ECON 711 - PS 5

Alex von Hafften*

10/19/2020

Question 1. Rationalizing Demand

Suppose you observe the following data on prices, wealth, and chosen consumption bundles for a certain consumer at four points in time:

w	p	x	
100	(5, 5, 5)	(12, 4, 4)	
100	(7, 4, 5)	(9, 3, 5)	
100	(2, 4, 1)	(27, 9, 10)	
150	(7, 4, 5)	(15, 5, 5)	

(a) Are the data consistent with Walras Law?

Yes.

$$(5,5,5) \cdot (12,4,4) = 100$$

 $(7,4,5) \cdot (9,3,5) = 100$
 $(2,4,1) \cdot (27,9,10) = 100$
 $(7,4,5) \cdot (15,5,5) = 150$

(b) Can these data be rationalized by a continuous, monotonic and concave utility function?¹

By Afriat's Theorem, we know that if data satisfy GARP, then there exists a LNS, continuous, concave, monotonic utility function that rationalizes the data.

- Consider x^1 and x^2 . $x^1 \cdot p^1 = (12, 4, 4) \cdot (5, 5, 5) = 100$ and $x^2 \cdot p^1 = (9, 3, 5) \cdot (5, 5, 5) = 85$. So $x^1 \succ^D x^2$.
- Consider x^1 and x^3 . Notice $x^3 > x^1$. By the hint, $p \cdot x^3 > p \cdot x^1$ for any p >> 0. So $x^3 \succ^D x^1$.
- Consider x^1 and x^4 . Notice $x^4 > x^1$. By the hint, $x^4 >^D x^1$.
- Consider x^2 and x^3 . Notice $x^3 > x^2$. By the hint, $x^3 >^D x^2$.
- Consider x^2 and x^4 . Notice $x^4 > x^2$. By the hint, $x^4 >^D x^2$.
- Consider x^3 and x^4 . Notice $x^3 > x^4$. By the hint, $x^3 >^D x^4$.

Thus, $x^3 \succ^D x^4 \succ^D x^1 \succ^D x^2$. The data satisfy GARP.

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, Tyler Welch, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

¹Hint: you don't need to calculate the cost of every bundle at every price; if $x^i > x^j$, then $p \cdot x^i > p \cdot x^j$ for any p >> 0.

Question 2. Aggregating Demand

Suppose there are n consumers, and consumer $i \in \{1, 2, ..., n\}$ has indirect utility function $v^i = a_i(p) + b(p)w_i$ where $\{a_i\}_{i=1}^n$ and b are differentiable functions from \mathbb{R}^k_+ to \mathbb{R} .

(a) Use Roy's Identity to calculate each consumer's Marshallian demand $x^{i}(p, w_{i})$.

Since $\{a_i\}_{i=1}^n$ and b are differentiable, v^i is differentiable.

$$\frac{\partial v^i}{\partial w_i} = b(p)$$

$$\frac{\partial v^i}{\partial p} = \frac{\partial a_i}{\partial p} + \frac{\partial b}{\partial p} w_i$$

By Roy's Identity,

$$x^{i}(p, w_{i}) = -\frac{\partial v^{i}/\partial p}{\partial v/\partial w_{i}} = -\frac{\frac{\partial a_{i}}{\partial p} + \frac{\partial b}{\partial p}w_{i}}{b(p)}$$

(b) Calculate the Marshallian demand X(p,W) of a "representative consumer" with wealth W and indirect utility function $V(p,W) = \sum_{i=1}^n a_i(p) + b(p)W$ show that $X(p,\sum_{i=1}^n w_i) = \sum_{i=1}^n x^i(p,w_i)$.

$$\frac{\partial V}{\partial W} = b(p)$$

$$\frac{\partial V}{\partial p} = \sum_{i=1}^{n} \frac{\partial a_i}{\partial p} + \frac{\partial b}{\partial p} W$$

By Roy's identity,

$$X(p,W) = -\frac{\partial V/\partial p}{\partial V/\partial W} = -\frac{\sum_{i=1}^{n} \frac{\partial a_i}{\partial p} + \frac{\partial b}{\partial p}W}{b(p)}$$

$$X(p, \sum_{i=1}^{n} w_i) = \frac{\sum_{i=1}^{n} a_i'(p) + b'(p) \sum_{i=1}^{n} w_i}{b(p)} = \frac{\sum_{i=1}^{n} [a_i'(p) + b'(p)w_i]}{b(p)} = \sum_{i=1}^{n} \frac{a_i'(p) + b'(p)w_i}{b(p)} = \sum_{i=1}^{n} x^i(p, w_i)$$

Question 3. Homothetic Preferences

Complete, transitive preferences \succeq on \mathbb{R}^k_+ are called homothetic if for all $x,y\in\mathbb{R}^k_+$ and all $t>0,\ x\succsim y\iff tx\succsim ty$.

- (a) Show that if preferences are homothetic, Marhallian demand is homogeneous of degree 1 in wealth: for any t > 0, x(p, tw) = tx(p, w).
- (b) Show that if preferences are homothetic, monotone, and continuous, they can be represented by a utility function which is homogeneous of degree 1. (Hint try the utility function we used to prove existence of a utility function in class.)
- (c) Show that given (a) and (b), the indirect utility function takes the form v(p, w) = b(p)w for some function b.

Question 4. Quasilinear Utility

Let $X = \mathbb{R} \times \mathbb{R}^{k-1}_+$ (allow positive or negative consumption of the first good), suppose utility $u(x) = x_1 + U(x_2, ..., x_k)$ is quasilinear, and fix the price of the first good $p_1 = 1$.

(a) Show that Marshallian demand for goods 2 through k does not depend on wealth.

First, notice that u represents LNS preferences; for any $x=(x_1,x_2,...,x_k)\in X$ and $\varepsilon>0$, let $x'=(x_1+\varepsilon,x_2,...,x_k)\in X$.

$$||x' - x|| = ||(x_1 + \varepsilon, x_2, ..., x_k) - (x_1, x_2, ..., x_k)|| = ||(\varepsilon, 0, ..., 0)|| = \varepsilon$$

$$u(x_1 + \varepsilon, x_2, ..., x_k) = x_1 + \varepsilon + U(x_2, ..., x_k) > x_1 + U(x_2, ..., x_k) = u(x_1, x_2, ..., x_k) \implies x' \succ x$$

Because u represents LNS preferences, we know Walras' Law hold and the budget constraint holds with equality. Thus, we can substitute in $x_1 = w - p_2 x_2 - \dots - p_k x_k$ into Marshallian demand:

$$\begin{split} x(p,w) &= \arg\max_{x \in B(p,w)} u(x) \\ &= \arg\max_{x \in B(p,w)} \{x_1 + U(x_2,...,x_k)\} \\ &= \arg\max\{w - p_2x_2 - ... - p_kx_k + U(x_2,...,x_k)\} \\ &= \arg\max\{-p_2x_2 - ... - p_kx_k + U(x_2,...,x_k)\} \end{split}$$

So Marshallian demand does not depend on w.

- (b) Show that indirect utility can be written as $v(p, w) = w + \tilde{v}(p)$ for some function \tilde{v} .
- (c) Show the expenditure function can be written as e(p, u) = u f(p) for some function f.
- (d) Show that the Hicksian demand for goods 2 through k does not depend on target utility.
- (e) Show that Compensating Variation and Equivalent Variation are the same when the price of good $i \neq 1$ changes, and also equal to Consumer Surplus.