Определитель и обратная матрица

Краткий план:

• Определитель на плоскости;

Краткий план:

- Определитель на плоскости;
- Определитель в пространстве.

Рассмотрим оператор преобразования плоскости, $L:\mathbb{R}^2\to\mathbb{R}^2.$

Пара векторов a, b переходит в пару векторов La, Lb.

Рассмотрим оператор преобразования плоскости, $L: \mathbb{R}^2 \to \mathbb{R}^2$.

Пара векторов a, b переходит в пару векторов La, Lb.

Как меняется площадь параллелограмма образованного двумя векторами?

Рассмотрим оператор преобразования плоскости, $L: \mathbb{R}^2 \to \mathbb{R}^2$.

Пара векторов a, b переходит в пару векторов La, Lb.

Как меняется площадь параллелограмма образованного двумя векторами?

Меняется ли направление поворота от первого вектора ко второму?

Идея определителя на картинке

Ориентированная площадь

Определение

Возьмём площадь параллелограмма со сторонами ${\bf a}$ и ${\bf b}$. Если поворот от первого вектора ко второму идёт по часовой стрелке, то дополнительно домножим площадь на (-1).

Полученное число назовём ориентированной площадью параллелограмма и обозначим $S(\mathbf{a}, \mathbf{b})$.

Ориентированная площадь

Определение

Возьмём площадь параллелограмма со сторонами ${\bf a}$ и ${\bf b}$. Если поворот от первого вектора ко второму идёт по часовой стрелке, то дополнительно домножим площадь на (-1).

Полученное число назовём ориентированной площадью параллелограмма и обозначим $S(\mathbf{a}, \mathbf{b})$.

Важен порядок векторов:

$$S(\mathbf{a}, \mathbf{b}) = -S(\mathbf{b}, \mathbf{a}).$$

Определение

Возьмём любые два вектора ${\bf a}$ и ${\bf b}$, для которых $S({\bf a},{\bf b}) \neq 0$.

Определитель оператора L : $\mathbb{R}^2 \to \mathbb{R}^2$ показывает во сколько раз изменяется ориентированная площадь

$$\det L = \frac{S(La, La)}{S(a, b)}$$

Рассмотрим оператор L : $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$, отражение относительно $x_1=x_2$.

Рассмотрим оператор L : $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$, отражение относительно $x_1 = x_2$. картинка

Рассмотрим оператор L : $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$, отражение относительно $x_1=x_2$.

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
, отражение относительно $x_1 = x_2$.

Площадь параллелограмма не изменяется.

Меняется направление поворота от первого вектора ко второму.

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
, отражение относительно $x_1 = x_2$.

Площадь параллелограмма не изменяется.

Меняется направление поворота от первого вектора ко второму.

$$\det L = \frac{S(La, Lb)}{S(a, b)} = -1$$

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$
.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$
.

Одна сторона растягивается в два раза, вторая — в три раза.

Меняется направление поворота от первого вектора ко второму.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$
.

Одна сторона растягивается в два раза, вторая — в три раза.

Меняется направление поворота от первого вектора ко второму.

$$\det \mathbf{L} = \frac{S(\mathbf{L}\mathbf{a}, \mathbf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})} = (-1) \cdot 2 \cdot 3 = -6$$

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

картинка

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

При вращении не изменяется площадь параллелограмма.

При вращении не изменяется направление поворота от первого вектора ко второму.

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

При вращении не изменяется площадь параллелограмма.

При вращении не изменяется направление поворота от первого вектора ко второму.

$$\det R = \frac{R(La, Lb)}{R(a, b)} = 1$$

Определитель проекции

Оператор $\mathsf{H}:\mathbb{R}^2\to\mathbb{R}^2$ проецирует векторы на прямую $\ell.$

Определитель проекции

Оператор $\mathsf{H}:\mathbb{R}^2\to\mathbb{R}^2$ проецирует векторы на прямую ℓ . картинка

При проекции любой параллелограмм «складывается» в отрезок нулевой площади.

Определитель проекции

Оператор $\mathsf{H}:\mathbb{R}^2\to\mathbb{R}^2$ проецирует векторы на прямую ℓ . картинка

При проекции любой параллелограмм «складывается» в отрезок нулевой площади.

$$\det \mathbf{H} = \frac{S(\mathbf{Ha}, \mathbf{Hb})}{S(\mathbf{a}, \mathbf{b})} = 0$$

Чем прекрасна ориентированная площадь?

Утверждение

Ориентированная площадь $S(\mathbf{a}, \mathbf{b})$ линейна по каждому аргументу:

$$S(\lambda \mathbf{a}, \mathbf{b}) = \lambda S(\mathbf{a}, \mathbf{b}), \quad S(\mathbf{a} + \mathbf{b}, \mathbf{c}) = S(\mathbf{a}, \mathbf{c}) + S(\mathbf{b}, \mathbf{c})$$

Чем прекрасна ориентированная площадь?

Утверждение

Ориентированная площадь $S(\mathbf{a}, \mathbf{b})$ линейна по каждому аргументу:

$$S(\lambda \mathbf{a}, \mathbf{b}) = \lambda S(\mathbf{a}, \mathbf{b}), \quad S(\mathbf{a} + \mathbf{b}, \mathbf{c}) = S(\mathbf{a}, \mathbf{c}) + S(\mathbf{b}, \mathbf{c})$$

здесь картинка.

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\,\mathbf{a}, \mathsf{L}\,\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и $\mathbf{b}!$

Величина $\det L = \frac{S(\mathbf{L}\mathbf{a}, \mathbf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и \mathbf{b} !

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{b})}{S(\mathbf{a},\mathbf{b})}$ не зависит от выбора \mathbf{a} и $\mathbf{b}!$

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Возьмём $\mathbf{a}=5\mathbf{e}_1+7\mathbf{e}_2$. Найдём $S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{e}_2)/S(\mathbf{a},\mathbf{e}_2)$:

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\mathbf{a}, \mathsf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и \mathbf{b} !

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Возьмём $\mathbf{a}=5\mathbf{e}_1+7\mathbf{e}_2$. Найдём $S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{e}_2)/S(\mathbf{a},\mathbf{e}_2)$:

$$\frac{S(\mathsf{L}(5\mathbf{e}_1 + 7\mathbf{e}_2), \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1 + 7\mathbf{e}_2, \mathbf{e}_2)} = \frac{S(\mathsf{L}\,5\mathbf{e}_1, \mathsf{L}\,\mathbf{e}_2) + S(\mathsf{L}\,7\mathbf{e}_2, \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1, \mathbf{e}_2) + S(7\mathbf{e}_2, \mathbf{e}_2)} =$$

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\mathbf{a}, \mathsf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и \mathbf{b} !

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Возьмём ${f a}=5{f e}_1+7{f e}_2$. Найдём $S({\sf L\,a},{\sf L\,e}_2)/S({f a},{f e}_2)$:

$$\frac{S(\mathsf{L}(5\mathbf{e}_1 + 7\mathbf{e}_2), \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1 + 7\mathbf{e}_2, \mathbf{e}_2)} = \frac{S(\mathsf{L}\,5\mathbf{e}_1, \mathsf{L}\,\mathbf{e}_2) + S(\mathsf{L}\,7\mathbf{e}_2, \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1, \mathbf{e}_2) + S(7\mathbf{e}_2, \mathbf{e}_2)} =$$

$$=\frac{5S(\operatorname{L}\mathbf{e}_1,\operatorname{L}\mathbf{e}_2)+0}{5S(\mathbf{e}_1,\mathbf{e}_2)+0}=\frac{S(\operatorname{L}\mathbf{e}_1,\operatorname{L}\mathbf{e}_2)}{S(\mathbf{e}_1,\mathbf{e}_2)}$$

Ещё один взгляд на определитель

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Ещё один взгляд на определитель

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Определение

Преобразуем параллелограмм, образованный векторами ${f e}_1$ и ${f e}_2$, с помощью оператора L.

Определитель линейного оператора L : $\mathbb{R}^2 \to \mathbb{R}^2$ равен ориентированной площади полученного параллелограмма.

$$\det \mathbf{L} = S(\mathbf{L}\,\mathbf{e}_1, \mathbf{L}\,\mathbf{e}_2)$$

Определитель в пространстве

Идея: заменим ориентированную площадь параллелограмма $S(\mathbf{a},\mathbf{b})$ на ориентированный объём параллелепипеда $S(\mathbf{a},\mathbf{b},\mathbf{c})$.

Определитель в пространстве

Идея: заменим ориентированную площадь параллелограмма $S(\mathbf{a},\mathbf{b})$ на ориентированный объём параллелепипеда $S(\mathbf{a},\mathbf{b},\mathbf{c})$.

Определение

Возьмём любые три вектора ${\bf a}, {\bf b}$ и ${\bf c}$, для которых $S({\bf a}, {\bf b}, {\bf c}) \neq 0$.

Определитель оператора L : $\mathbb{R}^3 \to \mathbb{R}^3$ показывает во сколько раз изменяется ориентированный объём

$$\det L = \frac{S(La, La, Lc)}{S(a, b, c)}$$

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Определение

Рассмотрим параллелепипед, образованный а, b и с.

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Определение

Рассмотрим параллелепипед, образованный а, b и с.

С помощью поворота:

Совместим вектор e_1 с вектором a;

Затем вектор e_2 «положим» в плоскость a, b.

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Определение

Рассмотрим параллелепипед, образованный а, b и с.

С помощью поворота:

Совместим вектор e_1 с вектором a;

Затем вектор e_2 «положим» в плоскость a, b.

Ориентированный объём $S(\mathbf{a},\mathbf{b},\mathbf{c})$ объявим отрицательным, если векторы \mathbf{e}_3 и \mathbf{c} смотрят в разные полупространства.

Определитель в пространстве

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ 3a_2 \\ -5a_3 \end{pmatrix}$$
.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ 3a_2 \\ -5a_3 \end{pmatrix}$$
 .

Одна сторона растягивается в два раза, вторая — в три раза, третья — в пять.

Первые два вектора не изменяют направления при преобразовании.

Третий вектор меняет полупространство, в котором он лежит относительно первых двух.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ 3a_2 \\ -5a_3 \end{pmatrix}$$
.

Одна сторона растягивается в два раза, вторая — в три раза, третья — в пять.

Первые два вектора не изменяют направления при преобразовании.

Третий вектор меняет полупространство, в котором он лежит относительно первых двух.

$$\det \mathbf{L} = \frac{S(\mathbf{L}\,\mathbf{a}, \mathbf{L}\,\mathbf{b}, \mathbf{L}\,\mathbf{c})}{S(\mathbf{a}, \mathbf{b}, \mathbf{c})} = (-1) \cdot 2 \cdot 3 \cdot 5 = -30$$

Определитель проекции

Оператор $H:\mathbb{R}^3\to\mathbb{R}^3$ проецирует векторы на плоскость α .

Определитель проекции

Оператор $H: \mathbb{R}^3 \to \mathbb{R}^3$ проецирует векторы на плоскость α . Любой параллелепипед «схлопывается» в плоскую фигуру нулевого объёма.

Определитель проекции

Оператор $H: \mathbb{R}^3 \to \mathbb{R}^3$ проецирует векторы на плоскость α . Любой параллелепипед «схлопывается» в плоскую фигуру нулевого объёма.

$$\det \mathbf{H} = \frac{S(\mathbf{Ha}, \mathbf{Hb}, \mathbf{Hc})}{S(\mathbf{a}, \mathbf{b}, \mathbf{c})} = 0$$

Вычисление определителя

Метод Гаусса

Метод Крамера

Метод Крамера и нахождение обратной матрицы

Комплексные числа

бонусное видео! Это видеофрагмент с доской, слайдов здесь нет:)