関数のグラフ

数学クォータ科目 補助教材

佐藤弘康 / 日本工業大学 共通教育学群

(復習) 関数とは

- 2つの変数 x, y があり、変数 x の値を決めると、それに応じて y の値が決まるとき、「y は x の関数である」という.
- x がとる値の範囲のことを定義域という。
- 変数 y が独立変数 x の関数であることを、一般的に y = f(x) と書く.
 - \circ f は「x に対して, y(=f(x)) を対応させる規則」と解釈できる.
 - \circ 「x の関数」とは「x で記述される式 f(x)」と考えてよい.
- **例)** (1) **1次関数:**f(x) = ax + b
 - (2) **2次関数:** $f(x) = ax^2 + bx + c$, (a, b, c は定数)
 - 関数 y = f(x) があるとき,
 - \circ $x = \alpha$ に対して、数 $y = \beta (= f(\alpha))$ が定まる.
 - \circ $x = \alpha$ に対して、数の組 $(\alpha, f(\alpha))$ が定まる。 \leftarrow 点の座標

(復習) 平面の点の座標とは

- 平面の点の座標とは、平面の点の位置を2つの数の組として表したもののこと。
- 座標を定めるためには、平面に2つの座標軸を定める必要がある。

関数のグラフとは

- 関数 y = f(x) があるとき、定義域内の値 $x = \alpha$ を与えると、平面の点 $(\alpha, f(\alpha))$ が定まる. このような点の全体は、平面内の曲線をなす.
- この曲線を、「関数 y = f(x) のグラフ」という.

1次関数のグラフ (1)

例)
$$y = \frac{1}{2}x$$

J	x	• • •	-3	- 2	-1	0	1	2	3	• • •
<u> </u>	1	• • •	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	$\frac{3}{2}$	• • •
						\downarrow				
(x,	(y)	•••	$\left(-3,-\frac{3}{2}\right)$	(-2, -1)	$\left(-1,-\frac{1}{2}\right)$	(0, 0)	$\left(1,\frac{1}{2}\right)$	(2, 1)	$\left(3,\frac{3}{2}\right)$	• • •

1次関数のグラフ(2)

- 関数 y = ax のグラフは原点を通る直線となる.
 - $\circ x$ の係数 a を直線の「傾き」という.
 - |a| の値が大きいほど、直線の勾配は急である.
- y = ax + b は,y = ax と比べると,x に対応する y の値が +b だけ異る. $\longrightarrow y = ax + b$ のグラフは,y = ax のグラフを平行移動した直線.
 - \circ 関数のグラフと y 軸との交点の値 b のことを y 切片という.

数学クォータ科目補助教材「関数のグラフ」(担当:佐藤 弘康)5/7

2次関数のグラフ(1)

例)
$$y = \frac{1}{2}x^2$$

\mathcal{X}	•••	-3	- 2	- 1	0	1	2	3	• • •
y	•••	9 2	2	$\frac{1}{2}$	0	$\frac{1}{2}$	2	$\frac{9}{2}$	• • •

2次関数のグラフ(2)

- 関数 $y = ax^2$ のグラフは原点を頂点とする放物線となる.
 - a > 0 のときは下に凸の放物線
 - $\circ \underline{a < 0}$ のとき,上に凸の放物線.
- $y = ax^2 + bx + c \stackrel{\text{平方完成}}{=} a(x p)^2 + q$ は,頂点が (p,q) の放物線となる. $\longrightarrow y = a(x-p)^2 + q$ のグラフは, $y = ax^2$ のグラフを平行移動した放物線. $\circ y$ 切片は, $c (= ap^2 + q)$ である.
 - 数学クォータ科目補助教材「関数のグラフ」(担当:佐藤 弘康) 7/7