SEQUENCE LISTING

- <110> Genentech, Inc. Ashkenazi, Avi Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara, Napoleone Filvaroff, Ellen Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, A. Godowski, Paul J. Grimaldi, Christopher J. Gurney, Austin L. Hillan, Kenneth, J. Kljavin, Ivar J. Mather, Jennie P. Pan, James Paoni, Nicholas F. Roy, Margaret Ann Stewart, Timothy A. Tumas, Daniel Williams, P. Mickey Wood, William, I.
- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> 10466-14
- <140> 09/665,350
- <141> 2000-09-18
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> US 60/143,048
- <151> 1999-07-07
- <150> US 60/145,698
- <151> 1999-07-26
- <150> US 60/146,222
- <151> 1999-07-28
- <150> PCT/US99/20594
- <151> 1999-09-08
- <150> PCT/US99/20944
- <151> 1999-09-13

```
<150> PCT/US99/21090
<151> 1999-09-15
<150> PCT/US99/21547
<151> 1999-09-15
<150> PCT/US99/23089
<151> 1999-10-05
<150> PCT/US99/28214
<151> 1999-11-29
<150> PCT/US99/28313
<151> 1999-11-30
<150> PCT/US99/28564
<151> 1999-12-02
<150> PCT/US99/28565
<151> 1999-12-02
<150> PCT/US99/30095
<151> 1999-12-16
<150> PCT/US99/30911
<151> 1999-12-20
<150> PCT/US99/30999
<151> 1999-12-20
<150> PCT/US00/00219
<151> 2000-01-05
<160> 423
<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens
<400> 1
actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc cctcgacctc 60
gacccacgcg teegggeegg ageageacgg eegeaggace tggageteeg getgegtett 120
cccgcagcgc tacccgccat gcgcctgccg cgccgggccg cgctggggct cctgccgctt 180
ctgctgctgc tgccgcccgc gccggaggcc gccaagaagc cgacgccctg ccaccggtgc 240
cgggggctgg tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcaa tcagatgcta 420
```

gaggcgcagg aggagcacct ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480 ttattcgagt ggttttgtgt gaagacactg aaagtgtgct gctctccagg aacctacggt 540 cccgactgtc tcgcatgcca gggcggatcc cagaggccct gcagcggaa tggccactgc 600 agcggagatg ggagcagaca gggcgacggg tcctgccggt gccacatggg gtaccagggc 660

ccqctqtqca ctgactqcat qqacqqctac ttcaqctcgc tccggaacga gacccacagc 720 atetgeacag cetgtgacga gteetgeaag acgtgetegg geetgaceaa cagagactge 780 ggcgagtgtg aagtgggctg ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt 840 geggeegage egeeteeetg eagegetgeg eagttetgta agaacgeeaa eggeteetae 900 acgtgcgaag agtgtgactc cagctgtgtg ggctgcacag gggaaggccc aggaaactgt 960 aaagagtgta tetetggeta egegagggag caeggacagt gtgcagatgt ggacgagtge 1020 tcactagcag aaaaaacctg tgtgaggaaa aacgaaaact gctacaatac tccagggagc 1080 tacgtctgtg tgtgtcctga cggcttcgaa gaaacggaag atgcctgtgt gccgccggca 1140 gaggetgaag ccacagaagg agaaageeeg acacagetge ceteeegega agacetgtaa 1200 tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat gtggccctga 1260 qqatqccqtc tcctqcaqtq qacaqcqqcq qqqaqaggct gcctgctctc taacggttga 1320 ttctcatttg tcccttaaac agctgcattt cttggttgtt cttaaacaga cttgtatatt 1380 aaaaaaaaa aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1500 gcccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 1560 cacaaataaa gcatttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 1620 atcttatcat gtctggatcg ggaattaatt cggcgcagca ccatggcctg aaataacctc 1680 tgaaagagga acttggttag gtaccttctg aggcggaaag aaccagctgt ggaatgtgtg 1740 tcagttaggg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aagcatgcat 1800 1825 ctcaattagt cagcaaccca gtttt

<210> 2 <211> 353

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu 1 5 10 15

Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His
20 25 30

Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr 35 40 45

Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr
50 55 60

Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu 65 70 75 80

Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala 85 90 95

Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr 100 105 110

Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys 115 120 125

Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser 130 135 140 Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg 145 150 Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr 185 His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly 205 195 200 Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro 230 Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys 250 Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys 275 Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys 295 Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro 315 305 310 Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala 325 Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp 345 350 340 Leu

<210> 3 <211> 2206 <212> DNA

<213> Homo sapiens

<400> 3

caggtccaac tgcacctcgg ttctatcgat tgaattcccc ggggatcctc tagagatccc 60 tcgacctcga cccacgcgtc cgccaggccg ggaggcgacg cgcccagccg tctaaacggg 120 aacagccctg gctgagggag ctgcagcgca gcagagtatc tgacggcgcc aggttgcgta 180 ggtgcggcac gaggagtttt cccggcagcg aggaggtcct gagcagcatg gcccggagga 240

gegeetteee tgeegeegeg etetggetet ggageateet eetgtgeetg etggeaetge 300 gggcggaggc cgggccgccg caggaggaga gcctgtacct atggatcgat gctcaccagg 360 caagagtact cataggattt gaagaagata teetgattgt tteagagggg aaaatggeae 420 cttttacaca tgatttcaga aaagcgcaac agagaatgcc agctattcct gtcaatatcc 480 attccatgaa ttttacctgg caagctgcag ggcaggcaga atacttctat gaattcctgt 540 ccttgcgctc cctggataaa ggcatcatgg cagatccaac cgtcaatgtc cctctgctgg 600 gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt ggaaaacagg 660 atggggtggc agcatttgaa gtggatgtga ttgttatgaa ttctgaaggc aacaccattc 720 tccaaacacc tcaaaatgct atcttcttta aaacatgtca acaagctgag tgcccaggcg 780 ggtgccgaaa tggaggcttt tgtaatgaaa gacgcatctg cgagtgtcct gatgggttcc 840 acggacctca ctgtgagaaa gccctttgta ccccacgatg tatgaatggt ggactttgtg 900 tgactcctgg tttctgcatc tgcccacctg gattctatgg agtgaactgt gacaaagcaa 960 actgctcaac cacctgcttt aatggaggga cctgtttcta ccctggaaaa tgtatttgcc 1020 ctccaggact agagggagag cagtgtgaaa tcagcaaatg cccacaaccc tgtcgaaatg 1080 gaggtaaatg cattggtaaa agcaaatgta agtgttccaa aggttaccag ggagacctct 1140 gttcaaagcc tgtctgcgag cctggctgtg gtgcacatgg aacctgccat gaacccaaca 1200 aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac gaagccagcc 1260 tcatacatgc cctgaggcca gcaggcgccc agetcaggca gcacacgcct tcacttaaaa 1320 aggccgagga gcggcgggat ccacctgaat ccaattacat ctggtgaact ccgacatctg 1380 aaacgtttta agttacacca agttcatagc ctttgttaac ctttcatgtg ttgaatgttc 1440 aaataatgtt cattacactt aagaatactg gcctgaattt tattagcttc attataaatc 1500 actgagctga tatttactct tccttttaag ttttctaagt acgtctgtag catgatggta 1560 tagattttct tgtttcagtg ctttgggaca gattttatat tatgtcaatt gatcaggtta 1620 aaattttcag tgtgtagttg gcagatattt tcaaaattac aatgcattta tggtgtctgg 1680 gggcagggga acatcagaaa ggttaaattg ggcaaaaatg cgtaagtcac aagaatttgg 1740 atggtgcagt taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800 ttaccattat tccagagatt cagtattaaa aaaaaaaaa ttacactgtg gtagtggcat 1920 ttaaacaata taatatatto taaacacaat gaaataggga atataatgta tgaacttttt 1980 ttttatactg tttgtatgta taaaataaag gtgctgcttt agttttttgg aaaaaaaaa 2100 aaaaaaaaa aaaaaaaaa aaaaaaaaaa gggcggccgc gactctagag tcgacctgca 2160 2206 gaagettgge egecatggee caacttgttt attgeagett ataatg

<210> 4

<211> 379

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser 1 5 10 15

Ile Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln 20 25 30

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu 35 40 45

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala 50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

65					70					75					80
Pro	Val	Asn	Ile	His 85	Ser	Met	Asn	Phe	Thr 90	Trp	Gln	Ala	Ala	Gly 95	Gln
Ala	Glu	Tyr	Phe 100	Tyr	Glu	Phe	Leu	Ser 105	Leu	Arg	Ser	Leu	Asp 110	Lys	Gly
Ile	Met	Ala 115	Asp	Pro	Thr	Val	Asn 120	Val	Pro	Leu	Leu	Gly 125	Thr	Val	Pro
His	Lys 130	Ala	Ser	Val	Val	Gln 135	Val	Gly	Phe	Pro	Cys 140	Leu	Gly	Lys	Gln
Asp 145	Gly	Val	Ala	Ala	Phe 150	Glu	Val	Asp	Val	Ile 155	Val	Met	Asn	Ser	Glu 160
Gly	Asn	Thr	Ile	Leu 165	Gln	Thr	Pro	Gln	Asn 170	Ala	Ile	Phe	Phe	Lys 175	Thr
Cys	Gln	Gln	Ala 180	Glu	Cys	Pro	Gly	Gly 185	Cys	Arg	Asn	Gly	Gly 190	Phe	Cys
Asn	Glu	Arg 195	Arg	Ile	Cys	Glu	Cys 200	Pro	Asp	Gly	Phe	His 205	Gly	Pro	His
Cys	Glu 210	Lys	Ala	Leu	Cys	Thr 215	Pro	Arg	Cys	Met	Asn 220	Gly	Gly	Leu	Cys
Val 225	Thr	Pro	Gly	Phe	Cys 230	Ile	Cys	Pro	Pro	Gly 235	Phe	Tyr	Gly	Val	Asn 240
Cys	Asp	Lys	Ala	Asn 245	Cys	Ser	Thr	Thr	Cys 250		Asn	Gly	Gly	Thr 255	Суѕ
Phe	Tyr	Pro	Gly 260	Lys	Cys	Ile	Cys	Pro 265	Pro	Gly	Leu	Glu	Gly 270	Glu	Gln
Cys	Glu	Ile 275	Ser	Lys	Cys		Gln 280		Cys	Arg	Asn	Gly 285		Lys	Cys
Ile	Gly 290	Lys	Ser	Lys	Cys	Lys 295	Cys	Ser	Lys	Gly	Tyr 300	Gln	Gly	Asp	Leu
Cys 305	Ser	Lys	Pro	Val	Cys 310	Glu	Pro	Gly	Cys	Gly 315	Ala	His	Gly	Thr	Cys 320
His	Glu	Pro	Asn	Lys 325	Cys	Gln	Cys	Gln	Glu 330	Gly	Trp	His	Gly	Arg 335	His
Cys	Asn	Lys	Arg 340		Glu	Ala	Ser	Leu 345	Ile	His	Ala	Leu	Arg 350	Pro	Ala

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu 355 360 365	
Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp 370 375	
<210> 5 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 5 agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca	45
<210> 6 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 6 agagtgtatc tctggctacg c	21
<210> 7 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 7 taagtccggc acattacagg tc	22
<210> 8 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 8 cccacqatqt atqaatqqtq gactttgtgt gactcctggt ttctgcatc	49

```
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 9
                                                                22
aaagacgcat ctgcgagtgt cc
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 10
                                                                23
tgctgatttc acactgctct ccc
<210> 11
<211> 2197
<212> DNA
<213> Homo sapiens
<400> 11
cggacgcgtg ggcgtccggc ggtcgcagag ccaggaggcg gaggcgcgcg ggccagcctg 60
ggccccagcc cacaccttca ccagggccca ggagccacca tgtggcgatg tccactgggg 120
ctactgctgt tgctgccgct ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
cgccgggagc tagcaccggg tctgcacctg cggggcatcc gggacgcggg aggccggtac 240
tgccaggagc aggacctgtg ctgccgcggc cgtgccgacg actgtgccct gccctacctg 300
ggcgccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg ctgccctgac 360
ttctgggact tctgcctcgg cgtgccaccc ccttttcccc cgatccaagg atgtatgcat 420
ggaggtcgta tctatccagt cttgggaacg tactgggaca actgtaaccg ttgcacctgc 480
caggagaaca ggcagtggca tggtggatcc agacatgatc aaagccatca accagggcaa 540
ctatggctgg caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600
tcgctaccgc ctgggcacca tccgcccatc ttcctcggtc atgaacatgc atgaaattta 660
tacagtgctg aacccagggg aggtgcttcc cacagccttc gaggcctctg agaagtggcc 720
caacctgatt catgageete ttgaccaagg caactgtgea ggeteetggg cetteteeae 780
agcagctgtg gcatccgatc gtgtctcaat ccattctctg ggacacatga cgcctgtcct 840
gtcgccccag aacctgctgt cttgtgacac ccaccagcag cagggctgcc gcggtgggcg 900
tctcgatggt gcctggtggt tcctgcgtcg ccgaggggtg gtgtctgacc actgctaccc 960
cttctcgggc cgtgaacgag acgaggctgg ccctgcgccc ccctgtatga tgcacagccg 1020
agccatgggt cggggcaagc gccaggccac tgcccactgc cccaacagct atgttaataa 1080
caatgacatc taccaggtca ctcctgtcta ccgcctcggc tccaacgaca aggagatcat 1140
gaaggagctg atggagaatg gccctgtcca agccctcatg gaggtgcatg aggacttctt 1200
cctatacaag ggaggcatct acagccacac gccagtgagc cttgggaggc cagagagata 1260
```

tggaaggacg ctcaaatact ggactgcggc caactcetgg ggcccagcct ggggcgagag 1380 gggccacttc cgcatcgtgc gcggcgtcaa tgagtgcgac atcgagagct tcgtgctggg 1440 cgtctgggc cgcgtgggca tggaggacat gggtcatcac tgaggctgg ggcaccacgc 1500 ggggtccggc ctgggatcaa ggctaagggc cggcggaaga ggccccaatg gggcggtgac 1560 cccagcctcg cccgacagag cccgggggc aggcggggcg cagggggcc atcccggcgg aggcggggcc aggcgggact atcccggcgc 1620 gggttccgct gacgcagcgc cccgcctggg agccgcgggc aggcgagact ggcggagccc 1680 ccagacctcc cagtgggac gggccagggc ctgacctggg acacctcaag ctgcagatcc 1740 caggcctctg gcgccccac tcaagactac caaagccagg acacctcaag tctccagcc 1800 caataccca ccccaatccc gtattcttt ttttttttt ttagacaggg tcttgctcgg 1860 ttgcccaggt tggagtgag tggcccatca gggctcactg taacctccaa ccccaaccc 1980 tggctaattt ttgtatttt tgtaaagagg ggggtctcac tgtgttgccc aggctggtt 2040 caagactcctg ggctcaagcg cctgtattct tattcttcag atatttatt ttctttcac 2160 tgtttaaaa taaaaccaaa gtattgataa aaaaaaa 2197

<210> 12

<211> 164

<212> PRT

<213> Homo sapiens

<400> 12

Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Leu Pro Leu Ala Gly
1 5 10 15

His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala 20 25 30

Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
35 40 45

Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu 50 55 60

Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr 65 70 75 80

Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro 85 90 95

Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
100 105 110

Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln 115 120 125

Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln 130 135 140

Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly 145 150 155 160

His Asp Pro Gly

```
<210> 13
<211> 533
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (33)
<223> a, t, c or g
<220>
<221> modified base
<222> (80)
<223> a, t, c or g
<220>
<221> modified base
<222> (94)
<223> a, t, c or g
<220>
<221> modified base
<222> (144)
<223> a, t, c or g
<220>
<221> modified base
<222> (188)
<223> a, t, c or g
<400> 13
aggeteettg geeettttte cacageaage tintgenate eegattegtt gieteaaate 60
caattetett gggacacatn acgeetgtee tttngceeca gaacetgetg tettgtacae 120
ccaccagcag cagggctgcc gcgntgggcg tctcgatggt gcctggtggt tcctgcgtcg 180
ccgagggntg gtgtctgacc actgctaccc cttctcgggc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca ctcctgtcta 360
ccgcctcggc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcatg aggacttctt cctatacaag ggaggcatct acagccacac 480
gccagtgagc cttgggaggc cagagagata ccgccggcat gggacccact cag
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 14
```

ttcgaggcct ctgagaagtg gccc	24
<210> 15	
<211> 22	
<211> ZZ <212> DNA	
<213> Artificial Sequence	
22137 Altilitial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic</pre>	
oligonucleotide probe	
Oligonacicociae prose	
<400> 15	
ggeggtatet etetggeete ee	22
3303360000 0000330000 00	
<210> 16	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
·	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 16	
ttctccacag cagetgtggc atccgatcgt gtctcaatcc attctctggg	50
<210> 17	
<211> 960	
<212> DNA	
<213> Homo sapiens	
·	
<400> 17	60
getgettgee etgttgatgg eaggettgge cetgeageea ggeactgeee tgetgtgeta	120
ctcctgcaaa gcccaggtga gcaacgagga ctgcctgcag gtggagaact gcacccagct gggggagcag tgctggaccg cgcgcatccg cgcagttggc ctcctgaccg tcatcagcaa	180
aggetgeage ttgaactgeg tggatgacte acaggactae taegtgggea agaagaacat	240
cacgtgctgt gacaccgact tgtgcaacgc cagcggggcc catgccctgc agccggctgc	300
egecateett gegetgetee etgeaetegg cetgetgete tggggaceeg gecagetata	360
ggctctgggg ggccccgctg cagcccacac tgggtgtggt gccccaggcc tctgtgccac	420
tecteacaga cetggeceag tgggageetg teetggttee tgaggeacat cetaacgeaa	480
gtctgaccat gtatgtctgc acccctgtcc cccaccctga ccctcccatg gccctctcca	540
ggactcccac ccggcagatc agctctagtg acacagatcc gcctgcagat ggcccctcca	600
accetetetg etgetgttte catggeecag cattetecae cettaaceet gtgeteagge	660
acctetteec ccaggaagec tteectgeec accecateta tgaettgage caggtetggt	720
ccgtggtgtc ccccgcaccc agcaggggac aggcactcag gagggcccag taaaggctga	780
gatgaagtgg actgagtaga actggaggac aagagtcgac gtgagttcct gggagtctcc	840
agagatgggg cetggaggce tggaggaagg ggccaggcet cacattegtg gggetecetg	900
aatggcagcc tgagcacagc gtaggccctt aataaacacc tgttggataa gccaaaaaaa	960
<210> 18	
<211> 189	
<212> PRT	
212. Homo caniene	

)> 18														
Met 1	Thr	His	Arg	Thr 5	Thr	Thr	Trp	Ala	Arg 10	Arg	Thr	Ser	Arg	Ala 15	Val
Thr	Pro	Thr	Cys 20	Ala	Thr	Pro	Ala	Gly 25	Pro	Met	Pro	Cys	Ser 30	Arg	Leu
Pro	Pro	Ser 35	Leu	Arg	Cys	Ser	Leu 40	His	Ser	Ala	Cys	Cys 45	Ser	Gly	Asp
Pro	Ala 50	Ser	Tyr	Arg	Leu	Trp 55	Gly	Ala	Pro	Leu	Gln 60	Pro	Thr	Leu	Gly
Val 65	Val	Pro	Gln	Ala	Ser 70	Val	Pro	Leu	Leu	Thr 75	Asp	Leu	Ala	Gln	Trp 80
Glu	Pro	Val	Leu	Val 85	Pro	Glu	Ala	His	Pro 90	Asn	Ala	Ser	Leu	Thr 95	Met
Tyr	Val	Cys	Thr 100	Pro	Val	Pro	His	Pro 105	Asp	Pro	Pro	Met	Ala 110	Leu	Ser
Arg	Thr	Pro 115	Thr	Arg	Gln	Ile	Ser 120	Ser	Ser	Asp	Thr	Asp 125	Pro	Pro	Ala
Asp	Gly 130	Pro	Ser	Asn	Pro	Leu 135	Cys	Cys	Cys	Phe	His 140	Gly	Pro	Ala	Phe
Ser 145	Thr	Leu	Asn	Pro	Val 150	Leu	Arg	His	Leu	Phe 155	Pro	Gln	Glu	Ala	Phe 160
Pro	Ala	His	Pro	Ile 165	Tyr	Asp	Leu	Ser	Gln 170	Val	Trp	Ser	Val	Val 175	Ser
Pro	Ala	Pro	Ser 180	Arg	Gly	Gln	Ala	Leu 185	Arg	Arg	Ala	Gln			
<212 <212	0> 19 L> 24 2> Dl B> An	1 NA	icia:	l Sed	quen	ce									
<220	-	escr	iptio	on o	f Ar	tifi	cial	Seq	uenc	e: S	ynth	etic			
			nucle					_		•					

24

<400> 19

tgctgtgcta ctcctgcaaa gccc

<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 20 24 tgcacaagtc ggtgtcacag cacg <210> 21 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe 44 agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg <210> 22 <211> 1200 <212> DNA <213> Homo sapiens <400> 22 cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca acctcactct 60 gtgcttacag ctgctgattc tctgctgtca aactcagtac gtgagggacc agggcgccat 120 gaccgaccag ctgagcaggc ggcagatccg cgagtaccaa ctctacagca ggaccagtgg 180 caagcacgtg caggtcaccg ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt 240 tgccaagctc atagtggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300 gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcgggaa 360 gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ccttccagaa 420 cgcccggcac gagggctggt tcatggcctt cacgcggcag gggcggcccc gccaggcttc 480 ccgcagccgc cagaaccagc gcgaggccca cttcatcaag cgcctctacc aaggccagct 540 gcccttcccc aaccacgccg agaagcagaa gcagttcgag tttgtgggct ccgccccac 600 ccgccggacc aagcgcacac ggcggcccca gcccctcacg tagtctggga ggcagggggc 660 agcageceet gggeegeete eccaeceett teeettetta atecaaggae tgggetgggg 720 tggcgggagg ggagccagat ccccgaggga ggaccctgag ggccgcgaag catccgagcc 780 cccagctggg aaggggcagg ccggtgcccc aggggcggct ggcacagtgc ccccttcccg 840 gacgggtggc aggccctgga gaggaactga gtgtcaccct gatctcaggc caccagcctc 900 tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg aaggccttgc 960 agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc tcggatctcc ctcagtctgc 1020 ccccagcccc caaactcctc ctggctagac tgtaggaagg gacttttgtt tgtttgtttg 1080 tttcaggaaa aaagaaaggg agagaggga aaatagaggg ttgtccactc ctcacattcc 1140 acgacccagg cctgcacccc acccccaact cccagccccg gaataaaacc attttcctgc 1200 <210> 23 <211> 205 <212> PRT <213> Homo sapiens

<400)> 23	3													
Met 1	Gly	Ala	Ala	Arg 5	Leu	Leu	Pro	Asn	Leu 10	Thr	Leu	Cys	Leu	Gln 15	Leu
Leu	Ile	Leu	Cys 20	Cys	Gln	Thr	Gln	Tyr 25	Val	Arg	Asp	Gln	Gly 30	Ala	Met
Thr	Asp	Gln 35	Leu	Ser	Arg	Arg	Gln 40	Ile	Arg	Glu	Tyr	Gln 45	Leu	Tyr	Ser
Arg	Thr 50	Ser	Gly	Lys	His	Val 55	Gln	Val	Thr	Gly	Arg 60	Arg	Ile	Ser	Ala
Thr 65	Ala	Glu	Asp	Gly	Asn 70	Lys	Phe	Ala	Lys	Leu 75	Ile	Val	Glu	Thr	Asp 80
Thr	Phe	Gly	Ser	Arg 85	Val	Arg	Ile	Lys	Gly 90	Ala	Glu	Ser	Glu	Lys 95	Tyr
Ile	Cys	Met	Asn 100	Lys	Arg	Gly	Lys	Leu 105	Ile	Gly	Lys	Pro	Ser 110	Gly	Lys
Ser	Lys	Asp 115	Cys	Val	Phe	Thr	Glu 120	Ile	Val	Leu	Glu	Asn 125	Asn	Tyr	Thr
Ala	Phe 130	Gln	Asn	Ala	Arg	His 135	Glu	Gly	Trp	Phe	Met 140	Ala	Phe	Thr	Arg
Gln 145	Gly	Arg	Pro	Arg	Gln 150	Ala	Ser	Arg	Ser	Arg 155	Gln	Asn	Gln	Arg	Glu 160
Ala	His	Phe	Ile	Lys 165	Arg	Leu	Tyr	Gln	Gly 170	Gln	Leu	Pro	Phe	Pro 175	Asn
His	Ala	Glu	Lys 180	Gln	Lys	Gln	Phe	Glu 185	Phe	Val	Gly	Ser	Ala 190	Pro	Thr
Arg	Arg	Thr 195	Lys	Arg	Thr	Arg	Arg 200	Pro	Gln	Pro	Leu	Thr 205			
-014)> 24	1													
)> ∠4 L> 28														
	L> 20 2> DI														
			icial	l Sec	quen	ce									
<220								_		_					
<223			iptio nucle				cial	Seq	ience	e: Sy	ynthe	etic			
	0.	rrgor	LUCIO		ים בי	LUDE									

<400> 24

cagtacgtga gggaccaggg cgccatga

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 25
                                                                  24
ccqqtqacct qcacqtqctt gcca
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<220>
<221> modified base
<222> (21)
<223> a, t, c or g
<400> 26
geggatetge egeetgetea netggteggt catggegeee t
                                                                   41
<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens
<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagagggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
tccagtcatt ttgattttgc tgtttatttt ttttttcttt ttctttttcc caccacattg 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
ctttttcct gaagtcttgg cttatcattt ccctggggct ctactcacag gtgtccaaac 360
tcctqqcctg ccctagtgtg tgccgctgcg acaggaactt tgtctactgt aatgagcgaa 420
gcttgacctc agtgcctctt gggatcccgg agggcgtaac cgtactctac ctccacaaca 480
accaaattaa taatgctgga tttcctgcag aactgcacaa tgtacagtcg gtgcacacgg 540
tctacctgta tggcaaccaa ctggacgaat tccccatgaa ccttcccaag aatgtcagag 600
ttctccattt gcaggaaaac aatattcaga ccatttcacg ggctgctctt gcccagctct 660
tgaagcttga agagctgcac ctggatgaca actccatatc cacagtgggg gtggaagacg 720
gggccttccg ggaggctatt agcctcaaat tgttgttttt gtctaagaat cacctgagca 780
gtgtgcctgt tgggcttcct gtggacttgc aagagctgag agtggatgaa aatcgaattg 840
ctqtcatate cqacatqqcc ttccagaate tcacgagett ggagegtett attgtggacg 900
ggaacctcct gaccaacaag ggtatcgccg agggcacctt cagccatctc accaagctca 960
aggaattttc aattgtacgt aattcgctgt cccaccctcc tcccgatctc ccaggtacgc 1020
atctgatcag gctctatttg caggacaacc agataaacca cattcctttg acagccttct 1080
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140
```

aaggggtttt tgataatete tecaaeetga ageageteae tgeteggaat aaceettggt 1200 tttqtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcatctctca 1260 acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg ggggatggcc gtcagggaat 1320 taaatatgaa tettttgtee tgteecacea egaceeeegg eetgeetete tteaceeeag 1380 ccccaagtac agetteteeg accaeteage eteccaecet etetatteea aaccetagea 1440 qaaqctacac geetecaact eetaccacat egaaacttee caegatteet gaetgggatg 1500 gcagagaaag agtgacccca cctatttctg aacggatcca gctctctatc cattttgtga 1560 atgatacttc cattcaagtc agctggctct ctctcttcac cgtgatggca tacaaactca 1620 catqqqtgaa aatgqgccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcg 1680 gtgagaagca acacctgagc ctggttaact tagagccccg atccacctat cggatttgtt 1740 tagtgccact ggatgctttt aactaccgcg cggtagaaga caccatttgt tcagaggcca 1800 ccacccatgc ctcctatctg aacaacggca gcaacacagc gtccagccat gagcagacga 1860 cgtcccacag catgggctcc ccctttctgc tggcgggctt gatcgggggc gcggtgatat 1920 ttgtgctggt ggtcttgctc agcgtctttt gctggcatat gcacaaaaag gggcgctaca 1980 cctcccagaa gtggaaatac aaccggggcc ggcggaaaga tgattattgc gaggcaggca 2040 ccaagaagga caactccatc ctggagatga cagaaaccag ttttcagatc gtctccttaa 2100 ataacgatca actccttaaa ggagatttca gactgcagcc catttacacc ccaaatgggg 2160 qcattaatta cacaqactgc catatcccca acaacatgcg atactgcaac agcagcgtgc 2220 cagacctgga gcactgccat acgtgacagc cagaggccca gcgttatcaa ggcggacaat 2280 tagactettg agaacacact egtgtgtgca cataaagaca egcagattae atttgataaa 2340 tgttacacag atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400 tgggatttaa aaaaagtgct atcttttcta tttcaagtta attacaaaca gttttgtaac 2460 tctttgcttt ttaaatctt

<210> 28

<211> 660

<212> PRT

<213> Homo sapiens

<400> 28

Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu
1 5 10 15

Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys 20 25 30

Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr 35 40 45

Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly
50 55 60

Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe
65 70 75 80

Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr 85 90 95

Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg 100 105 110

Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala 115 120 125 Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val 170 Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile 185 Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly 215 Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe 265 260 Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp 305 310 Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arg Gly 330 Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Thr Pro Gly Leu Pro 360 Leu Phe Thr Pro Ala Pro Ser Thr Ala Ser Pro Thr Thr Gln Pro Pro 375 Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro 385 390 Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg

<210> 29 <211> 21 <212> DNA

				405					410					415	
Val	Thr	Pro	Pro 420		Ser	Glu	Arg	Ile 425	Gln	Leu	Ser	Ile	His 430	Phe	Val
Asn	Asp	Thr 435	Ser	Ile	Gln	Val	Ser 440	Trp	Leu	Ser	Leu	Phe 445	Thr	Val	Met
Ala	Tyr 450	Lys	Leu	Thr	Trp	Val 455	Lys	Met	Gly	His	Ser 460	Leu	Val	Gly	Gly
Ile 465	Val	Gln	Glu	Arg	Ile 470	Val	Ser	Gly	Glu	Lys 475	Gln	His	Leu	Ser	Leu 480
Val	Asn	Leu	Glu	Pro 485	Arg	Ser	Thr	Tyr	Arg 490	Ile	Суз	Leu	Val	Pro 495	Leu
Asp	Ala	Phe	Asn 500	Tyr	Arg	Ala	Val	Glu 505	Asp	Thr	Ile	Cys	Ser 510	Glu	Ala
Thr	Thr	His 515	Ala	Ser	Tyr	Leu	Asn 520	Asn	Gly	Ser	Asn	Thr 525	Ala	Ser	Ser
His	Glu 530	Gln	Thr	Thr	Ser	His 535	Ser	Met	Gly	Ser	Pro 540	Phe	Leu	Leu	Ala
Gly 545	Leu	Ile	Gly	Gly	Ala 550	Val	Ile	Phe	Val	Leu 555	Val	Val	Leu	Leu	Ser 560
Val	Phe	Cys	Trp	His 565	Met	His	Lys	Lys	Gly 570	Arg	Tyr	Thr	Ser	Gln 575	Lys
Trp	Lys	Tyr	Asn 580	Arg	Gly	Arg	Arg	Lys 585	Asp	Asp	Tyr	Cys	Glu 590	Ala	Gly
Thr	Lys	Lys 595	Asp	Asn	Ser	Ile	Leu 600	Glu	Met	Thr	Glu	Thr 605	Ser	Phe	Gln
Ile	Val 610	Ser	Leu	Asn	Asn	Asp 615	Gln	Leu	Leu	Lys	Gly 620	Asp	Phe	Arg	Leu
Gln 625	Pro	Ile	Tyr	Thr	Pro 630	Asn	Gly	Gly	Ile	Asn 635	Tyr	Thr	Asp	Cys	His 640
Ile	Pro	Asn	Asn	Met 645	Arg	Tyr	Cys	Asn	Ser 650	Ser	Val	Pro	Asp	Leu 655	Glu
His	Cys	His	Thr 660												

<213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 29 cggtctacct gtatggcaac c	21
<210> 30 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 30 gcaggacaac cagataaacc ac	22
<210> 31 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 31 acgcagattt gagaaggctg tc	22
<210> 32 <211> 46 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 32 ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac	46
<210> 33 <211> 3449 <212> DNA <213> Homo sapiens	
<400> 33 acttggagca agcggcggcg gcggagacag aggcagaggc agaagctggg gctccgtcct cgcctcccac gagcgatccc cgaggagagc cgcggccctc ggcgaggcga	60 120

gaggaagacc cgggtggctg cgccctgcc tcgcttccca ggcgccggcg gctgcagcct 180 tgcccctctt gctcgccttg aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc 240 teggacagat egtectecte eetgeegagg eeagggageg gteaegtggg aggteeatet 300 ctaggggcag acacgctcgg acccacccgc agacggccct tctggagagt tcctgtgaga 360 acaaqcqqqc aqacctqqtt ttcatcattg acagctctcg cagtgtcaac acccatgact 420 atgcaaaggt caaggagttc atcgtggaca tcttgcaatt cttggacatt ggtcctgatg 480 tcacccgagt gggcctgctc caatatggca gcactgtcaa gaatgagttc tccctcaaga 540 ccttcaagag gaagtccgag gtggagcgtg ctgtcaagag gatgcggcat ctgtccacgg 600 gcaccatgac tgggctggcc atccagtatg ccctgaacat cgcattctca gaagcagagg 660 gggcccggcc cctgagggag aatgtgccac gggtcataat gatcgtgaca gatgggagac 720 ctcaggactc cgtggccgag gtggctgcta aggcacggga cacgggcatc ctaatctttg 780 ccattggtgt gggccaggta gacttcaaca ccttgaagtc cattgggagt gagccccatg 840 aggaccatgt cttccttgtg gccaatttca gccagattga gacgctgacc tccgtgttcc 900 agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960 gcatcaacat ccctggctca tacgtctgca ggtgcaaaca aggctacatt ctcaactcgg 1020 atcagacgac ttgcagaatc caggatctgt gtgccatgga ggaccacaac tgtgagcagc 1080 tctgtgtgaa tgtgccgggc tccttcgtct gccagtgcta cagtggctac gccctggctg 1140 aggatgggaa gaggtgtgtg getgtggaet aetgtgeete agaaaaceae ggatgtgaae 1200 atgagtgtgt aaatgctgat ggctcctacc tttgccagtg ccatgaagga tttgctctta 1260 acccagatga aaaaacgtgc acaaggatca actactgtgc actgaacaaa ccgggctgtg 1320 agcatgagtg cgtcaacatg gaggagagct actactgccg ctgccaccgt ggctacactc 1380 tggaccccaa tggcaaaacc tgcagccgag tggaccactg tgcacagcag gaccatggct 1440 gtgagcagct gtgtctgaac acggaggatt ccttcgtctg ccagtgctca gaaggcttcc 1500 tcatcaacga ggacctcaag acctgctccc gggtggatta ctgcctgctg agtgaccatg 1560 gttgtgaata ctcctgtgtc aacatggaca gatcctttgc ctgtcagtgt cctgagggac 1620 acgtgctccg cagcgatggg aagacgtgtg caaaattgga ctcttgtgct ctgggggacc 1680 acggttgtga acattcgtgt gtaagcagtg aagattcgtt tgtgtgccag tgctttgaag 1740 gttatatact ccgtgaagat ggaaaaacct gcagaaggaa agatgtctgc caagctatag 1800 accatggctg tgaacacatt tgtgtgaaca gtgacgactc atacacgtgc gagtgcttgg 1860 agggattccg gctcgctgag gatgggaaac gctgccgaag gaaggatgtc tgcaaatcaa 1920 cccaccatgg ctgcgaacac atttgtgtta ataatgggaa ttcctacatc tgcaaatgct 1980 cagagggatt tgttctagct gaggacggaa gacggtgcaa gaaatgcact gaaggcccaa 2040 ttgacctggt ctttgtgatc gatggatcca agagtcttgg agaagagaat tttgaggtcg 2100 tgaagcagtt tgtcactgga attatagatt cettgacaat ttcccccaaa geegetegag 2160 tggggctgct ccagtattcc acacaggtcc acacagagtt cactctgaga aacttcaact 2220 cagccaaaga catgaaaaaa gccgtggccc acatgaaata catgggaaag ggctctatga 2280 ctgggctggc cctgaaacac atgtttgaga gaagttttac ccaaggagaa ggggccaggc 2340 ccctttccac aagggtgccc agagcagcca ttgtgttcac cgacggacgg gctcaggatg 2400 acgtctccga gtgggccagt aaagccaagg ccaatggtat cactatgtat gctgttgggg 2460 taggaaaagc cattgaggag gaactacaag agattgcctc tgagcccaca aacaagcatc 2520 tcttctatgc cgaagacttc agcacaatgg atgagataag tgaaaaactc aagaaaggca 2580 tctgtgaagc tctagaagac tccgatggaa gacaggactc tccagcaggg gaactgccaa 2640 aaacggtcca acagccaaca gaatctgagc cagtcaccat aaatatccaa gacctacttt 2700 cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat cttttacggt 2760 ctacacaaaa gctttcccat tcaacaaaac cttcaggaag ccctttggaa gaaaaacacg 2820 atcaatgcaa atgtgaaaac cttataatgt tccagaacct tgcaaacgaa gaagtaagaa 2880 aattaacaca gcgcttagaa gaaatgacac agagaatgga agccctggaa aatcgcctga 2940 gatacagatg aagattagaa atcgcgacac atttgtagtc attgtatcac ggattacaat 3000 gaacgcagtg cagagcccca aagctcaggc tattgttaaa tcaataatgt tgtgaagtaa 3060 aacaatcagt actgagaaac ctggtttgcc acagaacaaa gacaagaagt atacactaac 3120 ttgtataaat ttatctagga aaaaaatcct tcagaattct aagatgaatt taccaggtga 3180 gaatgaataa gctatgcaag gtattttgta atatactgtg gacacaactt gcttctgcct 3240 catcctgcct tagtgtgcaa tctcatttga ctatacgata aagtttgcac agtcttactt 3300

ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac cttgatatat 3360 gtatatggat gtatgcataa aatcatagga catatgtact tgtggaacaa gttggatttt 3420 ttatacaata ttaaaattca ccacttcag 3449

<210> 34

<211> 915

<212> PRT

<213> Homo sapiens

<400> 34

Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile 1 5 10 15

Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile 20 25 30

Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu 35 .40 45

Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser 50 55 60

Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile 65 70 75 80

Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val 85 90 95

Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys 100 105 110

Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg 115 120 125

His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu 130 135 140

Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn 145 150 155 160

Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser 165 170 175

Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe 180 185 190

Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly 195 200 205

Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln 210 215 220

Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His

225					230					235					240
Met	Cys	Ser	Thr	Leu 245	Glu	His	Asn	Cys	Ala 250	His	Phe	Суѕ	Ile	Asn 255	Ile
Pro	Gly	Ser	Tyr 260	Val	Cys	Arg	Cys	Lys 265	Gln	Gly	Tyr	Ile	Leu 270	Asn	Ser
Asp	Gln	Thr 275	Thr	Cys	Arg	Ile	Gln 280	Asp	Leu	Cys	Ala	Met 285	Glu	Asp	His
Asn	Cys 290	Glu	Gln	Leu	Cys	Val 295	Asn	Val	Pro	Gly	Ser 300	Phe	Val	Cys	Gln
Cys 305	Tyr	Ser	Gly	Tyr	Ala 310	Leu	Ala	Glu	Asp	Gly 315	Lys	Arg	Cys	Val	Ala 320
Val	Asp	Tyr	Cys	Ala 325	Ser	Glu	Asn	His	Gly 330	Cys	Glu	His	Glu	Cys 335	Val
Asn	Ala	Asp	Gly 340	Ser	Tyr	Leu	Cys	Gln 345	Cys	His	Glu	Gly	Phe 350	Ala	Leu
Asn	Pro	Asp 355	Glu	Lys	Thr	Cys	Thr 360	Arg	Ile	Asn	Tyr	Cys 365	Ala	Leu	Asn
Lys	Pro 370	Gly	Cys	Glu	His	Glu 375	Cys	Val	Asn	Met	Glu 380	Glu	Ser	Tyr	Tyr
Cys 385	Arg	Cys	His	Arg	Gly 390	Tyr	Thr	Leu	Asp	Pro 395	Asn	Gly	Lys	Thr	Cys 400
Ser	Arg	Val	Asp	His 405	Cys	Ala	Gln	Gln	Asp 410	His	Gly	Cys	Glu	Gln 415	Leu
Cys	Leu	Asn	Thr 420	Glu	Asp	Ser	Phe	Val 425	Cys	Gln	Cys	Ser	Glu 430	Gly	Phe
Leu	Ile	Asn 435	Glu	Asp	Leu	Lys	Thr 440	Cys	Ser	Arg	Val	Asp 445	Tyr	Cys	Leu
Leu	Ser 450	Asp	His	Gly	Cys	Glu 455	Tyr	Ser	Cys	Val	Asn 460	Met	Asp	Arg	Ser
Phe 465	Ala	Cys	Gln	Cys	Pro 470	Glu	Gly	His	Val	Leu 475	Arg	Ser	Asp	Gly	Lys 480
Thr	Cys	Ala	Lys	Leu 485	Asp	Ser	Cys	Ala	Leu 490	Gly	Asp	His	Gly	Cys 495	Glu
His	Ser	Cys	Val 500	Ser	Ser	Glu	Asp	Ser 505		Val	Cys	Gln	Cys 510	Phe	Glu

Gly	Tyr	Ile 515	Leu	Arg	Glu	Asp	Gly 520	Lys	Thr	Cys	Arg	Arg 525	Lys	Asp	Val
Cys	Gln 530	Ala	Ile	Asp	His	Gly 535	Cys	Glu	His	Ile	Cys 540	Val	Asn	Ser	Asp
Asp 545	Ser	Tyr	Thr	Cys	Glu 550	Cys	Leu	Glu	Gly	Phe 555	Arg	Leu	Ala	Glu	Asp 560
Gly	Lys	Arg	Cys	Arg 565	Arg	Lys	Asp	Val	Cys 570	Lys	Ser	Thr	His	His 575	Gly
Cys	Glu	His	Ile 580	Суѕ	Val	Asn	Asn	Gly 585	Asn	Ser	Tyr	Ile	Cys 590	Lys	Сув
Ser	Glu	Gly 595	Phe	Val	Leu	Ala	Glu 600	Asp	Gly	Arg	Arg	Cys 605	Lys	Lys	Cys
Thr	Glu 610	Gly	Pro	Ile	Asp	Leu 615	Val	Phe	Val	Ile	Asp 620	Gly	Ser	Lys	Ser
Leu 625	Gly	Glu	Glu	Asn	Phe 630	Glu	Val	Val	Lys	Gln 635	Phe	Val	Thr	Gly	Ile 640
Ile	Asp	Ser	Leu	Thr 645	Ile	Ser	Pro	Lys	Ala 650	Ala	Arg	Val	Gly	Leu 655	Leu
Gln	Tyr	Ser	Thr 660	Gln	Val	His	Thr	Glu 665	Phe	Thr	Leu	Arg	Asn 670	Phe	Asn
Ser	Ala	Lys 675	Asp	Met	Lys	Lys	Ala 680	Val	Ala	His	Met	Lys 685	Tyr	Met	Gly
Lys	Gly 690	Ser	Met	Thr	Gly	Leu 695	Ala	Leu	Lys	His	Met 700	Phe	Glu	Arg	Ser
705					Gly 710					715					720
Ala	Ala	Ile	Val	Phe 725	Thr	Asp	Gly	Arg	730	Gln	Asp	Asp	Val	Ser 735	Glu
Trp	Ala	Ser	Lys 740		Lys	Ala	Asn	Gly 745		Thr	Met	Tyr	750	Val	Gly
Val	Gly	Lys 755		Ile	Glu	Glu	Glu 760		Gln	Glu	ıle	Ala 765		Glu	Pro
Thr	Asn 770		His	Leu	Phe	Tyr 775		Glu	Asp	Phe	9 Ser 780		Met	. Asp	Glu
Ile 785		Glu	Lys	Leu	Lys 790		Gly	lle	суз	795	Ala	Let	ı Glu	Asp	800

Asp (Gly	Arg	Gln	Asp 805	Ser	Pro	Ala	Gly	Glu 810	Leu	Pro	Lys	Thr	Val 815	Gln	
Gln 1	Pro	Thr	Glu 820	Ser	Glu	Pro	Val	Thr 825	Ile	Asn	Ile	Gln	Asp 830	Leu	Leu	
Ser	Cys	Ser 835	Asn	Phe	Ala	Val	Gln 840	His	Arg	Tyr	Leu	Phe 845	Glu	Glu	Asp	
Asn :	Leu 850	Leu	Arg	Ser	Thr	Gln 855	Lys	Leu	Ser	His	Ser 860	Thr	Lys	Pro	Ser	
Gly 8	Ser	Pro	Leu	Glu	Glu 870	Lys	His	Asp	Gln	Cys 875	Lys	Cys	Glu	Asn	Leu 880	
Ile	Met	Phe	Gln	Asn 885	Leu	Ala	Asn	Glu	Glu 890	Val	Arg	Lys	Leu	Thr 895	Gln	
Arg	Leu	Glu	Glu 900	Met	Thr	Gln	Arg	Met 905	Glu	Ala	Leu	Glu	Asn 910	Arg	Leu	
Arg	Tyr	Arg 915														
<210 <211 <212 <213	> 23 > Di	NA NA	icia	l Sed	quen	ce										
<220 <223	> De		_	on o: eoti			cial	Seq	uenc	e: S	ynth	etic				
<400 gtga			ttgt	gaat	ac t	cc										23
<210 <211 <212 <213	> 22 > DI	NA	icia	l Se	quen	ce										
<220 <223	> De			on o: eoti				Seq	uenc	e: S	ynth	etic				
<400 acag			tcta	tagc	tt g	g										22
<210 <211 <212 <213	> 4! > DI	5 NA	icia	l Se	quen	ce										

<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 37 45 gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag <210> 38 <211> 1813 <212> DNA <213> Homo sapiens <400> 38 ggagccgccc tgggtgtcag cggctcggct cccgcgcacg ctccggccgt cgcgcagcct 60 cggcacctgc aggtccgtgc gtcccgcggc tggcgcccct gactccgtcc cggccaggga 120 gggccatgat ttccctcccg gggcccctgg tgaccaactt gctgcggttt ttgttcctgg 180 ggctgagtgc cctcgcgccc ccctcgcggg cccagctgca actgcacttg cccgccaacc 240 ggttgcaggc ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300 aggtgtette ateccageea tgggaggtge eetttgtgat gtggttette aaacagaaag 360 aaaaggagga tcaggtgttg tcctacatca atggggtcac aacaagcaaa cctggagtat 420 ccttggtcta ctccatgccc tcccggaacc tgtccctgcg gctggagggt ctccaggaga 480 aagactctgg cccctacagc tgctccgtga atgtgcaaga caaacaaggc aaatctaggg 540 gccacagcat caaaacctta gaactcaatg tactggttcc tccagctcct ccatcctgcc 600 gtctccaggg tgtgccccat gtgggggcaa acgtgaccct gagctgccag tctccaagga 660 gtaagcccgc tgtccaatac cagtgggatc ggcagcttcc atccttccag actttctttg 720 caccagcatt agatgtcatc cgtgggtctt taagcctcac caacctttcg tcttccatgg 780 ctggagtcta tgtctgcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840 tggaagtgag cacagggcct ggagctgcag tggttgctgg agctgttgtg ggtaccctgg 900 ttggactggg gttgctggct gggctggtcc tcttgtacca ccgccggggc aaggccctgg 960 aggagecage caatgatate aaggaggatg ceattgetee eeggaceetg eeetggeeca 1020 agageteaga cacaatetee aagaatggga eeettteete tgteaeetee geaegageee 1080 teeggecace ceatggeett eccaggeetg gtgeattgac ecceaegeee agteteteea 1140 gccaggccct gccctcacca agactgccca cgacagatgg ggcccaccct caaccaatat 1200 cccccatccc tggtggggtt tettectetg gettgageeg catgggtget gtgcctgtga 1260 tggtgcctgc ccagagtcaa gctggctctc tggtatgatg accccaccac tcattggcta 1320 aaggatttgg ggtctctcct tcctataagg gtcacctcta gcacagaggc ctgagtcatg 1380 ggaaagagtc acactcctga cccttagtac tctgccccca cctctcttta ctgtgggaaa 1440 accatctcag taagacctaa gtgtccagga gacagaagga gaagaggaag tggatctgga 1500 attgggagga gcctccaccc acccctgact cctccttatg aagccagctg ctgaaattag 1560 ctactcacca agagtgaggg gcagagactt ccagtcactg agtctcccag gcccccttga 1620 tetgtacece acceptatet aacaceacee ttggeteeea etceagetee etgtattgat 1680 ataacctgtc aggctggctt ggttaggttt tactggggca gaggataggg aatctcttat 1740 taaaactaac atgaaatatg tgttgttttc atttgcaaat ttaaataaag atacataatg 1800 1813 tttgtatgaa aaa <210> 39 <211> 390 <212> PRT <213> Homo sapiens <400> 39

Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu

1				5					10					15	
Phe	Leu	Gly	Leu 20	Ser	Ala	Leu	Ala	Pro 25	Pro	Ser	Arg	Ala	Gln 30	Leu	Gln
Leu	His	Leu 35	Pro	Ala	Asn	Arg	Leu 40	Gln	Ala	Val	Glu	Gly 45	Gly	Glu	Val
Val	Leu 50	Pro	Ala	Trp	Tyr	Thr 55	Leu	His	Gly	Glu	Val 60	Ser	Ser	Ser	Gln
Pro 65	Trp	Glu	Val	Pro	Phe 70	Val	Met	Trp	Phe	Phe 75	Lys	Gln	Lys	Glu	Lys 80
Glu	Asp	Gln	Val	Leu 85	Ser	Tyr	Ile	Asn	Gly 90	Val	Thr	Thr	Ser	Lys 95	Pro
Gly	Val	Ser	Leu 100	Val	Tyr	Ser	Met	Pro 105	Ser	Arg	Asn	Leu	Ser 110	Leu	Arg
Leu	Glu	Gly 115	Leu	Gln	Glu	Lys	Asp 120	Ser	Gly	Pro	Tyr	Ser 125	Cys	Ser	Val
Asn	Val 130	Gln	Asp	Lys	Gln	Gly 135	Lys	Ser	Arg	Gly	His 140	Ser	Ile	Lys	Thr
Leu 145	Glu	Leu	Asn	Val	Leu 150	Val	Pro	Pro	Ala	Pro 155	Pro	Ser	Cys	Arg	Leu 160
Gln	Gly	Val	Pro	His 165	Val	Gly	Ala	Asn	Val 170	Thr	Leu	Ser	Cys	Gln 175	Ser
Pro	Arg	Ser	Lys 180	Pro	Ala	Val	Gln	Tyr 185	Gln	Trp	Asp	Arg	Gln 190	Leu	Pro
Ser	Phe	Gln 195	Thr	Phe	Phe	Ala	Pro 200	Ala	Leu	Asp	Val	Ile 205	Arg	Gly	Ser
Leu	Ser 210	Leu	Thr	Asn	Leu	Ser 215	Ser	Ser	Met		Gly 220		Tyr	Val	Суя
Lys 225	Ala	His	Asn	Glu	Val 230	Gly	Thr	Ala	Gln	Cys 235	Asn	Val	Thr	Leu	Glu 240
Val	Ser	Thr	Gly	Pro 245	Gly	Ala	Ala	Val	Val 250	Ala	Gly	Ala	Val	Val 255	Gly
Thr	Leu	Val	Gly 260	Leu	Gly	Leu	Leu	Ala 265	Gly	Leu	Val	Leu	Leu 270	Tyr	His
Arg	Arg	Gly 275	Lys	Ala	Leu	Glu	Glu 280	Pro	Ala	Asn	Asp	Ile 285	Lys	Glu	Asp

Ala	Ile 290	Ala	Pro	Arg	Thr	Leu 295	Pro	Trp	Pro	Lys	Ser 300	Ser	Asp	Thr	Ile	
Ser 305	Lys	Asn	Gly	Thr	Leu 310	Ser	Ser	Val	Thr	Ser 315	Ala	Arg	Ala	Leu	Arg 320	
Pro	Pro	His	Gly	Pro 325	Pro	Arg	Pro	Gly	Ala 330	Leu	Thr	Pro	Thr	Pro 335	Ser	
Leu	Ser	Ser	Gln 340	Ala	Leu	Pro	Ser	Pro 345	Arg	Leu	Pro	Thr	Thr 350	Asp	Gly	
Ala	His	Pro 355	Gln	Pro	Ile	Ser	Pro 360	Ile	Pro	Gly	Gly	Val 365	Ser	Ser	Ser	
Gly	Leu 370	Ser	Arg	Met	Gly	Ala 375	Val	Pro	Val	Met	Val 380	Pro	Ala	Gln	Ser	
Gln 385	Ala	Gly	Ser	Leu	Val 390											
<211 <212	> DN	IA.	.cial	. Seq	uenc	e										
<220 <223	> De	scri igon	ptio	n of otid	Art e pr	ific obe	ial	Sequ	ence	: Sy	nthe	tic				
<400 aggg			gaga	.aaga	c tc											22
<210 <211 <212 <213	> 24 > DN	A	cial	Seq	uenc	e										
<220 <223	> De	scri igon	ptio ucle	n of otid	Art e pr	ific obe	ial :	Sequ	ence	: Sy	nthe	tic				
<400: attg		cc t	tgca	gaca	t ag	ac										24
<210: <211: <212: <213:	> 50 > DN	_	cial	Seq	ience	e										
<220: <223:	> Des	scrip	otion	n of	Arti	ifici	ial s	Seque	ence:	: Syı	nthet	cic				

<400> 42 ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc	50
<210> 43 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 43 gtgtgacaca gcgtgggc	18
<210> 44 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 44 gaccggcagg cttctgcg	18
<210> 45 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 45 cagcagcttc agccaccagg agtgg	25
<210> 46 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 46 ctgagccgtg ggctgcagtc tcgc	24
<210> 47	

<211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 47 45 ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc <210> 48 <211> 2822 <212> DNA <213> Homo sapiens <400> 48 cgccaccact gcggccaccg ccaatgaaac gcctcccgct cctagtggtt ttttccactt 60 tgttgaattg ttcctatact caaaattgca ccaagacacc ttgtctccca aatgcaaaat 120 gtgaaatacg caatggaatt gaagcctgct attgcaacat gggattttca ggaaatggtg 180 tcacaatttg tgaagatgat aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240 ctaattgcac taacacagaa ggaagttatt attgtatgtg tgtacctggc ttcagatcca 300 gcagtaacca agacaggttt atcactaatg atggaaccgt ctgtatagaa aatgtgaatg 360 caaactgcca tttagataat gtctgtatag ctgcaaatat taataaaact ttaacaaaaa 420 tcagatccat aaaagaacct gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480 atctttcacc aacagatata attacatata tagaaatatt agctgaatca tcttcattac 540 taggttacaa gaacaacact atctcagcca aggacaccct ttctaactca actcttactg 600 aatttgtaaa aaccgtgaat aattttgttc aaagggatac atttgtagtt tgggacaagt 660 tatctgtgaa tcataggaga acacatctta caaaactcat gcacactgtt gaacaagcta 720 ctttaaggat atcccagagc ttccaaaaga ccacagagtt tgatacaaat tcaacggata 780 tagctctcaa agttttcttt tttgattcat ataacatgaa acatattcat cctcatatga 840 atatggatgg agactacata aatatatttc caaagagaaa agctgcatat gattcaaatg 900 gcaatgttgc agttgcattt ttatattata agagtattgg tcctttgctt tcatcatctg 960 acaacttett attgaaacet caaaattatg ataattetga agaggaggaa agagteatat 1020 cttcagtaat ttcagtctca atgagctcaa acccacccac attatatgaa cttgaaaaaa 1080 taacatttac attaagtcat cgaaaggtca cagataggta taggagtcta tgtgcatttt 1140 ggaattactc acctgatacc atgaatggca gctggtcttc agagggctgt gagctgacat 1200 actcaaatga gacccacacc tcatgccgct gtaatcacct gacacatttt gcaattttga 1260 tgtcctctgg tccttccatt ggtattaaag attataatat tcttacaagg atcactcaac 1320 taggaataat tatttcactg atttgtcttg ccatatgcat ttttaccttc tggttcttca 1380 gtgaaattca aagcaccagg acaacaattc acaaaaatct ttgctgtagc ctatttcttg 1440 ctgaacttgt ttttcttgtt gggatcaata caaatactaa taagctcttc tgttcaatca 1500 ttgccggact gctacactac ttctttttag ctgcttttgc atggatgtgc attgaaggca 1560 tacatctcta tctcattgtt gtgggtgtca tctacaacaa gggatttttg cacaagaatt 1620 tttatatett tggetateta ageceageeg tggtagttgg atttteggea geactaggat 1680 acagatatta tggcacaacc aaagtatgtt ggcttagcac cgaaaacaac tttatttgga 1740 gttttatagg accagcatgc ctaatcattc ttgttaatct cttggctttt ggagtcatca 1800 tatacaaagt ttttcgtcac actgcagggt tgaaaccaga agttagttgc tttgagaaca 1860 taaggtettg tgcaagagga geeetegete ttetgtteet teteggeace acetggatet 1920 ttggggttct ccatgttgtg cacgcatcag tggttacagc ttacctcttc acagtcagca 1980 atgctttcca ggggatgttc attttttat tcctgtgtgt tttatctaga aagattcaag 2040 aagaatatta cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100 agagaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt ggatgaccaa 2160 tgtataaaaa tgactcatca aattatccaa ttattaacta ctagacaaaa agtattttaa 2220 atcagttttt ctgtttatgc tataggaact gtagataata aggtaaaatt atgtatcata 2280 tagatatact atgttttct atgtgaaata gttctgtcaa aaatagtatt gcagatattt 2340 ggaaagtaat tggtttctca ggagtgatat cactgcaccc aaggaaagat tttctttcta 2400 acacgagaag tatatgaatg tcctgaagga aaccactggc ttgatatttc tgtgactcgt 2460 gttgcctttg aaactagtcc cctaccacct cggtaatgag ctccattaca gaaagtggaa 2520 cataagagaa tgaagggca gaatatcaaa cagtgaaaag ggaatgataa gatgtattt 2580 gaatgaactg tttttctgt agactagctg agaaattgt gacataaaat aaagaattga 2640 agaactcctgt ttgctaaatc tgtttcttt tctaatattc taaaaaaaaa aaaaaaaaa 2820 ac

<210> 49

<211> 690

<212> PRT

<213> Homo sapiens

<400> 49

Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys
1 5 10 15

Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys 20 25 30

Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe 35 40 45

Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn 50 55 60

Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly 65 70 75 80

Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln 85 90 95

Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn 100 105 110

Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys 115 120 125

Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln 130 135 140

Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile 145 150 155 160

Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Ser Leu Leu Gly Tyr Lys 165 170 175

Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

			180					185					190		
Glu	Phe	Val 195	Lys	Thr	Val	Asn	Asn 200	Phe	Val	Gln	Arg	Asp 205	Thr	Phe	Val
Val	Trp 210	Asp	Lys	Leu	Ser	Val 215	Asn	His	Arg	Arg	Thr 220	His	Leu	Thr	Lys
Leu 225	Met	His	Thr	Val	Glu 230	Gln	Ala	Thr	Leu	Arg 235	Ile	Ser	Gln	Ser	Phe 240
Gln	Lys	Thr	Thr	Glu 245	Phe	Asp	Thr	Asn	Ser 250	Thr	Asp	Ile	Ala	Leu 255	Lys
Val	Phe	Phe	Phe 260	Asp	Ser	Tyr	Asn	Met 265	Lys	His	Ile	His	Pro 270	His	Met
Asn	Met	Asp 275	Gly	Asp	Tyr	Ile	Asn 280	Ile	Phe	Pro	Lys	Arg 285	Lys	Ala	Ala
Tyr	Asp 290	Ser	Asn	Gly	Asn	Val 295	Ala	Val	Ala	Phe	Leu 300	Tyr	Tyr	Lys	Ser
Ile 305	Gly	Pro	Leu	Leu	Ser 310	Ser	Ser	Asp	Asn	Phe 315	Leu	Leu	Lys	Pro	Gln 320
Asn	Tyr	Asp	Asn	Ser 325		Glu	Glu	Glu	Arg 330	Val	Ile	Ser	Ser	Val 335	Ile
Ser	Val	Ser	Met 340		Ser	Asn	Pro	Pro 345	Thr	Leu	Tyr	Glu	Leu 350	Glu	Lys
Ile	Thr	Phe	Thr	Leu	Ser	His	Arg 360		Val	Thr	Asp	Arg 365	Tyr	Arg	Ser
Leu	Cys 370		Phe	Trp	Asn	Tyr 375		Pro	Asp	Thr	Met 380	Asn	Gly	Ser	Trp
Ser 385		Glu	Gly	Cys	390		Thr	туг	Ser	395	Glu	Thr	His	Thr	Ser 400
Cys	Arg	Cys	a Asn	His 405		Thr	His	Phe	410	ıle	e Lev	ı Met	. Ser	Ser 415	Gly
Pro	Ser	: Ile	Gly 420		Lys	. Asp	туг	425	ılle	e Lev	ı Thr	Arg	3 Ile 430	Thr	Gln
Leu	Gl _y	/ Ile 435	e Ile	: Ile	e Ser	Lev	1 Ile 440		Let	ı Ala	a Ile	e Cys 445	s Ile	Phe	e Thr
Phe	Trp		e Phe	e Ser	Glu	1 Ile 455		ı Ser	Thi	arg	Thi 460	Thi	r Ile	e His	s Lys

<220>

<222> (61)

<221> modified base

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu 485 490 Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe 520 Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val 530 Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys 550 Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly 570 575 565 Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser 600 Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu 610 615 Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln 645 650 Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys 680 685 Leu Arg 690 <210> 50 <211> 589 <212> DNA <213> Homo sapiens

<223> a, t, c or g <400> 50 tggaaacata tcctccctca tatgaatatg gatggagact acataaatat atttccaaag 60 ngaaaagccg gcatatggat tcaaatggca atgttgcagt tgcattttta tattataaga 120 gtattggtcc ctttgctttc atcatctgac aacttcttat tgaaacctca aaattatgat 180 aattctgaag aggaggaaag agtcatatct tcagtaattt cagtctcaat gagctcaaac 240 ccacccacat tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300 gataggtata ggagtctatg tggcattttg gaatactcac ctgataccat gaatggcagc 360 tggtcttcag agggctgtga gctgacatac tcaaatgaga cccacacctc atgccgctgt 420 aatcacctga cacattttgc aattttgatg teetetggte ettecattgg tattaaagat 480 tataatattc ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttgcc 540 atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 51 20 ggtaatgagc tccattacag <210> 52 <211> 18 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 52 18 ggagtagaaa gcgcatgg <210> 53 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 53 22 cacctgatac catgaatggc ag <210> 54 <211> 18 <212> DNA

<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 54 cgagctcgaa ttaattcg	18
<210> 55 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 55 ggatctcctg agctcagg	18
<210> 56 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 56 cctagttgag tgatccttgt aag	23
<210> 57 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 57 atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcaatt	50
<210> 58 <211> 2137 <212> DNA <213> Homo sapiens	
<400> 58 gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc gaaacccggc cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc tgggcggggt caccccggct	60 120

```
gggacaagaa gccgccgcct gcctgcccgg gcccggggag ggggctgggg ctggggccgg 180
aggcggggtg tgagtgggtg tgtgcggggg gcggaggctt gatgcaatcc cgataagaaa 240
tgctcgggtg tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
cggcccggag ccgccgcgcc gtcagagcag gagcgctgcg tccaggatct agggccacga 360
ccatcccaac ccggcactca cagccccgca gcgcatcccg gtcgccgccc agcctcccgc 420
accccatcg ccggagctgc gccgagagcc ccagggaggt gccatgcgga gcgggtgtgt 480
ggtggtccac gtatggatcc tggccggcct ctggctggcc gtggccgggc gccccctcgc 540
cttctcggac gcggggcccc acgtgcacta cggctggggc gaccccatcc gcctgcggca 600
cetgtacace teeggeeece aegggetete eagetgette etgegeatee gtgeegaegg 660
cgtcgtggac tgcgcgcggg gccagagcgc gcacagtttg ctggagatca aggcagtcgc 720
tetgeggace gtggccatea agggcgtgca cagegtgegg tacetetgca tgggegeega 780
cggcaagatg caggggctgc ttcagtactc ggaggaagac tgtgctttcg aggaggagat 840
ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctcccgg tctccctgag 900
cagtgccaaa cagcggcagc tgtacaagaa cagaggcttt cttccactct ctcatttcct 960
gcccatgctg cccatggtcc cagaggagcc tgaggacctc aggggccact tggaatctga 1020
catgttctct tcgcccctgg agaccgacag catggaccca tttgggcttg tcaccggact 1080
ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140
tgctgccagg ggctgtggta cctgcagcgt gggggacgtg cttctacaag aacagtcctg 1200
agtccacgtt ctgtttagct ttaggaagaa acatctagaa gttgtacata ttcagagttt 1260
tecattggca gtgccagttt ctagccaata gaettgtetg atcataacat tgtaageetg 1320
tagettgeec agetgetgee tgggeececa ttetgeteec tegaggttge tggacaaget 1380
gctgcactgt ctcagttctg cttgaatacc tccatcgatg gggaactcac ttcctttgga 1440
aaaattetta tgtcaagetg aaatteteta attttttete atcaetteee caggageage 1500
cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgta aaacagcagg 1560
taaatttcac tcaaccccat gtgggaattg atctatatct ctacttccag ggaccatttg 1620
cccttcccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680
ggagtagggg aagcetggag ceceaeteca geeetgggae aacttgagaa tteeecetga 1740
ggccagttct gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800
ccatctccca gcccaccagc cctctgccca cctcacatgc ctccccatgg attggggcct 1860
atttgaagac cccaagtctt gtcaataact tgctgtgtgg aagcagcggg ggaagaccta 1980
gaaccettte eccageactt ggttttecaa catgatattt atgagtaatt tattttgata 2040
tgtacatctc ttattttctt acattattta tgcccccaaa ttatatttat gtatgtaagt 2100
gaggtttgtt ttgtatatta aaatggagtt tgtttgt
```

<210> 59

<211> 216

<212> PRT

<213> Homo sapiens

<400> 59

Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu

1 5 10 15

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro 20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr 35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
50 55 60

Asp 69	Gly	Val	Val	Asp	Cys 70	Ala	Arg	Gly	Gln	Ser 75	Ala	His	Ser	Leu	Leu 80	
Glı	ılle	Lys	Ala	Val 85	Ala	Leu	Arg	Thr	Val 90	Ala	Ile	Lys	Gly	Val 95	His	
Sei	· Val	Arg	Tyr 100	Leu	Cys	Met	Gly	Ala 105	Asp	Gly	Lys	Met	Gln 110	Gly	Leu	
Le	Gln	Tyr 115	Ser	Glu	Glu	Asp	Cys 120	Ala	Phe	Glu	Glu	Glu 125	Ile	Arg	Pro	
Asj	Gly 130		Asn	Val	Tyr	Arg 135	Ser	Glu	Lys	His	Arg 140	Leu	Pro	Val	Ser	
Le:	ı Ser	Ser	Ala	Lys	Gln 150	Arg	Gln	Leu	Tyr	Lys 155	Asn	Arg	Gly	Phe	Leu 160	
Pro) Leu	Ser	His	Phe 165	Leu	Pro	Met	Leu	Pro 170	Met	Val	Pro	Glu	Glu 175	Pro	
Gl	ı Asp	Leu	Arg 180	Gly	His	Leu	Glu	Ser 185	Asp	Met	Phe	Ser	Ser 190		Leu	
Gl	ı Thr	Asp 195		Met	Asp	Pro	Phe 200		Leu	Val	Thr	Gly 205	Leu	Glu	Ala	
Va	l Arg 210		Pro	Ser	Phe	Glu 215	Lys									
<210> 60 <211> 26 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
<400> 60 atccgcccag atggctacaa tgtgta												26				
<210> 61 <211> 42 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
_	00> 6		ctcc	ctaa	ദേ ദ	atac	caaa	ic ao	ıcaan	agto	ı ta					42

```
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 62
                                                                22
ccagtccggt gacaagccca aa
<210> 63
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 63
cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc tcgacctcct 60
cagagcagcc ggctgccgcc ccgggaagat ggcgaggagg agccgccacc gcctcctcct 120
gctgctgctg cgctacctgg tggtcgccct gggctatcat aaggcctatg ggttttctgc 180
cccaaaagac caacaagtag tcacagcagt agagtaccaa gaggctattt tagcctgcaa 240
aaccccaaag aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg agatgataga 360
tttcaatatc cggatcaaaa atgtgacaag aagtgatgcg gggaaatatc gttgtgaagt 420
tagtgcccca tctgagcaag gccaaaacct ggaagaggat acagtcactc tggaagtatt 480
agtggctcca gcagttccat catgtgaagt accetettet getetgagtg gaactgtggt 540
agagctacga tgtcaagaca aagaagggaa tccagctcct gaatacacat ggtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca gctcatacac 660
aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atattcctgt gaagcccgca attctgttgg atatcgcagg tgtcctggga aacgaatgca 780
agtagatgat ctcaacataa gtggcatcat agcagccgta gtagttgtgg ccttagtgat 840
ttccgtttgt ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900
ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagtg 960
gctcacgcct gtaatcccag cactttggaa ggccgcggcg ggcggatcac gaggtcagga 1020
gttctagacc agtctggcca atatggtgaa accccatctc tactaaaata caaaaattag 1080
ctgggcatgg tggcatgtgc ctgcagttcc agctgcttgg gagacaggag aatcacttga 1140
acccgggagg cggaggttgc agtgagctga gatcacgcca ctgcagtcca gcctgggtaa 1200
1295
tgtagaattc ttacaataaa tatagcttga tattc
<210> 64
<211> 312
<212> PRT
<213> Homo sapiens
<400> 64
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
                                                        15
  1
                  5
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
                                25
```

20

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu 35 40 45

Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
50 55 60

Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln 65 70 75 80

Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile 85 90 95

Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser 100 105 110

Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu 115 120 125

Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser 130 135 140

Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
145 150 155 160

Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu 165 170 175

Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met 180 185 190

Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp 195 200 205

Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg 210 215 220

Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile 225 230 235 240

Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu 245 250 255

Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser 260 265 270

Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn 275 280 285

Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala 290 295 300

Gly Gly Ser Arg Gly Gln Glu Phe

305	310				
<210><211><212><213>	22				
	Description of Artificial oligonucleotide probe	Sequence: Sy	nthetic		
<400> atcgtt	65 gtga agttagtgcc cc				22
<210><211><211><212><213>	23				
<220> <223>	Description of Artificial oligonucleotide probe	Sequence: Sy	nthetic		
<400> acctgo	66 gata tccaacagaa ttg				23
<210><211><212><212><213>	48				
<220> <223>	Description of Artificial oligonucleotide probe	Sequence: Sy	ynthetic		
<400> ggaaga	67 aggat acagtcactc tggaagtat	t agtggctcca	gcagttcc		48
<210><211><212><212><213>	2639				
agaaag gcatca aaataa catcaa ttggaa tggcat	68 eggag gtgggetage actgaaact gaaga ggaagatgtt gggeaacat atget getatteetg caaataetg atga attacteaat etectatga atatt atateattaa ggaaatagt eaatg caattgtgge actggeact eteat catttgaeaa atgeaagea eactg actgtggaat cettaaggg	t tatttaacat a agaagcatgg c catctataca a accttctctt t atttcagtga t cttccttatc c ccattacatt	getccacage gatttaaata tactccacct ctccaatatg agaaaaactt aatcagctcc tctgaagaag	ttttacttct tcaaaaagta catgacattt tgtggttcta tattgaactt aaagctaaga	120 180 240 300 360 420 480

```
aagctgtaga taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttggt 600
ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat ttaggtcttt 660
taactttccc agccagattg ccagctaaca cacagattct tctcctacag actaacaata 720
ttgcaaaaat tgaatactcc acagactttc cagtaaacct tactggcctg gatttatctc 780
aaaacaattt atcttcagtc accaatatta atgtaaaaaa gatgcctcag ctcctttctg 840
tgtacctaga ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900
acttacaaga actctatatt aatcacaact tgctttctac aatttcacct ggagccttta 960
ttggcctaca taatcttctt cgacttcatc tcaattcaaa tagattgcag atgatcaaca 1020
gtaagtggtt tgatgctctt ccaaatctag agattctgat gattggggaa aatccaatta 1080
tcagaatcaa agacatgaac tttaagcctc ttatcaatct tcgcagcctg gttatagctg 1140
gtataaacct cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200
tetettttta egataacagg ettattaaag taceceatgt tgetetteaa aaagttgtaa 1260
atctcaaatt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttta 1320
gcaatatgct acacttaaaa gagttgggga taaataatat gcctgagctg atttccatcg 1380
atagtettge tgtggataae etgeeagatt taagaaaaat agaagetaet aacaaeceta 1440
gattgtctta cattcacccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500
tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaacctca 1560
aggaaatcag catacacagt aaccccatca ggtgtgactg tgtcatccgt tggatgaaca 1620
tgaacaaaac caacattcga ttcatggagc cagattcact gttttgcgtg gacccacctg 1680
aattccaagg tcagaatgtt cggcaagtgc atttcaggga catgatggaa atttgtctcc 1740
ctcttatagc tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800
cettteactg tagagetact geagaaceae ageetgaaat etactggata acacettetg 1860
gtcaaaaact cttgcctaat accctgacag acaagttcta tgtccattct gagggaacac 1920
tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980
tagttggcgc tgacttgaag tctgttatga tcaaagtgga tggatctttt ccacaagata 2040
acaatggctc tttgaatatt aaaataagag atattcaggc caattcagtt ttggtgtcct 2100
ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg gacagccttt gtcaagactg 2160
aaaattetea tgetgegeaa agtgetegaa taccatetga tgteaaggta tataatetta 2220
ctcatctgaa tccatcaact gagtataaaa tttgtattga tattcccacc atctatcaga 2280
aaaacagaaa aaaatgtgta aatgtcacca ccaaaggttt gcaccctgat caaaaagagt 2340
atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400
gtgtgatatg tettateage tgeetetete cagaaatgaa etgtgatggt ggacacaget 2460
atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat cctcctctga 2520
taaatetetg ggaageagga aaagaaaaaa gtacateaet gaaagtaaaa geaaetgtta 2580
taggtttacc aacaaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639
```

<210> 69

<211> 708

<212> PRT

<213> Homo sapiens

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile

1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu 20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met
35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro 50 55 60

P	1a 65	Arg	Leu	Pro	Ala	Asn 70	Thr	Gln	IIe	Leu	ьеи 75	ьeu	GIN	Thr	ASII	80
1	le	Ala	Lys	Ile	Glu 85	Tyr	Ser	Thr	Asp	Phe 90	Pro	Val	Asn	Leu	Thr 95	Gly
Ι	ieu	Asp	Leu	Ser 100	Gln	Asn	Asn	Leu	Ser 105	Ser	Val	Thr	Asn	Ile 110	Asn	Val
Ι	yys	Lys	Met 115	Pro	Gln	Leu	Leu	Ser 120	Val	Tyr	Leu	Glu	Glu 125	Asn	Lys	Leu
7	Thr	Glu 130	Leu	Pro	Glu	Lys	Cys 135	Leu	Ser	Glu	Leu	Ser 140	Asn	Leu	Gln	Glu
	Leu L45	Tyr	Ile	Asn	His	Asn 150	Leu	Leu	Ser	Thr	Ile 155	Ser	Pro	Gly	Ala	Phe 160
-	Ile	Gly	Leu	His	Asn 165	Leu	Leu	Arg	Leu	His 170	Leu	Asn	Ser	Asn	Arg 175	Leu
(Gln	Met	Ile	Asn 180	Ser	Lys	Trp	Phe	Asp 185	Ala	Leu	Pro	Asn	Leu 190	Glu	Ile
			195			Asn		200					205			
]	Ĺуs	Pro 210	Leu	Ile	Asn	Leu	Arg 215	Ser	Leu	Val	Ile	Ala 220	Gly	Ile	Asn	Leu
:	225					Asn 230					235					240
	Ile	Ser	Phe	Tyr	Asp 245	Asn	Arg	Leu	Ile	Lys 250	Val	Pro	His	Vaļ	Ala 255	Leu
		_		260		Leu			265					270		
1	Asn		Ile 275		Arg	Gly	Asp		Ser				His 285		Lys	Glu
	Leu	Gly 290	Ile	Asn	Asn	Met	Pro 295		Leu	Ile	Ser	11e 300		Ser	Leu	Ala
	Val 305	Asp	Asn	Leu	Pro	Asp 310	Leu	Arg	Lys	Ile	Glu 315		Thr	Asn	Asn	Pro 320
	Arg	Leu	Ser	Tyr	11e 325	His	Pro	Asn	Ala	Phe 330		Arg	Leu	Pro	Lys 335	
,	Glu	Ser	Leu	Met	Leu	Asn	Ser	Asn	Ala	Leu	Ser	Ala	Leu	Tyr	His	Gly

			340					345					350		
Thr	Ile	Glu 355	Ser	Leu	Pro	Asn	Leu 360	Lys	Glu	Ile	Ser	Ile 365	His	Ser	Asn
Pro	Ile 370	Arg	Cys	Asp	Cys	Val 375	Ile	Arg	Trp	Met	Asn 380	Met	Asn	Lys	Thr
Asn 385	Ile	Arg	Phe	Met	Glu 390	Pro	Asp	Ser	Leu	Phe 395	Cys	Val	Asp	Pro	Pro 400
Glu	Phe	Gln	Gly	Gln 405	Asn	Val	Arg	Gln	Val 410	His	Phe	Arg	Asp	Met 415	Met
Glu	Ile	Cys	Leu 420	Pro	Leu	Ile	Ala	Pro 425	Glu	Ser	Phe	Pro	Ser 430	Asn	Leu
Asn	Val	Glu 435	Ala	Gly	Ser	Tyr	Val 440	Ser	Phe	His	Cys	Arg 445	Ala	Thr	Ala
Glu	Pro 450		Pro	Glu	Ile	Tyr 455	Trp	Ile	Thr	Pro	Ser 460	Gly	Gln	Lys	Leu
Leu 465	Pro	Asn	Thr	Leu	Thr 470	Asp	Lys	Phe	Tyr	Val 475	His	Ser	Glu	Gly	Thr 480
Leu	Asp	Ile	Asn	Gly 485		Thr	Pro	Lys	Glu 490	Gly	Gly	Leu	Tyr	Thr 495	Cys
Ile	Ala	Thr	Asn 500		Val	Gly	Ala	Asp 505	Leu	Lys	Ser	Val	Met 510	Ile	Lys
Val	Asp	Gly 515		Phe	Pro	Gln	Asp 520	Asn	Asn	Gly	Ser	Leu 525	Asn	Ile	Lys
Ile	Arg 530		ıle	Gln	Ala	Asn 535		Val	. Lev	ı Val	Ser 540	Trp	Lys	Ala	Ser
Ser 545		: Ile	e Lev	Lys	Ser 550		Val	Lys	Trp	555	Ala	Phe	val	Lys	560
Glu	Asr	ser	His	565		Glr	. Ser	Ala	570	g Il∈	Pro	Sei	Asp	Va] 575	Lys 5
Val	Туг	Asr	1 Let 580		His	Lev	ı Asr	585	Sei	c Thi	Glu	1 Туі	590	ile)	e Cys
Ile	e Asp	595		Thi	: Ile	е Туг	Glr 600		s Ası	n Arg	g Lys	605	s Cys	s Val	L Asr
Val	. Thi		r Lys	s Gly	, Let	1 His		o Ası	o Gli	n Lys	620	тут Э	r Glı	і Гу	s Asr

<400> 71

Asn Thr Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile 635 630 Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp 645 650 Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala 665 Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys 685 680 Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro 700 690 Thr Asn Met Ser 705 <210> 70 <211> 1305 <212> DNA <213> Homo sapiens <400> 70 gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga cacatgtgtt 60 agctgcagcc ttttgaaaca cgcaagaagg aaatcaatag tgtggacagg gctggaacct 120 ttaccacgct tgttggagta gatgaggaat gggctcgtga ttatgctgac attccagcat 180 gaatetggta gacetgtggt taaccegtte cetetecatg tgtetectee tacaaagttt 240 tgttcttatg atactgtgct ttcattctgc cagtatgtgt cccaagggct gtctttgttc 300 ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa tacctagaga 360 tetteeteet gaaacagtet taetgtatet ggaeteeaat eagateacat etatteecaa 420 tgaaattttt aaggacctcc atcaactgag agttctcaac ctgtccaaaa atggcattga 480 gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tggacttgtc 540 cgacaatcgg attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600 aattgccaac aacccctggc actgcgactg tactctacag caagttctga ggagcatggc 660 gtccaatcat gagacagccc acaacgtgat ctgtaaaacg tccgtgttgg atgaacatgc 720 tggcagacca ttcctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaac 780 taccgattat gccatgctgg tcaccatgtt tggctggttc actatggtga tctcatatgt 840 ggtatattat gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900 cctgccaagc aggcagaaga aagcagatga acctgatgat attagcactg tggtatagtg 960 tccaaactga ctgtcattga gaaagaaaga aagtagtttg cgattgcagt agaaataagt 1020 ggtttacttc tcccatccat tgtaaacatt tgaaactttg tatttcagtt ttttttgaat 1080 tatgccactg ctgaactttt aacaaacact acaacataaa taatttgagt ttaggtgatc 1140 caccccttaa ttgtaccccc gatggtatat ttctgagtaa gctactatct gaacattagt 1200 tagatccatc tcactattta ataatgaaat ttatttttt aatttaaaag caaataaaag 1260 1305 <210> 71 <211> 259 <212> PRT <213> Homo sapiens

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val 120 His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn 135 Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met 150 155 145 Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val 170 Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val 200 Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr 215 Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys 230 225 Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser

250

Thr Val Val

245

<210> 72 <211> 2290 <212> DNA <213> Homo sapiens

<400> 72 accgagccga gcggaccgaa ggcgcgcccg agatgcaggt gagcaagagg atgctggcgg 60 ggggcgtgag gagcatgccc agccccctcc tggcctgctg gcagcccatc ctcctgctgg 120 tgctgggctc agtgctgtca ggctcggcca cgggctgccc gccccgctgc gagtgctccg 180 cccaggaccg cgctgtgctg tgccaccgca agtgctttgt ggcagtcccc gagggcatcc 240 ccaccgagac gcgcctgctg gacctaggca agaaccgcat caaaacgctc aaccaggacg 300 agttcgccag cttcccgcac ctggaggagc tggagctcaa cgagaacatc gtgagcgccg 360 tggagcccgg cgccttcaac aacctcttca acctccggac gctgggtctc cgcagcaacc 420 geetgaaget catecegeta ggegtettea etggeeteag caacetgace aageaggaca 480 tcagcgagaa caagatcgtt atcctactgg actacatgtt tcaggacctg tacaacctca 540 agtcactgga ggttggcgac aatgacctcg tctacatctc tcaccgcgcc ttcagcggcc 600 teaacagect ggagcagetg acgetggaga aatgeaacet gacetecate eccaeegagg 660 cgctgtccca cctgcacggc ctcatcgtcc tgaggctccg gcacctcaac atcaatgcca 720 teegggacta eteetteaag aggetgtace gaeteaaggt ettggagate teecactgge 780 cctacttgga caccatgaca cccaactgcc tctacggcct caacctgacg tccctgtcca 840 teacacactg caatetgace getgtgeect acetggeegt cegecaceta gtetatetee 900 gcttcctcaa cctctcctac aaccccatca gcaccattga gggctccatg ttgcatgagc 960 tgctccggct gcaggagatc cagctggtgg gcgggcagct ggccgtggtg gagccctatg 1020 cetteegegg ceteaactac etgegegtge teaatgtete tggcaaccag etgaccacae 1080 tggaggaatc agtcttccac tcggtgggca acctggagac actcatcctg gactccaacc 1140 cgctggcctg cgactgtcgg ctcctgtggg tgttccggcg ccgctggcgg ctcaacttca 1200 accggcagca gcccacgtgc gccacgcccg agtttgtcca gggcaaggag ttcaaggact 1260 tecetgatgt getactgeec aactaettea eetgeegeeg egeeegeate egggaeegea 1320 aggcccagca ggtgtttgtg gacgagggcc acacggtgca gtttgtgtgc cgggccgatg 1380 gegaccegee gecegecate etetggetet caccegaaa geacetggte teagecaaga 1440 gcaatgggcg gctcacagtc ttccctgatg gcacgctgga ggtgcgctac gcccaggtac 1500 aggacaacgg cacgtacctg tgcatcgcgg ccaacgcggg cggcaacgac tccatgcccg 1560 cccacctgca tgtgcgcagc tactcgcccg actggcccca tcagcccaac aagaccttcg 1620 ctttcatctc caaccagccg ggcgagggag aggccaacag cacccgcgcc actgtgcctt 1680 tececttega cateaagace etcateateg ceaceaceat gggetteate tettteetgg 1740 gegtegteet ettetgeetg gtgetgetgt ttetetggag eeggggeaag ggeaacacaa 1800 agcacaacat cgagatcgag tatgtgcccc gaaagtcgga cgcaggcatc agctccgccg 1860 acgcgccccg caagttcaac atgaagatga tatgaggccg gggcgggggg cagggacccc 1920 cgggcggccg ggcaggggaa ggggcctggt cgccacctgc tcactctcca gtccttccca 1980 cetectecet accettetae acaegttete tttetecete eegeeteegt eecetgetge 2040 ccccgccag ccctcaccac ctgccctcct tctaccagga cctcagaagc ccagacctgg 2100 ggaccccacc tacacagggg cattgacaga ctggagttga aagccgacga accgacacgc 2160 ggcagagtca ataattcaat aaaaaagtta cgaactttct ctgtaacttg ggtttcaata 2220 attatggatt tttatgaaaa cttgaaataa taaaaagaga aaaaaactaa aaaaaaaaa 2280 2290 aaaaaaaaa

<210> 73

<211> 620

<212> PRT

<213> Homo sapiens

<400> 73

Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro 1 5 10 15 Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Val Leu Gly Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala 55 Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro 105 Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn 135 Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp 155 150 Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp 170 Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser 185 Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg 230 Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr 245 Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His 265 Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr 280 275 Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly 300 295

Ser 305	Met	Leu	His	Glu	Leu 310	Leu	Arg	Leu	Gln	Glu 315	Ile	Gln	Leu	Val	Gly 320
Gly	Gln	Leu	Ala	Val 325	Val	Glu	Pro	Tyr	Ala 330	Phe	Arg	Gly	Leu	Asn 335	Tyr
Leu	Arg	Val	Leu 340	Asn	Val	Ser	Gly	Asn 345	Gln	Leu	Thr	Thr	Leu 350	Gĺu	Glu
Ser	Val	Phe	His	Ser	Val	Gly	Asn 360	Leu	Glu	Thr	Leu	11e 365	Leu	Asp	Ser
Asn	Pro 370	Leu	Ala	Cys	Asp	Cys 375	Arg	Leu	Leu	Trp	Val 380	Phe	Arg	Arg	Arg
Trp 385		Leu	Asn	Phe	Asn 390	Arg	Gln	Gln	Pro	Thr 395	Cys	Ala	Thr	Pro	Glu 400
Phe	Val	Gln	Gly	Lys 405	Glu	Phe	Lys	Asp	Phe 410	Pro	Asp	Val	Leu	Leu 415	Pro
Asn	Tyr	Phe	Thr 420		Arg	Arg	Ala	Arg 425	Ile	Arg	Asp	Arg	Lys 430	Ala	Gln
Gln	ı Val	Phe 435		Asp	Glu	Gly	His 440	Thr	Val	Gln	Phe	Val 445	Cys	Arg	Ala
Asp	Gly 450		Pro	Pro	Pro	Ala 455	ılle	Leu	Trp	Leu	Ser 460	Pro	Arg	Lys	His
Lev 465		. Sei	Ala	Lys	s Ser 470	Asr	n Gly	Arg	, Lev	1 Thr 475	Val	. Phe	Pro	Asp	Gly 480
Thi	c Lev	ı Glı	ı Val	Arg 485		: Ala	a Glr	ı Val	490	n Asp) Asr	ı Gly	Thr	Tyr 495	Leu
Суя	s Ile	e Ala	a Ala 500		n Ala	Gly	y Gly	7 Ası 505	n Asj	o Sei	Met	. Pro	510	a His	Leu
His	s Vai	1 Arg		г Ту	r Sei	r Pro	o Ası 520	o Tr	o Pro	o His	s Glı	n Pro 529	Asr	ı Lys	5 Thr
Ph	e Ala 53		e Il	e Sei	r Ası	n Gl: 53	n Pro	o Gl	y Gl	u Gl	y Gl:	u Ala O	a Ası	n Se	r Thr
Ar		a Th	r Va	l Pr	o Phe 550	e Pr	o Ph	e As	p Il	e Ly	s Th	r Le	u Ile	e Il	e Ala 560
Th	r Th	r Me	t Gl	y Ph 56		e Se	r Ph	e Le	u Gl 57	y Va 0	l Va	l Le	u Ph	e Cy 57	s Leu 5
Va	l Le	u Le	u Ph	e Le	u Tr	p Se	r Ar	g Gl	у Ьу	s Gl	y As	n Th	r Ly	s Hi	s Asn

į	580	585	590	
Ile Glu Ile (Glu Tyr Val	Pro Arg Lys Ser 600	Asp Ala Gly Ile 605	Ser Ser
Ala Asp Ala 1 610	Pro Arg Lys	Phe Asn Met Lys 615	Met Ile 620	
<210> 74 <211> 22 <212> DNA <213> Artifi	cial Sequenc	ce		
<220> <223> Descri oligon	iption of Art nucleotide pr	cificial Sequence robe	e: Synthetic	
<400> 74 tcacctggag c	cctttattgg co	c		22
<210> 75 <211> 23 <212> DNA <213> Artifi	icial Sequend	ce		
<220> <223> Descri	iption of Ar nucleotide p	tificial Sequenc robe	e: Synthetic	
<400> 75 ataccagcta	taaccaggct g	cg		23
<210> 76 <211> 52 <212> DNA <213> Artif	icial Sequen	ace		
<220> <223> Descr oligo	ription of Ar onucleotide p	rtificial Sequenc probe	ee: Synthetic	
<400> 76 caacagtaag gg	tggtttgatg c	ctcttccaaa tctaga	agatt ctgatgattg	50 52
<210> 77 <211> 22 <212> DNA <213> Artif	ficial Sequer	nce		
<220> <223> Desci	ription of Amonucleotide p	rtificial Sequen probe	ce: Synthetic	

<400> 77 ccatgtgtct cctcctacaa ag	22
<210> 78 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 78 gggaatagat gtgatctgat tgg	23
<210> 79 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 79 cacctgtagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg	50
<210> 80 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 80 agcaaccgcc tgaagctcat cc	22
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 81 aaggcgcggt gaaagatgta gacg	24
<210> 82	

<400> 84

```
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 82
                                                                50
gactacatgt ttcaggacct gtacaacctc aagtcactgg aggttggcga
<210> 83
<211> 1685
<212> DNA
<213> Homo sapiens
<400> 83
cecaegegte egeaectegg eccegggete egaagegget egggggegee ettteggtea 60
acatcgtagt ccacccctc cccatcccca gccccgggg attcaggctc gccagcgccc 120
agccaggag ccggccggga agcgcgatgg gggccccagc cgcctcgctc ctgctcctgc 180
tectgetgtt egeetgetge tgggegeeeg geggggeeaa ceteteceag gaegaeagee 240
agecetggae atetgatgaa acagtggtgg etggtggcae egtggtgete aagtgecaag 300
tgaaagatca cgaggactca tccctgcaat ggtctaaccc tgctcagcag actctctact 360
ttggggagaa gagagccctt cgagataatc gaattcagct ggttacctct acgccccacg 420
ageteageat cageateage aatgtggeee tggeagaega gggegagtae acetgeteaa 480
tetteactat geetgtgega actgecaagt ceetegteac tgtgetagga attecacaga 540
agcccatcat cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt gaccaagaac 660
tccacggaga accaacccgc atacaggaag atcccaatgg taaaaccttc actgtcagca 720
geteggtgae attecaggtt accegggagg atgatgggge gageategtg tgetetgtga 780
accatgaatc tctaaaggga gctgacagat ccacctctca acgcattgaa gttttataca 840
caccaactgc gatgattagg ccagaccctc cccatcctcg tgagggccag aagctgttgc 900
tacactgtga gggtcgcggc aatccagtcc cccagcagta cctatgggag aaggagggca 960
gtgtgccacc cctgaagatg acccaggaga gtgccctgat cttccctttc ctcaacaaga 1020
gtgacagtgg cacctacggc tgcacagcca ccagcaacat gggcagctac aaggcctact 1080
acacceteaa tgttaatgae eccagteegg tgeeeteete etecageace taceaegeea 1140
teateggtgg gategtgget tteattgtet teetgetget cateatgete atetteettg 1200
gccactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa ggctccgacg 1260
atgctccaga cgcggacacg gccatcatca atgcagaagg cgggcagtca ggaggggacg 1320
acaagaagga atatttcatc tagaggcgcc tgcccacttc ctgcgccccc caggggccct 1380
gtggggactg ctggggccgt caccaacccg gacttgtaca gagcaaccgc agggccgccc 1440
ctcccgcttg ctccccagcc cacccaccc cctgtacaga atgtctgctt tgggtgcggt 1500
ccctttccgt ggcttctctg catttgggtt attattattt ttgtaacaat cccaaatcaa 1620
atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
                                                                 1685
aaaca
<210> 84
<211> 398
<212> PRT
<213> Homo sapiens
```

Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Phe Ala Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp 70 Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly 120 Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu 135 Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala 145 Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser 185 Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val 200 Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser 215 Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp 230 225 Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu His Cys Glu Gly 250 Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser 265 Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe

280

Leu	Asn 290	Lys	Ser	Asp	Ser	Gly 295	Thr	Tyr	Gly	Cys	Thr 300	Ala	Thr	Ser	Asn	
Met 305	Gly	Ser	Tyr	Lys	Ala 310	Tyr	Tyr	Thr	Leu	Asn 315	Val	Asn	Asp	Pro	Ser 320	
Pro	Val	Pro	Ser	Ser 325	Ser	Ser	Thr	Tyr	His 330	Ala	Ile	Ile	Gly	Gly 335	Ile	
Val	Ala	Phe	Ile 340	Val	Phe	Leu	Leu	Leu 345	Ile	Met	Leu	Ile	Phe 350	Leu	Gly	
His	Tyr	Leu 355	Ile	Arg	His	Lys	Gly 360	Thr	Tyr	Leu	Thr	His 365	Glu	Ala	Lys	
Gly	Ser 370	Asp	Asp	Ala	Pro	Asp 375	Ala	Asp	Thr	Ala	11e 380	Ile	Asn	Ala	Glu	
Gly 385		Gln	Ser	Gly	Gly 390	Asp	Asp	Lys	Lys	Glu 395	Tyr	Phe	Ile			
<21 <21	0 > 8 1 > 2 2 > D 3 > A	2	icia	l Se	quen	ce										
<22 <22	3 > D	escr ligo	ipti nucl	on o eoti	f Ar de p	tifi robe	cial	Seg	uenc	e: S	ynth	etic	!			
	0> 8 agga	5 att	ccac	agaa	.gc c	c										22
<21 <21	.0> 8 .1> 2 .2> E	2	icia	al Se	equer	ıce										
<22 <22	23> I	escr oligo						L Sec	quenc	ce: S	Syntl	netio	2			
	00> 8 cctgg	36 gaat	gtca	accga	agc t	g										22
<2: <2:	10> 8 11> 2 12> 1 13> 2	26	Eicia	al Se	equei	nce										
<2: <2:	20> 23> 1	Desc	ript	ion (of A	rtif:	icia	l Se	quen	ce:	Synt:	heti	С			

oligonucleotide probe

<400> 87 cctagcacag tgacgaggga cttggc 26	
<210> 88 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 88 aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc 50	
<210> 89 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 89 gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt 50	
<210> 90 <211> 2755 <212> DNA <213> Homo sapiens	
gggggttagg gaggaaggaa tecacecea ceececaaa ceetttett cteetteet ggetteggae attggagaa tegagggatga tegaggggggatga tegagggggggggg	

aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140 agcgacgggt agctccagga acaaaccctt agctaacagt ttaccctgcc ctgggggctg 1200 cagctgcgac cacatcccag ggtcgggttt aaagatgaac tgcaacaaca ggaacgtgag 1260 cagcttggct gatttgaage ccaagctete taacgtgeag gagettttee tacgagataa 1320 caagatccac agcatccgaa aatcgcactt tgtggattac aagaacctca ttctgttgga 1380 tetgggcaac aataacateg etactgtaga gaacaacat tteaagaace ttttggacet 1440 caggtggcta tacatggata gcaattacct ggacacgctg tcccgggaga aattcgcggg 1500 gctgcaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca tcctcccggg 1560 cactttcaat gccatgccca aactgaggat cctcattctc aacaacaacc tgctgaggtc 1620 cctgcctgtg gacgtgttcg ctggggtctc gctctctaaa ctcagcctgc acaacaatta 1680 cttcatgtac ctcccggtgg caggggtgct ggaccagtta acctccatca tccagataga 1740 cctccacgga aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga 1800 acgcttgggt tccgaagtgc tgatgagcga cctcaagtgt gagacgccgg tgaacttctt 1860 tagaaaggat ttcatgctcc tctccaatga cgagatctgc cctcagctgt acgctaggat 1920 ctcgcccacg ttaacttcgc acagtaaaaa cagcactggg ttggcggaga ccgggacgca 1980 ctccaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct 2040 gctggtgttt gtcacctccg ccttcaccgt ggtgggcatg ctcgtgttta tcctgaggaa 2100 ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta attccctaca 2160 gacagtetgt gactetteet actggcacaa tgggcettae aacgeagatg gggceeacag 2220 agtgtatgac tgtggctctc actcgctctc agactaagac cccaacccca ataggggagg 2280 gcagagggaa ggcgatacat ccttccccac cgcaggcacc ccggggggctg gaggggcgtg 2340 tacccaaatc cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400 gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa gagcagactg 2460 tggagagetg ggagagegea geeagetege tetttgetga gageceettt tgacagaaag 2520 cecageacga cectgetgga agaactgaca gtgeeetege ceteggeeee ggggeetgtg 2580 gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag 2640 atatctattt ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat 2700 gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt ctgac <210> 91

<211> 696

<212> PRT

<213> Homo sapiens

<400> 91

Met Leu Leu Trp Ile Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala 1

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe 50

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn 75 70

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu 90 85

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 135 Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile 150 Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr 170 Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu 185 Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val 235 Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr 245 Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro 265 Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg 310 Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly 345 Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala 360 355 Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp 380 375 370

Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn 395 Leu Ile Leu Leu Asp Leu Gly Asn Asn Ile Ala Thr Val Glu Asn 410 Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser 425 Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn 435 Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro 455 Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn 475 470 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu 485 Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly 520 515 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala 535 Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu 570 Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His 585 Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu 615 Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val 630 625 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr

			660					665					670			
Trp	His	Asn 675	Gly	Pro	Tyr	Asn	Ala 680	Asp	Gly	Ala	His	Arg 685	Val	Tyr	Asp	
Cys	Gly 690	Ser	His	Ser	Leu	Ser 695	Asp									
<211 <212)> 92 L> 22 2> Di 3> Ai	AIA	icia	l Sed	quen	ce										
<220 <220	3 > De	escr ligo	ipti nucl	on o	f Ar de p	tifi robe	cial	Seq	uenc	e: S	ynth	etic				
	0> 9: ggat		ggca	acaa	ta a	С										22
<21:	0 > 9 1 > 2 2 > D 3 > A	4 NA	icia	l Se	quen	ce										
<22 <22	3> D	escr ligo	ipti nucl	on o eoti	f Ar de p	tifi robe	cial	Sec	quenc	e: S	Synth	etic	:			
	0> 9 gttg		aggo	tgag:	tt t	aag										24
<21 <21	0> 9 1> 4 2> D 3> A	5 NA	icia	al Se	equer	ıce										
<22 <22	3> D	esci ligo	ripti onucl	lon c leoti	of Ar ide p	tifi orobe	cial	. Se	quen	ce: S	Syntl	netio	2			
<40 ggt	0> 9 .ggct	4 ata	cato	ggata	agc a	aatta	accts	gg a	cacg	ctgto	c cc	3 99				45
<21 <21	.0> 9 .1> 2 .2> I .3> H	2226 ONA	sap:	iens												
agt	acad	ctgc	acci	taaca	agc (acto	cqca	ca c	attt	cctg	t cg	cggc	CLaa	999	actcagg aaactgt gagggcg	120

```
gaggggaagg gagggggaac cgggttgggg aagccagctg tagagggcgg tgaccgcgct 240
ccagacacag ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
ggggcctcag agaatgaggc cggcgttcgc cctgtgcctc ctctggcagg cgctctggcc 360
cgggccgggc ggcggcgaac accccactgc cgaccgtgct ggctgctcgg cctcgggggc 420
ctgctacagc ctgcaccacg ctaccatgaa gcggcaggcg gccgaggagg cctgcatcct 480
gcgaggtggg gcgctcagca ccgtgcgtgc gggcgccgag ctgcgcgctg tgctcgcgct 540
cctgcgggca ggcccagggc ccggaggggg ctccaaagac ctgctgttct gggtcgcact 600
ggagcgcagg cgttcccact gcaccctgga gaacgagcct ttgcggggtt tctcctggct 660
gtcctccgac cccggcggtc tcgaaagcga cacgctgcag tgggtggagg agccccaacg 720
ctcctgcacc gcgcggagat gcgcggtact ccaggccacc ggtggggtcg agcccgcagg 780
ctggaaggag atgcgatgcc acctgcgcgc caacggctac ctgtgcaagt accagtttga 840
ggtcttgtgt cctgcgccgc gccccggggc cgcctctaac ttgagctatc gcgcgccctt 900
ccagctgcac agcgccgctc tggacttcag tccacctggg accgaggtga gtgcgctctg 960
ccggggacag ctcccgatct cagttacttg catcgcggac gaaatcggcg ctcgctggga 1020
caaacteteg ggegatgtgt tgtgteeetg eeeegggagg taceteegtg etggeaaatg 1080
cgcagagctc cctaactgcc tagacgactt gggaggcttt gcctgcgaat gtgctacggg 1140
cttcgagctg gggaaggacg gccgctcttg tgtgaccagt ggggaaggac agccgaccct 1200
tggggggacc ggggtgccca ccaggcgccc gccggccact gcaaccagcc ccgtgccgca 1260
gagaacatgg ccaatcaggg tcgacgagaa gctgggagag acaccacttg tccctgaaca 1320
agacaattca gtaacatcta ttcctgagat tcctcgatgg ggatcacaga gcacgatgtc 1380
taccetteaa atgteeette aageegagte aaaggeeact ateaceecat cagggagegt 1440
gatttccaag tttaattcta cgacttcctc tgccactcct caggetttcg actcctcctc 1500
tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttggtgatct tgaccatgac 1560
agtactgggg cttgtcaagc tctgctttca cgaaagcccc tcttcccagc caaggaagga 1620
gtctatgggc ccgccgggcc tggagagtga tcctgagccc gctgctttgg gctccagttc 1680
tgcacattgc acaaacaatg gggtgaaagt cggggactgt gatctgcggg acagagcaga 1740
gggtgccttg ctggcggagt cccctcttgg ctctagtgat gcatagggaa acaggggaca 1800
tgggcactcc tgtgaacagt ttttcacttt tgatgaaacg gggaaccaag aggaacttac 1860
ttgtgtaact gacaatttct gcagaaatcc cccttcctct aaattccctt tactccactg 1920
aggagetaaa teagaactge acaeteette eetgatgata gaggaagtgg aagtgeettt 1980
aggatggtga tactggggga ccgggtagtg ctggggagag atattttctt atgtttattc 2040
ggagaatttg gagaagtgat tgaacttttc aagacattgg aaacaaatag aacacaatat 2100
aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat gttgttcagg 2160
ctaggagtat attggttcga aatcccaggg aaaaaaataa aaataaaaaa ttaaaggatt 2220
                                                                   2226
gttgat
```

<210> 96

<211> 490

<212> PRT

<213> Homo sapiens

<400> 96

Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro 1 5 10 15

Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
35 40 45

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val 50 55 60

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly Pro Gly Pro Gly Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu 90 Glu Arg Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly 105 Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu 115 Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu 165 Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr 185 Arg Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro 200 195 Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val 215 Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly 225 Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu 265 Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg 295 Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro 315 305 Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln 330 Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln

			340					345					350			
Ser	Thr	Met 355	Ser	Thr	Leu	Gln	Met 360	Ser	Leu	Gln	Ala	Glu 365	Ser	Lys	Ala	
Thr	Ile 370	Thr	Pro	Ser	Gly	Ser 375	Val	Ile	Ser	Lys	Phe 380	Asn	Ser	Thr	Thr	
Ser 385	Ser	Ala	Thr	Pro	Gln 390	Ala	Phe	Asp	Ser	Ser 395	Ser	Ala	Val	Val	Phe 400	
Ile	Phe	Val	Ser	Thr 405	Ala	Val	Val	Val	Leu 410	Val	Ile	Leu	Thr	Met 415	Thr	
Val	Leu	Gly	Leu 420	Val	Lys	Leu	Cys	Phe 425	His	Glu	Ser	Pro	Ser 430	Ser	Gln	
Pro	Arg	Lys 435	Glu	Ser	Met	Gly	Pro 440	Pro	Gly	Leu	Glu	Ser 445	Asp	Pro	Glu	
Pro	Ala 450		Leu	Gly	Ser	Ser 455	Ser	Ala	His	Cys	Thr 460	Asn	Asn	Gly	Val	
Lys 465	Val	Gly	Asp	Cys	Asp 470	Leu	Arg	Asp	Arg	Ala 475	Glu	Gly	Ala	Leu	Leu 480	
Ala	Glu	Ser	Pro	Leu 485		Ser	Ser	Asp	Ala 490							
<21 <21	0> 9 1> 2 2> D 3> A	4	icia	ıl Se	quer	ıce										
<22 <22	3> I	escr ligo	ipti nucl	.on c	of Ar .de p	tifi	.cial	. Sec	quenc	e: S	Syntl	netio	:			
	0> 9 Jaagg	7 Jaga	tgcg	gatgo	ca c	cctg										24
<21 <21	.0> 9 .1> 2 .2> I	20	icia	al Se	equei	nce										
<22 <22	23> I	Desci	ript:	ion (leot:	of A: ide j	rtif: prob	icia: e	l Sed	quen	ce: S	Synt	heti	c			
	00> s	98 gtgg	gga	agga	cag											20

<210><211><211><212>	20 DNA	
<220>	Artificial Sequence	
<223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> acagag	99 gcaga gggtgccttg	20
<210> <211>	24	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tcagg	100 gacaa gtggtgtctc tccc	24
<210><211><211><212>	24	•
<220>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tcagg	101 gaagg agtgtgcagt tctg	24
<210><211><211><212><213>	50	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> acago	102 teceg ateteagtta ettgeatege ggaegaaate ggegeteget	50
<212>	2026	

```
<400> 103
cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca ggggaaacta 60
agegtegagt cagaeggeac cataategee tttaaaagtg ceteegeeet geeggeegeg 120
tatcccccgg ctacctgggc cgccccgcgg cggtgcgcgc gtgagaggga gcgcgcgggc 180
agccgagcgc cggtgtgagc cagcgctgct gccagtgtga gcggcggtgt gagcgcggtg 240
ggtgcggagg ggcgtgtgtg ccggcgcgcg cgccgtgggg tgcaaacccc gagcgtctac 300
getgecatga ggggegegaa egeetgggeg ceaetetgee tgetgetgge tgeegeeace 360
cagctetege ggeageagte eccagagaga cetgttttea catgtggtgg cattettact 420
ggagagtctg gatttattgg cagtgaaggt tttcctggag tgtaccctcc aaatagcaaa 480
tgtacttgga aaatcacagt tcccgaagga aaagtagtcg ttctcaattt ccgattcata 540
gacctcgaga gtgacaacct gtgccgctat gactttgtgg atgtgtacaa tggccatgcc 600
aatggccagc gcattggccg cttctgtggc actttccggc ctggagccct tgtgtccagt 660
ggcaacaaga tgatggtgca gatgatttct gatgccaaca cagctggcaa tggcttcatg 720
gccatgttct ccgctgctga accaaacgaa agaggggatc agtattgtgg aggactcctt 780
gacagacett eeggetettt taaaaceece aactggeeag acegggatta eeetgeagga 840
gtcacttgtg tgtggcacat tgtagcccca aagaatcagc ttatagaatt aaagtttgag 900
aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
ggggaagtca acgatgctag aagaattgga aagtattgtg gtgatagtcc acctgcgcca 1020
attgtgtctg agagaaatga acttcttatt cagtttttat cagacttaag tttaactgca 1080
gatgggttta ttggtcacta catattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
cctgtcacca ccacattccc tgtaaccacg ggtttaaaac ccaccgtggc cttgtgtcaa 1200
caaaagtgta gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtatta 1260
geeggeactg ttateacaac cateactege gatgggagtt tgeacgeeac agtetegate 1320
atcaacatct acaaagaggg aaatttggcg attcagcagg cgggcaagaa catgagtgcc 1380
aggctgactg tcgtctgcaa gcagtgccct ctcctcagaa gaggtctaaa ttacattatt 1440
atgggccaag taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaagacca agaatcagaa gctcctggat gccttaaaaa ataagcaatg ttaacagtga 1560
actgtgtcca tttaagctgt attctgccat tgcctttgaa agatctatgt tctctcagta 1620
gaaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
ttgactcttc acatgatgga ggtatgaggc ctccgagata gctgagggaa gttctttgcc 1740
tgctgtcaga ggagcagcta tctgattgga aacctgccga cttagtgcgg tgataggaag 1800
ctaaaagtgt caagcgttga cagcttggaa gcgtttattt atacatctct gtaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
gtgttatttg tttcaccttc aagcctttgc cctgaggtgt tacaatcttg tcttgcgttt 1980
tctaaatcaa tgcttaataa aatattttta aaggaaaaaa aaaaaa
```

<210> 104

<211> 415

<212> PRT

<213> Homo sapiens

<400> 104

Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala 1 5 10 15

Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr 20 25 30

Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly 35 40 45

Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr 50 55 60

Val 65	Pro	Glu	Gly	Lys	70	Val	vai	Leu	ASII	75	AIG	FIIC	110	,,pp	80
Glu	Ser	Asp	Asn	Leu 85	Cys	Arg	Tyr	Asp	Phe 90	Val	Asp	Val	Tyr	Asn 95	Gly
His	Ala	Asn	Gly 100	Gln	Arg	Ile	Gly	Arg 105	Phe	Cys	Gly	Thr	Phe 110	Arg	Pro
Gly	Ala	Leu 115	Val	Ser	Ser	Gly	Asn 120	Lys	Met	Met	Val	Gln 125	Met	Ile	Ser
Asp	Ala 130	Asn	Thr	Ala	Gly	Asn 135	Gly	Phe	Met	Ala	Met 140	Phe	Ser	Ala	Ala
Glu 145	Pro	Asn	Glu	Arg	Gly 150	Asp	Gln	Tyr	Cys	Gly 155	Gly	Leu	Leu	Asp	Arg 160
Pro	Ser	Gly	Ser	Phe 165	Lys	Thr	Pro	Asn	Trp 170	Pro	Asp	Arg	Asp	Tyr 175	Pro
Ala	Gly	Val	Thr 180	Cys	Val	Trp	His	Ile 185	Val	Ala	Pro	Lys	Asn 190	Gln	Leu
Ile	Glu	Leu 195		Phe	Glu	Lys	Phe 200	Asp	Val	Glu	Arg	Asp 205	Asn	Tyr	Cys
Arg	Туг 210		Tyr	Val	Ala	Val 215	Phe	Asn	Gly	Gly	Glu 220	Val	Asn	Asp	Ala
Arg 225		Ile	Gly	Lys	Tyr 230		Gly	Asp	Ser	Pro 235	Pro	Ala	Pro	Ile	Val 240
Ser	Glu	Arg	J Asn	Glu 245		Leu	Ile	Gln	Phe 250	Leu	Ser	Asp	Leu	Ser 255	Leu
Thr	Ala	Asp	Gly 260		Ile	Gly	His	Tyr 265	Ile	Phe	Arg	Pro	Lys 270	Lys	Leu
Pro	Thr	Thr 275		Glu	Gln	Pro	Val 280		Thr	Thr	Phe	Pro 285	Val	Thr	Thr
Gly	Lev 290		Pro	Thr	· Val	Ala 295		суя	Glr	n Glr	300	Суз	Arg	Arg	Thr
Gly 305		. Lev	ı Glu	ı Gly	7 Asr 310		Суя	s Ser	: Sei	Asp 315	Phe	val	Lev	ı Ala	320
Thi	. Val	l Ile	e Thi	Th:		Thr	Arg	g Asp	330	y Sei	c Leu	ı His	s Ala	335	Val
Sei	: Ile	e Ile	e Ası	n Ile	э Туз	Lys	s Glu	ı Gly	y Ası	n Lei	ı Ala	a Ile	e Glr	ı Glr	n Ala

		340					345					350			
Gly Ly	s Asn 355		Ser	Ala	Arg	Leu 360	Thr	Val	Val	Cys	Lys 365	Gln	Cys	Pro	
Leu Le		Arg	Gly	Leu	Asn 375	Tyr	Ile	Ile	Met	Gly 380	Gln	Val	Gly	Glu	
Asp Gl 385	y Arg	Gly	Lys	Ile 390	Met	Pro	Asn	Ser	Phe 395	Ile	Met	Met	Phe	Lys 400	
Thr Ly	s Asn	Gln	Lys 405	Leu	Leu	Asp	Ala	Leu 410	Lys	Asn	Lys	Gln	Cys 415		
<210> <211> <212> <213>	22 DNA	icia	l Se	quen	ce										
<223>	Descr oligo						Seq	uenc	e: S	ynth	etic				
<400> ccgatt		gacc	tcga	ga g	t.										22
<210> 106 <211> 22 <212> DNA <213> Artificial Sequence															
<220> <223>	Desci oligo						Seq	uenc	e: S	ynth	etic	:			
<400> gtcaag		cctc	caca	at a	C										22
<210> 107 <211> 45 <212> DNA <213> Artificial Sequence															
<220> <223>	Desc:	ripti onucl	lon d	of Ar ide p	tifi	cial	Sec	quenc	e: S	Syntl	netio	2			
<400> gtgta	107 caatg	gcca	atgco	caa t	ggco	cageg	gc at	tggo	ccgct	tct:	gt				45
<210><211><212>	1838														

<213> Homo sapiens

```
<400> 108
cggacgcgtg ggcggacgcg tgggcggccc acggcgcccg cgggctgggg cggtcgcttc 60
ttccttctcc gtggcctacg agggtcccca gcctgggtaa agatggcccc atggcccccg 120
aagggcctag teccagetgt getetgggge etcageetet teetcaacet eccaggacet 180
atotggetee agecetetee acetececag tetteteece egeeteagee ceateegtgt 240
catacetgee ggggaetggt tgacagettt aacaagggee tggagagaac cateegggae 300
aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata caaagacagt 360
gagacccgcc tggtagaggt gctggagggt gtgtgcagca agtcagactt cgagtgccac 420
cgcctgctgg agctgagtga ggagctggtg gagagctggt ggtttcacaa gcagcaggag 480
gecceggace tettecagtg getgtgetea gattecetga agetetgetg eccegeagge 540
accttcgggc cctcctgcct tccctgtcct gggggaacag agaggccctg cggtggctac 600
gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg ccaagccggc 660
tacgggggtg aggcctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgcc 720
agccatctgg tatgttcggc ttgttttggc ccctgtgccc gatgctcagg acctgaggaa 780
tcaaactgtt tgcaatgcaa gaagggctgg gccctgcatc acctcaagtg tgtagacatt 840
gatgagtgtg gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900
ggctcctatg agtgccgaga ctgtgccaag gcctgcctag gctgcatggg ggcagggcca 960
ggtcgctgta agaagtgtag ccctggctat cagcaggtgg gctccaagtg tctcgatgtg 1020
gatgagtgtg agacagaggt gtgtccggga gagaacaagc agtgtgaaaa caccgagggc 1080
ggttatcgct gcatctgtgc cgagggctac aagcagatgg aaggcatctg tgtgaaggag 1140
cagateceag agteageagg ettettetea gagatgaeag aagaegagtt ggtggtgetg 1200
cagcagatgt tetttggcat catcatetgt geactggeca egetggetge taagggegae 1260
ttggtgttca ccgccatctt cattggggct gtggcggcca tgactggcta ctggttgtca 1320
gagcgcagtg accgtgtgct ggagggcttc atcaagggca gataatcgcg gccaccacct 1380
gtaggacete eteceaceca egetgeecec agagettggg etgeceteet getggacaet 1440
caggacaget tggtttattt ttgagagtgg ggtaagcace cetacetgee ttacagagea 1500
gcccaggtac ccaggcccgg gcagacaagg cccctggggt aaaaagtagc cctgaaggtg 1560
gataccatga gctcttcacc tggcggggac tggcaggctt cacaatgtgt gaatttcaaa 1620
agtttttcct taatggtggc tgctagagct ttggcccctg cttaggatta ggtggtcctc 1680
acaggggtgg ggccatcaca getecetect gecagetgea tgetgecagt teetgttetg 1740
tgttcaccac atccccacac cccattgcca cttatttatt catctcagga aataaagaaa 1800
                                                                   1838
ggtcttggaa agttaaaaaa aaaaaaaaa aaaaaaaa
```

<210> 109

<211> 420

<212> PRT

<213> Homo sapiens

<400> 109

Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly

1 5 10 15

Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser 20 25 30

Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr 35 40 45

Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile 50 55 60

Arg 65	Asp	Asn	Phe	Gly	Gly 70	Gly	Asn	Thr	Ala	Trp 75	Glu	Glu	Glu	Asn	80
Ser	Lys	Tyr	Lys	Asp 85	Ser	Glu	Thr	Arg	Leu 90	Val	Glu	Val	Leu	Glu 95	Gly
Val	Cys	Ser	Lys 100	Ser	Asp	Phe	Glu	Cys 105	His	Arg	Leu	Leu	Glu 110	Leu	Ser
Glu	Glu	Leu 115	Val	Glu	Ser	Trp	Trp 120	Phe	His	Lys	Gln	Gln 125	Glu	Ala	Pro
Asp	Leu 130	Phe	Gln	Trp	Leu	Cys 135	Ser	Asp	Ser	Leu	Lys 140	Leu	Cys	Cys	Pro
Ala 145	Gly	Thr	Phe	Gly	Pro 150	Ser	Cys	Leu	Pro	Cys 155	Pro	Gly	Gly	Thr	Glu 160
Arg	Pro	Cys	Gly	Gly 165	Tyr	Gly	Gln	Cys	Glu 170	Gly	Glu	Gly	Thr	Arg 175	Gly
Gly	Ser	Gly	His 180	Cys	Asp	Cys	Gln	Ala 185	Gly	Tyr	Gly	Gly	Glu 190	Ala	Cys
Gly	Gln	Cys 195	Gly	Leu	Gly	Tyr	Phe 200	Glu	Ala	Glu	Arg	Asn 205	Ala	Ser	His
Leu	Val 210	Cys	Ser	Ala	Cys	Phe 215	Gly	Pro	Cys	Ala	Arg 220	Cys	Ser	Gly	Pro
Glu 225		Ser	Asn	Сув	Leu 230	Gln	Cys	Lys	Lys	Gly 235	Trp	Ala	Leu	His	His 240
Leu	Lys	Cys	Val	Asp 245		Asp	Glu	Cys	Gly 250	Thr	Glu	Gly	Ala	Asn 255	Cys
			260					265					270		Arg
Asp	Cys	Ala 275		Ala	Cys	Leu	Gly 280	Cys	Met	: Gly	Ala	Gly 285	Pro	Gly	Arg
Cys	Lys 290		Cys	Ser	Pro	Gly 295		Gln	Glr	ı Val	Gly 300	Ser	Lys	Cys	Leu
Asp 305		Asp	Glu	Cys	Glu 310		Glu	Val	Суз	315	Gly	Glu	ı Asr	Lys	320
Cys	Glu	a Asr	Thr	325		Gly	туг	Arg	330	s Il∈	е Сув	al Alá	a Glu	335	Tyr
Lys	Glr	Met	Glu 340		, Ile	е Суз	. Val	Lys 345		ı Glr	ılle	Pro	350	ı Ser	Ala

	Gly	Phe	Phe 355	Ser	Glu	Met	Thr	Glu 360	Asp	Glu	Leu	Val	Val 365	Leu	Gln	Gln	
	Met	Phe 370	Phe	Gly	Ile	Ile	Ile 375	Cys	Ala	Leu	Ala	Thr 380	Leu	Ala	Ala	Lys	
	Gly 385	Asp	Leu	Val	Phe	Thr 390	Ala	Ile	Phe	Ile	Gly 395	Ala	Val	Ala	Ala	Met 400	
	Thr	Gly	Tyr	Trp	Leu 405	Ser	Glu	Arg	Ser	Asp 410	Arg	Val	Leu	Glu	Gly 415	Phe	
	Ile	Lys	Gly	Arg 420													
	<212	L> 5 2> D	0 NA	icia	l Se	quen	ce										
	<220 <223	3 > D		ipti nucl					Seq	uenc	e: S	ynth	etic				
)> 1 ggct		agca	ggtg	gg c	tcca	agtg	t c t	cgat	gtgg	atg	agtg	tga			50
<210> 111 <211> 22 <212> DNA <213> Artificial Sequence																	
	<22 <22	3 > D		ipti nucl					. Seg	uenc	e: S	ynth	etic				
		0> 1 ctgc		aaca	.ctga	gg g	C										22
	<21 <21	0 > 1 1 > 2 2 > D 3 > A	2 NA	icia	ıl Se	quen	ce										
	<22 <22	3 > E	escr ligo	ipti nucl	on c eoti	of Ar .de p	tifi robe	cial	Sec	Juenc	e: S	yntl	netic	:			
		0> 1 tgct		agcc	ctcg	ıgc a	ıc										22
	-21	Λ 1	12														

```
<211> 1616
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1461)
<223> a, t, c or g
<400> 113
tgagaccete etgeageett eteaagggae ageceeacte tgeetettge teeteeaggg 60
cagcaccatg cagcccctgt ggctctgctg ggcactctgg gtgttgcccc tggccagccc 120
cggggccgcc ctgaccgggg agcagctcct gggcagcctg ctgcggcagc tgcagctcaa 180
agaggtgccc accetggaca gggccgacat ggaggagetg gtcatcccca cccacgtgag 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagaggtt 300
cagccagage tteegagagg tggccggcag gtteetggeg ttggaggeca geacacacet 360
getggtgtte ggcatggage ageggetgee geccaacage gagetggtge aggeegtget 420
geggetette caggageegg teeccaagge egegetgeac aggeaeggge ggetgteece 480
gegeagegee egggeeeggg tgacegtega gtggetgege gteegegaeg aeggeteeaa 540
ccgcacctcc ctcatcgact ccaggctggt gtccgtccac gagagcggct ggaaggcctt 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgctgct 660
gctacaggtg tcggtgcaga gggagcatct gggcccgctg gcgtccggcg cccacaagct 720
ggtccgcttt gcctcgcagg gggcgccagc cgggcttggg gagccccagc tggagctgca 780
caccetggae ettggggaet atggagetea gggegaetgt gaeeetgaag eaccaatgae 840
cgagggcacc cgctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900
cgagaactgg gtgctggagc ccccgggctt cctggcttat gagtgtgtgg gcacctgccg 960
gcagcccccg gaggccctgg ccttcaagtg gccgtttctg gggcctcgac agtgcatcgc 1020
ctcggagact gactcgctgc ccatgatcgt cagcatcaag gagggaggca ggaccaggcc 1080
ccaggtggtc agcctgccca acatgagggt gcagaagtgc agctgtgcct cggatggtgc 1140
gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gcgatgactg aactgctgat 1260
ggacaaatgc tctgtgctct ctagtgagcc ctgaatttgc ttcctctgac aagttacctc 1320
acctaatttt tgcttctcag gaatgagaat ctttggccac tggagagccc ttgctcagtt 1380
ttctctattc ttattattca ctgcactata ttctaagcac ttacatgtgg agatactgta 1440
acctgagggc agaaagccca ntgtgtcatt gtttacttgt cctgtcactg gatctgggct 1500
aaagtcctcc accaccactc tggacctaag acctggggtt aagtgtgggt tgtgcatccc 1560
caatccagat aataaagact ttgtaaaaca tgaataaaac acattttatt ctaaaa
<210> 114
<211> 366
<212> PRT
<213> Homo sapiens
<400> 114
Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala
Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu
                                 25
Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met
                             40
```

Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu 55 50 Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln Ser Phe Arg Glu Val Ala Gly Arg Phe Leu Ala Leu Glu Ala Ser Thr His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu 105 Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg Val Thr Val Glu Trp Leu Arg Val Arg Asp Asp Gly Ser Asn Arg Thr 150 Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys 170 Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg 185 Pro Arg Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu 195 Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile Asp Leu Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro Pro Gly Phe 280 275 Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro Pro Glu Ala Leu 300 295 Ala Phe Lys Trp Pro Phe Leu Gly Pro Arg Gln Cys Ile Ala Ser Glu Thr Asp Ser Leu Pro Met Ile Val Ser Ile Lys Glu Gly Gly Arg Thr 330 325

Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser 340 345 350	
Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro 355 360 365	
<210> 115 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 115 aggactgcca taacttgcct g	21
<210> 116 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 116 ataggagttg aagcagcgct gc	22
<210> 117 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 117 tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc	45
<210> 118 <211> 1857 <212> DNA <213> Homo sapiens	
<400> 118 gtctgttccc aggagtcctt cggcggctgt tgtgtcagtg gcctgatcgc gatggggaaggcgcaag tcgagaggaa actgttgtgc ctcttcatat tggcgatcct gttgtgcctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcagaat tcctgag	LCC 120

aatcctgtga agttgtcctg tgcctactcg ggcttttctt ctccccgtgt ggagtggaag 240 tttgaccaag gagacaccac cagactcgtt tgctataata acaagatcac agcttcctat 300 gaggaceggg tgacettett gecaactggt atcacettea agteegtgae aegggaagae 360 actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420 gtcaagetca tegtgettgt geetceatee aageetacag ttaacateee eteetetgee 480 accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540 tacacctggt tcaaagatgg gatagtgatg cctacgaatc ccaaaagcac ccgtgccttc 600 agcaactett cetatgteet gaateecaca acaggagage tggtetttga teeeetgtea 660 gcctctgata ctggagaata cagctgtgag gcacggaatg ggtatgggac acccatgact 720 tcaaatgctg tgcgcatgga agctgtggag cggaatgtgg gggtcatcgt ggcagccgtc 780 cttgtaaccc tgattctcct gggaatcttg gtttttggca tctggtttgc ctatagccga 840 ggccactttg acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900 agtgcccgaa gtgaaggaga attcaaacag acctcgtcat tcctggtgtg agcctggtcg 960 geteacegee tateatetge atttgeetta eteaggtget aceggaetet ggeecetgat 1020 gtetgtagtt teacaggatg cettatttgt ettetacace ceacagggee ceetacttet 1080 teggatgtgt ttttaataat gtcagctatg tgccccatcc tccttcatgc cctccctccc 1140 tttcctacca ctgctgagtg gcctggaact tgtttaaagt gtttattccc catttctttg 1200 agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagtag acagcaaaaa 1260 tggcgggggt cgcaggaatc tgcactcaac tgcccacctg gctggcaggg atctttgaat 1320 aggtatettg agettggtte tgggetettt cettgtgtae tgacgaccag ggecagetgt 1380 tctagagcgg gaattagagg ctagagcggc tgaaatggtt gtttggtgat gacactgggg 1440 tecttecate tetggggeee actetettet gtetteccat gggaagtgee actgggatee 1500 ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560 agctcttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620 accyctyctc taaagaaaag aaaactygag gctyggcgca gtyggctcacy cctytaatcc 1680 cagaggetga ggcaggegga teacetgagg tegggagtte gggateagee tgaccaacat 1740 ggagaaaccc tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800 agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaa aaaaaaa

<210> 119

<211> 299

<212> PRT

<213> Homo sapiens

<400> 119

Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile

1 5 10 15

Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His 20 25 30

Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu 35 40 45

Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe 50 55 60

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr 65 70 75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser 105 100 Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val 120 Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr 135 Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro 155 Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro 185 Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly 200 195 Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser 215 Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val 235 230 Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly 250 245 Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly 265 Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu 275 Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val 295 290 <210> 120 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 120 tcgcggagct gtgttctgtt tccc

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tgatc	121 gcgat ggggacaaag gcgcaagctc gagaggaaac tgttgtgcct	50
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> acacc	122 tggtt caaagatggg	20
<210><211><211><212><213>	24	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tagga	123 agagt tgctgaaggc acgg	24
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ttgcc	· 124 cttact caggtgctac	20
<210><211><211><212><213>	· 20	
<220	. Description of Artificial Sequence: Synthetic	

oligonucleotide probe

<400> 125 actcagcagt ggtaggaaag			20
<210> 126 <211> 1210 <212> DNA <213> Homo sapiens			
<pre><400> 126 cagcgcgtgg ccggcgcgcggaggggggggggggggggg</pre>	ctgggcctgg cg ccgctttcca cc accaagttcc ag gacttggact gc aaagggcaat gc tctgggggaa ct ctcgttgca cg gactgtcccg ac gactgccacaa cc acaaccatgg gg tcctctgccg ga gtgctcagtg ca gagcgcctcc gc cagaagacct cg tagccggaca gg acctgagttc tt agattgaggg	ccgacctc tgcccaggcc gtgccgacc cagtggctta cagcgatgg cagcgatgag caccacgcc cctggcctc accacgca tgactgaccacgcc cccactgg gtaccctgg gtaccaggc caccactgg gttactggtg aggagagac agtgatgcgg gtgccctg aggacaagca agtgatgcgg gtgccctg aggacaagca cacctggag agtgatgcgg gtgaccacc gtggagagac agtgatgcgg gtgaacctc ccctggaca ctccctatgg	gcaggccca 180 tgcgtgcccc 240 gaggagtgca 300 ccctgcccct 360 tgcagccgcc 420 ccactcacgt 480 tgtggaacca 540 ctggagagtg 600 agtgtcccct 660 actgcctatg 720 ctcctccttt 780 gccatgaagg 840 cttgccacca 900 atgggtaccc 960 gaacccgagc 1020 agatccgggg 1080 cagctcccag 1140
<210> 127 <211> 282 <212> PRT <213> Homo sapiens			
<400> 127 Met Ser Gly Gly Trp 1 5	Met Ala Gln Va	l Gly Ala Trp Arg Th	r Gly Ala 15
Leu Gly Leu Ala Leu 20	Leu Leu Leu Le 2	u Gly Leu Gly Leu Gl 5 3	y Leu Glu O
Ala Ala Ala Ser Pro 35	Leu Ser Thr Pr 40	o Thr Ser Ala Gln Al 45	a Ala Gly
Pro Ser Ser Gly Ser 50	Cys Pro Pro Th 55	or Lys Phe Gln Cys Ar 60	g Thr Ser
Gly Leu Cys Val Pro 65	Leu Thr Trp Ar 70	g Cys Asp Arg Asp Le 75	u Asp Cys 80

<210> 129

Ser	Asp	Gly	Ser	Asp 85	Glu	Glu	Glu	Cys	Arg 90	Ile	Glu	Pro	Cys	Thr 95	Gln
Lys	Gly	Gln	Cys 100	Pro	Pro	Pro	Pro	Gly 105	Leu	Pro	Cys	Pro	Cys 110	Thr	Gly
Val	Ser	Asp 115	Cys	Ser	Gly	Gly	Thr 120	Asp	Lys	Lys	Leu	Arg 125	Asn	Cys	Ser
Arg	Leu 130	Ala	Cys	Leu	Ala	Gly 135	Glu	Leu	Arg	Cys	Thr 140	Leu	Ser	Asp	Asp
Cys 145	Ile	Pro	Leu	Thr	Trp 150	Arg	Cys	Asp	Gly	His 155	Pro	Asp	Cys	Pro	Asp 160
Ser	Ser	Asp	Glu	Leu 165	Gly	Cys	Gly	Thr	Asn 170	Glu	Ile	Leu	Pro	Glu 175	Gly
Asp	Ala	Thr	Thr 180	Met	Gly	Pro	Pro	Val 185	Thr	Leu	Glu	Ser	Val 190	Thr	Ser
Leu	Arg	Asn 195	Ala	Thr	Thr	Met	Gly 200	Pro	Pro	Val	Thr	Leu 205	Glu	Ser	Val
Pro	Ser 210		Gly	Asn	Ala	Thr 215	Ser	Ser	Ser	Ala	Gly 220	Asp	Gln	Ser	Gly
Ser 225		Thr	Ala	Tyr	Gly 230		Ile	Ala	Ala	Ala 235	Ala	Val	Leu	Ser	Ala 240
Ser	Leu	Val	Thr	Ala 245		Leu	Leu	Leu	Leu 250	Ser	Trp	Leu	Arg	Ala 255	Gln
Glu	Arg	Leu	Arg 260		Leu	Gly	Leu	Leu 265	Val	Ala	Met	Lys	Glu 270	Ser	Leu
Leu	Leu	Ser 275		Gln	Lys	Thr	Ser 280	Lev	Pro)					
<21 <21	<pre><210> 128 <211> 24 <212> DNA <213> Artificial Sequence</pre>														
<22 <22	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe														
	00> 1 gttco		gccs	gcaco	cag t	ggc									

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 129
                                                                  24
ttggttccac agccgagctc gtcg
<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 130
                                                                   50
gaggaggagt gcaggattga gccatgtacc cagaaagggc aatgcccacc
<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1837)
<223> a, t, c or g
<400> 131
cccacgcgtc cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc gcacagatgc 60
gggttagact ggcggggga ggaggcggag gagggaagga agctgcatgc atgagaccca 120
cagactettg caagetggat geeetetgtg gatgaaagat gtateatgga atgaaceega 180
gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcag tccccccaga 240
gactettgge egtgateetg tggttteage tggegetgtg etteggeeet geacagetea 300
cgggcgggtt cgatgacctt caagtgtgtg ctgaccccgg cattcccgag aatggcttca 360
ggacccccag cggaggggtt ttctttgaag gctctgtagc ccgatttcac tgccaagacg 420
gattcaagct gaagggcgct acaaagagac tgtgtttgaa gcattttaat ggaaccctag 480
gctggatccc aagtgataat tccatctgtg tgcaagaaga ttgccgtatc cctcaaatcg 540
aagatgctga gattcataac aagacatata gacatggaga gaagctaatc atcacttgtc 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgtcgcgatg 660
atggaacgtg gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
atggctatgt aaacatetet gageteeaga ceteetteee ggtggggaet gtgateteet 780
atcgctgctt tcccggattt aaacttgatg ggtctgcgta tcttgagtgc ttacaaaacc 840
ttatctggtc gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900
ctccaatggt gagtcacgga gatttcgtct gccacccgcg gccttgtgag cgctacaacc 960
acggaactgt ggtggagttt tactgcgatc ctggctacag cctcaccagc gactacaagt 1020
acatcacctg ccagtatgga gagtggtttc cttcttatca agtctactgc atcaaatcag 1080
agcaaacgtg gcccagcacc catgagaccc tcctgaccac gtggaagatt gtggcgttca 1140
```

cggcaaccag tgtgctgctg gtgctgctgc tcgtcatcct ggccaggatg ttccagacca 1200 agttcaaggc ccactttccc cccagggggc ctccccggag ttccagcagt gaccctgact 1260 ttgtggtggt agacggcgtg cccgtcatgc tcccgtccta tgacgaagct gtgagtggcg 1320 gettgagtge ettaggeece gggtacatgg eetetgtggg eeagggetge eeettaceeg 1380 tggacgacca gagcccccca gcataccccg gctcagggga cacggacaca ggcccagggg 1440 agtcagaaac ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500 ctcccaggtg ccaagagage acceaectg cttcggacaa ccctgacata attgccagca 1560 eggcagagga ggtggcatcc accageccag gcatecatca tgcccaetgg gtgttgttcc 1620 taagaaactg attgattaaa aaatttccca aagtgtcctg aagtgtctct tcaaatacat 1680 gttgatctgt ggagttgatt cctttccttc tcttggtttt agacaaatgt aaacaaagct 1740 ctgatcctta aaattgctat gctgatagag tggtgagggc tggaagcttg atcaagtcct 1800 1843 gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa <210> 132 <211> 490 <212> PRT <213> Homo sapiens

<400> 132

Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu Gln 10

Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val 25

Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr 35

Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu 55

Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe Phe Glu Gly Ser Val 70

Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys

Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser 105

Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu 120 115

Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile 140 135

Ile Thr Cys His Glu Gly Phe Lys Ile Arg Tyr Pro Asp Leu His Asn 155 150 145

Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile 170

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn

			180					185					190		
Ile	Ser	Glu 195	Leu	Gln	Thr	Ser	Phe 200	Pro	Val	Gly	Thr	Val 205	Ile	Ser	Tyr
Arg	Cys 210	Phe	Pro	Gly	Phe	Lys 215	Leu	Asp	Gly	Ser	Ala 220	Tyr	Leu	Glu	Cys
Leu 225	Gln	Asn	Leu	Ile	Trp 230	Ser	Ser	Ser	Pro	Pro 235	Arg	Cys	Leu	Ala	Leu 240
Glu	Ala	Gln	Val	Cys 245	Pro	Leu	Pro	Pro	Met 250	Val	Ser	His	Gly	Asp 255	Phe
Val	Cys	His	Pro 260	Arg	Pro	Cys	Glu	Arg 265	Tyr	Asn	His	Gly	Thr 270	Val	Val
Glu	Phe	Tyr 275		Asp	Pro	Gly	Tyr 280	Ser	Leu	Thr	Ser	Asp 285	Tyr	Lys	Tyr
Ile	Thr 290		Gln	Tyr	Gly	Glu 295	Trp	Phe	Pro	Ser	Tyr 300	Gln	Val	Tyr	Cys
Ile 305		Ser	Glu	Gln	Thr 310	Trp	Pro	Ser	Thr	His 315	Glu	Thr	Leu	Leu	Thr 320
Thr	Trp	Lys	: Ile	Val 325		Phe	Thr	Ala	Thr 330	Ser	Val	Leu	Leu	Val 335	Leu
Leu	Leu	val	. Ile		Ala	Arg	Met	Phe 345	Gln	Thr	Lys	Phe	Lys 350	Ala	His
Phe	Pro) Pro		g Gly	Pro	Pro	360	ser	Ser	Ser	Ser	365	Pro	Asp	Phe
Val	. Val		l Asp	, Gly	val	Pro 375	Val	. Met	. Lev	ı Pro	380	Tyr	Asp	Glu	Ala
Va] 389		c Gly	y Gly	y Leu	390	Ala	ı Leı	ı Gly	y Pro	395	y Tyi	. Met	. Ala	Ser	Val 400
Gly	/ Gli	n Gl	у Су:	s Pro 405		ı Pro	val	L Ası	Asp 41	p Gli O	n Sei	r Pro	Pro	Ala 415	Tyr
Pro	o Gl	y Se	r Gl; 42		Th:	r Asj	o Thi	r Gl; 42	y Pro	o Gl	y Glı	ı Sei	r Gli 430	ı Thi	c Cys
As	p Se	r Va 43		r Gly	y Se:	r Se	r Gl	u Le	u Le	u Gl:	n Se	r Lei 44	и Ту 5	r Sei	r Pro
Pr	o Ar 45		s Gl	n Gl	u Se	r Th:	r Hi 5	s Pr	o Al	a Se	r As 46	p As: 0	n Pro	o As	p Ile

Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His 465 470 475 480	
His Ala His Trp Val Leu Phe Leu Arg Asn 485 490	
<210> 133 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 133 atctcctatc gctgctttcc cgg	23
<210> 134 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 134 agccaggatc gcagtaaaac tcc	23
<210> 135	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 135 atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct	50
<210> 136 <211> 1815 <212> DNA <213> Homo sapiens	
<400> 136 cccacgcgtc cgctccgcgc cctcccccc gcctcccgtg cggtccgtcg gtggccta gatgctgctg ccgcggttgc agttgtcgcg cacgcctctg cccgcagcc cgctccac ccgtagcgcc cgagtgtcgg ggggcgcacc cgagtcgggc catgaggccg ggaaccgc tacaggccgt gctgctggcc gtgctgctgg tggggctgcg ggccgcgacg ggtcgcct tgagtgcctc ggatttggac ctcagaggag ggcagccagt ctgccgggga gggacaca	gc 180 tgc 240

ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac tttgaggaag 360 ccaaagaagc ctgcaggagg gatggaggcc agctagtcag catcgagtct gaagatgaac 420 agaaactgat agaaaagttc attgaaaacc tcttgccatc tgatggtgac ttctggattg 480 ggctcaggag gcgtgaggag aaacaaagca atagcacagc ctgccaggac ctttatgctt 540 ggactgatgg cagcatatca caatttagga actggtatgt ggatgagccg tcctgcggca 600 gegaggtetg egtggteatg taccateage categgeace egetggeate ggaggeecet 660 acatgttcca gtggaatgat gaccggtgca acatgaagaa caatttcatt tgcaaatatt 720 ctgatgagaa accagcagtt ccttctagag aagctgaagg tgaggaaaca gagctgacaa 780 cacctgtact tccagaagaa acacaggaag aagatgccaa aaaaacattt aaagaaagta 840 gagaagetge ettgaatetg geetacatee taateeccag catteceett etecteetee 900 ttgtggtcac cacagttgta tgttgggttt ggatctgtag aaaaagaaaa cgggagcagc 960 cagaccetag cacaaagaag caacacca tetggeeete teeteaccag ggaaacagee 1020 cggacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080 ggccagacct gaagaatatt tcattccgag tgtgttcggg agaagccact cccgatgaca 1140 tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggttt gtgactctgg 1200 tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca gaccaaatgg 1260 ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320 aaactgaaac tgacaacaat ggaaaagaaa tgataagcaa aatcctctta ttttctataa 1380 ggaaaataca cagaaggtct atgaacaagc ttagatcagg tcctgtggat gagcatgtgg 1440 tececaegae etectgttgg acceceaegt tttggetgta teetttatee eagecagtea 1500 tecagetega cettatgaga aggtacettg eccaggtetg geacatagta gagteteaat 1560 aaatgtcact tggttggttg tatctaactt ttaagggaca gagctttacc tggcagtgat 1620 aaagatgggc tgtggagctt ggaaaaccac ctctgttttc cttgctctat acagcagcac 1680 atattatcat acagacagaa aatccagaat cttttcaaag cccacatatg gtagcacagg 1740 ttggcctgtg catcggcaat tctcatatct gtttttttca aagaataaaa tcaaataaag 1800 aqcaqqaaaa aaaaa

<210> 137

<211> 382

<212> PRT

<213> Homo sapiens

<400> 137

Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu 5

Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu

Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro 40

Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe 55

Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gln Leu Val Ser

Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn 85

Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Arg Glu 105 100

Glu	Lys	Gln 115	Ser	Asn	Ser	Thr	Ala 120	Cys	Gln	Asp	Leu	Tyr 125	Ala	Trp	Thr
Asp	Gly 130	Ser	Ile	Ser	Gln	Phe 135	Arg	Asn	Trp	Tyr	Val 140	Asp	Glu	Pro	Ser
Cys 145	Gly	Ser	Glu	Val	Cys 150	Val	Val	Met	Tyr	His 155	Gln	Pro	Ser	Ala	Pro 160
Ala	Gly	Ile	Gly	Gly 165	Pro	Tyr	Met	Phe	Gln 170	Trp	Asn	Asp	Asp	Arg 175	Cys
Asn	Met	Lys	Asn 180	Asn	Phe	Ile	Cys	Lys 185	Tyr	Ser	Asp	Glu	Lys 190	Pro	Ala
Val	Pro	Ser 195	Arg	Glu	Ala	Glu	Gly 200	Glu	Glu	Thr	Glu	Leu 205	Thr	Thr	Pro
Val	Leu 210	Pro	Glu	Glu	Thr	Gln 215	Glu	Glu	Asp	Ala	Lys 220	Lys	Thr	Phe	Lys
Glu 225	Ser	Arg	Glu	Ala	Ala 230	Leu	Asn	Leu	Ala	Tyr 235	Ile	Leu	Ile	Pro	Ser 240
Ile	Pro	Leu	Leu	Leu 245		Leu	Val	Val	Thr 250	Thr	Val	Val	Cys	Trp 255	Val
Trp	Ile	Cys	Arg 260		Arg	Lys	Arg	Glu 265		Pro	Asp	Pro	Ser 270	Thr	Lys
Lys	Gln	His 275		Ile	Trp	Pro	Ser 280		His	Gln	Gly	Asn 285	Ser	Pro	Asp
Leu	Glu 290		Tyr	Asn	Val	Ile 295		Lys	Glr	. Ser	Glu 300	Ala	Asp	Leu	Ala
Glu 305		Arg	Pro	Asp	Leu 310		Asn	ıle	Ser	315	Arg	Va]	. Cys	Ser	Gly 320
Glu	Ala	Thr	Pro	325		Met	: Ser	Cys	Asp 330		Asp) Asr	n Met	335	Val
Asn	Pro	Ser	Glu 340		Gly	Phe	e Val	Thr 345	Leu	ı Val	. Ser	· Val	350	Ser	Gly
Phe	· Val	. Thr 355		a Asp	ıle	ту1	Glu 360		e Sei	r Pro	Asp	36!	n Met	: Gly	Arg
Ser	Lys		ı Ser	Gly	7 Trp	Va]		ı Ası	ı Glu	ı Ile	380	Gly	у Туз	:	

<210> 138

<211> 50 <212> DNA <213> Artif	icial Sequer	nce				
<220> <223> Descr oligo	iption of Am nucleotide p	rtificial Se probe	equence: Syr	nthetic		
<400> 138 gttcattgaa	aacctcttgc (catctgatgg 1	gacttctgg a	attgggctca	!	50
<210> 139 <211> 24 <212> DNA <213> Artif	icial Seque	nce				
	ription of A onucleotide		equence: Syn	nthetic		
<400> 139 aagccaaaga	agcctgcagg	aggg				24
<210> 140 <211> 24 <212> DNA <213> Artis	Eicial Seque	ence				
<220> <223> Desci	ription of A onucleotide	artificial S probe	equence: Sy	nthetic		
<400> 140 cagtccaagc	ataaaggtcc	tggc				24
<210> 141 <211> 1514 <212> DNA <213> Homo	sapiens					
gcatccgcag ttgtgtttgc tggtgtgttc cctgcaccag cgaccgcagc tcctctcaag cccacccaa ttctccttac	tcagggccgg gttcccgcgg ctcctgcagc agcatgcgct cggcgggtgg ctgctgaagt ccgctcccgc actcagtttg gactctcaat gtgggcatgc attccctttc tttcggaatc	acttggggc ctcaacccgg tgtggacccc ccctggccga tgaaaatggt tggaggagca attacacagt accatgagac agcaaatgtt	gcccgctgag agggcagcga agtgggcgtc gctgcaggag gcaggtcgtg ggtagagtgg caccaatcta caccctgaag tgccttggga cttcaaccca	gggcctacca ctgacctcgc gccgatggcc tttcgacacg aacccccagc gctggtggtc gggggcatgt gagagactga caggaggtct	ccatgatcac tggcgtactg agtgtccggt gggctcggag tattagaggt cgaaaccata ttgctgggca ggaagaacta ttattcgttc	180 240 300 360 420 480 540 600 660

tcagaaagaa ggacccatca tcatccaca tgatgaagca gattcagaag tcttgtatcc 780 caactaccaa agctgctga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840 ttacagcca ggaatctcag aggatttgaa aaaggtgaag gacaggatgg gcattgacag 900 tagtgataaa gtggacttct tcatcctcct gaaagagatt tgaacaggatg atcgaacaga gagctgtgga 1020 cacatccttg tacatactgc ccaaggaaga cagggaaagt cttcagatgg cagtaggccc 1080 attcctcaca atcctagaga gcaacctgct gaaagccatg gactctgcca aggccccaga 1140 caagatcaga aagctgtatc tctatgcggc tcatgatgg accttcatac cgctcttaat 1200 gaccctgggg atttttgacc acaaatggcc acggttggcc attttcacagcac ctggaatcta aggagtgtt tgtgcagctc tattaccacg ggaaggagaca 1320 ggtgccgaga ggttgcccag aaaaatacca tgcactctgc atgtgtcttgaatctacagattggaaat gaagagtaac tgatttataa aagcaggatg tgttgattt tctcaaactc aggtgaaat tgattataca aagcaggatg tgttgatctaa aagcaggatg tgttgatttatac aatg

<211> 428

<212> PRT

<213> Homo sapiens

<400> 142

Met Ile Thr Gly Val Phe Ser Met Arg Leu Trp Thr Pro Val Gly Val 1 5 10 15

Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala Leu Ala 20 25 30

Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg Ser Leu Leu 35 40 45

Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly Ala Arg Ser Pro 50 55 60

Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu Trp Asn Pro Gln Leu 65 70 75 80

Leu Glu Val Pro Pro Gln Thr Gln Phe Asp Tyr Thr Val Thr Asn Leu 85 90 95

Ala Gly Gly Pro Lys Pro Tyr Ser Pro Tyr Asp Ser Gln Tyr His Glu 100 105 110

Thr Thr Leu Lys Gly Gly Met Phe Ala Gly Gln Leu Thr Lys Val Gly 115 120 125

Met Gln Gln Met Phe Ala Leu Gly Glu Arg Leu Arg Lys Asn Tyr Val 130 135 140

Glu Asp Ile Pro Phe Leu Ser Pro Thr Phe Asn Pro Gln Glu Val Phe 145 150 155 160

Ile Arg Ser Thr Asn Ile Phe Arg Asn Leu Glu Ser Thr Arg Cys Leu 165 170 175 Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile His Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys 200 Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu 215 Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly 235 Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile 280 275 Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe 295 Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr 315 Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val 330 Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp 340 Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu 360 Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val

Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys 405 410 415

Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn

Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu
420 425

390

<210> 143

<211> 24

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 143 ccaactacca aagctgctgg agcc	24
<210> 144 <211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 144	24
gcagctctat taccacggga agga	
<210> 145	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 145	24
tccttcccgt ggtaatagag ctgc	24
<210> 146	
<211> 45	
<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 146	45
ggcagagaac cagaggccgg aggagactgc ctctttacag ccagg	43
<210> 147	
<211> 1686	
<212> DNA <213> Homo sapiens	
<400> 147	
startattaa catacttgca gctaaaacta aatattgctg cttggggacc tccttcta	gc 60
cttagatttc ageteateae etteacetqc ettggteatg getetgetat teteettg	at 120
cottagoatt tgcaccagac ctggattect ageqteteca tetggagtge ggetggtg	ad IRO

gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt ggggcaccgt 240 gtgtgatgac ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300 agctgccagc ggaaccccta gtggtatttt gtatgagcca ccagcagaaa aagagcaaaa 360 ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420 agaagaagtt tatgattgtt cacatgatga agatgctggg gcatcgtgtg agaacccaga 480 gagetettte tecceagtee cagagggtgt caggetgget gaeggeeetg ggeattgcaa 540 gggacgcgtg gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600 cctccgggcc gcaaaggtgg tgtgccggca gctgggatgt gggagggctg tactgactca 660 aaaacgctgc aacaagcatg cctatggccg aaaacccatc tggctgagcc agatgtcatg 720 ctcaggacga gaagcaaccc ttcaggattg cccttctggg ccttggggga agaacacctg 780 caaccatgat gaagacacgt gggtcgaatg tgaagatccc tttgacttga gactagtagg 840 aggagacaac ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900 ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960 gaagtccctc tctccctcct tcagagaccg gaaatgctat ggccctgggg ttggccgcat 1020 ctggctggat aatgttcgtt gctcagggga ggagcagtcc ctggagcagt gccagcacag 1080 attttggggg tttcacgact gcacccacca ggaagatgtg gctgtcatct gctcagtgta 1140 ggtgggcatc atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200 atttactgtc tacatgactg catgggatga acactgatct tettetgece ttggactggg 1260 acttatactt ggtgcccctg attctcaggc cttcagagtt ggatcagaac ttacaacatc 1320 aggtctagtt ctcaggccat cagacatagt ttggaactac atcaccacct ttcctatgtc 1380 tccacattgc acacagcaga ttcccagcct ccataattgt gtgtatcaac tacttaaata 1440 catteteaca cacacacaca cacacacaca cacacataca cattege 1500 tgtttctctg aagaactctg acaaaataca gattttggta ctgaaagaga ttctagagga 1560 acggaatttt aaggataaat tttctgaatt ggttatgggg tttctgaaat tggctctata 1620 atctaattag atataaaatt ctggtaactt tatttacaat aataaagata gcactatgtg 1680 1686 ttcaaa

```
<210> 148
```

<213> Homo sapiens

<400> 148

Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly 1

Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg

Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val

Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu 50

Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu 75

Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys 90

Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr 110 105 100

<211> 347

<212> PRT

<220>

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu 125 Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro 135 Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr 155 Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys 200 Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly 215 Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp 240 235 Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg 245 Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly 295 Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu 310 Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr 330 His Gln Glu Asp Val Ala Val Ile Cys Ser Val 345 <210> 149 <211> 24 <212> DNA <213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> ttcagc		caccttcacc t	gcc			2	24
<210><211><211><212><212><213>	24 DNA	icial Sequer	nce				
<220> <223>	Descr oligo	iption of An nucleotide p	rtificial So probe	equence: Sy	nthetic		
<400> ggctca		aaataccact a	aggg				24
<210><211><211><212><213>	50 DNA	icial Seque	nce				
<220> <223>	Descr oligo	iption of A	rtificial S probe	equence: Sy	nthetic		
<400> gggcct	151 tccac	cgctgtgaag	ggcgggtgga	ggtggaacag	aaaggccagt		50
<210><211><212><213>	1427 DNA	sapiens		·			
<400>	acted	gttctatcga	ttgaattccc	cggggatcct	ctagagatcc	ctcgacctcg	60
20002	aacat	ccacaaacac	atagacagac	acatagacca	gctaccagga	agagicige	120
as saa	tassa	accatagact	tcatcacctc	cacaqccatc	etgeeeerge	tgtttggttg	100
cctgg	gcgtc	ttcggcctct	teeggetget	gcagtgggtg	cgcgggaagg	atacasaaat	300
gaatg	ctgtg	gtggtgatca	caggcgccac	ctcagggctg	ggcaaagaac	ccctagaaga	360
cttct	atgct	gcgggtgcta	aactggtgct	ctgtggccgg	aacggcgggg	accettactt	420
gctca	tcaga	gaacttaccg	cttctcatgc	caccaaggig	gaagagagta	agatectaca	480
ggtga	ccttc	gacctcacag	actctggggc	catagitgea	ataagetace	gtggtaccat	540
gtgct	ttggc	tatgtcgaca	tacttgtcaa	caatgetggg	accagetact	ttaaccaat	600
catgg	acacc	acagtggatg	tggacaagag	ggicalggag	addcaaddcc	acattatcac	660
tgctc	taacg	aaagcactcc atccagggca	agatagagat	teettteea	tcagcatato	cagcetecaa	720
catca	gcagc	caggetttet	ttaactatat	acataccasa	atggaacagt	atgaaattga	780
gcacg	caacc	atcagccccg	actacataca	caccaacete	tctqtaaatq	ccatcaccgc	840
ggtga	cegte	aggtatggag	ttatggagag	caccacagee	cagggccgaa	gccctgtgga	900
ggatg	gatet	gatgttcttg	ctactataaa	gaagaagaag	aaaqatqtqa	tectggetga	960
ggtgg	cccag	tccttggctg	tttatcttco	aactctggct	cctgagctct	tcttcagcct	1020
cttac	rectee	agggcagaa	aagagcggaa	atccaagaac	tcctagtact	ctgaccagcc	1080

agggccaggg cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcat 1140 ttgttgagac tttaatggag atttgtctca caagtgggaa agactgaaga aacacatctc 1200 gtgcagatet getggcagag gacaateaaa aacgacaaca agettettee cagggtgagg 1260 ggaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaacta gaaataaaca 1320 teteaaacag taaaaaaaaa aaaaaaggge ggeegegaet etagagtega eetgeagaag 1380 cttggccgcc atggcccaac ttgtttattg cagcttataa tggttac

<210> 153

<211> 310

<212> PRT

<213> Homo sapiens

<400> 153

Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly Cys

Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg Gly Lys

Ala Tyr Leu Arg Asn Ala Val Val Val Ile Thr Gly Ala Thr Ser Gly

Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala Gly Ala Lys Leu

Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu Glu Leu Ile Arg Glu 65

Leu Thr Ala Ser His Ala Thr Lys Val Gln Thr His Lys Pro Tyr Leu 90

Val Thr Phe Asp Leu Thr Asp Ser Gly Ala Ile Val Ala Ala Ala 100

Glu Ile Leu Gln Cys Phe Gly Tyr Val Asp Ile Leu Val Asn Asn Ala 120

Gly Ile Ser Tyr Arg Gly Thr Ile Met Asp Thr Thr Val Asp Val Asp 135

Lys Arg Val Met Glu Thr Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys 150 145

Ala Leu Leu Pro Ser Met Ile Lys Arg Arg Gln Gly His Ile Val Ala 170

Ile Ser Ser Ile Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr 185 180

Ala Ala Ser Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala 200 195

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr

	210					215					220					
Ile 225	His	Thr	Asn	Leu	Ser 230	Val	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240	
Tyr	Gly	Val	Met	Asp 245	Thr	Thr	Thr	Ala	Gln 250	Gly	Arg	Ser	Pro	Val 255	Glu	
Val	Ala	Gln	Asp 260	Val	Leu	Ala	Ala	Val 265	Gly	Lys	Lys	Lys	Lys 270	Asp	Val	
Ile	Leu	Ala 275	Asp	Leu	Leu	Pro	Ser 280	Leu	Ala	Val	Tyr	Leu 285	Arg	Thr	Leu	
Ala	Pro 290	Gly	Leu	Phe	Phe	Ser 295	Leu	Mėt	Ala	Ser	Arg 300	Ala	Arg	Lys	Glu	
Arg 305		Ser	Lys	Asn	Ser 310											
<21 <21 <22 <22 <40 ggt <21 <21 <21 <21 <21	0> 3> D 0 0> 1 gcta 0> 1 .1> 2 .2> D	4 NA rtif escr ligo 54 aac .55	ipti nucl	l Se on o eoti gcto	f Ar de p tg t	tifi robe ggc	cial	Seq	uenc	e: S	ynth	etic	·			24
<22 <22	23 > I	escr ligo	ripti	on o	of Ar .de p	rtifi	.cial	. Sec	quenc	ce: S	Synth	netio	2			
)0> 1 gggca		tgag	gcatt	cc											20
<2: <2:	10> 1 11> 2 12> I 13> <i>I</i>	24 ONA	ficia	al Se	equer	nce										
<22 <22	20> 23> I	Desci	ript	ion (of An	rtif:	icia:	l Se	quen	ce:	Synt]	heti	С			

```
<400> 156
                                                                24
tcatactgtt ccatctcggc acgc
<210> 157
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
                                                                50
aatggtgggg ccctagaaga gctcatcaga gaactcaccg cttctcatgc
<210> 158
<211> 1771
<212> DNA
<213> Homo sapiens
<400> 158
cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
aaaaaaaaaa acaccaaa cgctcgcagc cacaaaaggg atgaaatttc ttctggacat 120
cetectgett etecegttae tgategtetg etecetagag teettegtga agettittat 180
tectaagagg agaaaateag teaceggega aategtgetg attacaggag etgggeatgg 240
aattgggaga ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg gtgccaaggt 360
teatacettt gtggtagaet geageaaceg agaagatatt tacagetetg caaagaaggt 420
gaaggcagaa attggagatg ttagtatttt agtaaataat gctggtgtag tctatacatc 480
agatttgttt gctacacaag atcctcagat tgaaaagact tttgaagtta atgtacttgc 540
acatttctgg actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg cttactgttc 660
aagcaagttt getgetgttg gattteataa aactttgaca gatgaactgg etgeettaca 720
aataactgga gtcaaaacaa catgtctgtg tcctaatttc gtaaacactg gcttcatcaa 780
aaatccaagt acaagtttgg gacccactct ggaacctgag gaagtggtaa acaggctgat 840
gcatgggatt ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900
aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaacgaa aaatcagtgt 960
taagtttgat gcagttattg gatataaaat gaaagcgcaa taagcaccta gttttctgaa 1020
aactgattta ccaggtttag gttgatgtca tctaatagtg ccagaatttt aatgtttgaa 1080
 cttctgtttt ttctaattat ccccatttct tcaatatcat ttttgaggct ttggcagtct 1140
 tcatttacta ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200
 tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac tttattaaaa 1260
 taatttccaa gattatttgt ggctcacctg aaggctttgc aaaatttgta ccataaccgt 1320
 ttatttaaca tatatttta tttttgattg cacttaaatt ttgtataatt tgtgtttctt 1380
 tttctgttct acataaaatc agaaacttca agctctctaa ataaaatgaa ggactatatc 1440
 tagtggtatt tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500
 gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct gcacagggaa 1560
 gctagaggtg gatacacgtg ttgcaagtat aaaagcatca ctgggattta aggagaattg 1620
 agagaatgta cccacaaatg gcagcaataa taaatggatc acacttaaaa aaaaaaaaa 1680
 1771
 aaaaaaaaa aaaaaaaaa aaaaaaaaa a
```

<211> 300 <212> PRT <213> Homo sapiens

<400> 159

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Pro Leu Leu Ile Val

Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Arg Lys 20

Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile

Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val

Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys

Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn 90

Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly 105 100

Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp 120

Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn 130

Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr 155 150

Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His 165

Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala

Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile 200

Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly 215 210

Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 235 230

Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met 250 245

I	le	Phe	Ile	Pro 260	Ser	Ser	Ile	Ala	Phe 265	Leu	Thr	Thr	Leu	Glu 270	Arg	Ile	
L	eu	Pro	Glu 275	Arg	Phe	Leu	Ala	Val 280	Leu	Lys	Arg	Lys	Ile 285	Ser	Val	Lys	
P	he	Asp 290		Val	Ile	Gly	Tyr 295	Lys	Met	Lys	Ala	Gln 300					
<	21: 21:	0> 1 l> 2 2> I 3> P	23 ONA	icia	l Se	quen	ce										
<	22) 22:	3 > I		ipti nucl					Seq	uenc	e: S	ynth	etic				
		0> : gaag		gaaa	.ttgg	ag a	tg										23
<	21 21	0 > 3 1 > 3 2 > 1 3 > 3	24 DNA	icia	ıl Se	quen	ıce										
<	:22 :22	3 > 1		ripti onucl					. Sec	quenc	e: S	ynth	etic	:			
		0> cca		tcag	geetg	jtt t	acc										24
•	<21 <21	0> 1> 2> 3>	48 DNA	ficia	al Se	equer	nce										
	<22 <22	3>	Desc olig	ript: onucl	ion d leoti	of Ai ide p	rtifi	icial	l Sed	quenc	ce: S	Syntl	netio	2			
•	<40 gct	0> .ggt	162 gtag	tcta	ataca	atc a	agatt	tgtt	t g	ctaca	acaag	g at	cctc	ag			48
	<21 <21	.2>	2076 DNA	sap	iens												
		200	163 Jegte	cgc	ggac	gcg :	tggg cgcc	tega:	ct a	gttc: gaga:	taga! gatg!	t cg	cgag ggtg	cggc ccat	cgc gtg	ccgcggc gaaggtc	: 60 ; 120

```
attgtttcgc tggtcctgtt gatgcctggc ccctgtgatg ggctgtttcg ctccctatac 180
agaagtgttt ccatgccacc taagggagac tcaggacagc cattatttct caccccttac 240
attgaagetg ggaagateca aaaaggaaga gaattgagtt tggteggeee ttteecagga 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
ttettetggt tetteccage teagatacag ceagaagatg ceceagtagt tetetggeta 420
cagggtgggc cgggaggttc atccatgttt ggactctttg tggaacatgg gccttatgtt 480
gtcacaagta acatgacett gegtgacaga gaetteeeet ggaceacaac geteteeatg 540
ctttacattg acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600
gcagtcaatg aggacgatgt agcacgggat ttatacagtg cactaattca gtttttccag 660
atatttcctg aatataaaaa taatgacttt tatgtcactg gggagtctta tgcagggaaa 720
tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
aacctgaacg gaattgctat tggagatgga tattctgatc ccgaatcaat tatagggggc 840
tatgcagaat tcctgtacca aattggcttg ttggatgaga agcaaaaaa gtacttccag 900
aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggtttga ggcctttgaa 960
atactggata aactactaga tggcgactta acaagtgatc cttcttactt ccagaatgtt 1020
acaggatgta gtaattacta taactttttg cggtgcacgg aacctgagga tcagctttac 1080
tatgtgaaat ttttgtcact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
tttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200
ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
atcatcgtgg cagctgccct gacagagcgc tccttgatgg gcatggactg gaaaggatcc 1320
caggaataca agaaggcaga aaaaaaagtt tggaagatct ttaaatctga cagtgaagtg 1380
gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat cagaggtttt 1560
cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatcttt 1620
tcatatctgc aagatttttt tcatcaataa aaattatcct tgaaacaagt gagcttttgt 1680
ttttgggggg agatgtttac tacaaaatta acatgagtac atgagtaaga attacattat 1740
ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800
ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa agtgcagttg 1860
taacaaacaa agctgtaaca tctttttctg ccaataacag aagtttggca tgccgtgaag 1920
gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaat ggatgaagct 1980
ataatagttt tggggaaaag attctcaaat gtataaagtc ttagaacaaa agaattcttt 2040
gaaataaaaa tattatatat aaaagtaaaa aaaaaa
```

<210> 164

<211> 476

<212> PRT

<213> Homo sapiens

<400> 164

Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met

1 5 10 15

Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser 20 25 30

Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr 35 40 45

Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly 50 55 60

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

65					70					75					80
Asn	Lys	Thr	Tyr	Asn 85	Ser	Asn	Leu	Phe	Phe 90	Trp	Phe	Phe	Pro	Ala 95	Gln
Ile	Gln	Pro	Glu 100	Asp	Ala	Pro	Val	Val 105	Leu	Trp	Leu	Gln	Gly 110	Gly	Pro
Gly	Gly	Ser 115	Ser	Met	Phe	Gly	Leu 120	Phe	Val	Glu	His	Gly 125	Pro	Tyr	Val
Val	Thr 130	Ser	Asn	Met	Thr	Leu 135	Arg	Asp	Arg	Asp	Phe 140	Pro	Trp	Thr	Thr
Thr 145	Leu	Ser	Met	Leu	Tyr 150	Ile	Asp	Asn	Pro	Val 155	Gly	Thr	Gly	Phe	Ser 160
Phe	Thr	Asp	Asp	Thr 165	His	Gly	Tyr	Ala	Val 170	Asn	Glu	Asp	Asp	Val 175	Ala
Arg	Asp	Leu	Tyr 180	Ser	Ala	Leu	Ile	Gln 185	Phe	Phe	Gln	Ile	Phe 190	Pro	Glu
Tyr	Lys	Asn 195	Asn	Asp	Phe	Tyr	Val 200	Thr	Gly	Glu	Ser	Tyr 205	Ala	Gly	Lys
Tyr	Val 210	Pro	Ala	Ile	Ala	His 215	Leu	Ile	His	Ser	Leu 220	Asn	Pro	Val	Arg
Glu 225	Val	Lys	Ile	Asn	Leu 230	Asn	Gly	Ile	Ala	Ile 235	Gly	Asp	Gly	Tyr	Ser 240
Asp	Pro	Glu	Ser	Ile 245	Ile	Gly	Gly	Tyr	Ala 250	Glu	Phe	Leu	Tyr	Gln 255	Ile
Gly	Leu	Leu	Asp 260		Lys	Gln	Lys	Lys 265		Phe	Gln	Lys	Gln 270		His
Glu	Cys	Ile 275	Glu	His			Lys 280			Trp	Phe	Glu 285		Phe	Glu
Ile	Leu 290	Asp	Lys	Leu	Leu	Asp 295	Gly	Asp	Leu	Thr	Ser 300		Pro	Ser	Tyr
Phe 305		Asn	Val	Thr	Gly 310		Ser	Asn	Tyr	Tyr 315		Phe	Leu	Arg	Cys 320
Thr	Glu	Pro	Glu	Asp 325		Leu	Tyr	Tyr	Val 330		Phe	Leu	Ser	Leu 335	Pro
Glu	Val	Arg	Gln 340		Ile	His	Val	Gly 345		Gln	Thr	Phe	Asn 350	Asp	Gly

Thr	Ile	Val 355	Glu	Lys	Tyr	Leu	Arg 360	Glu	Asp	Thr	Val	Gln 365	Ser	Val	Lys	
Pro	Trp 370	Leu	Thr	Glu	Ile	Met 375	Asn	Asn	Tyr	Lys	Val 380	Leu	Ile	Tyr	Asn	
Gly 385	Gln	Leu	Asp	Ile	Ile 390	Val	Ala	Ala	Ala	Leu 395	Thr	Glu	Arg	Ser	Leu 400	
Met	Gly	Met	Asp	Trp 405	Lys	Gly	Ser	Gln	Glu 410	Tyr	Lys	Lys	Ala	Glu 415	Lys	
Lys	Val	Trp	Lys 420	Ile	Phe	Lys	Ser	Asp 425	Ser	Glu	Val	Ala	Gly 430	Tyr	Ile	
Arg	Gln	Ala 435	Gly	Asp	Phe	His	Gln 440	Val	Ile	Ile	Arg	Gly 445	Gly	Gly	His	
Ile	Leu 450	Pro	Tyr	Asp	Gln	Pro 455		Arg	Ala	Phe	Asp 460	Met	Ile	Asn	Arg	
Phe 465	Ile	Tyr	Gly	Lys	Gly 470	Trp	Asp	Pro	Tyr	Val 475	Gly					
<210> 165 <211> 24 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
	0> 1 catg	.65 jcca	ccta	aggg	ag a	.ctc										24
<210> 166 <211> 24 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
	00> 1 gatga	l66 lggt	gtgo	caato	ggc t	ggc										24
<210> 167 <211> 24 <212> DNA <213> Artificial Sequence																

<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 167 24 agctctcaga ggctggtcat aggg <210> 168 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 168 50 gtcggccctt tcccaggact gaacatgaag agttatgccg gcttcctcac <210> 169 <211> 2477 <212> DNA <213> Homo sapiens <400> 169 cgagggcttt tccggctccg gaatggcaca tgtgggaatc ccagtcttgt tggctacaac 60 atttttccct ttcctaacaa gttctaacag ctgttctaac agctagtgat caggggttct 120 tcttgctgga gaagaaaggg ctgagggcag agcagggcac tctcactcag ggtgaccagc 180 tccttgcctc tctgtggata acagagcatg agaaagtgaa gagatgcagc ggagtgaggt 240 gatggaagtc taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300 cctggagagc ctgggggagg gcctgcctaa caagctttca aaaaacagga gcgacttcca 360 ctgggctggg ataagacgtg ccggtaggat agggaagact gggtttagtc ctaatatcaa 420 attgactggc tgggtgaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480 tatagcataa aggctagaga ccaaaataga taacaggatt ccctgaacat tcctaagagg 600 gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660 accaggatgg ggaccctggg tcaggccagc ctctttgctc ctcccggaaa ttatttttgg 720 tctgaccact ctgccttgtg ttttgcagaa tcatgtgagg gccaaccggg gaaggtggag 780 cagatgagca cacacaggag cogtotooto acogoogooo ototoagoat ggaacagagg 840 cagecetgge ecegggeeet ggaggtggae ageegetetg tggteetget eteagtggte 900 tgggtgctgc tggccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960 aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020 ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080 acagggccag aagaggacaa caagtctcgt tacccgcccc tcatcgtgca gccctgcagc 1140 gaagtgctca ccctcaccaa caatgtcaac aagctgctca tcattgacta ctctgagaac 1200 cgcctgctgg cctgtgggag cctctaccag ggggtctgca agctgctgcg gctggatgac 1260 ctcttcatcc tggtggagcc atcccacaag aaggagcact acctgtccag tgtcaacaag 1320 acgggcacca tgtacggggt gattgtgcgc tctgagggtg aggatggcaa gctcttcatc 1380 ggcacggctg tggatgggaa gcaggattac ttcccgaccc tgtccagccg gaagctgccc 1440 cgagaccctg agtcctcagc catgctcgac tatgagctac acagcgattt tgtctcctct 1500 ctcatcaaga tcccttcaga caccctggcc ctggtctccc actttgacat cttctacatc 1560 tacggctttg ctagtggggg ctttgtctac tttctcactg tccagcccga gacccctgag 1620 ggtgtggcca tcaactccgc tggagacctc ttctacacct cacgcatcgt gcggctctgc 1680

aaggatgacc ccaagttcca ctcatacgtg tccctgcct tcggctgcac ccgggccggg
<400> 170 Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr 1 5 10 15
Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly 20 25 30
Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu 35 40 45
Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala 50 55 60
Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Trp Val 65 70 75 80
Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His 85 90 95
Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly 100 105 110
Thr Gly Ala Val Tyr Val Gly Ala Ile Asn Arg Val Tyr Lys Leu Thr 115 120 125
Gly Asn Leu Thr Ile Gln Val Ala His Lys Thr Gly Pro Glu Glu Asp 130 135 140
Asn Lys Ser Arg Tyr Pro Pro Leu Ile Val Gln Pro Cys Ser Glu Val 145 150 155 160

Leu Thr Leu Thr Asn Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser

Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys 185 180 Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys 200 Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly 210 Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr 230 Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His 260 Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala 280 Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val 315 · Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg 330 325 Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser 375 370 Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr 390 His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala 405 Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu 425 Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

450)				455					460					
Gln Pro	Leu	Gly	Gly	Ser 470	Thr	Pro	Val	Glu	Gly 475	Leu	Thr	Leu	Tyr	Thr 480	
Thr Sei	Arg	Asp	Arg 485	Met	Thr	Ser	Val	Ala 490	Ser	Tyr	Val	Tyr	Asn 495	Gly	
Tyr Se	Val	Val 500	Phe	Val	Gly	Thr	Lys 505	Ser	Gly	Lys	Leu	Lys 510	Lys	Val	
Arg Va	. Tyr 515	Glu	Phe	Arg	Cys	Ser 520	Asn	Ala	Ile	His	Leu 525	Leu	Ser	Lys	
Glu Sei		Leu	Glu	Gly	Ser 535	Tyr	Trp	Trp	Arg	Phe 540	Asn	Tyr	Arg	Gln	
Leu Ty: 545	. Phe	Leu	Gly	Glu 550	Gln	Arg									
<pre><210> 171 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 171 tggaataccg cctcctgcag <210> 172 <211> 24 <212> DNA</pre>												20			
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic															
oligonucleotide probe <400> 172 cttctgccct ttggagaaga tggc												24			
<210><211><211><212><213>	43 DNA	icia	al Se	quen	ce										
<220> <223>	Desci oligo						Seq	Juenc	e: S	ynth	etic	:			

```
<400> 173
                                                                  42
ggactcactg gcccaggcct tcaatatcac cagccaggac gat
<210> 174
<211> 3106
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1683)
<223> a, t, c or g
<400> 174
aggeteeege gegeggetga gtgeggaetg gagtgggaac cegggteeec gegettagag 60
aacacgcgat gaccacgtgg agcctccggc ggaggccggc ccgcacgctg ggactcctgc 120
tgctggtcgt cttgggcttc ctggtgctcc gcaggctgga ctggagcacc ctggtccctc 180
tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggaacttc atgctggagg 240
attocacctt ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300
ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc acctatgttc 360
cgtggaacct gcatgagcca gaaagaggca aatttgactt ctctgggaac ctggacctgg 420
aggeettegt eetgatggee geagagateg ggetgtgggt gattetgegt eeaggeeeet 480
acatetgeag tgagatggae eteggggget tgeecagetg getaeteeaa gaceetggea 540
tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
tggagaatga atatggttcc tataataaag accccgcata catgccctac gtcaagaagg 720
cactggagga ccgtggcatt gtggaactgc tcctgacttc agacaacaag gatgggctga 780
gcaaggggat tgtccaggga gtcttggcca ccatcaactt gcagtcaaca cacgagctgc 840
agctactgac cacctttctc ttcaacgtcc aggggactca gcccaagatg gtgatggagt 900
actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
ttttgaaaac cgtgtctgcc attgtggacg ccggctcctc catcaacctc tacatgttcc 1020
acggaggcac caactttggc ttcatgaatg gagccatgca cttccatgac tacaagtcag 1080
atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
acatqaaqet teqaqaette tteggeteca teteaggeat ceeteteeet ceeceacetg 1200
accttcttcc caagatgccg tatgagccct taacgccagt cttgtacctg tctctgtggg 1260
acgeceteaa gtacetgggg gagecaatea agtetgaaaa geecateaae atggagaace 1320
tgccagtcaa tgggggaaat ggacagtcct tcgggtacat tctctatgag accagcatca 1380
cctcgtctgg catcctcagt ggccacgtgc atgatcgggg gcaggtgttt gtgaacacag 1440
tatccatagg attcttggac tacaagacaa cgaagattgc tgtccccctg atccagggtt 1500
acaccgtgct gaggatcttg gtggagaatc gtgggcgagt caactatggg gagaatattg 1560
atgaccagcg caaaggetta attggaaate tetatetgaa tgatteaeee etgaaaaaet 1620
tcagaatcta tagcctggat atgaagaaga gcttctttca gaggttcggc ctggacaaat 1680
ggngttccct cccagaaaca cccacattac ctgctttctt cttgggtagc ttgtccatca 1740
gctccacgcc ttgtgacacc tttctgaagc tggagggctg ggagaagggg gttgtattca 1800
tcaatggcca gaaccttgga cgttactgga acattggacc ccagaagacg ctttacctcc 1860
caqqtccctq qttqaqcaqc gqaatcaacc aggtcatcgt ttttgaggag acgatggcgg 1920
gccctgcatt acagttcacg gaaacccccc acctgggcag gaaccagtac attaagtgag 1980
eggtggcace cectectget ggtgccagtg ggagactgee geeteetett gacetgaage 2040
ctggtggctg ctgccccacc cctcactgca aaagcatctc cttaagtagc aacctcaggg 2100
actgggggct acagtctgcc cctgtctcag ctcaaaaccc taagcctgca gggaaaggtg 2160
ggatggctct gggcctggct ttgttgatga tggctttcct acagccctgc tcttgtgccg 2220
aggetgtegg getgteteta gggtgggage agetaateag ategeeeage etttggeeet 2280
```

cagaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340 qactcaqqcq tqctctttqc tqgttcctgg gaggcttggc cacatccctc atggccccat 2400 tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg gtgtctcacc 2460 tgagetgaet ttgttettee tteacaaeet tetgageett etttgggatt etggaaggaa 2520 ctcggcgtga gaaacatgtg acttcccctt tcccttccca ctcgctgctt cccacagggt 2580 gacaggctgg gctggagaaa cagaaatcct caccctgcgt cttcccaagt tagcaggtgt 2640 ctctggtgtt cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700 catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2760 catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820 agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag 2880 tcctggcaga agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct 2940 cagtggcccc cgctccccac cccccacgcc cgaacagcag gggcagagca gccctccttc 3000 gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac acctggcttg 3060 ggctcactgt cctgagttgc agtaaagcta taaccttgaa tcacaa <210> 175 <211> 636 <212> PRT <213> Homo sapiens

<220>

<221> MOD RES

<222> (539)

<223> Any amino acid

<400> 175

Met Thr Thr Trp Ser Leu Arg Arg Arg Pro Ala Arg Thr Leu Gly Leu 1 5 10 15

Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp 20 25 30

Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln 35 40 45

Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe 50 55 60

Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp
65 70 75 80

Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Thr Tyr 85 90 95

Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser 100 105 110

Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
115 120 125

Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp 130 135 140 Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp 165 His Leu Met Ser Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro Ile Ile Ala Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp Pro Ala Tyr Met Pro Tyr Val Lys Lys Ala Leu Glu Asp Arg Gly Ile 215 Val Glu Leu Leu Thr Ser Asp Asn Lys Asp Gly Leu Ser Lys Gly 225 Ile Val Gln Gly Val Leu Ala Thr Ile Asn Leu Gln Ser Thr His Glu 250 245 Leu Gln Leu Leu Thr Thr Phe Leu Phe Asn Val Gln Gly Thr Gln Pro 265 Lys Met Val Met Glu Tyr Trp Thr Gly Trp Phe Asp Ser Trp Gly Gly 275 Pro His Asn Ile Leu Asp Ser Ser Glu Val Leu Lys Thr Val Ser Ala 295 Ile Val Asp Ala Gly Ser Ser Ile Asn Leu Tyr Met Phe His Gly Gly 315 310 305 Thr Asn Phe Gly Phe Met Asn Gly Ala Met His Phe His Asp Tyr Lys Ser Asp Val Thr Ser Tyr Asp Tyr Asp Ala Val Leu Thr Glu Ala Gly 345 Asp Tyr Thr Ala Lys Tyr Met Lys Leu Arg Asp Phe Phe Gly Ser Ile 360 355 Ser Gly Ile Pro Leu Pro Pro Pro Pro Asp Leu Leu Pro Lys Met Pro 375 Tyr Glu Pro Leu Thr Pro Val Leu Tyr Leu Ser Leu Trp Asp Ala Leu 385 Lys Tyr Leu Gly Glu Pro Ile Lys Ser Glu Lys Pro Ile Asn Met Glu 410 405 Asn Leu Pro Val Asn Gly Gly Asn Gly Gln Ser Phe Gly Tyr Ile Leu 425

Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His 440 435 Asp Arg Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp 455 Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val 470 475 465 Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn 490 485 Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp 510 505 Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser 515 Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr 535 Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr 555 550 545 Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val 570 Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln 590 585 580 Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln 600 Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr 615 Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys 630 625 <210> 176 <211> 2505 <212> DNA <213> Homo sapiens <400> 176 ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg ggtcccagga 60 ccctggtgag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120 aaggggagca aagccgggct cggcccgagg cccccaggac ctccatctcc caatgttgga 180 ggaatccgac acgtgacggt ctgtccgccg tctcagacta gaggagcgct gtaaacgcca 240 tggctcccaa gaagctgtcc tgccttcgtt ccctgctgct gccgctcagc ctgacgctac 300

tgctgcccca ggcagacact cggtcgttcg tagtggatag gggtcatgac cggtttctcc 360 tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcggg 420

```
tgctttgggc cgaccggctt ttgaagatgc gatggagcgg cctcaacgcc atacagtttt 480
atgtgccctg gaactaccac gagccacagc ctggggtcta taactttaat ggcagccggg 540
acctcattgc ctttctgaat gaggcagctc tagcgaacct gttggtcata ctgagaccag 600
gaccttacat ctgtgcagag tgggagatgg ggggtctccc atcctggttg cttcgaaaac 660
ctgaaattca tctaagaacc tcagatccag acttccttgc cgcagtggac tcctggttca 720
aggtettget geccaagata tatecatgge tttateacaa tgggggeaac ateattagea 780
ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttcagctac atgaggcact 840
tggctgggct cttccgtgca ctgctaggag aaaagatctt gctcttcacc acagatgggc 900
ctgaaggact caagtgtggc teeeteeggg gaetetatae caetgtagat tttggeecag 960
ctgacaacat gaccaaaatc tttaccctgc ttcggaagta tgaaccccat gggccattgg 1020
taaactctga gtactacaca ggctggctgg attactgggg ccagaatcac tccacacggt 1080
ctgtgtcagc tgtaaccaaa ggactagaga acatgctcaa gttgggagcc agtgtgaaca 1140
tgtacatgtt ccatggaggt accaactttg gatattggaa tggtgccgat aagaagggac 1200
getteettee gattactace agetatgact atgatgeace tatatetgaa geaggggace 1260
ccacacctaa gctttttgct cttcgagatg tcatcagcaa gttccaggaa gttcctttgg 1320
gacetttace teeceegage eccaagatga tgettggace tgtgactetg cacetggttg 1380
ggcatttact ggctttccta gacttgcttt gcccccgtgg gcccattcat tcaatcttgc 1440
caatgacett tgaggetgte aageaggace atggetteat gttgtacega acetatatga 1500
cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc catgaccgtg 1560
cctatgtgat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg agagacaaac 1620
tatttttgac ggggaaactg gggtccaaac tggatatctt ggtggagaac atggggaggc 1680
tcagctttgg gtctaacagc agtgacttca agggcctgtt gaagccacca attctggggc 1740
aaacaateet tacccagtgg atgatgttee etetgaaaat tgataacett gtgaagtggt 1800
ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc cccacattct 1860
actccaaaac atttccaatt ttaggctcag ttggggacac atttctatat ctacctggat 1920
ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccggtactgg acaaagcagg 1980
ggccacaaca gaccctctac gtgccaagat tcctgctgtt tcctagggga gccctcaaca 2040
aaattacatt gctggaacta gaagatgtac ctctccagcc ccaagtccaa tttttggata 2100
agcctatcct caatagcact agtactttgc acaggacaca tatcaattcc ctttcagctg 2160
atacactgag tgcctctgaa ccaatggagt taagtgggca ctgaaaggta ggccgggcat 2220
ggtggctcat gcctgtaatc ccagcacttt gggaggctga gacgggtgga ttacctgagg 2280
tcaggacttc aagaccagcc tggccaacat ggtgaaaccc cgtctccact aaaaatacaa 2340
aaattageeg ggegtgatgg tgggeacete taateecage taettgggag getgagggea 2400
ggagaattgc ttgaatccag gaggcagagg ttgcagtgag tggaggttgt accactgcac 2460
                                                                   2505
tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaa
```

<210> 177

<211> 654

<212> PRT

<213> Homo sapiens

<400> 177

Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu

1 5 10 15

Ser Leu Thr Leu Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val 20 25 30

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr 35 40 45

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala
50 55 60

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp 120 Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His 135 Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe 150 Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly 170 Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala 180 Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Thr Val Asp Phe Gly Pro Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro 250 His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr 260 265 Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly 280 Leu Glu Asn Met Leu Lys Leu Gly Ala Ser Val Asn Met Tyr Met Phe 290 His Gly Gly Thr Asn Phe Gly Tyr Trp Asn Gly Ala Asp Lys Lys Gly 305 Arg Phe Leu Pro Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro Ile Ser 330 Glu Ala Gly Asp Pro Thr Pro Lys Leu Phe Ala Leu Arg Asp Val Ile

			340					345					350		
Ser	Lys	Phe 355	Gln	Glu	Val	Pro	Leu 360	Gly	Pro	Leu	Pro	Pro 365	Pro	Ser	Pro
Lys	Met 370	Met	Leu	Gly	Pro	Val 375	Thr	Leu	His	Leu	Val 380	Gly	His	Leu	Leu
Ala 385	Phe	Leu	Asp	Leu	Leu 390	Cys	Pro	Arg	Gly	Pro 395	Ile	His	Ser	Ile	Leu 400
Pro	Met	Thr	Phe	Glu 405	Ala	Val	Lys	Gln	Asp 410	His	Gly	Phe	Met	Leu 415	Tyr
Arg	Thr	Tyr	Met 420	Thr	His	Thr	Ile	Phe 425	Glu	Pro	Thr	Pro	Phe 430	Trp	Val
Pro	Asn	Asn 435	Gly	Val	His	Asp	Arg 440	Ala	Tyr	Val	Met	Val 445	Asp	Gly	Val
Phe	Gln 450	Gly	Val	Val	Glu	Arg 455	Asn	Met	Arg	Asp	Lys 460	Leu	Phe	Leu	Thr
Gly 465	Lys	Leu	Gly	Ser	Lys 470	Leu	Asp	Ile	Leu	Val 475	Glu	Asn	Met	Gly	Arg 480
Leu	Ser	Phe	Gly	Ser 485	Asn	Ser	Ser	Asp	Phe 490	Lys	Gly	Leu	Leu	Lys 495	Pro
Pro	Ile	Leu	Gly 500	Gln	Thr	Ile	Leu	Thr 505	Gln	Trp	Met	Met	Phe 510	Pro	Leu
Lys	Ile	Asp 515	Asn	Leu	Val	Lys	Trp 520	Trp	Phe	Pro	Leu	Gln 525	Leu	Pro	Lys
Trp	Pro 530	Tyr	Pro	Gln	Ala	Pro 535	Ser	Gly	Pro	Thr	Phe 540	Tyr	Ser	Lys	Thr
Phe 545	Pro	Ile	Leu	Gly	Ser 550	Val	Gly	Asp	Thr	Phe 555	Leu	Tyr	Leu	Pro	Gly 560
Trp	Thr	Lys	Gly	Gln 565	Val	Trp	Ile	Asn	Gly 570	Phe	Asn	Leu	Gly	Arg 575	Tyr
Trp	Thr	Lys	Gln 580	Gly	Pro	Gln	Gln	Thr 585	Leu	Tyr	Val	Pro	Arg 590	Phe	Leu
Leu	Phe	Pro 595	Arg	Gly	Ala	Leu	Asn 600	Lys	Ile	Thr	Leu	Leu 605	Glu	Leu	Glu
Asp	Val 610	Pro	Leu	Gln	Pro	Gln 615	Val	Gln	Phe	Leu	Asp 620	Lys	Pro	Ile	Leu

Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala 625 630 635 640	
Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His 645 650	
<210> 178 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 178 tggctactcc aagaccctgg catg	24
<210> 179 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 179 tggacaaatc cccttgctca gccc	24
<210> 180 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 180 gggcttcacc gaagcagtgg acctttattt tgaccacctg atgtccaggg	50
<210> 181 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 181 ccagctatga ctatgatgca cc	22

```
<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 182
                                                                   24
tggcacccag aatggtgttg gctc
<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
    oligonucleotide probe
<400> 183
cgagatgtca tcagcaagtt ccaggaagtt cctttgggac ctttacctcc
                                                                   50
<210> 184
<211> 1947
<212> DNA
<213> Homo sapiens
<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag gtatttgagt 60
gcacccacaa tatggcttac atgttgaaaa agcttctcat cagttacata tccattattt 120
gtgtttatgg ctttatctgc ctctacactc tcttctggtt attcaggata cctttgaagg 180
aatattettt egaaaaagte agagaagaga geagttttag tgacatteea gatgteaaaa 240
acgattttgc gttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300
ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt ttgaaccatg 360
agtggacatt tgaaaaactc aggcagcaca tttcacgcaa cgcccaggac aagcaggagt 420
tgcatctgtt catgctgtcg ggggtgcccg atgctgtctt tgacctcaca gacctggatg 480
tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
acctccaaga gctccacctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattcctg 660
cctgggtgta tttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaagttagt cattcataat gacggcacta aactcttggt actgaacagc cttaagaaaa 900
tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtc caataacatt cgcacaattg 1020
aggaaatcat cagtttccag catttaaaac gactgacttg tttaaaatta tggcataaca 1080
aaattgttac tattcctccc tctattaccc atgtcaaaaa cttggagtca ctttatttct 1140
ctaacaacaa gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200
tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg cttcagaacc 1260
tgcagcattt gcatatcact gggaacaaag tggacattct gccaaaacaa ttgtttaaat 1320
```

gcataaagtt gaggactttg aatctgggac agaactgcat cacctcactc ccagagaaag 1380 ttggtcagct ctcccagctc actcagctgg agctgaaggg gaactgcttg gaccgcctgc 1440 cagcccagct gggccagtgt cggatgctca agaaaagcgg gcttgttgtg gaagatcacc 1500 tttttgatac cctgccactc gaagtcaaag aggcattgaa tcaagacata aatattccct 1560 ttgcaaatgg gatttaaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620 agattgcaag tgctcacgta caagttatta caagataatg cattttagga gtagatacat 1680 cttttaaaat aaaacagaga ggatgcatag aaggctgata gaagacataa ctgaatgttc 1740 aatgtttgta gggttttaag tcattcattt ccaaatcatt ttttttttc ttttggggaa 1800 agggaaggaa aaattataat cactaatctt ggttctttt aaattgttg taacttggat 1860 gctgccgcta ctgaatgttt acaaaatag aaaaaaaa 1920 ttttcttact aaaaaaaaaa aaaaaaaa 1947

<210> 185

<211> 501

<212> PRT

<213> Homo sapiens

<400> 185

Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile Ile 1 5 10 15

Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu Phe Arg 20 25 30

Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu Glu Ser Ser 35 40 45

Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala Phe Leu Leu His 50 55 60

Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys Arg Phe Gly Val Phe 65 70 75 80

Leu Ser Glu Val Ser Glu Asn Lys Leu Arg Glu Ile Ser Leu Asn His 85 90 95

Glu Trp Thr Phe Glu Lys Leu Arg Gln His Ile Ser Arg Asn Ala Gln
100 105 110

Asp Lys Gln Glu Leu His Leu Phe Met Leu Ser Gly Val Pro Asp Ala 115 120 125

Val Phe Asp Leu Thr Asp Leu Asp Val Leu Lys Leu Glu Leu Ile Pro 130 135 140

Glu Ala Lys Ile Pro Ala Lys Ile Ser Gln Met Thr Asn Leu Gln Glu 145 150 155 160

Leu His Leu Cys His Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser 165 170 175

Phe Leu Arg Asp His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu 200 Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu 215 Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser 235 230 Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn 265 Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln 295 Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile 315 305 Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn 325 Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val 360 Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile 375 Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu 390 385 His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys 410 Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg 455 460 Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

465	470	475		480
Leu Pro Leu Glu Val 485		Leu Asn Gln Asp	Ile Asn Ile 495	Pro
Phe Ala Asn Gly Ile 500	:			
<210> 186 <211> 21 <212> DNA <213> Artificial Se	equence	·		
<220> <223> Description of oligonucleoti		Sequence: Synth	etic	
<400> 186 cctccctcta ttacccat	gt c			21
<210> 187 <211> 24 <212> DNA <213> Artificial Se	equence			
<220> <223> Description of oligonucleotic		Sequence: Synth	etic	
<400> 187 gaccaacttt ctctggga	igt gagg			24
<210> 188 <211> 47 <212> DNA <213> Artificial Se	equence			
<220> <223> Description of oligonucleot:		Sequence: Synth	etic	
<400> 188 gtcactttat ttctcta	aca acaagctcg	a atccttacca gtg	gcag	47
<210> 189 <211> 2917 <212> DNA <213> Homo sapiens				
<400> 189 cccacgcgtc cggccttc acttttttta tttcttt aagacatttg tgtttta	ttt tccatctct	g ggccagcttg gga	tcctagg ccgo	cctggg 120

acattggcat tgcttagtgg ttgtgtgggg agggagacca cgtgggctca gtgcttgctt 240 gcacttatct gcctaggtac atcgaagtct tttgacctcc atacagtgat tatgcctgtc 300 ategetggtg gtateetgge ggeettgete etgetgatag ttgtegtget etgtetttae 360 ttcaaaatac acaacgcgct aaaagctgca aaggaacctg aagctgtggc tgtaaaaaat 420 cacaacccag acaaggtgtg gtgggccaag aacagccagg ccaaaaccat tgccacggag 480 tettgteetg ecetgeagtg etgtgaagga tatagaatgt gtgeeagttt tgatteeetg 540 ccaccttgct gttgcgacat aaatgagggc ctctgagtta ggaaaggctc ccttctcaaa 600 gcagagccct gaagacttca atgatgtcaa tgaggccacc tgtttgtgat gtgcaggcac 660 agaagaaagg cacagctccc catcagtttc atggaaaata actcagtgcc tgctgggaac 720 cagctgctgg agatccctac agagagcttc cactgggggc aacccttcca ggaaggagtt 780 ggggagagag aaccctcact gtggggaatg ctgataaacc agtcacacag ctgctctatt 840 ctcacacaaa tctacccctt gcgtggctgg aactgacgtt tccctggagg tgtccagaaa 900 gctgatgtaa cacagagcct ataaaagctg tcggtcctta aggctgccca gcgccttgcc 960 aaaatggagc ttgtaagaag gctcatgcca ttgaccctct taattctctc ctgtttggcg 1020 gagetgacaa tggeggagge tgaaggeaat geaagetgea eagteagtet agggggtgee 1080 aatatggcag agacccacaa agccatgatc ctgcaactca atcccagtga gaactgcacc 1140 tggacaatag aaagaccaga aaacaaaagc atcagaatta tetttteeta tgtecagett 1200 gatccagatg gaagctgtga aagtgaaaac attaaagtct ttgacggaac ctccagcaat 1260 gggcctctgc tagggcaagt ctgcagtaaa aacgactatg ttcctgtatt tgaatcatca 1320 tccagtacat tgacgtttca aatagttact gactcagcaa gaattcaaag aactgtcttt 1380 gtcttctact acttcttctc tcctaacatc tctattccaa actgtggcgg ttacctggat 1440 accttggaag gatccttcac cagccccaat tacccaaagc cgcatcctga gctggcttat 1500 tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt caaagagatt 1560 ttcctagaaa tagacaaaca gtgcaaattt gattttcttg ccatctatga tggcccctcc 1620 accaactctg gcctgattgg acaagtctgt ggccgtgtga ctcccacctt cgaatcgtca 1680 tcaaactctc tgactgtcgt gttgtctaca gattatgcca attcttaccg gggattttct 1740 gettectaca ecteaattta tgeagaaaac ateaacacta catetttaac ttgetettet 1800 gacaggatga gagttattat aagcaaatcc tacctagagg cttttaactc taatgggaat 1860 aacttgcaac taaaagaccc aacttgcaga ccaaaattat caaatgttgt ggaattttct 1920 gtccctctta atggatgtgg tacaatcaga aaggtagaag atcagtcaat tacttacacc 1980 aatataatca ccttttctgc atcctcaact tctgaagtga tcacccgtca gaaacaactc 2040 cagattattg tgaagtgtga aatgggacat aattctacag tggagataat atacataaca 2100 gaagatgatg taatacaaag tcaaaatgca ctgggcaaat ataacaccag catggctctt 2160 tttgaatcca attcatttga aaagactata cttgaatcac catattatgt ggatttgaac 2220 caaactettt ttgtteaagt tagtetgeae aceteagate caaatttggt ggtgtttett 2280 gatacctgta gagcctctcc cacctctgac tttgcatctc caacctacga cctaatcaag 2340 agtggatgta gtcgagatga aacttgtaag gtgtatccct tatttggaca ctatgggaga 2400 ttccagttta atgcctttaa attcttgaga agtatgagct ctgtgtatct gcagtgtaaa 2460 gttttgatat gtgatagcag tgaccaccag tctcgctgca atcaaggttg tgtctccaga 2520 agcaaacgag acatttette atataaatgg aaaacagatt ecateatagg acceattegt 2580 ctgaaaaggg atcgaagtgc aagtggcaat tcaggatttc agcatgaaac acatgcggaa 2640 gaaactccaa accagccttt caacagtgtg catctgtttt ccttcatggt tctagctctg 2700 aatgtggtga ctgtagcgac aatcacagtg aggcattttg taaatcaacg ggcagactac 2760 aaataccaga agctgcagaa ctattaacta acaggtccaa ccctaagtga gacatgtttc 2820 tccaggatgc caaaggaaat gctacctcgt ggctacacat attatgaata aatgaggaag 2880 2917 ggcctgaaag tgacacacag gcctgcatgt aaaaaaa

<210> 190

<211> 607

<212> PRT

<213> Homo sapiens

Met 1	Glu	Leu	Val	Arg 5	Arg	Leu	Met	Pro	Leu 10	Thr	Leu	Leu	Ile	Leu 15	Ser
Cys	Leu	Ala	Glu 20	Leu	Thr	Met	Ala	Glu 25	Ala	Glu	Gly	Asn	Ala 30	Ser	Cys
Thr	Val	Ser 35	Leu	Gly	Gly	Ala	Asn 40	Met	Ala	Glu	Thr	His 45	Lys	Ala	Met
Ile	Leu 50	Gln	Leu	Asn	Pro	Ser 55	Glu	Asn	Сув	Thr	Trp 60	Thr	Ile	Glu	Arg
Pro 65	Glu	Asn	Lys	Ser	Ile 70	Arg	Ile	Ile	Phe	Ser 75	Tyr	Val	Gln	Leu	Asp 80
Pro	Asp	Gly	Ser	Cys 85	Glu	Ser	Glu	Asn	Ile 90	Lys	Val	Phe	Asp	Gly 95	Thr
Ser	Ser	Asn	Gly 100	Pro	Leu	Leu	Gly	Gln 105	Val	Cys	Ser	Lys	Asn 110	Asp	Tyr
Val	Pro	Val 115	Phe	Glu	Ser	Ser	Ser 120	Ser	Thr	Leu	Thr	Phe 125	Gln	Ile	Val
Thr	Asp 130	Ser	Ala	Arg	Ile	Gln 135	Arg	Thr	Val	Phe	Val 140	Phe	Tyr	Tyr	Phe
Phe 145	Ser	Pro	Asn	Ile	Ser 150	Ile	Pro	Asn	Cys	Gly 155	Gly	Tyr	Leu	Asp	Thr 160
Leu	Glu	Gly	Ser	Phe 165	Thr	Ser	Pro	Asn	Tyr 170	Pro	Lys	Pro	His	Pro 175	Glu
Leu	Ala	Tyr	Cys 180	Val	Trp	His	Ile	Gln 185	Val	Glu	Lys	Asp	Туr 190	Lys	Ile
Lys	Leu	Asn 195	Phe	Lys	Glu	Ile	Phe 200	Leu	Glu	Ile	Asp	Lys 205	Gln	Cys	Lys
Phe	Asp 210	Phe	Leu	Ala	Ile	Туг 215	Asp	Gly	Pro	Ser	Thr 220	Asn	Ser	Gly	Leu
Ile 225	Gly	Gln	Val	Cys	Gly 230	Arg	Val	Thr	Pro	Thr 235		Glu	Ser	Ser	Ser 240
Asn	Ser	Leu	Thr	Val 245	Val	Leu	Ser	Thr	Asp 250		Ala	Asn	Ser	Tyr 255	Arg
Gly	Phe	Ser	Ala 260		Tyr	Thr	Ser	Ile 265		Ala	Glu	. Asn	11e 270		Thr
Thr	Ser	Leu 275		Cys	Ser	Ser	Asp 280		Met	Arg	Val	Ile 285	Ile	Ser	Lys

Ser Tyr Leu Glu Ala Phe Asn Ser Asn Gly Asn Asn Leu Gln Leu Lys 295 Asp Pro Thr Cys Arg Pro Lys Leu Ser Asn Val Val Glu Phe Ser Val 315 310 Pro Leu Asn Gly Cys Gly Thr Ile Arg Lys Val Glu Asp Gln Ser Ile Thr Tyr Thr Asn Ile Ile Thr Phe Ser Ala Ser Ser Thr Ser Glu Val Ile Thr Arg Gln Lys Gln Leu Gln Ile Ile Val Lys Cys Glu Met Gly His Asn Ser Thr Val Glu Ile Ile Tyr Ile Thr Glu Asp Asp Val Ile 375 Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe 390 Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val 410 405 Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp 425 Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser 435 Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg 455 Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe 470 Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu 485 Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys 505 Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu Lys Arg Asp Arg 535 Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu 555 Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val

					565					570					575		
I	eu	Ala	Leu	Asn 580	Val	Val	Thr	Val	Ala 585	Thr	Ile	Thr	Val	Arg 590	His	Phe	
V	al	Asn	Gln 595	Arg	Ala	Asp	Tyr	Lys 600	Tyr	Gln	Lys	Leu	Gln 605	Asn	Tyr		
<	211 212	0> 1 L> 2 2> I B> A	1 NA	icia	l Se	quen	ce										
	220	3 > I		ipti nucl					Seq	uenc	e: Sy	yntho	etic				
		0> 1 ctat		aaac	tgtg	gc g											21
•	21: 21:	0 > 1 1 > 2 2 > 1 3 > 1	22 ONA	icia	1 Se	quen	ce										
	(22) (22)	3 > I		ipti nucl					Seq	uenc	e: S	ynth	etic				
		0> : gat		atto	gaag	gt g	g										22
	<21 <21	0 > 1 1 > 4 2 > 1 3 > 2	17 ONA	icia	ıl Se	quen	ıce										
	<22 <22	3 > 1	Desci	ripti onucl	on c eoti	of Ar .de p	tifi	cial	Seq	nenc	e: S	ynth	etic	!			
•	<40 gga	0> agg	193 atcc	ttca	ıccag	jee c	:caat	tacc	c aa	agco	gcat	cct	gago	:			47
	<21 <21	2>	2362 DNA	sapi	lens												
,	gac	gac	agaa atgc	aaco	ccac	qa c	getec	ccag	ıg ct	cgcg	ittcc	cgt	tgct	gct	gttg	ctgcgo ctgtto	3 120

```
gagtccctgg acgcccgcca gctgcccgcg tggtttgacc aggccaagtt cggcatcttc 240
atccactggg gagtgttttc cgtgcccagc ttcggtagcg agtggttctg gtggtattgg 300
caaaaggaaa agataccgaa gtatgtggaa tttatgaaag ataattaccc tcctagtttc 360
aaatatgaag attttggacc actatttaca gcaaaatttt ttaatgccaa ccagtgggca 420
gatatttttc aggcctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
tttaccttgt gggggtcaga atattcgtgg aactggaatg ccatagatga ggggcccaag 540
agggacattg tcaaggaact tgaggtagcc attaggaaca gaactgacct gcgttttgga 600
ctgtactatt ccctttttga atggtttcat ccgctcttcc ttgaggatga atccagttca 660
ttccataagc ggcaatttcc agtttctaag acattgccag agctctatga gttagtgaac 720
aactatcagc ctgaggttct gtggtcggat ggtgacggag gagcaccgga tcaatactgg 780
aacagcacag gcttcttggc ctggttatat aatgaaagcc cagttcgggg cacagtagtc 840
accaatgatc gttggggagc tggtagcatc tgtaagcatg gtggcttcta tacctgcagt 900
gatcgttata acccaggaca tcttttgcca cataaatggg aaaactgcat gacaatagac 960
aaactgteet ggggetatag gagggaaget ggaatetetg actatettae aattgaagaa 1020
ttggtgaagc aacttgtaga gacagtttca tgtggaggaa atcttttgat gaatattggg 1080
cccacactag atggcaccat ttctgtagtt tttgaggagc gactgaggca agtggggtcc 1140
tggctaaaag tcaatggaga agctatttat gaaacctata cctggcgatc ccagaatgac 1200
actgtcaccc cagatgtgtg gtacacatcc aagcctaaag aaaaattagt ctatgccatt 1260
tttcttaaat ggcccacatc aggacagctg ttccttggcc atcccaaagc tattctgggg 1320
gcaacagagg tgaaactact gggccatgga cagccactta actggatttc tttggagcaa 1380
aatggcatta tggtagaact gccacagcta accattcatc agatgccgtg taaatggggc 1440
tgggctctag ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagtt 1500
atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga aagcaatgta 1560
aactggataa gaaaattatt tggcagttca gccctttccc tttttcccac taaatttttc 1620
ttaaattacc catgtaacca ttttaactct ccagtgcact ttgccattaa agtctcttca 1680
cattgatttg tttccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
gaattggtgg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
tatatagtta tgcatcactt aatatgggga tattttctgg gaaatgcatt gctagtcaat 1860
ttttttttgt gccaacatca tagagtgtat ttacaaaatc ctagatggca tagcctacta 1920
cacacctaat gtgtatggta tagactgttg ctcctaggct acagacatat acagcatgtt 1980
actgaatact gtaggcaata gtaacagtgg tatttgtata tcgaaacata tggaaacata 2040
gagaaggtac agtaaaaata ctgtaaaata aatggtgcac ctgtataggg cacttaccac 2100
gaatggaget tacaggactg gaagttgete tgggtgagte agtgagtgaa tgtgaaggee 2160
taggacatta ttgaacactg ccagacgtta taaatactgt atgcttaggc tacactacat 2220
ttataaaaaa aagtttttct ttcttcaatt ataaattaac ataagtgtac tgtaacttta 2280
caaacgtttt aatttttaaa acctttttgg ctcttttgta ataacactta gcttaaaaca 2340
taaactcatt gtgcaaatgt aa
```

<210> 195

<211> 467

<212> PRT

<213> Homo sapiens

<400> 195

Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu 1 5 10 15

Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr 20 25 30

Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala 35 40 45

Trp	Phe 50	Asp	Gln	Ala	Lys	Phe 55	Gly	Ile	Phe	Ile	His 60	Trp	Gly	Val	Phe
Ser 65	Val	Pro	Ser	Phe	Gly 70	Ser	Glu	Trp	Phe	Trp 75	Trp	Tyr	Trp	Gln	Lys 80
Glu	Lys	Ile	Pro	Lys 85	Tyr	Val	Glu	Phe	Met 90	Lys	Asp	Asn	Tyr	Pro 95	Pro
Ser	Phe	Lys	Tyr 100	Glu	Asp	Phe	Gly	Pro 105	Leu	Phe	Thr	Ala	Lys 110	Phe	Phe
Asn	Ala	Asn 115	Gln	Trp	Ala	Asp	Ile 120	Phe	Gln	Ala	Ser	Gly 125	Ala	Lys	Tyr
Ile	Val 130	Leu	Thr	Ser	Lys	His 135	His	Glu	Gly	Phe	Thr 140	Leu	Trp	Gly	Ser
Glu 145	Tyr	Ser	Trp	Asn	Trp 150	Asn	Ala	Ile	Asp	Glu 155	Gly	Pro	Lys	Arg	Asp 160
Ile	Val	Lys	Glu	Leu 165	Glu	Val	Ala	Ile	Arg 170	Asn	Arg	Thr	Asp	Leu 175	Arg
Phe	Gly	Leu	Tyr 180		Ser	Leu	Phe	Glu 185	Trp	Phe	His	Pro	Leu 190	Phe	Leu
Glu	Asp	Glu 195	Ser	Ser	Ser	Phe	His 200	Lys	Arg	Gln	Phe	Pro 205	Val	Ser	Lys
Thr	Leu 210	Pro	Glu	Leu	Tyr	Glu 215	Leu	Val	Asn	Asn	Tyr 220	Gln	Pro	Glu	Val
Leu 225		Ser	Asp	Gly	Asp 230		Gly	Ala	Pro	Asp 235	Gln	Tyr	Trp	Asn	Ser 240
Thr	Gly	Phe	Leu	Ala 245		Leu	Tyr	Asn	Glu 250	Ser	Pro	Val	. Arg	Gly 255	Thr
Val	Val	Thr	Asn 260		Arg	Trp	Gly	Ala 265	Gly	Ser	Ile	Cys	Lys 270	His	Gly
Gly	Phe	Tyr 275		Cys	s Ser	Asp	Arg 280		Asn	Pro	Gly	His 285	Leu S	Leu	Pro
His	Lys 290		Glu	ı Asn	Cys	Met 295	Thr	Ile	Asp	Lys	300	Sei	Trp	Gly	Туг
Arg		Glu	ı Ala	a Gly	7 Ile 310		: Asp	Туг	Leu	1 Thi 319	: Ile	e Glu	ı Glu	ı Lev	Val 320
Lys	Gln	Leu	ı Val	Glu 325		· Val	Ser	Сув	330	/ Gly	/ Asr	ı Lev	ı Lev	Met 335	Ası

Ile	Gly	Pro	Thr 340	Leu	Asp	Gly	Thr	Ile 345	Ser	Val	Val	Phe	Glu 350	Glu	Arg	
Leu	Arg	Gln 355	Val	Gly	Ser	Trp	Leu 360	Lys	Val	Asn	Gly	Glu 365	Ala	Ile	Tyr	
Glu	Thr 370	Tyr	Thr	Trp	Arg	Ser 375	Gln	Asn	Asp	Thr	Val 380	Thr	Pro	Asp	Val	
Trp 385	Tyr	Thr	Ser	Lys	Pro 390	Lys	Glu	Lys	Leu	Val 395	Tyr	Ala	Ile	Phe	Leu 400	
Lys	Trp	Pro	Thr	Ser 405	Gly	Gln	Leu	Phe	Leu 410	Gly	His	Pro	Lys	Ala 415	Ile	
Leu	Gly	Ala	Thr 420	Glu	Val	Lys	Leu	Leu 425	Gly	His	Gly	Gln	Pro 430	Leu	Asn	
Trp	Ile	Ser 435	Leu	Glu	Gln	Asn	Gly 440	Ile	Met	Val	Glu	Leu 445	Pro	Gln	Leu	
Thr	Ile 450	His	Gln	Met	Pro	Cys 455	Lys	Trp	Gly	Trp	Ala 460	Leu	Ala	Leu	Thr	
Asn 465	Val	Ile														
<21 <21	0> 1 1> 2 2> D 3> A	3 NA	icia	l Se	quen	ce										
<22 <22	3 > D				f Ar de p			Seq	uenc	e: S	ynth	etic				
	0> 1 tttg		aggc	caag	tt c	g g										23
<21 <21	0> 1 1> 2 2> D 3> A	4 NA	icia	l Se	quen	ce										
<22 <22	3> D				f Ar de p			Seq	uenc	e: S	ynth	etic	:			
	0> 1 ttca		tcaa	ıggaa	.ga g	cgg										24
-21	0 - 1	98														

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 198
                                                                  24
aacttgcagc atcagccact ctgc
<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 199
                                                                   45
ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca
<210> 200
<211> 2372
<212> DNA
<213> Homo sapiens
<400> 200
agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag cctcaacata 60
gttccagaac tetecateeg gactagttat tgageatetg ceteteatat caccagtgge 120
catctgaggt gtttccctgg ctctgaaggg gtaggcacga tggccaggtg cttcagcctg 180
gtgttgcttc tcacttccat ctggaccacg aggctcctgg tccaaggctc tttgcgtgca 240
gaagagettt ecatecaggt gteatgeaga attatgggga teaceettgt gageaaaaag 300
gcgaaccagc agctgaattt cacagaagct aaggaggcct gtaggctgct gggactaagt 360
ttggccggca aggaccaagt tgaaacagcc ttgaaagcta gctttgaaac ttgcagctat 420
ggctgggttg gagatggatt cgtggtcatc tctaggatta gcccaaaccc caagtgtggg 480
aaaaatgggg tgggtgtcct gatttggaag gttccagtga gccgacagtt tgcagcctat 540
tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600
gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660
acctactcgg tggcatcccc ttactctaca atacctgccc ctactactac tcctcctgct 720
ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agtttttatg 780
gaaactagca ccatgtctac agaaactgaa ccatttgttg aaaataaagc agcattcaag 840
aatgaagetg etgggtttgg aggtgteece aeggetetge tagtgettge teteetette 900
tttggtgctg cagctggtct tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960
tttacaaaca agaatcagca gaaggaaatg atcgaaacca aagtagtaaa ggaggagaag 1020
gccaatgata gcaaccctaa tgaggaatca aagaaaactg ataaaaaccc agaagagtcc 1080
aagagtccaa gcaaaactac cgtgcgatgc ctggaagctg aagtttagat gagacagaaa 1140
tgaggagaca cacctgaggc tggtttcttt catgctcctt accctgcccc agctggggaa 1200
atcaaaaggg ccaaagaacc aaagaagaaa gtccaccctt ggttcctaac tggaatcagc 1260
tcaggactgc cattggacta tggagtgcac caaagagaat gcccttctcc ttattgtaac 1320
cetgtetgga tectateete etacetecaa agetteecae ggeettteta geetggetat 1380
gtcctaataa tatcccactg ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc 1440
```

tcatcagtat ccagtggtaa aaaggcctcc tggctgtctg aggctaggtg ggttgaaagc 1500 caaggagtca ctgagaccaa ggctttctct actgattccg cagctcagac cctttcttca 1560 gctctgaaag agaaacacgt atcccacctg acatgtcctt ctgagcccgg taagagcaaa 1620 agaatggcag aaaagtttag cccctgaaag ccatggagat tctcataact tgagacctaa 1680 tctctgtaaa gctaaaataa agaaatagaa caaggctgag gatacgacag tacactgtca 1740 gcagggactg taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800 cactgtttag aacacacac cttacttttt ctggtctcta ccactgctga tattttctct 1860 aggaaatata cttttacaag taacaaaaat aaaaactctt ataaatttct attttatct 1920 gagttacaga aatgattact aaggaagatt actcagtaat ttgtttaaaa agtaataaaa 1980 ttcaacaaac atttgctgaa tagctactat atgtcaagtg ctgtgcaagg tattacactc 2040 tgtaattgaa tattatteet caaaaaattg cacatagtag aacgetatet gggaagetat 2100 ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta tttttgctga 2160 gactaatctt attcattttc tctaatatgg caaccattat aaccttaatt tattattaac 2220 atacctaaga agtacattgt tacctctata taccaaagca cattttaaaa gtgccattaa 2280 caaatgtatc actagccctc ctttttccaa caagaaggga ctgagagatg cagaaatatt 2340 tgtgacaaaa aattaaagca tttagaaaac tt

<210> 201

<211> 322

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic protein

<400> 201

Met Ala Arg Cys Phe Ser Leu Val Leu Leu Leu Thr Ser Ile Trp Thr 1 5 10 15

Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile

Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala 35 40 45

Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu 50 55 60

Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala
65 70 75 80

Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val
85 90 95

Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
100 105 110

Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys 115 120 125

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile 130 135 140

Thr 145	Thr	Lys	Asp	Pro	Ile 150	Phe	Asn	Thr	Gln	Thr 155	Ala	Thr	Gln	Thr	Thr 160
Glu	Phe	Ile	Val	Ser 165	Asp	Ser	Thr	Tyr	Ser 170	Val	Ala	Ser	Pro	Tyr 175	Ser
Thr	Ile	Pro	Ala 180	Pro	Thr	Thr	Thr	Pro 185	Pro	Ala	Pro	Ala	Ser 190	Thr	Ser
Ile	Pro	Arg 195	Arg	Lys	Lys	Leu	Ile 200	Cys	Val	Thr	Glu	Val 205	Phe	Met	Glu
Thr	Ser 210	Thr	Met	Ser	Thr	Glu 215	Thr	Glu	Pro	Phe	Val 220	Glu	Asn	Lys	Ala
Ala 225	Phe	Lys	Asn	Glu	Ala 230	Ala	Gly	Phe	Gly	Gly 235	Val	Pro	Thr	Ala	Leu 240
Leu	Val	Leu	Ala	Leu 245	Leu	Phe	Phe	Gly	Ala 250	Ala	Ala	Gly	Leu	Gly 255	Phe
Cys	Tyr	Val	Lys 260	Arg	Tyr	Val	Lys	Ala 265	Phe	Pro	Phe	Thr	Asn 270	Lys	Asn
Gln	Gln	Lys 275	Glu	Met	Ile	Glu	Thr 280	Lys	Val	Val	Lys	Glu 285	Glu	Lys	Ala
Asn	Asp 290	Ser	Asn	Pro	Asn	Glu 295	Glu	Ser	Lys	Lys	Thr 300	Asp	Lys	Asn	Pro
Glu 305	Glu	Ser	Lys	Ser	Pro 310	Ser	Lys	Thr	Thr	Val 315	Arg	Cys	Leu	Glu	Ala 320
Glu	Val														
<21 <21	0 > 20 1 > 20 2 > DI 3 > A:	4 NA	icia	l Se	quen	ce									
<22 <22	3 > D			on o eoti				Seq	uenc	e: S	ynth	etic			
	0> 2		tcca	ggtg	tc a	tgc									
<21	0 > 2 1 > 2 2 > D	2													

<213> Artificial Sequence

24

<220> <223> D	Description of Artificial Sequence: Synthetic Oligonucleotide probe	
<400> 2 gtcagtg	203 gaca gtacctactc gg	22
<210> 2 <211> 2 <212> D <213> A	24	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 2 tggagca	204 agga ggagtagtag tagg	24
<210> 2 <211> 5 <212> 1 <213> 7	50	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 2 aggagge	205 cctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt	50
<210 > 2 <211 > 3 <212 > 1 <213 > 1	1620	
<222>	modified_base (973) a, t, c or g	
<222>	modified_base (977) a, t, c or g	
<222>	modified_base (996) a, t, c or g	
<220> <221>	modified_base	

<222> (1003) <223> a, t, c or g

<400> 206 agatggcggt cttggcacct ctaattgctc tcgtgtattc ggtgccgcga ctttcacgat 60 ggetegeeca acettaetae ettetgtegg ecetgetete tgetgeette etaetegtga 120 ggaaactgcc gccgctctgc cacggtctgc ccacccaacg cgaagacggt aacccgtgtg 180 actttgactg gagagaagtg gagatcctga tgtttctcag tgccattgtg atgatgaaga 240 accgcagate cateactgtg gagcaacata taggcaacat tttcatgttt agtaaagtgg 300 ccaacacaat tottttcttc cgcttggata ttcgcatggg cctactttac atcacactct 360 gcatagtgtt cctgatgacg tgcaaacccc ccctatatat gggccctgag tatatcaagt 420 acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480 tggagttett tgecaattgg tetaatgaet gecaateatt tgeceetate tatgetgaee 540 tctcccttaa atacaactgt acagggctaa attttgggaa ggtggatgtt ggacgctata 600 ctgatgttag tacgcggtac aaagtgagca catcacccct caccaagcaa ctccctaccc 660 tgatcctgtt ccaaggtggc aaggaggcaa tgcggcggcc acagattgac aagaaaggac 720 gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780 tataccagcg ggccaagaaa ctatcaaagg ctggagacaa tatccctgag gagcagcctg 840 tggcttcaac ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900 actttggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca caagcctgag 960 gctgcagcct ttnattnatg ttttcccttt ggctgngact ggntggggca gcatgcagct 1020 tctgatttta aagaggcatc tagggaattg tcaggcaccc tacaggaagg cctgccatgc 1080 tgtggccaac tgtttcactg gagcaagaaa gagatctcat aggacggagg gggaaatggt 1140 ttccctccaa gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200 tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttggtt 1260 agacctagat ttaaccctaa ggtaagatgc tggggtatag aacgctaaga attttccccc 1320 aaggactett getteettaa geeettetgg ettegttat ggtetteatt aaaagtataa 1380 gcctaacttt gtcgctagtc ctaaggagaa acctttaacc acaaagtttt tatcattgaa 1440 gacaatattg aacaacccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500 actttccttt gtgtggtagg acttggagga gaaatcccct ggactttcac taaccctctg 1560 acatactece cacacecagt tgatggettt cegtaataaa aagattggga ttteettttg 1620

<210> 207

<211> 296

<212> PRT

<213> Homo sapiens

<400> 207

Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg 1 5 10 15

Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu 20 25 30

Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly 35 40 45

Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg
50 55 60

Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn 65 70 75 80

Arg	Arg	Ser	Ile	Thr 85	Val	Glu	Gln	His	11e 90	Gly	Asn	Ile	Phe	Met 95	Phe
Ser	Lys	Val	Ala 100	Asn	Thr	Ile	Leu	Phe 105	Phe	Arg	Leu	Asp	Ile 110	Arg	Met
Gly	Leu	Leu 115	Tyr	Ile	Thr	Leu	Cys 120	Ile	Val	Phe	Leu	Met 125	Thr	Cys	Lys
Pro	Pro 130	Leu	Tyr	Met	Gly	Pro 135	Glu	Tyr	Ile	Lys	Tyr 140	Phe	Asn	Asp	Lys
Thr 145	Ile	Asp	Glu	Glu	Leu 150	Glu	Arg	Asp	Lys	Arg 155	Val	Thr	Trp	Ile	Val 160
Glu	Phe	Phe	Ala	Asn 165	Trp	Ser	Asn	Asp	Cys 170	Gln	Ser	Phe	Ala	Pro 175	Ile
Tyr	Ala	Asp	Leu 180	Ser	Leu	Lys	Tyr	Asn 185	Cys	Thr	Gly	Leu	Asn 190	Phe	Gly
Lys	Val	Asp 195	Val	Gly	Arg	Tyr	Thr 200	Asp	Val	Ser	Thr	Arg 205	Tyr	Lys	Val
Ser	Thr 210		Pro	Leu	Thr	Lys 215	Gln	Leu	Pro	Thr	Leu 220	Ile	Leu	Phe	Gln
Gly 225	Gly	Lys	Glu	Ala	Met 230	Arg	Arg	Pro	Gln	Ile 235	Asp	Lys	Lys	Gly	Arg 240
Ala	Val	Ser	Trp	Thr 245	Phe	Ser	Glu	Glu	Asn 250		Ile	Arg	Glu	Phe 255	Asn
Leu	Asn	Glu	Leu 260		Gln	Arg	Ala	Lys 265		Leu	Ser	Lys	Ala 270	Gly	Asp
Asn	Ile	Pro 275		Glu	Gln	Pro	Val 280		Ser	Thr	Pro	Thr 285	Thr	Val	Ser
Asp	Gly 290		Asn	Lys	Lys	Asp 295									
<21 <21	0> 2 1> 2 2> D 3> A	4 NA	icia	l Se	quen	ice									
<22 <22	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe														

<400> 208 gcttggatat tcgcatgggc ctac

<210> 20	9	
<211> 20		
<212> DN		
	tificial Sequence	
<213> AL	criticial bequence	
-220-		
<220>	scription of Artificial Sequence: Synthetic	
01	igonucleotide probe	
400 00	0	
<400> 20	20)
tggagaca	at atccctgagg	
-210- 21	•	
<210> 21		
<211> 24		
<212> DN		
<213> AI	tificial Sequence	
.220.		
<220>	escription of Artificial Sequence: Synthetic	
	igonucleotide probe	
01	igonacieotide probe	
<400> 21	0	
	ggc cacagcatgg cagg	4
aacagete	ge caeageaegg eagg	
<210> 21	.1	
<211> 50		
<211> 50		
	ctificial Sequence	
<213> AI	CILICIAI bequeñec	
<220>		
	escription of Artificial Sequence: Synthetic	
	Ligonucleotide probe	
0.2	.190.1401200140 F	
<400> 23	11	
ccattgat	ga ggaactagaa cgggacaaga gggtcacttg gattgtggag 5	0
ccaccga		
<210> 23	12	
<211> 19		
<212> DI		
	omo sapiens	
(223)	,	
<400> 2	12	
ggacagc	rca cagacacaga gagatataga aqtagaggag atgaatgggg aagtitigada 6	0
tagaacc	cca geetggeegg ggteaccetg geatgaggag atgggeetgt tgeteetggt i	. 2 0
cccatto	ctc ctgctgcccg gctcctacqq actgcccttc tacaacggct tetactacte r	
caacacc	gcc aacgaccaga acctaggcaa cqqtcatqqc aaagacctcc ttaatggagt 2	40
gaagetg	gtg gtggagacac ccgaggagac cctqttcacc taccaagggg ccagcgac s	
gaageeg	tgc cgctaccgct acgagccggc cctggtctcc ccgcggcgtg tgcgtgtcaa 3	60
atastas	aag ctgtcggaga acggggcccc agagaaggac gtgctggtgg ccatcgggct 4	20
arggryg	cgc tectttgggg actaceaagg cegegtgeac etgeggeagg acaaagagea 4	80
gaggcac	tog otggagatoc aggatotgog gotggaggac tatgggogtt accgotgtga 5	4(
cgacgcc	gac gggctggagg atgaaagcgg tetggtggag etggagetge ggggtgtggt 6	00
COLCALL	aac aaaccaaaaa acaaaaaaaa	

ctttccttac cagtccccca acgggcgcta ccagttcaac ttccacgagg gccagcaggt 660 ctgtgcagag caggctgcgg tggtggcctc ctttgagcag ctcttccggg cctgggagga 720 gggcctggac tggtgcaacg cgggctggct gcaggatgct acggtgcagt accccatcat 780 gttgccccgg cagccctgcg gtggcccagg cctggcacct ggcgtgcgaa gctacggccc 840 ccgccaccgc cgcctgcacc gctatgatgt attctgcttc gctactgccc tcaaggggcg 900 ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960 ggaagatgat gccacgatcg ccaaggtggg acagctcttt gccgcctgga agttccatgg 1020 cctggaccgc tgcgacgctg gctggctggc agatggcagc gtccgctacc ctgtggttca 1080 cccgcatcct aactgtgggc ccccagagcc tggggtccga agctttggct tccccgaccc 1140 gcagagccgc ttgtacggtg tttactgcta ccgccagcac taggacctgg ggccctcccc 1200 tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct tgtgggttgg 1260 agccatttta actgttttta tacttctcaa tttaaatttt ctttaaacat ttttttacta 1320 ttttttgtaa agcaaacaga acccaatgcc tccctttgct cctggatgcc ccactccagg 1380 aatcatgctt gctcccctgg gccatttgcg gttttgtggg cttctggagg gttccccgcc 1440 atccaggctg gtctccctcc cttaaggagg ttggtgccca gagtgggcgg tggcctgtct 1500 agaatgccgc cgggagtccg ggcatggtgg gcacagttct ccctgcccct cagcctgggg 1560 gaagaagagg gcctcggggg cctccggagc tgggctttgg gcctctcctg cccacctcta 1620 cttctctgtg aagccgctga ccccagtctg cccactgagg ggctagggct ggaagccagt 1680 tctaggcttc caggcgaaat ctgagggaag gaagaaactc ccctccccgt tccccttccc 1740 ctctcggttc caaagaatct gttttgttgt catttgtttc tcctgtttcc ctgtgtgggg 1800 aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860 1985 aaaaa

<210> 213

<211> 360

<212> PRT

<213> Homo sapiens

<400> 213

Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr

1 5 10 15

Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp 20 25 30

Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys 35 40 45

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala 50 55 60

Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser 65 70 75 80

Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala 85 90 95

Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe 100 105 110

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

		115					120					125			
	Ser 130	Leu	Glu	Ile	Gln	Asp 135	Leu	Arg	Leu	Glu	Asp 140	Tyr	Gly	Arg	Tyr
Arg 145	Cys	Glu	Val	Ile	Asp 150	Gly	Leu	Glu	Asp	Glu 155	Ser	Gly	Leu	Val	Glu 160
Leu	Glu	Leu	Arg	Gly 165	Val	Val	Phe	Pro	Tyr 170	Gln	Ser	Pro	Asn	Gly 175	Arg
Tyr	Gln	Phe	Asn 180	Phe	His	Glu	Gly	Gln 185	Gln	Val	Cys	Ala	Glu 190	Gln	Ala
Ala	Val	Val 195	Ala	Ser	Phe	Glu	Gln 200	Leu	Phe	Arg	Ala	Trp 205	Glu	Glu	Gly
Leu	Asp 210	Trp	Cys	Asn	Ala	Gly 215	Trp	Leu	Gln	Asp	Ala 220	Thr	Val	Gln	Tyr
Pro 225	Ile	Met	Leu	Pro	Arg 230	Gln	Pro	Cys	Gly	Gly 235	Pro	Gly	Leu	Ala	Pro 240
Gly	Val	Arg	Ser	Tyr 245	Gly	Pro	Arg	His	Arg 250	Arg	Leu	His	Arg	Tyr 255	Asp
Val	Phe	Cys	Phe 260	Ala	Thr	Ala	Leu	Lys 265	Gly	Arg	Val	Tyr	Tyr 270	Leu	Glu
His	Pro	Glu 275	Lys	Leu	Thr	Leu	Thr 280	Glu	Ala	Arg	Glu	Ala 285	Cys	Gln	Glu
Asp	Asp 290	Ala	Thr	Ile	Ala	Lys 295	Val	Gly	Gln	Leu	Phe 300	Ala	Ala	Trp	Lys
Phe 305	His	Gly	Leu	Asp	Arg 310	Cys	Asp	Ala	Gly	Trp 315		Ala	Asp	Gly	Ser 320
Val	Arg	Tyr	Pro	Val 325	Val	His	Pro	His	Pro 330		Cys	Gly	Pro	Pro 335	Glu
Pro	Gly	Val	Arg 340	Ser	Phe	Gly	Phe	Pro 345		Pro	Gln	Ser	Arg 350	Leu	Tyr
Gly	Val	Tyr 355	Cys	Tyr	Arg	Gln	His 360								
<21 <21	0 > 2 1 > 1 2 > D 3 > A	8 NA	icia	l Se	quen	.ce									
<22	0>														

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 214 tgcttcgcta ctgccctc	18
<210> 215 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 215 ttcccttgtg ggttggag	18
<210> 216 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 216 agggctggaa gccagttc	18
<210> 217 <211> 18 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 217 agccagtgag gaaatgcg	18
<210> 218 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 218 tgtccaaagt acacacct gagg	24

```
<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 219
                                                                45
gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag
<210> 220
<211> 1503
<212> DNA
<213> Homo sapiens
<400> 220
ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
gettetgttg etactgagge acggggecca ggggaageca teeccagaeg caggecetca 120
tggccagggg agggtgcacc agggggcccc cctgagcgac gctccccatg atgacgccca 180
cgggaacttc cagtacgacc atgaggcttt cctgggacgg gaagtggcca aggaattcga 240
ccaactcacc ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300
cgcgggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga tcgcgcacac 360
gcagcagcgg cacatacggg actcggtgag cgcggcctgg gacacgtacg acacggaccg 420
cgacgggcgt gtgggttggg aggagctgcg caacgccacc tatggccact acgcgcccgg 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcgggacga 540
geggegttte egggtggeeg accaggatgg ggaetegatg geeactegag aggagetgae 600
agcetteetg cacceegagg agtteeetea catgegggae ategtgattg etgaaaceet 660
ggaggacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
gtactcagcc gagcctgggg aggaggagcc ggcgtgggtg cagacggaga ggcagcagtt 780
ccgggacttc cgggatctga acaaggatgg gcacctggat gggagtgagg tgggccactg 840
ggtgctgccc cctgcccagg accagcccct ggtggaagcc aaccacctgc tgcacgagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctgggtaatt ggaacatgtt 960
tgtgggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgtg 1020
agcaccgcgc acctgccaca gcctcagagg cccgcacaat gaccggagga ggggccgctg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatcctc 1140
ctgcccctgg gctctcaggg accccctggg tcggcttctg tccctgtcac acccccaacc 1200
ccagggaggg gctgtcatag tcccagagga taagcaatac ctatttctga ctgagtctcc 1260
cageceagae ecagggaece ttggeeceaa geteagetet aagaaeegee ecaaeeeete 1320
cagetecaaa tetgageete caccacatag aetgaaaete eeetggeeee ageeetetee 1380
tgcctggcct ggcctgggac acctcctctc tgccaggagg caataaaagc cagcgccggg 1440
1503
aaa
<210> 221
<211> 328
<212> PRT
<213> Homo sapiens
<400> 221
```

Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Leu Arg His

1				5					10					15	
Gly	Ala	Gln	Gly 20	Lys	Pro	Ser	Pro	Asp 25	Ala	Gly	Pro	His	Gly 30	Gln	Gly
Arg	Val	His 35	Gln	Ala	Ala	Pro	Leu 40	Ser	Asp	Ala	Pro	His 45	Asp	Asp	Ala
His	Gly 50	Asn	Phe	Gln	Tyr	Asp 55	His	Glu	Ala	Phe	Leu 60	Gly	Arg	Glu	Val
Ala 65	Lys	Glu	Phe	Asp	Gln 70	Leu	Thr	Pro	Glu	Glu 75	Ser	Gln	Ala	Arg	Leu 80
Gly	Arg	Ile	Val	Asp 85	Arg	Met	Asp	Arg	Al a 90	Gly	Asp	Gly	Asp	Gly 95	Trp
Val	Ser	Leu	Ala 100	Glu	Leu	Arg	Ala	Trp 105	Ile	Ala	His	Thr	Gln 110	Gln	Arg
His	Ile	Arg 115	Asp	Ser	Val	Ser	Ala 120	Ala	Trp	Asp	Thr	Tyr 125	Asp	Thr	Asp
Arg	Asp 130	Gly	Arg	Val	Gly	Trp 135	Glu	Glu	Leu	Arg	Asn 140	Ala	Thr	Tyr	Gly
His 145	Tyr	Ala	Pro	Gly	Glu 150	Glu	Phe	His	Asp	Val 155	Glu	Asp	Ala	Glu	Thr 160
Tyr	Lys	Lys	Met	Leu 165	Ala	Arg	Asp	Glu	Arg 170	Arg	Phe	Arg	Val	Ala 175	Asp
Gln	Asp	Gly	Asp 180	Ser	Met	Ala	Thr	Arg 185	Glu	Glu	Leu	Thr	Ala 190	Phe	Leu
His	Pro	Glu 195	Glu	Phe	Pro	His	Met 200	Arg	Asp	Ile	Val	Ile 205	Ala	Glu	Thr
Leu	Glu 210	Asp	Leu	Asp	Arg	Asn 215	Lys	Asp	Gly	Tyr	Val 220	Gln	Val	Glu	Glu
Tyr 225	Ile	Ala	Asp	Leu	Tyr 230	Ser	Ala	Glu	Pro	Gly 235	Glu	Glu	Glu	Pro	Ala 240
Trp	Val	Gln	Thr	Glu 245	Arg	Gln	Gln	Phe	Arg 250	Asp	Phe	Arg	Asp	Leu 255	Asn
Lys	Asp	Gly	His 260	Leu	Asp	Gly	Ser	Glu 265	Val	Gly	His	Trp	Val 270	Leu	Pro
Pro	Ala	Gln 275	Asp	Gln	Pro	Leu	Val 280	Glu	Ala	Asn	His	Leu 285	Leu	His	Glu

Ser As	sp Thr	Asp	Lys	Asp	Gly 295	Arg	Leu	Ser	Lys	Ala 300	Glu	Ile	Leu	Gly	
Asn Ti 305	p Asn	Met	Phe	Val 310	Gly	Ser	Gln	Ala	Thr 315	Asn	Tyr	Gly	Glu	Asp 320	
Leu Th	ır Arg	His	His 325	Asp	Glu	Leu									
<210><211><211><212><213>	20	icial	L Sed	quen	ce										
<220> <223>	Descr:					cial	Seq	uence	e: Sy	ynthe	etic				
<400> cgcagg	222 geeet (catg	gccag	39											20
<210><211><211><212><213>	18	icia:	l Sed	quen	ce										
<220> <223>	Descr	_				cial	Seq	uence	e: S	ynth	etic				
<400> gaaato	223 ectgg	gtaai	tgg												18
<210><211><211>	23 DNA														
<213>	Artif	icia	l Sec	quen	ce										
<220> <223>	Descr						Seq	uenc	e: Sy	ynth	etic				
<400> gtgcg	224 eggtg	ctca	cagc	tc a	tc										23
<210><211><212><213>	44	icia	l Sed	quen	ce										
<220> <223>	Descr						Seq	uenc	e: S	ynth	etic				

```
<400> 225
ccccctgag cgacgctccc ccatgatgac gcccacggga actt
                                                                  44
<210> 226
<211> 2403
<212> DNA
<213> Homo sapiens
<400> 226
ggggccttgc cttccgcact cgggcgcagc cgggtggatc tcgagcaggt gcggagcccc 60
gggcggcggg cgcgggtgcg agggatccct gacgcctctg tccctgtttc tttgtcgctc 120
ccagcctgtc tgtcgtcgtt ttggcgcccc cgcctccccg cggtgcgggg ttgcacaccg 180
atcctgggct tcgctcgatt tgccgccgag gcgcctccca gacctagagg ggcgctggcc 240
tggagcagcg ggtcgtctgt gtcctctctc ctctgcgccg cgcccgggga tccgaagggt 300
geggggetet gaggaggtga egegegggge etceegeace etggeettge eegeattete 360
cctctctccc aggtgtgagc agcctatcag tcaccatgtc cgcagcctgg atcccggctc 420
teggeetegg tgtgtgtetg etgetgetge eggggeeege gggeagegag ggageegete 480
ccattgctat cacatgtttt accagaggct tggacatcag gaaagagaaa gcagatgtcc 540
tctgcccagg gggctgccct cttgaggaat tctctgtgta tgggaacata gtatatgctt 600
ctgtatcgag catatgtggg gctgctgtcc acaggggagt aatcagcaac tcagggggac 660
ctgtacgagt ctatagccta cctggtcgag aaaactattc ctcagtagat gccaatggca 720
tccagtctca aatgctttct agatggtctg cttctttcac agtaactaaa ggcaaaagta 780
gtacacagga ggccacagga caagcagtgt ccacagcaca tccaccaaca ggtaaacgac 840
taaagaaaac acccgagaag aaaactggca ataaagattg taaagcagac attgcatttc 900
tgattgatgg aagctttaat attgggcagc gccgatttaa tttacagaag aattttgttg 960
gaaaagtggc tctaatgttg ggaattggaa cagaaggacc acatgtgggc cttgttcaag 1020
ccagtgaaca tcccaaaata gaattttact tgaaaaactt tacatcagcc aaagatgttt 1080
tgtttgccat aaaggaagta ggtttcagag ggggtaattc caatacagga aaagccttga 1140
agcatactgc tcagaaattc ttcacggtag atgctggagt aagaaaaggg atccccaaag 1200
tggtggtggt atttattgat ggttggcctt ctgatgacat cgaggaagca ggcattgtgg 1260
ccagagagtt tggtgtcaat gtatttatag tttctgtggc caagcctatc cctgaagaac 1320
tggggatggt tcaggatgtc acatttgttg acaaggctgt ctgtcggaat aatggcttct 1380
tctcttacca catgcccaac tggtttggca ccacaaaata cgtaaagcct ctggtacaga 1440
agctgtgcac tcatgaacaa atgatgtgca gcaagacctg ttataactca gtgaacattg 1500
cctttctaat tgatggctcc agcagtgttg gagatagcaa tttccgcctc atgcttgaat 1560
ttgtttccaa catagccaag acttttgaaa tctcggacat tggtgccaag atagctgctg 1620
tacagtttac ttatgatcag cgcacggagt tcagtttcac tgactatagc accaaagaga 1680
atgtcctagc tgtcatcaga aacatccgct atatgagtgg tggaacagct actggtgatg 1740
ccatttcctt cactgttaga aatgtgtttg gccctataag ggagagcccc aacaagaact 1800
tcctagtaat tgtcacagat gggcagtcct atgatgatgt ccaaggccct gcagctgctg 1860
cacatgatgc aggaatcact atcttctctg ttggtgtggc ttgggcacct ctggatgacc 1920
tgaaagatat ggcttctaaa ccgaaggagt ctcacgcttt cttcacaaga gagttcacag 1980
gattagaacc aattgtttct gatgtcatca gaggcatttg tagagatttc ttagaatccc 2040
agcaataatg gtaacatttt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100
attgtattct cataatactg aaatgcttta gcatactaga atcagataca aaactattaa 2160
gtatgtcaac agccatttag gcaaataagc actcctttaa agccgctgcc ttctggttac 2220
aatttacagt gtactttgtt aaaaacactg ctgaggcttc ataatcatgg ctcttagaaa 2280
ctcaggaaag aggagataat gtggattaaa accttaagag ttctaaccat gcctactaaa 2340
tgtacagata tgcaaattcc atagctcaat aaaagaatct gatacttaga ccaaaaaaaa 2400
                                                                   2403
aaa
```

<211> 550 <212> PRT <213> Homo sapiens

<400> 227

Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu

1 5 10 15

Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile 20 25 30

Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val 35 40 45

Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser Val Tyr Gly Asn 50 55 60

Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly Ala Ala Val His Arg
65 70 75 80

Gly Val Ile Ser Asn Ser Gly Gly Pro Val Arg Val Tyr Ser Leu Pro 85 90 95

Gly Arg Glu Asn Tyr Ser Ser Val Asp Ala Asn Gly Ile Gln Ser Gln
100 105 110

Met Leu Ser Arg Trp Ser Ala Ser Phe Thr Val Thr Lys Gly Lys Ser 115 120 125

Ser Thr Gln Glu Ala Thr Gly Gln Ala Val Ser Thr Ala His Pro Pro 130 135 140

Thr Gly Lys Arg Leu Lys Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys 145 150 155 160

Asp Cys Lys Ala Asp Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile 165 170 175

Gly Gln Arg Arg Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala 180 185 190

Leu Met Leu Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln
195 200 205

Ala Ser Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser 210 215 220

Ala Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly

Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe Phe 245 250 255 Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val Val Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala Gly Ile Val 280 275 Ala Arg Glu Phe Gly Val Asn Val Phe Ile Val Ser Val Ala Lys Pro 295 Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val Thr Phe Val Asp Lys 305 Ala Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr His Met Pro Asn Trp Phe Gly Thr Thr Lys Tyr Val Lys Pro Leu Val Gln Lys Leu Cys Thr His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile 355 Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg 375 Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala 425 Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp 465 470 Asp Val Gln Gly Pro Ala Ala Ala Ala His Asp Ala Gly Ile Thr Ile 490 485 Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met 500 Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr 520 Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp 535

Phe Leu Glu Ser Gln Gln 545 550	
<210> 228 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 228 tggtctcgca caccgatc	18
<210> 229 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 229 ctgctgtcca caggggag	18
<210> 230 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 230 ccttgaagca tactgctc	18
<210> 231 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 231 gagatagcaa tttccgcc	18
.210. 222	

<211> 18 <212> DNA <213> Artificial Sequence											
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe											
<400> 232 ttcctcaaga gggcagcc	18										
<210> 233 <211> 24 <212> DNA <213> Artificial Sequence											
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe											
<400> 233 cttggcacca atgtccgaga tttc	24										
<210> 234 <211> 45 <212> DNA <213> Artificial Sequence											
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe											
<400> 234 gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg	45										
<210> 235 <211> 2586 <212> DNA <213> Homo sapiens											
<pre><400> 235 cgccgcgctc ccgcacccgc ggcccgccca ccgcgcgct cccgcatctg cacccgcagc ccggcggct cccggcgga gcgagcagat ccagtccggc ccgcagcgca actcggtcca gtcggggcgg cggctgcggg cgcagagcgg agatgcagcg gcttggggcc accctgctgt gcctgctgct ggcggcggcg gtccccacgg cccccgcgcc cgctccgacg gcgaactcgg</pre>	180										
ctccagtcaa geceggeeg geteteaget accegeaga ggaggeeace etcaatgaga tgtteegega ggttgaggaa etgatggagg acaegeagea caaattgege agegeggtgg aagagatgga ggeagaagaa getgetgeta aageateate agaagtgaae etggeaaact taceteecag etateacaat gagaceaaca cagacaegaa ggttggaaat aataceatee	360 420										
atgtgcaccg agaaattcac aagataacca acaaccagac tggacaaatg gtcttttcag agacagttat cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg acgaggactg tgggcccagc atgtactgcc agtttgccag cttccagtac acctgccagc catgccqqqq ccagaggatg ctctgcaccc gggacagtga gtgctgtgga gaccagctgt	600 660										

gtgtctgggg tcactgcacc aaaatggcca ccaggggcag caatgggacc atctgtgaca 780 accagaggga ctgccagccg gggctgtgct gtgccttcca gagaggcctg ctgttccctg 840 tgtgcacace cetgecegtg gagggegage tttgecatga eecegecage eggettetgg 900 acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct tgtgccagtg 960 gcctcctctg ccagccccac agccacagcc tggtgtatgt gtgcaagccg accttcgtgg 1020 ggagccgtga ccaagatggg gagatcctgc tgcccagaga ggtccccgat gagtatgaag 1080 ttggcagctt catggaggag gtgcgccagg agctggagga cctggagagg agcctgactg 1140 aagagatggc gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200 tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt tatttcccca 1260 ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta catcttcttc ccagtaagtt 1320 teceetetgg ettgacagea tgaggtgttg tgeatttgtt eageteece aggetgttet 1380 ccaggettca cagtetggtg ettgggagag teaggeaggg ttaaactgca ggageagttt 1440 gccacccctg tccagattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500 tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg agtctccctc 1560 tgattggttt tggggaaatg tggagaagag tgccctgctt tgcaaacatc aacctggcaa 1620 aaatgcaaca aatgaatttt ccacgcagtt ctttccatgg gcataggtaa gctgtgcctt 1680 cagctgttgc agatgaaatg ttctgttcac cctgcattac atgtgtttat tcatccagca 1740 gtgttgctca gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800 teteteagea cageetgggg agggggteat tgtteteete gteeateagg gateteagag 1860 gctcagagac tgcaagctgc ttgcccaagt cacacagcta gtgaagacca gagcagtttc 1920 atctggttgt gactctaagc tcagtgctct ctccactacc ccacaccagc cttggtgcca 1980 ccaaaagtgc tccccaaaag gaaggagaat gggatttttc ttgaggcatg cacatctgga 2040 attaaggtca aactaattct cacatccctc taaaagtaaa ctactgttag gaacagcagt 2100 gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga cactgtccct 2160 ctttggcagt tgcattagta actttgaaag gtatatgact gagcgtagca tacaggttaa 2220 cctgcagaaa cagtacttag gtaattgtag ggcgaggatt ataaatgaaa tttgcaaaat 2280 cacttagcag caactgaaga caattatcaa ccacgtggag aaaatcaaac cgagcagggc 2340 tgtgtgaaac atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400 tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt tcttaaagtt 2460 taaagttgca catgattgta taagcatgct ttctttgagt tttaaattat gtataaacat 2520 2586 aaaaaa

<210> 236

<211> 350

<212> PRT

<213> Homo sapiens

<400> 236

Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala 1 5 10 15

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val 20 25 30

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn 35 40 45

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys
50 55 60

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Ala Lys 65 70 75 80

<210> 237

Ala	Ser	Ser	Glu	Val 85	Asn	Leu	Ala	Asn	Leu 90	Pro	Pro	Ser	Tyr	His 95	Asn
Glu	Thr	Asn	Thr 100	Asp	Thr	Lys	Val	Gly 105	Asn	Asn	Thr	Ile	His 110	Val	His
Arg	Glu	Ile 115	His	Lys	Ile	Thr	Asn 120	Asn	Gln	Thr	Gly	Gln 125	Met	Val	Phe
Ser	Glu 130	Thr	Val	Ile	Thr	Ser 135	Val	Gly	Asp	Glu	Glu 140	Gly	Arg	Arg	Ser
His 145	Glu	Cys	Ile	Ile	Asp 150	Glu	Asp	Cys	Gly	Pro 155	Ser	Met	Tyr	Cys	Gln 160
Phe	Ala	Ser	Phe	Gln 165	Tyr	Thr	Cys	Gln	Pro 170	Cys	Arg	Gly	Gln	Arg 175	Met
Leu	Cys	Thr	Arg 180	Asp	Ser	Glu	Cys	Cys 185	Gly	Asp	Gln	Leu	Cys 190	Val	Trp
Gly	His	Cys 195	Thr	Lys	Met	Ala	Thr 200	Arg	Gly	Ser	Asn	Gly 205	Thr	Ile	Сув
Asp	Asn 210	Gln	Arg	Asp	Cys	Gln 215	Pro	Gly	Leu	Cys	Cys 220	Ala	Phe	Gln	Arg
225					230					235					Leu 240
Cys	His	Asp	Pro	Ala 245	Ser	Arg	Leu	Leu	Asp 250	Leu	Ile	Thr	Trp	Glu 255	Leu
Glu	Pro	Asp	Gly 260	Ala	Leu	Asp	Arg	Cys 265	Pro	Cys	Ala	Ser	Gly 270	Leu	Leu
Cys	Gln	Pro 275	His	Ser	His	Ser	Leu 280	Val	Tyr	Val	Cys	Lys 285	Pro	Thr	Phe
Val	Gly 290		Arg	Asp	Gln	Asp 295		Glu	Ile	Leu	Leu 300	Pro	Arg	Glu	Val
Pro 305		Glu	Tyr	Glu	Val 310		Ser	Phe	Met	Glu 315	Glu	. Val	Arg	Gln	Glu 320
Leu	Glu	Asp	Leu	Glu 325		Ser	Leu	Thr	Glu 330	Glu	Met	Ala	Leu	Gly 335	Glu
Pro	Ala	Ala	Ala 340		Ala	Ala	Leu	Leu 345		gly	Glu	Glu	1le 350	:	

<211>	17	
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic oligonucleotide probe	
\223 /	Synthetic originational province	
<400>	237	
ggago	tgcac cccttgc	17
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Oligonucleotide Probe	
	•	
<400>	238	49
ggagg	gactgt gccaccatga gagactcttc aaacccaagg caaaattgg	49
<210>		
<211><212>		
	Artificial Sequence	
\Z13/	Andrew Police	
<220>		
<223>	Synthetic Oligonucleotide Probe	
<400>		24
gcag	agegga gatgeagegg ettg	
<210>	240	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide Probe	
.400-	240	
<400>	cagett catggagg	18
ccgg	cageee caeggagg	
<210>	241	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Oligonucleotide Probe	
<400>	241	
	ggcaaa aatgcaac	18
5		

<210> 242 <211> 24 <212> DNA <213> Artifi	cial Sequen	ce									
<220> <223> Synthetic Oligonucleotide Probe											
<400> 242 ctccagctcc	tggcgcacct	cctc			. 24						
<210> 243 <211> 45 <212> DNA <213> Artifi	icial Sequen	ace									
<220> <223> Synthe	etic Oligonu	ıcleotide Pr	robe								
<400> 243 ggctctcagc	taccgcgcag	gagcgaggcc	accctcaatg	agatg	45						
<210> 244 <211> 3679 <212> DNA <213> Homo S	Sapien										
<400> 244 aaggaggetg	ggaggaaaga	ggtaagaaag	gttagagaac	ctacctcaca	50						
tctctctggg	ctcagaagga	ctctgaagat	aacaataatt	tcagcccatc	100						
cactctcctt	ccctcccaaa	cacacatgtg	catgtacaca	cacacataca	150						
cacacataca	ccttcctctc	cttcactgaa	gactcacagt	cactcactct	200						
gtgagcaggt	catagaaaag	gacactaaag	ccttaaggac	aggcctggcc	250						
attacctctg	cagctccttt	ggcttgttga	gtcaaaaaac	atgggagggg	300						
ccaggcacgg	tgactcacac	ctgtaatccc	agcattttgg	gagaccgagg	350						
tgagcagatc	acttgaggtc	aggagttcga	gaccagcctg	gccaacatgg	400						
agaaaccccc	atctctacta	aaaatacaaa	aattagccag	gagtggtggc	450						
aggtgcctgt	aatcccagct	actcaggtgg	ctgagccagg	agaatcgctt	500						
gaatccagga	ggcggaggat	gcagtcagct	gagtgcaccg	ctgcactcca	550						
gcctgggtga	cagaatgaga	ctctgtctca	aacaaacaaa	cacgggagga	600						

ggggtagata etgettetet geaaceteet taaetetgea teetettétt 650 ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccg 750 gtgtagaatg actgccctgg gagggtggtt ccttgggccc tggcagggtt 800 gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850 gtgaatggtc ccctgccctg cagctccacc atgaggcttc tcgtggcccc 900 actettgeta gettgggtgg etggtgeeac tgeeactgtg eeegtggtae 950 cctggcatgt tccctgcccc cctcagtgtg cctgccagat ccggccctgg 1000 tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050 cctattcctg acggcagtcc ccccggcact ccccgcaggc acacagaccc 1100 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctgggc 1150 tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200 tgcccgagac tgtgatttcc atgccctgcc ccagctgctg agcctgcacc 1250 tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300 gccagcctac aggaactcta tctcaaccac aaccagctct accgcatcgc 1350 ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400 ccaacctcct gagggccatt gacagccgct ggtttgaaat gctgcccaac 1450 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500 gaacttccgg cccctggcca acctgcgtag cctggtgcta gcaggcatga 1550 acctgcggga gatctccgac tatgccctgg aggggctgca aagcctggag 1600 agceteteet tetatgacaa eeagetggee egggtgeeea ggegggeaet 1650 ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700 agegggtagg geegggggae tttgeeaaca tgetgeaect taaggagetg 1750 ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccctggt 1800 gaacctcccc gagctgacca agctggacat caccaataac ccacggctgt 1850 cetteateca eccegegee ttecaceace tgeeceagat ggagaceete 1900 atgctcaaca acaacgctct cagtgccttg caccagcaga cggtggagtc 1950

cctgcccaac ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000 actgtgtcat ccgctgggcc aatgccacgg gcacccgtgt ccgcttcatc 2050 gagccgcaat ccaccctgtg tgcggagcct ccggacctcc agcgcctccc 2100 ggtccgtgag gtgcccttcc gggagatgac ggaccactgt ttgcccctca 2150 tctccccacg aagcttcccc ccaagcctcc aggtagccag tggagagagc 2200 atggtgctgc attgccgggc actggccgaa cccgaacccg agatctactg 2250 ggtcactcca gctgggcttc gactgacacc tgcccatgca ggcaggaggt 2300 accgggtgta ccccgagggg accctggagc tgcggagggt gacagcagaa 2350 gaggcagggc tatacacctg tgtggcccag aacctggtgg gggctgacac 2400 taagacggtt agtgtggttg tgggccgtgc tctcctccag ccaggcaggg 2450 acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatcac 2500 atcctgctat cttgggtcac cccacccaac acagtgtcca ccaacctcac 2550 ctggtccagt gcctcctccc tccggggcca gggggccaca gctctggccc 2600 geetgeeteg gggaaceeac agetacaaca ttaccegeet cetteaggee 2650 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700 gttggcttgt gtatgggcca ggaccaaaga ggccacttct tgccacagag 2750 ccttagggga tcgtcctggg ctcattgcca tcctggctct cgctgtcctt 2800 ctcctggcag ctgggctagc ggcccacctt ggcacaggcc aacccaggaa 2850 gggtgtgggt gggaggcggc ctctccctcc agcctgggct ttctggggct 2900 ggagtgcccc ttctgtccgg gttgtgtctg ctcccctcgt cctgccctgg 2950 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050 atcactagga ctacttttta ccaaaagaga agcagtctgg gccagatgcc 3100 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150 caagacagat ggggctttgt ggccctgggg gtgcttctgc agccttgaaa 3200 aagttgccct tacctcctag ggtcacctct gctgccattc tgaggaacat 3250 ctccaaggaa caggaggac tttggctaga gcctcctgcc tcccatctt 3300 ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350 ccccgggctg caccccttcc tcttctcttt ctctgtacag tctcagttgc 3400 ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450 ctcggggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500 catttgggag agggatgcc aggaacgcct catctcagca gcctgggctc 3550 ggcattccga agctgactt ctataggcaa ttttgtacct ttgtggagaa 3600 atgtgtcacc tccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650 aataaaaata aataataaca ataaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro
20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser 35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu 50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu 65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly 80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe 95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu 110 115 120

Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His 125 . 130 135

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His 140 145 150

Asn	Gln	T.e.11	Tyr	Δra	Tle	Ala	Pro	Ara	Ala	Phe	Ser	Gly	Leu	Ser
NOII	GIII	Вси	- 7 -	155				5	160			•		165
Asn	Leu	Leu	Arg	Leu 170	His	Leu	Asn	Ser	Asn 175	Leu	Leu	Arg	Ala	Ile 180
Asp	Ser	Arg	Trp	Phe 185	Glu	Met	Leu	Pro	Asn 190	Leu	Glu	Ile	Leu	Met 195
Ile	Gly	Gly	Asn	Lys 200	Val	Asp	Ala	Ile	Leu 205	Asp	Met	Asn	Phe	Arg 210
Pro	Leu	Ala	Asn	Leu 215	Arg	Ser	Leu	Val	Leu 220	Ala	Gly	Met	Asn	Leu 225
Arg	Glu	Ile	Ser	Asp 230	Tyr	Ala	Leu	Glu	Gly 235	Leu	Gln	Ser	Leu	Glu 240
Ser	Leu	Ser	Phe	Tyr 245	Asp	Asn	Gln	Leu	Ala 250	Arg	Val	Pro	Arg	Arg 255
Ala	Leu	Glu	Gln	Val 260	Pro	Gly	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn	Pro	Leu	Gln	Arg 275	Val	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
His	Leu	Lys	Glu	Leu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	Val	Ser 300
Ile	Asp	Lys	Phe	Ala 305	Leu	Val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 315
Asp	Ile	Thr	Asn	Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe	His	His	Leu	Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	Asn 345
Ala	Leu	Ser	Ala	Leu 350	His	Gln	Gln	Thr	Val 355	Glu	Ser	Leu	Pro	Asn 360
Leu	Gln	Glu	Val	Gly 365	Leu	His	Gly	Asn	Pro 370		Arg	Cys	Asp	Cys 375
Val	Ile	Arg	Trp	Ala 380		Ala	Thr	Gly	Thr 385		Val	Arg	Phe	Ile 390
Glu	Pro	Gln	Ser	Thr 395		Cys	Ala	Glu	Pro		Asp	Leu	Gln	Arg 405
Leu	Pro	Val	Arg	Glu	Val	Pro	Phe	Arg	Glu	Met	Thr	Asp	His	Cys

				410					415					420
Leu	Pro	Leu	Ile	Ser 425	Pro	Arg	Ser	Phe	Pro 430	Pro	Ser	Leu	Gln	Val 435
Ala	Ser	Gly	Glu	Ser 440	Met	Val	Leu	His	Cys 445	Arg	Ala	Leu	Ala	Glu 450
Pro	Glu	Pro	Glu	Ile 455	Tyr	Trp	Val	Thr	Pro 460	Ala	Gly	Leu	Arg	Leu 465
Thr	Pro	Ala	His	Ala 470	Gly	Arg	Arg	Tyr	Arg 475	Val	Tyr	Pro	Glu	Gly 480
Thr	Leu	Glu	Leu	Arg 485	Arg	Val	Thr	Ala	Glu 490	Glu	Ala	Gly	Leu	Tyr 495
Thr	Cys	Val	Ala	Gln 500	Asn	Leu	Val	Gly	Ala 505	Asp	Thr	Lys	Thr	Val 510
Ser	Val	Val	Val	Gly 515	Arg	Ala	Leu	Leu	Gln 520	Pro	Gly	Arg	Asp	Glu 525
Gly	Gln	Gly	Leu	Glu 530	Leu	Arg	Val	Gln	Glu 535	Thr	His	Pro	Tyr	His 540
Ile	Leu	Leu	Ser	Trp 545	Val	Thr	Pro	Pro	Asn 550	Thr	Val	Ser	Thr	Asn 555
Leu	Thr	Trp	Ser	Ser 560	Ala	Ser	Ser	Leu	Arg 565	Gly	Gln	Gly	Ala	Thr 570
Ala	Leu	Ala	Arg	Leu 575		Arg	Gly	Thr	His 580	Ser	Tyr	Asn	Ile	Thr 585
Arg	Leu	Leu	Gln	Ala 590		Glu	Tyr	Trp	Ala 595	Cys	Leu	Gln	Val	Ala 600
Phe	Ala	Asp	Ala	His 605	Thr	Gln	Leu	Ala	Cys 610	Val	Trp	Ala	Arg	Thr 615
Lys	Glu	Ala	Thr	Ser 620		His	Arg	Ala	Leu 625		Asp	Arg	Pro	Gly 630
Leu	Ile	Ala	Ile	Leu 635		Leu	Ala	Val	Leu 640		Leu	Ala	Ala	Gly 645
Leu	Ala	Ala	His	Leu 650		Thr	Gly	Gln	Pro 655		Lys	Gly	Val	Gly 660
Gly	Arg	Arg	Pro	Leu 665		Pro	Ala	Trp	Ala 670		Trp	Gly	Trp	Ser 675

Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp 680 685 690

Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu 695 700 705

Leu Pro Pro Leu Ser Gln Asn Ser 710

<210> 246

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 246

aacaaggtaa gatgccatcc tg 22

<210> 247

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 247

aaacttgtcg atggagacca gctc 24

<210> 248

<211> 45

<212> DNA

<213> Artificial Sequence

-22**0**-

<223> Synthetic Oligonucleotide Probe

<400> 248

aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45

<210> 249

<211> 3401

<212> DNA

<213> Homo Sapien

<400> 249

gcaagccaag gcgctgtttg agaaggtgaa gaagttccgg acccatgtgg 50

aggagggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100

gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150

catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200 accgcaccta ccgctgtgcc caccccctgg ccacactctt caagatcctg 250 gcgtccttct acatcagcct agtcatcttc tacggcctca tctgcatgta 300 cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350 cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400 ttcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450 gcgcttcgcc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500 tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550 aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600 ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650 tgatccccga cgtgaccatc ccgcccagca ttgcccagct cacgggcctc 700 aaggagetgt ggetetacea caeageggee aagattgaag egeetgeget 750 ggccttcctg cgcgagaacc tgcgggcgct gcacatcaag ttcaccgaca 800 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850 cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900 cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950 taagcaaget gecacaggtg gteacagatg tgggegtgea eetgeagaag 1000 ctgtccatca acaatgaggg caccaagete ategteetea acageeteaa 1050 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100 gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150 aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250 ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350 ctacctggac ctcagccaca acaacctgac cttcctccct gccgacatcg 1400 gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450

acgetecete	cggagctctt	ccagtgccgg	aagctgcggg	ccctgcacct	1500
gggcaacaac	gtgctgcagt	cactgccctc	cagggtgggc	gagctgacca	1550
acctgacgca	gatcgagctg	cggggcaacc	ggctggagtg	cctgcctgtg	1600
gagctgggcg	agtgcccact	gctcaagcgc	agcggcttgg	tggtggagga	1650
ggacctgttc	aacacactgc	cacccgaggt	gaaggagcgg	ctgtggaggg	1700
ctgacaagga	gcaggcctga	gcgaggccgg	cccagcacag	caagcagcag	1750
gaccgctgcc	cagtcctcag	gcccggaggg	gcaggcctag	cttctcccag	1800
aactcccgga	cagccaggac	agcctcgcgg	ctgggcagga	gcctggggcc	1850
gcttgtgagt	caggccagag	cgagaggaca	gtatctgtgg	ggctggcccc	1900
ttttctccct	ctgagactca	cgtcccccag	ggcaagtgct	tgtggaggag	1950
agcaagtctc	aagagcgcag	tatttggata	atcagggtct	cctccctgga	2000
ggccagctct	gccccagggg	ctgagctgcc	accagaggtc	ctgggaccct	2050
cactttagtt	cttggtattt	atttttctcc	atctcccacc	tccttcatcc	2100
agataactta	tacattccca	agaaagttca	gcccagatgg	aaggtgttca	2150
gggaaaggtg	ggctgccttt	tccccttgtc	cttatttagc	gatgccgccg	2200
ggcatttaac	acccacctgg	acttcagcag	agtggtccgg	ggcgaaccag	2250
ccatgggacg	gtcacccagc	agtgccgggc	tgggctctgc	ggtgcggtcc	2300
acgggagagc	aggcctccag	ctggaaaggc	caggcctgga	gcttgcctct	2350
tcagtttttg	tggcagtttt	agttttttgt	tttttttt	tttaatcaaa	2400
aaacaatttt	ttttaaaaaa	aagctttgaa	aatggatggt	ttgggtatta	2450
aaaagaaaaa	aaaaacttaa	aaaaaaaag	acactaacgg	ccagtgagtt	2500
ggagtctcag	ggcagggtgg	cagtttccct	tgagcaaagc	agccagacgt	2550
tgaactgtgt	ttcctttccc	tgggcgcagg	gtgcagggtg	tcttccggat	2600
ctggtgtgac	cttggtccag	gagttctatt	tgttcctggg	gagggaggtt	2650
tttttgtttg	ttttttgggt	ttttttggtg	tcttgttttc	tttctcctcc	2700
atgtgtcttg	gcaggcactc	atttctgtgg	ctgtcggcca	gagggaatgt	2750
tctggagctg	ccaaggaggg	aggagactcg	ggttggctaa	tccccggatg	2800

aacggtgete cattegeace tecectecte gtgeetgeee tgeeteteea 2850 egeacagtgt taaggageea agaggageea ettegeeeag actttgttee 2900 eecaceteet geggeatggg tgtgteeagt gecacegetg geeteegetg 2950 ettecateag eeetgtegee acetggteet teatgaagag eagacaetta 3000 gaggetggte gggaatgggg aggtegeee tgggaaggea ggegttggtt 3050 ecaageeggt teeegteeet ggegeetgga gtgeacacag eeeagtegge 3100 acetggtgge tggaageeaa eetgetttag ateacteggg teeecacett 3150 agaagggtee eegeettaga teaateacgt ggacactaag geacgttta 3200 gagtetettg tettaatgat tatgteeate egtetgteeg teeatttgtg 3250 ttttetgegt egtgteattg gatataatee teagaaataa tgeacactag 3300 eetetgacaa ecatgaagea aaaateegtt acatgtgggt etgaacttgt 3350 agaeteeggte acagtateaa ataaaateta taacagaaaa aaaaaaaaa 3400 a 3401

<210> 250

<211> 546

<212> PRT

<213> Homo Sapien

<400> 250

Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile
1 5 10 15

Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp 20 25 30

Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg
35 40 45

Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe 50 55 60

Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
65 70 75

Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu 80 85 90

Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys

				95					100					105
Asn	Asp	Phe	Ala	Phe 110	Met	Leu	His	Leu	Ile 115	Asp	Gln	Tyr	Asp	Pro 120
Leu	Tyr	Ser	Lys	Arg 125	Phe	Ala	Val	Phe	Leu 130	Ser	Glu	Val	Ser	Glu 135
Asn	Lys	Leu	Arg	Gln 140	Leu	Asn	Leu	Asn	Asn 145	Glu	Trp	Thr	Leu	Asp 150
Lys	Leu	Arg	Gln	Arg 155	Leu	Thr	Lys	Asn	Ala 160	Gln	Asp	Lys	Leu	Glu 165
Leu	His	Leu	Phe	Met 170	Leu	Ser	Gly	Ile	Pro 175	Asp	Thr	Val	Phe	Asp 180
Leu	Val	Glu	Leu	Glu 185	Val	Leu	Lys	Leu	Glu 190	Leu	Ile	Pro	Asp	Val 195
Thr	Ile	Pro	Pro	Ser 200	Ile	Ala	Gln	Leu	Thr 205	Gly	Leu	Lys	Glu	Leu 210
Trp	Leu	Tyr	His	Thr 215	Ala	Ala	Lys	Ile	Glu 220	Ala	Pro	Ala	Leu	Ala 225
Phe	Leu	Arg	Glu	Asn 230	Leu	Arg	Ala	Leu	His 235	Ile	Lys	Phe	Thr	Asp 240
Ile	Lys	Glu	Ile	Pro 245	Leu	Trp	Ile	Tyr	Ser 250	Leu	Lys	Thr	Leu	Glu 255
Glu	Leu	His	Leu	Thr 260	Gly	Asn	Leu	Ser	Ala 265	Glu	Asn	Asn	Arg	Tyr 270
Ile	Val	Ile	Asp	Gly 275	Leu	Arg	Glu	Leu	Lys 280	Arg	Leu	Lys	Val	Leu 285
Arg	Leu	Lys	Ser		Leu	Ser	Lys	Leu		Gln	Val	Val	Thr	
V-1	Clv.	Va l	ніс	290	Gln	Lve	T.e.u	Ser	295 Tle	Asn	Asn	Glu	Glv	300 Thr
vai	GIY	vai	nrs	305	GIII	цуЗ	БСС	DCI	310			0_4		315
Lys	Leu	Ile	Val	Leu 320	Asn	Ser	Leu	Lys	Lys 325	Met	Ala	Asn	Leu	Thr 330
Glu	Leu	Glu	Leu	Ile 335	Arg	Cys	Asp	Leu	Glu 340	Arg	Ile	Pro	His	Ser 345
Ile	Phe	Ser	Leu	His 350	Asn	Leu	Gln	Glu	Ile 355	Asp	Leu	Lys	Asp	Asn 360

Asn Leu L	ys Thr	Ile 365	Glu	Glu	Ile	Ile	Ser 370	Phe	Gln	His	Leu	His 375
Arg Leu T	hr Cys	Leu 380	Lys	Leu	Trp	Tyr	Asn 385	His	Ile	Ala	Tyr	Ile 390
Pro Ile G	ln Ile	Gly 395	Asn	Leu	Thr	Asn	Leu 400	Glu	Arg	Leu	Tyr	Leu 405
Asn Arg A	sn Lys	Ile 410	Glu	Lys	Ile	Pro	Thr 415	Gln	Leu	Phe	Tyr	Cys 420
Arg Lys L	eu Arg	Tyr 425	Leu	Asp	Leu	Ser	His 430	Asn	Asn	Leu	Thr	Phe 435
Leu Pro A	la Asp	Ile 440	Gly	Leu	Leu	Gln	Asn 445	Leu	Gln	Asn	Leu	Ala 450
Ile Thr A	la Asn	Arg 455	Ile	Glu	Thr	Leu	Pro 460	Pro	Glu	Leu	Phe	Gln 465
Cys Arg L	ys Leu	Arg 470	Ala	Leu	His	Leu	Gly 475	Asn	Asn	Val	Leu	Gln 480
Ser Leu P	ro Ser	Arg 485	Val	Gly	Glu	Leu	Thr 490	Asn	Leu	Thr	Gln	Ile 495
Glu Leu A	rg Gly	Asn 500	Arg	Leu	Glu	Cys	Leu 505	Pro	Val	Glu	Leu	Gly 510
Glu Cys F	ro Leu	Leu 515	Lys	Arg	Ser	Gly	Leu 520	Val	Val	Glu	Glu	Asp 525
Leu Phe P	sn Thr	Leu 530	Pro	Pro	Glu	Val	Lys 535	Glu	Arg	Leu	Trp	Arg 540
Ala Asp I	ys Glu	Gln 545	Ala									
<210> 251 <211> 20 <212> DNA <213> Arti	ficial.	. Seq	uenc	e								
<220> <223> Synt	hetic	Olig	onuc	leot	ide	Prob	e					
<400> 251 caacaatga	ig ggca	ıccaa	.gc 2	0								
<210> 252 <211> 24												

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 252
 gatggctagg ttctggaggt tctg 24
<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 253
 caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47
<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien
<400> 254
 gcctgttgct gatgctgccg tgcggtactt gtcatggagc tggcactgcg 50
 gegetetece gteeegegt ggttgetget getgeegetg etgetgggee 100
 tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
 tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
 ttatgccacc aactcctgca agaacttctc agaactgccc ctggtcatgt 250
 ggcttcaggg cggtccaggc ggttctagca ctggatttgg aaactttgag 300
 gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350
 ccaggctgcc agtctcctat ttgtggataa tcccgtgggc actgggttca 400
 gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggct 450
 tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500
 ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550
 cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600
 aagtgcaact ttgcgggggt tgccttgggt gattcctgga tctcccctgt 650
 tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttctcg 700
```

aagacaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900 cagagccacc tagtttgtct ttgtcagcgc cacgtgagac acctacaacg 950 agatgcctta agccagctca tgaatggccc catcagaaag aagctcaaaa 1000 ttattcctga ggatcaatcc tggggaggcc aggctaccaa cgtctttgtg 1050 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150 tcgtagatac catgggtcag gaggcctggg tgcggaaact gaagtggcca 1200 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250 taaatctttg gaaacatctg cttttgtcaa gtcctacaag aaccttgctt 1300 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450 cgctgaagct gtaggaagcg ccattettee etgtatetaa etggggetgt 1500 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagattttt 1600 taaaaaattg atttgttttg atcaaaataa aggatgataa tagatattaa 1650

<210> 255

<211> 452

<212> PRT

<213> Homo Sapien

<400> 255

Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu
1 5 10 15

Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp 20 25 30

Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val
35 40 45

Arg	Lys	Asp	Ala	Tyr 50	Met	Phe	Trp	Trp	Leu 55	Tyr	Tyr	Ala	Thr	Asn 60
Ser	Cys	Lys	Asn	Phe 65	Ser	Glu	Leu	Pro	Leu 70	Val	Met	Trp	Leu	Gln 75
Gly	Gly	Pro	Gly	Gly 80	Ser	Ser	Thr	Gly	Phe 85	Gly	Asn	Phe	Glu	Glu 90
Ile	Gly	Pro	Leu	Asp 95	Ser	Asp	Leu	Lys	Pro 100	Arg	Lys	Thr	Thr	Trp 105
Leu	Gln	Ala	Ala	Ser 110	Leu	Leu	Phe	Val	Asp 115	Asn	Pro	Val	Gly	Thr 120
Gly	Phe	Ser	Tyr	Val 125	Asn	Gly	Ser	Gly	Ala 130	Tyr	Ala	Lys	Asp	Leu 135
Ala	Met	Val	Ala	Ser 140	Asp	Met	Met	Val	Leu 145	Leu	Lys	Thr	Phe	Phe 150
Ser	Cys	His	Lys	Glu 155	Phe	Gln	Thr	Val	Pro 160	Phe	Tyr	Ile	Phe	Ser 165
Glu	Ser	Tyr	Gly	Gly 170	Lys	Met	Ala	Ala	Gly 175	Ile	Gly	Leu	Glu	Leu 180
Tyr	Lys	Ala	Ile	Gln 185	Arg	Gly	Thr	Ile	Lys 190	Cys	Asn	Phe	Ala	Gly 195
Val	Ala	Leu	Gly	Asp 200	Ser	Trp	Ile	Ser	Pro 205	Val	Asp	Ser	Val	Leu 210
Ser	Trp	Gly	Pro	Tyr 215	Leu	Tyr	Ser	Met	Ser 220	Leu	Leu	Glu	Asp	Lys 225
Gly	Leu	Ala	Glu	Val 230	Ser	Lys	Val	Ala	Glu 235	Gln	Val	Leu	Asn	Ala 240
Val	Asn	Lys	Gly	Leu 245	Tyr	Arg	Glu	Ala	Thr 250	Glu	Leu	Trp	Gly	Lys 255
Ala	Glu	Met	Ile	Ile 260	Glu	Gln	Asn	Thr	Asp 265	Gly	Val	Asn	Phe	Tyr 270
Asn	Ile	Leu	Thr	Lys 275	Ser	Thr	Pro	Thr	Ser 280	Thr	Met	Glu	Ser	Ser 285
Leu	Glu	Phe	Thr	Gln 290	Ser	His	Leu	Val	Cys 295	Leu	Cys	Gln	Arg	His 300
Val	Arg	His	Leu	Gln	Arg	Asp	Ala	Leu	Ser	Gln	Leu	Met	Asn	Gly

				305					310					315
Pro	Ile	Arg	Lys	Lys 320	Leu	Lys	Ile	Ile	Pro 325	Glu	Asp	Gln	Ser	Trp 330
Gly	Gly	Gln	Ala	Thr 335	Asn	Val	Phe	Val	Asn 340	Met	Glu	Glu	Asp	Phe 345
Met	Lys	Pro	Val	Ile 350	Ser	Ile	Val	Asp	Glu 355	Leu	Leu	Glu	Ala	Gly 360
Ile	Asn	Val	Thr	Val 365	Tyr	Asn	Gly	Gln	Leu 370	Asp	Leu	Ile	Val	Asp 375
Thr	Met	Gly	Gln	Glu 380	Ala	Trp	Val	Arg	Lys 385	Leu	Lys	Trp	Pro	Glu 390
Leu	Pro	Lys	Phe	Ser 395	Gln	Leu	Lys	Trp	Lys 400	Ala	Leu	Tyr	Ser	Asp 405
Pro	Lys	Ser	Leu	Glu 410	Thr	Ser	Ala	Phe	Val 415	Lys	Ser	Tyr	Lys	Asn 420
Leu	Ala	Phe	Tyr	Trp 425	Ile	Leu	Lys	Ala	Gly 430	His	Met	Val	Pro	Ser 435
Asp	Gln	Gly	Asp	Met 440	Ala	Leu	Lys	Met	Met 445	Arg	Leu	Val	Thr	Gln 450

Gln Glu

<210> 256

<211> 1100

<212> DNA

<213> Homo Sapien

<400> 256
ggccgcggga gaggaggcca tgggcgcgc cggggcgctg ctgctggcgc 50

tgctgctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100

ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcatcgtggg 150

tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgc 200

tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctgggca 250

ctcacggcgg cgcactgctt tgaaacctat agtgacctta gtgatccctc 300

cgggtggatg gtccagtttg gccagctgac ttccatgcca tccttctgga 350

gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400

 cctcgctacc
 tggggaattc
 accctatgac
 attgccttgg
 tgaagctgtc
 450

 tgcacctgtc
 acctacacta
 aacacatcca
 gcccatctgt
 ctccaggcct
 500

 ccacatttga
 gtttgagaac
 cggacagact
 gctgggtgac
 tggctggggg
 550

 tacatcaaaa
 aggatgaggc
 actgccatct
 ccccacaccc
 tccaggaagt
 600

 tcaggtcgcc
 atcataaaca
 actctatgtg
 caaccacctc
 ttcctcaagt
 650

 acagtttccg
 caaggacatc
 tttggagaca
 tggtttgtc
 tggcaacgcc
 700

 caaggcggga
 aggattggg
 atcagattgg
 agtcgtggac
 tggggagtgg
 800

 gctgtggtcg
 gcccaatcgg
 cccggtgtct
 acaccaatat
 cagccacca
 850

 tttgagtgga
 tccagaagct
 gatggccag
 agtggcatgt
 cccagccaga
 900

 cccetcctgg
 ccactactct
 ttttccctct
 tctctgggc
 ctccactcc
 950

 tggggccggt
 ctgagcctac
 ctgagccaa
 gcagcctgg
 gcactgctgg
 gcactgccg
 1000

 agtcaggcct

<400> 257

Met	Gly	Ala	Arg	Gly	Ala	Leu	Leu	Leu	Ala	Leu	Leu	Leu	Ala	Arg
1				5					10					15

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser

20 25 30	0
----------	---

Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly 35 40 45

Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg
50 55 60

Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg
65 70 75

Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu
80 85 90

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

Ser	Asp	Pro	Ser	Gly 95	Trp	Met	Val	Gln	Phe 100	Gly	Gln	Leu	Thr	Ser 105
Met	Pro	Ser	Phe	Trp 110	Ser	Leu	Gln	Ala	Tyr 115	Tyr	Thr	Arg	Tyr	Phe 120
Val	Ser	Asn	Ile	Tyr 125	Leu	Ser	Pro	Arg	Tyr 130	Leu	Gly	Asn	Ser	Pro 135
Tyr	Asp	Ile	Ala	Leu 140	Val	Lys	Leu	Ser	Ala 145	Pro	Val	Thr	Tyr	Thr 150
Lys	His	Ile	Gln	Pro 155	Ile	Cys	Leu	Gln	Ala 160	Ser	Thr	Phe	Glu	Phe 165
Glu	Asn	Arg	Thr	Asp 170	Cys	Trp	Val	Thr	Gly 175	Trp	Gly	Tyr	Ile	Lys 180
Glu	Asp	Glu	Ala	Leu 185	Pro	Ser	Pro	His	Thr 190	Leu	Gln	Glu	Val	Gln 195
Val	Ala	Ile	Ile	Asn 200	Asn	Ser	Met	Cys	Asn 205	His	Leu	Phe	Leu	Lys 210
Tyr	Ser	Phe	Arg	Lys 215	Asp	Ile	Phe	Gly	Asp 220	Met	Val	Cys	Ala	Gly 225
Asn	Ala	Gln	Gly	Gly 230	Lys	Asp	Ala	Cys	Phe 235	Gly	Asp	Ser	Gly	Gly 240
Pro	Leu	Ala	Cys	Asn 245	Lys	Asn	Gly	Leu	Trp 250	Tyr	Gln	Ile	Gly	Val 255
Val	Ser	Trp	Gly	Val 260	Gly	Cys	Gly	Arg	Pro 265	Asn	Arg	Pro	Gly	Val 270
Tyr	Thr	Asn	Ile	Ser 275	His	His	Phe	Glu	Trp 280		Gln	Lys	Leu	Met 285
Ala	Gln	Ser	Gly	Met 290	Ser	Gln	Pro	Asp	Pro 295	Ser	Trp	Pro	Leu	Leu 300
Phe	Phe	Pro	Leu	Leu 305	Trp	Ala	Leu	Pro	Leu 310		Gly	Pro	Val	

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cccacgcgtc cgcggacgcg tgggaagggc agaatgggac tccaagcctg 50

cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgcccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactctcgg agctggtgca ggctgtgtcg gatcccagct 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggecatece cactgaceet ceacaeggtg caaaaatgge tettggeage 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagett ccacaggeet tggcccccca tgtggaettt gtggggggae 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagccaagc ctgtgcccag ttcctggagc agtatttcca tgactcagac 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 ccagtctaga tgtgcagtac ctgatgagtg ctggtgccaa catctccacc 900 tgggtctaca gtagccctgg ccggcatgag ggacaggagc ccttcctgca 950 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000 tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050 gtcaacactg agctcatgaa ggctgccgct cggggtctca ccctgctctt 1100 cgcctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150 agttccgccc taccttccct gcctccagcc cctatgtcac cacagtggga 1200 ggcacatect tecaggaace ttteeteate acaaatgaaa ttgttgaeta 1250 tatcagtggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300 aggaagctgt aacgaagttc ctgagctcta gccccacct gccaccatcc 1350 agttacttca atgccagtgg ccgtgcctac ccagatgtgg ctgcactttc 1400

tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450 gaacctcggc ctctactcca gtgtttgggg ggatcctatc cttgatcaat 1500 gagcacagga teettagtgg eegeeeeet ettggettte teaacceaag 1550 gctctaccag cagcatgggg caggtctctt tgatgtaacc cgtggctgcc 1600 atgagtcctg tctggatgaa gaggtagagg gccagggttt ctgctctggt 1650 cctggctggg atcctgtaac aggctgggga acaccaactt cccagctttg 1700 ctgaagactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750 gtcccctgcc ctgaagctgg cagttcagtc ccttattctg ccctgttgga 1800 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900 atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950 gtaactagca ttttttgaat gcctctccct ccgcatctca tctttctctt 2000 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050 acttgatatt cattccccaa ttcactgcaa ggagacctct actgtcaccg 2100 tttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150 ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200 ccttacttag cttccaggtc ttaacttctc tgactactct tgtcttcctc 2250 tctcatcaat ttctgcttct tcatggaatg ctgaccttca ttgctccatt 2300 tgtagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350 ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400 aatgattgat acctcaaatg taaaaaa 2427

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr

<210> 259

<211> 556

<212> PRT

<213> Homo Sapien

<400> 259

Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu

1 5 10 15

				20					25					30
Leu	Pro	Pro	Gly	Trp 35	Val	Ser	Leu	Gly	Arg 40	Ala	Asp	Pro	Glu	Glu 45
Glu	Leu	Ser	Leu	Thr 50	Phe	Ala	Leu	Arg	Gln 55	Gln	Asn	Val	Glu	Arg 60
Leu	Ser	Glu	Leu	Val 65	Gln	Ala	Val	Ser	Asp 70	Pro	Ser	Ser	Pro	Gln 75
Tyr	Gly	Lys	Tyr	Leu 80	Thr	Leu	Glu	Asn	Val 85	Ala	Asp	Leu	Val	Arg 90
Pro	Ser	Pro	Leu	Thr 95	Leu	His	Thr	Val	Gln 100	Lys	Trp	Leu	Leu	Ala 105
Ala	Gly	Ala	Gln	Lys 110	Cys	His	Ser	Val	Ile 115	Thr	Gln	Asp	Phe	Leu 120
Thr	Cys	Trp	Leu	Ser 125	Ile	Arg	Gln	Ala	Glu 130	Leu	Leu	Leu	Pro	Gly 135
Ala	Glu	Phe	His	His 140	Tyr	Val	Gly	Gly	Pro 145	Thr	Glu	Thr	His	Val 150
Val	Arg	Ser	Pro	His 155	Pro	Tyr	Gln	Leu	Pro 160	Gln	Ala	Leu	Ala	Pro 165
His	Val	Asp	Phe	Val 170	Gly	Gly	Leu	His	Arg 175	Phe	Pro	Pro	Thr	Ser 180
Ser	Leu	Arg	Gln	Arg 185	Pro	Glu	Pro	Gln	Val 190	Thr	Gly	Thr	Val	Gly 195
Leu	His	Leu	Gly	Val 200	Thr	Pro	Ser	Val	Ile 205	Arg	Lys	Arg	Tyr	Asn 210
Leu	Thr	Ser	Gln	Asp 215		Gly	Ser	Gly	Thr 220		Asn	Asn	Ser	Gln 225
Ala	Cys	Ala	Gln	Phe 230		Glu	Gln	Tyr	Phe 235		Asp	Ser	Asp	Leu 240
Ala	Gln	Phe	Met	Arg 245		Phe	Gly	Gly	Asn 250		Ala	His	Gln	Ala 255
Ser	Val	Ala	Arg	Val 260	Val	Gly	Gln	Gln	Gly 265		Gly	Arg	Ala	Gly 270
Ile	Glu	Ala	Ser	Leu 275		Val	Gln	Tyr	Leu 280		Ser	Ala	Gly	Ala 285

Asn	Ile	Ser	Thr	Trp 290	Val	Tyr	Ser	Ser	Pro 295	Gly	Arg	His	Glu	Gly 300
Gln	Glu	Pro	Phe	Leu 305	Gln	Trp	Leu	Met	Leu 310	Leu	Ser	Asn	Glu	Ser 315
Ala	Leu	Pro	His	Val 320	His	Thr	Val	Ser	Tyr 325	Gly	Asp	Asp	Glu	Asp 330
Ser	Leu	Ser	Ser	Ala 335	Tyr	Ile	Gln	Arg	Val 340	Asn	Thr	Glu	Leu	Met 345
Lys	Ala	Ala	Ala	Arg 350	Gly	Leu	Thr	Leu	Leu 355	Phe	Ala	Ser	Gly	Asp 360
Ser	Gly	Ala	Gly	Cys 365	Trp	Ser	Val	Ser	Gly 370	Arg	His	Gln	Phe	Arg 375
Pro	Thr	Phe	Pro	Ala 380	Ser	Ser	Pro	Tyr	Val 385	Thr	Thr	Val	Gly	Gly 390
Thr	Ser	Phe	Gln	Glu 395	Pro	Phe	Leu	Ile	Thr 400	Asn	Glu	Ile	Val	Asp 405
Tyr	Ile	Ser	Gly	Gly 410	Gly	Phe	Ser	Asn	Val 415	Phe	Pro	Arg	Pro	Ser 420
Tyr	Gln	Glu	Glu	Ala 425	Val	Thr	Lys	Phe	Leu 430	Ser	Ser	Ser	Pro	His 435
Leu	Pro	Pro	Ser	Ser 440	Tyr	Phe	Asn	Ala	Ser 445	Gly	Arg	Ala	Tyr	Pro 450
Asp	Val	Ala	Ala	Leu 455	Ser	Asp	Gly	Tyr	Trp 460	Val	Val	Ser	Asn	Arg 465
Val	Pro	Ile	Pro	Trp 470	Val	Ser	Gly	Thr	Ser 475	Ala	Ser	Thr	Pro	Val 480
Phe	Gly	Gly	Ile	Leu 485	Ser	Leu	Ile	Asn	Glu 490	His	Arg	Ile	Leu	Ser 495
Gly	Arg	Pro	Pro	Leu 500		Phe	Leu	Asn	Pro 505	Arg	Leu	Tyr	Gln	Gln 510
His	Gly	Ala	Gly	Leu 515		Asp	Val	Thr	Arg 520	Gly	Cys	His	Glu	Ser 525
Cys	Leu	Asp	Glu	Glu 530		Glu	Gly	Gln	Gly 535		Cys	Ser	Gly	Pro 540
Gly	Trp	Asp	Pro	Val 545		Gly	Trp	Gly	Thr 550		Thr	Ser	Gln	Leu 555

Cys

<210> 260 <211> 1638 <212> DNA

<213> Homo Sapien

<400> 260 geogegeget etetecegge geocacacet gtetgagegg egeagegage 50 cgcggcccgg gcgggctgct cggcgcggaa cagtgctcgg catggcaggg 100 attccagggc tectetteet tetettett etgetetgtg etgttgggca 150 agtgagecet tacagtgece cetggaaace caettggeet geatacegee 200 tccctgtcgt cttgccccag tctaccctca atttagccaa gccagacttt 250 ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300 taagggaact ccactgccca cttacgaaga ggccaagcaa tatctgtctt 350 atgaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400 tacatectea geagtagtgg agatggggee caacacegag acteagggte 450 ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcaggt 500 tcagcatttt tgggaaggac ttcctgctca actacccttt ctcaacatca 550 gtgaagttat ccacgggctg caccggcacc ctggtggcag agaagcatgt 600 cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650 cccagaagct tcgagtgggc ttcctaaagc ccaagtttaa agatggtggt 700 cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaatttca 750 gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800 atgccaatga catcggcatg gattatgatt atgccctcct ggaactcaaa 850 aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900 gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950 caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000 ttgctctacc agcaatgcga tgcccagcca ggggccagcg ggtctggggt 1050 ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100 ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttcccacag 1150
gatttcaacg tggctgtcag aatcactcct ctcaaatatg cccagatttg 1200
ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250
ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagaggg 1300
ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350
tgtgtgtaag gtgtcttata atctttacc tattcttac aattgcaaga 1400
tgactggctt tactatttga aaactggttt gtgtatcata tcatataca 1450
tttaagcagt ttgaaggcat acttttgcat agaaataaaa aaaatactga 1500
tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgtttttg 1550
caaactttga ttttatttc atctgaactt gtttcaaaga tttatattaa 1600
atatttggca tacaagagat atgaaaaaaa aaaaaaaa 1638

<210> 261

<211> 383

<212> PRT

<213> Homo Sapien

<400> 261

Met	Ala	Gly	Ile	Pro	Gly	Leu	Leu	Phe	Leu	Leu	Phe	Phe	Leu	Leu
1		-		5					10					15

Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro 20 25 30

Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr 35 40 45

Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu
50 55 60

Val Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu 65 70 75

Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu 80 85 90

Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile

95 100 105

Leu Ser Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser 110 115 120

Ser	Glv	Lvs	Ser	Ara	Ara	Lvs	Ara	Gln	Ile	Tyr	Gly	Tyr	Asp	Ser
DC2	01 1	_,,	-	125	3	-3-	3		130	•	-	-	_	135
Arg	Phe	Ser	Ile	Phe 140	Gly	Lys	Asp	Phe	Leu 145	Leu	Asn	Tyr	Pro	Phe 150
Ser	Thr	Ser	Val	Lys 155	Leu	Ser	Thr	Gly	Cys 160	Thr	Gly	Thr	Leu	Val 165
Ala	Glu	Lys	His	Val 170	Leu	Thr	Ala	Ala	His 175	Cys	Ile	His	Asp	Gly 180
Lys	Thr	Tyr	Val	Lys 185	Gly	Thr	Gln	Lys	Leu 190	Arg	Val	Gly	Phe	Leu 195
Lys	Pro	Lys	Phe	Lys 200	Asp	Gly	Gly	Arg	Gly 205	Ala	Asn	Asp	Ser	Thr 210
Ser	Ala	Met	Pro	Glu 215	Gln	Met	Lys	Phe	Gln 220	Trp	Ile	Arg	Val	Lys 225
Arg	Thr	His	Val	Pro 230	Lys	Gly	Trp	Ile	Lys 235	Gly	Asn	Ala	Asn	Asp 240
Ile	Gly	Met	Asp	Tyr 245	Asp	Tyr	Ala	Leu	Leu 250	Glu	Leu	Lys	Lys	Pro 255
His	Lys	Arg	Lys	Phe 260	Met	Lys	Ile	Gly	Val 265	Ser	Pro	Pro	Ala	Lys 270
Gln	Leu	Pro	Gly	Gly 275	Arg	Ile	His	Phe	Ser 280	Gly	Tyr	Asp	Asn	Asp 285
Arg	Pro	Gly	Asn	Leu 290	Val	Tyr	Arg	Phe	Cys 295	Asp	Val	Lys	Asp	Gl·u 300
Thr	Tyr	Asp	Leu	Leu 305	Tyr	Gln	Gln	Cys	Asp 310	Ala	Gln	Pro	Gly	Ala 315
Ser	Gly	Ser	Gly	Val 320	Tyr	Val	Arg	Met	Trp 325	Lys	Arg	Gln	Gln	Gln 330
Lys	Trp	Glu	Arg	Lys 335	Ile	Ile	Gly	Ile	Phe 340	Ser	Gly	His	Gln	Trp 345
Val	Asp	Met	Asn	Gly 350	Ser	Pro	Gln	Asp	Phe 355	Asn	Val	Ala	Val	Arg 360
Ile	Thr	Pro	Leu	Lys 365	Tyr	Ala	Gln	Ile	Cys 370	Tyr	Trp	Ile	Lys	Gly 375
Asn	Tyr	Leu	Asp	Cys 380	Arg	Glu	Gly							

<210> 262 <211> 1378 <212> DNA <213> Homo Sapien

<400> 262 gcatcgccct gggtctctcg agcctgctgc ctgctccccc gccccaccag 50 ccatggtggt ttctggagcg ccccagccc tgggtggggg ctgtctcggc 100 accttcacct ccctgctgct gctggcgtcg acagccatcc tcaatgcggc 150 caggatacct gttcccccag cctgtgggaa gccccagcag ctgaaccggg 200 ttgtgggcgg cgaggacagc actgacagcg agtggccctg gatcgtgagc 250 atccagaaga atgggaccca ccactgcgca ggttctctgc tcaccagccg 300 ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350 acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400 cggtcccaga aggtgggtgt tgcctgggtg gagccccacc ctgtgtattc 450 ctggaaggaa ggtgcctgtg cagacattgc cctggtgcgt ctcgagcgct 500 ccatacagtt ctcagagcgg gtcctgccca tctgcctacc tgatgcctct 550 atccacctcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600 ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650 ttcctatcat cgactcggaa gtctgcagcc atctgtactg gcggggagca 700 ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800 tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850 gccgagcgca acaggcccgg ggtctacatc agcctctctg cgcaccgctc 900 ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950 ggggtggggc cctcagggca ccgagccagg gctctggggc cgccgcgcgc 1000 tcctagggcg cagcgggacg cggggctcgg atctgaaagg cggccagatc 1050 cacatotgga totggatotg cggcggcotc gggcggtttc ccccgccgta 1100 aataggetea tetaceteta eetetggggg eeeggaegge tgetgeggaa 1150 aggaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200 catcaggece egeceaacgg ceteatgtee eegeceecac gaetteegge 1250 cccgccccg ggccccagcg cttttgtgta tataaatgtt aatgattttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaattatt tattctccaa aaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien

<400> 263 Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Cys Leu 10 5 Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu 20 Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys Ala Gly Ser Leu Leu Thr Ser Arg Trp Val Ile Thr Ala Ala His Cys Phe Lys Asp Asn Leu Asn Lys Pro Tyr Leu Phe Ser Val Leu Leu Gly Ala Trp Gln Leu Gly Asn Pro Gly Ser Arg Ser Gln Lys Val Gly Val Ala Trp Val Glu Pro His Pro Val Tyr Ser Trp Lys 125 Glu Gly Ala Cys Ala Asp Ile Ala Leu Val Arg Leu Glu Arg Ser Ile Gln Phe Ser Glu Arg Val Leu Pro Ile Cys Leu Pro Asp Ala

Ser Ile His Leu Pro Pro Asn Thr His Cys Trp Ile Ser Gly Trp

175

180

155

170

Gly S	Ser	Ile	Gln	Asp 185	Gly	Val	Pro	Leu	Pro 190	His	Pro	Gln	Thr	Leu 195
Gln I	Гуs	Leu	Lys	Val 200	Pro	Ile	Ile	Asp	Ser 205	Glu	Val	Cys	Ser	His 210
Leu :	Tyr	Trp	Arg	Gly 215	Ala	Gly	Gln	Gly	Pro 220	Ile	Thr	Glu	Asp	Met 225
Leu (Cys	Ala	Gly	Tyr 230	Leu	Glu	Gly	Glu	Arg 235	Asp	Ala	Cys	Leu	Gly 240
Asp S	Ser	Gly	Gly	Pro 245	Leu	Met	Cys	Gln	Val 250	Asp	Gly	Ala	Trp	Leu 255
Leu A	Ala	Gly	Ile	Ile 260	Ser	Trp	Gly	Glu	Gly 265	Cys	Ala	Glu	Arg	Asn 270
Arg 1	Pro	Gly	Val	Tyr 275	Ile	Ser	Leu	Ser	Ala 280	His	Arg	Ser	Trp	Val 285
Glu 1	Lys	Ile	Val	Gln 290	Gly	Val	Gln	Leu	Arg 295	Gly	Arg	Ala	Gln	Gly 300
Gly	Gly	Ala	Leu	Arg 305	Ala	Pro	Ser	Gln	Gly 310	Ser	Gly	Ala	Ala	Ala 315
Arg S	Ser													
<210> <211>		Ļ										٠		
<212> <213>			cial	Sequ	ience	<u> </u>								
<220> <223>	Syr	thet	ic (Oligo	onuc]	leoti	ide 1	Probe	2					
<400>	264	<u>.</u>												
gtcc			atgco	ctaca	at gt	tc 2	24							
<210>		5												
<211><212>														
<213>			cial	Sequ	ience	=								
<220>														
<223>	Syr	thet	cic (Oligo	onuc]	leoti	ide I	Probe	9					
<400> gcaga			ctaag	ggttg	g 19									
<210>		5												
<211>	24													

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 266
agetetagae caatgeeage ttee 24
<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 267
gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 268
 ggggaattca ccctatgaca ttgcc 25
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 269
 gaatgccctg caagcatcaa ctgg 24
<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 270
 gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
```

```
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 272
 cagccctgcc acatgtgc 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 273
 tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 274
 ggcgaagagc agggtgagac cccg 24
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<400> 275
geocteatee tetetggeaa atgeagttae ageocggage cegae 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 276
gggcagggat tccagggctc c 21
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 277
 ggctatgaca gcaggttc 18
<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 278
 tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 279
 gcatcgcatt gctggtagag caag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 281
 cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 282
 tggagggga gcgggatgct tgtctgggcg actccggggg ccccctcatg 50
tgccaggtgg a 61
<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 283
 ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50
 gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100
 atgctgtgtg ccggctact 119
<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien
<400> 284
 gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50
 ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100
```

agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150 aggtatecee gaeggeetea gaeatgetge acatgagatg ggaegaggag 200 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250 caaggagcgc gggcgccgcg gcgagaatct gttcgccatc acagacgagg 300 gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350 tacaacetca gegeegeeae etgeageeea ggeeagatgt geggeeaeta 400 cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550 ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600 tctgtgaacc catcggaagc ccggaagatg ctcaggattt gccttacctg 650 gtaactgagg ccccatcctt ccgggcgact gaagcatcag actctaggaa 700 aatgggtact ccttcttccc tagcaacggg gattccggct ttcttggtaa 750 cagaggtete aggetecetg geaaceaagg etetgeetge tgtggaaace 800 caggccccaa cttccttagc aacgaaagac ccgccctcca tggcaacaga 850 ggctccacct tgcgtaacaa ctgaggtccc ttccattttg gcagctcaca 900 gcctgccctc cttggatgag gagccagtta ccttccccaa atcgacccat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgcctcctt ccagtgaggt cttggcctca gtttttccag cccaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtccctgcc caatttcccc aatacctctg ccaccgctaa tgccacgggt 1250 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caagcctagc gttgtgtcag ggctgaactc gggccctggt catgtgtggg 1350 geceteteet gggaetactg etectgeete etetggtgtt ggetggaate 1400

ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctctgt 1450 catcttcccc accctgtccc cagcccctaa acaagatact tcttggttaa 1500 ggccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550 atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600 ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650 ggggtgggag gatttgaggg agctcactgc ctacctggcc tggggctgtc 1700 tgcccacaca gcatgtgcgc tctccctgag tgcctgtaa gctggggatg 1750 gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800 tgagtgggg aggcaggac gagggaagga aagtaactcc tgactctca 1850 ataaaaacct gtccacctg tgaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu

1 5 10 15

Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp
20 25 30

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala 35 40 45

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp
50 55 60

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val 65 70 75

Trp Gly His Asn Lys Glu Arg Gly Arg Arg Gly Glu Asn Leu Phe 80 85 90

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu 95 100 105

Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys
110 115 120

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala 125 130 135

Lys	Thr	Glu	Arg	Ile 140	Gly	Cys	Gly	Ser	His 145	Phe	Cys	Glu	Lys	Leu 150
Gln	Gly	Val	Glu	Glu 155	Thr	Asn	Ile	Glu	Leu 160	Leu	Val	Cys	Asn	Tyr 165
Glu	Pro	Pro	Gly	Asn 170	Val	Lys	Gly	Lys	Arg 175	Pro	Tyr	Gln	Glu	Gly 180
Thr	Pro	Cys	Ser	Gln 185	Cys	Pro	Ser	Gly	Tyr 190	His	Cys	Lys	Asn	Ser 195
Leu	Cys	Glu	Pro	Ile 200	Gly	Ser	Pro	Glu	Asp 205	Ala	Gln	Asp	Leu	Pro 210
Tyr	Leu	Val	Thr	Glu 215	Ala	Pro	Ser	Phe	Arg 220	Ala	Thr	Glu	Ala	Ser 225
Asp	Ser	Arg	Lys	Met 230	Gly	Thr	Pro	Ser	Ser 235	Leu	Ala	Thr	Gly	Ile 240
Pro	Ala	Phe	Leu	Val 245	Thr	Glu	Val	Ser	Gly 250	Ser	Leu	Ala	Thr	Lys 255
Ala	Leu	Pro	Ala	Val 260	Glu	Thr	Gln	Ala	Pro 265	Thr	Ser	Leu	Ala	Thr 270
Lys	Asp	Pro	Pro	Ser 275	Met	Ala	Thr	Glu	Ala 280	Pro	Pro	Cys	Val	Thr 285
Thr	Glu	Val	Pro	Ser 290	Ile	Leu	Ala	Ala	His 295	Ser	Leu	Pro	Ser	Leu 300
Asp	Glu	Glu	Pro	Val 305	Thr	Phe	Pro	Lys	Ser 310	Thr	His	Val	Pro	Ile 315
Pro	Lys	Ser	Ala	Asp 320	Lys	Val	Thr	Asp	Lys 325	Thr	Lys	Val	Pro	Ser 330
Arg	Ser	Pro	Glu	Asn 335	Ser	Leu	Asp	Pro	Lys 340	Met	Ser	Leu	Thr	Gly 345
Ala	Arg	Glu	Leu	Leu 350	Pro	His	Ala	Gln	Glu 355	Glu	Ala	Glu	Ala	Glu 360
Ala	Glu	Leu	Pro	Pro 365	Ser	Ser	Glu	Val	Leu 370	Ala	Ser	Val	Phe	Pro 375
Ala	Gln	Asp	Lys	Pro 380		Glu	Leu	Gln	Ala 385	Thr	Leu	Asp	His	Thr 390
Gly	His	Thr	Ser	Ser 395		Ser	Leu	Pro	Asn 400	Phe	Pro	Asn	Thr	Ser 405

Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser 430 Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly 450 Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe 455 <210> 286 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 286 tcctgcagtt tcctgatgc 19 <210> 287 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 287 ctcatattgc acaccagtaa ttcg 24 <210> 288 <211> 45 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 288 atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45 <210> 289 <211> 3662 <212> DNA <213> Homo Sapien gtaactgaag tcaggctttt catttgggaa gccccctcaa cagaattcgg 50

tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100 ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150 caaggcaagt tccatgagcc accttcaaag ccttcgagaa gtgaaactga 200 acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250 attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300 acatctgaaa gagtttcagt cccttgaaac tttggacctt agcagcaaca 350 atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400 tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450 tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500 ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550 aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600 tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650 atggagettt ttgggggetg ageaacatgg aaattttgca getggaecat 700 aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800 cctgggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850 ttatcaaggt tagatgattc aagcttcctt ggcctaagct tactaaatac 900 actgcacatt gggaacaaca gagtcagcta cattgctgat tgtgccttcc 950 gggggctttc cagtttaaag actttggatc tgaagaacaa tgaaatttcc 1000 tggactattg aagacatgaa tggtgctttc tctgggcttg acaaactgag 1050 gcgactgata ctccaaggaa atcggatccg ttctattact aaaaaagcct 1100 tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150 atgtctttac aaggcaatgc attttcacaa atgaagaaac tgcaacaatt 1200 gcatttaaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300 gcccatcctc agctgctaaa aggaagaagc atttttgctg ttagcccaga 1350 tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400 aaacacagtc ggcaataaaa ggttccaatt tgagtttcat ctgctcagct 1450 gccagcagca gtgattcccc aatgactttt gcttggaaaa aagacaatga 1500 actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaag 1550 gtggcgaggt gatggagtat accaccatec ttcggctgcg cgaggtggaa 1600 tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650 atcctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700 ccaagaccc catggatete accatecgag etggggeeat ggeaegettg 1750 gagtgtgctg ctgtggggca cccagccccc cagatagcct ggcagaagga 1800 tgggggcaca gacttcccag ctgcacggga gagacgcatg catgtgatgc 1850 ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900 gtatacagct gcacagctca gaacagtgca ggaagtattt cagcaaatgc 1950 aactctgact gtcctagaaa caccatcatt tttgcggcca ctgttggacc 2000 gaactgtaac caagggagaa acagccgtcc tacagtgcat tgctggagga 2050 agccctcccc ctaaactgaa ctggaccaaa gatgatagcc cattggtggt 2100 aaccgagagg cacttttttg cagcaggcaa tcagcttctg attattgtgg 2150 actcagatgt cagtgatgct gggaaataca catgtgagat gtctaacacc 2200 cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaac 2250 ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300 ccactgtggg tgtcgtgatc atagccgtgg tttgctgtgt ggtgggcacg 2350 tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450 gttatttgtc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500 tcttcagaaa gtggaagcca ccaccagttt gtcacatctt caggtgctgg 2550 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600 gcagtgaagc tgatgtggaa gctgccacag atctgttcct ttgtccgttt 2650 ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700 tccttttgaa acatatcata caggttgcag tcctgaccca agaacagttt 2750 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 gtggccttca catgtgagga agctacttaa cactagttac tctcacaatg 2900 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc tttagatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050 ttggacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100 tcttccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150 agattttcag gaagaaaatc acatttgtac ctttaaacag actttagaaa 3200 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250 tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300 aaagagagag aatcttatgt tttttaaatg gagttatgaa ttttaaaagg 3350 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400 aaatttttat actgggaatg atgctcatat aagaatacct ttttaaacta 3450 ttttttaact ttgttttatg caaaaaagta tcttacgtaa attaatgata 3500 taaatcatga ttattttatg tatttttata atgccagatt tctttttatg 3550 gaaaatgagt tactaaagca ttttaaataa tacctgcctt gtaccatttt 3600 ttaaatagaa gttacttcat tatattttgc acattatatt taataaaatg 3650 tgtcaatttg aa 3662

<210> 290

<211> 1059

<212> PRT

<213> Homo Sapien

<400> 290

Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His

1 5 10 15

Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
20 25 30

Ala	Ser	Ser	Met	Ser 35	His	Leu	Gln	Ser	Leu 40	Arg	Glu	Val	Lys	Leu 45
Asn	Asn	Asn	Glu	Leu 50	Glu	Thr	Ile	Pro	Asn 55	Leu	Gly	Pro	Val	Ser 60
Ala	Asn	Ile	Thr	Leu 65	Leu	Ser	Leu	Ala	Gly 70	Asn	Arg	Ile	Val	Glu 75
Ile	Leu	Pro	Glu	His 80	Leu	Lys	Glü	Phe	Gln 85	Ser	Leu	Glu	Thr	Leu 90
Asp	Leu	Ser	Ser	Asn 95	Asn	Ile	Ser	Glu	Leu 100	Gln	Thr	Ala	Phe	Pro 105
Ala	Leu	Gln	Leu	Lys 110	Tyr	Leu	Tyr	Leu	Asn 115	Ser	Asn	Arg	Val	Thr 120
Ser	Met	Glu	Pro	Gly 125	Tyr	Phe	Asp	Asn	Leu 130	Ala	Asn	Thr	Leu	Leu 135
Val	Leu	Lys	Leu	Asn 140	Arg	Asn	Arg	Ile	Ser 145	Ala	Ile	Pro	Pro	Lys 150
Met	Phe	Lys	Leu	Pro	Gln	Leu	Gln	His	Leu	Glu	Leu	Asn	Arg	Asn
				155					160					165
				155					100					100
Lys	Ile	Lys	Asn		Asp	Gly	Leu	Thr		Gln	Gly	Leu	Gly	
			Asn Leu	Val 170					Phe 175					Ala 180
Leu	Lys	Ser		Val 170 Lys 185	Met	Gln	Arg	Asn	Phe 175 Gly 190	Val	Thr	Lys	Leu	Ala 180 Met 195
Leu Asp	Lys Gly	Ser Ala	Leu Phe	Val 170 Lys 185 Trp 200	Met Gly	Gln Leu	Arg Ser	Asn	Phe 175 Gly 190 Met 205	Val Glu	Thr Ile	Lys Leu	Leu Gln	Ala 180 Met 195 Leu
Leu Asp Asp	Lys Gly His	Ser Ala Asn	Leu Phe Asn	Val 170 Lys 185 Trp 200 Leu 215	Met Gly Thr	Gln Leu Glu	Arg Ser	Asn Asn Thr	Phe 175 Gly 190 Met 205 Lys 220	Val Glu Gly	Thr Ile Trp	Lys Leu Leu	Leu Gln Tyr	Ala 180 Met 195 Leu 210
Leu Asp Asp	Lys Gly His	Ser Ala Asn Met	Leu Phe Asn Leu	Val 170 Lys 185 Trp 200 Leu 215 Gln 230	Met Gly Thr	Gln Leu Glu Leu	Arg Ser Ile	Asn Asn Thr	Phe 175 Gly 190 Met 205 Lys 220 Ser 235	Val Glu Gly	Thr Ile Trp Asn	Lys Leu Leu	Leu Gln Tyr	Ala 180 Met 195 Leu 210 Gly 225 Asn
Leu Asp Asp Leu	Lys Gly His Leu	Ser Ala Asn Met	Leu Phe Asn Leu	Val 170 Lys 185 Trp 200 Leu 215 Gln 230 Asp 245	Met Gly Thr Glu Ala	Gln Leu Glu Leu	Arg Ser Ile His	Asn Thr Leu Phe	Phe 175 Gly 190 Met 205 Lys 220 Ser 235 Cys 250	Val Glu Gly Gln Gln	Thr Ile Trp Asn	Lys Leu Leu Ala	Leu Gln Tyr Ile Ser	Ala 180 Met 195 Leu 210 Gly 225 Asn 240 Glu
Leu Asp Asp Leu Arg	Lys Gly His Leu Ile	Ser Ala Asn Met Ser	Leu Phe Asn Leu Pro	Val 170 Lys 185 Trp 200 Leu 215 Gln 230 Asp 245 Phe 260	Met Gly Thr Glu Ala Asn	Gln Leu Glu Leu Trp	Arg Ser Ile His Glu	Asn Thr Leu Phe	Phe 175 Gly 190 Met 205 Lys 220 Ser 235 Cys 250 Arg 265	Val Glu Gly Gln Leu	Thr Ile Trp Asn Lys	Leu Leu Ala Leu	Leu Gln Tyr Ile Ser	Ala 180 Met 195 Leu 210 Gly 225 Asn 240 Glu 255 Ser

				290					295					300
Leu	Lys	Thr	Leu	Asp 305	Leu	Lys	Asn	Asn	Glu 310	Ile	Ser	Trp	Thr	Ile 315
Glu	Asp	Met	Asn	Gly 320	Ala	Phe	Ser	Gly	Leu 325	Asp	Lys	Leu	Arg	Arg 330
Leu	Ile	Leu	Gln	Gly 335	Asn	Arg	Ile	Arg	Ser 340	Ile	Thr	Lys	Lys	Ala 345
Phe	Thr	Gly	Leu	Asp 350	Ala	Leu	Glu	His	Leu 355	Asp	Leu	Ser	Asp	Asn 360
Ala	Ile	Met	Ser	Leu 365	Gln	Gly	Asn	Ala	Phe 370	Ser	Gln	Met	Lys	Lys 375
Leu	Gln	Gln	Leu	His 380	Leu	Asn	Thr	Ser	Ser 385	Leu	Leu	Cys	Asp	Cys 390
Gln	Leu	Lys	Trp	Leu 395	Pro	Gln	Trp	Val	Ala 400	Glu	Asn	Asn	Phe	Gln 405
Ser	Phe	Val	Asn	Ala 410	Ser	Cys	Ala	His	Pro 415	Gln	Leu	Leu	Lys	Gly 420
Arg	Ser	Ile	Phe	Ala 425	Val	Ser	Pro	Asp	Gly 430	Phe	Val	Cys	Asp	Asp 435
Phe	Pro	Lys	Pro	Gln 440	Ile	Thr	Val	Gln	Pro 445	Glu	Thr	Gln	Ser	Ala 450
Ile	Lys	Gly	Ser	Asn 455	Leu	Ser	Phe	Ile	Cys 460	Ser	Ala	Ala	Ser	Ser 465
Ser	Asp	Ser	Pro	Met	Thr	Phe	Ala	Trp	Lys	Lys	Asp	Asn	Glu	
				470					475					480
Leu	His	Asp	Ala	Glu 485	Met	Glu	Asn	Tyr	Ala 490	His	Leu	Arg	Ala	Gln 495
Gly	Gly	Glu	Val	Met 500	Glu	Tyr	Thr	Thr	Ile 505	Leu	Arg	Leu	Arg	Glu 510
Val	Glu	Phe	Ala	Ser 515	Glu	Gly	Lys	Tyr	Gln 520	Cys	Val	Ile	Ser	Asn 525
His	Phe	Gly	Ser	Ser 530	Tyr	Ser	Val	Lys	Ala 535	Lys	Leu	Thr	Val	Asn 540
Met	Leu	Pro	Ser	Phe 545		Lys	Thr	Pro	Met 550	Asp	Leu	Thr	Ile	Arg 555

Ala	Gly	Ala	Met	Ala 560	Arg	Leu	Glu	Cys	Ala 565	Ala	Val	Gly	His	Pro 570
Ala	Pro	Gln	Ile	Ala 575	Trp	Gln	Lys	Asp	Gly 580	Gly	Thr	Asp	Phe	Pro 585
Ala	Ala	Arg	Glu	Arg 590	Arg	Met	His	Val	Met 595	Pro	Glu	Asp	Asp	Val 600
Phe	Phe	Ile	Val	Asp 605	Val	Lys	Ile	Glu	Asp 610	Ile	Gly	Val	Tyr	Ser 615
Cys	Thr	Ala	Gln	Asn 620	Ser	Ala	Gly	Ser	Ile 625	Ser	Ala	Asn	Ala	Thr 630
Leu	Thr	Val	Leu	Glu 635	Thr	Pro	Ser	Phe	Leu 640	Arg	Pro	Leu	Leu	Asp 645
Arg	Thr	Val	Thr	Lys 650	Gly	Glu	Thr	Ala	Val 655	Leu	Gln	Cys	Ile	Ala 660
Gly	Gly	Ser	Pro	Pro 665	Pro	Lys	Leu	Asn	Trp 670	Thr	Lys	Asp	Asp	Ser 675
Pro	Leu	Val	Val	Thr 680	Glu	Arg	His		Phe 685	Ala	Ala	Gly	Asn	Gln 690
Leu	Leu	Ile	Ile	Val 695	Asp	Ser	Asp	Val	Ser 700	Asp	Ala	Gly	Lys	Tyr 705
Thr	Cys	Glu	Met	Ser 710	Asn	Thr	Leu	Gly	Thr 715	Glu	Arg	Gly	Asn	Val 720
Arg	Leu	Ser	Val	Ile 725	Pro	Thr	Pro	Thr	Cys 730	Asp	Ser	Pro	Gln	Met 735
Thr	Ala	Pro	Ser	Leu 740	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	Val	Gly	Val 750
Val	Ile	Ile	Ala	Val 755	Val	Cys	Cys	Val	Val 760	Gly	Thr	Ser	Leu	Val 765
Trp	Val	Val	Ile	Ile 770	Tyr	His	Thr	Arg	Arg 775	Arg	Asn	Glu	Asp	Cys 780
Ser	Ile	Thr	Asn	Thr	Asp	Glu	Thr	Asn	Leu	Pro	Ala	Asp	Ile	Pro
				785					790					795
Ser	Tyr	Leu	Ser	Ser 800	Gln	Gly	Thr	Leu	Ala 805		Arg	Gln	Asp	Gly 810

Tyr	Val	Ser	Ser	Glu 815	Ser	Gly	Ser	His	His 820	Gln	Phe	Val	Thr	Ser 825
Ser	Gly	Ala	Gly	Phe 830	Phe	Leu	Pro	Gln	His 835	Asp	Ser	Ser	Gly	Thr 840
Cys	His	Ile	Asp	Asn 845	Ser	Ser	Glu	Ala	Asp 850	Val	Glu	Ala	Ala	Thr 855
Asp	Leu	Phe	Leu	Cys 860	Pro	Phe	Leu	Gly	Ser 865	Thr	Gly	Pro	Met	Tyr 870
Leu	Lys	Gly	Asn	Val 875	Tyr	Gly	Ser	Asp	Pro 880	Phe	Glu	Thr	Tyr	His 885
Thr	Gly	Cys	Ser	Pro 890	Asp	Pro	Arg	Thr	Val 895	Leu	Met	Asp	His	Tyr 900
Glu	Pro	Ser	Tyr	Ile 905	Lys	Lys	Lys	Glu	Cys 910	Tyr	Pro	Cys	Ser	His 915
Pro	Ser	Glu	Glu	Ser 920	Cys	Glu	Arg	Ser	Phe 925	Ser	Asn	Ile	Ser	Trp 930
Pro	Ser	His	Val	Arg 935	Lys	Leu	Leu	Asn	Thr 940	Ser	Tyr	Ser	His	Asn 945
Glu	Gly	Pro	Gly	Met 950	Lys	Asn	Leu	Cys	Leu 955	Asn	Lys	Ser	Ser	Leu 960
Asp	Phe	Ser	Ala	Asn 965	Pro	Glu	Pro	Ala	Ser 970	Val	Ala	Ser	Ser	Asn 975
Ser	Phe	Met	Gly	Thr 980	Phe	Gly	Lys	Ala	Leu 985	Arg	Arg	Pro	His	Leu 990
Asp	Ala	Tyr	Ser	Ser 995	Phe	Gly	Gln		Ser 1000	Asp	Cys	Gln	Pro	Arg 1005
Ala	Phe	Tyr		Lys 1010	Ala	His	Ser		Pro 1015		Leu	Asp	Ser	Gly 1020
Ser	Glu	Glu		Gly 1025		Glu	Arg		Asp 1030		Gln	Glu	Glu	Asn 1035
His	Ile	Cys		Phe 1040		Gln	Thr		Glu 1045		Tyr	Arg	Thr	Pro 1050
Asn	Phe	Gln	Ser	Туг 1055		Leu	Asp	Thr						

<210> 291 <211> 2906 <212> DNA <213> Homo Sapien

<400> 291 ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagcttttt cttgtgagcc ctggatctta acacaaatgt gtatatgtgc 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgegtttte tettgttett aaccaeetgg attteeatet ggatgttget 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggteeta ggtttaacag ggeeetattt gaeeeeetge ttgtggtget 900 gctggctctt caacttcttg tggtggctgg tctggtgcgg gctcagacct 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actetttgae aategtetta etaceatece gaatggaget tttgtataet 1250

tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcagc 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850 attacttcac atgctatgct ccggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactggct aaatctactg tttcaaaaaa gtgtctttac aaaaaacaa 2850 aaaagaaaag aaatttattt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

<210> 292

<211> 640

<212> PRT

<213> Homo Sapien

<400> 292

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 20 25 30

Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln 35 40 45

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val 50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser
65 70 75

Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile 80 85 90

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu 95 100 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe
110 115 120

Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg 125 130 135

Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu 140 145 150

Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser

				155					160					165
Tyr	Ala	Phe	Asn	Arg 170	Ile	Pro	Ser	Leu	Arg 175	Arg	Leu	Asp	Leu	Gly 180
Glu	Leu	Lys	Arg	Leu 185	Ser	Tyr	Ile	Ser	Glu 190	Gly	Ala	Phe	Glu	Gly 195
Leu	Ser	Asn	Leu	Arg 200	Tyr	Leu	Asn	Leu	Ala 205	Met	Cys	Asn	Leu	Arg 210
Glu	Ile	Pro	Asn	Leu 215	Thr	Pro	Leu	Ile	Lys 220	Leu	Asp	Glu	Leu	Asp 225
Leu	Ser	Gly	Asn	His 230	Leu	Ser	Ala	Ile	Arg 235	Pro	Gly	Ser	Phe	Gln 240
Gly	Leu	Met	His	Leu 245	Gln	Lys	Leu	Trp	Met 250	Ile	Gln	Ser	Gln	Ile 255
Gln	Val	Ile	Glu	Arg 260	Asn	Ala	Phe	Asp	Asn 265	Leu	Gln	Ser	Leu	Val 270
Glu	Ile	Asn	Leu	Ala 275	His	Asn	Asn	Leu	Thr 280	Leu	Leu	Pro	His	Asp 285
Leu	Phe	Thr	Pro	Leu 290	His	His	Leu	Glu	Arg 295	Ile	His	Leu	His	His 300
Asn	Pro	Trp	Asn	Cys 305	Asn	Cys	Asp	Ile	Leu 310	Trp	Leu	Ser	Trp	Trp 315
Ile	Lys	Asp	Met	Ala 320	Pro	Ser	Asn	Thr	Ala 325	Cys	Cys	Ala	Arg	Cys 330
Asn	Thr	Pro	Pro	Asn 335	Leu	Lys	Gly	Arg	Tyr 3 4 0	Ile	Gly	Glu	Leu	Asp 345
Gln	Asn	Tyr	Phe	Thr 350	Cys	Tyr	Ala	Pro	Val 355	Ile	Val	Glu	Pro	Pro 360
Ala	Asp	Leu	Asn	Val 365	Thr	Glu	Gly	Met	Ala 370	Ala	Glu	Leu	Lys	Cys 375
Arg	Ala	Ser	Thr	Ser 380	Leu	Thr	Ser	Val	Ser 385	Trp	Ile	Thr	Pro	Asn 390
Gly	Thr	Val	Met	Thr 395	His	Gly	Ala	Tyr	Lys 400	Val	Arg	Ile	Ala	Val 405
Leu	Ser	Asp	Gly	Thr 410	Leu	Asn	Phe	Thr	Asn 415	Val	Thr	Val	Gln	Asp 420

Thr	Gly	Met	Tyr	Thr 425	Cys	Met	Val	Ser	Asn 430	Ser	Val	Gly	Asn	Thr 435
Thr	Ala	Ser	Ala	Thr 440	Leu	Asn	Val	Thr	Ala 445	Ala	Thr	Thr	Thr	Pro 450
Phe	Ser	Tyr	Phe	Ser 455	Thr	Val	Thr	Val	Glu 460	Thr	Met	Glu	Pro	Ser 465
Gln	Asp	Glu	Ala	Arg 470	Thr	Thr	Asp	Asn	Asn 475	Val	Gly	Pro	Thr	Pro 480
Val	Val	Asp	Trp	Glu 485	Thr	Thr	Asn	Val	Thr 490	Thr	Ser	Leu	Thr	Pro 495
Gln	Ser	Thr	Arg	Ser 500	Thr	Glu	Lys	Thr	Phe 505	Thr	Ile	Pro	Val	Thr 510
Asp	Ile	Asn	Ser	Gly 515	Ile	Pro	Gly	Ile	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr	Lys	Ile	Ile	Ile 530	Gly	Cys	Phe	Val	Ala 535	Ile	Thr	Leu	Met	Ala 540
Ala	Val	Met	Leu	Val 545	Ile	Phe	Tyr	Lys	Met 550	Arg	Lys	Gln	His	His 555
Arg	Gln	Asn	His	His 560	Ala	Pro	Thr	Arg	Thr 565	Val	Glu	Ile	Ile	Asn 570
Val	Asp	Asp	Glu	Ile 575	Thr	Gly	Asp	Thr	Pro 580	Met	Glu	Ser	His	Leu 585
Pro	Met	Pro	Ala	Ile 590	Glu	His	Glu	His	Leu 595	Asn	His	Tyr	Asn	Ser 600
Tyr	Lys	Ser	Pro	Phe 605	Asn	His	Thr	Thr	Thr 610	Val	Asn	Thr	Ile	Asn 615
Ser	Ile	His	Ser	Ser 620	Val	His	Glu	Pro	Leu 625	Leu	Ile	Arg	Met	Asn 630
Ser	Lys	Asp	Asn	Val 635	Gln	Glu	Thr	Gln	Ile 640					
-010	- 22	2												

<210> 293

<211> 4053

<212> DNA

<213> Homo Sapien

<400> 293

agccgacget geteaagetg caactetgtt geagttggea gttetttteg 50

gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150 gagggcgggc gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200 gcgccggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250 gcgcgccgag cctccgtgcg cgcgccgcgg ggttggggct gctgctgtgc 300 geggtgetgg ggegegetgg ceggteegae ageggeggte geggggaaet 350 cgggcagccc tctggggtag ccgccgagcg cccatgcccc actacctgcc 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatettte ateaaggeaa gtteeatgag eeacetteaa ageettegag 550 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650 aatactccct gaacatctga aagagtttca gtcccttgaa actttggacc 700 ttagcagcaa caatatttca gagctccaaa ctgcatttcc agccctacag 750 ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850 accgaatete agetatecea eccaagatgt ttaaaetgee ecaaetgeaa 900 catctcgaat tgaaccgaaa caagattaaa aatgtagatg gactgacatt 950 ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000 cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050 cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100 cttgctgatg ctgcaggaac ttcatctcag ccaaaatgcc atcaacagga 1150 tcagccctga tgcctgggag ttctgccaga agctcagtga gctggaccta 1200 actttcaatc acttatcaag gttagatgat tcaagcttcc ttggcctaag 1250 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300 attgtgcctt ccgggggctt tccagtttaa agactttgga tctgaagaac 1350

aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggct 1400 tgacaaactg aggcgactga tactccaagg aaatcggatc cgttctatta 1450 ctaaaaaagc cttcactggt ttggatgcat tggagcatct agacctgagt 1500 gacaacgcaa tcatgtcttt acaaggcaat gcattttcac aaatgaagaa 1550 actgcaacaa ttgcatttaa atacatcaag ccttttgtgc gattgccagc 1600 taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650 aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcatttttgc 1700 tgttagccca gatggctttg tgtgtgatga ttttcccaaa ccccagatca 1750 cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagtttc 1800 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850 aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900 tccgggccca aggtggcgag gtgatggagt ataccaccat ccttcggctg 1950 cgcgaggtgg aatttgccag tgaggggaaa tatcagtgtg tcatctccaa 2000 tcactttggt tcatcctact ctgtcaaagc caagcttaca gtaaatatgc 2050 ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100 atggcacget tggagtgtgc tgetgtgggg cacccagece eccagatage 2150 ctggcagaag gatgggggca cagacttccc agctgcacgg gagagacgca 2200 tgcatgtgat gcccgaggat gacgtgttct ttatcgtgga tgtgaagata 2250 gaggacattg gggtatacag ctgcacagct cagaacagtg caggaagtat 2300 ttcagcaaat gcaactctga ctgtcctaga aacaccatca tttttgcggc 2350 cactgttgga ccgaactgta accaagggag aaacagccgt cctacagtgc 2400 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450 cccattggtg gtaaccgaga ggcacttttt tgcagcaggc aatcagcttc 2500 tgattattgt ggactcagat gtcagtgatg ctgggaaata cacatgtgag 2550 atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtgat 2600 ccccactcca acctgcgact cccctcagat gacagcccca tcgttagacg 2650 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt ggtttgctgt 2700

gtggtgggca cgtcactcgt gtgggtggtc atcatatacc acacaaggcg 2750 gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800 cagatattcc tagttatttg tcatctcagg gaacgttagc tgacaggcag 2850 gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900 ttcaggtgct ggatttttct taccacaaca tgacagtagt gggacctgcc 2950 atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000 ctttgtccgt ttttgggatc cacaggccct atgtatttga agggaaatgt 3050 gtatggctca gatccttttg aaacatatca tacaggttgc agtcctgacc 3100 caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150 gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200 cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250 actctcacaa tgaaggacct ggaatgaaaa atctgtgtct aaacaagtcc 3300 tctttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350 ttctttcatg ggtacctttg gaaaagctct caggagacct cacctagatg 3400 cctattcaag ctttggacag ccatcagatt gtcagccaag agccttttat 3450 ttgaaagctc attcttcccc agacttggac tctgggtcag aggaagatgg 3500 gaaagaaagg acagattttc aggaagaaaa tcacatttgt acctttaaac 3550 agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600 acatagactg aatgagacca aaggaaaagc ttaacatact acctcaagtg 3650 aacttttatt taaaagagag agaatcttat gttttttaaa tggagttatg 3700 aattttaaaa ggataaaaat gctttattta tacagatgaa ccaaaattac 3750 aaaaagttat gaaaattttt atactgggaa tgatgctcat ataagaatac 3800 ctttttaaac tatttttaa ctttgtttta tgcaaaaaag tatcttacgt 3850 aaattaatga tataaatcat gattatttta tgtatttta taatgccaga 3900 tttcttttta tggaaaatga gttactaaag cattttaaat aatacctgcc 3950 ttgtaccatt ttttaaatag aagttacttc attatatttt gcacattata 4000 aaa 4053

<210> 294

<211> 1119

<212> PRT <213> Homo Sapien

<400> 294

Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu 1 5 10 15

Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly 20 25 30

Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg
35 40 45

Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys 50 55 60

Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp
65 70 75

Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys 80 85 90

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu 95 100 105

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser 110 115 120

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu 125 130 135

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu 140 145 150

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 155 160 165

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 170 175 180

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 185 190 195

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 200 205 210

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

				215					220					225
Lys	Ile	Lys	Asn	Val 230	Asp	Gly	Leu	Thr	Phe 235	Gln	Gly	Leu	Gly	Ala 240
Leu	Lys	Ser	Leu	Lys 245	Met	Gln	Arg	Asn	Gly 250	Val	Thr	Lys	Leu	Met 255
Asp	Gly	Ala	Phe	Trp 260	Gly	Leu	Ser	Asn	Met 265	Glu	Ile	Leu	Gln	Leu 270
Asp	His	Asn	Asn	Leu 275	Thr	Glu	Ile	Thr	Lys 280	Gly	Trp	Leu	Tyr	Gly 285
Leu	Leu	Met	Leu	Gln 290	Glu	Leu	His	Leu	Ser 295	Gln	Asn	Ala	Ile	Asn 300
Arg	Ile	Ser	Pro	Asp 305	Ala	Trp	Glu	Phe	Cys 310	Gln	Lys	Leu	Ser	Glu 315
Leu	Asp	Leu	Thr	Phe 320	Asn	His	Leu	Ser	Arg 325	Leu	Asp	Asp	Ser	Ser 330
Phe	Leu	Gly	Leu	Ser 335	Leu	Leu	Asn	Thr	Leu 340	His	Ile	Gly	Asn	Asn 345
Arg	Val	Ser	Tyr	11e 350	Ala	Asp	Cys	Ala	Phe 355	Arg	Gly	Leu	Ser	Ser 360
Leu	Lys	Thr	Leu	Asp 365	Leu	Lys	Asn	Asn	Glu 370	Ile	Ser	Trp	Thr	Ile 375
Glu	Asp	Met	Asn	Gly 380	Ala	Phe	Ser	Gly	Leu 385	Asp	Lys	Leu	Arg	Arg 390
Leu	Ile	Leu	Gln	Gly 395	Asn	Arg	Ile	Arg	Ser 400	Ile	Thr	Lys	Lys	Ala 405
Phe	Thr	Gly	Leu	Asp 410	Ala	Leu	Glu	His	Leu 415	Asp	Leu	Ser	Asp	Asn 420
Ala	Ile	Met	Ser	Leu 425	Gln	Gly	Asn	Ala	Phe 430	Ser	Gln	Met	Lys	Lys 435
Leu	Gln	Gln	Leu	His 440	Leu	Asn	Thr	Ser	Ser 445	Leu	Leu	Cys	Asp	Cys 450
Gln	Leu	Lys	Trp	Leu 455	Pro	Gln	Trp	Val	Ala 460	Glu	Asn	Asn	Phe	Gln 465
Ser	Phe	Val	Asn	Ala 470	Ser	Cys	Ala	His	Pro 475	Gln	Leu	Leu	Lys	Gly 480

	•													
Arg	Ser	Ile	Phe	Ala 485	Val	Ser	Pro	Asp	Gly 490	Phe	Val	Cys	Asp	Asp 495
Phe	Pro	Lys	Pro	Gln 500	Ile	Thr	Val	Gln	Pro 505	Glu	Thr	Gln	Ser	Ala 510
Ile	Lys	Gly	Ser	Asn 515	Leu	Ser	Phe	Ile	Cys 520	Ser	Ala	Ala	Ser	Ser 525
Ser	Asp	Ser	Pro	Met 530	Thr	Phe	Ala	Trp	Lys 535	Lys	Asp	Asn	Glu	Leu 540
Leu	His	Asp	Ala	Glu 545	Met	Glu	Asn	Tyr	Ala 550	His	Leu	Arg	Ala	Gln 555
Gly	Gly	Glu	Val	Met 560	Glu	Tyr	Thr	Thr	Ile 565	Leu	Arg	Leu	Arg	Glu 570
Val	Glu	Phe	Ala	Ser 575	Glu	Gly	Lys	Tyr	Gln 580	Cys	Val	Ile	Ser	Asn 585
His	Phe	Gly	Ser	Ser 590	Tyr	Ser	Val	Lys	Ala 595	Lys	Leu	Thr	Val	Asn 600
Met	Leu	Pro	Ser	Phe 605	Thr	Lys	Thr	Pro	Met 610	Asp	Leu	Thr	Ile	Arg 615
Ala	Gly	Ala	Met	Ala 620	Arg	Leu	Glu	Cys	Ala 625	Ala	Val	Gly	His	Pro 630
Ala	Pro	Gln	Ile	Ala 635	Trp	Gln	Lys	Asp	Gly 640	Gly	Thr	Asp	Phe	Pro 645
Ala	Ala	Arg	Glu	Arg 650	Arg	Met	His	Val	Met 655	Pro	Glu	Asp	Asp	Val 660
Phe	Phe	Ile	Val	Asp 665	Val	Lys	Ile	Glu	Asp 670	Ile	Gly	Val	Tyr	Ser 675
Cys	Thr	Ala	Gln	Asn 680	Ser	Ala	Gly	Ser	Ile 685	Ser	Ala	Asn	Ala	Thr 690
Leu	Thr	Val	Leu	Glu 695	Thr	Pro	Ser	Phe	Leu 700	Arg	Pro	Leu	Leu	Asp 705
Arg	Thr	Val	Thr	Lys 710	Gly	Glu	Thr	Ala	Val 715	Leu	Gln	Cys	Ile	Ala 720
Gly	Gly	Ser	Pro	Pro 725	Pro	Lys	Leu	Asn	Trp 730	Thr	Lys	Asp	Asp	Ser 735
Pro	Leu	Val	Val	Thr 740	Glu	Arg	His	Phe	Phe 745	Ala	Ala	Gly	Asn	Gln 750

Leu	Leu	Ile	Ile	Val 755	Asp	Ser	Asp	Val	Ser 760	Asp	Ala	Gly	Lys	Tyr 765
Thr	Cys	Glu	Met	Ser 770	Asn	Thr	Leu	Gly	Thr 775	Glu	Arg	Gly	Asn	Val 780
Arg	Leu	Ser	Val	Ile 785	Pro	Thr	Pro	Thr	Cys 790	Asp	Ser	Pro	Gln	Met 795
Thr	Ala	Pro	Ser	Leu 800	Asp	Asp	Asp	Gly	Trp 805	Ala	Thr	Val	Gly	Val 810
Val	Ile	Ile	Ala	Val 815	Val	Cys	Cys	Val	Val 820	Gly	Thr	Ser	Leu	Val 825
Trp	Val	Val	Ile	Ile 830	Tyr	His	Thr	Arg	Arg 835	Arg	Asn	Glu	Asp	Cys 840
Ser	Ile	Thr	Asn	Thr 845	Asp	Glu	Thr	Asn	Leu 850	Pro	Ala	Asp	Ile	Pro 855
Ser	Tyr	Leu	Ser	Ser 860	Gln	Gly	Thr	Leu	Ala 865	Asp	Arg	Gln	Asp	Gly 870
Tyr	Val	Ser	Ser	Glu 875	Ser	Gly	Ser	His	His 880	Gln	Phe	Val	Thr	Ser 885
Ser	Gly	Ala	Gly	Phe 890	Phe	Leu	Pro	Gln	His 895	Asp	Ser	Ser	Gly	Thr 900
Cys	His	Ile	Asp	Asn 905	Ser	Ser	Glu	Ala	Asp 910	Val	Glu	Ala	Ala	Thr 915
Asp	Leu	Phe	Leu	Cys 920	Pro	Phe	Leu	Gly	Ser 925	Thr	Gly	Pro	Met	Tyr 930
Leu	Lys	Gly	Asn	Val 935	Tyr	Gly	Ser	Asp	Pro 940	Phe	Glu	Thr	Tyr	His 945
Thr	Gly	Cys	Ser	Pro 950	Asp	Pro	Arg	Thr	Val 955		Met	Asp	His	Tyr 960
Glu	Pro	Ser	Tyr	Ile 965	Lys	Lys	Lys	Glu	Cys 970	Tyr	Pro	Cys	Ser	His 975
Pro	Ser	Glu	Glu	Ser 980	Cys	Glu	Arg	Ser	Phe 985		Asn	Ile	Ser	Trp 990
Pro	Ser	His	Val	Arg 995	Lys	Leu	Leu		Thr 1000	Ser	Tyr	Ser		Asn 1005
Glu	Gly	Pro	Gly	Met	Lys	Asn	Leu	Cys	Leu	Asn	Lys	Ser	Ser	Leu

			:	1010				1015				1020
Asp	Phe	Ser		Asn 1025	Pro	Glu	Pro	Ala Ser 1030	Val	Ala	Ser	Ser Asn 1035
Ser	Phe	Met		Thr 1040	Phe	Gly	Lys	Ala Leu 1045	Arg	Arg	Pro	His Leu 1050
Asp	Ala	Tyr		Ser 1055	Phe	Gly	Gln	Pro Ser 1060	Asp	Cys	Gln	Pro Arg 1065
Ala	Phe	Tyr		Lys 1070	Ala	His	Ser	Ser Pro 1075	Asp	Leu	Asp	Ser Gly 1080
Ser	Glu	Glu		Gly 1085	Lys	Glu	Arg	Thr Asp 1090	Phe	Gln	Glu	Glu Asn 1095
His	Ile	Cys		Phe 1100	Lys	Gln	Thr	Leu Glu 1105	Asn	Tyr	Arg	Thr Pro
Asn	Phe	Gln		Туг 1115	Asp	Leu	Asp	Thr				
		_										
<210>		5										
<211>		_										
<212>			. ,	_		_						
<213>	> Art	ClIl	cıaı	Seq	lence	е						
<220>												
		nthe	tic	Olig	onuc!	leot	ide :	Probe				
<400> ggaa			ctca	gcta	18							
	_			_								
<210>	> 296	6										
<211>												
<212>						_						
<213>	> Ar	Clil	Clai	Seq	Jenc	е						
<220>	>											
		nthe	tic	Olig	onuc	leot	ide	Probe				
<400>			aata	gacca	a 10							
CCC	aac	tga (accy	gacc								
<210>	> 29'	7										
<211>	> 19											
<212>												
<213>	> Art	tifi	cial	Seq	uenc	e						
<220	>											
-223-	SVI	nthe	tic	Olig	onuc	leot	ide	Probe				

```
<400> 297
ggctggagac actgaacct 19
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 298
acagetgeac ageteagaac agtg 24
<210> 299
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 299
cattcccagt ataaaaattt tc 22
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 300
 gggtcttggt gaatgagg 18
<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 301
 gtgcctctcg gttaccacca atgg 24
<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 302
gcggccactg ttggaccgaa ctgtaaccaa gggagaaaca gccgtcctac 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 303
gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 304
 ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 305
 tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45
<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 306
 actccaagga aatcggatcc gttc 24
<210> 307
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
 ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 308
actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
 gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
 caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
 cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
 gcgccgctcg gcgccggggc gcagcaggga aggggaaget gtggtctgcc 150
 ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
 ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250
 cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
 gcgcacagca ttccgagttt acagattttt acagatacca aatggaaggc 350
 gaggaggcag aacagcctgc ctggttccat cagccctggc gcccaggcgc 400
```

atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450 tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgcc 500 gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550 agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg 600 agecegggee tggeecagee geggteaget geceeegaga etgtgeetgt 650 tcccaggagg gcgtcgtgga ctgtggcggt attgacctgc gtgagttccc 700 gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750 tggaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagaca 800 ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850 gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900 tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950 gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc 1000 aaacttgagg tetgtgtace tgeacaacaa caagetggea gaegeeggge 1050 tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100 tccagcaact tcctgcgcca cgtgcccaag cacctgccgc ctgccctgta 1150 caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggcct 1200 tcagcgaget gagcageetg egegagetat acetgeagaa caactacetg 1250 actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcctgga 1300 gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc 1350 cgcgcagcct ggtgctgctg cacttggaga agaacgccat ccggagcgtg 1400 gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450 cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500 tcaagcggtt gcacacggtg cacctgtaca acaacgcgct ggagcgcgtg 1550 cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600 gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg 1650 ageteaacet cagetacaac egeateacea geecacaggt geacegegae 1700 gccttccgca agctgcgcct gctgcgctcg ctggacctgt cgggcaaccg 1750 gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800 tcaagcgcaa tgagctggct gccttggcac gaggggcgct ggcgggcatg 1850 gctcagctgc gtgagctgta cctcaccagc aaccgactgc gcagccgagc 1900 cctgggcccc cgtgcctggg tggacctcgc ccatctgcag ctgctggaca 1950 tegeegggaa teageteaca gagateeeeg aggggeteee egagteaett 2000 gagtacctgt acctgcagaa caacaagatt agtgcggtgc ccgccaatgc 2050 cttcgactcc acgcccaacc tcaaggggat ctttctcagg tttaacaagc 2100 tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150 caggtettgg acattgaagg caacttagag tttggtgaca tttccaagga 2200 aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300 gatggaccgc cggactcttt tctgcagcac acgcctgtgt gctgtgagcc 2350 ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400 toccacatga cacgggetga cacagtetea tatececace cetteecacg 2450 gcgtgtccca cggccagaca catgcacaca catcacaccc tcaaacaccc 2500 ageteageea cacacaacta ceetecaaac caccacagte tetgteacac 2550 ccccactacc gctgccacgc cctctgaatc atgcagggaa gggtctgccc 2600 ctgccctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650 tgcgtatgca tacacaccac acacacaca atgcacaagt catgtgcgaa 2700 cageceteca aageetatge cacagacage tettgeecea gecagaatea 2750 gccatagcag ctcgccgtct gccctgtcca tctgtccgtc cgttccctgg 2800 agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850 ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900 agectteagg actgetggee tggeetggee caccetgete etecaggtge 2950 tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000 caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050 cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100 ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150 gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200 ttctaaggaa aaaaatgata aaaatctcaa agctgattt tcttgttata 3250 gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296

```
<210> 311
<211> 22
```

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 311

gcattggccg cgagactttg cc 22

<210> 312

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 312

gcggccacgg tccttggaaa tg 22

<210> 313

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 313

tggaggaget caaceteage tacaacegea teaceagece acagg 45

<210> 314

<211> 3003

<212> DNA

<213> Homo Sapien

<400> 314

gggaggggc teegggegee gegeageaga cetgeteegg eegegeet 50

cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100

gggttcctcg agactctcag aggggcgcct cccatcggcg cccaccaccc 150 caacctqttc ctcgcgcgcc actgcgctgc gccccaggac ccgctgccca 200 acatggattt teteetggeg etggtgetgg tateeteget etaeetgeag 250 gcggccgccg agttcgacgg gaggtggccc aggcaaatag tgtcatcgat 300 tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350 gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400 ggtgaatgta tcgggccaaa caagtgcaag tgtcatcctg gttatgctgg 450 aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500 gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550 aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600 ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650 ggtgccagtg cccatcccct ggcctgcacc tggctcctga tgggaggacc 700 tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850 gaatgctcac ttggtcagta tcagtgcagc agctttgctc gatgttataa 900 cgtacgtggg tcctacaagt gcaaatgtaa agaaggatac cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 attcatgtac caaagggaaa tggtaccatt ttaaagggtg acacaggaaa 1050 taataattgg attcctgatg ttggaagtac ttggtggcct ccgaagacac 1100 catatattcc tcctatcatt accaacaggc ctacttctaa gccaacaaca 1150 agacctacac caaagccaac accaattcct actccaccac caccaccacc 1200 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250° caaccaccgg actgacaact atagcaccag ctgccagtac acctccagga 1300 gggattacag ttgacaacag ggtacagaca gaccetcaga aacceagagg 1350 agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400

gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450 gacccagcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500 gggaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550 gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600 acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650 gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700 gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaa 1750 agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800 agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850 gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900 caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950 . ggccattgtt agaatacttc ataaaaaaag aagtgtgaaa atctcagtat 2000 ctctctctct ttctaaaaaa ttagataaaa atttgtctat ttaagatggt 2050 taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100 agatgttttg atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150 taatttggac aaggettaat ttaggeattt eeetettgac eteetaatgg 2200 agagggattg aaaggggaag agcccaccaa atgctgagct cactgaaata 2250 tctctccctt atggcaatcc tagcagtatt aaagaaaaaa ggaaactatt 2300 tattccaaat gagagtatga tggacagata ttttagtatc tcagtaatgt 2350 cctagtgtgg cggtggtttt caatgtttct tcatggtaaa ggtataagcc 2400 ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500 cttcgtgtgt gacaagttat cttggctgct gagaaagagt gccctgcccc 2550 acaccggcag acctttcctt cacctcatca gtatgattca gtttctctta 2600 tcaattggac tctcccaggt tccacagaac agtaatattt tttgaacaat 2650 aggtacaata gaaggtette tgteatttaa eetggtaaag geagggetgg 2700 agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750

gtagatccat ttttaatggt tcatttcctt tatggtcata taactgcaca 2800 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900 catcttgttt attatttaat gttttctaaa ataaaaaatg ttagtggttt 2950 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000 aat 3003

<210> 315

<211> 509 <212> PRT

<213> Homo Sapien

<400> 315

Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu 5

Gln Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val 20

Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys

Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys

Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys

Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu 85 80

Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met

100 105 95

Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met 110

Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met

Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg

Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg 160 155

Thr	Cys	Val	Asp	Val 170	Asp	Glu	Cys	Ala	Thr 175	Gly	Arg	Ala	Ser	Cys 180
Pro	Arg	Phe	Arg	Gln 185	Cys	Val	Asn	Thr	Phe 190	Gly	Ser	Tyr	Ile	Cys 195
Lys	Cys	His	Lys	Gly 200	Phe	Asp	Leu	Met	Tyr 205	Ile	Gly	Gly	Lys	Tyr 210
Gln	Cys	His	Asp	Ile 215	Asp	Glu	Cys	Ser	Leu 220	Gly	Gln	Tyr	Gln	Cys 225
Ser	Ser	Phe	Ala	Arg 230	Cys	Tyr	Asn	Val	Arg 235	Gly	Ser	Tyr	Lys	Cys 240
Lys	Cys	Lys	Glu	Gly 245	Tyr	Gln	Gly	Asp	Gly 250	Leu	Thr	Cys	Val	T yr 255
Ile	Pro	Lys	Val	Met 260	Ile	Glu	Pro	Ser	Gly 265	Pro	Ile	His	Val	Pro 270
Lys	Gly	Asn	Gly	Thr 275	Ile	Leu	Lys	Gly	Asp 280	Thr	Gly	Asn	Asn	Asn 285
Trp	Ile	Pro	Asp	Val 290	Gly	Ser	Thr	Trp	Trp 295	Pro	Pro	Lys	Thr	Pro 300
Tyr	Ile	Pro	Pro	Ile 305	Ile	Thr	Asn	Arg	Pro 310	Thr	Ser	Lys	Pro	Thr 315
Thr	Arg	Pro	Thr	Pro 320	Lys	Pro	Thr	Pro	Ile 325	Pro	Thr	Pro	Pro	Pro 330
Pro	Pro	Pro	Leu	Pro 335	Thr	Glu	Leu	Arg	Thr 340	Pro	Leu	Pro	Pro	Thr 345
Thr	Pro	Glu	Arg	Pro 350	Thr	Thr	Gly	Leu	Thr 355	Thr	Ile	Ala	Pro	Ala 360
Ala	Ser	Thr	Pro	Pro 365	Gly	Gly	Ile	Thr	Val 370	Asp	Asn	Arg	Val	Gln 375
Thr	Asp	Pro	Gln	Lys 380	Pro	Arg	Gly	Asp	Val 385	Phe	Ser	Val	Leu	Val 390
His	Ser	Cys	Asn	Phe 395	Asp	His	Gly	Leu	Cys 400	Gly	Trp	Ile	Arg	Glu 405
Lys	Asp	Asn	Asp	Leu 410	His	Trp	Glu	Pro	Ile 415		Asp	Pro	Ala	Gly 420
	~3	_	-		77-7	0	71 -	71-			D∽∽	. Cl.	G111	
Gly	GIn	Tyr	ьeu	Thr	val	ser	Ата	AIG	ьys	HIG	PLO	GIY	GIA	Lys

				425					430					435
Ala	Ala	Arg	Leu	Val 440	Leu	Pro	Leu	Gly	Arg 445	Leu	Met	His	Ser	Gly 450
Asp	Leu	Cys	Leu	Ser 455	Phe	Arg	His	Lys	Val 460	Thr	Gly	Leu	His	Ser 465
Gly	Thr	Leu	Gln	Val 470	Phe	Val	Arg	Lys	His 475	Gly	Ala	His	Gly	Ala 480
Ala	Leu	Trp	Gly	Arg 485	Asn	Gly	Gly	His	Gly 490	Trp	Arg	Gln	Thr	Gln 495
Ile	Thr	Leu	Arg	Gly 500	Ala	Asp	Ile	Lys	Ser 505	Glu	Ser	Gln	Arg	
<210: <211: <212: <213: <220: <223: <400: gatg <210: <212: <213: <220: <400: ttg6	> 24 > DNZ > Art > Syn > 31 > 24 > DNZ > Art > Syn > 31	A tific	tic (getea	Oligo aagto Sequ	onuc:	leot	24 ide							
<210:	> 31		- 33		J	J								
<212		7.												
<213			ci =1	Sec	uenc	_								
<213	> Aſ	CILL	CIAI	seq	uenc.	C								
<220:		nthe	tic (Olig	onuc	leot	ide	Prob	e					
<400	s 21	8												
			gacc	tgtg	ta g	atgt	tgat	g aa	tgtg	ctac	agg	aaga	gcc	50
<210	> 31	9												
<211														
<212	> DN	Α												

<213> Homo Sapien

<400> 319 cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50 tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100 caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150 catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200 cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250 caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300 ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350 tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400 acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450 gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500 ggctgtggag tatgtgggga acatgaccct gacatgccat gtggaagggg 550 gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600 agetecacet acteetttte tecceaaaac aataceette atattgetee 650 agtaaccaag gaagacattg ggaattacag ctgcctggtg aggaaccctg 700 tcagtgaaat ggaaagtgat atcattatgc ccatcatata ttatggacct 750 tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaagtgtt 800 tactgttgac cttggagagg ccatcctatt tgattgttct gctgattctc 850 atcccccaa cacctactcc tggattagga ggactgacaa tactacatat 900 atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950 gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000 aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050 cttgcacaga aaggaaaatc attgtcacct ttagcaagta taactggaat 1100 atcactattt ttgattatat ccatgtgtct tctcttccta tggaaaaaat 1150 atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200 gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250

cttcggaata tatgaatttg ttgcttttcc agatgtttct ggtgtttcca 1300 ggattccaag caggtctgtt ccagcctctg attgtgtatc ggggcaagat 1350 ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450 ttctgaagaa acattttaag gaaaaacagt ggaaaagtat attaatctgg 1500 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550 tgcagaatag aggcatttat gcaaattgaa ctgcaggttt ttcagcatat 1600 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650 ggagagtcgt tctcatgctg acggggagaa cgaaagtgac aggggtttcc 1700 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750 acactttcac tatcatcaac actgagacta teetgtetea eetacaaatg 1800 tggaaacttt acattgttcg atttttcagc agactttgtt ttattaaatt 1850 tttattagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900 ttctatcttg ttatttgtac aacaaagtaa taaggatggt tgtcacaaaa 1950 · acaaaactat gccttctctt ttttttcaat caccagtagt atttttgaga 2000 agacttgtga acacttaagg aaatgactat taaagtctta tttttatttt 2050 tttcaaggaa agatggattc aaataaatta ttctgttttt gcttttaaaa 2100 aaaaaaaaa 2110

Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
1 5 10 15

Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
20 25 30

Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe 35 40 45

His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
50 55 60

<210> 320

<211> 450

<212> PRT

<213> Homo Sapien

<400> 320

Pro	His	Thr	Met	Pro 65	Lys	Tyr	Leu	Leu	Gly 70	Ser	Val	Asn	Lys	Ser 75
Val	Val	Pro	Asp	Leu 80	Glu	Tyr	Gln	His	Lys 85	Phe	Thr	Met	Met	Pro 90
Pro	Asn	Ala	Ser	Leu 95	Leu	Ile	Asn	Pro	Leu 100	Gln	Phe	Pro	Asp	Glu 105
Gly	Asn	Tyr	Ile	Val 110	Lys	Val	Asn	Ile	Gln 115	Gly	Asn	Gly	Thr	Leu 120
Ser	Ala	Ser	Gln	Lys 125	Ile	Gln	Val	Thr	V al	Asp	Asp	Pro	Val	Thr 135
Lys	Pro	Val	Val	Gln 140	Ile	His	Pro	Pro	Ser 145	Gly	Ala	Val	Glu	Tyr 150
Val	Gly	Asn	Met	Thr 155	Leu	Thr	Cys	His	Val 160	Glu	Gly	Gly	Thr	Arg 165
Leu	Ala	Tyr	Gln	Trp 170	Leu	Lys	Asn	Gly	Arg 175	Pro	Val	His	Thr	Ser 180
Ser	Thr	Tyr	Ser	Phe 185	Ser	Pro	Gln	Asn	Asn 190	Thr	Leu	His	Ile	Ala 195
Pro	Val	Thr	Lys	Glu 200	Asp	Ile	Gly	Asn	Tyr 205	Ser	Cys	Leu	Val	Arg 210
Asn	Pro	Val	Ser	Glu 215	Met	Glu	Ser	Asp	Ile 220	Ile	Met	Pro	Ile	Ile 225
Tyr	Tyr	Gly	Pro	Tyr 230	Gly	Leu	Gln	Val	Asn 235	Ser	Asp	Lys	Gly	Leu 240
Lys	Val	Gly	Glu	Val 245	Phe	Thr	Val	Asp	Leu 250	Gly	Glu	Ala	Ile	Leu 255
Phe	Asp	Cys	Ser	Ala 260	Asp	Ser	His	Pro	Pro 265	Asn	Thr	Tyr	Ser	Trp 270
Ile	Arg	Arg	Thr	Asp 275	Asn	Thr	Thr	Tyr	Ile 280	Ile	Lys	His	Gly	Pro 285
Arg	Leu	Glu	Val	Ala 290	Ser	Glu	Lys	Val	Ala 295	Gln	Lys	Thr	Met	Asp 300
Tyr	Val	Суѕ	Cys	Ala 305	Tyr	Asn	Asn	Ile	Thr 310	Gly	Arg	Gln	Asp	Glu 315
Thr	His	Phe	Thr		Ile	Ile	Thr	Ser	Val	Gly	Leu	Glu	Lys	Leu

3	20	325	330					
		Leu Ala Ser Ile Thr 340	Gly 345					
	eu Ile Ile Ser Met 50	Cys Leu Leu Phe Leu 355	Trp 360					
	Pro Tyr Lys Val Ile 865	Lys Gln Lys Leu Glu 370	Gly 375					
	Glu Tyr Arg Lys Ala 880	Gln Thr Phe Ser Gly 385	His 390					
	Asp Asp Phe Gly Ile 395	Tyr Glu Phe Val Ala 400	Phe 405					
	Gly Val Ser Arg Ile	Pro Ser Arg Ser Val 415	Pro 420					
	al Ser Gly Gln Asp 125	Leu His Ser Thr Val 430	Tyr 435					
	His Ile Pro Ala Gln 140	Gln Gln Asp His Pro 445	Glu 450					
<210> 321 <211> 25 <212> DNA <213> Artificial Sequence								
<220> <223> Synthetic Oligonucleotide Probe								
<400> 321 gatcctgtca caaagccagt ggtgc 25								
<210> 322								
<211> 24 <212> DNA <213> Artificial Sequence								
<220> <223> Synthetic Oligonucleotide Probe								
<400> 322 cactgacagg gttcctcacc cagg 24								
<210> 323 <211> 45 <212> DNA <213> Artificial Sequence								

<220>
<223> Synthetic Oligonucleotide Probe

<400> 323 ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45

<210> 324

<211> 2397

<212> DNA

<213> Homo Sapien

<400> 324 gcaagcggcg aaatggcgcc ctccgggagt cttgcagttc ccctggcagt 50 cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100 acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150 tggatgatag aattttatgc cccgtggtgc cctgcttgtc aaaatcttca 200 accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250 ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300 ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350 ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400 aagagtggaa gagtattgag cccgtttcat catggtttgg tccaggttct 450 gttctgatga gtagtatgtc agcactcttt cagctatcta tgtggatcag 500 gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550 catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600 ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650 accacageca tacccatace etteaaaaaa attattatea gaatetgeae 700 aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750 tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800 gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850 cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900 aagattgatc attitgtitg gittgaagtg aactgigact tittigaata 950 ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000 acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttctct aatttttgaa aaatcgtgcc aagcaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt tcccaagtat tgcattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttctca tttgatataa tttttctctg tttcactgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttattttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaacttcaac ttgaaattgt ttttttttc tttttggatg 1750 tgaaggtgaa cattcctgat ttttgtctga tgtgaaaaag ccttggtatt 1800 ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850 caggaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900 atacagaaag ttcttaattg attttacagt ctgtaatgct tgatgtttta 1950 aaataataac atttttatat tttttaaaag acaaacttca tattatcctg 2000 tgttctttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050 gtaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100 atagttttca ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150 ctgaccatta cgtagtagac aatttctgta atgtcccctt ctttctaggc 2200 tctgttgctg tgtgaatcca ttagatttac agtatcgtaa tatacaagtt 2250 ttctttaaag ccctctcctt tagaatttaa aatattgtac cattaaagag 2300 tttggatgtg taacttgtga tgccttagaa aaatatccta agcacaaaat 2350

aaacctttct aaccacttca ttaaagctga aaaaaaaaa aaaaaaa 2397

<	2	1	0	>	3	2	5
	_	_	_		_	_	_

<211> 280

<212> PRT

<213> Homo Sapien

			_											
	> 325 Ala		Ser		Ser	Leu	Ala	Val		Leu	Ala	Val	Leu	Val 15
1 Leu	Leu	Leu	Trp	5 Gly	Ala	Pro	Trp	Thr	10 His	Gly	Arg	Arg	Ser	
1701	Arg	wal	T10	20 Thr	7) cm	Clu	λαn	Trn	25 Arg	Glu	I.e.11	I.e.ii	Glu	30 Glv
				35					40					45
Asp	Trp	Met	Ile	Glu 50	Phe	Tyr	Ala	Pro	Trp 55	Cys	Pro	Ala	Cys	Gln 60
Asn	Leu	Gln	Pro	Glu 65	Trp	Glu	Ser	Phe	Ala 70	Glu	Trp	Gly	Glu	Asp 75
Leu	Glu	Val	Asn	Ile 80	Ala	Lys	Val	Asp	Val 85	Thr	Glu	Gln	Pro	Gly 90
Leu	Ser	Gly	Arg	Phe 95	Ile	Ile	Thr	Ala	Leu 100	Pro	Thr	Ile	Tyr	His 105
Cys	Lys	Asp	Gly	Glu 110	Phe	Arg	Arg	Tyr	Gln 115	Gly	Pro	Arg	Thr	Lys 120
Lys	Asp	Phe	Ile	Asn 125	Phe	Ile	Ser	Asp	Lys 130	Glu	Trp	Lys	Ser	Ile 135
Glu	Pro	Val	Ser	Ser 140	Trp	Phe	Gly	Pro	Gly 145	Ser	Val	Leu	Met	Ser 150
Ser	Met	Ser	Ala	Leu 155	Phe	Gln	Leu	Ser	Met 160	Trp	Ile	Arg	Thr	Cys 165
His	Asn	Tyr	Phe	Ile 170	Glu	Asp	Leu	Gly	Leu 175	Pro	Val	Trp	Gly	Ser 180
Tyr	Thr	Val	Phe	Ala 185	Leu	Ala	Thr	Leu	Phe 190	Ser	Gly	Leu	Leu	Leu 195
Gly	Leu	Cys	Met	Ile 200	Phe	Val	Ala	Asp	Cys 205	Leu	Cys	Pro	Ser	Lys 210

Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Leu Leu

	220		225					
215	220		225					
Ser Glu Ser Ala Gln Pro Leu Lys Lys 230	Val Glu 235	Glu Glu	Gln Glu 240					
Ala Asp Glu Glu Asp Val Ser Glu Glu 245	Glu Ala 250	Glu Ser	Lys Glu 255					
Gly Thr Asn Lys Asp Phe Pro Gln Asn 260	Ala Ile 265	Arg Gln	Arg Ser 270					
Leu Gly Pro Ser Leu Ala Thr Asp Lys 275	Ser 280							
<210> 326 <211> 23 <212> DNA								
<213> Artificial Sequence								
<220>								
<220> <223> Synthetic Oligonucleotide Probe								
<400> 326 tgaggtgggc aagcggcgaa atg 23								
<210> 327								
<211> 20								
<212> DNA <213> Artificial Sequence								
<220>								
<223> Synthetic Oligonucleotide Probe								
<400> 327								
tatgtggatc aggacgtgcc 20								
<210> 328								
<211> 21 <212> DNA								
<213> Artificial Sequence								
<220>								
<223> Synthetic Oligonucleotide Prob	e							
<400> 328								
tgcagggttc agtctagatt g 21								
<210> 329								
<211> 25 <212> DNA								
<212> DNA <213> Artificial Sequence								
_								

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
ttgaaggaca aaggcaatct gccac 25
<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 330
ggagtettge agtteecetg geagteetgg tgetgttget ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
 gcgagtgtcc agctgcggag acccgtgata attcgttaac taattcaaca 50
 aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
 ggacaggegg attggaagag egggaaggte etggeecaga geagtgtgae 150
 acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
 ggtttggtgt cctgagctgt gtgcaggccg aattcttcac ctctattggg 250
 cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
 agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
 ccaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
 tacctggctc accctgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
 agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
 ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
 gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
 ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
 caatgctgag tgtggatgac tgctttggga tgggccgctc ggcctacaat 700
 gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750
```

gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800 acctcagcta tgctgtcttc cagttgggtg atctgcaccg tgccctggag 850 ctcacccgcc gcctgctctc ccttgaccca agccacgaac gagctggagg 900 gaatctgcgg tactttgagc agttattgga ggaagagaga gaaaaaacgt 950 taacaaatca gacagaagct gagctagcaa ccccagaagg catctatgag 1000 aggcctgtgg actacctgcc tgagagggat gtttacgaga gcctctgtcg 1050 tggggagggt gtcaaactga caccccgtag acagaagagg cttttctgta 1100 ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150 gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200 gtctgatgag gaaatcgaga ggatcaagga gatcgcaaaa cctaaacttg 1250 cacgagecae egttegtgat eccaagaeag gagteeteae tgtegeeage 1300 taccgggttt ccaaaagctc ctggctagag gaagatgatg accctgttgt 1350 ggcccgagta aatcgtcgga tgcagcatat cacagggtta acagtaaaga 1400 ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450 ccgcacttcg acttctctag gcgacctttt gacagcggcc tcaaaacaga 1500 ggggaatagg ttagcgacgt ttcttaacta catgagtgat gtagaagctg 1550 gtggtgccac cgtcttccct gatctggggg ctgcaatttg gcctaagaag 1600 ggtacagctg tgttctggta caacctcttg cggagcgggg aaggtgacta 1650 ccgaacaaga catgctgcct gccctgtgct tgtgggctgc aagtgggtct 1700 ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750 tcaacagaag ttgactgaca tccttttctg tccttcccct tcctggtcct 1800 tcagcccatg tcaacgtgac agacaccttt gtatgttcct ttgtatgttc 1850 ctatcaggct gatttttgga gaaatgaatg tttgtctgga gcagagggag 1900 accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950 gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000 gttagctgtc tagcgcctag caaggtgcct ttgtacctca ggtgttttag 2050 gtgtgagatg tttcagtgaa ccaaagttct gataccttgt ttacatgttt 2100 gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150 cctaccagaa aaaaaaaa 2168

<210> 332

<211> 533

<212> PRT

<213> Homo Sapien

<400> 332

Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val 1 5 10 15

Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met $20 \\ 25 \\ 30$

Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys 35 40 45

Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser 50 55 60

Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp
65 70 75

Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val 80 85 90

Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu 95 100 105

Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg

Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala 125 130 135

Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile 140 145 150

Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser 155 160 165

Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly
170 175 180

Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln 185 190 195

Leu Asp Ala Gly Glu Glu Ala Thr Thr Lys Ser Gln Val Leu 200 205 210

Asp	Tyr	Leu	Ser	Tyr 215	Ala	Val	Phe	Gln	Leu 220	Gly	Asp	Leu	His	Arg 225
Ala	Leu	Glu	Leu	Thr 230	Arg	Arg	Leu	Leu	Ser 235	Leu	Asp	Pro	Ser	His 240
Glu	Arg	Ala	Gly	Gly 245	Asn	Leu	Arg	Tyr	Phe 250	Glu	Gln	Leu	Leu	Glu 255
Glu	Glu	Arg	Glu	Lys 260	Thr	Leu	Thr	Asn	Gln 265	Thr	Glu	Ala	Glu	Leu 270
Ala	Thr	Pro	Glu	Gly 275	Ile	Tyr	Glu	Arg	Pro 280	Val	Asp	Tyr	Leu	Pro 285
Glu	Arg	Asp	Val	Tyr 290	Glu	Ser	Leu	Cys	Arg 295	Gly	Glu	Gly	Val	Lys 300
Leu	Thr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
Gly	Asn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	Glu 330
Asp	Glu	Trp	Asp	Ser 335	Pro	His	Ile	Val	Arg 340	Tyr	Tyr	Asp	Val	Met 345
Ser	Asp	Glu	Glu	Ile 350	Glu	Arg	Ile	Lys	Glu 355	Ile	Ala	Lys	Pro	Lys 360
Leu	Ala	Arg	Ala	Thr 365	Val	Arg	Asp	Pro	Lys 370	Thr	Gly	Val	Leu	Thr 375
Val	Ala	Ser	Tyr	Arg 380	Val	Ser	Lys	Ser	Ser 385	Trp	Leu	Glu	Glu	Asp 390
Asp	Asp	Pro	Val	Val 395	Ala	Arg	Val	Asn	Arg 400	Arg	Met	Gln	His	Ile 405
Thr	Gly	Leu	Thr	Val 410	Lys	Thr	Ala	Glu	Leu 415	Leu	Gln	Val	Ala	Asn 420
Tyr	Gly	Val	Gly	Gly 425	Gln	Tyr	Glu	Pro	His 430	Phe	Asp	Phe	Ser	Arg 435
Arg	Pro	Phe	Asp	Ser 440	Gly	Leu	Lys	Thr	Glu 445	Gly	Asn	Arg	Leu	Ala 450
Thr	Phe	Leu	Asn	Tyr 455	Met	Ser	Asp	Val	Glu 460	Ala	Gly	Gly	Ala	Thr 465
Val	Phe	Pro	Asp	Leu 470	Gly	Ala	Ala	Ile	Trp 475	Pro	Lys	Lys	Gly	Thr 480

Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp 505 Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg 520 515 Pro Cys Gly Ser Thr Glu Val Asp 530 <210> 333 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 333 ccaggcacaa tttccaga 18 <210> 334 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 334 ggacccttct gtgtgccag 19 <210> 335 <211> 19 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 335 ggtctcaaga actcctgtc 19 <210> 336 <211> 24 <212> DNA <213> Artificial Sequence

<223> Synthetic Oligonucleotide Probe

<400> 336 acactcagca ttgcctggta cttg 24 <210> 337 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 337 gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45 <210> 338 <211> 2789 <212> DNA <213> Homo Sapien <400> 338 gcagtattga gttttacttc ctcctctttt tagtggaaga cagaccataa 50 tcccagtgtg agtgaaattg attgtttcat ttattaccgt tttggctggg 100 ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150 agacaggaca atcttcttgg ggatgctggt cctggaagcc agcgggcctt 200 gctctgtctt tggcctcatt gaccccaggt tctctggtta aaactgaaag 250 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300 cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350 ttggctctgc tgcggccagc gcttcccctc atcttagggc tgtctctggg 400 gtgcagcctg agcctcctgc gggtttcctg gatccagggg gagggagaag 450 atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500 tegagagete ggetagacea aagtgatgaa gaetteaaae eeeggattgt 550 cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600 ggtacatcca gacagagctg ggctcccgtg agcggttgct ggtggctgtc 650 ctgacctccc gagctacact gtccactttg gccgtggctg tgaaccgtac 700 ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750 cccgggctcc agcagggatg caggtggtgt ctcatgggga tgagcggccc 800

gcctggctca tgtcagagac cctgcgccac cttcacacac actttggggc 850 cgactacgac tggttcttca tcatgcagga tgacacatat gtgcaggccc 900 cccgcctggc agcccttgct ggccacctca gcatcaacca agacctgtac 950 ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtactg 1000 teatggggge tttggetace tgttgteaeg gagteteetg ettegtetge 1050 ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100 gagtggettg gaegetgeet cattgaetet etgggegteg getgtgtete 1150 acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200 accetgagaa ggaagggage teggetttee tgagtgeett egeegtgeae 1250 cctgtctccg aaggtaccct catgtaccgg ctccacaaac gcttcagcgc 1300 tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350 teeggaacet gaeegtgetg acceeegaag gggaggeagg getgagetgg 1400 cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450 gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500 ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550 ttggagactg ccctggagca gctcaatcgg cgctatcagc cccgcctgcg 1600 cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650 ggggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700 gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750 ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800 agetggtget gecaeteetg gtggetgaag etgetgeage eeeggettte 1850 ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900 caccetgttg etggtetaeg ggecaegaga aggtggeegt ggageteeag 1950 acccatttct tggggtgaag gctgcagcag cggagttaga gcgacggtac 2000 cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050 ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100

tettecttac caccetetes accases gasces gasces ceteaacce 2150
tgtegeatga atgecatete tegetegeag geettette cagtecattt 2200
ccaggagtte aateetgeee tgteaccaca gagateacce ccagggeece 2250
cgggggeteg ccetgacece ceeteceete etggtgetga eccetecegg 2300
ggggeteeta taggggggag atttgacegg caggettetg eggagggetg 2350
ettetacaac getgactace tggeggeeeg ageeeggetg geaggtgaac 2400
tggeaggeea ggaagaggag gaageeetgg agggetega ggtgatggat 2450
gtttteetee ggtteteagg getecacete tttegggeeg tagageeagg 2500
getggtgeag aagteetee tgegagaetg cageeeaegg eteagtgaag 2550
aactetacca eegetgeege eteageace tggaggget aggggeegt 2600
geeeagetgg etatggetet etttgageag gageaggeea atageaetta 2650
geeegeetgg gggeeetaae eteattacet tteetttgte tgeeteagee 2700
ccaggaaggg caaggeaaga tggtggacag atagagaatt gttgetgtat 2750
tttttaaata tgaaaatgtt attaaacatg tettetgee 2789

- <210> 339
- <211> 772
- <212> PRT
- <213> Homo Sapien
- <400> 339
- Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro 1 5 10 15
- Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg
 20 25 30
- Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala 35 40 45
- Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg
 50 55 60
- Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr
 65 70 75
- Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg
 80 85 90
- Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala

				95					100					105
Val	Leu	Thr	Ser	Arg 110	Ala	Thr	Leu	Ser	Thr 115	Leu	Ala	Val	Ala	Val 120
Asn	Arg	Thr	Val	Ala 125	His	His	Phe	Pro	Arg 130	Leu	Leu	Tyr	Phe	Thr 135
Gly	Gln	Arg	Gly	Ala 140	Arg	Ala	Pro	Ala	Gly 145	Met	Gln	Val	Val	Ser 150
His	Gly	Asp	Glu	Arg 155	Pro	Ala	Trp	Leu	Met 160	Ser	Glu	Thr	Leu	Arg 165
His	Leu	His	Thr	His 170	Phe	Gly	Ala	Asp	Tyr 175	Asp	Trp	Phe	Phe	Ile 180
Met	Gln	Asp	Asp	Thr 185	Tyr	Val	Gln	Ala	Pro 190	Arg	Leu	Ala	Ala	Leu 195
Ala	Gly	His	Leu	Ser 200	Ile	Asn	Gln	Asp	Leu 205	Tyr	Leu	Gly	Arg	Ala 210
Glu	Glu	Phe	Ile	Gly 215	Ala	Gly	Glu	Gln	Ala 220	Arg	Tyr	Сув	His	Gly 225
Gly	Phe	Gly	Tyr	Leu 230	Leu	Ser	Arg	Ser	Leu 235	Leu	Leu	Arg	Leu	Arg 240
Pro	His	Leu	Asp	Gly 245	Cys	Arg	Gly	Asp	Ile 250	Leu	Ser	Ala	Arg	Pro 255
Asp	Glu	Trp	Leu	Gly 260	Arg	Cys	Leu	Ile	Asp 265	Ser	Leu	Gly	Val	Gly 270
Cys	Val	Ser	Gln	His 275	Gln	Gly	Gln	Gln	Tyr 280	Arg	Ser	Phe	Glu	Leu 285
Ala	Lys	Asn	Arg	Asp 290	Pro	Glu	Lys	Glu	Gly 295	Ser	Ser	Ala	Phe	Leu 300
Ser	Ala	Phe	Ala	Val 305	His	Pro	Val	Ser	Glu 310	Gly	Thr	Leu	Met	Tyr 315
Arg	Leu	His	Lys	Arg 320	Phe	Ser	Ala	Leu	Glu 325	Leu	Glu	Arg	Ala	Tyr 330
Ser	Glu	Ile	Glu	Gln 335	Leu	Gln	Ala	Gln	Ile 340	Arg	Asn	Leu	Thr	Val 345
Leu	Thr	Pro	Glu	Gly 350	Glu	Ala	Gly	Leu	Ser 355	Trp	Pro	Val	Gly	Leu 360

Pro Ala	Pro	Phe	Thr 365	Pro	His	Ser	Arg	Phe 370	Glu	Val	Leu	Gly	Trp 375
Asp Tyr	Phe	Thr	Glu 380	Gln	His	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
Pro Lys	Cys	Pro	Leu 395	Gln	Gly	Ala	Ser	Arg 400	Ala	Asp	Val	Gly	Asp 405
Ala Leu	Glu	Thr	Ala 410	Leu	Glu	Gln	Leu	Asn 415	Arg	Arg	Tyr	Gln	Pro 420
Arg Leu	Arg	Phe	Gln 425	Lys	Gln	Arg	Leu	Leu 430	Asn	Gly	Tyr	Arg	Arg 435
Phe Asp	Pro	Ala	Arg 440	Gly	Met	Glu	Tyr	Thr 445	Leu	Asp	Leu	Leu	Leu 450
Glu Cys	Val	Thr	Gln 455	Arg	Gly	His	Arg	Arg 460	Ala	Leu	Ala	Arg	Arg 465
Val Ser	Leu	Leu	Arg 470	Pro	Leu	Ser	Arg	Val 475	Glu	Ile	Leu	Pro	Met 480
Pro Tyr	Val	Thr	Glu 485	Ala	Thr	Arg	Val	Gln 490	Leu	Val	Leu	Pro	Leu 495
Leu Val	Ala	Glu	Ala 500	Ala	Ala	Ala	Pro	Ala 505	Phe	Leu	Glu	Ala	Phe 510
Ala Ala	Asn	Val	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu Leu	Val	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	Gly	Ala	Pro	Asp 540
Pro Phe	Leu	Gly	Val 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr Pro	Gly	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	Val	Arg	Ala	Glu	Ala 570
Pro Ser	Gln	Val	Arg 575	Leu	Met	Asp	Val	Val 580	Ser	Lys	Lys	His	Pro 585
Val Asp	Thr	Leu	Phe 590	Phe	Leu	Thr	Thr	Val 595	Trp	Thr	Arg	Pro	Gly 600
Pro Glu	Val	Leu	Asn 605	Arg	Cys	Arg	Met	Asn 610	Ala	Ile	Ser	Gly	Trp 615
Gln Ala	Phe	Phe	Pro 620	Val	His	Phe	Gln	Glu 625	Phe	Asn	Pro	Ala	Leu 630

Ser	Pro	Gln	Arg	Ser 635	Pro	Pro	Gly	Pro	Pro 640	Gly	Ala	Gly	Pro	Asp 645
Pro	Pro	Ser	Pro	Pro 650	Gly	Ala	Asp	Pro	Ser 655	Arg	Gly	Ala	Pro	Ile 660
Gly	Gly	Arg	Phe	Asp 665	Arg	Gln	Ala	Ser	Ala 670	Glu	Gly	Cys	Phe	Tyr 675
Asn	Ala	Asp	Tyr	Leu 680	Ala	Ala	Arg	Ala	Arg 685	Leu	Ala	Gly	Glu	Leu 690
Ala	Gly	Gln	Glu	Glu 695	Glu	Glu	Ala	Leu	Glu 700	Gly	Leu	Glu	Val	Met 705
Asp	Val	Phe	Leu	Arg 710	Phe	Ser	Gly	Leu	His 715	Leu	Phe	Arg	Ala	Val 720
Glu	Pro	Gly	Leu	Val 725	Gln	Lys	Phe	Ser	Leu 730	Arg	Asp	Cys	Ser	Pro 735
Arg	Leu	Ser	Glu	Glu 740	Leu	Tyr	His	Arg	Cys 745	Arg	Leu	Ser	Asn	Leu 750
Glu	Gly	Leu	Gly	Gly 755	Arg	Ala	Gln	Leu	Ala 760	Met	Ala	Leu	Phe	Glu 765
Gln	Glu	Gln	Ala	Asn 770	Ser	Thr								

<210> 340

<211> 1572

<212> DNA

<400> 340

<213> Homo Sapien

cggagtggtg cgccaacgtg agaggaaacc cgtgcgcgc tgcgctttcc 50
tgtccccaag ccgttctaga cgcgggaaaa atgctttctg aaagcagctc 100
ctttttgaag ggtgtgatgc ttggaagcat tttctgtgct ttgatcacta 150
tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200
catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250
ggatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300
ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350

accaaacact gtgacaaagc agagttette agttetgaaa atgttaaagt 400

gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450 aagcttacaa atacgccttt gataagtata gagaccaata caactggttc 500 ttccttgcac gccccactac gtttgctatc attgaaaacc taaagtattt 550 tttgttaaaa aaggatccat cacagccttt ctatctaggc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggctgttac ttttaatgga ctgactccaa atcagatgca tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agcgtgaata tgatctttgt ataggacgtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200 gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tctctagttg tgaatttgtg attaaagtaa aacttttagc 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

<210> 341

<211> 318

<212> PRT

<213> Homo Sapien

44005	241	ı												
<400> Met 1			Glu	Ser 5	Ser	Ser	Phe	Leu	Lys 10	Gly	Val	Met	Leu	Gly 15
Ser	Ile	Phe	Cys	Ala 20	Leu	Ile	Thr	Met	Leu 25	Gly	His	Ile	Arg	Ile 30
Gly	His	Gly	Asn	Arg 35	Met	His	His	His	Glu 40	His	His	His	Leu	Gln 45
Ala	Pro	Asn	Lys	Glu 50	Asp	Ile	Leu	Lys	Ile 55	Ser	Glu	Asp	Glu	Arg 60
Met	Glu	Leu	Ser	Lys 65	Ser	Phe	Arg	Val	Tyr 70	Cys	Ile	Ile	Leu	Val 75
Lys	Pro	Lys	Asp	Val 80	Ser	Leu	Trp	Ala	Ala 85	Val	Lys	Glu	Thr	Trp 90
Thr	Lys	His	Cys	Asp 95	Lys	Ala	Glu	Phe	Phe 100	Ser	Ser	Glu	Asn	Val 105
Lys	Val	Phe	Glu	Ser 110	Ile	Asn	Met	Asp	Thr 115	Asn	Asp	Met	Trp	Leu 120
Met	Met	Arg	Lys	Ala 125	Tyr	Lys	Tyr	Ala	Phe 130	Asp	Lys	Tyr	Arg	Asp 135
Gln	Tyr	Asn	Trp	Phe 140	Phe	Leu	Ala	Arg	Pro 145	Thr	Thr	Phe	Ala	Ile 150
Ile	Glu	Asn	Leu	Lys 155	Tyr	Phe	Leu	Leu	Lys 160	Lys	Asp	Pro	Ser	Gln 165
Pro	Phe	Tyr	Leu	Gly 170	His	Thr	Ile	Lys	Ser 175	Gly	Asp	Leu	Glu	Tyr 180
Val	Gly	Met	Glu	Gly 185	Gly	Ile	Val	Leu	Ser 190	Val	Glu	Ser	Met	Lys 195
Arg	Leu	Asn	Ser	Leu 200	Leu	Asn	Ile	Pro	Glu 205	Lys	Cys	Pro	Glu	Gln 210
Gly	Gly	Met	Ile	Trp 215	Lys	Ile	Ser	Glu	Asp 220	Lys	Gln	Leu	Ala	Val 225
Cys	Leu	Lys	Tyr	Ala 230	Gly	Val	Phe	Ala	Glu 235	Asn	Ala	Glu	Asp	Ala 240
Asp	Gly	Lys	Asp	Val 245	Phe	Asn	Thr	Lys	Ser 250	Val	Gly	Leu	Ser	Ile 255
Lys	Glu	Ala	Met	Thr	Tyr	His	Pro	Asn	Gln	Val	Val	Glu	Gly	Cys

2	260	265	270
Cys Ser Asp Met A 2	la Val Thr Phe 1 175	Asn Gly Leu Th 280	r Pro Asn Gln 285
Met His Val Met M	Met Tyr Gly Val : 190	Tyr Arg Leu Arg 295	g Ala Phe Gly 300
His Ile Phe Asn A	asp Ala Leu Val 1 805	Phe Leu Pro Pro 310	Asn Gly Ser 315
Asp Asn Asp			
<210> 342 <211> 23 <212> DNA <213> Artificial S	Sequence		
	•		
<220> <223> Synthetic Ol	igonucleotide P	robe	
	90		
<400> 342	nanaa aaa 22		
tccccaagcc gttcta	igacg cgg 23		
<210> 343			
<211> 18			
<212> DNA <213> Artificial S	Sequence		
	-		
<220> <223> Synthetic Ol	ligonucleotide P	robe	
<400> 343 ctggttcttc cttgca	acg . 18		
<210> 344			
<211> 28			
<212> DNA <213> Artificial S	Seguence		
(215) Altificial b	cquence		
<220>		•	
<223> Synthetic Ol	ligonucleotide P	robe	
<400> 344			
gcccaaatgc cctaag	ggcgg tatacccc 2	8	
<210> 345			
<211> 50			
<212> DNA			
<213> Artificial S	Sequence		
<220>			

```
<223> Synthetic Oligonucleotide Probe
gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50
<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 346
 gggatgcagg tggtgtctca tgggg 25
<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 347
ccctcatgta ccggctcc 18
<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 348
 ggattctaat acgactcact atagggctca gaaaagcgca acagagaa 48
<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 349
 ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47
<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 350
ggattctaat acgactcact atagggcggc gatgtccact ggggctac 48
<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 351
ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatggt 48
<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 352
ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47
<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 353
 ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48
<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 354
qqattctaat acqactcact atagggcttg ctgcggtttt tgttcctg 48
<210> 355
<211> 48
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggtatt 48
<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46
<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 357
ctatgaaatt aaccctcact aaagggagcc cgggcatggt ctcagtta 48
<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 358
ggattctaat acgactcact atagggcggg aagatggcga ggaggag 47
<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cggaaatc 48
```

```
<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 360
ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48
<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 361
ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtggat 48
<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 362
ggattctaat acgactcact atagggcccg cctcgctcct gctcctg 47
<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 363
ctatgaaatt aaccctcact aaagggagga ttgccgcgac cctcacag 48
<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 364
```

<220>

```
ggattctaat acgactcact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 365
ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48
<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 366
ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48
<210> 367
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 367
ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47
<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 368
ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47
<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence
```

```
<223> Synthetic Oligonucleotide Probe
<400> 369
 ctatgaaatt aaccctcact aaagggaaag acatgtcatc gggagtgg 48
<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 370
ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48
<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 371
ctatgaaatt aaccctcact aaagggacac agacagagcc ccatacgc 48
<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 372
ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47
<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 373
ctatgaaatt aaccctcact aaagggagta aggggatgcc accgagta 48
<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47
<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48
<210> 376
<211> 997
<212> DNA
<213> Homo Sapien
<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
aaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagaggga 150
tgcttctctt cccaaatgtt cttatggact gttgctggga tccccatcct 200
attteteagt geetgtttea teaceagatg tgttgtgaca tttegeatet 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactgggaa tattttcaat ccagetgcta cttctttct actgacacca 400
tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
taaaatgaga gagtttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acacetttga caaagtetet gagettetgg 600
gatgtagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
```

tcaattattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750

- <210> 377
- <211> 219
- <212> PRT
- <213> Homo Sapien

<400> 377

Met	Asn	Ser	Ser	Lys	Ser	Ser	Glu	Thr	Gln	Cys	Thr	Glu	Arg	Gly
1				5					10					15

- Cys Phe Ser Ser Gln Met Phe Leu Trp Thr Val Ala Gly Ile Pro 20 25 30
- Ile Leu Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr 35 40 45
- Phe Arg Ile Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro
 50 55 60
- Glu Asn Phe Thr Glu Leu Ser Cys Tyr Asn Tyr Gly Ser Gly Ser
 65 70 75
- Val Lys Asn Cys Cys Pro Leu Asn Trp Glu Tyr Phe Gln Ser Ser 80 85 90
- Cys Tyr Phe Phe Ser Thr Asp Thr Ile Ser Trp Ala Leu Ser Leu 95 100 105
- Lys Asn Cys Ser Ala Met Gly Ala His Leu Val Val Ile Asn Ser 110 115 120
- Gln Glu Glu Gln Glu Phe Leu Ser Tyr Lys Lys Pro Lys Met Arg 125 130 135
- Glu Phe Phe Ile Gly Leu Ser Asp Gln Val Val Glu Gly Gln Trp 140 145 150
- Gln Trp Val Asp Gly Thr Pro Leu Thr Lys Ser Leu Ser Phe Trp
 155 160 165
- Asp Val Gly Glu Pro Asn Asn Ile Ala Thr Leu Glu Asp Cys Ala 170 175 180

<400> 381

gcagattttg aggacagcca cctcca 26

```
Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
                  185
                                       190
                                                           195
 Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
                  200
 Asn Pro Leu Asn Lys Gly Lys Ser Leu
                  215
<210> 378
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 378
 ttcagcttct gggatgtagg g 21
<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 379
 tattcctacc atttcacaaa tccg 24
<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 380
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49
<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 382
ggccttgcag acaaccgt 18
<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
cagactgagg gagatccgag a 21
<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 384
 cagctgccct tccccaacca 20
<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 385
 catcaagcgc ctctacca 18
<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

<400> 386

cacaaactcg aactgcttct g 21

- <210> 387
- <211> 18
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 387
- gggccatcac agctccct 18
- <210> 388
- <211> 22
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 388
- gggatgtggt gaacacagaa ca 22
- <210> 389
- <211> 22
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 389
- tgccagctgc atgctgccag tt 22
- <210> 390
- <211> 20
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 390
- cagaaggatg tcccgtggaa 20
- <210> 391
- <211> 17
- <212> DNA
- <213> Artificial Sequence
- <220>

```
<223> Synthetic oligonucleotide probe
<400> 391
gccgctgtcc actgcag 17
<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 392
 gacggcatcc tcagggccac a 21
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 393
 atgtcctcca tgcccacgcg 20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 394
 gagtgcgaca tcgagagctt 20
<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 395
 ccgcagcctc agtgatga 18
<210> 396
<211> 21
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 gaagagcaca gctgcagatc c 21
<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 397
 gaggtgtcct ggctttggta gt 22
<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 398
 cctctggcgc ccccactcaa 20
<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 399
 ccaggagagc tggcgatg 18
<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 400
 gcaaattcag ggctcactag aga 23
<210> 401
<211> 29
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 401
 cacagagcat ttgtccatca gcagttcag 29
<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 402
ggcagagact tccagtcact ga 22
<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 403
gccaagggtg gtgttagata gg 22
<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 404
caggeceet tgatetgtae ecca 24
<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 405
gggacgtgct tctacaagaa cag 23
```

```
<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 406
 caggettaca atgttatgat cagaca 26
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 tattcagagt tttccattgg cagtgccagt t 31
<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 408
 tctacatcag cctctctgcg c 21
<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 409
 cgatcttctc cacccaggag cgg 23
<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 410
```

<220>

gccaggcctc acattcgt 18 <210> 411 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 411 ctccctgaat ggcagcctga gca 23 <210> 412 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 412 aggtgtttat taagggccta cgct 24 <210> 413 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 413 cagagcagag ggtgccttg 19 <210> 414 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 414 tggcggagtc ccctcttggc t 21 <210> 415 <211> 22 <212> DNA <213> Artificial Sequence

```
<223> Synthetic oligonucleotide probe
<400> 415
 ccctgtttcc ctatgcatca ct 22
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 416
 tcaaccctg accctttcct a 21
<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
ggcaggggac aagccatctc tcct 24
<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
 gggactgaac tgccagcttc 20
<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 419
 gggccctaac ctcattacct tt 22
<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 420
tgtctgcctc agccccagga agg 23
<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 421
tctgtccacc atcttgcctt g 21
<210> 422
<211> 3554
<212> DNA
<213> Homo Sapien
<400> 422
gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50
 atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100
 cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150
 tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200
 ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300
 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350
 aagatetgga atgtgacacg gagagaetea gecetttate getgtgaggt 400
 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450
 ctgtgcaagt gaagccagtg acceptgtet gtagagtgee gaaggetgta 500
 ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650
acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700
```

ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750

agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850 cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca tccgcactga cgaggagggc 950 gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000 agagegeaca gagegeaegt geacataeet etgetagaaa eteetgteaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagcgcat cccggcggga acccagaaaa ggcttcttac acagcagcct 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttegtet taggetaagt etgaaatggt actgaaatat gettttetat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct attttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050

aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150 gccctcagat gtacatacac agatgccagt cagctcctgg ggttgcgcca 2200 ggcgcccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250 gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcacg 2300 tggcccttgc ttcatccagc acagctctca ggtgggcact gcagggacac 2350 tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400 ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500 tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550 cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600 gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagcctttt 2650 aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700 tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750 atccgccgga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800 tcagaagcct gtgttcttca agagcaggtg ttctcagcct cacatgccct 2850 gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900 aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950 ctttcagctt ccagtgtctt gggtttttta tactttgaca gctttttttt 3000 aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050 tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100 gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150 cetecateat tgecacettg gtagagaggg atggeteece acceteageg 3200 ttggggattc acgctccagc ctccttcttg gttgtcatag tgatagggta 3250 geettattge eccetettet tataccetaa aacettetae actagtgeea 3300 tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctgggaa 3350 gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400

aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450

gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500 caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550 ccca 3554 <210> 423 <211> 310 <212> PRT <213> Homo Sapien <400> 423 Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu 5 Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr Ser Asp Pro Arg Ile Glu Trp Lys Lys Ile Gln Asp Glu Gln Thr Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg 115 Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val 125 Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val 145 Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly

160

190

His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu

Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Phe

170

165

His	Leu	Asn	Ser	Glu 200	Thr	Gly	Thr	Leu	Val 205	Phe	Thr	Ala	Val	His 210
Lys	Asp	Asp	Ser	Gly 215	Gln	Tyr	Tyr	Cys	Ile 220	Ala	Ser	Asn	Asp	Ala 225
Gly	Ser	Ala	Arg	Cys 230	Glu	Glu	Gln	Glu	Met 235	Glu	Val	Tyr	Asp	Leu 240
Asn	Ile	Gly	Gly	Ile 245	Ile	Gly	Gly	Val	Leu 250	Val	Val	Leu	Ala	Val 255
Leu	Ala	Leu	Ile	Thr 260	Leu	Gly	Ile	Cys	Cys 265	Ala	Tyr	Arg	Arg	Gly 270
Tyr	Phe	Ile	Asn	Asn	Lys	Gln	Asp	Gly	Glu	Ser	Tyr	Lys	Asn	Pro
				275					280					285
3ly	Lys	Pro	Asp	Gly 290	Val	Asn	Tyr	Ile	Arg 295	Thr	Asp	Glu		Gly 300
Asp	Phe	Arg		Lys 305	Ser	Ser	Phe	Val	Ile 310					