How Quorum Sensing Interactions Affect Population Structure 02-712 Final Project

Sid Reed, Evan Trop, Neel Mehtani, Deepika Yeramosu, Sarah Wenger

Carnegie Mellon University

December 1, 2021

Background

Quorum-Sensing Systems

Figure 1: Waters and Bassler (2005)

 Signal-Receptor molecule pairs that modulate gene expression

Quorum-Sensing Systems

Figure 1: Waters and Bassler (2005)

- Signal-Receptor molecule pairs that modulate gene expression
- Once threshold density is reached, enough signal is received to upregulated target genes

Quorum-Sensing Systems

Figure 1: Waters and Bassler (2005)

How Quorum Sensing Interactions Affect Population Structure

- Signal-Receptor molecule pairs that modulate gene expression
- Once threshold density is reached, enough signal is received to upregulated target genes
- Can lead to biofilms, antibiotic production etc.

Figure 2: Eldar (2011)

When quorum is reached, bacteria produce a "public good"

Figure 2: Eldar (2011)

- When quorum is reached, bacteria produce a "public good"
- Everyone benefits from this even if they don't contribute

Figure 2: Eldar (2011)

- When quorum is reached, bacteria produce a "public good"
- Everyone benefits from this even if they don't contribute
- Must produce the receptor, signal molecule and good to contribute

Figure 2: Eldar (2011)

- When quorum is reached, bacteria produce a "public good"
- Everyone benefits from this even if they don't contribute
- Must produce the receptor, signal molecule and good to contribute
- Cheaters DO prosper (if you are a bacterium)

Who Cares?

▶ check the discussion from Eldar (2011) for references

Maintaining Freeloaders as a Diversity Reservoir

Who Cares?

▶ check the discussion from Eldar (2011) for references

Maintaining Freeloaders as a Diversity Reservoir

Kin Recognition for Strains

Who Cares?

▶ check the discussion from Eldar (2011) for references

Maintaining Freeloaders as a Diversity Reservoir

Kin Recognition for Strains

Designing Cheaters to Disrupt Pathogen Growth

Methods

Basic ODE Model

Social conflict drives the evolutionary divergence of quorum sensing

Avigdor Eldar¹

Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Basic ODE Model

Social conflict drives the evolutionary divergence of quorum sensing

Avigdor Eldar¹

Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Model Equations

$$\begin{split} \frac{dn_i}{dt} &= n_i (\frac{P_d}{P_d + 1} (1 - rf(R_i^{active})) - n_{tot} - \gamma_n) \\ \frac{dS_i}{dt} &= \beta_S (n_i - S_i) \\ \frac{dE}{dt} &= -\beta_E E + \sum_i f(R_i^{active}) n_i \\ \frac{dP_d}{dt} &= J_{P_d} + V_{max} E - \beta_{P_d} (\frac{P_d}{P_d + 1}) n_{tot} \end{split}$$

▶ The interaction term is defined as $R^{active} = \frac{K_{ac}\vec{S}}{K_{RS} + K_{ac}\vec{S}}$

- ▶ The interaction term is defined as $R^{active} = \frac{K_{ac}\vec{S}}{K_{RS} + K_{ac}\vec{S}}$
 - ⋄ assumes Michalis-Menten dynamics of signal-receptor binding (K_{RS} is a constant)

- ▶ The interaction term is defined as $R^{active} = \frac{K_{ac}\vec{S}}{K_{RS} + K_{ac}\vec{S}}$
 - ♦ assumes Michalis-Menten dynamics of signal-receptor binding (K_{RS} is a constant)
- ▶ K_{ac} represents all receptors-signal pairs (R_iS_i) produced in each strain

- ▶ The interaction term is defined as $R^{active} = \frac{K_{ac}\vec{S}}{K_{RS} + K_{ac}\vec{S}}$
 - ⋄ assumes Michalis-Menten dynamics of signal-receptor binding (K_{RS} is a constant)
- ▶ K_{ac} represents all receptors-signal pairs (R_iS_i) produced in each strain
- $ightharpoonup K_{ac}$ is of dimension $|R| \times |S| = |n| \times |n|$

Facultative Cheaters

Matrix for 2 strains R_1S_1 and R_2S_2

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Facultative Cheaters

Matrix for 2 strains R_1S_1 and R_2S_2

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Obligate Cheater

Matrix for 2 strains R_1S_1 and R_0S_0

Facultative Cheaters

Matrix for 2 strains R_1S_1 and R_2S_2

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Obligate Cheater

Matrix for 2 strains R_1S_1 and R_0S_0

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Custom Matrix

Matrix for 2 strains $R_1R_2S_1$ and R_2S_2

Implemented in python using scipy.integrate.solve_ivp

- ▶ Implemented in python using scipy.integrate.solve_ivp
- \triangleright Generated different K_{ac} matrices and run simulations

- Implemented in python using scipy.integrate.solve_ivp
- \triangleright Generated different K_{ac} matrices and run simulations
 - \diamond Specific patterns and randomly generated K_{ac}

- Implemented in python using scipy.integrate.solve_ivp
- \triangleright Generated different K_{ac} matrices and run simulations
 - \diamond Specific patterns and randomly generated K_{ac}
- Examine population structure and model dynamics

- ▶ Implemented in python using scipy.integrate.solve_ivp
- \triangleright Generated different K_{ac} matrices and run simulations
 - \diamond Specific patterns and randomly generated K_{ac}
- Examine population structure and model dynamics
- Simulate using gut microbiome data as initial state

- ▶ Implemented in python using scipy.integrate.solve_ivp
- \triangleright Generated different K_{ac} matrices and run simulations
 - \diamond Specific patterns and randomly generated K_{ac}
- Examine population structure and model dynamics
- Simulate using gut microbiome data as initial state
- All code/results easily available to use on Github

Results

Comparing Different K_{ac} Matrices

How K_{ac} Sparsity Affects Population Structure

Simulating With Human Gut Microbiome Data

Discussion

Cheating works...

Cheating works...

(for bacteria)

Cheating works...

(for bacteria)

but cooperating is better!

Bibliography I

Aggarwal, Surya D., Hasan Yesilkaya, Suzanne Dawid, and N. Luisa Hiller. 2020. "The Pneumococcal Social Network." *PLOS Pathogens* 16 (10). https://doi.org/10.1371/journal.ppat.1008931.

Calle, M. Luz. 2019. "Statistical Analysis of Metagenomics Data." Genomics & Amp; Informatics 17 (1).

https://doi.org/10.5808/gi.2019.17.1.e6.

Dimitriu, Tatiana, Frances Medaney, Elli Amanatidou, Jessica Forsyth, Richard J. Ellis, and Ben Raymond. 2019. "Negative Frequency Dependent Selection on Plasmid Carriage and Low Fitness Costs Maintain Extended Spectrum Beta-Lactamases in Escherichia Coli." *Scientific Reports* 9 (1).

https://doi.org/10.1038/s41598-019-53575-7.

Bibliography II

Eldar, A. 2011. "Social Conflict Drives the Evolutionary Divergence of Quorum Sensing." *Proceedings of the National Academy of Sciences* 108 (33): 13635–40.

https://doi.org/10.1073/pnas.1102923108.

Pérez-Escudero, Alfonso, and Jeff Gore. 2016. "Selection Favors Incompatible Signaling in Bacteria." *Proceedings of the National Academy of Sciences* 113 (8): 1968–70. https://doi.org/10.1073/pnas.1600174113

https://doi.org/10.1073/pnas.1600174113.

Bibliography III

Pollak, Shaul, Shira Omer-Bendori, Eran Even-Tov, Valeria Lipsman, Tasneem Bareia, Ishay Ben-Zion, and Avigdor Eldar. 2016. "Facultative Cheating Supports the Coexistence of Diverse Quorum-Sensing Alleles." *Proceedings of the National Academy of Sciences* 113 (8): 2152–7.

https://doi.org/10.1073/pnas.1520615113.

Waters, Christopher M, and Bonnie L. Bassler. 2005. "Quorum Sensing: Cell-to-Cell Communication in Bacteria." *Annual Review of Cell and Developmental Biology* 21: 319–46.

https://doi.org/10.1146/annurev.cellbio.21.012704.131001.