Employee Attrition Prediction and Analysis

Milestone 1: Data Collection, Exploration, and Preprocessing

Dataset: Employee_Attrition.csv Rows: ~1,470 employees | Columns: 35

Overview

The objective of Milestone 1 is to prepare the employee dataset for analysis and modeling. This includes collecting data, exploring its structure, and performing preprocessing tasks to ensure readiness for subsequent stages of the project.

1. Data Collection

- **Source:** The dataset used for this project contains information on employee demographics, job roles, tenure, performance ratings, salary, and other factors influencing attrition.
- Number of Records: 1,470 employees.
- Number of Features: 35, comprising both numerical and categorical data.

2. Exploratory Data Analysis (EDA)

2.1 Dataset Summary

- Numerical Features:
 - Key examples include Age, MonthlyIncome, and YearsAtCompany.
 - Statistical insights:
 - Age: Mean = 36.92, Min = 18, Max = 60
 - MonthlyIncome: Mean = 6,474.98, Min = 1,009, Max = 19,999
 - YearsAtCompany: Mean = 7.01, Min = 0, Max = 40
- Categorical Features:
 - Examples: Department, Gender, JobRole, Attrition
 - Attrition breakdown:
 - 1,233 employees stayed (83.9%)

237 employees left (16.1%)

2.2 Missing Values and Duplicates

- No missing values were identified in the dataset.
- No duplicate rows were detected.

2.3 Correlation Analysis

Key relationships:

- MonthlyIncome and JobLevel: Strong positive correlation (0.95)
- YearsWithCurrManager and YearsAtCompany: Strong positive correlation (0.77)
- TotalWorkingYears and JobLevel: Strong positive correlation (0.78)

2.4 Key Patterns and Insights

- Employees in the Sales department had higher attrition rates compared to others.
- Employees with lower monthly incomes and shorter tenures showed a greater likelihood of attrition.
- Strong correlation between job level and salary highlights hierarchical pay structures.

3. Preprocessing and Feature Engineering

3.1 Handling Missing Values and Outliers

- No missing data required imputation or removal.
- Outlier detection flagged a small number of extreme values in YearsAtCompany and MonthlyIncome but no immediate action was taken due to their plausibility.

3.2 Feature Engineering

- Encoded categorical variables such as:
 - o Gender (e.g., Male = 1, Female = 0)
 - Attrition (e.g., Yes = 1, No = 0)
- Standardized numerical features like MonthlyIncome to ensure consistent scaling.

3.3 Cleaned Dataset

and model building in Milestone 2.					