

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Product Summary

BVDSS	RDSON	ID
120V	2.6mΩ	200A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TO220AB Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	120	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	200	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	127	Α
I _{DM}	Pulsed Drain Current ²	655	Α
EAS	Single Pulse Avalanche Energy ³	1479	mJ
las	Avalanche Current		Α
P _D @T _C =25°C	Total Power Dissipation ⁴	300	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
R _{eJA}	Thermal Resistance Junction-Ambient ¹		62	°C/W	
R _{eJC}	Thermal Resistance Junction-Case ¹		0.42	°C/W	

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	120			V
⊿BV _{DSS} /⊿T _J	BV _{DSS} Temperature Coefficient	Reference to 25°C,I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10 V, I _D =84A		2.6	3.4	mΩ
1 1D3(ON)		V _{GS} =4.5V , I _D =84A				
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2.0	3.0	4.0	V
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient					mV/°C
	Drain-Source Leakage Current	V _{DS} =120V , V _{GS} =0V , T _J =25°C			1	- uA
I _{DSS}		V _{DS} =120V, V _{GS} =0V , T _J =125°C			100	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =84A		195		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.7		Ω
Q_g	Total Gate Charge	V _{DS} =60V , V _{GS} =10V , I _D =84A		146.9		
Q _{gs}	Gate-Source Charge			57.7		nC
Q _{gd}	Gate-Drain Charge			32.3		
T _{d(on)}	Turn-On Delay Time			32.7		
Tr	Rise Time	V_{DD} =60V, $R_{G_{ext}}$ = 2.7 Ω ,		80.3		
T _{d(off)}	Turn-Off Delay Time	V _{GS} =10V		78.7		ns
T _f	Fall Time			47.3		
C _{iss}	Input Capacitance			9560		
C _{oss}	Output Capacitance	V _{DS} =60V , V _{GS} =0V , f=1MHz		1220		pF
C _{rss}	Reverse Transfer Capacitance			42		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			200	А
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =84A , T _J =250			1.4	V
t _{rr}	Reverse Recovery Time	IF=84A ,di/dt=100A / μs ,		90.2		nS
Q _{rr}	Reverse Recovery Charge	T _J = 2 5 C		239.9		nC

Typical Performance Characteristics

Fig 1: Output Characteristics

Fig 2: Transfer Characteristics

Fig 3: Rds(on) vs Drain Current and Gate

Fig 4: Rds(on) vs Gate Voltage

Fig 5: Rds(on) vs. Temperature

Fig 6: Vgs(th) vs. Temperature

Fig 8: Capacitance Characteristics

Fig 9: Gate Charge Characteristics

Fig 10: Body-diode Forward Characteristics

Fig 11: Power Dissipation

Fig 12: Drain Current Derating

Fig 13: Safe Operating Area

Test Circuit

N-Ch 120V Fast Switching MOSFETs

Figure A. Gate Charge Test Circuit & Waveforms

Figure B. Switching Test Circuit & Waveforms

Figure C. Unclamped Inductive Switching Circuit & Waveforms

Mechanical Dimensions for TO-220

OMMON DIMENSIONS

CVMDOL	MM		
SYMBOL	MIN	MAX	
А	9.70	10.30	
В	3.40	3.80	
С	8.80	9.40	
D	1.17	1.47	
E	2.60	3.50	
F	15.10	16.70	
G	19.55MAX		
Н	2.54REF		
I	0.70	0.95	
J	9.35	11.00	
К	4.30	4.77	
L	1.20	1.45	
М	0.40	0.65	
N	N 2.20 2		