EKSAMEN I EMNE TMT4110 KJEMI – LØSNINGSFORSLAG

Fredag 30. mai 2008 Tid: kl 0900 – 1300.

Oppgave 1

a)
$$CaCO_3(s) = CaO(s) + CO_2(g)$$

b)

Forbindelse	$\Delta \mathrm{H}^{\circ}{}_{\mathrm{f}}$	S°	$\Delta G^{\circ}{}_{\mathrm{f}}$	Ср
CaO	-635	38	-603	42
CO_2	-394	214	-394	37
CaCO ₃	-1207	93	-1129	82

$$\Delta S^{\circ}_{r} = 214 + 38 - 93 = 159 \text{ J/K}$$

 $\Delta H^{\circ}_{r} = -394 - 635 + 1207 = 178 \text{ kJ}$

$$\Delta G_r^{\circ} = -394 - 603 + 1129 = 132 \text{ kJ}$$
 $K = \text{eksp} (-\Delta G_r^{\circ}/RT) = 7.3 \times 10^{-24}$

$$K = \text{eksp} (-\Delta G^{\circ}_{r}/RT) = 7.3 \times 10^{-24}$$

$$P_{CO2} = K = 7.3 \times 10^{-24} \text{ atm}$$

Alternativt:

$$\Delta G_r^{\circ} = \Delta H_r^{\circ} - 298 \Delta S_r^{\circ} = 178000 - 298x159 = 130,6 \text{ kJ}$$

 $K = \text{eksp} (-\Delta G_r^{\circ}/RT) = 1,23x10^{-23}$
 $P_{CO2} = K = 1,23x10^{-23} \text{ atm}$

c)
$$P_{CO2} = K = 1$$
, $dvs \Delta G^{\circ}_{r} = 0 = \Delta H^{\circ}_{r} - T \Delta S^{\circ}_{r}$ $T = \Delta H^{\circ}_{r} / \Delta S^{\circ}_{r} = 1119,5 \text{ K } (856,5 \text{ °C})$

d) 1 kg CaO(s) tilsvarer 1000/56, 1 = 17, 8 mol CaO.

$$\Delta Cp = 42 + 37 - 82 = -3 \text{ J/K}$$

Oppvarming CaCO₃:

$$[H(857) - H(298)]$$
 $]$ $x n_{CaCO3} = Cp \Delta T n_{CaCO3} = 82 x (857-25) x 17, 8 = 1214 kJ$

Spalting av $CaCO_3$ (ΔH_r):

$$\Delta H_r^{\circ} (857 \, ^{\circ}C) = \Delta H_r^{\circ} + \Delta Cp \, \Delta T = 178000 - 3 \, (857-25) = 175,5 \, kJ$$

Totalt energiforbruk: 1214 + 175,5x17,8 = 4338 kJ

$$PV = n RT = 17, 8x8,314x(273+857) = 167,4 kJ$$

 $w = -PV = -167,4 kJ$

Oppgave 2

a)

$$K_{w} = K_{a} \times K_{b} \qquad K_{b} = K_{w} / K_{a}$$

b) 0,1 M HA:
$$K_a = [H^+][A^-]/[HA]_o = x^2/(0,1-x)$$
 $x \approx ([HA]_o K_a)^{1/2}$ $pH=2,4$

$$K_b = K_w / K_a = 10^{-14} / 1,6x10^{-4} = 6,5x10^{-11}$$

0,1 M NaA:
$$K_b = [OH^-][HA]/[NaA]_o = x^2/(0,1-x)$$
 $x \approx ([NaA]_o K_b)^{1/2}$ $pH = 8,4$

En bufferløsning er en løsning som endrer pH lite ved tilsats av enten syre eller base.

d)

$$H^{+}(aq) + Fe^{2+}(aq) + Cr_{2}O_{7}^{2-}(aq) \rightarrow Fe^{3+}(aq) + Cr^{3+}(aq) + H_{2}O(1)$$

Oksidasjon av Fe (reduksjonsmiddel):

$$Fe^{2+}(aq) \to Fe^{3+}(aq) + e$$
-

Reduksjon av Cr (oksidasjonsmiddel):

$$0.5 \operatorname{Cr}_2 \operatorname{O}_7^{2-}(aq) + 7 \operatorname{H}^+(aq) + 3e^- \rightarrow \operatorname{Cr}^{3+}(aq) + 3.5 \operatorname{H}_2 \operatorname{O}(1)$$

Balansert ligning:

$$14 H^{+}(aq) + 6 Fe^{2+}(aq) + Cr_{2}O_{7}^{2-}(aq) \rightarrow 6 Fe^{3+}(aq) + 2 Cr^{3+}(aq) + 7 H_{2}O(1)$$

e) Utfelling av AgCl ved tilsats av HCl kan påvise kvalitativt Ag⁺ i løsning. Utfelling av HgS ved tilsats av H₂S kan påvise kvalitativt Hg²⁺ i løsning.

Oppgave 3.

a)

$$Cu^{2+}(aq) + Zn(s) = Zn^{2+}(aq) + Cu(s)$$

b)
$$E^{\circ}$$

$$Zn^{2+} + 2 e^{-} = Zn(s)$$

$$Cu^{2+} + 2 e^{-} = Cu(s)$$

$$0,34$$

$$E^{\circ} = E^{\circ}_{Cu} - E^{\circ}_{Zn} = 1,1 \text{ V}$$

c)
$$E = E^{\circ} - [RT/nF] lnQ = 1,1 - 0,0592/2 x log[0,1/2,5] = 1,14 V$$

d) En strøm på 10,0 A har gått igjennom cellen: Antall mol elektroner: $10x36000(1,602x10^{-19}x6,022x10^{23}) = 3,73$ mol e-

Dette medfører at konsentrasjonen i halvcellene endres:

$$E = E^{\circ} - [RT/nF]lnQ = 1,1 - 0,0592/2xlog[1,97/0,63] = 1,09 V$$

e) Beregn massen av hver celle etter at en strøm på 10.0 A har gått igjennom cellen.

Antall gram Cu produsert: 0.5x3.73*63.55 = 118.6 g Cu elektrode: 318.6 g Antall gram Zn forbrukt 0.5x3.73*65.39 = 122.0 g Zn elektrode: 78 g

Oppgave 4.

- a) Elektronegativitet: Et atoms evne til å trekke på elektroner, øker mot høyre i det periodiske system, avtar svakt nedover
- b)

CH₄: ideelt tetraeder, bindingsvinkel 109,5°.

H₂O: tetraedrisk plassering av 4 elektronpar, bøyd molekyl, det ikke-bindende elektronparet trenger større plass bindingsvinkel mindre enn 109,5°.

BF₃: tre elektronpar plassert med 120° vinkel, trigonalt plant molekyl.

XeF₄: seks elektronpar rundt sentralatomet, oktaedrisk plassert, plankvadratisk molekyl fordi de to frie elektronparene plasseres over og under molekylplanet. Bindingsvinkel 90°.

SO₂: tre elektronpar rundt sentralatomet, trigonal plan geometri, bøyd molekyl, det ikkebindende elektronparet trenger større plass, bindingsvinkel mindre enn 120°.

d)

e)
Hybridisering: De to karbonatomene ved dobbeltbindingen sp², de fem andre har sp³ hybridisering.