

Elektrické pole kondenzátoru

Gadermeteva Anastasiia

14. listopadu 2023

Student: PMVT F22000

Abstrakt

Tato práce se zabývá vizualizací elektrického potenciálu a intenzity elektrického pole dvoudimenzionálního kondenzátoru ve vakuu. To pomáhá lépe porozumět, jak elektrické pole funguje v různých situacích.

Obsah

1	Teo	retický základ elektrického kondenzátoru	2
	1.1	Fyzikální zákony	2
	1.2	Význam vakua	2
2 Matematický Model pro Modelování Elektrického Kondenz			3
	2.1	Výpočet Elektrického Potenciálu:	3
	2.2	Princip Superpozice pro Potenciál:	3
	2.3	Výpočet Intenzity Elektrického Pole	3
	2.4	Princip Superpozice pro intenzitu Elektrického Pole:	3
	2.5	Souvislost s Fyzikálními Principy Práce Kondenzátoru	4
	2.6	Shrnutí	4
3	Implementace v Kódu: Analýza Poskytnutého Kódu		5
	3.1	Klíčové Části Kódu	5
	3.2	Implementace Matematického Modelu a Metod Řešení	5
	3.3	Shrnutí	6
4	Záv	ěr	7

1 Teoretický základ elektrického kondenzátoru

Elektrický kondenzátor - používá se k akumulaci elektrického náboje a elektrické energie. Kondenzátor se skládá ze dvou vodivých desek, oddělených dielektrikem. V okamžiku připojení napětí se na jedné z desek hromadí kladný náboj a na druhé záporný. Tyto náboje vytvářejí elektrické pole mezi deskami.

To, jak velký náboj může kondenzátor akumulovat, závisí na jeho kapacitě, která se vypočítá jako:

$$C = \frac{Q}{V}$$

kde:

C- je kapacita,

Q– je náboj

V- je napětí mezi deskami.

1.1 Fyzikální zákony

Coulombův zákon: Popisuje sílu vzájemného působení mezi dvěma neměnnými bodovými náboji. Síla je přímo úměrná součinu velikostí nábojů a nepřímo úměrná čtverci vzdálenosti mezi nimi.

Maxwellovy rovnice: Popisují základní zákony elektromagnetismu, včetně vzniku a změny elektrických a magnetických polí. V kontextu kondenzátorů je obzvláště důležitá rovnice pro elektrické pole:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

kde:

 ρ - je hustota náboje

 ε_0 – je elektrická konstanta.

1.2 Význam vakua

Ve vakuu nejsou materiální prostředí, která by mohla ovlivnit elektrické pole. To z něj činí ideální prostředí pro studium čistých elektrostatických jevů, protože neexistuje vliv dielektrik (které mohou pole zkreslovat).

Vakuum poskytuje homogenní a předvídatelné prostředí pro výpočet pole a potenciálu

Použití vakua umožňuje přesně určit vzájemné působení mezi náboji a porozumět základním principům fungování kondenzátoru bez dalších komplikací spojených s dielektrickými vlastnostmi materiálů.

2 Matematický Model pro Modelování Elektrického Kondenzátoru

2.1 Výpočet Elektrického Potenciálu:

Vzorec pro potenciál bodového náboje:

$$\varphi = \frac{q}{4\pi\epsilon_0 r}$$

kde

 φ - elektrický potenciál,

q - náboj,

 ϵ_0 - elektrická konstanta (8.854 × 10⁻¹² F/m),

r - vzdálenost od náboje k bodu, kde je měřen potenciál.

2.2 Princip Superpozice pro Potenciál:

V základu výpočtu elektrického potenciálu leží princip superpozice. Pro systém bodových nábojů je potenciál v jakémkoli bodě prostoru roven součtu potenciálů, vytvářených každým nábojem zvlášť. Máme-li sadu nábojů q_i , každý z nich se nachází ve vzdálenosti r_i od pozorovaného bodu, pak celkový elektrický potenciál φ v tomto bodě je definován jako: Celkový potenciál systému nábojů:

$$\varphi_{\text{celk}} = \sum_{i=1}^{n} \varphi_i = \sum_{i} \frac{q_i}{4\pi\epsilon_0 r_i}$$

kde φ_i - potenciál jednotlivého náboje.

2.3 Výpočet Intenzity Elektrického Pole

Intenzita elektrického pole \vec{E} v jakémkoli bodě prostoru lze vypočítat jako součet vektorů pole, vytvářených každým nábojem. Pro bodový náboj q je velikost vektoru elektrického pole \vec{E} ve vzdálenosti r od náboje určena výrazem:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

kde \hat{r} je jednotkový vektor směřující od náboje k pozorovanému bodu.

2.4 Princip Superpozice pro intenzitu Elektrického Pole:

Pro systém nábojů je intenzita pole v bodě vektorovým součtem polí od všech nábojů:

$$\vec{E}_{\text{celk}} = \sum_{i=1}^{n} E_i = \sum_{i} \frac{1}{4\pi\epsilon_0} \frac{q_i}{r_i^2} \hat{r}_i$$

kde: - \vec{E}_{total} je celkové elektrické pole v bodě, - q_i , r_i , a $\hat{r_i}$ jsou velikost, vzdálenost a směr k i-tému náboji.

2.5 Souvislost s Fyzikálními Principy Práce Kondenzátoru

Kondenzátor vytváří elektrické pole mezi svými deskami. Výpočet potenciálu v jakémkoliv bodě mezi deskami umožňuje pochopit, jak se elektrické pole v prostoru mění.

Princip Superpozice: Důležitý pro kondenzátor s mnoha náboji, protože umožňuje zohlednit příspěvek každého náboje do celkového elektrického pole a potenciálu. Matematický model pomáhá pochopit, jak změny v konstrukci kondenzátoru (například vzdálenost mezi deskami nebo jejich velikost) ovlivňují jeho elektrické vlastnosti.

Celkově tyto rovnice a principy poskytují základ pro pochopení, jak kondenzátory akumulují náboj a jak mohou být použity v elektrických obvodech.

2.6 Shrnutí

Tento matematický model umožňuje vypočítat jak elektrický potenciál, tak intenzitu elektrického pole pro systém nábojů, což je klíčové pro pochopení fungování elektrických kondenzátorů a elektrostatických polí.

3 Implementace v Kódu: Analýza Poskytnutého Kódu

3.1 Klíčové Části Kódu

Funkce "spocitat_potencial": Vypočítává elektrický potenciál v každém bodě mřížky. Používá princip superpozice, sumuje příspěvky od každého náboje.

Funkce "spocitat_E": Vypočítává složky elektrického pole (E_x, E_y) v každém bodě mřížky. Podobně sumuje příspěvky od každého náboje pro určení celkového pole.

Block "main": Určuje parametry simulace, jako jsou rozměry mřížky, umístění a velikost nábojů. Vyvolává funkce pro výpočet potenciálu a pole. Vizualizuje výsledky pomocí Matplotlib.

3.2 Implementace Matematického Modelu a Metod Řešení

Výpočet Potenciálu a Pole: Kód implementuje matematický model popsaný v Coulombových rovnicích a principu superpozice numerickým výpočtem příspěvků jednotlivých nábojů. Pro každý bod na mřížce se vypočítá vzdálenost k nábojům a příslušně příspěvek každého náboje k potenciálu a poli v tomto bodě.

Vytváření sítě: Používá se mřížka (meshgrid) pro určení souřadnic, ve kterých se vypočítává potenciál a pole. To umožňuje vizualizovat rozložení těchto veličin ve dvourozměrném prostoru.

Vizualizace: Kód používá Matplotlib pro zobrazení rozložení potenciálu (pomocí *contourf*) a elektrických pole linií (pomocí *streamplot*). To poskytuje názorné pochopení rozložení elektrického pole a potenciálu kolem nábojů.

3.3 Shrnutí

Celkově kód úspěšně implementuje matematický model elektrického kondenzátoru pomocí numerických metod pro výpočet a vizualizaci elektrického pole a potenciálu. Tento příst umožňuje hlubší pochopení fyzikálních procesů v kondenzátoru a vizuálně zkoumat jejich rozložení v prostoru.

4 Závěr

V rámci této práce byl vyvinut a implementován číselný model pro modelování elektrického kondenzátoru. Hlavní aspekty zahrnují:

- 1. **Matematický Model:** Použití principů elektrostatiky, včetně Coulombova zákona a principu superpozice, pro výpočet elektrického potenciálu a pole.
- 2. **Číselné Metody:** Použití číselných metod pro řešení rovnic elektrostatiky, které umožňují zohlednit složitou geometrii rozložení nábojů.
- 3. **Vizualizace:** Názorné znázornění rozložení elektrického potenciálu a pole, což demonstruje klíčové koncepty fungování kondenzátoru.
- 4. **Porozumění Fyzikálním Procesům:** Hluboké porozumění tomu, jak se rozložení elektrického pole v kondenzátoru a jaké faktory ovlivňují jeho účinnost.

Závěrečné Shrnutí: Tato studie poskytuje základ pro hluboké porozumění fungování elektrických kondenzátorů a může sloužit jako výchozí bod pro složitější výzkum v oblasti elektrostatiky a elektrotechniky.

Reference

Zdrojový kód této práce se nachází na GitHub