LINEAR ALGEBRA AND ITS APPLICATIONS UE20MA251

.Unit 5: Singular Value Decomposition

Quadratic Forms, Definitions of Positive definite, negative definite, positive semi-definite negative semi-definite, indefinite forms of matrices, Tests for Positive Definiteness, Positive Definite Matrices and Least Squares, Semi Definite Matrices, Singular Value Decomposition, Applications.

Class No.	Portions to be covered			
57-58	Quadratic Forms Definitions of positive definite, negative definite, positive semi-definite, negative semi-definite, Indefinite forms of Matrices			
59	Tests for Positive Definiteness			
60-61	Problems on Positive Definite Matrices, Semi definite Matrices and Least Squares			
62	Matlab Class Number 10 - Eigen Values and Eigen Vectors			
63-65	The Singular Value Decomposition of a Matrix. Examples			
66	Applications			
67-68	Matlab - In Semester Assessment			

Classwork problems:

1.	Write the symmetric matrix which corresponds to the following quadratic					
	forms: $(i)Q(x) = 3x_1^2 - 5x_2^2 + 2x_3^2 - x_1x_3 + 4x_2x_3$					
	$(ii)Q(x) = 5x_1^2 + 7x_2^2 - 3x_3^2 - 4x_1x_2 + 3x_1x_3 - x_2x_3$					
	$(iii)Q(x) = 3x^2 - 4xy + 5y^2$					
2.	(3 -2 0)					

Compute the quadratic form
$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$$
 for $\mathbf{A} = \begin{bmatrix} -2 & 2 & 2 \\ \mathbf{O} & 2 & 1 \end{bmatrix}$ and (a) $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ (b) $\mathbf{x} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ (c) $\mathbf{x} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$

Decide for or against the positive definiteness of these matrices and write the

corresponding quadratic form
$$f = x^T A x$$
.

$$\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 2 & 8 \end{pmatrix} \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 5 & -4 & -4 \\ -4 & 6 & -4 \\ -4 & -4 & 7 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} 0 & -1 & 2 \\ -1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}^3$$

$$\begin{pmatrix}
0 & -1 & 2 \\
-1 & 0 & 1 \\
2 & 1 & 0
\end{pmatrix}$$

4. For which a and b are the matrices A and B have all $\lambda > 0$ and are then	efore
---	-------

positive definite.
$$A = \begin{pmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{pmatrix} B = \begin{pmatrix} 1 & 2 & 4 \\ 2 & b & 8 \\ 4 & 8 & 7 \end{pmatrix}$$

Answer: For a > 2, A is positive definite, no value of b makes B positive definite.

With positive pivots in D. the factorization A=LDL^T becomes
$$A = L\sqrt{D}\sqrt{D}L^T$$
, If $R = L\sqrt{D}$ gives A=RR^T (=CC^T Cholesky factorization), then from $R = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$ find A

and from
$$A = \begin{pmatrix} 4 & 8 \\ 8 & 25 \end{pmatrix}$$
 find R.

Answer:
$$A = \begin{pmatrix} 9 & 3 \\ 3 & 5 \end{pmatrix}$$
; $R = \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix}$.

As sum of squares.

7. Write
$$A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$$
 as R^TR in three ways $(L\sqrt{D})(\sqrt{D}L^T)$, $(Q\sqrt{\Lambda})(\sqrt{\Lambda}Q^T)$ and $(Q\sqrt{\Lambda}Q^T)(Q\sqrt{\Lambda}Q^T)$ using pivots eigen values and eigen vectors.

$$\begin{pmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{pmatrix}$$

9. Find SVD of the following matrices:

$$\begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$

10. Convert the matrix of observations to mean deviation form and construct the sample covariance matrix for the following data:

1	5	2	6	7	3			
3	11	6	8	15	11			