1. 등분산, 이분산

• 분산(Variance) : data의 퍼져있는 정도

- **등분산** (Homogeneity of variance): 2개의 모집단(Population) 에서 추출된 각 sample 간의 분산이 **같음**

- **이분산** (Heteroscedasticity of variance) : 2개의 모집단(Population) 에서 추출된 각 sample 간의 분산이 <mark>다름</mark>

t-분포(t - distribution)

① 정의 : 임의의 모집단 $X\sim N(\mu,\sigma^2)$ 에서 추출한 크기가 n인 랜덤표본(sample)이 X_1,\cdots,X_n 일 때

표준 평균 :
$$\overline{X} = \sum_{i=0}^{n} \frac{X_1}{n}$$

표준 분산:
$$S^2 = \sum_{i=0}^{n} \frac{(X_i - \overline{X})^2}{(n-1)}$$

자유도(Degree of freedom)가
$$n-1$$
인 t-분포 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$

- ② $\Xi 7$: $X \sim t_{(n-1)}$
- ③ 분포의 형태:

④ 평균 & 분산:

$$E(X) = \mu = 0$$

$$Var(X) = df/(df - 2)$$

t-분포(t - distribution)

〈표준정규분포와 t-분포의 비교〉

카이-제곱 분포(Chi-square distribution)

① 정의 : 정규분포를 따르는 변수의 분산에 대한 신뢰구간을 구할 때 사용 임의의 모집단 $X \sim N(\mu, \sigma^2)$ 에서 추출한 크기가 n인 랜덤표본이 X_1, \cdots, X_n 일 때

$$\Rightarrow \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \vdash \text{d.f. } n-1 인 \chi^2 - 분포를 따름$$

- ② \mathbb{E} 7|: $\frac{(n-1) S^2}{\sigma^2} \sim X^2(n-1)$
- ③ 분포의 형태:

F-분포(F - distribution)

① 정의 : 서로 독립인 두 정규모집단 $N(\mu_1, \sigma_1^2)$ 과 $N(\mu_2, \sigma_2^2)$ 으로부터 크기가 m 과 n 인 랜덤표본을 추출하여 각각 X_1, \cdots, X_m 과 Y_1, \cdots, Y_n 라 하면

$$S_1^2 = \sum_{i=1}^m (X_i - \overline{X})^2 / (m-1), \quad S_2^2 = \sum_{i=1}^m (Y_i - \overline{Y})^2 / (m-1)$$

 $\Rightarrow F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$ 는 분자와 분모의 d.f.가 m-1 과n-1 인 F 분포 따름

- ② $\Xi 7$: $F \sim F(m-1, n-1)$
- ③ 분포의 형태:

3. 표본분포(Sampling distribution)

표본분포(Sampling distribution)

표본분포(Sampling distribution)

정규성 검정(Normality test)

: 수집된 data들이 정규 분포의 가정을 만족하는지 검정하는 방법

〈방법〉

- 1) 먼저 자료의 분포형태를 파악
- 2) 자료의 평균값과 중앙값의 차이가 많이 나지 않는지 : 중앙값 평균값이 비슷한지,

5%절단평균(5% Trimmed mean)

- 3) 자료의 왜도(Skewness)와 첨도값(Kurtosis)에 대한 확인 : -2~+2사이인지 (정규성을 만족한다는 가정하에 실시)
- 4) Normal probability plot : Normal probability plot과 비슷한 분포를 보이는지
- 5) Sapiro Wilks test/ Kolmogorov Smirnov test 실시

: *P* ≥ 0.05 인지

: 정규성을 만족

만족하지 않음

추정 (Estimation)

1. 모수적 (Parametric) 접근방법

: 주어진 자료로 "정규성 만족함" 을 알 수 있을 때

2. 비모수적(Nonparametric) 접근방법

: 주어진 자료로 "정규성 만족하지 않음"을 알 수 있을 때

- 1) 하나의 모집단인 경우
- 2) 두 개의 모집단인 경우
- 3) 하나의 모집단 전, 후 비교의 경우

1) 하나의 모집단인 경우

- 추정 전 확인해야 할 사항

2) 두 개의 모집단인 경우

- 추정 전 확인해야 할 사항

3) 하나의 모집단이며, 종속적 관계인 경우

- 추정 전 확인해야 할 사항

Group Statistics

	Group	N	Mean	Std. Deviation	Std. Error Mean	
SBP	1	10	144.80	3,553	1.123	
	2	10	140.60	5.661	1.790	

Independent Samples Test

		Levene's Test fo Variand	t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
									Lower	Upper
SBP	Equal variances assumed	2.067	.168	1.987	18	.062	4.200	2.113	240	8.640
	Equal variances not assumed			1.987	15.138	.065	4.200	2.113	301	8.701

• Levene's test for equality of variance : 등분산 검정

p-value > 0.05 : 등분산

p-value < 0.05 : 이분산

P = 0.168 : 등분산

2. Q-Q (Quantile-quantile) plot

• Quantile : 모집단(population) 또는 표본의 전체도수(sample frequency)를 오름차순으로 정렬 - > n 등분을 함

- percentile : 백분위수

- quartile : 4 분위수

- quintile : 5 분위수

어느 A 대학병원에서 3개월간 ACEi로 치료받고 있는 환자 50명중 15명(SRS으로 추출)의수축기 혈압(mmHg)을 재어보았더니 같았다. 3개월간 고혈압 치료를 받은 환자들의 평균혈압은 140보다 작다고 말할 수 있는가?

index SBP	1 148	2 134	3 138		1 1 <mark>2</mark>	5 142	6 142	7 146
index	8	9	10	11	12	13	14	15
SBP	146	130	138	140	136	132	144	136

Standard error (\overline{X} 의 표준편차) $= \frac{\sigma}{\sqrt{n}}$

$$= \frac{\sigma}{\sqrt{n}}$$

