CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 20 GENNAIO 2020

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. Chi usufruisce dell'esonero non deve rispondere ad esercizi e domande marcate con ★.

Non è necessario consegnare la traccia.

Esercizio 1. Posto $S = \mathbb{Z} \times \mathbb{N}$, si considerino l'applicazione $f: (x, y) \in S \mapsto x^2 + y^2 \in \mathbb{N}$ ed il suo nucleo di equivalenza \mathcal{R} .

- (i) Elencare gli elementi di $[(1,0)]_{\mathcal{R}}$.
- \bigstar (ii) f è iniettiva? f è suriettiva?
- \bigstar (iii) Stabilire se $[(x,y)]_{\mathcal{R}} \in S/\mathcal{R} \mapsto x^2 + y^2 \in \mathbb{N}$ è un'applicazione ben definita e, nel caso, se è iniettiva.

Sia ora σ la relazione d'ordine definita in S da: $\forall (x,y),(z,t) \in S$

$$(x,y) \sigma(z,t) \iff ((x,y) = (z,t) \lor x^2 + y^2 < z^2 + t^2).$$

- (iv) (S, σ) è totale? Determinare in (S, σ) eventuali minimo, massimo, elementi minimali, elementi massimali.
- (v) Sempre in (S, σ) , determinare gli insiemi dei minoranti e dei maggioranti di $X := \{(0, 1), (1, 0)\}$ e, se esistono, inf X e sup X. (S, σ) è un reticolo?
- (vi) Il diagramma a destra rappresenta un reticolo? Nel caso, un reticolo distributivo?, complementato?, booleano?
- (vii) Determinare, se esiste, un sottoinsieme T di S tale che (T,σ) sia rappresentato dal diagramma di Hasse a destra; se non è possibile farlo spiegare perché.

Esercizio 2. Sia $K = \mathbb{Z}_7 \setminus \{\bar{0}\}.$

- (i) Spiegare, fornendo una giustificazione completa, perché è ben definita l'operazione binaria $*: (a,b) \in K \times K \longmapsto \bar{3}ab \in K.$
- \bigstar (ii) Decidere se * è commutativa e se è associativa;
- \bigstar (iii) stabilire se esiste (e nel caso, calcolare) l'elemento neutro in (K,*).
 - (iv) Perché, se a è un intero coprimo con 7, l'equazione congruenziale $3ax \equiv_7 b$ ha sempre soluzione?
 - (v) Determinare una classe $a \in K$ tale che $\bar{4} * a = \bar{6}$.
- ★ (vi) Se la domanda ha senso, determinare l'insieme degli elementi invertibili in (K, *). Che tipo di struttura (semigruppo, monoide, gruppo) è (K, *)?
- $\bigstar(vii)$ Verificare che $L := \{\bar{2}, \bar{5}\}$ è una parte chiusa di (K, *) e che (L, *) è un gruppo.

Esercizio 3. Dare la definizione di partizione di un insieme.

- (i) Scrivere una partizione \mathcal{F} dell'insieme $A = \{1, 2, 3, 4\}$ tale che $|\mathcal{F}| = 2$;
- (ii) descrivere, specificandone il grafico (costituito da coppie ordinate in $A \times A$), la relazione di equivalenza \sim corrispondente alla partizione \mathcal{F} fornita al punto precedente (cioè quella tale che $A/\sim = \mathcal{F}$);
- (iii) quante sono, in totale, le partizioni di A di cardinalità 2?

Esercizio 4. Detto \mathbb{P} l'insieme dei numeri interi positivi primi, per ogni $p \in \mathbb{P}$, sia f_p il polinomio $\overline{15}x^3 + \overline{3}x^2 + \overline{1} \in \mathbb{Z}_p[x]$.

(i) Determinare l'insieme A dei $p \in \mathbb{P}$ tali che f_p sia monico di grado 3 e l'insieme B dei $p \in \mathbb{P}$ tali che f_p sia monico.

Posto $p = \max A$,

- (ii) scrivere f_p come prodotto di polinomi irriducibili monici;
- (iii) quanti sono i polinomi associati a f_p in $\mathbb{Z}_p[x]$?
- (iv) Se g è un polinomio associato a f_p in $\mathbb{Z}_p[x]$, g ammette necessariamente radici in \mathbb{Z}_p ? Nel caso, quali sono queste radici?