Merkblatt Theo 1 - Matr.: Name:

Typ-3 : REG $[regul\ddot{a}r]$

Erkannt durch $\mathbf{DEA} = \mathbf{NEA} = \mathbf{RegEx}$ (γ) (Robin & Scott,

 ${\rm regEx}:{\rm Kleene})$

Gleichbedeutend : Synt(L) ist endlich.

Bsp : $\{a^nb^m|n,m\in\mathbb{N}\}$

Beweis $w \in REG$: regEx, Automat

Beweis $w \notin REG$: Pumping-Lemma, Myhill-Nerode

 $(u, v) \in P \text{ mit } v \in \Sigma \cup \Sigma V$

$- : { m DCFL} \ [deterministisch \ kontext frei]$

Erkannt durch **DPDA**

Bsp : $\{a^n b^n | n \in \mathbb{N}\}, \{w \$ w^R | w \in \Sigma^*\}$

Typ-2 : CFL [kontextfrei]

Erkannt durch ${f PDA}$ (keine kreuzenden Abhängigkeiten)

 $Bsp: \{ww^R | w \in \Sigma^*\}$

Beweis $w \in CFL : \mathbf{CYK-Algo}$, Grammatik, PDA

Beweis $w \not\in CFL: \mathbf{Pumping-Lemma}$ **T2**

Chomsky-Normalform (CNF) : $A \rightarrow a|AB$

Kuroda-Normalform (KNF) : $A \rightarrow a|A|AB \& AB \rightarrow CD$

Greibach-Normalform : $A \to aV^*$ (mit V^*, A : Variablen)

 $(u, v) \in P \text{ mit } u \in V$

Typ-1 : CSL /nicht-verkürzend/

[kontextsensitiv]

Erkannt durch LBA (linear beschränkte Turing-Maschine) (Satz von Kuroda)

 $\text{Bsp}: \{a^nb^nc^n|n \in \mathbb{N}\}, \{a^nb^mn^nd^m|n, m \in \mathbb{N}\}, \{ww|w \in \Sigma^*\}$ $(u, v) \in P \text{ mit } |u| < |v|$

$-\ : { m REC}\ [entscheidbare\ Sprachen]$

Erkannt durch Turing-Maschinen mit JA/ NEIN-Antwort

Typ-0: R.E. [beliebig]

Erkannt durch Turing-Maschinen mit **JA/?**-Antwort

 $\underline{\mathrm{Bsp}}: \underline{\mathrm{Halte-Problem}}$

Abschlusseigenschaften

Grammatiken & Automaten

Grammatik

Allgemein: $G = (V, \Sigma, P, S)$ mit $P \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$

Automaten

 $\hat{\delta}(z,w)$ beschreibt in welchen Zustand man kommt, wenn man das ganze Wort w liest

DEA

$$\begin{split} & \text{Allgemein}: M = (Z, \Sigma, \delta, z_0, E) \\ & Z: \text{Zustände}\,;\, z_0: \text{Startzustand} \in Z\,;\, E: \text{akzeptierende Endzustände} \end{split}$$

Z: Zustande; $z_0:$ Startzustand $\in Z$; E: akzeptierende Endzustande $\subseteq Z$; $\delta:$ Überführungsfunktion $Z \times \Sigma \to Z$... erzeugt Sprache T(M)

NEA

Allgemein : $M = (Z, \Sigma, \delta, S, E)$ S : Menge an Startzuständen : δ Überführungsfunktion $\rightarrow \mathcal{P}(Z)$

PDA

 $\begin{array}{l} \text{Allgemein}: M = (Z, \Sigma, \Gamma, \delta, z_0, \#) \\ \text{Mit Endzuständen}: M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E) \\ \Gamma: \text{Kelleralphabet}; \delta \text{ Zustandübernagsfunktion} \rightarrow \mathcal{P}_{\text{endlich}}(Z \times \Gamma^*) \\ \delta(z, a, A) \ni (z', B_1..B_k), \text{ oder } \epsilon\text{-} \ddot{\cup} \mathbf{g}: \delta(z, \epsilon, A) \ni (z', B_1..B_k) \\ \text{Konfiguration} \ (z, \mathbf{w}, \mathbf{V}) \ \text{mit} \\ L(G) = N(M) = \{w \in \Sigma^* \mid \exists z \in Z: (z_0, w, \#) \vdash^* (z, \epsilon, \epsilon)\} \\ \text{Lemma}: (z, w, V) \vdash^* (z', w', V') \Rightarrow (z, wx, VY) \vdash^* (z', w'x, V'Y) \\ \end{array}$

DPDA

Akzeptiert durch Endzustände; Immer max. ein Übergang möglich

Diverses

Pumping-Lemma

Sei n gegeben. Wähle Wort $z \in L$ mit $|z| \ge n$

Typ-3

Seien $u,v,w\in \Sigma^*$ beliebig in Zerlegung z=uvw (wo gilt : $|v|\geq 1$ & $|uv|\leq n)$

Beweis, dass $uv^iw \notin L$ für ein $i \ge 0 \Rightarrow L$ nicht Typ-3

Typ-2

Seien $u,v,w,x,y\in \Sigma^*$ beliebig in Zerlegung z=uvwxy (wo gilt : $|vwx|\leq n$ & $|vx|\geq 1)$

Meist Fallunterscheidung für vx enthält

Beweis, dass $uv^iwx^iy \notin L$ für ein $i > 0 \Rightarrow L$ nicht Typ-2

Äquivalenzen

Myhill-Nerode R_L

 $xR_ry \iff [\forall w \in \Sigma^* : xw \in L \Leftrightarrow yw \in L]$ - hinten anhängen.

Beweis Sprache L nicht regulär :

Menge $M \subseteq \Sigma^*$ finden, mit $|M| = \infty$, für die gilt :

 $z.Z.: \forall x, y \in M: x \neq y \Longrightarrow x \not R_L y$

Dann Lnicht regulär, da Index von M-N-Aquivalen
z $|\Sigma^*/R_L|=\infty$

wird durch **Relation** R_M verfeinert.

(Auf gegebenem Automaten definiert - Muss nicht minimal sein) $xR_r y \iff \hat{\delta}(z_o,x) = \hat{\delta}(z_o,y)$ Alle Wörter in selber Klasse, die im selben Automat-Zustand sind.

 $\Rightarrow xR_My \Longrightarrow xR_Ly \Longrightarrow |R_L| \le |R_M|$

Syntaktische Kongruenz \equiv_L

 $x\equiv_L y \Longleftrightarrow [\forall w_1,w_2\in \Sigma^*:w_1xw_2\in L\Leftrightarrow w_1yw_2\in L]$ - auf beiden Seiten anhängen.

Monoide

- Abgeschlossenheit
- Assoziativ $\forall a, b, c \in M : (a * b) * c = a * (b * c)$
- neutrales Element $e: \forall a \in M: e*a = a*e = a$
- \rightarrow syntaktisches Monoid Synth(L) Σ^*/\equiv_L

Erkennung durch Monoide

Monoid M erkennt L, wenn $A \subseteq M$, $\varphi = \Sigma^* \mapsto M$ und $L = \varphi^{-1}(A)$ (bzw. $w \in L \Leftrightarrow \varphi(w) \in A$) mit φ ist Homomorphismus.

Homomorphismus

Abbildung φ : Monoid $M \to N$ Monoid. Mit Eigenschaften: $\forall a,b \in M: f(a \circ_1 b) = f(a) \circ_2 f(b)$ und $\varphi(\text{neutrE}_1) = \text{neutrE}_2$

Chomsky-Normalform

- Ringleitung entfernen (jeweils alle beteiligten Variablen zu neuer ändern)
- Variablen anordnen & Kettenregeln entfernen
- Pseudoterminale einführen
- Abkürzungen einführen

Minimierung DEA

z1			
\mathbf{z} 2			
z 3			
	z_0	z1	z_2

- Paare mit **einem** Endzustand markieren.
- Wiederholt alle Paare markieren, die für $\exists a \in \Sigma$ in Markierung landen.
- nicht markierte Zustandspaare verschmelzen.

CYK-Algo

2	T2,1	T2,2		$ T_{i,j} = \{ A \in V A \Rightarrow_G^* a_i \dots a_{i+j-1} \} $
1	T1,1	T2,1		
Länge	w1	w2		

whrschl. Irrelevant

Logik

Kontraposition : $A \Rightarrow B = \neg B \Rightarrow \neg A$ DeMorgan : $\neg (A \land B) = (\neg A \lor \neg B)$

linksrekursion Entfernen (vgl. GNF)

$$\begin{split} A &\to A\alpha_1|A\alpha_2|...|\beta_1|\beta_1|...\\ \text{ersetzen durch}: \\ A &\to \beta_1|\beta_2|... \quad |\beta_1B|\beta_2B|...\\ B &\to \alpha_1|\alpha_2|... \quad |\alpha_1B|\alpha_2B|... \end{split}$$

Relationen

für $m, m'^{(')} \in M$:
Ordnungsrelationen

reflx. : m R m

Identität : $(m' \ R \ m) \land (m \ R \ m') \Rightarrow (m' = m)$ transitiv : $(m' \ R \ m) \land (m \ R \ m'') \Rightarrow (m \ R \ m')$

symmetrisch : $(m' \ R \ m) \Leftrightarrow (m \ R \ m')$

Kongruenz : $[w_1 \equiv z_1 \text{ und } w_2 \equiv z_2] \Rightarrow w_1 w_2 \equiv z_1 z_2$

Beweis Pumping-Lemma T3

L beliebige T3-Sprache. \Rightarrow DEA M. n = |Z|. Mit $x \in L$, $|x| \ge n \Rightarrow x = x_1x_2x_3...x_ny$ $(y \in \Sigma^*)$. $Q \subseteq Z$ mit $Q = \{\hat{\delta}(z_0, x_1...x_n)\} \Rightarrow |Q| < n$.