Analisi II

Riassunto da: ""

Indice

		Teorema
1	Seri	e numeriche
	1.1	Successioni di numeri complessi
	1.2	Carattere di una serie
		Teorema: Condizione necessaria di convergenza
		Teorema: "Linearità delle serie"
	1.3	Serie geometrica, serie telescopiche e armoniche
	1.4	Serie a termini non negativie a segni alterni
		Teorema: Le serie a termini non negativi o convergono o divergono
		Teorema: Convergenza assoluta implica convergenza semplice
	1.5	Criteri applicabili alle serie
	1.6	Procedimento per la risoluzione degli esercizi
2	Top	ologia di \mathbb{R}^n
3	Cor	tinuità per campi scalari 7
		Teorema di Weierstraß
4	Cal	colo differenziale per funzioni scalari
	4.1	Derivate parziali
	1.1	Derivate cartesiane
		Derivate direzionali
	4.2	Differenziabilità
	1.2	Teorema: differenziabilità implica esistenza della derivata direzionale
		Teorema: differenziabilità implica continità
		Teorema: condizione sufficiente di differenziabilità
	4.3	Derivata lungo una curva
	4.4	Ortogonalità del gradiente alle curve di livello in 2d
	4.5	Ortogonalità del gradiente alle curve di livello in 3d
	$\frac{4.5}{4.6}$	Derivate seconde
	4.0	Teorema di Schwartz
		Matrice Hessiana
		Wattice Hessiana
5		colo differenziale per funzioni vettoriali
	5.1	Curve parametriche
	5.2	Derivate parziali
		Derivate cartesiane
		Derivate direzionali
	5.3	Differenziabilità
	5.4	Composizione di campi vettoirali
		Chain rule
	5.5	Cambio di coordinate
	5.6	Operatore di Laplace
	5.7	Teorema di inversione locale
		TIL 9
	5.8	Teoremi della funzione implicita
		TFI in 2 dimensioni
		TFI in 3 dimensioni

-Definizione:

Teorema

1 Serie numeriche

Sia $a_n \subset \mathbb{C}$ successione di numeri complessi, chiamiamo serie numerica la sommatoria

$$\sum_{n=0}^{\infty} a_n = a_1 + \dots + a_n + \dots$$

Chiamiamo invece ridotta ennesima della serie la quantità

$$S_N = \sum_{n=0}^N a_n = a_1 + \dots + a_N \qquad N \in \mathbb{N}$$

Abbiamo costruito la successione delle ridotte S_N con $N \in \mathbb{N}$.

1.1 Successioni di numeri complessi

Definizione: Serie convergente divergente e indeterminata

Se il limite

$$\lim_{N\to\infty} S_N = S \in \mathbb{C}$$

diciamo che la serie

$$\sum_{n=0}^{\infty} a_n = S$$

converge ad S e chiamiamo S somma della serie.

Nel caso in cui S_N sia divergente o indeterminata la serie è divergente o indeterminata.

1.2 Carattere di una serie

Si osserva che preso $n_0 \in \mathbb{N}$ e considerando la serie

$$\sum_{n=n_0}^{\infty} a_n \quad \text{questa ha lo stesso carattere di} \qquad \sum_{n=0}^{\infty} a_n$$

Chiaramente la somma sarà diversa, il carattere tuttavia non cambia.

Teorema: Condizione necessaria di convergenza

Sia $a_n \subset \mathbb{C}$. Condizione necessaria affinché la serie

$$sum_{n=0}^{\infty}a_n$$

converga è che

$$\lim_{n \to \infty} a_n = 0$$

Teorema: "Linearità delle serie"

Prendiamo due serie di numeri complessi convergenti rispettivamente ad A e a B:

$$sum_{n=0}^{\infty}a_n = A \qquad \qquad sum_{n=0}^{\infty}b_n = B$$

allora

$$i)$$
 $\forall \lambda \in \mathbb{C}$ $\sum_{n=0}^{\infty} \lambda a_n = \lambda \sum_{n=0}^{\infty} a_n = \lambda A$

ii)
$$\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n = A + B$$

1.3 Serie geometrica, serie telescopiche e armoniche

Fissato $q \in \mathbb{C}$ si dice **serie geometrica** di ragione q la serie

$$\sum_{n=0}^{\infty} q^n = \frac{1 - q^{N+1}}{1 - q}$$

il carattere è determinato da q:

 $\begin{array}{ll} |q|<1 & \text{la serie converge} \\ |q|>1 \text{ o } q=1 & \text{la serie diverge} \\ |q|=1 \text{ e } q\neq 1 & \text{la serie è indeterminata} \end{array}$

Chiamiamo serie telescopiche le seguenti le serie di forma

$$a_0 + \sum_{n=1}^{\infty} (a_n - a_{n-1})$$
 $a_n \subset \mathbb{C}$

- alcuni esempi di serie telescopiche-

$$i) \qquad \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 \qquad \qquad ii) \qquad \sum_{n=1}^{\infty} \log\left(1 + \frac{1}{n}\right) = +\infty$$

1.4 Serie a termini non negativie a segni alterni

Termini non negativi
$$\sum_{n=0}^{\infty} a_n, \quad a_n \geq 0, \quad \forall n \in \mathbb{N}$$

Segni alterni
$$\sum_{n=0}^{\infty} (-1)^n b_n, \qquad b_n > 0, \qquad \forall n \in \mathbb{N}$$

Teorema: Le serie a termini non negativi o convergono o divergono

Sia a_n una serie a termini non negativi, questa può o convergere o divergere, non può essere indeterminata.

3

dimostrazione

Prendo $\{S_N\}_{N\in\mathbb{N}}$ monotona crescente:

$$S_{N+1} = S_N + a_{N+1} \ge S_N$$

Se il limite converge a S limite superiore

$$\lim_{N \to \infty} S_N = S \in [0, +\infty) \qquad S = \sup_{S \in \mathbb{N}} S_N$$

 \implies La serie converge

Se $\{S_N\}_{N\in\mathbb{N}}$ non è superiormente limitata si ha

$$\lim_{N \to \infty} S_N = +\infty$$

 \implies La serie diverge

-Definizione: Convergenza assoluta-

Sata una serie di numeri complessi $\sum_{n=0}^{\infty} a_n \in \mathbb{C}$ si dice che la serie è assolutamente convergente se è convergente la serie

$$\sum_{n=0}^{\infty} |a_n|$$

Teorema: Convergenza assoluta implica convergenza semplice

Sia $\sum_{n=0}^{\infty} a_n \subset \mathbb{C}$. Supponiamo che la serie sia assolutamente convergente, allora la serie è anche semplicemente convergente. Inoltre vale

$$\left| \sum_{n=0}^{\infty} a_n \right| \le \sum_{n=0}^{\infty} |a_n|$$

1.5 Criteri applicabili alle serie

- Criterio del confronto
- Criterio del confronto asintotico
- Criterio della radice:

Sia $\sum a_n$ serie a termini positivi. Supponiamo che esista

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim a_n^{1/n} = l \in [0, +\infty]$$

allora

l < 1 la serie converge

l > 1 la serie diverge

l = 1 caso dubbio

• Criterio del rapporto:

Sia $\sum a_n$ serie a termini positivi. Supponiamo $a_n > 0 \forall n$ e che esista

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l\in[0,+\infty]$$

allora

l < 1 la serie converge

l > 1 la serie diverge

l = 1 caso dubbio

• Criterio dell'integrale di Mc. Laurin

• Criterio di Leibniz:

Sia data la serie $\sum_{n=0}^{\infty} (-1)^n b_n$ con $b_n > 0 \forall n.$ Supponiamo

1)
$$b_{n+1} \leq b_n \quad \forall n \qquad \text{(la serie è decrescente)}$$
2)
$$\lim_{n \to \infty} b_n = 0$$

$$2) \qquad \lim_{n \to \infty} b_n = 0$$

Allora la serie converge a

$$S = \sum_{n=0}^{\infty} (-1)^n b_n$$

$$e |S - S_N| \le b_{N+1} \quad \forall N \in \mathbb{N}.$$

Procedimento per la risoluzione degli esercizi 1.6

1. Verificare la condizione necessaria di convergenza

2. Se è a valori non negativi:

(a) Tramite confronto e confronto asintotico verificare se questa converge o diverge.

3. Se è a **segni alterni**:

- (a) Ne studio il modulo;
- (b) Tramite confronto e confronto asintotico verificare se questa converge o diverge assolutamente;
- (c) Se diverge uso il **criterio di Leibniz**;
- (d) Verifico che sia strettamente decrescente;
- (e) Se lo è la serie è semplicemente convergente.

2 Topologia di \mathbb{R}^n

Questa sezione contiene solo definizioni, non sto a distinguerle con il riquadro colorato.

Intorno

Si dice **intorno sferico** di centro $x_0 \in \mathbb{R}^n$ e raggio r > 0 l'insieme

$$B(x_0, r) = \{x \in \mathbb{R}^n \mid d(x, x_0) = |x - x_0| < r\}$$

La distanza dalle due dimensioni in poi chiaramente è espressa come

$$d(x,x_0) = \sqrt{(x-x_0)^2 + (y-y_0)^2 + \dots}$$

Punto di accumulazione

Sia $A \subseteq \mathbb{R}^n$ e $x_0 \in \mathbb{R}^n$. Si dice **punto di accumulazione** per A se

$$\forall r > 0$$
 $(B(x_0, r) \setminus \{x_0\}) \cap A \neq \emptyset$

In sostanza è un punto di accumulazione se ogni suo intorno contiene punti di A diversi da se stesso

Insieme limitato

 $A\subseteq\mathbb{R}^n$ si dice limitato se

$$\exists M>0 \quad |\quad \|x\|\leq M, \quad \forall x\in A$$

$$A\subseteq \overline{B(O,M)} \quad \text{con} \quad B(O,M)=\{x\in \mathbb{R} \quad |\quad \|x\|\leq M\}$$

Insieme aperto

 $A\subseteq\mathbb{R}^n$ si dice aperto se

$$\forall x \in A \quad \exists r > 0 \quad | \quad B(x_o, r) \subset A$$

- \mathbb{R}^n è un insieme aperto;
- L'intersezione di qualunque famigia di un chiuso è un aperto,
- L'unione di un numero finito di chiusi è un aperto.

Insieme chiuso

 $C \subseteq \mathbb{R}^n$ si dice **chiuso** se il suo complementare $\mathbb{R}^n \backslash C$ è un aperto.

- Sono chiusi gli insiemi \mathbb{R}^n e \emptyset ;
- l'intersezione di qualunque famigia di un chiuso è un chiuso;
- l'unione di un numero finito di chiusi è un chiuso.

Insieme compatto

Un sottoinsieme $K \subset \mathbb{R}^n$ è detto **compatto** se è chiuso e limitato.

Putni interni, esterni e di frontiera

Interno:
$$\exists r > 0 \mid B(x_0, r) \subset A$$

Interno: $\exists r > 0 \mid B(x_0, r) \cap A = \emptyset$

Se x_0 non è né interno né esterno è un put
no di frontiera.

- Int(A) è un aperto ed è il più grande aperto contenuto in A;
- $Int(A) \cap Fr(A)$ è un chiuso ed è il più piccolo chiuso contenente A e viene denotato con \bar{A} ;
- Fr(A) è un chiuso;
- $A \stackrel{.}{e} \text{chiuso} \iff A = Int(A);$

3 Continuità per campi scalari

Teorema di Weierstraß

Sia $f:K\subset\mathbb{R}^n\to\mathbb{R}$ con $k\neq\varnothing$ e compatto. Se f è continua su K allora ammette un massimo su K.

-Definizione: Uniformemente continua-

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R},\,f$ si dice uniformemente continua su A se

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad | \quad \forall x, y \in A, \quad \|x - y\| < \delta$$

allora

$$|f(x) - f(y)| < \varepsilon$$

Vale

funif. cont. su $A \Longleftrightarrow f$ continua su A

4 Calcolo differenziale per funzioni scalari

4.1 Derivate parziali

Derivate cartesiane

Derivate direzionali

-Definizione: Gradiente di un campo scalare

4.2 Differenziabilità

-Definizione: Differenziabilità-

Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ e \bar{x} punto interso ad A. Si dice che f è differenziabile in \bar{x} se esiste una fizione lineare

$$\varphi: \mathbb{R}^n \to \mathbb{R}$$
 t.c.

$$f(\bar{\boldsymbol{x}} + \boldsymbol{h}) - f(\bar{\boldsymbol{x}}) = \varphi(\boldsymbol{h}) + o(\|\boldsymbol{h}\|), \quad \boldsymbol{h} \to \boldsymbol{0}$$

• $h \to 0 \Longleftrightarrow \sqrt{h_1^2 + \dots + h_n^2}$

• φ lineare se $\exists \alpha \in \mathbb{R}^n$, $\alpha = (\alpha_1, \dots, \alpha_n)$ t.c.

$$\varphi(\mathbf{h}) = \boldsymbol{\alpha} \cdot \mathbf{h} = \alpha_1 h_1 + \dots + \alpha_n h_n$$

differenziabile

Teorema: differenziabilità implica esistenza della derivata direzionale

Teorema: differenziabilità implica continità

Teorema: condizione sufficiente di differenziabilità

- 4.3 Derivata lungo una curva
- 4.4 Ortogonalità del gradiente alle curve di livello in 2d
- 4.5 Ortogonalità del gradiente alle curve di livello in 3d
- 4.6 Derivate seconde

Teorema di Schwartz

Matrice Hessiana

5 Calcolo differenziale per funzioni vettoriali

- 5.1 Curve parametriche
- 5.2 Derivate parziali

Derivate cartesiane

Derivate direzionali

-Definizione: derivata direzionale-

$$F: A \subseteq \mathbb{R}^n \to \mathbb{R}^m, \quad \bar{\mathbf{x}} \in \text{Int}(A), \quad \mathbf{v} \in \mathbb{R}^n, \quad \mathbf{v} \neq 0$$

Si dice derivata direzionale di F lungo \mathbf{v} in $\bar{\mathbf{x}}$ il limite, se esiste finito,

$$\frac{\partial F}{\partial \mathbf{v}}(\bar{\mathbf{x}}) = \lim_{t \to 0} \frac{F(\bar{\mathbf{x}} + t\mathbf{v}) - F(\bar{\mathbf{x}})}{t} \tag{1}$$

Sia

$$F(x) = (F_1(x), \dots, F_m(x)), \qquad F_j : A \subseteq \mathbb{R}^n \to \mathbb{R}$$

allora per il $\mathit{Teorema}$ del limite $\mathit{globale}$

$$\frac{\partial F}{\partial \mathbf{v}}(\bar{\mathbf{x}}) \quad \text{esiste} \quad \Longleftrightarrow \quad \text{esistono} \quad \frac{\partial F_j}{\partial \mathbf{v}}(\bar{\mathbf{x}}) \quad \forall j = 1, \dots, m$$

5.3 Differenziabilità

5.4 Composizione di campi vettoirali

Chain rule

- 5.5 Cambio di coordinate
- 5.6 Operatore di Laplace
- 5.7 Teorema di inversione locale

TIL

Sia $A \subseteq \mathbb{R}^n$ aperto e $T : A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ con $T \in \mathcal{C}^1(A)$. Sia $x_0 \in A$ e $y_0 = T(x_0)$.

Supponiamo det $[JT(x_0)] \neq 0$. Allora:

1. Esiste un intorno aperto U di x_0 tale che T(U) sia un intorno aperto di y_0 e la funzione

$$T:U\to T(U)$$

sia biettiva.

2. La funzione inversa locale

$$T^{-1}:T(U)\to U$$

è di classe \mathcal{C}^1 su T(U) e $JT^{-1}(y_0) = \left[JT(x_0)\right]^{-1}$

5.8 Teoremi della funzione implicita

TFI in 2 dimensioni

Sia $A \subseteq \mathbb{R}^2$ aperto e $f: A \to \mathbb{R}$ campo scalare di classe \mathcal{C}^{∞} su $A: f \in \mathcal{C}^1(A)$.

Definiamo un punto P_0 appartenente all'insieme di livello $\Sigma_c = \{(x,y) \in A : f(x,y) = c\}$:

$$P_0 = (x_0, y_0) \mid f(x_0, y_0) = c$$

Valgono le seguenti affermazioni:

1. Se $\frac{\partial f}{\partial u}(P_0) \neq 0$ allora esiste un rettangolo

$$I \times J = (x_0 - a, x_0 + a) \times (y_0 - b, y_0 + b)$$
 $a, b > 0$

tale che l'insieme intersezione del rettangolo con l'insieme di livello

$$\{f = c\} \cap (I \times J) = \{(x, y) \in I \times J : f(x, y) = c\}$$

è il grafico di una funzione

$$y = \varphi(x)$$

TFI in 3 dimensioni