MODEL OF CAR

JOHANNES MILZ

CONTENTS

1 ODE

NOTATION

β	steering angle
$\mu(s) = \sum_{k=0}^{2} \bar{\mu}_k s^k$	static friction coefficient
r	osculating circle
ω	velocity of steering angle
w	weather

1 ODE

If the maximum static friction $F_s(t,\bar{\mu}) = \sum_{k=0}^2 \bar{\mu}_k w(t)^k mg$ is greater than or equal $F_{res}(t) = \sqrt{\left(\frac{mv(t)^2}{r(t)}\right)^2 + (m\dot{v})^2}$, the car does not slide. If the maximum static friction $F_s(t,\bar{\mu})$ is less than $F_{res}(t)$ the car slides. The dynamics reads as

$$\begin{split} &\dot{y} = v(t)\cos\beta(t) - v_r(t)\sin\beta(t) \\ &\dot{z} = v(t)\sin\beta(t) + v_r(t)\cos\beta(t) \\ &\dot{v} = \frac{1}{m} \left(\frac{M(t)}{R} - F_B(t) - \frac{1}{2} c_w \rho A v(t)^2 - \left(f_{R0} + f_{R1} v(t) + f_{R4} v(t)^4 \right) mg \right) \\ &\dot{v}_r = \begin{cases} \frac{1}{m} \left(\frac{v(t)^2}{r(t)} \frac{1}{\dot{v}} \left(F_{res}(t) - F_s(t) \right) \right) & \text{if } F_{res}(t) - F_s(t) > 0, r(t) \neq 0, \dot{v} \neq 0 \\ 0 & \text{else} \end{cases} \\ &\dot{\beta} = \omega_\beta. \end{split}$$

Since $\frac{v(t)^2}{r(t)} \ll \dot{v}$, I assumed that $\sin \alpha(t) \approx \tan \alpha(t)$, where $\tan \alpha(t) = \frac{v(t)^2}{\dot{v}r(t)}$ and $\sin \alpha(t) = \frac{F_r}{F_{res}(t) - F_s(t)}$. Therefore, $F_r = m\dot{v}_r = \left(\frac{v(t)^2}{r(t)}\frac{1}{\dot{v}}\left(F_{res}(t) - F_s(t)\right)\right)$. $\sin(\arctan(\alpha)) = \frac{\alpha}{\sqrt{\alpha^2 + 1}}$