1 Bin packing.

Bin packing. This is a classical application of McDiarmid's inequality. Let X_1, \ldots, X_n be i.i.d. random variables taking values in [0,1]. Each X_i is the size of a package to be shipped. The packages are shipped in bins of size 1, so each bin can hold any set of packages whose sizes sum to at most 1. Let $B_n = f(X_1, \ldots, X_n)$ be the minimal number of bins needed to ship the packages with sizes X_1, \ldots, X_n . Computing B_n is a hard combinatorial optimization problem; however, we can say something about its mean and tail behavior.

1.1

Let μ be the common mean of the X_i 's. Show that $\mathbb{E}[B_n] \geq n\mu$.

1.2

Prove that for any $\epsilon > 0$,

$$\mathbb{P}\left(n^{-1}B_n \le \mu - \epsilon\right) \le \exp\left(-2n\epsilon^2\right).$$

2 Orthogonal design lasso bits

Let $y_i = x_i^{\top} \beta^* + \eta_i$ for i = 1, ..., n. Assume that the design matrix $\mathbf{X} = (x_1, ..., x_n)^{\top}$ is not random. Also assume that $\log \mathbb{E}\left[e^{\lambda \eta_i}\right] \leq \sigma^2 \lambda^2 / 2$. Let

$$\widehat{\boldsymbol{\beta}} = \mathop{\rm argmin}_{\boldsymbol{\beta}} \frac{1}{2n} \| \boldsymbol{Y} - \mathbf{X} \boldsymbol{\beta} \| + \lambda \| \boldsymbol{\beta} \|_1.$$

2.1

Derive the so-called "basic inequality":

$$\|\mathbf{X}\beta^* - \mathbf{X}\widehat{\beta}\| + \lambda \|\beta\|_1 \le \frac{1}{n} \eta^\top \mathbf{X}(\widehat{\beta} - \beta^*) + \lambda \|\beta^*\|_1$$

2.2

Let X_i be the j^{th} column of **X**. Find a constant M such that $\mathbb{P}(\mathcal{G}) \geq 1 - 2e^{-\delta}$ for

$$\mathcal{G} = \left\{ \max_{j} |\eta^{\top} X_{j}| / n < M \right\}.$$

3 Empirical Rademacher Complexity

Prove the following result. Let H be a set of hypotheses bounded by M > 0 and consider an i.i.d. sample of size n. For any $h \in H$, with probability at least $1 - \delta$

$$R_n(h) \le \widehat{R}_n(h) + \widehat{\mathcal{R}}_n(H) + 3M\sqrt{\frac{2\log(2/\delta)}{n}}.$$

You may use the result from class that

$$R_n(h) \le \widehat{R}_n(h) + \mathcal{R}_n(H) + M\sqrt{\frac{2\log(1/\delta)}{n}}.$$