$U \ll \lambda \;\; {
m Mutation \; regime}$: "Weak U"

Distributed mutations
with only
1 mutational step

Stochastic evolution & demography $U \gg \lambda$ Mutation regime: "Strong U"

Distributed mutations with an arbitrary number of mutational step

Deterministic evolution & Stochastic demography

 $U \ll \lambda$ Mutation regime : "Weak U"

Distributed mutations
with only
1 mutational step

Stochastic evolution & demography $U \gg \lambda$ Mutation regime : "Strong U"

Distributed mutations with an arbitrary number of mutational step

Deterministic evolution & Stochastic demography

ER probabilty from *de novo* mutations $P_R = 1 - exp(-N_0 \omega_R^{DN})$

 $U \ll \lambda \;\; {
m Mutation \; regime}$: "Weak U"

Distributed mutations
with only
1 mutational step

Stochastic evolution & demography $U\gg\lambda$ Mutation regime : "Strong U"

Distributed mutations with an arbitrary number of mutational step

Deterministic evolution & Stochastic demography

ER probabilty from *de novo* mutations

$$P_R = 1 - exp(-N_0 \,\omega_R^{DN})$$

ER probabilty from *de novo* mutations and **standing variance**

$$P_R = 1 - exp(-N_0 \left(\omega_R^{DN} + \omega_R^{SV}\right))$$

 $U \ll \lambda \;\; {
m Mutation \; regime}$: "Weak U"

Distributed mutations
with only
1 mutational step

Stochastic evolution & demography

 $U \gg \lambda$ Mutation regime : "Strong U"

Distributed mutations with an arbitrary number of mutational step

Deterministic evolution & Stochastic demography

ER probabilty from *de novo* mutations $P_{R} = 1 - exp(-N_{0} \omega_{P}^{DN})$

$$P_R = 1 - exp(-N_0 (\omega_R^{DN} + \omega_R^{SV}))$$

Proportion of ER from standing variance

$$\phi_R^{SV} = \frac{\omega_R^{SV}}{\omega_R^{DN} + \omega_R^{SV}}$$