Раздел 5. Линии второго порядка на плоскости Вариант 1*

- 1. Найти уравнение окружности, касающейся осей координат и проходящей через точку (4;-2).
- 2. Составить уравнение эллипса, зная, что: его большая полуось равна 10 и фокусы находятся в точках $F_1(-6;0)$, $F_2(10;0)$.
- 3. Дан эллипс $2.5x^2+4y^2=20$. Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах данного эллипса.
- 4. Определить тип кривой второго порядка, заданной уравнением $3x^2 + 6xy + 3y^2 + 4x + 2y + 2 = 0$.
- 5. Составить уравнение окружности, проходящей через точки A(3; 5), B(5; -1), если её центр лежит на прямой x-y-2=0.

Раздел 5. Линии второго порядка на плоскости Вариант 2*

- 1. Найти уравнение окружности, касающейся осей координат и проходящей через точку (6;-4).
- 2. Составить уравнение эллипса, зная, что: его большая полуось равна 12 и фокусы находятся в точках $F_1(-8;0)$, $F_2(12;0)$.
- 3. Дан эллипс $10x^2+16y^2=40$. Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах данного эллипса.
- 4. Определить тип кривой второго порядка, заданной уравнением $5x^2 + 6xy + 3y^2 + 6x + 4y + 3 = 0$.
- 5. Составить уравнение окружности, проходящей через точки A(3;5), B(4;0), если её центр лежит на прямой x-y-2=0.

Раздел **5.** Линии второго порядка на плоскости Вариант 3*

- 1. Найти уравнение окружности, касающейся осей координат и проходящей через точку (5;-3).
- 2. Составить уравнение эллипса, зная, что: его большая полуось равна 8 и фокусы лежат в точках $F_1(-4;0)$, $F_2(8;0)$.
- 3. Дан эллипс $x^2+2y^2-4=0$. Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах данного эллипса.
- 4. Определить тип кривой второго порядка, заданной уравнением $x^2 + 6xy + 6y^2 2y = 0$.
- 5. Составить уравнение окружности, проходящей через точки A(2; 6), B(5; -1), если её центр лежит на прямой x-y-2=0.

Раздел 5. Линии второго порядка на плоскости Вариант 4*

- 1. Найти уравнение окружности, касающейся осей координат и проходящей через точку (3;-3).
- 2. Составить уравнение эллипса, зная, что: его большая полуось равна 14 и фокусы лежат в точках $F_1(-8;0)$, $F_2(10;0)$.
- 3. Дан эллипс $4x^2+5y^2-80=0$. Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах данного эллипса.
- 4. Определить тип кривой второго порядка, заданной уравнением $3x^2 + 6xy + 3y^2 + 2x + 1 = 0$.
- 5. Составить уравнение окружности, проходящей через точки A(3; 5), B(6; -2), если её центр лежит на прямой x-y-2=0.

Раздел **5.** Линии второго порядка на плоскости Вариант **5***

- 1. Найти уравнение окружности, касающейся осей координат и проходящей через точку (6;-3).
- 2. Составить уравнение эллипса, зная, что: его большая полуось равна 12 и фокусы лежат в точках $F_1(-7;0)$, $F_2(12;0)$.
- 3. Дан эллипс $x^2+2y^2-3=0$. Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах данного эллипса.
- 4. Определить тип кривой второго порядка, заданной уравнением $4x^2 + 6xy + 3y^2 + 4x + 2y = 0$.
- 5. Составить уравнение окружности, проходящей через точки A(1;7), B(5;-1), если её центр лежит на прямой x-y-2=0.

Раздел 5. Линии второго порядка на плоскости Вариант 6*

- 1. Найти уравнение окружности, касающейся осей координат и проходящей через точку (4;-3).
- 2. Составить уравнение эллипса, зная, что : его большая полуось равна 8и фокусы лежат в точках $F_1(-4;0)$, $F_2(4;0)$.
- 3. Дан эллипс $2x^2+4y^2-6=0$. Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах данного эллипса.
- 4. Определить тип кривой второго порядка, заданной уравнением $2x^2 + 6xy + y^2 + 2x + 1 = 0$.
- 5. Составить уравнение окружности, проходящей через точки A(4;4), B(5; -1), если её центр лежит на прямой x-y-2=0.