INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4030B gates Quadruple exclusive-OR gate

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple exclusive-OR gate

HEF4030B gates

DESCRIPTION

The HEF4030B provides the positive quadruple exclusive-OR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

HEF4030BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4030BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4030BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

TRUTH TABLE

I ₁	l ₂	O ₁
L	L	L
Н	L	Н
L	Н	Н
Н	Н	L

Notes

H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage)

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

Philips Semiconductors Product specification

Quadruple exclusive-OR gate

HEF4030B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \rightarrow O_n$	5		85	175	ns	57 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	35	75	ns	24 ns + (0,23 ns/pF) C _L
	15		30	55	ns	22 ns + (0,16 ns/pF) C _L
	5		75	150	ns	47 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	30	65	ns	19 ns + (0,23 ns/pF) C _L
	15		25	50	ns	17 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1 100 $f_i + \sum (f_o CL) \times V_{DD}^2$	where
dissipation per	10	4 900 $f_i + \sum (f_o CL) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	14 400 $f_i + \sum (f_o CL) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\Sigma(f_0C_L)$ = sum of outputs
			V _{DD} = supply voltage (V)