Flow Algorithms

LATEST SUBMISSION GRADE 64.76%

1. Which vertices are in the minimum S-T cut in the network below?

0.571 / 1 point

_ A

✓ B

_ c

_ D

__ E

_ s

_ т

You didn't select all the correct answers

2. What is the augmenting path that will be used by the Edmonds-Karp algorithm to increase the flow given below?

0 / 1 point

	 S-B-A-C-D-T S-A-C-T S-B-T S-B-A-C-T S-B-D-C-T 	
	! Incorrect Incorrect. This is a valid augmenting path, but there is a shorter one using the edge B->A in the residual graph.	
3.	Which of the statements below is true? The sum of the capacities of the edges of a network equals the sum of the capacities of the edges of any residual network.	0.667 / 1 point
	Correct True. The reduced capacity of any edge of the network is exactly compensated for the by the capacity of the reverse edge.	
	□ The Ford-Fulkerson algorithms runs in polynomial time on graphs with unit edge capacities. □ The Edmonds-Karp algorithm is always faster than the Ford-Fulkerson algorithm.	
	You didn't select all the correct answers	
4.	What is the size of the maximum matching of the following graph?	1/1 point
	4 ✓ Correct	
5.	Consider the image segmentation problem on a picture that is given by an n by n grid of pixels. Suppose that separation penalties are imposed only for adjacent pairs of pixels. If we use the Edmonds-Karp algorithm to solve this problem as described in class, the final runtime is O(n^a) for some a. What is the best such a?	1/1 point
	✓ Correct Correct. We need to compute maximum flow on a graph with V=O(n^2) and E=O(n^2). The runtime of Edmonds-Karp is at worst O(E^2 V) = O(n^6).	