Examen scris Structuri Algebrice în Informatică 06/06/2022

Nume:	Prenume:
a =,	b =,

unde

- (1) a este egal cu maximul dintre numerele de litere ale cuvintelor care compun numele vostru de familie. (de exemplu, dacă numele de familie este Popescu-Simion atunci a=7, maximul dintre 7 (nr. de litere al cuvântului Popescu) și 6 (nr. de litere al cuvântului Simion); dacă numele de familie este Moisescu atunci a=8)
- (2) b este egal cu maximul dintre numerele de litere ale cuvintelor care compun prenumele vostru. (de exemplu, dacă prenumele este Andreea-Beatrice-Luminița atunci b=8, maximul dintre 7 (nr. de litere al cuvântului Andreea) și 8 (nr. de litere atât al cuvântului Beatrice cât și al cuvântului Luminița).)

Problema	Punctaj	Total
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	1	
9	1	
10	1	
Total	10	

Justificați toate răspunsurile!

- 1. Notăm cu $m = \min(a, b)$ si $M = \max(a, b)$. Determinați a, b, m și M.
- 2. Câte permutări de ordin m se află în grupul de permutări S_M ?
- 3. Se consideră permutarea $\sigma=(1,\ldots,m)(a+1,\ldots,M+b)(2M+1,\ldots,3M)$, un produs de 3 cicli disjuncți din S_{3M} . Determinați toate permutările $\tau\in S_{3M}$ astfel încât $\tau^2=\sigma$.
- 4. Calculați $M^{a^{b^m}} \pmod{31}$.
- 5. Determinați cel mai mare număr natural de 4 cifre cu proprietatea că dacă îl împărțim pe rând la numerele 13, 14, respectiv 15, obținem resturile m, a, respectiv b.
- 6. Determinați numărul elementelor de ordin 12 din grupul produs direct $(\mathbb{Z}_{2^a}, +) \times (\mathbb{Z}_{6^b}, +)$.
- 7. Considerăm pe \mathbb{R} relația binară ρ dată astfel: $x\rho y$ dacă $x^2-ax+a-m=y^2-ay+M-b$. Să se arate că ρ este relație de echivalență, să se calculeze clasele de echivalență ale lui a și b și să se determine un sistem complet de reprezentanți pentru această relație de echivalență. Este funcția $f: \mathbb{R}/\rho \mapsto \mathbb{R}$, $f(\hat{x}) = 2x^2 2ax + a^2 ab$ bine definită?
- 8. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$ definită astfel:

$$f(x) = \begin{cases} ax + b(1 - M), & \text{dacă } x < m, \\ 4ax^2 - 4a(M + m)x + a^2(a + 2b) + b(ab + 1), & \text{dacă } m \le x \le M, \\ bx - aM + m, & \text{dacă } x > M. \end{cases}$$

Decideți dacă funcția f este injectivă, surjectivă, respectiv bijectivă. Calculați $f^{-1}([m-1, m+a])$.

- 9. Determinați toate morfismele de grupuri $\phi: (\mathbb{Z}_a, +) \mapsto (\mathbb{Z}_b, +)$ și specificați care dintre acestea sunt injective, surjective, respectiv bijective.
- 10. Determinați constantele $c, d \in \mathbb{Q}$ astfel încât polinoamele $X^m MX + 1$ și cX + d să fie în aceeași clasă de echivalență în inelul $\mathbb{Q}[X]/(X^2 a^2 + b)$.