Arithmétique: DS du 25 novembre 2020

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 1h30. Sans document. Les exercices sont indépendants.

- EXERCICE 1.

- a) Calculer α^{32} où α est la classe de X dans $\mathbb{F}_2[X]/(X^5+X^3+1)$. Pourquoi pouvez-vous en déduire que X^5+X^3+1 est irréductible dans $\mathbb{F}_2[X]$?
- b) Donner un exemple de polynôme P(X) de degré 6 dans $\mathbb{F}_2[X]$, non irréductible, tel que $X^{64} = X \mod P(X)$.
- EXERCICE 2. On considère la représentation de \mathbb{F}_{16} donnée par $\mathbb{F}_2(\alpha)$ où α a pour polynôme minimal X^4+X+1 .

Quels sont tous les polynômes minimaux sur \mathbb{F}_2 possibles des éléments de \mathbb{F}_{16} ? Donner, pour chacun de ces polynômes P, un élément de $\mathbb{F}_2(\alpha)$ dont le polynôme minimal est P.

- EXERCICE 3.

- a) On considère le polynôme $X^6 + X + 1$ dans $\mathbb{F}_2[X]$. Calculer X^{64} modulo $X^6 + X + 1$, et en déduire, en faisant attention, que $X^6 + X + 1$ est irréductible.
- b) Montrer que $X^6 + X + 1$ est primitif.
- c) Soit $\mathbb{F}_{64} = \mathbb{F}_2(\alpha)$ où α a $X^6 + X + 1$ comme polynôme minimal sur \mathbb{F}_2 . Montrer que $\beta = \alpha^9$ est tel que $\mathbb{F}_2(\beta)$ est un sous-corps strict de $\mathbb{F}_2(\alpha)$: quel est son cardinal?
- d) Quel est le degré du polynôme minimal sur \mathbb{F}_2 de $\gamma=\alpha^7$? Ce polynôme est-il primitif?
- e) Trouver le polynôme minimal sur \mathbb{F}_2 de γ .

- EXERCICE 4.

- a) Montrer que le polynôme $X^4 + X + 1$ est divisible par $X^2 + X + \alpha$ dans $\mathbb{F}_4[X]$, où α est une racine de $X^2 + X + 1$. Quelle est la factorisation en irréductibles de $X^4 + X + 1$ sur \mathbb{F}_4 ?
- b) Expliquer pourquoi aucun polynôme irréductible de degré 4 de $\mathbb{F}_2[X]$ n'est irréductible dans $\mathbb{F}_4[X]$.