Formal Languages and Automata Theory (CS303)

Mid-Semester Examination Indian Institute of Technology, Patna September, 2018 Full marks- 60, Duration- 120 min

- 1. Give NFAs with the specified number of states recognizing each of the following languages. In all cases, the alphabet is $\{0, 1\}$. $(3 \times 2) + (3 \times 3)$
 - (a) The language {w | w ends with 00} with three states.
 - (b) The language {0} with two states.
 - (c) The language 0* with one state.
 - (d) The language 0*1*0*0 with three states.
 - (e) The language {w | w contains an even number of 0s, or exactly two 1s} with six states.
 - (f) The language $\{w \mid w \text{ contains the substring 0101, i.e., } w = x0101y \text{ for some (possibly empty) } x \text{ and } y\}$ with five state.
- Answer all the questions: 3 X 5
 - (a) If R_1 and R_2 are regular languages, is $\{w \mid w \in R_1 \text{ and } w^R \in R_2\}$ a regular language? If so, prove it; if not, give a counterexample. (w^R denotes the reversal of the string w.)
 - (b) Suppose that L_1 and L_2 are two languages (over the same alphabet) given to you such that both L_1 and L_1 are regular. Prove or disprove: L_2 must be regular too.
 - (c) Prove that $\{ww^R \mid w \in \Sigma^*\}$ for $\Sigma = \{0, 1\}$ is not regular using pumping lemma.
- 3. Consider the context-free grammar G over $\{a, b\}$, with start symbol S, and with the following productions. (2+3+5)

 $S \rightarrow aaB \mid Abb$

 $A \rightarrow a \mid aA$

 $B \rightarrow b \mid bB$

- (a) What is L(G)?
- (b) Prove that this CFG is ambiguous.
- (c) Design an unambiguous context-free grammar for L(G).
- **4.** Give context-free grammars that generate the following languages. In all parts the alphabet Σ is $\{0, 1\}$. (3+3+4)
 - (a) {w | w contains at least three 1s}
 - (b) $\{w \mid w \text{ starts and ends with the same symbol}\}$
 - (c) {w | the length of w is odd and its middle symbol is a 0}
- **5.** Answer all the questions: (5+5)
 - (a) Show the intersection of a context-free language C with a regular language R is always context-free.
 - (b) Show that the language $\{0^n1^m0^n1^m\mid n\geq 0\}$ is not context-free using pumping lemma.