ASAD ASHRAF KAREL

All syntaxes for Statistics:

Bionomial, Poission, Normaml Distribution

```
In [ ]:
             # Binomail Distribution
             st.binom.cdf/sf/pmf(x,n,p)
          2
          3
            # Poisson Distribution
          5
            st.poisson.cdf/sf/pmf(x,mean)
          6
          7
            # Normal Distribution
            st.norm.cdf/sf/pmf(x,mean,std)
          9
         10 st.norm.isf(0.7,mean,std) # Exmple: At Least 70% customers have balance in t
         11 | st.norm.ppf(0.3,mean,std)
         12
```

Calculation for ZScore value

```
In [ ]:
            z1 = mean + std
          2
             z2 = mean - std
          3
            st.norm.cdf(z1,mean,std) - st.norm.cdf(z2,mean,std)
          5
            # 0.68
          7
            z1 = mean + 2*std
          8
            z2 = mean - 2*std
         10 | st.norm.cdf(z1,mean,std) - st.norm.cdf(z2,mean,std)
            # 0.95
         11
         12
         13 z1 = mean + 3*std
         14 | z2 = mean - 3*std
         15
         16 st.norm.cdf(z1,mean,std) - st.norm.cdf(z2,mean,std)
         17 | # 0.99
```

Sampling Error

Difference between the Pop Mean and the Sample Mean

```
In [ ]: 1 np.mean(population) - np.mean(sample)
```

Confidence Interval with z distribution

Z_values Estimation:

Confidence interval with t distribution

Hypothesis Technique

Complete process:

If population std is given:

```
In [ ]:
          1
            # Given data:
          2
          3 Mu =
            n =
          4
          5 | sigma =
          6
            xbar =
          7
            alpha =
          9
            ### Critical Value:
         10 | zcrit = stats.norm.isf(0.975).round(3) # 0.025
         11
         12 | # Z stats:
            std_error=sigma/np.sqrt(n)
         13
         14
         15 | z_stat=(xbar-Mu)/std_error
         16
         17
            print(zcrit , z_stat)
         18
         19
            ## If z_stat > zcrit, we reject our Null hypothesis.
         20
            # With P value calculations:
         21
         22 p_value=st.norm.cdf(z_stat)*2
         23 print(p_value)
         24
         25
            ## If P_value > alpha, we accept our Null hypothesis.
```

If proportion is given:

```
In [ ]:
          1
             zcrit = st.norm.isf(0.05)
          2
             print(zcrit)
          3
            # Proportion:
          4
          5
            p1 = x/n
          6
             q = 1 - p
             zstat = (p1 - p) / np.sqrt(p*q/n)
             print(zstat)
          9
         10
         11
             if zcrit > zstat :
         12
                 print('\nWe are failed to reject null hypothesis.')
                 print('Student internship is across 45%.')
         13
         14
            else:
         15
                 print('\nWe reject our null hypothesis.')
         16
                 print('Student internship is about our expectations.')
```

For T test:

```
In [ ]:
            # Test Statistic
          1
          2
            xbar =
            popmean =
            std_error = sigma/np.sqrt(n)
          4
          5
            # OR
          6
            std_error = stats.sem(data)
          7
            teststats = (xbar-popmean)/ std_error
          9
             print(teststats)
         10
            # Remember that in Python, the Manual PValue Calc is One Sided. Thus, we nee
         11
            1 - stats.t.cdf(teststats, n-1)
         12
         13
         14 # Since P Value > 0.05, then we Fail to Reject the Claim.
```

```
In [ ]:
          1
             # First we go for sample std.dev if std.dev is not given:
             sd = np.std(sample, ddof=1)
          2
          3
             std error = sd/np.sqrt(n)
          4
          5
             # OR
             std_error = stats.sem(data)
          6
          8
            t stat = (xbar-Mean)/std error
          9
            t_crit = st.t.isf(alpha/2,n-1) # If two tail test.
         10
         11
             # If t_stat < t_crit, hence data comes in accept region.
         12
         13
             P_value = st.t.sf(t_stat,n-1)*2 # 2 tail test
         14
         15
             # OR
            1 - stats.t.cdf(teststats, n-1)
         16
         17
         18
            # If Pvalue > alpha, hence we accept null hypotheis.
         19
            # One line code, rather doing all mathematics:
         20
         21
             st.ttest 1samp(sample, Mean)
```

To check the normality of data, whether it is normal or not:

```
In []: 1 st.shapiro(data)
2
3 # If Pvalue>Alpha: Which means, data follows normal distribution. Hence we a
4 # Hence we approach non parametric test.
```

```
In [ ]:
            # Pvalue>Alpha
          1
          2
            # Now test for variance equality:
          3
          4
             st.levene(data1,data2)
          5
            # H0: Population1 variance = Population2 variance
          6
            # H1: Population1 variance != Population2 variance
          7
          8
          9
             # pvalue>0.05: accept null value.
             # That means variance are same.
         10
```

One Sample T Test - Sample and Pop Mean is Given

```
In [ ]:
          1 \mid xbar =
          2 std = np.std(x,ddof=1)
          3 se = stats.sem(mins)
            freedom = len(mins) - 1 # Degrees of Freedom: n-1
          5
          6
             alpha = 0.05
          7
            # Test Statistic and PValue
          8
            teststats, pvalue = st.ttest 1samp(sample, mean) # Sample Data, Pop Mean Par
          9
         10
         11
            # Conclusion
         12
            if(pvalue>alpha):
         13
         14
                 print("Fail to Reject the Ho")
         15
            else:
                 print("Reject the Ho meaning that the Mean Value is Different from the H
         16
```

Independent T-Test - Two Samples

If the data is not given:

ANOVA

One way Anova

Two way Anova

And

In case of rejecting null hypothesis we recommend to see all the changes happened into the probabilities, we do following.

And

Chi square:

OR

OR

If expected value is not given:

```
In [ ]: 1 st.chisquare(df.Column_name)
```

OR

Machine Learning:

Simple Linear Regreesion:

OR

```
In [ ]:
          1
             xbar = df.x.mean()
          2
             ybar = df.u.mean()
          3
          4
             num = np.sum((df.x-xbar)*(df.u-ybar))
          5
             deno = np.sum((df.x-xbar)**2)
             slope = num/deno
          7
             print("Slope: ", slope)
          9
            Intercept = ybar - slope * xbar
         10
         11
         12 print("Intercept: ", Intercept)
```

OR: A different way of making a model.

For R2 value:

```
In [ ]: 1 model.rsquared
```

Root mean square & Mean absolute error:

OR / Complete model.

```
In [ ]:
             import statsmodels.api as sm
            from statsmodels.api import OLS
            x = lungs.drop(['FEV','Smoke','Gender'], axis=1)
          5
            x = sm.add constant(x)
            y = lungs.FEV
          6
            mod = OLS(y,x).fit()
          7
            from sklearn.metrics import mean absolute error, mean squared error
          9
         10 RMSE = np.sqrt(mean_squared_error(y, mod.predict(x)))
            MAE = mean absolute error(y, mod.predict(x))
         11
         12
         13
            print(RMSE, MAE)
```

OR

```
In [ ]:
          1
            # To create constant (intercept into the data)
             x = energy2.drop(['Appliances','Press_mm_hg'], axis=1)
          2
          3
             y = energy2.Appliances
          5
            import statsmodels.api as sm
             x = sm.add\_constant(x)
          6
          7
            from sklearn.model selection import train test split
             x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.20, ran
          9
         10
         11 | model = sm.OLS(y train,x train).fit()
         12 model.summary()
```

The mean absolute percentage error (MAPE) is commonly used to measure the predictive accuracy of models.

One line code for Linear Regression:

```
In [ ]:
          1
             def Linear_regression(df,x,y):
          2
                 from sklearn.linear model import LinearRegression
          3
                 LR = LinearRegression()
          4
                 LR.fit(x,y)
          5
                 pred = LR.predict(x)
          6
          7
                 from sklearn.metrics import r2 score, mean squared error, mean absolute
          8
                 n = df.shape[0]
          9
                 k = df.shape[1]-1
                 factor = (n-1)/(n-k-1)
         10
         11
         12
                 RMSE= np.sqrt(mean_squared_error(y,pred))
         13
                 MAE=mean absolute error(y,pred)
                 R2=r2 score(y,pred)
         14
         15
                 Ajd_R2 = 1 - ((1-R2) * factor)
         16
                 df1 = pd.DataFrame({'Data':['RMSE','MAE','R2','Ajd_R2'], 'Values':[RMSE,
         17
         18
                 return(df1)
         19
         20
             Linear regression(df=premium,x=premium.drop('Premium',axis=1),y=premium.Prem
```

```
In [ ]:
          1
             def Linear regression(df,x,y):
          2
                 from sklearn.linear model import LinearRegression
          3
                 LR = LinearRegression()
          4
                 pred = LR.fit(x,y).predict(x)
          5
          6
                 from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_
          7
                 n = df.shape[0]
          8
                 k = df.shape[1]-1
          9
                 factor = (n-1)/(n-k-1)
         10
         11
                 RMSE= np.sqrt(mean squared error(y,pred)); MAE=mean absolute error(y,pre
         12
                 Ajd R2 = 1 - ((1-R2) * factor)
                 df1 = pd.DataFrame({'Data':['RMSE','MAE','R2','Ajd_R2'], 'Values':[RMSE,
         13
                                     index=['RMSE','MAE','R2','Ajd_R2'])
         14
         15
         16
                 def analysis():
         17
                     global R2
         18
                     if R2>=0.5:
         19
                          return 'The model is quite good for prediction.'
         20
         21
                          return 'Model is not much appropriate.'
         22
                 return(df1[['Values']], analysis())
         23
         24
         25
             Linear regression(df=premium,x=premium.drop('Premium',axis=1),y=premium.Prem
```

To check the accuracy of the model:

Analysis with Random Forest Regression:

BaggingRegressor method of Model building:

```
In [ ]: 1 from sklearn.ensemble import BaggingRegressor
2 Bagg = BaggingRegressor()
3
4 pred = Bagg.fit(X,y).predict(test_dummies) # test_dummies, is the pd.get_dim
5
6 Prediction = solution.copy() # Solution: DataFrame of test_data, for predict
7
8 Prediction['Item_Outlet_Sales'] = pred
9
10 Prediction.head()
```

Calculations for Fstat and pvalue

OR

Calculations for Confidence Interval

Assumptions

Residual plot:

Linearity:

Probabilty plot:

Normality:

```
In [ ]: 1 tstat, pvalue = st.jarque_bera(model.resid)
2 #pvalue>5% then Data is normal.
```

Multicollinearity:

```
In [ ]:
             from statsmodels.stats.outliers influence import variance inflation factor
             x = premium.drop('Premium', axis=1)
          3
          4
          5
             li = []
          7
             for i in range(x.shape[1]):
                 li.append(variance_inflation_factor(x.values, i))
          8
          9
         10
             pd.DataFrame({'columns':x.columns, 'VIF':li}).sort values(by='VIF')
         11
             # As VIF increases, probability of applying regression gets low.
         12
```

Autcorrelation:

Thumb Rule - Test Stats is between 1.5 to 2.5 then we consider it to be normal. Values beyond this range is a sign of Autocorrelation

Inf: Since it is between 1.5 - 2.5, we fail to reject the Ho.

Parameters: DW Test Stat = 2, No Correlation, 0-2: +ve ACorrelation, >2 to 4: -ve ACorrel.

Heteroskedasticity:

Interaction Effect:

Feature Selection:

```
In [ ]:
             from sklearn.ensemble import RandomForestRegressor
             rf = RandomForestRegressor() #Created a Machine
          2
          3
          4
             # Input and Output Variable
             X = premium.drop(["Mileage", "Premium"], axis = 1)
          5
             y = premium.Premium
          6
          8
             # Fit and Predict
          9
             pred = rf.fit(X,y).predict(X)
         10
         11
             # To Look the data:
         12
         13
             pd.DataFrame({"Features":rf.feature_importances_},
                          index = X.columns)
         14
         15
            # IN RF, We already have a parameter called feature importance
         16
             # Plot will show a good idea of best features.
         17
         18
             pd.DataFrame({"Features":rf.feature_importances_},
                          index = X.columns).sort_values(by = "Features").plot(kind = "ba
         19
In [ ]:
            # Calc the R2 score and RMSE
          2
             from sklearn.metrics import r2_score, mean_squared_error
          3
          4
             #print("LR R2Score: ", r2_score(y, finalmodel.predict(premium.drop("Mileage"
          5
             print("RF R2Score: ", r2_score(y, pred))
            #print("LR rmse: ", np.sqrt(mean squared error(y, finalmodel.predict(X))))
          7
             print("RF rmse: ", np.sqrt(mean_squared_error(y, pred)))
```

Recursive Feature Elimination:

```
In [ ]:
             from sklearn.ensemble import RandomForestRegressor
          2
             rf = RandomForestRegressor()
          3
             from sklearn.feature_selection import RFE
          4
          5
             rfe = RFE(estimator=RandomForestRegressor(),
                       n_features_to_select=2) # estimator-Model, n_features_to_select
          6
          7
          8
             newinput = rfe.fit transform(X,y) # return the dataset with the correct set
          9
         10
             # Finding the Column Names
         11
             colnos = rfe.get support(indices = True) # returns the indices or the column
         12
         13
             X.iloc[:, colnos].columns # this is the correct approach
```

OR

Sequencial Feature Selection:

```
In [ ]:
             #pip install mlxtend - Sequential Feature Selector
          2
            from mlxtend.feature selection import SequentialFeatureSelector as sfs
          3
            from sklearn.linear model import LinearRegression
            lr = LinearRegression()
          7
            fs = sfs(estimator=LinearRegression(), k_features="best", forward = True,
                      verbose = 2, scoring = "r2", cv = 14)
          8
          9
         10 | # fit the model and generate the feature names
         11 | X = premium.drop(["Mileage", "Premium"], axis = 1)
         12
            y = premium.Premium
         13
         14
            sfsmodel = fs.fit(X, y)
         15
         16 # Generate the feature names
             print("Features: ", sfsmodel.k_feature_names_)
         17
         18 print("R2 Score: ", sfsmodel.k_score_)
```

To get more precide model we do boosting:

```
In [ ]:
             from sklearn.ensemble import GradientBoostingRegressor
             gbm = GradientBoostingRegressor()
          2
          3
             from mlxtend.feature selection import SequentialFeatureSelector as sfs
          4
          5
          6
            from sklearn.linear_model import LinearRegression
          7
             lr = LinearRegression()
          8
          9
            fs = sfs(estimator=gbm, k_features="best", forward = True,
                      verbose = 2, scoring = "r2", cv = 14)
         10
         11
            # fit the model and generate the feature names
         12
         13 X = premium.drop(["Mileage", "Premium"], axis = 1)
            y = premium.Premium
         14
         15
         16
            sfsmodel = fs.fit(X, y)
         17
         18 # Generate the feature names
             print("Features: ", sfsmodel.k_feature_names_)
         19
         20 print("R2 Score: ", sfsmodel.k_score_)
```

Feature selector Estimator

Cross Validation:

K Fold:

```
In [ ]:
             from sklearn.model selection import KFold
          2
          3
             KF = KFold(n splits=n, shuffle=True)
          4
             x = energy2.drop(["Appliances", "lights"], axis = 1)
          5
          6
             y = energy2.Appliances
          7
          8
             for i in range(n):
          9
                 result = next(KF.split(x))
                 x_train = x.iloc[result[0]]
         10
                 x test = x.iloc[result[1]]
         11
                 y_train = y.iloc[result[0]]
         12
         13
                 y_test = y.iloc[result[1]]
         14
         15
            x_train.shape, x_test.shape, y_train.shape, y_test.shape
```

One line code for cross validation score:

OR

To extract numerical columns only

```
In [ ]: 1 df.select_dtypes(np.numeric)
```

Overfitting and Underfitting

```
In [ ]:
            from sklearn.model selection import train test split
            from sklearn.metrics import mean squared error
          3
            x = fish.drop(['Weight', 'Species'], axis = 1)
            y = fish['Weight']
          5
            xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size = 0.2, rando
          7
            from sklearn.linear model import LinearRegression
          9
            lrmodel = LinearRegression()
         10
             pred_train = lrmodel.fit(xtrain, ytrain).predict(xtrain)
         11
         12
            pred test = lrmodel.fit(xtrain, ytrain).predict(xtest)
         13
         14 print("RMSE for Train: ",np.sqrt(mean_squared_error(ytrain, pred_train)))
            print("RMSE for Test: ",np.sqrt(mean squared error(ytest, pred test)))
         15
```

Elastic regression:

```
In [ ]:
            from numpy import mean
          1
          2
            from numpy import std
          3 | from numpy import absolute
          4 from pandas import read csv
          5 | from sklearn.model selection import cross val score
            from sklearn.model selection import RepeatedKFold
          7
            from sklearn.linear_model import ElasticNet
          8
             model = ElasticNet(alpha=1.0, l1 ratio=0.001)
          9
         10 | # define model evaluation method
         11 cv = RepeatedKFold(n splits=10, n repeats=3, random state=1)
         12 # evaluate model
         13 | scores = cross_val_score(model, x, y, scoring='neg_mean_absolute_error', cv=
         14 # force scores to be positive
         15 | scores = absolute(scores)
         print('Mean MAE: %.3f (%.3f)' % (mean(scores), std(scores)))
```

GridSearch

OR

Lasso & Regression

```
In [ ]: 1     from sklearn.model_selection import GridSearchCV
2     from sklearn.linear_model import LassoCV, RidgeCV, ElasticNet
```

BaggingRegressor

Awesome...

END