Correction DS6

Exercice 1. On considère la suite de polynômes $(T_n)_{n\in\mathbb{N}}$ définie par

$$T_0 = 1$$
 et $T_1 = X$ et $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n$

- 1. (a) Calculer T_2 , T_3 et T_4 .
 - (b) Calculer le degré T_n pour tout $n \in \mathbb{N}$.
 - (c) Calculer le coefficient dominant de T_n .
- 2. (a) Soit $\theta \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$ on a $T_n(\cos(\theta)) = \cos(n\theta)$.
 - (b) En déduire que $\forall x \in [-1, 1]$, on a $T_n(x) = \cos(n \arccos(x))$.
- 3. (a) En utilisant la question 2a), déterminer les racines de T_n sur [-1,1].
 - (b) Combien de racines distinctes a-t-on ainsi obtenues? Que peut on en déduire?
 - (c) Donner la factorisation de T_n pour tout $n \in \mathbb{N}^*$.

Correction 1.

- 1. (a) $T_2 = 2X^2 1$, $T_3 = 4X^3 3X$, $T_4 = 8X^4 8X^2 + 1$
 - (b) Montrons par récurrence que $deg(T_n) = n$. Comme la suite est une suite récurrente d'ordre 2, on va poser comme proposition de récurrence

$$P(n)$$
: ' $\deg(T_n) = n \text{ ET } \deg(T_{n+1}) = n+1$ '

C'est vrai pour n=0,1,2 et 3. On suppose qu'il existe un entier $n_0 \in \mathbb{N}$ tel que $P(n_0)$ soit vrai et montrons $P(n_0+1)$. On cherche donc à vérifier $\deg(T_{n_0+1})=n_0+1$ ET $\deg(T_{n_0+2})=n_0+2'$. La première égalité est vraie par hypothèse de récurrence. La seconde vient de la relation $T_{n_0+2}=2XT_{n_0+1}-T_{n_0}$ En effet, par hypothèse de récurrence T_{n_0+1} est de degré n_0+1 donc $2XT_{n_0+1}$ est de degrés n_0+2 . Comme $\deg(T_{n_0})=n_0< n_0+2$, on a

$$\deg(T_{n_0+2}) = \max(\deg(2XT_{n_0+1}), \deg(T_{n_0})) = n_0 + 2$$

Ainsi par récurrence pour tout
$$n \in \mathbb{N}$$
, $\deg(T_n) = n$.

(c) La récurrence précédente montre que le coefficient dominant, notons le c_n vérifie $c_{n+2}=2c_{n+1}$. Ainsi

$$c_n = 2^n c_0 = 2^n.$$

2. (a) Montrons le résultat par récurrence. On pose

$$Q(n)$$
: " $\forall \theta \in \mathbb{R}, T_n(\cos(\theta)) = \cos(n\theta) \text{ ET } T_{n+1}(\cos(\theta)) = \cos((n+1)\theta)$ "

Q(0) est vraie par définition de T_0 et T_1

Supposons qu'il existe $n \in \mathbb{N}$ tel que Q(n) soit vrai et montrons Q(n+1). Il suffit de montrer que $\forall \theta \in \mathbb{R}$

$$T_{n+2}(\cos(\theta)) = \cos((n+2)\theta)$$

On a par définition de T_{n+2}

$$T_{n+2}(\cos(\theta)) = 2\cos(\theta)T_{n+1}(\cos(\theta)) - T_n(\cos(\theta))$$

Par hypothèse de récurrence on a $T_{n+1}(\cos(\theta)) = \cos((n+1)\theta)$ et $T_n(\cos(\theta)) = \cos(n\theta)$ donc

$$T_{n+2}(\cos(\theta)) = 2\cos(\theta)\cos((n+1)\theta) - \cos(n\theta)$$

Les formules trigonométriques donnent :

$$2\cos(\theta)\cos((n+1)\theta) = \cos(\theta + (n+1)\theta) + \cos(\theta - (n+1)\theta)$$
$$= \cos((n+2)\theta) + \cos(-n\theta)$$
$$= \cos((n+2)\theta) + \cos(n\theta)$$

Donc

$$T_{n+2}(\cos(\theta)) = \cos((n+2)\theta) + \cos(n\theta) - \cos(n\theta) = \cos((n+2)\theta)$$

Par récurrence, Pour tout $\theta \in \mathbb{R}$ et tout $n \in \mathbb{N}$:

$$T_n(\cos(\theta)) = \cos(n\theta)$$

(b) Soit $x \in [-1, 1]$ on note $x = \cos(\theta)$, avec $\theta \in [0, \pi]$ on a alors $\theta = \arccos(x)$. D'après la question précédente on a donc pour tout $x \in [-1, 1]$:

$$T_n(x) = \cos(n\arccos(x))$$

3. (a) Pour tout θ tel que $n\theta \equiv \frac{\pi}{2}[\pi]$, on a $\cos(n\theta) = 0$ Ainsi pour tout θ tel que $\theta \equiv \frac{\pi}{2n}[\frac{\pi}{n}]$,

$$T_n(\cos(\theta)) = 0$$

On obtient ainsi n racines entre [-1, 1] données par

$$\left\{\cos\left(\frac{\pi+2k\pi}{2n}\right)\mid k\in[0,n-1]\right\}$$

(b) On a obtenu n racines. Comme ${\cal T}_n$ est de degrés n

ainsi T_n se factorise de la manière suivante :

(c)
$$T_n(X) = 2^n \prod_{k=0}^{n-1} \left(X - \cos\left(\frac{\pi + 2k\pi}{2n}\right) \right)$$

Exercice 2. Le but de cet exercice est l'étude de la suite $(a_n)_{n\geq 1}$ définie par $a_1=1$ et $\forall n\in\mathbb{N}^*, a_{n+1}=\frac{a_n(1+a_n)}{1+2a_n}$.

- 1. Etude de la limite de $(a_n)_{n\geq 1}$.
 - (a) Calculer a_2 et a_3 .
 - (b) Etudier la fonction f définie par $f(x) = \frac{x(x+1)}{1+2x}$.
 - (c) Déterminer l'image directe de]0,1[par f.
 - (d) Démontrer que, $\forall n \geq 2, 0 < a_n < 1.$
 - (e) Montrer que la suite $(a_n)_{n>1}$ est décroissante.
 - (f) Résoudre l'équation f(x) = x sur [0, 1].

- (g) En déduire la limite de $(a_n)_{n\geq 1}$.
- 2. Un résultat intermédiaire.

Soit $(u_n)_{n\geq 1}$ une suite croissante, admettant une limite ℓ en $+\infty$ et $(C_n)_{n\geq 1}$ définie par

$$C_n = \frac{1}{n} \sum_{k=1}^n u_k$$

- (a) Montrer que pour tout $n \in \mathbb{N}^*$, $C_n \leq u_n$.
- (b) Montrer que pour $(C_n)_{n\geq 1}$ est croissante. ¹
- (c) Montrer que pour tout $n \in \mathbb{N}^*$, $2C_{2n} C_n \ge u_{n+1}$.
- (d) En déduire que $(C_n)_{n\geq 1}$ converge et donner la valeur de sa limite en fonction de celle de $(u_n)_{n\geq 1}$.
- 3. Etude d'un équivalent de $(a_n)_{n\geq 1}$.
 - (a) Montrer que $\frac{1}{a_{n+1}} \frac{1}{a_n} = \frac{1}{1+a_n}$.
 - (b) On pose $u_n = \frac{1}{a_{n+1}} \frac{1}{a_n}$. Déterminer la limite de $(u_n)_{n \ge 1}$.
 - (c) Montrer que $(u_n)_{n\geq 1}$ est croissante.
 - (d) En posant $C_n = \frac{1}{n} \sum_{k=1}^n u_k$, exprimer C_n en fonction de a_{n+1} et de a_1 .
 - (e) Conclure à l'aide de la question 2.d que $a_n \sim \frac{1}{n}$.

Correction 2.

1. (a)
$$a_2 = \frac{1(1+1)}{1+2\times 1} = \frac{2}{3}$$

 $a_3 = \frac{\frac{2}{3}(1+\frac{2}{3})}{1+2\times \frac{2}{3}} = \frac{\frac{10}{9}}{\frac{7}{3}} = \frac{10}{21}$

$$a_2 = \frac{2}{3}$$
 et $a_3 = \frac{10}{21}$

(b) f est continue et dérivable sur $\mathbb{R} \setminus \{\frac{-1}{2}\}$ et $\forall x \in \mathbb{R} \setminus \{\frac{-1}{2}\}$

$$f'(x) = \frac{(2x+1)(1+2x) - x(x+1)2}{(1+2x)^2} = \frac{2x^2 + 2x + 1}{(1+2x)^2}$$

Le discriminant du numérateur vaut $\Delta=4-8=-4<0$ donc f' est strictement positif sur $\mathbb{R}\setminus\{\frac{-1}{2}\}$ Ainsi f est strictement croissante sur $]-\infty,\frac{-1}{2}[$ et sur $]\frac{-1}{2},+\infty[$.

(c) f(0) = 0 et $f(1) = \frac{2}{3}$, comme f est continue et strictement croissante sur [0,1], le thoérème de la bijection assure que

$$f(]0,1[) =]0,\frac{2}{3}[$$

(d) On montre le résultat par récurrence. Soit P(n) la propriété

$$P(n)$$
: "0 < a_n < 1"

Initialisation : P(2) est vraie d'après la question 1a)

1. On pourra minorer C_{n+1} en utilisant, après justifications, que $u_{n+1} \geq C_n$

Hérédité : On suppose qu'il existe $n \ge 2$ tel que P(n) soit vraie, on a alors $0 < a_n < 1$. D'après l'étude de f on a alors que $f(a_n) \in 0, \frac{2}{3} \subset]0, 1[$, donc

$$a_{n+1} = f(a_n) \in]0,1[$$

Conclusion : La propriété P(n) est héréditaire donc pour tout $n \geq 2$, on a

$$0 < a_n < 1$$

(e) Pour tout $n \in N^*$ on a

$$a_{n+1} - a_n = f(a_n) - a_n$$

$$= \frac{a_n(1 + a_n)}{1 + 2a_n} - a_n$$

$$= \frac{a_n(1 + a_n) - a_n - 2a_n^2}{1 + 2a_n}$$

$$= \frac{-a_n^2}{1 + 2a_n}$$

Or on a a prouvé que $a_n \in]0,1[$ donc $1+2a_n>0$ et $-a_n^2<0$ donc $a_{n+1}-a_n<0$. Ainsi :

 $(a_n)_{n\geq 1}$ est décroissante

(f)

$$f(x) = x$$

$$\iff \frac{x(x+1)}{1+2x} = x$$

$$\iff \frac{-2x^2}{1+2x} = 0$$

$$\iff x = 0$$

Donc

La seule solution de
$$f(x) = x$$
 est $x = 0$

(g) La suite $(a_n)_{n\geq 1}$ est décroissante et minorée donc elle converge, notons ℓ sa limite. Par unicité de la limite a_{n+1} converge vers ℓ et par continuité de f, $f(a_n)$ converge vers $f(\ell)$. Ainsi $f(\ell) = \ell$ et finalement d'après la question précédente :

$$\lim_{n \to +\infty} a_n = 0$$

2. (a) Par croissance de $(u_n)_{n\geq 1}$ on a pour tout $k\in [1,n]$,

$$u_k \le u_n$$

Donc

$$\sum_{k=1}^{n} u_k \le \sum_{k=1}^{n} u_n,$$

c'est-à-dire $\sum_{k=1}^{n} u_k \leq nu_n$. En divisant par $n \in \mathbb{N}^*$ on obtient :

$$C_n \le u_n$$

(b)
$$C_{n+1} = \frac{1}{n+1} \sum_{k=1}^{n+1} u_k = \frac{1}{n+1} \sum_{k=1}^n u_k + \frac{1}{n+1} u_{n+1}$$
. Or $C_n \le u_n \le u_{n+1}$ où la deuxième inégalité vient de la croissance de $(u_n)_{n \ge 1}$. Donc

$$C_{n+1} \ge \frac{1}{n+1} \sum_{k=1}^{n} u_k + \frac{1}{n+1} C_n$$

$$\ge \frac{1}{n+1} n C_n + \frac{1}{n+1} C_n$$

$$\ge \frac{n+1}{n+1} C_n$$

$$\ge C_n$$

Ainsi:

 $(C_n)_{n\geq 1}$ est croissante.

(c)

$$2C_{2n} - C_n = 2\frac{1}{2n} \sum_{k=1}^{2n} u_k - \frac{1}{n} \sum_{k=1}^{n} u_k$$
$$= \frac{1}{n} \sum_{k=1}^{2n} u_k - \frac{1}{n} \sum_{k=1}^{n} u_k$$
$$= \frac{1}{n} \sum_{k=n+1}^{2n} u_k$$

Or par croissance de $(u_n)_{n\geq 1}$, pour tout $k\geq n+1$, $u_k\geq u_{n+1}$ Donc

$$\sum_{k=n+1}^{2n} u_k \ge \sum_{k=n+1}^{2n} u_{n+1} = nu_{n+1}$$

Finalement

$$2C_{2n} - C_n \ge \frac{1}{n} n u_{n+1}$$

$$\ge u_{n+1}$$

$$2C_{2n} - C_n \ge u_{n+1}$$

(d) D'aprés 2a) $C_n \leq u_n$ et comme $(u_n)_{n\geq 1}$ est croissante $u_n \leq \ell$. Donc $C_n \leq \ell$. D'après 2b) $(C_n)_{n\geq 1}$ est majorée, donc $(C_n)_{n\geq 1}$ converge en vertu du théorème de la limite monotone. Soit ℓ' sa limite.

D'après 2a)

$$\ell' < \ell$$

Et d'après 2c) $2\ell' - \ell' \ge \ell$ d'où

$$\ell' \ge \ell$$

Finalement

$$(C_n)_{n\geq 1}$$
 converge et $\lim_{n\to +\infty} C_n = \ell$.

3. (a) On a pour tout $n \ge 1$

$$\frac{1}{a_{n+1}} - \frac{1}{a_n} = \frac{1+2a_n}{a_n(1+a_n)} - \frac{1}{a_n}$$

$$= \frac{1+2a_n - (1+a_n)}{a_n(1+a_n)}$$

$$= \frac{a_n}{a_n(1+a_n)}$$

$$= \frac{1}{(1+a_n)}$$

Ce qui est bien l'égalité demandée.

(b) Pour tout $n \ge 1$: $u_n = \frac{1}{1+a_n}$, or $(a_n)_{n \ge 1}$ converge et $\lim_{n \to +\infty} a_n = 0$ donc

$$\lim_{n \to +\infty} u_n = \frac{1}{1+0} = 1$$

 $\boxed{\lim_{n\to+\infty}u_n=\frac{1}{1+0}=1}$ (c) Pour tout $n\in\mathbb{N}^*$ on a $u_{n+1}-u_n=\frac{1}{1+a_{n+1}}-\frac{1}{1+a_n}$ D'où

$$u_{n+1} - u_n = \frac{a_n - a_{n+1}}{(1 + a_{n+1})(1 + a_n)}$$

Comme $(a_n)_{n\geq 1}$ est décroissante $a_n\geq a_{n+1}$ et comme $a_n\geq 0$ on a bien :

$$u_{n+1} - u_n \ge 0$$

$$(u_n)_{n \ge 1} \text{ est croissante}$$

(d) $C_n = \frac{1}{n} \sum_{k=1}^n \left(\frac{1}{a_{k+1}} - \frac{1}{a_k} \right)$ On reconnait une somme télescopique : on a donc

$$C_n = \frac{1}{n} \left(\frac{1}{a_{n+1}} - \frac{1}{a_1} \right)$$

(e) D'après la question précédente :

$$a_{n+1} = \frac{1}{C_n + \frac{1}{a_1}} = \frac{1}{nC_n + 1}$$

D'après la question 2d) Comme $(u_n)_{n\geq 1}$ est croissante et converge vers 1, C_n converge aussi vers 1. On a donc

$$a_n \underset{+\infty}{\sim} \frac{1}{n+1}$$

Au final

$$a_n \sim \frac{1}{n}$$

Exercice 3. Pour tout réel t > 0, on note P_t le polynôme $X^5 + tX - 1 \in \mathbb{R}_5[X]$. Le but de ce problème est d'étudier les racines de P_t en fonction de t > 0.

- 1. On fixe t>0 pour cette question. Prouver que P_t admet une unique racine réelle notée f(t).
- 2. Montrer que $f(t) \in]0,1[$ pour tout t > 0.
- 3. On considère deux réels, t_1, t_2 , tels que $0 < t_1 < t_2$. Montrer que $P_{t_1}(f(t_2)) > 0$
- 4. En déduire le sens de variations de f.
- 5. En déduire que f admet des limites finies en 0^+ et en $+\infty$.
- 6. Déterminer $\lim_{t\to 0^+} f(t)$. ²
- 2. Attention, f n'est pas définie en 0, et a fortiori pas continue.

- 7. A l'aide d'un raisonement par l'absurde, montrer que $\lim_{t\to +\infty} f(t) = 0$.
- 8. En déduire l'équivalent suivant : $f(t) \underset{+\infty}{\sim} \frac{1}{t}$.
- 9. Justifier que f est la bijection réciproque de $g:]0,1[\rightarrow]0,+\infty[x \mapsto \frac{1-x^5}{x}$
- 10. (a) Justifier que f est dérivable sur $]0, +\infty[$ et montrer que pour tout t > 0,

$$f'(t) = \frac{f(t)^2}{-1 - 4f(t)^5}.$$

- (b) En déduire la limite de f'(t) en 0.
- (c) Montrer enfin que $f'(t) \sim \frac{-1}{t^2}$

Correction 3.

- 1. On considère la dérivée de la fonction polynomiale. On a $P'_t(X) = 5X^4 + t$. Ainsi pour tout $x \in \mathbb{R}$ et pour tout t > 0 $P'_t(x) \ge 0$.
 - La fonction polynomiale $x \mapsto P_t(x)$ est donc strictement croissante sur \mathbb{R} .
 - $x \mapsto P_t(x)$ est continue en tant que fonction polynomiale.
 - $\lim_{x \to -\infty} P_t(x) = -\infty$, $\lim_{x \to +\infty} P_t(x) = +\infty$ et $0 \in]-\infty, +\infty[$

Le théorème de la bijection implique

Il existe un unique réel, notée f(t) par l'énoncé, telle que $P_t(f(t)) = 0$.

2. Par définition de P_t on a $P_t(0) = -1 < 0$ et $P_t(1) = t > 0$. Le théorème des valeurs intermédiaires montre que

$$f(t) \in]0,1[.$$

3. Soit $t_1 > t_2$, on a $P_{t_1}(X) - P_{t_2}(X) = X^5 + t_1 X - 1 - (X^5 + t_2 X - 1) = (t_1 - t_2)X$ Donc pour x > 0 on a

$$P_{t_1}(x) - P_{t_2}(x) > 0$$

On applique ce résultat à $f(t_2)$ on obtient

$$P_{t_1}(f(t_2)) - P_{t_2}(f(t_2)) > 0$$

Par définition de f, $P_{t_2}(f(t_2)) = 0$, d'où finalement,

$$P_{t_1}(f(t_2)) > 0$$

4. Comme $x \mapsto P_{t_1}(x)$ est une fonction croissante et que $P_{t_1}(f(t_1)) = 0$ on obtient $f(t_2) > f(t_1)$

Finalement
$$t \mapsto f(t)$$
 est décroissante.

- 5. f est montone et bornée. Le théorème des limites monotones assure que f admet des limites finies en 0^+ et en $+\infty$.
- 6. Notons ℓ la limite $\lim_{t\to 0^+} f(t) = \ell$. Par définition de f on a $f(t)^5 + tf(t) 1 = 0$. Cette expression admet une limite quand $t\to 0$, on a $\lim_{t\to 0^+} f(t)^5 + tf(t) 1 = \ell^5 1$. Par unicité de la limite on a donc $\ell^5 1 = 0$, avec comme unique solution réelle :

$$\ell=1.$$

7. Notons ℓ' la limite $\lim_{t\to+\infty} f(t) = \ell'$. Supposons par l'absurde que cette limite soit non nulle. On a alors $\lim_{t\to+\infty} tf(t) = +\infty$. En passant à la limite dans l'égalité $f(t)^5 + tf(t) - 1 = 0$ on obtient $+\infty = 0$ ce qui est absurde.

$$\lim_{t \to +\infty} f(t) = 0.$$

8. En repartant de l'égalité $f(t)^5 + tf(t) - 1 = 0$ on obtient

$$tf(t) = 1 - f(t)^5$$

Comme $\lim_{t\to+\infty} f(t) = 0$ on a

$$\lim_{t \to +\infty} t f(t) = 1$$

En d'autres termes

$$f(t) \sim_{+\infty} \frac{1}{t}$$

9. f est strictement montone sur $]0, +\infty[$ donc f est une bijection $]0, +\infty[$ sur son image. $\lim_{t\to 0} f(t) = 1$ et $\lim_{t\to +\infty} f(t) = 0$. Donc $f(]0, +\infty[) =]0, 1[$ et

$$f$$
 est une bijection de $]0, +\infty[$ sur $]0, 1[$.

Par définition de f on a $f(t)^5 + tf(t) - 1 = 0$ Donc $tf(t) = -f(t)^5 + 1$. Comme f(t) > 0, on a :

$$t = \frac{1 - f(t)^5}{f(t)}$$

Soit $g(x) = \frac{1-x^5}{x}$ on a bien g(f(t)) = t Donc $g \circ f = \text{Id}$. Ainsi

La réciproque de
$$f$$
 est la fonction $g:]0,1[\rightarrow]0,\infty[$.

10. (a) g est dérivable et pour tout $x \in]0,1[$

$$g'(x) = \frac{-1 - 4x^5}{r^2}.$$

g'(x) est différent de 0 car $-1-4x^5$ est différent de 0 sur]0,1[, donc f est dérivable et

$$f'(t) = \frac{1}{g'(f(t))} = \frac{f(t)^2}{-1 - 4f(t)^5}.$$

(b) $\lim_{t\to 0} f(t) = 1$ donc

$$\lim_{t \to 0} f'(t) = \frac{1^2}{-1 - 4 \times 1} = \frac{-1}{5}$$

(c) En multipliant par t^2 l'égalité obtenue en 10a) on obtient :

$$t^{2}f'(t) = \frac{(tf(t))^{2}}{-1 - 4f(t)^{5}}.$$

Comme $\lim_{t\to\infty}tf(t)=1$ et $\lim_{t\to\infty}f(t)=0$ en passant à la limite dans l'égalité précédente on obtient :

$$\lim_{t \to \infty} t^2 f'(t) = \frac{1}{-1} = -1$$

En d'autres termes :

$$f'(t) \sim_{+\infty} \frac{-1}{t^2}$$

Exercice 4. On reprend les notations de l'exercice 2 :

- 1. Créer une fonction Python qui prend en argument un entier $n \in \mathbb{N}^*$ et retourne la valeur de a_n .
- 2. Créer une fonction Python qui prend en argument un entier $n \in \mathbb{N}^*$ et retourne la valeur de C_n comme définie dans la question 3d)

On reprend les notations de l'exercice 3 :

- 3. A l'aide de la méthode de la dichotomie, créer une fonction Python qui prend en argument un réel t > 0 et retourne la valeur de f(t) à 10^{-3} prés.
- 4. Ecrire un script Python qui permet de tracer la fonction f sur [0,1].

Rappels des commandes Python On considère que le module numpy est importé via import numpy as np. Dans le tableau, les variables a et b sont des réels et N est un entier.

On considère que le module matplotlib. pyplot, qui permet de tracer des graphiques, est importé via import matplotlib. pyplot as plt. Les variables X et Y sont ici deux listes de réels, de même longueur.

Python	Interprétation
np. linspace (a, b, N)	Renvoie un tableau à une dimension contenant N valeurs équiréparties
	dans $[a, b]$; ces valeurs sont les $t_k = a + \frac{b-a}{N-1}k$ pour $k \in [0, N-1]$.
plt.plot (X,Y)	Place les points dont les abscisses sont contenues dans X et les or-
	données dans Y et les relie entre eux par des segments. Si cette
	fonction n'est pas suivie de plt.show(), le graphique n'est pas af-
	fiché.
$\operatorname{plt.grid}()$	Dessine en arrière plan du graphique un quadrillage.
plt.show()	Affiche le(s) tracé(s) précédemment créé(s) par plt.plot