Data Science 1

STAT/CS 287
Jim Bagrow, UVM Dept of Math and Statistics

LECTURE 07

More on "tabular" data

We spoke previously about storing tabular data, but at a base level, dealing with file formats, row and column delimiters, and other details.

Let's expand the scope somewhat.

Tidy data

Journal of Statistical Software

August 2014, Volume 59, Issue 10.

http://www.jstatsoft.org/

Tidy Data

Hadley Wickham RStudio

Journal of Statistical Software

August 2014, Volume 59, Issue 10.

http://www.jstatsoft.org/

Tidy Data

Hadley Wickham RStudio

Abstract (excerpt)

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible.

•

Hadley Wickham RStudio

Abstract (excerpt)

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible.

Journal of Statistical Software

August 2014, Volume 59, Issue 10.

http://www.jstatsoft.org/

Tidy Data

Hadley Wickham RStudio

Abstract (excerpt)

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible.

Journal of Statistical Software

August 2014, Volume 59, Issue 10.

http://www.jstatsoft.org/

Tidy Data

Hadley Wickham RStudio

Abstract (excerpt)

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible.

Journal of Statistical Software

August 2014, Volume 59, Issue 10.

http://www.jstatsoft.org/

Tidy Data

Hadley Wickham RStudio

Abstract (excerpt)

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible.

Journal of Statistical Software

August 2014, Volume 59, Issue 10.

http://www.jstatsoft.org

Tidy Data

Hadley Wickham RStudio

Abstract (excerpt)

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible.

"Tidy" is now a term of art!

Abstract (excerpt)

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible.

"Tidy" is now a term of art!

Abstract (excerpt)

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible.

This paper tackles a small, but important, component of data cleaning: data tidying. Tidy datasets are easy to manipulate, model and visualize, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table.

This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easier to develop tidy tools for data analysis, tools that both input and output tidy datasets.

"Tidy" is now a term of art!

Abstract (excerpt)

A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible.

This paper tackles a small, but important, component of data cleaning: data tidying. Tidy datasets are easy to manipulate, model and visualize, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table.

This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easier to develop tidy tools for data analysis, tools that both input and output tidy datasets.

Data Structure

Most datasets organized* as *tables* of *rows* and *columns*

- Columns often labeled
- Rows sometimes labeled

The same data can be organized in different ways. For example:

* or, can be organized

Data Structure

Most datasets organized* as *tables* of *rows* and *columns*

- Columns often labeled
- Rows sometimes labeled

The same data can be organized in different ways. For example:

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

* or, can be organized

Data Structure

Most datasets organized* as tables of rows and columns

- Columns often labeled
- Rows sometimes labeled

The same data can be organized in different ways. For example:

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Terminology

A dataset is a collection of *values*

• numbers (quant.) or strings (qual.)+

^{*} or, can be organized

Data Structure

Most datasets organized* as tables of rows and columns

- Columns often labeled
- Rows sometimes labeled

The same data can be organized in different ways. For example:

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Terminology

A dataset is a collection of *values*

numbers (quant.) or strings (qual.)+

Values are organized into *variables* and *observations*

^{*} or, can be organized

Data Structure

Most datasets organized* as tables of rows and columns

- Columns often labeled
- Rows sometimes labeled

The same data can be organized in different ways. For example:

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Terminology

A dataset is a collection of *values*

numbers (quant.) or strings (qual.)+

Values are organized into *variables* and *observations*

A variable contains all the values measuring the same underlying quantity (height, temperature, etc.) across observations

An observation contains all the values associated with the same unit (participant, day, demographic group, etc.)

^{*} or, can be organized

Data Structure

Most datasets organized* as tables of rows and columns

- Columns often labeled
- Rows sometimes labeled

The same data can be organized in different ways. For example:

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Terminology

A dataset is a collection of *values*

numbers (quant.) or strings (qual.)+

Values are organized into *variables* and *observations*

A variable contains all the values measuring the same underlying quantity (height, temperature, etc.) across observations

An observation contains all the values associated with the same unit (participant, day, demographic group, etc.)

Each type of observational unit is grouped into a table

^{*} or, can be organized

Terminology

→ Four components to a dataset:

Values
Variables
Observations
Table(s)

	treatmenta	treatmentb
John Smith		$\overline{2}$
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Terminology

→ Four components to a dataset:

Values
Variables
Observations
Table(s)

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

Terminology

→ Four components to a dataset:

Values
Variables
Observations
Table(s)

When *confronted* with a dataset, always *consider* what these components are

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

Terminology

→ Four components to a dataset:

Values
Variables
Observations
Table(s)

When *confronted* with a dataset, always *consider* what these components are

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

Variable	Values
person	John Smith, Jane Doe, Mary Johnson
treatment	a, b
result	16, 3, 2, 11, 1 (and possibly —)

Terminology

→ Four components to a dataset:

Values
Variables
Observations
Table(s)

When *confronted* with a dataset, always *consider* what these components are

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Variable	Values
person	John Smith, Jane Doe, Mary Johnson
treatment	a, b
result	16, 3, 2, 11, 1 (and possibly —)

Observations?

People? *Multiple options*Treatments?

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

V ariable	Values
person	John Smith, Jane Doe, Mary Johnson
treatment	a, b
result	16, 3, 2, 11, 1 (and possibly —)

Observations?

People? *Multiple options*Treatments?

Reorganize into a standard form ("tidy"):

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Variable	Values
person	John Smith, Jane Doe, Mary Johnson
treatment	a, b
result	16, 3, 2, 11, 1 (and possibly —)

Observations?

People? *Multiple options*Treatments?

Reorganize into a standard form ("tidy"):

person	treatment	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Make values, variables and observations *more clear*:

Dataset contains one table with 18 values across three variables and six observations

Reorganize into a standard form ("tidy"):

person	treatment	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Make values, variables and observations *more clear*:

Dataset contains one table with 18 values across three variables and six observations

Tidy data

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

"Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is messy or tidy depending on how rows, columns and tables are matched up with observations, variables and types"

Reorganize into a standard form ("tidy"):

person	treatment	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Make values, variables and observations *more clear*:

Dataset contains one table with 18 values across three variables and six observations

Tidy data

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

Messy (non-tidy):

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Reorganize into a standard form ("tidy"):

person	treatment	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Make values, variables and observations *more clear*:

Dataset contains one table with 18 values across three variables and six observations

Tidy data

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

Messy (non-tidy):

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Reorganize into a standard form ("tidy"):

person	treatment	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Make values, variables and observations *more clear*:

Dataset contains one table with 18 values across three variables and six observations

Tidy data

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

(data may not be stored in this format)

Tidy data

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

person	treatment	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

By ensuring that every variable is in its own column, it becomes easy and consistent to refer to all the values of a variable. In messy data, different variables may need to be selected in different ways, making code less consistent and more error-prone

Ability to work row-wise: each observation self-contained Ability to work column-wise: each variable self-contained → Makes vectorized subroutines straightforward to use

Can explicitly label every variable

Adding new variables (feature engineering) is just appending columns. Code previously written for the dataset is more likely to work without modification with new columns added

Statistical modeling is often more straightforward

By ensuring that every variable is in its own column, it becomes easy and consistent to refer to all the values of a variable. In messy data, different variables may need to be selected in different ways, making code less consistent and more error-prone

Ability to work row-wise: each observation self-contained Ability to work column-wise: each variable self-contained → Makes vectorized subroutines straightforward to use

Can explicitly label every variable

Adding new variables (feature engineering) is just appending columns. Code previously written for the dataset is more likely to work without modification with new columns added

Statistical modeling is often more straightforward

By ensuring that every variable is in its own column, it becomes easy and consistent to refer to all the values of a variable. In messy data, different variables may need to be selected in different ways, making code less consistent and more error-prone

Ability to work row-wise: each observation self-contained Ability to work column-wise: each variable self-contained → Makes vectorized subroutines straightforward to use

Can explicitly label every variable

Adding new variables (feature engineering) is just appending columns. Code previously written for the dataset is more likely to work without modification with new columns added

Statistical modeling is often more straightforward

Data manipulation operations are made easier when there is a consistent way to refer to variables. Tidy data provides this because each variable resides in its own column

The four fundamental verbs of data manipulation:

- Filter: subsetting or removing observations based on some condition.
- Transform: adding or modifying variables. These modifications can involve either a single variable (e.g., log-transform), or multiple variables (e.g., computing density from weight and volume).
- Aggregate: collapsing multiple values into a single value (e.g., by summing or taking means).
- Sort: changing the order of observations

By ensuring that every variable is in its own column, it becomes easy and consistent to refer to all the values of a variable. In messy data, different variables may need to be selected in different ways, making code less consistent and more error-prone

Ability to work row-wise: each observation self-contained Ability to work column-wise: each variable self-contained → Makes vectorized subroutines straightforward to use

Can explicitly label every variable

Adding new variables (feature engineering) is just appending columns. Code previously written for the dataset is more likely to work without modification with new columns added

Statistical modeling is often more straightforward

Messy

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Tidy

person	treatment	result
John Smith	a	
Jane Doe	a	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

By ensuring that every variable is in its own column, it becomes easy and consistent to refer to all the values of a variable. In messy data, different variables may need to be selected in different ways, making code less consistent and more errorprone

Ability to work row-wise: each observation self-contained Ability to work column-wise: each variable self-contained → Makes vectorized subroutines straightforward to use

Can explicitly label every variable

Adding new variables (feature engineering) is just appending columns. Code previously written for the dataset is more likely to work without modification with new columns added

Statistical modeling is often more straightforward

Messy

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

???

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Tidy

person	treatment	result
John Smith	\mathbf{a}	
Jane Doe	a	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Disadvantages of Tidy data

Primary disadvantage is space efficiency

Files are generally bigger with more redundancy

person	treatment	result	
John Smith	a		
Jane Doe	\mathbf{a}	16	_
Mary Johnson	\mathbf{a}	3	Ş
John Smith	b	2	
Jane Doe	b	11	
Mary Johnson	b	1	

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

- → Larger table makes data entry more time-consuming and error prone
- → Tidy tables are less suitable for presentation

Disadvantages of Tidy data

Tidy

Primary disadvantage is space efficiency

Files are generally bigger with more redundancy

person	treatment	result
John Smith	\mathbf{a}	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

- → Larger table makes data entry more time-consuming and error prone
- → Tidy tables are less suitable for presentation

However

Disk space is cheap, writing code is not

Tidy data are intended for analysis and archiving, not presentation

• "De-tidying" a dataset, for example to make a more compact table for presentation, is often more straightforward than tidying the original messy table.

In fact, many of the design choices that lead to messy data are due to formatting data for presentation

Messy data intended for presentation

Example: Pew Survey on income and religion

Messy

		<i>- y</i>			
<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
27	34	60	81	76	137
12	27	37	52	35	70
27	21	30	34	33	58
418	617	732	670	638	1116
15	14	15	11	10	35
575	869	1064	982	881	1486
1	9	7	9	11	34
228	244	236	238	197	223
20	27	24	24	21	30
19	19	25	25	30	95
	27 12 27 418 15 575 1 228 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 34 60 81 12 27 37 52 27 21 30 34 418 617 732 670 15 14 15 11 575 869 1064 982 1 9 7 9 228 244 236 238 20 27 24 24	27 34 60 81 76 12 27 37 52 35 27 21 30 34 33 418 617 732 670 638 15 14 15 11 10 575 869 1064 982 881 1 9 7 9 11 228 244 236 238 197 20 27 24 24 21

Tidy (first few rows)

	iay (mot for forms)	
religion	income	freq
Agnostic	<\$10k	27
Agnostic	10-20k	34
Agnostic	\$20–30k	60
Agnostic	\$30–40k	81
Agnostic	\$40-50k	76
Agnostic	50-75k	137
Agnostic	\$75-100k	122
Agnostic	100-150k	109
Agnostic	> 150 k	84
Agnostic	Don't know/refused	96

Presentation:

easy to read across rows to compare within a single group (religion) easy to read across columns to compare within a single group (income)

Can **explicitly** label every variable

Messy data intended for presentation

Example: Pew Survey on income and religion

N	16) S	y

		MCS	<u> </u>			
religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

Tidy (first few rows)

	iay (first few rows)	
religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10–20k	34
Agnostic	\$20–30k	60
Agnostic	\$30–40k	81
Agnostic	\$40-50k	76
Agnostic	50-75k	137
Agnostic	\$75-100k	122
Agnostic	100-150k	109
Agnostic	> 150 k	84
Agnostic	Don't know/refused	96

Presentation:

easy to read across rows to compare within a single group (religion) easy to read across columns to compare within a single group (income)

Non-tidy:

a variable (income) is across columns

Can explicitly label every variable

In tidy data:

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

Most common "problems" with messy datasets

- Column headers are values, not variable names.
- Multiple variables are stored in one column.
- Variables are stored in both rows and columns.
- Multiple types of observational units are stored in the same table.
- A single observational unit is stored in multiple tables.

Example: Billboard song charts

measurements over time

• Column headers are values, not variable names

Messy (first few rows)

75 columns

year	artist	track	time	date.entered	wk1	wk2	$\overline{\text{wk3}}$
$\overline{2000}$	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	$\overline{72}$
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000-03-18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

Example: Billboard song charts

measurements over time

Column headers are values, not variable names

 track

Messy (first few rows)

		lumns
--	--	-------

umns	Tidy	(first	few	rows
------	------	--------	-----	------

3 Doors Down 3:53

year	artist	track	time	date.entered	wk1	wk2	wk3
$\overline{2000}$	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000-03-18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

			$oldsymbol{arphi}$			
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67

Kryptonite

Baby Don't Cry

date

2000-02-26

2000-05-06

week variable created from wk1, wk2, ... date computed from data.entered & week

Can **explicitly** label every variable

rank

week

Example: Tuberculosis cases

- Column headers are values, not variable names.
- Multiple variables are stored in one column.

Messy

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					_1	1			

Example: Tuberculosis cases

- Column headers are values, not variable names.
- Multiple variables are stored in one column.

Messy

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	U	Ü	1	U	Ü	U	Ü		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

m014: males, age 0-14, f3544: females, age 35-44, etc. (many columns omitted)

Example: Tuberculosis cases

- Column headers are values, not variable names.
- Multiple variables are stored in one column.

Messy

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	U	Ū	1	Ü	Ü	U	U	_	
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

m014: males, age 0-14, f3544: females, age 35-44, etc. (many columns omitted)

Partially tidy

country	year	column	cases
AD	2000	m014	0
AD	2000	m1524	0
AD	2000	m2534	1
AD	2000	m3544	0
AD	2000	m4554	0
AD	2000	m5564	0
AD	2000	m65	0
AE	2000	m014	2
AE	2000	m1524	4
AE	2000	m2534	4
AE	2000	m3544	6
AE	2000	m4554	5
AE	2000	m5564	12
AE	2000	m65	10
AE	2000	f014	3

(a) Molten data

Tidy

country	year	sex	age	cases
AD	2000	m	0–14	0
AD	2000	m	15 - 24	0
AD	2000	m	25 – 34	1
AD	2000	m	35 – 44	0
AD	2000	m	45 - 54	0
AD	2000	m	55 – 64	0
AD	2000	m	65+	0
AE	2000	m	0 - 14	2
AE	2000	m	15 - 24	4
AE	2000	m	25 – 34	4
AE	2000	m	35 – 44	6
AE	2000	m	45 - 54	5
AE	2000	m	55 – 64	12
AE	2000	m	65+	10
AE	2000	f	0-14	3

(b) Tidy data

Example: Tuberculosis cases

Tidying these data fixes another problem

Example: Tuberculosis cases

Tidying these data fixes another problem

Messy

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
$\overline{\mathrm{AD}}$	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

(Number of cases)

Example: Tuberculosis cases

We really want to know the rates of TB, not number of cases. This requires knowing the population for each group

Tidying these data fixes another problem

Messy

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

(Number of cases)

Example: Tuberculosis cases

We really want to know the rates of TB, not number of cases. This requires knowing the population for each group

Tidying these data fixes another problem

Messy

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

(Number of cases)

Here we would need a second table to store population, which makes it harder to correctly match populations and counts to get rates

Example: Tuberculosis cases

Tidying these data fixes another problem

Messy

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	6	5	12	10		3
AF	2000	52	228	183	149	129	94	80		93
AG	2000	0	0	0	0	0	0	1		1
AL	2000	2	19	21	14	24	19	16		3
AM	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330		121
AS	2000					1	1			

(Number of cases)

Here we would need a second table to store population, which makes it harder to correctly match populations and counts to get rates

We really want to know the rates of TB, not number of cases. This requires knowing the population for each group

Tidy

AD 2000 m 0-14 0 AD 2000 m 15-24 0 AD 2000 m 25-34 1 AD 2000 m 35-44 0 AD 2000 m 45-54 0 AD 2000 m 55-64 0 AD 2000 m 65+ 0 AE 2000 m 15-24 4 AE 2000 m 25-34 4 AE 2000 m 35-44 6 AE 2000 m 35-44 6 AE 2000 m 45-54 5 AE 2000 m 55-64 12 AE 2000 m 55-64 12 AE 2000 f 0-14 3	country	year	sex	age	cases	population	rate
AD 2000 m 25-34 1 AD 2000 m 35-44 0 AD 2000 m 45-54 0 AD 2000 m 55-64 0 AD 2000 m 65+ 0 AE 2000 m 0-14 2 AE 2000 m 15-24 4 AE 2000 m 25-34 4 AE 2000 m 35-44 6 AE 2000 m 35-44 6 AE 2000 m 55-64 12 AE 2000 m 55-64 12 AE 2000 m 65+ 10		•	$\overline{\mathbf{m}}$		0		•
AD 2000 m 35-44 0 AD 2000 m 45-54 0 AD 2000 m 55-64 0 AD 2000 m 65+ 0 AE 2000 m 0-14 2 AE 2000 m 15-24 4 AE 2000 m 25-34 4 AE 2000 m 35-44 6 AE 2000 m 45-54 5 AE 2000 m 55-64 12 AE 2000 m 65+ 10	AD	2000	\mathbf{m}	15-24	0	•	•
AD 2000 m 45–54 0 AD 2000 m 55–64 0 AD 2000 m 65+ 0 AE 2000 m 0–14 2 AE 2000 m 15–24 4 AE 2000 m 25–34 4 AE 2000 m 35–44 6 AE 2000 m 45–54 5 AE 2000 m 55–64 12 AE 2000 m 65+ 10	AD	2000	\mathbf{m}	25 - 34	1		•
AD 2000 m 55-64 0 AD 2000 m 65+ 0 AE 2000 m 0-14 2 AE 2000 m 15-24 4 AE 2000 m 25-34 4 AE 2000 m 35-44 6 AE 2000 m 45-54 5 AE 2000 m 55-64 12 AE 2000 m 65+ 10	AD	2000	m	35 - 44	0		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AD	2000	m	45 - 54	0		•
AE 2000 m 0-14 2 AE 2000 m 15-24 4 AE 2000 m 25-34 4 AE 2000 m 35-44 6 AE 2000 m 45-54 5 AE 2000 m 55-64 12 AE 2000 m 65+ 10	AD	2000	\mathbf{m}	55 – 64	0	:	•
AE 2000 m 15–24 4 AE 2000 m 25–34 4 AE 2000 m 35–44 6 AE 2000 m 45–54 5 AE 2000 m 55–64 12 AE 2000 m 65+ 10	AD	2000	\mathbf{m}	65+	0	•	•
AE 2000 m 25–34 4 AE 2000 m 35–44 6 AE 2000 m 45–54 5 AE 2000 m 55–64 12 AE 2000 m 65+ 10	AE	2000	\mathbf{m}	0 - 14	2	•	•
AE 2000 m 35–44 6 AE 2000 m 45–54 5 AE 2000 m 55–64 12 AE 2000 m 65+ 10	AE	2000	\mathbf{m}	15 - 24	4	•	•
AE 2000 m 45–54 5 AE 2000 m 55–64 12 AE 2000 m 65+ 10	AE	2000	\mathbf{m}	25 – 34	4	•	•
AE 2000 m 55–64 12 AE 2000 m 65+ 10	AE	2000	m	35 – 44	6	: :	• •
AE $2000 \text{ m} 65+ 10$	AE	2000	\mathbf{m}	45 – 54	5	: :	• •
· · · · · · · · · · · · · · · · · · ·	AE	2000	\mathbf{m}	55 – 64	12	:	• •
AE 2000 f 0-14 3	AE	2000	\mathbf{m}	65+	10	:	• •
	AE	2000	f	0-14	3	•	•

(b) Tidy data

Here we can just append columns

Example: daily weather data

 Variables are stored in both rows and columns (most complicated form of messy data)

Messy

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Example: daily weather data

 Variables are stored in both rows and columns (most complicated form of messy data)

	Messy							Partially tidy				Tidy								
id	year	month	element	d1	d2	d3	d4	d5	d6	d7	<u>d8</u>		id	date	element	value	\overline{id}	date	tmax	$\overline{ ext{tmin}}$
MX17004	2010	1	tmax									•	MX17004	2010-01-30	tmax	27.8	MX17004	2010-01-30	27.8	$\overline{14.5}$
MX17004	2010	1	tmin										MX17004	2010-01-30	tmin	14.5	MX17004	2010-02-02	27.3	14.4
MX17004	2010	2	tmax		27.3	24.1							MX17004	2010-02-02	tmax	27.3	MX17004	2010-02-03	24.1	14.4
MX17004	2010	2	tmin		14.4	14.4							MX17004	2010-02-02	tmin	14.4	MX17004	2010-02-11	29.7	13.4
MX17004	2010	3	tmax					32.1					MX17004	2010-02-03	tmax	24.1	MX17004	2010-02-23	29.9	10.7
MX17004	2010	3	tmin					14.2					MX17004	2010-02-03	tmin	14.4	MX17004	2010-03-05	32.1	14.2
MX17004	2010	4	tmax										MX17004	2010-02-11	tmax	29.7	MX17004	2010-03-10	34.5	16.8
MX17004	2010	4	tmin										MX17004	2010-02-11	tmin	13.4	MX17004	2010-03-16	31.1	17.6
MX17004	2010	5	tmax										MX17004	2010-02-23	tmax	29.9	MX17004	2010-04-27	36.3	16.7
MX17004	2010	5	tmin										MX17004	2010-02-23	tmin	10.7	MX17004	2010-05-27	33.2	18.2
														(a) Molten d	ata			(b) Tidy data	a	

Example: daily weather data

 Variables are stored in both rows and columns (most complicated form of messy data)

Messy											
id	year	month	element	d1	d2	d3	d4	d5	d6	d7	<u>d8</u>
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

	,	,	
id	date	element	value
MX17004	2010-01-30	tmax	27.8
MX17004	2010-01-30	tmin	14.5
MX17004	2010-02-02	tmax	27.3
MX17004	2010-02-02	tmin	14.4
MX17004	2010-02-03	tmax	24.1
MX17004	2010-02-03	tmin	14.4
MX17004	2010-02-11	tmax	29.7
MX17004	2010-02-11	tmin	13.4
MX17004	2010-02-23	tmax	29.9
MX17004	2010-02-23	tmin	10.7

Partially tidy

(a) Molten data

Tidy

id	date	tmax	tmin
MX17004	2010-01-30	27.8	14.5
MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-23	29.9	10.7
MX17004	2010-03-05	32.1	14.2
MX17004	2010-03-10	34.5	16.8
MX17004	2010-03-16	31.1	17.6
MX17004	2010-04-27	36.3	16.7
MX17004	2010-05-27	33.2	18.2
	(-) -		

(b) Tidy data

Missing values (—) are explicit

Missing values (—) are implicit (but can be reconstructed from date variable)

Tidy data—Discussion

"Data cleaning is an important problem, but it is an uncommon subject of study in statistics."

Recall - Lecture 1

-Hadley Wickham (2014) [emphasis added]

Tidy data—Discussion

What is data science?

MATH

STATS

mixed with domain knowledge:

social networks/sociology
biology or drug discovery
neuroscience
business
etc...

Recall - Lecture 1

"Data cleaning is an important problem, but it is an uncommon subject of study in statistics."

"Surprisingly, I have found few principles to guide the design of tidy data, which acknowledge both statistical and cognitive factors. To date, my work has been driven by my experience doing data analysis, my knowledge of relational database design, and my own rumination on the tools of data analysis. The human factors, user-centered design, and human-computer interaction communities may be able to add to this conversation, but the design of data and tools to work with it has not been an active research topic in those fields. In the future, I hope to use methodologies from these fields (user-testing, ethnography, talk-aloud protocols) to improve our understanding of the cognitive side of data analysis, and to further improve our ability to design appropriate tools."

-Hadley Wickham (2014) [emphasis added]