5

CLAIMS

WHAT IS CLAIMED:

1. A method comprising:

operating a field emitter array (FEA) to generate at least one of a high electric field and a high electron flux;

exposing the field emitter array (FEA) to at least one gas; and
generating at least one radical species from the at least one gas exposed to the
at least one of the high electric field and the high electron flux.

- The method of claim 1, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 3. The method of claim 1, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- The method of claim 1, wherein operating the field emitter array (FEA)
 comprises operating the field emitter array (FEA) with voltages of no more than about 100 V.
- 5. The method of claim 1, wherein exposing the field emitter array (FEA) to the at least one gas comprises exposing the field emitter array (FEA) to molecular oxygen (O₂).

6. A method comprising:

operating a field emitter array (FEA) with voltages of no more than about 1000 V to generate at least one of a high electric field and a high electron flux;

exposing the field emitter array (FEA) to at least one gas; and
generating at least one radical species from the at least one gas exposed to the
at least one of the high electric field and the high electron flux.

- 7. The method of claim 6, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electric field having a field strength in a range of about 10^7 - 10^8 V/cm.
- 8. The method of claim 6, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- The method of claim 6, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) with voltages of no more than about 100 V.
- 20 10. The method of claim 6, wherein exposing the field emitter array (FEA) to the at least one gas comprises exposing the field emitter array (FEA) to molecular oxygen (O2).

5

11. A method comprising:

operating a low-power field emitter array (FEA) to generate at least one of a high electric field and a high electron flux:

exposing the low-power field emitter array (FEA) to at least one gas;

generating at least one radical species from the at least one gas exposed to the at least one of the high electric field and the high electron flux; and

reacting the at least one radical species with at least one of a chemical and a biological toxin.

- 12. The method of claim 11, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 13. The method of claim 11, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 14. The method of claim 11, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with voltages of no more than about 100 V.
- 15. The method of claim 11, wherein exposing the low-power field emitter array (FEA) to the at least one gas comprises exposing the low-power field emitter array (FEA) to molecular oxygen (O₂).

25

5

16. A method comprising:

operating a low-power field emitter array (FEA) with voltages of no more than about 1000 V to generate at least one of a high electric field and a high electron flux;

exposing the low-power field emitter array (FEA) to at least one gas;

generating at least one radical species from the at least one gas exposed to the

at least one of the high electric field and the high electron flux; and

reacting the at least one radical species with at least one of a chemical and a

biological toxin.

- 17. The method of claim 16, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 18. The method of claim 16, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 19. The method of claim 16, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with voltages of no more than about 100 V.
- 20. The method of claim 16, wherein exposing the low-power field emitter array (FEA) to the at least one gas comprises exposing the low-power field emitter array (FEA) to molecular oxygen (O₂).

5

21. A method comprising:

operating a low-power field emitter array (FEA) to generate at least one of a high electric field and a high electron flux;

exposing the low-power field emitter array (FEA) to at least one of a chemical and a biological toxin; and

dissociating the at least one of the chemical and the biological toxin exposed to the at least one of the high electric field and the high electron flux.

- 22. The method of claim 21, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 23. The method of claim 21, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 24. The method of claim 21, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with voltages of no more than about 100 V.
- 25. The method of claim 21, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with a cathode-to-gate distance of not more than about 1 micron (1um).

26. A method comprising:

operating a low-power field emitter array (FEA) with voltages of no more than about 1000 V to generate at least one of a high electric field and a high electron flux;

exposing the low-power field emitter array (FEA) to at least one of a chemical and a biological toxin; and

dissociating the at least one of the chemical and the biological toxin exposed to the at least one of the high electric field and the high electron flux.

- 27. The method of claim 26, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 28. The method of claim 26, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 29. The method of claim 26, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with voltages of no more than about 100 V.
- 30. The method of claim 26, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with a cathode-to-gate distance of not more than about 1 micron (1um).

20

A method comprising:

operating a low-power field emitter array (FEA) with gate openings in a range of about 1 micron (1 μ m) to about 1 millimeter (1 mm) to generate at least one of a high electric field and a high electron flux;

exposing the low-power field emitter array (FEA) to at least one of a chemical and a biological toxin; and

dissociating the at least one of the chemical and the biological toxin exposed to the at least one of the high electric field and the high electron flux.

- 32. The method of claim 31, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 33. The method of claim 31, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 34. The method of claim 31, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with voltages of no more than about 100 V.
- 35. The method of claim 31, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with a cathode-to-gate distance in a range of about 1 micron (1 um) to about 1 millimeter (1 mm).

20

25

5

36. A method comprising:

operating a low-power field emitter array (FEA) with voltages of no more than about 1000 V with gate openings in a range of about 1 micron (1 μm) to about 1 millimeter (1 mm) to generate at least one of a high electric field and a high electron flux;

exposing the low-power field emitter array (FEA) to at least one of a chemical and a biological toxin; and

dissociating the at least one of the chemical and the biological toxin exposed to the at least one of the high electric field and the high electron flux.

- 37. The method of claim 36, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 38. The method of claim 36, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 39. The method of claim 36, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with voltages of no more than about 100 V
- 40. The method of claim 36, wherein operating the low-power field emitter array (FEA) comprises operating the low-power field emitter array (FEA) with a cathode-to-gate distance in a range of about 1 micron (1 um) to about 1 millimeter (1 mm).

5

41. A method comprising:

operating a field emitter array (FEA) to generate at least one of a high electric field and a high electron flux:

exposing the field emitter array (FEA) to at least one of a chemical and a biological toxin; and

ionizing the at least one of the chemical and the biological toxin exposed to

the at least one of the high electric field and the high electron flux.

- 42. The method of claim 41, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 43. The method of claim 41, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 44. The method of claim 41, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) with voltages of no more than about 100 V.
- 45. The method of claim 41, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) with a cathode-to-gate distance of not more than about 1 micron (1um).

5

46. A method comprising:

operating a field emitter array (FEA) with voltages of no more than about 1000 V to generate at least one of a high electric field and a high electron flux;

exposing the field emitter array (FEA) to at least one of a chemical and a biological toxin; and

ionizing the at least one of the chemical and the biological toxin exposed to

the at least one of the high electric field and the high electron flux.

- 47. The method of claim 46, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 48. The method of claim 46, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 49. The method of claim 46, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) with voltages of no more than about 100 V.
- 50. The method of claim 46, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) with a cathode-to-gate distance of not more than about 1 micron (1µm).

5

51. A method comprising:

operating a field emitter array (FEA) with gate openings in a range of about 1 micron (1 µm) to about 1 millimeter (1 mm) to generate at least one of a high electric field and a high electron flux;

exposing the field emitter array (FEA) to at least one of a chemical and a biological toxin; and

ionizing the at least one of the chemical and the biological toxin exposed to

the at least one of the high electric field and the high electron flux.

- 52. The method of claim 51, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 53. The method of claim 51, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 54. The method of claim 51, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) with voltages of no more than about 100 V.
- 55. The method of claim 51, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) with a cathode-to-gate distance in a range of about 1 micron (1 um) to about 1 millimeter (1 mm).

56. A method comprising:

operating a field emitter array (FEA) with voltages of no more than about 1000 V with gate openings in a range of about 1 micron (1 μm) to about 1 millimeter (1 mm) to generate at least one of a high electric field and a high electron flux;

exposing the field emitter array (FEA) to at least one of a chemical and a biological toxin; and

ionizing the at least one of the chemical and the biological toxin exposed to the at least one of the high electric field and the high electron flux.

- 57. The method of claim 56, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electric field having a field strength in a range of about 10⁷-10⁸ V/cm.
- 58. The method of claim 56, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) to generate an electron flux in a range of about 0.5-2.0 Amp/cm².
- 59. The method of claim 56, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) with voltages of no more than about 100 V.
 - 60. The method of claim 56, wherein operating the field emitter array (FEA) comprises operating the field emitter array (FEA) with a cathode-to-gate distance in a range of about 1 micron (1 um) to about 1 millimeter (1 mm).

20