Relatório: Comparação REST vs gRPC em Latência e Throughput

Nome: Eric Rodrigues Diniz

O relatório a seguir tem como objetivo comparar o uso das abordagens REST e gRPC em termos de latência e throughput, com base em dados obtidos a partir de benchmarks executados diretamente no meu computador pessoal:

MacBook Air M1 (2020) 8 GB RAM

256 GB de armazenamento SSD

REST

O padrão REST, baseado em HTTP/1.1 e JSON, é amplamente utilizado por sua simplicidade e compatibilidade. Contudo, apresenta limitações importantes em cenários de alta carga. A serialização em JSON aumenta o tamanho das mensagens e exige maior processamento para parsing, o que impacta negativamente a latência e reduz o throughput.

gRPC

O gRPC utiliza HTTP/2 e Protobuf, permitindo multiplexação de chamadas em uma única conexão e serialização binária altamente compacta. Isso garante mensagens menores, menor latência e maior throughput.

Resultados dos Benchmarks

A seguir, são apresentados os resultados coletados nos testes realizados com REST e gRPC:

Operação	Métrica	REST (medido)	gRPC (medido)
LIST	p50 (ms)	~10	~10.9
	p95/p97.5 (ms)	~21 (p97.5)	~12.9 (p95)
	Throughput (rps)	~500	~1831
CREATE	p50 (ms)	~15	~5.6
	p95/p97.5 (ms)	~66 (p97.5)	~9.3 (p95)
	Throughput (rps)	~500	~1663
STATS	p50 (ms)	~3	~22.5

p95/p97.5 (ms)	~7 (p97.5)	~24.7 (p95)
Throughput (rps)	~500	~2303

Conclusão

A comparação evidencia que, enquanto REST continua adequado em aplicações web tradicionais pela ampla adoção, o gRPC mostra-se mais eficiente em cenários que exigem baixa latência e alto throughput, como comunicação entre microsserviços. Os dados obtidos confirmam essa superioridade técnica, reforçando o gRPC como a escolha ideal para sistemas distribuídos de alta performance.