NOTA BENE - L'uso di questa tabella o di tabelle simili non è consentito durante le prove scritte (di appello o prove parziali) degli esami di Teoria dei segnali e Teoria dei segnali A.

Il docente ufficiale Prof. Giorgio Picchi

Table T.1

Fourier Transforms

Definitions

Transform
$$V(f) = \mathcal{F}[v(t)] = \int_{-\infty}^{\infty} v(t)e^{-j2\pi ft} dt$$
Inverse transform
$$v(t) = \mathcal{F}^{-1}[V(f)] = \int_{-\infty}^{\infty} V(f)e^{-j2\pi ft} df$$
Integral theorem

Integral theorem

$$\int_{-\infty}^{\infty} v(t)w^{*}(t) dt = \int_{-\infty}^{\infty} V(f)W^{*}(f) df$$

Theorems

Operation	Function	Transform
Superposition	$a_1v_1(t) + a_2v_2(t)$	$a_1V_1(f) + a_2V_2(f)$
Time delay	$v(t-t_d)$	$V(f)e^{-j\omega t_d}$
Scale change	$v(\alpha t)$	$\frac{1}{ \alpha } V\left(\frac{f}{\alpha}\right)$
Conjugation	$v^*(t)$	$V^*(-f)$
Duality	V(t)	v(-f)
Frequent translation	$v(t)e^{j\omega_e t}$	$V(f-f_c)$
Modulation	$v(t)\cos\left(\omega_{c}t+\phi\right)$	$\frac{1}{2} [V(f - f_c)e^{j\phi} + V(f + f_c)e^{-j\phi}]$
Differentiation	$\frac{d^n v(t)}{dt^n}$	$(j2\pi f)^n V(f)$
Integration	$\int_{-\infty}^{t} v(\lambda) \ d\lambda$	$\frac{1}{j2\pi f}V(f) + \frac{1}{2}V(0)\delta(f)$
Convolution	v*w(t)	V(f)W(f)
Multiplication	v(t)w(t)	V * W(f)
Multiplication by t ⁿ	$t^n v(t)$	$(-j2\pi)^{-n}\frac{d^nV(f)}{df^n}$

NOTA - La convoluzione, qui espressa nella forma $v^*w(t)$, è identica a quella usata a lezione espressa nella forma $v(t)^*w(t)$.

TABLES **781**

Transforms

Function	v(t)	V(f)
Rectangular	$\overline{\Pi\left(\frac{t}{\tau}\right)}$	au sinc $f au$
Triangular	$\Lambda\!\left(rac{t}{ au} ight)$	$ au \operatorname{sinc}^2 f au$
Gaussian	$e^{-\pi(bi)^2}$	$(1/b) e^{-\pi(f/b)^2}$
Causal exponential	$e^{-bt}u(t)$	$\frac{1}{b+j2\pi f}$
Symmetric exponential	$e^{-b t }$	$\frac{2b}{b^2+(2\pi f)^2}$
Sinc	sinc 2Wt	$\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$
Sinc squared	$sinc^2 2Wt$	$\frac{1}{2W}\Lambda\left(\frac{f}{2W}\right)$
Constant	1	$\delta(f)$
Phasor	$e^{j(\omega_c t + \phi)}$	$e^{j\phi}\delta(f-f_c)$
Sinusoid	$\cos\left(\omega_{c}t+\phi\right)$	$\frac{1}{2} \left[e^{j\phi} \delta(f - f_c) + e^{-j\phi} \delta(f + f_c) \right]$
Impulse	$\delta(t-t_d)$	$e^{-j\omega t_d}$
Sampling	$\sum_{k=-\infty}^{\infty} \delta(t-kT_s)$	$f_s \sum_{n=-\infty}^{\infty} \delta(f - nf_s)$
Signum	sgn t	$1/j\pi f$
Step	u(t)	$\frac{1}{j2\pi f} + \tfrac{1}{2}\delta(f)$