Algoritmos Não-Supervisionados para clusterização [22E4_2]

Erik Tavares dos Anjos

Atualizado: 19/11/2022

Git: https://github.com/eriktavares/clustering (https://github.com/eriktavares/clustering)

Infraestrutura

Para as questões a seguir, você deverá executar códigos em um notebook Jupyter, rodando em ambiente local, certifique-se que:

Disponibilize os códigos gerados, assim como os artefatos acessórios (requirements.txt) e instruções em um repositório GIT público. (se isso não for feito, o diretório com esses arquivos deverá ser enviado compactado no moodle).

Você está rodando em Python 3.9+

```
In [1]: from platform import python_version
print("Current Python Version-", python_version())
```

Current Python Version- 3.9.15

Você está usando um ambiente virtual: Virtualenv ou Anaconda

Ambiente Anaconda

```
In [2]: !conda --version
```

conda 4.13.0

Todas as bibliotecas usadas nesse exercícios estão instaladas em um ambiente virtual específico

Um ambiente environment do Anaconda chamado "Cluster" foi criado para rodar o exercício

```
In [3]: !conda info
```

```
active environment : Cluster
    active env location : C:\Users\Erik\.conda\envs\Cluster
            shell level : 2
       user config file : C:\Users\Erik\.condarc
 populated config files : C:\Users\Erik\.condarc
          conda version : 4.13.0
    conda-build version: 3.22.0
         python version: 3.9.7.final.0
       virtual packages : win=0=0
                            archspec=1=x86 64
       base environment : C:\ProgramData\Anaconda3 (read only)
      conda av data dir : C:\ProgramData\Anaconda3\etc\conda
  conda av metadata url : None
           channel URLs : https://repo.anaconda.com/pkgs/main/win-64 (https://r
epo.anaconda.com/pkgs/main/win-64)
                          https://repo.anaconda.com/pkgs/main/noarch (https://r
epo.anaconda.com/pkgs/main/noarch)
                          https://repo.anaconda.com/pkgs/r/win-64 (https://rep
o.anaconda.com/pkgs/r/win-64)
                          https://repo.anaconda.com/pkgs/r/noarch (https://rep
o.anaconda.com/pkgs/r/noarch)
                          https://repo.anaconda.com/pkgs/msys2/win-64 (https://
repo.anaconda.com/pkgs/msys2/win-64)
                          https://repo.anaconda.com/pkgs/msys2/noarch (https://
repo.anaconda.com/pkgs/msys2/noarch)
          package cache : C:\ProgramData\Anaconda3\pkgs
                          C:\Users\Erik\.conda\pkgs
                          C:\Users\Erik\AppData\Local\conda\conda\pkgs
       envs directories : C:\Users\Erik\.conda\envs
                          C:\ProgramData\Anaconda3\envs
                          C:\Users\Erik\AppData\Local\conda\conda\envs
               platform : win-64
             user-agent : conda/4.13.0 requests/2.28.1 CPython/3.9.7 Windows/10
Windows/10.0.19044
          administrator : False
             netrc file : None
           offline mode : False
```

Gere um arquivo de requerimentos (requirements.txt) com os pacotes necessários. É necessário se certificar que a versão do pacote está disponibilizada.

```
In [73]: !conda env export > environment.txt --no-builds
```

Tire um printscreen do ambiente que será usado rodando em sua máquina.

Escolha de base de dados

1. Baixe os dados disponibilizados na plataforma Kaggle sobre dados sócio-econômicos e de saúde que determinam o índice de desenvolvimento de um país. Esses dados estão disponibilizados através do link:

https://www.kaggle.com/datasets/rohan0301/unsupervised-learning-on-country-data (https://www.kaggle.com/datasets/rohan0301/unsupervised-learning-on-country-data)

Base de dados na pasta ../Data/raw/Country-data.csv e data-dictionary.csv

2. Quantos países existem no dataset?

Existem 167 países no dataset, conforme o describre. O count conta que existem 167 linhas e o unique mostra que existem 167 países, sendo 1 diferente para cada linha.

3.Mostre através de gráficos a faixa dinâmica das variáveis que serão usadas nas tarefas de clusterização. Analise os resultados mostrados. O que deve ser feito com os dados antes da etapa de clusterização?

Dimensões 167 Linhas e 10 Colunas

In [6]: df.shape

Out[6]: (167, 10)

In [7]: df.describe().T

Out[7]:

	count	mean	std	min	25%	50%	75%	max
child_mort	167.0	38.270060	40.328931	2.6000	8.250	19.30	62.10	208.00
exports	167.0	41.108976	27.412010	0.1090	23.800	35.00	51.35	200.00
health	167.0	6.815689	2.746837	1.8100	4.920	6.32	8.60	17.90
imports	167.0	46.890215	24.209589	0.0659	30.200	43.30	58.75	174.00
income	167.0	17144.688623	19278.067698	609.0000	3355.000	9960.00	22800.00	125000.00
inflation	167.0	7.781832	10.570704	-4.2100	1.810	5.39	10.75	104.00
life_expec	167.0	70.555689	8.893172	32.1000	65.300	73.10	76.80	82.80
total_fer	167.0	2.947964	1.513848	1.1500	1.795	2.41	3.88	7.49
gdpp	167.0	12964.155689	18328.704809	231.0000	1330.000	4660.00	14050.00	105000.00

Out[8]:

	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp
Afghanistan	90.2	10.0	7.58	44.9	1610	9.44	56.2	5.82	553
Albania	16.6	28.0	6.55	48.6	9930	4.49	76.3	1.65	4090
Algeria	27.3	38.4	4.17	31.4	12900	16.10	76.5	2.89	4460
Angola	119.0	62.3	2.85	42.9	5900	22.40	60.1	6.16	3530
Antigua and Barbuda	10.3	45.5	6.03	58.9	19100	1.44	76.8	2.13	12200
Vanuatu	29.2	46.6	5.25	52.7	2950	2.62	63.0	3.50	2970
Venezuela	17.1	28.5	4.91	17.6	16500	45.90	75.4	2.47	13500
Vietnam	23.3	72.0	6.84	80.2	4490	12.10	73.1	1.95	1310
Yemen	56.3	30.0	5.18	34.4	4480	23.60	67.5	4.67	1310
Zambia	83.1	37.0	5.89	30.9	3280	14.00	52.0	5.40	1460

167 rows × 9 columns

```
In [9]: import matplotlib.pyplot as plt
import seaborn as sns
corr = df.corr()
f, ax = plt.subplots(figsize=(15, 15))
sns.heatmap(corr, square=True, linewidths=.5, annot=True);
```


4. Realize o pré-processamento adequado dos dados

4.1 Dados Nulos

Os dataset não possui dados nulos conforme a visualização abaixo

```
In [10]: df.isna().sum()
Out[10]: child mort
                         0
                         0
          exports
          health
                         0
          imports
                         0
                         0
          income
          inflation
                         0
                         0
          life expec
          total_fer
                         0
          gdpp
                         0
          dtype: int64
```

4.2 - Outliears

Em estatística descritiva, diagrama de caixa, diagrama de extremos e quartis, boxplot ou box plot é uma ferramenta gráfica para representar a variação de dados observados de uma variável numérica por meio de quartis (ver figura 1, onde o eixo horizontal representa a variável). O box plot tem uma reta (whisker ou fio de bigode) que estende-se verticalmente ou horizontalmente a partir da caixa, indicando a variabilidade fora do quartil superior e do quartil inferior.[1] Os valores atípicos ou outliers (valores discrepantes) podem ser plotados como pontos individuais [https://pt.wikipedia.org/wiki/Diagrama de caixa]

(https://pt.wikipedia.org/wiki/Diagrama_de_caixa%5D)

```
In [11]: # Import libraries
    import matplotlib.pyplot as plt
    import numpy as np

#df_features=df.drop()

fig = plt.figure(figsize =(20, 10))
# Creating plot
    df.boxplot()
    plt.xticks(rotation = 90)
# show plot
    plt.show()
```


In [12]: df[df['income']>50000].sort_values('income', ascending=False)

Out[12]:

	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp
Qatar	9.0	62.3	1.81	23.8	125000	6.980	79.5	2.07	70300
Luxembourg	2.8	175.0	7.77	142.0	91700	3.620	81.3	1.63	105000
Brunei	10.5	67.4	2.84	28.0	80600	16.700	77.1	1.84	35300
Kuwait	10.8	66.7	2.63	30.4	75200	11.200	78.2	2.21	38500
Singapore	2.8	200.0	3.96	174.0	72100	-0.046	82.7	1.15	46600
Norway	3.2	39.7	9.48	28.5	62300	5.950	81.0	1.95	87800
United Arab Emirates	8.6	77.7	3.66	63.6	57600	12.500	76.5	1.87	35000
Switzerland	4.5	64.0	11.50	53.3	55500	0.317	82.2	1.52	74600

In [13]: df[df['gdpp']>30000].sort_values('gdpp', ascending=False)

Out[13]:

	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdpp
Luxembourg	2.8	175.0	7.77	142.0	91700	3.620	81.3	1.63	105000
Norway	3.2	39.7	9.48	28.5	62300	5.950	81.0	1.95	87800
Switzerland	4.5	64.0	11.50	53.3	55500	0.317	82.2	1.52	74600
Qatar	9.0	62.3	1.81	23.8	125000	6.980	79.5	2.07	70300
Denmark	4.1	50.5	11.40	43.6	44000	3.220	79.5	1.87	58000
Sweden	3.0	46.2	9.63	40.7	42900	0.991	81.5	1.98	52100
Australia	4.8	19.8	8.73	20.9	41400	1.160	82.0	1.93	51900
Netherlands	4.5	72.0	11.90	63.6	45500	0.848	80.7	1.79	50300
Ireland	4.2	103.0	9.19	86.5	45700	-3.220	80.4	2.05	48700
United States	7.3	12.4	17.90	15.8	49400	1.220	78.7	1.93	48400
Canada	5.6	29.1	11.30	31.0	40700	2.870	81.3	1.63	47400
Austria	4.3	51.3	11.00	47.8	43200	0.873	80.5	1.44	46900
Singapore	2.8	200.0	3.96	174.0	72100	-0.046	82.7	1.15	46600
Finland	3.0	38.7	8.95	37.4	39800	0.351	80.0	1.87	46200
Japan	3.2	15.0	9.49	13.6	35800	-1.900	82.8	1.39	44500
Belgium	4.5	76.4	10.70	74.7	41100	1.880	80.0	1.86	44400
Iceland	2.6	53.4	9.40	43.3	38800	5.470	82.0	2.20	41900
Germany	4.2	42.3	11.60	37.1	40400	0.758	80.1	1.39	41800
France	4.2	26.8	11.90	28.1	36900	1.050	81.4	2.03	40600
United Kingdom	5.2	28.2	9.64	30.8	36200	1.570	80.3	1.92	38900
Kuwait	10.8	66.7	2.63	30.4	75200	11.200	78.2	2.21	38500
Italy	4.0	25.2	9.53	27.2	36200	0.319	81.7	1.46	35800
Brunei	10.5	67.4	2.84	28.0	80600	16.700	77.1	1.84	35300
United Arab Emirates	8.6	77.7	3.66	63.6	57600	12.500	76.5	1.87	35000
New Zealand	6.2	30.3	10.10	28.0	32300	3.730	80.9	2.17	33700
Cyprus	3.6	50.2	5.97	57.5	33900	2.010	79.9	1.42	30800
Spain	3.8	25.5	9.54	26.8	32500	0.160	81.9	1.37	30700
Israel	4.6	35.0	7.63	32.9	29600	1.770	81.4	3.03	30600

Esses valores que estão acima do limite superior do Box podem ser outliers, ou as vezes podem ser resultados de uma razão, onde o denominador seja muito pequeno e cause o resultado muito grande. Por exemplo, Luxembourg, pode ter uma renda alta, e uma população muito pequena, dessa forma, sua renda per capita pode ficar extremamente alta. Uma forma talvez de limitar que o impacto de uma feature com valores bem acima do limite superior, possa ser, definir o limite superior para esta feature. Assim esse pais tem uma renda muito alta, vai continuar com essa renda muito alta, mas com limite do impacto em relação ao cluster.

4.3 Normalização

```
In [14]: from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
         scaler.fit(df)
         df t1=scaler.transform(df)
         df_t1
Out[14]: array([[0.42648491, 0.04948197, 0.35860783, ..., 0.47534517, 0.73659306,
                 0.00307343],
                [0.06815969, 0.13953104, 0.29459291, ..., 0.87179487, 0.07886435,
                 0.03683341],
                [0.12025316, 0.1915594, 0.14667495, ..., 0.87573964, 0.27444795,
                 0.040364991,
                [0.10077897, 0.35965101, 0.31261653, ..., 0.8086785, 0.12618297,
                 0.01029885],
                [0.26144109, 0.1495365, 0.20944686, ..., 0.69822485, 0.55520505,
                 0.01029885],
                [0.39191821, 0.18455558, 0.25357365, ..., 0.39250493, 0.670347]
                 0.01173057]])
```

Clusterização

Para os dados pré-processados da etapa anterior você irá:

1. Realizar o agrupamento dos países em 3 grupos distintos. Para tal, use:

A. K-Médias

```
In [15]: from sklearn.cluster import KMeans
    from sklearn.decomposition import PCA
    kmeans = KMeans(n_clusters=3, random_state=0).fit(df_t1)
    clusters=pd.DataFrame(kmeans.labels_, columns=['Clusters'])
    df_cl=pd.concat([df.reset_index().rename(columns={'index': 'country'}), clusters]
    df_cl.set_index('country')
    df_cl.index.names = [None]
    df_cl
```

0.1+1	[16]	١.
Out	TO	

	country	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdp
0	Afghanistan	90.2	10.0	7.58	44.9	1610	9.44	56.2	5.82	55
1	Albania	16.6	28.0	6.55	48.6	9930	4.49	76.3	1.65	409
2	Algeria	27.3	38.4	4.17	31.4	12900	16.10	76.5	2.89	446
3	Angola	119.0	62.3	2.85	42.9	5900	22.40	60.1	6.16	353
4	Antigua and Barbuda	10.3	45.5	6.03	58.9	19100	1.44	76.8	2.13	1220
162	Vanuatu	29.2	46.6	5.25	52.7	2950	2.62	63.0	3.50	297
163	Venezuela	17.1	28.5	4.91	17.6	16500	45.90	75.4	2.47	1350
164	Vietnam	23.3	72.0	6.84	80.2	4490	12.10	73.1	1.95	131
165	Yemen	56.3	30.0	5.18	34.4	4480	23.60	67.5	4.67	131
166	Zambia	83.1	37.0	5.89	30.9	3280	14.00	52.0	5.40	146

167 rows × 11 columns

In [16]: df_cl['Clusters'].value_counts(normalize=True)

Out[16]: 1 0.514970

0 0.2754492 0.209581

Name: Clusters, dtype: float64

2. Para os resultados, do K-Médias:**

A.Interprete cada um dos clusters obtidos citando: I.Qual a distribuição das dimensões em cada grupo

```
In [18]: df_cl.groupby('Clusters').mean()
Out[18]:
                     child_mort
                                   exports
                                              health
                                                       imports
                                                                     income
                                                                               inflation life_expec
                                                                                                    total_fei
            Clusters
                  0
                      93.284783 29.287174 6.338478 43.297826
                                                                 3516.804348
                                                                              12.097065
                                                                                         59.393478
                                                                                                   5.090217
                  1
                      22.425581
                                 40.382430 6.215581
                                                     46.932162 12770.813953
                                                                               7.609023
                                                                                         72.582558
                                                                                                    2.293256
                       4.897143 58.431429 8.917429
                                                    51.508571
                                                                45802.857143
                                                                               2.535000
                                                                                         80.245714
                                                                                                    1.741143
In [19]: df_cl.groupby('Clusters').describe()
Out[19]:
                                                                         child_mort
                                                                                              exports ...
                                                         25%
                                                                50%
                                                                        75%
                     count
                                mean
                                             std
                                                  min
                                                                               max count
                                                                                                mean ...
            Clusters
                  0
                       46.0 93.284783 34.079410
                                                  28.1
                                                       64.625
                                                               90.25
                                                                     111.000
                                                                              208.0
                                                                                      46.0 29.287174
                  1
                       86.0
                            22.425581
                                       14.459934
                                                   4.5
                                                       11.550
                                                               18.35
                                                                      29.175
                                                                               64.4
                                                                                      86.0
                                                                                           40.382430
                  2
                       35.0
                             4.897143
                                        2.130795
                                                   2.6
                                                        3.500
                                                                4.20
                                                                       5.400
                                                                               10.8
                                                                                      35.0 58.431429
           3 rows × 72 columns
```

```
In [20]: def plot_cluster_points(df, kmeans):
    pca = PCA(2)
    pca_data = pd.DataFrame(pca.fit_transform(df), columns=['PC1','PC2'])
    pca_data['cluster'] = pd.Categorical(kmeans.labels_)
    sns.scatterplot(x="PC1", y="PC2", hue="cluster", data=pca_data)
    plot_cluster_points(df_t1, kmeans)
```



```
In [21]: # Import libraries
   import matplotlib.pyplot as plt
   import numpy as np

#df_features=df.drop()

fig = plt.figure(figsize =(30, 20))
# Creating plot
   df_cl.groupby('Clusters').boxplot()
   plt.xticks(rotation = 90)
# show plot
   plt.show()
```

<Figure size 3000x2000 with 0 Axes>

II. O país, de acordo com o algoritmo, melhor representa o seu agrupamento. Justifique

Para identificar o pais que melhor representa o cluster, pode ser utilizado o atribulto kmeans.cluster_centers_ para determinar os centroides dos clusters, e assim calcular a distância de cada ponto até os centroides.

```
In [22]: from operator import index
    from scipy.spatial import distance_matrix

df_cc=pd.DataFrame(kmeans.cluster_centers_, columns=df.keys())

dist_mat = pd.DataFrame(distance_matrix(df_t1, df_cc))
    dist_mat.set_index(df.index)
    df_results=pd.concat([df_cl, dist_mat], axis=1)
    df_results
```

Out[22]:

	country	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdp
0	Afghanistan	90.2	10.0	7.58	44.9	1610	9.44	56.2	5.82	55
1	Albania	16.6	28.0	6.55	48.6	9930	4.49	76.3	1.65	409
2	Algeria	27.3	38.4	4.17	31.4	12900	16.10	76.5	2.89	446
3	Angola	119.0	62.3	2.85	42.9	5900	22.40	60.1	6.16	353
4	Antigua and Barbuda	10.3	45.5	6.03	58.9	19100	1.44	76.8	2.13	122(
162	Vanuatu	29.2	46.6	5.25	52.7	2950	2.62	63.0	3.50	297
163	Venezuela	17.1	28.5	4.91	17.6	16500	45.90	75.4	2.47	1350
164	Vietnam	23.3	72.0	6.84	80.2	4490	12.10	73.1	1.95	131
165	Yemen	56.3	30.0	5.18	34.4	4480	23.60	67.5	4.67	131
166	Zambia	83.1	37.0	5.89	30.9	3280	14.00	52.0	5.40	146

167 rows × 14 columns

df_cl.groupby('Clusters').mean() In [23]: Out[23]: child_mort exports health imports income inflation life_expec total_fei Clusters 0 93.284783 29.287174 6.338478 43.297826 3516.804348 12.097065 59.393478 5.090217 22.425581 40.382430 6.215581 46.932162 12770.813953 7.609023 72.582558 2.293256 1 2 4.897143 58.431429 8.917429 51.508571 45802.857143 2.535000 80.245714 1.741143

Cluster 0

Interpretação:

Paises com Alta mortalidade infantil (média = 93.28), Baixa exportação, baixos gastos com saúde, baixa importação, baixa renda, inflação alta, baixa espectativa de vida, filhos por mulher alto, e baixa renda per capita. Esse cluster fica no extremo com os piores indices para cada categória, então os países que fazem parte dele possuem os piores indicadores dos 10 que estão sendo informados, somente gasto com saúde ficou com média maior que o cluster um e muito próximo também. Porém gasto com saúde não é um indicador que garante a saúde, outros indicadores medem melhor a saúde, como espectativa de vida e mortalidade infantil.

Pais que mais representa o cluster: Guinea

Cluster 1

Paises médios, com indicadores melhores que o cluster 0 e menores que o cluster 2 em todos os quésitos, menor gasto com saúde que na média esse cluster ficou menor que os demais clusters.

Pais que mais representa o cluster: Suriname

Cluster 2

Melhores indicadores em todos os 10 quésitos.

Pais que mais representa o cluster: Iceland

Atenção: Melhor representação do cluster obtida pela distância do pais até o centroide.

```
In [24]: df_results[['country','Clusters', 0]][df_results['Clusters']==0].sort_values(0,
Out[24]:
                    country
                            Clusters
                                            0
             63
                     Guinea
                                   0 0.132923
            94
                     Malawi
                                   0 0.144783
            106
                Mozambique
                                     0.154333
            147
                   Tanzania
                                   0 0.156570
            150
                       Togo
                                   0 0.168420
          df_results[['country','Clusters', 1]][df_results['Clusters']==1].sort_values(1,
Out[25]:
                           Clusters
                                           1
                   country
            143
                  Suriname
                                 1 0.110748
                El Salvador
             48
                                    0.113461
                                 1
             61
                   Grenada
                                    0.119334
             76
                   Jamaica
                                  1 0.121493
            152
                    Tunisia
                                 1 0.124526
          df_results[['country','Clusters', 2]][df_results['Clusters']==2].sort_values(2,
In [26]:
Out[26]:
                 country
                         Clusters
                                        2
                 Iceland
                               2 0.119836
             68
                Sweden
                               2 0.140653
            144
                 Finland
                                 0.143008
             53
                 Austria
                                 0.150823
             15
                Belgium
                               2 0.200318
```

B. Clusterização Hierárquica

O clustering hierárquico, como o nome sugere, é um algoritmo que constrói a hierarquia de clusters. Esse algoritmo começa com todos os pontos de dados atribuídos a um cluster próprio. Em seguida, dois clusters mais próximos são mesclados no mesmo cluster.

```
In [27]: def plot_dendrogram(model, sch, **kwargs):
    # Children of hierarchical clustering
    children = model.children_

# Distances between each pair of children
    # Since we don't have this information, we can use a uniform one for plotting
    distance = np.arange(children.shape[0])

# The number of observations contained in each cluster level
    no_of_observations = np.arange(2, children.shape[0]+2)

# Create linkage matrix and then plot the dendrogram
    linkage_matrix = np.column_stack([children, distance, no_of_observations]).as

# Plot the corresponding dendrogram
    sch.dendrogram(linkage_matrix, **kwargs)
```

```
In [28]: import scipy.cluster.hierarchy as sch
    plt.figure(figsize=(15, 5))
    plt.grid(False)
    dendrogram = sch.dendrogram(sch.linkage(df_t1, method='ward'), labels=df.index)
    plt.title('Dendrogram')
    plt.ylabel('Euclidean Distance')
```

Out[28]: Text(0, 0.5, 'Euclidean Distance')

Out[29]: 2 0.550898 1 0.245509

0 0.203593

Name: Clusters_hc, dtype: float64

In [31]:	df_results2	df_results2.groupby('Clusters_hc').mean()												
Out[31]:		inflation	life_expec	total										
	Clusters_hc													
	0	5.961765	58.508824	8.501176	48.902941	47588.235294	4.115500	79.982353	1.888					
	1	97.102439	29.349244	5.551220	37.969900	3569.097561	12.807195	59.675610	5.129					
	2	23.991304	39.919348	6.756304	50.121739	11943.804348	6.897217	71.920652	2.367					
	4								•					

Compare os dois resultados, aponte as semelhanças e diferenças e interprete.

Observando o gráfico com os tamanhos dos clusters é possível identificar pequenas variações nos tamanhos dos clusters.

```
In [32]: import matplotlib.pyplot as plt
         fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2, sharex=True,
                                             figsize=(12, 6))
         # Pie chart, where the slices will be ordered and plotted counter-clockwise:
         labels = 'Cluster 01', 'Cluster 02', 'Cluster 03'
         sizes0 = df_results['Clusters'].value_counts(normalize=True)
         sizes1 = df_results2['Clusters_hc'].value_counts(normalize=True)
         #fig1, ax1 = plt.subplots()
         ax0.set title('KMeans')
         ax0.pie(sizes0, labels=labels, autopct='%1.1f%%',
                 shadow=True, startangle=90)
         ax0.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
         ax1.set_title('Hierarchy')
         ax1.pie(sizes1, labels=labels, autopct='%1.1f%%',
                 shadow=True, startangle=90)
         ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
         plt.show()
```


Semelhanças e Diferenças

Os clusters ficaram com nomes diferentes em cada algoritmo.

No kmeans o Cluster 0 - Piores indicadores, 1 Indicadores Médios, 2 - Melhores indicadores No Hierarchy o Cluster 1 - Piores indicadores, o 2 Indicadores Médios, 0 - Melhores indicadores

As semelhanças foram em 149 dos 167 paises, o que representa 89% dos paises.

	se										
Out[61]:		country	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	gdp
	0	Afghanistan	90.2	10.0	7.58	44.9	1610	9.44	56.2	5.82	55
	1	Albania	16.6	28.0	6.55	48.6	9930	4.49	76.3	1.65	409
	2	Algeria	27.3	38.4	4.17	31.4	12900	16.10	76.5	2.89	446
	3	Angola	119.0	62.3	2.85	42.9	5900	22.40	60.1	6.16	353
	4	Antigua and Barbuda	10.3	45.5	6.03	58.9	19100	1.44	76.8	2.13	1220
	162	Vanuatu	29.2	46.6	5.25	52.7	2950	2.62	63.0	3.50	297
	163	Venezuela	17.1	28.5	4.91	17.6	16500	45.90	75.4	2.47	1350
	164	Vietnam	23.3	72.0	6.84	80.2	4490	12.10	73.1	1.95	131
	165	Yemen	56.3	30.0	5.18	34.4	4480	23.60	67.5	4.67	131
	166	Zambia	83.1	37.0	5.89	30.9	3280	14.00	52.0	5.40	146
	149 r	ows × 15 col	umns								

Os valores de exports, income, life_expec, total_fer e gdpp ficarm com médias muito próximas em relação aos dois algoritmos. o health, child_mort, imports, inflation tiveram maiores diferenças.

In [62]:	df_resul	df_results.groupby('Clusters').mean()											
Out[62]:	child_mort exports health imports income inflation life_expec total_												
	Clusters												
	0	93.284783	29.287174	6.338478	43.297826	3516.804348	12.097065	59.393478	5.090217				
	1	22.425581	40.382430	6.215581	46.932162	12770.813953	7.609023	72.582558	2.293256				
	2	4.897143	58.431429	8.917429	51.508571	45802.857143	2.535000	80.245714	1.741143				

In [63]: df_results.groupby('Clusters_hc').mean() Out[63]: child_mort exports health imports income inflation life_expec total Clusters_hc 0 97.102439 29.349244 5.551220 37.969900 3569.097561 12.807195 59.675610 5.129 1 23.991304 39.919348 6.756304 50.121739 11943.804348 6.897217 71.920652 2.367

5.961765 58.508824 8.501176 48.902941 47588.235294

4.115500

79.982353 1.888

Os 18 casos abaixo, houve diferença na do kmeans para o HC. Alguns até no proprio KMeans estavam com diferença pequena entre dois Clusters, como Bahrain (Cluster 1 e 2 com distância próxima). Outros não, como Cyprus.

In [64]: di= df_results[df_results['Clusters']!=df_results['Clusters_hc']]
di

Out[64]:

2

	country	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	9
11	Bahrain	8.6	69.500	4.97	50.9000	41100	7.440	76.0	2.16	2(
42	Cyprus	3.6	50.200	5.97	57.5000	33900	2.010	79.9	1.42	3(
43	Czech Republic	3.4	66.000	7.88	62.9000	28300	-1.430	77.5	1.51	19
72	Iraq	36.9	39.400	8.41	34.1000	12700	16.600	67.2	4.56	4
81	Kiribati	62.7	13.300	11.30	79.9000	1730	1.520	60.7	3.84	
87	Lesotho	99.7	39.400	11.10	101.0000	2380	4.150	46.5	3.30	
88	Liberia	89.3	19.100	11.80	92.6000	700	5.470	60.8	5.02	
89	Libya	16.6	65.600	3.88	42.1000	29600	14.200	76.1	2.41	12
107	Myanmar	64.4	0.109	1.97	0.0659	3720	7.040	66.8	2.41	
108	Namibia	56.0	47.800	6.78	60.7000	8460	3.560	58.6	3.60	ţ
115	Oman	11.7	65.700	2.77	41.2000	45300	15.600	76.1	2.90	19
126	Rwanda	63.6	12.000	10.50	30.0000	1350	2.610	64.6	4.51	
128	Saudi Arabia	15.7	49.600	4.29	33.0000	45400	17.200	75.1	2.96	19
134	Slovak Republic	7.0	76.300	8.79	77.8000	25200	0.485	75.5	1.43	16
135	Slovenia	3.2	64.300	9.41	62.9000	28700	-0.987	79.5	1.57	23
136	Solomon Islands	28.1	49.300	8.55	81.2000	1780	6.810	61.7	4.24	
138	South Korea	4.1	49.400	6.93	46.2000	30400	3.160	80.1	1.23	22
154	Turkmenistan	62.0	76.300	2.50	44.5000	9940	2.310	67.9	2.83	2

Escolha de algoritmos

1. Escreva em tópicos as etapas do algoritmo de K-médias até sua convergência.

O kmeans possui dois tipos de ínicialização 'k-means++' e 'random'

'k-means++': seleciona os centróides iniciais do cluster usando amostragem baseada em uma distribuição de probabilidade empírica da contribuição dos pontos para a inércia geral. Esta técnica acelera a convergência e está teoricamente comprovada como-ótimo. Veja a descrição de n initpara mais detalhes.

'Random' : Escolhe de forma pseudo-aleatória.

- 1. Definição dos centróides (k-means++ ou Random).
- 2. Cálculo das distancias entre pontos e centroides.
- 3. Associa os pontos aos clusters correspondentes.
- 4. Cálcula a média dos pontos associados ao centróides.
- 5. Reajusta o centróides para o centro do cluster.
- 6. Repete o processo a partir do 2.
- 7. Para o processo por uma tolerância de variáção do centroides no passo 5, ou número máximo de interações.
- 2. O algoritmo de K-médias converge até encontrar os centróides que melhor descrevem os clusters encontrados (até o deslocamento entre as interações dos centróides ser mínimo). Lembrando que o centróide é o baricentro do cluster em questão e não representa, em via de regra, um dado existente na base. Refaça o algoritmo apresentado na questão 1 a fim de garantir que o cluster seja representado pelo dado mais próximo ao seu baricentro em todas as iterações do algoritmo.

```
In [67]: from sklearn_extra.cluster import KMedoids
kmedoids = KMedoids(n_clusters=3, random_state=0).fit(df_t1)
df_results['Medoides']=kmedoids.labels_
```

```
In [68]: import matplotlib.pyplot as plt
         fig, (ax0, ax1, ax2) = plt.subplots(nrows=1, ncols=3, sharex=True,
                                             figsize=(12, 6))
         # Pie chart, where the slices will be ordered and plotted counter-clockwise:
         labels = 'Cluster 0', 'Cluster 1', 'Cluster 2'
         sizes0 = df_results['Clusters'].value_counts(normalize=True)
         sizes1 = df results['Clusters hc'].value counts(normalize=True)
         sizes2 = df_results['Medoides'].value_counts(normalize=True)
         #fig1, ax1 = plt.subplots()
         ax0.set title('KMeans')
         ax0.pie(sizes0, labels=labels, autopct='%1.1f%%',
                 shadow=True, startangle=90)
         ax0.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
         ax1.set_title('Hierarchy')
         ax1.pie(sizes1, labels=labels, autopct='%1.1f%%',
                 shadow=True, startangle=90)
         ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
         ax2.set title('Medoide')
         ax2.pie(sizes2, labels=labels, autopct='%1.1f%%',
                 shadow=True, startangle=90)
         ax2.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
         plt.show()
```


Com a inclusão do Medoide do sklearn, o Cluster 0 ficou menor, e o Cluster 1 ficou maior, assim como o cluster 2. Diferença maior que o Kmeans e o Hierarchy. O Kmeans parece ter ficado como intermediário entre Hierarchy e medoide.

```
In [69]: | dict= {1: 0, 2: 1, 0: 2}
          df_results['Medoides']=df_results['Medoides'].replace(dict)
          df results['Alg2']='Medoide'
          df grupo med=df results.groupby(['Medoides', 'Alg2']).mean()
          df grupo med
Out[69]:
                               child_mort
                                            exports
                                                      health
                                                               imports
                                                                             income
                                                                                      inflation
                                                                                               life_expe
           Medoides
                         Alg2
                     Medoide
                               98.256098
                                         28.341707
                                                    6.147805
                                                            41.134146
                                                                         3246.902439
                                                                                     12.653049
                                                                                               59.02682
                                                                                               71.05285
                   1
                     Medoide
                               27.974286
                                         42.701271
                                                    5.813571
                                                             50.710941
                                                                        10903.000000
                                                                                      8.336871
                     Medoide
                                7.221429 48.466071 8.557321
                                                             46.328571
                                                                        35121.964286
                                                                                      3.521607
                                                                                               78.37500
In [70]:
          df_results['Alg0']='Kmeans'
          df results['Alg1']='Hierarchy'
          df_grupo_km=df_results.groupby(['Clusters', 'Alg0']).mean()
          df_grupo_hc=df_results.groupby(['Clusters_hc', 'Alg1']).mean()
          df grupo=pd.concat([df grupo km, df grupo med], axis=0)
          df_grupo=pd.concat([df_grupo, df_grupo_hc], axis=0)
          df_grupo_v=df_grupo[['child_mort', 'exports', 'health',
                                                                               'imports',
                                                                                             'income'
          df_grupo_v
Out[70]:
                               child_mort
                                            exports
                                                      health
                                                               imports
                                                                             income
                                                                                      inflation
                                                                                               life_expe
            Clusters
                         Alq0
                  0
                      Kmeans
                               93.284783 29.287174
                                                    6.338478 43.297826
                                                                         3516.804348
                                                                                     12.097065
                                                                                               59.39347
                  1
                      Kmeans
                               22.425581
                                         40.382430
                                                    6.215581
                                                             46.932162
                                                                        12770.813953
                                                                                      7.609023
                                                                                               72.58255
                  2
                      Kmeans
                                4.897143 58.431429
                                                    8.917429
                                                            51.508571
                                                                        45802.857143
                                                                                      2.535000
                                                                                               80.24571
                                         28.341707
                  0
                     Medoide
                               98.256098
                                                    6.147805
                                                            41.134146
                                                                         3246.902439
                                                                                     12.653049
                                                                                               59.02682
                     Medoide
                               27.974286 42.701271
                                                    5.813571
                                                             50.710941
                                                                        10903.000000
                                                                                      8.336871
                                                                                               71.05285
                  1
                                                    8.557321
                                                                                               78.37500
                  2
                     Medoide
                                7.221429 48.466071
                                                             46.328571
                                                                        35121.964286
                                                                                      3.521607
                    Hierarchy
                               97.102439
                                        29.349244
                                                    5.551220
                                                             37.969900
                                                                         3569.097561
                                                                                     12.807195
                                                                                               59.67561
                               23.991304
                                         39.919348
                                                    6.756304
                                                             50.121739
                                                                        11943.804348
                    Hierarchy
                                                                                      6.897217
                                                                                               71.92065
                                5.961765 58.508824
                                                    8.501176 48.902941
                                                                        47588.235294
                                                                                      4.115500
                                                                                               79.98235
                    Hierarchy
```

3. O algoritmo de K-médias é sensível a outliers nos dados. Explique.

É sensível a outliears, porque os centroides são ajustados pelas distância dos pontos até os centróides, os outliears podem deslocar os centróides porque eles teriam uma influência por gerar distância maiores até o centróides. As vezes pode ser uma feature com valor muito alto e com isso influênciar a distância do ponto ao centroide, e consequentemente na média e no ajuste do centroide.

4. Por que o algoritmo de DBScan é mais robusto à presença de outliers?

O DBScan é um algoritmo baseado em densidade. Dado um conjunto de pontos em algum espaço, ele agrupa pontos que estão próximos (pontos com muitos vizinhos próximos), marcando como outliers pontos que estão sozinhos em regiões de baixa densidade (cujos vizinhos mais próximos estão muito distantes).

O algoritmo trabalha com o conceito de Acessibilidade de Conectividade. Um ponto é acessivel de um outro ponto se tem uma distância menor ou igual a um valor epsilon. A conectividade é um ponto que que está conectável a outro ponto que seja acessível através de um ponto acessivel do primeiro ponto. Ou seja A e B são acessíveis, B e C são acessiveis, então A e C são conectaveis.

Os pontos são então classificados como core, quando possuem um número minimo de vizinhos, dentro do raio epsilon. Os pontos conectaveis a partir dos pontos core, são pontos acessíveis.

O pontos são rotulados como core (minimo de vizinhos), e os demais são rotulados como ruído. O pontos core são propagados através dos pontos acessíveis. Dessa forma os pontos isolados acabam ficando de fora do cluster e não tendo nenhuma influência sobre eles. Os pontos isolados não vão ter pontos dentro do radio de distância epsilon e não serão acessíveis a partir dos pontos core.

Exemplo: Ponto A é um ponto core, possui 3 pontos dentro do raio epsilon. B e C são pontos acessíveis e perterncem ao mesmo cluster. O ponto N não é acessível e nem possui pontos dentro do raio epsilon. N não influência em nada no cluster de A, porque se N não existisse o cluster de A seria definido da mesmo forma.

