Metody Numeryczne - Sprawozdanie 4

Piotr Moszkowicz 28 marca 2019

Spis treści

1	Wstęp Teoretyczny	1
	1.1 Wektor	1
	1.2 Macierz	1
2	Opis problemu	1
3	Wyniki	3
	3.1 Wykres pierwszych 6 najmniejszych wartości własnych dla każdej wartości parametru α	3
	3.2 Wektory własne dla parametru $\alpha = 0 \ldots \ldots \ldots \ldots \ldots$	3
	3.3 Wektory własne dla parametru $\alpha = 100 \dots \dots \dots \dots \dots$	
4	Wnioski	Δ

1 Wstęp Teoretyczny

Na czwartych laboratoriach zajęliśmy się wyznaczaniem częstości drgań struny w czasie oraz przestrzeni.

1.1 Wektor

Wektor to obiekt matematyczny opisywany za pomocą jego długości, zwrotu oraz kierunku, wykorzystywany głównie w fizyce oraz matematyce. Notacja, z którą wykorzystujemy w obliczeniach matematycznych do zapisu wektora to notacja macierzowa, zilustrowana poniżej:

$$v = \begin{bmatrix} x & y & z \end{bmatrix} \tag{1}$$

Jest to trójelementowy wektor wierszowy.

1.2 Macierz

Macierz to tablica prostokątna, która zawiera liczby. Notacja w jakiej zapisujemy macierze widoczna jest poniżej:

 $A = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \tag{2}$

Na powyższym przykładzie widnieje macierz kwadratowa (ilość kolumn jest równa ilości wierszy) o wymiarze 2. Wyróżniamy kilka rodzajów macierzy, poniżej te najważniejsze, które są istotne dla przebiegu ćwiczenia.

Macierz diagonalna to taka, która posiada wartości różne od zera jedynie na przekątnej (tzw. diagonali).

Macierz wstęgowa to taka, której wszystkie elementy są zerowe poza diagonalą i w jej pobliżu. Mając daną macierz $n \times n$ jej elementy $a_{i,j}$ są niezerowe, gdy $i - k_1 \le j \le i + k_2$; gdzie $k_{1,2} \ge 0$ określają szerokość wstęgi.

Macierz trójdiagonalna to taka, która posiada wartości różne od zera jedynie na diagonali, oraz pierwszej naddiagonali i pierwszej poddiagonali.

2 Opis problemu

Aby wyznaczyć interesujące wartości z równania:

$$\frac{N}{\rho(x)}\frac{\partial^2 \psi}{\partial x^2} = \frac{\partial^2 \psi}{\partial t^2} \tag{3}$$

należy dokonać separacji zmiennych, dzięki czemu otrzymujemy równanie:

$$-\frac{\partial^2 u}{\partial x^2} = \lambda \frac{\rho(x)}{N} u \tag{4}$$

Następnie wprowadzamy siatkę równoległych węzłów, gdzie położenie kolejnych węzłów w przestrzeni wyznaczamy następująco:

$$x_i = -\frac{L}{2} + \Delta x * (i+1), i = 0, 1, ..., n-1$$
(5)

Dyskretyzując równanie 4 i zapisując je macierzowo, otrzymujemy nasz równanie, które należy rozwiązać:

$$Au = \lambda Bu \tag{6}$$

Za zadanie mieliśmy rozwiązać 50 takich równań ze skokiem $\Delta \alpha = 2$ dla $\alpha \in [0, 100]$, za dane wejściowe powzięliśmy:

```
L = 10
n = 200
\rho(x) = 1 + 4\alpha x^{2}
N = 1
```

Poniższy blok kodu realizuje rozwiązanie tegoż problemu:

```
for (unsigned int alfa = 0; alfa \leq 100; alfa + 2) {
        for (unsigned int i = 0; i < n; i++) {
            for (unsigned int j = 0; j < n; j++) {
                double x = (-static\_cast < double > (L) / 2.0)
                        + deltaX * (static_cast<double>(i) + 1.0);
                double aValue = (-getKroneckerDelta(i, j + 1)
                        + 2 * getKroneckerDelta(i, j)
                         - getKroneckerDelta(i, j - 1)) / deltaX2;
                double bValue = (p(x, alfa) / static_cast < double > (N))
                         * getKroneckerDelta(i, j);
                (*aMatrix)(i, j, aValue);
                (*bMatrix)(i, j, bValue);
                (*xVector)(i, x);
        gsl_eigen_gensymmv(
         aMatrix->getMatrixPtr(),
         bMatrix->getMatrixPtr(),
         eval->getVectorPtr(),
         evac->getMatrixPtr(),
         w
        );
        gsl_eigen_gensymmv_sort (
         eval->getVectorPtr(),
         evac->getMatrixPtr(),
         GSL_EIGEN_SORT_ABS_ASC
        );
```

3 Wyniki

3.1 Wykres pierwszych 6 najmniejszych wartości własnych dla każdej wartości parametru α

$$\omega = \sqrt{\lambda}$$

Rysunek 1: Wykres ω dla wszystkich wartosci parametru α

3.2 Wektory własne dla parametru $\alpha = 0$

Rysunek 2: Wykres wektorow wlasnych

3.3 Wektory własne dla parametru $\alpha = 100$

Rysunek 3: Wykres wektorow wlasnych

4 Wnioski

Dzięki przyjętym metodom, rozwiązanie takiego problemu w jednym wymiarze nie stanowi żadnego problemu dla naszych komputerów osobistych, co potwierdza dość dobrą wydajność naszej metody.