

	U	1	Document	ID	Issue Date	Pages	Title	Current OR	Current	XRef Retrieval C	Tuventor	S		P	2	3	# ·	ľ
1	Г		υμ σορ οροφ Λ1	18200	39033425	30	Integrated circuit memory devices having non-volatile	3 65 7737			tendo na 12 de		1	ſ		i		1
2	-	<u></u>	vs ∠JJ∠UJ≽ Al	.B565	S0050307	11	METHODS OF FORMING RECESSED HEMIOPHERICAL GRAIN CILLION	430-280			[]	ø	Γ	Γ	-	r	<u>-</u>	
3	7	t	na 2002002 ∧1	8541	20021307] e 1	Tense arrays And Charge storage devices, and methodo	433/149			See Consell en al	:5	£	f	í.	ľ	f	
4	-	Γ	us 2002002 Al	7227	2012/0307	۲ -	SEMICONDUCTOR MEMORY DEVICE HAVING A TRENUH AND A GATE	J57/65			FAND SEEN-SYF	ø	Г	Γ	٢	Γ	Γ	:
5	-	г	LJ 2002002 A1	5479	20020228	9.6	Process for fabricating semiconductor integrates	430/5	355/13: 430/31::		okamito, idehihiko et si	D	Γ	r	-	٢	r -	1
6		٢	88 2442043 Al	7701	20020214		Electrically programmable memory element with raised	**17"/ 1 "{*1			Miensy Pathons et a	i	Γ	r	ſ	Γ	r ·	
7	Г	Γ	us 2002001 Al	7669	20020214		Semiconductor integrated discuit device process for	257 296	107 3.1.		and production of the second	i.	i	ţ		ſ	f	
3		۳	03 × 11×84 8 1	6734	3.00 (311.7)		Marinta during method of pamilionductor integrates	4837-35	43.1 5 400 7000		Talan Abirthia a	,	1	i				
نو	_	Γ	US ZJJZUJI Al	2000	2002011/		Manutacturing method of photomesk	400-1	430:311: 430:317:		Basesama, Norte et al.	ū	Γ	٢	r	ŗ		
15	r	r	uu доодоод A 1	5543	01670117		Manufacturing method of semiconductor integrates	757/304	433/041		Bayar , Kareuya er a	ø	f	ſ	Γ	£"	f	1
11	-	Γ,	08 2331001 Al	3559	20011220		Method of fabricating display device	433/3J	433/27; 433/33		Nagar, Fitzuk: et al.	। ।	٢	Г	r	۲	ے۔ ۔	
<i>y</i> не		Details.	# HIML									<u></u>						

1/1 PLUSPAT - (C) QUESTEL-ORBIT PN - US5710461 A 19980120 [US5710461] TI - (A) SRAM cell fabrication with interlevel dielectric planarization PA - (A) SGS THOMSON MICROELECTRONICS (US) IN - (A) NGUYEN LOI (US); SUNDARESAN RAVISHANKAR (US) AP - US78142997 19970110 [1997US-0781429] PR - US16933893 19931217 [1993US-0169338] - US32873695 19951025 [1995US-0328736] - US78142997 19970110 [1997US-0781429] IC - (A) H01L-023/48 H01L-023/522 H01L-029/34 H01L-029/54 EC - H01L-021/3105B - H01L-021/8244 PCL - ORIGINAL (O): 257754000; CROSS-REFERENCE (X): 257350000 257380000 257381000 257385000 257640000 257740000 257752000 257758000 257903000 257904000 - Basic DT - US4676867; US4797717; US4920071; US4975875; US4990998; US5001539; US5077238; US5083190; US5110763; US5132774; US5151376; US5159416; US5169491; US5177238; US5188987; US5204288; US5219792; US5290399; US5319247; US5373170; US5381046; US5534731; US5552628; JP0099243; JP0135044; JP2251722; W08700828 - IEEE Electron Device Letters, vol. 12, No. 3, Mar. 1991, Hot-Carrier Aging of the MOS Transistor in the Presence of Spin-On Glass as the interlevel Dielectric, by N. Lifshitz and G. Smolinsky, pp. 140-142. Journal Electrochem. Soc., vol. 139, No. 2, Feb. 1992, Three "Lot Dt" Poly BiCMOS Process, by W. Dauksher, M Miller, and C. Tracy, pp.

Options for Planarizing the Pre-Metal Dielectric on an Advanced Double 532-536.

Journal Electrochem. Soc., vol. 139, No. 2, Feb. 1992, Polysilicon Planarization Using Spin-On Glass, by Shrinath Ramaswami and Andrew Nagy, pp. 591-599.

Journal Electronicem. Soc., vol. 140, No. 4, Apr. 1993, The Effect of Plasma Cure Temperature on Spin-On Glass, by Hideo Namatsu and Kazushige Minegishi, pp. 1121-1125.

STG - (A) United States patent

AB - A 4-T SRAM cell in which two layers of permanent SOG (with an intermediate oxide layer) are used to provide planarization between the first and topmost poly layers.

1/1 LGST - (C) LEGSTAT PN - US 5710461 [US5710461] AP - US 781429/97 19970110 [1997US-0781429] DT - US-P ACT - 19970110 US/AE-A APPLICATION DATA (PATENT) {US 781429/97 19970110 [1997US-0781429]} - 19980120 US/A PATENT - 20000307 US/RF REISSUE APPLICATION FILED 20000120 UP - 2000-10

1/1 CRXX - (C) CLAIMS/RRX

AN - 2933021

PN - 5,710,461 A 19980120 [US5710461]

PT - E (Electrical)

PA - SGS-Thomson Microelectronics Inc

ACT - 20000120 REISSUE REQUESTED

Issue Date of O.G.: 20000307

Reissue Request Number: 09/488686

Examination Group responsible for Reissue process: 2811

UP - 2000-10

UACT- 2000-03-07

1/1 PAST - (C) PAST

AN - 200010-001243

PN - 5710461 A [US5710461] DT - A (UTILITY)

OG - 2000-03-07

CO - REA

ACT - REISSUE APPLICATION FILED

SH - REISSUE APPLICATION FILED

```
1/39/4
DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat
(c) 2001 EPO. All rts. reserv.
12262040
Basic Patent (No, Kind, Date): US 5395785 A 19950307
                                                    <No. of Patents: 002>
Patent Family:
    Patent No
                Kind Date
                                Applic No
                                            Kind Date
               A 19950307 US 169338 A 19931217
    US 5395785
    US 5710461
                  Α
                      19980120 US 781429
                                                 A 19970110
Priority Data (No, Kind, Date):
    US 169338 A 19931217
    US 781429 A 19970110
    US 328736 B1 19951025
    US 169338 A3 19931217
PATENT FAMILY:
UNITED STATES OF AMERICA (US)
  Patent (No, Kind, Date): US 5395785 A
                                        19950307
    SRAM CELL FABRICATION WITH INTERLEVEL DIELECTRIC PLANARIZATION
    Patent Assignee: SGS THOMSON MICROELECTRONICS (US)
   Author (Inventor): NGUYEN LOI (US); SUNDARESAN RAVISHANKAR (US)
    Priority (No, Kind, Date): US 169338 A 19931217
   Applic (No, Kind, Date): US 169338 A 19931217
   National Class: * 437052000; 437047000; 437060000; 437235000;
      437919000
   IPC: * H01L-021/70
   CA Abstract No: * 122(24)304566E; 122(24)304566E
   Derwent WPI Acc No: * C 95-114834; C 98-238649; C 95-114834
    Language of Document: English
  Patent (No, Kind, Date): US 5710461 A
                                        19980120
    SRAM CELL FABRICATION WITH INTERLEVEL DIELECTRIC PLANARIZATION
      (English)
   Patent Assignee: SGS THOMSON MICROELECTRONICS (US)
   Author (Inventor): NGUYEN LOI (US); SUNDARESAN RAVISHANKAR
                                                               (US)
   Priority (No, Kind, Date): US 781429 A 19970110; US 328736 B1
     19951025; US 169338 A3 19931217
   Applic (No, Kind, Date): US 781429 A
                                          19970110
   Addnl Info: 5395785 Patented
   National Class: * 257754000; 257760000; 257640000; 257904000;
     257752000; 257903000; 257350000; 257380000; 257381000; 257385000;
     257758000
   IPC: * H01L-029/34; H01L-023/48; H01L-023/522; H01L-029/54
   CA Abstract No: * 122(24)304566E
   Derwent WPI Acc No: * C 95-114834; C 98-238649; C 98-238649
   Language of Document: English
UNITED STATES OF AMERICA (US)
 Legal Status (No, Type, Date, Code, Text):
   US 5395785
                   Ρ
                       19931217 US AE
                                             APPLICATION DATA (PATENT)
                             (APPL. DATA (PATENT))
                             US 169338 A 19931217
   US 5395785
                   Ρ
                       19931217 US AS02
                                             ASSIGNMENT OF ASSIGNOR'S
                             INTEREST
                             SGS-THOMSON MICROELECTRONICS, INC. 1310
```

ELECTRONICS DRIVE CARROLLTON, TX 75006-;

NGUYEN, LOI N.: 19931217; SUNDARESAN,

			RAV	/ISHANKA	.R :	19931217				
US	5395785	P	19950307	US A		PATENT				
US	5710461	P	19931217	US AA		PRIORITY				
			US	169338	A3	19931217				
US	5710461	P	19951025	US AA		PRIORITY				
			US	328736	B1	19951025				
US	5710461	P	19970110	US AE		APPLICATION	DATA (PATENT)			
			(AP	PL. DAT	A (P.	ATENT))				
			US	781429	Α	19970110				
US	5710461	P	19980120	US A		PATENT				
US	5710461	P	20000307	US RF		REISSUE APPI	LICATION FILED			
	(REISSUE APPL. FILED)									
	20000120									

. 1.