september 23, 2024

exoplanet exploration

data sources

Exoplanet data from NASA Exoplanet Archive - Planetary Systems Composite Data on September 15th, 2024:

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTb

Is&config=PSCompPars

data sources

Solar system planetary data from NASA as well:

https://nssdc.gsfc.nasa.gov/planetary/factsheet/

Planetary Fact Sheet - Metric

	MERCURY	VENUS	EARTH	MOON	MARS	JUPITER	SATURN	URANUS	NEPTUNE	PLUTO
4024	0.330	4.87	5.97	0.073	0.642	1898	568	86.8	102	0.0130
Mass (10 ²⁴ kg)										
Diameter (km)	4879	12,104	12,756	3475	6792	142,984	120,536	51,118	49,528	2376
Density (kg/m ³)	5429	5243	5514	3340	3934	1326	687	1270	1638	1850
Gravity (m/s ²)	3.7	8.9	9.8	1.6	3.7	23.1	9.0	8.7	11.0	0.7
Escape Velocity (km/s)	4.3	10.4	11.2	2.4	5.0	59.5	35.5	21.3	23.5	1.3
Rotation Period (hours)	1407.6	-5832.5	23.9	655.7	24.6	9.9	10.7	-17.2	16.1	-153.3
Length of Day (hours)	4222.6	2802.0	24.0	708.7	24.7	9.9	10.7	17.2	16.1	153.3
Distance from Sun (10 ⁶ km)	57.9	108.2	149.6	0.384*	228.0	778.5	1432.0	2867.0	4515.0	5906.4
Perihelion (10 ⁶ km)	46.0	107.5	147.1	0.363*	206.7	740.6	1357.6	2732.7	4471.1	4436.8
Aphelion (10 ⁶ km)	69.8	108.9	152.1	0.406*	249.3	816.4	1506.5	3001.4	4558.9	7375.9
Orbital Period (days)	88.0	224.7	365.2	27.3*	687.0	4331	10,747	30,589	59,800	90,560
Orbital Velocity (km/s)	47.4	35.0	29.8	1.0*	24.1	13.1	9.7	6.8	5.4	4.7
Orbital Inclination (degrees)	7.0	3.4	0.0	5.1	1.8	1.3	2.5	0.8	1.8	17.2
Orbital Eccentricity	0.206	0.007	0.017	0.055	0.094	0.049	0.052	0.047	0.010	0.244
Obliquity to Orbit (degrees)	0.034	177.4	23.4	6.7	25.2	3.1	26.7	97.8	28.3	119.5
Mean Temperature (C)	167	464	15	-20	-65	-110	-140	-195	-200	-225
Surface Pressure (bars)	0	92	1	0	0.01	Unknown*	Unknown*	Unknown*	Unknown*	0.00001
Number of Moons	0	0	1	0	2	95	146	28	16	5
Ring System?	No	No	No	No	No	Yes	Yes	Yes	Yes	No
Global Magnetic Field?	Yes	No	Yes	No	No	Yes	Yes	Yes	Yes	Unknown
	MERCURY	VENUS	EARTH	MOON	MARS	J <u>UPITER</u>	SATURN	URANUS	NEPTUNE	PLUTO

wind a military

formula to calculate HZ range

```
hz_zone_plot_data['hz_zone_inner'] = (((hz_zone_plot_data['st_rad'] * 696000) * (hz_zone_plot_data['st_teff'] **
2) * (1.13 ** 2) * ((1 - 0.306) ** 0.5)) / (2 * (373.15 ** 2))) / 149598023

hz_zone_plot_data['hz_zone_outer'] = (((hz_zone_plot_data['st_rad'] * 696000) * (hz_zone_plot_data['st_teff'] **
2) * (1.13 ** 2) * ((1 - 0.306) ** 0.5)) / (2 * (273.15 ** 2))) / 149598023
```

^^ based on the formula brought forth in our paper: $T_{surf,ave} = kT_{\odot}(1-A)^{0.25}(\frac{R_{\odot}}{2d})^{0.5}$

from the paper's formula, we can calculate the inner and outer HZ boundaries:

$$d = \frac{R_{\odot} \times (T_{\odot})^2 \times k^2 \times (1 - A)^{0.5}}{2 \times (T_{surfave})^2}$$

thoughts

- noticed that compared to most of the terrestrial planets, earth is very far away from its host star → could be something?
- our solar system just happens to have planets very far away...
 - probably already studied;
 i'll go take a look on like
 jstor or something
- separately analyze 185 terrestrial for more patterns?

next steps

- density graph for areas harder to see?
- closer look + analysis of 185 terrestrial planets
- looking at these? → terrestrial planets within our habitable zone

