Homework 2

Kevin Guillen

I'd like my proof for problem 3.2 (It's the last one) to be graded please, thank you.

Problem 2.6. Show that for any non-empty subset X of a group G, the normalizer of X, $N_G(X)$ and the centralizer of X, $C_G(X)$ is again a subgroup of G. Show also that $C_G(X)$ is contained in $N_G(X)$.

Proof. **Normalizer** We know the normalizer of a subset X is defined as the following,

$$N_{G}(X) = \left\{ g \in G \mid gXg^{-1} = X \right\}.$$

So consider $x, y \in N_G(x)$. Let z = xy, we want to show that $z \in N_G(X)$. In other words we want to show $zXz^{-1} = X$, based on the above. We can see through the following that this is indeed true,

$$zXz^{-1} = (xy)X(xy)^{-1}$$
 $(xy)^{-1} = y^{-1}x^{-1}$
 $= xyXy^{-1}x^{-1}$ $y \in N_G(x)$
 $= xXx^{-1}$ $x \in N_G(x)$

Meaning $N_G(X)$ is closed under group operation.

Let $y \in N_G(X)$, based on the definition of the normalizer though,

$$yXy^{-1} = X$$
 taking y on the right $yX = Xy$ taking y^{-1} on the left $X = y^{-1}Xy$ $y = (y^{-1})^{-1}$ $X = y^{-1}X(y^{-1})^{-1}$

that y^{-1} is indeed in $N_G(X)$. Thus by the subgroup criterion, $N_G(X)$ is indeed a subgroup. **Centralizer:** We know the definition of the centralizer of a subset X is the following,

$$C_G(X) = \left\{ g \in G \mid gxg^{-1} = x, \forall x \in X \right\}.$$

So consider $a, b \in C_G(X)$. Let z = ab, we want to show that $z \in C_G(X)$. In other words we want to show $zxz^{-1} = x$ for all $x \in X$. We see through the following that this does indeed hold.

$$\begin{split} zxz^{-1} &= (\mathfrak{a}\mathfrak{b})x(\mathfrak{a}\mathfrak{b})^{-1} \\ &= (\mathfrak{a}\mathfrak{b})x(\mathfrak{b}^{-1}\mathfrak{a}^{-1}) \\ &= \mathfrak{a}(\mathfrak{b}x^{-1})\mathfrak{a}^{-1} \\ &= \mathfrak{a}x\mathfrak{a}^{-1} \\ &= x \end{split} \qquad \begin{array}{l} (\mathfrak{a}\mathfrak{b})^{-1} &= \mathfrak{b}^{-1}\mathfrak{a}^{-1} \\ \text{We know associativity holds in G} \\ \mathfrak{b} \in C_G(X) \\ \mathfrak{a} \in C_G(X) \end{split}$$

Meaning $C_G(X)$ is closed under group operation.

Let $y \in C_G(X)$. By definition that means for all $x \in X$, $yxy^{-1} = x$, but consider the following,

$$yxy^{-1} = x$$
 taking y^{-1} on the left $xy^{-1} = y^{-1}x$ taking y on the right $x = y^{-1}xy$ $y = (y^{-1})^{-1}$ $x = y^{-1}x(y^{-1})^{-1}$.

This means that for any $y \in C_G(X)$, that y^{-1} is also in $C_G(X)$. Thus $C_G(X)$ is a subgroup.

Now we want to show that the centralizer is contained in the normalizer. Expanding on the definition of the normalizer $gXg^{-1} = X \to gX = Xg$. This means there exists some $s,t \in X$ such that gs = tg. What we see though is that this is simply a weaker property when compared to the centralizer definition. Expanding on the definition of the centralizer, for all $x \in X$ we have $gxg^{-1} = x \to gx = xg$. Meaning any $g \in C_G(X)$ has the property that gs = tg where t = s = x, which means it is also in $N_G(X)$, thus $C_G(X) \subset N_G(X)$

Problem 2.7. Let $f: G \to H$ be a group homomorphism.

- (a) If $U \leq G$ then $f(U) \leq H$.
- (b) If $V \le H$ then $f^{-1}(V) = \{g \in G \mid f(g) \in V\}$ is a subgroup of G.
- (c) Show that f is injective if and only if $ker(f) = \{1\}$
- (a) *Proof.* Let $x, y \in f(U)$, and let z = xy, we want to show $z \in f(U)$. Since $x, y \in f(U)$, that means there exists $x', y' \in U$ such that f(x') = x and f(y') = y. Giving us,

$$z = xy$$

= $f(x')f(y')$ f is a homomorphism so,
= $f(x'y')$

Because U is a subgroup then $x'y' \in U$, meaning $z = f(x'y') \in f(U)$, thus f(U) is closed under group operation.

Given $x \in f(U)$, we want to show $x^{-1} \in f(U)$. By $x \in f(U)$ that means there exists $x' \in U$ such that x = f(x'). Since U is a subgroup there exists $x'^{-1} \in U$, meaning $f(x'^{-1}) \in f(U)$. Recall though f is a homomorphism that means it respects inverses, thus $f(x'^{-1}) = f(x')^{-1}$, which will be x^{-1} . We verify through the following,

$$xx^{-1} = f(x')f(x')^{-1}$$

= $f(x'x'^{-1})$
= $f(1)$
= 1.

Thus we have that if $U \leq G$ then $f(U) \leq H$.

(b) *Proof.* Let $x, y \in f^{-1}(V)$, that means there exists $x', y' \in V$ such that f(x) = x' and f(y) = y'. Recall though V is a subgroup so $x'y' \in V$, but x'y' = f(x)f(y) and f is a homomorphism so $f(x)f(y) = f(xy) \in V$ which means $xy \in f^{-1}(V)$.

Let $x \in f^{-1}(V)$ then $f(x) \in V$, and because V is a subgroup we have $f(x)^{-1} \in V$. Recall though f is a homomorphism, and so $f(x)^{-1} = f(x^{-1}) \in V$ and thus $x^{-1} \in f^{-1}(V)$.

(c) $Proof. \Rightarrow Given that f is injective and a group homomorphism, that means it respects the identity element, meaning <math>f(1_G) = 1_H$. That also means whenever $f(x) = f(y) \to x = y$. Take an element $x \in \ker(f)$, by definition that means $f(x) = 1_H$, recall though $f(1_G) = 1_H$. So we have $f(x) = f(1_G)$, but by definition that means $x = 1_G$. Therefore if f is injective, the kernel of f is $\{1\}$

 \Leftarrow Given that f is a group homomorphism and that $\ker(f) = \{1\}$. We want to show that f is injective. Consider $x, y \in G$ such that f(x) = f(y). Now consider the following,

$$\begin{split} f(xy^{-1}) &= f(x)f(y^{-1}) \\ &= f(x)f(y)^{-1} \\ &= f(x)f(x)^{-1} \\ &= 1_H. \end{split}$$

Recall though $\ker(f) = \{1_G\}$, and we see $f(xy^{-1}) = 1_H$ that means x = y, and thus f is injective. \square

Problem 2.9. Let G and A be groups and assume that A is abelian. Show that the set Hom(G, A) of group homomorphisms from G to A is again an abelian group under the multiplication defined by

$$(f_1\cdot f_2)(g):=f_1(g)f_2(g) \qquad \qquad \text{for } f_1,f_2\in Hom(G,A) \text{ and } g\in G$$

Proof. From this point forward let H = Hom(G, A)

Closure. Let $f_1, f_2 \in H$, let $f_3 = f_1 \cdot f_2$ we want to show that $f_3 \in H$. Now let $a, b \in G$, we have the following,

$$\begin{split} f_3(\mathfrak{a}\mathfrak{b}) &= (f_1f_2)(\mathfrak{a}\mathfrak{b}) = f_1(\mathfrak{a}\mathfrak{b})f_2(\mathfrak{a}\mathfrak{b}) \\ &= f_1(\mathfrak{a})f_1(\mathfrak{b})f_2(\mathfrak{a})f_2(\mathfrak{b}) \\ &= f_1(\mathfrak{a})f_2(\mathfrak{a})f_1(\mathfrak{b})f_2(\mathfrak{b}) \\ &= (f_1f_2)(\mathfrak{a})(f_1f_2)(\mathfrak{b}) \\ &= f_3(\mathfrak{a})f_3(\mathfrak{b}). \end{split}$$
 Recall though f_1, f_2 are group homomorphisms All these elements are in A, and A is abelian

We see then that f₃ is a group homomorphism meaning it is also in H. Thus H is closed under the multiplication.

Identity. Simply let the the be the identity element be, $f_e: G \to A$, $g \mapsto 1_A$. It is obvious that this is a homomorphism, and is in H. We see through the following that it does indeed serve the role of the identity element. Let $f_1 \in H$, $g \in G$

$$\begin{split} (f_ef_1f_e)(g) &= f_e(g)f_1(g)f_e(g) \\ &= 1_Af_1(g)1_A & \text{Recall } f_1(g) \text{ is an element of } A \\ &= f_1(g) \end{split}$$

Inverse. Let $f_1 \in H$. We see the inverse is simply $f_1^{-1} \in H$, we verify through the following where $g \in G$,

$$(f_1f_1^{-1})(g) = f_1(g)f_1^{-1}(g)$$

$$= f_1(g)f_1(g^{-1})$$

$$= f_1(gg^{-1})$$

$$= f_1(1_G)$$

$$= 1_A$$

$$= f_e(g)$$

Associativity. Let $f_1, f_2, f_2 \in H$. We see through the following that associativity holds. Let $g \in G$

$$\begin{split} ((f_1f_2)f_3)(g) &= ((f_1f_2)(g)f_3(g) \\ &= (f_1(g)f_2(g))f_3(g) \\ &= f_1(g)(f_2(g)f_2(g)) \\ &= f_1(g)(f_2f_3)(g) \\ &= (f_1(f_2f_3))(g) \end{split}$$
 Recall these are element in A, and A is a group

as we can see associativity does indeed hold.

Commutativity. Let $f_1, f_2 \in H$. We see through the following commutativity holds. Let $g \in G$,

$$\begin{array}{ll} (f_1f_2)(g)=f_1(g)f_2(g) & \text{These are elements of A and A is abelian} \\ &=f_2(g)f_1(g) \\ &=(f_2f_1)(g) \end{array}$$

as we can see commutativity does indeed hold.

With all this together that means Hom(G, A) is indeed an abelian group, as desired.

Problem 3.1. Let M and N be normal subgroups of a group G. Show that also $M \cap N$ and MN are normal subgroups of G.

Proof. To begin we know from 2.11 example (c) that the intersection of any collection of subgroups of a group is again a subgroup. Meaning $M \cap N$ is a subgroup of G. All that is left to show now is that it is a normal subgroup of G. We see immediately though that for all $k \in M \cap N$ and for all $g \in G$ that $gkg^{-1} \in M$, and $gkg^{-1} \in N$. This is because any element that is in the intersection of M and N must be in both those subgroups, and those subgroups were said to be normal. This means for all $k \in M \cap N$ and for all $g \in G$ that $gkg^{-1} \in M \cap N$. Therefore proving that $M \cap N$ is indeed a normal subgroup of G.

Problem 3.2. Let G be a group and let X be a subset of G. Show that $C_G(X) \subseteq N_G(X)$

Proof. In this same homework we worked out from problem 2.6 that $C_G(X)$ is indeed contained in $N_G(X)$. So to solve this problem we just need to show that it is indeed a subgroup and then that it is normal. Let's begin with showing that it is a subgroup.

Closure. Let $a, b \in C_G(X)$, we want to show $(ab) \in C_G(X)$. For all $x \in X$ we see through the following,

$$(ab)x(ab)^{-1}=(ab)x(b^{-1}a^{-1}) \qquad \qquad \text{we know associativity holds}$$

$$=a(bxb^{-1})a^{-1} \qquad \qquad b\in C_G(X)$$

$$=axa^{-1} \qquad \qquad a\in C_G(X)$$

that $C_G(X)$ is indeed closed under group operation.

Inverse. Now for any $a \in C_G(X)$ we will show that a^{-1} is also in $C_G(X)$. By definition of a being in $C_G(X)$ we have for all $x \in X$,

$$axa^{-1} = x$$

$$a^{-1}axa^{-1} = a^{-1}x$$

$$xa^{-1}a = a^{-1}xa$$

$$x = a^{-1}xa.$$

Meaning a^{-1} is also in $C_G(X)$. Therefore $C_G(X) \leq N_G(X)$.

Now to show that is normal. We will use Theorem 3.1 (iii) to prove that this subgroup is indeed normal. Consider the map $f: N_G(X) \to \operatorname{Aut}(X)$ where $\mathfrak{n} \mapsto (\mathfrak{x} \mapsto \mathfrak{n} \mathfrak{x} \mathfrak{n}^{-1})$. We know $(\mathfrak{x} \mapsto \mathfrak{a} \mathfrak{x} \mathfrak{a}^{-1})$ is indeed an automorphism based on Example 2.6 (c). So first we want to show that f is a homomorphism.

$$f(a)f(b) = (x \mapsto axa^{-1})(x \mapsto bxb^{-1})$$

$$= (x \mapsto (abxb^{-1}a^{-1}))$$

$$= (x \mapsto (ab)x(ab)^{-1})$$

$$= f(ab)$$

$$(ab)^{-1} = b^{-1}a^{-1}$$

Now with that out of the way to apply the theorem stated earlier we need to show that $\ker(f) = C_G(X)$. We will do this by considering an element $a \in \ker(f)$, and for all $x \in X$, we see through the following,

$$x = axa^{-1}$$
$$xa = ax$$

that $a \in C_G(X)$ and thus $\ker(f) = C_G(X)$. Since we see by being in the kernel of f an element must satisfy the definition of being in the centralizer of the subset X.