Introduction: Projected Temperature Increase

Introduction: Projected U.S. Temperature Increase

Prediction for 2099

Introduction: Responses to Climate Change

1. Mitigation

Prognosis: poor

2. Geoengineering

Prognosis: uncertain

(Who gets to set the planet's temperature?)

3. Adaptation

Prognosis: the only certain component of medium-run climate change policy

Introduction: Adaptation

- "[A]djustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities" --IPCC
 - Policy literature strongly emphasizes adaptation for health
- No credible empirical evidence on human ability to adapt to large-scale environmental change
- -interaction of weather and climate
- theory:
 - Hsaing and Tatiana Deryugina (marginal product of climate), Lemoine, Kolstad, Grossman
- data on technologies / and behaviors

Introduction: Research Questions

- 1. How did the temperature-mortality relationship change during the 20th century U.S.?
- 2. How did health-related innovations change the temperature-mortality relationship?

(Which subpopulations gained the most from heat-protective effects of these innovations?)

(Relevance to climate change and developing countries today?)

Introduction: Approach

- Mortality and weather, 1900-2004
- Three "modifiers" of temperature-mortality relationship: health care access (doctors per capita), electricity, air conditioning
- Focus: interaction terms of weather and modifiers

Not a full social welfare analysis of any modifier (today)

Introduction: Results

- 1. Effect of very hot days on log mortality rate fell 80% after 1960
- 2. Air conditioning explains most of this effect. Access to health care and residential electricity: limited roles.

Minorities, infants, elderly benefitted the most.

Climate change and developing countries: air conditioning paradox

Outline

Physiology

Modifiers

Data

Econometrics

Results

Changing nature of temperature-mortality relationship

Evidence on modifiers of temperature-mortality relationship

Interpretations and implications

Conclusions

Physiology

- Thermoregulation
 - Body maintains 98.6°F
- Extreme ambient temperature
 - Cardiovascular & respiratory systems work harder: sweating, shivering
 - Causes mortality and morbidity
 - US Army guideline: "moderate work" for 15 mins/hour when ambient temperature >90°F
- "Long-term" effect of temperature on mortality
 - Difficult to measure due near-term mortality advancement.
 - (Harvesting)
 - Need long exposure window

Outline

Physiology

Modifiers

Data

Econometrics

Results

Changing nature of temperature-mortality relationship

Evidence on modifiers of temperature-mortality relationship

Interpretations and implications

Conclusions

Modifiers

- Three:
 - Access to health care
 - Residential electricity
 - Residential air conditioning
- Many people in developing countries lack these
- Other adaptations possible (e.g, migration)

Modifiers: Mechanisms

- Access to health care (1900-2004)
 - Hospital interventions including cooling and oral or IV fluids
- Electricity (1900-1950s)
 - All households have electricity by 1950s
 - Fans, electric heating, smokeless lighting, refrigeration, piped water
- Residential air conditioning (1955-2004)

Modifiers: Residential Air Conditioning

- History (Biddle 2008)
- Negligible household access before 1950s.
 - Shops had air conditioning beginning in 1920s
- Why residential air conditioning begins in 1950s?
 - Change in standard methods of residential construction
 - Regulatory change: central AC included in FHA-approved mortgages

Modifiers: Residential Air Conditioning Coverage

Modifiers: Summary Statistics

	Number of Doctors Per 1000 Population			Share of Households With With Electricity			Share of Households With Residential Air Conditionning			
	<u>1920</u>	<u>1960</u>	<u>2004</u>	<u>1920</u>	<u>1960</u>	2004	<u>1920</u>	<u>1960</u>	<u>1980</u>	<u>2004</u>
A. All States:	1.28	1.33	2.90	0.52	1.00	1.00	0.00	0.12	0.55	0.87
B. By US Census Region: 1. Northeast	1.25	1.76	3.88	0.75	1.00	1.00	0.00	0.10	0.43	0.74
2. Midwest	1.27	1.18	2.67	0.58	1.00	1.00	0.00	0.11	0.54	0.93
3. South	1.21	1.05	2.74	0.20	1.00	1.00	0.00	0.18	0.73	1.00
4. West	1.62	1.52	2.59	0.71	1.00	1.00	0.00	0.07	0.38	0.72

Outline

Physiology

Modifiers

Data

Econometrics

Results

Changing nature of temperature-mortality relationship

Evidence on modifiers of temperature-mortality relationship

Interpretations and implications

Conclusions

Data: Weather

- Global Historical Climatology Network
 - Daily minimum and maximum temperature
 - Precipitation
 - Average 1,800 stations/year, 1900 to 2004
 - To counties: inverse-distance weight (radius: 300 km)
 - To states: population-weighted mean across counties
- Humidity: limited data
 - Temperature*precipitation as proxy
 - Barreca (2012): humidity doesn't affect temperature-mortality relationship

Data: Mortality

- Mortality
 - Mortality Statistics of the United States (1900-1958, books)
 - Multiple Cause of Death (1959-2004, computerized)
 - Unbalanced panel in early 1900s
 - Public data >2004 lack geocodes
- Other mortality data candidates
 - Daily: only 1972-1988
 - County: sporadic pre-1959
- State*Year*Month data is best available for 20th century

Data: Mortality Rates

- Mortality Rates
- 1900-2004: total mortality rate
 - 1960-2004: by cause of death and demography
 - Age: Infants, 1-44, 45-64, 65+
 - Race: white, black
 - Cause: cardiovascular, neoplasms, respiratory, infections, vehicle accident
- Separate results for:
 - Vulnerable populations
 - Causes of death linked to extreme heat

Data: Modifiers

- Physicians per capita:
 - State-year data from decennial Population Census
 - Linearly interpolate
- Share households with electricity:
 - National Electric Light Association reports (annual)
 - Edison Electric Institute reports (annual)
- Share households with residential air conditioning:
 - State-year data from 1960, 1970, 1980 Population Census
 - Linearly interpolate

Data: Other

Annual Income Per Capita

Source: BEA

• 1929+ only

Outline

Physiology

Modifiers

Data

Econometrics

Results

Changing nature of temperature-mortality relationship

Evidence on modifiers of temperature-mortality relationship

Interpretations and implications

Conclusions

$$\log(Y_{sym}) = \sum_{j} \theta_{j} TMEAN_{symj} + \pi_{L} LOWP_{sym} + \pi_{H} HIGHP_{sym} + X_{sym} \beta + \alpha_{sm} + \gamma_{ym} + \varepsilon_{sym}$$

sym: unit of observation is a statexyearxmonth

$$\log(Y_{sym}) = \sum_{j} \theta_{j} TMEAN_{symj} + \pi_{L} LOWP_{sym} + \pi_{H} HIGHP_{sym} + X_{sym} \beta + \alpha_{sm} + \gamma_{ym} + \varepsilon_{sym}$$

- sym: unit of observation is a statexyearxmonth
- j: temperature bins

$$\log(Y_{sym}) = \sum_{j} \theta_{j} TMEAN_{symj} + \pi_{L} LOWP_{sym} + \pi_{H} HIGHP_{sym} + X_{sym} \beta + \alpha_{sm} + \gamma_{ym} + \varepsilon_{sym}$$

- sym: unit of observation is a statexyearxmonth
- j: temperature bins
- Fixed Effects and Trends:
 - Year-month (aggregate health trends)
 - State-month (local health seasonality)
 - State-month quadratic trends (local trends in health seasonality)

$$\log(Y_{sym}) = \sum_{j} \theta_{j} TMEAN_{symj} + \pi_{L} LOWP_{sym} + \pi_{H} HIGHP_{sym} + X_{sym} \beta + \alpha_{sm} + \gamma_{vm} + \varepsilon_{sym}$$

- sym: unit of observation is a statexyearxmonth
- j: temperature bins
- Fixed Effects and Trends:
 - Year-month (aggregate health trends)
 - State-month (local health seasonality)
 - State-month trends (local trends in health seasonality)
- Other controls:
 - Log income per-capita
 - Month * Log per capita income
 - Share in urban areas,
 - Share in four age categories: infants (0); 1-44; 45-64; and 65+

Econometrics: Notes

- Alternative model: 3 temperature bins
 - days<40°F
 - days 80-89°F
 - days>90°F
- Alternative model: 2 months of lagged exposure
 - Cumulative effects
 - To address displacement effects.
 - Sensitivity analysis: 4 month window
- Preferred model: include income controls

Econometrics: Notes

Weighted by state-year population

Clustered by state

Modifiers: main effects and interactions with temperature

Econometrics: Identification

- Non-experimental variation in modifiers
- Fixed effects and trends help identification
- Internal validity threats:
 - State*year*month variables correlated with air conditioning adoption and temperature-mortality relationship
- One check: include temperature*year trends as additional control.
- Another check: estimate 'leads' of temperature
- Effects found are for extreme temperatures, not for a secular increase in temperature tolerance

Outline

Physiology

Modifiers

Data

Econometrics

Results

Changing nature of temperature-mortality relationship

Evidence on modifiers of temperature-mortality relationship

Interpretations and implications

Conclusions

Daily Mean US Temperatures

weighted by population distribution over course of one year 1900-2004 average

Daily Mean US Temperatures

weighted by population distribution over course of one year 1900-2004 average

1900-2004

1900-2004

1929-2004

Control for log per capita income

1929-1959

~1600 deaths per year due to >90° F

1929-1959

~1600 deaths per year due to >90° F

1960-2004

~ 600 deaths per year due to >90° F

1929-1959

1960-2004

Days > 90°F and Log Monthly Mortality Rates

By 20 year period

Days 80-89°F and Log Monthly Mortality Rates

By 20 year period

Days <40°F and Log Monthly Mortality Rates

By 20 year period

Contemporaneous effect (1 month exposure)

	Sample:				
	1900-2004	1929-2004	1929-1959	1960-2004	
	(1)	(2)	(3)	(4)	
A. 1 Month Exposure Window					
Number of Days Above 90°F	0.0114*	0.0110*	0.0243*	0.0047*	~ 5-fold reduction,
	(0.0030)	(0.0029)	(0.0028)	(0.0010)	pre/post 1960
Number of Days Between 80-89°F	0.0030*	0.0024*	0.0048*	0.0018*	
	(0.0004)	(0.0003)	(0.0004)	(0.0002)	
Number of Days Below 40°F	0.0029*	0.0029*	0.0039*	0.0024*	
	(0.0003)	(0.0003)	(0.0007)	(0.0002)	
Year*Month Fixed Effects	У	У	У	У	
State*Month Fixed Effects	У	У	У	У	
State*Month Quad Time Trends	У	У	У	У	
Month*Income Interactions	n	У	У	У	

Notes: Regressions also include log per-capita income (cols 2-4), the share of the population living in urban areas, and the share of the state population in one of four age categories: infants (0-1); 1-44; 45-64; and 65+. Regressions are weighted by state population and standard errors are clustered at the state level.

Cumulative effect (2 months exposure)

	Sample:			_	
	1900-2004	1929-2004	1929-1959	1960-2004	
	(1)	(2)	(3)	(4)	
B. 2 Months Exposure Window					
(Cumulative Effect)					
Number of Days Above 90°F	0.0089* (0.0026)	0.0086* (0.0027)	0.0195*	0.0033*	~ 6-fold reduction,
	(0.0020)	(0.0027)	(0.0030)	(0.0009)	pre/post 1960
Number of Days Between 80-89°F	0.0019*	0.0012*	0.0030*	0.0011*	
	(0.0004)	(0.0003)	(0.0005)	(0.0002)	
Number of Days Below 40°F	0.0042*	0.0041*	0.0059*	0.0034*	
	(0.0004)	(0.0004)	(0.0008)	(0.0003)	
Year*Month Fixed Effects	У	у	У	у	
State*Month Fixed Effects	У	У	У	У	
State*Month Quad Time Trends	У	У	У	У	
Month*Income Interactions	n	У	У	У	

Notes: Regressions also include log per-capita income (cols 2-4), the share of the population living in urban areas, and the share of the state population in one of four age categories: infants (0-1); 1-44; 45-64; and 65+. Regressions are weighted by state population and standard errors are clustered at the state level.

Separate effects for minimum and maximum temperatures

		Sample:	
	1929-2004	1929-1959	1960-2004
	(1)	(2)	(3)
A. Daily Minimum Temperature			
Number of Days Above 80°F	0.0035	0.0208*	0.0010
	(0.0018)	(0.0069)	(0.0008)
Number of Days Between 70-79°F	0.0005	0.0027*	0.0007
,	(0.0007)	(0.0007)	(0.0006)
B. Daily Maximum Temperature			
Number of Days Above 100°F	0.0034*	0.0045*	0.0014*
	(0.0008)	(0.0014)	(0.0006)
Number of Days Between 90-99°F	0.0007	0.0000	0.0005
•	(0.0008)	(0.0006)	(0.0003)
Year*Month Fixed Effects	У	У	У
State*Month Fixed Effects	у	У	У
State*Month Quad Time Trends	у	У	У
Month*Income Interactions	У	У	У

~ 21-fold reduction, pre/post 1960

Notes: Regressions also include log per-capita income, the share of the population living in urban areas, and the share of the state population in one of four age categories: infants (0-1); 1-44; 45-64; and 65+. Regressions are weighted by state population and standard errors are clustered at the state level.

Heterogeneity & Robustness

- Differences by US region:
 - Magnitude of effect inversely related to local climates
 - No statistically significant differences
 - Similar 'flattening' of temperature-mortality relationship

By US Census Region, cumulative effect (2 months exposure)

	Number of Days Below 40°F		Number of Days Between 80-89F°		Number of Days Above 90°F	
	1929-1959	1960-2004	1929-1959	1960-2004	1929-1959	1960-2004
	(1a)	(1b)	(2a)	(2b)	(3a)	(3b)
1. Northeast	0.0054*	0.0025*	0.0032*	0.0031*	-0.0133	0.0284
	(0.0010)	(0.0004)	(0.0008)	(0.0007)	(0.0217)	(0.0194)
2. Midwest	0.0038*	0.0019*	0.0030*	0.0029*	0.0280*	0.0056
	(0.0010)	(0.0002)	(0.0006)	(0.0005)	(0.0036)	(0.0032)
3. South	0.0102*	0.0047*	0.0024*	0.0006*	0.0128*	0.0029
	(0.0014)	(0.0007)	(0.0005)	(0.0002)	(0.0014)	(0.0017)
4. West	0.0024	0.0045*	0.0046	0.0013	0.0119*	0.0033*
	(0.0021)	(0.0010)	(0.0028)	(0.0017)	(0.0058)	(0.0014)

Notes: Regressions also include log per-capita income, the share of the population living in urban areas, and the share of the state population in one of four age categories: infants (0-1); 1-44; 45-64; and 65+. Regressions are weighted by state population and standard errors are clustered at the state level.

Robustness

pre/post 1960 mortality effect of high-temperature days

- Robust to:
 - State*year fixed effects
 - Longer exposure window (4 months, not 2)
 - Controlling for fraction black, farm share, urban share
 - Temperature*year trends
 - Temperature*rainfall interactions
 - "Lead" temperature variables (lead variables not significant)

Robustness Analysis (Table 6)

	Sample:	
_	1929-1959	1960-2004
	(1)	(2)
1. Baseline (Table 3, Panel B)	0.0195*	0.0033*
	(0.0030)	(0.0009)
2. Controls for State*Year Fixed Effects	0.0185*	0.0041*
	(0.0035)	(0.0011)
3. Exposure Window of 4 Months	0.0200*	0.0007
	(0.0035)	(0.0015)
4. Log Real Per Capita Income Below Median	0.0187*	0.0059*
	(0.0035)	(0.0018)
5. Log Real Per Capita Income Above Median	0.0175*	0.0025*
	(0.0062)	(0.0006)
6. Including Fraction Black, Fraction Living on Far	0.0197*	0.0033*
Fraction Movers as Additional Controls	(0.0029)	(0.0009)
7. Allowing for Temperature*Year Trends	0.0188*	0.0039*
	(0.0028)	(0.0010)
8. Including Temperature*Rainfall Interactions	0.0180*	0.0040*
	(0.0033)	(0.0010)
9. Including Leads of Temperature Variables	0.0193*	0.0035*
·	(0.0031)	(0.0009)
10. Impact of 3 Consecutive Days > 90°F	0.1353*	0.0181*
	(0.0224)	(0.0052)

Summary

- Impact of very hot days (>90°F) on log mortality rate declined by factor of 5-6 after 1960.
- Similar result in many specifications

Outline

Physiology

Modifiers

Data

Econometrics

Results

Changing nature of temperature-mortality relationship

Evidence on modifiers of temperature-mortality relationship

Interpretations and implications

Temperature × **Residential AC Share Effect on Log Monthly Mortality Rate**

1960-2004

Interaction Between Residential AC Share and 10 Temperature-Day Bins

Temperature × **Log Doctors Per Capita Effect on Log Monthly Mortality Rate**

1960-2004

Interaction Between Log Doctors Per Capita and 10 Temperature-Day Bins

Temperature × **Residential Electricity Share Effect on Log Monthly Mortality Rate**

1929-1959

Interaction Between Residential Electricity Share and 10 Temperature-Day Bins

Modifiers

Days>90°F for 1900-1959 and 1960-2004 Sample

	[A] S	Sample: 1929-	1959	[B] \$	Sample: 1960-	2004
	(1a)	(2a)	(3a)	(1b)	(2b)	(3b)
Number of Days Above 90°F	0.0195*	0.0194*	0.0194*	0.0037*	0.0099*	0.0096*
	(0.0027)	(0.0031)	(0.0029)	(0.0006)	(0.0023)	(0.0025)
Number of David About 00 %5	0.0024		0.0010	0.0044		0.0013
Number of Days Above 90 °F ×	-0.0024		-0.0019 (0.0074)	-0.0044		-0.0013
Log Doctors Per Capita	(0.0066)		(0.0074)	(0.0038)		(0.0025)
Number of Days Above 90 $^{\circ}$ F $ imes$		0.0138	0.0138			
Share with Residential Electricity		(0.0085)	(0.0102)			
Number of Days Above 90 °F ×					-0.0237*	-0.0226*
Share with Residential AC					(0.0063)	(0.0072)
Year*Month Fixed Effects	у	у	У	у	у	У
State*Month Fixed Effects	У	У	У	У	У	У
State*Month Quad Time Trends	У	у	у	у	у	У
Month*Income Time Trends	У	у	у	у	у	У

Notes: Regressions also include log per-capita income, the share of the population living in urban areas, and the share of the state population in one of four age categories: infants (0-1); 1-44; 45-64; and 65+. Regressions are weighted by state population and standard errors are clustered at the state level.

Robustness of AC Result

- Baseline (Interaction with >90F):
 - -0.0226 effect (std error = 0.0072)
- With Temperature*year trends:
 - -0.0287 effect (std error = 0.0082)
- With 4 months displacement window:
 - -0.0416 effect (std error = 0.0133)
- Interaction with >80F: -0.005 effect (significant)
- Interaction with <40F: not significant</p>

Modifiers: Sub-Populations

1960-2004 Sample

- Age
 - Protective effect of AC largest for young and old
- Race
 - Protective effect of AC largest for blacks (1.5 times larger than for whites).
 - Significant for both whites and blacks
- Cause of death
 - Protective effect of AC significant for cardiovascular and respiratory disease as expected.
 - Also significant for neoplasms.
 - Insignificant for infectious disease and MVA as expected

Modifiers: Sub-Populations

1960-2004 Sample New analysis not in paper

- By income
 - Protective effect of AC same across above/below median income groups
- By min/max temperature
 - Protective effect of AC is largest for high daily minimum (as opposed to high daily maximum). Significant for both
- By "high-risk" industries (as in Graff-Zivin & Neidell):
 - In progress...

New Analysis

	[B] Sample: 1960-2004			
	(1b)	(2b)	(3b)	
1. Daily Mean Temperature	, ,		, ,	
Number of Days Above 90 °F ×		-0.0237*	-0.0226*	
Share with Residential AC		(0.0063)	(0.0072)	
Number of Days Above 90 °F ×		0.0012	0.0041	
Share with Residential AC ×		(0.0017)	(0.0032)	
Above Median Income				
2. Daily Min/Max Temperature				
Number of Days With Min Above 80 $^{\circ}$ F $ imes$		-0.0133	-0.0173*	
Share with Residential AC		(0.0086)	(0.0056)	
Number of Days With Max Above 100 $^{\circ}$ F \times		-0.0100*	-0.0089*	
Share with Residential AC		(0.0029)	(0.0020)	
Year*Month Fixed Effects	У	У	У	
State*Month Fixed Effects	У	У	у	
State*Month Quad Time Trends	У	У	у	
Month*Income Time Trends	У	у	у	

Table 8: By Age

	(1)	(2)	(3)
Age 0-1			
Number of Days Above 90 °F	0.0040 (0.0031)	0.0121* (0.0030)	0.0148* (0.0036)
Number of Days Above 90 °F $ imes$ Log Doctors Per Capita	0.0079 (0.0099)		0.0119 (0.0100)
Number of Days Above 90 $^{\circ}$ F $ imes$ Share with Residential AC		-0.0274 (0.0179)	-0.0386* (0.0164)
Age 1-44			
Number of Days Above 90 °F	0.0060* (0.0026)	0.0054 (0.0031)	0.0042 (0.0032)
Number of Days Above 90 °F $ imes$ Log Doctors Per Capita	-0.0047 (0.0039)		-0.0071 (0.0050)
Number of Days Above 90 °F \times Share with Residential AC		0.0005 (0.0172)	0.0052 (0.0176)
Age 45-64			
Number of Days Above 90 °F	0.0017* (0.0008)	0.0088* (0.0011)	0.0038* (0.0021)
Number of Days Above 90 °F $ imes$ Log Doctors Per Capita	-0.0078 (0.0048)		-0.0074 (0.0054)
Number of Days Above 90 $^{\circ}$ F \times Share with Residential AC		-0.0179* (0.0020)	-0.0077 (0.0067)
Age 65+			
Number of Days Above 90 °F	0.0034* (0.0012)	0.0117* (0.0046)	0.0107* (0.0047)
Number of Days Above 90 °F $ imes$ Log Doctors Per Capita	-0.0065 (0.0064)		-0.0065 (0.0059)
Number of Days Above 90 $^{\circ}$ F \times Share with Residential AC		-0.0287* (0.0095)	-0.0240* (0.0118)

Table 9: By Race

	(1)	(2)	(3)
White Population			
Number of Days Above 90 °F	0.0023*	0.0076*	0.0077*
	(0.0006)	(0.0017)	(0.0019)
Number of Days Above 90 °F ×	-0.0002		0.0005
Log Doctors Per Capita	(0.0021)		(0.0018)
Number of Days Above 90 $^{\circ}$ F $ imes$		-0.0197*	-0.0198*
Share with Residential AC		(0.0053)	(0.0059)
Black Population			
Number of Days Above 90 °F	0.0131*	0.0274*	0.0112*
	(0.0041)	(0.0056)	(0.0023)
Number of Days Above 90 $^{\circ}$ F $ imes$	0.0030		0.0010
Log Doctors Per Capita	(0.0093)		(0.0044)
Number of Days Above 90 $^{\circ}$ F $ imes$		-0.0477*	-0.0302*
Share with Residential AC		(0.0126)	(0.0070)

Table 10: By Cause of Death

				_			
	(1)	(2)	(3)	_			
Cardiovascular Disease							
Number of Days Above 90 $^{\circ}$ F $ imes$	-0.0003		0.0009				
Log Doctors Per Capita	(0.0037)		(0.0040)				
Number of Days Above 90 °F ×		-0.0226*	-0.0230*				
Share with Residential AC		(0.0052)	(0.0069)				
Neoplasms							
Number of Days Above 90 $^{\circ}$ F $ imes$	0.0012		0.0033*				
Log Doctors Per Capita	(0.0016)		(0.0011)				
Number of Days Above 90 °F ×		-0.0123*	-0.0149*				
Share with Residential AC		(0.0028)	(0.0025)				
					(1)	(2)	(3)
Respiratory Disease	0.0047		0.0004				
Number of Days Above 90 °F ×	-0.0047		-0.0031	Infectious Disease	-0.0059	-0.0070	-0.0113
Log Doctors Per Capita	(0.0058)		(0.0067)	Number of Days Above 90 °F	(0.0058)	(0.0147)	(0.0165)
Number of Days Above 90 $^{\circ}$ F $ imes$		-0.0569*	-0.0526				
Share with Residential AC		(0.0255)	(0.0264)	Number of Days Above 90 $^{\circ}$ F $ imes$	-0.0251		-0.0345
				Log Doctors Per Capita	(0.0220)		(0.0268)
				Number of Days Above 90 $^{\circ}$ F $ imes$		-0.0066	0.0169
				Share with Residential AC		(0.0403)	(0.0484)
				Motor Vehicle Accidents			
				Number of Days Above 90 °F	0.0055	0.0077	0.0081
				• •	(0.0027)	(0.0070)	(0.0064)
				Number of Days Above 90 $^{\circ}$ F $ imes$	0.0048		0.0073
				Log Doctors Per Capita	(0.0078)		(0.0086)
				Number of Days Above 90 $^{\circ}$ F $ imes$		-0.0160	-0.0228
				Share with Residential AC		(0.0131)	(0.0156)

Outline

Physiology

Modifiers

Data

Econometrics

Results

Changing nature of temperature-mortality relationship

Evidence on modifiers of temperature-mortality relationship

Interpretations and implications

Interpretation

- Health benefits
 - How many >90F deaths per year avoided due to AC?
- Private costs
 - Electricity expenditure due to AC use on >90F days
- External costs
 - Greenhouse gas emissions due to extra electricity generation for AC use on >90F days

Interpretation

Implied <u>annual</u> deaths due to days > 90° F

• 1929-59: 1600

• 1960-04: 600

1960-04**: 3600 (if 1929-59 coefficient prevailed)

Implied annual > 90° F deaths avoided due to AC

• 1960-04: 3300

- Caveat: no age-specific estimates.
 - Longevity gains at least 4 months
 - Also recall significant effects on infants in (Table 8)

Monetized Estimates of AC's Benefits and Costs

	M	ortality:	Residential Electricity:		
	Number of Deaths Avoided	Monetized Value (Bil. \$2006)	Additional Billion kWh (Row B) and Billion Tons CO2 (Row C)	Monetized Value (Bil. \$2006)	
	(1)	(2)	(3)	(4)	
A Estimates of the AC's	Health Benefits				
Total Per Year	3,478	\$6.6			
		[1.8]			
Total 1960-2004	156,406	\$297.2			
B. Estimates of AC's Private B. Estimates B.	vate Costs				
Total Per Year			25.7	\$2.9	
			[4.0]	[1.3]	
Total 1960-2004			1,156	\$129.3	
C. Estimates of AC's Ext	ternal Costs				
Total Per Year			18.0	\$0.4	
Total 1960-2004			809	\$17	

Implications: US Climate Change

- Will AC help US adapt to temperature-mortality effects of climate change?
- Global climate models: 42 additional annual days >90° F in US by year 2100
- Implied annual >90° F deaths by end of century (fix population at 2004 levels):
 - 1960 AC adoption rate: 59,000
 - 2004 AC adoption rate: <1,000

Implications: Global Climate Change

- Developing countries?
- India today: 33 annual days >90°F
 - Global climate models: 100 additional days >90°F in India by 2100

Implications: US versus India

	United States: 1940	United States: 2004	India: 2000s
GDP per capita	\$5,500	\$40,000	\$3,000
IMR per 1,000	47	7	58
Deaths per 1,000	11.0	8.0	8.5
Life expectancy	63	80	67
Physicians per 1,000	1.3	2.9	0.6
Fraction of population with electricity	0.74	1	0.66
Fraction of population with residential AC	0	0.85	0.02

Outline

Physiology

Modifiers

Data

Econometrics

Results

Changing nature of temperature-mortality relationship

Evidence on modifiers of temperature-mortality relationship

Interpretations and implications

- First empirical study of adaptation strategies to reduce health costs of extreme heat due to climate change
- Result One
- Result Two
- Air conditioning paradox

- First empirical study of adaptation strategies to reduce health costs of extreme heat due to climate change
- Result One: Substantial change in temperature-mortality relationship after 1960:
 - Mortality effect of 1 hot day (>90°F): $2.4\% \rightarrow 0.5\%$
 - Reduced annual fatalities by 3600
 - Less change in mortality effect of cold temperatures
- Result Two
- Air conditioning paradox

- First empirical study of adaptation strategies to reduce health costs of extreme heat due to climate change
- Result One
- Result Two: residential air conditioning was critical.
 - Explains most temperature-mortality change
 - Electrification and health care access (doctors per capita): no detectable effect on temperature-mortality relationship
 - NB: electrification is prerequisite for air conditioning
- Air conditioning paradox

- First empirical study of adaptation strategies to reduce health costs of extreme heat due to climate change
- Result One
- Result Two
- Air conditioning paradox:
 - Protects against extreme heat
 - Causes extreme heat via climate change
 - Fossil fuels power air conditioning

- First empirical study of adaptation strategies to reduce health costs of extreme heat due to climate change
- Result One
- Result Two
- Air conditioning paradox
- Ahead:
 - Welfare consequences of air conditioning?
 - Other mechanisms for adaptation?