UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Cálculo Diferencial e Integral — Lista 5 Prof. Adriano Barbosa

(1) Determine em quais intervalos a função abaixo é contínua.

(2) Usando a definição de continuidade e as propriedades de limite, determine se as funções abaixo são contínuas nos pontos dados:

(a)
$$f(x) = 3x^4 - 5x + \sqrt[3]{x^2 + 4}$$
, $a = 2$

(b)
$$f(x) = (x + 2x^3)^4$$
, $a = -1$

(c)
$$f(x) = \frac{2x - 3x^2}{1 + x^3}$$
, $a = 1$

(3) Use os teoremas sobre funções contínuas e explique porque as funções abaixo são contínuas em todos os pontos do seu domínio:

(a)
$$F(x) = \frac{2x^2 - x - 1}{x^2 + 1}$$

(b)
$$h(x) = \frac{\sin(x)}{x+1}$$

(c)
$$g(x) = \cos(1 - x^2)$$

(d)
$$f(x) = sen(cos(sen(x)))$$

(4) Determine o valor de f(2) de modo que a função $f(x) = \frac{x^3 - 8}{x^2 - 4}$ seja contínua em 2.

(5) Sejam f e g contínuas em 2, g(2)=6 e $\lim_{x\to 2} \left[3f(x)+f(x)g(x)\right]=36$. Determine o valor de f(2).

(6) Use a continuidade das funções para calcular os limites abaixo:

(a)
$$\lim_{x \to 4} \frac{5 + \sqrt{x}}{\sqrt{5 + x}}$$
 (b) $\lim_{x \to \frac{\pi}{4}} x \cos^2(x)$

(b)
$$\lim_{x \to \frac{\pi}{4}} x \cos^2(x)$$

(7) Use o Teorema do Valor Intermediário para mostrar que existe uma raiz das equações abaixo no intervalo dado:

(a)
$$x^4 + x - 3 = 0$$
, $(1, 2)$

(b)
$$\cos(x) = x$$
, $(0, 1)$

(b)
$$\cos(x) = x$$
, (0,1) (c) $\sin(x) = x^2 - x$, (1,2)