UPRAVLJANJE ELEKTROMOTORNIM POGONIMA

II. međuispit 05.12.2008.

1. Asinkroni motor skalarno upravljani u otvorenoj petlji ima sljedeće podatke:

380 V, 3,7 kW, 705 rpm, 50 Hz, $M_{pr}/M_n = 4,26$, namot u spoju "zvijezda".

Na osovinu motora spojen je teret potencijalnog karaktera iznosa $M_t = 40 \text{ Nm}$.

- a) Kojom brzinom se okreće asinkroni motor pri nazivnoj referentnoj frekvenciji?
- b) Ako referentna frekvencija iznosi 70 Hz koliko iznosi stvarna brzina vrtnje asinkronog motora?
- c) Za slučaj pod a) i b) nacrtati momentne karakteristike, te na njima označiti karakteristične točke (prekretni moment i klizanje, sinkronu brzinu te radnu točku).
- d) Nacrtati funkcijsku blok shemu skalarnog upravljanja asinkronog motora u otvorenoj i zatvorenoj petlji.

Napomene: U zadacima je potrebno zanemariti pad napona na impedanciji namota statora. Zadatke je potrebno rješavati pomoću pojednostavljenje Klossove jednadžbe.

Rješenje:

a)
$$n_a = 714,27 \text{ rpm}$$
 c)

b)
$$n_b = 978,08 \text{ rpm}$$

pretvarač frekvencije

regulator napona

regulator napona

regulator napona

regulator napona

regulator napona

regulator napona

strujni limiter

AM

mjerni član

mjerni član

- 2. Asinkroni motor se okreće konstantnom brzinom n=1470 rpm. U trenutku t izmjerene su slijedeće vrijednosti faznih struja statora $i_a=11,47$ A, $i_b=-19,92$ A i $i_c=8,45$ A, a estimirani položaj vektora toka rotora iznosi $\rho=4$ π / 3. Parametri asinkronog motora su: $R_s=0,9174$ Ω , $L_{s\sigma}=0,005473$ H, $R_r=0,6258$ Ω , $L_{r\sigma}=0,005473$ H, $L_m=0,1854$ H.
 - a) Potrebno je odrediti α i β i d i q komponentu vektora struje statora, nacrtati troosni abc, dvoosni $\alpha\beta$ i dq koordinantni sustav te rezultirajući vektor struje statora.
 - b) Nacrtati model za estimaciju položaja toka rotora i model za estimaciju elektromagnetskog momenta.
 - c) Ako se moment tereta poveća za 20 % koliko će iznositi referentne vrijednosti i_{sdref} i i_{sqref} u stacionarnom stanju?
 - d) Koja vrsta modulacija je primjerena za upotrebu kod vektorskog upravljanja asinkronog motora iz pretvarača frekvencije s utisnutim naponom, a koja kod vektorskog upravljanja asinkronog motora napajanog iz pretvarača frekvencije s utisnutom strujom?

Rješenje:

a)
$$i_{s\alpha} = 11,47 \text{ A}, i_{s\beta} = -16,38 \text{ A}$$
 $i_{sd} = 8,45 \text{ A}, i_{sq} = 18,12 \text{ A}$

- c) $i_{sdref} = 8,45 \text{ A}, i_{sqref} = 21,74 \text{ A}$
- d) Za vektorsku regulaciju asinkronog motora koji se napaja iz pretvarača frekvencije s utisnutim naponom prikladno je koristiti metodu šest koraka(eng. *Six-Step Method*), sinusnu ili vektorsku modulacija širine impulsa.

Za vektorsku regulaciju asinkronog motora koji se napaja iz pretvarača frekvencije s utisnutom strujom prikladno je koristiti modulaciju izlaznog napona izmjenjivača reguliranjem statorske struje korištenjem tzv. histereznog regulatora statorske struje.

- 3. Referentne vrijednosti napona statora u trenutku t iznose: $u_a = -367,05 \text{ V}$, $u_b = 268,70 \text{ V}$, i $u_c = 98,35 \text{ V}$. Napon istosmjernog međukruga iznosi $U_{dc} = 600 \text{ V}$.
 - a) Odrediti koliko vremena unutar intervala $T_s = 0.2$ ms vodi pojedina sklopka?
 - b) Skicirati izmjenjivač i na njemu označiti sklopke.
 - c) Nacrtati valne oblike upravljačkih signala za navedeni slučaj?
 - d) Koliko smije iznositi maksimalna vrijednost referentnog napona statora da bi se rezultirajući vektor napona statora u svakom trenutku mogao prikazati sa dva susjedna aktivna vektora?
 - e) Nacrtati valne oblike upravljačkih signala za jednu sklopnu periodu ako se koristi sinusna modulacija širine impulsa. Frekvencija signala nosioca iznosi 5000 Hz.

Slika 1. Prikaz vektora u kompleksnoj ravnini

Rješenje:

a) $T_3 = 0.057$ ms, $T_4 = 0.155$ ms

Zbroj trajanja aktivnih sklopnih stanja je duži od intervala T_s iz čega slijedi da zadanu vrijednost referentnog napona nije moguće prikazati sa dva susjedna aktivna vektora.

Vrijeme vođenja pojedinih tranzistora iznosi:

$$t_b = T_3 + T_4 = 0.212$$
 ms,

$$t_c = T_4 = 0.155$$
 ms.

c) Kada bi zadanu vrijednost referentnog napona bilo moguće prikazati sa dva susjedna aktivna vektora valni oblici upravljačkih signala bi izgledali:

$$\begin{bmatrix} U_{8} & U_{3} & U_{4} & U_{7} & U_{7} & U_{4} & U_{3} & U_{8} \\ A & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & &$$

d)
$$\left| \overline{U}_{ref} \right|_{\text{max}} = 346,41 \text{ V}$$

e)

