

CS 247 – Scientific Visualization Lecture 8: Scalar Fields, Pt. 4 [preview]

Markus Hadwiger, KAUST

Reading Assignment #4 (until Feb 21)

Read (required):

- Real-Time Volume Graphics book, Chapter 5 until 5.4 inclusive (*Terminology, Types of Light Sources, Gradient-Based Illumination, Local Illumination Models*)
- Paper: Marching Cubes: A high resolution 3D surface construction algorithm, Bill Lorensen and Harvey Cline, ACM SIGGRAPH 1987

https://dl.acm.org/doi/10.1145/37402.37422

[> 17,700 citations and counting...]

Read (optional):

Paper:

Flying Edges, William Schroeder et al., IEEE LDAV 2015

https://ieeexplore.ieee.org/document/7348069

Scalar Fields

Ambiguities of contours

What is the correct contour of c=4?

Two possibilities, both are orientable:

- connect high values ————
- connect low values ------

Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

here, the critical value is 2/3=0.666...

"Asymptotic decider": resolve ambiguous configurations (6 and 9) by comparing specific iso-value with critical value (scalar value at critical point)

Linear interpolation in 1D:

$$f(\alpha) = (1 - \alpha)v_1 + \alpha v_2$$

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

$$f(\alpha_1, \alpha_2) = \alpha_1 v_1 + \alpha_2 v_2$$
 $f(\alpha) = v_1 + \alpha(v_2 - v_1)$ $\alpha_1 + \alpha_2 = 1$ $\alpha = \alpha_2$

$$f(\alpha) = v_1 + \alpha(v_2 - v_1)$$
$$\alpha = \alpha_2$$

Line segment:

$$\alpha_1, \alpha_2 \geq 0$$

 $\alpha_1, \alpha_2 \ge 0$ (\rightarrow convex combination)

Compare to line parameterization with parameter t:

$$v(t) = v_1 + t(v_2 - v_1)$$

Linear combination (*n*-dim. space):

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

Affine combination: Restrict to (n-1)-dim. subspace:

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

Convex combination:

$$\alpha_i \geq 0$$

(restrict to simplex in subspace)

The weights α_i are the *n* normalized **barycentric** coordinates

→ linear attribute interpolation in simplex

$$lpha_1 v_1 + lpha_2 v_2 + \ldots + lpha_n v_n = \sum_{i=1}^n lpha_i v_i$$
 $lpha_1 + lpha_2 + \ldots + lpha_n = \sum_{i=1}^n lpha_i = 1$
 $lpha_i \ge 0$

attribute interpolation

spatial position interpolation

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

Can re-parameterize to get (n-1) *affine* coordinates:

$$lpha_1 v_1 + lpha_2 v_2 + lpha_3 v_3 =$$
 $ilde{lpha}_1 (v_2 - v_1) + ilde{lpha}_2 (v_3 - v_1) + v_1$
 $ilde{lpha}_1 = lpha_2$
 $ilde{lpha}_2 = lpha_3$

Contours in triangle/tetrahedral cells

Linear interpolation of cells implies piece-wise linear contours.

Contours are unambiguous, making "marching triangles" even simpler than "marching squares".

Question: Why not split quadrangles into two triangles (and hexahedra into five or six tetrahedra) and use marching triangles (tetrahedra)?

Answer: This can introduce periodic artifacts!

Contours in triangle/tetrahedral cells

Illustrative example: Find contour at level *c*=40.0 !

original quad grid, yielding vertices ■ and contour ■■■■
 triangulated grid, yielding vertices ● and contour ■■■■

Bi-Linear Interpolation: Comparisons

linear

(2 triangles per quad; diagonal: bottom-left, top-right)

Markus Hadwiger 12

Bi-Linear Interpolation: Comparisons

linear

(2 triangles per quad; diagonal: top-left, bottom-right)

Markus Hadwiger 13

Bi-Linear Interpolation: Comparisons

bi-linear

Markus Hadwiger 14

From 2D to 3D (Domain)

2D - Marching Squares Algorithm:

- 1. Locate the contour corresponding to a user-specified iso value
- 2. Create lines

3D - Marching Cubes Algorithm:

- 1. Locate the surface corresponding to a user-specified iso value
- 2. Create triangles
- 3. Calculate normals to the surface at each vertex
- 4. Draw shaded triangles

Marching Cubes

- For each cell, we have 8 vertices with 2 possible states each (inside or outside).
- This gives us 2⁸ possible patterns = 256 cases.
- Enumerate cases to create a LUT
- Use symmetries to reduce problem from 256 to 15 cases.

Explanations

- Data Visualization book, 5.3.2
- Marching Cubes: A high resolution 3D surface construction algorithm, Lorensen & Cline, ACM SIGGRAPH 1987

Markus Hadwiger, KAUST 16

Contours of 3D scalar fields are known as isosurfaces. Before 1987, isosurfaces were computed as

- contours on planar slices, followed by
- "contour stitching".

The marching cubes algorithm computes contours directly in 3D.

- Pieces of the isosurfaces are generated on a cell-by-cell basis.
- Similar to marching squares, a 8-bit number is computed from the 8 signs of $\tilde{f}(x_i)$ on the corners of a hexahedral cell.
- The isosurface piece is looked up in a table with 256 entries.

How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:

- rotational symmetries of the cube
- reflective symmetries of the cube
- sign changes of $\tilde{f}(x_i)$

They published a reduced set of 14^{*)} cases shown on the next slides where

- white circles indicate positive signs of $\tilde{f}(x_i)$
- the positive side of the isosurface is drawn in red, the negative side in blue.

^{*)} plus an unnecessary "case 14" which is a symmetric image of case 11.

Do the pieces fit together?

- The correct isosurfaces of the trilinear interpolant would fit (trilinear reduces to bilinear on the cell interfaces)
- but the marching cubes polygons don't necessarily fit.

Example

- case 10, on top of
- case 3 (rotated, signs changed)

have matching signs at nodes but polygons don't fit.

Summary of marching cubes algorithm:

Pre-processing steps:

- build a table of the 28 cases
- derive a table of the 256 cases, containing info on
 - intersected cell edges, e.g. for case 3/256 (see case 2/28):
 (0,2), (0,4), (1,3), (1,5)
 - triangles based on these points, e.g. for case 3/256:
 (0,2,1), (1,3,2).

Loop over cells:

- find sign of $\tilde{f}(x_i)$ for the 8 corner nodes, giving 8-bit integer
- use as index into (256 case) table
- find intersection points on edges listed in table, using linear interpolation
- generate triangles according to table

Post-processing steps:

- connect triangles (share vertices)
- compute normal vectors
 - by averaging triangle normals (problem: thin triangles!)
 - by estimating the gradient of the field $f(x_i)$ (better)

Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, ...

Redundant, large storage size, cannot modify shared vertices easily Store data values per face, or separately

Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search for shared edges (local information)

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

not orientable

Moebius strip (only one side!)

Triangle meshes

- Edges
 - Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise) (e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)
- Triangles
 - Consistent front side vs. back side
 - Normal vector; or ordering of vertices (CCW/CW)
 - See also: "right-hand rule"

Local Shading Equations

Standard volume shading adapts surface shading

Most commonly Blinn/Phong model

But what about the "surface" normal vector?

specular reflection

Iso-Surface / Volume Illumination

What About Volume Illumination?

Crucial for perceiving shape and depth relationships

this is a scalar volume (3D distance field)!

Local Illumination in Volumes

Interaction between light source and point in the volume Local shading equation; evaluate at each point along a ray

Use color from transfer function as material color; multiply with light intensity

This is the new "emissive" color in the emission/absorption optical model

Composite as usual

Local Illumination Model: Phong Lighting Model 🤏

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

Local Illumination Model: Phong Lighting Model 🤏

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

Local Shading Equations

Standard volume shading adapts surface shading

Most commonly Blinn/Phong model

But what about the "surface" normal vector?

specular reflection

The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i$$

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

(standard inner product in Cartesian coordinates)

Many uses:

Project vector onto another vector, project into basis, project into tangent plane,

Local Illumination Model: Phong Lighting Model 🧩

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

$$\mathbf{I}_{\mathrm{ambient}} = k_a \, \mathbf{M}_a \, \mathbf{I}_a$$

Local Illumination Model: Phong Lighting Model 🥦

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

$$\mathbf{I}_{\text{diffuse}} = k_d \, \mathbf{M}_d \, \mathbf{I}_d \cos \varphi \quad \text{if } \varphi \leq \frac{\pi}{2}$$
$$= k_d \, \mathbf{M}_d \, \mathbf{I}_d \max((\mathbf{n} \cdot \mathbf{l}), 0)$$

Local Illumination Model: Phong Lighting Model 🥦

 $I_{Phong} = I_{ambient} + I_{diffuse} + I_{specular}$

$$\mathbf{I}_{\mathrm{specular}} = k_s \, \mathbf{M}_s \, \mathbf{I}_s \cos^n \rho \,, \quad \mathrm{if} \ \rho \leq \frac{\pi}{2}$$

$$= k_s \, \mathbf{M}_s \, \mathbf{I}_s \, (\mathbf{r} \cdot \mathbf{v})^n$$
must also clamp!

Local Illumination Model: Phong Lighting Model 🥦

$$\mathbf{I}_{\mathrm{Phong}} = \mathbf{I}_{\mathrm{ambient}} + \mathbf{I}_{\mathrm{diffuse}} + \mathbf{I}_{\mathrm{specular}}$$

$$\mathbf{I}_{\mathrm{specular}} \approx k_s \, \mathbf{M}_s \, \mathbf{I}_s \, (\mathbf{h} \cdot \mathbf{n})^n$$

$$\mathbf{h} = rac{\mathbf{v} + \mathbf{l}}{\|\mathbf{v} + \mathbf{l}\|}$$
 must also clamp! half-way vector

Gradient and Directional Derivative

Gradient $\nabla f(x, y, z)$ of scalar function f(x, y, z):

(in Cartesian coordinates)

$$\nabla f(x, y, z) = \left(\frac{\partial f(x, y, z)}{\partial x}, \frac{\partial f(x, y, z)}{\partial y}, \frac{\partial f(x, y, z)}{\partial z}\right)^{T}$$

Directional derivative in direction u:

$$D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u}$$

And therefore also:

$$D_{\mathbf{u}}f(x,y,z) = ||\nabla f|| \, ||\mathbf{u}|| \, \cos \theta$$

The Gradient as Normal Vector

Gradient of the scalar field gives direction+magnitude of fastest change

$$\mathbf{g} = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)^{\mathbf{T}} \quad \text{(only correct in Cartesian coordinates [see later lectures])}$$

Local approximation to isosurface at any point: tangent plane = plane orthogonal to gradient

Normal of this isosurface: normalized gradient vector (negation is common convention)

$$\mathbf{n} = -\mathbf{g}/|\mathbf{g}|$$

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama