Лабораторная работа 2.1.1

Измерение удельной теплоёмкости воздуха при постоянном давленини

Матвей Галицын Б01-411

February 5, 2024

1 Аннотация

В работе измеряется повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

1.1 Оборудование

В работе используются: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

2 Теория

Теплоёмкость тела в некотором процессе определяется как отношение:

$$C = \frac{\Delta Q}{\Delta T} \tag{1}$$

Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в которой установлен нагревательный элемент (см. рис. 1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm=qdt, где q [кг/с] — массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{ПОТ}}$, то порция получила тепло $\delta Q = (N - N_{\text{ПОТ}})dt$. С другой стороны, по определению теплоёмкости (1): $\delta Q = cdm\Delta T$, где $\Delta T = T_2 - T_1$ — приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $P_1 \approx P_2 = P_0$, где P_0 — атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении $c_{\mathcal{D}}$. Таким образом, получаем

$$c_p = \frac{N - N_{\text{IIOT}}}{q\Delta T} \tag{2}$$

2.1 Установка

Схема установки изображена на рис. 1. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. Нагреватель в виде намотанной на пенопласт ни-

Рис. 1: Схема установки

хромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока. Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами.

2.2 Теоретический расчёт

Мощность нагрева равна

$$N = UI \tag{3}$$

Для измерения разности температур ΔT служит медноконстантановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй — в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T,\tag{4}$$

где $\beta=40.7 \frac{{
m MKB}}{{}^{\circ}C}$ — чувствительность медноконстантановой термопары в рабочем диапазоне температур (20–30 ${}^{\rm o}C$). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком ГС. Для регулировки расхода служит кран К. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход равен $\frac{\Delta V}{\Delta t}$, массовый расход может быть найден как

 $q = \rho_0 \frac{\Delta V}{\Delta t},\tag{5}$

где rho_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева—Клапейрона: $\rho_0=\frac{\mu P_0}{RT_0}$, где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu=29,0$ г/моль — средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T \ll T_0$) мощность потерь тепла N прямо пропорциональна разности температур:

$$N = \alpha \Delta T, \tag{6}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_n q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур связаны прямой пропорциональностью $(\Delta T(N)$ — линейная функция).

3 Результаты измерений и обработка данных

- 1. Подготовим к работе газовый счетчик: проверим, что он заполнен водой, установим счетчик по уровню.
- 2. Охладим калориметр до комнатной температуры.
- 3. Включим вольтметр, предназначенный для измерения ЭДС термопары.
- Запишем показания компнатной температуры и давления.

$$T_0 = 296.8 \pm 0.2K$$

 $P_0 = 99260 \pm 20 \text{ Ha}$

- 5. Молярная масса воздуха $\mu = 28.97 \ г/моль$
- 6. С помощью газового счетчика и секундомера измерим максимальный расход воздуха $\frac{\Delta V}{\Delta T} \left[\frac{\pi}{c} \right]$. По найденным значениям определим среднее значение расхода и массовый расход воздуха $qmax \left[\frac{\pi}{c} \right]$ следующим образом:

$$q = \rho_0 \frac{\Delta V}{\Delta t} = \frac{\mu P_0}{RT_0} \frac{\Delta V}{\Delta t}.$$

Относительная погрешность косвенных измерений может быть найдена по формуле:

$$\epsilon_{qmax} = \frac{\sigma_{qmax}}{q_{max}} = \sqrt{(\frac{\sigma_{T_0}}{T_0})^2 + (\frac{\sigma_{P_0}}{P_0})^2 + (\frac{\sigma_{t}}{t})^2}$$

3.1 Эксперимент №1

В этом эксперименте устанавливаем расход $\approx 10 \frac{\mathrm{J}}{\mathrm{MUH}}$ Тогла

$$q_1 = \frac{28.97 \cdot 10^{-3} \cdot 99260}{8.31 \cdot 296.8} \cdot 10 \cdot \frac{10^{-3}}{60} \approx 0.000194 \ \mathrm{kr/c} = 0.19 \ \mathrm{r/c}$$

$$\mathcal{E}_{q_1} = \mathcal{E}_T + \mathcal{E}_{p_0} + \mathcal{E}_{\mathrm{Pacxo}, \mathbf{I}} = 0.0007 + 0.002 + 0.006 \approx 0.01 = 1\%$$

Приведем данные показаний приборов в таблице 1:

$\mathcal{N}_{\underline{o}}$	U, B	<i>I</i> , мА	N, м B т	ϵ , MB	ΔT , K
1	3.569	101.06	360.68	0.074	1.8
2	5.486	155.4	852.52	0.166	4.08
3	6.593	189.7	1250.69	0.255	6.26
4	7.599	215.9	1640.62	0.325	8.01
Среднее значение			1026.13		5.04

Таблица 1: $\Delta T(N)$ в 1ом эксперименте

3.2 Эксперимент №2

В этом эксперименте устанавливаем расход $\approx 4.81\frac{\mathrm{J}}{\mathrm{MИH}}$ Тогда

$$q_2 = \frac{28.97 \cdot 10^{-3} \cdot 99260}{8.31 \cdot 296.8} \cdot 4.81 \cdot \frac{10^{-3}}{60} \approx 0.09 \text{ r/c}$$

$$\mathcal{E}_{q_2} = \mathcal{E}_T + \mathcal{E}_{p_0} + \mathcal{E}_{\mathrm{pacxod}} = 0.0007 + 0.002 + 0.006 \approx 0.01 = 1\%$$

Приведем данные показаний приборов в таблице 1:

Nº	U, B	<i>I</i> , мА	N, мВт	ϵ , MB	ΔT , K
1	2.647	74.19	196.38	0.079	1.94
2	3.647	102.29	373.05	0.164	4.05
3	4.485	125.81	564.26	0.245	6.01
4	5.430	152.19	826.39	0.320	7.91
Среднее значение			490.02		4.98

Таблица 2: $\Delta T(N)$ во 2ом эксперименте

3.3 Графики зависимости N от ΔT

Так как наша зависимлсть линейная, проходящая через точку (0,0), то вычислить ее коэффициент наклона можно по методу наименьших квадратов $k=\frac{\langle \Delta T \cdot N \rangle}{\langle \Delta T^2 \rangle}$, а абсолютную погрешность можно посчитать следующим

образом:
$$\sigma_k = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\langle \Delta N^2 \rangle}{\langle \Delta T^2 \rangle} - k^2}$$

В первом случае:
$$k_1=\frac{6271.35}{30.78}\approx 203.75~\mathrm{mBt/K}$$
 $\sigma_{k_1}=\frac{1}{\sqrt{4}}\cdot\sqrt{\frac{1278185}{30.78}-203.75^2}\approx 1.76~\mathrm{mBt/K}$

Во втором случае:
$$k_2 = \frac{2954.93}{29.71} \approx 99.46 \text{ мBt/K}$$

Рис. 2: График зависимости N от ΔT

Из ситсемы уравнений

$$\begin{cases} c_p q_1 + \alpha = k_1 \\ c_p q_2 + \alpha = k_2 \end{cases}$$

получаем, что $c_p=\frac{k_1-k_2}{q_1-q_2}=\frac{(203.75-99.46)\cdot 60\cdot 10^{-3}}{(10-4.81)\cdot 10^{-3}}\approx 1205.7\ \text{Дж/(кг·К)}$ При этом $\mathcal{E}_{cp}=\max\{\mathcal{E}_{k_1};\mathcal{E}_{k_2}\}+\max\{\mathcal{E}_{q_1};\mathcal{E}_{q_2}\}=\mathcal{E}_{k_2}+\mathcal{E}_{q_2}=\frac{\delta_{k_2}}{k_2}+\frac{\delta_{q_2}}{q_2}=\frac{2.69}{99.46}+0.01=0.037\approx 3.7\%$ Тогда $\alpha=k_1-c_pq_1=\frac{q_1\cdot k_2-q_2\cdot k_1}{q_1-q_2}=\frac{(10\cdot 99.46-4.81\cdot 203.75)\cdot 10^{-3}}{10-4.81}=2.8\ \text{мВт/c}$ Аналогично c_p можно получить $\mathcal{E}_{\alpha}\approx 4\%$

4 Обсуждение результатов

В результате работы мы:

- Нашли теплоемкость воздуха при нормальных условиях и определили коэффициент теплопотерь.
- Получили зависимость $N(\Delta T)$. Как нетрудно убедиться по рис. 2, во всех случаях аппроксимация прямой действительно применима, причем с очень хорошей точностью.
- Получили следующиую теплоемкость и коэффициент теплопотерь соответственно:

$$c_p = (1205 \pm 45) \frac{\text{Дж}}{\text{кг} \cdot K}$$
$$\alpha = (2.8 \pm 0.1) \frac{\text{Дж}}{K}$$