The group G is isomorphic to the group labelled by [42, 2] in the Small Groups library. Ordinary character table of $G \cong C2 \times (C7 : C3)$:

Trivial source character table of $G \cong C2 \times (C7 : C3)$ at p = 3:

	1 <i>a</i>	2a	7a	14a	7b	14b	3a	6a	3b	6b
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$
χ_3	1	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)
χ_4	3	3	$E(7) + E(7)^2 + E(7)^4$	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7)^3 + E(7)^5 + E(7)^6$	0	0	0	0
χ_5	3	3	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	$E(7) + E(7)^2 + E(7)^4$	0	0	0	0
χ_6	1	-1	1	-1	1	-1	1	-1	1	-1
χ_7	1	-1	1	-1	1	-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$
χ_8	1	-1	1	-1	1	-1	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)
χ_9	3	-3	$E(7) + E(7)^2 + E(7)^4$	$-E(7) - E(7)^2 - E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	$-E(7)^3 - E(7)^5 - E(7)^6$	0	0	0	0
χ_{10}	3	-3	$E(7)^3 + E(7)^5 + E(7)^6$	$-E(7)^3 - E(7)^5 - E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	$-E(7) - E(7)^2 - E(7)^4$	0	0	0	0

Normalisers N_i			N_1						
p-subgroups of G up to conjugacy in G		P_1							
Representatives $n_j \in N_i$	1 <i>a</i>	2a	7a	14a	7b	14b	1 <i>a</i>	2a	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	3	3	3	3	3	3	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	3	-3	3	-3	3	-3	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	3	3	$E(7) + E(7)^2 + E(7)^4$	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7)^3 + E(7)^5 + E(7)^6$	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$		3	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	$E(7) + E(7)^2 + E(7)^4$	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	3	-3	$E(7) + E(7)^2 + E(7)^4$	$-E(7) - E(7)^2 - E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	$-E(7)^3 - E(7)^5 - E(7)^6$	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	3	-3	$E(7)^3 + E(7)^5 + E(7)^6$	$-E(7)^3 - E(7)^5 - E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	$-E(7) - E(7)^2 - E(7)^4$	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	-1	1	-1	1	-1	1	-1	

 $P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,3,7)(2,5,10)(4,14,31)(6,17,34)(8,19,21)(9,26,13)(11,22,24)(12,29,16)(15,38,37)(18,40,39)(20,41,27)(23,42,30)(25,33,32)(28,36,35)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,39)(38,40)(41,42), (1,3,7)(2,5,10)(4,14,31)(6,17,34)(8,19,21)(9,26,13)(11,22,24)(12,29,16)(15,38,37)(18,40,39)(20,41,27)(23,42,30)(25,33,32)(28,36,35), (1,4,9,15,21,27,33)(2,6,12,18,24,30,36)(37,39)(38,40)(41,42), (1,3,7)(2,5,10)(4,14,31)(6,17,34)(8,19,21)(9,26,13)(11,22,24)(12,29,16)(15,38,37)(18,40,39)(20,41,27)(23,42,30)(25,33,32)(28,36,35), (1,4,9,15,21,27,33)(2,6,12,18,24,30,36)(37,39)(38,40)(41,42), (1,3,7)(2,5,10)(4,14,31)(6,17,34)(8,19,21)(9,26,13)(11,22,24)(12,29,16)(15,38,37)(18,40,39)(20,41,27)(23,42,30)(25,33,32)(28,36,35), (1,4,9,15,21,27,33)(26,12,18,24,30,36)(37,39)(38,40)(41,42), (1,3,7)(2,5,10)(4,14,31)(6,17,34)(8,19,21)(9,26,13)(11,22,24)(12,29,16)(15,38,37)(18,40,39)(20,41,27)(23,42,30)(25,33,32)(28,36,35), (1,4,9,15,21,27,33)(26,12,18,24,30,36)(37,39)(38,40)(41,42), (1,3,7)(2,5,10)(4,14,31)(6,17,34)(8,19,21)(9,26,13)(11,22,24)(12,29,16)(15,38,37)(18,40,39)(20,41,27)(23,42,30)(25,33,32)(28,36,35), (1,4,9,15,21,27,33)(26,12,18,24,30,36)(37,39)(38,40)(41,42)(17,18,18,12,24)(12,29,16)(15,38,37)(18,40,39)(20,41,27)(23,42,30)(25,33,32)(28,36,35), (1,4,9,15,21,27,33)(26,12,18,24,30,36)(37,39)(38,40)(41,42)(17,18,18,12,24)(17,18$