Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade Federal de Alfena

Matemática atuarial

Seguros Aula 4

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Introdução

- > A matemática atuarial é o ramo da Matemática intimamente ligada ao segmento de seguros...
 - > Avaliar riscos.
 - Avaliar sistemas de investimentos.

- > A matemática atuarial atua fornecendo meios para apuração de prêmios de seguros ligados à vida...
 - Produtos atuariais do ramo vida
 - > Seguros,
 - Planos de previdência,
 - Planos de benefício

Seguros

Seguro é todo contrato pelo qual uma das partes (segurador) se obriga a pagar um *benefício a outra (segurado) em caso de ocorrência de sinistro, em troca do recebimento de um prêmio seguro.

Características do contrato de seguros

- Aleatório: Depende de elementos futuros e incertos;
- Bilateral: Há obrigações para as duas partes;
- Oneroso: Segurado e segurador possuem ônus e vantagens econômicas;
- Solene: Há uma formalidade materializada na forma de apólice;

- > Seguros de vida são contratos de seguro estabelecidos com base no risco de morte .
 - Garante ao beneficiário um capital ou renda determinada no caso de morte.
 - ➤ Mediante coberturas adicionais, pode cobrir invalidez permanente.
 - Os benefícios podem ser pagos de uma só vez ou durante um determinado período estipulado na apólice.
 - Refletem uma característica única nos seres humanos.

- ▶ Para a apuração dos prêmios ligados à vida é necessário uma avaliação do risco de morte:
- Como o risco é uma probabilidade de ocorrência de eventos desfavoráveis, logo:
 - > É necessário identificar e caracterizar a variável aleatória trabalhada.
 - > Tempo de vida restante.
- ➤ Diferente do risco de danos, no risco de vida (sob certas circunstâncias) a seguradora lida com a certeza que terá que pagar algum dia o valor do benefício

Suponha que a seguradora deseja guardar hoje o valor presente do gasto que ela terá com o segurado no futuro. Qual deverá ser esse valor?

Lembrando da matemática financeira temos que

$$F_0 = F\left(\frac{1}{1+i}\right)^n$$

ou

$$F_0 = F v^n$$

Como é usual chamar de b o benefício pago ao segurado temos:

$$F_0 = bv^n$$

n nesse caso corresponde ao tempo de vida do segurado, e quanto é esse tempo?

- \triangleright Seja x o indivíduo de idade x que faz seguro de vida inteiro (vitalício).
- \triangleright Seja T, o tempo de vida futuro (ou adicional) de x.
 - ightharpoonup T é uma variável aleatório tal que $T \in (0, \infty)$

- \triangleright O tempo, n, em que a seguradora irá investir o prêmio corresponde a variável aleatória T (tempo adicional do indivíduo), que pode ser caraterizada por.
 - > Tábua de vida.
 - Função de distribuição.

EXEMPLO 1

Para que um beneficiário receba um valor financeiro de $\$100\ 000,\!00\,$ ao final do ano de morte do segurado, daqui T anos. Qual deve ser o valor presente (VP) ou F_0 ? Resp.

$$VP = 100000 \left(\frac{1}{1+i}\right)^{T+1} = 100000 v^{T+1}$$

EXEMPLO 1 (continuação)

Para o caso de i=5% ao ano, então

$$v = \frac{1}{1 + 0.05} = 0.9524$$

Assim pode-se por exemplo calcular qual o valor presente necessário a pagar o benefício de \$100 000,00 para os casos em que:

 \triangleright O indivíduo x (segurado) morra em 4 anos.

$$VP =$$

 \triangleright O indivíduo x (segurado) morra em 31 anos.

$$VP =$$

 \triangleright O indivíduo x (segurado) morra em 49 anos.

$$VP =$$

EXEMPLO 1 (continuação)

Para o caso de i=5% ao ano, então

$$v = \frac{1}{1 + 0.05} = 0.9524$$

Assim pode-se por exemplo calcular qual o valor presente necessário a pagar o benefício de $$100\,000,\!00$ para os casos em que:

 \triangleright O indivíduo x (segurado) morra em 4 anos.

$$VP = 100000v^{4+1} = 100000(0,9524)^5 \approx $78352,61$$

 \triangleright O indivíduo x (segurado) morra em 31 anos.

$$VP = 100000v^{31+1} = 100000(0,9524)^{32} \approx $20986,61$$

 \triangleright O indivíduo x (segurado) morra em 49 anos.

$$VP = 100000v^{49+1} = 100000(0,9524)^{50} \approx $8720,37$$

Em resumo temos que a uma taxa de 5% ao ano para um beneficiário poder ganhar b=\$100000,00 reais depois de 4, 31 e 49 anos, tempos que ter os seguintes valores presentes.

T(anos)	<i>VP</i> (\$)	
4	\$78352,61	
31	\$20986,61	
49	\$ 8720,37	

Imagine que T é uma variável aleatória e esses são os únicos valores que ele pode assumir. Então que é o valor presente esperado que o indivíduo x deveria pagar hoje por este seguro de modo que a seguradora receba o necessário para pagar o benefício de \$100 000,00?

- A resposta a essa questão está relacionada a esperança matemática (valor esperado ou média probabilística) de uma função de variável aleatória.
- ightharpoonup Para o caso em questão seja T uma variável aleatória e $V.P=g(T)=bv^{T+1}$ então tem-se que:

$$E[g(T)] = \int_{-\infty}^{\infty} g(t) f_T(t) dt,$$

$$E[g(T)] = \sum_{i} g(t_i) P(T = t_i),$$

Assim considerando que não existe despesas administrativas, imposto e lucro, o valor a ser cobrado deveria ser valor esperado de bv^{T+1} , logo:

$$E(VP) = E(bv^{T+1}) = bE(v^{T+1})$$

Assim considerando que não existe despesas administrativas, imposto e lucro, o valor a ser cobrado deveria ser o valor esperado para bv^{T+1} , logo:

$$E(VP) = E(bv^{T+1}) = bE(v^{T+1})$$

$$E(VP) = 100000(0,9524)^{5}P(T=4) + 100000(0,9524)^{32}P(T=31) + 100000(0,9524)^{50}P(T=49)$$

$$E(VP) = 100000[(0,9524)^5P(T=4) + (0,9524)^{32}P(T=31) + (0,9524)^{50}P(T=49)]$$

$$E(VP) = 100000 \mathbf{E}(\mathbf{v}^{T+1})$$

> Também chamado de valor presente atuarial VPA.

▶ Para calcular o valor necessário "hoje" para pagar o benefício futuro, foi necessário entender o comportamento da variável aleatória T (tempo de vida adicional do segurado).

 \triangleright Definição: Seja T a variável aleatória associada ao tempo de vida futuro, ou seja, o tempo entre a emissão da apólice do seguro e a morte do segurado, então:

$$b_T = b$$

→ Função benefício;

$$v_t = v^{t+1}$$

→ Função desconto;

$$Z_T = bv^{T+1}$$

→ Função valor presente.

Seguro de vida pago ao fim do ano de morte

0 1 2 3 4 5 6 7 8 9 10

Tempo (anos)
$$Z = b \frac{1}{(1+i)^{2+1}}$$

$$Z = b \frac{1}{(1+i)^{4+1}}$$

$$\boldsymbol{Z}_T = \boldsymbol{b} \boldsymbol{v}^{T+1}$$

- Chame de Prêmio Puro a parcela do prêmio, suficiente para pagar sinistros.
 - Neste sentido o Prêmio Puro é o prêmio que propõe o pagamento de despesas relacionadas ao risco que está sendo assumido pela seguradora.
 - ➤ O valor esperado do valor presente de todos os benefícios que a seguradora compromete a pagar.
 - Em geral é estabelecido em um dado período, normalmente um ano.
 - > O termo *puro* significa que ao valor considerado não foram adicionadas quaisquer cargas técnicas.
 - > De gestão ou comerciais

- No caso de Seguro de Vida Temporário:
 - Existe a incerteza sobre a ocorrência ou não do pagamento do benefício.
 - Existe incerteza sobre o momento do pagamento.
- > Como calcular do VPA desse Benefício?
 - Calcular a esperança matemática da variável aleatória "quanto devo ter hoje para pagar o benefício devido em relação a um segurado?"

EXEMPLO 2

Pense no caso de uma pessoa de 25 anos que deseja fazer um seguro onde caso este segurado faleça nos próximos 5 anos, o seu beneficiário receberá uma quantia de 1.u.m. Considere também uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte. Calcule o valor esperado da função valor presente.

Idade	q_X
25	0,00077
26	0,00081
27	0,00085
28	0,00090
29	0,00095
30	0,00100
31	0,00107
32	0,00114
33	0,00121
34	0,00130
35	0,00139

Resp.:

$$b_T = \begin{cases} 1, t = 0, 1, 2, ..., 4 \\ 0, \text{ caso contrário} \end{cases}$$
 Função benefício (caso o tempo de vida adicional seja menor que o tempo de contrato, caso morra antes);

 $v_T = v^{t+1}$, $t \ge 0$ \rightarrow Função desconto (caso o tempo de vida adicional seja maior que zero, caso o segurado não morra no primeiro período do contrato);

$$Z_T = \begin{cases} v^{T+1}, & T = 0,1,...,4 \\ 0, \text{caso contrário} \end{cases}$$
 Função valor presente (o valor presente necessário para que a seguradora cubra a apólice contratada).

Obs. É normal o uso de T_x para indicar que a variável T está vinculada a idade x

 $b_T = 1.u.m$, i = 4%.

Idade	$q_x =_1 q_x$	$p_x =_1 p_x = 1 - q_x$	$_{1}l_{x}=\frac{l_{x+1}}{p_{x}}$
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

$$Z_t = \{v^1, v^2, v^3, v^4, v^5, 0\}$$

 $E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4) + [0P(T_{25} = 5) + \cdots]$

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

▶ Importante $P(T_x = t)$ corresponde a probabilidade do tempo de vida adicional ser igual a t, no caso a probabilidade que indivíduo "morra" durante o intervalo t e t + 1 é determinado

$$P(t < T_x \le t + 1) = P(T_x > t) - P(T_x > t + 1)$$

$$P(t < T_x \le t + 1) = {}_t p_x - {}_{t+1} p_x$$

Lembrando da relação $_{m+l}p_x=_{m}p_x\times_{l}p_{x+m}$

$$P(t < T_x \le t + 1) = {}_t p_x - {}_t p_{x+1} p_{x+t}$$

$$P(t < T_x \le t + 1) = {}_t p_x (1 - p_{x+t})$$

$$P(T_x = t) = ({}_t p_x) (q_{x+t}) = {}_{t|} q_x$$

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1_{0}p_{25}q_{25} + v^2_{125}q_{26} + v^3_{21}p_{25}q_{27} + v^4_{3}p_{25}q_{28} + v^5_{4}p_{25}q_{29}$$

Unifal Universidade Federal de Alfenas Universidade Federal de Alfe

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} q_{27} + v^4 p_{25} q_{28} + v^5 p_{25} q_{29}$$

$$E(Z_T) = \left(\frac{1}{1,04}\right) q_{25} + \left(\frac{1}{1,04}\right)^2 p_{25} q_{26} + \left(\frac{1}{1,04}\right)^3 \left(\frac{l_{27}}{l_{25}}\right) q_{27} + \left(\frac{1}{1,04}\right)^4 \left(\frac{l_{28}}{l_{25}}\right) q_{28} + \left(\frac{1}{1,04}\right)^5 \left(\frac{l_{29}}{l_{25}}\right) q_{29}$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} q_{27} + v^4 p_{25} q_{28} + v^5 p_{25} q_{29}$$

$$E(Z_T) = \left(\frac{1}{1,04}\right) q_{25} + \left(\frac{1}{1,04}\right)^2 p_{25} q_{26} + \left(\frac{1}{1,04}\right)^3 \left(\frac{l_{27}}{l_{25}}\right) q_{27} + \left(\frac{1}{1,04}\right)^4 \left(\frac{l_{28}}{l_{25}}\right) q_{28} + \left(\frac{1}{1,04}\right)^5 \left(\frac{l_{29}}{l_{25}}\right) q_{29}$$

$$E(Z_T) = \left(\frac{1}{1,04}\right)0,00077 + \left(\frac{1}{1,04}\right)^20,999230,00081 + \left(\frac{1}{1,04}\right)^30,998420,00085 + \left(\frac{1}{1,04}\right)^40,997570,00090 + \left(\frac{1}{1,04}\right)^50,996670,00095$$

$$E(Z_{T_{25}}) \approx 0.003788 \, u.m.$$

Outra opção seria:

$$b_T = \begin{cases} 1, & t = 0,1,2,3,4 \\ 0, & \text{caso contrário} \end{cases}$$

$$v_T = v^{t+1}$$
, $t \ge 0$ $Z_T = \begin{cases} v^{T+1}, T = 0,1,2,3,4 \\ 0$, caso contrário

$$VPA = E(Z_T)$$

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} q_{27} + v^4 p_{25} q_{28} + v^5 p_{25} q_{29}$$

Como $_{m+l}p_x={}_{m}p_x\times{}_{l}p_{x+m}$, então:

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} p_{26} q_{27} + v^4 p_{25} p_{26} p_{27} q_{28} + v^5 p_{25} p_{26} p_{27} p_{28} q_{29}$$

$$E(Z_T) \approx 0.003788 \ u.m.$$

$$t = 0$$
 $t = 1$ $t = 2$ $t = 3$ $t = 4$

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

x	T. vida adicional	Z(t)	$S_T(t) = {}_t p_x$	$F_T(t) = {}_1 q_x$
25	t = 0	v	T(25) > 0	$T(25) \le 1$
26	t = 1	v^2	T(25) > 1	$T(25) \le 2$
27	t = 2	v^3	T(25) > 2	$T(25) \le 3$
28	t=3	v^4	T(25) > 3	$T(25) \le 41$
29	t = 4	v^5	T(25) > 4	$T(25) \le 5$

$$E(Z_T) = \sum_{t=0}^{4} v^{t+1} {}_{t} p_{25} q_{25+t} \approx 0,003788 \, u.m.$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade Federal d

Matemática atuarial

Seguros Aula 6

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

- \blacktriangleright O valor encontrado para $E(Z_T)$, corresponde ao chamado prêmio puro único, ou seja, o valor que ao ser cobrado é suficiente para se pagar as despesas relacionadas aos riscos assumidos pela seguradora a medida que o tempo vai passando (pago em uma única parcela).
 - > Benefício igual a 1.
- > A notação usada para o seguro de vida temporário é

$$A_{\chi^1:\overline{n|}} = E(Z_T)$$

Assim para o exemplo 2 tem-se que

$$A_{25^1:\overline{5}|} \approx 0.003788 \, u.m$$

 \succ O Seguro de **Vida Temporário por** n **anos** é o seguro que pagará uma unidade monetária (u.m.) somente se o segurado **morre antes de completar** n **anos após o contrato.**

Notação:

$$A_{x^1:\overline{n|}}$$

Lê-se: Seguro de vida de uma pessoa de idade x com cobertura de n anos, com benefício unitário pago ao final do ano de morte do segurado. Tempo discreto.

$$\bar{A}_{\chi^1:\overline{n|}}$$

Lê-se: Seguro de vida de uma pessoa de idade x com cobertura de n anos, com benefício unitário pago no momento da morte do segurado. Tempo contínuo.

"n".

Exemplo 1:

Uma pessoa de 25 anos deseja fazer um seguro de **vida inteiro** que paga 1 u.m. ao fim do ano de morte. O tempo de sobrevida desse segurado pode ser modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 5% ao ano. Qual deverá ser o Prêmio Puro Único pago por esse segurado?

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ui

Exemplo 1:

$$A_x = \sum_{t=0}^{\omega - x} v^{t+1} {}_t p_x q_{x+t}$$

$$A_{25} = \sum_{t=0}^{90} \left(\frac{1}{1,05}\right)^{t+1} t p_{25} q_{25+t}$$

$$A_{25} = \left(\frac{1}{1,05}\right)^1 q_{25} + \left(\frac{1}{1,05}\right)^2 p_{25} q_{26} + \left(\frac{1}{1,05}\right)^3 p_{25} q_{27} + \dots + \left(\frac{1}{1,05}\right)^{91} p_{0} p_{25} q_{115} \approx 0.11242$$

Unifal[®] Unifal

Exemplo 1:

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

$$A_{25} = \left(\frac{1}{1,05}\right)^{1} q_{25} + \left(\frac{1}{1,05}\right)^{2} p_{25}q_{26} + \left(\frac{1}{1,05}\right)^{3} p_{25}q_{27} + \dots + \left(\frac{1}{1,05}\right)^{91} p_{0}p_{25}q_{115} \approx 0.11242$$

$$A_{25} = \left(\frac{1}{1,05}\right)^{1} \mathbf{1}q_{25} + \left(\frac{1}{1,05}\right)^{2} p_{25}q_{26} + \dots + \left(\frac{1}{1,05}\right)^{91} (p_{25}p_{26}p_{27} \dots p_{114})q_{115} \approx 0,11242$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ui

Exemplo 2

A seguradora irá pagar um benefício de 1 u.m. por um seguro temporário

		A :	seguia	dora na pagar um benenció de 1 d.m. por um seguro temporano	
cas	0	o seg	urado	de 105 anos faleça dentre um período de 4 anos. Considere uma	
tax	a d	e juro	s de 4º	% ao ano e tábua At-2000 Masculina . Calcule o prêmio puro:	
	x	q_x	p_x	$A_{105^{1}:\overline{4} } = v^{1}_{0}p_{105}q_{105} + v^{2}p_{105}q_{106} + v^{3}_{2}p_{105}q_{107} + v^{4}_{3}p_{105}q_{108}$	
106	105	0.37240	0.62760		
107	106	0.40821	0.59179	$A_{105^1:\overline{4} } = \sum v^{t+1} t p_{105} q_{105+t}$	
108	107	0.44882	0.55118	t = 0 $t = 0$	
109	108	0.49468	0.50532		
110	109	0.54623	0.45377		
111	110	0.60392	0.39608	$v = \{v^1, v^2, v^3, v^4\}$	
112	111	0.66819	0.33181		
113	112	0.73948	0.26052	$pxx = \{ p_{105}, p_{105}, p_{105}, p_{105}, p_{105} \}$	
114	113	0.81825	0.18175	CUP1U3'P1U3' 2P1U3' 3P1U3'	
445	444	0.00405	0.00505		

115 114 0.90495 0.09505 $qxx = \{q_{105}, q_{106}, q_{107}, q_{108}\}$ **116** 115 1.00000 0.00000

$$A_{105^{1}:\overline{4}|} = \sum_{t=0}^{3} v^{t+1} t p_{105} q_{105+t}$$

Função que recebe como entrada, a taxa de rentabilidade(i) anual, a idade do segurado (idade), o numero de anos de cobertura (n) e o valor do benefício (b).

				cobertura (n) e o valor do benefício (b).
	х	q_x	p_x	
106	105	0.37240	0.62760	premio<- function(i, idade, n,b) {
107	106	0.40821	0.59179	v <- (1/(i+1))^(1:n)
108	107	0.44882	0.55118	<pre>pxx <- c(1, cumprod(px[(idade+1):(idade+n-1)])</pre>
109	108	0.49468	0.50532	# 1, p_{105} , $_2p_{105}$, $_3p_{105}$
110	109	0 54623	0.45377	qxx <- qx[(idade+1):(idade+n)]
			0.39608	# q_{105} , q_{106} , q_{107} , q_{108} Ax <- b* sum(v*pxx*qxx)
112	111	0.66819	0.33181	return (Ax)
113	112	0.73948	0.26052	}
114	113	0.81825	0.18175	$A_{105^{1}:\overline{4 }}$ = premio(0.04,105,4,1)

114 0.90495 0.09505

115 1.00000 0.00000

SEGURO DE VIDA TEMPORÁRIO

SEGURO DE INTEIRO OU VITALÍCIO

> Caso discreto

$$A_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = \sum_{t=0}^{\omega - x} v^{t+1} \,_{t} p_{x} q_{x+t}$$

$$A_{x^1:\overline{n|}}$$
= premio(i,x,n,b)

$$A_x$$
= premio(i,x, $max(x)$ -x,b)

Unifais Unifais Unifais Unifais Unifais Universidade Federal de Alfenas Universidade

Observação

 \triangleright A expectativa de vida de uma pessoa de idade x, mede quantos anos em média uma pessoa sobrevive a partir dessa idade.

$$e_{x} = \sum_{t=0}^{\omega - x} t_{t} p_{x} q_{x+t} = \sum_{t=1}^{\omega - x} t_{t} p_{x}$$

 \succ A expectativa de vida completa de uma pessoa de idade x, admitindo que a distribuição das mortes ao longo do ano é uniforme, é dada por:

$$e_x^0 = e_x + \frac{1}{2}$$

Probabilidades AT-49 M

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. Actuarial Mathematics, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

Unifala Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade F

Matemática atuarial

Seguros Aula 6

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Seja T ou T_0 a variável aleatória tempo de vida adicional do indivíduo recém nascido (de idade 0). Então a função de sobrevivência, $S_{T_0}(t)$, é a probabilidade de viver além da idade futura t.

$$S_{T_0}(t) = 1 - F_{T_0}(t) = p(T_0 > t)$$
 ou $S_T(t) = 1 - F_T(t) = p(T > t)$

Seja T_x a variável aleatória tempo de vida adicional do indivíduo de idade x. Então a função de sobrevivência, $S_{T_x}(t)$, é a probabilidade de viver além da idade futura t.

$$S_{T_x}(t) = 1 - F_{T_x}(t) = p(T_x > t)$$

Para $T_x > t$, implica aceitar que $T_0 > x + t$ dado que $T_0 > x$. Logo, a probabilidade de uma pessoa de idade x atingir (viva) a idade x + t, tem-se:

$$p_x = S_{T_x}(t) = p(T_x > t) = P(T_0 > x + t | T_0 > x)$$

 \succ A probabilidade de uma pessoa de idade x atingir (viva) a idade x + t, temse:

$$_{t}p_{x} = S_{T_{x}}(t) = p(T_{x} > t) = P(T_{0} > t + x | T_{0} > x)$$

$$_{t}p_{x} = \frac{S(x+t)}{S(x)} = \frac{P(T>t+x)}{P(T>x)}$$

A probabilidade de uma pessoa de idade x morrer antes de atingir a idade x + t, é dado por:

$$t q_x = 1 - \frac{S(x+t)}{S(x)} = F_{T_x}(t)$$

Logo:

$$_{t}q_{x}+_{t}p_{x}=1$$

Exemplo 1

Suponha que o tempo de vida adicional da pessoa ao nascer, possa ser modelada por meio da função de densidade:

$$f_{T_0}(t) = \frac{1}{140} I_{[0,140]}(t)$$

• Calcule $_tp_x$ e $_tq_x$.

Unifais Unifais Unifais Unifais Unifais Unifais Universidade Federal de Alfenas Universidade F

Exemplo 1

$$S_{T_x}(t) = P(T_x > t) = {}_t p_x$$

Nota-se que para $T_x>t$, implica aceitar que $T_0>x+t$ dado que $T_0>x$. Assim

$$S_{T_x}(t) = P(T_x > t) = P(T_0 > x + t | T_0 > x)$$

$$S_{T_x}(t) = \frac{P(T_0 > x + t, T_0 > x)}{P(T_0 > x)} = \frac{P(T > x + t, T > x)}{P(T > x)}$$

$$S_{T_x}(t) = \frac{P(T > x + t)}{P(T > x)} = \frac{\int_{x+t}^{140} \frac{1}{140} dt}{\int_{x}^{140} \frac{1}{140} dt} = \frac{\frac{140 - (x + t)}{140}}{\frac{140 - (x)}{140}} = \frac{140 - x - t}{140 - x}$$

$$_{t}p_{x} = \frac{140-x-t}{140-x}$$
 $_{t}q_{x} = 1 - \frac{140-x-t}{140-x} = \frac{t}{140-x}$

A força de mortalidade -transição instantânea de transição do estado vivo para o morto, e define-se pelo limite:

$$\mu(x) = \lim_{h \to 0} \frac{{}_{h}q_{x}}{h}$$

$$\mu(x) = \lim_{h \to 0} \left[\frac{P(T_{\chi} \le h)}{h} \right] = \lim_{h \to 0} \left[\frac{1 - P(T_{\chi} > h)}{h} \right]$$
$$\mu(x) = \lim_{h \to 0} \left[\frac{1 - \frac{P(T_0 > x + h)}{P(T_0 > x)}}{h} \right] = \lim_{h \to 0} \left[\frac{1 - \frac{S_{T_0}(x + h)}{S_0(x)}}{h} \right]$$

$$\mu(x) = \lim_{h \to 0} \left[\frac{S_{T_0}(x) - S_{T_0}(x+h)}{h \, S_{T_0}(x)} \right]$$

$$\mu(x) = \lim_{h \to 0} \left[\frac{1 - \frac{P(T_0 > x + h)}{P(T_0 > x)}}{h} \right] = \lim_{h \to 0} \left[\frac{1 - \frac{S_{T_0}(x + h)}{S_{T_0}(x)}}{h} \right] = \lim_{h \to 0} \left[\frac{S_{T_0}(x) - S_{T_0}(x + h)}{h} \right]$$

$$\mu(x) = -\frac{1}{S_{T_0}(x)} \lim_{h \to 0} \left[\frac{S_{T_0}(x+h) - S_{T_0}(x)}{h} \right]$$

$$\mu(x) = -\frac{S'_{T_0}(x)}{S_{T_0}(x)}$$

> A força de mortalidade - transição instantânea do estado vivo para o morto, e define-se pelo limite:

$$\mu(x) = -\frac{S'_{T_0}(x)}{S_{T_0}(x)}$$

$$\mu(x+t) = -\frac{S'_{T_0}(x+t)}{S_{T_0}(x+t)}$$

 $\triangleright \mu(x)$ é uma medida relativa da mortalidade em que a idade x é atingida, enquanto q_x mede a mortalidade ao logo do ano.

> Importante notar que:

$$f_{T_x}(t) = \frac{d}{dt}({}_t q_x)$$

$$f_{T_x}(t) = \frac{d}{dt}(1 - t p_x) = \frac{d}{dt}\left(1 - \frac{S_{T_0}(x+t)}{S_{T_0}(x)}\right)$$

$$f_{T_x}(t) = \frac{d}{dt} \left(1 - \frac{S_{T_0}(x+t)}{S_{T_0}(x)} \right) = -\frac{S'_{T_0}(x+t)}{S_{T_0}(x)}$$

$$f_{T_x}(t) = -\frac{S'_{T_0}(x+t)}{S_{T_0}(x)} \times \frac{S_{T_0}(x+t)}{S_{T_0}(x+t)} = \left[-\frac{S'_{T_0}(x+t)}{S_{T_0}(x+t)} \right] \frac{S_{T_0}(x+t)}{S_{T_0}(x)}$$

$$f_{T_x}(t) = \mu(x+t)(t_p_x)$$

Suponha que o tempo de vida adicional da pessoa ao nascer, possa ser modelada por meio da função de densidade:

$$f_{T_0}(t) = \frac{1}{140} I_{[0,140]}(t)$$

Calcule $\mu(x + t)$. Lembrando do exercício anterior que :

$$_{t}p_{x} = \frac{140 - x - t}{140 - x}$$

logo

$$_{t}q_{x} = \frac{t}{140 - x}$$

$$\mu(x+t) = \frac{f_{T_x}(t)}{S_{T_x}(t)}$$

Como $S_{T_x}(t) = {}_t p_x$, então :

$$_{t}q_{x}=\frac{1}{140-x}=F_{T_{x}}(t)$$

Considerando que $\frac{dF_{T_x}(t)}{dt} = f_{T_x}(t)$, assim:

$$\frac{dF_{T_x}(t)}{dt} = \frac{d}{dt} \left(\frac{t}{140 - x} \right) = \frac{1}{140 - x} = f_{T_x}(t)$$

Logo

$$\mu(x+t) = \frac{\frac{1}{140-x}}{\frac{140-x-t}{140-x}} = \frac{1}{140-x-t}$$

$$Z=be^{-\delta(4,7...)}$$
 $Z_T=be^{-\delta T}$ Benefício(constante) igual a b

Tempo (anos)

Assim considerando que não existe despesas administrativas, imposto e lucro, o valor a ser cobrado deveria ser valor esperado de $b_t e^{-\delta T}$, logo:

$$E(VP) = E(be^{-\delta T}) = bE(e^{-\delta T})$$

Lembrando que $\delta = ln(1+i)$.

ightharpoonup Também chamado de valor presente atuarial $VPA
ightharpoonup E(Z_T)$

SEGURO DE VIDA TEMPORÁRIO

SEGURO DE INTEIRO OU **VITALÍCIO**

T_{x} Continuo

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n Z(t) f_{T_x}(t) dt \qquad \bar{A}_x = \int_0^\infty Z(t) f_{T_x}(t) dt$$

$$\bar{A}_{x} = \int_{0}^{\infty} Z(t) f_{T_{x}}(t) dt$$

$\bar{A}_{x^1:\overline{n|}} = \int_0^n e^{-\delta t} {}_t p_x \mu(x+t) dt$

$$\bar{A}_x = \int_0^\infty e^{-\delta t} \,_t p_x \mu(x+t) dt$$

Considere a função de sobrevivência e força de mortalidade de x=30 em dada população seja de:

$$_{t}p_{30} = \frac{70-t}{70}$$
 e $\mu(30+t) = \frac{1}{70-t}$ para $t > 0$

Esse indivíduo decide fazer um seguro de vida temporário no período de 20 anos. Admita que a taxa de rentabilidade constante, e suponha que i=5% ao ano.

Calcule o VPA (ou prêmio puro) que paga $1\,u.m.$ de benefício pago no momento da morte do segurado.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

$$\bar{A}_{30^1:\overline{20|}}$$

$$i = 5\% \ a.a.$$

$$\bar{A}_{30^1:\overline{20|}}$$
 $i = 5\%$ a.a. $v = e^{-\ln(1,05)}$

$$b = 1 , 0 \le t \le 20$$

$$v_t = e^{-\delta t}$$
, $0 \le t \le 20$

$$b=1 \ , 0 \le t \le 20$$
 $v_t=e^{-\delta t} \ , 0 \le t \le 20$ $Z_T= \begin{cases} e^{-\delta T}, 0 \le T \le 20 \\ 0, c.c. \end{cases}$

$$ar{A}_{30^1:\overline{20|}}$$
 , $v=e^{-\ln(1,05)}$
$$VPA=E(Z_T)=ar{A}_{30^1:\overline{20|}}$$

$$b=1$$
 , $0 \leq t \leq 20$ $v_t=e^{-\delta t}$, $0 \leq t \leq 20$ $Z_T=e^{-\delta T}$, $0 \leq T \leq 20$

$$\bar{A}_{30^{1}:\overline{20|}} = \int_{0}^{20} e^{-\delta t} f_{T_{30}}(t) dt = \int_{0}^{20} e^{-\delta t} t p_{30} \mu(30+t) dt = \int_{0}^{20} e^{-0.04879t} \frac{1}{70} dt$$

$$\bar{A}_{30^{1}:\overline{20|}} = \frac{e^{-0.04879t}}{70(-0.04879)} \bigg|_{t=0}^{t=20} = \frac{1}{-3.4153} \left[e^{20(-0.04879)} - e^{0(-0.04879)} \right]$$

$$\bar{A}_{30^{1}:\overline{20|}} = \frac{1}{-3,4153} (e^{-0.9758} - 1) \approx 0.182446$$

Veja que, é suficiente para o segurado pagar $0,182446\ u.m.$ hoje de forma a receber (o beneficiário) $1,00\ u.m.$ na ocorrência de sinistro.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] U

O exemplo considerou que o benefício seria de 1u.m., e caso o segurado contratasse um seguro que paga \$250000,00 reais no momento de morte? Quanto deveria ser o Prêmio Puro Único pago por ele???

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

$$ar{A}_{30^1:\overline{20|}}$$
 , $T_{30} \sim U_c(0.70)$ e $i=5\%$ a.a. $v=e^{-\ln(1.05)t}$ $b=2500000$.

$$\bar{A}_{30^1:\overline{20|}} \approx 0,182446$$

$$250000 \, \bar{A}_{30^1:\overline{20|}} \approx 45611,53$$

Caso o valor do benefício seja \$ 250000,00, o prêmio a ser pago pelo segurado deverá ser (arredondando no centavo) de \$45611,53 (considerando a mesma taxa de juros).

Unifal^o Unifal^o Unifal^o Unifal^o Un

Para proteger seu filho de 5 anos, uma pessoa de 30 anos decide fazer um contrato de seguro de vida temporário com benefício variável no tempo (Considere distribuição $T_{30} \sim U_c(0,70)$).

Considere i = 5 ao ano.

- I) Se morrer dentro de 10 anos o benefício será de \$10000,00.
- II) Se morrer entre 10 e 20 anos, o benefício será: 150000 5000t.

niversidade Federal de Alfenas Universidade Federal de Alfenas

Unifal[®] Unifal

Veja que, para esse caso, o benefício é diferente dependendo do momento de morte do segurado, então:

$$Z_T = b_T e^{-\delta T} = \begin{cases} 100000 \ e^{-\ln(1,05)T}, & T \le 10 \\ (150000 - 5000T) e^{-\ln(1,05)T}, & 10 < T \le 20 \end{cases}$$

Portanto:

$$VPA = \int_0^{10} \frac{100000e^{-\ln(1,05)t}}{70} dt + \int_{10}^{20} \frac{(150000 - 5000t)e^{-\ln(1,05)t}}{70} dt$$

$$VPA = VPA_1 + VPA_2$$

$$VPA_1 = \int_0^{10} \frac{100000e^{-\ln(1,05)t}}{70} dt$$

$$VPA_1 = \frac{10000e^{-0.04879t}}{7(-0.04879)} \Big|_{t=0}^{t=10} = \frac{10000e^{-0.4879} - 10000}{-0.34153}$$

$VDA \sim 1120450$

$$VPA_1 \approx 11304,59$$

$$VPA_2 = \int_{10}^{20} \frac{(150000 - 5000t)e^{-\ln(1,05)t}}{70} dt$$

Por partes:

$$\int u dr = ur - \int r du$$

então

$$u = 150000 - 5000t;$$

$$du = -5000dt$$

$$dr = \frac{e^{-\ln(1,05)t}}{70} dt$$

$$r = \frac{e^{-0.04879t}}{70(-0.04879)}$$

$$VPA_2 = (150000 - 5000t) \frac{e^{-0.04879t}}{70(-0.04879)} \bigg|_{t=10}^{t=20} - \int_{10}^{20} -\frac{e^{-0.04879t}}{70(-0.04879)} 5000 dt$$

$$VPA_2 = \int_{10}^{20} \frac{(150000 - 5000t)e^{-\ln(1,05)t}}{70} dt$$

...

$$VPA_2 = (150000 - 5000t) \frac{e^{-0.04879t}}{70(-0.04879)} \bigg|_{t=10}^{t=20} + \int_{10}^{20} \frac{e^{-0.04879t}}{70(-0.04879)} 5000dt$$

$$VPA_2 = (150000 - 5000t) \frac{e^{-0.04879t}}{70(-0.04879)} \bigg|_{t=10}^{t=20} + \frac{e^{-0.04879t}}{7(-0.04879)^2} 500 \bigg|_{t=10}^{t=20}$$

taiž Unitaiž Unitaiž Unitai

$$VPA_2 = \frac{5000e^{-0.04879(20)} - 10000e^{-0.04879(10)}}{7(-0.04879)} + \frac{500\left(e^{-0.04879(20)} - e^{-0.04879(10)}\right)}{7(-0.04879)^2}$$

$$VPA_2 \approx 12457,73 - 7112,165 \approx 5345,565$$

Exemplo 4

Veja que, para esse caso, o benefício é diferente dependendo do momento de morte do segurado, então:

$$VPA = \int_0^{10} \frac{100000e^{-\ln(1,05)t}}{70} dt + \int_{10}^{20} \frac{(150000 - 5000t)e^{-\ln(1,05)t}}{70} dt$$

$$VPA = VPA_1 + VPA_2$$

$$VPA = 11304,59 + 5345,565 \approx $16650,15$$

SEGURO DE VIDA TEMPORÁRIO

$ightharpoonup T_{\chi}$ Contínuo

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n Z_t f_{T_x}(t) dt$$

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n e^{-\delta t} {}_t p_x \mu(x+t) dt$$

 $\succ T_x$ discreto

$$A_{x^1:\overline{n|}} = \sum_{t=0}^{n-1} Z_t P(T_x = t)$$

$$A_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} q_{x+t}$$

SEGURO DE INTEIRO OU VITALÍCIO

 $\succ T_x$ Contínuo

$$\bar{A}_{x} = \int_{0}^{\infty} Z_{t} f_{T_{x}}(t) dt$$

$$\bar{A}_{x} = \int_{0}^{\infty} e^{-\delta t} {}_{t} p_{x} \mu(x+t) dt$$

 $\succ T_x$ discreto

$$A_{x} = \sum_{t=0}^{\omega - x} Z_{t} P(T_{x} = t)$$

$$A_{x} = \sum_{t=0}^{\omega - x} v^{t+1} \,_{t} p_{x} q_{x+t}$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

Unifala Unifa Unifala Unifala Unifala Unifala Unifala Unifala Unifala Unifala

Matemática atuarial

Seguros Aula 7

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Cálculo da variância: Seguro de vida temporário

- Uma característica importante de uma variável aleatória é sua variabilidade:
 - Em geral, é avaliada pela discrepância de seus valores em relação à média ou à mediana.
 - ➤ A média dos desvios é sempre zero e, portanto, nada informativa.
- ➤ Tomando o quadrado dos desvios e, então, calculando o valor esperado, chegamos a uma das mais importantes medidas de variabilidade.

Cálculo da variância: Seguro de vida temporário

ightharpoonup A definição matemática da variância de uma variável aleatória Z_T é tal que:

$$var(Z_T) = E\{[Z_T - E(Z_T)]^2\}$$

- ightharpoonup A raiz quadrada da variância é denominada de desvio-padrão e representado por $\sigma_{Z_{\mathrm{T}}}$.
- Pode se calcular a variância também por:

$$var(Z_T) = E(Z_T^2) - E(Z_T)^2$$

Cálculo da variância: Seguro de vida temporário

ightharpoonup Considerando $Z_T = bv^{T+1}$, uma função de variável aleatória e por consequência também uma variável aleatória, tem-se:

$$var(Z_T) = var(bv^{T+1}) = b^2 var(v^{T+1})$$

Cálculo da variância: Seguro de vida temporário

ightharpoonup Caso de T discreto: $var(Z_T) = {}^2A_{\chi^1:\overline{n|}} - \left(A_{\chi^1:\overline{n|}}\right)^2$

$$var(Z_T) = E(v^{2T+2}) - E(v^{T+1})^2 = \sum_{t=0}^{n-1} w^{t+1} {}_t p_x q_{x+t} - \left[\sum_{t=0}^{n-1} v^{t+1} {}_t p_x q_{x+t}\right]^2$$

 $v^2 = w \rightarrow$ Fator de desconto

ightharpoonup Caso de T contínuo: $var(Z_T) = \overline{{}^2A_{\chi^1:\overline{n}|}} - \left(\overline{A_{\chi^1:\overline{n}|}}\right)^2$

$$var(Z_T) = E(e^{-2\delta T}) - E(e^{-\delta T})^2 = \int_0^n e^{-2\delta t} f_{T_X}(t) dt - \left[\int_0^n e^{-\delta t} f_{T_X}(t) dt\right]^2$$

Cálculo da variância: Seguro de vida inteiro

ightharpoonup Caso de T discreto: $var(Z_T) = {}^2A_{\chi} - (A_{\chi})^2$

$$var(Z_T) = E(v^{2T+2}) - E(v^{T+1})^2 = \sum_{t=0}^{\omega-x} w^{t+1} {}_t p_x q_{x+t} - \left[\sum_{t=0}^{\omega-x} v^{t+1} {}_t p_x q_{x+t}\right]^2$$

 $v^2 = w \rightarrow$ Fator de desconto

ightharpoonup Caso de T contínuo: $var(Z_T) = \overline{^2A}_x - (\bar{A}_x)^2$

$$var(Z_T) = E(e^{-2\delta T}) - E(e^{-\delta T})^2 = \int_0^\infty e^{-2\delta t} f_{T_x}(t) dt - \left[\int_0^\infty e^{-\delta t} f_{T_x}(t) dt\right]^2$$

Calcule a variância de Z_T .

$$b=1$$
, $0 \le t < 5$ v^{t+1} , $t \ge 0$ $Z_T = \begin{cases} v^{T+1}, & 0 \le T < 5 \\ 0, & c.c. \end{cases}$

Lembramos que $A_{25^1:\overline{5}|} \approx 0,0037888$ para i = 4%.

Dados do **exemplo 1**

$$i = 4\%$$

			XUN
Idade	q_x	$p_x = 1 - q_x$	$l_{x} = \frac{l_{x+1}}{p_{x}}$
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

$$var(Z_T) = {}^{2}A_{25^{1}:\overline{5}|} - (0,0037888)^{2}$$

$$var(Z_t) = \sum_{t=0}^{4} \left[\left(\frac{1}{1,04} \right)^2 \right]^{t+1} t^{2} q_{25+t} - (0,0037888)^2$$

$$var(Z_T) = \left[\left(\frac{1}{1,04} \right)^2 q_{25} + \left(\frac{1}{1,04} \right)^4 {}_1 p_{25} q_{26} + \left(\frac{1}{1,04} \right)^6 {}_2 p_{25} q_{27} + \left(\frac{1}{1,04} \right)^8 {}_3 p_{25} q_{28} + \left(\frac{1}{1,04} \right)^{10} {}_4 p_{25} q_{29} \right] - (0,0037888)^2$$

 $var(Z_T) \approx 0.1224543$

Considere que uma pessoa de 30 anos decide fazer um seguro de vida temporário no período de 20 anos. Admita que o tempo de vida adicional desta pessoa possa ser modelado pela distribuição uniforme contínua de parâmetros 0 e 70, ou seja:

$$T_{30} \sim U_c(0.70).$$

Considere i = 5% ao ano.

Sabemos pela resolução do problema que $\bar{A}_{30^1:\overline{20|}} \approx 0,182446.$ A partir dessas informações obtenha a variância para esse seguro.

$$b=1,0\leq t\leq 20$$
 $e^{-\delta t}$, $t\geq 0$ $Z_T=\left\{egin{array}{ll} e^{-\delta T},\ 0\leq T\leq 20\ 0,\ c.\ c. \end{array}
ight.$

$$var(Z_T) = \int_0^{20} e^{-2\delta t} \frac{1}{70} dt - 0,182446^2$$

$$var(Z_T) = \frac{1 - e^{-40\delta}}{140\delta} - 0,182446^2 \approx 0,09231757$$

$$\sigma_{Z_T} = \sqrt{0.09231757} \approx 0.3038381$$

SEGURO DE VIDA INTEIRO-Simulação

Considere a situação em que uma pessoa de 30 anos deseja fazer um seguro que pague ao seu beneficiário no momento da morte um valor de $$200\,000,\!00$. Para esse cálculo a segura considera uma taxa de rentabilidade anual de 5% e que o tempo de vida adicional do segurado seja modelado por um modelo uniforme contínua. Assim:

$$T_{30} \sim U_c(0,70) \qquad i = 5\% \text{ ao ano} \qquad b_T = R\$200000,00$$

$$VPA = \int_0^{70} z_T f_T(t) dt = \int_0^{70} 200000 e^{-\ln(1,05)t} \frac{1}{70} dt$$

$$VPA = -\frac{200000 e^{-\ln(1,05)t}}{70 \ln 1,05} \bigg|_{t=0}^{t=70} = \frac{200000}{70 \ln 1,05} \left[-e^{-\ln(1,05)70} + e^{-\ln(1,05)0} \right]$$

$$VPA = 200000\overline{A}_{30} = 58559, 81(-e^{-3.415} + 1) \approx 56634, 57$$

SEGURO DE VIDA INTEIRO-Simulação

Considere agora que após um determinado tempo observando 3000 pessoas da mesma coorte que fizeram no mesmo ano um seguro de vida vitalício. Seja anotado o tempo gasto para que cada um venha a falecer.

SEGURO DE VIDA INTEIRO-Simulação

Levando em consideração que "sabemos" previamente a sobrevida de cada segurado (dados simulados). Os valores presentes necessários ao pagamento do benefício contratado por cada segurado pode ser calculada.

> Assim:

$$z_t = bv^t = 200000e^{-\delta t} = 200000e^{-\ln(1.05)t}$$

- A distribuição Uniforme para modelar a sobrevida do segurado, leva a um valor de prêmio alto, pois essa supõem que chance da pessoa morrer "cedo" é igual a de morrer "tarde".
- Apesar das limitações, a estimativa se mostrou próxima da média verificada aposteriori.

Prêmio calculado por percentil

 \triangleright Considere um prêmio Π_x de um seguro vitalício de forma que:

$$P(Z_{T_x} \le \Pi_x) = \alpha$$

$$P(be^{-\delta T_{\chi}} \le \Pi_{\chi}) = \alpha$$

$$P\left(e^{-\delta T_{\chi}} \le \frac{\Pi_{\chi}}{b}\right) = \alpha$$

$$P\left(-\delta T_{x} \le ln\left(\frac{\Pi_{x}}{b}\right)\right) = \alpha$$

$$P\left(T_{\chi} \ge -\frac{\ln\left(\frac{\Pi_{\chi}}{b}\right)}{\delta}\right) = \alpha$$

Prêmio calculado por percentil

$$P_{Z_T}(Z_T \le \Pi_{t_{\alpha}}) = \alpha$$

$$P_T(T_x \ge t_{\alpha}) = \alpha$$

$$P_T\left(T_x \ge -\frac{\ln\left(\frac{\Pi_x}{b}\right)}{\delta}\right) = \alpha$$

Como a variável aleatória de comportamento conhecido é o tempo (T), é mais conveniente lidar com sua distribuição do que com a distribuição dos valor presente atuarial.

Assim:

$$t_{\alpha} = -\frac{\ln\left(\frac{\Pi_{x}}{b}\right)}{\delta}$$

$$\Pi_{t_{\alpha}} = \frac{b}{e^{\delta t_{\alpha}}}$$

Prêmio calculado por percentil

- ➤ Devido à variabilidade elevada, pode ser interessante calcular determinar o valor presente a partir de um quantil predeterminado.
- ➤ Obter um valor presente de baseado nas probabilidades dos benefícios futuramente pagos, serem inferiores ao estipulado.

Considere um seguro de vida vitalício feito por x=30, com benefício igual a \$200000, dado que $T_{30} \sim U_c(0,70)$ e i=5% ao ano. Qual seria o valor do prêmio Π_{30} de forma que $P(Z_T \leq \Pi_{30}) = 0,9$?

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Unifal[®] Universidade Federal de Alfenas Universidade

Unifal Unifal Unifal Unifal Unifal Unifal Universidade Federal de Alfenas Universidade Federal

Unifal Un

$$b = \$20000,00$$
. $T_{30} \sim U_c(0,70)$ $i = 5\%$ ao ano $\alpha = 0.9$

$$P_T(T_{30} \ge t_{90\%}) = 0.9$$

$$P_T(T_{30} \ge t_{90\%}) = \int_{t_{90\%}}^{70} \frac{1}{70} dt = \frac{70 - t_{90\%}}{70} = 0.9$$

$$t_{90\%} = 7$$

$$P_T(T_{30} \ge 7) = 0.9$$

$$P_T(T_{30} \ge 7) = P_T\left(T_{30} \ge -\frac{\ln\left(\frac{\Pi_{30}}{200000}\right)}{\ln(1,05)}\right) = 0.9$$

$$-\frac{\ln\left(\frac{\Pi_{30}}{200000}\right)}{\ln(1,05)} = 7$$

$$\Pi_{30_{0.9}} \approx $142136,3$$

➤ Quanto maior o tempo de vida adicional menor o valor presente.
 ➤ Valores grandes de t geram valores pequenos e próximos de VPA.

O segurado de idade x decide fazer um seguro de vida vitalício com pagamento de benefício unitário no momento de sua morte. Considere a taxa instantânea de juros, $\delta = 0.06$ e que $T_x \sim Exp(0.04)$.

$$f_{T_x}(t) = 0.04e^{-0.04t}, \ t > 0$$

Determine o valor de Π_{χ} tal que $P_{Z_T}(Z_T \leq \Pi_{\chi}) = 0,1.$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Universidade Federal de Alfenas Universidade Federal de Alfenas Universidade Federal de Alfenas Universidade

Gráfico da simulação de 1000 apólices com as condições do exemplo 4

Considere agora a variável aleatória S associada a uma carteira de seguros composta por k apólices (independentes e identicamente distribuídas), isso é

$$S = \sum_{i=1}^{k} Z_i$$

em que Z_i corresponde a função valor presente da apólice i.

$$E(S) = E\left(\sum_{i=1}^{k} Z_i\right) = \sum_{i=1}^{k} E(Z_i) = kE(Z)$$

$$var(S) = var\left(\sum_{i=1}^{k} Z_i\right) = \sum_{i=1}^{k} var(Z_i) = k \ var(Z)$$

> Definição: Teorema central do limite.

Seja S uma variável aleatória correspondente a uma soma de k variáveis aleatórias independentes e identicamente distribuídas, cada qual com esperança μ e variância σ^2 . Então:

$$W = \frac{S - k\mu}{\sigma\sqrt{k}} \to W \sim N(0,1)$$

Logo

$$S \sim N(k\mu, k\sigma^2)$$

 \triangleright Chamando de S a soma dos valores presentes necessários a cobrir os sinistros ocorridos, queremos encontrar o valor Π tal que:

$$P(S \leq \Pi) = \alpha$$

$$P\left(\frac{S - E(Z_T)}{\sqrt{var(Z_T)}} \le \frac{\Pi - E(Z_T)}{\sqrt{var(Z_T)}}\right) = \alpha$$

$$P\left(W \le \frac{\Pi - E(Z_T)}{\sqrt{var(Z_T)}}\right) = \alpha$$

$$\frac{\Pi - E(Z_T)}{\sqrt{var(Z_T)}} = w_{\alpha}$$

Seja uma carteira com 100 apólices de seguro de vida vitalício com benefício unitário pago no momento da morte, em que todas as apólices são independentes e identicamente distribuídas, e cada apólice corresponde ao seguro de vida de x=60, e o tempo de vida adicional é modelado de tal forma que $_tp_{60}=e^{-0.04t}$ e $\mu(60+t)=0.04$. Considerando que $\delta=0.06$ qual é o valor do prêmio Π cuja probabilidade de que o total de indenizações dessa carteira o supere seja de 5%, ou seja

$$P(S \le \Pi) = 0.95.$$

Unifal[§] Unifal[§] Unifal[§] Unifal[§] Un

SOLUÇÃO

Para cada apólice vida

$$\overline{A}_{60} = \int_0^\infty e^{-0.06t} 0.04 e^{-0.04t} dt = 0.4 \text{ u.m.}$$

$$var(Z_T) = \overline{{}^2A_{60}} - (\overline{A}_{60})^2$$

$$var(Z_T) = \int_0^\infty e^{-0.12t} 0.04 e^{-0.04t} dt - (0.4)^2 \approx 0.09$$

Logo
$$E(S) = 40 e var(S) = 9$$
.

SOLUÇÃO

Para cada apólice vida

$$\bar{A}_{60} = 0.4 \ var(Z_T) = 0.09$$

$$Logo E(S) = 40 e var(S) = 9$$

$$P(S \le \Pi) = 0.95$$
 $P\left(W \le \frac{\Pi - 40}{\sqrt{9}}\right) = 0.95$

Como $W \sim N(0,1)$, então

$$\frac{\Pi - 40}{\sqrt{9}} = w_{0,95} = 1,645$$
$$\Pi = 44,93.$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba:CRV,2022.

