CS370 — Floating Point Error

Announcement: (Optional) MATLAB Tutorial

The tutorial will be offered by Ke Nian, one of your friendly neighbourhood TA's.

Date: Tuesday, May 10

Time: 6-7pm

Location: MC 1056

Why the name "floating point"?

Alternative systems exist where the number of digits after the decimal (or radix) point is fixed – "fixed point" numbers.

e.g., 3 digits after the decimal: 10.234, 171.001, 0.010.

Basically an integer representation, scaled by a *fixed* factor.

e.g., 10234×10^{-3} , 171001×10^{-3} , 10×10^{-3} , where 10^{-3} is the scale factor.

Floating point number systems let the radix point "float", in order to represent a wider range.

Floating Point Density

Unlike fixed point, floating point numbers are *not evenly spaced*! E.g., For $F = \{\beta = 2, t = 3, L = -1, U = 2\}$ the positive values are spaced like:

Measuring Error

Our algorithms will compute approximate solutions to problems.

Difference between...

 x_{exact} = true solution, and

 $x_{approx} = approximate solution,$

...gives the error of an algorithm.

We distinguish between absolute error and relative error.

Absolute v.s. Relative Error

Sometimes we also consider the signed error, i.e., without abs. values here.

Absolute error:
$$E_{abs} = |x_{exact} - x_{approx}|$$

Relative error:
$$E_{rel} = \frac{|x_{exact} - x_{approx}|}{|x_{exact}|}$$

e.g., Let $x_{exact} = 220$, $x_{approx} = 198$. Compute E_{abs} and E_{rel} . What does each tell us?

Relative Error and Significant Digits

Relative error is usually more useful. It...

- is independent of the magnitudes of the numbers involved.
- relates to the number of significant digits in the result.

We say a result is correct to approximately s digits if $E_{rel} \approx 10^{-s}$ or...

$$0.5 \times 10^{-s} \le E_{rel} < 5 \times 10^{-s}$$

e.g., If $E_{rel} \approx 0.8 \times 10^{-3}$, it describes a result correct to approximately how many significant digits? What about $E_{rel} \approx 4 \times 10^{2}$?

Floating point, F v.s. Reals, \mathbb{R} .

We saw that they can behave differently! But how much can they differ?

For a given FP system F, rel. err. between any $x \in \mathbb{R}$, and its nearest FP approximation, fl(x), has an upper bound, E, such that: $(1-E)|x| \le |fl(x)| \le (1+E)|x|$

Machine Epsilon

This maximum relative error, E, for a FP system is called machine epsilon or unit round-off error.

It is defined as the smallest value such that fl(1+E) > 1 under the given floating point system.

Machine Epsilon

Note! δ may be positive *or* negative.

Hence we have the rule $fl(x) = x(1 + \delta)$ for some $|\delta| \le E$.

For an FP system $F = \{\beta, t, L, U\}$ with rounding to nearest: $E = \frac{1}{2}\beta^{1-t}$. For other rounding modes (e.g., chopping/truncation): $E = \beta^{1-t}$.

Example: What is *E* for $F = \{\beta = 10, t = 3, L = -5, U = 5\}$?

We will often care only about the order of magnitude of E.

Arithmetic with Floating Point

What guarantees exist on the result of a FP arithmetic operation?

IEEE standard requires that for $w, z \in F$,

$$w \oplus z = fl(w+z) = (w+z)(1+\delta).$$

denotesfloating pointaddition.

i.e., the result is the closest in F to the exact real result (unless over/underflows occurs.)

FP implementations typically use extra "guard" digits (behind the scenes) to ensure this.

Floating Point Arithmetic

Warning: This rule only applies to individual FP operations!

So: It is **not** generally true that

$$(a \oplus b) \oplus c = a \oplus (b \oplus c) = fl(a + b + c).$$

Result is order-dependent; associativity is broken!

Similarly, be careful testing for exact equality.

Nonetheless, FP can still be (very!) useful *if* we understand its behaviour.

Round-Off Error Analysis

What *can* we say about $(a \oplus b) \oplus c$?

Let's find its relative error, to see how FP error propagates...

Round-Off Error Analysis

After two additions, error bounds are already complicated.

And many *useful* computations take $O(10^m)$ arithmetic operations, for m=2,3,4,5...

This analysis describes only the worst case error magnification, as a function of the input data.

Actual error in result could be (much) less.

Error Bounds and Condition Number

$$E_{rel} \le \frac{|a+b|}{|a+b+c|} (E + E^2) + E$$

Weakening slightly to get a symmetric expression:

$$E_{rel} \le \frac{|a| + |b| + |c|}{|a+b+c|} (2E + E^2)$$

The term $\frac{|a|+|b|+|c|}{|a+b+c|}$...

- describes how the error E is magnified along the way.
- may be called a condition number for this calculation.

When is it large? When is it small?

Cancellation Errors

Worst case magnification is when $|a + b + c| \ll |a| + |b| + |c|$. i.e., quantities have differing signs, and *cancellation* occurs.

e.g.
$$a = 2000$$
, $b = -3.234$, $c = -2000$ for $F = \{10, 4, -10, 10\}$.

Why is this case a problem? Let's consider:

- 1. the computed and true results for $(a \oplus b) \oplus c$.
- 2. the condition number.

Catastrophic Cancellation Error

Catastrophic cancellation error arises when subtracting numbers of the same magnitude, and (at least one of) those numbers contains error.

e.g.,

All of the *significant* digits cancelled; the result might have no correct digits whatsoever!

Benign Cancellation

However, if the input quantities are known to be exact, we have our usual guarantee on floating point ops (addition, subtraction, etc.):

$$w \oplus z = fl(w+z) = (w+z)(1+\delta).$$

Round-off Errors We've Seen

Adding large and small numbers (very different magnitudes).

- Smaller digits get lost or "swamped"!
- Rule of thumb: Try to sum smaller numbers first to reduce swamping.

Subtracting nearby numbers that contain error.

- Known as catastrophic cancellation.
- Rule of thumb: Try to reformulate computations to avoid cancellation.

Taylor series example, revisited

So what's the main reason we observed that

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

performs so much worse than

$$e^{-x} = \frac{1}{e^x} = \frac{1}{1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots}$$

as an algorithm to evaluate $e^{-5.5}$?

Latter avoids alternating signs in the sums which lead to cancellation.

A Visualized Example of Cancellation Error

Compare: $f(x) = \frac{1-\cos^2 x}{x^2}$ and $g(x) = \frac{\sin^2 x}{x^2}$ near x = 0. True solution approaches 1 as $x \to 0$.

MATLAB plot with IEEE double precision (i.e., $\approx 15-17$ decimal digits).

FP Error: A Geometric Example

Do two line segments intersect?

A useful *robust* test for this must consider round-off error!

Both false positives or false negatives can occur.

"Epsilon geometry"

Sources of Error

When solving a problem computationally, there are many possible error sources:

- Round-off error due to FP representation and arithmetic.
- Truncation error eg. truncating a Taylor series after n terms.
- Uncertainty/error in the input itself (e.g. from measurements).
- Error/approximation in our mathematical model of the "real" problem.

We will (continue to) focus largely on the first two.

Conditioning of Problems

A problem may be called ill-conditioned or well-conditioned.

For problem P, with input I and output O, if a change to the input, ΔI , gives a "small" change in the output, it is well-conditioned. Otherwise, P is ill-conditioned.

This is a property of the problem, *independent* of any specific implementation (algorithm or hardware).

Conditioning of *Problems*

So for a problem or function f , where y = f(x) f is ...

- well-conditioned if $f(x + \Delta x)$ for "small" Δx is "close" to y.
- Ill-conditioned if $f(x + \Delta x)$ for small Δx is far from y.

So if some error perturbs your input, how badly does it affect the output?

Conditioning is relative; there's a "sliding scale".

Condition number for a function

Condition number (in general) for a function f is a number such that $E_{rel_{out}} \approx C_f E_{rel_{in}}$.

For differentiable f at point x_0 , it is $\frac{x_0f'}{f}$. Let's see why...

$$C_f = \frac{E_{rel_{out}}}{E_{rel_{in}}} = \frac{\frac{f(x_0 + \delta) - f(x_0)}{f(x_0)}}{\frac{(x_0 + \delta) - x_0}{x_0}} = \frac{x_0}{f(x_0)} \cdot \frac{f(x_0 + \delta) - f(x_0)}{\delta} \approx \frac{x_0 f'(x_0)}{f(x_0)}$$

Stability of an *Algorithm*

If any initial error in the data is magnified by the algorithm, the algorithm is considered numerically *unstable*.

Can lead to meaningless results, for seemingly reasonable methods.

Conditioning v.s. Stability

Conditioning of a problem:

How sensitive is the problem itself to errors/changes in input?

Stability of an algorithm or numerical process:

How sensitive is the algorithm to errors/changes in input?

Observations:

- 1. An algorithm can be unstable even for a well-conditioned problem!
- 2. An ill-conditioned problem limits how well we can expect an algorithm to perform.

Consider the integration problem

$$I_n = \int_0^1 \frac{x^n}{x + \alpha} dx$$

for a given n where α is some fixed parameter.

The course notes gives us a recursive algorithm to solve it, for $n \ge 0$:

$$I_0 = \log \frac{1+\alpha}{\alpha}$$
, $I_n = \frac{1}{n} - \alpha I_{n-1}$.

A stability analysis considers how some *initial* error in I_0 , say ϵ_0 , propagates and magnifies through our algorithm.

(...ignoring other numerical error added along the way.)

Let $(I_n)_E$ indicate exact solution, $(I_n)_A$ the computed numerical solution.

Assume initial error is $\epsilon_0 = (I_0)_A - (I_0)_E$

Exact solution $(I_n)_E$ follows $(I_n)_E = \frac{1}{n} - \alpha(I_{n-1})_E$. Approximate solution $(I_n)_A$ follows $(I_n)_A = \frac{1}{n} - \alpha(I_{n-1})_A$.

What is $\epsilon_n = (I_n)_A - (I_n)_E$, error after n steps?

$$\epsilon_n = (I_n)_A - (I_n)_E$$

$$= \left(\frac{1}{n} - \frac{1}{n}\right) - \alpha \left((I_{n-1})_A - (I_{n-1})_E\right)$$

$$= (-\alpha)\epsilon_{n-1} = (-\alpha)(-\alpha)\epsilon_{n-2} = (-\alpha)(-\alpha)(-\alpha)\epsilon_{n-3} \dots$$

$$= (-\alpha)^n \epsilon_0$$

So the initial error ϵ_0 is scaled to become $\epsilon_n = (-\alpha)^n \epsilon_0$. What does this tell us about error magnification for different α ?

Two possibilities:

- 1. $|\alpha| < 1$: Initial error is scaled down over time. Stable!
- 2. $|\alpha| > 1$: Initial error is continually magnified! Unstable!

Hence that recurrence algorithm is *unstable* for solving $I_n = \int_0^1 \frac{x^n}{x+\alpha} dx$ for values of $|\alpha| > 1$.

This is borne out if you code up this recurrence in C / Matlab / etc.:

$$I_{100} = 6.64 \times 10^{-3} \text{ for } \alpha = 0.5$$
 Correct!

$$I_{100} = 2.1 \times 10^{22} \text{ for } \alpha = 2.0$$
 Wrong!

Summary of FP

- F is not $\mathbb{R}!$
- We can analyze the error propagation of FP arithmetic to bound error growth.
- We can analyze whether some initial error will grow or shrink to determine the stability of algorithms.

Further reading on FP [Optional]

"What Every Computer Scientist Should Know About Floating-Point Arithmetic", by David Goldberg, 1991.

Appendix D

What Every Computer Scientist Should Know About Floating-Point Arithmetic

Note – This appendix is an edited reprint of the paper *What Every Computer Scientist Should Know About Floating-Point Arithmetic*, by David Goldberg, published in the March, 1991 issue of Computing Surveys. Copyright 1991, Association for Computing Machinery, Inc., reprinted by permission.

Abstract

Floating-point arithmetic is considered an esoteric subject by many people. This is rather surprising because floating-point is ubiquitous in computer systems. Almost every language has a floating-point datatype; computers from PCs to supercomputers have floating-point accelerators; most compilers will be called upon to compile floating-point algorithms from time to time; and virtually every operating system must respond to floating-point exceptions such as overflow. This paper presents a tutorial on those aspects of floating-point that have a direct impact on designers of computer systems. It begins with background on floating-point representation and rounding error, continues with a discussion of the IEEE floating-point standard, and concludes with numerous examples of how computer builders can better support floating-point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organization]: General -- instruction set design; D.3.4 [Programming Languages]: Processors -- compilers, optimization; G.1.0 [Numerical Analysis]: General -- computer arithmetic, error analysis, numerical algorithms (Secondary)

D.2.1 [Software Engineering]: Requirements/Specifications -- languages; D.3.4 Programming Languages]: Formal Definitions and Theory -- semantics; D.4.1 Operating Systems]: Process Management -- synchronization.

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Denormalized number, exception, floating-point, floating-point standard, gradual underflow, guard digit, NaN, overflow, relative error, rounding error, rounding mode, ulp, underflow.

An Aside on Adding Many Numbers [Optional]

How can we add a sequence of many numbers with least error?

One can imagine several possible strategies:

- Sum in order of increasing magnitude?
- Sum +/- pairs to maximize cancellation, stay close to zero?
- Sum all positive and all negative separately, and combine at the end to minimize cancellation?

Adding Many Numbers [Optional]

The answer to the best ordering is fairly subtle. See...

"The accuracy of floating point summation" - Higham, 1993.

http://epubs.siam.org/doi/abs/10.1137/0914050

Gives the extension of our 3-number analysis to n numbers, and deeper analytical and experimental comparisons of several schemes.

1989 Turing award winner!

Better algorithms exist (e.g., pairwise summation, Kahan summation) beyond simply re-ordering the sequence.

http://www.phys.uconn.edu/~rozman/Courses/P2200 11F/downloads/sum-howto.pdf

Historical Side Note: William Kahan [Optional]

Turing Award Citation: For his fundamental contributions to numerical analysis. One of the foremost experts on floating-point computations. Kahan has dedicated himself to "making the world safe for numerical computations"!

- Known as the "Father of Floating Point".
- Major contributor to the IEEE-754 floating point standards.
- Born in Canada, grew up around Toronto.

Condition Number Example #1

a = 2000

b = -3.234

c = -2000

 $F = \{10, 4, -10, 10\}$

True: -3.234 Computed: -3.000

Only 1 correct digit!

$$E_{rel} \leq \frac{|a|+|b|+|c|}{|a+b+c|} (2\mathrm{E}+\mathrm{E}^2) \approx \frac{4003.234}{3.234} \cdot 2 \left(\frac{1}{2} \cdot 10^{-3}\right) \approx 1.238.$$
 This is quite large.

Condition Number Example #2

$$a = 2000$$
 $b = -3.234$
 $c = -2000$
 $F = \{10, 4, -10, 10\}$

What is $(a \oplus c) \oplus b$?

-3.234. This ordering gives a much better result!

Observation: We can sometimes improve our algorithms by re-ordering operations.

What is the condition number? It is the *same as before*.

Observation: The condition number only gives a worst-case bound.

Who are you?

- 1. What area(s) of CS are you most interested in?
- 2. What aspect/topic of the course are you most interested in?
- 3. What are your career plans/hopes for after graduation?

 $F = \{10, 4, -10, 10\}$

Condition Number Example #3

What about $(a \oplus b) \oplus c$ for a = -2000, b = -3.234, c = -2000? (i.e. all the signs are the same).

True: -4003 Computed: -4003

Condition number: $\frac{4003.234}{4003.234} = 1$

Relative error: $E_{rel} \leq (2E + E^2) \approx 2E = 10^{-3}$

When no cancellation occurs, the bound is much stronger.