Subarray sum divisible by k

974. Subarray Sums Divisible by K

Medium 🖒 6012 **₽** 252 Add to List

Given an integer array nums and an integer k, return the number of non-empty subarrays that have a sum divisible by k.

A subarray is a contiguous part of an array.

Example 1:

Input: nums = [4,5,0,-2,-3,1], k = 5 Output: 7 **Explanation:** There are 7 subarrays with a sum divisible by k = 5: [4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]

Example 2:

Input: nums = [5], k = 9Output: 0

Brute force

Since we have to Lind Sum of all sub Assay divisible by K

-> Nested Loop

$$[[24,5], [0], [-2,-3]] K=5$$

Sum=0+4=> 4

j (sum//==0) Jalse

80m=4+5=9

j=2 j(Sum 7. h==0) jalse

2 sum = 9+0=9 y (sum 7. k ==0) Jalbe

Sum = 9+ (-2) = 7 if (sum 7. k ==0) false

Sum = 7-3 = 4 if (Sum 7. H = =0) Jalse

j = 5

Sum= 4+1=5

y (sum > t==0) Towe contit

1++ a c i] = 5

j=0 ->UM=0+5 -y(sum ". k==0) Towe Unt+

80 ON

 $\int C - O(n^2)$

TLE

Optimal approach

Hashing :-

Subarray som divisble by K

need

Calculate Prefix Dum jo on worky

$$F = [a_n, a_1, a_2, \dots, a_i]$$

$$Si$$

$$Si$$

$$Si = S; \% K$$

$$Si$$

$$Sj = S; \% K$$

$$y = 3i$$

 $S_{i} = 3i$
 $S_{i} = 3i$
 $S_{i} = 3i$
 $S_{i} = 5i$
 $S_{i} = 5i$

so let us take example:

i=0 i=1 i=2 i=3 i=4 i=5	Rem	Foren
Porefix: 4 4+5 9+0,9-2,7-3,4+1	7(67)	13/29/
)=9 = 9 = 7 = 9 = 5	\Box	
	<u> </u>	l
Find - 47.5 47.5 47.5 47.4 47.5 57.5 = 4 = 4 = 4 = 3 = 4 = 0	4	XX3
False Towe Towe False Towe		
insert = 4, 4++, 4++, 3, 0++	3	

$$Cnt = {}^{t}mpp \ LFind$$

= $\beta / + 2 = 3 + 3 = 6 + 1$

```
class Solution {
public:
    int subarraysDivByK(vector<int>& nums, int k) {
        unordered_map<int,int> mpp;
        mpp[0]=1;
        int sum=0,cnt=0;
        for(int i=0;i<nums.size();i++){
            sum+=nums[i];
            int findRem =sum%k;
            if(findRem <0) findRem+=k;
            if(mpp.find(findRem)!=mpp.end()) cnt+=mpp[findRem];
            mpp[findRem]++;
        }
        return cnt;
    }
};</pre>
```