

Assignment Project Fram Helpment & https://powcoder.com Indexing

Add WeChat powcoder Xin, Abdu Alawini

University of Illinois at Urbana-Champaign

CS411: Database Systems

October 22, 2018

Announcements

- HW 3: Due by Friday 10/26 (23:59)
- Sign up for PT1 midterm demos: Due by Friday 10/26 (23:59) Assignment Project Exam Help

https://wiki.illinois.edu/wiki/display/cs411sfa18/Project+Track+1 +Midterm+Dellp\$\$/gpqwcoder.com

- Midterm review session: Friday 10/26 (4:00-4:50) SC 1404
 To suggest topics to discuss in the review session, please fill this
 - form: https://goo.gl/forms/5fDcm8ocDjmtMJoH3
- Please fill the early course feedback form:

https://goo.gl/forms/SC4BYcrDy8dai8PE2

Midterm: 10/29 in class 11-12:15 pm

Today's lecture

Assignment Project Exam Help

- •TM: theory of serializability
- Storage https://powcoder.com
- Indexing Add WeChat powcoder
 - What is an index? Why do we need it?
 - B+ Trees

Locking and Serializability

Assignment Project Exam Help

- We said that attansaction must held all locks until it terminates (a condition called strict locking)
- It turns out that this week labto gowander rializability
 - Note that the first (bad) example could have been produced if transactions acquired and immediately released locks.

Well-Formed, Two-Phased Transactions

- A transaction is well-formed if it acquires at least a shared lock on Q before reading Q or an exclusive lock on Q before an exclusive lock on Q before with artificial point well as the pock until the action is performed
 - Locks are altitles as a lock are altitles are altitles as a lock are altitles are altitles as a lock are altitles are altitles are altitles as a lock are altitles ar
- A transaction is two-phased if it never acquires a lock after unlocking one we Chat powcoder
 - i.e., there are two phases: a *growing phase* in which the transaction acquires locks, and a *shrinking phase* in which locks are released

Two-Phased Locking Theorem

- If all transactions are well-formed and two-phase, then any schale granted to be a serial content of the conten
 - i.e., there is https://powcoder.com
- However, if some transaction is not well-formed or twophase, then there is some schedule in which conflicting locks are never granted but which fails to be serializable
 - i.e., one bad apple spoils the bunch

Two Phase Locking Protocol (2PL)

2PL is a way of managing locks during a transaction T
Assignment Project Exam Help
T gets (S and X) locks gradually, as needed

- T cannot https://powcoder.come it releases any locks

Strict 2PL is a way of managing locks during a transaction T

Assignment Project Exam Help

T gets (S and X) locks gradually, as needed

- T holds alhttps://powefoder.com(commit/abort)

Strict 2PL guarantees serializability

- 2PL vs. strict 2PL
 - S2PL Assignment Project Exam Help
 - https://www.cs.colostate.edu/~cs43odl/yr2016sp/more examples/Ch14/Lock ing.pdf
- Can prove that a Strict 2PL schedule is equivalent to the serial schedule in which each transaction runs instantaneously at the time that it complets WeChat powcoder
- This is huge: A property of each transaction (2PL) implies a property of any set of transactions (serializability)
 - No need to check serializability of specific schedules
- Most DBMSs use 2PL to enforce serializability

Summary of TM

- Transactions significant Pringert For any ledge named despite concurrency or failures in the system.
- Theoretically, the poir epox codes. Gomnsactions is serializable (i.e. equivalent to some serial execution).
- Practically, this may adversely affect throughput ⇒ isolation levels.
- With isolation levels, users can specify the level of "incorrectness" they are willing to tolerate.

Outline

- Assignment Project Exam Help

 TM: theory of serializability
- https://powcoder.com • Storage
- Add WeChat powcoder Indexing
 - What is an index? Why do we need it?
 - B+ Trees

So far, we've been talking about databases in abstract terms

https://powcoder.com

How are they implemented?

How are relations stored?

How are queries run?

Simplified Computer Architecture

Cost of Accessing Data on Disk

IILLINOIS

102 ns

OK. So how do we do simple stuff? Assignment Project Exam Help

https://powcoder.com

Lookupy Insertions Deletions

18

Outline

- Assignment Project Exam Help

 TM: theory of serializability
- https://powcoder.com **✓** Storage
- Add WeChat powcoder Indexing
 - What is an index? Why do we need it?
 - B+ Trees

Indexes in databases

• An <u>index</u> speeds up selections on the <u>search key field(s)</u>

Assignment Project Exam Help

- Search key = any subset of the fields of a relation
 - Search key is not necessarily the same as a key

Add WeChat powcoder

- Entries in an index: (k, r), where:
 - k = the search key
 - •r = the record OR record id OR record ids OR pointers

22

Some terminology

- Data fite: spignmenta Projecto Fxing to Helplation
- Index file: hattps:inpowcoder.com
- File consists Afran We Units palled blecks (e.g. of size 4 KB or 8 KB)
- # index blocks < # data blocks.Index may even fit into main memory.

Characteristics of Indexes

- Clustered/unclustered
 - * Cluster Alsking mitteent Project Exam Help
 - Unclustered: keys unsorted
- Dense/sparsehttps://powcoder.com
 - Dense = each record has an entry in the index Add WeChat powcoder
 Sparse = only some records have
- Primary/secondary
 - Primary = on the primary key
 - Secondary = on any attribute

Ex: Clustered, Dense Index

- Clustered: File is sorted on the index attribute
- <u>Dense</u>: sequence of (key,pointer) pairs

Assignment Project Exam Help

Clustered, Sparse Index

• Sparse index: one key per data block, corresponding to the lowest search key in that block Assignment Project Exam Help

Add WeChat powcoder

Clustered Index with Duplicate Keys

Dense index: point to the first record with that key (must have a pointer for peach next key) Help

Clustered Index with Duplicate Keys

• Sparse index: pointer to lowest search key in each block

Clustered Index with Duplicate Keys

• Better: pointer to lowest new search key in each block

Unclustered Indexes

- Often for indexing other attributes than primary key
- Can it be sparse? Projecte Exam Help

Space

Assignment Project Exam Help https://powcoder.com

Add WeChat powcoder

Look up time

An Index is a Function!

Assignment Project Exam Help

f(whatpkey)wewheremfile block

Add WeChat powcoder

B+ Trees

- Intuition:

 - The index can be very large.
 Index of midex?

 The index can be very large.
 Exam Help
 - Index of index of jpdex coder.com
 - How best to create such a multi-level index?
- Add WeChat powcoder •B+ trees:
 - Textbook refers to B+ trees (a popular variant) as B-trees (as most people do)

Focus on the dense version: applies to clustered and unclustered settings

B+ Trees Basics

- •B+ Trees are trees with nodes with keys and pointers to:
 - Other nodes [if the node is an internal node]

 Assignment Project Exam Help

 Data Records [if the node is a leaf]

37

B+ Trees Basics

- Parameter signmant, Project, Faxamy Help
- When n is evently is our forth for implicity]
- each node has [d, 2d] keys (except root); n = 2d
 Add WeChat powcoder
 At least half full at all times
- - d is the minimum amount it needs to be full.

B+ Tree Example

Root can have 1 or more filled in keys Rest have at least d

140

85

90

d = 2

20

18

IILLINOIS

60

https://powcoder.com Add WeChat powcoder

60

65

50

30

B+ Tree Design

• How large should *d* be?

- Exampla: ssignment Project Exam Help
 - Key size = 4 bytes
 - Pointer sizhttps://spowcoder.com

Block size =
$$4096$$
 byes Add WeChat powcoder $2d \times 4 + (2d+1) \times 8 <= 4096$
• $d = 170$; $2d = 340$

So up to 340 records in leaf blocks

B+ Trees in Practice

- Typical d: 100. Typical fill-factor: 66.5%.
 - average "fanout" = 66.5 * 2 = 133
- Typical capacities: Project Exam Help
 - Height 4: 133⁴ = 312,900,700 records
 Height 3: 133³ = 2,352,637 records

Add WeChat powcoder

- Can often hold top levels in main memory:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 MBytes

