Topic: Inverse of a transformation

Question: If the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is mapping vectors in A to vectors in B, then...

Answer choices:

- A T is surjective
- B T is injective
- C T is both surjective and injective
- D T is neither surjective nor injective

Solution: D

Not every vector \overrightarrow{b} is being mapped to, since no \overrightarrow{a} is mapping to \overrightarrow{b}_3 , so T is not surjective. Every vector \overrightarrow{a} is being mapped from, but not all the vectors \overrightarrow{a} are mapping to a unique \overrightarrow{b} , since both \overrightarrow{a}_2 and \overrightarrow{a}_3 are mapping to \overrightarrow{b}_1 , so T is not injective.

Because T has to be both surjective and injective in order to be invertible, and since T is neither surjective nor injective, the transformation is not invertible, and a unique T^{-1} is not defined.

Topic: Inverse of a transformation

Question: If the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is mapping vectors in A to vectors in B, then...

Answer choices:

- A *T* is surjective
- B T is injective
- C T is both surjective and injective
- D *T* is neither surjective nor injective

Solution: A

Every vector \overrightarrow{b} is being mapped to, so T is surjective. But every vector \overrightarrow{a} is not being mapped from, since \overrightarrow{a}_3 is not being mapped to any \overrightarrow{b} , so T is not injective.

Because T has to be both surjective and injective in order to be invertible, and since T is not injective, the transformation is not invertible, and a unique T^{-1} is not defined.

Topic: Inverse of a transformation

Question: If the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is mapping vectors in A to vectors in B, then...

Answer choices:

- A T is onto
- B T is one-to-one
- C T is both onto and one-to-one
- D T is neither onto nor one-to-one

Solution: C

Every vector \overrightarrow{b} is being mapped to, so T is onto. And every vector \overrightarrow{a} is being mapped from, to a unique \overrightarrow{b} , so T is one-to-one.

Because T is both onto and one-to-one, the transformation is invertible, and a unique T^{-1} is defined.

