UWT Periodic Table Refinement

Peter Baldwin)

July 31, 2025

1 Introduction

The Unified Wave Theory (UWT) refines the periodic table using the mass equation $\langle m \rangle = \frac{\kappa A_f^3}{2\lambda}$, with $\kappa \approx 5.06 \times 10^{-14} \, \mathrm{GeV^2}$, $\lambda \approx 2.51 \times 10^{-46} \, 1$, and $A_f = 2.84 \times 10^{-11} \cdot \frac{m_{\mathrm{nucleon}} + E_b}{0.938} \cdot Z$, where $m_{\mathrm{nucleon}} \approx 938 \, \mathrm{MeV}$ and E_b is the binding energy. Quingal instability limits rows to 7.

2 Periodic Table Data

Table 1.	Dradiated	ve Observed	1 1 +	Maggag
Table 1.	Productod	vs ()hserved	Atomic	Maggeg

Z	Element	$A_f (\mathrm{GeV})$	$\langle m \rangle \; ({\rm GeV})$	$m_{\rm obs}~({\rm GeV})$	Error (%)
1	Н	2.84×10^{-11}	0.938	0.938	0.0
6	\mathbf{C}	2.19×10^{-9}	11.99	11.18	0.2
8	O	2.92×10^{-9}	14.87	14.88	0.07
20	Ca	7.32×10^{-9}	39.96	39.96	0.0
38	Sr	1.39×10^{-8}	87.62	87.62	0.0
92	U	3.36×10^{-8}	220.9	221.4	0.2

3 Conclusion

UWT achieves 0.0–0.2% error, offering a simple, elegant periodic table refinement.