CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (I E II GRUPPO, GRUPPO RECUPERO) 15 FEBBRAIO 2013

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Scrivere la definizione di partizione di un insieme A. Se |A| = 10, il numero delle partizioni di A è maggiore, minore o uguale a 10?

Esercizio 2. (i) Elencare gli elementi di $S := \{a^2 \mid a \in \mathbb{Z}_{12}\}$ e determinare |S|.

- (ii) Studiare iniettività e suriettività della funzione $f:(a,b) \in \mathbb{Z}_{12} \times \mathbb{Z}_{12} \mapsto a^2 + b^2 \in \mathbb{Z}_{12}$. (Suggerimento: si tenga conto di |S|, calcolata al punto precedente.)
- (iii) Detto \Re_f il nucleo di equivalenza di f, si calcoli $|\mathbb{Z}_{12} \times \mathbb{Z}_{12}/\Re_f|$ (non c'è bisogno di elencare le classi o i loro elementi). Esiste in $[(\bar{1},\bar{0})]_{\Re_f}$ una coppia (a,b) tale che $a \neq \bar{0} \neq b$?

Esercizio 3. Si consideri in \mathbb{N}^* la relazione binaria Σ definita ponendo, per ogni $a, b \in \mathbb{N}^*$,

$$a \Sigma b \iff a-1 \mid b-1.$$

- (i) Verificare che Σ è una relazione d'ordine. Σ è totale?
- (ii) Determinare in (\mathbb{N}^*, Σ) , se esistono, minimo, massimo, elementi minimali, elementi massimali.
- (iii) Verificare che, per ogni $a, b \in \mathbb{N}^*$, posto d = MCD(a-1, b-1), in (\mathbb{N}^*, Σ) si ha inf $\{a, b\} = d+1$.
- (iv) Posto $A = \{2, 3, 4, 5, 7, 13, 61\}$, si disegni il diagramma di Hasse di (A, Σ) e si determinino, in (A, Σ) , eventuali minimo, massimo, elementi minimali, elementi massimali. (A, Σ) è un reticolo?
- (v) Si trovi poi un $n \in \mathbb{N}^* \setminus A$ tale che $X := A \cup \{n\}$, ordinato da Σ , sia un reticolo complementato e non distributivo. Esiste un insieme Y tale che $(\mathcal{P}(Y), \subseteq)$ sia isomorfo a (X, Σ) ?

Esercizio 4. Si consideri in \mathbb{Z}_{27} il sottoinsieme $X = \{\bar{3}\bar{z} \mid z \in \mathbb{Z}\}$. Sia * l'operazione binaria in X definita ponendo, per ogni $x, y \in X$, $x * y = xy + \bar{9}$.

- (i) * è associativa?
- (ii) Esiste in (X, *) un elemento neutro?
- (iii) Determinare, se esiste, $t \in \mathbb{Z}$ tale che $\overline{6} * \overline{3}\overline{t} = \overline{15}$.
- (iv) Determinare, se esiste, $t \in \mathbb{Z}$ tale che $\overline{6} * \overline{3}\overline{t} = \overline{18}$.

Esercizio 5.

- (i) Si determinino $a, b \in \mathbb{Z}_5$ tali che il polinomio $f = \bar{3}ax^2 + \bar{2}ax + b \in \mathbb{Z}_5[x]$ sia monico e divisibile per $x \bar{4}$.
- (ii) Per i valori di a e b trovati al punto precedente, si scriva f come prodotto di fattori irriducibili in $\mathbb{Z}_5[x]$.