The Data Science Process

- 1. Identify the question
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Model the data
- 6. Communicate the results

The Data Science Process

- 1. Identify the question
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Model the data
- 6. Communicate the results

The Data Science Process

- 1. Identify the question
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Model the data
- 6. Communicate the results

What is Machine Learning?

Traditional Software Development Convert inches to cm

Traditional Software Development Convert inches to cm

Input:

Convert

to cm

Input: inches

Input: inches

Relationship: cm =

Input: inches

Relationship: cm = inches * 2.54

Input: inches

Relationship: cm = inches * 2.54

Output: cm

Traditional Software Development Convert a number to its absolute value

Traditional Software Development Convert a number to its absolute value Input:

Convert a to its **absolute value**

Input: number

Convert a to its absolute value

Input: number

Rules:

Input: number

Rules:

abs. value =

Input: number

Rules:

if number >= 0: abs. value = number

Input: number

Rules:

if number >= 0: abs. value = number

else: abs. value = number * -1

Input: number

Rules:

if number >= 0: abs. value = number

else: abs. value = number * -1

Output: abs. value

Input:

90

Rules:

Input:

Rules: rule 1

rule 2

rule 3 ...

Input:

00

Rules: rule 1

rule 2

rule 3 ...

Output: "cat"

Input	0	8	15	22	38
Output	32	46.4	59	71.6	?

Input	0	8	15	22	38
Output	32	46.4	59	71.6	100.4

$$F = C * 1.8 + 32$$

Celsius	0	8	15	22	38
Fahrenheit	32	46.4	59	71.6	100.4

Input: [0, 8, 15 22]

Input: [0, 8, 15 22]

Output: [32, 46.4, 59, 71.6]

Input: [0, 8, 15 22]

Relationship: ?

Output: [32, 46.4, 59, 71.6]

Common ML Algorithms

Linear Regression

Logistic Regression

Naïve Bayes

Support Vector Machine

Decision Tree

K-Nearest Neighbor

Input: [0, 8, 15 22]

Relationship:

Output: [32, 46.4, 59, 71.6]

Input: [0, 8, 15 22]

Relationship: input *1.8 + 32

Output: [32, 46.4, 59, 71.6]

Input: [0, 8, 15 22]

Relationship: input *1.8 + 32 ← Model

Output: [32, 46.4, 59, 71.6]

ML Model

input *1.8 + 32

ML Model

New input: **38** → input *1.8 + 32

ML Model

New input: $38 \longrightarrow input *1.8 + 32 \longrightarrow output: 100.4$

DATA

PREDICTIONS

Input:[

Relationship:

Output: ["cat", "dog", "dog", "cat]

Relationship:

Output: ["cat", "dog", "dog", "cat]

Pareidolia

Instead of programming a computer, you give a computer examples and it learns what you want.

Increasing availability of data

Increasing availability of data

Sophistication of ML algorithms

Increasing availability of data

Sophistication of ML algorithms

Increasing power and availability of computing hardware and software

Types of Machine Learning

Supervised Unsupervised

Song	Artist	Genre	Liked
Breathing Light	Frameworks	Alternative Rock	Yes
Superior	Silver Maple	Рор	No
Icicle	AK	Рор	No
Jazzin	Flap Jack	R&B	Yes
The Way You Do	Schlomo	R&B	Yes
Mirror Maru	Cashmere	Rock	Yes
Never Too Far	Sorrow	Рор	No

Music

Features → (X)

Song	Artist	Genre	Liked
Breathing Light	Frameworks	Alternative Rock	Yes
Superior	Silver Maple	Рор	No
Icicle	AK	Рор	No
Jazzin	Flap Jack	R&B	Yes
The Way You Do	Schlomo	R&B	Yes
Mirror Maru	Cashmere	Rock	Yes
Never Too Far	Sorrow	Рор	No

Music

Song	Artist	Genre	Liked
Breathing Light	Frameworks	Alternative Rock	Yes
Superior	Silver Maple	Рор	No
Icicle	AK	Рор	No
Jazzin	Flap Jack	R&B	Yes
The Way You Do	Schlomo	R&B	Yes
Mirror Maru	Cashmere	Rock	Yes
Never Too Far	Sorrow	Рор	No

Music

Song	Artist	Genre	Liked
Breathing Light	Frameworks	Alternative Rock	Yes
Superior	Silver Maple	Рор	No
Icicle	AK	Рор	No
Jazzin	Flap Jack	R&B	Yes
The Way You Do	Schlomo	R&B	Yes
Mirror Maru	Cashmere	Rock	Yes
Never Too Far	Sorrow	Рор	No

Supervised

Features	Label
	Yes
	No
	No
	Yes
	Yes
	Yes
	No

Unsupervised

Features	Label

- A

- J

Supervised

Unsupervised

Regression

Clustering

Classification

Data

The best data has 3 qualities:

- Clean
- Coverage
- Complete

The best data has 3 qualities:

Feature 1	Feature 2	Feature 3	Feature 4
Male	200	1	Yes
Female	316	3	No
F	190	1	No
Male	244		Yes
Male	128	2	Yes
Male		3	Yes
Female	302	2	No

Clean

Feature 1	Feature 2	Feature 3	Feature 4
Male	200	1	Yes
Female	316	3	No
F	190	1	No
Male	244	13	Yes
Male	128	2	Yes
Male		3	Yes
Female	302	2	No

Coverage

Feature 1	Feature 2	Feature 3	Feature 4
Male	200	1	Yes
Female	316	3	No
F	190	1	No
Male	244		Yes
Male	128	2	Yes
Male		3	Yes
Female	302	2	No

Complete

breadth

Feature 1	Feature 2	Feature 3	Feature 4
Male	200	1	Yes
Female	316	3	No
F	190	1	No
Male	244		Yes
Male	128	2	Yes
Male		3	Yes
Female	302	2	No

Prediction	Label
0	1
1	1
0	0
0	1
1	0
0	0

Prediction	Label
0	1
1	1
0	0
0	1
1	0
0	0

Prediction	Label
0	1
1	1
0	0
0	1
1	0
0	0

Prediction	Label
1	1
1	1
0	0
1	1
0	0
0	0

Prediction	Label
1	1
1	1
0	0
1	1
0	0
0	0

Evaluate the Model

Evaluate the Model

Training Data

Test Data

What data should you use? Is it labeled?

Is your data complete, clean, does it have coverage?

Which algorithms should you use?

What level of performance is sufficient?

Make predictions.