Moderne Physik (PMA) - Zusammenfassung und Formeln

Kernmasse, Bindungsenergie und Kernradius

Glossar: **Nukleus** (pl. Nuklei) = Kern, **Nukleon** = Neutron oder Proton, **Isotop** = gleiche Anzahl Protonen, unterschiedlich viele Neutronen.

• Coulomb-Kraft: $F_C=rac{1}{4\piarepsilon_0}rac{Q_1Q_2}{r^2}$ zwischen den Ladungen Q_1 und Q_2 im Abstand r

• Coulomb-Energie: $E_{pot} = \frac{1}{4\pi\varepsilon_0} \frac{Q_1Q_2}{r}$

Elementarladung (Elektron, Proton): $e=q_e=1.6021766208\times 10^{-19}\mathrm{C}\cong 1.602\times 10^{-19}\mathrm{C}$

• Atomare Energieeinheit: $1 \text{eV} = 1.602 \times 10^{-19} \text{J}$

Elektrische Feldkonstante: $\varepsilon_0 = 8.854 \times 10^{-12} \frac{\text{C}}{\text{Vm}}$, oder $\left[\frac{\text{F}}{\text{m}}\right]$, oder $\left[\frac{\text{C}^2}{\text{m}^2\text{N}}\right]$

Lichtgeschwindigkeit: $c=\lambda f=299~792~458~\frac{\mathrm{m}}{\mathrm{s}}\cong 2.998\times 10^8~\frac{\mathrm{m}}{\mathrm{s}}$

Avogadro Konstante: $N_A = 6.0221 \times 10^{23} \frac{1}{\text{mol}}$

Anzahl mol einer Substanz der Masse m: $n=\frac{N}{N_A}=\frac{m}{m_{mol}}$, $m_{mol}=$ molare Masse

Anzahl Moleküle pro Volumen einer Substanz: $N=rac{
ho}{\mathrm{m}_{mol}}N_{A}$

		Masse		
Teilchen	atomare Einheit u	$kg (\times 10^{-27})$	mc^2 in MeV	Halbwertszeit $T_{1/2}$
Proton p+	1.007276467	1.672621898	938.2720813	
Neutron n , m_n	1.008664916	1.674927471	939.5654133	10.2 Minuten (frei)
Elektron e ⁻	0.000548580	0.000910938	0.5109989	
Wasserstoff ¹ ₁ H (99.99%)	1.007825032	1.673532812	938.7830665	
Deuteron $pn = d$	2.013553213	3.343583719	1875.6129280	
Deuterium ${}_{1}^{2}H = D$ (0.01%)	2.014101778	3.344494633	1876.1239134	
Tritium ${}_{1}^{3}H = T$	3.016049278	5.008267573	2809.4320931	12.3 Jahre
Helium ³ He	3.016029320	5.008234432	2809.4135025	
Alpha $ppnn = \alpha$	4.001506179	6.644657230	3727.3793776	
Helium ⁴ ₂ He (99.9999%)	4.002603254	6.646478965	3728.4012965	
Uran ²³⁵ ₉₂ U (in AKW 3%, in Bombe 80%)	235.043930131	390.299622098	218942.0330226	0.704 Mia Jahre
Uran ²³⁸ ₉₂ U (99.3%)	238.050788423	395.292627679	221742.9037666	4.47 Mia Jahre

- Kernradius: $R = R_0 A^{1/3}$, A = Z + N = Gesamtzahl Nukleonen, $R_0 = 1.2 \times 10^{-15} \mathrm{m} = 1.2 \mathrm{~fm}$
- Bindungsenergie eines Atomkerns: $E_B = \left(\frac{ZM_{\frac{1}{1}H} + Nm_n \frac{A}{Z}M}{c^2} \right) c^2$, $\frac{A}{Z}M = M$ asse des Atoms
- Bindungsenergie pro Nukleon: $\frac{-E_B}{A} = \frac{-\left(\frac{ZM_{\frac{1}{1}H} + Nm_n \frac{A}{Z}M}{A}\right)c^2}{A}$, tief negativ bedeutet starke Bindung

Radioaktivität: spontaner Zerfall instabiler Kerne

- Alpha Zerfall (lpha): z.B. Radium ($T_{1/2}=1600$ Jahre) zerfällt zu Radon (im "Keller"): $^{226}_{88}$ Ra \to $^{222}_{86}$ Rn + $lpha_{ppnn}$
- Beta Zerfall (β) : z.B. Umwandlung eine Neutrons im Kern (schwache WW): $n \to {\bf p} + \beta^- + \bar{\nu}_e$, $\bar{\nu}_e =$ Antineutrino
- ullet Gamma Zerfall (γ) : z.B. Zerfall eines hoch angeregten Kernzustandes in einen tieferen Zustand unter Aussenden eines Photons, eines so genannten Gamma Quants.

- Impuls eines Photons der Wellenlänge λ : $p_{\gamma}=\frac{h}{\lambda}=\frac{\hbar}{k}$, Wellenzahl $k=\frac{2\pi}{\lambda}$ Planck Konstante: $h=6.626\times 10^{-34}~\frac{\text{kg·m}^2}{\text{s}}$, $\hbar=\frac{h}{2\pi}$, $c=\lambda f=2.998\times 10^8~\frac{\text{m}}{\text{s}}$
- Energie eines Photons der Frequenz f der Wellenlänge λ : $E_{\gamma}=hf=rac{hc}{\lambda}=p_{\gamma}c=\hbar\omega$, $\omega=2\pi f$
- Energieniveaus des Elektrons in Wasserstoff (Bohr Modell): $E_n = \frac{-hcR_y}{n^2} = \frac{-2.18 \times 10^{-18} \text{ J}}{n^2} = \frac{-13.6 \text{ eV}}{n^2}$

 $n=1,2,3,\cdots$

Rydberg Konstante: $R_y = 1.097 \times 10^7 \frac{1}{m}$

• Zerfallsserie von ²³⁸₉₂U →

Blatt

He-Kerne

Elektronen

el. mag. Strahlung

Papier

Einige mm

Blech

Pb

Radioaktivität und Halbwertszeit

• Radioaktives Zerfallsgesetz für die Anzahl verbleibender Kerne: $N(t) = N_0 \cdot e^{\left(\frac{-t}{\tau}\right)} = N_0 \cdot 2^{\left(\frac{-t}{T_{1/2}}\right)}$ $N_0 = \text{Anzahl Startkerne}$, $\beta = \text{Zerfallskonstante}$, $\tau = \frac{1}{\beta} = \text{Abklingzeit, Zerfallszeit}$,

Halbwertszeit: $T_{1/2} = ln(2) \cdot \tau = \frac{ln(2)}{\beta}$

- Aktivität einer Substanz: $A=\left|\frac{dN}{dt}\right|=\beta N=\frac{N}{\tau}=\frac{N}{T_{1/2}}ln(2)=$ Anzahl Zerfälle pro Sekunde $[A]=\frac{1}{s}=$ Bq= Becquerel , alte Einheit Curie: 1Ci $=3.70\times10^{10}$ Bq
- Radiokarbon-Datierung basiert auf dem natürlichen Verhältnis zwischen radioaktivem $^{14}_{6}\mathrm{C}$ und stabilem $^{12}_{6}\mathrm{C}$ in lebenden Organismen: $pMC = \frac{N_{C14}}{N_{C12}} = \frac{1}{7.69 \times 10^{11}} = 1.3 \times 10^{-12}$, und dem allmählichen Zerfall des eingelagerten $^{14}_{6}\mathrm{C}$ nach dem Tod mit einer Halbwertszeit von $T_{1/2~\mathrm{C14}} = 5730~\mathrm{Jahre} \rightarrow \tau_{\mathrm{C14}} = 8270~\mathrm{Jahre}$

Dosimetrie

• Energiedosis ist die absorbierte Energie pro Gewebemasse:

$$D = \frac{E}{m} \rightarrow [D] = 1 \frac{J}{kg} = 1 \text{ Gray} = 1 \text{ Gy} = 100 \text{ Rad}$$

- Äquivalentdosis ist ein Mass für die biologische Wirkung: $H=q\cdot D \to [H]=1 \text{ Sievert}=1 \text{ Sv}=100 \text{ rem },$ q ist der Bewertungsfaktor $\to [q]=\frac{\text{Sv}}{\text{Gy}} \text{ oder } [q]=\frac{\text{rem}}{\text{rad}}$
- **Ionendosis** ist die durch Strahlung gebildete Ladung pro kg: $J = \frac{Q}{m} \rightarrow [J] = 1 \frac{C}{kg} = 3876 \text{ Röntgen (R)}$

	1
γ	1
β	1 - 1.5
langsame n (0.025 MeV)	3
n (0.02 - 0.1 MeV)	5 - 8
schnelle n und p	10
α	20
schwere Kerne	20

Strahlungsart

Wenige Zerfälle - Poisson Statistik

- **Diskrete Poisson Verteilung**: $p(x) = \frac{m^x \cdot e^{-m}}{x!}$ ist die Wahrscheinlichkeit, bei einem Mittelwert m den Wert x zu messen. Beispiel mit gleichbleibendem Regen: 1469 Tropfen fallen in 15 Minuten in einen Eimer. Mittelwert in 10s: $16.32 \frac{\text{Tro}}{10s} = m_{10s}$, $\rightarrow p\left(x = 14 \frac{\text{Tro}}{10s}\right) = \frac{m^x \cdot e^{-m}}{x!} = \frac{16.32^{14} \cdot e^{-16.32}}{14!}$
- Kontinuierliche Poisson Verteilung: $p(x) = \frac{m^x \cdot e^{-m}}{x!} = \frac{m^x \cdot e^{-m}}{\int_0^\infty t^x e^{-t} dt}$, $x! = \int_0^\infty t^x e^{-t} dt$

Viele Zerfälle - Gauss Statistik

• Gaussverteilung: $p(x)=\frac{1}{\sqrt{2\pi m}}e^{\frac{-(x-m)^2}{2m}}=\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\sigma^2)^2}{2\sigma^2}}$ mit Standardabweichung $\sigma=\sqrt{m}$

<u>Erzwungene Kernreaktionen:</u> exotherm (Q_{out+}) - endotherm (Q_{in-})

• Reaktisionsenergie (Reaktionswärme): $Q = (M_A + M_B - M_C - M_D)c^2$

Exotherm: ${}_{1}^{1}H + {}_{3}^{7}Li \rightarrow {}_{2}^{4}He + {}_{2}^{4}He \Rightarrow Q = +17346 \text{ keV}$

Endotherm: ${}_{2}^{4}\text{He} + {}_{7}^{14}\text{N} \rightarrow {}_{8}^{17}\text{O} + {}_{1}^{1}\text{H} \Rightarrow Q = -1191.9 \text{ keV}$

Kinetische Energie des Projektils im **Laborsystem**: $E_{kin,Pr} = \frac{M_{A,Pr} + M_B}{M_R} Q$

E_{lab} (MeV)

Rutherfords

Target(s) 14N 56fe, Fe56, 26056, cr50-fe56 use dash for range only Projectile 4He 4He, He-4, 2-he-4, a, alpha, 2004

Reaction Q-values for ¹⁴N + ⁴He

b-, ec, 2b-, b-n, ecp, 18O (decay)

g, n, n+p, 2n+a, 2a+12c (reaction)

Ejectile 170

http://www.nndc.bnl.gov/qcalc

Reaction Products	Q-value (keV)	Threshold (keV)
¹ H+ ¹⁷ O	-1191.875 6.76E-4	1532.5576 8.7E-4

Taylor Entwicklung, Näherungen für $\varepsilon \ll 1$

•
$$\frac{1}{1-\varepsilon} \cong 1 + \varepsilon + (\varepsilon^2 + \varepsilon^3 \cdots)$$
; $\frac{1}{1+\varepsilon} \cong 1 - \varepsilon + (\varepsilon^2 - \varepsilon^3 \cdots)$

•
$$\frac{1}{\sqrt{1-\varepsilon}} \cong 1 + \frac{1}{2}\varepsilon + \left(\frac{3}{8}\varepsilon^2 + \frac{5}{16}\varepsilon^3 \cdots\right)$$

z.B.
$$\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^2}} \cong 1 + \frac{1}{2} \frac{v^2}{c^2} \cdots$$

Zeitdilatation - Längenkontraktion

- Beta: $\beta = \frac{v}{c}$ oder $\frac{u}{c}$; Gamma: $\gamma = \frac{1}{\sqrt{1-(\frac{v}{c})^2}} = \frac{1}{\sqrt{1-\beta^2}} \cong 1 + \frac{1}{2}\beta^2 + \frac{3}{8}\beta^4 \cdots$
- **Zeitdilatation**: $t=\gamma \ t_0$ mit der Eigenzeit t_0 , dort wo die Zeit t_0 am gleichen Ort verstreicht.
- **Längenkontraktion**: $\gamma L = L_0$ mit der Eigenlänge L_0 , dort wo das Objekt L_0 in Ruhe bleibt.

Formverzerrung:

$$A = \sqrt{\frac{(A'\cos\phi')^2}{\gamma^2} + (A'\sin\phi')^2}$$

$$\theta = \tan^{-1} \left(\gamma \frac{\sin \theta'}{\cos \theta'} \right)$$

Headlight Effekt:

$$\cos\theta = \frac{\cos\theta' + \beta}{1 + \beta\cos\theta'}$$

$$\sin\theta = \frac{\sin\theta'}{\gamma(1+\beta\cos\theta')}$$

Lorentz Transformationen

u ist die Relativgeschwindigkeit in Richtung x , positiv für S. $\vartheta=ct$ ist die Lichtlänge. $\gamma=\frac{1}{\sqrt{1-\left(\frac{u}{c}\right)^2}}$

$$x = \gamma(x' + ut')$$
 respektive $x = \gamma(x' + \beta\vartheta')$

$$y = y'$$

$$t = \gamma(t' + ux'/c^2)$$
 respektive $\vartheta = \gamma(\vartheta' + \beta x')$

$$v_x = \frac{v_x + u}{1 + \frac{uv_x}{c^2}}$$

$$v_{y} = \frac{v_{y}'}{\gamma \left(1 + \frac{uv_{\chi}'}{c^{2}}\right)}$$

• Invariantes Raum-Zeit Intervall: $(\Delta s)^2 = (c\Delta t)^2 - [(\Delta x)^2 + (\Delta y)^2]$

• **Doppler Effekt**: $f = \sqrt{\frac{c+u}{c-u}} f_0$ mit der Eigenfrequenz f_0 , dort wo das Signal aus der Ruhe gesendet wird. u ist positiv oder negativ, je nach Bewegungsrichtung der Quelle.

Für kleine Geschwindigkeiten: $\frac{f-f_0'}{f_0'} = \frac{\Delta f}{f_0'} = \sqrt{\frac{c+u}{c-u}} - 1 \cong \frac{u}{c} + \frac{1}{2} \left(\frac{u}{c}\right)^2 \cdots$; $u \ll c$

Minkowski Diagramm

Relativistische Mechanik

- Relativistische Masse: $m=\gamma \; m_0=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\; ; \; m_0$ ist die Ruhemasse
- Gesamtenergie: $E = mc^2 = \gamma m_0 c^2$

Kinetische Energie: $E - E_0 = mc^2 - m_0c^2 = (\gamma - 1)m_0c^2 = \frac{1}{2}m_0v^2 + \frac{3}{8}m_0\frac{v^4}{c^2}\cdots$

- Relativistischer Impuls: $\vec{p}=\gamma \ m_0 \vec{v}=m \vec{v}$; Impuls des Photons: $p_{photon}=rac{E_{photon}}{c}$
- ightarrow Invariante Ruheenergie: $E_0=m_0c^2=\sqrt{E^2-(pc)^2}$

In der SRT ist die Kraft eine komplizierte Grösse. Bei hohen Geschwindigkeiten v sind die Kraft F und die Beschleunigung a nicht mehr parallel:

- Kraft senkrecht zur Geschwindigkeit: $F_{\perp}=\gamma \ m_0 a_{\perp}$; $|\vec{v}|={
 m konstant}$

Erhaltungssätze für Teilchenkollisionen:

- Energieerhaltung: $E_{tot,vor} = c^2 \sum m_i = E_{tot,nach} = c^2 \sum m_k$
- Impulserhaltung: $\vec{p}_{tot,vor} = \sum m_i \overrightarrow{v_i} = \vec{p}_{tot,nach} = \sum m_k \overrightarrow{v_k}$
- ightarrow Invarianz der Ruheenergie: $\sqrt{{E_{tot,vor}}^2 \left({{{ec p}_{tot,vor}} \; c}
 ight)^2} = {E_{tot,0}} = \sqrt{{E_{tot,nach}}^2 \left({{{ec p}_{tot,nach}} \; c}
 ight)^2}$