

Aprendizado Automático de Sum-Product Networks

Renato Lui Geh, Orientador: Denis Deratani Mauá

Instituto de Matemática e Estatística, Universidade de São Paulo - MAC0215 Atividade Curricular em Pesquisa

Motivação

Uma distribuição de probabilidades pode ser representada por uma função multilinear nas variáveis de uma distribuição com um número potencialmente exponencial de termos (ou seja, não compacta) como

$$P(x_1,...,x_n) = \sum_{\alpha} c_{\alpha} \prod_{i \in \alpha} x_i.$$

O objetivo em Modelos Gráficos Probabilísticos (PGM) é computar inferência, ou seja, deseja-se encontrar a probabilidade

$$P(x_q|x_{e_1},...,x_{e_m}) = \frac{P(x_qx_{e_1}...x_{e_m})}{P(x_{e_1}...x_{e_m})}$$
, onde x_q é a query e $x_{e_1},...,x_{e_m}$ é a evidência.

No entanto, inferência na maioria dos PGMs é intratável e, apesar de existirem modelos onde a inferência é, de fato, tratável, e serem representações compactas de distribuições, elas são limitadas em sua flexibilidade.

Em 2011[PD11], Pedro Domingos e Hoifung Poon introduziram um novo tipo de modelo probabilístico que representa eficientemente uma função multilinear através de um digrafo acíclico enraizado (DAG), cuja inferência é sempre tratável e ainda assim é mais flexível que muitos outros modelos. Por meio de experimentos também comprovou-se que tanto inferência quanto aprendizado foram mais rápidos e precisos que outras redes profundas.

O objetivo desse estudo é aprender a definição, estrutura e propriedades de Sum-Product Networks e em seguida estudar os vários tipos de aprendizado que podemos efetuar neste modelo.

Sum-Product Networks

Uma Sum-Product Network (SPN) tem definição recursiva. Seja S uma SPN:

- ▶ Uma distribuição monovariável $P(X_i)$ é uma SPN.
- ▶ A soma $w_i S_i(X_\alpha) + w_i S_i(X_\beta)$ com pesos $w_i, w_i \ge 0$ é uma SPN. (1)
- ▶ O produto $S_i(X_\alpha) \cdot S_i(X_\beta)$ é uma SPN. (2)

Podemos representar uma SPN com variáveis $x_1,...,x_d$ como um digrafo acíclico enraizado (DAG) cujas folhas são indicadores $x_1,...,x_d$ e $\overline{x}_1,...,\overline{x}_d$ e cujos nós internos são nós somas ou produtos. Toda aresta ij onde i tem origem em um nó soma tem um peso $w_{ij} \geq 0$ associado. O valor de um nó i é v_i . O valor de um nó soma i é $\sum_{j \in Ch(i)} w_{ij}v_j$. O valor de um nó produto i é $\prod_{j \in Ch(i)} v_j$. Ch(i) é o conjunto de nós filhos de i. O valor de um nó folha é o valor do indicador. O valor de uma SPN S é o valor de sua raíz.

Figura : À esquerda uma SPN implementando uma naive Bayes mixture model. À direita uma SPN implementando uma junction tree. Fonte: Poon e Domingos[PD11].

Definição Uma SPN S é válida sse $\exists P : S(x) = P(x), \forall x$. **Definição** Uma SPN S é completa sse $\alpha = \beta$ em (1).

Definição *Uma SPN S é consistente sse* $\alpha \cap \beta = \emptyset$ *em (2).*

Teorema Uma SPN S é válida se S é completa e consistente.

SPNs válidas são desejáveis pois computam $P(x_1,...,x_n)$ em tempo linear em seu tamanho, além de completude e consistência permitirem que a inferência da SPN seja garantidamente eficiente.

Aprendizado

Pode-se dividir aprendizado de SPNs em duas classes:

- 1 A partir de um DAG da SPN pré-definido, aprendemos os pesos do digrafo.
- 2 Ambos DAG e pesos são desconhecidos e são aprendidos.

O algoritmo proposto em [PD11] segue a primeira classe e é mostrado na seção seguinte. A partir de uma SPN densa e válida podemos aprender os pesos por Gradient Descent ou Expectation-Maximization (EM).

Gens e Domingos[GD13] propõem um outro método de aprendizado que explora a expressividade da SPN aprendendo-se não só os pesos como o próprio DAG. Para aprender o digrafo pode-se maximizar o estimador de máxima verosimilhança $\max_S P(X^1,...,X^N|S)$, onde $X^1,...,X^N$ são os conjuntos de dados.

Algoritmo de Aprendizado de Pesos

Input: Conjunto *D* de instâncias sobre variáveis *X*.

Output: Uma SPN com estrutura e parâmetros construídos por aprendizado.

/* Cria uma SPN inicial que seja válida.

 $S \leftarrow \mathsf{GenerateDenseSPN}(X);$

InitializeWeights(S);

repeat

for all the $d \in D$ do

/* Atualiza pesos por Gradient Descent ou EM.

UpdateWeights(S, Inference(S, d));

end

until convergência;

/* Apara arestas com peso $w_{ij}=0$ e nós não-raíz sem pais.

 $S \leftarrow \mathsf{PruneZeroWeights}(S);$

<u>return</u> S

Experimentos

Os experimentos mostrados a seguir foram extraídos a partir da implementação do algoritmo mostrado na seção anterior e mostram os resultados do código [DP] implementado por Domingos e Poon e citados em [PD11].

Figura : A saída do algoritmo consiste na compleção do lado esquerdo das imagens a partir de um conjunto de treino. Para cada par de imagens, a imagem da esquerda é a original, enquanto que a direita tem a metade esquerda completada pela SPN e a outra metade igual a da original como evidência.

Arquitetura	Rostos	Motos	Carros
SPN	99%	99%	98%
CDBN	95%	81%	87%

Tabela: Taxa média de acertos em uma comparação entre SPNs e CDBNs (Convolutional Deep Belief Networks) em classificação (reconhecimento) de imagens. SPNs obtiveram resultados quase perfeitos em reconhecimento.

Pode-se ver que os resultados das SPNs são muito promissores e, dado que o algoritmo produzido por Domingos e Poon não toma muita vantagem da expressividade da estrutura local de SPNs, é fácil notar que ainda há muito espaço para melhorias.

Trabalhos futuros

Pretende-se estudar a implementação do método de aprendizado proposto por Poon e Domingos[PD11], realizar outros experimentos com este algoritmo e explorar mais a fundo as propriedades de uma SPN.

Em seguida planeja-se estudar outros tipos de aprendizado em SPNs, principalmente métodos que estejam contidos na classe 2 de aprendizado e portanto tomem vantagem da estrutura local de SPNs, como o introduzido por Gens e Domingos[GD13], buscas gulosas e clustering por Dennis e Ventura[DV12, DV15] e Non-Parametric Bayesian Sum-Product Networks[LWZ14].

Referências

Pedro Domingos and Hoifung Poon.

Sum-product networks: A new deep architecture (code).

URL: http://spn.cs.washington.edu/spn/.

Aaron Dennis and Dan Ventura.

Learning the architecture of sum-product networks using clustering on variables.

Advances in Neural Information Processing Systems, 25, 2012.

Aaron Dennis and Dan Ventura.

Greedy structure search for sum-product networks.

International Joint Conference on Artificial Intelligence, 24, 2015.

Robert Gens and Pedro Domingos.
Learning the structure of sum-product networks.

International Conference on Machine Learning, 30, 2013.

Sang-Woo Lee, Christopher Watkins, and Byoung-Tak Zhang. Non-parametric bayesian sum-product networks.

Workshop on Learning Tractable Probabilistic Models, 2014.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. Uncertainty in Artificial Intelligence, 27, 2011.