

UC 3: DESENVOLVER ALGORITMOS

PROFESSOR: THIAGO ALMEIDA

MATRIZES

- São estruturas de dados bidimensionais com m linhas e n colunas (m x n). Cada elemento em uma matriz é identificado por um par de índices que indicam sua posição na matriz.
- Exemplo: O elemento 14 está na posição (1, 1).

25 print(matriz[3][2])

MATRIZES

- As matrizes são amplamente usadas em programação para armazenar e manipular grandes conjuntos de dados de forma eficiente.
- Por exemplo:
 Armazenamento de uma imagem digital, onde cada elemento representa um pixel na imagem..

APLICAÇÃO

 O retorno de uma consulta em um banco de dados é parecido como uma matriz onde temos linhas e colunas contendo informações.

PYTHON

 Em Python, uma matriz pode ser representada como uma lista de listas. Onde um elemento da lista contém uma linha da matriz, que por sua vez corresponde a uma coluna da matriz.

INICIALIZAR UMA MATRIZ EM PYTHON COM ZEROS

```
19
     l = int(input("Digite a quantidade de linhas da matriz: "))
20
     c = int(input("Digite a quantidade de colunas da matriz: "))
21
22
23
    i = 0
24
     matriz = []
25
     while i < 1:
26
         linha = []
27
         i = 0
         while j < c:
28
             linha.append(0)
29
30
             j = j + 1
         matriz.append(linha)
31
         i = i + 1
32
```

ENTRADA DE DADOS EM MATRIZ COM PYTHON

```
19
20  l = int(input("Digite a quantidade de linhas da matriz: "))
    c = int(input("Digite a quantidade de colunas da matriz: "))
21
22
23
   i = 0
     matriz = []
24
25
     while i < 1:
         linha = []
26
27
         j = 0
         while j < c:
28
             valor = int(input("Digite um número: "))
29
             linha.append(valor)
30
             j = j + 1
31
         matriz.append(linha)
32
         i = i + 1
33
```

IMPRIMIR UMA MATRIZ

 Existem várias formas de imprimir uma matriz, a mais simples e de melhor visualização é imprimir linha após linha.

1. Utilizando a estrutura de repetição While crie uma matriz 3 x 3 com os seguintes valores, após reescreva o código utilizando for.

2. Utilizando a estrutura de repetição **While** crie um programa que inicialize uma matriz 4 x 4, o usuário deve digitar os dados de entrada de cada elemento da matriz. Durante a execução o programa deve informar qual linha e coluna o usuário está preenchendo. Ao final imprima a matriz preenchida pelo usuário.

ENTRADA:

Lin-0 Col-2:10
Entrada de dados
Lin-0 Col-3:32
Entrada de dados
Lin-1 Col-0:40
Entrada de dados
Lin-1 Col-1:50
Entrada de dados
Lin-1 Col-2:

SAÍDA:

3. Faça um programa que leia uma matriz de 3 x 3 elementos, multiplique cada elemento de cada linha por 5 e armazene a multiplicação em uma nova matriz. Exemplo:

```
matriz = [[1,2,3],[4,5,6],[7,8,9]]
nova_matriz = []

print(matriz[0])
print(matriz[1])
print(matriz[2])

print(nova_matriz[0])
print(nova_matriz[1])
print(nova_matriz[2])
```

ENTRADA:

SAÍDA:

4. Crie um programa que leia uma lista de 9 posições e converta em uma matriz de 3x3:

ENTRADA:

numeros = [10,20,30,10,20,30,10,20,30]

SAÍDA:

[10, 20, 30] [10, 20, 30] [10, 20, 30]

5. Crie um programa que inicialize uma matriz 8 x 8 no formato de uma rifa, preenchida com números 1. Em seguida solicite ao usuário a entrada da linha e coluna que deseja marcar um X e imprima novamente a matriz com a alteração realizada. Neste exercício estamos simulando a escolha de uma posição em uma rifa, caso necessário, você pode alimentar a rifa com números em sequência.

