Chapter 7,9,10

R tip

Don't use:

Use

```
model4 <- map(
alist(kcal.per.g ~ dnorm(mu, sigma),
mu <- alpha + bn * neocortex + bm * log(mass),
alpha ~ dnorm(0,10),
bn ~ dnorm(0,10),
bm ~ dnorm(0,10)),
data = d
)</pre>
```

Otherwise function like **link** get problem, it uses the formula to look for element in the data. Same for **lm** and **predict**, and basically any R function using a formula.

Lab 2, clarification

Galtons original model was:

$$y_i \sim N(\mu_i, \sigma)$$
, if person i is male $\frac{y_i}{1.08} \sim N(\mu_i, \sigma)$, if person i is female $\mu_i = \alpha + \beta \textit{midparent}_i$

Voting in Malmö, data

Voting in Malmö, data

Voting in Malmö, model

$$s_i \sim bin(n_i, p_i),$$

 $g(p_i) = \alpha + med_i\beta,$
 $\alpha \sim N(0, 10)$
 $\beta \sim N(0, 10)$

Posterior parameter

Posterior p_i

Posterior p_i

Two districts

What would be the effect of an increase of income with 10K sek.

Name	Median income
Bellevue	3.7
Örtagården V	15

Two districts

What would be the effect of an increase of income with 10K sek.

Name	Median income
Bellevue	3.7
Örtagården V	1.5

Increase, decrease income

are the results believable?

Tulips

Tulips model

Regular model

bloom_i
$$\sim N(\mu_i, \sigma)$$
,
 $\mu_i = \alpha + water_i \beta_w + shade_i \beta_s$,
 $\alpha \sim ...$

Tulips

Tulips model

Regular model

$$bloom_i \sim N(\mu_i, \sigma),$$

 $\mu_i = \alpha + water_i\beta_w + shade_i\beta_s + water_ishade_i\beta_{ws},$
 $\alpha \sim ...$

Tulips interacting

second example binomial example

Are Chimps altruistic?

Chimpanzees data

Data, 504 observations, containing:

- Prop left: yes (left = 1), no (left = 0).
- Other Chimpanzee present: yes(C = 1), no(C = 0).
- Chimpanzee pulled left: yes(prop = 1), no(prop = 0)

Chimpanzees data

Data, 504 observations, containing:

- Prop left: yes (left = 1), no (left = 0).
- Other Chimpanzee present: yes(C = 1), no(C = 0).
- Chimpanzee pulled left: yes(prop = 1), no(prop = 0)

Chimpanzees model

Build a model checking if presence of other Chimpanzee matters for pulling left.

Chimpanzees model

Build a model checking if presence of other Chimpanzee matters for pulling left.

$$left_i \sim Bin(126, p_i)$$
 $g^{-1}(p_i) \sim \alpha + prop_i(\beta_l + C_i\beta_C)$
 $\alpha \sim N(0, 10)$
 $\beta_l \sim N(0, 10)$
 $\beta_C \sim N(0, 10)$

Chimpanzees parameters

nature

LETTERS

Chimpanzees are indifferent to the welfare of unrelated group members

Joan B. Silk¹, Sarah F. Brosnan^{2,3}, Jennifer Vonk⁴, Joseph Henrich², Daniel J. Povinelli⁴, Amanda S. Richardson³, Susan P. Lambeth³, Jenny Mascaro³ & Steven J. Schapiro³

Humans are an unusually prosocial species—we vote, give blood, recycle, give tithes and punish violators of social norms. Experimental evidence indicates that people willingly incur costs to help strangers in anonymous one-shot interactions³⁻³, and that altruistic behaviour is motivated, at least in part, by empathy and concern for the welfare of others (hereafter referred to as other-regarding preferences)³⁻³. In contrast, cooperative behaviour in non-human primates is mainly limited to kin and reciprocating partners, and is virtually never extended to unfamiliar individuals³. Here we present experimental tests of the existence of other regarding preferences in non-human primates, and show

This experimental setup maximizes the likelihood of observing other-regarding behaviour in two ways. First, actors can provide benefits to others at no cost to themselves, so other-regarding sentiments do not compete with selfish motives to obtain rewards. Second, actors interact with familiar group members. Prosocial responses in this experiment might occur because chimpanzees favour those that they cooperate with outside the context of this experiment, even if they lack other-regarding sentiments. However, the absence of prosocial behaviour in this experimental situation would provide strong evidence for the lack of other-regarding sentiments.

Chimpanzees fit

Does the model fit the data?

Chimpanzee individual fit

Does the model fit the data?

Chimpanzees model 2

How do adjust our model for individual fit?

Chimpanzees model 2

How do adjust our model for individual fit?

$$left_i \sim Bin(18, p_i)$$

$$g^{-1}(p_i) \sim \alpha_{j(i)} + prop_i(\beta_l + C_i\beta_C)$$

$$\alpha_j \sim N(0, 10), j = 1, 2, \dots, 7$$

$$\beta_l \sim N(0, 10)$$

$$\beta_C \sim N(0, 10)$$

Chimpanzee individual fit 2

Does the model fit the data?

Chimpanzee parameters fit 2

Find the monkey

Which α_j belongs to which chimp, why the shape of the distribution?

Third example: admissions data

- A classical data studying the Berkeley admission data for gender bias.
- The university was sued for gender discrimination in the PhD application processes.

The pure data

	male	female
admitted	1198	557
rejected	1493	1278

Simple model

$$adm_i \sim Bin(n_i, p_i),$$
 $g(p_i) = \alpha + male_i\beta,$
 $\alpha \sim N(0, 10)$
 $\beta \sim N(0, 10)$

Does the model fit the data?

posterior difference between gender

Does the model fit the data?

Adjusting for department

$$adm_i \sim Bin(n_i, p_i),$$
 $g(p_i) = lpha_{i(j)} + male_i eta,$ $lpha_j \sim N(0, 10)$ $eta \sim N(0, 10)$

Does the model fit the data?

posterior difference between gender

What happened?

- Why is there such big difference between the two estimates?
- Why was there no little in the Chimpanzee data?
- Is the original wrong?

Who applies to what department

Sex Bias in Graduate Admissions: Data from Berkeley

Measuring bias is harder than is usually assumed, and the evidence is sometimes contrary to expectation.

P. J. Bickel, E. A. Hammel, J. W. O'Connell

Determining whether discrimination because of sex or ethnic identity is being practiced against persons seeking passage from one social status or locus to another is an important problem in our society today. It is legally impordeceision to admit or to deny admission. The question we wish to pursue is whether the decision to admit or to deny was influenced by the sex of the applicant. We cannot know with any certainty the influences on the evaluators in the

Figure: 1975, Science, 187 (4175), 398-404

• We will now use Rstan, to sample from the posterior distribution.

- We will now use Rstan, to sample from the posterior distribution.
- Named after Stanislaw Ulam, inventor of the Monte Carlo method (more next week).

- We will now use Rstan, to sample from the posterior distribution.
- Named after Stanislaw Ulam, inventor of the Monte Carlo method (more next week).
- Will be tricky to install (if you use Windows or MAC) READ the INSTRUCTIONS

- Why is hard to install? Requires a c++ compiler. This compiler needs to talk to R.
- •
- I will put up Rmarkdown code before Friday on the homepage.
- Good idea to work through Rstudio, and files ending with .stan.

Height again again again

$$h_i \sim N(\mu_i, \sigma),$$

 $\mu_i = \alpha + w_i \beta,$
 $\alpha \sim N(0, 100)$
 $\beta \sim N(0, 10)$
 $\sigma \sim U[0, 50]$

File model.stan contains:

Simple Binomial

$$left_i \sim Bin(18, p_i)$$

$$g^{-1}(p_i) \sim \alpha + prop_i(\beta_I + C_i\beta_C)$$

$$\alpha \sim N(0, 10)$$

$$\beta_I \sim N(0, 10)$$

$$\beta_C \sim N(0, 10)$$

File model.stan contains:

Simple Binomial

Setting up basic data

```
data("chimpanzees")

data.agg <- aggregate(x = list(pulled_left = chimpanzees$pulled_left),
by=list(actor = chimpanzees$actor,
prosoc_left = chimpanzees$prosoc_left,
condition = chimpanzees$condition),
FUN = sum)

data.agg<-as.list(data.agg)
data.agg$N <- length(data.agg$actor)
data.agg$N <- length(data.agg$prosoc_left *data.agg$condition</pre>
```

sampling posterior distribution using stan:

using stan

Summary

using stan

Plotting cred interval

plot(simple_fit)

using stan

Getting posterior samples

```
samples <-extract(simple_fit)
head(samples$beta_l)</pre>
```

- [1] 0.5500067 0.4557822 0.4985765
- [4] 0.1840083 0.8021953 0.5937610

advanced Binomial

$$left_i \sim Bin(18, p_i)$$
 $g^{-1}(p_i) \sim lpha_{j(i)} + prop_i(eta_l + C_ieta_C)$
 $lpha_j \sim N(0, 10), j = 1, ..., 7$
 $eta_l \sim N(0, 10)$
 $eta_C \sim N(0, 10)$

File model.stan contains:

```
data {
int < lower = 1 > N;
int < lower = 1> Nactor;
int < lower = 0> pulled left[N];
int < lower = 1 > actor[N]; // which chimp
vector[N] prosoc_left;
vector[N] C prop;
parameters{
vector [Nactor] alpha;
real beta prosoc left;
real beta condtion left;
model{
real alphas [N];
alpha ~ normal(0,10);
for(i in ?)
    alphas[i] = ?:
pulled left ~ binomial logit(18, alphas );
```