પ્રશ્ન 1(અ) [3 ગુણ]

એક્ટિવ અને પેસીવ કમ્પોનન્ટ્સની ઉદાહરણ સાથે વ્યાખ્યા કરો.

ઉત્તર:

કોષ્ટક: એક્ટિવ વિ પેસીવ કમ્પોનન્ટ્સ

કમ્પોનન્ટ પ્રકાર	વ્યાખ્યા	પાવર	ઉદાહરણો
એક્ટિવ કમ્પોનન્ટ્સ	સિગ્નલોને વિસ્તૃત કરી શકે અને કરંટ પ્રવાહ નિયંત્રિત કરે	પાવર ગેઇન આપી શકે	ટ્રાન્ઝિસ્ટર, ડાયોડ, IC
પેસીવ કમ્પોનન્ટ્સ	સિગ્નલોને વિસ્તૃત કરી શકતા નથી	પાવર ગેઇન આપી શકતા નથી	રેઝિસ્ટર, કેપેસિટર, ઇન્ડક્ટર

• એક્ટિવ કમ્પોનન્ટ્સ: બાહ્ય પાવરનો ઉપયોગ કરીને ઇલેક્ટ્રિકલ સિગ્નલોને નિયંત્રિત અને વિસ્તૃત કરે

• પેસીવ કમ્પોનન્ટ્સ: વિસ્તારણ વિના ઊર્જાનો સંગ્રહ અથવા વિસર્જન કરે

મેમરી ટ્રીક: "એક્ટિવ વિસ્તારે, પેસીવ સાચવે"

પ્રશ્ન 1(બ) [4 ગુણ]

LDR નું બંધારણ અને કાર્ય સમજાવો.

ઉत्तर:

બંધારણ:

- સર્પેન્ટાઇન ટ્રેક સિરામિક સબસ્ટ્રેટ પર કેડમિયમ સલ્ફાઇડનો
- મેટલ ઇલેક્ટ્રોડ્સ બંને છેડે કનેક્શન માટે
- પ્રોટેક્ટિવ કોટિંગ ભેજથી બચાવવા માટે

કાર્યસિદ્ધાંત:

• **પ્રકાશ તીવ્રતા** ે: રેઝિસ્ટન્સ 🕽 (વધુ કંડક્ટ કરે)

• અંધકાર: રેઝિસ્ટન્સ 🕆 (ઓછું કંડક્ટ કરે)

• ઉપયોગો: સ્ટ્રીટ લાઇટ્સ, ઓટોમેટિક કેમેરા

મેમરી ટ્રીક: "લાઇટ લો રેઝિસ્ટન્સ"

પ્રશ્ન 1(ક) [7 ગુણ]

કેપેસિટન્સની વ્યાખ્યા લખો અને એલ્યુમિનિયમ ઇલેક્ટ્રોલાઇટ વેટ પ્રકારનો કેપેસિટર સમજાવો.

ઉत्तर:

કેપેસિટન્સ વ્યાખ્યા:

ઇલેક્ટ્રિકલ ચાર્જ સંગ્રહિત કરવાની ક્ષમતા. C = Q/V (ફેરાડ્સ)

એલ્યુમિનિયમ ઇલેક્ટ્રોલાઇટિક કેપેસિટર:

બંધારણ:

- **એનોડ**: ઓક્સાઇડ લેયર સાથે એલ્યુમિનિયમ ફોઇલ
- ડાઇઇલેક્ટ્રિક: પાતળી એલ્યુમિનિયમ ઓક્સાઇડ ફિલ્મ
- **કેથોડ**: એલ્યુમિનિયમ ફોઇલ સાથે લિક્વિડ ઇલેક્ટ્રોલાઇટ
- પોલેરિટી: યોગ્ય રીતે જોડવું જરૂરી

લક્ષણો:

- ઉચ્ચ કેપેસિટન્સ મૂલ્યો (1µF થી 10,000µF)
- પોલરાઇઝ્ડ પોઝિટિવ અને નેગેટિવ ટર્મિનલ છે
- ઉપયોગો: પાવર સપ્લાય ફિલ્ટરિંગ, કપલિંગ

મેમરી ટ્રીક: "એલ્યુમિનિયમ હંમેશાં વિસ્તારે"

પ્રશ્ન 1(ક OR) [7 ગુણ]

રેઝિસ્ટરની કલર બેન્ડ કોર્ડિંગ પદ્ધતિ સમજાવો. 32 Ω ± 10% કિંમતનો કલર બેન્ડ લખો.

ઉत्तर:

કલર કોડ ટેબલ:

ફંગ	અંક	ગુણાકાર	ટોલરન્સ
<u></u> કાળો	0	1	-
ભૂરો	1	10	±1%
GIG	2	100	±2%
કેસરી	3	1K	-
પીળો	4	10K	-
લીલો	5	100K	±0.5%
વાદળી	6	1M	±0.25%
વાયોલેટ	7	10M	±0.1%
ધૂસર	8	100M	±0.05%
सફेદ	9	1G	-
ચાંદી	-	0.01	±10%
સોનું	-	0.1	±5%

32 Ω ± 10% માટે:

```
| કેસરી|લાલ|સોનું|ચાંદી|
| 3 | 2 | 0.1 | ±10%|
| ↓ | ↓ | ↓ | ↓ |
| 1મો |2જો|ગુણા|ટોલ |
```

ગણતરી: $3 \times 2 \times 0.1 = 3.2 \times 10 = 32 \Omega$

મેમરી ટ્રીક: "મોટા છોકરા દોડે અમારા યુવા છોકરીઓ પણ વાયોલેટ સામાન્યે જીતે"

પ્રશ્ન 2(અ) [3 ગુણ]

નીચેના શબ્દો વ્યાખ્યાયિત કરો: 1) રેક્ટિફાયર 2) રિપલ ફેક્ટર 3) ફિલ્ટર

ઉત્તર:

શહ€	વ્યાખ્યા
રેક્ટિફાયર	AC ને પલ્સેટિંગ DC માં બદલનાર સર્કિટ
રિપલ ફેક્ટર	આઉટપુટમાં AC ઘટક અને DC ઘટકનો ગુણોત્તર
ફિલ્ટર	પલ્સેટિંગ DC ને સ્મૂથ DC માં બદલનાર સર્કિટ

• રેક્ટિફાયર: એક જ દિશામાં કરંટ પસાર કરવા ડાયોડનો ઉપયોગ કરે

• **રિપલ ફેક્ટર**: નીચું મૂલ્ય મતલબ સારું ફિલ્ટરિંગ

• ફિલ્ટર: રિપલ્સ ઘટાડવા કેપેસિટર/ઇન્ડક્ટરનો ઉપયોગ કરે

મેમરી ટ્રીક: "રેક્ટિફાય રિપલ્સ, ફિલ્ટર ફિક્સ કરે"

પ્રશ્ન 2(બ) [4 ગુણ]

પોઝિટિવ ક્લિપર સર્કિટ દોરી વેવફોર્મ સાથે સમજાવો.

ઉत्तर:

સર્કિટ ડાયાગ્રામ:

કાર્થપદ્ધતિ:

• જ્યારે Vin > +V: ડાયોડ કંડક્ટ કરે, આઉટપુટ = +V

• જ્યારે Vin < +V: ડાયોડ બંધ, આઉટપુટ ઇનપુટને અનુસરે

• **પરિણામ**: +V લેવલથી ઉપરના પોઝિટિવ પીક્સ ક્લિપ થાય

વેવફોર્મ:

ઉપયોગો: સિગ્નલ લિમિટિંગ, પ્રોટેક્શન સર્કિટ્સ

મેમરી ટીક: "પોઝિટિવ પીક્સ પ્રિવેન્ટેડ"

પ્રશ્ન 2(ક) [7 ગુણ]

બે ડાયોડથી કુલ વેવ રેક્ટિફાયરની કાર્યપદ્ધતિ સમજાવો.

ઉत्तर:

સર્કિટ ડાયાગ્રામ:

કાર્થપદ્ધતિ:

• **પોઝિટિવ હાફ-સાયકલ**: D1 કંડક્ટ કરે, D2 બંધ

• નેગેરિવ હાફ-સાયકલ: D2 કંડક્ટ કરે, D1 બંધ

• બંને ડાયોડ વારાફરતી કામ કરે

• **આઉટપુટ ફ્રીક્વન્સી** = 2 × ઇનપુટ ફ્રીક્વન્સી

મુખ્ય પેરામીટર્સ:

પેરામીટર	મૂલ્ય
પીક ઇન્વર્સ વોલ્ટેજ	2Vm
รเข็สหดเ	81.2%
રિપલ ફેક્ટર	0.48
ફોર્મ ફેક્ટર	1.11

ફાયદા:

• હાફ વેવ કરતાં સારી કાર્યક્ષમતા

• **ઓછું રિપલ** કન્ટેન્ટ

• વધુ ટ્રાન્સફોર્મર ઉપયોગ

મેમરી ટ્રીક: "બે ડાયોડ, બે હાફ"

પ્રશ્ન 2(અ OR) [3 ગુણ]

રેક્ટિફાયર વ્યાખ્યાયિત કરો અને તેની એપ્લિકેશન લખો.

ઉत्तर:

વ્યાખ્યા:

ઇલેક્ટ્રોનિક સર્કિટ જે ડાયોડનો ઉપયોગ કરીને AC કરંટને DC કરંટમાં બદલે છે.

એપ્લિકેશન્સ:

એપ્લિકેશન	ઉપયોગ
પાવર સપ્લાય	ઇલેક્ટ્રોનિક સર્કિટ્સ માટે DC વોલ્ટેજ
બેટરી ચાર્જર	AC મેઇન્સને DC માં કન્વર્ટ કરવા
DC મોટર્સ	મોટર ડ્રાઇવ્સ માટે DC પૂરું પાડવા
ઇલેક્ટ્રોનિક ડિવાઇસ	લેપટોપ, ફ્રોન, LED ડ્રાઇવર્સ

• **પ્રમુખ્ય કાર્ય**: AC થી DC કન્વર્ઝન

• અનિવાર્ય ઘટક: બધા ઇલેક્ટ્રોનિક ડિવાઇસમાં

મેમરી ટ્રીક: "AC રેક્ટિફાય કરે, DC ડિલિવર કરે"

પ્રશ્ન 2(બ OR) [4 ગુણ]

Pi (π) પ્રકારના કેપેસિટર ફિલ્ટરનું કાર્ય સમજાવો.

ઉत्तर:

સર્કિટ ડાયાગ્રામ:

કાર્થપદ્ધતિ:

• C1: રેક્ટિફાયરથી આવતા પ્રારંભિક રિપલ્સ ફિલ્ટર કરે

• **ઇન્ડક્ટર L**: કરંટ ચેન્જનો વિરોધ કરે, વધુ સ્મૂથ કરે

• **C2**: સ્મૂથ DC આઉટપુટ માટે અંતિમ ફિલ્ટરિંગ

• સંયુક્ત અસર: ઉત્તમ રિપલ ઘટાડો

લક્ષણો:

પેરામીટર	મૂલ્ય
રિપલ ફેક્ટર	ખૂબ ઓછું (< 0.01)
રેગ્યુલેશન	સાટું
કિંમત	ઇન્ડક્ટરને કારણે વધારે
એપ્લિકેશન્સ	ઉચ્ચ ગુણવત્તાની પાવર સપ્લાય

ફાયદા:

- **ઉત્તમ ફિલ્ટરિંગ** પર્ફોર્મન્સ
- **ઓછું રિપલ** કન્ટેન્ટ
- સારું વોલ્ટેજ રેગ્યુલેશન

મેમરી ટ્રીક: "Pi પરફેક્ટ પૂટું પાડે"

પ્રશ્ન 2(ક OR) [7 ગુણ]

હાફ વેવ અને ફુલ વેવ બ્રિજ રેક્ટિફાયરને સરખાવો.

ઉत्तर:

તુલના કોષ્ટક:

પેરામીટર	હાફ વેવ	ફુલ વેવ બ્રિજ
જરૂરી ડાયોડ	1	4
ટ્રાન્સફોર્મર	સિમ્પલ	સેન્ટર-ટેપની જરૂર નથી
કાર્યક્ષમતા	40.6%	81.2%
રિપલ ફેક્ટર	1.21	0.48
PIV	Vm	Vm
આઉટપુટ ફ્રીક્વન્સી	f	2f
ટ્રાન્સફોર્મર ઉપયોગ	28.7%	81.2%
કિંમત	ઓછી	મધ્યમ

સર્કિટ ડાયાગ્રામ:

હાફ વેવ:

ફુલ વેવ બ્રિજ:

મુખ્ય તફાવતો:

• કુલ વેવ: સારી કાર્યક્ષમતા અને ઓછું રિપલ

• હાફ વેવ: સરળ પણ નબળી કામગીરી

• બ્રિજ: સેન્ટર-ટેપ ટ્રાન્સફોર્મરની જરૂર નથી

મેમરી ટ્રીક: "હાફ વેસ્ટ કરે, ફુલ કામ કરે"

પ્રશ્ન 3(અ) [3 ગુણ]

નીચેના પ્રતીકો દોરો: 1) ઝેનર ડાયોડ 2) LED 3) વેરેક્ટર ડાયોડ

ઉत्तर:

ઇલેક્ટ્રોનિક પ્રતીકો:

પ્રતીક વિગતો:

કમ્પોનન્ટ	ਮੁਰੀਡ લક્ષણ
ઝેનર ડાયોડ	Z આકારના કેથોડ સાથે સામાન્ય ડાયોડ
LED	પ્રકાશ ઉત્સર્જન દર્શાવતા તીર સાથે ડાયોડ
વેરેક્ટર ડાયોડ	સમાંતર લીટીઓ સાથે ડાયોડ (વેરિએબલ કેપેસિટર)

• **ઝેનર**: Z ઝેનર લક્ષણો દર્શાવે

• LED: તીર પ્રકાશ આઉટપુટ દિશા દર્શાવે

• વેરેક્ટર: લીટીઓ વેરિએબલ કેપેસિટન્સ દર્શાવે

મેમરી ટ્રીક: "ઝેનર ઝિગઝેગ, LED લાઇટ, વેરેક્ટર વેરી"

પ્રશ્ન 3(બ) [4 ગુણ]

LED ની રચના અને કાર્ય સમજાવો.

ઉત્તર:

બંધારણ:

સામગ્રી:

• **P-type**: બોરોન-ડોપ્ડ સેમિકન્ડક્ટર

• **N-type**: ફોસ્ફોરસ-ડોપ્ડ સેમિકન્ડક્ટર

• સામાન્ય સામગ્રી: GaAs, GaP, GaN

કાર્યસિદ્ધાંત:

• ફોરવર્ડ બાયાસ: ઇલેક્ટ્રોન હોલ્સ સાથે રિકોમ્બાઇન થાય

• ઊર્જા રિલીઝ: ફોટોન (પ્રકાશ) રૂપમાં

• રંગ: સેમિકન્ડક્ટર સામગ્રી અને બેન્ડગેપ પર આધાર રાખે

• કાર્યક્ષમતા: ઓછી પાવર સાથે ઉચ્ચ લાઇટ આઉટપુટ

ઉપયોગો:

• ઇન્ડિકેટર્સ: સ્ટેટસ લાઇટ્સ, ડિસ્પ્લે

• **લાઇટિંગ**: LED બલ્બ્સ, સ્ટ્રિપ્સ

• ઇલેક્ટ્રોનિક્સ: સેવન-સેગમેન્ટ ડિસ્પ્લે

મેમરી ટ્રીક: "લાઇટ ઇમિટિંગ, એનર્જી એફિશિયન્ટ"

પ્રશ્ન 3(ક) [7 ગુણ]

ઝેનર ડાયોડની કાર્યકારી લાક્ષણિકતાઓ સમજાવો.

ઉત્તર:

V-I લાક્ષણિકતાઓ:

મુખ્ય વિસ્તારો:

વિસ્તાર	લાક્ષણિકતાઓ
ફોરવર્ડ બાયાસ	સામાન્ય ડાયોડ ઓપરેશન (0.7V)
રિવર્સ બાયાસ	નાનું લીકેજ કરંટ
ઝેનર રીજીયન	કોન્સ્ટન્ટ વોલ્ટેજ (Vz)
બ્રેકડાઉન	શાર્પ વોલ્ટેજ બ્રેકડાઉન

મહત્વના પેરામીટર્સ:

• ઝેનર વોલ્ટેજ (Vz): બ્રેકડાઉન વોલ્ટેજ

• **ઝેનર કરંટ (Iz)**: બ્રેકડાઉન વિસ્તારમાં કરંટ

• **भे**ड्सिमम **पावर**: Vz × lz(max)

• તાપમાન ગુણાંક: તાપમાન સાથે વોલ્ટેજ વેરિએશન

ઉપયોગો:

• **વોલ્ટેજ રેગ્યુલેશન**: કોન્સ્ટન્ટ આઉટપુટ જાળવે

• રેફરન્સ વોલ્ટેજ: યોક્કસ વોલ્ટેજ સોર્સ

• ઓવરવોલ્ટેજ પ્રોટેક્શન: સર્કિટ્સનું રક્ષણ કરે

ફાયદા:

• શાર્પ બ્રેકડાઉન: સારી રીતે વ્યાખ્યાયિત વોલ્ટેજ

• ઓછું ડાયનામિક રેઝિસ્ટન્સ: સાટું રેગ્યુલેશન

• વાઇડ રેન્જ: ઘણા વોલ્ટેજમાં ઉપલબ્ધ

મેમરી ટ્રીક: "ઝેનર ઝોન ઝીરો વેરિએશન"

પ્રશ્ન 3(અ OR) [3 ગુણ]

વેરેક્ટર ડાયોડની એપ્લિકેશનની યાદી બનાવો.

ઉत्तर:

એપ્લિકેશન ટેબલ:

એપ્લિકેશન	รเช้
વોલ્ટેજ કંટ્રોલ્ડ ઓસિલેટર્સ	વોલ્ટેજ સાથે ફ્રીક્વન્સી ટ્યુનિંગ
ઓટોમેટિક ફ્રીક્વન્સી કંટ્રોલ	ઓસિલેટર ફ્રીક્વન્સી જાળવે
ઇલેક્ટ્રોનિક ટ્યુનિંગ	રેડિયો/TV ચેનલ સિલેક્શન
ફેઝ લૉક્ડ લૂપ્સ	ફ્રીક્વન્સી સિંકોનાઇઝેશન
ફ્રીક્વન્સી મલ્ટિપ્લાયર્સ	હાર્મોનિક જનરેશન
પેરામેટ્રિક એમ્પ્લિફાયર્સ	લો-નોઇઝ એમ્પ્લિફિકેશન

મુખ્ય લક્ષણો:

• વોલ્ટેજ વેરિએબલ: રિવર્સ વોલ્ટેજ સાથે કેપેસિટન્સ બદલાય

• યાંત્રિક ભાગો નથી: માત્ર ઇલેક્ટ્રોનિક ટ્યુનિંગ

• **ઝડપી પ્રતિસાદ**: ઝડપી ફ્રીક્વન્સી ચેન્જ

મેમરી ટ્રીક: "વોલ્ટેજ વેરીઝ કેપેસિટન્સ"

પ્રશ્ન 3(બ OR) [4 ગુણ]

ફોટો ડાયોડનું કાર્ય સમજાવો.

ઉત્તર:

બંધારણ અને પ્રતીક:

કાર્યસિદ્ધાંત:

• પ્રકાશ અવશોષણ: ઇલેક્ટ્રોન-હોલ પેર્સ બનાવે

• રિવર્સ બાયાસ: ડિપ્લીશન રીજીયન વિસ્તૃત કરે

• કોટોકરંટ: પ્રકાશ તીવ્રતાના પ્રમાણમાં

• **ઝડપી પ્રતિસાદ**: ઝડપી ડિટેક્શન ક્ષમતા

લક્ષણો:

પેરામીટર	นย์่า
ડાર્ફ કરંટ	પ્રકાશ વિના કરંટ
ફોટોકરંટ	પ્રકાશના પ્રમાણમાં કરંટ
રેસ્પોન્સિવિટી	યુનિટ લાઇટ પાવર પર કરંટ
રેસ્પોન્સ ટાઇમ	ડિટેક્શનની ગતિ

ઉપયોગો:

• લાઇટ સેન્સર્સ: ઓટોમેટિક લાઇટિંગ સિસ્ટમ

• ઓપ્ટિકલ કમ્યુનિકેશન: ફાઇબર ઓપ્ટિક રિસીવર્સ

• સેફટી સિસ્ટમ: સ્મોક ડિટેક્ટર્સ

• **સોલાર પેનલ્સ**: પ્રકાશથી ઇલેક્ટ્રિકલ એનર્જી

મેમરી ટ્રીક: "ફોટો પ્રોડ્યુસેસ પ્રોપોર્શનલ કરંટ"

પ્રશ્ન 3(ક OR) [7 ગુણ]

ઝેનર ડાયોડને વોલ્ટેજ રેગ્યુલેટરના સ્વરૂપે સમજાવો.

ઉत्तर:

વોલ્ટેજ રેગ્યુલેટર સર્કિટ:

```
Vin ○—Rs——○ Vout = Vz

|

Z ↓ (ઝેનર)

|

○ Ground
```

કાર્યસિદ્ધાંત:

- ઝેનર ઓપરેટ બ્રેકડાઉન રીજીયનમાં
- **આઉટપુટ વોલ્ટેજ** Vz પર કોન્સ્ટન્ટ રહે
- **સીરીઝ રેઝિસ્ટર Rs** કરંટ લિમિટ કરે
- **લોડ ચેન્જ** આઉટપુટ વોલ્ટેજને અસર કરતા નથી

ડિઝાઇન સમીકરણો:

પેરામીટર	ફોર્મ્યુલા
સીરીઝ રેઝિસ્ટન્સ	Rs = (Vin - Vz) / Iz
લોડ કરંટ	IL = Vz / RL
ઝેનર કરંટ	Iz = Is - IL
પાવર ડિસિપેશન	$Pz = Vz \times Iz$

રેગ્યુલેશન લક્ષણો:

• લાઇન રેગ્યુલેશન: ઇનપુટ વેરિએશન સાથે આઉટપુટ ચેન્જ

• લોડ રેગ્યુલેશન: લોડ વેરિએશન સાથે આઉટપુટ ચેન્જ

• કાર્યક્ષમતા: ઝેનર પાવર લોસને કારણે સામાન્યે ઓછી

ફાયદા:

• સિમ્પલ સર્કિટ: ઓછા કમ્પોનન્ટ્સ જરૂરી

• સારું રેગ્યુલેશન: સ્ટેબલ આઉટપુટ વોલ્ટેજ

• ઝડપી પ્રતિસાદ: ઝડપી વોલ્ટેજ કરેક્શન

મર્યાદાઓ:

• નબળી કાર્યક્ષમતા: ઝેનરમાં પાવર વેસ્ટ

• મર્યાદિત કરંટ: ઉચ્ચ કરંટ સપ્લાય કરી શકતું નથી

• તાપમાન સેન્સિટિવિટી: તાપમાન સાથે વોલ્ટેજ બદલાય

ઉપયોગો:

• રેફરન્સ વોલ્ટેજ: યોક્કસ વોલ્ટેજ સોર્સ

• સિમ્પલ રેગ્યુલેટર્સ: ઓછા કરંટ એપ્લિકેશન

• પ્રોટેક્શન સર્કિટ્સ: ઓવરવોલ્ટેજ પ્રોટેક્શન

મેમરી ટ્રીક: "ઝેનર ઝોન્સ ઝીરો વેરિએશન પૂરા પાડે"

પ્રશ્ન 4(અ) [3 ગુણ]

PNP અને NPN ટ્રાન્ઝિસ્ટરની સંજ્ઞા અને બંધારણ યોગ્ય નામ નિર્દેશ સાથે દોરો.

ઉत्तर:

ટ્રાન્ઝિસ્ટર પ્રતીકો:

બંધારણ ડાયાગ્રામ:

ટર્મિનલ ઓળખ:

• એમિટર: હેવી ડોપ્ડ, તીર કરંટ દિશા દર્શાવે

• બેસ: પાતળું, લાઇટ ડોપ્ડ મધ્ય વિસ્તાર

• કલેક્ટર: મોડરેટ ડોપ્ડ, ચાર્જ કેરિયર્સ એકત્રિત કરે

કરંટ દિશા:

• NPN: તીર બહારની તરફ પોઇન્ટ કરે (એમિટર થી બેસ)

• PNP: તીર અંદરની તરફ પોઇન્ટ કરે (બેસ થી એમિટર)

મેમરી ટ્રીક: "NPN: અંદર પોઇન્ટ નથી, PNP: અંદર પોઇન્ટ કરે"

પ્રશ્ન 4(બ) [4 ગુણ]

CE એમ્પ્લિકાયરની લાક્ષણિકતાઓ દોરો અને સમજાવો.

ઉत्तर:

CE એમ્પ્લિકાયર સર્કિટ:

```
-C- ← કલેક્ટર
|
-B- ← બેસ O Vin
|
-E- ← એમિટર
|
Re
|
O Ground
```

ઇનપુટ લાક્ષણિકતાઓ (IB vs VBE):

આઉટપુટ લાક્ષણિકતાઓ (IC vs VCE):

મુખ્ય લક્ષણો:

પેરામીટર	CE કન્ફિગરેશન
કરંટ ગેઇન	β = IC/IB (ઉચ્ચ)
વોલ્ટેજ ગેઇન	ઉચ્ચ
પાવર ગેઇન	ખૂબ ઉચ્ચ
ઇનપુટ ઇમ્પીડન્સ	મધ્યમ
આઉટપુટ ઇમ્પીડન્સ	ઉચ્ચ
ફેઝ શિફ્ટ	180°

ઓપરેશનના વિસ્તારો:

• કટ-ઓફ: બંને જંક્શન રિવર્સ બાયાસ્ડ

• **એક્ટિવ**: BE ફોરવર્ડ, BC રિવર્સ બાયાસ્ડ

• સેચ્યુરેશન: બંને જંક્શન ફોરવર્ડ બાયાસ્ડ

મેમરી ટ્રીક: "કોમન એમિટર, કરંટ એન્લાર્જ્ડ"

પ્રશ્ન 4(ક) [7 ગુણ]

કરંટ ગેઇન α, β અને γ વચ્ચેનો સંબંધ મેળવો.

ઉत्तर:

કરંટ ગેઇન વ્યાખ્યાઓ:

ગેઇન	કન્ફિગરેશન	ફોર્મ્યુલા
α (આલ્ફા)	કોમન બેસ	α = IC/IE
β (બીટા)	કોમન એમિટર	β = IC/IB
γ (ગામા)	કોમન કલેક્ટર	γ = IE/IB

વ્યુત્પત્તિ:

પગલું 1: મૂળભૂત કરંટ સંબંધ

IE = IB + IC ... (કિર્ચહોફનો કરંટ કાયદો)

પગલું 2: IE ના સંદર્ભમાં IC વ્યક્ત કરો

 $\alpha = IC/IE$

તેથી: IC = a × IE ... (1)

પગલું 3: કરંટ સમીકરણમાં બદલો

 $IE = IB + \alpha \times IE$

 $IE - \alpha \times IE = IB$

 $IE(1 - \alpha) = IB$

 $IE = IB/(1 - \alpha) ... (2)$

પગલું 4: β શોધો

 $\beta = IC/IB$

(1) થી: IC = a × IE

(2) थी: IE = IB/(1 - α)

તેથી: IC = $\alpha \times IB/(1 - \alpha)$

પગલું 5: β માટે અંતિમ સંબંધ

 $\beta = IC/IB = \alpha/(1 - \alpha) ... (3)$

પગલું 6: β ના સંદર્ભમાં α વ્યક્ત કરો

સમીકરણ (3) થી:

 $\beta(1 - \alpha) = \alpha$

 $\beta - \beta \alpha = \alpha$

 $\beta = \alpha + \beta \alpha = \alpha(1 + \beta)$

તેથી: $\alpha = \beta/(1 + \beta) ... (4)$

પગલું 7: γ શોધો

 $\gamma = IE/IB$

(2) થી: γ = 1/(1 - α)

(4) થી α બદલતાં:

 $\gamma = 1/(1 - \beta/(1 + \beta))$

 $\gamma = (1 + \beta)/(1 + \beta - \beta)$

 $\gamma = 1 + \beta ... (5)$

અંતિમ સંબંધો:

સંબંધ	ફોર્મ્યુલા
α ના સંદર્ભમાં β	$\beta = \alpha/(1 - \alpha)$
β ના સંદર્ભમાં α	$\alpha = \beta/(1 + \beta)$
β ના સંદર્ભમાં γ	γ = 1 + β
યકાસણી	$\alpha + \beta \times \alpha = \beta$

સામાન્ય મૂલ્યો:

- α≈ 0.98 थी 0.995
- β≈ 50 થੀ 200
- γ≈51 થી 201

મેમરી ટ્રીક: "આલ્ફા બીટા ગામા, હંમેશાં સારા ગેઇન્સ"

પ્રશ્ન 4(અ OR) [3 ગુણ]

ટ્રાન્ઝિસ્ટર એમ્પ્લિફાયર માટે એક્ટિવ, સેચ્યુરેશન અને કટ-ઓફ રીજીયનની વ્યાખ્યા આપો.

ઉત્તર:

ઓપરેટિંગ રીજીયન્સ:

રીજીયન	બેસ-એમિટર	બેસ-કલેક્ટર	લાક્ષણિકતાઓ
એક્ટિવ	ફોરવર્ડ બાયાસ્ડ	રિવર્સ બાયાસ્ડ	એમ્પ્લિફિકેશન રીજીયન
સેચ્યુરેશન	ફોરવર્ડ બાયાસ્ડ	ફોરવર્ડ બાયાસ્ડ	સ્વિથ ON સ્ટેટ
કટ-ઓફ	રિવર્સ બાયાસ્ડ	રિવર્સ બાયાસ્ડ	સ્વિય OFF સ્ટેટ

વિગતવાર વર્ણન:

એક્ટિવ રીજીયન:

- સામાન્ય એમ્પ્લિફિકેશન મોડ
- IC = β × IB સંબંધ લાગુ
- નાના સિગ્નલ્સ માટે લીનિયર ઓપરેશન

સેચ્યુરેશન રીજીયન:

- **બંને જંક્શન** ફોરવર્ડ બાયાસ્ડ
- મેક્સિમમ કલેક્ટર કરંટ વહે
- VCE ≈ 0.2V (ખૂબ ઓછું)
- **સ્વિચિંગ એપ્લિકેશન્સમાં** ઉપયોગ

કટ-ઓફ રીજીયન:

- કોઈ બેસ કરંટ નથી (IB = 0)
- કોઈ કલેક્ટર કરંટ નથી (IC = 0)
- ટ્રાન્ઝિસ્ટર ઓપન સ્વિચ જેવું કામ કરે

મેમરી ટ્રીક: "એક્ટિવ એમ્પ્લિફાય, સેચ્યુરેટેડ સ્વિય, કટ-ઓફ કટ્સ"

પ્રશ્ન 4(બ OR) [4 ગુણ]

એમ્પ્લિફાયર તરીકે ટ્રાન્ઝિસ્ટરનું કાર્ય સમજાવો.

ઉत्तर:

એમ્પ્લિકાયર સર્કિટ:

કાર્યસિદ્ધાંત:

- નાનું ઇનપુટ સિગ્નલ બેસ-એમિટર પર લાગુ
- **ઇનપુટ રેઝિસ્ટન્સ** ઓછું (કેટલાક kΩ)
- નાનું બેસ કરંટ મોટા કલેક્ટર કરંટને નિયંત્રિત કરે
- આઉટપુટ કલેક્ટર-એમિટરથી લેવાય
- કરંટ એમ્પ્લિફિકેશન: IC = β × IB

એમ્પ્લિફિકેશન પ્રક્રિયા:

પેરામીટર	ઇનપુટ	આઉટપુટ
સિગ્નલ લેવલ	नानुं	મોટું
કરંટ	μA રેન્જ	mA रेन्थ
વોલ્ટેજ	mV è-&	V è~s
પાવર	μW ϟ-જ	mW રેન્જ

મુખ્ય લક્ષણો:

• **કરંટ ગેઇન**: β (50-200 સામાન્ય)

• વોલ્ટેજ ગેઇન: લોડ રેઝિસ્ટન્સ પર આધાર રાખે

• **પાવર ગેઇન**: કરંટ અને વોલ્ટેજ ગેઇનનું ગુણાકાર

• **ફેઝ ઇન્વર્ઝન**: CE કન્ફિગરેશનમાં 180°

ઉપયોગો:

• ઓડિયો એમ્પ્લિફાયર્સ: મ્યુઝિક સિસ્ટમ

• **RF એમ્પ્લિફાયર્સ**: રેડિયો ટ્રાન્સમિટર્સ

• **Op-amp સ્ટેજિસ**: ઇન્ટિગ્રેટેડ સર્કિટ્સ

મેમરી ટ્રીક: "નાનું સિગ્નલ મોટું આઉટપુટ ટ્રિગર કરે"

પ્રશ્ન 4(ક OR) [7 ગુણ]

CB, CC તેમજ CE એમ્પ્લિફાયરને સરખાવો.

ઉત્તર:

વ્યાપક તુલના:

પેરામીટર	કોમન બેસ (CB)	કોમન એમિટર (CE)	કોમન કલેક્ટર (CC)
ઇનપુટ ટર્મિનલ	એમિટર	બેસ	બેસ
આઉટપુટ ટર્મિનલ	કલેક્ટર	કલેક્ટર	એમિટર
કોમન ટર્મિનલ	બેસ	એમિટર	કલેક્ટર
કરંટ ગેઇન	α < 1	β >> 1	$\gamma = (1 + \beta)$
વોલ્ટેજ ગેઇન	ઉચ્ચ	ઉચ્ચ	< 1 (≈1)
પાવર ગેઇન	મધ્યમ	ખૂબ ઉચ્ચ	મધ્યમ
ઇનપુટ રેઝિસ્ટન્સ	ખૂબ ઓછું (20-50Ω)	મધ્યમ (1-5kΩ)	ખૂબ ઉચ્ચ (100kΩ)
આઉટપુટ રેઝિસ્ટન્સ	ખૂબ ઉચ્ચ (1ΜΩ)	ઉચ્ચ (50kΩ)	ઓછું (25Ω)
ફેઝ શિફ્ટ	0°	180°	0°
ફ્રીકવન્સી રેસ્પોન્સ	ઉ ત્તમ	સારું	સારું
એપ્લિકેશન્સ	RF એમ્પ્લિફાયર્સ	ઓડિયો એમ્પ્લિફાયર્સ	બફર, ઇમ્પીડન્સ મેચિંગ

સર્કિટ ડાયાગ્રામ:

કોમન બેસ:

મુખ્ય લાક્ષણિકતાઓ:

કોમન બેસ (CB):

- ઉચ્ચ ફ્રીક્વન્સી પર્ફોર્મન્સ
- કરંટ ગેઇન નથી પણ ઉચ્ચ વોલ્ટેજ ગેઇન
- **ઇનપુટ-આઉટપુટ આઇસોલેશન** ઉત્તમ
- **ઉપયોગ**: RF એમ્પ્લિફાયર્સ, ઉચ્ચ ફ્રીક્વન્સી સર્કિટ્સ

કોમન એમિટર (CE):

• સૌથી વધુ લોકપ્રિય કન્ફિગરેશન

- **ઉચ્ચ કરંટ અને વોલ્ટેજ** ગેઇન
- **બધા પેરામીટર્સનો સારો** સમજૂતો
- **ઉપયોગ**: ઓડિયો એમ્પ્લિફાયર્સ, સામાન્ય એમ્પ્લિફિકેશન

કોમન કલેક્ટર (CC):

- યુનિટી વોલ્ટેજ ગેઇન (વોલ્ટેજ ફોલોઅર)
- ઉચ્ચ કરંટ ગેઇન
- **ઇમ્પીડન્સ ટ્રાન્સફોર્મેશન** (ઉચ્ચથી ઓછું)
- ઉપયોગ: બફર એમ્પ્લિફાયર્સ, ઇમ્પીડન્સ મેચિંગ

પસંદગીના માપદંડો:

એપ્લિકેશન	શ્રેષ્ઠ કન્ફિગરેશન	કારણ
ઉચ્ચ ફ્રીક્વન્સી	СВ	ઉત્તમ ફ્રીક્વન્સી રેસ્પોન્સ
સામાન્ય એમ્પ્લિફિકેશન	CE	ઉચ્ચ પાવર ગેઇન
બફર/આઇસોલેશન	СС	ઉચ્ચ ઇનપુટ, ઓછું આઉટપુટ ઇમ્પીડન્સ
પાવર એમ્પ્લિફાયર્સ	CE	મેક્સિમમ પાવર ગેઇન

મેમરી ટ્રીક: "CB કમ્યુનિકેશન માટે, CE કોમન યુઝ માટે, CC કપલિંગ માટે"

પ્રશ્ન 5(અ) [3 ગુણ]

IC 555 નો પિન ડાયાગ્રામ દોરો.

ઉत्तर:

IC 555 પિન ડાયાગ્રામ:

પિન કાર્યો:

પિન	નામ	รเข้
1	Ground	0V રેફરન્સ
2	Trigger	ટાઇમિંગ સાયકલ શરૂ કરે
3	Output	ટાઇમર આઉટપુટ
4	Reset	માસ્ટર રીસેટ (એક્ટિવ લો)
5	Control	વોલ્ટેજ રેફરન્સ કંટ્રોલ
6	Threshold	ટાઇમિંગ સાયકલ બંધ કરે
7	Discharge	ટાઇમિંગ કેપેસિટર ડિસ્થાર્જ
8	Vcc	પાવર સપ્લાય (+5V થી +18V)

મુખ્ય મુદ્દાઓ:

• ક્યુઅલ-ઇન-લાઇન 8-પિન પેકેજ

• **પાવર સપ્લાય**: 5V થી 18V DC

• **આઉટપુટ કરંટ**: 200mA સુધી

• **રીસેટ પિન**: સામાન્યે Vcc સાથે જોડાયેલ

મેમરી ટ્રીક: "ગ્રેટ ટાઇમર, ગ્રેટ પિન્સ"

પ્રશ્ન 5(બ) [4 ગુણ]

555 ટાઇમર IC ની વિશેષતાઓની યાદી બનાવો.

ઉत्तर:

મુખ્ય લક્ષણો:

લક્ષણ	વિશિષ્ટતા
સપ્લાય વોલ્ટેજ	5V થી 18V
આઉટપુટ કરંટ	200mA સોર્સ/સિંક
તાપમાન રેન્જ	0°C થી 70°C
ટાઇમિંગ રેન્જ	µs થી કલાકો
ચોકસાઇ	±1% સામાન્ય
મોડ્સ	મોનોસ્ટેબલ, એસ્ટેબલ, બિસ્ટેબલ

ટેકનિકલ લક્ષણો:

• CMOS/TTL કોમ્પેટિબલ આઉટપુટ લેવલ્સ

- ઉચ્ચ કરંટ આઉટપુટ ક્ષમતા
- વાઇડ સપ્લાય વોલ્ટેજ રેન્જ
- તાપમાન સ્ટેબલ ઓપરેશન

કાર્યાત્મક લક્ષણો:

- ત્રણ ઓપરેટિંગ મોડ્સ ઉપલબ્ધ
- બાહ્ય ટાઇમિંગ કમ્પોનન્ટ્સ
- રીસેટ ક્ષમતા કંટ્રોલ માટે
- ઓછા પાવર કન્ઝમ્પશન ડિઝાઇન

ફાયદા:

- વર્સેટાઇલ ટાઇમર અનેક એપ્લિકેશન્સ માટે
- વાપરવામાં સરળ ન્યૂનતમ બાહ્ય કમ્પોનન્ટ્સ સાથે
- વિશ્વસનીય ઓપરેશન વિવિધ પરિસ્થિતિઓમાં

મેમરી ટ્રીક: "શાનદાર લક્ષણો, લવચીક કાર્યો"

પ્રશ્ન 5(ક) [7 ગુણ]

555 ટાઇમર IC નો ઉપયોગ કરીને મોનો સ્ટેબલ મલ્ટીવાઇબ્રેટર સમજાવો.

ઉત્તર:

મોનોસ્ટેબલ સર્કિટ:

કાર્યસિદ્ધાંત:

સ્ટેબલ સ્ટેટ:

• **આઉટપુટ LOW** (લગભગ **0**V)

- કેપેસિટર ડિસ્ચાર્જ્ડ પિન 7 મારફત
- **થ્રેશહોલ્ડ વોલ્ટેજ** Vcc/3 થી નીચે

ટ્રિગર્ડ સ્ટેટ:

- નેગેટિવ પલ્સ ટ્રિગર (પિન 2) પર લાગુ
- **આઉટપુટ HIGH તરત** જાય
- ડિસ્ચાર્જ ટ્રાન્ઝિસ્ટર બંધ થાય
- **કેપેસિટર R મારફત** ચાર્જ શરૂ કરે

ટાઇમિંગ પીરિયડ:

- **અવધ**: T = 1.1 × R × C
- **આઉટપુટ HIGH રહે** ગણતરી કરેલા સમય માટે
- ઓટોમેટિક રિટર્ન સ્ટેબલ સ્ટેટમાં

સ્ટેબલમાં પાછા ફરવું:

- **કેપેસિટર વોલ્ટેજ** 2Vcc/3 સુધી પહોંચે
- થ્રેશહોલ્ડ ટ્રિગર (પિન 6)
- **આઉટપુટ LOW પર** પાછું
- ડિસ્ચાર્જ ફરીથી શરૂ

મુખ્ય લાક્ષણિકતાઓ:

પેરામીટર	વર્ણન
પલ્સ વિડ્થ	T = 1.1 RC
ટ્રિગર લેવલ	Vcc/3
થ્રેશહોલ્ડ લેવલ	2Vcc/3
આઉટપુટ HIGH	~Vcc - 1.5V
આઉટપુટ LOW	~0.1V

એપ્લિકેશન્સ:

• પત્સ જનરેશન: ફિક્સ્ડ વિડ્થ પત્સિસ

• ટાઇમ ડિલે: સ્વિય-ઓન ડિલે

• મિસિંગ પત્સ ડિટેક્શન: વોચડોગ ટાઇમર્સ

• **ડિબાઉન્સિંગ સર્કિટ્સ**: સ્વિય કોન્ટેક્ટ ક્લીનિંગ

ડિઝાઇન ઉદાહરણ:

T = 1ms માટે: જો C = $0.1\mu\text{F}$, તો R = $9.1\text{k}\Omega$

મેમરી ટ્રીક: "મોનો મતલબ એક પલ્સ માત્ર"

પ્રશ્ન 5(અ OR) [3 ગુણ]

IC 555 ની એપ્લિકેશનની યાદી બનાવો.

ઉत्तर:

ટાઇમર એપ્લિકેશન્સ:

કેટેગરી	એપ્લિકેશન્સ
ટાઇમિંગ સર્કિટ્સ	ડિલે ટાઇમર્સ, પત્સ જનરેટર્સ
ઓસિલેટર્સ	ક્લોક જનરેટર્સ, ફ્રીક્વન્સી ડિવાઇડર્સ
કંટ્રોલ સર્કિટ્સ	PWM કંટ્રોલર્સ, મોટર સ્પીડ કંટ્રોલ
ડિટેક્શન	મિસિંગ પલ્સ ડિટેક્ટર્સ, બર્ગલર એલાર્મ
કમ્યુનિકેશન	ટોન જનરેટર્સ, ફ્રીક્વન્સી શિફ્ટ કીઇંગ
ઓટોમોટિવ	ટર્ન સિગ્નલ ફ્લેશર્સ, વિન્ડશીલ્ડ વાઇપર્સ

મોડ-વાઇઝ એપ્લિકેશન્સ:

મોનોસ્ટેબલ મોડ:

- સર્કિટ્સમાં ટાઇમ ડિલે
- પલ્સ વિડ્થ જનરેશન
- સ્વિય ડિબાઉન્સિંગ

એસ્ટેબલ મોડ:

- **LED ફલેશર્સ** અને બ્લિન્કર્સ
- કલોક સિગ્નલ્સ જનરેશન
- બઝર માટે ટોન જનરેશન

બિસ્ટેબલ મોડ:

- ફિલપ-ફ્લોપ સર્કિટ્સ
- મેમરી એલિમેન્ટ્સ
- લેચ સર્કિટ્સ

સામાન્ય પ્રોજેક્ટ્સ:

- LED સાથે ઇલેક્ટ્રોનિક ડાઇસ
- ટ્રાફિક લાઇટ કંટ્રોલર્સ
- ડિજિટલ કલોક્સ અને ટાઇમર્સ

મેમરી ટ્રીક: "મહાન કાર્યો માટે ટાઇમર"

પ્રશ્ન 5(બ OR) [4 ગુણ]

IC 555 નો આંતરિક બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

ઉत्तर:

આંતરિક બ્લોક ડાયાગ્રામ:

બ્લોક કાર્યો:

બ્લોક	รเน็
વોલ્ટેજ ડિવાઇડર	Vcc/3 અને 2Vcc/3 રેફરન્સ બનાવે
કોમ્પેરેટર A	થ્રેશહોલ્ડને 2Vcc/3 સાથે તુલના કરે
કોમ્પેરેટર B	ટ્રિગરને Vcc/3 સાથે તુલના કરે
SR ફિલપ-ફ્લોપ	આઉટપુટ સ્ટેટ નિયંત્રિત કરે
ડિસ્થાર્જ ટ્રાન્ઝિસ્ટર	ટાઇમિંગ કેપેસિટર ડિસ્થાર્જ કરે
આઉટપુટ બફર	ઉચ્ચ કરંટ આઉટપુટ પૂરું પાડે

કાર્થપદ્ધતિ:

- ક્રોમ્પેરેટર્સ ફ્લિપ-ફ્લોપને સેટ અને રીસેટ કરે
- આઉટપુટ બફર ફિલપ-ફ્લોપ આઉટપુટ એમ્પ્લિફાય કરે
- ડિસ્ચાર્જ ટ્રાન્ઝિસ્ટર ફિલપ-ફલોપ દ્વારા નિયંત્રિત
- રેફરન્સ વોલ્ટેજિસ ટ્રિગર લેવલ્સ સેટ કરે

મેમરી ટ્રીક: "આંતરિક બુદ્ધિ, ઇન્ટિગ્રેટેડ અમલીકરણ"

પ્રશ્ન 5(ક OR) [7 ગુણ]

555 ટાઇમર IC નો ઉપયોગ કરીને એસ્ટેબલ મલ્ટીવાઇબ્રેટર સમજાવો.

ઉत्तर:

એસ્ટેબલ સર્કિટ:

કાર્યસિદ્ધાંત:

ચાર્જિંગ ફેઝ:

- કેપેસિટર R1 + R2 મારફત ચાર્જ થાય
- યાર્જિંગ દરમ્યાન આઉટપુટ HIGH
- **ขเ**ชื่**วเ ย**ย**+**: T1 = 0.693(R1 + R2)C
- **વોલ્ટેજ Vcc/3 થી 2Vcc/3 સુધી** વધે

ડિસ્થાર્જિંગ ફેઝ:

- કેપેસિટર માત્ર R2 મારફત ડિસ્ચાર્જ થાય
- ડિસ્થાર્જિંગ દરમ્યાન આઉટપુટ LOW
- **વોલ્ટેજ 2Vcc/3 થી Vcc/3 સુધી** ઘટે

ફ્રીક્વન્સી ગણતરીઓ:

પેરામીટર	ફોર્મ્યુલા
ટાઇમ HIGH	T1 = 0.693(R1 + R2)C
ટાઇમ LOW	$T2 = 0.693 \times R2 \times C$
કુલ પીરિયડ	T = T1 + T2 = 0.693(R1 + 2R2)C
ફ્રીક્વન્સી	f = 1.44/[(R1 + 2R2)C]
ડ્યુટી સાયકલ	D = (R1 + R2)/(R1 + 2R2) × 100%

વેવફોર્મ્સ:

ડિઝાઇન ઉદાહરણ:

f = 1kHz, D = 60% ਮ।2:

- C = 0.1µF પસંદ કરો
- R1 = 7.2kΩ, R2 = 3.6kΩ ગણતરી કરો

મુખ્ય લક્ષણો:

- બાહ્ય ટ્રિગર વિના સતત ઓસિલેશન
- R અને C મૂલ્યો દ્વારા ફ્રીક્વન્સી એડજસ્ટેબલ
- બેસિક સર્કિટમાં ક્યુટી સાયકલ હંમેશાં > 50%
- **વાઇડ ટેમ્પરેચર રેન્જમાં સ્ટેબલ** ઓપરેશન

એપ્લિકેશન્સ:

- **LED ફ્લેશર્સ** અને બ્લિન્કર્સ
- ડિજિટલ સર્કિટ્સ માટે ક્લોક જનરેટર્સ
- એલાર્મ માટે ટોન જનરેટર્સ
- PWM સિગ્નલ જનરેશન

50% ક્યુટી સાયકલ માટે મોડિફિકેશન્સ:

- **R2 ની સમાંતર ડાયોડ** ઉમેરો
- ચાર્જ અને ડિસ્ચાર્જ માટે અલગ પાથ
- **સમાન ચાર્જ/ડિસ્ચાર્જ ટાઇમ** શક્ય

મેમરી ટ્રીક: "એસ્ટેબલ હંમેશાં ઓટોમેટિક ઓલ્ટરનેટ્સ"