BỘ GIÁO DỤC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỚI QUỐC GIA TRUNG HỌC PHỔ THÔNG NĂM HỌC 2021 - 2022

ĐÈ THI CHÍNH THỰC

Môn: TOÁN

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 04/3/2022

Đề thi gồm 01 trang, 04 bài

Bài 1 (5,0 điểm)

Cho a là một số thực không âm và dãy số (u_n) được xác định bởi

$$u_1 = 6$$
, $u_{n+1} = \frac{2n+a}{n} + \sqrt{\frac{n+a}{n}u_n + 4}$, $\forall n \ge 1$.

- a) Với a = 0, chứng minh rằng (u_n) có giới hạn hữu hạn và tìm giới hạn đó.
- b) Với mọi $a \ge 0$, chứng minh rằng (u_n) có giới hạn hữu hạn.

Bài 2 (5,0 điểm)

Tìm tất cả các hàm số $f:(0;+\infty) \to (0;+\infty)$ thoả mãn

$$f\left(\frac{f(x)}{x}+y\right)=1+f(y), \ \forall x,y\in(0;+\infty).$$

Bài 3 (5,0 điểm)

Cho tam giác nhọn ABC. Các điểm E, F lần lượt thay đổi trên tia đối của các tia BA, CA sao cho BF = CE ($E \neq B$, $F \neq C$). Gọi M, N tương ứng là trung điểm của BE, CF và D là giao điểm của BF với CE.

- a) Gọi I, J lần lượt là tâm đường tròn ngoại tiếp các tam giác DBE, DCF. Chứng minh rằng MN song song với IJ.
- b) Gọi K là trung điểm của MN và H là trực tâm của tam giác AEF. Chứng minh rằng HK luôn đi qua một điểm cố định.

Bài 4 (5,0 điểm)

Với mỗi cặp số nguyên dương (n,m) thoả mãn n < m, gọi s(n,m) là số các số nguyên dương thuộc đoạn [n;m] và nguyên tố cùng nhau với m. Tìm tất cả các số nguyên dương $m \ge 2$ thoả mãn đồng thời hai điều kiện sau:

i)
$$\frac{s(n,m)}{m-n} \ge \frac{s(1,m)}{m}$$
 với mọi $n = 1, 2, ..., m-1$;

ii) $2022^m + 1$ chia hết cho m^2 .

------ HÉT -----

- Thí sinh KHÔNG được sử dụng tài liệu và máy tính cầm tay.
- Giám thị **KHÔNG** giải thích gì thêm.

BỘ GIÁO DỤC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA TRUNG HỌC PHỎ THÔNG NĂM HỌC 2021 - 2022

ĐÈ THI CHÍNH THỨC

Môn: TOÁN

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 05/3/2022

Đề thi gồm 01 trang, 03 bài

Bài 5 (6,0 điểm)

Cho P(x) và Q(x) là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của P(x) đều không vượt quá 2021 và Q(x) có ít nhất một hệ số lớn hơn 2021. Giả sử P(2022) = Q(2022) và P(x), Q(x) có chung nghiệm hữu tỷ $\frac{p}{q} \neq 0$ ($p,q \in \mathbb{Z}$; p và q nguyên tố cùng nhau). Chứng minh rằng $|p| + n|q| \leq Q(n) - P(n)$ với mọi n = 1, 2, ..., 2021.

Bài 6 (7,0 điểm)

Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu x_i ($1 \le x_i \le 6$) là số chấm trên mặt xuất hiện của con súc sắc thứ i (i = 1, 2, 3, 4).

- a) Tính số các bộ (x_1, x_2, x_3, x_4) có thể có.
- b) Tính xác suất để có một số trong x_1, x_2, x_3, x_4 bằng tổng của ba số còn lại.
- c) Tính xác suất để có thể chia x_1, x_2, x_3, x_4 thành hai nhóm có tổng bằng nhau.

Bài 7 (7,0 điểm)

Cho tam giác ABC có B, C cố định trên đường tròn O (BC không đi qua tâm O) và điểm A thay đổi trên cung lớn \widehat{BC} sao cho $AB \neq AC$. Đường tròn nội tiếp I của tam giác I0 tiếp xúc với I1 tâm I2. Gọi I3 tâm đường tròn bàng tiếp góc I3 tà giao điểm của I4 với I3 với I4 tà điểm trên I5 sao cho I5 song song với I6.

- a) Đường thẳng LE cắt đường thẳng AI tại F. Chứng minh rằng AF = AI.
- b) Trên đường tròn (J) ngoại tiếp tam giác I_aBC lấy điểm M sao cho I_aM song song với AD, MD cắt lại (J) tại N. Chứng minh rằng trung điểm T của MN luôn thuộc một đường tròn cố định.

- Thí sinh KHÔNG được sử dụng tài liệu và máy tính cầm tay.
- Giám thị KHÔNG giải thích gì thêm.

BỘ GIÁO DỰC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỚI QUỐC GIA TRUNG HỌC PHỎ THÔNG NĂM HỌC 2021 - 2022

HƯỚNG DẪN CHẨM THI Đề thi chính thức

Môn: **TOÁN**

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 04/3/2022 và 05/3/2022 Hướng dẫn chấm thi gồm 06 trang

I. HƯỚNG DẪN CHUNG

1. Giám khảo chấm đúng như đáp án, biểu điểm của Bộ Giáo dục và Đào tạo.

2. Nếu thí sinh có cách trả lời khác đáp án nhưng đúng thì giám khảo vẫn chấm điểm theo biểu điểm của Hướng dẫn chấm thi.

3. Giám khảo không quy tròn điểm thành phần của từng câu, điểm của bài thi.

II. ĐÁP ÁN, BIỂU ĐIỂM

Bài	Ý	Đáp án	Thang điểm
1	a	Với $a = 0$, ta có	2,00
		$u_1 = 6, \ u_{n+1} = 2 + \sqrt{u_n + 4}, n \ge 1.$ (1)	
		Kiểm tra bằng phương pháp quy nạp rằng	
		$6 = u_1 \ge u_n \ge u_{n+1} \ge 4, \forall n \ge 1.$	
		Do đó (u_n) có giới hạn hữu hạn và $\lim_{n\to\infty} u_n = l \in [4, 6]$. Hơn nữa, từ (1) ta suy ra	
		$l = 2 + \sqrt{l+4} \Rightarrow l = 5.$	
	b	Đặt $k_0 := [a] + 1 \in \mathbb{N}^{\bullet}$ và	3,00
		$M := \max \{u_1,, u_{k_0}, 8\} \ge 8.$	
		Ta chứng minh bằng phương pháp quy nạp rằng	
		$4 \le u_n \le M \tag{2}$	
		với mọi $n \ge 1$. Thật vậy, rõ ràng $4 \le u_n$ với mọi $n \ge 1$ và $u_n \le M$ với mọi	
		$1 \le n \le k_0$. Giả sử (2) đúng tới $n = k \ge k_0$. Khi đó, vì $0 \le a < [a] + 1 = k_0 \le k$ và	
		$M \ge 8$ nên	
		$u_{k+1} = \frac{2k+a}{k} + \sqrt{\frac{k+a}{k}}u_k + 4 \le 3 + \sqrt{2M+4} \le 3 + \sqrt{2M+9} \le M.$	ļ
		Vậy (2) đúng với mọi $n \ge 1$. Tiếp theo ta xét hai trường hợp sau:	
		Trường hợp 1: tồn tại $n_0 \ge 1$ sao cho $u_{n_0} \ge u_{n_0+1}$. Khi đó, vì $\left(\frac{2n+a}{n}\right)_{n=1}^{\infty}$ và	
		$\left(\frac{n+a}{n}\right)_{n=1}^{\infty}$ là hai dãy số giảm nên bằng phương pháp quy nạp, ta suy ra $u_n \ge u_{n+1}$	
		với mọi $n \ge n_0$. Do đó, từ (2) ta suy ra (u_n) có giới hạn hữu hạn.	
		Trường hợp 2: $u_n < u_{n+1}$ với mọi $n \ge 1$. Khi đó, từ (2) ta suy ra (u_n) có giới	
		hạn hữu hạn.	
		Tổng điểm Bài 1	5,00

2		Bằng quy nạp ta có $f\left(n\frac{f(x)}{x}+y\right)=n+f(y)$ với mọi $n\in\mathbb{Z}^+$ và $x,y>0$.	5,00
		Giả sử tồn tại $z, t > 0$ để $\frac{f(z)}{z} > \frac{f(t)}{t}$. Khi đó tồn tại n, N nguyên dương đủ lớn	
		$\vec{d} = \frac{1}{N} \cdot \frac{\vec{d}}{N} \cdot$	
		với y > 0. Do đó	
		$n+f(1) = f\left(n\frac{f(z)}{z}+1\right) = f\left(n\frac{f(t)}{t}+Nf(1)+y\right) = n+N+f(y) > n+f(1),$	
		vô lý. Vậy $\frac{f(z)}{z} = \frac{f(t)}{t}$, $\forall z, t > 0$. Suy ra $f(x) = kx$, $\forall x > 0$ (k là hằng số	
		dương). Thử lại ta có $k = 1$, hay $f(x) = x$ với mọi $x > 0$.	
3	а	Tổng điểm bài 2 Xét thế hình sau đây	5,00
		B Coi I là trung điểm PC VI, PE – CE pận tạm giáo I MA gận tại I, do đó	
		Gọi L là trung điểm BC . Vì $BF = CE$ nên tam giác LMN cân tại L , do đó MN vuông góc với phân giác trong góc \widehat{MLN} . Để ý rằng phân giác trong các góc \widehat{MLN} và \widehat{EDF} song song với nhau (do các tia tạo góc tương ứng sọng song), suy ra MN vuông góc với phân giác trong góc \widehat{EDF} .	
		Gọi G là giao điểm thứ hai của (DBE) , (DCF) . Ta có $\triangle GBF = \triangle GEC$ (g.c.g)	
		$\Rightarrow GB = GE, GC = GF \text{ nên } G \text{ là trung điểm các cung } BDE, CDF.$ Suy ro, DG là phân giác trong gác \widehat{EDE} . Pổ ví rằng DG vuông gác đường nối	<u>.</u>
		Suy ra DG là phân giác trong góc EDF . Để ý rằng DG vuông góc đường nối tâm IJ . Vậy ta có $MN \parallel IJ$.	

4	Ký hiệu X,Y lần lượt là trung điểm của BF,CE và $(X),(Y)$ tương ứng là các đường tròn đường kính BF,CE . Cho EH,FH cắt AC,AB tương ứng tại P,Q . Từ hệ thức $\overline{HE}.\overline{HP}=\overline{HF}.\overline{HQ}\Rightarrow P_{H/(X)}=P_{H/(Y)}$ nên H thuộc trục đẳng phương d của (X) và (Y) . Để ý rằng (X) và (Y) có bán kính bằng nhau nên d chính là trung trực của XY , do đó d đi qua trung điểm của XY . Mặt khác $MXNY$ là hình bình hành nên trung điểm của XY cũng là trung điểm K của MN , thành thử d chính là đường thẳng HK . Cuối cùng, gọi R là trực tâm ΔABC , lập luận tương tự như với điểm H , ta cũng có $P_{R/(X)}=P_{R/(Y)}$ nên $R\in d$. Vậy HK luôn đi qua điểm R cố định. Tổng điểm bài S	5,00 5,00
	$m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} (p_1 < p_2 < \cdots < p_r; r > 1) \text{ thì chọn } n = m - p_1 p_2 \cdots p_r + p_1 < m.$	
	Vì $(m-k,m)=(k,m)$ và $(k,m)=1\Leftrightarrow (k,p_1p_2\cdots p_r)=1$ nên ta có (với $\varphi(n)$ là	
	hàm Euler)	
	$\frac{s(n,m)}{m-n} = \frac{\varphi(p_1 p_2 \cdots p_r) - (p_1 - 1)}{p_1 p_2 \cdots p_r - p_1} = \frac{\prod (p_i - 1) - (p_1 - 1)}{\prod p_i - p_1}$	
	$ \begin{array}{cccc} m-n & p_1p_2\cdots p_r-p_1 & \prod p_i-p_1 \\ \prod (p_i-1) & p_i \end{array} $	
	$ < \frac{\prod (p_i - 1)}{\prod p_i} = \frac{\varphi(m)}{m} = \frac{s(1, m)}{m}. $	
	Như vậy điều kiện i) không thoả mãn.	
	Do đó m có một ước nguyên tố, $m = p^{\alpha}$. Khi đó	
	$\frac{s(n,m)}{m-n} = \frac{m-n-\left[\frac{m-n}{p}\right]}{m-n} \ge \frac{m-n-\frac{m-n}{p}}{m-n} = 1 - \frac{1}{p} = \frac{\varphi(m)}{m} = \frac{s(1,m)}{m}.$	
	Vậy điều kiện i) thoả mãn. Điều kiện ii) suy ra $(p,2022)=1$. Ta dễ có	
	$2022^2 \equiv 2022^{(2m,p-1)} \equiv 1 \pmod{p} \Rightarrow p \mid 2021.2023.$	
	Nếu $p \mid 2021 \Rightarrow 2$: p (vô lý)	
	Nếu $p \mid 2023$ thì áp dụng LTE ta có $v_p(2023) + v_p(m) \ge 2v_p(m) \Rightarrow m \in \{7,17,17^2\}$.	
	Tổng điểm bài 4	5,00
5	Ta chúng minh $P(n) < Q(n)$ với mọi $n \in \{1, 2,, 2021\}$.	6,00
	Đặt $Q(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$. Gọi $i \in \{0, 1, \dots, m\}$ là chỉ số nhỏ	
	nhất để $a_i \ge 2022$. Ta xét phép biến đổi sau để được đa thức $Q_1(x)$:	
	Viết $a_i = 2022h + r(h \ge 1, 0 \le r < 2022)$. Đặt $b_i = r, b_{i+1} = a_{i+1} + h$ và	
	$b_k = a_k, \forall k \in \{1, 2,, m+1\} \setminus \{i, i+1\} \text{ (ta quy uốc } a_{m+1} = 0).$	
	Ta kiểm tra được $Q_1(2022) = Q(2022)$ và $Q_1(n) < Q(n), \forall n = 1, 2,, 2021$. Nếu $Q_1(x)$ có hệ số ≥ 2022 , ta lại thực hiện phép biến đổi tương tự để được	
	Neu $Q_1(x)$ có hệ số ≥ 2022 , tả lại thực niện phép biến dối tương tự de được $Q_2(x)$, và cứ tiếp tục như thế. Do $\{Q_j(1)\}_{j\geq 1}$ là dãy các số nguyên không âm,	

số 2022, ta suy ra bộ hệ số của hai đa thức Q_{j_0} và P phải trùng nhau, hay $Q_{j_0}(x) \equiv P(x)$. Điều đó dẫn đến $P(n) = Q_{j_0}(n) < Q(n), \forall n = 1, 2,, 2021$. Mặt khác, dễ có $\frac{p}{q} < 0$ nên có thể giả sử $p > 0, q < 0 \Rightarrow p + n q = p - nq$. Để ý rằng $\frac{p}{q}$ là nghiệm hữu tỷ $\left(\left(p, q \right) = 1 \right)$ của $P(x)$ thì $p \mid P(0)$.	
Tuong tụ, $p - nq \mid Q(n)$. Suy ra $p - nq \mid Q(n) - P(n)$ nên $ p + n q \le Q(n) - P(n), \forall n = 1, 2,, 2021.$	
Tổng điểm bài 5	6,00
Số bộ (x_1, x_2, x_3, x_4) có thể có là 6^4 .	1,00
Ta cần tính xác suất biến cố $A = \bigcup A_i$. Ta thấy $ A_i $ có số phần tử bằng nhau và là số nghiệm $\in \{1, 2,, 6\}$ của phương trình: $x_1 = x_2 + x_3 + x_4$. Chuyển vế ta có $7 = x'_1 + x_2 + x_3 + x_4$, $x'_1 = 7 - x_1$. Số nghiệm nguyên dương của phương trình này theo công thức chia kẹo Euler là $C_6^3 = 20$.	2,00
Dê thây $A_i \cap A_j = \emptyset$, cho nên $ A = \sum A_i = 80$. Xác suất cần tính là $\frac{80}{1296}$.	
số còn lại, chúng có số phần tử bằng nhau. Ta có $ B_2 $ là số nghiệm thuộc $\{1,2,\ldots,6\}$ của phương trình : $x_1+x_2=x_3+x_4$, cũng là phương trình $14=x'_1+x'_2+x_3+x_4, x'_1=7-x_1, x'_2=7-x_2.$ Số nghiệm của nó theo công thức Euler là C_{13}^3 . Dễ thấy phương trình trên có tối đa một ẩn nhận giá trị lớn hơn 6. Ta cần loại trừ nghiệm này. Chẳng hạn, khi $x'_1 \geq 7$ ta đưa về phương trình về $8=x''_1+x'_2+x_3+x_4, x''_1=x'_1-6$. Số các nghiệm theo công thức Euler là $C_7^3=35$. Vì có 4 trường hợp xảy ra với 4 biến, cho nên số nghiệm có ít nhất một ẩn nhận giá trị lớn hơn 6 là $4\times35=140$. Do đó $ B_2 =286-140=146$.	
	không âm và ≤ 2021 . Ta có $Q_{j_0}(2022) = Q(2022) = P(2022)$. Viết $Q_{j_0}(2022)$ và $P(2022)$ theo hệ cơ số 2022 , ta suy ra bộ hệ số của hai đa thức Q_{j_0} và P phải trùng nhau, hay $Q_{j_0}(x) = P(x)$. Điều đó dẫn đến $P(n) = Q_{j_0}(n) < Q(n), \forall n = 1, 2,, 2021$. Mặt khác, dễ có $\frac{P}{q} < 0$ nên có thẻ giả sử $p > 0, q < 0 \Rightarrow p + n q = p - nq$. Đề ý rằng $\frac{P}{q}$ là nghiệm hữu tỷ $((p,q) = 1)$ của $P(x)$ thì $p \mid P(0)$. Xét $G(x) = P(x+n)$ thì $\frac{P-nq}{q}$ là nghiệm của $G(x) \Rightarrow p-nq \mid G(0) = P(n)$. Tương tự, $p-nq\mid Q(n)$. Suy ra $p-nq\mid Q(n)-P(n)$ nên $ p +n q \leq Q(n)-P(n), \forall n = 1, 2,, 2021$. Tổng điểm bài 5 Số bộ (x_1, x_2, x_3, x_4) có thể có là 6⁴. Kỷ hiệu A_i là tập hợp các bộ (x_1, x_2, x_3, x_4) sao cho x_i bằng tổng các số còn lại. Ta cần tính xác suát biến cố $A = \cup A_i$. Ta thấy $ A_i $ có số phần tử bằng nhau và là số nghiệm $\in \{1, 2,, 6\}$ của phương trình: $x_1 = x_2 + x_3 + x_4$. Chuyển vế ta cố $7 = x'_1 + x_2 + x_3 + x_4$, $x'_1 = 7 - x_1$. Số nghiệm nguyên dương của phương trình này theo công thức chia keo Euler là $C_6^3 = 20$. Dễ thấy $A_i \cap A_j = \emptyset$, cho nên $ A = \sum A_i = 80$. Xác suất cần tính là $\frac{80}{1296}$. Ký hiệu B_i , $i = 2, 3, 4$ là tập hợp (x_1, x_2, x_3, x_4) sao cho $x_1 + x_i$ bằng tổng của hai số còn lại, chúng có số phần tử bằng nhau. Ta có $ B_2 $ là số nghiệm thuộc $\{1, 2,, 6\}$ của phương trình: $x_1 + x_2 = x_3 + x_4$, cũng là phương trình $14 = x'_1 + x'_2 + x_3 + x_4, x'_1 = 7 - x_1, x'_2 = 7 - x_2$. Số nghiệm của nó theo công thức Euler là C_{13}^3 . Dễ thấy phương trình trên có tối đa một ẩn nhận giá trị lớn hơn 6. Ta cần loại trừ nghiệm này. Chẳng hạn, khi $x'_1 \geq 7$ ta đưa về phương trình về $8 = x''_1 + x'_2 + x_3 + x_4, x''_1 = 7 - (5 . Số các nghiệm theo công thức Euler là C_3^3. Dễ thấy phương trình trên có tối đa một ẩn nhận giá trị lớn hơn 6 là 4 \times 35 = 140. Dơ đó B_2 = 286 - 140 = 146. Dễ thấy B_i \cap B_j có 36 phần tử, vì khi đó x_1 = x_4, x_i = x_j. Tương tự B_2 \cap B_3 \cap B_4 = 6 (khi đó cà $

		Dễ thấy $A \cap B = \emptyset$, nên $ A \cup B = 80 + 336 = 416$. Xác suất cần tìm là $\frac{26}{81}$	
		Tổng điểm bài 6	7,00
7	a	Xét thế hình sau đây	3,00
		Gọi I_b, I_c là tâm đường tròn bàng tiếp góc $\widehat{ABC}, \widehat{BCA}$ và U, V lần lượt là tiếp điểm của (I) với AC, AB . Các tam giác $I_aI_bI_c$ và DUV có các cạnh tương ứng song song nên chúng là ảnh của nhau qua một phép vị tự H . Gọi R là tâm đường tròn $(I_aI_bI_c)$. Do I là trực tâm và O là tâm đường tròn Euler của $\Delta I_aI_bI_c$ nên R, I, O cùng thuộc một đường thẳng đi qua tâm vị tự của H . Để ý rằng I_aD cũng đi qua tâm vị tự này nên L chính là tâm vị tự của H . Trong tam giác DUV , ta có E là giao của đường cao qua D với đường tròn	
		Trong tam giác DUV , tả có E là giáo của dương cáo qua D với dương tron I 0 ngoại tiếp tam giác này nên E 1 là điểm đối xứng với trực tâm ΔDUV qua đường thẳng UV . Do I_aA 1 là đường cao của $\Delta I_aI_bI_c$ nên giao điểm F của E 1 với I_aA 1 là ảnh của E 1 qua phép vị tự H 2. Suy ra F 2 đối xứng với trực tâm I 2 của $I_aI_bI_c$ 2 qua I_bI_c 3, tức là F 4 đối xứng với I 1 qua I 2. Do đó I 3 I 4 I 5 I 5 I 7 đối xứng với I 8 qua I 8 I 8 I 9 đối xứng với I 9 qua I 1 I 1 I 1 I 1 I 2 I 3 I 4 I 5 I 5 I 6 I 7 đối xứng với I 8 qua I 8 I 9 đối xứng với I 9 qua I 1 I 1 I 1 I 1 I 2 I 3 I 4 I 5 I 5 I 6 I 7 đối xứng với I 1 qua I 8 I 9 đối xứng với I 9 qua I 8 I 9 đối xứng với I 9 qua I 9 đối xứng với I 9 qua I 1 I 1 I 1 I 1 I 2 I 3 I 4 I 5 I 5 I 6 I 6 I 7 đối xứng với I 9 qua I 8 I 9 đối xứng với I 9 qua I 9 đối xứng với I 9 qua I 1 I 1 I 1 I 1 I 1 I 2 I 3 I 4 I 5 I 5 I 6 I 7 I 8 I 9 I 9 I 1	
	b	Xét thế hình sau đây	4,00

Trước hết, ta chứng minh I_aM đi qua trung điểm K của BC. Thật vậy, do DA là đường đối trung của ΔDUV nên từ giả thiết $I_aM \parallel DA$, ta suy ra đường thẳng I_aM là đường đối trung của $\Delta I_aI_bI_c$. Trong $\Delta I_aI_bI_c$ thì B,C là chân các đường cao đi qua I_b,I_c nên đường đối trung I_aM là trung tuyến trong ΔI_aBC . Vậy I_aM đi qua trung điểm K của BC.

Gọi S là giao điểm của MI với BC. Tứ giác IDKM có $\widehat{D} = \widehat{M} = 90^{\circ}$ nên nội tiếp. Do đó ta có SD.SK = SI.SM = SB.SC.

Theo tiêu chuẩn Maclaurin, ta được $(BCSD) = -1 \Rightarrow M(BCSD) = -1$.

Chiếu tâm M lên đường tròn (J), ta được IBNC là tứ giác điều hoà. Gọi G là trung điểm của cung \widehat{BAC} , Q và P lần lượt là giao điểm của KN với ID và với (J). Vì J là trung điểm của cung \widehat{BC} không chứa A nên $\widehat{GBJ} = \widehat{GCJ} = 90^{\circ}$, thành thử G là giao điểm các tiếp tuyến của (J) tại B và C.

Suy ra NI đi qua G. Do NI và NP đẳng giác góc \widehat{BNC} (đường đối trung và trung tuyến trong ΔBNC) nên I và P đối xứng nhau qua trung trực KG của BC. Suy ra các đường thẳng KI và KN đối xứng nhau qua BC, thành thử D chính là trung điểm IQ. Bây giờ để ý rằng $GK \parallel IQ$ nên ND cũng đi qua trung điểm H của GK là điểm cố định.

Từ đây ta có $\widehat{JTH} = 90^{o}$, suy ra T luôn thuộc đường tròn đường kính JH cố đinh.

Tổng điểm bài 7 7,0

Tổng điểm ngày 1+ ngày 2 40