Zadanie 70. z Whitebooka

Jan Burdzicki

II~UWr

December 11, 2022

Spis treści

1	Opis problemu	2
2	Opis notacji	2
3	Podstawowe obserwacje	2
4	Definicja i konstrukcja zbiorów	3
5	Dowód, że rodzina zbiorów \mathbb{T}_k zawiera tylko napisy binarne reprezentujące tautologie	4
6	Dowód, że rodzina zbiorów \mathbb{NT}_k zawiera tylko napisy binarne reprezentujące nietautologie	5
7	Dowód braku występowania duplikatów w rodzinie zbiorów \mathbb{T}_k	6
8	Dowód braku występowania duplikatów w rodzinie zbiorów \mathbb{NT}_k	7
9	Dowód $\mathbb{T}_k\cap\mathbb{NT}_k=\emptyset$	9
10	Dowód $\mathbb{T}_k \cup \mathbb{NT}_k$ zawiera wszystkie możliwe napisy długości k nad alfabetem binarnym	9
11	Podsumowanie	10
12	Końcowe obserwacje	10

1 Opis problemu

Niech p^0 oznacza $\neg p$ oraz niech p^1 oznacza p. Dla jakich ciągów $(i_1,...,i_n)\in\{0,1\}^n$ formuła

$$(\dots((p^{i_1} \Rightarrow p^{i_2}) \Rightarrow p^{i_3}) \Rightarrow \dots) \Rightarrow p^{i_n}$$

jest tautologią?

2 Opis notacji

- p^0 będziemy utożsamiać z $\neg p$
- $\bullet \ p^1$ będziemy utożsamiać zp
- \bullet ciągi postaci $(i_1,...,i_k)\in\{0,1\}^k$ będziemy utożsamiać z napisami długości k nad alfabetem binarnym

3 Podstawowe obserwacje

W przekształceniach poniżej będziemy korzystać z następujących własności dla dowolnych formuł rachunku zdań $\phi,\,\psi$:

- $(\phi \Rightarrow \psi) \equiv (\neg \phi \lor \psi)$
- $(\phi \lor \phi) \equiv \phi$
- $(\phi \lor \neg \phi) \equiv \top$
- $(\bot \lor \phi) \equiv \phi$

Przekształcenia równoważne formuł:

$$(2.1) \ ((p^0 \Rightarrow p^0) \Rightarrow \psi) \equiv ((\neg p \Rightarrow \neg p) \Rightarrow \psi) \equiv ((p \lor \neg p) \Rightarrow \psi) \equiv (\top \Rightarrow \psi)$$

$$(2.2) \ ((p^1 \Rightarrow p^1) \Rightarrow \psi) \equiv ((p \Rightarrow p) \Rightarrow \psi) \equiv ((\neg p \lor p) \Rightarrow \psi) \equiv (\top \Rightarrow \psi)$$

(2.3)
$$((p^0 \Rightarrow p^1) \Rightarrow \psi) \equiv ((\neg p \Rightarrow p) \Rightarrow \psi) \equiv ((p \lor p) \Rightarrow \psi) \equiv (p \Rightarrow \psi) \equiv (p^1 \Rightarrow \psi)$$

(2.4)
$$((p^1 \Rightarrow p^0) \Rightarrow \psi) \equiv ((p \Rightarrow \neg p) \Rightarrow \psi) \equiv ((\neg p \lor \neg p) \Rightarrow \psi) \equiv (\neg p \Rightarrow \psi) \equiv (p^0 \Rightarrow \psi)$$

$$(2.5) \ (\top \Rightarrow \psi) \equiv (\neg \top \lor \psi) \equiv (\bot \lor \psi) \equiv \psi$$

Zapiszmy nasze przekształcenia równoważne w skróconej formie dla większej czytelności:

$$(2.6) ((p^0 \Rightarrow p^0) \Rightarrow \psi) \equiv (\top \Rightarrow \psi)$$

$$(2.7) ((p^1 \Rightarrow p^1) \Rightarrow \psi) \equiv (\top \Rightarrow \psi)$$

$$(2.8) \ ((p^0 \Rightarrow p^1) \Rightarrow \psi) \equiv (p^1 \Rightarrow \psi)$$

$$(2.9) \ ((p^1 \Rightarrow p^0) \Rightarrow \psi) \equiv (p^0 \Rightarrow \psi)$$

$$(2.10) \ (\top \Rightarrow \psi) \equiv \psi$$

4 Definicja i konstrukcja zbiorów

Niech zbiór $\mathbb{W} = \mathbb{N}$ będzie zbiorem wskaźników.

Rodzinę zbiorów \mathbb{T}_k , gdzie $k \in \mathbb{W}$, zdefiniujemy jako najmniejszy zbiór napisów binarnych długości k, dla których formuła $(...((p^{i_1} \Rightarrow p^{i_2}) \Rightarrow p^{i_3}) \Rightarrow ...) \Rightarrow p^{i_k}$ jest tautologią. $\mathbb{T}_{k,i}$ będziemy utożsamiać z i-tym napisem ze zbioru \mathbb{T}_k , a $\mathbb{T}_{k,i,j}$ będziemy utożsamiać z j-tym znakiem i-tego napisu ze zbioru \mathbb{T}_k .

Analogicznie rodzinę zbiorów \mathbb{NT}_k , gdzie $k \in \mathbb{W}$, zdefiniujemy jako najmniejszy zbiór napisów binarnych długości k, dla których formuła $(...((p^{i_1} \Rightarrow p^{i_2}) \Rightarrow p^{i_3}) \Rightarrow ...) \Rightarrow p^{i_k}$ nie jest tautologią. $\mathbb{NT}_{k,i}$ będziemy utożsamiać z i-tym napisem ze zbioru \mathbb{NT}_k , a $\mathbb{NT}_{k,i,j}$ będziemy utożsamiać z j-tym znakiem i-tego napisu ze zbioru \mathbb{NT}_k .

Konstrukcja rodziny zbiorów \mathbb{T}_k :

- $\mathbb{T}_1 = \emptyset$, oraz
- $\mathbb{T}_2 = \{00, 11\}, \text{ oraz }$
- $\mathbb{T}_3 = \{100, 011\}, \text{ oraz }$
- dla dowolnego $n \in \mathbb{W}, n \geq 4, \mathbb{T}_n$ zawiera sumę elemetów:
 - zbioru \mathbb{T}_{n-1} z dopisaną z przodu cyfrą przeciwną do $\mathbb{T}_{n-1,1}$
 - zbioru \mathbb{T}_{n-2} z dopisanym z przodu "00"
 - zbioru \mathbb{T}_{n-2} z dopisanym z przodu "11"

Konstrukcja rodziny zbiorów \mathbb{NT}_k :

- $\mathbb{NT}_1 = \{0, 1\}$, oraz
- $\mathbb{NT}_2 = \{01, 10\}, \text{ oraz }$
- $\mathbb{NT}_3 = \{101, 010, 000, 001, 110, 111\}, \text{ oraz}$
- dla dowolnego $n \in \mathbb{W}, n \geq 4, \mathbb{NT}_n$ zawiera sumę elemetów:
 - zbioru \mathbb{NT}_{n-1} z dopisaną z przodu cyfrą przeciwną do $\mathbb{NT}_{n-1,1}$
 - zbioru \mathbb{NT}_{n-2} z dopisanym z przodu "00"
 - zbioru \mathbb{NT}_{n-2} z dopisanym z przodu "11"

5 Dowód, że rodzina zbiorów \mathbb{T}_k zawiera tylko napisy binarne reprezentujące tautologie

Niech $\mathbb{X} \subseteq \mathbb{W}$ taki, że:

- $1 \in \mathbb{X}$, oraz
- $2 \in \mathbb{X}$, oraz
- $3 \in \mathbb{X}$, oraz
- dla dowolnego $n \in \mathbb{W}, n \geq 2$, jeśli $n \in \mathbb{X}$ oraz $(n+1) \in \mathbb{X}$, to $(n+2) \in \mathbb{X}$

Wtedy $\mathbb{X} = \mathbb{W}$

Niech $\mathbb{X} = \{n \in \mathbb{W} \mid \mathbb{T}_n \text{ zawiera tylko napisy binarne reprezentujące tautologie}\}$

W dowodzie skorzystamy z powyższej zasady indukcji.

Dowód indukcyjny:

Podstawa indukcji:

- $1 \in \mathbb{X}$, bo $\mathbb{T}_1 = \emptyset$
- 2
 $\in \mathbb{X},$ bo $\mathbb{T}_2 = \{00,11\}$ (wynika to z naszych obserwacji
 2.6-2.10)
- $3 \in \mathbb{X}$, bo $\mathbb{T}_3 = \{100,011\}$ (wynika to z naszych obserwacji 2.6-2.10)

Krok indukcyjny:

Weźmy dowolne $n\in\mathbb{W}, n\geq 2$. Załóżmy, że $n\in\mathbb{X}$ i $(n+1)\in\mathbb{X}$. Pokażemy, że $(n+2)\in\mathbb{X}$.

Rozważmy wszystkie przypadki, w jaki sposób mogliśmy stworzyć i-ty napis ze zbioru \mathbb{T}_{n+2} . Przy analizie będziemy posługiwali się naszymi obserwacjami 2.6-2.10.

- dodanie "przeciwnej cyfry":
 - $\mathbb{T}_{n+1,i\prime,1}=0$: Niech $\mathbb{T}_{n+1,i\prime}="0"+S$. Wtedy $\mathbb{T}_{n+2,i}="10"+S"$, czyli $\mathbb{T}_{n+2,i}\equiv "0"+S=\mathbb{T}_{n+1,i\prime}$. Skoro $\mathbb{T}_{n+1,i\prime}$ jest napisem reprezentującym tautologię, to $\mathbb{T}_{n+2,i}$ też jest.
 - $\mathbb{T}_{n+1,1}=1$: Niech $\mathbb{T}_{n+1,i\prime}="1"+S$. Wtedy $\mathbb{T}_{n+2,i}="01"+S"$, czyli $\mathbb{T}_{n+2,i}\equiv "1"+S=\mathbb{T}_{n+1,i\prime}$. Skoro $\mathbb{T}_{n+1,i\prime}$ jest napisem reprezentującym tautologię, to $\mathbb{T}_{n+2,i}$ też jest.

- dodanie "00":
 - Wtedy $\mathbb{T}_{n+2,i} = "00" + \mathbb{T}_{n,i'}$, czyli $\mathbb{T}_{n+2,i} \equiv \mathbb{T}_{n,i'}$. Skoro $\mathbb{T}_{n,i'}$ jest napisem reprezentującym tautologię, to $\mathbb{T}_{n+2,i}$ też jest.
- dodanie "11"

Wtedy $\mathbb{T}_{n+2,i} = "11" + \mathbb{T}_{n,i}"$, czyli $\mathbb{T}_{n+2,i} \equiv \mathbb{T}_{n,i}$. Skoro $\mathbb{T}_{n,i'}$ jest napisem reprezentującym tautologię, to $\mathbb{T}_{n+2,i}$ też jest.

Zatem $(n+2) \in \mathbb{X}$.

To znaczy, że na mocy tw. o indukcji $\mathbb{X}=\mathbb{W}$, czyli \mathbb{T}_k zawiera tylko napisy binarne reprezentujące tautologie.

6 Dowód, że rodzina zbiorów \mathbb{NT}_k zawiera tylko napisy binarne reprezentujące nietautologie

Niech $\mathbb{X} \subseteq \mathbb{W}$ taki, że:

- $1 \in \mathbb{X}$, oraz
- $2 \in \mathbb{X}$, oraz
- $3 \in \mathbb{X}$, oraz
- dla dowolnego $n \in \mathbb{W}, n \geq 2$, jeśli $n \in \mathbb{X}$ oraz $(n+1) \in \mathbb{X}$, to $(n+2) \in \mathbb{X}$

Wtedy $\mathbb{X} = \mathbb{W}$

Niech $\mathbb{X} = \{n \in \mathbb{W} \mid \mathbb{NT}_n \text{ zawiera tylko napisy binarne reprezentujące nietautologie}\}$

W dowodzie skorzystamy z powyższej zasady indukcji.

Dowód indukcyjny:

Podstawa indukcji:

- $1 \in \mathbb{X}$, bo $\mathbb{NT}_1 = \{0, 1\}$
- $2 \in \mathbb{X},$ bo $\mathbb{NT}_2 = \{01, 10\}$ (wynika to z naszych obserwacji 2.6 2.10)
- $3 \in \mathbb{X}$, bo $\mathbb{NT}_3 = \{101, 010, 000, 001, 110, 111\}$ (wynika to z naszych obserwacji 2.6 2.10)

Krok indukcyjny:

Weźmy dowolne $n\in\mathbb{W}, n\geq 2$. Załóżmy, że $n\in\mathbb{X}$ i $(n+1)\in\mathbb{X}$. Pokażemy, że $(n+2)\in\mathbb{X}$.

Rozważmy wszystkie przypadki, w jaki sposób mogliśmy stworzyć i-ty napis ze zbioru \mathbb{NT}_{n+2} . Przy analizie będziemy posługiwali się naszymi obserwacjami 2.6-2.10.

- dodanie "przeciwnej cyfry":
 - $\mathbb{NT}_{n+1,i\prime,1} = 0:$

Niech $\mathbb{NT}_{n+1,i'} = "0" + S$. Wtedy $\mathbb{NT}_{n+2,i} = "10" + S"$, czyli $\mathbb{NT}_{n+2,i} \equiv "0" + S = \mathbb{NT}_{n+1,i'}$. Skoro $\mathbb{NT}_{n+1,i'}$ jest napisem reprezentującym nietautologię, to $\mathbb{NT}_{n+2,i}$ też jest.

 $- \mathbb{NT}_{n+1,1} = 1:$

Niech $\mathbb{NT}_{n+1,i'}="1"+S$. Wtedy $\mathbb{NT}_{n+2,i}="01"+S"$, czyli $\mathbb{NT}_{n+2,i}\equiv"1"+S=\mathbb{NT}_{n+1,i'}$. Skoro $\mathbb{NT}_{n+1,i'}$ jest napisem reprezentującym nietautologię, to $\mathbb{NT}_{n+2,i}$ też jest.

• dodanie "00":

Wtedy $\mathbb{NT}_{n+2,i} = "00" + \mathbb{NT}_{n,i'}$ ", czyli $\mathbb{NT}_{n+2,i} \equiv \mathbb{NT}_{n,i'}$. Skoro $\mathbb{NT}_{n,i'}$ jest napisem reprezentującym nietautologię, to $\mathbb{NT}_{n+2,i}$ też jest.

• dodanie "11"

Wtedy $\mathbb{NT}_{n+2,i} = "11" + \mathbb{NT}_{n,i'}$ ", czyli $\mathbb{NT}_{n+2,i} \equiv \mathbb{NT}_{n,i'}$. Skoro $\mathbb{NT}_{n,i'}$ jest napisem reprezentującym nietautologię, to $\mathbb{NT}_{n+2,i}$ też jest.

Zatem $(n+2) \in X$.

To znaczy, że na mocy tw. o indukcji $\mathbb{X} = \mathbb{W}$, czyli \mathbb{T}_k zawiera tylko napisy binarne reprezentujące nietautologie.

7 Dowód braku występowania duplikatów w rodzinie zbiorów \mathbb{T}_k

Niech $\mathbb{X}\subseteq\mathbb{N}$ taki, że:

- $1 \in \mathbb{X}$, oraz
- $2 \in \mathbb{X}$, oraz
- $3 \in \mathbb{X}$, oraz
- dla dowolnego $n \in \mathbb{N}, n \geq 2$, jeśli $n \in \mathbb{X}$ oraz $(n+1) \in \mathbb{X}$, to $(n+2) \in \mathbb{X}$

Wtedy $\mathbb{X} = \mathbb{N}$

Niech $\mathbb{X} = \{ n \in \mathbb{N} \mid \mathbb{T}_n \text{ zawiera unikalne wartości} \}$

W dowodzie skorzystamy z powyższej zasady indukcji.

Dowód indukcyjny:

Podstawa indukcji:

- $1 \in \mathbb{X}$, bo $\mathbb{T}_1 = \emptyset$
- $2 \in \mathbb{X}$, bo $\mathbb{T}_2 = \{00, 11\}$
- $3 \in \mathbb{X}$, bo $\mathbb{T}_3 = \{100, 011\}$

Krok indukcyjny:

Weźmy dowolne $n \in \mathbb{N}, n \geq 2$. Załóżmy, że $n \in \mathbb{X}$ i $(n+1) \in \mathbb{X}$. Pokażemy, że $(n+2) \in \mathbb{X}$.

Załóżmy nie wprost, że \mathbb{T}_{n+2} zawiera duplikaty. Zatem istnieją takie i, j, że $i \neq j$ i $\mathbb{T}_{n+2,i} = \mathbb{T}_{n+2,j}$. Rozważmy wszystkie przypadki, w jaki sposób mogliśmy stworzyć elementy $\mathbb{T}_{n+2,i}$ i $\mathbb{T}_{n+2,j}$:

- Elementy $\mathbb{T}_{n+2,i}$, $\mathbb{T}_{n+2,j}$ powstały z elementów zbioru \mathbb{T}_n poprzez dodanie "00" lub "11". Zauważmy, że skoro $\mathbb{T}_{n+2,i} = \mathbb{T}_{n+2,j}$, to w całości są takie same, więc w szczególności ostatnia operacja była taka sama i elementy, z których powstały elementy $\mathbb{T}_{n+2,i}$ i $\mathbb{T}_{n+2,j}$ też były. Czyli istnieją i',j' takie, że $i' \neq j'$ i $\mathbb{T}_{n,i'} = \mathbb{T}_{n,j'}$. Sprzeczność \sharp (bo z założenia indukcyjnego $\mathbb{T}_n \in X$, czyli zbiór \mathbb{T}_n nie zawiera duplikatów).
- Elementy $\mathbb{T}_{n+2,i}$, $\mathbb{T}_{n+2,j}$ powstały z elementów zbioru \mathbb{T}_{n+1} poprzez dodanie "przeciwnej cyfry". Zauważmy, że skoro $\mathbb{T}_{n+2,i} = \mathbb{T}_{n+2,j}$, to w całości są takie same, więc w szczególności ostatnia operacja była taka sama i elementy, z których powstały elementy $\mathbb{T}_{n+2,i}$ i $\mathbb{T}_{n+2,j}$ też były. Czyli istnieją i',j' takie, że $i' \neq j'$ i $\mathbb{T}_{n+1,i'} = \mathbb{T}_{n+1,j'}$. Sprzeczność 4 (bo z założenia indukcyjnego $\mathbb{T}_{n+1} \in X$, czyli zbiór \mathbb{T}_{n+1} nie zawiera duplikatów).
- BSO: Załóżmy, że $\mathbb{T}_{n+2,i}$ został stworzony z elementu zbioru \mathbb{T}_n , a $\mathbb{T}_{n+2,j}$ został stworzony z elementu zbioru \mathbb{T}_{n+1} . Zauważmy, że skoro $\mathbb{T}_{n+2,i} = \mathbb{T}_{n+2,j}$, to w całości są takie same, więc w szczególności pierwsze 2 znaki są takie same. Sprzeczność 4 (bo pierwsze 2 znaki $\mathbb{T}_{n+2,i} \in \{\text{"00","11"}\}$, a pierwsze 2 znaki $\mathbb{T}_{n+2,j} \in \{\text{"01","10"}\}$).

We wszystkich przypadkach otrzymaliśmy sprzeczność, zatem $(n+2) \in \mathbb{X}$.

To znaczy, że na mocy tw. o indukcji $\mathbb{X} = \mathbb{N}$, czyli \mathbb{T}_n zawiera unikalne wartości.

8 Dowód braku występowania duplikatów w rodzinie zbiorów \mathbb{NT}_k

Niech $\mathbb{X} \subseteq \mathbb{N}$ taki, że:

- $1 \in \mathbb{X}$, oraz
- $2 \in \mathbb{X}$, oraz

- $3 \in \mathbb{X}$, oraz
- dla dowolnego $n \in \mathbb{N}, n \geq 2$, jeśli $n \in \mathbb{X}$ oraz $(n+1) \in \mathbb{X}$, to $(n+2) \in \mathbb{X}$

Wtedy $\mathbb{X} = \mathbb{N}$

Niech $\mathbb{X} = \{ n \in \mathbb{N} \mid \mathbb{NT}_n \text{ zawiera unikalne wartości} \}$

W dowodzie skorzystamy z powyższej zasady indukcji.

Dowód indukcyjny:

Podstawa indukcji:

- $1 \in \mathbb{X}$, bo $\mathbb{NT}_1 = \{0, 1\}$
- $2 \in \mathbb{X}$, bo $\mathbb{NT}_2 = \{01, 10\}$
- $3 \in \mathbb{X}$, bo $\mathbb{NT}_3 = \{101, 010, 000, 001, 110, 111\}$

Krok indukcyjny:

Weźmy dowolne $n \in \mathbb{N}, n \geq 2$. Załóżmy, że $n \in \mathbb{X}$ i $(n+1) \in \mathbb{X}$. Pokażemy, że $(n+2) \in \mathbb{X}$.

Załóżmy nie wprost, że \mathbb{NT}_{n+2} zawiera duplikaty. Zatem istnieją takie i, j, że $i \neq j$ i $\mathbb{NT}_{n+2,i} = \mathbb{NT}_{n+2,j}$. Rozważmy wszystkie przypadki, w jaki sposób mogliśmy stworzyć elementy $\mathbb{NT}_{n+2,i}$ i $\mathbb{NT}_{n+2,j}$:

- Elementy $\mathbb{NT}_{n+2,i}$, $\mathbb{NT}_{n+2,j}$ powstały z elementów zbioru \mathbb{NT}_n poprzez dodanie "00" lub "11". Zauważmy, że skoro $\mathbb{NT}_{n+2,i} = \mathbb{NT}_{n+2,j}$, to w całości są takie same, więc w szczególności ostatnia operacja była taka sama i elementy, z których powstały elementy $\mathbb{NT}_{n+2,i}$ i $\mathbb{NT}_{n+2,j}$ też były. Czyli istnieją i',j' takie, że $i' \neq j'$ i $\mathbb{NT}_{n,i'} = \mathbb{NT}_{n,j'}$. Sprzeczność \not (bo z założenia indukcyjnego $\mathbb{NT}_n \in X$, czyli zbiór \mathbb{NT}_n nie zawiera duplikatów).
- Elementy $\mathbb{NT}_{n+2,i}$, $\mathbb{NT}_{n+2,j}$ powstały z elementów zbioru \mathbb{NT}_{n+1} poprzez dodanie "przeciwnej cyfry". Zauważmy, że skoro $\mathbb{NT}_{n+2,i} = \mathbb{NT}_{n+2,j}$, to w całości są takie same, więc w szczególności ostatnia operacja była taka sama i elementy, z których powstały elementy $\mathbb{NT}_{n+2,i}$ i $\mathbb{NT}_{n+2,j}$ też były. Czyli istnieją i',j' takie, że $i' \neq j'$ i $\mathbb{NT}_{n+1,i'} = \mathbb{NT}_{n+1,j'}$. Sprzeczność i' (bo z założenia indukcyjnego $\mathbb{NT}_{n+1} \in X$, czyli zbiór \mathbb{NT}_{n+1} nie zawiera duplikatów).
- BSO: Załóżmy, że $\mathbb{NT}_{n+2,i}$ został stworzony z elementu zbioru \mathbb{NT}_n , a $\mathbb{NT}_{n+2,j}$ został stworzony z elementu zbioru \mathbb{NT}_{n+1} . Zauważmy, że skoro $\mathbb{NT}_{n+2,i} = \mathbb{NT}_{n+2,j}$, to w całości są takie same, więc w szczególności pierwsze 2 znaki są takie same. Sprzeczność 4 (bo pierwsze 2 znaki $\mathbb{NT}_{n+2,i} \in \{"00","11"\}$, a pierwsze 2 znaki $\mathbb{NT}_{n+2,j} \in \{"01","10"\}$).

We wszystkich przypadkach otrzymaliśmy sprzeczność, zatem $(n+2) \in \mathbb{X}$.

To znaczy, że na mocy tw. o indukcji $\mathbb{X}=\mathbb{N},$ czyli \mathbb{NT}_n zawiera unikalne wartości.

9 Dowód $\mathbb{T}_k \cap \mathbb{NT}_k = \emptyset$

Weźmy dowolne $k \in \mathbb{W}$. Pokażemy, że $\mathbb{T}_k \cap \mathbb{NT}_k = \emptyset$. Załóżmy nie wprost, że $\mathbb{T}_k \cap \mathbb{NT}_k \neq \emptyset$. Zatem istnieją takie i, j, że $i \neq j$ i $\mathbb{T}_{k,i} = \mathbb{NT}_{k,j}$. Zauważmy, że jeśli $\mathbb{T}_{k,i} = \mathbb{NT}_{k,j}$, to w szczególności każdy sufiks obu napisów jest taki sam. Z tego wynika, że sufiks długości 2 i 3 też są takie same dla obu napisów. Sprzeczność 4 (bo sufiks długości 2 i 3 to podstawy, odpowiednio \mathbb{T}_1 , \mathbb{NT}_1 i \mathbb{T}_2 , \mathbb{NT}_2 , których używamy do tworzenia kolejnych zbiorów, a one są różne)

10 Dowód $\mathbb{T}_k \cup \mathbb{NT}_k$ zawiera wszystkie możliwe napisy długości k nad alfabetem binarnym

Niech R(X) oznacza funkcję zwracającą rozmiar zbioru X.

Zauważmy, że wszystkich możliwych napisów długości k nad alfabetem binarnym jest 2^k .

Pokażemy, że $R(\mathbb{T}_k) + R(\mathbb{NT}_k) = 2^k$.

Niech $\mathbb{X} \subseteq \mathbb{N}$ taki, że:

- $1 \in \mathbb{X}$, oraz
- $2 \in \mathbb{X}$, oraz
- dla dowolnego $n \in \mathbb{N}$, jeśli $n \in \mathbb{X}$ oraz $(n+1) \in \mathbb{X}$, to $(n+2) \in \mathbb{X}$

Wtedy $\mathbb{X}=\mathbb{N}$

Niech
$$\mathbb{X} = \{ n \in \mathbb{N} \mid R(\mathbb{T}_n) + R(\mathbb{NT}_n) = 2^n \}$$

W dowodzie skorzystamy z powyższej zasady indukcji.

Dowód indukcyjny:

Podstawa indukcji:

- $1 \in \mathbb{X}$, bo $R(\mathbb{T}_1) + R(\mathbb{NT}_1) = 0 + 2 = 2 = 2^1$
- $2 \in \mathbb{X}$, bo $R(\mathbb{T}_2) + R(\mathbb{NT}_2) = 2 + 2 = 4 = 2^2$

Krok indukcyjny:

Weźmy dowolne $n \in \mathbb{N}$. Załóżmy, że $n \in \mathbb{X}$ i $(n+1) \in \mathbb{X}$. Pokażemy, że $(n+2) \in \mathbb{X}$.

$$R(\mathbb{T}_{n+2}) + R(\mathbb{NT}_{n+2}) = (2*R(\mathbb{T}_n) + R(\mathbb{T}_{n+1})) + (2*R(\mathbb{NT}_n) + R(\mathbb{NT}_{n+1})) = 2*(R(\mathbb{T}_n) + R(\mathbb{NT}_n)) + (R(\mathbb{T}_{n+1}) + R(\mathbb{NT}_{n+1})) \stackrel{\text{zal. ind.}}{=} 2*2^n + 2^{n+1} = 2^{n+1} + 2^{n+1} = 2*2^{n+1} = 2^{n+2}$$

Zatem $(n+2) \in X$.

To znaczy, że na mocy tw. o indukcji $\mathbb{X}=\mathbb{N},$ czyli $R(\mathbb{T}_n)+R(\mathbb{NT}_n)=2^n$

11 Podsumowanie

Zauważmy, że skoro:

- $\bullet\,$ rodzina zbiorów \mathbb{T}_k zawiera tylko tautologie
- $\bullet\,$ rodzina zbiorów \mathbb{NT}_k zawiera tylko nietautologie
- $\mathbb{T}_k \cap \mathbb{NT}_k = \emptyset$, czyli zbiór \mathbb{T}_k nie zawiera wspólnego elementu ze zbiorem \mathbb{NT}_k
- \bullet $\mathbb{T}_k \cup \mathbb{NT}_k$ zawiera wszystkie możliwe napisy długości k nad alfabetem binarnym

to \mathbb{T}_k zawiera wszystkie tautologie.

12 Końcowe obserwacje

Zauważmy, że powyższe rozwiązanie można sprowadzić do sprawdzania parzystości najdłuższego sufiksu, którego wszystkie elementy są takie same. Jeśli sufiks jest parzystej długości, to $(...((p^{i_1} \Rightarrow p^{i_2}) \Rightarrow p^{i_3}) \Rightarrow ...) \Rightarrow p^{i_n}$ jest tautologią, w przeciwnym przypadku $(...((p^{i_1} \Rightarrow p^{i_2}) \Rightarrow p^{i_3}) \Rightarrow ...) \Rightarrow p^{i_n}$ nie jest tautologią. Można to rozwiązanie udowodnić za pomocą prostej indukcji.