Table of Contents

Sr. No		ctical No	Name of the Practical	Signature
1)	1	A	Write a program for obtaining descriptive statistics of data.	
2)		В	Import data from different data sources (from Excel, csv, mysql, sql server, oracle to R/Python/Excel)	
3)	2	A	Design a survey form for a given case study, collect the primary data and analyze it	
4)		В	Perform suitable analysis of given secondary data.	
5)	3	A	Perform testing of hypothesis using one sample t-test.	
6)		В	Perform testing of hypothesis using two sample t-test.	
7)		C	Perform testing of hypothesis using paired t-test.	
8)	4	A	Perform testing of hypothesis using chi-squared goodness-of-fit test.	
9)		В	Perform testing of hypothesis using chi-squared Test of Independence	
10)	5		Perform testing of hypothesis using Z-test.	
11)	6	A	Perform testing of hypothesis using one-way ANOVA.	
12)		В	Perform testing of hypothesis using two-way ANOVA.	
13)		С	Perform testing of hypothesis using multivariate ANOVA (MANOVA).	
14)	7	A	Perform the Random sampling for the given data and analyse it.	

15)		В	Perform the Stratified sampling for the given data and analyse it.
16)	8		Compute different types of correlation.
17)	9	A	Perform linear regression for prediction.
18)		В	Perform polynomial regression for prediction.
19)	10	A	Perform multiple linear regression.
20)		В	Perform Logistic regression.

A) Write a program for obtaining descriptive statistics of data.

Descriptive statistics are brief descriptive coefficients that summarize a given data set, which can be either a representation of the entire or a sample of a population. Descriptive statistics are broken down into measures of central tendency and measures of variability (spread). Measures of central tendency include the mean, median, and mode, while measures of variability include the standard deviation, variance, the minimum and maximum variables, and the kurtosis and skewness.

-4	A	В	C	D	E	F
1	Age	Ratings				
2	25	4.23			Colui	mn1
3	26	3.24				
4	25	3.98			Mean	32
5	23	2.56			Standard I	2.913916
6	30	3.2			Median	29
7	29	4.6			Mode	25
8	23	3.8			Standard I	9.664368
9	34	3.78			Sample Va	93.4
10	40	2.98			Kurtosis	-0.12813
11	51	4.8			Skewness	1.046398
12	46	3.65			Range	28
13					Minimum	23
14					Maximum	51
15					Sum	352
16					Count	11
17					Largest(1)	51
18					Smallest(:	23
19					Confidenc	6.49261
20						

B) Import data from different data sources (from Excel, csv, mysql, sql server, oracle to R/Python/Excel).

Code:

import os

import pandas as pd

Base='C:/VKHCG' sFileDir=Base + '/01-Vermeulen/01-Retrieve/01-EDS/02-Python' CurrencyRawData = pd.read_excel('C:/VKHCG/01-Vermeulen/00-

RawData/Country_Currency.xlsx') sColumns = ['Country or territory', 'Currency', 'ISO-4217'] CurrencyData = CurrencyRawData[sColumns] CurrencyData.rename(columns={'Country or territory': 'Country', 'ISO-4217': 'CurrencyCode'}, inplace=True)

CurrencyData.dropna(subset=['Currency'],inplace=True) CurrencyData['Country'] = CurrencyData['Country'].map(lambda x: x.strip()) CurrencyData['Currency'] =

CurrencyData['Currency'].map(lambda x: x.strip()) CurrencyData['CurrencyCode'] =

CurrencyData['CurrencyCode'].map(lambda x: x.strip()) print(CurrencyData)

print('~~~~ Data from Excel Sheet Retrived Successfully ~~~~ ')

sFileName=sFileDir + '/Retrieve-Country-Currency.csv' CurrencyData.to_csv(sFileName, index = False)

```
e Python 3.7.4 Shell
File Edit Shell Debug Options Window Help
Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 19:29:22) [MSC v.1916 32 bit
(Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>
==== RESTART: C:/VKHCG/04-Clark/01-Retrieve/Retrieve-Country-Currency.py ====
                     Country
                                        Currency CurrencyCode
                                  Afghan afghani
                  Afghanistan
   Akrotiri and Dhekelia (UK)
Aland Islands (Finland)
                               European euro
2
                                                         EUR
3
                                                         FUR
                     Albania
                                    Albanian lek
                                                         ALL
                     Algeria Algerian dinar
5
                                                         DZD
           Wake Island (USA) United States dollar
271
                                                         USD
272 Wallis and Futuna (France)
                                       CFP franc
                                                         XPF
                       Yemen
274
                                     Yemeni rial
                                                         YER
                              Zambian kwacha
276
                      Zambia
                                                         ZMW
                     Zimbabwe United States dollar
277
                                                         USD
[253 rows x 3 columns]
----- Data from Excel Sheet Retrived Successfully -----
>>>
                                                                    Ln: 20 Col: 4
```

A) Design a survey form for a given case study, collect the primary data and analyze it.

A survey on "Social Media" using google form then send it to everyone to know about their views or perspectives regarding social media. After that the data have been collected and then analysis is done on it by using excel.

Social Media
Social media have its own advantages and disadvantages. This questionnaire section just shows us how often are people connected/addicted to the Social media.
* Required
1. Gender *
Male
○ Female
2. What age category do you belong?*
13 years or younnger
O 16-20
O 21-26

27 or above

	А	В	С	D	E	F	G	Н
1	Timestamp	Score	1. Gender	2. What age category do	3. What social networking	4. How many hours a day	5. Why do you use these	6. Do you think Privacy P
2	12/19/2019 11:43:16		Female	21-26	Instagram	1-2 hours	To be updated with recen	Agree
3	12/19/2019 11:55:34		Male	21-26	Facebook, Instagram, You	4 or more	To be updated with recen	Strongly agree
4	12/19/2019 11:57:57		Male	21-26	Facebook, YouTube	4 or more	To be updated with recen	Neutral
5	12/19/2019 12:01:39		Male	21-26	Facebook, Instagram, You	4 or more	To be updated with recen	Neutral
6	12/19/2019 12:06:46		Male	21-26	Instagram	4 or more	Contact and connect fami	Agree
7	12/19/2019 12:14:18		Male	21-26	Facebook, Instagram, You	4 or more	To be updated with recen	Agree
8	12/19/2019 12:15:48		Male	21-26	Facebook, Instagram, You	3-4	To be updated with recen	Agree
9	12/19/2019 12:29:17		Male	21-26	YouTube	3-4	To be updated with recen	Neutral
10	12/19/2019 12:32:48		Male	21-26	Facebook, Instagram, Yo	1-2 hours	To be updated with recen	Agree
11	12/19/2019 12:36:24		Male	21-26	Facebook, Instagram, Yo	1-2 hours	To be updated with recen	Agree
12	12/19/2019 12:36:29		Male	16-20	Facebook	1-2 hours	To be updated with recen	Disagree
13	12/19/2019 12:39:58		Male	21-26	Instagram	3-4	To be updated with recen	Neutral
14	12/19/2019 12:39:59		Female	16-20	Facebook, Instagram, Yo	3-4	To be updated with recen	Agree
15	12/19/2019 12:40:25		Male	21-26	Instagram	3-4	To be updated with recen	Neutral
16	12/19/2019 12:48:29		Female	21-26	Facebook, Instagram, You	1-2 hours	To be updated with recen	Agree
17	12/19/2019 12:55:32		Female	21-26	Instagram	1-2 hours	Sharing / Liking Posts	Strongly agree
18	12/19/2019 12:57:33		Male	16-20	Facebook, Instagram	3-4	To be updated with recen	Agree
19	12/19/2019 13:00:28		Male	21-26	Instagram	1-2 hours	To be updated with recen	Neutral
20	12/19/2019 13:01:16		Female	27 or above	Facebook, YouTube	1-2 hours	To be updated with recen	Neutral
21	12/19/2019 13:04:59		Female	27 or above	Facebook, Instagram, You	1-2 hours	To be updated with recen	Neutral

Perform analysis of given secondary data.

A) Perform testing of hypothesis using one sample t-test.

One sample t-test: The One Sample t Test determines whether the sample mean is statistically different from a known or hypothesized population mean. The One Sample t Test is a parametric test.

Code:

```
From scipy.stats import ttest_1samp
import numpy as np
ages = np.genfromtxt('ages.csv')
print(ages) ages_mean = np.mean(ages)
print(ages_mean)
tset, pval = ttest_1samp(ages, 30)
print('p-values - ',pval)
if pval< 0.05:
    print(" we are rejecting null hypothesis")
else:
print("we are accepting null hypothesis")
```

```
In [4]: runfile('K:/Research In Computing/Practical Material/Programs/
Practical_05/Prac_3A.py', wdir='K:/Research In Computing/Practical Material/
Programs/Practical_05')
[20. 30. 25. 13. 16. 17. 34. 35. 38. 42. 43. 45. 48. 49. 50. 51. 54. 55.
56. 59. 61. 62. 18. 22. 29. 30. 31. 39. 52. 53. 67. 36. 47. 54. 40. 40.
35. 22. 59. 58. 30. 43. 22. 45. 21. 59. 51. 47. 25. 58. 50. 23. 24. 45.
37. 59. 28. 28. 48. 42. 54. 36. 36. 24. 26. 24. 50. 48. 34. 44. 56. 55.
35. 33. 39. 53. 34. 28. 56. 24. 21. 29. 28. 58. 35. 57. 26. 25. 59. 56.
22. 57. 48. 33. 23. 26. 57. 32. 53. 31. 35. 44. 54. 25. 31. 58. 26. 32.
26. 50. 41. 49. 26. 33. 34. 24. 43. 42. 51. 36. 38. 38. 40. 38. 56. 39.
23. 33. 53. 30. 38.]
39.47328244274809
p-values - 5.362905195437013e-14
we are rejecting null hypothesis
```

B) Write a program for t-test comparing two means for independent samples.

	A		В
1	Men		Women
2		181	160
3		169	150
4		160	160
5		170	175
6		175	160
7		158	170
8		152	160
9		172	150
10		160	155
11		175	162
12		180	165
13		170	148
14		165	159
15		180	163
16		155	170
17		159	178
18		163	180
19		171	156

E	F	G	Н	1	J	K
HO - Height of men a	nd women are sa	ame				
H1 – Height of men a	nd women are th	ne different				
			(-tcritical two-tail <ts< td=""><td>at<tcritical accept<="" tail)="" td="" then="" two=""><td></td><td></td></tcritical></td></ts<>	at <tcritical accept<="" tail)="" td="" then="" two=""><td></td><td></td></tcritical>		
F-Test Two-Sample fo	or Variances					
	Variable 1	Variable 2		t-Test: Two-Sample Assuming Unequal Variances		
Mean	167.5	162.2777778				
Variance	79.5588	87.03594771			Variable 1	Variable 2
Observations	18	18		Mean	167.5	162.278
df	17	17		Variance	79.5588	87.0359
F	0.91409			Observations	18	18
P(F<=f) one-tail	0.42762			Hypothesized Mean Difference	0	
F Critical one-tail	0.44016			df	34	
į	reject equal va	ariance hypothesis		t Stat	1.71657	
				P(T<=t) one-tail	0.04758	
				t Critical one-tail	1.69092	
				P(T<=t) two-tail	0.09516	
				t Critical two-tail	2.03224	

C) Perform testing of hypothesis using paired t-test

d	A	В	C	D	E	F
1	patient	gender	agegrp	bp_before	bp_after	diffrerence
2	1	Male	30-45	143	153	-10
3	2	Male	30-45	163	170	-7
4	3	Male	30-45	153	168	-15
5	4	Male	30-45	153	142	11
6	5	Male	30-45	146	141	5
7	6	Male	30-45	150	147	3
8	7	Male	30-45	148	133	15
9	8	Male	30-45	153	141	12
10	9	Male	30-45	153	131	22
11	10	Male	30-45	158	125	33
12	11	Male	30-45	149	164	-15
13	12	Male	30-45	173	159	14
14	13	Male	30-45	165	135	30
15	14	Male	30-45	145	159	-14
16	15	Male	30-45	143	153	-10
17	16	Male	30-45	152	126	26
18	17	Male	30-45	141	162	-21
19	18	Male	30-45	176	134	42
20	19	Male	30-45	143	136	7
21	20	Male	30-45	162	150	12
22	21	Male	46-59	149	168	-19
23	22	Male	46-59	156	155	1
24	23	Male	46-59	151	136	15
25	24	Male	46-59	159	132	27
26	25	Male	46-59	164	160	4
27	26	Male	46-59	154	160	-6

nce between sampi	e 1 and sample 2 is equal to (J.	
ice between sample	1 and sample 2 is not equal	to 0	
mple for Means		Calumn1	
Variable 1	Variable 2	Mean	156.45
156.45	151.3583333	Standard Error	1.0397
129.7285714	201.004972	Median	154.5
120	120	Mode	162
0.159118103		Standard Deviation	11.39
0		Sample Variance	129.73
119		Kurtosis	-0.439
3.337187051		Skewness	0.5542
0.000564896		Range	47
1.657759285		Minimum	138
0.001129791		Maximum	185
1.980099876		Sum	18774
		Count	120
		Confidence Level(95.	2.0588
	mple for Means **Maniable 7** 156.45** 129.7285714 120 0.159118103 0 119 3.337187051 0.000564896 1.657759285 0.001129791	mple for Means **Variable 1** 156.45** 151.3583333 129.7285714** 201.004972 120 0.159118103 0 119 3.337187051 0.000564896 1.657759285 0.001129791	Column

A) Perform testing of hypothesis using chi-squared goodness of-fit test.

System	0	Ei	$\sum_{i=1}^{(O_i-E_i)^2}$
Windows	20	33.33%	1000
Mac	60	33.33%	
Linux	20	33.33%	

d	A	В	C	D	E	F	G	H	1
1									
2		H0: The p	opulation	distribution of	the variable is t	he same	as the prop	osed distri	bution
3		HA: The d	listribution	s are different					
4									
5									
6		Type	0	Ei	Calculated				
7		windows	20	33.33	5.33120012				
8		Mac	60	33.33	21.34080108				
9		Linux	20	33.33	5.33120012				
10		Total	100	100.00	32.00320132				
11									
12				Table value	5.991				
13									
14				H0 accepted					

B) Perform testing of hypothesis using chi-squared test of independence.

		A	1	В	C			D		
1	User	ID Y	Age	~	Gender	*	Gr	ade	-	
2	9	1562451	0	19	Male		0			
3	1	1581094	4	35	Male		0			
4		1566857	5	26	Female		0			
5		1560324	5	27	Female		0			
6	1	1580400	2	19	Male		0			
7		1572877	3	27	Male		0			
8		1559804	4	27	Female		0			
9		1569482	9	32	Female		0			
10	8	1560057	5	25	Male		0			
11	1	1572731	1	35	Female		0			
12		1557076	9	26	Female		0			
13		1560627	4	26	Female		0			
14	3	1574613	9	20	Male		0			
15	1	1570498	7	32	Male		0			
16		1562897	2	18	Male		0			
17		1569768	6	29	Male		0			
18	3	1573388	3	47	Male		0			
19	1 8	1561748	2	45	Male		0			
20		1570458	3	46	Male		0			
21		1562108	3	48	Female		0			
22		1564948	7	45	Male		0			
23	. A	1573676	0	47	Female		0			
24		1571465	В	48	Male		D			
24				48			D			
	F	G	Н	1	J	K				1
но	: The p	G performan	H ce of girls	l students	J is same as	boys	stuc	lents		1
но	: The p	G performan	H ce of girls	l students	J	boys	stuc	lents		1
но	: The p	G performan performan	H ce of girls ce of boys	l students and girls	J is same as students a	boys are diff	stuc	dents nt.		1
H0 H1	: The p	G performan performan	H ce of girls ce of boys	l students and girls B	j is same as students a	boys	stud	lents		1
H0 H1	: The p	G performan performan O 16	H ce of girls ce of boys A 8	l students and girls B	j is same as students a C	boys are diff	stud ere	dents nt.	l 49	1
H0 H1 Gir	: The p : The p :Is	G performan performan O 16 18	H ce of girls ce of boys A 8	l students and girls B 4	is same as students a C 9	boys : are diff	ere	dents nt.	l 49 50	,
H0 H1 Gir	: The p : The p :Is	G performan performan O 16	H ce of girls ce of boys A 8	l students and girls B	is same as students a C 9	boys : are diff	stud ere	dents nt.	l 49	1
H0 H1 Gir	: The p : The p :Is	G performan performan O 16 18	H ce of girls ce of boys A 8	l students and girls B 4	is same as students a C 9	boys : are diff	ere	dents nt.	l 49 50	
H0 H1 Gir	: The p : The p :Is	G performan performan O 16 18 34	H ce of girls ce of boys A 8 9 17	l students and girls B 4 5	J is same as students a C 9 3	s boys : are diff	ere	dents nt. Tota	1 49 50 99	P
H0 H1 Gir Bo	: The p : The p : Is :Is ys tal	G performan O 16 18 34	H ce of girls ce of boys A 8 9 17	students and girls B 4 5	J is same as students a C 9 3 12	boys are diff	12 15 27	dents nt.	1 49 50 99	r
H0 H1 Gir Bo Tot	: The p : The p : Is ys tal	G performan O 16 18 34 O 16.82828	H ce of girls ce of boys A 8 9 17 A 8.414141	students and girls B 4 5 9 B 4.454545	J is same as students a C 9 3 12 C 5.939394	D D 13.36	12 15 27	dents nt. Tota	49 50 99	ı
H0 H1 Gir Bo Tot	: The p : The p : Is ys tal	G performan O 16 18 34 O 16.82828 17.17172	H ce of girls ce of boys A 8 9 17 A 8.414141 8.585859	I students and girls B 4 5 9 B 4.454545 4.545455	J is same as students a C 9 3 12 C 5.939394 6.060606	boys are diff	12 15 27 364 636	dents nt. Tota	49 50 99	
H0 H1 Gir Bo Tot	: The p : The p : Is ys tal	G performan O 16 18 34 O 16.82828	H ce of girls ce of boys A 8 9 17 A 8.414141 8.585859	I students and girls B 4 5 9 B 4.454545 4.545455	J is same as students a C 9 3 12 C 5.939394 6.060606	D D 13.36	12 15 27	dents nt. Tota	49 50 99	1
H0 H1 Gir Bo Tot	: The p : The p : Is ys tal	G performan O 16 18 34 O 16.82828 17.17172	H ce of girls ce of boys A 8 9 17 A 8.414141 8.585859	I students and girls B 4 5 9 B 4.454545 4.545455	J is same as students a C 9 3 12 C 5.939394 6.060606	D D 13.36	12 15 27 364 636	dents nt. Tota	49 50 99	
H0 H1 Gir Bo Tot	: The p : The p : Is ys tal	G performan O 16 18 34 O 16.82828 17.17172	H ce of girls ce of boys A 8 9 17 A 8.414141 8.585859	I students and girls B 4 5 9 B 4.454545 4.545455	J is same as students a C 9 3 12 C 5.939394 6.060606	D D 13.36	12 15 27 364 636	dents nt. Tota	49 50 99	
H0 H1 Gir Bo Tot	: The p : The p : Is ys tal	G performan oerforman O 16 18 34 O 16.82828 17.17172 34	H ce of girls ce of boys A 8 9 17 A 8.414141 8.585859 17	I students and girls B 4 5 9 B 4.454545 4.545455	J is same as students a C 9 3 12 C 5.939394 6.060606 12 C	D D 13.36	12 15 27 364 636 27	dents nt. Tota	49 50 99	
H0 H1 Gir Bo Tot	: The p : The p : Is ys tal	G performan performan O 16 18 34 O 16.82828 17.17172 34 O 0.040768	H ce of girls ce of boys A 8 9 17 A 8.414141 8.585859 17 A 0.020384	I students and girls B 4 5 9 B 4.454545 4.545455 9	J is same as students a C 9 3 12 C 5.939394 6.060606 12 C	D D 13.36 13.63	12 15 27 364 636 27	dents nt. Tota	49 50 99	
H0 H1 Gir Bo Tot	: The p : The p : The p : Is ys tal	G performan performan O 16 18 34 O 16.82828 17.17172 34 O 0.040768	H ce of girls ce of boys A 8 9 17 A 8.414141 8.585859 17 A 0.020384	I students and girls B 4 5 9 B 4.454545 4.545455 9	J is same as students a C 9 3 12 C 5.939394 6.060606 12 C	D D 13.36 13.63	12 15 27 364 636 27	dents nt. Tota	49 50 99	
H0 H1 Gir Bo Tot Gir Bo	: The p : The p : The p : Is ys tal	G performan performan O 16 18 34 O 16.82828 17.17172 34 O 0.040768	H ce of girls ce of boys A 8 9 17 A 8.414141 8.585859 17 A 0.020384 0.019976	I students and girls B 4 5 9 B 4.454545 4.545455 9	J is same as students a C 9 3 12 C 5.939394 6.060606 12 C	D D 13.36 13.63	12 15 27 364 636 27	dents nt. Tota	49 50 99	
Gir Bo Tot Gir Bo Tot	: The p : The p : The p : Is ys tal	G performan O 16 18 34 O 16.82828 17.17172 34 O 0.040768 0.039952	H ce of girls ce of boys A 8 9 17 A 8.414141 8.585859 17 A 0.020384 0.019976	I students and girls B 4 5 9 B 4.454545 4.545455 9	J is same as students a C 9 3 12 C 5.939394 6.060606 12 C	D D 13.36 13.63	12 15 27 364 636 27	dents nt. Tota	49 50 99	1

Performing testing of hypothesis using Z-Test.

Use a Z-Test if:

Your sample size is greater than 30. Otherwise, use a t test.

Data points should be independent from each other. In other words, one data point isn't related or doesn't affect another data point.

Your data should be normally distributed. However, for large sample sizes (over 30) this doesn't always matter.

Your data should be randomly selected from a population, where each item has an equal chance of being selected.

Sample sizes should be equal if at all possible.

H0: There is no difference between blood pressure before and after.

4	Α	В	C	D	E
1	patient	gender	agegrp	bp_before	bp_after
2	1	Male	30-45	143	153
3	2	Male	30-45	163	170
4	3	Male	30-45	153	168
5	4	Male	30-45	153	142
6	5	Male	30-45	146	141
7	6	Male	30-45	150	147
8	7	Male	30-45	148	133
9	8	Male	30-45	153	141
10	9	Male	30-45	153	131
11	10	Male	30-45	158	125
12	11	Male	30-45	149	164
13	12	Male	30-45	173	159
14	13	Male	30-45	165	135
15	14	Male	30-45	145	159
16	15	Male	30-45	143	153
17	16	Male	30-45	152	126
18	17	Male	30-45	141	162
19	18	Male	30-45	176	134
20	19	Male	30-45	143	136
21	20	Male	30-45	162	150

G	Н	1	J	K	L	М	Ν	0
Colui	mn1		Colui	mn1		z-Test: Tw	o Sample f	or Means
Mean	156.45		Mean	151.3583		-	Variable 1	Variable 2
Standard I	1.039746		Standard E	1.294234		Mean	156.45	151.3583
Median	154.5		Median	149.5		Known Va	129.7286	201.005
Mode	162		Mode	147		Observati	120	120
Standard I	11.38985		Standard I	14.17762		Hypothesi	0	
Sample Va	129.7286		Sample Va	201.005		z	3.066983	
Kurtosis	-0.43859		Kurtosis	-0.50515		P(Z<=z) or	0.001081	
Skewness	0.554244		Skewness	0.393365		z Critical c	1.644854	
Range	47		Range	60		P(Z<=z) tw	0.002162	
Minimum	138		Minimum	125		z Critical t	1.959964	
Maximum	185		Maximum	185				
Sum	18774		Sum	18163				
Count	120		Count	120				
H0- There	is no differe	nce bet	ween the b	lood pressu	e befo	re and after		
H0 rejecte	d							

A) Perform testing of hypothesis using One-Way ANOVA.

ANOVA Assumptions:

The dependent variable (SAT scores in our example) should be continuous.

The independent variables (districts in our example) should be two or more categorical groups.

There must be different participants in each group with no participant being in more than one group. In our case, each school cannot be in more than one district.

The dependent variable should be approximately normally distributed for each category. \Box Variances of each group are approximately equal.

H0: There is no variation in number of coffees.

E	F	G	Н	1	J	K	L	M	N	0
	H0-There	is no variatio	on in nu	mber of coffees						
1	Second	Night		Anova: Single Factor						
1	7 6									
3	2	8		SUMMARY						
4	1	3		Groups	Count	Sum	Average	Variance		
0	6	7		Column 1	5	10	2	2.5		
2		6		Column 2	4	16	4	8.666667		
				Column 3	5	30	6	3.5		
				ANOVA						
				Source of Variation	SS	df	MS	F	P-value	F crit
				Between Groups	40	2	20	4.4	0.039446	3.982298
				Within Groups	50	11	4.545455			
				Total	90	13				
	H0 Reject	ed								

B) Perform testing of hypothesis using Two-way ANOVA.

4	Α	В	C	D
1		supp	len	dose
2	1	VC	4.2	0.5
3	2	VC	11.5	0.5
4	3	VC	7.3	0.5
5	4	VC	5.8	0.5
6	5	VC	6.4	0.5
7	6	VC	10	0.5
8	7	VC	11.2	0.5
9	8	VC	11.2	0.5
10	9	VC	5.2	0.5
11	10	VC	7	0.5
12	11	VC	16.5	1
13	12	VC	16.5	1
14	13	VC	15.2	1
15	14	VC	17.3	1
16	15	VC	22.5	1
17	16	VC	17.3	1
18	17	VC	13.6	1
19	18	VC	14.5	1
20	19	VC	18.8	1
21	20	VC	15.5	1
22	21	VC	23.6	2
23	22	VC	18.5	2

F	G	Н	1	J	K	L	M	N	0	P	Q	1
Hypothysis	for rows: T	here is no s	ignificant diffe	rence betwee	en the	uppliment						
Hypothysis	for column	: There is n	o significant di	fference betw	veen th	e len and do	se					
Anova: Tw	o-Factor W	ith Replicat	ion	ANO	VA							
				Source o	f Varia	SS	df	MS	F	P-value	F crit	
SUMMARY	len	dose	Total	Sam	ple	102.675	1	102.675	3.642079	0.058808	3.922879	
VC				Colu	mns	9342.145	1	9342.145	331.3838	8.55E-36	3.922879	
Count	30	30	60	Inte	ractior	102.675	1	102.675	3.642079	0.058808	3.922879	
Sum	508.9	35	543.9	With	nin	3270.193	116	28.19132				
Average	16.96333	1.166667	9.065									
Variance	68.32723	0.402299	97.22333	Tota	ıl	12817.69	119					
OJ												
Count	30	30	60									
Sum	619.9	35	654.9	Нуре	othysis	accepted th	at there is	no significa	nt differen	ce between	the supplin	nents
Average	20.66333	1.166667	10.915	Нуре	othysis	rejected tha	t there is	a significant	difference	between th	ne len and d	ose
Variance	43.63344	0.402299	118.2854									
Total												
Count	60	60										
Sum	1128.8	70										
Average	18.81333	1.166667										
Variance	58.51202	0.39548							Λ	tivento VA	lindaws	

C) Perform testing of hypothesis using MANOVA.

-41	A	В	C	D
1	Gender	Economic	Kindness	Optimism
2	male	wealthy	5	3
3	male	wealthy	4	6
4	male	wealthy	3	4
5	male	wealthy	2	4
6	male	middle	4	6
7	male	middle	3	6
8	male	middle	5	4
9	male	middle	5	5
10	male	poor	7	5
11	male	poor	4	3
12	male	poor	3	1
13	male	poor	7	2
14	female	wealthy	2	3
15	female	wealthy	3	5
16	female	wealthy	5	3
17	female	wealthy	4	2
18	female	middle	9	8
19	female	middle	6	5
20	female	middle	7	6
21	female	middle	8	9
22	female	poor	8	9

F	G	H	1	J	K	L	M	N	0	P	Q	R	S
Two-Way f	MANOVA							SSCP Matr	ices		Group Co	variance Ma	trices
fact A	stat	df1	df2	F	p-value	part eta-sq		Tot			female	middle	
Pillai Trac	0.190764	2	16	1.885866	0.183909	0.190764		104.9565	59.86957		1.666667	2	
Wilk's Lan	0.809236	2	16	1.885866	0.183909	0.190764		59.86957	110.6087		2	3.333333	
Hotelling	0.235733	2	16	1.885866	0.183909	0.190764							
Roy's Lg R	0.235733							Row (A)			female	poor	
								12.5247	15.41502		7.583333	2.083333	
fact B	stat	df1	df2	F	p-value	part eta-sq		15.41502	18.97233		2.083333	0.916667	
Pillai Trace	0.340249	4	34	1.742501	0.163458	0.170125							
Wilk's Lan	0.8181	4	32	1.778757	0.157443	0.1819		Column (B)		female	wealthy	
Hotelling	0.479878	4	30	1.799541	0.155008	0.193509		31.15295	22.95885		1.666667	-0.5	
Roy's Lg R	0.448078							22.95885	19.37655		-0.5	1.583333	
fact AB	stat	df1	df2	F	p-value	part eta-sa		Interaction	n (AB)		male	middle	
Pillai Trace	0.612127	4	34	3.748958	0.012446	0.306063		11.02887	4.745695		0.916667	-0.75	
Wilk's Lan	0.66397	4	32	4.048738	0.009098	0.33603		4.745695	40.59314		-0.75	0.916667	
Hotelling	1.148132	4	30	4.305494	0.007171	0.364703							
Roy's Lg Re	1.031635							Res			male	poor	
y -1897 - 1897								50.25	16.75		4.25	2.083333	
								16.75	31.66667		2.083333	2.916667	
												Activat	e W

A) Perform the Random Sampling for the given data and analyze it.

1	Α	В	С	D	E	F	G	Н	1
1	sr.no	roll no	name	gender	grade	random sample			
2	2		tushar	male	0	0.712009077			
3	11	1011	shilpa	female	0	0.154686678		1018	
4	10	1010	sanjay	male	0	0.128870233		1001	
5	16	1016	jeevanya	female	0	0.088487238		1005	
6	9		mayuresh	male	0	0.226328459		1011	
7	4	1004	umesh	male	0	0.780785169		1016	
8	18	1018	pallavi	female	0	0.918268098		1013	
9	20	1020	ashwini	female	0	0.889405784			
10	17	1017	tanvi	female	0	0.786585271			
11	3	1003	avaneesh	male	0	0.354570913			
12	12	1012	mangla	female	0	0.717085544			
13	1	1001	sonu	male	О	0.804576547			
14	19	1019	chaitali	female	0	0.080311045			
15	6	1006	chaitanya	male	d	0.613922527			
16	7	1007	rudransh	male	d	0.486692263			
17	5	1005	tanish	male	d	0.081390688			
18	14	1014	shalini	female	d	0.610977591			
19	8	1008	medhansh	male	d	0.616955848			
20	13	1013	neeta	female	d	0.251357692			
21	15	1015	shravani	fomalo	d	0.22923629			
- 1	10	1010	Siliavaili	remaie	u	0.22323023			
- 1		0.000	11 2000		1 0000		0000		
d	A	В	C	D	E	F	G	н	1
1	A sr.no	B roll no	C name	D gender	1 0000	F random sample	G	н	1
1 2	A sr.no	B roll no 1002	C name tushar	D gender male	E	F random sample 0.712009077	G		1
1 2 3	A sr.no 2	B roll no 1002 1011	C name tushar shilpa	D gender male female	E grade	F random sample 0.712009077 0.154686678	G	1010	1
1 2 3 4	A sr.no 2 11 10	B roll no 1002 1011 1010	c name tushar shilpa sanjay	D gender male female male	E grade o	F random sample 0.712009077 0.154686678 0.128870233	G	1010 1004	1
1 2 3 4	A sr.no 2	B roll no 1002 1011 1010	C name tushar shilpa sanjay jeevanya	D gender male female male female	grade o	F random sample 0.712009077 0.154686678	G	1010	1
1 2 3	A sr.no 2 11 10 16	B roll no 1002 1011 1010	c name tushar shilpa sanjay	D gender male female male female	E grade o o o	F random sample 0.712009077 0.154686678 0.128870233	G	1010 1004	1
1 2 3 4 5 6 7	A sr.no 2 11 10	B roll no 1002 1011 1010 1016 1009	C name tushar shilpa sanjay jeevanya	D gender male female male female	grade o o o	F random sample 0.712009077 0.154686678 0.128870233 0.088487238	G	1010 1004 1017	1
1 2 3 4 5 6 7	A sr.no 2 11 10 16	B roll no 1002 1011 1010 1016 1009 1004	C name tushar shilpa sanjay jeevanya mayuresh	gender male female male female male	grade o o o o	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459	G	1010 1004 1017 1001	1
1 2 3 4 5 6 7 8	A sr.no 2 11 10 16 9	B roll no 1002 1011 1010 1016 1009 1004 1018	c name tushar shilpa sanjay jeevanya mayuresh umesh	gender male female male female male male	grade o o o o o	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8	A sr.no 2 11 10 16 9 4	B roll no 1002 1011 1010 1016 1009 1004 1018	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi	gender male female male female male male female	grade o o o o o o	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8 9	A sr.no 2 11 10 16 9 4 18	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017	C name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini	gender male female male female male female female female	grade o o o o o o o o	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8 9 10	A sr.no 2 11 10 16 9 4 18 20	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017 1003	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini tanvi	gender male female male female male female female female	grade o o o o o o o o o	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784 0.786585271	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8 9 10 11	A sr.no 2 11 10 16 9 4 18 20 17	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017 1003	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini tanvi avaneesh	gender male female male female male female female female female	grade o o o o o o o o o o o	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784 0.786585271 0.354570913	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8 9 10 11 12 13	A sr.no 2 11 10 16 9 4 18 20 17 3	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017 1003 1012 1001	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini tanvi avaneesh mangla	gender male female male female male female female female female female	grade o o o o o o o o o o o o	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784 0.786585271 0.354570913 0.717085544	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8 9 10 11 12 13 14	A sr.no 2 11 10 16 9 4 18 20 17 3 12	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017 1003 1012 1001	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini tanvi avaneesh mangla sonu	gender male female male female male female female female female male female female	E grade	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784 0.786585271 0.354570913 0.717085544 0.804576547	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	A sr.no 2 11 10 16 9 4 18 20 17 3 12 1	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017 1003 1012 1001 1019 1006	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini tanvi avaneesh mangla sonu chaitali	gender male female male female male female female female female female female male	E grade	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784 0.786585271 0.354570913 0.717085544 0.804576547 0.080311045	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	A sr.no 2 11 10 16 9 4 18 20 17 3 12 1 19 6	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017 1003 1012 1001 1019 1006 1007	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini tanvi avaneesh mangla sonu chaitali chaitanya	gender male female male female male female female female female female female male	grade o o o o o o o o o o o o o d d	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784 0.786585271 0.354570913 0.717085544 0.804576547 0.080311045 0.613922527	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	A sr.no 2 11 10 16 9 4 18 20 17 3 12 1 19 6	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017 1003 1012 1001 1019 1006 1007 1005	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini tanvi avaneesh mangla sonu chaitali chaitanya rudransh	gender male female male female female female female male female male male male male male male male	E grade o o o o o o o o o o o d d	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784 0.786585271 0.354570913 0.717085544 0.804576547 0.080311045 0.613922527 0.486692263	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6	A sr.no 2 11 10 16 9 4 18 20 17 3 12 1 19 6 7 5	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017 1003 1012 1001 1019 1006 1007 1005 1014	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini tanvi avaneesh mangla sonu chaitali chaitanya rudransh	gender male female male female male female female female female female male female male female male female female	E grade o o o o o o o o o o o d d d d	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784 0.786585271 0.354570913 0.717085544 0.804576547 0.080311045 0.613922527 0.486692263 0.081390688	G	1010 1004 1017 1001 1007	1
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18	A sr.no 2 11 10 16 9 4 18 20 17 3 12 1 19 6 7 5 14	B roll no 1002 1011 1010 1016 1009 1004 1018 1020 1017 1003 1012 1001 1019 1006 1007 1005 1014 1008	c name tushar shilpa sanjay jeevanya mayuresh umesh pallavi ashwini tanvi avaneesh mangla sonu chaitali chaitanya rudransh tanish shalini	gender male female male female male female female female female female male female male female male female female	E grade o o o o o o o o o o d d d d	F random sample 0.712009077 0.154686678 0.128870233 0.088487238 0.226328459 0.780785169 0.918268098 0.889405784 0.786585271 0.354570913 0.717085544 0.804576547 0.080311045 0.613922527 0.486692263 0.081390688 0.610977591	G	1010 1004 1017 1001 1007	1

B) Perform the Stratified Sampling for the given data and analyze it.

	A		В		C		D		E		F					
1	sr.no	roll	no	na	me	ge	nder	grad	le	rand	om san	nple				
2		5	1005	tar	nish	ma	ale	d			0.0813	90688	3			
3		.0	1010	sar	njay	ma	ale	0			0.1288	70233	3			
4		9	1009	ma	yuresh	ma	ale	0			0.2263	28459)			
5		3	1003	ava	aneesh	ma	ale	0			0.3545	70913	3			
5		7	1007	ruc	dransh	ma	ale	d			0.4866	92263	3			
7		6	1006	cha	aitanya	ma	ale	d			0.6139	22527	7			
8		8	1008	me	edhansh	ma	ale	d			0.6169	55848	3			
9		2	1002	tus	shar	ma	ale	o			0.7120	09077	7			
0		4	1004	un	nesh	ma	ale	0			0.7807	85169	9			
1		1	1001	soi	nu	ma	ale	0			0.8045	76547	7			
2		9	1019	cha	aitali	fe	male	0			0.0803	11045	5			
3		6	1016	jee	evanya	fe	male	0			0.0884	87238	3			
4		1	1011	shi	ilpa	fe	male	0			0.1546	86678	3			
5	3	.5	1015	shi	ravani	fe	male	d			0.229	23629)			
6		3	1013	ne	eta	fe	male	d			0.2513	57692)			
7		4	1014	sha	alini	fe	male	d			0.6109	77591	L			
8	1	2	1012	ma	angla	fe	male	0			0.7170	85544	1			
9	1	.7	1017	tar	nvi	fe	male	0			0.7865	85271	L			
0.0		20	1020	asl	nwini	fe	male	0			0.8894	05784	1			
1		.8	1018	pa	llavi	fe	male	0			0.9182	68098	3			
Н	1			K	L		М	N		0	p	Q		R	S	1
	6:		fl-													
	fied randor 1003	n sample	ior male	-												
	1006				Sort										?	×
	1002			-	*AL Add Le	vel	× <u>D</u> elet	e Level		Copy Level	A .	<u>O</u> ptio	ns		My data ha	s <u>h</u> eade
	1009				Column				Sort	On			Orde	r		
					Sort by	gend	er	~	Valu	ues		~	Zto	A		~
	fied randor 1015	n sample	tor tema	ale	Then by	ando	om sample	~	Valu	ues		V	Smal	lest to Lar	gest	~
	1019															
	1016															
1	1017															

A) Write a program for computing different correlation.

A	A	В
1	Boys	Girls
2	2	5
2 3 4 5	2	4
4	5	7
5	7	8
6	9	1
7	4	2
8	9	3
9	4	4
10	3	5
11	4	6

A) Write a program to perform Linear Regression for prediction.

Linear regression is a basic and commonly used type of predictive analysis.

The overall idea of regression is to examine two things:

Does a set of predictor variables do a good job in predicting an outcome (dependent) variable?

Which variables in particular are significant predictors of the outcome variable, and in what way do they—indicated by the magnitude and sign of the beta estimates—impact the outcome variable?

These regression estimates are used to explain the relationship between one dependent variable and one or more independent variables. The simplest form of the regression equation with one dependent and one independent variable is defined by the formula y = c + b*x, where y = estimated dependent variable score, c = constant, b = regression coefficient, and x = score on the independent variable.

```
> library(ggplot2)
Warning message:
package 'ggplot2' was built under R version 3.6.2
> ggplot(data=mtcars, aes(x=wt, y=mpg)) +geom point()
> mpg model<-lm(mpg~wt,data=mtcars)
> summary(mpg model)
Call:
lm(formula = mpg ~ wt, data = mtcars)
Residuals:
    Min
          1Q Median 3Q Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2851 1.8776 19.858 < 2e-16 *** wt -5.3445 0.5591 -9.559 1.29e-10 ***
wt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
```


- > ggplot(data=mtcars,aes(x=wt,y=mpg))+geom_point()+geom_abline(intercept=37.2851,slope=-5.3445,color="red")
 > preds<-predict(mpg_model,newdata=mtcars)
- > preds

Mazda RX4 Wag	Datsun 710	Hornet 4 Drive
21.919770	24.885952	20.102650
Valiant	Duster 360	Merc 240D
18.793255	18.205363	20.236262
Merc 280	Merc 280C	Merc 450SE
18.900144	18.900144	15.533127
Merc 450SLC	Cadillac Fleetwood	Lincoln Continental
17.083024	9.226650	8.296712
Fiat 128	Honda Civic	Toyota Corolla
25.527289	28.653805	27.478021
Dodge Challenger	AMC Javelin	Camaro Z28
18.472586	18.926866	16.762355
Fiat X1-9	Porsche 914-2	Lotus Europa
26.943574	25.847957	29.198941
Ferrari Dino	Maserati Bora	Volvo 142E
22.480940	18.205363	22.427495
	21.919770 Valiant 18.793255 Merc 280 18.900144 Merc 450SLC 17.083024 Fiat 128 25.527289 Dodge Challenger 18.472586 Fiat X1-9 26.943574 Ferrari Dino	21.919770 24.885952 Valiant Duster 360 18.793255 18.205363 Merc 280 Merc 280C 18.900144 18.900144 Merc 450SLC Cadillac Fleetwood 17.083024 9.226650 Fiat 128 Honda Civic 25.527289 28.653805 Dodge Challenger AMC Javelin 18.472586 18.926866 Fiat X1-9 Porsche 914-2 26.943574 25.847957 Ferrari Dino Maserati Bora

B) Perform Polynomial Regression for prediction.

Code:

```
import numpy as np
import matplotlib.pyplot as plt
def estimate_coef(x, y):
n = np.size(x)
m_x, m_y = np.mean(x), np.mean(y)
SS_xy = np.sum(y*x) - n*m_y*m_x
SS_x = np.sum(x*x) - n*m_x*m_x
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1 * m_x
return(b_0, b_1)
def plot_regression_line(x, y, b):
plt.scatter(x, y, color = "m", marker = "o", s = 30)
y_pred = b[0] + b[1]*x
plt.plot(x, y_pred, color = "g")
plt.xlabel('x')
plt.ylabel('y')
plt.show()
def main():
x = \text{np.array}([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])
b = estimate\_coef(x, y)
print("Estimated coefficients:\nb_0 = \{\}\ b_1 = \{\}".format(b[0], b[1]))
plot_regression_line(x, y, b)
if __name__ == " main ": main()
```

Output:

In [1]: runfile('C:/Users/SIAC/9b.py', wdir='C:/Users/SIAC')
Estimated coefficients:
b_0 = 1.2363636363636363 b_1 = 1.1696969696969697

A) Write a Program for Multiple Linear Regression analysis.

```
import numpy as np
import matplotlib as mpl
from mpl_toolkits.mplot3d
import Axes3D
import matplotlib.pyplot as plt
def generate_dataset(n):
\mathbf{x} = []
y = []
random_x1 = np.random.rand()
random_x2 = np.random.rand()
for i in range(n):
x1 = i
x2 = i/2 + np.random.rand()*n
x.append([1, x1, x2])
y.append(random_x1 * x1 + random_x2 * x2 + 1)
return np.array(x), np.array(y)
x, y = generate\_dataset(200)
mpl.rcParams['legend.fontsize'] = 12
fig = plt.figure()
ax = fig.gca(projection ='3d')
ax.scatter(x[:, 1], x[:, 2], y, label = 'y', s = 5)
ax.legend()
ax.view_init(45, 0)
plt.show() d
ef mse(coef, x, y):
```

```
return np.mean((np.dot(x, coef) - y)**2)/2
def gradients(coef, x, y):
return np.mean(x.transpose()*(np.dot(x, coef) - y), axis = 1)
def multilinear_regression(coef, x, y, lr, b1 = 0.9, b2 = 0.999, epsilon = 1e-8):
prev_error = 0
m_coef = np.zeros(coef.shape)
v_coef = np.zeros(coef.shape) moment_m_coef = np.zeros(coef.shape)
moment_v_coef = np.zeros(coef.shape)
t = 0
while True:
error = mse(coef, x, y)
if abs(error - prev_error) <= epsilon:</pre>
break
prev_error = error
grad = gradients(coef, x, y)
t += 1
m\_coef = b1 * m\_coef + (1-b1)*grad
v\_coef = b2 * v\_coef + (1-b2)*grad**2
moment_m\_coef = m\_coef / (1-b1**t)
moment_v_coef = v_coef / (1-b2**t)
delta = ((lr / moment_v_coef**0.5 + 1e-8) *(b1 * moment_m_coef + (1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad/(1-b1)*grad
b1**t)))
coef = np.subtract(coef, delta)
return coef
coef = np.array([0, 0, 0])
c = multilinear_regression(coef, x, y, 1e-1)
fig = plt.figure()
```

```
ax = fig.gca(projection = '3d')
ax.scatter(x[:, 1], x[:, 2], y, label = 'y', s = 5, color = "dodgerblue")
ax.scatter(x[:, 1], x[:, 2], c[0] + c[1]*x[:, 1] + c[2]*x[:, 2], label = 'regression', s = 5, color = "orange")
ax.view\_init(45, 0)
ax.legend()
plt.show()
```

In [1]: runfile('C:/Users/SIAC/10a.py', wdir='C:/Users/SIAC')

B) Perform Logistic Regression analysis.

Code:

```
import os
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import scipy.stats as stats
from sklearn import linear_model
from sklearn import preprocessing
from sklearn import metrics
matplotlib.style.use('ggplot')
plt.figure(figsize=(9,9))
def sigmoid(t):
return (1/(1 + np.e^{**}(-t)))
plot_range = np.arange(-6, 6, 0.1)
y_values = sigmoid(plot_range)
plt.plot(plot_range,y_values,color="red")
titanic_train = pd.read_csv("titanic_train.csv")
char_cabin = titanic_train["Cabin"].astype(str)
new_Cabin = np.array([cabin[0] for cabin in char_cabin])
titanic_train["Cabin"] = pd.Categorical(new_Cabin)
new_age_var = np.where(titanic_train["Age"].isnull(),
       28,
       titanic_train["Age"])
titanic_train["Age"] = new_age_var
label_encoder = preprocessing.LabelEncoder()
```

```
encoded_sex = label_encoder.fit_transform(titanic_train["Sex"])
log_model = linear_model.LogisticRegression()
log_model.fit(X = pd.DataFrame(encoded_sex),
       y = titanic_train["Survived"])
print(log_model.intercept_)
print(log_model.coef_)
preds = log_model.predict_proba(X= pd.DataFrame(encoded_sex))
preds = pd.DataFrame(preds)
preds.columns = ["Death_prob", "Survival_prob"]
pd.crosstab(titanic_train["Sex"], preds.ix[:, "Survival_prob"])
encoded_class = label_encoder.fit_transform(titanic_train["Pclass"])
encoded_cabin = label_encoder.fit_transform(titanic_train["Cabin"])
train_features = pd.DataFrame([encoded_class,
       encoded_cabin,
       encoded_sex,
       titanic train["Age"]]).T
log_model = linear_model.LogisticRegression()
log_model.fit(X = train_features ,
       y = titanic_train["Survived"])
print(log_model.intercept_)
print(log_model.coef_)
preds = log_model.predict(X= train_features)
pd.crosstab(preds,titanic_train["Survived"])
log_model.score(X = train_features , y = titanic_train["Survived"])
metrics.confusion_matrix(y_true=titanic_train["Survived"], y_pred=preds)
print(metrics.classification_report(y_true=titanic_train["Survived"], y_pred=preds) )
titanic_test = pd.read_csv("titanic_test.csv")
```

```
char_cabin = titanic_test["Cabin"].astype(str)
new_Cabin = np.array([cabin[0] for cabin in char_cabin])
titanic_test["Cabin"] = pd.Categorical(new_Cabin)
new_age_var = np.where(titanic_test["Age"].isnull(),
       28,
       titanic_test["Age"])
titanic_test["Age"] = new_age_var
encoded_sex = label_encoder.fit_transform(titanic_test["Sex"])
encoded_class = label_encoder.fit_transform(titanic_test["Pclass"])
encoded_cabin = label_encoder.fit_transform(titanic_test["Cabin"])
test_features = pd.DataFrame([encoded_class,
encoded_cabin,encoded_sex,titanic_test["Age"]]).T
test_preds = log_model.predict(X=test_features)
submission = pd.DataFrame({"PassengerId":titanic_test["PassengerId"],
"Survived":test_preds})
submission.to_csv("tutorial_logreg_submission.csv", index=False)
print(pd)
```

