COURSE NAME:

Signal Processing for mm Wave communication for 5G and beyond

Assignment- week 9

Type of Questions: MCQ

Number of Questions: 10 Total Marks:10*1=10

- 1. The baseband equalizer in mmwave MIMO system data detection is not required for
 - a) ML based detection algorithm.
 - b) LMMSE based equalizer design.
 - c) Least square based equalizer design.
 - d) MRC based equalizer design.

Correct option: a)

Detailed solution: lecture 48.

- 2. Which of the following is not a design parameter?
 - a) Digital precoder in transmitter.
 - b) RF equalizer in the receiver.
 - c) RF precoder in the transmitter.
 - d) Wireless channel parameters between transmitter antenna and receiver antenna. Correct Option: d)

Detailed Solution: lecture 47

- 3. The parameters in mm wave channel estimation are
 - a) Angle of arrival.
 - b) Angle of departure.
 - c) Channel coefficients in a particular beam.
 - d) All of the above.

Correct option: d)

Detailed solution: lecture 47.

- 4. Suppose we are sending a digital data stream **s** .The elements of **s** vector is coming from 5 different independent input data source. The diagonal entries of covariance matrix **R**_{ss} are
 - a) 1.
 - b) 0.
 - c) Inner product of **ss**^T.
 - d) 5.

Correct option: b)

Detailed solution: lecture 47

- 5. For a MIMO system, the data model is **y=Hx+w**, where **H** is the channel matrix. **Y,x,w** are respectively received signal vector, input signal vector and AWGN noise vector. **H**^p denotes the pseudo inverse of the channel matrix. **R**_{yy}, **R**_{xx} and **R**_{xy} is the respective covariance matrix denoted by the vectors. The LMMSE based equalizer depends on
 - a) \mathbf{R}_{yy} and \mathbf{H}^{p} .
 - b) \mathbf{R}_{xy} and $\mathbf{H}^{\mathbf{p}}$.
 - c) \mathbf{R}_{yy} and \mathbf{R}_{xy}
 - d) \mathbf{R}_{yy} and \mathbf{R}_{xx} .

Correct option: c)

Detailed solution: Lecture 47

- 6. Which of the following is true for MSE?
 - a) We are minimizing the cost function based on 2- norm only.
 - b) We are minimizing the cost function which is the expectation value of 2 norm cost function.
 - c) We are minimizing the expected value of 2 norm with the assumption that the estimated value will be a linear function of observed value.
 - d) None of the above.

Correct Option: b)

Detailed solution: lecture 48.

- 7. What is the unit of channel capacity for unit bandwidth?
 - i) Bits.
 - ii) Bits/hertz.
 - iii) (Bits/second)/hertz.
 - iv) Bits*hertz.

Correct option: iii)

Detailed solution:

Channel capacity= data rate/bandwidth= (Bits/second)/Hertz.

Unit of data rate=Bits/second . Unit of Bandwidth=Hertz.

8. For a MIMO system, the data model is **y=Hx+w**, where **H** is the channel matrix of dimension 5×4. **y,x,w** are respectively received signal vector, input signal vector and AWGN noise vector. **H**^p denotes the pseudo

inverse of the channel matrix. \mathbf{R}_{yy} , \mathbf{R}_{xx} and \mathbf{R}_{xy} is the respective covariance matrix denoted by the vectors. The least square based equalizer depends on

- a) H⁻¹.
- b) **H**^p.
- c) \mathbf{R}_{yy} and \mathbf{H}^{p} .
- d) Rvv. and Rxx.

Correct option:b)

Detailed solution: H matrix is rank deficient matrix, so for least square (a non Bayesian equalizer) it only depends on pseudo inverse as inverse does not exist.

For a MIMO system, the data model is y=Hx+w, where H is the channel matrix. y,x,w are respectively received signal vector, input signal vector and AWGN noise vector. R_{yy}, R_{xx}, R_{xy} and R_{ww} is the respective covariance matrix denoted by the vectors.

- 9. The covariance matrix R_{xy} depends on
 - a) R_{xx},R_{ww} and H.
 - b) Rww and H.
 - c) Rxx and H.
 - d) R_{ww} and R_{xx}.

Correct Option: c)

Detailed solution: $R_{xy}=E[x(Hx+w)^*]=R_{xx}H^*$.

- 10. The covariance matrix R_{yy} depends on
 - a) R_{xx}, R_{ww} and H.
 - b) R_{ww} and H.
 - c) R_{xx} and H.
 - d) R_{ww} and R_{xx}.

Correct option: a)

Detailed solution: $R_{yy}=E[(Hx+w)(Hx+w)^*]$. Calculate the expectation to see all the terms in option **a**) are in the covariance matrix.