TRIP: Trainable Region-of-Interest Prediction for Hardware-Efficient Neuromorphic Processing on Event-based Vision

Cina Arjmand, Yingfu Xu, Kevin Shidqi, Alexandra F Dobrita, Kanishkan Vadivel, Paul Detterer, Manolis Sifalakis, Amirreza Yousefzadeh, and Guangzhi Tang

Guangzhi Tang

guangzhi.tang@maastrichtuniversity.nl DACS, Maastricht University

SENECA - Multicore Digital Neuromorphic Processor

Generalize digital neuromorphic processing to **compete** with efficient deep learning

Flexible: RISC-V controller and fully programable neural processing

Scalable: Multicasting NoC and coreto-core asynchrony

Efficient: Multiplexing and unified programable hierarchical memory

Tang, et al., SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges, Front. Neurosci., 2023

From Spiking Networks to Event-based Neural Networks

- **Efficiency**: Data movements dominate
- Data Rate: Address codes dominate
- Improved Capability: Higher accuracy

Neuromorphic Processing on Event-based Vision

Event-based Camera

Sparse Events

- Neuromorphic Processor
- Exploit input sparsity
- Low latency and energy efficient

Event-driven Convolution

Challenge 1: Memory Cost

- Large neural state memory
- High area cost

Challenge 2: Compute Cost

- Large number of events
- High computation cost

Unbearable for High-Res Event-based Vision

Hard Attention for Efficient Image Classification

Process high-res image without quadratic complexity to input scale

Papadopoulos, et al., *Hard-Attention for* Scalable Image Classification, NeurIPS, 2021

Challenge 1: Overhead for ROI
Costly ROI prediction and
generation for complex scenes

Challenge 2: Training Complexity
Hard to perform end-to-end training
with simple architecture

- Reduced inputs for ROI prediction
- Simple ROI prediction network
- Efficient ROI generation algorithm

Challenge 1: Overhead for ROI
Costly ROI prediction and
generation for complex scenes

Challenge 2: Training Complexity

Hard to perform end-to-end training

with simple architecture

- End-to-end training
- Differentiable ROI generation
- Only require class label and classification loss

Challenge 1: Overhead for ROI

Costly ROI prediction and
generation for complex scenes

Challenge 2: Training Complexity
Hard to perform end-to-end training
with simple architecture

Performance on the **DvsGesture** Dataset

Architecture	Input Resolution	Param	Effective MACs	Accuracy [%]	Accuracy [%]
			(Single Timebin)	$(mean \pm std)$	(Maximum)
LSTM [20]	32×32	7.4M	3.9M	_	86.8
AlexNet+LSTM [21]	128×128	8.3M	601.3M	_	97.7
CNN+EGRU [13]	128×128	4.8M	80.6M	97.3 ± 0.4	97.8
ConvLIAF [22]	32×32	0.22M	113.3M	_	97.6
TRIP (Ours)	$16 \times 16 + 12 \times 12$	0.46M	1.75M	97.6 ± 0.5	98.6

Right Hand Wave

Right Hand Counter-Clockwise

Left Hand Clockwise

Performance on the **Marshalling Signals** Dataset

- 11 Gestures
- 8 Distances (1m-4.5m)
- DAVIS 346 (346x260)

Muller, et al., Aircraft marshalling signals dataset of fmcw radar and event-based camera for sensor fusion, RadarConf, 2023

Architecture	Param	FLOPs	Accuracy [%]
ResNet18 [12]	11.7M	1810M	74.6
EfficientNet-B1 [12]	7.794M	690M	82.6
TRIP (Ours)	4.13M	37.0M	83.6

Experiments on our **Synthetic N-MNIST** Dataset

Same number of samples as the original N-MNIST (60K Training and 10K Testing)

Experiments on our **Synthetic N-MNIST** Dataset

TRIP

Input Dim	Param	FLOPs	Accuracy		
16x16	0.30M	16.0M	95.4		
32x32	0.65M	28.0M	96.1		

TRIP achieves better performance than one level higher input-res

Single CNN with same number of layers

Input Dim	Param	FLOPs	Accuracy
16x16	0.31M	6.0M	71.8
32x32	0.67M	24.4M	93.0
64x64	0.67M	57.4M	96.2

Deploy TRIP on **SENECA** Neuromorphic Processor

End-to-end deployment on the SENECA neuromorphic processor

Xu, et al., Optimizing event-based neural networks on digital neuromorphic architecture: a comprehensive design space exploration, Front. Neurosci., 2024

Deploy TRIP on **SENECA** Neuromorphic Processor

Causal processing increases latency of classification

Deploy TRIP on **SENECA** Neuromorphic Processor

End-to-end deployment on the SENECA neuromorphic processor

					Single Timebin		Multiple Timebins			
Hardware	Solutions	Technology	Core	Area	Latency	E_{inf}	Accuracy	Latency	E_{inf}	Accuracy
			[#]	$[mm^2]$	[ms]	[uJ]	[%]	[ms]	[uJ]	[%]
Loihi [26]	Spiking CNN [3]	Intel 14 nm	>20	>8.20	11	_	89.6	_	_	_
Loihi [26]	Spiking CNN [14]	Intel 14 nm	59	24.19	_	_	_	22.0	2731	96.2
TrueNorth [27]	Spiking CNN [11]	Samsung 28 nm	3838	383.8	_	_	91.8	104.6	18702	94.6
SENECA [10]	Event-based CNN	GF FDX 22 nm	7	3.29	_	_	_	78.9	1069.2	97.3
SENECA [10]	TRIP	GF FDX 22 nm	9	4.23	2.7	35.86	91.1	25.8	430.32	98.3

Future Integration of Sensing and Processing

Near-DVS for low-latency and low-power processing

SynSense Speck

iCatch iEVCam

Ongoing Nimble-AI (EU Horizon) Project for Near-DVS Processing

TRIPCost-efficient Solution

Acknowledgements

UNIVERSITY OF TWENTE.

Yingfu Xu

Kevin Shidqi

Alexandra Dobrita

Kanishkan Vadivel

Paul Detterer

Manolis Sifalakis

Amirreza Yousefzadeh

Guangzhi Tang

This work was partially funded by European research and innovation projects REBECCA (KDT JU under grant agreement No. 101097224), NeuroKIT2E (KDT JU under grant agreement No. 101112268), and NimbleAI (Horizon EU under grant agreement 101070679)

