HW7

22.211 Nuclear Reactor Physics I

Due date 5/8/2015

Write a 1D Finite Difference diffusion solver to solve the 5 1D slab problems listed in Table 2.

- 2 group materials cross-section for 7 materials in Table 1
- Geometrical layout in Table 2
- Left/Right vacuum boundary conditions
- Constant mesh spacing
- Convergence criteria (1e-7) on the RMS fractional change in successive iteration of the fission sources (integrated over energy in each mesh)
- Convergence criteria (1e-5) on the RMS fractional change in successive iteration of the total flux (sum of both fluxes in each mesh)

$$RMS = \sqrt{\frac{1}{N} \sum_{n=1}^{N} \frac{x_n^{l+1} - x_n^l}{x_n^{l+1}}}$$

- Use the power iteration method described in class
- For the linear solver, it is ok to just use the matrix inverse

- a) Produce a table of results for all 5 problems with the following
 - a. k_{eff}
 - b. Peak value of normalized fission source (ratio of peak to average)
 - c. Location of the peak fission rate (cm from the center)
 - d. Number of power iterations required for convergence
- b) Produce a plot of the group 1 and 2 flux for each problem (normalized to a single value for both fluxes so that we can see the difference in magnitude between the fluxes)
- c) Produce a table with baffle thickness changes (change of full cm, keep core the same size, only change baffle and reflector widths)
 - a. Report k_{eff} and peak value of normalized fission source

Table 1: Material Data

Material #	Description	D1	D2	A1	A2	S1>2	NF1	NF2
1	1.60%	1.4300	0.3700	0.0079	0.0605	0.0195	0.0034	0.0711
2	2.40%	1.4300	0.3700	0.0084	0.0741	0.0185	0.0054	0.1000
3	2.4% 16 BP	1.4300	0.3700	0.0089	0.0862	0.0178	0.0054	0.1000
4	3.10%	1.4300	0.3700	0.0088	0.0852	0.0188	0.0062	0.1249
5	Baffle/Reflector	1.2600	0.2700	0.0025	0.0200	0.0294	0.0000	0.0000
6	Baffle	1.0000	0.3400	0.0054	0.1300	0.0009	0.0000	0.0000
7	Reflector	1.5500	0.2700	0.0010	0.0286	0.0450	0.0000	0.0000

Table 2: Geometrical layout

Problem	Zone	1	2	3	4	5	6	7
1	Width	300.0						
BC Left = Vacuum	Mesh spacing	5.0						
BC Right = Vacuum	Material ID	1						
2	Width	25.0	250.0	25.0				
BC Left = Vacuum	Mesh spacing	5.0	5.0	5.0				
BC Right = Vacuum	Material ID	5	2	5				
3	Width	25.0	250.0	25.0				
BC Left = Vacuum	Mesh spacing	1.0	1.0	1.0				
BC Right = Vacuum	Material ID	5	2	5				
4	Width	25.0	15.0	220.0	15.0	25.0		
BC Left = Vacuum	Mesh spacing	1.0	1.0	1.0	1.0	1.0		
BC Right = Vacuum	Material ID	5	4	3	4	5		
5	Width	23.0	2.0	15.0	220.0	15.0	2.0	23.0
BC Left = Vacuum	Mesh spacing	1.0	1.0	1.0	1.0	1.0	1.0	1.0
BC Right = Vacuum	Material ID	7	6	4	3	4	6	7

Problem 1: Homogeneous slab, simple cosine shape, compare with analytical

Problem 2: Reflector, thermal flux peak on the edges, reflector flattens the flux shape

Problem 3: Same as 2, except smaller mesh spacing, was the solution of 2 spatially converged

Problem 4: Enrichment zoning to flatten power shape

Problem 5: Explicit reflector model, compare eigenvalue between 4 and 5, play with the thickness of the baffle, what happens to the reactivity of the core