```
SUYASH GOUR A4-66 ECS
```

```
import numpy as np
import pandas as pd
df = pd.read_csv('student_clustering.csv')
print("The shape of the dataset is: ", df.shape)
df.head()
The shape of the dataset is: (200, 2)
         iq
     cgpa
   0 5.13
         88
   1
     5.90
         113
   2 8.36
         93
   3 8.27
         97
   4 5.45 110
   √
```

Next steps: Generate code with df View recommended plots New interactive sheet

import matplotlib.pyplot as plt
plt.scatter(df['cgpa'],df['iq'])

<matplotlib.collections.PathCollection at 0x7bcd9b748100>

from sklearn.cluster import KMeans

```
wcss = []
for i in range(1,11):
    km = KMeans(n_clusters=i)
    km.fit_predict(df)
    wcss.append(km.inertia_)
```

WCSS

```
[29957.898287999997,
4184.141269999999,
2362.7133490000015,
681.9696600000001,
530.4298616986187,
515.387125482748,
354.0352530907326,
274.2294625999665,
213.17281656519154,
233.96773571921526]
```

```
plt.plot(range(1,11),wcss)
```

25000 25000 15000 5000 1000

8

10

```
X = df.iloc[:,:].values
km=KMeans(n_clusters=4)
y_means = km.fit_predict(X)
```

y means

4

```
array([1, 2, 3, 3, 2, 2, 3, 0, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 3, 1, 1, 3, 1, 0, 3, 2, 0, 2, 0, 2, 3, 3, 0, 2, 1, 2, 1, 3, 3, 1, 0, 0, 3, 2, 0, 2, 1, 1, 0, 3, 0, 2, 2, 0, 2, 0, 2, 3, 3, 0, 1, 0, 3, 1, 2, 3, 2, 0, 3, 1, 2, 0, 2, 0, 1, 3, 3, 0, 2, 1, 0, 1, 0, 2, 0, 2, 0, 0, 3, 1, 3, 3, 0, 3, 1, 0, 2, 1, 1, 0, 1, 1, 3, 1, 0, 0, 3, 0, 2, 2, 3, 0, 3, 2, 0, 1, 1, 2, 3, 0, 3, 1, 3, 2, 1, 3, 3, 2, 1, 1, 2, 0, 2, 1, 3, 3, 3, 1, 2, 1, 1, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 3, 2, 0, 2, 3, 1, 0, 2, 3, 0, 1, 2, 1, 1, 0, 0, 2, 0, 1, 1, 3, 0, 2, 1, 0, 0, 2, 2, 2, 3, 1, 3, 3, 0, 2, 3, 3, 1, 1, 3, 1, 0, 2, 2, 0], dtype=int32)
```

$X[y_means == 3,1]$

<matplotlib.collections.PathCollection at 0x7bcd915e0f70>

from sklearn.datasets import make_blobs

centroids =
$$[(-5,-5,5),(5,5,-5),(3.5,-2.5,4),(-2.5,2.5,-4)]$$

cluster_std = $[1,1,1,1]$

 $X,y = make_blobs(n_samples=200, cluster_std=cluster_std, centers=centroids, n_features=3, random_state=1)$

Χ


```
[-3.37565464, -5.61175641, 4.47182825],
[-2.37162301, 4.26041518, -3.03346075],
[ 1.81594001, -3.6601701, 5.35010682],
[ 5.04366899, 4.77368576, -3.66854289],
[ -4.19813897, -4.9534327, 4.81343023],
[ 5.1340482, 6.20205486, -4.71525189],
[ 3.39320601, -1.04857074, 3.38196315],
[ 4.34086156, -2.60288722, 5.14690038],
[ -0.80619089, 2.69686978, -3.83013074],
[ -5.62353073, -4.47942366, 3.85565861],
[ 5.56578332, -3.97115693, 3.1698281],

import plotly.express as px
fig = px.scatter_3d(x=X[:,0], y=X[:,1], z=X[:,2])
fig.show()
```

```
6
4
2
Z 0
-2
-4
-6
6
4
2
V 0
```

4


```
km = KMeans(n_clusters=4)
y_pred = km.fit_predict(X)

df = pd.DataFrame()

df['col1'] = X[:,0]
 df['col2'] = X[:,1]
 df['col3'] = X[:,2]
 df['label'] = y_pred

fig = px.scatter_3d(df,x='col1', y='col2', z='col3',color='label')
 fig.show()
```


Start coding or generate with AI.

Start coding or generate with AI.