FUZZY LOGIC MODEL FOR MONITORING LIVESTOCK FARMING

BY

NWALA, BLESSING UCHECHI (B.Eng. KNUST) G2018/MSC/COMP/FT/006

DEPARTMENT OF COMPUTER SCIENCE,
FACULTY OF SCIENCE
SCHOOL OF GRADUATE STUDIES
UNIVERSITY OF PORT HARCOURT
RIVERS STATE, NIGERIA

SUPERVISOR: Prof. (Mrs.) L.N Onyejegbu

MARCH, 2022

FUZZY LOGIC MODEL FOR MONITORING LIVESTOCK FARMING

BY

NWALA, BLESSING UCHECHI (B.Eng. KNUST) G2018/MSC/COMP/FT/006

A Thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the award of degree of Master of Science (MSC) in Computer Science Faculty of Science,
University of Port Harcourt.

Name of Supervisor: MARCH, 2022

Prof. L.N Onyejegbu

DECLARATION

I, NWALA, BLESSING UCHECHI with Registration Number G2018/MSC/COMP/FT/006 declare that the work in this Thesis on FUZZY LOGIC MODEL FOR MONITORING

been submitted wholly or in part	•	it is my original work and that it has naree in any Institution.
Nwala, Blessing Uchechi	Signature/Date:	
Confirmation by Supervisor		
Prof. L.N Onyejegbu	Signature/Date:	

CERTIFICATION

UNIVERSITY OF PORT HARCOURT, SCHOOL OF GRADUATE STUDIES

FUZZY LOGIC MODEL FOR MONITORING LIVESTOCK FARMING BY

NWALA, BLESSING UCHECHI

The Board of Examiners certifies that this Thesis is accepted in partial fulfillment of the requirements for the award of the degree of Master of Science (M.sc) in Computer science.

DESIGNATION	NAME	SIGNATURE	DATE
Supervisor (I)	PROF.L.N ONYEJEGBU		
Chairman, Departmental Graduate Studies Committee	PROF. P. O. ASAGBA		
Head of Department	DR. F. E. ONUODU		
Dean, Faculty of Science	PROF. E. B. ESSIEN		
External Examiner	PROF. A.A IMIANVAN		
Dean, School of Graduate Studies/Chairman, Board of Examiners	PROF. B. F. NWINEE		

DEDICATION

This research	work is	dedicated t	to the highest	God who is	the creator of	all things.

ACKNOWLEDGEMENTS

I acknowledge the efforts and guidance of my supervisor, Prof. (Mrs.) L.N Onyejegbu without your thorough supervision, this work would not have been completed. To the staffs of Computer Science Department, I want to say a big thank you. I want also acknowledge my HOD, Dr. F.E. Onuodu, Head of Computer Science Department, University of Port Harcourt for his support and advices during this period he is like a father to us all, and ever ready to assist in any way he can. I am also grateful to the faculty and post graduate school staff for their support, without your support we won't be where we are today.

To my wonderful parents, Engr. Nwala Livinus and Dr. (Mrs.) Patricia Nwala, I thank you for your unconditional love and support, especially during the period of this research work. Finally, let me respectively appreciate the support of my siblings and friends who also supported me during the period of this research work. Nwala Prosper, Nwala Albright, Nwala Onyinyechi, Eleeh Cynthia, Ifiok Umoh and Umejuru Daniel. Once again, thank you and God bless you all.

TABLE OF CONTENTS

Cove	er Page	1
Title	e Page	ii
Decl	laration	iii
Certi	ification	iv
Dedi	ication	V
Ackı	nowledgement	vi
Abst	tract	vii
Tabl	e of Contents viii List of Tables ix	
List	of Figures	X
СН	APTER ONE: INTRODUCTION	
1.1	Background to the Study	1
1.2	Statement of the Problem	2
1.3	Aim and Objectives of the Study	3
1.4	Significance of the Study	4
1.5	Scope of the Study	4
1.6 N	Motivation of the Study 4 1.7 Definition of Terms 5	
CH	IAPTER TWO: LITERATURE REVIEW	
2.1	Concept of smart agriculture	6
	2.1.1 Livestock farming	8
2.2	Deep learning as a tool for improved livestock farming	10

2.3	The Internet-of-Things as a tool for smart livestock farming	14	
	2.3.1 Application areas of IoT	15	
	2.3.2 Major IoT challenges	18	
2.4	Fuzzy Logic as a tool for improving smart livestock farming	19	
	2.4.1 Fuzzy Sets and Systems	25	
	2.4.2 Analysis of Fuzzy Logic Algorithm	26	
2.5	Review of Related Literature	29	
2.6	Direction of the Study	54	
CHAP	TER THREE: MATERIALS AND METHODS		
3.1	Analysis of the Existing System	55	
	3.1.1 Detailed Analysis of the Existing System	57	
	3.1.2 Dataflow Diagram of the Existing System	62	
	3.1.3 Decision Tree Algorithm of the Existing System	64	
	3.1.4 Advantages of the Existing System	65	
	3.1.5 Disadvantages of the Existing System	65	
3.2	Design of the Proposed System	65	
	3.2.1 Detailed Analysis of the Proposed System	67	
	3.2.2 Dataflow Diagram of the Proposed System	75	
	3.2.3 Mathematical Model of the Proposed System	77	
	3.2.4 Algorithm of the Proposed System	78	
	3.2.5 Methodology	79	
	3.2.6 Frontend Interface Design	80	
	3.2.7 Steps for the Proposed System	81	
	3.2.8 Unified Modelling Language of the Proposed System	83	
3.3	Datasets	84	
3.4 Ch	oice and Justification of Programming 87 3.5 Advantages of the Proposed System	n	87

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	System Requirement	S	88
4.2	Outputs and Discuss	ion	88
	4.2.1 Performance e	evaluation of the Existing and Proposed Systems	95
4.3	Discussion of Result	s	99
CHA	PTER FIVE: SUMMA	RY, CONCLUSION AND RECOMMENDATIONS	
5.1	Summary		101
5.2	Conclusion		101
5.3	Recommendations		102
5.4	Contributions to Kno	owledge	102
5.5	Limitations to the St	udy	102
5.6	Future Work		102
Refer	ences		103
Appe	endix A: Source Codes		106
Appe	ndix B: Sample Outpu	ts 152 Appendix C: Datasets 158	
List o	f Tables		
2.1		Further illustration of Fuzzy Logic	20
2.2		Fuzzy Logic Algorithm	28
2.3		Summary of Related Work	37
4.1		Detected Monitoring Possibility	95
4.2		Confusion Matrix Table	95
4.3		Performance Evaluation Matrix for Existing System	96
4.4		Detected Monitoring for Proposed System	96
4.5		Confusion Matrix Table	96

Performance	Evaluat	ion Matr	ix for F	Proposed S	System
1 CHIOHHIUICC	Lvaruat	ion ivian	17 101 1	10poscu k	J

4.6

7
1

List of Figures

2.1	A Typical Smart Agriculture Model	7
2.2	Images of Livestock Farming	9
2.3	Deep Learning	11
2.4	Illustration of Fuzzy Logic	20
3.1	Existing System Architecture	56
3.2	End-User Component of the Existing System	57
3.3	Knowledge-base Component of the Existing System	58
3.4	Inference Engine Component of the Existing System	59
3.5	User Interface Component of the Existing System	60

3.6	Farm Monitoring Component of the Existing System	61
3.7	Dataflow Diagram of the Existing System	63
3.8	Proposed System Architecture	66
3.9	End-user component of the Proposed System	67
3.10	Knowledge-base Component of the Proposed System	68
3.11	Inference Engine component of the Proposed System	69
3.12	User Inference Component of the Proposed System	70
3.13 3.14 3.16	Farm Monitoring Component of the Proposed System Visualize Monitoring Component of the Proposed System Rule-base Component of the Proposed System	71 72 74
3.17	Dataflow Diagram of the Proposed System	76
3.18	Frontend Interface Design of the Proposed System	80
3.19	Use-Case Activity Diagram of the Proposed System	82
3.20	UML Diagram of the Proposed System	83
3.21	Training Set	85
3.22	Test-Set	86
4.1 4.2	Netbeans IDE for Python Welcome Page	89 90
4.3	Registration Page for New User	91
4.4	Login Page for registered users	92
4.5	Test-Set Input Page	93
4.6	Livestock and Visualization	94
4.7 Abstract	ROC Curve	98

Livestock farming comes with challenges such as exploitation by farmers, issues of expansion, economic volatility, input volatility, consumer retailer perception, poor animal health care and so on. The study intends to specifically focus on exploitation of livestock farming by farmers. This specific issue is associated with the concept of factory farming. Factory farming is the main cause of animal suffering and abuse. These silent victims have been converted into machines that generate meat, milk, and eggs. These animals are sentient beings with a desire to live, but are cruelly treated by the farmers that are supposed to manage them. In this work, an improved fuzzy-based model for monitoring livestock farming was developed. The study adopted Waterfall model

as methodology and implementation was achieved with Python Programming Language and MySQL as backend. The existing system adopted calibrated and uncalibrated measurement method and obtained an accuracy value of 59%, while the proposed system adopted confusion matrix as an evaluation technique and also obtained a ROC curve with accuracy value of 89%. The study will be beneficial to stakeholders in the Agricultural Sector and other researchers with keen interest in the study area.