

Infravermelhos no Controlo de LEDs

Amostrando sinais IR e aplicando Pulse Width Modulation

Conteúdo

- Arquitetura de Sistema
- Implementação dos diferentes blocos
- Validação de resultados
- Manual de Utilizador / Conclusões

Arquitetura de Sistema

Diagrama de blocos do sistema implementado

Implementação

- Recetor IR
- Controlo de Ações
- Contador de PWM
- PWM
- Mostrador de PWM em LEDRs
- Mostrador de PWM em HEXs
- Definir LEDGs acesos
- Unidade de LCD
- Unidade Áudio

Imagem de www.digikey.com

Recetor de Infravermelhos

Start Bit

• 9ms nível lógico '0' -> 4.5ms nível lógico '1'

Data Bit

• 562.5us n.l. '0' -> 562.5us n.l. '1': '0' lógico

• 562.5us n.l. '0' -> 1.6875ms n.l. '1': '1' lógico

Stop Bit

• 562.5us nível lógico 'o'

Controlo de Ações, Contador PWM e Ajustar LEDs verdes acesos

PWM

• Técnica usada para obter resultados analógicos através de meios digitais.

Imagem de aquaticus.info

Imagem de www.arduino.cc

Mostrador de valor de PWM em LEDRs e displays hexadecimais

 O valor de PWM num dado instante deve ser mostrado nos LEDs vermelhos da FPGA, bem como em dois displays hexadecimais (HEX5 e HEX4)

Unidade de LCD e Áudio

 Blocos cujas implementações assentaram nas disponibilizadas pelos docentes da U.C.

Validação de Resultados

Testbench desenvolvida para recetor de infravermelhos

Testbench desenvolvida para bloco gerador de sinal de PWM

Manual de Utilizador

- Os LEDs controlados são os 9 verdes (numerados de o a 8)
- A intensidade luminosa dos LEDs é controlada através das setas inferiores do comando, variando de o a 15
- Em qualquer instante a intensidade luminosa será mostrada nos displays de sete segmentos HEX5 e HEX4, bem como nos LEDs vermelhos
- O botão Power Off coloca a máquina em Standby
- Quando a intensidade é máxima (15) e todos os LEDs estão acesos (9), ouve-se um bip (sinal sonoro)
- No ecrã LCD expõe-se quem desenvolveu este projeto
- Clicar no botão KEYo do kit fará o reset da máquina

Projeto desenvolvido por: Sandra Inês Moreira 76471 Ricardo Jorge Jesus 76613