Probeklausur zur Experimentalphysik 1

Prof. Dr. M. Rief Wintersemester 2010/2011 19. Januar 2011

Zugelassene Hilfsmittel:

- 1 beidseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Bearbeitungszeit 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (6 Punkte)

Ein Flugzeug fliegt mit einer Geschwindigkeit von $v_0 = 500$ km/h in einer Höhe $y_0 = 3$ km und wirft zur Zeit t = 0 am Ort A eine Masse m ab, die zu Boden fällt (siehe Skizze). Luftreibung werde vernachlässigt.

- a) Stellen Sie die Gleichung $\mathbf{x}(\mathbf{t})$ und $\mathbf{y}(\mathbf{t})$ für die Flugbahn der Masse auf. Der Nullpunkt des Koordinatensystems liege bei 0.
- b) Leiten Sie daraus die Bahnkurve y(x) her.
- c) Wie groß ist die Gesamtgeschwindigkeit v_g der Masse kurz vor dem Aufschlag am Boden?
- d) Welche Strecke legt das Flugzeug zwischen Abwurf und Aufschlag der Masse bei B zurück?

Aufgabe 2 (10 Punkte)

Zum Bau einer Weltraumstation soll das Material vom Mond aus bereitgestellt werden. Für die Rechnung sollen nur Erde (Masse $M_E=5.97\times 10^{24}~{\rm kg}$, Radius $R_E=6380~{\rm km}$) und Mond ($M_M=M_E/81,\,R_M=0.272R_E$) berücksichtigt werden. Der Abstand der beiden Schwerpunkte beträgt $R_{EM}=60.31R_E$. Die Gravitationskonstante beträgt $G=6.67\times 10^{-11}~{\rm Nm^2/kg^2}$.

- a) Vernachlässigen Sie zunächst den Einfluss der Erde. Mit welcher Geschwindigkeit v_1 muss ein Körper vom Punkt A abgeschossen werden, damit er das Schwerefeld des Mondes überwinden kann?
- b) Im folgenden soll zusätzlich das Schwerefeld der Erde berücksichtigt, die Rotation des Mondes um den gemeinsamen Schwerpunkt aber vernachlässigt werden. Der Körper wird vom Punkt B abgeschossen. Wie groß ist jetzt die Fluchtgeschwindigkeit v_2 , damit der Körper das Schwerefeld des Mondes sowie das der Erde überwinden kann?
- c) Nehmen Sie an, der Abschuss würde in Richtung der Verbindungslinie Mond-Erde von Punkt B erfolgen. Geben Sie das Potential V(r) an, wobei r der Abstand vom Mondmittelpunkt ist $(V(r \to \infty) = 0)$. In welchem Abstand vom Mond hat ein so abgeschossener Körper minimale kinetische Energie? Wie groß ist die Mindesgeschwindigkeit v_3 mit welcher der Körper nicht auf den Mond zurückfällt?

Aufgabe 3 (8 Punkte)

Ein Raumschiff fliegt mit 60% der Lichtgeschwindigkeit an einem Stern vorbei, der sich anschickt als Supernova zu explodieren. Nachdem das Raumschiff den Stern passiert und sich (vom Intertialsystem des Sterns betrachtet) 6 Lichtminuten von ihm entfernt hat, bricht die Supernova aus.

- a) Zeichnen und beschriften Sie ein Minkowski-Diagramm, das die Situation bezüglich des Inertialsystems des Sterns darstellt. Im Nullpunkt des Diagrams soll sich dabei das Ereignis 'Das Raumschiff passiert den Stern' befinden.
- b) Welche Koordinaten hat der Supernovaausbruch im Inertialsystem des Sterns?
- c) Berechnen Sie mit Hilfe der Lorentz-Transformation, welche Zeit auf der Raumschiffsuhr zwischen dem Vorbeiflug am Stern und dessen Explosion verstreicht.
- d) In welcher Entfernung ereignet sich die Supernova vom Raumschiff aus betrachtet?

Aufgabe 4 (14 Punkte)

Eine als masselos zu betrachtende Feder der Ruhelänge $l_0=0.5$ m und der Federkonstante k=100 N/m befindet sich aufrecht in einem Führungsrohr. Am Federende ist eine Waagschale (Masse M=0.1 kg) befestigt, auf der sich ein Gewicht mit m=1 kg befindet (siehe Skizze). Die Erdbeschleunigung beträgt g=9.81 m/s². Das System wird nun in Richtung der Schwerkraft durch eine periodische äußere Kraft $F(t)=F_m\cos(\omega t)$, $F_m=10$ N zu erzwungenen Schwingungen angeregt.

- a) Berechnen Sie zunächst die Ruhelage der Masse m. Warum ist es von Vorteil, diese Ruhelage als Koordinatenursprung zu wählen?
- b) Für den Fall einer gedämpften Schwingung ist die Bewegungsgleichung der Masse gegeben durch:

$$(m+M)\ddot{x} + (m+M)\beta\dot{x} + kx = F_m\cos(\omega t)$$

Bestimmen Sie die Eigenfrequenz der Masse ω_0 und zeigen Sie, dass $x(t) = A\sin(\omega t) + B\cos(\omega t)$ eine Lösung der Differentialgleichung darstellt, indem Sie A und B berechnen.

c) Berechnen Sie die jeweilige maximale Auslenkung der Masse m im Fall einer Dämpfung mit $\beta=8$ s^{-1} bei einer Anregungsfrequenz $\omega=\omega_0$ und bei $\omega=\sqrt{\omega_0^2-\frac{\beta^2}{2}}$.

Aufgabe 5 (8 Punkte)

Zwei Autos (mit jeweiligen Massen m_1 , m_2 und Geschwindigkeiten (v_1, v_2) stoßen unter einem Winkel α zusammen und rutschen ineinander verkeilt (ohne Rotation) nach dem Zusammenstoß mit blockierten Rädern eine Strecke X_R , bis sie zum Stillstand kommen; der Reibungskoeffizient beim Rutschen beträgt μ . Beide Autos werden als Massenpunkte aufgefasst.

In welche Richtung rutschen die Autos nach dem Zusammenstoß und wie lang ist die Rutschstrecke X_R ?

Aufgabe 6 (7 Punkte)

Ein Stern der Masse $M=3\times 10^{30}$ kg und dem Radius $R=8\times 10^8$ m benötigt für eine Rotation T=22 Tage. Der Stern kollabiert ohne Massenverlust zu einem Neutronenstern und benötigt nur noch 4 ms für eine Rotation. Die Massenverteilung in Stern und Neutronenstern sei jeweils homogen.

- a) Wie groß sind Trägheitsmoment, Drehimpuls und Rotationsenergie des Sternes vor dem Kollaps?
- b) Bleibt bei dem Kollaps der Drehimpuls erhalten? Bleibt die Rotationsenergie erhalten?
- c) Wie groß ist das Trägheitsmoment und die Rotationsenergie nach dem Kollaps? Woher kommt die zusätzliche Rotationsenergie?

Hinweis: Das Trägheitsmoment I einer Kugel mit Masse m und Radius r beträgt $I = \frac{2}{5}mr^2$.

Aufgabe 7 (11 Punkte)

Auf einem Keil mit Masse M und Winkel α rollt ein homogener Zylinder mit Radius r, Masse m und Trägheitsmoment $I=\frac{1}{2}mr^2$ ohne zu rutschen. Bestimmen Sie die Winkelbeschleunigung des Zylinders für die folgenden Fälle:

- a) Der Keil ist auf seiner Unterlage fixiert.
- b) Der Keil wird mit der vorgegebenen Beschleunigung a über seine Unterlage gezogen.

Hinweis: Verwenden Sie zur Lösung dieser Aufgabe nicht den Satz von Steiner!