

Robotics 2

Trajectory Tracking Control

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Inverse dynamics control

given the robot dynamic model

$$M(q)\ddot{q} + n(q, \dot{q}) = u$$

$$c(q,\dot{q}) + g(q) + \text{friction model}$$

and a twice-differentiable desired trajectory for $t \in [0, T]$

$$q_d(t) \rightarrow \dot{q}_d(t), \ddot{q}_d(t)$$

applying the feedforward torque in nominal conditions

$$u_d = M(q_d)\ddot{q}_d + n(q_d, \dot{q}_d)$$

yields exact reproduction of the desired motion, provided that $q(0) = q_d(0)$, $\dot{q}(0) = \dot{q}_d(0)$ (initial matched state)

In practice ...

a number of differences from the nominal condition

- initial state is "not matched" to the desired trajectory $q_d(t)$
- disturbances on the actuators, truncation errors on data, ...
- inaccurate knowledge of robot dynamic parameters (link masses, inertias, center of mass positions)
- unknown value of the carried payload
- presence of unmodeled dynamics (complex friction phenomena, transmission elasticity, ...)

$$\hat{u}_d = \widehat{M}(q_d)\ddot{q}_d + \widehat{n}(q_d, \dot{q}_d)$$

with \widehat{M} , \widehat{n} estimates of terms (or coefficients) in the dynamic model

note: \hat{u}_d can be computed off line [e.g., by $NE_{\alpha}(q_d, \dot{q}_d, \ddot{q}_d)$]

feedback is introduced to make the control scheme more robust

different possible implementations depending on amount of computational load share

- OFF LINE (→ open loop)
- ON LINE (closed loop)

two-step control design:

- 1. compensation (feedforward) or cancellation (feedback) of nonlinearities
- 2. synthesis of a linear control law stabilizing the trajectory error to zero

STOOM VE

A series of trajectory controllers

1. inverse dynamics compensation (FFW) + PD

$$u = \hat{u}_d + K_P(q_d - q) + K_D(\dot{q}_d - \dot{q})$$

typically, only local stabilization of trajectory error $e(t) = q_d(t) - q(t)$

2. inverse dynamics compensation (FFW) + variable PD

$$u = \hat{u}_d + \widehat{M}(q_d)[K_P(q_d - q) + K_D(\dot{q}_d - \dot{q})]$$

3. feedback linearization (FBL) + [PD+FFW] = "COMPUTED TORQUE"

$$u = \widehat{M}(q)[\ddot{q}_d + K_P(q_d - q) + K_D(\dot{q}_d - \dot{q})] + \widehat{n}(q, \dot{q})$$

feedback linearization (FBL) + [PID+FFW]

$$u = \widehat{M}(q) \left[\ddot{q}_d + K_P(q_d - q) + K_D(\dot{q}_d - \dot{q}) + K_I \int (q_d - q) dt \right] + \widehat{n}(q, \dot{q})$$

more robust to uncertainties, but also more complex to implement in real time

Feedback linearization control

Interpretation in the linear domain

under feedback linearization control, the robot has a dynamic behavior that is invariant, linear and decoupled in its whole workspace $(\forall (q, \dot{q}))$

linearity

a unitary mass (m = 1) in the joint space!!

error transients $e_i = q_{di} - q_i \rightarrow 0$ exponentially, prescribed by K_{Pi} , K_{Di} choice

decoupling

each joint coordinate q_i evolves independently from the others, forced by a_i

$$\ddot{e} + K_D \dot{e} + K_P e = 0 \iff \ddot{e}_i + K_D \dot{e}_i + K_P \dot{e}_i = 0$$

Addition of an integral term: PID

whiteboard...

Routh criterion

Remarks

desired joint trajectory can be generated from Cartesian data

$$\ddot{p}_{d}(t), \dot{p}_{d}(0), p_{d}(0)$$

$$q_{d}(0) = f^{-1}(p_{d}(0))$$

$$\dot{q}_{d}(0) = J^{-1}(q_{d}(0))\dot{p}_{d}(0)$$

$$\ddot{q}_{d}(t) = J^{-1}(q_{d})[\ddot{p}_{d}(t) - \dot{J}(q_{d})\dot{q}_{d}]$$

- real-time computation by Newton-Euler algo: $u_{FBL} = \widehat{NE}_{\alpha}(q, \dot{q}, a)$
- simulation of feedback linearization control

Hint: there is no use in simulating this control law in ideal case ($\hat{\pi} = \pi$); robot behavior will be identical to the linear and decoupled case of stabilized double integrators!!

Further comments

- choice of the diagonal elements of K_P , K_D (and K_I)
 - for shaping the error transients, with an eye to motor saturations...

$$e(t) = q_d(t) - q(t)$$
 critically damped transient

- parametric identification
 - to be done in advance, using the property of linearity in the dynamic coefficients of the robot dynamic model
- choice of the sampling time of a digital implementation
 - compromise between computational time and tracking accuracy, typically $T_c = 0.5 \div 10$ ms
- exact linearization by (state) feedback is a general technique of nonlinear control theory
 - can be used for robots with elastic joints, wheeled mobile robots, ...
 - non-robotics applications: satellites, induction motors, helicopters, ...

- dynamic model of robots with elastic joints
 - q = link position
 - q = link position• $\theta = motor position (after reduction gears)$ 2<math>N = motor position (after reduction gears) coordinates (q, θ)
 - B_m = diagonal matrix (> 0) of inertia of the (balanced) motors
 - K = diagonal matrix (> 0) of (finite) stiffness of the joints

is there a control law that achieves exact linearization via feedback?

$$u = \alpha(q, \theta, \dot{q}, \dot{\theta}) + \beta(q, \theta, \dot{q}, \dot{\theta}) a$$

YES and it yields
$$\frac{d^4q_i}{dt^4} = a_i$$
, $i = 1,...,N$ linear and decoupled system:

N chains of 4 integrators (to be stabilized by linear

control design)

Hint: differentiate (1) w.r.t. time until motor acceleration $\ddot{\theta}$ appears; substitute this from (2); choose u so as to cancel all nonlinearities ...

Alternative global trajectory controller

SPECIAL factorization such that $\dot{M}-2S$ is skew-symmetric

symmetric and positive definite matrices

- global asymptotic stability of $(e, \dot{e}) = (0,0)$ (trajectory tracking)
- proven by Lyapunov+Barbalat+LaSalle
- does not produce a complete cancellation of nonlinearities
 - the \dot{q} and \ddot{q} that appear linearly in the model are evaluated on the desired trajectory
- does not induce a linear and decoupled behavior of the trajectory error $e(t) = q_d(t) q(t)$ in the closed-loop system
- lends itself more easily to an adaptive version
- cannot be computed directly by the standard NE algorithm...

Analysis of asymptotic stability of the trajectory error - 1

 $M(q)\ddot{q} + S(q,\dot{q})\dot{q} + g(q) + F_V\dot{q} = u$ robot dynamics (including friction)

control law
$$u = M(q)\ddot{q}_d + S(q,\dot{q})\dot{q}_d + g(q) + F_V\dot{q}_d + K_Pe + K_D\dot{e}$$

Lyapunov candidate and its time derivative

$$V = \frac{1}{2}\dot{e}^{T}M(q)\dot{e} + \frac{1}{2}e^{T}K_{P}e \ge 0 \implies \dot{V} = \frac{1}{2}\dot{e}^{T}\dot{M}(q)\dot{e} + \dot{e}^{T}M(q)\ddot{e} + e^{T}K_{P}\dot{e}$$

the closed-loop system equations yield

$$M(q)\ddot{e} = -S(q,\dot{q})\dot{e} - (K_D + F_V)\dot{e} - K_P e$$

substituting and using the skew-symmetric property

$$\dot{V} = -\dot{e}^T (K_D + F_V) \dot{e} \le 0 \qquad \dot{V} = 0 \iff \dot{e} = 0$$

• since the system is time-varying (due to $q_d(t)$), direct application of LaSalle theorem is NOT allowed \Rightarrow use Barbalat lemma...

$$q = q_d(t) - e, \dot{q} = \dot{q}_d(t) - \dot{e} \implies V = V(e, \dot{e}, t) = V(x, t)$$

⇒ go to slide 10 in block 8

Analysis of asymptotic stability of the trajectory error - 2

• since i) V is lower bounded and ii) $\dot{V} \leq 0$, we can check condition iii) in order to apply Barbalat lemma

$$\ddot{V} = -2\dot{e}^T(K_D + F_V)\ddot{e}$$
 ... is this bounded?

- from i) + ii), V is bounded $\Rightarrow e$ and \dot{e} are bounded
- lacktriangleright assume that the desired trajectory has bounded velocity \dot{q}_d bounded
- using the following two properties of dynamic model terms

$$0 < m \le ||M^{-1}(q)|| \le M < \infty \qquad ||S(q, \dot{q})|| \le \alpha_S ||\dot{q}||$$

then also \ddot{e} will be bounded (in norm) since

$$\ddot{e} = -M^{-1}(q) [S(q, \dot{q})\dot{e} + K_P e + (K_D + F_V)\dot{e}]$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \\ \text{bounded in norm by } M \qquad \qquad \downarrow \\ \text{bounded in norm by } \alpha_S \|\dot{q}\| \longleftarrow \text{bounded}$$

Analysis of asymptotic stability of the trajectory error – end of proof

we can now conclude by proceeding as in LaSalle theorem

$$\dot{V} = 0 \iff \dot{e} = 0$$

the closed-loop dynamics in this situation is

$$M(q)\ddot{e} = -K_P e$$

$$\Rightarrow \ddot{e} = 0 \Leftrightarrow e = 0 \Rightarrow (e, \dot{e}) = (0, 0)$$
 is the largest invariant set in $\dot{V} = 0$

(global) asymptotic tracking will be achieved

Regulation as a special case

- what happens to the control laws designed for trajectory tracking when q_d is constant? are there simplifications?
- feedback linearization

$$u = M(q)[K_P(q_d - q) - K_D\dot{q}] + c(q, \dot{q}) + g(q)$$

- no special simplifications
- however, this is a solution to the regulation problem with exponential stability (and decoupled transients at each joint!)
- alternative global controller

$$u = K_P(q_d - q) - K_D \dot{q} + g(q)$$

we recover the PD + gravity cancellation control law!!

Trajectory execution without a model

- is it possible to accurately reproduce a desired smooth jointspace reference trajectory with reduced or no information on the robot dynamic model?
- this is feasible in case of repetitive motion tasks over a finite interval of time
 - trials are performed iteratively, storing the trajectory error information of the current execution [k-th iteration] and processing it off line before the next trial [(k+1)-iteration] starts
 - the robot should be reinitialized in the same initial position at the beginning of each trial
 - the control law is made of a non-model based part (typically, a decentralized PD law) + a time-varying feedforward which is updated at every trial
- this scheme is called iterative trajectory learning

Scheme of iterative trajectory learning

control design can be illustrated on a SISO linear system in the Laplace domain

$$W(s) = \frac{y(s)}{y_d(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

 $W(s) = \frac{y(s)}{v_d(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)}$ closed-loop system without learning (C(s) is, e.g., a PD control law)

$$u_k(s) = u'_k(s) + v_k(s) = C(s)e_k(s) + v_k(s)$$
 control law at iteration k

$$y_k(s) = W(s)y_d(s) + \frac{P(s)}{1 + P(s)C(s)}v_k(s)$$
 system output at iteration k

Background math on feedback loops

whiteboard...

algebraic manipulations on block diagram signals in the Laplace domain: $x(s) = \mathcal{L}[x(t)], x = \{y_d, y, u', v, e\} \Rightarrow \{y_d, y_k, u'_k, v_k, e_k\},$ with transfer functions

$$y(s) = P(s)u(s) = P(s)(v(s) + u'(s))$$

$$= P(s)v(s) + P(s)C(s)e(s)$$

$$= P(s)v(s) + P(s)C(s)(y_d(s) - y(s))$$

$$\Rightarrow (1 + P(s)C(s)) y(s) =$$

$$= P(s)v(s) + P(s)C(s)y_d(s)$$

$$\Rightarrow y(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} y_d(s) + \frac{P(s)}{1 + P(s)C(s)} v(s) = W(s)y_d(s) + W_v(s)v(s)$$

feedback control law at iteration k

$$u'_{k}(s) = C(s)(y_{d}(s) - y_{k}(s)) = C(s)y_{d}(s) - P(s)C(s)(v_{k}(s) + u'_{k}(s))$$

$$\Rightarrow u'_{k}(s) = \frac{C(s)}{1 + P(s)C(s)}y_{d}(s) - \frac{P(s)C(s)}{1 + P(s)C(s)}v_{k}(s) = W_{c}(s)y_{d}(s) - W(s)v_{k}(s)$$

error at iteration k

$$e_{k}(s) = y_{d}(s) - y_{k}(s) = y_{d}(s) - (W(s)y_{d}(s) + W_{v}(s)v_{k}(s)) = (1 - W(s))y_{d}(s) - W_{v}(s)v_{k}(s)$$

$$W_{e}(s) = 1/(1 + P(s)C(s))$$
19

Learning update law

the update of the feedforward term is designed as

$$v_{k+1}(s) = \alpha(s)u_k'(s) + \beta(s)v_k(s)$$

 $v_{k+1}(s) = \alpha(s)u_k'(s) + \beta(s)v_k(s)$ with α and β suitable filters (also non-causal, of the FIR type)

recursive expression of feedforward term
$$v_{k+1}(s) = \frac{\alpha(s)C(s)}{1 + P(s)C(s)}y_d(s) + (\beta(s) - \alpha(s)W(s))v_k(s)$$

recursive expression of error
$$e = y_d - y$$

$$e_{k+1}(s) = \frac{1 - \beta(s)}{1 + P(s)C(s)} y_d(s) + (\beta(s) - \alpha(s)W(s))e_k(s)$$

if a contraction condition can be enforced

$$|\beta(s) - \alpha(s)W(s)| < 1$$
 (for all $s = j\omega$ frequencies such that ...)

then convergence is obtained for $k \to \infty$

$$v_{\infty}(s) = \frac{y_d(s)}{P(s)} \frac{\alpha(s)W(s)}{1 - \beta(s) + \alpha(s)W(s)} \quad e_{\infty}(s) = \frac{y_d(s)}{1 + P(s)\mathcal{C}(s)} \frac{1 - \beta(s)}{1 - \beta(s) + \alpha(s)W(s)}$$

Proof of recursive updates

whiteboard...

- recursive expression for the feedworward v_k

$$\begin{aligned} v_{k+1}(s) &= \alpha(s)u_k'(s) + \beta(s)v_k(s) = \alpha(s)C(s)e_k(s) + \beta(s)v_k(s) \\ &= \alpha(s)C(s)[W_e(s)y_d(s) - W_v(s)v_k(s)] + \beta(s)v_k(s) \\ &= \frac{\alpha(s)C(s)}{1 + P(s)C(s)}y_d(s) + (\beta(s) - \alpha(s)W(s))v_k(s) \end{aligned}$$

• recursive expression for the error e_k

$$e_{k}(s) = y_{d}(s) - y_{k}(s) = y_{d}(s) - P(s)(v_{k}(s) + u'_{k}(s))$$

$$\Rightarrow v_{k}(s) = \frac{1}{P(s)} (y_{d}(s) - e_{k}(s)) - u'_{k}(s)$$

$$y_{k+1}(s) = P(s)(v_{k+1}(s) + u'_{k+1}(s)) = P(s)(\alpha(s)u'_{k}(s) + \beta(s)v_{k}(s) + u'_{k+1}(s))$$

$$= P(s) \left(\alpha(s)C(s)e_{k}(s) + \beta(s)\frac{1}{P(s)}(y_{d}(s) - e_{k}(s)) - \beta(s)C(s)e_{k}(s) + C(s)e_{k+1}(s)\right)$$

$$e_{k+1}(s) = y_{d}(s) - y_{k+1}(s)$$

$$= (1 - \beta(s)) y_{d}(s) - [(\alpha(s) - \beta(s))P(s)C(s) - \beta(s)]e_{k}(s) - P(s)C(s)e_{k+1}(s)$$

$$\Rightarrow e_{k+1}(s) = \frac{1 - \beta(s)}{1 + P(s)C(s)}y_{d}(s) + (\beta(s) - \alpha(s)W(s))e_{k}(s)$$

Proof of convergence

STATE OF THE SERVICE OF THE SERVICE

whiteboard...

from recursive expressions

$$v_{k+1}(s) = \frac{\alpha(s)\mathcal{C}(s)}{1 + P(s)\mathcal{C}(s)}y_d(s) + (\beta(s) - \alpha(s)W(s))v_k(s)$$

$$e_{k+1}(s) = \frac{1 - \beta(s)}{1 + P(s)C(s)} y_d(s) + (\beta(s) - \alpha(s)W(s)) e_k(s)$$

compute variations from k to k + 1 (repetitive term in trajectory y_d vanishes!)

$$\Delta v_{k+1}(s) = v_{k+1}(s) - v_k(s) = (\beta(s) - \alpha(s)W(s)) \, \Delta v_k(s)$$

$$\Delta e_{k+1}(s) = e_{k+1}(s) - e_k(s) = (\beta(s) - \alpha(s)W(s)) \Delta e_k(s)$$

by contraction mapping condition $|\beta(s) - \alpha(s)W(s)| < 1 \Rightarrow \{v_k\} \rightarrow v_{\infty}$, $\{e_k\} \rightarrow e_{\infty}$

$$v_{\infty}(s) = \frac{\alpha(s)C(s)}{1 + P(s)C(s)} y_d(s) + (\beta(s) - \alpha(s)W(s)) v_{\infty}(s)$$

$$e_{\infty}(s) = \frac{1 - \beta(s)}{1 + P(s)C(s)} y_d(s) + (\beta(s) - \alpha(s)W(s)) e_{\infty}(s)$$

$$\Rightarrow v_{\infty}(s) = \frac{y_d(s)}{P(s)} \frac{\alpha(s)W(s)}{1 - \beta(s) + \alpha(s)W(s)} \qquad e_{\infty}(s) = \frac{y_d(s)}{1 + P(s)C(s)} \frac{1 - \beta(s)}{1 - \beta(s) + \alpha(s)W(s)}$$

Comments on convergence

• if the choice $\beta = 1$ allows to satisfy the contraction condition, then convergence to zero tracking error is obtained

$$e_{\infty}(s)=0$$

and the inverse dynamics command has been learned

$$v_{\infty}(s) = \frac{y_d(s)}{p(s)}$$

- in particular, for $\alpha(s) = 1/w(s)$ convergence would be in 1 iteration only!
- the use of filter $\beta(s) \neq 1$ allows to obtain convergence (but with residual tracking error) even in presence of unmodeled high-frequency dynamics
- the two filters can be designed from very poor information on system dynamics, using classic tools (e.g., Nyquist plots)

Application to robots

for N-dof robots modeled as

$$[B_m + M(q)]\ddot{q} + [F_V + S(q, \dot{q})]\dot{q} + g(q) = u$$

we choose as (initial = pre-learning) control law

$$u = u' = K_P(q_d - q) + K_D(\dot{q}_d - \dot{q}) + \hat{g}(q)$$

and design the learning filters (at each joint) using the linear approximation

$$W_i(s) = \frac{q_i(s)}{q_{di}(s)} = \frac{K_{Di}s + K_{Pi}}{\hat{B}_m s^2 + (\hat{F}_{Vi} + K_{Di})s + K_{Pi}} \quad i = 1, \dots, N$$

initialization of feedforward uses the best estimates

$$v_1 = [\hat{B}_m + \hat{M}(q_d)]\ddot{q}_d + [\hat{F}_V + \hat{S}(q_d, \dot{q}_d)]\dot{q}_d + \hat{g}(q_d)$$

or simply $v_1 = 0$ (in the worst case) at first trial k = 1

joints 2 and 3 of 6R MIMO CRF robot prototype @DIS

≈ 90% gravity balanced through springs

> high level of dry friction

Harmonic Drives transmissions with ratio 160:1

DSP $T_c = 400 \mu s$ D/A = 12 bit $R/D = 16 \text{ bit}/2\pi$ A/D = 11 bit/(rad/s)

Supervision and Learning

Robot Arm

De Luca, Paesano, Ulivi: IEEE Trans Ind Elect, 1992

Digital Controller

STATE OF THE PARTY OF THE PARTY

Experimental results

