Medical Applications of Nuclear Physics

Kristian Vorland Liodden & Oskar Ekeid Idland *University of Oslo* (Dated: July 4, 2025)

INTRODUCTION

I. THEORY

II. EXPERIMENTAL SETUP

III. ANALYSIS

A. Finding Activity from Fitted Peaks

The activity from nuclear decay follows an exponential form as follows:

$$A(t) = A_0 e^{-\lambda t} \tag{1}$$

with A_0 being the initial activity and λ the decay constant. The decay constant for each isotope is already known to be $\lambda_{108}=2.382$ minutes and $\lambda_{110}=24.56$ seconds for $^{108}\mathrm{Ag}$ and $^{110}\mathrm{Ag}$ respectively. The total number of decays from a delayed time t_d after end of irradiation, with a counting time of t_c is given by:

$$N_D = \int_{t_d}^{t_d + t_c} A(t) \, \mathrm{d}t. \tag{2}$$

Solving eq. (2) gives:

$$N_D = \frac{A_0}{\lambda} e^{-\lambda t_d} \left(1 - e^{-\lambda t_c} \right) \tag{3}$$

combined with eq. (1) gives:

$$N_D = \frac{A(t_d)}{\lambda} \left(1 - e^{\lambda t_c} \right). \tag{4}$$

We are not able to count every decay, as the detector has a finite efficiency ϵ , and different photon energies have different intensities I_{γ} . The number of counts N_C is then given by:

$$N_C = \epsilon I_{\gamma} N_D \tag{5}$$

Combining eq. (5) and eq. (4) we can express the activity at a delayed time t_d as:

$$A(t_d) = \frac{N_C \lambda}{\epsilon I_{\gamma} (1 - e^{-\lambda t_c})}. \tag{6}$$

With multiple successive measurements of the number of counts N_C at different delayed times t_d , we are able to fit the data to the exponential form and find the initial activity A_0 at the end of irradiation.

IV. RESULTS

V. DISCUSSION

VI. CONCLUSION

VII. APPENDIX

ACKNOWLEDGMENTS

REFERENCES