Отчет по финальному проекту Алекберова Артема, группа 1

1. Сбор данных

Я взял гистоновую метку НЗК27ас

Скачиваем данные:

wget

https://www.encodeproject.org/files/ENCFF491LQY/@@download/ENCFF491LQY/@@download/ENCFF491LQY/

zcat ENCFF491LQY.bed.gz | cut -f1-5 > H3K27ac_MCF-7.ENCFF491LQY.hg38.bed

wget

https://www.encodeproject.org/files/ENCFF340KSH/@@download/ENCFF340KSH.bed.gz

zcat ENCFF340KSH.bed.gz | cut -f1-5 > H3K27ac_MCF-7.ENCFF340KSH.hg38.bed

Преобразовыве hg38 в hg19:

liftOver H3K27ac_MCF-7.ENCFF491LQY.hg38.bed hg38ToHg19.over.chain.gz H3K27ac_MCF-7.ENCFF491LQY.hg19.bed H3K27ac_MCF-7.ENCFF491LQY.unmapped.bed

liftOver H3K27ac_MCF-7.ENCFF340KSH.hg38.bed hg38ToHg19.over.chain.gz H3K27ac_MCF-7.ENCFF340KSH.hg19.bed H3K27ac_MCF-7.ENCFF340KSH.unmapped.bed

2. Гистограммы длин

Строим гистограмму длин участков для каждого эксперимента до и после конвертации к нужной версии генома. Количество пиков можно увидеть в подписи на графике

hg38:

hg19:

filtered hg19 (в качестве порога взята длина 5.000):

3. Пай-чарты

Смотрим, где располагаются пики гистоновой метки относительно аннотированных генов:

ENCFF340KSH

Видим, что где-то четверть пиков приходится на промоутеры Объединяем пики с помощью команды: cat *.filtered.bed | sort -k1,1 -k2,2n | bedtools merge > H3K27ac_MCF-7.merged.bed

4. Анализ участков вторичной стр-ры ДНК

Я выбрал **G4_ChIP**

а) Гистограмма и количество пиков

b) Пай-чарт: Видим, что большая часть пиков приходится на промоутеры

5. Анализ пересечений гистоновой метки и стр-ры ДНК

Находиме пересечения гистоновой меткой и стр-ры ДНК с помощью следующей команды:

bedtools intersect -a G4_chip.bed -b H3K27ac_MCF-7.merged.bed > H3K27ac_MCF-7.intersect_with_G4.bed

а) Гистограмма длин и количество пиков:

b) Пай-чарт:

Видим, что большая часть пиков также приходится на промоутеры

6. Визуализация в геномном браузере

Сессия: <u>http://genome.ucsc.edu/s/art591/hse21_H3K27ac_MCF-7_human</u>

Визуализация выполнена следующими командами:

- добавляем ENCFF491LQY:

 track visibility=dense name="ENCFF491LQY"

 description="H3K27ac_MCF-7.ENCFF491LQY.hg19.filtered.bed"

 https://raw.githubusercontent.com/art591/hse21_H3K27ac_G4_human/m

 ain/data/H3K27ac_MCF-7.ENCFF491LQY.hg19.filtered.bed
- добавляем ENCFF340KSH

 track visibility=dense name="ENCFF340KSH"

 description="H3K27ac_MCF-7.ENCFF340KSH.hg19.filtered.bed"

 https://raw.githubusercontent.com/art591/hse21_H3K27ac_G4_human/m

 ain/data/H3K27ac_MCF-7.ENCFF340KSH.hg19.filtered.bed
- добавляем их объединение:

 track visibility=dense name="ChIP_merge" color=50,50,200

 description="H3K27ac_MCF-7.merge.hg19.bed"

https://raw.githubusercontent.com/art591/hse21_H3K27ac_G4_human/main/data/H3K27ac_MCF-7.merged.bed

• добавляем G4:

track visibility=dense name="G4_chip" color=0,200,0 description="G4_chip" https://raw.githubusercontent.com/art591/hse21_H3K27ac_G4_human/main/data/G4_chip.bed

• добавляем пересечение с G4:

track visibility=dense name="intersect_with_G4" color=200,0,0 description="H3K27ac_MCF-7.intersect_with_G4.bed" https://raw.githubusercontent.com/art591/hse21_H3K27ac_G4_human/main/data/H3K27ac_MCF-7.intersect_with_G4.bed

Скриншоты:

chrX:317,036-384,136

chrX:23,791,891-23,822,256:

7. Ассоциируем полученные пересечения с ближайшими генами с помощью ChIPpeakAnno

Кол-во пиков, которые удалось проассоциировать с генами: 8567 Общее кол-во уникальных генов: 6528

GO-анализ для полученных уникальных генов:

Наиболее значимые категории:

GO biological process complete	<u>expected</u>	Fold Enrichment	+/-	<u>raw P value</u>	▼ FDR
mitotic nuclear membrane reassembly	15.20	2.04	+	2.32E-03	4.98E-02
positive regulation of telomere maintenance	15.20	2.04	+	2.32E-03	4.97E-02
mitotic nuclear membrane organization	15.20	2.04	+	2.32E-03	4.97E-02
neutrophil migration	25.93	.39	-	2.25E-03	4.85E-02