7	AD-A126 894	E LAS UNIV AT	1/1			
	UNCLASSIFIED	ELECTROCHEMIS AUSTIN DEPT O 31 MAR 83 TR-	NL '			
					<u> </u>	
		END D41L				
		2.83 €83				

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

OFFICE OF NAVAL RESEARCH

Contract N00014-78-C-0592

Task No. NR 051-693

TECHNICAL REPORT No. 29

ELECTROGENERATED CHEMILUMINESCENCE. 42.

The Electrochemistry and Electrogenerated Chemiluminescence of the Tris(2,2'-bipyrazine)ruthenium(II) System.

by

Jaime Gonzales-Velasco,* Israel Rubinstein,* R. J. Crutchley,*

A. B. P. Lever,* and Allen J. Bard*

#Department of Chemistry
 York University
 Downsview, Ontario
 Canada M3J 1P3

The University of Texas at Austin Department of Chemistry Austin, Texas 78712

March 31, 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

83 04 14 125

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATIO	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 29	AD-A126894	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Sublide) ELECTROGENERATED CHEMILUMINESCENCE Electrochemistry and Electrogenerations.	CE. 42. The rated Chemilumin-	1 Sept. 1982 to 31 Aug. '8
Rescence of the Tris(2,2'-bipyrazi System.	ine)ruthenium(II) 	6. PERFORMING ORG, REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(e)
Jaime Gonzales-Velasco, Israel Ru Crutchley, A. B. P. Lever, and A.		N00014-78-C-0592
Performing organization name and address Department of Chemistry University of Texas at Austin Austin, TX 78712	SS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Office of Naval Research		March 31, 1983
800 N. Quincy Arlington, VA 22217	13. NUMBER OF PAGES	
14. MONITORING AGENCY NAME & ADDRESS(If dille	18. SECURITY CLASS. (of this report)	
		Unclassified
6. DISTRIBUTION STATEMENT (of this Report)		18a. DECLASSIFICATION DOWNGRADING SCHEDULE

This document has been approved for public release and sale; its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18 SUPPLEMENTARY NOTES

Prepared for publication in the Journal of INORGANIC CHEMISTRY.

19. KEY WORDS (Continue on reverse side if necessary and identify by block

20. ABSTRACT (Centifiue on reverse side if necessary and identify by block number)

The electrochemical behavior and electrogenerated chemiluminescence (ecl) of of $Ru(bpz)_3^{2+}$ (as the PF6 salt) in acctonitrile solutions was investigated. Oxidation to the +3 form and reduction to the +1, 0, -1 and -2 forms occur at potentials about 0.5V more positive than the corresponding bipyridine complex. Emission characteristic of $Ru(bpz)_3^{2+1}$ is produced upon the electron transfer reaction between the +3 and +1 species. Weak emission also results from reaction of the +3 species with solvent or impurities.

DD 1 JAN 73 1473

S/N 0102-014-6601 |

ELECTROGENERATED CHEMILUMINESCENCE. 42.

The Electrochemistry and Electrogenerated Chemiluminescence of the Tris(2,2'-bipyrazine)ruthenium(II) System.

Jaime Gonzales-Velasco, la, c Israel Rubinstein, la R. J. Crutchley, lb A. B. P. Lever, lb and Allen J. Bard* la

Department of Chemistry The University of Texas Austin, TX 78712

Department of Chemistry York University Downsview, Ontario Canada M3J 1P3

Abstract

The electrochemical behavior and electrogenerated chemiluminescence (ecl) of $\operatorname{Ru}(\operatorname{bpz})_3^{2+}$ (as the PF_6^- salt) in acetonitrile solutions was investigated. Oxidation to the +3 form and reduction to the +1, 0, -1 and -2 forms occur at potentials about 0.5V more positive than the corresponding bipyridine complex. Emission characteristic of $\operatorname{Ru}(\operatorname{bpz})_3^{2+*}$ is produced upon the electron transfer reaction between the +3 and +1 species. Weak emission also results from reaction of the +3 species with solvent or impurities.

(end of abstract)

Revised Manuscript-IC820313T Submitted 9-22-82 Inorg. Chem.

Introduction.

Of the numerous compounds that produce chemiluminescence upon the electron transfer reactions of electrogenerated species (ecl), that observed with the $\operatorname{Ru}(\operatorname{bpy})_3^{2+}$ (bpy = 2,2'-bipyridine) system is among the most intense and best characterized. A recent report of a new, related compound, $\operatorname{Ru}(\operatorname{bpz})_3^{2+}$ (bpz = 2,2'-bipyrazine) and its spectroscopic and photocatalytic properties suggested a study of the electrochemical and ecl behavior of this compound.

Previous studies of $\operatorname{Ru}(\operatorname{bpy})_3^{2+}$ showed that ecl is produced by the redox reaction between the +1 and +3 species as well as by reaction of the +3 species with a number of reductants (e.g., especially oxalate). We were particularly interested in $\operatorname{Ru}(\operatorname{bpz})_3^{2+}$ because the redox processes are shifted by $\sim 0.5 \text{V}$ towards more positive potentials, compared with $\operatorname{Ru}(\operatorname{bpy})_3^{2+}$. This could prove valuable in ecl in aqueous media where proton reduction interferes at negative potentials. A comparison of the ecl efficiency between the bpz and bpy complexes is also of interest.

In this paper we describe the electrochemical behavior of the ${\rm Ru(bpz)_3}^{2+}$ system in acetonitrile (MeCN) solutions and demonstrate the production of ecl and its characteristics.

Experimental.

Chemicals. The Ru(bpz)₃²⁺ was obtained in the form of PF₆⁻ salt.⁵ It was recrystallized from MeCN and dried for 25 hr under vacuum at room temperature. The tetra-n-butylammonium hexafluorophosphate (TBAFP) used as supporting electrolyte was prepared by reaction of NH₄PF₆ (Ozark-Mahoning) and tetra-n-butylammonium perchlorate (Aldrich). The precipitate of TBAFP obtained was filtered and repeatedly washed with distilled water. The precipitate was dissolved in boiling EtOH; upon cooling, TBAFP was obtained in the form of small crystals. This procedure was repeated three times. Finally the crystals were recrystallized from a mixture of acetone and ether and dried under a vacuum.

Spectroquality grade acetonitrile (MCB) was degassed by freeze-pump-thaw cycles ($< 10^{-5}$ torr). A MeCN/0.1 M TBAFP solution did not show appreciable faradaic currents at a Pt electrode between -2.6 and +2.5 V vs the Ag wire quasireference electrode (AgRE).

Apparatus. A Princeton Applied Research (PAR) Model 173 Potentiostat and a PAR Model 175 Universal Programmer were used for voltammetric experiments. The output of the PAR Model 176 current follower was recorded directly using a Houston Instruments Model 2000 x-y recorder. The coulometric experiments employed a PAR 179 digital coulometer.

<u>Procedure</u>. The test solutions were prepared under He in a Vacuum Atmospheres Glove Box equipped with a Model MO 40-1 Dri-Train. Electrochemical and ecl experiments were carried out in a three compartment working cell with a volume of 3 cm³. The working electrode compartment was provided with an optically flat Pyrex glass window of approximately 2 cm² and the working electrode, a polished platinum disk, area = 0.06 cm^2 , was

aligned parallel to the window. The distance between the working electrode and the window was around 3 mm. The counterelectrode was a platinum foil, area $\approx 3 \text{ cm}^2$. A silver wire immersed in the MeCN/TBAFP solution and separated from the working electrode chamber by a medium porosity frit was used as a quasireference electrode (AgRE). The potential of this Ag wire electrode was measured against an aqueous saturated calomel electrode (SCE) and checked vs the ferrocene/ferrocenium couple in MeCN and was found to have a potential of ± 0.055 V vs SCE.

The ecl measurements were carried out after transferring the sealed working cell to a light-tight box whose interior was painted with black nonreflective paint. The emitted light was measured with a Hamamatsu TV Corp. R928 photomultiplier tube. The ecl spectrum was taken by using an Oriel Co. monochromator. Emission and absorption spectra were obtained with an Aminco-Bowman spectrophotofluorometer (SPF) without slits for ecl studies and a Cary Model 14 UV and visible specrophotometer, respectively.

Electrochemical results. A typical cyclic voltammogram (CV) for 1 mM $\operatorname{Ru}(\mathrm{bpz})_3^{2+}$ in MeCN, 0.1 M TBAFP is shown in Figure 1. The peak potentials for the oxidation ($\mathrm{E_{pa}}$) and reduction ($\mathrm{E_{pc}}$) waves and $\Delta\mathrm{E_{p}}$ values for each wave are given in Table 1. The general electrochemical behavior of the $\operatorname{Ru}(\mathrm{bpz})_3^{2+}$ system is very similar to that of $\operatorname{Ru}(\mathrm{bpy})_3^{2+}$ in MeCN, but there are significant differences. The reductions to the +1, 0, and -1 species and the oxidation to the +3 species occur with all peaks shifted 0.5 V towards more positive potentials as compared to the bpy complex. Thus the $\operatorname{Ru}(\mathrm{bpz})_3^{3+}$ species is a significantly stronger oxidant than is $\operatorname{Ru}(\mathrm{bpy})_3^{3+}$, and its production from the +2 form occurs much nearer to the anodic limit of the MeCN,TBAFP solution. Because of this, the $\operatorname{Ru}(\mathrm{bpz})_3^{3+}$ is less stable

than the bpy complex in this medium, which leads to differences in the characteristics of the +3/+2 wave and the ecl. On the other hand the fourth reduction wave (marked V in Figure 1) shows a well-defined reversal peak at a scan rate, v, of 100 mV/s at room temperature, indicating some stability of the -2 species. No such stability is observed with the corresponding bpy form that is produced at a potential about 0.5 V more negative. Only at v > 20 V/s or at temperatures of -30°C was any reversal anodic peak seen for the corresponding bpy wave. 2 However, repeated scanning over wave V to produce the reduced -2 form led to the formation of a deep brown solution caused by decomposition of this species. Moreover the rest potential of this solution after this cycling was -0.2 V vs AgRE as compared to the initial value of about +0.54 V, indicating irreversible production of a The resulting brown solution could reduced species. not be electrochemically oxidized back to the original orange Ru(bpz), 2+ solution. Similar, but slower decomposition occurred upon scanning or holding the potential at values corresponding to peaks III and IV (Figure 1).

The one electron nature of the waves was confirmed by controlled potential coulometry (CPC) measurements. Reduction at -0.8 V vs AgRE near the peak of the first reduction wave (wave II, Figure 1) gave n_{app} (corresponding to number of Faradays per mole) of 0.98. Oxidation of the reduced solution back to the +2 form showed $Q_b/Q_f \simeq 0.9$ (where Q_f and Q_b are the number of coulombs consumed during the forward reduction and reverse oxidation, respectively) for an experimental duration of ~ 1 hr. This demonstrates the relatively high stability of the +1 species.

Cyclic voltammetric data for the reduction waves (II, III and IV) shown in Figure 1 are contained in Table 2. Because of the close spacing of the reduction waves it was difficult to determine precise values for peak

currents (i_{pc} and i_{pa}) and potentials. However, the current functions ($i_{pc}/v^{1/2}$ C) for all three waves are about the same, demonstrating that all three are one-electron transfers. Moreover, the values of $i_{pa}/i_{pc} \approx 1$ for these waves demonstrate that the +1, 0 and -1 forms are stable on the CV time scale.

For wave II the value of i_{pa}/i_{pc} is significantly larger than 1; this suggests that some deposition or adsorption of the +1 species occurs on the electrode. Although the CV data shows stability of the 0 and -1 forms on the short time scale, repeated cycling through these waves causes some color change in the solution as well as the formation of a deposit on the electrode surface.

As for wave I, corresponding to the +3/+2 oxidation-reduction process, the potential for this wave is close to the anodic stability limit of Pt in MeCN and the Ru(bpz) $_3^{3+}$ species reacts with a component in the MeCN,TBAFP medium to regenerate the +2 species, giving rise to a catalytic wave. ^{6b} The CV parameters for wave I confirm the catalytic nature of this wave. For example, as shown in Figure 2, the ratio of peak heights i_{pa}/i_{pc} , or peak areas Q_a/Q_c increases sharply with decreasing v. At low scan rates, the ratio Q_a/Q_c is very high since the +2 species is continuously regenerated during the scan. At higher scan rates the ratio approaches unity because no appreciable reaction of the +3 form occurs at short times.

A voltammogram taken after repeated application of pulses between -0.8 and +1.9 V vs AgRE (the range for ecl, as described below), as shown in Figure 3, suggests decomposition of the $Ru(bpz)_3^{2+}$ complex since new peaks at +1.5 V vs AgRE near wave I and at -0.4 V vs. AgRE before Wave II appear. The new anodic peak at +1.5 V appears after a cathodic scan to -1.2 V and the new cathodic one at -0.4 V appears after a scan to +2.2 V. The species

giving rise to these waves is not known.

After these repeated pulsing experiments, the electrode surface was covered with a yellowish-brown precipitate. Although the nature of this precipitate was not elucidated, it probably can be attributed to the formation of reduced Ru-species. The decomposition process is enhanced when the cathodic scan limit is more negative.

Emission spectrum of $Ru(bpz)_3^{2+}$. The emission spectrum of a 10 $^{-5}$ M solution of $Ru(bpz)_3^{2+}$ in MeCN at room temperature is shown in Figure 4. An excitation wavelength for maximum absorption (435 nm) leads to the emission maximum at 585 nm for the luminescence of the sample. This wavelength is 25 nm shorter than the emission maximum of $Ru(bpy)_3^{2+}$.

Ecl spectrum of $Ru(bpz)_3^{2+}$ in acetonitrile. By pulsing the potential applied to the platinum electrode between 1.95 V and -0.85 V vs AgRE and orange ecl emission was observed. The light intensity obtained was lower than that for $Ru(bpy)_3^{2+}$ under equivalent conditions, and decayed more rapidly. The ecl spectrum of the $Ru(bpz)_3^{2+}$ (Figure 5) shows an emission maximum at 585 nm, identical to the emission spectrum obtained on photoexcitation. These results are similar to those obtained with $Ru(bpy)_3^{2+}$. The mechanism for emission is probably the same in both cases, namely, reaction of the +3 and +1 forms to yield the +2 excited state:

$$Ru(bpz)_3^{2+} + e \longrightarrow Ru(bpz)_3^+$$
 (1)

$$Ru(bpz)_3^{2+} - e \longrightarrow Ru(bpz)_3^{3+}$$
 (2)

$$Ru(bpz)_3^{3+} + Ru(bpz)_3^{+} \rightarrow Ru(bpz)_3^{2+*} + Ru(bpz)_3^{2+}$$
 (3)

This homogeneous redox reaction has a free energy of -2.7 eV (as calculated from the $\rm E_p$ values of the +3/+2 and +2/+1 waves and assuming an entropic contribution of 0.1 eV). This is greater than the energy of the emitting charge transfer state, 2.12 eV. The singlet excited state for the

 ${\rm Ru(bpz)_3}^{2+}$ occurs at 2.85 eV⁸ so that direct population of this state does not appear possible, and direct formation of the emitting triplet is proposed. This is analogous to the results in the ${\rm Ru(bpy)_3}^{2+}$ system.²⁻⁴

Characteristics of the ecl. Recent studies 2e,3 of the ecl intensity $(t_r/t_f)^{-1/2}$ behavior (where t_f is forward pulse time and t_r the reverse pulse time) for the $Ru(bpy)_3^{2+}$ system at short times $[(t_r/t_f)^{-1/2}]$ of 1 to 10] showed that these Feldberg-Faulkner plots^{9,10} corresponded closely to that expected of an "S-route" system, where direct population of the emitting state on electron transfer occurs. Similar plots for the $Ru(bpz)_3^{2+}$ system are shown in Figure 6. When either the +1 (Figure 6a) or +3 (Figure 6b) form is generated first, the behavior is very different from that of the theoretical model, which predicts a slope of -1.42. The cause for this deviation is probably the instability of the +3 form and perhaps quenching by decomposition products. This non-ideal behavior is also apparent from the ecl intensity-time transient itself (Figure 7). The anodic transient (following production of the +1 species) shows a peak which decays to an almost steady value. This attainment of a steady value is also apparent from the change in slope in the plot of Figure 6a. The following cathodic transient is very sharp and decays rapidly to background. The steady level of emission during the anodic pulse represents a reaction of the +3 species with solvent, electrolyte, or impurities to produce emission. That this is clearly the case can be seen from the anodic transient in Figure 8, where the potential was maintained at +1.90 V and a constant weak R ent stud as have shown that the reaction of emission was observed. $Ru(bpy)_2^{3+}$ with oxalate, org...c acids or other reductants results in emission, 2d, 11, 12 so a similar reaction by the stronger oxidant Ru(bpz), 3+appears reasonable. Thus the anodic step involves the +1/+3 electron transfer reaction as well as the +3/background emission. During the subsequent cathodic step the +3 species has been depleted by this background reaction and less is available to react with the generated +1 species, producing the rapid decay of intensity.

Conclusions.

The electrochemical behavior of the $\operatorname{Ru}(\operatorname{bpz})_3^{2+}$ system generally parallels that of the corresponding bpy system, but shifted by about 0.5 V towards more positive potentials. Since the +2/+3 wave is best represented by electron transfers involving metal centers, the shift must be ascribed to greater stabilization of the +2 vs the +3 form by the bpz. The reduction waves, e.g., the +2/+1, are better represented as reduction of the ligands and the shift here represents easier reduction of bpz to the Ru^{2+} stablized bpz species compared to bpy. The positive potential shift results in the +1 pz species being less stable in MeCN than the corresponding bpy species. Ecl reactions involving the +3/+1 electron transfer annihilation reaction and a reaction of +3 with solvent or impurity to produce the $\operatorname{Ru}(\operatorname{bpz})_3^{2+}$ excited states occur. There is precedence for both of these in the bpy system.

Acknowledgement.

The support of this research by the Office of Naval Research (N00014-78-C-0592) and the Army Research Office (DAAG 29-82-K-0006) is gratefully acknowledged. One of us (JGV) is grateful to the Comite Hispano-Norteamericano de Cooperacion Cientifica y Tecnica for a grant.

Notes and References.

- 1. (a) University of Texas; (b) York University; (c) permanent address: Faculty de Ciencias, Universite Autonoma de Madrid, Cuidad Universite de Canto Blanco, Madrid 34, Spain.
- 2. (a) Tokel, N. E., Bard, A. J. <u>J. Am. Chem. Soc.</u>, 1972, <u>94</u>, 2862; (b) Tokel-Takvoryan, N. E.; Hemingway, R. E.; Bard, A. J. <u>J. Am. Chem. Soc.</u>
- 1973, 95, 6582; (c) Wallace, W. L.; Bard, A. J. J. Phys. Chem. 1979, 83,
- 1350; (d) Rubinstein, I.; Bard, A. J. J. Am. Chem. Soc. 1981, 103, 512-516;
- (e) Luttmer, J. D.; Bard, A. J., J. Phys. Chem. 1981, 85, 1155-1159.
- 3. Glass, R. S.; Faulkner, L. R. J. Phys. Chem. 1981, 85, 1159.
- 4. Itoh, K.; Honda, K. Chem. Lett. 1979, 99.
- 5. (a) Crutchley, R. J.; Lever, A. B. P. J. Am. Chem. Soc. 1980, 102, 7128;
- (b) Crutchley, R. J. and Lever, A. B. P. Inorg. Chem., 1982, 21, 0000.
- 6. (a) Bard, A. J.; Faulkner, L. R., "Electrochemical Methods", John Wiley and Sons, New York: 1980. pp. 479; (b) Ibid., pp. 455.
- 7. Faulkner, L. R.; Tachikawa, H.; Bard, A. J. <u>J. Am. Chem. Soc.</u> 1972, 94, 691.
- 8. Klassen, D. M.; Crosby, G. A., <u>J. Phys. Chem.</u> 1968, <u>48</u>, 1853.
- 9. Feldberg, S.W. J. Phys. Chem. 1966, 70, 3928.
- 10. (a) Faulkner, L. R. J. Electrochem. Soc. 1977, 124, 1724; (b) Ibid., 1975, 122, 1190.
- 11. Chang, M. M.; Saji, T.; Bard, A. J. <u>J. Am. Chem Soc.</u> 1977, 99, 5399-5403.
- 12. (a) Lytle, F. H., Hercules, D. M., Photochem. Photobio. 1971, 13, 123;
- (b) Monidez, W. K., Leyden, D. E., Anal. Chim. Acta 1978, 96, 401.

Figure Captions.

- Figure 1: Cyclic voltammogram of 1 mM Ru(bpz) $_3^{2+}(PF_6^-)_2/MeCN/0.1$ M

 TBAFP at a Pt electrode. Scan rate, 100 mV/s $^{-1}$. T = 25 $^{\circ}$ C. Reference electrode, Ag wire.
- Figure 2: Ratio between the anodic and cathodic charges in wave I as a function of the scan rate. $T = 25^{\circ}$ C. Solution same as Figure 1.
- Figure 3: Cyclic voltammogram of 1 mM $Ru(bpz)_3(PF_6)_2/MeCN/0.1$ M TBAFP after repeated pulsing beween -0.8 and +1.9 V vs AgRE.
- Figure 4: Luminescence spectrum of a 10^{-5} M solution of Ru(bpz) $_3^{2+}$ in MeCN at room temperature.
- Figure 5: ECL spectrum of a 1 mM Ru(bpz) $_3(PF_6)_2/MeCN/0.1$ M TBAFP solution. Pulsing limits: -0.8 V and +1.85 V vs AgRE. at 0.5 Hz.
- Figure 6: Feldberg-Faulkner plots for the solution in Figure 1. (a) precursor, $Ru(bpz)_3^+$; (b) precursor, $Ru(bpz)_3^{3+}$.
- Figure 7: Typical ecl intensity-time transient (I_{ecl} in arbitrary units). $T = 25^{\circ}$ C. Same solution as Figure 1.
- Figure 8: Ecl intensity-time transient obtained by pulsing between -0.85 V and +1.9 V vs AgRE for 3 sec and holding the potential at +1.9 V. Same solution as in Figure 1.

TABLE 1 Cyclic Voltammetric Peak Potentials (E_p) for Ru(bpz) $_3^{2+}$ in 0.1 M TBAPF-acetonitrile Solutions at a Platinum Electrode, T = 25 $^{\circ}$ C. a

	I	II	III	IV	V
E _{pc} (reduction) (V vs Agre)	+1.85	-0.800	-0.980	-1.250	-2.075
E _{pa} (oxidation)	+1.94	-0.730	-0.910	-1.180	-1.975
Number of electrons	1	1	1	1	1
ΔE_{p} (25°C, 100 mV/s)	90	70	70	70	100
Redox states	3+/2+	2+/1+	1+/0	0/-1	-1/-2

 $[\]frac{a}{}$ Potential values were measured against an Ag wire quasireference electrode in the same solution. The Ag wire showed a potential of +55 mV measured against a SCE in the same solution.

 $\label{eq:cyclic_voltammetric} Table~2$ Cyclic Voltammetric Results for the Three Reductions of Ru(bpz) $_3^{2+}$ $^{\underline{a}}$

_	Peak	11		<u> </u>	Peak III			Peak IV		
v _(mV/s	ΔE _p) (mV)	i pa i pc	ipc v1/2 _C	Δ ^E p (mV)	i pa i pc	1 pc v 1/2 C	ΔE _P (mV)	i pa i pc	i _{pc} v1/2 _C	
10	30	1.00	1.2	60	1.00	1.4	70	0.88	1.2	
20	60	1.40	1.0	60	0.97	1.6	60	0.88	1.3	
50	60	1.00	1.0	60	1.28	1.2	70	0.90	1.4	
100	60	1.11	0.9	80	1.00	1.7	70	0.83	1.7	
200	70	1.45	0.6	80	1.03	1.2	90	0.75	1.6	
500	90	1.28	0.6	80	0.95	1.3	80	0.70	1.4	
1000	100	1.45	0.7	100	1.12	1.5	110	0.68	1.9	

 $^{^{}a}$ The solution was 1.0 mM Ru(bpz) $_{3}^{2+}$ (PF $_{6}^{-}$) $_{2}$ and 0.1 M TBAFP in CH $_{3}$ -CN at 25 0 C. $_{\Delta}$ E $_{p}$ = $_{pc}$ -E $_{pa}$; C = concentration of complex. Peak currents for waves III and IV were measured from extrapolated decreasing current of preceding wave. The units for the current function evaluation were i = $_{\Delta}$ -cm $_{2}$; $_{2}$ -CV sec $_{2}$ -1) $_{2}$ -1, C = M.

Figure 3

Figure 4

Figure 7

Figure 8

4-4-83

472:GAN:716-4 94/GEN

102 copies

	No.		No.
	Copies		Copies
Office of Naval Research		Naval Ocean Systems Center	
Attn: Code 413		Attn: Mr. Joe McCartney	
800 North Quincy Street		San Diego, California 92152	1
Arlington, Virginia 22217	2		
		Naval Weapons Center	
ONR Pasadena Detachment		Attn: Dr. A. B. Amster,	
Attn: Dr. R. J. Marcus		Chemistry Division	
1030 East Green Street		China Lake, California 93555	. 1
Pasadena, California 91106	1		
•		Naval Civil Engineering Laboratory	
Commander, Naval Air Systems Command		Attn: Dr. R. W. Drisko	
Attn: Code 310C (H. Rosenwasser)		Port Hueneme, California 93401	1
Department of the Navy			
Washington, D.C. 20360	1	Dean William Tolles	
		Naval Postgraduate School	
Defense Technical Information Center	•	Monterey, California 93940	1
Building 5, Cameron Station		•	
Alexandria, Virginia 22314	12	Scientific Advisor	
•		Commandant of the Marine Corps	
Dr. Fred Saalfeld		(Code RD-1)	
Chemistry Division, Code 6100		Washington, D.C. 20380	1
Naval Research Laboratory		•	
Washington, D.C. 20375	1	Naval Ship Research and Development	
		Center	
U.S. Army Research Office		Attn: Dr. G. Bosmajian, Applied	
Attn: CRD-AA-IP		Chemistry Division	
P. O. Box 12211		Annapolis, Maryland 21401	1
Research Triangle Park, N.C. 27709	1	•	
,		Mr. John Boyle	
Mr. Vincent Schaper		Materials Branch	
DTNSRDC Code 2803		Naval Ship Engineering Center	
Annapolis, Maryland 21402	1	Philadelphia, Pennsylvania 19112	1
•			
Naval Ocean Systems Center		Mr. A. M. Anzalone	
Attn: Dr. S. Yamamoto		Administrative Librarian	
Marine Sciences Division		PLASTEC/ARRADCOM X	
San Diego, California 91232	l	Bldg 3401	
		Dover, New Jersey 07801	1

	No. Copies		No. Copies
Dr. Baul Balakan		Dr. P. J. Hendra	
Dr. Paul Delahay			
Department of Chemistry		Department of Chemistry	
New York University	,	University of Southampton Southampton SOO 5NH	
New York, New York 10003	1	United Kingdom	1
Dr. E. Yeager			
Department of Chemistry		Dr. Sam Perone	
Case Western Reserve University		Chemistry & Materials	
Cleveland, Ohio 41106	1	Science Department	
*		Laurence Livermore National Lab.	_
Dr. D. N. Bennion		Livermore, California 94550	1
Department of Chemical Engineering			
Brigham Young University	_	Dr. Royce W. Murray	
Provo, Utah 84602	1	Department of Chemistry	
		University of North Carolina	_
Dr. R. A. Marcus		Chapel Hill, North Carolina 27514	I
Department of Chemistry			
California Institute of Technology		Naval Ocean Systems Center	
Pasadena, California 91125	1	Attn: Technical Library	
		San Diego, California 92152	1
Dr. J. J. Auborn			
Bell Laboratories	_	Dr. C. E. Mueller	
Murray Hill, New Jersey 07974	1	The Electrochemistry Branch	
		Materials Division, Research and	
Dr. Adam Heller		Technology Department	
Bell Laboratories	•	Naval Surface Weapons Center	
Murray Hill, New Jersey 07974	1	White Oak Laboratory	•
Des W Vaha-		Silver Spring, Maryland 20910	1
Dr. T. Katan Lockheed Missiles and		Dr. G. Goodman	
		Johnson Controls	
Space Co., Inc. P. O. Box 504		5757 North Green Bay Avenue	
	1	Milwaukee, Wisconsin 53201	1
Sunnyvale, California 94088	1	MIIWadkee, Wisconsin 55201	•
Dr. Joseph Sing Code 302-1		Dr. J. Boechler	
NASA-Lewis		Electrochimica Corporation	
21000 rookpark Road		Attn: Technical Library	
eveland. Ohio 44135	1	2485 Charleston Road	_
		Mountain View, California 94040	1
Dr. B. Brummer			
EIC Incorporated		Dr. P. P. Schmidt	
55 Chapel Street	•	Department of Chemistry	
Newton, Massachusetts 02158	1	Oakland University	•
Library		Rochester, Michigan 48063	1
P. R. Mallory and Company, Inc.			
Northwest Industrial Park			
Burlington, Massachusetts 01803	1		

	No. Copies		No. Copies
Dr. H. Richtol		Dr. R. P. Van Duyne	
Chemistry Department		Department of Chemistry	
Rensselaer Polytechnic Institute		Northwestern University	
Troy, New York 12181	1	Evanston, Illinois 60201	1
Dr. A. B. Ellis		Dr. B. Stanley Pons	
Chemistry Department		Department of Chemistry	
University of Wisconsin		University of Alberta	
Madison, Wisconsin 53706	1	Edmonton, Alberta CANADA T6G 2G2	1
Dr. M. Wrighton		CANADA 100 202	•
Chemistry Department		Dr. Michael J. Weaver	
Massachusetts Institute		Department of Chemistry	
of Technology		Michigan State University	
Cambridge, Massachusetts 02139		East Lansing, Michigan 48824	1
Larry E. Plew		Dr. R. David Rauh	
Naval Weapons Support Center		EIC Corporation	
Code 30736, Building 2906		55 Chapel Street	
Crane, Indiana 47522	1	Newton, Massachusetts 02158	1
S. Ruby		Dr. J. David Margerum	
DOE (STOR)		Research Laboratories Division	
600 E Street		Hughes Aircraft Company	
Providence, Rhode Island 02192	1	3011 Malibu Canyon Road	
	•	Malibu, California 90265	1
Dr. Aaron Wold			
Brown University		Dr. Martin Fleischmann	
Department of Chemistry	,	Department of Chemistry	
Providence, Rhode Island 02192	1	University of Southampton Southampton 509 5NH England	1
Dr. R. C. Chudacek		300 champeon 303 Jun England	•
McGraw-Edison Company		Dr. Janet Osteryoung	
Edison Battery Division		Department of Chemistry	
Post Office Box 28"		State University of	
Bloomfield, New Jersey 07003	1	New York at Buffalo	
•		Buffalo, New York 14214	1
Dr. A. J. Bark			
University of Texas		Dr. R. A. Osteryoung	
Department of Chemistry	_	Department of Chemistry	
Autin, Texas 78712	1	State University of	
Do W W Wahalass	•	New York at Buffalo	1
Dr. M. M. Nicholson		Buffalo, New York 14214	1
Electronics Research Center Rockwell International	•		
3370 Miraloma Avenue			
Anaheim, California	1		
	•		

	No. Copies		No. Copies
Dr. Donald W. Ernst		Mr. James R. Moden	
Naval Surface Weapons Center Code R-33		Naval Underwater Systems Center	
White Oak Laboratory		Code 3632	
Silver Spring, Maryland 20910	1	Newport, Rhode Island 02840	1
Dr. R. Nowak		Dr. Bernard Spielvogel	
Naval Research Laboratory		U. S. Army Research Office	
Code 6130		P. O. Box 12211	
Washington, D.C. 20375	1	Research Triangle Park, NC 27709	1
Dr. John F. Houlihan		Dr. Denton Elliott	
Shenango Valley Campus		Air Force Office of	
Pennsylvania State University		Scientific Research	
Sharon, Pennsylvania 16146	1	Bolling AFB	
		Washington, D.C. 20332	*
Dr. D. F. Shriver			
Department of Chemistry		Dr. David Aikens	
Northwestern University		Chemistry Department	
Evanston, Illinois 60201	1	Rensselaer Polytechnic Institute Troy, New York 12181	1
Dr. D. H. Whitmore			
Department of Materials Science		Dr. A. P. B. Lever	
Northwestern University		Chemistry Department	
Evanston, Illinois 60201	1	York University	
		Downsview, Ontario M3J1P3	
Dr. Alan Bewick		Canada	1
Department of Chemistry			
The University		Dr. Stanislaw Szpak	
Southampton, SO9 5NH England		Naval Ocean Systems Center Code 6343	
Dr. A. Himy		San Diego, California 95152	1
NAVSEA-5433			
NC #4		Dr. Gregory Farrington	
2541 Jefferson Davis Highway		Department of Materials Science	
Arlington, Virginia 20362		and Engineering	
		University of Pennsylvania	
Dr. John Kincaid		Philadelphia, Pennsylvania 19104	
Department of the Navy			
Strategic Systems Project Office		Dr. Bruce Dunn	
Room 901		Department of Engineering &	
Washington, D.C. 20376		Applied Science	
		University of California	
		Los Angeles, California 90024	

	No.		No.
	Copies		Copies
M. L. Robertson		Dr. T. Marks	
Manager, Electrochemical		Department of Chemistry	
and Power Sonices Division		Northwestern University	
Naval Weapons Support Center		Evanston, Illinois 60201	1
Crane, Indiana 47522	1		
		Dr. D. Cipris	•
Dr. Elton Cairns		Allied Corporation	
Energy & Environment Division		P. O. Box 3000R	•
Lawrence Berkeley Laboratory		Morristown, New Jersey 07960	1
University of California	•	Dm. W. Dhdlase	
Berkeley, California 94720	1	Dr. M. Philpot	
Do Marka Tankalasadan		IBM Corporation 5600 Cottle Road	
Dr. Micha Tomkiewicz		San Jose, California 95193	1
Department of Physics Brooklyn College		ball Jose, Carriothia 77173	-
Brooklyn, New York 11210	1	Dr. Donald Sandstrom	
blooklyn, New Tolk 11210	•	Washington State University	
Dr. Lesser Blum		Department of Physics	
Department of Physics		Pullman, Washington 99164	1
University of Puerto Rico			
Rio Piedras, Puerto Rico 00931	I	Dr. Carl Kannewurf	
		Northwestern University	
Dr. Joseph Gordon, II		Department of Electrical Engineering	3
IBM Corporation		and Computer Science	
K33/281		Evanston, Illinois 60201	1
5600 Cottle Road			
San Jose, California 95193	1	Dr. Edward Fletcher	
		University of Minnesota	_
Dr. Robert Somoano		Department of Mechanical Engineering	_
Jet Propulsion Laboratory		Minneapolis, Minnesota 55455	1
California Institute of Technology	•	Dr. John Fontanella	
Pasadena, California 91103	1	U.S. Naval Academy	
Dr. Johann A. Joebstl		Department of Physics	
USA Mobility Equipment R&D Command		Annapolis, Maryland 21402	1
DRDME-EC		antiporto, imiliana	-
Fort Belvior, Virginia 22060	1	Dr. Martha Greenblatt	
	-	Rutgers University	
Dr. Judith H. Ambrus		Department of Chemistry	
NASA Headquarters		New Brunswick, New Jersey 08903	1
M.S. RTS-6			
Washington, D.C. 20546	1	Dr. John Wassib	
-		Kings Mountain Specialties	
Dr. Albert R. Landgrebe		P. O. Box 1173	
U.S. Department of Energy		Kings Mountain, North Carolina 280	86 1
M.S. 6B025 Forrestal Building	•		
Washington, D.C. 20595	1		

	No.		No.
	Copies		Copies
Dr. J. J. Brophy University of Utah Department of Physics Salt Lake City, Utah 84112	1		
Dr. Walter Roth Department of Physics State University of New York Albany, New York 12222	1		
Dr. Thomas Davis National Bureau of Standards Polymer Science and Standards Division Washington, D.C. 20234	1		
Dr. Charles Martin Department of Chemistry Texas A&M University	1		ı
Dr. Anthony Sammells Institute of Gas Technology 3424 South State Street Chicago, Illinois 60616	1	,	
Dr. H. Tachikawa Department of Chemistry Jackson State University Jackson, Mississippi 39217	1		
Dr. W. M. Risen Department of Chemistry Brown University Providence, Rhode Island	1		

