LOGIC GATES

A logic gate is a device that acts as a building block for digital circuits. They perform basic logical functions that are fundamental to digital circuits. In a circuit, logic gates will make decisions based on a combination of digital signals coming from its inputs.

TYPES OF LOGIC GATES

There are Three types of basic Logic Gates

- **≻OR** Gate
- >AND Gate
- **►NOT** Gate

OR GATE

The OR gate is a digital logic that implements logical disjunction. An OR gate produces a high output when any one of the input is high .It produces a low output when all the inputs are low. (X=A+B)

2 Input OR gate Truth Table

INPUTS		OUTPUTS
A	В	х
0	0	0
0	1	1
1	0	1
1	1	1

AND GATE

It will produce a high output when all the inputs are high otherwise the output is low . (X=A.B)

Truth Table of 2 input AND gate

Inputs		Outputs
A	В	×
0	0	0
0	1	0
1	0	0
1	1	1

NOT GATE

It produces high output when the input is low and vice versa. The NOT gate is also called as an inverter. (Q=A')

Truth Table

Input	Output
Α	Υ
0	1
1	0

Universal Gates

A universal gate is a gate which can implement any Boolean function without need to use any other gate type.

Types of Universal Gate

- >NAND Gate
- **≻NOR Gate**

NAND GATE

NAND gate is AND gate followed by NOT gate. (Q=(A.B))

NOR GATE

NOR gate is OR gate followed by NOT gate. (X=(A+B)')

2 input NOR gate truth table

INPUTS		OUTPUTS	
A	В	×	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Exclusive-OR Gate

When both inputs are same, it gives low output. Output Equation $Y = (A \oplus B) = A'.B + A.B'$

Truth Table

INPUTS		OUTPUT
Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Symbol -

Exclusive-NOR Gate

The Ex NOR gate gives high output when all the inputs are at same logic level.

Truth Table

INPUTS		OUTPUT
Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Symbol -

