Definition of Laplace Transform

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Dynamics and Control

Review: improper integral

The **improper integral** is defined as a limit:

$$\int_a^\infty f(t)dt = \lim_{b o\infty} \int_a^b f(t)dt$$

- Convergent limit exists
- Divergent limit does not exist

Definition of Laplace transform

Laplace transform of a piece-wise continuous f(t) defined for $t \geq 0$ is

$$\mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

if the integral converges.

- Notation
 - \circ Lower case for original function f(t)
 - \circ Upper case for Laplace-transformed function $\mathcal{L}[f(t)] \equiv F(s)$

Laplace transform simplifies solving ODE to solving algebraic equations

Time domain

f, f(t)

Laplace domain

Laplace transform of a constant

Zill Ex. 4.1.1 Evaluate $\mathcal{L}[c]$, where c is a constant.

Laplace transform of a linear function

Zill Ex. 4.1.2 Evaluate $\mathcal{L}[t]$.

Laplace transform of a exponential function

Zill Ex. 4.1.3a Evaluate $\mathcal{L}[e^{-3t}]$.

Zill Ex. 4.1.3b Evaluate $\mathcal{L}[e^{6t}]$.

Laplace transform of a sine function

Zill Ex. 4.1.4 Evaluate $\mathcal{L}[\sin(2t)]$.

Laplace transform of a piecewise-continuous function

Zill Ex. 4.1.6 Evaluate
$$\mathcal{L}[f(t)]$$
 for $f(t)egin{cases} 0 & t\in[0,3) \\ 2 & t\in[3,\infty) \end{cases}$

Common Laplace transforms are tabulated

Use Seaborg Table 3.1

Inverse L.T. $f(t)$	Laplace Transform $F(s)$	Inverse L.T. $f(t)$	Laplace Transform $F(s)$
1	$\frac{1}{s}$	e^{at}	$\frac{1}{s-a}$
t^n	$rac{n!}{s^{n+1}}$	\sqrt{t}	$rac{\sqrt{\pi}}{2s^{3/2}}$
$\sin(at)$	$rac{a}{s^2+a^2}$	$t\sin(at)$	$rac{2as}{(s^2+a^2)^2}$
$\cos(at)$	$rac{s}{s^2+a^2}$	$t\cos(at)$	$rac{s^2 - a^2}{(s^2 + a^2)^2}$

Linearity simplifies problem

• Linear combination - multiplication of terms by constant and/or addition of terms

• Linearity - transform of a linear combination = linear combination of the transforms

$$\circ \ T[lpha f(x) + eta g(x)] = lpha T[f(x)] + eta T[g(x)]$$

Laplace transform is linear

Ex. Demonstrate Laplace transform is linear.

- Laplace transform is an integral transform
 - \circ Definition: $\mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$

Laplace transform is linear

$$\mathcal{L}[\alpha f(t) + \beta g(t)]$$

$$= \alpha \mathcal{L}[f(t)] + \beta \mathcal{L}[g(t)]$$

$$= \alpha F(s) + \beta G(s)$$

Zill Ex. 4.1.5a Use linearity of Laplace transform to evaluate $\mathcal{L}[1+5t]$