Lecture 1: Introduction

Dynamic Programming

Thomas Jørgensen

Tenturo de coi

Example

Outline for today

- Introduction to the course
- **2 Example** of what we will be doing
- **3** The course **plan**

Introduction

Exampl

Why dynamic programming?

- Policy recommendations are central for all social science
- Need models for counter-factual analysis
- Realistic models \rightarrow no analytical solution
 - 1 dynamic
 - 2 multi-dimensional
 - uncertainty
 - 4 heterogeneity
 - **6** learning
- Solving such models require dynamic programming
- Estimation gives you laboratory economies

Introduction

Exampl

Dynamic programming

- 1 You should expect a steep learning curve
- ② But it is an extremely versatile tool: Micro, macro, labor, industrial organization, household finance, partial and general equilibrium, games, etc. etc.
- 3 And increasingly important better algorithms, more powerful computers

Introduction

Exampl

What am I using dynamic programming for?

- I am an Assistant Professor here at the Department (PhD from here too)
- My research is in the intersection of
 - Household behavior
 - Micro data
 - 3 Computational methods
- Examples:
 - Consumption and saving over the life cycle
 - 2 Fertility behavior and planning
 - 3 Consumers information set and learning
 - Computational methods for solving and estimating life-cycle models
 - as fast as possible

Introduction

Evample

What are your interests in this course?

What are your core fields of interest? (in economics...)

14 responses

Introduction

Exampl

Organization

Setup:

- Lectures: Tuesday (8-10 in CSS 2-0-36) and Wednesday (10-12 in CSS 2-2-30)
- Classes: Tuesday (10-12)

• Your suggested work flow:

- 1 Prepare for the lectures (at first max 15 min.) slides will often be available evening before
- **2** Participate actively in the lectures
- Re-read the slides and texts after the lecture and ask a question on Padlet (https://padlet.com/tjo3/DP)
- 4 Read the exercises beforehand
- **6** Work on the exercises in class by yourself in groups with help from Johan

Introduction

Example

Exam

- Oral exam in group project
 - 1 April 9, 8–12: Presentation of project (descriptions)
 - 2 April 16: Submit project description
 - **3** May 1, 9–15: 2. Supervision day
 - **4** May 24: **Submit project**
 - **6** Week 25: **Oral exam** (25 min)
- Examples include:
 - **1 Replication** of (selected) results from some paper
 - 2 Tests (e.g. Monte Carlo) of various computational solution and estimation methods
 - Presentation and implementation of a new method not taught in the course
 - 4 New model, new data
- Formalities: Around 8-12 pages per person (font size 12, double spacing and 3 cm margins)

Introduction

Example

Books

- 1 Adda and Cooper (2003), Dynamic Economics:
 - Chapter 2-3 \approx lecture 1-5
 - Chapter 4 ≈ lecture 6
 - Chapter 5-10 no equivalent lectures
 read about the topics that interests you
- **2** Judd (1998), Numerical Methods: Good for general reference and tools

Mathematical background

- Stockey and Lucas (1989), Recursive Methods in Economics
- ② Bertsekas (2005, 2012), Dynamic Programming and Optimal Control Vol. I-II
- **3** Puterman (2008), Markov Decision Processes: Discrete Stochastic Dynamic Programming

Introduction

Example

MATLAB

- Download version 2016b or later
 - 1 Go to kunet.ku.dk
 - 2 Under Systemadgange click on Softwarebibliotek
 - **3** Follow the instructions
- Online MATLAB Course for Student of Economics: See link on *Absalon*
- **Video** with Matlab essentials for this course 10mins, link on *Absalon*

Introduct Example

The Simplest Consumption Model

Model:

- 1 You have *M* goods for consumption
- 2 You have *T* years back of your life
- **3** Your per year utility is \sqrt{C}
- **4** $C \in \{0, 1, 2, ...\} = \mathbb{N}$ is consumption.
- **6** You discount future utility by a factor of β < 1

• Formally:

$$V^{\star}(M) = \max_{C_1, C_2, \dots, C_T} \left\{ \sqrt{C_t} + \beta \sqrt{C_{t+1}} + \beta^2 \sqrt{C_{t+2}} + \dots + \beta^T \sqrt{C_T} \right\}$$
s.t.
$$M = C_1 + C_2 + \dots + C_T$$

$$C_t \in \mathbb{N}$$

Solution:

- T = 1: $C_T = M$.
- T = 2: Try all $C_{T-1} \le M$ where $C_T = M C_{T-1}$.
- T = 3: Try all $C_{T-2} \le M$ and $C_{T-1} \le M C_{T-2}$ where $C_T = M - C_{T-1} - C_{T-2}$.

Introduc

Example

Algorithm 1: Algorithm for T = 1

input : M (goods) output: C_T^{\star} (optimal choice) 1 $V^{\star} = -\infty$ 2 for $C_T = 0$ to M do 3 $V = \sqrt{C_T}$ 4 if $V > V^{\star}$ then 5 $V^{\star} = V$ 6 $C_T^{\star} = C_T$

$$V^{\star}(M) = \max_{C_1, C_2, \dots, C_T} \sqrt{C_t} + \beta \sqrt{C_{t+1}} + \beta^2 \sqrt{C_{t+2}} + \dots + \beta^T \sqrt{C_T}$$
s.t.
$$M = C_1 + C_2 + \dots + C_T$$

Example

Algorithm 2: Algorithm for T = 2

input: *M* (goods) **output:** C_T^{\star} , C_{T-1}^{\star} (optimal choices)

1
$$V^{\star} = -\infty$$

2 **for**
$$C_{T-1} = 0$$
 to M **do**

$$V = \sqrt{C_{T-1}} + \beta \sqrt{M - C_{T-1}}$$

4 if
$$V > V^*$$
 then

$$C_{T-1}^{\star} = C$$

5
$$V^* = V$$

6 $C_{T-1}^* = C_{T-1}$
7 $C_T^* = M - C_{T-1}$

$$V^{\star}(M) = \max_{C_1, C_2, \dots, C_T} \sqrt{C_t} + \beta \sqrt{C_{t+1}} + \beta^2 \sqrt{C_{t+2}} + \dots + \beta^T \sqrt{C_T}$$
s.t.
$$M = C_1 + C_2 + \dots + C_T$$

minounc

Introduc

Example

Algorithm 3: Algorithm for T = 3

• Write it on a poster and put on the white board for T=4 (5 mins)

Introdu

Example

Backwards induction - intuition

- Can we do something smarter?
- **Period** *T*: Value of having *M* goods? Consume everything

$$V_T^{\star}(M) = \sqrt{M}$$

- **Period** T 1: Value of having M goods?
 - today: $\sqrt{C_{T-1}}$
 - having $M C_{T-1}$ left tomorrow: $V_T^{\star}(M C_{T-1})$
 - →seek to maximize the sum:

$$V_{T-1}^{\star}(M) = \max_{C_{T-1}} \left\{ \sqrt{C_{T-1}} + \beta V_{T}^{\star}(M - C_{T-1}) \right\}$$

- **Period** T 2: Value of having M goods?
 - today: $\sqrt{C_{T-2}}$
 - having $M C_{T-2}$ left tomorrow: $V_{T-1}^{\star}(M C_{T-2})$
 - →seek to maximize the sum:

$$V_{T-2}^{\star}(M) = \max_{C_{T-2}} \left\{ \sqrt{C_{T-2}} + \beta V_{T-1}^{\star}(M - C_{T-2}) \right\}$$

Introduct

Backwards induction - formula for all *t*

$$V_{T-1}^{\star}(M) = \sqrt{M}$$

$$V_{T-1}^{\star}(M) = \max_{C_{T-1}} \left\{ \sqrt{C_{T-1}} + \beta V_{T}^{\star}(M - C_{T-1}) \right\}$$

$$V_{T-2}^{\star}(M) = \max_{C_{T-2}} \left\{ \sqrt{C_{T-2}} + \beta V_{T-1}^{\star}(M - C_{T-2}) \right\}$$

$$V_{T-3}^{\star}(M) = \max_{C_{T-3}} \left\{ \sqrt{C_{T-3}} + \beta V_{T-2}^{\star}(M - C_{T-3}) \right\}$$

$$\cdots$$

$$V_{t}^{\star}(M) = \max_{C_{t}} \left\{ \sqrt{C_{t}} + \beta V_{t+1}^{\star}(M - C_{t}) \right\}$$

Introduct Example

Algorithm 4: Find V_t^{\star} given V_{t+1}^{\star} [called "find_V" later]

```
input: M (goods)
               V_{t\perp 1}^{\star}[\bullet] (value next period)
  output: V_t^{\star}[\bullet] (value of optimal choice)
               C_t^{\star}[\bullet] (optimal choice)
1 for m=0 to M do
        i_{M} = m + 1
     V_{\iota}^{\star}[i_{M}] = -\infty
     for C_t = 0 to m do
              i_next = (m - C_t) + 1
5
            V = \sqrt{C_t} + \beta V_{t+1}^{\star}[i\_next]
6
          if V > V_t^{\star}[i_M] then
       \begin{vmatrix} V_t^{\star}[i_M] = V \\ C_t^{\star}[i_M] = C_t \end{vmatrix}
9
```

$$V_t^{\star}(M) = \max_{C_t} \left\{ \sqrt{C_t} + \beta V_{t+1}^{\star}(M - C_t) \right\}$$

Introduct

Introduction

Example

i	M_T	$V_T^{\star}(M_T)$
1	0	$\sqrt{0}$
2	1	$\sqrt{1}$
3	2	$\sqrt{2}$
4	3	$\sqrt{3}$
:	÷	:

i	M_{T-1}	$V_{T-1}^{\star}(M_{T-1})$
1	0	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star}[0 - C_{T-1} + 1]$
2	1	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [1 - C_{T-1} + 1]$
3	2	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star}[2 - C_{T-1} + 1]$
4	3	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [3 - C_{T-1} + 1]$
:	:	i:

Introduction

Example

i	M_T	$V_T^{\star}(M_T)$
1	0	$\sqrt{0}$
2	1	$\sqrt{1}$
3	2	$\sqrt{2}$
4	3	$\sqrt{3}$
:	:	i:

i	M_{T-1}	$V_{T-1}^{\star}(M_{T-1})$
1	0	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [0 - C_{T-1} + 1]$
2	1	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [1 - C_{T-1} + 1]$
3	2	$C_{T-2} = 0 \rightarrow \sqrt{0} + \beta V_T^{\star}[2 - 0 + 1]$
4	3	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [3 - C_{T-1} + 1]$
:	:	÷

Introduc

Example

i	M_T	$V_T^\star(M_T)$
1	0	$\sqrt{0}$
2	1	$\sqrt{1}$
3	2	$\sqrt{2}$
4	3	$\sqrt{3}$
:	•	:

i	M_{T-1}	$V_{T-1}^{\star}(M_{T-1})$
1	0	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [0 - C_{T-1} + 1]$
2	1	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [1 - C_{T-1} + 1]$
3	2	$C_{T-2} = 1 \rightarrow \sqrt{1 + \beta V_T^{\star}[2 - 1 + 1]}$
4	3	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [3 - C_{T-1} + 1]$
:	:	i:

Introduction

Example

i	M_T	$V_T^{\star}(M_T)$
1	0	$\sqrt{0}$
2	1	$\sqrt{1}$
3	2	$\sqrt{2}$
4	3	$\sqrt{3}$
:	÷	:

i	M_{T-1}	$V_{T-1}^{\star}(M_{T-1})$
1	0	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [0 - C_{T-1} + 1]$
2	1	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [1 - C_{T-1} + 1]$
3	2	$C_{T-2} = 2 \rightarrow \sqrt{2} + \beta V_T^{\star}[2-2+1]$
4	3	$\max_{C_{T-1}} \sqrt{C_{T-1}} + \beta V_T^{\star} [3 - C_{T-1} + 1]$
:	÷	÷

minound

Introduc

Example

Algorithm 5: Find all V_t^{\star}

 $\begin{array}{l} \textbf{input} : M \text{ (goods)} \\ \textbf{output: } V_t^{\star}[\bullet] \text{ for all } t \\ C_t^{\star}[\bullet] \text{ for all } t \end{array}$

- 1 $V_T^{\star}[m+1] = \sqrt{m}$ for all m=0 to M
- **2 for** t = T 1 **to** 1 **do**
- $V_t^{\star}[\bullet], C_t^{\star}[\bullet] = \operatorname{find}_{V}(V_{t+1}^{\star}[\bullet])$
- Simulate from period t with any M:
 - $C_t = C_t^*(M)$
 - $C_{t+1} = C_{t+1}^{\star} (M C_t)$
 - $C_{t+3} = C_{t+2}^{\star}(M C_t C_{t+1})$
 - etc.

mmoduc

Introduc

Example

Vocabulary

- **1** States = number of goods, M_t
- **2** Choices = consumption, $C_t \in \mathcal{C}(M_t) = \{0, 1, 2, \dots, M_t\}$
- **3** Payoff function = utility, $\sqrt{C_t}$
- **1** Transition function = next-period states, $M_{t+1} = \Gamma(M, C_t) = M_t C_t$
- **6** Value function = value today, $V_t^*(M_t)$
- **6** Continuation value = value after today, $\beta V_{t+1}^{\star}(M_{t+1}) = \beta V_{t+1}^{\star}(\Gamma(M_t, C_t))$
- Policy function = optimal choice, $C_t^*(M_t)$

Extensions - the rest of the course

- Stochastic elements?
- 2 Continuous states and/or choices?
- Multiple states and/or choices?
- 4 Infinitely many periods?
- **6** Estimation?
- **6** Multiple agents? (equilibrium and games)

Introdu

Plan

Plan

- **1** Theory and tools (lecture 1-6).
- **2** Consumption-saving models (lecture 7-11, with JD as guest in week 9).
- **SESTIMATION OF CONTRACT OF SET UP: SESTIMATION OF CONTRACT OF SET UP: SESTIMATION OF CONTRACT OF**

And you should as soon as possible figure out a group and topic for a term paper!

Introduct

Introduc

Example Plan

Until next time

- Ensure that you understand:
 - 1 Algorithm 4 and 5
 - 2 The vocabulary
- Go to PadLet and ask or answer a question (https://padlet.com/tjo3/DP)
- Think about what to do if:
 - 1 New goods arrived stochastically so that

$$M_{t+1} = egin{cases} M_t - C_t + 1 & ext{with probability } \pi \in (0,1) \ M_t - C_t & ext{else} \end{cases}$$

- **2** Consumption was **continuous**, i.e. $C_t \in \mathbb{R}$ and not just $C_t \in \mathbb{N}$
- Now: go to b.socrative.com room name "DynamicProgramming" and answer a few questions

