Algoritmusok és adatszerkeztek II.

6. gyakorlat

Tartalom: Szélességi keresés

- Szorgalmi házi feladatok megoldása
- Szélességi keresés
- Lejátszás, példa
- Lejátszás, gyakorló feladatok
- Szélességi bejárás szomszédossági listával ábrázolt gráfon
- Út kiírása
- Irányítatlan gráf fa-e?
- Irányítatlan gráf páros-e?
- Szorgalmi házi feladat

Szélességi keresés (szélességi bejárás)

- Milyen feladatot old meg?
- Az algoritmus a gráfokra használt egyik nevezetes bejáró algoritmus: egy tetszőleges kezdő csúcsot megadunk, és az abból úttal elérhető csúcsokat feldenti. A felderített csúcsokhoz egy minimális hosszúságú utat állít elő a kezdőcsúcsból. Ha több ilyen út lenne, az egyiket.
- Eredmények:
 - □ d(u): minimális út hossza (élszáma).
 - ♠ Értéke a kezdő csúcsra 0,
 ∞, ha a csúcshoz nem vezet út a kiválasztott kezdőcsúcsból.
 - π : szülő csúcsot adja meg a kezdőcsúcs és az adott csúcs közötti legrövidebb úton (honnan érkezünk a csúcsba).
 - Értéke 0 a kezdőcsúcsnál, valamint azoknál a csúcsoknál, amelyek a kezdőcsúcsból nem érhetők el.

Milyen gráfokon használható?

- Tetszőleges (nem üres) gráfon használható:
 - 🛾 irányított vagy irányítatlan
 - összefüggő, nem összefüggő

Csúcsok színezése

- A bejáró algoritmusok, hogy ne "körözzenek" gyakran színezést használnak.
- Színezés jelentése: egy csúcsnak három állapota lehet, ezt ábrázolja.
 - □ white 'fehér' még felderítetlen a csúcs, nem találkozott vele a bejárás,
 - 🛮 grey 'szürke' már találkozott a bejárás a csúccsal, de még nem dolgozta fel,
 - □ black 'fekete' a csúcs feldolgozása befejeződött, 'kész' állapotú.

Már felderített, de még nem kész csúcsokat tároló adatszerkezet egy SOR

A szürke csúcsok vannak a sorban, onnan kerülnek ki feldolgozásra, ez okozza a jellegzetes "szélességi köröket" a kezdő csúcs körül a bejárásnál.

Az algoritmus, és a műveletigénye

$ig(\mathrm{BFS}(G:\mathcal{G}\;;\;s:\mathcal{V}) ig)$	Műveletigény MT(n,m)	Műveletigény mT(n,m)
$\forall u \in G.V$	(.,,	(,)
$d(u) := \infty \; ; \; \pi(u) := 0$ $[color(u) := white]$	Θ(n)	$\Theta(n)$
$d(s) := 0 \; ; \; [color(s) := grey]$	Θ(1)	Θ (1)
$Q: Queue \; ; \; Q.\mathrm{add}(s)$	Θ(1)	Θ (1)
$\neg Q.$ isEmpty()		
u := Q.rem()	Θ(n)	Θ (1)
$\forall v: (u,v) \in G.E$		csak a kezdőcsúcsot
$d(v) = \infty$	Θ(m)	dolgozza fel a ciklus
d(v) := d(u) + 1		nullaszor lefutó ciklus
$\pi(v) := u$ SKIP		is lehet, ha nincs éle a
[color(v) := grey]		gráfnak az s csúcsból
Q.add(v)		
[color(u) := black]	összesítve: Θ(n+m)	összesítve: $\Theta(n)$

G=(V,E) |V|=n |E|=m

Az absztrakt gráf típus

A fejlécben található típusok jelentése $(BFS(G : \mathcal{G}; s : \mathcal{V}))$

- A gráfok absztrakt algoritmusainak leírásához bevezetjük a V (vertex, azaz csúcs) absztrakt típust. A V lesz a gráfok csúcsainak absztrakt típusa. Eź egy olyan elemi típus, amelyben mindegyik csúcshoz tetszőlegesen sok, névvel jelölt címké társítható, és mindegyik címkéhez tartozik valamilyen érték.
- A V halmazt az algoritmusok implementációiban legtöbbször az N halmaz reprezentálja, egy n csúcsú gráf csúcsait pedig egyszerűen az **1..n** vagy a **0..(n-1)** halmaz, attól függően, hogy a tömböket egytől vagy nullától kezdve indexeljük. A csúcsokhoz tartozó címkéket gyakran tömbök reprezentálják.
- d(u), color(u), $\pi(u)$ például ilyen címkék a szélességi bejárásban.
- Élek halmaza (E)

Gráf típus (G)

```
+E: \mathcal{E}\{\} // E \subseteq V \times V \setminus \{(u,u): u \in V\} // \text{ edges}
```

Hatékonyság és gráf ábrázolás összefüggése

- A ∀ (u,v) ∈ G.E ciklusban u szomszédjait dolgozza fel az algoritmus. Ez akár minden csúcsra lefutó ciklus lehet. Miért nem szabad úgy elképzelni ezt a ciklust, hogy az élek teljes halmazát bejárva keressük meg az (u,v) éleket?
 - Mert akkor egy menet $\Theta(m)$ lenne.
 - Ha minden csúcsra végrehajtódik: $\Theta(n*m)$ lenne a szélességi keresés műveletigénye, azaz $MT(n,m) = \Theta$ (n*m)
 - Ami sűrű gráf esetén már $\Theta(n^3)$ lépésszámot jelent!
- Ritka gráf, éllistás ábrázolás:
 A[u] pointerű egyszerű listát kell bejárnia, ha minden csúcsra lefut, akkor is a műveletigénye csak: Θ(m)
- Sűrű gráf, csúcsmátrixos ábrázolás: u szomszédainak feldolgozásához a mátrix u-dik sorát járja be, ha minden csúcsra lefut, akkor a műveletigény: $\Theta(n^2)$, de mivel sűrű gráfok esetén az élek száma: $m \in \Theta(n^2)$, így ez szintén $\Theta(m)$

A csúcsok mely jellemzője (címkéje) hagyható el az algoritmusból (d, π , color):

- color: általában kihagyható, mivel d(u)=∞ vizsgálat helyettesíti a color(u)=white vizsgálatot. A szürke és fekete szín sokszor helyettesíthető egy színnel (nem mindig!), ha csak azt szeretnénk eldönteni, hogy a csúcs már látókörbe került, vagy sem. Azaz arra használjuk, nehogy többször is bekerüljön a sorba ugyanaz a csúcs, amivel végtelen ciklusba kerülne a bejárás.
- π: a szülő pointer elhagyható, ha nem kell az előállított útvonal a feladathoz.
- d: ha csak a bejárás részét használjuk az algoritmusnak, nem célunk a legrövidebb út hosszának ellőállítása, akkor d elhagyható, de ilyenkor a color mindenképpen szükséges, és gyakran mindhárom állapot fontos: white, grey, black.

Mutassuk be a szélességi bejárás működését a megadott gráfon

- Kezdőcsúcs legyen az 1-es csúcs
- FONTOS: lejátszásnál a csúcs szomszédjait mindig nagyság szerint növekvő sorrendben fogjuk feldolgozni!

- Elindul az algoritmus, feltölti a kezdőértékekkel a gráf csúcsait (a csúcsokhoz tartozó címkéket).
- A sorba betesszük az 1-es csúcsot, színe:

Kiterjesztett		cst	icsok	d érté	kei	33	Sor tartalma	csúcsok π értékei							
csúcs	1	2	3	4	5	6		1	2	3	4	5	6		
	0	~	oo.	00	00	~	< 1 >	0	0	0	0	0	0		

- Kiveszi a sorból az 1-es csúcsot.
- Szomszédok: 2 és 4
- Mindkettő fehér, szürkére színezi őket, d értékük d(1)+1=1, lesz, szülőjük 1.
- 2 és 4 bekerülnek a sorba.
- 1 színe fekete lesz

Kiterjesztett		csú	icsok	d érté	kei	257		csúcsok π értékei							
csúcs	1	2	3	4	5	6	Sor tartalma	1	2	3	4	5	6		
	0	8	8	8	~	00	< 1 >	0	0	0	0	0	0		
1, d:0		1		1			< 2 ;4 >		1		1				

- Kiveszi a sorból az 2-es csúcsot.
- Szomszédok: 1 és 3
- 1 fekete, kész csúcs
- 3 fehér: szürkére színezi, d értéke d(2)+1=2, lesz, szülője 2.
- 3 bekerül a sorba, 2 színe fekete lesz.

Kiterjesztett csúcs		csú	csok	d érté	kei		6	csúcsok π értékei							
	1	2	3	4	5	6	Sor tartalma	1	2	3	4	5	6		
	0	8	8	8	8	8	< 1 >	0	0	0	0	0	0		
1, d:0		1		1	27		< 2 ;4 >		1		1				
2, d:1			2				< 4;3 >			2					

- Kiveszi a sorból az 4-es csúcsot.
- Szomszédok: 1 és 3 és 5
- ♦ 1 fekete, 3 szürke, skip ágon fut
- 5 fehér: szürkére színezi, d értéke d(4)+1=2, lesz, szülője 4.
- 5 bekerül a sorba, 4 színe fekete lesz.

Kiterjesztett		csú	icsok	d érté	kei		Sor tartalma	csúcsok π értékei							
csúcs	1	2	3	4	5	6	Sor tartalma	1	2	3	4	5	6		
1 d:0		00	<1>	0	0	0	0	0	0						
1, d:0	100	1		1	(3)		< 2;4 >		1	3	1	97			
2, d:1	100		2		(3)		< 4;3 >			2		97			
4, d:1	16				2		< 3 ;5 >					4			

- Kiveszi a sorból a 3-as csúcsot.
- Szomszédok: 2, 4, 5 és 6
- 2 és 4 fekete, 5 szürke: skip ágon fut
- 6 fehér: szürkére színezi, d értéke d(3)+1=3, lesz, szülője 3.
- 6 bekerül a sorba, 3 színe fekete lesz.

$ig(\mathrm{BFS}(G:\mathcal{G}\;;\;s:\mathcal{V}) ig)$
$\forall u \in G.V$
$d(u) := \infty \; ; \; \pi(u) := 0$
[color(u) := white]
$d(s) := 0 \; ; \; [color(s) := grey]$
$Q: Queue \; ; \; Q.add(s)$
$\neg Q.$ isEmpty()
$u := Q.\operatorname{rem}()$
$\forall v: (u,v) \in G.E$
$d(v) = \infty$
d(v) := d(u) + 1
$\pi(v) := u$ SKIP
[color(v) := grey]
Q.add(v)
[color(u) := black]

Kiterjesztett	17	csú	icsok	d érté	kei		Sor tartalma	csúcsok π értékei						
csúcs	1	2	3	4	5	6	Sor tartalma	1	2	3	4	5	6	
0 1. d:0	o o o o	8	∞ ∞	< 1 >	0	0	0	0	0	0				
1, d:0		1		1		9	< 2;4 >		1		1			
2, d:1	-		2			9	< 4;3 >			2				
4, d:1					2		< 3 ;5 >					4		
3, d:2						3	< 5 ;6 >						3	

- Kiveszi a sorból a 5-ös csúcsot.
- Szomszédok: 3, 4 és 6
- ♦ 3 és 4 fekete, 6 szürke: skip ágon fut
- \bullet d és π értékek nem változnak
- 5 színe fekete lesz, a sorba nem kerül új csúcs

Kiterjesztett		csú	icsok	d érté	kei		Sor tartalma	csúcsok π értékei							
csúcs	1	2	3	4	5	6	Sor tartalma	1	2	3	4	5	6		
	0	8	8	8	8	8	< 1 >	0	0	0	0	0	0		
1, d:0	× ×	1		1	20		< 2 ;4 >	25	1		1	9)			
2, d:1	100		2		3		< 4;3 >	1		2		9			
4, d:1	100				2		< 3 ;5 >	1				4	\$ 5°		
3, d:2	8				30	3	< 5 ;6 >	100				92	3		
5, d:2	× ×				89		< 6 >	× 2				97			

- Kiveszi a sorból a 6-os csúcsot.
- Szomszédok: 3 és 5
- Mindkettő fekete: skip ágon fut
- \bullet d és π értékek nem változnak
- 6 színe fekete lesz, a sorba nem kerül új csúcs

Kiterjesztett		csú	icsok	d érté	kei		Sor tartalma	csúcsok π értékei							
csúcs	1	2	3	4	5	6	Sor tartalma	1	2	3	4	5	6		
	0	~	~	00	00	oc .	< 1 >	0	0	0	0	0	0		
1, d:0		1		1			< 2 ;4 >		1		1				
2, d:1			2				< 4 ;3 >			2					
4, d:1					2		< 3 ;5 >					4			
3, d:2						3	< 5 ;6 >						3		
5, d:2							< 6 >								
6, d:3							<>								

- A sor üres, véget ért a főciklus.
- * A csúcsok d és π értékeiből kiolvashatók az eredmények.
- Vizsgáljuk meg a kapott szélességi fát.

Kiterjesztett		csú	icsok	d érté	kei		Sor tartalma		csú	icsok	π érté	kei	
csúcs	1	2	3	4	5	6	Sor tartaima	1	2	3	4	5	6
	0	~	8	8	00	S	< 1 >	0	0	0	0	0	0
1, d:0		1	(6)	1			< 2 ;4 >		1		1		
2, d:1			2				< 4;3 >			2			
4, d:1					2		< 3 ;5 >					4	
3, d:2						3	< 5 ;6 >						3
5, d:2			(6)				< 6 >						
6, d:3							<>						
	0	1	2	1	2	3	3 (3	0	1	2	1	4	3

 Az előző példához hasonlóan mutassuk be a szélességi bejárás algoritmusát az alábbi gráfon:

Kezdő csúcs legyen a 4-es.

- Segítség: szelessegi_gyakorlo.xlsx
- Rajzoljuk be a kapott szélességi fát a gráfba.

• Egy ismeretlen gráfon lefuttattuk a szélességi bejárást. A szülő értékek ismertek, az alábbi

táblázat szerinti

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

Adjuk meg az 5-ös csúcsba vezető utat!

A $\pi(5)$ értékből visszafelé indulva deríthető ki az út:

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

 $11 \rightarrow 5$

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

 $7 \rightarrow 11 \rightarrow 5$

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10
$4 \rightarrow 2 \rightarrow$	7 → £	l1 →	5									

szülő:	10	4	6	0	11	10	2	7	6	4	7	10
csúcs:	1	2	3	4	5	6	7	8	9	10	11	12

4-es volt a kezdőcsúcs, tehát az út:

$$4 \rightarrow 2 \rightarrow 7 \rightarrow 11 \rightarrow 5$$

alábbi táblázat szerintiek:

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	10	4	6	0	11	10	2	7	6	4	7	10

Rajzoljuk le a szélességi fát!

csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10 4-es a gyökér csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10 csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10 2 gyereke:7 10 gyerekei: 1,6 és 12			****													
4-es a gyökér csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10 a 4 gyerekei: 2 és 10 csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10	csúcs:	1	2	3	4	5	6	7	8	9	10	11	12			
csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10 a 4 gyerekei: 2 és 10 csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10	szülő:	10	4	6	0	11	10	2	7	6	4	7	10			
szülő: 10 4 6 0 11 10 2 7 6 4 7 10 a 4 gyerekei: 2 és 10 csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10	4-es a gyö	kér			<u> </u>											
a 4 gyerekei: 2 és 10 csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10	csúcs:	1	2	3	4	5	6	7	8	9	10	11	12			
csúcs: 1 2 3 4 5 6 7 8 9 10 11 12 szülő: 10 4 6 0 11 10 2 7 6 4 7 10	szülő:	10	4	6	0	11	10	2	7	6	4	7	10			
szülő: 10 4 6 0 11 10 2 7 6 4 7 10	a 4 gyerek	4 gyerekei: 2 és 10														
	csúcs:	1	2	3	4	5	6	7	8	9	10	11	12			
2 gyereke:7 10 gyerekei: 1,6 és 12	szülő:	10	4	6	0	11	10	2	7	6	4	7	10			
	2 gyereke	:7 1	LO gye	ereke	i: 1,6	és 12	2		20							

csúcs:	1	2	3	4	5	6	7	8	9	10	11	12
szülő:	3	0	6	5	3	0	11	5	6	0	9	9

- Mi lehetett a fa?
- Több nulla is van a szülő értékek között!
- Csak 6 lehetett a gyökér, mert 2 és 10 nem fordul elő szülőként.
- Azaz nem vezet út a 6-os csúcsból2 és 10 csúcsokba.

Készítsük el a szélességi keresés algoritmusát csúcsmátrixos/szomszédossági listás ábrázolásra, tömböket használva d, pi, color értékekre.

Szomszédossági listás ábrázolással:

- csúcsok nincsenek ábrázolva, az 1..n természetes számok, azonosítják őket,
- a szomszédossági listás ábrázolás az A/1:Edge*[n] tömbben van,
- a csúcsok d értékei a d/1:N[n] tömbben lesznek,
- a csúcsok π értékei a pi/1:N[n] tömbben lesznek,
- color-t nem használjuk.

Szélességi keresés szomszédossági listával ábrázolt gráfon

BFS(A/1:Edge*[n]; d/1:N[n]; pi/1:N[n]; s:1..n)

d és pi tömbök feltöltése

kezdő csúcs d-je legyen nulla berakjuk a sorba a kezdő csúcsot

az u csúcs feldolgozása
az u csúcshoz tartozó lista első elemére
állítjuk a p pointert
u szomszédja: p->v csúcs
ha v csúcs még nem került az
algoritmus látóterébe
d[v] és pi[v] értéket kap
v csúcs bekerül a sorba

p pointer tovább lép az u csúcs éllistáján

Használhatnánk-e a d[v] = ∞ feltétel helyett a pi[v] = 0 feltételt?

- Válasz: nem
- A feltétel azt ellenőrzi, hogy az adott csúccsal találkoztunk-e már.
- ♦ Ha a csúcs d(v) = ∞, az akkor és csak akkor fordul elő, ha a csúcsot eddig még nem fedeztük fel.
- \bullet Viszont $\pi(v)=0$ nem jelenti azt, hogy a csúccsal még nem találkoztunk!

- Készítsük el a szálességi bejárás algoritmusát csúcsmátrixszal ábrázolt gráfra.
- Vizsgáljuk meg a kapott algoritmus műveletigényét!

Út kiíró algoritmus

- A csúcsokat 1..n azonosítja, szülő értékeket egy pi/1:N[n] tömb, s a kezdőcsúcs, u pedig az a csúcs, amelybe az utat ki akarjuk íratni. Figyeljünk a következőkre: u=s előfordulhat, illetve lehet, hogy a bejárás nem talált utat az u csúcsba, ekkor az algoritmus azt írja ki, hogy "Nincs út." Az úton a csúcsok közé írjunk egy "→" karaktert.
- Rekurzív változat:

Gyakorló feladatként készítsük el az iteratív változatot (verem segítségével)!

Szélességi kereséssel megoldható feladatok

- Számos gráfokkal kapcsolatos feladat megoldásának alapja lehet a szélességi bejárás.
 - Nézzünk meg példaként néhány ilyen feladatot:
 - Adott egy tetszőleges irányítatlan gráf, döntsük el, hogy fa-e!
 - Adott egy tetszőleges irányítatlan, összefüggő gráf, döntsük el, hogy páros-e!
 - Adott egy tetszőleges irányítatlan gráf, döntsük el, hogy páros-e! A gráf nem biztos, hogy összefüggő!

Irányítatlan gráf fa-e?

- A csúcsokat 1..n azonosítja, a gráf az A/1:Edge*[n] tömbben van ábrázolva. Csak a color-t fogjuk használni. Legyen szín={white,grey,black} típus.
- Fának tekintjük azt az irányítatlan gráfot, amely összefüggő és nem tartalmaz kört.
 Tehát ezt a két tulajdonságot kell ellenőriznünk.
- Felmerül a következő egyszerű ötlet: nincs is szükség bejárásra, tudjuk, hogy n csúcsa van a gráfnak, számoljuk hát meg az éleket, n-1 él esetén nem lehet benne kör.
- Jó ez?
- Sajnos ez nem teljesen igaz, mert nem tudjuk, hogy a gráf összefüggő-e. Itt van egy egyszerű példa 6 csúcsra, a gráf 5 élt tartalmaz, és nem fa.

Be kell járnunk tehát a gráfot, meg kell vizsgálni, hogy bejárás közben találunk-e kört létrehozó élt, ha nem találkoztunk ilyen éllel, akkor végül még azt kell ellenőrizni, hogy mindegyik csúcsot meglátogattuk-e.

Kör észlelése hejárás közhen:

- · Tehát egy (u,v) él feldolgozása közben azt kell figyelni majd, hogy szin[v] = grey.
- Ez például egy olyan feladat, ahol két szín nem lenne elég, szükség van a háromféle színre.
 Megjegyezzük, hogy két szín elég abban az esetben, ha a szülőt nyilvántartó π tömböt még betesszük az algoritmusba, ekkor (u,v) él kört hoz létre, ha szin[v] ≠ white és v ≠ π[u].
- Azt, hogy minden csúcsot meglátogattunk-e, egyszerű számlálással fogjuk ellenőrizni: bevezetünk egy 29
 számlálót. mely a feldolgozott csúcsokat megszámolja. Ha ez végül n, akkor minden csúcsot feldolgoztunk.

A megoldás

Fa_e(A/1:Edge*[n]): Bool

szin={white,grey,black}
az 1-es csúcsból indítjuk az algoritmust, a
többit fehérre állítjuk
szokásos lépések, fa logikai változó fogja a
ciklusokat leállítani, ha a gráf nem fa
c-ben számoljuk a feldolgozott csúcsokat

fehér szomszéd esetén folytatódik a bejárás, szürke szomszéd kört jelent, a gráf nem fa, fekete szomszéd a csúcs "szülője", nem jelent kört.

ha fa igaz maradt, és minden csúcsot feldolgoztunk, a gráf fa

Adott egy irányítatlan összefüggő gráf, döntsük el a szélességi bejárás segítségével, hogy a gráf páros gráf-e.

Egy irányítatlan G=(V,E) gráfot akkor nevezünk párosnak, ha a gráf csúcsait két halmazba ($V=A\cup B$) tudjuk osztani úgy, hogy tetszőleges (u,v) él esetén az él végpontjai nem esnek ugyanabba a halmazba, azaz u \in A esetén v \in B, vagy fordítva.

- Elsőként tegyük fel, hogy a gráf összefüggő (ez nem szükséges feltétele a párosságnak). Szélességi bejárást fogunk használni.
- Három színnel színezzük a gráf csúcsait, kezdetben mindegyik fehér. Amikoi egy csúcs látókörbe kerül, piros vagy kék színű lesz, attól függően, hogy milyen színű az a csúcs, amelynek szomszédjaként rátaláltunk.
- A szomszédok vizsgálatánál pedig ellenőrizni kell, hogy nincs-e ugyanolyan színű szomszéd,
 mint az éppen kiterjesztett csúcs színe, mert ez azt jelentené, hogy a gráf nem páros.
- Az algoritmus páros gráf esetén megad egy lehetséges osztályozást is a csúcsokon: "A" lesz például a kék csúcsok halmaza, "B" pedig a piros csúcsoké.
- \bullet A színeket a 0,1,2 egészekkel fogjuk ábrázolni. Csak a color-t használjuk, d, π nem lesz.
- Ábrázolástól függetlenül, az absztrakt gráf típuson oldjuk meg a feladatot.

A megoldás

Minden csúcsot fehérre színezünk.

színek: 0-white; 1-blue; 2-red

Választunk egy tetszőleges csúcsot kezdő

csúcsnak, kékre festjük, és berakjuk a

sorba.

u lesz a következő kiterjesztett csúcs,

szomszédjainak színe szerint:

fehér: ellentett színre állítjuk, és berakjuk
a sorba,
ugyanolyan színű, mint u: a gráf nem páros,
ellentett színű: mehet tovább
Piros és kék színűek a csúcsok, a gráf páros.

Vizsgáljuk meg úgy a párosságot, hogy nem tudjuk a gráfról, hogy összefüggő-e.

- Ha a gráf nem összefüggő, akkor összefüggő komponensekből áll. Ha minden egyes komponenst megvizsgálunk az előbbi módszerrel, és ha mindegyik páros, a gráf páros.
- Két szintre bontjuk az algoritmust, a szélességi bejárást egy külön algoritmusba kiemeljük.
- A megoldás felső szintje gondoskodik a kezdeti fehér szín beállításról minden csúcsra. Majd összefüggő komponensenként megvizsgálja, hogy páros-e a komponens vagy sem, és ezt összegzi. Ezt úgy fogja csinálni, hogy sorba veszi a csúcsokat, és ha fehér színűt talál, akkor az egy még nem feldolgozott komponens egy tetszőleges csúcsa: elindít belőle egy színezést, hogy megvizsgálja páros-e.
- A színezés a szélességi bejárást használja. Az összefüggő komponens bármely csúcsából indítható, megpróbálja piros/kék színekkel kiszínezni a komponens csúcsait. Igazzal vagy hamissal tér vissza aszerint, hogy sikeres volt-e a színezés, vagy nem.
- Visszatérve a felső szintű algoritmusba, ha a komponens páros volt, mehet tovább a csúcsok felsorolása: ha van még fehér csúcs, abból indul egy újabb szélességi színezés. Ha viszont a megvizsgált a komponens nem páros, az algoritmus leáll és nemleges választ ad.

A megoldás:

Csúcsokat fehérre állítjuk.

Csúcsonként vizsgálódik,
ha egy fehér csúcsot lát,
elindít egy szinezést.
Ha színezés sikertelen, a gráf
nem páros.
Minden csúcs ki van színezve, a
gráf páros.

A szélességi bejárást használva, megpróbálja az s-ből elérhető csúcsokat piros és kék színnel kiszínezni.

Szomszédok vizsgálata az előbb látottak szerint.
Azonos színű szomszéd esetén ez a komponens
nem páros.

Ez az összefüggő komponens páros.

Szorgalmi házi feladat

- Sokszor meglepő feladatoknál válik be a szélességi keresés. Első hallásra a feladatnak semmi köze a gráfokhoz. Egy ilyen érdekes feladat a következő:
- Adott egy tetszőleges méretű sakktábla, tehát most nem a 8 x 8 -as táblára kell gondolni, hanem egy n x m -es n>0 és m>0 méretű táblára. Ennek egy adott (i₁,j₁) kockáján áll egy huszár. El kell juttatni egy (i₂,j₂) kockára, szabályos lépésekkel. Minimum hány lépésre van szüksége a huszárnak, hogy eljusson a start kockáról a cél kockára?
 - Mi köze van a feladatnak a szélességi bejáráshoz?
 - Mindig megoldható?
 - □ Több út is lehetséges, melyik az igazi?

