

Guilherme Martins – 9140474 João Barrias – 9140191 Roman Rudenko – 9140558 Rui Moreira – 9140516

Sistema Solar

Instituto Politécnico do Porto
Escola Superior de Estudos Industriais e de Gestão
Licenciatura em Tecnologias e Sistemas de Informação para a Web
2015-2016

Guilherme Martins – 9140474 João Barrias – 9140191 Roman Rudenko – 9140558 Rui Moreira – 9140516

Sistema Solar

Trabalho prático apresentado na Escola Superior de Estudos Industriais e de Gestão, do Instituto Politécnico do Porto, para obtenção de aprovação na Unidade Curricular Sistemas Gráficos.

Agradecimentos

Antes de mais, queríamos demonstrar o nosso agradecimento à ESEIG que nos proporcionou esta proposta. De seguida, gostaríamos de salientar a ajuda da Professor Doutor Paulo Matos que nos ajudou na resolução dos problemas que ocorreram ao longo do projeto.

Além disto, queríamos referir a ajuda dos colegas de turma que se mostraram prestáveis no esclarecimento de algumas dúvidas que foram surgindo ao longo da realização do trabalho.

Resumo

Este trabalho foi desenvolvido no âmbito da disciplina de Sistemas gráficos, do Curso Tecnologias e Sistemas de Informação para a Web da ESEIG, coordenado pelo Professor Doutor Mário Pinto.

O trabalho proposto consiste na criação de uma aplicação gráfica 3D usando WebGL/Three.js e implementação da interação com a aplicação. Iniciámos a criação deste trabalho com a escolha de um tema, a criação do sistema solar usando Three.js. Inicialmente, criamos as inclinações de cada planeta e as velocidades de órbita e rotação de acordo com os dados disponíveis na plataforma Wikipédia, fazendo uso de uma escala. Para mais realismo dos planetas foram usadas várias camadas com diferentes texturas. Além disto, decidiu-se fazer uma espécie de menu para o utilizador poder interagir com os planetas e realizar uma aproximação através do scrol, possibilidade de parar e iniciar a rotação e a translação dos planetas.

Por fim, foi usado o sistema de partículas para simular as estrelas e efeito da lava para tornar sol mais real. Para melhor visualização, foram usadas varias câmaras e luzes adicionais.

Sumário

	Agradecimentos	iii
	Resumo	
	Sumário	٠٧.
	1. Enquadramento	6
P	ARTE II – A APLICAÇÃO	7
P	ARTE III – CONSIDERAÇÕES FINAIS	8
F	ONTES DE INFORMAÇÃO	9
	Referências Bibliográficas	9
ΑI	NEXO	1

PARTE I - INTRODUÇÃO

1. Enquadramento

Este trabalho surgiu a partir de uma proposta do Professor Doutor Paulo Matos no âmbito da disciplina Sistemas Gráficos do 2º ano do Curso de Tecnologias e Sistemas de Informação para a Web lecionado na Escola Superior de Estudos Industriais e de Gestão. Pretende-se criar uma aplicação gráfica 3D usando WebGL/Three.js

2. Objetivo

Este trabalho está a ser desenvolvido para avaliar o conhecimento dos alunos na programação com uso de Three.js.

Pretendemos criar uma aplicação gráfica 3D usando WebGL/Three.js, implementação da interação com a aplicação, implementação de várias câmaras/cenas, implementação de animação de objectos/câmara, implementação de Texturas, Implementação de sistemas de partículas e por fim, a implementação de sistema de menus (inicial ou sobre a aplicação).

3. Metodologia

Para a realização deste trabalho, usamos como base o conhecimento que se foi adquirindo ao longo da cadeira. Começamos com a criação dos planetas e das orbitais, de seguida optamos por criar as estrelas usando um sistema de partículas. Posteriormente criamos as inclinações de cada planeta e as velocidades de órbita e rotação de acordo com informação obtidas na wikipedia usando uma escala. De seguida, tentamos tornar o sol mais real. Por fim, foi implementado o menu e interação com a aplicação com o uso do rato. Alem disto possibilidade de parar e iniciar a rotação e a translação dos planetas.

Escala das distâncias:

Raio dos planetas: 1 unidade no three.js equivale ao raio do planeta/20 (Unidade megâmetros (1 megâmetro = um milhão de metros)).

Distância entre órbitas: 1 unidade no three.js equivale distância entre um planeta ao outro /2500 (Unidade unidade astronómica (UA = 149 597 870 700 m)).

Rotação: 1 unidade no three.js equivale a 24/100 (Unidade horas).

Translação: 1 unidade no three.js equivale a 365/5000 (Unidade dias).

PARTE II – A APLICAÇÃO

As principais funcionalidades realizadas neste trabalho são a possibilidade de interagir com o menu usando o rato para selecionar a opção e com o click do lado direito do rato abrir a opção selecionada. Além disto, existe a possibilidade de mudar o ângulo de visualização/ ângulo da câmara mexendo com o rato.

Por fim usamos **tecla "T", "t"** para parar ou reiniciar translação dos planetas a volta do sol e **tecla "Y", "y"** para parar ou reiniciar a rotação dos planetas à volta de si próprio.

PARTE III – CONSIDERAÇÕES FINAIS

O trabalho proposto consiste na criação de uma aplicação gráfica 3D usando WebGL/Three.js e implementação da interação com a aplicação. Para isso, foi escolhido um tema entre os propostos pelo professor. Partimos por criar o nosso sistema solar usando Three.js, começando por programá-lo. Além disso, foi implementada espécie do menu para o utilizador poder aproximar os planetas, sendo que também poderá ser realizado através do scrol.

Por fim, foi usado o sistema de partículas para simular as estrelas e efeito de lava para tornar o sol mais realista e permitir emitir a sua própria luz

FONTES DE INFORMAÇÃO

Referências Bibliográficas

- [1] https://pt.wikipedia.org/wiki/Sistema Solar
- [2] http://planetpixelemporium.com/planets.html
- [3] http://threejs.org/

ANEXO

Anexo 1 SG_9140474_9140191_9140558_9140516

A.1