

ĐẠI HỌC ĐÀ NẮNG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

Image Filter

Three views of filtering:

- Image filters in the spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - moothing, sharpening, measuring texture

- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression
- Templates and Image Pyramids
 - Filtering is a way to match a template to the image
 - Detection, coarse-to-fine registration

Image filter

Templates & Image Pyramids

- Image downsampling
 - Anti-aliasing
- Gaussian image pyramid
- Laplacian image pyramid

Templates & Image Pyramids

Image downsampling

- Anti-aliasing
- Gaussian image pyramid
- Laplacian image pyramid

• Why does a lower resolution image still make sense to us? What do we lose?

Naïve image downsampling

Throw away half the rows and columns

delete even rows delete even columns

delete even rows delete even columns

1/8

1/4

What is the problem with this approach?

Naïve image downsampling

1/2 1/4 (2x zoom)

1/8 (4x zoom)

What is the 1/8 image so pixelated (and do you know what this effect is called)?

Sampling

Very simple example: a sine wave

Undersampling

Very simple example: a sine wave

Unsurprising effect: information is lost.

Undersampling

Very simple example: a sine wave

Unsurprising effect: information is lost.

Surprising effect: can confuse the signal with one of *lower* frequency.

Undersampling

Very simple example: a sine wave

Unsurprising effect: information is lost.

Surprising effect: can confuse the signal with one of *lower* frequency.

Note: we could always confuse the signal with one of higher frequency.

Image filter

Templates & Image Pyramids

Image downsampling

Anti-aliasing

- Gaussian image pyramid
- Laplacian image pyramid

Anti-aliasing

Aliasing

Fancy term for: Undersampling can disguise a signal as one of a lower frequency

Unsurprising effect: information is lost.

Surprising effect: can confuse the signal with one of *lower* frequency.

Note: we could always confuse the signal with one of higher frequency.

Aliasing in textures

Aliasing in photographs

This is also known as "moire"

Temporal aliasing

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Anti-aliasing in textures

aliasing artifacts

anti-aliasing by oversampling

Question 1: How much smoothing do I need to do to avoid aliasing?

Question 2: How many samples do I need to take to avoid aliasing?

⇒ Answer to both: Enough to reach the Nyquist limit.

We'll see what this means soon.

Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{max}$
- f_{max} = max frequency of the input signal
- This will allows to reconstruct the original perfectly from the sampled version

Templates & Image Pyramids

Image downsampling

Anti-aliasing

Gaussian image pyramid

Laplacian image pyramid

The name of this sequence of subsampled images

Algorithm

repeat:
filter
subsample
until min resolution reached

Question: How much bigger than the original image is the whole pyramid?

Answer: Just 4/3 times the size of the original image!

Apply a smoothing filter first, then throw away half the rows and columns

Gaussian filter delete even rows delete even columns

Gaussian filter delete even rows delete even columns

1/8

1/4

Better image downsampling

1/2

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Naïve image downsampling

1/2 1/4 (2x zoom)

1/8 (4x zoom)

Better image downsampling with Gaussian pre-filtering

Some properties of the Gaussian pyramid

What happens to the details of the image?

 They get smoothed out as we move to higher levels.

What is preserved at the higher levels?

Mostly large uniform regions in the original image.

How would you reconstruct the original image from the image at the upper level?

• That's not possible.

Templates & Image Pyramids

- Image downsampling
 - Anti-aliasing
- Gaussian image pyramid
- Laplacian image pyramid

Blurring is lossy

level 0

level 1 (before downsampling)

residual

Can we make a pyramid that is lossless?

512 256 128 64 32 16 8

...Laplacian image pyramid

At each level, retain the residuals instead of the blurred images themselves.

Can we reconstruct the original image using the pyramid?

• Yes we can!

What do we need to store to be able to reconstruct the original image?

Does this mean we need to store both residuals and the blurred copies of the original?

Algorithm

repeat:

filter compute residual subsample

until min resolution reached

It's a Gaussian pyramid.

 h_{θ}

Algorithm

repeat:

filter compute residual subsample

until min resolution reached

What do we need to construct the original image?

What do we need to construct the original image?

(2) smallest image

(1) residuals

Reconstructing the original image

 h_{θ}

Algorithm

repeat:

upsample

sum with residual

until orig resolution reached

Gaussian vs Laplacian Pyramid

Shown in opposite order for space.

Which one takes more space to store?

Why is it called a Laplacian pyramid?

Difference of Gaussians approximates the Laplacian

What are image pyramids used for?

image compression

multi-scale texture mapping

image blending

focal stack compositing

denoising

multi-scale detection

multi-scale registration

Image Filter

Digital Image Processing

Digital Image Processing

Thank You...!