

HW4 QR Code Decoder

張嘉祐

2022/11/03

Introduction

14-byte "www.google.com"

- QR Code
 - Quick Response Code
 - Widely used for URL (Uniform Resource Locator) instant access
 - A variety of spec
 - Version 1 to 40 (from 21x21 to 177x177 pixels)
 - Different character set
 - Different level of error correction capability
 - Spec used in this assignment
 - Version 1 (21x21 pixels)
 - 8-bit Byte mode with ISO 8859-1 code
 - Error correction level L (7% recovery capacity)

Structure of version 1-L QR Code

Four types of test pattern

Pattern	# of QR Code Location Rotation		Rotation
Rank A	Arbitrary (1 to 4)	Arbitrary	Arbitrary
Rank B	2	Arbitrary	Arbitrary
Rank C	1	Arbitrary	Arbitrary
Rank D	1	Upper-Left	0-degree

In the real world

What will happen if we scan multiple QR codes at a time?

- 1. Download app "Google Lens"
- 2. Scan below QR Codes with this app

Data arrangement in SRAM

Rotation and Location of QR code

Finder Pattern

Rotation 270°

De-masking process

Mask Pattern Reference	Condition		
000	$(i+j) \mod 2 = 0$		
001	i mod 2 = 0		
010	$j \mod 3 = 0$		
011	$(i + j) \mod 3 = 0$		
100	((i div 2) + (j div 3)) mod 2 = 0		
101	$(ij) \mod 2 + (ij) \mod 3 = 0$		
110	$((ij) \mod 2 + (ij) \mod 3) \mod 2 = 0$		
111	$((i \ j) \mod 3 + (i+j) \mod 2) \mod 2 = 0$		

Eight kinds of mask pattern

 $((i \ j) \mod 2 + (i \ j) \mod 3) \mod 2 = 0$ $((i \ j) \mod 3 + (i + j) \mod 2) \mod 2 = 0$

De-masking process

 The 3-bit data should first be XORed with a fixed 3'b101 to derive the real mask ID

Decode the data codewords

Decode the text sequentially

- Data arrangement in data codewords
 - The text length information tells you how many characters should be decoded
 - Once decoding a text data, you can put it to the output port [7:0] decode_text and set the output port valid to high

Codeword 0 Codeword 1		Codeword 2	Codeword 3]
01000000	11110110	00010110	00100111	

Data Text length encoding type (8'b00001111) (4'b0100)

Text 0 (8'b01100001)

Text 1 (8'b01100010)

Timing diagram

- Assume two QR codes in a pattern
 - One at (0, 0), {8'h61, 8'h62, 8'h63} which represents "abc"
 - One at (30, 40), {8'h4e, 8'h54, 8'h48, 8'h55} which represents "NTHU"

Timing diagram

- The output decode_text is not mandatory to be consecutive
- But the order of the output decode_text should still be correct
 - If the text is "abc", you should first output "a", and then "b", and then "c"

Timing diagram

- You can only output the decoded result of the next QR Code after all the decoded result of the previous one have been output
- Below is Not acceptable output behavior

Simulation

- For Rank A, there are total 300 patterns
- For Rank B, Rank C, and Rank D, there are total 100 patterns for each Rank
- To pass each Rank, your design should pass all patterns in the Rank

```
# Rank A
vcs -f hdl.f -full64 -R -debug_access+all +v2k \
+define+RANK_A+PAT_L=0+PAT_U=299

# Rank B
vcs -f hdl.f -full64 -R -debug_access+all +v2k \
+define+RANK_B+PAT_L=0+PAT_U=99

# Rank C
vcs -f hdl.f -full64 -R -debug_access+all +v2k \
+define+RANK_C+PAT_L=0+PAT_U=99

# Rank D
vcs -f hdl.f -full64 -R -debug_access+all +v2k \
+define+RANK_D+PAT_L=0+PAT_U=99
```

For debugging convenience, you can modify **PAT_L** and **PAT_U** to simulate with any specific range of patterns

Synthesis

- For fairness, please do logic synthesis with the provided scripts
- Only two parts of the scripts can be modified
 - line 16 in 0 readfile.tcl
 - Add your hdl files
 - line 5 in synthesis.tcl
 - Change your clock timing constraint

```
# Define a lib path
define design lib $TOPLEVEL -path ./$TOPLEVEL
# Add your hdl files here
analyze -library $TOPLEVEL -format verilog "../hdl/qrcode_decoder.v"
# Elaborate your design
elaborate $TOPLEVEL -architecture verilog -library $TOPLEVEL
```

```
# Set your TOPLEVEL here
set TOPLEVEL "grcode decoder"
# Change your timing constraint here
set TEST_CYCLE 10.0
```

0 readfile.tcl

synthesis.tcl

Performance index (PI)

$$PI = A \times T \times C^2$$

A: Total cell area which is shown in report_area_qrcode_decoder.out

T: TEST_CYCLE (your setting of clock timing constraint when synthesis)

C: Total cycle count to complete the whole simulation. It is shown on the terminal such as below when the whole simulation is passed and finished:

Congratulation! All patterns are successfully passed! \(O v O)/

Total cycle count C = xxxxxx

Note

We take the square of C when computing PI in this assignment, which means the effect of C on the PI is larger than A and T.

Grading policy

Total Cycle Count C in PI depends on the simulation result of pattern

	Passed Pattern	PI Grade	Synthesis PI $(A \times T \times C^2)$	Functionality Score (pass pre-sim)	Synthesis PI Score	Total Score
	Rank A	A 1	$PI \le 4.7 \times 10^{15}$	7	8	15
	Rank B Rank C	A2	$4.7 \times 10^{15} < PI \le 8.4 \times 10^{15}$	7	6	13
	Rank D	A3	$PI > 8.4 \times 10^{15}$	7	4	11
	Rank B	B1	$PI \le 2.8 \times 10^{14}$	5	4	9
e	Rank C	B2	$2.8 \times 10^{14} < PI \le 5 \times 10^{14}$	5	3	8
'n	Rank D	В3	$PI > 5 \times 10^{14}$	5	2	7
	Rank C	C1	$PI \le 8.6 \times 10^{13}$	3	3	6
	Rank D	C2	$8.6 \times 10^{13} < PI \le 1.5 \times 10^{14}$	3	2	5
		C3	$PI > 1.5 \times 10^{14}$	3	1	4
	Donle D	D1	$PI \le 5.4 \times 10^{12}$	1	2	3
	Rank D	D2	$PI > 5.4 \times 10^{12}$	1	1	2

Bonus & PI Score Board

- Only for those who submit the homework before the deadline
 - 2% bonus score will be given to the best work
 - 1% bonus score will be given to the second-best work
- HW4 PI Score Board
 - https://docs.google.com/spreadsheets/d/1J3bDhFHsH7z2_NRDR 2cns4zYlQ3AzJX-A_W9lAuGdBw/edit?usp=sharing

			K	L	M	N
Do not fill these columns			Fill your result			
Total Score	PI Grade	PI	Pattern Rank	A (Total cell area)	T (Cycle time)	C (Total cycles)
15	A1	2.61E+15	Α	2767	1.7	745,332
11	A3	1.20E+16	Α	4000	3	1,000,000
7	B3	1.92E+15	В	4000	3	400,000
4	C3	4.80E+14	С	4000	3	200,000
2	D2	1.08E+13	D	4000	3	30,000
Го	15 11 7 4	15 A1 11 A3 7 B3 4 C3	Ital Score PI Grade PI 15 A1 2.61E+15 11 A3 1.20E+16 7 B3 1.92E+15 4 C3 4.80E+14	Ital Score PI Grade PI Pattern Rank 15 A1 2.61E+15 A 11 A3 1.20E+16 A 7 B3 1.92E+15 B 4 C3 4.80E+14 C	Ital Score PI Grade PI Pattern Rank A (Total cell area) 15 A1 2.61E+15 A 2767 11 A3 1.20E+16 A 4000 7 B3 1.92E+15 B 4000 4 C3 4.80E+14 C 4000	Ital Score PI Grade PI Pattern Rank A (Total cell area) T (Cycle time) 15 A1 2.61E+15 A 2767 1.7 11 A3 1.20E+16 A 4000 3 7 B3 1.92E+15 B 4000 3 4 C3 4.80E+14 C 4000 3

Notice

- Do not modify I/O, testbench, or patterns.
- Do not modify synthesis scripts except the two parts mentioned in the document.
- After submission, TA will use the released version testbench and patterns to run the simulation and check the correctness of your design.

Submission

- Deadline
 - 11/17 23:59
- Submit to eeclass
 - Make sure the file delivery and organization meet the requirement
 - Wrong file delivery or organization will get 1% punishment
- If you have any question, feel free to
 - Ask TA during the lab time
 - Ask on eeclass discussion (maybe other students also have the same question!)
 - Do not show your code on eeclass discussion or email your code to TA. Coding and debugging by yourself!