

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 15 ณ มหาวิทยาลัยบูรพา

ข้อสอบข้อที่ 2 จากทั้งหมด 3 ข้อ วันพฤหัสบดีที่ 6 มิถุนายน 2562 เวลา 9.00-12.00 น.

ทันเนอะ (Minimum Load Requirement)

บางแสนเป็นเมืองอัจฉริยะ ทางคณะวิทยาการสารสนเทศ มหาวิทยาลัยบูรพา จึงมีแนวคิดที่จะเพิ่ม ความสามารถของลิฟต์เพื่อควบคุมการขนส่งผู้โดยสารแบบอัจฉริยะ ซึ่งตึกของคณะวิทยาการสารสนเทศมี 11 ชั้น และมีลิฟต์ทั้งสิ้น N ตัว ลิฟต์ทุกตัวใช้รอบเวลาในการขึ้น-ลง 1 นาทีเท่ากัน (ไม่ว่าจะขึ้นไปชั้นใด ลิฟต์ใช้ เวลาขึ้นไปชั้นดังกล่าว และลงมาที่ชั้นหนึ่งเป็นเวลา 1 นาทีเสมอ) โดยลิฟต์แต่ละตัวสามารถรองรับน้ำหนักได้ ไม่เท่ากัน ลิฟต์ตัวที่ i สามารถรองรับน้ำหนักได้ไม่เกิน L_i กิโลกรัม

ในเดือนมิถุนายน พ.ศ. 2562 คณะวิทยาการสารสนเทศ ม.บูรพา ได้รับมอบหมายให้เป็นเจ้าภาพร่วม จัดการแข่งขันโอลิมปิกระดับชาติ ครั้งที่ 15 มีจำนวนนักเรียนเข้าร่วมแข่งขันเป็นจำนวน *M* คน ฝ่ายจัดการ แข่งขันต้องการประเมินเวลาในการใช้ลิฟต์พานักเรียนทั้งหมดไปยังห้องแข่งขันที่ชั้น 3 บนตึกดังกล่าว เพื่อแจ้ง เตือนนักเรียนเกี่ยวกับเวลาที่ต้องมาถึงก่อนกำหนด

ในการทดสอบเวลาการใช้ลิฟต์ ฝ่ายจัดการแข่งขันจำลองสถานการณ์มีรายละเอียดดังต่อไปนี้

- ullet นักเรียนทั้งหมด M คน ยืนต่อแถวกัน โดยนักเรียนคนที่ j มีน้ำหนัก S_i $(1 \le j \le M)$ กิโลกรัม
- ullet ทางคณะได้จัดเตรียมพี่เลี้ยง N คน เพื่อดูแลนักเรียนในการใช้ลิฟต์ โดยพี่เลี้ยงคนที่ k มีน้ำหนัก $A_k~(1 {\le}~k {\le} N)$ กิโลกรัม
- ullet ฝ่ายจัดการแข่งขันจะจำลองสถานการณ์ X ครั้ง เพื่อประเมินเวลาการใช้ลิฟต์
- ในการจำลองครั้งที่ z $(1 \le z \le X)$ มีเงื่อนไข ดังนี้
 - 1. กำหนดการจำลองครั้งที่ z ใช้เวลาไม่เกิน T_z นาที
 - 2. ในการจำลองแต่ละครั้ง แบ่งนักเรียน M คนในแถวหลักออกเป็น N แถวย่อย ตามจำนวน ลิฟต์ โดยไม่สลับตำแหน่งของนักเรียน
 - 3. ฝ่ายจัดการแข่งขันสามารถ<u>เลือกพี่เลี้ยง 1 คน</u> เพื่อช่วยเหลือนักเรียนที่อยู่ใน<u>แถวย่อยหนึ่ง ๆ</u> ในการใช้<u>ลิฟต์ตัวใดตัวหนึ่ง</u> โดยที่นักเรียนที่อยู่ในแต่ละแถวย่อยต้องใช้ลิฟต์ตัวเดียวกัน และ

- เดินทางไปกับพี่เลี้ยงคนนั้นเสมอ (หมายเหตุ นักเรียนในแถวย่อยที่ i ไม่จำเป็นต้องใช้ลิฟต์ตัว ที่ i และ ไม่จำเป็นต้องไปกับพี่เลี้ยงคนที่ i)
- 4. เนื่องจากมีข้อจำกัดของลิฟต์ในเรื่องของการรองรับน้ำหนัก การใช้ลิฟต์เพื่อพานักเรียนทุกคน ที่อยู่ในแต่ละแถวย่อยไปยังห้องแข่งขัน อาจต้องใช้ลิฟต์ขึ้น-ลงมากกว่า 1 รอบ ในการใช้ลิฟต์ ในแต่ละรอบ นักเรียนต้องเข้าลิฟต์ตามลำดับในแถวย่อยนั้น ๆ
- ในการจำลองครั้งที่ z จะมีผลการประเมินแบบใดแบบหนึ่ง คือ P เมื่อมีอย่างน้อยหนึ่งวิธีที่สามารถส่ง นักเรียนทั้งหมดขึ้นลิฟต์ภายในเวลาที่กำหนดได้ หรือ F เมื่อไม่มีวิธีที่สามารถส่งนักเรียนทั้งหมดขึ้น ลิฟต์ภายในเวลาที่กำหนด

หมายเหตุ การจำลองสถานการณ์แต่ละครั้ง จำนวนนักเรียนในแต่ละแถวย่อยอาจถูกกำหนดให้มีจำนวน เพิ่มขึ้นหรือลดลงจากเดิม ฝ่ายจัดการแข่งขันอาจทำการปรับเปลี่ยนเวลาสูงสุดในการโดยสารลิฟต์และอาจ เลือกหรือไม่เลือกพี่เลี้ยงคนเดิมเพื่อช่วยเหลือนักเรียนที่อยู่ในแถวย่อยหนึ่ง ๆ ในการใช้ลิฟต์ตัวใดตัวหนึ่งได้ เพื่อให้ทันเวลาที่กำหนด

ตัวอย่าง มีลิฟต์ทั้งหมด 2 ตัว สามารถรองรับน้ำหนักได้ไม่เกิน 230 และ 300 กิโลกรัม (กก.) ตามลำดับ มี นักเรียนทั้งหมด 10 คน ยืนต่อแถวกัน โดยมีน้ำหนักตามลำดับ ดังนี้ 160, 120, 35, 80, 42, 87, 72, 45, 55 และ 63 กก. มีพี่เลี้ยง 2 คน มีน้ำหนัก 56 และ 65 กก.

ฝ่ายจัดการแข่งขันวางแผนการจำลองสถานการณ์ 3 ครั้ง ดังนี้

การจำลองสถานการณ์ครั้งที่ 1

เนื่องจากลิฟต์มี 2 ตัว การจำลองสถานการณ์ทำการแบ่งนักเรียนออกเป็นแถวย่อย ดังนี้

แถวย่อยแรก : นักเรียนคนที่ 1 - 3 มีน้ำหนัก 160, 120 และ 35 กก. ตามลำดับ

แถวย่อยที่สอง : นักเรียนคนที่ 4 - 10 มีน้ำหนัก 80, 42, 87, 72, 45, 55 และ 63 กก. ตามลำดับ

กำหนดเวลาทดสอบการใช้ลิฟต์ $T_1=2$ นาที

ผลการจำลองสถานการณ์ครั้งที่ 1 : ผ่าน (P) เนื่องจากมีอย่างน้อยหนึ่งวิธีที่สามารถส่งนักเรียนทั้งหมด ขึ้นลิฟต์ภายในเวลา 2 นาที ดังวิธีการที่แสดงในตารางที่ 1

ตารางที่ 1 การจำลองสถานการณ์ครั้งที่ 1

รอบที่/ลิฟต์ที่	ลิฟต์ตัวที่ 1	ลิฟต์ตัวที่ 2	
	(รองรับน้ำหนักได้ไม่เกิน 230 กก.) (รองรับน้ำหนักได้ไม่เกิน 300		
รอบที่ 1	A_1 (56 กก.) : S_1 (160 กก.)	A_{2} (65 กก.) : S_{4} (80 กก.)	
(นาทีที่ 1)		<i>S</i> ₅ (42 กก.)	
		<i>S</i> ₆ (87 กก.)	
	<u>รวม</u> 56+160 = 216 กก.	<u>รวม</u> 65+80+42+87 = 274 กก.	
รอบที่ 2	A_{1} (56 กก.) : S_{2} (120 กก.)	A ₂ (65 kg) : S ₇ (72 กก.)	
(นาทีที่ 2)	<i>S</i> ₃ (35 กก.)	<i>S</i> ₈ (45 กก.)	
		<i>S</i> ₉ (55 กก.)	
		<i>S</i> ₁₀ (63 กก.)	
	<u>รวม</u> 56+120+35 = 211 กก.	รวม 65+72+45+55+63 = 300 กก.	

- นักเรียนในแถวย่อยแรกจะขึ้นลิฟต์ตัวที่ 1 (รองรับน้ำหนักได้ไม่เกิน 230 กก.) พร้อมกับพี่ เลี้ยงคนที่ 1 หนัก 56 กก. ($A_1=56$ กก.) โดยแบ่งเป็นการโดยสาร 2 รอบ
- นักเรียนในแถวย่อยที่สองจะขึ้นลิฟต์ตัวที่ 2 (รองรับน้ำหนักได้ไม่เกิน 300 กก.) พร้อมกับพี่ เลี้ยงคนที่ 2 ($A_2=65$ กก.) โดยแบ่งเป็นการโดยสาร 2 รอบ

การจำลองสถานการณ์ครั้งที่ 2

ลิฟต์มี 2 ตัว แบ่งนักเรียนเป็น 2 แถวย่อย

แถวย่อยแรก : นักเรียนคนที่ 1 - 2 มีน้ำหนัก 160 และ 120 กก. ตามลำดับ

แถวย่อยที่สอง : นักเรียนคนที่ 3 -10 มีน้ำหนัก 35, 80, 42, 87, 72, 45, 55 และ 63 กก. ตามลำดับ

กำหนดเวลาทดสอบการใช้ลิฟต์ T_2 = 2 นาที

ผลการจำลองสถานการณ์ครั้งที่ 2 : ผ่าน (P) เนื่องจากมีอย่างน้อยหนึ่งวิธีที่สามารถส่งนักเรียน ทั้งหมดขึ้นลิฟต์ภายในเวลา 2 นาที ดังวิธีการที่แสดงในตารางที่ 2

ตารางที่ 2 การจำลองสถานการณ์ครั้งที่ 2

รอบที่/ลิฟต์ที่	ลิฟต์ตัวที่ 1	ลิฟต์ตัวที่ 2	
	(รองรับน้ำหนักได้ไม่เกิน 230 กก.)	(รองรับน้ำหนักได้ไม่เกิน 300 กก.)	
รอบที่ 1	A ₂ (65 กก.) : S ₁ (160 กก.)	A_{1} (56 kg) : S_{3} (35 กก.)	
(นาทีที่ 1)		<i>S</i> ₄ (80 กก.)	
		<i>S</i> ₅ (42 กก.)	
		<i>S</i> ₆ (87 กก.)	
	รวม 65+160 = 225 กก.	รวม 56+35+80+42+87 = 300 กก.	
รอบที่ 2	A_2 (65 กก.) : S_2 (120 กก.)	A_{1} (56 กก.) : S_{7} (72 กก.)	
(นาทีที่ 2)		<i>S</i> ₈ (45 กก.)	
		<i>S</i> ₉ (55 กก.)	
		<i>S</i> ₁₀ (63 กก.)	
	รวม 65+120 = 185 กก.	รวม 56+72+45+55+63 = 291 กก.	

- นักเรียนในแถวย่อยแรกจะขึ้นลิฟต์ตัวที่ 1 (รองรับน้ำหนักได้ไม่เกิน 230 กก.) พร้อมกับพี่ เลี้ยงคนที่ 2 หนัก 65 กก. ($A_2=65$ กก.) โดยแบ่งเป็นการโดยสาร 2 รอบ
- นักเรียนในแถวย่อยที่สองจะขึ้นลิฟต์ตัวที่ 2 (รองรับน้ำหนักได้ไม่เกิน 300 กก.) พร้อมกับพี่ เลี้ยงคนที่ 1 ($A_1=56$ กก.) โดยแบ่งเป็นการโดยสาร 2 รอบ

การจำลองสถานการณ์ครั้งที่ 3

ลิฟต์มี 2 ตัว แบ่งนักเรียนเป็น 2 แถวย่อย

แถวย่อยแรก : นักเรียนคนที่ 1 - 5 มีน้ำหนัก 160, 120 35, 80 และ 42 กก. ตามลำดับ

แถวย่อยที่สอง : นักเรียนคนที่ 6 -10 มีน้ำหนัก 87, 72, 45, 55 และ 63 กก. ตามลำดับ

กำหนดเวลาทดสอบการใช้ลิฟต์ $T_3=1$ นาที

ผลการจำลองสถานการณ์ครั้งที่ 3 : ไม่ผ่าน (F) เนื่องจากไม่มีวิธีที่สามารถส่งนักเรียนทั้งหมดขึ้นลิฟต์ ภายในเวลาที่กำหนด ไม่ว่าจะเลือกพี่เลี้ยง แถวย่อยนักเรียน และลิฟต์ในรูปแบบใดก็ตาม

<u>งานของคุณ</u> จงเขียนโปรแกรมเพื่อทำการทดสอบการจำลองสถานการณ์การใช้ลิฟต์ภายใต้สถานการณ์ที่ กำหนดให้ทันเวลาที่กำหนด

ข้อมูลนำเข้า

มีจำนวน X+5 บรรทัด ดังนี้

บรรทัดที่ 1	จำนวนเต็ม 3 จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ประกอบด้วย	
	N แทนจำนวนลิฟต์ ($1 \leq N \leq 10$)	
	M แทนจำนวนนักเรียน ($5 \leq M \leq 10{,}000{,}000$)	
	X แทนจำนวนครั้งในการจำลองสถานการณ์ ($1 \leq X \leq 10$)	
บรรทัดที่ 2	จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง	
	$igg _{L_1L_2_{\cdots}L_N}$ โดยที่แต่ละจำนวน L_i แทนค่าน้ำหนักที่ลิฟต์แต่ละตัวรองรับได้	
	$(1 \le L_i \le 2,000,000,200)$	
บรรทัดที่ 3	จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง	
	$oxedsymbol{A_1} A_2$ A_N โดยที่แต่ละจำนวน A_k แทนค่าน้ำหนักของพี่เลี้ยงแต่ละคน	
	$(1 \le A_k \le 200)$	
บรรทัดที่ 4	จำนวนเต็ม M จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง	
	$S_1 S_2 S_M$ โดยที่แต่ละจำนวน S_j แทนค่าน้ำหนักของนักเรียนแต่ละคน	
	$(1 \le S_j \le 200)$	
บรรทัดที่ 5	จำนวนเต็ม X จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง	
	$igg _{T_1 \; T_2 \; \; T_X}$ โดยที่แต่ละจำนวน T_z แทนเวลาสูงสุดในการจำลองสถานการณ์ครั้งที่ z	
	$(1 \le T_z \le 1,000,000)$	
บรรทัดที่ 6	แต่ละบรรทัดมีจำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง	
ถึง	$igg _{Q_1Q_2_{\cdots}}Q_N$ โดยที่แต่ละจำนวน Q_r แทนหมายเลขลำดับของนักเรียนในแถวหลักที่เป็น	
X + 5	สมาชิกลำดับแรกของแถวย่อยที่ r	
	$(1=Q_1 < Q_2 < < Q_N \le M$ และ $Q_r - Q_{r-1} < 1,200,000$ และ $2 \le r \le N)$	

ข้อมูลส่งออก

มีจำนวน X บรรทัด คือ

บรรทัดที่ z	อักขระ 1 ตัว แทนผลการทดสอบเวลาของการจำลองสถานการณ์ครั้งที่ z
$(1 \le z \le X)$	โดยมีค่าเป็น
	P เมื่อมีอย่างน้อยหนึ่งวิธีที่สามารถส่งนักเรียนทั้งหมดขึ้นลิฟต์ภายในเวลาที่กำหนดได้
	หรือ F เมื่อไม่มีวิธีที่สามารถส่งนักเรียนทั้งหมดขึ้นลิฟต์ภายในเวลาที่กำหนด

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก
2 10 3	Р
230 300	P
56 65	F
160 120 35 80 42 87 72 45 55 63	
2 2 1	
1 4	
1 3	
1 6	

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 8 1	F
150 100 200	
45 60 55	
80 45 50 62 48 40 68 55	
2	
1 3 5	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	1 GB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการตรวจให้คะแนนโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อกำหนดอื่น ๆ

้ ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

ภาษา C	ภาษา C++
/*	/*
TASK: minreq.c	TASK: minreq.cpp
LANG: C	LANG: C++
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName
CENTER: YourCenter	CENTER: YourCenter
*/	*/

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

้ ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบเป็นกลุ่มของคะแนนที่เป็นอิสระต่อกัน โดยผลรวมของคะแนน ได้ 100% มีดังนี้

เด 100% มดงน		
ระดับข้อมูล	คะแนนสูงสุดที่เป็นไปได้	เงื่อนไข
ทดสอบ	โดยประมาณ	
1	10%	N = 2 โดยที่ลิฟต์รองรับน้ำหนักเท่ากันและพี่เลี้ยงมีน้ำหนัก
		เท่ากัน และมี 1 แถวย่อยที่มีนักเรียน 1 คน
2	25%	N = 2 โดยที่ลิฟต์รองรับน้ำหนักเท่ากันหรือพี่เลี้ยงมี
		น้ำหนักเท่ากันกรณีใดกรณีหนึ่ง
3	10%	N = 2 โดยที่ลิฟต์รองรับน้ำหนักไม่เท่ากันและพี่เลี้ยงทุกคน
		มีน้ำหนักไม่เท่ากัน
4	25%	$2 < N \le 10$ โดยที่ลิฟต์รองรับน้ำหนักเท่ากันหรือพี่เลี้ยงมี
		น้ำหนักเท่ากันกรณีใดกรณีหนึ่ง
5	10%	$5 < N \le 10, M \le 110,000$ จำนวนนักเรียนในแถวย่อย
		ไม่เกิน 15,000 คน และไม่รับประกันว่าน้ำหนักพี่เลี้ยงหรือ
		น้ำหนักลิฟต์เท่ากัน
6	20%	$5 < N \le 10, M \le 10,000,000$ จำนวนนักเรียนในแถว
		ย่อยไม่เกิน 1,200,000 คน และไม่รับประกันว่าน้ำหนักพี่
		เลี้ยงหรือน้ำหนักลิฟต์เท่ากัน