20	46.78	15.71	61.05	58.95	57.59	56.72	35.86
	PATN	99.66	46.95	47.84	40.18	15.71	56.11	50.26	50.64	51.92	35.86
	Pose-GAN	102.70	46.65	48.03	47.02	15.71	60.54	57.44	53.40	52.83	35.86
	Ours (MM-Hand)	41.79	20.24	16.79	16.15	15.71	52.47	42.22	41.63	40.49	35.86

The 3D hand pose estimation performance using M_{Hand3D} and M_{3D-HPM} on X_{STB} and X_{RHP} , augmented by images generated by different methods under different portion α of X as the reduced training set.