GENAPSYS SIGNAL PROCESSING CHALLENGE

DARIUSH DABIRI

Let us assume that we have a data matrix X with the following model:

$$(1) X = A_s B_s^T + A_n B_n^T + Z$$

where,

- X is a real $m \times n$ matrix.
- Z is a real $m \times n$ are i.i.d samples of a zero mean Gaussian process $\sim \mathcal{N}(0, \sigma)$.
- A_n is an unknown $m \times d$ matrix, where we do not know the exact value of d, but d << m, n.
- B_n is an unknown $n \times d$ matrix.
- A_s is an unknown $m \times q$ matrix, where q is known, and $q \ll m, n$. Also we know that each column of A_s is in the column span of a known matrix S.
- B_s is an unknown $n \times q$ matrix. But we know that each row of B_s has at most one non-zero element.
- It is assumed that $\operatorname{span}(A_n) \not\subset \operatorname{span}(A_s)$.

The goal is to find a computation efficient method to estimate A_s and B_s .

We expect that the candidates to provide:

- (1) A short presentation describing the algorithm that they chose to solve this problem.
- (2) An implementation of their solution in Matlab, Python or R.
- (3) Show the performance of their algorithm, with the following simulation parameters:
 - Entries of A_s are derived from the class of random staircase functions, of integer step heights, and width 32. In the Matlab notation:

$$\mathrm{kron}(\mathrm{randi}(8,m/32,1),\mathrm{ones}(32,1))$$

- Rows of B_s are zero except for possibly one random location where it is one.
- Entries of B_n are i.i.d samples from a Gaussian process of a given variance.
- Columns of A_n are random traces of a random walk process.
- m = 256, q = 4, d = 16, n = 1024.

Simulations results should show the sensitivity of the proposed solution with respect to variance of entries of A_n , the variance of Z. Additionally, it will be interesting to show simulation results for sensitivity with d and q.