Transition Systems

Lecture #2 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

October 22, 2008

Overview Lecture #2

- *⇒ Transition systems*
 - Executions
 - Modeling data-dependent systems
 - Parallelism and communication
 - Interleaving
 - Shared variables

Recall model checking

Transition systems

- model to describe the behaviour of systems
- digraphs where nodes represent *states*, and edges model *transitions*
- state:
 - the current colour of a traffic light
 - the current values of all program variables + the program counter
 - the current value of the registers together with the values of the input bits
- transition: ("state change")
 - a switch from one colour to another
 - the execution of a program statement
 - the change of the registers and output bits for a new input

Transition system

A transition system TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- ullet $\longrightarrow \subseteq S \times Act \times S$ is a transition relation
- ullet $I\subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L: S \to 2^{AP}$ is a labeling function

S and Act are either finite or countably infinite

Notation: $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \longrightarrow$

A beverage vending machine

states? actions?, transitions?, initial states?

Atomic propositions?

Direct successors and predecessors

$$\begin{aligned} \operatorname{Post}(s,\alpha) &= \Big\{ \ s' \in S \ | \ s \xrightarrow{\alpha} s' \ \Big\}, \quad \operatorname{Post}(s) \ = \ \bigcup_{\alpha \in \operatorname{Act}} \operatorname{Post}(s,\alpha) \\ \operatorname{Pre}(s,\alpha) &= \ \Big\{ \ s' \in S \ | \ s' \xrightarrow{\alpha} s \ \Big\}, \quad \operatorname{Pre}(s) \ = \ \bigcup_{\alpha \in \operatorname{Act}} \operatorname{Pre}(s,\alpha). \\ \operatorname{Post}(C,\alpha) &= \ \bigcup_{s \in C} \operatorname{Post}(s,\alpha), \quad \operatorname{Post}(C) \ = \ \bigcup_{s \in C} \operatorname{Post}(s) \text{ for } C \subseteq S. \\ \operatorname{Pre}(C,\alpha) &= \ \bigcup \ \operatorname{Pre}(s,\alpha), \quad \operatorname{Pre}(C) \ = \ \bigcup \ \operatorname{Pre}(s) \text{ for } C \subseteq S. \end{aligned}$$

State s is called *terminal* if and only if $Post(s) = \emptyset$

Action- and AP-determinism

Transition system $TS = (S, Act, \rightarrow, I, AP, L)$ is action-deterministic iff:

$$|I| \leqslant 1$$
 and $|Post(s, \alpha)| \leqslant 1$ for all s, α

Transition system $TS = (S, Act, \rightarrow, I, AP, L)$ is AP-deterministic iff:

$$|I|\leqslant 1 \ \text{ and } |\underbrace{\textit{Post}(s)\cap \left\{s'\in S \mid L(s')=A\right\}}_{\text{equally labeled successors of } s}|\leqslant 1 \quad \text{ for all } s,A\in 2^\textit{AP}$$

The role of nondeterminism

Here: nondeterminism is a feature!

- to model concurrency by interleaving
 - no assumption about the relative speed of processes
- to model implementation freedom
 - only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
 - use incomplete information

in automata theory, nondeterminism may be exponentially more succinct but that's not the issue here!

Executions

• A *finite execution fragment* ϱ of TS is an alternating sequence of states and actions ending with a state:

$$\varrho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$$
 such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \leqslant i < n$.

• An *infinite execution fragment* ρ of TS is an infinite, alternating sequence of states and actions:

$$\rho = s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \dots$$
 such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \leq i$.

- An execution of TS is an initial, maximal execution fragment
 - a maximal execution fragment is either finite ending in a terminal state, or infinite
 - an execution fragment is *initial* if $s_0 \in I$

Example executions

$$\rho_{1} = pay \xrightarrow{coin} select \xrightarrow{\tau} sprite \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} sprite \xrightarrow{sget} \dots$$

$$\rho_{2} = select \xrightarrow{\tau} sprite \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} beer \xrightarrow{bget} \dots$$

$$\rho_{3} = pay \xrightarrow{coin} select \xrightarrow{\tau} sprite \xrightarrow{sget} pay \xrightarrow{coin} select \xrightarrow{\tau} sprite$$

Execution fragments ρ_1 and ϱ are initial, but ρ_2 is not ϱ is not maximal as it does not end in a terminal state Assuming that ρ_1 and ρ_2 are infinite, they are maximal

Reachable states

State $s \in S$ is called *reachable* in TS if there exists an initial, finite execution fragment

$$s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_n} s_n = s$$
.

Reach(TS) denotes the set of all reachable states in TS.

Modeling sequential circuits

Transition system representation of a simple hardware circuit Input variable x, output variable y, and register r Output function $\neg(x \oplus r)$ and register evaluation function $x \lor r$

Atomic propositions

Consider two possible state-labelings:

- Let $AP = \{ x, y, r \}$
 - $-L(\langle x=0, r=1 \rangle) = \{ r \} \text{ and } L(\langle x=1, r=1 \rangle) = \{ x, r, y \}$
 - $-L(\langle x=0, r=0 \rangle) = \{ y \} \text{ and } L(\langle x=1, r=0 \rangle) = \{ x \}$
 - property e.g., "once the register is one, it remains one"
- Let $AP' = \{x, y\}$ the register evaluations are now "invisible"
 - $-L(\langle x=0,r=1\rangle)=\varnothing$ and $L(\langle x=1,r=1\rangle)=\{x,y\}$
 - $-L(\langle x=0, r=0 \rangle) = \{y \} \text{ and } L(\langle x=1, r=0 \rangle) = \{x \}$
 - property e.g., "the output bit y is set infinitely often"

Beverage vending machine revisited

"Abstract" transitions:

Action	Effect on variables
coin	
ret_coin	
sget	nsprite := nsprite - 1
bget	nbeer := nbeer - 1
refill	nsprite := max; nbeer := max

Program graph representation

Some preliminaries

typed variables with a valuation that assigns values to variables

- e.g.,
$$\eta(x) = 17$$
 and $\eta(y) = -2$

- the set of Boolean conditions over Var
 - propositional logic formulas whose propositions are of the form " $\overline{x} \in \overline{D}$ "
 - $-(-3 < x \le 5) \land (y = green) \land (x \le 2 \cdot x')$
- effect of the actions is formalized by means of a mapping:

$$Effect : Act \times Eval(Var) \rightarrow Eval(Var)$$

- e.g., $\alpha \equiv x := y + 5$ and evaluation $\eta(x) = 17$ and $\eta(y) = -2$
- $\mathit{Effect}(\alpha,\eta)(x) = \eta(y) + 5 = 3$, and $\mathit{Effect}(\alpha,\eta)(y) = \eta(y) = -2$

Program graphs

A program graph PG over set Var of typed variables is a tuple

$$(Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$$
 where

- Loc is a set of *locations* with initial locations $Loc_0 \subseteq Loc$
- Act is a set of actions
- Effect : $Act \times Eval(Var) \rightarrow Eval(Var)$ is the effect function
- $\longrightarrow \subseteq Loc \times (\underbrace{Cond(Var)}_{Boolean \ conditions \ over Var} \times Act) \times Loc, \ transition \ relation$
- $g_0 \in Cond(Var)$ is the initial *condition*.

Notation: $\ell \xrightarrow{g:\alpha} \ell'$ denotes $(\ell, g, \alpha, \ell') \in \longrightarrow$

Beverage vending machine

- $Loc = \{ start, select \}$ with $Loc_0 = \{ start \}$
- $Act = \{ bget, sget, coin, ret_coin, refill \}$
- $Var = \{ nsprite, nbeer \}$ with domain $\{ 0, 1, \dots, max \}$

• $g_0 = (nsprite = max \land nbeer = max)$

From program graphs to transition systems

- Basic strategy: unfolding
 - state = location (current control) ℓ + data valuation η
 - initial state = initial location satisfying the initial condition g_0
- Propositions and labeling
 - propositions: "at ℓ " and " $x \in D$ " for $D \subseteq \mathit{dom}(x)$
 - $\langle \ell, \eta \rangle$ is labeled with "at ℓ " and all conditions that hold in η
- $\ell \xrightarrow{g:\alpha} \ell'$ and g holds in η then $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \textit{Effect}(\alpha, \eta) \rangle$

© JPK

20

Structured operational semantics

- The notation $\frac{\text{premise}}{\text{conclusion}}$ means:
- If the proposition above the "solid line" (i.e., the premise) holds, then the proposition under the fraction bar (i.e., the conclusion) holds
- Such "if . . ., then . . ." propositions are also called *inference rules*
- If the premise is a tautology, it may be omitted (as well as the "solid line")
- In the latter case, the rule is also called an axiom

Transition systems for program graphs

The transition system TS(PG) of program graph

$$PG = (Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$$

over set Var of variables is the tuple $(S, Act, \longrightarrow, I, AP, L)$ where

- $S = Loc \times Eval(Var)$
- $\longrightarrow \subseteq S \times Act \times S$ is defined by the rule: $\frac{\ell \xrightarrow{g:\alpha} \ell' \quad \land \quad \eta \models g}{\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \textit{Effect}(\alpha, \eta) \rangle}$
- $I = \{\langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \models g_0 \}$
- $AP = Loc \cup Cond(Var)$ and $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in Cond(Var) \mid \eta \models g\}.$

Transition systems \neq finite automata

As opposed to finite automata, in a transition system:

- there are *no* accept states
- set of states and actions may be countably infinite
- may have infinite branching
- actions may be subject to synchronization (cf. next lecture)
- nondeterminism has a different role

Transition systems are appropriate for reactive system behaviour