线性代数习题

一. 必做

- 1. 求 A+B,AB,其中 $A = \begin{pmatrix} 4 & 3 & 1 \\ -2 & 1 & 5 \\ 0 & 7 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 2 & 1 \\ 3 & 0 & 2 \\ 6 & -4 & -1 \end{pmatrix}$
- 2. 设A 为三阶可逆矩阵,若 $A^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$,求 A
- 3. 求证: 若 λ 是矩阵 A 的特征值,则当 A 可逆时, λ^{-1} 是 A^{-1} 的特征值(提示:由特征值的公式 $A\vec{x} = \lambda\vec{x}$ 开始推导)
- 4. 求使平面上三点 (x_1, y_1) , (x_2, y_2) , (x_3, y_3) 位于一条直线上的充分必要条件。 (提示:设直线方程为 ax + by + c = 0 , 然后列出方程组求解)

二. 选做:

)

1. \lor 是属于数域 \vdash 上的线性空间, \blacktriangleleft 是空间 \lor 上的线性变换。 $f(x), f_1(x), f_2(x)$ 都是属于 \vdash 的多项式。已知 $f(x) = f_1(x)f_2(x)$,且 $f_1(x) = f_2(x)$ 互素,

求证 $kerf(A) = kerf_1(A) \oplus kerf_2(A)$

注: ker 表示核, ①表示直和.

(提示: 若两个多项式互素,则存在多项式u(x),v(x)使

$$u(x)f_1(x) + v(x)f_2(x) = 1$$

答案见《高等代数强化讲义》李扬 著, P176