ECN 6578, Cours 6

William McCausland

2019-10-09

Lemme de Fatou

▶ Lemme de Fatou : pour une suite $X_n \ge 0$ de v.a.

$$E[\liminf_{n\to\infty} X_n] \leq \liminf_{n\to\infty} E[X_n].$$

- Notes :
 - 1. Hypothèse très faible concernant X_n .
 - 2. Résultat pour $X_n \ge C > -\infty$ suit immédiatement.
 - 3. Les deux cotés peuvent être infinis.
- ▶ Construction d'une séquence convergente : $Y_n \equiv \inf_{k \ge n} X_k$.
 - 1. $0 \le Y_n \le X_n$.
 - 2. $Y_n \leq Y_{n+1}$ ($\{k \geq n\}$ décroissant).
 - 3. $Y_n \nearrow Y \equiv \liminf_{n \to \infty} X_n$.
- Preuve :

$$\liminf_n E[X_n] \ge \liminf_n E[Y_n] = \lim_n E[Y_n] = E[Y] = E[\liminf_n X_n]$$

Lemme de Fatou pour $X_n \leq C < \infty$

▶ Si $X_n \le C < \infty$, $-X_n \ge -C > -\infty$ et par le lemme de Fatou,

$$\begin{aligned} & \liminf_n E[-X_n] \geq E[\liminf_n -X_n], \\ & \liminf_n -E[X_n] \geq E[-\limsup_n X_n], \\ & -\limsup_n E[X_n] \geq -E[\limsup_n X_n], \\ & \limsup_n E[X_n] \leq E[\limsup_n X_n]. \end{aligned}$$

Théorème de convergence dominée

▶ Pour une séquence X_n de variables aléatoires, X et Y v.a. telles que $P(X_n \to X) = 1$, $|X_n| \le Y$ et $E[Y] < \infty$.

$$\lim_{n\to\infty} E[X_n] = E[X].$$

- ► Notes :
 - 1. La condition avec Y (dominance) plus faible que $|X_n|$ uniformement bornés (Y = c); le résultat est donc plus fort.
 - 2. Même v.a. dominante Y pour tous les n.
- Preuve :

$$E[Y] + E[X] = E[Y + X] = E[Y + \lim_{n} X_{n}] = E[Y + \lim_{n} \inf X_{n}]$$

$$E[Y + \lim_{n} \inf X_{n}] \leq \liminf_{n} E[Y + X_{n}] = E[Y] + \lim_{n} \inf E[X_{n}]$$

$$E[Y] - E[X] = \dots \leq \dots = E[Y] - \lim_{n} \sup_{n} E[X_{n}].$$

$$\lim_{n} \sup_{n} E[X_{n}] \leq E[X] \leq \lim_{n} \inf_{n} E[X_{n}].$$

$$\lim_{n} E[X_{n}] = E[X].$$

Remarque sur les ensembles non-dénombrables de variables aléatoires

- ▶ Soit $\{X_t\}_{t\geq 0}$, un ensemble non-dénombrable de variables aléatoires.
- Exemples :
 - e^{sX} , dont l'espérance est $M_X(s)$, une fonction de s réel.
 - ▶ $X \sim N(\mu, \sigma^2)$, μ et σ^2 inconnus. E[f(X)] est une fonction de μ , σ^2 .
- Supposons que
 - ▶ $\lim_{t\downarrow 0} X_t(\omega) = X(\omega), \ \omega \in \Omega$,
 - ▶ il exist une v.a. Y telle que $|X_t| < Y$ et $E[Y] < \infty$.
- ▶ Alors pour toute suite $t_n \downarrow 0$,

$$E[X_{t_n}] \rightarrow E[X_0].$$

Alors

$$\lim_{t\downarrow 0} E[X_t] = E[X_0].$$

La dérivée de l'espérance

- ▶ Soit $\{F_t\}_{a < t < b}$ un ensemble de variables aléatoires.
- Conditions suffisantes pour $\frac{dE[F_t]}{dt} = E[F'_t]$:
 - 1. Pour tout $t \in (a,b)$: $-\infty < E[F_t] < \infty$.
 - 2. Il existe une v.a. Y telle que $E[Y] < \infty$ et pour tous $t \in (a, b)$ et $\omega \in \Omega$, $F'_t(\omega)$ existe et $|F'_t(\omega)| \le Y(\omega)$.
- ▶ Preuve : fixez $t \in (a, b)$. Alors
 - 1. $F'_t = \lim_{n \to \infty} n(F_{t+1/n} F_t)$, la limite d'une séquence de variables aléatoires, est une variable alétoire.
 - 2. Pour tous $t \in (a, b)$, $h \ge 0$, (théorème des accroissements finis, mean value theorem)

$$\left|\frac{F_{t+h}-F_t}{h}\right|\leq Y$$

3. Alors

$$\lim_{h\downarrow 0} \frac{E[F_{t+h}] - E[F_t]}{h} = \lim_{h\downarrow 0} E\left[\frac{F_{t+h} - F_t}{h}\right] = E\left[\lim_{h\downarrow 0} \frac{F_{t+h} - F_t}{h}\right]$$

$$\frac{dE[F_t]}{dt} = E[F_t'] \le E[Y] < \infty.$$

Fonction génératrice des moments

- ▶ Définition : pour une v.a. X, $M_X(s) = E[e^{sX}]$, $s \in R$.
- Notes
 - ▶ M_X n'existe pas toujours, même si $E[X] < \infty$.
 - ▶ $M_{X+Y}(s) = M_X(s)M_Y(s)$ pour v.a. indépendentes X, Y.
 - ▶ il y a des tableaux avec plusieurs v.a. standardes
 - ▶ la fonction caractéristique est souvent plus utile

Résultat sur $M_X(s)$

- ▶ Supposons que X est une v.a. et qu'il existe $s_0 > 0$ tel que $M_X(s) < \infty$ pour $|s| < s_0$.
- Alors

$$E[|X^n|] < \infty, \ M_X(s) = \sum_{n=0}^{\infty} E[X^n] s^n / n!.$$

- ► Preuve :
 - 1. Soit $Z_n = \sum_{k=0}^n (sX)^k / k!$.
 - 2. $Z_n \rightarrow e^{sX}$ (définition de somme infinie)
 - 3. Fixez *s*, $|s| < s_0$

$$|Z_n| \leq \sum_{k=0}^n |sX|^k/k! \leq e^{sX} + e^{-sX} \equiv Y,$$

$$E[Y] = M_X(s) + M_X(-s) < \infty.$$

4. Par convergence dominée, $E[e^{sX}] = \lim_{n \to \infty} E[Z_n] = \sum_{n=0}^{\infty} E[X^n] s^n / n!$.

Signification de « génératrice des moments »

- ▶ Rappel $M_X(s) = \sum_{n=0}^{\infty} E[X^n] s^n / n!$
- $M_X'(s) = \sum_{n=0}^{\infty} E[X^{n+1}] s^n / n!$
- $M_X^{(m)}(s) = \sum_{n=0}^{\infty} E[X^{n+m}] s^n / n!$
- $M_X(0) = 1, \ M'_X(0) = E[X], \ M_X^{(m)}(0) = E[X^m].$

Mesures associées aux variables aléatoires

- Soit X une variable aléatoire sur un espace de probabilité (Ω, \mathcal{F}, P)
- $ightharpoonup (\mathbb{R},\mathcal{B},\mu)$ est une mesure de probabilité elle aussi, où

$$\mu = \mathcal{L}(X) = PX^{-1}.$$

- ▶ Si $B \in \mathcal{B}$, $X^{-1}(B) \in \mathcal{F}$ et $\mu(B) = P(X^{-1}(B)) = (PX^{-1})(B)$.
- ▶ Pour $-\infty \le a \le b \le \infty$,
 - $[a,b]\subset\mathbb{R}$,
 - ▶ $[a,b] \in \mathcal{B}$,
 - $\mu([a,b]) = P(\{X \in [a,b]\}),$
 - ▶ ${X \in [a,b]} \subset \Omega$,
 - $Y \in [a,b] \in \mathcal{F}.$

Convergence en distribution

- ▶ Soit μ_n une séquence de mesures de probabilité boreliennes, μ une mesure de probabilité borelienne.
- ▶ $\mu_n \Rightarrow \mu$ (μ_n converge en distribution à μ) si pour chaque fonction $f: \mathbb{R} \to \mathbb{R}$, continue et bornée,

$$\int_{\mathbb{R}} f d\mu_n \to \int_{\mathbb{R}} f d\mu.$$

▶ Une condition équivalente: pour tout $x \in \mathbb{R}$,

$$\mu(\lbrace x\rbrace) = 0 \Rightarrow F_n(x) \to F(x).$$

- μ_n est une suite de mesures, pas une suite de variables aléatoires.
- ► Cependant, si X_n est une suite de variables aléatoires sur (Ω, \mathcal{F}, P) , $\mathcal{L}_n = PX_n^{-1}$ est une suite de mesures.

Convergence en probabilité et en distribution

- ▶ Si $X_n \to X$ en probabilité, $\mu_n \equiv \mathcal{L}(X_n) \Rightarrow \mathcal{L}(X) \equiv \mu$.
- ▶ Résultat équivalent : Si pour tout $\epsilon > 0$, $P(|X_n X| \ge \epsilon) \to 0$,

$$\mu(\lbrace x\rbrace) = 0 \Rightarrow F_n(x) \to F(x).$$

▶ Preuve : fixez $x \in \mathbb{R}$, $\epsilon > 0$. Alors pour tout $\omega \in \Omega$, $n \in \mathbb{N}$,

$$X > x + \epsilon$$
 et $|X_n - X| < \epsilon \Rightarrow X_n > x$,

alors pour tout $n \in \mathbb{N}$,

$$\{X_n \le x\} \subseteq \{X \le x + \epsilon\} \cup \{|X_n - X| \ge \epsilon\}$$

$$F_n(x) \leq F(x+\epsilon) + P(|X_n-X| \geq \epsilon).$$

Puisque $\sup_n F_n(x) \leq F(x + \epsilon)$,

$$\limsup_{n} F_n(x) \leq F(x+\epsilon) + 0,$$

et puisque $\epsilon > 0$ est arbitraire,

$$\limsup_{n} F_n(x) \leq F(x).$$

Preuve, continuée

▶ même $x \in \mathbb{R}$, fixez $\epsilon > 0$. Pour tout $\omega \in \Omega$, $n \in \mathbb{N}$,

$$X_n > x$$
 et $|X_n - X| < \epsilon \Rightarrow X > x - \epsilon$,

alors pour tout $n \in \mathbb{N}$,

$$\{X \le x - \epsilon\} \subseteq \{X_n \le x\} + \{|X_n - X| \ge \epsilon\},$$

alors

$$F(x - \epsilon) \le \liminf_{n} F_n(x) + \liminf_{n} P(|X_n - X| \ge \epsilon)$$

 $F(x - \epsilon) \le \liminf_{n} F_n(x)$

 $ightharpoonup \epsilon$ arbitraire, alors

$$F(x) - P(\lbrace x \rbrace) \leq \liminf_{n \to \infty} F_n(x)$$

▶ Maintenant si $P({x}) = 0$,

$$\liminf_n F_n(x) = \limsup_n F_n(x) = \lim_n F_n(x) = F(x)$$