浙江工业大学 线性代数期末试卷 (2019~2020第一学期)

任课教师	学院班	E级:			
学号:		姓名:	S: 得分:		
题号	_	=	=	四	
得分					

一. 填空题(每空3分,共30分)

本题得分	
------	--

- 1. 四阶行列式 $\begin{vmatrix} a & 0 & 0 & b \\ 0 & a & b & 0 \\ 0 & b & a & 0 \\ b & 0 & 0 & a \end{vmatrix} = \underline{\qquad}.$
- 2. 向量 $\alpha, \beta, \gamma, \delta \in R^3$, 方阵 $A = (\alpha, \gamma, \delta)$, $B = (\beta, \gamma, \delta)$, 已知 |A| = 1, |B| = 2 ,则 |A+B| =_____.
- 3. $\left(\frac{\cos \theta \sin \theta}{\sin \theta \cos \theta} \right)^{-1} =$
- 4. $\Box \bowtie \mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 3 & 0 & 1 \end{pmatrix}, \ \square \mathbf{AB} = , |\mathbf{BA}| =$
- 6. 向量空间V的一组基为 $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$, 则向量 $\begin{pmatrix} 1\\2\\0 \end{pmatrix}$ 在这组基下的坐标为_____.

7.	η_1, η_2, η_3 都是非齐次线性方程组	Ax = b 的解,则当	
	也为 $Ax = b$ 的解.		
8.	已知矩阵 $\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{pmatrix}$ 有一	个特征值为 6,则	J <i>a</i> =
= .	单项选择题(每小题 2 分,共 10 分	`)	本题得分
1.	已知 A , B 均为 n 阶可逆方阵,	则以下一定正确的	是 ().
((A) $AB = BA$ (B) $(AB)^{\mathrm{T}} = A^{\mathrm{T}}B^{\mathrm{T}}$	$(\mathbf{C}) \ (\mathbf{A}\mathbf{B})^{-1} = \mathbf{A}$	$ \mathbf{A}^{-1}\mathbf{B}^{-1} $ (D) $ \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} $
2.	设 A 为 4 阶方阵, A^* 是 A 的伴愿	直矩阵, k 为非零⁴	常数,则(<i>kA</i>)* =().
	(A) $k^{-1}A^*$ (B) kA^* (C) $k^3 A^*$ (D)	k^4A^*
3.	向量 $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$ 都为4维向量,则	以下命题正确的是	e().
((A) 若 \boldsymbol{a}_1 不是 \boldsymbol{a}_2 的倍数,则 $\boldsymbol{a}_1,\boldsymbol{a}_2$	线性无关	
((B) 若 \boldsymbol{a}_1 不能表示为 \boldsymbol{a}_2 , \boldsymbol{a}_3 的线性组	组合,则 $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$	线性无关
((C) 若 $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ 线性相关,则每个	向量都可表示为其	宗向量的线性组合
((D) 若 $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$ 线性无关,则每个	向量都不能表示为	可其余向量的线性组合
4.	线性方程组 $Ax = 0$ 的一组基础解	[!] 系为α,β,γ,则以	
	解系的是().		
((A) $\alpha + \beta, \beta + \gamma, \gamma + \alpha$	(B) $\alpha - \beta, \beta - \gamma, \gamma$	$y-\alpha$
((C) $\alpha + \beta, \beta + \gamma, \gamma - \alpha$	(D) $\alpha + \beta, 2\beta + 3\gamma$	γ , $3\gamma - 2\alpha$
5.	设 n 阶矩阵 A 的特征值全是 0 ,	则以下结论错误的	·).
((A) $ A =0$	(B) A 与零矩阵	相似
((C) $\operatorname{tr}(\mathbf{A})=0$	(D) A ² 的特征值	i也全是 0

三、计算题(每题10分,共50分)

1	2	3	4	5	本题总得分

1. 计算行列式
$$D = \begin{vmatrix} 1 & 1 & 1 & -4 \\ 1 & 1 & -4 & 1 \\ 1 & -4 & 1 & 1 \\ -4 & 1 & 1 & 1 \end{vmatrix}$$
.

2. 已知
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 4 & 4 \\ 4 & 0 \\ 0 & -4 \end{pmatrix}$, 矩阵 \mathbf{X} 满足 $\mathbf{A}^*\mathbf{X} = \mathbf{A}^{-1}\mathbf{B} + 2\mathbf{X}$, 其中

 A^* 为A的伴随矩阵,求矩阵X.

3. 求向量组
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 3 \\ 0 \\ 7 \\ 14 \end{pmatrix}$, $\boldsymbol{\alpha}_4 = \begin{pmatrix} 2 \\ 1 \\ 5 \\ 6 \end{pmatrix}$, $\boldsymbol{\alpha}_5 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 的秩、极大无关组,

并用该极大无关组表示其余向量.

4. 试问当k取何值时,线性方程组

$$\begin{cases} x_1 + x_3 = k \\ 4x_1 + kx_2 + 2x_3 = k + 2 \\ (k+5)x_1 + x_2 + 4x_3 = k^2 + 4 \end{cases}$$

无解、有唯一解、有无穷多解?并在其有无穷多解时给出通解.

- 1) 求 A 的特征值和特征向量;
- 2) 求可逆矩阵P及对角矩阵 Λ ,使得 $P^{-1}AP=\Lambda$.

四、证明题(共10分)

1	2	本题总得分

1. (6 分) 已知 η 是非齐次线性方程组Ax = b的一个

解, ξ_1,ξ_2 是其导出组Ax=0的一个基础解系,证明: $\eta,\eta+\xi_1,\eta+\xi_2$ 是Ax=b的三个线性无关的解.

2. (4分)设n阶方阵A,B,C满足ABC=E,证明矩阵B可逆且 $B^{-1}=CA$.