

Practice Mode

AmrKeleg94@gmail.com | Contest scoreboard | Sign out

#### Round 1C 2008

#### A. Text Messaging Outrage

#### **B. Ugly Numbers**

C. Increasing Speed Limits

#### **Contest Analysis**

# Questions asked 4

# This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the <u>Quick-Start</u> Guide to get started.

Small input | Solve B-small

**Problem B. Ugly Numbers** 

Large input 25 points

10 points

Solve B-large

### Submissions

#### **Text Messaging Outrage**

5pt Not attempted 2204/2255 users correct (98%)

10pt Not attempted 1402/2194 users correct (64%)

#### **Ugly Numbers**

10pt Not attempted 554/1040 users correct (53%)

25pt Not attempted 82/318 users correct (26%)

#### **Increasing Speed Limits**

15pt | Not attempted 398/716 users correct (56%)

35pt Not attempted 49/312 users correct (16%)

#### Problem

Once upon a time in a strange situation, people called a number *ugly* if it was divisible by any of the one-digit primes (2, 3, 5 or 7). Thus, 14 is ugly, but 13 is fine. 39 is ugly, but 121 is not. Note that 0 is ugly. Also note that negative numbers can also be ugly; -14 and -39 are examples of such numbers.

One day on your free time, you are gazing at a string of digits, something like:

123456

You are amused by how many possibilities there are if you are allowed to insert *plus* or *minus* signs between the digits. For example you can make

which is ugly. Or

$$123 + 4 - 56 = 71$$

# Top Scores

| austrin         | 100 |
|-----------------|-----|
| Baltazar        | 100 |
| vepifanov       | 100 |
| elizarov        | 100 |
| xhl.kogitsune   | 100 |
| ivan.popelyshev | 100 |
| SergeyRogulenko | 100 |
| Vasyl           | 100 |
| slex            | 100 |

frankyym

which is not ugly.

It is easy to count the number of different ways you can play with the digits: Between each two adjacent digits you may choose put a plus sign, a minus sign, or nothing. Therefore, if you start with D digits there are  $3^{D-1}$  expressions you can make.

Note that it is fine to have leading zeros for a number. If the string is "01023", then "01023", "0+1-02+3" and "01-023" are legal expressions.

Your task is simple: Among the  $3^{D-1}$  expressions, count how many of them evaluate to an ugly number.

#### Input

The first line of the input file contains the number of cases, N. Each test case will be a single line containing a non-empty string of decimal digits.

#### Output

100

For each test case, you should output a line

```
Case #X: Y
```

where  ${\bf X}$  is the case number, starting from 1, and  ${\bf Y}$  is the number of expressions that evaluate to an ugly number.

#### Limits

0 <= **N** <= 100.

The string in each test case will be non-empty and will contain only characters '0' through '9'

#### Small dataset

Each string is no more than 13 characters long.

## Large dataset

Each string is no more than 40 characters long.

## Sample

| Input                       | Output                                                |
|-----------------------------|-------------------------------------------------------|
| 4<br>1<br>9<br>011<br>12345 | Case #1: 0<br>Case #2: 1<br>Case #3: 6<br>Case #4: 64 |

All problem statements, input data and contest analyses are licensed under the **Creative Commons Attribution License**.

© 2008-2015 Google 
Google Home - Terms and Conditions - Privacy Policies and Principles

