Variational Quantum Algorithms: QAOA

Prashanti Priya Angara, Maziyar Khadivi

Contact email: mazy1996@uvic.ca

July 15, 2025

Variational Quantum Algorithms

Figure 1: Variational algorithm design

Building blocks [IBM24]

Building Blocks [IBM24]

Expectation Values $\langle \psi | H | \psi \rangle$ or $\langle H \rangle$

- There are multiple possible measurement outcomes in a quantum circuit
- The expectation value is the expected value of the result or measurement of a circuit
- This is the average of all possible results weighted by their probabilities of occurring
- This is not the same as being the most probable outcome

Expectation Values = Eigenvalues?

The expectation value for an any $|\psi\rangle$ is given by

$$E(|\psi\rangle) = \langle \psi | H | \psi \rangle^{\#}$$

The energy for an eigenstate $|\psi_{\lambda}\rangle$ is given by

$$E(|\psi_{\lambda}\rangle) = \langle \psi_{\lambda}|\hat{H}|\psi_{\lambda}\rangle$$
$$= \langle \psi_{\lambda}|\lambda|\psi_{\lambda}\rangle$$
$$= \lambda\langle \psi_{\lambda}|\psi_{\lambda}\rangle$$
$$= \lambda$$

[#]Note that **observables are Hermitian and not usually unitary.** On a quantum computer, there exists a unitary transformation V such that $\hat{H} = V^{\dagger} \Lambda V$. More on this described in [IBM24] under cost functions.

Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm is a hybrid quantum-classical algorithm that:

mimics adiabatic quantum computation on near-term gate-based quantum computers to solve combinatorial optimization problems

Max Cut

- Given a graph G = (V, E), where V is the set of vertices and E is the set of edges, a cut partitions the graph into two complementary sets S and T.
- A Maximum Cut is a partition of the graph's vertices such that the number of edges between S and T is of the largest possible size.

Figure 2: Maximum Cut = 10101

Ansatze

- VQAs operate by exploring and comparing a range of quantum states
- These states can be prepared using a parametrized quantum circuit
- Gates are defined with tunable parameters (without binding any specific angles)

Cost Functions

- Cost functions are used to describe the goal of a problem and how well a trial state is performing with respect to that goal
- The Hamiltonian is the representation of the cost function in the quantum computer
- We can define cost functions application in chemistry, machine learning, finance, optimization
- We will be performing a classical optimization loop but relying on the evaluation of the cost function to a quantum computer

References

Variational Algorithm Design.

learning.quantum.ibm.com/course/variational-algorithm-design,
2024.