FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING, UNIVERSITY OF ZAGREB

State-of-the-Art Survey of Manifold Based Control Methods for Unmanned Aerial Vehicles

PhD Qualifying Exam

Supervisor

Candidate

prof. dr. sc. Stjepan Bogdan

mag. ing. Lovro Markovic

Zagreb, 9.3.2020.

Table of Contents

Introduction

Geometric Control and Mechanics

Passive Decomposition

Conclusion

Table of Contents

Introduction

Geometric Control and Mechanics

Passive Decomposition

Conclusion

Research Area

- Unmanned Aerial Vehicles (UAVs)
- Attitude (ϕ, θ, ψ) and Position (x, y, z) control
- Mathematical model embedded with a manifold structure
- Two frameworks considered:
 - Geometric Mechanics and Control
 - Passive Decomposition

Figure: UAV equipped with a Velodyne LiDAR while performing a wind-turbine inspection.

Why Manifolds? (1)

Figure: Manifold \mathcal{M} , Euclidean space \mathbb{R}^n and transport maps φ .¹

UAV configuration space:

$$\mathsf{T} = \begin{bmatrix} \mathsf{R} & \mathbf{p} \\ \mathbf{0} & 1 \end{bmatrix} \stackrel{\varphi}{\longleftrightarrow} \zeta = [x, y, z, \phi, \theta, \psi] \quad (1)$$

$$R \in SO(3), T \in SE(3), \zeta \in \mathbb{R}^6$$
 (2)

- Lie Group
 - set of smooth differentiable manifolds
 - group multiplication and inversion properties
 - e.g. SO(3), SE(3), S²

¹Vladim Belov, "On Geometry and Symmetries in Classical and Quantum Theories of Gauge Gravity"

Why manifolds? (2)

- Compact model dynamics represented as a Lagrangian / Hamiltonian system
- Coordinate-free approach
- No singularities
- No ambiguities

Table of Contents

Introduction

Geometric Control and Mechanics

Passive Decomposition

Conclusion

Geometric Mechanics

- Introduced by:
 - F. Bullo and A. Lewis, 2005.²
 - T. Lee. 2008.³
 - T. Lee et al. 2018.⁴
- Rotating rigid body dynamics equation:

$$m\ddot{\mathbf{x}} + mg\mathbf{e}_3 = f\mathbf{R}\mathbf{e}_3 \tag{3}$$

$$\mathsf{J}\dot{\Omega} + \Omega \times \mathsf{J}\Omega = \mathsf{M}$$
 (4)

$$\dot{\mathsf{R}} = \mathsf{R}\widehat{\mathbf{\Omega}} \tag{5}$$

⁴Taeyoung Lee, Melvin Leok, and N. Harris McClamroch, Global formulations of Lagrangian and Hamiltonian dynamics on manifolds: a geometric approach to modeling and analysis, Interaction of mechanics and mathematics series (Springer, 2018).

²Andrew D. Lewis Francesco Bullo, Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems, 1st ed., Texts in applied mathematics 49 (Springer, 2005).

³Taeyoung Lee, "Computational geometric mechanics and control of rigid bodies" (2008).

Geometric Control (1)

- PD control with nonlinear terms
- First developed by T. Lee et al. 2010.⁵
- T. Lee et al. 2011.6 Robust geometric control
- Kotaru et al. 2019.⁷ L1 Aadaptive controller
- S. Lee et al. 2019.⁸ Parameter tuning optimization

⁸Seongheon Lee and Hyochoong Bang, "Automatic Gain Tuning Method of a Quad-Rotor Geometric Attitude Controller Using A3C" (2019).

⁵T. Lee, M. Leok, and N. H. McClamroch, "Geometric tracking control of a quadrotor UAV on SE(3)" (2010): 5420–5425.

 $^{^6}$ T. Lee, M. Leok, and N. Harris McClamroch, "Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)", ArXiv e-prints (Sept. 2011).

⁷Prasanth Kotaru, Ryan S. Edmonson, and Koushil Sreenath, "Geometric L1 Adaptive Attitude Control for a Quadrotor UAV" (2019).

Geometric Control (2)9

Figure: Two UAVs endowed with variable center of gravity by moving masses and manipulator carried payload (top). Position tracking results (right).⁹

 $^{^9}$ Lovro Markovic et al., "Geometric Tracking Control of Aerial Robots Based on Centroid Vectoring" (June 2019).

Gemetric Control - Transportation Tasks (1)

- Introduced by T. Lee and V. Kumar 2013.¹⁰
- A. Goodarzi and T. Lee 2015.¹¹ Multiple quadrotors employed
- A. Goodarzi and T. Lee 2015.¹² and A. Goodarzi et al. 2013.¹³ -Adaptive control with unknown mass variations

¹³Farhad A. Goodarzi, Daewon Lee, and Taeyoung Lee, "Geometric Stabilization of Quadrotor UAV with a Payload Connected by Flexible Cable" (2013).

¹⁰K. Sreenath, T. Lee, and V. Kumar, "Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load" (2013): 2269–2274.

 $^{^{11}}$ Farhad A. Goodarzi and Taeyoung Lee, "Stabilization of a Rigid Body Payload with Multiple Cooperative Quadrotors" (2015).

¹²Farhad A. Goodarzi and Taeyoung Lee, "Dynamics and control of quadrotor UAVs transporting a rigid body connected via flexible cables", 2015 American Control Conference (ACC) (2015): 4677–4682.

Geometric Control - Transportation Tasks (2)¹⁴

- Multiple quadrotor UAVs carrying a rigid body payload via cables
- Cable configuration lies in S² spherical Lie group
- Complete system configuration lies in $SE(3) \times S^2$
- Payload position and attitude tracking problem

Figure: Payload transportation with multiple UAVs. 14

¹⁴Taeyoung Lee, "Geometric control of multiple quadrotor UAVs transporting a cable-suspended rigid body", 53rd IEEE Conference on Decision and Control (2014): 6155–6160.

Table of Contents

Introduction

Geometric Control and Mechanics

Passive Decomposition

Conclusion

Passive Decomposition

- First introduced by D. Lee 2008.¹⁵
- Proposed system dynamics split:
 - Shape internal configuration of each robot
 - Locked current overall behavior of multiple robot systems
 - Coupled interaction between locked and shape dynamics
- Passive decomposition
 - Applying a control law to cancel the dynamics coupling terms without energy generation
 - Enforces energetic passivity

¹⁵Dongjun Lee, "Passive Decomposition of Multiple Nonholonomic Mechanical Systems under Motion Coordination Requirements". IFAC Proceedings Volumes 41.2 (2008): 4367–4373.

Passive Decomposition - QM systems¹⁶ 17

Figure: QM system¹⁵

- Decoupled quadrotor-manipulator(QM) system:
 - center-of-mass dynamics in E(3)
 - Robotic manipulator Lagrange dynamics
- End-effector control law:
 - Backstepping-like controller¹⁶
 - PID cascade¹⁷

¹⁷Nebi Bulut, Ali Turgut, and Kutluk Arikan, "Decoupled Cascaded PID Control of an Aerial Manipulation System", Hittite Journal of Science and Engineering 6.4 (2019): 251–259.

¹⁶Hyunsoo Yang and Dongjun Lee, "Dynamics and control of quadrotor with robotic manipulator", 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014): 5544–5549.

Passivity Based Control - Payload Transportation

- C. Meissen et al. 2017.¹⁸ General formation and internal control laws
- M E. Guerrero et al. 2015.¹⁹ An Interconnection and Damping Assignment - Passivity Based Control (IDA-PBC) for payload swing suppression
- P. Prajapati et al. 2019.²⁰ Master-slave transportation strategy with human-in-the-loop

²⁰P. Prajapati, S. Parekh, and V. Vashista, "Collaborative Transportation of Cable-Suspended Payload using Two Quadcopters with Human in the loop" (2019): 1–6.

 $^{^{18}}$ Chris Meissen et al., "Passivity-based Formation Control for UAVs with a Suspended Load", IFAC-PapersOnLine 50.1 (2017): 13150 -13155.

¹⁹M. E. Guerrero et al., "Passivity based control for a quadrotor UAV transporting a cable-suspended payload with minimum swing" (2015): 6718–6723.

Passivity Based Control - Aerial Compliance (1)

- E. Spyrakos et al. 2019.²¹ Manipulator passivity preservation control (PPC)
- Q. Delamare 2019.²² Exploiting physical contact to achieve flight maneuvers
- M. Schuster et al. 2019.²³ Energy efficient approach to maximum in-flight wrench generation

²³Micha Schuster et al., "Comparison of design approaches of fully actuated aerial robots based on maximum wrench generation and minimum energy consumption". IFAC-PapersOnLine 52.15 (2019): 603 –608.

²¹E. Spyrakos-Papastavridis, P. R. N. Childs, and J. S. Dai, "Passivity Preservation for Variable Impedance Control of Compliant Robots", IEEE/ASME Transactions on Mechatronics (2019): 1–1.

²²Quentin Delamare, "Algorithms for estimation and control of quadrotors in physical interaction with their environment", Theses, Univ Rennes, Inria, CNRS, IRISA, France, 2019.

Passivity Based Control - Aerial Compliance (2)

 R. Rashad et al. 2019.²⁴ - Passivity based control of a fully actuated UAV for aerial physical interaction near hovering

Figure: A fully-actuated hexarotor UAV applying force to a vertical surface.

²⁴R. Rashad, F. Califano, and S. Stramigioli, "Port-Hamiltonian Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-Hovering", IEEE Robotics and Automation Letters 4.4 (2019): 4378–4385.

Passivity Based Control - Notable Mentions (1)

- Y. larashi et al. 2009.²⁵
 - Passivity based motion coordination of rigid bodies by exchanging information over connected graphs
- H. Yang and D. Lee 2015.²⁶
 - A hierarchical cooperative control framework
 - Endowment of a common grasped object with desired behavior (e.g., trajectory tracking, compliant interaction, etc.)

²⁶H. Yang and D. Lee, "Hierarchical cooperative control framework of multiple quadrotor-manipulator systems" (2015): 4656–4662.

²⁵Y. Igarashi et al., "Passivity-Based Attitude Synchronization in \$SE(3)\$", IEEE Transactions on Control Systems Technology 17.5 (Sept. 2009): 1119–1134.

Passivity Based Control - Notable Mentions (2)

- P. Robuffo Giordano et al. 2011.²⁷
 - Experimental validation of a decentralized passivity-based control strategy for teleoperating a group UAVs
 - Master UAV (human-in-the-loop) controls the group motion and receives feedback about the remote slave motion status
- D. Lee et al. 2013.²⁸
 - Semi-autonomous haptic teleoperation control architecture for multiple UAVs

²⁸D. Lee et al., "Semiautonomous Haptic Teleoperation Control Architecture of Multiple Unmanned Aerial Vehicles", IEEE/ASME Transactions on Mechatronics 18.4 (2013): 1334–1345.

²⁷P. Robuffo Giordano et al., "Experiments of passivity-based bilateral aerial teleoperation of a group of UAVs with decentralized velocity synchronization" (2011): 163–170.

Table of Contents

Introduction

Geometric Control and Mechanics

Passive Decomposition

Conclusion

Future Work (1)

- ENCORE project ²⁹
- Formation flight for building inspection
- Simultaneous exploration and physical interaction with architectural structures
- Applying passivity-based control in a real-world environment
- Goal: compliant multi-agent control method immune to communication unreliability while achieving energetic passivity

²⁹"Encore project", http://encorebim.eu/ Accessed: 2019-09-10

Future Work (2)

Autonomous wind-turbine blade inspection using presented control frameworks

Figure: Inspection trajectory and a wind-turbine model.

Conclusion

- An overview of geometric and passivity based control methods
- General frameworks many application opportunities
- Geometric control trajectory tracking in various configurations
- Passive-decomposition
 - powerful framework with multitude of utilization opportunities
 - trajectory tracking, environment interaction, compliant behavior, haptic user control, formation control etc.
- Current state-of-the-art presented for both frameworks

References (1)

- Bulut, Nebi, Ali Turgut, and Kutluk Arikan. "Decoupled Cascaded PID Control of an Aerial Manipulation System". Hittite Journal of Science and Engineering 6.4 (2019): 251-259. Print.
 - Delamare, Quentin. "Algorithms for estimation and control of quadrotors in physical interaction with their environment". Theses. Univ Rennes, Inria, CNRS, IRISA, France, 2019, Web.

 - Francesco Bullo. Andrew D. Lewis. Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical control systems. 1st ed. Springer, 2005. Print. Texts in applied mathematics 49.

References (2)

- Goodarzi, Farhad A., Daewon Lee, and Taeyoung Lee. "Geometric Stabilization of Quadrotor UAV with a Payload Connected by Flexible Cable". (2013). arXiv: 1309.6717 [math.0C].
- Goodarzi, Farhad A. and Taeyoung Lee. "Dynamics and control of quadrotor UAVs transporting a rigid body connected via flexible cables". 2015 American Control Conference (ACC) (2015): 4677–4682. Print.
 - —. "Stabilization of a Rigid Body Payload with Multiple Cooperative Quadrotors". (2015). Print.
- Guerrero, M. E., et al. "Passivity based control for a quadrotor UAV transporting a cable-suspended payload with minimum swing". (2015): 6718–6723. Print.

References (3)

- Igarashi, Y., et al. "Passivity-Based Attitude Synchronization in \$SE(3)\$". *IEEE Transactions on Control Systems Technology* 17.5 (Sept. 2009): 1119–1134. Print.
- Kotaru, Prasanth, Ryan S. Edmonson, and Koushil Sreenath. "Geometric L1 Adaptive Attitude Control for a Quadrotor UAV". (2019). Print.
- Lee, D., et al. "Semiautonomous Haptic Teleoperation Control Architecture of Multiple Unmanned Aerial Vehicles". *IEEE/ASME Transactions on Mechatronics* 18.4 (2013): 1334–1345. Print.
- Lee, Dongjun. "Passive Decomposition of Multiple Nonholonomic Mechanical Systems under Motion Coordination Requirements". IFAC Proceedings Volumes 41.2 (2008): 4367–4373. Print.

References (4)

- Lee, Seongheon and Hyochoong Bang. "Automatic Gain Tuning Method of a Quad-Rotor Geometric Attitude Controller Using A3C". (2019). Print.
- Lee, T., M. Leok, and N. Harris McClamroch. "Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)". *ArXiv e-prints* (Sept. 2011). arXiv: 1109.4457 [math.OC].
- Lee, T., M. Leok, and N. H. McClamroch. "Geometric tracking control of a quadrotor UAV on SE(3)". (2010): 5420–5425. Print.
 - Lee, Taeyoung. "Computational geometric mechanics and control of rigid bodies". (2008). Print.

References (5)

- —. "Geometric control of multiple quadrotor UAVs transporting a cable-suspended rigid body". *53rd IEEE Conference on Decision and Control* (2014): 6155–6160. Print.
 - Lee, Taeyoung, Melvin Leok, and N. Harris McClamroch. *Global formulations of Lagrangian and Hamiltonian dynamics on manifolds : a geometric approach to modeling and analysis.*Springer, 2018. Print. Interaction of mechanics and mathematics series.
 - Markovic, Lovro, et al. "Geometric Tracking Control of Aerial Robots Based on Centroid Vectoring". (June 2019). Print.

References (6)

- Meissen, Chris, et al. "Passivity-based Formation Control for UAVs with a Suspended Load". *IFAC-PapersOnLine* 50.1 (2017). 20th IFAC World Congress: 13150 –13155. Print.
- Prajapati, P., S. Parekh, and V. Vashista. "Collaborative Transportation of Cable-Suspended Payload using Two Quadcopters with Human in the loop". (2019): 1–6. Print.
 - Rashad, R., F. Califano, and S. Stramigioli. "Port-Hamiltonian Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-Hovering". *IEEE Robotics and Automation Letters* 4.4 (2019): 4378–4385. Print.

References (7)

- Robuffo Giordano, P., et al. "Experiments of passivity-based bilateral aerial teleoperation of a group of UAVs with decentralized velocity synchronization". (2011): 163–170. Print.
 - Schuster, Micha, et al. "Comparison of design approaches of fully actuated aerial robots based on maximum wrench generation and minimum energy consumption". *IFAC-PapersOnLine* 52.15 (2019). 8th IFAC Symposium on Mechatronic Systems MECHATRONICS 2019: 603 –608. Print.
 - Spyrakos-Papastavridis, E., P. R. N. Childs, and J. S. Dai. "Passivity Preservation for Variable Impedance Control of Compliant Robots". *IEEE/ASME Transactions on Mechatronics* (2019): 1–1. Print.

References (8)

- Sreenath, K., T. Lee, and V. Kumar. "Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load". (2013): 2269–2274. Print.
 - Yang, H. and D. Lee. "Hierarchical cooperative control framework of multiple quadrotor-manipulator systems". (2015): 4656–4662.

 Print.
 - Yang, Hyunsoo and Dongjun Lee. "Dynamics and control of quadrotor with robotic manipulator". 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014): 5544–5549. Print.

