Security Arguments and Tool-based Design of Block Ciphers

PhD Defense

December 13th, 2019

Arbeitsgruppe Symmetrische Kryptographie, Horst-Görtz-Institut für IT Sicherheit, Ruhr-Universität Bochum Friedrich Wiemer

RUB

Topics of the Thesis

Based on mainly four papers:

Security Arguments

- A. Canteaut, L. Kölsch, and F. Wiemer. Observations on the DLCT and Absolute Indicators. 2019. iacr: 2019/848
- A. Canteaut, V. Lallemand, G. Leander,
 P. Neumann, and F. Wiemer. "Bison –
 Instantiating the Whitened Swap-Or-Not Construction". In: EUROCRYPT 2019,
 Part III. 2019, pp. 585–616. iacr:
 2018/1011

Tool-based Design

- T. Kranz, G. Leander, K. Stoffelen, and F. Wiemer. "Shorter Linear Straight-Line Programs for MDS Matrices". In: *IACR Trans. Symm. Cryptol.* 2017.4 (2017), pp. 188–211. iacr: 2017/1151
- G. Leander, C. Tezcan, and F. Wiemer.
 "Searching for Subspace Trails and Truncated Differentials". In: IACR Trans. Symm. Cryptol. 2018.1 (2018), pp. 74–100

The General Setting Block Ciphers and Security Notion

Def.: Block Cipher

- $E: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$ family of permutations, with \mathcal{K} the key space, \mathcal{M} the message space, and \mathcal{C} the cipher space
- In practice: $\mathcal{K} = \mathbb{F}_2^m$ and $\mathcal{M} = \mathcal{C} = \mathbb{F}_2^n$. $E: \mathbb{F}_2^m \times \mathbb{F}_2^n \to \mathbb{F}_2^n$ is the encryption, $D = E^{-1}$ the decryption, m the key length and n the block length.

Further $E_k = E(k, \cdot)$ and $\operatorname{Perm}_n = \{f : \mathbb{F}_2^n \to \mathbb{F}_2^n \mid f \text{ is permutation}\}$ the set of n-bit permutations.

Def.: Security

A block cipher E is (q, t, ε) -secure, if the (CPA)-advantage of every (q, t)-adversary is bound by ε :

$$\mathrm{Adv}_{E}^{\mathsf{PRP-CPA}}(\mathcal{A}_{q,t}) \coloneqq \left| \Pr_{k \in_{R} \mathbb{F}_{2}^{n}} [\mathcal{A}_{q,t}^{F_{k}} = 1] - \Pr_{f \in_{R} \mathrm{Perm}_{n}} [\mathcal{A}_{q,t}^{f} = 1] \right| \leqslant \varepsilon \; .$$

In practice: security of a block cipher always security against known attacks.

Substitution Permutation Networks

The most common design structure for block ciphers

Exemplary SPN Structure

- S-box $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$ provides *confusion* and non-linearity on small blocks (typically $3 \le n \le 8$)
- Linear layer $P: \mathbb{F}_2^{kn} \to \mathbb{F}_2^{kn}$ provides diffusion and spreads the S-box influence over the whole state
- Key-alternating: the round keys are added in between the rounds

Overview

- 1 Introduction
- 2 Subspace Trail Attack
- 3 Propagating Subspaces
- 4 Security for SPNs against Subspace Trail Attacks
- 5 Conclusion

Subspace Trail Cryptanalysis

Idea: Subspace Trails

Def.: Subspace Trails [GRR16] (FSE'16)

Let
$$U_0, \ldots, U_r \subseteq \mathbb{F}_2^n$$
, and $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. If

$$\forall a \in U_i^{\perp} : \exists b \in U_{i+1}^{\perp} : \quad F(U_i + a) \subseteq U_{i+1} + b ,$$

these subspaces form a subspace trail (ST).

Notation:
$$U_0 \rightrightarrows^F \cdots \rightrightarrows^F U_r$$
.

RUB

The Problem/Our Goal

Find a solution to

Problem: Security against Subspace Trails

Given an SPN with round function F, consisting of

- $\blacksquare \ k$ parallel applications of an S-box $S:\mathbb{F}_2^n \to \mathbb{F}_2^n$ and
- \blacksquare a linear layer $L: \mathbb{F}_2^{kn} \to \mathbb{F}_2^{kn}$.

Compute an upper bound on the length of any subspace trail through the cipher.

RUB

Subspace Propagation

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x + u) \in V$.

Proof

Computing the subspace trail

■ To compute the next subspace, we have to compute the image of the derivatives.

Propagate a Basis

Actually it is enough to compute only the image of the derivatives in direction of U's basis vectors.

Lemma

Given $U \subseteq \mathbb{F}_2^n$ with basis $\{b_1, \ldots, b_k\}$. Then $\operatorname{Span}\left\{\bigcup_{u \in U} \operatorname{Im} \Delta_u(F)\right\} = \operatorname{Span}\left\{\bigcup_{b_i} \operatorname{Im} \Delta_{b_i}(F)\right\}$.

Proof: \supseteq trivial, \subseteq by induction over the dimension k of U

Let $u = \sum_{i=1}^k \lambda_i b_i$ and $v \in \operatorname{Im} \Delta_u(F)$, i. e. there exists an x s. t.

$$v = F(x) + F(x + \sum_{i=1}^{k} \lambda_i b_i) = F(y + \lambda_k b_k) + F(y + \sum_{i=1}^{k-1} \lambda_i b_i) = \lambda_k \Delta_{b_k}(F)(y) + \lambda' \Delta_{u'}(F)(y).$$

Thus $v \in \operatorname{Span} \{\operatorname{Im} \Delta_{b_k}(F) \cup \operatorname{Im} \Delta_{u'}(F)\}$, where u' is contained in a (k-1) dimensional subspace.

ComputeTrail Algorithm

Computation of Subspace Trails

Input: A nonlinear function $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$, a subspace U. **Output:** A subspace trail $U \rightrightarrows^F \cdots \rightrightarrows^F V$.

```
1 function ComputeTrail(F, U)

2 if dim U = n then return U

3 V \leftarrow \emptyset

4 for u_i basis vectors of U do

5 for enough x \in_{\mathbb{R}} \mathbb{F}_2^n do

6 V \leftarrow V \cup \Delta_{u_i}(F)(x)

7 V \leftarrow \operatorname{Span}\{V\}

8 return U \rightrightarrows^F \operatorname{ComputeTrail}(F, V)
```

Remaining Problem: cyclic STs

Correctness: previous two lemmata **Runtime**:

- Line 4: max. *n* iterations
- Line 5: n + c random vectors are enough
- lacktriangle Recursions: can stop after r < n rounds
- Overall: $\mathcal{O}(n^3)$ evaluations of F

How to Bound the Length of Subspace Trails

Goal

Give an upper bound on the length of any subspace trail.

Naïve Approach I

 $\forall U \subseteq \mathbb{F}_2^m \text{ run ComputeTrail}(F, U)$

Naïve Approach II

 $\forall u \subseteq \mathbb{F}_2^m \setminus \{0\} \text{ run ComputeTrail}(F, \operatorname{Span}\{u\})$

Problem

Exponentially many starting subspaces.

Problem

Still $2^m - 1$ starting subspaces.

Often used heuristic

Activate single S-boxes only. That is, for a round function with k S-boxes which are n-bit wide, choose $U = \{0\}^i \times V \times \{0\}^{k-i-1}$, where $V \subseteq \mathbb{F}_2^n$.

Activating a single S-box only

Problem

Heuristic not valid in general when we want to prove a bound on the subspace trail length. In particular one can construct examples where the best subspace trail does activate more than one S-box in the beginning.

The good case

However, we will see next a sufficient condition for the case when the heuristic is valid.

The Connection to Linear Structures

Let us observe how a single S-box S behaves regarding subspace trails:

Given a subpsace trail $U \stackrel{s}{\Rightarrow} V$, this implies

$$\Delta_u(S)(x) \in V$$
 for all $x \in \mathbb{F}_2^n$ and $u \in U$.

By definition of the dual space V^{\perp} :

$$\langle \alpha, \Delta_u(S)(x) \rangle = 0$$
 for all $\alpha \in V^{\perp}$,

which are exactly the *linear structures* of *S*:

$$LS(S) := \{(\alpha, u) \mid \langle \alpha, \Delta_u(S)(x) \rangle \text{ is constant for all } x\}$$

This observation implies that S-boxes without linear structures (e.g. the AES S-box) exhibit only two important subspace trails:

$$\{0\} \rightrightarrows \{0\}$$
 and $\mathbb{F}_2^n \rightrightarrows \mathbb{F}_2^n$

We can further show that subspace trails over an S-box layer without linear structures are direct products of the above two subspace trails.

Theorem

Let F be an S-box layer of k parallel S-boxes $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$. If S has no non-trivial linear structures, then for every subspace trail $U \rightrightarrows^F V$:

$$U=V=U_1\times\cdots\times U_k,$$

with $U_i \in \{\{0\}, \mathbb{F}_2^n\}$.

Proof

For all
$$\alpha = (\alpha_1, \dots, \alpha_k) \in V^{\perp}$$
: $\langle \alpha, \Delta_u(F)(x) \rangle = \left\langle \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix}, \begin{pmatrix} \Delta_{u_1}(S)(x_1) \\ \vdots \\ \Delta_{u_k}(S)(x_k) \end{pmatrix} \right\rangle = \sum_{i=1}^k \left\langle \alpha_i, \Delta_{u_i}(S)(x_i) \right\rangle = 0$

S-boxes without Linear Structures

Resistance of SPN against Subspace Trails, without linear structures

The length ℓ of any subspace trail is upper bounded by

$$\ell \leqslant \max_{U \in \left\{\{0\}, \mathbb{F}_2^n\right\}^k} \left| \texttt{ComputeTrail}(\mathit{F}, U) \right|,$$

which needs 2^k evaluations of the ComputeTrail algorithm.

S-boxes with Linear Structures

Compared to the no-linear-structures-case, V^{\perp} can now contain much more elements, namely all combinations of linear structures, such that their corresponding constants sum to zero.

Instead, we can show that (for any not-trivially-insecure S-box) the subspace after the first S-box layer contains at least one element of a specific structure:

$$W_{i,\alpha} = \{0\}^{i-1} \times \{0,\alpha\} \times \{0\}^{k-i}$$
.

Resistance of SPN against Subspace Trails, with linear structures

The length ℓ of any subspace trail is upper bounded by

$$\ell \leqslant \max_{W_{i,\alpha}} \left| \texttt{ComputeTrail}(F', W_{i,\alpha}) \right| + 1,$$

which needs $k \cdot 2^n$ evaluations of the ComputeTrail algorithm.

Note: F' first applies the linear layer, then the S-box layer (b/c of the skipped first S-box layer).

Conclusion

Thanks for your attention!

Applications of ComputeTrail

- Bound longest probability-one subspace trail
- Link to Truncated Differentials
- Finding key-recovery strategies

