```
In [10]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
In [11]: df=pd.read_csv("D:\\Downloads\\insurance_data.csv")
In [12]: df.head()
Out[12]:
             age bought_insurance
              22
                               0
          0
              25
                               0
           1
          2
              47
                               1
              52
                               0
              46
                               1
```

In [13]: df.rename(columns={"bought_insurance":"ins"})

Out[13]:

	age	ins
0	22	0
1	25	0
2	47	1
3	52	0
4	46	1
5	56	1
6	55	0
7	60	1
8	62	1
9	61	1
10	18	0
11	28	0
12	77	0
13	29	0
14	49	1
15	55	1
16	25	1
17	58	1
18	19	0
19	18	0
20	21	0
21	26	0
22	40	1
23	45	1
24	50	1
25	54	1
26	23	0

```
In [15]: plt.scatter(df.age,df.bought_insurance,marker='+',color='blue')
Out[15]: <matplotlib.collections.PathCollection at 0x172382f8f70>
          1.0
          0.8
          0.6
          0.4
          0.2
          0.0
                       30
                              40
                                            60
                                                   70
In [16]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(df[['age']],df.bought_insurance
In [17]: x_test
Out[17]:
              age
          24
               50
          11
               28
          21
               26
          26
               23
           5
               56
           0
               22
In [24]:
         from sklearn.linear_model import LogisticRegression
         model = LogisticRegression()
In [25]: model.fit(x_train,y_train)
Out[25]: LogisticRegression()
In [26]: model.predict(x_test)
Out[26]: array([1, 0, 0, 0, 1, 0], dtype=int64)
In [27]: model.score(x_test,y_test)
Out[27]: 1.0
```

In []: