Chaines de Markov et Casinos

Pierre Faugère

ENS de Lyon

LFCG, Mardi 28 Juin 2022

 \longrightarrow Espérance du temps de premier pile si : $p = \frac{1}{2}$?

 \longrightarrow Espérance du temps de premier pile si : $p = \frac{1}{2}$? $p = \frac{1}{4}$?

 \longrightarrow Espérance du temps de premier pile si : $p = \frac{1}{2}$? $p = \frac{1}{4}$? en général?

 \longrightarrow Espérance du temps de premier pile si : $p = \frac{1}{2}$? $p = \frac{1}{4}$? en général?

Notation

 au_k : nombre de coupons collectés lorsqu'on en a k distincts

 \longrightarrow Espérance du temps de premier pile si : $p = \frac{1}{2}$? $p = \frac{1}{4}$? en général?

Notation

 au_k : nombre de coupons collectés lorsqu'on en a k distincts

Notation

$$r_k = \tau_k - \tau_{k-1}$$

 \longrightarrow Espérance du temps de premier pile si : $p = \frac{1}{2}$? $p = \frac{1}{4}$? en général?

Notation

 au_k : nombre de coupons collectés lorsqu'on en a k distincts

Notation

$$r_k = \tau_k - \tau_{k-1}$$

On a:

$$\mathbb{E}[\tau_n] = \mathbb{E}[\tau_n - \tau_{n-1} + \tau_{n-1} - \tau_{n-2} + \dots + \tau_1 - \tau_1 + \tau_0]$$

$$= \mathbb{E}[r_n + r_{n-1} + r_{n-2} + \dots + r_0]$$

$$= \mathbb{E}[r_n] + \mathbb{E}[r_{n-1}] + \mathbb{E}[r_{n-2}] + \dots + \mathbb{E}[r_0]$$

• Or :
$$\mathbb{E}[r_k] = \frac{n}{n-k+1}$$

• Or :
$$\mathbb{E}[r_k] = \frac{n}{n-k+1}$$

• D'où :
$$\mathbb{E}[\tau_n] = n \times (\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n})$$

• Or :
$$\mathbb{E}[r_k] = \frac{n}{n-k+1}$$

• D'où :
$$\mathbb{E}[\tau_n] = n \times (\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n}) \approx n \times \log(n)$$

- Or : $\mathbb{E}[r_k] = \frac{n}{n-k+1}$
- D'où : $\mathbb{E}[\tau_n] = n \times (\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n}) \approx n \times \log(n)$

Problème dual

 R_k : nombre de coupons encore non collectés après k achats

 $C_{k,j}$: on a déjà collecté le coupon j au k-ième achat (ou avant)

- Or : $\mathbb{E}[r_k] = \frac{n}{n-k+1}$
- D'où : $\mathbb{E}[\tau_n] = n \times (\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n}) \approx n \times \log(n)$

Problème dual

 R_k : nombre de coupons encore non collectés après k achats

 $C_{k,j}$: on a déjà collecté le coupon j au k-ième achat (ou avant)

Proposition

On a:
$$\mathbb{E}[R_k] = n \times (1 - \frac{1}{n})^k$$

- Or : $\mathbb{E}[r_k] = \frac{n}{n-k+1}$
- D'où : $\mathbb{E}[\tau_n] = n \times (\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n}) \approx n \times \log(n)$

Problème dual

 R_k : nombre de coupons encore non collectés après k achats

 $C_{k,j}$: on a déjà collecté le coupon j au k-ième achat (ou avant)

Proposition

On a :
$$\mathbb{E}[R_k] = n \times (1 - \frac{1}{n})^k$$

Proof.

$$R_k = \mathbb{1}_{C_{k,1}^c} + \mathbb{1}_{C_{k,2}^c} + \dots + \mathbb{1}_{C_{k,n}^c}$$

Méthodes de mélanges et temps de mélange

→ Qu'est-ce qu'une chaine de Markov?

→ Qu'est-ce qu'une chaine de Markov?

→ Qu'est-ce qu'une chaine de Markov?

→ Quel lien entre mélange et chaine de Markov?

→ Qu'est-ce qu'une chaine de Markov?

- → Quel lien entre mélange et chaine de Markov?
- \longrightarrow Un mélange EST une chaine de Markov

Définition : probabilité

Une *probabilité* sur un ensemble Ω fini est une fonction $P:\mathcal{P}(\Omega)\to [0,1]$ qui vérifie :

- $P(A \cup B) = P(A) + P(B)$ si A et B sont disjoints
- $P(\Omega) = 1$

Définition : probabilité

Une *probabilité* sur un ensemble Ω fini est une fonction $P:\mathcal{P}(\Omega)\to [0,1]$ qui vérifie :

- $P(A \cup B) = P(A) + P(B)$ si A et B sont disjoints
- $P(\Omega) = 1$

Définition : distance entre probabilités

Si P et Q sont deux probabilités, on définit la distance entre P et Q de la manière suivante : $d(P,Q) = \max_{A \subset \Omega} |P(A) - Q(A)|$

• Le temps de mélange

- Le temps de mélange
- \longrightarrow Principe du temps de mélange : on compare la probabilité $P^t(x, \bullet)$ à la probabilité uniforme sur l'ensemble des permutations (ou configurations) \mathfrak{S}_n en fonction de t

- Le temps de mélange
- \longrightarrow Principe du temps de mélange : on compare la probabilité $P^t(x, \bullet)$ à la probabilité uniforme sur l'ensemble des permutations (ou configurations) \mathfrak{S}_n en fonction de t

Définition : temps de mélange

On pose :
$$d(t) = \max_{x \in \mathfrak{S}_n} d(P^t(x, \bullet), \mu)$$

On définit le temps de mélange d'une chaine de Markov :

$$t_{mix}(\epsilon) = min\{t \ge 0 \mid d(t) < \epsilon\}$$

- Le temps de mélange
- \longrightarrow Principe du temps de mélange : on compare la probabilité $P^t(x, \bullet)$ à la probabilité uniforme sur l'ensemble des permutations (ou configurations) \mathfrak{S}_n en fonction de t

Définition : temps de mélange

On pose :
$$d(t) = \max_{x \in \mathfrak{S}_n} d(P^t(x, \bullet), \mu)$$

On définit le temps de mélange d'une chaine de Markov :

$$t_{mix}(\epsilon) = min\{t \ge 0 \mid d(t) < \epsilon\}$$

• Le temps fort stationnaire

Top-to-random shuffle

Proposition

Soit $(X_t)_{t\in\mathbb{N}}$ la chaine de Markov sur \mathfrak{S}_n correspondant au mélange "top-to-random", alors si au temps t il y a k cartes en dessous de la carte initialement au fond du paquet, alors l'arrangement de ces k cartes est uniforme parmi les k! arrangements.

Random-to-top shuffle

Drawing by Yelena Shvets

Transpositions aléatoires

Diaconis and Shahshahani (1981)

$$t_{mix}(\epsilon) \approx \frac{n}{2}log(n)$$

Mélange américain

_	_	3	_	-	_
1.0000	1.0000	1.0000	1.0000	0.9237	0.6135
		9			
0.3341	0.1672	0.0854	0.0429	0.0215	0.0108