

Università di Verona Dipartimento Scientifico e Tecnologico

Architettura degli Elaboratori: esame 29/06/99

Cognome:Matricola:		
Note:	le soluzioni devono essere opportunamente commentate e motivate, è vietato utilizzare appunti o libri.	
1) Si •	consideri un numero in virgola mobile in singola precisione. Descrivere le dimensioni in bit ed il significato delle parti che lo compongono.	
•	Descrivere le fasi in cui può essere diviso l'algoritmo di somma di due numeri in virgola mobile.	
•	Quali sono i motivi che fanno preferire la rappresentazione in virgola mobile a quella in vigola fissa? Portare degli esempi.	

- 2) Si consideri una macchina sequenziale sincrona, dotata di un ingresso K e di due uscite Z e U (si veda la figura), che si comporti nel modo seguente:
 - L'uscita Z assume il valore logico 1 se sull'ingresso K è arrivato un numero dispari di bit 0, e mantiene il valore logico 1 fino all'arrivo del prossimo bit 0.
 - L'uscita U assume il valore logico 1 se sull'ingresso K è arrivato un numero dispari di bit 1, e mantiene il valore logico 1 fino all'arrivo del prossimo bit 1.
 - Si ipotizzi che la macchina inizi le operazioni non avendo ricevuto alcun bit in ingresso (si supponga che il numero 0 sia pari).
 - Disegnare il grafo degli stati della macchina in questione, completando con le transizioni mancanti il grafo degli stati parziale mostrato di seguito:

- Tracciare la tabella delle transizioni della macchina, ricavandola dal grafo, considerando che per ogni stato è già riportato l'assegnamento da usare per la sintesi.
- Dare la definizione di FSM minima equivalente e verificare la minimalità della ESM data
- Sintetizzare le funzioni di stato prossimo e le funzioni di uscita della macchina sequenziale, in forma a due livelli minima di tipo somma di prodotti (usare le mappe di Karnaugh).

- 3) Si consideri un sistema a memoria virtuale con spazio logico di 4G parole, una memoria fisica di 32M parole e dimensione delle pagine di 16K parole.
 - Determinare il numero di bit che definiscono:

Nella seguente tabella sono riportati alcuni valori del parametro R (numero di
pagine residenti per processo); sapendo che il Sistema Operativo occupa
permanentemente 448 pagine e che sono stati creati 22 processi, indicare per ogni
valore di R il numero di processi in stato di "fuori memoria" ossia che non
possono avere tutte le pagine in memoria.

R	40	80	160	320	800
Numero di processi fuori memoria					

• Specificare come è stato calcolato il valore per R = 160:

• Si supponga di avere un sistema basato su memoria virtuale configurato con R=10 e di sapere che il valore massimo di k (numero di accessi) per il quale il Working Set W(k)=10 è 1000, cioè W(k)>10 per k>1000. In base a queste ipotesi è possibile valutare i valori massimo e minimo del numero di page fault, delle percentuali di page fault e delle percentuali di successo (*Hit Rate*). Definire tali valori con una breve spiegazione.

Numero massimo di page fault	
Motivo	
Percentuale di page fault	
Hit Rate	

Numero minimo di page fault	
Motivo	
Percentuale di page fault	
Hit Rate	

4)	Elencare le micro istruzioni relative alla completa esecuzione (caricamento,
	decodifica, esecuzione) della seguente istruzione assembler (Intel 80386 AT&T),
	assumendo che la CPU abbia un solo BUS, che l'istruzione sia composta da una sola
	parola, che (%EAX) rappresenti un metodo di indirizzamento indiretto a registro e
	che l'indirizzo di salto della procedura sia relativo al PC (usare solamente le righe
	necessarie):

CALL (%EAX)

1.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12	

• Dare la definizione di microprocessore superscalare e spiegare come sia possibile realizzarlo.

5