

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Типовой расчет по математической статистике Часть 1

ВАРИАНТ 165

Выполнил: Студент 3-го курса Баттур Ц.

Группа: КМБО-07-22

Содержание

Задание	
Краткие теоретические сведения	5
Результаты расчётов	
Список литературы	23
Приложение	24

Залание

Задание 1. Получить выборку объёмом N=200, сгенерировав псевдослучайные числа, распределённые по биномиальному закону с параметрами n и p:

$$p_k = C_n^k * p^k * q^{n-k}, k = 0,1,2,...,n, n = 5 + V mod 20, p = 0,2 + 0,003 * V$$

Задание 2. Получить выборку объёмом N=200, сгенерировав псевдослучайные числа, распределённые по геометрическому закону с параметром p:

$$p_k = q^k * p, k = 0,1,...,p = 0,2 + 0,003 * V$$

В заданиях 1 и 2 построить:

- 1) статистический ряд;
- 2) график полигона относительных частот с наложенным на него и выделенным красным цветом график полигона теоретических вероятностей;
- 3) график эмпирической функции распределения; найти:
 - 1) выборочное среднее;
 - 2) выборочную дисперсию;
 - 3) выборочное среднее квадратическое отклонение;
 - 4) выборочную моду;
 - 5) выборочную медиану;
 - 6) выборочный коэффициент асимметрии;
- 7) выборочный коэффициент эксцесса;

составить таблицы:

- 1) сравнения относительных частот и теоретических вероятностей;
- 2) сравнения рассчитанных характеристик с теоретическими значениями.

Задание 3. Получить выборку объёмом N=200, сгенерировав псевдослучайные числа, распределённые по показательному закону с параметром $\lambda = 1 + (-1)^{V} * 0,003 * V$.

В задании 3 построить:

- 1) график эмпирической функции распределения;
- 2) интервальный ряд и ассоциированный статистический ряд;
- 3) гистограмму относительных частот с наложенным на неё и выделенным красным цветом график плотности распределения;

найти:

1) выборочное среднее;

- 2) выборочную дисперсия с поправкой Шеппарда;
- 3) выборочное среднее квадратическое отклонение;
- 4) выборочную моду;
- 5) выборочную медиану;
- 6) выборочный коэффициент асимметрии;
- 7) выборочный коэффициент эксцесса;

составить таблицы:

- 1) сравнения относительных частот и теоретических вероятностей попадания в интервалы;
- 2) сравнения рассчитанных характеристик с теоретическим значениями.

Краткие теоретические сведения

Выборка объёмом N=200 с сгенерированными псевдослучайными числами, распределённые по биномиальному закону с параметрами \boldsymbol{n} и \boldsymbol{p} :

$$p_k = C_n^k * p^k * q^{n-k}, k = 0,1,2,...,n, n = 5 + V mod 20, p = 0,2 + 0,003 * V$$

Выборка объёмом N=200 с сгенерированными псевдослучайными числами, распределённые по геометрическому закону с параметром p:

$$p_k = q^k * p, k = 0,1,...,p = 0,2 + 0,003 * V$$

Полученные выборки упорядочить по возрастанию, определить частоты n_i и относительные частоты w_i , построить статистический ряд.

x_i^*	n_i	w_i	s_i
x_1^*	n_1	w_1	s_1
x_2^*	n_1	W_2	s_2
•••		•••	•••
x_m^*	n_m	w_m	s_m
	$\sum_{i=1}^{m} n_i$	$\sum_{i=1}^{m} w_i$	-

Таблица 1. Статистический ряд.

Полигон относительных частот - ломаная линия, соединяющая последовательно точки с координатами $(x_1^*, w_1), (x_2^*, w_2), \ldots, (x_m^*, w_m)$. Эмпирическая функция распределения:

$$F_N^3(x) = \sum_{x_i^* \le x} w_i = \begin{cases} 0, & x < x_1^*, \\ w_1, & x_1^* \le x < x_2^*, \\ w_1 + w_2, & x_2^* \le x < x_3^*, \\ w_1 + w_2 + w_2, & x_3^* \le x < x_4^*, \\ \dots & \dots & \dots \\ 1, & x \ge x_m^* \end{cases}$$

Рисунок 1. Образец графика эмпирической функции распределения.

Выборочное среднее:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{m} x_i^* * n_i = \sum_{i=1}^{m} x_i^* * w_i$$

Выборочный момент k-ого порядка (выборочный k-ый момент):

$$\bar{\mu} = \sum_{i=1}^{m} (x_i^*)^k * w_i , \overline{\mu_1} = \bar{x}$$

Выборочная дисперсия:

$$D_B = \sum_{i=1}^{m} (x_i^* - \overline{x})^2 * w_i = \overline{\mu_2} - (\overline{\mu_1})^2$$

Выборочная центральный момент k-ого порядка:

$$\overline{\mu}_{k}^{0} = \sum_{i=1}^{m} (x_{i}^{*} - \overline{x})^{k} * w_{i}, \overline{\mu}_{1}^{0} = 0, \overline{\mu}_{2}^{0} = D_{B}$$

$$\overline{\mu}_{3}^{0} = \overline{\mu}_{3} - 3\overline{\mu}_{2}\overline{\mu}_{1} + 2(\overline{\mu}_{1})^{3}$$

$$\overline{\mu}_{4}^{0} = \overline{\mu}_{4} - 4\overline{\mu}_{3}\overline{\mu}_{1} + 6\overline{\mu}_{2}(\overline{\mu}_{1})^{2} - 3(\overline{\mu}_{1})^{4}$$

Выборочное среднее квадратическое отклонение:

$$\overline{\sigma} = \sqrt{D_B}$$

Выборочный коэффициент асимметрии:

$$\overline{\gamma}_1 = \frac{\overline{\mu}_3^0}{\overline{\sigma}^2}$$

Выборочный коэффициент эксцесса:

$$\overline{\gamma}_2 = \frac{\overline{\mu}_4^0}{\overline{\sigma}^4} - 3$$

Выборочная мода $\overline{M}_0 = \{x_i^* | n_i = \max n_k\}$, если $n_i = \max n_k > n_j$, $i \neq j$; если $n_i = n_{i+1} = \ldots = n_{i+j} = \max n_k$, то $\overline{M}_0 = \frac{1}{2} \big(x_i^* + x_{i+j}^* \big)$, если $n_i = n_j = \max n_k > n_l$, то i < k < j, то \overline{M}_0 - не существует.

Выборочная медиана:

$$\overline{M}_e = \begin{cases} x_i^*, & F_N^{\vartheta}(x_{i-1}^*) < 0.5 < F_N^{\vartheta}(x_i^*), \\ \frac{1}{2}(x_i^* + x_{i+1}^*), & F_N^{\vartheta}(x_i^*) = 0.5. \end{cases}$$

Биномиальное распределени	Биномиальное распределение				
Вероятность	$p_k = C_n^k * p^k * q^{n-k}, k = 0,1,n, q = 1 - p$				
Математическое ожидание	np				
Дисперсия	npq				
Среднее квадратическое отклонение	\sqrt{npq}				
Мода	$[(n+1)p]$, если $(n+1)p$ - дробное; $[(n+1)p-rac{1}{2}]$, если $(n+1)p$ - целое;				
Медиана	$min\left\{k: \sum_{i=1}^{k} p_i \ge 0.5\right\}$				
Коэффициент асимметрии	$rac{q-p}{\sqrt{npq}}$				
Коэффициент эксцесса	$\frac{1-6pq}{npq}$				

Таблица 2. Характеристики биномиального распределения.

Геометрическое распределен	Геометрическое распределение				
Вероятность	$p_k = q^k * p, k = 0,1,,q = 1 - p$				
Математическое ожидание	$\frac{q}{p}$				
Дисперсия	$\frac{q}{p^2}$				
Среднее квадратическое	\sqrt{q}				
отклонение	$\frac{\overline{p}}{p}$				
Мода	0				
Медиана	$min\left\{k: \sum_{i=1}^{k} p_i \ge 0.5\right\}$				
Коэффициент асимметрии	$\frac{1+q}{\sqrt{q}}$				
Коэффициент эксцесса	$6 + \frac{p^2}{q}$				

Таблица 3. Характеристики геометрического распределения.

В задании 3 полученную выборку псевдослучайных чисел, распределённые по показательному закону, упорядочить по возрастанию, определить интервалы $[a_0,a_1],(a_1,a_2],\ldots,(a_{m-1},a_m];$ число интервалов находится по формуле Стерджеса $m=1+[\log_2 N];\ a_0=0, a_m=max\{x_i\}.$

Интервалы	n_i	w_i
$[a_0, a_1]$	n_1	w_1
$(a_1, a_2]$	n_2	w_2
	•••	
$(a_{m-1}, a_m]$	n_m	w_m
	$\sum_{i=1}^{m} n_i$	$\sum_{i=1}^{m} w_i$

Таблица 4. Интервальный ряд.

 n_i - число значений, попавших в i-ый интервал; w_i - относительная частота попадания в i-ый интервал, $w_i = \frac{n_i}{N}$.

x_i^*	n_i	w_i
x_1^*	n_1	w_1
x_2^*	n_2	w_2
		•••
x_m^*	n_m	w_m
	$\sum_{i=1}^{m} n_i$	$\sum_{i=1}^{m} w_i$

Таблица 5. Ассоциированный статический ряд, где $x_i^* = \frac{a_{i-1} + a_i}{2}$ - середина интервала.

Эмпирическая функция распределения:

$$F_N^{\ni}(x; x_1, x_2, \dots, x_N) = \sum_{x_k \le x} \frac{1}{N} = \begin{cases} 0, & x < x_1, \\ \frac{1}{N}, & x_1 \le x < x_2, \\ \frac{2}{N}, & x_2 \le x < x_3, \\ \dots & \dots & \dots \\ 1, & x \ge x_N. \end{cases}$$

Рисунок 2. Образец графика эмпирической функции распределения.

Рисунок 3. Образец гистограммы относительных частот.

Площадь i-ого столбца гистограммы равна w_i , а высота $\frac{w_i}{h}$.

Выборочное среднее:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{m} x_i^* * n_i = \sum_{i=1}^{m} x_i^* * w_i$$

Выборочная дисперсия с поправкой Шеппарда:

$$s_B^2 = \sum_{i=1}^m (x_i^* - \overline{x})^2 * w_i - \frac{h^2}{12}, h = \frac{a_m - a_0}{m}$$

Выборочное среднее квадратическое отклонение:

$$\tilde{\sigma} = \sqrt{s_B^2}$$

Выборочная мода:

Если модальный интервал, на котором высота гистограммы максимальна, один, то $\overline{M}_0 = a_k + h \frac{w_{k+1} - w_k}{2w_{k+1} - w_k - w_{k+2}}$, где a_k - левая граница модального интервала

 $(a_k, a_{k+1}); a_{k+1}$ - правая граница модального интервала $(a_k, a_{k+1}); w_{k+1}$ - относительная частота на модальном интервале; w_k, w_{k+2} - относительные частоты интервалов слева и справа от модального интервала.

Если модальных интервалов несколько, и все они идут подряд (т. е. интервалы $(a_k, a_{k+1}), ..., (a_{k+l-1}, a_{k+l})$ - все модальные), то

$$\overline{M}_0 = a_k + l * h * \frac{w_{k+1} - w_k}{2w_{k+1} - w_k - w_{k+2}}$$

Если между модальными интервалами находятся немодальные, то считаем, что выборочной моды не существует.

Выборочная медиана:

$$\overline{M}_e = a_{k-1} + rac{h}{w_k} igg(rac{1}{2} - \sum_{i=1}^{k-1} w_iigg)$$
, если $\sum_{i=1}^{k-1} w_i < rac{1}{2} < \sum_{i=1}^k w_i$ $\overline{M}_e = a_k$, если $\sum_{i=1}^k w_i = rac{1}{2}$

Выборочный момент k-ого порядка:

$$\overline{\mu}_k = \overline{x^k} = \sum_{i=1}^m (x_i^*)^k * w_i$$
 , $\overline{\mu}_1 = \overline{x}$

Выборочный центральный момент k-ого порядка:

$$\overline{\mu}_{k}^{0} = \sum_{i=1}^{m} (x_{i}^{*} - \overline{x})^{k} * w_{i}, \overline{\mu}_{1}^{0} = 0, \overline{\mu}_{2}^{0} = D_{B} = \overline{\mu}_{2} - (\overline{\mu}_{1})^{2}$$

Выборочный коэффициент асимметрии:

$$\overline{\gamma}_1 = \frac{\overline{\mu}_3^0}{\overline{\sigma}^3}$$

Выборочный коэффициент эксцесса:

$$\overline{\gamma}_2 = \frac{\overline{\mu}_4^0}{\overline{\sigma}^4} - 3$$

Показательное распределение: $f(x) = \lambda e^{-\lambda x}$, $x \in [0, +\infty)$				
Математическое ожидание	λ^{-1}			
Дисперсия	λ^{-2}			
Среднее квадратическое	λ^{-1}			
отклонение	Λ			
Мода	0			
Медиана	$\lambda^{-1}ln2$			
Коэффициент асимметрии	2			
Коэффициент эксцесса	6			

Результаты расчётов

$$V = 165$$

 $N = 200$
 $n = 5 + 165 \% 20 = 10$
 $p = 0.2 + 0.003 * 165 = 0.695$
 $\lambda = 1 + (-1)^{165} * (165 * 0.003) = 0.505$

Задание 1:

6	5	3	7	6	6	10	7	7	9
8	5	8	6	8	7	4	7	9	6
3	7	7	9	5	9	8	8	6	8
9	10	6	7	7	4	7	5	7	8
10	5	6	9	5	6	7	8	8	7
8	8	8	8	9	7	6	6	5	6
7	6	5	6	5	8	5	8	10	8
10	9	7	6	6	7	7	7	6	7
7	7	7	5	8	8	7	6	9	8
8	7	7	8	8	9	6	6	4	8
7	10	9	8	8	5	6	7	9	7
8	5	8	7	6	7	6	6	6	6
8	5	9	9	7	6	8	10	9	7
8	4	6	7	7	7	4	3	9	7
7	8	8	5	4	9	6	6	7	7
5	9	9	6	7	9	8	6	10	5
6	3	5	5	4	6	8	7	5	10
8	9	10	6	7	8	7	5	7	7
5	6	5	7	8	9	6	8	7	8
8	8	10	7	10	7	8	3	7	6

Таблица 1: 200 выборок биномиального распределения

Биномиальное распределение

X	n_k	w_k	s_k
3	5.00000	0.02500	0.02500
4	7.00000	0.03500	0.06000
5	23.00000	0.11500	0.17500
6	38.00000	0.19000	0.36500
7	51.00000	0.25500	0.62000
8	42.00000	0.21000	0.83000
9	22.00000	0.11000	0.94000
10	12.00000	0.06000	1.00000
Total	200	1	

Таблица 2: Статический ряд

Рисунок 1: Полигон относительных частот

Рисунок 2: График эмпирической функции распеределении

x_k^*	w_k	\overline{p}_k	$ w_k - \overline{p}_k $
3	0.02500	0.00989	0.01511
4	0.03500	0.03944	0.00444
5	0.11500	0.10785	0.00715
6	0.19000	0.20480	0.01480
7	0.25500	0.26667	0.01167
8	0.21000	0.22787	0.01787
9	0.11000	0.11539	0.00539
10	0.06000	0.02629	0.03371
Total	1.00000	1.00000	0.03371

Таблица 3: Таблица сравнения относительных частот и теоретических вероятностей

Название	Выборочно	Теоретическо	Абсолютное	Относительно
показателя	е значение	е значение	отклонение	е отклонение
Среднее				
значение	6.98500	6.95000	0.03500	0.00504
Дисперсия	2.55478	2.11975	0.43503	0.20522
Среднее				
квадратичное				
отклонение	1.59837	1.45594	0.14243	0.09783
Мода	7.00000	7.00000	0.00000	0.00000
Медиана	6.50000	6.00000	0.50000	0.08333
Коэффициен				
т асимметрии	-0.20327	-0.26787	0.06460	-0.24117
Коэффициен				
т эксцесса	-0.23578	-0.12825	0.10753	-0.83846

Таблица 4: Таблица сранения рассчитанных характеристик с теоретическими значениями

Задание 2:

2	3	4	1	1	2	1	1	1	1
1	2	3	4	1	1	2	1	1	1
4	1	2	1	2	1	1	3	1	1
1	4	1	1	1	2	1	1	1	2
1	1	1	1	1	1	3	1	3	1
1	1	2	2	1	2	2	1	1	1
1	1	1	1	1	1	1	1	1	2
1	1	2	2	1	3	1	3	1	1
1	1	1	1	2	2	1	1	1	2
1	1	1	1	3	1	1	1	2	1
1	1	1	1	1	1	1	1	2	3
1	1	1	1	1	1	3	2	1	1
1	1	2	1	1	1	1	1	2	2
1	1	2	1	1	1	2	1	1	1
1	1	4	2	1	1	1	3	4	1
2	1	1	1	3	4	1	2	2	1
1	2	1	1	2	1	1	1	2	1
1	1	5	2	2	4	2	1	1	2
2	1	1	1	2	1	1	1	2	1
1	2	1	2	1	1	1	2	1	1

Таблица 5: 200 выборок геометрического распределения

Геометрическое распределение

x_k^*	n_k	w_k	s_k
1	137.00000	0.68500	0.68500
2	44.00000	0.22000	0.90500
3	11.00000	0.05500	0.96000
4	7.00000	0.03500	0.99500
5	1.00000	0.00500	1.00000
Total	200	1	

Таблица 6: Статистический ряд

Рисунок 3: Полигон относительных частот

Рисунок 4: График эмпирической функции распределения

$\boldsymbol{x}_{m{k}}^*$	w_k	\overline{p}_k	$ w_k - \overline{p}_k $
1	0.68500	0.69500	0.01000
2	0.22000	0.21197	0.00803
3	0.05500	0.06465	0.00965
4	0.03500	0.01972	0.01528
5	0.00500	0.00601	0.00101
Total	1.00000	1.00000	0.01528

 Таблица
 7:
 Таблица
 сравнения
 относительных
 частот
 и
 теоретических

 вероятностей

Название	Выборочно	Теоретическо	Абсолютно	Относительно
показателя	е значение	е значение	e	е отклонение
			отклонение	
Среднее				
значение	1.45500	1.43885	0.01615	0.01123
Дисперсия	0.62798	0.63144	0.00346	0.00548
Среднее				
квадратичное				
отклонение	0.79245	0.79463	0.00218	0.00275
Мода	1.00000	1.00000	0.00000	0.00000
Медиана	3.00000	1.00000	2.00000	2.00000
Коэффициен				
т асимметрии	1.95648	2.36298	0.40651	0.17203
Коэффициен				
т эксцесса	3.64410	7.58369	3.93959	0.51948

Таблица 8: Таблица сравнения рассчитанных характеристик с теоретическими значениями

Задание 3:

								1	
3	1	0	0	1	0	1	1	0	1
0	2	0	0	1	0	0	1	0	0
1	1	0	1	0	0	2	2	0	0
0	0	0	0	0	0	0	1	2	2
1	1	0	0	0	0	0	2	0	0
1	0	1	1	0	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	2	0	0	0	1	0	1	1	1
0	1	0	0	1	0	0	0	0	2
0	0	2	0	0	0	0	2	2	0
1	0	1	0	0	1	1	4	0	1
0	0	0	0	1	0	0	1	0	1
1	0	0	1	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0
0	1	1	2	0	0	0	0	0	1
0	0	1	0	1	1	1	0	2	1
5	1	0	0	0	0	0	1	1	0
0	0	1	1	1	0	1	0	2	1
0	0	0	0	0	0	0	1	0	0
0	1	0	0	0	1	0	0	1	0
	0 000	_	·					·	

Таблица 9: 200 выборок распределения Пуассона

Распределение Пуассона

Интервалы	n_k	w_k
(0.00000, 0.57845)	126.00000	0.63000
(0.57845, 1.15689)	57.00000	0.28500
(1.15689, 1.73534)	0.00000	0.00000
(1.73534, 2.31378)	14.00000	0.07000
(2.31378, 2.89223)	0.00000	0.00000
(2.89223, 3.47067)	1.00000	0.00500
(3.47067, 4.04912)	1.00000	0.00500
(4.04912, 5.00000)	0.00000	0.00000
	200	1

Таблица 10: Интервальный Ряд

x_k^*	n_k	w_k
0.28922	126.00000	0.63000
0.86767	57.00000	0.28500
1.44611	0.00000	0.00000
2.02456	14.00000	0.07000
2.60300	0.00000	0.00000
3.18145	1.00000	0.00500
3.75990	1.00000	0.00500
4.52456	0.00000	0.00000
	200	1

Таблица 11: Ассоциированный статистический ряд

Рисунок 5: Гистограмма относительных частот с наложенным на нее и выделенным красным цветом графиком плотности показательного распределения

Рисунок 6: График эмфирической функции распределения

Интервалы:	w_k	\overline{p}_k	$ w_k $	
			$- \overline{p}_k $	
(0.00000, 0.57845)	0.63000	0.60351	0.02649	
(0.57845, 1.15689)	0.28500	0.30477	0.01977	
(1.15689, 1.73534)	0.00000	0.00000	0.00000	
(1.73534, 2.31378)	0.07000	0.07695	0.00695	
(2.31378, 2.89223)	0.00000	0.00000	0.00000	
(2.89223, 3.47067)	0.00500	0.01295	0.00795	
(3.47067, 4.04912)	0.00500	0.00164	0.00336	
(4.04912, 5.00000)	0.00000	0.00000	0.00000	
	1	1	0.026494	

Таблица 12: Таблица сравнения относительных частот и теоретических вероятностей

Название	Выборочно	Теоретическо	Абсолютное	Относительно
показателя	е значение	е значение	отклонение	е отклонение
Среднее				
значение	0.48500	0.50500	0.02000	0.03960
Дисперсия	0.57978	0.50500	0.07478	0.14807
Среднее				
квадратичное				
отклонение	0.76143	0.71063	0.05080	0.07148
Мода	0.00000	0.00000	0.00000	nan
Медиана	2.50000	0.00000	2.50000	nan
Коэффициен				
т асимметрии	2.19125	1.40720	0.78405	0.55717
Коэффициен				
т эксцесса	7.30751	1.98020	5.32732	2.69029

Таблица 13: Таблица сравнения рассчитанных характеристик с теоретическими значениями

Список литературы

- 1. Математическая статистика [Электронный ресурс]: метод. указания по выполнению лаб. работ/ А.А. Лобузов М.: МИРЭА, 2017.
- 2. Боровков А. А. Математическая статистика. СПб.: Лань, 2010.-704с.
- 3. Гмурман В. Е. Теория вероятностей и математическая статистика.-М.: Юрайт, 2013.-479с.
- 4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике. М.:Юрайт,2013.-404с.
- 5. Емельянов Г.В. Скитович В.П. Задачник по теории вероятностей и математической статистике.-СПб.: Лань, 2007.-336с.
- 6. Кибзун А.И., Горяинова Е.Р., Наумов А.В. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами. Учебное пособие М.: ФИЗМАТЛИТ, 2005.-232с.
- 7. Кобзарь А.И. Прикладная математическая статистика: для инженеров и научных работников М.: ФИЗМАТЛИТ, 2006.-816с.
- 8. Монсик В.Б., Скрынников А.А. Вероятность и статистика. М.: БИНОМ, 2015-384с.
- 9. Сборник задач по теории вероятностей, математической статистике и теории случайных функций: Учеб. пособие для вузов / Под ред. А. А. Свешникова. СПб.: Лань, 2012. 472с.
- 10. Письменный Д.Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам: учеб. пособие для вузов.-М.: Айрис-пресс,2013.-288с.

Приложение

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import math
N = 200 \#Sample
V = 165 #Variant
n = 5 + V \% 20
p = 0.2 + 0.003 * V
lamda = 1 + ((-1) ** V) * (V * 0.003)
seed = 420
rng = np.random.default_rng(seed=seed)
def task(X distribution, name distribution):
  #1
  counts = np.unique(X distribution, return counts=True)
  X = counts[0]
  freq = counts[1]
  rel freq = counts[1] / N
  cum freq = np.cumsum(rel_freq)
  total freq = freq.sum(axis=0)
  total rel freq = rel freq.sum(axis=0)
  intervals = None
  if name distribution == 'binomial' or name distribution ==
'geometric' or name distribution == 'poisson':
    total row = {
      'X': 'Total',
      'Frequency': total_freq,
      'Relative Frequency': total rel freq,
      'Cumulative Frequency': ''
    }
    df_freq = pd.DataFrame({
        'X': counts[0],
        'Frequency': [f"{val:.5f}" for val in freq],
        'Relative Frequency': [f"{val:.5f}" for val in
rel freq],
         Cumulative Frequency': [f"{val:.5f}" for val in
cum freq]
```

```
})
   df freq.loc[len(df freq)] = total row
   print(df_freq)
   df freq.to excel(name distribution + '_stat.xlsx')
 if name distribution == 'poisson':
        step = 1 + np.log2(N)
        distance between step = (X.max() - X.min()) / step
        intervals = np.array([X.min() + i *
distance between step for i in range(int(step))])
        intervals = np.append(intervals, X.max())
        intervals freq = np.zeros(len(intervals)-1)
        intervals relative freq = np.zeros(len(intervals)-1)
        for i in range(len(intervals)-1):
            for j in range(len(X)):
                if intervals[i] <= X[j] < intervals[i+1]:</pre>
                    intervals_freq[i] += freq[j]
                    intervals relative freq[i] += rel freq[j]
        total row = {'Frequency': total freq, 'Relative
Frequency': total rel freq}
        df freq intervals = pd.DataFrame({'Interval: ':
zip([f"{val:.5f}" for val in intervals[:-1]], [f"{val:.5f}"
for val in intervals[1:]]), 'Frequency': [f"{val:.5f}" for val
in intervals_freq], 'Relative Frequency': [f"{val:.5f}" for
val in intervals relative freq[})
       df_freq_intervals.loc[len(df_freq_intervals)] =
total row
        print(df_freq_intervals)
        df freq intervals.to excel(name distribution +
' intervals.xlsx')
        middle = np.array([(intervals[i] + intervals[i+1]) / 2
for i in range(len(intervals)-1)])
        df_freq_middle = pd.DataFrame({'Middle': [f"{val:.5f}"
for val in middle], 'Frequency': [f"{val:.5f}" for val in
intervals freq], 'Relative Frequency': [f"{val:.5f}" for val
in intervals relative freq[})
        df freq middle.loc[len(df freq intervals)] = total row
        print(df_freq_middle)
        df_freq_middle.to_excel(name_distribution +
' middle.xlsx')
 #2
 if name distribution == 'binomial':
```

```
theo freq = np.array([(math.comb(n, k) * (p ** k) * ((1-p))
** (n-k))) for k in X])
  elif name_distribution == 'geometric':
    theo_freq = np.array([(p * ((1-p) ** (k-1))) for k in
counts[0]])
  elif name distribution == 'poisson':
    theo freq = np.array([(lamda ** k) * np.exp(-lamda) /
math.factorial(k) for k in counts[0]])
    intervals theoretical relative freq =
np.zeros(len(intervals)-1)
    for i in range(len(intervals)-1):
        for j in range(len(X)):
            if intervals[i] <= X[j] < intervals[i+1]:</pre>
                intervals_theoretical_relative_freq[i] +=
theo freq[j]
  #plot
  if name_distribution == 'binomial' or name_distribution ==
'geometric':
    plt.figure(figsize = (8,6))
    plt.plot(X, rel freq, marker = 'o', linestyle = '-', color
= 'b', label = 'Relative Frequency')
    plt.plot(X, theo freq, marker = 'o', linestyle = '--',
color = 'red', label = 'Theoretical Probabilities')
    plt.xlabel("Value")
    plt.ylabel("Frequency")
    plt.title(name distribution + "Distribution")
    plt.legend()
    plt.grid(True)
    plt.show()
    #3
    plt.figure(figsize = (8,6))
    for i in range(0, len(counts[0])-1):
      plt.plot([counts[0][i], counts[0][i+1]], [cum_freq[i],
cum_freq[i]], color='b', linestyle='-', linewidth=2)
    plt.grid(True)
    plt.show()
  if name distribution == 'poisson':
    fig, ax1 = plt.subplots(figsize=(8, 6))
    #ax1.plot(counts[0], relative_freq, marker='o',
linestyle='-', color='b', label='Relative Frequency')
    ax1.plot(counts[0], theo freq, marker='o', linestyle='-',
color='r', label='Theoretical Frequency')
    ax1.set xlabel('Value')
    ax1.set ylabel('Frequency (Line)')
```

```
ax1.set title('Histogram')
    ax1.legend(loc='upper left')
    ax1.grid(True)
    ax2 = ax1.twinx()
    ax2.hist(X_distribution, bins='sturges',
edgecolor='black', alpha=0.5, label='Histogram')
    ax2.set_ylabel('Count (Histogram)')
    ax2.legend(loc='upper right')
    plt.show()
    plt.figure(figsize = (8,6))
    for i in range(0, len(counts[0])-1):
      plt.plot([counts[0][i], counts[0][i+1]], [cum freq[i],
cum_freq[i]], color='b', linestyle='-', linewidth=2)
    plt.grid(True)
    plt.show()
  #4
  mean = np.array([X[i] * rel_freq[i] for i in
range(len(X))]).sum()
  print("Sample mean = ", f"{mean: .5f}")
  #5
  variance = np.array([((X[i] - mean) ** 2) * rel_freq[i] for
i in range(len(X))]).sum()
  print("Sample variance = ", f"{variance: .5f}")
  #6
  deviation = np.sqrt(variance)
  print("Sample standard deviation = ", f"{deviation: .5f}")
  #7
  modes = X[np.argwhere(freq ==
np.amax(freq))].flatten().tolist()
  mode = (modes[0] + modes[len(modes) - 1]) / 2
  print("Mode = ", f"{mode: .5f}")
  #8
  if len(X) \% 2 == 0:
      median = (X[int(len(X)/2)] + X[int(len(X)/2) - 1]) / 2
  else:
      if 0.5 in X.tolist():
          median = X[cum freq.tolist().index(0.5)]
      else:
          left = -1
          for element in cum freq:
```

```
if element < 0.5:
                  left += 1
              else:
                  right = left + 1
                  break
          median = (X[left] + X[right]) / 2
 print("Median = ", f"{median: .5f}")
 #9
 def sample k moment around mean(k, mean):
      return np.array([(X[i] - mean) ** k * rel freq[i] for i
in range(len(X))]).sum()
  sample skeness = sample k moment around mean(3, mean) /
deviation ** 3
 print("Sample skewness = ", f"{sample_skeness: .5f}")
 sample kurtosis = sample k moment around mean(4, mean) /
deviation ** 4 - 3
 print("Sample kurtosis = ", f"{sample kurtosis: .5f}")
 abs_diff_freq = np.abs(theo_freq - rel_freq)
 freq compare = pd.DataFrame({
      'X': X,
      'Relative Frequency': [f"{val:.5f}" for val in
rel freq],
      'Theoretical Frequency': [f"{val:.5f}" for val in
theo_freq],
      'Absolute Difference': [f"{val:.5f}" for val in
abs_diff_freq]
      })
 if name distribution == 'poisson':
    abs diff freq intervals =
np.abs(intervals theoretical relative freq -
intervals_relative_freq)
   freq compare intervals = pd.DataFrame({
        'Interval: ': zip([f"{val:.5f}" for val in
intervals[:-1]], [f"{val:.5f}" for val in intervals[1:]]),
        'Relative Frequency': [f"{val:.5f}" for val in
intervals relative freql,
        'Theoretical Frequency': [f"{val:.5f}" for val in
intervals_theoretical_relative_freq],
        'Absolute Difference': [f"{val:.5f}" for val in
abs_diff_freq_intervals]
        })
   total row compare intervals = {
        'Relative Frequency': total rel freq,
```

```
'Theoretical Frequency': 1,
        'Absolute Difference': np.max(abs_diff_freq)
    freq_compare_intervals.loc[len(freq_compare_intervals)] =
total row compare intervals
    freq_compare_intervals.to_excel(name_distribution +
' intervals compare.xlsx')
  total row compare = {
      'X': 'Total',
      'Relative Frequency': f"{total_rel_freq: .5f}",
      'Theoretical Frequency': f"{1: .5f}",
      'Absolute Difference': f"{np.max(abs_diff_freq): .5f}"
 freq compare.loc[len(freq compare)] = total row compare
  print(freq compare)
 freq compare.to excel(name distribution + ' compare.xlsx')
 #10
  if name_distribution == 'binomial':
    theo mean = n * p
    theo_var = n * p * (1 - p)
    theo_deviation = np.sqrt(n * p * (1 - p))
    theo_skewness = ((1-p)-p) / np.sqrt(n * p * (1 - p))
    theo kurtois = (1 - 6 * p * (1 - p)) / (n * p * (1 - p))
    theo_mode = np.floor((n + 1) * p)
    theo median = np.floor(n * p)
    theo_values = np.array([theo_mean, theo_var,
theo deviation, theo skewness, theo kurtois, theo mode,
theo median])
    real values = np.array([mean, variance, deviation,
sample skeness, sample kurtosis, mode, median])
    abs_differences = np.array([abs(mean - theo_mean),
abs(variance - theo_var), abs(deviation - theo_deviation),
abs(sample_skeness - theo_skewness), abs(sample_kurtosis -
theo kurtois), abs(mode - theo mode), abs(median -
theo median)])
    rel differences = np.array([abs differences[i] /
theo values[i] for i in range(len(theo values))])
    char combine = pd.DataFrame({'Characteristic': ['Mean',
'Variance', 'Deviation', 'Skewness', 'Kurtosis', 'Mode',
'Median'],
                                 'Sample': [f"{val:.5f}" for
val in real_values],
                                'Theoretical': [f"{val:.5f}"
for val in theo values],
```

```
'Absolute Difference':
[f"{val:.5f}" for val in abs differences],
                                 'Relative Difference':
[f"{val:.5f}" for val in rel differences]
                                })
    char combine.to excel(name distribution + ' char.xlsx')
 elif name distribution == 'geometric':
   theo mean = 1 / p
   theo var = (1 - p) / (p ** 2)
   theo deviation = np.sqrt((1 - p) / (p ** 2))
   theo_skewness = (2 - p) / np.sqrt(1 - p)
   theo_kurtois = 6 + p ** 2 / (1 - p)
   theo mode = 1
   theo_median = np.round((-1 / np.log2(1 - p)))
   theo values = np.array([theo mean, theo var,
theo deviation, theo skewness, theo kurtois, theo mode,
theo median])
    real_values = np.array([mean, variance, deviation,
sample skeness, sample kurtosis, mode, median])
   abs_differences = np.array([abs(real_values[i] -
theo values[i]) for i in range(len(theo values))])
   rel_differences = np.array([abs_differences[i] /
theo values[i] for i in range(len(theo values))])
   char_combine = pd.DataFrame({'Characteristic': ['Mean',
'Variance', 'Deviation', 'Skewness', 'Kurtosis', 'Mode',
'Median'],
                                'Sample': [f"{val:.5f}" for
val in real_values],
                                 'Theoretical': [f"{val:.5f}"
for val in theo values],
                                 'Absolute Difference':
[f"{val:.5f}" for val in abs differences],
                                 'Relative Difference':
[f"{val:.5f}" for val in rel_differences]
                                })
   char_combine.to_excel(name_distribution + '_char.xlsx')
 elif name distribution == 'poisson':
   theo mean = lamda
   theo var= lamda
   theo deviation = np.sqrt(lamda)
   theo_skewness = 1 / np.sqrt(lamda)
   theo kurtois = 1 / lamda
   theo mode = np.floor(lamda)
   theo median = np.floor(lamda + 1/3 - 0.02/lamda)
```

```
theo values = np.array([theo mean, theo var,
theo deviation, theo skewness, theo kurtois, theo mode,
theo median])
    real_values = np.array([mean, variance, deviation,
sample skeness, sample kurtosis, mode, median])
    abs_differences = np.array([abs(real_values[i] -
theo values[i]) for i in range(len(theo values))])
    rel differences = []
    for i in range(len(theo values)):
        if theo values[i] == 0:
            rel differences.append(np.nan) # or "N/A"
        else:
            rel differences.append(abs differences[i] /
theo values[i])
    rel differences = np.array(rel differences)
    char_combine = pd.DataFrame({'Characteristic': ['Mean',
'Variance', 'Deviation', 'Skewness', 'Kurtosis', 'Mode',
'Median'],
                                'Sample': [f"{val:.5f}" for
val in real_values],
                                'Theoretical': [f"{val:.5f}"
for val in theo_values],
                                'Absolute Difference':
[f"{val:.5f}" for val in abs differences],
                                 'Relative Difference':
[f"{val:.5f}" for val in rel differences]
    char_combine.to_excel(name_distribution + '_char.xlsx')
  print(char combine)
```