(19) **日本国特許庁(JP)**

(12) 特許公報(B2)

(11)特許番号

特許第5613164号 (P5613164)

(45) 発行日 平成26年10月22日(2014.10.22)

(24) 登録日 平成26年9月12日(2014.9.12)

		FΙ	
5/73	(2006.01)	G11B	5/73
3/091	(2006.01)	CO3C	3/091
3/085	(2006.01)	CO3C	3/085
3/093	(2006.01)	CO3C	3/093
3/087	(2006.01)	CO3C	3/087
	3/091 3/085 3/093	3/091 (2006.01) 3/085 (2006.01) 3/093 (2006.01)	5/73 (2006.01) G11B 3/091 (2006.01) C03C 3/085 (2006.01) C03C 3/093 (2006.01) C03C

請求項の数 5 (全 21 頁)

(21) 出願番号 特願2011-532951 (P2011-532951) (86) (22) 出願日 平成22年9月6日 (2010.9.6)

(86) 国際出願番号 PCT/JP2010/065212 (87) 国際公開番号 W02011/037001

(32) 優先日 平成21年9月28日 (2009. 9. 28)

(33) 優先権主張国 日本国(JP)

(73) 特許権者 000113263

HOYA株式会社

東京都新宿区中落合2丁目7番5号

|(74)代理人 | 110001195

特許業務法人深見特許事務所

(72) 発明者 梶田 大士

日本国東京都八王子市石川町2970番地

コニカミノルタオプト株式会社内

||(72)発明者 河合 秀樹

日本国東京都八王子市石川町2970番地

コニカミノルタオプト株式会社内

審査官 原田 貴志

最終頁に続く

(54) 【発明の名称】情報記録媒体用ガラス基板及び情報記録媒体

(57)【特許請求の範囲】

【請求項1】

ガラス成分全体に対して、

 $SiO_2 + Al_2O_3 + B_2O_3$ の総量:65~90質量%、

但し、SiO₂:45~75質量%、

A l $_2$ O $_3$: 1 ~ 2 0 質量%、

B₂O₃:0~8質量%、

R 2 O の総量: 7~2 O 質量%、

但し、R = Li、Na、K、

R'Oの総量: 0.1~12質量%、

但し、R'=Mg、Ca、Sr、Ba、Zn、

TiO₂ + ZrO₂の総量: 0.5~10質量%、

を含有<u>し、ガラス成分中にAs及びSbを含有しない</u>情報記録媒体用ガラス基板であって

V、Mn、Ni、Mo、Sn、Ce及びBiからなる群の中から選ばれる少なくとも1種の多価元素を含有し、

前記多価元素の酸化物が、それぞれ、 V_2O_5 、 MnO_2 、 Ni_2O_3 、 MoO_3 、 SnO_2 、 CeO_2 、 Bi_2O_3 であるとした場合における、前記多価元素の酸化物の総量の、 TiO_2+ZrO_2 の総量に対するモル比率(前記多価元素の酸化物の総量 / (TiO_2+ZrO_2 の総量))が、 O_1O_2 0、50の範囲であり、

前記多価元素の酸化物 V_2 O_5 、 M N O_2 、 N i_2 O_3 、 M o O_3 、 S n O_2 、 C e O_2 、 B i_2 O_3 の含有量は、ガラス成分全体に対して、それぞれ 1 質量%以下であることを特徴とする情報記録媒体用ガラス基板。

【請求項2】

 $L n_x O_y$ の総量が 0 ~ 5 質量 % であることを特徴とする請求項 1 に記載の情報記録媒体用ガラス基板。

但し、 Ln_xO_y は、ランタノイド金属酸化物、 Y_2O_3 、 Nb_2O_5 及び Ta_2O_5 からなる群より選ばれる少なくとも 1 つの化合物。

【請求項3】

前記多価元素は、V、Mn、Sn及びCeからなる群の中から選ばれる少なくとも1種を含むことを特徴とする請求項1又は2に記載の情報記録媒体用ガラス基板。

【請求項4】

前記多価元素は、Ceを含むことを特徴とする請求項3に記載の情報記録媒体用ガラス基板。

【請求項5】

請求項1~4の何れか1項に記載された情報記録媒体用ガラス基板の表面に、記録層を有していることを特徴とする情報記録媒体。

【発明の詳細な説明】

【技術分野】

[00001]

本発明は、情報記録媒体用ガラス基板及び情報記録媒体に関し、更に詳しくは、磁気ディスク等の情報記録媒体用ガラス基板及びこれを用いた情報記録媒体に関する。

【背景技術】

[0002]

磁気、光、光磁気等の性質を利用した記録層を有する情報記録媒体のなかで、代表的なものとして磁気ディスクがある。磁気ディスク用基板として、従来はアルミニウム基板が広く用いられていた。しかし、近年、記録密度向上のための磁気ヘッド浮上量の低減の要請等に伴い、アルミニウム基板よりも表面の平滑性に優れ、しかも表面欠陥を減少させることができるガラス基板を用いる割合が増えてきている。

[0003]

このような情報記録媒体用ガラス基板において、表面欠陥を抑えて高密度記録に対応させるためには、ガラスの溶融過程で発生した気泡を、ガラス基板内にできるだけ残存させないことが必要である。従来は、ガラス成分中に、清澄剤として AS_2O_3 や Sb_2O_3 を含有させることにより、溶融ガラス中の気泡を除去(清澄)する方法が一般的であった(特許文献 1 参照)。

[0004]

しかし、 AS_2O_3 や Sb_2O_3 は毒性を有するため、環境上及び健康上の観点から、これらの使用を制限する動きが広がりつつある。そのため、清澄剤として AS_2O_3 や Sb_2O_3 を使用することなく、溶融ガラス中の気泡を除去する方法が検討され、溶融ガラスを減圧して気泡を除去する方法が提案されている(特許文献 2 参照)。

【先行技術文献】

【特許文献】

[0005]

【特許文献1】特開平8-321034号公報

【特許文献2】特開2000-128549号公報

【発明の概要】

【発明が解決しようとする課題】

[0006]

しかしながら、特許文献 2 に記載の方法によれば、複雑なプロセスと特殊な減圧脱泡装置が必要となるばかりでなく、減圧に伴うガラス成分の揮発によって、ガラス成分の変動

10

20

30

40

が起こりやすいという問題があった。

[0007]

本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、As やSbを含有させなくても十分に気泡が除去することができ、情報記録媒体としての使用 に適した情報記録媒体用ガラス基板及びこれを用いた情報記録媒体を提供することである

【課題を解決するための手段】

[00008]

上記の課題を解決するために、本発明は以下の特徴を有するものである。

[0009]

1.ガラス成分全体に対して、

SiO₂ + Al₂O₃ + B₂O₃の総量: 65~90質量%、

但し、SiO₂:45~75質量%、

A l 2 O 3 : 1 ~ 2 0 質量%、

B₂O₃:0~8質量%、

R 2 Oの総量: 7 ~ 2 0 質量%、

但し、R = Li、Na、K、

R'Oの総量: 0.1~12質量%、

但し、R'=Mg、Ca、Sr、Ba、Zn、

TiO₂ + ZrO₂の総量: 0.5~10質量%、

を含有する情報記録媒体用ガラス基板であって、

V、Mn、Ni、Mo、Sn、Ce及びBiからなる群の中から選ばれる少なくとも1 種の多価元素を含有し、

前記多価元素の酸化物が、それぞれ、V₂O₅、MnO₂、Ni₂O₃、MoO₃、S nOっ、CeOっ、BiっOっであるとした場合における、前記多価元素の酸化物の総量 の、TiO,+ ZrO,の総量に対するモル比率(前記多価元素の酸化物の総量/(Ti 〇 ヵ + Z r 〇 ヵの総量))が、 0 . 0 5 ~ 0 . 5 0 の範囲であることを特徴とする情報記 録媒体用ガラス基板。

[0010]

2 . Ln、O、の総量が0~5質量%であることを特徴とする前記1に記載の情報記録 媒体用ガラス基板。但し、 $L n_x O_y$ は、ランタノイド金属酸化物、 $Y_2 O_3$ 、 $N b_2 O_3$ ₅及びTa₂Ο 5からなる群より選ばれる少なくとも1つの化合物。

3.前記多価元素は、V、Mn、Sn及びCeからなる群の中から選ばれる少なくとも 1種を含むことを特徴とする前記1又は2に記載の情報記録媒体用ガラス基板。

4.前記多価元素は、Ceを含むことを特徴とする前記3に記載の情報記録媒体用ガラ ス基板。

[0013]

40 5.前記多価元素の酸化物V₂O₅、MnO₂、Ni₂O₃、MoO₃、SnO₂、C e O $_2$ 、 B i $_2$ O $_3$ の含有量は、ガラス成分全体に対して、それぞれ 1 質量%以下である ことを特徴とする前記1又は2に記載の情報記録媒体用ガラス基板。

[0014]

6 . ガラス成分中にAS及びSbを含有しないことを特徴とする前記1から5の何れか 1項に記載の情報記録媒体用ガラス基板。

[0015]

7.前記1~6の何れか1項に記載された情報記録媒体用ガラス基板の表面に、記録層 を有していることを特徴とする情報記録媒体。

【発明の効果】

[0016]

10

本発明によれば、ガラス中で清澄剤として働く所定の多価元素の酸化物の、ガラス成分中の TiO_2 と ZrO_2 の総量に対するモル比率を所定の範囲としているため、当該多価元素の価数変化による清澄反応を効果的に働かせることができ、As やSb を含有させなくても十分に気泡が除去することができる。また、アルカリ溶出量が少なく、線熱膨張係数が好適な範囲となり、破壊靱性が高いという特性を有しているため、情報記録媒体としての使用に適している。

【図面の簡単な説明】

[0017]

【図1】ビッカース圧痕の模式図である。

【図2】情報記録媒体の一例である磁気ディスクDの斜視図である。

【発明を実施するための形態】

[0018]

以下、本発明の実施の形態について詳細に説明するが、本発明は該実施の形態に限られるものではない。

[0019]

(ガラス組成)

本実施形態の情報記録媒体用ガラス基板は、ガラス成分全体に対して、

SiO₂ + Al₂O₃ + B₂O₃の総量:65~90質量%、

但し、SiO₂:45~75質量%、

A l 2 O 3 : 1 ~ 2 0 質量%、

B 2 O 2: 0~8質量%、

R っ O の総量: 7~20質量%、

但し、R = Li、Na、K、

R'Oの総量: 0.1~12質量%、

但し、R'=Mg、Ca、Sr、Ba、Zn、

TiO₂ + ZrO₂の総量: 0.5~10質量%、を含有する。

[0020]

加えて、V、Mn、Ni、Mo、Sn、Ce D0 Bi からなる群の中から選ばれる少なくとも 1 種の多価元素を含有し、前記多価元素の酸化物が、それぞれ、 V_2 O $_5$ 、Mn O $_2$ 、Ni $_2$ O $_3$ 、MoO $_3$ 、SnO $_2$ 、CeO $_2$ 、Bi $_2$ O $_3$ であるとした場合における、多価元素の酸化物の総量の、TiO $_2$ + ZrO $_2$ の総量に対するモル比率(前記多価元素の酸化物の総量 / (TiO $_2$ + ZrO $_2$ の総量))を、 0 . 0 5 ~ 0 . 5 0 の範囲としているため、当該多価元素の価数変化による清澄反応を効果的に働かせることができ、 A S や S b を 含有させなくても十分に気泡が除去することができる。また、アルカリ溶出量が少なく、線熱膨張係数が好適な範囲となり、破壊靱性が高いという特性を有しているため、情報記録媒体としての使用に適している。各成分を上記範囲に限定した理由は、以下の通りである。

[0021]

SiO₂はガラスのマトリックスを形成する成分である。SiO₂の含有量が45質量%未満ではガラスの構造が不安定となり化学的耐久性が悪化すると共に、溶融時粘性特性が悪くなり成形性に支障を来す。一方、含有量が75質量%を超えると溶融性が悪くなり生産性が低下すると共に、十分な剛性が得られなくなる。そのためSiO₂の含有量は45~75質量%の範囲とすることが必要である。より好ましい範囲は50~72質量%の範囲である。

[0022]

A 1_2 O $_3$ はガラスのマトリックス中に入り、ガラス構造を安定化させ、化学的耐久性を向上させる効果を持つ。 A 1_2 O $_3$ の含有量が 1 質量%未満では十分な安定化効果が得られない。一方、含有量が 2 0 質量%を超えると溶融性が悪くなり、生産性に支障を来す。 そのため A 1_2 O $_3$ の含有量は 1 ~ 2 0 質量%の範囲とすることが必要である。より好ましい範囲は 3 ~ 1 6 質量%の範囲である。

10

20

30

40

[0023]

B $_2$ O $_3$ は溶融性を改善し生産性を向上させると共に、ガラスのマトリックス中に入りガラス構造を安定化させ、化学的耐久性を向上させる効果を持つ。 B $_2$ O $_3$ の含有量が 8 質量 $_8$ を超えると、溶融時粘性特性が悪くなり、成形性に支障を来すと共に、ガラスが不安定になる。そのため B $_2$ O $_3$ の含有量は 8 質量 $_8$ 以下(ただしゼロを含む)の範囲とすることが必要である。より好ましい範囲は 7 質量 $_8$ 以下(ただしゼロを含む)の範囲である。

[0024]

ガラスの骨格成分である S i O $_2$ 、 A l $_2$ O $_3$ 、 B $_2$ O $_3$ のガラスの成分の総量が 6 5 質量%より少ないと、ガラスの構造が脆弱となる一方、前記総量が 9 0 質量%を超えると、溶融性が低下し生産性が落ちる。そのため、 S i O $_2$ + A l $_2$ O $_3$ + B $_2$ O $_3$ の総量は 6 5 ~ 9 0 質量%の範囲とすることが必要である。より好ましい範囲は 6 8 ~ 8 8 質量%の範囲である。

[0025]

アルカリ金属酸化物 R $_2$ O(R = L i、N a、K)は、溶融性を改善し、線熱膨張係数を増大させる効果を持つ。R $_2$ Oの総量が 7 質量 $_9$ 未満では溶融性の改善及び線熱膨張係数の増大という効果が十分には得られない。一方、総量が 2 0 質量 $_9$ を越えると、ガラス骨格間に分散されるアルカリ量が過剰となりアルカリ溶出量が増大し、化学的耐久性が低下する。そこで R $_2$ Oの総量は 7 ~ 2 0 質量 $_9$ の範囲とすることが必要である。より好ましい範囲は 8 ~ 1 8 質量 $_9$ の範囲である。

[0026]

R'O(R'=Mg、Ca、Sr、Ba、Zn)は、1種又は2種以上を含有することで、溶融性を改善する効果が得られる。MgOは剛性を上げると共に溶融性を改善し、CaOは線熱膨張係数及び剛性を上げると共に溶融性を改善する効果を持つ。SrOとBaOは線熱膨張係数を大きくすると共に溶融性を改善する効果を持つ。そしてZnOは化学的耐久性及び剛性を上げると共に溶融性を改善する効果を持つ。R'Oの総量が0.1質量%未満ではガラスの溶融性を改善する効果が十分に得られず、12質量%を超えるとガラス構造が不安定となり溶融性が低下すると共に化学的耐久性が低下する。そのため、R'Oの総量は0.1~12質量%の範囲とすることが必要である。より好ましい範囲は1~10質量%の範囲である。

[0027]

 TiO_2 及び ZrO_2 はガラスの構造を強固にし、剛性を向上させる。 TiO_2 はガラスの構造を強固にし、剛性を向上させると共に溶融性を改善する効果を持つ。また、 ZrO_2 はガラスの構造を強固にし、剛性を向上させると共に化学的耐久性を向上させる効果を持つ。ここで TiO_2+ZrO_2 の総量が0.5質量%未満ではガラスの構造を強固にし、剛性を向上させる効果が十分に得られず、一方 10質量%を超えるとガラスが不安定になり、靭性が大幅に低下すると共に失透傾向が高まり生産性が著しく低下する。そのため、 TiO_2+ZrO_2 の総量は $0.5\sim10$ 質量%の範囲とすることが必要である。より好ましい範囲は $2\sim8$ 質量%の範囲である。

[0028]

 Ln_xO_y (ランタノイド金属酸化物、 Y_2O_3 、 Nb_2O_5 及び Ta_2O_5 からなる群より選ばれる少なくとも 1 つの化合物)の総量は、 $0\sim5$ 質量%(ただしゼロを含む)であることが好ましい。 Ln_xO_y は、ガラスの構造を強固にし、剛性及び靭性を向上させるという共通の効果を持つ。但し、 Ln_xO_y の総量が 5 質量%を超えるとガラスが不安定になり、靭性が大幅に低下すると共に失透傾向が高まり生産性が著しく低下する。そのため、 Ln_xO_y の総量は $0\sim5$ 質量%(ただしゼロを含む)であることが好ましく、 $0\sim4$ 質量%(ただしゼロを含む)であることがより好ましい。

[0029]

上記の各成分を有するガラス基板において、ガラス中で酸化物からなる清澄剤として働く所定の多価元素を、多価元素の酸化物の総量の、 TiO_2+ZrO_2 の総量に対するモ

10

20

30

40

ル比率が所定の範囲となるように含有させることにより、 As 及び Sbの何れの元素も含有させることなく、ガラス中の気泡を十分に除去することができる。 本実施形態における多価元素とは、 V、 Mn、 Ni、 Mo、 Sn、 Ce 及び Biからなる群の中から選ばれる少なくとも 1種の元素であり、これらの多価元素の酸化物が、それぞれ、 V $_2$ O $_5$ 、 MnO $_2$ 、 Ni $_2$ O $_3$ 、 MoO $_3$ 、 SnO $_2$ 、 CeO $_2$ 、 Bi $_2$ O $_3$ であるとした場合における、多価元素の酸化物の総量の、 TiO $_2$ + ZrO $_2$ の総量に対するモル比率(多価元素の酸化物の総量 / (TiO $_2$ + ZrO $_2$ の総量))を、 0.05~0.50の範囲とすることが必要である。また、多価元素として Ceを含むことで、クラックの発生率が低いガラスを得ることができる。

[0030]

10

20

このように、所定の多価元素を所定の比率で含有させることにより、AsやSbを含有させることなくガラス中の気泡を十分に除去することができる理由については、以下のように推測できる。

[0031]

通常、ガラス中で酸化物の形態をとる清澄剤は、次の2つの働きによって溶融ガラス中の気泡の除去(清澄)に寄与している。

[0032]

(a) 1 つ目は、溶融ガラスの温度を上げていく過程で、溶融ガラス中にガスを放出する働きである。溶融ガラス中の気泡は、その浮揚力で上昇し、溶融ガラスの表面に到達すると破れて消滅する。ここで、溶融ガラス中を気泡が上昇する速度は、気泡の大きさに大きく依存し、大きな気泡は上昇速度が速いために比較的容易に表面に到達するが、小さな気泡は上昇速度が遅く、表面に到達するまでには非常に長い時間が必要になる。溶融ガラスの温度を上げていく過程で清澄剤からガスが放出されると、それによって溶融ガラス中の気泡が大きく成長し、気泡の上昇速度が速くなるため、気泡の消滅が促進される。

[0033]

例えば、多価元素として Ceを含有する場合、高温になることによって、下記の(式 1)の反応が右に進み、溶融ガラス中に O2 ガスが放出される。放出された O2 ガスによって、溶融ガラス中の気泡は大きく成長し、溶融ガラスの表面で消滅する。

[0034]

【数1】

30

$$2CeO_2 = Ce_2O_3 + \frac{1}{2}O_2$$
 (式1)

[0035]

(b) 2 つ目は、溶融ガラスの温度を下げていく過程で、溶融ガラス中のガスを吸収する働きである。例えば、多価元素として Ceを含有する場合、温度を下げていく過程で、(式1)の反応が左に進む。そのため、溶融ガラス中の O₂ ガスが吸収され、気泡は収縮し、消滅する。

[0036]

40

50

このように、溶融ガラス中の気泡を十分に除去するためには、酸化物からなる清澄剤として働く多価元素の価数変化によるガスの放出と吸収が、効果的に行われる必要がある。このような酸化物からなる清澄剤として働く多価元素の価数変化の反応は、溶融ガラス中に共存する他の金属イオン、特にZrイオンの酸化還元反応の影響を大きく受ける。そして所定のガラス成分を有する本実施形態のガラスにおいては、多価元素の酸化物の総量の、 TiO_2+ZrO_2 の総量に対するモル比率(多価元素の酸化物の総量/(TiO_2+ZrO_2 の総量))が、 $0.05\sim0.50$ の範囲である場合に、当該多価元素の価数変化による清澄反応が特に効果的に働くのだと考えられる。

[0037]

多価元素には、V(バナジウム)、Mn(マンガン)、Ni(ニッケル)、Mo(モリ

10

20

30

40

50

ブデン)、Sn(スズ)、Ce(セリウム)及びBi(ビスマス)からなる群の中から選ばれる少なくとも1種を用いる。1種類の多価元素のみを単独で含有させてもよいし、2種以上の多価元素を含有させてもよい。中でも、V、Mn、Sn及びCeは、特に効果的に気泡を除去することができるため好ましい。また、多価元素としてCeを含むことで、クラックの発生率が低いガラスを得ることができるという利点がある。

[0038]

上記多価元素の酸化物の総量の、 TiO_2+ZrO_2 の総量に対するモル比率(多価元素の酸化物の総量 / (TiO_2+ZrO_2 の総量))が所定の範囲を外れると、価数変化による清澄反応が不十分となり、溶融ガラス中の気泡を十分に除去することが困難になる。そのため、上記モル比率は、 $0.05\sim0.50$ の範囲であることが必要であり、 $0.1\sim0.40$ 範囲であることがより好ましい。ここで、上記多価元素の酸化物は、それぞれ、 V_2O_5 、 MnO_2 、 Ni_2O_3 、 MoO_3 、 SnO_2 、 CeO_2 、 Bi_2O_3 であるとしてモル比率を算出する。

[0039]

更に、耐失透性を低下させることなく、清澄の効果を十分に発揮させるという観点からは、上記多価元素の酸化物 V_2 O_5 、 M n O_2 、 N i_2 O_3 、 M n O_3 、 S n O_2 、 C e O_2 、 B i_2 O_3 の含有量は、ガラス成分全体に対して、それぞれ 1 質量%以下であることが好ましい。

[0040]

なお、これらの多価元素は、溶融ガラス中では酸化物からなる清澄剤として機能するものであるが、用いる原料は酸化物の形態に限定されるものではなく、金属単体、水酸化物、硫酸塩、炭酸塩等、公知の形態の原料の中から適宜選択して用いればよい。中でも、取り扱いが容易であるという観点からは、酸化物、水酸化物又は炭酸塩からなる清澄剤として添加することがより好ましい。

[0041]

(情報記録媒体用ガラス基板)

次に本実施形態の情報記録媒体用ガラス基板について説明する。ガラス基板の製造方法に特に限定はなく、これまで公知の製造方法を用いることができる。例えば、各成分の原料として各々相当する酸化物、炭酸塩、硝酸塩、水酸化物等を使用し、所望の割合に秤量し、粉末で十分に混合して調合原料とする。これを例えば1300~1550 に加熱された電気炉中の白金坩堝などに投入し、溶融清澄後、撹拌均質化して予め加熱された鋳型に鋳込み、徐冷してガラスブロックにする。次に、ガラス転移点付近まで再加熱し、徐冷して歪み取りを行う。そして得られたガラスブロックを円盤形状にスライスして、内周及び外周を同心円としてコアドリルを用いて切り出す。あるいは溶融ガラスをプレス成形して円盤状に成形する方法でもよい。そして、このようにして得られた円盤状のガラス基板は、更にその両面を粗研磨及び精研磨された後、水、酸及びアルカリの少なくとも1つの液で洗浄されて最終的な情報記録媒体用ガラス基板とされる。

[0042]

ここで、ヘッドの浮上量や記録媒体の膜厚を小さくする観点などから、研磨工程後のガラス基板の表面粗度Ra(算術平均粗さ)を1 nm以下とし、且つ洗浄工程後の表面粗度Ra,(算術平均粗さ)を表面粗度Raの1.5倍以下とすることが好ましい。アルカリ成分を多く含む、強化処理を行ったガラス基板の場合には、研磨により表面粗度Raを1 nm以下にすることは可能であるが、次の洗浄工程において、水や酸、アルカリで基板表面を表面洗浄したときに、化学的耐久性が低いため表面が激しく浸食される結果、洗浄工程後の表面粗度Ra,が大きくなってしまう。一方、強化処理しないガラス基板では一般に、基板の表面及び内部の組成が均質であるので、洗浄工程においても基板の表面粗度Ra,は大きくは変化しない。このため、ガラス成分を最適化することにより洗浄工程後の表面粗度Ra,を研磨工程後の表面粗度Raの1.5倍以下とすることも可能となる。

[0043]

アルカリ溶出量Aは2.5インチディスク当たり300ppb以下が好ましい。アルカ

リ溶出量Aが300ppbより多いと、ガラス基板を情報記録用媒体として用いた場合に、ガラス基板表面に形成される磁性膜などの記録膜が、溶出したアルカリ成分によって劣化するからである。より好ましいアルカリ溶出量Aは200ppb以下である。

[0044]

線熱膨張係数 は $6.0 \times 1.0^{-7} \sim 9.0 \times 1.0^{-7}$ の範囲が好ましい。線熱膨張係数 がこの範囲から外れると、ガラス基板を用いた情報記録用媒体を取り付ける駆動部の材料の線熱膨張係数との差が大きくなって、情報記録用媒体の固定部に応力が発生し、基板の破損や基板の変形による記録位置のズレが発生し、記録の読み書きができなくなるからである。線熱膨張係数のより好ましい下限値は 6.2×1.0^{-7} / であり、より好ましい上限値は 8.8×1.0^{-7} / である。

[0045]

破壊靭性値Kcは0.80以上であることが好ましい。破壊靭性値Kcが0.80未満であると、ガラス基板表面に磁性膜などの記録膜を形成する工程において加えられる圧力などによりガラス基板にひび割れが生じることがあるからである。また、破壊靭性値Kcが0.80未満であると、基板の機械加工において基板が損傷を受けやすくなり、加工歩留まりが大きく低下する。破壊靭性値Kcのより好ましい下限値は0.85である。ここで、破壊靭性値Kcは、ビッカース硬度試験機を用い、ビッカース圧子にてガラス基板に圧痕をつけ、式2により算出することができる。

[0046]

【数2】

 $Kc = 0.018(E/Hv)^{1/2}(P/C^{3/2}) = 0.026E^{1/2}P^{1/2}a/C^{3/2}$ (式2)

[0047]

但し、K C : 破壊靭性値(P a · m 1 1 2)、E : 弾性率(P a)、H v : ビッカース 硬度(P a)、P : 押し込み荷重(N)、C : クラック長さの平均の半分(m)、a : 圧痕の対角線長さの平均の半分(m)である。

[0048]

図1はビッカース圧痕の模式図である。ビッカース圧痕10の各頂点よりそれぞれクラック11a~11dが伸びている。このとき、式2のa(圧痕の対角線長さの平均の半分)とC(クラック長さの平均の半分)は、それぞれ下記の式で求められる。

a = ((A1+A2)/2)/2) (式3)

A1、A2:直交する2方向におけるビッカース圧痕10の対角線長さ

C = ((L1+L2)/2)/2) (式4)

L1:A1方向に伸びた2本のクラックの両端の長さ

L2:A2方向に伸びた2本のクラックの両端の長さ。

[0049]

クラック発生率は60%以下であることが好ましい。クラック発生率が60%以上であると、ガラス基板表面に磁性膜などの記録膜を形成する工程において加えられる圧力などによりガラス基板にひび割れが生じることがあるからである。また、クラック発生率が60%以上であると、基板を機械加工する際の加工レートのバラつきが大きく、加工歩留まりが低下する。クラック発生率のより好ましい値は50%以下である。ここで、クラック発生率とは、ビッカース硬度試験機を用い、荷重200g、負荷時間15secの条件下にてビッカース圧子にて圧痕をつけた際のクラックの発生率である。

[0050]

本実施形態の情報記録媒体用ガラス基板は、その大きさに限定はなく3.5インチ、2.5インチ、1.8インチ、又はそれ以下の小径ディスクとすることもできる。また、厚さは2mm、1mm、0.63mm、又はそれ以下の薄型とすることもできる。

[0051]

10

20

30

40

(情報記録媒体)

次に、本実施形態のガラス基板を用いた情報記録媒体について説明する。情報記録媒体の基板として本実施形態の情報記録媒体用ガラス基板を用いると、高耐久性及び高記録密度が実現される。以下、図面に基づき情報記録媒体について説明する。

[0052]

図2は情報記録媒体の一例である磁気ディスクDの斜視図である。この磁気ディスクDは、円盤状の情報記録媒体用ガラス基板1の表面に磁性膜2を直接形成したものである。磁性膜2の形成方法としては従来公知の方法を用いることができ、例えば磁性粒子を分散させた熱硬化性樹脂を基板上にスピンコートして形成する方法や、スパッタリング、無電解めっきにより形成する方法が挙げられる。スピンコート法での膜厚は約0.3~1.2μm程度、スパッタリング法での膜厚は0.04~0.08μm程度、無電解めっき法での膜厚は0.05~0.1μm程度であり、薄膜化及び高密度化の観点からはスパッタリング法及び無電解めっき法による膜形成が好ましい。

[0053]

磁性膜2に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。具体的には、Coを主成分とするCoPt、CoCr、CoNiCr、CoCrTa、CoPtCr、CoNiPtや、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtSiOなどが挙げられる。磁性膜2は、非磁性膜(例えば、Cr、CrMo、CrVなど)で分割しノイズの低減を図った多層構成(例えば、CoPtCr/CrMo/CoPtCr、CoCrPtTa/CrMo/CoPtCr、CoCrPtTa/CrMo/CoPtCr、CoCrPtTa/CrMo/CoPtCr、CoCrPtTa/CrMo/coCrPtTaなど)としてもよい。上記の磁性材料の他、フェライト系、鉄・希土類系や、SiO2、BNなどからなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子を分散された構造のグラニュラーなどであってもよい。また、磁性膜2は、内面型及び垂直型の何れの記録形式であってもよい。

[0054]

また、磁気ヘッドの滑りをよくするために磁性膜の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、例えば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。

[0055]

[0056]

更に必要により下地層や保護層を設けてもよい。磁気ディスクにおける下地層は磁性膜2に応じて選択される。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。Coを主成分とする磁性膜2の場合には、磁気特性向上等の観点からCr単体やCr合金であることが好ましい。また、下地層は単層とは限らず、同一又は異種の層を積層した複数層構造としても構わない。例えば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。

磁性膜2の摩耗や腐食を防止する保護層としては、例えば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜2などと共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一又は異種の層からなる多層構成としてもよい。なお、上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。例えば、上記保護層に替えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、更に焼成して酸化ケイ素(SiO2)層を形成してもよい。

[0057]

ここでは、情報記録媒体の一実施態様として磁気ディスクについて説明したが、情報記録媒体はこれに限定されるものではなく、光磁気ディスクや光ディスクなどにも本実施形

10

20

30

40

態の情報記録媒体用ガラス基板を用いることができる。

【実施例】

[0058]

以下、本発明の効果を確認するために行った実施例について説明するが、本発明はこれらに限定されるものではない。

[0059]

所定量の原料粉末を白金るつぼに秤量して入れ、混合したのち、電気炉中で1550で溶解した。原料が充分に溶解したのち、撹拌羽をガラス融液に挿入し、約1時間撹拌した。その後、撹拌羽を取り出し、30分間静置したのち、治具に融液を流しこむことによってガラスブロックを得た。その後各ガラスのガラス転移点付近までガラスブロックを再加熱し、徐冷して歪取りを行った。得られたガラスブロックを厚さ約1.5mm、直径2.5インチの円盤形状にスライスし、内周及び外周を同心円としてカッターを用いて切り出した。そして、両面を粗研磨及び精研磨、洗浄を行って実施例、参考例及び比較例のガラス基板1~56を作製した。作製したガラス基板について下記の物性評価を行った。結果を表1~表8に示す。

[0060]

(気泡数)

作製したガラス基板のそれぞれについて、残留する気泡の数を測定した。測定はガラス基板の全面を対象とし、50倍の光学顕微鏡を用いて、ガラス基板1枚あたりの気泡の数を測定した。

[0061]

(アルカリ溶出量A)

ガラス基板の表面を酸化セリウムで研磨してRa値が2nm以下の平滑面とした後、表面を洗浄し、80 の純水50ml中に24h浸漬した後、ICP発光分光分析装置でその溶出液を分析し算出した。

[0062]

(線熱膨張係数)

示差膨張測定装置を用いて、荷重:5g、温度範囲:25~100 、昇温速度:5/minの条件で測定した。

[0063]

(破壊靭性値Kc)

ビッカース硬度試験機を用い、荷重500g、負荷時間15secの条件下にてビッカース圧子にて圧痕をつけ、上記の式2~4により算出した。

[0064]

(クラック発生率)

ビッカース硬度試験機を用い、荷重200g、負荷時間15secの条件下にてビッカース圧子にて圧痕をつけた際に発生したクラックの数を計算することでクラック発生率を計算した。

[0065]

10

20

【表1】

		比較例	参考例 2	参考例3	実施例 4	比較例 5	比較例 6	比較例7
	\$102	59.0	58.8	59.2	59.2	59.0	59.0	58.9
	A1203	13.4	13.6	13.5	12.9	12.9	13.5	13.5
1	8203	2.0	2.0	2.0	2.2	2.2	2.2	2.0
<u> </u>	Li20	8.4	8.4	8.4	8.4	8.4	8.4	8.4
1	Na ₂ 0	1.4	1.4	1.4	1.6	1.6	9.1	1.6
1	K20	2.4	2.4	2.0	2.0	2.0	2.4	2.4
	08#	4.6	4.6	4.6	4.6	4.6	4.6	4.6
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CaO	3.2	3.2	3.2	3.2	3.2		
ABDX (質問%)	Sr0							
1	8a0							
L	Zn0							
1	Ti02							
	Zr02	2.5	2.5	2.5	2.5	2.5	2.5	2.5
1	Y203							
1	Nb20s	2.5	2.5	2.5	2.5	2.0	2.5	2.5
I	Ta20s							
Si02+A1203+B203(質量%)		74.4	74.4	74.7	74.3	74.1	74.7	74.4
R20(Li20+Na20+K20)(質量%)	(%)	12.2	12.2	11.8	12.0	12.0	12.4	12.4
R'0(Mg0+Ca0+Sr0+Ba0+Zn0)(質	·2n0)(質量%)	7.8	7.8	7.8	7.8	7.8	4.6	4.6
Ti02+Zr02(編輯%)		2.5	2.5	2.5	2.5	2.5	2.5	2.5
Lnx0y(質量%)		2.5	2.5	2.5	2.5	2.0	2.5	2.5
多価元素の酸化物(質量%)		0.10(V ₂ 0s)	0.20(V205)	0.30(\(V205 \)	0.60(V ₂ 0s)	1.90(V20s)	3.00(V205)	3.50(V205)
モル比率(多価元素の酸化物総量	物総量/(Ti02+Zr0z))	0.03	0.05	0.08	0.16	0.51	0.81	0.95
気治数(個)		54	6	e.	5	31	35	30
アルカリ洛出量 A (ppb)		228	216	254	203	509	228	218
1	(3,/	69	7.1	69	7.1	11	70	17
		1.05	1.01	0.98	66.0	86.0	1.02	1.01
クラック発生率(%)		48	50	53	54	54	20	49
40	30			20		10		

[0066]

【表2】

		比較倒8	比較例9	参考例 10	実施例 1.1	実施例 12	比較例13	比較例14
	\$ 102	63.8	63.8	63.8	60.4	60.4	60.4	60.4
	A1203	13.2	13.2	13.2	13.2	12.0	13.1	12.0
	Bz03	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	Li20	6.3	6.3	6.3	6.3	6.3	6.3	6.3
	Naz0	3.4	1.7	1.8	8	1.9	1.9	1.9
	K20	1.5	4.5	4.5	4.5	4.5	4.5	4.5
	0gM	3.2	3.2	3.2	4.4	4.4	3.0	3.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ca0	2.0	2.0	2.0				
60次(減剰%)	SrO				2.5	2.5	2.5	2.5
	BaO							
	2n0							
	Ti02	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	21.02							
	Y203				2.3	2.3	2.3	2.3
	Nb205							
	Ta20s							
Si02+A1203+B203(質量%)		0.08	80.0	80.0	76.6	75.4	76.5	75.4
R20(Li20+Na20+K20)(編輯%)	%)	11.2	12.5	12.6	12.6	12.7	12.7	12.7
R'0(Mg0+Ca0+Sr0+Ba0+Zn0)(+Zn0)(質量%)	5.2	5.2	5.2	6.9	6.9	5.5	5.5
Ti02+Zr02(質量%)		2.5	2.5	2.5	2.5	2.5	2.5	2.5
		0.0	0.0	0.0	2.3	2.3	2.3	2.3
多価元素の酸化物(質量%	()	0.05(Mn02)	0.10(Mn0 ₂)	0.14(Mn02)	0.30(Mn02)	0.80(Mn02)	1.40(Mn02)	1.60(Mn02)
モル比率(多価元素の酸化物総量	:物総量/(Ti02+Zr02))	0.02	0.04	0.05	0.11	0.29	0.51	0.59
氮泡数(個)	1	44	33	10	2	0	33	47
アルカリ海出庫A(ppp)		189	179	204	218	220	228	216
機能膨張係数タ (×10-2)	/,c)	65	64	92	9	64	99	99
		1.13	1.14	1,24	1.21	1.1	1.15	1.15
クラック発生率(%)		45	44	42	41	45	44	46
40	30			20		10		

[0067]

【表3】

		H本体体 15	参差例16	参考例 17	海猪鱼18	参表例 19	比較例20	比較例21
	SiOz	68.0	68.0	68.0	68.0	68.0	68.0	68.0
	A1203	10.2	10.2	10.2	10.2	10.2	10.2	10.2
	B203							
	Li20	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	Na20	2.0	2.0	2.1	2.1	2.2	2.2	2.2
	K20	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	0611	3.0	3.0	3.0	3.0	3.0	3.0	3.0
100	CaO	4.5	4.5	4.5	4.5	4.5	4.5	4.5
相及(萬間%)	SrO							
	BaO							
	2n0							
	Ti02							
	2r02	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	Y203							
	Nb20s							
	Ta20s	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Si02+A1203+B203(質量%)		78.2	78.2	78.2	78.2	78.2	78.2	78.2
R20(Li20+Na20+K20)(質量%	# %)	9.5	9.5	9.6	9.6	9.7	9.7	9.7
R'0(Mg0+Ca0+Sr0+Ba0+Zn0)(質量	+2n0)(氣膏%)	7.5	7.5	7.5	7.5	7.5	7.5	7.5
Ti0z+Zr0z(質量%)	i	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Lux0y(質賞%)		2.1	2.1	2.1	2.1	2.1	2.1	2.1
多個に素の酸化物(質量%)	(9	0.10(Ni203)	0.20(Ni203)0	0.25(Ni203)	0.70(Ni203)	1.50(Ni203)	3	3.00(Ni203)
モル比率(多価元素の酸化物総)	と勧禁電/(TiO2+ZrO2))	0.03	90.0	0.07	0.21	0.45	0.75	0.89
底冶数(個)		34	9	6	3	2	31	30
アルカリ溶出量 A (pob)		163	157	169	153	152	147	142
蘇紫野脳保製タ (×10-1	(J.,C)	65	65	64	65	99	65	99
		1.23	1.09	1.17	1.25	1.15	1.1	1.2
クラック発生率(%)		43	48	46	45	45	48	45

10

20

30

40

[0068]

【表4】

		比較例22	比較例23	参考例 24	実施例25	参考例 26	比較例27	比較例28
	\$ 102	63.0	63.0	63.0	63.0	63.0	63.0	63.0
	A1203	10.3	10.3	10.3	10.3	12.9	12.8	12.8
	B203	2.4	2.4	2.4	2.4			
	L i 20	8.4	8.4	8.4	8.4	8.4	8.4	8.4
	Na20	2.3	2.3	2.4	2.4	2.5	2.5	2.5
	K20	2.2	2.2	2.2	7.0	7.0	7.0	7.0
	Ng0	5.0	5.0	5.0				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CaO							
(名詞名) (文詞名)	Sr0							
	Ba0							
	2n0	1.2	1.2	1.2	1.2			
	T i 02	2.5	2.5	2.5	1.3	1.3	1.3	1.3
A	Zr0z				1.2	1.2	1.2	1.2
A	Y203				2.1	2.1	2.1	
•	Nb20s	2.1	2.1	2.1				2.1
	Ta20s							
Si02+A1203+B203(質量%)		75.7	75.7	75.7	75.7	75.9	75.8	75.8
R20(Li20+Na20+K20)(個書	1%)	12.9	13.0	13.0	17.8	17.9	17.9	17.9
R'0(Mg0+Ca0+Sr0+Ba0+		6.2	6.2	6.2	1.2	0.0	0.0	0.0
Ti0z+Zr0z(質量%)		2.5	2.5	2.5	2.5	2.5	2.5	2.5
Lux0y(質量%)		2.1	2.1	2.1	2.1	2.1	2.1	2.1
多価元素の酸化物(質量%)		0.10(1003)	0.20(Mo03)	0,23(11003)	0.50(11003)	1.30(11003)	2.10(11003)	2.60(No03)
トル比略(多価元素の酸化物総量	、物総量/(Ti02+2r02))	0.02	0.04	90.0	0.13	0.35	0.56	0.69
何治数(個)		58	49	11	3	3	36	38
アルカリ溶出書 Y (ppp)		228	216	210	269	253	249	251
蒙紫那部麻敷 (×10-1/	(°/	69	69	0/	69	73	73	74
•		1.03	11.1	1.14	1.08	1.08	1.02	1.19
クラック発生率(%)		54	20	48	51	20	52	50
40	30		20			10		

[0069]

【表5】

		下表色29	参麦鱼30	参老個31	室施例32	参考例33	比較例34	比較例35
	6:03	0 02	0 02	71.0	71.0	70.0	70.0	70.0
•	2016	2 4	2.2	5.0	25	6.0	6.0	6.0
	A1203	0.0	2	2	2			
	BZU3	,			,		6	0 3
	L i 20	9.3	9.3	9.3	9.3	9.3	9.0	9.3
	Na ₂ 0	2.6	2.6	2.7	2.7	2.8	2.8	2.8
	K20	2.2	2.2	2.2	2.2	2.2	2.2	2.2
	06#							
	Ca0	3.2	3.2	3.2	3.2	3.2	3.2	3.2
相及(軍員名)	Sr0							
	Baû	2.3	2.3	2.3	2.3	2.3	2.3	2.3
	ZnO							
•	T i 02							
	21.02	2.5	2.5	2.5	2.5	2.5	2.5	2.5
***************************************	Y203							
•	Nb205	2.1	2.1	2.1	2.1			
	Ta20s							
S102+A1203+B203(電量%)		76.0	76.0	0.97	76.0	76.0	76.0	76.0
	1%)	14.1	14.2	14.2	14.2	14.3	14.3	14.4
R'0(80+Ca0+Sr0+8a0+Zn0)	+ 2n0)(個量%)	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Ti02+2r02(編書%)		2.5	2.5	2.5	2.5	2.5	2.5	2.5
		2.1	2.1	2.1	2.1	0.0	0.0	0.0
名価 正素の酸化物(質量%)		0.10(Sn0z)	0.20(Sn0z)	0.25(Sn0 ₂)	0.50(Sn02)	1.30(Sn0 ₂)	2.10(Sn0z)	2.70(Sn0 ₂)
モル比率(多価元素の酸化物総	;物総量/(Ti02+2r02))	0.03	0.07	0.08	0.16	0.43	0.69	0.88
気泡数(個)		42	8	7	0	0	35	35
アルカリ海田書 A (pob)		216	223	233	237	226	219	225
	(3,/	65	65	<i>L</i> 9	99	9	99	99
		1.23	1.26	1.19	1.27	1.2	1.17	1.23
クラック発生率(%)		45	45	49	39	42	44	45
40	30		20			10		

[0 0 7 0]

【表6】

		比較例36	比較例37	参考例38	実施例39	参考例40	参考例41	比較例42
	Si 02	63.5	63.5	63.5	63.3	63.3	63.3	63.3
1	A 1203	12.6	12.6	12.6	12.6	12.6	12.5	12.5
1	B203	9.0	9.0	9.0				
1	Li20	8.4	8.4	8.4	8.0	8.0	8.0	8.0
	Na20	2.9	2.9	3.0	3.0	3.1	3.1	3.1
	K20	2.2	2.2	2.2	2.2	2.2	2.2	2.2
	NgO							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CaO				3.4	3.4	3.4	3.4
(記載2001年) 1 1 1 1 1 1 1 1 1 1	Sr0	3.4	3.4	3.4				
1	Ba0							
	2n0							
1	Ti02	1.5	1.5	1.5	1.5	2.5	2.5	2.5
1	2102	1.0	1.0	1.0	1.0			
	Y203	1.7	1.7	1.7	1.7	1.7	1.7	1.7
	Mb205	2.1	2.1	2.1				
.I.	Ta205				2.1	2.1	2.1	2.1
Si02+A1203+B203(智量%)		76.7	76.7	76.7	75.9	75.9	75.8	75.8
R20(Li20+Na20+K20)(質量%	(%)	13.5	13.6	13.6	13.2	13.3	13.3	13.4
R'0(Mg0+Ca0+Sr0+Ba0+Zn0)(鑑)	Zn0)(質量%)	3.4	3.4	3.4	3.4	3.4	3.4	3.4
Ti02+2r02(個量%)		2.5	2.5	2.5	2.5	2.5	2.5	2.5
Lux0v(衛皇%)		3.8	3.8	3.8	3.8	3.8	3.8	3.8
多価元素の酸化物(質量光)		0.10(Ce02)	0.20(Ce0z)	0.26(Ce0z)	0.60(Ce02)	1.40(Ce0z)	2.30(Ce02)	3.10(Ce02)
モル比率(多価元素の酸化物総	物総量/(Ti02+2r02))	0.02	0.04	90.0	0.13	0.26	0.43	0.58
気治数(個)		58	36	9	0	0	3	31
アルカリ海出費 A (pob)		219	216	248	222	241	218	215
線熱膨張係数な (×10-1/	(2,/	64	63	64	63	63	63	64
		1.21	1.28	1.25	1.27	1.31	1.19	1.23
クラック発生率(%)		20	23	24	29	28	25	24
40	30			20		10		

[0071]

【表7】

12.6 12.9 12.0 12.0 4.1 4.1 4.1 4.1 4.1 3.7 3.7 3.7 3.7 3.7 2.9 2.9 3.0 3.0 2.2 2.2 2.2 2.2 7.0 7.0 6.5 6.5 2.1 4.70 7.0 6.5 6.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.1.34 1.26 1.21 3.3 3.3 3.4 3.5 40	N1213 12.05 12.0		Si02	比較例43	参考例 44 62.0	参考例45 62.0	参考例46 62.0	参考例47 63.0		比較例48 63.0
Liz0 Naz0 Liz0 Naz0 Z:9 Z:2 Z:2 Z:2 Z:2 Z:2 Z:2 Z:2	Li20 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.0 3.		A1203 B203	12.6	12.6	12.6	4.1		12.6	12.6
Nazû 2.9 2.9 3.0 3.0	Naz0 2.9 2.9 3.0 3.0 K20 2.2 2.2 2.2 L20 2.2 2.2 2.2 Sr0 Sr0		LI20	3.7	3.7	3.7	3.7	4	0.	.0 4.0
K20 2.2 2.2 2.2 2.2 Lag0 7.0 7.0 6.5 6.5 Ca0 7.0 7.0 6.5 6.5 Sr0 7.0 7.0 6.5 6.5 Ba0 8.0 7.0 7.0 7.5 6.5 Zn0 7.02 2.5 2.5 2.5 1.0 Y203 7.02 2.1 2.1 2.1 Nb203 2.1 2.1 2.1 2.1 Y203 78.7 78.7 78.7 78.7 Nb203 2.1 2.1 2.1 2.1 Y203 7.0 7.0 6.5 6.5 6.5 Wb203 7.0 7.0 7.0 6.5 6.5 6.5 Yanos 2.5 2.5 2.5 2.5 2.5 2.5 Yanos 2.5 2.5 2.5 2.5 2.5 2.5 Yanos 2.1 2.1 2.1	K20 2.2 2.2 2.2 2.2 lig0 7.0 7.0 6.5 6.5 Ca0 7.0 7.0 6.5 6.5 Sr0 8a0 6.5 6.5 6.5 Lob 2.0 7.0 7.0 6.5 6.5 6.5 Ti02 2.5 2.5 2.5 2.1 1.5 1.5 To203 7.02 2.1 2.1 2.1 2.1 2.1 Ta204 7.0 7.0 7.0 6.5 6.5 6.5 Wb203 2.1 2.1 2.1 2.1 2.1 Ta205 7.0 7.0 6.5 6.5 6.5 6.5 (Ti02+Zr02) 7.0 7.0 6.5 2.5 2.5 2.5 L/(Ti02+Zr02) 0.03 0.06 0.07 0.01 0.11 L/(Ti02+Zr02) 0.03 0.06 0.07 0.01 24 5 7 5		Naz0	2.9	2.9	3.0	3.0	æ,	1	
MgO 7.0 7.0 6.5 6.5 CaO 7.0 7.0 6.5 6.5 SrO 7.0 6.5 6.5 BaO 7.0 7.0 7.0 7.0 ZrO2 2.5 2.5 2.5 1.0 Y2O3 2.1 2.1 2.1 2.1 NbzO5 2.1 2.1 2.1 2.1 Y2O3 2.1 2.1 2.1 2.1 NbzO5 2.1 2.1 2.1 2.1 TazOs 7.0 7.0 6.5 6.5 MbzO3 7.0 7.0 6.5 6.5 TazOs 7.0 7.0 6.5 6.5 C(TiOz+ZrOz) 7.0 7.0 6.5 2.5 L/(TiOz+ZrOz) 0.03 0.06 0.07 0.11 L/(TiOz+ZrOz) 0.03 0.06 0.07 0.11 L/(TiOz+ZrOz) 0.03 0.06 0.07 0.11	ligo 7.0 7.0 6.5 6.5 Ca0 Sr0 6.5 6.5 6.5 Sr0 Sr0 1.5 1.5 Zn0 Zn0 1.5 1.5 Ti02 2.5 2.5 2.5 1.0 Yz03 2.1 2.1 2.1 2.1 2.1 Nbz03 2.1 2.1 2.1 2.1 2.1 Yz03 7.0 7.0 6.5 6.5 6.5 Nbz03 7.0 7.0 6.5 6.5 6.5 6.5 Yz03 7.0 7.0 6.5		K20	2.2	2.2	2.2	2.2	2.	~	
Ca0 Ca0 Sr0 8a0 La0 2.0 Zr02 2.5 2.5 1.5 Zr02 2.1 2.1 2.1 1.0 Y203 2.1 2.1 2.1 2.1 Y203 2.1 2.1 2.1 2.1 Ta20s 78.7 78.7 78.7 78.7 Ta20s 7.0 7.0 6.5 6.5 EX 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.5 2.4 5 7 5 X/(Ti0z+Zr0z) 0.03 0.06 0.07 0.11 2.4 5 7 5 4.49 64 64 63 6.3 6.6 0.07 0.01	Ca0 Ca0 Sr0 Sr0 La0 2.5 2.5 2.5 1.5 Ti02 2.5 2.5 2.5 1.0 Y203 2.1 2.1 2.1 2.1 2.1 Nbz03 2.1 2.1 2.1 2.1 2.1 Ta20s 78.7 78.7 78.7 78.7 78.7 Ta20s 7.0 7.0 6.5 6.5 6.5 6.5 (08#	7.0	7.0	6.5	6.5	6.5		7.0
Sr0 Sr0 Ba0 1.0 Zn0 2.5 2.5 1.5 Zr02 2.5 2.5 1.0 Y203 2.1 2.1 2.1 Nb203 2.1 2.1 2.1 Nb203 2.1 2.1 2.1 Nb203 2.1 2.1 2.1 Ta205 78.7 78.7 78.7 R.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.8 8.9 8.9 8.9 <t< th=""><td>Sr0 Sr0 Ba0 1.00 Zr02 2.5 2.5 2.5 1.5 Zr02 2.5 2.5 2.5 1.0 Yz03 2.1 2.1 2.1 2.1 Nbz05 2.1 2.1 2.1 2.1 Ta20s 7.0 7.0 6.5 6.5 Ta20s 7.0 7.0 6.5 6.5 6.5 Ta20s 7.0 7.0 6.5 6.5 6.5 6.5 Ta20s 7.0 7.0 6.5 6.5 6.5 6.5 6.5 Ta21s 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2</td><td>(20章章/世界</td><td>Ca0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Sr0 Sr0 Ba0 1.00 Zr02 2.5 2.5 2.5 1.5 Zr02 2.5 2.5 2.5 1.0 Yz03 2.1 2.1 2.1 2.1 Nbz05 2.1 2.1 2.1 2.1 Ta20s 7.0 7.0 6.5 6.5 Ta20s 7.0 7.0 6.5 6.5 6.5 Ta20s 7.0 7.0 6.5 6.5 6.5 6.5 Ta20s 7.0 7.0 6.5 6.5 6.5 6.5 6.5 Ta21s 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2	(20章章/世界	Ca0							
Ba0 Ba0 Zn0 1.5 Ti02 2.5 2.5 1.5 Zr02 2.5 2.5 1.0 Y203 2.1 2.1 2.1 2.1 Nb205 2.1 2.1 2.1 2.1 Ta206 2.1 2.1 2.1 2.1 Ta205 78.7 78.7 78.7 78.7 Ta206 78.7 78.7 78.7 78.7 Ta205 7.0 7.0 6.5 6.5 6.5 Ta206 7.0 7.0 6.5 6.5 6.5 6.5 Ta207 7.0 7.0 6.5 6.5 6.5 6.5 6.5 L/(Ti02+Zr02) 0.03 0.06 0.07 0.01 0.11 L/(Ti02+Zr02) 0.03 0.06 0.07 0.11 L/(Ti02+Zr02) 0.03 0.06 0.07 0.11 A49 158 139 1.21 1.34 1.34 1.26 1.21 1.34 35 34 35 </th <td>Ba0 1.5 Zn0 1.5 Ti02 2.5 2.5 1.5 Y203 2.1 2.1 2.1 2.1 Nbz03 2.1 2.1 2.1 2.1 Taz0s 78.7 78.7 78.7 78.7 Taz0s 78.7 78.7 78.7 78.7 Taz0s 7.0 7.0 6.5 6.5 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.0 7.0 7.0 6.5 6.5 2.5 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.5 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.4 5 7 5 4.3 1.26 1.21 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 4.0<!--</td--><td>(0/ M M) (1/10)</td><td>Sr0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	Ba0 1.5 Zn0 1.5 Ti02 2.5 2.5 1.5 Y203 2.1 2.1 2.1 2.1 Nbz03 2.1 2.1 2.1 2.1 Taz0s 78.7 78.7 78.7 78.7 Taz0s 78.7 78.7 78.7 78.7 Taz0s 7.0 7.0 6.5 6.5 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.0 7.0 7.0 6.5 6.5 2.5 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.5 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.4 5 7 5 4.3 1.26 1.21 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 4.0 </td <td>(0/ M M) (1/10)</td> <td>Sr0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(0/ M M) (1/10)	Sr0							
Zn0 2.5 2.5 2.5 1.5 Zr02 2.5 2.5 1.0 Y203 2.1 2.1 2.1 2.1 Nb205 2.1 2.1 2.1 2.1 Ta205 2.1 2.1 2.1 2.1 Ta205 78.7 78.7 78.7 78.7 R.8 8.9 8.9 8.9 8.9 R.9 7 7.0 7.5 7.5 R.4 5 7 5 R.4 64 64 63 R.3 34 35 40	Zn0 1.5 Zr02 2.5 2.5 2.5 1.5 Yz03 2.1 2.1 2.1 2.1 Nbz05 2.1 2.1 2.1 2.1 Taz05 78.7 78.7 78.7 78.7 Taz05 7.0 7.0 6.5 6.5 EX 7.0 7.0 6.5 6.5 2.5 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.2 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.2 2.5 2.5 2.5 2.5 2.2		8a0							
Ti02 2.5 2.5 2.5 1.5 Zr02 2.5 2.5 1.0 Vz03 2.1 2.1 2.1 2.1 Nb20s 2.1 2.1 2.1 2.1 Taz0s 78.7 78.7 78.7 78.7 78.7 Taz0s 7.8 8.8 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.9 8.2 7 7.0 7.0 6.5 5.1 1.0 7.0 7.0 6.5 6.5 6.5 1.0 2.1 2.1 2.1 2.1 2.1 2.4 5 7 5 4.0	Ti02 Zr02 Zr02 Yz03 Wbz03 Z.11 Z.12 Z.15 Z.5 Z.5 Z.5 Z.5 Z.5 Z.5 Z.		0uZ						1	
ZrOz 2.5 2.5 2.5 1.0 V203 2.1 2.1 2.1 2.1 Nb205 2.1 2.1 2.1 2.1 Ta206 78.7 78.7 78.7 78.7 Ta205 7.8 7.8 7.8 7.8 Action 7.0 7.0 6.5 6.5 Action 7.0 7.0 7.0 7.0 Action 7.0 7.0 7.0 7.1 Action 7.0 7.0 7.0 7.0 Action 7.0 7.0 7.0 7.0	ZrO2 2.5 2.5 2.5 1.0 Nb203 2.1 2.1 2.1 2.1 2.1 Nb203 2.1 2.1 2.1 2.1 2.1 Taz0s 78.7 78.7 78.7 78.7 78.7 R.B 8.9 8.9 8.9 8.9 8.9 R.B 8.9 8.9 8.9 8.9 R.D 7.0 7.0 6.5 6.5 A.B 7.0 7.0 6.5 6.5 B.B 8.9 8.9 8.9 8.9 B.B 8.9 8.9 <		Ti 02				1.5	•		1.5
V203 V203 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 78.7	V203 V203 2.1 2.5 6.5 <t< td=""><td>***************************************</td><td>Zr02</td><td>2.5</td><td></td><td>2.5</td><td>1.0</td><td>1.0</td><td></td><td>1.0</td></t<>	***************************************	Zr02	2.5		2.5	1.0	1.0		1.0
Nb205 2.1 2.1 2.1 2.1 Ta205 2.1 2.1 2.1 2.1 Ta205 7.0 7.0 78.7 78.7 78.7 78.7 (変更分) 7.0 7.0 6.5 6.5 6.5 (変更分) 7.0 7.0 2.1 2.1 2.1 (でいっとしていっとしていっとしていっとしていっとしていっといっとしていっといっとしていっといっといっといっといっといっといっといっといっといっといっといっといっとい	Nb205 2.1 2.1 2.1 2.1 Ta205 78.7 78.7 78.7 78.7 78.7 第8 8.9 8.9 8.9 8.9 8.9 第8 8.9 8.9 8.9 8.9 8.9 第8 8.9 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.0 7.0 7.0 6.5	•	Y203							
Taz0s 78.7 78.7 78.7 78.7 8.8 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.8 8.9 8.9 8.9 8.9 8.0 7.0 7.0 8.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.1	Taz0s 78.7 78.9 8.9 </td <td></td> <td>Nb205</td> <td>2.1</td> <td>2.1</td> <td>2.1</td> <td>2.1</td> <td>2.1</td> <td></td> <td>2.1</td>		Nb205	2.1	2.1	2.1	2.1	2.1		2.1
(演集分) 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.	(演量分) 78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.		Ta20s							
(8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	Si02+A1203+B203(質量%)		78.7	78.7	78.7	78.7	75.6		75.5
((要量%) 7.0 7.0 6.5 6.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	R20(Li20+Na20+K20)(質量	1 %)	8.8	8.9	8.9	8.9	9.3	1	9.3
2.5 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 0.25(Bi203) 0.60(Bi203) 0.70(Bi203) 1.40(Bi203) 1/√(Ti02+2r02)) 0.03 0.06 0.07 0.11 24 5 7 5 149 158 139 142 63 64 64 63 1.3 1.34 1.26 1.21 35 34 35 40	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	R'0(Mg0+Ca0+Sr0+Ba0+	ł –	7.0	7.0	6.5	6.5	6.5		7.0
2.1 2.1 2.1 2.1 2.1 0.25(Bi203) 0.60(Bi203) 0.70(Bi203) 1.40(Bi203) 0.03 0.06 0.07 0.11 2.4 5 7 5 7 5 5 149 158 139 142 63 64 64 63 1.31 1.34 1.26 1.21 35 40	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	Ti02+Zr02(編輯%)		2.5	2.5	2.5	2.5	2.5	- 1	2.5
L/(Ti0z+Zr0z)) 0.25(Biz03) 0.06 0.07 0.11 24 5 7 5 149 158 139 142 63 64 64 63 1.3 1.34 1.26 1.21 35 34 35 40	0.25(8i203) 0.60(8i203) 0.70(8i203) 1.40(8i203) 24 5 7 5 149 158 139 142 63 64 64 63 1.31 1.34 1.26 1.21 35 35 40	Lux0y(質量%)		2.1	2.1	2.1	2.1	2.1	- 1	2.1
L/(Ti0z+Zr0z)) 0.03 0.06 0.07 0.11 24 5 7 5 149 158 139 142 63 64 64 63 1.3 1.34 1.26 1.21 35 34 35 40	L/(Ti0z+Zr0z)) 0.03 0.06 0.07 0.11 24 5 7 5 149 158 139 142 63 64 64 63 1.3 1.34 1.26 1.21 35 34 35 40	多価元素の酸化物(質量%		0.25(81203)	0.60(81203)	0.70(Bi ₂ 03)	1.40(Bi203)		\sim	2
24 5 7 5 149 158 139 142 63 64 64 63 1.3 1.34 1.21 35 34 35 40	24 5 7 5 149 158 139 142 63 64 64 63 1.3 1.34 1.26 1.21 35 34 35 40	モル比率(多価元素の酸化	Ž	0.03	90.0	0.07	0.11	0.32	- 1	0.56
(A(ppb) 149 158 139 142 (×10⁻¹/²C) 63 64 64 63 1.3 1.34 1.21 (%) 35 34 35 40	(%) 149 158 139 142 (×10 ⁻⁷ /°C) 63 64 64 63 (×10 ⁻⁷ /°C) 1.3 1.34 1.26 1.21 (%) 35 34 35 40	気治数(個)		24	S	7	5	2	- 1	31
(X10 ⁻⁷ /°C) 63 64 64 63 1.3 1.34 1.26 1.21 (%) 35 34 35 40	(×10 ⁻⁷ /°C) 63 64 64 63 1.3 1.34 1.26 1.21 (%) 35 34 35 40	出		149	158	139	142	163		164
(%) 35 34 1.26 1.21 1.34 1.26 1.21 40 40 40	(96) 35 34 35 40 (96)		1 /	63	64	64	63	63		63
生事(%) 35 34 35 40	生職(%) 35 34 35 40			1.3	1.34	1.26	1.21	1.2		1.19
		クラック発生率(%)		35	34	35	40	40		44

[0072]

【表8】

	The state of the s	比較例50	比較例51	参考例 52	実施例53	実施例54	実施例55	比較例56
	\$102	0.89	68.0	0.89	0.79	0.79	67.0	67.0
	A 203	10.2	10.2	10.2	11.6	11.6	11.6	11.6
	B203							
	L i 20	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	Na20	2.0	2.0	2.1	2.1	2.2	2.2	2.2
	K20	3.2	3.2	3.7	3.7	3.7	3.2	3.2
	0811	3.0	3.0	2.5	2.5	2.5	3.0	3.0
(/0 申請/計四	Ca0	4.5	4.5	4.5	4.1	4.1	4.1	4.1
MERKINE NO	Sr0							
	Ba0							
	ZnO							
	Ti02	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	2r02							
	Y203	2.1	2.1	2.1	2.1	2.1	2.1	2.1
	Nb20s							
	Ta20s							
Si02+A1203+B203(質量%))	78.2	78.2	78.2	78.6	78.6	78.6	78.6
R20(L:20+Na20+K20)(質量%)	[%)	9.5	9.5	10.1	1.01	10.2	6.7	9.7
R'0(Mg0+Ca0+Sr0+Ba0+Zn0)	+ 2n0)(質量%)	7.5	7.5	7.0	9.9	9.9	7.1	7.1
Ti02+Zr02(質量%)		2.5	2.5	2.5	2.5	2.5	2.5	2.5
Lnx0y(質量%)		2.1	2.1	2.1	2.1	2.1	2.1	2.1
			0.05(11102)	0.06(Mn02)	0.2(Mn0z)	0.5(#n02)	(20u#)6:0	1.0(Mn0z)
多価元素の酸化物(質量%)		0.05(Mn0 ₂)	+ 0 01(\$00)	+ 0 13(5002)	+ 0 13(Sn02)	+ 0 5(\$n02)	+ 0 8(5n02)	+ 1 0(Sn02)
モル比率(多価元素の酸化物総)	物総量/(Ti02+Zr02))	0.02	0.02	0.05	0.10	0.29	0.50	0.58
気泡数(個)		48	38	6	0	5	8	29
アルカリ溶出量A(ppb)		149	152	153	139	158	136	141
線熱膨張係数 α (×10 ⁻⁷ /	(ɔ,/	63	£9	65	64	65	63	63
破壊靱性Kc		1.2	1.22	1.17	1.19	1.15	1.28	1.18
クラック発生率(%)		40	38	42	38	40	36	39
40	30		20			10		

[0073]

表 $1 \sim$ 表 8 に示すように、 $\underline{$ 実施例の ガラス基板は、ガラス中で酸化物からなる清澄剤として働く多価元素の酸化物の総量の、ガラス成分中の $TiO_2 + ZrO_2$ の総量に対するモル比率が所定の範囲であるため、残留する気泡の数が顕著に少ないことが確認された。また、アルカリ溶出量、線熱膨張係数、破壊靭性値及びクラック発生率の何れも実用上まったく問題のないレベルであった。

【符号の説明】

[0074]

- 1 情報記録媒体用ガラス基板
- 2 磁性膜
- 10 ビッカース圧痕
- 1 1 a 、 1 1 b 、 1 1 c 、 1 1 d クラック
- D 磁気ディスク

【図1】

【図2】

フロントページの続き

(56)参考文献 特開2009-280461(JP,A)

特開2010-001201(JP,A)

特開2001-076336(JP,A)

特開平10-067537(JP,A)

特開平11-302033(JP,A)

(58)調査した分野(Int.CI., DB名)

G11B 5/62-5/858