env_and_copies_stats

This code runs uni-variate models on parameters of interest.

Getting Started

Libraries

Data

Cleaning

Clean and Trim

Combine into one big data set

```
master0<-
dust %>% full_join(data) %>%
filter(hr_cst %in% "01") #While this is technically not for hour 1, this gets ride of al
```

```
Joining, by = "date"
  master <- master 0[c(1,8,14,34)] #Select columns of interest
  #View new dataframe
  master
# A tibble: 40 x 4
  date
              t7sum site
                              copies_mL
              <dbl> <chr>
                                  <dbl>
  <date>
1 2022-07-04 -0.886 <NA>
                                    NA
2 2022-07-05 -0.796 <NA>
                                    NA
3 2022-07-06 -0.854 <NA>
                                    NA
4 2022-07-07 -1
                   Blind Oso
                                 25462.
5 2022-07-07 -1
                   Canals
                                 21658.
6 2022-07-07 -1
                   Gulf
                                   442.
7 2022-07-08 -1
                   Blind Oso
                                 33586.
8 2022-07-08 -1
                    Canals
                                 14290.
9 2022-07-08 -1
                    Gulf
                                  2670.
10 2022-07-09 -0.886 Blind Oso
                                 29093.
```

Make Site DF

... with 30 more rows

Need to include 7/5 and 7/6 for previous dust data (will be used for lag analysis)

```
bo<- master %>%
  filter(site %in% "Blind Oso" | date %in% c( as.Date("2022-07-05"), as.Date("2022-07-06"))

c2<- master %>%
  filter(site %in% "Canals" | date %in% c( as.Date("2022-07-05"), as.Date("2022-07-06")))

rd<- master %>%
  filter(site %in% "Gulf" | date %in% c(as.Date("2022-07-05"), as.Date("2022-07-06")))
```

DUST

Add Lag from 2_cca.qmd

```
bo2<- bo %>% mutate(
    lag =Lag(bo$t7sum, shift = 1)) %>% #Make lag from ccf
filter(between(date, as.Date('2022-07-07'), as.Date('2022-07-19')))

c22<- c2%>% mutate(
    lag =Lag(c2$t7sum, shift = 2)) %>% #Make lag from ccf
filter(between(date, as.Date('2022-07-07'), as.Date('2022-07-19')))

rd2<- rd%>% mutate(
    lag =Lag(rd$t7sum, shift = 1)) %>% #Make lag from ccf
filter(between(date, as.Date('2022-07-07'), as.Date('2022-07-19')))
```

Plot

```
fig1<-
  bo2 %>% ggplot(aes(x = lag, y = copies_mL)) +
  geom_point() +
  stat_smooth(method = "lm")+
  stat_poly_eq(aes(x = lag, y = copies_mL),
               rr.digits = 4)+
  labs(title = "LM DustxCopies (BO+1)",
       x = "log(dust)")
 fig2<-
   c22 %>% ggplot(aes(x = lag, y = copies_mL)) +
  geom_point() +
  stat_smooth(method = "lm")+
  stat_poly_eq(aes(x = lag, y = copies_mL),
               rr.digits = 4)+
  labs(title = "LM DustxCopies (C2+2)",
       x = "log(dust)")
fig3<-
  rd2 %>% ggplot(aes(lag, copies_mL)) +
  geom_point() +
  stat_smooth(method = "lm")+
  stat_poly_eq(aes(x = lag, y = copies_mL),
               rr.digits = 4)+
  labs(title = "LM DustxCopies (RD+1)",
       x = "log(dust)")
```

Stac

```
ggarrange(fig1, fig2, fig3 + font("x.text", size = 10), ncol = 1, nrow = 3)
`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'
             LM DustxCopies (BO+1)
       75000 -
50000 -
25000 -
                                                           -0.50
                            -1.00
                                            -0.75
             -1.25
                                                                           -0.25
                                           log(dust)
             LM DustxCopies (C2+2)
                 R^2 = 0.5588
                                                           -0.50
                            -1.00
                                            -0.75
                                                                           -0.25
             -1.25
                                           log(dust)
              LM DustxCopies (RD+1)
                  R^2 = 0.4442
                             -1.00
                                                           -0.50
                                            -0.75
                                                                           -0.25
             -1.25
                                           log(dust)
```

Null Model:

5-Fold Cross Validation

```
fold_bo <- vfold_cv(bo2, v = 5, repeats = 5) #Data was too small to stratify (<20) fold_c2 <- vfold_cv(c22, v = 5, repeats = 5) #Data was too small to stratify (<20) fold_rd <- vfold_cv(rd2, v = 5, repeats = 5) #Data was too small to stratify (<20)
```

Create Null Model

```
#Create Null Recipe for Growth at all three sites
null_bo<- recipe(copies_mL ~ 1, data = bo2)
null_c2<- recipe(copies_mL ~ 1, data = c22)</pre>
```

```
lm_mod<- linear_reg() %>%
    set_engine("lm") %>%
    set_mode("regression")
  #Workflow that adds recipe to model for three sites
  null_wflow_bo<-
    workflow() %>%
    add_model(lm_mod) %>%
    add_recipe(null_bo)
  null_wflow_c2<-
    workflow() %>%
    add_model(lm_mod) %>%
    add_recipe(null_c2)
  null_wflow_rd<-
    workflow() %>%
    add_model(lm_mod) %>%
    add_recipe(null_rd)
  #Use workflow to fit model to data set
  null_fit_bo<-
    fit_resamples(null_wflow_bo, resamples = fold_bo)
! Fold1, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold3, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold5, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold1, Repeat2: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat2: internal: A correlation computation is required, but `estimate` is constant
```

null_rd<- recipe(copies_mL ~ 1, data = rd2)</pre>

#Set up linear model

! Fold3, Repeat2: internal: A correlation computation is required, but `estimate` is constant ! Fold4, Repeat2: internal: A correlation computation is required, but `estimate` is constant ! Fold5, Repeat2: internal: A correlation computation is required, but `estimate` is constant ! Fold1, Repeat3: internal: A correlation computation is required, but `estimate` is constant ! Fold2, Repeat3: internal: A correlation computation is required, but `estimate` is constant ! Fold3, Repeat3: internal: A correlation computation is required, but `estimate` is constant ! Fold4, Repeat3: internal: A correlation computation is required, but `estimate` is constant ! Fold5, Repeat3: internal: A correlation computation is required, but `estimate` is constant ! Fold1, Repeat4: internal: A correlation computation is required, but `estimate` is constant ! Fold2, Repeat4: internal: A correlation computation is required, but `estimate` is constant ! Fold3, Repeat4: internal: A correlation computation is required, but `estimate` is constant ! Fold4, Repeat4: internal: A correlation computation is required, but `estimate` is constant ! Fold5, Repeat4: internal: A correlation computation is required, but `estimate` is constant ! Fold1, Repeat5: internal: A correlation computation is required, but `estimate` is constant ! Fold2, Repeat5: internal: A correlation computation is required, but `estimate` is constant ! Fold3, Repeat5: internal: A correlation computation is required, but `estimate` is constant ! Fold4, Repeat5: internal: A correlation computation is required, but `estimate` is constant

! Fold5, Repeat5: internal: A correlation computation is required, but `estimate` is constant

```
null_fit_c2<-
fit_resamples(null_wflow_c2, resamples = fold_c2)</pre>
```

```
! Fold1, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold3, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold5, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold1, Repeat2: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat2: internal: A correlation computation is required, but `estimate` is constant
! Fold3, Repeat2: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat2: internal: A correlation computation is required, but `estimate` is constant
! Fold5, Repeat2: internal: A correlation computation is required, but `estimate` is constant
! Fold1, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold3, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold5, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold1, Repeat4: internal: A correlation computation is required, but `estimate` is constan
! Fold2, Repeat4: internal: A correlation computation is required, but `estimate` is constant
```

```
! Fold3, Repeat4: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat4: internal: A correlation computation is required, but `estimate` is constant
! Fold5, Repeat4: internal: A correlation computation is required, but `estimate` is constant
! Fold1, Repeat5: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat5: internal: A correlation computation is required, but `estimate` is constant
! Fold3, Repeat5: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat5: internal: A correlation computation is required, but `estimate` is constant
! Fold5, Repeat5: internal: A correlation computation is required, but `estimate` is constant
  null_fit_rd<-
    fit resamples(null wflow rd, resamples = fold rd)
! Fold1, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold3, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold5, Repeat1: internal: A correlation computation is required, but `estimate` is constant
! Fold1, Repeat2: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat2: internal: A correlation computation is required, but `estimate` is constant
```

! Fold3, Repeat2: internal: A correlation computation is required, but `estimate` is constant

! Fold4, Repeat2: internal: A correlation computation is required, but `estimate` is constant

```
! Fold1, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold3, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold5, Repeat3: internal: A correlation computation is required, but `estimate` is constant
! Fold1, Repeat4: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat4: internal: A correlation computation is required, but `estimate` is constant
! Fold3, Repeat4: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat4: internal: A correlation computation is required, but `estimate` is constant
! Fold5, Repeat4: internal: A correlation computation is required, but `estimate` is constant
! Fold1, Repeat5: internal: A correlation computation is required, but `estimate` is constant
! Fold2, Repeat5: internal: A correlation computation is required, but `estimate` is constant
! Fold3, Repeat5: internal: A correlation computation is required, but `estimate` is constant
! Fold4, Repeat5: internal: A correlation computation is required, but `estimate` is constant
```

! Fold5, Repeat5: internal: A correlation computation is required, but `estimate` is constant

! Fold5, Repeat2: internal: A correlation computation is required, but `estimate` is constant

Get Metrics for Null

RMSE

```
null_met_bo <-</pre>
    collect_metrics(null_fit_bo)
  null_met_c2 <-</pre>
    collect_metrics(null_fit_c2)
  null_met_rd <-</pre>
    collect_metrics(null_fit_rd)
  null_met_bo
# A tibble: 2 x 6
  .metric .estimator
                                n std_err .config
                       mean
  <chr>
          <chr>
                      <dbl> <int>
                                     <dbl> <chr>
1 rmse
          standard
                     20995.
                                25
                                     1677. Preprocessor1_Model1
                                       NA Preprocessor1_Model1
                                 0
2 rsq
          standard
                       {\tt NaN}
  null_met_c2
# A tibble: 2 x 6
  .metric .estimator mean
                                n std_err .config
  <chr> <chr>
                    <dbl> <int>
                                   <dbl> <chr>
                                     475. Preprocessor1_Model1
1 rmse
          standard 8449.
                               25
                                      NA Preprocessor1_Model1
2 rsq
          standard
                     {\tt NaN}
                                0
  null_met_rd
# A tibble: 2 x 6
  .metric .estimator
                                 n std_err .config
                       mean
                                     <dbl> <chr>
  <chr>
         <chr>
                      <dbl> <int>
1 rmse
          standard
                     49889.
                                25
                                     3928. Preprocessor1_Model1
2 rsq
          standard
                                 0
                                       NA Preprocessor1_Model1
                       {\tt NaN}
  rmnb<- 20927.53
  rmnc<- 7934.59
  rmnr<- 49831.58
```

AIC

```
bo_null_mod<-
    lm(copies_mL ~ 1, data = bo2)
AIC(bo_null_mod)

[1] 275.9331

c2_null_mod<-
    lm(copies_mL ~ 1, data = c22)
AIC(c2_null_mod)

[1] 253.1876

rd_null_mod<-
    lm(copies_mL ~ 1, data = rd2)
AIC(rd_null_mod)

[1] 296.9821

aicnb<- 275.93
aicnc<- 253.19
aicnr<- 296.98</pre>
```

We will come back to these metrics once we run the models on our actual data.

Actual Data for Model

Create Linear Model

BLIND OSO:

```
#Create Recipe for Growth
growth_recipe_bo<- recipe(copies_mL ~ lag, data = bo2)

#Set up linear model
lm_mod<- linear_reg() %>%
    set_engine("lm") %>%
    set_mode("regression")
```

```
#Workflow that adds recipe to model
  Growth_wflow<-
    workflow() %>%
    add_model(lm_mod) %>%
    add_recipe(growth_recipe_bo)
  #Use workflow to fit model to data set
  growth_fit_bo<- Growth_wflow %>%
    fit(data = bo2)
  #View as Tibble
  growth_fit_bo %>%
    extract_fit_parsnip() %>%
    tidy()
# A tibble: 2 x 5
 term
            estimate std.error statistic
                                           p.value
  <chr>
                <dbl>
                        <dbl>
                                   <dbl>
                                             <dbl>
1 (Intercept) 77277.
                        11730.
                                   6.59 0.0000617
                        14395. 3.09 0.0115
2 lag
               44471.
```

CANALS:

```
#Create Recipe for Growth
growth_recipe_c2<- recipe(copies_mL ~ lag, data = c22)

#Set up linear model
lm_mod<- linear_reg() %>%
    set_engine("lm") %>%
    set_mode("regression")

#Workflow that adds recipe to model
Growth_wflow<-
    workflow() %>%
    add_model(lm_mod) %>%
    add_recipe(growth_recipe_c2)

#Use workflow to fit model to data set
growth_fit_c2<- Growth_wflow %>%
    fit(data = c22)
```

```
#View as Tibble
  growth_fit_c2 %>%
    extract_fit_parsnip() %>%
    tidy()
# A tibble: 2 x 5
 term
            estimate std.error statistic
                                             p.value
  <chr>
                <dbl>
                          <dbl>
                                   <dbl>
                                               <dbl>
1 (Intercept)
               31954.
                          4942.
                                     6.47 0.0000721
2 lag
               20859.
                          5861.
                                     3.56 0.00519
GULF:
  #Create Recipe for Growth
  growth_recipe_rd<- recipe(copies_mL ~ lag, data = rd2)</pre>
  #Set up linear model
  lm_mod<- linear_reg() %>%
    set_engine("lm") %>%
    set_mode("regression")
  #Workflow that adds recipe to model
  Growth_wflow<-
    workflow() %>%
    add_model(lm_mod) %>%
    add_recipe(growth_recipe_rd)
  #Use workflow to fit model to data set
  growth_fit_rd<- Growth_wflow %>%
    fit(data = rd2)
  #View as Tibble
  growth_fit_rd %>%
    extract_fit_parsnip() %>%
    tidy()
# A tibble: 2 x 5
 term
             estimate std.error statistic p.value
  <chr>
                <dbl>
                         <dbl>
                                    <dbl>
                                              <dbl>
1 (Intercept) 135834.
                         29387.
                                     4.62 0.000947
```

2 lag 101960. 36063. 2.83 0.0179

Metrics

RMSE and R2

```
aug_test_bo <- augment(growth_fit_bo, bo2)</pre>
  rmse <- aug_test_bo %>% rmse(truth = copies_mL, .pred)
  rsq <- aug_test_bo %>% rsq(truth = copies_mL, .pred)
  bo_metrics<- full_join(rmse, rsq)</pre>
Joining, by = c(".metric", ".estimator", ".estimate")
  bo_metrics
# A tibble: 2 x 3
  .metric .estimator .estimate
  <chr> <chr>
                         <dbl>
1 rmse standard 14423.
2 rsq
         standard
                         0.488
  aug_test_c2 <- augment(growth_fit_c2, c22)</pre>
  rmse <- aug_test_c2 %>% rmse(truth = copies_mL, .pred)
  rsq <- aug_test_c2 %>% rsq(truth = copies_mL, .pred)
  c2_metrics<- full_join(rmse, rsq)</pre>
Joining, by = c(".metric", ".estimator", ".estimate")
  c2_metrics
# A tibble: 2 x 3
  .metric .estimator .estimate
  <chr> <chr>
                         <dbl>
1 rmse standard 5191.
                         0.559
2 rsq
        standard
```

```
aug_test_rd <- augment(growth_fit_rd, rd2)</pre>
  rmse <- aug_test_rd %>% rmse(truth = copies_mL, .pred)
  rsq <- aug_test_rd %>% rsq(truth = copies_mL, .pred)
  rd_metrics<- full_join(rmse, rsq)</pre>
Joining, by = c(".metric", ".estimator", ".estimate")
  rd_metrics
# A tibble: 2 x 3
  .metric .estimator .estimate
 <chr> <chr>
1 rmse
         standard 36132.
         standard
                        0.444
2 rsq
  rmb<- 14422.91
  rmc<- 5191.22
  rmr<- 36132.11
```

AIC

Approaches based on such selection criteria essentially try to guess how the model would perform if it were to be fit to new data, without actually trying to do it (in contrast to CV). For AIC, a rule of thumb is that a difference of 10 between 2 models is meaningful.

```
bo_mod<- lm(copies_mL ~ lag, data = bo2)
AIC(bo_mod)

[1] 269.8923

c2_mod<- lm(copies_mL ~ lag, data = c22)
AIC(c2_mod)

[1] 245.3679</pre>
```

```
rd_mod<- lm(copies_mL ~ lag, data = rd2)
AIC(rd_mod)

[1] 291.933

aicb<- 269.89
aicc<- 245.37
aicr<- 291.93</pre>
```

Plot Residuals

```
res_bo<- resid(bo_mod)
plot(fitted(bo_mod), res_bo)
abline(0,0)</pre>
```



```
res_c2<- resid(c2_mod)
plot(fitted(c2_mod), res_c2)
abline(0,0)</pre>
```



```
res_rd<- resid(rd_mod)
plot(fitted(rd_mod), res_rd)
abline(0,0)</pre>
```


Conclusion

Site	Model Type	RMSE	AIC
ВО	Null	20472.82	275.9331
ВО	Actual	14422.91	269.8923
C2	Null	8472.898	253.1876
C2	Actual	5191.22	245.3679
RD	Null	50386.56	296.9821
RD	Actual	36132.11	291.933

AIC and RMSE are lower (better performance) than the null.

Make Table

Table 2: Linear Regression Model Metrics

Model	Blind_Oso	Canals	Gulf
Null RMSE	20927.53	7934.59	49831.58
Actual RMSE	14422.91	5191.22	36132.11
Null AIC	275.93	253.19	296.98
Actual AIC	269.89	245.37	291.93

OTHER ENVIRONMENTAL PARAMETERS

Create New Master Data set

```
master2<-
  master0 %>%
  select(copies_mL,sal,temp,site, amm, orthop, doc, don, tn, do_mgl, nn, sil, din_dip, tdn

#Make Site Specific DF
b<-
  master2 %>%
  filter(site %in% "Blind Oso")

c<-
  master2 %>%
  filter(site %in% "Canals")

r<-
  master2 %>%
  filter(site %in% "Gulf")
```

Plot

Temperature

LM TempxCopies (BO)

`geom_smooth()` using formula = 'y ~ x'

LM TempxCopies (C2) R² = 0.0040 10000 30.75 31.00 temp

`geom_smooth()` using formula = 'y ~ x'

LM TempxCopies (RD)

Salinity

LM salxCopies (BO)

`geom_smooth()` using formula = 'y ~ x'

LM salxCopies (C2)

`geom_smooth()` using formula = 'y ~ x'

Ammonia

LM ammxCopies (BO)

`geom_smooth()` using formula = 'y ~ x'

LM ammxCopies (C2)

`geom_smooth()` using formula = 'y ~ x'

LM ammxCopies (RD)

Orthophosphate

LM orthopxCopies (BO)

`geom_smooth()` using formula = 'y ~ x'

LM orthopxCopies (C2)

[`]geom_smooth()` using formula = 'y ~ x'

LM orthopxCopies (RD)

DOC

LM docxCopies (BO)

LM docxCopies (C2)

DON

LM donxCopies (BO)

`geom_smooth()` using formula = 'y ~ x'

LM donxCopies (C2)

Total Nitrogen

```
b %>% ggplot(aes(x = tn, y = copies_mL)) +
 geom_point() +
 stat_smooth(method = "lm")+
 stat_poly_eq(aes(x = tn, y = copies_mL),
               rr.digits = 4) +
 labs(title = "LM tnxCopies (BO)")
```

LM tnxCopies (BO)

LM tnxCopies (C2)

[`]geom_smooth()` using formula = 'y ~ x'

LM tnxCopies (RD)

DO

LM do_mglxCopies (BO)

[`]geom_smooth()` using formula = 'y ~ x'

LM do_mglxCopies (C2) R² = 0.0224 10000 1.5 2.0 2.5 3.0 do_mgl

`geom_smooth()` using formula = 'y ~ x'

LM do_mglxCopies (RD)

NN

LM nnxCopies (BO)

[`]geom_smooth()` using formula = 'y ~ x'

LM nnxCopies (C2)

[`]geom_smooth()` using formula = 'y ~ x'

LM nnxCopies (RD)

Silicate

LM silxCopies (BO)

`geom_smooth()` using formula = 'y ~ x'

LM silxCopies (C2)

LM silxCopies (RD)

DIN:DIP

LM din_dipxCopies (BO)

[`]geom_smooth()` using formula = 'y ~ x'

LM din_dipxCopies (C2)

[`]geom_smooth()` using formula = 'y ~ x'

LM din_dipxCopies (RD)

TDN

LM tdnxCopies (BO)

`geom_smooth()` using formula = 'y ~ x'

LM tdnxCopies (C2)

LM tdnxCopies (RD)

TOC

LM tocxCopies (BO)

`geom_smooth()` using formula = 'y ~ x'

LM tocxCopies (C2)

`geom_smooth()` using formula = 'y ~ x'

LM tocxCopies (RD)

рΗ

LM pHxCopies (BO)

[`]geom_smooth()` using formula = 'y ~ x'

