This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(51) International Detant Classification 6.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(-	1) International Patent Classification .
	C12N 15/12, 5/10, 1/21, C07K 14/47,
	16/18, C12N 1/21, C07K 14/47, 16/18,
	C12Q 1/68, G01N 33/50, 33/53, 33/68,
	A61K 38/17

(11) International Publication Number:

WO 98/39448

(43) International Publication Date: 11 September 1998 (11.09.98)

(21) International Application Number:

PCT/US98/04493

A2

(22) International Filing Date:

6 March 1998 (06.03,98)

(30) Priority Data:

60/040,162	7 March 1997 (07.03.97)	US
60/040,333	7 March 1997 (07.03.97)	US
60/038,621	7 March 1997 (07.03.97)	US
60/040,161	7 March 1997 (07.03.97)	US
60/040,626	7 March 1997 (07.03.97)	US
60/040,334	7 March 1997 (07.03.97)	US
60/040,336	7 March 1997 (07.03.97)	US
60/040,163	7 March 1997 (07.03.97)	US
60/043,580	11 April 1997 (11.04.97)	US
60/043,568	11 April 1997 (11.04.97)	US

(Continued on the following page)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hills Road, Laytonsville, MD 20882 (US). FISCHER, Carrie, L. [US/US]; 5810 Hall Street, Burke, VA 22015 (US). SOP-PET, Daniel, R. [US/US]; 15050 Stillfield, Place, Centre-ville, VA 22020 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US). BEDNARIK, Daniel, P. [US/US]; 8822 Blue Sea Drive, Columbia, MD 21046 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Damestown, MD 20878 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US). YOUNG, Paul, E. [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Drive, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown,

MD 20874 (US). DUAN, Roxanne [US/US]; 4541 Fairfield Drive, Bethesda, MD 20814 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). FLORENCE, Kimberly, A. [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelburne Terrace #316, Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 Mount Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment #104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). ZENG, Zhizhen [CN/US]; 13950 Saddleview Drive, Gaithersburg, MD 20878 (US). KYAW, Hla [BU/US]; 520 Sugarbush Circle, Frederick, MD 21703 (US).

- (74) Agents: BROOKES, Anders, A. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: 186 HUMAN SECRETED PROTEINS

(57) Abstract

The present invention relates to 186 novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human secreted proteins.

60/043 314	11 april 1997 (11.04.97)	US	60/047,596 23 May 1997 (23.05.97)	US	60/056,637 22 August 1997 (22.08.97) US
	11 april 1997 (11.04.97)	US	60/047,612 23 May 1997 (23.05.97)	US	60/056,903 22 August 1997 (22.08.97) US
	11 april 1997 (11.04.97)	US	60/047,632 23 May 1997 (23.05.97)	US	60/056,888 22 August 1997 (22.08.97) US
	11 april 1997 (11.04.97)	US	60/047,601 23 May 1997 (23.05.97)	US	60/056,879 22 August 1997 (22.08.97) US
	11 april 1997 (11.04.97)	US	60/047,595 23 May 1997 (23.05.97)	US	60/056,880 22 August 1997 (22.08.97) US
60/043,669	11 april 1997 (11.04.97)	US	60/047,599 23 May 1997 (23.05.97)	US	60/056,894 22 August 1997 (22.08.97) US
60/043,312	11 april 1997 (11.04.97)	US	60/047,588 23 May 1997 (23.05.97)	US	60/056,911 22 August 1997 (22.08.97) US
	11 april 1997 (11.04.97)	US	60/047,585 23 May 1997 (23.05.97)	US	60/056,636 22 August 1997 (22.08.97) US
	11 april 1997 (11.04.97)	US	60/047,586 23 May 1997 (23.05.97)	US	60/056,874 22 August 1997 (22.08.97) US
60/043,672	11 april 1997 (11.04.97)	US	60/047,590 23 May 1997 (23.05.97)	US	60/056,910 22 August 1997 (22.08.97) US
60/043,576	11 april 1997 (11.04.97)	US	60/047,594 23 May 1997 (23.05.97)	US	60/056,864 22 August 1997 (22.08.97). US
60/043,570	11 april 1997 (11.04.97)	US	60/047,589 23 May 1997 (23.05.97)	US	60/056,631 22 August 1997 (22.08.97) US
60/043,670	23 May 1997 (23.05.97)	US	60/047,593 23 May 1997 (23.05.97)	US	60/056,845 22 August 1997 (22.08.97) US
	23 May 1997 (23.05.97)	US	60/047,614 23 May 1997 (23.05.97)	US	60/056,892 22 August 1997 (22.08.97) US
	23 May 1997 (23.05.97)	US	60/047,501 23 May 1997 (23.05.97)	US	60/056,632 22 August 1997 (22.08.97) US
	23 May 1997 (23.05.97)	US	60/048,974 06 June 1997 (06.06.97)	US	60/056,664 22 August 1997 (22.08.97) US
	23 May 1997 (23.05.97)	US	60/048,964 06 June 1997 (06.06.97)	US	60/056,876 22 August 1997 (22.08.97) US
60/047 583	23 May 1997 (23.05.97)	US	60/049,610 13 June 1997 (13.06.97)		60/056,881 · 22 August 1997 (22.08.97) US
60/047 617	23 May 1997 (23.05.97)	US	60/051,926 08 July 1997 (08.07.97)	US	60/056,909 22 August 1997 (22.08.97) US
60/047 618	23 May 1997 (23.05.97)	US	60/052,874 16 July 1997 (16.07.97)	US	60/056,875 22 August 1997 (22.08.97) US
60/047 503	23 May 1997 (23.05.97)	US	60/055,724 18 August 1997 (18.08.9	97) US	60/056,862 22 August 1997 (22.08.97) US
60/047 592	23 May 1997 (23.05.97)	US	60/056,886 22 August 1997 (22.08.9	97) US	60/056,887 22 August 1997 (22.08.97) US
	23 May 1997 (23.05.97)		60/056,877 22 August 1997 (22.08.	97) US	60/056,908 22 August 1997 (22.08.97) US
	23 May 1997 (23.05.97)		60/056,889 22 August 1997 (22.08.	97) US	60/056,884 22 August 1997 (22.08.97) US
	23 May 1997 (23.05.97)		60/056,893 22 August 1997 (22.08.	97) US	60/057,761 05 September 1997 (05 09.97).US
60/047.587	23 May 1997 (23.05.97)	US	60/056,630 22 August 1997 (22.08.		60/057,650 05 September 1997 (05 09.97).US
60/047.492	23 May 1997 (23.05.97)	US	60/056,878 22 August 1997 (22.08.		60/057,669 05 September 1997 (05 09.97).US
	23 May 1997 (23.05.97)		60/056,662 22 August 1997 (22.08.		60/058,785 12 September 1997 (12.09.97) US
60/047.613	23 May 1997 (23.05.97)	US	60/056,872 22 August 1997 (22.08.		60/061,060 02 October 1997 (02.10.97) US
60/047,582	23 May 1997 (23.05.97)	US	60/056,882 22 August 1997 (22.08.	97) US	
	•				

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG ,	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
ВG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Maławi	us	United States of America
CA	Canada	lТ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/39448 PCT/US98/04493

186 Human Secreted Proteins

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

5

10

15

20

25

30

35

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

10

15

20

25

30

35

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

WO 98/39448 PCT/US98/04493

3

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 12301 Park Lawn Drive, Rockville, Maryland 20852, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

5

10

15

20

25

30

35

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA contained within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

10

15

20

25

30

35

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

25 Polynucleotides and Polypeptides of the Invention

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

This gene is expressed primarily in testes tumor and to a lesser extent in fetal brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly of the testes, and defects of the central nervous system such as seizure and neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly cancer of the testes and central nervous system,

15

20

25

30

35

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testes and other reproductive tissue, brain and other tissue of the nervous system, and blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of testicular cancer and treatment of central nervous system disorders since this gene is primarily expressed in the testes tumor and developing brain.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

This gene is expressed primarily in cancer tissues, such as breast cancer and Wilm's tumor, and to a lesser extent in fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and/or tumors, particularly, those found in the breast, and developmental abnormalities or disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the glandular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, and fetal tissue and, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 314 as residues: Pro-11 to Thr-18, Leu-43 to Pro-50, Gly-64 to Leu-72, and Leu-81 to Lys-86.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of cancers and/or tumors, particularly, those found in the breast since expression is mainly in cancer/tumor tissues. May serve as therapeutic proteins for proliferation/differentiation of fetal tissues.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

This gene is expressed primarily in CD34 depleted buffy coat and to a lesser extent in spleen, chronic lymphocytic leukemia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood disorders or leukemias, diseases of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders or leukemias, diseases of the immune system since expression is in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood disorders or lymphocytic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders since expression is in tissues related to immune function.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 5

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood or immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 317 as residues: Pro-13 to Lys-21.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders since expression is in tissues related to immune function.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 6

This gene is expressed primarily in CD34 depleted buffy coat.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: blood or immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level

10

15

20

25

30

35

in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 318 as residues: Lys-31 to Lys-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood diseases since it is expressed in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

This gene is expressed primarily in CD34 depleted buffy coat and to a lesser extent in pineal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases of the immune system and brain associated diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and pineal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of blood disorders, immune diseases or brain associated diseases (specifically of the pineal gland) since expression is in tissues related to immune function.

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

The translation product of this gene shares sequence homology with an organic cation transporter which is thought to be important in organic cation uptake in the kidney and liver. (See Accession No. 2343059.) Preferred polypeptide fragments comprise the amino acid sequence ITIAIQMICLVNXELYPTFVRNXGVMVCSSLCDIGGIITP FIVFRLREVWQALPLILFAVLGLLAAGVTLLLPETKGVALPETMKDAENLGRKAKPKENTIYLK VQTSEPSGT (SEQ ID NO: 615) or TMKDAENLGRKAKPKENT (SEQ ID NO: 616) as well as N-terminal and C-terminal deletions of these fragments. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

15

20

25

30

35

This gene is expressed primarily in liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatic and renal diseases where drug elimination/cation exchange (organic cation uptake) in the liver and kidney are problematic. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic or renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 320 as residues: Asn-64 to Asn-74, and Gln-81 to Gly-87.

The tissue distribution and homology to organic cation transporter indicate that polynucleotides and polypeptides corresponding to this gene are useful as a polyspecific transporter that is important for drug elimination in the liver (and possibly kidney) since expression is found in the liver.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

This gene is expressed primarily in eosinophil induced with IL-5 and to a lesser extent in fetal liver and spleen. This gene also maps to chromosome 15, and therefore can be used in linkage analysis as a marker for chromosome 15.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases of the immune system, particularly allergies or asthma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the

10

15

20

25

35

standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/diagnosis of diseases involving esosinphil reactions since expression seems to be concentrated in eosinophils and other tissues involved in immunity such as the liver and spleen.

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

This gene is expressed primarily in tissues of hematopoietic lineage and to a lesser extent in Hodgkins lymphoma. Any frame shifts in this sequence can easily be clarified using known molecular biology techniques.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and immune deficiency or dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, lymphoid and reticuloendothelial tissues, and cancerous tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/ diagnosis for lymphomas or immune dysfuction or as a therapeutic protein useful in immune modulation based on expression in anergic T-cells and lymphomas.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed primarily in neutrophils and to a lesser extent in activated lymphoid cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the cell type present in a biological sample and for diagnosis of diseases and conditions: inflamation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

10

15

20

25

30

35

of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 323 as residues: Glu-40 to Lys-46.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for modulation of an immune reaction or as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in brain and to a lesser extent in activated T-cells. It is likely that the open reading frame containing the predicted signal peptide continues in the 5' direction. Preferred polypeptide fragments comprise the amino acid sequence PRVRNSPEDLGLSLTGDSCKL (SEQ ID NO:617).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative disorders including ischemic shock, alzheimers and cognitive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and brain, and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 324 as residues: Ser-5 to Glu-14, lle-21 to Pro-35, Ser-65 to Asp-81, Cys-89 to Val-96, Lys-136 to Ser-145, Ile-152 to Met-169, and Arg-189 to Lys-196.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnostic/treatment for cancers of the given tissue or in the treatment of neurological disorders of the CNS.

WO 98/39448 PCT/US98/04493

13

FEATURES OF PROTEIN ENCODED BY GENE NO: 13

This gene was also recently cloned by other groups, naming this calcium-activated potassium channel gene, hKCa4. (See Accession No. AF033021, see also, Accession No. 2584866.) This gene is mapped to human chromosome 19q13.2. A second signal sequence likely exists upstream from the predicted signal sequence as described in Table 1. Preferred polypeptide fragments comprise: QADDLQATVAALCVLRGGGPWAG SWLSPKTPGAMGGDLVLGLGALRRRKRLL (SEQ NO: 618); or EQEKSLAGWALVLAXXGIGL MVLHAEMLWFGGCSAVNATGHLSDTLWLIPITFLTIGYGDVVPGTMWGKIVCLCTGVMGVCC TALLVAVVARKLEFNKAEKHVHNFMMDIQYTKEMKESAARVLQEAWMFYKHTRRKESHAAR XHQRXLLAAINAFRQVRLKHRKLREQVNSMVDISKMHMILYDLQQNLSSSHRALEKQIDTLAG KLDALTELLSTALGPRQLPEPSQQSK (SEQ ID NO: 619), as well as N-terminal and C-terminal deletions. Also preferred are polynulcleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in breast lymph node and T-cells, and to a lesser extent in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematologic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lymphoid tissue, blood cells and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 325 as residues: Arg-13 to Lys-23.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment/diagnosis of hematologic and diseases involving immune modulation based or distribution in the lymph node and T-cells.

30

5

10

15

20

25

10

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

This gene was recently cloned by another group, calling it PAPS synethase. (See Accession No. e1204135.) Preferred polypeptide fragments comprise the amino acid sequence YQAHHVSRNKRGQVVGTRGGFRGCTVWLTGLSGAGK (SEQ ID NO: 620). Also preferred are the polynucleotide fragments encoding this polypeptide fragment.

It has been discovered that this gene is expressed primarily in benign prostate hyperplasia, Human Umbilical Vein Endothelial Cells and to a lesser extent in smooth muscle and Human endometrial stromal cells-treated with estradiol.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflamation, ischemia, and restenosis, based on endothelial cell and smooth muscle cell expression, and prostate diseases such as benign prostate hyperplasia or prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate or vessels of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., prostate, endothelial cells, smooth muscle, and endometrium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 326 as residues: Arg-21 to Asp-26, Lys-35 to Lys-44, Glu-49 to Asn-58.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/diagnosing diseases or conditions where the endothelial cell lining of the veins and arteries of underlying smooth muscle are involved.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

This gene is expressed primarily in human 6 week embryo and to a lesser extent in placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: developmental anomalies or fetal deficiencies. Similarly, polypeptides and antibodies directed to these

10

15

20

25

30

polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly developmental in nature, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 327 as residues Lys-50 to Glu-57.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of developmental abnormalities.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

This gene is expressed primarily in kidney and amygdala and to a lesser extent in fetal tissues. This gene is mapped to chromosome 14, and therefore is useful in linkage analysis as a marker for chromosome 14.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) present in a biological sample and for diagnosis of diseases and conditions: kidney diseases, neurological disorders and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s). For a number of disorders of the above tissues, particularly of the renal system or developing fetal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, amygdala, and fetal tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of conditions affecting the brain, kidneys and fetal development.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 17

This gene is expressed primarily in ovarian cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: solid tumors similar to ovarian cancer Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovarian and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 329 as residues Ser-51 to Val-56.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of solid tumors of the reproductive system such as ovarian cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

This gene is expressed primarily in brain medulloblastoma. Preferred polypeptide fragments comprise the amino acid sequence: IRHEQHPNFSLEMHSKGSSLLLFLPQL ILILPVCAHLHEELNC (SEQ ID NO: 643) and SFFISEEKGHLLLQAERHPWVAGALVGVSG GLTLTTCSGPTEKPATKNYFLKRLLQEMHIRAN (SEQ ID NO: 644), as well as N-terminal and C-terminal deletions. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

20

25

30

10

15

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors particularly of the CNS or Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating medulloblastoma or similar tumors.

5

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 19

This gene is expressed primarily in adipocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: obesity. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose tissues expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipocytes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating obesity by regulating the function and number of adipocytes

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

This gene is expressed primarily in B cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of the immune system with an emphasis on B cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumors of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of B cell derived tumors based on its expression in b cell lymphomas

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

This gene is expressed primarily in immune cells and to a lesser extent in fetal tissues

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflammatory diseases Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cells of the immune system, and fetal tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:333 as residues Asp-10 to Pro-19, Ser-74 to Tyr-79, Glu-95 to Lys-110.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of diseases involving alterations in T cell activity.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

It has been discovered that this gene is expressed primarily in ovarian tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors particularly of the ovary. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of tumors of the reproductive organs. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovarian

WO 98/39448 PCT/US98/04493

19

and other reproductive tissue and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 334 as residues: Leu-22 to Gln-27.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of ovarian tumors as it has only been identified in ovarian tumors.

10

15

20

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

It has been discovered that this gene is expressed primarily in fetal tissues and to a lesser extent in osteoclastoma cell line

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: osteoporosis or arthritis Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone cells, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of conditions of abnormal bone remodeling due to enhanced activity of osteoclasts. This may be useful as a specific marker for malignancies derived from osteoclasts or their precursors.

30

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 24

The translation product of this gene shares sequence homology with a periplasmic ribonuclease which is thought to be important in degrading extracellular polynucleotides

35

It has been discovered that this gene is expressed primarily in serum treated smooth muscle cells

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: vascular disease such as restenosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculature expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 336 as residues: Gln-30 to Lys-36, and Pro-41 to Arg-48.

The tissue distribution and homology to ribonucleases indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of pathological conditions of smooth muscle associated with bacterial or viral infiltration

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

This gene is expressed primarily in Early Stage Human Brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain development and related diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain development and related diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to this gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases affecting human brain development and related diseases.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 26

It has been discovered that this gene is expressed primarily in human brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain diseases and other diseases related to brain diseases, which may be caused by brain diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human brain diseases and other diseases related.

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

It has been discovered that this gene is expressed primarily in Anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune diseases, inflammatory diseases and diseases related to T lymph cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune diseases, inflammatory diseases and diseases related to T lymph cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

10

15

20

25

30

35

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for immune diseases, inflammatory diseases and diseases related to T lymph cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

The translation product of this gene shares sequence homology with *Shigella flexneri* positive transcriptional regulator CriR (criR) gene which is thought to be important in regulation of gene expression.

This gene is expressed primarily in human synovial sarcoma and normal human brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: human brain diseases particularly sarcomas of the synovium. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the human brain and synovium and other related human brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., synovial tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human synovial sarcoma and other related human brain diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

This gene is expressed in bone marrow, infant brain, fetal liver and spleen, prostate and to a lesser extent in pineal gland, adipose tissue, kidney, adrenal gland, umbilical vein endothelial cells, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases related to bone marrow or

WO 98/39448 PCT/US98/04493

23

hematoplastic tissues, prostate, kidney, adrenal gland, and cardiovascular tissue or organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases related to hematoplastic tissues, immune system, prostate, kidney, adrenal gland, and cardiovascular tissue or organs, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, hematopoietic cells, pineal gland, adipose tissue, kidney, adrenal gland, endothelial cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases related to hematoplastic tissues, immune system, prostate, kidney, adrenal gland, and cardiovascular tissue or organs.

FEATURES OF PROTEIN ENCODED BY GENE NO: 30

5

10

15

20

25

30

35

This gene is expressed primarily in meningea and to a lesser extent in breast and adult brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Diseases of the meningea and related brain diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the meningea and related brain diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., miningea, mammary tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the meningea and related brain diseases.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 31

This gene is expressed in meningea, fetal spleen, osteoblast and to a lesser extent in activated T-cells, endometrial stromal cells, fetal lung, HL-60, thymus, testis and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: meningeal disease, osteoporosis, immune diseases, and hematoplastic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the meningeal diseases, osteoporosis, immune diseases, and hematoplastic diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, endometrium, lung, thymus, testis, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of meningeal, osteoporosis, immune diseases, hematoplastic diseases, testis diseases and lung diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 32

This gene is expressed primarily in human thymus and to a much lesser extent in infant brain, T-cells, smooth muscle, endothelial cells, bone marrow, human ovarian tumor and keratinocytes testes, osteoclastoma, breast, and tonsils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Diseases involving the thymus, particularly thymic cancer and diseases involving T-cell maturation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a

WO 98/39448 PCT/US98/04493

25

number of disorders of the above tissues or cells, particularly of the thymus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., thymus, brain, and other tissue of the nervous system, blood cells, bone marrow, ovaries, and testes, and other reproductive tissue, mammary tissue, tonsils, melanocytes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the thymus particularly thymic cancer and diseases involving T-cell maturation.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is expressed primarily in human tonsils, and placenta, and to a lesser extent in adipocytes, melanocyte, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: inflammatory diseases, immune diseases, and obesity. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory diseases, immune diseases, and obesity, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., tonsils, placenta, adipocytes, melanocytes, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to this gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases such as inflammation, immune diseases, and obesity.

30

20

25

5

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

This gene is expressed in activated T cells, and to a lesser extent in pituitary, testis, and breast lymph node.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases relating to T cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pituitary, testes and other reproductive tissue, mammary tissue, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of immune disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 35

This gene is expressed primarily in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases relating to neurological disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain, and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

This gene is expressed primarily in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the diseases relating to neurological disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 37

This gene is expressed primarily in human ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ovarian cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the ovarian disorders such as those involving germ cells, ovarian follicles, stromal cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of ovariopathy.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

This gene is expressed primarily in lymph node breast cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the breast cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for used as a diagnostic marker for breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

This gene is expressed primarily in brain and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuronal disorders such as trauma, brain degeneration, and brain tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and therapeutic treatment of neuronal disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 40

This gene is expressed in early stage human embryo, adrenal gland tumor, and immune tissues such as fetal liver, fetal spleen, T-cell, and myoloid progenitor cell line and to a lesser extent in ovary, colon cancer, and a few orther tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumorigenesis including adrenal gland tumor, colon cancer and various other tumors, developmental and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer tissues, early stage human tissues, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, blood cells, bone marrow, ovary and other reproductive tissue, and colon, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and therapeutic treatment of immune and developmental disorders, and tumorigenesis.

25

30

35

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene is expressed primarily in fetal lung, endothelial cells, liver, thymus and a few other immune tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders such as immune deficiency and autoimmune diseases, pulmonary diseases, liver diseases, and tumor matasis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal lung, liver, endothelial cells, and immune tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain

WO 98/39448 PCT/US98/04493

tissues and cell types (e.g., lung, endothelial cells, liver, thymus, and other tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of immune disorders and pulmonary and hepatic diseases. Its promoter may also be used for immune system and lung-specific gene therapies. The expression of this gene in endothelial cells indicates that it may also involve in angiogenesis which therefore may play role in tumor matasis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

5

10

15

20

25

30

This gene is expressed primarily in liver, thyroid, parathyroid and to a lesser extent in fetal lung, stomach and early embryos.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic regulation, obesity, heptic failure, heptacellular tumors or thyroiditis and thyroid tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive/endocrine system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, thyroid, parathyroid, lung, stomach, and embryonic tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and the extracellular locations indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of digestive/endocrine disorders, including metabolic regulation, heptic failure, malabsortion, gastritis and neoplasms.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 43

This gene is expressed primarily in Schizophrenic adult brain, pituitary, front cortex, hypothalmus and to a lesser extent in retina, adipose and stomach cancer and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: schizophrenia and other neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nerve system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., retinal tissue, adipose, stomach, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in treatment/detection of disorders in the nerve system, including schizophrenia, neurodegeneration, and neoplasia. Additionally, a secreted protein in brain may serve as an endocrine.

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

The translation product of this gene shares sequence homology with GTP binding proteins which are thought to be important in signal transduction and protein transport.

This gene is expressed primarily in umbilical vein and microvascular endothelial cells, GM-CSF treated macrophage, anergic T cells, osteoblast, osteoclast, CD34+ cells and to a lesser extent in gall bladder.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: bone formation and growth, osteonecrosis, osteoporosis, angiogenesis and/or hematopoeisis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and hematopoeisis systems, expression of this gene at significantly higher or lower levels

10

15

20

25

30

may be routinely detected in certain tissues and cell types (e.g., endothelial cells, blood cells, bone, and gall bladder, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to GTP binding proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment/detection of bone formation and growth, osteonecrosis, osteoporosis, and/or hematopoeisis because its involvement in the growth signaling or angiogenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with signal sequence receptor gamma subunit which is thought to be important in protein translocation on endoplasmic reticulum.

This gene is expressed primarily in adrenal gland, salivary gland, prostate, and to a lesser extent in endothelial cells and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: protein secretion. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the secretory organs, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adrenal gland, salivary gland, prostate, endothelial cells, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to SSR gamma subunit indicate that polynucleotides and polypeptides corresponding to this gene are useful for endocrine disorders, prostate cancer, xerostomia or sialorrhea.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 46

This gene is expressed primarily in osteoclastoma cells and to a lesser extent in melanocyte, amygdala, brain, and stomach.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ossification, osteoporosis, fracture, osteonecrosis, osteosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., melanocytes, amygdala, brain and other tissue of the nervous system, and stomach, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

33

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in intervention of ossification, osteoporosis, fracture, osteoperosis and osteosarcoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with proline rich proteins which is thought to be important in protein-protein interaction.

This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological and psychological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nerve system and endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to proline-rich proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful in intervention

15

20

25

30

35

and detection of neurological diseases, including trauma, neoplasia, degenerative or metabolic conditions in the central nerve system. Additionally, the gene product may be a secreted by the brain as an endocrine.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 49

The translation product of this gene shares sequence homology with the AOCB gene from Aspergillus nidulans which is important in asexual development.

This gene is expressed primarily in infant brain and to a lesser extent in the developing embryo, trachea tumors, B-cell lymphoma and synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative diseases, leukemia and sarcoma's. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, blood cells, trachea, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in infant brain and sarcoma's and homology to a gene involved in a key step of eukaryotive development (fungal spore formation) indicates that the protein product of this clone could play a role in neurological diseases such as schizophrenia, particularly in infants. The existence of the gene in a B-cell lymphoma indicates the gene may be used in the treatment and detection of leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

This gene is expressed primarily in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: pulmonary disorders including lung cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary system, expression of this gene at significantly higher or

10

15

20

25

30

WO 98/39448 PCT/US98/04493

lower levels may be routinely detected in certain tissues and cell types (e.g., lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

35

The tissue distribution of this gene only in fetal lung indicates that it plays a key role in development of the pulmonary system. This would suggest that misregulation of the expression of this protein product in the adult could lead to lymphoma or sarcoma formation, particularly in the lung. It may also be involved in predisposition to certain pulmonary defects such as pulmonary edema and embolism, bronchitis and cystic fibrosis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 51

This gene is expressed primarily in hematopoietic cell types and fetal cells and to a lesser extent in all tissue types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in the immune system and hematopoeisis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene predominantly in hematopoeitic cells and in the developing embryo indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of lymphomas and disease states affecting the immune system or hematopoeisis disorders such as leukemia, AIDS, arthritis and asthma...

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 52

This gene is expressed primarily in prostate and to a lesser extent in fetal spleen, fetal liver, infant brain and T cell leukemias.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: prostate disorders, prostate cancer, leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, and/or prostate gland expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., thymus, spleen, liver, brain and other tissue of the nervous system, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene in prostate indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection or treatment of prostate disorders or prostate cancer. Its distribution in fetal liver and fetal spleen indicates it may play a role in the immune system and its misregulation could lead to immune disorders such as leukemia, arthritis and asthma.

20

25

30

35

15

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

The translation product of this gene shares sequence homology with dynein. This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuro-degenerative diseases of the brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly neuro-degenerative diseases expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The predominant tissue distribution in the brain and homology to dynein, a microtubule motor protein involved in the positioning of cellular organelles and molecules indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection/treatment of neurodegenerative diseases, such as Alzheimers, Huntigtons, Parkinsons diseases and shizophrenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 54

The translation product of this gene shares sequence homology with ubiquitinconjugation protein, an enzyme which is thought to be important in the processing of the Huntingtons Disease causing gene.

This gene is expressed primarily in brain and to a lesser extent in activated macrophages.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurodegenerative disease states including Huntington's disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of brain tissues. For a number of disorders of the above tissues or cells, particularly of the neurological systems expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The predominant tissue distribution of this gene in the brain and its homology to a Huntington interacting protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the regulation of the expression of the Huntington disease gene and other neurodegenerative diseases including spinocerebullar ataxia types I and III, dentatorubropallidoluysian and spinal bulbar muscular atrophy. In addition, the existence of elevated levels of free ubiquitin pools in Alzheimer's disease, Parkinson's disease and amylotrophic lateral sclerosis indicates that the ubiquitin pathway of protein degradation plays a role in these disease states. Thus, considering the gene described here is homologous to a ubiquitin-conjugation protein it may play a general role in neurodegenarative conditions.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

This gene is expressed primarily in T-cells (anergic T-cells, resting T-Cells, apoptotic T-cells) and lymph node (breast), as well as brain (hypothalamus, hippocampus, pituitary, infant brain, early-stage brain).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune (e.g. immunodeficiencies, autoimmunities, inflammation, leukemias & lymphomas) and neurological (e.g. Alzheimer's disease, dementia, schizophrenia) disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous, hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, lymphoid tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the intervention or detection of pathologies associated with the hematopoietic and immune systems, such as anemias (leukemias). In addition, the expression in brain (including fetal) might suggest a role in developmental brain defects, neuro-degenerative diseases or behavioral abnomalities (e.g. schizophrenia, Alzheimer's, dementia, depression, etc.).

FEATURES OF PROTEIN ENCODED BY GENE NO: 57

This gene is expressed primarily in lung, and to a lesser extent in a variety of other hematological cell types (e.g. Raji cells, bone marrow cell line, activated monocytes).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: pulmonary and/or hematological disfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculo-pulmonary and hematopoietic systems, expression of this

10

15

20

25

30

35

WO 98/39448 PCT/US98/04493

gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

39

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the intervention and detection of pathologies associated with the vasculo-pulmonary system. In addition the expression of this gene in a variety of leukocytic cell types and a bone marrow cell line might suggest a role in hematopoietic and immune system disorders, such as leukemias & lymphomas, inflammation, immunodeficiencies and autoimmunities.

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

The translation product of this gene shares sequence homology with adenylate kinase isozyme 3 (gil163528 GTP:AMP phosphotransferase (EC 2.7.4.10) [Bos taurus]), which is thought to be important in catalyzing the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate.

This gene is expressed primarily in fetal liver, heart and placenta, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatic, cardiovascular or reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic, cardiovascular and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, heart, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions related to hepatic function and pathogenesis, in particular, those dealing with liver development and the differentiation of hepatocyte progenitor cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

5

10

15

20

25

30

35

This gene is expressed primarily in CD34 positive cells (Cord Blood). Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematopoietic differentiation and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in the detection and treatment of conditions associated with CD34-positive cells, and therefore as a marker for cell differentiation in hematapoiesis, as well as immunological disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

fluid from an individual not having the disorder.

The translation product of the predicted open reading frame of this contig has sequence identity to the murine gene designated Insulin-Like Growth Factor-Binding Protein (IGFBP)-1 as described by Lee and colleagues (Hepatology 19 (3), 656-665 (1994)).

This gene is expressed exclusively in hemangiopericytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hemangiopericytoma and other pericyte or endothelial cell proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory and immune systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., pericyte or endothelial cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

41

PCT/US98/04493

Polynucleotides and polypeptides corresponding to this gene are useful as cell growth regulators since IGFBP-1-like molecules function as modulators of insulin-like growth factor activity. In addition, since IGFBP-1 is expressed at high levels following hepatectomy and during fetal liver development, polynucleotides of the present invention may also be used for the diagnosis of developmental disorders. Further, polypeptides of the present invention may be used therapeutically to treat developmental liver disorders as well as to regulate hepatocyte and supporting cell growth following hepatectomy or to treat liver disorders.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hemangiopericytoma and liver disorders.

15

20

25

30

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 61

This gene is expressed primarily in schizophrenic frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: nervous system and cognitive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the frontal cortex and CNS expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, treatment and diagnosis of frontal cortex, neuro-degenerative and CNS disorders

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 62

This gene is expressed primarily in human adrenal gland tumor, and to a lesser extent in human kidney, medulla and adult pulmonary tissue.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic, endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and nervous system disorders and neoplasia, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adrenal gland, kidney, brain and other tissue of the nervous system, pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, treatment and diagnosis of neurological and endocrine disorders including neoplasia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

This gene is expressed primarily in human adipocytes, and to a lesser extent in spleen, 12-week old human, and testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune, metabolic and growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipocytes, spleen, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of immune, developmental and metabolic disorders.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 64

One translated product of this clone is homologous to the mouse zinc finger protein PZF. (See Accession No. 453376; see also Gene 152 (2), 233-238 (1995).) Preferred polypeptide fragments correspond to the highly conserved domains shared between mouse and man. For example, preferred polypeptide fragments comprise the amino acid sequence: LQCEICGFTCRQKASLNWHMKKHDADSFYQFSCNICGKKFEKKDSVVAHKAKSH PEV (SEQ ID NO: 621); ITSTDILGTNPESLTQPSD (SEQ ID NO: 622); NSTSGECLLLEAEGM SKSY (SEQ ID NO: 623); CSGTERVSLMADGKIFVGSGSSGGTEGLVMNSDILGATTEVLIEDSD SAGP (SEQ ID NO: 624); IQYVRCEMEGCGTVLAHPRYLQHHIKYQHLLKKKYVCPHPSCGRLF RLQKQLLRHAKHHT (SEQ ID NO: 625); DQRDYICEYCARAFKSSHNLAVHRMIHTGEK (SEQ ID NO: 626); RSSRTSVSRHRDTENTRSSRSKTGSLQLICKSEPNTDQLDY (SEQ ID NO: 627); PFKDDPRDETYKPHLERETPKPRRKSG (SEQ ID NO: 630); QYVRCEMEGCGTVLAHPRYLQ HHIKYQHLLKKKYVCPHPSCGRLFRLQKQLLRHAKHHTD (SEQ ID NO: 629); or residues 151-182 of QRDYICEYCARAFKSSHNLAVHRMIHTGEKHY (SEQ ID NO: 628). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Rhabdomyosarcoma, melanocyte and colon cancer tissue and to a lesser extent in smooth muscle, pancreatic tumor, and apoptotic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hemopoetic, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., striated muscle, melanocytes, colon, smooth muscle, pancreas, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of cancer and hemopoetic disorders.

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

This gene is expressed primarily in human adipose and salivary gland tissue and to a lesser extent in human bone marrow and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: metabolic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and hemopoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipose, salivary gland, bone marrow, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis of metabolic and immune disorders.

20

25

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

This translated product of this gene was recently identified as oxytocinase splice variant 1. (See Accession Nos. 2209276 and d1010078.) Preferred polypeptide fragments comprise the amino acid sequence: EMFDSLSYFKGSSLLLMLKTYLSEDVFQHAVVLYLHN HSYASIQSDDLWDSFNEVTNQTLDVKRMMKTWTLQKGFPLVTVQKKGKELFIQQERFFLNMKPEIQPSDTRYM (SEQ ID NO: 631). Also preferred are polynucleotide fragments encoding this polypeptide fragment.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

30

35

This gene is expressed primarily in hemopoetic cells, particularly apoptotic Tcells, and to lesser extent in primary dendritic cells and adipose tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of apoptotic T-cells, primary denritic cells, and adipose tissue present in a biological sample and for diagnosis of diseases and conditions: hemopoetic diseases including cancer and general immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

10

15

20

25

30

35

type(s). For a number of disorders of the above tissues or cells, particularly of the oral and intestinal mucosa as well as hemopoetic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of diseases of the immune system, including cancer, hemopoetic and infectious diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 68

This gene is expressed primarily in kidney cortex and to a lesser extent in infant brain, heart, uterus, and blood.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of kidney tissue present in a biological sample and for diagnosis of diseases and conditions: soft tissue cancer, inflammation, kidney fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and endocrines systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, brain, and other nervous tissue, heart, uterus, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of cancer and fibroses.

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

The translation product of this gene shares strong sequence homology with vertebrate and invertebrate protein tyrosine phosphatases.

This gene is expressed primarily in endometrial tumors, melanocytes, myeloid progenitors and to a lesser extent in infant brain, adipocytes, and several hematopoietic stem cells.

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of transformed hematopoietic and epithelial cells present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of skin and endometrium, leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hemopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, melanocytes, bone marrow, adipocytes, hematopoietic cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and sequence similarity with tyrosine phosphatases indicate that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of cancer and hematopoietic disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 70

This gene is expressed primarily in osteoclastoma, breast, and infant brain and to a lesser extent in various fetal and transformed bone, ovarian, and neuronal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: degenerative conditions of the brain and skeleton. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, mammary tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of degenerative, neurological and skeletal disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 71

This gene was originally cloned from tumor cell lines. Recently another group has also cloned this gene, calling it the human malignant melanoma metastasis-suppressor (KiSS-1) gene. (See Accession No. U43527.) Preferred polypeptide fragments comprise the amino acid sequence: LEKVASVGNSRPTGQQLESLGLLA (SEQ ID NO: 632); VHREEASCYCQAEPSGDL (SEQ ID NO: 633); RPALRQAGGGTREPRQKRWAGL (SEQ ID NO: 634); and AVNFRPQRSQSM (SEQ ID NO: 635). Any frame shifts can easily be resolved using known molecular biology techniques.

This gene is expressed primarily in many types of carcinomas and to a lesser extent in many normal organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissues(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly melanomas, and other hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of transformed organ tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. As a tumor suppressor gene, increase amounts of the polypeptide can be used to treat patients having a particular cancer.

The tissue distribution indicates that this gene and the translated product is useful for diagnosing and study of cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 72

This gene is expressed primarily in striatum and to a lesser extent in adipocytes and hemangioperiocytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of striatal cells present in a biological sample and for diagnosis of diseases and conditions: neurological, fat and lysosomal storage

diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., striatal tissue, adipocytes, and vascular tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, study and treatment of neurodegenerative and growth disorders.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 73

This gene is expressed primarily in bone marrow stromal cells and to a lesser extent in smooth muscle, testes, endothelium, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of bone marrow present in a biological sample and for diagnosis of diseases and conditions: connective tissue and hematopoietic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, stromal cells, smooth muscle, testes and other reproductive tissue, endothelium, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of connective tissue and blood diseases.

30

5

10

20

25

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed primarily in brain, fetal liver and lung and to a lesser extent in retina, spinal chord, activated T-cells and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of brain and regenerating liver present in a biological sample and for diagnosis of diseases and conditions: CNS and spinal chord injuries, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, pulmonary tissue, blood cells, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study and treatment of hematopoietic and neurological conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 75

The translation product of this gene shares sequence homology with GTP binding proteins (intracellular).

This gene is expressed primarily in bone marrow, brain, and melanocytes and to a lesser extent in various endocrine and hematopoietic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hematopietic and nervous system conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, melanocytes, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder,

10

15

20

25

30

35

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to nucleotide binding factors indicate that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of brain degenerative, skin and blood diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

This gene is expressed primarily in activated T-cells and to a lesser extent in retina, brain, and fetal bone.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of activated T-cells and developing brain present in a biological sample and for diagnosis of diseases and conditions: immune deficiencies and skeletal and neuronal growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, immune, and skeletomuscular sustems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, brain and other tissue of the nervous system, retinal tissue, and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, study and treatment of cancer, urogenital, and brain degenerative diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This gene is expressed primarily in fetal liver, activated monocytes, osteoblasts and to a lesser extent in synovial, brain, and lymphoid tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of myeloid and lymphoid present in a biological sample and for diagnosis of diseases and conditions: inflammation, immune deficiencies, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and skeleton, expression of this gene at significantly

WO 98/39448 PCT/US98/04493

higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, blood cells, bone, synovial tissue, brain and other tissue of the nervous system, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of lymphoid and mesenchymal cancers and nervous system diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 78

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with polymerase polyprotein precursor which is thought to be important in DNA repair and replication

This gene is expressed primarily in infant brain and to a lesser extent in tumors and tumor cell lines

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, especially of the neural system and developing organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural system expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to polymerase polyprotein precursor indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers especially of the neural system and developing organs

FEATURES OF PROTEIN ENCODED BY GENE NO: 79

This gene is expressed primarily in muscle and endothelial cells and to a lesser extent in brain.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: vascular diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain (e.g., muscle, endothelial cells, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders of the vascular and neural system including cardiovascular and endothelial.

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

This gene is expressed primarily in placenta and to a lesser extent in fetal liver. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: developmental disorders and disorder of the haemopoietic system, fetal liver and placenta. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of developmental disorders and disorder of the haemopoietic system, fetal liver and placenta, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of developmental disorders and disorders of the haemopoietic system, fetal liver and placenta.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

This gene is expressed primarily in bone marrow, placenta and tissues and organs of the hematopoietic system.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorders of the bone and haemopoietic system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, bone and hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone marrow, placenta, and hematopoietic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the immune, bone and hematopoietic system

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

The translation product of this gene shares sequence homology with secretory carrier membrane protein which is thought to be important in protein transport and export. Any frame shifts in coding sequence can be easily resolved using standard molecular biology techniques. Another group recently cloned this gene, calling it SCAMP. (See Accession No. 2232243.)

This gene is expressed primarily in prostate, breast and spleen, and to a lesser extent in several other tissues and organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorders of the breast prostate and spleen. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly disorders of the breast prostate and spleen, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell

15

20

25

30

35

types (e.g., prostate, mammary tissue, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to secretory carrier membrane protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the breast, prostate and spleen.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 83

This gene is expressed primarily in developing organs and tissue like placenta and infant brain and to a lesser extent in developed organs and tissue like cerebellum and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, heart, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases of the neural system including neurological disorders and cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 84

The translation product of this gene shares sequence homology with ATPase 6 in Trypanosoma brucei which is thought to be important in metabolism.

This gene is expressed primarily in tumor and fetal tissues and to a lesser extent in melanocytes, kidney cortex, monocytes and ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

biological sample and for diagnosis of diseases and conditions: metabolism disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissues, melanocytes, kidney, blood cells, ovary and other tissue of the reproductive system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ATPase indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of metabolism disorders, especially in fetal and tumor tissue growth.

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with the immunoglobulin superfamily of proteins which are known to be important in immune response and immunity.

This gene is expressed primarily in stromal cells, colon cancer, lung, amygdala, melanocyte and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of stromal cell development and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the stromal cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., stromal cells, colon, lung, amygdala, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to immunoglobulin indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of immune system disorders.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 86

The translation product of this gene shares sequence homology with transcription iniation factor eIF-4 gamma which is thought to be important in gene transcription.

This gene is expressed primarily in tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in tumor tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to transcription iniation factor eIF-4 gamma indicate that polynucleotides and polypeptides corresponding to this gene are useful for gene regulation in tumorigenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 87

The translation product of this gene shares sequence homology at low level in prolines with secreted basic proline-rich peptide II-2 which is thought to be important in protein structure or inhibiting hydroxyapatite formation in vitro.

This gene is expressed primarily in endometrial tumor and fetal lung. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: endometrial tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscular/skeletal and reproductive systems, expression of this gene at significantly

higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample

WO 98/39448

57

taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to secreted basic proline-rich peptide II-2 indicate that polynucleotides and polypeptides corresponding to this gene are useful for inhibiting hydroxyapatite formation or establishing cell/tissue structure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 88

5

10

30

35

This gene is expressed primarily in: amniotic cells inducted with TNF in culture; and to a lesser extent in colon tissue from a patient with Crohn's Disease; parathyroid tumor; activated T-cells; cells of the human Caco-2 cell line; adenocarcinoma; colon; corpus colosum; fetal kidney; pancreas tumor; fetal brain; early stage brain, and anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 15 biological sample and for diagnosis of diseases and conditions: tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system; e.g., tumors, expression of this gene at significantly higher or lower levels may be 20 routinely detected in certain (e.g., amniotic cells, colon, kidney, pancreas, parathyroid, brain and other tissue of the nervous system, blood cells, hematopoietic cells, liver, spleen, bone, testes and other reproductive tissue, brain and other tissue of the nervous system, and epithelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample 25 taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for modulating tumorigenesis and other immune system conditions such as disorders in immune response.

FEATURES OF PROTEIN ENCODED BY GENE NO: 89

This gene is expressed primarily in fetal liver/spleen and hematopoietic cells and to a lesser extent in brain, osteosarcoma, and testis tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

15

20

25

30

35

biological sample and for diagnosis of diseases and conditions: leukemia and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, liver, spleen, bone, testes, and other reproductive tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopoietic and immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 90

The translation product of this gene shares weak sequence homology with mouse Gcap1 protein which is developmentally regulated in brain.

This gene is expressed primarily in infant and adult brain and fetal liver/spleen and to a lesser extent in smooth muscle, T cells, and a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological or hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, hematopoietic, immune, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, liver, spleen and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and its homology to Gcap1 protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatubg and diagnosis of disorders in neuronal, hematopoietic, immune, and endocrine systems.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 91

This gene is expressed primarily in brain and hematopoietic cells and to a lesser extent in tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disorder in nervous, hematopoietic, immune systems and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the in nervous, hematopoietic, immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of disorders in the nervous, hematopoietic, and immune systems.

25

35

20

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 92

The translation product of this gene shares sequence homology with neuroendocrine-specific protein A which is thought to be important in neurologic systems.

30

This gene is expressed primarily in brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neural disorders and degeneration disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central or peripheral nervous systems, expression of this gene at

significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., hematopoietic cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to neuroendocrine-specific protein A indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of neural disorders and degeneration disease.

10

15

20

25

30

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 93

The translation product of this gene shares sequence homology with collagenlike protein and prolin-rich protein which are thought to be important in connective tissue function and tissue structure.

This gene is expressed primarily in fetal liver/spleen and brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuronal or hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to collagen-like protein and proline-rich proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for supporting brain and hematopoietic tissue function and diagnosis and treatment of disorders in these functions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 94

35

This gene is expressed primarily in embryonic tissues and tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

20

25

30

35

biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system (e.g., tumors), expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancer.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 95

This gene is expressed primarily in brain tumor, placenta, and melanoma. Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain tumor or melanoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain or melanocytes, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, placenta, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the translation product of this gene is useful in the diagnosis and treatment of brain tumors and melanoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 96

The translation product of this gene shares sequence homology with a yeast membrane protein, SUR4, which encodes for APA1 that acts on a glucose-signaling pathway that controls the expression of several genes that are transcriptionally regulated by glucose.

10

This gene is expressed primarily in fetal liver, and to a lesser extent in placenta and breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of fetal liver or defects of glucose-regulated ATPase activities in tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal immune/hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, placenta, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to yeast SUR4 membrane protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of defects of fetal liver or defects of glucose-regulated ATPase activities.

20

25

30

35

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 97

This gene is expressed primarily in fetal liver, brain, and amniotic fluid.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the fetal immune system and adult brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal immune system and adult brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., amniotic fluid, serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for detecting defects of the fetal immune and hematopoietic systems since fetal liver is

15

20

25

30

35

the predominant organ responsible for hematopoiesis in the fetus. In addition, the gene product of this gene is thought to be useful for detecting certain neurological defects of the brain.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 98

The translation product of this gene shares sequence homology with an yolk protein precursor, Vitellogenin which is thought to be important in binding lipids such as phosvitin.

This gene is expressed primarily in amniotic cells and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in amniotic cells, fetal liver development and the fetal immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the [insert system where a related disease state is likely, e.g., immune], expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., amniotic cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to vitellogenin indicate that the protein product of this clone is useful for treatment and diagnosis of defects in amniotic cells, fetal liver development and the fetal immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 99

This gene is expressed primarily in placenta, endometrial tumor, osteosarcoma and stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumor of the endometrium or bone, and osteosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the obstetric system (e.g. placenta,

endometrium) and the bones, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endometrium, bone, and stromal cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumors and abnormalities of the endometrium, and the bones because of its abundance in the aforementioned tissues...

FEATURES OF PROTEIN ENCODED BY GENE NO: 100

5

10

15

20

25

30

35

This gene is expressed primarily in hepatocellular tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hepatocellular tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of hepatocellular cancer because of its abundant expression in this tissue.

FEATURES OF PROTEIN ENCODED BY GENE NO: 101

This gene is expressed primarily in Corpus Colosum, fetal lung and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the Corpus Colosum or defects of the fetal lung. Similarly, polypeptides and antibodies directed to

these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Corpus Colosum and brain in general, and fetal lung, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of defects of the Corpus Colosum and brain in general, and defects of fetal lung.

FEATURES OF PROTEIN ENCODED BY GENE NO: 102 15

10

20

25

30

This gene is expressed primarily in T cells and stromal cells, and to a lesser extent in adrenal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of T cell immunity and stromal cell development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, stromal cells, and adrenal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of defects of T cell immunity and stromal cell development because of its abundant expression in these tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 103 35

This gene is expressed primarily in infant brain and placenta.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of the brain and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, especially brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and placenta, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for detecting defects of the brain, especially in young children.

FEATURES OF PROTEIN ENCODED BY GENE NO: 105

This gene is expressed primarily in human osteoclastoma and to a lesser extent in human pancreas tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly osteoclastoma and pancreatic tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in transformed tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone and pancreas, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of some types of tumors, particularly pancreatic cancer and osteoclastoma.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 106

This gene is expressed primarily in fetal liver/spleen, and to a lesser extent in activated T-Cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of immune disorders.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 107

This gene is expressed primarily in human embryo and to a lesser extent in spleen and chronic lymphocytic leukemia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune or hemopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for the diagnosis and treatment of leukemia.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 108

This gene is expressed primarily in placenta, and to a lesser extent in early stage human brain and in lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: fetal developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly in fetal and amniotic tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, brain and other tissue of the nervous system, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this is useful for production of growth factor(s) associated with fetal development. Preferred polypeptides comprise the full-length polypeptide shown in the sequence listing, truncated however, at the amino terminus and beginning with QTIE.

FEATURES OF PROTEIN ENCODED BY GENE NO: 109

This gene is expressed primarily in fetal spleen, and to a lesser extent in B-Cell lymphoma and T-Cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The tissue distribution indicates that the protein product of this clone is useful for the treatment and diagnosis of human lymphomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 110

The translation product of this gene shares sequence homology with sarcoma amplified sequence (SAS), a tetraspan receptor which is thought to be important in malignant fibrous histiocytoma and liposarcoma.

This gene is expressed primarily in human osteoclastoma, and to a lesser extent in pineal gland and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: malignant fibrous histiocytoma and liposarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, pineal gland, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to sarcoma amplified sequence (SAS) indicate that the protein product of this clone is useful for treatment of, osteosarcoma, malignant fibrous histiocytoma and liposarcoma and related cancers, particularly sarcomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 111

The translation product of this gene shares sequence homology with 6.8K proteolipid protein, mitochondrial - bovine.

This gene is expressed primarily in Wilm's tumor and to a lesser extent in cerebellum and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Wilm's tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

10

15

20

25

30

35

type(s). For a number of disorders of the above tissues or cells, particularly of the immune or renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to 6.8K proteolipid protein indicate that the protein product of this clone is useful for diagnostic and therapeutics associated with tumors, particularly Wilm's tumor disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 112

This gene is expressed primarily in embryonic tissue and to a lesser extent in osteoblasts, endothelial cells, macrophages (GM-CSF treated), and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, bone, endothelial cells, blood cells and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of immune disorders. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: MITDVQLAIFANMLGVSLFLLVVLYHYVAVNNPKKQE (SEQ ID NO: 636).

FEATURES OF PROTEIN ENCODED BY GENE NO: 113

This gene is expressed primarily in hepatocellular tumor, and to a lesser extent in fetal liver/spleen.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors, particularly hepatocellular tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of tumors, particularly hepatocellular tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 114

The translation product of this gene exhibits a very high degree of sequence identity with the human Pig8 gene which is thought to be important in p53 mediated apoptosis. The sequence of this gene has since been published by Polyak and colleagues (Nature 389, 300-306 (1997)). In addition, the predicted translation product of this contig exhibits very high sequence homology with a murine gene denoted as EI24 which is also thought to be important in p53 mediated apoptosis.

This gene is expressed primarily in infant brain and activated T-cells and to a lesser extent in bone marrow, fetal liver, and prostate.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, and tissue damage by radiation and anti-cancer drugs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, bone marrow, liver, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder,

10

15

25

30

35

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to human Pig8 and murine EI24 genes indicate that polynucleotides and polypeptides corresponding to this gene are useful for preventing apoptosis in patients being treated with anti-oncogenic drugs such as etoposide, hydroperoxycyclophosphamide, and X-irradiation, since this protein product is upregulated in cells undergoing such treatment where p53 was overexpressed. It may also be useful in the treatment of hematopoietic disorders and in boosting numbers of hematopoietic stem cells by interfering with the apoptosis of progenitor cells. The mature polypeptide is predicted to comprise the following amino acid sequence: EEMADSVKTFLQDLARGIKDSIWGICTISKLDARIQQKREEQRRRRASSVLAQRRAQSIERKQES **EPRIVSRIFQCCAWNGGVFWFSLLLFYRVFIPVLQSVTARIIGDPSLHGDVWSWLEFFLTSIFSA** LWVLPLFVLSKVVNAIWFQDIADLAFEVSGRKPHPFPSVSKIIADMLFNLLLQALFLIQGMFVSL FPIHLVGQLVSLLHMSLLYSLYCFEYRWFNKGIEMHQRLSNIERNWPYYFGFGLPLAFLTAMQ SSYIISGCLFSILFPLFIISANEAKTPGKAYLFQLRLFSLVVFLSNRLFHKTVYLQSALSSSTSAEK FPSPHPSPAKLKATAGH (SEQ ID NO: 637). Accordingly, polypeptides comprising the foregoing amino acid sequence are provided as are polynucleotides encoded such polypeptides.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 115

This gene is expressed primarily in stromal cells and to a lesser extent in multiple sclerosis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: affecting the nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., stromal cells and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of multiple sclerosis and other autoimmune diseases.

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 116

This gene is expressed primarily in the gall bladder

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: gall stones or infection of the digestive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system or renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., gall bladder and tissue of the digestive system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for possible prevention of digestive disorders where there may be a lack of digestive enzymes produced or in the detection and possible prevention of gall stones.

FEATURES OF PROTEIN ENCODED BY GENE NO: 117

The translation product of this gene shares sequence homology with dystrophin gene which is thought to be important in building and maintenance of muscles.

This gene is expressed primarily in placenta and to a lesser extent in fetal brain and fetal liver, and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: muscular dystropy, Duchenne and Becker's muscular dystropies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal muscle system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, brain and other tissue of the nervous system, muscle, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from

15

20

25

35

an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the dystrophin gene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diseases related the degenerative myopathies that are characterized by the weakness and atrophy of muscles without neural degradation; such as Duchenne and Becker's muscular dystropies.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 118

This gene is expressed primarily in olfactory tissue and to a lesser extent in cartilage.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: connective tissue diseases; chondrosarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the connective tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., olfactory tissue and cartilage, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for tumors of connective tissues, osteoarthritis and the treatment and diagnosis of chondrosarcoma.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 119

This gene is expressed primarily in Activated Neutrophils and to a lesser extent in fetal spleen, and CD34 positive cells from cord blood.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: allergies, defects in hematopoiesis and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential

10

15

20

25

30

35

identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and hematopoiesis system the, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for reducing the allergic effects felt by allergy suffers by neutralizing the activity of the immune system, especially since neutrophils are abundant in persons suffering from allergies and other inflammatory conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 120

The translation product of this gene shares sequence homology with poly A binding protein II which is thought to be important in RNA binding for transcription of RNA to DNA

This gene is expressed primarily in colon and to a lesser extent in brain and immune system.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: colon cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., colon, tissue and cells of the immune system, and brain or other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to poly A binding protein II indicate that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of colon cancer and other disorders of the digestive system.

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 121

The translation product of this gene shares sequence homology with thymidine diphosphoglucose 4.6 dehydrase which is thought to be important in the metabolism of sugar.

This gene is expressed primarily in fetal liver and spleen and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diabetes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to thymidine diphospoglucose 4.6 dehydrase indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of persons with diabetes since it appears that this protein is needed in the metabolism of sugar in to its more basic components.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 122

The translation product of this gene shares sequence homology with ceruloplasmin which is thought to be important in the metabolism and transport of iron and copper. Ceruloplasmin also contains domains with homology to clotting factors V and VIII. Defects in the circulating levels of ceruloplasmin (aceruloplasminemia) have been associated with certain disease conditions such as Wilson disease, and the accompanying hepatolenticular degeneration.

This gene is expressed primarily in brain and retina and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases marked by defects in iron metabolism; accruloplasminemia not characterized by defects in the

WO 98/39448 PCT/US98/04493

77

known ceruloplasmin gene locus; nonclassical Wilson disease; movement disorders; and tumors derived from a brain tissue origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, retina, and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, retinal tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ceruloplasmin indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of patients with aceruloplasminemia, or other defects in iron and/or copper metabolism. Mutations in this locus could also be diagnostic for patients currently experiencing or predicted to experience aceruloplasminemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 123

10

15

20

25

30

35

This gene is expressed primarily in brain and B cell lymphoma and to a lesser extent in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: B cell lymphoma; tumors and diseases of the brain and/or spleen; hematopoietic defects. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, blood cells, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disorders in neuronal,

hematopoietic, and immune systems. It could potentially be useful for neurodegenerative disorders and neuronal and/or hematopoietic cell survival or proliferation.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 124

This gene is expressed primarily in osteoclastoma, dermatofibrosarcoma, and B cell lymphoma and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer in particular osteoclastoma, dermatofibrosarcoma, and B cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, immune, and circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, epidermis, blood cells, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers and lymphoma; osteoporosis; and the control of cell proliferation and/or differentiation.

25

30

35

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 125

This gene is expressed primarily in immune tissues and hematopoietic cells, particularly in activated T cells and neutrophils, spleen, and fetal liver, and to a lesser extent in infant adrenal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects in T cell activation; hematopoietic disorders; tumors of a hematopoietic and/or adrenal gland origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and/or endocrine systems, expression of this gene at significantly higher

10

15

20

25

30

79

or lower levels may be routinely detected in certain tissues and cell types (e.g., cells and tissues of the immune system, hematopoietic cells, blood cells, liver, and adrenal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune and/or hematopoietic disorders; diseases related to proliferation and/or differentiation of hematopoietic cells; defects in T cell and neutrophil activation and responsiveness; and endocrine and/or metabolic disorders, particularly of early childhood.

FEATURES OF PROTEIN ENCODED BY GENE NO: 126

This gene is expressed primarily in placenta and endothelial cells and to a lesser extent in melanocytes and embryonic tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of an endothelial cell origin; angiogenesis associated with tumor development and metastasis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system and developing embryo, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endothelial cells, melanocytes, and embryonic tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of developmental disorders; inhibition of angiogenesis; and vascular patterning.

FEATURES OF PROTEIN ENCODED BY GENE NO: 127 35

This gene is expressed primarily in endothelial cells and hematopoietic tissues, including spleen, tonsils, leukocytes, and both B- and T-cell lymphomas.

10

15

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of an endothelial cell and/or hematopoietic origin; leukemias and lymphomas. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endothelial cells, hematopoietic cells, spleen, tonsils, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the manipulation of angiogenesis; the differentiation and morphogenesis of endothelial cells; the proliferation and/or differentiation of hematopoietic cells; and the commitment of hematopoietic cells to distinct cell lineages.

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 128

This gene is expressed primarily in kidney medulla and to a lesser extent in spleen from chronic myelogenous leukemia patients, prostate cancer, and some other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of a kidney origin; chromic myelogenous leukemia; prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney and spleen, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., kidney, spleen, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of kidney disorders and cancer, particularly chromic myelogenous leukemia and prostate cancer. It may also be useful for the enhancement of kidney tubule regeneration in the treatment of acute renal failure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 129

This gene is expressed primarily in adult and infant brain and to a lesser extent in mesenchymal or fibroblast cells, as well as tissues with a mesenchymal origin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors of a brain and/or mesenchymal origin; neurodegenerative disorders; cancer; fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and of mesenchymal cells and tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of tumors of a brain and/or mesenchymal origin; neurodegenerative disorders; cancer; and fibrosis, based upon the expression of this gene within those tissues. Fibrosis is considered as mesenchymal cells and fibroblasts are the primary cellular targets involved in this pathological condition.

30

35

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 130

This gene is expressed primarily in hepatocellular cancer and to a lesser extent in fetal tissues as well as testes tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: liver cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

10

15

20

25

30

35

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, fetal tissue, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 131

This gene is expressed only in infant early brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: development and diseases of the nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the brain in children and in treating nervous system disorders such as Alzheimer's disease, schizophrenia, dementia, depression, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 132

This gene is expressed primarily in brain and to a lesser extent in glioblastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Alzheimer's disease,

10

20

25

30

35

83

schizophrenia, depression, mania, and dementia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating brain disorders such as Alzheimer's disease, schizophrenia, depression, mania, and dementia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 133 15

The translation product of this gene shares sequence homology with ribitol dehydrogenase of bacteria which is thought to be important in metabolism of sugars.

This gene is expressed primarily in macrophage and to a lesser extent in T-cell lymphoma and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tissue destruction in inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ribitol dehydrogenase indicate that polynucleotides and polypeptides corresponding to this gene are useful for altering macrophage metabolism in diseases such as inflammation where macrophages are causing excess tissue destruction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 134

5

10

15

25

30

35

This gene is expressed primarily in pancreatic tumor and to a lesser extent in synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to,. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine and connective tissue systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pancreas, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing various cancers.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 135

This gene is expressed primarily in T cell lines such as Raji and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune system disorders and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing inflammatory diseases

10

15

20

25

30

35

such as rheumatoid arthritis, sepsis, inflammatory bowel disease, and psoriasis, as well as neutropenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 136

The translation product of this gene shares high sequence homology with SAR1 subfamily of GTP-binding proteins which is thought to be important in vesicular transport in mammalian cells.

This gene is expressed primarily in serum-stimulated smooth muscle cells and to a lesser extent in a T-cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: diseases affecting vesicular transport. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to GTP-binding proteins indicate that polynucleotides and polypeptides corresponding to this gene are useful for gene therapy in treating the large number of diseases involved in defective vesicular transport within cells..

FEATURES OF PROTEIN ENCODED BY GENE NO: 137

The translation product of this gene shares sequence homology with a protein found in *C. elegans* cosmid F25B5.

This gene is expressed primarily in a fetal tissues and to a lesser extent in melanocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal fetal development, especially of the pulmonary system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

15

20

25

30

35

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal pulmonary system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissue, pulmonary tissue, and melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases affecting the pulmonary system, such as emphysema.

FEATURES OF PROTEIN ENCODED BY GENE NO: 138

This gene is expressed primarily in gall bladder and to a lesser extent in smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: digestive system disease and gall bladder problems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., gall bladder and tissue of the digestive system, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the digestive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 139

This gene is expressed primarily in placenta and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal fetal development. Similarly, polypeptides and antibodies directed to these polypeptides are

10

15

20

25

30

35

useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of developing tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating and diagnosing abnormal fetal development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 140

This gene is expressed primarily in smooth muscle and to a lesser extent in ovary, prostate cancer, and activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hypertension and atherosclerosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., smooth muscle, ovary and other reproductive tissue, prostate, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases of the circulatory system, such as hypertension, atherosclerosis, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 141

This gene is expressed primarily in fetal spleen and to a lesser extent in placenta and bone marrow.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: anemia and other diseases affecting blood cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen, placenta, bone marrow, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the generation of red and white blood cells and for the diagnosis of disease of these cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 142

The predicted translation product of this contig is a human homolog of the murine tetracycline/sugar transporter molecule recently reported by Matsuo and colleagues (Biochem. Biophys. Res. Commun. 238 (1), 126-129 (1997)).

This gene is expressed primarily in synovium and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: rheumatoid arthritis and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and lymphatic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammatory diseases, such as rheumatoid arthritis, leukemia, neutropenia, inflammatory bowel disease, psoriasis, sepsis, and the like.

5

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 143

This gene is expressed primarily in placenta and to a lesser extent in melanocyte, fetal liver and spleen, and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: abnormal early development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, melanocytes, liver, spleen, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of abnormal early development phenomena and diseases.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 144

This gene is expressed primarily in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: anemia and neutropenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and blood systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the

10

15

20

25

30

35

expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful in hematopoeisis and bone marrow regeneration as it is most abundant in fetal tissues responsible for the generation of hematopoeitic cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 145

The translation product of this gene shares sequence homology with protein tyrosine phosphatase which is thought to be important in transducing signal to activate cells such as T cell, B cell and other cell types.

This gene is expressed primarily in T cells and tissues in early stages of development and to a lesser extent in cancers.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-related diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic and fetal tissue, undifferentiated cells, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the protein tyrosine phosphatase family indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating the immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 146

This gene is expressed primarily in T cell and to a lesser extent in B cell, macrophages and tumor tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in

10

15

20

25

30

35

providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating the immune system therefore can be used in treating diseases such as autoimmune diseases and cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 147

This gene is expressed primarily in placenta and to a lesser extent in endothelial cells, testis tumor, ovarian cancer, uterine cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, endothelial cells, testis and ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 148

This sequence has significant homology to mouse torsin A. Recently, another group cloned the human Torsin A gene. (See, Accession No. 2358279; see also Nature Genet. 17, 40-48 (1997).)

This gene is expressed primarily in osteoclastoma, T-cell, and placenta and to a lesser extent in fetal lung, fetal liver, fetal brain, adult brain and tumor tissues

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: disease conditions in hematopoiesis and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, bone, placenta, lung, liver, and brain and other tissues of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating blood related diseases such as deficiencies in red blood cell, white blood cell, platelet and other hematopoiesis cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 149

This gene is expressed primarily in T cell, prostate and prostate cancer, endothelial cells and to a lesser extent in monocyte, dendritic cell, bone marrow, salivary gland, colon cancer, stomach cancer, pancreatic tumor, uterine cancer, fetal spleen and osteoclastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immuno-related diseases and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, prostate, endothelial cells, dendritic cells, bone marrow, salivary gland, colon, stomach, pancreas, uterus, spleen and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 150

This gene was recently cloned by another group, calling it eIF3-p66. (See Accession No. 2351378.) This gene plays a role in RNA binding and macromolecular assembly, and therefore, any mutations in this gene would likely result in a diseased phenotype. Preferred polypeptide fragments comprise the amino acid sequence:

MAKFMTPVIQDNPSGWGPCAVPEQFRDMPYQPFSKGDRLGKVADWTGATYQDKRYTNKYSS QFGGGSQYAYFHEEDESSFQLVDTARTQKTAYQRNRMRFAQRNLRRDKDRRNMLQFNLQILP KSAKQKERERIRLQKKFQKQFGVRQKWDQKSQKPRDSSVEVRSDWEVKEEMDFPQLMKMRY LEVSEPQDIECCGALEYYDKAFDRITTRSEKPLRXXKRIFHTVTTTDDPVIRKLAKTQGNVFATD AILATLMSCTRSVYSWDIVVQRVGSKLFFDKRDNSDFDLLTVSETANEPPQDEGNSFNSPRNL AMEATYINHNFSQQCLRMGKERYNFPNPNPFVEDDMDKNEIASVAYRYRSGKLGDDIDLIVRC EHDGVMTGANGEVSFINIKTLNEWDSRHCNGVDWRQKLDSQRGAVIATELKNNSYKLARWTC CALLAGSEYLKLGYVSRYHVKDSSRHVILGTQQFKPNEFASQINLSVENAWGILRCVIDICMKL EEGKYLILKDPNKQVIRVYSLPDGTFSS (SEQ ID NO: 638), as well as N-terminal and C-terminal deletions of this polypeptide fragment.

This gene is expressed primarily in T cell, bone marrow, embryo and endothelial cells and to a lesser extent in testis tumor and endometrial tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune diseases and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune disorders and cancers.

30

5

10

15

20

25

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 151

This gene is expressed primarily in testis and to a lesser extent in T cell, spinal cord, placenta, neutrophil and monocyte.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: male reproductive and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive, immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testis and other reproductive tissue, blood cells, tissue of the nervous system, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating immune and reproductive functions.

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 152

The translation product of this gene shares sequence homology with tyrosyltRNA synthetase which is thought to be important in cell growth.

This gene is expressed primarily in brain, liver, keratinocytes, tonsils, and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer autoimmune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, keratinocytes, tonsils, heart expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissues of the nervous system, liver, keratinocytes, tonsils and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard

10

15

20

25

30

gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to tyrosyl-tRNA synthetase indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating cell growth.

FEATURES OF PROTEIN ENCODED BY GENE NO: 153

This gene is homologous to the Drosophila transcriptional regulator dre4. (See Accession No. 2511745.) Dre4 is a gene required for steroidogenesis in Drosophila melanogaster and encodes a developmentally expressed homologue of the yeast transcriptional regulator CDC68. Preferred polypeptide fragments comprise the amino acid sequence: KKRHTDVQFYTEVGEITTDLGKHQHMHDRDDLYAEQMEREMRHKLKTAFKN FIEKVEALTKEELEFEVPFRDLGFNGAPYRSTCLLQPTSSALVNATEWPPFVVTLDEVELIHFXR VQFHLKNFDMVIVYKDYSKKVTMINAIPVASLDPIKEWLNSCDLKYTEGVQSLNWTKIMKTIVD DPEGFFEQGGWSFL (SEQ ID NO: 639), as well as N-terminal and C-terminal deletions of this fragments. Also preferred are polynucleotide fragments encoding this polypeptide fragment.

This gene is expressed primarily in fetal liver, spleen, placenta, lung, T cell, thyroid, testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain tumor, heart and liver diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal liver, spleen, placenta, lung, T cell, thyroid, testes expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, placenta, lung, blood cells, thyroid, and testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 154

This gene is expressed primarily in brain and to a lesser extent in fetal heart, testis, spleen, lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: heart, liver and spleen diseases, immunological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, fetal heart, testis, spleen, lung expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, heart, testes and other reproductive tissue, spleen, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 155

Activation of T cells through the T cell antigen receptor (TCR) results in the rapid tyrosine phosphorylation of a number of cellular proteins, one of the earliest being a 100 kDa protein. This gene is the human equivalent of murine valosin containing protein (VCP). VCP is a member of a family of ATP binding, homo-oligomeric proteins, and the mammalian homolog of Saccharomyces cerevisiae cdc48p, a protein essential to the completion of mitosis in yeast. Both endogenous and expressed murine VCP are tyrosine phosphorylated in response to T cell activation. Thus we have identified a novel component of the TCR mediated tyrosine kinase activation pathway that may provide a link between TCR activation and cell cycle control.

This gene is expressed primarily in brain, liver, spleen, placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, spleen, placenta expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, spleen, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from

an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

97

The tissue distribution and homology to VCR indicate that polynucleotides and polypeptides corresponding to this gene are useful for treating cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 156

The translation product of this gene shares sequence homology with rat growth response protein which is thought to be important in cell growth. A group recently cloned the human homolog of this gene, calling it insulin induced protein 1. (See Accession No. 2358269, see also, Genomics 43 (3), 278-284 (1997).) Preferred polypeptide fragments comprise the amino acid sequence: RSGLGLGITIAFLATLITQF LVYNGVYQYTSPDFLYIRSWLPCIFFSGGVTVGNIGRQLAMGVPEKPHSD (SEQ ID NO: 640). as well as N-terminal and C-terminal deletions of this polypeptide fragment. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain, liver, placenta, heart, spleen, lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, liver, placenta, heart, spleen. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, placenta, heart, spleen, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to growth-response protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for modulating cell growth.

30

5

10

15

20

25

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 157

This gene is expressed primarily in Glioblastoma, endometrial tumor, lymphoma and pancreas tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Glioblastoma, Endometrial tumor, lymphoma and pancreas tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, lymphoid tissue, pancreas, and tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 158

The translation product of this gene shares sequence homology with IGE receptor which is thought to be important in allergy and asthma.

This gene is expressed primarily in T cell, and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: allergy and asthma and other immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution and homology to IgE receptor indicate that polynucleotides and polypeptides corresponding to this gene are useful for allergy and asthma.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 159

The translation product of this gene shares sequence homology with immunoglobin heavy chain which is thought to be important in immune response to the antigen.

This gene is expressed primarily in activated neutrophil and to a lesser extent in activated T cell, monocyte and heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: infection, inflammation and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to immunoglobin heavy chain variable region indicate that polynucleotides and polypeptides corresponding to this gene are useful for making the ligand to block specific antigen which cause certain disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 160

The translation product of this gene shares sequence homology with mouse X inactive specific transcript protein which is thought to be important in X chromosome inactivation.

This gene is expressed primarily in HSA172 cell and to a lesser extent in normal ovary tissue, ovarian cancer, frontal cortex and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ovarian tumor, schizophrenia and other neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for

10

15

20

25

30

35

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., ovary and other reproductive tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to X inactive specific transcript protein indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of reproductive system tumors and CNS tumors.

FEATURES OF PROTEIN ENCODED BY GENE NO: 161

This gene is expressed primarily in adipose cell and to a lesser extent in liver and prostate.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: obesity and liver disorder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the adipose cell, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., adipose cells, liver, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of obesity and liver disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 162

The translation product of this gene shares sequence homology with yeast ubiquitin activating enzyme homolog which is thought to be important in protein posttraslation processing.

This gene is expressed primarily in stromal cell and to a lesser extent in retina, H. Atrophic Endometrium, colon carcinoma and myeloid progenitor cell.

101

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: defects of stromal cell development, neuronal growth disorders and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., retinal cells, endometrium, colon, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ubiquitin-activating enzyme homolog indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of some type of tumors, fucosidosis and neuronal growth disorders.

20

25

30

35

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 163

This gene is expressed primarily in primary breast cancer and hemangiopericytoma and to a lesser extent in adult brain and cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer, leukemia and cerebellum disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of various tumors and disease involved in neural system.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 164

The translation product of this gene shares sequence homology with proline rich proteins. Recently, another group has also cloned this gene, calling it CD84 leukocyte antigen, a new member of the Ig superfamily. (See Accession No. U82988, see also, Blood 90 (6), 2398-2405 (1997).)

This gene is expressed primarily in Weizmann olfactory tissue and osteoclastoma and to a lesser extent in anergic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: ostsis and immune disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., olfactory tissue, bone, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the Ig superfamily indicate that the protein product of this clone is useful for treatment of osteoporosis, autoimmune disease, and other immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 165

This gene is expressed primarily in atrophic endometrium and colon cancer and to a lesser extent in some fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system,

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endometrium, colon, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumors, specifically endometrium and colon tumors.

10

15

20

25

30

35

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 166

This gene is expressed primarily in human primary breast cancer and to a lesser extent in activated monocyte. Although the predicted signal sequence is identified in Table 1, other upstream sequences are also relevant. Preferred polypeptide fragments comprise the amino acid sequence: VTQPKHLSASMGGSVEIPFSFYYPWELAXXPXVRISWRRGHFHG QSFYSTRPPSIHKDYVNRLFLNWTEGQESGFLRISNLRKEDQSVYFCRVELDTRRSG (SEQ ID NO: 641), as well as N-terminal and C-terminal deletions. Also preferred are polypucleotide fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 167

This gene is expressed primarily in fetal tissues and to a lesser extent in adult lung. This gene has also been mapped to chromosomal location 9q34, and thus, can be used as a marker for linkage analysis for chromosome 9.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryo tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissues, and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 168

The translation product of this gene shares sequence homology with Ig Heavy Chain which is thought to be important in immune response.

This gene is expressed primarily in prostate cancer tissue specifically

Therefore, polynucleotides and polypeptides of the invention are useful as
reagents for differential identification of the tissue(s) or cell type(s) present in a
biological sample and for diagnosis of diseases and conditions: prostate cancer.

Similarly, polypeptides and antibodies directed to these polypeptides are useful in
providing immunological probes for differential identification of the tissue(s) or cell
type(s). For a number of disorders of the above tissues or cells, particularly of the
prostate, expression of this gene at significantly higher or lower levels may be routinely
detected in certain tissues and cell types (e.g., prostate, tissue and cells of the immune
system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,
urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an
individual having such a disorder, relative to the standard gene expression level, i.e.,
the expression level in healthy tissue or bodily fluid from an individual not having the
disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 169

The translation product of this gene shares sequence homology with cytosolic acyl coenzyme-A hydrolase, which is thought to be important in neuron-specific fatty acid metabolism. The gene represented by this contig has since been published by Hajra and colleagues (GenBank Accession No. U91316).

This gene is expressed primarily in human pituitary gland and to a lesser extent in colorectal cancer tissue. This gene has also been observed in the LNCAP cell line.

105

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: hyperlipidemias of familial and/or idiopathic origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly blood, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., pituitary and colon, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to rat cytosolic acyl coenzyme-A hydrolase indicate that polynucleotides and polypeptides corresponding to this gene are useful for the detection or treatment of hyperlipidemia disease states by virtue of the ability of specific drugs to activate the enzyme.

20

25

30

35

15

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 170

The translation product of this gene shares sequence homology with a *Caenorhabditis elegans* gene which is thought to be important in organism development.

This gene is expressed primarily in human synovial sarcoma tissue, bone marrow, and to a lesser extent in human brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, of bone, specifically synovial sarcoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, connective tissues and possibly immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, bone marrow, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another

10

15

20

25

30

35

tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Caenorhabditis elegans indicate that polynucleotides and polypeptides corresponding to this gene are useful as a diagnostic and/or therapeutic modality directed at the detection and/or treatment of connective tissue sarcomas or other related bone diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 171

The translation product of this gene shares sequence homology with beta1-6GlcNAc transferase which is thought to be important in the transfer and metabolism of beta1-6, N-acetylglucosamine. This gene product has previously been shown to suppress melanoma lung metastasis in both syngeneic and nude mice, decreased invasiveness into the matrigel, and inhibition of cell attachment to collagen and laminin without affecting cell growth.

This gene is expressed primarily in human testes and prostate tissues, and to a lesser extent in kidney, medulla, and pancreas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer particularly melanoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., testes and other reproductive tissue, prostate, kidney, pancreas, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to beta1-6GlcNAc transferase indicate that the protein product of this clone is useful for the development of diagnostic and/or therapeutic modalities directed at the detection and/or treatment of cancer, the metastasis of malignant tissue or cells. Defects in this potentially secreted enzyme may play a role in metastasis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 172

This gene is expressed primarily in fetal spleen and liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: immune disorders, Wilm's tumor disease, hepatic disorders, and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., spleen and liver, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and identification of fetal defects along with correcting diseases that affect hematopoiesis and the immune system.

20

25

30

35

15

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 173

The translation product of this gene shares sequence homology with ret II oncogene which is thought to be important in Hirschsprung disease and many types of cancers.

This gene is expressed in multiple tissues including the lymphatic system, brain, and thyroid.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: Hirschsprung disease and multiple cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lymphoid tissue, thyroid, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

10

15

20

25

30

35

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ret II oncogene indicate that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of various cancers. It would also be useful for the diagnosis and treatment of Hirschsprung disease. Preferred polypeptides of the invention comprise the amino acid sequence: MEAQQVNEAESAREQLQXLHDQIAGQKASKQELETELERLKQEFHYIEEDLY RTKNTLQSRIKDRDEEIQKLRNQLTNKTLSNSSQSELENRLHQLTETLIQKQTMLESLSTEKNSL VFQLERLEQQMNSASGSSSNGSSINMSGIDNGEGTRLRNVPVLFNDTETNLAGMYGKVRKAAS SIDQFSIRLGIFLRRYPIARVFVIIYMALLHLWVMIVLLTYTPEM HHDQPYGK (SEQ ID NO: 642).

FEATURES OF PROTEIN ENCODED BY GENE NO: 174

The translation product of this gene shares sequence homology with testis enhanced gene transcript which is thought to be important in regulation of human development.

This gene is expressed primarily in infant brain and to a lesser extent in a variety of other tissues and cell types, including the prostate, testes, monocytes, macrophages, dendritic cells, keratinocytes, and adipocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neurological, developmental, immune and inflammation disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, prostate, testes and other reproductive tissue, blood cells, keratinocytes, and adipocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to testis enhanced gene transcript indicate that the protein product of this clone is useful for diagnosis and treatment of disorders involving the developing brain and the immune system.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 175

This gene is expressed primarily in prostate and to a lesser extent in various other tissues, including placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers, especially of the prostate. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., prostate and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone is useful for diagnosis and treatment of prostate disorders and cancer. It may also be useful for the diagnosis and treatment of endocrine disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 176

The translation product of this gene shares sequence homology with *Sacchromyces cerevisiae* YNT20 gene which is thought to be important in mitochondrial function.

This gene is expressed at a particularly high level in muscle tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases related to such tissues and cell types including: muscle wasting diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuromuscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., muscle and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the YNT20 gene indicate that this protein is useful for treatment and detection of neuromuscular diseases caused by loss of mitochondrial function. For example this gene or its protein product could be used in replacement therapy for such diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 177

5

10

15

20

25

30

35

This gene is expressed primarily in the brain and to a lesser extent in kidney, placenta, smooth muscle, heart and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: neuromuscular diseases, degenerative diseases of the central nervous system, and heart disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuromuscular system, central nervous system, and heart, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, kidney, placenta, muscle, heart and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

This gene or its protein product could also be used for replacement therapy for the above mentioned diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 178

The translation product of this gene shares sequence homology with caldesmon which is thought to be important in the cellular response to changes in glucose levels.

This gene is expressed primarily in multiple tissues including brain and retina.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: central nervous system disorders and retinopathy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for identification of the tissue(s) or cell

10

15

20

25

30

35

WO 98/39448 PCT/US98/04493

111

type(s). For a number of disorders of the above tissues or cells, particularly of the CNS disorders and retinopathy, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, and retinal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to caldesmon indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of retinopathies.

FEATURES OF PROTEIN ENCODED BY GENE NO: 179

The translation product of this gene shares sequence homology with mouse fibrosin protein, which is thought to be important in regulation of fibrinogenesis in certain chronic inflammatory diseases.

This gene is expressed primarily in amniotic cells and breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of breast cancer and abnormal embryo development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., amniotic cells, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to fibrosin indicate that the protein product of this clone is useful for treatment of breast cancer. This gene or its protein product could be used in replacement therapy for breast cancer. In addition the protein product of this gene is useful in the treatment of chronic inflammatory diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 180

This gene is expressed several infant tissues including brain and liver and various adult tissues including brain, lung, liver, testes, and prostate.

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, brain cancer, lung cancer, liver cancer and cancers of the reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, hepatic system, and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, lung, liver, testes and other reproductive tissue, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene product indicates that the protein product of this clone is involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 181

This gene is expressed primarily in activated monocytes and to a lesser extent in melanocytes and dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of immune system diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, melanocytes, and dendritic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of this clone could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 182

This gene is expressed primarily in placenta and several tumors of various tissue origin and to a lesser extent in normal tissues including liver, lung, brain, and skin,

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of cancers of all kinds. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, respiratory system and skin, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, lung, brain and other tissues of the nervous system, and skin, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The high expression of this gene in multiple tumors indicates that the protein product of the clone may be involved in cell growth control and therefore would be useful for treatment of certain cancers. Likewise molecules developed to block the activity of the protein product of this clone could be used to block its potential role in tumor growth promotion.

FEATURES OF PROTEIN ENCODED BY GENE NO: 183

The translation product of this gene shares sequence homology with the mouse Ndr1 gene which is thought to be important in cancer progression.

This gene is expressed multiple cell types and tissues including brain, lung, kidney, bone marrow, liver, and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of all types of cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous, immune, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, lung, kidney, bone marrow, liver and spleen, and cancerous and wounded

tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Ndr1 gene, which is thought to be involved in cancer progression, indicate that polynucleotides and polypeptides corresponding to this gene are useful for treatment of certain cancers. Likewise molecules developed to block the activity of the protein product of this clone could be used to block its potential role in tumor growth promotion.

10

15

20

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 184

This gene is expressed primarily in early stage human brain and liver and to a lesser extent in several other fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions: brain and liver cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, liver, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

30

35

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 185

This gene is expressed primarily in infant and embryonic brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of degenerative nervous system disorders and brain cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., embryonic tissue, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

PCT/US98/04493

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 186

10

15

20

25

30

This gene is expressed primarily in multiple tissues including placenta, fetal lung, fetal liver, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of all types of cancers including liver, brain and lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, pulmonary system, and hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., placenta, lung, liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene in embryonic tissues indicates that the protein could be involved in growth regulation and could be used as a growth factor or growth blocker in a variety of settings including treatment of cancers.

Last AA of ORF	22	22	128	33	28	28
First Last Predicted AA AA First AA I of of of of Sig Sig Secreted Pep Pep Portion C	19	19	31	21	25	25
Last AA of Sig Pep	18	8	30	20	24	24
First AA of Sig Pep	1	I	1	1		
XÖ. YÖ.	313	499	314	200	315	501
S' NT OF POST OF STREET OF	177	442	81	196		35
Start Odon	177	442	81		-	35
3' NT of Clone Seq.	582	830	465	343	474	319
S' NT 3' NT of of Clone Clone Seq. Seq.	_	296	-	229	_	
Total NT Seq.	582	1020	465	524	474	332
× S B S X	Ξ	197	12	198	13	199
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	ZAP Express
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HTTEZ21	HTTEZ21	HBGBW52	HBGBW52	HCUFM41	HCUFM41
Gene No.			2	2	6	8

Last AA of ORF	64	21	39	33	8	23
First Last Predicted AA AA First AA of of of Sig Sig Secreted Pep Portion	35	61	23	27	45	22
Last AA of Sig Pep	34	18	22	26	44	21
First AA of Sig Pep	_	!	I	1	I	1
AA SEQ ID NO: Y	316	317	318	319	320	321
S' NT of AA F First SEQ AA of D Signal NO: Pep Y	122	30	239	278	11	129
5' NT of Start Codon	122	30	239	278	11	129
3' NT of Clone Seq.	298	613	356	414	469	550
S' NT 3' NT of of Clone Clone Seq.	-			185	-	
Total NT Seq.	314	613	356	414	469	550
NT SEQ ID NO:	14	15	16	17	81	19
Vector	ZAP Express	ZAP Express	ZAP Express	ZAP Express	pCMVSport 3.0	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	нсиғ022	HCUFV01	HCUGA50	HCUIM14	HLDOU93	HEIAX07
Gene No.	4	5	9	7	∞	6

Last AA of ORF	15	27	42	19	196	29
of AA First Last Predicted of AA First AA I Color of Of Of Of Of Of Of Signal NO: Sign Signer Secreted NO: Pep Pep Portion Color of	6		31		31	
Last AA of Sig Pep	∞		30		30	
First AA of Sig Pep		1	1		_	-
AA SEQ ID NO: Y	502	322	323	503	324	504
5' NT of First AA of Signal Pep	-	190	62	409	2	109
of of Start		190	62		64	109
3' NT of Clone Seq.	376	741	991	1137	653	513
S' NT 3' NT of of Clone Clone Seq. Ceq.	6	55	-	253	-	_
Total NT Seq.	376	741	166	1192	653	589
FS BS×	200	20	21	201	22	202
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HEIAX07	HSAXR76	HNGJJ68	HNGJJ68	HCFAW04	HCFAW04
Gene No.	6	10	=	=	12	12

Last AA of ORF	252	75	10	207	89	36	84
First Last Predicted of of of Sig Sig Secreted Pep Pep Portion C	55	31		34	22	26	31
Last AA of Sig Pep	54	30		33	21	25	30
First AA of Sig Pep	1		1	Ī	I	1	-
AA SEQ ID NO: Y	325	505	909	507	326	208	327
S' NT OF PRICE OF AA FE SEQ AA of DE SIGNAL NO: SPEP Y I	102		069	100	1242	303	304
S' NT of Start Codon	102	87	•	100	1242	303	304
3' NT of Clone Seq.	1418	839	850	1354	2059	1226	683
5' NT of Clone Seq.	965		75	54	1017 2059	113	
Total NT Seq.	1486	847	852	1354	2323	1378	683
X SEQ	23	203	204	205	24	206	25
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	209235 09/04/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HLMAV65	HLMAV65	HLMAV65	HTXEF04	HPMFD84	HPMFD84	HE6DB26
Gene No.	13	13	13	13	14	14	15

Last AA of ORF	19	36	63	. 32	35	23
Predicted First AA of Secreted Portion	19	21	31	32	25	20
Last AA of Sig Pep	18	20	30	31	24	19
First AA of Sig Pep	1	1	1	-	1	1
AA SEQ D NO: Y	605	328	329	510	330	331
5' NT of AA II First SEQ AA of ID Signal NO: Pep Y	567	214	0/_	33	39	116
of of Start Codon	567	214	70	33	39	116
3' NT of Clone Seq.	884	1959	717	269	495	556
S' NT 3' NT of of Clone Clone Seq. Seq.	281	14		2	1	1
Total NT Seq.	1166	2036	717	<i>1</i> 69	495	556
XÖ: BÖ	207	26	27	208	28	29
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HE6DB26	НН FFL33	НОДВДЗЗ	HODBD33	HMDAE90	HOUAW01
Gene No.	15	16	17	17	18	19

Last AA of ORF	40	=	78	901	50	26
Predicted First AA of Secreted Portion	36	31	78	22	31	26
Last AA of Sig Pep	35	30	27	21	30	25
First AA of Sig Pep		1	_	-	-	1
AA SEQ ID NO: Y	332	333	511	334	335	512
S' NT of AA Frirst SEQ AA of DO Signal NO: 18 Pep Y	78	87	387	137	436	81
of of Start Sodon	78	87	387	137	436	81
3' NT of Clone Seq.	434	715	932	486	725	647
S' NT 3' NT of of Clone Clone Seq. Seq.	I	-	274	-	_	_
Total NT Seq.	434	715	932	486	725	661
× Š B Š Š	30	31	209	32	33	210
Vector	Uni-ZAP XR	pSport1	pSport1	pCMVSport 2.0	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HBJAE44	HCFME41	HCFME41	H0GC071	HOSEX08	HOSEX08
Gene No.	20	21	21	22	23	23

Last AA of ORF	48	41	33	76	47	31
First SEQ AA First Last Predicted AA of ID of of of of Signal NO: Sig Sig Secreted A Perform OF		31	25	21	31	21
Last AA of Sig Pep	30	30	24	20	30	20
First AA of Sig Pep	1	_		I	1	
AA SEQ ID NO: Y	336	337	513	338	514	339
5' NT of First AA of Signal Pep	85	196	72	375	17	201
of Start	85	961	72	375		
3' NT of Clone Seq.	437	943	534	604	509	349
S' NT3' NT of of Clone Clone Seq. Seq.		-	_			_
Total NT Seq.	437	943	592	604	938	349
X SEQ	34	35	211	36	212	37
Vector	pBluescript	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97897 02/26/97 209043 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HSKNJ72	HEBEB69	невев69	не6ен18	не6ЕН18	HSAUZ47
Gene No.	24	25	25	26	26	27

			 			
Last AA of ORF	42	26	5 6	157	43	520
First Last Predicted AA AA First AA of of of of Sig Sig Secreted Pep Portion	39	21	25	31	24	12
Last AA of Sig Pep	38	20	24	30	23	11
First AA of Sig Pep	1	I	ı	-	1	1
AA SEQ ID NO: Y	340	341	342	343	515	344
S' NT of AA F First SEQ AA of D AA of D Signal NO: S	22	309	147	427	739	27
of of Start	22	309	147	427		27
3' NT of Clone Seq.	672	8061	458	1153	968	1983
S' NT 3' NT of of Clone Clone Seq.	-	135	93	200	502	1092
Total NT Seq.	672	1908	458	1153	1079	1983
X S D S X	38	39	40	14	213	42
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1	pSport1	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HSSDM73	HBMVK68	HMKDC66	HMKCU94	HMKCU94	HRDEW41
Gene No.	28	29	30	31	31	32

re Le					_	
Last AA of ORF	3	39	234	174	169	43
Signal NO: Sig Secreted Signal NY Pep Pep Portion C		20	31	19	20	33
Last AA of Sig Pep		19	30	18	19	32
First AA of Sig Pep	I	1	1	-		_
AA SEQ ID NO: Y	516	345	346	517	347	518
5' NT of First AA of Signal Pep	2030	19	74	638	14	844
S' NT 3' NT of S' NT of Of S' NT of Clone Clone of A' NT Seq. Seq. Start Seq.			74		14	844
3' NT of Clone Seq.	3357	695	1153	1036	1569	1404
S' NT of Clone Seq.	2757		851	822	768	770
Total NT Seq.	3791	1406	1391	1334	1569	1511
× S B S X	214	43	44	215	45	216
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HRDEW41	HTOJN06	HBGDA21	HBGDA21	HFGAK75	HFGAK75
Gene No.	32	33	34	34	35	35

Last AA of ORF	43	78	24	274	13	47
5' NT of AA Signal NO: N PepAA AA AB AB AB AB 	20	38	20	31		31
Last AA of Sig Pep	19	37	19	30		30
First AA of Sig Pep			-	-		1
¥SEQ ∀SEQ	348	349	350	351	519	352
5' NT of First AA of Signal Pep	79	141	61	177	448	61
S' NT 3' NT of of S' NT Clone Clone of Seq. Seq. Start Scoton	62	141	19	177		61
3' NT of Clone Seq.	1681	396	346	1300	581	1404
5' NT of Clone Seq.	1	252		882	192	110
Total NT Seq.	1924	475	346	1366	642	1405
NT SEQ NO:	46	47	48	49	217	20
Vector	Uni-ZAP XR	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97
cDNA Clone ID	HHPBD40	HOVCL83	HBCAY62	HBICM48	HBICM48	HLTCL35
Gene No.	36	37	38	39	39	40

Last AA of ORF	30	က	55	132	47	204
S ted	22		25	09	27	31
Last AA of Sig Pep	21		24	59	56	30
First AA of Sig Pep	-		_			
AA SEQ ID NO: Y	520	353	354	355	521	356
S' NT of First AA of Signal Pep	172	222	113	41	399	166
S' NT 3' NT of of of Octone Clone Octone Seq. Seq. Codon	172	222	113	41	399	166
3' NT of Clone Seq.	1241	485	214	419	989	1749
of of Clone Seq.	-	207	-	-	186	222
Total NT Seq.	1241	504	TTT.	602	1080	1749
X S B S X	218	51	52	53	219	54
Vector	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97898 02/26/97 209044	97898 02/26/97 209044	97899 02/26/97 209045	97899 02/26/97 209045	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HLTCL35	HLHCK50	HRSAN45	HSNBB14	HSNBB14	HMABL38
Gene No.	40	41	42	43	43	4

Last AA of ORF	26	47	73	58	102	61
Predicted First AA of Secreted Portion	19	34	19	26	31	
Last AA of Sig Pep	18	33	18	25	30	
First AA of Sig Pep	1		-	_		1
AA SEQ BO: Y	522	357	358	523	359	524
S' NT of AA I First SEQ AA of ID Signal NO: Pep Y	254	650	414	526	128	1097
of of Start Sodon	254	650	414		128	
3' NT of Clone Seq.	1190	1614	1753	1693	1024	1163
S' NT 3' NT of of Clone Clone Seq.		965	555	554	069	712
Total NT Seq.	1258	1896	1753	1693	1220	1196
SEQ NO:	220	55	95	221	57	222
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		pCMVSport 2.0	pCMVSport 2.0
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HMABL38	HSKDK47	HOSFH03	HOSFH03	HOGAV75	HOGAV75
Gene No.	44	45	46	46	47	47

Last AA of ORF	48	179	40	25	224	57
Predicted First AA of Secreted Portion		31	61		31	61
AA AA of Sig	33	30	18	21	30	18
First AA of Sig Pep		_			I	-
AA SEQ ID NO: Y	360	361	525	362	363	526
S' NT of First I of First SEQ AA A of D of Signal NO: Sig	335	189	1164	164	96	1953
of of Start Codor	335	189	1164	164	06	1953
3' NT of Clone Seq.	1049	1737	1791	443	2888	2517
S' NT 3' NT of of Clone Clone Seq.	362	854	979		1909 2888	1597 2517
Total NT Seq.	1049	1776	1791	443	2888	224 2517
׊eŠ	58	59	223	09	61	224
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HFCAI74	HAGBI17	HAGBI17	HLFBC91	HPRCA31	HPRCA31
Gene No.	48	49	49	50	51	51

Last AA of ORF	349	21	467	152	39	373
S' NT of A First Last Predicted First SEQ AA AA First AA I AA of ID of of of Signal NO: Sig Sig Secreted Pep Pep Portion O	31	18	26	31	25	31
Last AA of Sig Pep	30	17	25	30	24	30
First AA of Sig Pep	-	-	-	I		_
AA SEQ ID NO: Y	364	527	365	399	528	367
5' NT of First AA of Signal Pep	139	230	964	229	436	236
of of Start	139		964	229	436	236
3' NT of Clone Seq.	1736	2309	3492	883	1033	1541
S' NT 3' NT of of Clone Clone Seq.	1568	299	883	237	242	_
Total NT Seq.	1851	2424	3542	883	1080	1541
× Še Še	62	225	63	<u> </u>	226	9
Vector	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HPRCE95	HPRCE95	HHTLC66	HMADJ02	HMADJ02	HPRCU93
Gene No.	52	52	53	54	54	55

Last AA of ORF	87.1	S	82	21	07	227	62
a de	26	19	21			50	31
Last AA of Sig Pep	25	18	20			19	98
First AA of Sig Pep		-	-	-	-		
¥ÖBŞ¥	529	368	530	369	531	370	371
5' NT of First AA of Signal Pep	946	163	1262	264	227	95	52
of of Start	946	163	1262	264	227	95	22
of of Clone Seq.	1336	869	1756	629	536	1751	208
S' NT 3' NT of of Clone Clone Seq. Seq.	4	41	1133		25	375	-
Total NT Seq.	1336	732	2043	629	540	1751	508
Z B B S ×	227	99	228	<i>L</i> 9	229	89	69
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	ZAP Express
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045	97899 02/26/97 209045 05/15/97	209011	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045	02/15/97 97899 02/26/97 209045 05/15/97
cDNA Clone ID	HPRCU93	HSAXS65	HSAXS65	HKTAG35	HMEFX42	HHFHN61	HCWEF90
Gene No.	55	99	56	57	57	58	59

Last AA of ORF	75	51	61	09	40	39
S' NT of AA First Last Predicted AA of D Signal NO: Sig Sig Secreted N Pep Y Pep Pep Portion	23	2	31	81	31	29
Last AA of Sig	22	=	30	17	30	28
First AA of Sig Pep	-			-	-	1
AA SEQ ID NO: Y	532	372	373	533	374	534
5' NT of First AA of Signal Pep		93	_	210	169	329
S' NT 3' NT of of S' NT Is of of S' NT Is of of S' NT Is of Seq. Seq. Seq. Codon		93		210	169	329
3' NT of Clone Seq.	448	245	361	407	713	580
5' NT: of Clone Seq.	6		-		∞	190
Total NT Seq.	448	245	361	407	713	830
× Š B Š Š	230	0/	71	231	72	232
Vector	ZAP Express	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HCWEF90	HHGCM20	HFRAU10	HFRAU10	HATDT67	HATDT67
Gene No.	59	09	61	19	62	62

# A . H			<u>e</u>	36	29	136
1 0		4	203	<u>~</u>	~	
SE SE	31		31	23	29	31
Last AA of Sig Pep	30		30	22	28	90
First Last R AA AA Io of of Sig Sig Pep		-	-	-		-
¥ãgēà≻ ¤	375	535	376	536	377	378
S' NT AA F of First SEQ AA of ID Signal NO: Pep Y		287	730	2577	112	13
5' NT of Start Codon	<i>L</i> 9	287	730	2577	112	13
3' NT of Clone Seq.	862	905	4525	2739	1195	475
S' NT 3' NT of of Clone Clone Seq. Seq.		138	4162 4525	2406	-	-
Total NT NT Seq.	862	932	4602	234 2786	1255	475
׊eŠ	73	233	74	234	75	9/
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-Zap XR	Uni-Zap XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046	97900 02/26/97 209046	05/15/97 97900 02/26/97 209046	05/15/97 97900 02/26/97 209046	05/15/97 97900 02/26/97 209046	05/15/97 97900 02/26/97 209046 05/15/97
cDNA Clone ID		HOUBG93	HMWEX24	HMWEX24	HSGBA84	HTOCD52
Gene	63	63	64	64	65	99

Last AA of ORF	14	41	468	8	29	29
of AA First Last Predicted Of AA of ID of		34	31		21	28
Last AA of Sig Pep		33	30		20	27
First AA of Sig Pep	1	I	Ī			
AA SEQ D NO: Y	537	379	380	538	381	382
5' NT of First AA of Signal Pep	26	74	26	251	267	292
S' NT 3' NT of of S' NT Clone Clone of Seq. Seq. Start	26	74	26	251	267	292
3' NT of Clone Seq.	458	299	1730	444	1168	1285
S' NT of Clone Seq.	_	25	1627		981	132
Total NT Seq.	458	465	1907	591	1168	1285
× Še Še X	235	77	78	236	6/	80
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HTOCD52	HTGCP16	HKIXR69	HKIXR69	HETGJ09	HOBNC61
Gene No.	99	67	89	89	69	70

Last AA of ORF	138	74	521	=	137	186
Signal NO: Sig Sig Secreted Y Pepp Performed Signal NO: Sig Sig Sig Secreted N Pep Pepp Portion C	22	31	31	10	36	31
Last AA of Sig Pep	21	30	30	6	25	30
First AA of Sig Pep	-	-	-			
¥ŠĕŠ×	383	384	385	539	386	387
5' NT of First AA of Signal Pep	701	119	200	1204	85	99
S' NT 3' NT of of S' NT Clone Clone of A Seq. Start St	701	119	200		82	99
of of Clone Seq.	1054	684	1953	959	537	802
S' NT of Olone Clone Seq.	768	-	1609	391	14	59
Total NT Seq.	1290	684	2024	1286	931	825
× Seo	81	82	83	237	84	85
Vector	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046	97900 02/26/97 209046	97900 97900 02/26/97 209046	97900 97900 02/26/97 209046	97900 97900 02/26/97 209046	05/15/97 05/26/97 02/26/97 209046 05/15/97
cDNA Clone ID	4	HBIAI95	HSQEL25	HSQEL25	HEBEG68	HBIAB39
Gene	71	72	73	73	74	75

Last AA of ORF	108	106		299	136	424
Predicted First AA of Secreted Portion	38	16		54	44	36
Last AA of Sig Pep	37	15		53	43	35
First AA of Sig Pep	1	_	1	-	I	1
AA SEQ ID NO: Y	540	541	388	389	542	543
S' NT of AA Frist SEQ AA of ID Signal NO: S	1	294	L 1	166	507	390
S' NT 3' NT of of S' NT Clone Clone of Seq. Seq. Start	_		17	166	507	390
3' NT of Clone Seq.	734	794	918	1458	2080	1520
S' NT of Clone Seq.	-	08	36	6	841	311
Total NT Seq.	734	608	1238	1460	2201	1661
KÄÐÄ×	238	239	98	87	240	241
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HBIAB39	HBIAB39	HTXDU73	HOEAS24	HOEAS24	HOEAS24
Gene No.	75	75	76	77	77	77

Last AA of ORF	49	19	39	79	36	180
First SEQ AA AB First AB Last Predicted of AA AA of ID of of of AB AB Signal NO: Sig Sig Secreted of Pep Pep Portion Ol	37	20	22	31	33	31
Last AA of Sig	36	49	21	98	32	30
First AA of Sig Pep	_		_	-		-
¥ŠEQ ∀ÖÐÖ≻	390	391	544	392	393	394
5' NT of First AA of Signal Pep	639	540	564	1503	359	86
S' NT 3' NT of of of of Clone Clone of Start Seq. Seq. Codon	639	540	564	1503	359	86
of Seq.	1395	1186	1146	1614	862	969
of Olone Clone Cseq.	567	352	329	1203	253	349
Total (Seq.	1395	1186	1146	1821	862	969
SEQ X	88 88	68	242	06	91	92
Vector	XX	pBluescript	pBluescript	Uni-ZAP XR	Uni-Zap XR	Uni-ZAP XR
ATCC Deposit No: Z	97900 02/26/97 209046	05/15/97 97900 02/26/97 209046	05/15/97 97900 02/26/97 209046	05/15/97 97900 02/26/97 209046	<u> </u>	
cDNA		HSKNE46	HSKNE46	HPMFL27	HMWDN32	HPRAX55
Gene	. No.	79	79	08	81	82

Last AA of ORF	58	21	09	152	33	480	367
YA ted	33		22	33	21	31	22
Last AA of Sig Pep	32		21	32	20	30	21
First AA of Sig Pep	-	-	ī	1	I	1	Ī
¥ÖBĞ ⊀ÖÜĞ	545	395	396	397	546	368	547
S' NT of First AA of Signal Pep	348	197	785	206	191	234	125
of of Start Codo	348	197	785	206	191	234	125
	1230	1759	1772	1648	911	2801	1537
5' NT 3' NT of of Clone Clone Seq.	265	-	742	_	72	418	
Total NT Seq.	1350	1886	1774	2503	1529	2801	1537
X SEQ	243	93	95	95	244	96	245
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97901 02/26/97 209047 05/15/97	209076 05/22/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HPRAX55	HHFFW36	HE2PL77	HSDFV29	HCQAV53	HTPEG42	HTPEG42
Gene No.	82	83	84	85	85	98	98

Last AA of ORF	423	78	77	74	47	20
First Last Predicted AA AA First AA Light of Sig Secreted Pep Portion Ol	2 4.	24	33	19	22	
AA F Of Sig S	-	23	32	<u>∞</u>	21	
First AA of Sig	-	-	_	-	-	-
₹ ga à≻	399	400	548	401	549	402
S' NT AA F of Prirst SEQ AA of D Signal NO:	-	197	183	456	363	2
of Start	-	197	183	456	363	
of Of Clone Seq.	1631	504	499	1416	1348	2847
S' NT3' NT of of S Clone Clone Seq. Seq.	916	26		145	84	
Total 6 NT Seq.	1631	504	506	1416	1348	2847
Z S S S X	97	86	246	66	247	100
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047	05/15/97 97901 02/26/97 209047	05/15/97 97901 02/26/97 209047	05/15/97 97901 02/26/97 209047	05/15/97 97901 02/26/97 209047	05/15/97 97901 02/26/97 209047 05/15/97
CDNA		HAUAV32	HAUAV32	HNEBI60	HNEBI60	HSHCJ16
Gene	. 87	& &	88	68	68	06

Last AA of ORF	87	92	168	124	21	174
First Last Predicted AA AA First AA I of of of Sig Secreted Pep Pep Portion (24	31	31	61		35
Last AA of Sig Pep	23	30	30	18		34
First AA of Sig Pep	1		-	I	1	1
AA SEQ ID NO: Y	403	404	250	551	405	406
S' NT of AA First SEQ AA of ID Signal NO: 2	602	518	356	147	975	248
of of Start Sodon	602	518	356		<i>51</i> 6	248
3' NT of Clone Seq.	1346	794	99/1	1708	1531	871
5' NT of Clone Seq.	809	-	42	47	868	106
Total NT Seq.	1394	794	1766	2664	1544	871
× S B S K	101	102	248	249	103	104
Vector	pBluescript	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HTSEL31	HAUBL57	HAUBL57	HAUBL57	HODAS59	HE6CT48
Gene No.	91	92	92	92	93	94

Last AA of ORF		\$	72	280	45	251	284
redicted irst AA of ecreted	22	77	23	52	16	41	31
Last AA of Sig Pep	6]	17	22	51	15	40	30
First AA of Sig Pep	-	-	ī	_	_	-	
AS BEO	552	407	553	408	554	555	409
S'NT A First Last P of AA of ID of of Signal NO: Sig	258	16	829	122	633	82	465
S' NT of Start	258	16	829	122		82	465
3' NT of Clone Seq.	865	40 4	2074	1542	1482	834	2327
S' NT 3' NT of of Clone Seq.	97	-	852	506	208	_	1528 2327
Total NT Seq.	865	404	2082	1542	1482	834	2327
SEQ NÖ: BEQ	250	105	251	106	252	253	107
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047	97901 02/26/97 209047	97901 02/26/97 209047	209215	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HE6CT48	HMDAA61	HMDAA61	НАQВК61	HAQBK61	нсинвол	HAQBF73
Gene No.	94	95	95	96	96	96	97

Last AA of ORF	19	187	237	217	82	192
Predicted First AA of Secreted Portion		29	31	31	13	47
Last AA of Sig Pep		28	30	30	12	46
First AA of Sig Pep	1	1		-		-
AA SEQ D NO: Y	556	410	411	557	558	412
S' NT of AA First SEQ AA of D Signal NO: SPEP Y	886	172	903	176	1151	4
of of Start Sodon		172	903	176		4
3' NT of Clone Seq.	1508	1062	2501	2431	2288	1751
S' NT 3' NT of of Clone Clone Seq.	885	157	275	592	465	696
Total NT Seq.	1508	1062	2539	2514	256 2357	1751
X S B S B S B S B S B S B S B S B S B S	254	108	109	255	256	110
Vector	Uni-ZAP XR	Lambda ZAP II				
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
	HAQBF73	НАОВТ94	нетнео7	нетнео7	нетнео7	HLQAB52
Gene No.	67	86	66	66	66	100

Last AA of ORF	95	42	17	108	51	30	32
S' NT 3' NT of all Clone Clone Clone Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq	19	29	07	25	31	36	
Last AA of Sig Pep	18	28	6	24	30	35	
First AA of Sig Pep	1		_	-		-	-
¥ŠeŠ×	559	560	413	561	414	562	415
5' NT of First AA of Signal Pep	314	25		242	271	35	709
S' NT of Start Codon	314	25		242	271	35	709
of Of Jone Seq.	655	2377	1117	1135	1313	1262	1654
S' NT 3 of Clone Clone Seq.	218	5	-	69	128	26	553
Total NT Seq.	689	2377	1117	1193	1313	1262	1654
Z S S S X	257	258	Ξ	259	112	260	113
Vector	Lambda ZAP II	pSport1	Uni-ZAP XR	Other	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047	209119	97901 02/26/97 209047	209627	02/12/98 97901 02/26/97 209047	05/15/97 97901 02/26/97 209047	05/15/97 97901 02/26/97 209047 05/15/97
cDNA Clone ID	_,	HEONN58	HCRAM28	HIBEK16	HE2BG03	HE2BG03	HEBDJ82
Gene	100	100	101	101	102	102	103

Last AA of ORF	163	253	8	174		73
Signal NO: Sig Sig Secreted Nep Per Portion C	31	31		99		34
Last AA of Sig Pep	30	30		65		33
First AA of Sig Pep		I	-	1		1
¥ SEQ ¥ SEQ	416	563	564	417		995
S' NT of First AA of Signal Pep	337	335	942	100		413
S' NT 3' NT of of of S' NT F of of S' NT F of of Seq. Seq. Start Si, of P of Codon P of Start Si, of Start Si	337	335	942	100		
3' NT of Clone Seq.	1171	1161	1131	800	735	783
S' NT of Clone Seq.	540	626	629	373	290	416
S Z S	1171	1179	1162	842	735	783
X SEQ	114	261	262	115	263	264
Vector	ZAP Express	ZAP Express	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HCUBC79	HCUBC79	HCUBC79	HSVAF07	HSVAF07	HSVAF07
Gene No.	104	104	104	105	105	105

Last AA of ORF	20	263	20	120	159	34
of AA First Last Predicted of AA of ID of of of Signal NO: Sig Sig Secreted Or Pepper A Perion Of	31	31	25	29	31	24
Last AA of Sig Pep	30	30	24	28	30	23
First AA of Sig Pep	_			-	_	
SEQ ₹ÖÖÖ.	418	567	268	419	420	569
5' NT of First AA of Signal Pep	581	119	438	499	301	227
of of Start	581	119	438	499	301	227
s' NT of Clone Seq.	1470	1405	1188	906	1079	1050
S. NT 3' NT of of tolone Clone Clone Seq. Seq.	187	301	148	418	21	25
Total NT Seq.	1640	1638	1455	952	1256	1086
Z B B S ×	116	265	266	117	118	267
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047	97901 02/26/97 209047	97901 97901 02/26/97 209047	97901 02/26/97 209047	97901 97901 02/26/97 209047 05/15/97
cDNA Clone ID	HT3AM65	HT3AM65	HT3AM65	HE6DK18	НЕВЕК93	невек93
Gene No.	901	901	901	107	801	108

Last AA of ORF	154	104	132	204	19	32
A P I			-	2		
First Last Predicted AA AA First AA I of of of of Sig Sig Secreted Pep Pep Portion (51	35	28	33	31	28
Last AA of Sig Pep	90	34	27	32	30	27
First AA of Sig Pep	T			_	I	-
AA SEQ ID NO: Y	421	270	125	422	423	572
S' NT of First AA of Signal Pep	175	115	732	138	20	337
S' NT 3' NT of AA Fi of of S' NT First SEQ A Il Clone Clone of AA of ID c Seq. Seq. Start Signal NO: S Codon Pep Y P	175	115	232	138	20	337
3' NT of Clone Seq.	1051	1003	1015	1720	609	995
5' NT of Clone Seq.	171	21	174	1	81	-
Tot: NT Seq	1143	1003	1234	1782	610	574
X SEQUENCE NO.	119	268	269	120	121	270
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HJPCM10	HJPCM10	HJPCM10	HSXBL78	HOEAW81	HOEAW81
Gene No.	109	109	109	110	=	=

Last AA of ORF	25	299	28	13	198	40
Be Ag	22	31	19		16	23
Last AA of Sig Pep	21	30	<u>∞</u>		15	22
First AA of Sig Pep	-	-	-		-	
¥ŠÐŠ.≻	424	425	573	426	427	574
S' NT of First AA of Signal Pep	143	48	988	76	145	280
5' NT of Start Codon	143	48	886	76	145	280
of Of Clone Seq.	375	1976	1626	1640	80 8	637
S' NT 3' NT of of Clone Clone Seq. Seq.	185	1179	688	764	-	77
Total ONT Seq.	526	2081	1731	1717	804	1320
SEQ NO.	122	123	271	124	125	272
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1
ATCC Deposit No: Z and Date	97901 02/26/97 209047	97901 97901 02/26/97 209047	97901 02/26/97 209047	97902 02/26/97 209048	97902 97902 02/26/97 209048	05/15/97 97902 02/26/97 209048 05/15/97
cDNA Clone ID	HOEAP41	HEAAR60	HEAAR60	HTXGS75	HOVBA03	HOVBA03
Gene	112	113	113	114	115	115

Gene No.

Last AA of ORF	53	176	92	77	32	30
First SEQ AA AA First AA First AA I AA of ID of of Signal NO. Sig Sig Secreted Pep Portion C	38	36	17	23	56	56
Last AA of Sig Pep	37	35	16	22	25	25
First AA of Sig Pep	_	-	-		-	-
¥Še Še ∀ö:	432	433	577	434	435	436
5' NT of First AA of Signal Pep	1578	46	71	1127	962	274
S' NT 3' NT of of of S' NT Clone Clone Start Seq. Seq. Codon	1578	46	71	1127	962	274
of of Clone Seq.	1741	1214	1128	1986	1632	1565
S' NT. of Clone Seq.	1505	-	∞	853	029	281
Total NT Seq.	1864	2041	1990	2012	1669	1565
Z S S S X	130	131	275	132	133	134
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048	97902 02/26/97 209048	97902 97902 02/26/97 209048	97902 02/26/97 209048	97902 97902 02/26/97 209048	05/15/97 97902 02/26/97 209048 05/15/97
cDNA Clone ID	HGBGZ64	H6EBJ64	H6EBJ64	HOECP43	H2CBV31	HPCAD23
Gene	120	121	121	122	123	124

Last AA of ORF	69	19	43	42	33	53
AA First Last Predicted SEQ AA AA First AA ID of of of of NO: Sig Sig Secreted Y Pep Pep Portion	40		31	31	19	26
Last AA of Sig Pep	39		30	30	18	25
First AA of Sig Pep	-		1	_		-
AA SEQ ID NO: Y	437	438	439	578	. 440	144
S' NT of AA First I of AA of D of Signal NO: Sign Sign of Pep Y Pep I	1124	107	184	726	1183	585
of of Start Sodon	1124	107	184	726	1183	585
3' NT of Clone Seq.	2007	1180	9061	2436	1794	1347
S' NT 3' NT of of Clone Clone Seq.	1101	-	-	572	1044 1794	572
Total NT Seq.	2007	1291	1906	2436	1935	1446
× Š B Š ×	135	136	137	276	138	139
Vector	pSport1	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II	pSport1	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HSPAG15	неснзі	ноѕнн48	HUSHH48	HLYAU95	HHSCV65
Gene No.	125	126	127	127	128	129

Last AA of ORF	64	34	68	70	350	49
Signal NO: Sig Sig Secreted N Pepp Portion O	25	·	31	32	26	17
Last AA of Sig Pep	24		30	31	25	16
First AA of Sig Pep	_		-	-	-	-
XÖ: BĞ	442	443	444	579	445	446
5' NT of First AA of Signal Pep	9/9	95		571	55	306
S' NT 3' NT of of of Clone Clone of Seq. Seq. Codon	9/9	95			55	306
3' NT of Clone Seq.	1109	497	269	781	1262	1871
of of Clone Seq.	639	6	_	408	55	97
Total NT Seq.	1109	497	269	782	1269	1944
X S B S X	140	141	142	277	143	144
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048	97902 02/26/97 209048	97902 02/26/97 209048	97902 02/26/97 209048	97902 02/26/97 209048 05/15/97
cDNA Clone ID		HEBGA37	HEBFU93	HEBFU93	HSGSC60	HPMGD24
Gene No.	130	131	132	132	133	134

Last AA of ORF	278	011	199	30	258	71
First Last Predicted AA AA First AA of of of Sig Sig Secreted Pep Pep Portion (31	24	31	27	31	24
Last AA of Sig Pep	30	23	30	26	30	23
First AA of Sig Pep			_		–	1
XÖBŞ ∀ÖBŞ	447	280	448	581	449	582
of AA For SEQ AA of Dep Signal NO: 19	74	545	116	324	165	160
S' NT 3' NT of of S' NT Clone Clone of Seq. Seq. Start S	74	545	911	324	165	160
3' NT of Clone Seq.	1021	196	1285	1228	1272	1208
S' NT of Clone Seq.	526	524	5	6	169	169
Total NT Seq.	1021	961	1285	1228	1386	1327
X SEQ	145	278	146	279	147	280
Vector	pBluescript	pBluescript	pBluescript	pBluescript	Uni-Zap XR	Uni-Zap XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HPTVC60	HPTVC60	HSKNE18	HSKNE18	HMWIF35	HMWIF35
Gene No.	135	135	136	136	137	137

Last AA of ORF	87	315	47	52	383	39
Predicted First AA of Secreted Portion	61	34	13	22	31	33
Last AA of Sig Pep	81	33	12	21	30	32
First AA of Sig Pep		-	_		_	-
≨ã9ö≻ Yöeş	450	451	583	452	453	584
S' NT of AA F First SEQ AA of D Signal NO: Sep Y	784	241	243	417	48	294
5' NT of Start Codon	784	241		417	48	294
3' NT of Clone Seq.	2044	1847	799	1517	1540	2196
S' NT of Clone Seq.	721	1689	_			270
Tota NT Seq.	2098	1847	799	1569	1540	2196
SEQ NÖ:	148	149	281			282
Vector	Uni-Zap XR	pBluescript	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	25	HSKGF03	HSKGF03			HCMSH30
Gene No.	138	139	139	140	141	141

Last AA of ORF	186	163	61	46	105	23
Predicted First AA of Secreted Portion	53	27		22	24.	21
Last AA of Sig Pep	52	26		21	23	20
First AA of Sig Pep				-	-	
AS BS A Y Sign	454	455	585	456	457	586
S' NT AA F Of AA Of ID Signal NO: S	9	195	621	40	411	878
S' NJ of Start Codol	9	195	621	40	411	878
3' NT of Clone Seq.	1575	863	1166	512	2031	1485
S' NT 3' NT of of Clone Clone Seq. Seq.	069	_	277		699	615
Total NT Seq.	1719	863	1185	1101	2031	1634
× Sequence of the sequence of	152	153	283	154	155	284
Vector	pSport1	pBluescript	pBluescript	Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HTWCB92	HBMDM46	HBMDM46	HFAMG13	HFXHL79	HFXHL79
Gene No.	142	143	143	144	145	145

Last AA of ORF	70	69	155	7	155	332	5
Predicted First AA of Secreted Portion	24	34	23	31	23	24	
Last AA of Sig Pep	23	33	22	30	22	23	
First AA of Sig Pep	1	_	I	_	П	1	_
SEQ NO:	458	587	459	588	589	460	461
S' NT of AA F First SEQ AA of ID Signal NO: Pep Y	1592	1562	22	224	22	32	1440
S' NT of Start Codon	1592	1562	22	224	22	32	1440
3' NT of Clone Seq.	1809	1749	912	858	915	1422	2382
5' NT 3' NT of of Clone Clone Seq. Seq.	1458	1458	45	46	-	51	1509
Total NT Seq.	1981	1795	915	858	915	2117	2395
X SEQUENT NO SEQUENT N		285	157	286	287	158	159
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1	Uni-ZAP XR	pBluescript	Lambda ZAP II
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	209139 07/03/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSNAK17	HSNAK17	HCFBC03	HCFBC03	HSJAP03	HSKGO26	HCQAV96
Gene No.	146	146	147	147	147	148	149

15 J. II		h0	L	Ι	I	
Last AA of ORF	4.	285	24	08	38	47
First Last Predicted AA AA First AA of of of of Sig Sig Secreted Pep Pep Portion (31		31	17	31
Last AA of Sig Pep		30		30	16	30
First AA of Sig Pep			_	_	-	
\$805×	462	463	290	464	591	465
5' NT of AA I First SEQ AA of ID Signal NO: Pep Y	1416	46	1062	288	281	1611
of of Start Codon	2108 1416	.46	1062	288	281	1611
3' NT of Clone Seq.	2108	006	1517	1003	1195	2180
S' NT 3' NT of of Clone Clone Seq. Seq.	1223	482	783		217	1607 2180
Total NT Seq.	2120	006	1517	1003	3865	2196
SEQ NO:	160	161	288	162	586	163
Vector	Uni-ZAP XR	pBluescript				
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSHCC16	HTLEF62	HTLEF62	HTLAD94	HTLAD94	HTSFQ12
Gene No.	150	151	151	152	152	153

Last AA of ORF	%	69	399	308	-	273
Signal NO: Sign Secreted Signal NO: Sign Pepping Secreted No: Sign Secreted No: Sign Sign S	64	40	31	46		32
Last AA of Sig Pep	63	39	30	45		31
First AA of Sig Pep	-	_	-		-	1
AA SEQ ID NO: Y	466	592	467	593	468	469
5' NT of First AA of Signal Pep	299	355	258	525	341	284
of of Start Codoi	299	355	258			284
3' NT of Clone Seq.	1840	1818	2871	2838	2221	1816
S' NT 3' NT of of Clone Clone Seq.		279	489	486	343	1130
Total NT Seq.	1945	0161	2933	3276	2243	1816
SEQ SEQ	164	290	165	291	166	167
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HE6FL83	HE6FL83	HTXFJ55	HTXFJ55	HJPCJ76	HLTED27
Gene No.	154	154	155	155	156	157

Last AA of ORF	22	192	234	105	24	32
Predicted First AA of Secreted Portion		61	27	46		24
Last AA of Sig Pep		8	26	45		23
First AA of Sig Pep	Ī	-	1	-	Ī	1
AA SEQ DO: YO:	594	470	471	472	565	473
S' NT of AA F First SEQ AA of ID Signal NO: Pep Y	1306	208	19	1001	510	1722
of of Start Sodon	1306	208	61	1001	510	1722
3' NT of Clone Seq.	1548	787	816	1869	1501	2100
S' NT 3' NT of of Clone Clone Seq.	1098	_	46	798	438	1642 2100
Total NT Seq.	1695	945	902	1883	1501	2100
X SEQ	292	168	169	170	293	171
Vector	Uni-ZAP XR	pSport1	pBluescript	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HLTED27	HMKBA64	HNFIP24	HCELB21	HCELB21	HAWBA28
Gene No.	157	158	159	160	160	161

Last AA of ORF	571	24	312	-	329	∞
AA First Last Predicted SEQ AA AA First AA ID of of of of NO: Sig Sig Secreted Y Pep Pep Portion of	31	į	31		22	
Last AA of Sig Pep	30		30		21	
First AA of Sig Pep	1		ī	I	1	
AA SEQ ID NO: Y	474	596	475	297	476	598
S' NT of AA First I First SEQ AA AA of ID of Signal NO: Sig Sig S	99	431	122	916	51	305
of of Start Codon	65	431	122	926	51	305
3' NT of Clone Seq.	1930	2683	1451	1420	2972	828
S' NT 3' NT of of Clone Clone Seq. Seq.	187	183	962	961	2197 2972	52
Total NT Seq.	1930	2683	1509	1454	3173	828
× Š B Š Š	172	294	173	295	174	296
Vector	pBluescript SK-	pBluescript SK-	pBluescript SK-	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HSAAS44	HSAAS44	HAFAL73	HAFAL73	HSAWF26	HSAWF26
Gene No.	162	162	163	163	164	164

Last AA of ORF	178	25	52	62	27	27
Predicted First AA of Secreted Portion	25	19	26	23	22	22
Last AA of Sig Pep	24	81	25	22	21	21
First AA of Sig Pep	-	1	I	I	1	_
AA SEQ D NO: Y	477	665	478	479	480	009
5' NT of AA First SEQ AA of ID Signal NO: Pep Y	60	1473	889	173	11	17
S' NT of Start Sodon	09	1473		173	11	17
3' NT of Clone Seq.	970	2413	1290	2290	549	545
S' NT 3' NT of of Clone Clone Seq.	374	1387	499	_	1	-
Total NT Seq.	166	2416	1290	2290	549	545
XÖ: BÖ	175	297	176		178	298
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HEAAL31	HEAAL31	HFKFX55		HPFDZ95	HPFDZ95
Gene No.	165	165	166	167	168	168

Last AA of ORF	339	19	32	48	29	38
of AA First Last Predicted of AA of ID of of of Signal NO: Sig Sig Secreted N Pep Portion	31	24	27	31	24	30
Last AA of Sig Pep	30	23	26	30	23	29
First AA of Sig Pep		-				
AA SEQ ID NO: Y	481	109	482	483	. 602	484
5' NT of First AA of Signal Pep	92	262	995	51	300	14
of of Start	92	562	995	51	300	14
3' NT of Clone Seq.	1352	1530	1250	777	766	791
S' NT 3' NT of of Clone Clone Seq. Seq.	294	385	586		244	
Total NT Seq.	1509	1530	1316	777	766	191
× Se	179	299	180	181	300	182
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HPTTU11	HPTTUII	HCFAE79	HTEDJ34	HTEDJ34	HODCW06
Gene No.	169	169	170	171	171	172

Last AA of ORF	61	346	69	237	24	200
	9	<u>w</u>	-	7	7	2
First Last Predicted AA AA First AA of of of of Sig Sig Secreted Pep Pep Portion	21	25	57	31	10	31
Last AA of Sig Pep	20	24	56	30	6	30
First AA of Sig Pep	-	_	 .			-
AA SEQ ID NO: Y	485	486	603	487	604	488
S' NT of AA I SEC AA of ID Signal NO: Pep Y	<i>\$1</i> \$	131	233	<i>L</i> 9	09	257
5' NT of Start Codon	575	131	233	<i>L</i> 9		257
3' NT of Clone Seq.	1405	1596	2345	2288	1946	1180
S' NT 3' NT of of Clone Clone Seq.	346	75	75	355	2	462
Total NT Seq.	1405	1596	2345	185 2293	2369	1212
SEQ NÖ:	183	184	301	185	302	186
Vector	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HFTAR26	H2MBF44	H2MBF44	HE8BI92	HE8B192	HFTBR48
Gene No.	173	174	174	175	175	176

Last AA of ORF	35	351	130	265	23	25
First Last Predicted AA First AA I of of of of Sig Sig Secreted Pep Pep Portion C	_	31	44	31	61	
Last AA of Sig Pep	23	30	43	30	18	
First AA of Sig Pep	1		1		-	-
¥ŠeŠ ¥ŠeŠ	605	489	909	490	. 607	491
of AA For Signal NO: S	663	166	787	∞	54	401
S' NT 3' NT of of S' NT Clone Clone of Seq. Seq. Start	663	166		∞	54	
of of Clone Seq.	1149	1554	1515	1516	1261	681
S' NT of Clone	424	770	719	096	_	287
Total NT Seq.	1181	1605	1537	1516	1493	681
ZEQ SEQ SEQ ×	303	187	304	188	305	189
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050	97904 02/26/97 209050	97904 97904 02/26/97 209050 05/15/97	97904 97904 02/26/97 209050	97904 97904 02/26/97 209050	97904 97904 02/26/97 209050 05/15/97
cDNA Clone ID	7	НЕ9СМ64	НЕ9СМ64	HATAVSI	HATAVSI	HAQAF27
Gene No.	176	177	177	178	178	179

Last AA of ORF	159	9	279	232	34	193
S' NT 3' NT of AA First Last Predicted of S' NT First SEQ AA AA First AA Clone Clone of AA of ID of of of Seq. Seq. Start Signal NO: Sig Sig Secreted Codon Pep Y Pep Pep Portion	31		31	31	33	34
Last AA of Sig Pep	30		30	30	32	33
First AA of Sig Pep	1	1			-	-
AA SEQ NÖ: Y:	492	809	493	609	019	494
5' NT of First AA of Signal Pep	360	175	1153	21	302	45
S' NT of Start Codon	360		1153	21	302	45
3' NT of Clone Seq.	1014	577	2630	2860	978	1923
5' NT of Clone Seq.	703	_	2207		275	30
Total NT Seq.	1014	577	2779	2860	876	1923
× SeQ	190	306	191	307	308	192
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	pBluescript SK-	Uni-ZAP XR
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	нсеек08	нсеек08	HAFAU18	HAFAU18	HAFAU18	HETBY74
Gene No.	180	180		181	181	182

Last AA of	205	21	147	6	\$	29
First Last Predicted AA AA First AA I of of Of Sig Sig Secreted Pep Portion C	31	61	12		31	61
Last AA of Sig Pep	30	- 18	=		30	81
First AA of Sig Pep	-	-				_
¥ŠBŠB.≻	495	611	496	612	497	613
S' NT Of Edits of First SEQ AA of D Signal NO: S Pep Y P	178	1/6	434	2131	297	107
S' NT 3' NT of of 5' NT of Clone Clone of A Start Seq. Seq. Codon	178	971	434		297	107
3' NT of Clone Seq.	2286	2025	3054	3026	907	712
5' NT of Clone Seq.	2346 1160 2286	840	2004	310 3026 1966 3026	152	<i>L</i> 9
Tota NT Seg.	2346	2025	3054	3026	200	712
SEQ NÖ: BÖ	193	309	194	310	261	311
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HTOAF35	HTOAF35	HCRBX32	HCRBX32	HEBGB80	HEBGB80
Gene No.	183	183	184	184	185	185

15 A. II.		
Las AA OR	94	30
S' NT 3' NT of AA First Last Predicted of S' NT First SEQ AA AA First AA Last Clone Clone of AA of ID of of of AA NT Seq. Seq. Start Signal NO: Sig Sig Secreted of Seq. Codon Pep Y Pep Pep Portion ORF	31	29
Last AA of Sig Pep	30	28
First AA of Sig Pep		1
AA SEQ NO: Y	498	614
5' NT of First AA of Signal Pep	225	927 614
5' NT of Start Codon	225	927
3' NT of Clone Seq.	608	1289
5' NT of Clone Seq.	84	785
Total NT Seq.	1290	1289
SEQ NÖ:	196	312
Vector	97904 Uni-ZAP XR 196 1290 02/26/97 209050 05/15/97	97904 Uni-ZAP XR 312 1289 785 1289 927 209050 05/15/97
ATCC Deposit No: Z and Date		
cDNA Clone ID	186 HFAMH74	186 HFAMH74
Gene No.	186	186

10

15

20

25

30

35

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

10

15

20

25

30

35

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

10

15

20

25

30

35

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

10 Polynucleotide and Polypeptide Variants

5

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

15 "Identity" per se has an art-recognized meaning and can be calculated using published techniques. (See, e.g.: (COMPUTATIONAL MOLECULAR BIOLOGY, Lesk, A.M., ed., Oxford University Press, New York, (1988); BIOCOMPUTING: INFORMATICS AND GENOME PROJECTS, Smith, D.W., ed., Academic Press, New York, (1993); COMPUTER ANALYSIS OF SEQUENCE DATA, PART I, 20 Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, (1994); SEQUENCE ANALYSIS IN MOLECULAR BIOLOGY, von Heinje, G., Academic Press, (1987); and SEQUENCE ANALYSIS PRIMER, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, (1991).) While there exists a number of methods to measure identity between two polynucleotide or polypeptide sequences, the term "identity" is well known to skilled artisans. (Carillo, H., and Lipton, D., SIAM J 25 Applied Math 48:1073 (1988).) Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in "Guide to Huge Computers," Martin J. Bishop, ed., Academic Press, San Diego, (1994), and Carillo, H., and Lipton, D., SIAM J Applied Math 48:1073 (1988). 30 Methods for aligning polynucleotides or polypeptides are codified in computer programs, including the GCG program package (Devereux, J., et al., Nucleic Acids Research (1984) 12(1):387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S.F. et al., J. Molec. Biol. 215:403 (1990), Bestfit program (Wisconsin Sequence Analysis

Package, Version 8 for Unix, Genetics Computer Group, University Research Park,
575 Science Drive, Madison, WI 53711 (using the local homology algorithm of Smith
and Waterman, Advances in Applied Mathematics 2:482-489 (1981).)

10

15

20

25

30

35

When using any of the sequence alignment programs to determine whether a particular sequence is, for instance, 95% identical to a reference sequence, the parameters are set so that the percentage of identity is calculated over the full length of the reference polynucleotide and that gaps in identity of up to 5% of the total number of nucleotides in the reference polynucleotide are allowed.

A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990).) The term "sequence" includes nucleotide and amino acid sequences. In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB search of a DNA sequence to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, and Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, and Window Size=500 or query sequence length in nucleotide bases, whichever is shorter. Preferred parameters employed to calculate percent identity and similarity of an amino acid alignment are: Matrix=PAM 150, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, and Window Size=500 or query sequence length in amino acid residues, whichever is shorter.

As an illustration, a polynucleotide having a nucleotide sequence of at least 95% "identity" to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone, means that the polynucleotide is identical to a sequence contained in SEQ ID NO:X or the cDNA except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the total length (not just within a given 100 nucleotide stretch). In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to SEQ ID NO:X or the deposited clone, up to 5% of the nucleotides in the sequence contained in SEQ ID NO:X or the cDNA can be deleted, inserted, or substituted with other nucleotides. These changes may occur anywhere throughout the polynucleotide.

Further embodiments of the present invention include polynucleotides having at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone. Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the polynucleotides having at least 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity

10

15

20

25

30

35

will encode a polypeptide identical to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% "identity" to a reference polypeptide, is intended that the amino acid sequence of the polypeptide is identical to the reference polypeptide except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the total length of the reference polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

Further embodiments of the present invention include polypeptides having at least 80% identity, more preferably at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone. Preferably, the above polypeptides should exhibit at least one biological activity of the protein.

In a preferred embodiment, polypeptides of the present invention include polypeptides having at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98%, or 99% similarity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an

10

15

20

25

30

35

organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make

WO 98/39448 PCT/US98/04493

phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

5

10

15

20

25

30

35

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

10

15

20

25

30

35

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

Polynucleotide and Polypeptide Fragments

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, and 701 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, and 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about"

includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

5

10

15

20

25

30

35

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).)

10

15

20

25

30

35

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

WO 98/39448 PCT/US98/04493

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

5

10

15

20

25

30

35

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In

preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the claimed invention.

10

15

20

25

30

35

5

Vectors, Host Cells, and Protein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS,

15

20

25

30

35

293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

10

15

20

25

30

35

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flowsorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage

analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

5

10

15

20

25

30

35

181

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the

WO 98/39448 PCT/US98/04493

present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

5

10

15

20

25

30

35

182

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

10

15

20

25

30

35

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20

10

15

20

25

30

35

millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention could be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules

WO 98/39448 PCT/US98/04493

185

may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

Immune Activity

5

10

15

20

25

30

35

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from

10

15

20

25

30

35

inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

10

15

20

25

30

35

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus,

- Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g.,
- Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS),
- pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae,

- Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter,
 Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella,
 Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis,
 Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter,
 Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus,
- Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease,
- respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria,

10

15

20

25

30

35

Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

189

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

20

25

30

35

15

5

10

Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat

disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

191

Binding Activity

5

10

15

20

25

30

35

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The

WO 98/39448 PCT/US98/04493

192

antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

15

20

25

30

35

10

5

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

Other Preferred Embodiments

5

10

15

20

25

30

35

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining

identical to said selected sequence.

5

10

15

20

25

30

35

whether the sequence of said nucleic acid molecule in said sample is at least 95%

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

PCT/US98/04493

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

10

15

20

25

30

35

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the

10

15

20

30

35

197

amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

PCT/US98/04493

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO: Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an

10

15

20

25

30

35

amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least

10

15

20

25

30

35

90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated

10

15

30

polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	Vector Used to Construct Library	Corresponding Deposited Plasmid
20	Lambda Zap	pBluescript (pBS)
	Uni-Zap XR	pBluescript (pBS)
	Zap Express	pBK
	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
	pCMVSport 3.0	pCMVSport 3.0
25	pCR [®] 2.1	pCR [®] 2.1

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS.

The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation

10

15

20

25

30

35

WO 98/39448 PCT/US98/04493

of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

201

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported.

The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection

10

15

20

25

30

35

agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to

remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

10

15

20

25

30

35

5

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of

10

15

20

25

30

35

conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^I). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic

10

15

20

25

30

35

PCT/US98/04493

agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., supra). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., supra).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number XXXXXX.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

10

15

20

25

30

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μ m membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a

10

15

20

25

30

35

stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

207

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as

10

15

20

25

30

35

required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

10

15

20

30

35

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

25 Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden),

10

15

20

25

30

35

pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the

15

20

25

30

35

naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

211

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. E. coli HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having

10

15

20

25

30

35

more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No.209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC
CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACC
CAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGT
GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG
GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC
AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAACCCCC
ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT
GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT
GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA
GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG
ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA
GGTGGCAGCAGGGGAACGTCTTCTCCTCTCATGCTCCGTGATGCATGAGGCTCTTCC
ACAACCACTACACGCAGAAGACCTCTCCCTGTCTCCGGGTAAATGAGTGC
GACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

10

15

20

25

30

35

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 µg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody

whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

20

25

30

35

5

10

15

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

20

25

30

35

WO 98/39448 PCT/US98/04493

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (see below) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

HGS-CHO-5 medium formulation:

Inorganic Salts

CaCl2 (anhyd)	116.6 mg/L
CuSO ₄ -5H ₂ O	0.00130
Fe(NO ₃) ₃ -9H ₂ O	0.050
FeSO ₄ -7H ₂ O	0.417
KCl	311.80
MgCl ₂	28.64
$MgSO_4$	48.84
NaCl	6995.50
NaHCO ₃	2400.0
NaH,PO4-H,0	62.50
Na ₂ HPO4	71.02
ZnSO ₄ -7H ₂ O	.4320

5 Lipids

Arachidonic Acid	.002 mg/L
Cholesterol	1.022
DL-alpha-	.070
Tocopherol-Acetate	
Linoleic Acid	0.0520
Linolenic Acid	0.010
Myristic Acid	0.010
Oleic Acid	0.010
Palmitric Acid	0.010
Palmitic Acid	0.010
Pluronic F-68	100
Stearic Acid	0.010
Tween 80	2.20

Carbon Source

D-Glucose	4551 mg/L

Amino Acids

L- Alanine	130.85 mg/ml
L-Arginine-HCL	147.50
L-Asparagine-H ₂ 0	7.50
L-Aspartic Acid	6.65
L-Cystine-2HCL- H ₂ 0	29.56
L-Cystine-2HCL	31.29
L-Glutamic Acid	7.35
L-Glutamine	365.0
Glycine	18.75
L-Histidine-HCL-	52.48

H_2O	
L-Isoleucine	106.97
L-Leucine	111.45
L-Lysine HCL	163.75
L-Methionine	32.34
L-Phenylalainine	68.48
L-Proline	40.0
L-Serine	26.25
L-Threonine	101.05
L-Tryptophan	19.22
L-Tryrosine-2Na-	91.79
$2H_20$	
L-Valine	99.65

Vitamins

Biotin	0.0035 mg/L
D-Ca Pantothenate	3.24
Choline Chloride	11.78
Folic Acid	4.65
i-Inositol	15.60
Niacinamide	3.02
Pyridoxal HCL	3.00
Pyridoxine HCL	0.031
Riboflavin	0.319
Thiamine HCL	3.17
Thymidine	0.365
Vitamin B ₁₂	0.680

Other Components

HEPES Buffer	25 mM
Na Hypoxanthine	2.39 mg/L
Lipoic Acid	0.105
Sodium Putrescine-2HCL	0.081
Sodium Pyruvate	55.0
Sodium Selenite	0.0067
Ethanolamine	20uM
Ferric Citrate	0.122
Methyl-B-Cyclodextrin complexed with Linoleic Acid	41.70
Methyl-B-Cyclodextrin complexed with Oleic Acid	33.33
Methyl-B-Cyclodextrin complexed with Retinal Acetate	10

5

15

20

25

30

35

WO 98/39448 PCT/US98/04493

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs. pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

218

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

			<u>JAKs</u>			<u>STATS</u>	GAS(elements) or
	<u>ISRE</u>						
	Ligand	tyk2	<u>Jak l</u>	Jak2	Jak3		
5	IFN family						
	IFN-a/B	+	+	-	_	1,2,3	ISRE
	IFN-g		+	+	-	1	GAS
	(IRF1>Lys6>IFP)						
10	II-10	+	?	?	-	1,3	
10	an 130 family						
	gp130 family IL-6 (Pleiotrohic)	+	+	+	?	1,3	GAS
	(IRF1>Lys6>IFP)	T	т	T	•	1,5	GAS
	Il-11(Pleiotrohic)	?	+	?	?	1,3	•
15	OnM(Pleiotrohic)	?	+	+	?	1,3	
	LIF(Pleiotrohic)	?	+	+	? ? ?	1,3	
	CNTF(Pleiotrohic)	-/+	+	+	?	1,3	
	G-CSF(Pleiotrohic)	?	+	?	?	1,3	
20	IL-12(Pleiotrohic)	+	-	+	+	1,3	
20	g-C family						
	IL-2 (lymphocytes)	_	+	-	+	1,3,5	GAS
	IL-4 (lymph/myeloid)	-	+	-	+	6	GAS (IRF1 = IFP)
	>>Ly6)(IgH)						
25	IL-7 (lymphocytes)	-	+	-	+	5	GAS
	IL-9 (lymphocytes)	-	+	-	+	5	GAS
	IL-13 (lymphocyte) IL-15	7	+	?	? +	6 5	GAS GAS
	ш-13	!	+	:	+	3	UAS
30	gp140 family						
	IL-3 (myeloid)	-	_	+	-	5	GAS
	(IRF1>IFP>>Ly6)						
	IL-5 (myeloid)	-	-	+	-	5	GAS
35	GM-CSF (myeloid)	-	- ,	+	-	5	GAS
33	Growth hormone fami	il.				,	
	GH	ž	_	+	_	5	
	PRL	?	+/-	+	-	1,3,5	
	EPO	?	-	+	-	5	GAS(B-
40	CAS>IRF1=IFP>>Ly6)					
	Receptor Tyrosine Kinases						
	EGF	?	+	+	_	1,3	GAS (IRF1)
						•	` ,
45	PDGF	?	+	+	-	1,3	
	CSF-1	?	+	+	-	1,3	GAS (not IRF1)

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTC

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

25

30

35

10

15

20

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a

10

15

25

30

35

neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

221

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

20 Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI

10

15

20

25

30

+ 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10⁷ per transfection), and resuspend in OPTI-MEM to a final concentration of 10⁷ cells/ml. Then add 1ml of 1 x 10⁷ cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e⁷ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

10

15

20

25

30

35

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6) 5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

10

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as $5x10^5$ cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to $1x10^5$ cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

20

25

30

15

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-kB (Nuclear Factor kB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-kB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-kB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I-κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

10

15

30

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating diseases. For example, inhibitors of NF-kB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

- PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:
- 5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGACTTTCC ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCA TCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACT AATTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC CAGAAGTAGTGAGGAGGCCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTT: 25 3' (SEO ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-κB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-kB/SV40/SEAP cassette is removed from the above NF-kB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly, the

10

15

20

25

NF-kB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4

15	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6
23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

10

15

20

25

30

35

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37°C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular

10

15

20

25

30

35

signaling even which has resulted in an increase in the intracellular Ca++ concentration.

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are

used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. 5 Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

10

15

20

25

30

35

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg2+ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂ 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This

10

15

20

25

30

35

allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4° C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

WO 98/39448 PCT/US98/04493

233

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

10

15

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

20

PCR products is then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

25

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals is identified by mutations not present in unaffected individuals.

30

35

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

15

20

25

30

35

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated 10 disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect soluble polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

5

10

15

20

25

30

35

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric

10

15

20

25

30

35

acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of

10

15

20

25

30

about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

237

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

10

15

20

25

30

35

5

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added. The flasks are then incubated at 37°C for approximately one week.

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to

transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

5

10

15

20

25

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is being produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Human Genome Sciences, Inc. et al.
	(ii) TITLE OF INVENTION: 186 Human Secreted Proteins
	(iii) NUMBER OF SEQUENCES: 644
10	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: Human Genome Sciences, Inc.
15	(B) STREET: 9410 Key West Avenue
	(C) CITY: Rockville
20	(D) STATE: Maryland
20	(E) COUNTRY: USA
	(F) ZIP: 20850
25	
	(v) COMPUTER READABLE FORM:
30	(A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
30	(B) COMPUTER: HP Vectra 486/33
	(C) OPERATING SYSTEM: MSDOS version 6.2
35	(D) SOFTWARE: ASCII Text
40	(vi) CURRENT APPLICATION DATA:
70	(A) APPLICATION NUMBER:
	(B) FILING DATE: March 6, 1998
45	(C) CLASSIFICATION:
50	(vii) PRIOR APPLICATION DATA:
50	(A) APPLICATION NUMBER:
	(B) FILING DATE:

	(viii) ATTORNEY/AGENT INFORMATION:	
5	(A) NAME: A. Anders Brookes, Esq.	
3	(B) REGISTRATION NUMBER: 36,373	
	(C) REFERENCE/DOCKET NUMBER: PS002.PCT	
10		
	(vi) TELECOMMUNICATION INFORMATION:	
1.5	(A) TELEPHONE: (301) 309-8504	
15	(B) TELEFAX: (301) 309-8439	
20	(2) INFORMATION FOR SEQ ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 733 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
30	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	60
	AATTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	120
35	TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	180
	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
40	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCTT CACCGTCCTG CACCAGGACT	300
	GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	360
45	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	42
45	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	54
	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	60
50	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	66
	ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC	72
55	CACTCTAGAG GAT	73

	(2) INFORMATION FOR SEQ ID NO: 2:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Trp Ser Xaa Trp Ser 1 5	
15		
	(2) INFORMATION FOR SEQ ID NO: 3:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 86 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60
30	CCCGAAATAT CTGCCATCTC AATTAG	86
35	(2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
45	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
50	(2) INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 271 base pairs	
55	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
60	CTCGAGATIT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60

	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
	GCCCCTAACT CCGCCCAGTT CCGCCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT	180
5	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
	TITTGGAGGC CTAGGCITTT GCAAAAAGCT T	271
10		
	(2) INFORMATION FOR SEQ ID NO: 6:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
25		•
	(2) INFORMATION FOR SEQ ID NO: 7:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
40		
	(2) INFORMATION FOR SEQ ID NO: 8:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
55	GGGGACTITC CC	12
J)		
	(2) INFORMATION FOR SEQ ID NO: 9:	
60	(i) SEQUENCE CHARACTERISTICS:	

PCT/US98/04493

_	(A) LENGTH: 73 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
10	CCATCTCAAT TAG	73
15	(2) INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 256 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
25	CTCGAGGGGA CTTTCCCGGG GACTTTCCGG GGACTTTCCA TCTGCCATCT	60
	CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC	120
30	CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTITT TTTATTTATG CAGAGGCCGA	180
50	GGCCGCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG	240
	CTTTTGCAAA AAGCTT	256
35		
	(2) INFORMATION FOR SEQ ID NO: 11:	
40		
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 582 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	GGCACGAGGT AATTTCTACC AGAAATTTCC AGAGCATTAT GTAGGTAGAA AAAAATGCAA	60
50	GCAAGCTGTT AAAGATCTTG GATCCCATTA TATAGTATGT ATAGCTGAAA TCTGTAATTC	120
	AATCACTITT TCTCTTTTAT CCTCTAACCA AAAAATTGTT TAATTTTGCA TCCCAAATGT	180
55	TTTTAATCTT TGTATATTTT TTAAAAATCC TTTTCTCCTC ATCATTGCCT TTTTTGTGGT	240
	TGTAAATAGA CTTACTTGCA CTTTGAAGAT GAGTTACTCC TTGTCATCTT ACAAATATGT	300
	GATATGGTAA TTTTCATAAC AGATGTCAGT TTTGAACCAA GAATTGGTGA TTTGTTTATA	360
60	AGAAAAAAC TOGCTTCATT TCTGTGAAAT TGCTCTTTGA AAATTTCTTT TTACACGTGT	420

	AAGCCAACTG AGATACCGTG ATGGTGTTGA TTTCTTTCAA TGATGCTTAC CATCTATTTT	480
5	AGCCACTGAG CCTTTTATTA TTTGTCTATT TGTAAAGTTT ATTTGTCTTA ACTCATTTAA	540
	TAAATATACT GTTTATCTGT TTCTGAAAAA AAAAAAAAAA	582
10	(2) INFORMATION FOR SEQ ID NO: 12:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
20	GTTTGGGGGT GAGGCCGAGC TGCTGCGGGG CTTCGTCGCC GGCCAGGACA CAGCTACTCG	60
	CACGGCGGCG GCGCCTGGCT ATGATGTTCC TCACCCAGGG CGGGCCTCTG CCCTCTACTC	120
25	GTGCCAGGCC CACTTGCCAG GCAGGAGCCC TCCCCAAGCC TTCAGGGCTG CTCGGAGTCA	180
	CCTGTTGGAA TGGACTAAAA GGACCCTTGT GTGGGAACAG GTGCTCCCCA AACACCCTGC	240
30	TECTEGETEC CAGGCAGGCC CTCTGGAAGG GAAGGGGCAG GACTCATCAG GACCTCCCTG	300
	GACCCCTGCA GGGCAGGCAG CTTGGGCCCG AGCCCAAGCA TTTGGCTCTG CTGCCCCCAA	360
	GGGGACAGGA AGCCTCTTGG GCCTCTTCCC TTCCTGGACA AGGCCCCCTG CCTTTGCCTC	420
35	ACATAAACTG TACAGTATTT TCATTAAAAG CCTCTTTCAT AAAAA	465
40	(2) INFORMATION FOR SEQ ID NO: 13:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 474 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
50	ATGCAATTCC TGCTCACAGC CTTTCTGTTG GTGCCACTTC TGGCTCTTTG TGATGTCCCC	60
	ATATCCCTAG GCTTCTCCCC CTCCTAGAAG GGCTTCTTGA TAGATTAGAA AATAAGAATG	120
55	AGTGACATIT CCTATGTGCA TATAAGAAGG AGCCACAAGA CATGTCTTTT AAATAAAAGG	180
	ACAGTGTCCA TCCTTTTAGC TGCCGAATAG AACCTTGGTC TCATCCTCCT GGAGCTAGGC	240
	CITTAAAACA GCTTCTGTGT TTCTCATTTG TCTCAGTGTT TTGCCAGGGT TTTATCGGAA	300
60	AGATAATGTT CCGTTTAAAA TATTTCCTAA TGAGGCCGGG CGTGGTGGCT CACGCCTGTA	360

WO 98/39448 PCT/US98/04493

246

	ACCCTAGCAM TTGGGGGCTG AGCGGGTGGA TCACGAGGTC AGGAGATCGA GACCATCCTG	420
5	GSTAACATGG TGAAACCCCG TCTCTACTAA AAATACAAAA AAAAAAAAA AAAA	474
	(2) INFORMATION FOR SEQ ID NO: 14:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 314 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
20	TTATGTTGGG GAGCAAGACC TGATAGCCAG CCTTTACATG GGAGTATAAT TCTGTCCTCC	60
20	ATCTCATAAG CCCCAGTACC TGAGCCAGAA TGATTATAAC CAACCACACT GTCTCTTTAT	120
	CATGGATGGC TITAGCAGTA GGTTATTITC ATCATTGCCA TITGTAGCTC TACAGTGGTT	180
25	TATAGTAATT TCTCATCTTT TAAGTCTCTC CCTCAGTGCC TGTTGTTATC AAACTCATTG	240
	CTCTCTCANG CAGTTGAGCT CTGCATTCTC CCYTATGGGG GAGAGCTGTG TTGGAGAGAG	300
20	AGAATATNAC TTCC	314
30		
35	(2) INFORMATION FOR SEQ ID NO: 15:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 613 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
45	CTCATATTGC CGTCTGGCTA AAAGTGAACA TGCCATTGAT CAATCTGCTT TTATTATATT	60
43	ATGTTCCTAA TGGTGGCAAG CAAGACAAGA AGTAGAAAGA AAGATGGTGT AAGCTCAAGA	120
	ATGITCCIAN 100100CANO CIVILIANI III	
	ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA	180
50	ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA	180 240
50	ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA	
	ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA CTATAACAGA GCTCCCAAGG AGACTGCAGA GTCAGCTCCC TTAAGCACTG TAACTAAAGC CTAACTCTTC CGTTCCACCC AACAATGTYC CCAGCTCATC CTCTTTCCCR AAGTCCCCTT TCTGCCCCAG ATGCGAATTG CATTTAACTA ATCCTCAAGT GAAATGTCCA CACAGRATTC	240
50 55	ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA CTATAACAGA GCTCCCAAGG AGACTGCAGA GTCAGCTCCC TTAAGCACTG TAACTAAAGC CTAACTCTTC CGTTCCACCC AACAATGTYC CCAGCTCATC CTCTTTCCCR AAGTCCCCTT TCTGCCCCAG ATGCGAATTG CATTTAACTA ATCCTCAAGT GAAATGTCCA CACAGRATTC	240 300
	ACCCACTAAA TCTATCCTAT GGCCTGGGTT CACCCAGCCT GCTTTGTGGA TTTTGTCTCA CTATAACAGA GCTCCCAAGG AGACTGCAGA GTCAGCTCCC TTAAGCACTG TAACTAAAGC CTAACTCTTC CGTTCCACCC AACAATGTYC CCAGCTCATC CTCTTTCCCR AAGTCCCCTT TCTGCCCCAG ATGCGAATTG CATTTAACTA ATCCTCAAGT GAAATGTCCA CACAGRATTC	240 300 360

	ATTGGCTAGA AGTTGATCCT CCTGTAACTT TTCTGAGTTC TTTACATTTA CTCGTGAAAC	600
5	CCAAATATGC CAC	613
10	(2) INFORMATION FOR SEQ ID NO: 16:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 356 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
20	CCCCCCCAT TGAACCCTGG GCTGTGAAAG TTTTTGCCTG TGTGGGTCGI TCTGTGTGGC	60
20	GCCTGGTGTG TGGKTCCCAA CTCCTGTTGC AAAGTGGCAG CAGCCAATCA TGAAGCGCCC	120
	TTATTTTAG TTGCAGATGA CCAGGTCTCC CCCCCACAGC CTCTGTCTGG TCCCTCATTG	180
25	GTGAGTGGTC TGCCTGCCCA AGGAGCCTGA TTGGTGGGAA ATGGCATCAT CTAATATGAT	240
	GGGAAGGCAT TTGGTCCTGG TTATGTTTAT TACAACATCA TTGCACTCTG GGACTCCAGT	300
30	CCCTGAAAAC GTAATTTGTG GTGTTACCAA AGGACCACAG GGGAAAAAAA AAAAAA	356
35	(2) INFORMATION FOR SEQ ID NO: 17:	
33	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 414 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
45	GAAACTANAT CCCGGGGCTT TTAACNGGTA CTTGGGAAAT AAGTATTGGG TAATCACTAA	60
	GNGGACATTG ACTGCACCAA ACCAAAGCTA TAGAAAGAAA TGATTGACTT TTTAAAATAT	120
	ATTCACATTA ACTGTCCTAG GATACTTCTC TTGAGGCTTT GGAAAACTTC TTCCTTGAAA	180
50	TTTGCATATC CACTCCAGTT CTGTCACCAA AGATTTTAAT CTTCAGATCG CAATTTCCTC	240
	TCTCCCAGAA AAAAGTACTA CAACAGGCTC AAGGGATATG CTTTGGTGGT CAAGGGATTA	300
55	CACTATGGTT TTCCTTCTGT TCACAATGGT ATTTACAGGA GACCTTGTCA TCAGAGGACG	360
	TACTGAACTA TCTTTATGAC TTTGGATTTG ATCAGAGGTT TAAAAAAAAA AAAA	414

	(2) INFORMATION FOR SEQ ID NO: 18:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 469 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
10	AATCACCATT GCAATACAAA TGATCTGCCT GGTGAATGYT GAGCTGTACC CCACATTCGT	60
	CAGGAACYTC GGAGTGATGG TGTGTTCCTC CCTGTGTGAC ATAGGTGGGA TAATCACCCC	120
15	CTTCATAGTC TTCAGGCTGA GGGAGGTCTG GCAAGCCTTG CCCCTCATTT TGTTTGCGGT	180
	GTTGGGCCTG CTTGCCGCGG GAGTGACGCT ACTTCTTCCA GAGACCAAGG GGGTCGCTTT	240
20	GCCAGAGACC ATGAAGGACG CCGAGAACCT TGGGAGAAAA GCAAAGCCCA AAGAAAACAC	300
20	GATTTACCTT AAGGTCCAAA CCTCAGAACC CTCGGGCACC TGAGAGAGAT GTTTTGCGGC	360
	GATGTCGTGT TGGAGGGATG AAGATGGAGT TATCCTCTGC AGAAATTCCT AGACGCCTTC	420
25	ACTICICIGT ATTCTTCCTC ATACTTGCCT ACCCCCAAAT TAATATCAG	469
30 35	(2) INFORMATION FOR SEQ ID NO: 19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 550 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
40	CCCCCCCCC CCCCACACT TTCAGGAGTC ACCCCCCAGC ATTTGGGGTT GGGTTGGCCC	60
	TACTCCAGCC TGGAGCTCCC TGAGGGAGCC TGCACTCCCT GCTCCCAATC CCCGCTACTG	120
45	GTGCAGGGAT GCAGCCTGGA GCTGGCGTCC TTGTTCTGGG CCTGCTGCTG CCGCCACCCC	180
40	AGAGCCCCAG CCTGTCCTGA ATTGACATCA GTGCTTCCCT GAACTGCCTC CCCCACCCCT	240
	GGGCATTATC CCAGGAAACT TTATGTTTTC TAGAAGCTAA GCAGCTGCTG GGACTCAGGG	300
50	ACTGGTGCAG GTAGGCTGAG TGGCAGCTCA GTCCTAGAAG GTCTCTGAAG ATCTGGACTG	360
	AGGACCTTGC TACTCCCCAA GCCAGAGCCC ATCAGCCAGG CCTGCTGTGA GCCACCTGCC	420
55	TGTGGAGTGC TGAGCTCAAC CAAAGGCTGG CAAGCTCTGG GCCTCATTTA AGGGATTCTG	480
55	ATGAGCCGAT GGGCCCTGGA GGCAGCCCAT TAAAGCATCT GGCTCGTTTT TGGAAAAAAA	540
	ааалаалаа	550

	(2) INFORMATION FOR SEQ ID NO: 20:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 741 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	TCTTGAAGAG TGTACAGTAC AGGATTATTA TAATGAAAGT TTATATCAAC AGGGTTTCGT	60
15	TGGCTCTGCA TATATTATAA GCAAAAGAGA TTGGTAAAGT GCCACAGTAT TCCAGATAAC	120
	TTTTCAGTTG CGGCCTTTCT TCTCGTTCTT TAATTTGAAA CCTAGATACA TGCAGTAAAA	180
20	ACTAGGAGAA TGACTTTTAC CCTTGGGGAC AGCCAAGTTT TGTTGATAAA CCTATTTCCT	240
20	AGCATGCCTT CAGGAAGTTG TGCCAGACCC TAGATTGTGA AGGACCCACT GTTCTTCTGT	300
	TGTACGAGCT CCCTGAACCA TTGTTCAGAG GACCAATGTC ACATCGCTTC ATGGGCATGG	360
25	NCCATGGGAG CATCTGGGTG ATAYCTGTCT ACAGTATTGG CTCTTCTGCG AGGCTGATAC	420
	ACAAGGCCTC TCTTCCACAT GATCATTTGC AAACCTCCCC CAGCCCCTAC CATCCAATGT	480
20	GGAAGGAAAA CAAGAACTGC CTGAAGAAGA GTCCAAGCTA CAGATACACA GCGTGTGCAT	540
30	TGCGGCTGTC ACCTTCCTCC TCCCACTTCT GTATCCTCAG AGATGCTGCG TGGATGTTTC	600
	CTTAACCTCA GCTGACTTCC CTGTGAATGT CTAATGCTAG TTCAGGGCCT CCAGGCATTG	660
35	ATTTGTACAG TGGTAACTCC CAATGAGGCT TCTGTTATCA TTTGGTGTGC TTTTTCTGTC	720
	ATTAAAAGAA ATGATTTTCC C	741
40		
	(2) INFORMATION FOR SEQ ID NO: 21:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 991 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	GGCACGAGTC TCCCCTGGGG AAGTTTTTCT TTTTCAGGAG GGAGGAGGGC TTTCCCAGGT	60
55	ANTGTGTCTA GAGTGTTGGG CAGAAAATCT GGGACCACAC CACACCAGTT CTCTCCTTAA	120
55	TCCACGTCAT TTGCCTTCTA TCCCAGCTAT GTTTCCAGTG TCCTCTGGGT GTTTCCAAGA	180
	GCAACAAGAA ATGAATAAAT CTCTGGTGAG TIGTTTATTT GTTCTTCACT TTGTTTTACA	240
60	CTGTATTTYC TGAGTTTATC CCTCTCTCC AATTAAAAAC CAAAACTACA AATTAACTAAA	300

	ACTCAGGTTG AAGGAAATAT ACATAAATAA GATAAAGCTG ACCTGTAGAT ATAGCAGGTT	360
5	ATAAAGCTTA GAGTTGTCTA AGTTGAGTGC AAATTTTCCT CTGATCTTTC TGATGCCGAA	420
J	CAAAAAAGCA GTCATGTTTG TTATGTGATT GGAATGGAAC CCGAGAAGAG AGCATGCTGT	480
	GTTCTTGTGG GACAGGAAAG CTTGCGTGCA CCAAGTCTGA ACCACCACCT TCATGGTGAC	540
10	ATAGATTATG TGCTGGAACA TATTTCACAC CGGCCTGGCA GTAAACACTT GTAGTGTTGT	600
	GCAGTGGAAA CGGTCATCTT CCGCTAAAGC ACGGCGTGTT GTGCAGCGGA AATGGTCATC	660
15	TECTECTAAA ACACAGCTTC CATCGTAATG TATECTCCTT ACTCAAAGAG TETEGTCCCA	720
15	AACAGCCTTT GGGAGGTCCT CCTTGATTCA TGGATGAAAC CTGGAACATC TTGAGGACTG	780
	AGITAACCAT AGGICCITAA ATAACTCTCC ACACGTTTTT CTTAGTTTAT CTCTACATGC	840
20	AGGGTGTGCA GCAGCCTGTT CAAAGTCATA TTTTCTGGGA AATATTTCCA GTGTTTATTT	900
	GCACTTTAGC CCACTCTGTG TAGCCTTATT. TCTTCTAAAC TCACCATTAA TCTGAATAAT	960
25	AGTCAAATTT AGGGGGACTG TATTTGCCTT A	991
	(2) INFORMATION FOR SEQ ID NO: 22:	
30	(i) SEQUENCE CHARACTERISTICS:	
•	(A) LENGTH: 653 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
<i>33</i>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
		60
40	CCACGCGTCC GGAATTCCCC TGAGGATCTT GGGCTATCTT TGACAGGGGA TTCTTGCAAG	60
	TIGATGCTTT CTACAAGIGA ATATAGICAG TCCCCAAAGA TGGAGAGCTT GAGTICTCAC	120
	AGAATTGATG AAGATGGAGA AAACACACAG ATTGAGGATA CGGAACCCAT GTCTCCAGTT	180
45	CTCAATTCTA AATTTGTTCC TGCTGAAAAT GATAGTATCC TGATGAATCC AGCACAGGAT	240
	GGTGAAGTAC AACTGAGTCA GAATGATGAC AAAACAAAGG GAGATGATAC AGACACCAGG	300
50	GATGACATTA GTATTTTAGC CACTGGTTGC AAGGGCAGAG AAGAAACGGT AGCAGAAGAA	360
50	GTTTGTATTG ATCTCACTTG TGATTCGGGG AGTCAGGCAG TTCCGTCACC AGCTACTCGA	420
	TCTGAGGCAC TTTCTAGTGT GTTAGATCAG GAGGAAGCTA TGGAAATTAA AGAACACCAT	480
55	CCAGAGGAGG GGTCTTCAGG GTCTGAGGTG GAAGAAATCC CTGAGACACC TTGTGAAAGT	540
	CAAGGAGAGG AACTCAAAGA AGAAAATATG GAGAGTGTTC CGTTGCACCT TTCTCTGACT	600
60	GAAACTCAGT CCCAAGGGTT GTGTCTTCGG AGGCATCCAA AAAAAAAAAA	653
UU		

WO 98/39448 251

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

5

(A) LENGTH: 1486 base pairs

PCT/US98/04493

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

GGCAGGCTGA CGACCTGCAA GCCACAGTGG CTGCCCTGTG CGTGCTGCGA GGTGGGGGAC 60 15 CCTGGCAGG AAGCTGGCTG AGCCCCAAGA CCCCGGGGGC CATGGGCGGG GATCTGGTGC 120 TTGGCCTGGG GGCCTTGAGA CGCCGAAAGC GCTTGCTGGA GCAGGAGAAG TCTCTTGCCG 180 20 GCTGGGCACT GGTGCTGGCA SGARCTGGCA TTGGACTCAT GGTGCTGCAT GCAGAGATGC 240 TGTGGTTCGG GGGGTGCTCG GCTGTCAATG CCACTGGGCA CCTTTCAGAC ACACTTTGGC 300 TGATCCCCAT CACATTCCTG ACCATCGGCT ATGGTGACGT GGTGCCGGGC ACCATGTGGG 360 25 GCAAGATCGT YTGCCTGTGC ACTGGAGTCA TGGGTGTCTG CTGCACAGCC CTGCTGGTGG 420 CCGTGGTGGC CCGGAAGCTG GAGTTTAACA AGGCAGAGAA GCACGTGCAC AACTTCATGA 480 30 TGGATATCCA GTATACCAAA GAGATGAAGG AGTCCGCTGC CCGAGTGCTA CAAGAAGCCT 540 GGATGITCTA CAAACATACT CGCAGGAAGG AGTCTCATGC TGCCCGCANG CATCAGCGCA 600 ANCTGCTGGC CGCCATCAAC GCGTTCCGCC AGGTGCGGCT GAAACACCGG AAGCTCCGGG 660 35 AACAAGTGAA CTCCATGGTG GACATCTCCA AGATGCACAT GATCCTGTAT GACCTGCAGC 720 AGAATCTGAG CAGCTCACAC CGGGCCCTGG AGAAACAGAT TGACACGCTG GCGGGGAAGC 780 40 TGGATGCCCT GACTGAGCTG CTTAGCACTG CCCTGGGGCC GAGGCAGCTT CCAGAACCCA 840 GCCAGCAGTC CAAGTAGCTG GACCCACGAG GAGGAACCAG GCTACTTTCC CCAGTACTGA 900 GGTGGTGGAC ATCGTCTCTG CCACTCCTGA CCCAGCCCTG AACAAAGCAC CTCAAGTGCA 960 45 AGGACCAAAG GGGCCCTGG CTTGGAGTGG GTTGGCTTGC TGATGGCTGC TGGAGGGGAC 1020 GCTGGCTAAA GTGGGKAGGC CTTGGCCCAC CTGAGGCCCC AGGTGGGAAC ATGGTCACCC 1080 50 CCACTCTGCA TACCCTCATC AAAAACACTC TCACTATGCT GCTATGGACG ACCTCCAGCT 1140 CTCAGTTACA AGTGCAGGCG ACTGGAGGCA GGACTCCTGG GTCCCTGGGA AAGAGGGTAC 1200 TAGGGGCCCG GATCCAGGAT TCTGGGAGGC TTCAGTTACC GCTGGCCGAG CTGAAGAACT 1260 55 GGGTATGAGG CTGGGGCGGG GCTGGAGGTG GCGCCCCCTG GTGGGACAAC AAAGAGGACA 1320 CCATITITCC AGAGCTGCAG AGAGCACCTG GTGGGGAGGA AGAAGTGTAA CTCACCAGCC 1380 60 1440

252

AACTCGAGGG GGGCCCRKAC CCAATCWCCC TATAGTAKAC GTANNN 1486

5

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS: 10

(A) LENGTH: 2323 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

CTTCGCCGTT TCTCCTGCCA GGGGAGGTCC CGGCTTCCCG TGGAGGCTCC GGACCAAGCC 60 CCTTCAGCTT CTCCCTCCGG ATCGATGTGC TGCCGCCGCCG GCCGCCGCCG TCCCGCGTCC 120 20 TTCGGTCTCT GCTCCCGGGA CCCGGCTCCG CGCAGCCAGC CAGCATGTCG GGGATCAAGA 180 AGCAAAAGAC GGAGAACCAG CAGAAATCCA CCAATGTAGT CTATCAGGCC CACCATGTGA 240 25 GCAGGAATAA GAGAGGCAA GTGGTTGGAA CAAGGGGTGG GTTCCGAGGA TGTACCGTGT 300 GGCTAACAGG TCTCTCTGGT GCTGGGAAAA ACAACGATAA GTTTTGCCCT GGAGGAGTAC 360 TTGTCTCCCA TGCCATCCCT GTTAATTCCT GGATGGGGAC AATGTCCGTC ATGGCCTTAA 420 30 CAGAATCCCC CAGATGGCTT CATGGCCCCC AAAGCATGGA AGGTCCTGAC AGATTATTAC 480 AGGTCCCTGC AGAAGAACTA AGCCTTTGGT CCAGAGTTTC TTTCTGAAGT GCTCTTTGAT 540 35 TACCITITCT ATTITATGA TTAGATGCTT TGTATTAAAT TGCTTCTCAA TGATGCATTT 600 TAATCITITA TAATGAAGTA AAAGTTGTGT CTATAATTAA AAAAATATAT ATATATATAC 660 ACACACAT ATACATACAA AGTCAAACTG AAGACCAAAT CTTAGCAGGT AAAAGCAATA 720 40 TTCTTATACA TTTCATAATA AAATTAGCTC TATGTATTTT CTACTGCACC TGAGCAGGCA 780 GGTCCCAGAT TICITAAGGC TITGTTTGAC CATGTGTCTA GTTACTTGCT GAAAAGTGAA 45 TATATTTTCC AGCATGTCTT GACAACCTGT ACTCTTCCAA TGTCATTTAT CAGTTGTAAA 900 ATATATCAGA TGTGTCCTCT TCTGTACAAT TGACAAAAAA AAAAATTTT TTTTCTCACT 960 CTAAAAGAG TGTGGCTCAC ATCAAGATTC TTCCTGATAT TTTACCTCAT GCTGTACAAA 1020 50 GCCTTAATGT TGTAATCATA TCTTACGTGT TGAAGACCTG ACTGGAGAAA CAAAATGTGC 1080 AATAACGTGA ATTTTATCTT AGAGATCTGT GCAGCCTATT TCTGTCACAA AAGTTATATT 1140 55 GTCTAATAAG AGAAGTCTTA ATGGCCTCTG TGAATAATGT AACTCCAGTT ACACGGTGAC 1200 TTTTAATAGC ATACAGTGAT TTGATGAAAG GACGTCAAAC AATGTGGCGA TGTCGTGGAA 1260 AGTTATCTTT CCCGCTCTTT GCTGTGGTCA TTGTGTCTTG CAGAAAGGAT GGCCCTGATG 1320 60

	CAGCAGCAGC GCCAGCTGTA ATAAAAAATA ATTCACACTA TCAGACTAGC AAGGCACTAG	1380
	AACTGGAAAA GACCACAGAA AACAAAGAAT CCAACCCTTT CATCTTACAG GTGAACAAAC	1440
5	TOTGATGATG CACATGTATG TGTTTTGTAA GCTGTGAGCA CCGTAACAAA ATGTAAATTT	1500
	GCCATTATTA GGAAGTGCTG GTGGCAGTGA AGAAGCACCC AGGCCACTTG ACTCCCAGTC	1560
10	TOGTGCCCTG TCTACACCAG ACAACACAGG AGCTGGGTCA GATTCCCCTC AGCTGCTTAA	1620
10	CAAAGTTCCT CGAACAGAAA GTGCTTACAA AGCTGCCTTC TCGGATACTG AAAGGTCGAG	1680
	TTTTCTGAAC TGCACTGATT TTATTGCAGT TGAAAAAAAA AAAAAGCTAT TCCAAAGATT	1740
15	TCAAGCTGTT CTGAGACATC TTCTGATGGC TTTACTTCCT GAGAGGCAAT GTTTTTACTT	1800
	TATGCATAAT TCATTGTTGC CAAGGAATAA AGTGAAGAAA CAGCACCTTT TAATATATAG	1860
20	GTCTCTCTGG AAGAGACCTA AATTAGAAAG AGAAAACTGT GACAATTTTC ATATTCTCAT	1920
20	TCTTAAAAAA CACTAATCTT AACTAACAAA AGTTCTTTTG AGAATAAGTT ACACACAATG	1980
	GCCACAGCAG TTTGTCTTTA ATAGTATAGT GCCTATACTC ATGTAATCGG TTACTCACTA	2040
25	CTGCCTTTAA AAAAAAAAAC CAGCATATTT ATTGAAAACA TGAGACAGGA TTATAGTGCC	2100
	TTAACCGATA TATTTTGTGA CTTAAAAAAT ACATTTAAAA CTGCTCTTCT GCTCTAGTAC	2160
20	CATGCTTAGT GCAAATGATT ATTTCTATGT ACAACTGATG CTTGTTCTTA TTTTAATAAA	2220
30	ТТТАТСАGAG ТGАААААААА АААААААААА ААААААААА АААААААА	2280
	AAA AAAAAAAAA AAAAAAAAA AAAAAAAAA	2323
35		
	(2) INFORMATION FOR SEQ ID NO: 25:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 683 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
73	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
	GGCACGAGCC TGTGTGGTCA TGTTCCTCGT GGTGCAGTAC CTGACATGAG CCAGCCACGC	60
50	TCAGTGGCTG AACAGCATTC CCACAGCCTG CAAGTGTGTG TGTGTGTGAA AGAGAGAGGG	120
	GGGCCCAGAG CCGCCTTTTG AAATGTTTGC CTGTCTGAAC TGTGAAGACA CTTGGGAGTG	180
55	ATTGTGGTCT AATTTCCAAC CTGCTCTGTT TTCTGTGACA TCTTGGAGGG GAGCTAGTGC	240
55	CACACCATGC GCGGTGCTTA GAAATGAAAA AGTCCCGGGT CTGTCTCTCT CACTCTCGCT	300
	CTCATGGGGG AGGGAAAGAA TGGCTTTGGT GGCTTTGTTC ACACAGCTGA TGCGTGCTGG	360
60	GAAGGTGTCC ACAGTGAGCC TGTGTGCAGG ACTGTCCACA CGGTTCACAC TTGTCACCAT	420

254

	CAGGCCTTTC TGGTCCTGAT AGGGTGGAGC AAAAGTGGAA AGGAAAGGAA	480
5	CTCACAGCCA TTATATTAAA TAGTAGGTCG ATTCACATCT CGTGCTCCTG GCCACCTTCC	540
3	CCTGTGCCTC AGTGACATGT AGATGACTGA CTGCCAATAC TTGTCACCAT TCCCTGGAAG	600
	CAGCTACCTA GGGGAAACAA GATGTAGTGC TATTGCCGAT AACAAGTAAG ATTTTCCACA	660
0	СТААААААА ААААААААА ААА	683
15	(2) INFORMATION FOR SEQ ID NO: 26:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2036 base pairs	
30	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
25	CTGAGAAAGG AAAGCATTCG GATCTGCTGC AAAAACACAT ATATCCATAA AGACTCATGT	60
	TATTCAGAAA ACAGATTGTG AACACAATCA CATTCGCATG AATCCTTTAA AAGGAAGAAG	120
30	ACCTTAAAGT ATCTGCAAAT CTGAATTTCT ATTTATTCCT TCACTGAATA TAGAAACAAT	180
50	GGITATCTGA TTATTAGAGA TATTATTITG GATATGTTAC TTATTAACTT GCTATGGCTG	240
	GTAACCATGA TAAAGTCTGT TATTAATAAC AACATAATTC TTTTTTTAAA GAAGAAAAGC	300
35	TTATTTTTCA TTGACAGTGT ATAGATTTAT CTACTTAGTT GTGTTTTGCT ATTAGTGTTT	360
	TAATTTTTTT TTTAAGTTGA GTGTTTGATA AATTTTAAGA CCCTGTCCCC ACCTTGTTTT	420
40	GAGTCCTGTG TTGACTACAG GTATATAGCY CAWTTTAAAA ATCCTAAAGC AAAAGAATTT	480
	TATTTATAAA AGAATCMAMC MGTTGCATGC ATGAGGCTGT GAAGTCAGAT ATTTAGTAAT	540
	AAAAGCAGCA GTGCCTTTTT TTGTATTTAC CCATTGACCC CCACCAAATG CAACTGTTTT	600
45	ATATTAAGAA AATAGTAACA ATTTTAAAAT CTCAGAGTAA AATCTATTTC ACTACATGCT	660
	TTTCCCCCCT TGTTCTGATT TAAGCAGTGT GTACTTGGCA TCTCTACATT GTCCTAGGGA	720
50	CAGTGGTGTT CTACAATATT ATCATGTATG ATGTTTTATT GGTGCTTTTT ATTCATAGTG	780
	GCTTCTTACC AGAAACAGTA GGAAGAAACA CATGAACTGT GTACAAGACA TGAAACATTG	840
	CTGCTGATAT GTTGTTTTTT CACATGCTTT TGAGTTTTCA CTTTTTAAAC GAGAGCCAGC	900
55	AAGCAAAATA GATGTGGCTG GGTCTGCCTG TCCGGGCGGC TYTTTGCACC GAGCTCTCAA	960
	ATCCTGTGTA TTGAGGGTTC CTTTTTGGTA CTCAGGATTG GAGCTACAGC TGGGCCCCCC	1020

TCTCTCCCAT TCGTTTGAAG AGACACTGAG GGAAACAAGG GTTTCTTTTG AGGTGTCCTT

60

	GCTCCCTTT 1	TACGGGATGG	GAGCCTTCTC	CGGATCTTTT	GTTCTTCTGC	ACCTCTTGTA	1140
	GCTACTGCCG	GTGCAAGGTT	GTAGATGTTA	TTCCCCAGGA	GCCTGGGCTK	GGGGCTGAG	1200
5	CTGGGCTGAA	TGCAAAAGCA	TGCAACCAGA	AGGCGGGCAA	GGGGAGGAAA	AGCAGGCCTG	1260
	GCCTCATTGG '	TCCCCTGGAG	ATGTCTGTAG	CAGTCAGCTC	CAGCTTGGGC	CTGGGGAAGC	1320
10	AGCCTGACCA	AGGCGCTCAG	CTCTCCCTCT	TACAAGAAGA	ACCTGCAGAA	GGATAATTTG	1380
i O	CACATGGAGC '	TGTGATAACA	CTAATGTTGA	TTTTTTTTT	TTTTACAAGT	CATCAGRGAT	1440
	GTTTGCAAAG '	TGAGTTTTAT	TTTTTTGTAA	TTCCTTTATC	TTTACTTAAA	GGTGAATGTG	1500
15	TATTCCTCTG (GGAGGAATAG	GAAGAAAACA	GGAATGTTAA	TAATGTCGAA	CAGAAAACTT	1560
	CCTCCCTTAT '	ТААТАТАТАА	TCYTCATGTA	TTTATGCCNT	AATGTAAGCT	GACTTTTAAA	1620
20	AAGCTTTCTT '	TTGTTGCATG	CCCTGTGCAG	GCATCTGTAT	TGTACATGCA	TGCCTTTCGT	1680
20	CCTGTTTTCC	TGTATAAAGT	TAGTGAACAA	AGAAATATTT	TTGCCCTAGT	TCATGTTGCC	1740
	AAGCAATGCA	TATTTTTAA	ATTIGICATA	TATGGAAAGA	GCATGTTTGT	TACATGTAAA	1800
25	AGCTTTACTG	ATATACAGAT	ATACTAATGT	TTGAAGATGC	TGTTCTTTGC	AAGTGTACAG	1860
	TTTTCAAATG	TTGTTACCAG	TGAAACACCC	TTGTGGTTTA	AACTTGCTAC	AATGTATTTA	1920
30	TTATTCATTT	CCTCCCATGT	AACTAAGAAT	CATGGCTATA	TTTCATATCA	ACGTTATATT	1980
,	GAAAGTGAAG	GGAAATGATT	AATACAAGGT	TTTGTAACAA	AAAAAAAA	ANNAAA	2036
35	(2) INFORMA	TION FOR SE	EQ ID NO: 27	7:			
40	(i)	(B) TYP (C) STR	HARACTERIST GTH: 717 ba E: nucleic ANDEDNESS: OLOGY: line	se pairs acid double			
A 5	(xi)	SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 27:		
45	GGCACGAGAT	AACATAGGCA	СААТААТАСТ	GTATGTCTAC	TTCTAGGATT	ATAAGGAATT	60
	AACATTGAGA	TGACATTTCC	ATTTGAGAAG	AAAATAGTTG	CTTTCAGTGC	CTTTTATTTG	120
50	ATTCCTGGAG	AGAGCAGACT	CGCACCAACA	TTCAACCCCA	GCGCTGATAT	GACAGTAATC	180
	CTCAGAGGCA	GAGCCCAGCA	CAAAACAGCA	ATGCTAGAAA	GTTACAATTG	GAAAGTTTCC	240
55	TGCCAGCTTC	GGGAATGACA	CTGCAAAGCT	GATGCCAGAA	ACTGCCAGAG	TAATTCTCCT	300
55	CATTACTGCT	CTACCCACCC	ACTITCAGCT	ССССАААТТА	ACTAGTGCAG	TTGACTAATC	360
	CTCTTTACCT	TTATCATTTA	GGTGAGGCAT	TGCACAAAAA	CTCTCGACTT	TGCCATATAA	420

GGGCTGTGGT TCTCTGTGGT CCTGGATAAG AGGCATCACC ATTATCTGGA AACATGCAGT

	AAATGCAGAT TCTTCATCTT CTCCCCAGAC CTCCTGAGTT AGAAATTCAC AAGTTCTCCA	540
5	GGTGATCTCA TACATGCTAA AGTTTGAGAA CCATTGAGTA AAGTTAATGC ATTAAGAAGA	600
	GATTAGATAG GGATGGTGGC GTATCTTCCT ACAGTTTCCC TGTTAACAAG AAAGTCAGAG	.660
	GTCAGTTGAT CAGACATTAG ATTATTTATT GCTAAAACTA AAAAAAATTA AAAAAAA	717
10		
	(2) INFORMATION FOR SEQ ID NO: 28:	
15 20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 495 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	GAATTCGGCA CGAGCAGCAT CCTAATTTTA GTTTGGAGAT GCATTCTAAA GGATCTTCTC	60
25	TATTGCTTTT TCTCCCACAA TTAATCTTGA TTCTGCCTGT CTGTGCACAT TTGCATGAGG	120
	AACTGAACTG TTGTTTTCAT AGGTAAATGA GAGACTGAGT TTTTTCATTT CTGAAGAGAA	180
30	AGGGCATTTG CTCCTACAAG CTGAAAGGCA CCCCTGGGTG GCTGGGGCCC TCGTGGGAGT	240
	TTCTGGGGGA TTGACCCTTA CAACATGCAG TGGCCCTACA GAAAAACCTG CAACTAAAAA	300
	TTATTTTTA AAAAGGCTCC TCCAGGAAAT GCATATAAGG GCTAATCACC CAGTATTTTG	360
35	ARGCTTCGAA GARGTAATAR AMCCCTGGAG AGAGAAACTG AGACATGTAA GAGGGTGGGA	420
	ATGACTCAGT GGTGGCACAC TATGGAGTCC TGCCCACAAG TAGCACACAT CAACCCACTA	480
40	CACAGAAATC CTAGG	495
45	(2) INFORMATION FOR SEQ ID NO: 29:	
43	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 556 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
55	AGCTTAACGT CATGATTCAT TAGGGGAATG CAAGGCAAAA CCATGATGAG AATGCCCCTA	60
	GACACCTCTT AGAAGAGCTG CTAGAAAGGC AGACAGCACC AAGCGCTTAA ATGAGATGGG	120
	GGCACTGGTG CTTCTTCTGT GCCTACTGGT AGGGGTGCAG CAGAGTGGTT CAGTCTGGGA	180
60	CAGTTAGCTG GACATCACGT GGACCCAACA CACGCATTTC CTGGGTTACT TACCAAGGAG	240

	AATAGAAAGC AGGCAGATCT TTACAGCAGC TCTTACCTGW TTGCAAAACA ATGGAAATGC	300
5	CCACATGTCC ACAAACAAGT KTGTGGTCTG CCTGTGCCAT GAAGCACAGT GTGGCTGAGC	360
,	GTCAAGAGTC CCCACACTCA AAGGAGGCAG CAGATACAGG GCTGCACACT GTGTGATTCC	420
	ACACATGTGA CATTCTGGAC ACGGACATGC TGGATGGCAA AACGAGCATC GGGCTGAGAG	480
10	GACTGCTGAG AAGGGGAACG GGGCTGCTGG GATGTGGGTT GATTGTAGCA GTAGCTCATG	540
	GAGATGTGAC CTCAAA	556
15		
	(2) INFORMATION FOR SEQ ID NO: 30:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 434 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
	CTAAATGGTG ACTGTGGCTT TGTCGAGACA GGCCCCAAAT GGTAGGTGTG AACACAACAT	60
30	GCACAGAATG AGGAGACATG CAGAGTGCTG AAATACTGTC CTGGACAGAT GTGTTACATG	120
50	ACTITICITIT CAGCITATIT CTGTGGCCTG CCTTTGAAGA TAGAGCTTTG TTGATATITA	180
	CATTAAACCA AATTGTATAA YTATGTTCCA TTCTGACATG TTATTTAGCA AARGAAAAAR	240
35	GAGTAATTCT ACATCAGCAT CTTTAGTGCA TGCTAAAAGA TTAAAAATGT CTTTTGGGGA	300
	ACATGITITG TATACATAAA TGTTTAGATA GAAATATTTA TAGAATNCTC TATGTGAGTA	360
40	TENATOTOCO TATGTATATT TATATOTAGA TGTGTCAATC TTTGTATTGA TATGAAATGC	420
	TATGAATAGT GAGA	434
45	(2) INFORMATION FOR SEQ ID NO: 31:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 715 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
_	CCACGCGTCC GATCTCACAG CTCCGACACT ATTGCGAGCC ATACACAACC TGGTGTCAGG	60
	AAACGTACTC CCAAACTAAG CCCAAGATGC AAAGTTTGGT TCAATGGGGG TTAGACAGCT	120
60	ATGACTATCT CCAAAATGCA CCTCCTGGAT TTTTTCCGAG ACTTGGTGTT ATTGGTTTTG	180

	CTGGCCTTAT TGGACTCCTT TTGGCTAGAG GTTCAAAAAT AAAGAAGCTA GTGTATCCGC	240
5	CTGGTTTCAT GGGATTAGCT GCCTCCCTCT ATTATCCACA ACAAGCCATC GTGTTTGCCC	300
J	AGGTCAGTGG GGAGAGATTA TATGACTGGG GTTTACGAGG ATATATAGTC ATAGAAGATT	360
	TGTGGAAGGA GAACTTTCAA AAGCCAGGAA ATGTGAAGAA TTCACCTGGA ACTAAGTAGA	420
0	AAACTCCATG CTCTGCCATC TTAATCAGTT ATAGGTAAAC ATTGGAACTC CATAGAATAA	480
	ATCAGTATTT CTACAGAAAA ATGGCATAGA AGTCAGTATT GAATGTATTA AATTGGCTTT	540
5	CTTCTTCAGG AAAAACTAGA CCAGACCTCT GTTATCTTCT GTGAAATCAT CCTACAAGCA	600
	AACTAACCTG GAATCCCTTC ACCTAGAGAT AATGTACAAG CCTTAGAACT CCTCATTCTC	660
	ATGTTGCTAT TTATGTACCT AATTAAAACC CAAGTTAAAA AAAAAAAAAA	715
20		
	(2) INFORMATION FOR SEQ ID NO: 32:	
25	<u>-</u>	
23	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
,,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	GAGCCAGTGC CGGCGAAAGG GGACCTTCCT CTACTTCCTG CCACAGACCC TGTCCCCACA	60
35	CACTTCCTGC CCCTGCTCTG CTGGGAGGCC ACTTCCTCCC CCAGTGCTGG ATTCCACCCC	120
	CAGCTCACCC TCAAACATGG CCCCCTCTCT CCTCCTGCTT GCCCCTCTCT GCTCCCTGGA	180
40	GGCTGTTCTG TCCTCCCCTC TTGAAAAGCA ATGCCAGCTT CCTGGGATCT TCTGCCAACT	240
	CCAGCTACCA TGCCCTTTGC TCCTGTCAGC TCAGCTCCTC AAGGGAATTG TCTAMCCTCG	300
	GTGTCCTGCT TCCCTCCTC AACCTCCTCA CCCTGCTCCA AGCTGGCATC TGCCCCTCCA	360
45	CTGCACAGAA COGNTCCCCC ACCACCTGCC TTTACAGGGA GGAAGCAGCA ACATGGAAGA	420
	ANCGAACTAT AGGGGCTACA ANGATGCTCA GCTCTGATCC CGAAGGCAAA AAGNATCTTT	480
50	GGGCAC	486
<i>.</i>		
	(2) THEODINATION FOR CEO TO NO. 22	
55	(2) INFORMATION FOR SEQ ID NO: 33:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 725 base pairs	
	(B) TYPE: nucleic acid	

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
5	GTTCCTCTGG TAATAATTAG GTTATTCCCA GAAGCACAGT GTCATTCTTT AAATAAAAGC	60
,	TTTCCTGTTT AAAGCTTTTC AAAGGAGCAG ACCACCTTGA AGATTCCCCC TAGGGTTGAT	120
	ATGTGTCTAA TTCATTTTAT AAAAATTATT CTTGTCTTCA TTTTAAAGCT TTGGCTATAT	180
10	AGTCAGAAAT GTCCTAAATA ACAAACTATT TTGTATTTAA TTTAGGGAAG ACTAAAGGGA	240
	AGAAAAATGA AAACTCAGTC TTTATGTAAG CTCCAAGGAT ATTAGGGCTT AAAGGGCTTT	300
15	TCTAGTTTTA TGAGAATTTG TACTACTGAT TTTTATATAT TCCTGTTTTT GATGAACAGA	360
15	TCTCTGGGGA AATTGTTGAG TTACAATGGC ATTTCACTGT GATCCCTCTC AAGCTCAGAT	420
	CAGTTCTATA ACCCAATGAC AACCTGTCTC TTTGGTTTAC TGTCCTGTGA AATGTCAGCT	480
20	CAAGTTTCCC AGAAGTCGTG TGTTTATGAT GAGTCAGAGT GCTTTTCCTC GGTGGGACAG	540
	TTGCTGGCCC TCTTAATTTT GGTGTATGTG CTTCCAAGTA TCTAAACCTC CAGTCTGATC	600
25	TGTATATGCT ATCCTAACTG TTAATTGTAT TATTGATTAT GTTGATTATC TIGCTTGAAG	660
	GTTCATACTT TTCAATTTGA TAGAAATAAA GTTTTTTTCT GCTTATAAAA AAAAAAAAAA	720
	АААА	725
30		
	(2) INFORMATION FOR SEQ ID NO: 34:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 437 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
	CACACAGCAT GCTGCCCTCA GACGTGTCCA TCCTGTACCA CATGAAAACG CTGCTGCTCC	60
45	TGCAAGATAC TGAGAGATTG AAGCATGCTC TGGAAATGTT CCCAGAACAT TGCACGATGC	120
	CTCCTGCTTT TATTGGCTCT TGTCGAAATC AAATTGGAAG ATCTTCAGTC CCAGCTGCAC	180
50	CCAACGTGGA AAAGTATTCC AGGTCCATCC CCAAGGAACC AACACCGATG ACATGGACTC	240
50	AGGAATCTTA TAACCTACGT GGACTCTTTC CATCCGTACA TTGTCGTGCA CATGCCACTC	300
	ATCACCTGGC GTGCCCAGAT CCTCGCARGG CAACACCCTG TGATAATTCC AGGTGATTCT	360
55	CTACATCTGC AGCTTGAGGT TAGCCTCATA TCACATTACA TTCTCACTAN AAACNAAAAA	420
	AAAAAAAAA AACTCNA	437

	(2) INFORMATION FOR SEQ ID NO: 35:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 943 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	GGCACGAGCT GGAACAGAGA CTAAATCCCA CGAAACTGAC ATTGTTAAAC ACACTAAAAC	60
15	AGAAGTACTT ACCTCTTGAA GATTTAATAT ATAATGGTTG ACATGATACA TGTACATGAT	120
IJ	GAATGACCAG ATGCTTATGG TCTACATTTT CCTTTATCCT GTTAGTATTA CCTTCCTTAA	180
	TCTTTGTTCA TTAACATGCT AATTCCTCTT CAGTGTTTAT TTTCTAGTGA CAGAATGCTA	240
20	ACATTTCTTA CACCCTGGCA GAAGGGAGAG AAATGTGTTT TGGGGTGGGT AACTAAATTT	300
	TTGAGTGAAA TATCATAAGA TGANAATGGA AANAAGGAGA CACAAANAGT TATNACAAAA	360
25	AAACAATGGT TTTTTTAGCC ATTTGACTGG CTCTTTAAAT AGTCTACAAG ACATTCACGT	420
23	TTAACATCAC TTTTAGTGAA ATAAAATGTG CCATACTAGT ATGTGCTTCA AAAGGGCAAA	480
	TGTGCTTTAG TGCCCTAAGG CTAAATTTTG GTCATTTGAC ATCAGAGATG TTGTAAGTAT	540
30	TGCACTTAAT ACGCACCTAT TINICAATAG TGTTATTTTT TGGNTAGCAT TTTTTTTACC	600
	ACTATIVITGT TGATAGCTTT TTGTTCTNIN AGGTTGNAAN ATGACAGTGC TNATIVICAAA	660
35	CAGATTACCC ATNITGCAGAA CTAAGGGAAG CNATTTATGT ATGAAAGNAA TINTIGAATT	720
55	NGTCATTNTC AACCNITGNA TTAAAGCTTA GACTAAATAG TAATATATNG TGGGNAGGAT	780
	TTTGGTTTTG TGATATTTNT GTGNATTAAG GNATAGATGT TAACCNITAT TTTGTAGNAA	840
40	AGTGANITGT ATGTGGTTAA TTATAAATAA AACTGGTACC AGGNAAAAAA AAAAAAAAAA	900
	AAA AAAAAAAAA AAAAAAAAA AAAAAAAAA	943
45		
40	(2) INTERPORTATION FOR STO AN ACC	
	(2) INFORMATION FOR SEQ ID NO: 36:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 604 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
	GCCACGAGAA ATCTTCATGC TGTAGTCACT CCAGACCATG GAGTGGCTTT CCAGCTGAAT	60
	GAATCCTATG TCTCGCGTGC AGGTGGTTGG TTTTCAATGT TCTTGCTAAT TTTTTTTCTA	120

	Troubletto outottitet trottiette etgestitee ceneetitee temmeengo	100
	CGCAAACAAA AACCATAGCA TTCTGAACAA TAGGGGGCCC ACATTGGACC CAGTATGTCA	240
5	CTTTAATGGA CTTCAAGAAA AAATCTGAAT GGGAAAAATG ACACTAGGAA TGTATACTCC	300
	ACACATTTTA TGCCATATAA TGGTGTGTT TCTTAATTTT GTTTCTTGTG GCGAAATGTG	360
10	GCTTTCAAAT TAAAATGACC TTTTCTTCTT TGAAACTTTT TGTTTTGACT TGTATAATTA	420
10	AGGGTTTGGA AAGATTCATA ATTCTGAGAG AGGTTTGCAA CCAGGAGATA CAAAGAAGTC	480
	TCAGTAGTAA TCTTGTTCAT GTGCTTTTAC AGCCAGCTAC ATTTAAGGAT GTATTAGTTA	540
15	CAGAAATTAT ATGTCTGTGT ATGTGTCTCT ACTCAATAAA GTACATGCCT CCACAAAAAA	600
	AAAA	604
20		
20	(2) INFORMATION FOR SEQ ID NO: 37:	
	(2) INFORMATION FOR SEQ ID NO: 37:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 349 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
	GTGAGTGCCC GGGAGCCCCG AGGCCCTGCC CCTAAGAAGG ATATCTYTRA CCGCTCCCTT	60
	GIGNGIGGG GOGNGCCCG AGGCCTGCC CCTANGANGG ATATCTTTNA CCGCTCCCTT	00
35	GTCCACACCC TAACCCCCCA GCTGCTCAGG CAGTGGGCAC ATGGCAGGGG CCTCACTGGG	120
	GGCACATAGA GCATTYGGGG GACTGCGAGT GCTCACCTTT GACTTCCTGC AGGTCGGGGG	180
	AAAACCAGAT CATGATGACC AAAGTYTACA TATTCTTGAT CITCATGGTG CTGATCCTGC	240
40	CCTCCCTGGG TCTCACCAGG TATATGCCAC CACYTTCTGY TCTAAATTCA GAATAAGAGT	300
	CACATCAGGA GAGCACTGTC CCCAGGANAA TGCAAACGGG TTGGCAGCA	349
45		
	(2) INFORMATION FOR SEQ ID NO: 38:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 672 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
	GTAGTCGTTG CGGTTGCCGG GATGGCGAAG ATCTCGCCGT TTGAAGTCGT AAAACGCACC	60
60	TCGGTACCGG TGCTTGTTGG TTTGGTGATT GTWATCGTTG CTACAGAGCT GATGGTGCCA	120

	GGAACGCCAG CAGCGGTCAC AGGCAAGTAA ATAGTAATGC CGGAGCAAGT TTCCTCCGGC	180
	TTTATCATGT CACCCACTGT GGTATATGCG TTGTGGTCTG CCAACTTTGC CGTGAACAAT	240
5	TTCAGCAATA ATCAGATGGC GGCTGGCGCA ATATTCAAGA TAACGCCTGG CAGTGGTGCG	300
	GCTGATGGTT CAGTGCCTGC GSCACCGTTT YTGCCGTATG TTGCACACCA GGNTCTTTAA	360
10	ACAGTTTTCG SACCGCGTTT AGCGTCAAGG GTTCAATGCC GGTCGGTAGC TCGTCCTTAG	420
10	GTTCACCGCG AGCATAAGCA TTAAACATCT CATCAATTIG CTTCTGGCTG GCGCTATCAA	480
	TACTITICCAG CATATGITTA CGCTGGCGGA AACGGGTTAG CGTTTGCCCC ARCMGWTCAT	540
15	AGGCAATGGG CTTAATGAGA TAATCAAATA CACCACAACG TACGGCTTCA GACACCGTTT	600
	CCATATCGCT GGCTGCAGTG GTAAACACCA CGTCGCCGGG ATAATGCGCC TGCACCAGTT	660
20	CATGCAGTAA AT	672
	(2) INFORMATION FOR SEQ ID NO: 39:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1908 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
	AGAGTTGATA TTTTTAGAAA CAGTAATTTT ACTTTTAAGG AAATTGGCTA GCTCTTTGAC	60
35	TINNAGAGCTG TAGGAAGCTC AACATTTCTT TGTAGAGAAC GTTGCTTTTT TTGGATTGTA	120
	CAGGTATAAA AACATTGCTT TTGTTGAATT GTATAGGTGT AAAAAGGGAA TAACTGTATG	180
40	CAGGITTGAA AAGGAAATGI GCITTAGGCA TGAGICATAA GAIGCCAITG TACTIGIAGG	240
	CATTITATIT TOOTITAGAA ATGGACATCA GOTOTTOTOT TOTGACTGGT AACACATAGO	300
4.5	CCCAAAGCAT GAGATTATTT TTCATTGGGT TTTTATTGTT GTTTAGTTTT GGTTTGTTAC	360
45	GCCAGCCCAG TCTGTCTGCG GAACACTGAC TCTGCTCTCT AATGAGAACA AAGTTAGAAA	420
	TCTGCCGATA ACCTAAAATA ATTTAGAAAT GAATTAAAAA TGTGAAATCG GGTTAAAGTG	480
50	ATGATGATAA AATAGCATGC AAGAAACAAG CTCCTTCCAT CAGACTTGGC TACTGTTTTC	540
	TTCTGGTACG ATTTGGTTTG GAAGAGCCTC TTGTTTCCTT CTCTTTGGGG TATGTCTTCG	600
£ F	TTTCTTAATA TGTTTGTAAC ATTATTGAGA TATAATTCAC ATACCTTACA ATTCACTTAT	660
55	TTTAAGGGTA CAATTTAGTG GTTTTTAGTG TATTCACAAA GTTGTGTAAC CGTGACCACA	720
	GTCAATTTTA GAACATTTCG TTACCCCAAA AAGAAACCCT GTACCCTTGA GCAGTCACCT	780

CTCATTTTCT CCCAGTGCCC ACCCCATCCC CGAGCCCCKG GAACCACTAA TCTATTTCTC

840

	TCTCTGTAGA TTTGCTTATT CTGGTCATTT CATATAAATG GAATTCTACA ATATTCGGTC	900
5	TTTTGGGACT GGCTTCCCAA ATATGATTTT CTATATGGAG TGAGAAAATT CTTCTCATCT	960
,	TGAGAACTCT TATTGCTGTG AAAGGGAGTG GTTGGTAAAA TCAATAGATT TCAGGCAAGA	1020
	GGGCCAGATA CCTAACAGGT TTTTCTCCGT GAATCTTATG CTGAGTAGTT TTTCCTCATA	1080
10	ACCAAGCATT TATGATATAT TACTACTTAT AATACTGTGG CTAGTCTCTA GAATGGATGT	1140
	TGAAATCTTT GCCTCCTCAG TCGGGAAGAG TCCTGCTAAA. AATCAGGCTA AAAATCAGGC	1200
15	CAAAAATCAG GCCAAATGAC TTGGCAAATA ATTGACAAAG TGGTTTTCAC GTGTGTCTAT	1260
13	CTPTGCTAGC AGCTTGTATA CCTCAGGCCA GGTGAGCTCC CCAAATTTCT TTTTTCATTT	1320
	ACTCCAGTGA GTTTCTGCTG TCTTTTTCAA GTATGTACCA TAGGACTTAA AGGTGATTTG	1380
20	GATGCGTTGT AACACTGCTA AATATGCTAA GTACAGAATT TTATCTACAG TACTGTGAGA	1440
	CAGTCAATTA TIGCCTAGGG TAGTICAAAA ATATGATGTG AGCTAGTTAA GCCTTTGCTT	1500
25	GACTGATTTC AGTGATATTC AGAAGTGTGT ACCAATCAAG GCTCTTTAAA ATACGGAACG	1560
23	ACTCACTTAA TAACCAGGGA ACCAGCCAAA TACTGTGCAG CCGCAGAATA TGCATATCAA	1620
	TGAGTTGGAG GTGATTATTC TCTGTAACTC CCTAATGATT GTTTTCTAAG CATTGTGGCT	1680
30	TCTCAGTGGC TTGACAGCAT CTTCCTGGTT GTATGTGGCC TGTTTACATG ATGTATTGAA	1740
	TAATGITGIT TGTTGTGAGC ATCAATGCCT GTAACACCAA ACTAAACACG TGTTTTTGGG	1800
35	ATATGTTTCC AATCTTTAAA TGACCTTGCC CTGTCCAATA AATAAATGAT TGTCTCACCC	1860
55	TGTTAAAAAA AAAAAAAATT AAAAAAACTG GGNGGGGGGC CCGGTACN	1908
40	(2) INFORMATION FOR SEQ ID NO: 40:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 458 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
50	CCTCAAAAAA AAAAANGAAA GGAAAGAGGT CTCTACACAA GCCCGTGATT CTTCATGGCA	60
	AGGGATAACA TCAGAAATGT TTCATTTYCK GCTATTAGTT TCCATTCCTT TCCCCATCCA	120
55	GGCATAAAGA GAAACAAAAG ACAATGATGG TATTCTCTGT GTCCTCAGCT TTGGCACTTT	180
	TGTTGATGTT GCTAAGGAGC AGTGACCTTG CTAAAAAGAC TGAATAATCC ACCCACTGAA	240
60	TAGCTAACCT GGGGAGGAAA TGAAAATTTC CTTTGTGGAT CTCCCCAAAT CCATTGTTGT	300
UU		

PCT/US98/04493

264

	GCAACCCAAT	AGTATTGTGC	CTCACTTCAC	CTTCCATGGG	CAACTGCCCT	CCCTTCTGGA	420
5	CATAAAACCT	CATATTTTAA	ATNAAGTTGA	AATTTGAA			458

(2) INFORMATION FOR SEQ ID NO: 41: 10

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1153 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

20	GGCACAGAGC CTCCGACCCA GGTGGTCTGG AGCCTGCCGG GAGAGTGGTG GCATCTGAGA	60
	GGCTGGTCGT GGACTGTGT TGGGGGAGGT GGGAGCTGTT TTAACCGTGT GCCCCCTCTC	120
25	CTGTGCCGGC GTGGGCATCC CCCGGGGCAG TGGAACCCGG GCGCTCCTCC AGCTTCCGAG	180
23	TCCAGCCAGC CTGGGCGCGG GGCGCGCCCC GAGACACCCG AGGAGTCCGT TCCTCCCTGG	240
	TTACGTGGAC TGTGGAGCTG GTCTCTTGTG GCTCAGCGCC GTGCGGAGGT TGAAGCGTAC	300
30	CTCCGGAGGT CGCACCAGGG CGTGAGGAGG AGGAGGAAGG GCATGAGCCG AGCTTGAGGA	360
	ATCCGTGCTC CAAACTCTAC ACTCAAGGAT GCACTGCGCA ACTCTGGTGG CGATGGGCTG	420
35	GGGCAGATGT CCTTGGAGTT CTACCAGAAG AAGAAGTCTC GCTGGCCATT CTCAGACGAG	480
33	TGCATCCCAT GGGAAGTGTG GACGGTCAAG GTGCATGTGG TAGCCCTGGC CACGGAGCAG	540
	GAGCGGCAGA TCTGCCGGGA GAAGGTGGGT GAGAAACTCT GCGAGAAGAT CATCAACATC	600
40	GTGGAGGTGA TGAATCGGCA TGAGTACTTG CCCAAGATGC CCACACAGTC GGAGGTGGAT	660
	AACGTGTTTG ACACAGGCTT GCGGGACGTG CAGCCCTACC TGTACAAGAT CTCCTTCCAG	720
45	ATCACTGATG CCCTGGGCAC CTCAGTCACC ACCACCATGC GCAGGCTCAT CAAAGACACC	780
43	CTGCCCTCTG AGCGTCGCTG GATCTCTGGG AGCTCCTTGA TGGCTCCCAG ACCTTGGCTT	840
	TTGGGAATTG CACTITTGGG CCTTTGGGCT CTGGAACCTG CTCTGGGTCA TTGGTGAGAC	900
50	TTGGAAGGGG CAGCCCCCGC TGGCTTCTTG GTTTTGTGGT TGCCAGCCTC AGGTCATCCT	960
	TTTAATCTTT GCTGACGGTT CAGTCCTGCC TCTACTGTCT CTCCATAGCC CTGGTGGGGT	1020
E E	CCCCCTTCTT TCTCCACTGT ACAGAAGAGC CACCACTGGG ATGGGGAATA AAGTTGAGAA	1080
55	CATGAGTTTG GGCTGAAAAA AAAAAAAAAA AAAAAAAAA AAAAAAAAA AAAA	1140
	ΑΑΑΑΑΑΑΑΑ ΑΑΑ	1153

265

(2) INFORMATION FOR SEQ ID NO: 42	(2)	INFORMATION	FOR	SEO	ID	NO:	42:
-----------------------------------	-----	-------------	-----	-----	----	-----	-----

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1983 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

60 GGCACGAGAG GGGCCGAGCC GACAAGATGT TCTTGCTGCC TCTTCCGGCT GCGGGGCGAG 120 15 TAGTCGTCCG ACGTCTGGCC GTGAGACGTT TCGGGAGCCG GAGTCTCTCC ACCGCAGACA TGACGAAGGG CCTTGTTTTA GGAATCTATT CCAAAGAAAA AGAAGATGAT GTGCCACAGT 180 TCACAAGTGC AGGAGAGAT TITGATAAAT TGTTAGCTGG AAAGCTGAGA GAGACTTTGA 240 20 300 ACATATCTGG ACCACCTCTG AAGGCAGGGA AGACTCGAAC CTTTTATGGT CTGCATCAGG ACTTCCCCAG CGTGGTGCTA GTTGGCCTCG GCAAAAAGGC AGCTGGAATC GACGAACAGG 25 AAAACTGGCA TGAAGGCAAA GAAAACATCA GAGCTGCTGT TGCAGCGGGG TGCAGGCAGA 420 TTCAAGACCT GGAGCTCTCG TCTGTGGARG TGGATCCCTG TGGAGACGCT CAGGCTGCTG 480 540 CGGAGGGAGC GGTGCTTGGT CTCTATGAAT ACGATGACCT AAAGCAAAAA AAGAAGATGG 30 CTGTGTCGGC AAAGCTCTAT GGAAGTGGGG ATCAGGAGGC CTGGCAGAAA GGAGTCCTGT 600 660 TTGCTTCTGG GCAGAACTTG GCACGCCAAT TGATGGAGAC GCCAGCCAAT GAGATGACGC 35 CAACCAGATT TGCCGAAATT ATTGAGAAGA ATCTCAAAAG TGCTAGTAGT AAAACCGAGG 720 TCCATATCAG ACCCAAGTCT TGGATTGAGG AACAGGCAAT GGGATCATTC CTCAGTGTGG 780 CCAAAGGATC TGACGAGCCC CCAGTCTTCT TGGAAATTCA CTACAAAGGC AGCCCCAATG 840 40 900 CAAACGAACC ACCCCTGGTG TTTGTTGGGA AAGGAATTAC CTTTGACAGT GGTGGTATCT CCATCAAGGC TTCTGCAAAT ATGGACCTCA TGAGGGCTGA CATGGGAGGA GCTGCAACTA 960 1020 45 TATGCTCAGC CATCGTGTCT GCTGCAAAGC TTAATTTGCC CATTAATATT ATAGGTCTGG CCCCTCTTTG TGAAAATATG CCCAGCGGCA AGGCCAACAA GCCGGGGGAT GTTGTTAGAG 1080 1140 CCAAAAACGG GAAGACCATC CAGGTTGATA ACACTGATGC TGAGGGGAGG CTCATACTGG 50 CTGATGCGCT CTGTTACGCA CACACGTTTA ACCCGAAGNT CATCCTCAAT GCCGCCACCT 1200 TAACAGGTGC CATGGATGTA GCTTTGGGAT CAGGTGCCAC TGGGGTCTTT ACCAATTCAT 1260 CCTGGCTCTG GAACAAACTC TTCGAGGCCA GCATTGAAAC AGGGGACCGT GTCTGGAGGA 1320 55 TGCCTCTCTT CGAACATTAT ACAAGACAGG TTGTAGATTG CCAGCTTGCT GATGTTAACA 1380 1440 ACATTGGAAA ATACAGATCT GCAGGAGCAT GTACAGCTGC AGCATTCCTG AAAGAATTCG 60

266

	TAACTCATCC TAAGTGGGCA CATTTAGACA TAGCAGGCGT GATGACCAAC AAAGATGAAG	1500
	TTCCCTATCT ACGGAAAGGC ATGACTGGGA GGCCCACAAG GACTCTCATT GAGTTCTTAC	1560
5	TTCGTTTCAG TCAAGACAAT GCTTAGTTCA GATACTCAAA AATGTCTTCA CTCTGTCTTA	1620
	AATTGGACAG TTGAACTTAA AAGGTTTTTG AATAAATGGA TGAAAATCTT TTAACGGAGA	1680
10	CAAAGGATGG TATTTAAAAA TGTAGAACAC AATGAAATTT GTATGCCTTG ATTTTTTTT	1740
10	CATTTCACAC AAAGATTTAT AAAGGTAAAG TTAATATCTT ACTTGATAAG GATTTTTAAG	1800
	ATACTCTATA AATGATTAAA ATTTTTAGAA CTTCCTAATC ACTTTTCAGA GTATATGTTT	1860
15	TTCATTGAGA AGCAAAATTG TAACTCAGAT TTGTGATGCT AGGAACATGA GCAAACTGAA	1920
	AATTACTATG CACTTGTCAG AAACAATAAA TGCAACTTGT TGTGCAAAAA AAAAAAAAA	1980
20	AAA	1983
20		
	(2) INFORMATION FOR GEO ID NO. 43.	
25	(2) INFORMATION FOR SEQ ID NO: 43:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1406 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	
35	ATGATGATGA CTTTGAAGAC GATTTTATTC CTCTTCCTCC AGCTAAGCGC CTTGAGGTTA	60
	ATAGTTGGAA AAGACTCTAT AGATATTGAC ATTTCTTCAA GGAGAAGAGA AGATCAGTCT	120
	TTAAGGCTTA ATGCCTAAGC NCTTGGTCTT AACTTGACCT GGGATAACTA CTTTAAAGAA	180
40	ATAAAAAATT CCAGTCAATT ATTCCTCAAC TGAAAGTTTA GTGGCAGCAC TTCTATTGTC	240
	CCTTCACTTA TCAGCATACT ATTGTAGAAA GTGTACAGCA TACTGACTCA ATTCTTAAGT	300
45	CTGATTTGTG CAAATTTTTA TCGTACTTTT TAAATAGCCT TCTTACGTGC AATTCTGAGT	360
	TAGAGGTAAA GCCCTGTTGT AAAATAAAGG CTCAAGCAAA ATTGTACAGT GATAGCAACT	420
	TTCCACACAG GACGTTGAAA ACAGTAATGT GGCTACACAG TTTTTTTAAC TGTAAGAGCA	480
50	TCAGCTGGCT CTTTAATATA TGACTAAACA ATAATTTAAA ACAAATCATA GTAGCAGCAT	540
	ATTAAGGGTT TCTAGTATGC TAATATCACC AGCAATGATC TTTGGCTTTT TGATTTATTT	600

GCTAGATGTT TCCCCCTTGG AGTTTTGTCA GTTTCACACT GTTTGCTGGC CCAGGTGTAC

TGTTTGTGGC CTTTGTTAAT ATCGCAAACC ATTGGTTGGG AGTCAGATTG GTTTCTTAAA

AAAAAAAAA AAAACGACAT ACGTGACAGC TCACTTTTCA GTTCATTATA TGTACCGAGG

GTAGCAGTGT GTGGGATGAG GTTCGATACA GNCGTATTTA TTGCTTGTCA TGTAAATTAA

55

60

660

720

780

267

	AAACCTTGTA	TTTAACTCTT	TTCAATCCTT	TTAGATAAAA	TIGTICTITG	CAAGAATGAT	900
5	TGGTGCTTAT	TTTTTCAAAA	ATTTGCTGTG	AACAACGTGA	TGACAACAAG	CAACATTTAT	960
J	CTAATGAACT	ACAGCTATCT	TAATTTGGTT	CTTCAAGITT	TCTGKTGCAC	TTGTAAAATG	1020
	CTACAAGGAA	TATTAAAAAA	ATCTATTCAC	TTTAACTTAT	AATAGTTTAT	GAAATAAAAA	1080
10	CATGAGTCAC	AGCTTTTGTT	CTGTGGTAAC	СТАТААААА	AGTTTGTCTT	TGAGATTCAA	1140
	TGTAAAGAAC	TGAAAACAAT	GTATATGTTG	TAAATATTTG	TGTGTTGTGA	GAAATTTTTG	1200
15	TCATAAGAAA	TTAAAAGAAC	TTACCAGGAA	CCTTTTTAAG	TTAGAAATAT	TCCATGCCAA	1260
	TAAAATAGGA	AATTATAAAT	ATATAGTTTT	AAGCCTGCAT	CAGTGGGAGT	CTTGGCTATG	1320
	TAGTTATGTA	GTTATTATGN	AACCACCAAG	ATTTTTTTGG	CTATTTACCG	TAACCAAAGG	1380
20	GGCCGATTAA	NIGGITIGAA	GNCTIG				1406

25 (2) INFORMATION FOR SEQ ID NO: 44:

30

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1391 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

35	GGGCCTGAAG	GCGGCRCGCC	AGTCCCGAGC	AGTGCTCGCT	CCTCCTCGGG	GCGCTGCGGC	60
	CCCGGGGGTC	GCCATGACCA	GTGAGCTGGA	CATCTTCGTG	GGGAACACGA	CCCTTATCGA	120
	CGAGGACGTG	TATCGCCTCT	GGCTCGATGG	TTACTCGGTG	ACCGACGCGG	TGGCCCTGCG	180
40	GGTGCGCTCG	GGAATCCTGG	AGCAGACTGG	CGCCACGGCA	GCGGTGCTGC	AGAGCGACAC	240
	CATGGACCAT	TACCGCACCT	TCCACATGCT	CGAGCGGCTG	CTGCATGCGC	CGCCCAAGCT	300
45	ACTGCACCAG	CTCATCTTCC	AGATTCCGCC	CTCCCGGCAG	GCACTACTCA	TCGAGAGGTA	360
	CTATGCCTTT	GATGAGGCCT	TTGTTCGGGA	GGTGCTGGGC	AAGAAGCTGT	CCAAAGGCAC	420
	CAAGAAAGAC	CTGGATGACA	TCAGCACCAA	AACAGGCATC	ACCCTCAAGA	GCTGCCGGAG	480
50	ACAGTTTGAC	AACTTTAAAC	GGTCTTCAA	GGTGGTAGAG	GAAATGCGGG	GCTCCCTGGT	540
	GGACAATATT	CAGCAACACT	тсетсетете	TGACCGGTTG	GCCAGGGACT	ATGCAGCCAT	600
55	CGTCTTCTTT	GCTAACAACC	GCTTTGAGAC	AGGGAAGAAA	AAACTGCAGT	ATCTGAGCTT	660
	CGGTGACTTT	GCCTTCTGCG	CTGAGCTCAT	GATCCAAAAC	TGGACCCTTG	GACCCGTCGA	720
	CTCACAGATG	GATGACATGG	ACATGGACTT	AGACAGGAAT	TTCTCCAGGA	CTTGAAGGAG	780

268

	CTCAAGGTGC	TAGTGGCTGA	CAAGGACCTT	CTGGACCTGC	ACAAGAGCCT	GGTGTGCACT	840
	GCTCTCCGGG	AAAGCTGGGC	GTCTTCTCTG	AGATGGAAGC	CAACTTCAAG	AACCTGTCCC	900
5	GGGGGCTGGT	GAACGTGCCG	CCAAGCTGAC	CCACAATAAA	GATGTCAGAG	ACCTGTTTGT	960
	GGACCTCGTG	GAGAAGTTTG	TGGAACCCTG	CCGCTCCGAC	CACTGGCCAC	TCAGCGACGT	1020
10	GCGGTTCTTC	CTGAATCAGT	ATTCAGCGTC	TGTCCAATCC	CTCGATGGCT	TCCGACACCA	1080
10	GCCCTCTGG	GACCGCTACA	TGGGCACCCT	CCGCGGCTGC	CTCCTGCGCC	TGTATCATGA	1140
	CTGAGGTGCC	TCCCAACGTC	CGCCCACGCT	GACAATAAAG	TTGCTCTGAG	TITGGAGACT	1200
15	GGTCCTCGCT	CCGGGGAGCA	AGTGGGGGC	GTGCAGATGT	GCCTGTGTCT	GTCTCTGAGC	1260
	ACCTGGTGTC	CGTGTACAAG	GATGGATGTG	TNCNGTGGCT	CCTTGGGAAC	TGAGACATAT	1320
20	CTCAGGGAAT	GGTGTCTGTG	CTCAGCCCAT	CCACCAGAAG	AGTCTGCTCA	СААААААА	1380
20	ааааааааа	A					1391

25

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1569 base pairs

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

55

60

30

GGCACGAGTG GAGATGGCTG CGGCCGTGGC GGGGATGCTG CGAGGGGGTC TCCTGCCCCA 60 GGCGGCCGG CTGCCTACCC TCCAGACTGT CCGCTATGGC TCCAAGGCTG TTACCCGCCA 120 CCGTCGTGTG ATGCACTTTC AGCGGCAGAA GCTGATGGCT GTGACTGAAT ATATCCCCCC 180 GAAACCAGCC ATCCACCCAT CATGCCTGCC ATCTCCTCCC AGCCCCCCAC AGGAGGAGAT 240 AGGCCTCATC AGGCTTCTCC GCCGGGAGAT AGCAGCAGTT TTCCAGGACA ACCGAATGAT 300 AGCCGTCTGC CAGAATGTGG CTCTGAGTGC AGAGGACAAG CTTCTTATTG CGACACCAGC 360 TGCGGAAACA CAAGATCCTG ATGAAGGTCT TCCCCAACCA GGTCCTGAAA GCCCTTCCTG 420 GAGGATTCCA AGTACCAAAA TCTGCTGCCC CTTTTTGTGG GGCACAACAT GCTGCTGGTC 480 ACTGAAGACC CCAAGGTCAA GGAGATGGTA CGGATCTTAA GGGACTGTGC CATTCCTGCC 540 GCTGCTAGGT GGCTGCATTG ATGACACCAT CCTCAGCAGG CAGGGCTTTA TCAACTACTC 600 CAAGCTCCCC AGCCTGCCCC TGGTGCAGGG GGAGCTTGTA GGAGGCCTCA CCTGCCTCAC 660 AGCCCAGACC CACTCCCTGC TCCAGCACCA GCCCCTCCAG CTGACCACCC TGTTGGACCA 720 GTACATCAGA GAGCAACGCG AGRAAGGATT CTGTCATGTC GGCCAATGGG AAGCCAGATC 780 WO 98/39448 PCT/US98/04493 269

	CTGACACTGT TCCGGACTCG TAGCCAGCCT GTTTAGCCAG CCCTGCGCAT AAATACACTC	840
5	TGCGTTATTG GCTGTGCTCT CCTCAATGGG ACATGTGGAA GAACTTGGGG TCGGGGAGTG	900
•	TGTTTGTCAC TTGGTTTTCA CTAGTAATGA TATTGTCAGG TATAGGGCCA CTTGGAGATG	960
	CAGAGGATTC CATTTCAGAT GTCAGTCACC GGCTTCGTCC TTAGTTTTCC CAACTTGGGA	1020
10	CGTGATAGGA GCAAAGTCTC TCCATTCTCC AGGTCCAAGG CAGAGATCCT GAAAAGATAG	1080
	GGCTATTGTC CCCTGCCTCC TTGGTCACTG CCTCTTGCTG CACGGGCTCC TGAGCCCACC	1140
15	CCCTTGGGGC ACAACCTGCC ACTGCCACAG TAGCTCAACC AAGCAGTTGT GCTGAGAATG	1200
13	GCACCTGGTG AGAGCCTGCT GTGTGCCAGG CTTTGTGCTG AGTGCTGTTA CATGTATTAG	1260
	TTCCTTTACT GCTGACCACA TTGTACCCAT TTCACAGAGA AGGAGCAGAG AAATTAAGTG	1320
20	GCTTGCTCAA GGTCATGCAG TTAGTAAGTG GCAGAACAGG GACTTGAACC AAGCCCTCTG	1380
	CTCTGAAGAC CGCGTCCTGA ATTTCTTCAC TAGAGCTTCC TCATCAGGTT ACCCAGAAGT	1440
25	GGGTCCCATC CACCATCCAG GTGTGCTTGG ATGTTAGTTC TCCACCCTCG AGGTGTACGC	1500
5 3	TGTGAAAAGT TTGGGAGCAC TGCTTTATAA TAAAATGAAA TATATTCTAA AAAAAAAAA	1560
	AAAAAAA	1569
30		
	(2) INFORMATION FOR SEC ID NO. 46.	•
35	(2) INFORMATION FOR SEQ ID NO: 46:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35 40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG	60
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT	120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG	120 180
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA	120
40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG	120 180
40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA	120 180 240
40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA CATCAATCAT TCTTACCTAA AGAATAATAA GAAAAAGTTA ATATAAAAGA CAAGGGTATA	120 180 240 300
40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1924 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46: GGGCCCCCCC WCGWKTTTTT TTTTTTTTTT TTTAATTAGG ATAATGCCTT TATTAACGAG AATGAAACGT TCATTCCTCC TTCCACTCCT TCTCGTTGGT TTTCTGGACA CAGCTCACCT GATCCTGCTA GAAACGTTGT CAGTCTGCTT GTGGCTTCCC TCCTTGATTG ACTCACGCTG TGTGATGTCT TGAGAAGTAT CTATCCACTT CATGTGAATG AGCACTCCAA TATCAGCCAA CATCAATCAT TCTTACCTAA AGAATAATAA GAAAAAGTTA ATATAAAAGA CAAGGGTATA AAATAAAGGT TTGAAAATGC TAGTCAACTT CAAAATTTAA AGAGTAAAAA TCCAGAGATA	120 180 240 300 360

	CCCAAAATAT	ACTATCCCTT	ATGTGAAGGT	ATGTGACAAC	GTTGACCTCA	CCAAATGAGT	600
	TTTAACATCA	GCTCTTTTTT	CATATGAAAG	CACATACCCT	GCTCCCCATT	CAAGTATGTC	660
5	TTCCATTGTC	AGGCAGGCTG	ACCACCTTCA	GCAGGAGTCC	TCCAAGAGTG	CCCAACTCCC	720
	CTTCCCACAG	TACACAACGC	TGTAGTTGTT	GICCIGCAAT	CCTTTGTATT	TACCTCATTC	780
10	TTTCCCATCT	AAGTCCTCAC	TGAGTTTTAA	AGTTAGGGCT	GGAAAAGCTA	TGCCTTACTG	840
10	GGACAGCAAG	GAACCAATIT	TTTTCTGAGG	GAGAAGACAT	TCACCTTCAC	TATATGCCTG	900
	GCAGGGCCAC	AGTGCACAAA	ACAAAGATCA	GCCTTCATTC	AAGTTCCAGG	TTTTTCTTCC	960
15	TCCCTGAATG	ATTACTGCAA	AGGGTATATG	AAGTAAGAGT	TCCCTGTTGC	ACATGTACCA	1020
	TCCATAAGGG	ATACTATATC	GTTTTGCATT	CTTCCCCCCA	TTCTCCACAT	TGTCCTATCT	1080
20	TAAGTCCAAG	CCCTTTTCAC	ТСТСААААА	АААААААА	TATTTTTTC	AGCACTGGTG	1140
20	TTCAAAAGCA	ACGTTTTTAT	GGTTAATGGT	TTACCAGCAA	CTGTTGAGAT	TTCCAGTTGA	1200
	GTCTTAAAAA	TTGCCAATCA	TTATCTAGCA	GCAATGACAG	ATGATTAGGA	GCAGTCAAAT	1260
25	CCTCTGAATT	CTTTCCCTAA	TAGGCAGCCA	TTTGAGAACT	GCACTAGCTG	ACATCACTAA	1320
	AACATTATCA	GCTAAAGCCA	AAACCAAATA	AAGGCCCAGA	CCAACATCCT	GGCTCTCTAA	1380
30	AACCTGTCCA	АААТСАТТАА	GTGAAAGGCA	GTAAATGCAG	GACTGTGGAT	CATGTCACTG	1440
50	CAGCTGACAA	TGATTAACAA	TAGGAGACAT	GCAACCCCCA	TTAAGGTTAA	AAGTCCAAAA	1500
	CTAGTCACAC	GCATCTCTTT	ATTGGGGAAA	AGTGAGACTA	TTATGCATTC	TTGGTAGGTT	1560
35	TGCAACCTTG	CATGAAGAGC	ACCCATTGCA	TTTCTTTCAT	CTTTCAGAAA	GCACCGGTAT	1620
	CTGTTCCAAG	GCCTAACAG	TACGAAAATA	CATTCTGGCA	TCACACCTCT	GAACCCAAGA	1680
40	CTGTTCTCAT	TAAAAATAAT	TTTGGTTTGT	AACAAAATTA	TGAAATACAA	TGCAAGCACC	1740
	TCGGTATAGC	ATTATTACTG	AAACCACTTA	ATTCCCAGCT	TTTTGAGTTT	TTTAAAAAAA	1800
	CCCACTGCAC	TAAGATICAC	AATTCATTGC	TACATACAAA	TTAAAGCTAG	TAAGAACACA	1860
45	CTAACGTCAC	AAGTTTCTCA	TTCTAAAGTC	CAAAAGCCTA	ATCATCTGAA	AGTGAACAGG	1920
	GTAA						1924

50

55

- (2) INFORMATION FOR SEQ ID NO: 47:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 475 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

	TGGTGTGGGG CCCAGAAAMC AAGGGACCAG TGAAAACAMC CCCAGAGACT TGTATCCGCC	60
5	AGGAAAGCCA TIGCCAMTYC IGAGCCCIIG AAGGGCAAAGG AGGGAAACAG IGITACCAGA	120
,	GCCCAGTAAG AACTGCTGTC ATGAAGGAGG GGCCACCTTG TAAGAGACAT CATTACTACC	180
	AGAACTGTGG TGCCAAATTG CTGGTGTCTC TCTTTGGAGA AACCAACCAG ATACATCTGC	240
10	TGGAGACCCA GGTGGGCACA GAGAAGGGTG GAGAGAGAAT CTGGGAAGAG AAATGGAGAA	300
	TAAGCAGCAC AGTGTTATTC ATTTCTGTAA ATTCCTATGT AGAAGGCTCA GTGTTAGAAA	360
15	TAAAGTTATT CTACTAGTTG CAAGTTAAGT GTTTCTGTTT GTTCTGCTTT CCTGTTAGCA	420
1.5	TAAGTAAACT CCCTTTGGAA CTACACAGGT ATGTCTCTCC TTCAACATGT GTGAA	475
20	(2) INFORMATION FOR SEQ ID NO: 48:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 346 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
	AAGGGACAGA GACCTGGATT CAGATCTCAT TTTACAATGA AGACCCCAAT GCAGAAAGTC	60
	ATGTCTGAAA TYCTGAGCTT ACTCTTCTGC CTGCTGGGAC CTGCTCTGGA TGAGAGAAGG	120
35	GAGGAAAAGG ACTAATCAGA GGAGCCAATG AAGTCACTCC ATGAGTTTCC TGAACCCTGC	180
	CCAGCTAGAG ATTAACGTYT GACCWTCAAC GTAGGACACT GTGCAGATGG CTACTTGCTG	240
10	GCGCACATGA AGACCAAAGC CAGGACCAAG CCCCMASCCT GCTWAACACG GCAGARTCTT	300
. •	GCCCAGCCMA CYTCTGTGAR AATCTGCTTC CCTCCACAGC TGACCC	346
15	(2) INFORMATION FOR SEQ ID NO: 49:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1366 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
-	TAGGTGTCAG CCGCCACCCC CCCCCCATAT GCAGATTTAC TSGGCATGGT AGTGGCCAGC	60
	TTCTAACACA GCTGGTATTT CAAGTCTCCT GGGACCTCAC TCAGGAATGA TACCCCCTCA	120
60	GTAGAAGCAG CAGGTGATCT TAACTCCTTT CAAAGAGCAG GCCTGTCTGG GAAGCCATGT	190

	CCTCAGCAGG	CACAGCAACC	CCTCTGGAAA	TGGATCACAA	ACTCACTTCT	CAGCCAGGCA	240
5	GGCCAAGCTT	CTATTGTAAC	AGTAGGCACA	GTATAGTCGG	ATCATCACAT	CAGCTGGGTT	300
J	TTTGGTTTAG	TCATCTAGAG	TCGTCTGGAC	TAAAGGTCTT	TCAGGTCTCC	TTGCCCTGTG	360
	AGTGCGTGAA	CCTCCCCACC	CGAATTGCCT	CAGTTGTCCT	GAGCCTCATG	TCTCTCCTGG	420
10	TGGTGGGCCA	GGCCCCTGCA	TGGGAAGGGA	GCCTGCTGCG	GGGCAGGCCA	GCTGGGGGTG	480
	CTCACCTATG	CGCAATGANA	GTTATTGAAG	GACTGGTTGT	TGATGTTGGT	GAGCGTATCC	540
15	TTCATGGCCA	GCGCGAAGTC	GGCCAGGTCA	GCCAGGTGCT	GCCAGCGCTC	TCTCTCGGAC	600
10	TIGICITCCT	GTGCCAGGGG	ACCGTGGAGA	AAGTGTCAGG	GGCCGCTCAC	TGCAGCAGCC	660
	TECTCTECTE	CCTTCCCTGG	CAGTGTTCTG	GGGGTGGATT	CCCTACAMCT	AGATGTTCAA	720
20	GGCCTTACTT	TTCCTCCCAC	AAAGGAGTCG	CAGCCACGCT	AGCTCTGACT	TGCCACTGTG	780
	ACAAAGTTCA	CGTAGCAGGT	CTAGGCAAAG	ACTGGGCAAT	TGAGCAGAGG	AGACGGACCT	840
25	GTGAGTCTGA	CCRYGAGSCG	GRCCCCTTCA	CCTTGGCTGG	GCTGGTCCTG	GTCCTTAGGT	900
	TTTGTCAGGT	TGTCCTTGTT	TGGATCCCTC	AACTAGGTGA	TAAGCACTGG	AGGGGGATGA	960
	CCCCCCTTCG	ACGTGTTTCT	TTAACCTCAT	CCATATAATA	GGGCCGTGGG	ATGGTTGTAG	1020
30	AGGTAAAGCA	GGATGATGGT	GTTTTAAGAC	CAGAGCTTGG	GACCAGGGCT	CCTACACCTA	1080
	ATTTTCTCTC	CTGGTAGCTG	AACAAAGGTC	TAAATTAGCT	TAACAAAAGA	ACAGGCTGCC	1140
35	GTCAGCCAGA	GTTCTGAAGG	CCATGCTTTC	AGTTTCCCTT	GTTGACAATT	GCTCTCCAGT	1200
	TCCTATGAAA	GCACAGAGCC	TTAGGGGGCC	TGGCCACAGA	ACACAACCAT	CTTAGGCCTG	1260
	AGCTGTGAAC	AGCAGGGGGT	TGTGTGTCTG	TTCTGTTTCT	CTGCTTGCCG	AACTTTCTCA	1320
40	ATAAACCCTA	TTTCTTATTT	АТААААААА	АААААААА	AAAAAA		1366

45 (2) INFORMATION FOR SEQ ID NO: 50:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1405 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

55 GCAGTAATTC CTGTTAGCCA CTGCATCCAC CAAAACTAGT TTATTTTTCC CCTCAAATTC 60
ATGATTTTA CGTCTGTTAC AAAGGGAATT TTGCTGATAG CTCTTTGGGT CCCACTGTTC 120
CATTTTATGC TAATAGATTC CATTCTAGGG CCCAGCCGTC TCTTGACTGA TGGTGTTCCC 180

	TTTAACCCTT	GGCATGTATA	ATAGAATTTT	GGTGAATGAA	AGAACCCAAA	TAGGCCAGAT	240
	AGTCCCCCCA	GGCCCTGATA	TCCATAAAAG	GCTTGGGAAT	GCATTATGTA	ATTGTCCTTA	300
5	GTCTTTTTGT	TGTTTTAGAA	AAAAAAAACA	AGATGGGCTC	AGATGGATGC	CTACGTAAAA	360
	ATGGTTCCTA	GCTGTGTACT	CATAACTITT	CTTTGAATTG	AGTAGTGAAA	GGAAGGAGGA	420
10	GGAAAGGAAA	TTAAATGTCC	TTCTAGTATT	CTCTGGACTC	AAGTCTGACA	TATGAGATAA	480
•	TAACCTATAT	TGAAATGCCA	AGAATTGTAT	CTGAAACAAG	AGAACAGTTT	GACACATTTA	540
	TCATGCCTTC	ATATTACATA	TTAACTGAAA	CCAATTAATA	AACATATGAA	ATATCCATTG	600
15	CACAAGGCAA	AGGCACCTAA	ACCTTTTGTT	TCTTTTTCTA	CATAGCAGAA	ATTGATTTT	660
	TTTTTATTTT	TTTAGGGGAA	ССТАТАТААТ	TATGACCCAG	TGATGTCTTT	TGGTGACTTA	720
20	AGCTTATGAA	TTCAGGTTAC	AATTGAGTTG	ATTCTAGATG	GTTACTACCT	TGAAAAGGAT	780
	CTTCCTCCCT	TATGTGACAC	GAGCCAGAGC	CTGCTGGGGA	ATAAACAAAG	CAGGTTTCAT	840
	GCCAACACCA	ACTCGTAGCT	TTAGTGGGCA	GATGGGGAGT	GGTTCACAGA	CTTCCCAAAA	900
25	TCTCGCGCCT	TTGGGATTTT	CCACACCATC	CCACGTGTGT	TGTTCATTCT	TCCTCTTTTC	960
	ACACTCTTGG	ATGGATWATT	TGRAAATGGT	GRAAWYMMCY	YYKRAATTTG	CCCAATAGCC	1020
30	WTGRGCCACC	ATTCTTWATG	ACACCATAAC	CAAATAGTTC	CWTAATGTTG	AAATATTAGA	1080
	AACCTGTTAC	CAGCCYKSMA	KTWACCCWWA	WITTTCCCAT	GTTTGTGGAA	TTGATATTGA	1140
	AATAGCAGGG	CTAAGGAATT	ACTGGCAAGT	TTTAGCCTGT	GGGTAATACC	TTAGGGTTAT	1200
35	TTAAATATTT	GTAATTTTAT	TTAAATGTTC	ATGAATGTTT	GAAAGGAACA	AAATTATCAG	1260
	GGATGGCTCT	TTGCCATGGG	TCTTATTTTC	ACCCTCTTTT	CTGTAAGAAA	AAAGAACAAT	1320
40	GTCTTAATGT	ATTTTTAAAG	TTTTTGGTAT	AGTTTCTAAT	TCCAATTTTA	ATAAAAGTTT	1380
	TWTRTAAAAA	АААААААА	AAAAA				1405
45	(2) INFORMA	TION FOR SE	EQ ID NO: 51	L:			
	(i)	SEQUENCE CI	HARACTERIST	ICS:			
50	(A) LENGTH: 504 base pairs (B) TYPE: nucleic acid						
			ANDEDNESS: OLOGY: line				
	(xi)		DESCRIPTION		: 51:		
55						AACCANCCAA	60
•							

AACCCCAAAA AAAAAAAAA TCCACAAAAA CAAAAAAACT ATAAAAAAGA AAGAATTAAA

AACTITCAGA GAATTACTAT TTACTITATT AACTTACGGA TTTATTATAT AAATATATAT

60

120

274

	TCACCTAGCA ACATATCTCT GCCGTCTCTC CTGCTCTCAT AATGAAGACA TAGCCGATTC	240
5	TCTGCCCGGG CCCCTTGCTG ATGCTCCTCC GGGTCTGCGT CGGGCGTGGG TCTCTGGGGA	300
	CCCTCCAGAG GTGGAGGTGG GCTGATGGCC TGGCTGCCTG GTGGTTGATG GTTTTGCTCC	360
	CCCTACCTTT TTTTTTGAG TITATTCTGA TTGATTTTTT TTCTTGGTTT CTGGATAAAC	420
10	CACCCTCTGG GGACAGGATA ATAAAACATG TAATATTTTT AAGAAGGAAA AAAAAAAAAA	480
	AAAAAACTNG GGGGGGCCC CGAA	504
15		
15	10)	
	(2) INFORMATION FOR SEQ ID NO: 52:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 777 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
	NAAGTATCTT GGCCAGTTTA TTACAGAGGA CGATAAATGA TTCCATGTGG ATAGGGCATA	60
30	ACATACAGAG AATGAGACTA TGCCAGAAAT GGGAGGAGCC ATTTGAAACA ACATGAGTAT	120
	CTCAGGGACA GATGGATTGA TTCTGCTATT GGTAGGCCTG GAAGCAANGG TCAGAAGTAG	180
	CAAAAAATGG ATACCAAAAG CACTATTWGT CACCCAAGCT AAGTGGAATA GCTGGCCCAG	240
35	TAGGAGAAAT GCAGGTTTTG CTCTACACTA AGTTCTCCAA CTCTTGATAA GCCTCCAAAA	300
	ACAAATGTTA GGGGAAAAAA ACGCAGCTGG TTATGAAAAG ATATATCTCA TTTCATTAAA	360
40	AAATCAATGT CAATGCTGTT AATAGAATCC TTTTATCTTC AGGACAGAGG CAATGCCCTA	420
	AACAAACACC AGCTCAAGAG CCTCTGATGC CAACCTAGAG GGTACCCAAA CACAAACTTA	480
	GCATAGAGGT AAGAATCTCT ATGTCTTTTG GTGGAGGCAA AGCCATTTGG TTGGTACTTC	540
45	ACAGGAACAT CTTTCTACCA AGTCTTCATC ATATGGTATG TGCCACGAGT CTCCAGTTGT	600
	TTGCACCACT GTGTCATAGC TGAGAATACG CTGAAAGGTT AGTTTTGATC CTGGAAACCT	660
50	ATTTACAATT GCCAGCTGAT GTCCCTGCTG CCACTTAAAA AAGGCTTGGG TCTGGCATAG	720
	GCAGAMAGGC CTGTGGTCCC CTCGTGCCGA TTCTNGGCTC GAGGCCAATT NCCTTAT	777
55	(2) 777777777777	
	(2) INFORMATION FOR SEQ ID NO: 53:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 602 base pairs

60 (B) TYPE: nucleic acid

275

(C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53: 5 ATGACTACAG TGTTATACCC TCCAATCTTT GCAGGTGGGC ATGGAACACT GCTTGTATCA 60 120 10 CATGGTTTGG GATGAGCAGG TCAATAGTTT TGAGAGGGAG TTTGTTCCTT TTTTTTTCT 180 CATTATACTC TTAAATTGTT GTCAGTTATC AAACAAACAA ACAGAAAAAT TGTTTGGAAA 240 AACCITGCAT ACGCCTTTTC TATCAAGTGC TITAAAATAT AGACTAAATA CACACATCCT 300 15 GCCAGTTTTT TCTTACAGTG ACAGTATCCT TACCTGCCAT TTAATATTAG CCTCGTATTT 360 TTCTCACGTA TATTTACCTG TGACTTGTAT TTGTTATTTA AACAGGAAAA AAAACATTCA 420 20 AAAAAAGAAA AATTAACTGT AGCGCTTCAT TATACTATTA TATTATTATT ATTATTGTGA 480 CATTTTGGAA TACTGTGGAA GTTTTATCTC TTGCATATAC TTTATACGGA AGTATTACGC 540 CTTAAAAATA CGAAAATAAA TTTTACAAGG TTCCGGTTTT GGTGGTGGAA AGAGTAAATT 600 25 GA 602 30 (2) INFORMATION FOR SEO ID NO: 54: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1749 base pairs 35 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: 40 AGTCACTGAC TIGGAGCCGC TCGGGGGAAG TCCCGCCCAG ACAGGCGGTG GGTGGGAATG 60 120 CCTCACTTCA GTTTGAAGAG GGTCCGGATC CAAAGGGGTT AAAACGAGCG AACCCCGATC 45 CCCGACCACA CTTCCCGCCT CCCTAAAACG CACACCCCGC TAGCCATGGG CAGCCGCGAC 180 240 CACCTGTTCA AAGTGCTGGT GGTGGGGGAC GCCGCAGTGG GCAAGACGTC GCTGGTGCAG 300 GATTATTCCC AGGACAGCTT CAGCAAACAC TACAAGTCCA CGGTGGGAGT GGATTTTGCT 50 360 CTGAAGGTTC TCCAGTGGTC TGACTACGAG ATAGTGCGGC TTCAGCTGTG GGATATTGCA GGGCAGGAGC GCTTCACCTC TATGACACGA TIGTATTATC GGGATGCCTC TGCCTGTGTT 420 55 ATTATGTTG ACGTTACCAA TGCCACTACC TTCAGCAACA GCCAGAGGTG GAAACAGGAC 480

CTAGACAGCA AGCTCACACT ACCCAATGGA GAGCCGGTGC CCTGCCTGCT CTTGGCCAAC

AAGTGTGATC TGTCCCCTTG GGCAGTGAGC CGGGACCAGA TTGACCGGTT CAGTAAAGAG

60

540

276

	AACGGTTTCA CAGGTTGGAC AGAAACATCA GTCAAGGAGA ACAAAAATAT TAATGAGGCT	660					
	ATGAGAGTCC TCATTGAAAA GATGATGAGA AATTCCACAG AAGATATCAT GTCTTTGTCC	720					
5	ACCCAAGGG ACTACATCAA TCTACAAACC AAGTCCTCCA GCTGGTCCTG CTGCTAGTAG	780					
	TOTTTGGCTT ATTTTCCATC CCAGTTCTGG GAGGTCTTTT AAGTCTCTTC CCTTTGGTTG	840					
10	CCCACCTGAC CATTITATTA AGTACATTIG AATTGTCTCC TGACTACTGT CCAGTAAGGA	900					
10	GGGCCCATTG TCACTTAGAA AAGACACCTG GAACCCATGT GCATTTCTGC ATCTCCTGGA	960					
	TTAGCCTTTC ACATGTTGCT GRCTCACATT AGTGCCAGTT AGTGCCTTCG GTGTAAGATC	1020					
15	TTCTCATCAG CCCTCAATTT GTGATCCGGA ATTTTGTGAG AAGGATTAGA AATCAGCACC	1080					
	TGCGTTTTAG AGATCATAAT TCTCACCTAC TTCTGAGCTT ATTTTTCCAT TTGATATTCA	1140					
20	TTGATATCAT GACTTCCAAT TGAGAGGAAA ATGAGATCAA ATGTCATTTC CCAAATTTCT	1200					
20	TGTAGGCCGT TGTTTCAGAT TCTTTCTGTC TTGGAATGTA AACATCTGAT TCTGGAATGC	1260					
	AGAAGGAGG GTCTGGCAT CTGTGGATTT TTGGCTACTA GAAGTGTCCC AGAAGTCACT	1320					
25	GTATTTTGA AACTICTAAC GTCATAATTA AGTTTCTCTT GTCTTGGCAT CAAGAATAGT	1380					
	CAAGTTTTT GGCCGGGCAT GGTGGCTCAT GCCKGTAATC CCAGCACTTG GGGAGGCCAA	1440					
20	GGCAGGCGGA TCACATGAGG CCAGGAATTC GAGACCAACC TGGTCAGCAT GGCAAAACCC	.1500					
30	COTCTCTACT AAAAGTACAA AAATTAGCCA GGCGTGATGG CACGTGTCTG TAATCCCAGC	1560					
	TACTCTGGAG ACTGAGGTGG GAGAATCGCT TGAGACTGGG AGGCAGAGGT TGCAGTGAAC	1620					
35	CGAGATCATG CCACCGCACT TCAGCCTGGG TGACAGAGAA GGACTCCGTC TCAAAAAAAA	1680					
	AAAAAAAAA AAAACTCGAG GGGGGCCCG GTACCCAAAT CGCCSTGATA GTGATCGTAW	1740					
40	ACAATCNAA	1749					
40							
45	(2) INFORMATION FOR SEQ ID NO: 55:						
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1896 base pairs						
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double						
50	(D) TOPOLOGY: linear						
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:						
55	AAAGAGATGG GCTCTTTATT TTCTCGAAAA ACCAATTTGG AGTTACTCAT TTTTCCATAA	60					
JJ	CATTAAATTT CTTACAGTGA ACTACATATT GTCCATAAGT GCTTCATCAG GACTCATCGC	120					
	CCTCCTGTCT ACTGGCTCCA AATAGACCAT GTCAGCTTCA CCCCCTGGCT TTGTGTCTAT	180					

GOGTGGCCTG TGGTATATGG AAAAGTAGCA GGGTGGTCAG GGTGGGAGAC ACAAGATGTT

240

	TTTATAGTCT	AGAGCCTTTA	AAAAACCCAG	CAGAATGTAA	TTCAGTATTT	GTTTATTGGC	300
5	TGTTTTTTGA	CAGATTGTTG	AAATTAAATG	AATTGAAAGG	GAAACTCAGA	GTACTAGGAC	360
	GTTTATTAAA	AGGAAAAAA	TGTCTTGCAA	TGTGCTGTAA	TCACAAGAGG	AGAAAATAAC	420
	TIGITICCTT	GATCTGTCAG	AGGTCACAGT	AACCTGGGCC	GAGCTGTTAT	TATTTATTAT	480
10	ATAATAGTAG	TAGGAAGTTA	ATAACTGGTT	CTCTGTGTTC	CAAGCACAAT	ATTACAACTT	540
	CTTTTGAACC	GTAAATATCA	GAATGAATCC	TCTTCCCAGG	GGATTGAACA	GAAGCTTAAT	600
15	GTTTACAAGT	GTTTGAATTT	GTGATCTGAA	ATAACACAAA	ATTAAAAACA	TGATTTCTCT	660
15	AATTTTCCAA	CTAGAGGAAG	AGAAACTTGT	GGAAAAGTTC	TTTTTTTTC	TTTTTTTTT	720
	CTTAAAGAAG	GGCAGCCAAG	GTAGTAACCT	AAAAATAGTG	CCCAGGCATA	TGAGAGTTGT	780
20	CCTACGAGGT	TAAAGAACAC	ACTGTTCCAC	TGTATGGCTT	TGGCCCTGAG	TGGCCAGGGA	840
	GGTCAACTTG	ACCCTGCCAT	GTTGGTTTGA	CTTACTAAGA	CACAGGAATC	ATTGTTTTCC	900
25	TTGACCAGGG	TCTCACACCC	TGGAGGAATG	TTAAGTAAGA	GAAAGAACCT	CTTTCCTGAA	960
20	TATTGACATG	TAAAAGACCA	AAGTAATTIT	TCTGAACTTC	TGCAATTCTG	AGAACTCTCC	1020
	AAGGAATTTA	CAGTGATTTT	AGTGCTTGTC	AGCATTTTTC	CATGAGGACT	TTCATACATT	1080
30	TGACTCTTTA	GTTCACAGGT	TCCCATTGAT	TGTGAGCAAG	ATATTTATCT	CTTTAGCCCT	1140
	TGGGGATCCA	GCTGAGAGCA	ATCTCTTGCA	TTTTTTTACC	CGTGTATGTA	CAGATATCAT	1200
35	TTCTTGTGTA	TGCCATGACT	TGAAAAAGTT	TGGGAAGCTC	TTTAGCAATA	TCAGCTAAAA	1260
55	GGATATGAAA	TCACAGGTGA	TAGCAGTTGT	CATTCAGTAA	TTTCCTACAA	GCAGCACCCC	1320
	AAAGGAAATA	TAGTCCTAAT	CTTTACTATC	CACTTCTAAA	TTTAATGTGA	ATTTCATACA	1380
40	TGTTATTAGT	TGTTTTCTTT	ATAATTTTAT	AAAAATTATT	CATCGGGAGT	TTAACTTCCA	1440
	CTTCCATGCT	ATCGGATGTG	TTGGGCTCCA	TGCAAGAACT	TOGAAGAAAA	ACAGGCAGGA	1500
45	ATGCATTTGC	ATAATGACCC	AGATCATCAT	TTTCTGCAAC	TGAGAATTAT	ATTICATCAT	1560
75	TGCTTCTAGA	AGTCTGCAAT	TCTTTACTTT	TCTTTGGTGC	ATTATTATCT	AGGTGCCATC	1620
	ACTGGATAAT	GTGGAGTGAC	TAGAGAAGTC	AYATATCACT	GTAAGGTACA	GTTAGGGGTA	1680
50	ACACTTTAGA	GGTTTATTAT	ттттаааааа	CTTTTCTTGA	ACTCCTGGGC	CAACATGGGT	1740
	GAAACCCCGT	CTTCTTACTT	AAAAATACCC	AAAATTAGGC	CAGGGGCGTG	GATGGGTGGG	1800
55	GTGCCTGTTA	ATCTTCAGCT	ACTINGGGGA	GGGCTTGAAG	CCAGGGAGGA	ACTGCCCTGG	1860
JJ	ANCCCCGGGG	NGGGCCAGNA	GGTTTGCCAG	TTGAGT			189

5

(2) INFORMATION FOR SEQ ID NO: 56:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1753 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
10	TCTTTTTAAA ATAGACATTT GTGGGGCTCA CACAATATAT GAAATAGTAC CCTCTAAAAA	60
	AGAGAAAAA AAAATCAGGC GGTCAAACTT AGAGCAACAT TGTCTTATTA AAGCATAGTT	120
15	TATTTCACTA GAAAAAATTT AATATCAAGG ACTATTACAT ACTTCATTAC TAGGAAGTTC	180
	TTTTTAAAAT GACACTTAAA ACAATCACTG AAAACTTGAT CCACATCACA CCCTGTTTAT	240
20	TTTCCTTAAA CATCTTGGAA GCCTAAGCTT CTGAGAATCA TGTGGCAAGT GTGATGGCA	300
20	GTAAAATACC AGAGAAGATG TTTAGTAGCA ATTAAAGGCT GTTTGCACCT TTAAGGACCA	360
	GCTGGGCTGT AGTGATTCCT GGGGCCAGAG TGGCATTATG TTTTTACAAA ATAATGACAT	420
25	ATGTCACATG TITGCATGTT TGTTTGCTTG TTGAATTTTT GAACAGCCAG TTGACCAATC	480
	ATAGAAAGTA TTACTTTCTT TCATATGGTT TTTGGTTCAC TGGCTTAAGA GGTTTCTCAG	540
20	AATATCTATG GCCACAGCAG CATACCAGTT TCCATCCTAA TAGGAATGAA ATTAATTTTG	600
30	TATCTACTGA TAACAGAATC TGGGTCACAT GAAAAAAAAT CATTTTATCC GTCTTTTAAG	660
	TATATGTTTA AAATAATAAT TTATGTGTCT GCATATTGCA GAACAGCTCT GAGAGCAACA	720
35	GTTTCCCATT AACTCTTTCT GACCAATAGT GCTGGCACCG TTGCTTCCTC TTTGGGAAGA	780
	GGAAAGGGTG TGTGAACATG GCTAACAATC TTCAAATACC CAAATTGTGA TAGCATAAAT	840
40	AAAGTATTTA TTTTATGCCT CAGTATATTA TTATTTAATT TTTTAGGTAA TGCCTATCTC	900
40	TTGGTCTATT AAGGAAAGAA GCAATCAGTA GAGAATTCAG GATAGTTTTG TTTAAATTCT	960
	TGCAGATTAC ATGTTTTTAC AGTGGCCTGC TATTGAGGAA AGGTATTCTT CYATACAACT	1020
45	TGTTTTAACC TTTGAGAACA TTGACAGAAA TTATGCAATG GTTTGTTGAG ATACGGACTT	1080
	GATGGTGCTG TTTAATCAGT TTGCTTCCAA AGTGGCCTAC TCAAGAGGCC CTAAGACTGG	1140
50	TAGAAATTAA AAGGATTCA AAAACTTTCT ATTCCTTTCT TAAACCTACC AGCAAACTAG	1200
50	GATTGTGATA GCAATGAATG GTATGATGAA GAAAGTTTGA CCAAATTTGT TTTTTTGTTG	1260
	TTGTTGTTGT TTTGAATTTG AAATCATTCT TATTCCCTTT AAGAATGTTT ATGTATGAGT	1320
55	GTGAAGATGC TAGCGAACCT ATGCTCAGAT ATTCATCGTA AGTCTCCCTT CACCTGTTAC	1380
	AGAGTTTCAG ATCGGTCACT GATAGTATGT ATTTCTTTAG TAAGAATGTG TTAAAATTAC	1440
	AATGATCTTT TAAAAAGATG ATGCAGTTCT GTATTTATTG TGCTGTGTCT GGTCCTAAGT	1500
60		

279

	GGAGCCAATT .	AAACAAGTTT	CATATGTATT	TTTCCAGTGT	TGAATCTCAC	ACACTGTACT	1560
5	TTGAAAATTT	CCTTCCATCC	TGAATAACGA	ATAGAAGAGG	CCATATATAT	TGCCTCCTTA	1620
	TCCTTGAGAT	TTCACTACCT	TTATGTTAAA	AGTTGTGTAT	AATTGTTAAA	ATCTGTGAAA	1680
	GAATAAAAAG	TGGATTTAAA	AAAAAATT	АААААААА	ааааааааа	АААААААА	1740
	AAAAAAAAGG	GGG					1753
10							

(2) INFORMATION FOR SEQ ID NO: 57:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1220 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

20 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

25	GCGGAAGTTA	CTGCAGCCGC	GGTGTTGTGC	TGTGGGGAAG	GGAGAAGGAT	TTGTAAACCC	60
23	CGGAGCGAGG	TTCTGCTTAC	CCGAGGCCGC	TGCTGTGCGG	AGACCCCCGG	GTGAAGCCAC	120
	CGTCATCATG	TCTGACCAGG	AGGCAAAACC	TTCAACTGAG	GACTTGGGGG	ATAAGAAGGA	180
30	AGGTGAATAT	ATTAAACTCA	AAGTCATTGG	ACAGGATAGC	AGTGAGATTC	ACTICAAAGT	240
	GAAAATGACA	ACACATCTCA	AGAAACTCAA	AGAATCATAC	TGTCAAAGAC	AGGGTGTTCC	300
35	AATGAATTCA	CTCAGGTTTC	TCTTTGAGGG	TCAGAGAATT	GCTGATAATC	ATACTCCAAA	360
55	AGAACTGGGA	ATGGAGGAAG	AAGATGTGAT	TGAAGTTTAT	CAGGAACAAA	CGGGGGTCA	420
	TTCAACAGTT	TAGATATTCT	TTTTATTTT	TTTCTTTTCC	CTCAATCCTT	TTTTTATTTT	480
40	AAAAATAGTT	CTTTTGTAAT	GTGGTGTTCA	AAACGGAATT	GAAAACTGGC	ACCCCATCTC	540
	TTTGAAACAT	CTGGTAATTT	GAATTCTAGT	GCTCATTATT	CATTATTGTT	TGTTTTCATT	600
45	GTGCTGATTT	TTGGTGATCA	AGCCTCAGTC	CCCTTCATAT	TACCCTCTCC	TTTTTAAAAA	660
43	TTACGTGTGC	ACAGAGAGGT	CACCITITIC	AGGACATTGC	ATTTTCAGGC	TTGTGGTGAT	720
	AAATAAGATC	GACCAATGCA	AGTGTTCATA	ATGACTTTCC	AATTGGCCCT	GATGTTCTAG	780
50	CATGTGATTA	CTTCACTCCT	GGACTGTGAC	TTTCAGTGGG	AGATGGAAGT	TTTTCAGAGA	840
	ACTGAACTGT	GGAAAAATGA	CCTTTCCTTA	ACTTGAAGCT	ACTTTTAAAA	TTTGAGGGTC	900
55	TGGACCAAAA	GAAGAGGAAT	ATCAGGTTGA	AGTCAAGATG	ACAGATAAGG	TGAGAGTAAT	960
33	GACTAACTCC	AAAGATGGCT	TCACTGAAGA	AAAGGCATTT	TAAGATTTTT	тааааатстт	1020
	GTCAGAAGAT	CCCAGAAAAG	TTCTAATTT	CATTAGCAAT	TAATAAAGCT	ATACATGCAG	1080
60	AAATGAATAC	AACAGAACAC	TGCTCTTTTT	GATTTTATTT	GTACTTTTTG	GCCTGGGATA	1140

	TGGGTTTTAA ATGGACATTG TCTGTACCAG CTTCATTAAA ATAAACAATA TTTGTAAAAA	1200
_	ТСАМААААА ААААААААА	1220
5		
10	(2) INFORMATION FOR SEQ ID NO: 58:	
•	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1049 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
20	TCGCGCCTGC AGACACAGCA TCTACTCAGC GTGGGTCACC TCTGTGAACA TCACTGACTG	60
20	CAAGCCTCCC TCAATTTCTG GTGCAGCCCA TCAGGGACCC ACAGCGCCTG GGAGGATGGT	120
	GCGGATCTTG GCCAATGGGG AAATCGTGCA GGACGACGAC CCCCGAGTGA GGACCACTAC	180
25	CCAGCCACCA AGAGGTAGCA TTCCTCGACA GAGCTTCTTC AATAGGGGCC ATGGTGCTCC	240
	CCCAGGGGGT CCTGGCCCCC GCCAGCAGCA GGCAGGTGCC AGGCTGGGTG CTGCTCAGTC	300
20	CCCCTTCAAT GACCTCAACC GGCAGCTGGT GAACATGGGC TTTCCGCAGT GGCATCTCGG	360
30	CAACCATGCT GTGGAGCCGG TGACCTCCAT CCTGCTCCTC TTCCTGCTCA TGATGCTTGG	420
	TGTTCGTGGC CTCCTCCTGG TTGGCCTTGT CTACCTGGTG TCCCACCTGA GTCAGCGGTG	480
35	ACCTCTGAGG GCTGATAGGG GTGGGTTTGT TGAGAGGGAC TTGCTGGGCC TTGGTGTGAG	540
	AGCAGGCATA TTTGGAGGGG ATCTGGTGGT GCCTTGAAGG TATGATCAGA GAGGGGACCA	600
40	CAGGTGTGTG TTTCCCCTTT GTGTTAAGCG TGAGGCAGAG GGAGACGTTA GTCCCAGCAT	660
40	TICCCAAAGT GIGGGIGGGI CCGITGGITC CCGAGATACT TITAGGIGGT AIGGGGCCIG	720
	CATTAAGTGG CACAAAATCA GAGCAAGAAA GCGATGCCCT TCCCAATTCT CTCAATCCTT	780
45	TTATGCCGAG AAGATCTCAG CTGGATGCCA ACATGTTCCG ATGCCTGTGG AAGACATGCC	840
	GACGTCTCCT CTGCCTAGGG AGCAGGACTT GGGCTTAGGG CAGGTGGAAA AAATTCCAGA	900
50	CTTTTTTAGC ACTGTTTTTG TTTTAATGGT ATATTTTTAT TGGCTACTTT ATTGTTTAGG	960
50	ACAAGTGGTA GTGGCATTCT ATTTATTGTG ACCTTTTCAA TAAATAGATT TAAGTAAAAA	1020
	AAAAAAAAAA AAAACTCGAG GGGGGGCCC	1049
55		

(2) INFORMATION FOR SEQ ID NO: 59:

60 (i) SEQUENCE CHARACTERISTICS: THIS PAGE BLANK (USPTO)

HIS PAGE BLANK (USPTO)

281

(A) LENGTH: 1776 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear 5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

AAAGAGGATG TGMAGCTAGA GGTCCCCGAT GGCTGGTCGG ATGGGAAGCA CAAGGCTGAG 60 10 GGACTGGATT GTAAAGGCAC TAAGTCGTTC TGCGGTGAGA ATCAGACATG GGGGACCTCT 120 AGCTTCACAT CCTCTTTCCT TGCAGSTCTG GACATCCTGA GCCCAAGTCC CCCACACTCA 180 GTGCAGTGAT GAGTGCGGAA GTGAAGGTGA CAGGGCAGAA CCAGGAGCAA TTTCTGCTCC 240 15 TAGCCAAGTC GGCCAAGGGG GCAGCGCTGG CCACACTCAT CCATCAGGTG CTGGAGGCCC 300 CTGGTGTCTA CGTGTTTGGA GAACTGCTGG ACATGCCCAA TGTTAGAGAG CTGGCTGAGA 360 20 GTGACTTTGC CTCTACCTTC CGGCTGCTCA CAGTGTTTGC TTATGGGACA TACGCTGACT 420 ACTTAGCTGA AGCCCGGAAT CTTCCTCCAC TAACAGAGGC TCAGAAGAAT AAGCTTCGAC 480 ACCITCAGT TGTCACCCTG GCTGCTAAAG TAAAGTGTAT CCCATATGCA GTGTTGCTGG 540 25 AGGCTCTTGC CCTGCGTAAT GTGCGGCAGC TGGAAGACCT TGTGATTGAG GCTGTGTATG 600 CTGACGTGCT TCGTGGCTCC CTGGACCAGC GCAACCAGCG GCTCGAGGTT GACTACAGCA 660 30 TCGGGCGGGA CATCCAGCGC CAGGACCTCA GTGCCATTGC CCGAACCCTK AANAAAAACC 720 ATTAAAGTTA CGACGCAGC AGCAGCCGCA GCCACATCTC AGGACCCTGA GCAACACCTG 780 ACTGAGCTGA GGGAACCAGC TCCTGGCACC AACCAGCGCC ASCCAGCAAG AAAGCCTCAA 840 35 AGGGCAAGGG GCTCCGAGGG ANCGCCAAGA TITGGTCCAA GTCGAATTGA AAGRACTGTC 900 GTTTCCTCCC TGGGGATGTG GGGTCCCAGC TGCCTGCCTG CCTCTTAGGA GTCCTCAGAG 960 40 AGCCTTCTGT GCCCCTGGCC AGCTGATAAT CCTAGGTTCA TGACCCTTCA CCTCCCCTAA 1020 CCCCAAACAT AGATCACACC TTCTCTAGGG AGGAGKCAAA TGTAGGTCAT GTTTTTGTTG 1080 GTACTITICTG TITTITGTGA CTTCATGTGT TCCATTGCTC CCCGCTGCCA TGCTCTCTCC 1140 45 CTTGTTTCCT TAAGAGCTCA GCATCTGTCC CTGTTCATTA CATGTCATTG AGTAGGTGGG 1200 TAGCCCTGAT GGGGGTCGCT CTGTCTGGAG CATAACCCAC AGGCGTTTTT TCTGCCACCC 1260 50 1320 TGAAGAGCCA TAGGGCCCCC ACCTTTACTC ACACCCTGAG AATTCTGGGA GCCAGTCTGC 1380 CATGCCAGGA GTCACTGGAC ATGTTCATCC TAGAATCCTG TCACACTACA GTCATTTCTT 1440 55 TTCCTCTCT TGGCCCTTGG GTCCTGGGAA TGCTGCTGCT TCAACCCCAG AGCCTAAGAA 1500 TGGCAGCCGT TTCTTAACAT GTTGAGAGAT GATTCTTTCT TGGCCCTGGC CATCTCGGGA 1560 60 1620

WO 98/39448 282 PCT/US98/04493

	GGGTATATAG ATTGTATTAA AAAAAAAAAG GTATATATGC ATATATCTAT ATATAATATG	1680
5	ACGCAGAAAT AAATCTATGA GAAATCTATC TACAAAMWAA AAAAAAAAA AAAAAAAAAA	1740
5	AGGAATTCGA TNTCAAGCTT ATCGATACCG TCNACC	1776
10	(a) rimomanyon pop ope an ive (a)	
	(2) INFORMATION FOR SEQ ID NO: 60:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 443 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
	ACAGATAAAT AAATAAATAA TAAATTAAAT TAAATAAAAA ATCTGAGCTA ATCTGAATAA	60
	ATTGAGAGAT TTCACATGAA AGCCAGGATT TCTGGCTTCC CAGGAACAGT CAGAAGAGCT	120
25	AGCTAGCAAC ACTGGTCTGC TTGGCTACCT TCTTTGGAAC AACATGAAAT CTAGCTCCCT	180
	TTTTTTTTT TTTTTGGCCC ACTTCATCCA TTCACATGAC CTGCCTGGCC TCTGCAGGTA	240
30	AGTGAGTATG CAACAAAAT GTAGCACAGG TTTTGTCGCT GAACTACGTG GTTTCAGGTC	300
50	CAGCTCTGCC ACTTGCTAGC ATGACCTCGT GCCGAATTCC NGCACGAAGT TTTTTTTTTT	360
	TTTTTCAGTG CTCCAGTCCC CCTATTGGAG AATCCTGCCC CCCCTGGGA CAGAATGTTC	420
35	ACCCTGGCCC CGCGANTCCC TGA	443
40	(2) INFORMATION FOR SEQ ID NO: 61:	
	•	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2888 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
50	TTAATGTTGT CAATAACCAC CAGGCCAAAC AGAATTTATA TGACCTGGAT GAAGATGATG	60
	ATGGTATAGC TTCCGTTCCT ACTAAACAGA TGAAGTTTGC AGCCTCAGGC GNCTTTCTCC	120
55	ACCACATGGC TGGGCTAAGC AGTTCCAAGC TTTCCATGTC CAAGGCCCTC CCTCTCACCA	180
	AAGTOGTTCA GAATGATGCA TACACAGCTC CTGCTCTCCC TTCCTCTATT CGAACAAAAG	240
	CCTTGACCAA CATGTCCCGG ACACTGGTGA ACAAGGAAGA ACCCCCCAAA GAGCTGCCAG	300
60	CTCCTGAGCC TCTTCTCAGC CCATTCGAAG GCACCAAGAT GACTGTGAAT AATCTGCACC	360

	CTCGAGTCAC	TGAGGAGGAC	ATTGTTGAGC	TTTTCTGTGT	GTGTGGGGCC	CTCAAGCGAG	420
5	CTCGACTGGT	CCATCCTGGG	GTAGCGGAGG	TGGTGTTTGT	GAAAAAGGAC	GATGCCATCA	480
J	CCGCATATAA	GAAGTACAAC	AACCGGTGTC	TGGACGGCA	GCCGATGAAG	TGCAACCTTC	540
	ACATGAATGG	GAATGTTATC	ACCTCAGACC	AGCCCATCCT	GCTGCGGCTG	AGTGACAGCC	600
10	CATCAATGAA	AAAGGAGAGC	GAGCTGCCTC	GCAGGGTGAA	CTCTGCCTCC	TCCTCCAACC	660
	CCCCTGCYGA	AGTGGACCCT	GACACCATCC	TGAAGGCACT	CTTCAAGTCC	TCAGGGGCCT	720
15	CTKTGACCAC	GCAGCCCACA	GAATTCAAAA	TCAAGCTTTG	AGCAGGGGAG	TGAGGCAGCC	780
13	AGAAGTGGGG	GCAGAGGAGG	GTGGCTCTGT	TTCCCCAAGG	CAAAGCTTAT	GACCAATGGG	840
	CCATCGGACT	GGAGACCCCT	GATTGTGGGA	AGGGTTGCCA	GGGATAAAGA	GCTTCCTCAC	900
20	TGGATGGGAC	CCGCCTTTCT	GTGTTGTGTT	CTGCCCTGTG	CICITCICIC	TACGTTAACG	960
	TTTCCTGTAG	TATGTTTCTT	CATCTCATCG	CCAAGGTAGG	CTTGTGTTTT	TCAGTGTGTG	1020
25	CCTCCCCGAG	CCTCAGCCCC	AAGCTGATTT	CTTATCTGGA	AATGGTACAC	TGAATTCTCT	1080
23	GGGTGGCTTT	CTTGTGGCCC	CATGGGATGC	AGCGTGGGGG	CTGTCTGAAG	GACCCTGCTT	1140
	TTTCCAGGGG	CCGAGGGGCT	GCCTTTCCTT	TGTGTGTATT	AAGCTTTTCA	AACAATGGAG	1200
30	GGGATGGAGA	GCCCTGGTGT	CCTGACGGGA	GCCAGGTCGG	CCTGAGAGCT	GIGCCGCICC	1260
	TCTGTCTTGT	CAGTGGAGGT	GCCTGGGTGG	GGAGCAGGTC	TCAGGCCTCT	TGTCCTCTCC	1320
35	CCAGTGGCTC	CAGGCCTCAC	TAGTGGCAAG	GGCAGGATGA	GGCTGCACCG	CTGGGAAGAG	1380
33	TCTATCTAAG	YTCTTGGCTT	GGAGTCCCGT	GTCGTCTCCR	CCCAGAGGAA	GTTCTCCAGA	1440
	GTTCACCTTT	СССТТТССТ	TGAGTTGTGC	TGAATGCCCC	ACCCCAGCTC	TCTTTCCCTT	1500
40	CTGGGTGTCT	TTGCTGGGAG	GGGGCTGTGT	TGTGAGCCCT	CCCGGTTCTC	ACCTCGCCTG	1560
	GCACTTAACC	ACACCCTGGT	TTTGTGTAGC	CGCCAGCTCT	CTTCTGGTTG	GGCCTTTGAA	1620
15	AGGCTCAGCC	TCCCATTGTG	CAGTGCTTGG	GTTTGGAGCT	TATTTGAATG	GAAGAGGTCA	1680
45	GTTTGTTCCT	GGCTCTCCAT	TTCTGGCCTC	AGTTGTCTAC	AGGACAGTGG	TCAGGGATGC	1740
	CTGGAGGCAT	ATATCCAGCT	GCCACCAAGG	GGCACTGTTT	GTTCCCACTT	ATGTGAGTGA	1800
50	CCCCATCCAT	CCATGACCAG	AGGATTATTT	TCCTGCCTTG	GCAGAGGAGG	AGGAGTCAAG	1860
	GGAGCAGGGC	AGCTCTACCA	GGCAAGGTGT	TTCCCCAGCA	TAGGCGCAGA	CAGTTGGGAC	1920
e e	GAAACTTCAG	AGCCCAGGCA	GTCCCTGAAT	GACCAGGCCA	GTGTTGTCAC	TGAGTGGTCC	1980
55	CCTGCTGGTT	GGGAGTGAAG	AGAATCCAGG	CTGGCAGAGC	TGGAGCCAGT	TGGGGAGCAC	2040
	GGTTCTGGGA	GCTCTGCAAA	ATCAGTAGCA	AGTGCTGGAA	AAGGCACATG	CCGAAGATAC	2100
60	TCAAGAGCTC	CCAAGATTTG	CTTGAGGCTA	GCCCAGTGAA	RAAAACCAGA	GACTCATGTT	2160

284

	TCCAGGGGTC	AGTCTGTCAG	GCAGGAAGGA	CCCAGGATTT	GAACCCAGCT	TCAGTGTGCA	2220
5	GGCTCTGAGG	CTGCCCAGGA	CGGGAAAGTC	CAAGGAAGGG	GCCTGGTGGT	GCTCCACTTG	2280
,	CAGTTCTTTA	AAGAATGCTG	CTTTTTATTC	TCCTAACCCT	TTCAAGTGGG	TGCAGACTTC	2340
	TCGTTAGCAG	CTGGAAGACA	TTCCTCCCAC	ACTITICCCT	TCCTGGCCCA	AGAGAGCATC	2400
10	CAGAAGGCAG	TAGGACCTGG	TTTTTCAGGT	ACTGGGAGCC	GGGGCTCAC	TGCTTGCACT	2460
	GTGCTTAGGG	TAGGGATGGT	AAATATCCTC	CCTGCATGGC	TTTATCCTCC	CTCTCATCCC	2520
15	AAAGCAGGTA	TCTTCTGGTT	GTCACAGAGT	TTCATTGAGT	CCAGCTGCAG	CCACGTGGCC	2580
13	ATCTGGAGCT	GGTGCTATAG	GTGACCATCT	GGTACATTGA	GGGGACCTGT	TTGCCTCCTC	2640
	CACTCTATAA	GCAGTCATCT	TGGGAGACCG	GGAGGAGAAG	GTGGTGGGCT	AGTCCTGTGT	2700
20	CCTCCTCCAC	TTCCCATGCC	TCTATGTTAC	CCATCTGTGT	CTCCTGTGCA	GAAGGAGAGG	2760
	AAGGGGCATT	AAGAGATGAA	GGGTGATTAT	GTATTACTTA	TCCATTTCTG	AATAAACATT	2820
25	TGTTATTCCT	ааааааааа	AAAAAAAACT	CGAGGGGGG	CCCGGWACCC	AWATCGCCSK	2880
43	AAAGTGAG						2888

30

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1851 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62: 40

CACTAGTATA ATTTATAATT ATAACCTATT CTGATTTCTT TTCAAATATT AGGTGTCCTA 60 GTTGCCTATG AAGGTTTGCC ACTTCATCTT GCACTGTTCC CCAAACTTTG GACTGAGCTA 120 TGCCAGACTC AGTCTGCTAT GTCAAAAAAC TGCATCAAGC TTTTGTGTGA AGATCCTGTT 180 TTCGCAGAAT ATATTAAATG TATCCTAATG GATGAAAGAA CTTTTTTAAA CAACAACATT 240 GTCTACACGT TCATGACACA TTTCCTTCTA AAGGTTCAAA GTCAAGTGTT TTCTGAAGCA 300 AACTGTGCCA ATTTGATCAG CACTCTTATT ACAAACTTGA TAAGCCAGTA TCAGAACCTA 360 CAGTCTGATT TCTCCAACCG AGTTGAAATT TCCAAAGCAA GTGCTTCTTT AAATGGGGAC 420 CTGAGGGCAC TCGCTTTGCT CCTGTCAGTA CACACTCCCA AACAGTTAAA CCCAGCTCTA 480 ATTCCAACTC TGCAAGAGCT TTTAAGCAAA TGCAGGACTT GTCTGCAACA GAGAAACTCA 540 CTCCAAGAGC AAGAAGCCAA AGAAAGAAAA ACTAAAGATG ATGAAGGAGC AACTCCCATT 600

	AAAAGGCGGC	GTGTTAGCAG	TGATGAGGAG	CACACTGTAG	ACAGCTGCAT	CAGTGACATG	660
	AAAACAGAAA	CCAGGGAGGT	CCTGACCCCA	ACGAGCACTT	CTGACAATGA	GACCAGAGAC	720
5	TCCTCAATTA	TTGATCCAGG	AACTGAGCAA	GATCTTCCTT	CCCCTGAAAA	TAGTTCTGTT	780
	AAAGAATACC	GAATGGAAGT	TCCATCTTCG	TTTTCAGAAG	ACATGTCAAA	TATCAGGTCA	840
10	CAGCATGCAG	AAGAACAGTC	CAACAATGGT	AGATATGACG	ATTGTAAAGA	ATTTAAAGAC	900
10	CTCCACTGTT	CCAAGGATTC	TACCCTAGCC	GAGGAAGAAT	CTGAGTTCCC	TTCTACTTCT	960
	ATCTCTGCAG	TTCTGTCTGA	CTTAGCTGAC	TTGAGAAGCT	GTGATGGCCA	AGCTTTGCCC	1020
15	TCCCAGGACC	CTGAGGTTGC	TTTATCTCTC	AGTTGTGGCC	ATTCCAGAGG	ACTCTTTAGT	1080
	CATATGCAGC	AACATGACAT	TTTAGATACC	CTGTGTAGGA	CCATTGAATC	TACAATCCAT	1140
20	GTCGTCACAA	GGATATCTGG	CAAAGGAAAC	CAAGCTGCTT	CTTGACATTA	GGTGTAGCAT	1200
20	GTCTACTTTT	AAGTCCCTCA	CCCCCAACCC	CCATGCTGTT	TGTATAAGTT	TTGCTTATTT	1260
	GTTTTTGTGC	TTCAGTTTGT	CCAGTGCTCT	CTGCTTGAAT	GGCAAGATAG	ATTTATAGGC	1320
25	TTAATTCTTG	GTCAGGCAGA	ACTCCAGATG	AAAAAAACTT	GCATCTTCAG	TATACTTCCT	1380
	AAAGGGCAAT	CAGATAATGG	ATATGTTTTA	TGTAATTAAG	AGTTCACTTT	AGTGGCTTTC	1440
30	ATTTAATATG	GCTGTCTGGG	AAGAACAGGG	TTGCCTAGCC	CTGTACAATG	TAATTTAAAC	1500
30	TTACAGCATT	TTTACTGTGT	ATGATATGGT	GTCCTCTGTG	CCAGTTTTGT	ACCTTATAGA	1560
	GGCAGATTGC	CTCCGATCGC	TGTGGTTCTT	ATTATCAAAA	TTAAGTTTAC	TTGTATACGG	1620
35	AACAACCACA	AGAAATTTGA	TTCTGTAAAG	AATCCTCTTT	AGCTGTGGCC	TGGCAGTATA	1680
	TAAATGGTGC	TTTATTTAAC	AGAATACCTG	TGGAGGAAAT	AAAGCACACT	TGATGTAAAA	1740
40	ATAATTGTTT	TATTTTTATT	GACATGACTG	ATTGATTGCT	ATTCTGTGCA	CTTAATTAAA	1800
40	CTGATTGTGA	TGACTTWWAA	ааааааааа	ааааааааа	ааааааааа	A	1851
45	(2) INFORM	ATION FOR S	EQ ID NO: 6	3:			
	(i)	SEQUENCE C	HARACTERIST				
50		(B) TYP	E: nucleic	acid			
			OLOGY: line				
55	(xi	.) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 63:		
55	TCCAATGCTG	ATGAGCGTCT	TCGCTGGCAG	GCCAGCTCCT	TGCCTGCTGA	TGACCTTTGC	60
	ACAGAAAATG	CCATCATGCT	GAAACGATTC	AATAGGTATC	CGCTGATCAT	TGACCCCTCT	120

GGACAGGCCA CAGAATTCAT TATGAATGAA TATAAGGWTC GTAAGATCAC ACGGACCAGC

180

	TTCCTGGATG	ACGCCTTCAG	AAAGAACTTA	GAGAGTGCAC	TGAGATTCGG	TAACCCCCTT	240
5	CTGGTCCAGG	ATGTGGAAAG	CTACGATCCA	GTTTTGAACC	CGGTGCTGAA	CCGTGAAGTG	300
,	CGGCGAACAG	GGGGGAGAGT	GCTGATCACT	CTCGGGGACC	AGGACATAGA	CCTGTCGCCA	360
	TCGTTTGTCA	TCTTCCTGTC	CACCCGGGAT	CCAACTGTCG	AGTTCCCACC	AGATCTCTGT	420
10	TCCCGGGTTA	CTTTTGTAAA	CTTCACAGTT	ACCCGTAGCA	GTTTACAAAG	CCAGTGTCTA	480
	AATGAAGTAC	TTAAAGCAGA	AAGACCTGAT	GTGGACGAGA	AACGATCTGA	TCTTCTTAAA	540
15	CTTCAAGGGG	AATTTCAGCT	CCGTTTGCGT	CAGCTGGAAA	AATCTCTACT	ACAAGCTCTG	600
13	AACGAGGTGA	AAGGGCGCAT	TTTGGATGAC	GACACGATCA	TAACCACTCT	GGAGAACCTG	660
	AAGAGAGAGG	CTGCAGAGGT	CACCAGGAAA	GTTGAGGAGA	CGGACATTGT	CATGCAGGAG	720
20	GTGGAGACCG	TGTCCCAGCA	GTACCTCCCG	CTCTCCACCG	CCTGCAGCAG	CATCTACTTC	780
	ACCATGGAGT	CCCTCAAGCA	GATACACTTC	TTGTACCAGT	ACTCCCTCCA	CTTTTTCCTG	840
25	GACATTTATC	ACAACGTCCT	ATACGAGAAC	CCGAACCTGA	AGGGTGTCAC	CGACCACACA	900
23	CAGCGCCTGT	CCATTATAAC	AAAGGACCTC	TTCCAGGTGG	CGTTTAACCG	AGTGGCTCGA	960
	GGCATGCTGC	ATCAGGACCA	CATTACCTTT	GCCATGCTGC	TGGCAAGAAT	CAAACTGAAG	1020
30	GGCACCGTGG	GGGAGCCCAC	CTACGATGCA	GAATTCCAGC	ACTTCTTGAG	AGGAAATGAG	1080
	ATTGTCCTGA	GTGCTGGCTC	CACCCCCAGG	ATCCAGGGCC	TGACTGTGGA	GCAGGCGGAG	1140
35	GCGGTGGTGA	GGCTGAGCTG	CCTTCCCGCG	TTTAAGGACT	TGATTGCAAA	GGTTCAGGCA	1200
55	GACGAGCAAT	TTGGCATCTG	GCTGGACAGC	AGCTCCCCGG	AGCAGACTGT	GCCCTACCTC	1260
	TGGAGTGAAG	AAACACCTGC	AACACCCATT	GCCAGGCCA	TCCACCGCCT	GCTCCTGATC	1320
40	CAGGCTTTCC	GGCCCGATCG	CCTGTTGGCC	ATGGCCCACA	TGTTTGTTTC	AACAAACCTT	1380
	GGGGAGTCTT	TCATGTCCAT	CATGGAGCAG	CCGCTCGACC	TGACCCACAT	TGTGGSCACA	1440
45	GAGGTGAAGC	CCAACACTCC	TGTCTTAATG	TGCTCTGTGC	CTGGTTATGA	TGCCAGTGGA	1500
.5	CATGTCGAGG	ACCTTGCAGC	CGAGCAGAAC	ACGCAGATCA	CTTCAATTGC	AATCGGCTCT	1560
	GCAGAAGGCT	TTAACCAAGC	AGATAAGGCA	ATAAACACCG	CTGTAAAGTC	GGGCAGGTGG	1620
50	GTGATGCTGA	AGAATGTGCA	TCTGGCCCCA	GGGTGGCTGA	TGCAGCTGGA	GAAGAAGTTG	1680
	CATTCCCTGC	AGCCGCATGC	CTGCTTCCGA	. CTCTTCCTCA	CCATGGAGAT	CAACCCCAAG	1740
55	GTGCCTGTGA	ATCTGCTCCG	TGCGGGCCGC	ATCTTTGTGT	TCGAGCCACC	GCCAGGGKTG	1800
	AAGGCCAACA	TGCTGAGGAC	GTTCAGCAGC	ATTCCCGTCT	CACGGATATG	CAAGTCTCCC	1860
	AACGAGCGTG	CCCGCTTGTA	CTTCCTGCTG	GCCTGGTTTC	: ATGCGATCAT	CCAAGAACGC	1920
60	TTACGATACG	CACCACTGGG	GTGGTCAAAG	AAGTATGAAT	TTGGAGAGTC	TGACCTGCGG	1980

	TCANYTTGCG	ATACGGTGGA	CACGIGGCIG	GATGACACGG	CCAAGGGCAG	GCAGAACATC	2040
5	TCACCGGATA	AGATCCCGTG	GTCTGCACTA	AAGACCTTAA	TGGCCCAGTC	CATTTATGGC	2100
	GGGCGCGTGG	ACAACGAGTT	TGACCAGCGT	CTGCTCAACA	CCTTCCTGGA	GCGCCTGTTC	2160
	ACAACCAGGA	GTTTCGACAG	TGAGTTTAAG	CTGGCATGCA	AGGTCGACGG	ACATAAAGAC	2220
10	ATTCAAATGC	CAGATGGCAT	GCAGGCGAGA	GGAGTTTGTG	CAGTGGGTGG	AGTTGCTCCC	2280
	CGACACCCAG	ACGCCCTCCT	GCTGGCCT	GCCCAACAAC	GCCGAGAGAG	TCCTCCTTAC	2340
15	CACACAGGGT	GTGGACATGA	TCAGTAAAAT	GCTGAAGATG	CAGATGTTGG	AGGATGAGGA	2400
	CGACCTGGCC	TACGCAGAGA	CTGAGAAGAA	GACGAGGACA	GACTCCACGT	CCGACGGGCG	2460
	CCCTCCCTCG	ATGCGGACAC	TGCACACCAC	CGCGTCCAAC	TGGCTGCACC	TCATCCCCCA	2520
20	GACGCTGAGC	CACCTCAAGC	GCACCGTGGA	GAATATCAAG	GATCCTTTGT	TCAGGTTCTT	2580
	TGAGAGAGAA	GTGAAGATGG	GCGCAAAGCT	GCTTCAGGAC	GTTCGCCAGG	ACCTTGCAGA	2640
25	TGTCGTCCAG	GTGTGCGAAG	GAAAGAAGAA	GCAGACCAAC	TACTTGCGCA	CGCTGATCAA	2700
	CGAGCTAGTG	AAAGGGATCT	TGCCTCGGAG	CTGGTCCCAC	TACACGGTGC	CTGCCGGCAT	2760
	GACCGTCATC	CAGTGGGTGT	CCGACTTCAG	CGAGAGGATC	AAACAGCTGC	AGAACATCTC	2820
30	ACTGGCAGCT	GCATCTGGTG	GCGCCAAGGA	GCTAAAGAAC	ATCCACGTGT	CCTCCCTCC	2880
	CCTGTTCGTG	CCTGAGGCGT	ACATCACTGC	CACCAGGCAG	TATGTGGCCC	AGGCCAACAG	2940
35	CTGGTCCCTG	GAGGAGCTCT	GCCTGGAAGT	CAACGTCACC	ACCTCACAGG	GCGCCACCCT	3000
	TGACGCTTGC	AGCTTCGGAG	TCACGGGTTT	GAAACTTCAA	GGGCCACGT	GCAACAACAA	3060
	CAAGCTGTCA	CTGTCCAATG	CCATCTCAAC	CGCCCTTCCC	CTGACGCAGC	TGCGCTGGGT	3120
40	CAAGCAGACA	AACACCGAGA	AGAAGGCCAG	TGTGGTAACC	TTACCTGTCT	ACCTGAACTT	3180
	CACCCGTGCA	GACCTCATCT	TCACCGTGGA	CTTCGAAATT	GCTACAAAGG	AGGATCCTCG	3240
45	CAGCTTCTAC	GAGCGGGGTG	TCGCAGTCTT	GTGCACAGAG	TAAACTTTTC	TAGCTGCCCC	3300
	TTTCTGTAAT	AGTGAAAGTT	GGTATTTAAC	ATTTATTCAT	тттаааата	TTTGGAAGGT	3360
	CTGAGCTTGT	GAAAAGAAAG	TGGTTGGTCT	GAGGTTGGAG	GAAGCTGAAT	GGAATCTGAC	3420
50	GGTTGGGAGT	GGTGGAAATT	GGAAGGATAC	CAGGAGGTAT	TTGGGAAGGC	CAATGGCGTG	3480
	GCTCCTTTGA	GGAAATAAAA	CACTAAGCAT	GAAAAAAAA	ААААААСТТА	CAANCCNCAA	3540
55	GG						3542

⁽²⁾ INFORMATION FOR SEQ ID NO: 64:

PCT/US98/04493

300

288

60

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 883 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
10	AGGTGATTTT AATGATAGGT GTCATATATA GGACGGATAA TCTGTTTACA TTCTGTTCTT	60
10	CTCGATGCAC TCACAAGCGG GTAACTAGGT GACAAGAAAA CAAAGATCTT ATTCAAAAGA	120
	GGTCTTACAG CAACCCAACG TCTCATCTTC CCATAGTAAA GATGACGGCG CCTTGAGGTA	180
15	AGCTACAGGC AACACCACTT CCGCGTTTCT CTTGCGCCCT GGTCCAAGAT GGCGGATGAA	240
	GCCACGCGAC GTGTTGTGTC TGAGATCCCG GTGCTGAAGA CTAACGCCGG ACCCCGAGAT	300
00	CGTGAGTTGT GGGTGCAGCG ACTGAAGGAG GAATATCAGT CCCTTATCCG GTATGTGGAG	360
20	AACAACAAGA ATGCTGACAA CGATTGGTTC CGACTGGAGT CCAACAAGGA AGGAACTCGG	420
	TOGTTTOGAA AATGCTGGTA TATCCATGAC CTCCTGAAAT ATGAGTTTGA CATCGAGTTT	480
25	GACATTCCTA TCACATATCC TACTACTGCC CCAGAAATTG CAGTTCCTGA GCTGGATGGA	540
	AAGACAGCAA AGATGTACAG GGGTGGCAAA ATATGCCTGA CGGATCATTT CAAACCTTTG	600
20	TGGGGCCAGG AATGTGCCCA AATTTGGACT AGCTCATCTC ATGGCTCTGG GGCTGGGTCC	660
30	ATGGSTGGCA GTGGAAATCC CTGATCTGAT TCAGAAGGGC GTCATCCAAC ACAAAGAGAA	720
	ATGCAACCAA TGAAGAATCA AGCCACTGAG GCAGGGCAGA GGGACCTTTG ATAGGCTACG	780
35	ATACTAWITT CCTGTGCATC ACACTTAACT CATCTAACTG TTCCCCGGAC ANCCTCCACT	840
	CTAGTTGTTA CTAAGTANTG CAGTAGCATT NIGGGGAAGA ACA	883
40		
40	(0)	
	(2) INFORMATION FOR SEQ ID NO: 65:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1541 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	GGCACGAGGT GGCCTCTACC CTGGGCTCAT CTGGCTACAC AGGGACTCTA AACGCTTCCA	60
£ 5	GATTCCCTGG AAACATGCCA CCCGGCATAG CCCTCAACAA GAAGAGGAAA ATACCATTTT	120
55	TAAGGCCTGG GCTGTAGAGA CAGGGAAGTA CCAGGAAGGG GTGGATGACC CTGACCCAGC	180
	TAAATGGAAG GCCCAGCTGC GCTGTGCTCT CAATAAGAGC AGAGAATTCA ACCTGATGTA	240

TGATGGCACC AAGGAGGTGC CCATGAACCC AGTGAAGATA TATCAAGTGT GTGACATCCC

VO 98/39448		PCT/US98/04493
	289	

	TCAGCCCCAG GGCTCGATCA TTAACCCAGG ATCCACAGGG TCTGCTCCCT GGGATGAGAA	360
5	GGATAATGAT GTGGATGAAG AAGATGAGGA AGATGAGCTG GATCAGTCGC AGCACCATGT	420
,	TCCCATCCAG GACACCTTCC CCTTCCTGAA CATCAATGGT TCTCCCATGG CGCCAGCCAG	480
	TGTGGGCAAT TGCAGTGTGG GCAACTGCAG CCCGGAGGCA GTGTGGCCCA AAACTGAACC	540
10	CCTGGAGATG GAAGTACCCC AGGCACCTAT ACAGCCCTTC TATAGCTCTC CAGAACTGTG	600
	GATCAGCTCT CTCCCAATGA CTGACCTGGA CATCAAGTTT CAGTACCGTG GGAAGGAGTA	660
15	CGGGCAGACC ATGACCGTGA GCAACCCTCA GGGCTGCCGA CTCTTCTATG GGGACCTGGG	720
13	TCCCATGCCT GACCAGGAGG ACCTCTTTGG TCCCGTCAGN CTGGAGCAGG TCAAATTCCC	780
	AGGTCCTGAG CATATTACCA ATGAGAAGCA GAAGCTGTTC ACTAGCAAGC TGCTGGACGT	840
20	CATGGACAGA GGACTGATCC TGGAGGTCAG CGGTCATGCC ATTTATGCCA TCAGGCTGTG	900
	CCAGTGCAAG GTGTACTGGT CTGGGCCATG TGCCCCATCA CTTGTTGCTC CCAACCTGAT	960
25	TGAGAGACAA AAGAAGGTCA AGCTATTTTG TCTGGAAACA TTCCTTAGCG ATCTCATTGC	1020
25	CCACCAGAAA GGACAGATAG AGAAGCAGCC ACCGTTTGAG ATCTACTTAT GCTTTGGGGA	1080
	AGAATGGCCA GATGGGAAAC CATTGGAAAG GAAACTCATC TTGGTTCAGG TCATTCCAGT	1140
30	AGIGGCTCGG ATGATCTACG AGATGTTTTC TGGTGATTTC ACACGATCCT TTGATAGTGG	1200
	CAGTGTCCGC CTGCAGATCT CAACCCCAGA CATCAAGGAT AACATCGTTG CTCAGCTGAA	1260
35	GCAGCTGTAC CGCATCCTTC AAACCCAGGA GAGCTGGCAG CCCATGCAGC CCACCCCCAG	1320
55	CATGCAACTG CCCCCTGCCC TGCCTCCCCA GTAATTGTGA ATGCCATCTT CTTCCTTCTC	1380
	TTTTTTATAA TATTGTACAT ATGGATTTTT TTATTGTTTA GATTTAACCA GCTTTTAAAT	1440
40	CTCTGTTTTC TGTGACAGTG TTAGAAGTTT GTGATTCTCC AAATATGCCT AGATTTAAAG	1500
	CTGATTTAAT TTATGGAAAA AAAAAAAAA AAAAAAAAA	1541
45		
	(2) INFORMATION FOR SEQ ID NO: 66:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 732 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55		
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66: AGAAAATGAA TGTTAGAAGG TGCCTGCCGA GGCGGGACAG AGTGTTTGCT CGCGCTGGAG	r i
	AAGGCTCTGC TCAGCCCTGA GAGTCCCTTC CTGCCCCACC GATACTGGCA CTTTAAAAAG	120
60	ABOUTETON TENDESTERN GROTESTIC CTOCCCCACC GATACTOGCA CTTTAAAAAG	120

290

	GAAGCTGACC GCACAGTGTC CAGACGAATT GGCCCCCAGA AGATGGGGAG TTCTGTCCTG	180
	CCCTTCTGTG TCTGCGTGAC CTCACCCAGC CTAGGAGGGA GGTGCATTCA GGGTAGATTT	240
5	GCCTCTCATT CAAAGTTCTG GGGCTTTGGG CGGAAAACAG CCAGCTTTGG CGCTGTTGGG	300
	GAGACTCCTC CAGACCAGGA ACCCCAGAAG GAGACAGAGC CTGCCACATC CTCCCACGCC	360
10	AGGCCCTGGG CCAGGGTGAT TGGACTGAGA ATTTGGCCAC AACCAAATTG ATGCTGGCTG	420
10	GAACCAGAGG CCAGAAAGCC TGGCCTTGTC CCCATGTGGG AGCCCTGTCC TCAGCCCTCT	480
	TGTCCCCTTG AGCTCAGIGA ATTCCCACCA GGTGCCCACA GCTCCTGGAC TTCAAATTCT	540
15	ATATATTGAG AGAGTTGGAG AGTATATCAG AGATATTTTT GGAAAGGAGT TGGTCTATGC	600
	AATGTCAGTT TOGAATCTTC TTGAAAGTTT AATGTTTTTA TTAGGAGATT TAAAGAAAAT	660
20	AAAGGTCTAC AATATCAAAA AAAAAAAAA AAAAAAAAA AAAAAAAA	720
20	AAAAAAAA AA	732
25	(2) INFORMATION FOR SEQ ID NO: 67:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 629 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:	
35	TTAAGGAATT CGGCMCGATC CCGGCAAGTA ACATGACTAA AAAGAAGCGG GAGAATCTGG	60
	GCGTCGCTCT AGAGATCGAT GGGCTAGAGG AGAAGCTGTC CCAGTGTCGG AGAGACCTGG	120
40	AGGCCGTGAA CTCCAGACTC CACAGCCGGG AGCTGAGCCC AGAGGCCAGG AGGTCCCTGG	180
40	ADGCCGTGAN CTCCAGACTC CACAGCCGGG AGCTGAGGCGG TESTERGGANG FEOTOGGCGG	

AGAAGGAGAA AAACAGCCTA ATGAACAAAG CCTCCAACTA CGAGAAGGAA CTGAAGTTTC 240 TTCGGCAAGA GAACCGGAAG AACATGCTGC TCTCTGTGGC CATCTTTATC CTCCTGACGC 300 45 TOGTOTATGO CTACTGGACC ATGTGAGCCT GGCACTTCCC CACAACCAGC ACAGGCTTCC 420 ACTTGGCCCC TTGGTCAGGA TCAAGCAGGC ACTTCAAGCC TCAATAGGAC CAAGGTGCTG GGGTGTTCCC CTCCCAACCT AGTGTTCAAG CATGGCTTCC TGGCGGCCCA GGCCTTGCCT 480 50 CCCTGGCCTG CTGGGGGGTT CCGGGTCTCC AGAAGGACAT GGTGCTGGTC CCTCCCTTAG 540 600 55

629

GGGGCCCGT ACCCAATCGC CCTNFCGTG

291

(2) INFORMATION FOR SEQ ID NO: 68:

5

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1751 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68: 10 CTGCTAGCCG GCCGGCGCAG GCTGCCGAGC GGGTGAGCGC GCAGGCCAGG CCAAAGCCCT 60 GGTACCCGCG CGGTGCGGCC CTCAGTCTGC GGCCATGGGG GCGTCCGCGC GGCTGCTGCG 120 15 AGCGGTGATC ATGGGGGCCC CGGGCTCGGG CAAGGGCACC GTGTCGTCGC GCATCACTAC 180 ACACTTCGAG CTGAAGCACC TCTCCAGCGG GGACCTGCTC CGGGACAACA TGCTGCGGGG 240 CACAGAAATT GGCGTGTTAG CCAAGGCTTT CATTGACCAA GGGAAACTCA TCCCAGATGA 300 20 TGTCATGACT CGGCTGGCCC TTCATGAGCT GAAAAATCTC ACCCAGTATA GCTGGCTGTT 360 GGATGGTTTT CCAAGGACAC TTCCACAGGC AGAAGCCCTA GATAGAGCTT ATCAGATCGA 420 25 CACAGIGATT AACCIGAATG TGCCCTTTGA GGTCATTAAA CAACGCCTTA CTGCTCGCTG 480 GATTCATCCC GCCAGTGGCC GAGTCTATAA CATTGAATTC AACCCTCCCA AAACTGTGGG 540 CATTGATGAC CTGACTGGGG ACCCTCTCAT TCAGCGTGAG GATGATAAAC CAGAGACGGT 600 30 TATCAAGAGA CTAAAGGCTT ATGAAGACCA AACAAGCCA GTCCTGGAAT ATTACCAGAA 660 720 AAAAGGGTG CTGGAAACAT TCTCCGGAAC AGAAACCAAC AAGATTTGGC CCTATGTATA 35 TGCTTTCCTA CAAACTAAAG TTCCACAAAG AAGCCAGAAA GCTTCAGTTA CTCCATGAGG 780 AGAAATGTGT GTAACTATTA ATAGTAAGAT GGGCAAACCT CCTAGTCCTT GCATTTAGAA 840 GCTGCTTTTC CTAAGACTTC TAGTATGTAT GAATTCTTTG AAAATTATAT TACTTTTATT 40 960 TCTACTGATT TTATTTTGGA TACTAAGGAT GTGCCAAATG ATTCGGATAC TAAGATGCAT CGTTTGAAAT CATCTAGTGT GTTGTATGCA GTTATCCTCA AAAACATCAG CGATGTCTGA 1020 45 ACCTITAAAA CATCTGTTAG AGCAAAATTA AAAGAGCATT TGGTAGTAAT CTAACTTTTT 1080 GITCAGTTAA TAAGTGGTTG ATAAAGTTTC CATATTTTTC TGGAAAAGTT AAAAAAAGTT 1140 ACATGTCATT TOGAGAAAAT ACGTAATCAG AAATTTGTGC ATAGATTGAT GCCAAAAAAG 1200 50 ACATTTCCAG CATTGTGGAA CATGGTGAGA CACTATATAA AATTCCAGAA AGAAAGCAAC 1260 TGGATTTACA GATTTATTGT GAGACACAAA TTCACTGCTG CCTTTACACT AAGAAATGTA 1320 55 TATGTTAACC ATATATGCTG TATTTATTTT GTCGTTAAGC ATACTTTCAG TTTACTCAGA 1380 ATTTTCAATT TGCTATAAAG ATGTATCAAT TAGCATATAG AAAAATATTA CTTTAAGATG 1440 ACTTGTTTCC TITGAAAATA CCTGTGTACT GAGGGTTATG ATTTGTGTCA AAAATTGACA 1500

	TAAGTGCTTT TACAAGCACC AAAGTTGAAT GAATTTTCAA CAAAATGTAA TTAAAGTCTA	1560
	TGTTTCAGT TATGACTCAG GTTAAGAAAT GTGTTTTAGG ATCTACTTGC TGGTTTTTCT	1620
5	TTTTGATCCA AATGTGTGAT CTGCCCTGAT AAATAACAAG TTATNGTACC ATCTCCCCCG	1680
	CCAATAAAAA AAAAAAAAAA AAAAAAAAAC TCGAGGGGG GCCCGGTACC CAATTCTCCG	1740
	NAATAGGNAG T	1751
10		
15	(2) INFORMATION FOR SEQ ID NO: 69:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 508 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
05	GCCACGAGAT TATGTATTAA AATGTTTTTG AATTGTGAAA TATTAGAATA TTGTTACTAT	60
25	TTGACCCAAC TCAAAATCTC CATGGGAAAA TACCTGTCGA TACCCACAGT ATTGTTGAAA	120
	ATAATCAGAT GCAGTATCAC AGCTGTGTCA GACTCTAGTA CCAGTTGGGC AATCAAGGCA	180
30	CAGCTAAAAA TTGAAAACAA AGATCTGGAC AACAAAACAG CCAAAGGTGG GGGTCAAGAA	240
	GCTCTGACGT GTACCTAGCT GTAGAATGCT ATGCACACGT GCCAGGTGTA GTGTGCATAT	300
35	CCAGGAAAAA CTGCAGAGAG CCCCAGTCTT CACCTCTGT TGACCATGAG CTCTGTGTAA	360
33	GCAGGAAGTG AAGGCTAAGG CAGATTTAAG CTCTGAAAGC ATTCCACAAC ATACACACAA	420
	ATCGTGCAAA GCATTAAGGA AATCTTGTTA CTGCTAAGTG TTGCTGACCC AGGAACAACT	480
40	CCTACTCAGC TGGACTTAAA AATAAAAA	508
45	(2) INFORMATION FOR SEQ ID NO: 70:	
43		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 245 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	<u> </u>
55		60
	GATTGCAGAT TTGCTTGTGT CCTCAGGTGA TGATGAGGGC TGTTTTCCCC TGTTGTCCTT	120
60	TCCTCACACT CATGCTTCCT CTCCTAGAGT GTCTGGTTGG CATGATCATG TGCTACCTAG	180

	GCATTICTT CACTGATACA AGGAAAACTG CAGGGTTAAA AAAAAAAAA AAAAAAAAA	240
	NCNCG	245
5		
	(2) INFORMATION FOR SEQ ID NO: 71:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 361 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
	ATGTTCCTCA TGAGGATGCA CITGTGCTTC TGCAAGTATT GCTGCAGCTT CATAGTGACT	60
20	CCCACCAGCA CCAGCAATAC AGCTAGCTAC CTGTGGCCTT GGATCTCAGC CAGCATGGCT	120
	GGGAGAGGGA GCAGCTGGGC ATGTACCCTA AATGCTGTTA CCAGGGAAGG ACTCCCAGAG	180
25	TGAAGACAAG TAGGGACTTC CTGCAGAGGT GGTACATGTG CTCTCTGTAT CCATACTTTT	240
	TITTITITT TITIGAGATA GASTITCACC CITGITGCCC TGGCTGGAGT GCAATGGTGC	300
	GATCTCAGCT CACTGCAACC TCTCTGCCTC CCGGGTTCAA GTGATTCTCC TGCCTCAGCC	360
30	T	361
35	(2) INFORMATION FOR SEQ ID NO: 72:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 713 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
45	AGGATCACAC AATAGAGAAC ACTGTAGTAA CATTTCGGTC TGCTCACAAG ACCCAGAACA	60
	TTGATCAGIT TITGITGTTG GITTATTATT TITCTGTTAA AAAATTGTGA AAAGITTGIT	120
50	TTAGCTAGAT GATATTTTAA TAGCTGCGAG TGCTTTGGAA CTATAAAGAT GTCACTACTT	180
	AACACACATA CCTTATGTTT TGTTTTGTTT TGTTTTACAC TCAGTATAAA TCAGGAGAAG	240
	TTAGCCAACC ATCTAGCATT TAGAATCCTC TTTTTTATTG TCTTCTAAGG ATATGGATGT	300
55	TCCCATAACA GCAACAAAAC AGCAACAAAA ACATTTCATA AATATCACTT GATAGACTGT	360
	AAGCACCTGC TTAACTTTGT GTCCCAAATA TTTAGTGTGT ATATATATAT ATATATATAC	420

	GTCTTTCCCT GTTACGATTT TAATAGCAGA ACTGTATGAC AAGTTTAGGT GATCCTAGCA	540
	TATGTTAAAT TCAAATTAAT GTAAAACAGA TTAACAACAA CAAAGAAACT GTCTATTTGA	600
5	GTGAAGTCAT GCTTTCTATT ATAATAACTT GGCTTCGGTT ATCCATCAAA TGCACACTTA	660
	TACTGTTATC TGATTGTTTA TAATAAAGAA TACTGTACTT ATAAAAAAAA AAA	713
10		
	(2) INFORMATION FOR SEQ ID NO: 73:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 862 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
	GAAAGTCAGA GCTGTCCAAT CCCTCAGCAC CTTTTAGATT TGCTCCAAAT TAGAAACGTG	60
	GGGACTATGT GTTCTGGGCA ATCACAGGTC TGGAAAAATGG CTCTGCAGGC TCTTGATAGT	120
25	GAGACAGTGG TCATCTTACC AGACATGCAT CTGATTTTAA GCCTCAGGCT AATCCACAAT	180
	GCTCGGCCAT GCCTATGATT AACAAACAAA AGCAAAATCT GCTTTTATAG TTTAGGAAAC	240
30	CTGGATAGAA CAGTATTITT CAGCATTCTT GGATAAAGCA GITCTGCATT TTTAAATTGG	300
	GACTGCAGAA GTGACTGTCT ATAGTTGTGA AATACAAAAA ATGGTATGTT TGATCAGAAA	360
25	AGGAAGCCCG TGCCTGGCAC TTGGAAAGAT ACTGAGCATC ATAACCCTAA TGAGAAAATG	420
35	TAGGCTCTGT GAATGTTAAC TACAAATCAG GTTAGGAAAG CATATGACAC CCTTTGTCAA	480
	ACTAAGCTTC ACTAGGAGGA CCTGTGCTCA TAGAAGAATA TGCTTTAAAA GTATCAATTT	540
40	TCCACAGTCG ATGATGGAGA AAAGTTCATT TGCACCAGAA TGCTGATAGT CACAATACAC	600
	AGCCTGACAT ATATAACAAT ACAGTTTTCT GTAAACAGAA GTTCTTCCTC TTCCAATTCA	660
45	GGAGTCAGTC AGAGCATAAA TATTGCATGT TTCACTTTAG AAACTGATTC ATTTTAGAAA	720
45	GCAGATCTGG ATTATTTTGC AGGGTAGAAA TGAAGGCTAT TTCTGGCATT CTTGCTCAAA	780
	AAGTCAATAT ATGTACATTA AGTATAAAAA AGGGTCTCTT TCACCTCTTT TGTTTCGTAG	840
50	CATTGGCTAC ATAACTCGTG CC	862
55	(2) INFORMATION FOR SEQ ID NO: 74:	
	(:) CECTEMOS CHARACTERISTICS:	

(A) LENGTH: 4602 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

•

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

	(XI) SEQUENCE DESCRIPTION DE	
5	GCGAGGGGC GKGGGGAGCA GCGCCGARGC CGCCGCCTCC GCCTCCGCCG CCTAGGACTA	60
	GGGGTTGGGG GACGGACAAG CCCCGATGCC GGGGGAKACG GAAGAGCCGA GACCCCCGGA	120
4.0	GCAGCAGGAC CAGGAAGGGG GAGAGGCGGC CAAGGCGGCT CCGGAGGACC CGCAACAACG	180
10	GCCCCCTGAG GCGGTCGCGG CGGCGCCTGC AGGGACCACT AGCAGCCGCG TGCTGAGGGG	240
	AGGTCGGGAC CGAGGCCGGG CCGCTGCGRC CGCCGCGCMG CAGCTGTGTC CCGCCGGAGA	300
15	AGGCCGAGTA TCCCCGCCGG CGAGGAGCAG CCCCAGCGCC AGGCCTCCCG ACGTCCCCGG	360
	GCAGCAGCCC AGGCCGCGAA GTCCCCGTCT CCAGTTCAGG GCAAGAAGAG TCCGCGACTC	420
	CTATGCATAG AAAAAGTAAC AACTGATAAA GATCCCAAGG AAGAAAAAGA GGAAGAAGAC	480
20	GATTCTGCCC TCCCTCAGGA AGTTTCCATT GCTGCATCTA GACCTAGCCG GGGCTGGCGT	540
	AGTAGTAGGA CATCTGTTTC TCGCCATCGT GATACAGAGA ACACCCGAAG CTCTCGGTCC	600
25	AAGACCGGIT CATTGCAGCT CATTTGCAAG TCAGAACCAA ATACAGACCA ACTTGATTAT	660
	GATGTTGGAG AAGAGCATCA GTCTCCAGGT GGCATTAGTA GTGAAGAGGA AGAGGAGGAG	720
	GAAGAAGAGA TOTTAATCAG TGAAGAGAGA ATACCATTCA AAGATGATCC AAGAGATGAG	780
30	ACCTACAAAC CCCACTTAGA AAGGGAAAACC CCAAAGCCAC GGAGAAAATC AGGGAAGGTA	840
	AAAGAAGAGA AGGAGAAGAA GGAAATTAAA GTGGAAGTAG AGGTGGAGGT GAAAGAAGAG	900
35	GAGAATGAAA TTAGAGAGGA TGAGGAACCT CCAAGGAAGA GAGGAAGAAG ACGAAAAGAT	960
	GACAAAAGTC CACGTTTACC CAAAAGGAGA AAAAAGCCTC CAATCCAGTA TGTCCGTTGT	1020
	GAGATGGAAG GATGTGGAAC TGTCCTTGCC CATCCTCGCT ATTTGCAGCA CCACATTAAA	1080
40	TACCAGCATT TGCTGAAGAA GAAATATGTA TGTCCCCATC CCTCCTGTGG ACGACTCTTC	1140
	AGGCTTCAGA AGCAACTTCT GCGACATGCC AAACATCATA CAGATCAAAG GGATTATATC	1200
45	TGTGAATATT GTGCTCGGGC CTTCAAGAGT TCCCACAATC TGGCAGTGCA CCGGATGATT	1260
	CACACTOGCG AGAAGCATTA CAATGTGAGA TCTGTGGATT TACTTGTCGA CAAAAGGCAT	1320
	CTCTTAATTG GCACATGAAG AAACATGATG CAGACTCCTT CTACCAGTTT TCTTGCAATA	1380
50	TCTGTGGCAA AAAATTTGAG AAGAAGGACA GCGTAGTGGC ACACAAGGCA AAAAGCCACC	1440
	CTGAGGTGCT GATTGCAGAA GCTCTGGCTG CCAATGCAGG CGCCCTCATC ACCAGCACAG	1500
55	ATATCTTGGG CACTAACCCA GAGTCCCTGA CGCAGCCTTC AGATGGTCAG GGTCTTCCTC	1560
	TTCTTCCTGA GCCCTTGGGA AACTCAACCT CTGGAGAGTG CCTACTGTTA GAAGCTGAAG	1620
	GGATGTCAAA GTCATACTGC AGTGGGACGG AACGGGTGAG CCTGATGGCT GATGGGAAGA	1680
60		

	TCTTTGTGGG AAGCGGCAGC AGTGGAGGCA CTGAAGGGCT GGTTATGAAC TCAGATATAC	1740
	TCGGTGCTAC CACAGAGGTT CTGATTGAAG ATTCAGACTC TGCCGGACCT TAGTGGACAG	1800
5	GAAGACTTGG GGCATGGGAC AGCTCAGACT TTGTATTTAA AAGTTAAAAA GGACAAAAAA	1860
	AAAATCTAAA GCATTTAAAA TCTAGTGAAA TAACTGAAGG GCCTGCTCTT TCCATTGTGG	1920
	ATCACAGCAC ACACATACAT ACACCCTCCA CCTCCCCATC CCCTGTTCTC CCTCTGTTGC	1980
10	TCCCCTTATA AAATTGATGT TGTCTTTACC AGAAAGGTAG ACAAAAAAGA AGCAGCAGCA	2040
	GCTCTTAAAG TGAGGGTTAT TCTCATACTC GGTTCCAGCC ATCAGCAGAC TTCCTGCTCA	2100
15	TCGGCAGATC CCCCTTTCCA ACCTGTAACT CTGATGTGCT CTGGATCAGC TTTTAACTTT	2160
	TAATCATATA TTACTGTCTT CTAAATCCCT TCTCCTCCTC TACTGCTGCC CTATGGTTCT	2220
	GGCTCCTACC CCCTGCGGCA CACTTATCTT CAAATACCAT AGAATTCTAA TCTCTGAAAT	2280
20	CATAGCTCTC CAGTGGCTTT TAAAGAAAGC TGGTCCTCAG CACTAACAAA ATCACTACAA	2340
	TAGCCTAGTG CTTTTTTGGA AGCCTTTTTA GGGAAGAATG TTAGGTTCAT GGTAACTAGT	2400
25	ATGCTCTTTG AGATTTTTAC AGTGTTGAAA CTTAAGAATT TTGAGAGGGT GAGGAGGGTT	2460
	GTTCAGAATC TAAATTACAG ATAGATGATT GITTCTTGIG AATTIGTFIC TTTTCCTTTT	2520
20	TITTIGICCC TACCATITCC TTACATITCC CTTGGGGCCC ATCTCTGGCT CCTTGCTTTT	2580
30	TGTTTCTTGC TTTGCTTTAT CAGTTCATTC CAGCTCCCTG TTAGTGAAGG ACACTGCTGT	2640
	TAGTGAAGGA ACAAAGTCTA TGAGTCCTAA AATTTTAAGT CAAAGAAAAC TGCTCTGTTT	2700
35	CCCCTTTAGT AACACTTCTG AAGAGGAAAA ACTTCAATAG CCAAAGTTAA TAATCCTATA	2760
	TAATAATTGC TTTGGCTTTC ACCTAAAATT CTGGGCATCA CAATTTCCTT GGGATAGAGG	2820
40	TIGIGITGGG GAATAGATIG CITATIGCIG TICACIGGAG AGAAAAGGIA GIGITITIGI	2880
40	ACAAGGTCAT ACCGCCAGAA GCCCCAAATC CTATTTTGGC TCATCTTCAG GTAAAGAGTA	2940
	ATTCCTATCC TGTGTGCCTC AGAAGCTAGA ATCGAAGGCT TACCCTATTC ATTGTTTATT	3000
45	GTCAGAAATG CATGATGGCT CTTGGAAAGA ATGACGTTTT GCTGGAAAAA AAAAAAAAAA	3060
	CMGTTTGTGT TTCACAAACA TGGCTTATCA ATTTTTTCAA AGAATTCTTT TTTCCCAAAA	3120
50	AGAGGAGTAA CAAAATGTCA TTTCTGAAAG AGGCTTACTT TATACCAACT AGTGTCAGCA	3180
30	TTTGGGATGC CAGGGAACAG AGAGTGAGAC ACCTACAATC ACCAGTCTCA AATGCGCTAT	3240
	TGTTTCTTTT CAGAGTGTTG CAGATTTGCC ATTTCTCCAT AATATGGGGA TAGAAAATGG	3300
55	AATAAAGATA GAAGGGATGT AGAATATGCT TTCCTGCCAA CATGGTTTGG AGTCGACTTT	3360
	GGTATATTGA CTAGATTTGA AAATACAAGA TTGATTAGAT GAATCTACAA AAAAGTTGTC	3420
60	CTCCTCTCAG GTCCCTTTTA CACTTTTTGA CTAACTAGCA TCTATATTCC ACACTTAGCT	3480
90		

	TTTTTGTCAC ACTTATCCTT TGTCTCCGTA AATTTCATTT GCAGTGGTTA GTCATCAGAT	3540
	ATTTTAGCCA CCTACACAAA AGCAAACTGC ATTTTTAAAA ATCTTTCTGA GATGGGAGAA	3600
5	AATGTATTCT CCTTTCCTAT ACCGCTCTCC CAACAAAAA ACAACTAGTT AGTTCTACTA	3660
	ATTAGAAACT TGCTGTACTT TTTCTTTTCT TTTAGGGGTC AAGGACCCTC TTTATAGCTA	3720
	CCATTIGCCT ACAATAAATT ATTGCAGCAG TTTGCAATAC TAAAATATTT TTTATAGACT	3780
10	TTATATTTTT CCTTTTGATA AAGGGATGCT GCATAGTAGA GTTGGTGTAA TTAAACTATC	3840
	TCAGCCGTTT CCCTGCTTTC CCTTCTGCTC CATATGCCTC ATTGTCCTTC CAGGGAGCTC	3900
15	TITTAATCIT AAAGITCIAC ATTICATGCT CITAGTCAAA TTCTGTTACC TTTTTAATAA	3960
	CTCTTCCCAC TGCATATTTC CATCTTGAAT TGGTGGTTCT AAATTCTGAA ACTGTAGTTG	4020
	AGATACAGCT ATTTAATATT TCTGGGAGAT GTGCATCCCT CTTCTTTGTG GTTGCCCAAG	4080
20	GTTGTTTTGC GTAACTGAGA CTCCTTGATA TGCTTCAGAG AATTTAGGCA AACACTGGCC	4140
	ATGGCCGTGG GAGTACTGGG AGTAAAATAA AAATATCGAG GTATAGACTA GCATCCACAT	4200
25	AGAGCACTIG AACCICCITT GTACCIGITT GGGGAAAAAG TATAATGAGI GTACTACCAA	4260
	TCTAACTAAG ATTATTATAG TCTGGTTGTT TGAAATACCA TTTTTTTCTC CTTTTGTGTT	4320
	TTTCCCACTT TCCAATGTAC TCAAGAAAAT TGAACAAATG TAATGGATCA ATTTAAAATA	4380
30	TTTTATTTCT TAAAAGCCTT TTTTGCCTGT TGTAATGTGC AGGACCCTTC TCCTTTCATG	4440
	GGAGAGACAG GTAGTTACCT GAATATAGGT TGAAAAGGTT ATGTAAAAAG AAATTATAAT	4500
35	AAAAGGGATA CTTTGCTTTT CAAATCTTTG TTTTCTCTTA TTCTAGGTAA GGCATATTAA	4560
	AAATAAATAT GTAAAGAAGA AAAATAAAAG TTGTCTTCAT GG	4602
40		
	(2) INFORMATION FOR SEQ ID NO: 75:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 1255 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	

60	CCCAGGCGAG	ACCCGCACTG	AATAAACAGA	TTCTCTAACA	GCCGGCGGGT	CGCGCCCCGG	
120	GATGCTGCCA	TCATCCTGAT	GAGCTCAGCC	TCCCCTGGGG	TTCAAAGTGG	CGTTGCCACT	
180	TTGGGGCTTC	TAGCATCCTT	ATTITITITA	TTTTATTTT	TTTATTTTA	AGGCGCACTT	
240	TCTATGGCTT	CTGCTCTGAT	GAGCCGCAGC	AGGGACACCA	CCAGTTTTTA	ACTCTCAGAG	
300	CAAACTTGTG	TCTCTTTAAC	TGATTTTCA	TTGCCTAACT	ATAAGAGTAA	GGTTGTTACT	

	GCCAAAAGAT ATTTGACCGT TTCCAAAATT CAGATTCTGC CTCTGCGGAT AAATATTTGC	360
_	CACGAATGAG TAACTCCTGT CACCACTCTG AAGGTCCAGA CAGAAGGTTT TGACACATTC	420
5	TTAGCACTGA ACTCCTCTGT GATCTAGGAT GATCTGTTCC CCCTCTGGAT GAACATCCTC	480
	TGATGATCAA GGCTCCCAGC AGGCTACTTT GAAGGGAACA ATCAGATGCA AAAGCTCTTG	540
10	GGTGTTTATT TAAAATACTA GTGTCACTTT CTGAGTACCC GCCGCTTCAC AGGCTGAGTC	600
	CAGGCCTGTG TGCTTTGTAG AGCCAGCTGC TTGCTCACAG CCACATTTCC ATTTGCATCA	660
	TTACTGCCTT CACCTGCATA GTCACTCTTT TGATGCTGGG GAACCAAAAT GGTGATGATA	720
15	TATAGACTTT ATGTATAGCC ACAGTTCATC CCCAACCCTA GTCTTCGAAA TGTTAATATT	780
	TGATAAATCT AGAAAATGCA TTCATACAAT TACAGAATTC AAATATTGCA AAAGGATGTG	840
20	TGTCTTTCTC CCCGAGCTCC CCTGTTCCCC TTCATTGAAA ACCACCACGG TGCCATCTCT	900
	TGTGTATGCA GGGCTATGCA CCTGCAGGCA CGTGTGTATG CACTCCCCGC TTGTGTTTAC	960
	ACAAGCTGTG GGGTGTTACG CATGCCTGCT TTTTTCACTT AATAATACAG CTTGGAGAGA	1020
25	TTTTTGTATC ACATTATAAA TCCCACTCGC TCTTTTTGAT GGCCACATAA TAACTACTGC	1080
	ATAATATGGA TACGCCTTAT TTGATTTAAC TAGTTCCCTA ATGATGGACT TTTAAGTTGT	1140
30	TICCTITIT TITCTITIT GCTACTGCAA ACGATGCTAT AATAAATGIC CTTATCAAAA	1200
	AAAAAAAAAA AAAAAAAAA AAAAAANCCC NGGGGGGGG CCCCGGGAAC NCAAT	1255
35	76.	
	(2) INFORMATION FOR SEQ ID NO: 76:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 475 base pairs	
40	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45		60
	GGCACGAGAG AAATGTTTGA TTCTCTTTCC TATTTTAAGG GATCTTCTCT CTTGTTGATG	120
50	TIGAAAACTT ACCTTAGTGA AGATGTGTTT CAACATGCTG TIGTCCTTTA CCTGCATAAT	
50	CACAGCTATG CATCTATTCA AAGTGATGAT CTGTGGGATA GTTTTAATGA GGTCACAAAC	180
	CAAACACTAG ATGTAAAGAG AATGATGAAA ACCTGGACCC TGCAGAAAGG ATTTCCTTTA	240
55		300
	ATGAAGCCTG AAATTCAGCC TTCAGATACA AGGTACATGC CCTCTTTCTT TTCATGCCAT	360
	CTCTTTTGCA CTCTCAGGTG GAAATATTTT GAAGTGTTTT ATAATCATAA GTTCTTGTGA	420

	AACCTAACAA GATTATCCCT TCCTAAGAAT ACTTAACCTT CCTACCAAAT TAAAA	475
5	(2) INFORMATION FOR SEQ ID NO: 77:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
س. ا	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
15	TTCTCTCTCC TCTTCGACTG CACCGCACTC GCGCGTGACC CTGACTCCCC CTAGTCAGCT	60
	CAGCGGTGCT GCCATGGCGT GGCGGCGGCG CGAACCRGCG TCGGGGCTCG CGGCGTGTTG	120
20	GCTCTGGCGT TGCTCGCCCT GGCCCTGTGC GTGCCCGGGG CCCGGGGCCG GGCTCTCGAG	180
	TGGTTCTCGG CCGTGGTAAA CATCGAGTAC GTGGACCCGC AGACCAACCT GACGGTGTGG	240
	AGCGTCTCGG AGAGTGGCCG CTTCGGCGAC AGCTCGCCCA AGGAGGGCGC GCATGGCCTG	300
25	GTGGGCGTCC CGTGGGCGCC CGGCGGAGAM CTCGARGGCT KCGCGCCCCGA CACGCGCTTC	360
	TTCGTGCCCG AGCCCGGCGG CCGAGGGGCC GCGCCCTGGG TCGCCCTGGT GGTCGTGGGG	420
30	GCTGCACCTT TCAAGGACAA AGTGCTGGTG GCGGCGCNGA ANGAA	465
•		
35	(2) INFORMATION FOR SEQ ID NO: 78:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1907 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
45	ACATGCAGCC CAACTACAGA TTCTTATGGA ATTCCTCAAG GTTGCAAGAA GAAATAAGAG	60
	AGAGCAACTG GAACAGATCC AGAAGGAGCT AAGTGTTTTG GAAGAGGATA TTAAGAGAGT	120
	GGAAGAATG AGTGGCTTAT ACTCTCTGT CAGTGAGGAT AGCACAGTGC CTCAATTTGA	180
50	AGCTCCTTCT CCATCACACA GTAGTATTAT TGATTCCACA GAATACAGCC AACCTCCAGG	240
	TTTCAGTGGC AGTTCTCAGA CAAAGAAACA GCCTTGGTAT AATAGCACGT TAGCATCAAG	300
55	ACGAAAACGA CTTACTGCTC ATTTTGAAGA CTTGGAGCAG TGTTACTTTT CTACAAGGAT	360
	GTCTCGTATC TCAGATGACA GTCGAACTGC AAGCCAGTTG GATGAATTTC AGGAATGCTT	420
60	GTCCAAGTTT ACTCGATATA ATTCAGTACG ACCTTTAGCC ACATTGTCAT ATGCTAGTGA	480
60		

	TCTCTATAAT GGTTCCAGTA TAGTCTCTAG TATTGAATTT GACCGGGATT GTGACTATTT	540
	TCCGATTGCT GGAGTTACAA AGAAGATTAA AGTCTATGAA TATGACACTG TCATCCAGGA	600
5	TGCAGTGGAT ATTCATTACC CTGAGAATGA AATGACCTGC AATTCGAAAA TCAGCTGTAT	660
	CAGTIGGAGT AGTTACCATA AGAACCIGIT AGCIAGCAGI GATTATGAAG GCACTGITAT	720
	TTTATGGGAT GGATTCACAG GACAGAGGTC AAAGGTCTAT CAGGAGCATG AGAAGAGGTG	780
10	TIGGAGIGIT GACTITAATT TGATGGATCC TAAACTCTTG GCTTCAGGTT CTGATGATGC	840
	AAAAGTGAAG CTGTGGTCTA CCAATCTAGA CAACTCAGTG GCAAGCATTG AGGCAAAGGC	900
15	TAATGTGTGC TGTGTTAAAT TCAGCCCCTC TTCCAGATAC CATTTGGCTT TCGGCTGTGC	960
	AGATCACTGT GTCCACTACT ATGATCTTCG TAACACTAAA CAGCCAATCA TGGTATTCAA	1020
20	AGGACACCGT AAAGCAGTCT CTTATGCAAA GTTTGTGAGT GGTGAGGAAA TTGTCTCTGC	1080
20	CTCAACAGAC AGTCAGCTAA AACTGTGGAA TGTAGGGAAA CCATACTGCC TACGTTCCTT	1140
	CAAGGGTCAT ATCAATGAAA AAAACTITGI AGGCCTGGCT TCCAATGGAG ATTATATAGC	1200
25	TTGTGGAAGT GAAAATAACT CTCTCTACCT GTACTATAAA GGACTTTCTA AGACTTTGCT	1260
	AACTITTAAG TITGATACAG TCAAAAGTGT TCTCGACAAA GACCGAAAAG AAGATGATAC	1320
20	AAATGAATTT GTTAGTGCTG TGTGCTGGAG GGCACTACCA GATGGGGAGT CCAATGTGCT	1380
30	GATTGCTGCT AACAGTCAGG GTACAATTAA GGTGCTAGAA TTGGTATGAA GGGTTAACTC	1440
	AAGTCAAATT GTACTTGATC CTGCTGAAAT ACATCTGCAG CTGACAATGA GAGAAGAAAC	1500
35	AGAAAATGTC ATGTGATGTC TCTCCCCAAA GTCATCATGG GTTTTGGATT TGTTTTGAAT	1560
	ATTITITET TITTITETT TCCCTCCTTT ATGACCTTTG GGACATTGGG AATACCCAGC	1620
40	CAACTCTCCA CCATCAATGT AACTCCATGG ACATTGCTGC TCTTGGTGGT GTTATCTAAT	1680
40	TTTTGTGATA GGGAAACAAA TTCTTTTGAA TAAAAATAAA TAACAAAACA ATAAAAGTTT	1740
	ATTGAGCCAC AGTTGAGCTT GGAAAGTTTT TGTCAAATGC NGCAAGAGAT AACTCTTTTT	1800
45	ANGAAGTAGC ATATGTGAAC TATAATGTAA CAGTGAATAA TTTGTAAAGT TCGTATTTCC	1860
	CAACCTCTTT GGGAATTACA CATATCAATA TAAACAAAAT ATAAAGT	1907

55

(2) INFORMATION FOR SEQ ID NO: 79:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1168 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

	GCTGGGGTGT CCCCKCSGCC ACCATCGTCA TCGCTTACTT GATGAAGCAC ACTCGGATGA	60
_	CCCATGACTG ATGCTTATAA ATTTGTCAAA GGCAAACGAC CAATTATCTC CCCAAACCTT	120
5	AACTTCATGG GGCAGTTGCT AGAGTTCGAG GAAGACCTAA ACAACGGTGT GACACCGAGA	180
	ATCCTTACAC CAAAGCTGAT GGGCGTGGAG ACGGTTGTGT GACAATGGTC TGGATGGAAA	240
10	GGATTGCTGC TCTCCATTAG GAGACAATGA GGAAGGAGGA TGGATTCTGG TTTTTTTTCT	300
	TTCTTTTTT TTTTGTAGTT GGGAGTAAGT TTGTGAATGG AAACAAACTT GTTTAAACAC	360
15	TTTATTTTTA ACAAGTGTAA GAAGACTATA ACTTTTGATG CCATTGAGAT TCACCTCCCA	420
15	CAAACTGACA AATTAAGGAG GTTAAAGAAG TAATTTTTTT AAGCCAACAA TAAAAATATA	480
	ATACAACTIG TITCTCCCCC TITTCCTITT AAGCTATITG TAGAGTTTAT GACTAAATAG	540
20	TCTGTGCAGG TTCATAGACC GAAGATACTA CACACTTTAA ACCAATTAAA AAGAACCAAA	600
	AGTAAATAGA AAAGACATTG AATCACCAAG GCCTGGGATC AACCTGGGCT GTCCACACAG	660
25	AAAACAAAAA CCCAACCAAA CCAAGCCCTG TTGTGCTCAC TGGTGCAAAG AGAAGATCAG	720
23	GGCAGCTTAA GTGGTCTAAG RATCCTTCAG GCATTCTTTA AGGAGAAAAA GGATACCTTT	780
	GATTTIGTGT GITTCATGCT CTGGATTTTT TTTTTTTTTC CTTCTCTGGG TTTAAGAGAT	840
30	TITITITGAA ATAGTGAGGA ACTGACCATT ATATGCCTTC ACTGGCTTCT TGTGCAATAA	900
	TATGATGTTT TAAGTGTGCA AACAAGTTAG AGCTGGCAGC TGAATGATAG ACAAATAGTG	960
35	CAAATTTGCC AGCTTGGAGA TAGAAAGGAA TTCAACAATA TATCAAATAC TTTCCTTCCC	1020
33	ACCTITITCC TITITITITT TITITICTGA TITGATICTG GITACAGTGC CATAAACCTT	1080
	GTTACATATG TATATCAGAA TGTAAGAAAA AAAAATTTAT TTAAAAATAT TTTTCGCAAA	1140
40	AAAAAAANNA AAAAACTCGA GGGGGGCC	1168
45	(2) INFORMATION FOR SEQ ID NO: 80:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1285 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	
55	AGAAAATCAC ATCCTAACAA AGAAGTCTGT CTAAGACAGT ACATCTCCTG TTGAACTTGC	60
	ATCTTTCCAC AGGACTTTCT GTTTTTAGGG ATGAGACTAT TCTCTGCTTC ATCAAGGAAA	120
60	GAGAAATGTT CAGGGTTGTA GGGATGGCAC ACTTATTAGT TCTGCCTGTC TGAAAGGTTC	180

PCT/US98/04493

	TOTAL TERMINATURE CONTRACTOR TO THE ACTUAL T	240
	CTGCAGGACA GTTTGGTCAG AGCTGCAATT CTTAGTCCAT GGTCTAATGC TTGAGTATCT	300
	CTTCTTTCCC TTTCCTGTCT CAGGAATCAG CTGAGAATTC ATTCGATTGT CATGCCTCTA	
5	GCCCCTTACT GTGATTTGTT GGTTGCACTT TCATTTGCTT TAGTTCTAGA ATCACCTGTT	360
	GACTCCTCAG ACTTCACCTA ACTTTGGAAA CTCTCTTTTG GAGGCTTCTC ATTTCCCCCT	420
	AATTCTGTGC TGCCTGAGCC CTAGAATTTT CCCACCAACG AATTATTCCA GGTAGATCCT	480
10	AAGTTGCTGG ATCTAGTTGA TATTTAAACA ATATCTAGTT GATATTTCTC ATTCAGTTGG	540
	ATCCAGAAAC CAGTATCTCT NAAAAACAAC CTCTCATACC TTGTGGACCT AATTTTGTGT	600
15	GCGTGTGTGT GTGCGCGCAT ATGTATATAG ACAGGCACAT CTTTTTTACT TTTGTAAAAG	660
	CTTATGCCTC TTTGGTATCT ATATCTGTGA AAGTTTTAAT GATCTGCCAT AATGTCTTGG	720
	GGACCTTTGT CTTCTGTGTA AATGGTACTA GAGAAAACAC CTATATTATG AGTCAATCTA	780
20	GITGGITITA TICGACATGA AGGAAATITC CAGATAACAA CACTAACAAA CTCTCCCTTG	840
	ACTAGGGGGA CAAAGAAAAG CAAAACTGAC CATAAAAAAC AATTACCTGG TGAGAAGTTG	900
25	CATAAACAGA ATTAGGTAGT ATATTGAAGA CAGCATCATT AAACAGTTAT GITGTTCTCC	960
	TTGCAAAAAA CATGTACTGA CTTCCCGTTG AGTAATGCCA AGTTGTTTTT TITATTATAA	1020
	AACTTGCCCT TCATTACATG TTTCAAAGTG GTGTGGTGGG CCAAAATATT GAAATGATGG	1080
3 0	AACTGACTGA TAAAGCTGTA CAAATAAGCA GTGTGCCTAA CAAGCAACAC AGTAATGTTG	1140
	ACATGCTTAA TTCACAAATG CTAATTTCAT TATAAATTGT TTTGCTAAAA TACACTTTGA	1200
35	AACTATTTTT CTGTATTCCA AGAGCTGAGA TCTTAGATTT TATGTAGTAT TAAGTGAAAA	1260
55	AATACGAAAA TAATAAACAT TGAAG	1285
	MALACOREN	
40		
	(2) INFORMATION FOR SEQ ID NO: 81:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1290 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	070 TD NO. 01.	
50	TCTCCAGCCC CAATTTCTAC GCGCACCGGA AGACGGAGGT CCTCTTTCCT TGCCTAACGC	60
		120
5:	AGCCATGGCT CGTGGTCCCA AGAAGCATCT GAAGCGGGTG GCAGCTCCAA AGCATTGGAT	180
	GCTGGATAAA TTGACCGGTG TGTTTGCTCC TCGTCCATCC ACCGGTCCCC ACAAGTTGAC	240
	AGAGTGTCTC CCCCTCATCA TTTTCCTGAG GAACAGACTT AAGTATGCCC TGACAGGAGA	
6	O TGAAGTAAAG AAGATTTGCA TGCAGCGGTT CATTAAAATC GATGGCAAGG TCCGAACTGA	300

	TATAACCTAC CCTGCTGGAT TCATGGATGT CATCAGCATT GACAAGACGG GAGAGAATTT	360
_	CCGTCTGATC TATGACACCA AGGGTCGCTT TGCTGTACAT CGTATTACAC CTGAGGAGGC	420
5	CAAGTACAAG TTGTGCAAAG TGAGAAAGGT CTTTGTGGGC ACAAAAGGAA TCCCTCATCT	480
	GGTGACTCAT GATGCCCGCA CCATCCGCTA CCCCGATCCC CTCATCAAGG TGAATGATAC	540
10	CATTCAGATT GATTTAGAGA CTGGCAAGAT TACTGATTTC ATCAAGTTCC ATTCACCCAG	600
	CCAGGTGGTC TCGTCACCTC AGAGGCTCCG CAGACTCCTG CCCAGGCCAG GACTGAGGCA	660
15	AGCCTCAAGG CACTTCTAGG ACCTGCCTCT TCTCACCAAG ATGAACTCAC TGGTTTCTTG	720
13	GCAGCTACTG CTTTTCCTCT GTGCCACCCA CTTTGGGGAG CCATTAGAAA AGGTGGCCTC	780
	TGTGGGGAAT TCTAGACCCA CAGGCCAGCA GCTAGAATCC CTGGGCCTCC TGGCCCCSGG	840
20	GGAGCAGAGC CTGCCGTGCA CCGAGAGGAA GCCAGCTGCT ACTGCCAGGC TGAGCCGTCG	900
	GGGGACCTCG CTGTCCCCGC CCCCCGAGAG CTCCGGGAGC CCCCAGCAGC CGGGCCTGTC	960
25	CGCCCCCCAC AGCCGCCAGA TCCCCGCACC CCAGGGCGCG GTGCTGGTGC AGCGGGAGAA	1020
25	GGACCTGCCG AACTACAACT GGAACTCCTT CGGCCTGCGC TTCGGCAAGC GGGAGGCGGC	1080
	ACCAGGGAAC CACGGCAGAA GCGCTGGGCG GGGCTGAGGG CGCAGGTGCG GGGCAGTGAA	1140
30	CTTCAGACCC CAAAGGAGTC AGAGCATGCG GGGGGGGGG GGGGGGGGGG	1200
	TAAGGGAGGG GGCGCTGGAG CTTCCAACCC GAGGCAATAA AAGAAATGTT GCGTAACTCA	1260
35	AAAAAAAAA AAAAAAAANC TCGGGGGGGG	1290
33		
40	(2) INFORMATION FOR SEQ ID NO: 82:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 684 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
50	TTTATTGTAT TCTGTAACTA TAGAACTICT ATTTWATTCT TTTTTGGACT TGCTAAGTTG	60
50	TCTTTWATGG TTTTWAGTTC CATGCTGAAG TTTTCAGTAT TGACTTATCC CCTTGAACAT	120
	GAGTTGTTTT ATAGACTCTR ATGATTCAAA AATCTTACAT CTTTTGGTAG TCTCTTTCAT	180
55	TIGTYCACTG TITCTGTTGA TICTWACTCA TGGTATITTA ATTCTTCGTT WITITTTTTC	240
	TGTTWAGAWA CATTCTTIGA AAAATAATTT GGAGGAATAT TIGATTCTTA TGAACAAGGC	300
60	ATTACTCACC AGAGAAGATT TTTTTGTTYT ACCARGTGCC TARGAATGCT AACAGTCTGG	360

PCT/US98/04493

	GAMCACATAG	AMCACCAGGT	GATGAGACAA	TCCTGGGART	CCTGTTTTAC	TTTGGSCCAT	420
	CTTTTCTCCC	AACCCTGTGG	GAATARTCAT	YCATATCCTA	RCTGCAGGCT	ARAAGGTGGT	480
5	TTATCAGAGC	CCAACTTCGA	GGGCTCTGGG	CTTTAGCTAC	TGTCACCCCA	TCATAACTGA	540
	GCTTCATGGA	TTGATTCTCT	TTTTATCTTT	CAGATTTTCT	TTTAAAAATC	TTTGTTTTTT	600
••	TTTTTCTTCC	GAAAGATTCC	CCCAACATTA	CCATTCCCCA	CCTTCCGTTG	AATTITTTTG	660
10	GCTCTCATTT	TGAATTTTTC	AAGA				684

15

20

(2) INFORMATION FOR SEQ ID NO: 83:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2024 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

25 60 CTGCAGGAAT TCGGCACAGC TGCGCTGGAG GCTTCATCTT TGCCGCCGCT GCCGTCGCCT TCCTGGGATT GGAGTCTCGA GCTTTCTTCG TTCGTTCGYC GGCGGGTTCG CGCCCTTCTC 120 GCGCCTCGGG GCTGCGAGGC TGGGGAAGGG GTTGGAGGGG GCTGTTGATC GCCGCGTTTA 180 30 AGTTGCGCTC GGGGCGGCCA TGTCGGCCGG CGAGGTCGAG CGCCTAGTGT CGGAGCTGAG 240 300 CGGCGGGACC GGAGGGGATG AGGAGGAAGA GTGGCTCTAT GGCGATGAAA ATGAAGTTGA 35 AAGGCCAGAA GAAGAAAATG CCAGTGCTAA TCCTCCATCT GGAATTGAAG ATGAAACTGC 360 TGAAAATGGT GTACCAAAAC CGAAAGTGAC TGAGACCGAA GATGATAGTG ATAGTGACAG CGATGATGAT GAAGATGATG TTCATGTCAC TATAGGAGAC ATTAAAACGG GAGCACCACA 480 40 GTATGGGAGT TATGGTACAG CACCTGTAAA TCTTAACATC AAGACAGGGG GAAGAGTTTA 540 TGGAACTACA GGGACAAAAG TCAAAGGAGT AGACCTTGAT GCACCTGGAA GCATTAATGG 600 45 AGTTCCACTC TTAGAGGTAG ATTTGGATTC TTTTGAAGAT AAACCATGGC GTAAACCTGG 720 TGCTGATCTT TCTGATTATT TTAATTATGG GTTTAATGAA GATACCTGGA AAGCTTACTG TGAAAAACAA AAGAGGATAC GAATGGGACT TGAAGTTATA CCAGTAACCT CTACTACAAA 50 TAAAATTACG GTACAGCAGG GAAGAACTGG AAACTCAGAG AAAGAAACTG CCCTTCCATC 840 TACAAAAGCT GAGTTTACTT CTCCTCCTTC TTTGTTCAAG ACTGGGCTTC CACCGAGCAG 900 55 GAGATTACCT GGGGCAATTG ATGTTATCGG TCAGACTATA ACTATCAGCC GAGTAGAAGG 960 CAGGCGACGG GCAAATGAGA ACAGCAACAT ACAGGTCCTT TCTGAAAGAT CTGCTACTGA 1020 AGTAGACAAC AATTTTAGCA AACCACCTCC GTTTTTCCCT CCAGGAGCTC CTCCCACTCA 1080 60

PCT/US98/04493

	CCTTCCACCT CCTCCATTTC TTCCACCTCC TCCGACTGTC AGCACTGCTC CACCTCTGAT	1140
_	TCCACCACCG GGTTTTCCTC CTCCACCAGG CGCTCCACCT CCATCTCTTA TACCAACAAT	1200
5	AGAAAGTGGA CATTCCTCTG GTTATGATAG TCGTTCTGCA CGTGCATTTC CATATGGCAA	1260
	TGTTGCCTTT CCCCATCTTC CTGGTTCTGC TCCTTCGTGG CCTAGTCTTG TGGACACCAG	1320
10	CAAGCAGTGG GACTATTATG CCAGAAGAGA GAAAGACCGA GATAGAGAGA GAGACAGAGA	1380
	CAGAGAGCGA GACCGTGATC GGGACAGAGA AAGAGAACGC ACCAGAGAGA GAGAGAGGGA	1440
1.5	GCGTGATCAC AGTCCTACAC CAAGTGTTTT CAACAGCGAT GAAGAACGAT ACAGATACAG	1500
15	GGAATATGCA GAAAGAGGTT ATGAGCGTCA CAGAGCAAGT CGAGAAAAAG AAGAACGACA	1560
	TAGAGAAAGA CGACACAGGG AGAAAGAGGA AACCAGACAT AAGTCTTCTC GAAGTAATAG	1620
20	TAGACGTCGC CATGAAAGTG AAGAAGGAGA TAGTCACAGG AGACACAAAC ACAAAAAATC	1680
	TAAAAGAAGC AAAGAAGGAA AAGAAGCGGG CAGTGAGCCT GCCCCTGAAC AGGAGAGCAC	1740
25	CGAAGCTACA CCTGCAGAAT AGGCATGGTT TTGGCCTTTT GTGTATATTA GTACCAGAAG	1800
23	TAGATACTAT AAATCTTGTT ATTTTTCTGG ATAATGTTTA AGAAATTTAC CTTAAATCTT	1,860
	GTTCTGTTTG TTAGTATGAA AAGTTAACTT TTTTTCCAAA ATAAAAGAGT GAATTTTTCA	1920
30	TGTTAAGTTA AAAATCTTTG TCTTGTACTA TTTCAAAAAT AAAAAGACAG CAATGACTTT	1980
	ATATCCAAAA AAAAAAAAA AAAAAAAAA AAAAAAGGGC GGCC	2024
35		
	(2) INFORMATION FOR SEQ ID NO: 84:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 931 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
	CGCGCCMATA GCCGGACGGG GATCTGAGCT GGCAGGATGA ATGTGGGGGT GGCACACAGC	60
50	GAAGTAAACC CCAACACCCG AGTGATGAAT AGCCGAGGCA TCTGGCTGGC CTACATCATC	120
50	TTGGTAGGAT TGCTGCATAT GGTTCTACTC AGCATCCCCT TCTTCAGCAT TCCTGTTGTC	180
	TOGACCCTGA CCAACGTCAT CCATAACCTG GCTACGTATG TCTTCCTTCA TACGGTGAAA	240
55	GGGACACCCT TTGAGACTCC TGACCAAGGA AAGGCTCGGC TACTGACACA CTGGGAGCAA	300
	ATGGACTATG GGCTCCAGTT TACCTCTTCC CGCAAGTTCC TCAGCATCTC TCCTATTGTG	360
60	CICTATCTCC TGGCCAGCTT CTATACCAAG TATGATGCTG CGCACTTCCT CATCAACACA	420

WO 98/39448		PCT/US98/04493
	306	

	GCCTCATTGC TAAGTGTACT GCTGCCGAAG TTGCCCCAGT TCCATGGGGT TCGTGTCTTT	480
	GGCATCAACA AATACTGAGG GATGGGTTTT GGGACAGCTC CATGGGCATG GGGAAGGCAC	540
5	TGAAACAGAG GACTATAAAA CATCCTTCTC TTATTCTCCA TACTGTCTTC TACACCTTTA	600
	AAGCCTGAGA ACTATACAAC CTTTCCCAGA CTCCCAAGAA GAGAAGAGAT TGGCAAATGG	660
10	GGCTCCTGGG CCCAGTCCTG CTAGTGGCAA GTTTCTTTGA ATCAGGAAGG CAGGTGAGGT	720
10	AAGGGCCAAA TCACTCTCCT CCATAGCAGG AAGCCATTTG GGCAGCTCCT TTGGTGATTA	780
	CATCTTTCCA TATCTTTTAC ACTTACCACC TTCCAGCTCT GTTTTGCTGT GTATTTTTCT	840
15	TACAATAATT TTTTTCAGCT ATAGCTGCAG TTTAATCAGG ATGGGTAGAG AGCTGTCCTC	900
	ATAAGGCTGG GGGTGGGAAG ATGGAATACT G	931
20		
20	TO NO. 95.	
	(2) INFORMATION FOR SEQ ID NO: 85:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
	CGGGGCCGGC GGGGTCTTCA GGGTACCGGG CTGGTTACAG CAGCTCTACC CCTCACGACG	60
25	CAAACATGGC AGCGCAGAAG GACCAGCAGA AAGATGCCGA GGCGGAAGGG CTGAGCGGCA	120
35	CGACCCTGCT GCCGAAGCTG ATTCCCTCCG GTGCAGGCCG GGAGTGGCTG GAGCGGCGCC	180
	GCGCGACCAT CCGGCCCTGG AGCACCTTCG TGGACCAGCA GCGCTTCTCA CGGCCCCGCA	240
40	ACCTGGGAGA GCTGTGCCAG CGCCTCGTAC GCAACGTGGA GTACTACCAG AGCAACTATG	300
	TGTTCGTGTT CCTGGGCCTC ATCCTGTACT GTGTGGTGAC GTCCCCTATG TIGCTGGTGG	360
4.5	CTCTGGCTGT CTTTTTCGGC GCCTGTTACA TTCTCTATCT GCGCACCTTG GAGTCCAAGC	420
45	TTGTGCTCTT TGGCCGAGAG GTGAGCCCAG CGCATCAGTA TGCTCTGGCT GGAGGCATCT	480
	CCTTCCCCTT CTTCTGGCTG GCTGGTGCGG GCTCGGCCGT CTTCTGGGTG CTGGGAGCCA	540
50	CCCTGGTGGT CATCGGCTCC CACGCTGCCT TCCACCAGAT TGAGGCTGTG GACGGGGAGG	600
	AGCTGCAGAT GGAACCCGTG TGAGGTGTCT TCTGGGACCT GCCGGCCTCC CGGGCCAGCT	660
	GCCCCACCCC TGCCCATGCC TGTCCTGCAC GGCTCTGCTG CTCGGGCCCCA CAGCGCCGTC	72
55		

AGGAAAAAA AAAAAAAAGG GGGCCCCTC TAGGGGTCAA AGTTA

(2) INFORMATION FOR SEC ID NO. 86:							
	121	TATECODMATTON	EUD	CEO	TD	NO.	96.

5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1238 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:	
	CATGTAAAAG GATGAAATGT GACTTCTGGT GTTTTTTTAT TTCTATGGAG GGACTTTCTG	60
15	GGGACGGTTT CTGGCTCTCA GGCTCTGAGA AGCTGCAGTT TATGAGTGGC TCTGTGTGTG	120
	CTGCCACCTA CTGGAGAAGC CATAAGCTGC AGCTTTAGGA AAAGGGAACC CGGGGCAGAG	180
20	TGTGGGGAAG TGGGATGGCA GCATGGCAGG GCTTTGGAAA ATGAGAGGTG AGAGTKTKTC	240
20	CAGGAAGGGT GTAAGGAGAG GATGGATCCT GATACATGGA TTCAGGATCA TTAGGGTCCT	300
	GTCTGGGACA CTGGCCTTCC TGCTTACCTG CTCTTTCCTT CCTCCTTGGT CGGAGGAGGG	360
25	GCTGGCTCAC TGCTCTGGCT TCATTTTCCA GAGCTGCCTG CTGCAGTCAC ACTTAGGTCA	420
	TCTTCTCTCA CTTTTCTCCT TTTGCCGATT AGTGGACGTG ACAGAGATGT GAATGGGGCA	480
3 0	GOGATGTCCT TIGATGCCAT CAAGACTTTA GCTTCTGGTG CGCTGTGTCC CAGCTCTGAT	540
٠	TICAGTIGCA GCCGIGATGG AMAGTINGCA TGGAAGCTGA GACTCTCACT GACAGTGAAA	600
	CCCTCAAATG AACACAATCC CTGCTTTCCT GCCAAGGATC CTTGTAGGGT NCCCCCAGCT	660
35	TCCCCACTIT TITTCTGTGT CCTGACAAAG AAACACAGAG TAACITGATT GCCCTGTGAC	720
	CTGGCCAGTT GCATTTCCCC TGCAGGCTTG AGCCCAAGCC AGAGCCTTGA AAAGGTATTC	780
40	AGGTTGTTGC CCAAAACACT GAAAAAAACT GCCCTGGCCC TGAACCAAAT ACCTTGAACC	840
70	CTCGTAAACT CCATACCCTG ACCCCCTTGT TITGGATATA CCCAGGTAGA ACAACTCTCT	900
	CTCACTGTCT GTTGTGAGGA TACGCTGTAG CCCACTCATT AAGTACATTC TCCTAATAAA	960
45	TGCTTTGGAC TGATCACCCT GCCAGTCTTT TGTCTTGGGC AATCTATACT TTTNCTCAGA	1020
	GGTTCCCAAG GCCTACTGAA GGGACTTAAC ATACTCTTAA TGGCTTTCCT CTCTCTTGTT	1080
50	TTACCTTATG CCCTCACTTC CTGAGTTAAC CTCCCAAATA CAGGATTCAC CTGTACCCAA	114
50	GCCCTTAGCT TCAAGAATAC AGGATCACCT GTACCCAAGC CCTTAGCTCA AGCTCTGCTT	120

55

TGGAAGAACC CAAACTAAGA CAGTGCTCCT GGTGCCCT

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 87:

(A) LENGTH: 1460 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87: ATTGCCTTCT GGTCCCTGGT GACACTGGGG TCATCCTTCA TCCCCGGAGA GCATTTCTGG 60 CTGCTCCTCC TGACCCGGGG CCTGGTGGGG GTCGGGGAGG CCAGTTATTC CACCATCGCG 120 10 CCCACTCTCA TTGCCGACCT CTTTGTGGCC GACCAGCGCG ACCGGATGCT CAGCATCTTC 180 TACTITICCCA TICCGGTGGG CAGTGGTCTG GGCTACATTG CAGGCTCCAA AGTGAAGGAT 240 15 300 ATGGCTGGAG ACTGGCACTG GGCTCTGAGG GTGACACCGG GTCTAGGAGT GGTGGCCGTT CTGCTGCTGT TCCTGGTAGT GCGGGAGCCG CCAAGGGGAG CCGTGGAGCG CCACTCAGAT 360 420 20 TTGCCACCCC TGAACCCCAC CTCGTGGTGG GCAGATCTGA GGGCTCTGGC AAGAAATCCT AGTTTCGTCC TGTCTTCCCT GGGCTTCACT GCTGTGGCCT TTGTCACGGG CTCCCTGGCT 480 540 CTGTGGGCTC CGGCATTCCT GCTGCGTTCC CGCGTGGTCC TTGGGGAGAC CCCACCCTGC 25 CTTCCCGGAG ACTCCTGCTC TTCCTCTGAC AGTCTCATCT TTGGACTCAT CACCTGCCTG 600 660 ACCGGAGTCC TGGGTGTGGG CCTGGGTGTG GAGATCAGCC GCCGGCTCCG CCACTCCAAC CCCCGGGCTG ATCCCCTGGT CTGTGCCACT GGCCTCCTGG GCTCTGCACC CTTCCTCTTC 720 30 780 CTGTCCCTTG CCTGCGCCCG TGGTAGCATC GTGGCCACTT ATATTTTCAT CTTCATTGGA GAGACCCTCC TGTCCATGAA CTGGGCCATC GTGGCCGACA TTCTGCTGTA CGTGGTGATC 840 35 900 CCTACCCGAC GCTCCACCGC CGAGGCCTTC CAGATCGTGC TGTCCCACCT GCTGGGTGAT GCTGGGAGCC CCTACCTCAT TGGCCTGATC TCTGACCGCC TGCGCCGGAA CTGGCCCCCC 960 1020 40 TCCTTCTTGT CCGAGTTCCG GGCTCTGCAG TTCTCGCTCA TGCTCTGCGC GTTTGTTGGG GCACTGGGCG GCGCACTTCC TGGGCACCGC CATCTTCATT GAGGCCGACC GCCGGCGGGC 1080 1140 ACAGCTGCAC GTGCAGGGCC TGCTGCACGA AGCAGGGTCC ACAGACGACC GGATTGTGGT 45 GCCCCAGCGG GGCCGCTCCA CCCGCGTGCC CGTGGCCAGT GTGCTCATCT GGAGAGGCTG 1200 1260 GGCCTAAACC CCTTGGCCTG GCCCAGCTTC CAGAGGGACC CTGGGCCGTG TGCCAGCTCC 1320 50 CAGACACTAC ATGGGTAGCT CAGGGGAGGA GGTGGGGGTC CAGGAGGGGG ATCCCTCTCC 1380 1440 AACAGGGGCA GCCCCAAGGG CTCGGTGCTA TTTGTAACGG GATTAAAATT TGTAGCCAGA 55 1460 ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ

(2) INFORMATION FOR SEQ ID NO: 88:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1395 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

10 CAGGIGCAAA GIGGGAAGIG IGAGICCICA GICTIGGGCI ATICGGCCAC GIGCCIGCCG 60 GACATGGGAC GCTGGAGGGT CAGCAGCGTG GAGTCCTGGC CTTTTGCGTC CACGGGTGGG 120 AAATTGGCCA TTGCCACGGC GGGAACTGGG ACTCAGGCTG CCCCCCGGCC GTTTCTCATC 180 15 CGTCCACCGG AYTCGTGGGC GCTCGCACTG GCGCTGATGT AGTTTCCTGA CCTCTGACCC 240 300 GTATTGTCTC CAGATTAAAG GTACGACATT TGGAGGCCCC AGCGAGAAAC GTCACCGGGA 20 GAAACGTCAC CGGGCGAGAG CGGKCCCGCT GTGTGCTCCC CCGGAAGGAC AGCCAGCTTG 360 420 TAGGGGGGAG TGCCACCTGA AAAAAAATT TCCAGGTCCC CAAAGGGTGA CCGTCTTCCG GAGACAGCGG ATCGACTACC ATGTGGGTGC CCACAAAAAT TYCACCTYTG AGTCCTCAAC 480 25 540 TGCTGACCCC GGGGTCAGTT CCAGAGAGAA GGACTCCCTC CTGCTTGGAA GAGACCTCAC ACCGTCATCA CGATGCCAAC GGCTCTGAAG GTGGATGGCA TTCCTGCGTG GATTCATCAC 600 30 660 TCCCGCATCA AAAAGGCCAA CRGAGCCCAA CTAGAAACAT GGGTCCCCAG GGCTGGGTCA GGCCCCTTAA AACTGCACCT AAGTTGGGTG AAGCCATTAG ATTAATTCTT TTTCTTAATT 720 TTGTAAAACA ATGCATAGCT TCTGTCAACT TATGTATCTT AAGACTCAAT ATAACCCCCT 780 35 840 TGTTATAACT GAGGGAATCA ATGATTTGAT TCCCCAAAAA CACAAGTGGG GAATGTAGTG 900 TCCAACCTGG TTTTTACTAA CCCTGTTTTT AGACTYTCCC TTTCCTTTAA TCACTCAGCC 40 TTGTTTCCAC CTGAATTGAC TCTCCCTTAG CTAAGAGCGC CAGATGGACT CCATCTTGGC 960 1020 TCTTTCNACT GGCAGCCGCT TCCTYCAAGG ACTTAACTTG TGCAAGCTGA CTCCCAGCAC ATCCAAGAAT GCAATTAACT GATAAGATAC TGTGGCAAGC TATATCCGCA GTTCCCAGGA 1080 45 ATTCGTCCAA TTGATTACAC CCMAAAGCCC CGCGTCTATC ACCTTGTAAT AATCTTAAAG 1140 CCCCTGCACC TGGAACTATT AACGTTCCTG TAACCATTTA TCCTTTTAAC TTTTTTGCCT 1200 50 ACTITATITC TGTAAAATTG TTTTAACTAG ACCCCCCTC TCCTTTCTAA ACCAAAGTAT 1260 1320 AAAAGCAAAT CTAGCCCCTT CTTCAGGCCG AGAGAATTTC GAGCGTTAGC CGTCTCTTGG 1380 55 1395 GGGCCCGGTA CCCAA

(2) INFORMATION FOR SEQ ID NO: 89:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1186 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

 $10\,$ (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

	GGCACGAGCC	GGCAAGCCGA	GCTAGGGTGA	AAACTGGGGG	CGCACCAGGA	TGTNNGACAG	60
15	AAAAGCAGAA	GATGAGACTC	TGTTCATTCA	CTTTTCCTAG	GCCCATCCTG	TGGTCATCTT	120
13	TCCCCCTCCC	ATCATACCTC	CTCCTTCCTG	GAGCCTCTGC	CGGCTTGGCT	GTAATGGTGG	180
	CACTTACCTG	GATATTTCAG	TOGGAGGATG	AAAGGCGAGA	CTCACCCTAC	GCGGTGGGAC	240
20	AGATGGGGAG	AGGAAAAAGG	CAGAGATGGC	CAGGAGAGGG	GTGCAGGACA	AACCAGAGAG	300
	GTTGGGTCAG	GGGAAAAGGG	TGGGGAGAAA	GAGGGGTGCA	GCCCTGCAG	GCCGGTTAGC	360
25	CAGCAGCTGC	GCCTCCCCG	GGCCCTTGGC	ATCCAACTTC	GCAGACAGGG	TACCAGCCTC	420
23	CTGGTGTGTA	TCATAGGATT	TGTTCACATA	GTGTTATGCA	TGATCTTCGT	AAGGTTAAGA	480
	AGCCGTGGTG	GTGCACCATG	ACATCCAACC	CGTATATATA	AAGATAAATA	татататата	540
30	TGTATGTAAA	TTATGGCACG	AGAAATTATA	GCACTGAGGG	CCCTGCTGCC	CTGCTGGACC	600
	AAGCAAAACT	AAGCCTTTTG	GTTTGGGTAT	TATGTTTCGT	TTTGTTATTT	GTTTGTTTTT	660
35	GTGGCTTGTC	TTATGTCGTG	ATAGCACAAG	TGCCAGTCGG	ATTGCTCTGT	ATTACAGAAT	720
33	AGIGTTTTTA	ATTCATCAAT	GTTCTAGTTA	ATGTCTACCT	CAGCACCTCC	TCTTAGCCTA	780
	ATTTTAGGAG	GTTGCCCAAT	TTTGTTTCTT	CAATTTTACT	GGTTACTTTT	TTGTACAAAT	840
40	CAATCTCTTT	CTCTCTTTCT	CTCCTCCCCA	CCTCTCACCC	TTGCCCTCTC	CATCTCCCTC	900
	TCCCGCCCTC	CCCTCCTCCC	TCTGGCTCCC	CGTCTCATTT	CTGTCCACTC	CATTCTCTCT	960
45	CCCTCTCTCC	TECCTCCTEC	TGCCCCCTCC	CCAGCCCACT	TCCCCGAGTT	GTGCTTGCCG	1020
43	CTCCTTATCT	GTTCTAGTTC	CGAAGCAGTT	TCACTCGAAG	TTGTGCAGTC	CTGGTTGCAG	1080
	CTTTCCGCAT	CTGCCTTCGT	TTCGTGTAGA	TTGACGCGTT	TCTTTGTAAT	TTCAGTGTTT	1140
50	CTGACAAGAT	ттаааааааа	AAAAAGGAAA	ААААААААА	AAAAA		1186

55 (2) INFORMATION FOR SEQ ID NO: 90:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1821 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

5	AAAACATGCT TTCAGGGCGT CCCCTATGTA TTCGGGGGGC CCACGGACAC TCAGGCTGGA	60
	KATCCGTCCT CACTGCGCTC AAGATGGCCT CAGCAGACAC CAGTTACCCA GCTGAAAGTC	120
10	ACAATCCCTC CCAGAAGTCT CCCAACACTA GTGCTGACCA GAGGTGGGGC TCTCAGGCTA	180
10	GGAGTTTCAC ACACAATGAC AGGCTGCTGG GGGACATTGC AGGACCCCTT TTCCTYTCCT	240
	CTCCATGCTA GAAGCCAGCC CTAGGMAGCT GCAGTTACTC CCTGTGACTC AGCAGCAGGC	300
15	TGATTCAACA CAGCTGCCCA CACAAAGCCA GTGGTAATAC ATCTGTTTAC CTTTCCCTAT	360
	CACCCAGACA CAAGCCCCTT TCCCAGGTCA AACCACAGGC CGATGCATCT CCAGTTTGAC	420
20	AGTCAAATCA CTACTTCCAT TGCTACTTTA GATCAGCCAA AGTGGTGACT GCTGCAGTGT	480
20	GTGGCTATCC CTACAAGGCC CACCCAAGGG ATGCCCAAAG CCCAACCTTC TCCAGGGCTG	540
	CAGCAGNAGC AACCCCACCA GCCTAAGTCC AGCAGAGGAC CTCCCACCCA ATGTCTTGTT	600
25	CTAATTAGAA GGGGAAGTTA GCCACAGAAA ATCAACTTAT CTATAATTAC AAAATTCTCT	660
	TGACTCACCT TAAAGTTCCT ATTGACATCT ACTGCTTTTA AACCTATTTG AAAACTCTGA	720
30	TACTAAAACA AATGACACTC TAAGAAAGTT TGGGAGCCCC ATGCTGAGAA CCATTTCTGT	780
30	GCAGTGAGGA TGTTTCCAGA AGCTACTTAC CTACATGTGA ATGTGCCATT TTCTTTCCTT	840
	TIGTAGAGAA AATCCCCTTT ACTTTTGGA ACAGTAATGG CAGCTTCTAG TACAGCCATT	900
35	ACAGTTTCAT ATGAGAAAAA TTAAGAATAA CTATAAAATT GTTAAAATAT CCAATAATG	960
	ATAATGATGG CCAGAAGATT TAACATACAA AGTAATTCTC AATGTAAAGC TATTCAGCTC	1020
40	TTCCAGGTTG AATGCCCTGT AACCCACCCT GACCTTCCAC ATCATCTTCA AAAAGCAGTT	1080
	TCTCTGTTCC CCATGATTCT CCTATAAGGT AACTCTTTAG TCCTCCATTT AGCACATTTT	1140
	AAATCCTCCA AAGAATAAGT ATCATGTGAT TATTTTAGCT TTACAAAAAA AAAGTTGAAT	1200
45	GGCGTTTTAT TTTCATGGCC TATAAGCAGG TACCTTAGTA GGGCAGATAT AGGAAAAACA	1260
	AATTAGAGCA AAACAAATCC TCTACAAATC CAAGGCAGGA AAAGTGGTGG CAGAGTGACT	1320
50	CATTCTCCTG TCCCTCCCAT CAGGTCAAAT CAGGAGGCTG CAGTGAATGC CTGTTCTTTG	1380
50	AATGTGTAGC AGTTGTTCCT GTAACTCTTT AAAACTTGGC TATAGGCTGT TTAGCACAGT	1440
	ACAGATTAAA GATACAGTTA CGTAAACAGC AAAGTAATTT TATAGTGCTI CATCCATTTA	1500
55	TCATGCTTTG GTTTGCTAAT TTTTTCACAT ACCTTTTTCT ATCACAGTCT GTTGCTTTTG	1560
	TACACATTTC TCATATTGGG GTTCGACAGG TAAACACAAA CTGCTATTTC AGTAGAAAAA	1620
60	GTTATTGTTA TGGAATATTA AACCCAATAA ATTGTATAAA GGGTAAAAAA AAAAAAAAAA	1680

	AAAAAAAAA AAAAAAAAA AAAAAAATTC CTGCGGGCCG CANGCTTTTT CCCTTTGGGT	1740
	GAGGGGTTAT TTTNGGCTTG GGCACTGGGC CCTTCGTTTT TACAACGTCG TGANGGGGGG	1800
5	AACCCGGGGG GGGTTTCCCC C	1821
10	(2) INFORMATION FOR ODE ID NO. 01	
10	(2) INFORMATION FOR SEQ ID NO: 91:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 862 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
20	TGCCCTTTTT CCCACCGATT CGGGGCNTGG TGAAGGTGGG AGATGTGAAC TCCAATTAAG	60
	GGACTGGAGA GAGGTGAAGA ATTTTGCAGG TGGGAGATTT GGATTTGAAT GTGGACTTGT	120
25	AAATGACTTG ACCTTGCCAT CTGTGTTCAA GGTCACGGTT TGCTGTGGGG TTCCTGGGAG	180
,	AGCTTACTCA CCCCGGAGTC TTTTCTTTCT CTTGCTCCAA GAAGAGCCCT GTTGGTGCTT	240
	TACCACCGCT TGGAGTCTCC CGAGGACACA AACAGGCAGA GAGGGACGTG TAGGGAGAGT	300
30	TCTTTCCTGT TTTCTGTGCT TTCCTTTTTA CAGGACTCCC GGAAGGCCAC TCATGGCCAT	360
	GCCAGGAGCT TTCTCAGAAA CAGTCATAAA CGATCTCTTG AGTCTCTTTC TTGTCCTCCC	420
35	AGCTGAGCTT TCTTATTCCA CCCTTTCTGG TGTCTATAGG AATGCATGAG AAGACCCTGG	480
	GACGTTTTTC TGCTCTCTC TGGCCCTCCA TGGAGCCATG GGCCTCGGCC TCGGCGGCTC	540
	CTCACCCTCA CAATTTATTT CCTCCTCCCG TGCCAGCCCT TCTTTTGTGT CTGAAACCGG	600
40	TTTTAAAATG TGACTCTCCC AGAGAAGAAG CCGCTGGCTG TATGAAACTT GACGGCGCTT	660
	TTGTAAGGTG CCACCCCAA ACTTTAAGGT AGCTAAACCA ATTTTTAAAA GATTCAATGG	720
45	CTTGTTCATC CTCCAGATGT AGCTATTGAT GTACACTTCG CAACGGAGTG TCTGAAATTG	780
	TGGTGGTCCT GATTTATAGG ATTTCATAAT TAAAATGTCT GCTGAATAAA AAAAAAAAA	840
	AAAAACTCGA GGGGGCCCG GT	862
50		
	(2) THEOREM TON TON TO US OF	
<i>E E</i>	(2) INFORMATION FOR SEQ ID NO: 92:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 696 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
60	(D) TOPOLOGY: linear	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
	CTGAGGCGAG TGAAGTGGAC TCTGAGGGCT ACCGCTACCG CCACTGCTGC GGCAGGGGCG	60
5	TOGAGGGCAG AGGCCGCGG AGGCCGCAGT TOCAAACATG GCTCAGAGCA GAGACGGCGG	120
	AAACCCGTTC GCCGAGCCCA GCGAGCTTGA CAACCCCTTT CAGGACCCAG CTGTGATCCA	180
10	GCACCGACCC AGCCGGCAGT ATGCCACGCT TGACGTCTAC AACCCTTTTG AGACCCGGGA	240
10	GCCACCACCA GCCTATGAGC CTCCAGCCCC TGCCCCATTG CCTCCACCCT CAGCTCCCTC	300
	CTTGCAGCCC TCGAGAAAGC TCAGCCCCAC AGAACCTAAG AACTATGGCT CATACAGCAC	360
15	TCAGGCCTCA GCTGCAGCAG CCACAGCTGA GCTGCTGAAG AAACAGGAGG AGCTCAACCG	420
	GAAGGCAGAG GAGTTGGACC GAAGGAGCGA GAGCTGCAGC ATGCTGCCCT GGGRGGCACA	480
: :20	GCTACTCGAC AGAACAATTG GCCCCCTCTA CCTTCTTTTT GTCCAGTTCA GCCCTGCTTT	540
.20	TYCCAGGACA TCTCCATGGA GATCCCCCAA GAATTYCAGA AGACTGTATC CACCATGTAC	600
	TACCTCTGGA TGTGCAGCAC GSTGGNTCTT CTCCTGAAYT TCMTCGSCTG CCTGGCCAGT	660
25	TCTGTGTGGA AACCAACAAT GGCGAGGCTT TGGGTT	696
30	(2) INFORMATION FOR SEQ ID NO: 93:	
	(i) SEQUENCE CHARACTERISTICS:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1886 base pairs(B) TYPE: nucleic acid	
35	(A) LENGTH: 1886 base pairs	
35	(A) LENGTH: 1886 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
35 40	(A) LENGTH: 1886 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	60
	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	60 120
40	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93: CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT	
	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93: CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT	120
40	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93: CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT	120 180
40	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93: CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT CAGCTTCAAG GTGACGATGC CAACTCCCTG CACCTCCTTG CCCTCCTGCT GTCAGCACAG	120 180 240
40 45	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93: CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT CAGCTTCAAG GTGACGATGC CAACTCCCTG CACCTCCTTG CCCTCCTGCT GTCAGCACAG AAGCATTACC ATGACGCTCT GAACATCATC GACATGGCCC TGAGTGAATA CCCAGAAAAT	120 180 240 300
40 45 50	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93: CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT CAGCTTCAAG GTGACGATGC CAACTCCCTG CACCTCCTTG CCCTCCTGCT GTCAGCACAG AAGCATTACC ATGACGCTCT GAACATCATC GACATGGCCC TGAGTGAATA CCCAGAAAAT TTCATACTAC TGTTTTCCAA AGTGAAGTTG CAGTCACTCT GCCGAGGCCC GGACGARGCA	120 180 240 300 360
40 45	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93: CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT CAGCTTCAAG GTGACGATGC CAACTCCCTG CACCTCCTTG CCCTCCTGCT GTCAGCACAG AAGCATTACC ATGACGCTCT GAACATCATC GACATGGCCC TGAGTGAATA CCCAGAAAAT TTCATACTAC TGTTTTCCAA AGTGAAGTTG CAGTCACTCT GCCGAGGCCC GGACGARGCA CTGCTGACTT GTAAGCACAT GCTGCAGATA TGGAAATCCT GCTACAACCT CACCAACCCC	120 180 240 300 360 420
40 45 50	(A) LENGTH: 1886 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93: CAGGCCACTG ACGCTTCTTT GCGAGGGATG CAGGAGGTCC TACAGAGAAA GGCGCTTCTT GCATKTCAGA GGGCCCACAG CCTGTCACCC ACAGATCACC AAGCAGCTTT CTACCTGGCT CTGCAGCTTG CCATCTCCAG ACAGATCCCA GAGGCTCTGG GGTATGTCCG CCAAGCTCTT CAGCTTCAAG GTGACGATGC CAACTCCCTG CACCTCCTTG CCCTCCTGCT GTCAGCACAG AAGCATTACC ATGACGCTCT GAACATCATC GACATGGCCC TGAGTGAATA CCCAGAAAAT TTCATACTAC TGTTTTCCAA AGTGAAGTTG CAGTCACTCT GCCGAGGCCC GGACGARGCA CTGCTGACTT GTAAGCACAT GCTGCAGATA TGGAAATCCT GCTACAACCT CACCAACCCC AGTGATTCTG GACGTGGGAG CAGCCTCTTA GATAGAACCA TTGCTGACAG ACGACAGCTT	120 180 240 300 360 420 480

	CTGAAGTCTA TATCGGCATC GGGAAGCCTG CAGAAGCCAC AGCCTGTACC CAAGAAGCTG	720
_	CCAACCTCTT CCCAATGTCC CACAATGTCC TCTACATGCG CGGCCAGATT GCTGAGCTCC	780
5	GGGGAAGCAT GGACGAGGCG CGGCGGTGGT ATGAAGAGGC CTTAGCCANT CAGCCCCACC	840
	CACGTGAAGA GCATGCAGCG ACTTGGCCCT GATCCTTCAC CAGYTAGGCC GYTACAGTYT	900
10	GGCGGAGAAG ATCCTCCGGG ACGCGGTGCA GGTGAACTCG ACAGCCCACG AGGTCTGGAA	960
	CGGGCTGGGC GAGGTCCTCC AAGCTCAGGG CAACGATGCG GCGGCTACGG AGTGCTTCCT	1020
1.5	GACAGCCTTG GAGCTGGAGG CCAGCAGCCC CGCCGTGCCC TTCACCATCA TCCCCCGCGT	1080
15	GCTCTGAGCA GGCGCCTGCC AGCCTCACCT GCCGCTCAGC CTNCAGAGGC CCTGCCGGGC	1140
	ACCAGGGCTT GTGCCATCGC CCCAAGGGGA TGAATCTGCC GCACTGAGGC CAGGGACGAG	1200
20	TGTTCAGTGG GCCACAGTGA ACCAACCAAA CCAACCCGA ATCATCGCTC TCGCCATGTG	1260
	CGTTTCTCTT GTTTTTTTG CCAGCCCAAT GGTAGTTTCT GAACCTATTG ACATTGTTCA	1320
25	AAATGGATCA TGTGCCATAT TTTGTTAGIT GACATCTGAG TTTTCAGTAA AATGATTATG	1380
25	GAATTAATCA GCAAATGTAG AAGAATATAT TCAAAGTTAA AATTCAGTGG CAGCACAGAT	1440
	TATTTTTATC AGAGCTGTAA AGAAAACAAC TGTCCTTTTC TCCCCACCAC CCCTCCTGCC	1500
3 0	CCACTITGGC CCAGAAACCA AATGTGAACT TCCTGTCTCC CACCTCAGCA CTAGTCCATG	1560
	CCAGGACACC AGCTGACAAT TTCTTGGTTT TACTGTCAAT AATTGTACCA TGTGATCAAT	1620
25	TACTGTCCTC ACTTAGAACA AAGCCTGAGT CCGAGAATAT TTATATTTTA CCAATATATG	1680
35	CCTGTTACAA GAGAAGGAAA TATGAGTTAT TTAAGTTTAA CTTTTTTATG TGAATTCAGA	1740
	GTTTATTTAT CGAGGGAAAT ATGTACAAAG AAGCTTCAAA TGGAATATTT ACCGACATTC	1800
40	CTTATACATG ACAGACACTT GCCTACATGG GAAGATGATG TTAATAATAA AATGATTTTT	1860
	AAATGGAAAA AAAAAAAA AAAAAN	1886
45		
43	(2) THEODINATION FOR CEO ID NO. 94.	
	(2) INFORMATION FOR SEQ ID NO: 94: (i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1774 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
,,	CTCAGCTACC GTATACAGTA GGACATAACC CCATTTCACA TGCACTACAC TGAGACTTGC	6
	CTCCTCTCCC CCCACATTGA AGATGTTCTT TTTTCATAAC TATATACTAT TCCATTGCAT	12
60	CICCICITCC CCCACATIGA AGAIGITCIT TITICATAAC TATATACTAT TCCATTCCAT	

	GAATATTCTG	TAATTTATTT	AATCCCCTAT	GGATTGATAA	TTAGGTTCAT	TATAGATAGA	180
	AGTGTAATTA	ACATTCCTGT	ACATGTATTT	TGCTACTTGT	GTGGGTATTT	CTGTAGGATG	240
5	AATAACTAGA	AATTTATTGG	ATCAGGTTTC	ACATTTGCAG	TTTTGAAAAC	TACTACCAAA	300
	AAGATTTCAC	CAATTTACAA	CTCCATCATT	AGTAAGAATG	CCTCTTTGCC	TATAGTCTGC	360
10	CAACCCTGAA	TCCTTAAAAA	TTTTTGCCAA	TCTGGTAGGC	AAAATTTCTT	TCTTTTCTTT	420
10	GAATATTAAT	GAGGAGGAAC	ATCTTTTCAT	GTTTCTTGGC	CATTTGCATT	TCCTATTATG	480
٠	AATTGCTTTT	GCCCATTTTC	CTTTTTTTAA	TTATGAAAGT	CTAATGACTA	CCTTCTCATT	540
15	GTATAAAAAA	CACAGTTCTT	TGAATAGAGA	GACCCTTTTC	TCCAATGCTA	CCAATCACAT	600
	TCCACTTACC	ACAGTTTAAC	ATACATCCTC	TAGTCACCTT	TCCGTACGAA	TATACATACA	660
20	САТАААААСА	CTTTTTACAT	AAATAGGATC	TCATATTCTG	TAGCTTTTTA	AAATTTTGGT	720
20	СТСААААААА	GATAACAGGT	СТТТАААТТТ	CTTTAATGGT	TGAATATGAT	ТАААТАСТАТ	780
	GAAAATGCCA	TTATTTATTC	CCTTAATTTT	TTTCCTCTCG	СТАТТАСАТТ	GCCAAAGTAA	840
25	ACATCCTATT	CAGATGTCTT	TGTGCATGTG	TGTGAATATT	TCTTTAGTCT	GGAGTCCAGT	900
	AAGGTGGATT	TTTGGATCAA	AGGGTTTGTT	CTCTGTCCAC	CTTCAGTCTT	CCCAAAGGCC	960
30	TTCATAACTG	TATTTTCACC	AAGTGTATGG	AGAATGTTCA	TTTCCCCATA	TAACCATACC	1020
30	TACACTTGAT	AGTTTTTATC	TGTTGGGCGA	AAAAGAACCT	TITCITATTT	TGCATTTCCC	1080
	TGATTATAAA	AAAAAATGGT	GAGATTGGGG	TTATTTTCAT	GTTTATTGGC	CATTTATAGT	1140
35	TTACTGTGGA	TTGTTTGTAT	CCCTTACCTG	CTTTCTATTG	CGTTATCTCT	GGATATATTG	1200
	TTTTTATTTG	TTCAGCATCT	CCTTCCCCAT	CTTCTGGTAA	CACAACCTTT	ATTTATTTGT	1260
40	GGGGAACCTA	TTCCCTGTGG	CTTAGGTGAG	CATGTGACCA	GCCTGCCT	CCTGAGTCCC	1320
40	ACAGCTTCCT	AGCCACAGTG	ATAAAAGAAT	GGGTATATAA	CTTAAGCCAG	GCTAAGGAAA	1380
	GCCCTTAACA	GAACTTCTGC	TGGAACTACT	GGAAAGAAGG	CTTTATGGAG	ATCCCAGGAA	1440
45	CCAAGGACCA	TGTAAGCCTG	AATTTGTGCC	ATGTGGAGAG	AGTCTGTCTG	AGGAGAAACT	1500
	CGGATGCTAG	CAGAAATGGA	AAGAGAACTA	AGTTCTGATG	TCATTTTTCT	GGAGGCCCTA	1560
50	GATCCAGCTG	TGCCTAAAGC	CTGCCCTACT	CCGGACTTTA	AAGTTTTGTG	AGCCAATAAA	1620
50	GTCCCTTTCT	TGTTTAAGAT	AATTGAATTG	AGTTTCTGTT	CTGATTAATA	TAGGTTATTT	1680
	GTATTTTCTT	ATTGATTTGT	AGAAAACCTT	TGTAATITTA	AATTCTAGAC	TTTATGCACT	1740
55	АТАТААСТТА	ATAAAATTAG	CATGGCCTTC	CATG			1774

^{60 (2)} INFORMATION FOR SEQ ID NO: 95:

PCT/US98/04493

316

(i) SEQUENCE CHARACTERISTICS:

WO 98/39448

5

(A) LENGTH: 2503 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

10	GGCACGAGCG AAGGCAAGGG GGCACCAGCT CAGGACTGCA TCTGCCTGCC ATTTCCCTTC	60
	CACTCCTCT TTCTGGAGTC TGACATTAGA AAGCCAGCGA GAAGGAAGAT TCAAACAACC	120
15	AACCCTGATT TCCTGCTTCT CCTTTTCATG AGTGTTCCTG TGGTCTCTGC ACCTCCTTTC	180
	TGTCCCCCGG CAGAGGGCAG TAGAGATGGC CGGCCCAAGG CCTCRGTGGC GCGACCAGCT	240
	GCTGTTCATG AGCATCATAG TCCTCGTGAT TGTGGTCATC TGCCTGATGT TATACGCTCT	300
20	TCTCTGGGAG GCTGGCAACC TCACTGACCT GCCCAACCTG AGAATCGGCT TCTATAACTT	360
	CTGCCTGTGG AATGAGGACA CCAGCACCCT ACAGTGTCAC CAGTTCCCTG AGCTGGAAGC	420
25	CCTGGGGTG CCTCGGGTTG GCCTGGGCCT GGCCAGGCTT GGCGTGTACG GGTCCCTGGT	480
	CCTCACCCTC TTTGCCCCCC AGCCTCTCCT CCTAGCCCAG TGCAACAKTG ATGAGAGAGC	540
1	GTGGCGSCTG GCAGTGGGCT TCCTGGCTGT KTCCTCTGTG CTGCTGGCAG GCGGCCTGGG	600
30	CCTCTTCCTC TCCTATGTGT GGAATGGGTC ARGCTCTCCC TCCCGGGGCC TGGGTTTCTA	660
	GCTCTGGGCA GCGCCCAGSC CTTACTCATC CTCTTGCTTA TAGCCATGGC TGTGTTCCCT	720
35	CTGAGGGCTG AGAGGCTGA GAGCAAGCTT GAGAGCTGCT AAAGGCTTAC GTGATTGCAA	780
33	GGGTTCAGTT CCAACCATGG TCAGAGGTGG CACATCTGCT CAGCCATCTC ATTTTACAGC	840
	TAACGCTGAT CTCCAGCTCC AGCGATGGAA CCCACTACAG AGGAGGTGGG GCCCCTGTGT	900
40	CAAAGAGGCC GAGGGCAGC AAGGGCAGMC AGGGCACCTG TGACTTCTTA GTACAAGATT	960
	GTCTGTCCTT CAGGACTTCC AAGGCTCCCA AAGACTCCCT AAACCATGCA GCTCATTGTC	1020
45	ACACCAATTC CTGCTTTAAT TAATGGATCT GAGCAAATCT TCCTCTAGCT TCAGGAGGGT	1080
-43	GGGGAGGGAG TGATTGCTGT CATGGGGCCA GACTTCCAGG CTGATTTGCC AAATGCCAAA	1140
	ATGAAACCTA GCAAAGAACT TACGGCAACA AACGAGGACA TTAAAAGAGC GAGCACCTCA	1200
50	GTGTCTCTGG GGACATGGTT AAGGAGCTTC CACTCAGCCC ACCATAGTGA GTGGGCCGCC	1260
	ATAAGCCATC ACTGGAACTC CAACCCCAGA GGTCCAGGAG TGATCTCTGA GTGACTCAAC	1320
55	AAAGACAGGA CACATGGGGT ACAAAGACAA GGCTTGACTG CTTCAAAGCT TCCCTGGACC	1380
55	TGAAGCCAGA CAGGGCAGAG GCGTCCGCTG ACAAATCACT CCCATGATGA GACCCTGGAG	1440
	GACTCCAAAT CCTCGCTGTG AACAGGACTG GACGGTTGCG CACAAACAAA CGCTGCCACC	1500
60	CTCCACTTCC CAACCCAGAA CTTGGAAAGA CATTAGCACA ACTTACGCAT TGGGGAATTG	1560

	moreona granda como como moreo a la acomora do concreta more a marca da del	1620							
5	TGTGTATTIT CTAGCACTTG TGTATTGGAA AACCTGTATG GCAGTGATTT ATTCATATAT								
	TCCTGTCCAA AGCCACACTG AAAACAGAGG CAGAGACATG TACTCTGGTG TGATCTCTTG	1680							
	TCCTCAGTGT CTCTTCTGGG CTCCTGTCCC TCTTGCTTTA TAGCTAGCTG CCCGGGGACC	1740							
	AAGGTACAGG TGAAAGCAAG GTAGCAGCTT GCGGGAGGAG GCCTGTCTGG CTTACCAGTC	1800							
10	TATACACTGT GGCCTCAACC TCCCAGACAG GGCAGAGAAC TGTGGGCAGC TCGTTTGCTT	1860							
	TCTAGGCTGG CTGGAGAGGT GGGAGCTCAT TGATAGACTC ATGATGGAAA CTATTTTTGA	1920							
15	AACAGGCTTC CTCCTTCAGG AGAGATCATG CGGACTAAAC TGTAGCAATT CCAGTGCACC	1980							
	TOGCAGTGAT COTTTTCTTT GCAAAGTACT GTCTCTTTGG TTCCAGTAAG TTGGACCACC	2040							
	ACATGACATY ATTITCCCTG GAACCTGGTC ACTGACTAAC ACAGACAATT GGGACTCCAG	2100							
20	AGCCTCAAGA GCCAGGAGAG GGCACAGTAC ATACAGAGGG AGTCAAAATGG GATCTCATTT	2160							
	TGAGTCCTGC CTTCCGCACA CTCAGAACGG CANCCCCAAG GCCCGGAGTG TCCAGGGCTT	2220							
25	CTGGCCTGAG GTGAATCTGC CAGGCCCAAG AAGGCACAAA GGTAGGAGCA CAGAGAGCCC	2280							
	CATTCCCACA GGCGGKCGGC CCAGCAGCAC CAGTGGAAGC TCAGCTGTCC TCCAGCTGCT	2340							
	CTCGGCAGAC AGTTCAGTGC ACAGTTTATG CCCTAGCTGA AAAAGATCTC CCGGACGTAT	2400							
30	TTCAGCACAT CCTCTTCCTC CTCCTCCTCA GGGCTCCTGC TACAGGCAGA GCTGGAACCC	2460							
	CCCGGCCTCT GGGAAGGGCT GAGGCCTGGA GYCAGTGCCT GTC	2503							
35									
33									
	(2) INFORMATION FOR SEQ ID NO: 96:								
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2801 base pairs								
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double								
	(D) TOPOLOGY: linear								
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:								
	CTGGAAAGCC GAGGGTAGCC GAGCGGGGCG GCCCCTCTGG AGCGGCGGGT GCTCGGGCTG	60							
50	CCGTCCGCTC CGCCAGAAGC ACCGAGCAGC CGAGCCGGGG CCCGCCGCCC TCCTCCTCCA	120							
	TGAGGCCCGA GTGAGGCGCG GCGCTATAG CCGACCCGCG GCGCCTTCCC CCCGCGTCCT	180							
	ATCGCGAGCG CACGACMAGC GGCCCCTGGA GGAGGAGGCG GAGGAGGAGG AGCATGTCGG	240							
55	ACGGTTTCGA TCGGGCCCCA GGTGCTGGTC GGGGCCGGAR CCGGGGCCTG GGCCGCGGAG	300							
	GGGGCGGCC TRAGGGCGGC GGTTTYCCGA AMGGARCGGR GCCTGCTGAG CGGRCGCGGC	360							
	ACCIOCOCO COLLOCALA COCCOCCOCO MYCMCCADOC AMOCCOCOMO OCOLDECA	420							

	GGACGACCCC	GCCGCCAGGG	GCCCAGTGCG	AGGTCCCCGC	CAGCCCCCAG	CGGCCTTCCC	480
5	GCCCGGGGC	GCTCCCAGAG	CAAACGAGGC	CCCTGAGAGC	TCCACCTAGT	TCACAGGATA	540
	AAATCCCACA	GCAGAACTCG	GAGTCAGCAA	TGGCTAAGCC	CCAGGTGGTT	GTAGCTCCTG	600
	TATTAATGTC	TAAGCTGTCT	GTGAATGCCC	CTGAATTITA	CCCTTCAGGT	TATTCTTCCA	660
10	GTTACACAGA	ATCCTATGAG	GATGGTTGTG	AGGATTATCC	TACTCTATCA	GAATATGTTC	720
	AGGATTTTTT	GAATCATCTT	ACAGAGCAGC	CTGGCAGTTT	TGAAACTGAA	ATTGAACAGT	780
	TTGCAGAGAC	CCTGAATGGT	TGTGTTACAA	CAGATGATGC	TTTGCAAGAA	CTTGTGGAAC	840
15	TCATCTATCA	ACAGGCCACA	TCTATCCCAA	ATTTCTCTTA	TATGGGAGCT	CGCCTGTGTA	900
	ATTACCTGTC	CCATCATCTG	ACAATTAGCC	CACAGAGTGG	CAACTTCCGC	CAATTGCTAC	960
20	TTCAAAGATG	TCGGACTGAA	TATGAAGTTA	AAGATCAAGC	TGCAAAAGGG	GATGAAGTTA	1020
20	CTCGAAAACG	ATTTCATGCA	TTTGTACTCT	TTCTGGGAGA	ACTITATCIT	AACCTGGAGA	1080
	TCAAGGGAAC	AAATGGACAG	GTTACAAGAG	CAGATATTCT	TCAGGTTGGT	CTTCGAGAAT	1140
25	TGCTGAATGC	CCTGTTTTCT	AATCCTATGG	ATGACAATTT	AATTTGTGCA	GTAAAATTGT	1200
	TAAAGTTGAC	AGGATCAGTT	TTGGAAGATG	CTTGGAAGGA	AAAAGGAAAG	ATGGATATGG	1260
30	AAGAAATTAT	TCAGAGAATT	GAAAACGTTG	TCCTAGATGC	AAACTGCAGT	AGAGATGTAA	1320
,	AACAGATGCT	CTTGAAGCTT	GTAGAACTCC	GGTCAAGTAA	CTGGGGCAGA	GTCCATGCAA	1380
	CTTCAACATA	TAGAGAAGCA	ACACCAGAAA	ATGATCCTAA	CTACTTTATG	AATGAACCAA	1440
35	CATTTTATAC	ATCTGATGGT	GTTCCTTTCA	CTGCAGCTGA	TCCAGATTAC	CAAGAGAAAT	1500
	ACCAAGAATT	ACTTGAAAGA	GAGGACTTTT	TTCCAGATTA	TGAAGAAAAT	GGAACAGATT	1560
40	TATCCGGGGC	TGGTGATCCA	TACTTGGATG	ATATTGATGA	TGAGATGGAC	CCAGAGATAG	1620
, ,	AAGAAGCTTA	TGAAAAGTTT	TGTTTGGAAT	CAGAGCGTAA	GCGAAAACAG	TAAAGTTAAA	1680
	TTTCAGCATA	TCAGTTTTAT	AAAGCAGTIT	AGGTATGGTG	ATTTAGCAGA	ACACAAGAGA	1740
45	GCAAGAAAAT	GTGTCACATC	TATACCAAAT	TRAGGATGTT	GAGTTATGTT	ACTAATGTAT	1800
	GCAACTTTAA	TTTTGTTTAA	CACTATCTGC	CAAAATAAAC	TTTATTCCCT	ATAACTTAAA	1860
50	ATGTGTATAT	АТАТАТАТА	GTTTATTATG	TACAGTTAAT	TCTACTGTTT	TGGCTGCAAT	1920
30	AAAATCGATT	TTGAAATAAA	TGAAATGTTG	AAAATTTTGC	TAGTTGGTTA	GATGCTTATC	1980
	CTTTAAATTC	TACTTTTCTT	'GAGGGGAAAA	AGTCTTCGTC	TGGAAATACA	TATTACTGCA	2040
55	AAAATGTAGO	ATCCTTTTT	AGGTAGGAGT	ATTATAGCTT	YCATTTTAGT	TKGACATTTA	2100
	GTGTCCCAAT	GAATTGAATT	TCAAATATGA	ATCATAATCT	' TGAAAATCTT	' TAGCACTAAA	2160
60	GTCTTGGGA	TATATCAACA	ACTGATTTAC	: ATATGCAGAT	GCTATTIGNA	TACCAAGGC	2220

PCT/US98/04493

	TTTTTAAATG TCATGGGGG GAAAAACCCA ACTTGGTGGA ACTCCCAGCT AAACAACCAA	2280
	GACTTCACTG GAAGATTTAT TCCAATTCTA GGAATTGTTC TTTTTTATTT TTATTTTTTC	2340
5	AACTGRCTAA CTTCATTACC TTAAAGCCTA GAACATTATT CTGCTTTATT TATATGGCTT	2400
	TCTCACTTT ATTTTGTAGC AKGGGTTGCA TCGACTTTTT TACTAGAGAA TTTTACTAGA	2460
10	TATTTGTCAT TCAAGTTTTC ATCTGCTTTA TAATTGATAC ACCTTGAGGG TCACTTTTCT	2520
10	AATACTTTTA CTATAATGTG GTACCACCTC AGCCCTAATA AATAATATTT TTACCTAATG	2580
	TCAAATCTTT TTCCAGCTAA CTAAAAACTG TGTACAAAAG GATTGCTTGT AAATATGCAT	2640
15	GTAAATAGTT CTGTTAATAA CCCACTGTTT TACATTTGGT ACATCTGTGT CTGCTAATAC	2700
	AGITAGCTIT CTCACTTITC TGCTTGTTTG TTCAGTCTGA ATTAAAATTA GACTTTGAAA	2760
20	атааасстта ааааааааа ааааааааа ааааастсса с	2801
	(2) INFORMATION FOR SEQ ID NO: 97:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1631 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
Şυ	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
	· · · · •	
35	ATGGAGCCAA AGACAATCAC TGATGCTTTG GCTTCTAGTA TAATTAAGAG TGTGCTGCCT	60
	AATTITCTIC CATACAATGT CATGCTCTAC AGTGATGCTC CAGTGAGTGA ACTGTCCCTC	120
	GAGCTGCTTC TGCTTCAGGT TGTCTTGCCA GCATTACTCG AACAGGGACA CACGAGGCAG	180
40	TGGCTGAAGG GGCTGGTGCG AGCGTGGACT GTGACCGCCG GATACTTGCT GGATCTTCAT	
	1001011100 0001001100 100010010 01010010	240
	TCTTATTTAT TGGGAGACCA GGAAGAAAAT GAAAACAGTG CAAATCAACA AGTTAACAAT	300
45		
45	TCTTATTTAT TGGGAGACCA GGAAGAAAAT GAAAACAGTG CAAATCAACA AGTTAACAAT	300
45	TCTTATTTAT TGGGAGACCA GGAAGAAAAT GAAAACAGTG CAAATCAACA AGTTAACAAT AATCAGCATG CTCGAAATAA CAACGCTATT CCTGTGGTGG GAGAAGGCCT TCATGCAGCC	300 360 420
45 50	TCTTATTTAT TGGGAGACCA GGAAGAAAAT GAAAACAGTG CAAATCAACA AGTTAACAAT AATCAGCATG CTCGAAATAA CAACGCTATT CCTGTGGTGG GAGAAGGCCT TCATGCAGCC CACCAAGCCA TACTCCAGCA GGGAGGGCCT GTTGGYTTTC AGCYTTACCG CCGACCTTTA	300 360 420
	TCTTATTTAT TGGGAGACCA GGAAGAAAAT GAAAACAGTG CAAATCAACA AGTTAACAAT AATCAGCATG CTCGAAATAA CAACGCTATT CCTGTGGTGG GAGAAGGCCT TCATGCAGCC CACCAAGCCA TACTCCAGCA GGGAGGGCCT GTTGGYTTTC AGCYTTACCG CCGACCTTTA AATTTTCCAC TCAGGATATT TCTGTTGATT GTCTTCATGT GTATAACATT ACTGATTGCC	300 360 420 480
50	TCTTATTTAT TGGGAGACCA GGAAGAAAAT GAAAACAGTG CAAATCAACA AGTTAACAAT AATCAGCATG CTCGAAATAA CAACGCTATT CCTGTGGTGG GAGAAGGCCT TCATGCAGCC CACCAAGCCA TACTCCAGCA GGGAGGGCCT GTTGGYTTTC AGCYTTACCG CCGACCTTTA AATTTTCCAC TCAGGATATT TCTGTTGATT GTCTTCATGT GTATAACATT ACTGATTGCC AGCCTCATCT GCCTTACTTT ACCAGTATTT GCTGGCCGTT GGTTAATGTC GTTTTGGACG	300 360 420 480 540
	TCTTATTTAT TGGGAGACCA GGAAGAAAAT GAAAACAGTG CAAATCAACA AGTTAACAAT AATCAGCATG CTCGAAATAA CAACGCTATT CCTGTGGTGG GAGAAGGCCT TCATGCAGCC CACCAAGCCA TACTCCAGCA GGGAGGGCCT GTTGGYTTTC AGCYTTACCG CCGACCTTTA AATTTTCCAC TCAGGATATT TCTGTTGATT GTCTTCATGT GTATAACATT ACTGATTGCC AGCCTCATCT GCCTTACTTT ACCAGTATTT GCTGGCCGTT GGTTAATGTC GTTTTGGACG GGGACTGCCA AAATCCATGA GCTCTACACA GCTGCTTGTG GTCTCTATGT TTGCTGGCTA	300 360 420 480 540

60 AGGGTTCCCT TGGATCAGAC TCCTCTTTT TATCCATGGC AGGACTGGGC ACTTGGAGTC

	CTGCATGCCA AAATCATTGC AGCTATAACA TTGATGGGTC CTCAGTGGTG GTTGAAAACT	900
5	GTAATTGAAC AGGITTACGC AAATGGCATC CGGAACATTG ACCTTCACTA TATTGTTCGT	960
3	AAACTGGCAG CTCCCGTGAT CTCTGTGCTG TTGCTTTCCC TGTGTGTACC TTATGTCATA	1020
	GCTTCTGGTG TTGTTCCTTT ACTAGGTGTT ACTGCGGAAA TGCAAAACTT AGTCCATCGG	1080
10	CGGATTTATC CATTITTACT GATGGTCGTG GTATTGATGG CAATTITGTC CTTCCAAGTC	1140
	CGCCAGTTTA AGCGCCTTTA TGAACATATT AAAAATGACA AGTACCTTGT GGGTCAACGA	1200
15	CTCGTGAACT ACGAACGGAA ATCTGGCAAA CAAGGCTCAT CTCCACCACC TCCACAGTCA	1260
15	TCCCAAGAAT AAAGTAGTTG TCTCAACAAC TTGACCTTCC CCTTTACATG TCCTTTTTTG	1320
	TGGACTICTC TCTTTGGAGA TITTTCCCAG TGATCTCTCA GCGTTGTTTT TAAGTTAAAT	1380
20	GTATTTGACT TGTGTTCTCA GCATTCAGAG AGCAGCGGTG TAAGATTCTG CTGTTCTCCC	1440
	TOGATCTTCT GACATTACTG CTGTCTGAGA TTTGTATATG TGTAAATACA AGTTCCTTGA	1500
25	TACCCTAAAA CCTTGGATTA AACAGAATGT GCATTGTACA TCTTTAAACA AAATGTATAT	1560
23	TAATTTATTA AATCTAGTTG TCACTTTAAA AAAAAAAAA AAAAAACTCG AGGGGGCCC	1620
	GGTACCCAAA T	1631
30		
	(2) INFORMATION FOR CEO ID NO. 99.	
35	(2) INFORMATION FOR SEQ ID NO: 98:	
33	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 504 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
	CCGACCTGGG CGAGAAGTAG GGGAGGGCAC GAGCCGCCGC GGTGGCGGTT GCTATCGCTT	60
45	CCGAGCTGGG CGAGAAGTAG GGGAGGGCAC GAGCCGGC GGTGGCGGTT GCTATCGCTT	00
7.5	CCCACAACCM ACTICACCCAC CCACCTICACA ACACTITICACC CAAACTICCTIC CTCCTTCCTTC	120
	CGCAGAACCT ACTCAGGCAG CCAGCTGAGA AGAGTTGAGG GAAAGTGCTG CTGCTGGGTC	120
	TGCAGACGCG ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT	180
50	TGCAGACGCG ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT GAAAGGCCAC GTGAAGATGC TGCGGCTGGA TATTATCAAC TCACTGGTAA CAACAGTATT	180 240
50	TGCAGACGCG ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT GAAAGGCCAC GTGAAGATGC TGCGGCTGGA TATTATCAAC TCACTGGTAA CAACAGTATT CATGCTCATC GTATCTGTGT TGGCACTGAT ACCAGAAACC ACAACATTGA CAGTTGGTGG	180 240 300
	TGCAGACGCG ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT GAAAGGCCAC GTGAAGATGC TGCGGCTGGA TATTATCAAC TCACTGGTAA CAACAGTATT CATGCTCATC GTATCTGTGT TGGCACTGAT ACCAGAAACC ACAACATTGA CAGTTGGTGG AGGGGTGTTT GCACTTGTGA CAGCAGTATG CTGTCTTGCC GACGGGGCCC TTATTTACCG	180 240 300 360
50 55	TGCAGACGCG ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT GAAAGGCCAC GTGAAGATGC TGCGGCTGGA TATTATCAAC TCACTGGTAA CAACAGTATT CATGCTCATC GTATCTGTGT TGGCACTGAT ACCAGAAACC ACAACATTGA CAGTTGGTGG AGGGGTGTTT GCACTTGTGA CAGCAGTATG CTGTCTTGCC GACGGGGCCC TTATTTACCG GAAGCTTCTG TTCAATCCCA GCGGTCCTTA CCAGAAAAAG CCTGTGCATG AAAAAAAAAA	180 240 300 360
	TGCAGACGCG ATGGATAACG TGCAGCCGAA AATAAAACAT CGCCCCTTCT GCTTCAGTGT GAAAGGCCAC GTGAAGATGC TGCGGCTGGA TATTATCAAC TCACTGGTAA CAACAGTATT CATGCTCATC GTATCTGTGT TGGCACTGAT ACCAGAAACC ACAACATTGA CAGTTGGTGG AGGGGTGTTT GCACTTGTGA CAGCAGTATG CTGTCTTGCC GACGGGGCCC TTATTTACCG	180 240 300 360

(2) INFORMATION FOR SEQ ID NO: 99:

5

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1416 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

15	GGCACGAGGG AGGGAGCCCT CTCCGTTGGG TGACTCTTGT GTGCCCTTTA GACAGGCTGG	60
13	CCTGCCGGTT CCACAGGGTA CAGTTAGGAC TTGAGTCTTT CTTTTTCTGT TTTGAGTTGG	120
	TGAGTGAGTG ATAGGGTAAC ATGGGCCTTC AGGATGACCC CTTGGAACTG TGCCGAGTTC	180
20	CTTAAATCTC AGCTGGGATC CTGGACCTGG GAGGCCCCTG TGAGGGCCAG CTCTGGAAAA	240
	ACCTGGGAGT TGATGCCGGA GCTGTGGAAG AACTCTGCTC GAGGGCAGGG TGCCCTGGAA	300
25	CACTGGTAGT TCTGGGGCTG GGAGGGAGAG GGGCTCCGGC TTTCTCTGAA ATGAACACTG	360
	CTCTTCAGCA GTTCAAGTAC TTGTTCTCAA AACATTTTCT AATTGATTGG TAGGTTTTCA	420
	TAAGCATTGT TTCTTTAAGG CATGGAAAGG GAAGAATGCT CAAGCAAGTC ATGTTTGTTT	480
30	TCAGTGGGAT GGGCCCGCGT TCTCACTGCT GGGGGCTTCC CCTTCATGTG GCACCTTTGT	540
	GCAGGGGCCA CCAGGCAGAC TCTTCCCACC TTCTCCCACT GAAGCACCAA GGGGCTTGGA	600
35	ACCGTAATTT GGCTAATCAG AGGCATTTTT TTTGTCCTAG TATCTTTCAC ACTTGTCCAA	660
-	CCGTCTTATT TTTTTAAAAG TTCTGTTGCT TGTATTAACA CGAAACTAGA GAGAAATAGT	720
	TTCTGAAGCC AGTTTATTGT GAAGATCCCC AAGGGGAGGT TCGGTAGAGA AAAATAGTAA	780
40	GCTGGTTTAG AAACTGACGA GGGCAAACAG CCAGGACGCA TTGGAGAGGA ATTTGCCAAA	840
	GATCTACCCT GAGATAACGC CTGTCCAGTG TCTTCACCAC GTGAATAACC AGCGCTCCAA	900
45	AGTGTTTTC TGCTTTGAAA AAAAAATTC CACAAGCTTT TAAAGGTGCA TTTAAGAATC	960
	CATGTGACTT TAGAATGGAA CTGCCGGCCC TGGCAACTGT CACGTGTGCT AGAAGGTTCG	1020
	ATGCCTCTGG AATGCATGTG ATACTCATCT CCATTTTGTT TCCTTGATTG CATTTTTGTT	1080
50	CTTTTAGCAG ATCTGTCCCT GTGGGTGGTG TCTAAGAAGT CGGACACCTT GGTTTTTGTG	1140
	TTAGATTGAG CTGGGCAGCT GCAATCAGCT TCTTTATATG CAAATTAGGC ACGACCCATC	1200
55	TGTGGTTCCT GGTTGGTGGC TAATGAAGTG AGGGGAGGGA GGGATGTCAC CCCAAAAGTA	1260
	GGCCCTCCCA TTGGCTTTGG CCAGGCCAGA CACTTCACAT CGTTTACATG GTTCTGTGTA	1320
	ATTITAAAGT TTATGTGTAT AAAGCGAAGC TGTTTCTGTG AAACTGTATA TTTTGTAAAT	1380
60	AAATATATTG CTACTTGAAA AAAAAAAAA AAAAAA	1416

5 (2) INFORMATION FOR SEQ ID NO: 100:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2847 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

15	GGCTAGGACA ATTTTGGTGC TTTACCTATC TCTGCAAAGA CTGGAGAATT TGGCATACCA	60
	TTAATTACAA CCACCAATCA TATCCAACAA AAGTACCCTA AAAGAAGGAC CAGTGGCCAC	120
00	TCTCGAAAAA ATTTAAGTAT CAGAAGATTA AAAAGATTTT AGGATTTGGA AGCTTGTATT	180
20	GTCTTTCCCC AATAATCATT GTTTGATCTC CAAATAGTAG CCTTATATTA GCAATRGACA	240
	GATCATTGGT TCTCCATATC TGATCATATG TTACTACTTT GGAATCAGTA TTTGGGCAAA	300
25	TTCAAGCATT TATGCAGTGG ATATAAATGG AAATATAAAA ATATTTGCCA ACCTGTCTCA	360
	GTAACTTATC ATATCTCTGT GNATCCTCAA GGAAAGCACT TITGCTTITA CTTAGAAAGC	420
20	GTTTCAGATT TGCTTTATAG ACTCCTGCTG TCTTCAGTAC CTGATAAAAC TTTAACCAGG	480
30	GAAGCATTAA ACACAGTGCA GCAGCTTTTG CCCAGGCTTC TAAGTTCCTG CCGGCAGCAT	540
	TTATCAATGT AAGAACTAGG ATGCTTCCTG CAGTGGCACT ACCTTCCCCT AGAGCTGGAG	600
35	CATGCTGCTT GGCCTTAAGC CCCAGCATGA TGAGGCTTCC CTCCTGCCAG GTCAGTAAAA	660
	GTTAGAGAGC TCAGAATTGG GTCTTGCCTG GGTGCAGGTG GCAGGGTTTG CTGAAACCCC	720
40	TAAAGAGAAG TCACCAAGGG AGGCAGGTAA TGAATGTTTC CAGAATCAGT CKGATACTCA	780
40	TAGCAATTTC TGGCTATCTT TCAAATGTTG AATTTCTGGA TGCTGAGAGG GACTTTGATT	840
	TGATATCATT AAATCCAGGA CAGTCCCAAG AAGTGCTTGG AGTCTCGGCT CTGACAGCCC	900
45	AAGAAGGGAA ATAACTTGTA TTAAGGAACA ACTATGAGCC AGGCCCTGAG CTGTCTCTTA	960
	GATAATAAAA CAGATGGGGA GTGGAAGAGT CATTTGCTTC AAGTTATACA GCTAGGAAAT	1020
50	ACTCAAGCCA AATCTTGAAC GCAGCTCCCC CTAATTCTGT GGACAGGCAC TTTGTACCAC	1080
50	ACACCATGGT CCACCTAAAA ACAGAAGGAT AAAAAGACTT CAGGTTTTCC CACTGTGTGC	1140
	TGACCATCCC AATITATGAA TCTTCTTCAA AATGACATTT CACAGTTATA GTTAGGGCTC	1200
55	AGAAATGGCA TTGAGGTAGC CTTATTTCTC CCCTTTAGCA GATGCTTTAA GTACACATTG	1260
	CTGACTTGAG CCCACCCCA GGAGTTAGGA GAACATTTCC TTTTTCATGC CATCTTCCAT	1320
60	AAATAAGGTG TTTCTTGGCC TTCAAAGATA TAGAACTTTG CAGCAGTAGT AAAAGTGAAG	1380

	GGTGTTCTGC	TCTCTACTCA	ACTITATITG	AAAATGTCTG	CAGCTTCACT	CCTGTAGAAA	1440
	AGGAAATCTT	CATATITIAG	TAAACTTAGC	CGCCAGTGTA	CTCTGTGAGG	ATGTGGCAAT	1500
5	TCAAAGTCCA	GTGAATCTGG	CTCTCTTACT	GATTCCTGGT	TTTAGTGTGT	GTGTCGGGGG	1560
	AGTGTGTACC	татататааа	GGACAAGTGT	GATATGTGTG	TATATGTATA	TACATACATA	1620
10	CATGTCCACA	CACACACACA	CAATATTTGA	GAGCTAAGGA	AAACTCAAAG	CAGCCCCTTC	1680
10	ATTATCTTGC	GTACTACTTC	AAAGATTICT	GTCAGCCCTA	ATTACAAGTG	TCACCATATA	1740
	GTTGGGGCTT	AGGTACTTGC	TTACAGGAAG	AGCAATTCCC	TAGCAAAGGT	CATTAGCTCC	1800
15	TAAGGCACTG	AGTCAAAGTG	ACAGCCCTGA	AGGAAATTGC	ACTCCAGCCC	TCCTCCAGGA	1860
	TGTCTAATAA	GATGGGAAAC	TTGGATGCCC	AGCCATTITG	GTGACCTGAG	AGTCTAACTA	1920
20	CTCCAGTTAG	ACCTAAGGGC	ACAAATGCAG	AATTCATGAC	CITIGIAGITG	TGGCAGGGTC	1980
20	TAGGAAGTCC	TCTCTCCCCA	AGTAGAAAAT	ATTCTCTTGC	CATTCCTGAA	ATTCCACATT	2040
	CATATAATGG	CTGTGCAATA	CATGCTTCTC	AATAAGAAAA	TTAACTGCAT	GTTTACTGTG	2100
25	TGCTGATCAC	ATCAGATTIT	TATGTTTAAA	AAAATCTCAT	TATGGNTTGA	GTCCAGCCCA	2160
	GCTCTAAGAG	AAAAAGAAGG	CCCATATGGG	AGACTTCAGT	CTCATTATTA	TTGCCTTTAT	2220
30	CCAGCAGTGC	TTATRAAGCC	CCCTACCCTG	TCCCATTCCA	GAAACCATAA	GACTCAGGCA	2280
50	GTTCTTGATT	CTGGAGGCCT	GCCTGGTAAG	ATAAGATAGT	ATAATTIGGA	ACTGAGAACA	2340
	TACCAGAAAC	AGCAGAACGA	GGGCCAGAGC	AGAAAAATGA	AAATAAGTGG	AGACACTTAT	2400
35	GGATACATTG	GTGCAAAAAA	AGCCACGGGS	CCCATACTGG	GCTTGATATG	ACTTTGAGGG	2460
	GACAGCAGAT	TAATACTTAA	TGAGGGTTAA	ACCTGACCAG	TCTTTCTACA	GTGACAGGCC	2520
40	ACACTGCATG	AATGGGGAGA	ACCAATGAAT	CCATTGTCCT	CTGCCTATTT	TCCTGTGCAC	2580
	AGTCACATTC	CCTCCTTAGG	AATCTTCCCC	TTCCACCCTT	TACATTAAAC	AAGGGAACAC	2640
	TGAATCTTTC	AAGGGAATTA	CACGTTTGGG	TTAATGTTTC	AGTATATCAT	TTTCATACTG	2700
45	TAAATTATTT	TGTAAGAGAG	ATTTACTGCT	ATCCCAGGAT	GTTCGGACTT	GGTGCCCCTG	2760
	TGCATTTGGA	AATCAATAAA	CTATTACTGG	AAATGCCAAA	ААААААААА	AAAAAAAAN	2820
50	NAAAAAACTC	GAGGGGGCC	CGTACCC				2847

(2) INFORMATION FOR SEQ ID NO: 101:

55 (i) SEQUENCE CHARACTERISTICS:

60

(A) LENGTH: 1394 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:

_	GAGATTOGTG GAGGAGAGTA AATAATCTAG AGGCAAGAGT TCAGTGAGGG CCAAGGGGGA	60
5	CCCCCAGAAA AAGGTATGGA GCTAACTCAT CTCTTTTACA AGGGGTGGCC ATGACTTACT	120
	GTTGCAAAGT ACTCAGTGTA TATTTAATGT TGATTGTTGA ATTTTAGTTA CGAGAGGGAA	180
10	GAACAATTIT ACTICTOTCC TTATTICACT TGCTGAAAAG CTGTGGGACA AAATGTATGG	240
	AATAGACAAG GCCACTITCT TTGTGATTTC TGCTTTTCAT GCATATTATT TTATTTACCC	300
	ATAATTTCCA AGAGGTTIGG CGTTCCGCTC TCCTGCTTTT TTCTTTCATC CACCCCTTTC	360
15	CTTTTTTTGG AAGGGGGTTA TATATGAGAG TTCATTGAAG AAGTCCAGTG AGGCTGAAGT	420
	AAAGGGGCAA GATAGGGCAG TTAACTAAAG AGCACTTTAT TTCTTTGAAG CCTTTCTAAG	480
20	AAAGAAATGG GGGTGCGAGT GGCTTGAATC TCCCATGATG TTGGAGGGCA CTTAGTGGGG	540
	TTGAAGTATG ACATAATATT TCCCATTGGG GAAAGGAGAA TTTCTCTTAG AGGGTGGCAA	600
25	AATGCCTTTG CCCAGTGTCC CTATTTTAGG CATCTTTTCC TICCTTATTC CTTCCAGTCA	660
25	GGGTGTGTCC TATACAAAAC TTCCCATCAG TTCTCCTCAA TATTCCCCAT TTGTAAATGA	720
	TCACTTCTCT TTTCTAAACC CTTTTCCTGT TCAGATCCAT ACAGGATTTG CAAGGGTAGG	780
30	ATCATACATG CAAATGCCCC TTGTTCATCT GTGTCTTCTG CAAACTAGTC TCATGAAGAA	840
	TTCTGGCGTG CAGCAGGGTA GCTGAAGTTT GGGTCTGGGA CTGGAGATTG GCCATTAGGC	900
25	NICNCTGAGA TTCCAGCTCC CTTCCACCAA GCCCAGTCTT GCTACGTGGC ACAGGGCAAA	960
35	CCTGACTCCC TTTGGGCCTC AGTTTCCCCT CCCCTTCATG AAATGAAAAG AATACTACTT	1020
	THICTIGITG GICTAGCATT GCTGGACACA AAGTGTAGTC ATTATTGTTG TATTGGGTGA	1080
40	TGTGTGCAAA ACTGCAGAAG CTCACTGCCT ATAAGAGGAA ATAAGAGAGA AAGTGGAGGA	1140
	GAGGGACAAA AGGAGTAATT ATTTGGTATA GATCCACCCA TCCCAACCTT TCTCTCCTCA	1200
15	GTCCCTGCTC CTCATGTTTC TGGTTTGGTG AGTCCTTTGT GCCACCACCC ATAATGCTTT	1260
45	GCATTGCTGC ATCCTGGGAA GGGGGTATAT GGTCTCACAA GTTGTTGTCA TTGTTTTTTT	1320
	GCATGCTTTC TTAATAAAAA AAAAAAAAAA ATGTTTANAG TTTTATCTTA AAAAAAAAAA	1380
50	AAAAAAAA ACCC	1394

55 (2) INFORMATION FOR SEQ ID NO: 102:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 794 base pairs
 - (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

PCT/US98/04493 WO 98/39448

325

(D)	TOPOLOGY:	linear
-----	-----------	--------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102: 5 GCMRCGAGGC GGAGTAAAGG GACTTGAGCG AGCCAGTTGC CGGATTATTC TATTTCCCCT 60 CCCTCTCTCC CGCCCCGTAT CTCTTTTCAC CCTTCTCCCA CCCTCGCTCG CGTACCATGG 120 180 10 GTCCGCGCCC GGCGGCGGCG GGAGCCCAGG AGCCTGCCCC GCCCTGGGGA CGAAGAGCTG 240 CASCTCCTCC TGTGCGGTGC ACGATCTGAT TTTCTGGAGA GATGTGAAGA AGACTGGGTT 300 15 TGTCTTTGGA CACGCTGATC ATGCTGCTTT CCCTGGCAGC TTTCAGTGTC ATCARTGTGG 360 GTITCTTAMC TCATCCTGGC TCTTCTCTCT GTCACCATCA RCTTCAGGAT CTACAAGTCC 420 GTCATCCAAG CTGTWCAGAA RTCAGAARAA GGCCATCCAW TCCAAAGCCT ACCTGGACGT 480 20 AGACATTACT CTGTCCTCAG AAGCTTTCCA TAATTACATG AATGCTGCCA TGGTGCACAT 540 CAACAGGGCC CTGAAACTCA TTATTCGTCT CTTTCTGGTA GAAGATCTGG TTGACTCCTT 600 25 GAAGCTGGCT GTCTTCATGT GGCTGATGAC CTATGTTGGT GCTGTTTTTA ACGGAATCAC 660 CCTTCTAATT CTTGCTGAAC TGCTCATTTT CAGTGTCCCG ATTGTCTATG AGAAGTACAA 720 GACCCAGATT GATCACTATG TTGGCATCGC CCGAGATCAG ACCAAGTCAA TTGTTGAAAA 780 30 794 GATCCCAAGC AAAA 35 (2) INFORMATION FOR SEQ ID NO: 103: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1544 base pairs 40 (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

45 TTTGCTTGCT AGTCTGAACC AAAGAGTTGT TTGGGCATTT GCTGTGTTGG CCATTTCTGG 60 AGCAAGAGG TCTTCTTCCT CCTTCCCCCA GCCAGCCAGC TGTCCTGGGG CCAGGCTTTC 120 50 180 CTGGGTGGAA AGAAGTATAC CTTTCCCTGG GGCCCTAGGA TAGCAAAGTG AGCCATAGTG GGCCAGGCTG CCCTCCATGC TGGGCCCCAG CCCAGGTCTG CACTCGCCTG GATCACCTTC 240 300 TTTGAGCCTT AGCCATCTCC TGTCAGGTAG GAATGAACTT GCCAGCCTTC AGGYTCGTTC 55 AGCTATGACC ATCTGTGCGG TCAGGGTACA CTCAGCTCTC CTCCCCAACT CCAGCAGCCT TTAAGAAGTG TCCCTTTGGC GCCCCCTGGA GGCAGAGCAC TGAGCTGGAC CCTGGGTAGA 420 60 CTCCCACAGG GAGGACGGAG CTGGCCTCAG GAGTGGGACA CCCAGACTTG GCAGGGCCTT

	CAAGAGGCCT GTGTGGGGGC CCCAGGAATC CTTAGCTGAA GCGGGGAGAC TCACTCTCCA	540
	TCTCAGGAAA TTCTAGCCCT TGCCCTCAGG GAGCCACGGT TGAGGGTGAG GCCCAACACC	600
5	TECETTAGGG CCCTGGGTGG GCAAGTCTGG GCCCTGGGGT AGGGAGGGAG ACTCAGGCCC	660
	ACACTTGGGT ATTTTCTAAT TTCAGACAAA CACACACTCA GCGCGCACTC ACTGATTCCT	720
10	ACACATTGCC AAGATTTCAC ACATGTGACC AGGGGCCACC AAAGTCCCTG TGACCTTTGT	780
	GACTAGGATC CTAATTTCTC TATTTTCTCC TGGGTGCCTG GGTCTGTGTC ACCTGGGGCA	840
	GTGTGGATAA TGTTTAGTTC TGTGACACTG TTTTTTGGGG GTGGCACCTG GTTCTCCGAT	900
15	GCCTGGGCTG GTGTCAGGCC CAGGACTGTA GTGCTGGGAG CAGTAAAGCT CAGCTCTGTG	960
	TAATGAGIGA TGCTATGGCT TGCTCGTGTC TTATGATCCA ATCCTTTTCT ACATCAGCCC	1020
20	TIGITITETT TTATEGETAG TETTATETEG CETEGTTATT TEETTEEGEG GAGGAGAGEG	1080
	TITGCTAATC TGCTCCCAGC CCAACCTATT ACCACCCCAC CTCGCTGGGA CCTACTGCTC	1140
	GGGAGGCAGC AGACAGGAG CCACCAGCAG TGGCTTCCTG GCCCTGTGCT GGGGGTGGGG	1200
25	GGAAGCTGGG GGCACATGTG GCCCTTGCCT TCTGAGCAGC TCCCAGTGCC AGGGCTTTGA	1260
	GACTITCCCA CATGATAAAA GAAAAGGGAG GTACAGAAGT TCCAATTCCC TITTTATTTT	1320
30	GCTGGTTGGT ATCTGTAAAT GTTTAATAAA TATCTGAGCA TGTATCTATC AACGCCAAGA	1380
	ATTTCAAAGT CTCCTTCAAC AATATGAGGC TTTTAGGATG TTTATATTCC TTCATCCCTC	1440
	TTGTTTCCCA GGTTTTGCAG GGAAAAAAAG TCTGGAATTA TAGATACAGC TTATTATTAA	1500
35	ATTTGTTCTT GCATAAAAAA AAAAAAAAA AACNCNNGGG GGGG	1544
40	(2) INFORMATION FOR SEQ ID NO: 104:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 871 base pairs	
45	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	60
50	ACCCACGCGT CCGNCTTGTC CACCCGGGGG CGTGGGAGTG AGGTACCAGA TTCTGGGGGGG	
	TIGGCCCCGA CGCCTCTGTT CTCGGAATCC GGGTGCTGCG GATTGAGGTC CCGGTTCCTA	120
5	5 AGGTGGGTCG CTGTCCACCC GGGGGCGTGG GAGTGAGGTA CCAGATTCAG CCCATTTGGC	180
	CCCGACGCCT CTGTTCTCGG AATCCGGGTG CTGCGGATTG AGGTCCCGGT TCCTAACGGA	240
_	CTGCAAGATG GAGGAAGGCG GGAACCTAGG AGGCCTGATT AAGATGGTCC ATCTACTGGT	300
6	.0	

WO 98/39448		PCT/US98/04493
	327	

	CTTGTCAGGT GCCTGGGGCA TGCAAATGTG GGTGACCTTC GTCTCAGGCT TTCCTGCTTT	360
	TCCGAAGCCT TCCCCGACAT ACCTTCGGAC TAGTGCAGAG CAAACTCTTC CCCTTCTACT	420
5	TCCACATCTC CATGGGCTGT GCCTTCATCA ACCTCTGCAT CTTGGCTTCA CAGCATGCTT	480
	GOGCTCAGCT CACATTCTGG GAGGCCAGCC AGCTTTACCT GCTGTTCCTG AGCCTTACGC	5,40
10	TOGCCACTGT CAACGCCCGC TGGCTGGAAC CCCGCACCAC AGCTGCCATG TGGGCCCTGC	600
10	AAACCGTGGG AGAAGGAGCG AGGCCTGGGT GGGGAGGTAC CAGGCAGCCA ACAGGTTCCC	660
	GATCCTTAAC GCCAGNTGCG AGAGAAGGAC CCCAAGTACA GTGCTCTCCG CCAGAATTTC	720
15	TTCCGCTACC ATGGGCTGTC CTCTCTTTGC AATCTGGGCT GCGTCCTGAG CAATGGGCTC	780
	TGTCTCGCTG GCCTTGCCCT GGAAATAAGG AGCCTCTAGC ATGGCCCCTG CATGCTAATA	840
	AATGCTTCTT CAGAAAAAAA AAAAAAAAAA A	871
20		
25	(2) INFORMATION FOR SEQ ID NO: 105:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 404 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
35	GGCACGAGTT ATAGCATGGC ATTCATACTT TTGTTTTATT GCCTCATGAC TTTTTTTGAGT	60
	TTAGAACAAA ACAGTGCAAC CGTAGAGCCT TCTTCCCATG AAATTTTGCA TCTGCTCCAA	120
	AACTGCTTTG AGTTACTCAG AACTTCAACC TCCCAATGCA CTGAAGGCAT TCCTTGTCAA	180
40	AGATACCAGA ATGGGTTACA CATTTAACCT GGCAAACATT GAAGAACTCT TAATGTTTTC	240
	TTTTTAATAA GAATGACGCC CCACTTTGGG GACTAAAATT GTGCTATTGC CGAGAAGCAG	300
45	TCTAAAATTT ATTITTTTAA AAAGAGAAAC TGCCCCATTA TTTTGGTGGG GTTGGTTTTT	360
7.7	AATTINIAAT NIGAAAAATT TITITGGGGT TITITGGGGCC ATGG	404
50	10)	
	(2) INFORMATION FOR SEQ ID NO: 106:	
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1542 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:	

	GTCAGACAGG TGGAGCCGCC GGGGCAGGAG TCTCAAAGAG CCAGGCTCCA GGAGAGGAAG	60
	GGCTCTRCGA GAGGAGAGAG GAGAGCCCTG GAGAGGAGAG GCTGGAGAGT CCTTAGCCAG	120
5	GATGGAGGCT GTTGTGAACT TGTACCAAGA GGTGATGAAG CACGCAGATC CCCGGATCCA	180
	GGGCTACCCT CTGATGGGGT CCCCCTTGCT AATGACCTCC ATTCTCCTGA CCTACGTGTA	240
10	CTTCGTTCTC TCACTTGGGC CTCGCATCAT GGCTAATCGG AAGCCCTTCC AGCTCCGTGG	300
10	CTTCATGATT GTCTACAACT TCTCACTGGT GGCACTCTCC CTCTACATTG TCTATGAGTT	360
	CCTGATGTCG GGCTGGCTGA GCACCTATAC CTGGCGCTGT GACCCTGTGG ACTATTCCAA	420
15	CAGCCCTGAG GCACTTAGGA TGGTTCGGGT GGCCTGGCTC TTCCTCTTCT CCAAGTTCAT	480
	TGAGCTGATG GACACAGTGA TCTTTATTCT CCGAAAGAAA GACGGGCAGG TGACCTTCCT	540
20	ACATGTCTTC CATCACTCTG TGCTTCCCTG GAGCTGGTGG TGGGGGGTAA AGATTGCCCC	600
20	GGGAGGAATG GGCTCTTTCC ATGCCATGAT AAACTCTTCC GTGCATGTCA TAATGTACCT	660
	GTACTACGGA TTATCTGCCT TTGGCCCTGT GGCACAACCC TACCTTTGGT GGAAAAAGCA	720
25	CATGACAGCC ATTCAGCTGA TCCAGTTTGT CCTGGTCTCA CTGCACATCT CCCAGTACTA	780
	CTTTATGTCC AGCTGTAACT ACCAGTACCC AGTCATTATT CACCTCATCT GGATGTATGG	840
20	CACCATCTTC TTCATGCTGT TCTCCAACTT CTGGTATCAC TCTTATACCA AGGGCAAGCG	900
30	GCTGCCCCGT GCACTTCAGC AAAATGGAGC TCCAGGTATT GCCAAGGTCA AGGCCAACTG	960
	AGAAGCATGG CCTAGATAGG CGCCCACCTA AGTGCCTCAG GACTGCACCT TAGGGCAGTG	1020
35	TCCGTCAGTG CCCTCTCCAC CTACACCTGT GACCAAGGCT TATGTGGTCA GGACTGAGCA	1080
	GGGGACTGGC CCTCCCCTCC CCACAGCTGC TCTACAGGGA CCACGGCTTT GGTTCCTCAC	1140
40	CCACTTCCCC CGGCAGCTC CAGGGATGTG GCCTCATTGC TGTCTGCCAC TCCAGAGCTG	1200
40	GGGGCTAAAA GGGCTGTACA GTTATTTCCC CCTCCCTGCC TTAAAACTTG GGAGAGGAGC	1260
	ACTCAGGGCT GGCCCCACAA AGGGTCTCGT GGCCTTTTTC CTCACACAGA AGAGGTCAGC	1320
45	AATAATGTCA CTGTGGACCC AGTCTCACTC CTCCACCCCA CACACTGAAG CAGTAGCTTC	1380
	TOGGCCAAAG GTCAGGGTGG GCGGGGCCT GGGAATACAG CCTGTGGAGG CTGCTTACTC	1440
50	AACTTGTGTC TTAATTAAAA GTGACAGAGG AAACCANAAA AAAAAAAAAA AAAAACTCGA	1500
50	GGGGGCCCG TACCCAAATC GCCGGTATGA TCGTAAACAA TC	1542

(A) LENGTH: 2327 base pairs
(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 107:

⁽i) SEQUENCE CHARACTERISTICS:

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

5	GGTAGCTCAN TGCAGTGAAA TAGTCTTACT GGAAACAAAG CCCTTTATCA AGAATAATTA	60
	ACTOTTCCCT TITCTTTTG GAGAGGTGCT TTGTTTCTGA TCGGACCATT TCACTGCAGC	120
10	AAGCAACACA GTATTCTRAG CAGAAGATCG GGACTTGAGG CCATGTTGCG GAGGGCCAGT	180
	RACATTATCT GGACTCTGGA GTGTGAGGAA TATGGACTCC ACTCTTCACT ATATTCACAR	240
	CGATTCAGAC TTGAGCAACA ATAGCAGTTT TAGCCCTGAT GAGGAAAGGA GAACTAAAGT	300
15	ACAAGATGTT GTACCTCAGG CGTTGTTAGA TCAGTATTTA TCTATGACTG ACCCTTCTCG	360
	TGCACAGACG GTTGACACTG AAATTGCTAA GCACTGTGCA TATAGCCTCC CTGGTGTGGC	420
20	CTTGACACTC GGAAGACAGA ATTGGCACTG CCTGAGAGAG ACGTATGRGA CTYTGGCCTC	480
	AGACATGCAG TGGAAAGTTC GACGGAACTC TAGCATTCTC CATCCACGRG CTTGCAGTTA	540
	TICTIGGAGA TCAATIGACA GCIGCAGATC TGGTTCCAAT TITTAATGGA TTTTTAAAAG	600
25	ACCTCGATGA AGTCAGGATA GGTGTTCTTA AACACTTGCA TGATTTTCTG AAGCTTCTTC	660
	ATATTGACAA AAGAAGAGAA TATCTTTATC AACTTCAGGA GTTTTTGGTG ACAGATAATA	720
30	GTAGAAATTG GCGGTTTCGA GCTGAACTGG CTGAACAGCT GATTTTACTT CTAGAGTTAT	780
	ATAGTCCCAG AGATGTTTAT GACTATTTAC GTCCCATTGC TCTGAATCTG TGTGCAGACA	840
25	AAGTITCITC TGTTCGTTGG ATTTCCTACA AGTTGGTCAG CGAGATGGTG AAGAAGCTGC	900
35	ACGCGGCAAC ACCACCAACG TTCGGAGTGG ACCTCATCAA TGAGCTTGTG GAGAACTTTG	960
	GCAGATGTCC CAAGTGGTCT GGTCGGCAAG CCTTTGTCTT TGTCTGCCAG ACTGTCATTG	1020
40	AGGATGACTG CCTTCCCATG GACCAGTTTG CTGTGCATCT CATGCCGCAT CTGCTAACCT	1080
	TAGCAAATGA CAGGGTTCCT AACGTGCGAG TGCTGCTTGC AAAGACATTA AGACAAACTC	1140
4.5	TACTAGAAAA AGACTATTTC TTGGCCTCTG CCAGCTGCCA CCAGGAGGCT GTGGAGCAGA	1200
45	CCATCATGGC TCTTCAGATG GACCGTGACA GCGATGTCAA GTATTTTGCA AGCATCCACC	1260
	CTGCCAGTAC CAAAATCTCC GAAGATGCCA TGAGCACAGC GTCCTCAACC TACTAGAAGG	1320
50	CTTGAATCTC GGTGTCTTTC CTGCTTCCAT GAGAGCCGAG GTTCAGTGGG CATTCGCCAC	1380
	GCATGTGACC TGGGATAGCT TTCGGGGGAG GAGAGACCTT CCTCTCCTGC GGACTTCATT	1440
<i></i>	GCAGGTGCAA GTTGCCTACA CCCAATACCA GGGATTTCAA GAGTCAAGAG AAAGTACAGT	1500
55	AAACACTATT ATCTTATCTT GACTTTAAKG KKWAWKMMWW KCTCAGMSRA TTATAMTTSW	1560
	CWMMRARGSM WYMAAWSCTK SWECTCYWCC KSRSTGRMKG MMRCTCTAGA AYTRGYRGAK	1620
60	CMYYYKSGCT KMWGGAAKKS GGCASGAGCC AGAGACCTGC ATTGCTTTCT CCTGGTTTTA	1680

PCT/US98/04493 WO 98/39448

330

	TTTAACAATC GACAAATGAA ATTCTTACAG CCTGAAGGCA GACGTGTGCC CAGATGTGAA	1740
	AGAGACCTTC AGTATCAGCC CTAACTCTTC TCTCCCAGGA AGGACTTGCT GGGCTCTGTG	1800
5	GCCAGCTGTC CAGCCCAGCC CTGTGTGTGA ATCGTTTGTG ACGTGTGCAA ATGGGAAAGG	1860
	AGGGGTTTTT ACATCTCCTA AAGGACCTGA TGCCAACACA AGTAGGATTG ACTTAAACTC	1920
0	TTAAGCGCAG CATATTGCTG TACACATTTA CAGAATGGTT GCTGAGTGTC TGTGTCTGAT	1980
	TTTTTCATGC TGGTCATGAC CTGAAGGAAA TTTATTAGAC GTATAATGTA TGTCTGGTGT	2040
	TTTTAACTIG ATCATGATCA GCTCTGAGGT GCAACTTCTT CACATACTGT ACATACCTGT	2100
15	GACCACTCTT GGGAGTGCTG CAGTCTTTAA TCATGCTGTT TAAACTGTTG TGGCACAAGT	2160
	TCTCTTGTCC AAATAAAATT TATTAATAAG ATCTATAGAG AGAGATATAT ACACTTTTGA	2220
20	TTGTTTTCTA GATGTCTACC AATAAATGCA ATTTGTGACC TGTAAAAAAA AAAWAAAAAA	2280
	ACTCGAGGG GGCCCGGTAC CCAAATCGCC GATATGATCT AANCATC	2327
25		
	(2) INFORMATION FOR SEQ ID NO: 108:	
3 0	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1062 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:	
	GGCCGCCGAG GCGCAACAGC CGTTCTGTCA GCTCTGGGTC CAACCGGACT AGCGAANATC	60
	TTCCTCATCC TCATCATCGT CTTCCTCATC CCGATCTCGG TCCAGGTCCC TCTCCCCCCC	120
40	ACACAAGAGG TGGCGAAGGT CCAGCTGTAG TTCCTCTGGA CGTTCTCGAA GATGCTCTTC	180
	CTCTTCTTCG TCATCATCTT CCTCTTCGTC TTCCTCATCC TCATCATCCA GTTCTCGAAG	240
45	CCGCTCACGA ATCCCCATCC CCCCGCCGGA GRAAGTGACA GGAGGCGGCG GTACAGCTCT	300
	TATCGTTCAC ATGACCATTA CCAAAGGCAA AGAGTGCTAC AAAAGGAGCG TGCAATAGAA	360
	GAAAGAAGGG TGGTCTTCAT TGGAAAGATA CCTGGCCGCA TGACTCGATC AGAGCTGAAA	420
50	CAGAGGTTCT CCGTTTTTGG AGAGATTGAG GAGTGCACCA TCCACTTCCG TGTCCAAGGG	480
	GACAACTACG GCTTCGTCAC TTATCGCTAT GCTGAGGAGG CATTTGCAGC CATTGAGAGT	540
55	GGCCACAGC TGCGGCAGGC AGATGAGCAG CCCTTTGATC TCTGCTTTGG GGGCCGAAGG	600
	SWGTNCTGCA AGAGGAGCTA TTCTGATCTT GACTCCAACC GGGAAGACTT TGACCCAGCA	660
	CCTGTAAAGA GCAAATITGA TTCTCTTGAC TTTGACACAT TGTTGAAACA GGCCCAGAAG	720

60

	AACCTCAGGA GGTAACCTTG GGCCCTTCCC TGCTATCCTT TTTCTCCTTT GGAGGTGCCC	780
	AACCTCCTCC ACCCCCTTCC CCTACTCTAG GGGAGAGAGC TGCTAGTGAG ATGACTGTTT	840
5	TATAAAGAAA TGGAAAAAAG TGAAATAAAA AATATGTTGA ATCAGATTTT TTAAAAGGGG	900
	TATTTGTTTT TTTATAACAG GTATTGAAAC AAGTTAACTT GCATTCCTAT GTAAGATAGG	960
	AGGGCTGAG GGGATCCCCA GTGTTTGGAA CATAAGTCAC TATGCAGACT AATAAACATC	1020
10	AACTAGAGAG NAAAAAAAA AAAAAAAAA ATTTAAAAAA CT	1062
15	(2) INFORMATION FOR SEQ ID NO: 109:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2539 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:	
25	GAGAGACTCA CACTICTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA	60
	GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT	120
30	AGGCTTCCTG CCTTATGAAG CCGATGCAGA AATTTTGGCT GTGAAATTTC ACACTATGAT	180
	AACTGAGAAG TGGGGATTAA ATATGGAGTA TTGTCGTGGC CAGGCTTACA TTGWCTCTAG	240
	TGGATTTTCT TCCAAAATGA AAGTTGTTGC TTCTAGACTT TYAAGMKMRA TWKCCCCMAK	300
35	YWAWCKGAAC AMAMKCTGSW CYTCCWSYGC SKTRRMKRYC GYKSTATRRC WARWKSAKYM	360
	CCYGKKMIGS RRGTAWYISK TGCAYKAGGG AACAATIGAG GAAGITIGIT CTITTTICCA	420
40	TOGATCACCA CAACTGCTTT TAGAACTTGA CAACGTAATT TCTGTTCTTT TTCAGAACAG	480
	TAAAGAAAGG GGTAAAGAAC TGAAGGAAAT CTGCCATTCT CAGTGGACAG GCAGGCATGA	540
	TGCTTTTGAA ATTTTAGTGG AACTCCTGCA AGCACTTGTT TTATGTTTAG ATGGTATAAA	600
45	TAGTGACACA AATATTAGAT GGAATAACTA TATAGCTGGC CGAGCATTTG TACTCTGAGT	660
	GCAGIGTCAG ATTITGATTT CATTGTTACT ATTGTTGTTC TTAAAAATGT CCTATCTTTT	720
50	ACAAGAGCCT TTGGGAAAAA CYYCMAGGGG CAAACCTCTG ATGTCTTCTT TGCKKMMSRT	780
	ARMITITGAY ATRMARYACT RMMIKSAYIY AAYGRWGIGA CWSGAWAATA TTRAASIYTA	840

TACAATKAAT YWTRRYTTSM KRMAGMYAAT CCGAAAYTGT GGMAAMYAAA CTTGATATTC

AAATGAAACT CCCTGGGAAA TTCCGCAGAG CTCACCAGGG TAACTTGGAA TCTCAGCTAA
CCTCTGAGAG TTACTATAAA GAAACCCTAA GTGTCCCAAC AGTGGAGCAC ATTATTCAGG

AACTTAAAGA TATATTCTCA GAACAGCACC TCAAAGCTCT TAAATGCTTA TCTCTGGTAC

	CCTCAGTCAT GGGACAACTC AAATTCAATA CGTCGGAGGA ACACCATGCT GACATGTATA	1140
_	GAAGTGACTT ACCCAATCCT GACACGCTGT CAGCTGAGCT TCATTGTTGG AGAATCAAAT	1200
5	GGAAACACAG GGGGAAAGAT ATAGAGCTTC CGTCCACCAT CTATGAAGCC CTCCACCTGC	1260
	CTGACATCAA GTTTTTTCCT AATGIGTATG CATTGCTGAA GGTCCTGTGT ATTCTTCCTG	1320
10	TGATGAAGGT TGAGAATGAG CGGTATGAAA ATGGACGAAA GCGTCTTAAA GCATATTTGA	1380
	GGAACACTIT GACAGACCAA AGGICAAGIA ACIIGGCIII GCIIAACAIA AAIITIGAIA	1440
	TAAAACACGA CCTGGATTTA ATGGTGGACA CATATATTAA ACTCTATACR AKTAMGTCAG	1500
15	MGCTYYCTAC AKAYRAYTCM SWAWMTGTGG AAARYWSSTA MGMSWGCWKK TAMMRRTMCG	1560
	GMWWIYYYMK RKTYGAYMYW YGCGWMCGAG AAAAAGCCGT AAGGTGTATG TAGACCACTT	1620
20	AATCACTAAA TATCTTTGCC TATAGGACTC CATTGAATAC ATTAGCCATT GATAATCTAC	1680
	CTGTTTAAAT GGCCCCTGTT TGAACTCTCA AGCTTTGAAG ACCTACCTGT TCTTCCAGAA	1740
25	GAGAACGTTG AAAGTGCCAT GTTTCCTTTT GCGTGATCTC TGTTGATGGC ACTCTGGAAT	1800
25	TGTTTCCAGT TTAAKTCATT TTAGACATAG CATTTATTAT CACTGTGGAT CTCTACTTGT	1860
	TGGGTGTTAT GAATTCTTTG AAGAATATAT TTTGAAGAGG TGTGGGAGGA AGGAATACAT	1920
30	TTTATAAAAT GTTGTAGTGA AGCCCACAAT TGACCTTKGA CTAATAGGAG TTTTAAGTAT	1980
	GTTAAAAATC TATACTGGAC AGTTACAAGA AATTACCGGA GAAAAGCTTG TGAGCTCACC	2040
25	AAACAAGGAT TTCAGTGTAG ATTTTGTCTT TCTTGAACTT AAAGAAACAA ATGACAAAGT	2100
35	TTGAATGGAA AAGCCTGCTG TTGTTCCACA TCTCGTTGCT GTTTACATTC CTTTGTGGAG	2160
	CCTACATCTT CCTAAGCTTT TTAGCAGGTA TATGTTGAAC ACTTCTGTTT CATGGTTGAG	2220
40	ACAGAATCAG AGGCCATGGA TACTGACAAC TGATTTGTCT GTTTTTTTTC TCTGTCTTTT	2280
	TCCATGACTC TTATATACTG CCTCATCTTG ATTTATAAGC AAAACCTGGA AAACCTACAA	2340
45	AATAAGTGTT GTGGTTTATC TAGAAAAATA TGGAAAAATAT TGCTGTTATT TTTGGTGAAG	2400
45	AAAATCAATT TIGTATAGTT TATTICAATC TAAATAAAAT GIGAATTI'IG TIWWATTAAA	2460
	AATTWGGSAC AAABTBGHGG GOGDTCCAAA CHTWVTCGHG KAAMTTCTCT WAARMATYTK	2520
50	ATAAACMSCT TCACAATTC	2539

- (2) INFORMATION FOR SEQ ID NO: 110: 55
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1751 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

 $(\varphi_{i+1}, \varphi_{i+1}, \varphi_{i+1})$. The magnetic assumptions of the section φ_{i+1}

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

5	AGCATGAAGC CGATGGCCGT GGTGGCCAGT ACCGTCCTGG GCCTGGTGCA AAACATGCGT	60
J	GCGTTTGGCG GGATCCTGGT GGTGGTCTAC TACGTATTTG CCATCATTGG GATCAACITG	120
	TTTAGAGGGG TCATTGTGGC TCTTCCTGGA AACAGCAGCC TGGCCCCTGC CAATGGCTCG	180
10	GCGCCCTGTG GGAGCTTCGA GCAGCTGGAG TACTGGGCCCA ACAACTTCGA TGACTTTGCG	240
	GCTGCCCTGG TCACTCTGTG GAACTTGATG GTGGTGAACA ACTGGCAGGT GTTTCTGGAT	300
15	GCATATCGGC GCTACTCAGG CCCGTGGTCC AAGATCTATT TTGTATTGTG GTGGCTGGTG	360
15	TOGTOTOTOA TOTOGOTOAA COTOTTTOTO GCCCTGATTO TOGAGAACTT COTTOACAAG	420
	TGGGACCCCC GCAGCCACCT GCAGCCCCTT GCTGGGACCC CAGAGGCCAC CTACCAGATG	480
20	ACTGTGGAGC TCCTGTTCAG GGATATTCTG GAGGAGCCCG GGGAGGATGA GCTCACAGAG	540
•	AGGCTGAGCC AGCACCCGCA CCTGTGGCTG TGCAGGTGAC GTCCGGGCTG CCATCCCAGC	600
25	AGGGGCGGCA GGAGAGAGA GCTGGCCTAA CACAGGTGCC CATCATGGAA GAGGCGGCCA	660
	TGCTGTGGCC AGCCAGGCAG GAAGAGACCT TTCCTCTGAC GGACCACTAA GCTGGGGACA	720
	GGAACCAAGT CCTTTGCGTG TGGCCCAACA ACCATCTACA GAACAGCTGC TGGTGCTTCA	780
30	GGGAGGCGCC GTGCCCTCCG CTTTCTTTTA TAGCTGCTTC AGTGAGAATT CCCTCGTCGA	840
	CTCCACAGGG ACCTTTCAGA CAAAAATGCA AGAAGCAGCG GCCTCCCCTG TCCCCTGCAG	900
35	CTTCGGTGGT GCCTTTGCTG CCGGCAGCCC TTGGGGACCA CAGGCCTGAC CAGGGCCTGC	960
	ACAGGTTAAC CGTGAGTCTG TCTCATCTAT TCACAGCTGG GAATGATACT AATACCTCCG	1020
	ATTTTAGCCC AGCACCACAG GGTACGTTCC AGTTTTCTC TCTTTCCATA GCTGTAAGGC	1080
40	CCTTTCTGGG AATGGTTCTC ATTCTCCTTA ATCTATTATT GGGTCAGTTT TCCTGCATGT	1140
	CCCCAGCCTC CCATCACTGC CACCCACTCC CCACAGAGAT GCCCTGCTCA TCCGACTGGG	1200
45	GCTTTGACTC CCACACTGTG TACCCCTCTT GTGTGGACGC CCTGCTGCCA AAACCTTCAG	1260
	CAAACAGCTT TCCAAATGGA AGTTGTCACT GTCAGGCCTT TACAATCAGC AACAGCAAAA	1320
	TCTACATGCT GCTGAGGGTC CTGCCTCATT AAGATGCAAT AAATATGTAA GTACATAAAA	1380
50		1440
	AAATTATTAA GAATAGTAAG AATTCACCCA GCACTTTGGG AGGCCGAGGC GGGTGGATCA	1500
55	AND CONTROL AND CONTROL AND CONTROL CO	1560
	TACAAAAAAT TGGCCGGGCG CAGTGGCGGG CGCCTGTGGT CCCAGCTACT GGGGAGGCTG	1620
	AGCCAGGAGA ATGGCGTGAA CCCGGGAAGC GGAGCTTGCA GTGAGCCGAG ATTGCGCCAC	1680
60		

1117

	TGCAGTCCGC AGTCCAGCCT GGGCGACAGA GCGAGACTCC GTCTCAAAAA AAAAAAAAAA	L740
	TGCAGTCCGC AGTCCAGCCT GGGCGACAGA	1751
	адададада А	
5	•	
	(2) INFORMATION FOR SEQ ID NO: 111:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1117 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:	
	AATGTTGTGG TGGTAGCATT TGGGTTAATT CTRATTATAG AGTCTCTTGG AGAGCAATGT	60
20	CCATAAACTA ATCCCAAACA ACATTGTCTT TTTRATGTTG TAGTGAACAG CAGAGAATTT	120
20	CAAAGGACCT TGCTAATATC TGTAAGACGG CAGCTACAGC AGGCATCATT GGCTGGGTGT	180
25	ATGGGGGAAT ACCAGCTTTT ATTCATGCTA AACAACAATA CATTGAGCAG AGCCAGGCAG	240
	AAATTTATCA TAACCGGTTT GATGCTGTGC AATCTGCACA TCGTGCTGCC ACACGAGGCT	300
	TCATTCGTTA TGGCTGCCGC TGGGGTTGGA GAACTGCAGT GTTTGTGACT ATATTCAACA	360
30	CAGTGAACAC TAGTCTGAAT GTATACCGAA ATAAAGATGC CTTAAGCCAT TTTGTAATTG	420
	CAGGAGCTGT CACGGGAAGT CTTTTTAGGA TAAACGTAGG CCTGCGTGGC CTGGTGGCTG	480
	GTGGCATAAT TGGAGCCTTG CTGGGCACTC CTGTAGGAGG CCTGCTGATG GCATTTCAGA	540
35	AGTACTCTGG TGAGACTGTT CAGGAAAGAA AACAGAAGGA TCGAAAGGCA CTCCATGAGC	600
	TAAAACTGGA AGAGTGGAAA GGCAGACTAC AAGTTACTGA GCACCTCCCT GAGAAAATTG	660
40	AAAGTAGTTT ACAGGAAGAT GAACCTGAGA ATGATGCTAA GAAAATTGAA GCACTGCTAA	720
	ACCTTCCTAG AAACCCTTCA GTAATAGATA AACAAGACAA GGACTGAAAG TGCTCTGAAC	780
	TTGAAACTCA CTGGAGAGCT GAAGGGAGCT GCCATGTCCG ATGAATGCCA ACAGACAGGC	840
4.	5 CACTCTTTGG TCAGCCTGCT GACAAATTTA AGTGCTGGTA CCTGTGGTGG CAGTGGCTTG	900
	CTCTTGTCTT TTTCTTTTCT TTTTAACTAA GAATGGGGCT GTTGTACTCT CACTTTACTT	96
5	O ATCCTTAAAT TTAAATACAT ACTTATGTTT GTATTAATCT ATCAATATAT GCATACATGA	102
٦.	ATATATCCAC CCACCTAGAT TTTAAGCAGT AAATAAAACA TTTCGCAAAA GATTAAAGTT	108

GAATTTTACA GTTAAAAAAA ААААААААА АААААА

55

The second secon

⁽²⁾ INFORMATION FOR SEQ ID NO: 112:

335

(i)	SEQUENCE	CHARACTERISTICS:
-----	----------	------------------

(A) LENGTH: 1313 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

10	GGCAGAGGTT TTCTTATATT TTAAGTAAAT TTAAAGTGGC TATCAGAATA TTTATTCTTG	60
10	TTTGAGACTA CCAACATAAC TACGTGTTGA AGGTGCTTCA CAGAGAATAT ATTGCCTTTA	120
	ATGTGAAATA ATTTTCACCA ATGTTGCTAA CTTTAATAAA GTATAAAATT TGTAGAATAT	180
15	TCAGTTAAGT AGTTGGTAAC CCTTTTCTAT TTTAGTAAAA CTTAATGCAT GTTTACTTTT	240
	TTTTGAAAGA TGCAGACAAT CTCTTTGAAC ATGAATTGGG GGCTCTCAAT ATGGCTGCAT	300
	TACTACGAAA AGAAGAAAGA GCAAGTCTTC TTAGTAATCT TGGCCCATGT TGTAAGGCGT	360
20	TGTGCTTCAG ACGGGATTCT GCAATTCGAA AGCAGCTTGT TAAAAATGAG AAGGGCACCA	420
	TAAAACAAGC TTACACGAGT GCTCCAATGG TAGACAATGA ATTACTTCGA TTGAGTCTTC	480
25	GGTTATTTAA GCGGAAGACT ACTTGCCATG CTCCAGGACA TGAAAAGACT GAAGATAATA	540
	AACTITCACA GTCCAGTATC CAACAGGAAC TGTGTGTGTC TTAAGACCGA AGTTACAATA	600
	TGGTATTTTT GGTACTGTCT TCCTTCAGCA GTGCATATTC TTTTGCAAAG TTCTTTGGTT	660
30	TGACAAGCAT TAGTGACAAA GGCAGAAAAG ATTTATCAGC CATGCTAAAA GAGTGAAGAA	720
	TTTTGATCTT TAGAGACACT AGTTTTGGCC AACTTAAGAT TTTACGTTAA TTTTTACATA	780
35	GTATTTGACA CTCATGCAAA ATAATGTGAA AACATCTAGA TTTAGTAGTT TATTCTGCGC	840
	CTTTTGTTAA AACTGAAGAT TTTGGAAAAT GGTTGTCACT GCTCTTCCAG CCTATGAATA	900
40	TTTTTGTGAA ATGGAACCAT GGATTTATGT CTGGATCATC CATACAGAAC CAACAATTTT	960
40	ATTCAAAAAC AATGTGTTCA TCAAAGTAAT TGCTCACATT GTGCAGTACT ATGTTGTACA	1020
	GACCACGTGA AAGGGAATGC TGGTCTAGCT GGCGTGGTAT GTTTATAGGC GAATTTCAGC	1080
45	AGAAGGAAGC CAAAATAGTT TTTTCCTTTT GAAAGTTTTT TAAAAATTAT TTCATGGGTC	1140
	TTTTTTTTAA TTAATATGTG TGCATTGTTA CAATGTATGT TGGGATGTCT TTTGACCCTA	1200
	AATGCTTTTT TTGTTATCAG AGATTGTGTA CTATTTTTAT TTTTAATAAA TGTATCTTCC	1260
50	СТТТТМАЛАЛ АЛАЛАЛАЛАЛ АЛАЛАЛАЛАЛ АЛАЛАЛАЛАЛ АЛАЛАЛАЛАЛ АЛА	1313

55

60

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1654 base pairs

(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 113:

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:

ACAGGGACA MATACTITCT TECCTECT CAAGTACAAG AAGACTITCT CIACCATTIG CGTCTACACT TTATTITAAA AGCTATCCTT TECTAGTAGT ATTITATCAT GGCAATGGCA TOTTGCTACAC AACAGTCTT CATTACAGAC TGAAGGGAAG CATGTCCTTA COTAAAATAG TOCTGCTACT TTCCCTCCTA TIATAAGGAA ATTITACAGA TOCTAAAAAT ACCTTAATTT TOCTTGCTACT TTCCCTCCTA TIATAAGGAA ATTITACAGA TOCTAAAAAT ACCTTAATTT TOCTTGGAT TIATTTTAC CAAGTCACAA ATGTCTTTTT GATGTTTTGA GAATTGTTCT CATAGAATCA CAAATACTGA CATTTCATTA GATGATTATT TCCCAGGAT CCCCAAAGAG CAGTGGCAGT CCATGGCTTG GTTGAAGGCTA GAAATTTTCC TGCCCCTGGT GACCTGGTAAA 20 GCCTCCTGCT CGGAACCGTG TGAGTGGGTG AGGAAGATGA GAGATGGTCA GATGGAAGAG AGRAATACAT GAACTGCTCT GGCCTCTCTG GTTCTGTTCT	
TOTOTATA ACAGOTOTT CATTACAGAC TGAAGGGAG CATGICCTTA CITAAAATAG TICTICATAC TICCCICCIA TTATAAAGGAA AITITTACAGA TICTAAAAAT ACCITAATIT TICTITGATT TITATITTAC CAAGICACAA AIGICTITIT GAIGITITGA GAATIGITCT CATAGAATCA CAAATACTGA CATTICATTA GATGATTATT TICCTAGAAT CCCCAAAGAG CAGTGGCAGT CCATGGCTIG GITGAAGCTA GAAATATTC TICCTAGAAT CCCCAAAGAG AGRAATACAT GAACTGCTC GGCCCCTCTG GITCTGTTCT TGCCCCAGAG TITTITGAAAA CCAGCGGANA TRIGACTGACT TCACATGCTC AGCTTICATCA GCCTTITGIT TATITTTGTIG TCCTTAGAIT TCCCTGTTGI AAAAGGGCCA AGAAAAGTAA CTCATCATCT CTAACACACC ATGGCAGCTT AGCCAGGTAG TCTTAGTGGI GGTGTTTAGG CATAAGATAT GCTGATCATC AGTCTCAGGC CACAGTTTCC TICACTAATC GICCAGGCTG AGTGTTCTGT TCTCTTCCTG CCCATTTCCT TGAACCTCCT GCTCTAGCCT TGGCGGAGGG AGAGTGCTAT TTGCTTTTGT TCTCCCTCTG TCTTAGGAAA ACCCATCTTT AATATAGTTC TCACCACTG TTGGGGTTGT TCTCCCTCTG TCTTAGGAAA ACCCATCTTT AATATAGTTC TCACCACTG TTGGGGTTGT TTTGTGATTT TTTTTTTTTCT CCCAAGAACT CCTGGTTGTT ATTGGATTTT GTATTTTAAT ACAAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGGTGGAA AGGAAACAAA 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGCCAGGAC TTCCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTTT TACTTTCCTA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GGGGGAAGA AAATTACCA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GGGGGTAACAA AAATTCCTTA ATATCCTCTT GAAYCTACTC TCTTTCCTTC TGAAGATTAA TGAAGTTGAA AAATTCTTA ATATCCTCTT GAAYCTACTC TCTTTCCTTC TGAAGAATTAA TGAAGTTGAA AAATTCTTA ATATCCTCTT GAAYCTACTC TCTTTCCTTC TGAAGAATTAA TGAAGTTGAA AAATTCTTA ATATCCTGTT GAAYCTACTC TCTTTCCTTG CTAGAAAAAAA TTATAAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAAAT TGCAAGTTAA AATATCTTTA ATATCCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAAA TTATAAAATTAA ACAATGCTTT AAAAATTATT AAGAAAATTC CAAAATTGATA ATATTCTATG TTCTAAAAAAT TGCAAGGATG AAATTATTT AAGAAATTAT CCCAGGGATAA TTTTCTAAAATA TGTAAAATATAT TCATAAAATTAT AAAAATTATT AAGAAATATG TAAAAATCAGT TTTCTAAAATA TGTAAAATATG TCATAAAATTAA ACAATGCTTT GACTTATTTTGAG TAAAAATCAGT TTTTCTAAAATA TGTAAAATTAT TCATAAAATTAA ACAATGCTTT GACTTATTTTGAG TAAAAATCAGT TTTTTTAAAATAT	60
TICTGCTACT TECCTCCTA TENTAAGGAA ATTITEACAGA TECTAAAAAA ACATTGCTTCT TICTITGATT TITATITITAC CAAGTCACAA ATGTCTTTTT GATGTTTGA GAATTGTTCT CATAGAATCA CAAATACTGA CATTTCATTA GATGATTATT TECTAGAAT CCCCAAAGAG CAGTGGCAGT CCATGGCTTG GTTGAAGCTA GAAATTTTCC TGCCCCTGGT GACCTGGTAA 20 GCCTCCTGCT CGGAACCGTG TGAGTGGGTG AGGAAGATGA GAGATGGTCA GATGGAAGAG AGRAATACAT GAACTGCTCT GGCCTCTCTG GTTCTGTTCT	120
TICTITIGATE TITATITIAC CAAGTCACAA ATGTCTITIT GATGITITIGA GAATTGTTCT CATAGAATCA CAAATACTGA CATITICATIA GATGATTATE TECCEAGAAT CCCCAAAGAG CAGTGGCAGT CCATGGCTTG GTTGAAGCTA GAAATTTTCC TGCCCCTGGT GACCTGGTAA 20 GCCTCCTGCT CGGAACCGTG TGAGGGGGTG AGGAAGATGA GAGATGGTCA GATGGAAGAG AGRAATACAT GAACTGCTCT GGCCTCTCTG GTTCTGTTCT	180 .
CATAGANTCA CANATACTGA CAPTICATTA GATGATTATT TECCHAGANT CCCCANAGAG CAGTGGCAGT CCATGGCTTG GTTGAAGCTA GAAATTTTCC TGCCCCTGGT GACCTGGTAA 20 GCCTCCTGCT CGGAACCGTG TGAGTGGGTG AGGAAGATGA GAGATGGTCA GATCGAAGAG AGRAATACAT GAACTGCTCT GGCCTCTCTG GTTCTGTTCT	240
CATAGAATCA CAAATACTGA CATTTCATTA GATGATTATT TTCCTAGAAT CCCCAAAGAG CAGTGGCAGT CCATGGCTTG GTTGAAGCTA GAAATTTTCC TGCCCCTGGT GACCTGGTAA 20 GCCTCCTGCT CGGAACCGTG TGAGTGGGTG AGGAAGATGA GAGATGGTCA GATGGAAGAG AGRAATACAT GAACTGCTCT GGCCTCTCTG GTTCTGTTCT	300
20 GCCTCCTCT CGGAACCGTG TGAGTGGGTG AGGAAGATGA GAGATGGTCA GATGGAAGAG AGRAATACAT GAACTGCTCT GGCCTCTCTG GTTCTGTTCT	360
AGRANTACAT GAACTGCTCT GGCCTCTCTG GTTCTGTTCT TGGCCCAGAG TTTTTGAAAA GCAGCGGANA TINGACTGACT TCACATGCTC AGCTTTCTCA GCCTTTGTT TATTTTGTTG TCCTTAGATT TCCCTGTTGT AAAAGGGGCA AGAAAAGTAA CTCATCATCT CTAACACACC ATGGCAGCTT AGCCAGGTAG TCTTAGTGGT GGTGTTTAGG CATAAGATAT GCTGATCATC 30 AGTCTCAGGC CACAGTTTCC TTCACTAATC GTCCAGCTTG AGTGTTCTGT TCTCTTCCTG CCCATTTCCT TGAACCTCCT GCTCTAGCCT TGGCGGAGGG AGAGTGCTAT TTGCTTTTGT TCTCCCTCTG TCTTAGGAAA AGCCATCTTT AATATAGTTC TTCACCACTG TTGGGGTTGT TTTGTGATTT TTTTTTTCTT CCGAAGAACT CCTGGTTGTT ATTGGATTTT GTATTTTAAT ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTGAA AGGAAACAAA 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGGTTA TATACATCCA 50 TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATCATCCA GAAYCTACTC TGTTCCTTCG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATTA ACAACGGATG ATGTATTGAG TAAAATCAGT TTTGTAAAATA TGTAAAATATG TCATAAAATAA ACAATGCTTT GACTTATTTCC TAAAATCAGT TTTGTAAAATA TGTAAAATATG TCATAAAATAA ACAATGCTTT GACTTATTTTC	420
25 GCAGCGGANA TIMACTGACT TCACATGCTC AGCTTTCTCA GCCTTTTGTT TATTTTGTTG TCCTTAGATT TCCCTGTTGT AAAAGGGGCA AGAAAAGTAA CTCATCATCT CTAACACACC ATGGCAGCTT AGCCAGGTAG TCTTAGTGGT GGTGTTTAGG CATAAGATAT GCTGATCATC 30 AGTCTCAGGC CACAGTTTCC TTCACTAATC GTCCAGCTTG AGTGTTCTGT TCTCTTCCTG CCCATTTCCT TGAACCTCCT GCTCTAGCCT TGGCGGAGGG AGAGTGCTAT TTGCTTTTGT TCTCCCTCTG TCTTAGGAAA AGCCATCTTT AATATAGTTC TTCACCACTG TTGGGGTTGT ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTGAA AGGAAACAAA 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA AAAAGGTAGT CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AAATGAGTG GATAAATACA 50 TTCAAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATCCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTTTTGAG TAAAATCAGT TTTGTAAAATA TGTAAAATATG TCATAAAATAA ACAATGCTTT GACTTATTTCCTATTTTCCTTTCTTTCTTTTTTTTTT	480
TCCTTAGATT TCCCTGTTGT AAAAGGGGCA AGAAAAGTAA CTCATCATCT CTAACACACC ATGGCAGCTT AGCCAGGTAG TCTTAGTGGT GGTGTTTAGG CATAAGATAT GCTGATCATC AGTCTCAGGC CACAGTTTCC TTCACTAATC GTCCAGCTTG AGTGTTCTGT TCTCTTCCTG CCCATTTCCT TGAACCTCCT GCTCTAGCCT TGGCGGAGGG AGAGTGCTAT TTGCTTTTGT TCTCCCTCTG TCTTAGGAAA AGCCATCTTT AATATAGTTC TTCACCACTG TTGGGGTTGT ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTGAA AGGAAACAAA 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA AAAAGGTAGT TTAGGCAGTG CTAGAAATTAA TGAAGTTGAA AAGTGTGTTA TATACATCCA 50 TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATCCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATCG GATTTTTATT CCCAGGATTAT GGGTTCATT TTATGATATT ACGCAGGATG ATGTTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATTAA ACAATGCTTT GACTTATTTCC TTAAAATCAGT TTTGTAAATA TGTAAATTAG TCATAAATTAA ACAATGCTTT GACTTATTTCCTTC TAAAAATCAGT TTTGTAAATA TGTAAATTAG TCATAAATTAA ACAATGCTTT GACTTATTTCCTTC TAAAAATCAGT TTTGTAAATA TGTAAATTAG TCATAAATTAA ACAATGCTTT GACTTATTTCCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTC	540
ATGGCAGCTT AGCCAGGTAG TCTTAGTGGT GGTGTTTAGG CATAAGATAT GCTGATCATC ATGGCAGCTT AGCCAGGTAG TCTTAGTGGT GGTGTTTAGG CATAAGATAT GCTGATCATC AGTCTCAGGC CACAGTTTCC TTCACTAATC GTCCAGCTTG AGTGTTCTGT TCTCTTCCTG CCCATTTCCT TGAACCTCCT GCTCTAGCCT TGGCGGAGGG AGAGTGCTAT TTGCTTTTGT TCTCCCTCTG TCTTAGGAAA AGCCATCTTT AATATAGTTC TTCACCACTG TTGGGGTTGT ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGGTGGAA AGGAAACAAA 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA 50 TTCAAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATTACCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGCCTATAC ATAAATTAT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATTAG TCATAAATAA ACAATGCTTT GACTTATTTC	600
AGTOTICAGGO CACAGTITICO TICACTAATO GICCAGCITIG AGTGITICTOT TOTOTICCIG CCCATITICOT TGAACCITCOT GCTCTAGGOT TGGCGGAGGG AGAGTGCTAT TTGCTTTTGT TOTOCCOTOT TOTTAGGAAA AGCCATCTIT AATATAGTIC TICACCACTG TTGGGGTTGT TITGTGATIT TITTITUTIT CCGAAGAACT CCTGGTTGTT ATTGGATTIT GTATTITAAT ACAAATTATI GAATTITATA AGCTTGTACA CAATATITAA TIAGTGTGAA AGGAAACAAA 40 GAATGCAGGA AAAATAATIT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTA TATACATCCA 50 TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATCCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAAATCAGT TTTGTAAATA TGTAAATTAG TCATAAAATAA ACAATGCTTT GACTTATTTC	660
TCTCCCTCTG TCTTAGGAAA AGCCATCTTT AATATAGTTC TTCACCACTG TTGGGGTTGT TTTGTGATTT TTTTTTTCTT CCGAAGAACT CCTGGTTGTT ATTGGATTTT GTATTTAAT ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTGAA AGGAAACAAA 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTA TATACATCCA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA TTCAAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	720
TUTCCCTCTG TCTTAGGAAA AGCCATCTIT AATATAGTTC TTCACCACTG TTGGGGTTGT TITGTGATTT TTTTTTTCTT CCGAAGAACT CCTGGTTGTT ATTGGATTTT GTATTTAAT ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTGAA AGGAAACAAA 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA TTCTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA 50 TICAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATCCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	780
ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTGAA AGGAAACAAA 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA TTCTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AAGTGTGTTA TATACATCCA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA 50 TTCAAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATCCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	840
ACAAATTATT GAATTTTATA AGCTTGTACA CAATATTTAA TTAGTGTAA AGGAAACAAA 40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA TCGTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA 50 TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACCTTATTTC	900
40 GAATGCAGGA AAAATAATTT AATATCAACC TCAGTTGACA AGGTGCTCAG ATTATTCAAT TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA TTCTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA 50 TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	960
TCGGGATCCT CCTTTTGTTA GGTTTTTGAG ACAACCCTAG ACCTAAACTG TGTCACAGAC TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA TTCTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1020
TTCTGAATGT TTAGGCAGTG CTAGTAATTT CCTCGTAATG ATTCTGTTAT TACTTTCCTA TTCTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1080
TTCTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA TTCAAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1140
TTCTTTATTC CTCTTTCTTC TGAAGATTAA TGAAGTTGAA AATTGAGGTG GATAAATACA AAAAGGTAGT GTGATAGTAT AAGTATCTAA GTGCAGATGA AAGTGTGTTA TATACATCCA TTCAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1200
TICAAAATTA TGCAAGTTAG TAATTACTCA GGGTTAACTA AATTACTTTA ATATGCTGTT GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTTTGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1260
GAAYCTACTC TGTTCCTTGG CTAGAAAAAA TTATAAACAG GACTITGTAG TTTGGGAAGC CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1320
CAAATTGATA ATATTCTATG TTCTAAAAGT TGGGCTATAC ATAAATTATT AAGAAATATG GATTTTTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1380
GATTITTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1440
GATTITTATT CCCAGGATAT GGTGTTCATT TTATGATATT ACGCAGGATG ATGTATTGAG TAAAATCAGT TTTGTAAATA TGTAAATATG TCATAAATAA ACAATGCTTT GACTTATTTC	1500
	1560
60 саааааааа аааааатааа мттсдаддд ддс	1620
·	1654

-						_	
)	(2)	INFORMATION	FOR	SEO	TD	NO:	114:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1171 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

15	GGCAAACTTT	CCCCCAANGC	TTCGAAACTT	GCAAGCCGAA	ACCTTGAATC	GTTAAAAGTT	60
	GGGTTGCGNC	GCCCCTCG	CCCGAAGAAG	CGCAATTGGC	GTTCCGCGAA	CGTTGGCCCT	, 120
20	CAACGGCTCG	GCAGCCAGCC	ATGTCCTGCA	CCCAGGACAG	CGGCCCTGGG	CTACAAGGAC	180
20	CTGGMCCTCA	TCTTCCTGCG	CCGACCTGCG	CGGGGTAAGG	GGWAGTTTCA	GACTGTGAAG	240
	GACGTCGTGC	TGGACTGCCT	GTTGGACTTC	TTACCCGAGG	GGGTGAACAA	AGAGAAGATC	300
25	ACACCACTCA	CGCTCAAGGA	AGCTTATGTG	CAGAAAATGG	TTAAAGTGTG	CAATGACTCT	360
	GACCGATGGA	GTCTTATATC	CCTGTCAAAC	AACAGTGGCA	AAAATGTGGA	ACTGAAATTT	420
30	GTGGATTCCC	TCCGGAGGCA	GTTTGAATTC	AGTGTAGATT	CTTTTCAAAT	CAAATTAGAC	480
50	TCTCTTCTGC	TCTTTTATGA	ATGTTCAGAG	AACCCAATGA	CTGAGACATT	TCACCCCACA	540
	ATAATCGGGG	AGAGCGTCTA	TGGCGATTTC	CAGGAAGCCT	TTGATCACCT	TTGTAACAAG	600
35	ATCATTGCCA	CCAGGAACCC	AGAGGAAATC	CGAGGGGGAG	GCCTGCTTAA	GTACTGCAAC	660
	CTCTTGGTGA	GGGGCTTTAG	GCCCGCCTCT	GATGAAATCA	AGACCCTTCA	AAGGTATATG	720
40	TGTTCCAGGT	TTTTCATCGA	CTTCTCAGAC	ATTGGAGAGC	AGCAGAGAAA	ACTGGAGTCC	780
40	TATTTGCAGA	ACCACTITGT	GGGAATTGGA	AGACCGCAAG	TATGAGTATC	TCATGACCCT	840
	TCATGGAGTG	GTAAATGAGA	GCACAGTGTG	CCTGATGGGA	CATGAAAGAA	GACAGACTTT	900
45	AAACCTTATC	ACCATGCTGG	CTATCCGGGT	GTTAGCTGAC	CAAAATGTCA	TTCCTAATGT	960
	GGCTAATGTC	ACTIGCTATT	ACCAGCCAGC	CCCCTATGTA	GCAGATGCCA	ACTITAGCAA	1020
50	TTACTACATT	GCACAGGTTC	AGCCAGTATT	CACGTGCCAG	CAACAGACCT	ACTCCACTTG	1080
<i>3</i> 0	GCTACCCTGC	AATTAAGAAT	CATTTAAAAA	TGTCCTGTGG	GGAAGCCATT	TCAGACAAGA	1140
	CAGGAGAGAA	AAAAAAAAA	ААААААААА	. A			1171

55

10

(2) INFORMATION FOR SEQ ID NO: 115:

60 (i) SEQUENCE CHARACTERISTICS:

PCT/US98/04493

	(A) LENGTH: 842 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
_	(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
	GGTCTGCGCC GGAAGTGCAT GAGCTGCCGA TGTGGTGCTT AGTGATTGCG GTTTCGGTCG	60
10	CTCTCCCGTG TTTCCCGGGC TGGGTATTTG CCTCGCACCA TGGCGCCCAA GGGCAAAGTG	120
	GGCACGAGAG GGAAGAAGCA GATATTTGAA GAGAACAGAG AGACTCTGAA GTTCTACCTG	180
15	CGGATCATAC TGGGGGCCAA TGCCATTTAC TGCCTTGTGA CGTTGGTCTT CTTTTACTCA	240
13	TCTGCCTCAT TTTGGGCCTG GTTGGCCCTG GGCTTTAGTC TGGCAGTGTA TGGGGCCAGC	300
	TACCACTCTA TGAGCTCGAT GGCACGAGCA GCGTTCTCTG AGGATGGGGC CCTGATGGAT	360
20	CGTGGCATGG ACCTCAACAT GGAGCAGGGC ATGGCAGAGC ACCTTAAGGA TGTGATCCTA	420 480
	CTGACAGCCA TCGTGCAGGT GCTCAGCTGC TTCTCTCTCT ATGTCTGGTC CTTCTGGCTT	400
25	CTGGCTCCAG GCCGGGCCCT TTACCTCCTG TGGGTGAATG TGCTGGGCCC CTGGTTCACT	540
23	GCAGACAGTG GCACCCCAGC ACCAGAGCAC AATGAGAAAC GGCAGCGCCG ACAGGAGCGG	600
	CGGCAGATGA AGCGGTTATA GCCATTGACA TTGTGGCCAC AGGCCACTGG CCCTGGGTGG	660
30	CTCTGTCAGG GTGCACAGCC CCTCATGCCT GGAGCAATGA GGGTCTAGTC CAGGGGCCAA	720
	AAGCAGTCTG AGGTATTGGG TATACTTATA CTCTATAGGG TCGTTGAATA AATGGCTTAG	780
35	AATGTGAAAA AAAAAAAAAA AAAAAACTCG AGGGGGGCCC GGTACCCAAT TTCNCCTANA	840
55	AT	842
40	(2) INFORMATION FOR SEQ ID NO: 116:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1640 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:	
50	GGCACGAGGC GGCGCCAGCG GTGGCGGCGG CGCCCCCGG CGGGAGCCGT TCCCTTTCCC	60
	GTCGGGGAGC GCGGGGYCGG GGCCCAGGGG ACCCCGGGCC ACGGAGAGAGCG GGAAGAGGAT	120
55	GGATTGCCCG GCCCTCCCCC CCGGATGGAA GAAGGAGGAA GTGATCCGAA AATCTGGGCT	180
	AAGTGCTGGC AAGAGCGATG TCTACTACTT CAGTCCAAGT GGTAAGAAGT TCAGAAGCAA	240
60	GCCTCAGTTG GCAAGGTACC TGGGAAATAC TGTTGATCTC AGCAGTTTTG ACTTCAGAAC	300

	TGGAAAGATG	ATGCCTAGTA	AATTACAGAA	GAACAAACAG	AGACTGCGAA	ACGATCCTCT	360
	CAATCAAAAT	AAGGGTAAAC	CAGACTTGAA	ATACAACATT	GCCAATTAGA	CAAACAGCAT	420
5	CAATTTTCAA	ACAACCGGTA	ACCCAAAGTC	ACAAATCATC	CTAGTAATAA	AGTGAAATCA	480
	GACCCACAAC	GAATGAATGA	ACAGCCACGT	CAGCTTTTCT	GGGAGAAGAG	GCTACAAGGA	540
10	CTTTAGTGCA	TCAGATGTAA	CAGAACAAAT	TATAAAAACC	ATGGAACTAC	CCAAAGGTCT	600
10	TCAAGGAGTT	GGTCCAGTAG	CAATGATGAG	ACCCTTTTAT	CTGCTGTTGC	CAGTGCTTTG	660
	CACACAAGCT	CTGCGCCAAT	CACAGGGCAA	GTCTCCGCTG	CTGTGGAAAA	GAACCTGCTG	720
15	TTTGGCTTAA	CACATCTCAA	CCCCTCTGCA	AAGCTTTTAT	TGTCACAGAT	GAAGACTCAG	780
	GAAACAGAAG	AGCGAGTACA	GCAAGTACGC	AAGAAATTGG	AAGAAGCACT	GATGGCAGAC	840
20	ATCTTGTCGC	GAGCTGCTGA	TACAGAAGAG	ATGGATATTG	AAATGGACAG	TGGAGATGAA	900
20	GCCTAAGAAT	ATGATCAGGT	AACTTTCGAC	CGACTTTCCC	CAAGAGAAAA	TTCCTAGGAA	960
	ATTGAACAAA	AATGTTTCCA	CIGGCTTTTG	CCTGTAAGAA	AAAAAATGTA	CCCGAGCACA	1020
25	TAGAGCTTTT	TAATAGCACT	AACCAATGCC	TTTTTAGATG	TATTTTTGAT	GTATATATCT	1080
	ATTATTCAAA	AAATCATGTT	TATTTTGAGT	CCTAGGACTT	AAAATTAGTC	TTTTGTAATA	1140
20	TCAAGCAGGA	CCCTAAGATG	AAGCTGAGCT	TTTGATGCCA	GGTGCAATCT	ACTGGAAATG	1200
30	TAGCACTTAC	GTAAAACATT	TGTTTCCCCC	ACAGTTTTAA	TAAGAACAGA	TCAGGAATTC	1260
	ТАААТАААТТ	TCCCAGTTAA	AGATTATTGT	GACTTCACTG	TATATAAACA	TATTTTTATA	1320
35	CTTTATTGAA	AGGGGACACC	TGTACATTCT	TCCATCGTCA	CTGTAAAGAC	AAATAAATGA	1380
	TTATATICCA	CAGAAAAAA	WAAAAAAAA.	MWSTYGARRR	GSRGCMCRSW	AYMMARWWCC	1440
40	CCWMRTWRGS	MKTCSTMIKA	YTTACATTCA	ACTCTGATCC	CGGGGCCTTA	GGTTTGACAT	1500
40	GGGAGGTGGG	AGGAAGATAG	CGCATATATT	TGCAGTATGA	ACTATTGCCT	CTGGGACGTT	1560
	GTGAGGAATT	GTGCTTTCAC	CAGAATTTCT	AAGGATTTCT	GGCTTAAATA	. TCACCTAGCC	1620
45	TGTGGTAATI	TTTTTTCCCT	•				1640

50 (2) INFORMATION FOR SEQ ID NO: 117:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 952 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

	TCCTGACCTT CTAGATGAGT AACAAAAAA TGAAATAAGT TCTTGGAAAT TAAGCCATTT	120
5	ATTITAATIT GCTATITITI TCAATGITCT AGGTATCITT AAATTIGITA TIGTGGAATC	180
J	ATTITICCTGC CAGATACCTT TATCAAAATT ATTGGCCTCA TGAGAGCTGA AGTAAGTCAG	240
	CTTTTTGGTG AACTTTAGTG GACTTCTGTG AGATTGTAGT TGTACTTTGT ATCTCTAAAT	300
10	CTAAAGATAG TTTTTTAAAA CTCCCAAAGA AAATCTGCTC TCCTTTCTGA TCTAAAAACT	360
	CATCTTTGGG GTAAAGAGTT AAGTGTCCAA AGGTTGTCAC AGTTCATGAG GTCAGAGGGA	420
15	GCTAGCCTGG CACCTGGACT CTGCCCATCC ACAGCTGACA GATTCCAACA GAAGTGTATT	480
13	TAAATTCTCC AGTAGACAAT GCTGGGTAAG GGAGGGGGTA GGGCTGGGTT ATTAAGATAC	540
	AGGCTGCTGT ATTTTACATT GGTTGTGGGG GAAGGGGAGC CTGGAGAAAA CAAAGTCACT	600
20	ATTCCCTTTT TTGAAACAGG AAAAAAAATT ATTTTTTGTT CAGTAAAAAT GGTAGAGAAT	660
	TCCAATGTCC CTAGCCACAA GGGACCAGTT CCACTGAGAA GTGAACAGTG GGAACTCAAA	720
25	ATTTCAGAAA CATTGGGGGA AGGGAAAATT GGCTTTCTCT TAATTGGCAG ATGTTCCAGT	780
23	GGGGSGGGG GGCTCTGTTT TTGTTGGGAT GTGTTATGTT GTATGTACGC ATATATGGAC	840
	CGGAGTCTGC TGAGTTTATA AGGTTCCAAA AATATGGTAA AATCTTGGTT TTTGTTAATT	900
30	TATCTCAATA AAAGCCCACT GGRACTCCAA AAAAAAAAA AAAAAAAAA NN	952
35	(2) INFORMATION FOR SEQ ID NO: 118:	
33	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1256 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:	
45		60
43	GACGTCATAG GTAAACAGGC TCTGTATCCG TGGCAGCGGC CGTGGCAGGC TGGCTGGGTA	120
	CCGGCTGTCG CTGACCCAGG AGAAGCTGCC TGTCTACATC AGCCTGGGCT GCAGCGCGCT	
50	GCCGCCGCGG GGCCGGCAGC TGAACTATGT GCTCTTCAGG GCGGGCACCG TGTTGCATTC	180
	ATCTTTGTAC CCCCAGCATC TAGCAGTGTT GGCATGTAGT AGGCACTCAA GAAATGTGTG	240
	TIGAATGAAC GATGCCTGTG ACAAGCAAGC GGACTTTATT CTTTCCTGAC CCTTGCTCCT	300
55	ATGAÇAÇAÇC TCCTCCTGAC TGCCACTGTC ACTCCTTCAG AGCAGAACTC CTCTAGGGAA	360
	CCTGGATGGG AAACAGCCAT GGCCAAGGAC ATCCTGGGTG AAGCAGGGCT ACACTTTGAT	420
	GAACTGAACA AGCTGAGGGT GTTGGACCCA GAGGTTACCC AGCAGACCAT AGAGCTGAAG	480

	GAAGAGTGCA	AAGACTTTGT	GGACAAAATT	GGCCAGTTTC	AGAAAATAGT	TGGTGGTTTA	540
	ATTGAGCTTG	TTGATCAACT	TGCAAAAGAA	GCAGAAAATG	AAAAGATGAA	GGCCATCGGT	600
5	GCTCGGAACT	TGCTCAAATC	TATAGCAAAG	CAGAGAGAAG	CTCAACAGCA	GCAACTTCAA	660
	GCCCTAATAG	CAGAAAAGAA	AATGCAGCTA	GAAAGGTATC	GGGTTGAATA	TGAAGCTTTG	720
10	TGTAAAGTAG	AAGCAGAACA	AAATGAATTT	ATTGACCAAT	TTATTTTTCA	GAAATGAACT	780
10	GAAAATTTCG	CTTTTATAGT	AGGAAGGCAA	ААСАААААА	AGCCTCTCAA	AACCAAAAAA	840
	ACCTCTGTAG	CATTCCAGCG	GCTTGACCAA	TGACCTATGT	CACAAGAGGT	GGCGTGTAAG	900
15	GAATGCAGCC	CCCTGAAGAC	AGCACTACAA	GTCTGGGGGA	GCCAGTTTTA	ACATCAGTGC	960
	ACAGCTGCTG	CTGGTGGCCC	TGCAGTGTAC	GTTCTCACCT	CTTATGCTTA	GTTGGAACTA	1020
20	AGCAGTTTGT	AAACTTTCAT	CCTTTTTTTT	GTAAATTCAC	AAAGCTTTGG	AAGGAGAAGC	1080
20	AATAAATTTT	TGTTTTCAAA	TOGCTTGATG	TACCTTTTTT	CCTGTTGCTC	TTGAAATATG	1140
	TTTAACTCCT	CATGAGAGAA	CCCTGGATTC	TCTATCCCCT	AGTCCACAAA	ACAAACCAGG	1200
25	CAGTGGTCAG	CAGCTACCTT	TNATTTGGAT	CACACACGTG	AGTCAGACAG	TACCAC	1256

30 (2) INFORMATION FOR SEQ ID NO: 119:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1143 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

40 60 GCCCTAGCA GCCGGCTGG TCCTGCTGCG AGCCGGCGCC CCGGAGTGGG GCGGCGCAT GTACCTTCCA CATTGAGTAT TCAGAAAGAA GTGATCTGAA CTCTGACCAT TCTTTATGGA 120 TACATTAAGT CAAATATAAG AGTCTGACTA CTTGACACAC TGGCTCGAGC AAACATGAAC 180 45 240 GTTGGAGTTG CCCACAGTGA AGTGAATCCA AATACCCGTG TCATGAACAG CCGGGGTATG TGGCTGACAT ATGCATTGGG AGTTGGCTTG CTTCATATTG TCTTACTCAG CATTCCCTTC 300 50 TTCAGTGTTC CTGTTGCTTG GACTTTAACA AATATTATAC ATAATCTGGG GATGTACGTA 360 TTTTTGCATG CAGTGAAAGG AACACCTTTC GAAACTCCTG ACCAGGGTAA AGCAAGGCTC 420 CTAACTCATT GGGAACAACT GGACTATGGA GTACAGTTTA CATCTTCACG GAAGTTTTTC 480 55 ACAATTTCTC CAATAATTCT ATATTTTCTG GCAAGTTTCT ATACGAAGTA TGATCCAACT 540 CACTTCATCC TAAACACAGC TTCTCTCCTG AGTGTACTAA TTCCCAAAAT GCCACAACTA 600 CATGGTGTTC GGATCTTTGG AATTAATAAG TATTGAAATG TTTTGAAACT GAAAAAAAA 60 660

PCT/US98/04493

	TTTACAGCTA CTGAATTTCT TATAAGGAAG GAGTGGTTAG TAAACTGCAC TGTTTCTSTG	720
	ATAATGTGAA ATGAGAAGTA TTTACATTGG AGGGCCAATG GCTGGTCCTT CAAGTGCTGT	780
5	TITGAAGTGC AGATTTCCAT TAAATGATGC CTCTGTTTAA TACACCTGGT ACATTTCTGA	840
	AGAGGGCTT TATAAGCAGG CTGGGCAGGC CCAGCTTATA AGTTAAAGGG CATCACAGTG	900
10	AGGGTGTAGT AGATAAATTC AAGGAAATAA GAGATTTGTA AGAAACTAGG ACCAGCTTAA	960
	CTTATAATGA ATGGGCATTG TGTTAAGAAA AGAACATTTC CAGTCATTCA GCTGTGGTTA	1020
	TTTAAAGCAG ACTTACATGT AAACCGGAAT CCTCTCTATA CAAGTTTATT AAAGATTATT	1080
15	ТТТАТТАССС ТАААААААА ААААААААА ААААААААА	1140
	GAN	1143
20		
	120 to No. 120	
	(2) INFORMATION FOR SEQ ID NO: 120:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1782 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
	CAGGCCCCGG CCCCCCACCC ACGTCTGCGT TGCTGCCCCG CCTGGGCCRG GCCCCAAAGG	60
35	CAAGGACAAA GCAGCTGTCA GGGAACCTCC GCCGGAGTCG AATTTACGTG CAGCTGCCGG	120
	CAACCACAGG TTCCAAGATG GTTTGCGGGG GCTTCGCGTG TTCCAAGAAC TGCCTGTGCG	180
40	CCCTCAACCT GCTTTACACC TTGGTTAGTC TGCTGCTAAT TGGAATTGCT GCGTGGGGCA	240
40	TTGGCTTCGG GCTGATTTCC AGTCTCCGAG TGGTCGGCGT GGTCATTGCA GTGGGCATCT	300
	TCTTGTTCCT GATTGCTTTA GTGGGTCTGA TTGGAGCTGT AAAACATCAT CAGGTGTTGC	360
45	TATTYTTITA TATGATTATT CTGTTACTTG TATTTATTGT TCAGTTTTCT GTATCTTGCG	420
	CTTGTTTAGC CCTGAACCAG GAGCAACAGG GTCAGCTTCT GGAGGTTGGT TGGAACAATA	480
50	COGCAAGTGC TCGAAATGAC ATCCAGAGAA ATCTAAACTG CTGTGGGTTC CGAAGTGTTA	540
50	ACCCAAATGA CACCTGTCTG GCTAGCTGTG TTAAAAGTGA CCACTCGTGC TCGCCATGTG	600
	CTCCAATCAT AGGAGAATAT GCTGGAGAGG TTTTGAGATT TGTTGGTGGC ATTGGCCTGT	660
55	TCTTCAGTTT TACAGAGATC CTGGGTGTTT GGCTGACCTA CAGATACAGG AACCAGAAAG	720
	ACCCCCGCGC RAATCCTAGT GCATTCCTTT GATGAGAAAA CAAGGAAGAT TTCCTTTCGT	780
	ATTATGATCT TGTTCACTTT CTGTAATTTT CTGTTAAGCT CCATTTGCCA GTTTAAGGAA	84

	GGAAACACTA	TCTGGAAAAG	TACCTTATTG	ATAGTGGAAT	TATATATTT	TACTCTATGT	900
	TTCTCTACAT	GTTTTTTCT	TICCGTIGCT	GAAAAATATT	TGAAACTTGT	GGTCTCTGAA	960
5	GCTCGGTGGC	ACCTGGGAAT	TTACTGTATT	CATTGTCGGG	CACTGTCCAC	TGTGGCCTTT	1020
	CTTAGCATTT	TTACCTGCAG	AAAAACTTTG	TATGGTACCA	CTGTGTTGGT	TATATGGTGA	1080
10	ATCTGAACGT	ACATCTCACT	GGTATAATTA	TATGTAGCAC	TGTGCTGTGT	AGATAGTTCC	1140
10	TACTGGAAAA	AGAGTGGRAA	TTTATTAAAA	TCAGAAAGTA	TGAGATCCTG	TTATGTTAAG	1200
	GGAAATCCAA	ATTCCCAATT	TTTTTTGGTC	TTTTTAGGAA	AGATGTGTTG	TGGTAAAAAG	1260
15	TGTTAGTATA	AAAATGATAA	TTWACTKGTA	GTCTTTTATG	ATWACACCAA	TGTATTCTAG	1320
	AAATAGTTAT	GYCYTAGGAA	ATTGTGGTTT	AATTTTTGAC	TTTTACAGGT	AAGTGCAAAG	1380
20	GAGAAGTGGT	TTCATGAAAT	GTTCTAATGT	ATAATAACAT	TTACCTTCAG	CCTCCATCAG	1440
20	AATGGAACGA	GTTTTGAGTA	ATCAGGAAGT	АТАТСТАТАТ	GATCTTGATA	TTGTTTTATA	1500
	ATAATTTGAA	GTCTAAAAGA	CTGCATTTT	AAACAAGTTA	GTATTAATGC	GTTGGCCCAC	1560
25	GTAGCAAAAA	GATATTIGAT	TATCTTAAAA	ATTGTTAAAT	ACCGTTTTCA	TGAAAGTTCT	1620
	CAGTATTGTA	ACAGCAACTI	GTYAAACCTA	AGCATATTTG	AATATGATCT	CCCATAATTT	1680
30	GAAATTGAAA	TCGTATTGTC	TGGCTCTGT#	TATTCTGTTA	AAAAATTAAA	GGACAGAAAC	1740
30	CTTTCTTTGT	GTATGCATGT	TTGAATTAAA	AGAAAGTAAT	GG		1782
35	(2) INFORM	MATION FOR S	SEQ ID NO: 1	121:			
	(i) SEQUENCE (CHARACTERIS	rics:			

(A) LENGTH: 610 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

45 GTTGGCTGCA GATTTGTGGT GCGTTCTGAG CCGTCTGTCC TGCGCCAAGA TGCTTCAAAG 60 TATTATTAAA AACATATGGA TCCCCATGAA GCCCTACTAC ACCAAAGTTT ACCAGGAGAT TTGGATAGGA ATGGGGCTGA TGGGCTTCAT CGTTTATAAA ATCCGGGCTG CTGATAAAAG 180 50 AAGTAAGGCT TTGAAAGCTT CAGCGCCTGC TCCTGGTCAT CACAACCAGA TTTACTTGGA 240 GTACATGTGA AAGAAAACGT CAGTCTGCCT GTAAATITCA GCAAGCCGTG TTAGATGGGG 300 55 AGCGTGGAAC GTCACTGTAC ACTTGTATAA GTACCGTTTA CTTCATGGCA TGAATAAATG 360 GATCTGTGAG ATGCACTGCT ACCTGGTACT GCTTTCAGTG TGTTCCCCCT CAGCCCTCCG 420 GCGTGTCAGG CATACTCTGA GTAGATAATT TGTCATGCAG CGCATGCAAT CAGAATCTCA 480 60

PCT/US98/04493

	CTGAGCCACC CATCATTGTG AAATAATTAC CTCAGTTGTA CAGGACTTGG TGATCAGGAT	540
_	CCAGGCACTC ACTTGTATTC TACTGCTCAA TAAACGTTTA TTAAACTTGA AAAAAAAAAA	600
5	аааааааааа	610
10		
	(2) INFORMATION FOR SEQ ID NO: 122:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 526 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
20	GGTACGCCTG CAGGTACCGG TCCGGAATTC CGGGTCGCCC ACGCGTCNGG CCACGCGTCC	60
	ACCCACGCGT CCGSCCACGC GTCGGAGCCG AGCCGGACTG GTCAGGATGA TCACGGACGT	120
2 5	GCAGCTCGCC ATCTTCGCCA ACATGCTGGG CGTGTCGCTC TTCTTGCTTG TCGTTCTCTA	180
	TCACTACGTG GCCGTCAACA ATCCCAAGAA GCAGGAATGA AAGTGGCGCT TTCTCCGCCC	240
20	CAGGGTTCCA GGACATAGTC TGAGGCAAGA TGGAGGGTAT GAGGGGCCTT CACACTTCAC	300
30	TTCATCCCTT CTACCCATCA CAACATACAA AGCAACTACA CCTGGATITT TCCAAACAAC	360
	TTTTATTTCC TCAGAGTCTT CCTTAATCCT ATGGAACAAG AAGCTGCCAC TGAATAGGGC	420
35	CCAGTATAGG GGCTTGCTTT TCTACTCCCT CCCCCCAATA TAAAAATATA GACTTTTTAA	480
	AAAAAAAAAA AAAAANTTCG NGGGGGGSCC GGTACCCATC CCCCTA	526
40		
40		
	(2) INFORMATION FOR SEQ ID NO: 123:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2081 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
	TGTACCGGTC CGGAAATTCC CGGGTCGACC CACGTCGTCS GGGGAACATG GCGGCTKCGG	60
<i>د</i> د	AGCCGGCGGT CCTTGCGCTC CCCAACAGCG GCGCCGGGGG CGCGGGGGCG CCGTCGGGCA	120
55	CAGTCCCGGT GCTCTTCTGT TTCTCAGTCT TCGCGCGACC CTCGTCGGTG CCACACGGGG	180
	CGGGCTACGA GCTGCTCATC CAGAAGTTCC TCAGCCTGTA CGGCGACCAG ATCGACATGC	240
60	ACCGCAAATT CGTGGTGCAG CTGTTCGCCG AGGAGTGGGG CCAGTACGTG GACTTGCCCA	300

	AGGGCTTCGC GGTRAGCGAG CGCTGCAAGG TGCGCCTCGT GCCGYTGCAG ATCCAGCTCA	360
_	CTACCCTGGG AAATCTTACA CCTTCAAGCA CTGTGTTTTT CTGCTGTGAT ATGCAGGAAA	420
5	GGTTCAGACC AGCCATCAAG TATTTTGGGG ATATTATTAG CGTGGGACAG AGATTGTTGC	480
	AAGGGGCCCG GATTTTAGGA ATTCCTGTTA TTGTAACAGA ACAATACCCT AAAGGTCTTG	540
10	GGAGCACGGT TCAAGAAATT GATTTAACAG GTGTAAAACT GGTACTTCCA AAGACCAAGT	600
	TTTCAATGGT ATTACCAGAA GTAGAAGCGG CATTAGCAGA GATTCCCGGA GTCAGGAGTG	660
٠, ح	TTGTATTATT TGGAGTAGAA ACTCATGTGT GCATCCAACA AACTGCCCTG GAGCTAGTTG	720
15	GCCGAGGAGT CGAGGTTCAC ATTGTTGCTG ATGCCACCTC ATCAAGAAGC ATGATGGACA	780
	GGATGTTTGC CCTCGAGCGT CTCGCTCRAR CCGGGATCAT AGTGACCACG AGTGAGGCTG	840
20	TTCTGCTTCA GCTGGTAGCT GATAAGGACC ATCCAAAATT CAAGGAAATT CAGAATCTAA	900
	TTAAGGCGAG TGCTCCAGAG TCGGGTCTGC TTTCCAAAGT ATAGGACATT TGAAGAACTG	960
òs	GTATGCTACT CACTGGTGAA GGACAGTCAG GTGAAGGACT GTAAGCCCAC ACAAGCTCTT	1020
25	CTTATCTCTA CTAGAATTAA AATGTTAAGT CAAAAACGGC TCCTTTTTTG CGCCTCCTAG	1080
	TGAAACTTAA CCAGCTAGAC CATTTGAGTA CCAGCATTTA GTTACAAACG TCAAAGGCTT	1140
30	CCGGTGCTGC TTACCTTCCT TFTTTGTTAA TGTGCTTTTA TTTATTAAAA AAAATTACAA	1200
\$4	TGAAGATGCC TGTTTTGTCT CTACTGTGTA CTCTGATCGT ATCTTTCCAA AGTGCAGACT	1260
25	CTTGTGAAGT TTTCTTAAAT TGTTCACTTT AAAGAAAATG ACGTACCAAC AATGATTTCG	1320
35	CTTTTATATT ACTGTAAGAT GTTATAATGT TAATGTGGAT GTAGTGCTTT TACTTTACAG	1380
	ATTGATTGGA ATAAGATTAT TGCATATGAA TTTACCCACA GGACTCTGAA TCATGTTACC	1440
40	CACTCCCCTC ACAATGTTGT CCACTTAGTG AGTTGCATTG ATCTATCCGT ACCAAATGAT	1500
	GTTGAATAAT TACATATCTT TCTTGACTAT ACTGATTTCT TATTTTGGTC ACTATTACTA	1560
45	AATCTCTGTT AATATTCTCT CTTTTAACTG AAAAGGGATG GGATAGAAGG GTTTGCAATG	1620
45	CCATATTATT GGTGGAGGGC TGTTTTAACA TCTTTGAAGT ATGGCTTGCT GAATATCTTT	1680
	ACCAACATCT TGAATATATA TTCTAGTGTC CACAAGATTT AGCAAAAAGA TAAAGCTTGG	1740
50	GTGGAATATC ATTTTAAAAT GTTCATGTTC TGTTCTATAT TTTCTTCACC TACTCTCCAA	1800
	ATATTGTAAT GCAAAAAGTC TCAGTAATGA TTTGGTAGTA TTAATTTTGT GGTCATTGTT	1860
<i>E E</i>	TCTCTTCGAT AAATTTATTT TCATTAAATA CTTRTTAGAG GGTTTTGAAA TGTTTTTCAA	1920
55	ATATGIGAAA TGTGAAACTG CTGTCTTTTA TATTAAAGTA ATTAAAGAAA ATGTATTGTG	1980
	ATTGAAATTA TTTTGNCCTC CACAAGATGG CTCTATGAGT ATTCTTCCAG GGATTCTAAT	2040
60	ATTTATTTAA GGTNATAAAA TCTTGACATT TATAATCTTT C	2081

WO 98/39448 PCT/US98/04493

346

~							
•	(2)	INFORMATION	FOR	SEO	TD	NO.	124 -

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1717 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

15	CCCCGGCGGA	GCTGGACCCG	CGGTGGGCTA	GGGGCAGGGC	CGGAGCCGCG	GCGGCGGAGC	60
	TGTGGATCCT	TCATGATGAG	AGATTTGGGG	ACACTTCTCT	CTCCTGTGTG	TAGTTGATAG	120
20	TTTGGTGGTG	AAGAGATGGC	TGACAGTGTC	AAAACCTTTC	TCCAGGACCT	TGCCAGAGGA	180
20	ATCAAAGACT	CCATCTGGGG	TATTTGTACC	ATCTCAAAGC	TAGATGCTCG	AATCCAGCAA	240
	AAGAGAGAGG	AGCAGCGTCG	AAGAAGGGCA	AGTAGTGTCT	TGGCACAGAG	AAGAGCCCAG	300
25	AGTATAGAGC	GGAAGCAAGA	GAGTGAGCCA	CGTATTGTTA	GTAGAATTIT	CCAGTGTTGT	360
	GCTTGGAATG	GTGGAGTGTT	CTGGTTCAGT	CTCCTCTTGT	TTTATCGAGT	ATTTATTCCT	420
30	GTGCTTCAGT	CGGTAACAGC	CCGAATTATC	GGTGACCCAT	CACTACATGG	AGATGTTTGG	480
50	TCGTGGCTGG	AATTCTTCCT	CACGTCAATT	TTCAGTGCTC	TTTGGGTGCT	CCCCTTGTTT	540
	GTGCTTAGCA	AAGTGGTGAA	TGCCATTTGG	TTTCAGGATA	TAGCTGACCT	GGCATTTGAG	600
35	GTATCAGGGA	GGAAGCCTCA	CCCATTCCCT	AGTGTCAGCA	AAATAATTGC	TGACATGCTC	660
	TICAACCTTT	TGCTGCAGGC	TCTTTTCCTC	ATTCAGGGAA	TGTTTGTGAG	TCTCTTTCCC	720
40	ATCCATCTIG	TCGGTCAGCT	GGTTAGTCTC	CTGCATATGT	CCCTTCTCTA	CTCACTGTAC	780
40	TGCTTTGAAT	ATCGTTGGTT	CAATAAAGGA	ATTGAAATGC	ACCAGCGGTT	GTCTAACATA	840
	GAAAGGAATT	GGCCTTACTA	CTTTGGGTTT	GGTTTGCCCT	TGGCTTTTCT	CACAGCAATG	900
45	CAGTCCTCAT	ATATTATCAG	TGGCTGCCTT	TTCTCTATCC	TCTTTCCTTT	ATTCATTATC	960
	AGCGCCAATG	AAGCAAAGAC	CCCTGGCAAA	GCRTATCTCT	TCCAGTTGCG	CCTCTTCTCC	1020
50	TTGGTGGTCT	TCTTAAGCAA	CAGACTCTTC	CACAAGACAG	TCTACCTGCA	GTCGGCCCTG	1080
30	AGCAGCTCTA	CTTCTGCAGA	GAAGTTCCCT	TCACCGCATC	CGTCGCCTGC	CAAACTGAAG	1140
	GCTACTGCAG	GTCACTGAGT	TGCCTGCCAT	CCAAAGGGGA	TGGGCGGGAT	TGGAAGAAGC	1200
55	TGTGGCAGCT	CTTTTCCCTG	TTCACCTCCC	GCCTGCCAGG	GAAGGCAGGA	CCCGCTCTGC	1260
	CAAGGCCCT	CTGCGTATTC	CCTTCTCTCT	GAGGAATTGA	AATTTTTGTC	TCTGGTGCAC	1320
60	GTAAGGCAGA	ATGTTCCCTG	ACACCAGTGT	GTGGATTTT	'AACATCACCG	TGAGTCTGAA	1380

	AGGACCACAG GTTTTTCTGC AGCTATTTTC TAGCATTTGC CAGTCCCTGT GCCTGGACTG	1440
	ATTGGAACAC TITGTTTTC TCCCTGTGCC ATTTACCCTT CCACCTTTCC ATCCTGCCTT	1500
5	CTACCACCCT TOGATGAATG GATTITGTAA TICTAGCTGT TGTATTITGT GAATTTGTTA	1560
	ATTTTGTTGT TTTTCTGTGA AACACATACA TTGGATATGG GAGGTAAAGG AGTGTCCCAG	1620
10	TTGCTCCTGG TCACTCCCTT TATAGCCATT ACTGTCTTGT TTCTTGTAAC TCAGGTTAGG	1680
10	TTTTGGTCTC TCTTGCTCCA CTGCAAAAAA AAAAAAA	1717
	•	
15	(2) INFORMATION FOR SEQ ID NO: 125:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 804 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:	
25	CCACGCGTCC GGTCACTATG TAGTGGAGGG GCAGACACCC TCCCGCAAAT TCTGGAAGGT	60
	TCTTAGTCTC GACTAGGGCA GTAGCCCCAG GACTCCTAGT CGCCGGCTTC AGGTCACTGC	120
30	COGCTGAACG GAGCTGCCGT CGCCATGTTT GGCTGCTTGG TGGCGGGGAG GCTGGTGCAA	180
•	ACAGCTGCAC AGCAAGTGGC AGAGGATAAA TITGTTTTTG ACTTACCTGA TTATGAAAGT	240
25	ATCAACCATG TTGTGGTTTT TATGCTGGGA ACAATCCCAT TTCCTGAGGG AATGGGAGGA	300
35	TCTGTCTACT TTTCTTATCC TGATTCAAAT GGAATGCCAG TATGGCAACT CCTAGGATTT	360
	GTCACGAATG GGAAGCCAAG TGCCATCTTC AAAATTTCAG GTCTTAAATC TGGAGAAGGA	420
40	AGCCAACATC CTTTTGGAGC CATGAATATT GTCCGAACTC CATCTGTTGC TCAGATTGGA	480
	ATTTCAGTGG AATTATTAGA CAGTATGCCT CAGCAGACTC CTGTAGGTAA TGCTGCTGTA	540
45	TCCTCAGTTG ACTCATTCAC TCAGTTCACA CAAAAGATGT TGGACAATTT CTACAATTTT	600
45	GCTTCATCAT TTGCTGTCTC TCAGGCCCAG ATGACACCAA GCCCATCTGA AATGTTCATT	660
	CCGGCAAATG TGGTTCTGAA ATGGTATGAA AACTTTCAAA GACGACTAGC ACAGAACCCT	720
50	NINITITGGN AAACATAATT TGAATAAAAT AATTITTAAT GGATINIGNA AAAAAAAAAA	780
	ΑΑΑΑ ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ	804

55

(2) INFORMATION FOR SEQ ID NO: 126:

(i) SEQUENCE CHARACTERISTICS:

60

(A) LENGTH: 431 base pairs

PCT/US98/04493

348

WO 98/39448

	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:	
	GGCACAGCCC AGGGCCTTGA AGCCAGCTGG CCCTGGAGAG GGGCTGCTGT GCCAGCTTGG	60
••	GGAGGGTCTG GGATGGGGCT GCCCCTGATG GCCCTGATGT GGAGTACCTT GCCAGCATCT	120
10	GCTGGGGTGA ACTITATITT AGCCCTTCCC TTGTTGCTCT TATGGAAGAA CAGAGGAGGG	180
	GTGGGCAGGT CAGTGATGTC AGCAGTGGAG TGATTCCCAG CACAGCGGCT TCTGGGAAGA	240
15	GGGCATGGAG GCATTTCTTT CAGGGAAATG GTCCATNATT TCAGCCAGAA GGCATTGCAT	300
	TAAGTTAAGT CCNGGACTTT TGTGGCCCAG CTCTGTGTTA TTAAGGGCCCC TTGGCGAAGA	360
20	CTTCAAGGAG GGGCCAAAAN GACCTTTAAG TTTTTAGGTT TAACACAGGG AACCCNCAAA	420
20	GGGTTATTTT G	431
25	(2) INFORMATION FOR SEQ ID NO: 127:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3752 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:	
33	NGGCACGAGG AGAGTCACCT GGACTCAGAA CTAGAGATAT CCAATGACCC AGACAAAATT	60
	AAACTTCAGC TTTCTAAGCA TAAGGAGTTT CAGAAGACTC TTGGTGGCAA GCAGCCTGTG	120
40	TATGATACCA CAATTAGAAC TGGCAGAGCA CTGAAAGAAA AGACTITGCT TCCCGAAGAT	180
	ASTCAGAAAC TTGACAATTT CCTAGGAGAA GTCAGAGACA AATGGGATAC TGTTTGTGGC	240
45	AAGTCTGTGG AGCGGCAGCA CAAGTTGGAG GAAGCCCTGC TCTTTTCGGG TCAGTTCATG	300
43	GATGCTTTGC AGGCATTGGT TGACTGGTTA TACAAGGTGG AGCCACAGCT GGCTGAGGAC	360
	CAGCCCGTGC ACGGGGGACC TTGACCTCGT CATGAACCTC ATGGATGCAC ACAAGGTTTT	420
50	CCAGAAGGAA CTGGNGAAAG CGAACAGGAA CCGTTCAGGT CCTGAAGCGG TCAGGCCGAG	480
	AGCTGATTGA GAATAGTCGA GATGACACCA CTTGGGTAAA AGGACAGCTC CAGGAACTGA	540
55	GCACTCGCTG GGACACTGTC TGTAAACTCT CTGTTTCCAA ACAAAGCCGG CTTGAGCAGG	600
55	CCTTAAAACA AGCGGAAGTG TITCGAGACA CAGTCCACAT GCTGTTGGAG TGGCTTTCTG	660

AAGCAGAGCA AACGCTTCGC TTTCGGGGAG CACTTCCTGG ATGACACAGA GGCCCTGCAG

60 TCTCTCATTG ACACCCATAA GGAATTCATG AAGAAAGTAG AAGAAAAGCG AGTGGACGTT

720

	AACTCAGCAG TAGCCATGGG AGAAGTCATC CTGGCTGTCT GCCACCCCGA TTGCATCACA	840
5	ACCATCAAAC ACTGGAŢCAC CATCATCCGA GCTCGCTŤCG AGGAGGTCCT GACATGGCT	900
3	AAGCAGCACC AGCAGCGTCT TGAAACGGCC TTGTCAGAAC TGGTGGCTAA TGCTGAGCTC	960
	CTOGAAGAAC TTCTGGCATG GATCCAGTGG GCTGAGACCA CCCTCATTCA GCGGGATCAG	1020
10	GAGCCAATCC CGCAGAACAT TGACCGAGTT AAAGCCCTTA TCGCTGAGCA TCAGACATTT	1080
	ATGGAGGAGA TGACTCGCAA ACAGCCTGAC GTGGACCGGG TCACCAAGAC ATACAAAAGG	1140
15	AAAAACATAG AGCCTACTCA CGCGCCTTTC ATAGAGAAAT CCCGCAGCGG AGGCAGGAAA	1200
13	TCCCTAAGTC AGCCAACCCC TCCTCCCATG CCAATCCTTT CACAGTCTGA AGCAAAAAAC	1260
	CCACGGATCA ACCAGCTITC TGCCCGCTGG CAGCAGGTGT GGCTGTTAGC ACTGGAGCGG	1320
20	CAAAGGAAAC TGAATGATGC CTTGGATCGG CTGGAGGAGT TGAAAGAATT TGCCAACTTT	1380
	GACTITGATG TCTGGAGGAA AAAGTATATG CGTTGGATGA ATCACAAAAA GTCTCGAGTG	1440
25	ATGGATTTCT TCCGGCGCAT TGATAAGGAC CAGGATGGGA AGATAACACG TCAGGAGTTT	1500
23	ATCGATGGCA TITTAGCATC CAAGTTCCCC ACCACCAAGT TAGAGATGAC TGCTGTGGCT	1560
	GACATTTTCG ACCGAGATGG GGATGGTTAC ATTGATTATT ATGAATTTGT GGCTGCTCTT	1620
30	CATCCCAACA AGGATGCGTA TCGACCAACA ACCGATGCAG ATAAAATCGA AGATGAGGTT	1680
	ACAAGACAAG TGGCTCAGTG CAAATGTGCA AAAAGGTTTC AGGTGGAGCA GATCGGAGAG	1740
35	AATAAATACC GGTTCTTCCT CGGCAATCAG TTTGGGGATT CTCAGCAGTT GCGGCTGGTC	1800
33	CGTATTCTGC GCAACCGTGA TGGTTCGCGT TGGTGGAGGA TGGATGGCCT TGGATGAATT	1860
	TTTAGTGAAA AATGATCCCT GCCGAGCACG AGGTAGAACT AACATTGAAC TTAGAGAGAA	1920
40	ATTCATCCTA CCAGAGGGAG CATCCCAGGG AATGACCCCC TTCCGCTCAC GGGGTCGAAG	1980
	GTCCAAACCA TCTTCCCGGG CAGCTTCCCC TACTCGTTCC AGCTCCAGTG CTAGTCAGAG	2040
45	TAACCACAGC TGTACATCCA TGCCATCTTC TCCAGCCACC CCAGCCAGTG GAACCAAGGT	2100
43	TATCCCATCA TCAGGTAGCA AGTTGAAACG ACCAACACCA ACTTTTCATT CTAGTCGGAC	2160
	ATCCCTTGCT GGTGATACCA GCAATNAGTT CTTCCCCGGC CTCCACAGGT GCCAAAACTA	2220
50	ATCGGGCAGA CCCTAAAAAG TCTGCCAGTC GCCCTGGGAG TCGGGCTGGG AGTCGAGCCG	2280
	GGAGTCGAGC CAGCAGCCGG CGAGGAAGTG ACGCTTCTGA CTTTGACCTC TTAGAGACGC	2340
55	ATTECTTETT CCGACACTTC AGAAAGCAGC GCTGCAGGGG GCCAAGGCAA CTCCAGGAGA	2400
JJ	GGGCTAAACA AACCTTCCAA AATCCCAACC ATGTCTAAGA AGACCACCAC TGCCTCCCCC	2460
	AGGACTCCAG GTCCCAAGCG ATAACACTGT CTAAGCACCC CCAAGCCACT ATCCACTTTG	2520
60	AATCCTGCTC CATACATTGG GTGTATATTT ATTCTGAACG GGAGAAGTTA TATTGTTAAA	2580

AGTGTAAAAG AATAATTGTG TTATGAAGCT GCCTTATTTT TTTTCTTTTT GTAAGTTACT

350

5	ATTTTCATGT GAATATTTAT GTAGATAAAA TTTGCCTCCT GGTAACCCTG TAATGGATGG	2700
3	GGCCCAGAAA TGAAATATTT GAGAAAAACA AGTGAAAAGG TCAAGATACA AATGTGTATT	2760
	AAAAAAAAA AAGCCTATTA ATAGGGTTTC TGCGCGGTGC AGGGTTGTAA ACCTGCTTTA	2820
10	TCTTTTAGGA TTATTCCTAA ATGCATCTTC TTTATAAACT TGACTTGCTA TCTCAGCAAG	2880
	ATAAATTATA TTAAAAAAAT AAGAATCCTG CAGTGTTTAA GGAACTCTTT TTTTGTAAAT	2940
15	CACGGACACC TCAATTAGCA AGAACTGAGG GGAGGGCTTT TTCCATTGTT TAATGTTTTG	3000
13	TGATTTTTAG CTAAAGAGAG GGAACCTCAT CTAAGTAACA TTTGCACATG ATACAGCAAA	3060
	AGGAGTICAT TGCAATACTG TCTTTGGATA TTGTTTCAGT ACTGGGTGTT TAAAGGACAA	3120
20	ATAGCTGCTA GAATTCAGGG GTAAATGTAA GTGTTCAGAA AACGTCAGAA CATTTGGGGT	3180
	TTTAAACTGA TTTGTTGCTC CCTATCCAGC CTAGACACCA GTAACTCTTG TGTTCACCAG	3240
25	GACCCAGACC CTTGGCAAGG GATAGGCTCG TTGGTGACAT TGTGAATTTC AGATTTGTTT	3300
23	TATCCACTTT TTTTGCTATT TATTTAAATG GTCGATCAAC TTCCCACAAA CTGAGGAATG	3360
	AATTCCACGA GCCTGTTCTG AAAATGTGGA CGTAAGACAA ACACGTGCTC GTCCTTTAAT	3420
30	GGAGTTCACC AGCACACTTG TTAACCAGTC CTGTTTGCTT TCGTCTTTTT TTGTGCGTAA	3480
	TAAAGTCAAC TGACCAAGTG ACCATGAAAA GGGGCTGTCT GGGGCTCCTG TTTTTTAGCT	3540
35	GCTGTTCTTC AGCTCCGACC ATGTTGCTGT GTGATTATCT CAATTGGTTT TAATTGAGGC	3600
	AGAAACTGAA GCTCTACCAA TGAACTGTTT AGAAACAAGA CACACTTTTG TATTAAAATT	3660
	GCTTGCAGTA ACAAAAAAAA AAAAAAAAA AAAAAAAAA AAACTCGAGG GGGGCCCGGT	3720
40	ACCCAATTCG CCGTATATGA TCGTAAACAA TC	3752
45	(2) INFORMATION FOR SEQ ID NO: 128:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1144 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:	
55	TGACCCTCTG CCTGCCGGGC TCAGTGCTGG ACGCTTTCTG TTTTGTCGCA GTCGGTCCTC	60
	GGTAACACCA GCGGCCTGTG GTCCACCACT CCATTCAGCA GCTCCATTTG GTCCAGCAAC	120
60	CTTAGCAGCG CCTTCCCTTC ACCACTCCAG CAAACACGCT GGCAAGCATC GGCCTCATGG	180

... . .

	GCACAGAAAA CTCCCCTGCT CCTCACGCTC CCTCCACCTC CAGTCCAGCT GACGACTTGG	240
	GACAGACCTA CAACCCGTGG CGGATATGGA GCCCCACGAT TGGAAGAAGA AGCTCGGACC	300
5	CTTGGTCTAA TICGCACTTT CCTCACGAGA ATTAAATTAA GCAAAAAACA AACAAACATA	360
	GTGGGCCCTC GTCTAGATCA TGATGTGCCA GTTTCTGAGA CATCTTTTTA AGGCTCTTAC	420
10	TGCAGCTCCC CTCCCCACCC TCCTCTTCTT TGCAAAACAG ACCCAAGCAG GGCAGGCTCA	480
	GACCACTCGC TTCTTTCAGA TCTTTCTTGC AATTATGATA ACATGAGATT TGCTGTTGTG	540
	CTTTTAGAGA AAAGTCTGGA CTCAGCCACA AACTCTAATA AGACCTGTAC ATCTGAGAAC	600
15	CTTTCCCGTT ACTGCGTTTT CACCACCTGT CTTCCCCATG CTTTATTTAT CTGTATGAAC	660
	ACAGATTIGA CATTACAGCT AAGGAAATAA TITGAGTIGA TICAGAAATC CIGGCATGIG	720
20	ACAATTITGT TAAATTACCA AGTITGGTTT TTAATAATTT CTCAATATTA TGCGCCAAGA	780
	TCTAATTTTA AAACTGTATG AGGACTTTGT GCTGAAAATA GAGTATTTTT TTAAAGTAAG	840
	GCTGTCTTGG TTTAAAAGCA GATTACAGAA ATGTAAGTCA ACTTAAGAAC RGTGAATGAA	900
2 5	TGTAAAAACA TTCAGTYGAG ACCATATGCA TTTTCTGTGC TGTTTGTACT TGAGGTATGT	960
	AACATTTGTA TACCTGAACT TATTTTAAAG ATGAACTGAA ATGCACATAG CCAAGTCTTG	1020
30	AGATACAAGA TTGAATGTGT ATTTCTTAAA AATACAACTT TGTGTTGTAC TTTGAAATAA	1080
	ATGATGCTTT TTTCAAAAAA AAAAAAAAAA AAAAAAAAAC TCGAGGGGGG GCCCGGTACC	1140
	CAAT	1144
35		
	(2) THEODINALION FOR CEO ID NO. 129.	
	(2) INFORMATION FOR SEQ ID NO: 129:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1830 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
AE	(D) TOPOLOGY: linear	•
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:	
	GCATGCAGAG GAGCACCCTG AGCGTGTYCC TGGAGCAGGC GGCCATSTTG GCACGGAGCC	60
50	ACGGGTTGCT GCCCAAGTGC ATCATGCAGG CCACGGACAT CATGCGGAAC AGGGCCCAAG	120
	GGTGGAGATT CTGGCCAAAA ACCTGCGAGT CAAGGACCAG ATGCCCCAGG GTGCTCCGCG	180
55	CCTCTACCGC CTCTGCCAGC CGCCGGTGGA TGGGGACCTC TGAACACCCA AATGCCCCAC	240
	GCTGGGCCGC GGCCTCTGGA GCTGGGATTT GGGAGGACAC AGCAGGCAGC GCTGGCCTTC	300
	TCCAGGGATG GCCCAANGCT TCCGCARCCG CCCGTTCCGG GACCTGCCCA GCGTCCTCCC	360
60	TGCCTCCTTC CGGGACAAGC CTGGCCACCC TCGCTGTGAT GACGAGCTGG CTGATTGGCC	420

	CTGGGCCGGC CCATTCTTCA CACGCCTGCC AGAAGCTGGA GGGGTGCTGG AGACCCATAG	480
5	AGCTGATGGG AGCAGCTGGT GCCTGGCCTT CGGCTCCTGC GTCCCCAGAA CCCAAGGGAA	540
3	CGTCATGGAG GCCACATGGG GCCACCCGGC TCCCTCGGGA TGGCTCCGCT GCACTTTTGA	600
10	AACCCCGGTT TCCTTCAACG TCCACATTCC AGGTGACCAC ACGTGTCTCC TCCTCCTCAT	660
	CITAGCTTCC AGGTTCACCC TAACCCTGTA CTAACCTGCT TGGTGGACTT GGAAAAGACT	720
	TGGCTCTGTC GGGAAAGGAG AGACGGGGCC TCCATCACGC CTGTTACCAG AGGATCCCCG	780
15	AGAGCCACAC CAGCTCTGGA CATCACCGCC CCTGGAACTG GGGCCACCAG CCCTGGGCAC	840
13	GAGATTTGCT CTGACTTTAT TTATATGGCA TGAAATCTCT GGTTTATTTT GGGATTTTTT	900
	GTTGTTGGTG TTGTCAAAGT TTGTTTTTTC TAAAGTTGTG TGATTATATA TTTGACATTT	960
20	TACATTICAA AGAAAGGTAT GTTGTCTAAC AGGGGACCAA CAGAAGGTAG TATTGACAAC	1020
	TGTTCCTGCT TCTACTAAAA AAAAAAGAGC ACAAAAGAAA AACTAAATTA TTGAAAAATT	1080
25	AAAAAATGTC ATIGITTCCT GTTIGTTAAT ATTAGGGTIG TAAGGTGTCG TTTTGAGGTA	1140
20	TCGACTGTGA TTCCTTCCCC CACCCTCCAT TCTCCAGCGG TTGGCCGGTG TTAGAACTCG	1200
	CTCTCTTTGA GTGACTGGCT ACAAGGGCCT GAGAGGTGGC CAGCCAGGGT TGGAGCTGGA	1260
30	GGGGATGGAG CCCCACCTGA GGTGCCGTGT CACACGGGTT AGAGGGTCAC TGGGAAACAC	1320
	CGGGCGTGG CTTCTGTGAT TTATTTTCTT GATGGTAACT TCTCAGAGCA GGGCRATTGG	1380
35	GACATCACCA GCCAGAGCAC AGGAAGCCAC CCTGCCTGCT GGGGAGGAGG GACCCACACA	1440
55	AGCCCCCTCG GCAGTITGTC CCCCCAGCTT CGGTATGCCT TCAGGGAAAG GTCACAGCTG	1500
	GGGAGGAAGC GGGGGACGC CTGTCACCCC TGGCAGGTGG TGAGTTCAGG TGGGGGCTCC	1560
40	CTGCTKCCCC CAGGCCTGGG AGCTTGAAGC CCTCCCGGCA TCTGGCATCC GAGCCTCCCG	1620
	CCCTCCAGGG TGCGCTTCCC TCTCTTGCCG CAGCATACAC GAGGGCAGGC AGTGGCCTTG	1680
45	TCACTGTATC TTGCATCAGA GACAAAGGAG GACCCGCTTT AGCCCTGCTG CGGGAAATGG	1740
	GGGATGGCCC AGGGCCAGCG CATTGTGCAC TGGTTTACTT TAAAATGTAC AGATTCTTCT	1800
	CGTTAAATTC TTGATAGATT TTTTATTATT	1830

(2) INFORMATION FOR SEQ ID NO: 130:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1864 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130: GGCCGCCCGG ATGGCGACCC CAGCCTCGGC CCCAGACACA CGGGCTCTGG TGGCAGACTT 60 5 TGTAGGTTAT AAGCTGAGGC AGAAGGGTTA TGTCTGTGGA GCTGGCCCCG GGGAGGGCCC 120 AGCAGCTGAC CCGCTGCACC AAGCCATGCG GGCAGCKGGA GATGAGTTCG AGACCCGCTT 180 CCGGCGCACC TTCTCTGATC TGGCGGCTCA GCTGCATGTG ACCCCAGGCT CAGCCCAACA 240 10 300 ACGCTTCACC CAGGTCTCCG ATGAACTTTT TCAAGGGGC CCCAACTGGG GCCGCCTTGT ACCUTICITY GYCTTTGGGG CTGCACTGTG TGCTGAGAGT GTCAACAAGG AGATGGAACC 360 ACTGGTGGGA CAAGTGCAGG AGTGGATGGT GGCCTACCTG GAGACGCGGC TGGCTGACTG 420 15 GATCCACAGC AGTGGGGGCT GGTTATCCCA GATCACTGAA GCTGAGATGG CTGATGAAGT 480 540 AATTTGCAGT GAAATTTTAA GCGACTGTGA CTCTGCTGCA AGTTCCCCAG ATCTTGAGGA 20 GCTGGAAGCT ATCAAAGCTC GAGTCAGGGA GATGGAGGAA GAAGCTGAGA AGCTAAAGGA 600 660 GCTACAGAAC GAGGTAGAGA AGCAGATGAA TATGAGTCCA CCTCCAGGCA ATGCTGGCCC GGTGATCATG TCCATTGAGG AGAAGATGGA GGCTGATGCC CGTTCCATCT ATGTTGGCAA 720 25 TGTGGACTAT GGTGCAACAG CAGAAGAGCT GGAAGCTCAC TTTCATGGCT GTGGTTCAGT 780 CAACCGTGTT ACCATACTGT GTGACAAATT TAGTGGCCAT CCCAAAGGGT TTGCGTATAT 840 30 AGAGTTCTCA GACAAAGAGT CAGTGAGGAC TTCCTTGGCC TTAGATGAGT CCCTATTTAG 900 960 AGGAAGGCAA ATCAAGGTGA TCCCAAAACG AACCAACAGA CCAGGCATCA GCACAACAGA CCGGGGTTTT CCACGAGCCC GCTACCGCGC CCGGACCACC AACTACAACA GCTCCCGCTC 35 1020 1080 TCGATTCTAC AGTGGTTTTA ACAGCAGGCC CCGGGGTCGC GTCTACAGGG GCCGGGCTAG AGCGACATCA TGGTATTCCC CTTACTAAAA AAAGTGTGTA TTAGGAGGAG AGAGAGGAAA 1140 40 1200 MCCTTGATGG AAAAAAAATA TTTTTTAAAA AAAAGATATA CTGTGGAAGG GGGGAGAATC 1260 45 CCATAACTAA CTGCTGAGGA GGGACCTGCT TTGGGGAGTA GGGGAAGGCC CAGGGARTGG 1320 GGCAGGGGC TGCTTATTCA CTCTGGGGAT TCGCCATGGA CACGTCTCAA CTGCGCAACT 1380 1440 GCTTGCCCAT GTTTCCCTGC CCCACCCCAC CCCTCTTCTC CGGCTCCCTG CCCCTCCAGA 50 TTGCCTGGTG ATCTATTTTG TTTCCTTTTG TGTTTCTTTT TCTGTTTTGA GTGTCTTTCT 1500 TTGCAGGTTT CTGTAGCCGG AAGATCTCCG TTCCGCTCCC AGCGGCTCCA GTGTAAATTC 1560 CCCTTCCCCC TGGGGAAATG CACTACCTTG TTTTGGGGGG TTTAGGGGTG TTTTTGTTTT 1620 55 TCAGTTGTTT TGTTTTTTG TTTTTTINFT TTTCCTTTGC CTTTTTTCCC TTTTATTTGG 1680 AGGGAATGGG AGGAAGTGGG AACAGGGAGG TGGGAGGTGG ATTTTGTTTA TTTTTTTAGC 1740

354

	TCATTTCCAG GGGTGGGAAT TTTTTTTTAA TATGTGTCAT GAATAAAGTT GTTTTTGAAA	1800
	абабабаба абабабаба абабабаба абабабаба	1860
5	AAAA	1864
	•	
10	(2) INFORMATION FOR SEQ ID NO: 131:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2041 base pairs	
15	(B) TYPE: nucleic acid	
13	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:	
20	GGCACGAGCG CGCGGCAGGG CCCTGGACCC GCGCGGCTCC CGGGGATGGT GAGCAAGGCG	60
	CTGCTGCGCC TCGTGTCTGC CGTCAACCGC AGGAGGATGA AGCTGCTGCT GGGCATCGCC	120
25		
	TTGCTGGCCT ACGTCGCCTC TGTTTGGGGC AACTTCGTTA ATATGAGGTC TATCCAGGAA	180
	AATGGTGAAC TAAAAATTGA AAGCAAGATT GAAGAGATGG TTGAACCACT AAGAGAGAAA	240
	ATCAGAGATT TAGAAAAAAG CTTTACCCAG AAATACCCAC CAGTAAAGTT TTTATCAGAA	300
30	AAGGATCGGA AAAGAATTTT GATAACAGGA GGCGCAGGGT TCGTGGGCTC CCATCTAACT	360
•	GACAAACTCA TGATGGACGG CCACGAGGTG ACCGTGGTGG ACAATTTCTT CACGGGCAGG	420
35	AAGAGAAACG TGGAGCACTG GATCGGACAT GAGAACTTCG AGTTGATTAA CCACGACGTG	480
33	TGGAGCCCCT CTACATCGAG GTTGACCAGA TATACCATCT GGCATCTCCA GCCTCCCCTC	540
	CAAACTACAT GTATAATCCT ATCAAGACAT TAAAGACCAA TACGATTGGG ACATTAAACA	600
40	TGTTGGGGCT GGCAAAACGA GTCGGTGCCC GTCTGCTCCT GGCCTCCACA TCGGAGGTGT	660
	ATGGAGATCC TGAAGTCCAC CCTCAAAGTG AGGATTACTG GGGCCACGTG AATCCAATAG	720
45	GACCTCGGGC CTGCTACGAT GAAGGCAAAC GTGTTGCAGA GACCATGTGC TATGCCTACA	780
	TGAAGCAGGA AGGCGTGGAA GTGCGAGTGG CCAGAATCTT CAACACCTTT GGGCCACGCA	840
50	TGCACATGAA CGATGGGCGA GTAGTCAGCA ACTTCATCCT GCAGGCGCTC CAGGGGGAGC	900
50	CACTCACGGT ATACGGATCC GGGTCTCAGA CAAGGGCGTT CCAGTACGTC AGCGATCTAG	960
	TGAATGGCCT CGTGGCTCTC ATGAACAGCA ACGTCAGCAG CCCGGTCAAC CTGGGGAACC	1020
55	. CAGAAGAACA CACAATCCTA GAATTTGCTC AGTTAATTAA AAACCTTGTT GGTAGCGGAA	1080
	GTGAAATTCA GTTTCTCTCC GAAGCCCAGG ATGACCCACA GAAAAGAAAA	1140
	AAAAAGCAAA GCTGATGCTG GGGTGGGAGC CCGTGGTCCC GCTGGAGGAA GGTTTAAACA	1200

AAGCAATTCA CTACTTCCGT AAAGAACTCG AGTACCAGGC AAATAATCAG TACATCCCCA

1260

	AACCAAAGCC TGCCAGAATA AAGAAAGGAC GGACTCGCCA CAGCTGAACT CCTCACTTTT	1320
5	AGGACACAG ACTACCATTG TACACTTGAT GGGATGTATT TTTGGCTTTT TTTTGTTGTC	1380
3	GTTTAAAGAA AGACTTTAAC AGGTGTCATG AAGAACAAAC TGGAATTTCA TTCTGAAGCT	1440
	TOCTTTAATG AAATGGATGT GCCTAAAAGC TCCCCTCAAA AAACTGCAGA TTTTGCCTTG	1500
10	CACTTTTTGA ATCTCTCTT TTATGTAAAA TAGCGTAGAT GCATCTCTGC GTATTTTCAA	1560
	GTTTTTTTAT CTTGCTGTGA GAGCATATGT TGTGACTGTC GTTGACAGTT TTATTTACTG	1620
15	GTTTCTTTGT GAAGCTGAAA AGGAACATTA AGCGGGACAA AAAATGCCGA TTTTATTTAT	1680
13	AAAAGTGGGT ACTTAATAAA TGAGTCGTTA TACTATGCAT AAAGAAAAAT CCTAGCAGTA	1740
	TTGTCAGGTG GTGGTGCGCC GGCATTGATT TTAGGGCAGA TAAAAGAATT CTGTGTGAGA	1800
20	GCTTTATGTT TCTCTTTTAA T1CAGAGTTT TTCCAAGGTC TACTTTTGAG TTGCAAACTT	1860
	GACTTIGAAA TATTCCTGTT GGTCATGATC AAGGATATTT GAAATCACTA CTGTGTTTTG	1920
25	CTGCGTATCT GGGGCGGGG CAGGTTGGGG GGCACAAAGT TAACATATTC TTGGTTAACC	1980
45	ATGGTTAAAT ATGCTATTTT AATAAAATAT TGAAACTCAC CAAAAAAAAA AAAAAAAAA	2040
	A	2041
20		
30		
30	(2) INFORMATION FOR SEO ID NO: 132:	
35	(2) INFORMATION FOR SEQ ID NO: 132: (i) SEQUENCE CHARACTERISTICS:	
	- · · ·	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:	60 120
35 40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT	
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGGCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT	120
35 40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGGCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA	120 180
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGGCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA TACACTGATG GTACATTCAG GNTCCCTCGG CCAAGGACTG GACCAGAAGA ACACTTGGGA	120 180 240
35 40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGGCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA TACACTGATG GTACATTCAG GNTCCCTCGG CCAAGGACTG GACCAGAAGA ACACTTGGGA ATCTTGGGTC CACTTATCAA AGGTGAAGTT GGTGATATCC TGACTGTGGT ATTCAAGAAT	120 180 240 300
35 40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2012 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132: TACCAAGCTG CAAGAATCTA CTATATCATG GCAGAAGAAG TAGAGTGGGA CTATTGCCCT GACCGGAGCT GGGAACGGGA ATGGCACAAC CAGTCTGAGA AGGACAGTTA TGGTTACATT TTCCTGAGCA ACAAGGATGG GCTCCTGGGT TCCAGATACA AGAAAGCTGT ATTCAGGGAA TACACTGATG GTACATTCAG GNTCCCTCGG CCAAGGACTG GACCAGAAGA ACACTTGGGA ATCTTGGGTC CACTTATCAA AGGTGAAGTT GGTGATATCC TGACTGTGGT ATTCAAGAAT AATGCCAGCC GCCCCTACTC TGTGCATGCT CATGGAGTGC TAGAATCTAC TACTGTCTGG	120 180 240 300 360

	NAGCCCCATG	GAGGACGGAN	TGACATGGAT	CGGGAATTTG	CATTGTTGTT	CITGATTIT	600
	GATGAAAATA	AGTCTTGGTA	TTTGGAGGAA	AATGTGGCAA	CCCATGGGTC	CCAGGATCCA	660
5	GGCAGTATTA	ACCTACAGGA	TGAAACTTTC	TTGGAGAGCA	ATAAAATGCA	TGCAATCAAT	720
	GGGAAACTCT	ATGCCAACCT	TAGGGGTCTT	ACCATGTACC	AAGGAGAACG	AGTGGCCTGG	780
10	TACATGCTGG	CCATGGGCCA	AGATGTGGAT	CTACACACCA	TCCACTTTCA	TGCAGAGAGC	840
10	TTCCTCTATC	GGAATGGCGA	GAACTACCGG	GCAGATGTGG	TGGATCTGTT	CCCAGGGACT	900
	TTTGAGGTTG	TGGAGATGGT	GGCCAGCAAC	CCTGGGACAT	GGCTGATGCA	CTGCCATGTG	960
15	ACTGACCATG	TCCATGCTGG	CATGGAGACC	CTCTTCACTG	TTTTTTCTCG	AACAGAACAC	1020
	TTAAGCCCTC	TCACCGTCAT	CACCAAAGAG	ACTGAAAAAG	CAGTGCCCCC	CAGAGACATT	1080
20	GAAGAAGGCA	ATGTGAAGAT	GCTGGGCATG	CAGATCCCCA	TAAAGAATGT	TGAGATGCTG	1140
20	GCCTCTGTTT	TGGTTGCCAT	TAGTGTCACC	CTTCTGCTCG	TIGTICIGGC	TCTTGGTGGA	1200
	GTGGTTTGGT	ACCAACATCG	ACAGAGAAAG	CTACGACGCA	ATAGGAGGTC	CATCCTGGAT	1260
25	GACAGCTTCA	AGCTTCTGTC	TTTCAAACAG	TAACATCTGG	AGCCTGGAGA	TATCCTCAGG	1320
	AAGCACATCT	GTAGTGCACT	CCCAGCAGGC	CATGGACTAG	TCACTAACCC	CACACTCAAA	1380
30	GGGGCATGGG	TGGTGGAGAA	GCAGAAGGAG	CAATCAAGCT	TATCTGGATA	TTTCTTTCTT	1440
50	TATTTATTTT	ACATGGAAAT	AATATGATTT	CACTTTTTCT	TTAGTTTCTT	TGCTCTACGT	1500
	GGGCACCTGG	CACTAAGGGA	GTACCTTATT	ATCCTACATC	GCAAATTTCA	ACAGCTACAT	1560
35	TATATTTCCT	TCTGACACTT	GGAAGGTATT	GAAATTTCTA	GAAATGTATC	CTTCTCACAA	1620
	AGTAGAGACC	AAGAGAAAAA	CTCATTGATT	GGGTTTCTAC	TTCTTTCAAG	GACTCAGGAA	1680
40	ATTTCACTTT	GAACTGAGGC	CAAGTGAGCT	GTTAAGATAA	CCCACACTTA	AACTAAAGGC	1740
10	TAAGAATATA	GGCTTGATGG	GAAATTGAAG	GTAGGCTGAG	TATTGGGAAT	CCAAATTGAA	1800
	TTTTGATTCT	CCTTGGCAGT	GAACTACTTT	GAAGAAGTGG	TCAATGGGTT	GTTGCTGCCA	1860
45	TGAGCATGTA	CAACCTCTGG	AGCTAGAAGC	TCCTCAGGAA	AGCCAGTTCT	CCAAGTTCTT	1920
	AACCTGTGGC	: ACTGAAAGGA	ATGTTGAGTT	ACCTCTTCAT	GTTTTAGACA	GCAAACCCTA	1980
50	TCCATTAAAG	TACTTGTTAG	AACACTGAAA	AA .			2013
20							

(2) INFORMATION FOR SEQ ID NO: 133:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1669 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

_	GAGCAGTATT	TTAACCAACT	TGTATTACAG	ATGTTACAGT	TCATGTTAGG	AAGTCAGAAA	60
5	AGACTTTGTT	TGTCTTTGTT	CTGCTGATGT	GAGTCATGTT	TTGTGGGGTC	TTCCATGGCA	120
	CATTTACCTG	TTGCTCCGTC	CAGATGTTGA	GGGCCAGTCT	AGGCTGACAC	ATCCTACCCG	180
10	AGGACAAGCC	TGTTCTCCAT	TTCTTCACTC	TCCCCTCCCC	ATATAGCAAC	TCTCCCAGGT	240
	TTAGATTACC	GTTTTCGACG	ACAGATTAAC	CAAAAATGCC	CCACACAGGT	TTTATTACTG	300
15	ТТАТАТАСТА	TACTTTTAAC	AGTACAGACC	СТАААТТТТА	TTATTTGTTG	CTCCCCCAAT	360
13	CTGATACCAA	ATGTTTAAAG	TTGTTTGAAA	TCCAAACATG	GTAGTGTTCA	TGGGTAAATA	420
	TTTTCTAGGC	TATGTAAGAG	TTAGCAGCCC	ATAGCATAGA	AGTAATCAAG	TAGCATCTGA	480
20	GACTGTTGGA	GGCACTAGGG	CCTCTCTGGG	CCTAACAGCC	TCACTTCCCC	AGCCTCACCT	540
	TGCTGTCCTC	TGACACTGCC	ATCAGGGCTG	TTAGTGGCAC	CTGTATGAGG	CCAAGTGTGC	600
25	GTCCAGGGGA	ACAGCACAGG	TTAATGCGTC	TCCCTAGAAC	TCATGAAGTC	AGTTTAATTC	660
23	ATGCATGAAC	ATGAGTTCAT	TTTATGTTTT	ATATAGCTTT	CTTAGACATA	CCAAACCATC	720
	ATTCATAAAT	CAGATAAATT	ATTCAGTTTT	TGTGTTTAGA	AAGCTAAGTA	TGTGTAGCTG	780
30	GAAACAAAAA	TGAGCGTGTT	TICICICCIG	TTAATCTAGA	GTGTGCAGTT	ACACATGTGT	840
	GGATAATTTC	ATGTTCCAGG	GGCGCTTGGC	ATCTCCCATG	GACTGATTCC	CAGGAAGAAA	900
35	AGCCCAAAGG	GAAACCCACG	ATTCCTTTCG	AGTAGATGTG	GGAAAGAGCC	CATTGGAGGA	960
23	TATGAGGTCC	TGTGAAATTC	AGTTGTGTGT	GTGGCTCCTT	GTTAGCAGTC	ATGTTGACAT	1020
	GGTGTTAGGA	GGCTCCCCAT	CCACCCTTTA	CATGATGTAG	GGACCAGTGT	CTTGTGAGAT	1080
40	TAACCTTGGG	ACACAGTGGG	TTAGCCTGGA	GAAAATGAGA	GCCCTCCCT	GGACCCAGGG	1140
	AGAGGAGCCA	GTGACACAGG	CAGAGCGGTG	CAGCCCTCCT	TCCCTTCCAT	TTGGAGGAGG	1200
45	TGGTGCCAGG	AGCCTGCCCG	CTTACCTCTG	CTGAAGCATA	AGTGGACTTT	GCTTTTGGGG	1260
•5	CTTATCTCTG	ATACATGCTG	GAGCCCTGCC	TCTCCACTGC	TAGATGGAAC	CTGGAATCTC	1320
	TCATCTACCT	CTTAGTCTGT	CAGTTTCTAC	GTGTGAGAAG	CAAGCTTGTG	GGCCAGTGTC	1380
50	CTTGTACATG	CTGTAGCACT	ТАААААТАА	TTCCAGGGTT	CCCTGGAAAA	CCAGTCCCAG	1440
	GGTTCCTATG	ATCTGTAGTT	TCTACCTGGA	TTATAACTGG	TTTTGGGTAC	CIGAATITIG	1500
55	ATTGGTTAGC	CTTAATTATA	GTCTGGCGTG	ATCATGTAGA	ATCTTTTCTG	GTGAACAGAT	1560
33	CATAAAGTTC	TATCAAGGAG	TTCTATCAAG	GCATCCATGT	CAGTGGTGCT	ATGCTGGTTA	1620
	CAACTTGAGA	TTTTTGAAAT	AAAAAATTTG	тсаталалал	АААААААА		1669

358

(2) INFORMATION FOR SEQ ID NO: 134:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1565 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

CACTTTTGCT ATATAACCTA AGTGATAACC CTCTTTTAGT TACCTGCCAA ACTCTGGNCT 60 TGGTTTATAT TGCAGTTAAC ACAGTTACAA AGCTGTAATG GTGTCTTTTT TTCCTTTGTA 120 15 ACGGAATGTG TAAATCAAAG TATATACATT GTGTGGTGTT CCTGTTTCTG GAGTTTCATG 180 240 AGGATTTACA CATGGCATTC AGTGTTCTGT ATAGATCTGC CTACCTTTGT GAATTCATCT 20 GTTAACCCCT CTTCCTTTGA GAGAGCACCG GCGATGGTGG TTAACTCCTT GTGTTTTCTC 300 360 TCTCTCCTAC TGGTTATTCT TGAATTAAGC ACAGACTCGT CAGCTCGGTT GCTTTATCAT GAATAATGTG TGTGACCTTG CAGTTCTTCC ACAGTTCAGC AAACAAGTGC TAGCTTCACT 420 25 480 GACCAAAAAT TAAGGAAGGA AAACACAGTT TTTAAAACGA TCCATCTTTT AACAGCCGAA ACCGATGTGT CTATGGTGCT GCACCTTGCT GTTGTACTTC TGAAATCAGA CGTGTGTGAA 540 30 CGATCATTTC TGACTTAACC GTGAGATGCT CACGAGTACC CTTCCTGTTG TTTTGTTAGC 600 660 ATTGAAATCG AGACTATTTA TTTGGAATAT ATACAACAGT GTTTTTCCAC TGTATTTCAT TIGCAAAAGT TGAGAACTGC TITCTCTACC TTTTGCAAAA TAATTGATAT TCCATATTGG 720 35 780 ATTCTCAAAG ACTTCGATAT GGTGAACCTA TTAAACCTAG AAATTGTATT CATCCTTTCA TGACTGTGGC CTGAGTTCCC CAGCCCCTCT CCTCCTTTTT TITAGATGAG ATTTAGCACA 840 40 900 CTCTCAGTTA TTTAAACATG CAACATTTCT TGAGTATGTA TGTTGAGGCC ATCTGAGCTC ATAGCTGATT CAGTAACCAG TITCATGCTG TGTCATTCAC ACTCACTACT TAATACTGCC 960 ATGGTGAAAA TGTGGAGGAA AAATGTATCC ATGTGTGTCT GGGAAGCATA TACACTTGTA 1020 45 1080 AAAAAAAGT GATAAAGCAA TCAGAAGACC AAGAGGTTTA CTATTGATGC TTAGGGTCGT 1140 50 CTGACCTTGG CTGGCCAATA GACCTACACG GCCAAATTAA TTTACGAGAG TAATAATTTT 1200 1260 TCAAAAGCCA ATTITTTTC TGTATTITCT GTATGAAACT GCCAATATCA TGAATAGAAA GGGAGAACCA TAAAGGAGAA AGAACGTGAT GTTCTGTTAT GTTCATGTAA ACCTAAAGAA 1320 55 1380 ACAGTGTGGA GGCAGGCGCG ATCAGCCGAA CTCTAGGGAC TTGGTGTTGC TTGGAAGGCA TCCATACCTG CATTTTGCAT TCTTCGTATG TAATCATATT GCCAAAGACA AACTATTTCA 1440

359

	TCATTTATTG	TAAATAACAC	TTTTCCCCAG	ACCTACCATA	AAGTTTCTGT	GATGTATTGT	1500
	CTTCCAGTTG	CAATAAAAAT	TACTGAGTTG	CATCAATTGA	AGAAAAAAA	АААААААА	1560
5	CTCGA						1565

10 (2) INFORMATION FOR SEQ ID NO: 135:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2007 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

20	TCTAAAAGCC	CCCTTATACC	CCACTTTGTG	CAGCAAAGAT	CCCCGTGCAG	GTCACAGCCT	60
	GATTTGTGGC	CAGGCTGGAC	AAATTCCTGA	GGCACAACTT	GGCTTCAGTT	CAGATTTCAA	120
25		TGTTGGGACC	AGCAGAAGGC	AAACGTCCAG	CCAACACACA	GGACTGTAAG	180
43		GCTACGTGCC	CTGTGAAGAC	CCCCAGGCTT	TGTCATAGGA	GGTCGTTCAG	240
	CTTCCCCAAA	GTCAGAGGTG	ATTIGATTIG	GGGAAGACTG	AATATTCACA	CCTAAGTCGT	300
3 0	GAGCATATCC	TGAGTTTTAC	TTCCTTATGG	-CTTGCCCTCC	AAGTTCTCTC	TCTCATACAC	360
	ACACACACCC	TTGCTCCAGA	ATCACCAGAC	ACCTCCATGG	CTCCAGCTAT	GGGAACAGCT	420
35		TGCCTTTCTG	TTTGGCTTAG	GAACTTCTGT	CTTCTTGTG	GCTCCACTCG	480
33		CCGACCTCTC	GACTCCGATT	GGGCTGCAGG	CAGCTCTGGG	ACGGCACAGG	540
	GCGGGCGCTC	TGATCAGCTC	GTGTAAAACA	CACCGTCTTC	TTGGCCTCCT	GGCAGTTCTT	600
40	TCTGCGAATA	GTCCTCTCCC	TGGCCAGTTG	AATGGGGGAA	GCTGCTGGCA	CAGGAAGGAG	660
	AGGCGATCCC	GGCTGAGGCT	TAGGAAATTG	CTGGAGCCGG	CTCCAAGCAG	ATAATTCACT	720
45		TCAGAGTCAA	ACATCATTCT	GCCTGTKTTG	GGGCCAGGT	GTGTCACACA	780
40		AGTCAAAAGC	CATCTGGGGC	TGCTGCTTCT	CTTTCTCAGG	CTCTGGGGAA	840
	AGGAATCTCC	CTCTCCTCTC	ACTTGATTCC	AAGTGTGGTT	GAATTGTCTG	GAGCACTGGG	900
50	ACTTTTTTC	TCTTTTCCTT	GATGGACCAA	CAGTGCAAAT	GCAATCTCGC	CATTTAACTT	960
	TCAGGTCGAT	TTCCTTTCCT	GATCAGACAT	CTTTGTGCCC	CCTTTAGGAA	GGAAAAGAAT	1020
55		TGTGCCAGGC	ACTGTGTTAG	GCGCTTTTAT	ATAGATCCTC	GTTAGGATGA	1080
33		TGAGGACATC	тстттатала	AGGCCCCTAA	GTAATGGATA	AACAGAAACA	1140
	CTTAGAGGTC	AGAAGGTCTG	TCTTCAAGAT	· CCAAGGTAAG	ATTGCCTTCA	GTCTGATGTT	1200
60	TGTTCTCAAC	GACTTATCCC	CTACAATATT	CTCCCACTCC	ATACTTCTCC	TTCTACCCCA	1260

PCT/US98/04493

540

600

	CCATGTGCTC CCGTGCACTC CTCAGATGGT CAGAGGGGTA ACCCAAGTCC TTAGAGAATT	1320
-	TGGGGACCAA TAGAATATGT GATGTGTGAA TTTTCTTTAA AAAACTTAAG GAGTCTTTGC	1380
5	TACCTTCTGC TTGTTGAGTT GTTTTGGCAT TCATATTAAA AGCCAGCATC TCACTATTTA	1440
	TTGACAGGTT GGGCTGTGTG TGTGCGCATG TGTGTATACA TTTCCAGGCG TGCCTGTGTC	1500
10	CTGTAGCTTT TTAAAAGGAA ACCCAGTCAT CCCACTATGA ATCTGGCATC TTCTTATGCT	1560
	TCTAGTGTTT TGGCCATACA TCAACCAAGG GGTTTAATTT ATCCAATGCT TGACGACATG	1620
15	TTCAGGAGGG GCTGGATCAA ATTTTGAGAG GGTTATGGGA AAGGGAGGGG GAGAAGAAAT	1680
13	TGACATTTAT TITATTATTT ATTITAAATG TITACATCTT CITTATGTTG TATCAAGCCT	1740
	GAATAGAAAC TGATAGCATT AAAATACTCC GITCCTCTCT CTCTTCTCGC TTCCTTTTTT	1800
20	TTTTTTTTTA AATTTAGGAT AACACATTTT TGTTTCTAAA GTGATTTGTG ATTTGTGCTG	1860
	TATAAACTGT ATAAAAGGTT CTGTTTTTAA AGGTGGATTT TCATTCCTCT GGGGACAGTG	1920
25	GTCGCCAAGA CATCTACATT GTAAGAGAAC ACAGTGGAAG ATCCTGTCCT GATTCTCAAA	1980
25	AATTATTTC TCTGTATGAT TAAAAGT	2007
30	(2) INFORMATION FOR SEQ ID NO: 136:	
•	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1291 base pairs	
3 5	· · · · · · · · · · · · · · · · · · ·	
	(A) LENGTH: 1291 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
3 5	(A) LENGTH: 1291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
	(A) LENGTH: 1291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:	60 120
	(A) LENGTH: 1291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136: CTTTTAACCC TCCCCCTTCA CACACATACA TATCAGGTTG TTTTCTAGTT AAAAACCCAA	
40	(A) LENGTH: 1291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136: CTTTTAACCC TCCCCCTTCA CACACATACA TATCAGGTTG TTTTCTAGTT AAAAACCCAA GTAGCTCAGA TTCTACTTTA ATGTCAGTGC AGATTTGCAT TGAATCATGC CATTATGTTT	120
40 45	(A) LENGTH: 1291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136: CTTTTAACCC TCCCCCTTCA CACACATACA TATCAGGTTG TTTTCTAGTT AAAAACCCAA GTAGCTCAGA TTCTACTTTA ATGTCAGTGC AGATTTGCAT TGAATCATGC CATTATGTTT TTTCTCATTT TTATGCTGTT GGGTCTTAGT TTTTAAATTG ATATAAAGAA CTCAGCAATG	120 180
40	(A) LENGTH: 1291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136: CTTTTAACCC TCCCCCTTCA CACACATACA TATCAGGTTG TTTTCTAGTT AAAAACCCAA GTAGCTCAGA TTCTACTTTA ATGTCAGTGC AGATTTGCAT TGAATCATGC CATTATGTTT TTTCTCATTT TTATGCTGTT GGGTCTTAGT TTTTAAATTG ATATAAAGAA CTCAGCAATG GTTTTATTTT CTACTCATAC TTAGGGTTTA GGAAACACTA CCACTAGTTA TCATTTAATC	120 180 240
40 45	(A) LENGTH: 1291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136: CTTTTAACCC TCCCCCTTCA CACACATACA TATCAGGTTG TTTTCTAGTT AAAAACCCAA GTAGCTCAGA TTCTACTTTA ATGTCAGTGC AGATTTGCAT TGAATCATGC CATTATGTTT TTTCTCATTT TTATGCTGTT GGGTCTTAGT TTTTAAATTG ATATAAAGAA CTCAGCAATG GTTTTATTTT CTACTCATAC TTAGGGTTTA GGAAACACTA CCACTAGTTA TCATTTAATC AACTTCAATG GTCTACTGAA ACAAAAATGG TAACTTTTCA TTAGTGGATT ATTTAGAGTT	120 180 240 300

CTGATAGACC ACTATTGGCA AACAGTATCT GTCAACTACC AAATGTGTAA AATTTTCTGT

ATTTCACTTT GTCTTATTTG TAAATAGTGA ACTAAAACTT TTGGCAGATC AGCAACATTT

361

	GCTGAGCCTG TTTTTTAAGC TAATGTGTAT TCTTACTAAT GTTCCTATCA AGAATGGATT	660
	TGTAATATAT GCTGTCTATT TCTAATGTTC ACATTCATAT TITGAGGTTC TATCTTATTT	720
5	TAATAGAGAA CAGACTTCTC AAAAAATCTT CAGAAGCAGC TTATTATTGA AATATCGAAA	780
	TATTGAAATA AACCCGGTGG GTTAGATTAC TCATCTGTCC ACCAAGTGGG ACATTTGCAT	840
10	GGACTGGGG CTTAAAGGAC TTAGAAGAGA CCTGTAAGTA AATCCTGAAA ATGAGCCAAT	900
10	CCCCACTIGA ATGGTTACTG GAGTAAACCC ACCTTTACCA CCCCAATTAC AGCACCCGAG	960
	GCCGATAAAC CAACTTGGCT CTGGTTCATT TTTCTTTTCT	1020
15	CAAAATGTGT GTTCTACACT GTTACAGGCT TCTCTTTTGT TTGATTAAAG ATTTTAGTCC	1080
	TACTTTTGTA TGGACACATT AGAATATTCA GAGACCAAAA TAGAAGAATT TGCTGTTAGA	1140
20	TATTITICAG AAGTCAGCAG ATTIGTOGCA AATCATITAT TIGCCTTTIT AAAAATTCAT	1200
20	TTAAGCAGTT CAGAGAGTAG ACTACTCAGA AAATTATTTC ACGTAATTGT CTAAGAGGTC	1260
	AATATTTTT AATGCATATT GAATCAAATA A	1291
25		
	(2) INFORMATION FOR SEQ ID NO: 137:	
20		
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1906 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:	
	GGCACGAGGA CCTACTTTTG TAACAGACCA TGGTTGTGTC CAAGGTAAAA CCACAGTGAT	60
40	ATTTTTGGAT GCTTTGTCTG CAATCTTGAC TTGTTTTTGC AGTATCATTA TTCAGACTTC	120
	AAATTGTGAA TCTTTTAAAC ATCTTGATAA TTTGTTGTTG AGAGCTGTTC ATTCTAAAAT	180
45	GTAATGAAAT TCAGTCTAGT TCTGCTGATA AAGATCATCA GTTTTGAAAG GTTACTGATT	240
43	TICCTCTICC CTCTTAGTTT TTTACCCAAT ATATGGAGAA GAGTAATGGT CAATCTTAAC	300
	ATTTGTTTT AATTGTTTAA TAAAGCTGCT GGGCAGTGGT GCAGCATTCC TACCTAGTGT	360
50	CATAAAAGCA AAATACTTAC ATAGCTTTCT TAAAATATAG GAATGACATT ACATTTTTAG	420
	GAGAAAGTAA GTTGCTTTGC ACCGCCTACT TAATTCCTTT CCATATATTG TGATACAAAC	480
55	TTTTGAATAT GGAATCTTAC TATTTGAATA GAAATGTGTA TGTATAATAT ACATACATAC	540

ATAAGCATAT ATGTGTGTGT GTGTGTGTAT ATATATATAT ATGCATGCTG TGAAACTTGA

CTACACAACA TAAATCACTT TTTAAATTCC AGGAACGGT AGTCTGACAC GGTGATTATC

CTTTTGAGGC TGAATCCGTT ATTAACTTGT TATTTAGGTT TTACTCCCAG TAGCAAGGGA

60

600

660

	TTCTAAGTTA GTTGCACTTA CATGATTATT GTGATTTAAA ACTAAGAATA AAGGCTGCAT	780
5	TTTCAAAGAT AAATTGGAAT TGCTGTTGGT GAAATAACAA CCAAAATACT GAATCTGATG	840
3	TACATACAGG TTTCTACAGG AAGAGATGGT ATAATTTACA ATTTGGAGAT TTAATAACCA	900
	GGGCTACCCA GAAAAAGTGA CTTGATAACA TGGTACCAAT AAGTAAGGGA TGCTCTCTCG	960
10	GTTTGCTTTT GCCACTTTCA AGATTTTAAC TTCTCAGGTT ATTAATCAAA ATTATTGTAT	1020
	AAGTTAGCCA ATAGAATTIT TAGGTTAAAA CAACAGATGG GGGGTTTGTG GAGTGTTTAA	1080
15	TGTCATGGGC ATTTTTAGTA GCATAGACCC TTTGTTCTGC ATTTGAATGT TTCGTATATT	1140
13	TTTGTTTCAC AGTTAATCTT CCCTCCCCAA GTTTGCTATT CAAATCAACT GCCTGAATGA	1200
	CATTICTAGI AGICIGATGI ATTITICTGA GGAATAGITI GIGATICCAA IGCAGGIGIC	1260
20	TICATTACCA TIACCICTAC ACTGCAGAAG AAGCAAAACT CCTTTATTAG AATTACTGCA	1320
	CATGTGTATG GGGAAAATAG TTCTGAAAGG CTAGAATGAT ACAAGTGAGC AAAAGTTGGT	1380
25	CAGCTTGGCT ATGGAGTGGT GGCAATAATC TCTAAACATT CCAAAAGACC ATGAGCTGAA	1440
	CCTAAACTCC CTTGGGAATC TGGAACAAAG GAATATGAAA ATTGCCATTT GAAAACTGAC	1500
	CAGCTAATCT GGACCTCAGA GATAGATCAG CCAGTGGCCC AAAGCCATTT CAAGTACAGA	1560
30	AATTATAGAG ACTACAGCTA AATAAATTTG AACATTAAAT ATAATTTTAC CACTTTTTGT	1620
	CTTTATAAGC ATATTTGTAA ACTCAGAACT GAGCAGAAGT GACTTTACTT TCTCAAGTTT	1680
35	GATACTGAGT TGACTGTTCC CTTATCCCTC ACCCTTCCCC TTCCCTTTCC TAAGGCAATA	1740
	GTGCACAACT TAGGTTATTT TTGCTTCCGA ATTTGAATGA AAAACTTAAT GCCATGGATT	1800
	TTTTTCTTTT GCAAGACACC TGTTTATCAT CTTGTTTAAA TGTAAATGTC CCCTTATGCT	1860
40	ТТТСАААТАА АТТТССТТТТ СТАААААААА АААААААА	1906
45	(2) INFORMATION FOR SEQ ID NO: 138:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1935 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

55 TCTGAACTAA TGCTAACAGA TCCCCCTGAG GGATTCTTGA TGGGCTGAGC AGCTGGCTGG 60

AGCTAGTACT GACTGACATT CATTGTGATG AGGGCAGCTT TCTGGTACAG GATTCTAAGC 120

TCTATGTTT ATATACATTT TCATCTGTAC TTGCACCTCA CTTTACACAA GAGGAAACTA 180

	TGCAAAGTTA	GCTGGATCGC	TCAAGGTCAC	TTAGGTAAGT	TGGCAAGTCC	ATGCTTCCCA	240
	CTCAGCTCCT	CAGGTCAGCA	AGTCTACTTC	TCTGCCTATT	TTGTATACTC	TCTTTAATAT	300
5	GTGCCTAGCT	TTGGAAAGTC	TAGAATGGGT	CCCTGGTGCY	TTTTTACTTT	GAAGAAATCA	360
	GTTTCTGCCT	CTTTTTGGAA	AAGAAAACAA	AGTGCAATTG	TTTTTTACTG	GAAAGTTACC	420
10	CAATAGCATG	AGGTGAACAG	GACGTAGTTN	AGGCCTTCCT	GTAAACAGAA	AATCATATCA	480
	AAACACTATC	TTCCCATCTG	TTTCTCAATG	CCTGCTACTT	CTTGTAGATA	TTTCATTTCA	540
	GGAGAGCAGC	AGTTAAACCC	GTGGATTTTG	TAGTTAGGAA	CCTGGGKTCA	AACCCTCTTC	600
15	CACTAATTGG	CTATGTCTCT	GGACAAGTTT	TTTTTTTTT	TTTTTTTAA	ACCCTTTCTG	660
	AACTTTCACT	TTCTATGTCT	ACCTCAAAGA	ATTGTTGTGA	GGCTTGAGAT	AATGCATTTG	720
20	TAAAGGGTCT	GCCAGATAGG	AAGATGCTAG	TTATGGATTT	ACAAGGTTGT	TAAGGCTGTA	780
20	AGAGTCTAAA	ACCTACAGTG	AATCACAATG	CATTTACCCC	CACTGACTTG	GACATAAGTG	840
	AAAACTAGCC	AGAAGTCTCT	TTTTCAAATT	ACTTACAGGT	TATTCAATAT	AAAATTTTTG	900
25	TAATGGATAA	TCTTATTTAT	СТАААСТААА	CCTTCCTCTT	TATACACACT	CCTGTTATTC	960
	TGGGATAAGA	TAAATGACCA	CAGTACCTTA	ATTTCTAGGT	GGTGCCTGT	GATGGTTCAT	1020
30	TGTAGGTAAG	GACATTTTCT	YTTTTTCAGC	AGCTGTGTAG	GTCCAGAGCC	TCTGGGAGAG	1080
7.	GAGGGGGGTA	GCATGCACCC	AGCAGGGGAC	TGAACTGGGA	AACTCAAGGT	TCTTTTTACT	1140
	GTGGGGTAGT	GAGCTGCCTT	TCTGTGATCG	GTTTCCCTAG	GGATGTTGCT	GTTCCCCTCC	1200
35	TTGCTATTCG	CAGCTACATA	CAACGTGGCC	AACCCCAGTA	GGCTGATCCT	ATATATGATC	1260
	AGTGCTGGTG	CTGACTCTCA	ATAGCCCCAC	CCAAGCTGGC	TATAGGTTTA	CAGATACATT	1320
40	AATTAGGCAA	ССТААААТАТ	TGATGCTGGT	GTTGGTGTGA	CATAATGCTA	TGGCCAGAAC	1380
	TGAAACTTAG	AGTTATAATT	CATGTATTAG	GGTTCTCCAG	AGGGACAGAA	TTAGTAGGAT	1440
	ATATGTATAT	ATGAAAGGGA	GGTTATTAGG	GAGAACTGGC	TCCCACAGTT	AGAAGGCGAA	1500
45	GTCGCACAAT	AGGCCGTCTG	CAAGCTGGGT	TAGAGAGAAG	CCAGTAGTGG	CTCAGCCTGA	1560
	GTTCAAAAAC	CTCAAAACTG	GGGAAGCTGA	CAGTGCAGCC	AGCCTTCAGT	CTGTGGCCAA	1620
50	AGGCCAAGAG	CCCCTGGCAA	CCAACCCACT	GGTGCAAGTC	CTAGATTCCA	AAGGCTGAAG	1680
	AACCTGGAGT	CTGATGTCCA	AGAGCAGGAA	GAGTGGAAGA	AAGCCAGAAG	ACTCAGCAAA	1740
	CAAGGTAGAC	AGTGTCTACC	ACCAYAGTGG	CCATACCAAA	GAGGCTACCG	ATTCCTTCCT	1800
55	GCTACCTGGA	TCCCTGAAGT	TGCCCTGGTC	TCTGCACCTT	CTAAACCTAG	TTCTTAAGAG	1860
	CTTTCCATTA	CATGAGCTGT	CTCAAAGCCC	TCCAATWAAT	TCTCAGTGTA	AGYTTCAAAA	1920
60	АААААААА	AAAAA					1935

(2) INFORMATION FOR SEQ ID NO: 139:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

15	NGCCCCCTTG	GCACAAGTCA	GATGAAGCAC	GTTCTGCCGG	GGAGGCCCTC	AMCTTCCAGA	60
13	GAGGACAGAC	ACAGATTTCC	TGCTGGGGGA	GGGAGGAGTC	CACGCATCCT	GATGCTGCCT	120
	GGAAGCTTAT	TTTCCCGTGG	CCAGGATGCA	TTTCTCTGAG	TGGAAACAGG	TTCTTGCATG	180
20	TGGATGTGTG	TTTCCCCAGG	CAGACGGCCC	CTCTYTTCCC	AGCACTTCCC	TGCCTCCCCC	240
	AGGCCTCAGG	CCAGCACCCA	GTTCCTCCTC	ACATGGCAGG	TGAGCACAGA	CTTCTAGTTG	300
25	GCAGGAGCTG	AGGAGGGTGA	ACAAACCCCG	AGGGAGGCCC	GCCCTTGCT	CCCGAGTTGG	360
23	GGGGAGGGG	TGTGGCAACG	TGCCCCCCGC	AGAGGCCACG	CATGTTTGAC	CAAAGCCCTC	420
*	ATTGTGGTCC	GAGGACAGCC	TTTTCCCCAG	GCCTCARAGC	ATTGCTCATC	CGTGCCAAAC	480
3 0	TGGGTAGGTG	GATTTGAGCG	GAAAGACTCC	CAAAATGTGC	CAAGAATTTC	CCRGTCCCAG	540
	GCAGGGCAGG	GGAAACTAAG	GGCAAGCAGG	ATACAGGGCG	AGGGATGTGG	CAGGTGAGGG	600
35	GGCTCCCGCC	TGTGCCCCTT	CTCCTCACCA	TGTCTCCCCC	ACCCTGCCTC	AGTTCTCCGT	660
33	TCCCCTTCAT	CTCCGTCCCC	CTCTTTGAAG	CTGTCCCCAT	CTCAGTGTCA	GACCAGCCTT	720
	CTCCTCAKCT	GACCACCCTC	CTCTGACCSA	CCCCCCTCC	TTGTCTGAAA	AAAGGAGCCT	780
40	TGAATGGTGG	AGGGAGGCAG	TGGGGAGAAA	GGTCTCACCG	GACAGGTTGG	GAGAATGAGG	840
	TCAGCGGTGC	TGGGGAACAG	ATGGAGGGG	CAGTGGGGAC	AGGGCTTGGG	CAGACACCAG	900
45	CAGGAATAAT	TTGAAATGTG	TGAGGTGACT	CCCCGGAGGC	CTTGGGCTTG	GGCATTTGGG	960
43	AAAAGAATGA	TGTCTGGAAG	GGCTTAAGGG	ACACAGTGGA	CGAGGGGAGA	GTCCTCATCT	1020
	GCTGGCATTT	TGTGGGGTGT	TAGTGCCAAA	CTTGAATAGG	GGCTGGGGTG	CTGTCTTCCA	1080
50	CTGACACCCA	AATCCAGAAT	CCCTGGTCTT	GAGTCCCCAG	AACTTTGCCT	CTTGACTGTC	1140
	CCTTCTCTTC	CTACCTCCAT	CCATGGAAAA	TTAGTTATTT	TCTGATCCTT	TCCCCTGCCT	1200
55	GGTCTAGCTC	CTCTCCAAAC	AGCCATGCCC	TCCAAATGCT	AGAGACCTGG	GCCCTGAACC	1260
33	CTGTAGACAG	ATGCCCTCAG	AATTGGGGCA	TGGGAGGGG	GSTGGGGGAC	CCCATGATTC	1320
	AGCCACGGAC	TCCAATGCCC	AGCTCCTCTC	CCCAAAACAA	TCCCGACAAT	CCCTTATCCC	1380
60	TACCCCAACC	CTTTGCGGCT	CTGTACACAT	TTTTAAACCT	GGCAAAAGAT	GAAGAGAATA	1440

365

TTGTAA 1446

5

10

(2) INFORMATION FOR SEQ ID NO: 140:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1109 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140: TITTITITT TITGATATGA AATTGTCTTT CTCCATTGCA GAAATAAGCT AGGGAAACAC 60 TAACCCAAAA ACTITCTGTA GAGCTGTTCC TITGGAGGCA GCATCACTTA TIGGCAGTAA 120 20 AGACTCAGTA TAAAAGCACC AGCATCCCTA CTTGGGTGAT GGGGATTAAT TTTATAGCAT 180 TCCATTTCC TAGTGCCACA TGTGAAATTG GATTTTGATG ATCTTAATCT ATATTCTACC 240 25 CTTATAATAA AAGATCAAAA GATATATCTC CTATGAACAG ATTGGAGATA GGAGATGAAA 300 AGTTGGGAGG ATGTCTTTAT TCTAATGTGA GGGTAGGGAA AATGTGGATA ACATTACTGG 360 GGTGARGGAG GCATTGTTCT TTAGTTGGAG TTCTCATTTT TATTCTCCAG TACTGACTTG 420 30 TGGGGAAAGC ATACTTTTTC ACTGCCAGGT ACTGAATGCA GAGGCTCAGT GAAGTATATA 480 TGTGGGAAGT GCATGCATTT CGTTTATTAG CAAACATAGC TGGATTAAGA CAAAGTTGTT 540 35 GGTTTGGAAA GGGGTTAAAG CCTTAAGTGA ACAAATCTAG CTAACAGTGA ATGAACTAGG 600 TAATATAACT TGCATATTTT TAATTTCCTT TGGTTAAAGG TCCCCCATAC TTCTCTGTTC 660 GGAGACATGA GAAGTATGAT TACTTCAGTG TTAGTTTTCT TAATTTTTTT TTTCCCCTAT 720 40 TTGTCCCTTG TCACTTTGTT GCAAGCTAGA AATCTGTGGG TTATACATAG GGCAGCTCTT 780 TGTGAAAGTG GTTTATTCCA CTGGAGAAAG GGGATTGAAA ATCAGTTAGA ACCAATGTAT 840 45 TTCTTGCCCC ACGGAACACT ATTCCTATAA GATAGCTGAA AGAAGCTGCT GTGAGGAGCT 900 CAGCTCCAAA CACAGGATCA GCACCTTGTA TAGGAATTCC CATGAATTAT GACTTCTCAT 960 TCTGTTTTAT CAGAGTGCAT ATATGTCCTA CTTCAGGAAA AGTAAAACAG TCATTTACGA 1020 50 AAGAAAGTCA ATCTGTATCC TAAGCATTTT AATAAAAAGT TAAAACAAAA AATTAAAAGG 1080 GACACTCGAG GGGGGGCCCG AAACCCAAT 1109

55

(2) INFORMATION FOR SEQ ID NO: 141:

60 (i) SEQUENCE CHARACTERISTICS:

_	(A) LENGTH: 497 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
	TAGGACTAAC TTAAATTCTT TTATTCATCT TTTATTTATT AAAAAATTTT ATTTCTTTGA	60
10	ATTITCCTGT AATTICCTTA RGCTCTTCTA TAAAATGTTA TATTCATGTG AACCATACCT	120
	CATTATCCTT AACATTTACT CTCAAAAAGC TTTTTATTTT TATTTTTTTG AAGGTAGTTT	180
15	TTCTGTGTGT ACTCTGTAAC ATGATTTTGC TTTCAAATCA TTGTTGTGCC CCCATACAAA	240
15	ATGCCTTTTA TTTTTGAGGA TCGTGGACTT TTTAGTATGG CATGAGTGTG CTAAAAAGCCA	300
	GATATCTTTC CACATTCACT GGTGGCTTTG ACACCTAGTT TTTAATCTCC CATCCTTACT	360
20	TTAAACCCTG ACAGTGCAGT CCTCAGTCAG GGCCAGGACC GGGCTGAGGC CCTTTGTGGA	420
	GATGCTGCAC CACCAGCAGA AGGCTGAGAC CTGGTTACCT GTACCTGTTC ACTTGTAATA	480
25	AAAAGAATTA TCTAAAA	497
25		
30	(2) INFORMATION FOR SEQ ID NO: 142: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 269 base pairs (B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:	
40	ATGAGGCAGA GGCAAGCTGC CTGCCAACCC CCTCCCTCAA GGAATGGCCT TGCCCAGGAA	60
40	TGCCCACCAC ACATACCCTC TTCTTTTTT CTAGTCAAAC TCTTGTTTAT TCCTTGGCTT	120
	GCCTCCCTCC TTTCCTCCCC TCTCAACCTT TTACTTCTGG TTTCTATTTC ATGGGATTTG	180
45	GGGTTGAAGT TAAACTTACA ACAGTGCCGC CAACACCAAG TCTTGCAGGA AAAAAATACA	240
	AAGAAATTTA ACAAAAAAAA AAAAAAAAA	269
50		
50	(2) INFORMATION FOR SEQ ID NO: 143:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1269 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:

	TTGATTGACT	ATGGTCTCTC	CGGCTACCAG	GAAGAGTCTG	CCGAAGTGAA	GGCCATGGAC	60
5	TTCATCACCT	CCACAGCCAT	CCTGCCCCTG	CTGTTCGGCT	GCCTGGGCGT	CTTCGGCCTC	120
3	TTCCGGCTGC	TGCAGTGGGT	GCGCGGGAAG	GCCTACCTGC	GGAATGCTGT	GGTGGTGATC	180
	ACAGGCGCCA	CCTCAGGGCT	GGGCAAAGAA	TGTGCAAAAG	TCTTCTATGC	TGCGGGTGCT	240
10	AAACTGGTGC	TCTGTGGCCG	GAATGGTGGG	GCCCTAGAAG	AGCTCATCAG	AGAACTCACC	300
	GCTTCTCATG	CCACCAAGGT	GCAGACACAC	AAGCCTTACT	TGGTGACCTT	CGACCTCACA	360
15	GACTCTGGGG	CCATAGTTGC	AGCAGCAGCT	GAGATCCTGC	AGTGCTTTGG	CTATGTCGAC	420
13	ATACTTGTCA	ACAATGCTGG	GATCAGCTAC	CGTCGTACCA	TCATGGACAC	CACAGTGGAT	480
	GTGGACAAGA	GGGTCATGGA	GACAAACTAC	TTTGGCCCAG	TTGCTCTAAC	GAAAGCACTC	540
20	CTGCCCTCCA	TGATCAAGAG	GAGGCAAGGC	CACATTGTCG	CCATCAGCAG	CATCCAGGGC	600
	AAGATGAGCA	TTCCTTTTCG	ATCAGCATAT	GCAGCCTCCA	AGCACGCAAC	CCAGGCTTTC	660
25	TTTGACTGTC	TGCGTGCCGA	GATGGAACAG	TATGAAATTG	AGGTGACCGT	CATCAGCCCC	720
2,5	GGCTACATCC	ACACCAACCT	CTCTGTAAAT	GCCATCACCG	CGGATGGATC	TAGGTATGGA	780
	GTTATGGACA	CCACCACAGC	CCAGGGCCGA	AGCCCTGTGG	AGGTGGCCCA	GGATGTTCTT	840
30	GCTGCTGTGG	GGAAGAAGAA	GAAAGATGTG	ATCCTGGCTG	ACTTACTGCC	TTCCTTGGCT	900
	GTTTATCTTC	GAACTCTGGC	TCCTGGGCTC	TTCTTCAGCC	TCATGCCTCC	AGGGCCAGAA	960
35	AAGAGCGGAA	ATCCAAGAAC	TCCTAGTACT	CTGACCAGCC	AGGGCCAGGG	CAGAGAAGCA	1020
33	GCACTCTTAG	GCTTGCTTAC	TCTACAAGGG	ACAGTTGCAT	TTGTTGAGAC	TTTAATGGAG	1080
	ATTTGTCTCA	CAAGTGGGAA	AGACTGAAGA	AACACATCTC	GTGCAGATCT	GCTGGCAGAG	1140
40	GACAATCAAA	AACGACAACA	AGCTTCTTCC	CAGGGTGAGG	GGAAACACTT	AAGGAATAAA	1200
	TATGGAGCTG	GGGTTTAACA	СТАААААСТА	GAAATAAACA	TCTCAAACAG	ТАААААААА	1260
45	AAAAAAAC						1269

(2) INFORMATION FOR SEQ ID NO: 144:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1944 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

AAAAGGCAAA CTATAGGATA ACACAGAGCC CTTTTTGAAA ATAAATTGGC ATTGGAGTGT

60

	TITACCCTCT AGCTGTTTTA CTTAGAATGT AACATATGCT GCCTACCCAC CTCAAAATGT	120
	CTGTACTGCA AGAGGGCCCT GGGCCTCTGC TTTCCATATT CACGITTGGC CAGAGTTGTA	180
5	GTCCCAAAGA AGAGCATGGG TGGCAGATGG TAGGGAATTG AACTGGCCTG TGCAATGGGC	240
	ATGGAGCACA AGGGGTCACA GCATGCCTCC TGCCTTACCG TGGCAGTACG GAGACAGTCC	300
	AGAACATGGT CTTCTTGCCA CGGGGTGTTG TTGTCTCTGG TGGTGCTGCA TGTCTGTGGC	360
10	TCACCTITAT TCTTGAAACT GAGGTTTACC TGGATCTGGC TACTGAGGCT AGAGCCCACA	420
	GCAGAATGGG GTTGGGCCTG TGGCCCCCAA ACTAGGGGGT GTGGGTTCAT CACAGTGTTG	480
15	CCTTTTGTCT CCTAAAGATA GGGATCTACT TTTGAAGGGA ATTGTTCCTC CCAAATAAAT	540
	TIGCTITACC TIGGICCTIT CTITIGIGCC AGTATICAAG TGGTATAGCT CTGAGCAGGG	600
20	TCACATTTGG CCAAACCTGA CACTGTCTTG CTGCATTCTC CTTTGGCAAA CATCAGGGTC	660
20	AGAATTCAGG ATAGCCCTTC CTAGGGCACT GGACTTTCTG GCATGGGGGC TGTGTTTGCA	720
	CAAGTTATIT TCATGTTACC TGGAGAGTGT CCAGAGGCTG CTCTGAGGCT GAGGTGTGTT	780
25	CCCCCTTGCC TGGTTCCAGC TGTCAGAGGG ATACCATCCT AGGGTCTGGG AATCCAAGGC	840
	CACGAGACTC CTTGGTTTGT GGTCCGAGAT CCTGTACTAA GGAGGGTCTG GCCAGAGGAA	900
30	CAGACCAGCT TTTGCACAAT GAAGCGCAAG GGAACAAGTG GTTTGCCTGG TGTCCTACCT	960
30	GTCCTGAACC TGGTCCTGTG GGCCATTGAA AAGTTAGATC TGTGATCTCT GGGGTTTTTG	1020
	TGGCTTTGTT CAATGCTTCC ACTCTAGGGC AGGCAGAGCA GTCTATACTC TCCCAAGCCT	1080
35	GCTTGACCTC CAAGTAGAGC TGATACAGAG ATCTGTGAAT ATTGTGATAG AAATTCTTTG	1140
	GTATTCATAC ATTTCAGCTG CAAGTCAGCA ATTTCCCAGG TACCATGTAA GCTATAAAAC	1200
40	AGTCATTCTT AAAGACAGAG GATAGCTGTG ACTCATGGGA TCATGAGGTC CATGGCTGGT	1260
40	TGCAGGITCC CTTTTCCTT CCTCAGGITT TGTCTCTTCC TGTGTTGTCC CCAGCAAGGG	1320
	AGAGACTGTG GGGTGGATTG GGAGAACAGA TTAGGAGTAT AGCAAATGAA CCCAGAATGG	1380
45	AACAGTGGGG AGCTAACTGT GAATGAGGAG AGTACCTGCT GCAGGACCTG GAGGTCAGGT	1440
	GTGAATGCTG TATTGGCACA GGGAATAAAT ATCCTGGCGT CTGGAGCCTT CACCTCTCCG	1500
50	TCAAGTCCTT CCTGTGATAC TGCCATGGCA CAGGATCTGA GTTGCAGCTC TGCACCCTAA	1560
50	ATCACACCCT GGGCATTGTC TGGGCTGCAG GGCTGCCAGG TTCTGTACTT GTGTCCAGCT	1620
	GTGGCCCTGG ATGCTGGAGC TGGAGGGTTT TCTGTGCTCA GACTGTAGCC TGTAGCTCTT	1680
55	GGCCTGTGTA GAGCCCCCTC CTGTGCCCTC AGTGGCTGTC GTTTGTTAAC ATCATCAGGA	1740
	AGATGGGAAA GGTCAGGCAG AATTITTCTG CCCTACAAAG GGTGGAAGAG AAAGGACACA	1800
	CONSTRUCTOR CANTERIACCA TRANSCRIPTS TETTETCTCA ACGARARAGE TAATTGAGGC	186

AATGTCATCT GCTCAAAGTT GAGTGGTTTA TTCACAATAA ACTGTAAGTT TCTGATTATA

369

1920

	AAAAAAAAA AAAAAAAAA AAAG	1944
5 .		
	(2) INFORMATION FOR SEQ ID NO: 145:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1021 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:	
	TCGACCCACG CGTCCGGGGT GCGCAACGGG GAGTTCCGGC TGGAGACCCG TGCTCTGGGC	60
20	CGGCGCCTTC ACCATGGCCT CGGCAGAGCT GGACTACACC ATCGAGATCC CGGATCAGCC	120
	CTGCTGGAGC CAGAAGAACA GCCCCAGCCC AGGTGGGAAG GAGGCAGAAA CTCGGCAGCC	180
25	TGTGGTGATT CTYTTGGGCT GGGGTGGCTG CAAGGACAAG AACCTTGCCA AGTACAGTGC	240
	CATCTACCAC AAAAGGGGCT GCATCGTAAT CCGATACACA GCCCCGTGGC ACATGGTCTT	300
	CTTCTCCGAG TCACTGGGTA TCCCTTCACT TCGTGTTTTG GCCCAGAAGC TGCTCGAGCT	360
30	GCTCTTTGAT TATGAGATTG AGAAGGAGCC CCTGCTCTTC CATGTCTTCA GCAACGGTGG	420
•	CGTCATGCTG TACCGCTACG TGCTGGAGCT CCTGCAGACC CGTCGCTTCT GCCGCCTGCG	480
35	TGTGGTGGGC ACCATCTTTG ACAGCGCTCC TGGTGACAGC AACCTGGTAG GGGCTCTGCG	540
,,	GCCCTGCA GCCATCCTGG AGCGCCGGGC CGCCATGCTG CGCCTGTTGC TGCTGGTGGC	600
	CTTTGCCCTG GTGGTCGTCC TGTTCCACGT CCTGCTTGCT CCCATCACAG CCNTCTTCCA	660
40	CACCCACTTC TATGACAGGC TACAGGACGC GGGCTCTCGC TGGCCCGAGC TCTACCTCTA	720
	CTCGAGGGCT GACGAAGTAG TCCTGGCCAG AGACATAGAA CGCATGGTGG AGGCACGCCT	780
45	GGCACGCCGG GTCCTGGCGC GTTCTGTGGA TTTCGTGTCA TCTGCACACG TCAGCCACCT	840
7.5	CCGTGACTAC CCTACTTACT ACACAAGCCT CTGTGTCGAC TTCATGCGCA ACTGCGTCCG	900
	CTGCTGAGGC CATTGCTCCA TCTCACCTCT GCTCCAGAAA TAAATGCCTG ACACCTCCCC	960
50	ACAAAAAAA AAAAAAAAA ACTCGAGGGG GGGCCCGGTA CCCAATTCGC CCTATAAAGG	1020
	т	102
55		
	(2) INFORMATION FOR SEQ ID NO: 146:	

(2) 1110,1111111111 == 2 == 110 + 110

(i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 1285 base pairs

		(C)	STR	ANI	nucle DEDNES DGY: 1	s:	double	•		
5	(xi)	SEQUEN	ICE :	DES	CRIPT	ION	: SEQ	ID	NO:	146:

GGCACGAGGA GGGCCACGGC AGCCATCGCG CTTTGCAGTT CGGTCTCCTG GTGTACGGCC 60 AACGCCAAGT AGGGGATTGC GTTCCCTCCA GTCGCAGACC CTATCAGATT TGGATATGTC 120 10 CTTCATATTT GATTGGATTT ACAGTGGTTT CAGCAGTGTG CTACAGTTTT TAGGATTATA 180 TAAGAAAACT GGTAAACTGG TATTTCTTGG ATTGGATAAT GCAGGAAAAA CAACATTGCT 240 ACACATGCTA AAAGATGACA GACTTGGACA ACATGTCCCA ACATTACATC CCACTTCCGA 300 15 AGAACTGACC ATTGCTGGCA TGACGTTTAC AACTTTTGAT CTGGGTGGAC ATGTTCAAGC 360 TCGAAGAGTG TGGAAAAACT ACCTTCCTGC TATCAATGGC ATTGTATTTC TGGTGGATTG ,420 20 480 TOCAGACCAC GAAAGGCTGT TAGAGTCAAA AGAAGAACTT GATTCACTAA TGACAGATGA AACCATTGCT AATGTGCCTA TACTGATTCT TGGGAATAAG ATCGACAGAC CTGAAGCCAT 540 CAGTGAAGAG AGGTTGCGAG AGATGTTTGG TTTATATGGT CAGACAACAG GAAAGGGGAG 600 25 TATATCTCTG AAAGAACTGA ATGCCCGACC CTTAGAAGTT TTCATGTGTA GTGTGCTCAA 660 AAGACAAGGT TACGGAGAAG GCTTCCGCTG GATGGCACAG TACATTGATT AACACAAACT 720 30 780 CACATTGGTT CCAGGTCTCA ACGTTCAGGC TTACTCAGAG ATTTGATTGC TCAACATGCA TAACTTGAAT TCAATAGACT TTTGCTGGTT ATAAAACAGA TGTTTTTTAG ATTATTAATA 840 TTAAATCAAC TTAATTTGAA TGAGAATTGA AAACTGATTC AAGTAAGTTT GAGTATCACA 900 35 ATGTTAGCTT TCTAATTCCA TAAAAGTACT TGGTTTTTAC AGTTTATAAT CTGACATCAC 960 1020 CCCAGCGCCA TTTGTAAAGA GCAACTTTCC AGCAGTACAT TTGAAGCACT TTTTAACAAC 40 ATGAAACTAT AAACCATATT TAAAAGCTCA TCATGTTAAA TTTTTTATGT ACTTTTCTGG 1080 AACTAGTTTT TAAATTTTAG ATTATATGTC CACCTATCKT AAGTGTACAG TTAATAATTA 1140 GCTTATICAA TGATTGCATG ATGCCTTACA GTTTTCAATA ACTTTTTTTC TTATGCAAAC 1200 45 1260 1285 GGCCCGTACC CAATTCGCCC TAAAG 50

(2) INFORMATION FOR SEQ ID NO: 147:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1386 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60 (D) TOPOLOGY: linear

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	147:
------	----------	--------------	-----	----	-----	------

5	GGCACGAGGT GGCGCAGGGG TCAGTGGTTC TCTCGGGTCT CGGGACAGGT GAGCACCC	rG 60
3	ATGAAGGCCA CGGTCCTGAT GCGGCACCTG GGCGGGTGCA GGAGATCGTG GGCGCCCT	CC 120
	GCAAGGGCGS CGGAGACCGG TTACAGGTGA TTTCTGATTT TRACATGACC TTGAGCAG	FT 180
10	TTGCATATAA TGGAAAGCGA TGCCCTTCTT CTTACAATAT TCTGGATAAT AGCAAGAT	CA 240
	TCAGTGAGGA GTGTCGGAAA GAGCTCACAG CGCTCCTTCA CCACTATTAC CCAATTGAG	SA 300
15	TCGACCCACA CCGGACCGTC AAGGAGAAGC TACCTCATAT GGTGGAATGG TGGACCAA	AG 360
13	CGCACAATCT CCTATGTCAG CAGAAGATTC AGAAGTTTCA GATAGCCCAG GTGGTTAGA	AG 420
	AGTCCAATGC AATGCTCAGG GAGGGATATA AGACCTTCTT CAACACACTC TACCATAAG	CA 480
20	ACATTCCCCT TTTCATCTTT TCTGCGGCCA TTGGTGATAT CCTGGAAGAA ATTATCCGA	AC 540
	AGATGAAAGT GTTCCACCCC AACATCCACA TCGTGTCTAA CTACATGGAT TTTAATGAA	AG 600
25	ATGGTTTTCT CCAGGGATTT AAGGGCCAGC TGATACACA ATACAACAAG AACAGCTCT	G 660
4 .5	TGTGTGAGAA CTSTGGTTAC TTCCAGCAAC TTGAGGGCAA AACCAATGTC ATCCTGCTC	G 720
	GAGACTCTAT CGGGGACCTC ACCATGGCCG ATGGGGTTCC TGGTGTGCAG AACATTCTC	'A 780
30	AAATTGGCTT CCTGAATGAC AAGGTGGAGG AGCGGCGGGA NCGCTACATG GACTCCTAT	G 840
	ACATCGTGCT GGAGAAGGAC GAGACTCTGG ATGTGGTCAA CGGGCTACTG CAGCACATC	cc 900
35	TGTGCCAGGG GGTCCAGCTG GAGATGCAAG GCCCCTGAAG GCGCAGGCTN CCAGNCCGC	cc 960
33	TGCAGGCCGT GGTGAGGAGG GGCGCCTCCC CAGAGTCTGC TCCCCCGTGA ACACAGAGC	'A 1020
	GANGCCAGGG TGGCCAGCAG TGGCTGGGTC CTTCCGCGCC CCTCCGTCCT CCTTTCCCT	G 1080
40	AGCACCTTCA TCACCAGAGG CTTGAAGGAA CCCCGCCATG TGGCAGGGCA CAGGCACTC	FT 1140
	TCCTGGTGAA CCTTGGACCA CAGCATGTCA GTGCTCTAGG GATTGTCTAC TCCAGGGAT	T 1200
45	TTCTTCAAAA TTTTTAAACA TGGGAAGTTC AAACAAATAT AATGTGTGAA ACAGATCAA	A 1260
15	ATTTTTAAAA TGAAAAAAAA GCTGCTCTGA TTCAGGGGAT GTGGGTCGGG GTAGAACCT	rG 1320
	GACCTCTTGG CCTGGGGGCA CATGGGATGC TTCTAGGAAC ACAGTTTGAG AACCACCAA	AA 1380
50	алала	1386

^{55 (2)} INFORMATION FOR SEQ ID NO: 148:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 2098 base pairs

⁽B) TYPE: nucleic acid

^{60 (}C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

	(XI) SEQUENCE PESCHILITON, SEQ 11 11	
5	AGCCCTTCTC CCCGCGCTTG GGACTCTGAC ATCTTAAGGC TGCACGGTCG TGTCCTTGTC	60
	TGGGTGAGGC CATGTCTGTG ATCCAAGGTT CCTGGAACTG ACACAGGAAG GGGCTGTGAA	120
	CCCTAAGTGG GTGTMATCTC CTCCRACCGA GGCTTCTMAC CCTGGAGATG GCAGTTACTC	180
10	CTGGCCATGG TTGCTGAGCA TGGGCAGACC AGTGGAGGCC ACCCTACTGT GTTATCTGCG	240
	CCTTCRATGA AGTGAGACCC TTGGGGAGAA CGGGCTGTGG ATGAAGGAGT GGACTGCAGC	300
15	CTTGGCCTAG CCACTGGGCT GGGATCTTCT GGGTCATGTG ACTGTGTATC CAGGAGCAGA	360
	AACTTGTATT CTCAGGATTC AGGATCTACC CAGCACCAAA GATGTATTTT CAGGAGAACA	420
	GACCTAGAAA TGGGCCTGTC TGGCATTTCA GAGTCAGGCA AAGCAGGCAG GGCCAGGGAG	480
20	CTTCTGTGGG TCTACACAAG AAGGTTCCTG TGAGGGCTAT CAGTTGTTGC CTTCTAGCTT	540
	GCTGGTAACT TIGGCGCCTC CGCCAAGCCC TGCCAGACTC CCCTGGCTGT GATGGCATTC	600
25	TGTGCCATCC TGCCTTGTCC CCAGCCTCTG CAGGATGCCC TCCCTACCCA MCTYTYCCTG	660
	GGCCTTCCCT GTCCACTGGG CTGGATTCAT GTTCAAACCA CTGGACTGGC AGGGCAACGA	720
	CTTCTTCCCA CCTCAAGATG AGGTCCTCGC CCCCTTGTCT TGGCATAAAA ACACCTTTAA	780
.30	AGCATGAGCC ATGTGCTTCT TTGCCCTTCT CTGTCCTGTT CCAATCTTCT GCCTCCCAGT	840
	CACTCCCTGG GGACTATGGG ATCACTGTCC CCCCACCTGT GTGGCCACAC CATGTGTCCT	900
35	GTCAATCCAG AACTGCCTCT GAGCTCCAGG CTGACCACAG ATCAGCCACA GCCTGATGCC	960
	TGCAGCCCCA CTTTGCTCAC CCTTCCCCTC CCCTCCTCCT TCCTTCCACA CAGCAAGCCT	1020
	ACCIPITYTCC ATCCATGCTC ACCATAGCCC CCTTCCTTGT GACCTGGACC CTCCATTGTA	1080
40	CCTGGCTGAG ACTGTCAGCC TCCTGGAGGA GTGGGGTCCA CCTTCTTCTT GCCCTATGCA	1140
	GTGCAAGCTT CACTTCTCAC CCAGCAAGGT TGACTCATCT GCCTCCATGT CTCTGGGGCT	1200
45	TIGCTGITGC CCTGAAACCT AGCTGGGCTG GTCTTGCTCC CAGCTTGCTT CCCCCTCCTC	1260
	GGATGTCCCT TTGCAGGCCC CTGTCGTTCC TCCGGCACCA GTGTCCTTGG CTGCCATGGC	1320
	AAGCTCATCA GGGGCTTGTA CCCTGGTCAC CAAGCATGGT AGCAGCTGCC TGCATTGTAT	1380
50	CTCCATCTGG TCACTGCAGG TGCCAACCCT TCATCCCCCA TGTTTTCCTG GGCCATGGAG	1440
	GGCTGACCTC CGTTTCTGGG GAATGTGGCT GAGCTGTGGT AACCAGCTAC ACCCCAGGTG	1500
55	CTCTTTCCAT GGTGGTGCCT GCTCATCTTG CTGATGCAAA CTAGGAAGTT AGGCTGCATC	1560
	TCGGAGTGGC TTTCGCTGGA GAGGTGCTTT GCTGTCTCTC AGACTCAGTC ACTGTGTTCC	1620
	CTCCCCGCCT CTCTTATCTC CATGGCTGTT TGCAGCTCTC CCAGGTACTT TGGGGTCTGA	1680
60		

	GCTGGAATTC CTTTGTGTT TGCTCTTCTG CTTCTCACTC TTGTATTAAG AAGGATTCCA	1740
	CAAAGGGAGA GTGGCATCCC TGCTGCTGCT GTGCCAGACC AGAGTTTCCT GAGGGGCCCT	1800
5	GACCCTAACC CTCCAGCTCA GCCCTGTACA CCTGACCCTG TAAATGAGTG GGGTTTGCTG	1860
	ACTGTAATCC CTGACACCAG TAAAACCAAA AGGACTCTTG GGGGCTCAGT GTGAGAGCCA	1920
10	GGGTTACCTA CTCTGCCAAG TGAGGACAAA CTGCTAGGCT GTATCCCATA ATTTCAGGAT	1980
10	GAGAAACATT AACAATAAAA ATTTGTAGTA AACATAACCT CATGANGACT AAAAAAAAAA	2040
	AAAAACTYGG GGGGGGCCC GTAACCCATT GGGCCCTTNG GGGGGGNGTT TTAAAATT	2098
15		
	(2) INFORMATION FOR SEQ ID NO: 149:	7
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1847 base pairs (B) TYPE: nucleic acid (C) STRANDENESS: double	
25	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:	60
20	TCGACCCACG CGTCCGAACT GAGGCGGCGG CGGGAGCCGG TTGGKGTCTG GTCTTCGCGT	120
30	CGGCCCCGCG GACCAGACGC TGCCCCCGGC GCGGGGAGAA GATGGTGCCK AGCGGCCTCG GGCCCGCCAC GCGCCGCCAC GAGTGAGCCC AGCGCGACCG CGGGCGTCCG CCGAGCAGCT	180
	GGCCCGCCAC GCGCCGCCAC GAGTGAGCCC AGGGGAGCG CGGCGGGCG CGGTGGAGCT GATCAGAATA	240
35	ATGTTCAGCA TCAACCCCCT GGAGAACCTG AAGGTGTACA TCAGCAGTCG GCCTCCCCTG	300
	GTGGTCTTCA TGATCAGCGT AANGCCCATG GCCATAGCTT TCCTGACCCT GGGCTACTTC	360
40	TTCAAAATCA AGGAGATTAA ATCCCCAGAA ATGGCAGAGG ATTGGAATAC TTTTCTGCTA	420
70	CGGTTCAATG ATTTGGACTT GTGTGTATCA GAGAATGAAA CCCTCAAGCA TCTCACAAAC	480
	GACACCACAA CTCCGGAAAG TACAATGACC AGCGGGCAGG CCCGAGCTTC CACCCAGTCC	540
45	CCCCAGGCCC TGGAGGACTC GGGCCCGGTG AATATCTCAG TCTCAATCAC CCTAACCCTG	600
	GACCCACTGA AACCCTTCGG AGGGTATTCC CGCAACGTCA CCCATCTGTA CTCAACCATC	660
50	TTAGGGCATC AGATTGGACT TTCAGGCAGG GAAGCCCCACG AGGAGATAAA CATCACCTTC	720
	ACCCTGCCTA CAGCGTGGAG CTCAGATGAC TGCGCCCTCC ACGGTCACTG TGAGCAGGTG	780
	GTATTCACAG CCTGCATGAC CCTCACGGCC AGCCCTGGGG TGTTCCCCGT CACTGTACAG	840
55	CCACCGCACT GTGTTCCTGA CACGTACAGC AACGCCACGC TCTGGTACAA GATCTTCACA	900
	ACTGCCAGAG ATGCCAACAC AAAATACGCC CAAGATTACA ATCCTTTCTG GTGTTATAAG	960
60	GGGGCCATTG GAAAAGTCTA TCATGCTTTA AATCCCAAGC TTACAGTGAT TGTTCCAGAT	1020

	GATGACCGTT CATTAATAAA TTTGCATCTC ATGCACACCA GTTACTTCCT CTTTGTGATG	1080
	GTGATAACAA TGTTTTGCTA TGCTGTTATC AAGGGCAGAC CTAGCAAATT GCGTCAGAGC	1140
5	AATCCTGAAT TTTGTCCCGA GAAGGTGGCT TTGGCTGAAG CCTAATTCCA CAGCTCCTTG	1200
	TITTITGAGA GAGACTGAGA GAACCATAAT CCTTGCCTGC TGAACCCAGC CTGGGCCTGG	1260
10	ATGCTCTGTG AATACATTAT CTTGCGATGT TGGGTTATTC CAGCCAAAGA CATTTCAAGT	1320
	GCCTGTAACT GATTTGTACA TATTTATAAA AATCTATTCA GAAATTGGTC CAATAATGCA	1380
	CGTGCTTTGC CCTGGGTACA GCCAGAGCCC TTCAACCCCA CCTTGGACTT GAGGACCTAC	1440
15	CTGATGGGAC GTTTCCACGT GTCTCTAGAG AAGGATTCCT GGATCTAGCT GGTCACGACG	1500
	ATGITITICAC CAAGGICACA GGAGCATIGC GICGCIGAIG GGGIIGAAGI TIGGITIGGI	1560
20	TCTTGTTTCA GCCCAATATG TAGAGAACAT TTGAAACAGT CTGCACCTTT GATACGGTAT	1620
	TGCATTTCCA AAGCCACCAA TCCATTTTGT GGATTTTATG TGTCTGTGGC TTAATAATCA	1680
	TAGTAACAAC AATAATACCT TTTTCTCCAT TTTGCTTGCA GGAAACATAC CTTAAGTTTT	1740
25	TTTTGTTTIG TITTIGTTTT TTTGTTTTTT GTTTTCCTTT ATGAAGAAAA AATAAAATAG	1800
	TCACATTITA ATACTACCAA AAAATGGACA AAAAAAGTCG AGGGGGG	1847
30		
	TO NO. 150.	
	(2) INFORMATION FOR SEQ ID NO: 150:	·
3 5	(i) SEQUENCE CHARACTERISTICS:	
3 5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1569 base pairs(B) TYPE: nucleic acid	
3 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1569 base pairs	
3 5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1569 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1569 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	60
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1569 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150: 	60
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1569 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150: GACGCTGACG AGAGAAGGCC TCTTCCTTGA CGGTTGGTGC TGTGTTGCAG TGACCGTGGC	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1569 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150: GACGCTGACG AGAGAAGGCC TCTTCCTTGA GGGTTGGTGC TGTGTTGCAG TGACCGTGGC GGATTACGCC AACTCGGATC CGGCGGTCGT GAGGTCTGGA CGAGTCAAGA AAGCCGTAGC	120
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1569 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150: GACGCTGACG AGAGAAGGCC TCTTCCTTGA GGGTTGGTGC TGTGTTGCAG TGACCGTGGC GGATTACGCC AACTCGGATC CGGCGGTCGT GAGGTCTGGA CGAGTCAAGA AAGCCGTAGC CAACGCTGTT CAGCAGGAAG TAAAATCTCT TTGTGGCTTG GAAGCCTCTC AGGTTCCTGC	120 180
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1569 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150: GACGCTGACG AGAGAAGGCC TCTTCCTTGA GGGTTGGTGC TGTGTTGCAG TGACCGTGGC GGATTACGCC AACTCGGATC CGGCGGTCGT GAGGTCTGGA CGAGTCAAGA AAGCCGTAGC CAACGCTGTT CAGCAGGAAG TAAAATCTCT TTGTGGCTTG GAAGCCTCTC AGGTTCCTGC AGAGGAAGCT CTTTCTGGGG CTGGTGAGCC CTGTGACATC ATCGACAGCA GTGATGAGAT	120 180 240 300
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1569 base pairs (B) TYPE: nucleic acid (C) STRANDEINESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150: GACGCTGACG AGAGAAGGCC TCTTCCTTGA GGGTTGGTGC TGTGTTGCAG TGACCGTGGC GGATTACGCC AACTCGGATC CGGCGGTCGT GAGGTCTGGA CGAGTCAAGA AAGCCGTAGC CAACGCTGTT CAGCAGGAAG TAAAATCTCT TTGTGGCTTG GAAGCCTCTC AGGTTCCTGC AGAGGAAGCT CTTTCTGGGG CTGGTGAGCC CTGTGACATC ATCGACAGCA GTGATGAGAT GGATGCCCAG GAGGAAAGCA TCCATGAGAG AACTGTCTCC AGAAAAAAGA AAAGCAAGAG ACACAAAGAA GAACTGGACG GGGCTGGAGG AGAAGAGTAT CCCATGGATA TTTGGCTATT	120 180 240 300
40 45 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1569 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150: GACGCTGACG AGAGAAGGCC TCTTCCTTGA GGGTTGGTGC TGTGTTGCAG TGACCGTGGC GGATTACGCC AACTCGGATC CGGCGGTCGT GAGGTCTGGA CGAGTCAAGA AAGCCGTAGC CAACGCTGTT CAGCAGGAAG TAAAATCTCT TTGTGGCTTG GAAGCCTCTC AGGTTCCTGC AGAGGAAGCT CTTTCTGGGG CTGGTGAGCC CTGTGACATC ATCGACAGCA GTGATGAGAT GGATGCCCAG GAGGAAAGCA TCCATGAGAG AACTGTCTCC AGAAAAAAGA AAAGCAAGAG ACACAAAGAA GAACTGGACG GGGCTGGAGG AGAAGAGTAT CCCATGGATA TTTGGCTATT	120 180 240 300 360

375

	GCTTGTGTGA	TCCGATCTCT	GTACCATATG	TATGAGCCAT	TIGCTGCTCG	AATCTCCAAG	600
	AATCCAGCCA	TTCCAGAAAG	CACCCCCAGC	ACATTAAAGA	ATTCCAAATG	CTTACTTTTC	660
5	TGGTGCAGAA	AGATTGTTGG	GAACAGACAG	GAACCAATGT	GGGAATTCAA	CTTCAAGTTC	720
	AAAAAACAGT	CCCCTAGGTT	AAAGAGCAAG	TGTACAGGAG	GATTGCAGCC	TCCCGTTCAG	780
10	TACGAAGATG	TTCATACCAA	TCCAGACCAG	GACTGCTGCC	TACTGCAGGT	CACCACCCTC	840
10	AATTTCATCT	TTATTCCGAT	TGTCATGGGA	ATGATATTA	CTCTGTTTAC	TATCAATGTG	900
	AGCACGGACA	TGCGGCATCA	TCGAGTGAGA	CTGGTGTTCC	AAGATTCCCC	TGTCCATGGT	960
15	GGTCGGAAAC	TGCGCAGTGA	ACAGGGTGTG	CAAGTCATCC	TGGACCCAGT	GCACAGCGTT	1020
	CGGCTCTTTG	ACTGGTGGCA	TCCTCAGTAC	CCATTCTCCC	TGAGAGCGTA	GITACIGCIT	1080
20	CCCATCCCTT	GGGGGCAGCC	TCGAGTGTAG	TCCATTAGTA	ATCAGATTCC	AGTTTGGACA	1140
20	GGGTGGCTGG	ATTGTATATC	TCGTTAGTAA	TGTACATGCT	CITCAGGITC	TAGGGCTCCT	1200
	GTTAGGGGAG	GGAGAAATGT	TGAATCAAGA	GGGAAAACAA	CTACTATGAT	TTATAAACAT	1260
25	ATTTTAATGT	AAAAATTTGC	ATTTAAAAGG	AGTGGCCCTG	TTTTCTGTGT	TAAAACCCCA	1320
	TTTGGTGCTA	TIGAGTTIGT	TCTTTATTCT	TTTATCCCAG	TGAAAATTGT	TGATCTTGCT	1380
30	GTAGGGAAAA	ATTAAACTCT	TTGAATCTCC	AAACAAGGAA	GTTTCAGCAT	TCCCTTATGG	1440
50	ATCAGAGGAA	CCTTAGAGGC	CTGAAATIGT	TGCTTCCAGT	TTAGCTGCCC	CTCAAATTCA	1500
	AGTGAATATT	TTCCCTTCTC	CCTTTACCCT	TCTCCAGAAA	TAAAGCAGGT	GACAGGGTTT	1560
35	CAGAATCTT						1569

40 (2) INFORMATION FOR SEQ ID NO: 151:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1540 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

50	CCCACGCGTC	CGGAAGGATT	GACCAGTTAA	CCAACATCTT	AGCCCCCATG	GCTGTTGGCC	60
	AGATTATGAC	ATTTGGCTCC	CCAGTCATCG	GCTGTGGCTT	TATTTCGGGA	TGGAACTTGG	120
55	TATCCATGTG	CGTGGAGTAC	GTCCTGCTCT	GGAAGGTTTA	CCAGAAAACC	CCAGCTCTAG	180
<i>J</i> J	CTGTGAAAGC	TGGTCTTAAA	GAAGAGGAAA	CTGAATTGAA	ACAGCTGAAT	TTACACAAAG	240
	ATACTGAGCC	AAAACCCCTG	GAGGGAACTC	ATCTAATGGG	TGTGAAAGAC	TCTAACATCC	300
60	ATGAGCTTGA	ACATGAGCAA	GAGCCTACTT	GTGCCTCCCA	GATGGCTGAG	CCCTTCCGTA	360

	CCTTCCGAGA TGGATGGGTC TCCTACTACA ACCAGCCTGT GTTTCTGGCT GGCATGGGTC	420
	TTGCTTTCCT TTATATGACT GTCCTGGGCT TTGACTGCAT CACCACAGGG TACGCCTACA	480
5	CTCAGGGACT GAGTGGGTTC CATCCTCAGT ATTTTGATGG GAGCATCAGC TATAACTGGA	540
	ATAATGGGAA CTGTAGCTTT TACTTGGCTA CGTCGAAAAT GTGGTTTGGT TCGGCAGGTC	600
10	TGATCTCAGG ATTGGCACAG CTTTCCTGTT TGATCTTGTG TGTGATCTCT GTATTCATGC	660
	CTGGAAGCCC CCTGGACTTG TCCGTTTCTC CTTTTGAAGA TATCCGATCA AGGTTCATTC	720
	AAGGAGAGTC AATTACACCT ACCAAGATAC CTGAAATTAC AACTGAAATA TACATGTCTA	780
15	ATGGGTCTAA TICTGCTAAT ATTGTCCCGG AGACAAGTCC TGAATCTGTG CCCATAATCT	840
	CTGTCAGTCT GCTGTTTGCA GGCGTCATTG CTGCTAGAAT CGGTCTTTGG TCCTTTGATT	900
20	TAACTGTGAC ACAGTTGCTG CAAGAAAATG TAATTGAATC TGAAAGAGGC ATTATAAATG	960
	GTGTACAGAA CTCCATGAAC TATCTTCTTG ATCTTCTGCA TTTCATCATG GTCATCCTGG	1020
	CTCCAAATCC TGAAGCTTTT GGCTTGCTCG TATTGATTTC AGTCTCCTTT GTGGCAATGG	1080
25	GCCACATTAT GTATTTCCGA TTTGCCCAAA ATACTCTGGG AAACAAGCTC TTTGCTTGCG	1140
	GTCCTGATGC AAAAGAAGTT AGGAAGGAAA ATCAAGCAAA TACATCTGTT GTTTGAGACA	1200
30	GTTTAACTGT TGCTATCCTG TTACTAGATT ATATAGAGCA CATGTGCTTA TTTTGTACTG	1260
	CAGAATTCCA ATAAATGGCT GGGTGTTTTG CTCTGTTTTT ACCACAGCTG TGCCTTGAGA	1320
	ACTAAAAGCT GTTTAGGAAA CCTAAGTCAG CAGAAATTAA CTGGATTAAT TTCCCTTATG	1380
35	TTGAGGGCCA TGGRAAAAAA ATTGGGAAAA GGAAAAACTC AGTTTTAAAT ACGGGAGACT	1440
	ATAATGGATA ACACTGRATT CCCCTATTTC TCATGAGTAG ATACAATCTT ACGTAAAAGA	1500
40	GTGGTTAGTC ACGTGAATTC AGTTATCATT TGACAGATTC	1540
45	(2) INFORMATION FOR SEQ ID NO: 152:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1719 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:	
5:	CONTRACT COUNTRICGA TITCAAATAT	60
	TACACTTGGC ATGGTATGGC TTTGGTTCAG AACCTTGGAT GATGTGGGCT GCTGGGGCAG	120
6	TAGCAGCCAT GTCTAGCATC ACCTTTCCTG CTGTCAGTGC ACTTGTTTCA CGAACTGCTG 0	180

	ATGCTGATCA	ACAGGGTGTC	GTTCAAGGAA	TGATAACAGG	AATTCGAGGA	TTATGCAATG	240
	GTCTGGGACC	GCCCTCTAT	GGATTCATTT	TCTACATATT	CCATGTGGAA	CTTAAAGAAC	300
5	TGCCAATAAC	AGGAACAGAC	TTGGGAACAA	ACACAAGCCC	TCAGCACCAC	TTTGAACAGA	360
	ATTCCATCAT	CCCTGGCCCT	CCCTTCCTAT	TTGGAGCCTG	TTCAGTACTG	CTGGCTCTGC	420
10	TTGTTGCCTT	GTTTATTCCG	GAACATACCA	ATTTAAGCTT	AAGGTCCAGC	AGTTGGAGAA	480
	AGCACTGTGG	CAGTCACAGC	CATCCTCATA	ATACACAAGC	GCCAGGAGAG	GCCAAAGAAC	540
	CTTTACTCCA	GGACACAAAT	GTGTGACGAC	TGAAATCAGG	AAGATTTTTC	TATCAGCACC	600
15	CAGGTCTTAG	TTTTCACCTC	TAGTTCTGGA	TGTACATTCC	ATTTCCATCC	ACAGTGTACT	660
	TTAAGATTGT	CTTAAGAAAT	GTATCTGCAT	GAACTCCGTG	GGAACTAAAG	GAAGTGGGAA	720
20	CTTAGAACCA	GACAGTTTIC	CAAAGATGTT	ACAATTTCTT	TTGAAAAACC	TTTTGTTTAT	780
20	TAGCACCAAT	TTCTYGCCAC	TAAGCTATTT	GTTTTATTAT	ACATCCTTTA	ATTAAAAACT	840
	ATATATGTAA	CTTCTTAGAT	ATTAGCAAAT	GTCTCTGCTA	CCATTTCCTT	AAGGTGTTGA	900
25	GCTTTAACTC	TATGCTGACT	CAGTGAGACA	CAGTAGGTAG	TATGGTTGTG	GACCTATTTG	960
	TTTTAACATT	GTAAAATTTT	GAGTCAGATT	TTAATATTGT	AAAATCTTGG	GTCAAATAAT	1020
30	TCAAAGCCTT	AATGCAGATG	CACTAAAACA	AAGAAATGGT	AAATGAATTG	TTTGCATTTA	1080
50	аааааааа	CTCTTAAGAA	AACTGTACTA	AATCTGAATC	ATGTTTTGAG	CTTGTTTGCA	1140
	GTACTTTTAA	ACATTATTCA	CTACTGTTTT	TGAAGTGAGA	AAGTATCAGC	CATTTAGCAT	1200
3 5 .	TTAAGTTGGG	GTATTTAGAG	CCTGTAATCT	AAATGCTGGC	TCAAATTTAT	TCCCCAGCTA	1260
	CTTCTTATAC	CACTATTCTT	TTAATGTTTG	CATAATCATA	AGCACCTCAA	CACTTGAATA	1320
40	САТААТСТАА	AAATTATATA	GTAAAGCTGG	TAGCCTTGAA	AATGTCAGTG	TGATATCTAT	1380
10	TATGTAGATA	ААТАТАТАТА	GTGGCCTTTC	AGGACTGTCA	CAGTAACACT	TTATTTACAG	1440
	AGCTAATGTT	TGTCCTAAAT	TTTCAGGACC	CTAGAGGAGA	GCTTTATACA	ATTACCGATG	1500
45	TGAATTTCTC	TAAAGTGTAT	ATTTTTGTGT	CCAGTTATAT	ТАТТТААААА	AGTGTTACTT	1560
	TGTAAAAATT	GTATATAAAG	AACTGTATAG	TTTACACTGT	TTTCATCTTG	TGTGTGGTTA	1620
50	TTGCTTAATG	CTTTTTAAAC	TTGGAACACT	CACTATGGTT	AAATAAGGTC	TTAAAAGAAA	1680
50	TGTAAATATI	YTGTTAATAA	AGTTAAATAT	TTTAATGAT			1719

(A) LENGTH: 863 base pairs

60 (B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 153:

⁽i) SEQUENCE CHARACTERISTICS:

378

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:	
3	GGCACGAGGG AAGCCGGGAC GATGTCCGCA TGACAACCGA CGTTGGAGTT TGGAGGTGCT	60
	TECCTTAGAG CAAGGGAAAC AGCTCTCATT CAAAGGAACT AGAAGCCTCT CCCTCAGTGG	120
10	TAGGGAGACA GCCAGGAGCG GTTTTCTGGG AACTGTGGGA TGTGCCCTTG GGGGCCCGAG	180
	AAAACAGAAG GAAGATGCTC CAGACCAGTA ACTACAGCCT GGTGCTCTCT CTGCAGTTCC	240
1.5	TECTECTETC CTATEACCTC TITETCAATT CCTTCTCAGA ACTECTCCAA AAGACTCCTG	300
15	TCATCCAGCT TGTGCTCTTC ATCATCCAGG ATATTGCAGT CCTCTTCAAC ATCATCATCA	360
	TITTCCTCAT GITCTTCAAC ACCITCGTCT TCCAGGCTGG CCTGGTCAAC CTCCTATTCC	420
20	ATAAGTTCAA AGGGACCATC ATCCTGACAG CTGTGTACTT TGCCCTCAGC ATCTCCCTTC	480
	ATGTCTGGGT CATGAACTTA CGCTGGAAAA ACTCCAACAG CTTCATATGG ACAGATGGAC	540
25	TTCAAATGCT GTTTGTATTC CAGAGACTAG CAGCAGTGTT GTACTGCTAC TTCTATAAAC	600
23	GGACAGCCGT AAGACTAGGC GATCCTCACT TCTACCAGGA CTCTTTGTGG CTGCGCAAGG	660
	AGTTCATGCA AGTTCGAAGG TGACCTCTTG TCACACTGAT GGATACTTTT CCTTCCTGGA	720
30	TAGRAGGCCA CATTTGCTGC TTTGCAGGGG AGAGTTGGGC CCTATGCATG GGGCAAAACA	780
	GGTGGGATTT TCCAAGGGAA GGGTTCAGAA TTAGGCNTGT TGTTTCAGCC ATTTCCAAGG	840
35	AAGGGGAAGG GTTTCCCINC CCT	863
40	(2) INFORMATION FOR SEQ ID NO: 154:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1101 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:	
50	AACAGCAAAA AAGAATGATT TCTTCTGAAA TTGTGGAACA TGAGGATTCA AGTTTTTATT	60
30	TTGTTACTAG GTGCTGGAGG AACATCCCAG TTCACAAAGC CCCCATCTCT TCCTCTGGAG	120
	CCAGAGCCTG CGGTGGAATC AAGTCCAACT GAAACATCAG AACAAATAAG AGAGAAATAA	180
55	GAATAGAATG AATGACCCCA AAATARGGTT TTCTTGGGCG AGGATGTGCT GGATTAGGAA	240
	AGGTGACATG ACACAGGCAG AGCAGAGTGG CACCCACCAC AGAATACAGT GTGTGTTATT	300

ACGAGGAGCC AGCAGTTGAG CCTAAGGTCC TTCTACCTAC CTGGTATTGG CATTTGAGGT 360

	CGGAAACCCT	CTACTGCCCC	ATAAGCCAGG	AAAAGTGAAA	AGAGAACACA	GTTCCTTTAA	420
	GAACTGGCAG	CAAGGCTTGA	GCCTTATGT	ATGTAGCTGA	GTCAGCAAGG	TACATGATGC	480
5	TGTCTGCTTT	CAAAAGGACT	TTTCTCTCCT	AGCTGACTGA	CICCITCCIT	AGTTCAAGGA	540
	ACAGCTGAGA	CAGACCTCTG	CTGAGTAGCT	CTGTGATGAC	AAAGCCTTGG	TTTAACTGAG	600
10	GTGATCCTCA	GGTTGTGAGG	TTTATTAGTC	CCCAAGGCAA	ACACAAATAT	TAGATTAATA	660
10	ATCCAACTTT	AATAGTATAC	ATTTAAAAGA	АААААААСАА	AAGCCCTGGA	AGNTTGAGGC	720
	CAAGCCTGCT	GAGTATTGCA	GCTGCATTTG	CCCAAAGGGA	ATCCAGAACA	AGTCCCTCCC	780
15	TGTATTTTGT	TCTTGAGAGG	GGTCAGTCTA	GAAGCTAGAT	CCTATCAGGA	TGAGGAGCAG	840
	CAGCCCAGGG	CTTGTCTGGA	TCAGCACCAA	CGATTTTAAA	GAAAAAAGGA	AGAGTTTCTT	900
	AGATGAGTAA	TTGTTATTGA	AGATAGTCAG	TGATAACCAC	TGACCAGATG	CTATCAATAC	960
20	ACTATGTGTC	CTTTTTAGAA	TAAAGATTAC	ATATCATCAT	TCCTTTGGGG	AAAATTGTTA	1020
	TTCAGGTATA	AAAACAAGAG	АТТАТААТАА	AAAANTAAAA	GAACCCTAAA	ААААААААА	1080
25	CTCGTGCCGA	ATTCCCTGCA	G				1101

30 (2) INFORMATION FOR SEQ ID NO: 155:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2031 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:

40	CAATTAACCC GTTTGAGGCC TAGGTTGTTT GGCAAGCCCC NGGCCTAAAG TTTTAATTCG	60
	GCAGAGCCAA GGGCCTGAAA GGAAGGGAAA GGGGAGGGTA GCGGGAGGGT AGCAGGTGAG	120
45	TTCCTAGGGC TGGAAGGTTT AGCAGCAGCC TGGTGCAGTG CCCTGTCATC AAGACAAACC	180
43	CACGGTCCTC CTGGGTGCCT ACCAAGCTTG GTTTGTACAA AAGCAAGGTG GGAGTCTATT	240
	TTTGTACATG AGATACATCA CACTTACCTG TGGGCCAGTA TTGTGAAGTG AGTCTGAGTT	300
50	GTTTACACTG ATGCCTTCCC TGCCCACCAC AAATTGTGTA CATAGTCTTC AGAATGATAC	360
	CACCCCTTTC CCCAGCTCCC AACCAAGAGC TGGTTCTAGG CCTGTGTTAT ATGTCATATT	420
55	TAGCGTTTTT ATATATGACC TTTGATTTCT GTTGTTTGTA TTTTAGCACA GTGTATGCAC	480
23	CTTCATTTAA ATACATCTGT GTGCATACAG ATACGCATAT ATGTGTGTGC GTATGCATAT	540
	ATCTCTCATC TGTAGTTTCC AAGAGTTCAG CTGAAGCAGA TGGAGTCCTG CAGCCCAGGA	600
60	GACACCCTGC ATCCCTGCTA ATAGTGTTTG CCACAAGTAT TAGTGAGTCT TCCTTATTAA	660

	TATTITCATT TCAGAAGACT GAAGCAAAGC TGATAGTGTT TGCTGTTTCT TTGGCAGCTA	720
	AGTGAGGGTC TTGGGATGAC TTGCTGTGTT CCTCAAGCTG CACTTTGGGG CCATCTCTGC	780
5	AGTATTAAGC CCCCTTTTG CTIGGTGGTA CTCTGTCTGT GCCTGTGTGT GTGTGTGATA	840
	GTCACTCTTG CATGGCTTCC ATGTCTGGTT TGTGGCATTT GGGGATAAGT GCTGAACCAG	900
10	AGCATTTGCA GTTTGTTTGA GGCCTCGTTG CCAATGATAG ATCACTCCTG TTGACCTGGT	960
_	ATGTCTGCTT GCTTGCTGCT TTTCCTTGCT TTCTCTTGGA AGAGGAAAGG ACTCTGGTCA	1020
	GGCCCAGGCT GAGTGAGATG AGCTGCAGCT GGCTCATGGC CTTCTTAGAG CAGAGAGAGAG	1080
15	AGTATGTCAT TTTACTAAGT TCCTAAACAA ACATTTATGC AGGCAACACT CCTTGCAGAT	1140
	CCAGAAACTG AGGCACAATA GGGTTATGAC TTGCTCAAGA ATATGTAGCT GCTAGGGGGT	1200
20	AAATCAAGGC ATCACAATTT CTGTTCAGCG GGCAGGAATA GGCTGTGAAT TGCTAGCACT	1260
	TITTITTAA GCAATTACTI TITGACTIGI TCCTCTGAAA GTGCAAGAGG CGTACACCTT	1320
	TCCCAAATGT AGACTAGAAT CTGCAGGATG CCACCCACTG TATAGTTCTG CTTTCCCAGA	1380
25	GAGGAAGAAC TITTAGAAAC CAAATGATCT TAATTGTTAT TGCCCACCCC TGGCTTTTCC	1440
	GGGTAGAAAA TTCACAGTAG GAATGATTGT TAAGAGAGAG TGCTTGGAAC CATGGGTTAA	1500
30	CAGGAAAGGC TACCTAACTT CACATATCTG CAACCAGAGC AGCCACCAAG CATTACTTAG	1560
	CAGCAGGAAA ATGATTGTAT TTGAGTTCCT GTGTGTCCAA AACTGAGGCA CCATGTTCTT	1620
25	TGAAAACATG CCACCTCAAG GCTGGGCGCG GTGGCTCACA CCTGTTAATC CCAGCACTTT	1680
35	GGGAGGCCGA GGCGGGGGA TCACCGGAGT CGGGGAGTTT GAGACCAGCC TGGAGACCAGCC	1740
	TGGGAGAAAC CCCATCTCTA CCTAAAAATA CAAAATTAGC CGGGCGTGGT GGCATGCGCC	1800
40		1860
	AGGTTTGCGG TTGAGTTGAG GATCGTGCCA TTGCACTTCC GGGCCTTGGG GCAACAACAG	1920
Л	CAAAAAYTCC GTCTTCAAMW MRTGCCGAAT TCGATATCAA GCTTATCGAT ACCGTCGACC	1980
45	TCGAGGGGG GCCCGGTACC CAATTCGCCC TATAGNGATC GTATTACAAT C	2033

- (2) INFORMATION FOR SEQ ID NO: 156:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1981 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:

	CCTGCACCCT GAGCCCTTCA CCCCTCCGAG TTCCCCCCAG GTTGGCTTCC TTCGATTCCT	60
	TITICTTOGTA TCAACGTTTG ATTGGAAGAA CAACCCCCTC TTTGTCAACC TCAATAATGA	120
5	GCTCACTGTG GAGGAGCAGC TCGGGCACAG CTCMCCGTYA TGGTCATTGT TACCCCCCAA	180
	GACCGCAAAA ACTCTGTGTG GACACAGGAT GGACCCTCAG CCCAGATCCT GCAGCAGCTT	240
	GTGGTCCTGG CAGCTGAAGC CCTGCCCATG TTAGAGAAGC AGCTCATGGA TCCCCGGGGA	300
10	CCTGGGGACA TCAGGACAGT GTTCCGGCCG CCCTTGGACA TTTACGACGT GCTGATTCGC	360
	CTGTYTCCTC GCCATATCCC GCGGCACCGC AGGCTTGTGG ACTCGCCAGY TGCCTCCTTC	420
15	TGCCGGGGCC TGCTCAGCCA GCCGGGGCCC TCATCCCTGA TGCCCGTGCT GGGTNATGAT	480
	CCTNCTCAGC TCTATCTGAC GCAGCTCAGG GAGGCCTTTG GGGATCTGGC CCTTTTCTTC	540
	TATGACCAGC ATGGTGGAGA GGTGATTGGT GTCCTCTGGA AGCCCACCAG CTTCCAGCCG	600
20	CAGCCCTTCA AGGCCTCCAG CACAAAGGGG CGCATGGTGA TGTCTCGAGG TGGGGAGCTA	660
	GTAATGGTGC CCAATGTTGA AGCAATCCTG GAGGACTTTG CTGTGCTGGG TGAAGGCCTG	720
25	GTGCAGACTG TGGAGGCCCG AAGTGAGAGG TGGACTGTGT GATCCCAGCT CTGGAGCAAG	780
	CTGTAGACGG ACAGCAGGAC ATTGGACCTC TAGAGCAAGA TGTCAGTAGG ATGACCTCCA	840
20	CCCTCCTTGG ACATGAATCC TCCATGGAGG GCCTGCTGGC TGAACATGCT GAATCATCTC	900
30	CAACAAAACC CÁGCCCCAAC TTTCTCTCTG ATGCTCCAGC ATTGGGGCAG GGGCATGGTG	960
	GCCCATGTAG TCTCCTGGGC CTCACCATCC CAGAAGAGGA GTGGGAGCCA GCTCAGAGAA	1020
35	GGAACTGAAC CCAGGAGATC CATCCACCTA TTAGCCCTGG GCCTGGACCT CCCTGCGATT	1080
	TCCCACTCCT TTCTTAGTCT TCTTCCAGAA ACAGAGAAGG GGATGTGTGC CTGGGAGAGG	1140
40	CTCTGTCTCC TTCCTGCTGC CAGGACCTGT GCCTAGACTT AGCATGCCCT TCACTGCAGT	1200
40	GTCAGGCCTT TAGATGGGAC CCAGCGAAAA TGTGGCCCTT CTGAGTCACA TCACCGACAC	1260
	TGAGCAGTGG AAAGGGGCTA TATGTGTATG AATAGACCAC ATTGAAGGAG CACAATGCCC	1320
45	TCCTGTGTTG ATGCCACTTC CCAGGGTGGA GACAGTGGAA AAGAACCGAG GACAGGAAAG	1380
	GATTGGGTAG GTGAAGGGGT CAGGGGACTG GTAGTCACCC AATCTTGGAG AGGTGCAAAA	1440
50	AGCACTGGGG GCTACCCGTT AGCTGCATCT GCCCTGGCTG TTTGCCCGTT CATGTCACAA	1500
50	ACTGCCACTA CTATGTACCT GCAGTGGGGT TGCAGAGATG GGGGAGACTC AAGTCTTACT	1560
	CCCCAGGAGC TCCCAGGGCC CAAGGAGGAG AATGCTGCCT CCTTTCAGTC TGGTCTACAC	1620
55	CCACTITCTG GTAGCCTCTC TGCTTCCTGT AATTCTGGCT GTTTTTCCAG ACTCAGCTCA	168
	AATAGTGCCC CTCCTTAAGC CCATCCCTCG CCCCCAGCCT GAGGTGATCT TTCCCTCCTC	174
	TGAACTATTA GAGCAGTTAC TGTCTGTTCA GTTCGTTTGG CAGGCACACA CAGTGGCATA	180
60)	

PCT/US98/04493

382

	AATTCTATTG TTTTGAACTC TGATTTAAAA TTAAATTGCA GCTGGGCGTG GTGGCTCATG	1860
	CTTGTAATCC CAACACTTAG GGAGTMAGGR GAATCACTTG ASCYCAGGAG TYCTAGACCA	1920
5	ATCTGGGCAA MAGAGAGACC CCATCTCTTT TAAATAAAAA GTTAAATTGC TTAAAAAAAA	1980
	A	1981
10		
	(2) INFORMATION FOR SEQ ID NO: 157:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 915 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:	
	GAATTCGGCA CGAGCGCGGC CATGGCGCTC CTGCTTTCGG TGCTGCGTGT ACTGCTGGGC	60
	GECTTCTTCG CGCTCGTGGG GTTGGCCAAG CTCTCGGAGG AGATCTCGGC TCCAGTTTCG	120
25	GAGCGGATGA ATGCCCTGTT CGTGCAGTTT GCTGAGGTGT TCCCGCTGAA GGTATTTGGC	180
	TACCAGCCAG ATCCCCTGAA CTACCAAATA GCTGTGGGCT TTCTGGAACT GCTGGCTGGG	240
30	TIGCTGCTGG TCATGGGCCC ACCGATGCTG CAAGAGATCA GTAACTTGTT CITGATTCTG	300
	CTCATGATGG GGGCTATCTT CACCTTGGCA GCTCTGAAAG AGTCACTAAG CACCTGTATC	360
	CCAGCCATTG TCTGCCTGGG GTTCCTGCTG CTGCTGAATG TCGGCCAGCT CTTAGCCCAG	420
3 5	ACTAAGAAGG TGGTCAGACC CACTAGGAAG AAGACTCTAA GTACATTCAA GGAATCCTGG	480
	AAGTAGAGCA TCTCTGTCTC TTTATGCCAT GCAGCTGTCA CAGCAGGAAC ATGGTAGAAC	540
40	ACAGAGICTA TCATCTTGTT ACCAGTATAA TATCCAGGGT CAGCCAGTGT TGAAAGAGAC	600
	ATTITICICIA CCICGCACTG CTITICICITI TIAGCTITAC TACTCTITIG TGAGGAGTAC	660
	ATGTTATGCA TATTAACATT CCTCATGTCA TATGAAAATA CAAAATAAGC AGAAAAAGAAA	720
45	TTTAAATCAA CCAAAATTCT GATGCCCCAA ATAACCACTT TTAATGCCTT GGTGTAAGTA	780
	TACCTOTGAA CTTTTTTCTG TGCCTTTAAA CAGATATATA TTTTTTTTWA ATGAAAATAA	840
50	AACCATATAT CCTATTTTAT TTCCTCCTTT TAAAACCTTA TAAACTATAA MAAAAAAAAA	900
20	AAAAAAAAA CTCGA	915

55

WO 98/39448

(2) INFORMATION FOR SEQ ID NO: 158:

(i) SEQUENCE CHARACTERISTICS:

60

(A) LENGTH: 2117 base pairs

383

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:

60

GCTGCTGCTG GCGCCGTCCG TGGTGCAGGC GGTGGAGCCC ATCAGCCTGG GACTGGCCCT 120 10 180 GGCCGGCGTC CTCACCGGCT ACATCTACCC GCGTCTCTAC TGCCTCTTCG CCGAGTGCTG 240 CGGGCAGAAG CGGAGCCTTA GCCGGGAGGC ACTGCAGAAG GATCTGGACG ACAACCTCTT TGGACAGCAT CTTGCAAAGA AAATCATCTT AAATGCCGTG TTTGGTTTCA TAAACAACCC 15 300 360 AAAGCCCAAG AAACCTCTCA CGCTCTCCCT GCACGGGTGG ACAGGCACCG GCAAAAATTT CGTCAGCAAG ATCATCGCAG AGAATATITA CGAGGGTGGT CTGAACAGTG ACTATGTCCA 420 20 480 CCTGTTTGTG GCCACATTGC ACTTTCCACA TGCTTCAAAC ATCACCTTGT ACAAGGATCA 540 GTTACAGTTG TGGATTCGAG GCAACGTGAG TGCCTGTGCG AGGTCCATCT TCATATTTGA 25 TGAAATGGAT AAGATGCATG CAGGCCTCAT AGATGCCATC AAGCCTTTCC TCGACTATTA 600 660 TGACCTGGTG GATGGGGTCT CCTACCAGAA AGCCATGTTC ATATTTCTCA GCAATGCTGG 720 AGCAGAAAGG ATCACAGATG TGGCTTTGGA TTTCTGGAGG AGTGGAAAGC AGAGGGAAGA 30 CATCAAGCTC AAAGACATTG AACACGCGTT GTCTGTGTGG GTTTTCAATA ACAAGAACAG 780 TOGOTTCTGG CACAGCAGCT TAATTGACCG GAACCTCATT GATTATTTTG TTCCCTTCCT 840 35 900 CCCCTGGAA TACAAACACC TAAAAATGTG TATCCGAGTG GAAATGCAGT CCCGAGGCTA TGAAATTGAT GAAGACATTG TAAGCAGAGT GGCTGAGGAG ATGACATTTT TCCCCAAAGA 960 GGAGAGAGTT TTCTCAGATA AAGGCTGCAA AACGGTGTTC ACCAAGTTAG ATTATTACTA 1020 40 CGATGATTGA CAGTCATGAT TGGCAGCCGG AGTCACTGCC TGGAGTTGGA AAAGAAACAA 1080 1140 CACTCAGTCC TTCCACACTT CCACCCCCAG CTCCTTTCCC TGGAAGAGGA ATCCAGTGAA TGTTCCTGTT TGATGTGACA GGAATTCTCC CTGGCATTGT TTCCACCCCC TGGTGCCTGC 45 1200 AGGCCACCCA GGGACCACGG GCGAGGACGT GAAGCCTCCC GAACACGCAC AGAAGGAAGG 1260 AGCCAGCTCC CAGCCCACTC ATCGCAGGGC TCATGATTTT TTACAAATTA TGTTTTAATT 1320 50 CCAAGTGTTT CTGTTTCAAG GAAGGATGAA TAAGTTTTAT TGAAAATGTG GTAACTTTAT 1380 1440 TTAAAATGAT TTTTAACATT ATGAGAGACT GCTCAGATTC TAAGTTGTTG GCCTTGTGTG 55 TGTGTTTTTT TTTAAGTTCT CATCATTATT ACATAGACTG TGATGTATCT TTACTGGAAA 1500 TGAGCCCAAG CACACATGCA TGGCATTTGT TCCACAGGAG GGCATCCCTG GGGATGTGGC 1560 TGGAGCATGA GCCAGCTCTG TCCCAGGATG GTCCCAGCGG ATGCTGCCAG GGGCAKTGAA 1620

384

	GTGTTTAGGT GAAGGACAAG TAGGTAAGAG GACGCCTTCA GGCACCACAG ATAAGCCTGA	1680
	AACAGCCTCT CCAAGGGTTT TCACCTTAGC AACAATGGGA GCTGTGGGAG TGATTTTGGC	1740
5	CACACTGTCA ACATTTGTTA GAACCAGTCT TTTGAAAGAA AAGTATTTCC AACTTGTCAC	1800
	TIGCCAGTCA CTCCGTTTTG CAAAAGGTGG CCCTTCACTG TCCATTCCAA ATAGCCCACA	1860
10	CGTGCTCTCT GCTGGATTCT AAATTATGTG AATTTTGCCA TATTAAATCT TCCTCATTTA	1920
10	TACTATTATT TGTTACGTTC AATCAGAATC CCCGAAACCT CCTATAAAGC TTAGCTGCCC	1980
	CTTCTGAGGA TGCTGAGAAC GGTGTCTFTC TTTATAAATG CAAATGGCTA CCGTTTTACA	2040
15	ATAAAATTTT GCATGTGCAA AAAAAAAAA ANAAAAAAA AAAATCCCGG GGGGGGCCCG	2100
	GTAACCAATT TGNCCCC	2117
20	•	
20		
	(2) INFORMATION FOR SEQ ID NO: 159:	
2 5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2395 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:	
	TGTTCCTTAA TCCCTTTCT AAAAAGGGGG GAAAATCCGG ATGGATTTTA GGGATTGGTC	60
35	TGGTGTCAGC TGTGTTTAT TGCACACCTA AATCCTGATT ATAGGCTTTT CATTTCTCCG	120
33	CAAAGCCTTT ATTTTGGCAG TTAAGCCAAA TGTGTTTTCC AGAAAGTTAG TTATTTTCTC	180
	CICTITCTT CCTTTCTTC CTCCCTTTTT CCCGTCTGAC CCCAAACGTT ATTGTCCAAA	240
40	CATGACTGGA CAGCAGCTTT TGTTTCTTGA CCCTGTAATA TGACAGTCTG CTAATATTGA	300
	CAGAAGGTGC AGTTTTTGGG TTATAGTCGT GATTTTCGCT AATCAATCAT ATTAGCAGGA	360
45	AAAAAAAKGA CTTGTTTCTG TTGTACTTGA GTCTTAAGAA AAAGTGGCCC ATAGTTTAGT	420
43	GGACAATTTC CAAAGGCTTT AGTACCACCT GTATTTCAAA ATGGGGGACC CAAACTCCCG	480
	GAAGAAACAA GCTCTGAACA GACTACGTGC TCAGCTTAGA AAGAAAAAAG AATCTCTAGC	540
50	TGACCAGTIT GACTICAAGA TGTATATTGC CTTTGTATTC AAGGAGAAGA AGAAAAAGTC	600
	AGCACTTTTT GAAGTGTCTG AGGTTATACC AGTCATGACA AATAATTATG AAGAAAATAT	660
55	CCTGAAAGGT GTGCGAGATT CCAGCTATTC CTTGGAAAGT TCCCTAGAGC TTTTACAGAA	720
رر	GGATGTGGTA CAGCTCCATG CTCCTCGATA TCAGTCTATG AGAAGGGATG TAATTGGCTG	780

CCTGTTTTCT AGGTGGAAAG AATCTGATGA GCCTTTTAGG CCTGTTCAGG CAAATTTGAG

900

	TTTCATCATG	GTGACTATGA	AAAACAGTTT	CTGCATGTAC	TGAGCCGCAA	GGACAAGACT	960
5	GGAATCGTTG	TCAACAATCC	TAACCAGTCA	GIGITICICI	TCATTGACAG	ACAGCACTTG	1020
3	CAGACTCCAA	AAAACAAAGC	TACAATCTTC	AAGTTATGCA	GCATCTGCCT	CTACCTGCCA	1080
	CAGGAACAGC	TCACCCACTG	GGGCAGTTGG	CACCATAGAG	GRTCACCTCC	GTCCTTATAT	1140
10	GCCAGAGTAG	AGTACTGACC	AGCAAAATGG	AGAAGATCAG	AGAATGCAGC	AGCAGITTTT	1200
	TTTCTTGTTT	TCTTACCACT	TTATTCTTTC	AGAGTTTAAA	GAAAATGGAC	TCATGCACAG	1260
15	AACACTATGC	ATTTTGAAAC	TTGTTCATCC	TGGATTTTTT	TAAATCATTT	TTATCTCAGA	1320
13	ACTTAAACAA	AAATTAGATG	TCGTGCACGG	ACTGTGTGAA	AGAAGATGCT	TTGCATATTT	1380
	GCTGCACTGC	ATCAGTATCT	TACTAAAAAT	GTGAAATGAA	AGGACTATTG	TACACTGAAA	1440
20	TGCTTAAATG	TATCTGAAAG	CACAAGGTGA	TACTCATTIT	TATGGTCTTC	CCATTTGTGC	1500
	TGGTTTTTGC	CTCTTTGACA	TCTGTCATCA	GTATTTAGAG	GGTGAGAAGT	GAATGTAACA	1560
25	GGTATAAATA	ACATTTTTAA	AAACAATAAC	TTTGCTATAA	TCACAGTTGT	TCCAGAGCAC	1620
,	TGTCAGATAC	ATTCTAATGA	CCAGAACTGG	AAAAAATTT	GAAAATACAA	CCATGGGAAA	1680
	GAAATCTTAA	ATGAAAAACG	CATCTCATTG	TAGGCATTIT	TGCCTCATAT	TTTACTGGGC	1740
30	CATGTTTGTT	TCCTGGTACT	CATGTATTTT	TTTTTCCAG	ATCTCTTTCC	CCAAGTTGCT	1800
	ATTGTAAGAG	TATTCTGCTG	CGTGTGGATG	CAGTTATACA	CATTAAAGCA	GATCTGGAGT	1860
35	CTGAAGTAGC	TATAAAGCAG	СТАТААААСА	GAAATACATG	CATAGCTGCA	GAAACCATGA	1920
	TAGGTAGAGG	ACTITICITY	TGGTTTTGTT	TTGTTTTGTT	TIGTTTIGTT	TTTGGTTTTA	1980
	CAGAGAAGAG	ATTTTTATTA	CAAAGAAAAA	AATTCCAGTG	AATTGTGCAG	AAATGCTGGT	2040
40	TTTTACACCA	TCCTAAAGAA	AAACTTTACA	AGGGTGTTTT	GGAGTAGAAA	AAAGGTTATA	2100
	AAGTTGGAAT	CTTAAATTGT	AAAATTAACC	ATTGAGTGTC	AAAGTTCTAA	AAGCAGAACT	2160
45	CATTTTGTGC	AATGAACATA	AGGAAAGACT	ACTGTATAGG	TTTTTTTT	TTCTCCTTTT	2220
	AAATGAAGAA	AAGCTTTGCT	TAAGGGTTGC	ATACTTTTAT	TGGAGTAAAT	CTGAATGATC	2280
	CTACTCCTTT	GGAGTAAAAC	TAGTGCTTAC	CAGTTTCCAA	TTGTATTTAG	CTTCTGGTTG	2340
50	GAATTTGAAA	AAAAAAGAAA	AAAAGAAAAA	GAAAACCTAA	ATAAAATAGG	TGAAA	2395

⁵⁵ (2) INFORMATION FOR SEQ ID NO: 160:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 2120 base pairs

⁽B) TYPE: nucleic acid
(C) STRANDEDNESS: double 60

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

	(102)	
5	CCCCGGATAC CGCCTGACGT AGTGCCAATC ACACCTCTCG CGTCTCGGCG CCTCGGAGGC	60
	TAATGAGGAC GCCTGGCGAA ACGCAGTAAC GGATTTCCGG GTGGACCTTC GCTTTACGGC	120
	TCGTGAGTTC TTCCGCCCAA CCCAGAGGAA GCGGGAGAGC AGTTTACGAC AGCGCCGGTC	180
10	GTGTTTACGG CGGCGCCCGC TGCGCGCGCA TGTTTCCTCT TTTCCTGGTT TCTCAAGAGT	240
	GCTGCTGCTA ACGCGGTCCC CGGCACGCAC CATCTGTTGC CATCCCGGCC GGCCGAGGCA	300
15	TTGCAGATTT TGGAAGATGG CAAAGTTCAT GACACCCGTG ATCCAGGACA ACCCCTCAGG	360
	CTGGGGTCCC TGTGCGGTTC CCGAGCAGTT TCGGGATATG CCCTACCAGC CGTTCAGCAA	420
	AGGAGATCGG CTAGGAAAGG TTGCAGACTG GACAGGAGCC ACATACCAAG ATAAGAGGTA	480
20	CACAAATAAG TACTCCTCTC AGTTTGGTGG TGGAAGTCAA TATGCTTATT TCCATGAGGA	540
	GGATGAAAGT AGCTTCCAGC TGGTGGATAC AGCGCGCACA CAGAAGACGG CCTACCAGCG	600
2 5	GAATCGAATG AGATTTGCCC AGAGGAACCT CCGCAGAGAC AAAGATCGTC GGAACATGTT	660
	GCAGTTCAAC CTGCAGATCC TGCCTAAGAG TGCCAAACAG AAAGAGAGAG AACGCATTCG	720
	ACTGCAGAAA AAGTTCCAGA AACAATTTGG GGTTAGGCAG AAATGGGATC AGAAATCACA	780
30	GAAACCCCGA GACTCTTCAG TTGAAGTTCG TAGTGATTGG GAAGTGAAAG AGGAAATGGA	840
	TTTTCCTCAG TTGATGAAGA TGCGCTACTT GGAAGTATCA GAGCCACAGG ACATTGAGTG	900
35	TTGTGGGGCC CTAGAATACT ACGACAAAGC CTTTGACCGC ATCACCACGA GGAGTGAGAA	960
	GCCACTGCGG ASATNCAAGC GCATCTTCCA CACTGTCACC ACCACAGACG ACCCTGTCAT	1020
4.0	CCGCAAGCTG GCAAAAACTC AGGGGAATGT GTTTGCCACT GATGCCATCC TGGCCACGCT	1080
40	GATGAGCTGT ACCCGCTCAG TGTATTCCTG GGATATTGTC GTCCAGAGAG TTGGGTCCAA	1140
	ACTCTTCTTT GACAAGAGAG ACAACTCTGA CTTTGACCTC CTGACAGTGA GTGAGACTGC	1200
45	CAATGAGCCC CCTCAAGATG AAGGTAATTC CTTCAATTCA CCCCGCAACC TGGCCATGGA	1260
	GGCAACCTAC ATCAACCACA ATTTCTCCCA GCAGTGCTTG AGAATGGGGA AGGAAAGATA	1320
	CAACTTCCCC AACCCAAACC CGTTTGTGGA GGACGACATG GATAAGAATG AAATCGCCTC	1380
50	TGTTGCGTAC CGTTACCGCA GTGGNAAGCT TGGAGATGAT ATTGACCTTA TTGTCCGTTG	1440
	TGAGCACGAT GCCGTCATGA CTGGAGCCAA CGGGGAAGTG TCCTTCATCA ACATCAAGAC	1500
55	ACTCAATGAG TGGGATTCCA GGCACTGTAA TGGCGTTGAC TGGCGTCAGA AGCTGGACTC	1560
	TCAGCGAGGG GCTGTCATTG CCACGGAGCT GAAGAACAAC AGCTACAAGT TGGCCCGGTG	1620
	GACCTGCTGT GCTTTGCTGG CTGGATCTGA GTACCTCAAG CTTGGTTATG TGTCTCGGTA	1680
60		

387

	CCACGTGAAA	GACTCCTCAC	GCCACGTCAT	CCTAGGCACC	CAGCAGTTCA	AGCCTAATGA	1740
	GTTTGCCAGC	CAGATCAACC	TGAGCGTGGA	GAATGCCTGG	GGCATTITAC	GCTGCGTCAT	1800
5	TGACATCTGC	ATGAAGCTGG	AGGAGGGCAA	ATACCTCATC	CTCAAGGACC	CCAACAAGCA	1860
	GGTCATCCGT	GTCTACAGCC	TCCCTGATGG	CACCTTCAGC	TCTGATGAAG	ATGAGGAGGA	1920
10	AGAGGAGGAG	GAAGAAGAGG	AAGAAGAAGA	GGAAGAAACT	TAAACCAGTG	ATGTGGAGCT	1980
10	GGAGTTTGTC	CTTCCACCGA	GACTACGAGG	GCCTTTGATG	CTTAGTGGAA	TGTGTGTCTA	2040
	ACTTGCTCTC	TGACATTTAG	CAGATGAAAT	AAAATATATA	TCTGTTTAGT	СТТАААААА	2100
15	АААААААА	ИАААААААА				•	2120

20 (2) INFORMATION FOR SEQ ID NO: 161:

25

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 900 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

GGAAGCTGAA GTCCTTCCAG ACCAGGGACA ACCAGGGCAT TCTCTATGAA GCTGCACCCA 30 60 CCTCCACCCT CACCTGTRAC TCAGGACCAC AGAAGCAAAA GTTCTCACTC AAACTGGATG 120 CCAAGGATGG GCGCTTGTTC AATGAGCAGA ACTTCTTCCA GCGGGCCGCC AAGCCTCTGC 180 35 AAGTCAACAA GTGGAAGAAG CTGTACTCGA CCCCACTGCT GGCCATCCCT ACCTGCATGG 240 GTTTCGGTGT TCACCAGGAC AAATACAGGT TCTTGGTGTT ACCCAGCCTG GGGAGGAGCC 300 40 TTCAGTCGGC CCTGGATGTC AGCCCAAAGC ATGTGCTGTG CAGAGAGGTC TGTGCTGCAG 360 GTGGCCTGCC GGCTGCTGGA TGCCCTGGAG TTCCTCCATG AGAATGAGTA TGTTCATGGA 420 480 AATGTGACAG CTGAAAATAT CTTTGTGGAT CCAGAGGACC AGAGTCAGGT GACTTTGGCA 45 GGCTATGGCT TCGCNTTCCG CTATTGCCCA AGTGGCAAAC ACGTGGCCTA CGTGGAAGGC 540 AGCAGGAGCC CTCACGAGGG GGACCTTGAG TTCATTAGCA TGGACCTGCA CAAGGGATGC 600 50 GGGCCCTCCC GCCGCRGCGA CCTCCAGAGC CTGGGCTACT GCATGCTGAA GTGGCTCTAC 660 720 GGGTTTCTGC CATGGACAAA TTGCCTTCCC AAMAMTGAGG ACATCATGAA GCAAAAACAG AAGTTTGTTG ATAAGCCGGG GCCCTTCGTG GGACCCTGCG GTCACTGGAT CAGGCCCTCA 780 55 GAGACCCTGC AGAAGTACCT GAAGGTGGTG ATGGCCCTCA CGTATGAGGA GAAGCCGCCC 840 TACGCCATGC TGAGGAACAA CCTAGAAGCT TTGCTGCAGG ATCTGCGTGT GTCTCCATAT 900

(2)	INFORMATION	FOR	SEQ	ID	NO:	162:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1003 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:

60 GGCACGAGAT GAGGGGCACC CAGTGCTTCT AGGGCAGGCT GGGTGGTGGT CCCCTAGGTA TCAGCCTCTC TTACTGTACT CTCCGGGAAT GTTAACCTTT CTATTTTCAG CCTGTGCCAC 120 15 CTGTCTAGGC AAGCTGGCTT CCCCATTGGC CCCTGTGGGT CCACAGCAGC GTGGCTGCCC CCCAGGGCCA CCGCTTCTTT CTTGATCCTC TTTCCTTAAC AGTGACTTGG GCTTGAGTCT 240 20 GGCAAGGAAC CTTGCTTTTA GCTTCACCAC CAAGGAGAGA GGTTGACATG ACCTCCCCGC CCCCTCACCA AGGCTGGGAA CAGAGGGGAT GTGGTGAGAG CCAGGTTCCT CTGGCCCTCT 360 420 CCAGGGTGTT TTCCACTAGT CACTACTGTC TTCTCCTTGT AGCTAATCAA TCAATATTCT **2**5 TCCCTTGCCT GTGGGCAGTG GAGAGGCTGC TGGGTGTACG CTGCACCTGC CCACTGAGTT 480 540 30 CTAGGATCCA GGACTGGGTC AAAGCTGCAT GAAACCAGGC CCTGGCAGCA AACCTGGGAA 600 TGGCTGGAGG TGGGAGAGAA CCTGAACTTC TCTTTCCCTC TCCCTCCTCC AACATTACTG 660 GAACTCTATC CTGTTAGGAT CTTCTGAGCT TGTTTCCCTG CTGGGTGGGA CAGAGGACAA 720 35 AGGAGAAGGG AGGGTCTAGA AGAGGCAGCC CTTCTTTGTC CTCTGGGGTA AATGAGCTTG 780 840 ACCTAGAGTA AATGGAGAGA CCAAAAGCCT CTGATTTTTA ATTTCCATAA AATGTTAGAA 40 GTATATATAT ACATATATAT ATTTCTTTAA ATTTTTGAGT CTTTGATATG TCTAAAAATC 900 CATTCCCTCT GCCCTGAAGC CTGAGTGAGA CACATGAAGA AAACTGTGTT TCATTTAAAG 960 1003 45

50 (2) INFORMATION FOR SEQ ID NO: 163:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2196 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

	GGGAAACATC AGCATATGCA TGACCGAGAT GACCTCTATG CTGAGCAGAT GGAACGAGAA	120
_	ATGAGGCACA AACTGAAAAC AGCCTTTAAA AATTTCATTG AGAAAGTAGA GGCTCTAACT	180
5	AAGGAGGAAC TGGAATTTGA AGTGCCTTTT AGGGACTTGG GATTTAACGG AGCTCCCTAT	240
	AGGAGTACCT GCCTCCTTCA GCCCACTAGT AGTGCGCTGG TAAATGCTAC GGAATGGCCA	300
10	CCTTTTGTGG TGACATTGGA TGAGGTAGAG CTGATCCACT TTRAGCGGGT CCAGTTTCAC	360
	CTGAAGAACT TTGATATGGT AATCGTCTAC AAGGACTACA GCAAGAAAGT GACCATGATC	420
	AACGCCATTC CTGTAGCCTC TCTTGACCCC ATCAAGGAAT GGTTGAATTC CTGCGACCTG	480
15	AAATACACAG AAGGAGTACA GTCCCTCAAC TGGACTAAAA TCATGAAGAC CATTGTTGAT	540
	GACCCTGAGG GCTTCTTCGA ACAAGGTGGC TGGTCTTTCC TGGAGCCTGA GGGTGAGGGG	600
20	AGTGATGCTG AAGAAGGGGA TTCAGAGTCT GAAATTGAAG ATGAGACTTT TAATCCTTCA	660
	GAAGATGACT ATGAAGAGGA AGAGGAGGAC AGTGATGAAG ATTATTCATC AGAAGCAGAA	720
	GAGTCAGACT ATTCTAAGGA GTCATTGGGT AGTGAAGAAG AGAGTGGAAA GGATTGGGAT	780
25	GAACTGGAGG AAGAAGCCCG AAAAGCGGAC CGAGAAAGTC GTTACGAGGA AGAAGAAGAA	840
	CAAAGTCGAA GTATGAGCCG GAAGAGGAAG GCATCTGTGC ACAGTTCGGG CCGTGGCTCT	900
3 0	AACCGTGGTT CCAGACACAG CTCTGCACCC CCCAAGAAAA AGAGGAAGTA ACTTCTGAAC	960
,	TTTGGCCCTG AGCTCCATTC TTCCTCCAGC CAACCCCTGA AAATTTTACA TGACATAGAA	1020
	ACTGTATTTT TCCTTTCGTT TTCATTTGAA GTTTTGCCAT TTGTGTTTAT GGGTTTAGGG	1080
35	GGCCATTTGT GTGGACCAAT CTACTCGGGG AATTCCAGGC CCACCAGGAC ACGTGCCAAT	1140
	GGCCCCATTC AGATGGCAAG GGAGGAGGTG TTCTTGAAGA CAGGAGGAGG CTCCCGCTGT	1200
40	TAATAAATAT TGTTTCATTC TTCTCTTC CTGTCACCTT CTGCCAAGAC ATTGATGGCT	1260
	TCTGACATCT TATTTGGTGT CTCAAAGCTG TATTTCCAAG ACAGTGGTAC AAGGTGACCC	1320
45	TTAATTACCC GTATCATGGT TCTTGACCAG CACATTCAAT CCTCCAACCT ACCCTACTGC	1380
45	CATGACCTTC CGCACATCTC TAAGTTTTAT CTTTGCAATA CTCAAGGTTC TCGGAAATTT	1440
	GCTAATGGTT GTGATAAACC ATACAGCTTG AGCCAGTGAG GCAGATTGGG CTGGTGCCTT	1500
50	CGTCTGAGTT TTCCTGCTTT CCTGCCTCGT GCAGATTCTG AGGTATATCT GCTGCCTTGG	1560
	AAGACATAAG AAGCAGTGAT ACTCCCTGGC TCGGTTATTT TCTCCATACA ATGCACACAT	1620
	GGTACAATGA TAGAAGGCAA AATTGCCACT GTCTTCTTTT TTTTCTCATA TATCTAAGGA	1680
55	AGATATATCA GGTTGTGCCT CATGTACCGC TTCTAGTGAA ATGTAGAGGA AGGCTCAAAG	1740
	GAGTCAACAT TTAGATCTGG AAGGGACAAG TCATGCCTTG GGCCTAGAAT ACCCTGATGA	1800
60	GAAAAGAGAA GAGGAAGGGA GGCCATATCT ACAACANCAN CCTCTCGGCA CTGCTGCTCC	1860

	TTATTTTAAC TTTGTCTTGC ATTGTCCTGT ATTTATCACA GTTTCTGTTG AACAGCTTTT	1920
5	CAAGTATTIG GGGAGTTTAT CTTGCCATCC TCCCCTTCTG GTTCTCTGCA CCCACCTGTC	1980
	CCACTGCAGT TCCTTCCGTG CTCTGTGACT TTAAGAGAAG AAGGCGGGAG GGGTCCCGGA	2040
	TTTTATGTTT GTTGTTTTT TCTCCTTAGC AGTAGGACTT GATATTTTCA ATTTTGGAAG	2100
10	AACTAAAAGA TGAATAAACT GGGTTTTTT TGTTGTTTGT TTTTGTAAAA AAAAAAAA	2160
	AAAAAA AAAAAAAA AAAAAAAA	2196
1.5		
15		
	(2) INFORMATION FOR SEQ ID NO: 164:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1945 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:	
	GCACAGAGTC GGGCGGACGG ACAGGGAGAG GAGGAGAGGG GGTCTGCGCG CGGCCGCTAC	60
30	CCAGAAGCCA GCGGACGCA GCACGGAGTG GGCTGTCCCC GAGCCCAGCC CCGAGCGAGC	120
	CCCCCCCCC CCCCGMAGG ACGCGCCTYC CAGCCAGCCC GACTYCTAGG AGGAGGGGAG	180
	GCGGGAAAGC AGCTCAAGCC TCACCCACCG CCCTGCCCCC AGCCCCGCCA CTCCCAGGCT	240
35	CCTCGGGACT CGGCGGGTCC TCCTGGGAGT CTCGGAGGGG ACCGGCTGTG CAGACGCCAT	300
	GGAGTTGGTG CTGGTCTTCC TCTGCAGCCT GCTGGCCCCC ATGGTCCTGG CCAGTGCAGC	360
40	TGAAAAGGAG AAGGAAATGG ACCCTTTTCA TTATGATTAC CAGACCCTGA GGATTGGGGG	420
	ACTGGTGTTC GCTGTGGTCC TCTTCTCGGT TGGGATCCTC CTTATCCTAA GTCGCAGGTG	480
	CAAGTGCAGT TTCAATCAGA AGCCCCGGGC CCCAGGAGAT GAGGAAGCCC AGGTGGAGAA	540
45	CCTCATCACC GCCAATGCAA CAGAGCCCCA GAAAGCAGAG AACTGAAGTG CAGCCATCAG	600
	GTGGAAGCCT CTGGAACCTG AGGCGGCTGC TTGAACCTTT GGATGCAAAT GTCGATGCTT	660
50	AAGAAAACCG GCCACTTCAG CAACAGCCCT TTCCCCAGGA GAAGCCAAGA ACTTGTGTGT	720
	CCCCCACCCT ATCCCCTCTA ACACCATTCC TCCACCTGAT GATGCAACTA ACACTTGCCT	780
	CCCCACTGCA GCCTGCGGTC CTGCCCACCT CCCGTGATGT GTGTGTGTGT GTGTGTGTGT	840
55	GTGACTGTGT GTGTTTGCTA ACTGTGGTCT TTGTGGCTAC TTGTTTGTGG ATGGTATTGT	900
	GTTTGTTAGT GAACTGTGGA CTCGCTTTCC CAGGCAGGGG CTGAGCCACA TGGCCATCTG	960
	CTCCTCCCTG CCCCCGTGGC CCTCCATCAC CTTCTGCTCC TAGGAGGCTG CTTGTTGCCC	1020

PCT/US98/04493

391

	GAGACCAGCC	CCCTCCCCTG	ATTTAGGGAT	GCGTAGGGTA	AGAGCACGGG	CAGTGGTCTT	1080
	CAGICGICTT	GGGACCTGGG	AAGGTTTGCA	GCACTITGTC	ATCATTCTTC	ATGGACTCCT	1140
5	TTCACTCCTT	TAACAAAAAC	CTTGCTTCCT	TATCCCACCT	GATCCCAGTC	TGAAGGTCTC	1200
	TTAGCAACTG	GAGATACAAA	GCAAGGAGCT	GGTGAGCCCA	GCGTTGACGT	CAGGCAGGCT	1260
10	ATGCCCTTCC	GTGGTTAATT	TCTTCCCAGG	GGCTTCCACG	AGGAGTCCCC	ATCTGCCCCG	1320
10	CCCCTTCACA	GAGCGCCCGG	GGATTCCAGG	CCCAGGGCTT	CTACTCTGCC	CCTGGGGAAT	1380
	GTGTCCCCTG	CATATCTTCT	CAGCAATAAC	TCCATGGGCT	CTGGGACCCT	ACCCCTTCCA	1440
15	ACCTTCCCTG	CTTCTGAGAC	TTCAATCTAC	AGCCCAGCTC	ATCCAGATGC	AGACTACAGT	1500
	CCCTGCAATT	GGGTCTCTGG	CAGGCAATAG	TTGAAGGACT	CCTGTTCCGT	TGGGGCCAGC	1560
20	ACACCGGGAT	GGATGGAGGG	AGAGCAGAGG	CCTTTGCTTC	TCTGCCTACG	TCCCCTTAGA	1620
20	TGGGCAGCAG	AGGCAACTCC	CGCATCCTTT	GCTCTGCCTG	TCRGTGGTCA	GAGCGGTGAG	1680
	CGAGGTGGGT	TGGAGACTCA	GCAGGCTCCG	TGCAGCCCTT	GGGAACAGTG	AGAGGTTGAA	1740
25	GGTCATAACG	AGAGTGGGAA	CTCAACCCAG	ATCCCGCCCC	TCCTGTCCTC	TGTGTTCCCG	1800
	CGGAAACCAA	CCAAACCGTG	CGCTGTGACC	CATTGCTGTT	CTCTGTATCG	TGATCTATCC	1860
20	TCAACAACAA	CAGAAAAAAG	GAATAAAATA	TCCTTTGTTT	CCTAGTGAAA	АААААААА	1920
30	AAAAAAAA	АААААААА	CTCGA				1945

35

50

55

60

(2) INFORMATION FOR SEQ ID NO: 165:

(i) SEQUENCE CHARACTERISTICS:

40

(A) LENGTH: 2933 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165: GGGTCGACCC ACGCGTCCGG CAGCCGTCGT TTGAGTCGTT GCTGCCGCTG CCCCCTCCCG 60 GATCAGGAGC CAGTGTATAC CGCCCGCCCA CCGCCTTGGT GCCGCTAGAG GAAACGAGAA 120 180 GGAGGCCGCC TGCGGTTTGT CGCCGCAGCT CGCCCMCYGY CYGGRAGAGC CGAGCCCCGG CCCAGTCGGT CGCYTGCCAC CSCTCGTAGC CGTTACCCGC GGGCCGCCAC AGCCGCCGGC 240 300 CGGGAGAGGC GCGCGCCATG GCYTCTGGAG CCGATTCAAA AGGTGATGAC CTATCAACAG CCATTCTCAA ACAGAAGAAC CGTCCCAATC GGTTAATTGT TGATGAAGCC ATCAATGAGG 360 ACAACAGTGT GGTGTCCTTG TCCCAGCCCA AGATGGATGA ATTGCAGTTG TTCCGAGGTG 420 480 ACACAGTGTT GCTGAAAGGA AAGAAGAGAC GAGAAGCTGT TTGCATCGTC CTTTCTGATG

	ATACTTGTTC TGATGAGAAG ATTCGGATGA ATAGAGTTGT TCGGAATAAC CTTCGTGTAC	540
_	GCCTAGGGGA TGTCATCAGC ATCCAGCCAT GCCCTGATGT GAAGTACGGC AAACGTATCC	600
5	ATGTGCTGCC CATTGATGAC ACAGTGGAAG GCATTACTGG TAATCTCTTC GAGGTATACC	660
	TTAAGCCGTA CTTCCTGGAA GCGTATCGAC CCATCCGGAA AGGAGACATT TTTCTTGTCC	720
10	GTGGTGGGAT GCGTGCTGTG GAGTTCAAAG TGGTGGAAAC AGATCCTAGC CCTTATTGCA	780
	TIGITGCTCC AGACACAGTG ATCCACTGCG AAGGGGAGCC TATCAAACGA GAGGATGAGG	840
15	AAGAGTCCTT GAATGAAGTA GGGTATGATG ACATTGGTGG CTGCAGGAAG CAGCTAGCTC	900
13	AGATAAAGGA GATGGTGGAA CTGCCCCTGA GACATCCTGC CCTCTTTAAG GCAATTGGTG	960
	TGAAGCCTCC TAGAGGAATC CTGCTTTACG GACCTCCTGG AACAGGAAAG ACCCTGATTG	1020
20	CTCGAGCTGT AGCAAATGAG ACTGGAGCCT TCTTCTTCTT GATCAATGGT CCTGAGATCA	1080
	TGAGCAAATT GGCTGGTGAG TCTGAGAGCA ACCTTCGTAA AGCCTTTGAG GAGGCTGAGA	1140
25	AGAATGCTCC TGCCATCATC TTCATTGATG AGCTAGATGC CATCGCTCCC AAAAGAGAGA	1200
23	AAACTCATGG CGAGGTGGAG CGGCGCATTG TATCACAGTT GTTGACCCTC ATGGATGGCC	1260
	TAAAGCAGAG GGCACATGTG ATTGTTATGG CAGCAACCAA CAGACCCAAC AGCATTGACC	1320
3 0	CAGCTCTACG GCGATTTGGT CGCTTTGACA GGGAGGTAGA TATTGGAATT CCTGATGCTA	1380
	CAGGACGCTT AGAGATTCTT CAGATCCATA CCAAGAACAT GAAGCTGGCA GATGATGTGG	1440
35	ACCTGGAACA GTAGCCAATG AGACTCACGG GCATGTGGGT GCTGACTTAG CAGCCCTGTG	1500
33	CTCAGAGGCT GCTCTGCAAG CCATCCGCAA GAAGATGGAT CTCATTGACC TAGAGGATGA	1560
	GACCATTGAT GCCGAGGTCA TGAACTCTCT AGCAGTTACT ATGGATGACT TCCGGTGGGC	1620
40	CTTGAGCCAG AGTAACCCAT CAGCACTGCG GGAAACCGTG GTAGAGGTGC CACAGGTAAC	1680
	CTGGGAAGAC ATCGGGGGCC TAGAGGATGT CAAACGTGAG CTACAGGAGC TGGTCCAGTA	1740
45	TCCTGTGGAG CACCCAGACA AATTCCTGAA GTTTGGCATG ACACCTTCCA AGGGAGTTCT	1800
43	GTTCTATGGA CCTCCTGGCT GTGGGAAAAC TTTGTTGGCC AAAGCCATTG CTAATGAATG	1860
	CCAGGCCAAC TTCATCTCCA TCAAGGGTCC TGAGCTGCTC ACCATGTGGT TTGGGGAGTC	1920
50	TGAGGCCAAT GTCAGAGAAA TCTTTGACAA GGCCCGCCAA GCTGCCCCCT GTGTGCTATT	1980
	CTTTGATGAG CTGGATTCGA TTGCCAAGGC TCGTGGAGGT AACATTGGAG ATGGTGGTGG	2040
55	GGCTGCTGAC CGAGTCATCA ACCAGATCCT GACAGAAATG GATGGCATGT CCACAAAAAA	2100
))	AAATGTGTTC ATCATTGGCG CTACCAACCG GCCTGACATC ATTGATCCTG CCATCCTCAG	2160
	ACCTOGCCGT CTTGATCAGC TCATCTACAT CCCACTTCCT GATGAGAAGT CCCGTGTTGC	2220
60	CATCCTCAAG GCTAACCTGC GCAAGTCCCC AGTTGCCAAG GATGTGGACT TGGAGTTCCT	2280

	GGCTAAAATG ACTAATGGCT TCTCTGGAGC TGACCTGACA GAGATTTGCC AGCGTGCTTG	2340
5	CAAGCTGGCC ATCCGTGAAT CCATCGAGAG TGAGATTAGG CGAGAACGAG AGAGGCAGAC	2400
	AAACCCATCA GCCATGGAGG TAGAAGAGGA TGATCCAGTG CCTGAGATCC GTCGAGATCA	2460
	CTTTGAAGAA GCCATGCGCT TTGCGCGCCG TTCTGTCAGT GACAATGACA TTCGGAAGTA	2520
10	TGAGATGTTT GCCCAGACCC TTCAGCAGAG TCGGGGCTTT GGCAGCTTCA GATTCCCTTC	2580
	AGGGAACCAG GGTGGAGCTG GCCCCAGTCA GGGCAGTGGA GGCGGCACAG GTGGCAGTGT	2640
	ATACACAGAA GACAATGATG ATGACCTGTA TGGCTAAGTG GTGGTGGCCCA GCGTGCAGTG	2700
15	AGCTGGCCTG CCTGGACCTT GTTCCCTGGG GGTGGGGGCC CTTGCCCCAGG AGAGGGACCA	2760
	GGGGTGCGCC CACAGCCTGC TCCATTCTCC AGTCTGAACA GTTCAGCTAC AGTCTGACTC	2820
20	TGGACAGGGG GTTTCTGTTG CAAAAATACA AAACAAAAGC GATAAAATAA AAGCGATTTT	2880
	CATTTOGTAA AAAAAAAAA AAAAAAAAAT CCGGGGGGG GCCCGAACCA TTT	2933
25		
25	(2) INFORMATION FOR SEQ ID NO: 166:	
3 0	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2243 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:	
	TCGGAGAGCC GGCGGCGNG CGCCTCTCGG CCAGGAAGCG CCTCTTGGAC GCGTGTNACC	60
40	GATGCCCAGA AGTGGCCTTG GGCTGGGGAT CACCATAGCT TTTCTAGCTA CGCTGATCAC	120
40	GCAGTTTCTC GTGTATAATG GTGTCTATCA GTATACATCC CCAGATTTCC TCTATATTCG	180
	TICTTGGCTC CCTTGTATAT TTTTCTCAGG AGGCGTCACG GTGGGGAACA TAGGACGACA	240
45	GTTAGCTATG GGTGTTCCTG AAAAGCCCCCA TAGTGATTGA GTCTTCAAAA CCACCGATTC	300
	TGAGAGCAAG GAAGATTTTG GAAGAAAATC TGACTGTGGA TTATGACAAA GATTATCTTT	360
50	TTTCTTAAGT AATCTATTTA GATCGGGCTG ACTGTACAAA TGACTCCTGG AAAAAACTCT	420
30	TCACCTAGTC TAGAATAGGG AGGTGGAGAA TGATGACTTA CCCTGAAGTC TTCCCTTGAC	480
	TOCCOGCACT GGCGCCTGTC TGTGCCCTGG AGCATTCTGC CCAGGCTACG TGGGTTCAGG	540
55	CAGGTGGCAG CTTCCCAAGT ATTCGATTTC ATTCATGTGA TTAAAACAAG TTGCCATATT	600
	TCAAAGCCTT GAACTAAGAC TCAATTACCA ACCCGCAGTT TTGTGTCAGT GCCCAAAGGA	660
	GGTAGGTTGA TGGTGCTTAA CAAACATGAA GTATGGTGTA ATAGGAATAA TATTTATCCA	720

AAAGATTTIT AAAAATAGGG CTGTGTTTAA AAAAAAAAAC AAAACARGAA AAGCAGCAGT	780
GATTATAGAG AGGTCACACT CTAAGTGGGG TCGCGGCGTG GCCACGCTTC ACGGTCACGC	840
TCGTCCGTCC TGCAGTGGCG TGTTTACATG GTCACACGTG TGTGTATCAC CAGTGGGTCA	900
ACTECTTGTC ATTCCTCCCG TGGCAGTTTG TGTAGACAAT CTTACTGAGC AAAAGGCAAT	960
GAAAAGTCTT GGTTCCCACA CTGCGATATA TTGGAATTTT CACCTCAGTT TATGAAGTTT	1020
ATTTCGAAAT CCATAGTCAT CTAAGAATGA ATACCTGTCT GCCATGTATT TCAATCTTAG	1080
TGAGCCAAAA TIGTITGITT GITACTACAG AATAGAGATG ACTGITTTTT GCCACAGCCC	1140
	1200
	1260
	1320
	1380
	1440
	1500
	1560
	1620
GGAAGCCACC AGTCAGCAGA ATGGAAGCTT AGAGGAACTT GCCTGTGAGC GCTGGTCTTT	1680
CTCTTTCGTT TTCTCATGTA ACGATCTTTC CTCCCGTTTT TTCCTTTGTT TTCACGCAAA	1740
TOTOTTGGAG TAAATTITAA GTTCCTGGAG TTAATTIGTT TTACAGGAAT TITGTTTTT	1800
AAAAAAATAG GATCATICTG AACTTIGGAA TGACCCCCTT ATATATTTTC TGAAAATGAA	1860
AACAGTTACA TGAAAAAAAT TTCCAATGAA GATGTCAGCA TTTTATGAAA AACCAGAAGT	1920
TATTAGATGA AAGCAGCGAG TGAATCTTTA AAACAGACTT GATCACGCAC ACACAATAAG	1980
TCTTTCTCTC CGAAACCGGA AGTAAATCTA TATCTGTTAG AAATAATGTA GCCAAAAGAA	2040
TGTAAATTTG AGGATTTTTT TGCCAATAGT TTATAGAAAA TATATGAACC AAAGTGATTT	2100
GAGTTTGTAA AAATGTAAAA TAGTATGAAC AAAATTTGCA CTCTACCAGA TTTGAACATC	2160
TAGTGAGGTT CACATTCATA CTAAGTTTTC AACATTGTGT TCTTTTTGCA TTCATTTTTT	2220
ACTITIATIA AAGGIICAAA ACC	224
	ACCORTOC TECACTECCE TECCATTE TOTAGACACT TOTATACC CAGTEGOTCA ACCORTOCATE ATTECTCCE TECCATTTE TOTAGACAAT CITACTGACC AAAAGCCANT GAAAAGTCTT GOTTCCACA CTECGATATA TTGGAATTT CACCTCAGTT TATGAAGTTT ATTTCGAAAT CCATAGTCAT CTAAGAATGA ATACCTGTCT GCCATGTATT TCAATCTTAG TATGACCAAAA TTGTTTGTTT GTTACTACAG AATAGAGATGA ACCGTGTATT GCCACAGCCC TATGGATTT GCAATCTGG ATTGCCTTGT AAAAAGGAGA GTGCATATG CACTCAGTTA AAAACGTGTGGT GTTTCTAGTC AATGATATTG GTGAGCACAA TGTATTCATT TAATGGCATA AAACCCAATCCA GACCTAATTT GCAAGTATTG GGTGTAGACACAA TGTATTCATT TAATGGCATA AAACCCAATCCA GACCTTGTA TCTCTTAAAT ATTTATTTTT TTTAACGTGT GAGATGTTCG AGGAGAGGTT CTCCATTCAT TTCAGTGCTG CCTGGAGGAA ACCCGCAACTCC GAAATACTCC AGGTTTCAT TTCAGTGCTG CCTGGAGGAA ACCCGCAAT GATTTCTTTC AGGTTTTGGG GTTTCGTCAT TTTTACTTAT AAATTTACCT TTTTGTATTT TGCAATTTACCATTTTCCAGTGTTGGG GTTTGTTTTAA ATTCTGTGAA AGTCCCTTCA TTAAAAGACC CCTCAACCTTC GAAATACTCC AGGTTTTTGGTTTTTAAAT ATTCTGTGAA AGTCCCTTGA TTAAAAGACC CCTGTTTAAAT TGCAATTTACCATTTTTTTTTT

....

⁽²⁾ INFORMATION FOR SEQ ID NO: 167:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 1816 base pairs
(B) TYPE: nucleic acid

60

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167: 5 GGTGGGNAGC TITNAATTTC CCCTTACWGG GGCGCTNTAA GGGGAAACCT TCCCGGAATT 60 TTCGGGTCGA CCCACGCGTC CGGCCAGCCT AGGAGAAGAA GTTCGTAGTC CCAGAGGTGA 120 GGCAGGAGGC GGCAGTTTCT GGCGGGTGAG GGCGGAGCTG AAGTGACAGC GGAGGCGGAA 180 10 GCAACGGTCG GTGGGGCGGA GAAGGGGGCT GGCCCCAGGA GGAGGAGGAA ACCCTTCCGA 240 GAAAACAGCA ACAAGCTGAG CTGCTGTGAC AGAGGGGAAC AAGATGGCGG CGCCGAAGGG 300 15 GAGCCTCTGG GTGAGGACCC AACTGGGGCT CCCGCCGCTG CTGCTGCTGA CCATGGCCTT 360 GGCCGGAGGT TCGGGGACCG CTTCGGCTGA AGCATTTGAC TCGGTCTTGG GTGATACGGC 420 GTCTTGCCAC CGGGCCTGTC AGTTGACCTA CCCCTTGCAC ACCTACCCTA AGGAAGAAGA 480 20 GTTGTACGCA TGTCAGAGAG GTTGCAGGCT GTTTTCAATT TGTCAGTTTG TGGATGATGG 540 AATTGACTTA AATCGAACTA AATTGGAATG TGAATCTGCA TGTACAGAAG CATATTCCCA 600 25 ATCTGATGAG CAATATGCTT GCCATCTTGG KTGCCAGAAT CAGCTGCCAT TCGCTGAACT 660 GAGACAAGAA CAACTTATGT CCCTGATGCC AAAAATGCAC CTACTCTTTC CTCTAACTCT 720 GGTGAGGTCA TTCTGGAGTG ACATGATGGA CTCCGCACAG AGCTTCATAA CCTCTTCATG 780 30 GACTITITAT CTTCAAGCCG ATGACGGAAA AATAGTTATA TTCCRGTCTA AGCCCAGRAA 840 TCCCAGGTAC GCACCACATT TGGAGCCAGG AGCCCTACCA AATTTGRGRG RAWCMTCTCT 900 35 AAGCAAAATG TCCNTCAKMT CGSMAATGAG AAATTCACAA GCGCACAGGA ATTTTCTTGA 960 AGATGGAGAA AGTGATGGCT TTTTAAGATG CCTCTCTCTT AACTCTGGGT GGATTTTAAC 1020 TACAACTCTT GTCCTCTCGG TGATGGTATT GCTTTGGATT TGTTGTGCAA CTTGTTGCTA 1080 40 CACGCTGTTG GACGCAGTAT AGTTTCCCTC TGAGAAGCTG AGTATCTATG GTGACTTGGA 1140 GTTTATGAAT GAACAAAAGC TAAACAGATA TCCAGCTTCT TCTCTTGTGG TTGTTAGATC 1200 45 TAAAACTGAA GATCATGAAG AAGCAGGGCC TCTACCTACA AAAGTGAATC TTGCTCATTC 1260 TGAAATTTAA GCATTTTTCT TTTAAAAGAC AAGTGTAATA GACATCTAAA ATTCCACTCC 1320 TCATAGAGCT TTTAAAATGG TTTCATTGGA TATAGGCCTT AAGAAATCAC TATAAAATGC 1380 50 AAATAAAGTT ACTCAAATCT GTGAAAAAAA AAAAAAAAA AAAAAAAAA TCGAGGGGG 1440 GCCCGTTACC AAKTCGCCCT ATWGTGADTB GTATTMITAT TITACTAATA TCTGTAGCTA 1500 55 TTTTGTTTTT KGCTTKGGTT ATKGTTTTTY TCCCTTYTCT WAGCTATRAG CTGATCATKG 1560 CYSCTTCTCA CCTCCTGCCA TGATACTGTC AGTTACCTTA GTTAACAAGC TGAATATTTA 1620

GTAGAAATGA TGCTTCTGCT CAGGAATGGC CCACAAATCT GTAATTTGAA ATTTAGCAGG

	AAATGACCTT TAATGACACT ACATTTTCAG GAACTGAAAT CATTAAAATT TTATTTGAAT	1740
	AATTATGTGC TGAAAAAAAA AAAAAAAAA AMWMRARASK RRWWACTCGA GGGGGGGCCC	1800
5	GGTACCCNAT TCGCCG	1816
10	(2) INFORMATION FOR SEQ ID NO: 168:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 945 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
••	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:	
20	AGAAACCGTT GATGGGACTG AGAAACCAGA GTTAAAACCT CTTTGGAGGT TCTGAGGACT	60
	CAGCTGGAAC CAACGGCAC AGTTGGCAAC ACCATCAACT TCTCCCAAGC AGAGAAACCC	120
25	GAACCCACCA ACCAGGGCA GGATAGCCTG AAGAAACATC TACACGCAGA AATCAAAGTT	180
	ATTGGGACTA TCCAGATCTT GTGTGGCATG ATGGTATTGA GCTTGGGGAT CATTTTGGCA	240
; 3 0	TCTGCTTCCT TCTCTCCAAA TTTTACCCAA GTGACTTCTA CACTGTTGAA CTCTGCTTAC	300
	CCATTCATAG GACCCTTTT TTTTATCATC TCTGGCTCTC TATCAATCGC CACAGAGAAA	360
	AGGTTRACCA AGCTTTTGGT GCATAGCAGC CTGGTTGGAA GCATTCTGAG TGCTCTGTCT	420
35	GCCCTGGTGG GTTTCATTAT CCTGTCTGTC AAACAGGCCA CCTTAAATCC TGCCTCACTG	480
	CAGTGIGAGT TGGACAAAA TAATATACCA ACAAGAAGTT ATGTTTCTTA CTTTTATCAT	540
	GATTCACTTT ATACCACGGA CTGCTATACA GCCAAAGCCA GTCTGGCTGG AWCTCTCTCT	600
40	CTGATGCTGA TTTGCACTCT GCTGGAATTC TGCCTAGCTG TGCTCACTGC TGTGCTGCGG	660
	TGGAAACAGG CTTACTCTGA CTTCCCTGGG AGTGTACTTT TCCTGCCTCA CAGTTACATT	720
45	GGTAATTCTG GCATGTCCTC AAAAATGACT CATGACTGTG GATATGAAGA ACTATTGACT	780
,,,	TCTTAAGAAA AAAGGGAGAA ATATTAATCA GAAAGTTGAT TCTTATGATA ATATGGAAAA	840
	GTTAACCATT ATAGAAAAGC AAAGCTTGAG TTTCCTAAAT GTAAGCTTTT AAAGTAATGA	900
50		945
55	(2) INFORMATION FOR SEQ ID NO: 169:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 902 base pairs	
60		

(C)	STRANDEDNI	ESS:	double
(D)	TOPOLOGY:	line	ear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169: 5 GGCAGAGCCA CAGGAAGGAT GAGGAAGACC AGGCTCTGGG GGCTGCTGTG GATGCTCTTT 60 GTCTCAGAAC TCCGAGCTGC AACTAAATTA ACTGAGGAAA AGTATGAACT GAAAGAGGGG 120 CAGACCCTGG ATGTGAAATG TGACTACACG CTAGAGAAGT TTGCCAGCAG CCAGAAAGCT 180 10 TOGCAGATAA TAAGGGACGG AGAGATGCCC AAGACCCTGG CATGCACAGA GAGGCCTTCA 240 AAGAATTCCC ATCCAGTCCA AGTGGGGAGG ATCATACTAG AAGACTACCA TGATCATGGT 300 15 TTACTGCGCG TCCGAATGGT CAACCTTCAA GTGGAAGATT CTGGACTGTA TCAGTGTGTG 360 ATCTACCAGC CTCCCAAGGA GCCTCACATG CTGTTCGATC GCATCCGCTT GGTGGTGACC 420 AAGGGTTTTT CAGGGACCCC TGGCTCCAAT GAGAATTCTA CCCAGAATGT GTATAAGATT 480 20 CCTCCTACCA CCACTAAGGC CTTGTGCCCA CTCTATACCA GCCCCAGAAC TGTGACCCAA 540 GCTCCACCCA AGTCAACTGC CGATGTCTCC ACTCCTGACT CTGAAATCAA CCTTACAAAT 600 25 GTGACAGATA TCATCAGGGT TCCGGTGTTC AACATTGTCA TTCTCCTGGC TGGTGGATTC 660 CTGAGTAAGA GCCTGGTCTT CTCTGTCCTG TTTGCTGTCA CGCTGAGGTC ATTTGTACCC 720 780 TAGGCCCACG AACCCACGAG AATGTCCTCT GACTTCCAGC CACATCCATC TGGCAGTTGT 30 GCCAAGGGAG GAGGGAGGAG GTAAAAGGCA GGGAGTTAAT AACATGAATT AAATCTGTAA 840 TCACCRGCTA AAAAAAAAAA AAAAAAAACN CGANCCTNGG TTTTCAGCTC CATCAGCTCC 900 35 902 40 (2) INFORMATION FOR SEQ ID NO: 170: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1883 base pairs 45 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170: 50 AGAAAACAAC TGAAAAACCA CATTTTTCTA CATACAGCTG GGGAGGTAGC TGAGAACTTG 60 GCACTGCGCA CACATACTAG GTTGAAAGAG AGTTGAGGAA ACCAGAAGGC CAAGTGGATC 120 TGCTGGCAAA CCCTGAACCT GTCTCCTGCG CTTGCTCTAC AGTTCTGAAG TTGAAAATCC 55 TTTTCATGCC TAGCATCTGC TTGAGTTATA AACCCCAAGG CAGCCATGTC ATAGACTAGT 240 GTTTACTCTT GTTTTGACTT TGTTTTAATG CTTCCTAAGA CCCAAGTGCC TCCTGCTGTT 300

	TCCTCCTTTG TGGTAGCCTC TGGCCATCTG GGACCTCAAT CCCCAGCTTT CCCACTTTCA	360
	GCAGTCCTTT GCTCTCTTTG CTTCTACCTC AAATAGCCCC AGGAGTGGGC TTTAGTCTCC	420
5	AATATGGAGC ATYTCAAGCT TCTCCTGGGG GATGGGGATT GGGATGGGCA GAATCTGTTT	480
-	TOGWTCTCCG GGTTATTTCC AGTGGGTGTA AAAGCAGAGC TGGGCCTTTC CCTCTCTTAT	540
	CCCTGAGGGT GGGTAAGAAG GACTGTATCT ACACCTGTTC TTCCCTACCT TCTCTTTTGT	600
10	TAGGGAGGCC TCATTCTAAG TTCCTCAAGA GAGTCCTTGG CTTAAAGCTG TAGCAAGGGT	660
	GTGCTAGGTG GGGGATTTGG AGCAAAACCG TCGAGTAGGC ATGATACTGG TATGGAGTGG	720
15	GCCTGCAAAA TCAGACAGAA ATGGCTTGAG AAGCCGCAGG GGAGCATGCC TGTCTCTCAG	780
	TGATAGAGTA TGGGAGGGAC CTCCCTAGCT TGGAAAATGA GAATTGAAGG GGTTATGAAC	840
	AAATAGGATG CCTAGTTGAG GATGTTCCCA AAGTTTTGTC CAATCTTATC ATTAGTAGAT	900
20	TITATAAGCC ACAGAGACAA ACCAGAAACG GAATAATGTT ACTITGGATG CTITATTPIT	960
	TTGTTCTAGG TGTGGCTTTG TACATGCAGA AGAATGCTAT ATGCTGCACA TTTTGCCTTT	1020
2 5	AAAGTCTTAC GACTTTCCCC ATTTTAGTCT AATGGGAAGA TACAGATGTG CAAGTCTGCT	1080
	TTTTTGTTTT TTGTTATTAT TTTTTTTTT TTGCTCTGTG TTATGGACAT TTTCAGACAT	1140
	GCACAGAAGT GGAGAGGATG GTCCTTGGAC CCCATGTGTC CATCACCTAG CTGCATCACT	1200
30	TATCAGCTAT GGTCAACCTG GTTTCATCTG TATCTCTCTC TTTTCACCTG TATTGTTTAT	1260
	TGAAAATCCA AGACACTATG CCAATGCAAC CGTGACTACT TIGGGAGATT GGTAGTCTCT	1320
35	TTTGATGGTG ATAGTGATGG GGTGCACTAT CATAATCACA TCAGGTCTGC TTTTTGCTTT	1380
ĺ	TAATGTTAAC TAATGAAGTT CCAGAGATGG GCCTTAGAAA TGTGTTTTAA GAATTAACAA	1440
40	GGAGTCTCAA AAAGAAATGA GAGGGATGCT TCCTTTCCCC TTGCATCTAC AAAACAAGAG	1500
40	AGAGACTGTT CTGTTGTAAA ACTCTTTCAA AAATTCTGAT ATGGTAAGGT ACTTGAGACC	1560
	CTTCACCAGA ATGTCAATCT TTTTTTCTGT GTAACATGGA AACTTGTGTG ACCATTAGCA	1620
45	TTGTTATCAG CTTGTACTGG TCTCATAACT CTGGTTTTGG AAGAATAATT TGGAAATTGT	1680
	TGCTGTGTTC TGTGAAAATA ACCTCCCCAA AATAATTAGT AACTGGTTGT TCTACTTGGT	1740
50	AATTTGACAC CCTGTTAATA ACGCAATTAT TTCTGTGTTC TTAAACAGTA TAAATAGTTG	180
50	TAAGTITGCA TGCATGATGG AAAAATAAAA ACCTGTATCT CTGTTAAAAA AAAAAAAAAA	186
	AAA AAAAAAAA AAAAAAAA	188

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 171:

WO 98/39448

(A) LENGTH: 2100 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 1/1:	
	TACTTTTAGA TITACTGCCT TCAAAAAGTG CCTATTCTGA GCAACATAAA CGTTATTCCT	60
10	TACATATGTA TGTACACACG GTACCCAGAG TCGTACTGTG GCAGCCTTCA AAAACATACC	120
	ATCAGAAAGA GTAGGTGCTG AGATAAGGNA ACTTTGCCAA ATGNAAGAAA GTCACTCACT	180
15	TCCAATATCC CCTCTTCAAG CGGCTACCGT GRAASGGGCT GCAAACACAT TCCCTGAGCA	240
13	TCCCTTGCTG ATACAGCTTC TTTATATTTA TATCCTACTG GATGGTAGCA TATTGCTAAG	300
	GTTTCCTGTA CTCTGCTTCA AGGGAATGTA AGYTTTATGG CATTGAAACA TTTAGGAAAA	360
20	AAAAAGATGT TTAAGAGAAT TAATAGAGCC GTAGTCTGTA TTAGGATGTG TGTCATATGT	420
	GTGTTCTATA AACTAAGCAT CGGTGGGTTT AGAGTGTTAA AGTGTCAGCA CATTCCTTCT	480
25	CCTTTTGTCT CTCAGGCTAA CATGAGAGAA AATAGAAAAG TCTTGGCTGT GGGGATTGGA	540
23	AGCTCAGGGG GCCAAATGTC CTTGCCAGAT CCTTAGAGCA TTACTTTGAC TCCTAAAAAT	600
	AGTAGTGTAT GTTATTTGAT GGCTTTTGTT TCCATAGTTC CATCACTGAC AAAACTGTCA	660
30	ATACTGTTGA TGGAGCAGCA GCATAGCCTA GAGTGATGCA TTCTTACCCA GAGGTGGCAA	720
	TAGGAGAGGG TCCATGTAAA TAGGACGAGG TAGACAGTGC ATGATTGTAG GAGAAGGGTT	780
35	GAAGGGAGGA CATGATTCCA AAAAAGATCG TTCTCAATGT GTCGTCTGAC TCAACCAGCT	840
33	GGCAGATTAC ACTTGCCAAG TCGTTCCCTT TCCTTCTAAG TCAGTTGGCT CCATATTCAC	900
	TIGAATATGC CTCTGTTTGG GCAAAGCAAG ATACCTCCAC TTAACCTTTA TCCAAGGAAG	960
40	CTCTTGGTGT CCTCTTGGTC ATAAAGTTGT CTCCTACCTA ACCCAGTTTT ACCAAATGGA	1020
	AGTAAAAGGG GACAAACTAT GGAAGATGGA CTCCATGCCA TTGCAGTCAG CCACCATTCT	1080
45	CTTTTCCATA TAAGGAGCCC CATTACATAA GCTACGGGTG AGGTTGGAAC AGCTATGTTT	1140
43	CATAATTICA AGAGTGTGAC CACCCTGCTC TAGTCATCAT CATTGGATGA ATCCAGTTGA	1200
	CTCTTTGGCA AAAGGGTGAT ACTTTTCACT AAAAATGCCT ACTCTTCCTG TTGATGTTCC	1260
50	TITTCTGTTT TTACCTTGTC CAATTTCCAC ACTAGTCATT TTTTTTATTT TTTAGAGGAT	1320
	CAGATTITAG CGCTGGAAAA TGAGTTCAAA AATTICAGTG TAATGTCATA AGGATGTTGG	1380
55	GATACAGAGA TITTITTTT CCTTGGAAAC AAATGGACTG GGAAGAAACA CAGCATGGCT	1440
55	TTGCTCTGAG TTTCAATCTG ATGATTATGA CCATGGAAGA TAGTCTTATG TAAAGGTTAA	1500
	ATGGTGTTTA CAAGTGGATA GATAAGGCGG AGATGGTGAG AAGCCGGGTT TTCTCTATGC	1560
60	TAAATGTGTC TACTAAGAGC AGCACTTCCT ACTAGCTAAG CACAATCATA GCCCCACCGT	1620

400

	GATGAGCTGC TAGTCTGAAT AACATTCCCT GACTTAGGGA AAGGCACACA AAAACATATA	1680
5	AAGAATATGT CTATTTTCAT ATGTGTGATA CTGACAGAGC CATGGTATTC CTAAAATATA	1740
	GGITTCTCTT TITTCTTGTA TICTTAGCAA ATTGCATTTA TTCACTACAT TACAAACCAT	1800
	CACTGATGTA TCCAAAATAG CACACATAGT TCAGTATGAA AATAAGAGAA TAAAATCTGT	1860
10	TATAAGCAAG TGATTTAGGT ATTTTCTTTT GTGTTTATGC ATTATCTGAC TATATTAAAA	1920
	CCTGTTTTC TATTTACCTT CTATCAGTTT TCTCTACCAA TTATGTTTTT TCAATGCTCT	1980
15	ATAAGAATGA ATATGGAAAT TATATTTCTT TTTTCTGTAA AAGAGTTGCA ACTACTTTAT	2040
13	TATATTTAGA AATCCAATAA ACTTCTTATT ACATTTAAAA AAAAAAAA	2100
20	101	
	(2) INFORMATION FOR SEQ ID NO: 172:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1930 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:	
	CCTTIGANTG TGGTCCCGGG TGCNGATTGG CAGCGCCTCC GCCGCGGCTC GTGGTTGTCC	60
	CGCCATGGCA CTGTCGCGGG GGCTGCCCCG GGAGCTGGCT GAGGCGGTGG CCGGGGGCCG	120
35	GGTGCTGGTG GTGGGGGCGG GCGGCATCGG CTGCGAGCTC CTCAAGAATC TCGTGCTCAC	180
	CGGTTTCTCC CACATCGACC TGATTGATCT GGATACTATT GATGTAAGCA ACCTCAACAG	240
40	ACAGTTTTTG TTTCAAAAGA AACATGTTGG AAGATCAAAG GCACAGGTTG CCAAGGAAAG	300
,,,	TGTACTGCAG TTTTACCCGA AAGCTAATAT CGTTGCCTAC CATGACAGCA TCATGAACCC	360
	TGACTATAAT GTGGAATTTT TCCGACAGTT TATACTGGTT ATGAATGCTT TAGATAACAG	420
45	AGCTGCCCGA AACCATGTTA ATAGAATGTG CCTGGCAGCT GATGTTCCTC TTATTGAAAG	480
	TGGAACAGCT GGGTATCTTG GACAAGTAAC TACTATCAAA AAGGGTGTGA CCGAGTGTTA	540
50	TGAGTGTCAT CCTAAGCCGA CCCAGAGAAC CTTTCCTGGC TGTACAATTC GTAACACACC	600
50	TTCAGAACCT ATACATTGCA TCGTTTGGGC AAAGTACTTG TTCAACCAGT TGTTTGGGGA	660
	AGAAGATGCT GATCAAGAAG TATCTCCTGA CAGAGCTGAC CCTGAAGCTG CCTGGGAACC	720
55	AACGGAAGCC GAAGCCAGAG CTAGAGCATC TAATGAAGAT GGTGACATTA AACGTATTTC	780
	TACTAAGGAA TGGGCTAAAT CAACTGGATA TGATCCAGTT AAACTTTTTA CCAAGCTTTT	840

TAAAGATGAC ATCAGGTATC TGTTGACAAT GGACAAACTA TGGCGGAAAA GGAAACCTCC

PCT/US98/04493 WO 98/39448

	AGTTCCGTTG	GACTGGGCTG	AAGTACAAAG	TCAAGGAGAA	GAAACGAATG	CATCAGATCA	960
	ACAGAATGAA	CCCCAGTTAG	GCCTGAAAGA	CCAGCAGGTT	CTAGATGTAA	AGAGCTATGC	1020
5	ACGTCTTTTT	TCAAAGAGCA	TCGAGACTTT	GAGAGTTCAT	TTAGCAGAAA	AGGGGGATGG	1080
	AGCTGAGCTC	ATATGGGATA	AGGATGACCC	ATCTGCAATG	GATTTTGTCA	CCTCTGCTGC	1140
10	AAACCTCAGG	ATGCATATTT	TCAGTATGAA	TATGAAGAGT	AGATTTGATA	TCAAATCAAT	1200
10	GGCAGGGAAC	ATTATTCCTG	CTATTGCTAC	TACTAATGCA	GTAATTGCTG	GGTTGATAGT	1260
	ATTGGAAGGA	TTGAAGATTT	TATCAGGAAA	AATAGACCAG	TGCAGAACAA	TTTTTTTGAA	1320
15	TAAACAACCA	AACCCAAGAA	AGAAGCTTCT	TGTGCCTTGT	GCACTGGATC	CTCCCAACCC	1380
	CAATTGTTAT	GTATGTGCCA	GCAAGCCAGA	GGTGACTGTG	CGGCTGAATG	TCCATAAAGT	1440
20	GACTGTTCTC	ACCTTACAAG	ACAAGATAGT	GAAAGAAAAA	TTTGCTATGG	TAGCACCAGA	1500
20	TGTCCAAATT	GAAGATGGGA	AAGGAACAAT	ССТААТАТСТ	TCCGAAGAGG	GAGAGACGGA	1560
	AGCTAATAAT	CACAAGAAGT	TGTCAGAATT	TGGAATTAGA	AATGGCAGCC	GGCTTCAAGC	1620
25	AGATGACTTC	CTCCAGGACT	ATACTTTATT	GATCAACATC	CTTCATAGTG	AAGACCTAGG	1680
	AAAGGACGTT	GAATTTGAAG	TTGTTGGTGA	TGCCCCGGAA	AAAGTGGGGS	CCAAACAAGC	1740
30	TGAAGATGCT	GCCAAAAGCA	TAACCAATGG	GCAGTGATGA	TGGGAGCTTC	AGCCCTCCAC	1800
30	CTYCACAGCT	TCAAGGAGGC	AAGATGGACG	TYTCYCATAG	TTGATYCGGR	TGAAGAAGRT	1860
	TCTCCAATAA	TTGCCCGACG	TTCATTGAAG	GAAGGAGGAG	GAGGCCCGCC	AAGAGGGGAA	1920
35	TTTAGGNTTG						1930

40 (2) INFORMATION FOR SEQ ID NO: 173:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1509 base pairs (B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

50	GGCCCTGGCC TCTGGGCTGA GGCTTGCTAG GGACTCGGGG TGGCTCTAAG GGGCAGGGAT	60
55	AGGGCTGGGG AGCGCCGGCC TGTGGCCCTG ACCAGCCCCT TCTCGTGCRG GTTCCACCCC	120
	GATGCAGGTG GTCACGTGCT TGACGCGGGA CAGCTACCTG ACGCACTGCT TCCTCCAGCA	180
	CCTCATGGTC GTGCTGTCCT CTCTGGAACG CACGCCCTCG CCGGAGCCTG TTGACAAGGA	240
	CTTCTACTCC GAGTTTGGGA ACAAGACCAC AGGGAAGATG GAGAACTACG AGCTGATCCA	300
60	CTCTAGTCGC GTCAAGTTTA CCTACCCCAG TGAGGAGGAG ATTGGGGACC TGACGTTCAC	360

PCT/US98/04493

	TGTGGCCCAA AAGATGGCTG AGCCAGAGAA GGCCCCAGCC CTCAGCATCC TGCTGTACGT	420
5	GCAGGCCTTC CAGGTGGGCA TGCCACCCCC TGGGTGCTGC AGGGGCCCCC TGCGCCCCAA	480
J	GACACTCCTG CTCACCAGCT CCGAGATCTT CCTCCTGGAT GAGGACTGTG TCCACTACCC	540
	ACTGCCCGAG TTTGCCAAAG AGCCGCCGCA GAGAGACAGG TACCGGCTGG ACGATGGCCG	600
10	CCGCGTCCGG GACCTGGACC GAGTGCTCAT GGGCTACCAG ACCTACCCGC AGCCCTCACC	660
	CTCGTCTTCG ATGACGTGCA AGGTCATGAC CTCATGGGCA GTGTCACCCT GGACCACTTT	720
15	GGGGAGGTGC CAGGTGGCCC GGCTAGAGCC AGCCAGGGCC GTGAAGTCCA GTGGCAGGTG	780
	TTTGTCCCCA GTGCTGAGAG CAGAGAGAAG CTCATCTCGC TGTTGGCTCG CCAGTGGGAG	840
	GCCCTGTGTG GCCGTGAGCT GCCTGTCGAG CTCACCGGCT AGCCCAGGCC ACAGCCAGCC	900
20	TGTCGTGTCC AGCCTGACGC CTACTGGGGC AGGGCAGCAG GCTTTTGTGT TCTCTAAAAA	960
	TGTTTTATCC TCCCTTTGGT ACCTTAATTT GACTGTCCTC GCAGAGAATG TGAACATGTG	1020
25	TGTGTGTTGT GTTAATTCTT TCTCATGTTG GGAGTGAGAA TGCCGGGCCC CTCAGGGCTG	1080
23	TCGGTGTGCT GTCAGCCTCC CACAGGTGGT ACAGCCGTGC ACACCAGTGT CGTGTCTGCT	1140
	GITGTGGGAC CGTTGTTAAC ACGTGACACT GTGGGTCTGA CTTTCTCTTC TACACGTCCT	1200
30	TTCCTGAAGT GTCGAGTCCA GTCCTTTGTT GCTGTTGCTG TTGCTGTTGC TGTTGCTGTT	1260
	GGCATCTTGC TGCTAATCCT GAGGCTGGTA GCAGAATGCA CATTGGAAGC TCCCACCCCA	1320
35	TATTGTTCTT CAAAGTGGAG GTCTCCCCTG ATCCAGACAA GTGGGAGAGC CCGTGGGGGC	1380
33	AGGGGACCTG GAGCTGCCAG CACCAAGCGT GATTCCTGCT GCCTGTATTC TCTATTCCAA	1440
	TAAAGCAGAG TITGACACCG TCAAAAAAAA AAAAAAAAA AAAAAAAAA ATINCTGCGG	1500
40	CCTCAAGGG	1509
45	(2) INFORMATION FOR SEQ ID NO: 174:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 3173 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:	60
JJ	TCGACCCCAS GCGTCCGTGC TTTTCCACAG AAGGTTAGAC CCTGAAAGAG ATGGCTCAGC	
	ACCACCTATG GATCTTGCTC CTTTGCCTGC AAACCTGGCC GGAAGCAGCT GGAAAAGACT	120 180
	CAGAAATCTT CACAGTGAAT GGGATTCTGG GAGAGTCAGT CACTTTCCCT GTAAATATCC	100

	AAGAACCACG	GCAAGTTAAA	ATCATTGCTT	GGACTTCTAA	AACATCTGTT	GCTTATGTAA	240
	CACCAGGAGA	CTCAGAAACA	GCACCCGTAG	TTACTGTGAC	CCACAGAAAT	TATTATGAAC	300
5	GGATACATGC	CTTAGGTCCG	AACTACAATC	TGGTCATTAG	CGATCTGAGG	ATGGAAGACG	360
	CAGGAGACTA	CAAAGCAGAC	ATAAATACAC	AGGCTGATCC	CTACACCACC	ACCAAGCGCT	420
10	ACAACCTGCA	AATCTATCGT	CGGCTTGGGA	AACCAAAAAT	TACACAGAGT	TTAATGGCAT	480
10	CTGTGAACAG	CACCTGTAAT	GTCACACTGA	CATGCTCTGT	AGAGAAAGAA	GAAAAGAATG	540
	TGACATACAA	TTGGAGTCCC	CTGGGAGAAG	AGGGTAATGT	CCTTCAAATC	TTCCAGACTC	600
15	CTGAGGACCA	AGAGCTGACT	TACACGTGTA	CAGCCCAGAA	CCCTGTCAGC	AACAATTCTG	660
	ACTCCATCTC	TGCCCGGCAG	CTCTGTGCAG	ACATCGCAAT	GGGCTTCCGT	ACTCACCACA	720
20	CCGGGTTGCT	GAGCGTGCTG	GCTATGTTCT	TTCTGCTTGT	TCTCATTCTG	TCTTCAGTGT	780
20	TTTTGTTCCG	TTTGTTCAAG	AGAAGACAAG	ATGCTGCCTC	AAAGAAAACC	ATATACACAT	840
	ATATCATGGC	TTCAAGGAAC	ACCCAGCCAG	CAGAGTCCAG	AATCTATGAT	GAAATCCTGC	900
25	AGTCCAAGGT	GCTTCCCTCC	AAGGAAGAGC	CAGTGAACAC	AGTTTATTCC	GAAGTGCAGT	960
	TTGCTGATAA	GATGGGGAAA	GCCAGCACAC	AGGACAGTAA	ACCTCCTGGG	ACTTCAAGCT	1020
30	ATGAAATTGT	GATCTAGGCT	GCTGGGCTGA	ATTCTCCCTC	TGGAAACTGA	GTTACAACCA	1080
	CCAATACTGG	CAGGTTCCCT	GGATCCAGAT	CTTCTCTGCC	CAACTCTTAC	TGGGAGATTG	1140
	CAAACTGCCA	CATCTCAGCC	TGTAAGCAAA	GCAGGAAACC	TTCTGCTGGG	CATAGCTTGT	1200
35 ·	GCCTAAATGG	ACAAATGGAT	GCATACCCTT	CCTGAAATGA	CTCCCTTCTG	AATGAATGAC	1260
	AAAGCAGGTT	ACCTAGTATA	GTTTTCCCAA	ACTTCTTCCC	ATCATAGCAC	ATGTAGAAAA	1320
40	TAATATTTTT	ATGGCACACT	GGGATAAACA	AGCAAGATTG	CTCACTTCTG	GAAGCTGCAT	1380
	ATGACTAGAG	GCCTCTTGTG	ACTGGAGGTA	ACAACCCTGC	CCAGTAACTG	TGGGAGAAGG	1440
	GGATCAATAT	TTTGCACACC	TGTAATAGGC	CATGGCACAC	CAGCCAAGAT	GCTCTGCTCA	1500
45	CAGTCAGTAT	GTGTGAAGAT	CCCTGGTGCG	TGGCCTTCAC	CACGCATCTT	GAGCAAATTA	1560
	GGAAAATGTA	CCCTTCGCTT	GAGGCAGATG	CAGCCCTTCC	CCCGAGTGCA	TGGCTTGGAG	1620
50	AGCAGAATGT	GGGCTGCATA	TAAGCACACT	CATCCCTTTG	TCTGGGAATC	TTTGTGCAGG	1680
	GCATAACAGG	CTTAGTAAGT	CCAAACACAG	ATGACAGTGC	TGTGTGGGTC	TCTGTCAGAG	1740
	TTGTGGCTCT	CAGCCATGTA	GACACACTCT	CCAAATGGAG	TGTTGGAAAA	TGTTCTTTCT	1800
55	GCAGGGTCTA	GAGACTGCTG	GGACACTTTT	CTTGGAGTGC	TACTTCAGAA	GCCTTATAGG	1860
	ATTTTCTTTC	TGGCCAAGAT	TTCCTTCTGT	ATCACTCCAA	GCAGCCTCAG	CAGAAGAAGC	1920
60	AGCCATGCCC	AGTATTCCCA	CTCTCCAAAA	GGAACTGACC	AGCTTATATT	TCTCACACTT	1980

		2040
	CTGGGGAACT GGGTATAATC CAACCATCAA AATAGAAGAC CTTGCAAGAA GCAGAGTCAT	2040
	TCTCCAGAAG GAACTTGGGA GATGATGGTG CAGATGATGA AACTGGGTTC ATCCCAGTTC	2100
5	CAAAGACTCA GAGAACTAGA GTTTAAGCTG AGGCAGAGTG CCGCCACCCT GGCATGCCCC	2160
	ACAAACAGAT CACCAGCCAG CTTACACAGG CATTAACTCT CCTCAATGAG GAAGAATCAT	2220
10	TCACAACTGA GCAAGACATT CATATGATCA TTTAAGGAAG TGTTTCCCTT ATGTGTTAGC	2280
10	AAGTATAATC GGCTAACTCC TAAATCCCAA TGAATAGTCC TAGGCTGGAC AGCAATGGGC	2340
	TGCAATTAGG CAGATAAAGA CATCAGTCCC AGTAAATGAA TCCATAGACT CATCTAGCAC	2400
15	CAACTACCAT TAGCACTATG TTAGGAGCTG CAAGGCCCCA AAGTAGAAGA TGTGCATAAT	2460
	GTCTGCTCTT GTGTAGCTCA GGAGACAATT CCAGCACAGA CACTACAGTT AACGCTGAAC	2520
*-	TGCAGCTGCA AGTAATAGCA TGAACAGTCA GAAAAATACC TTATGAGGGG GCAGGGCTGA	2580
20	AGCTGGGCCT TGAAGGATGG ATGAAATTTG GATAGAGAAT GAGGAAGACA GAGGGCCTCC	2640
	AAGTGAGAGA AGCATGAAAA ATGAGCAGGG GCCTGGATCA GTGGGGTGTA TTCAGAGCAC	2700
25	CTCTCCAGAT GCACCATGCA TGCTCACAGT CCCTTGCCTA TGTGTGGCAG AGTGTCCCAG	2760
	CCAGATGTGT GCCCCCACCC CATGTCCATT TACATGTCCT TCAATGCCCA CCTCAAAAGG	282Ó
30	TACCTCTTCT GTAAAGCTTT CCCTGGTATC AGGAATCAAA ATTAATCAGG GATCTTTTCA	2880
	CACTGCTGTT TTTTCCTCTT TGGTCCTTCT ATCACTAAAA CTCATCTCAT	2940
	AGCATAACTA ATTATTTGTT TTCCTCACTA CATTGTACAT GTGGGAATTA CAGATAAACG	3000
35	GAAGCCKGCT GGGGTGGTGG CTCACGCCTG TAATCCCAAC ACTTTGGGAG GCCAAGGCAG	3060
	GCGGATCACC TGAGGTCAGG ARTTCGAGAT TARTCTGGCC AACATGGTGA AACCCCATNT	3120
40	NTACTAAAAA TACGAAATTA GCCAGGTGTG GTGGCACACA TCTGTAGTCC CAG	3173
40		
45	(2) INFORMATION FOR SEQ ID NO: 175:	•
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 991 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:	
<i>5 5</i>	AAATTCGGCA CAGCTGAGAG GAGACACAAG GAGCAGCCCG CAAGCACCAA GTGAGAGGCA	60
55	TGAAGTTACA GTGTGTTTCC CTTTGGCTCC TGGGTACAAT ACTGATATTG TGCTCAGTAG	120
	ACAACCACGG TCTCAGGAGA TGTCTGATTT CCACAGACAT GCACCATATA GAAGAGAGTT	180
60	TYPE ACADAM CADACACCE ATTECADOCTA ACCACACTTE CECADATETE ACTATECTOT	240

405

	CCACATTGGA GACTCTGCAG ATCATTAAGC CCTTAGATGT GTGCTGCGTG ACCAAGAACC	300
5	TCCTGGCGTT CTACGTGGAC AGGGTGTTCA AGGATCATCA GGAGCCAAAC CCCAAAATCT	360
3	TGAGAAAAAT CAGCAGCATT GCCAACTCTT TCCTCTACAT GCAGAAAACT CTGCGGCAAT	420
	GTCAGGAACA GAGGCAGTGT CACTGCAGGC AGGAAGCCAC CAATGCCACC AGAGTCATCC	480
10	ATGACAACTA TGATCAGCTG GAGGTCCACG CTGCTGCCAT TAAATCCCTG GGAGAGCTCG	540
	ACGTCTTTCT AGCCTGGATT AATAAGAATC ATGAAGTAAT GTCCTCAGCT TGATGACAAG	600
15	GAACCTGTAT AGTGATCCAG GGATGAACAC CCCCTGTGCG GTTTACTGTG GGAGACAGCC	660
13	CACCTTGAAG GGGAAGGAGA TGGGGAAGGC CCCTTGCAGC TGAAAGTCCC ACTGGCTGGC	720
	CTCAGGCTGT CTTATTCCGC TTGAAAATAG CCAAAAAGTC TACTGTGGTA TTTGTAATAA	780
20	ACTOTATOTG CTGAAAGGGC CTGCAGGCCA TOOTGGGAGT AAAGGGCTGC CTTCCCATCT	840
	AATTTATTGT GAAGTCATAT AGTCCATGTC TGTGATGTGA	900
25	ACACATTGTA CTGAGTGGTT TTTCTGAATA AATTCCATAT TTTACCTAAA AAAAAAAAA	960
23	AAAAACTCGA GGGGGGCCC GTACCCAATT T	991
30 35	(2) INFORMATION FOR SEQ ID NO: 176: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1290 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176: ACAGCCCTCT TCGGAGCCTG AGCCCGGCTC TCCTCACTCA CCTCAACCCC CAGGCGGCCC	60
	CTCCACAGGG CCCCTCTCCT GCCTGGACGG CTCTGCTGGT CTCCCCGTCC CCTGGAGAAG	120
45	AACAAGGCCA TGGGTCGGCC CCTGCTGCTG CCCCTRCTGC YCCTGCTGCW GCCGCCAGCA	180
	TTTCTGCAGC CTRGTGGCTC CACAGGATCT GGTCCAAGCT ACCTTTATGG GGTCACTCAA	240
50	CCAAAACACC TCTCAGCCTC CATGGGTGGC TCTGTGGAAA TCCCCTTCTC CTTCTATTAC	300
30	CCCTGGGAGT TAGCCAYAGY TCCCRACGTG AGAATATCCT GGAGACGGGG CCACTTCCAC.	360
	GGGCAGTCCT TCTACAGCAC AAGGCCGCCT TCCATTCACA AGGATTATGT GAACCGGCTC	420
55	TTTCTGAACT GGACAGAGGG TCAGGAGAGC GGCTTCCTCA GGATCTCAAA CCTGCGGAAG	480

CAGTTGCAGT CCATCAAGGG GACCAAACTC ACCATCACCC AGGCTGTCAC AACCACCACC

60

PCT/US98/04493

406

	ACCTGGAGGC	CCAGCAGCAC	AACCACCATA	GCCGGCCTCA	GGGTCACAGA	AAGCAAAGGG	660
	CACTCAGAAT	CATGGCACCT	AAGTCTGGAC	ACTGCCATCA	GGGTTGCATT	GGCTGTCGCT	720
5	GTGCTCAAAA	CTGTCATTTT	GGGACTGCTG	TGCCTCCTCC	TCTGTGGTGG	AGGAGAAGGA	780
	AAGGTAGCAG	GGCGCCAAGC	AGTGACTTCT	GACCAACAGA	GTGTGGGGAG	AAGGGATGTG	840
10	TATTAGCCCC	GGAGGACGTG	ATGTGAGACC	CGCTTGTGAG	TCCTCCACAC	TCGTTCCCCA	900
10	TTGGCAAGAT	ACATGGAGAG	CACCCTGAGG	ACCTTTAAAA	GGCAAAGCCG	CAAGGCAGAA	960
	GGAGGCTGGG	TCCCTGAATC	ACCGACTGGA	GGAGAGTTAC	CTACAAGAGC	CTTCATCCAG	1020
15	GAGCATCCAC	ACTGCAATGA	TATAGGAATG	AGGTCTGAAC	TCCACTGAAT	TAAACCACTG	1080
	GCATTTGGGG	GCTGTTYATT	ATAGCAGTGC	AAAGAGTTCC	TTTATCCTCC	CCAAGGATGG	1140
20	AAAATACAAT	TTATTTTGCT	TACCATACAC	CCCTTTTCTC	CTCGTCCACA	TTTTCCAATC	1200
20	TGTATGGTGG	CTGTCTTCTA	TGGCAGAAGG	TTTTGGGGAA	TAAATAGCGT	GANATGNTNC	1260
	TGACTNAAAA	AAAAAAAA	AAAAACTCGA				1290

25

(2) INFORMATION FOR SEQ ID NO: 177:

(i) SEQUENCE CHARACTERISTICS: 30

(A) LENGTH: 2290 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

60 TGGGGCCCCT TTTGGATGCT CTGGGTGTTT TTGCCAAGAG TTACAGGATG TCAAGTGTGG GGAGCTCAGC ACCCTTGCTG TGGACCAGTG AAGGCTGTTC CAGACCAGGT GCTTCCAGAC 120 ATTTCCAGGC TCCAGGAGAG AGGCTGGGAG CCCCCACAGA AAGCACAGGA AAATGCAAAA 180 240 AGAAGGGTCC ATGATTACCA GAAACATCAA AGAGTACTTT CTACCATTTT TATTCTGTTG 300 TGTTGAGGCC AGCATTGCAA TAAACAAGCT AAACTACTTA CATTGGACTC ATTTTCAGTA 360 ACTGACATTT ACAGGAATAT ACTAGAAACG GCACTAAAAA GTTTAAGAAA AGTTACGGTA 420 AACTTGCATG CACATCATAC AGAAAAGTAA CATTTTAAAT ATAAAAAAGA AAAACTTCCT 480 GGAAGCATTA TGCCAGTATT AAGGAACAGT GCTACTCTGG ATGTGACAAA TTCTGTATGT 540 600 GGGTGTTACT CTTTCCCAAA AGACTGTCAG AGGCGTGAGT GCTGCAAAAG AACAACAACA AAAACAAACA CACAAAAAAA TGTGTCTTAC AGTTTGTAAG CAAGATGACA CTGCCCAACA 660 CAAAGAGGG TCTGGAGTTC AGTTCACGCC CGAAGCCTGC CCCCTCGGCC TCCAGGGGTC 720

	ATTCAGAGTG	TTCTCAAATC	CAATTCCGAC	ACACGACTTG	TCACTACTCC	TCTCCCCTTG	780
5	AAAAAAGCAT	GTTAGAAGCT	GCCCTACAGG	TCTCAGCAGT	GGGACAATCT	AATTGAATCA	840
	CCGCAGCCTT	CTAATACAGA	AGAAACGGAC	GTGACTGTCA	CCCTCAGCCC	GCCAGCAAGG	900
	GCGCTGAGGA	AGTCATTAAT	CCTTCGAAAC	TCTGAAAAGA	AACCAGTGTT	GAAGTCTGGA	960
10	CAGAAAGCCT	TAAAAAAGTG	ACAGCACCAA	TGCAGCTGCT	CAGTGTACCC	NCCGTGGGCT	1020
	GTCAGGGTCA	GTGGCTTCTT	TCTAGATGAA	AGGAGCAGAG	GCGAGCCGAC	GCCACCGTCA	1080
15	CAGAGAACCA	GCCGAGAAGG	AAAGGCCCCA	CGATGCTCCC	TCTGCGCTGC	CCCCACAGCC	1140
	GCCGCTCCC	CCGACGGCTC	ACACAGGCAG	CACCTCACTG	CCCTGTGGCT	GGAGGGGCAT	1200
	TGCAAGGAGC	GCCCCCAGC	CCCAGGCACC	CCCGGCTTAG	GGTGTACGTA	TCACCCAGCC	1260
20	CTGTGCTGGC	AGCACGTTAC	CAACCAGCCT	GCGTGAAGAC	CTGTCAACTG	TCGTGTGTGA	1320
	ATTCCTTAAA	TTCGGTTTAA	ATAGTCCATT	AAAGATCTGT	TTAGAAAATA	CCTTTGAAAA	1380
25	CGAGGGTAAC	TTTAAAAAAT	GGAAACTTTC	AAATCCATTT	ATATTTTAT	TATAAACAAA	1440
	ACTTAATTAA	AAGTTTAACA	AACTGGCTGA	AAACTCACCA	AGTGTCAGAC	TCACCAGCAA	1500
	TAAAAAAT	GATAATITAC	CAGCATCTCC	TCATCAGAGT	TCCCTCTCCA	GTAAGGGTAT	1560
30	ACCTACATCT	GTAAGGGTCA	GTGGACTCTG	AATCAATTTT	ATGGTTGTTT	TAAAATCACC	1620
	GTGTATTAGG	ATACTAATGA	TAGTCCCTAT	ATCCATCCAG	AAATGCTGGC	AGAAAGCACT	1680
35	GGCCACCATA	CAGGACAGAC	CACACCACAG	CTCCATACCC	AGCGTCTGCC	TCGACCTCC	1740
	CCCACGCTGA	GGTCCGGGAG	AATGCCTGGT	TTCAGTCATT	TCCGGACTAA	CTGTGACAAC	1800
	GCGTGAGCAG	GGAGCACCGT	GCGAGTCTCC	GGGAGGGAAT	CCTCCTGGGG	CCCAGAGACT	1860
40	CCTCCACCCC	TGGGGAGGGC	AGACAGGCTC	GGGARGGCCT	GGCCAGGCCA	CTGGAGGCTG	1920
	GCAGGGAGCA	GGCATGTCCA	CCCGCAAGCC	TGGGAGGCTA	ACTCTGGCAT	TCCTGGCCGG	1980
45	AGCCGCCATG	CTCATTGGTG	GGCCAGTTTG	GGACATCCCC	GTACTCAAAG	ACCATATGGC	2040
	AGCCTCTGGG	AAAACAAAAC	CAAAACATCA	CCTTCTATTA	AACTCTGTAT	ATTATTATTT	2100
	TTTACAATAG	AAAGTTAAAA	ATCAAGACTT	AGATTTACTA	TACATTTTTT	CTCTCAGATT	2160
50	ACAAAGTTTA	TATTATATAA	CTGGGGTTCC	CTAAATTGAT	TTCTTTTAAA	ACAGTCTTAA	2220
	AGAGACCAGA	AGTGAATACA	AAAGAACTAA	ACAAAATAAA	AAATTAGAAT	GTGCTGTAGC	2280
55	TGAAAGCTGT						2290

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 549 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:	
	GGCACGAGCC ATGCCTGGCC TCTCCTTGAT TCTTACAGTC ACTITGTTGG CTGTTTCTGA	60
10	CTCAGCAGCT ACCTGCATTG TGGCCAAAGG ATGACCTATT CCTTCTCAGG AGGGCAAAAA	120
	TGTGGAATAG TGTCTGTCCA TGCCTCTCCT CATGGGCTAC CACCTCTGCC ACCGTGGTTA	180
15	ATCAGTAACA ACCAGGAGAG AAGCTGCTGG AACTGACCTC TGGGAACTCC CTGGGATGGT	240
	TTGGTGCAGG AATGTAGTAG GCATACACGT GGTTGCGTGG ATCTGGGCCC TCCTGATGTG	300
	AGTAGAGAGG TAAAAGGCCA CCATCTCCTT GACCTCTGGG GAACTCATCC ACAAAGAAGA	360
20	TGTTTCCAAG ATGCTTCTGA AGATTGCCTA AAAATAGCCG GTTTCCACCC CCGTGAATGC	420
	ATCCATTCTA GAATGCTCCT TCACCAGGAC CAGAGAACTG ATTTACAGAA GTGACATGAA	480
25	AACATTCCAT CCCAGAATTT GCAGTAGCTC AAATTAAGTT TCTAGCTATT AAAAAGAAAA	540
	аааааааа	549
30		
30	(2) INFORMATION FOR SEQ ID NO: 179:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1509 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:	
	GGCACGAGGG CTCATTCATT CCGCGCCGGG CCTGCCAGAC ACCTGCGCCC TTCTGCAGCC	60
	GCCCGCCGCA TCCGCCGCCG CAGCCCCCAG CATGTCGGGC CCAGACGTCG AGACGCCGTC	120
45	CGCCATCCAG ATCTGCCGGA TCATGCGGCC AGATGATGCC AACGTGGCCG GCAATGTCCA	180
	CGGGGGGACC ATCCTGAAGA TGATCGAGGA GGCAGGCGCC ATCATCAGCA CCCGGCATTG	240
50	CAACAGCCAG AACGGGGAGC GCTGTGTGGC CGCCCTGGCT CGTGTCGAGC GCACCGACTT	300
	CCTGTCTCCC ATGTGCATCG GTGAGGTGGC GCATGTCAGC GCGGAGATCA CCTACACCTC	360
	CAAGCACTCT GTGGAGGTGC AGGTCAACGT GATGTCCGAA AACATCCTCA CAGGTGCCAA	420
55	AAAGCTGACC AATAAGGCCA CCCTGTGGTA TGTGCCCCTG TCGCTGAAGA ATGTGGACAA	480
	GGTCCTCGAG GTGCCTCCTG TTGTGTATTC CCGGCANGAG CAGGAGGAGG AGGGCCGGAA	540
60	COCCURATION CONTROL TO ACCURATE GRACECTAR TO ACCURATE ACCURATE TO	600

	CCAGCCAGTC CTCAACCCAG AGCCGAACAC TGTCAGCTAC AGCCAGTCCA GCTTGATCCA	660
	CCTGGTGGGG CCTTCAGACT GCACCCTGCA CGGCTTTGTG CACGGAGGTG TGACCATGAA	720
5	GCTCATGGAT GAGGTCGCCG GGATCGTGGC TGCACGCCAC TGCAAGACCA ACATCGTCAC	780
	AGCTTCCGTG GACGCCATTA ATTTTCATGA CAAGATCAGA AAAGGCTGCG TCATCACCAT	840
10	CTCGGGACGC ATGACCTTCA CGAGCAATAA GTCCATGGAG ATCGAGGTGT TGGTGGACGC	900
	CGACCCTGTT GTGGACAGCT CTCAGAAGCG CTACCGGGCC GCCAGTGCCT TCTTCACCTA	960
	COTOTOGOTO ACCCAGGAAG CCAGGTCCCT CCCTGTCCCC CAGCTCGTGC CCGAGACCGA	1020
15	GGACGAGAAG AAGCGCTTTG AGGAAGGCAA AGGGCGGTAC CTGCAGATGA AGGCGAAGCR	1080
	ACAGGGCCAC GCGGASCYTC AGCCCTAGAC TCCCTCCTCC TGCCACTGGT GCCTCGAGTA	1140
20	GCCATGGCAA CGGGCCCAGT GTCCAGTCAC TTAGAAGTTC CCCCCTTGGC CAAAAACCCA	1200
	ATTCACATTG AGAGCTGGTG TTGTCTGAAG TITTCGTATC ACAGTGTTAA CCTGTACTCT	1260
	CTCCTGCAAA CCTACACACC AAAGCTTTAT TTATATCATT CCAGTATCAA TGCTACACAG	1320
25	TOTTGTCCCG AGCGCCGGGA GGCGTTGGGC AGAAACCCTC GGGAATGCTT CCGAGCACGC	1380
	TGTAGGGTAT GGGAAGAACC CAGCACCACT AATAAAGCTG CTGCTTGGCT GGAAAAAAAA	1440
30	ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ	1500
	AGAAAAAN	1509
35		
	(2) INFORMATION FOR SEQ ID NO: 180:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1316 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:	
	AGCTGTATCA TAGGAAAGAT GGCCACACCG GCGGTACCAG TAAGTGCTCC TCCGGCCACG	60
50	CCAACCCCAG TCCCGGCGGC GGCCCCAGCC TCAGTTCCAG CGCCAACGCC AGCACCGGCT	120
50	GCGGCTCCGG TTCCCGCTGC GGCTCCAGCC TGCATCCTCA GACCCTGCGG CAGCAGCGGC	180
	TGCAACTGCG GCTCCTGGCC AGACCCCGGC CTCAGCGCAA NTCCAGCGCA GACCCCAGCG	240
55	CCCGCTCTGC CTGGTCCTGC TCTTCCAGGG CCCTTCCCCG GCGGCCGCGT GGTCAGGCTG	300

CACCCAGTCA TTTTGGCCTC CATTGTGGAC AGCTACGAGA GACGCAACGA GGGTGCTGCC
CGAGTTATCG GGACCCTGTT GGGAACTGTC GACAAACACT CAGTGGAGGT CACCAATTGC

	TTTTCAGTGC	CGCACAATGA	GTCAGAAGAT	GAAGTGGCTG	TTGACATGGA	ATTTGCTAAG	480
	AATATGTATG	AACTGCATAA	AAAAGTTTCT	CCAAATGAGC	TCATCCTGGG	CTGGTACGCT	540
5	ACGGGCCATG	ACATCACAGA	GCACTCTGTG	CTGNATCCAT	GAGTACTACA	GCCGAGAGGC	600
	CCCCAACCCC	ATCCACCTCA	CTGTGGACAC	AAGTCTCCAG	AACGGCCGCA	TGAGCATCAA	660
10	AGCCTACGTC	AGCACTTTAA	TGGGAGTCCC	TGGGAGGACC	ATGGGAGTGA	TGTTCACGCC	720
10	TCTGACAGTG	AAATACGCGT	ACTACGACAC	TGAACGCATC	GGAGTTGACC	TGATCATGAA	780
	GACCTGCTTT	AGCCCCAACA	GAGTGATTGG	ACTCTCAAGT	GACTTGCAGC	AAGTAGGAGG	840
15	GGCATCAGCT	CGCATCCAGG	ATGCCCTGAG	TACAGTGTTG	CAATATGCAG	AGGATGTACT	900
	GTCTGGAAAG	GTGTCAGCTG	ACAATACTGT	GGGCCGCTTC	CTGATGAGCC	TGGTTAACCA	960
20	AGTACCGAAA	ATAGTTCCCG	ATGACTTTGA	GACCATGCTC	AACAGCAACA	TCAATGACCT	1020
20	TTTGATGGTG	ACCTACCTGG	CCAACCTCAC	ACAGTCACAG	ATTGCACTCA	ATGAAAAACT	1080
	TGTAAACCTG	TGAATGGACC	CCAAGCAGTA	CACTIGCTGG	TCTAGGTATT	AACCCCAGGA	1140
25	CTCAGAAGTG	AAGGAGAAAT	GGGTTTTTTG	TGGTCTTGAG	TCACACTGAG	ATAGTCAGTT	1200
	GTGTGTGACT	CTAATAAACG	GAGCCTACCT	TTTGTAAATT	ААААААААА	AAAAAAACCN	1260
•	SGRGGGGGG	CCCGGTCCCA	. TTSSCCCTTI	NGTAATTCGT	NTTACAATCC	CCNGGC	1316
30							
						•	
35		NATION FOR S	-				
	(i) SEQUENCE CHARACTERISTICS:						

(A) LENGTH: 777 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

GGCATGWKCA GACATGACTT CTATTGCCAG GCTGGTCAAG TGGCAGGGTC ATGAGGGAGA 60 45 CATCGATAAG GGTGCTCCTT ATGCTCCCTG CTCTGGAATC CACCAGCGGG CTATCTGCGT TTATGGGGCT GGGGACTAGA ATTGGATGCT TCAAAACCAT CACCTGTTGG CCAACAAGTT 180 50 TGACCCAAAG GTAGATGATA ATGCTCTTCA GTGCTTAGAA GAATACCTAC GTTATAAGGG 240 CCATTCTATT GGGACCTGAA CTTTGAAGAC CACAMTATTG AAGAGGCGTT GCTTACCYGT 300 360 TGGGGGCCAA GAGGCATGTT ACCAAACATG GYYCARGAAM YTTGGYKGGG AMCARKKKKG 55 GKKGGGARRM CMRGGGYTTG SCAAWTTCSK KGGCMWCCYT TTAGGGTAAR RRGGGCKGTW ATTAGATTGT GGGTAAAGTA GGATCTTTTG CCCTTGCAAA TTTGCTGCCT GGGTGAATGY 480 TOCTTGTTCC TTCTCMACCC CTAACCCTAG TAGTTCCTCC ACTAACTTTC TCACTAAGTG 60

	AGAATGAGAA CTGCTGTGAT AGGGAGAGTG AAGGAGGGAT ATGTGGTAGA GCACTTGATT	600
5	TCAGTTGAAT GCCTGCTGGT AGCTTTTCCA TTCTGTGGAG CTGCCGTTCC TAATAATTCC	660
5	AGGTTTGGTA GCGTGGAGGA GAACTTTGAT GGAAAGAGAA CCTTCCCTTC	720
	ACTTAAAAAT AAATAGCTCC TGATTCAAAG TAAAAAAAAA AAAAAAAA AAAAAAA	777
10		
	(2) INFORMATION FOR SEQ ID NO: 182:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 791 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:	
	GGCACAGATA ACTATGTACA TGTATTCCTT AAATGTTTTT TTAAGTTTTA TATTCTTGGC	60
25	ACTGGTCTTC AAATGTGTAC ATGTGTGCCA GGGAGCAAAT GCCTTCTTGT TTCTGAAATT	120
	GGTCTTTTAG ACTGTTCTTT TTTCCCATCT TCTCACCTCC TGCCCCTCCT TCAGGGTACT	180
30	TCCGTGGCCA GAACCCCTCC AGGTCAGAGG CAGAAGAGAA GCCTCATGGG TCACAGCAGC	240
	AGATGTGGC TGGAGATCTA TTCATTTGCT TTTGGCTTGA ATTTTCTGRA TGGTTTACTT	300
	GATCYTGGGA AAGANATATC TTGCCAGGAA AAATGATAGN CCTTGACAAT GTTGAATGAT	360
35	CCTGCACCAC CTTGAAAGAC ATTTCTAATA TGGTTTGTCA GGCAAAGTGG TTAGTAGTCA	420
	TTTGTGGCCT GAGGTAGAAG TCCTCAGAAA TCAGCAGACT TCACTGATAA AATGCTGACT	480
40	TGCCCCTGGA CTGGGCTCTG TGAGAGTGGC CTTCTGCACT GTGCACAGTA GGTGTGAACA	540
	CACCACACCT ACAGGACCA CGTGGTGGGC TGTGGACTAG CGGCCAAGCT CCCTGCAGGC	600
	CCACTAATAG AATTCAGCTT TTAGCATGGG CTGTTTCATA CTGTTCTGAT GAAACTGATT	660
45	TOGITTCTTT CCTCCATACC CCTTCTGCAT TICAGTGTTT TIGITTAGIT TTCCTGGTTT	720
	TTAATTATAA CTACAAAATA AAATCTTTAG GCTATTCACC TTAGCTTAGT AAAAAAAAAA	780
50	AAAAAAACT C	791
50		
55	(2) INFORMATION FOR SEQ ID NO: 183:	
JJ	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1405 base pairs(B) TYPE: nucleic acid	
60	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:

	AAATTGATTA ACAGCTTGAA AGAAGGCTCT GGTTTTGAAG GCCTAGATAG CAGCACTGCC	•
5	AGTAGCATGG AGCTGGAAGA ACTTCGGCAT GAGAAAGAGA TGCAGAGGGA GGAAATACAG	120
	AAGCTGATGG GCCAGATACA TCAGCTCAGA TCCGAATTAC AGGATATGGA GGCACAGCAA	180
10	GTTAATGAAG CAGAATCAGC AAGAGAACAG TTACAGGWTC TGCATGACCA AATAGCTGGG	240
	CAGAAAGCAT CCAAACAAGA ACTAGAGACA GAACTGGAGC GACTGAAGCA GGAGTTCCAC	300
	TATATAGAAG AAGATCTTTA TCGAACAAAG AACACATTGC AAAGCAGAAT TAAAGATCGA	360
15	GACGAAGAAA TTCAAAAAACT CAGGAATCAG CTTACCAATA AAACTTTAAG CAATAGCAGT	420
	CAGTCTGAGT TAGAAAATCG ACTCCATCAG CTAACAGAGA CTCTCATCCA GAAACAGACC	480
20	ATGCTGGAGA GTCTCAGCAC AGAAAAGAAC TCCCTGGTCT TTCAACTGGA GCGCCTCGAA	540
	CAGCAGATGA ACTCCGCCTC TGGAAGTAGT AGTAATGGGT CTTCGATTAA TATGTCTGGA	600
25	ATTGACAATG GTGAAGGCAC TCGTCTGCGA AATGTTCCTG TTCTTTTTAA TGACACAGAA	660
25	ACTAATCTGG CAGGAATGTA CGGAAAAGTT CGCAAAGCTG CTAGTTCAAT TGATCAGTTT	720
	AGTATTCGCC TCGCAATTTT TCTCCCAAGA TACCCCATAG CCCCAGTTTT TCTAATTATA	780
30	TATATGGCTT TGCTTCACCT CTGGGTCATG ATTGTTCTGT TGACTTACAC ACCAGAAATG	840
	CACCACGACC AACCATATGG CAAATGAACC AAGCCCAGTT GTTGCAGTGA TTGGTTGTCT	900
25	TTTTCTAGAC TTGGGATCTG CAAGAAGGCC AATTGCCTAA AATTTCTGAG AACAGTGCAC	960
35	AAGATTATTT TATCACTACA AGCTTTTAAC TTTTTAAGTT ATTGTACAAG TATTCTACCT	1020
	AAATCTTCCA ATTTCCTTTA AATGGTAAGA GTTTCTAAAA CAGACAATAA TTTAACAAGC	1080
40	TCAGCTCTGC TTTATCTGAG TTTAGTGGTC CTAATATATA TGTAGAGAAA GATGGTGGGG	1140
	TTGTTCACCT CTGTACAGAC CATCTGTATG TTAGGTGACA TTGATTATGG GTTATAATCA	1200
45	GGGAAACTAA TTGTATTTAG TGACAAAAAT AAAAAGTTTT TTTTTTATAA TTCAGTCTGC	1260
45	TTTTGGATTT TCATATATTT AACTITGCAA AAAGATTTAC TTTGTACATG TTACAGGCTT	1320
	GATTOGTGTA AATCTTTTTA TAAATACATA AATAAAAGNA AAATATGCAT TTTTCTTTTC	1380
50	талалалал алалалала стсса	140

55 (2) INFORMATION FOR SEQ ID NO: 184:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1596 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:

5	GTCATGCAGT	GCGCCGGAGA	ACTGTGCTCT	TTGAGGCCGA	CGCTAGGGGC	CCGGAAGGGA	60
	AACTGCGAGG	CGAAGGTGAC	CGGGGACCGA	GCATTTCAGA	TCTGCTCGGT	AGACCTGGTG	120
	CACCACCACC	ATGTTGGCTG	CAAGGCTGGT	GTGTCTCCGG	ACACTACCTT	CTAGGGTTTT	180
10	CCACCCAGCT	TTCACCAAGG	CCTCCCCTGT	TGTGAAGAAT	TCCATCACGA	AGAATCAATG	240
	GCTGTTAACA	CCTAGCAGGG	AATATGCCAC	CAAAACAAGA	ATTGGGATCC	GGCGTGGGAG	300
15	AACTGGCCAA	GAACTCAAAG	AGGCAGCATT	GGAACCATCG	ATGGAAAAAA	TATTTAAAAT	360
	TGATCAGATG	GGAAGATGGT	TIGTIGCTGG	AGGGGCTGCT	GTTGGTCTTG	GAGCATTGTG	420
20	CTACTATGGC	TIGGGACIGT	CTAATGAGAT	TGGAGCTATT	GAAAAGGCTG	TAATTTGGCC	480
20	TCAGTATGTC	AAGGATAGAA	TTCATTCCAC	CTATATGTAC	TTAGCAGGGA	GTATTGGTTT	540
	AACAGCTTIG	TCTGCCATAG	CAATCAGCAG	AACGCCTGTT	CTCATGAACT	TCATGATGAG	600
25	AGGCTCTTGG	GTGACAATTG	GTGTGACCTT	TGCAGCCATG	GITGGAGCTG	GAATGCTGGT	660
	ACGATCAATA	CCATATGACC	AGAGCCCAGG	CCCAAAGCAT	CITCCTTCCT	TGCTACATTC	720
20	TGGTGTGATG	GGTGCAGTGG	TGGCTCCTCT	GACAATATTA	GGGGTCCTC	TTCTCATCAG	780
30	AGCTGCATGG	TACACAGCTG	GCATTGTGGG	AGGCCTCTCC	ACTGTGGCCA	TGTGTGCGCC	840
	CAGTGAAAAG	TTTCTGAACA	TGGGTGCACC	CCTGGGAGTG	GCCTGGGTC	TCGTCTTTGT	900
35	GTCCTCATTG	GGATCTATGT	TTCTTCCACC	TACCACCGTG	GCTGGTGCCA	CTCTTTACTC	960
	AGTGGCAATG	TACGGTGGAT	TAGTTCTTTT	CAGCATGTTC	CTTCTGTATG	ATACCCAGAA	1020
40	AGTAATCAAG	CGTGCAGAAG	TATCACCAAT	GTATGGAGTT	CAAAAATATG	ATCCCATTAA	1080
40	CTCGATGCTG	AGTATCTACA	TGGATACATT	AAATATATTT	ATGCGAGTTG	CAACTATGCT	1140
	GGCAACTGGA	GGCAACAGAA	AGAAATGAAG	TGACTCAGCT	TCTGGCTTCT	CTGCTACATC	1200
45	AAATATCTTG	TTTAATGGGG	CAGATATGCA	TTAAATAGTT	TGTACAAGCA	GCTTTCGTTG	1260
	AAGTTTAGAA	GATAAGAAAC	ATGTCATCAT	ATTTAAATGT	TCCGGTAATG	TGATGCCTCA	1320
5 0	GGTCTGCCTT	TTTTTCTGGA	GAATAAATGC	AGTAATCCTC	TCCCAAATAA	GCACACACAT	1380
50	TTTCAATTCT	CATGTTTGAG	TGATTTTAAA	ATGTTTTGGT	GAATGTGAAA	ACTAAAGTTT	1440
	GTGTCATGAG	AATGTAAGTC	TTTTTCTAC	TTTAAAATTT	AGTAGGTTCA	CTGAGTAACT	1500
55	AAAATTTAGO	AAACCTGTGT	TTGCATATTT	TTTKGGAGTG	CAGMMTAWTG	TAATTARAGC	1560
	ATTCCAGTA	NAGTGTNTTT	· AAAGTTGNTC	TATATN			1596

(2) INFORMATION FOR SEQ ID NO: 185:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2293 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:	
	GCGCAGAGCC CGYACGAGCA GGACGACGAC GACAAGGGC ACTCCAAGGA AACGCGGCTG	60
	ACCCTGATGG AGGAAGTGCT CCTGCTGGGC CTCAAGGACC GCGARGGTTA CACATCATTT	120
15	TGGAATGACT GTATATCATC TGGATTACGT GGCTGTATGT TAATTGAATT AGCATTGAGA	180
	GGAAGGTTAC AACTAGAGGC TTGTGGAATG AGACGTAAAA GTCTATTAAC AAGAAAGGTA	240
20	ATCTGTAAGT CAGATGCTCC AACAGGGGAT GTTCTTCTTG ATGAAGCTCT GAAGCATGTT	300
	AAGGAAACTC AGCCTCCAGA AACGGTCCAG AACTGGATTG AATTACTTAG TGGTGAGACA	360
	TGGAATCCAT TAAAATTGCA TTATCAGTTA AGAAATGTAC GGGAACGATT AGCTAAAAAC	420
25	CTGGTGGAAA AGGGTGTATT GACAACAGAG AAACAGAACT TCCTACTTTT TGACATGACA	480
	ACACATCCCC TCACCAATAA CAACATTAAG CAGCGCCTCA TCAAGAAAGT ACAGGAAGCC	540
30	GTTCTTGACA AATGGGTGAA TGACCCTCAC CGCATGGACA GGCGCTTGCT GGCCCTCATT	600
	TACCTGGCTC ATGCCTCGGA CGTCCTGGAG AATGCTTTTG CTCCTCTTCT GGACGAGCAG	660
	TATGATTIGG CTACCAAGAG AGTGCGGCAG CTTCTCGACT TAGACCCTGA AGTGGAATGT	720
35	CTGAAGGCCA ACACCAATGA GGTTCTGTGG GCGGTGGTGG CGGCGTTCAC CAAGTAACTC	780
	TGCTCGGGGT GAACCATTCT CCTTTCTCTC AAGTAAACCA GTAGTTTTTC TTCTGTTGAC	840
40	TTCTGGTTTT CTGTAATTTG TACTTTCCCA CACTATAATT GGCTTCTGTT TTACAAAATG	900
	GTGGGTGGCT TTTTCTTTT TGTACGTGTA CAGGATTCTG CTGGTACGAG AGGCCTTCCT	960
	CTITCTGTTT TTAAAAAAAG TTTTACTGCC ATATTGGCAT TCCATTCCCT GTTGCCATCC	1020
45	TCACTGITAC CIGITITIGG TITCTGGTCT ACTITIGACTI TCAAAGTACC TCCAGCCTCC	1080
	TCATACGCAC AGCTTTTGGA TGACCTCAGC TIGAGTTTCT CCATATGTGC ATGTACATCT	1140
50	AGCATTCTGC CTACAGTTCA GACAGAAGTC ACAAAAAGGC CTTCAACTCA CCAAAGGTAA	1200
	ATATCTGTAT CTATTAGGAC ATTITTTACA TAGACTTCAG TTGAGATGTA TACTTAGCAA	1260
	AATTATTITT AAATTGAAAC AGCACAGTAA ATACTTAATA TAAAATGTCC CTTGGATTTT	1320
55	GCTTCCCATG TAAATCTATT GTATTATTAC ACTTGTTATA ATTTTAACTA TAAAGGTCCA	1380
	ATTGTTTCAC AGAGCCAGTT TGGGATGGGC TGCATTCCAT TTATGCTGTA TATAGTTTGA	1440
60	ATTATATATA AATTACCCCT TCTTCTGGCC ACCCCTGCTC CCATCTTAGT ATTTTGCAAG	1500

	ATCTAATCAG TIGTACACCT GGIGCCCCTC GCTTGCTTCA ATCATGGITA TTTGATGGCA	1560
5	AAATCGACCT CTTGTCGCTG AAGGAGAGAG AAAAGATGTG TGTCTGATTG GTCCTGGGAT	1620
J	TTTTTGAGCT GTGCCATTTA TGGTACTCTT TGCCTATGCA TCCCCTTTTT AGATTTTTTT	1680
	TAAATTTTAT CTTACTGTTT TTATAATTTC TATTGGGAAG AGGCTTGTGA CCAGTACCAA	1740
10	TCTTGAGTTT CTTTTTCTGT CCACAAGTAA ATTAATATCT GCTCTGAAAT GTCATTTATC	1800
	TACTCACACA TTCTTGGGGA AAAAAATCAA ATGTCAGTCC TAGCAGATGT TGCATGTAAA	1860
15	TTOGTAGCAA GTAATGATTA CAACCCAGAG GATTAAGAAT TTTGTAACAG AAAGCTCTAT	1920
13	GITTTAATTT TITATATACA ATTAGGATAA TTAGCATTGT CAGACTATAA ACCITTGCTT	1980
	TITAAAGITT ATTITTACTA TITCTTTATC ACTITATIGT ATCATCACCA TIGGTITCAT	2040
20	AATGTAAATA CTATATGTTG AACAAATTAA ATGTCAAAAT TTTTTATTAC CATAGTCCAT	2100
	GTTAATAGTG GGGCTTTCAG GTGTTTAGAG ATTTTTTTTG TTGTTGTTAA CATTCATTGC	2160
25	AAAAGTACTA GATGGTGTAT AACTCTAGAG TTGAATTTTA AGGGATTCCC TAATATGTAT	2220
23	ACTATCTTTT TATCTGAAGT AATAAATAAA CAATGATCTT GAAAGTGCCY RAAAMAAAAA	2280
	AAAAAAAA AAA	2293
30		
	(2) INFORMATION FOR SEQ ID NO: 186:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(c) bilestbabilities. Geometr	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:	
		60
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:	60 120
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG	120
45 50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGCTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG	120 180
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGCTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG	120 180 240
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGCTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGGCAGGG GAGAGCATGG CTCAGCGGAT GGTCTGGGTG GACCTGGAGA TGACAGGATT	120 180 240 300
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186: GGCACGAGGC GAGCCGGCGC ACCGTACGCT GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGCTG CTGGTCCCGG GTGATGCTAG GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGGCAGGG GAGAGCATGG CTCAGCGGAT GGTCTGGGTG GACCTGGAGA TGACAGGATT GGACATTGAG AAGGACCAGA TTATTGAGAT GGCCTGTCTG ATAACTGACT CTGATCTCAA	120 180 240 300 360

416

	THE PROPERTY OF THE PROPERTY O	600
	TCCAGGGCTC TGTCCACTTG CAGGAAATTC AGTTCATGAA GATAAGAAGT TTCTTGACAA	
	ATACATGCCC CAGTTCATGA AACATCTTCA TTATAGAATA ATTGATGTGA GCACTGTTAA	660
5	AGAACTGTGC AGACGCTGGT ATCCAGAAGA ATATGAATTT GCACCAAAGA AGGCTGCTTC	720
	TCATAGGGCA CTTGATGACA TTAGTGAAAG CATCAAAGAG CTTCAGTTIT ACCGAAATAA	780
	CATCTTCAAG AAAAAAATAG ATGAAAAGAA GAGGAAAATT ATAGAAAATG GGGAAAATGA	840
10	GAAGACCGTG AGTTGATGCC AGTTATCATG CTGCCACTAC ATCGTTATCT GGAGGCAACT	900
	TOTGGTGGTT TTTTTTTCTC ACGCTGATGG CTTGGCAGAG CACCTTCGGT TAACTTGCAT	960
15	CTCCAGATTG ATTACTCAAG CAGACAGCAC ACGAAATACT ATTTTTCTCC TAATATGCTG	1020
	TTTCCATTAT GACACAGCAG CTCCTTTGTA AGTACCAGGT CATGTCCATC CCTTGGTACA	1080
	TATATGCATT TOCTTTTAAA CCATTTCTTT TGTTTAAATA AATAAATAAG TAAATAAAGC	1140
20	ТАСТТСТАТТ САААТССААА АААААААААА АААААААА	1200
	AAAAAAAAA AN	1212
25		
	(2) INFORMATION FOR SEQ ID NO: 187:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1605 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:	
	GCTTCCGGAA GTTGCTTTTG TCCAAACATC CGGGCTTCTC CTTTTTGTGT TCCGGCCGAT	60
40	CCCACCTCTC CTCGACCCTG GACGTCTACC TTCCGGAGGC CCACATCTTG CCCACTCCGC	120
	GCGCGGGGCT AGCGCGGGTT TCAGCGACGG GAGCCCTCAA GGGACATGGC AACTACAGCG	180
	GCGCCGGCGG GCGCCCCG AAATGGAGCT GGCCCGGAAT GGGGAGGGTT CGAAGAAAAC	240
45	ATCCAGGGCG GAGGCTCAGC TGTGATTGAC ATGGAGAACA TGGATGATAC CTCAGGCTCT	300
	AGCTTCGAGG ATATGGGTGA GCTGCATCAG CGCCTGCGCG AGGAAGAAGT AGACGCTGAT	360
50	GCAGCTGATG CAGCTGCTGC TGAAGAGGAG GATGGAGAGT TCCTGGGCAT GAAGGGCTTT	420
	AAGGGACAGC TGAGCCGGCA GGTGGCAGAT CAGATGTGGC AGGCTGGGAA AAGACAAGCC	480
e F	TCCAGGGCCT TCAGCTTGTA CGCCAACATC GACATCCTCA GACCCTACTT TGATGTGGAG	540
55	CCTCCTCAGG TGCGAACAGG GCTCCTGGAG TCCATGATCC CTATCAAGAT GGTCAACTTC	600

CCCCAGAAAA TTGCAGGTGA ACTCTATGGA CCTCTCATGC TGGTCTTCAC TCTGGTTGCT

ATCCTACTCC ATGGGATGAA GACGTCTGAC ACTATTATCC GGGAGGGCAC CCTGATGGGC

60

660

417

	ACAGCCATTG	GCACCTGCTT	CGGCTACTGG	CTGGGAGTCT	CATCCTTCAT	TTACTTCCTT	780
5	GCCTACCTGT	GCAACGCCCA	GATCACCATG	CTGCAGATGT	TGGCACTGCT	GGGCTATGGC	840
3	CTCTTTGGGC	ATTGCATTGT	CCTGTTCATC	ACCTATAATA	TCCACCTCCA	CCCCCTCTTC	900
	TACCTCTTCT	GGCTGTTGGT	GGGTGGACTG	TCCACACTGC	GCATGGTAGC	ACTCTTCCTC	960
10	TCTCGGACCG	TGGGCCCCAC	ACAGCGGCTG	CTCCTCTGTG	GCACCCTGGC	TGCCCTACAC	1020
	ATGCTCTTCC	TGCTCTATCT	GCATTTTGCC	TACCACAAAG	TGGTÄGAGGG	GATCCTGGAC	1080
15	ACACTGGAGG	GCCCCAACAT	CCCGCCCATC	CAGAGGGTCC	CCAGAGACAT	CCCTGCCATG	1140
•	CTCCCTGCTG	CTCGGCTTCC	CACCACCGTC	CTCAACGCCA	CAGCCAAAGC	TGTTGCGGTG	1200
	ACCCTGCAGT	CACACTGACC	CCACCTGAAA	TTCTTGGCCA	GICCICITIC	CCGCAGCTGC	1260
20	AGAGAGGAGG	AAGACTATTA	AAGGACAGTC	CTGATGACAT	GTTTCGTAGA	TGGGGTTTGC	1320
	AGCTGCCACT	GAGCTGTAGC	TGCGTAAGTA	CCTCCTTGAT	GCNTGTCGGC	ACTTCTGAAA	1380
25	GGCACAAGGC	CAAGAACTCC	TGGCCAGGAC	TGCAAGGCTC	TGCAGCCAAT	GCAGAAAATG	1440
	GGTCAGCTCC	TTTGAGAACC	CCTCCCCACC	TACCCCTTCC	TTCCTCTTTA	TCTCTCCCAC	1500
	ATTGTCTTGC	TAAATATAGA	CTTGGTAATT	AAAATGTTGA	TTGAAGTCTG	GAAAAAAAA	1560
30	ААААААААА	AAAAAAAAA	ААААААААА	AAAAAAAAC	TCGAG		1605

35 (2) INFORMATION FOR SEQ ID NO: 188:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1516 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

45 ATTCGCCATG AGGGGGTCAC GTGGTGGCTG GGCCGGGGAA ATGGCGGCTT CAGGAGAGAG 60 CGGGACTTCA GGCGGCGGAG GCAGCACCGA GGAAGCATTT ATGACCTTCT ACAGTGAGGT 120 180 GAAACAAATA GAGAAGAGA ACTCGGTTCT AACTTCGAAA AATCAGATTG AAAGACTGAC 50 CCGTCCTGGT TCCTCTTACT TCAATTTGAA CCCATTTGAG GTTCTTCAGA TAGATCCTGA 240 AGTTACAGAT GAAGAAATAA AAAAGAGGTT TCGGCAGTTA TCCATCTTGG TGCATCCTGA 300 CAAAAATCAA GATGATGCTG ACAGAGCACA AAAGGCTTTT GAAGCTGTGG ACAAAGCTTA 55 360 CAAGTTGCTA CTGGATCAGG AGCAAAAGAA GAGGGCCCTG GATGTAATTC AGGCAGGAAA 420 AGAATACGTG GAACACACTG TGAAAGAGCG AAAAAAAACAA TTAAAGAAGG AAGGAAAACC 480 60

	TACAATTGTA GAGGAGGATG ATCCTGAGCT GTTCAAACAA GCTGTATATA AACAGACAAT	540
	GAAACTCTTT GCAGAGCTGG AAATTAAAAG GAAAGAGAGA GAAGCCAAAG AGATGCATGA	600
5	AAGGAAACGA CAAAGGGAAG AAGAGATTGA AGCTCAAGAA AAAGCCAAAC GGGAAAGAGA	660
,	GTGGCAGAAA AACTTTGAGG AAAGTCGAGA TGGTCGTGTG GACAGCTGGC GAAACTTCCA	720
	AGCCAATACG AAGGGGAAGA AAGAGAAGAA AAATCGGACC TTCCTGAGAC CACCGAAAGT	780
10	AAAAATGGAG CAACGTGAGT GACCGCCCAA GGTCACAGGC ACAGAACCTT TCCCCTGCTA	840
	TCTCCCTTCC TGCTTCGAAG GACTCATTCT TTCCTCCCAC TTCCACCCCA ACATAGAGTA	900
15	GTATTIGCTT TITAGTCCAT TITGTTTICA ATACGATITA ATATCGATCA GAGTAATTCT	960
	TITGTACATT GAAATGAGGG GCTTGGTTTA AAAAAAGACC TTTCCCTCTC CCTGCCCCTA	1020
	GAACAACCAG TATTAGAAGG TGCCACCATT GGTGCTGCCT TCTCTTCCCA CAGCCTGTAA	1080
20	CICAGIGITI TGTACTICAC TGAATIGIGA TGGTTAGAAA CITCGIGGAT AGTTTGIGGA	1140
	AATCATCCAA TTAAACATAC TGCTTAAAAC AGTGTTGCTG TGACTTCAGA GACAAGCCTG	1200
25	GAAGGGGCAC CTTAGGAAGC CCCTTCGCTT CAGTTGCTCG CTTCTGGGTG TGCTCCCTTC	1260
	GAAGGCCCAG ATAAGACAGG GAACACTTGT GAGCACACAG AGCAGCATCT GATGCCCTGT	1320
	GGTGTTTGGC ATGTGCCCCC TGTCTACTGA CCAATCAGTG TGGCATGAGG CCCACGCCAC	1380
30	CCAAACCTIT CACTITCCAA AGAGCTAGCC GTCCTCCACC CAGTACCATG TCCTAGCCTG	1440
	TCTGCATTTG TTAGTGGTAA TATTCTTTAT GTATAATAAA TTTTTATACC CAAAAAAAAA	1500
35	AAAAAAAA ACTCGA	1516
40	(2) INFORMATION FOR SEQ ID NO: 189:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 681 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:	
50	GCTCCCATGT TGCTGGCTGT CCGTACATCA CCCTGTCCCC TGCAGGAGGG GGCTACAGGC	60
	CATCTCCCTC CTGTAGGCCT CTGACTCCCC TCCACTTTTG GGCCCTCAGC TTATCTCGGG	120
	CAGGGGACCA TIGCAGCATC CTCCCCTCCT CNGGACTCAA GGTGCTGAGG TATAAGCCCT	180
55	GGGCCCCAGA TCCCTGRTKA CACCTTCCTG GAGAAGACTC TCAAAAGTGA CTGTATATTT	240
	GAGTTCACCA GCAATAACTC CCCACACTCG AAGCAGGTCC AAACCCMAGG ATCCCAGGGT	300

CCTTGGGCTC TGTGGCACTG TCTTCCCAAG ATCCTTCCTG TTGCACAATG GGAAACCTAA

60

300

419

	GAGGAAAAAG ACAGGGGCCT GCTTGCCCAG CCATGCGAGG GATTCCATGC CCACCTGCCC	420
5	TCTGYCTGCC TCGCTGGAAT GTGGGCCCCT GCTCCCCGTC AGGTTGTGCT GTCTCTGACC	480
3	TATGTTTACA TCCCCGAGGG GTTTCTGCCT CCTCCCCACC CAGGTCAGGG TGTGGTCCAG	540
	CAGCTTGCTG TGGGGTGCTG ACATGTGTCA CCACTGCCCC CCTTGCCCCC GGGGGGTCA	600
10	TOGTCTCCTC CTGGATGCTG CTCCTTGAAT YTTTTTTYTT GAWAAACCYT TTAMAATTAA	660
	алалалала алалалстсс а	681
1.5		
15		
	(2) INFORMATION FOR SEQ ID NO: 190:	
••	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 1014 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:	
	GCCTCAAGCC ACGCATATGA TAATTTTCTG GAACATTCAA ATTCAGTGTT TCTACAGCCA	60
30	GTTAGTCTAC AAACCATTGC AGCAGCACCA TCAAACCAGA GTCTGCCACT TTTTGTCATC	120
50	GCTGGATGAT TGCTGGGCAA AGGTGGCCTT TTAGAGCTCT TAAAAGCCCA CAAAAAGGCT	180
	ATTCGTAGAG CCACAGTCAA CACATTTGGT TATATTGCAA AGGCCATTGG CCTCATGATG	240
35	TATTGGCTAC ACTTCTGAAC AACCTCAAAG TTCAAGAAAG GCAGAACAGA GTTTGTACCA	300
	CTGTAGCAAT AGCTATTGTT GCAGAAACAT GTTCACCCTT TACAGTACTC CCTGCCTTAA	360
40	TGAATGAATA CAGAGTTCCT GAACTGAATG TTCAAAATGG AGTGTTAAAA TCGCTTTCCT	420

TCTTGTTTGA ATATATTGGT GAAATGGGAA AAGACTACAT TTATGCCGTA ACACCGTTAC 480 TTGAAGATGC TTTAATGGAT AGAGACCTTG TACACAGACA GACGGCTAGT GCAGTGGTAC 540 600 AGCACATGTC ACTTGGGGTT TATGGATTTG GTTGTGAAGA TTCGCTGAAT CACTTGTTGA ACTATGTATG GCCCAATGTR TTTGAGACAT CTCCTCATGT AATTCAGGCA GTTATGGGAG 660 CCCTAGAGGG CCTGAGAGTT GCTATTGGAC CATGTAGAAT GTTGCAATAT TGTTTACAGG 720 GTCTGTTTCA CCCAGCCGG AAAGTCAGAG ATGTATATTG GAAAATTTAC AACTCCATCT 780 ACATTGGTTC CCAGGACGCT CTCATAGCAC ATTACCCAAG AATCTACCAA CGATGATAAG 840 RACACCTATA TTCGTTATGA ACTTGACTAT ATCTTATAAT TTTATTGTTW ATTTKGTGKT 900 TAATGCACAS TACTTCACAC CTTAAACTTG CTTTGATTTG GTGATGTAAA CTTTTAAACA 960 1014 TTGCAGATCA GTGTAGGACT GGTCCATAGG GGAAGAGCTA GGAANTCCAT AGGC

45

50

55

(2) INFORMATION FOR SEQ ID NO: 191:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2779 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

TCGCAGCAGG GTGTGTCCAG ATGGTCAGTC TCTGGTGGCT AGCCTGTCCT GACAGGGGAG 60 15 AGITAAGCTC CCGYTCTCCA CCGTGCCGGC TGGCCAGGTG GGCTGAGGGT GACCGAGAGA 120 CCAGAACCTG CTTGCTGGAG CTTAGTGCTC AGAGCTGGGG AGGGAGGTTC CGCCGCTCCT 180 CTGCTGTCAG CGCCGGCAGC CCCTCCCGGC TTCACTTCCT CCCGCAGCCC CTGCTACTGA 240 20 GAAGCTCCGG GATCCCAGCA GCCGCCACGC CCTGGCCTCA GCCTGCGGGG CTCCAGTCAG 300 GCCAACACCG ACGCGCANTG GGAGGAAGAC AGGACCCTTG ACATCTCCAT CTGCACAGAG 360 25 GTCCTGGCTG GACCGAGCAG CCTCCTCCTC CTAGGATGAC CTCACCCTCC AGCTCTCCAG 420 TTTTCAGGTT GGAGACATTA GATGGAGGCC AAGAAGATGG CTCTGAGGCG GACAGAGGAA 480 AGCTGGATTT TGGGAGCGGG CTGCCTCCCA TGGAGTCACA GTTCCAGGGC GAGGACCGGA 540 30 AATTCGCCCC TCAGATAAGA GTCAACCTCA ACTACCGAAA GGGAACAGGT GCCAGTCAGC 600 CGGATCCAAA CCGATTTGAC CGAGATCGGC TCTTCAATGC GGTCTCCCGG GGTGTCCCCG 660 35 AGGATCTGGC TGGACTTCCA GAGTACCTGA GCAAGACCAG CAAGTACCTC ACCGACTCGG 720 AATACACAGA GGGCTCCACA GGTAAGACGT GCCTGATGAA GGCTGTGCTG AACCTTAAGG 780 ACGGGGTCAA TGCCTGCATT CTGCCACTGC TGCAGATCGA CCGGGACTCT GGCAATCCTC 840 40 900 AGCCCCTGGT AAATGCCCAG TGCACAGATG ACTATTACCG AGGCCACAGC GCTCTGCACA TCGCCATTGA GAAGAGGAGW CTGCAGTGTG TGAAGCTCCT GGTGGAGAAT GGGGCCAATG 960 45 TGCATGCCCG GGTCTGCGGC GCTTCTTCCA GAAGGGCCAA GGGACTTGCT TTTATTTCGG 1020 TGAGCTACCC CTCTYTTTGG CCGCTTGCAC CAAGCAGTGG GATGTGGTAA GCTACCTCCT 1080 GGAGAACCCA CACCAGCCCG CCAGCCTGCA GGCACTGACT CCCAGGGCAA CACAGTCCTG 1140 50 1200 CATGCCCTAG TGATGATCTC GGACAACTCA GCTGAGAACA TTGCACTGGT GACCAGCATG TATGATGGGC TCCTCCAAGC TGGGGCCCGC CTCTGCCCTA CCGTGCAGCT TGAGGACATC 1260 55 CGCAACCTGC AGGATCTCAC GCCTCTGAAG CTGGCCGCCA AGGAGGGCAA GATCGAGATT 1320 TTCAGGCACA TCCTGCAGCG GGAGTTTTCA GGACTGAGCC ACCTTTCCCG AAAGTTCACC 1380 GAGTGGTGCT ATGGGCCTGT CCGGGTGTCG CTGTATGACC TGGCTTCTGT GGACAGCTGT 1440 60

WO 98/39448

	GAGGAGAACT	CAGTGCTGGA	GATCATTGCC	TTTCATTGCA	AGAGCCCGCA	CCGACACCGA	1500
5	ATGGTCGTTT	TGGAGCCCCT	GAACAAACTG	CTGCAGGCGA	AATGGGATCT	GCTCATCCCC	1560
,	AAGTTCTTCT	TAAACTTCCT	GTGTAATCTG	ATCTACATGT	TCATCTTCAC	CGCTGTTGCC	1620
	TACCATCAGC	CTACCCTGAA	GAAGCAGGCC	GCCCCTCACC	TGAAAGCGGA	GGTTGGAAAC	1680
10	TCCATGCTGC	TGACGGGCCA	CATCCTTATC	CTGCTAGGGG	GGATCTACCT	CCTCGTGGGC	1740
	CAGCTGTGGT	ACTICIGGCG	GCGCCACGTG	TTCATCTGGA	TCTCGTTCAT	AGACAGCTAC	1800
15	TTTGAAATCC	TCTTCCTGTT	CCARGCCCTG	CTCACAGTGG	TGTCCCARGT	GCTGTGTTTC	1860
13	CTGGSCATCG	AGTGGTACCT	GCCCCTGCTT	GTGTCTGCGC	TGGTGCTGGG	CTGGCTGAAC	1920
	CTGCTTTACT	ATACACGTGG	CTTCCAGCAC	ACAGGCATCT	ACAGTGTCAT	GATCCAGAAG	1980
20	CCCTGGTGAG	CCTGAGCCAG	GANINTTGGCG	CCCCGAAGCT	CCTACAGGCC	CCAATGCCAC	2040
	AGAGTCAGTG	CAGCCCATGG	AGGGACAGGA	KGACGAKGGC	AACGGGGCCC	AGTACAGGGG	2100
25	TATCCTGGAA	GCCTCCTTGG	AGCTCTTCAA	ATTCACCATC	GGCATGGGCG	AGCTGGCCTT	2160
25	CCAGGARCAG	CTGCACTTCC	GCGGCATGGT	GCTGCTGCTG	CTGCTGGSCT	ACGTGCTGCT	2220
	CACCTACATC	CTGCTGCTCA	ACATGCTCAT	CGCCCTCATG	AGCGAGACCG	TCAACAGTGT	2280
30	CGCCACTGAC	AGCTGGAGCA	TCTGGAAGCT	GCAGAAAGCC	ATCTCTGTCC	TGGAGATGGA	2340
	GAATGGCTAT	TGGTGGTGCA	GGAAGAAGCA	GCGGGCAGGT	GTGATGCTGA	CCGTTGGCAC	2400
35	TAAGCCAGAT	GGCAGCCCSG	ATGAGCGCTG	GTGCTTCAGG	GTGGAGGAGG	TGAACTGGGC	2460
55	TTCATGGGAG	CAGACGCTGC	CTACGCTGTG	TGAGGACCCG	TCAGGGGCAG	GTGTCCCTCG	2520
	AACTCTCGAG	AACCCTGTCC	TGGCTTCCCC	TCCCAAGGAG	GATGAGGATG	GTGCCTCTGA	2580
40	GGAAAACTAT	GIGCCCGTCC	AGCTCCTCCA	GTCCAACTGA	TGGCCCAGAT	GCAGCAGGAG	2640
	GCCAGAGGAC	AGAGCAGAGG	ATCTTTCCAA	CCACATCTGC	TGGCTCTGGG	GTCCCAGTGA	2700
45	ATTCTGGTGG	САААТАТАТА	TTTTCACTAA	CTCAAAAAAA	АААААААА	AAAAAAAA	2760
73	**********	AAAAAACCC					2779

50

(2) INFORMATION FOR SEQ ID NO: 192:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1923 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

60

	ACCCGCTCCG CTCCGCTCCG CTCGGCCCCG CGCCGCCCGT CAACATGATC CGCTGCGGCC	60
	TEGECTECGA GEGETECEGE TEGATECTEC CECTECTECT ACTEAGEGEE ATEGECTTEG	120
5	ACATCATCGC GCTGGCCGGC CGCGGCTGGT TGCAGTCTAG CGACCACGGC CAGACGTCCT	180
	CGCTGTGGTG GAAATGCTCC CAAGAGGGCG GCGGCAGCGG GTCCTACGAG GAGGGCTGTC	240
10	AGAGCCTCAT GGAGTACGCG TGGGGTAGAG CAGCGGCTGC CATGCTCTTC TGTGGCTTCA	300
10	TCATCCTGGT GATCTGTTTC ATCCTCTCT TCTTCGCCCT CTGTGGACCC CAGATGCTTG	360
	TCTTCCTGAG AGTGATTGGA GGTCTCCTTG CCTTGGCTGC TGTGTTCCAG ATCATCTCCC	420
15	TOGTAATTTA CCCCGTGAAG TACACCCAGA CCTTCACCCT TCATGCCAAC CSTGCTGTCA	480
	CTTACATCTA TAACTGGGCC TACGGCTTTG GGTGGGCAGC CACGATTATC CTGATYGGCT	540
20	GTGCCTTCTT CTTCTGCTGC CTCCCCAACT ACGAAGATGA CCTTCTGGGC AATGCCAAGC	600
20	CCAGGTACTT CTACACATCT GCCTAACTTG GGAATGAATG TGGGAGAAAA TCGCTGCTGC	660
	TGAGATGGAC TCCAGAAGAA GAAACTGTTT CTCCAGGCGA CTTTGAACCC ATTTTTTGGC	720
25	AGTGTTCATA TTATTAAACT AGTCAAAAAT GCTAAAATAA TTTGGGAGAA AATATTTTTT	780
	AAGTAGTGTT ATAGTTTCAT GTTTATCTTT TATTATGTTT TGTGAAGTTG TGTCTTTTCA	840
20	CTAATTACCT ATACTATGCC AATATTTCCT TATATCTATC CATAACATTT ATACTACATT	900
30	TGTAAGAGAA TATGCACGTG AAACTTAACA CTTTATAAGG TAAAAATGAG GTTTCCAAGA	960
	TTTAATAATC TGATCAAGTT CTTGTTATTT CCAAATAGAA TGGACTCGGT CTGTTAAGGG	1020
35	CTAAGGAGAA GAGGAAGATA AGGTTAAAAG TTGTTAATGA CCAAACATTC TAAAAGAAAT	1080
	GCAAAAAAA AGTTTATTTT CAAGCCTTCG AACTATTTAA GGAAAGCAAA ATCATTTCCT	1140
40	AAATGCATAT CATTTGTGAG AATTTCTCAT TAATATCCTG AATCATTCAT TTCAGCTAAG	1200
40	GCTTCATGTT GACTCGATAT GTCATCTAGG AAAGTACTAT TTCATGGTCC AAACCTGTTG	1260
	CCATAGTTGG TAAGGCTTTC CTTTAAGTGT GAAATATTTA GATGAAATTT TCTCTTTTAA	1320
45	AGTTCTTTAT AGGGTTAGGG TGTGGGAAAA TGCTATATTA ATAAATCTGT AGTGTTTTGT	1380
	GTTTATATGT TCAGAACCAG AGTAGACTGG ATTGAAAGAT GGACTGGGTC TAATTTATCA	1440
50	TGACTGATAG ATCTGGTTAA GTTGTGTAGT AAAGCATTAG GAGGGTCATT CTTGTCACAA	1500
50	AAGTGCCACT AAAACAGCCT CAGGAGAATA AATGACTTGC TTTTCTAAAT CTCAGGTTTA	1560
	TCTGGGCTCT ATCATATAGA CAGGCTTCTG ATAGTTTGCA ACTGTAAGCA GAAACCTACA	1620
55	TATAGTTAAA ATCCTGGTCT TTCTTGGTAA ACAGATTTTA AATGTCTGAT ATAAAACATG	1680
	CCACAGGAGA ATTCGGGGAT TTGAGTTTCT CTGAATAGCA TATATATGAT GCATCGGATA	1740
	GGTCATTATG ATTTTTTACC ATTTCGACTT ACATAATGAA AACCAATTCA TTTTAAATAT	1800
60		

423

CAGATTATTA	TTTTGTAAGT	TGTGGAAAAA	GCTAATTGTA	GTTTTCATTA	TGAAGTTTTC	1860
CCAATAAACC	AGGTATTCTA	АААААААА	AAAAAAACTN	GAGGGGGGC	CCGGTACCCA	1920
ATT						1923

10 (2) INFORMATION FOR SEQ ID NO: 193:

5

15

20

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2346 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:

AGGCTCAGGG GGACACTCTC AAAATTACAC AGCTTTTAAC AGGTGGCAGA ATTGGGGTTC 60 AGACCCAGAT CTGGGTTCAA GTCACTCATG GTGTGATTGC GGCATTCCTT CCCGCATCTG 120 GECCTTGCCA TCTCTCTCTC CGACTGGACA TGGAGAGGAC GGGGCCCAG CAGCTGGATG 180 GCTGCAGGGG ATCAAGTCTT CTCTGGGGCT GGGCACGTAN AAGAGCATGT GGCTGGTGGA 240 CGGCATGCCT GCCTCCTCAC CTGGCAGTCT GCCTGCCCTG CTAACCGGCT GTCTCTTGTT 300 360 CCCCTAGTGC CCTCGGCTAG CATGACCCGC CTGATGCGWT SCCGCACAGC CTCTGGTTCC 420 AGCGTCATTC TCTGGATGGC ACCCGCAGCC GCTCCCACAC CAGCGAGGGC ACCCGAAGCC 480 GCTCCCACAC CAGCGAGGGC ACCCGCAGCC GCTCGCACAC CAGCGAGGGG GCCCACCTGG ACATCACCCC CAACTCGGGT GCTGCTGGGA ACAGNGCCGG GCCCAAGTCC ATGGAGGTCT 540 600 CCTGCTAGGC GGCCTGCCCA GCTGCCGCCC CCGGACTCTG ATCTCTGTAG TGGCCCCCTC CTCCCCGGCC CCTTTTCGCC CCCTGCCTGC CATACTGCGC CTAACTCGGT ATTAATCCAA 660 AGCTTATTTT GTAAGAGTGA GCTCTGGTGG AGACAAATGA GGTCTATTAC GTGGGTGCCC 720 780 CTCTTCCATT AACCAGTGGC CGGTTGCCAC TCTCCTCCCC TCCCTCAGAG ACACCAAACT 840 900 GCCAAAAACA AGACGCGTAC AGCACACACT TCACAAAGCC AAGCCTAGGC CGCCCTGAGC ATCCTGGTTC AAACGGGTGC CTGGTCAGAA GGCCAGCCGC CCACTTCCCG TTTCCTCTTT 960 AACTGAGGAG AAGCTGATCC AGTTTCCGGA AACAAAATCC TTTTCTCATT TGGGGAGGGG 1020 1080 GGTAATAGTG ACATGCAGGC ACCTCTTTTA AACAGGCAAA ACAGGAAGGG GGAAAAGGTG 1140 GGATTCATGT CGAGGCTAGA GGCATTTGGA ACAACAAATC TACGTAGTTA ACTTGAAGAA 1200 ACCGATTTT AAAGTTGGTG CATCTAGAAA GCTTTGAATG CAGAAGCAAA CAAGCTTGAT TTTTCTAGCA TCCTCTTAAT GTGCAGCAAA AGCAGGCRAC AAAATCTCCT GGCTTTACAG 1260

		1220
	ACAAAAATAT TTCAGCAAAC GTTGGGCATC ATGGTTTTTG AAGGCTTTAG TTCTGCTTTC	1320
5	TGCCTCTCCT CCACAGCCCC AACCTCCCAC CCCTGATACA TGAGCCAGTG ATTATTCTTG	1380
	TTCAGGGAGA AGATCATTTA GATTTGTTTT GCATTCCTTA GAATGGAGGG CAACATTCCA	1440
	CAGCTGCCCT GGCTGTGATG AGTGTCCTTG CAGGGGCCCGG AGTAGGAGCA CTGGGGTGGG	1500
10	GGCGGAATTG GGGTTACTCG ATGTAAGGGA TTCCTTGTTG TTGTGTTGAG ATCCAGTGCA	1560
	GTTGTGATTT CTGTGGATCC CAGCTTGGTT CCAGGAATTT TGTGTGATTG GCTTAAATCC	1620
	AGTTTTCAAT CTTCGACAGC TGGGCTGGAA CGTGAACTCA GTAGCTGAAC CTGTCTGACC	1680
15	CGGTCACGTT CTTGGATCCT CAGAACTCTT TGCTCTTGTC GGGGTGGGGG TGGGAACTCA	1740
	CGTGGGGAGC GGTGGCTGAG AAAATGTAAG GATTCTGGAA TACATATTCC ATGGGACTTT	1800
20	CCTTCCCTCT CCTGCTTCCT CTTTTCCTGC TCCCTAACCT TTCGCCGAAT GGGGCAGCAC	1860
	CACTGACGTT TCTGGGCGGC CAGTGCGGCT GCCAGGTTCC TGTACTACTG CCTTGTACTT	1920
	TYCATTYTGG CYCACCGYGG ATTYYCYCAT AGGAAGTYTG GYCAGAGYGA ATYGAATATY	1980
25	GTAAGTCAGC CACTGGGACC CGAGGATTTC TGGGACCCCG CAGTTGGGAG GAGGAAGTAG	2040
	TCCAGCCTTC CAGGTGGCGT GAGAGGCAAT GACTCGTTAC CTGCCGCCCA TCACCTTGGA	2100
30	GGCCTTCCCT GGCCTTGAGT AGAAAAGTCG GGGATCGGGG CAAGAGAGGC TGAGTACGGA	2160
	TGGGAAACTA TTGTGCACAA GTCTTTCCAG AGGAGTTTCT TAATGAGATA TTTGTATTTA	2220
	тттссадасс аатааатттс таастттсса аааааааааа	2280
35	AAAAAAAAA AAAAAAAACT CGAGGGGGC CCGTACCCAA TTCGCCGTAT ATGATCGTAA	2340
	ACAATC	2346
40		
	(2) INFORMATION FOR SEQ ID NO: 194:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 3054 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:	
	TATCTGAACC ACCCTTTATT CTACATATGA TAGGCAGCAC TGAAATATCC TAACCCCCTA	60
55	AGCTCMAGGT GCCCTGTGGN ACGAGCAACT GGACTATAGC AGGGCTGGGC TCTGTCTTCC	120
	TGGTCATAGG CTCACTCTTT CCCCCAAATC TTCCTCTGGA GCTTTGCAGC CAAGGTGCTA	180
60	AAAGGAATAG GTAGGAGACC TCTTCTATCT AATCCTTAAA AGCATAATGT TGAACATTCA	240
~ ~		

	TTCAACAGCT GATGCCCTAT AACCCCTGCC TGGATTTCTT CCTATTAGGC TATAAGAAGT	300
	AGCAAGATCT TTACATAATT CAGAGTGGTT TCATTGCCTT CCTACCCTCT CTAATGGCCC	360
5	CTCCATTTAT TTGACTAAAG CATCACACAG TGGCACTAGC ATTATACCAA GAGTATGAGA	420
	AATACAGTGC TTTATGGCTC TAACATTACT GCCTTCAGTA TCAAGGCTGC CTGGAGAAAG	480
10	GATGGCAGCC TCAGGGCTTC CTTATGTCCT CCACCACAAG AGCTCCTTGA TGAAGGTCAT	540
10	CTTTTTCCCC TATCCTGTTC TTCCCCTCCC CGCTCCTAAT GGTACGTGGG TACCCAGGCT	600
	GGTTCTTGGG CTAGGTAGTG GGGACCAAGT TCATTACCTC CCTATCAGTT CTAGCATAGT	660
15	AAACTACGGT ACCAGTGTTA GTGGGAAGAG CTGGGTTTTC CTAGTATACC CACTGCATCC	720
	TACTCCTACC TGGTCAACCC GCTGCTTCCA GGTATGGGAC CTGCTAAGTG TGGAATTACC	780
20	TGATAAGGGA GAGGGAAATA CAAGGAGGGC CTCTGGTGTT CCTGGCCTCA GCCAGCTGCC	840
20	CACAAGCCAT AAACCAATAA AACAAGAATA CTGAGTCAGT TTTTTATCTG GGTTCTCTTC	900
	ATTCCCACTG CACTTGGTGC TGCTTTGGCT GACTGGGAAC ACCCCATAAC TACAGAGTCT	960
25	GACAGGAAGA CTGGAGACTG*TCCACTTCTA GCTCGGAACT TACTGTGTAA ATAAACTTTC	1020
	AGAACTGCTA CCATGAAGTG AAAATGCCAC ATTTTGCTTT ATAATTTCTA CCCATGTTGG	1080
30	GAAAAACTGG CTTTTTCCCA GCCCTTTCCA GGGCATAAAA CTCAACCCCT TCGATAGCAA	1140
50	GTCCCATCAG CCTATTATTT TTTTAAAGAA AACTTGCACT TGTTTTTCTT TTTACAGTTA	1200
	CTTCCTTCCT GCCCCAAAAT TATAAACTCT AAGTGTAAAA AAAAGTCTTA ACAACAGCTT	1260
35	CTTGCTTGTA AAAATATGTA TTATACATCT GTATTTTTAA ATTCTGCTCC TGAAAAATGA	1320
	CTGTCCCATT CTCCACTCAC TGCATTTGGG GCCTTTCCCA TTGGTCTGCA TGTCTTTTAT	1380
40	CATTGCAGGC CAGTGGACAG AGGGAGAAGG GAGAACAGGG GTCGCCAACA CTTGTGTTGC	1440
	TTTCTGACTG ATCCTGAACA AGAAAGAGTA ACACTGAGGC GCTCGCTCCC ATGCACAACT	1500
	CTCCAAAACA CTTATCCTCC TGCAAGAGTG GGCTTTCCAG GGTCTTTACT GGGAAGCAGT	1560
45	TAAGCCCCCT CCTCACCCCT TCCTTTTTC TTTCTTTACT CCTTTGGCTT CAAAGGATTT	1620
	TGGAAAAGAA ACAATATGCT TTACACTCAT TITCAATTTC TAAATTTGCA GGGGATACTG	1680
50	AAAAATACGG CAGGTGGCCT AAGGCTGCTG TAAAGTTGAG GGGAGAGGAA ATCTTAAGAT	1740
	TACAAGATAA AAAACGAATC CCCTAAACAA AAAGAACAAT AGAACTGGTC TTCCATTTTG	1800
	CCACCTTTCC TGTTCATGAC AGCTACTAAC CTGGAGACAG TAACATTTCA TTAACCAAAG	1860
55	AAAGTGGGTC ACCTGACCTC TGAAGAGCTG AGTACTCAGG CCACTCCAAT CACCCTACAA	1920
	GATGCCAAGG AGGTCCCAGG AAGTCCAGCT CCTTAAACTG ACGCTAGNCA ATAAACCTGG	1980
60	GCAAGTGAGG CAAGAGAAT GAGGAAGAAT CCATCTGTGA GGTGACAGGC AAGGATGAAA	2040

	GACAAAGAAG GAAAAGAGTA TCAAAGGCAG AAAGGAGATC ATTTAGTTGG GTCTGAAAGG	2100
	AAAAGTCTTT GCTATCCGAC ATGTACTGCT AGTACCTGTA AGCATTTTAG GTCCCAGAAT	2160
5	GGAAAAAAA ATCAGCTATT GGTAATATAA TAATGTCCTT TCCCTGGAGT CAGTTTTTTT	2220
	AAAAAGTTAA CTCTTAGTTT TTACTTGTTT AATTCTAAAA GAGAAGGGAG CTGAGGCCAT	2280
••	TCCCTGTAGG AGTAAAGATA AAAGGATAGG AAAAGATTCA AAGCTCTAAT AGAGTCACAG	2340
10	CTTTCCCAGG TATAAAACCT AAAATTAAGA AGTACAATAA GCAGAGGTGG AAAATGATCT	2400
	AGTTCCTGAT AGCTACCCAC AGAGCAAGTG ATTTATAAAT TTGAAATCCA AACTACTTTC	2460
15	TTAATATCAC TITIGGTCTCC ATTITTCCCA GGACAGGAAA TATGTCCCCC CCTAACTTTC	2520
	TTGCTTCAAA AATTAAAATC CAGCATCCCA AGATCATTCT ACAAGTAATT TTGCACAGAC	2580
20	ATCTCCTCAC CCCAGTGCCT GTCTGGAGCT CACCCAAGGT CACCAAACAA CTTGGTTGTG	2640
20	AACCNAACTG CCTTAACCTT CTGGGGGAGG GGGATTAGCT AGACTAGGAG ACCAGAAGTG	2700
	AATGGGAAAG GGTGAGGACT TCACAATGTT GGCCTGTCAG AGCTTGATTA GAAGCCAAGA	2760
25	CAGTGGCAGC AAAGGAAGAC TTGGCCCAGG AAAAACCTGT GGGTTGTGCT AATTTCTGTC	2820
	CAGAAAATAG GGTGGACAGA AGCTTGTGGG GTGCATGGAG GAATTGGGAC CTGGTTATGT	2880
30	TGTTATTCTC GGACTGTGAA TTTTGGTGAT GTAAAACAGA ATATTCTGTA AACCTAATGT	2940
30	CTGTATAAAT AATGAGCGTT AACACAGTAA AATATTCAAT AAGAAGTCAA AAAAAAAAA	3000
	AAAAAACTCG AGGGGGGCC CGGTACCCAA TITNCCAAAT AGAGATNGTA TTAC	3054
35		
	(2) INFORMATION FOR SEQ ID NO: 195:	
40	- · ·	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 907 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:	
	GGCAGAGCTC GTGGCCGNAA CTTTTTCTGC TCCTGGCTGC CACCTACTGG CTGGCCGCGG	60
50	CCCTGGCCTG GGCCTGCACC AGCCTGCGNG CGGGCTCCCA CAGCAGCCCC CTTCCAAGCA	120
	GCGTCCCCAC ACCGCGCACC TTCTGCGGGA ACGTGCTCGC CGTGCCGGGG ACCATATGGA	180
55	CGGAAGGCTT TGTGCTCACC TACAAGCTGG GTGAGCAGGG TGCCAGCAGC CTGTTGATCC	240
33	TCTTGGCTCC TGCTGGAGCA CGAGCGGCGT TTCTGCTCCC GAGTTGGGAC TGTGGAATGG	300
	TGTGGGTGCT GTGGTCTGCT CCATCGCTGG CTCCTCCCTG GGTGGGACCT TGCTGGCCAA	360
60	GCACTGGAAA CTGCTGCCTC TGTGAGGTCG GTGCTGCGCT TCCGCCTCGG GGGCCTAGCC	420

	TGTCAGACTG CCTTGGTCTT CCACCTTGGA CACCCTGGGG GCCAGCATGG ACGCTGGCAC	480
5	AATCTTGAGA GGGTCAGCCT TGCTGAGCCT ATGTCTGCAG CACTTCTTGG GARGCCTGGT	540
	CACCACAGTC ACCTTCACTG GGAATGATGC GCTGCAGCCA GCTGGCCCCC AGGGCCTTGC	600
	AGGCCACACA CTACAGCCTT CTGGCCACGC TGGAGCTGCT GGGGAAGCTG CTGCTGGGCA	660
10	CTYTGGSCGG AGGCCTGGC TGATGGGTTG GGGCCACATC CCTGCTTCTT GCTCCTGCTC	720
	ATCCTCTCTG CCTTTCCCGT TCTGTACCTG GACCTAGCAC CCAGCACCTT TCTCTGAGCT	780
	GAGTGGCTGG AGTGGTCAAT AAAGCCACAT GTGCCTGTGG CCCAAAAAAA AAAAAAAAAA	840
15	AAAAAAAAA AAAAAAACTG GAGGGGGGC CCGGTACCCA AATCGCCGGA TATGATCGTA	900
	AACAATC	907
20		
	(2) INFORMATION FOR SEQ ID NO: 196:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1290 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:	
	GGCACGAGGA GGGACAGGGA GTGGGCAAGG GGAAGAAGCA GCTTATTTGA CTAACCAGCC	60
35	CCTCTGTGGT CCACCAGCGT CTTGGCTTGG TGGGAGGGCT CTCAATCAGC AGGGCCCCAG	120
	KAGGGCAAGA AGAAGTGGGG CAAAGCCTGG CGCTCGGCCG CGGTCGCGGC AGCTTTGCMA	180
40	TCTGGAGCCA CGCCTCCTCC AGGCCATGCT CCTTGAACTT GGAAATGTCA ACCGGAGCCC	240
40	TTAACACCAG CCCTCCAGCA TCTAATAGAC TTGAATCTAC TCTAAACGAA TATTTAATCC	300
	AACCTCAACT ACATTGTAGC TCAGTCCAAC GACTAACCCT GAAATGGGGG TGTTCCAGCC	360
45	TICAGCGAGA TGGCCAAGCG GTCCCCTGGG GGCTGTGGCA GCGGGCTTAT CCTTCTCTGT	420
	TECCAACCTT GCCGTCCGAC CTCCTCCGCC CCCATGCGGT GACCCCGTCC GTGTCTGTGT	480
50	CTGTCCATAC GTGTGAGTCC AGCTAAAAAG ACAAAACAGA ACCCGTGGGC CCAGCTCGGA	540
50	AGGTGCGTGG AGAAGGCTCC GACGTCTCCG AAGTGCAGCC CTTGGGATGG CATTCCGTTG	600
	TGTGCCTTAT TCCTGGAGAA TCTGTATACG GCTCGCCTAT AAGAAATATA GCCTCTTCAT	660
55	GCTGTATTAA AAGGACTTTT AAAAGCAAAA AAAAAAAAA AAAAACTCGA GGGGGGCCCC	720
	GGTACCCAAT TCGCCCAATA GTGAGTCGTA TTACAATTCA CTGGGCCGTC STTTTAACAA	780
	CGTCGTGAAC TGGGAAAACC CTGGCGTTTA CCCAACTTAA TCGCCTTGCA GCACATCCCC	840

960

	CTTTCGCCAG CTGGCGTTAA TAGCGAAAAA NGCCCGCACC CGAATCGCCC TTCCCCAACAG	900
	TTTGCGCAGC CCTGAATGGC GAAATGGCAA ATTGTAAGCG TITAATATTT TKKTTAAAAT	960
5	TCCNCGTTWA AWITTTGTT TAAATCARCT CAATTTTTTT AACCCAATAA GSCCGAAATC	1020
	CGGCAAATCC CCYTTATTAA TICCAAAAAA ATAAACCSAA AAWGGGTTTG AATTTTTIKT	1080
	TICCCCAYIT TIGGAAACAA AWIYCCCCCT TITTAAAAAA GIIGGAACCC CCAMCCYICC	1140
10	AAAGGGGAAA AAACSYTTTT YTGGGGGGNA ANGGGGCCCC CNTACTTTNA ACAYCCCCCC	1200
	CCAAWCAATT TTTTTGGGGG GTCCCNAAAG GTCCCCCTAA AANCTTTTTT CGGAACCCNA	1260
15	AGGGGANCCC CCCATTTAAA ATTTTNGGTN	1290
20	(2) INFORMATION FOR SEQ ID NO: 197:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1020 base pairs	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:	
30	GGTGTGCCTG GATGGTCGTG TAGGTGAGTT TTACCAAGGA TTATGGTAAC AAATGAGTGA	60
	GACCTCTATG GAGAAAATAT TGAAGNNCAT TAAAGAAGAC CTCATANTAG GAGAGAATGT	120
	SCTTTGGAGG ATTTGTATTG AGCTTTTACA GTATTCATTT TTCAACTCAA GGCAATGGCT	180
35	TTCTACACCA ACTCTAATCC ATAAACGGGT CTTATGACAT CTATGAAGTA GTAGCAAGAC	240
	ATGCTTAGTG TGTATTTCTC TCTTTGAGAC ACTGTAATTT CTACCAGAAA TTTCCAGAGC	300
40	ATTATGTAGG TAGAAAAAAA TGCAAGCAAG CTGTTAAAGA TCTTGGATCC CATTATATAG	360
	TATGTATAGC TGAAATCTGT AATTCAATCA CTTTTTCTCT TTTATCCTCT AACCAAAAAA	420
45	TIGTTTAATT TTGCATCCCA AATGTTTTTA ATCTTTGTAT ATTTTTTAAA AAYCCTTTTC	480
45	TCCTCATCAT TGCCTTTTTT GTGGTTGTAA ATAGACTTAC TTGCACTTTG AAGATGAGTT	540
	ACTCCTTGTC ATCTTACAAA TATGTGATAT GGTAATTTTC ATAACAGATG TCAGTTTTGA	600
50	ACCAAGAATT GGTGATTTGT TTATAAGAAA AAAACTGGCT TCATTTCTGT GAAATTGCTC	660
	TTTGAAAATT TCTTTTTACA CGTGTAAGCC AACTGAGATA CCGTGATGGT GTTGATTTCT	720
EE	TTCAATGATG CTTACCATCT ATTTTAGCCA CTGAGCCTTT TATTATTTGT CTATTTGTAA	780
55	AGTITATITG TCTTAACTCA TITAATAAAT ATACTGTTTA TCTGTTTCTG AATGGGGACT	840
	GAACTITTTG GATATTGATA TIGATTIGAA AATATTITGG AATITTTTCT ACTIGAAATT	900

60 TTAGAAATCT AATKGAAAAT TCTATAATGT ACTGAAAGTA WGGTTGTGTA CAGTGAKCAC

	TCTCTAATAA TATGATGNCT TGCCCTAAAN GAGGNGGGAC ATGTCCCACT TTCCACCACG	1020
5		
	(2) INFORMATION FOR SEQ ID NO: 198:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 524 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:	
	AATTCCCGAA GCTGAGGGTT GTGTGCCNTC GGGCGAGCCA AGTCTTTTGA CCGGACCCTT	60
20	CCCGGCGCAG AAGANCTGAA GTTGATTTGA GAGCCTGTKT TTGGGGTTRA GCCGAGCTGC	120
20	TGCGGGCTTY GTCGCCGGCC AGGACACAAG YTACTTGCAA CGGGGCGGCG CCTGGCTTAT	180
	GATGTTCCTC AACCCAGGGG CGGCCTCTGC CCTCTACTCG TGCCAGGCCC ACTTGCCAGG	240
25	CAGGAGCCCT CCCCAAGCCT TCAGGGCTGC TCGGAGTCAC CTGTTGGAAT GGACTAAAAG	300
	GACCCTTGTG TGGGAACAGG TGCTCCAAAC ACCCTGCTGC TGGCTGCCAG GCAGGCCCTC	360
30	TOGAAGGGAA GGGCAGGAC TCATCAGGAC CTCCCTGGAC CCTGCAGGGC AGGCAGTTGG	420
30	CCCGAGCCCA AGCATTTGGC TCTGCTTGCC CCAAGGGGAC AGGAAGCCTC TTGGGCCTCT	480
	TECETTECTG GACAAGGEEC CETGEETTTG CETCACATAA ACTG	524
35		
	(2) INFORMATION FOR SEQ ID NO: 199:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 332 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:	
	GTGATACAAG GAAGGGTGAT CATCATCTGT CACCATGCAA TTCCTGCTCA CAGCCTTTCT	60
50	GITGGTGCCA CTTCTGGCTC TTTGTGATGT CCCCATATCC CTAGGCTTCT CCCCCTCCTA	120
	GAAGGGCTTC TTGATAGATT AGAAAATAAG AATGAGTGAC ATTTCCTATG TGCATATAAG	180
55	AAGGAGCCAC AAGACATGTC TTTTAAATAA AAGGACAGTG TCCATCCTTT TAGCTGCCGA	240
23	ATAGAACCTT GGTCTCATCC TCCTGGAGCT AGGSCTTAAA ACAGCTTCTG TGTTTCTSAT	300
	TKGTCTCART GTTTTGCCAA GGTTTTATTC GG	332
60		

	(2) INFORMATION FOR SEQ ID NO: 200:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:	
	CCAGGGAAGC CCCARGCCTG TCCTGAATTG ACATCAGTGC TTCCCTGAAC TGCCTCCCCC	60
15	ACCCCTGGGC ATTATCCCAG GAAACTTATG TTTTCTAGAA GCTAAGCAGC TGCTGGGACT	120
	CAGGGACTGG TGCAGGTAGG CTGAGTGGCA GCTCAGTCCT AGAAGGTCTC TGAAGATCTG	180
20	GACTGAGGAC CYTGCTACTC CCCAAGCCAG AGCCCATCAG CCAGGCCTGC TGTGAGCCAC	240
20	CTGCCTGTGG AGTGCTGAGC TCAACCAAAG GCTGGCAAGC TCTGGGCCTC ATTTAAGGGA	300
	TTCTGATGAG CCGATCGGCC CTGGAGGCAG CCCATTAAAG CATCTGGCTC GTTTTTGGAA	360
25	AAAAAAAA AAAAAG	376
30 35	(2) INFORMATION FOR SEQ ID NO: 201: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:	
40	CCCAGTATAT TICTATAACA TITATITITAG TGAACTIATA ATGITICTIT GIATTAAATI	60
	ATTAGATTAT ATCTTTAGAT AATATTGTTA CTNAATTAGT AGGTAATATA TATTTTATTC	120
	AAAAATAAAT TGTGCATCTA ATGTCTACCA ATTAATGTAC TTGTAGATGT ATCTTATCTT	180
45	AACTTGAGTC TITGCTGCCC CTAATGAGGT GTGAAGGACT CTTCTCCCCT GGGGAAGTTT	240
	TTCTTTTTCA GGAGGGAGGA GGGCTTTCCC AGGTAATGTG TCTAGAGTGT TGGGCAGAAR	300
50	AATCTGGGAC CACACCACAC CAGTTCTCTC CTTAATCCAC GTCATTTGCC TTCTATCCCA	360
	GCTATGTTTC CAGTGTCCTC TGGGTGTTTC CAAGAGCAAC AAGAAAYGAA TAAATCTCTG	420
e e	KTGAGTTGTT TATTTGTTCT TCACTTTGTT TTACACTGTA WITTCTGAGT TTATGGGTGT	480
5560	CTGTGAATTA AAAAGGAAAA GTRGAAATAA GTAAAACTCA GGTTGAAGGA AATATACATA	540
	AATAAGATAA AGCTGACCTG TAGATATARR CAGGTTATAA RAGCTTAGAG TTGTCTAAGT	600
	TGRGTGCAAA KTTTCCTCTG ATCTTTCTGA TGCCGARACA AAAAAGGCAG TCATGTTTGT	660

431

	WATGTGATTG GAATGGAACC CGARAAGAGA GCAYGCTGTG TTCTTGGGGA CAGGAAAGCT	720
5	TGYGTGCACC AAGTCTKAAC CACCACCTTC ATGGGACATA GRITATGTGC TGGAACATAT	780
5	TTCACACCGG CCTGGCAGTA AACACTTGTA GTGTTGTGCA GTGGAAACGG TCATCTTCCG	840
	CTAAAGCACG GCGTGTTGTG CAGCGGAAAT GGTCATCTGC TGCTAAAACA CAGCTTCCAT	900
10	CGTAATGTAT GCTCCTTACT CAAAGAGTGT GGTCCCAAAC AGCCTTTGGG AGGTCCTCCT	960
	TGATTCATGG ATGAAACCTG GAACATCTTG AGGACTGAGT TAACCATAGG TCCTTAAATA	1020
15	ACTOTOCACA COTTTTTCTT AGTTTATCTC TACATGCAGG GTGTGCAGCA GCCTGTTCAA	1080
13	AGTCATATTT TCTGGGAAAT ATTTCCAGTG TTTATTTGCA CTTTAGCCCA CTCTGTGTAG	1140
	CCTTATTTCT TCTAAACTCA CCATTAATCT GAATAATAGT CAAATTTAGG GG	1192
20		
	(2) INFORMATION FOR SEO ID NO: 202:	
25		
23	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 589 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:	
	ATCTTGGGCT ATCTTTGACA GGGGATTCTT GCAAGTTGAT GCTTTCTACA AGTGAATATA	60
35	GTCAGTCCCC AAAGATGGAG AGCTTGAGTT CTCACAGAAT TGATGAAGAT GGAGAAAACA	120
	CACAGATTGA GGATACGGAA CCCATGTCTC CAGTTCTCAA TICTAAATIT GTTCCTGCTG	180
40	AAAATGATAG TATCCTGATG AATCCAGCAC AGGATGGTGA AGTACAACTG AGTCAGAATG	240
	ATGACAAAAC AAAGGGAGAT GATACAGACA CCMGGGATGA CATTAGTATT TTAGCCACTG	300
	GTTGCAAGGG CAGAGAAGAA ACGGTAGCAG AAGATGTTTG TATTGATCTC ACTTGTGATT	360
45	CGGGGAGTCA GGCAGTTCCG TCACCAGCTA CTCGATCTGA GGCACTTTCT AGTGTGTTAG	420
	ATCAGGAGGA AGCTATGGAA ATTAAAGAAC ACCATCCAGA GGAGGGGTCT TCAGGGTCTG	480
50	AGGTGGAAGA AATCCCTGAG ACACCTTGTG AAAGTCAAGG AGAGGAACTC AAAGAAGAAA	540
50	ATATGGAGAG TGTTCCGTTG CACCTTTCTC TGACTGAAAC TCAGTCCCA	589
30	ATATGGAGAG TGTTCCGTTG CACCTTTCTC TGACTGAAAC TCAGTCCCA	589

(A) LENGTH: 847 base pairs

60 (B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 203:

⁽i) SEQUENCE CHARACTERISTICS:

432

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:	
3	GGCACGAGCG CAAGCTGCTG GCCGCCATCA ACGCGTTCCG CCAGGTGCGG CTGAAACACC	60
	GGAAGCTCCG GGAACAAGTG AACTCCATGG TGGACATCTC CAAGATGCAC ATGATCCTGT	120
10	ATGACCTGCA GCAGAATCTG AGCAGCTCAC ACCGGGCCCT GGAGAAACAG ATTGACACGC	180
	TGGCGGGGAA GCTGGATGCC CTGACTGAGC TGCTTAGCAC TGCCCTGGGG CCGAGCAGCT	240
1.5	TCCAGAACCC AGCCAGCAGT CCAAGTAGCT GGACCCACGA GGAGGAACCA GGCTACTTTC	300
15	CCCAGTACTG AGTGGTGGAC ATCGTCTCTG CCACTCCTGA CCAGCCTGAA CAAAGCACCT	360
	CAAGTGCAAG GACCAAAGGG GGCCTGGCTT GGATGGGTTG GCTTGCTGAT GGCTGCTGGA	420
20	GGGGACGCTG GCTAAAGTGG GGAGGCCTTG GCCCACCTGA GGCCCCAGGT GGGAACATGG	480
	TCACCCCCAC TCTGCATACC CTCATCAAAA ACACTCTCAC TATGCTGCTA TGGACGACCT	540
25	CCAGCTCTCA GTTACAAGTG CAGGCGACTG GAGGCAGGAC TCTTGGGTCC CTGGGAAAGA	600
25	GGGTACTAGG GGCCCGGATC CAGGATTCTG GGAGGCTTCA GTTACCGCTG GCCGAGCTGA	660
	AGAACTGGGT ATGAGGCTGG GGCGGGGCTG GAGGTGGCGC CCCCTGGTGG GACAACAAAG	720
30	AGGACACCAT TITTCCAGAG CTGCAGAGAG CACCTGGTGG GGAGGAAGAA GTGTAACTCA	780
	CCAGCCTCTG CTCTTATCTT TGTAATAAAT GTTAAAGCCA GAAAAAAAAA AAAAAAAAAA	840
35	АААААА	847
33		
40	(2) INFORMATION FOR SEQ ID NO: 204:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 852 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:	
50	ACAAACATAC TCGCAGGAAG GAGTCTCATG CTGCCCGCAG CATCAGCGCA ACNCNTGGCC	60
50	GCCATCAACG CGTTCCGCCA GGTGCGGCTG AAACACCGGA AGCTCCGGGA ACAAGTGAAC	120
	TCCATGGTGG ACATCTCCAA GATGCACATG ATCCTGTATG ACCTGCAGCA GAATCTGAGC	180
55	AGCTCACACC GGGCCCTGGA GAAACAGATT GACACGCTGG CGGGGAAGCT GGATGCCCTG	240
	ACTGAGCTGC TTAGCACTGC CCTGGGGCCG AGGCAGCTTC CAGAACCCAG CCAGCAGTCC	300

AAGTAGCTGG ACCCACGNAG GAGGAACCAG GCTACTTTCC CCAGTACTGA GGTGGTGGAC

60

433

	ATNOGTOTOT TGCCACTCCN TGNACCCAGC CCTGAACAAA GCACCTCAAG TGCAAGGACC	420
	AAAGGGGCC CTGGCTTGGA GTGGGTTGGC TTGCTGATGG CTGCTGGAGG GGACGCTGGC	480
5	TAAAGTGGGK AGGCCTTGGC CCACCTGAGG CCCCAGGTGG GAACATGGTC ACCCCCACTC	540
	TGCATACCCT CATCAAAAAC ACTCTCACTA TGCTGCTATG GACGACCTCC AGCTCTCAGT	600
10	TACAAGTGCA GGCGACTGGA GGCAGGACTC CTGGGTCCCT GGGAAAGAGG GTACTAGGGG	660
10	CCCGGATCCA GGATTCTGGG AGGCTTCAGT TACCGCTGGC CGAGCTGAAG AACTGGGTAT	720
	GAGGCTGGGG CGGGGCYGGA GGTGGCGCCC CCTGGTGGGA CAACAAAGAG GACACCATTT	780
15	TTCCAGAGCT GCAGAGAGCA CCTGGTGGGG AGGAAGAAGT GTAACTCACC AGCCTCTGCT	840
	CTTATCTITG TA	852
20		
20		
	(2) INFORMATION FOR SEQ ID NO: 205:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1354 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:	
	GATTCGGCAC GAGGCTTGCT GGAGCAGGAG AAGTCTCTRG CCGGCTGGGC ACTGGTGCTG	60
35	GCASGARCTG GCATTGGACT CATGGTGCTG CATGCAGAGA TGCTGTGGTT CGGGGGGTGC	120
33	TOGGOTGTCA ATGCCACTGG GCACCTTTCA GACACACTTT GGCTGATCCC CATCACATTC	180
	CTGACCATCG GCTATGGTGA CGTGGTGCCG GGCACCATGT GGGGCAAGAT CGTYTGCCTG	240
40	TGCACTGGAG TCATGGGTGT CTGCTGCACA GCCCTGCTGG TGGCCGTGGT GGCCCGGAAG	300
	CTGGAGTTTA ACAAGGCAGA GAAGCACGTG CACAACTTCA TGATGGATAT CCAGTATACC	360
15	AAAGAGATGA AGGAGTCCGC TGCCCGAGTG CTACAAGAAG CCTGGATGTT CTACAAACAT	420
45	ACTCGCAGGA AGGAGTCTCA TGCTGCCCGC AGGCATCAGC GCAANCTGCT GGCCGCCATC	480
	AACGCGTTCC GCCAGGTGCG GCTGAAACAC CGGAAGCTCC GGGAACAAGT GAACTCCATG	540
50	GTGGACATCT CCAAGATGCA CATGATCCTG TATGACCTGC AGCAGAATCT GAGCAGCTCA	600
	CACCGGGCCC TGGAGAAACA GATTGACACG CTGGCGGGGA AGCTGGATGC CCTGACTGAG	660
55	CTGCTTAGCA CTGCCCTGGG GCCGAGGCAG CTTCCAGAAC CCAGCCAGCA GTCCAAGTAG	720
<i>)</i>)	CTGGACCCAC GAGGAGGAAC CAGGCTACTT TCCCCAGTAC TGAGGTGGTG GACATCGTCT	780
	CACCACACCO ACAMICICACE COACAACAA COACOACAACA A AAGAACCACO	840

60 CTGGCTTGGA GTGGGTTGGC TTGCTGATGG CTGCTGGAGG GGACGCTGGC TAAAGTGGGK

	AGGCCTTGGC CCACCTGAGG CCCCAGGTGG GAACATGGTC ACCCCCACTC TGCATACCCT	960
_	CATCAAAAAC ACTCTCACTA TGCTGCTATG GACGACCTCC AGCTCTCAGT TACAAGTGCA	1020
5	GGCGACTGGA GGCAGGACTC YTGGGTCCCT GGGAAAGAGG GYACTAGGGG CCCGGATCCA	1080
	GGATTCTGGG AGGCTTCAGT TACCGCTGGC CGAGCTGAAG AACTGGGTAT GAGGCTGGGG	1140
10	CGGGGCTGGA GGTGGCGCCC CCTGGTGGGA CAACAAAGAG GACACCATTT TTCCAGAGCT	1200
	GCAGAGAGCA CCTGGTGGGG AGGAAGAAGT GTAACTCACC AGCCTCTGCT CTTATCTTTG	1260
	TAATAAATGT TAAAGCCAGA AAAAAATAAA AAAAAAAAA AAAAAACTCG AGGGGGCCC	1320
15	AGACCCAATC TCCCTATAGT AAGNCGCCNN ANAN	1354
20	(2) INFORMATION FOR SEQ ID NO: 206:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1378 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:	
30	TCCCCAGGTG CACAGCCAGG GCCCTCCTGT CTGCAGGAGA ATTCACAGCT GGTGTGGGAC	60
	TCAGCCCCTA GNCCATTCAA AGCCTTAATG TTGTAATCAT ATCTTACGTG TTGAAGACCT	120
35	GACTGGAGAA ACAAAATGTG CAATAACGYG AATTTTATCT TAGAGATCTG TGCAGCCTAT	180
	TTCTGTCACA AAAGTTATAT TGTCTAATAA GAGAAGTCTT AATGGCCTCT GTGAATAATG	240
40	TAACTCCAGT TACACGGTGA CTTTTAATAG CATACAGTGA TTTGATGAAA GGACGTCAAA	300
40	CAATGTGGCG ATGTCGTGGA AAGTTATCTT TCCCGCTCTT TGCTGTGGTC ATTGTGTCTT	360
	GCAGAAAGGA TGGCCCTGAT GCAGCAGCAG CGCCAGCTGT ANATAAAAAA TAATTCACAC	420
45	TATCAGACTA GCAAGGCACT AGAACTGGAA AAGACCACAG AAAACAAAGA ATCCAACCCT	480
	TTCATCTTAC AGGTGAACAA ACTGTGATGA TGCACATGTA TGTGTTTTGT AAGCTGTGAG	540
50	CACCGTAACA AAATGTAAAT TTGCCATTAT TAGGAAGTGC TGGTGGCAGT GAAGAAGCAC	600
30	CCAGGCCACT TGACTCCCAG TCTGGTGCCC TGTCTACACC AGACAACACA GGAGCTGGGT	660
	CAGATTCCCC TCAGCTGCTT AACAAAGTTC CTCGAACAGA AAGTGCTTAC AAAGCTGCCT	720
55	TCTCGGATAC TGAAAGGTCG AGTTTTCTGA ACTGCACTGA TTTTATTGCA GTTGAAAAAA	780
	AAAAAAAGCT ATTCCAAAGA TITCAAGCTG TTCTGAGACA TCTTCTGATG GCTTTACTTC	840
	CTGAGAGGCA ATGTTTTTAC TTTATGCATA ATTCATTGTT GCCAAGGAAT AAAGTGAAGA	900

435

	AACAGCACCT	TTTAATATAT	AGGTCTCTCT	GGAAGAGACC	TAAATTAGAA	AGAGAAAACT	960
	GTGACAATTT	TCATATTCTC	ATTCTTAAAA	AACACTAATC	TTAACTAACA	AAAGTTCTTT	1020
5	TGAGAATAAG	TTACACACAA	TGGCCACAGC	AGTTTGTCTT	TAATAGTATA	GTGCCTATAC	1080
	TCATGTAATC	GGTTACTCAC	TACTGCCTTT	ааааааааа	ACCAGCATAT	TTATTGAAAA	1140
10	CATGAGACAG	GATTATAGTG	CCTTAACCGA	TATATTTTGT	GACTTAAAAA	ATACATTTAA	1200
10	AACTGCTCTT	CTGCTCTAGT	ACCATGCTTA	GTGCAAATGA	TTATTTCTAT	GTACAACTGA	1260
	TGCTTGTTCT	таттттаата	AATTTATCAG	AGTGAAAAAA	АААААААА	АААААААА	1320
15	ааааааааа	AAAAAAAA	AAAAAAAA	АААААААА	AAAAAAAGAA	NAAAANAA .	1378

20 (2) INFORMATION FOR SEQ ID NO: 207:

25

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1166 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

AANCCACTGC ANTITAAACC CCCTCCCCTC CAAGAAAGTT CACAACCGGC CATGGATGAC 120 CCTCATTTTA GATGGGCCNC AATATTTAAG ATGGACTGRG GMCCCCARAG ACTGACCCTT GAAAGGGGGA CTCAGAAGAA AGATCCTTGA CATTGCCMAA CATGCTGGGC TTGTCCAACA 180 240 CAGTGATGCG GCTCATCGAG AARCGGGCTT TCCMAGGACA AGTACTTTAT GATAGGTGGG ATGCTGCTGA CCTGTGTGGT CATGTTCCTC GTGGTGCAGT ACCTGACATG AGCCAGCCAC 300 360 GCTCAGTGGC TGAACAGCAT TCCCACAGCC TGCAAGTGTG TGTGTGTGTG AAAGAGAGAG GGGGCCCAGA GGCCGCCTTT TGAAATGTTT GCCTGTCTGA ACTGTGAAGA CACTTGGGAG 420 TGATTGTGGT CTAATTTCCA ACCTGCTCTG TTTTCTGTGA CATCTTGGAG GGGGAGCTAG 480 TOCCAMCACC ATGCGCGGTG CTTAGGAAAT GAAAGAAGTC CCGGGTCTGT CTCTCTCACT 540 CTCGCTCTCA MTGGGGGAGG GAAAGAATGG CTTTGGTGGC TTTGTTCACA CAGCTGATGC 600 660 GTGSCCTGGG AAGGTGTCCA CAGTGAGCCC TGTGTGCAGG ACTGTCCACN ACGGTTCACA GAAAGAGGCY TTTTCTCACA GCCATTATAT TAAATAGTAG GTCGATTCAC ATCYTCGTGC 780 840 TCCTGGCCAC CCTCCCCTGT GCCTCAGTGA CATGTAGATG ACTGACTGCC AATACTTGTC ACCATTCCCT GGAAGCAGCT ACCTAGGGGA AACAAGATGT AGTGCTATTG CCGATAACAA 900 960 GTAAGATTTT CCACACTACA GCTGGGTGTT TCTCTTTTCT AAAGTGAGGC CAGTGTTATT

	TCCCGGGAGT GTTCAGTCTT GACCCTAGTC ACTGATTTTT TCTAGTTGTT AATAGAGTGG	1020
5	TTGGGCTTTT AAGGTTCAGA GACTGTGGGC TTGGGCACCT GCGCCCAGGG STTTTGTGGG	1080
5	GGCCTTTGCC CCTTAGRAAA GTAGCTTTTA GGGGCAAAGA TTTGTTGATT TTCCCCATTA	1140
	CAGTCTTCAG CTCNAGGGTT TTAAAA	1166
10		
1.5	(2) INFORMATION FOR SEQ ID NO: 208:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 697 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208:	
	TACTTCTAGG ATTATAAGGA ATTAACATTG AGATGACATT TCCATTTGAG AAGGAAAATA	60
25	GTTGCTTTCA GTGCCTTTTA TTTGATTCCT GGAGAGAGCA GACTCGCACS AACATTCAAC	120
	CCCAGCGCTG ATATGACAGT AATCCTCAGA GGCAGAGCCC AGCACAAAAC AGCAATGCTA	180
30	GAAAGTTACA ATTGGAAAGT TICCTGCCAG CTTCGGGAAT GACACTGCAA AGCTGATGCC	240
50	AGAAACTGCC AGRGTAATTC TCCTCATTAC TGCTCTACCC ACCCACTTTC AGCTCCCCAA	300
	ATTAACTAGT GCAGTTGACT AATTCTCTTT ACCTTTATCA TTTARGGTGA RGCATTGCAC	360
35	AAAAACTCTC GACTI'IGCCA TATAAGGGCT GTGGTTCTCT GTGGTCCCCT GGATAAGAGG	420
	CATCACCATT ATCTGGAAAC ATGCAGTAAA TGCAGATTNT TCATCTTCTC CCCAGACCTC	480
40	CTGAGTTAGA AATTCACAAG TTCTCCAGGT GATCTCATAC ATGCTAAAGT TTGAGAACCA	540
10	TTGAGTAAAG TTAATGCATT AAGAAGAGAT TAGATAGGGA TGGTGGCGTA TCTTCCTACA	600
	CTTTCCCTCT TAACAAGAAA GTCAGAGGTC AGTTGATCAG ACATTAGATT ATTTATTGCT	660
45	AAAACTAAAA AAAATTAAAA AAAACTGGAG GGGGGCC	697
5 0		
50	(2) INFORMATION FOR SEQ ID NO: 209:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 932 base pairs	
55	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:	
60	COMPARED A CHARLESTAND TO COCCOMOCA CARCACCCC CMCRCCCCCC COCARCCCMCC	

437

	GCTGCCAGAA ACCATGTTCA AGGTAATTAA AAGGTCCGTG GGGCCAGCCA GCCTGAGCTT	120
5	GCTCACCTTC AAAGTCTATG CAGCACCAAA AAAGGACTCA CCTCCCAAAA ATTCCGTGAA	180
	GGTTGATGAG CTTTCACTCT ACTCAGTTCC TGAGGGTCAA TCGAAGTATG TGGAGGAGGC	240
	AAGGAGCCAG CTTGAAGAAA GCATCTCACA GCTCCGACAC TATTGCGAGC CATACACAAC	300
10	CTGGTGTCAG GAAACGTACT CCCAAACTAA GCCCAAGATG CAAAGTTTGG TTCAATGGGG	360
	GTTAGACAGC TATGACTATC TCCAAAATGC ACCTCCTGGA TTTTTTCCGA GACTTGGTGT	420
1.5	TATTGGTTTT GCTGGCCTTA TTGGACTCCT TTTGGCTAGA GGTTCAAAAA TAAAGAAGCT	480
15	AGTGTATCCG CCTGGTTTCA TGGGATTAGC TGCCTCCCTC TATTATCCAC AACAAGCCAT	540
	COTOTITICCC CAGGICAGIG GGGAGAGATT ATATGACIGG GGTTTACGAG GATATATAGI	600
20	CATAGAAGAT TTGTGGAAGG AGAACTTTCA AAAGCCAGGA AATGTGAAGA ATTCACCTGG	660
	AACTAAGTAG AAAACTYCAT GYTCTGCCAT CTTAATCAGT TATRGGTAAA CATTGGAAAC	720
25	TCCATAGAAT AAATCAGTAT TTCTACAGAA AAATGGCATA GAAGTCAGTA TTGAATGTAT	780
25	TAAATTGGCT TTCTTCTTCA GGAAAAACTA GACCAGACCT CTGTTATCTT CTGTGAAATC	840
	ATCCTACAAG CAAACTAACC TGGAATCCCT TCACCTAGAG ATAATGTACA AGCCTTAGAA	900
30	CTCCTCATTC TCATGTTGCT ATTTATGTAC CT	932
35	(2) INFORMATION FOR SEQ ID NO: 210:	
<i>33</i>	•	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 661 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:	60
45	GTCATTCTTT AAATAAAAGC TTTCCTGTTT AAAGCTTTTC AAAGGAGCAG ACCACCTTGA	120
	AGATTCCCCC TAGGGTTGAT ATGTGTCTAA TTCATTTTAT AAAAATTATT CTTGTCTTCA	180
50	TITTAAAGCT TIGGCTATAT AGTCAGAAAT GTCCTAAATA ACAAACTATT TIGTATITAA	
	TTTAGGGAAG ACTAAAGGGA AGAAAAATGA AAACTCAGTC TTTATGTAAG CTCCAAGGAT	240
	ATTAGGGCTT AAAGGGCTTT TCTAGTTTTA TGAGAATTTG TACTACTGAT TTTTATATAT	300
55	TCCTGTTTT GAGATGAACA GATCTCTGGG GAAATTGTTG AGTTACAATG GCATTTCACT	360
	GTGATCCCTC TCAAGCTCAG ATCAGTTCTA TAACCCAATG ACAACCTGTC TCTTTGGTTT	420

ACTGTCCTGT GAAATGTCAG CTCAAGTTTC CCAGAAGTCG TGTGTTTATG ATGAGTCAGA

60

	GTGCTTTTCC TCGGTGGGAC AGTTGCTGGC CCTCTTAATT TTGGTGTATG TGCTTCCAAG	540
	TATCTAAACC TCCAGTCTGA TCTGTATATG CTATCCTAAC TGTTAATTGT ATTATTGATT	600
5	ATGITGATTA TCTTGCTTGA AGGITCATAC TITTCAATTT GATAGAAATA AAGTITTTTT	660
	С	661
10		
	(2) INFORMATION FOR SEQ ID NO: 211:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 592 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:	
	GAAACTGACA TTGTTAAACA CACTAAAACA GAAGTACTTA CCTCTTGAAG ATTTAATATA	60
25	TAATOGTTGA CATGATACAT GTACATGAAT GGAATGACCA GATGCTTATG GTCTACATTT	120
	TCCTTTATCC TGTTAGTATT ACCTTCCTTA ATCTTTGTTC CTTAACATGC TAAATTCCTC	180
	TTCAGTGTTT ATTTTCTAGT GACAGAATGC TAACATTTCT TACACCCTGG CAGAAGGGAG	240
30	AGAAATGTGT TYTGGGGTGG GTAACTAAAT TYTTGAGTGA AATATCATAA GATGAGAATG	300
	GAAAGAGGGA GACACAAAGA GTTATAACAA AAAAACAATG GTTTTTTTAG CCATTTGACT	360
35	GGCTCTTTAA ATAGTCTACA AGACATTCAC GTTNAACATC ACTTTTAGTG AAATAAAATG	420
33	TGCCATACTA GTATGTGCTT CAAAAGGGCA AATGTGCTTT AGTGCCCTAA GGCTAAATTT	480
	TGGTCATTTG ACATCAGAGA TGTTGTAAGT ATTGCACTTA ATACGCACCT ATTTCTCAAT	540
40	AGTGNTATTT TTTTGGCTAG CATTINCTTT ACCACTAACC TTGTTGGATA GC	592
45	(2) INFORMATION FOR SEQ ID NO: 212:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 938 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:	
55	TOGAGTOGCT TTCCAGCTGA ATGAATCCTA TGTCTCGCGT GCAGGTGGTT GGTTTTCAAT	60
	GTTCTTSCTA ATTTTTTTCC TATTGGCTCT TGGGAGTTTN CTTTGTTTGC TCCTGTGTT	120
60	GCCCAGCTTT AATAAAACCA GGCGCAAACA AAAACCATAG CATTCTGAAA CAATAGGGGG	180

439

	CCCACATTGG	ACCCAGTATG	TCACTTTAAT	GGACTTCAAG	AAAAAATCTG	AATGGGAAAA	240
	TGACACTAGG	AATGTATACT	CCACACATTT	TATGCCATAT	AATGGTGTGT	TTTCTTAATT	300
5	TIGITICITG	TGGCGAAATG	TGGCTTTCAA	ATTAAAATGM	CCTTTTCTTC	TTKGAAACTT	360
	TTTGTTTKGA	CTKGTATAAT	TAAGGGTTTG	GAAAGATTCA	TAATTMTGAG	AGAGGTTTGC	420
10	AACCAGGAGA	TACAAAGAAG	TCTCAGTAGT	AATCTTGITC	ATGTGCTTTT	ACAGCCAGCT	480
10	ACATTTAAGR	ATGTATTAGT	TACAGAAATT	ATATGTCTGT	GTATGTGTCT	CTACTCAATA	540
	AAGTACATGC	CTCCACATAA	TGCGGTGCTG	TCCATCTCGG	CAAATACTGG	CCAAGTCCCT	600
15	TTATGACAGG	CACACAGAAA	CCATAGCATG	GICIGGCTIT	CAGAAAATGC	CTCTCATCTT	660
	TCCTGGAACC	TTATTTTGCT	AAATGTCTGT	TTTCTTGTGA	TTTGTTGTAC	CTCACAGCAC	720
20	CATTGTGACC	ATGGTGATGC	CTCATTTGCA	TGATATGTAC	CITGIGITIA	ATGTGAAATA	780
	CATTTTCATT	GAAGAGTCTG	ATGACTTGCT	AGCGTTTTAT	TTTTTCTGTA	AGCTCAATGT	840
	GCTGAAACCA	AACCAGGCTT	TTAAAAACCT	GTGTAGAAGA	AAACCAAAAA	ATCCTGTGTG	900
25	GGTGTCCTTT	CCCTGTCAAA	CTCATTAAAA	ATTCCTTT			938

30 (2) INFORMATION FOR SEQ ID NO: 213:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1079 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:

40 AGCCTGCCGG GAGACTGGTG GCATCTRARA GGCTGGTCGT GGACTGTGGT TGGGGGAGGT 60 120 GGGAGCTGTT TTAACCGTGT GCCCCCTCTC CTGTGCCKGC GTGGGCATCC CCCGGGGCAG TGGAACGCGG GCGCTCCTCC AGCTTCCGAG TCCAGCCAGC CTGGGCGCGG GGCGCGCCCC 45 CGAGACACCC GAGGAGTCCG TTCCTCCCTG GTTACGTGGA CTGTGGAGCT GGTCTCTTGT 240 GGCTCAGCGC CGTGCGGAGG TTGAAGCGTA CCTGCGGAGG TCGCACCAGG GGCGTGAGGA 300 50 GGAGGAGGAA GGGCATGAGC CGAGCTTGAG GAATCCGTGY TCCAAACTCT ACACTCAAGG 360 RTGCMCTGCG CAACTCTGGT GGCGATGGGC TGGGGCAGAT GTCCTTGGAG TTCTACCAGA 420 AGAAGAAGTC TCGCTGGCCA TTCTCAGACG AGTGCATCCC ATGGGAAGTG TGGACGGTCA 480 55 AGGTGCATGT GGTAGCCCTG GCCACGGAGC AGGAGCGGCA GATCTGCCGG GAGAAGGTGG 540 600 GTGAGAAACT CTGCGAGAAG ATCATCAACA TCGTGGAGGT GATGAATCGG CATGAGTACT 60 TGCCCAGAT GCCCACACAG TCGGAGGTGG ATAACGTGTT TGACACAGGC TTGCGGGACG 660

	TGCAGCCCTA CCTGTACAAG ATCTCCTTCC AGATCACTGA TGCCCTGGGC ACCTCAGTCA	720
5	CCACCACCAT GCGCAGGCTC ATCAAAGACA CCCTTGCCCT CTGAGCGTCG CTGGATCTCT	780
J	GGGAGCTCCT TGATGGCTCC CAGACCTTGG CTTTTGGGAA TTGCACTTTT GGGCCTTTGG	840
	GCTCTGGAAC CTGCTCTGGG TCATTGGTGA GACTTGGAAG GGGCAGCCCC CGCTGGCTTC	900
10	TIGGITITGT GGITGCCAGC CTCAGGICAT CCTTTTAATC TITGCTGACG GITCAGTCCT	960
	GCCTCTACTG TCTCTCCATA GCCCTGGTGG GGTCCCCCTT CTTTCTCCAC TGTACAGAAG	1020
	AGCCACCACT GGGATGGGGA ATAAAGTTGA GAACATGAGT TTGGGCTGAA AAAAAAAAA	1079
15		
20	(2) INFORMATION FOR SEQ ID NO: 214: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3791 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:	
30	TGAAGCAGGC GCTCTTGGCT CGGCGCGCC CGCTGCAATC CGTGGAGGAA CGCGCCGCCG	60
50	AGCCACCATC ATGCCTGGGC ACTTACAGGA AGGCTTCGGC TGCGTGGTCA CCAACCGATT	120
	CGACCAGTTA TTTGACGACG AATCGGACCC CTTCGAGGTG CTGAAGGCAG CAGAGAACAA	180
35	GAAAAAAGAA GCCGGCGGGG GCGGCGTTGG GGGCCCTGGG GCCAAGAGCG CATCAGGGCC	240
	GCGGCCCAGA CCAACTCCAA CGCGGCAGGC AAACAGCTGC GCAAGGAGTC CCAGAAAGAC	300
40	CGCAAGAACC CGCTGCCCCC CAGCGTTGGC GTGGTTGACA AGAAAGAGGA GACGCAGCCG	360
40	CCCGTGGCGC TTTAAGAAAG AAGGAATAAG ACGAGTTGGA AGAAGACCTG ATCAACAACT	420
	TCAGGGTGAA GGGAAAATAA TTGATAGAAG ACCAGAAAGG CGACCACCTC GTGAACGAAG	480
45	ATTCGAAAAG CCACTTGAAG AAAAGGGTGA AGGAGGCGAA TTTTCAGTTG ATAGACCGAT	540
	TATTGACCGA CCTATTCGAG GTCGTGGTGG TCTTGGAAGA GGTCGAGGG GCCGTGGACG	600
••	TGGAATGGC CGAGGAGATG GATTTGATTC TCGTGCCAAA CGTGAATTTG ATAGGCATAG	660
50	TGGAAGTGAT AGATCTTCTT TTTCACATTA CAGTGGCCTG AAGCACGAGG ACAAACGTGG	720
	AGGTAGCGGA TCTCACAACT GGGGAACTGT CAAAGACGAA TTAACTGACT TGGATCAATC	780
55	AAATGTGACT GAGGAAACAC CTGAAGGTGA AGAACATCAT CCAGTGGCAG ACACTGAAAA	840
	TAAGGAGAAT GAAGTTGAAG AGGTAAAAGA GGAGGGTCCA AAAGAGATGA CTTTGGATGA	900
	GTGGAAGGCT ATTCAAAATA AGGACCGGC AAAAGTAGAA TTTAATATCC GAAAACCAAA	960

	TGAAGGTGCT GATGGGCAGT GGAAGAAGGG ATTTGTTCTT CATAAATCAA AGAGTGAAGA	1020
	GGCTCATGCT GAAGATTCGG TTATGGACCA TCATTTCCGG AAGCCAGCAA ATGATATAAC	1080
5	GTCTCAGCTG GAGATCAATT TTGGAGACCT TGGCCGCCCA GGACGTGGCG GCAGGGGAGG	1140
	ACGAGGTGGA CGTGGGCGTG GTGGGCGCCC AAACCGTGGC AGCAGGACCG ACAAGTCAAG	1200
10	TECTTCTECT CCTGATGTEG ATGACCCAGA GECATTCCCA GCTCTGGCTT AACTGGATGC	1260
10	CATAAGACAA CCCTGGTTCC TTTGTGAACC CTTCTGTTCA AAGCTTTTGC ATGCTTAAGG	1320
	ATTCCAAACG ACTAAGAAAT TAAAAAAAAA AAGACTGTCA TTCATACCAT TCACACCTAA	1380
15	AGACTGAATT TTATCTGTTT TAAAAATGAA CTTCTCCCGC TACACAGAAG TAACAAATAT	1440
	GGTAGTCAGT TITGTATTTA GAAATGTATT GGTAGCAGGG ATGTTTTCAT AATTTTCAGA	1500
20	GATTATGCAT TCTTCATGAA TACTTTTGTA TTGCTGCTTG CAAATATGCA TTTCCAAACT	1560
20	TGAAATATAG GTGTGAACAG TGTGTACCAG TTTAAAGCTT TCACTTCATT TGTGTTTTTT	1620
	AATTAAGGAT TTAGAAGTTC CCCCAATTAC AAACTGGTTT TAAATATTGG ACATACTGGT	1680
25	TTTAATACCT GCTTTGCATA TTCACACATG GTCAACTGGG ACATGTTAAA CTTTGATTTG	1740
	TCAAATTTTA TGCTGTGGG AATACTAACT ATATGTATTT TAACTTAGTT TTAATATTTT	1800
30	CATTTTTGGG GAAAAATCTT TTTTCACTTC TCATGATAGC TGTTATATAT ATATGCTAAA	1860
30	TCTTTATATA CAGAAATATC AGTACTTGAA CAAATTCAAA GCACATTTGG TTTATTAACC	1920
	CTTGCTCCTT GCATGGCTCA TTAGGTTCAA ATTATAACTG ATTTACATTT TCAGCTATAT	1980
35	TTACTTTTTA AATGCTTGAG TTTCCCATTT TAAAATCTAA ACTAGACATC TTAATTGGTG	2040
	AAAGTTGTTT AAACTACTTA TIGTTGGTAG GCACATCGTG TCAAGTGAAG TAGTTTTATA	2100
40	GGTATGGGTT TTTTCTCCCC CTTCACCAGG GTGGGTGGAA TAAGTTGATT TGGCCAATGT	2160
40	GTAATATTTA AACTGTTCTG TAAAATAAGT GTCTGGCCAT TTGGTATGAT TTCTGTGTGT	2220
	GAAAGGTCCC AAAATCAAAA TGGTACATCC ATAATCAGCC ACCATTTAAC CCTTCCTTGT	2280
45	TCTAAAACAA AAACCAAAGG GCGCTGGTTG GTAGGGTGAG GTGGGGGAGT ATTTTAATTT	2340
	TTGGAATTTG GGAAGCAGAC AGCTTTACTT TGTAAGGTTG GAACAGCAGC ACTATACATG	2400
50	AAATATAAAC CAAAAACCTT TACTGTTTCT AAATTTCCTA GATTGCTATT ATTTGGTTGT	2460
50	AAGTTGAGTA TYCCACAGAA AGTGGTAATT ATCTCTTCTC TCTTCCTCCA TTAGAAAATT	2520
	AGGTAAATAA TGGATTCCTA TAATGGGAGC ATCACCACTT ATTAAAACAC ACATAGAATG	2580
55	ATGAATTAAA AAAGTTTTCT AGGATTGTCT TTTATTCTGC CACATTTATT GATAAACAGT	2640
	GAAGGAATTT TTAAAAAATT TTTAAGAATT GTTTGTCACG TCATTTTTAG AAATGTTCTA	2700
60	CCTGTATATG GTAATGTCCA GTTTTAAAAA TATTGGACAT CTTCAATCTT AAACATTTCT	2760
-		

360

60

	ATTTAGCTGA TYGGTTCTCA CATATACTTC TAAAAGAAAC TTTTATGTTA TAAGAGTTAC	2820
	TTTTTGGATA AGATTTATTA ATCTCAGTTA CCTACTATTC TGACATTTTA GGAAGGAGGT	2880
5	AATTGTTTTT AATGATGGAT AAACTTGTGC TGGTGTTTTG GATCTTATGA TGCTGAGCAT	2940
	GTTCTGCACT GGTGCTAATG TCTAATATAA TTTTATATTT ACACACATAC GTGCTACCCA	3000
	GAGATTAATT TAGTCCATAT GAACTATTGA CCCATTGTTC ATTGAGACAG CAACATACGC	3060
10	ACTCCTAAAT CAGTGTGTT AGACTTTCA AGTATCTAAC TCATTTCCAA ACATGTACCA	3120
	TGTTTTATAA ACCTCTTGAT TTCCAGCAAC ATACTATAGA AAACACCTGC TACTCAAAAC	3180
15	ACAACTTCTC AGTGTCATCC ATTGCTGTCG TGAGAGACAA CATAGCAATA TCTGGTATGT	3240
	TGCAAGCTTT CAAGATAGCC TGAACTTAAA AAGTTGGTGC ATTAGTTGTA TCTGATGGAT	3300
	ATAAATTIGC CICCTAGTIC ACTITGTGIC AAGAGCTAAA ACTGIGAACC TAACTITCIC	3360
20	TTATTGGTGG GTAATAACTG AAAATAAAGA TTTATTTTCA TGCTCACTTC TTAAAAGTCA	3420
	TAAAAACAAT CAAATAGGRT CATGTTTATT GTCATGTGTT TCCTGGKTTC TGACCTGTGT	3480
25	GCACACCCCT GTGTGTTTAT AATTTTTAAA TTGAATTTTA TATGGGGTTT TTATTTGCTA	3540
	AAAACCAGGC TGTTGAATCA CATTTGGGAA GGGTACTTAT CTTAATGACT AATGACTTAA	3600
	TTGGGAAAGT TGAATTCTTG TAAAATACAA AATCCAAGGA CITCTTGGGA TTTAATCTAA	3660
30	TIGTCACTIC NITAGGCAGA TNCACTITIT TGGATAATGG AAAGTTAAGC ATACCGAATG	3720
	CTACTTTTGG TTGACAAACG GGCCTAATAG TCCGGGGGGA AATCCCTAAC NGGTAAGGNT	3780
35	CCCAAGTATG G	3791
40	215.	
40	(2) INFORMATION FOR SEQ ID NO: 215:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1334 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:	
50	CAGTGCTCGC TCCTGCTCGG GGCGCTGCGG CCCCGGGCGT CGCCATGACC AGTGAGCTGG	60
	ACATCTTCGT GGGGAACAGA CCCTTATCGA CGAGGACGTG TATCGCCTCT GGCTCGATGG	120
مر م <u>م</u>	TTACTCGGTG ACCGACGCGG TGGCCCTGCG GGTGCGCTCG GGAATCCTGG AGCAGACTGG	180
55	CGCCACGGCA GCGGTGCTNC AGAGCGACAC CATGGACCAT TACCGCACCT TCCACATGCT	240
	CGAGCGGCTG CTGCATGCGC CGCCCAAGCT ACTGCACCAG YTCATCTTCC AGATTCCGCC	300

CTCCCGGCAG GCACTACTCA TCGAGAGGTA CTATGCCTTT RATGAGGCCT TTGTTCGGGA

PCT/US98/04493

360

60

	GGTGCTGGGC AAGAAGCTGT CCAAAGGCAC CAAGAAAGAC CTGGATGACA TCAGCACCAA	420
5	AACAGGCATC ACCCTCAAGA GCTGCCGGAG ACAGTTTGAC AACTTTAAAC GGGTCTTCAA	480
	GGTGGTAGAG GAAATGCGGG GCTCCCTGGT GGACAATATT CAGCAACACT TCCTCCTCTC	540
	TGACCGGTTG GCCAGGGACT ATGCAGCCAT CGTCTTCTTT GCTAACAACC GCTTTGAGAC	600
10	AGGGAAGAAA AAACTGCAGT ATCTGAGCTT CGGTGACTTT GCCTTCTGCG CTGAGCTCAT	660
	GATCCAAAAC TGGACCCTTG GAGCCGTCGA CTCACAGATG GATGACATGG ACATGGACTT	720
	AGACAAGGAA TITCTCCAGG ACTTGAAGGA GCTCAAGGTG CTAGTGGCTG ACAAGGACCT	780
15	TCTGGACCTG CACAAGAGCC TGGTGTGCAC TGCTCTCCGG GGAAAGCTGG GCGTCTTCTC	840
	TGAGATGGAA GCCAACTTCA AGAACCTGTC CCGGGGGCTG GTGAACGTGG CCGCCAAGCT	900
20	GACCCACAAT AAAGATGTCA GAGACCTGTT TGTGGACCTC GTGGAGAAGT TTGTGGAACC	960
	CTGCCGCTCC GACCACTGGC CACTCAGCGA CGTGCGGTTC TTCCTGAATC AGTATTCAGC	1020
	GTCTGTCCAC TCCCTCGATG GCTTCCGACA CCAGGCCTCT GGGACCGCTA CATGGGCACC	1080
25	CTCCGCGGCT GCCTCCTGCG CCTGTATCAT GACTGAGGTG CCTCCCAACG CTCCGCCCAC	1140
	CCTGACAATA AAGTTGCTCT GAGTTTGGAG ACTGGTCCTC GCTCCGGGGA GCAAGTGGGG	1200
30	GGCGTGCAGA TGTGCCTGTG TCTGTCTCTG AGCACCTGGT GTCCGTGTAC AAGGATGGAT	1260
	CTCTNCNCTC CCTCCTTGGG AACTGAGACA TATCTCAGGG AATGGTGTCT GTGCTCAGCC	1320
	CATCCACCAG AAGA	1334
35		
40	(2) INFORMATION FOR SEQ ID NO: 216:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1511 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:	
50	GTGGCGGGGA TGCTGCGAGG GGGTCTCCTG CCCCAGGCGG GCCGGCTGCC TACCCTCCAG	60
	ACTGTCCGCT ATGGCTCCAA GGCTGTTACC CGCCACCGTC GTGTGATGCA CTTTCAGCGG	120
	CAGAAGCTGA TGGCTGTGAC TGAATATATC CCCCCGAAAC CAGCCATCCA CCCATCATGC	180
55	CTGCCATCTC CTCCCAGCCC CCCACAGGAG GAGATAGGCC TCATCAGGCT TCTCCGCCGG	240
	GAGATAGCAG CAGTTTTCCA GGACAACCGA ATGATAGCCG TCTGCCAGAA TGTGGCTCTG	300

AGTGCAGAGG ACAAGCTTCT TATGCGACAC CAGCTGCGGA AACACAAGAT CCTGATGAAG

WO 98/39448

	RTCTTCCCCA ACCAGGTCCT GAAGCCCTTC CTGGAGGATT CCAAGTACCA AAATCTGCTG	420
	CCCCTTTTTG TGGGGCACAA CATGCTGCTG GTCAGTGAAG AGCCCAAGGT CAAGGAGATG	480
5	GTACGGATCT TAAGGACTGT GCCATTCCTG CCGCTGCTAG GTGGCTGCAT TGATGACACC	540
	ATCCTCAGCA GGCAGGGCTT TATCAACTAC TCCAAGCTCC CCAGCCTGCC CCTGGTGCAG	600
10	GGGGAGCTTG TAGGAGGCCT CACCTGCCTC ACAGCCCAGA CCCACTCCCT GCTCCAGCAC	660
10	CAGCCCCTCC AGCTGACCAC CCTGTTGGAC CAGTACATCA GAGAGCAACG CGAGAAGGAT	720
	TCTGTCATGT CGGCCAATGG GAAGCCAGAT CCTGACACTG TTCCGGACTC GTAGCCAGCC	780
15	TGTTTAGCCA GCCCTGCGCA TAAATACACT CTGCGTTATT GGCTGTGCTC TCCTCAATGG	840
	GACATGTGGA AGAACTTGGG GTCGGGGAGT GTGTTTGTCA CTTGGTTTTC ACTAGTAATG	900
20	ATATTGTCAG GTATAGGGCC ACTTGGAGAT GCAGAGGATT CCATTTCAGA TGTCAGTCAC	960
20	CGGCTTCGTC CTTAGTTTTC CCAACTTGGG ACGTGATAGG AGCAAAGTCT CTCCATTCTC	1020
	CAGGTCCAAG GCAGAGATCC TGAAAAGATA GGGCTATTGT CCCCTGCCTC CTTGGTCACT	1080
25	GCCTCTTGCT GCACGGGCTC CTGAGCCACC CCCTTGGGGC ACAACCTGCC ACTGCCACAG	1140
	TAGCTCAACC AAGCAGTTGT GCTGAGAATG GCACCTGGTG AGAGCCTGCT GTGTGCCAGG	1200
30	CTTIGTGCTG AGTGCTGTAC ATGTATTAGT TCCTTTACTG CTGACCACAT TGTACCCATT	1260
30	TCACAGAGAA GGAGCAGAGA AATTAAGTGG CTTGCTCAAG GTCATGCAGT TAGTAAGTGG	1320
	CAGAACAGGG ACTTGAACCA AGCCCTCTGC TCTGAAGACC GCGTCCTGAA TTTCTTCACT	1380
35	AGAGCTTCCT CATCAGGTTA CCCAGAAGTG GGTCCCATCC ACCATCCAGG TGTGCTTGGA	1440
	TGTTAGTTCT CCACCCTCGA GGTGTACGCT GTGAAAAGTT TGGGAGCACT GCTTTATAAT	1500
40	AAAATGAAAT A	1511
40		
45	(2) INFORMATION FOR SEQ ID NO: 217:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 642 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:	
55	AGGCCTTACT TITCCTCCCA CAAAGGAGTC GCAGCCACGC TAGCTCTGAC TTGCCACTGT	60
	GACÁAAGTTC ACGTAGCAGG TCTAGGCAAA GACTGGGCAA TTGAGCAGAG GAGACGGACC	120
	TGTGAGTCTG ACCRYGAGSC GGRCCCCTTC ACCTTGGCTG GGCTGGTCCT GGTCCTTAGG	180
60	THE TAXABLE AND THE PROPERTY OF THE PROPERTY O	240

445

	ACCCGCCTTG GACGTGTTTC TTTAACCTCA TCCATATAAT AGGGCCGTGG GATGGTTGTA	300
5	GAGGTAAAGC AGGATGATGG TGTTTTAAGA CCAGAGCTTG GGACCAGGGC TCCTACACCT	360
	AATTITCTCT CCTGGTAGCT GAACAAAGGT CTAAATTAGC TTAACAAAAG AACAGGCTGC	420
	CGTCAGCCAG AGTTCTGAAG GCCATGCTTT CAGTTTCCCT TGTTGACAAT TGCTCTCCAG	480
10	TTCCTATGAA AGCACAGAGC CTTAGGGGGC CTGGCCACAG AACACAACCA TCTTAGGCCT	540
	GASCITCIGAA CAGCAGGGG TIGIGIGICI GIICIGITTC TCTGCTTGCC GAACTITCTC	600
15	AATAAACCCT ATTTCTTATT TTATATTTAC GTNGGTGCTG GG	642
1,0		
20	(2) INFORMATION FOR SEQ ID NO: 218: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:	
30	GGTCCCACTG TTCCATTTTA TGCTAATAGA TTCCATTCTA GGGCCCAGCC GTCTCTTGAC	60
	TGATGGTGTT CCCTTTAACC CTTGGCATGT ATAATAGAAT TTTGGTGAAT GAAAGAACCC	120
	AAATAGGCCA GATAGTCCCC CCAGGCCCTG ATATCCATAA AAGGCTTGGG AATGCATTAT	180
35	GTAATTGTCC TTAGTCTTTT TGTTGTTTTA GAAAAAAAA ACAAGATGGG CTCAGATGGA	240
	TGCCTACGTA AAAATGGTTC CTAGCTGTGT ACTCATAACT TTTCTTTGAA TTGAGTAGTG	300
40	AAAGGAAGGA GGAGGAAAGG AAATTAAATG TCCTTCTAGT ATTCTCTGGA CTCAAGTCTG	360
	ACATATGRGA TAATAACCTA TATTGAAATG CCAAGAATTG TATCTGAAAC AAGRGAACAG	420
	TTTGACACAT TTATCATGCC TTCATATTAC ATATTAACTG AAACCAATTA ATAAACATAT	480
45	GAAATATCCA TTGCACAAGG CAAAGGCACC TAAACCTTTT GTTTCTTTTT CTACATAGCA	540
	GAAATTGATT TTTTTTTAT TTTTTTAGGG GAACCTATAT AATTATGACC CAGTGATGTC	600
50	TTTTGGTGAC TTAAGCTTAT GAATICAGGT TACAATTGAG TIGATTCTAG ATGGTTACTA	660
	CCTTGAAAAG GATGTTGGTG CCTTATGTGA CACGAGCCAG AGCCTGCTGG GAATAAACAA	720
	AGCAGATTCA TGCCAACACC AACTCGTAGC TTTAGTGGCA GATGGGAGTG GTCACAGACT	780
55	CCCAAAATGT GGGGCTTTGG ATTTCCACAC CATCCCACGT GTGTGTCATC TTCCTCTTTC	840
	ACACTCTTGA TGATAATTTG AAAATGRTGA AATCACCTCT GAATTTGCCT ATAGCATGAG	900

CACATTCTTA TGACAACATA ACAAATAGTT CATAATGTGA ATATTAGAAA CTGTTACAGC

60

446

	CTGCAGTTAC CATAATTITC CATGITTGTG GAATTGATAT TGAAATAGCA GGGCTAAGGA	1020
	ATTACTGGCA AGTTTTAGCC TGTGGGTAAT ACCTTAGGGT TATTTAAATA TTTGTAATTT	1080
5	TATTTAAATG TICATGAATG TITGAAAGGA ACAAAATTAT CAGGGATGGC TCTTTGCCAT	1140
	GGGTCTTATT TTCACCCTCT TTTCTGTAAG AAAAAAGAAC AATGTCTTAA TGTATTTTTA	1200
10	AAGTTTTTGG TATAGTTTCT AATTCCAATT TTAATAAAAG T	1241
10		
	(2) INFORMATION FOR SEQ ID NO: 219:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1080 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:	
25	TGTTTATGTG ACCTAAAACA TACACACATG CACACACAC TACATATCCA TTCATTCATT	60
	CATTCAAGTG GTGTTTCCAG TGTCTGTGTG TCACTGTTTA TGCAGTTTCC ATTTCCCAGT	120
	GAATTATGAG TGGAGGGCAA CTTTTCTAAC CAGATTGTCT TTTCAGAACA AAGACCKGGG	180
30	RATTGAGGAA GAGTTTGGAA AGAGGGAGGG GCAAGGAAAG AGAGCTTTAA ATTGAAAGGT	240
	TAATTTCCTA AGAGGAACCT GGGCTGAATG ACTACAGTGT TATACCCTCC AATCTTTGCA	300
35	GGTGGGCATG GAACACTGCT TGTATCACTC TGTGCACGGT ATAAATCCAT ATATCCACAA	360
33	AAACACACAT CCATCCATCA ACATATACAT GGTTTGGGAT GAGCAGGTCA ATAGTTTTGA	420
	GAGGGAGTTT GTTCCTTTTT TTTTCTCATT ATACTCTTAA ATTGTTGTCA GTTATCAAAC	480
40	AAACAAACAG AAAAATTGTT TGGGAAAAAC CTTGCATACG CCTTTTCTAT CMAGTGCTTT	540
	AAAATATAGA CTAAATACAC ACATCCTGCC AGTTTTTTCT TACAGTGACA GTATCCTTAC	600
45	CTGCCATTTA ATATTAGCCT CGTATTTTC TCACGTATAT TTACCTGTGA CTTGTATTTG	660
43	TTATTTAAAC AGGAAAAAAA ACATTCAAAA AAAGAAAAAT TAACTGTAGC GCTTCATTAT	720
	ACTATTATAT TATTATTATT ATTGTGACAT TITGGAATAC TGTGAAGTTT TATCTCTTGC	780
50	ATATACTTTA TACGGAAGTA TTACGCCTTA AAAATACGAA AATAAATTTT ACAAGGTTTC	840
	TGTTTTGTGT GGAAGAGTAA TTGATGTTGC TAAGAATGAT GTTTGTTTTT TTGGGGTTTT	900
55	TGTTGTTTT TTTTTAAATG TTACCAGCAC TTTTTTTGTA AGTTTCACTT TCCGAGGTAT	960
در	TGTACAAGTT CACACTGTTT GTGAAGTTTG AATATGAAGG AATAATTAAA AAAAAAAA	1020

AAACCNCGGG GGGGCCCCGG TCCCATTGGN CCCAAGGGGG CGGTTACGGG GTCACGGCCG

55

(2) INFORMATION FOR SEQ ID NO: 220:

5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1258 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220:

	TGAATTGAGG	GCTTAAAGAT	AAACATATGG	GRTTGGAGTT	GTGTGTCCAT	AGGGTTTCAC	60
15	TGCCTATTTG	ATTTGAGTTT	ATCCCTATTA	ATTTTTTACA	GTGAAATTTT	ATTAAAGTAT .	120
	AATGTACATA	TATTTTCAGT	GGATTTTGCT	CTGAAGGTTC	TCCAGTGGTC	TGACTACGAG	180
20	ATAGTGCGGC	TTCAGCTGTG	GGATATTGCA	GGGCAGGAGC	GCTTCACCTC	TATGACACGA	240
20	TTGTATTATC	GGGATGCCTC	TGCCTGTGTT	ATTATGTTTG	ACGTTACCAA	TGCCACTACC	300
	TTCAGCAACA	GCCAGAGGTG	GAAACAGGAC	CTAGACAGCA	AGCTCACACT	ACCCAATGGA	360
25	GAGCCGGTGC	CCTGCCTGCT	CTTGGCCAAC	AAGTGTGATC	TGTCCCCTTG	GGCAGTGAGC	420
	CGGGASCAGA	TTGACCGGTT	CAGTAAAGAG	AACGGTTTCA	CAGGTTGGAC	AGAAACATCA	480
30	GTCAAGGAGA	ACAAAAATAT	TAATGAGGCT	ATGAGAGTCC	TCATTGAAAA	GATGATGAGA	540
50	AATTCCACAG	AAGATATCAT	GTCTTTGTCC	ACCCAAGGGG	ACTACATCAA	TCTACAAACC	600
	AAGTCCTCCA	GCTGGTCCTG	CTGCTAGTAG	TGTTTGGYTT	ATTITCCATC	CCAGTTCTGG	660
35	GAGGTCTTTT	AAGTCTCTTC	CCTTTGGTTG	CCCACCTGAC	MATTTTATTA	AGTACATTTG	720
	AATTGTCTCC	TGACTACTGT	CCAGTAAGGA	GGCCCATTGT	CACTTAGAAA	AGACACCTGG	780
40	AACCCAKGTG	CATTTCTGCA	TCTCCTGGAT	TAGCCTTTSA	CATGITGCTG	RCTCACATTA	840
40	GTGCCAGTTA	GTGCCTTCGG	TGTAAGATCT	TCTCATCAGC	CCTCAATTTG	TGATCCGGAA	900
	TTTTGTGAGA	AGGATKAGAA	ATCAGCACCT	GCGTTTTAGA	GATCATAATT	CTCACCTACT	960
45	TCTGAGCTTA	TTTTTCCATT	TGATATTCAT	TGATATCATG	ACTTCCAATT	GAGAGGAAAA	1020
	TGAGATCAAA	TGTCATTTCC	CAAATTTCTT	GTAGGCCGTT	GTTTCAGATT	CTTTCTGTCT	1080
50	TGGAATGTAA	ACATCTGATT	CTGGAATGCA	GAAGGAGGG	TCTGGGCATC	TGTGGATTTT	1140
50	TGGCTACTAG	AAGTGTCCCA	GAAGTCACTC	TATTTTTGAA	ACTICTAACG	TCATAATTAA	1200
	GTTTCTCTTC	TCTTGGGCAT	CAAGANTAGT	TCCAATTTT	TGGGCCGGGG	CAGGGTGG	1258

(2) INFORMATION FOR SEQ ID NO: 221:

60 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1693 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:

	CACAATATAT GAAATAGTAC CCTCTAAAAA AGAGAAAAAA AAAATCAGGC GGTCAAACTT	60
10	AGAGCAACAT TGTCTTATTA AAGCATAGTT TATTTCACTA GAAAAAATTT AATATCAAGG	120
	ACTATTACAT ACTICATTAC TAGGAAGTIC TITTTAAAAT GACACTTAAA ACAATCACTG	180
	AAAACTIGAT CCACATCACA CCCIGITTAT TITCCTTAAA CATCITGGAA GCCTAAGCTT	240
15	CTGAGAATCA TGTGGCAAGT GTGATGGGCA GTAAAATACC AGAGAAGATG TTTAGTAGCA	300
	ATTARAGECT GTTTGCACCT TTARGGACCA GCTGGGCTGT AGTGATTCCT GGGGCCAGAG	360
20	TOGCATTATG TITTTACAAA ATAATGACAT ATGTCACATG TITGCATGIT TGTTTGCTTG	420
	TIGAATTITT GAACAGCCAG TIGACCAATC ATAGAAAGTA TIACTITCIT TCATATGGIT	480
0.5	TTTGGTTCAC TGGCTTAAGA GGTTTCTCAG AATATCTATG GCCACAGCAG CATACCAGTT	540
25	TCCATCCTAA TAGGAATGAA ATTAATTTTG TATCTACTGA TAACAGAATC TGGGTCACAT	600
	GAAAAAAAT CATTITATCC GTCTTTTAAG TATATGITTA AAATAATAAT TTATGIGTCT	660
30	GCATATTGCA GAACAGCTCT GAGAGCAACA GTTTCCCATT AACTCTTTCT GACCAATAGT	720
	GCTGGCACCG TTGCTTCCTC TTTGGGAAGA GGAAAGGGTG TGTGAACATG GCTAACAATC	780
25	TTCAAATACC CAAATTGTGA TAGCATAAAT AAAGTATTTA TTTTATGCCT CAGTATATTA	840
35	TTATTTAATT TTTTAGGTAA TGCCTATCTC TTGGTCTATT AAGGAAAGAA GCAATCAGTA	900
	GAGAATTCAG GATAGTTTTG TTTAAATTCT TGCAGATTAC ATGTTTTTAC AGTGGCCTGC	960
40	TATTGAGGAA AGGTATTCTT CYATACAACT TGTTTTAACC TTTGAGAACA TTGACAGAAA	1020
	TTATGCAATG GTTTGTTGAG ATACGGACTT GATGGTGCTG TTTAATCAGT TTGCTTCCAA	1080
45	AGTGGCCTAC TCAAGAGGCC CTAAGACTGG TAGAAATTAA AAGGATTTCA AAAACTTTCT	1140
43	ATTCCTTTCT TAAACCTACC AGCAAACTAG GATTGTGATA GCAATGAATG GTATGATGAA	1200
	GAAAGITIGA CCAAATITGT TITTITGITG TIGITGITGT TITGAATITG AAATCATICT	1260
50	TATTCCCTTT AAGAATGTTT ATGTATGAGT GTGAAGATGC TAGCGAACCT ATGCTCAGAT	1320
	ATTCATCGTA AGTCTCCCTT CACCTGTTAC AGAGTTTCAG ATCGGTCACT GATAGTATGT	1380
55	ATTICTITAG TAAGAATGIG TTAAAATTAC AATGATCTIT TAAAAAGATG ATGCAGTICT	1440
23	GTATTTATTG TGCTGTGTCT GGTCCTAAGT GGAGCCAATT AAACAAGTTT CATATGTATT	1500
	TTTCCAGTGT TGAATCTCAC ACACTGTACT TTGAAAATTT CCTTCCATCC TGAATAACGA	1560
60	ATAGAAGAGG CCATATATAT TGCCTCCTTA TCCTTGAGAT TTCACTACCT TTATGTTAAA	1620

5	AAAAAAAAA AAA	1693
10-	(2) INFORMATION FOR SEQ ID NO: 222: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1196 base pairs (B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:	
20	ACGCGTGGGT CGACCCACGC GTCCGCGACN TGGCGTGGTG GGGAAGGGAG AAGGATTTGT	60
20	AAACCCCGGA GCGAGGTTCT GCTTACCCGA GGCCGCTGCT GTGCGGAGAC CCCCGGGTGA	120
	AGCCACCGTC ATCATGTCTG ACCAGGAGGC AAAACCTTCA ACTGAGGACT TGGGGGATAA	180
25	GAAGGAAGGT GAATATATTA AACTCAAAGT CATTGGACAG GATAGCAGTG AGATTCACTT	240
	CAAAGTGAAA ATGACAACAC ATCTCAAGAA ACTCAAAGAA TCATACTGTC AAAGACAGGG	300
	TGTTCCAATG AATTCACTCA GGTTTCTCTT TGAGGGTCAG AGAATTGCTG ATAATCATAC	360
30	TCCAAAAGAA CTGGGAATGG AGGAAGAAGA TGTGATTGAA GTTTATCAGG AACAAACGGG	420
	GGGTCATTCA ACAGTTTAGA TATTCTTTTT ATTTTTTTC TTTTCCCTCA ATCCTTTTTT	480
35	ATTTTTAAAA ATAGTTCTTT TGTAATGTGG TGTTCAAAAC GGAATTGAAA ACTGGCACCC	540
	CATCTCTTIG AAACATCIGG TAATTIGAAT TCTAGTGCTC ATTATTCATT ATTGTTTGTT	600
	TTCATTGTGC TGATTTTTGG TGATCAAGCC TCAGTCCCCT TCATATTACC CTCTCCTTTT	660
40	TAAAAATTAC GTGTGCACAG AGAGGTCACC TTTTTCAGGA CATTGCATTT TCAGGCTTGT	720
	GGTGATAAAT AAGATCGACC AATGCAAGTG TTCATAATGA CTTTCCAATT GGCCCTGATG	780
45	TICTAGCATG TGATTACTIC ACTCCTGGAC TGTGACTTTC AGTGGGAGAT GGAAGTTTTT	840
43		900
	CAGAGAACTG AACTGTGGAA AAATGACCTT TCCTTAACTT GAAGCTACTT TTAAAATTTG	300

AGGSTCTGGA CCAAAAGAAG AGGAATATCA GGTTGAAGTC AAGATGACAG ATAAGGTGAG

AGTAATGACT AACTCCAAAG ATGGCTTCAC TGAAGAAAAG GCATTTTAAG ATTTTTTAAA

AATCTTGTCA GAAGATCCCA GAAAAGTTCT AATTTTCATT AGCAATTAAT AAAGCTATAC

ATGCAGAAAT GAATACAACA GAACACTGCT CTTTTTGATT TTATTTGTAC TTTTTGGCCT

GGGATATGGG TTTTAAATGG ACATTGTCTG TACCAGCTTC ATTAAAATAA ACAATA

5

(2) INFORMATION FOR SEQ ID NO: 223:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1791 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

	(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:	
	TCAGGGAGGT GGCAGGAAAG GCTTGGAACA GCTGCCGGAG TGACGGAGCG GCGGCCCCGC	60
	CCGGTTGCGC TGGAGGTCGA AGCTTCCAGG TAGCGGCCCG CAGAGCCTGA CCCAGGCTCT	120
15	GGACATCCTG AGCCCAAGTC CCCCACACTC AGTGCAGTGA TGAGTGCGGA AGTGAAGGTG	180
	ACAGGGCAGA ACCAGGAGCA ATTTCTGCTC CTAGCCAAGT CGGCCAAGGG GGCAGCGCTG	240
20	GCCACACTCA TCCATCAGGT GCTGGAGGCC CCTGGTGTCT ACGTGTTTGG AGAACTGCTG	300
	GACATGCCCA ATGTTAGAGA GCTGGCTGAG AGTGACTTTG CCTCTACCTT CCGGCTGCTC	360
25	ACAGTGTTTG CTTATGGGAC ATACGCTGAC TACTTAGCTG AAGCCCGGAA TCTTCCTCCA	420
25	CTAACAGAGG CTCAGAAGAA TAAGCTTCGA CACCTCTCAG TTGTCACCCT GGCTGCTAAA	480
	GTAAAGTGTA TCCCATATGC AGTGTTGCTG GAGGTCTTGC CCTGCGTAAT GTGCGGCAGC	540
30	TGGAAGACCT TGTGATTGAG GCTGTGTATG CTGACGTGCT TCGTGGCTCC CTGGACCAGC	600
	GCAACCAGCG GCTCGAGGTT GACTACAGCA TCGGGCCGGGA CATCCAGCGC CAGGACCTCA	660
35	GTGCCATTGC CCGAACCCTG CAGGAATGGT GTGTGGGCTG TRAGGTCGTG CTGTCAGGCA	720
33	TTGAGGAGCA GGTGAGCCGT GCCAACCAAC ACAAGGAGCA GCAGCTGGGC CTGAAGCAGC	780
	AGATTGAGAG TGAGGTTGCC AACCTTAAAA AAACCATTAA AGTTACGACG GCAGCAGCAG	840
40	CCGCAGCCAC ATCTCAGGAC CCTGAGCAAC ACCTGACTGA GCTGAGGGAA CCAGCTCCTG	900
	GCACCAACCA GCGCCASCCA GCAAGAAAGC CTCAAAGGGC AAGGGGCTCC GAGGGAGCGC	960
45	CAAGATTTGG TCCAAGTCGA ATTGAAAGRA CTGTCGTTTC CTCCCTGGGG ATGTGGGGTC	1020
43	CCAGCTGCCT GCCTGCCTCT TAGGAGTCCT CAGAGAGCCT TCTGTGCCCC TGGCCAGCTG	1080
	ATAATCCTAG GTTCATGACC CTTCACCTCC CCTAACCCCA AACATAGATC ACACCTTCTC	1140
50	TAGGGAGGAG KCAAATGTAG GTCATGTTTT TGTTGGTACT TTCTGTTTTT TGTGACTTCA	1200
	TGTGTTCCAT TGCTCCCCGC TGCCATGCTC TCTCCCTTGT TTCCTTAAGA GCTCAGCATC	1260
55	TGTCCCTGTT CATTACATGT CATTGAGTAG GTGGGTAGCC CTGATGGGGG TCGCTCTGTC	132
33	TGGAGCATAA CCCACAGGCG TTTTTTCTGC CACCCCATCC CTGCATGCCT GATCCCCAGT	138
	TCCTATACCC TACCCCTGAC CTATTGAGCA GCCTCTGAAG AGCCATAGGG CCCCCACCTT	144
60	TACTYACACC CTGAGAATTC TGGGAGCCAG TCTGCCATGC CAGGAGTCAC TGGACATGTT	150

PCT/US98/04493

	CATCCTAGAA	TCCTGTCACA	CTACAGTCAT	TTCTTTTCCT	CTCTCTGGCC	CTTGGGTCCT	1560
_	GGGAATGCTG	CTGCTTCAAC	CCCAGAGCCT	AAGAATGGCA	GCCGTTTCTT	AACATGTTGA	1620
3	GAGATGATTC	TTTCTTGGCC	CTGGCCATCT	CGGGAAGCTT	GATGGCAATC	CTGGAAGGGT	1680
	TTAATCTCCT	TTTGTGAGTT	TGGTGGGGAA	GGGAAGGGTA	TATAGATTGT	АТТАААААА	1740
10	AAAAGGTATA	TATGCATATA	тстататата	ATATGACGCA	GAAATAAATC	T	1791
1.5			00				

15 (2) INFORMATION FOR SEQ ID NO: 224:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2517 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:

25	ACACTAGTGG ATCCAAAGAA TTCGGCACAG CGGCACAGCA TTGTTGAGCT TTTCTGTGTG	60
	TGTGGGGCCC TCAAGCGAGC TCGACTGGTC CATCCTGGGG TAGCGASGTG GTGTTTGTGA	120
30	AAAAGGACGA TGCCATCACC GCATAYAAGA AGTACAACAA CCGGTGTCTG GACGGGCAGC	180
30	CGATGAAGTG CAACCTTCAC ATGAATGGGA ATGTTATCAC CTCAGACCAG CCCATCCTGC	240
	TGCGGCTGAG TGACAGCCCA TCAATGAAAA AGGAGAGCGA GCTGCCTCGC AGGGTGAACT	300
35	CTGCCTCCTC CTCCAACCCC CCTGCCGAAG TGGACCCTGA CACCATCCTG AAGGCACTCT	360
	TCAAGTCCTC AGGGGCCTCT KTGACCACGC AGCCCACAGA WITCAAAATC AAGCTTTGAG	420
40	CAGGGGAGTR AGGCAGCCAG AAGTGGGGGC AGAGGAGGGT GGCTCTGTTT CCCCAAGGCA	480
40	AAGCTTATGA CCAATGGGCC ATCGGACTGG AGACCCCTGA TTGTGGGAAG GGTTGCCAGG	540
	GATAAAGAGC TTCCTCACTG GATGGGACCC GCCTTTCTGT GTTGTGTTCT GCCCTGTGCT	600
45	CTTCTCTCTA CGTTAACGTT TCCTGTAGTA TGTTTCTTCA TCTCATCGCC AAGGTAGGCT	660
	TGTGTTTTTM AGTGTGTGCC TCCCCGAGCC TCAGCCCCAA GCTGATTTCT TATCTGGAAA	720
50	TOGTACACTG AATTCTCTGG GTGGCTTTCT TGTGGCCCCA TGGGATGCAG CGTGGGGGCT	780
30	GTCTGAAGGA CCCTGCTTTT TCCAGGGGCC GAGGGGCTGC CTTTCCTTTG TGTGTATTAA	840
	GCTTTTCAAA CAATGGAGGG GATGGAGAGC CCTGGTGTCC TGACGGGAGC CAGGTCGGCC	900
55	TGAGAGCTGT GCCGCTCCTC TGTCTTGTCA GTGGAGGTGC CTGGGTGGGG AGCAGGTCTC	960
	AGGCCTCTTG TCCTCTCCCC AGTGGCTCCA GGCCTCACTA GTGGCAAGGG CAGGATGAGG	1020
60	CTGCACCGCT GGGAAGAGTC TATCTAAGCT CTTGGCTTGG	1080

	CAGAGGAAGT TCTCCAGAGT TCACCTTTCC CTTTTCCTTG AGTTGTGCTG AATGCCCCAC	1140
	CCCAGCTCTC TTTCCCTTCT GGGTGTCTTT GCTGGGAGGG GGCTGTGTTG TGAGCCCTCC	1200
5	CGGTTCTCAC CTCGCCTGGC ACTTAACCAC ACCCTGGTTT TGTGTAGCCG CCAGCTCTCT	1260
	TCTGGTTGGG CCTTTGAAAG GCTCAGCCTC CCATTGTGCA GTGCTTGGGT TTGGAGCTTA	1320
10	TTTGAATGGA AGAGGTCAGT TTGTTCCTGG CTCTCCATTT CTGGCCTCAG TTGTCTACAG	1380
10	GACAGTGGTC AGGGATGCCT GGAGGCATAT ATCCAGCTGC CACCAAGGGG CACTGTTTGT	1440
	TCCCACTTAT GTGAGTGACC CCATCCATCC ATGACCAGAG GATTATTTTC CTGCCTTGGC	1500
15	AGAGGAGGAG GAGTCAAGGG AGCAGGGCAG CTCTACCAGG CAAGGTGTTT CCCCAGCATA	1560
	GGCGCAGACA GTTGGGACGA AACTTCAGAG CCCAGGCAGT CCCTGAATGA CCAGGCCAGT	1620
20	GTTGTCACTG AGTGGTCCCC TGCTGGTTGG GAGTGAAGAG AATCCAGGCT GGCAGAGCTG	1680
20	GAGCCAGTTG GGGAGCACGG TTCTGGGAGC TCTGCAAAAT CAGTAGCAAG TGCTGGAAAA	1740
	GGCACATGCC GAAGATACTC AAGAGCTCCC AAGATTTGCT TGAGGCTAGC CCAGTGAAAA	1800
25	AAACCAGAGA CTCATGTTTC CAGGGGTCAG TCTGTCAGGC AGGAAGGACC CAGGATTTGA	1860
	ACCCAGCTIC AGTGTGCAGG CTCTGAGGCT GCCCAGGACG GGAAAGTCCA AGGAAGGGGC	1920
30	CTGGTGGTGC TCCACTTGCA GTTCTTTAAA GAATGCTGCT TTTTATTCTC CTAACCCTTT	1980
30	CAAGIGGGTG CAGACTICTC GTTAGCAGCT GGAAGACATT CCTCCCACAC TTTTCCCTTC	2040
	CTGGCCCAAG AGAGCATCCA GAAGGCAGTA GGACCTGGTT TTTCAGGTAC TGGGAGCCGG	2100
35	GGGCTCACTG CTTGCACTGT GCTTAGGGTA GGGATGGTAA ATATCCTCCC TGCATGGCTT	2160
	TATCCTCCCT CTCATCCCAA AGCAGGTATC TTCTGGTTGT CACAGAGTTT CATTGAGTCC	2220
40	AGCTGCAGCC ACGTGGCCAT CTGGAGCTGG TGCTATAGGT GACCATCTGG TACATTGAGG	2280
40	GGACCTGTTT GCCTCCTCCA CTCTATAAGC AGTCATCTTG GGAGACCGGG AGGAGAAGGT	2340
	GGTGGGCTAG TCCTGTGTCC TCCTCCACTT CCCATGCCTC TATGTTACCC ATCTGTGTCT	240
45	CCTGTGCAGA AGGAGAGGAA GGGGCATTAA GAGATGAAGG GTGATTATGT ATTACTTATC	246
	CATTTCTGAA TAAACATTTG TTATTCCTAA AAAAAAAAA AAAAAACTCG AGGGGGG	251

50

55

(2) INFORMATION FOR SEQ ID NO: 225:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2424 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

	TTGTANCTAA TCGAGGATTG ATTCT	AATGA CAGAGTCTTT	CAACACTITG	CACATGATGT	60
5	ATCACGAAGC TACAGCTTGC CATGT	GACTG GAGATTTAGT	AGAACTTCTG	TCAATATTTC	120
	TITCGGTTIT GAAGTCTACA CGCCC	TTATC TTCAGAGAA	AGATGTGAAA	CAAGCATTAA	180
	TCCAGTGGCA GGAGCGAATT GAATT	TGCCC ATAAACTGTT	AACTCTTCTT	AATTCCTATA	240
10	GTCCTCCAGA ACTTAGAAAT GCCTG	TATAG ATGTCCTCA	GGAACTTGTA	CTTTTGAGTC	300
	CCCATGATTT TYTTCATACT CTGGT	TCCCT TTCTACAACA	A CAACCATTGT	ACTTACCATC	360
15	ACAGTAATAT ACCAATGTCT CTTGG	ACCIT ATTICCCITO	TCRAGAAAAT	ATCAAGCTAA	420
13	TAGGAGGGAA AAGCAATATT CGGCC	TCCGC GCCCTGAACT	CAATATGTGC	CTCTTGCCCA	480
	CAATGGTGGA AACCAGTAAG GGCAA	AGATG ACGTTTATG	TCGTATGCTG	CTAGACTACT	540
20	TCTTTCTTA TCATCAGTTC ATCCA	TCTAT TATGCCGAG	TGCAATCAAC	TGTGAAAAAT	600
	TTACTGAAAC ATTAGTTAAG CTGAG	TGTCC TAGTTGCCT	A TGAAGGTTTG	CCACTTCATC	660
25	TTGCACTGTT CCCCAAACTT TGGAC	TGAGC TATGCCAGAG	CAGTCTGCT	ATGTCAAAAA	720
23	ACTGCATCAA GCTTTTGTGT GAAGA	TCCTG TTTTCGCAG	A ATATATTAAA	TGTATCCTAA	780
	TGGATGAAAG AACTTTTTTA AACAA	CAACA TIGICTACA	GTTCATGACA	CATTTCCTTC	840
30	TAAAGGTTCA AAGTCAAGTG TTTTC	TGAAG CAAACTGTG	CAATTTGATC	AGCACTCTTA	900
	TTACAAACTT GATAAGCCAG TATCA	GAACC TACAGTCTG	A TITCTCCAAC	CGAGTTGAAA	960
35	TTTCCAAAGC AAGTGCTTCT TTAAA	TGGGG ACCTGAGGG	C ACTOGOTTTG	CTCCTGTCAG	1020
33	TACACACTCC CAAACAGTTA AACCC	AGCTC TAATTCCAA	C TCTGCAAGAG	CTTTTAAGCA	1080
	AATGCAGGAC TTGTCTGCAA CAGAC	AAACT CACTCCAAG	A GCAAGAAGCC	AAAGAAAGAA	1140
40	AAACTAAAGA TGATGAAGGA GCAAG	TCCCA TTAAAAGGC	G GCGTGTTAGC	AGTGATGAGG	1200
	AGCACACTGT AGACAGCTGC ATCAC	FIGACA TGAAAACAG	A AACCAGGGAG	GTCCTGACCC	1260
45	CAACGAGCAC TTCTGACAAT GAGAC	CAGAG ACTCCTCAA	T TATTGATCCA	GGAACTGAGC	1320
40	AAGATCTTCC TTCCCCTGAA AATAC	STICIG TTAAAGAAT	A CCGAATGGAA	GTTCCATCTT	1380
	CGTTTTCAGA AGACATGTCA AATA	CAGGT CACAGCATG	C AGAAGAACAG	TCCAACAATG	1440
50	GTAGATATGA CGATTGTAAA GAAT	TTAAAG ACCTCCACT	G TTCCAAGGAT	TCTACCCTAG	1500
	CCGAGGAAGA ATCTGAGTTC CCTT	CTACTT CTATCTCTG	C AGTICIGICI	GACTTAGCTG	1560
66	ACTTGAGAAG CTGTGATGGC CAAG	CTTTGC CCTCCCAGG	A CCCTGAGGT	CCTTTATCTC	1620
55	TCAGTTGTGG CCATTCCAGA GGAC	ICTTTA GTCATATGO	A GCAACATGAG	ATTTTAGATA	1680
	CCCTGTGTAG GACCATTGAA TCTA	CAATCC ATGTCGTCA	C AAGGGATAT	TGGCAAAGGA	1740
60	AACCAAGCTG CTTCTTGACA TTAG	GTGTAG CATGTCTAG	T TTTAAGTCC	TCACCCCCAA	1800

PCT/US98/04493

40

45

50

55

60

	CCCCCATGCT GTTTGTATAA GTTTTGCTTA TTTGTTTTTG TGCTTCAGTT TGTCCAGTGC	1860
_	TCTCTGCTTG AATGGCAAGA TAGATTTATA GGCTTAATTC TTGGTCAGGC AGAACTCCAG	1920
5	ATGAAAAAA CTTGCATCTT CAGTATACTT CCTAAAGGGC AATCAGATAA TGGATATGTT	1980
	TTATGTAATT AAGAGTTCAC TTTAGTGGCT TTCATTTAAT ATGGCTGTCT GGGAAGAACA	2040
10	GGGTTGCCTA GCCCTGTACA ATGTAATTTA AACTTACAGC ATTTTTACTG TGTATGATAT	2100
	GGTGTCCTCT GTGCCAGTTT TGTACCTTAT AGAGGCAGAT TGCCTCCGAT CGCTGTGGTT	2160
1.5	CTTATTATCA AAATTAAGTT TACTTGTATA CGGAACAACC ACAAGAAATT TGATTCTGTA	2220
15	AAGAATCCTC TTTAGCTGTG GCCTGGCAGT ATATAAATGG TGCTTTATTT AACAGAATAC	2280
	CTGTGGAGGA AATAAAGCAC ACTTGATGTA AAAATAATTG TTTTATTTTT ATTGACATGA	2340
20	CTGATTGATT GCTATTCTGT GCACTNAATT AAACTGATTG TGATGACTTA AAAAAAAAAA	2400
	AAAA AAAAAAAAA AAAAAAAAA	2424
25		
	(2) INFORMATION FOR SEQ ID NO: 226:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1080 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	070 TD NO. 226	

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:

ATATAGGACG GATAATCTGT TTACATTCTG TTCTTCTCGA TGCACTCACA AGCGGGTAAC 60 TAGGTGACAA GAAAACAAAG ATCTTATTCA AAAGAGGTCT TACAGCAACC CAACGTCTCA 120 TCTTCCCATA GTAAAGATGA CGGCGCCTTG AGGTAAGCTA CAGGCAACAC CACTTCCGCG 180 TTTCTCTTGC GCCCTGGTCC AAGATGGCGG ATGAAGCCAC GCGACGTGTT GTGTCTGAGA 240 TCCCGGTGCT GAAGACTAAC GCCGGACCCC GAGATCGTGA GTTGTGGGTG CAGCGACTGA 300 AGGAGGAATA TCAGTCCCTT ATCCGGTATG TGGAGAACAA CAAGAATGCT GACAACGATT 360 GGTTCCGACT GGAGTCCAAC AAGGAAGGAA CTCGGTGGTT TGGAAAATGC TGGTATATCC 420 ATGACCTCCT GAAATATGAG TTTGACATCG AGTTTGACAT TCCTATCACA TATCCTACTA 480 CTGCCCCAGA AATTGCAGTT CCTGAGCTGG ATGGAAAGAC AGCAAAGATG TACAGGGGTG 540 GCAAAATATG CCTGACGGAT CATTTCAAAC CTTTGTGGGC CAGGAATGTG CCCAAATTTG 600 GACTAGCTCA TCTCATGGCT CTGGGGCTGG GTCCATGGCT GGCAGTGGAA ATCCCTGATC 660 TGATTCAGAA GGGCGTCATC CAACACAAAG AGAAATGCAA CCAATGAAGA ATCAAGCCAC 720

455

	TGAGGCAGGG	CAGAGGGACC	TTTGATAGGC	TACGATACTA	TTTTCCTGTG	CATCACACTT	780
	AACTCATCTA	ACTGCTTCCC	CGGACACCCT	CCACCTCTAG	TTGTTACTAA	GTAGCTGCAG	840
5	TAGGCATTGC	TGGGGAAGAA	ACAAACACAC	ACCAAACAGT	ACTGCTACTT	AGTTTCTAAG	900
	GCTGCACAGG	GAAGGGAAAG	ACTGGGCTTT	GGACAATCTA	GAGGTAATIT	ATATCCGCCC	960
10	CCAGGTGGAG	CAACATGCGA	TTCTGGAGGC	ACGGGGGTAA	CTGAAAGTGA	GTACATATAG	1020
	TCTTTCTGGT	TTCTGGAGAT	AACCCATCAA	TAAAAGCTGC	TTCCTCTGGG	TAAAAAAAAAG	1080

15

20

(2) INFORMATION FOR SEQ ID NO: 227:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1336 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

25 TTGCATTCAC AATTACTGGG AGGCAGGCAG GGGCAGTTGC ATGCTGGGGG TGGCTGCATG 60 120 GSCTGCCASC TCTCCTGGGT TTGAAGGATG CGGTACASCT GCTTCAGCTG AGCAACGATG TTATCCTTGA TGTCTGGGGT TGAGATCTGC AGGCGGACAC TGCCACTATC AAAGGATCGT 180 30 GTGAAATCAC CAGAAAACAT CTCGTAGATC ATCCGAGCCA CTACTGGAAT GACCTGAACC 300 AAGATGAGTT TCCTTTCCAA TGGTTTCCCA TCTGGCCATT CTTCCCCAAA GCATAAGTAG 35 360 ATCTCAAACG GTGGCTGCTT CTCTATCTGT CCTTTCTGGT GGGCAATGAG ATCGCTAAGG AATGTTTCCA GACAAAATAG CTTGACCTTC TTTTGTCTCT CAATCAGGTT GGGAGCAACA 420 AGTGATGGGG CACATGGCCC AGACCAGTAC ACCTTGCACT GGCACAGYCT GATGGCATAA 40 ATGGCATGAC CGCTGACCTC CAGGATCAGT CCTCTGTCCA TGACGTCCAG CAGCTTGCTA 540 GTGAACAGCT TCTGCTTCTC ATTGGTAATA TGCTCAGGAC CTGGGAATTT GACCTGCTCC 600 45 AGNOTIGAÇOG GACCAAAGAG CTCCTCCTGG TCAGGCATGG GACCCAGGTC CCCATAGAAG 660 720 AGTCGGCAGC CCTGAGGGTT GCTCACGGTC ATGGTCCTGC CCGTACTCCT TCCCACGGTA CTGAAACTTG ATGTCCAGGT CAGTCATTGG GAGAGAGCTG ATCCACAGTT CTGGAGAGCT 780 50 ATAGAAGGRC TGTATAGGTG CCTGGGGWAC TTCCATCTCC AGGGGTTCAG TTTTGGGCCA 840 900 CACTOCCTCC GGSCTGCAGT TGCCCACACT GCAATTGCCC ACACTGGCTG GCGCCATGGG 55 AGAACCATTG ATGTTCAGGA AGGGGAAGGT GTCCTGGATG GGAACATGGT GCTGCGACTG 960 1020 ATCCAGCTCA TCTTCCTCAT CTTCTTCATC CACATCATTA TCCTTCTCAT CCCAGGGAGC AGACCCTGTG GATCCTGGGT TAATGATCGA SCCCTGGGGC TGAGGGATGT CACACACTTG 1080 60

456

	ATATATCTTC ACTGGGTTCA TGGGCACCTC CCTTGGTGCC ATCCATACAT CCAGGTTGAA	1140
		1200
5	TTCTCTGCTC TTATTGAGAG CACAGCGCAG CTGGGCCTTC CATTTAGCTG GGTCAGGGTC	1260
	ATCCACCCCT TCCTGGTACT TCCCTGTCTC TACAGCCCAG GCCTTAAAAA TGGTATTTTC	
	CTCTTCTTGT TGAGGGCTAT GCCGGGTGGC ATGTTTCCAG GGAATCTGGA AGCGTTTAGA	1320
10	GTCCCTGTGT AGCCAG	1336
15	(2) INFORMATION FOR SEQ ID NO: 228:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2043 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:	
25	TCAGCTGGTC CCTTCCTTGT GTCCTGGGGG ACCTGCTGGC GGCCTCTTCC TGGGAGCCAT	60
	GACCTCAGAC CCCACCCACA CTCCAGATCG AGACCCCTGC CTCCCCCCGG CAAATGTCCT	120
	CCCGCTGCCT TGCAGCCTGC ACTTTGCACA TGCTCACCCC CAGCACAGTC CCACTGGCCC	180
30	CTCAMCTCCC CTTCCCTGAG CTCCTTCCCA AGGACTCCTG GTCACTGCCT GCTGTGCAKT	240
	CAGAGGCCCA GGGTCCAGCA GCCCGGSGGG AACGGGTGCT GCCTSTTCCT CCAGTTAGCT	300
35	CCAGYTCAGG TCTGAGACCC GTGYTGAGTA AAGGTCTGAG CAMCGACCGT GCCCTCTGCC	360
•	CAGGCTGGG TCCTGAGCAG CTGGTTTTCC TGCAGGAAGG TTGGAGCAAG CAAAGTCCTT	420
	CTCTGCCCTC AGGGTCAGCT GCCCAGACTG GGGCGGATGC AGAGAGGCAG GTGGGCTGTG	480
40	GCTGGACTGG TCCGGAGCTG GCTTCCTTAC CAGAAAAGCC TCAGCCTTCC TCTGGAAGCA	540
	TCCCCCGTTC TGGGCAAGGG GGAAGGGCTC CTTTAAGGGG TGTGCTTTCC CAGTGGGGAG	600
45	CAGTCTOGCC CTGCCCCCTA CTAAAGCCTC TGCTCTCAGC ACTTTCCCCC AAGTCCTTGT	660
	AACTIGCTIG AAGGIGGGIT CIGGCTGCCA GCCAGTCCCT GGACAAACTC TCCTGCCCCT	720
	TTTAAATTIC ACTCATTITG TATAAACCCA GCAGGCTGGT GTTTACTTAG CCCTGTAGCT	780
50	THTTTCATTT TTTCTTTCCG TCTTTCTTCT TGAGTTCACG GTTCAATATT GCCTCCTCGC	840
	CCTGGTGAGG GGAGGTGCTG CTTTTCTGCC CCACCTGCCG GCTGGTTCCA GCAGCGCTGG	900
55		960
	CCAGGCTGGG AGGGTTCCTT CCCTAGCTCC CCATCTGCCC CCGCTGGTGA GAGTTGGGCT	1020

TCTTGGTCTT GGAACTCCCT GGCATTGGGA ACAGAGCATT TCCAGCATTT GTTGTTGTTG

60

PCT/US98/04493

	TTTTACTCAC CTAACCCTTA GAAAATGAAT GTTAGAAGGT GCCTGCCGAG GCGGGACAGA	1140
	GTGTTTGCTC GCGCTGGAGA AGGCTCTGCT CAGCCCTGAG AGTCCCTTCC TGCCCCACCG	1200
5	ATACTOGCAC TITAAAAAGG AAGCTGACCG CACAGTGTCC AGACGAATTG GCCCCCAGAA	1260
	GATGGGGAGT TCTGTCCTGC CCTTCTGTGT CTGCGTGACC TCACCCAGCC TAGGAGGGAG	1320
10	GTGCATTCAG GGTAGATTTG CCTCTCATTC AAAGTTCTGG GGCTTTGGGY GGAAAACAGC	1380
10	CAGCTTTGGC GCTGTTGGGG AGACTCCTCC AGACCAGGAA CCCCAGAAGG AGACAGAGCC	1440
	TGCCACATCC TCCCACGCCA GGCCCTGGGC CAGGGTGATT GGACTGAGAA TTTGGCCACA	1500
15	ACCAAATTGA TGCTGGCTGG AACCAGAGGC CAGAAAGCCT GGCCTTGTCC CCATGTGGGA	1560
	GCCCTGTCCT CAGCCCTCTT GTCCCCTTGA GCTCAGTGAA TTCCCACCAG GTGCCCACAG	1620
20	CTCCTGGACT TCAAATTCTA TATATTGAGA GAGTTGGAGA GTATATCAGA GATATTTTTG	1680
20	GAAAGGAGTT GGTCTATGCA ATGTCAGTTT GGAATCTTCT TGAAAGTTTA ATGTTTTTAT	1740
	TAGGAGATIT AAAGAAAATA AAGGTCTACA ATATCTTTAG GTTTTTTTTT TTTCCTGTTT	1800
25	ACCGCACAAA CTGACCACAT GGCATGTCTA TCAGGATGGA GGGTGTCCAT GTTCTCCTCT	1860
	GTCTTTAGGG AGGTGATAAG GAGATGGSCG RAGGGGTGTT TTTTTCTTTG ACTCCCCTCC	1920
20	TTTCTAACAG AATGTTGCCA CCACTGCTTG AGTGGGCTGT GTTTGTTCCT CTGTCCCAGC	1980
30	TTCTGTTGTA GAAAATAACA TTGTTAGGGG AACTCAGGCT AGTGTCAGCG TCTTGGTTTG	2040
	ccc	2043
35		
	(2) INFORMATION FOR SEQ ID NO: 229:	
40	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 540 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:	
	TAAAAAGAAG CGGGAGAATC TGGGCGTCGC TCTAGAGATC GATGGGCTAG AGGAGAAGCT	60
50	GTCCCAGTGT CGGAGAGACC TGGAGGCCGT GAACTCCAGA CTCCACAGCC GGGAGCTGAG	120
30		180
	CCCAGAGGCC AGGAGGTCCC TGGAGAAGGA GAAAAACAGC CTAATGAACA AAGCCTCCAA	240
55	CTACGAGAAG GAACTGAAGT TTCTTCGGCA AGAGAACCGG AAGAACATGC TGCTCTCTGT	300
	GGCCATCTTT ATCCTCCTGA CGCTCGTCTA TGCCTACTGG ACCATGTGAG CCTGGCACTT	360
	CCCCACAACC AGCACAGGCT TCCACTTGGC CCCTTGGTCA GGATCAAGCA GGCACTTCAA	301

60 GCCTCAATAG GACCAAGGTG CTGGGGTGTT CCCCTCCCAA CCTAGTGTTC AAGCATGGCT 420

	TCCTGGCGC CCAGGCCTTG CCTCCCTGGC CTGCTGGGGG GTTCCGGGTC TCCAGAAGGA	480
5	CATGGTGCTG GTCCCTCCCT TAGCCCAAGG GAGAGGCAWT AAAGACACAA AGCTGGAAAT	540
10	(2) INFORMATION FOR SEQ ID NO: 230: (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 448 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:	
20	AATTGTGAAA TATTAGAATA TTGTTACTAT TTGACCCAAC TCAAAATCTC CATGGGAAAA	60
20	TACCTGTCGA TACCCACAGT ATTGTTGAAA ATAATCAGAT GCAGTATCAC AGCTGTGTCA	120
	GACTCTAGTA CCAGTTGGGC AATCAAGGCA CAGCTAAAAA TTGAAAACAA AGATCTGGAC	180
25	AACAAAACAG CCAAAGGTGG GGGTCAAGAA GCTCTGACGT GTACCTAGCT GTAGAATGCT	240
	ATGCACACGT GCCAGGTGTA GTGTGCATAT CCAGGAAAAA CTGCAGAGAG CCCCAGTCTT	300
	CAMCTCTGGT TGACCATGAG CTCTGTGTAA GCAGGAAGTG AAGGCTAAGG CAGATTTAAG	360
30	CTCTGAAAGC ATTCCACAAC ATACACACAA ATCGTGCAAA GCATTAAGGA AATCTTGTTA	420
	CTGCTAAGTG TTGCTGACCC AGGAACAA	448
35		
	(2) INFORMATION FOR SEQ ID NO: 231:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 407 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:	
	GTATGCTGCC CCAAACCAAT ATGTGTGGCT GCCTTTWACC TGACTTCTCC AACATGTAGC	60
50	CCCAAGAGGA GGCCTCTAGA CTRAGGGAGG GGCTGGTGAC CCAGGTGTGG TGGGGCTGCA	120
	TGARACTACC AGAGAGACAG ACATTCTGGA ACTCACCCTG GGGGATCCAG TGGATCTGCC	180
55	TATEGTCTGG TCCACCCCAG ACCTGTGAGA TGTTCCTCAT GAGGATGCAC TTGTGCTTCT	240
55	GCAAGTATTG CTGCAGCTTC ATAGTGACTC CCACCAGCAC CAGCAATACA GYTAGCTACC	300
	TGTGGCCTTG GATCTCAGCC AGCATGGCTG GGAGAGGGAG CARCTGGGCA TGTACCCTAA	360
60	ATCCTYTTAC CAGGGAAGGA CTCCCAGAGT GAAGACAAGT AGGGACT	401

PCT/US98/04493 WO 98/39448 459

5	(2) INFORMATION FOR SEQ ID NO: 232:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:	
15	GTATITGATT TCAGGCTGCT AAATGGGCTC ATTTAGCATT CATTCCTTGA TGTAGACATT	60
	AAAAAAAAA CTGAATAGCA TTCTTTCCAG GNTAACTAAT AAAGCAGACA TGCTAAGCCT	120
20	ATAAATACAT CAGCACTGCA GCACACGTTT AAGGTTGCCA CGGACAAGGA TCACACAATA	180
20	GAGAACACTG TAGTTCGGTC TGCTCACAAG ACCCAGAACA TIGATCAGTT TTTGTTGTTG	240
	GTTTATTATT TITCTGTTAA AAAATTGTGA AAAGTTTGTT TTAGCTAGAT GATATTTTAA	300
25	TAGCTGCGAG TGCTTTGGAA CTATAAAGAT GTCACTACTT AACACACATA CCTTATGTTT	360
	TGTTTGTTT TGTTTTACAC TCAGTATAAA TCAGGAGAAG TTAGCCAACC ATCTAGCATT	420
20	TAGAATCCTC TTTTTTATTG TCTTCTAAGG ATATGGATGT TCCCATAACA GCAACAAAAC	480
30	AGCAACAAAA ACATTTCATA AATATCACTT GATAGACTGT AAGCACCTGC TTAACTTTGT	540
	GTNCCAAATA TTTAGTGTGT ATATATATAT ATATATACAC ACACACAC ATATATAT	600
35	AACAAATAAA GCAAAATATA ACATGCATTT CACATTTTGT CTTTCCCTGT TACGATTTTA	660
	ATAGCAGAAC TGTATGACAA GTTTAGGTGA TCCTAGCATA TGTTAAATTC AAATTAATGT	720
40	AAAACAGATT AACAACAACA AAGAAACTGT CTATTTGAGT GAAGTCATGC TTTCTATTAT	780
40	AATAACTTGG CTTCGGTTAT CCATCAAATG CACACTTATA CTGTTATCTG	830
45	(2) INFORMATION FOR SEQ ID NO: 233:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 932 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:	
55	CCAGAAGAAA GACCAATCTA GAATATGGAA CTCTAATCAC TTCTAGTATT TCAACTTCCT	60
	AGCAGAAATG AACTTGGCCC TAGACCTAGG GGATAAGCAA TGTTCTTTAT GTAGCCAATG	120
60	CTACGGAAAC AAAAGAGGTG AAAGAGACCC TTTTTTTATA CTTAATGTAC ATATATTGAC	180

PCT/US98/04493

	TTTTTGAGCA AGAATGCCAG AAATAGCCTT CATTTCTACC CTGCAAAATA ATCCAGATCT	240
5	GCTTTCTAAA ATGRANTCAG TTTCTAAAGT GAAACATGCA ATATTTATGC TCTGACTGAC	300
	TCCTGAATTG GARGAGGAAG RACTTCTGTT TACAGAAAAC YGTATTGTTA TATATGTCAG	360
	GCTGTGTATT GTGACTATCA GCATTCTGGT GCAAATGAAC TTTTCTCCAT CATCGACTGT	420
10	GGAAAATTGA TACTITTAAA GCATATTCTT CTATGAGCAC AGGTCCTCCT AGTGAAACTT	480
	AATTTGACAA AGGGTGTCAT ATGCTTTCCT AACCTGAWTT GTATTAACAT TCACAGAGCC	540
	TACATTITCT CATTAGGGTT RIGATGCTCA GTATCTTTCC AAGTGCCAGG CAGRGCTINC	600
15	CTTTTCTGAT CAAACATACC ATTTTTTGTA TTTCACAACT ATAGACAGTC ACTTCTGCAG	660
	TCCCAATTTA AAAATGCAGA ACTGCTTTAT CCAAGAATGC TGAAAAATAC TGTTCTATCC	720
20	AGGTITCCTA AACTATAAAA GCAGATTITG CTTTTGTTTG TTAATCATAG GCATGGCCGA	780
	GCATTGTGGA TTAGCCTGAG GCTTAAAATC AGATGCATGT CTGGTAAGAT GACCACTGTC	840
	TCACTATCAA GAGCCTGCAG AGCCATTITC CAGACCTGTG ATTGCCCAGA ACACATAGTC	900
25	CCCACGTTC TAATTTGGAG CAAATCTAAA AG	932
	·	
30	734.	
	(2) INFORMATION FOR SEQ ID NO: 234:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2786 base pairs	
35	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:	
10	TTAGCAGGGT GAGCTGTTAA AACAGCACAC ATCTCTCATC CCCTCTTCCT TTATTCCCCC	60
	CTGGGTTTCA GAAAGGAAGG ATATATGGGG ACCACCTCCC CCTTCTTTGA TCCCAGCATC	120
45	TCAGTCCCCC TCCCAACCCT CCATATGGCT CTCAATGGTG CTCACTTGCT TGGAAGCAGG	180
	CTCCCAATAG GGAGGGGSCT GCCCTCTACA GTCTCTTTGA CTGTAAGACA GGGCTCTGTA	240
	TCAGTGAGAC GATGAGAAAA GTCCCAGGCT AATGGCAGAA ATTTGCACTT TGAACATGTG	300
50	TGTTTTTGTG TTGTGGAACC TGAGATTCCT TATTTATTAA CAGGAAGTCT GATTTTTTT	360
	TTTTGGAGTC TTTGTTGCTA TATTTTGTGG GGCTGGGAGA GAGAGATTAG ATTATTTTGA	42
55	CATGGGATCC CTTCCATAAC AGGTACTTTG AAGGCAAGAC ATAGGGTTGA AGAAGCACAA	48
	CCAGCCTCTG AAATCATAGC TCTCCAGTGG CTTTTAAAGA AAGCTGGTCC TCAGCACTAA	54
	CAAAATCACT ACAATAGCCT AGTGCTTTTT TGGAAGCCTT TTTAGGGAAG AATGTTAGGT	60

	TCATGGTAAC TAGTATGCTC TTTGAGATTT TTACAGTGTT GAAACTTAAG AATTTTGAGA	660
	GGGTGAGGAG GGTTGTTCAG AATCTAAATT ACAGATAGAT GATTGTTTCT TGTGAATTTG	720
5	TITICTITICC TITITITITG TCCCTACCAT TTCCTTACAT TTCCCTTGGG GCCCATCTCT	780
	GCCTCCTTGC TTTTTGTTTC TTGCTTTGCT TTATCAGTTC ATTCCAGCTC CCTGTTAGTG	840
10	AAGGACACTG CTGTTAGTGA AGGAACAAAG TCTATGAGTC CTAAAATTTT AAGTCAAAGA	900
10	AAACTGCTCT GTTTCCCCTT TAGTAACACT TCTGAAGAGG AAAAACTTCA ATAGCCAAAG	960
	TTAATAATCC TATATAATAA TTGCTTTGGC TTTCACCTAA AATTCTGGGC ATCACAATTT	1020
15	CCTTGGGATA GAGGTTGTGT TGGGGAATAG ATTGCTTATT GCTGTTCACT GGAGAGAAAA	1080
	GGTAGTGTTT TTGTACAAGG TCATACCGCC AGAAGCCCCCA AATCCTATTT TGGCTCATCT	1140
20	TCAGGTAAAG AGTAATTCCT ATCCTGTGTG CCTCAGAAGC TAGAATCGAA GGCTTACCCT	1200
20	ATTCATTGTT TATTGTCAGA AATGCATGAT GGCTCTTGGA AAGAATGACG TTTTGCTGGA	1260
	AAAAAAAAA AGAACAGTTT GTGTTTCACA AACATGGCTT ATCAATTTTT TCAAAGAATT	1320
25	CTTTTTTCCC AAAAAGAGGA GTAACAAAAT GTCATTTCTG AAAGAGGCTT ACTTTATACC	1380
	AACTAGTGTC AGCATTTGGG ATGCCAGGGA ACAGAGAGTG AGACACCTAC AATCACCAGT	1440
30	CTCAAATGCG CTATTGTTTC TTTTCAGAGT GTTGCAGATT TGCCATTTCT CCATAATATG	1500
30	GGGATAGAAA ATGGAATAAA GATAGAAGGG ATGTAGAATA TGCTTTCCTG CCAACATGGT	1560
	TTGGAGTCGA CTTTGGTATA TTGACTAGAT TTGAAAATAC AAGATTGATT AGATGAATCT	1620
35	ACAAAAAAGT TGTCCTCCTC TCAGGTCCCT TITACACTTT TTGACTAACT AGCATCTATA	1680
	TTCCACACTT AGCTITITIG TCACACTTAT CCTTIGTCTC CGTAAATTTC ATTIGCAGTG	1740
40	GTTAGTCATC AGATATTITA GCCACCTACA CAAAAGCAAA CTGCATTTTT AAAAATCTTT	1800
40	CTGAGATGGG AGAAAATGTA TTCTCCTTTC CTATACCGCT CTCCCAACAA AAAAACAACT	1860
	AGTTAGTTCT ACTAATTAGA AACTIGCTGT ACTTTTTCTT TTCTTTTAGG GGTCAAGGAC	1920
45	CCTCTTTATA GCTACCATTT GCCTACAATA AATTATTGCA GCAGTTTGCA ATACTAAAAT	1980
	ATTTTTTATA GACTITATAT TITTCCTITT GATAAAGGGA TGCTGCATAG TAGAGTTGGT	2040
50	GTAATTAAAC TATCTCAGCC GTTTCCCTGC TTTCCCTTCT GCTCCATATG CCTCATTGTC	2100
50	CTTCCAGGGA GCTCTTTTAA TCTTAAAGTT CTACATTTCA TGCTCTTAGT CAAATTCTGT	2160
	TACCTTTTTA ATAACTCTTC CCACTGCATA TTTCCATCTT GAATTGGTGG TTCTAAATTC	2220
55	TGAAACTGTA GTTGAGATAC AGCTATTTAA TATTTCTGGG AGATGTGCAT CCCTCTTCTT	228
	KGTGGTTGCC CAAGGTTGTT TTGCGTAACT GAGACTCCTT GATATGCTTC AGAGAATTTA	234
60	GGCAAACACT GGCCATGGCC GTGGGAGTAC TGGGAGTAAA ATAAAAATAT CGAGGTATAG	240
00		

	ACTAGCATCC ACATAGAGCA CTTGAACCTC CTTTGTACCT GTTTGGGGAA AAAGTATAAT	2460
	GAGTGTACTA CCAATCTAAC TAAGATTATT ATAGTCTGGT TGTTTGAAAT ACCATTTTTT	2520
5	TCTCCTTTTG TGTTTTTCCC ACTTTCCAAT GTACTCAAGA AAATTGAACA AATGTAATGG	2580
	ATCAATTTAA AATATTTTAT TICTTAAAAG CCTTTTTTGC CTGTTGTAAT GTGCAGGACC	2640
10	CTTCTCCTTT CATGGGAGAG ACAGGTAGTT ACCTGAATAT AGGTTGAAAA GGTTATGTAA	2700
	AAAGAAATTA TAATAAAAGG GATACTTTGC TTTTCAAATC TTTGTTTTCT CTTATTCTAG	2760
	GTAAGGCATA TTAAAAATAA ATATGT	2786
15		
	225.	
	(2) INFORMATION FOR SEQ ID NO: 235:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 458 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:	
	GGGTGCAGGA ATTCGGCACG AGAGAATGTT TGATTTTCTT TCCTATTTTA AGGATCTTCT	60
30	CTCTTGTIGA TGTTGAAAAC TTACCTTAGT GAAGATGTGT TTCAACATGC TGTTGTCCTT	120
	TACCTGCATA ATCACAGCTA TGCATCTATT CAAAGTGATG ATCTGTGGGA TAGTTTTAAT	180
35	GAGGTCACAA ACCAAACACT AGATGTAAAG AGAATGATGA AAACCTGGAC CCTGCAGAAA	240
	GGATTTCCTT TAGTGACTGT TCAAAAGAAA GGAAAGGAAC TTTTTATACA ACAAGAGAGA	300
	TICTITITAA ATATGAAGCC TGAAATICAG CCTTCAGATA CAAGGTACAT GCCCTCTTTC	360
40	TTTTCATGCC ATCTCTTTTG CACTCTCAGG TGGAAATATT TTTAAGTGTT TTATAATCAT	420
	AAGTTCTTGT GAAACCTAAC AAGATTATCC CTTCCTAA	458
45		
43	(2) INFORMATION FOR SEQ ID NO: 236:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 591 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236:	
	AGGATGAAGA GGAAATTATC TCTTGGATTG CTCTCCAGGA AATCCTTCTC TATACTTTAA	60
60	AAGCTCTTGT TCTTTTCTAG GARTCCAATG TGCTGATTGC TGCTAACAGT CAGGGTACAA	120
U.	•	

	TTAAGGTGCT	AGAATTGGTA	TGAAGGGTTA	ACTCAAGTCA	AATTGTACTT	GATCCTGCTG	180
	AAATACATCT	GCAGCTGACA	ATGAGAGARG	AAACAGAAAA	TGTCATGTGA	TGTCTCTCCC	240
5	CAAAGTCATC	ATGGGTTTTG	GATTTGTTTT	GAATATTTT	TCTTTTTTC	TTKTCCCTCC	300
	TTTATGAGCC	TTTGGGACAT	TGGGAATACC	CAGCCAACTC	TCCACCATCA	ATGTAACTCC	360
10	ATGGACATTG	CTGCTCTTGG	TGGTGTTATC	TAATTTTTGT	GATAGGGAAA	CAAATTCTTT	420
	TGAATAAAA	TAAATAACWA	ААСААТАААА	GTTTATTGAG	CCACAGTTGA	GCTTGGAAAG	480
	TTTTTGTCAA	ATGCNGCAAG	AGATAACTCT	TTTTANGAAG	TAGCATATGT	GAACTATAAT	540
15	GTAACAGTGA	ATAATTIGTA	AAGTTCGTAT	TTCCCAACCT	CTTTGGGAAT	T .	591

20 (2) INFORMATION FOR SEQ ID NO: 237:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1286 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:

TCTTTTTAAG GTACAGCAGG GAAGAACTGG AAACTCAGAG AAAGAAACTG CCCTTCCATC	60
TACAAAAGCT GAGTTTACTT CTCCTCCTTC TTTGTTCAAG ACTGGGCTTC CACCGAGCAG	120
GAGATTACCT GGGGCAATTG ATGTTATCGG TCAGACTATA ACTATCAGCC GAGTAGAAGG	180
CAGGCGACGG GCAAATGAGA ACAGCAACAT ACAGGTCCTT TCTGAAAGAT CTGCTACTGA	240
AGTAGACAAC AATTTTAGCA AACCACCTCC GTTTTTCCCT CCAGGAGCTC CTCCCACTCA	300
CCTTCCACCT CCTCCATTTC TTCCACCTCC TCCGACTGTC AGCACTGCTC CACCTCTGAT	360
TCCACCACCG GGTTTTCCTC CTCCACCAGG CGCTCCACCT CCATCTCTTA TACCAACAAT	420
AGAAAGTGGA CATTCCTCTG GTTATGATAG TSGTTCTGCA CGTGCATTTC CATATGGCAA	480
TGCGATGAAG AACGATACAG ATACAGGGAA TATGCAGAAA GAGGTTATGA GCGTCACAGA	540
GCAAGTCGAG AAAANGAAGA ACGACATAGA GAAAGACGAC ACAGGGAGAA AGAGGAAACC	600
AGACATAAGT CTTCTCGAAG TAATAGTAGA CGTCGCCATG AAAGTGAAGA AGGAGATAGT	660
CACAGGAGAC ACAAACACAA AAAATCTAAA AGAAGCAAAG AAGGAAAAGA AGCGGCCAGT	720
GAGCCTGCCC CTGAACAGGA GAGCACCGAA GCTACACCTG CAGAATAGGC ATGGTTTTGG	780
CCTTTTGTGT ATATTAGTAC CAGAAGTAGA TACTATAAAT CTTGTTATTT TTCTGGATAA	840
TGTTTAAGAA ATTTACCTTA AATCTTGTTC TGTTTGTTAG TATGAAAAGT TAACTTTTTT	900
TCCAAAATAA AAGAGTGAAT TTTTCATGTT AAGTTAAAAA TCTTTGTCTT GTACTATTTC	960
	TACAAAAGCT GAGTTTACTT CTCCTCCTTC TTTGTTCAAG ACTGGGCTTC CACCGAGCAG GAGATTACCT GGGGCAATTG ATGTTATCGG TCAGACTATA ACTATCAGCC GAGTAGAAGG CAGGCGACGG GCAAATGAGA ACAGCAACAT ACAGGTCCTT TCTGAAAGAT CTGCTACTGA AGTAGACAAC AATTTTAGCA AACCACCTCC GTTTTTCCCT CCAGGAGCTC CTCCCACTCA CCTTCCACCT CCTCCATTTC TTCCACCTCC TCCGACTGTC AGCACTGCTC CACCTCTGAT TCCACCACCG GGTTTTCCTC CTCCACCAGG CGCTCCACCT CCATCTCTTA TACCAACAAT AGAAAGTGGA CATTCCTCTG GTTATGATAG TSGTTCTGCA CGTGCATTTC CATATGGCAA TGCGATGAAG AACGATACAG ATACAGGGAA TATGCAGAAA GAGGTTATGA GCGTCACAGA GCAAGTCGAG AAAANGAAGA ACGACATAGA GAAAGACGAC ACAGGGAGAA AGAGGAAACC AGACATAAGT CTTCTCGAAG TAATAGTAGA CGTCGCCATG AAAGTGAAGA AGGAGATAGT CACAGGAGAC ACAAACACAA AAAATCTAAA AGAAGCAAAG AAGGAAAAGA AGCGGGCAGT GAGCCTGCCC CTGAACAGGA GAGCACCGAA GCTACACCTG CAGAATAGGC ATGGTTTTGG CCTTTTGTGT ATATTAGTAC CAGAAGTAGA TACTATAAAT CTTGTTATTT TTCTGGATAA TGTTTAAGAA ATTTACCTTA AATCTTGTTC TGTTTTTTAG TATGAAAAGT TAACTTTTTT

	AAAAATAAAA AGACAGCAAT GACTITATAT CCAAGAAAGG AATGTGAATG AGTCACTTAA	1020
	CAGGGAATCT AAAGAGCTGT GTTAGCTGTG TACATACACA GATTATCTGA GAAAAGGTCA	1080
5	AGGGTTCCAC TTGGGCCACA GTTTTTTTGT TAATCAAACA CCACTCTCTT AAGRGGCTGC	1140
	ATCACAAARG GCAACCAARG GGCCCCTCTT ARGCCTTTGA GGATTAAAAC TAGTCTTTAT	1200
10	CCATTACTGC TGTGGACACT CTTGGCTTRG TATWITTAGG GGGGNTCCTT ACCTTTTTT	1260
	GGTTTTCCNC ACCTTTTTGG TTGGGC	1286
15	·	
	(2) INFORMATION FOR SEQ ID NO: 238:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 734 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:	
	ATGGCAGCGC AGAAGGACCA GCAGAAAGAT GCCGAGGCGG AAGGGCTGAG CGGCACGACC	60
20	CTGCTGCCGA AGCTGATTCC CTCCGGTGCA GGCCGGGGAGT GGCTGGAGCG GCGCCGCGCG	120
30	ACCATCOGGC CCTGGAGCAC CTTCGTGGAC CAGCAGCGCT TCTCACGGCC CCGCAACCTG	180
	GGAGAGCTGT GCCAGCGCCT CGTACGCAAC GTGGAGTACT ACCAGAGCAA CTATGTGTTC	240
35	GTGTTCCTGG GCCTCATCCT GTACTGTGTG GTGACGTCCC CTATGTTGCT GGTGGCTCTG	300
	GCTGTCTTTT TCGGCGCCTG TTAACATTCT CTATCTGCGC ACCTTGGAGT CCAAGCTTGT	360
40	CCTCTTTGGC CGAAAGGTGA GCCCAGCGCA TCATATGCTC TGGCTGGAGG CATCTCCTTC	420
40	CCCTTCTTCT GGCTGGCTGG TGCGGGCTCG GCCGTCTTCT GGGTGCTGGG AGCCACCCTG	480
	GTGGTCATCG GCTCCCACGC TGCCTTCCAC CAGATTGAGG CTGTGGACGG GGAGGAGCTG	540
45	CAGATGGAAC CCGTGTGAGG TGTCTTCTGG GACCTGCCGG CCTCCCGGGC CAGCTGCCCC	600
	ACCCCTGCCC ATGCCTGTCC TGCACGGTCT GCTGCTCGGG CCCACAGGGC CGTCCCATCA	660
	CAAGCCCGGG GAGGGATCCC GCCTFTGAAA ATAAAGCTGT TATGGGTGTC ATTCAAAAAA	720
50	AAAAAAAAA	734

⁽²⁾ INFORMATION FOR SEQ ID NO: 239:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 809 base pairs
(B) TYPE: nucleic acid

⁶⁰

PCT/US98/04493

465

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239: 5 CGGGGTCTTC AGGGTACCGG GCTGGTTACA GCAGCTCTAC CCCTCACGAC GCARACATGG 60 CAGCGCAGAA GGACCAGCAG AAAGATGCCG AGGCGGAAGG GCTGAGCGGC ACGACCCTGC 120 TGCCGAAGCT GATTCCCTCC GGTGCAGGCC GGGAGTGGCT GGAGCGGCGC CGCGCGACCA 180 10 240 TCCGGCCCTG GAGCACCTTC GTGGACCAGC AGCGCTTCTC ACGGCCCCGC AACCTGGGAG AGCTGTGCCA GCGCCTCGTA CGCAACGTGG AGTACTACCA GAGCAACTAT GTGTTCGTGT 300 15 TCCTGGGCCT CATCCTGTAC TGTGTGGTGA CGTCCCCTAT GTTGCTGGTG GCTCTGGCTG 360 TCTTTTTCGG CGCCTGTTAC ATTCTCTATC TGCGCACCTT GGAGTCCAAG CTTGTGCTCT 420 TTGGCCGAGA GGTGAGCCCA GCGCATCAGT ATGCTCTGGC TGGAGGCATC TCCTTCCCCT 480 20 TCTTCTCGCT GCCTGGTGCG GCCTCGCCCG TCTTCTGGGT GCTGGGAGCC ACCCTGGTGG 540 TCATCGGCTC CCACGCTGCC TTCCACCAGA TTGAGGCTGT GGACGGGGAG GAGCTGCAGA 600 25 TGGAACCCGT GTGAGGTGTC TTCTGGGACC TGCCGGCCTC CCGGGCCAGC TGCCCCACCC 660 720 CTGCCCATGC CTGTCCTGCA CGGCTCTGCT GCTCGGGCCC ACAGCGCCGT CCCATCACAA GCCCGGGGAG GGATCCCGCC TTTGAAAATA AAGCTGTTAT GGGTGTCATT CAGGAAAAAA 780 30 809 ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ 35 (2) INFORMATION FOR SEQ ID NO: 240: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 2201 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 240: TCGACCCACG CGTCCGGCAA CATGGCGGCT GCCGTGGTGC AGCGCCCGGG CTGAGCGACA 60 GCAAGTGCAG CGGGCTCCTA CCCCGGGTGA GGGGTGGCCT CCGCGTGGGA TCGTGCCCTC 120 50 TTCAGCCCGC TCCTGTCCCC GACATCACGT GTATTCCGCA CGTCCCCTCC GCGCTGTGTG TCTACTGAGA CGGGGAGGCG TGACAGGGCC CGGGTCCCTT CTCAGTGGTG CTCTGTGCTT 240 300 CAGGGCAAGC TCCCCGTCTC CGGGCGCACT TCCCTCGCCT GTGTTCGGTC CATCCTCCTT 55 TCTCCAGCCT CCTCCCCTCG CAGGCGGATG AMCCGGACGA CGGGCCAGTG CCTGGCACCC 360 CGGGGTTGCC ARGGTCCAMG GGGAACCCGA AGTCCGAGGA GCCCGARGTC CCGAACCAGG 60

	ARGGGCTGCA GCGCATCAMC GGCCTGTCTC CCGGCCGTTC GGCTCTCATA GTGGCGGTGC	480
	TOTGCTACAT CAATCTCCTG AACTACATGG ACCGCTTCAC CGTGGCTGGC GTCCTTCCCG	540
5	ACATCGAGCA GTTCTTCAAC ATCGGGGACA GTAGCTCTGG GCTCATCCAG ACCGTGTTCA	600
	TCTCCAGTTA CATGGTGTTG GCACCTGTGT TTGGCTACCT GGGTGACAGG TACAATCGGA	660
	AGTATCTCAT GTGCGGGGC ATTGCCTTCT GGTCCCTGGT GACACTGGGG TCATCCTTCA	720
10	TCCCCGGAGA GCATTTCTGG CTGCTCCTCC TGACCCGGGG CCTGGTGGGG GTCGGGGAGG	780
	CCAGTTATTC CACCATCGCG CCCACTCTCA TTGCCGACCT CTTTGTGGCC GACCAGCGGA	840
15	CCGGATGCTC AGCATCTTCT ACTTTGCCAT TCCGGTGGGC AGTGGTCTGG GCTACATTGC	900
	AGGCTCCAAA GTGAAGGATA TGGCTGGAGA CTGGCACTGG GCTCTGAGGG TGACACCGGG	960
	TCTAGGAGTG GTGGCCGTTC TGCTGCTGTT CCTGGTAGTG CGGGAGCCGC CAAGGGGAGC	1020
20	CGTGGAGCGC CACTCAGATT TGCCACCCCT GAACCCCACC TCGTGGTGGG CAGATCTGAG	1080
	GGCTCTGGCA AGAAATCCTA GTTTCGTCCT GTCTTCCCTG GGCTTCACTG CTGTGGCCTT	1140
25	TOTCACOGGC TCCCTGGCTC TGTGGGCTCC GGCATTCCTG CTGCGTTCCC GCGTGGTCCT	1200
	TGGGGAGACC CCACCCTGCC TTCCCGGAGA CTCCTGCTCT TCCTCTGACA GTCTCATCTT	1260
	TOGACTCATC ACCTGCCTGA CCGGAGTCCT GGGTGTGGGC CTGGGTGTGG AGATCAGCCG	1320
30	COGGCTCCGC CACTCCAACC CCCGGGCTGA TCCCCTGGTC TGTGCCACTG GCCTCCTGGG	1380
	CTCTGCACCC TTCCTCTTCC TGTCCCTTGC CTGCGCCCGT GGTAGCATCG TGGCCACTTA	1440
35	TATTTMATC TICATTGGAG AGACCCTCCT GTCCATGAAC TGGGCCATCG TGGCCGACAT	1500
	TCTGCTGTAC GTGGTGATCC CTACCCGACG CTCCACCGCC GAGGCCTTCC AGATCGTGCT	1560
40	GTCCCACCTG CTGGGTGATG CTGGGAGCCC CTACCTCATT GGCCTGATCT CTGACCGCCT	1620
40	GCGCCGGAAC TGGCCCCCCT CCTTCTTGTC CGAGTTCCGG GCTCTGCAGT TCTCGCTCAT	1680
	GCTCTGCGCG TTTGTTGGGG CACTGGGCGG CGCACTTTCC TGGGCACCGC CATCTTCATT	1740
45	GAGGCCGACC GCCGGCGGC ACAGCTGCAC GTGCAGGGCC TGCTGCACGA AGCAGGGTCC	1800
	ACAGACGACC GGATTGTGGT GCCCCAGCGG GGCCGCTCCA CCCGCGTGCC CGTGGCCAGT	1860
~ 0	GTGCTCATCT GAGARGCTGC CGCTCACCTA CCTGCACATC TGCCACAGCT GGCCCTGGGC	1920
50	CCACCCCACG AAGGGCCTGG GCCTAACCCC TTGGCCTGGC CCAGCTTCCA GAGGGACCCT	1980
	GGGCCGTGTG CCAGCTCCCA GACACTACMT GGGTAGCTCA GGGGAGGAGG TGGGGGTCCA	2040
5	GGAGGGGAT CCCTCTCCAC AGGGGCAGCC CCAAGGGCTC GGTGCTATTT GTAACGGAAT	2100
	AAAATTTGTA GCCAGACCCC AGGTGCCTGC TCTCGTCTTT CTCTGGGTGG CCTCTGATCT	2160
	TGCACCCCGT CTTCACCCCA GGGCTCCTGA AGACTGTGGG T	2201
6	0	

(2) INFORMATION FOR SEQ ID NO: 241:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1661 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241:

15	GTCCTTCCCG ACATCGAGCA GTTCTTCAAC ATCGGGGACA GTAGCTCTGG GCTCATCCAG	60
13	ACCGTGTTCA TCTCCAGTTA CATGGTGTTG GCACCTGTGT TTGGCTACCT GGGTGACAGG	120
	TACAATCGGA AGTATCTCAT GTGCGGGGGC ATTGCCTTCT GGTCCCTGGT GACACTGGGG	180
20	TCATSCTTCA TCCCCGGAGA GCATTTCTGG CTGCTCCTCC TGACCCGGGG CCTGGTGGGG	240
	GTCGGGGAGG CCAGTTATTC CACCATCGCG CCCACTCTCA TTGCCGACCT CTTTGTGGCC	300
25	GACCAGCGGA SCGGATGCTC AGCATCTTCT ACTITGCCAT TCCGGTGGGC AGTGGTCTGG	360
25	GCTACATTGC AGGCTCCAAA GTGAAGGATA TGGCTGGAGA CTGGCACTGG GCTCTGAGGG	420
	TGACACCGGG TCTAGGAGTG GTGGCCGTTC TGCTGCTGTT CCTGGTAGTG CGGGAGCCGC	480
30	CAAGGGGAGC CGTGGAGCGC CACTCAGATT TGCCACCCCT GAACCCCACC TCGTGGTGGG	540
	CAGATYTGAG GGCTCTGGCA AGAAATCCTA GTTTCGTCCT GTCTTCCCTG GGCTTCACTG	600
25	CTGTGGCCTT TGTCACGGGC TCCCTGGCTC TGTGGGCTCC GGCATTCCTG CTGCGTTCCC	660
35	GCGTGGTCCT TGGGGAGACC CCACCCTGCC TTCCCGGAGA CTCCTGCTCT TCCTCTGACA	720
	GTCTCATCTT TGGACTCATC ACCTGCCTGA CCGGAGTCCT GGGTGTGGGC CTGGGTGTGG	780
40	AGATCAGCCG CCGGYTCCGC CACTCCAACC CCCGGGCTGA TCCCCTGGTC TGTGCCACTG	840
	GCCTCCTGGG CTCTGCACCC TTCCTCTTCC TGTCCCTTGC CTGCGCCCGT GGTAGCATCG	900
45	TGGCCACTTA TATTTTCATC TTCATTGGAG AGACCCTCCT GTCCATGAAC TGGGCCATCG	960
45	TEGCCGACAT TCTGCTGTAC GTGGTGATCC CTACCCGACG CTCCACCGCC GAGGCCTTCC	1020
	AGATCGTGCT GTCCCACCTG CTGGGTGATG CTGGGAGCCC CTACCTCATT GGCCTGATCT	1080
50	CTGACCGCCT GCGCCGGAAC TGGCCCCCCT CCTTCTTGTC CGAGTTCCGG GCTCTGCAGT	1140
	TCTCGCTCAT GCTCTGCGCG TTTGTTGGGG CACTGGGCGG CGCACTTTCC TGGGCACCGN	1200
	CATCTTCATT GAGGCCGACC GCCGGCGGGC ACAGCTGCAC GTGCAGGGCC TGCTGCACGA	1260
55	AGCAGGGTCC ACAGACGACC GGATTGTGGT GCCCCAGCGG GGCCGCTCCA CCCGCGTGCC	1320
	CGTGGCCAGT GTGCTCATCT GAGAGGCTGC CGCTCACCTA CCTGCACATC TGCCACAGCT	1380
60	KGCCCTGGGC CCACCCCACG AAGGGCCTGG GCCTAACCCC TTGGCCTGGC CCAGCTTCCA	1440

	CACACTACMT CCCTACCTCA GGGGAGGAGG	1500
	GAGGGACCCT GGGCCGTGTG CCAGCTCCCA GACACTACMT GGGTAGCTCA GGGGAGGAGG	1560
5	TEGEGGTCCA GGAGGGGGAT CCCTCTCCAC AGGGGNCACC CCAAGGGCTC GGTGCTATTT	
,	GTAACGGAAT AAAATTTGTA GCCAGACCCC AGGTGCCTGC TCTCGTCTTT CTCTGGGTGG	1620
	CCTCTGATCT TGCACCCCGT CTTCACCCCA GGGCTCCTGA A	1661
10		
	(2) INFORMATION FOR SEQ ID NO: 242:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1146 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:	
	NGACAGAAAA GCAGAAGATG AGACTCTGTT CATTCACTTT TCCTAGGCCC ATCCTGTGT	60
25	CATCTITCCC CCTCCCATCA TACCTCCTCC TTCCTGGAGC CTCTGCCGGC TTGGCTGTAA	120
	TGGTGGCACT TACCTGGATA TTTCAGTGGG AGGATGAAAG GCGAGACTCA CCCTACGCGG	180
	TGGGACAGAT GGGGAGAGGA AAAAGGCAGA GATNGCCAGG AGAGGGGTGC AGGACAAACC	240
30	AGAGAGGTTG GGTCAGGGGA AAAGTGTNGG GAGAAAGTGG GGTGCAGGCC CTGCAGGCCG	300
	GTTTAGCCAG CAGCTGCGGC CTCCCCGGGC CCTTGGCATC CAACTTCGCA GACAGGGTAC	360
35	CAGCCTCCTG GTGTGTATCA TAGGATTTGT TCACATAGTG TTATGCATGA TCTTCGTAAG	420
	GTTAAGAAGC CGTGGTGGTG CACCATGACA TCCAACCCGT ATATATAAAG ATAAATATAT	480
	ATATATATGT ATGTAAATTA TAGCACTGAG GGCCCTGCTG CCCTGCTGGA CCAAGCAAAA	540
40	CTAAGCCTTT TGGTTTGGGT ATTATGTTTC GTTTTGTTAT TTGTTGTTT TTGTGGCTTG	600
	TCTTATGTCG TGATAGCACA AGTGCCAGTC GGATTGCTCT GTATTACAGA ATAGTGTTTT	660
45	TAATTCATCA ATGTTCTAGT TAATGTCTAC CTCAGCACCT CCTCTTAGCC TAATTTTAGG	720
	AGGTTGCCCA ATTTTGTTTC TTCAATTTTA CTGGTTACTT TTTTGTACAA ATCAATCTCT	780
	TICTCTCTTT CTCTCCCC CACCTCTCAC CCTTGCCCTC TCCATCTCCC TCTCCCGCCC	840
50		900
	CCTGCCTCCT GCTGCCCCCT CCCCAGCCCA CTTSCCCGAG TTGTGCTTGC CGCTCCTTAT	960
55	The state of the s	1020

ATCTGCCTTC GTTTCGTGTA GATTGACGCG TTTCTTTGTA ATTTCAGTGT TTCTGACAAG

469

CAATTG 1146

5 (2) INFORMATION FOR SEQ ID NO: 243:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1350 base pairs

10 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:

15 60 AACCCACGCC TGCTGCGGCA GGGCGTGGAG GGCAGAGGGC CGCGGAGGCG CAGTTGCAAA CATGGCTCAG AGCAGAGACG GCGGAAACCC GTTCGCCGAG CCCAGCGAGC TTGACAACCC 120 CTTTCAGCCA CCACCAGCCT ATGAGCCTCC AGCCCCTGCC CCATTGCCTC CACCCTCAGC 180 20 TCCCTCCTTG CAGCCCTCGA GAAAGCTCAG CCCCACAGAA CCTAAGAACT ATGGCTCATA 240 Ø00 25 CAACCGGAAG GCAGAGGAGT TGGACCGAAG GAGNCGAGAG CTGCAGCATG CTGCCCTGGG 360 RGGCACAGCT ACTCGACAGA ACAATTGGCC CCCTCTACCT TCTTTTTGTC CAGTTCAGCC 420 CTGCTTTTTC CAGGACATCT CCATGGAGAT CCCCCAAGAA TTTCAGAAGA CTGTATCCAC 480 30 CATGTACTAC CTCTGGATGT GCAGCACGST GGCTCTTCTC CTGAACTTCC TCGCCTGCCT 540 600 GGCCAGCTTC TGTGTGGAAA CCAACAATGG CGCAGGCTTT GGGCTTTCTA TCCTCTGGGT 35 CCTCCTTTC ACTCCCTGCT CCTTGTCTG CTGGTACCGC CCCATGTATA AGGCTTTCCG 660 GAGTGACAGT TCATTCAATT TCTTCGTTTT CTTCTTCATT TTCTTCGTCC AGGATGTGCT 720 CTTTGTCCTC CAGGCCATTG GTATCCCAGG TTGGGGATTC AGTGGCTGGA TCTCTGCTCT 780 40 GGTGGTGCCG AAGGCAACAC AGCAGTATCC GTGCTCATGC TGCTGGTCGC CCTGCTCTTC 840 ACTGGCATTG CTGTGCTAGG AATTGTCATG CTGAAACGGA TCCACTCCTT ATACCGCCGC 900 45 ACAGGIGCCA GCTTTCAGAA GGCCCAGCAA GAATTTGCTG CTGGTGTCTT CTCCAACCCT 960 1020 GCGGTGCGAA CCGCARCTTG CCAATGCAGC CGCTGGGGCT GCTGAAAATG CCTTCCGGGC CCCGTGACCC CTGACTGGGA TGCCCTGGCC CTGCTACTTG AGGGAGCTGA CTTAGCTCCC 1080 50 GTCCCTAAGG TCTCTGGGAC TTGGAGAGAC ATCACTAACT GATGGCTCCT CCGTAGTGCT 1140 CCCAATCCTA TGGCCATGAC TGCTGAACCT GACAGGCGTG TGGGGAGTTC ACTGTGACCT 1200 55 AGTCCCCCCA TCAGGCCACA CTGCTGCCAC CTCTCACACG CCCCAACCCA GCTTCCCTCT 1260 1320 GCTGTGCCAC GGCTGTTGCT TCGGTTATTT AAATAAAAAG AAAGTGGAAC TGGAAAAAAA 1350 AAAAAAAAA AAAAAAAAAG GGGGGNCCNC 60

5 (2) INFORMATION FOR SEQ ID NO: 244:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1529 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:

	(x1) SEQUENCE DESCRIPTION: SEQ 15 No. 211.	
15	TCCCAGAGGC CGGGGGTTC CAGCTCTGCC TGTAGCAGAG CCCTGAGGAG GAGGAGGAAG	60
	AGGATGTGCT GAAATACGTC CGGGAGATCT TTTTCAGCTA GGGCATAAAC TGTGCACTGA	120
	ACTGTCTGCC GAGAGCAGCT GGAGGACAGC TGAGCTTCCA CTGGTGCTGC TGGGCCGMCC	180
20	GCCTGTGGGA ATGGGGCTCT CTGTGCTCCT ACCTTTGTGC CTTCTTGGGC CTGGCAGATT	240
	CACCTCAGGC CAGAAGCCCC TGGACACTCC GGGCCTTGGG GTGCCGTTCT GAGTGTGCGG	300
25	AAGGCAGGAC TCAAAATGAG ATCCCATTTG ACTCCCTCTG TATGTACTGT GCCCTCTCCT	360
	GECTCTTGAG GCTCTGGAGT CCCAATTGTC TGTGTTAGTC AGTGACCAGG TTCCAGGGAA	420
20	AATRATGICA TGTGGTGGTC CAACTTACTG GAACCAAAGA GACAGTACTT TGCAAAGAAA	480
30	AGGATCACTG CCAGGTGCAC TGGAATTGCT ACAGTTTAGT CCGCATGATC TCTCCTGAAG	540
	GAGGAAGCCT GTTTCAAAAA TAGITTCCAT CATGAGTCTA TCAATGAGCT CCCACCTCTC	600
35	CAGCCAGCCT AGAAAGCAAA CGAGCTGCCC ACAGTTCTCT GCCCTGTCTG GGAGGTTGAG	660
	GCCACAGTGT ATAGACTGGT AAGCCAGACA GGCCTCCTCC CGCAAGCTGC TACCTTGCTT	720
	TCACCTGTAC CTTGGTCCCC GGGCAGCTAG CTATAAAGCA AGAGGGACAG GAGCCCAGAA	780
40	GAGACACTGA GGACAAGAGA TCACACCAGA GTACATGTCT CTGCCTCTGT TTTCAGTGTG	840
	GCTTTGGACA GGAATATATG AATAAATCAC TGCCATACAG GTTTTCCAAT ACACAAGTGC	900
45	TAGAAAATAC ACACAATTCC CCAATGCGTA AGTTGTGCTA ATGTCTTTCC AAGTTCTGGG	960
	TTGGGAAGTG GAGGGTGGCA GCGTTTGTTT GTGCGCAACC GTCCAGTCCT GTTCACAGCG	1020
	AGGATTIGGA GTCCTCCAGG GTCTCATCAT GGGAGTGATT TGTCAGCGGA CGCCTCTGCC	1080
50	CTGTCTGGCT TCAGGTCCAG GGAAGCTTTG AAGCAGTCAA GCCTTGTCTT TGTACCCCAT	1140
	GTGTCCTGTC TTTGTTGAGT CACTCAGAGA TCACTCCTGG ACCTCTGGGG TTGGAGTTCC	1200
55	AGTGATGGCT TATGGCGGCC CACTCACTAT GGTGGGCTGA GTGGAAGCTC CTTAACCATG	1260
	TCCCCAGAGA CACTGAGGTG CTCGCTCTTT TAATGTCCTC GTTTGTTGCC GTAAGTTCTT	1320
	TGCTAGGTTT CATTTTGGCA TTTGGCAAAT CAGCCTGGAA GTCTGGCCCC ATGACAGCAA	1380
60		

5	CTGAAGGACA	AACAATCTTG	TACTAAGAA				1529
	CAGGAATTGG	TGTGACAATG	AGCTGCATGG	TTTAGGGAGT	CTTTGGGAGC	CTTGGAAGTC	1500
	TCACTCCCTC	CCCACCCTCC	TGAAGCTAGA	GGAAGATTTG	CTCAGATCCA	TTAATTAAAG	1440

10 (2) INFORMATION FOR SEQ ID NO: 245:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1537 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245:

20	GTGCGAGGTC	CCCGCCAGCC	CCCAGCGGCC	TTCCCGGCCC	GGGGCGCTCC	CAGAGCAAAC	60
	GAGGCCCCTG	AGAGCTCCAC	CTAGTTCACA	GGATAAAATC	CCACAGCAGA	ACTCGGAGTC	120
25	AGCAATGGCT	AAGCCCCAGG	TGGTTGTAGC	TCCTGTATTA	ATGTCTAAGC	TGTCTGTGAA	180
25	TGCCCCTGAA	TTTTACCCTT	CAGGTTATTC	TTCCAGTTAC	ACAGAATCCT	ATGAGGATGG	240
	TTGTGAGGAT	TATCCTACTC	TATCAGAATA	TGTTCAGGAT	TTTTTGAATC	ATCTTACAGA	300
30	GCAGCCTGGC	AGTTTTGAAA	CTGAAATTGA	ACAGTTTGCA	GAGACCCTGA	ATGGTTGTGT	360
	TACAACAGAT	GATGCTTTGC	AAGAACTTGT	GGAACTCATC	TATCAACAGG	CCACATCTAT	420
35	CCCAAATTTC	TCTTATATGG	GAGCTCGCCT	GTGTAATTAC	CTGTCCCATC	ATCTGACAAT	480
33	TAGCCCACAG	AGTGGCAACT	TCCGCCAATT	GCTACTTCAA	AGATGTCGGA	CTGAATATGA	540
	AGTTAAAGAT	CAAGCTGCAA	AAGGGGATGA	AGTTACTCGA	AAACGATTTC	ATGCATTTGT	600
40	ACTOTTTCTG	GGAGAACTTT	ATCTTAACCT	GGAGATCAAG	GGAACAAATG	GACAGGTTAC	660
	AAGAGCAGAT	ATTCTTCAGG	TTGGTCTTCG	AGAATTGCTG	AATGCCCTGT	TTTCTAATCC	720
45	TATGGATGAC	AATTTAATTT	GTGCAGTAAA	ATTGTTAAAG	TTGACAGGAT	CAGTTTTGGA	780
43	AGATGCTTGG	AAGGAAAAAG	GAAAGATGGA	TATGGAAGAA	ATTATTCAGA	GAATTGAAAA	840
	CGTTGTCCTA	GATGCAAACT	GCAGTAGAGA	TGTAAAACAG	ATGCTCTTGA	AGCTTGTAGA	900
50	ACTCCGGTCA	AGTAACTGGG	GCAGAGTCCA	TGCAACTICA	ACATATAGAG	AAGCAACACC	960
	AGAAAATGAT	CCTAACTACT	TTATGAATGA	ACCAACATTI	TATACATCT	ATGGTGTTCC	1020
55	TTTCACTGCA	GCTGATCCAG	ATTACCAAGA	GAAATACCAA	GAATTACTT	AAAGAGAGGA	1080
23	CTTTTTTCC	GATTATGAAG	AAAATGGAAC	AGATTTATCO	GGGGCTGGT	ATCCATACTT	1140
	GGATGATATT	r gatgatgaga	TGGACCCAGA	GATAGAAGA	GCTTATGAA/	AGTTTTGTTT	1200
60	GGAATCAGAG	G CGTAAGCGAA	AACAGTAAAG	TTAAATTTC	A GCATATCAG	TTTATAAAGC	1260

	AGITTAGGTA TGGTGATTTA GCAGAACACA AGAGAGCAAG AAAATGTGTC ACATCTATAC	1320
	CAAATTRAGG ATGTTGAGTT ATGTTACTAA TGTATGCAAC TTTAATTTTG TTTAACACTA	1380
5	TCTGCCAAAA TAAACTITAT TCCCTATAAC TIAAAATGTG TATATATATA TAATAGTTTA	1440
	TTATGTACAG TTAATTCTAC TGTTTTGGCT GCAATAAAAT CGATTTTGAA ATAAAWRAAA	1500
10	AAAAAAAAAA AAGGGNGGCC GCTCTAGAGG ANCCAAG	1537
15	(2) INFORMATION FOR SEQ ID NO: 246:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 506 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246:	
25	TGCAGGATTT GGCCAGGACC CSCCGCGGTG GCGGTTGCTA TCGCTTCGCA GAACCTACTC	60
	AGGCAGCCAG CTGAGAAGAG TTGAGGGAAA GTGCTGCTGC TGGGTCTGCA GACGCGATGG	120
20	ATAACGTGCA GCCGAAAATA AAACATCGCC CCTTCTGCTT CAGTGTGAAA GGCCACGTGA	180
30	AGATGCTGCG GCTGGATATT ATCAACTCAC TGGTAACAAC AGTATTCATG CTCATCGTAT	240
	CTGTGTTGGC ACTGATACCA GAAACCACAA CATTGACAGT TGGTGGAGGG GTGTTTGCAC	300
35	TTGTGACAGC AGTATGCTGT CTTGCCGACG GGGCCCTTAT TTACCGGAAG CTTCTGTTCA	360
	ATCCCAGCGG TCCTTACCAG AAAAAGCCTG TGCATGAAAA AAAAGAAGTT TTGTAATTTT	420
40	ATATTACTTT TTAGTTTGAT ACTAAGTATT AAACATATTT CTGKATTATT CCAAAAAAA	480
40	AAAAAAAAA AAAAAAAATT TGGTGG	506
45	247	
	(2) INFORMATION FOR SEQ ID NO: 247:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1348 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247:	
33	GTCTTTCTTT TNCTGTTTTG AGTTGGTGAG TGAGTGAATA GGGTAACATG GGCCTTCAGG	60
	ATGACCCCTT GGAACTGTGC CGAGTTCCTT AAATCTCAGC TGGGATCCTG GACCTGGGAG	120
60	GCCCCTGTGA GGGCCAGCTC TGGAAAAACC TGGGAGTTGA TGCCGGAGGY TGGGAAGAAC	180

	TCTGCTCGAG	GGCAGGGTGC	CCTGGAACAC	TGGTAGTTCT	GGGCTGGGA	GGGAGAGGGG	240
5	CTCCGGCTTT	CTCTGAAATG	AACACTGCTC	TTCAGCAGTT	CAAGTACTTG	TTCTCAAAAC	300
J	ATTTTCTAAT	TGATTGGTAG	GTTTTCATAA	GCATTGTTTC	TTTAAGGCAT	GGAAAGGGAA	360
	GAATGCTCAA	GCAAGTCATG	TTTGTTTTCA	GTGGGATGGG	CCCGCGTTCT	CACTGCTGGG	420
10	GGCTTCCCCT	TGCATGTGGC	ACCTTTGTGC	AGGGCCACCA	GGCAGACTCT	TCCCACCTTC	480
	TCCCACTGAA	GCACCAAGGG	GCTTGAACCG	TAATTTGGCT	AATCAGAGGC	ATTTTTTTTG	540
15	TCCTAGTATC	TTTCACACTT	GTCCAACCGT	CITATTITT	TAAAAGTTCT	GTTGCTTGTA	600
13	TTAACACGAA	ACTAGAGAGA	AATAGTTTCT	GAAGCCAGTT	TATTGTGAAG	ATCCCCAAGG	660
	GGAGGTTCGG	TAGAGAAAAA	TAGTAAGCTG	GTTTAGAAAC	TGACGAGGGC	AAACAGCCAG	720
20	GACGCATTGG	AGAGGAATTT	GCCAAAGATC	TACCCTGAGA	TAACGCCTGT	CCAGTGTCTT	780
	CACCACGTGA	ATAACCAGCG	CTCCAAAGTG	TTTTTCTGCT	TTGAAAAAA	AAATTCCACA	840
25	AGCTTTTAAA	GGTGCATTTA	AGAATCCATG	TGACTTTAGA	ATGGAACTGC	CGGCCCTGGC	900
23	AACTGTCACG	TGTGCTAGAA	GGTTCGATGC	CTCTGGAATG	CATGTGATAC	TCATCTCCAT	960
	TITGTTTCCT	TGATTGCATT	TTTGTTCTTT	TAGCAGATCT	GTCCCTGTGG	GTGGTGTCTA	1020
30	AGAAGTCGGA	CACCTTGGTT	TTTGTGTTAG	ATTGAGCTGG	GCAGCTGCAA	TCAGCTTCTT	1080
	TATATGCAAA	TTAGGCACGA	CCCATCTGTG	GTTCCCTGGT	TGGTGGCTAA	TGAAGTGAGG	1140
35	GGAGGGAGGG	ATGTCACCCC	AAAAGTAGGC	CCTCCCATTG	GCTTTGGCCA	GGCCAGACAC	1200
33	TTCACATCGT	TTACATGGTT	CTGTGTAATT	TTAAAGTTTA	TGTGTATAAA	GCGAAGCTGT	1260
	TTCTGTGAAA	CTGTATATTT	AAATAAA	TATATTGCTA	CTTTGAGAWR	ааааааааа	1320
40	AAAAACTCGA	ceeeeccce	GTACCCAA				1348

45 (2) INFORMATION FOR SEQ ID NO: 248:

50

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1766 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:

55 GTGCCGAATC GGCAGAGCGG CACGAGCGGC CACGAGAGCA GGCGGAGTAA AGGGACTTGA 60
GCGAGCCAGT TGCCGGATTA TTCTATTTCC CCTCCCTCTC TCCCGCCCCG TATCTCTTTT 120
CACCCTTCTC CCACCCTCGC TCGCGTASCA TGGCGGAGCG TCGGCGGCCA CTCAGTCCCA 180

	TICCATCICC	TCGTCGTCCT	TCGGAGCCGA	GCCGTCCGCG	CCCGCCGCCG	GCGGGAGCCC	240
	AGGAGCCTGC	CCCGCCCTGG	GGACGAAGAG	CTGCAGCTCC	TCCTGTGCGG	TGCACGATCT	300
5	GATTTTCTGG	AGAGATGTGA	AGAAGACTGG	GTTTGTCTTT	GGCACCACGC	TGATCATGCT	360
	GCTTTCCCTG	GCAGCTTTCA	GTGTCATCAG	TGTGGTTTCT	TACCTCATCC	TGGCTCTTCT	420
10	CTCTGTCACC	ATCAGCTTCA	GGATCTACAA	GTCCGTCATC	CAAGCTGTAC	AGAAGTCAGA	480
10	AGAAGGCCAT	CCATTCAAAG	CCTACCTGGA	CGTAGACATT	ACTCTGTCCT	CAGAAGCTTT	540
	CCATAATTAC	ATGAATGCTG	CCATGGTGCA	CATCAACAGG	GCCCTGAAAC	TCATTATTCG	600
15	TCTCTTTCTG	GTAGAAGATC	TGGTTGACTC	CTTGAAGCTG	GCTGTCTTCA	TGTGGCTGAT	660
	GACCTATGTT	GCTGCTGTTT	TTAACGGAAT	CACCCTTCTA	ATTCTTGCTG	AACTGCTCAT	720
20	TTTCAGTGTC	CCGATTGTCT	ATGAGAAGTA	CAAGACCCAG	ATTGATCACT	ATGTTGGCAT	780
20	CGCCCGAGAT	CAGACCAAGT	CAATTGTTGA	AAAGATCCAA	GCAAAACTCC	CTGGAATCGC	840
	CAAAAAAAAG	GCAGAATAAG	TACATGGAAA	CCAGAAATGC	AACAGTTACT	AAAACACCAT	900
25	TTAATAGTTA	TAACGTCGTT	ACTTGTACTA	TGAAGGAAAA	TACTCAGTGT	CAGCTTGAGC	960
	CTGCATTCCA	AGCTTTTTTT	TTAATTTGGT	GITITCTCCC	ATCCTTTCCC	TTTAACCCTC	1020
30	AGTATCAAGC	ACAAAAATTG	ATGGACTGAT	AAAAGAACTA	TCTTAGAACT	CAGAAGAAGA	1080
50	AAGAATCAAA	TTCATAGGAT	AAGTCAATAC	CTTAATGGTG	GTAGAGCCTT	TACCTGTAGC	1140
	TTGAAAGGGG	AAAGATTGGA	GGTAAGAGAG	AAAATGAAAG	AACACCTCTG	GGTCCTTCTG	1200
35	TCCAGTTTTC	AGCACTAGTC	TTACTCAGCT	ATCCATTATA	GTTTTGCCCT	TAAGAAGTCA	1260
	TGATTAACTT	` ATGAAAAAAT	TATTTGGGGA	CAGGAGTGTG	; ATACCTTCCT	TGGTTTTTT	1320
40	TTGCAGCCCT	CAAATCCTAT	CTTCCTGCCC	CACAATGTGA	GCAGCTACCC	CTGATACTCC	1380
40	TTTTCTTTAA	A TGATTTAACT	ATCAACTTG/	TAAATAACTI	T ATAGGTGATA	GTGATAATTC	1440
	CTGATTCCA	GAATGCCATC	TGATAAAAA	A GAATAGAAA1	r GGAAAGTGGG	ACTGAGAGGG	1500
45	AGTCAGCAGC	CATGCTGCGG	TGGCGGTCA	C TCCCTCTGCC	C ACTATCCCC	GGGAAGGAAA	1560
	RGCTCCGCC#	A TTTGGGAAAC	TGGTTTCTA	C GTCACTGGA	C ACCOGTTCTC	AGCATTAGTT	1620
50	TGAGAACTC	TICCCGAATC	TGCTTTCCT	c cetetecee	r GCCCACCTC	A AGTTTAATAA	1680
50	ATAAGGTTG	r actiticiti	А СТАТААААТ.	AAAAAAA A	A AACTCGAGG	GGGCCCGGTA	1740
	CCCAAATCG	C CGGATATGA	r cgtaaa				1766

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 249:

(A) LENGTH: 2664 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249:

	AGTGTCCTCG GAGCAGGCGG AGTAAAGGGA CTTGAGCGAG CCAGTTGCCG GATTATTCTA	60
10	THYCCCCTCC CTCTCTCCCG CCCCGTATCT CTTTTCACCC TTCTCCCACC CTCGCTCGCG	120
	TASCATOGCG GAGCGTCGGC GGCCACTCAG TCCCATTCCA TCTCCTCGTC GTCCTTCGGA	180
1.5	GCCGAGCCGT CCGCGCCCGG CGGCGGGGG AGCCCAGGAG CCTGCCCCGC CCTGGGGACG	240
15	AAGAGCTGCA GCTCCTCCTG TGCGGTGCAC GATCTGATTT TCTGGAGAGA TGTGAAGAAG	300
	ACTGGGTTTG TCTTTGGCAC CACGCTGATC ATGCTGCTTT CCCTGGCAGC TTTCAGTGTC	360
20	ATCAGTGTGG TITCTTACCT CATCCTGGCT CTTCTCTCTG TCACCATCAG CTTCAGGATC	420
	TACAAGTCCG TCATCCAAGC TGTACAGAAG TCAGAAGAAG GCCATCCATT CAAAGCCTAC	480
25	CTGGACGTAG ACATTACTCT GTCCTCAGAA GCTTTCCATA ATTACATGAA TGCTGCCATG	540
25	GTGCACATCA ACAGGGCCCT GAAACTCATT ATTCGTCTCT TTCTGGTAGA AGATCTGGTT	600
	GACTCCTTGA ACCTGGCTGT CTTCATGTGG CTGATGACCT ATGTTGGTGC TGTTTTTAAC	660
30	GGAATCACCC TTCTAATTCT TGCTGAACTG CTCATTTTCA GTGTCCCGAT TGTCTATGAG	720
	AAGTACAAGA CCCAGATTGA TCACTATGTT GGCATCGCCC GAGATCAGAC CAAGTCAATT	780
25	GTTGAAAAGA TCCAAGCAAA ACTCCCTGGA ATCGCCAAAA AAAAGGCAGA ATAAGTACAT	840
35	GGAAACCAGA AATGCAACAG TTACTAAAAC ACCATTTAAT AGTTATAACG TCGTTACTTG	900
	TACTATGAAG GAAAATACTC AGTGTCAGCT TGAGCCTGCA TTCCAAGCTT TTTTTTTAAT	960
40	TTGGTGTTTT CTCCCATCCT TTCCCTTTAA CCCTCAGTAT CAAGCACAAA AATTGATGGA	1020
	CTGATAAAAG AACTATCTTA GAACTCAGAA GAAGAAAGAA TCAAATTCAT AGGATAAGTC	1080
4.5	AATACCTTAA TGGTGGTAGA GCCTTTACCT GTAGCTTGAA AGGGGAAAGA TTGGAGGTAA	1140
45	GAGAGAAAAT GAAAGAACAC CTCTGGGTCC TTCTGTCCAG TTTTCAGCAC TAGTCTTACT	1200
	CAGCTATCCA TTATAGTTTT GCCCTTAAGA AGTCATGATT AACTTATGAA AAAATTATTT	1260
50	GGGGACAGGA GTGTGATACC TTCCTTGGTT TTTTTTTGCA GCCCTCAAAT CCTATCTTCC	1320
	TGCCCCACAA TGTGAGCAGC TACCCCTGAT ACTCCTTTTC TTTAATGATT TAACTATCAA	1380
. .	CTTGATAAAT AACTTATAGG TGATAGTGAT AATTCCTGAT TCCAAGAATG CCATCTGATA	1440
55	AAAAAGAATA GAAATGGAAA GTGGGACTGA GAGGGAGTCA GCAGGCATGC TGCGGTGGCG	1500
	GTCACTCCCT CTGCCACTAT CCCCAGGGAA GGAAARGCTC CGCCATTTGG GAAAGTGGTT	1560
60	TCTACGTCAC TGGACACCGG TTCTGAGCAT TAGTTTGAGA ACTCGTTCCC GAATGTGCTT	1620

	TCCTCCCTCT CCCCTGCCCA CCTCAAGTTT AATAAATAAG GTTGTACTTT TCTTACTATA	1680
-	AAATAAATGT CTGTAACTGC TGTGCACTGC TGTAAACTTG TTAGAGAAAA AAATAACCTG	1740
5	CATGTGGGCT CCTCAGTTAT TGAGTTTTTG TGATCCTATC TCAGTCTGGG GGGGAACATT	1800
	CTCAAGAGGT GAAATACAGA AAGCCTTTTT TTCTTGATCT TTTCCCGAGA TTCAAATCTC	1860
10	CGATTCCCAT TTGGGGGCAA GTTTTTTCT TCACCTTCAA TATGAGAATT CAGCGAACTT	1920
	GAAAGAAAAA TCATCTGTGA GTTCCTTCAG GTTCTCACTC ATAGTCATGA TCCTTCAGAG	1980
15	GGAATATGCA CTGGCGAGTT TAAAGTAAGG GCTATGATAT TTGATGGTCC CAAAGTACGG	2040
13	CAGCTGCAAA AAGTAGTGGA AGGAAATTGT CTACGTGTCT TGGAAAAATT AGTTAGGAAT	2100
	TTGGATGGT AAAAGGTACC CTTGCCTTAC TCCATCTTAT TTTCTTAGCC CCCTTTGAGT	2160
20	GTTTTAACTG GTTTCATGTC CTAGTAGGAA GTGCATTCTC CATCCTCATC CTCTGCCCTC	2220
	CCAGGAAGTC AGTGATTGTC TTTTTGGGCT TCCCCTCCAA AGGACCTTCT GCAGTGGAAG	2280
25	TGCCACATCC AGITCTTTTC TTTTGTTGCT GCTGTGTTTA GATAATTGAA GAGATCTTTG	2340
23	TGCCACACAG GATTTTTTT TTTTTTAAGA AAAACCTATA GATGAAAAAT TACTAATGAA	2400
	ACTGTGTGTA CGTGTCTGTG CGTGCAACAT AAAAATACAG TAGCACCTAA GGAGCTTGAA	2460
30	TCTTGGTTCC TGTAAAATTT CAAATTGATG TGGTATTAAT AAAAAAAAA AAAACAMAAA	2520
	AAAAAAAAA AAAAGGGCGG CCGCTCTAGA GGATCCAAGC TTACGTACGC GTGCATGCGA	2580
35	CGTCCATAGC TCTTTCTATA GGGGTCCCCC AAATTCCATT CANCGGGCCG TCGGTTTTAN	. 2640
55	AAAGGTCGTG ANTGGGGGAA ANCC	2664
40	(2) INFORMATION FOR SEQ ID NO: 250:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 865 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:	
30	CGTGGGAGTG AGGTACCAGA TTCAGCCCAT TTGGCCCCGA CGCCTCTKTT CTCGGAATCC	60
	GGGTGCTGCG GATTGAGGTC CCGGTTCCTA ACGGTGGGAT CGGTGTCCTC GGGATGAGAT	120
55	TTGGCGTTTC CTCGGGGCTT TGGTGGGATC GGTGTCCTCA GGATGAGATT TAGGGTTTCC	180
	TCGGGGCTTT CGGGATCTTC ACCTAATATC CGGACTGCAA GATGGAGGAA GGCGGGAACC	240
60	TAGGAGGCCT GATTAARATG GTCCATCTAC TGGTCTTGTC AGGTGCCTGG GGCATGCAAA	300

780

840

55

60

	TGTGGGTGAC CTTCGTCTCA GGCTTCCTGC TTTTCCGAAG CCTTCCCCGA CATACCTTCG	360
	GACTAGTGCA GAGCAAACTC TTCCCCTTCT ACTTCCACAT CTCCATGGGC TGTGCCTTCA	420
5	TCAACCTCTG CATCTTGGCT TCACAGCATG CTTGGGCTCA GCTCACATTC TGGGAGGCCA	480
	GCCAGCTTTA CCTGCTGTTC CTGAGCCTTA CGCTGGCCAC TGTCAACGCC CGCTGGCTGG	540
10	AACCCCGCAC CACAGCTGCC ATGTGGGCCC TGCAAACCGT GGAGAAGGAG CGAGGCCTGG	600
10	GTGGGGAGGT ACCAGGCAGC CACCAGGGTC CCGATCCCTA CCGCCAGCTG CGAGAGAAGG	660
	ACCCCAAGTA CAGTGCTCTC CGCCAGAATT TCTTCCGCTA CCATGGGCTG TCCTCTCTT	720
15	GCAATCTGGG CTGCGTCCTG AGCAATGGGC TCTGTCTCGC TGGCCTTGCC CTGGAAATAA	780
	GGAGCCTCTA GCATGGGCCC TGCATGCTAA TAAATGCTTC TTCAGAAAAA AAAAAAAAAA	840
20	AAACTCGAGG GGGGCCCGGT ACCCA	865
20		
25	(2) INFORMATION FOR SEQ ID NO: 251:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2082 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:	
25	TGGGGGGGGN AATGGGTGTC TGGCTCANGG ATTGCCNAAT CTGGAAATTC TCCATAACTT	60
35	GCTAGCTTGT TTTTTTTTT TTTTTTTACA CCCCCCGCC CCACCCCCGG ACTTGCACAA	120
	TGTTCAATGA TCTCAGCAGA GTTCTTCATG TGAAACGTTG ATCACCTTTG AAGCCTGCAT	180
40	CATTCACATA TTTTTTCTTC TTCTTCCCCT TCAGTTCATG AACTGGTGTT CATTTTCTGT	240
	GTGTGTGTGT GTTTATTTT GTTTGGATTT TTTTTTTT	300
45	GTGTTGCCCA CCTTTTTCC AACCTCCACC CTCACTCCTT CTCAACCCAT CTCTTCCGAG	360
45	ATGAAAGAAA AAAAAAAGCA AAGTTTTTTT TTCTTCTCCT GAGTTCTTCA TGTGAGATTG	420
	AGCTTGCAAA GGAAAAAAAA ATGTGAAATG TTATAGACTT GCAGCGTGCC GAGTTCCATC	480
50	GGGTTTTTT TTTAGCATTG TTATGCTAAA ATAGAGAAAA AAATGCTCAT GAACCTTCCA	540
	CAATCAAGCC TGCATCAACC TTCTGGGTGT GACTTGTGAG TTTTGGCCTT GTGATGCCAA	600
	ATCTGAGAGT TTAGTCTGCC ATTAAAAAAA CTCATTCTCA TCTCATGCAT TATTATGCTT	660

GCTACTTTGT CTTAGCAACA ATGAACTATA ACTGTTTCAA AGACTTTATG GAAAAGAGAC

ATTATATTAA TAAAAAAAA AAGCCTGCAT GCTGGACATG TATGGTATAA TTATTTTTTC

CTTTTTTTT CCTTTTGGCT TGGAAATGGA CGTTCGAAGA CTTATAGCAT GGCATTCATA

	CTTTTGTTTT ATTGCCTCAT GACTTTTTTG AGTTTAGAAC AAAACAGTGC AACCGTAGAG	900
_	CCTTCTTCCC ATGAAATTTT GCATCTGCTC CAAAACTGCT TTGAGTTACT CAGAACTTCA	960
5	ACCTCCCAAT GCACTGAAGG CATTCCTTGT GCAAAGATAC CAGAATGGGT TACACATTTA	1020
	ACCTGGCAAA CATTGAAGAA CTCTTRATGT TTTCTTTTTA ATAAGAATGA CGCCCCACTT	1080
10	TGGGGACTAA AATTGTGCTA TTGCCGAGAA GCAGTCTAAA ATTTATTTT TAAAAAGAGA	1140
	AACTGCCCCA TTATTTTTGG TTTGTTTTAT TTTTATTTTA	1200
	TIGICAAAIG IGGAAIGCIC IGGGITICIA GIATATAAIT TAAIICIAGI ITITATAAIC	1260
15	TGTTAGCCCA GTTAAAATGT ATGCTACAGA TAAAGGAATG TTATAGATAA ATTTGAAAGA	1320
	GTTAGGTCTG TTTAGCTGTA GATTTTTTAA ACGATTGATG CACTAAATTG TTTACTATTG	1380
20	TGATGTTAAG GGGGGTAGAG TTTGCAAGGG GACTGTTTAA AAAAAGTAGC TTATACAGCA	1440
	TGTGCTTGCA ACTTAAATAT AAGTTGGGTA TGTGTAGTCT TTGCTATACC ACTGACTGTA	1500
	TTGAAAACCA AAGTATTAAG AGGGGAAACG CCCCTGTTTA TATCTGTAGG GGTATTTTAC	1560
25	ATTCAAAAAT GTATGTTTTT TTTTCTTTTC AAAATTAAAG TATTTGGGAC TGAATTGCAC	1620
	TAAGATATAA CCTGCAAGCA TATAATACAA AAAAAAATTG CAAAACTGTT TAGAACGCTA	1680
30	ATAAAATTTA TGCAGTTATA AAAATGGCAT TACTGCACAG TTTTAAGATG ATGCAGATTT	1740
	TTTTACAGTT GTATTGTGGT GCAGAACTGG ATTTTCTGTA ACTTAAAAAA AAATCCACAG	1800
	TTTTAAAGGC AATAATCAGT AAATGTTATT TTCAGGGACT GACATCCTGT CTTTAAAAAG	1860
35	AAATGAAAAG TAAATCTTAC CACAATAAAT ATAAAAAAAT CITGTCAGTT ACTTTTCTTT	1920
	TACATATTTT GCTGTGCAAA ATTGTTTTAT ATCTTGAGTT ACTAACTAAC CACGCGTGTT	1980
40	GTTCCTATGT GCTTTTCTTT CATTTTCAAT TCTGGTTATA TCAAGAAAAG AATAATCTAC	2040
	AATAATAAAC GGCATTTTT TTTGAAAAAA AAAAAAAAAA	2082
45		
	(2) INFORMATION FOR SEQ ID NO: 252:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1482 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252:	
	CAGGCAGGCT GGCCCCGGGG ACTTCTCTCT GGCCCTGCTC CCTCCGAGCG CTCCGCCGTT	60
60	GCCCGCCTGG CCCCTACGGA GTCCTTAGCC AGGATGGAGG CTGTTGTGAA CTTGTACCAA	120

	GAGGTGATGA	AGCACGCAGA	TCCCCGGATC	CAGGGCTACC	CTCTGATGGG	GTCCCCCTTG	180
	CTAATGACCT	CCATTCTCCT	GACCTACGTG	TACTTCGTTC	TCTCACTTGG	GCCTCGCATC	240
5	ATGGCTAATC	GGAAGCCCTT	CCAGCTCCGT	GGCTTCATGA	TTGTCTACAA	CTTCTCACTG	300
	GTGGCACTCT	CCCTCTACAT	TGTCTATGAG	TTCCTGATGT	CGGGCTGGCT	GAGCACCTAT	360
10	ACCTGGCGCT	GTGACCCTGT	GGACTATTCC	AACAGCCCTG	AGGCACTTAG	GATGGTTCGG	420
10	GTGGCCTGGC	TCTTCCTCTT	CTCCAAGTTC	ATTGAGCTGA	TGGACACAGT	GATCTTTATT	480
	CTCCGAAAGA	AAGACGGGCA	GGTGACCTTC	CTACATGTCT	TCCATCACTC	TGTGCTTCCC	540
15	TGGAGCTGGT	GGTGGGGGGT	AAAGATTGCC	CCGGGAGGAA	TGGGCTCTTT	CCATGCCATG	600
	ATAAACTCTT	CCGTGCATGT	CATAATGTAC	CTGTĄCTACG	GATTATCTGC	CTTTGGCCCT	660
20	GTGGCACAAC	CCTACCTTTG	GTGGAAAAAG	CACATGACAG	CCATTCAGCT	GATCCAGTTT	720
20	GTCCTGGTCT	CACTGCACAT	CTCCCAGTAC	TACTTTATGT	CCAGCTGTAA	CTACCAGTAC	780
	CCAGTCATTA	TTCACCTCAT	CTGGATGTAT	GGCACCATCT	TCTTCATGCT	GTTCTCCAAC	840
25	TTCTGGTATC	ACTCTTATAC	CAAGGGCAAG	CGCTGCCCC	GTGCACTTCA	GCAAAATGGA	900
	GCTCCAGGTA	TTGCCAAGGT	CAAGGCCAAC	TGAGAAGCAT	GGCCTAGATA	GCCCCCACC	960
20	TAAGTGCCTC	AGGACTGCAC	CTTAGGGCAG	TGTCCGTCAG	TGCCCTCTCC	ACCTACACCT	1020
30	GTGACCAAGG	CTTATGTGGT	CAGGACTGAG	CAGGGGACTG	CCCTCCCCT	CCCCACAGCT	1080
	GCTCTACAGG	GACCACGCCT	TTGGTTCCTC	ACCCACTTCC	CCCGGCAGC	TCCAGGGATG	1140
35	TGGCCTCATT	GCTGTCTGCC	ACTCCAGAGC	TGGGGGCTAA	AAGGGCTGTA	CAGTTATTTC	1200
	CCCCTCCCTG	CCTTAAAACT	TGGGAGAGGA	GCACTCAGGG	CTGGCCCCAC	AAAGGGTCTC	1260
40	GTGGCCTTTT	TCCTCACACA	GAAGAGGTCA	GCAATAATGT	CACTGTGGAC	CCAGTCTCAC	1320
40	TCCTCCACCC	CACACACTGA	AGCAGTAGCT	TCTGGGCCAA	AGGTCAGGGT	GGGCGGGGC	1380
	CTGGGAATAC	AGCCTGTGGA	GCTCCTTAC	: TCAACTTGTG	TCTTAATTAA	AAGTGACAGA	1440
45	GGAAACCAAA	AAAAAAAAA	AAAAACTCGA	cecececcic	TA		148

50 (2) INFORMATION FOR SEQ ID NO: 253:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 834 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253:

	GTGAACTTGT ACCAAGAGGT GATGAAGCAC GCAGATCCCC GGATCCAGGG CTACCCTCTG	120
5	ATGGGGTCCC CCTTGCTAAT GACCTCCATT CTCCTGACCT ACGTGTACTT CGTTCTCTCA	180
3	CTTGGGCCTC GCATCATGGC TAATCGGAAG CCCTTCCAGC TCCGTGGCTT CATGATTGTC	240
	TACAACTTCT CACTGGTGGC ACTCTCCCTC TACATTGTCT ATGAGTTCCT GATGTCGGGC	300
10	TGGCTGAGCA CCTATACCTG GCGCTGTGAC CCTCAGGACT GCACCTTAGG GCAGTGTCCG	360
	TCAGTGCCCT CTCCAMCTAC ACCTGTGACC AAGGCTTATG TGGTCAGGAC TGAGCAGGGG	420
15	ACTGGCCCTC CCCTCCCCAC AGCTGCTCTA CAGGGACCAC GGCTTTGGTT CCTCACCCAC	480
••	TTCCCCCGGG CAGCTCCAGG GATGTGGCCT CATTGCTGTC TGCCACTCCA GAGCTGGGGG	540
	CTAAAAGGGC TGTACAGTTA TFTCCCCCTC CCTGCCTTAA AACTTGGGAG AGGAGCACTC	600
20	AGGGCTGGCC CCACAAAGGG TCTCGTGGCC TTTTTCCTCA CACAGAAGAG GTCAGCAATA	660
	ATGTCACTGT GGACCCAGTC TCACTCCTCC ACCCCACACA CTGAAGCAGT AGCTTCTGGG	720
25	CCAAAGGTCA GGGTGGGCGG GGGCCTGGGA ATACAGCCTG TGGAGGCTGC TTACTCAACT	780
	TGTGTCTTAA TTAAAAGTGA CAGAGGAAAAC CACGAAAAAA AAAAAAAAAA	834
30	(2) INFORMATION FOR SEQ ID NO: 254:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1508 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:	
40	TIGAACTITI AAAATTITAG ATCAGCAAAC TCTAAGATCC TAGAATGGAA GCTGTTCCTC	60
	ATTITCTCCAT GCTCACCCTC CCAGGTCAGC GAGATGGTGA AGAAGCTGCA CGCGGCAACA	120
45	CCACCAACGT TCGGAGTGGA CCTCATCAAT GAGCTTGTGG AGAACTTTGG CAGATGTCCC	180
	AAGTGGTCTG GTCGGCAAGC CTTTGTCTTT GTCTGCCAGA CTGTCATTGA GGATGACTGC	240
50	CTTCCCATGG ACCAGTTTGC TGTGCATCTC ATGCCGCATC TGCTAACCTT AGCAAATGAC	300
50	AGGGTTCCTA ACGTGCGAGT GCTGCTTGCA AAGACATTAA GACAAACTCT ACTAGAAAAA	360
	GACTATTTCT TGGCCTCTGC CAGCTGCCAC CAGGAGGCTG TGGAGCAGAC CATCATGGCT	420
55	CTTCAGATGG ACCGTGACAG CGATGTCAAG TATTTTGCAA GCATCCACCC TGCCAGTACC	480
	AAAATCTCCG AAGATGCCAT GAGCACAGCG TCCTCAACCT ACTAGAAGGC TTGAATCTCG	540
60	GTGTCTTTCC TGCTTCCATG AGAGCCGAGG TTCAGTGGGC ATTCGCCACG CATGTGACCT	600
~~		

	GGGATAGCTT TCGGGGGAGG AGAGACCTTC CTCTCCTGCG GACTTCATTG CAGGTGCAAG	660
	TTGCCTACAC CCAATACCAG GGATTTCAAG AGTCAAGAGA AAGTACAGTA AACACTATTA	720
5	TCTTATCTTG ACTTTAAGGG GAAATAATTT CTCAGAGGAT TATAATTGTC ACCGAAGCCT	780
	TARATCCTTC TGTCTTCCTG ACTGAATGAA ACTTGAATTG GCAGAGCATT TTCCTTATGG	840
10	AAGGGATGAG ATTCCCAGAG ACCTGCATTG CTTTCTCCTG GTTTTATTTA ACAATCGACA	900
10	AATGAAATTC TTACAGCCTG AAGGCAGACG TGTGCCCAGA TGTGAAAGAG ACCTTCAGTA	960
	TCAGCCCTAA CTCTTCTCTC CCAGGAAGGA CTTGCTGGGC TCTGTGGCCA GCTGTCCAGC	1020
15	CCAGCCCTGT GTGTGAATCG TTTGTGACGT GTGCAAATGG GAAAGGAGGG GTTTTTACAT	1080
	CTCCTAAAGG ACCTGATGCC AACACAAGTA GGATTGACTT AAACTCTTAA GCGCAGCATA	1140
20	THECTETACA CATTUACAGA AUGSTUGCTE ASTETICTETE TCTGATTTTT TCATECTEST	1200
20	CATGACCTGA AGGAAATTTA TTAGACGTAT AATGTATGTC TGGTGTTTTT AACTTGATCA	1260
	TGATCAGCTC TGAGGTGCAA CTTCTTCACA TACTGTACAT ACCTGTGACC ACTCTTGGGA	1320
25	GTGCTGCAGT CTTTAATCAT GCTGTTTAAA CTGTTGTGGC ACAAGTTCTC TTGTCCAAAT	1380
	AAAATTTATT AATAAGATCT ATAGAGAGAG ATATATACAC TTTTGATTGT TTTCTAGATG	1440
20	TCTACCAATA AATGCAATTT GTGACCTGTA TTAAAAAAAA NTAAAAAAAC TCGAGGGGG	1500
30	CCCGGTAC	1508
35		
	(2) INFORMATION FOR SEQ ID NO: 255:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2514 base pairs	
40	(i) SEQUENCE CHARACTERISTICS:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2514 base pairs (B) TYPE: nucleic acid	
40 45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2514 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2514 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2514 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:	60 120
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2514 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255: GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2514 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255: GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT	120
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2514 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255: GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT AGGCTTCCTG CCTTATGAAG CCGATGCAGA AATTTTGGCT GTGAAATTTC ACACTATGAT	120 180
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2514 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255: GAGAGACTCA CACTTCTTTT CCATTATCAC TGACGATGTA GTGGACATAG CAGGGGAAGA GCACCTACCT GTGTTGGTGA GGTTTGTTGA TGAATCTCAT AACCTAAGAG AGGAATTTAT AGGCTTCCTG CCTTATGAAG CCGATGCAGA AATTTTGGCT GTGAAATTTC ACACTATGAT AACTGAGAAG TGGGGATTAA ATATGGAGTA TTGTCGTGGC CAGGCTTACA TTGWCTCTAG	120 180 240

60 ACCACACTG CTTTTAGAAC TTGACAACGT AATTTCTGTT CTTTTTCAGA ACAGTAAAGA

	AAGGGGTAAA GAACTGAAGG AAATCTGCCA TTCTCAGTGG ACAGGCAGGC ATGATGCTTT	540
_	TGAAATTTTA GTGGAACTCC TGCAAGCACT TGTTTTATGT TTAGATGGTA TAAATAGTGA	600
5	CACAAATATT AGATGGAATA ACTATATAGC TGGCCGAGCA TTTGTACTCT GCAGTGCAGT	660
	GTCAGATTTT GATTTCATTG TTACTATTGT TGTTCTTAAA AATGTCCTAT CTTTTACAAG	720
10	AGCCTTTGGG AAAAACCTCC AGGGGCAAAC CTCTGATGTC TTCTTTGCGG CCGGTAGCTT	780
	GACTGCAGTA CTGCATTCAC TCAACGAAGT GATTGGAAAA TATTGAAGTT TATCATGAAT	840
15	TTTGGTTTGA GGAAGCCACA AATTTGGCAA CCAAACTTGA TATTCAAATG AAACTCCCTG	900
15	GGAAATTCCG CAGAGCTCAC CAGGGTAACT TGGAATCTCA GCTAACCTCT GAGAGTTACT	960
	ATAAAGAAAC CCTAAGTGTC CCAACAGTGG AGCACATTAT TCAGGAACTT AAAGATATAT	1020
20	TCTCAGAACA GCACCTCAAA GCTCTTAAAT GCTTATCTCT GGTACCCTCA GTCATGGGAC	1080
	AACTCAAATT CAATACGTCG GAGGAACACC ATGCTGACAT GTATAGAAGT GACTTACCCA	1140
25	ATCCTGACAC GCTGTCAGCT GAGCTTCATT GTTGGAGAAT CAAATGGAAA CACAGGGGGA	1200
23	AAGATATAGA GCTTCCGTCC ACCATCTATG AAGCCCTCCA CCTGCCTGAC ATCAAGTTTT	1260
	TTCCTAATGT GTATGCATTG CTGAAGGTCC TGTGTATTCT TCCTGTGATG AAGGTTGAGA	1320
30	ATGAGCGGTA TGAAAATGGA CGAAAGCGTC TTAAAGCATA TTTGAGGAAC ACTTTGACAG	1380
	ACCAAAGGTC AAGTAACTTG GCTTTGCTTA ACATAAATTT TGATATAAAA CACGACCTGG	1440
35	ATTTAATGGT GGACACATAT ATTAAACTCT ATACAAGTAA GTCAGAGCTT CCTACAGATA	1500
33	ATTCCGAAAC TGTGGAAAAT ACCTAAGAGA CTTTTAAAAA TAGGCTTTCT TATATTTGAT	1560
	ATTTGGAAGA AAAAGCCGTA AGTGTATGTA GACCACTTAA TCACTAAATA TCTTTGCCTA	1620
40	TAGGACTCCA TTGAATACAT TAGCCATTGA TAATCTACCT GTTTAAATGG CCCCTGTTTG	1680
	AACTCTCAAG CTTTGAAGAC CTACCTGTTC TTCCAGAAGA GAACGTTGAA AGTGCCATGT	1740
45	TICCTTTTGC GTGATCTCTG TTGATGGCAC TCTGGAATTG TTTCAGTTAA GTCATTTTAG	1800
43	ACATAGCATT TATTATCACT GTGGATCTCT ACTTGTTGGG TGTTATGAAT TCTTTGAAGA	1860
	AATATATTT GAAGAGGTGT GGGAGGAAGG AATACATTTT ATAAAATGTT GTAGTGAAGC	1920
50	CCACAATTGA CCTTTGACTA ATAGGAGTTT TAAGTATGTT AAAAATCTAT ACTGGACAGT	1980
	TACAAGAAAT TACCGGAGAA AAGCTTGTGA GCTCACCAAA CAAGGATTTC AGTGTAGATT	2040
55	TTGTCTTTCT TGAACTTAAA GAAACAAATG ACAAAGTTTG AATGGAAAAG CCTGCTGTTG	2100
55	TTCCACATCT CGTTGCTGTT TACATTCCTT TGTGGAGCCT ACATCTTCCT AAGCTTTTTA	2160
	GCAGGTATAT GTTGAACACT TCTGTTTCAT GGTTGAGACA GAATCAGAGG CCATGGATAC	2220
60	TGACAACTGA TITGTCTGTT TITTTTCTCT GTCTTTTTCC ATGACTCTTA TATACTGCCT	2280

	CATCTTGATT TATAAGCAAA ACCTGGAAAA CCTACAAAAT AAGTGTTGTG GTTTATCTAG	2340
	AAAAATATGG AAAATATTGC TGTTATTTTT GGTGAAGAAA ATCAATTTTG TATAGTTTAT	2400
5	TTCAATCTAA ATAAAATGTG AATTITGTTT AAAGCTTAGG CACATTATTT TITGTGGGGT	2460
	CAAAACATTC TTGTGTAAAT TCTCTTAAAC ATTTGATAAA CAGCTTCACA ATTC	2514
10		
	(2) INFORMATION FOR SEQ ID NO: 256:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2357 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:	
	CTGCCTTATG AAGCCGATGC AGAAATTTTG GCTGTGAAAT TTCACACTAT GATAACTGAG	60
25	AAGTGGGGAT TAAATATGGA GTATTGTCGT GGCCAGGCTT ACATTGTCTC TAGTGGATTT	120
	TCTTCCAAAA TGAAAGTTGT TGCTTCTAGA CTTTTAGAGA AATATCCCCA AGCTATCTAC	180
30	ACACTCTGCT CTTCCTGTGC CTTAAATATG TGGTTGGCAA AATCAGTACC TGTTATGGGA	240
30	GTATCTGTTG CATTAGGAAC AATTGAGGAA GTTTGTTCTT TTTTCCATCG ATCACCACAA	300
	CTGCTTTTAG AACTTGACAA CGTAATTYCT GTTCTTTTTC AGAACAGTAA AGAAAGGGGT	.360
35	AAAGAACTGA AGGAAATCTG CCATTCTCAG TGGACAGGCA GGCATGATGC TITTGAAATT	420
	TTAGTGGAAC TCCTGCAAGC ACTTGTTTTA TGTTTAGATG GTATAAATAG TGACACAAAT	480
40	ATTAGATGGA ATAACTATAT AGCTGGCCGA GCATTTGTAC TCTGCAGTGC AGTGTCAGAT	540
40	TTTGATTTCA TTGTTACTAT TGTTGTTCTT AAAAATGTCC TATCTTTTAC AAGAGCCTTT	600
	GGGAAAAACC TCCAGGGGCA AACCTCTGAT GTCTTCTTTG CGGCCGGTAG CTTGACTGCA	660
45	GTACTGCATT CACTCAACGA AGTGANTGGA AAATATTGAA GTTTATCATG AATTTTGGTT	720
	TGAGGAAGCC ACAAATTTGG CAACCAAACT TGATATTCAA ATGAAACTCC CTGGGAAATT	780
	CCGCAGAGCT CACCAGGGTA ACTTGGAATC TCAGCTAACC TCTGAGAGTT ACTATAAAGA	840
50	AACCCTAAGT GTCCCAACAG TGGAGCACAT TATTCAGGAA CTTAAAGATA TATTCTCAGA	900
	ACAGCACCTC AAAGCTCTTA AATGCTTATC TCTGGTACCC TCAGTCATGG GACAACTCAA	960
55	ATTCAATACG TCGGAGGAAC ACCATGCTGA CATGTATAGA AGTGACTTAC CCAATCCTGA	1020
	CACGCTGTCA GCTGAGCTTC ATTGTTGGAG AATCAAATGG AAACACAGGG GGAAAGATAT	1080
	ANACOMECCA MOCACCAMICA AMCAACCCCA CCACCCACCCCA GACAACAACA ATAPPAYCCAAA	1140

	TGTGTATGCA TTGCTGAAGG TCCTGTGTAT TCTTCCTGTG ATGAAGGTTG AGAATGAGCG	1200
	GTATGAAAAT GGACGAAAGC GTCTTAAAGC ATATTTGAGG AACACTTTGA CAGACCAAAG	1260
5	GTCAAGTAAC TTGGCTTTGC TTAACATAAA TTTTGATATA AAACACGACC TGGATTTAAT	1320
	GGTGGACACA TATATTAAAC TCTATACAAG TAAGTCAGAG CTTCCTACAG ATAATTCCGA	1380
10	AACTGTGGAA AATACCTAAG AGACTTTTAA AAATAGGCTT TCTTATATTT GATATTTGGA	1440
10	AGAAAAAGCC GTAAGTGTAT GTAGACCACT TAATCACTAA ATATCTTTGC CTATAGGACT	1500
	CCATTGAATA CATTAGCCAT TGATAATCTA CCTGTTTAAA TGGCCCCTGT TTGAACTCTC	1560
15	AAGCTTTGAA GACCTACCTG TTCTTCCAGA AGAGAACGTT GAAAGTGCCA TGTTTCCTTT	1620
	TGCGTGATCT CTGTTGATGG CACTCTGGAA TTGTTTCAGT TAAGTCATTT TAGACATAGC	1680
20	ATTTATTATC ACTORGATC TCTACTTGTT GGGTGTTATG AATTCTTTGA AGAAATATAT	1740
20	TTTGAAGAGG TGTGGGAGGA AGGAATACAT TTTATAAAAT GTTGTAGTGA AGCCCACAAT	1800
	TGACCTITGA CTAATAGGAG TITTAAGTAT GITAAAAATC TATACTGGAC AGTTACAAGA	1860
25	ANTIACCOGA GAAAAGCTTG TGAGCTCACC AAACAAGGAT TTCAGTGTAG ATTTTGTCTT	1920
	TCTTGAACTT AAAGAAACAA ATGACAAAGT TTGAATGGAA AAGCCTGCTG TTGTTCCACA	1980
30	TCTCGTTGCT GTTTACATTC CTTTGTGGAG CCTACATCTT CCTAAGCTTT TTAGCAGGTA	2040
30	TATGTTGAAC ACTTCTGTTT CATGGTTGAG ACAGAATCAG AGGCCATGGA TACTGACAAC	2100
	TGATTTGTCT GTTTTTTTC TCTGTCTTTT TCCATGACTC TTATATACTG CCTCATCTTG	2160
35	ATTTATAAGC AAAACCTGGA AAACCTACAA AATAAGTGTT GTGGTTTATC TAGAAAAATA	2220
	TOGAAAATAT TOCTGTTATT TTTOGTGAAG AAAATCAATT TTGTATAGTT TATTTCAATC	2280
40	TAAATAAAAT GTGAATTITG TITAAAGCTT AGGCACATTA TITTTTGTGG GGTCAAAACA	2340
40	TICTIGIGTA AATICIC	2357
45	(2) INFORMATION FOR SEQ ID NO: 257:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 689 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257:	60
	ACTITICIGGI GCAAAAAGAI GIICAAGCCI TATIITATAC TIGCCIGCCC CITICICIII	60
	CATTTATTGG AGTGAGCTGC AGCTCTAAGA AGACCTGTTC TTTTGAATGG AGAGTAGCAT	120
60	CAGGAACCAG GATGTGGGTG CGAGGCGTGC TCCTGGCTGT TGCAGATTGC TGCACCCGGG	180

	AGCTCTTAGT GGACAGAGCT AGAGGATATG TGCACGTACT TCCATCTCTC TCTCTGTCTC	240
5	CGATTTTAGC CCAGCACCAC AGGGTACGTT CCAGTTTTTC TCTCTTTCCA TAGCTGTAAG	300
3	GCCCTTTCTG GGAATGGTTC TCATTCTCCT TAATCTATTA TTGGGTCAGT TTTCCTGCAT	360
	GTCCCCAGCC TCCCATCACT GCCACCCACT CCCCACAGAG ATGCCCTGCT CATCCGACTG	420
10	GGGCTTTGAC TCCCACACTG TGTACCCCTC TTGTGTGGAC GCCCTGCTGC CAAAACCTTC	480
	AGCAAACAGC TTTCCAAATG GAAGTTGTCA CTGTCARGGS CTTTACAATC AGCAACAGCA	540
15	AAATCTACAT GCTGCTGAGG GTCCTGCCTC ATTAAGATGC AATAAATATG TAAGTACATA	600
13	AAAACAGCAA TAGAAGAAAC GTAATGCTTT ATTCTCAAAT ATGNATGTCT ACATAGAAAA	660
	GCCAAAATTA TTAAGAATAG TAAGGAATT	689
20		
	(2) INFORMATION FOR SEQ ID NO: 258:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2377 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:	
	TCGACCCACG CGTCCGCCGA TGTGATGATT CCTGCGTATT CCAAGAACCG GGCCTATGCC	60
35	ATCTTCTTCA TAGTCTTCAC TGTGATAGGG GACGCCCCCG GCGCTGTGCT ATCCTGTGCC	120
	GGCCACCCTT GCGTTGGTTT TGCTGCTGTA CTGGTGGCGC CCCTGACCGT GGCTGTCTCC	180
40	TCTTGAAGGA AGCCTGTTTC TGATGAACCT GCTGACAGCC ATCATCTACA GTCAGTTCCG	240
40	GGGCTACCTG ATGAAATCTC TCCAGACCTC GCTGTTTCGG AGGCGGGTGG GAACCCGGCT	300
	GCCTTTGAAG TCCTATCCTC CATGGTGGGG GAGGGAGGAG CCTTCCCTCA GGCAGTTGGG	360
45	GTGAAGCCCC AGAACTTGCT GCAGGTGCTT CAGAAGGTCC AGCTGGACAG CTCCCACAGA	420
	CAGGCCATGA TGGAGAAGGT GCGTTCCTAT GGCAGTGTTC TGCTCTCAGC TGAGGAGTTT	480
50	CAGAAGCTCT TCAACGAGCT TGACAGAAGT GTGGTTAAAG AGCACCCGCC GAGGCCCGAG	540
30	TACCAGTOTO CGTTTCTGCA GAGCGNCCCA GTTCCTCTTC GGCCACTNAC TACTTTGACT	600
	ACCTGGGGAA CCTCATCGCC CTGGCAAACC TGGTGTCCAT TTGCGTGTTC CTGGTGCTGG	660
55	ATGCAGATGT TGCTGCCTGC TGAGCGTGAT GACTTCATCC TGGGGGGTCT CAACTGCGTC	720
	TTCATIGIGI ACTACCIGIT GGAGATGCIG GCTCAAGGIC TTTTGCCCIG GGGCCIGCGA	780
60	RGGTACYKKT CCTAACCCCA RCAAMGTGTT TTGAACGGGC TCCTCAMCGT TTGTCCTGGC	840

	TGGWWKKGSM GATCTCAACT CTGGCTGTGT ACCGATTGCC ACACCCAGGC TGGAGGCCGG	900
	ANATOGTOGG CCTGCTGTCG CTGTGGGACA TGACCCGCAT ACTGAACATG CTCATCGTGT	960
5	TCCGCTTCCT GCGTATCATC CCCAGCATGA AGCCGATGGC CGTGGTGGCC AGTACCGTCC	1020
	TGGGCCTGGT GCAAAACATG CGTGCGTTTG GCGGGATCCT GGTGGTGGTC TACTACGTAT	1080
	TTGCCATCAT TGGGATCAAC TTGTTTAGAG GCGTCATTGT GGCTCTTCCT GGAAACAGCA	1140
10	GCCTGGCCCC TGCCAATAGG TCGGCGCCCT GTGGGAGCTT CGAGCAGCTG GAGTACTGGG	1200
	CCAACAACTT CGATGACTTT GCGGCTGCCC TGGTCACTCT GTGGAACTTG ATGGTGGTGA	1260
15	ACAACTGGCA GGTGTTTCTG GATGCATATC GGCGCTACTA AGGCCCGTGG TCCAAGATCT	1320
	ATTITGTATT GTGGTGGCTG GTGTCGTCTG TCATCTGGGT CAACCTGTTT CTGGCCCTGA	1380
20	TTCTGGAGAA CTTCCTTCAC AAGTGGGACC CCCGCAGCCA CCTGCAGCCC CTTGCTGGGA	1440
20	CCCCAGAGGC CACCTACCAG ATGACTGTGG AGCTCCTGTT CAGGGATATT CTGGAGGAGC	1500
	CCGGGGAGGA TGAGCTCACA GAGAGGCTGA GCCAGCACCC GCACCTGTGG CTGTGCAGGT	1560
25	GACGTCCGGG TCTGCCATCC CAGCAGGGGC GGCAGGAGAG AGAGGCTGGC ATAACACAGG	1620
	TGCCCATCAT GGAAGAGGCG GCCATGCTGT GGCCAGCCAG GCAGGAAGAG ACCTTTCCTC	1680
30	TGACGGACCA CTAAGCTGGG GACAGGAACC AAGTCCTTTG CGTGTGGCCC AACAACCATT	1740
30	TACAGAACAG CTGCTGGTGC TTCAGGGAGG CGCCGTGCCC TCCGCTTTCT TTTATAGCTG	1800
	CTTCAGTGAG AATTCCCTTG TCGACTCCAC AGGGACCTTT CAGACAAAAA TGCAAGAAGC	1860
35	AGCGGCCTCC CCTGTCCCCT GCAGCTTCCG TGGTGCCTTT GCTGCCGGCA GCCCTTGGGG	1920
	ACCACAGGCC TGACCAGGGC CTGCACAGGT TAACCGTCAG ACTTCCGGGG CATTCAGCTG	1980
40	GGAATGATAC TAATACCTCC GATTTTAGCC CAGCACCACA GGGTACGTTC CAGTTTTTAT	2040
40	TTCTTTCCAT AGCTGTAAGG CCCTTTCTGG GAATGGTTAT CATTCTCCTT AATCTATTAT	2100
	TGGGTCAGTT TTCCTGCATG TCCCCAGCCT CCCATCACTG CCACCCACTC CCCACAGAGA	2160
45	TGCCCTGCTC ATCCGACTGG GGCTTTGACT CCCACACTGT GTACCCCTCT TGTGTGGACG	2220
	CCCTGCTGCC AAAACCTTCA GCAAACAGCT TTCCAAATGG AAGTTGTCAC TGTCAGGGCC	228
50	TITACAATCA GCAACAGCAA AATCTACATG CTGCTGAGGG TCCTGCCTCA TTAAGATGCA	234
50	ATAAATATGT AAGTACATAA AAAAAAAAA AAAAAAA	237

⁽²⁾ INFORMATION FOR SEQ ID NO: 259:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 1193 base pairs

^{60 (}B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259: 5 TOTGNICGOO GTCGCCCCGC CCCTGGCCTT TGCCCGGTCG GGCGGGACTT CCTGTGTCGT 60 120 ATTTCCAAGG ACTCCAAAGC GAGGCCGGG ACTGAAGGTG TGGGTGTCGA GCCCTCTGGC AGAGGGTTAA CCTGGGTCAA ATGCACGGAT TCTCACCTCG TACAGTTACG CTCTCCCGCG 180 10 GCACGTCCGC GAGGMYTTGA AGTCCTGAGC GCTCAAGTTT GTCCGTAGTC GAGAGAAGGC 240 300 CATGGAGGTG CCGCCACCGG CACCGCGGAG CTTTCTCTGT AGAGCATTGT GCCTATTTCC 15 CCGAGTCTTT GCTGCCGAAG CTGTGACTGC CGATTCGGAA GTCCTTGAGG AGCGTCAGAA 360 GCGGCTTCCC TACGTCCCAG AGCCCTATTA CCCGGAATCT GGATGGGACC GCCTCCGGGA 420 GCTGTTTGGC AAAGACACAG TGAACACTAG TCTGAATGTA TACCGAAATA AAGATGCCTT 480 20 AAGCCATTTT GTAATTGCAG GAGCTGTCAC GGGAAGTCTT TTTAGGATAA ACGTAGGCCT 540 GCGTGGCTGG TGGCTGGTGG CATAATTGGA GCCTTGCTGG GCACTCCTGT AGGAGGCCTG 600 25 660 CTGATGGCAT TTCAGAAGTA CTCTGGTGAG ACTGTTCAGG AAAGAAAACA GAAGGATCGA AAGGCACTCC ATGAGCTAAA ACTGGAAGAG TGGAAAGGCA GACTACAAGT TACTGAGCAC 720 CICCCTGAGA AAATTGAAAG TAGTTTACAG GAAGATGAAC CTGAGAATGA TGCTAAGAAA 30 840 ATTGAAGCAC TGCTAAACCT TCCTAGAAAC CCTTCAGTAA TAGATAAACA AGACAAGGAC 900 TGAAAGTGCT CTGAACTTGA AACTCACTGG AGAGCTGAAG GGAGCTGCCA TGTCCGATGA 35 960 ATGCCAACAG ACAGGCCACT CTTTGGTCAG CCTGCTGACA AATTTAAGTG CTGGTACCTG TGGTGGCAGT GGCTTGCTCT TGTCTTTTTC TTTTCTTTTT AACTAAGAAT GGGGCTGTTG 1020 1080 40

(2) INFORMATION FOR SEQ ID NO: 260:

50

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1262 base pairs

ATATATGCAT ACATGAATAT ATCCACCCAC CTAGATTTTA AGCAGTAAAT AAAACATTTC

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260:

GAAAAACCCA AAGATGCAGA CAATCTCTTT GAACATGAAT TGGGGGCTCT CAATATGGCT 60

1140

1193

	GCATTACTAC GAAAAGAAGA AAGAGCAAGT CITCTTAGTA ATCTTGGCCC ATGTTGTAAG	120
	GCGTTGTGCT TCAGACGGGA TTCTGCAATT CGAAAGCAGC TTGTTAAAAA TGAGAAGGGC	180
5	ACCATAAAAC AAGCTTACAC GAGTSCTCCA ATGGTAGACA ATGAATTACT TCGATTGAGT	240
	CTTCGGTTAT TTAAGCGGAA GACTACTTGC CATGCTCCAG GACATGAAAA GACTGAAGAT	300
	AATAAACTTT CACAGTCCAG TATCCAACAG GAACTGTGTG TGTCTTAAGA CCGAAGTTCA	360
10	ATATGGTATT TITGGTACTG TCTTCCTTCA GCAGTGCATA TTCTTTTGCA AAGTTCTTTG	420
	GTTTGACAAG CATTAGTGAC AAAGGCAGAA AAGATTTATC AGCCATGCTA AAAGAGTGAA	480
15	GAATTITGAT CTTTAGAGAC ACTAGTITTG GCCAACTTAA GATTITACGT TAATTITTAC	540
	ATAGTATTIG ACACTCATGC AAAATAATGT GAAAACATCT AGATTTAGTA GTTTATTCIG	600
	CGCCTTTTGT TAAAACTGAA GATTTTGGAA AATGGTTGTC ACTGCTCTTC CAGCCTATGA	660
20	ATATTTTTGT GAAATGGAAC CATGGATTTA TGTCTGGATC ATCCATACAG AACCAACAAT	720
	TITATICAAA AACAATGIGT TCATCAAAGT AATTGCTCAC ATTGIGCAGT ACTATGITGT	780
25	ACAGACCACG TGAAAGGGAA TGCTGGTCTA GCTGGCGTGG TATGTTTATA GGCGAATTTC	840
	ACCAGAAGGA AGCCAAAATA GTTTTTTCCT TTTGAAAGTT TTTTAAAAAT TATTTCATGG	900
	GTCTTTTTT TAATTAATAT GTGTGCATTG TTACAATGTA TGTTGGATGT CTTTTGACCC	960
30	TAAATGCTTT TTTTGTTATC AGAGATTGTG TACTATTTTT ATTTTTAATA AATGTATCTT	1020
	CCCTTTCCTT GTTTTAGATT TACTTTGCTC TTCGTTAATC TTATTCCTGA TGATCTAGAA	1080
35	CATTAGTCAT CAACATTACA TGTTTCATGC TTCAGATATT TTACTGCTTG TGTCCTTATT	1140
	GTTGGACAGC TTTAAACAGA GTTGATGGTA CTTCAAATAT AGCTCATTGA TACTTAAGGG	1200
	CANCTICCTT GGGATGTGGG CTTTTTGGAA GGAAAAAAT TNCCCCAAAG GCAAATCCCA	1260
40	GT	1262
45		
	(2) INFORMATION FOR SEQ ID NO: 261:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1179 base pairs	
50		
50	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:	
33	GGCAAACTTT CCCCCAANGC TTCGAAACTT GCAAGCCGAA ACCTTGAATC GTTAAAAGTT	60
	GGGTTGCGNC GGCGCCCTGG CCCGAAGAAG CGCAATTGGC GTTCCGCGAA CGTTGGCCCT	120
60	CAACGGCTCG GCAGCCAGCC ATGTCCTGCA CCCAGGACAG CGGCCCTGGG CTACAAGGAC	180

	CTGGACCTCA	TCTTCCTGCG	CCGACCTGCG	CGGGGAAGGG	GAGTTTCAGA	CTGTGAAGGA	240
5	CGTCGTGCTG	GACTGCCTGT	TGGACTTCTT	ACCCGAGGGG	GTGAACAAAG	AGAAGATCAC	300
3	ACCACTCACG	CTCAAGGAAG	CTTATGTGCA	GAAAATGGTT	AAAGTGTGCA	ATGACTCTGA	360
	CCGATGGAGT	CTTATATCCC	TGTCAAACAA	CAGTGGCAAA	AATGTGGAAC	TGAAATTTGT	420
10	GGATTCCCTC	CGGAGGCAGT	TTGAATTCAG	TGTAGATTCT	TTTCAAATCA	AATTAGACTC	480
	TCTTCTGCTC	TTTTATGAAT	GTTCAGAGAA	CCCAATGACT	GAGACATTTC	ACCCCACAAT	540
15	AATCGGGGAG	AGCGTCTATG	GCGATTTCCA	GGAAGCCTTT	GATCACCTTT	GTAACAAGAT	600
13	CATTGCCACC	AGGAACCCAG	AGGAAATCCG	AGGGGGAGGC	CTGCTTAAGT	ACTGCAACCT	660
	CTTGGTGAGG	GGCTTTAGGC	CCGCCTCTGA	TGAAATCAAG	ACCCTTCAAA	GGTATATGTG	720
20	TTCCAGGTTT	TTCATCGACT	TCTCAGACAT	TGGAGAGCAG	CAGAGAAAAC	TGGAGTCCTA	780
	TTTGCAGAAC	CACTITICTGG	GATTGGAAGA	CCGCAAGTAT	GAGTATCTCA	TGACCCTTCA	840
25	TGGAGTGGTA	AATGAGAGCA	CAGTGTGCCT	GATGGGACAT	GAAAGAAGAC	AGACTTTAAA	900
23	CCTTATCACC	ATGCTGGCTA	TCCGGGTGTT	AGCTGACCAA	AATGTCATTC	CTAATGTGGC	960
	TAATGTCACT	TGCTATTACC	AGCCAGCCCC	CTATGTAGCA	GATGCCAACT	TTAGCAATTA	1020
30	CTACATTGCA	CAGGTTCAGC	CAGTATTCAC	GTGCCAGCAA	CAGACCTACT	CCACTTGGCT	1080
	ACCCTGCAAT	TAAGAATCAT	TTAAAAATGT	CCTGTGGGGA	AGCCATTTCA	GACAAGACAG	1140
35	GAGAGAAAAA	AAAAAAAAA	. AAAAAAAAA	AAAAAGAGC			1179
<i>33</i>							

(2) INFORMATION FOR SEQ ID NO: 262:

40

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1162 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

45 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262:

60	GTTAAAAGTT	ACCTTGAATC	GCAAGCCGAA	TTCGAAACTT	CCCCCAANGC	GGCAAACTTT	
120	CGTTGGCCCT	GTTCCGCGAA	CGCAATTGGC	CCCGAAGAAG	GGCGCCCTGG	GGGTTGCGNC	
180	CTACAAGGAC	CGGCCCTGGG	CCCAGGACAG	ATGTCCTGCA	GCAGCCAGCC	CAACGGCTCG	
240	CTGTGAAGGA	GAGTTTCAGA	CGGGGAAGGG	CCGACCTGCG	TCTTCCTGCG	CTGGACCTCA	
300	AGAAGATCAC	GTGAACAAAG	ACCCGAGGGG	TGGACTTCTT	GACTGCCTGT	CGTCGTGCTG	
360	ATGACTCTGA	AAAGTGTGCA	GAAAATGGTT	CTTATGTGCA	CTCAAGGAAG	ACCACTCACG	

	CCGATGGAGT CTTATATCCC TGTCAAACAA CAGTGGCAAA AATGTGGAAC TGAAATTTGT	420
	GGATTCCCTC CGGAGGCAGT TTGAATTCAG TGTAGATTCT TTTCAAATCA AATTAGACTC	480
5	TCTTCTGCTC TTTTATGAAT GTTCAGAGAA CCCAATGACT GAGACATTTC ACCCCACAAT	540
	AATCGGGGAG AGCGTCTATG GCGATTTCCA GGAAGCCTTT GATCACCTTT GTAACAAGAT	600
10	CATTGCCACC AGGAACCCAG AGGAAATCCG AGGGGGAGGC CTGCTTAAGT ACTGCAACCT	660
10	CTTGGTGAGG GGCTTTAGGC CCGCCTCTGA TGAAATCAAG ACCCTTCAAA GGTATATGTG	720
	TTCCAGGTTT TTCATCGACT TCTCAGACAT TGGAGAGCAG CAGAGAAAAC TGGAGTCCTA	780
15	TTTGCAGAAC CACTTTGTGG GATTGGAAGA CCGCAAGTAT GAGTATCTCA TGACCCTTCA	840
	TOGAGTOGTA AATGAGAGCA CAGTGTGCCT GATGGGACAT GAAAGAAGAC AGACTTTAAA	900
20	CCTTATCACC ATGCTGGCTA TCCGGGTGTT AGCTGACCAA AATGTCATTC CTAATGTGGC	960
20	TAATGTCACT TGCTATTACC AGCCAGCCCC CTATGTAGCA GATGCCAACT TTAGCAATTA	1020
	CTACATTGCA CAGGITCAGC CAGTATTCAC GTGCCAGCAA CAGACCTACT CCACTTGGCT	1080
25	ACCCTGCAAT TAAGAATCAT TTAAAAATGT CCTGTGGGGA AGCCATTICA GACAAGACAG	1140
	GAGAGAAAA NAANGAAAAG AG	1162
30		
30	(2) INFORMATION FOR SEQ ID NO: 263:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 735 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:	60
	CGGGCTGGGT ATTTGCCTCG CACCATGGCG CCCAAGGGCA AAGTGGGCAC GAGAGGGAAG	60
45	AAGCAGATAT TTGAAGAGAA CAGAGAGACT CTGAAGTTCT ACCTGCGGAT CATACTGGGG	120
	GCCAATGCCA TITACTGCCT TGTGACGTTG GTCTTCTTTT ACTCATCTGC CTCATTTTGG	180
	GCCTGGTTGG CCTTGGGCTT TAGTCTGGCA GTGTATGGGG CCAGCTACCA CTCTATGAGC	240
50	TCGATGCCAC GAGCAGCGTT CTTCTGAGGA TGGGGCCCTG ATGGATGGTG GCACGAGCTC	300
	AACATGGAGC AGGGCATGGC AGAGCACCTT AAGGATGTGA TCCTACTGAC AGCCATCGTG	360
55	CAGGTGCTCA GCTGCTTCTC TCTCTATGTC TGGTCCTTCT GGCTTCTGGC TCCAGGCCGG	420
J.	GCCCTTTACC TCCTGTGGGT GAATGTGCTG GGCCCCTGGT TCACTGCAGA CAGTGGCACC	480
	CCAGCACCAG AGCACAATGA GAAACGGCAG CGCCGACAGG AGCGGCGGCA GATGAAGCGG	540
60	TTATAGCCAT TGACATTGTG GCCACAGGCC ACTGGCCCTG GGTGGCTCTG TCAGGGTGCA	600

	CAGCCCCTCA TGCCTGGAGC AATGAGGGTC TAGTCCAGGG GCCAAAAGCA GTCTGAGGTA	660
5	TTGGGTATAC TTATACTCTA TAGGGTCGTT GAATAAATGG CTTAGAATGT GAAAAAAAA	720
3	AAAAAAAAA ATTTT	735
10	(2) INFORMATION FOR SEO ID NO: 264:	
	-	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 783 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264:	
20	AAGTGCATGA GCTGCCGATG TGGTGCTTAG TGATTGCGGT TTCGGTCGCT CTCCCGTGTT	60
	TCCCGGGCTG GGTATTTGCC TCGCACCATG GCGCCCAAGG GCAAAGTGGG CACGAGAGGG	120
25	AAGAAGCAGA TATTTGAAGA GAACAGAGAG ACTCTGAAGT TCTACCTGCG GATCATACTG	180
	GGGGCCAATG CCATTTACTG CCTTGTGACG TTGGTCTTCT TTTACTCATC TGCCTCATTT	240
30	TGGGCCTGGT TGGCCTGGGC TTTAGTCTGG CAGTGTATGG GGCCAGCTAC CACTCTATGA	300
50	GCTCGATGGC ACGAGCAGCG TTCTCTGAGG ATGGGGCCCT GATGGATGGT GGCATGGACC	360
	TCAACATGGA GCAGGGCATG GCAGAGTGAG TGTCCCCCAC CGCCAGCCCA GGCACCTTAA	420
35	GGATGTGATC CTACTGACAG CCATCGTGCA GGTGCTCAGC TGCTTCTCTC TCTATGTCTG	480
	CTCCTTCTGG CTTCTGGCTC CAGGCCGGGC CCTTTACCTC CTGTGGGTGA ATGTGCTGGG	540
40	CCCCTGGTTC ACTGCAGACA GTGGCACCCC AGCACCAGAG CACAATGAGA AACGGCAGCG	600
	CCGACAGGAG CGGCGCAGA TGAAGCGGTT ATAGCCATTG ACGATTTKGC SACNRGCCAC	660
	TEGCCCTEGG TEGCTCTETC ACCOTTCACA CCCCCTCATC CCTEGAGCAA TGAGGGTCTA	720
45	GTCCAGGGGC CAAAAGCAGT CTGAGGTATT GGGTATACTT ATACTCTATA GGGTCGTTGA	780
	ATA	783
50		
	(2) INFORMATION FOR SEQ ID NO: 265:	
	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 1638 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265:

	GCCACGAGGC GGCGCCAGCG GTGGCGGCGG CGCCCCCCGG CGGGAGCCGT NCCCTTTCCC	60
5	GTCGGGGAGC GCGGGGYCGG GGYCCAGGGG ANCCCGGGMC ACGGAGAGCG GGAAGAGGAT	120
	GGATTGCCCG GCCCTCCCCC CCGGATGGAA GAAGGAGGAA GTGATCCGAA AATCTGGGCT	180
	AAGTGCTGGC AAGAGCGATG TCTACTACTT CAGTCCAAGT GGTAAGAAGT TCAGAAGCAA	240
10	GCCTCAGTTG GCAAGGTACC TGGGAAATAC TGTTGATCTC AGCAGTTTTG ACTTCAGAAC	300
	TGGAAAGATG ATGCCTAGTA AATTACAGAA GAACAAACAG AGACTGCGAA ACGATCCTCT	360
15	CAATCAAAAT AAGGGTAAAC CAGACTTGAA TACAACATTG CCAATTAGAC AAACAGCATC	420
13	AATTITCAAA CAACCGGTAA CCAAAGTCAC AAATCATCCT AGTAATAAAG TGAAATCAGA	480
	CCCACAACGA ATGAATGAAC AGCCACGTCA GCTTTTCTGG GAGAAGAGGC TACAAGGACT	540
20	TAGTGCATCA GATGTAACAG AACAAATTAT AAAAACCATG GAACTACCCA AAGGTCTTCA	600
	AGGAGITGGT CCAGGTAGCA ATGATGAGAC CCTTTTATCT GCTGTTGCCA GTGCTTTGCA	660
25	CACAAGCTCT GCGCCAATCA CAGGGCAAGT CTCCGCTGCT GTGGAAAAGA ACCCTGCTGT	720
23	TREGETTARC ACATETCARC COCTETECRA AGETTTTATT GTCACAGATG AAGACATCAG	780
	GAAACAGGAA GAGCGAGTAC AGCAAGTACG CAAGAAATTG GAAGAAGCAC TGATGGCAGA	840
30	CATCTTGTCG CGAGCTGCTG ATACAGAAGA GATGGATATT GAAATGGACA GTGGAGATGA	900
	AGCCTAAGAA TATGATCAGG TAACTTTCGA CCGACTTTCC CCAAGAGAAA ATTCCTAGAA	960
35	ATTGAACAAA AATGTTTCCA CTGGCTTTTG CCTGTAAGAA AAAAAATGTA CCCGAGCACA	1020
55	TAGAGCTTTT TAATAGCACT AACCAATGCC TTTTTAGATG TATTTTTGAT GTATATATCT	1080
	ATTATTCAAA AAATCATGTT TATTTTGAGT CCTAGGACTT AAAATTAGTC TTTTGTAATA	1140
40	TCAAGCAGGA CCCTAAGATG AAGCTGAGCT TTTGATGCCA GGTGCAATCT ACTGGAAATG	1200
	TAGCACTTAC GTAAAACATT TGTTTCCCCC ACAGTTTTAA TAAGAACAGA TCAGGAATTC	1260
45	TAAATAAATT TCCCAGTTAA AGATTATTGT GACTTCACTG TATATAAACA TATTTTTATA	1320
73	CTTTATTGAA AGGGGACACC TGTACATTCT TCCATCRTCA CTGTAAAGAC AAATAAATGA	1380
	TTATATTCAC AGACTGATTG GAATTCTTTC TGTTGAAAAG CACACACAAT AAAGAACCCC	1440
50	TOGTTAGECT TOCTOTGATT TACATTCAAC TOTGATCCCG GGGCCTTAGG TTTGACATGG	1500
	GAGGTGGGAG GAAGATAGCG CATATATTTG CAGTATGAAC TATTGCCTCT GGGACGTTGT	1560
55	GAGGAATTGT GCTTTCACCA GAATTTCTAA GGATTTCTGG CTTAAATATC ACCTAGCCTG	1620
55	TGGTAATTTT TTTTCCCT	1638

493

(2) INFORMATION FOR SEQ ID NO: 266:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1455 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266:

10 CGTGCGTACT GCCATGCAGG TACCGGGTCC GGAATTCCCA GGGTCGACCC ACGCGTCCGC 60 120 TCAGTTGGCA AGGTACCTGG GAAATACTGT TGATCTCAGC AGTTTTGACT TCAGAACTGG AAAGATGATG CCTAGTAAAT TACAGAAGAA CAAACAGAGA CTGCGAAACG ATCCTCTCAA 180 15 TCAAAATAAG GGTAAACCAG ACTTGAATAC AACATTGCCA ATTAGACAAA CAGCATCAAT 240 TTTCAAACAA CCGGTAACCA AAGTCACAAA TCATCCTAGT AATAAAGTGA AATCAGACCC 300 20 ACAACGAATG AATGAACAGC CACGTCAGCT TTTCTGGGAG AAGAGGCTAC AAGGACTTAG 360 TGCATCAGAT GTAACAGAAC AAATTATAAA AACCATGGAA CTACCCAAAG GTCTTCAAGG AGTTGGTCCA GGTAGCAATG ATGAGACCCT TTTATCTGCT GTTGCCAGTG CTTTGCACAC 480 25 AAGCTCTGCG CCAATCACAG GGCAAGTCTC CGCTGCTGTG GAAAAGAACC CTGCTGTTTG 540 600 GCTTAACACA TCTCAACCCC TCTGCAAAGC TTTTATTGTC ACAGATGAAG ACATCAGGAA 30 ACAGGAAGAG CGAGTACAGC AAGTACGCAA GAAATTGGAA GAAGCACTGA TGGCAGACAT 660 720 CTTGTCGCGA GCTGCTGATA CAGAAGAGAT GGATATTGAA ATGGACAGTG GAGATGAAGC CTAAGAATAT GATCAGGTAA CTTTCGACCG ACTTTCCCCA AGAGAAAATT CCTAGAAATT 780 35 GAACAAAAAT GTTTCCACTG GCTTTTGCCT GTAAGAAAAA AAATGTACCC GAGCACATAG 840 AGCTTTTTAA TAGCACTAAC CAATGCCTTT TTAGATGTAT TTTTGATGTA TATATCTATT 900 40 960 ATTCAAAAAA TCATGTTTAT TTTGAGTCCT AGGACTTAAA ATTAGTCTTT TGTAATATCA AGCAGGACCC TAAGATGAAG CTGAGCTTTT GATGCCAGGT GCAATCTACT GGAAATGTAG 1020 1080 45 CACTTACGTA AAACATTTGT TTCCCCCACA GTTTTAATAA GAACAGATCA GGAATTCTAA ATAAATTICC CAGITAAAGA TTATIGIGAC TICACIGIAT ATAAACATAI TITTATACII 1140 TATTGAAAGG GGACACCTGT ACATTCTTCC ATCRTCACTG TAAAGACAAA TAAATGATTA 1200 50 1260 TATTCACAGA CTGATTGGAA TTCTTTCTGT TGAAAAGCAC ACACAATAAA GAACCCCTCG TTAGCCTTCC TCTGATTTAC ATTCAACTCT GATCCCGGGG CCTTAGGTTT GACATGGGAG 1320 1380 GTGGGAGGAA GATAGCGCAT ATATTTGCAG TATGAACTAT TGCCTCTGGG ACGTTGTGAG 55 GAATTGTGCT TTCACCAGAA TTTCTAAGGA TTTCTGGCTT AAATATCACC TAGCCTGTGG 1440 1455 TAATTITTTT TCCCT

5	(2) INFORMATION FOR SEQ ID NO: 267: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1086 base pairs	
10	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267:	
	CGCCTGCAGT ACCGGTCCGG AATTCCCGGG TCGACCCACG CGTCGCTGAC CCAGGAGAAG	60
15	CTGCCTGTCT ACATCAGCCT GGGCTGCAGC GCGCTGCCGC CGCGGGGCCG GCAGCTGAAC	120
	TATGTGCTCT TCAGGGCGGG CACCGTGTTG CATTCATCTT TGTACCCCCA GCATCTAGCA	180
20	GTGTTGGCAT GTAGTAGGCA CTCAAGAAAT GTGTGTTGAA TGAACGATGC CTGTGACAAG	240
	CAAGCGGACT TTATTCTTTC CTGACCCTTG CTCCTATGAC ACACCTCCTC CTGACTGCCA	300
25	CTGTCACTCC TTCAGAGCAG AACTCCTCTA GGGAACCTGG ATGGGAAACA GCCATGGCCA	360
25	AGGACATCCT GGGTGAAGCA GGGCTACACT TTGATGAACT GAACAAGCTG AGGGTGTTGG	420
	ACCCAGAGGT TACCCAGCAG ACCATAGAGC TGAAGGAAGA GTGCAAAGAC TTTGTGGACA	480
30	AAATTGGCCA GTTTCAGAAA ATAGTTGGTG GTTTAATTGA GCTTGTTGAT CAACTTGCAA	540
	AAGAAGCAGA AAATGAAAAG ATGAAGGCCA TCGGTGCTCG GAACTTGCTC AAATCTATAG	600
25	CAAAGCAGAG AGAAGCTCAA CAGCAGCAAC TTCAAGCCCT AATAGCAGAA AAGAAAATGC	660
35	AGCTAGAAAG GTATCGGGTT GAATATGAAG CTTTGTGTAA AGTAGAAGCA GAACAAAATG	720
	AATTTATTGA CCAATTTATT TTTCAGAAAT GAACTGAAAA TTTCGCTTTT ATAGTAGGAA	780
40	GGCAAAACAA AAAAAAGCCT CTCAAAACCA AAAAAACCTC TGTAGCATTC CAGCGGCTTG	840
	ACCAATGACC TATGTCACAA GAGGTGGCGT GTAAGGAATG CAGCCCCCTG AAGACAGCAC	900
AE	TACAAGTCTG GGGGAGCCAG TTTTAACATC AGTGCACAGC TGCTGCTGGT GGCCCTGCAG	960
45	TGTACGTTCT CACCTCTTAT GCTTAGTTGG AACTAAGCAG TTTGTAAACT TTCATCCTTT	1020
	TTTTTGTAAA TTCACAAAGC TTTGGAAGGA GARGCAATAA ATTTTTGKTT TCNAAATGGC	1080

55 (2) INFORMATION FOR SEQ ID NO: 268:

50

TTGATG

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1003 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268:	•
5	GGCACGGGAG CAGCCGGGCT GGTCCTGCTG CGAGCCGGCG GCCCGGAGTG GGGCGGCGGA	60
	GCAAACATGA ACGITGGAGT TGCCCACAGT GAAGTGAATC CAAATACCCG TGTCATGAAC	120
10	AGCCGGGGTA TGTGGCTGAC ATATGCATTG GGAGTTGGCT TGCTTCATAT TGTCTTACTC	180
10	AGCATTCCCT TCTTCAGTGT TCCTGTTGCT TGGACTTTAA CAAATATTAT ACATAATCTG	240
	GGGATGTACG TATTTTTGCA TGCAGTGAAA GGAACACCTT TCGAAACTCC TGACCAGGGT	300
15	AAAAGCAAGG CTCCTAACTC ATTGGGAACA ACTGGACTAT GGAGTACAGT TTACATCTTC	360
	ACGGAAGTIT TICACAATIT CICCAATAAT TCTATATITI CIGGCAAGTI TCTATACGAA	420
	GTATGATCCA ACTCACTTCA TCCTAAACAC AGCTTCTCTC CTGAGTGTAC TAATTCCCAA	480
20	AATGCCACAA CTACATGGTG TTCGGATCTT TGGAATTAAT AAGTATTGAA ATGTTTTGAA	540
	ACTGAAAAAA AATTTTACAG CTACTGAATT TCTTATAAGG AAGGAGTGGT TAGTAAACTG	600
25	CACTGTTTCT CTGATAATGT GAAATGAGAA GTATTTACAT TGGAGGGCCA ATGGCTGGTC	660
	CTTCAAGTGC TGTTTTGAAG TGCAGATTTC CATTAAATGA TGCCTCTGTT TAATACACCT	720
	GGTACATTTC TGAAGAGGGG CTTTATAAGC AGGCTGGGCA GGCCCAGCTT ATAAGTTAAA	780
30	GGGCATCACA GTGAGGGTGT AGTAGATAAA TTCAAGGAAA TAAGAGATTT GTAAGAAACT	840
	AGGACCAGCT TAACTTATAA TGAATGGGCA TTGTGTTAAG AAAAGAACAT TTCCAGTCAT	900
35	TCAGCTGTGG TTATTTAAAG CAGACTTACA TGTAAACCGG AATCCTCTCT ATACAAGTTT	960
	ATTAAAGATT ATTTTATTA CCGTAAAAAA AAAAAAAAAA	1003
40		
40		
	(2) INFORMATION FOR SEQ ID NO: 269:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1234 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269:	
	ATCAGCATCT ACAAGTAGCA TATTITIGGAT GGTGTTTGTG TGCTACTTCA AAGTAACTAG	60
	GAAAAAATAA TCCTCGCAAC ACAGGTACCT TGTCATGTCA	120
55	CCAGTTGTAT CAGTGTTGAT TCATTTCATT ACTTCCTACA GAGCAAACAT GAACGTTGGA	180
	GTTGCCCACA GTGAAGTGAA TCCAAATACC CGTGTCATGA ACAGCCGGGG TATGTGGCTG	240
60	ACATATGCAT TGGGAGTTGG CTTGCTTCAT ATTGTCTTAC TCAGCATTCC CTTCTTCAGT	300

PCT/US98/04493

	CTTCCTGTTG CTTGGACTTT AACAAATATT ATACATAATC TGGGGATGTA CGTATTTTTG	360
5	CATGCAGTGA AAGGAACACC TTTCGAAACT CCTGACCAGG GTAAAGCAAG GCTCCTAACT	420
	CATTOGGAAC AACTOGACTA TOGAGTACAG TITACATCTT CACGGAAGTT TITCACAATT	480
	TCTCCAATAA TTCTATATTT TCTGGCAAGT TTCTATACGA AGTATGATCC AACTCACTTC	540
10	ATCCTAAACA CAGCTTCTCT CCTGAGTGTA CTAATTCCCA AAATGCCACA ACTACATGGT	600
	GTICGGATCT TIGGAATTAA TAAGTATIGA AATGITTIGA AACTGAAAAA AAATTITACA	660
	GCTACTGAAT TTCTTATAAG GAAGGAGTGG TTAGTAAACT GCACTGTTTC TSTGATAATG	720
15	TGAAATGAGA AGTATTTACA TTGGAGGGCC AATGGCTGGT CCTTCAAGTG CTGTTTTGAA	780
	GTGCAGATTT CCATTAAATG ATGCCTCTGT TTAATACACC TGGTACATTT CTGAAGAGGG	840
20	GCTTTATAAG CARGCTGGGC AGGCCCAGCT TATAAGTTAA AGGGCATCAC AGTGAGGGTG	900
	TAGTAGATAA ATTCAAGGAA ATAAGAGATT TGTAAGAAAC TAGGACCAGC TTAACTTATA	960
	ATGAATGGC ATTGTGTTAA GAAAAGAACA TTTCCAGTCA TTCAGCTGTG GTTATTTAAA	1020
25	GCAGACTTAC ATGTAAACCG GAATCCTCTC TATACAAGTT TATTAAAGAT TATTTTTATT	1080
	ACCRTACATA TTTCKCTTGT TTTATGTAAG YGGATGTATA TCCTCTTGTT TTATACAAGC	1140
30	CAGTICCCAC TTATGAGGGT ACTITITITGG TTITGCTGGG CTTAATATIG TGTATIGGTC	1200
	AATGAGGCCA TITTIACANT TATTAACGTT ACAG	1234
	AATGAGGCCA TITTIACANT TATTAGGTT TO	
~~	AATGAGGCCA TTTTTACANT TATTAACGT TOOL	
35		
35	(2) INFORMATION FOR SEQ ID NO: 270:	
35 40		
	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid	
	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs	
	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	60
40	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270: NGAGGTGCGT TCTGAGCCGT CTGTCCTGCG CCAAGATGCT TCAAAGTATT ATTAAAAACA TATGGATCCC CATGAAGCCC TACTACACCA AAGTTTACCA GGAGATTGG ATAGGAATGG	60 120
40	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270: NGAGGTGCGT TCTGAGCCGT CTGTCCTGCG CCAAGATGCT TCAAAGTATT ATTAAAAACA TATGGATCCC CATGAAGCCC TACTACACCA AAGTTTACCA GGAGATTGG ATAGGAATGG	
40	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270: NGAGGTGCGT TCTGAGCCGT CTGTCCTGCG CCAAGATGCT TCAAAGTATT ATTAAAAACA TATGGATCCC CATGAAGCCC TACTACACCA AAGTTTACCA GGAGATTGG ATAGGAATGG	120
40	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270: NGAGGTGCGT TCTGAGCCGT CTGTCCTGCG CCAAGATGCT TCAAAGTATT ATTAAAAACA TATGGATCCC CATGAAGCCC TACTACACCA AAGTTTACCA GGAGATTTGG ATAGGAATGG GGCTGATGGG CTTCATCGTT TATAAAATCC GGGCTGCTGA TAAAAGAAGT AAGGCTTTGA AAGCTTCAGC GCCTGCTCCT GGTCATCACT AACCAGATTT ACTTGGAGTA CATGTGAAAG	120 180
40 45 50	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270: NGAGGTGCGT TCTGAGCCGT CTGTCCTGCG CCAAGATGCT TCAAAGTATT ATTAAAAACA TATGGATCCC CATGAAGCCC TACTACACCA AAGTTTACCA GGAGATTTCG ATAGGAATCG GGCTGATGGG CTTCATCGTT TATAAAATCC GGGCTGCTGA TAAAAGAAGT AAGGCTTTGA AAGCTTCAGC GCCTGCTCCT GGTCATCACT AACCAGATTT ACTTGGAGTA CATGTGAAAG	120 180 240
40 45 50	(2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270: NGAGGTGCGT TCTGAGCCGT CTGTCCTGCG CCAAGATGCT TCAAAGTATT ATTAAAAACA TATGGATCCC CATGAAGCCC TACTACACCA AAGTTTACCA GGAGATTTGG ATAGGAATGG GGCTGATGGG CTTCATCGTT TATAAAATCC GGGCTGCTGA TAAAAGAAGT AAGGCTTTGA AAGCTTCAGC GCCTGCTCCT GGTCATCACT AACCAGATTT ACTTGGAGTA CATGTGAAAG AAAACGTCAG TCTGCCTGTA AATTTCAGCA AGCCGTGTTA GATGGGAGC GTGGAACGTC ACTGTACACT TGTATAAGTA CCGTTTACTT CATGGCATGA ATAAATGGAT CTGTGAGATG CACTGCTACC TGGTACTGCT TTCAGTGTGT TCCCCCTCAG CCCTCCGGCG TGTCAGGCAT	120 180 240 300

60

	ACTOTGAGTA GATAATTTGT CATGCAGCGC ATGCAATCAG AATCTCACTG AGCCACCCAT	480
	CATTGTGAAA TAATTACCTC AGTTGTACAG GACTTGGTGA TCAGGATCCA GGCACTCACT	540
5	TGTATTCTAC TGCTCAATAA ACGTTTATTA AACT	574
10	(2) INFORMATION FOR SEQ ID NO: 271:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1731 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271:	
20	GCTGCAAGGT GCGCCTCGTG CCGCTGCAGA TCCAGCTCAC TACCCTGGGA AATCTTACAC	60
	CTTCAAGCAC TGTGTTTTTC TGCTGTGATA TGCAGGAAAG GTTCAGACCA GCCATCAAGT	120
25	ATTTTGGGGA TATTATTAGC GTGGGACAGA GATTGTTGCA AGGGGCCCGG ATTTTAGGAA	180
2 3	TTCCTGTTAT TGTAACAGAA CAATACCCTA AAGGTCTTGG GAGCACGGTT CAAGAAATTG	240
	ATTTAACAGG TGTAAAACTG GTACTTCCAA AGACCAAGTT TTCAATGGTA TTACCAGAAG	300
30	TAGAAGCGGC ATTAGCAGAG ATTCCCGGAG TCAGGAGTGT TGTATTATTT GGAGTAGAAA	360
	CTCATGTGTG CATCCAACAA ACTGCCCTGG AGCTAGTTGG CCGAGGAGTC GAGGTTCACA	420
35	TTGTTGCTGA TGCCACCTCA TCAAGAAGCA TGATGGACAG GATGTTTGCC CTCGAGCGTC	480
33	TCGCTCRARC CNGGGATCAT AGTGACCACG AGTGNAGGCT GTTCTGCTTC AGCTGGTAGC	540
	TGATAAGGAC CATCCAAAAT TCAAGGAAAT TCAGAATCTA ATTAAGGCGA GTGCTCCAGA	600
40	GTCGGGTCTG CTTTCCAAAG TATAGGACAT TTGAAGAACT GGTATGCTAC TCACTGGTGA	660
	AGGACAGTCA GGTGAAGGAC TGTAAGCCCA CACAAGCTCT TCTTATCTCT ACTAGAATTA	720
45	AAATGTTAAG TCAAAAACGG CTCCTTTTTT GCGCCTCCTA GTGAACTTAA CCAGCTAGAC	780
.5	CATTIGAGIA CCAGCATITA GITACAAACG TCAAAGGCTT CCGGTGCTGC TTACCTTCCT	840
	TITTTGTTAA TGTGCTTTTA TTTATTAAAA AAAATTACAA TGAAGATGCC TGTTTTGTCT	900
50	CTACTGTGTA CTCTGATCGT ATCTTTCCAA AGTGCAGACT CTTGTGAAGT TTTCTTAAAT	960
	TGTTCACTTT AAAGAAAATG ACGTACCAAC AATGATTTGG CTTTTATATT ACTGTAAGAT	1020
55	GTTATAATGT TAATGTGGAT GTAGTGCTTT TACTTTACAG ATTGATTGGA ATAAGATTAT	1080
55	TGCATATGAA TITACCCACA GGACTCTGAA TCATGTTACC CACTCCCCTC ACAATGTTGT	1140
	CCACTTAGTG AGTTGCATTG ATCTATCCGT ACCAAATGAT GTTGAATAAT TACATATCTT	1200

TCTKGACTAT ACTGATTTCT TATTTTGGTC ACTATTACTA AATCTCTGTT AATATTCTCT

	CTTTTAACTG AAAAGGGATG GGATAGAAGG GTTTGCAATG CCATATTATT GGTGGAGGGC	1320
		1380
5	TGTTTTAACA TCTTTGAAGT ATGGCTTGCT GAATATCTTT ACCAACATCT TGAATATATA	1440
	TICTAGTGTC CACAAGATTT AGCAAAAAGA TAAAGCTTGG GTGGAATATC ATTITAAAAT	1500
	GTTCATGTTC TGTTCTATAT TTTCTTCACC TACTCTCCAA ATATTGTAAT GCAAAAAGTC	
10	TCAGTAATGA TITGGTAGTA TTAATTITGT GGTCATTGTT TCTCTTCGAT AAATTTATTT	1560
	TCATTAAATA CTTRTTAGAG GGTTTTGAAA TGTTTTTCAA ATATGTGAAA TGTGAAACTG	1620
	CTGTCTTTTA TATTAAAGTA ATTAAAGAAA ATGTATTGTG ATTGAAATTA TTTTGNCCTC	1680
15	CACAAGATGG CTCTATGAGT ATTCTTCCAG GGATTCTAAT ATTTATTTAA G	1731
20	(2) INFORMATION FOR SEQ ID NO: 272:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1320 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272:	•
30	CTGCTTAGGA AGAGAAGGTC AGAGTTCGCG GGGGCAGAGG CATTCTTGCC GCTGGCCCAG	60
	TCACTATGTA GTGGAGGGGC AGACACCCTC CCGCAAATTC TGGAAGGTTC TTAGTCTCGA	120
35	CTAGGGCAGT AGCCCAGGAC TCCTAGTCGC CGGCTTCAGG TCACTGCCGG CTGAACGGAG	180
	CTGCCGTCGC CATGTTTGGC TGCTTGGTGG CGGGGAGGCT GGTGCAAACA GCTGCACAGC	240
	AAGTGGCAGA GGATAAATTT GTTTTTGACT TACCTGATTA TGAAAGTATC AACCATGTTG	300
40	TOGTTTTTAT GCTGGGAACA ATCCCATTTC CTGAGGGAAT GGGAGGATCT GTCTACTTTT	360
	CTTATCCTGA TTCAAATGGA ATGCCAGTAT GGMAACTCCT AGGATTTGTC ACGAATGGGA	420
45	TOTAL ACADOCADE CARCATCETT	480
	TTGGAGCCAT GAATATTGTC CGAACTCCAT CTGTTGCTCA GATTGGAATT TCAGTGGAAT	540
	TATTAGACAG TATGGCTCAG CAGACTCCTG TAGGTAATGC TGCTGTATCC TCAGTTGACT	600
50		660
	CTGTCTCTCA GGCCCAGATG ACACCAAGCC CATCTGAAAT GTTCATTCCG GCAAATGTGG	720
54	ACCOMPANIE TO ACTICALTA	780
55	TCTATTITGT CTATGAATAT ATTCCTTTTT TGACATTTAA ACATATTCTT TTATTGTGAA	840
	CATCAGCACT GCATGCCATT AAAGTATGTA CTATAGAGAT CTGATGAGAA ACAGTTCTTA	900
_	CATCAGCACT GCATGCGATT ARROTATES.	

	CCCTAAATAT TITGITATAT TGTCGCCATT ATGAATTTAT AAAGACAGGA AAATATAGTT	960
	GCCTATGTTT TAGGGACCAC TATTAAAGCT TATAAATATT TGTGTATFTT CATTTAGAAG	1020
5	TACCATCTAT GAGAGTAGTT TATACTGCAC TGTGTACATG AATGGCTAAT GAATCTATTT	1080
	TCCAACTITC CCGTGTTTTA TAGATATTTC TTTTCACTTT GAGTATCCTA GAGATGGGAG	1140
	GATGCCTAGG AAGAGTTTGT TGAGAAGTGG TACCATGGTG TAGCATGGGA GAGCATTGGG	1200
10	AATGCACTAG GTTTGAATTT GGCATAATGG TAGCTATGTG ACCCTGAGCA AATTTCTCTC	1260
	ATCTGCTCAT CTGANGAATG AGGAAATAGG AGTGAATTTG ATNTTTCCTA GGTCCNTCTA	1320
15	AICIGCICAL CIGAROLATO ABBRANISC INCIGENCE	
13		
	(2) INFORMATION FOR SEQ ID NO: 273:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 515 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273:	
	CCCTGGAGAG GGGCTGCTGT GCCAGCTTGG GGAGGGTCTG GGATGGGGCT GCCCCTGATG	60
30	GCCCTGATGT GGAGTACCTT GCCAGCATCT GCTGGGGTGA ACTTTATTTT AGCCCTTCCC	120
	TTGTTGYTCT TATGAAGAAC AGAGGAGGGG TGGGCAGGTC AGTGATGTCA GCAGTGAGTA	180
25	TTCCCAGCAC AGCGGCTCTG GAAGAGGCAT GAGGCATTTC TTTCAGGAAA TGRTCATTAT	240
35	TCAGCCAGAA GGCATTCATT AAGTAAGTCC TGACTTTGTG CCCAGCTCTG TGTTATAGGC	300
	CCTTGGCGAG ACTCAGGAGG GGCARAGGAC GCTAGKTTKT AGWTAACACG GAACCTCARA	360
40	GGWTATATGG TCCAAGAAGA CCCGGGGGCG GTGAAAACCC TGTGGACTAA TGCTCACGGG	420
	AGCCCGAGGT CACACTTTGA CTTTGCTACC ATGGGCTGTG TCTANGNACG TATATATGCT	480
45	GCGTAATTAT TACAGAGGCA GTCCATGTGC ATTGT	515
45		
50	(2) INFORMATION FOR SEQ ID NO: 274:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2995 base pairs	
	(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274:	
	TGACACCCAT AAGGAATICA TGAAGAAAGT AGAAGAAAAG CGAGTGGACG TTAACTCAGC	60

	THE PROCESS OF THE PR	120
	AGTAGCCATG GGAGAAGTCA TCCTGGCTGT CTGCCACCCC GATTGCATCA CAACCATCAA	180
	ACACTGGATC ACCATCATCC GAGCTCGCTT CGAGGAGGTC CTGACATGGG CTAAGCAGCA	
5	CCAGCAGCGT CTTGAAACGG CCTTGTCAGA ACTGGTGGCT AATGCTGAGC TCCTGGAAGA	240
	ACTICIOSCA IGGATCCAGI GGGCIGAGAC CACCCICATI CAGCGGGATC AGGAGCCAAI	300
	CCCGCAGAAC ATTGACCGAG TTAAAGCCCT TATCGCTGAG CATCAGACAT TTATGGAGGA	360
10	GATGACTCGC AAACAGCCTG ACGTGGACCG GGTCACCAAG ACATACAAAA GGAAAAAACAT	420
	AGAGCCTACT CACGCGCCTT TCATAGAGAA ATCCCGCAGC GGAGGCAGGA AATCCCTAAG	480
15	TCAGCCAACC CCTCCTCCCA TGCCAATCCT TTCACAGTCT GAAGCAAAAA ACCCACGGAT	540
	CAACCAGCTT TCTGCCCGCT GGCAGCAGGT GTGGCTGTTA GCACTGGAGC GGCAAAGGAA	600
	ACTGAATGAT GCCTTGGATC GGCTGGAGGA GTTGAAAGAA TTTGCCAACT TTGACTTTGA	660
20	TGTCTGGAGG AAAAAGTATA TGCGTTGGAT GAATCACAAA AAGTCTCGAG TGATGGATTT	720
	CTTCCGGCGC ATTGATAAGG ACCAGGATGG GAAGATAACA CGTCAGGAGT TTATCGATGG	780
25	CATTITAGCA TCCAAGITCC CCACCACCAA GITAGAGATG ACTGCTGTGG CTGACATTIT	840
	CGACCGAGAT GGGGATGGTT ACATTGATTA TTATGAATTT GTGGCTGCTC TTCATCCCAA	900
	CAAGGATGCG TATCGACCAA CAACCGATGC AGATAAAATC GAAGATGAGG TTACAAGACA	960
30	AGTGGCTCAG TGCAAATGTG CAAAAAGGTT TCAGGTGGAG CAGATCGGAG AGAATAAATA	1020
	CCGGTTCTTC CTCGGCAATC AGTTTGGGGA TTCTCAGCAG TTGCGGCTGG TCCGTATTCT	1080
35	GCGCAACCGT GATGGTTCGC GTTGGTGGAG GATGGATGGC CTTGGATGAA TTTTTAGTGA	1140
	AAAATGATCC CTGCCGAGCA CGAGGTAGAA CTAACATTGA ACTTAGAGAG AAATTCATCC	1200
	TACCAGAGGG AGCATCCCAG GGAATGACCC CCTTCCGCTC ACGGGGTCGA AGGTCCAAAC	1260
40	CATCTTCCCG GGCAGCTTCC CCTACTCGTT CCAGCTCCAG TGCTAGTCAG AGTAACCACA	1320
	GCTGTACATC CATGCCATCT TCTCCAGCCA CCCCAGCCAG TGGAACCAAG GTTATCCCAT	1380
45	CATCAGGTAG CAAGTTGAAA CGACCAACAC CAACTTTTCA TTCTAGTCGG ACATCCCTTG	1440
	CTGGTGATAC CAGCAATTAG TTCTTCCCCG GCCTCCACAG GTGCCAAAAC TAATCGGGCA	1500
	GACCCTAAAA AGTCTGCCAG TCGCCCTGGG AGTCGGGCTG GGAGTCGAGC CGGGAGTCGA	1560
50) GCCAGCAGCC GGCGAGGAAG TGACGCTTCT GACTTTGACC TCTTAGAGAC GCATTGCTTG	1620
	TTCCGACACT TCAGAAAGCA GCGCTGCAGG GGGCCAAGGC AACTCCAGGA GAGGGCTAAA	1680
5	5 CAAACCTTCC AAAATCCCAA CCATGTCTAA GAAGACCACC ACTGCCTCCC CCAGGACTCC	1740
	AGGTCCCAAG CGATAACACT GTCTAAGCAC CCCCAAGCCA CTATCCACTT TGAATCCTGC	
	TCCATACATT GGGTGTATAT TTATTCTGAA CGGGAGAAGT TATATTGTTA AAAGTGTAAA	
6	0	

	AGAATAATTG TGTTATGAAG CTGCCTTATT TTTTTTCTTT TTGTAAGTTA CTATTTTCAT	1920
	GTGAATATTT ATGTAGATAA AATTTGCCTC CTGGTAACCC TGTAATGGAT GGGGCCCAGA	1980
5	AATGAAATAT TTGAGAAAAA CAAGTGAAAA GGTCAAGATA CAAATGTGTA TTAAAAAAAA	2040
	AAAAGCCTAT TAATAGGGTT TCTGCGCGGT GCAGGGTTGT AAACCTGCTT TATCTTTTAG	2100
	GATTATTCCT AAATGCATCT TCTTTATAAA CTTGACTTGC TATCTCAGCA AGATAAATTA	2160
10	TATTAAAAAA ATAAGAATCC TGCAGTGTTT AAGGAACTCT TTTTTTGTAA ATCACGGACA	2220
	CCTCAATTAG CAAGAACTGA GGGGAGGGCT TTTTCCATTG TTTAATGTTT TGTGATTTTT	2280
15	AGCTAAAGAG AGGGAACCTC ATCTAAGTAA CATTTGCACA TGGATACAGC AAAAGGAGTT	2340
	CATTGCAATA CTGTCTTTGG ATATTGTTTC AGTACTGGGT GTTTAAAGGA CAAATAGCTG	2400
	CTAGAATTCA GGGGTAAATG TAAGTGTTCA GAAAACGTCA GAACATTTGG GGTTTTAAAC	2460
20	TGATTTGTTG CTCCCTATCC AGCCTAGACA CCAGTAACTC TTGTGTTCAC CAGGACCCAG	2520
	ACCCTTGGCA AGGGATAGGC TCGTTGGTGA CATTGTGAAT TTCAGATTTG TTTTATCCAC	2580
25	TTTTTTTGCT ATTTATTTAA ATGGTCGATC AACTTCCCAC AAACTGAGGA ATGAATTCCA	2640
	CGAGCCTGTT CTGAAAATGT GGACGTAAGA CAAACACGTG CTCGTCCTTT AATGGAGTTC	2700
	ACCAGGACAC TIGITAACCA GICCIGITIG CITICGICIT ITTIIGIGG TAATAAAGIC	2760
30	AACTGACCAA GTGACCATGA AAAGGGGCTG TCTGGGGCTC CTGTTTTTTA GCTGCTGTTC	2820
	TTCAGCTCCG ACCATGTTGC TGTGTGATTA TCTCAATTGG TTTTAATTGA GGCAGAAACT	2880
35	GAAGCTCTAC CAATGAACTG TITAGAAACA AGACACACTT TIGTATTAAA ATTGCTTGCA	2940
	GTAACAAAA AAAAAAAAA AAAAAAAAA AAAAAACTCG AGGGGGCCC GGTAC	2995
40		
	(2) INFORMATION FOR SEQ ID NO: 275:	
45	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 1990 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	•	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275:	
	GGGACCCGCG CGSCTCCCGG GGATGGTGAG CAAGGCGCTG CTGCNWCGTG TCTGCCGTCA	60
55	ACCGCAGAGG ATGAAGCTGC TGCTGGGCAT CGCCTTGCTG GCCTACGTCG CCTCTGTTTG	120
23	GGGCAACTTC GTTAATATGA GGTCTATCCA GGAAAATGGT GAACTAAAAA TTGAAAGCAA	180
	GATTGAAGAG ATGGTTGAAC CACTAAGAGA GAAAATCAGA GATTTAGAAA AAAGCTTTAC	240
60	CCAGAAATAC CCACCAGTAA AGTTTTTATC AGAAAAGGAT CGGAAAAGAA TTTTGAWTAA	300

	CAGGAGGCGC AGKGTTCGTG GGCTCCCATC TKAACTGACA AACTCATGAT GGACGGCCAC	360
5	GAGGTGACCG TGGTGGACAA TTTCTTCACG GGCAGGAAGA GAAACGTGGA GCACTGGATC	420
	GGACATGAGA ACTICGAGIT GATTAACCAC GACGIGIGGG AGCCCCICTA CATCGAGGIT	480
	GACCAGATAT ACCATCTGGC ATCTCCAGCC TCCCCTCCAA ACTACATGTA TAATCCTATC	540
10	AAGACATTAA AGACCAATAC GATTGGGACA TTAAACATGT TGGGGCTGGC AAAACGAGTC	600
	GGTGCCCGTC TGCTCCTGGC CTCCACATCG GAGGTGTATG GAGATCCTGA AGTCCACCCT	660
	CAAAGTGAGG ATTACTGGGG CCACGTGAAT CCAATAGGAC CTCGGGCCTG CTACGATGAA	720
15	GGCAAACGTG TTGCAGAGAC CATGTGCTAT GCCTACATGA AGCAGGAAGG CGTGGAAGTG	780
	CGAGTGGCCA GAATCTTCAA CACCTTTGGG CCACGCATGC ACATGAACGA TGGGCGAGTA	840
20	GTCAGCAACT TCATCCTGCA GGCGCTCCAG GGGGAGCCAC TCACGGTATA CGGATCCGGG	900
	TCTCAGACAA GGGCGTTCCA GTACGTCAGC GATCTAGTGA ATGGCCTCGT GGCTCTCATG	960
25	AACAGCAACG TCAGCAGCCC GGTCAACCTG GGGAACCCAG AAGAACACAC AATCCTAGAA	1020
25	TTTGCTCAGT TAATTAAAAA CCTTGTTGGT AGCGGAAGTG AAATTCAGTT TCTCTCCGAA	1080
	GCCCAGGATG ACCCACAGAA AAGAAAACCA GACATCAAAA AAGCAAAGCT GATGCTGGGG	1140
30	TGGGAGCCCG TGGTCCCGCT GGAGGAAGGT TTAAACAAAG CAATTCACTA CTTCCGTAAA	1200
	GAACTCGAGT ACCAGGCAAA TAATCAGTAC ATCCCCAAAC CAAAGCCTGC CAGAATAAAG	1260
25	AAAGGACGGA CTCGCCACAG CTGAACTCCT CACTTTTAGG ACACAAGACT ACCATTGTAC	1320
35	ACTTGATGGG ATGTATTTTT GGCTTTTTTT TGTTGTCGTT TAAAGAAAGA CTTTAACAGG	1380
	TGTCATGAAG AACAAACTGG AATTTCATTC TGAAGCTTGC TTTAATGAAA TGGATGTGCC	1440
40	TAAAAGCTCC CCTCAAAAAA CTGCAGATTT TGCCTTGCAC TTTTTGAATC TCTCTTTTTA	1500
	TGTAAAATAG CGTAGATGCA TCTCTGCGTA TTTTCAAGTT TTTTTATCTT GCTGTGAGAG	1560
4.5	CATATGTTGT GACTGTCGTT GACAGTTTTA TTTACTGGTT TCTTTGTGAA GCTGAAAAGG	1620
45	AACATTAAGC GGGACAAAAA ATGCCGATTT TATTTATAAA AGTGGGTACT TAATAAATGA	1680
	GTCGTTATAC TATGCATAAA GAAAAAYCCT AGCAGTATTG TCAGGTGGTG GTGCGCCGGC	1740
50	ATTGATTTA GGGCAGATAA AAGAATTCTG TGTGAGAGCT TTATGTTTCT CTTTTAATTC	1800
	AGAGTTTTTC CAAGGTCTAC TTTTGAGTTG CAAACTTGAC TTTGAAATAT TCCTGTTGGT	1860
ء ہے	CATGATCAAG GATATTTGAA ATCACTACTG TGTTTTGCTG CGTATCTGGG GCGGGGGCAG	1920
55	GTTGGGGGC ACAAAGTTAA CATATTCTTG GTTAACCATG GTTAAATATG CTATTTTAAT	1980
	AAAATATTGA	1990

PCT/US98/04493

WO 98/39448

503

(2) INFORMATION FOR SEQ ID NO: 276:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2436 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276:

	_	
	AACTTCGCTT AGCTCTCCAG GGTNAAACGG GTGAGNCCTT AAAAACAGAA GAGAACAAGA	60
15	TTTAAAGTCC GTTGCATTGA AAATAACAAA CAATATCAAT GTTTTAATCA AGGATCTCTT	120
	CCACATTCCT CCTTCTTATA AGAGCACAGT AACACTATCC TGGAAACCTG TACAAAAGGT	180
	TGAGATTGGG CAAAAGAGAG CCAGTGAAGA TACAACTTCA GGTTCACCAC CCAAGAAATC	240
20	TTCAGCAGGA CCAAAAAGAG ATGCCAGGCA GATTTATAAC CCTCCCAGTG GGAAATATAG	300
	CAGCAATTTG GGCAACTTTA ATTATGAGCA GAGAGGAGCC TTCAGGGGAA GTAGAGGTGG	360
25	CCGAGGTTGG GGCACACGAG GAAATCGTAG TCGGGGAAGA CTCTACTGAA TAAGACATCA	420
	GCATTCTTCA GCATTGTCAT GAGCTTAATA TACTTAAATT CTACTACTCA TTGGATTGCC	480
20	GGGGATGTCC CTTTAAACAG ACTGCTGCCT TCAGCTAAAA ACTTAATGTT CTTTATACCT	540
30	TIGTATGTAT GACCTACTIT TGTAACAGAC CATGGTTGTG TCCAAGGTAA AACCACAGTG	600
	ATATTTTTGG ATGCTTTGTC TGCAATCTTG ACTTGTTTTT GCAGTATCAT TATTCAGACT	660
35	TCAAATTGTG AATCTTTAA ACATCTTGAT AATTTGTTGT TGAGAGCTGT TCATTCTAAA	720
	ATGTAATGAA ATTCAGTCTA GITCTGCTGA TAAAGATCAT CAGTTTTGAA AGGTTACTGA	780
40	TTTTCCTCTT CCCTCTTAGT TTTTTACCCA ATATATGGAG AAGAGTAATG GTCAATCTTA	840
40	ACATTTGTT TTAATTGTTT AATAAAGCTG CTGGGCAGTG GTGCAGCATT CCTACCTAGT	900
	GTCATAAAAG CAAAATACTT ACATAGCTTT CTTAAAATAT AGGAATGACA TTACATTTTT	960
45	AGGAGAAAGT AAGTTGCTTT GCACCGCCTA CTTAATTCTT TTCCATATAT TGTGATACAA	1020
	ACTITIGAAT ATGGAATCIT ACTATITGAA TAGAAATGTG TATGTATAAT ATACATACAT	1080
	ACATAAGCAT ATATGTGTGT GTGTGTGT ATATATATAT ATATGCATGC TGTGAAACTT	1140
50	GACTACACAA CATAAATCAC TTTTTAAATT CCAGGAACGG GTAGTCTGAC ACGGTGATTA	1200
	TCCTTTTGAG GCTGAATCCG TTATTAACTT GTTATTTAGG TTTTTACTCC CAGTAGCAAG	1260
55	GGATTCTAAG TTAGTTGCAC TTACATGATT ATTGTTATTT AAAACTAAGA ATAAAGGCTG	1320
	CATTITCAAA GATAAATIGG AATIGCIGIT GGIGAAATAA CAACCAAAAT ACIGAATCIG	1380
	ATGTACATAC AGGTTTCTAC AGGAAGAGAT GGTATAATTT ACAATTTGGA GATTTAATAA	1440
60		

	CCAGGGCTAC CCAGAAAAAG TGACTTGATA ACATGGTACC AATAAGTAAG GGATGCTCTC	1500
	TOGGTTTGCT TTTGCCACTT TCAAGATTTT AACTTCTCAG GTTATTAATC AAAATTATTG	1560
5	TATAAGTTAG CCAATAGAAT TITTAGGTTA AAACAACAGA TGGGGGGTTT GTGGAGTGTT	1620
	TAATGTCATG GGCATTTTTA GTAGCATAGA CCCTTTGTTC TGCATTTGAA TGTTTCGTAT	1680
	ATTITUTETT CACAGTIAAT CTICCCTCCC CAAGITIGCT ATTCAAATCA ACTGCCTGAA	1740
10	TGACATTTCT AGTAGTCTGA TGTATTTTTC TGAGGAATAG TTTGTGATTC CAATGCAGGT	1800
	GTCTTCATTA CCATTACCTC TACACTGCAG AAGAAGCAAA ACTCCTTTAT TAGAATTACT	1860
15	GCACATGTGT ATGGGGAAAA TAGTTCTGAA AGGCTAGAAT GATACAAGTG AGCAAAAGTT	1920
	GGTCAGCTTG GCTATGGAGT GGTGGCAATA ATCTCTAAAC ATTCCAAAAG ACCATGAGCT	1980
	GAACCTAAAC TCCCTTGGAA TCTGAACAAA GGAATATAAA ATTGCCATTT GAAAACTGAC	2040
20	CAGCTAATCT GGACCTCAGA GATAGATCAG CCAGTGGCCC AAAGCCATTT CAAGTACAGA	2100
	AATTATAGAG ACTACAGCTA AATAAATTTG AACATTAAAT ATAATTTTAC CACTTTTTGT	2160
25	CTTTATAAGC ATATTIGTAA ACTCAGAACT GAGCAGAAGT GACTTTACTT TCTCAAGTTT	2220
	GATACTGAGT TGACTGTTCC CTTATCCCTC ACCCTTCCCC TTCCCTTTCC TAAGGCAATA	2280
	GTGCACAACT TAGGTTATTT TTGCTTCCGA ATTTGAATGA AAAACTTAAT GCCATGGATT	2340
30	TTTTCTTTT GCAAGACACC TGTTTATCAT CTTGTTTAAA TGTAAATGTC CCCTTATGCT	2400
	TTTGAAATAA ATTTCCTTTT GTAATTTTAA AAAAAA	2436
35		
	(2) INFORMATION FOR SEQ ID NO: 277:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 782 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
43	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277:	
	GCCACTGACT TCTCCCACCC TTCTGTCTCC CCCATAATAG TTTATTTGGT TGGTCTGGAC	60
50		120
	GGTTAGAGGC ACTTGAGCAA GGCCCCCACA TCCCAACTCT GGGAGTTGTG GTGGGAGGAG	180
55	GCACTTCTGG GGGATAGGAC CAGACAAGAT AACAGGAGCT CACATGGNAA GCAGAAGCTG	240
33	TGACAAGTIT AGTAGTCCCA AAATGGGTTA TATCCCTTCC CCCTTTACAT CAGAATCTIG	300
	TGAAATGGGA AAACAACAGA AGGAGGGGAT CAAAGATAGC TGATCTCACA TGCTTCCCAG	36
4	CONCOUNTY COTTCCONCTIC NANCOCCCCT CACAGGTGGG TGGAGAGCCC TGTTTGAGGT	42

	TGTGGCTGAT CCCTCTCTGG TATTAGTTTT TCCCCTGGGA GCAGGAAGCC CTAGGAAGAG	480
5	GGGACTGCAG GGTCCCCRGG GGATCTTTCC TCCCTCCCCT GCATGAGGCA GAGGCAAGCT	540
	GCCTGCCAAC CCCCTCCCTC AAGGAATGGC CTTGCCCAGG AATGCCCACC ACACATACCC	600
•	TOTTOTTTT TICTAGICAA ACTOTIGITT ATTOCTTGGC TIGCCTCCCT CCTTCCTCCC	660
10	CTCTCAACCT TTACTTCTGA TTTCTATTTC ATGGAATTTG GGATTGAAGT TAAACTACAA	720
	CAGTGCCGCC AACACCAAGT CTTGCAGGAA AAAAATACAA AGAAATTTAA CAAAAAAAAA	780
15	AA	782
15		
20	(2) INFORMATION FOR SEQ ID NO: 278: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 961 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278:	
30	GAGTTCCGGC TGGAGACCCG TGCTCTGGGC CGGCGCCTTC ACCATGGCCT CGGCAGAGCT	60
	GGACTACACC ATCGAGATCC CGGATCAGCC CTGCTGGAGC CAGAAGAACA GCCCCAGCCC	120
	AGGTGGGAAG GAGGCAGAAA CTCGGCAGCC TGTGGTGATT CTYTTGGGCT GGGGTGGCTG	180
35	CAAGGACAAG AACCTTGCCA AGTACAGTGC CATCTACCAC AAAAGGGGCT GCATCGTAAT	240
	CCGATACACA GCCCCGTGGC ACATGGTCTT CTTCTCCGAG TCACTGGGTA TCCCTTCACT	300
40	TCGTGTTTTG GCCCAGAAGC TGCTCGAGCT GCTCTTTGAT TATGAGATTG AGAAGGAGCC	360
	CCTGCTCTTC CATGTCTTCA GCAACGGTGG CGTCATGCTG TACCGCTACG TGCTGGAGCT	420
	CCTGCAGACC CGTCGCTTCT GCCGCCTGCG TGTGGTGGGC ACCATCTTTG ACAGCGCTCC	480
45	TGGTGACAGC AACCTGGTAG GGGCTCTGCG GGCCCTGGCA GCCATCCTGG AGCGCCGGGC	540 600
	COCCATOCTG COCCTGTTGC TGCTGGTGGC CTTTGCCCTG GTGGTCGTCC TGTTCCACGT	660
50	CCTGCTTGCT CCCATCACAG CCCTCTTCCA CACCCACTTC TATGACAGGC TACAGGACGC	720
	GGGCTCTCGC TGGCCCGAGC TCTACCTCTA YTCGAGGGCT GACGAAGTAG TCCTGGCCAG	
	AGACATAGAA CGCATGGTGG AGGCACGCCT GGCACGCCGG GTCCTGGCGC GTTCTGTGGA	780 840
55		900
	CTGTGTCGAC TTCATGCGCA ACTGCGTCCG CTGCTGAGGC CATTGCTCCA TCTCAMCTCT	960
	GCTCCAGAAA TAAATGCCTG ACAMCTCCCC ACAAAAAAAA AAAAAAAAAA ACTCGAGGGG	900

5

10

(2) INFORMATION FOR SEQ ID NO: 279:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1228 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279:

15 CGCGCTTTGC AGTTCGGTCT CCTGGTGTAC GGCCAACGCC AAGTAGGGGA TTGCGTTCCC 60 TCCAGTCGCA GCCCTATCAG ATTTGGATAT GTCCTTCATA TTTGATTGGA TTTACAGTGG 120 TTICAGCAGT GTGCTACAGT TTTTAGGATT ATATAAGAAA ACTGGTAAAC TGGTATTTCT 180 20 TGGATTGGAT AATGCAGGAA AAACAACATT GCTACACATG CTAAAAGATG ACAGACTTGG 240 ACAACATGTC CCAACATTAC ATCCCACTTC CGAAGAACTG ACCATTGCTG GCATGACGTT 300 25 360 TACAACTTTT GATCTGGGTG GACATGTTCA AGCTCGAAGA GTGTGGAAAA ACTACCTTCC TGCTATCAAT GGCATTGTAT TTCTGGTGGA TTGTGCAGAC CACGAAAGGC TGTTAGAGTC 420 AAAAGAAGAA CTTGATTCAC TAATGACAGA TGAAACCATT GCTAATGTGC CTATACTGAT 480 30 TCTTGGGAAT AAGATCGACA GACCTGAAGC CATCAGTGAA GAGAGGTTGC GAGAGATGTT 540 TGGTTTATAT GGTCAGACAA CAGGAAAGGG GAGTATATCT CTGAAAGAAC TGAATGCCCG 600 35 ACCCTTAGAA GTTTTCATGT GTAGTGTGCT CAAAAGACAA GGTTACGGAG AAGGCTTCCG 660 CTGGATGGCA CAGTACATTG ATTAACACAA ACTCACATTG GTTCCAGGTC TCAACGTTCA 720 780 GGCTTACTCA GAGATTTGAT TGCTCAACAT GCATAACTTG AATTCAATAG ACTTTTGCTG 40 GTTATAAAAC AGATGTTTTT TAGATTATTA ATATTAAATC AACTTAATTT GAATGAGAAT 840 TGAAAACTGA TICAAGTAAG TTTGAGTATC ACAATGTTAG CTTTCTAATT CCATAAAAGT 900 45 ACTIGGITIT TACAGITTAT AATCIGACAT CACCCCAGCG CCATTIGTAA AGAGCAACTT 960 TCCAGCAGTA CATTTGAAGC ACTTTTTAAC AACATGAAAC TATAAACCAT ATTTAAAAGC 1020 TCATCATGIT AAATTITTA TGTACTTIC TGGAACTAGT TTTTAAATTT TAGATTATAT 1080 50 GTCCACCTAT CKTAAGTGTA CAGTTAATAA TTAGCTTATT CAATGATTGC ATGATGCCTT 1140 ACAGTITICA ATAACTITIT TICTTATGCA AACGTCATGC AATAAAACAA ACTCTAATGT 1200 55 1228 TTGGCAAAAA AAAAAAAAA AAANTCGA

(2) INFORMATION FOR SEQ ID NO: 280:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1327 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280:	
10	TCTCGGGTCT CGGGACAGGT GAGCACCCTG ATGAAGGCCA CGGTCCTGAT GCGGCACCTG	60
	GGCGGGTGCA GGAGATCGTG GGCGCCCTCC GCAAGGGCGS CGGAGACCGG TTACAGGTGA	120
15	TTTCTGATTT TRACATGACC TTGAGCAGGT TTGCATATAA TGGAAAGCGA TGCCCTTCTT	180
	CTTACAATAT TCTGGATAAT AGCAAGATCA TCAGTGAGGA GTGTCGGAAA GAGCTCACAG	240
20	CGCTCCTTCA CCACTATTAC CCAATTGAGA TCGACCCACA CCGGACCGTC AAGGAGAAGC	300
20	TACCICATAT GGTGGAATGG TGGACCAAAG CGCACAATCT CCTATGTCAG CAGAAGATTC	360
	AGAAGTITCA GATAGCCCAG GTGGTTAGAG AGTCCAATGC AATGCTCAGG GAGGGATATA	420
25	AGACCTTCTT CAACACACTC TACCATAACA ACATTCCCCT TTTCATCTTT TCTGCGGGCA	480
	TIGGIGATAT CCIGGAAGAA ATTAICCGAC AGAIGAAAGT GIICCACCCC AACAICCACA	- 540
30	TOGTGTCTAA CTACATGGAT TTTAATGAAG ATGGTTTTCT CCAGGGATTT AAGGGCCAGC	600
50	TGATACACAC ATACAACAAG AACAGCTCTG TGTGTGAGAA CTGTGGTTAC TTCCAGCAAC	660
	TTGAGGGCAA AACCAATGTC ATCCTGCTGG GAGACTCTAT CGGGGACCTC ACCATGGCCG	720
35	ATGGGGTTCC TGGTGTGCAG AACATTCTCA AAATTGGCTT CCTGAATGAC AAGGTGGAGG	780
	AGCGGCGGGA NCGCTAACAT GGACTCCTAT GACATCGTGC TGGAGAAGGA CGAGACTCTG	840
40	GATGTGGTCA ACGGGCTACT GCAGCACATC CTGTGCCNAG GGGGTCCAGC TGGAGATGCA	900
	AGGCCCCTGA AGGCGCAGGC TCCNAAGKCC SCTGCAGGCC GTGGTGAGGA GGGGCGCCTC	960
	CCCAGAGTCT GCTCCCCCGT GAACACAGAG CAGAGCCAGG GTGGCCAGCA GTGGCTGGGT	1020
45	CCTTCCGCGC CCCTCCGTCC TCCTTTCCCT GAGCACCTTC ATCACCAGAG GCTTGAAGGA	1080
	ACCCCGCCAT GTGGCAGGGC ACAGGCACTG TTCCTGGTGA ACCTTGGACC ACAGCATGTC	1140
50	AGTGCTCTAG GGATTGTCTA CTCCAGGGAT TTTCTTCAAA ATTTTTAAAC ATGGGAAGTT	1200
	CAAACAAATA TAATGTGTGA AACAGATCAA AATTTTTAAA ATGAAAAAAA AGCTGCTCTG	1260
	ATTCAGGGGA TGTGGGTCGG GGTAGAACCT GGACCTCTTG GCCTGGGGGC ACATGGGATG	1320
55	CTTCTAG	1327

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 799 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281:	
10	TCACCCTGCC TACAGCGTGG AGCTCAGATG ACTGCGCCCT CCACGGTCAC TGTGAGCAGG	60
	TEGTATTCAC ACCCTGCATE ACCCTCACGG CCAGCCCTGG GGTGTTCCCC GTCACTGTGT	120
	GCCTTTGGCT GAAGCCTAAT TCCACAGCTC CTTGTTTTTT GAGAGAGAACT GAGAGAACCA	180
15	TAATCCTTGC CTGCTGAACC CAGCCTGGGC CTGGATGCTC TGTGAATACA TTATCTTGCG	240
	ATGTTGGGTT ATTCCAGCCA AAGACATTTC AAGTGCCTGT AACTGATTTG TACATATTTA	300
20	TAAAAATCTA TTCAGAAATT GGTCCAATAA TGCACGTGCT TTGCCCTGGG TACAGCCAGA	360
	GCCCTTCAAC CCCACCTTGG ACTTGAGGAC CTACCTGATG GGACGTTTCC ACGTGTCTCT	420
	AGAGAAGGAT TCCTGGATCT AGCTGGTCAC GACGATGTTT TCACCAAGGT CACAGGAGCA	480
25	TIGCGTCGCT GATGGGGTTG AAGTTTGGTT TGGTTCTTGT TTCAGCCCAA TATGTAGAGA	540
	ACATTIGAAA CAGTCTGCAC CITTGATACG GTATTGCATT TCCAAAGCCA CCAATCCATT	600
30	TIGTGGATTT TATGTGTCTG TGGCTTAATA ATCATAGTAA CAACAATAAT ACCTTTTTCT	660
	CCATTTIGCT TGCAGGAAAC ATACCTTAAG TTTTTTTTGT TTTGTTTTTGT	720
25	TTTTGTTTC CTTTATGAAG AAAAAATAAA ATAGTCACAT TTTTAATACY AAAAAATGGA	780
35	CAAAAAAGT CGAGGGGG	799
40	(2) INFORMATION FOR SEQ ID NO: 282:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2196 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282:	
50	AAAGACTCTA ACATCCATGA GCTTGAACAT GAGCAAGAGC CTACTTGTGC CKSCCAGATG	60
	GCTGAGCCCT TCCGTACCTT CCGAGATGGA TGGGTCTCCT ACTACAACCA GCCTGTGTTT	120
55	CTGGCTGGCA TGGGTCTTGC TTTCCTTTAT ATGACTGTCC TGGGCTTTGA CTGCATCACC	180
	ACAGGGTACG CCTACACTCA GGGACTGAGT GGTTCCATCC TCAGTATTTT GATGGGAGCA	240
60	TCAGCTATAA CTGGAATAAT GGGAACTGTA GCTTTTACTT GGCTACGTCG AAAATGTGGT	300

	TIGGITCGGA CAGGICTGAT CICAGGATIG GCACAGCTIT CCTGITTGAT CITGIGIG	360
	ATCTCTGTAT TCATGCCTGG AAGCCCCCTG GACTTGTCCG TTTCTCCTTT TGAAGATATC	420
5	CGATCAAGGT TCATTCAAGG AGAGTCAATT ACACCTACCA AGATACCTGA AATTACAACT	480
	GAAATATACA TGTCTAATGG GTCTAATTCT GCTAATATTG TCCCGGAGAC AAGTCCTGAA	540
10	TCTGTGCCCA TAATCTCTGT CAGTCTGCTG TTTGCAGGCG TCATTGCTGC TAGAATCGGT	600
10	CTTTGGTCCT TTGATTTAAC TGTGACACAG TTGCTGCAAG AAAATGTAAT TGAATCTGAA	660
	AGAGGCATTA TAAATGGTGT ACAGAACTCC ATGAACTATC TICTTGATCT TCTGCATTTC	720
15	ATCATGGTCA TCCTGGCTCC AAATCCTGAA GCTTTTGGCT TGCTCGTATT GATTTCAGTC	780
	TCCTTTGTGG CAATGGGCCA CATTATGTAT TTCCGATTTG CCCAAAATAC TCTGGGAAAC	840
20	AAGCTCTTTG CTTGCGGTCC TGATGCAAAA GAAGTTAGGA AGGAAAATCA AGCAAATACA	900
20	TCTGTTGTTT GAGACAGTTT AACTGTTGCT ATCCTGTTAC TAGATTATAT AGAGCACATG	960
	TGCTTATTTT GTACTGCAGA ATTCCAATAA ATGGCTGGGT GTTTTGCTCT GTTTTTACCA	1020
25	CAGCTGTGCC TTGAGAACTA AAAGCTGTTT AGGAAACCTA AGTCAGCAGA AATTAACTGA	1080
ě	TTAATTTCCC TTATGTTGAG GCATGGAAAA AAAATTGGAA AAGAAAAACT CAGTTTAAAT	1140
30	ACGGAGACTA TAATGATAAC ACTGAATTCC CCTATTTCTC ATGAGTAGAT ACAATCTTAC	1200
30	GTAAAAGAGT GGTTAGTCAC GTGAATTCAG TTATCATTTG ACAGATTCTT ATCTGTACTA	1260
	GAATTCAGAT ATGTCAGTTT TCTGCAAAAC TCACTCTTGT TCAAGACTAG CTAATTTATT	1320
35	TITTTGCATC TTAGTTATIT TTAAAAACAA ATTCTTCAAG TATGAAGACT AAATTTTGAT	1380
	AACTAATATT ATCCTTATTG ATCCTATTGA TCTTAAGGTA TTTACATGTA TGTGGAAAAA	1440
40	CAAAACACTT AACTAGAATT CTCTAATAAG GTTTATGGTT TAGCTTAAAG AGCACCTTTG	1500
40	TATTTTTATT ATCAGATGGG GCAACATATT GTATGAAGCA TATGTAGCAC TTCACAGCAT	1560
	GGTTATCATG TAAGCTGCAG GTAGAAGCAA AGCTGTAAAG TAGATTTATC ACACAATGAC	1620
45	TGCATACAGA CTTCAAATAT GTCAATAGTT TGGTCATAGA ACCTAGAAGC CAAAAGCCAC	1680
	ACAGAAGGC AAGAATCCCA ATTTAACTCA TGTTATCATC ATTAGTGATC TGTGTTGTAG	1740
50	AACATGAGGG TGTAAGCCTT CAGCCTGGCA AGTTACATGT AGAAAGCCCA CACTTGTGAA	1800
50	GGTTTTGTTT TACAAATCAC TTGATTTAAC ACACTCAGGT AGAATATTTT TATTTTTACT	1860
	GTTTTATACC CAGAAGTTAT TICTACATIG TICTACAGCA AGAATATICA TAAAAGTATC	1920
55	CCTTCAAAT GCCTFTGAGA AGAATAGAAG AAAAAAAGTT TGTATATATT TTAAAAAATT	1980
	GTTTTAAAAG TCAGTTTGCA ACATGTCTGT ACCAAGATGG TACTTTGCCT TAACCGTTTA	2040
60	TATGCACTIT CATGGAGACT GCAATACGIT GCTATGAGCA CTTTCTTTAT CCTTGGAGTT	2100
UU		

	TAATCCTTTG CTTCATCTTT CTACAGTATG ACATAATGAT TTGCTATGTT GTAAAATCTT	2160
	TGTAAAAAT TTCTATATAA AATATTTGAA ACTTAA	2196
5		
	(2) INFORMATION FOR SEQ ID NO: 283:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1185 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:	
	GCAGTTAAGG CTTCTGATAA GGAAAGAGAG TCTGAACAGA GCACACACAT CTGGAGCTCC	60
20	AGGAGTGGGG GATGCAGCAT CAGATTCCAT CTTGAATTTC TGCTAAAATA CTTTGTACTC	120
	ATANTOGATC TCAACAAAGA TCTGTATTTC ATCTGTGGCT CCATCTTCCC TCTGGGTCAA	180
25	GTAGATGTTA AGCTGGACCT TGGCACGCCT CTTAACATGA AGAGATCTAG CTAGACAGAC	240
25	AGACTCCCCC ATTTATGGGA ACAAGAATTC AATTTATTCT CTATTTATAA AACATTTTTT	300
	TAAAGTGCCT TGGGTATAAA AATCTAAATG TCTGCGGTGT GATCAGTCAG GAGCACGTAA	360
30	CTATCACTCT TCGCATCCTT TGGTCACTGG GAGATCCTTT GGGGGCTGGG AGGTCCTTCT	420
	GTCCCAGGCT AAAGGAAAAG CTTCACAAGG GTAAGAGCCA CAGAACCCTC GGCAAGAAAG	480
35	GCCGGTCAGG GAGAATGAAT GGTACAGAGA GGAAAGGAAG GAAAGGGGGT GGAACAGAGG	540
33	TAGAAGGCAA GGAAGGGATG CCGCACTGGA GACCGATGGG GACACTCTAA TTGTGCAAGA	600
	GGGAGGATCT TCCTTCTTGA ATGCTGAACA CAGCTAGTCT GAACCTTCCT TGGAAAGTCC	660
40	AGCTGTTTGC CCATGCATAG GGCCAACTCT CCCTGCAAAG CAGCAAATGT GGCTTCTATC	720
	AGGAAGGAAA AGTATCCATC AGTGTGACAA GAGGTCACCT TCGAACTTGC ATGAACTCCT	780
45	TGCGCAGCCA CAAAGAGTCC TGGTAGAAGT GAGGATCGCC TAGTCTTACG GCTGTCCGTT	840
43	TATAGAAGTA GCAGTACAAC ACTGCTGCTA GTCTCTGGAA TACAAACAGC ATTTGAAGTC	900
	CATCTGTCCA TATGAAGCTG TTGGAGTTTT TCCAGCGTAA GTTCATGACC CAGACATGAA	960
50	GGGAGATGCT GAGGGCAAAG TACACAGCTG TCAGGATGAT GGTCCCTTTG AACTTATGGA	1020
	ATAGGAGGTT GACCAGGCCA GCCTGGAAGA CGAAGGTGTT GAAGAACATG AGGAAAATGA	1080
55	TGATGATGTT GAAGAGGACT GCAATATCCT GGATGCACTG AGGGAGAGGY TTCTAGTTCC	1140
55	THE PARTY AND ACCOUNT OF CONTROL OF CARACTERS OF CARACTERS OF CONTROL OF CONT	1189

WO 98/39448 PCT/US98/04493

511

(2) INFORMATION FOR SEQ ID NO: 284:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1634 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:

	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 284:	
10	AGGGAAAGGG GAGGGTAGCG GGAGGGTAGC AGGTGAGTTC CTAGGGCTGG AAGGTTTAGC	60
	AGCAGCCTGG TGCAGTGCCC TGTCATCAAG ACAAACCCAC GGTCCTMCTG GGTGCCTACC	120
15	AAGCTTGGTT TGTACAAAAG CAAGGTGGGA GTCTATTTTT GTACATGAGA TACATCACAC	180
	TTACCTGTGG GCCAGTATTG TGAAGTGAGT CTGAGTTGTT TACACTGATG CCTTCCCTGC	240
20	CCACCACAAA TTGTGTACAT AGTCTTCAGA TGATACCACC CCTTTCCCCA GCTCCCAACC	300
20	AAGAGCTGGT TCTAGGCCTG TGTTATATGT CATATTTAGC STTTTTATAT ATGACCTTTG	360
	ATTTCTGTTG TTTGTATTTT AGCACAGTGT ATGCACCTTC ATTTAAATAC ATCTGTGTGC	420
25	ATACAGATAC GCATATATGT GTGTGCGTAT GCATATATCT CTCATCTGTA GTTTCCAAGA	480
	GTTCAGCTGA AGCAGATGGA GTCCTGCAGC CCAGGAGACA CCCTGCATCC CTGCTAATAG	540
20	TGTTTGCCAC AAGTATTAGT GAGTCTTCCT TATTAATATT TTCATTTCAG AAGACTGAAG	600
30	CAAAGCTGAT AGTGTTTGCT GTTTCTTTGG CAGCTAAGTG AGGGTCTTGG GATGACTTGC	660
	TGTGTTCCTC AAGCTGCACT TTGGGGCCCAT CTCTGCAGTA TTAGCCCCCCT TTTTGCTTGG	720
35	TOGTACTCTG TCTGTGCCTG TGTGTGTGTG TGATAGTCAC TCTTGCATGG CTTCCATGTC	780
	TOGTTTGTGG CATTTGGGGA TAAGGTGCTG AAGCCAGAGC ATTTGCAGTT TGTTTGAGGC	840
40	CTCGTTGCCA ATGATAGATC ACTCCTGTTG ACCTGGTATG TCTGCTTGCT TGCTGCTTTT	900
40	CCTTGCTTTC TCTTGGAAGA GGAAAGGACT CTGGTCAGGC CCAGGCTGAG TGAGATGAGC	960
	TGCAGCTGGC TCATGGCCTT CTTAGAGCAG AGAGAGGAGT ATGTCATTTT ACTAAGTTCC	1020
45	TAAACAAACA TTTATGCAGG CAACACTCCT TGCAGATCCA GAAACTGAGG CACAATAGGG	1080
	TTATGACTTG CTCAAGAATA TGTAGCTGCT AGGGGGTAAA TCAAGGCATC ACAATTTCTG	1140
50	TTCAGCGGGC AGGAATAGGC TGTGAATTGC TAGCACTTTT TTTTTTTAAG CAATTACTTT	1200
50	TTGACTTGTT CCTCTGAAAG TGCAAGAGGC GTACACCTTT CCCAAATGTA GACTAGAATC	1260
	TGCAGGATGC CACCCACTGT ATAGTTCTGC TTTCCCAGAG AGGAAGAACT TTTAGAAACC	1320
55	AAATGATCTT AATTGTTATT GCCCACCCCT GGCTTTTCCG GGTAGAAAAT TCACAGTAGG	1380
	AATGATTGTT AAGAGAGAGT GCTTGGAACC ATGGGTTAAC AGGAAAGGCT ACCTAACTTC	1440
60	ACATATCTGC AACCAGAGCA GCCACCAAGC ATTACTTAGC AGCAGGAAAA TGATTGTATT	1500
60		

PCT/US98/04493 WO 98/39448

_	^
•	•

TGAGTTCCTG TGTGTCCAAA ACTGAGGCAC CATGTTCTTT GAAAACATGC CACCTCAAGG	1560
CTGGGCGCG TGGCTCACAC CTGTAATCCC AGCAYTTTGG GGAGGCCSAG GGCGGGCGG	1620
KTTCACCGGG GGTC	1634

(2) INFORMATION FOR SEQ ID NO: 285: 10

5

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1795 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:

TTCCCCCCAG GITGGCTTCC TTCGATTCCT TTTCTTGGTA TCAACGTTTG ATTGGAAGAA 60 20 CAACCCCCTC TITGTCAACC TCAATAATGA GCTCACTGTG GAGGAGCAGC TCGGGCACAG 120 CTCMCCGTYA TGGTCATTGT TACCCCCCAA GACCGCAAAA ACTCTGTGTG GACACAGGAT 180 25 GGACCCTCAG CCCAGATCCT GCAGCAGCTT GTGGTCCTGG CAGCTGAAGC CCTGCCCATG 240 TTAGAGAAGC AGCTCATGGA TCCCCGGGGA CCTGGGGACA TCAGGACAGT GTTCCGGCCG 300 CCCTTGGACA TTTACGACGT GCTGATTCGC CTGTYTCCTC GCCATATCCC GCGGCACCGC 30 AGGCTTGTGG ACTCGCCAGY TGCCTCCTTC TGCCGGGGCC TGCTCAGCCA GCCGGGGCCC 420 TCATCCCTGA TGCCCGTGCT GGGTNATGAT CCTNCTCAGC TCTATCTGAC GCAGCTCAGG 480 35 GAGGCCTTTG GGGATCTGGC CCTTTTCTTC TATGACCAGC ATGGTGGAGA GGTGATTGGT 540 GTCCTCTGGA AGCCCACCAG CTTCCAGCCG CAGCCCTTCA AGGCCTCCAG CACAAAGGGG 600 CGCATGGTGA TGTCTCGAGG TGGGGAGCTA GTAATGGTGC CCAATGTTGA AGCAATCCTG 660 40 GAGGACTITIG CTGTGCTGGG TGAAGGCCTG GTGCAGACTG TGGAGGCCCG AAGTGAGAGG 720 TGGACTGTGT GATCCCAGCT CTGGAGCAAG CTGTAGACGG ACAGCAGGAC ATTGGACCTC 780 45 TAGAGCAAGA TGTCAGTAGG ATGACCTCCA CCCTCCTTGG ACATGAATCC TCCATGGAGG 840 GCCTGCTGGC TGAACATGCT GAATCATCTC CAACAAAACC CAGCCCCAAC TTTCTCTG 900 ATGCTCCAGC ATTGGGGCAG GGGCATGGTG GCCCATGTAG TCTCCTGGGC CTCACCATCC 960 50 CAGAAGAGA GTGGGAGCCA GCTCAGAGAA GGAACTGAAC CCAGGAGATC CATCCACCTA 1020 TTAGCCCTGG GCCTGGACCT CCCTGCGATT TCCCACTCCT TTCTTAGTCT TCTTCCAGAA 1080 55 ACAGAGAAGG GGATGTGTGC CTGGGAGAGG CTCTGTCTCC TTCCTGCTGC CAGGACCTGT 1140 CCCTAGACTT AGCATGCCCT TCACTGCAGT GTCAGGCCTT TAGATGGGAC CCAGCGAAAA 1200 TGTGGCCCTT CTGAGTCACA TCACCGACAC TGAGCAGTGG AAAGGGGCTA TATGTGTATG 1260 60

PCT/US98/04493

840

60

	AATAGACCAC ATTGAAGGAG CACAATGCCC TCCTGTGTTG ATGCCACTTC CCAGGGTGGA	1320
_	GACAGTOGAA AAGAACCGAG GACAGGAAAG GATTGGGTAG GTGAAGGGGT CAGGGGACTG	1380
5	GTAGTCACCC AATCTTGGAG AGGTGCAAAA AGCACTGGGG GCTACCCGTT AGCTGCATCT	1440
	GCCCTGGCTG TTTGCCCGTT CATGTCACAA ACTGCCACTA CTATGTACCT GCAGTGGGGT	1500
10	TOCAGAGATG GGGGAGACTC AAGTCTTACT CCCCAGGAGC TCCCAGGGCC CAAGGAGGAG	1560
	AATGCTGCCT CCTTTCAGTC TGGTCTACAC CCACTTTCTG GTAGCCTCTC TGCTTCCTGT	1620
	AATTCTGGCT GTTTTTCCAG ACTCAGCTCA AATAGTGCCC CTCCTTAAGC CCATCCCTCG	1680
15	CCCCCAGCCT GAGGIGATCT TICCCTCCTC TGAACTATTA GAGCAGTTAC TGTCTGTTCA	1740
	GTTCGTTTGG CAGGCACACA CAGTGGCATA AATTCTATTG TTTTGAACTC TGATT	1795
20		
	(2) INFORMATION FOR SEQ ID NO: 286:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 858 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:	
	TCTGCTTTCG GTGCTGCGTG TACTGCTGGG CGGCTTCTTC GCGCTCGTGG GGTTGGCCAA	60
35	GCTCTCGGAG GAGATCTCGG CTCCAGTTTC GGAGCGGATG AATGCCCTGT TCGTGCAGTT	120
	TOCTGAGGTG TICCCGCTGA AGGTATTTGG CTACCAGCCA GATCCCCTGA ACTACCAAAT	180
40	AGCTGTGGGC TTTCTGGAAC TGCTGGCTGG GTTGCTGCTG GTCATGGGCC CACCGATGCT	240
40	GCAAGAGATC AGTAACTTGT TCTTGATTCT GCTCATGATG GGGGCTATCT TCACCTTGGC	300
	AGCTCTGAAA GAGTCACTAA GCACCTGTAT CCCAGCCATT GTCTGCCTGG GGTTCCTGCT	360
45	GCTGCTGAAT GTCGGCCAGC TCTTAGCCCA GACTAAGAAG GTGGTCAGAC CCACTAGGAA	420
	GAAGACTCTA AGTACATTCA AGGAATCCTG GAAGTAGAGC ATCTCTGTCT CTTTATGCCA	480
50	TGCAGCTGTC ACAGCAGGAA CATGGTAGAA CACAGAGTCT ATCATCTTGT TACCAGTATA	540
50	ATATCCAGGG TCAGCCAGTG TTGAAAGAGA CATTTTGTCT ACCTGGCACT GCTTTCTCTT	600
	TTTAGCTTTA CTACTCTTTT GTGAGGAGTA CATGTTATGC ATATTAACAT TCCTCATGTC	660
55	ATATGAAAAT ACAAAATAAG CAGAAAAGAA ATTTAAATCA ACCAAAATTC TGATGCCCCA	720
	AATAACCACT TTTAATGCCT TGGTGTAAGT ATACCTCTGA ACTTTTTTCT GTGCCTTTAA	780

ACAGATATAT ATTTTTTTT AATGAAAATA AAACCATATA TCCTATTTTA TTTCCTCCTT

	TTAAAACCTT ATAAACTA	858
5		
	(2) INFORMATION FOR SEQ ID NO: 287:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 915 base pairs	
10	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287:	
13	GAATTCGGCA CGAGCGCGGC CATGGCGCTC CTGCTTTCGG TGCTGCGTGT ACTGCTGGGC	60
	GGCTTCTTCG CGCTCGTGGG GTTGGCCAAG CTCTCGGAGG AGATCTCGGC TCCAGTTTCG	120
20	GAGCGGATGA ATGCCCTGTT CGTGCAGTTT GCTGAGGTGT TCCCGCTGAA GGTATTTGGC	180
	TACCAGCCAG ATCCCCTGAA CTACCAAATA GCTGTGGGCT TTCTGGAACT GCTGGCTGGG	240
25	TIGCTGCTGG TCATGGGCCC ACCGATGCTG CAAGAGATCA GTAACTTGTT CITGATTCTG	300
23	CTCATGATGG GGGCTATCTT CACCTTGGCA GCTCTGAAAG AGTCACTAAG CACCTGTATC	360
	CCAGCCATTG TCTGCCTGGG GTTCCTGCTG CTGCTGAATG TCGGCCAGCT CTTAGCCCAG	420
30	ACTAAGAAGG TGGTCAGACC CACTAGGAAG AAGACTCTAA GTACATTCAA GGAATCCTGG	480
	AAGTAGAGCA TCTCTGTCTC TTTATGCCAT GCAGCTGTCA CAGCAGGAAC ATGGTAGAAC	540
35	ACAGAGTCTA TCATCTTGTT ACCAGTATAA TATCCAGGGT CAGCCAGTGT TGAAAGAGAC	600
33	ATTITETCTA CCTGGCACTG CTTTCTCTTT TTAGCTTTAC TACTCTTTTG TGAGGAGTAC	660
	ATGTTATGCA TATTAACATT CCTCATGTCA TATGAAAATA CAAAATAAGC AGAAAAGAAA	720
40	TTTAAATCAA CCAAAATTCT GATGCCCCAA ATAACCACTT TTAATGCCTT GGTGTAAGTA	780
	TACCTCTGAA CTTTTTTCTG TGCCTTTAAA CAGATATATA TTTTTTTTWA ATGAAAATAA	840
45	AACCATATAT CCTATTTTAT TTCCTCCTTT TAAAACCTTA TAAACTATAA MAAAAAAAA	900
43	AAAAAAAAA CTCGA	915
50	(A) THEOREMOTON FOR CEO ID NO. 200.	
	(2) INFORMATION FOR SEQ ID NO: 288:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1517 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288:	

	CCTTGTGGCA ACTAGTGGGT CCCCCGGGCT GCAGNAATTC GGGCAGTGGT TCTGNGTCTG	00
	AAGATACTCT GAGTTCCTCT GAGAGATCCA AAGGCTCCGG GAGCAGACCC CCAACCCCCA	120
5	AAAGCAGCCC TCAGAAGACC AGGAAGAGCC CTCAGGTGAC CAGGGGTAGC CCTCAGAAGA	180
	CCAGCTGTAG CCCTCAGAAG ACCAGGCAGA GCCCTCAGAC GCTGAAGCGG AGCCGAGTGA	240
10	CCACCTCACT TGAAGCTTTG CCCACAGGAC AGTGCTGACA GACAAGAGTG GGCGACAGTG	300
10	GAAGCTGAAG TCCTTCCAGA CCAGGGACAA CCAGGGCATT CTCTATGAAG CTGCACCCAC	360
	CTCCACCCTC ACCTGTGACT CAGGACCACA GAAGCAAAAG TTCTCACTCA AACTGGATGC	420
15	CAAGGATGGG CGCTTGTTCA ATGAGCAGAA CTTCTTCCAG CGGGCCGCCA AGCCTCTGCA	480
	AGTCAACAAG TGGAAGAAGC TGTACTCGAC CCCACTGCTG GCCATCCCTA CCTGCATGGG	540
20	TTTCGGTGTT CACCAGGACA AATACAGGTT CTTGGTGTTA CCCAGCCTGG GGAGGAGCCT	600
20	TCAGTCGGCC CTGGATGTCA GCCCAAAGCA TGTGCTGTGC	660
	TGGCCTGCCG GCTGCTGGAT GCCCTGGAGT TCCTCCATGA GAATGAGTAT GTTCATGGAA	720
25	ATGTGACAGC TGAAAATATC TTTGTGGATC CAGAGGACCA GAGTCAGGTG ACTTTGGCAG	780
	GCTATGGCTT CGCNFTCCGC TATTGCCCAA GTGGCAAACA CGTGGCCTAC GTGGAAGGCA	840
30	GCAGGAGCCY TCACGAGGG GACCTTGAGT TTCATTAGCA TGGACCTGCA CAAGGGATGC	900
30	GGGCCCTCCC GCCGCRGYGA CCTCCAGAGC CTGGGYTAMT GCATGCTGAA GTGGYTCTAM	960
	GGGTTTCTGC CATGGACAAA TTGCCTTCCA AMAMTGAGGA CATCATGAAG CAAAAACAGA	1020
35	AGTTGCCTTG GGATTCATTT TAATGTAAGC TKGACTTTGT CATGCCAGAA ACAAGGCTCG	1080
	GTCACCGTCA GCAGTTTGCA GTTTTCCACC TCCWCCCAGT TCCTCCGTGT GGTTGACCCA	1140
40	GATATCTCCG TTATGCAGCC GCCTCCGGGG GACCACCTCC CTCCCTTTGA GTCAGCCACA	1200
40	GACAGCCTAC TTGACGGCCC CGCTGGCCCC CACATTCCAC TGAACTGTGC GGATGCCACA	1260
	GTGACCCCCT CTCAGGCACA GCATGACCTC CTGAAGTCGA GCCTGCTTGC TTTGAACCTA	1320
45	CCAGTTAAAA TCTCCTCAAA ATGTTTGGAT ACCGCCCATT GGCCCCTCAC AGCCACGAGC	1380
	TCCCTGACCA GTGTGCGTGT GTGTGTGTGT GTGTGTGTGT GGGACGGGTG	1440
50	GGGAGGTCAC CTTTGGGTGT GCGGTGTGCC CCCAGGACCT GTAAGTAATA AAATCTTTAT	150
50	TTCCAAAAA AAAAAA	151

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3865 base pairs
(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 289:

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:

5 TGGAGGGGG GAGCTTCCTT GAGCAGTGGG CCCAGGCCTG GCCCTCCACA CTTCATTCTC 60 TGACCTTTCT CTCTCCTCAT TTCGGTGCAT GTCCTTTCTG CAGCTGCCTT TCAGCACAGG 120 TGGTTCCACT GGGGCAGCT AACGCTGAGT GACAAGGATG GGAAGCCACA GGTGCATTTT 180 10 ACTCAAGTCT TCTCTAGTCA ATGAGGGGCA CCCAGTGCTT CTAGGGCAGG CTGGGTGGTG 240 GTCCCCTAGG TATCAGCCTC TCTTACTGTA CTCTCCGGGA ATGTTAACCT TTCTATTTTC 300 15 AGCCTGTGCC ACCTGTCTAG GCAAGCTGGC TTCCCCATTG GCCCCTGTGG GTCCACAGCA 360 GCGTGGCTSC CCCCCAGGGC CACCGCTTCT TTCTTGATCC TCTTTCCTTA ACAGTGACTT 420 GGGCTTGAGT CTGGCAAGGA ACCTTGCTTT TAGCTTCACC ACCAAGGAGA GAGGTTGACA 480 20 TGACCTCCCC GCCCCTCAC CAAGGCTGGG AACAGAGGGG ATGTGGTGAG AGCCAGGTTC 540 CTCTGGCCCT CTCCAGGGTG TTTTCCACTA GTCACTACTG TCTTCTCCTT GTAGCTAATC 600 25 AATCAATATT CTTCCCTTGC CTGTGGGCAG TNGGAGAGTG CTGCTGGGTG TACGCTGCAC 660 CTGCCCACTG AGTTGGGGAA AGAGGATAAT CAGTGAGCAC TGTTCTGCTC AGAGCTCCTG 720 ATCTACCCCA CCCCCTAGGA TCCAGGACTG GGTCAAAGCT GCATGAAACC AGGCCCTGGC 780 30 AGCAACCCTG GGAATGGCTG GAGGTGGGAG AGAACCTGAC TTCTCTTTCC CTCTCCCTCC 840 TCCAACATTA CTGGAACTCT ATCCTGTTAG GATCTTCTGA GCTTGTTTCC CTGCTGGGTG 900 35 GGACAGAGGA CAAAGGAGAA GGGAGGGTCT AGAAGAGGCA GCCCTTCTTT GTCCTCTGGG 960 GTAAATGAGC TTGACCTAGA GTAAATGGAG AGACCAAAAG CCTCTGATTT TTAATTTCCA 1020 TAAAATGITA GAAGTATATA TATACATATA TATATTICTT TAAATTITTG AGTCTTTGAT 1080 40 ATGTCTAAAA ATCCATTCCC TCTGCCCTGA AGCCTGAGTG AGACACATGA AGAAAACTGT 1140 GTTTCATTTA AAGATGTTAA TTAAATGATT GAAACTTGGC TGTGGCTACT GCTTCTTAAT 1200 45 GTTGGGGGGA CAGGGCAGTG GTCTGGGCCC ACATTTAGAA GGGAAAATGT TTTGCCTGCT 1260 GCACACATTG GACCCAAGTA TGGGCCTCTT CTGCCTAGTA CTGCCAAAGG GACTGTTAAG 1320 GTGTCTTGTC CATCTTCTAC CCCCCACCCC CCATTACGGG TAAAGGRAAC CCCAGACTAG 1380 50 GTGAGGGCC AGCAGCTGCC TCACATTGTG TTCTCTCTG AGATGGTCCA GCTCACATCC 1440 AGACACCTTG TTCAGACATT TTATTTGAAT TTATGACAGT GATGGGGATT TGACTGAGAT 1500 55 GCCTTATGGA GAAGTACCCC ACCCTCTATG AAGACAGAAT CACTCTCTGC CATTCATTCT 1560 GCCTGATGCT AACAACACGC AGCTGATTTA GGGAGTGTCC CAGCCTAGCT GGATCAAGGG 1620 AAATTCCAGG AGCCCTGGG CAGGCCCTGG NCCCCAGTGC CAAGCCTCAG AGTAAGCAGA 1680 60

	CATTGGGAAA GTTGCCAACC ACTTGGTAGA CCACTAGGTT CTCTGTTTTC CCTTCCCTTT	1740
5	CCTTTTCAAA TCCCACAGTT TCCTGTTGGG GAGAAGCTGT AATTAGCCTA GTCCAGGTAC	1800
	CAGATCCCAG CTAGGGGCGC AGCTGNCTTG GATAACTCCA AGAAAACCTG GGCACCAGTA	1860
	TITITCCAAT TATAAGGACT GTGGCATAAA TITITAAATG AGITATATTG AAACCAGATT	1920
10	TCTCCAGCTG CCAAGGGAAG AAGGTAGGGC TGGACTCCCT GCTGTGGCCC AGCCCTTGTT	1980
	AGGGGTTGGT CTCTCACTGC AGCCAGACAG GATGATCCTG GGTTCTGGGG AGGGTAAGCT	2040
	GCCCCTTGCC GAGTTCTGCA CCGAATAAAG AGTCCAAACC CGCTGCTTCC GTGTCCTGAG	2100
15	AGATOGOTAA ATGGOTGATG GATGGAGCAG ACTGAAGAGA CAGCAGATGA CTCAGTGGTG	2160
	GAAGAAGGG GGAAGATGCT GGGCTGGCTA GCTAATGTTC CCCCCTTTCA GCGATTTACA	2220
20	GGAAATGGAG CCCAGCTTGG TCATGAAGTT GGTTTGCTTC CACTGTGCGA TGCACTCCTC	2280
	AGAAATITTG AAGTCAGCCT GCAACTTCTC GAAGACTTTC TTCTTGGGCT TGAGCTCCTC	2340
	ATCTGGTTGG CCCTTTCAT AGCCCTTCAC AAACACGTGC TCACCAGGAG CAGAGCCTGC	2400
25	CGGAGGGTCC AGAGGTTCAA CTGGCGGTTT ATCCCTTCTA TAGAAGCACA CAGAAGCATG	2460
	CCTTGGGACT CGACTCCTCT CATCTTCTGG GGTTTCAGGT TGCACAGCAC CACTACCAGC	2520
30	CTGTCCTGCA GTTCCTCCTT GGGCACGAAC TGTACCAGGC CGCTCACCAC AGTCCGTGGT	2580
	TCAGCTTCCC CCACGTCAAT CTTCTCTACA TACAGGCTGT CTGCATCTGG GTGCTTCTCC	2640
	ACAGTGATGA TITTCCCCAC ACGGATATCC AGCCGGGATG GGATGACCTC CTCTGGTTCT	2700
35	GAATTCTTGG CAGGCCTTTG GCCATTGGCT TCTGCTTTGA GGGATCTGGG TAGGCAGCGC	2760
	TGGCCAGTIT TITCAGGGCA GGGGTATTAA ACTTTTCCCG GATTGGATCC AGCAACTTGT	2820
40	TCAGTGCGAC TTCAACAGAA TTCTTCAGGT CTCCAGGATG TACAACCTCA GCAGCAAAGT	2880
	CCTTTTCCAG GTCCACGTAA GCTGTGTAGG TTTTGTTTCC ACCCCATTTC TCATCTCGTA	2940
	GGATCACAAA CTCGGACTTA AGGGGAAAAA GGACATGCTT GATGAAGGAC AGAACCCCAT	3000
45	TGTTCTCCAC ATTTCCTGGC TCACAGAAGG CCTTCTTCAG TTTTTTCTTC ACATCCTCCT	3060
	TCCGATCAAG GAGATCAATC TTGGACTCCT CTTCTGAAGA GCTCATTTTG CTGCCTGTTA	3120
50	ATCCTGGAAC CATAGGATTC ATCAGATGGA CCCGTTTTGA ATAGCCAAGT GCAGGGAGGT	3180
	ACTICICISC AAAGGIGAAA ATCITICICI GATCAATGCC TCCAAATTGG GCATCTACIT	3240
	TTAAATACTC TTCATCCAAA GCCTGCAGTC CGGGGTATAA GAGGCCACTC AGCAAAGGGT	3300
55	GCTCCACCTG CTTTACCACC TCAGCTCCAG CCTTCTTGGA ATCGTGCTGT GTGACCACGG	3360
	AGGAGAGTCT GTACACATCT AGTGTGTACT CTTTGCTGAG CTGGTAATCA GTGCCTTTGA	3420
60	TGAACTTGAG CTTCTCCAAG GGCACACCAA TGCTCTCCAG CATTGCTTTG ATCACATTCT	3480

PCT/US98/04493 WO 98/39448

- 5	1	Q
J	1	О

	CATAGTAACT GACTCGGAGT TCTAGAAGTT CCCATGGGGC TTTCATGTTA TCCAGGTATG	3540
	CGTGGAGGTC CGCAAACAGA ATTGTTACCT CACACCCTGC CTTTAAGAAG TCTGCAATCT	3600
5	TTGACATGGG CACAAAGTAA GCCACATGTG GTTTGCCCGT GGTTGCCGTT CCCCAGTAAA	3660
	TITTAAGITC CCGCTCCTTC AGTATCTCCT TCAGCTTCTC TTCCCCCAGA ACCTCCTGCA	3720
10	GGTTCCGGGT GATAAGGTGC AGTTTCTCTT CAGGGCTGGG AGCGTCCCCC ATGGTCCGCT	3780
	ACCCCTGCTT CCCCCGCTCA GCCCGGCACC AGAGCCCCTT CCTGGGTCAC CGTCGCCGCC	3840
	GCGTGCCGGG AACTGTCACG CGAGT	3865
15		
20	(2) INFORMATION FOR SEQ ID NO: 290: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1910 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290:	60
30	AGGGAGAGGA GGAGAGGGGG TCTGCGCGCG GCCGCTACCC AGAAGCCAGC GGACGGCAGC	120
50	ACGGAGTGGG CTGTCCCCGA GCCCAGCCCC GAGCGAGCCC CCCCCCCCCC	180
	GCGCCTYCCA GCCAGCCCGA CTCCTAGGAG GAGGGGAGGC GGGAAAGCAG CTCAAGCCTC	240
35		300
	CTGGGAGTCT CGGAGGGGAC CGNCTGTGCA GACGCCATGG AGTTGGTGCT GGTCTTCCTC	360
40	TGCAGCCTGC TGGCCCCCAT GGTCCTGGCC AGTGCAGCTG AAAAGGAGAA GGAAATGGAC	420
	CCTTTTCATT ATGATTACCA GACCCTGAGG ATTGGGGGAC TGGTGTTCGC TGTGGTCCTC	. 480
	TTCTCGGTTG GGATCCTCCT TATCCTAAGT CGCAGGTGCA AGTGCAGTTT CAATCAGAAG	540
45		600
	GAGCCCCAGA AAGCAGAGAA CTGAAGTGCA GCCATCAGGT GGAAGCCTCT GGAACCTGAG	660
50	GCGGCTGCTT GAACCTTTGG ATGCAAATGT CGATGCTTAA GAAAACCGGC CACTTCAGCA 0	720
J	ACAGCCCTTT CCCCAGGAGA AGCCAAGAAC TTGTGTGTCC CCCACCCTAT CCCCTCTAAC	780
	ACCATTCCTC CACCTGATGA TGCAACTAAC ACTTGCCTCC CCACTGCAGC CTGCGGTCCT 5 GCCCACCTCC CGTGATGTGT GTGTGTGTT GTGTGTGTT GACTGTGTT GTTTGCTAAC	840
5	5 GCCCACCTCC CGIGATGTGT GTGTGTGTGT GTGTGTGTGT GTGTGTGTGT	900
	TGTGGTCTTT GTGGCTACTT GTTTGTGGAT GGTATTOTO TOTOLOGIC CCCGTGGCCC CCCGTGGCCC CCCGTGGCCCC	960
	COCHITCOCA GOCAGGGCT CHOCGILIANO	

	TCCATCACCT TCTGCTCCTA GGAGGCTGCT TGTTGCCCGA GACCAGCCCC CTCCCCTGAT	1020
	TTAGGGATGC GTAGGGTAAG AGCACGGGCA GTGGTCTTCA GTCGTCTTGG GACCTGGGAA	1080
5	GGTTTGCAGC ACTTTGTCAT CATTCTTCAT GGACTCCTTT CACTCCTTTA ACAAAAACCT	1140
	TECTTCCTTA TCCCACCTGA TCCCAGTCTG AAGGTCTCTT AGCAACTGGA GATACAAAGC	1200
	AAGGAGCTGG TGAGCCCAGC GTTGACGTCA GGCAGGCTAT GCCCTTCCGT GGTTAATTTC	1260
10	TTCCCAGGGG CTTCCACGAG GAGTCCCCAT CTGCCCCGCC CCTTCACAGA GCGCCCGGGG	1320
	ATTCCAGGCC CAGGGCTTCT ACTCTGCCCC TGGGGAATGT GTCCCCTGCA TATCTTCTCA	1380
15	GCAATAACTC CATGGGCTCT GGGACCCTAC CCCTTCCAAC CTTCCCTGCT TCTGAGACTT	1440
	CAATCTACAG CCCAGCTCAT CCAGATGCAG ACTACAGTCC CTGCAATTGG GTCTCTGGCA	1500
	GGCAATAGTT GAAGGACTCC TGTTCCGTTG GGGCCAGCAC ACCGGGATGG ATGGAGGGAG	1560
20	AGCAGAGGCC TTTGCTTCTC TGCCTACGTC CCCTTAGATG GGCAGCAGAG GCAACTCCCG	1620
	CATCCTTIGC TCTGCCTGTC GGTGGTCAGA GCGGTGAGCG AGGTGGGTTG GAGACTCAGC	1680
25	AGGCTCCGTG CAGCCCTTGG GAACAGTGAG AGGTTGAAGG TCATAACGAG AGTGGGAACT	1740
	CAACCCAGAT CCCGCCCCTC CTGTCCTCTG TGTTCCCGCG GAAACCAACC AAACCGTGCG	1800
20	CTGTGACCCA TTGCTGTTCT CTGTATCGTG ATCTATCCTC AACAACAACA GAAAAAAGGA	1860
30	ATAAAATATC CTTTGTTTCM TAAAAAAAAA AAAAAAAAAA AGGGGGGGGG	1910
35	(2) INFORMATION FOR SEQ ID NO: 291:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 3276 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291:	
45	GCGACCGTCG TTTGAGTCGT CGCTGCCGCT GCCGCTGCCA CTGCCACTGC CACCTCGCGG	60
	ATCAGGAGCC AGCGTTGTTC GCCCGACGCC TCGCTGCCGG TGGGAGGAAG CGAGAGGGAA	120
50	GCCGCTTGCG GGTTTGTCGC CGCTGCTCGC CCACCGCCTG GAAGAGCCGA GCCCCGGCCC	180
	AGTCGGTCGC TTGCCACCGC TCGTAGCCGT TACCCGCGGG CCGCCACAGC CGCCGGCCGG	240
EE	GAGAGGCGCG CGCCATGGCT TCTGGAGCCG ATTCAAAAGG TGATGACCTA TCAACAGCCA	300
55	TTCTCAAACA GAAGAACCGT CCCAATCGGT TAATTGTTGA TGAAGCCATC AATGAGGACA	360
	ACAGTGTGGT GTCCTTGTCC CAGCCCAAGA TGGATGAATT GCAGTTGTTC CGAGGTGACA	420
60	CAGTGTTGCT GAAAGGAAAG AAGAGACGAG AAGCTGTTTG CATCGTCCTT TCTGATGATA	480

•	CTTGTTCTGA TGAGAAGATT CGGATGAATA GAGTTGTTCG GAATAACCTT CGTGTACGCC	540
5	TAGGGGATGT CATCAGCATC CAGCCATGCC CTGATGTGAA GTACGGCAAA CGTATCCATG	600
	TGCTGCCCAT TGATGACACA GTGGAAGGCA TTACTGGTAA TCTCTTCGAG GTATACCTTA	660
	AGCCGTACTT CCTGGAAGCG TATCGACCCA TCCGGAAAGG AGACATTTTT CTTGTCCGTG	720
10	GTGGGATGCG TGCTGTGGAG TTCAAAGTGG TGGAAACAGA TCCTAGCCCT TATTGCATTG	780
	TTGCTCCAGA CACAGTGATC CACTGCGAAG GGGAGCCTAT CAAACGAGAG GATGAGGAAG	840
	AGTCCTTGAA TGAAGTAGGG TATGATGACA TTGGTGGCTG CAGGAAGCAG CTAGCTCAGA	900
15	TANAGGAGAT GGTGGAACTG CCCCTGAGAC ATCCTGCCCT CTTTAAGGCA ATTGGTGTGA	960
	AGCCTCCTAG AGGAATCCTG CTTTACGGAC CTCCTGGAAC AGGAAAGACC CTGATTGCTC	1020
20	GAGCTGTAGC AAATGAGACT GGAGCCTTCT TCTTCTTGAT CAATGGTCCT GAGATCATGA	1080
	GCAAATTGGC TGGTGAGTCT GAGAGCAACC TTCGTAAAGC CTTTGAGGAG GCTGAGAAGA	1140
	ATGCTCCTGC CATCATCTTC ATTGATGAGC TAGATGCCAT CGCTCCCAAA AGAGAGAAAA	1200
25	CTCATGGCGA GGTGGAGCGG CGCATTGTAT CACAGTTGTT GACCCTCATG GATGGCCTAA	1260
	AGCAGAGGGC ACATGTGATT GTTATGGCAG CAACCAACAG ACCCAACAGC ATTGACCCAG	1320
30	CTCTACGGCG ATTTGGTCGC TTTGACAGGG AGGTAGATAT TGGAATTCCT GATGCTACAG	1380
	GACGCTTAGA GATTCTTCAG ATCCATACCA AGAACATGAA GCTGGCAGAT GATGTGGACC	1440
25	TGGAACAGTA GCCAATGAGA CTCACGGGCA TGTGGGTGCT GACTTAGCAG CCCTGTGCTC	1500
35	AGAGGCTGCT CTGCAAGCCA TCCGCAAGAA GATGGATCTC ATTGACCTAG AGGATGAGAC	1560
	CATTGATGCC GAGGTCATGA ACTCTCTAGC AGTTACTATG GATGACTTCC GGTGGGCCTT	1620
40	GAGCCAGAGT AACCCATCAG CACTGCGGGA AACCGTGGTA GAGGTGCCAC AGGTAACCTG	1680
	GGAAGACATC GGGGGCCTAG AGGATGTCAA ACGTGAGCTA CAGGAGCTGG TCCAGTATCC	1740
45	TGTGGAGCAC CCAGACAAAT TCCTGAAGTT TGGCATGACA CCTTCCAAGG GAGTTCTGTT	1800
45	CTATGGACCT CCTGGCTGTG GGAAAACTTT GTTGGCCAAA GCCATTGCTA ATGAATGCCA	1860
	GGCCAACTIC ATCTCCATCA AGGGTCCTGA GCTGCTCACC ATGTGGTTTG GGGAGTCTGA	1920
50	GGCCAATGTC AGAGAAATCT TTGACAAGGC CCGCCAAGCT GCCCCCTGTG TGCTATTCTT	1980
	TGATGAGCTG GATTCGATTG CCAAGGCTCG TGGAGGTAAC ATTGGAGATG GTGGTGGGC	2040
<u></u>	TGCTGACCGA GTCATCAACC AGATCCTGAC AGAAATGGAT GGCATGTCCA CAAAAAAAAA	2100
55	TGTGTTCATC ATTGGCGCTA CCAACCGGCC TGACATCATT GATCCTGCCA TCCTCAGACC	2160
	TEGECEGTETT GATCAGETCA TETACATECE ACTTECTGAT GAGAAGTECE GTETTGECAT	2220
61	COMPANION ANCOMORGA AGTOCOCAGO TGCCAAGGAT GTGGACTTGG AGTTCCTGGC	2280

PCT/US98/04493

300

360

521

	TAAAATGACT AATGGCTTCT CTGGAGCTGA CCTGACAGAG ATTTGCCAGC GTGCTTGCAA	2340
	GCTGGCCATC CGTGAATCCA TCGAGAGTGA GATTAGGCGA GAACGAGAGA GGCAGACAAA	2400
5	CCCATCAGCC ATGGAGGTAG AAGAGGATGA TCCAGTGCCT GAGATCCGTC GAGATCACTT	2460
	TGAAGAAGCC ATGCGCTTTG CGCGCCGTTC TGTCAGTGAC AATGACATTC GGAAGTATGA	2520
0	GATGITTGCC CAGACCCTTC AGCAGAGTCG GGGCTTTGGC AGCITCAGAT TCCCTTCAGG	2580
	GAACCAGGGT GGAGCTGGCC CCAGTCAGGG CAGTGGAGGC GGCACAGGTG GCAGTGTATA	2640
_	CACAGAAGAC AATGATGATG ACCTGTATGG CTAAGTGGTG GTGGCCAGCG TGCAGTGAGC	2700
15	TGGCCTGCCT GGACCTTGTT CCCTGGGGGT GGGGGCGCTT CCCCAGGAGA GGGACCAGGG	2760
	GTGCGCCCAC AGCCTGCTCC ATTCTCCAGT CTGAACAGTT CAGCTACAGT CTGACTCTGG	2820
20	ACAGGGGTT TCTGTTGCAA AAATACAAAA CAAAAGCGAT AAAATAAAAG CGATTTTCAT	2880
	TIGGTAGGCG GAGAGTGAAT TACCAACAGG GAATTGGGCC TIGGGCTATG CCATTTCTGT	2940
	TGTAGTTTGG GGCAGTGCAG GGGACCTGTG TGGGGTGTGA ACCAAGGCAC TACTGCCACC	3000
25	TGCCACAGTA AAGCATCTGC ACTTGACTCA ATGCTGCCCG AGCCCTCCCT TCCCCCTATC	3060
	CAACCTGGGT AGGTGGGTAG GGGCCACAGT TGCTGGATGT TTATATAGAG AGTAGGTTGA	3120
30	TTTATTTTAC ATGCTTTTGA GTTAATGTTG GAAAACTAAT CACAAGCAGT TTCTAAACCA	3180
	AAAAATGACA TGTTGTAAAA GGACAATAAA CGTTGGGTCN AAATGGGWRA AAAAAAAAA	3240
35	AAAAAAGGGG GGCCCCTCTA AAGNINCCANN CTTCGT	3276
40	(2) INFORMATION FOR SEQ ID NO: 292: (i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 1695 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:	
50	TTGCAATGGT TGAATTCCCC TCCTCACGCC AGCCTAGGAG AAGAAGTTCG TAGTCCCAGA	60
50	GGTGAGGCAG GAGGCGCAG TTTCTGGCGG GTGAGGGCGG AGCTGAAGTG ACAGCGGAGG	120
	CGGAAGCAAC GGTCGGTGGG GCGGAGAAGG GGGCTGGCCC CAGGAGGAGG AGGAAACCCT	180
55	TCCGAGAAAA CAGCAACAAG CTGAGCTGCT GTGACAGAGG GGAACAAGAT GGCGGCGCCG	240

AAGGGAGCCT CTGGGTGAGG ACCCAACTGG GGCTCCCGCC GCTGCTGCTG CTGACCATGG

CCTTGGCCGG AGGTTCGGG ACCGCTTCGG CTGAAGCATT TGACTCGGTC TTGGGTGATA

	CGGCGTCTTG CCACCGGGCC TGTCAGTTGA CCTACCCCTT GCACACCTAC CCTAAGGAAG	420
	AGGAGTTGTA CGCATGTCAG AGAGGTTGCA CGCTGTTTTC AATTTGTCAG TTTGTGGATG	480
5	ATGGAATTGA CTTAAATCGA ACTAAATTGG AATGTGAATC TGCATGTACA GAAGCATATT	540
3	CCCAATCTGA TGAGCAATAT GCTTGCCATC TTGGTTGCCA GAATCAGCTG CCATTCGCTG	600
	AACTGAGACA AGAACAACTT ATGTCCCTGA TGCCAAAAAT GCACCTACTC TTTCCTCTAA	660
10	CTCTGGTGAG GTCATTCTGG AGTGACATGA TGGACTCCGC ACAGAGCTTC ATAACCTCTT	720
	CATGGACTIT TTATCTICAA GCCGATGACG GAAAAATAGT TATATTCCAG TCTAAGCCAG	780
15	AAATCCAGTA CGCACCACAT TTGGAGCAGG AGCCTACAAA TTTGAGAGAA TCATCTCTAA	840
10	GCAAAATGTC CTATCTGCAA ATGAGAAATT CACAAGCGCA CAGGAATTTT CTTGAAGATG	900
	GAGAAAGTGA TGGCTTTTTA AGATGCCTCT CTCTTAACTC TGGGTGGATT TTAACTACAA	960
20	CTCTTGTCCT CTCGGTGATG GTATTGCTTT GGATTTGTTG TGCAACTGTT GCTACAGCTG	1020
	TGGAGCAGTA TGTTCCCTCT GAGAAGCTGA GTATCTATGG TGACTTGGAG TTTATGAATG	1080
25	AACAAAAGCT AAACAGATAT CCAGCTTCTT CTCTTGTGGT TGTTAGATCT AAAACTGAAG	1140
	ATCATGAAGA AGCAGGGCCT CTACCTACAA AAGTGAATCT TGCTCATTCT GAAATTTAAG	1200
	CATTITICIT TIAAAAGACA AGTGTAATAG ACATCTAAAA TICCACTCCT CATAGAGCTT	1260
30	TTAAAATGGT TTCATTGGAT ATAGGCCTTA AGAAATCACT ATAAAATGCA AATAAAGTTA	1320
	CTCAAATCTG TGAAGACTGT ATTTGCTATA ACTITATTGG TATTGTTTTT GTAGTAATTT	1380
35	AAGAGGTGGA TGTTTGGGAT TGTATTATTA TTTTACTAAT ATCTGTAGCT ATTTTGTTTT	1440
	TTGCTTTGGT TATTGTTTTT TTCCCTTTTC TTAGCTATGA GCTGATCATT GCTCCTTCTC	1500
	ACCTCCTGCC ATGATACTGT CAGTTACCTT AGTTAACAAG CTGAATATTT AGTAGAAATG	1560
40	ATGCTTCTGC TCAGGAATGG CCCACAAATC TGTAATTIGA AATTIAGGE	1620
	TTAATGACAC TACATTITCA GGAACTGAAA TCATTAAAAT TTTATTTGAA TAATTAAAAA	1680
4:	5 AAAAAAAAA AANCT	1695

50 (2) INFORMATION FOR SEQ ID NO: 293:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1501 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293:

	TAGTCTCCAA TATGGAGCAT CTCAAGCTTC TCCTGGGGGA TGGGGGATTGG GATGGGCAGA	120
5	ATCTGTTTTG GWICTCCGGG TTATTTCCAG TGGGTGTAAA AGCAGAGCTG GGCCTTTCCC	180
	TCTCTTATCC CTGAGGGTGG GTAAGAAGGA CTGTATCTAC ACCTGTTCTT CCCTACCTTC	240
	TCTTTTGTTA GGGAGGCCTC ATTCTAAGTT CCTCAAGAGA GTCCTTGGCT TAAAGCTGTA	300
10	GCAAGGGTGT GCTAGGTGGG GGATTTGGAG CAAAACCGTC GAGTAGGCAT GATACTGGTA	360
	TOGAGTOGGC CTGCAAAATC AGACAGAAAT GGCTTGAGAA GCCGCAGGGG AGCATGCCTG	420
	TCTCTCAGTG ATAGAGTATG GGAGGGACCT CCCTAGCTTG GAAAATGAGA ATTGAAGGGG	480
15	TTATGAACAA ATAGGATGCC TAGTTGAGGA TGTTCCCAAA GTTTTGTCCA ATCTTATCAT	540
	TAGTAGATTT TATAAGCCAC AGAGACAAAC CAGAAACGGA ATAATGTTAC TTTGGATGCT	600
20	TTATTTTTT GTTCTAGGTG TGGCTTTGTA CATGCAGAAG AATGCTATAT GCTGCACATT	660
	TIGCCTITAA AGICTTACGA CTTTCCCCAT TITAGTCTAA TGGGAAGATA CAGATGTGCA	720
	AGTCTGCTTT TTTGTTTTTT GTTATTATTT TTTTTTTTTT	780
25	TCAGACATGC ACAGAAGTGG AGAGGATGGT CCTTGGACCC MATGTGTCCA TCACCTAGCT	840
	GCATCACTTA TCAGCTATGG TCAACCTGGT TTCATCTGTA TCTCTCTTT TTCACCTGTA	900
30	TTGTTTATTG AAAATCCAAG ACACTATGCC AATGCAACCG TGACTACTTT GGGAGATTGG	960
	TAGTCTCTTT TGATGGTGAT AGTGATGGGG TGCACTATCA TAATCACATC AGGTCTGCTT	1020
	TTTGCTTTTA ATGTTAACTA ATGAAGTTCC AGAGATGGGC CTTAGAAATG TGTTTTAAGA	1080
35	ATTAACAAGG AGTCTCAAAA AGAAATGAGA GGGATGCTTC CTTTNCCCTT GCATCTACAA	1140
	AACMAGAGAG AGACTGTTCT GTTGTAAAAC TCTTTCAAAA ATTCTGATAT GGTAAGGTAC	1200
40	TTGAGACCCT TCACCAGAAT GTCAATCTTT TTTTCTGTGT AACATGGAAA CTTGTGTGAC	1260
	CATTAGCATT GTTATCAGCT TGTACTGGTC TCATAACTCT GGTTTTGGAA GAATAATTTG	1320
	GAAATTGTTG CTGTGTTCTG TGAAAATAAC CTCCCCAAAA TAATTAGTAA CTGGTTGTTC	1380
45	TACTIGGTAA TITGACACCC TGITAATAAC GCAATTATTT CTGTGTTCTT AAACAGTATA	1440
	AATAGITGTA AGTTTGCATG CATGATGGAA AAATAAAAAC CTGTATCTCT GTTAAAAAAA	1500
50	A	1501

55 (2) INFORMATION FOR SEQ ID NO: 294:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2683 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294:

	(XI) SEQUENCE DESCRIPTION	
5	TGANTGTGGT CCCGGGTGCN GATTGGCAGN GCCTCCGCCG CGGCTCGTGG TTGTCCCGCC	60
	ATGGCACTGT CGCGGGGGCT GCCCCGGGAG CTGGCTGAGG CGGTGGCCGG GGGCCGGGTR	120
	CTGGTGGTGG GGGCGGCCG CATCGGCTGC GAGCTCCTCA AGAATCTCGT GCTCACCGGT	180
10	TICTCCCACA TCGACCTGAT TGATCTGGAT ACTATTGATG TAAGCAACCT CAACAGACAG	240
	TITITIGITIC AAAAGAAACA TOTTGGAAGA TCAAAGGCAC AGGITGCCAA GGAAAGTGTA	300
15	CTGCAGTTTT ACCCGAAAGC TAATATCGTT GCCTACCATG ACAGCATCAT GAACCCTGAC	360
10	TATAATGTGG AATTITTCCG ACAGTITATA CTGGTTATGA ATGCTTTAGA TAACAGAGCT	420
	GCCCGAAACC ATGTTAATAG AATGTGCCTG GCAGCTGATG TTCCTCTTAT TGAAAGTGGA	480
20	ACAGCTGGGT ATCTTGGACA AGTAACTACT ATCAAAAAGG GTGTGACCGA GTGTTATGAG	540
	TGTCATCCTA AGCCGACCCA GAGAACCTTT CCTGGCTGTA CAATTCGTAA CACACCTTCA	600
25	GAACCTATAC ATTGCATCGT TTGGGCAAAG TACTTGTTCA ACCAGTTGTT TGGGGAAGAA	660
25	GATGCTGATC AAGAAGTATC TCCTGACAGA GCTGACCCTG AAGCTGCCTG GGAACCAACG	720
	GAAGCCGAAG CCAGAGCTAG AGCATCTAAT GAAGATGGTG ACATTAAACG TATTTCTACT	780
30	AAGGAATGGG CTAAATCAAC TGGATATGAT CCAGTTNAAA CTTTTTACCA AGCTTTTAA	840
	AGGAATGG CTAAATCAAC TGATATGAT GUIDOTTA GAAACTATGG CGGAAAAGGA AACCTCCAKT	900
	AGATGACATC AGGTATCTOT TGACAATGCA GTAGAAGAA ACGAATGCAT CAGATCAACA TCCGTTGGAC TGGGCTGAAG TACAAAGTCA AGGAGAAGAA ACGAATGCAT CAGATCAACA	960
35	TCCGTTGGAC TGGGCTGAAG TALAAAGTCA ACAGGTTCTA GATGTAAAGA GCTATGCACG GAATGAACCC CAGTTAGGCC TGAAAGACCA GCAGGTTCTA GATGTAAAGA GCTATGCACG	1020
		1080
40	TCTTTTTCA AAGAGCATCG AGACTTTGAG AGTTCATTTA GCAGAAAAGG GGGATGGAGC	1140
	TGAGCTCATA TGGGATAAGG ATGACCCATC TGCAATGGAT TTTGTCACCT CTGCTGCAAA	1200
	CCTCAGGATG CATATTITCA GTATGAATAT GAAGAGTAGA TTTGATATCA AATCAATGGC	1260
45		1320
	GGAAGGATTG AAGATTTTAT CAGGAAAAAT AGACCAGTGC AGAACAATTT TTTTGAATAA	1320
50	ACAACCAAAC CCAAGAAAGA AGCTTCTTGT GCCTTGTGCA CTGGATCCTC CCAACCCCAA	
	TTGTTATGTA TGTGCCAGCA AGCCAGAGGT GACTGTGCGG CTGAATGTCC ATALASTOTA	1440
	TGTTCTCACC TTACAAGACA AGATAGTGAA AGAAAAATTT GCTATGGTAG CACCAGATGT	1500
5:		1560
	TAATAATCAC AAGAAGTTGT CAGAATTTGG AATTAGAAAT GGCAGCCGGC TTCAAGCAGA	1620
	TGACTTCCTC CAGGACTATA CTTTATTGAT CAACATCCTT CATAGTGAAG ACCTAGGAAA	1680

WO 98/39448 PCT/US98/04493 525

	GGACGTTGAA TTTGAAGTTG TTGGTGATGC CCCGGAAAAA GTGGGGSCCA AACAAGCTGA	1740
	AGATGCTGCC AAAAGCATAA CCAATGGGCA GTGATGATGG AGCTCAGCCC TCCACCTCCA	1800
5	CAGCTCAAGA GCAAGATGAC GTTCTCATAG TTGATTCGGA TGAAGAAGAT TCTTCAAATA	1860
	ATGCCGACGT CATGAAGAAG AGAGAAGCCG CAAGAGGAAA TTAGATGAGA AAGAGAATCT	1920
10	CAGTGCAAAG AGGTCACGTA TAGAACAGAA GGAAGAGCTT GATGATGTCA TAGCATTAGA	1980
10	TTGAACAGAA ATGCCTCTAA ACAGAACCCT CTTACTATTT AGTTTATCTG GGCAGAACCA	2040
	GATTGTTATG TCCTTTGTTC CAAAGGGAAA AAATTGACAG CAGTGACTTG AAAATGATTC	2100
15	TGCTCCCTTT GAAAGCATTC ATTTTGCTAG AACTGTTAGA CACATTGCAG TATGCTGTAT	2160
	TGAAAGTAGG AATATAGITT TAAAAACCCT TTGAACAAAG TGTGTGCATA ACCAGTCATG	2220
20	AGATAAAACA ACACAATGCA TGTTGCCTTT TTAATGTAAA TACCCTTAGG TATCATTAAT	2280
20	AGTTTCAAAA TATTGTGGTT TAGTAAAGTT GATACCTGGT TATAAATATT ATGCCTTTAT	2340
	TTTTGGCTAG AAGAAGAATT ATTTTTAGCC TAGATCTAAC CATTTTCATA CTCTTAACTG	2400
25	ATTGAAACAG ATTCAAAGAA GTATCGAGTG CTATGCATTG AAACTTGTTT TTAAATGTTA	2460
	GATGGCACTA TGTATATTAA TGTAAAACAA TGTTAATTTA CTCAAGTTTT CAGTTTGTAC	2520
20	COCCTOGTAT GTCTGTGTAA GAAGCCAATT TTTGTGTATT GTTACAGTFT CAGGTTATTT	2580
30	ATATTCGATG TTTTGTAAAA CTCAAATAAC GACTATACTT ATGGACCAAA TAAATGGCAY	2640
	TGCATTCTKG TKAAAAAAAN NACAGAAAAA AAAAAAAAACA AGA	2683
35		
4.0	(2) INFORMATION FOR SEQ ID NO: 295:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1454 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295:	
	GGACTCGGGG TGGCTCTAAG GGGCAGGGAT AGGGCTGGGG AGCGCCGGCC TGTGGCCCTG	60
50	ACCAGCCCCT TCTCGTGCAG GTTCCACCCC GATGCAGGTG GTCACGTGCT TGACGCGGGA	120
50		
	CAGCTACCTG ACGCACTGCT TCCTCCAGCA CCTCATGGTC GTGCTGTCCT CTCTGGAACG	180
55	CACGCCCTCG CCGGAGCCTG TTGACAAGGA CTTCTACTCC GAGTTTGGGA ACAAGACCAC	240
	AGGGAAGATG GAGAACTACG AGCTGATCCA CTCTAGTCGC GTCAAGTTTA CCTACCCCAG	300
	TGAGGAGGAG ATTGGGGACC TGACGTTCAC TGTGGCCCAA AAGATGGCTG AGCCAGAGAA	360

GGCCCCAGCC CTCAGCATCC TGCTGTACGT GCAGGCCTTC CAGGTGGGCA TGCCACCCCC

420

PCT/US98/04493

	TEGGTECTEC AGEGECCCCC TECECCCCAA GACACTCCTE CTCACCAGCT CCGAGATCTT	480
5	CCTCCTGGAT GAGGACTGTG TCCACTACCC ACTGCCCGAG TTTGCCAAAG AGCCGCCGCA	540
	GAGAGACAGG TACCGGCTGG ACGATGGCCG CCGCGTCCGG GACCTGGACC GAGTGCTCAT	600
	GGGCTACCAG ACCTACCCGC AGCCCTCACC CTCGTYTTCG ATGACGTGCA AGGTCATGAC	660
10	CTCATGGGCA GTGTCACCCT GGACCACTTT GGGGAGGTGC CAGGTGGCCC GGCTAGAGCC	720
	AGCCAGGGCC GTGAAGTCCA GTGGCAGGTG TTTGTCCCCA GTGCTGAGAG CAGAGAGAAG	780
15	CTCATCTCGC TGTTGGCTCG CCAGTGGGAG GCCCTGTGTG GCCTGAGCTG CCTGTCGAGC	840
13	TCACCGGCTA GCCCAGGCCA CAGCCAGCCT GTCGTGTCCA GCCTGACGCC TACTGGGGCA	900
	GGGCAGCAGG CTTTTGTGTT CTCTAAAAAT GTTTTATCCT CCCTTTGGTA CCTTAATTTG	960
20	ACTGTCCTCG CAGAAATGTG AACATGTGTG TGTGTTGTGT	1020
	AGTGAGAATG CCGGGCCCCT CAGGGCTGTT CGGTGTGCTG TCAGCCTCCC ACAGGTGGTA	1080
25	CAGCCGTGCA CACCAGTGTC GTGTCTGCTG TTGTGGGACC GTTGTTAACA CGTGACACTG	1140
23	TGGGTCTGAC TTTYTCTTCT ACACGTCCTT TCCTGAAGTG TCGAGTCCAG TCCTTTGTTG	1200
	CTGTTGCTGT TGCTGTTGCT GTTGCTGTTG GCATCTTGCT GCTAATCCTG AGGCTGGTAG	1260
30	CAGAATGCAC ATTGGAAGCT CCCACCCCAT ATTGTTCTTC AAAGTGGAGG TCTCCCCTGA	1320
	TCCAGACAAG TGGGAGAGCC CGTGGGGGGCA GGGGACCTGG AGCTGCCAGC ACCAAGCGTG	1380
35	ATTCCTGCTG CCTGTATTCT CTATTCCAAT AAAGCAGAGT TTGACACCGW MAAAAAAAAAA	1440
	AAAAAAAAA AACN	1454
40	(2) INFORMATION FOR SEQ ID NO: 296:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 828 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:	
50	ACCCTGGCAT GCCCCACAAA CAGATCACCA GCCAGCTTAC ACAGGCATTA ACTCTCCTCA	60
	ATGAGGAAGA ATCATTCACA ACTGAGCAAG ACATTCATAT GATCATTTAA GGAAGTGTTT	120
55	CCCTTATGTG TTAGCAAGTA TAATCGGCTA ACTCCTAAAT CCCAATGAAT AGTCCTAGGC	180
	TGGACAGCAA TGGGCTGCAA TTAGGCAGAT AAAGACATCA GTCCCAGTAA ATGAATCCAT	240
	AGACTCATCT AGCACCAACT ACCATTAGCA CTATGTTAGG AGCTGCAAGG CCCCAAAGTA	300
60		

WO 98/39448 PCT/US98/04493

527

	GAAGATGTGC ATAATGTCTG CTCTTGTGTA GCTCAGGAGA CAATTCCAGC ACAGACACTA	360
	CAGTTAACGC TGAACTGCAG CTGCAAGTAA TAGCAWGAAC AGTCAGAAAA ATACCTTATG	420
5	AGGGGGCAGG GCTGAAGCTG GGCCTTGAAG GATGGATGAA ATTTGGATAG AGAATGAGGA	480
	AGACAGAGGG NCTCCAAGTG AGAGAAGCAT GAAAAATGAG CARGGGCCTG GATCAGTGGG	540
10	GTGTATTCAG AGCACCTYTC CAGATGCACC ATGCATGCTC ACAGTCCCTT GCCTATGTGT	600
	GGCAGAGTGT CCCAGCCAGA TGTGTGCCCC CACCCCATGT CCATTTACAT GTCCTTCAAT	660
	GCCCACCTCA AAAGGYACYT CTTCTGTAAA GCTTTCCCTK GGTATCAGGA ATCAAAATTA	720
15	ATCAGGGATC TTTTCACACT GCTGTTTTTT CCTCTTTGGT CCTTCTATCA CTAAAACTCA	780
	TCTCATTCAG CCTTACAGCA TAACTAATTA TFIGFFTTCC TCACTACA	828
20		
	(2) INFORMATION FOR SEQ ID NO: 297:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 2416 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297:	
	TCAATTTCCA TTAACTCAGA TCAGCCATTG TGATTCACCA TTTGTCAGGC TCTCAGGTTT	60
	AACAAAACCT ACTATCACCA TCATCCTTCA ACAGCCACAG TCTGAATTGA GCCAACATTT	120
35	TITITITCTTT GAGAAAGAAG TOGACTOGGG CACAACTTTT AGTCTGAGGG GAGCTAGTGG	180
	AAATCTAGAC AATAGAAGTC ATCGATAGCA GCTTTTCCTC AAATGTGTGA CTCCTCAGGG	240
40	GCTAAACTGC TCTTAGCTTA GAATTATGCT TTACTAGAGA TCTAGCAGAT AAGTGGGTTA	300
	ATCACTACCA TCCTGTAACT AGTTATATAG CTTCCAGACA TGAGGGAGAC ATCAAACAGG	360
	GATGGAAGCA ACCCCAAGGA TATGCAAGAA GGGCATGATG AACCCCCTTC CCTCTGGCAG	420
45	GAGAACAAGG CCAACCAAGG GACAGACTGG AAAGCACTTA GATGTTTAAG GAGGAGAAAG	480
	GGGAAGCTTT GACCAGTCCT TGCCTTTTGC CAAGTTCAGC CAGTTCTCCG CTGCTTGCAA	540
50	GGGAAGCTTT GACCAGTCCT TGCCTTTTGC CAAGTTCAGC CAGTTCTCCG CTGCTTGCAA CCTCTAGCGC AGTAACATTT GCAGAATTGC AGATTTTCCC CCAGATACTA GGAGGAAAGG	540 600
50		
	CCTCTAGCGC AGTAACATTT GCAGAATTGC AGATTTTCCC CCAGATACTA GGAGGAAAGG	600
50 55	CCTCTAGCGC AGTAACATTT GCAGAATTGC AGATTTTCCC CCAGATACTA GGAGGAAAGG GACTTTGGGG GGTGGGGAAG GGGTCGTGGT GTTTTAAAAG CATAAGTTAC CTGTTTGCAC	600 660

60 CCCTCCCTTT CCTTTTCCTA TGTACTTCCT TCATACTTGC TTTACTGATC AGCCAGGCAA

	TAGCCATCCA	AGAGCTAGAG	CATGAAACAG	GGCCCTTTCC	AAGTAGGCTC	TGGGTGTCCT	960
5	AAGCCAGCGT	GTGCCCTCTG	GTTTAGTGAG	TGTAATAGAG	TCCCTGGCAC	CTTTCTTTGC	1020
5	AAATGAGGCT	AACAGACCAG	ACTGCAGCAA	GTTATCAGAT	TCCTCAATCA	GATGCACTAG	1080
	GAGTGAGGAG	CCCAGGGATG	GAGGGGGTTC	CIGAAGTATT	GCAGTTGGCT	GTAGTAGCTG	1140
10	AGTTCTTTTC	CATGTTACCG	AAACTGTAGC	CAGTTACAGT	TTACTCAGGA	AAACGGTAGA	1200
	TCAATTCAGC	CATGGTAGTG	CTGGTTGGCA	GGGATTGGTA	ACGGAGAGAA	CTGCTCATCA	1260
15	GCCAAAACTC	AAGCCTTGCC	TTTTAGGAGG	CCACCAGCAG	AGGGACTTGG	TCCTCCTTGT	1320
15	CTGGTACTTG	TGTACATGCC	GGTGACCTGA	GGACTCCACT	CACACTGGCG	AGCAAAAAGG	1380
	GAGCAGTGAT	TCTCTTTTCT	CTCCCCACCC	CCTGCCCTTT	GTTACCAACA	CCAGTTTCCC	1440
20	AGGGGGTACA	TGAGTTTCTG	AATTTTTAAA	AAATGTTTTT	GGTTTGGTTT	TTCTGGGGAC	1500
	TGATAAGTGC	TTTAAGCAAT	GTCCATACCC	CGTCAAGACT	CCCAGCTTAG	TCATTTTCTT	1560
25	GTATTTTCT	GTTCACAGTA	TTTGTGTGTG	TGCTTGTTTT	GGCAGCTCAT	TTTGGCTGTA	1620
	TTATATATTG	AGTGATGAAT	TGATCCTCTT	TTTTCCCTAA	GGGATATGAA	TIGTTITICT	1680
	TGTGTTATAT	TCTCCTTCTC	AATAGCTGGA	GCAAACCTGG	GGCTGACACG	CGTAAGSTAG	1740
30	GGCTGCAAAR	CGAGAAGAGA	GCCGGTGGAG	TGTACTTGTC	CCTGACAGGC	TGACCTACCT	1800
	GAGTCTCTGA	GCTTTTCAGT	CCAAATCTTT	GCAAGGCTCA	AAATGCCACA	GAACCTCTCC	1860
35	TCTTCTCCCC	ACTCCCCATG	GCAGGGACCG	GACCATCCCT	ACATGCAACA	TGCTGTTCCT	1920
	CCAGCCCCTC	CCATTGCCAT	GGCAAAACAG	GTACCTTTGG	GGCATGGGGG	CATTACATGG	1980
	GATGCTTGTG	TAATCGACCA	CCTAGCCTTC	TCTCTCCCCT	CCCGTCCTCC	CCCAGAATCA	2040
40	CTTCCTAGGA	CACCCGAGCT	GCTTGCCCAG	GGTCCTGTTT	CCCTGCTAAC	TCCAGAGAAG	2100
	CATCCCAGGG	CTTTGTGACA	GTCTCTAATT	CCCTTCCCTT	CTCGTTAAGA	ATCATATTGT	2160
45	ATAGTAGCTT	TCAGACCATA	CAGTATTCAT	TGGGTTACTC	CTATTATTAT	CAAGTAGCTG	2220
	GAATTGTGAA	GGTCGGAGTA	GTTAGATCTT	TAGCTTTTAT	TCCTTATTTT	TTTGTATTAC	2280
	TCTCCATGTG	TATAAATTAT	TGATCATGTT	GCTGGCTTTT	ATAAACTCTA	AGCGAAGGAG	2340
50	GAGCACTGCC	TCAGCCTTTG	CACATGGTAA	TGAAGCACTG	TTTTTAAATA	AAAGRGRGAA	2400
	MCMCCAAAAA	AAAAA					2416

60

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 545 base pairs

⁽²⁾ INFORMATION FOR SEQ ID NO: 298:

WO 98/39448 PCT/US98/04493

529

(B)	TYPE: nucleic acid
(C)	STRANDEDNESS: double
(D)	TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298: GAATTCGGCA CGAGCCATGC YTGGCCTCTC CTTGATTCTT ACAGTCACTT TGTTGGCTGT 60 TTCTGACTCA GCAGCTACCT GCATTGTGGC CAAAGGATGA CCTATTCCTT CTCAGGAGGG 120 10 CAAAAATGTG GAATAGTGTC TGTCCATGCC TCTCCTCATG GGCTACCACC TCTGCCACCG 180 TOGTTAATCA GTAACAACCA GGAGAGAAGC TGCTGGAACT GACCTCTGGG AACTCCCTGG 240 15 ATGGTTTGGT GCAGGAATGT AGTAGGCATA CACGTGGTTG CGTGGATCTG GGCCCTCCTG 300 ATGTGAGTAG AGAGGTAAAA GGSCACCATC TCCTTGACCT YTGGGGAACT CATCCACAAA 360 420 GAAGATGTTT CCAAGATGCT TCTGAAGATT GSCTAAAAAT AGCCGGTTTC CACCCCCGTG 20 AATGCATCCA TTCTAGAATG CTCCTTCACC AGGACCAGAG AACTGATTTA CAGAAGTGAC 480 540 ATGAAAACAT TCCATCCCAG AATTTGCANT ACCTCAAATT NAATTTCTAC CTATTAAAAA 25 NAAAA 545 30 (2) INFORMATION FOR SEQ ID NO: 299: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1530 base pairs (B) TYPE: nucleic acid 35 (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299: 40 GGCTCTGCTG GGCATCATAC TTGTCACTGG GTAAACAGTT TGCCCACTTA CCGCAGATGA 60 120 AGCTGCTTGC CAGGGCTCTC CGGCTCTGTG AGTTTGGGAG GCAGGCATCT TCCAGGAGGC TEGTEGETEG CCAGGGATGT GTGGGGCCCC GGCGAGGGTG CTGCGCTCCC GTCCAGGTGG 180 45 240 TTGGGCCCAG GGCTGATCTC CCACCCTGTG GAGCCTGCAT TACTGGAAGG ATCATGCGGC 300 CAGATGATGC CAACGTGGCC GGCAATGTCC ACGGGGGGAC CATCCTGAAG ATGATCGAGG 50 AGGCAGGCGC CATCATCAGC ACCCGGCATT GCAACAGCCA GAACGGGGAG CGCTGTGTGG 360 420 CCGCCCTGGC TCGTGTCGAG CGCACCGACT TCCTGTCTCC CATGTGCATC GGTGAGGTGG CGCATGTCAG CGCGGAGATC ACCTACACCT CCAAGCACTC TGTGGAGGTG CAGGTCAACG 480 55

TGATGTCCGA AAACATCCTC ACAGGTGCCA AAAAGCTGAC CAATAAGGCC ACCCTGTGGT
ATGTGCCCCT GTCGCTGAAG AATGTGGACA AGGTCCTCGA GGTGCCTCCT GTTGTGTATT

CCCGGCANGA GCAGGAGGAG GAGGGCCGGA AGCGGTATGA AGCCCAGAAG CTGGAGCGCA

60

540

600

WO 98/39448 PCT/US98/04493

	TGGAGACCAA GTGGAGGAAC GGGGACATCG TCCAGCCAGT CCTCAACCCA GAGCCGAACA	720
5	CTGTCAGCTA CAGCCAGTCC AGCTTGATCC ACCTGGTGGG GCCTTCAGAC TGCACCCTGC	780
	ACGCCTTTGT GCACGGAGGT GTGACCATGA AGCTCATGGA TGACGTCGCC GGGATCGTGG	840
	CTGCACGCCA CTGCAAGACC AACATCGTCA CAGCTTCCGT GGACGCCATT AATTTTCATG	900
10	ACAAGATCAG AAAAGGCTGC GTCATCACCA TCTCGGGACG CATGACCTTC ACGAGCAATA	960
	AGTCCATGGA GATCGAGGTG TTGGTGGACG CCGACCCTGT TGTGGACAGC TCTCAGAAGC	1020
1.5	GCTACCGGGC CGCCAGTGCC TTCTTCACCT ACGTGTCGCT GAGCCAGGAA GGCAGGTCGC	1080
15	TOCCTOTOCC CCAGCTOGTG CCCGAGACCG AGGACGAGAA GAAGCGCTTT GAGGAAGGCA	1140
	AAGGGCGGTA CCTGCAGATG AAGGCGAAGC GACAGGGCCA CGCGGAGCCT CAGCCCTAGA	1200
20	CTCCCTCCTC CTGCCACTGG TGCCTCGAGT AGCCATGGCA ACGGGCCCAG TGTCCAGTCA	1260
	CTTAGAAGTT CCCCCCTTGG CCAAAAACCC AATTCACATT GAGAGCTGGT GTTGTCTGAA	1320
25	GTTTTCGTAT CACAGTGTTA ACCTGTACTC TCTCCTGCAA ACCTACACAC CAAAGCTTTA	1380
23	TTTATATCAT TCCAGTATCA ATGCTACACA GTGTTGTCCC GAGCGCCGGG AGGCGTTGGG	1440
	CAGAAACCCT CGGGAATGCT TCCGAGCACG CTGTAGGGTA TGGGAAGAAC CCAGCACCAC	1500
30	TMATAAAGCT GNTGCTTGGC TGGGGAAGNA	1530
35	(2) INFORMATION FOR SEQ ID NO: 300:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 997 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300:	
45	AGGTAGTGAG AGACACATTA CACCTAACCA ACAAGAAGAA GGATCCTCCC CCTTATAATT	60
	TAACTATGTT TACAGGGAAT GCGTACATTG TGGCTTCCCG AGNATTTCGT CCAACATGTT	120
50	TTGAAGAACC CTAAATCCCA ACAACTGATT GAATGGGTAA AAGACACTTA TAGCCCAGAT	180
30	GAACACCTCT GGGCCACCCT TCAGCGTGCA CGGTGGATGC CTGGCTCTGT TCCCAACCAC	240
	CCCAAGTACG ACATCTTCAG ACATGACTTC TATTGCCAGG CTGGTCAAGT GGCAGGGTCA	300
55	TGAGGGAGAC ATCGATAAGG GTGCTCCTTA TGCTCCCTGC TCTGGAATCC ACCAGCGGGC	360
	TATCTGCGTT TATGGGGCTG GGGACTTGAA TTGGATGCTT CAAAACCATC ACCTGTTGGC	420
	CAACAAGTTT GACCCAAAGG TAGATGATAA TGCTCTTCAG TGCTTAGAAG AATACCTACG	480

	TTATAAGGCC ATCTATGGGA CTGAACTTTG AGACACACTA TGAGAGCGTT GCTACCTGTG	540
	GGGCAAGAGC ATGTACAAAC ATGCTCAGAA CTTGCTGGGA CAGTGTGGGT GGGAGACCAG	600
5	GGCTTTGCAA TTCGTGGCAT CCTTTAGGAT AAGAGGGCTG MTATTAGATT GTGGGTAAGT	660
	AGATCTTTIG CCTTGCAAAT TGCTGCCTGG GTGRATGCTG CTTGTTCTCT CACCCCTAAC	720
10	CCTAGTAGTT CCTCCACTAA CTTTCTCACT AAGTGAGAAT GAGAACTGCT GTGATAGGGA	780
10	GAGTGAAGGA GGGATATGTG GTAGAGCACT TGATTTCAGT TGAATGCCTG CTGGTAGCTT	840
	TICCATTCTG TGGAGCTGCC GTTCCTAATA ATTCCAGGTT TGGTAGCGTG GAGGAGAACT	900
15	TTGATGGAAA GAGAACCTTC CCTTCTGTAC TGTTAACTTA AAAATAAATA GCTCCTGATT	960
	CAAACTAAGG AAAAARAAAA AAAGAAAAAA AACTCGA	997
20		
20	(2) INFORMATION FOR SEQ ID NO: 301:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 2345 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301:	
	TTGAGGCCGA CGCTAGGGGC CCGGAAGRAA ACTGCGAGGC GAAGGTGACC GGGGACCGAG	60
	CATTICAGAT CIGCICGGTA GACCIGGIGC ACCACCACCA IGITGGCIGC AAGGCIGGIG	120
35	TGTCTCCGGA CACTACCTTC TAGGGTTTTC CACCCAGCTT TCACCAAGGC CTCCCCTGTT	180
	GTGAAGAATT CCATCACGAA GAATCAATGG CTGTTAACAC CTAGCAGGGA ATATGCCACC	240
40	AAAACAAGAA TTGGGATCCG GCGTGGGAGA ACTGGCCAAG AACTCAAAGA GGCAGCATTG	300
	GAACCATCGA TGGAAAAAAT ATTTAAAATT GATCAGATGG GAAGATGGIT TGITGCTGGA	360
10	GGGGCTGCTG TTGGTCTTGG AGCATTGTGC TACTATGGCT TGGGACTGTC TAATGAGATT	420
45	GGAGCTATTG AAAAGGCTGT AATTTGGCCT CAGTATGTCA AGGATAGAAT TCATTCCACC	480
	TATATGTACT TAGCAGGGAG TATTGGTTTA ACAGCTTTGT CTGCCATAGC AATCAGCAGA	540
50	ACGCCTGTTC TCATGAACTT CATGATGAGA GGCTCTTGGG TGACAATTGG TGTGACCTTT	600
	GCAGCCATGG TTGGAGCTGG AATGCTGGTA CGATCAATAC CATATGACCA GAGCCCAGGC	660
55	CCAAAGCATC TTGCTTGGTT GCTACATTCT GGTGTGATGG GTGCAGTGGT GGCTCCTCTG	720
23	ACAATATTAG GGGGTCCTCT TCTCATCAGA GCTGCATGGT ACACAGCTGG CATTGTGGGA	780
	GGCCTCTCCA CTGTGGCCAT GTGTGCGCCC AGTGAAAAGT TTCTGAACAT GGGTGCACCC	840

60 CTGGGAGTGG GCCTGGGTCT CGTCTTTGTG TCCTCATTGG GATCTATGTT TCTTCCACCT

	ACCACCGTGG CTGGTGCCAC TCTTTACTCA GTGGCAATGT ACGGTGGATT AGTTCTTTTC	960
5	AGCATGTTCC TTCTGTATGA TACCCAGAAA GTAATCAAGC GTGCAGAAGT ATCACCAATG	1020
	TATGGAGTTC AAAAATATGA TCCCATTAAC TCGATGCTGA GTATCTACAT GGATACATTA	1080
	AATATATTA TGCGAGTTGC AACTATGCTG GCAACTGGAG GCAACAGAAA GAAATGAAGT	1140
10	GACTCAGCTT CTGGCTTCTC TGCTACATCA AATATCTTGT TTAATGGGGC AGATATGCAT	1200
	TAAATAGTTT GTACAAGCAG CTTTCGTTGA AGTTTAGAAG ATAAGAAACA TGTCATCATA	1260
1.5	TITAAATGTT CCGGTAATGT GATGCCTCAG GTCTGCCTTT TTTTCTGGAG AATAAATGCA	1320
15	GTAATCCTCT CCCAAATAAG CACACACATT TTCAATTCTC ATGTTTGAGT GATTTTAAAA	1380
	TOTTTTGGTG AATGTGAAAA CTAAAGTTTG TGTCATGAGA ATGTAAGTCT TTTTTCTACT	1440
20	TTAAAATTTA GTAGGTTCAC TGAGTAACTA AAATTTAGCA AACCTGTGTT TGCATATTTT	1500
	TTTGGAGTGC AGAATATTGT AATTAATGTC ATAAGTGATT TGGAGCTTTG GTAAAGGGAC	1560
25	CAGAGAGAAG GAGTCACCTG CAGTCTTTIG TTTTTTTAAA TACTTAGAAC TTAGCACTTG	1620
23	TGTTATTGAT TAGTGAGGAG CCAGTAAGAA ACATCTGGGT ATTTGGAAAC AAGTGGTCAT	1680
	TGTTACATTC ATCTGCTGAA CTTAACAAAA CTGTTCATCC TGAAACAGGC ACAGGTGATG	1740
30	CATTCTCCTG CTGTTGCTTC TCAGTGCTCT CTTTCCAATA TAGATGTGGT CATGTTTGAC	1800
	TTGTACAGAA TGTTAATCAT ACAGAGAATC CTTGATGGAA TTATATATGT GTGTTTTACT	1860
35	TITGAATGIT ACAAAAGGAA ATAACTITAA AACTATICIC AAGAGAAAAT AITCAAAGCA	1920
33	TGAAATATGT TGCTTTTTCC AGAATACAAA CAGTATACTC ATGATTGCTA AGTGTTTTTT	1980
	TATTTTTGCA TATTTATTGA ACTGTCTAAT TGAATACAGC TTGCTCTTGT CACCTCTTCA	2040
40	AGCTTTCAAG CCTTTATAGA AAAGCTTCTT TGTGGCTTAC ACTGGAAATT ATGAAAGCAG	2100
	TTTTTCTCCT AAGACTTTTG GTTTCTCGCA TTGCCTCTCA GACTAAGCAC TAAAAAGCAA	2160
45	AGCAAAACAG AACTAGTNCT GTCTTAATGA AATATATCAA CCCAAAAGTG TAATGAGGAA	2220
40	AATGCTTCAT TAGTTTCCCC TAGCAGACTT TTACTTCTCT TACACTGCTA CACCATTACT	2280
	TICTTGAGAC ATTTGTAAGT CCTTTGATAC AGAAGAGTTA TATTTAGGAG GNCTTTAATG	2340
50	AAGGG	234

(2) INFORMATION FOR SEQ ID NO: 302: 55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2369 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302:

5	THITITITI THITITITI THITINGAG ATCATTGIT ATTIATIACT TCAGATAAAA	60
	AGATAGTATA CATATTAGGG AATCCCTTAA AATTCAACTC TAGAGTTATA CACCATCTAG	120
10	TACTITIGCA ATGAATGITA ACAACAACAA AAAAAATCIC TAAACACCIG AAAGCCCCAC	180
10	TATTAACATG GACTATGGTA ATAAAAAATT TTGACATTTA ATTTGTTCAA CATATAGTAT	240
	TTACATTATG AAACCAATGG TGATGATACA ATAAAGTGAT AAAGAAATAG TAAAAATAAA	300
15	CTITAAAAAG CAAAGGTTTA TAGTCTGACA ATGCTAATTA TCCTAATTGT ATATAAAAAA	360
	TTAAAACATA GAGCTTTCTG TTACAAAATT CTTAATCCTC TGGGTTGTAA TCATTACTTG	420
20	CTACCAATTT ACATGCAACA TCTGCTAGGA CTGACATTTG ATTTTTTTCC CCAAGAATGT	480
20	GTGAGTAGAT AAATGACATT TCAGAGCAGA TATTAATTTA CTTGTGGACA GAAAAAGAAA	540
	CTCAAGATTG GTACTGGTCA CAAGCCTCTT CCCAATAGAA ATTATAAAAA CAGTAAGATA	600
25	AAATTTAAAA AAAATCTAAA AAGGGGATGC ATAGGCAAAG AGTACCATAA ATGGCACAGC	660
	TCAAAAAATC CCAGGACCAA TCAGACACAC ATCTTTTCTC TCTCCTTCAG CGACAAGAGG	720
20	TCGATTTTGC CATCAAATAA CCATGATTGA AGCAAGCGAG GGGCACCAGG TGTACAACTG	780
30	ATTAGATCTT GCAAAATACT AAGATGGGAG CAGGGGTGGC CAGAAGAAGG GGTAATTTAT	840
	ATATAATTCA AACTATATAC AGCATAAATG GAATGCAGCC CATCCCAAAC TGGCTCTGTG	900
35	AAACAATIGG ACCTITATAG TTAAAATTAT AACAAGTGTA ATAATACAAT AGATTTACAT	960
	GGGAAGCAAA ATCCAAGGGA CATTTTATAT TAAGTATTTA CTGTGCTGTT TCAATTTAAA	1020
40	AATAATTTTG CTAAGTATAC ATCTCAACTG AAGTCTATGT AAAAAATGTC CTAATAGATA	1080
40	CAGATATTTA CCTTTGGTGA GTTGAAGGCC TTTTTGTGAC TTCTGTCTGA ACTGTAGGCA	1140
	GAATGCTAGA TGTACATGCA CATATGGAGA AACTCAAGCT GAGGTCATCC AAAAGCTGTG	1200
45	CGTATGAGGA GGCTGGAGGT ACTTTGAAAG TCAAAGTAGA CCAGAAACCC AAAACAGGTA	1260
	ACAGTGAGGA TGGCAACAGG GAATGGAATG CCAATATGGC AGTAAAACTT TTTTTAAAAA	1320
50	CAGAAAGAGG AAGGCCTCTC GTACCAGCAG AATCCTGTAC ACGTACAAAA AAGAAAAAGC	1380
50	CACCCACCAT TTTGTAAAAC AGAAGCCAAT TATAGTGTGG GAAAGTACAA ATTACAGAAA	1440
	ACCAGAAGTC AACAGAAGAA AAACTACTGG TTTACTTGAG AGAAAGGAGA ATGGTTCACC	1500
55	CCGAGCAGAG TTACTTGGTG AACGCCGCCA CCACCGCCCA CAGAACCTCA TTGGTGTTGG	1560
	CCTTCAGACA TTCCACTICA GGGTCTAAGT CGAGAARNIG CCGCACTCTC TTGGTAGCCA	1620
60	AATCATACTG CTCGTCCAGA AGAGGAGCAA AAGCATTCTC CAGGACGTCC GAGGCATGAG	1680

PCT/US98/04493

720

60

	CCAGGTAAAT GAGGGCCAGC AAGCGCCTGT CCATGCGGTG AGGGTCATTC ACCCATTTGT	1740
	CAAGAACGC TTCCTGTACT TTCTTGATGA GGCGCTGCTT AATGTTGTTA TTGGTGAGGG	1800
5	GATGTGTTGT CATGTCAAAA AGTAGGAAGT TCTGTTTCTC TGTTGTCAAT ACACCCTTTT	1860
	CCACCAGGTT TITAGCTAAT CGTTCCCGTA CATTTCTTAA CIGATAATGC AATTTTAATG	1920
10	GATTCCATGT CTCACCACTA AGTAATTCAA TCCAGTTCTG GACCGTTTCT GGAGGCTGAG	1980
10	TTTCCTTAAC ATGCTTCAGA GCTTCATCAA GAAGAACATC CCCTGTTGGA GCATCTGACT	2040
	TACAGATTAC CTTTCTTGTT AATAGACTTT TACGTCTCAT TCCACAAGCC TCTAGTTGTA	2100
15	ACCTTCCTCT CAATGCTAAT TCAATTAACA TACAGCCACG TAATCCAGAT GATATACAGT	2160
	CATTCCAAAA TGATGTGTAA ACCTTCGCGG TCCTTGAGGC CCAGCAGGAG CACTTCCTCC	2220
20	ATCAGGGTCA GCCGCGTTTC CTTGGAGTCG CCCTTGTCGT CGTCGTCCTG CTCGTCGCGG	2280
20	CGGCTCTGCG CGTCGTCCTC GCTGCTAGCC GCGCCGCCGC CCGCCGCCCG CTCCTTGTCG	2340
	GCGCCTTGC GGGAGGCCTC GGTGCGCCG	2369
25		
	(2) INFORMATION FOR SEQ ID NO: 303:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:	
	GGGACGTGTG GTTTCAGCTC GTGCGCCTCC CCGTGGGTTT GCGACGTTTA GCGACTATTG	60
40	CGCCTGCGCC ACGCCGGCTG CGAGACTGGG GCCGTGGYTG CTGGTCCCGG GTGATGCTAG	120
	GCGGCTCCCT GGGCTCCAGG CTGTTGCGGG GTGTAGGTGG GAGTCACGGA CGGTTCGGGG	180
	CCCGAGGTGT CCGCGAAGGT GGCGCACATG GGCGGCAGGG GAGAGCATGG CTCAGCGGAT	240
45	GGTCTGGGTG GACCTGGAGA TGACAGGATT GGACATTGAG AAGGACCAGA TTATTGAGAT	300
	GGCCTGTCTG ATAACTGACT CTGATCTCAA CATTTTGGCT GAAGGTCCTA ACCTGATTAT	360
50	AAAACAACCA GATGAGTTGC TGGACAGCAT GTCAGATTGG TGTAAGGAGC ATCACGGGAA	420
	GTCTGGCCTT ACCAAGGCAG TGAAGGAGAG TACAATTACA TTGCAGCAGG CAGAGTATGA	480
55	ATTTCTGTCC TTTGTACGAC AGCAGACTCC TCCAGGGCTC TGTCCACTTG CAGGAAATTC	540
33	AGTTCATGAA GATAAGAAGT TTCTTGACAA ATACATGCCC CAGTTCATGA AACATCTTCA	600
	THE RESIDENCE AND ASSESSED ASS	660

ATATGAATTT GCACCAAAGA AGGCTGCTTC TCATAGGGCA CTTGATGACA TTAGTGAAAG

535

	CATCAAAGAG CTTCAGTTTT ACCGAAATAA CATCTTCAAG AAAAAAATAG ATGAAAAGAA	780
5	GAGGAAAATT ATAGAAAATG GGGAAAATGA GAAGACCGTG AGTTGATGCC AGTTATCATG	840
3	CTGCCACTAC ATCGTTATCT GGAGGCAACT TCTGGTGGTT TTTTTTTCTC ACGCTGATGG	900
	CTTGGCAGAG CMCTTCGGTT AACTTGCATC TCCAGATTGA TTACTCAAGC AGACAGCACA	960
10	CGAAATACTA TTTTTCTCCT AATATGCTGT TTCCATTATG ACACAGCAGC TCCTTTGTAA	1020
	GTACCAGGTC ATGTCCATCC CTTGGTACAT ATATGCATTT GCTTTTAAAC CATTTCTTTT	1080
15	GTTTAAATAA ATAAATAAGT AAATAAAGCT AGTTCTATTG AAATGCAAAA AAAAAAAAAA	1140
13	ааллалаа аалааалаа алааалааа N	1181
20	(2) INFORMATION FOR SEQ ID NO: 304:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 1537 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:	
30	CTTTTTGTGT TCCGGCCGAT CCCACCTCTC CTCGACCCTG GACGTCTACC TTCCGGAGGC	60
	CCACATCTTG CCCACTCCGC GCGCGGGCT AGCGCGGGTT TCAGCGACGG GAGCCCTCAA	120
35	GGGACATGGC AACTACAGCG GCGCCGCGG GCGCCCCCG AANATGGAGC TGGCCCGGAA	180
	TGGGGAGGGT TCGAAGAAAA CATCCAGGGC GGAGGCTCAG CTGTGATTGA CATGGAGAAC	240
40	ATGGATGATA CCTCAGGCTC TAGCTTCGAG GATATGGGTG AGCTGCATCA GCGCCTGCGC	300
70	GAGGAAGAAG TAGACGCTGA TGCAGCTGAT GCAGCTGCTG CTGAAGAGGA GGATGGAGAG	360
	TTCCTGGGCA TGAAGGGCTT TAAGGGACAG CTGAGCCGGC AGGTGGCAGA TCAGATGTGG	420
45	CAGGCTGGGA AAAGACAAGC CTCCAGGGCC TTCAGCTTGT ACGCCAACAT CGACATCCTC	480
	AGACCCTACT TTGATGTGGA GCCTGCTCAG GTGCGAACAG GGCTCCTGGA GTCCATGATC	540
50	CCTATCAAGA TGGTCAACTT CCCCCAGAAA ATTGCAGGTG AACTCTATGG ACCTCTCATG	600
50	CTGGTCTTCA CTCTGGTTGC TATCCTACTC CATGGGATGA AGACGTCTGA CACTATTATC	660
	CGGGAGGGCA CCCTGATGGG CACAGCCATT GGCACCTGCT TCGGCTACTG GCTGGGAGTC	720
55	TCATCCTTCA TTTACTTCCT TGCCTACCTG TGCAACGCCC AGATCACCAT GCTGCAGATG	780
	MANCON CONTROL ACCOUNTS CONCURRED CARREST CARREST ACCOUNTS ACCOUNT	840

ATCCACCTCC ACGCCCTCTT CTACCTCTTC TGGCTGTTGG TGGGTGGACT GTCCACACTG

60

536

	CGCATGGTAG	CAGTGTTGGT	GTCTCGGACC	GTGGGCCCCA	CACAGCGGCT	GCTCCTCTGT	960
	GGCACCCTGG	CTGCCCTACA	CATGCTCTTC	CTGCTCTATC	TGCATTTTGC	CTACCACAAA	1020
5	GTGNTAGAGG	GGATCCTGGA	CACACTGGAG	GGCCCCAACA	TCCCGCCCAT	CCAGAGGGTC	1080
	CCCAGAGACA	TCCCTGCCAT	GCTCCCTGCT	GCTCGGCTTC	CCACCACCGT	CCTCAACGCC	1140
10	ACAGCCAAAG	CTGTTGCGGT	GACCCTGCAG	TCACACTGAC	CCCACCTGAA	ATTCTTGGCC	1200
10	AGTCCTCTTT	CCCGCAGCTG	CAGAGAGGAG	GAAGACTATT	AAAGGACAGT	CCTGATGACA	1260
	TGTTTCGTAG	ATGGGGTTTG	CAGCTGCCAC	TGAGCTGTAG	CTGCGTAAGT	ACCTCCTTGN	1320
15	AGCTGTCGGC	ACTTCTGAAA	GCACAAGGCC	AAGAACTCCT	GCCAGGACT	GCAAGGCTCT	1380
	GCAGCCAATG	CAGAAAATGG	GTCAGCTCCT	TTGAGAACCC	CTCCCCACCT	ACCCCTTCCT	1440
20	TCCTCTTTAT	CTCTCCCACA	TTGTCTTGCT	AAATATAGAC	TTGGTAATTA	AAAAAAAA	1500
20	AAAAAAAA	AAAAAAAA	AAAAAAGGGG	GGNCCCC			1537

25

30

(2) INFORMATION FOR SEQ ID NO: 305:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1493 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:

35 60 TOCATGCCAA AACCAATGCC TGCCAAACAA AATCTTAGAC ATCCCAATAT AATATGTTAG TTATATTTCT ATTCACATCA TTATTGAAAA TACCCAGCTC AGTGCCTGGC TTAATAAATG 120 180 TITAATICCC TTACCTACTC TTGCTCTATT TTTTTATTTG AAATGGAGAT GAGCAAAATA 40 ACACATTCAT GGCTGAAGCA ATTTTTTGGA CATTTCTTGT TACCAAAAGA TCTATAATCA 240 300 GGATGATCCT GAGCTGTTCA AACAAGCTGT ATATAAACAG ACAATGAAAC TCTTTGCAGA 45 GCTGGAAATT AAAAGGAAAG AGAGAGAAGC CAAAGAGATG CATGAAAGGA AACGACAAAG 360 GGAAGAAGAG ATTGAAGCTC AAGAAAAAGC CAAACGGGAA AGAGAGTGGC AGAAAAACTT 420 TGAGGAAAGT CGAGATGGTC GTGTGGACAG CTGGCGAAAC TTCCAAGCCA ATACGAAGGG 480 50 GAAGAAAGAG AAGAAAAATC GGACCTTCCT GAGACCACCG AAAGTAAAAA TGGAGCAACG 540 TGAGTGACCG CCCAAGGTCA CAGGCACAGA ACCTTTCCCC TGCTATCTCC CTTCCTGCTT 600 55 CGAAGGACTC ATTCTTTCCT CCCACTTCCA CCCCAACATA GAGTAGTATT TGCTTTTTAG 660 720 TCCATTITGT TITCAATACG ATTTAATATC GATCAGAGTA ATTCTTTTGT ACATTGAAAT GAGGGGCTTG GTTTAAAAAA AGACCTTTCC CTCTCCCTGC CCCTAGAACA ACCAGTATTA 780 60

	GAAGGTGCCA CCATTGGTGC TGCCTTCTCT TCCCACAGCC TGTAACTCAG TGTTTTGTAC	840
_	TICACTGAAT TGTGATGGTT AGAAACTTCG TGGATAGTTT GTGGAAATCA TCCAATTAAA	900
5	CATACTGCTT AAAACAGTGT TGCTGTGACT TCAGAGACAA GCCTGGAAGG GGCACCTTAG	960
	GAAGCCCCTT CGCTTCAGTT GCTCGCTTCT GGGTGTGCTC CCTTCGAAGG CCCAGATAAG	1020
0	ACAGGGAACA CTTGTGAGCA CACAGAGCAG CATCTGATGC CCTGTGGTGT TTGGCATGTG	1080
	CCCCCTGTCT ACTGACCAAT CAGTGTGGCA TGAGGCCCAC GCCACCCAAA CCTTTCACTT	1140
	TCCAAAGAGC TAGCCGTCCT CCACCCAGTA CCATGTCCTA GCCTGTCTGC ATTTGTTAGT	1200
15	GGTAATATTC TTTATGTATA ATAAATTTT ATACCCAAGC CATTGATGTA CTTTTCCTTG	1260
	TACTCTCCCT TGTGGGTCCC TTGTCTGGCT TGGCTGAACC CCAAAATGCT TTGGGGTTGG	1320
20	ACAGACCTGG CTGAACCTTA GTTTCTTCAT CTATGAAATG GGAATATGAA TTACTGCAGC	1380
	AGCTTTTAGG GCAGATTTGC CATGGCATAT ACAAGGTAAC TACCATAGTG CTCCTTGGGT	1440
3.5	ATTGCCAATA TCCTATTATT TCTGTGTAAA ATGAAGATAC TGATTGTTTT GAG	1493
25		
	(2) INFORMATION FOR SEQ ID NO: 306: .	
30		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 577 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:	
40	AATTCGGCAG AGGNATTATA TACACTATAC TGGCATTTAC TGTTTCACCC AGCCCGGAAA	60
40	GTCAGAGATG TATATTGGAA AATTTACAAC TCCATCTACA TTGGTTCCCA GGACGCTCTC	120
	ATAGCACATT ACCCAAGAAT CTACAACGAT GATAAGAACA CCTATATTCG TTATGAACTT	180
45	GACTATATCT TATAATTTTA TTGTTTATTT TGTGTTTAAT GCACAGCTAC TTCACACCTT	240
	AAACTTGCTT TGATTTGGTG ATGTAAACTT TTAAACATTG CAGATCAGTG TAGAACTGGT	300
50	CATAGAGGAA GAGCTAGAAA TCCAGTAGCA TGATTTTTAA ATAACCTGTC TTTGTTTTTG	360
50	ATGTTAAACA GTAAATGCCA GTAGTGACCA AGAACACAGT GATTATATAC ACTATACTGG	420
	AGGGATITCA TITITAATTC ATCTTTATGA AGATTTAGAA CTCATTCCTT GTGTTTAAAG	480
55	GGAATGTTTA ATTGAGAAAT AAACATTTGT GWACAAAATG YTAAAAAAAA AAAAAAAAAA	540
	λουτου καναστασικό αδοδοδοδο ΔΔ(ΠΥΥ)	577

538

(2) INFORMATION FOR SEQ ID NO: 307:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2860 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307: GTGTNGACCG CTCTCNCAAT ATGGCTCCCC CGGGCTGGCA GRWRKTCRGT CWCKRGTGGC 60 TAGCCTGTCC TGACAGGGGA GAGTTAAGCT CCCGTTCTCC ACCGTGCCGG CTGGCCAGGT 120 15 GGGCTGAGGG TGACCGAGAG ACCAGAACCT GCTTGCTGGA GCTTAGTGCT CAGAGCTGGG 180 GAGGGAGGTT CCGCCGCTCC TCTGCTGTCA GCGCCGGCAG CCCCTCCCGG CTTCACTTCC 240 20 TCCCGCAGCC CCTGCTACTG AGAAGCTCCG GGATCCCAGC AGCCGCCACG CCCTGGCCTC 300 AGCCTGCGGG GCTTCCAGTC AGGCCAACAC CGACGCGCAC TGGGGAGGAA GACAGGACCC 360 TTGACATCTC CATCTGCACA GAGGTCCTGG CTGGAACCGA GCAGCCTCCT CCTCCTAGGA 420 25 480 TGACCTCACC CTCCAGCTCT CCAGTTTTCA GGTTGGAGAC ATTAGATGGA GGCCAAGAAG ATGCTCTGA GCCGGACAGA GGAAAGCTGG ATTTTGGGAG CGGCTGCCT CCCATGGAGT 540 30 600 CACAGTTCCA GGGCGAGGAC CGGAAATTCG CCCCTTCAGA TAAGAGTCAA CCTCCAACTA CCGAAAGGGA ACAGGTGCCA GTCAGCCGGA TCCAAACCGA TTTGACCGAG ATCGGCTCTT 660 CAATGCGGTC TCCCGGGGTG TCCCCGAGGA TCTGGCTGGA CTTCCAGAGT ACCTGAGCAA 720 35 GACCAGCAAG TACCTCACCG ACTTCGGAAA TACACAGAGG GCTCCACAGG TAAGACGGCC 780 TGATGAAGGC TGTGCTGAAA CCTTAAGGAC GGGGTCAATG CCTGCATTCT GCCACTGCTG 840 40 900 CAGATCGACC GGGACTCTGG CAATCCTCAG CCCCTGGTAA ATGCCCAGTG CACAGATGAC TATTACCGAG GCCACAGCGC TCTGCACATC GCCATTGAGA AAGAGGAGTC TGCAGTGTGT 960 GAAGCTCCTG GTGGAGAATG GGGCCAATGT GCATGCCCGG GTCTGCGGCG ACTTCTTCCA 1020 45 GAAGGGCCAA GGGACTTGCT TTTATTTCGG TGAGCTACCC CTCTCTTTGG CCGCTTGCAC 1080 CAAGCAGTGG GATGTGGTAA GCTACCTCCT GGAGAACCCA CACCAGCCCG CCAGCCTGCA 1140 50 GGCCACTGAC TCCCAGGGCA ACACAGTCCT GCATGCCCTA GTGGATGATC TCGGACAACT 1200 CAGCTGAGAA CATTGCACTG GTGACCAGCA TGTATGATGG GCTCCTCCAA GCTKGGGSCC 1260 SCCYTCTGCC CTACCGTGCA GCTTGAGGAC ATCCGCAACC TGCAGGATCT CACGCCTCTG 1320 55 AAGCTGGCCG CCAAGGAGGG CAAGATCGAG ATTTTCAGGC ACATCCTGCA GCGGAGTTT 1380 1440 TCAGGACTGA GCCACCTTTC CCGAAAGTTC ACCGAGTGGT GCTATGGGCC TGTCCGGGTG 60 1500 TCGCTGTATG ACCTGGCTTC TGTGGACAGC TGTGAGGAGA ACTCAGTGCT GGAGATCATT

	GCCTTTCATT	GCAAGAGCCC	GCACCGACAC	CGAATGGTCG	TTTTGGAGCC	CCTGAACAAA	1560
5	CTGCTGCAGG	CGAAATGGGA	TCTGCTCATC	CCCAAGTTCT	TCTTAAACTT	CCTGTGTAAT	1620
,	CTGATCTACA	TGTTCATCTT	CACCGCTGTT	GCCTACCATC	AGCCTACCCT	GAAGAAGCAG	1680
	GCCGCCCCTC	ACCTGAAAGC	GGAGGTTGGA	AACTCCATGC	TGCTGACGGG	CCACATCCTT	1740
10	ATCCTGCTAG	GGGGGATCTA	CCTCCTCGTG	GGCCAGCTG	TGGTACTTCT	GGCGGCGCCA	1800
	CGTGTTCATC	TGGATCTCGT	TCATAGACAG	CTACTTTGGA	AATCCTCTTC	CTGTTCCAGG	1860
15	CCCTGCTTCA	CAGTGGTGTC	CCAGGTGCTG	TGTTTCCTGG	GCCATCGAGT	GGTACCTGCC	1920
13	CCTCCTTGTG	TCTGCGCTGG	TGGCTGGGCT	GGCTGAACCT	GCTTTACTAA	TACACGTGGC	1980
	GTTCCAGCAC	ACAGGCAGTC	TACAGTTTCA	TGWTCCCTGA	AGCCCTGGTG	AGCCTGAGCC	2040
20	AGGAGGCTTG	GCGCCCCGAA	GCTCCTACAG	GCCCCAATGC	CACAGAGTCA	GTGCAGCCCA	2100
	TGGAGGGACA	GGAGGACGAG	GGCAACGGGG	CCCAGTACAG	GGGTATCCTG	GAAGCCTCCT	2160
25	TGGAGCTCTT	CAAATTCACC	ATCGGCATGG	GCGAGCTGGC	CTTCCAGGAG	CAGCTGCACT	2220
40	TCCGCGGCAT	GGTGCTGCTG	CTGCTGCTGG	CCTACGTGCT	GCTCACCTAC	ATCCTGCTGC	2280
	TCAACATGCT	CATCGCCCTC	ATGAAGCGAA	CGTCACAGTG	TCGCCACTGA	CAGCTGGAGC	2340
30	ATCTGGAAGC	TGCAGAAAGC	CATCTCTGTC	CTGGAGATGG	AGAATGGCTA	TTGGTGGTGC	2400
	AGGAAAAAGC	AGCGGGCAGG	TGTGATGCTG	ACCGTTGGCA	CTAAGCCCAG	ATGGCAGCCC	2460
35	CGATGAGCGC	TGGTGCTTCA	GGGTGGAGGA	GGTGAACTGG	GCTTCATGGG	GAGCAGACGC	2520
33	TGCCTACGCT	GTGTGAGGAC	CCGTCAGGGG	CAGGTGTCCC	TCGAACTCTC	GAGAACCCTG	2580
	TCCTGGCTTC	CCCTCCCAAG	GAGGATGAGG	ATGGTGCCTC	TGAGGAAAAC	TATGTGCCCG	2640
40	TCCAGCTCCT	CCAGTCCAAC	TGATGGCCCA	GATGCAGCAG	GAGGCCAGAG	GACAGAGCAG	2700
	AGGATCTTTC	CAACCACATC	TGCTGGCTCT	GGGGTCCCAG	TGAATTCTGG	TGGCAAATAT	2760
45	ATATTTTCAC	TAACTCAAAA	аааааааа	АААААААА	AAAAVGAGGG	GGGCCCGKT	2820
7.5	ASCCAAWITC	GCCCTATAAG	TGAGTGCCWA	TTACGATAAA			2860

(2) INFORMATION FOR SEQ ID NO: 308:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 876 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308:

60

PCT/US98/04493

540

	CTGCTTGTGT CTGCGCTGGT GCTGGGCTGG CTGAACCTGC TTTACTATAC ACGTGGCTTC	60
	CAGCACACAG GCATCTACAG TGTCATGATC CAGAAGCCCT GGTGAGCCTG AGCCAGGANN	120
5	TTGGCGCCCC GAAGCTCCTA CAGGCCCCAA TGCCACAGAG TCAGTGCAGC CCATGGAGGG	180
	ACAGGAGGAC GAGGGCAACG GGGCCCAGTA CAGGGGTATC CTGGAAGCCT CCTTGGAGCT	240
10	CTTCAAATTC ACCATCGGCA TGGGCGAGCT GGCCTTCCAG GAGCAGCTGC ACTTCCGCGG	300
10	CATGGTGCTG CTGCTGCTGC TGGCCTACGT GCTGCTCACC TACATCCTGC TGCTCAACAT	360
	GCTCATCGCC CTCATGNAGC GAGACCGWCA ACAGTGTCGC CACTGACAGC TGGAGCATCT	420
15	GGAAGCTGCA GAAAGCCATC TCTGTCCTGG AGATGGAGAA TGGCTATTGG TGGTGCAGGA	480
	AGAAGCAGCG GGCAGGTGTG ATGCTGACCG TTGGCACTAA GCCAGATGGC AGCCCCGATG	540
20	AGCGCTGGTG CTTCAGGGTG GAGGAGGTGA ACTGGGCTTC ATGGGAGCAG ACGCTGCCTA	600
20	CGCTGTGTGA GGACCCGTCA GGGGCAGGTG TCCCTCGAAC TCTCGAGAAC CCTGTCCTGG	660
	CTTCCCCTCC CAAGGAGGAT GAGGATGGTG CCTCTGAGGA AAACTATGTG CCCGTCCAGC	720
25	TCCTCCAGTC CAACTGATGG CCCAGATGCA GCAGGAGGCC AGAGGACAGA GCAGAGGATC	780
	TTTCCAACCA CATCTGCTGG CTCTGGGGTC CCAGTGAATT CTGGTGGCAA ATATATATTT	840
30	ТСАСТААМИМ ААААААААА АААААААААА АСТСGA	876

(2) INFORMATION FOR SEQ ID NO: 309:

35

40

45

50

55

60

WO 98/39448

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2025 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:

CATGACCCGC CTGATGCGAT CCCGCACAGC CTCTGGTTCC AGCGTCACTT CTCTGGATGG 60 CACCCGCAGC CGCTCCCACA CCAGCGAGGG CACCCGAAGC CGCTCCCACA CCAGCGAGGG 120 CACCCGCAGC CGCTCGCACA CCAGCGAGGG GGCCCACCTG GACATCACCC CCAACTCGGG 180 TGCTGCTGGG AACASGCCGG GCCCAAGTCC ATGGAGGTCT CCTGCTAGGC GGCCTGCCCA 240 GCTGCCGCCC CCGGACTCTG ATCTCTGTAG TGGCCCCCTC CTCCCCGGCC CCTTTTCGCC 300 360 CCCTGCCTGC CATACTGCGC CTAACTCGGT ATTAATCCAA AGCTTATTTT GTAAGAGTGA GCTCTGGTGG AGACAAATGA GGTCTATTAC GTGGGTGCCC TCTCCAAAGG CGGGGTGGCG 420 480 CGGTTGCCAC TCTCCTCCCC TCCCTCAGAG ACACCAAACT GCCAAAAACA AGACGCGTAC 540

	AGCACACACT	TCACAAAGCC	AAGCCTAGGC	CGCCCTGAGC	ATCCTGGTTC	AAACGGGTGC	600
5	CTGGTCAGAA	GCCAGCCGC	CCACTTCCCG	TTTCCTCTTT	AACTGAGGAG	AAGCTGATCC	660
J	AGTTTCCGGA	AACAAAATCC	TTTTCTCATT	TGGGGAGGGG	GGTAATAGTG	ACATGCAGGC	720
	ACCTCTTTTA	AACAGGCAAA	ACAGGAAGGG	GGAAAAGGTG	GGATTCATGT	CGAGGCTAGA	780
10	GGCATTTGGA	ACAACAAATC	TACGTAGTTA	ACTTGAAGAA	ACCGATTTTT	AAAGTTGGTG	840
	CATCTAGAAA	GCTTTGAATG	CAGAAGCAAA	CAAGCTTGAT	TTTTCTAGCA	TCCTCTTAAT	900
15	GTGCAGCAAA	AGCAGGCRAC	AAAATCTCCT	GGCTTTACAG	ACAAAAATAT	TTCAGCAAAC	960
13	GTTGGGCATC	ATGGTTTTTG	AAGGCTTTAG	TICIGCTITC	TGCCTCTCCT	CCACAGCCCC	1020
	AACCTCCCAC	CCCTGATACA	TGAGCCAGTG	ATTATTCTTG	TTCAGGGAGA	AGATCATTTA	1080
20	GATTTGTTTT	GCATTCCTTA	GAATGGAGGG	CAACATTCCA	CAGCTGCCCT	GGCTGTGATG	1140
	AGTGTCCTTG	CAGGGGCCGG	AGTAGGAGCA	CTGGGGTGGG	GGCGGAATTG	GGGTTACTCG	1200
25	ATGTAAGGGA	TTCCTTGTTG	TTGTGTTGAG	ATCCAGTGCA	GTTGTGATTT	CTGTGGATCC	1260
23	CAGCTTGGTT	CCAGGAATTT	TGTGTGATTG	GCTTAAATCC	AGTTTTCAAT	CTTCGACAGC	1320
	TGGGCTGGAA	CGTGAACTCA	GTAGCTGAAC	CTGTCTGACC	CGGTCACGTT	CTTGGATCCT	1380
30	CAGAACTCTT	TGCTCTTGTC	GGGGTGGGG	TGGGAACTCA	CGTGGGGAGC	GGTGGCTGAG	1440
	AAAATGTAAG	GATTCTGGAA	TACATATTCC	ATGGGACTTT	CCTTCCCTCT	CCTGCTTCCT	1500
35	CTTTTCCTGC	TCCCTAACCT	TTCGCCGAAT	GGGCAGCAC	CACTGACGTT	TCTGGGCGGC	1560
	CAGTGCGGCT	GCCAGGTTCC	TGTACTACTG	CCTTGTACTT	TTCATTTTGG	CTCACCGTGG	1620
	ATTTTCTCAT	AGGAAGTTTG	GTCAGAGTGA	ATTGAATATT	GTAAGTCAGC	CACTGGGACC	1680
40	CGAGGATTTC	TGGGACCCCG	CAGTTGGGAG	GAGGAAGTAG	TCCAGCCTTC	CAGGTGGCGT	1740
	GAGAGGCAAT	GACTCGTTAC	CTGCCGCCCA	TCACCTTGGA	GCCTTCCCT	GGCCTTGAGT	1800
45	AGAAAAGTCG	GGGATCGGGG	CAAGAGAGGC	TGAGTACGGA	TGGGAAACTA	TTGTGCACAA	1860
73	GTCTTTCCAG	AGGAGTTTCT	TAATGAGATA	TTTGTATTTA	TTTCCAGACC	AATAAATTTG	1920
	TAACTTTGCA	AAAAAAAAA .	AAAAAAAAA	AAAAAAAA	. ААААААААА	AAAAAAACTC	1980
50	GAGGGGGCC	CGTACCCAAT	TCGCCGTATA	TGATCGTAAA	CAATC		2025

55 (2) INFORMATION FOR SEQ ID NO: 310:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3026 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:

5	TAGGCAGCAC TGAAATATCC TAACCCCCTA AGCTCCAGGT GCCCTGTGGN ACGAGCAACT	60
	GGACTATAGC AGGGCTGGGC TCTGTCTTCC TGGTCATAGG CTCACTCTTT CCCCCAAATC	120
10	TTCCTCTGGA GCTTTGCAGC CAAGGTGCTA AAAGGAATAG GTAGGAGACC TCTTCTATCT	180
10	AATCCTTAAA AGCATAATGT TGAACATTCA TTCAACAGCT GATGCCCTAT AACCCCTGCC	240
	TOGATTTCTT CCTATTAGGC TATAAGAAGT AGCAAGATCT TTACATAATT CAGAGTGGTT	300
15	TCATTGCCTT CCTACCCTCT CTAATGGCCC CTCCATTTAT TTGACTAAAG CATCACACAG	360
	TGGCACTAGC ATTATACCAA GAGTATGAGA AATACAGTGC TTTATGGCTC TAACATTACT	420
20	GCCTTCAGTA TCAAGGCTGC CTGGAGAAAG GATGGCAGCC TCAGGGCTTC CTTATGTCCT	480
20	CCACCACAAG AGCTCCTTGA TGAAGGTCAT CTTTTTCCCC TATCCTGTTC TTCCCCTCCC	540
	COCTCCTAAT GGTACGTGGG TACCCAGGCT GGTTCTTGGG CTAGGTAGTG GGGACCAAGT	600
25	TCATTACCTC CCTATCAGTT CTAGCATAGT AAACTACGGT ACCAGTGTTA GTGGGAAGAG	660
	CTGGGTTTTC CTAGTATACC CACTGCATCC TACTCCTACC TGGTCAACCC GCTGCTTCCA	720
30	GGTATGGGAC CTGCTAAGTG TGGAATTACC TGATAAGGGA GAGGGAAATA CAAGGAGGGC	780
30	CTCTGGTGTT CCTGGCCTCA GCCAGCTGCC CACAAGCCAT AAACCAATAA AACAAGAATA	840
	CTGAGTCAGT TTTTTATCTG GGTTCTCTTC ATTCCCACTG CACTTGGTGC TGCTTTGGCT	900
35	GACTGGGAAC ACCCCATAAC TACAGAGTCT GACAGGAAGA CTGGAGACTG TCCACTTCTA	960
	GCTCGGAACT TACTGTGTAA ATAAACTTTC AGAACTGCTA CCATGAAGTG AAAATGCCAC	1020
40	ATTITIGCTIT ATAATTICTA CCCATGTIGG GAAAAACIGG CTITITICCCA GCCCTTTCCA	1080
40	GGGCATAAAA CTCAACCCCT TCGATAGCAA GTCCCATCAG CCTATTATTT TTTTAAAGAA	1140
	AACTTGCACT TGTTTTTCTT TTTACAGTTA CTTCCTTCCT GCCCCAAAAT TATAAACTCT	1200
45	AAGTGTAAAA AAAAGTCTTA ACAACAGCTT CTTGCTTGTA AAAATATGTA TTATACATCT	1260
	GTATTTTTAA ATTCTGCTCC TGAAAAATGA CTGTCCCATT CTCCACTCAC TGCATTTGGG	1320
50	GCCTTTCCCA TTGGTCTGCA TGTCTTTTAT CATTGCAGGC CAGTGGACAG AGGGAGAAGG	1380
50	GAGAACAGGG GTCGCCAACA CTTGTGTTGC TTTCTGACTG ATCCTGAACA AGAAAGAGTA	1440
	ACACTGAGGC GCTCGCTCCC ATGCACAACT CTCCAAAACA CTTATCCTCC TGCAAGAGTG	1500
55	GGCTTTCCAG GGTCTTTACT GGGAAGCAGT TAAGCCCCCT CCTCACCCCT TCCTTTTTTC	1560
	TTTCTTTACT CCTTTGGCTT CAAAGGATTT TGGAAAAGAA ACAATATGCT TTACACTCAT	1620
60	TITICAATITIC TAAATITIGCA GGGGATACTG AAAAATACGG CAGGTGGCCT AAGGCTGCTG	1680

	TAAAGTTGAG	GGGAGAGGAA	ATCTTAAGAT	TACAAGATAA	AAAACGAATC	CCCTAAACAA	1740
	AAAGAACAAT	AGAACTGGTC	TTCCATTTTG	CCACCTITCC	TGTTCATGAC	AGCTACTAAC	1800
5	CTGGAGACAG	TAACATTTCA	TTAACCAAAG	AAAGTGGGTC	ACCTGACCTC	TGAAGAGCTG	1860
	AGTACTCAGG	CCACTCCAAT	CACCCTACAA	GATGCCAAGG	AGGTCCCAGG	AAGTCCAGCT	1920
10	CCTTAAACTG	ACGCTAGNMA	ATAAACCTGG	GCAAGTGAGG	CAAGAGAAAT	GAGGAAGAAT	1980
10	CCATCTGTGA	GGTGAYAGGC	AAGGATGAAA	GACAAAGAAG	GAAAAGAGTA	TCAAAGGCAG	2040
	AAAGGAGATC	ATTTAGTTGG	GTCTGAAAGG	AAAAGTCTTT	GCTATCCGAC	ATGTACTGCT	2100
15	AGTACCTGTA	AGCATTTTAG	GTCCCAGAAT	GGAAAAAAA	ATCAGCTATT	GCTAATATAA	2160
	TAATGTCCTT	TCCCTGGAGT	CAGTTTTTTT	AAAAAGTTAA	CTCTTAGTTT	TTACTTGTTT	2220
20	AATTCTAAAA	GAGAAGGGAG	CTGAGGCCAT	TCCCTGTAGG	AGTAAAGATA	AAAGGATAGG	2280
20	AAAAGATTCA	AAGCTCTAAT	AGAGTCACAG	CTTTCCCAGG	TATAAAACCT	AAAATTAAGA	2340
	AGTACAATAA	GCAGAGGTGG	AAAATGATCT	AGTTCCTGAT	AGCTACCCAC	AGAGCAAGTG	2400
25	АТТТАТААТ	TTGAAATCCA	AACTACTITC	TTAATATCAC	TTTGGTCTCC	ATTTTTCCCA	2460
	GGACAGGAAA	TATGTCCCCC	CCTAACTTTC	TTGCTTCAAA	AATTAAAATC	CAGCATCCCA	2520
20	AGATCATTCT	ACAAGTAATT	TTGCACAGAC	ATCTCCTCAC	CCCAGTGCCT	GTCTGGAGCT	2580
30	CACCCAAGGT	CANCCAAACA	ACTTGGTTGT	GAACCCAACT	GCCTTAACCT	TCTGGGGGAG	2640
	GGGGATTAGC	TAGACTAGGA	GACCCAGAAG	TGAATGGGAA	AGGGTGAGGA	CTTCACAATG	2700
35	TTGGCCTGTC	AGAGCTTGAT	TAGAAGCCAA	GACAGTGGCA	GCAAAGGAAG	ACTTGGCCCA	2760
•	GGAAAAACCT	GTGGGTTGTG	CTAATTTCTG	TCCAGAAAAT	AGGGTGGACA	GAAGCTTGTG	2820
40	GGGTGCATGG	AGGAATTGGG	ACCTGGTTAT	GTTGTTATTC	TCGGACTGTG	AATTTTGGTG	2880
40	ATGTAAAACA	GAATATTCTG	TAAACCTAAT	GTCTGTATAA	ATAATGAGCG	TTAACACAGT	2940
	AAAATATTCA	ATAAGAAGTC	AAAAAAAAA	AAAAAAAACT	CGAGGGGGG	CCCGGTACCC	3000
45	AATTTNCCAA	ATAGAGATNG	TATTAC				3026

50 (2) INFORMATION FOR SEQ ID NO: 311:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 712 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:

	CTCCTGCTGG	ACCACGCCT	TTCTGCTCCC	GAGTTGGGAC	TGTGGAATGG	TGTGGGTGCT	120
5	GTGGTCTGCT	CCATCGCTGG	CTCCTCCCTG	GGTGGGACCT	TGCTGGCCAA	GCACTGGAAA	180
,	CTGCTGCCTC	TGTTGARGTC	GGTGCTGCGC	TTCCGCCTCG	GGGCCTAGC	CTGTCAGACT	240
	GCCTTGGTCT	TCCACCTGGA	CACCCTGGGG	GCCAGCATGG	ACGCTGGCAC	AATCTTGAGA	300
10	GGGTCAGCCT	TGCTGAGCCT	ATGTCTGCAG	CACTTCTTGG	GAGGCCTGGT	CACCACAGTC	360
	ACCTTCACTG	GGATGATGCG	CTGCAGCCAG	CTGGCCCCCA	GGCCTGCAG	GCCACACACT	420
15	ACAGCCTTCT	GGCCACGCTG	GAGCTGCTGG	GGAAGCTGCT	GCTGGGCACT	CTGCGGAGGC	480
13	CTGGCTGATG	GGTTGGGGCC	ACATCCCTGC	TTCTTGCTCC	TGCTCATCCT	CTCTGCCTTT	540
	CCCGTTCTGT	ACCTGGACCT	AGCACCCAGC	ACCTTTCTCT	GAGCTGAGTG	GCTGGAGTGG	600
20	TCAATAAAGC	CACATGTGCC	TGTGGCCCAA	АААААААА	АААААААА	АААААААА	660
	AACTGGAGGG	GGGCCCGGT	ACCCAAATCG	CCGGATATGA	TCGTAAACAA	TC	712

25

30

(2) INFORMATION FOR SEQ ID NO: 312:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1289 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312:

CAAAATTTCA GAACTTTCAG GAGGGCAAGA GAATATCAAA CAAAGATTTC TGGAAGTATT 60 120 TTGCCAACCT TCTGGTTGAG CTGCAAGAAA ATATTTATGG TGAGAACTTT TCTGTTTCCC 40. 180 GTTATTGGT TTTTGGTTG TTTTTGTTTG TTTTTTACTA TGCTTTGGTC TGTAAAAATA TGCAACTGAA CTACATTCAG AAGGAAATAT TGTCTACATA GAATATTATA TGAAGTTGGT 240 45 ACATAATTCT GATGAGGAAA AAAAATCTTT GCAATTCTTT AAGCCATATT GTTGTTTTTC 300 TGTGTTGTTT TCCCTGGATG AAAATATCAG TATTAAGTAG ACAGCATATT ATTCAAGTGT 360 TTAGACTTAT TAATATGTTC TTGTCCTGTA TTTATACATA TGTGTATTTT GGAAAGTATT 420 50 GCCTTTTTTA AGGGAAGCTA TAATTCGATA CATAGTGAAA AAGGGAATGG TGACCCCTTT 480 GTGCCTCTTC CACTGAGGAT AACAAACAGC ATTGTAATCC ATTCTCTTGC ACCTTCTTCT 540 55 TCTTATCTTG TTATTACGGT TTTATTAATT TTGTAGAGGG ACAGGGAGTG GGCAAGGGGA 600 AGAAGCAGCT TATTTGACTA ACCAGCCCCT CTGTGGTCCA CCAGCGTCTT GGCTTGGTGG 660 GAGGGCTCTC AATCAGCAGG GCCCCAGGAG GGAAGAAGAA GTGGGGCAAA GCCTGGCCTC 720 60

	GCCGCTCGGG AGCTTTGCCA TCTGAGCCAC GCCTCCTCCA GGCCATGCTC CTTGAACTTG	780
	GAAATGTCAA CCGGAGCCCT TACACCAGCC CTCCAGCATC TAATAGACTT GAATCTACTC	840
5	TAAACGAATA TITAATCCAA CCTCACTACA TIGTAGCTCA GTCCAACGAC TAACCCTGAA	900
	ATGGGGGTGT TCCAGCCTTC AGCGAGATGG CCAAGCGGTC CCCTGGGGGC TGTGGCAGCG	960
10	GGCTTATCCT TCTCTGTTGC CAACCTTGCC GTCCGACCTC CTCCGCCCCC ATGCGGTGAC	1020
10	CCCGTCCGTG TCTGTGTCTG TCCATACGTG TGAGTCCAGC TAAAAAGACA AAACAGAACC	1080
	CGTGGGCCCA GCTCGGAAGG TGCGTGGAGA AGGCTCCGAC GTCTCCGAAG TGCAGCCCTT	1140
15	GGGATGGCAT TCCGTTGTGT GCCTTATTCC TGGAGAATCT GTATACGGCT CGCCTATAGA	1200
	AATATAGCCT CTTCATGCTG TATTAAAAGG ACTTTTAAAA GCAAAAAAAA AAAAAAAAA	1260
20	CTTGAGGGGG GGNCCGGTAC CCAATTNIC	1289
20		
	(2) INFORMATION FOR SEQ ID NO: 313:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22 amino acids	
	(B) TYPE: amino acid (D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:	
	Met Phe Leu Ile Phe Val Tyr Phe Leu Lys Ile Leu Phe Ser Ser 1 5 10 15	
35	Leu Pro Phe Leu Trp Leu	
	20	
	•	
40	(2) INFORMATION FOR SEQ ID NO: 314:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids	
	(B) TYPE: amino acid	
45	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:	
	Met Met Phe Leu Thr Gln Gly Gly Pro Leu Pro Ser Thr Arg Ala Arg	
50	1 5 10 15	
	Pro Thr Cys Gln Ala Gly Ala Leu Pro Lys Pro Ser Gly Leu Leu Gly 20 25 30	
	Val Thr Cys Trp Asn Gly Leu Lys Gly Pro Leu Cys Gly Asn Arg Cys	
55	35 40 45	
	Ser Pro Asn Thr Leu Leu Leu Ala Ala Arg Gln Ala Leu Trp Lys Gly 50 55 60	

Arg Gly Arg Thr His Gln Asp Leu Pro Gly Pro Leu Gln Gly Arg Gln

	65					70					75					80
5	Leu	Gly	Pro	Glu	Pro 85	Lys	His	Leu	Ala	Leu 90	Leu	Pro	Pro	Arg	G1y 95	Gln
J	Glu	Ala	Ser	Trp 100	Ala	Ser	Ser	Leu	Pro 105	Gly	Gln	Gly	Pro	Leu 110	Pro	Leu
10	Pro	His	Ile 115	Asn	Cys	Thr	Val	Phe 120	Ser	Leu	Lys	Ala	Ser 125	Phe	Ile	Lys
15																
	(2) INFORMATION FOR SEQ ID NO: 315: (i) SEQUENCE CHARACTERISTICS:															
20			(i)	_	ENCE (A) L						s					
					(B) I (D) I											
			(xi)	SEÇ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 31	5:			
25	Met 1		Phe	Leu	Leu 5		Ala	Phe	Leu	Leu 10	Val	Pro	Leu	Leu	Ala 15	Leu
	Cys	. Asp	Val	Pro	Ile	Ser	Leu	Gly	Phe 25	Ser	Pro	Ser				
30																
	(2) INFORMATION FOR SEQ ID NO: 316:															
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 amino acids															
					(B) 1 (D) 1	TYPE	: am	ino a	acid							
40			(xi		QUENC					SEQ 1	D NO): 31	.6:			
-10		t Asp l	o Gly	/ Phe	e Ser		Arg	Lev	n Ph∈	Ser 10		Leu	Pro	Phe	Val 15	Ala
45	Le	u Gli	n Trj	Pho 2		e Val	l Ile	e Sei	His 25		. Lev	Ser	Let	Ser 30		Ser
	Ala	а Суя	s Cya		r Glı	n Thi	r His	5 Cys		: Leu	ı Xaa	Glr	Leu 49		Ser	Ala
50	Ph	e Se		a Me	t Gly	y Gl	u Sei 5!		s Vai	l Gly	/ Gli	1 Arg		тут	· Xaa	. Phe
55																
	(2	:) IN	FORM	ATIC	N FO	R SE	Q ID	NO:	317	:						
60			(i)	SEC	OUENC	E CI	IARAC	TER1	STIC	s:						

```
(A) LENGTH: 21 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:
5
     Met Pro Leu Ile Asn Leu Leu Leu Tyr Tyr Val Pro Asn Gly Gly
                       5
                                          10
                                                              15
     Lys Gln Asp Lys Lys
10
                  20
      (2) INFORMATION FOR SEQ ID NO: 318:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 39 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
20
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:
     Met Gly Arg His Leu Val Leu Val Met Phe Ile Thr Thr Ser Leu His
      Ser Gly Thr Pro Val Pro Glu Asn Val Ile Cys Gly Val Thr Lys Gly
25
                                      25
      Pro Gln Gly Lys Lys Lys
              35
30
      (2) INFORMATION FOR SEQ ID NO: 319:
35
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 33 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:
40
      Met Leu Trp Trp Ser Arg Asp Tyr Thr Met Val Phe Leu Leu Phe Thr
      Met Val Phe Thr Gly Asp Leu Val Ile Arg Gly Arg Thr Glu Leu Ser
45
                                      25
                  20
      Leu
50
      (2) INFORMATION FOR SEQ ID NO: 320:
              (i) SEQUENCE CHARACTERISTICS:
55
                     (A) LENGTH: 88 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320:
      Met Val Cys Ser Ser Leu Cys Asp Ile Gly Gly Ile Ile Thr Pro Phe
60
```

1 10 Ile Val Phe Arg Leu Arg Glu Val Trp Gln Ala Leu Pro Leu Ile Leu 20 5 Phe Ala Val Leu Gly Leu Leu Ala Ala Gly Val Thr Leu Leu Leu Pro Glu Thr Lys Gly Val Ala Leu Pro Glu Thr Met Lys Asp Ala Glu Asn 10 55 Leu Gly Arg Lys Ala Lys Pro Lys Glu Asn Thr Ile Tyr Leu Lys Val 15 Gln Thr Ser Glu Pro Ser Gly Thr 85 20 (2) INFORMATION FOR SEQ ID NO: 321: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid 25 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 321: Met Gln Pro Gly Ala Gly Val Leu Val Leu Gly Leu Leu Leu Pro Pro 5 30 Pro Gln Ser Pro Ser Leu Ser 20 35 (2) INFORMATION FOR SEQ ID NO: 322: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids 40 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 322: Met Thr Phe Thr Leu Gly Asp Ser Gln Val Leu Leu Ile Asn Leu Phe 45 Pro Ser Met Pro Ser Gly Ser Cys Ala Arg Pro 20 50 (2) INFORMATION FOR SEQ ID NO: 323: (i) SEQUENCE CHARACTERISTICS: 55 (A) LENGTH: 64 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 323: 60 Met Cys Leu Glu Cys Trp Ala Glu Asn Leu Gly Pro His His Thr Ser

10 1 Ser Leu Leu Asn Pro Arg His Leu Pro Ser Ile Pro Ala Met Phe Pro 20 25 5 Val Ser Ser Gly Cys Phe Gln Glu Gln Glu Met Asn Lys Ser Leu Val Ser Cys Leu Phe Val Leu His Phe Val Leu His Cys Ile Phe Xaa 10 55 15 (2) INFORMATION FOR SEQ ID NO: 324: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 196 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 324: 25 Met Leu Ser Thr Ser Glu Tyr Ser Gln Ser Pro Lys Met Glu Ser Leu 5 10 1 Ser Ser His Arg Ile Asp Glu Asp Gly Glu Asn Thr Gln Ile Glu Asp 25 30 Thr Glu Pro Met Ser Pro Val Leu Asn Ser Lys Phe Val Pro Ala Glu Asn Asp Ser Ile Leu Met Asn Pro Ala Gln Asp Gly Glu Val Gln Leu 35 55 Ser Gln Asn Asp Asp Lys Thr Lys Gly Asp Asp Thr Asp Thr Arg Asp 40 Asp Ile Ser Ile Leu Ala Thr Gly Cys Lys Gly Arg Glu Glu Thr Val Ala Glu Glu Val Cys Ile Asp Leu Thr Cys Asp Ser Gly Ser Gln Ala 105 45 Val Pro Ser Pro Ala Thr Arg Ser Glu Ala Leu Ser Ser Val Leu Asp 120 115 Gln Glu Glu Ala Met Glu Ile Lys Glu His His Pro Glu Glu Gly Ser 50 Ser Gly Ser Glu Val Glu Glu Ile Pro Glu Thr Pro Cys Glu Ser Gln 155 150 55 Gly Glu Glu Leu Lys Glu Glu Asn Met Glu Ser Val Pro Leu His Leu 170 Ser Leu Thr Glu Thr Gln Ser Gln Gly Leu Cys Leu Arg Arg His Pro 185 180

Lys Lys Lys 195

5	(2)	INF	ORMA'	TION	FOR	SEQ	ID :	NO:	325:								
10			(i)	SEQU ((ENCE A) L B) T D) T	CHA ENGI YPE:	RACT H: 2 ami OGY:	ERIS 52 a no a lin	TICS mino	aci		: 32	5:				
15	Met 1	Gly	Gly	Asp	Leu 5	Val	Leu	Gly	Leu	Gly 10	Ala	Leu	Arg	Arg	Arg 15	Lys	
	Arg	Leu ,	Leu	Glu 20	Gln	Glu	Lys	Ser	Leu 25	Ala	Gly	Trp	Ala	Leu 30	Val	Leu	
20	Ala	Xaa	Xaa 35	Gly	Ile	Gly	Leu	Met 40	Val	Leu	His	Ala	Glu 45	Met	Leu	Trp	
25	Phe	Gly 50	Gly	Cys	Ser	Ala	Val 55	Asn	Ala	Thr	Gly	His 60	Leu	Ser	Asp	Thr	
23	Leu 65	Trp	Leu	Ile	Pro	Ile 70	Thr	Phe	Leu	Thr	Ile 75	Gly	Tyr	Gly	Asp	Val 80	
30	Val	Pro	Gly	Thr	Met 85	Trp	Gly	Lys	Ile	Val 90	Cys	Leu	Cys	Thr	Gly 95	Val	
	Met	Gly	Val	Cys 100	Cys	Thr	Ala	Leu	Leu 105	Val	Ala	Val	Val	Ala 110	Arg	Lys	
35	Leu	Glu	Phe 115	Asn	Lys	Ala	Glu	Lys 120	His	Val	His	Asn	Phe 125	Met	Met	Asp	
40	Ile	Gln 130	Tyr	Thr	Lys	Glu	Met 135	Lys	Glu	Ser	Ala	Ala 140	Arg	Val	Leu	Gln	
.0	Glu 145	Ala	Trp	Met	Phe	Туг 150	Lys	His	Thr	Arg	Arg 155	Lys	Glu	Ser	His	Ala 160	
45	Ala	Arg	Xaa	His	Gln 165	Arg	Xaa	Leu	Leu	Ala 170	Ala	Ile	Asn	Ala	Phe 175	Arg	
	Gln	Val	Arg	Leu 180	Lys	His	Arg	Lys	Leu 185	Arg	Glu	Gln	Val	Asn 190	Ser	Met	
50	Val	Asp	Ile 195	Ser	Lys	Met	His	Met 200	Ile	Leu	Tyr	Asp	Leu 205	Gln	Gln	Asn	
55	Leu	Ser 210	Ser	Ser	His	Arg	Ala 215	Leu	Glu	Lys	Gln	11e 220	Asp	Thr	Leu	Ala	
55	Gly 225	Lys	Leu	Asp	Ala	Leu 230	Thr	Glu	Leu	Leu	Ser 235	Thr	Ala	Leu	Gly	Pro 240	
60	Arg	Gln	Leu	Pro	Glu 245	Pro	Ser	Gln	Gln	Ser 250	Lys	Xaa					

5	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 3	326:							
			(i)	(A) L B) T	ENGT YPE :	H: 6 ami	8 am no a	ino cid	: acid	s					
10			(xi)	SEQ			OGY: SCRI			EQ I	D NO	: 32	6:			
	Met 1	Trp	Arg	Cys	Arg 5	Gly	Lys	Leu	Ser	Phe 10	Pro	Leu	Phe	Ala	Val 15	Va
15	Ile	Val	Ser	Cys 20	Arg	Lys	Asp	Gly	Pro 25	Asp	Ala	Ala	Ala	Ala 30	Pro	Ala
20	Val	Ile	Lys 35	Asn	Asn	Ser	His	Tyr 40	Gln	Thr	Ser	Lys	Ala 45	Leu	Glu	Lei
-0	Glu	Lys 50	Thr	Thr	Glu	Asn	Lys 55	Glu	Ser	Asn	Pro	Phe 60	Ile	Leu	Gln	Va:
25	Asn 65	Lys	Leu	Xaa												
30	(2)	INF		rion												
35				(A) L B) T D) T	ENGT YPE: OPOL	H: 8 ami OGY:	4 am no a lin	ino cid ear	acid		: 32	7:			
	Met 1	Gly	Glu	Gly	Lys 5	Asn	Gly	Phe	Gly	Gly 10	Phe	Val	His	Thr	Ala 15	As
40	Ala	Cys	Trp	Glu 20	Gly	Val	His	Ser	Glu 25	Pro	Val	Cys	Arg	Thr 30	Val	Hi
45	Thr	Val	His 35	Thr	Cys	His	His	Gln 40	Ala	Phe	Leu	Val	Leu 45	Ile	Gly	Tr
•3	Ser	Lys 50		Gly	Lys	Glu	Arg 55	Lys	Glu	Ala	Phe	Leu 60	Thr	Ala	Ile	11
50	Leu 65	Asn	Ser	Arg	Ser	Ile 70	His	Ile	Ser	Cys	Ser 75	Trp	Pro	Pro	Ser	Pr 8
	Val	Pro	Gln	Xaa												
55																
	(2)	INF		TION	FOR	SEQ	·ID	NO:	328:							
60			(i)	SEQU						: acid	le					

								no a								
			/sei \					line		20 TI	O NIO	. 321	a .			
			(xi)	SEQU	DENCE	s De:	SCRI	PIIO	W. 51	SQ II	J 140	. 320	٠.			
5	Met 1	Leu	Leu	Ile	Asn 5	Leu	Leu	Trp	Leu	Val 10	Thr	Met	Ile	Lys	Ser 15	Val
	Ile	Asn	Asn	Asn 20	Ile	Ile	Leu	Phe	Leu 25	Lys	Lys	Lys	Ser	Leu 30	Phe	Phe
10	Ile	Asp	Ser 35	Val												
15	(2)	INFO	ORMAT	CION	FOR	SEQ	ID 1	NO: 3	329:							
20			(i) s	(A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	3 am no a lin	ino cid ear	acid		: 32	9:			
25	Met 1	Thr	Phe	Pro	Phe 5	Glu	Lys	Lys	Ile	Val 10	Ala	Phe	Ser	Ala	Phe 15	Tyr
	Leu	Ile	Pro	Gly 20	Glu	Ser	Arg	Leu	Ala 25	Pro	Thr	Phe	Asn	Pro 30	Ser	Ala
30	Asp	Met	Thr 35	Val	Ile	Leu	Arg	Gly 40	Arg	Ala	Gln	His	Lys 45	Thr	Ala	Met
35	Leu	Glu 50	Ser	Tyr	Asn	Trp	Lys 55		Ser	Cys	Gln	Leu 60		Glu	Xaa	
	(2)	INF	'ORMA'	TION	FOR	SEQ	ID	NO:	330:							
40			(i)		(A) I (B) T	ENG TYPE	TH: (TERIS 35 am	nino acid		ls					
			(vi)					: lir [PTIC		SEO 1	וא מז	o: 33	30:			
45	Met 1	His	Ser			Ser					ı Phe			Gln	Leu 15	
50		Ile	e Leu	Pro	Val		s Ala	a His	Leu 25	ı His		ı Glu	ı Let	ı Asn 30	ı Cys	
	Phe	His	Arg													
55																
	(2)	IN	FORMA	ATIO	N FO	R SE	Q ID	NO:	331	:						
60			(i)	SEQ				TERI 23 a			.ds					

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 331:
     Met Gly Ala Leu Val Leu Leu Cys Leu Leu Val Gly Val Gln Gln
                       5
                                          10
      Ser Gly Ser Val Trp Asp Ser
                  20
10
      (2) INFORMATION FOR SEQ ID NO: 332:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 40 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 332:
20
      Met Gln Ser Ala Glu Ile Leu Ser Trp Thr Asp Val Leu His Asp Phe
      Leu Phe Ser Leu Phe Leu Trp Pro Ala Phe Glu Asp Arg Ala Leu Leu
25
      Ile Phe Thr Leu Asn Gln Ile Val
              35
30
      (2) INFORMATION FOR SEQ ID NO: 333:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 111 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 333:
40
      Met Gln Ser Leu Val Gln Trp Gly Leu Asp Ser Tyr Asp Tyr Leu Gln
                                       10
      Asn Ala Pro Pro Gly Phe Phe Pro Arg Leu Gly Val Ile Gly Phe Ala
45
      Gly Leu Ile Gly Leu Leu Leu Ala Arg Gly Ser Lys Ile Lys Lys Leu
                                                     45
                                  40
      Val Tyr Pro Pro Gly Phe Met Gly Leu Ala Ala Ser Leu Tyr Tyr Pro
50
      Gln Gln Ala Ile Val Phe Ala Gln Val Ser Gly Glu Arg Leu Tyr Asp
55
      Trp Gly Leu Arg Gly Tyr Ile Val Ile Glu Asp Leu Trp Lys Glu Asn
      Phe Gln Lys Pro Gly Asn Val Lys Asn Ser Pro Gly Thr Lys Xaa
                            105
                 100
60
```

	(2)	TMF	ORMA:	LTON	FOR	SEQ	ו טוד	NO: .	334:							
5				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS 06 a no a lin	mino cid ear	aci		22				
10			(xi)	SEQ	UENC.	e de	SCRI	PITO.	N: 5	EQ I	טא ט	: 33	4:			
	Met 1	Ala	Pro	Ser	Leu 5	Leu	Leu	Leu	Ala	Pro 10	Leu	Cys	Ser	Leu	Glu 15	Ala
15	Val	Leu	Ser	Ser 20	Pro	Leu	Glu	Lys	Gln 25	Cys	Gln	Leu	Pro	Gly 30	Ile	Phe
	Cys	Gln	Leu 35	Gln	Leu	Pro	Суѕ	Pro 40	Leu	Leu	Leu	Ser	Ala 45	Gln	Leu	Leu
20	Lys	Gly 50	Ile	Val	Xaa	Pro	Arg 55	Суѕ	Pro	Ala	Ser	Leu 60	Pro	Gln	Pro	Pro
25	His 65	Pro	Ala	Pro	Ser	Trp 70	His	Leu	Pro	Leu	His 75	Cys	Thr	Glu	Arg	Xaa 80
23	Pro	His	His	Leu	Pro 85	Leu	Gln	Gly	Gly	Ser 90	Ser	Asn	Met	Glu	Glu 95	Xaa
30	Asn	Tyr	Arg	Gly 100	Tyr	Xaa	Asp	Ala	Gln 105	Leu						
35	(2)	INF	ORMA	SEQU	ENCE	СНА	RACT		rics		•					
								o am no a		acıa	Ş					
40			(xi)					lin PTIO		EQ I	D NO	: 33	5:			
	Met 1	Thr	Thr	Cys	Leu 5	Phe	Gly	Leu	Leu	Ser 10	Cys	Glu	Met	Ser	Ala 15	Gln
45	Val	Ser	Gln	Lys 20	Ser	Cys	Val	Tyr	Asp 25	Glu	Ser	Glu	Cys	Phe 30	Ser	Ser
50	Val	Gly	Gln 35	Leu	Leu	Ala	Leu	Leu 40	Ile	Leu	Val	Tyr	Val 45	Leu	Pro	Ser
30	Ile	Хаа 50											·	•		
55	(2)	INF	ORMA	TION	FOR	SEQ	ID:	NO:	336:							
			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	;:						
60								18 an Ino a		acid	ls					

```
(D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 336:
      Met Leu Trp Lys Cys Ser Gln Asn Ile Ala Arg Cys Leu Leu Leu Leu
 5
     Leu Ala Leu Val Glu Ile Lys Leu Glu Asp Leu Gln Ser Gln Leu His
10
      Pro Thr Trp Lys Ser Ile Pro Gly Pro Ser Pro Arg Asn Gln His Arg
                                  40
15
      (2) INFORMATION FOR SEQ ID NO: 337:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 41 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 337:
25
      Met Leu Ile Pro Leu Gln Cys Leu Phe Ser Ser Asp Arg Met Leu Thr
                                         10
      Phe Leu Thr Pro Trp Gln Lys Gly Glu Lys Cys Val Leu Gly Trp Val
30
     Thr Lys Phe Leu Ser Glu Ile Ser Xaa
              35
35
      (2) INFORMATION FOR SEQ ID NO: 338:
             (i) SEQUENCE CHARACTERISTICS:
40
                    (A) LENGTH: 76 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 338:
45
      Met Thr Phe Ser Ser Leu Lys Leu Phe Val Leu Thr Cys Ile Ile Lys
                                         10
      Gly Leu Glu Arg Phe Ile Ile Leu Arg Glu Val Cys Asn Gln Glu Ile
50
      Gln Arg Ser Leu Ser Ser Asn Leu Val His Val Leu Leu Gln Pro Ala
                               40
      Thr Phe Lys Asp Val Leu Val Thr Glu Ile Ile Cys Leu Cys Met Cys
55
      Leu Tyr Ser Ile Lys Tyr Met Pro Pro Gln Lys Lys
                          70
60
```

```
(2) INFORMATION FOR SEQ ID NO: 339:
             (i) SEQUENCE CHARACTERISTICS:
 5
                    (A) LENGTH: 31 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339:
      Lys Val Tyr Ile Phe Leu Ile Phe Met Val Leu Ile Leu Pro Ser Leu
10
       1
      Gly Leu Thr Arg Tyr Met Pro Pro Xaa Ser Xaa Leu Asn Ser Glu
                                      25
              . 20
15
      (2) INFORMATION FOR SEQ ID NO: 340:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 42 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340:
25
      Met Ala Lys Ile Ser Pro Phe Glu Val Val Lys Arg Thr Ser Val Pro
                                           10
      Val Leu Val Gly Leu Val Ile Val Ile Val Ala Thr Glu Leu Met Val
30
                   20
      Pro Gly Thr Ala Ala Ala Val Thr Gly Lys
                                   40
               35
35
      (2) INFORMATION FOR SEQ ID NO: 341:
              (i) SEQUENCE CHARACTERISTICS:
40
                     (A) LENGTH: 26 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341:
45
      Met Arg Leu Phe Phe Ile Gly Phe Leu Leu Phe Ser Phe Gly Leu
      Leu Arg Gln Pro Ser Leu Ser Ala Glu His
                   20
50
       (2) INFORMATION FOR SEQ ID NO: 342:
55
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 26 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 342:
60
```

	Met 1	Val	Phe	Ser	Val 5	Ser	Ser	Ala	Leu	Ala 10	Leu	Leu	Leu	Met	Leu 15	Leu
5	Arg	Ser	Ser	Asp 20	Leu	Ala	Lys	Lys	Thr 25	Glu						
10	(2)	INFO	ORMAT	EQUI ()	ENCE A) L		RACT H: 1	ERIS 57 a	rics mino		ds					•
15			(xi)			OPOL E DE:				EQ I	D NO	: 34	3:			•
	Met 1	Ser	Leu	Glu	Phe 5	Tyr	Gln	Lys	Lys	Lys 10	Ser	Arg	Trp	Pro	Phe 15	Ser
20	Asp	Glu	Cys	Ile 20	Pro	Trp	Glu	Val	Trp 25	Thr	Val	Lys	Val	His 30	Val	Val
25	Ala	Leu	Ala 35	Thr	Glu	Gln	Glu	Arg 40	Gln	Ile	Cys	Arg	Glu 45	Lys	Val	Gly
25	Glu	Lys 50	Leu	Cys	Glu	Lys	Ile 55	Ile	Asn	Ile	Val	Glu 60	Val	Met	Asn	Arg
30	His 65	Glu	Tyr	Leu	Pro	Lys 70	Met	Pro	Thr	Gln	Ser 75	Glu	Val	Asp	Asn	Val 80
	Phe	Asp	Thr	Gly	Leu 85	Arg	Asp	Val	Gln	Pro 90	Tyr	Leu	Tyr	Lys	Ile 95	Ser
35	Phe	Gln	Ile	Thr 100	Asp	Ala	Leu	Gly	Thr 105	Ser	Val	Thr	Thr	Thr 110	Met	Arg
40	Arg	Leu	Ile 115	Lys	Asp	Thr	Leu	Pro 120	Ser	Glu	Arg	Arg	Trp 125	Ile	Ser	Gly
.0	Ser	Ser 130	Leu	Met	Ala	Pro	Arg 135	Pro	Trp	Leu	Leu	Gly 140	Ile	Ala	Leu	Leu
45	Gly 145	Leu	Trp			Glu 150		Ala	Leu	_	His 155	Trp	Xaa			
50	(2)	INF				SEQ CHA				•						
			(1)	(A) I B) T	ENGT YPE: OPOL	H: 5	20 a no a	mino cid		.ds					
55						E DE				-					_	
	1				5					10					15	Arg
60	Levi	λla	1/a1	A-~	arn	Pho	Gliv	Co~	2 20	Sar	I.011	Ser	Thy	Ala	Δen	Met

				20					25					30		
5	Thr	Lys	Gly 35	Leu	Val 1	Leu	Gly	Ile 40	Tyr	Ser	Lys	Glu	Lys 45	Glu .	Asp	Asp
J	Val	Pro 50	Gln	Phe	Thr	Ser	Ala 55	Gly	Glu	Asn	Phe	Asp 60	Lys	Leu	Leu	Ala
10	Gly 65	Lys	Leu	Arg	Glu '	Thr 70	Leu	Asn	Ile	Ser	Gly 75	Pro	Pro	Leu	Lys	Ala 80
	Gly	Lys	Thr	Arg	Thr 85	Phe	тут	Gly	Leu	His 90	Gln	Asp	Phe	Pro	Ser 95	Val
15	Val	Leu	Val	Gly 100	Leu	Gly	Lys	Lys	Ala 105	Ala	Gly	Ile	Asp	Glu 110	Gln	Glu
20	Asn	Trp	His 115		Gly	Lys	Glu	Asn 120	Ile	Arg	Ala	Ala	Val 125	Ala	Ala	Gly
	Cys	Arg 130		Ile	Gln	Asp	Leu 135	Glu	Leu	Ser	Ser	Val 140	Glu	Val	Asp	Pro
25	Cys 145	Gly	Asp	Ala	Gln	Ala 150	Ala	Ala	Glu	Gly	Ala 155	Val	Leu	Gly	Leu	Туг 160
	Glu	Tyr	Asp	Asp	Leu 165	Lys	Gln	Lys	Lys	Lys 170		Ala	Val	Ser	Ala 175	Lys
30				180					185					190		
35	Ala	Sex	Gl _y 195		Asn	Leu	Ala	Arg 200	Gln	Leu	Met	Glu	Thr 205	Pro	Ala	Asn
		210)		Thr		215					220				
40	225)			Lys	230					235	,				240
					245					250) .				255	
45				260)				265	5				270		Ala
50			27	5				280)				285	5		Ser
	Gly	y G1 29	_	e Se	r Ile	. Lys	29!		: Ala	a Ası	n Me	t Asp 300		ı Met	. Arg	, Ala
55	30	5				310	0				31	5				320
	Ly	s Le	eu As	n Le	u Pro 329		e As	n Ile	e Il	e Gl 33		u Ala	a Pr	o Lei	1 Cy:	s Glu 5
60	As	n Me	et Pi	co Se	r Gl	у Lу	s Al	a As	n Ly	s Pr	o G1	y As	p Va	1 Va	l Ar	g Ala

350 345 340 Lys Asn Gly Lys Thr Ile Gln Val Asp Asn Thr Asp Ala Glu Gly Arg 360 5 Leu Ile Leu Ala Asp Ala Leu Cys Tyr Ala His Thr Phe Asn Pro Lys 375 380 Xaa Ile Leu Asn Ala Ala Thr Leu Thr Gly Ala Met Asp Val Ala Leu . 10 Gly Ser Gly Ala Thr Gly Val Phe Thr Asn Ser Ser Trp Leu Trp Asn 410 405 Lys Leu Phe Glu Ala Ser Ile Glu Thr Gly Asp Arg Val Trp Arg Met 15 425 Pro Leu Phe Glu His Tyr Thr Arg Gln Val Val Asp Cys Gln Leu Ala 440 20 Asp Val Asn Asn Ile Gly Lys Tyr Arg Ser Ala Gly Ala Cys Thr Ala 455 Ala Ala Phe Leu Lys Glu Phe Val Thr His Pro Lys Trp Ala His Leu 25 Asp Ile Ala Gly Val Met Thr Asn Lys Asp Glu Val Pro Tyr Leu Arg 490 485 Lys Gly Met Thr Gly Arg Pro Thr Arg Thr Leu Ile Glu Phe Leu Leu 30 505 Arg Phe Ser Gln Asp Asn Ala Xaa 515 35 (2) INFORMATION FOR SEQ ID NO: 345: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 345: 45 Thr Ile Leu Phe Leu Phe Leu Gln Leu Ser Ala Leu Arg Leu Ile Val 5 10 Gly Lys Asp Ser Ile Asp Ile Asp Ile Ser Ser Arg Arg Glu Asp 50 Gln Ser Leu Arg Leu Asn Ala 35 55 (2) INFORMATION FOR SEQ ID NO: 346: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 234 amino acids

			(xi)	(1	B) T D) T JENCI	OPOLA	ŒΥ:	line	ear	EQ II	ON C	: 346	5:			
5	Met 1	Thr	Ser	Glu	Leu 5	Asp	Ile	Phe	Val	Gly 10	Asn	Thr	Thr	Leu	Ile 15	Asp
10	Glu	Asp	Val	Tyr 20	Arg	Leu	Trp	Leu	Asp 25	Gly	Туr	Ser	Val	Thr 30	Asp	Ala
10	Val	Ala	Leu 35	Arg	Val	Arg	Ser	Gly 40	Ile	Leu	Glu	Gln	Thr 45	Gly	Ala	Thr
15	Ala	Ala 50	Val	Leu	Gln	Ser	Asp 55	Thr	Met	Asp	His	Tyr 60	Arg	Thr	Phe	His .
	Met 65	Leu	Glu	Arg	Leu	Leu 70	His	Ala	Pro	Pro	Lys 75	Leu	Leu	His	Gln	Leu 80
20	Ile	Phe	Gln	Ile	Pro 85	Pro	Ser	Arg	Gln	Ala 90	Leu	Leu	Ile	Glu	Arg 95	Tyr
25	-		Phe	100					105					110		
			Gly 115					120					125			
30		130					135					140				
35	145		Val Phe			150					155					160
33					165					170					175	Gln
40				180					185					190		Gln
			195					200					205			Met
45		210					215					220				
50	225	5				230										
	(2)	INI	FORMA													
55					(B) (D)	LENG TYPE TOPO	TH: : am LOGY	169 a ino a : li	amin acid near	o ac						
60	Me	t Al			QUEN a Va:									ı Lei	ı Pre	o Gln

	1				5					10					15	
5	Ala	Gly	Arg	Leu 20	Pro	Thr	Leu	Gln	Thr 25	Val	Arg	Tyr	Gly	Ser 30	Lys	Ala
3	Val	Thr	Arg 35	His	Arg	Arg	Val	Met 40	His	Phe	Gln	Arg	Gln 45	Lys	Leu	Met
10	Ala	Val 50	Thr	Glu	Tyr	Ile	Pro 55	Pro	Lys	Pro	Ala	Ile 60	His	Pro	Ser	Cys
	Leu 65	Pro	Ser	Pro	Pro	Ser 70	Pro	Pro	Gln	Glu	Glu 75	Ile	Gly	Leu	Ile	Arg 80
15	Leu	Leu	Arg	Arg	Glu 85	Ile	Ala	Ala	Val	Phe 90	Gln	Asp	Asn	Arg	Met 95	Ile
20	Ala	Val	Cys	Gln 100	Asn	Val	Ala	Leu	Ser 105	Ala	Glu	Asp	Lys	Leu 110	Leu	Ile
	Ala	Thr	Pro 115	Ala	Ala	Glu	Thr	Gln 120	Asp	Pro	Asp	Glu	Gly 125	Leu	Pro	Gln
25	Pro	Gly 130	Pro	Glu	Ser	Pro	Ser 135	Trp	Arg	Ile	Pro	Ser 140	Thr	Lys	Ile	Cys
	Cys 145	Pro	Phe	Leu	Trp	Gly 150	Thr	Thr	Cys	Cys	Trp 155	Ser	Val	Lys	Ser	Pro 160
30	Arg	Ser	Arg	Arg	Trp 165	Tyr	Gly	Ser	Xaa							
35	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 3	348:							
40			(i) ; (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	3 am no a lin	ino cid ear	acid		: 34	8:			
45	Met 1	Lys	Arg	Ser	Phe 5	Leu	Leu	Pro	Leu	Leu 10	Leu	Val	Gly	Phe	Leu 15	Asp
	Thr	Ala	His	Leu 20	Ile	Leu	Leu	Glu	Thr 25	Leu	Ser	Val	Cys	Leu 30	Trp	Leu
50	Pro	Ser	Leu 35	Ile	Asp	Ser	Arg	Cys 40	Val	Met	Ser					
55	(2)	INF		SEQU (ENCE	CHA ENG1	RACT	NO: ERIS 18 am	TICS uno		ls					
60			(xi)					lir PTIC		EQ I	D NC): 34	9 :			

	Met 1	Lys	Glu	Gly	Pro 5	Pro	Суѕ	Lys	Arg	His 10	His	Tyr	Tyr	Gln .	Asn (Суѕ
5	Gly	Ala	Lys	Leu 20	Leu	Val	Ser	Leu	Phe 25	Gly	Glu	Thr	Asn	Gln 30	Ile 1	His
10	Leu	Leu	Glu 35	Thr	Gln	Val	Gly	Thr 40	Glu	Lys	Gly	Gly	Glu 45	Arg	Ile '	Trp
10	Glu	Glu 50		Trp	Arg	Ile	Ser 55	Ser	Thr	Val	Leu	Phe 60	Ile	Ser	Val .	Asn
15	Ser 65		Val	Glu	Gly	Ser 70	Val	Leu	Glu	Ile	Lys 75	Leu	Phe	Tyr		
20	(2)	INF	ORMA'	SEQU)	ENCE	CHA	RACT		TICS uino		ls					
25			(xi)					lin PTIC		EQ I	D NO	: 35	0:			
	Met 1		Glu	Ile	Leu 5		Leu	Leu	Phe	Cys 10		Leu	Gly	Pro	Ala 15	Leu
30	Asp	Glu	Arg	Arg 20		Glu	Lys	Asp								
35	(2)	IN	FORMA	TION	FOF	R SEÇ) ID	NO:	351:							
40					(A) : (B) : (D) :	LENG TYPE TOPO	TH: : am LOGY	274 a ino a : li	amin acid near	o ac	ids ID NO): 3 <u>5</u>	i1:			
45		t Se: 1	r Sei	Ala		y Thi	r Ala	a Thi	r Pro	Let		Met	. Asp	His	Lys 15	
45	Th	r Se	r Glı	n Pro 20		y Ar	g Pr	o Sei	r Ph		r Cys	: Asr	Ser	Arg 30	His	Ser
50	11	e Va	1 Gl ₃		r Se	r Hi	s Gl	n Le		y Ph	e Tr) Phe	e Sei 45	r His	Leu	Glu
	Se		r Gl	y Le	u Ly	s Va		e G1: 5	n Va	l Se	r Le	ı Pro		s Glu	Cys	: Val
55		n Le	eu Pr	o Th	r Ar		e Al	a Se	r Va	l Va	1 Le		r Le	u Met	: Ser	Leu 80
60	Le	eu Va	ıl Va	1 G1		n Al 15	a Pr	o Al	a Tr		u Gl	y Se	r Le	u Lei	ı Arg	

	Arg	Pro	Ala	Gly 100	Gly	Ala	His	Leu	Cys 105	Ala	Met	Xaa	Val	Ile 110	Glu	Gly
5	Leu	Val	Val 115	Asp	Val	Gly	Glu	Arg 120	Ile	Leu	His	Gly	Gln 125	Arg	Glu	Val
	Gly	Gln 130	Val	Ser	Gln	Val	Leu 135	Pro	Ala	Leu	Ser	Leu 140	Gly	Leu	Val	Phe
10	Leu 145	Cys	Gln	Gly	Thr	Val 150	Glu	Lys	Val	Ser	Gly 155	Ala	Ala	His	Cys	Ser 160
15	Ser	Leu	Leu	Cys	Cys 165	Leu	Pro	Trp	Gln	Cys 170	Ser	Gly	Gly	Gly	Phe 175	Pro
••	Thr	Xaa	Arg	Cys 180	Ser	Arg	Pro	Tyr	Phe 185	Ser	Ser	His	Lys	Gly 190	Val	Ala
20	Ala	Thr	Leu 195	Ala	Leu	Thr	Cys	His 200	Cys	Asp	Lys	Val	His 205	Val	Ala	Gly
	Leu	Gly 210		Asp	Trp	Ala	Ile 215	Glu	Gln	Arg	Arg	Arg 220	Thr	Cys	Glu	Ser
25	Asp 225	Xaa	Glu	Xaa	Xaa	Pro 230	Phe	Thr	Leu	Ala	Gly 235	Leu	Val	Leu	Val	Leu 240
30	Arg	Phe	Cys	Gln	Val 245	Val	Leu	Val	Trp	11e 250	Pro	Gln	Leu	Gly	Asp 255	Lys
	His	Trp	Arg	Gly 260	Met	Thr	Arg	Leu	Gly 265	Arg	Val	Ser	Leu	Thr 270	Ser	Ser
35	Ile	Хаа														
40	(2)	INF		SEQU	FOR ENCE	СНА	RACT	ERIS	TICS		ls					
				1	(B) 1 (D) 1	YPE	ami	.no a	cid							
45					UENC											
	Met 1		Phe	Thr	Ser 5		Thr	Lys	Gly	Ile 10		Leu	Ile	Ala	Leu 15	Tr
50	Val	Pro	Leu	Phe 20		Phe	Met	Leu	11e 25		Ser	Ile	. Leu	Gly 30	Pro	Sei
55	Arg	Let	Leu 35		Asp	Gly	Val	Pro 40		Asn	Pro	Trp	His 45		. Xaa	
	(2)	IN	FORM	TION	FOF	R SEÇ	Q ID	NO:	353:							
60			(i)	SEO	UENCI	E CH	ARAC'	reri:	STIC:	S:						

```
(A) LENGTH: 3 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 353:
5
     Met Lys Thr
       1
10
      (2) INFORMATION FOR SEQ ID NO: 354:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 52 amino acids
15
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 354:
      Met Ser Ile Ser Gly Thr Asp Gly Leu Ile Leu Leu Val Gly Leu
20
      Glu Ala Xaa Val Arg Ser Ser Lys Lys Trp Ile Pro Lys Ala Leu Xaa
                   20
      Val Thr Gln Ala Lys Trp Asn Ser Trp Pro Ser Arg Arg Asn Ala Gly
25
                                  40
      Phe Ala Leu His
           50
30
      (2) INFORMATION FOR SEQ ID NO: 355:
35
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 132 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 355:
40
      Met Glu His Cys Leu Tyr His Ser Val His Gly Ile Asn Pro Tyr Ile
                       5
       His Lys Asn Thr His Pro Ser Ile Asn Ile Tyr Met Val Trp Asp Glu
45
                                       25
       Gln Val Asn Ser Phe Glu Arg Glu Phe Val Pro Phe Phe Leu Ile
       Ile Leu Leu Asn Cys Cys Gln Leu Ser Asn Lys Gln Thr Glu Lys Leu
 50
                                55
       Phe Gly Lys Thr Leu His Thr Pro Phe Leu Ser Ser Ala Leu Lys Tyr
 55 -
       Arg Leu Asn Thr His Ile Leu Pro Val Phe Ser Tyr Ser Asp Ser Ile
                                            90
                        85
       Leu Thr Cys His Leu Ile Leu Ala Ser Tyr Phe Ser His Val Tyr Leu
 60
                                       105
```

Pro Val Thr Cys Ile Cys Tyr Leu Asn Arg Lys Lys Asn Ile Gln Lys 120 Lys Lys Asn Xaa 130 10 (2) INFORMATION FOR SEQ ID NO: 356: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 204 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356: Met Gly Ser Arg Asp His Leu Phe Lys Val Leu Val Val Gly Asp Ala 20 Ala Val Gly Lys Thr Ser Leu Val Gln Asp Tyr Ser Gln Asp Ser Phe 20 25 Ser Lys His Tyr Lys Ser Thr Val Gly Val Asp Phe Ala Leu Lys Val 25 Leu Gln Trp Ser Asp Tyr Glu Ile Val Arg Leu Gln Leu Trp Asp Ile 30 Ala Gly Gln Glu Arg Phe Thr Ser Met Thr Arg Leu Tyr Tyr Arg Asp 70 Ala Ser Ala Cys Val Ile Met Phe Asp Val Thr Asn Ala Thr Thr Phe 35 Ser Asn Ser Gln Arg Trp Lys Gln Asp Leu Asp Ser Lys Leu Thr Leu 105 Pro Asn Gly Glu Pro Val Pro Cys Leu Leu Leu Ala Asn Lys Cys Asp 40 120 Leu Ser Pro Trp Ala Val Ser Arg Asp Gln Ile Asp Arg Phe Ser Lys 130 45 Glu Asn Gly Phe Thr Gly Trp Thr Glu Thr Ser Val Lys Glu Asn Lys 155 150 Asn Ile Asn Glu Ala Met Arg Val Leu Ile Glu Lys Met Met Arg Asn 50 Ser Thr Glu Asp Ile Met Ser Leu Ser Thr Gln Gly Asp Tyr Ile Asn 185 Leu Gln Thr Lys Ser Ser Ser Trp Ser Cys Cys Xaa 55 195

(2) INFORMATION FOR SEQ ID NO: 357:

			(i) :	(I	A) L1 3) T	ENGTI YPE :	H: 4'	7 am.	ino a cid		\$					
5			(xi)	SEQU				line MOITS		Q II	NO:	357	:			
-				_											21 1	
	Met 1	Ile	Ser	Leu	Ile 5	Phe	GIn	Leu	GIu	10	GIU	ьуs .	Leu	vai (15	Lys
10	Phe	Phe	Phe	Phe 20	Leu	Phe	Phe	Phe	Leu 25	Lys	Lys	Gly	Ser	Gln (30	Gly :	Ser
15	Asn	Leu	Lys 35	Ile	Val	Pro	Arg	His 40	Met	Arg	Val	Val	Leu 45	Arg (Gly	
	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO: 3	358:							
20			(i)	(A) L B) T	ENGT YPE :	H: 7 ami	ERIS 3 am no a lin	ino cid		5					
			(xi)	SEQ	- •					EQ II	ON C	: 358	3:			
25	Met		Тут	Val	Thr 5	Cys	Leu	His	Val	Cys 10	Leu	Leu	Val	Glu	Phe 15	Leu
30	Asn	Ser	Gln	Leu 20	Thr	Asn	His	Arg	Lys 25	Tyr	Tyr	Phe	Leu	Ser 30	Tyr	Gly
	Phe	Trp	Phe 35	Thr	Gly	Leu	Arg	Gly 40	Phe	Ser	Glu	Tyr	Leu 45	Trp	Pro	Gln
35	Glr	His		Ser	Phe	His	Pro 55		Arg	Asn	Glu	Ile 60	Asn	Phe	Val	Ser
40	Thr	_	Asr	n Arg	Ile	Trp 70		Thr	Xaa							
	(2)) IN	FORM	ATION	FOF	SEÇ	D.	NO:	359:							
45			(i)		(A) : (B) :	LENG TYPE	TH: : am	TERIS 102 a ino a : li	amin acid		ids					
50			(xi) SE(QUEN(CE D	ESCR	IPTI(ON: S	SEQ I	D NO	D: 35	9:		•	
50		t Se 1	r As	p Glr		a Ala 5	a Ly:	s Pro	Sei	Thr 10		ı Asp	Leu	Gly	Asp 15	
55	Ly	s Gl	u Gl	y Gla		r Il	e Ly	s Lei	u Ly:		l Ile	e Gly	Gln	Asp 30		Ser
	G1	u Il		s Ph	e Ly	s Va	l Ly	s Me 4		r Thi	r Hi	s Lev	Lys 45		Leu	Lys
60	Gl	u Se	er Ty	т Су	s Gl	n Ar	g Gl	n Gl	y Va	l Pr	o Me	t Asr	n Sei	Leu	a Arg	Phe

		50					55					60				
, 5	Leu 1	Phe	Glu	Gly	Gln	Arg 70	Ile	Ala	Asp	Asn	His 75	Thr	Pro	Lys	Glu	Leu 80
3	Gly 1	Met	Glu	Glu	Glu 85	Asp	Val	Ile	Glu	Val 90	Tyr	Gln	Glu	Gln	Thr 95	Gly
10	Gly 1	His	Ser	Thr 100	Val	Xaa										
15	(2).				ENCE A) L	CHAI	RACTI H: 4	ERIS. 8 am	rics ino		s					
					•			no a lin								
20			(xi)	SEQ	JENC	E DE	SCRI	PTIO	N: S1	EQ II	ON C	: 360):			
	Met 1	Gly	Phe	Pro	Gln 5	Trp	His	Leu	Gly	Asn 10	His	Ala	Val	Glu	Pro 15	Val
25	Thr	Ser	Ile	Leu 20	Leu	Leu	Phe	Leu	Leu 25	Met	Met	Leu	Gly	Val 30	Arg	Gly
30	Leu	Leu	Leu 35	Val	Gly	Leu	Val	Tyr 40	Leu	Val	Ser	His	Leu 45	Ser	Gln	Arg
35	(2)	INF	ORMA	rion	FOR	SEQ	ו מו	NO: 3	361:							
40				(A) L B) T D) T	ENGI YPE : OPOI	H: 1 ami OGY:	79 a no a lin	mino cid ear	aci		: 36	1:			
45	Met 1	Ser	Ala	Glu	Val 5	Lys	Val	Thr	Gly	Gln 10	Asn	Gln	Glu	Gln	Phe 15	
	Leu	Leu	Ala	Lys 20	Ser	Ala	Ĺys	Gly	Ala 25	Ala	Leu	Ala	Thr	Leu 30	Ile	His
50	Gln	Val	Leu 35		Ala	Pro	Gly	Val 40		Val	Phe	Gly	Glu 45		Leu	Asp
55	Met	Pro 50		Val	Arg	Glu	Leu 55		Glu	Ser	Asp	Phe 60	Ala	Ser	Thr	Phe
JJ	Arg 65	Leu	Leu	Thr	Val	Phe 70		Tyr	Gly	Thr	Тух 75		Asp	Tyr	Leu	Ala 80
60	Glu	Ala	Arg) Asn	Leu 85		Pro	Leu	Thr	Glu 90		Gln	Lys	Asn	Lys 95	Leu

	Arg His	Leu	Ser 100	Val	Val	Thr	Leu	Ala 105	Ala	Lys	Val	Lys	Cys 110	Ile	Pro
5	Tyr Ala	Val 115	Leu	Leu	Glu	Ala	Leu 120	Ala	Leu	Arg	Asn	Val 125	Arg	Gln	Leu
10	Glu Asp		Val	Ile	Glu	Ala 135	Val	Tyr	Ala	Asp	Val 140	Leu	Arg	Gly	Ser
10	Leu Asp 145	Gln	Arg	Asn	Gln 150	Arg	Leu	Glu	Val	Asp 155	Tyr	Ser	Ile	Gly	Arg 160
15	Asp Ile	: Gln	Arg	Gln 165	Asp	Leu	Ser	Ala	Ile 170	Ala	Arg	Thr	Leu	Xaa 175	Lys
	Asn His	: Xaa													
20	(O) The		mro)	ron	CEO.	TD.	N∕∩.	362.							
25	(2) INI	(i)	SEQU	ENCE (A) L (B) T	CHA ENCT YPE:	RACT H: 2 ami	ERIS 25_am ino a : lir	TICS nino ncid near	acio		o: 36	2:			
30	Met Ly:				Leu					Leu			Phe	Ile 15	His
35	Ser Hi	s Asp	Leu 20		Gly	Leu	Cys	Arg 25							
40	(2) IN	(i)	SEQ	UENCE (A) I (B) '	E CHA LENG LYPE L'OPOI	LRACT I'H: : am LOGY	reris 224 ino : li	STICS amin acid near	S: o ac		- 7				
45	Met Ly 1) SE	a Ala						ı His			t Ala	a Gly	y Leu 5
50	Ser Se	er Se	r Ly		ı Sei	r Me	t Se	r Ly:		a Le	u Pr	o Le	u Thi		s Val
	Val G		n As 5	p Ala	а Ту	r Th		a Pr O	o Al	a Le	u Pr	o Se 4		r Il	e Arg
55	Thr L	ys Al 50	a Le	u Th	r As		t Se	r Ar	g Th	r Le	u Va 6		n Ly	s Gl	u Glu
60	Pro P	ro Ly	's Gl	u Le		o Al O	a Al	a Gl	u Pr		1 Le	u Se	er Pr	o Le	u Glu 80

	Gly	Thr	Lys	Met	Thr 85	Val	Asn	Asn	Leu	His 90	Pro	Arg	Val	Thr	Glu 95	Glu
5	Asp	Ile	Val	Glu 100	Leu	Phe	Cys	Val	Суs 105	Gly	Ala	Leu	Lys	Arg 110	Ala	Arg
	Leu	Val	His 115	Pro	Gly	Val	Ala	Glu 120	Val	Val	Phe	Val	Lys 125	Lys	Asp	Asp
10	Ala	Ile 130	Thr	Ala	Tyr	Lys	Lys 135	Tyr	Asn	Asn	Arg	Cys 140	Leu	Asp	Gly	Gln
15	145		Lys			150					155					160
	Gln	Pro	Ile	Leu	Leu 165	Arg	Leu	Ser	Asp	Ser 170	Pro	Ser	Met	Lys	Lys 175	Glu
20	Ser	Glu	Leu	Pro 180	Arg	Arg	Val	Asn	Ser 185	Ala	Ser	Ser	Ser	Asn 190	Pro	Pro
	Ala	Glu	Val 195	Asp	Pro	Asp	Thr	Ile 200	Leu	Lys	Ala	Leu	Phe 205	Lys	Ser	Ser
25	Gly	Ala 210	Ser	Xaa	Thr	Thr	Gln 215	Pro	Thr	Glu	Phe	Lys 220	Ile	Lys	Leu	Xaa
30																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 3	364:							
35			(i)	(A) L B) T	ENGT YPE:	H: 3 ami	ERIS' 49 a no a lin	mino cid		ds					
40				SEQ	UENC	E DE	SCRI	PTIO	N: S							
	Met 1		Lys	Asn	Cys 5	Ile	Lys	Leu	Leu	Суs 10	Glu	Asp	Pro	Val	Phe 15	Ala
45	Glu	Тух	Ile	Lys 20		Ile	Leu	Met	Asp 25	Glu	Arg	Thr	Phe	Leu 30	Asn	Asn
	Asn	lle	val 35		Thr	Phe	Met	Thr 40		Phe	Leu	Leu	Lys 45	Val	Gln	Ser
50	Gln	Val	. Phe	Ser	Glu	Ala	Asn 55		Ala	Asn	Leu	Ile 60		Thr	Leu	Ile
55	Thr 65		ı Leu	lle	Ser	Gln 70		Gln	Asn	Leu	Gln 75		Asp	Phe	Ser	Asn 80
<i>33</i>	Arg	y Val	l Glu	ılle	Ser 85		: Ala	Ser	Ala	Ser 90		Asn	Gly	Asp	Leu 95	
60	Alá	a Lei	ı Ala	Lev 100		. Leu	Ser	· Val	. His		Pro	Lys	Gln	Leu 110		Pro

	Ala	Leu	Ile 115	Pro	Thr	Leu	Gln	Glu 120	Leu	Leu	Ser	Lys	Cys 125	Arg	Thr	Cys
5	Leu	Gln 130	Gln	Arg	Asn	Ser	Leu 135	Gln	Glu	Gln	Glu	Ala 140	Lys	Glu	Arg	Lys
10	Thr 145	Lys	Asp	Asp	Glu	Gly 150	Ala	Thr	Pro	Ile	Lys 155	Arg	Arg	Arg	Val	Ser 160
	Ser	Asp	Glu	Glu	His 165	Thr	Val	Asp	Ser	Cys 170	Ile	Ser	Asp	Met	Lys 175	Thr
15	Glu	Thr	Arg	Glu 180	Val	Leu	Thr	Pro	Thr 185	Ser	Thr	Ser	Asp	Asn 190	Glu	Thr
	Arg	Asp	Ser 195	Ser	Ile	Ile	Asp	Pro 200	Gly	Thr	Glu	Gln	Asp 205	Leu	Pro	Ser
20	Pro	Glu 210	Asn	Ser	Ser	Val	Lys 215	Glu	Tyr	Arg	Met	Glu 220	Val	Pro	Ser	Ser
25	Phe 225		Glu	Asp	Met	Ser 230	Asn	Ile	Arg	Ser	Gln 235	His	Ala	Glu	Glu	Gln 240
	Ser	Asn	Asn	Gly	Arg 245	Tyr	Asp	Asp	Суѕ	Lys 250	Glu	Phe	Lys	Asp	Leu 255	His
30	Cys	Ser	Lys	Asp 260		Thr	Leu	Ala	Glu 265	Glu	Glu	Ser	Glu	Phe 270	Pro	Ser
	Thr	Ser	11e 275		Ala	Val	Leu	Ser 280	Asp	Leu	Ala	Asp	Leu 285	Arg	Ser	Cys
35	Asp	Gly 290		Ala	Leu	Pro	Ser 295		Asp	Pro	Glu	Val 300		Leu	Ser	Leu
40	Ser 305		Gly	His	Ser	Arg 310		Leu	Phe	Ser	His		Gln	Gln	His	Asp 320
	Ile	. Leu	Asp	Thr	Leu 325		Arg	Thr	Ile	Glu 330		Thr	Ile	His	Val 335	Val
45	Thr	Arg	, Ile	Ser 340		Lys	Gly	Asn	Gln 345		Ala	Ser	: Xaa	l		
50	(2) INFORMATION FOR SEQ ID NO: 365: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 467 amino acids															
55				\	(B) (D)	TYPE TOPO	: am	ino : li	acid near			0. 3	65.			
55					n Ası	o Hi		IPTIO		e Ala	a Me			ı Ala	a Arg	g Ile
60		l s Le	u Ly:	s Gl		5 r Va	1 G1	y Gl	u Pro	1 o Th		r As	p Al	a Gl		e Gln

				20					25					30		
5	His	Phe	Leu 35	Arg	Gly	Asn	Glu	Ile 40	Val	Leu	Ser	Ala	Gly 45	Ser	Thr	Pro
5	Arg	Ile 50	Gln	Gly	Leu	Thr	Val 55	Glu	Gln	Ala	Glu	Ala 60	Val	Val	Arg	Leu
10	Ser 65	Cys	Leu	Pro	Ala	Phe 70	Lys	Asp	Leu	Ile	Ala 75	Lys	Val	Gln	Ala	Asp 80
	Glu	Gln	Phe	Gly	Ile 85	Trp	Leu	Asp	Ser	Ser 90	Ser	Pro	Glu	Gln	Thr 95	Val
15	Pro	Tyr	Leu	Trp 100	Ser	Glu	Glu	Thr	Pro 105	Ala	Thr	Pro	Ile	Gly 110	Gln	Ala
20	Ile	His	Arg 115	Leu	Leu	Leu	Ile	Gln 120	Ala	Phe	Arg	Pro	Asp 125	Arg	Leu	Leu
20	Ala	Met 130	Ala	His	Met	Phe	Val 135	Ser	Thr	Asn	Leu	Gly 140	Glu	Ser	Phe	Met
25	Ser 145	Ile	Met	Glu	Gln	Pro 150	Leu	Asp	Leu	Thr	His 155	Ile	Val	Xaa	Thr	Glu 160
	Val	Lys	Pro	Asn	Thr 165	Pro	Val	Leu	Met	Cys 170	Ser	Val	Pro	Gly	Тут 175	Asp
30	Ala	Ser	Gly	His 180	Val	Glu	Asp	Leu	Ala 185	Ala	Glu	Gln	Asn	Thr 190	Gln	Ile
35	Thr	Ser	Ile 195	Ala	Ile	Gly	Ser	Ala 200	Glu	Gly	Phe	Asn	Gln 205	Ala	Asp	Lys
33	Ala	Ile 210		Thr	Ala	Val	Lys 215	Ser	Gly	Arg	Trp	Val 220	Met	Leu	Lys	Asn
40	Val 225		Leu	Ala	Pro	Gly 230	Trp	Leu	Met	Gln	Leu 235	Glu	Lys	Lys	Leu	His 240
	Ser	Leu	Gln	Pro	His 245	Ala	Cys	Phe	Arg	Leu 250	Phe	Leu	Thr	Met	Glu 255	Ile
45	Asn	Pro	Lys	Val 260	Pro	Val	Asn	Leu	Leu 265		Ala	Gly	Arg	11e 270	Phe	Val
50	Phe	Glu	Pro 275	Pro	Pro	Gly	Xaa	Lys 280		Asn	Met	Leu	Arg 285	Thr	Phe	Ser
30	Ser	1le 290		Val	Ser	Arg	1le 295		Lys	Ser	Pro	Asn 300		Arg	Ala	Arç
55	Leu 305		Phe	Leu	Leu	Ala 310	Trp	Phe	His	Ala	Ile 315		Gln	Glu	Arg	Let 320
	Arg	Туг	Ala	Pro	Leu 325		Trp	Ser	Lys	330		Glu	Phe	Gly	Glu 335	
60	Asp	Lev	ı Arg	Ser	Хаа	Cys	s Asp	Thr	· Val	Asp	Thr	Trp	Leu	Asp	Asp	Th

		340		345	350)
_	Ala Lys Gly 355	Arg Gln Asn	Ile Ser 360	Pro Asp Lys	Ile Pro Trp 365	Ser Ala
5	Leu Lys Thr 370	Leu Met Ala	Gln Ser 375	Ile Tyr Gly	Gly Arg Val	l Asp Asn
10	Glu Phe Asp 385	Gln Arg Leu 390		Thr Phe Leu 395	Glu Arg Le	u Phe Thr 400
	Thr Arg Ser	Phe Asp Ser 405	Glu Phe	Lys Leu Ala 410	Cys Lys Va	l Asp Gly 415
15	His Lys Asp	Ile Gln Met 420	Pro Asp	Gly Met Gln 425	Ala Arg Gl 43	y Val Cys 0
20	Ala Val Gly	y Gly Val Ala S	Pro Arg	His Pro Asp	Ala Leu Le 445	u Ala Gly
20	Pro Ala Gli 450	n Gln Arg Arg	g Glu Ser 455	Pro Pro Tyr	His Thr Gl 460	y Cys Gly
25	His Asp Gli 465	n				
30		ATION FOR SEC SEQUENCE CH (A) LENG	ARACTERI			
35		(B) TYPE (D) TOPC i) SEQUENCE D	E: amino DLOGY: li DESCRIPTI	acid inear :ON: SEQ ID N		
	Met Ala As	sp Glu Ala Th 5	ir Arg Ar	rg Val Val Se 10	r Glu Ile P	ro Val Leu 15
40	Lys Thr As	sn Ala Gly Pr 20	co Arg As	sp Arg Glu Le 25	u Trp Val G	30 Eln Arg Leu
45		lu Tyr Gln Se 35	•	40	45	
	50	sn Asp Trp Pl	55		00	
50	65		70		/5	00
		Glu Phe Asp I 85		. 90		,,,
55	Ile Ala V	Val Pro Glu I 100	Leu Asp (Gly Lys Thr A 105	la Lys Met	Tyr Arg Gly 110
60		Ile Cys Leu 1 115	Thr Asp I	His Phe Lys I 120	Pro Leu Trp 125	Gly Gln Glu

	Cys	Ala 130	Gln	Ile	Trp	Thr	Ser 135	Ser	Ser	His	Gly	Ser 140	Gly	Ala	Gly	Ser
5	Met 145	Xaa	Gly	Ser	Gly	Asn 150	Pro	Xaa								
10	(2)		ORMAT	SEQUI	ENCE A) L	CHAI ENGT	RACTI		rics mino		ds					
15			(xi)					line PTIO		EQ II	ONO:	: 367	7:			
	Met 1	Туг	Asp	Gly	Thr 5	Lys	Glu	Val	Pro	Met 10	Asn	Pro	Val	Lys	Ile 15	Тут
20	Gln	Val	Cys	Asp 20	Ile	Pro	Gln	Pro	Gln 25	Gly	Ser	Ile	Ile	Asn 30	Pro	Gly
25	Ser	Thr	Gly 35	Ser	Ala	Pro	Trp	Asp 40	Glu	Lys	Asp	Asn	Asp 45	Val	Asp	Glu
25	Glu	Asp 50	Glu	Glu	Asp	Glu	Leu 55	Asp	Gln	Ser	Gln	His 60	His	Val	Pro	Ile
30	Gln 65	Asp	Thr	Phe	Pro	Phe 70	Leu	Asn	Ile	Asn	Gly 75	Ser	Pro	Met	Ala	Pro 80
	Ala	Ser	Val	Gly	Asn 85	Cys	Ser	Val	Gly	Asn 90	Суз	Ser	Pro	Glu	Ala 95	Val
35	Trp	Pro	Lys	Thr 100	Glu	Pro	Leu	Glu	Met 105	Glu	Val	Pro	Gln	Ala 110	Pro	Ile
40	Gln	Pro	Phe 115	Tyr	Ser	Ser	Pro	Glu 120	Leu	Trp	Ile	Ser	Ser 125	Leu	Pro	Met
	Thr	Asp 130	Leu	Asp	Ile	Lys	Phe 135	Gln	Tyr	Arg	Gly	Lys 140	Glu	Tyr	Gly	Gln
45	Thr 145	Met	Thr	Val	Ser	Asn 150	Pro	Gln	Gly	Cys	Arg 155	Leu	Phe	Tyr	Gly	Asp 160
	Leu	Gly	Pro	Met	Pro 165		Gln	Glu	Glu	Leu 170		Gly	Pro	Val	Xaa 175	Leu
50	Glu	Gln	Val	Lys 180		Pro	Gly	Pro	Glu 185		Ile	Thr	Asn	Glu 190	Lys	Gln
55	Lys	Leu	Phe 195		Ser	Lys	Leu	Leu 200		Val	Met	Asp	Arg 205		Leu	Ile
	Leu	Glu 210	Val	Ser	Gly	His	Ala 215		Туг	Ala	Ile	Arg 220		Cys	Gln	Cys
60	Lys		Tyr	Trp	Ser	Gly 230		Cys	Ala	Pro	Ser 235		Val	Ala	Pro	Asn 240

	Leu Ile Glu Arg Gln Lys Lys Val Lys Leu Phe Cys Leu Glu Thr Phe 245 250 255
5	Leu Ser Asp Leu Ile Ala His Gln Lys Gly Gln Ile Glu Lys Gln Pro 260 265 270
10	Pro Phe Glu Ile Tyr Leu Cys Phe Gly Glu Glu Trp Pro Asp Gly Lys 275 280 285
10	Pro Leu Glu Arg Lys Leu Ile Leu Val Gln Val Ile Pro Val Val Ala 290 295 300
15	Arg Met Ile Tyr Glu Met Phe Ser Gly Asp Phe Thr Arg Ser Phe Asp 305 310 315 320
	Ser Gly Ser Val Arg Leu Gln Ile Ser Thr Pro Asp Ile Lys Asp Asn 325 330 335
20	Ile Val Ala Gln Leu Lys Gln Leu Tyr Arg Ile Leu Gln Thr Gln Glu 340 345 350
25	Ser Trp Gln Pro Met Gln Pro Thr Pro Ser Met Gln Leu Pro Pro Ala 355 360 365
	Leu Pro Pro Gln Xaa 370
30	(2) INFORMATION FOR SEQ ID NO: 368:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 83 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 368:
40	Met Gly Ser Ser Val Leu Pro Phe Cys Val Cys Val Thr Ser Pro Ser 1 5 10 15
	Leu Gly Gly Arg Cys Ile Gln Gly Arg Phe Ala Ser His Ser Lys Phe 20 25 30
45	Trp Gly Phe Gly Arg Lys Thr Ala Ser Phe Gly Ala Val Gly Glu Thr 35 40 45
50	Pro Pro Asp Gln Glu Pro Gln Lys Glu Thr Glu Pro Ala Thr Ser Ser 50 55 60
30	His Ala Arg Pro Trp Ala Arg Val Ile Gly Leu Arg Ile Trp Pro Gln 65 70 75 80
55	Pro Asn Xaa
60	(2) INFORMATION FOR SEQ ID NO: 369:

5			(i) ;	(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	l am no a lin	ino cid ear	acid		: 36	9:			
	Met 1	Leu	Leu	Ser	Val 5	Ala	Ile	Phe	Ile	Leu 10	Leu	Thr	Leu	Val	Туг 15	Ala
10	Tyr	Trp	Thr	Met 20	Xaa											
15	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	NO: 3	370:							
20			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	27 a no a lin	mino cid ear	aci		: 37	0:			
25	Met 1	Gly	Ala	Ser	Ala 5	Arg	Leu	Leu	Arg	Ala 10	Val	Ile	Met	Gly	Ala 15	Pro
23	Gly	Ser	Gly	Lys 20	Gly	Thr	Val	Ser	Ser 25	Arg	Ile	Thr	Thr	His 30	Phe	Glu
30	Leu	Lys	His 35	Leu	Ser	Ser	Gly	Asp 40	Leu	Leu	Arg	Asp	Asn 45	Met	Leu	Arg
	Gly	Thr 50	Glu	Ile	Gly	Val	Leu 55	Ala	Lys	Ala	Phe	Ile 60	Asp	Gln	Gly	Lys
35	Leu 65	Ile	Pro	Asp	Asp	Val 70	Met	Thr	Arg	Leu	Ala 75	Leu	His	Glu	Leu	Lys 80
40	Asn	Leu	Thr	Gln	Tyr 85	Ser	Trp	Leu	Leu	Asp 90	Gly	Phe	Pro	Arg	Thr 95	Leu
40	Pro	Gln	Ala	Glu 100	Ala	Leu	Asp	Arg	Ala 105	Tyr	Gln	Ile	Asp	Thr 110	Val	Ile
45	Asn	Leu	Asn 115	Val	Pro	Phe	Glu	Val 120	Ile	Lys	Gln	Arg	Leu 125	Thr	Ala	Arg
	Trp	Ile 130	His	Pro	Ala	Ser	Gly 135	Arg	Val	Tyr	Asn	Ile 140	Glu	Phe	Asn	Pro
50	Pro 145	Lys	Thr	Val	Gly	Ile 150	Asp	Asp	Leu	Thr	Gly 155	Glu	Pro	Leu	Ile	Gln 160
<i></i>	Arg	Glu	Asp	Asp	Lys 165	Pro	Glu	Thr	Val	Ile 170	Lys	Arg	Leu	Lys	Ala 175	Tyr
55	Glu	Asp	Gln	Thr 180	Lys	Pro	Val	Leu	Glu 185	Tyr	Tyr	Gln	Lys	Lys 190	Gly	Val
60	Leu	Glu	Thr 195	Phe	Ser	Gly	Thr	Glu 200	Thr	Asn	Lys	Ile	Trp 205		Tyr	Val

	Tyr Ala Phe Leu Gln Thr Lys Val Pro Gln Arg Ser Gln Lys Ala Ser 210 215 220
5	Val Thr Pro 225
10	(2) INFORMATION FOR SEQ ID NO: 371:
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 79 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371:
20	Met Phe Leu Asn Cys Glu Ile Leu Glu Tyr Cys Tyr Tyr Leu Thr Gln 1 5 10 15
	Leu Lys Ile Ser Met Gly Lys Tyr Leu Ser Ile Pro Thr Val Leu Leu 20 25 30
25	Lys Ile Ile Arg Cys Ser Ile Thr Ala Val Ser Asp Ser Ser Thr Ser 35 40 45
	Trp Ala Ile Lys Ala Gln Leu Lys Ile Glu Asn Lys Asp Leu Asp Asn 50 55 60
30	Lys Thr Ala Lys Gly Gly Gln Glu Ala Leu Thr Cys Thr Xaa 65 70 75
35	(2) INFORMATION FOR SEQ ID NO: 372:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372:
45	Met Arg Ala Val Phe Pro Cys Cys Pro Phe Leu Thr Leu Met Leu Pro 1 5 10 15 Leu Leu Glu Cys Leu Val Gly Met Ile Met Cys Tyr Leu Gly Ile Ser
	20 25 30
50	Phe Thr Asp Thr Arg Lys Thr Ala Gly Leu Lys Lys Lys Lys Lys Lys Lys 45
	Lys Xaa Xaa 50
55	(2) INFORMATION FOR SEQ ID NO: 373:
	(i) SEQUENCE CHARACTERISTICS:
60	(A) LENGTH: 61 amino acids

	(B) TYPE: amino acid(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 373:															
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 37	3:			
5	Met 1	Phe	Leu	Met	Arg 5	Met	His	Leu	Cys	Phe 10	Cys	Lys	Tyr	Cys	Суз 15	Ser
10	Phe	Ile	Val	Thr 20	Pro	Thr	Ser	Thr	Ser 25	Asn	Thr	Ala	Ser	Тут 30	Leu	Trp
10	Pro	Trp	Ile 35	Ser	Ala	Ser	Met	Ala 40	Gly	Arg	Gly	Ser	Ser 45	Trp	Ala	Cys
15	Thr	Leu 50		Ala	Val	Thr	Arg 55	Glu	Gly	Leu	Pro	Glu 60	Хаа			
20	(2)	INF	ORMA'	SEQU))	ENCE A) L B) T	CHA ENGI YPE:	RACT H: 4 ami	ERIS 0 am	TICS ino cid		s					
25			(xi)				OGY: SCRI		ear N: S	EQ I	D NO	: 37	4 :			
	Met 1		Leu	Leu	Asn 5		His	Thr	Leu	Cys 10	Phe	Val	Leu	Phe	Cys 15	Phe
30	Thr	Leu	Ser	Ile 20		Gln	Glu	Lys	Leu 25	Ala	Asn	His	Leu	Ala 30	Phe	Arg
35	Ile	Leu	Phe 35		Ile	Val	Phe	Xaa 40								
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	375:							
40			(i)	,	(A) I (B) 1	ENG!		14 ar ino a			ls					
45			(xi)	SEC	UENC	E DE	ESCRI	PTIC	N: S	EQ I	D NC): 37	5:			
43	Met 1		Ser	Gly	Gln 5		Gln	Val	Trp	Lys 10		Ala	Leu	Gln	Ala 15	Leu
50	Asp	Ser	Glu	Thr 20		. Val	Il€	e Lev	Pro 25		Met	. His	Leu	Ile 30		Ser
	Leu	a Arg	J Lev 35		His	s Asr	n Alá	Arg 40	p Pro	Cys	: Leu	Xaa	l			
55																
	(2)	IN							376:							
60			(i)	SEQ					STIC: amin		ids					

	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 376:														
5	Met Leu 1	Ile	Ser	Glu 5	Glu	Glu	Ile	Pro	Phe 10	Lys	Asp	Asp	Pro	Arg 15	Asp
10	Glu Thr	Tyr	Lys 20	Pro	His	Leu	Glu	Arg 25	Glu	Thr	Pro	Lys	Pro 30	Arg	Arg
10	Lys Ser	Gly 35	Lys	Val	Lys	Glu	Glu 40	Lys	Glu	Lys	Lys	Glu 45	Ile	Lys	Val
15	Glu Val 50					55					60				
	Glu Glu 65				70					75					80
20	Pro Arg			85					90					95	
25	Cys Glu		100					105					110		
	Gln His	115					120					125			
30	Pro His)				135					140				
2.5	Arg His 145				150					155					160
35	Cys Ala			165					170					175	
40	Ile His		180					185	•			Val	190	Dea	рец
	Val Ası	р Lys 195		nis	. Leo	LLEC	200		1111	. Adc	-				
45	(2) IN	FORM	ATION	1 FOF	R SE() ID	NO:	377 :							
50		(i)	SEQ	(A)	LENG	TH:	TERI: 29 a	mino	aci	ds					
50		(xi) SE	(D)	торо	LOGY	: li IPTI	near		ID N	o: 3	77:			
55	Met Le 1	u Pr	o Ar		g Th	r Ph	е Ту	r Ph	е Ту 1	r Ph O	e Il	e Ph	e Il	e Pho 1	e Phe 5
	Leu Al	a Se		e Tr O	p Gl	y Ph	e Th	r Le 2		g Al	a Se	r Ph	e		

	(2) INFORMATION FOR SEQ ID NO: 378:													
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 136 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 378:													
10	Met Phe Asp Ser Leu Ser Tyr Phe Lys Gly Ser Ser Leu Leu Leu Met 1 5 10 15													
15	Leu Lys Thr Tyr Leu Ser Glu Asp Val Phe Gln His Ala Val Val Leu 20 25 30													
	Tyr Leu His Asn His Ser Tyr Ala Ser Ile Gln Ser Asp Asp Leu Trp 35 40 45													
20	Asp Ser Phe Asn Glu Val Thr Asn Gln Thr Leu Asp Val Lys Arg Met 50 55 60													
	Met Lys Thr Trp Thr Leu Gln Lys Gly Phe Pro Leu Val Thr Val Gln 65 70 75 80													
25	Lys Lys Gly Lys Glu Leu Phe Ile Gln Gln Glu Arg Phe Phe Leu Asn 85 90 95													
30	Met Lys Pro Glu Ile Gln Pro Ser Asp Thr Arg Tyr Met Pro Ser Phe 100 105 110													
50	Phe Ser Cys His Leu Phe Cys Thr Leu Arg Trp Lys Tyr Phe Glu Val 115 120 125													
35	Phe Tyr Asn His Lys Phe Leu Xaa 130 135													
40	(2) INFORMATION FOR SEQ ID NO: 379: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 amino acids													
45	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 379:													
	Met Ala Trp Arg Arg Glu Pro Ala Ser Gly Leu Ala Ala Cys Trp 1 5 10 15													
50	Leu Trp Arg Cys Ser Pro Trp Pro Cys Ala Cys Pro Gly Pro Gly Ala 20 25 30													
55	Gly Leu Ser Ser Gly Ser Arg Pro Trp 35 40													
	(2) INFORMATION FOR SEQ ID NO: 380:													
60	(i) SEQUENCE CHARACTERISTICS:													

(A) LENGTH: 468 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 380:															
5	Met Glu I												Gln 1	Leu (15	Glu
10	Gln Ile (20					25					30		
	Glu Glu I	Met S	Ser (Gly :	Leu '	Tyr	Ser 40	Pro	Val	Ser	Glu .	Asp 45	Ser	Thr	Val
15	Pro Gln 50	Phe (Glu i	Ala	Pro	Ser 55	Pro	Ser	His	Ser	Ser 60	Ile	Ile	qzA	Ser
20	Thr Glu 65	Tyr :	Ser (Gln	Pro 70	Pro	Gly	Phe	Ser	Gly 75	Ser	Ser	Gln	Thr	Lys 80
20	Lys Gln	Pro '	Trp.	Tyr 85	Asn	Ser	Thr	Leu	Ala 90	Ser	Arg	Arg	Lys	Arg 95	Leu
25	Thr Ala		100					105					110		
	Ser Arg	11e 115	Ser	Asp	Asp	Ser	Arg 120	Thr	Ala	Ser	Gln	Leu 125	Asp	Glu	Phe
30	Gln Glu 130	Cys	Leu	Ser	Lys	Phe 135		Arg	Tyr	Asn	Ser 140	Val	Arg	Pro	Leu
35	Ala Thr 145				150					155					100
33	Ser Ser	lle	Glu	Phe 165		Arg	Asp	Cys	170	Tyr)	Phe	Ala	Ile	Ala 175	Gly
40	Val Thr	Lys	Lys 180		Lys	(Val	Туг	Glu 185	1 Ty 7	r Asp	Thr	Val	11e	Gln	. Asp
	Ala Val	. Asp 195		His	Тут	Pro	Glu 200		n Gl	u Met	: Thr	205	Asn	Sex	Lys
45	Ile Ser 210		Ile	Ser	Tr	Se:		r Ty	r Hi	s Ly:	s Asr 220	ı Lev	ı Lev	ı Alá	a Ser
50	Ser Ası 225	у Туг	Glu	Gly	7 Thi 23		1 11	e Le	u Tr	p As 23	p Gly 5	y Pho	e Thi	r Gly	y Gln 240
30	Arg Se	r Lys	s Val	1 Ty:		n Gl	u Hi	s Gl	u Ly 25	s Ar 30	g Cy	s Tr	p Se	r Va 25	l Asp 5
55	Phe As	n Lei	u Me		p Pr	o Ly	rs Le	u Le 26	eu A:	la Se	er Gl	y Se	r As 27	p As O	p Ala
	Lys Va	1 Ly: 27		u Tr	p Se	er Th	nr As 28	sn Le 30	eu A	sp As	sn Se	er Va 28	1 Al 15	a Se	r Ile
60	43 -3	•	1	~ Ac	. W	.1 ~	ve C	, s V	al L	vs P	ne Se	er Pr	ro Se	er Se	er Arg

		290)				295					300				
5	Тут 305	His	Leu	Ala	Phe	Gly 310	Cys	Ala	Asp	His	Cys 315	Val	His	Tyr	туг	Asp 320
J	Leu	Arg	Asn	Thr	Lys 325	Gln	Pro	Ile	Met	Val 330	Phe	Lys	Gly	His	Arg 335	Lys
10	Ala	Val	Ser	Тут 340	Ala	Lys	Phe	Val	Ser 345	Gly	Glu	Glu	Ile	Val 350	Ser	Ala
	Ser	Thr	Asp 355	Ser	Gln	Leu	Lys	Leu 360	Trp	Asn	Val	Gly	Lys 365	Pro	Tyr	Cys
15	Leu	Arg 370	Ser	Phe	Lys	Gly	His 375	Ile	Asn	Glu	Lys	Asn 380	Phe	Val	Gly	Leu
20	Ala 385	Ser	Asn	Gly	Asp	Туг 390	Ile	Ala	Cys	Gly	Ser 395	Glu [°]	Asn	Asn	Ser	Leu 400
	Tyr	Leu	Tyr	Tyr	Lys 405	Gly	Leu	Ser	Lys	Thr 410	Leu	Leu	Thr	Phe	Lys 415	Phe
25	Asp	Thr	Val	Lys 420	Ser	Val	Leu	Asp	Lys 425	Asp	Arg	Lys	Glu	Asp 430	Asp	Thr
	Asn	Glu	Phe 435	Val	Ser	Ala	Val	Cys 440	Trp	Arg	Ala	Leu	Pro 445	Asp	Gly	Glu
30	Ser	Asn 450	Val	Leu	Ile	Ala	Ala 455	Asn	Ser	Gln	Gly	Thr 460	Ile	Lys	Val	Leu
35	Glu 465	Leu	Val	Xaa												
	(2)	INFO	ORMAT	CION	FOR	SEQ	ID N	10: 3	81:							
10			(i) 5	- (2	A) LI	NGTI	i: 2	ERIST 9 ami	ino a		5					
1 5			(xi)					line TION		EQ II	NO:	: 381	l:			
	Met 1	Arg	Lys	Glu	Asp 5	Gly	Phe	Trp	Phe	Phe 10	Phe	Phe	Leu	Phe	Phe 15	Phe
50	Val	Val	Gly	Ser 20	Lys	Phe	Val	Asn	Gly 25	Asn	Lys	Leu	Val			
55	(2)	INFO	ORMAT	CION	FOR	SEQ	ID N	ю: 3	82:							
			(i) S	(1	A) LI B) T	ENGTI (PE :	f: 2: ami	ERIST 9 am: no ac	ino a		5					
60			(xi)					line TION		EQ II	NO:	: 382	2 :			

	Met 1	Pro	Leu	Ala	Pro 5	Tyr	Cys	Asp	Leu	Leu 10	Val	Ala	Leu	Ser	Phe 15	Ala
5	Leu	Val	Leu	Glu 20	Ser	Pro	Val	Asp	Ser 25	Ser	Asp	Phe	Thr			
														,		
10	(2)							10: 3								
15				- (. ()	A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS 38 a no a lin PTIO	mino cid ear	aci		: 38	3 :			
	Met													Cys	Ala	Thr
20	1				5					10					15	
	His	Phe	Gly	Glu 20	Pro	Leu	Glu	Lys	Val 25	Ala	Ser	Val	Gly	Asn 30	Ser	Arg
25	Pro	Thr	Gly 35	Gln	Gln	Leu	Glu	Ser 40	Leu	Gly	Leu	Leu	Ala 45	Pro	Gly	Glu
	Gln	Ser 50		Pro	Cys	Thr	G1u 55	Arg	Lys	Pro	Ala	Ala 60	Thr	Ala	Arg	Leu
30	Ser 65	Arg	Arg	Gly	Thr	Ser 70	Leu	Ser	Pro	Pro	Pro 75	Glu	Ser	Ser	Gly	Ser 80
35	Pro	Gln	Gln	Pro	G1y 85	Leu	Ser	Ala	Pro	His 90	Ser	Arg	Gln	Ile	Pro 95	Ala
	Pro	Gln	Gly	Ala 100		Leu	Val	Gln	Arg 105		Lys	Asp	Leu	Pro 110	Asn	Tyr
40	Asn	Trp	Asn 115		Phe	Gly	Leu	Arg 120		Gly	Lys	Arg	Glu 125		Ala	Pro
	Gly	Asn 130		Gly	Arg	Ser	Ala 135	Gly	Arg	Gly						
45																
	(2)	INF						NO: TERIS		٠.						
50			(1)	_	(A) 1 (B) 1	LENG: IYPE	TH: : am	74 ar ino a	mino acid		ds					
			(xi					: li:		SEQ :	ID NO	D: 38	34:			
55	Met 1		c Cys	s Ph∈	e Ile		Sei	. Xaa	Asp	Ser 10		s Ile	e Ļeu	n His	Leu 15	Leu
60	Val	l Vai	l Sei	r Phe		e Cys	s Xaa	a Lev	ı Phe		ı Le	ı Ile	e Lei	1 Thi 30		Gly

	Ile	Leu	11e 35	Leu	Arg	Xaa	Phe	Phe 40		Val	Xaa	Xaa	His 45	Ser	Leu	Lys
5	Asn	Asn 50	Leu	Glu	Glu	тут	Leu 55		Leu	Met	Asn	Lys 60	Ala	Leu	Leu	Thr
	Arg 65		Asp	Phe	Phe	Val 70	Leu	Pro	Xaa	Ala						
10																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	385:							
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	21 a no a lin	mino cid ear	: aci EQ I		: 38	5:			
20	Met 1	Ser	Ala	Gly	Glu 5	Val	Glu	Arg	Leu	Val 10	Ser	Glu	Leu	Ser	Gly 15	Gly
25	Thr	Gly	Gly	Asp 20	Glu	Glu	Glu	Glu	Trp 25	Leu	Тут	Gly	Asp	Glu 30	Asn	Glu
	Val	Glu	Arg 35	Pro	Glu	Glu	Glu	Asn 40	Ala	Ser	Ala	Asn	Pro 45	Pro	Ser	Gly
30	Ile	Glu 50	Asp	Glu	Thr	Ala	Glu 55	Asn	Gly	Val	Pro	Lys 60	Pro	Lys	Val	Thr
	Glu 65	Thr	Glu	Asp	Asp	Ser 70	Asp	Ser	Asp	Ser	Asp 75	Asp	Asp	Glu	Asp	Asp 80
35	Val	His	Val	Thr	Ile 85	Gly	Asp	Ile	Lys	Thr 90	Gly	Ala	Pro	Gln	Туг 95	Gly
40	Ser	Tyr	Gly	Thr 100	Ala	Pro	Val	Asn	Leu 105	Asn	Ile	Lys	Thr	Gly 110	Gly	Arg
	Val	Tyr	Gly 115	Thr	Thr	Gly	Thr	Lys 120	Val	Lys	Gly	Val	Asp 125	Leu	Asp	Ala
45	Pro	Gly 130	Ser	Ile	Asn	Gly	Val 135	Pro	Leu	Leu	Glu	Val 140	Asp	Leu	Asp	Ser
	Phe 145	Glu	Asp	Lys	Pro	Trp 150	Arg	Lys	Pro	Gly	Ala 155	Asp	Leu	Ser	Asp	Туг 160
50	Phe	Asn	Tyr	Gly	Phe 165	Asn	Glu	Asp	Thr	Trp 170	Lys	Ala	Tyr	Cys	Glu 175	Lys
55	Gln	Lys	Arg	Ile 180	Arg	Met	Gly	Leu	Glu 185	Val	Ile	Pro	Val	Thr 190	Ser	Thr
	Thr	Asn	Lys 195	Ile	Thr	Val	Gln	Gln 200	Gly	Arg	Thr	Gly	Asn 205	Ser	Glu	Lys
60	Glu	Thr 210	Ala	Leu	Pro	Ser	Thr 215	Lys	Ala	Glu	Phe	Thr 220	Ser	Pro	Pro	Ser

	Leu 225	Phe	Lys	Thr	Gly	Leu 230	Pro	Pro	Ser	Arg	Arg 235	Leu	Pro	Gly	Ala	Ile 240
5	Asp	Val	Ile	Gly	Gln 245	Thr	Ile	Thr	Ile	Ser 250	Arg	Val	Glu	Gly	Arg 255	Arg
10	Arg	Ala	Asn	Glu 260	Asn	Ser	Asn	Ile	Gln 265	Val	Leu	Ser	Glu	Arg 270	Ser	Ala
10	Thr	Glu	Val 275	Asp	Asn	Asn	Phe	Ser 280	Lys	Pro	Pro	Pro	Phe 285	Phe	Pro	Pro
15	Gly	Ala 290	Pro	Pro	Thr	His	Leu 295	Pro	Pro	Pro	Pro	Phe 300	Leu	Pro	Pro	Pro.
	Pro 305	Thr	Val	Ser	Thr	Ala 310	Pro	Pro	Leu	Ile	Pro 315	Pro	Pro	Gly	Phe	Pro 320
20	Pro	Pro	Pro	Gly	Ala 325	Pro	Pro	Pro	Ser	Leu 330	Ile	Pro	Thr	Ile	Glu 335	Ser
25	Gly	His	Ser	Ser 340	Gly	Tyr	Asp	Ser	Arg 345	Ser	Ala	Arg	Ala	Phe 350	Pro	Tyr
23	Gly	Asn	Val 355	Ala	Phe	Pro	His	Leu 360	Pro	Gly	Ser	Ala	Pro 365	Ser	Trp	Pro
30	Ser	Leu 370	Val	Asp	Thr	Ser	Lys 375	Gln	Trp	Asp	Tyr	Tyr 380	Ala	Arg	Arg	Glu
	Lys 385		Arg	Asp	Arg	Glu 390	Arg	Asp	Arg	Asp	Arg 395	Glu	Arg	Asp	Arg	Asp 400
35	Arg	Asp	Arg	Glu	Arg 405	Glu	Arg	Thr	Arg	Glu 410	Arg	Glu	Arg	Glu	Arg 415	Asp
40	His	Ser	Pro	Thr 420		Ser	Val	Phe	Asn 425		Asp	Glu	Glu	Arg 430	Tyr	Arg
40	Тут	Arg	Glu 435		Ala	Glu	Arg	Gly 440	Tyr	Glu	Arg	His	Arg 445		Ser	Arg
45	Glu	Lys 450		Glu	Arg	His	Arg 455		Arg	Arg	His	Arg 460		Lys	Glu	Glu
	Thr 465		His	Lys	Ser	Ser 470		Ser	Asn	Ser	Arg 475		Arg	His	Glu	Ser 480
50	Glu	Glu	Gly	Asp	Ser 485		: Arg	Arg	His	490		: Lys	. Lys	s Ser	Lys 495	Arg
55	Ser	Lys	Glu	1 Gly 500		Glu	ı Ala	Gly	Ser 505		Pro	Ala	Pro	510		Glu
55	Ser	Thi	Glu 515		Thr	Pro	Ala	520		a						

	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	386:							
5				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	.37 a .no a lin	mino cid ear	aci		: 38	6:			
10	Met 1	Asn	Ser	Arg	Gly 5	Ile	Trp	Leu	Ala	Туг 10	Ile	Ile	Leu	Val	Gly 15	Leu
	Leu	His	Met	Val 20	Leu	Leu	Ser	Ile	Pro 25	Phe	Phe	Ser	Ile	Pro 30	Val	Val
15	Trp	Thr	Leu 35	Thr	Asn	Val	Ile	His 40	Asn	Leu	Ala	Thr	Tyr 45	Val	Phe	Leu
20	His	Thr 50	Val	Lys	Gly	Thr	Pro 55	Phe	Glu	Thr	Pro	Asp 60	Gln	Gly	Lys	Ala
	Arg 65	Leu	Leu	Thr	His	Trp 70	Glu	Gln	Met	Asp	Туг 75	Gly	Leu	Gln	Phe	Thr 80
25	Ser	Ser	Arg	Lys	Phe 85	Leu	Ser	Ile	Ser	Pro 90	Ile	Val	Leu	Tyr	Leu 95	Leu
	Ala	Ser	Phe	Тут 100	Thr	Lys	Tyr	Asp	Ala 105	Ala	His	Phe	Leu	Ile 110	Asn	Thr
30	Ala	Ser	Leu 115	Leu	Ser	Val	Leu	Leu 120	Pro	Lys	Leu	Pro	Gln 125	Phe	His	Gly
35	Val	Arg 130	Val	Phe	Gly	Ile	Asn 135	Lys	Tyr							
10	(2)			rion												
Ю			(1) :	(A) L B) T	ENGI YPE :	H: 1 ami		mino cid		ds					
15			(xi)	SEQ	-					EQ II	ONO:	: 38′	7 :			
	Met 1	Ala	Ala	Gln	Lys 5	Asp	Gln	Gln	Lys	Asp 10	Ala	Glu	Ala	Glu	Gly 15	Leu
50	Ser	Gly	Thr	Thr 20	Leu	Leu	Pro	Lys	Leu 25	Ile	Pro	Ser	Gly	Ala 30	Gly	Arg
	Glu	Trp	Leu 35	Glu	Arg	Arg	Arg	Ala 40	Thr	Ile	Arg	Pro	Trp 45	Ser	Thr	Phe
55	Val	Asp 50	Gln	Gln	Arg	Phe	Ser 55	Arg	Pro	Arg	Asn	Leu 60	Gly	Glu	Leu	Cys
60	Gln 65	Arg	Leu	Val	Arg	Asn 70	Val	Glu	Tyr	Tyr	Gln 75	Ser	Asn	Tyr	Val	Phe 80

	Val	Phe	Leu	Gly	Leu 85	Ile	Leu	Туг	Cys	Val 90	Val	Thr	Ser	Pro	Met 95	Leu
5	Leu	Val	Ala	Leu 100	Ala	Val	Phe	Phe	Gly 105	Ala	Cys	Tyr		Leu 110	Tyr	Leu
	Arg	Thr	Leu 115	Glu	Ser	Lys	Leu	Val 120	Leu	Phe	Gly	Arg	Glu 125	Val	Ser	Pro
10	Ala	His 130	Gln	Тут	Ala	Leu	Ala 135	Gly	Gly	Ile	Ser	Phe 140	Pro	Phe	Phe	Trp
15	Leu 145	Ala	Gly	Ala	Gly	Ser 150	Ala	Val	Phe	Trp	Val 155	Leu	Gly	Ala	Thr	Leu 160
13	Val	Val	Ile	Gly	Ser 165	His	Ala	Ala	Phe	His 170	Gln	Ile	Glu	Ala	Val 175	Asp
20	Gly	Glu	Glu	Leu 180	Gln	Met	Glu	Pro	Val 185	Xaa						
25	(2)	INF	ORMA'	SEQU (ENCE A) L	CHA ENGT	RACT H: 1	NO: : ERIS ami no a	TICS no a							
30			(xi)	(D) T	OPOL	OGY:	lin	ear	EQ I	D NO	: 38	B:			
	Met 1															
35																
40	(2)	INF		SEQU	ENCE (A) I (B) I	CHA LEINGT LYPE:	RACT TH: 2 ami	ERIS 199 a no a lir	TICS mind cid lear	aci	.ds D NO	o: 38	9:			
45	Met		Ser	Ile	Phe 5		Phe	Ala	Ile	Pro		Gly	Ser	Gly	Leu 15	Gly
50	Тут	: Ile	e Ala	Gly 20		Lys	: Val	Lys	Asp 25		Ala	Gly	Asp	Trp		Trp
50	Ala	a Let	ı Arg		Thr	Pro	Gly	Leu 40		' Val	Val	Ala	Val		Leu	. Leu
55	Phe	e Lei 50		l Val	Arg	g Glu	ı Pro		Arg	Gl)	/ Ala	Va]		Arg	His	s Ser
	As ₁		u Pro) Pro	Let	ı Asr 70		Th:	: Sei	Tr	75 75		a Asp	Leu	ı Arg	y Ala 80
60	Le	u Al	a Ar	g Ası	n Pro	Sei	r Phe	e Vai	l Le	ı Sei	c Ser	: Le	ı Gly	/ Phe	Thi	c Ala

					85					90					95	
5	Val	Ala	. Phe	Val 100		Gly	Ser	Leu	Ala 105		Trp	Ala	Pro	Ala 110		Leu
	Leu	Arg	Ser 115	Arg	Val	Val	Leu	Gly 120		Thr	Pro	Pro	Cys 125	Leu	Pro	Gly
10	Asp	Ser 130		Ser	Ser	Ser	Asp 135		Leu	Ile	Phe	Gly 140	Leu	Ile	Thr	Cys
	Leu 145		Gly	Val	Leu	Gly 150	Val	Gly	Leu	Gly	Val 155	Glu	Ile	Ser	Arg	Arg 160
15	Leu	Arg	His	Ser	Asn 165	Pro	Arg	Ala	Asp	Pro 170	Leu	Val	Суѕ	Ala	Thr 175	Gly
20	Leu	Leu	Gly	Ser 180	Ala	Pro	Phe	Leu	Phe 185	Leu	Ser	Leu	Ala	Суз 190	Ala	Arg
	Gly	Ser	Ile 195	Val	Ala	Thr	Tyr	Ile 200	Phe	Ile	Phe	Ile	Gly 205	Glu	Thr	Leu
25	Leu	Ser 210	Met	Asn	Trp	Ala	Ile 215	Val	Ala	Asp	Ile	Leu 220	Leu	Tyr	Val	Val
	Ile 225	Pro	Thr	Arg	Arg	Ser 230	Thr	Ala	Glu	Ala	Phe 235	Gln	Ile	Val	Leu	Ser 240
30	His	Leu	Leu	Gly	Asp 245	Ala	Gly	Ser	Pro	Tyr 250	Leu	Ile	Gly	Leu	Ile 255	Ser
35	Asp	Arg	Leu	Arg 260	Arg	Asn	Trp	Pro	Pro 265	Ser	Phe	Leu	Ser	Glu 270	Phe	Arg
	Ala	Leu	Gln 275	Phe	Ser	Leu	Met	Leu 280	Cys	Ala	Phe	Val	Gly 285	Ala	Leu	Gly
40	Gly	Ala 290	Leu	Pro	Gly	His	Arg 295	His	Leu	His	Xaa					
45	(2)	INFO	ORMAT	CION	FOR	SEQ	ID N	IO: 3	90:							
			(i) S	C	A) LI B) T	ENGT YPE:	H: 4	9 am: no ac	ino a cid		3					
50			(xi)		D) TY JEINCE					Q II	NO:	390):			
	Met 1	Gly	Pro	Gln	Gly 5	Trp	Val	Arg	Pro	Leu 10	Lys	Thr	Ala	Pro	Lys 15	Leu
55	Gly	Glu	Ala	Ile 20	Arg	Leu	Ile	Leu	Phe 25	Leu	Asn	Phe	Val	Lys 30	Gln	Cys
60	Ile	Ala	Ser 35	Val	Asn	Leu	Cys	Ile 40	Leu	Arg	Leu	Asn	Ile 45	Thr	Pro	Leu

Leu

60

5 (2) INFORMATION FOR SEQ ID NO: 391: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 61 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391: Met Tyr Val Asn Tyr Gly Thr Arg Asn Tyr Ser Thr Glu Gly Pro Ala 15 Ala Leu Leu Asp Gln Ala Lys Leu Ser Leu Leu Val Trp Val Leu Cys 20 Phe Val Leu Leu Phe Val Cys Phe Cys Gly Leu Ser Tyr Val Val Ile 40 Ala Gln Val Pro Val Gly Leu Leu Cys Ile Thr Glu Xaa 55 25 (2) INFORMATION FOR SEQ ID NO: 392: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 79 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 392: 35 Met Leu Trp Phe Ala Asn Phe Phe Thr Tyr Leu Phe Leu Ser Gln Ser 10 Val Ala Phe Val His Ile Ser His Ile Gly Val Arg Gln Val Asn Thr 40 Asn Cys Tyr Phe Ser Arg Lys Ser Tyr Cys Tyr Gly Ile Leu Asn Pro 45 Ile Asn Cys Ile Lys Gly Lys Ile Pro Ala Gly Arg Xaa Leu Phe Pro Phe Gly 70 50 (2) INFORMATION FOR SEQ ID NO: 393: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 393:

		1		,		5	. 61	4 111	. va.	10		1 AS	o re	и вет	1 Se	r Leu 5
5	Ph	e Lei	u Val	Let 20	ı Pro	o Ala	a Glu	ı Le	ı Ser 25		r Sei	r Thi	c Le	ı Sei 30		y Val
	Ту	r Arg	Asr 39		ı											
10																
	(2)	IN	FORMA	TION	FOR	SEÇ	ID	NO:	394:							
15				((A) I (B) 1 (D) 1	ENG TYPE TOPOI	TH: 1 ami OGY:	180 a ino a : lir	mino acid acar	aci						
20				SEQ												
20	Met 1	Ala	Gln	Ser	Arg 5	Asp	Gly	Gly	Asn	Pro 10	Phe	Ala	Glu	Pro	Ser 15	Glu
25	Leu	Asp) Asn	Pro 20	Phe	Gln	Asp	Pro	Ala 25	Val	Ile	Gln	His	Arg 30	Pro	Ser
	Arg	Gln	Tyr 35	Ala	Thr	Leu	Asp	Val 40	Tyr	Asn	Pro	Phe	Glu 45	Thr	Arg	Glu
30	Pro	Pro 50	Pro	Ala	Tyr	Glu	Pro 55	Pro	Ala	Pro	Ala	Pro 60	Leu	Pro	Pro	Pro
	Ser 65	Ala	Pro	Ser	Leu	Gln 70	Pro	Ser	Arg	Lys	Leu 75	Ser	Pro	Thr	Glu	Pro 80
35	Lys	Asn	Tyr	Gly	Ser 85	Тут	Ser	Thr	Gln	Ala 90	Ser	Ala	Ala	Ala	Ala 95	Thr
40	Ala	Glu	Leu	Leu 100	Lys	Lys	Gln	Glu	Glu 105	Leu	Asn	Arg	Lys	Ala 110	Glu	Glu
	Leu	Asp	Arg 115	Arg	Ser	Glu	Ser	Cys 120	Ser	Met	Leu	Pro	Trp 125	Xaa	Ala	Gln
45	Leu	Leu 130	Asp	Arg	Thr	Ile	Gly 135	Pro	Leu	Тут	Leu	Leu 140	Phe	Val	Gln	Phe
	Ser 145	Pro	Ala	Phe	Ser	Arg 150	Thr	Ser	Pro	Trp	Arg 155	Ser	Pro	Lys	Asn	Phe 160
50	Arg	Arg	Leu	Tyr	Pro 165	Pro	Cys	Thr	Thr	Ser 170	Gly	Cys	Ala	Ala	Arg 175	Trp
55	Xaa	Phe	Ser	Xaa 180												
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	ю: 3	95:							
60			(i) S	SEQUE	NCE	CHAF	LACTE	RTST	TCS:							

					(B) ?	TYPE	: am	ino a		aci	ds					
5			(xi)		(D) ?				near ON: S	SEQ :	ID NO	D: 39	95:			
J	Met 1	Pro	Thr	Pro	Cys 5		Ser	Leu	Pro	Ser 10		Cys	Glr	His	Arg	
10	Ile	. Thr	Met	Thr 20												
15	(2)	INF	ORMA	SEQU (ENCE A) I B) T	CHA ENGI	RACT TH: 6	ERIS 0 am	TICS nino ncid		is					
20			(xi)		D) I UENC				near N: S	EQ I	D NO	: 39	6:			. •
	Met 1		Leu	Phe	Ile 5	Pro	Leu	Ile	Phe	Phe 10	Leu	Ser	Leu	Leu	His 15	Cys
25	Gln	Ser	Lys	His 20	Pro	Ile	Gln	Met	Ser 25	Leu	Cys	Met	Cys	Val 30	Asn	Ile
30	Ser	Leu	Val 35	Trp	Ser	Pro	Val	Arg 40	Trp	Ile	Phe	Gly	Ser 45	Lys	Gly	Leu
	Phe	Ser 50	Val	His	Leu	Gln	Ser 55	Ser	Gln	Arg	Pro	Ser 60				
35	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	NO: 3	397:							
40			(i) :) (. ()	A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	52 a no a lin	mino cid ear	aci		: 39'	7:			
45	Met 1	Ala	Gly	Pro	Arg 5	Pro	Xaa	Trp	Arg	Asp 10	Gln	Leu	Leu	Phe	Met 15	Ser
	Ile	Ile	Val	Leu 20	Val	Ile	Val	Val	Ile 25	Cys	Leu	Met	Leu	Туг 30	Ala	Leu
50	Leu	Trp	Glu 35	Ala	Gly	Asn	Leu	Thr 40	Asp	Leu	Pro	Asn	Leu 45	Arg	Ile	Gly
55	Phe	Тут 50	Asn	Phe	Cys	Leu	Trp 55	Asn	Glu	Asp	Thr	Ser 60	Thr	Leu	Gln	Cys
	His 65	Gln	Phe	Pro	Glu	Leu 70	Glu	Ala	Leu	Gly	Val 75	Pro	Arg	Val	Gly	Leu 80
60	Gly	Leu	Ala	Arg	Leu 85	Gly	Val	Tyr	Gly	Ser 90	Leu	Val	Leu	Thr	Leu 95	Phe

	Ala	Pr	o G1	n Pi 10	ro Le DO	eu Le	eu Le	eu Al		ln Cy)5	ys As	sn X	aa A		lu A	rg Ala
5	Trp	Ar	g Le 11	eu Al .5	la Va	al G	ly P}	ne Le 12	eu A]	la Va	al Se	er Se	er Va		eu Le	eu Ala
10	Gly	Gl ₂ 130	y Le O	u Gl	y Le	eu Ph	ne Le 13	eu Se 15	т Ту	r Va	ıl Tr	19 As		ly Se	er Xa	a Ser
	Pro 145	Sei	r Ar	g Gl	y Le	u Gl 15		e Xa	a							
15	(2)	INF	ORM	ATIO	N FO	R SE	Q ID	NO:	398	:						
20					(A) (B) (D)	LENG TYPE TOPO	TH: : am LOGY	TERI 480 ino : li :PTI	amin acid near	o ac		D: 3:	98:			
25	Met 1	Ser	Asp	Gl _y	/ Phe	e Ası) Arg	j Ala	Pro	Gl ₃	/ Ala	Gly	/ Arg	g Gly	/ Arg	y Xaa
	Arg	Gly	Leu	Gl ₃ 20	/ Arg	Gly	/ Gly	/ Gly	Gly 25	Pro	Xaa	G1)	Gly	Gl _y		Pro
30	Xaa (Gly	Xaa 35	Xaa	Pro	Ala	Glu	Arg 40	Xaa	Arg	His	Glr	Pro 45		Glr	Pro
35	Lys i	Ala 50	Pro	Gly	Phe	Leu	Gln 55	Pro	Xaa	Pro	Leu	Arg 60		Pro	Arg	Thr
	Thr I	Pro	Pro	Pro	Gly	Ala 70	Gln	Cys	Glu	Val	Pro 75	Ala	Ser	Pro	Gln	Arg 80
40	Pro S	Ser	Arg	Pro	Gly 85	Ala	Leu	Pro	Glu	Gln 90	Thr	Arg	Pro	Leu	Arg 95	
	Pro F	Pro	Ser	Ser 100	Gln	Asp	Lys	Ile	Pro 105	Gln	Gln	Asn	Ser	Glu 110	Ser	Ala
45	Met A	la	Lys 115	Pro	Gln	Val	Val	Val 120		Pro	Val		Met 125		Lys	Leu
50	Ser V	al .30	Asn	Ala	Pro	Glu	Phe 135	Tyr	Pro	Ser	G1y	Tyr 140	Ser	Ser	Ser	Tyr
	Thr G 145	lu	Ser	туг	Glu	Asp 150	Gly	Cys	Glu	Asp	Tyr 155	Pro	Thr	Leu	Ser	Glu 160
55	Tyr V	al (Gln	Asp	Phe 165	Leu	Asn	His	Leu	Thr 170	Glu	Gln	Pro	Gly	Ser 175	Phe
	Glu T	hr (Glu	Ile 180	Glu	Gln	Phe	Ala	Glu 185	Thr	Leu	Asn	Gly	Суs 190	Val	Thr
60	Thr A	sp i	Asp	Ala	Leu	Gln	Glu	Leu	Val	Glu	Leu	Tle	ጥሎ	C1-	61 -	22-

			195					200	ı				205			
5	Thr	Ser 210	Ile	Pro	Asn	Phe	Ser 215	Tyr	Met	Gly	Ala	Arg 220		Cys	Asn	Туг
	Leu 225	Ser	His	His	Leu	Thr 230	Ile	Ser	Pro	Gln	Ser 235	Gly	Asn	Phe	Arg	Gl: 240
10	Leu	Leu	Leu	Gln	Arg 245	Cys	Arg	Thr	Glu	Tyr 250	Glu	Val	Lys	Asp	Gln 255	Ala
	Ala	Lys	Gly	Asp 260	Glu	Val	Thr	Arg	Lys 265	Arg	Phe	His	Ala	Phe 270	Val	Leu
15	Phe	Leu	Gly 275	Glu	Leu	Tyr	Leu	Asn 280	Leu	Glu	Ile	Lys	Gly 285	Thr	Asn	Gly
20	Gln	Val 290	Thr	Arg	Ala	Asp	11e 295	Leu	Gln	Val	Gly	Leu 300	Arg	Glu	Leu	Leu
	Asn 305	Ala	Leu	Phe	Ser	Asn 310	Pro	Met	Asp	Asp	A sn 315	Leu	Ile	Суѕ	Ala	Val 320
25	Lys	Leu	Leu	Lys	Leu 325	Thr	Gly	Ser	Val	Leu 330	Glu	Asp	Ala	Trp	Lys 335	Glu
	Lys	Gly	Lys	Met 340	Asp	Met	Glu	Glu	Ile 345		Gln	Arg	Ile	Glu 350	Asn	Val
30	Val	Leu	Asp 355	Ala	Asn	Cys	Ser	Arg 360	Asp	Val	Lys	Gln	Met 365	Leu	Leu	Lys
35	Leu	Val 370	Glu	Leu	Arg	Ser	Ser 375	Asn	Trp	Gly	Arg	Val 380	His	Ala	Thr	Ser
	Thr 385	Tyr	Arg	Glu	Ala	Thr 390	Pro	Glu	Asn	Asp	Pro 395	Asn	Tyr	Phe	Met	Asn 400
40	Glu	Pro	Thr	Phe	Tyr 405	Thr	Ser	Asp	Gly	Val 410	Pro	Phe	Thr	Ala	Ala 415	Asp
	Pro	Asp	Tyr	Gln 420	Glu	Lys	Tyr	Gln	Glu 425	Leu	Leu	Glu	Arg	Glu 430	Asp	Phe
1 5	Phe	Pro	Asp 435	Tyr	Glu	Glu	Asn	Gly 440	Thr	Asp	Leu	Ser	Gly 445	Ala	Gly	Asp
50	Pro	Туг 450	Leu	Asp	Asp	Ile	Asp 455	Asp	Glu	Met	Asp	Pro 460	Glu	Ile	Glu	Glu
-	Ala 465	Tyr	Glu	Lys	Phe	Cys 470	Leu	Glu	Ser	Glu	Arg 475	Lys	Arg	Lys	Gln	Xaa 480

			(i)	SEC	(A) (B)	LENC TYPE	TH: E: an	423 nino	amir acid	no ad I	ids					
5			(xi	.) SE				: li IPTI			ID N	ю: з	99:			
	Met	: G1 I	u Pr	o Ly	s Th	r Il	e Th	r As	p Al	a Le		a Se	r Se:	r Il	e Il 1	e Lys 5
10	Ser	. Va	l Le	u Pro 20	o Ası O	n Phe	e Le	u Pro	2!	r Ası	n Va	l Mei	: Le	и Ту: 3(r Asp
15			3	5				40)				45	•		l Val
	Leu	Pro 50	Ala O	a Leu	ı Lev	ı Glu	3 Glr 55	a Gly	/ His	Thr	Arg	Glr 60		Let	ı Lys	Gly
20	Leu 65	Va]	l Arg	j Ala	Trp	Thr 70	' Va]	Thr	Ala	Gly	7yr 75		Leu	Asp	Leu	His 80
	Ser	Тух	Lev	ı Leu	Gly 85	Asp	Gln	Glu	Glu	Asn 90		Asn	Ser	Ala	Asn 95	Gln
25	Gln	Val	. Asr	Asn 100	Asn	Gln	His	Ala	Arg 105	Asn	Asn	Asn	Ala	Ile 110		Val
30	Val	Gly	Glu 115	Gly	Leu	His	Ala	Ala 120	His	Gln	Ala	Ile	Leu 125	Gln	Gln	Gly
	Gly	Pro 130	Val	Gly	Phe	Gln	Xaa 135	Tyr	Arg	Arg	Pro	Leu 140	Asn	Phe	Pro	Leu
35	Arg 145	Ile	Phe	Leu	Leu	Ile 150	Val	Phe	Met	Cys	Ile 155	Thr	Leu	Leu	Ile	Ala 160
	Ser	Leu	Ile	Cys	Leu 165	Thr	Leu	Pro	Val	Phe 170	Ala	Gly	Arg	Trp	Leu 175	Met
40	Ser	Phe	Trp	Thr 180	Gly	Thr	Ala	Lys	Ile 185	His	Glu	Leu	Tyr	Thr 190	Ala	Ala
45	Cys	Gly	Leu 195	Tyr	Val	Cys	Trp	Leu 200	Thr	Ile	Arg	Ala	Val 205	Thr	Val	Met
	Val	Ala 210	Trp	Met	Pro	Gln	Gly 215	Arg	Arg	Val	Ile	Phe 220	Gln	Lys	Val	Lys
50	Glu 225	Trp	Ser	Leu	Met	Ile 230	Met	Lys	Thr	Leu	Ile 235	Val	Ala	Val	Leu	Leu 240
	Ala	Gly	Val	Val	Pro 245	Leu	Leu	Leu		Leu 250	Leu	Phe	Glu	Leu	Val 255	Ile
55	Val /	Ala	Pro	Leu 260	Arg	Val	Pro		Asp 265	Gln	Thr	Pro		Phe 270	Tyr	Pro
60	Trp (Gln	Asp 275	Trp	Ala	Leu	Gly	Val 280	Leu	His	Ala		Ile 285	Ile	Ala	Ala

	Ile	Thr 290	Leu	Met	Gly	Pro	Gln 295	Trp	Trp	Leu	Lys	Thr 300	Val	Ile	Glu	Gln
5	Val 305	Tyr	Ala	Asn	Gly	Ile 310	Arg	Asn	Ile	Asp	Leu 315	His	Tyr	Ile	Val	Arg 320
	Lys	Leu	Ala	Ala	Pro 325	Val	Ile	Ser	Val	Leu 330	Leu	Leu	Ser	Leu	Cys 335	Val
10	Pro	Tyr	Val	Ile 340	Ala	Ser	Gly	Val	Val 345	Pro	Leu	Leu	Gly	Val 350	Thr	Ala
15	Glu	Met	Gln 355	Asn	Leu	Val	His	Arg 360	Arg	Ile	Tyr	Pro	Phe 365	Leu	Leu	Met
15	Val	Val 370	Val	Leu	Met	Ala	Ile 375	Leu	Ser	Phe	Gln	Val 380	Arg	Gln	Phe	Lys
20	Arg 385	Leu	Tyr	Glu	His	Ile 390	Lys	Asn	Asp	Lys	Tyr 395	Leu	Val	Gly	Gln	Arg 400
	Leu	Val	Asn	Tyr	Glu 405		Lys	Ser	Gly	Lys 410	Gln	Gly	Ser	Ser	Pro 415	Pro
25	Pro	Pro	Gln	Ser 420	Ser	Gln	Glu									
30	(2)		ORMAT						ioo: rics	•						
35				(A) L B) T D) T	engt Ype: Opola	H: 7 ami OGY:	8 am no a lin	ino a	acid		 : 400):			
40	Met 1	Leu	Arg	Leu	Asp 5	Ile	Ile	Asn	Ser	Leu 10	Val	Thr	Thr	Val	Phe 15	Met
,,	Leu	Ile	Val	Ser 20	Val	Leu	Ala	Leu	Ile 25	Pro	Glu	Thr	Thr	Thr 30	Leu	Thr
45	Val		Gly 35			Phe			Val	Thr					Leu	Ala
	Asp	Gly 50	Ala	Leu	Ile	Tyr	Arg 55	Lys	Leu	Leu	Phe	Asn 60	Pro	Ser	Gly	Pro
50	Tyr 65	Gln	Lys	Lys	Pro	Val 70	His	Glu	Lys	Lys	Glu 75	Val	Leu	Xaa		
55	(2)	INF	ORMA'													
			(i)	(A) L	ENGT	н: 7	4 am	rics ino		s					
60					B) T D) T											

			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 40	1:			
5	Met 1	Leu	Lys	Gln	Val 5	Met	Phe	Val	Phe	Ser 10	Gly	Met	Gly	Pro	Arg 15	Se
	His	Cys	Trp	Gly 20	Leu	Pro	Leu	His	Val 25	Ala	Pro	Leu	Cys	Arg 30	Gly	His
10	Gln	Ala	Asp 35	Ser	Ser	His	Leu	Leu 40	Pro	Leu	Lys	His	Gln 45	Gly	Ala	Tr
	Asn	Arg 50	Asn	Leu	Ala	Asn	Gln 55	Arg	His	Phe	Phe	Cys 60	Pro	Ser	Ile	Phe
15	His 65	Thr	Cys	Pro	Thr	Val 70	Leu	Phe	Phe	Xaa						
20	(2)	INF	ORMA													
25				(A) L B) T D) T	ENGT: YPE: OPOL	H: 2 ami OGY:	0 am no a lin	ino cid ear	acid		: 40	2:			
30	Ala 1	Arg	Thr	Ile	Leu 5	Val	Leu	Tyr	Leu	Ser 10	Leu	Gln	Arg	Leu	Glu 15	Asn
	Leu	Ala	Tyr	His 20												
35	(2)	INF	ORMA													
40				(A) L B) T D) T	ENGT YPE: OPOL	H: 8 ami: OGY:	7 am no a lin	ino cid ear	acid		: 40	3:			
45	Met 1	Pro	Leu	Pro	Ser 5	Val	Pro	Ile	Leu	Gly 10	Ile	Phe	Ser	Phe	Leu 15	Ile
	Pro	Ser	Ser	Gln 20	Gly	Val	Ser	Tyr	Thr 25	Lys	Leu	Pro	Ile	Ser 30	Ser	Pro
50	Gln	Tyr	Ser 35	Pro	Phe	Val	Asn	Asp 40	His	Phe	Ser	Phe	Leu 45	Asn	Pro	Phe
55	Pro	Val 50	Gln	Ile	His	Thr	Gly 55	Phe	Ala	Arg	Val	Gly 60	Ser	Tyr	Met	Glr
	Met 65	Pro	Leu	Val	His	Leu 70	Cys	Leu	Leu	Gln	Thr 75	Ser	Leu	Met	Lys	Ası 80
60	Ser	Gly	Val	Gln	Gln 85	Gly	Ser									

```
(2) INFORMATION FOR SEQ ID NO: 404:
5
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 92 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
10
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 404:
     Met Asn Ala Ala Met Val His Ile Asn Arg Ala Leu Lys Leu Ile Ile
              5
                                       10
       1
15
     Arg Leu Phe Leu Val Glu Asp Leu Val Asp Ser Leu Lys Leu Ala Val
                                    25
      Phe Met Trp Leu Met Thr Tyr Val Gly Ala Val Phe Asn Gly Ile Thr
20
     Leu Leu Ile Leu Ala Glu Leu Leu Ile Phe Ser Val Pro Ile Val Tyr
                            55
      Glu Lys Tyr Lys Thr Gln Ile Asp His Tyr Val Gly Ile Ala Arg Asp
25
      Gln Thr Lys Ser Ile Val Glu Lys Ile Pro Ser Lys
                      85
30
      (2) INFORMATION FOR SEQ ID NO: 405:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 21 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 405:
40
      Met Ala Cys Ser Cys Leu Met Ile Gln Ser Phe Ser Thr Ser Ala Leu
                                   10
      Val Leu Phe Tyr Gly
45
      (2) INFORMATION FOR SEQ ID NO: 406:
50
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 174 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 406:
55
      Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His Leu
      Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr Phe Val
60
                                       25
```

	Ser	Gly	Phe 35	Pro	Ala	Phe	Pro	Lys 40	Pro	Ser	Pro	Thr	Tyr 45	Leu	Arg	Thr
5	Ser	Ala 50	Glu	Gln	Thr	Leu	Pro 55	Leu	Leu	Leu	Pro	His 60	Leu	His	Gly	Leu
10	Cys 65	Leu	His	Gln	Pro	Leu 70	His	Leu	Gly	Phe	Thr 75	Ala	Cys	Leu	Gly	Ser 80
10	Ala	His	Ile	Leu	Gly 85	Gly	Gln	Pro	Ala	Leu 90	Pro	Ala	Val	Pro	Glu 95	Pro
15	Tyr	Ala	Gly	His 100	Cys	Gln	Arg	Pro	Leu 105	Ala	Gly	Thr	Pro	His 110	His	Ser
	Cys	His	Val 115	Gly	Pro	Ala	Asn	Arg 120	Gly	Arg	Arg	Ser	Glu 125	Ala	Trp	Val
20	Gly	Arg 130		Gln	Ala	Ala	Asn 135	Arg	Phe	Pro	Ile	Leu 140	Asn	Ala	Хаа	Cys
25	Glu 145		Arg	Thr	Pro	Ser 150	Thr	Val	Leu	Ser	Ala 155	Arg	Ile	Ser	Ser	Ala 160
	Thr	Met	Gly	Cys	Pro 165		Phe	Ala	Ile	Trp 170	Ala	Ala	Ser	Xaa		
30	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	407:							
35					(A) I (B) ! (D) !	TYPE :	TH: 6 : ami LOGY:	4 an ino a lir	nino ncid near	: ació SEQ I): 4 0)7:			
40	Met		n Phe	: Ile	e Leu		Phe	туг	Cys	Leu 10		Thr	Phe	. Leu	Ser 15	Leu
	Glu	ı Glr	n Asr	20		Thr	. Val	. Glu	Pro 25		Ser	His	Glu	11e 30	Leu	His
45	Let	ı Le	Glr 35		ı Cys	s Phe	e Glu	Let 40		a Arg	Thr	Sei	Thr 45	Ser	Glr	Cys
50	Th	r Gli		y Ilo	e Pro	o Cys	s Glr 55		TY	c Glr	n Asr	n Gly	y Leu	ı His	; Ile	e Xaa
55	(2) IN	FORM	OITA	n FO	R SE	Q ID	NO:	408	:						
(0			(i)	SEÇ	(A)		TH:	280	amir	no ac	ids					
60					(B)	TYPE	: an	1110	acic							

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 408:

5	Met Glu 1	Ala	Val	Val 5	Asn	Leu	Tyr	Gln	Glu 10	Val	Met	Lys	His	Ala 15	Asp
	Pro Arg	Ile	Gln 20	Gly	Tyr	Pro	Leu	Met 25	Gly	Ser	Pro	Leu	Leu 30	Met	Thr
10	Ser Ile	Leu 35	Leu	Thr	Tyr	Val	Тут 40	Phe	Val	Leu	Ser	Leu 45	Gly	Pro	Arg
1.5	Ile Met 50	Ala	Asn	Arg	Lys	Pro 55	Phe	Gln	Leu		Gly 60	Phe	Met	Ile	Val
15	Tyr Asn 65	Phe	Ser	Leu	Val 70	Ala	Leu	Ser	Leu	Tyr 75	Ile	Val	Tyr	Glu	Phe 80
20	Leu Met	Ser	Gly	Trp 85	Leu	Ser	Thr	Tyr	Thr 90	Trp	Arg	Cys	Asp	Pro 95	Val
	Asp Tyr	Ser	Asn 100	Ser	Pro	Glu	Ala	Leu 105	Arg	Met	Val	Arg	Val 110	Ala	Trp
25	Leu Phe	Leu 115	Phe	Ser	Lys	Phe	Ile 120	Glu	Leu	Met	Asp	Thr 125	Val	Ile	Phe
30	Ile Leu 130		Lys	Lys	Asp	Gly 135	Gln	Val	Thr	Phe	Leu 140	His	Val	Phe	His
30	His Ser 145	Val	Leu	Pro	Trp 150	Ser	Trp	Trp	Trp	Gly 155	Val	Lys	Ile	Ala	Pro 160
35	Gly Gly	Met	Gly	Ser 165	Phe	His	Ala	Met	Ile 170	Asn	Ser	Ser	Val	His 175	Val
	Ile Met	Tyr	Leu 180	Tyr	Tyr	Gly	Leu	Ser 185	Ala	Phe	Gly	Pro	Val 190	Ala	Gln
40	Pro Tyr	Leu 195		Trp	Lys	Lys	His 200		Thr	Ala	Ile	Gln 205	Leu	Ile	Gln
45	Phe Val		Val	Ser	Leu	His 215		Ser	Gln	Tyr	Туг 220	Phe	Met	Ser	Ser
43	Cys Ası 225	ı Tyr	Gln	Tyr	Pro 230		Ile	lle	His	Leu 235		Trp	Met	Tyr	Gly 240
50	Thr Ile	e Phe	Phe	Met 245		Phe	Ser	Asn	250		Туг	His	Ser	Tyr 255	
	Lys Gl	y Lys	260		Pro	Arg	Ala	265		Glr	n Asn	Gly	270		Gly
55	Ile Al	a Lys 275		. Lys	s Ala	a Asr	280								

60 (2) INFORMATION FOR SEQ ID NO: 409:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 284 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 409:															
			(xi)	SEQ	JENCI	E DES	SCRI	PTIO	V: SI	EQ II	0И С	: 40	9:			
10	Met 1	Xaa	Leu	Trp	Pro 5	Gln	Thr	Cys	Ser	Gly 10	Lys	Phe	Asp	Gly	Thr 15	Leu
10	Ala	Phe	Ser	Ile 20	His \	Xaa	Leu	Ala	Val 25	Ile	Leu	Gly	Asp	Gln 30	Leu	Thr
15	Ala	Ala	Asp 35	Leu	Val	Pro	Ile	Phe 40	Asn	Gly	Phe	Leu	Lys 45	Asp	Leu	Asp
	Glu	Val 50	Arg	Ile	Gly	Val	Leu 55	Lys	His	Leu	His	Asp 60	Phe	Leu	Lys	Leu
20	Leu 65	His	Ile	Asp	Lys	Arg 70	Arg	Glu	Tyr	Leu	Туг 75	Gln	Leu	Gln	Glu	Phe 80
25	Leu	Val	Thr	Asp	Asn 85	Ser	Arg	Asn	Trp	Arg 90	Phe	Arg	Ala	Glu	Leu 95	Ala
20	Glu	Gln	Leu	11e 100	Leu	Leu	Leu	Glu	Leu 105	Tyr	Ser	Pro	Arg	Asp 110	Val	Tyr
3 0	Asp	Туг	Leu 115	Arg	Pro	Ile	Ala	Leu 120	Asn	Leu	Cys	Ala	Asp 125	Lys	Val	Ser
	Ser	Val 130	Arg	Trp	Ile	Ser	Тут 135	Lys	Leu	Val	Ser	Glu 140	Met	Val	Lys	Lys
35	Leu 145	His	Ala	Ala	Thr	Pro 150	Pro	Thr	Phe	Gly	Val 155	Asp	Leu	Ile	Asn	Glu 160
40	Leu	Val	Glu	Asn	Phe 165	Gly	Arg	Суз	Pro	Lys 170	Trp	Ser	,Gly	Arg	Gln 175	Ala
	Phe	Val	Phe	Val 180	Cys	Gln	Thr	Val	11e 185	Glu	Asp	Asp	Суз	Leu 190	Pro	Met
45	Asp	Gln	Phe 195	Ala	Val	His	Leu	Met 200	Pro	His	Leu	Leu	Thr 205	Leu	Ala	Asn
	Asp	Arg 210	Val	Pro	Asn	Val	Arg 215		Leu	Leu	Ala	Lys 220		Leu	Arg	Gln
50	Thr 225		Leu	Glu	Lys	Asp 230		Phe	Leu	Ala	Ser 235		Ser	Cys	His	Gln 240
55	Glu	Ala	Val	Glu	Gln 245		Ile	Met	Ala	Leu 250		Met	. Asp	Arg	Asp 255	
J.	Asp	Val	. Lys	Туг 260		Ala	Ser	Ile	His 265		Ala	Ser	Thr	Lys 270		Ser
60	Glu	ı Asp	Ala 275		. Ser	Thr	Ala	Ser 280		Thr	Тут	Xaa	1			

5	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	ю: 4	10:							
3			(i) 5	()	A) LI B) T	engti YPE :	d: 1	87 ar	mino cid		ds					
10			(xi)		D) TY JENCI					EQ II	ON C	: 410) :			
	Met 1	Leu	Phe	Leu	Phe 5	Phe	Val	Ile	Ile	Phe 10	Leu	Phe	Val	Phe	Leu 15	Ile
15	Leu	Ile	Ile	Gln 20	Phe	Ser	Lys	Pro	Leu 25	Thr	Asn	Pro	His	Pro 30	Pro	Ala
20	Gly	Xaa	Ser 35	Asp	Arg	Arg	Arg	Arg 40	Tyr	Ser	Ser	Tyr	Arg 45	Ser	His	Asp
	His	Туг 50	Gln	Arg	Gln	Arg	Val 55	Leu	Gln	Lys	Glu	Arg 60	Ala	Ile	Glu	Glu
25	Arg 65	Arg	Val	Val	Phe	11e 70	Gly	Lys	Ile	Pro	Gly 75	Arg	Met	Thr	Arg	Ser 80
	Glu	Leu	Lys	Gln	Arg 85	Phe	Ser	Val	Phe	Gly 90	Glu	Ile	Glu	Glu	Cys 95	Thr
3 0	Ile	His	Phe	Arg 100	Val	Gln	Gly	Asp	Asn 105	Tyr	Gly	Phe	Val	Thr 110	Tyr	Arg
35	Tyr	Ala	Glu 115		Ala	Phe	Ala	Ala 120	Ile	Glu	Ser	Gly	His 125	Lys	Leu	Arg
	Gln	Ala 130		Glu	Gln	Pro	Phe 135	Asp	Leu	Cys	Phe	Gly 140	Gly	Arg	Arg	Xaa
40	Xaa 145		Lys	Arg	Ser	Tyr 150	Ser	Asp	Leu	Asp	Ser 155	Asn	Arg	Glu	Asp	Phe 160
	Asp	Pro	Ala	Pro	Val 165		Ser	Lys	Phe	Asp 170		Leu	Asp	Phe	Asp 175	Thr
45	Leu	Lev	ı Lys	: Gln 180		Gln	Lys	Asn	Leu 185		Arg					
50	(2)	IN	FORMA	ATION	1 FOR	SEQ	ID	NO:	411:							
			(i)	SEQ		LENG	rh:	237 a	amino		ids					
55			(xi) SE		TOPO	LOGY	ino a : li: IPTIO	near	SEQ :	ID N	o: 4 :	11:			
60		Ly.	s Lei	u Pr		y Lys	s Phe	e Arg	y Arg	J Ala		s Glr	n Gly	y Ası	n Leu 15	ı Glu

	Ser	Gln	Leu	Thr 20	Ser	Glu	Ser	Tyr	Туг 25	Lys	Glu	Thr	Leu	Ser 30	Val	Pro
5	Thr	Val	Glu 35	His	Ile	Ile	Gln	Glu 40	Leu	Lys	Asp	Ile	Phe 45	Ser	Glu	Gln
	His	Leu 50	Lys	Ala	Leu	Lys	Cys 55	Leu	Ser	Leu	Val	Pro 60	Ser	Val	Met	Gly
10	Gln 65	Leu	Lys	Phe	Asn	Thr 70	Ser	Glu	Glu	His	His 75	Ala	Asp	Met	Tyr	Arg 80
15	Ser	Asp	Leu	Pro	Asn 85	Pro	Asp	Thr	Leu	Ser 90	Ala	Glu	Leu	His	Суs 95	Тхр
	Arg	Ile	Lys	Trp 100	Lys	His	Arg	Gly	Lys 105	Asp	Ile	Glu	Leu	Pro 110	Ser	Thr
20	Ile	Tyr	Glu 115	Ala	Leu	His	Leu	Pro 120	Asp	Ile	Lys	Phe	Phe 125	Pro	Asn	Val
	Tyr	Ala 130	Leu	Leu	Lys	Val	Leu 135	Cys	Ile	Leu	Pro	Val 140	Met	Lys	Val	Glu
25	Asn 145	Glu	Arg	Tyr	Glu	Asn 150	Gly	Arg	Lys	Arg	Leu 155	Lys	Ala	Tyr	Leu	Arg 160
30	Asn	Thr	Leu	Thr	Asp 165	Gln	Arg	Ser	Ser	Asn 170	Leu	Ala	Leu	Leu	Asn 175	Ile
	Asn	Phe	Asp	Ile 180	Lys	His	Asp	Leu	Asp 185	Leu	Met	Val	Asp	Thr 190	Tyr	Ile
35	Lys	Leu	Туг 195	Thr	Xaa	Xaa	Ser	Xaa 200	Leu	Xaa	Thr	Xaa	Xaa 205	Ser	Xaa	Xaa
	Val	Glu 210	Xaa	Xaa	Xaa	Xaa	Xaa 215	Xaa	Xaa	Xaa	Xaa	Gly 220	Xaa	Xaa	Xaa	Xaa
40	Asp 225	Xaa	Xaa	Xaa	Arg	Glu 230	Lys	Ala	Val	Arg	Cys 235	Met	Xaa			
45	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	10: 4	112:							
50			(i) :	(A) L B) T	ENGT YPE:	H: 1 ami	92 a no a	mino cid		ds					
50			(xi)					lin PTIO		EQ I	D NO	: 41	2:			
55	Met 1	Lys	Pro	Met	Ala 5	Val	Val	Ala	Ser	Thr 10	Val	Leu	Gly	Leu	Val 15	Gln
	Asn	Met	Arg	Ala 20	Phe	Gly	Gly	Ile	Leu 25	Val	Val	Val	Туr	Тут 30	Val	Phe
60	Ala	Ile	Ile 35	Gly	Ile	Asn	Leu	Phe 40	Arg	Gly	Val	Ile	Val	Ala	Leu	Pro

	Gly	Asn 50	Ser	Ser	Leu	Ala	Pro 55	Ala	Asn	Gly	Ser	Ala 60	Pro	Cys	Gly	Ser
5	Phe 65	Glu	Gln	Leu	Glu	Тут 70	Trp	Ala	Asn	Asn	Phe 75	Asp	Asp	Phe	Ala	Ala 80
10	Ala	Leu	Val	Thr	Leu 85	Trp	Asn	Leu	Met	Val 90	Val	Asn	Asn	Trp	Gln 95	Val
	Phe	Leu	Asp	Ala 100	Tyr	Arg	Arg	Tyr	Ser 105	Gly	Pro	Trp	Ser	Lys 110	Ile	Tyr
15	Phe	Val	Leu 115	Trp	Trp	Leu	Val	Ser 120	Ser	Val	Ile	Trp	Val 125	Asn	Leu	Pḥe
	Leu	Ala 130	Leu	Ile	Leu	Glu	Asn 135	Phe	Leu	His	Lys	Trp 140	Asp	Pro	Arg	Ser
20	His 145	Leu	Gln	Pro	Leu	Ala 150	Gly	Thr	Pro	Glu	Ala 155	Thr	Tyr	Gln	Met	Thr 160
25	Val	Glu	Leu	Leu	Phe 165	Arg	Asp	Ile	Leu	Glu 170	Glu	Pro	Gly	Glu	Asp 175	Glu
	Leu	Thr	Glu	Arg 180	Leu	Ser	Gln	His	Pro 185	His	Leu	Trp	Leu	Cys 190	Arg	Xaa
30																
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	NO: 4	13:							
35			(i) 5					ERIST			s					
40			(xi)	(1	T (O	OPOL	OGY:	no ao line PTION	ear	EQ II	ONO:	: 413	B:			
	Asn 1	Val	Val	Val	Val 5	Ala	Phe	Gly	Leu	Ile 10	Leu	Ile	Ile	Glu	Ser 15	Leu
45	Gly	Glu	Gln	Cys 20	Pro											
50	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	√O: 4	114:							
55				() () ()	A) LI B) T D) T	ENGT YPE : OPOLA	H: 5 ami OGY:	ERIST 1 am no a 1in PTION	ino a cid ear	acid		: 414	1:			
60	Met 1	Asn	Trp	Gly	Leu 5	Ser	Ile	Trp	Leu	His 10	Tyr	Tyr	Glu	Lys	Lys 15	Lys

```
Glu Gln Val Phe Leu Val Ile Leu Ala His Val Val Arg Arg Cys Ala
       Ser Asp Gly Ile Leu Gln Phe Glu Ser Ser Leu Leu Lys Met Arg Arg
  5
               35
                                 40
       Ala Pro Xaa
           50
10
       (2) INFORMATION FOR SEQ ID NO: 415:
              (i) SEQUENCE CHARACTERISTICS:
15
                     (A) LENGTH: 32 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 415:
20
      Met Leu Ile Ile Ser Leu Arg Pro Gln Phe Pro Ser Leu Ile Val Gln
      Leu Glu Cys Ser Val Leu Phe Leu Pro Ile Ser Leu Asn Leu Leu Leu
                                       25
25
30
      (2) INFORMATION FOR SEQ ID NO: 416:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 163 amino acids
35
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 416:
      Met Val Lys Val Cys Asn Asp Ser Asp Arg Trp Ser Leu Ile Ser Leu
40
      Ser Asn Asn Ser Gly Lys Asn Val Glu Leu Lys Phe Val Asp Ser Leu
                                      25
                                                         30
45
      Arg Arg Gln Phe Glu Phe Ser Val Asp Ser Phe Gln Ile Lys Leu Asp
                                  40
      Ser Leu Leu Leu Phe Tyr Glu Cys Ser Glu Asn Pro Met Thr Glu Thr
                             55
50
      Phe His Pro Thr Ile Ile Gly Glu Ser Val Tyr Gly Asp Phe Gln Glu
      Ala Phe Asp His Leu Cys Asn Lys Ile Ile Ala Thr Arg Asn Pro Glu
55
      Glu Ile Arg Gly Gly Leu Leu Lys Tyr Cys Asn Leu Leu Val Arg
                 100
                                     105
60
     Gly Phe Arg Pro Ala Ser Asp Glu Ile Lys Thr Leu Gln Arg Tyr Met
```

604

			115					120					125			
5	Cys	Ser 130	Arg	Phe	Phe	Ile	Asp 135	Phe	Ser	Asp	Ile	Gly 140	Glu	Gln	Gln	Arg
5	Lys 145	Leu	Glu	Ser	Туг	Leu 150	Gln	Asn	His	Phe	Val 155	Gly	Ile	Gly	Arg	Pro
10	Gln	Val	Хаа													
15	(2)						ID N									-
20				(A) L B) T D) T	ENGT YPE: OPOL	RACTI H: 1 ami OGY: SCRI	74 a no a lin	mino cid ear	aci		Δ1'	7 ·			
	Met	Ala												Gln	Ile	Phe
	1			-,-	5	-,,-		,		10	,	-,	_,_	52	15	• • • •
25	Glu	Glu	Asn	Arg 20	Glu	Thr	Leu	Lys	Phe 25	Tyr	Leu	Arg	Ile	Ile 30	Leu	Gly
30	Ala	Asn	Ala 35	Ile	тут	Cys	Leu	Val 40	Thr	Leu	Val	Phe	Phe 45	Tyr	Ser	Ser
	Ala	Ser 50	Phe	Trp	Ala	Trp	Leu 55	Ala	Leu	Gly	Phe	Ser 60	Leu	Ala	Val-	Tyr
35	Gly 65	Ala	Ser	Tyr	His	Ser 70	Met	Ser	Ser	Met	Ala 75	Arg	Ala	Ala	Phe	Ser 80
	Glu	Asp	Gly	Ala	Leu 85	Met	Asp	Gly	Gly	Met 90	Asp	Leu	Asn	Met	Glu 95	Gln
40	Gly	Met	Ala	Glu 100	His	Leu	Lys	Asp	Val 105	Ile	Leu	Leu	Thr	Ala 110	Ile	Val
45	Gln	Val	Leu 115	Ser	Cys	Phe	Ser	Leu 120	Тут	Val	Trp	Ser	Phe 125	Trp	Leu	Leu
	Ala	Pro 130	Gly	Arg	Ala	Leu	Тут 135	Leu	Leu	Trp	Val	Asn 140	Val	Leu	Gly	Pro
50	Trp 145		Thr	Ala	Asp	Ser 150	_	Thr	Pro	Ala	Pro 155	Glu	His	Asn	Glu	Lys 160
	Arg	Gln	Arg	Arg	Gln 165		Arg	Arg	Gln	Met 170	_	Arg	Leu	Xaa		
55																
	(2)	INF	ORMA	TION	FOR	SEQ	ID:	NO:	418:							
			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	i :						

(A) LENGTH: 50 amino acids

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 418:
     Met Glu Leu Pro Lys Gly Leu Gln Gly Val Gly Pro Val Ala Met Met
5
     Arg Pro Phe Tyr Leu Leu Pro Val Leu Cys Thr Gln Ala Leu Arg
                                      25
                  20
10
     Gln Ser Gln Gly Lys Ser Pro Leu Leu Trp Lys Arg Thr Cys Cys Leu
                                 40
     Ala Xaa
15
         50
      (2) INFORMATION FOR SEQ ID NO: 419:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 120 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
25
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 419:
      Met Leu Gly Lys Gly Gly Gly Arg Ala Gly Leu Leu Arg Tyr Arg Leu
      Leu Tyr Phe Thr Leu Val Val Gly Glu Gly Glu Pro Gly Glu Asn Lys
30
      Val Thr Ile Pro Phe Phe Glu Thr Gly Lys Lys Ile Ile Phe Cys Ser
                                  40
35
      Val Lys Met Val Glu Asn Ser Asn Val Pro Ser His Lys Gly Pro Val
                                                  60
                              55
      Pro Leu Arg Ser Glu Gln Trp Glu Leu Lys Ile Ser Glu Thr Leu Gly
40
      Glu Gly Lys Ile Gly Phe Leu Leu Ile Gly Arg Cys Ser Ser Gly Xaa
                      85
45
      Gly Gly Leu Cys Phe Cys Trp Asp Val Leu Cys Cys Met Tyr Ala Tyr
                                  105
                  100
      Met Asp Arg Ser Leu Leu Ser Leu
              115
50
      (2) INFORMATION FOR SEQ ID NO: 420:
55
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 159 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 420:
60
```

	Met	Thr	His	Leu	Leu 5	Leu	Thr	Ala	Thr	Val 10	Thr	Pro	Ser	Glu	Gln 15	Asn
5	Ser	Ser	Arg	Glu 20	Pro	Gly	Trp	Glu	Thr 25	Ala	Met	Ala	Lys	Asp 30	Ile	Leu
	Gly	Glu	Ala 35	Gly	Leu	His	Phe	Asp 40	Glu	Leu	Asn	Lys	Leu 45	Arg	Val	Leu
10	Asp	Pro 50	Glu	Val	Thr	Gln	Gln 55	Thr	Ile	Glu	Leu	Lys 60	Glu	Glu	Cys	Lys
15	Asp 65	Phe	Val	Asp	Lys	Ile 70	Gly	Gln	Phe	Gln	Lys 75	Ile	Val	Gly	Gly	Leu 80
	Ile	Glu	Leu	Val	Asp 85	Gln	Leu	Ala	Lys	Glu 90	Ala	Glu	Asn	Glu	Lys 95	Met
20	Lys	Ala	Ile	Gly 100	Ala	Arg	Asn	Leu	Leu 105	Lys	Ser	Ile	Ala	Lys 110	Gln	Arg
	Glu	Ala	Gln 115	Gln	Gln.	Gln	Leu	Gln 120	Ala	Leu	Ile	Ala	Glu 125	Lys	Lys	Met
25	Gln	Leu 130	Glu	Arg	Tyr	Arg	Val 135	Glu	Tyr	Glu	Ala	Leu 140	Cys	Lys	Val	Glu
30	Ala 145	Glu	Gln	Asn	Glu	Phe 150	Ile	Asp	Gln	Phe	Ile 155	Phe	Gln	Lys	Xaa	
35	(2)	INF		SEQU ((ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	RACT H: 1 ami OGY:	ERIS 54 a no a lin	rics mino cid ear	aci						
40	Met	Asn							N: Si Glu	-				Thr	Arg	Val
	1 Met	Asn	Ser	Arg	5 Gly	Met	Trp	Leu	Thr	10 Tyr	Ala	Leu	Gly	Val	15 Gly	Leu
45	Leu	His	Ile	20 Val	Leu	Leu	Ser	Ile	25 Pro	Phe	Phe	Ser	Val	30 Pro	Val	Ala
50	Trp			Thr	Asn	Ile		40 His	Asn	Leu	Gly		45 Tyr	Val	Phe	Leu
	His 65			Lys	Gly	Thr		Phe	Glu	Thr	Pro		Gln	Gly	Lys	Ala 80
55			Leu	Thr	His	Trp		Gln	Leu	Asp 90	Tyr		Val	Gln	Phe	Thr
60	Ser	Ser	Arg	Lys 100	Phe		Thr	Ile	Ser	Pro		· Ile	Leu	туг 110	Phe	

	Ala	Ser	Phe 115	Tyr	Thr	Lys	Tyr	Asp 120	Pro	Thr	His	Phe	Ile 125	Leu	Asn	Thr
5	Ala	Ser 130	Leu	Leu	Ser	Val	Leu 135	Ile	Pro	Lys	Met	Pro 140	Gln	Leu	His	Gly
10	Val 145	Arg	Ile	Phe	Gly	Ile 150	Asn	Lys	Tyr	Xaa						
15	(2)		(i) :	SEQUI () ()	FOR ENCE A) L B) T D) T UENC	CHAI ENGT YPE: OPOL	RACT H: 2 ami OGY:	ERIS 04 a no a lin	PICS mino cid ear	aci		: 42	2:			
20	Met 1	Val	Cys	Gly	Gly 5	Phe	Ala	Cys	Ser	Lys 10	Asn	Cys	Leu	Cys	Ala 15	Leu
25	Asn	Leu	Leu	Тут 20	Thr	Leu	Val	Ser	Leu 25	Leu	Leu	Ile	Gly	Ile 30	Ala	Ala
	Trp	Gly	Ile 35	Gly	Phe	Gly	Leu	Ile 40	Ser	Ser	Leu	Arg	Val 45	Val	Gly	Val
30	Val	Ile 50	Ala	Val	Gly	Ile	Phe 55	Leu	Phe	Leu	Ile	Ala 60	Leu	Val	Gly	Leu
35	Ile 65	Gly	Ala	Val	Lys	His 70	His	Gln	Val	Leu	Leu 75	Phe	Phe	Tyr	Met	Ile 80
					85					90					Ala 95	
40	Leu	Ala	Leu	Asn 100	Gln	Glu	Gln	Gln	Gly 105	Gln	Leu	Leu	Glu	Val 110	Gly	Trp
45			115					120					125		Asn	
45		130					135					140			Ser	
50	145					150					155				Gly	160
	Tyr	Ala	Gly	Glu	Val 165	Leu	Arg	Phe	Val	Gly 170	Gly	Ile	Gly	Leu	Phe 175	Phe
55	Ser	Phe	Thr	Glu 180	Ile	Leu	Gly	Val	Trp 185	Leu	Thr	Tyr	Arg	Туг 190	Arg	Asn
	Gln	Lys	Asp 195	Pro	Arg	Ala	Asn	Pro 200	Ser	Ala	Phe	Leu				

	(2)	INF	DRMAT	'ION	FOR	SEQ	ID N	ю: 4	23:							
5				(E	1) Li 3) T 5) T	ENGTI YPE : OPOLA	i: 6' amii OGY:	7 ami no ac line	ino a cid ear	acid		: 423	:			
10	Met 1	Leu	Gln	Ser	Ile 5	Ile	Lys	Asn	Ile	Trp 10	Ile	Pro	Met	Lys	Pro 15	Tyr
15	Tyr	Thr	Lys	Val 20	Tyr	Gln	Glu	Ile	Trp 25	Ile	Gly	Met	Gly	Leu 30	Met	Gly
	Phe	Ile	Val 35	Tyr	Lys	Ile	Arg	Ala 40	Ala	Asp	Lys	Arg	Ser 45	Lys	Ala	Leu
20	Lys	Ala 50	Ser	Ala	Pro	Ala	Pro 55	Gly	His.	His	Asn	Gln 60	Ile	Tyr	Leu	Glu
	Tyr 65	Met	Xaa													
25	(2)	INF	ORMA:	rion	FOR	SEQ	ID N	10: 4	124:							
30				(1	A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	5 am no a lin	ino a cid ear	acid		: 424	1:			
35	Met 1	Leu	Gly	Val	Ser 5	Leu	Phe	Leu	Leu	Val 10	Val	Leu	Tyr	His	туг 15	Val
40	Ala	Val	Asn	Asn 20	Pro	Lys	Lys	Gln	Glu 25							
	(2)	INF	'ORMA'	TION	FOR	SEQ	ID	NO: 4	125:							
45			(i)	(A) I B) T	ENGT YPE:	H: 2 ami	ERIS 199 a no a lin	mino cid		.đs					
50				SEQ	UENC	E DE	SCRI	PTIO	N: S	_					_	
	Met 1		ı Ala	Xaa	Glu 5		Ala	Val	Leu	Ala 10		Pro	Asn	Ser	Gly 15	Ala
55	Gly	Gly	/ Ala	Gly 20	Ala	Pro	Ser	Gly	Thr 25		Pro	Val	Leu	Phe 30		Phe
	Ser	· Val	l Phe	Ala	Arg	Pro	Ser	Ser 40		Pro	His	Gly	Ala 45	_	Tyr	Glu
60	Let	ı Leı	ı Ile	Gln	Lys	Phe	Leu	Ser	Leu	Тут	Gly	' Asp	Gln	Ile	Asp	Met

		50					55					60				
5	His 65	Arg	Lys	Phe	Val	Val 70	Gln	Leu	Phe	Ala	Glu 75	Glu	Trp	Gly	Gln	Ту:
3	Val	Asp	Leu	Pro	Lys 85	Gly	Phe	Ala	Val	Ser 90	Glu	Arg	Cys	Lys	Val 95	Arg
10	Leu	Val	Pro	Leu 100	Gln	Ile	Gln	Leu	Thr 105	Thr	Leu	Gly	Asn	Leu 110	Thr	Pro
	Ser	Ser	Thr 115	Val	Phe	Phe	Суѕ	Cys 120	Asp	Met	Gln	Glu	Arg 125	Phe	Arg	Pro
15	Ala	Ile 130	Lys	Tyr	Phe	Gly	Asp 135	Ile	Ile	Ser	Val	Gly 140	Gln	Arg	Leu	Let
20	Gln 145	Gly	Ala	Arg	Ile	Leu 150	Gly	Ile	Pro	Val	11e 155	Val	Thr	Glu	Gln	Тул 160
	Pro	Lys	Gly	Leu	Gly 165	Ser	Thr	Val	Gln	Glu 170	Ile	Asp	Leu	Thr	Gly 175	Va:
25	Lys	Leu	Val	Leu 180	Pro	Lys	Thr	Lys	Phe 185	Ser	Met	Val	Leu	Pro 190	Glu	Va:
	Glu	Ala	Ala 195	Leu	Ala	Glu	Ile	Pro 200	Gly	Val	Arg	Ser	Val 205	Val	Leu	Phe
30	Gly	Val 210	Glu	Thr	His	Val	Cys 215	Ile	Gln	Gln	Thr	Ala 220	Leu	Glu	Leu	Va]
35	Gly 225	Arg	Gly	Val	Glu	Val 230	His	Ile	Val	Ala	Asp 235	Ala	Thr	Ser	Ser	Arg 240
	Ser	Met	Met	Asp	Arg 245	Met	Phe	Ala	Leu	Glu 250	Arg	Leu	Ala	Хаа	Xaa 255	Gly
40	Ile	Ile	Val	Thr 260	Thr	Ser	Glu	Ala	Val 265	Leu	Leu	Gln	Leu	Val 270	Ala	Ası
	Lys	Asp	His 275	Pro	Lys	Phe	Lys	Glu 280	Ile	Gln	Asn	Leu	Ile 285	Lys	Ala	Se
45	Ala	Pro 290	Glu	Ser	Gly	Leu	Leu 295	Ser	Lys	Val	Xaa					
50	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	426:							
55				((A) I (B) 1	CHA LENGT TYPE:	H: 1 ami .OGY:	3 am no a lir	nino ncid near	acid		. 40	· C ·			
						E DE										
60	Met 1	-	Asp	Leu	Gly 5		Leu	Leu	Ser	Pro 10		Cys	Ser			

	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	10:4	27:							
5			(i) S	(1	A) L B) T	ENGT YPE:	H: 1 ami	98 ar no ac	mino cid		ds					
10			(xi)					line PTIO		EQ II	OM C	: 42	7:			
10	Met 1	Phe	Gly	Cys	Leu 5	Val	Ala	Gly	Arg	Leu 10	Val	Gln	Thr	Ala	Ala 15	Gln
15	Gln	Val	Ala	Glu 20	Asp	Lys	Phe	Val	Phe 25	Asp	Leu	Pro	Asp	Tyr 30	Glu	Ser
	Ile	Asn	His 35	Val	Val	Val	Phe	Met 40	Leu	Gly	Thr	Ile	Pro 45	Phe	Pro	Glu
20	Gly	Met 50	Gly	Gly	Ser	Val	Tyr 55	Phe	Ser	Tyr	Pro	Asp 60	Ser	Asn	Gly	Met
25	Pro 65	Val	Trp	Gln	Leu	Leu 70	Gly	Phe	Val ¹	Thr	Asn 75	Gly	Lys	Pro	Ser	Ala 80
	Ile	Phe	Lys	Ile	Ser 85	Gly	Leu	Lys	Ser	Gly 90	Glu	Gly	Ser	Gln	His 95	Pro
30	Phe	Gly	Ala	Met 100	Asn	Ile	Val	Arg	Thr 105	Pro	Ser	Val	Ala	Gln 110	Ile	Gly
	Ile	Ser	Val 115	Glu	Leu	Leu	Asp	Ser 120	Met	Ala	Gln	Gln	Thr 125	Pro	Val	Gly
35	Asn	Ala 130	Ala	Val	Ser	Ser	Val 135	Asp	Ser	Phe	Thr	Gln 140	Phe	Thr	Gln	Lys
40	Met 145		Asp	Asn	Phe	Тут 150	Asn	Phe	Ala	Ser	Ser 155	Phe	Ala	Val	Ser	Gln 160
	Ala	Gln	Met	Thr	Pro 165		Pro	Ser	Glu	Met 170	Phe	Ile	Pro	Ala	Asn 175	Val
45	Val	Leu	Lys	Trp 180		Glu	Asn	Phe	Gln 185		Arg	Leu	Ala	Gln 190	Asn	Pro
	Xaa	Phe	Trp 195	Xaa	Thr	Xaa										
50																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	428:							
55					(A) 1 (B) ' (D) '	LENG IYPE I'OPO	PH: 4 : am: LOGY	TERIS 47 ar ino a : lir	mino acid near	acio		D: 42	28:			
60	Met	- G1v								-				ı Pro	Ala	a Se

	1				5					10					15	
5	Ala	Gly	Val	Asn 20	Phe	Ile	Leu	Ala	Leu 25	Pro	Leu	Leu	Leu	Leu 30	Trp	Lys
J	Asn	Arg	Gly 35	Gly	Val	Gly	Arg	Ser 40	Val	Met	Ser	Ala	Val 45	Glu	Хаа	
10	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	WO: 4	129:							
15			(i) ;	SEQUI ((ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	RACT H: 3 ami OGY:	ERIS 70 a no a lin	rics mino cid ear	aci		: 42	9:			٠
20	Met 1	Lys	Lys	Val	Glu 5	Glu	Lys	Arg	Val	Asp 10	Val	Asn	Ser	Ala	Val 15	Ala
	Met	Gly	Glu	Val 20	Ile	Leu	Ala	Val	Cys 25	His	Pro	Asp	Cys	Ile 30	Thr	Thr
25	Ile	Lys	His 35	Trp	Ile	Thr	Ile	Ile 40	Arg	Ala	Arg	Phe	Glu 45	Glu	Val	Leu
30	Thr	Trp 50	Ala	Lys	Gln	His	Gln 55	Gln	Arg	Leu	Glu	Thr 60	Ala	Leu	Ser	Glu
	Leu 65	Val	Ala	Asn	Ala	Glu 70	Leu	Leu	Glu	Glu	Leu 75	Leu	Ala	Trp	Ile	Gln 80
35	Trp	Ala	Glu	Thr	Thr 85	Leu	Ile	Gln	Arg	Asp 90	Gln	Glu	Pro	Ile	Pro 95	Gln
	Asn	Ile	Asp	Arg 100	Val	Lys	Ala	Leu	Ile 105	Ala	Glu	His	Gln	Thr 110	Phe	Met
40	Glu	Glu	Met 115	Thr	Arg	Lys	Gln	Pro 120	Asp	Val	Asp	Arg	Val 125	Thr	Lys	Thr
45	Tyr	Lys 130	Arg	Lys	Asn	Ile	Glu 135	Pro	Thr	His	Ala	Pro 140	Phe	Ile	Glu	Lys
	Ser 145	Arg	Ser	Gly	Gly	Arg 150	Lys	Ser	Leu	Ser	Gln 155	Pro	Thr	Pro	Pro	Pro 160
50	Met	Pro	Ile	Leu	Ser 165	Gln	Ser	Glu	Ala	Lys 170	Asn	Pro	Arg	Ile	Asn 175	Gln
	Leu	Ser	Ala	Arg 180	Trp	Gln	Gln	Val	Trp 185	Leu	Leu	Ala	Leu	Glu 190	Arg	Gln
55	Arg	Lys	Leu 195	Asn	Asp	Ala	Leu	Asp 200	Arg	Leu	Glu	Glu	Leu 205	Lys	Glu	Phe
60	Ala	Asn 210	Phe	Asp	Phe	Asp	Val 215	Trp	Arg	Lys	Lys	Tyr 220	Met	Arg	Trp	Met

	Asn 225	His	Lys	Lys	Ser	Arg 230	Val	Met	Asp	Phe	Phe 235	Arg	Arg	Ile	Asp	Lys 240
5	Asp	Gln	Asp	Gly	Lys 245	Ile	Thr	Arg	Gln	Glu 250	Phe	Ile	Asp	Gly	Ile 255	Leu
	Ala	Ser	Lys	Phe 260	Pro	Thr	Thr	Lys	Leu 265	Glu	Met	Thr	Ala	Val 270	Ala	Asp
10	Ile	Phe	Asp 275	Arg	Asp	Gly	Asp	Gly 280	Tyr	Ile	Asp	Tyr	Тут 285	Glu	Phe	Val
15	Ala	Ala 290	Leu	His	Pro	Asn	Lys 295	Asp	Ala	Tyr	Arg	Pro 300	Thr	Thr	Asp	Ala
	Asp 305	Lys	Ile	Glu	Asp	Glu 310	Val	Thr	Arg	Gln	Val 315	Ala	Gln	Cys	Lys	Cys 320
20	Ala	Lys	Arg	Phe	Gln 325	Val	Glu	Gln	Ile	Gly 330		Asn	Lys	Tyr	Arg 335	Phe
25			Gly	340					345					350		
25	Ile	Leu	Arg 355	Asn	Arg	Asp	Gly	Ser 360	Arg	Trp	Trp	Arg	Met 365	Asp	Gly	Leu
30	Gly	Xaa 370														
35	(2)		(i)	SEQUE () () ()	ENCE A) LI B) T	CHAI ENGTI YPE: OPOLA	RACTI H: 30 amin DGY:	ERIST O ami no ac line	PICS: ino a cid ear	acids						
40	Met 1		(xi) Val											Leu	Cys 15	Cys
45	Leu	Tyr	Leu	Arg 20	Tyr	Val	Thr	Phe	Val 25	Tyr	Leu	Asn	Leu	Phe 30		
50	(2)	INFO	ORMAT	noi	FOR	SEQ	ID N	NO: 4	31:							
			(i) £	(1	A) LI B) T	ENGT YPE:	H: 2	ERIST 4 am no ao line	ino a		3					
55			(xi)	SEQ	JENCI	E DES	SCRI	PTIO	N: SI							
. 0	1		Pro		5				Val	Thr 10	Arg	Val	Arg	Gly	Ser 15	Leu
60	Gly	Asn	Thr	Gly	Arg	Trp	Leu	Leu								

5	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	432:							
10			(i) (xi)	(A) L B) T D) T	ENGT YPE : OPOL	H: 5 ami OGY:	ERIS 3 am no a lin PTIO	ino cid ear	acid		: 43	2:			
15	Met 1	His	Tyr	Leu	Val 5	Leu	Gly	Gly	Leu	Gly 10	Val	Phe	Leu	Phe	Phe 15	Ser
13	Cys	Phe	Val	Phe 20	Leu	Phe	Phe	Xaa	Phe 25	Ser	Phe	Ala	Phe	Phe 30	Pro	Phe
20	Tyr	Leu	Glu 35	Gly	Met	Gly	Gly	Ser 40	Gly	Asn	Arg	Glu	Val 45	Gly	Gly	Gly
	Phe	Cys 50	Leu	Phe	Phe											
25																
	(2)	INF	ORMAT	rion	FOR	SEQ	ID i	VO: 4	133:							
30			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	76 a no a lin	mino cid ear	aci		. 43	٦.			
			,	~~~												
35	Met	Val	Ser	Lys	Ala	Leu								Asn	Ara	Ara
35	Met 1	Val	Ser	Lys	Ala 5	Leu								Asn	Arg 15	Arg
35 40	1		Ser Lys		5		Leu	Arg	Leu	Val 10	Ser	Ala	Val		15	
	1 Arg	Met		Leu 20	5 Leu	Leu	Leu Gly	Arg Ile	Leu Ala 25	Val 10 Leu	Ser	Ala Ala	Val Tyr	Val 30	15 Ala	Ser
	1 Arg Val	Met Trp	Lys Gly	Leu 20 Asn	5 Leu Phe	Leu Val	Leu Gly Asn	Arg Ile Met 40	Leu Ala 25 Arg	Val 10 Leu Ser	Ser Leu Ile	Ala Ala Gln	Val Tyr Glu 45	Val 30 Asn	15 Ala Gly	Ser Glu
40	1 Arg Val Leu	Met Trp Lys 50	Lys Gly 35	Leu 20 Asn Glu	5 Leu Phe Ser	Leu Val Lys	Leu Gly Asn Ile 55	Arg Ile Met 40 .	Leu Ala 25 Arg Glu	Val 10 Leu Ser	Ser Leu Ile Val	Ala Ala Gln Glu 60	Val Tyr Glu 45 Pro	Val 30 Asn Leu	15 Ala Gly Arg	Ser Glu Glu
40	1 Arg Val Leu Lys 65	Met Trp Lys 50 Ile	Lys Gly 35 Ile	Leu 20 Asn Glu Asp	5 Leu Phe Ser Leu	Leu Val Lys Glu 70	Leu Gly Asn Ile 55 Lys	Arg Ile Met 40 Glu Ser	Leu Ala 25 Arg Glu Phe	Val 10 Leu Ser Met	Ser Leu Ile Val Gln 75	Ala Ala Gln Glu 60 Lys	Val Tyr Glu 45 Pro	Val 30 Asn Leu Pro	15 Ala Gly Arg Pro	Ser Glu Glu Val 80
40 45 50	1 Arg Val Leu Lys 65 Lys	Met Trp Lys 50 Ile	Lys Gly 35 Ile	Leu 20 Asn Glu Asp	5 Leu Phe Ser Leu Glu 85	Leu Val Lys Glu 70 Lys	Leu Gly Asn Ile 55 Lys	Arg Ile Met 40 . Glu Ser	Leu Ala 25 Arg Glu Phe	Val 10 Leu Ser Met Thr	Ser Leu Ile Val Gln 75	Ala Ala Glu 60 Lys	Val Tyr Glu 45 Pro Tyr	Val 30 Asn Leu Pro	15 Ala Gly Arg Pro Gly 95	Ser Glu Glu Val 80
40 45	Arg Val Leu Lys 65 Lys	Met Trp Lys 50 Ile Phe	Lys Gly 35 Ile Arg	Leu 20 Asn Glu Asp Ser Val	5 Leu Phe Ser Leu Glu 85 Gly	Leu Val Lys Glu 70 Lys	Leu Gly Asn Ile 55 Lys Asp	Arg Ile Met 40 . Glu Ser Arg	Leu Ala 25 Arg Glu Phe Lys Thr 105	Val 10 Leu Ser Met Thr Arg 90	Ser Leu Ile Val Gln 75 Ile Lys	Ala Ala Gln Glu 60 Lys Leu Leu	Val Tyr Glu 45 Pro Tyr Ile Met	Val 30 Asn Leu Pro Thr Met 110	15 Ala Gly Arg Pro Gly 95 Asp	Ser Glu Glu Val 80 Gly

	Val 145		Ser	Pro	Ser	Thr 150	Ser	Arg	Leu	Thr	Arg 155	Tyr	Thr	Ile	Trp	His 160
5	Leu	Gln	Pro	Pro	Leu 165	Gln	Thr	Thr	Cys	Ile 170	Ile	Leu	Ser	Arg	His 175	Xaa
10																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	434:							
15				(A) L B) T D) T	ENGT YPE : OPOL	H: 7 ami OGY:	7 am no a lin		acid		: 43	4:			•
20	Met 1	Leu	Arg	Cys	Trp 5	Pro	Leu	Phe	Trp	Leu 10	Pro	Leu	Val	Ser	Pro 15	Phe
25	Cys	Ser	Leu	Phe 20	Trp	Leu	Leu	Val	Glu 25	Trp	Phe	Gly	Thr	Asn 30	Ile	Asp
	Arg	Glu	Ser 35	Tyr	Asp	Ala	Ile	Gly 40	Gly	Pro	Ser	Trp	Met 45	Thr	Ala	Ser
30	Ser	Phe 50	Cys	Leu	Ser	Asn	Ser 55	Asn	Ile	Trp	Ser	Leu 60	Glu	Ile	Ser	Ser
35	Gly 65	Ser	Thr	Ser	Val	Val 70	His	Ser	Gln	Gln	Ala 75	Met	Asp			
	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 4	435 :							
40			(i)	(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	2 am no a lin	ino cid ear	acid		43	-			
45	Met	Arg	Ser						N: Si					Val	Ser	Ser
	1				5					10					15	
50	His	Val	Asp	Met 20	Val	Leu	Gly	Gly	Ser 25	Pro	Ser	Thr	Leu	Туr 30	Met	Met
55																
	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	436:							
60			(i)						TICS uno		s					

```
(B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 436:
 5
      Met Val Val Asn Ser Leu Cys Phe Leu Ser Leu Leu Leu Val Ile Leu
                                         10
      Glu Leu Ser Thr Asp Ser Ser Ala Arg Leu Leu Tyr His Glu
                  20
                              25
10
      (2) INFORMATION FOR SEQ ID NO: 437:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 69 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 437:
20
     Met Asp Lys Gln Lys His Leu Glu Val Arg Arg Ser Val Phe Lys Ile
                     5
                                         10
      Gln Gly Lys Ile Ala Phe Ser Leu Met Phe Val Leu Lys Asp Leu Ser
25
      Pro Thr Ile Phe Ser His Ser Ile Leu Leu Leu Pro His His Val
                                 40
30
      Leu Pro Cys Thr Pro Gln Met Val Arg Gly Val Thr Gln Val Leu Arg
     Glu Phe Gly Asp Gln
35
      (2) INFORMATION FOR SEQ ID NO: 438:
40
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 19 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 438:
45
     Met Pro Leu Cys Phe Phe Ser Phe Leu Cys Cys Trp Val Leu Val Phe
                      5
                                  10
     Lys Leu Ile
50
      (2) INFORMATION FOR SEQ ID NO: 439:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 43 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
60
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 439:
```

Met Lys Phe Ser Leu Val Leu Leu Ile Lys Ile Ile Ser Phe Glu Arg 10 5 Leu Leu Ile Phe Leu Phe Pro Leu Ser Phe Leu Pro Asn Ile Trp Arg Arg Val Met Val Asn Leu Asn Ile Leu Phe Xaa 35 10 (2) INFORMATION FOR SEQ ID NO: 440: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 440: 20 Met Leu Leu Phe Pro Ser Leu Leu Phe Ala Ala Thr Tyr Asn Val Ala Asn Pro Ser Arg Leu Ile Leu Tyr Met Ile Ser Ala Gly Ala Asp Ser 25 Gln 30 (2) INFORMATION FOR SEQ ID NO: 441: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 53 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 441: 40 Met Trp Gln Val Arg Gly Leu Pro Pro Val Pro Leu Leu Thr Met 10 Ser Pro Pro Pro Cys Leu Ser Ser Pro Phe Pro Phe Ile Ser Val Pro 25 45 Leu Phe Glu Ala Val Pro Ile Ser Val Ser Asp Gln Pro Ser Pro Xaa 40 Leu Thr Thr Leu Leu 50 50 (2) INFORMATION FOR SEQ ID NO: 442: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 442:

PCT/US98/04493

	Met 1	Ile	Thr	Ser	Val 5	Leu	Val	Phe	Leu	Ile 10	Phe	Phe	Phe	Pro	Туr 15	Leu
5	Ser	Leu	Val	Thr 20	Leu	Leu	Gln	Ala	Arg 25	Asn	Leu	Trp	Val	Ile 30	His	Arg
10	Ala	Ala	Leu 35	Cys	Glu	Ser	Gly	Leu 40	Phe	His	Trp	Arg	Lys 45	Gly	Ile	Glu
	Asn	Gln 50	Leu	Glu	Pro	Met	Tyr 55	Phe	Leu	Pro	His	Gly 60	Thr	Leu	Phe	Leu
15																
20	(2)			rion Sequi											ě	
25				(1	A) Li B) T D) T	ENGT YPE: OPOLA	H: 3 ami CGY:	4 am no a lin	ino a cid ear	acid		: 443	3:			
	Met 1		Tyr	Ser	Cys 5	Glu	Pro	Tyr	Leu	Ile 10	Ile	Leu	Asn	Ile	Tyr 15	Ser
30	Gln	Lys	Ala	Phe 20	Tyr	Phe	Tyr	Phe	Phe 25	Glu	Gly	Ser	Phe	Ser 30	Val	Cys
35	Thr	Leu														
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	io: 4	44:							
40		,	(i) S			NGTI	1: 89	am	ino a	cids	3					
45				SEQU		DES	CRIE	OIT): SE	~						
	1			Arg	5					10					15	
50	Leu	Ala	Gln	G1u 20	Cys	Pro	Pro	His	Ile 25	Pro	Ser	Ser	Phe	Phe 30	Leu	Val
	Lys	Leu	Leu 35	Phe	Ile	Pro	Trp	Leu 40	Ala	Ser	Leu	Leu	Ser 45	Ser	Pro	Leu
55	Asn	Leu 50	Leu	Leu	Leu	Val	Ser 55	Ile	Ser	Trp	Asp	Leu 60	Gly	Leu	Lys	Leu
50	Asn 65	Leu	Gln	Gln	Cys	Arg 70	Gln	His	Gln	Val	Leu 75	Gln	Glu	Lys	Asn	Thr 80

Lys Lys Phe Asn Lys Lys Lys Lys 85

5	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	VO:	445:							
10			(i) (xi)	(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	50 a no a lin	mino cid	aci		: 44	5 :			
15	Met 1	Asp	Phe	Ile	Thr 5	Ser	Thr	Ala	Ile	Leu 10	Pro	Leu	Leu	Phe	Gly 15	Cys
	Leu	Gly	Val	Phe 20	Gly	Leu	Phe	Arg	Leu 25	Leu	Gln	Trp	Val	Arg 30	Gly	Lys
20	Ala	Tyr	Leu 35	Arg	Asn	Ala	Val	Val 40	Val	Ile	Thr	Gly	Ala 45	Thr	Ser	Gly
25	Leu	Gly 50	Lys	Glu	Cys	Ala	Lys 55	Val	Phe	Tyr	Ala	Ala 60	Gly	Ala	Lys	Leu
23	Val 65	Leu	Cys	Gly	Arg	Asn 70	Gly	Gly	Ala	Leu	Glu 75	Glu	Leu	Ile	Arg	Glu 80
30	Leu	Thr	Ala	Ser	His 85	Ala	Thr	Lys	Val	Gln 90	Thr	His	Lys	Pro	Tyr 95	Leu
	Val	Thr	Phe	Asp 100	Leu	Thr	Asp	Ser	Gly 105	Ala	Ile	Val	Ala	Ala 110	Ala	Ala
35	Glu	Ile	Leu 115	Gln	Cys	Phe	Gly	Tyr 120	Val	Asp	Ile	Leu	Val 125	Asn	Asn	Ala
4 0	Gly	Ile 130	Ser	Tyr	Arg	Gly	Thr 135	Ile	Met	Asp	Thr	Thr 140	Val	ĄzĄ	Val	Asp
	Lys 145	Arg	Val	Met	Glu	Thr 150	Asn	Tyr	Phe	Gly	Pro 155	Val	Ala	Leu	Thr	Lys 160
45	Ala	Leu	Leu	Pro	Ser 165	Met	Ile	Lys	Arg	A rg 170	Gln	Gly	His	Ile	Val 175	Ala
	Ile	Ser	Ser	Ile 180	Gln	Gly	Lys	Met	Ser 185	Ile	Pro	Phe	Arg	Ser 190	Ala	Tyr
50	Ala	Ala	Ser 195	Lys	His	Ala	Thr	Gln 200	Ala	Phe	Phe	Asp	Cys 205	Leu	Arg	Ala
55	Glu	Met 210	Glu	Gln	Tyr	Glu	Ile 215	Glu	Val	Thr	Val	11e 220	Ser	Pro	Gly	туr
,,	Ile 225	His	Thr	Asn	Leu	Ser 230	Val	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240
60	Тут	Gly	Val	Met	Asp 245	Thr	Thr	Thr	Ala	Gln 250	Gly	Arg	Ser	Pro	Val 255	Glu

619

Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys Asp Val 260 265 5 Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu Arg Thr Leu 280 Ala Pro Gly Leu Phe Phe Ser Leu Met Pro Pro Gly Pro Glu Lys Ser 295 10 Gly Asn Pro Arg Thr Pro Ser Thr Leu Thr Ser Gln Gly Gln Gly Arg 310 315 Glu Ala Ala Leu Leu Gly Leu Leu Thr Leu Gln Gly Thr Val Ala Phe 15 Val Glu Thr Leu Met Glu Ile Cys Leu Thr Ser Gly Lys Asp 345 20 (2) INFORMATION FOR SEQ ID NO: 446: (i) SEQUENCE CHARACTERISTICS: 25 (A) LENGTH: 49 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 446: 30 Met Val Phe Leu Pro Arg Gly Val Val Val Ser Gly Gly Ala Ala Cys Leu Trp Leu Thr Phe Ile Leu Glu Thr Glu Val Tyr Leu Asp Leu Ala 35 Thr Glu Ala Arg Ala His Ser Arg Met Gly Leu Gly Leu Trp Pro Pro 40 Asn 40 (2) INFORMATION FOR SEQ ID NO: 447: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 278 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 447: Met Ala Ser Ala Glu Leu Asp Tyr Thr Ile Glu Ile Pro Asp Gln Pro 5 10 55 Cys Trp Ser Gln Lys Asn Ser Pro Ser Pro Gly Gly Lys Glu Ala Glu Thr Arg Gln Pro Val Val Ile Leu Leu Gly Trp Gly Gly Cys Lys Asp 40 60

WO 98/39448

	Lys	Asn 50	Leu	Ala	Lys	Tyr	Ser 55	Ala	Ile	Tyr	His	Lys 60	Arg	Gly	Cys	Ile
5	Val 65	Ile	Arg	Tyr	Thr	Ala 70	Pro	Trp	His	Met	Val 75	Phe	Phe	Ser	Glu	Ser 80
	Leu	Gly	Ile	Pro	Ser 85	Leu	Arg	Val	Leu	Ala 90	Gln	Lys	Leu	Leu	Glu 95	Leu
10	Leu	Phe	Asp	Туг 100	Glu	Ile	Glu	Lys	Glu 105	Pro	Leu	Leu	Phe	His 110	Val	Phe
15	Ser	Asn	Gly 115	Gly	Val	Met	Leu	Туг 120	Arg	Tyr	Val	Leu	Glu 125	Leu	Leu	Gln
	Thr	Arg 130	Arg	Phe	Cys	Arg	Leu 135	Arg	Val	Val	Gly	Thr 140	Ile	Phe	Asp	Ser
20	Ala 145	Pro	Gly	Asp	Ser	Asn 150	Leu	Val	Gly	Ala	Leu 155	Arg	Ala	Leu	Ala	Ala 160
	Ile	Leu	Glu	Arg	Arg 165	Ala	Ala	Met	Leu	Arg 170	Leu	Leu	Leu	Leu	Val 175	Ala
25	Phe	Ala	Leu	Val 180	Val	Val	Leu	Phe	His 185	Val	Leu	Leu	Ala	Pro 190	Ile	Thr
30	Ala	Xaa	Phe 195	His	Thr	His	Phe	Tyr 200	Asp	Arg	Leu	Gln	Asp 205	Ala	Gly	Ser
50	Arg	Trp 210	Pro	Glu	Leu	Tyr	Leu 215	Tyr	Ser	Arg	Ala	Asp 220	Glu	Val	Val	Leu
35	Ala 225	Arg	Asp	Ile	Glu	Arg 230	Met	Val	Glu	Ala	Arg 235	Leu	Ala	Arg	Arg	Val 240
	Leu	Ala	Arg	Ser	Val 245	Asp	Phe	Val	Ser	Ser 250	Ala	His	Val	Ser	His 255	Leu
40	Arg	Asp	Tyr	Pro 260	Thr	Тут	Tyr	Thr	Ser 265	Leu	Cys	Val	Asp	Phe 270	Met	Arg
45	Asn	Cys	Val 275	Arg	Cys	Xaa										
50	(2)	INF														
50			(1)	(A) L B) T	ENGT YPE:	H: 1 ami	.99 a			.ds					
55 ·				SEQ	UENC		SCRI	PTIC	N: S	_						
	Met 1		Phe	Ile	Phe 5		Ттр	Ile	Tyr	Ser 10	_	Phe	Ser	Ser	Val 15	
60	Gln	Phe	Leu	Gly 20		Tyr	Lys	Lys	Thr 25	_	Lys	Leu	Val	Phe 30		Gly

	Leu	Asp	Asn 35	Ala	Gly	Lys	Thr	Thr 40	Leu	Leu	His	Met	Leu 45	Lys	qzA	Asp
5	Arg	Leu 50	Gly	Gln	His	Val	Pro 55	Thr	Leu	His	Pro	Thr 60	Ser	Glu	Glu	Leu
10	Thr 65	Ile	Ala	Gly	Met	Thr 70	Phe	Thr	Thr	Phe	Asp 75	Leu	Gly	Gly	His	Val 80
10	Gln	Ala	Arg	Arg	Val 85	Trp	Lys	Asn	Tyr	Leu 90	Pro	Ala	Ile	Asn	Gly 95	Ile
15	Val	Phe	Leu	Val 100	Asp	Cys	Ala	Asp	His 105	Glu	Arg	Leu	Leu	Glu 110	Ser	Lys
	Glu	Glu	Leu 115	Asp	Ser	Leu	Met	Thr 120	Asp	Glu	Thr	Ile	Ala 125	Asn	Val	Pro
20	Ile	Leu 130	Ile	Leu	Gly	Asn	Lys 135	Ile	Asp	Arg	Pro	Glu 140	Ala	Ile	Ser	Glu
25	Glu 145	Arg	Leu	Arg	Glu	Met 150	Phe	Gly	Leu	Tyr	Gly 155	Gln	Thr	Thr	Gly	Lys 160
	Gly	Ser	Ile	Ser	Leu 165	Lys	Glu	Leu	Asn	Ala 170	Arg	Pro	Leu	Glu	Val 175	Phe
30	Met	Cys	Ser	Val 180	Leu	Lys	Arg	Gln	Gly 185	Tyr	Gly	Glu	Gly	Phe 190	Arg	Trp
	Met	Ala	Gln 195	Tyr	Ile	Asp	Xaa									
35	(2)	TNE	ODMA	TT ∩NI	EOD	SEU.	TD 1	NO ·	449.							
40	(2)	INF	ORMA' (i) (xi)	SEQU		CHA ENGT YPE: OPOL	RACT H: 2 ami OGY:	ERIS 258 a no a : lin	TICS mind cid ear	aci): 4 4	9:			
45	Met 1		Leu	Ser	Arg 5	Phe	Ala	Tyr	Asn	Gly 10		Arg	Cys	Pro	Ser 15	
50	Туг	Asn	lle	Leu 20		Asn	Ser	Lys	Ile 25		Ser	Glu	Glu	Cys 30		Lys
30	Glu	Lev	Thr 35		Leu	Leu	His	His 40		Тут	Pro	Ile	: Glu 45		Asp	Pro
55	His	Arg 50	J Thr	Val	Lys	Glu	Lys 55		Pro	His	Met	: Val		ı Trp	ттр	Thr
	Lys 65		a His	a Asr	. Lev	Let 70		s Glr	Glr	Lys	75 75		ı Lys	s Ph∈	e Glr	ı Ile 80
60	Ala	a Glr	n Val	l Val	l Arg	g Glu	ı Sei	Asr	n Ala	a Met	. Le	ı Arç	g Glu	ı G13	тут	: Lys

					85					90					95	
-	Thr	Phe	Phe	Asn 100	Thr	Leu	Tyr	His	Asn 105	Asn	Ile	Pro	Leu	Phe 110	Ile	Phe
5	Ser	Ala	Gly 115	Ile	Gly	Asp	Ile	Leu 120	Glu	Glu	Ile	Ile	Arg 125	Gln	Met	Lys
10	Val	Phe 130	His	Pro	Asn	Ile	His 135	Ile	Val	Ser	Asn	Туг 140	Met	Asp	Phe	Asn
	Glu 145		Gly	Phe	Leu	Gln 150	Gly	Phe	Lys	Gly	Gln 155	Leu	Ile	His	Thr	Tyr 160
15	Asn	Lys	Asn	Ser	Ser 165	Val	Cys	Glu	Asn	Хаа 170	Gly	Tyr	Phe	Gln	Gln 175	Leu
20	Glu	Gly	Lys	Thr 180		Va1	Ile	Leu	Leu 185	Gly	Asp	Ser	Ile	Gly 190	Asp	Leu
20	Thr	Met	Ala 195		Gly	Val	Pro	Gly 200	Val	Gln	Asn	Ile	Leu 205	Lys	Ile	Gly
25		210					215					220				
	225	5) Ile			230					235					240
30	Leu	ı Lev	ı Gln	His	245		Cys	Gln	. Gly	Val 250		Leu	Glu	Met	Gln 255	Gly
	Pro	Xaa	a.													
35																
	(2)) IN	FORM	OITA	1 FOF	R SEC) ID	NO:	4 50:							
40			(i)	SEQ	(A) (B)	E CHI LENG TYPE TOPO	TH: : am	87 a ino	mino acid	aci	ds					
45			(xi) SE		CE D				SEQ	ID N	o: 4	50:			
43		t Se 1	r Hi	s Va		u Lei 5	u Cy:	s Pro	se:	r Le		r Cy:	s Se	r Ası	n Lei	u Leu 5
50	Pr	o Pr	o Se		s Se	r Le	u Gl	y Th	r Me 2		y Se	r Le	u Se	r Pr 3		s Leu
	Сў	rs Gl		s Th	ır Me	et Cy	s Pr		1 As 0	n Pr	o Gl	u Le		o Le 5	u Se	r Ser
55	Aı		eu Th	ur Th	nr As	sp Gl		o Gl 5	n Pr	o As	p Al		s Se	er Pr	o Th	r Leu
60		eu Ti 65	hr Le	eu Pi	co Le		o Se	er Se	er Ph	ne Le		:0 Hi '5	.s S€	er Ly	rs Pr	o Thr 80

Phe Xaa His Pro Cys Ser Pro 85

5	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	ю: 4	51:							
10			(i) S (xi)	() () ()	A) LI B) T D) T	ENGTI YPE : OPOLA	H: 3: amir CGY:	15 am no ac line	nino cid ear	acio		451	.:			
15	Met 1	Phe	Ser	Ile	Asn 5	Pro	Leu	Glu	Asn	Leu 10	Lys	Val	Tyr	Ile	Ser 15	Ser
	Arg	Pro	Pro	Leu 20	Val	Val	Phe	Met	Ile 25	Ser	Val	Xaa	Pro	Met 30	Ala	Ile
20	Ala	Phe	Leu 35	Thr	Leu	Gly	Tyr	Phe 40	Phe	Lys	Ile	Lys	Glu 45	Ile	Lys	Ser
25	Pro	Glu 50	Met	Ala	Glu	Asp	Trp 55	Asn	Thr	Phe	Leu	Leu 60	Arg	Phe	Asn	Asp
25	Leu 65	Asp	Leu	Суѕ	Val	Ser 70	Glu	Asn	Glu	Thr	Leu 75	Lys	His	Leu	Thr	Asn 80
30	Asp	Thr	Thr	Thr	Pro 85	Glu	Ser	Thr	Met	Thr 90	Ser	Gly	Gln	Ala	Arg 95	Ala
	Ser	Thr	Gln	Ser 100	Pro	Gln	Ala	Leu	G1u 105	Asp	Ser	Gly	Pro	Val 110	Asn	Ile
35	Ser	Val	Ser 115	Ile	Thr	Leu	Thr	Leu 120	Asp	Pro	Leu	Lys	Pro 125	Phe	Gly	Gly
40	тут	Ser 130	Arg	Asn	Val	Thr	His 135	Leu	Tyr	Ser	Thr	11e 140	Leu	Gly	His	Gln
40	11e 145		Leu	Ser	Gly	Arg 150		Ala	His	Glu	Glu 155	Ile	Asn	Ile	Thr	Phe 160
45	Thr	Leu	Pro	Thr	Ala 165		Ser	Ser	Asp	Asp 170	Cys	Ala	Leu	His	Gly 175	His
	Cys	Glu	Gln	Val 180		Phe	Thr	Ala	Cys 185		Thr	Leu	Thr	Ala 190	Ser	Pro
50	Gly	v Val	Phe 195		Val	Thr	Val	Gln 200		Pro	His	Cys	Val 205		Asp	Thr
55	Туг	Ser 210	r Asn	Ala	Thr	: Leu	Trp 215		Lys	Ile	Phe	Thr 220		Ala	Arg	Asp
33	Ala 225		n Thr	Lys	з Туг	230		Asp	туг	. Asr	235		Tr	Cys	Туг	Lys 240
60	Gly	/ Ala	a Ile	e Gly	y Lys 245		1 Туз	His	: Alá	a Leu 250		Pro	Lys	s Leu	Thr 255	

	He	Val	Pro	260	Asp	Asp	Arg	Ser	Leu 265	Ile	Asn	Leu	His	Leu 270	Met	His
5	Thr	Ser	Туг 275	Phe	Leu	Phe	Val	Met 280	Val	Ile	Thr	Met	Phe 285	Cys	Tyr	Ala
10	Val	Ile 290	Lys	Gly	Arg	Pro	Ser 295	Lys	Leu	Arg	Gln	Ser 300	Asn	Pro	Glu	Phe
••	Cys 305	Pro	Glu	Lys	Val	Ala 310	Leu	Ala	Glu	Ala	Хаа 315					
15	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	10: 4	152:							
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	2 am no a lin	ino a cid ear	acid		: 452	2:			
25	Met 1	Pro	Gly	Leu	Ser 5	Leu	Ala	Leu	Leu	Pro 10	Phe	Gly	Pro	Gly	Cys 15	Thr
	Glu	Ala	Leu	His 20	Ala	Gly	Cys	Phe	Pro 25	Ala	Phe	Ala	Ser	Ala 30	Thr	Arg
30	Val	Asn	Gly 35	Glu	Ala	Ala	Leu	Ser 40	Pro	Gly	Leu	Cys	Asp 45	Pro	Ile	Ser
35	Val	Pro 50	Tyr	Val												
40	(2)	INF		SEQU)	ENCE (A) L (B) T	CHA ENGT YPE:	RACT H: 3 ami OGY:	ERIS 83 a no a lin	TICS mino cid ear	aci		e: 4 5	3:			
73	Met 1		Val	Gly	Gln 5		Met	Thr	Phe	Gly 10		Pro	Val	Ile	Gly 15	Cys
50	Gly	Phe	· Ile	Ser 20	_	Trp	Asn	Leu	Val 25		Met	Cys	Val	Glu 30	-	Val
	Leu	. Lev	Trp 35	-	Val	Tyr	Gln	Lys 40		Pro	Ala	Leu	Ala 45		Lys	Ala
55	Gly	Le u 50	_	Glu	Glu	Glu	Thr 55		Leu	Lys	Glr	Leu 60		. Leu	His	Lys
60	Asr 65		c Glu	Pro	Lys	Pro 70		ı Glu	Gly	Thr	His 75		Met	: Gly	Val	80

	Asp	Ser	Asn	Ile	His 85	Glu	Leu	Glu	His	Glu 90	Gln	Glu	Pro	Thr	Cys 95	Ala
5	Ser	Gln	Met	Ala 100	Glu	Pro	Phe	Arg	Thr 105	Phe	Arg	Asp	Gly	Trp 110	Val	Ser
	Tyr	Tyr	Asn 115	Gln	Pro	Val	Phe	Leu 120	Ala	Gly	Met	Gly	Leu 125	Ala	Phe	Leu
10	Тут	Met 130	Thr	Val	Leu	Gly	Phe 135	Asp	Cys	Ile	Thr	Thr 140	Gly	Tyr	Ala	Tyr
15	Thr 145	Gln	Gly	Leu	Ser	Gly 150	Phe	His	Pro	Gln	Туг 155	Phe	Asp	Gly	Ser	11e 160
	Ser	Tyr	Asn	Trp	Asn 165	Asn	Gly	Asn	Cys	Ser 170	Phe	Tyr	Leu	Ala	Thr 175	Ser
20	Lys	Met	Trp	Phe 180	Gly	Ser	Ala	Gly	Leu 185	Ile	Ser	Gly	Leu	Ala 190	Gln	Leu
	Ser	Cys	Leu 195	Ile	Leu	Cys	Val	11e 200	Ser	Val	Phe	Met	Pro 205	Gly	Ser	Pro
25	Leu	Asp 210	Leu	Ser	Val	Ser	Pro 215	Phe	Glu	Asp	Ile	Arg 220	Ser	Arg	Phe	Ile
30	Gln 225	Gly	Glu	Ser	Ile	Thr 230	Pro	Thr	Lys	Ile	Pro 235	Glu	Ile	Thr	Thr	Glu 240
	Ile	Tyr	Met	Ser	Asn 245	Gly	Ser	Asn	Ser	Ala 250	Asn	Ile	Val	Pro	Glu 255	Thr
35	Ser	Pro	Glu	Ser 260	Val	Pro	Ile	Ile	Ser 265	Val	Ser	Leu	Leu	Phe 270	Ala	Gly
	Val	Ile	Ala 275	Ala	Arg	Ile	Gly	Leu 280	Trp	Ser	Phe	Asp	Leu 285	Thr	Val	Thr
40	Gln	Leu 290	Leu	Gln	Glu	Asn	Val 295	Ile	Glu	Ser	Glu	Arg 300	Gly	Ile	Ile	Asn
45	Gly 305	Val	Gln	Asn	Ser	Met 310	Asn	Tyr	Leu	Leu	Asp 315	Leu	Leu	His	Phe	11e 320
	Met	Val	Ile	Leu	Ala 325	Pro	Asn	Pro	Glu	Ala 330	Phe	Gly	Leu	Leu	Val 335	Leu
50	Ile	Ser	Val	Ser 340	Phe	Val	Ala	Met	Gly 345	His	Ile	Met	Tyr	Phe 350	Arg	Phe
	Ala	Gln	Asn 355	Thr	Leu	Gly	Asn	Lys 360	Leu	Phe	Ala	Cys	Gly 365	Pro	Asp	Ala
55	Lys	Glu 370	Val	Arg	Lys	Glu	Asn 375	Gln	Ala	Asn	Thr	Ser 380	Val	Val	Xaa	

5			(i) s	() ()	A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	86 an no a lin	mino cid ear	aci		: 45	4:			
10	Met 1	Arg	Ser	Ile	Gly 5	Asn	Lys	Asn	Thr	Ile 10	Leu	Leu	Gly	Leu	Gly 15	Phe
	Gln	Ile	Leu	Gln 20	Leu	Ala	Trp	Tyr	Gly 25	Phe	Gly	Ser	Glu	Pro 30	Trp	Met
15	Met	Trp	Ala 35	Ala	Gly	Ala	Val	Ala 40	Ala	Met	Ser	Ser	Ile 45	Thr	Phe	Pro
	Ala	Val 50	Ser	Ala	Leu	Val	Ser 55	Arg	Thr	Ala	Asp	Ala 60	Asp	Gln	Gln	Gly
20	Val 65	Val	Gln	Gly	Met	Ile 70	Thr	Gly	Ile	Arg	Gly 75	Leu	Cys	Asn	Gly	Leu 80
25	Gly	Pro	Ala	Leu	Tyr 85	Gly	Phe	Ile	Phe	Tyr 90	Ile	Phe	His	Val	Glu 95	Leu
23	Lys	Glu	Leu	Pro 100	Ile	Thr	Gly	Thr	Asp 105	Leu	Gly	Thr	Asn	Thr 110	Ser	Pro
30	Gln	His	His 115	Phe	Glu	Gln	Asn	Ser 120	Ile	Ile	Pro	Gly	Pro 125	Pro	Phe	Leu
	Phe	Gly 130	Ala	Cys	Ser	Val	Leu 135	Leu	Ala	Leu	Leu	Val 140	Ala	Leu	Phe	Ile
35	Pro 145		His	Thr	Asn	Leu 150	Ser	Leu	Arg	Ser	Ser 155	Ser	Trp	Arg	Lys	His 160
40	Cys	Gly	Ser	His	Ser 165	His	Pro	His	Asn	Thr 170	Gln	Ala	Pro	Gly	Glu 175	Ala
40	Lys	Glu	Pro	Leu 180		Gln	Asp	Thr	Asn 185	Val						
45	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	455:							
50			(i)	-	(A) I		TH: 3	163 a	TICS minc acid		ds					
			(xi)			POPOI			near N: S	EQ I	D NO): 45	55:			
55		Let l	ı Glr	n Thr	Ser 5		туг	Ser	Leu	Val 10		Ser	Leu	Gln	Phe 15	Leu
	Let	ı Lev	ı Ser	туз 20		Leu	Phe	e Val	. Asn 25		Phe	e Ser	: Glu	Leu 30		Gln
60	Lys	s Thi	r Pro	Va:	llle	e Glr	Leu	ı Val	Leu	Phe	e Ile	≥ Ile	e Glr	n Asp	11e	Ala

			35					40					45			
5	Val	Leu 50	Phe	Asn	Ile	Ile	Ile 55	Ile	Phe	Leu	Met	Phe 60	Phe	Asn	Thr	Phe
	Val 65	Phe	Gln	Ala	Gly	Leu 70	Val	Asn	Leu	Leu	Phe 75	His	Lys	Phe	Lys	Gly 80
10	Thr	Ile	Ile	Leu	Thr 85	Ala	Val	Tyr	Phe	Ala 90	Leu	Ser	Ile	Ser	Leu 95	His
	Val	Trp	Val	Met 100	Asn	Leu	Arg	Trp	Lys 105	Asn	Ser	Asn	Ser	Phe 110	Ile	Trp
15	Thr	Asp	Gly 115	Leu	Gln	Met	Leu	Phe 120	Val	Phe	Gln	Arg	Leu 125	Ala	Ala	Val
20	Leu	Tyr 130	Cys	Tyr	Phe	Tyr	Lys 135	Arg	Thr	Ala	Val	Arg 140	Leu	Gly	Asp	Pro
	His 145	Phe	Tyr	Gln	Asp	Ser 150	Leu	Trp	Leu	Arg	Lys 155	Glu	Phe	Met	Gln	Val 160
25	Arg	Arg	Xaa													
30	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	IO: 4	156 :							
			(i) :	(:	A) L B) T	CHAI ENGT YPE :	H: 4	6 am no a	ino a		5					
35			(xi)			OPOLA E DES				EQ II	ONO:	456	5:			
	Met 1	Arg	Ile	Gln	Val 5	Phe	Ile	Leu	Leu	Leu 10	Gly	Ala	Gly	Gly	Thr 15	Ser
40	Gln	Phe	Thr	Lys 20	Pro	Pro	Ser	Leu	Pro 25	Leu	Glu	Pro	Glu	Pro 30	Ala	Val
45	Glu	Ser	Ser 35	Pro	Thr	Glu	Thr	Ser 40	Glu	Gln	Ile	Arg	Glu 45	Lys		
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	Ю: 4	157 :							
50			(i) :	(.	A) L	CHAI ENGT: YPE:	H: 1	05 a	mino		ds					
55			(xi)	-	•	OPOLA E DE:				EQ II	ON C	: 45°	7:			
55	Met 1	Ser	туг	Leu	Ala 5	Phe	Leu	Tyr	Met	Thr 10	Phe	Asp	Phe	Cys	Cys 15	Leu
60	Tyr	Phe	Ser	Thr 20	Val	Tyr	Ala	Pro	Ser 25	Phe	Lys	Туr	Ile	Суs 30	Val	His

	Thr	qzA	Thr 35	His	Ile	Cys	Val	Cys 40	Val	Cys	Ile	туг	Leu 45	Ser	Ser	Val
5	Val	Ser 50	Lys	Ser	Ser	Ala	Glu 55	Ala	Asp	Gly	Val	Leu 60	Gln	Pro	Arg	Arg
10	His 65	Pro	Ala	Ser	Leu	Leu 70	Ile	Val	Phe	Ala	Thr 75	Ser	Ile	Ser	Glu	Ser 80
10	Ser	Leu	Leu	Ile	Phe 85	Ser	Phe	Gln	Lys	Thr 90	Glu	Ala	Lys	Leu	Ile 95	Val
15	Phe	Ala	Val	Ser 100	Leu	Ala	Ala	Lys	Хаа 105							
20	(2)					CHAI ENGT	RACTI H: 7	ERIS O am	rics ino		s					
25			(xi)		D) T	OPOL	OGY:	lin	ear	EQ I	D NO	: 45	8:			
•	Met 1	Leu	Pro	Pro	Phe 5	Ser	Leu	Val	Tyr	Thr 10	His	Phe	Leu	Val	Ala 15	Ser
30	Leu	Leu	Pro	Val 20	Ile	Leu	Ala	Val	Phe 25	Pro	qzA	Ser	Ala	Gln 30	Ile	Val
35	Pro	Leu	Leu 35	Lys	Pro	Ile	Pro	Arg 40	Pro	Gln	Pro	Glu	Val 45	Ile	Phe	Pro
33	Ser	Ser 50	Glu	Leu	Leu	Glu	Gln 55	Leu	Leu	Ser	Val	Gln 60	Phe	Val	Trp	Gln
40	Ala 65	His	Thr	Val	Ala	Xaa 70										
45	(2)	INF		(ENCE A) L B) T	CHA ENGT YPE:	RACT H: 1	ERIS 55 a no a	TICS mino		.ds					
50			(xi)	SEQ	D) T UENC					EQ I	D NO	: 45	9:			
	Met 1	Ala	Leu	Leu	Leu 5	Ser	Val	Leu	Arg	Val 10	Leu	Leu	Gly	Gly	Phe 15	Phe
55	Ala	Leu	Val	Gly 20	Leu	Ala	Lys	Leu	Ser 25		Glu	Ile	Ser	Ala 30		Val
60	Ser	Glu	Arg 35		Asn	Ala	Leu	Phe 40		Gln	Phe	Ala	Glu 45		Phe	Pro

	Leu	Lys 50	Val	Phe	Gly	Tyr	Gln 55	Pro	Asp	Pro	Leu	Asn 60		Gln	Ile	Ala
5	Val 65	Gly	Phe	Leu	Glu	Leu 70	Leu	Ala	Gly	Leu	Leu 75	Leu	Val	Met	Gly	Pro 80
	Pro	Met	Leu	Gln	Glu 85	Ile	Ser	Asn	Leu	Phe 90	Leu	Ile	Leu	Leu	Met 95	Met
10	Gly	Ala	Ile	Phe 100	Thr	Leu	Ala	Ala	Leu 105	Lys	Glu	Ser	Leu	Ser 110	Thr	Cys
15	Ile	Pro	Ala 115	Ile	Val	Суѕ	Leu	Gly 120		Leu	Leu	Leu	Leu 125	Asn	Val	Gly
	Gln	Leu 130	Leu	Ala	Gln	Thr	Lys 135	Lys	Val	Val	Arg	Pro 140	Thr	Arg	Lys	Lys
20	Thr 145	Leu	Ser	Thr	Phe	Lys 150	Glu	Ser	Trp	Lys	Xaa 155					
	(2)	TNIE	DMX	PT/AN	EOD	CEO	TD .	TO - 4	160							
25	(2)		ORMAT	SEQUI	ENCE	СНА	RACTI	ERIS	rics							
				(в) т	ENGT YPE : OPOL	ami	no a	cid	aci	ds					
30			(xi)	SEO	IENC	E DES	SCRTI	יידר	J - SI	O TI	סוא כ	. 460	٦.			
			,,,,,			. J.			·	- T		. 40	٠.			
	Met 1		Leu											Ala	Pro 15	Ser
35	1	Lys		Gly	Arg 5	Ala	Val	Leu	Gly	Leu 10	Leu	Leu	Leu		15	
35 40	1 Val	Lys Val	Leu	Gly Ala 20	Arg 5 Val	Ala Glu	Val Pro	Leu Ile	Gly Ser 25	Leu 10 Leu	Leu Gly	Leu Leu	Leu Ala	Leu 30	15 Ala	Gly
	1 Val Val	Lys Val Leu	Leu Gln Thr	Gly Ala 20 Gly	Arg 5 Val Tyr	Ala Glu Ile	Val Pro Tyr	Leu Ile Pro 40	Gly Ser 25 Arg	Leu 10 Leu Leu	Leu Gly Tyr	Leu Leu Cys	Leu Ala Leu 45	Leu 30 Phe	15 Ala Ala	Gly Glu
	Val Val Cys	Lys Val Leu Cys 50	Leu Gln Thr 35	Gly Ala 20 Gly Gln	Arg 5 Val Tyr Lys	Ala Glu Ile Arg	Val Pro Tyr Ser 55	Ile Pro 40 Leu	Ser 25 Arg Ser	Leu Leu Leu	Leu Gly Tyr Glu	Leu Cys Ala 60	Leu Ala Leu 45 Leu	Leu 30 Phe Gln	15 Ala Ala Lys	Gly Glu Asp
40	Val Val Cys Leu 65	Lys Val Leu Cys 50 Asp	Leu Gln Thr 35 Gly	Gly Ala 20 Gly Gln Asn	Arg 5 Val Tyr Lys Leu	Ala Glu Ile Arg Phe 70	Val Pro Tyr Ser 55 Gly	Leu Ile Pro 40 Leu Gln	Ser 25 Arg Ser	Leu 10 Leu Leu Arg	Leu Gly Tyr Glu Ala 75	Leu Cys Ala 60 Lys	Leu Ala Leu 45 Leu Lys	Leu 30 Phe Gln Ile	15 Ala Ala Lys Ile	Gly Glu Asp Leu 80
40	Val Val Cys Leu 65 Asn	Leu Cys 50 Asp	Leu Gln Thr 35 Gly	Gly Ala 20 Gly Gln Asn	Arg 5 Val Tyr Lys Leu Gly 85	Ala Glu Ile Arg Phe 70	Val Pro Tyr Ser 55 Gly	Leu Ile Pro 40 Leu Gln Asn	Ser 25 Arg Ser His	Leu Leu Arg Leu Pro 90	Leu Gly Tyr Glu Ala 75 Lys	Leu Cys Ala 60 Lys	Leu Ala Leu 45 Leu Lys	Leu 30 Phe Gln Ile	15 Ala Ala Lys Ile Pro 95	Gly Glu Asp Leu 80 Leu
40 45 50	Val Val Cys Leu 65 Asn	Lys Val Leu Cys 50 Asp Ala	Leu Gln Thr 35 Gly Asp	Gly Ala 20 Gly Gln Asn Phe Leu 100	Arg 5 Val Tyr Lys Leu Gly 85 His	Ala Glu Ile Arg Phe 70 Phe	Val Pro Tyr Ser 55 Gly Ile	Leu Ile Pro 40 Leu Gln Asn	Gly Ser 25 Arg Ser His Asn Gly 105	Leu Leu Arg Leu Pro 90	Leu Gly Tyr Glu Ala 75 Lys	Leu Cys Ala 60 Lys Pro	Leu Ala Leu 45 Leu Lys Lys	Leu 30 Phe Gln Ile Lys Phe 110	15 Ala Ala Lys Ile Pro 95 Val	Gly Glu Asp Leu 80 Leu
40	Val Val Cys Leu 65 Asn Thr	Lys Val Leu Cys 50 Asp Ala Leu Ile	Leu Gln Thr 35 Gly Asp Val Ser	Gly Ala 20 Gly Gln Asn Phe Leu 100 Ala	Arg 5 Val Tyr Lys Leu Gly 85 His	Ala Glu Ile Arg Phe 70 Phe Gly Asn	Val Pro Tyr Ser 55 Gly Ile Trp	Leu Ile Pro 40 Leu Gln Asn Thr	Gly Ser 25 Arg Ser His Asn Gly 105 Glu	Leu Leu Arg Leu Pro 90 Thr	Leu Gly Tyr Glu Ala 75 Lys Gly	Leu Cys Ala 60 Lys Pro Lys Leu	Leu Ala Leu 45 Leu Lys Lys Asn Asn 125	Leu 30 Phe Gln Ile Lys Phe 110 Ser	15 Ala Ala Lys Ile Pro 95 Val	Gly Glu Asp Leu 80 Leu Ser

PCT/US98/04493

	Ala	Суѕ	Ala	Arg	Ser 165	Ile	Phe	Ile	Phe	Asp 170	Glu	Met	Asp	Lys	Met 175	His
5	Ala	Gly	Leu	Ile 180	Asp	Ala	Ile	Lys	Pro 185	Phe	Leu	Asp	Tyr	Туг 190	Asp	Leu
10	Val	Asp	Gly 195	Val	Ser	Tyr	Gln	Lys 200	Ala	Met	Phe	Ile	Phe 205	Leu	Ser	Asn
10	Ala	Gly 210	Ala	Glu	Arg	Ile	Thr 215	Asp	Val	Ala	Leu	Asp 220	Phe	Trp	Arg	Ser
15	Gly 225		Gln	Arg	Glu	Asp 230	Ile	Lys	Leu	Lys	Asp 235	Ile	Glu	His	Ala	Leu 240
	Ser	Val	Ser	Val	Phe 245	Asn	Asn	Lys	Asn	Ser 250	Gly	Phe	Trp	His	Ser 255	Ser
20	Leu	Ile	Asp	Arg 260	Asn	Leu	Ile	Asp	Tyr 265	Phe	Val	Pro	Phe	Leu 270	Pro	Leu
25	Glu	Tyr	Lys 275		Leu	Lys	Met	Cys 280	Ile	Arg	Val	Glů	Met 285	Gln	Ser	Arg
	Gly	Тут 290	Glu	Ile	Asp	Glu	Asp 295		Val	Ser	Arg	Val 300	Ala	Glu	Glu	Met
30	Thr 305		Phe	Pro	Lys	Glu 310		Arg	Val	Phe	Ser 315		Lys	Gly	Cys	Lys 320
	Thr	Val	. Phe	Thr	Lys 325		Asp	Tyr	Tyr	Tyr 330		Asp				
35	(2)	INF	FORMA	MOITA	FOR	SEQ) ID	NO:	461:							
40					(A) I (B) ' (D) '	LENG IYPE IOPOI	TH: ! : am: LOGY	5 am: ino a : lir	ino a acid near	acid		D: 46	51:			
45		t Lev	ı Lys	s Cys	ıle S											
50	(2) IN	FORM	ATIOI	1 FOI	R SE(Q ID	NO:	462	:						
55				SEQ	(A) (B) (D)	LENG TYPE TOPC	TH: : an OLOGY	14 a ino : li	mino acid near	aci		10: 4	62 :			
60	Ме	t Il 1	e Le	u Th		u Le 5	u Se	r Va	l Va	1 Se 1		r Me	t Al	a Se	r	

	(2)	TIAL)IU-IA	1 1014	FOR	SEQ	TD I	v O	:05.							
5			(i) :	(A) L B) T		H: 2 ami	85 a no a	mino cid		ds					
10			(xi)	SEQ	JENCI	E DE	SCRI	PTIO	N: SI	EQ II	D NO	: 46	3:			
	Met 1	Lys	Leu	His	Pro 5	Pro	Pro	Pro	Ser	Pro 10	Val	Thr	Gln	Asp	His 15	Arg
15	Ser	Lys	Ser	Ser 20	His	Ser	Asn	Trp	Met 25	Pro	Arg	Met	Gly	Ala 30	Cys	Ser
	Met	Ser	Arg 35	Thr	Ser	Ser	Ser	Gly 40	Pro	Pro	Ser	Leu	Cys 45	Lys	Ser	Thr
20	Ser	Gly 50	Arg	Ser	Cys	Thr	Arg 55	Pro	His	Cys	Trp	Pro 60	Ser	Leu	Pro	Ala
25	Trp 65	Val	Ser	Val	Phe	Thr 70	Arg	Thr	Asn	Thr	Gly 75	Ser	Trp	Cys	Tyr	Pro 80
	Ala	Trp	Gly	Gly	Ala 85	Phe	Ser	Arg	Pro	Ттр 90	Met	Ser	Ala	Gln	Ser 95	Met
30	Cys	Cys	Ala	Glu 100	Arg	Ser	Val	Leu	Gln 105	Val	Ala	Cys	Arg	Leu 110	Leu	Asp
	Ala	Leu	Glu 115	Phe	Leu	His	Glu	Asn 120	Glu	Tyr	Val	His	Gly 125	Asn	Val	Thr
35	Ala	Glu 130	Asn	Ile	Phe	Val	Asp 135	Pro	Glu	Asp	Gln	Ser 140	Gln	Val	Thr	Leu
40	Ala 145	Gly	Tyr	Gly	Phe	Ala 150	Phe	Arg	Tyr	Сув	Pro 155	Ser	Gly	Lys	His	Val 160
	Ala	Tyr	Val	Glu	Gly 165	Ser	Arg	Ser	Pro	His 170	Glu	Gly	Asp	Leu	Glu 175	Phe
45	Ile	Ser	Met	Asp 180	Leu	His	Lys	Gly	Cys 185	Gly	Pro	Ser	Arg	Arg 190	Xaa	Asp
	Leu	Gln	Ser 195	Leu	Gly	Tyr	Cys	Met 200	Leu	Lys	Trp	Leu	Tyr 205	Gly	Phe	Leu
50	Pro	Trp 210		Asn	Cys	Leu	Pro 215	Xaa	Хаа	Glu	Asp	Ile 220	Met	Lys	Gln	Lys
55	Gln 225	Lys	Phe	Val	qzA	Lys 230	Pro	Gly	Pro	Phe	Val 235	Gly	Pro	Cys	Gly	His 240
<i>J J</i>	Trp	Ile	Arg	Pro	Ser 245	Glu	Thr	Leu	Gln	Lys 250	Tyr	Leu	Lys	Val	Val 255	Met
60	Ala	Leu	Thr	тут 260	Glu	Glu	Lys	Pro	Pro 265	Tyr	Ala	Met	Leu	Arg 270	Asn	Asn

A CONTRACTOR OF THE STATE OF TH

	Leu Glu Ala Leu Leu Gln Asp Leu Arg Val Ser Pro Tyr 275 280 285
5	
	(2) INFORMATION FOR SEQ ID NO: 464:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 80 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 464:
15	Met Thr Ser Pro Pro Pro His Gln Gly Trp Glu Gln Arg Gly Cys Gly 1 5 10 15
20	Glu Ser Gln Val Pro Leu Ala Leu Ser Arg Val Phe Ser Thr Ser His 20 25 30
20	Tyr Cys Leu Leu Leu Val Ala Asn Gln Ser Ile Phe Phe Pro Cys Leu 35 40 45
25	Trp Ala Val Glu Arg Leu Leu Gly Val Arg Cys Thr Cys Pro Leu Ser 50 55 60
	Trp Gly Lys Arg Ile Ile Ser Glu His Cys Ser Ala Gln Ser Ser Xaa 65 70 75 80
30	
35	(2) INFORMATION FOR SEQ ID NO: 465:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 465:
45	Met His Thr Trp Tyr Asn Asp Arg Gln Asn Cys His Cys Leu Leu 1 5 10 15
15	Phe Phe Leu Ile Tyr Leu Arg Lys Ile Tyr Gln Val Val Pro His Val 20 25 30
50	Pro Leu Leu Val Lys Cys Arg Gly Arg Leu Lys Gly Val Asn Ile 35 40 45
55	(2) INFORMATION FOR SEQ ID NO: 466: (i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 96 amino acids (B) TYPE: amino acid
60	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 466:

	Met 1	Glu	Leu	Val	Leu 5	Val	Phe	Leu	Cys	Ser 10	Leu	Leu	Ala	Pro	Met 15	Val
5	Leu	Ala	Ser	Ala 20	Ala	Glu	Lys	Glu	Lys 25	Glu	Met	Asp	Pro	Phe 30	His	Тут
10	Asp	Tyr	Gln 35	Thr	Leu	Arg	Ile	Gly 40	Gly	Leu	Val	Phe	Ala 45	Val	Val	Leu
10	Phe	Ser 50		Gly	Ile	Leu	Leu 55	Ile	Leu	Ser	Arg	Arg 60	Cys	Lys	Cys	Ser
15	Phe 65	Asn	Gln	Lys	Pro	Arg 70	Ala	Pro	Gly	Asp	Glu 75	Glu	Ala	Gln	Va1	Glu 80
	Asn	Leu	Ile	Thr	Ala 85	Asn	Ala	Thr	Glu	Pro 90	Gln	Lys	Ala	Glu	Asn 95	Xaa
20																
25	(2)	INF														
			(i) :	(A) L B) T	ENGT	н: 3	99 a	mino		ds					
30			(xi)		D) T					EQ II	ои о	: 46	7 :			
25	Met 1	Ala	Ser	Gly	Ala 5	Asp	Ser	Lys	Gly	Asp 10	A sp	Leu	Ser	Thr	Ala 15	Ile
35	Leu	Lys	Gln	Lys 20	Asn	Arg	Pro	Asn	Arg 25	Leu	Ile	Val	Asp	Glu 30	Ala	Ile
40	Asn	Glu	Asp 35	Asn	Ser	Val	Val	Ser 40	Leu	Ser	Gln	Pro	Lys 45	Met	Asp	Glu
	Leu	Gln 50	Leu	Phe	Arg	Gly	Asp 55	Thr	Val	Leu	Leu	Lys 60	Gly	Lys	Lys	Arg
45	Arg 65	Glu	Ala	Val	Cys	11e 70	Val	Leu	Ser	Asp	Asp 75	Thr	Cys	Ser	Asp	Glu 80
50	Lys	Ile	Arg	Met	Asn 85	Arg	Val	Val	Arg	Asn 90	Asn	Leu	Arg	Val	Arg 95	Leu
50	Gly	Asp	Val	Ile 100	Ser	Ile	Gln	Pro	Cys 105	Pro	Asp	Val	Lys	Туг 110	Gly	Lys
55	Arg	Ile	His 115	Val	Leu	Pro	Ile	Asp 120	Asp	Thr	Val	Glu	Gly 125	Ile	Thr	Gly
	Asn	Leu 130	Phe	Glu	Val	Tyr	Leu 135	Lys	Pro	Tyr	Phe	Leu 140	Glu	Ala	Tyr	Arg
60	Pro	Ile	Arg	Lys	Gly	Asp	Ile	Phe	Leu	Val	Arg	Gly	Gly	Met	Arg	Ala

	145					150	•				155					160
5	Val	Glu	Phe	Lys	Val 165	Val	Glu	Thr	Asp	Pro 170	Ser	Pro	Tyr	Cys	Ile 175	Val
_	Ala	Pro	Asp	Thr 180	Val	Ile	His	Суз	Glu 185	Gly	Glu	Pro	Ile	Lys 190	Arg	Glu
10	Asp	Glu	Glu 195	Glu	Ser	Leu	Asn	Glu 200	Val	Gly	Tyr	Asp	Asp 205	Ile	Gly	Gly
	Cys	Arg 210	Lys	Gln	Leu	Ala	Gln 215	Ile	Lys	Glu	Met	Val 220	Glu	Leu	Pro	Leu
15	Arg 225	His	Pro	Ala	Leu	Phe 230	Lys	Ala	Ile	Gly	Val 235	Lys	Pro	Pro	Arg	Gly 240
20	Ile	Leu	Leu	Tyr	Gly 245	Pro	Pro	Gly	Thr	Gly 250	Lys	Thr	Leu	Ile	Ala 255	Arg
20	Ala	Val	Ala	Asn 260	Glu	Thr	Gly	Ala	Phe 265	Phe	Phe	Leu	Ile	Asn 270	Gly	Pro
25	Glu	Ile	Met 275	Ser	Lys	Leu	Ala	Gly 280	Glu	Ser	Glu	Ser	Asn 285	Leu	Arg	Lys
	Ala	Phe 290	Glu	Glu	Ala	Glu	Lys 295	Asn	Ala	Pro	Ala	Ile 300	Ile	Phe	Ile	Asp
30	Glu 305	Leu	Asp	Ala	Ile	Ala 310	Pro	Lys	Arg	Glu	Lys 315	Thr	His	Gly	Glu	Val 320
35	Glu	Arg	Arg	Ile	Val 325	Ser	Gln	Leu	Leu	Thr 330	Leu	Met	Asp	Gly	Leu 335	Lys
	Gln	Arg	Ala	His 340	Val	Ile	Val	Met	Ala 345	Ala	Thr	Asn	Arg	Pro 350	Asn	Ser
40	Ile	Asp	Pro 355	Ala	Leu	Arg	Arg	Phe 360	Gly	Arg	Phe	Asp	Arg 365	Glu	Val	Asp
	Ile	Gly 370	Ile	Pro	Asp	Ala	Thr 375	Gly	Arg	Leu	Glu	Ile 380	Leu	Gln	Ile	His
45	Thr 385	Lys	Asn	Met	Lys	Leu 390	Ala	Asp	Asp	Val	Asp 395	Leu	Glu	Gln	Xaa	
50	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 4	468:							
			(i)					ERIS ami								
55			(xi)	(D) T	OPOL	OGY:	no a lin PTIO	ear	EQ I	D NO	: 46	8:			
	Leu											٠				

	(2)	INF	URMA	I. TOM	FOR	SEQ	י ענ	NU:	469:							
5			(i)	(A) I B) T		H: 2 ami	73 a	mino		.ds					
10				SEQ						_						
	Met 1	Ala	Ala	Pro	Lys 5	Gly	Ser	Leu	Trp	Val 10	Arg	Thr	Gln	Leu	Gly 15	Leu
15	Pro	Pro	Leu	Leu 20	Leu	Leu	Thr	Met	Ala 25	Leu	Ala	Gly	Gly	Ser 30	Gly	Thr
	Ala	Ser	Ala 35	Glu	Ala	Phe	Asp	Ser 40	Val	Leu	Gly	Asp	Thr 45	Ala	Ser	Cys
20	His	Arg 50	Ala	Cys	Gln	Leu	Thr 55	Tyr	Pro	Leu	His	Thr 60	Tyr	Pro	Lys	Glu
25	Glu 65	Glu	Leu	Туг	Ala	Cys 70	Gln	Arg	Gly	Суз	Arg 75	Leu	Phe	Ser	Ile	Cys 80
23	Gln	Phe	Val	Asp	Asp 85	Gly	Ile	Asp	Leu	Asn 90	Arg	Thr	Lys	Leu	Glu 95	Суѕ
30	Glu	Ser	Ala	Cys 100	Thr	Glu	Ala	Tyr	Ser 105	Gln	Ser	Asp	Glu	Gln 110	Tyr	Ala
	Cys	His	Leu 115	Gly	Cys	Gln	Asn	Gln 120	Leu	Pro	Phe	Ala	Glu 125	Leu	Arg	Gln
35	Glu	Gln 130	Leu	Met	Ser	Leu	Met 135	Pro	Lys	Met	His	Leu 140	Leu	Phe	Pro	Leu
40	Thr 145	Leu	Val	Arg	Ser	Phe 150	Trp	Ser	Asp	Met	Met 155	Asp	Ser	Ala	Gln	Ser 160
40	Phe	Ile	Thr	Ser	Ser 165	Trp	Thr	Phe	Tyr	Leu 170	Gln	Ala	Asp	Asp	Gly 175	Lys
45	Ile	Val	Ile	Phe 180	Xaa	Ser	Lys	Pro	Arg 185	Asn	Pro	Arg	Tyr	Ala 190	Pro	His
	Leu	Glu	Pro 195	Gly	Ala	Leu	Pro	Asn 200	Leu	Xaa	Xaa	Xaa	Ser 205	Leu	Ser	Lys
50	Met	Ser 210	Xaa	Xaa	Ser	Xaa	Met 215	Arg	Asn	Ser	Gln	Ala 220	His	Arg	Asn	Phe
EE	Leu 225	Glu	Asp	Gly	Glu	Ser 230	Asp	Gly	Phe	Leu	Arg 235	Cys	Leu	Ser	Leu	Asn 240
55	Ser	Gly	Trp	Ile	Leu 245	Thr	Thr	Thr	Leu	Val 250	Leu	Ser	Val	Met	Val 255	Leu
60	Leu	Trp	Ile	Cys 260	Cys	Ala	Thr	Cys	Cys 265	Тут	Thr	Leu	Leu	Asp 270	Ala	Val

Xaa

5

121	INFORMATION	FOR	SEO	TD	NO:	470:

(i)	SECUENCE	CHARACTERISTICS

(i) SEQUENCE CHARACTERISTI 10

- (A) LENGTH: 192 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 470:
- Met Met Val Leu Ser Leu Gly Ile Ile Leu Ala Ser Ala Ser Phe Ser 15

Pro Asn Phe Thr Gln Val Thr Ser Thr Leu Leu Asn Ser Ala Tyr Pro 25

20

Phe Ile Gly Pro Phe Phe Phe Ile Ile Ser Gly Ser Leu Ser Ile Ala 40

- Thr Glu Lys Arg Leu Thr Lys Leu Leu Val His Ser Ser Leu Val Gly 25 55
 - Ser Ile Leu Ser Ala Leu Ser Ala Leu Val Gly Phe Ile Ile Leu Ser
- Val Lys Gln Ala Thr Leu Asn Pro Ala Ser Leu Gln Cys Glu Leu Asp 30
 - Lys Asn Asn Ile Pro Thr Arg Ser Tyr Val Ser Tyr Phe Tyr His Asp 105 100

35 Ser Leu Tyr Thr Thr Asp Cys Tyr Thr Ala Lys Ala Ser Leu Ala Gly 120

- Xaa Leu Ser Leu Met Leu Ile Cys Thr Leu Leu Glu Phe Cys Leu Ala 40 135
 - Val Leu Thr Ala Val Leu Arg Trp Lys Gln Ala Tyr Ser Asp Phe Pro 150
- 45 Gly Ser Val Leu Phe Leu Pro His Ser Tyr Ile Gly Asn Ser Gly Met

Ser Ser Lys Met Thr His Asp Cys Gly Tyr Glu Glu Leu Leu Thr Ser 185

50

55

(2) INFORMATION FOR SEQ ID NO: 471:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 234 amino acids

60 (B) TYPE: amino acid

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 471:																
5	Met		Lys	Thr	Arg 5		Ттр	Gly	Leu	Leu 10) Met	Leu	Phe	Val	
	Glu	Leu	Arg	Ala 20		Thr	Lys	Leu	Thr 25		Glu	Lys	Тух	Glu 30		Lys
10	Glu	Gly	Gln 35	Thr	Leu	Asp	Val	Lys 40		Asp	Tyr	Thr	Leu 45		Lys	Phe
15	Ala	Ser 50	Ser	Gln	Lys	Ala	Trp 55	Gln	Ile	Ile	Arg	Asp 60	Gly	Glu	Met	Pro
	Lys 65	Thr	Leu	Ala	Cys	Thr 70	Glu	Arg	Pro	Ser	Lys 75	Asn	Ser	His	Pro	Val 80
20	Gln	Val	Gly	Arg	Ile 85	Ile	Leu	Glu	Asp	Туг 90	His	Asp	His	Gly	Leu 95	Leu
	Arg	Val	Arg	Met 100	Val	Asn	Leu	Gln	Val 105	Glu	Asp	Ser	Gly	Leu 110	Tyr	Gln
25	Cys	Val	Ile 115	Tyr	Gln	Pro	Pro	Lys 120	Glu	Pro	His	Met	Leu 125	Phe	Asp	Arg
30	Ile	Arg 130	Leu	Val	Val	Thr	Lys 135	Gly	Phe	Ser	Gly	Thr 140	Pro	Gly	Ser	Asn
30	Glu 145	Asn	Ser	Thr	Gln	Asn 150	Val	Tyr	Lys	Ile	Pro 155	Pro	Thr	Thr	Thr	Lys 160
35	Ala	Leu	Cys	Pro	Leu 165	Tyr	Thr	Ser	Pro	Arg 170	Thr	Val	Thr	Gln	Ala 175	Pro
	Pro	Lys	Ser	Thr 180	Ala	Asp	Val	Ser	Thr 185	Pro	Asp	Ser	Glu	Ile 190	Asn	Leu
40	Thr	Asn	Val 195	Thr	Asp	Ile	Ile	Arg 200	Val	Pro	Val	Phe	Asn 205	Ile	Val	Ile
45	Leu	Leu 210	Ala	Gly	Gly	Phe	Leu 215	Ser	Lys	Ser	Leu	Val 220	Phe	Ser	Val	Leu
	Phe 225	Ala	Val	Thr		Arg 230	Ser	Phe	Val	Pro						
50	(2)	INFC	RMAT	NOI	FOR	SEQ	ID N	O: 4	72:							
		•	(i) S	SEQUE						acio	is					
55		((xi)) TC	POLO	amir XGY: SCRIF	line	ar	Q II	NO:	472	: :			
60	Met 1			Ile										His	Phe 15	Ser

	Leu	Met	Gly	Arg 20	Тут	Arg	Cys	Ala	Ser 25	Leu	Leu	Phe	Cys	Phe 30	Leu	Leu
5	Leu	Phe	Phe 35	Phe	Phe	Cys	Ser	Val 40	Leu	Trp	Thr	Phe	Ser 45	Asp	Met	His
10	Arg	Ser 50	Gly	Glu	Asp	Gly	Pro 55	Trp	Thr	Pro	Cys	Val 60	His	His	Leu	Ala
	Ala 65		Leu	Ile	Ser	Tyr 70	Gly	Gln	Pro	Gly	Phe 75	Ile	Cys	Ile	Ser	Leu 80
15	Phe	Ser	Pro	Val	Leu 85	Phe	Ile	Glu	Asn	Pro 90	Arg	His	Tyr	Ala	Asn 95	Ala
	Thr	Val	Thr	Thr 100	Leu	Gly	Asp	Trp	Хаа 105							
20																
	(2)	INF	ORMA'	CION	FOR	SEQ	ID N	VO: 4	173:							
25			(i) :	() (1	A) L B) T D) T	ENGT YPE : OPOLA	H: 3: amin CGY:	2 am no a lin	ino d cid ear	acid		: 473	B:			
30	Met 1	Val	Phe	Leu	Lys 5	Tyr	Arg	Phe	Leu	Phe 10	Phe	Leu	Val	Phe	Leu 15	Ala
35	Asn	Cys	Ile	Tyr 20	Ser	Leu	His	Tyr	Lys 25	Pro	Ser	Leu	Met	Tyr 30	Pro	Lys
40	(2)		ORMAT													
45			(i) S (xi)	() () (1)	A) LI B) T	ENGTI YPE : OPOLO	d: 5' amii OGY:	71 ar no ao line	mino cid ear	aci		: 4 74	l :			
50	Met 1	Ala	Leu	Ser	Arg 5	Gly	Leu	Pro	Arg	Glu 10	Leu	Ala	Glu	Ala	Val 15	Ala
	Gly	Gly	Arg	Val 20	Leu	Val	Val	Gly	Ala 25	Gly	Gly	Ile	Gly	Cys 30	Glu	Leu
55	Leu	Lys	Asn 35	Leu	Val	Leu	Thr	Gly 40	Phe	Ser	His	Ile	As p 45	Leu	Ile	Asp
60	Leu	Asp 50	Thr	Ile	Asp	Val	Ser 55	Asn	Leu	Asn	Arg	Gln 60	Phe	Leu	Phe	Gln

	L у 6	s I	ys	Hi:	s Va	1 G1	y Ar 7	g Se 0	r Ly	s Al	a Gl	n Va 7		a Ly	s Gl	u Se	r Val
5	Le	u G	ln	Phe	∋ ту:	r Pr 8:	o Ly: 5	s Al	a As	n Il	e Va 9		а Туг	r Hi	s As		r Ile 5
	Ме	tΑ	sn	Pro	As _l	р Ту:)	r Ası	n Vai	l Gl	u Ph		e Arg	g Glr	n Phe	e Il		u Val
10	Me	t A	sn	Ala 115	Let	ı Asp	Asr	ı Arç	7 Ala 120	a Ala	a Arg	g Asr	n His	Val		n Ar	g Met
15	Cys	s L	eu 30	Ala	Ala	Asp	Val	Pro 135	Let	ı Ile	⊖ Glu	ı Ser	Gly 140		Ala	a Gly	y Tyr
	Let 145	1 G	ly	Gln	Val	Thr	Thr 150	Ile	. Lys	Lys	: Gly	Val 155		Glu	Cys	: Туз	Glu 160
20	Cys	H	is	Pro	Lys	Pro 165	Thr	Gln	Arg	Thr	Phe 170		Gly	Cys	Thr	11e	e Arg
					180					185					190		Leu
25				195					200					205			Pro
30		21	·U					215					Thr 220				
	223						230					235	Lys				240
35						245					250		Val			255	
40					260					265			Thr		270		
40			•	2/5					280					285			
45		231	,					295					Gln . 300				
	303						310					315	Lys				320
50						325					330		His :			335	
55	Gly				340					345					350		
55	Asp		3	355					360				:	365			
60	Asn	Met 370	: L	ys :	Ser ,	Arg	Phe .	Asp 375	Ile:	Lys	Ser 1		Ala (380	Sly .	Asn	Ile	Ile

	Pro 385	Ala	Ile	Ala	Thr	Thr 390	Asn	Ala	Val	Ile	Ala 395	Gly	Leu	Ile	Val	Leu 400
5	Glu	Gly	Leu	Lys	Ile 405	Leu	Ser	Gly	Lys	Ile 410	Asp	Gln	Cys	Arg	Thr 415	Ile
	Phe	Leu	Asn	Lys 420	Gln	Pro	Asn	Pro	Arg 425	Lys	Lys	Leu	Leu	Val 430	Pro	Cys
10	Ala	Leu	Asp 435	Pro	Pro	Asn	Pro	Asn 440	Cys	Tyr	Val	Суѕ	Ala 445	Ser	Lys	Pro
15	Glu	Val 450	Thr	Val	Arg	Leu	Asn 455	Val	His	Lys	Val	Thr 460	Val	Leu	Thr	Leu
	Gln 465	Asp	Lys	Ile	Val	Lys 470	Glu	Lys	Phe	Ala	Met 475	Val	Ala	Pro	Asp	Val 480
20	Gln	Ile	Glu	Asp	Gly 485	Lys	Gly	Thr	Ile	Leu 490	Ile	Ser	Ser	Glu	Glu 49 5	Gly
	Glu	Thr	Glu	Ala 500	Asn	Asn	His	Lys	Lys 505	Leu	Ser	Glu	Phe	Gly 510	Ile	Arg
25	Asn	Gly	Ser 515	Arg	Leu	Gln	Ala	Asp 520	Asp	Phe	Leu	Gln	Asp 525	Tyr	Thr	Leu
30	Leu	11e 530	Asn	Ile	Leu	His	Ser 535	Glu	Asp	Leu	Gly	Lys 540	Asp	Val	Glu	Phe
	Glu 545	Val	Val	Gly	Asp	Ala 550	Pro	Glu	Lys	Val	Gly 555	Xaa	Lys	Gln	Ala.	Glu 560
35	Asp	Ala	Ala	Lys	Ser 565	Ile	Thr	Asn	Gly	Gln 570	Xaa					
40	(2)			SEQUI	ENCE	CHAF	RACTI	0: 4 ERIST	rics:		ls.					
45			(xi)	(1	Yr (d	OPOLA	CGY:	no ao line PTION	ear	EQ II	NO:	475	i:			
	Met 1	Gln	Val	Val	Thr 5	Суѕ	Leu	Thr	Arg	Asp 10	Ser	Tyr	Leu	Thr	His 15	Cys
50	Phe	Leu	Gln	His 20	Leu	Met	Val	Val	Leu 25	Ser	Ser	Leu	Glu	Arg 30	Thr	Pro
55	Ser	Pro	Glu 35	Pro	Val	Asp	Lys	Asp 40	Phe	Tyr	Ser	Glu	Phe 45	Gly	Asn	Lys
	Thr	Thr 50	Gly	Lys	Met	Glu	Asn 55	Tyr	Glu	Leu	Ile	His 60	Ser	Ser	Arg	Val
60	Lys 65	Phe	Thr	Tyr	Pro	Ser 70	Glu	Glu	Glu	Ile	Gly 75	qaA	Leu	Thr	Phe	Thr 80

	Val	Ala	Gln	Lys	Met 85	Ala	Glu	Pro	Glu	Lys 90	Ala	Pro	Ala	Leu	Ser 95	Ile
5	Leu	Leu	Tyr	Val 100	Gln	Ala	Phe	Gln	Val 105	Gly	Met	Pro	Pro	Pro 110	Gly	Cys
10	Cys	Arg	Gly 115	Pro	Leu	Arg	Pro	Lys 120	Thr	Leu	Leu	Leu	Thr 125	Ser	Ser	Glu
	Ile	Phe 130	Leu	Leu	Asp	Glu	Asp 135	Суѕ	Val	His	Tyr	Pro 140	Leu	Pro	Glu	Phe
15	Ala 145	Lys	Glu	Pro	Pro	Gln 150	Arg	Asp	Arg	Tyr	Arg 155	Leu	Asp	Asp	Gly	Ar g 160
	Arg	Val	Arg	Asp	Leu 165	Asp	Arg	Val	Leu	Met 170	Gly	Tyr	Gln	Thr	Туг 175	Pro
20	Gln	Pro	Ser	Pro 180	Ser	Ser	Ser	Met	Thr 185	Cys	Lys	Val	Met	Thr 190	Ser	Trp
25	Ala	Val	Ser 195	Pro	Trp	Thr	Thr	Leu 200	Gly	Arg	Cys	Gln	Val 205	Ala	Arg	Leu
20	Glu	Pro 210	Ala	Arg	Ala	Val	Lys 215	Ser	Ser	Gly	Arg	Cys 220	Leu	Ser	Pro	Val
30	Leu 225	Arg	Ala	Glu	Arg	Ser 230	Ser	Ser	Arg	Cys	Trp 235	Leu	Ala	Ser	Gly	Arg 240
	Pro	Cys	Val	Ala	Val 245	Ser	Cys	Leu	Ser	Ser 250	Ser	Pro	Ala	Ser	Pro 255	Gly
35	His	Ser	Gln	Pro 260	Val	Val	Ser	Ser	Leu 265	Thr	Pro	Thr	Gly	Ala 270	Gly	Gln
40	Gln	Ala	Phe 275	Val	Phe	Ser	Lys	Asn 280	Val	Leu	Ser	Ser	Leu 285	Trp	Tyr	Leu
10	Asn	Leu 290	Thr	Val	Leu	Ala	Glu 295	Asn	Val	Asn	Met	Cys 300	Val	Суз	Cys	Val
45	Asn 305	Ser	Phe	Ser	Суѕ	Trp 310	Glu	Xaa				•				
	(2)	TARRO	NOMA (F	TON.	FOR	aro.			76							
50	(2)		ORMAT	SEQUE	ENCE	CHAI	RACTE	RIST	rics		1.					
55			(xi)	(1 (1	B) TY	PE:	amiı OGY:	no ac line	cid ear	acio		: 476	5:			
	Met 1	Ala	Gln	His	His 5	Leu	Trp	Ile	Leu	Leu 10	Leu	Cys	Leu	Gln	Thr 15	Trp
60	Pro	Glu	Ala	Ala	Gly	Lys	Asp	Ser	Glu	Ile	Phe	Thr	Val	Asn	Gly	Ile

				20					25					30		
5	Leu	Gly	Glu 35	Ser	Val	Thr	Phe	Pro 40	Val	Asn	Ile	Gln	Glu 45	Pro	Arg	Gln
J	Val	Lys 50	Ile	Ile	Ala	Trp	Thr 55	Ser	Lys	Thr	Ser	Val 60	Ala	Tyr	Val	Thr
10	Pro 65	Gly	Asp	Ser	Glu	Thr 70	Ala	Pro	Val	Val	Thr 75	Val	Thr	His	Arg	Asn 80
	Tyr	Tyr	Glu	Arg	Ile 85	His	Ala	Leu	Gly	Pro 90	Asn	Tyr	Asn	Leu	Val 95	Ile
15	Ser	Asp	Leu	Arg 100	Met	Glu	Asp	Ala	Gly 105	Asp	Tyr	Lys	Ala	Asp 110	Ile	Asn
20	Thr	Gln	Ala 115	Asp	Pro	Tyr	Thr	Thr 120	Thr	Lys	Arg	Tyr	Asn 125	Leu	Gln	Ile
	Tyr	Arg 130	Arg	Leu	Gly	Lys	Pro 135	Lys	Ile	Thr	Gln	Ser 140	Leu	Met	Ala	Ser
25	Val 145	Asn	Ser	Thr	Cys	Asn 150	Val	Thr	Leu	Thr	Cys 155	Ser	Val	Glu	Lys	Glu 160
	Glu	Lys	Asn	Val	Thr 165	Tyr	Asn	Trp	Ser	Pro 170	Leu	Gly	Glu	Glu	Gly 175	Asn
30	Val	Leu	Gln	Ile 180	Phe	Gln	Thr	Pro	Glu 185	Asp	Gln	Glu	Leu	Thr 190	Tyr	Thr
35	Cys	Thr	Ala 195	Gln	Asn	Pro	Val	Ser 200	Asn	Asn	Ser	Asp	Ser 205	Ile	Ser	Ala
	Arg	Gln 210	Leu	Cys	Ala	Asp	Ile 215	Ala	Met	Gly	Phe	Arg 220	Thr	His	His	Thr
40	Gly 225	Leu	Leu	Ser	Val	Leu 230	Ala	Met	Phe	Phe	Leu 235	Leu	Val	Leu	Ile	Leu 240
	Ser	Ser	Val	Phe	Leu 245	Phe	Arg	Leu	Phe	Lys 250	Arg	Arg	Gln	Asp	Ala 255	Ala
45	Ser	Lys	Lys	Thr 260	Ile	Tyr	Thr	Tyr	Ile 265	Met	Ala	Ser	Arg	Asn 270	Thr	Gln
50	Pro	Ala	Glu 275	Ser	Arg	Ile	Tyr	Asp 280	Glu	Ile	Leu	Gln	Ser 285	Lys	Val	Leu
	Pro	Ser 290	Lys	Glu	Glu	Pro	Val 295	Asn	Thr	Val	Tyr	Ser 300	Glu	Val	Gln	Phe
55	Ala 305	Asp	Lys	Met	Gly	Lys 310	Ala	Ser	Thr	Gln	Asp 315	Ser	Lys	Pro	Pro	Gly 320
	Thr	Ser	Ser	Tyr	Glu 325	Ile	Val	Ile	Xaa							

A CONTRACTOR OF THE CONTRACTOR

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	477 :							
5			(i)	((A) I (B) T	CHA ENGI YPE:	H: 1 ami	.78 a	mino cid		.ds					
				SEQ												
10	Met 1	Lys	Leu	Gln	Cys 5	Val	Ser	Leu	Trp	Leu 10	Leu	Gly	Thr	Ile	Leu 15	Ile
15	Leu	Cys	Ser	Val 20	Asp	Asn	His	Gly	Leu 25	Arg	Arg	Cys	Leu	Ile 30	Ser	Thr
	Asp	Met	His 35	His	Ile	Glu	Glu	Ser 40	Phe	Gln	Glu	Ile	Lys 45	Arg	Ala	Ile
20	Gln	Ala 50	Lys	Asp	Thr	Phe	Pro 55	Asn	Val	Thr	Ile	Leu 60	Ser	Thr	Leu	Glu
	Thr 65	Leu	Gln	Ile	Ile	Lys 70	Pro	Leu	Asp	Val	Cys 75	Cys	Val	Thr	Lys	Asn 80
25	Leu	Leu	Ala	Phe	Tyr 85	Val	Asp	Arg	Val	Phe 90	Lys	Asp	His	Gln	Glu 95	Pro
30	Asn	Pro	Lys	Ile 100	Leu	Arg	Lys	Ile	Ser 105	Ser	Ile	Ala	Asn	Ser 110	Phe	Leu
50	Tyr	Met	Gln 115	Lys	Thr	Leu	Arg	Gln 120	Cys	Gln	Glu	Gln	Arg 125	Gln	Cys	His
35	Cys	Arg 130	Gln	Glu	Ala	Thr	Asn 135	Ala	Thr	Arg	Val	Ile 140	His	Asp	Asn	Tyr
	Asp 145	Gln	Leu	Glu	Val	His 150	Ala	Ala	Ala	Ile	Lys 155	Ser	Leu	Gly	Glu	Leu 160
40	Asp	Val	Phe	Leu	Ala 165	Trp	Ile	Asn	Lys	Asn 170	His	Glu	Val	Met	Ser 175	Ser
	Ala	Xaa														
45																
	(2)	INFO	ORMA	NOI	FOR	SEQ	ID 1	VO: 4	178 :							
50			(i)	C	A) L B) T	ENGT YPE :	H: 5 ami	2 am no a	ino a		s					
55			(xi)	SEQ		OPOLA E DES				EQ II	ои с	: 47	B:			
	Asp 1	Thr	Ala	Ile	Arg 5	Val	Ala	Leu	Ala	Val 10	Ala	Val	Leu	Lys	Thr 15	Val
60	Ile	Leu	Gly	Leu 20	Leu	Cys	Leu	Leu	Leu 25	Cys	Gly	Gly	Gly	Glu 30	Gly	Lys

```
Val Ala Gly Arg Gln Ala Val Thr Ser Asp Gln Gln Ser Val Gly Arg
                        40
5
     Arg Asp Val Tyr
          50
10
     (2) INFORMATION FOR SEQ ID NO: 479:
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 62 amino acids
                   (B) TYPE: amino acid
15
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 479:
     Met Gln Lys Lys Asn Ser Leu Phe Phe Phe Phe Ala Phe Tyr Tyr Glu
            5
                             10
20
     Asn Lys Thr Asn Ala Pro Gly Glu Gly Ser Met Ile Thr Arg Asn Ile
                                    25
     Lys Glu Tyr Phe Leu Pro Phe Leu Phe Cys Cys Val Glu Ala Ser Ile
25
     Ala Ile Asn Lys Leu Asn Tyr Leu His Trp Thr His Phe Gln
30
      (2) INFORMATION FOR SEQ ID NO: 480:
             (i) SEQUENCE CHARACTERISTICS:
35
                   (A) LENGTH: 27 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 480:
40
     Met Pro Gly Leu Ser Leu Ile Leu Thr Val Thr Leu Leu Ala Val Ser
                                 10
     Asp Ser Ala Ala Thr Cys Ile Val Ala Lys Gly
                  20
                                     25
45
      (2) INFORMATION FOR SEQ ID NO: 481:
50
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 339 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 481:
55
      Met Ser Gly Pro Asp Val Glu Thr Pro Ser Ala Ile Gln Ile Cys Arg
      Ile Met Arg Pro Asp Asp Ala Asn Val Ala Gly Asn Val His Gly Gly
60
                  20
                              25
```

	Thr	Ile	Leu 35		Met	Ile	Glu	Glu 40		Gly	Ala	Ile	11e 45		Thr	Arg
5	His	Суs 50	Asn	Ser	Gln	Asn	Gly 55	Glu	Arg	Cys	Val	Ala 60		Leu	Ala	Arg
10	Val 65	Glu	Arg	Thr	Asp	Phe 70	Leu	Ser	Pro	Met	Cys 75	Ile	Gly	Glu	Val	Ala 80
	His	Val	Ser	Ala	Glu 85	Ile	Thr	Tyr	Thr	Ser 90		His	Ser	Val	Glu 95	Val
15	Gln	Val	Asn	Val 100	Met	Ser	Glu	Asn	Ile 105	Leu	Thr	Gly	Ala	Lys 110	Lys	Leu
	Thr	Asn	Lys 115	Ala	Thr	Leu	Trp	Туг 120	Val	Pro	Leu	Ser	Leu 125	Lys	Asn	Val
20	Asp	Lys 130	Val	Leu	Glu	Val	Pro 135	Pro	Val	Val	Tyr	Ser 140	Arg	Xaa	Glu	Gln
25	Glu 145	Glu	Glu	Gly	Arg	Lys 150	Arg	Tyr	Glu	Ala	Gln 155	Lys	Leu	Glu	Arg	Met 160
	Glu	Thr	Lys	Trp	Arg 165	Asn	Gly	Asp	Ile	Val 170	Gln	Pro	Val	Leu	Asn 175	Pro
30	Glu	Pro	Asn	Thr 180	Val	Ser	Tyr	Ser	Gln 185	Ser	Ser	Leu	Ile	His 190	Leu	Val
	Gly	Pro	Ser 195	Asp	Cys	Thr	Leu	His 200	Gly	Phe	Val	His	Gly 205	Gly	Val	Thr
35	Met	Lys 210	Leu	Met	Asp	Glu	Val 215	Ala	Gly	Ile	Val	Ala 220	Ala	Arg	His	Cys
40	Lys 225	Thr	Asn	Ile	Val	Thr 230	Ala	Ser	Val	Asp	Ala 235	Ile	Asn	Phe	His	Asp 240
	Lys	Ile	Arg	Lys	Gly 245	Cys	Val	Ile		11e 250	Ser	Gly	Arg	Met	Thr 255	Phe
45	Thr	Ser	Asn	Lys 260	Ser	Met	Glu	Ile	G1u 265	Val	Leu	Val	Asp	Ala 270	Asp	Pro
	Val	Val	Asp 275	Ser	Ser	Gln	Lys	Arg 280	Tyr	Arg	Ala	Ala	Ser 285	Ala	Phe	Phe
50	Thr	Tyr 290	Val	Ser	Leu		Gln 295	Glu	Gly	Arg	Ser	Leu 300	Pro	Val	Pro	Gln
55	Leu 305	Val	Pro	Glu	Thr	Glu 310	Asp	Glu	Lys	Lys	Arg 315	Phe	Glu	Glu	Gly	Lys 320
	Gly	Arg	Tyr		Gln 325	Met	Lys	Ala		Xaa 330	Gln	Gly	His	Ala	Xaa 335	Xaa
60	Gln	Pro	Хаа													

```
(2) INFORMATION FOR SEQ ID NO: 482:
5
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 32 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
10
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 482:
     Met Leu Asn Ser Asn Ile Asn Asp Leu Leu Met Val Thr Tyr Leu Ala
                       5
                                         10
15
     Asn Leu Thr Gln Ser Gln Ile Ala Leu Asn Glu Lys Leu Val Asn Leu
20
      (2) INFORMATION FOR SEQ ID NO: 483:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 48 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 483:
30
     Met Arg Glu Thr Ser Ile Arg Val Leu Leu Met Leu Pro Ala Leu Glu
                      5
                                         10
      Ser Thr Ser Gly Leu Ser Ala Phe Met Gly Leu Gly Thr Arg Ile Gly
35
      Cys Phe Lys Thr Ile Thr Cys Trp Pro Thr Ser Leu Thr Gln Arg Xaa
                                 40
40
45
      (2) INFORMATION FOR SEQ ID NO: 484:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 38 amino acids
                     (B) TYPE: amino acid
50
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 484:
      Met Tyr Met Tyr Ser Leu Asn Val Phe Leu Ser Phe Ile Phe Leu Ala
                               10
                   5
55
      Leu Val Phe Lys Cys Val His Val Cys Gln Gly Ala Asn Ala Phe Leu
                   20
      Phe Leu Lys Leu Val Phe
60
               35
```

5	(2)	TIME	ORM	11101	FOR	SEQ	10	NO:	485:							
J			(i)			ENG	r H : 6	51 an	TICS nino ncid		ls					
10			(xi)		(D) 1				near N: S	EQ I	D NC	: 48	15 :			
	Met 1		Leu	Arg	Leu 5		Cys	Leu	Glu	Leu 10	Thr	Met	Val	Lys	Ala 15	Leu
15	Val	Cys	Glu	Met 20		Leu	Phe	Phe	Leu 25	Met	Thr	Gln	Lys	Leu 30	Ile	Trp
20	Gln	Glu	Cys 35		Glu	Lys	Phe	Ala 40	Lys	Leu	Leu	Val	Gln 45	Leu	Ile	Ser
	Leu	Val 50	Phe	Ala	Trp	Glu	Phe 55	Phe	Ser	Glu	Asp	Thr 60	Pro			
25	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 4	486:							
30				(A) L B) T D) T	ENGI YPE : OPOL	H: 3 ami OGY:	46 a no a lin		aci		: 48	6:			
35	Met 1	Leu	Ala	Ala	Arg 5	Leu	Val	Cys	Leu	Arg 10	Thr	Leu	Pro	Ser	Arg 15	Val
	Phe	His	Pro	Ala 20	Phe	Thr	Lys	Ala	Ser 25	Pro	Val	Val	Lys	Asn 30	Ser	Ile
40	Thr	Lys	Asn 35	Gln	Trp	Leu	Leu	Thr 40	Pro	Ser	Arg	Glu	Tyr 45	Ala	Thr	Lys
45	Thr	Arg 50	Ile	Gly	Ile	Arg	Arg 55	Gly	Arg	Thr	Gly	Gln 60	Glu	Leu	Lys	Glu
	Ala 65	Ala	Leu	Glu	Pro	Ser 70	Met	Glu	Lys	Ile	Phe 75	Lys	Ile	Asp	Gln	Met 80
50	Gly	Arg	Trp	Phe	Val 85	Ala	Gly	Gly	Ala	Ala 90	Val	Gly	Leu	Gly	Ala 95	Leu
	Cys	Tyr	Tyr	Gly 100	Leu	Gly	Leu	Ser	Asn 105	Glu	Ile	Gly	Ala	Ile 110	Glu	Lys
55	Ala	Val	Ile 115	Trp	Pro	Gln	Tyr	Val 120	Lys	Asp	Arg	Ile	His 125	Ser	Thr	Tyr
60	Met	Туг 130	Leu	Ala	Gly	Ser	11e 135	Gly	Leu	Thr	Ala	Leu 140	Ser	Ala	Ile	Ala

	Ile 145	Ser	Arg	Thr	Pro	Val 150	Leu	Met	Asn	Phe	Met 155	Met	Arg	Gly	Ser	Trp 160
5	Val	Thr	Ile	Gly	Val 165	Thr	Phe	Ala	Ala	Met 170	Val	Gly	Ala	Gly	Met 175	Leu
	Val	Arg	Ser	Ile 180	Pro	Тут	Asp	Gln	Ser 185	Pro	Gly	Pro	Lys	His 190	Leu	Ala
10	Trp	Leu	Leu 195	His	Ser	Gly	Val	Met 200	Gly	Ala	Val	Val	Ala 205	Pro	Leu	Thr
15	Ile	Leu 210	Gly	Gly	Pro	Leu	Leu 215	Ile	Arg	Ala	Ala	Trp 220	Tyr	Thr	Ala	Gly
13	Ile 225	Val	Gly	Gly	Leu	Ser 230	Thr	Val	Ala	Met	Cys 235	Ala	Pro	Ser	Glu	Lys 240
20	Phe	Leu	Asn	Met	Gly 245	Ala	Pro	Leu	Gly	Val 250	Gly	Leu	Gly	Leu	Val 255	Phe
	Val	Ser	Ser	Leu 260	Gly	Ser	Met	Phe	Leu 265	Pro	Pro	Thr	Thr	Val 270	Ala	Gly
25	Ala	Thr	Leu 275	Tyr	Ser	Val	Ala	Met 280	Туr	Gly	Gly	Leu	Val 285	Leu	Phe	Ser
30	Met	Phe 290	Leu	Leu	Tyr	Asp	Thr 295	Gln	Lys	Val	Ile	Lys 300	Arg	Ala	Glu	Val
50	Ser 305	Pro	Met	Tyr	Gly	Val 310	Gln	Lys	Tyr	Asp	Pro 315	Ile	Asn	Ser.	Met	Leu 320
35	Ser	Ile	Туг	Met	Asp 325	Thr	Leu	Asn	Ile	Phe 330	Met	Arg	Val	Ala	Thr 335	Met
	Leu	Ala	Thr	Gly 340	Gly	Asn	Arg	Lys	Lys 345	Xaa						
40																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO: 4	487 :							
45				(A) I B) T D) T	ENGT YPE : YOPOI	H: 2 ami OGY:	37 a no a lin		aci		: 48	7:			
50	Met 1	Glu	Glu	Val	Leu 5		Leu	Gly	Leu	Lys 10	_	Arg	Glu	Gly	Туг 15	Thr
55	Ser	Phe	Trp	Asn 20		Cys	Ile	Ser	Ser 25		Leu	Arg	Gly	Cys 30	Met	Leu
JJ	Ile	Glu	Leu 35		Leu	Arg	Gly	Arg 40		Gln	Leu	Glu	Ala 45	_	Gly	Met
60	Arg	Arg	-	Ser	Leu	Lev	Thr 55	-	Lys	Val	Ile	Cys		Ser	Asp	Ala

	Pro 65	Thr	Gly	Asp	Val	Leu 70	Leu	Asp	Glu	Ala	Leu 75	Lys	His	Val	Lys	Glu 80
5	Thr	Gln	Pro	Pro	Glu 85	Thr	Val	Gln	Asn	Trp 90	Ile	Glu	Leu	Leu	Ser 95	Gly
10	Glu	Thr	Trp	Asn 100	Pro	Leu	Lys	Leu	His 105	Tyr	Gln	Leu	Arg	Asn 110	Val	Arg
10	Glu	Arg	Leu 115	Ala	Lys	Asn	Leu	Val 120	Glu	Lys	Gly	Val	Leu 125	Thr	Thr	Glu
15	Lys	Gln 130	Asn	Phe	Leu	Leu	Phe 135	Asp	Met	Thr	Thr	His 140	Pro	Leu	Thr	Asn
	Asn 145	Asn	Ile	Lys	Gln	Arg 150	Leu	Ile	Lys	Lys	Val 155	Gln	Glu	Ala	Val	Leu 160
20	Asp	Lys	Trp	Val	Asn 165	Asp	Pro	His	Arg	Met 170	Asp	Arg	Arg	Leu	Leu 175	Ala
25	Leu	Ile	Tyr	Leu 180	Ala	His	Ala	Ser	Asp 185	Val	Leu	Glu	Asn	Ala 190	Phe	Ala
23	Pro	Leu	Leu 195	Asp	Glu	Gln	Tyr	Asp 200	Leu	Ala	Thr	Lys	Arg 205	Val	Arg	Gln
30	Leu	Leu 210	Asp	Leu	Asp	Pro	Glu 215	Val	Glu	Cys	Leu	Lys 220	Ala	Asn	Thr	Asn
	Glu 225	Val	Leu	Trp	Ala	Val 230	Val	Ala	Ala	Phe	Thr 235	Lys	Xaa			
35																
	(2)	INF	ORMAT	MOIT	FOR	SEQ	ID 1	VO: 4	188:							
40		•	(i) : (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	00 a no a lin	mino cid ear	aci		: 48	B:			
45	Met 1	Ala	Gln	Arg	Met 5	Val	Trp	Val	Asp	Leu 10	Glu	Met	Thr	Gly	Leu 15	Asp
50	Ile	Glu	Lys	Asp 20	Gln	Ile	Ile	Glu	Met 25	Ala	Суз	Leu	Ile	Thr 30	Asp	Ser
50	Asp	Leu	Asn 35	Ile	Leu	Ala	Glu	Gly 40	Pro	Asn	Leu	Ile	Ile 45	Lys	Gln	Pro
55	Asp	Glu 50	Leu	Leu	Asp	Ser	Met 55	Ser	Asp	Trp	Cys	Lys 60	Glu	His	His	Gly
	Lys 65		Gly	Leu	Thr	Lys 70	Ala	Val	Lys	Glu	Ser 75	Thr	Ile	Thr	Leu	Gln 80
60	Gln	Ala	Glu	Tyr	Glu	Phe	Leu	Ser	Phe	Val	Arg	Gln	Gln	Thr	Pro	Pro

					85					90					95	
5	Gly	Leu	Cys	Pro 100	Leu	Ala	Gly	Asn	Ser 105	Val	His	Glu	Asp	Lys 110	Lys	Phe
-	Leu	Asp	Lys 115	Tyr	Met	Pro	Gln	Phe 120	Met	Lys	His	Leu	His 125	Tyr	Arg	Ile
10	Ile	Asp 130	Val	Ser	Thr	Val	Lys 135	Glu	Leu	Cys	Arg	Arg 140	Trp	Tyr	Pro	Glu
	Glu 145	Tyr	Glu	Phe	Ala	Pro 150	Lys	Lys	Ala	Ala	Ser 155	His	Arg	Ala	Leu	Asp 160
15	Asp	Ile	Ser	Glu	Ser 165	Ile	Lys	Glu	Leu	Gln 170	Phe	Tyr	Arg	Asn	Asn 175	Ile
20	Phe	Lys	Lys	Lys 180	Ile	Asp	Glu	Lys	Lys 185	Arg	Lys	Ile	Ile	Glu 190	Asn	Gly
	Glu	Asn	Glu 195	Lys	Thr	Val	Ser	Xaa 200								
25	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	10: 4	189:							
30			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	51 a no a lin	mino cid ear	aci						
			(xi)	SEQ	UENC	E DE	SCRI:	PTIO	N: S	EQ II	ON C	: 48	9:			
35	Met 1	Ala	Thr	Thr	Ala 5	Ala	Pro	Ala	Gly	Gly 10	Ala	Arg	Asn	Gly	Ala 15	Gly
	Pro	Glu	Trp	Gly 20	Gly	Phe	Glu	Glu	Asn 25	Ile	Gln	Gly	Gly	Gly 30	Ser	Ala
40	Val	Ile	Asp 35	Met	Glu	Asn	Met	Asp 40	Asp	Thr	Ser	Gly	Ser 45	Ser	Phe	Glu
45	Asp	Met 50	Gly	Glu	Leu	His	Gln 55	Arg	Leu	Arg	Glu	Glu 60	Glu	Val	Asp	Ala
	Asp 65	Ala	Ala	Asp	Ala	Ala 70	Ala	Ala	Glu	Glu	Glu 75	Asp	Gly	Glu	Phe	Leu 80
50	Gly	Met	Lys	Gly	Phe 85	Lys	Gly	Gln	Leu	Ser 90	Arg	Gln	Val	Ala	Asp 95	Gln
	Met	Trp	Gln	Ala 100	Gly	Lys	Arg	Gln	Ala 105	Ser	Arg	Ala	Phe	Ser 110	Leu	Tyr
55	Ala	Asn	Ile 115	Asp	Ile	Leu	Arg	Pro 120	Tyr	Phe	Asp	Val	Glu 125	Pro	Ala	Gln
60	Val	Arg 130		Gly	Leu	Leu	Glu 135		Met	Ile	Pro	Ile 140		Met	Val	Asn

	Phe 145	Pro	Gln	Lys	Ile	Ala 150	Gly	Glu	Leu	Tyr	Gly 155	Pro	Leu	Met	Leu	Val 160
5	Phe	Thr	Leu	Val	Ala 165	Ile	Leu	Leu	His	Gly 170	Met	Lys	Thr	Ser	Asp 175	Thr
	Ile	Ile	Arg	Glu 180	Gly	Thr	Leu	Met	Gly 185	Thr	Ala	Ile	Gly	Thr 190	Cys	Phe
10	Gly	Tyr	Trp 195	Leu	Gly	Val	Ser	Ser 200	Phe	Ile	Tyr	Phe	Leu 205	Ala	Tyr	Leu
15	Cys	Asn 210	Ala	Gln	Ile	Thr	Met 215	Leu	Gln	Met	Leu	Ala 220	Leu	Leu	Gly	Tyr
	Gly 225	Leu	Phe	Gly	His	Cys 230	Ile	Val	Leu	Phe	11e 235	Thr	Tyr	Asn	Ile	His 240
20	Leu	His	Ala	Leu	Phe 245	Tyr	Leu	Phe	Trp	Leu 250	Leu	Val	Gľy	Gly	Leu 255	Ser
	Thr	Leu	Arg	Met 260	Val	Ala	Val	Leu	Val 265	Ser	Arg	Thr	Val	Gly 270	Pro	Thr
25	Gln	Arg	Leu 275	Leu	Leu	Cys	Gly	Thr 280	Leu	Ala	Ala	Leu	His 285	Met	Leu	Phe
30	Leu	Leu 290	Tyr	Leu	His	Phe	Ala 295	Tyr	His	Lys	Val	Val 300	Glu	Gly	Ile	Leu
	Asp 305	Thr	Leu	Glu	Gly	Pro 310	Asn	Ile	Pro	Pro	Ile 315	Gln	Arg	Val	Pro	Arg 320
35	Asp	Ile	Pro	Ala	Met 325	Leu	Pro	Ala	Ala	Arg 330	Leu	Pro	Thr	Thr	Val 335	Leu
	Asn	Ala	Thr	Ala 340	Lys	Ala	Val	Ala	Val 345	Thr	Leu	Gln	Ser	His 350	Xaa	
10																
	(2)	INFO	ORMAT	ON	FOR	SEQ	ID 1	10: 4	90:							
15				()	A) L: B) T D) T	ENGT YPE: OPOL	H: 2 ami: OGY:	65 a no a lin		aci		: 49	O:			
50	Met 1	Arg	Gly	Ser	Arg 5	Gly	Gly	Trp	Ala	Gly 10	Glu	Met	Ala	Ala	Ser 15	Gly
	Glu	Ser	Gly	Thr 20	Ser	Gly	Gly	Gly	Gly 25	Ser	Thr	Glu	Glu	Ala 30	Phe	Met
55	Thr	Phe	Туг 35	Ser	Glu	Val	Lys	Gln 40	Ile	Glu	Lys	Arg	Asp 45	Ser	Val	Leu
50	Thr	Ser 50	Lys	Asn	Gln	Ile	Glu 55	Arg	Leu	Thr	Arg	Pro 60	Gly	Ser	Ser	Tyr

	Phe 65	Asn	Leu	Asn	Pro	Phe 70	Glu	Val	Leu	Gln	Ile 75	Asp	Pro	Glu	Val	Thr 80
5	Asp	Glu	Glu	Ile	Lys 85	Lys	Arg	Phe	Arg	Gln 90	Leu	Ser	Ile	Leu	Val 95	His
10	Pro	Asp	Lys	Asn 100	Gln	Asp	Asp	Ala	Asp 105	Arg	Ala	Gln	Lys	Ala 110	Phe	Glu
10	Ala	Val	Asp 115	Lys	Ala	Tyr	Lys	Leu 120	Leu	Leu	Asp	Gln	Glu 125	Gln	Lys	Lys
15	Arg	Ala 130	Leu	Ąsp	Val	Ile	Gln 135	Ala	Gly	Lys	Glu	Tyr 140	Val	Glu	His	Thr
	Val 145	Lys	Glu	Arg	Lys	Lys 150	Gln	Leu	Lys	Lys	Glu 155	Gly	Lys	Pro	Thr	Ile 160
20	Val	Glu	Glu	Asp	Asp 165	Pro	Glu	Leu	Phe	Lys 170	Gln	Ala	Val	Tyr	Lys 175	Gln
25	Thr	Met	Lys	Leu 180	Phe	Ala	Glu	Leu	Glu 185	Ile	Lys	Arg	Lys	Glu 190	Arg	Glu
4.5	Ala	Lys	Glu 195	Met	His	Glu	Arg	Lys 200	Arg	Gln	Arg	Glu	Glu 205	Glu	Ile	Glu
30	Ala	Gln 210		Lys	Ala	Lys	Arg 215	Glu	Arg	Glu	Trp	Gln 220	Lys	Asn	Phe	Glu
	Glu 225		Arg	Asp	Gly	Arg 230	Val	Asp	Ser	Trp	Arg 235	Asn	Phe	Gln	Ala	Asn 240
35	Thr	Lys	Gly	Lys	Lys 245	Glu	Lys	Lys	Asn	Arg 250	Thr	Phe	Leu	Arg	Pro 255	Pro
40	Lys	Val	Lys	Met 260	Glu	Gln	Arg	Glu	Xaa 265							
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	491:						*	
45			(i)	_	(A) I (B) 7	ENGT	TH: 2 : ami	ERIS	nino acid		ls					
50				SEÇ	OUENC	E DE	ESCRI	: lir	N: 5							
	Asp 1		Met	Pro	Thr 5		Pro	Leu	ı Xaa	Ala 10		: Leu	ı Glu	ı Cys	3 Gly 19	Pro
55	Let	ı Let	ı Pro	20 20		, Lei	ı Cys	s Cys	Let 25							
60	(2)) IN	FORM	ATIO	1 FOI	R SE(Q ID	NO:	492	:						

			(i)	(A) L B) T	ENGT YPE:	H: 1 ami	ERIS 59 a no a	mino cid		ds					
5			(xi)					lin PTIO		EQ I	D NO	: 49	2:			
	Met 1	Asn	Glu	Tyr	Arg 5	Val	Pro	Glu	Leu	Asn 10	Val	Gln	Asn	Gly	Val 15	Leu
10	Lys	Ser	Leu	Ser 20	Phe	Leu	Phe	Glu	Тут 25	Ile	Gly	Glu	Met	Gly 30	Lys	Asp
15	Tyr	Ile	Tyr 35	Ala	Val	Thr	Pro	Leu 40	Leu	Glu	Asp	Ala	Leu 45	Met	Asp	Arg
	Asp	Leu 50		His	Arg	Gln	Thr 55	Ala	Ser	Ala	Val	Val 60	Gln	His	Met	Ser
20	Leu 65	Gly	Val	Tyr	Gly	Phe 70	Gly	Cys	Glu	Asp	Ser 75	Leu	Asn	His	Leu	Leu 80
	Asn	Tyr	Val	Trp	Pro 85	Asn	Val	Phe	Glu	Thr 90	Ser	Pro	His	Val	Ile 95	Gln
25	Ala	Val	Met	Gly 100	Ala	Leu	Glu	Gly	Leu 105	Arg	Val	Ala	Ile	Gly 110	Pro	Cys
30	Arg	Met	Leu 115	Gln	Tyr	Cys	Leu	Gln 120	Gly	Leu	Phe	His	Pro 125	Ala	Arg	Lys
	Val	Arg 130		Val	Tyr	Trp	Lys 135	Ile	Tyr	Asn	Ser	Ile 140	Tyr	Ile	Gly	Ser
35	Gln 145	Asp	Ala	Leu	Ile	Ala 150	His	Tyr	Pro	Arg	Ile 155	Tyr	Gln	Arg	Xaa	
40	(2)	INF						NO: 4		:						
45			(xi)	(В) Т D) Т	YPE : OPOL	ami: OGY:	79 a no a lin PTIO	cid ear			. 10	a .			
	Met 1							Glu		_				Thr	Ser 15	Met
50	Tyr	Asp	Gly	Leu 20		Gln	Ala	Gly	Ala 25		Leu	Cys	Pro	Thr 30		Gln
	Leu	Glu	Asp 35	Ile	Arg	Asn	Leu	Gln 40	Asp	Leu	Thr	Pro	Leu 45	Lys	Leu	Ala
55	Ala	Lys 50	Glu	Gly	Lys	Ile	Glu 55	Ile	Phe	Arg	His	Ile 60	Leu	Gln	Arg	Glu
60	Phe 65	Ser	Gly	Leu	Ser	His 70	Leu	Ser	Arg	Lys	Phe 75	Thr	Glu	Trp	Cys	Tyr 80

	Gly	Pro	Val	Arg	Val 85	Ser	Leu	Tyr	Asp	Leu 90	Ala	Ser	Val	Asp	Ser 95	Cys
5	Glu	Glu	Asn	Ser 100	Val	Leu	Glu	Ile	Ile 105	Ala	Phe	His	Cys	Lys 110	Ser	Pro
10	His	Arg	His 115	Arg	Met	Val	Val	Leu 120	Glu	Pro	Leu	Asn	Lys 125	Leu	Leu	Gln
	Ala	Lys 130	Trp	Asp	Leu	Leu	Ile 135	Pro	Lys	Phe	Phe	Leu 140	Asn	Phe	Leu	Cys
15	Asn 145	Leu	Ile	Tyr	Met	Phe 150	Ile	Phe	Thr	Ala	Val 155	Ala	Tyr	His	Gln	Pro 160
	Thr	Leu	Lys	Lys	Gln 165	Ala	Ala	Pro	His	Leu 170	Lуs	Ala	Glu	Val	Gly 175	Asn
20	Ser	Met	Leu	Leu 180	Thr	Gly	His	Ile	Leu 185	Ile	Leu	Leu	Gly	Gly 190	Ile	Tyr
25	Leu	Leu	Val 195	Gly	Gln	Leu	Trp	Tyr 200	Phe	Trp	Arg	Arg	His 205	Val	Phe	Ile
	Trp	Ile 210	Ser	Phe	Ile	Asp	Ser 215	Tyr	Phe	Glu	Ile	Leu 220	Phe	Leu	Phe	Gln
30	Ala 225	Leu	Leu	Thr	Val	Val 230	Ser	Gln	Val	Leu	Cys 235	Phe	Leu	Xaa	Ile	Glu 240
	Trp	Tyr	Leu	Pro	Leu 245	Leu	Val	Ser	Ala	Leu 250	Val	Leu	Gly	Trp	Leu 255	Asn
35	Leu	Leu	Tyr	Tyr 260	Thr	Arg	Gly	Phe	Gln 265	His	Thr	Gly	Ile	Туг 270	Ser	Val
40	Met	Ile	Gln 275	Lys	Pro	Trp	Xaa									
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	NO: 4	194 :							
45			(i)	(A) L B) T	ENGT YPE :	H: 1 ami		mino cid	: aci	đs					
50			(xi)	SEQ	JENC:	E DE:	SCRI	PTIO	N: S	EQ II	O NO	: 49	4:			
	Met 1	Ile	Arg	Cys	Gly 5	Leu	Ala	Cys	Glu	Arg 10	Cys	Arg	Trp	Ile	Leu 15	Pro
55	Leu	Leu	Leu	Leu 20	Ser	Ala	Ile	Ala	Phe 25	Asp	Ile	Ile	Ala	Leu 30	Ala	Gly
	Arg	Gly	Trp 35	Leu	Gln	Ser	Ser	Asp 40	His	Gly	Gln	Thr	Ser 45	Ser	Leu	Trp
60	Trp	Lys	Cys	Ser	Gln	Glu	Gly	Gly	Gly	Ser	Gly	Ser	Tyr	Glu	Glu	Gly

		50					55					60				
5	Суs 65		Ser	Leu	Met	Glu 70	Tyr	Ala	Trp	Gly	Arg 75		Ala	Ala	Ala	Met 80
	Leu	Phe	Cys	Gly	Phe 85	Ile	Ile	Leu	Val	Ile 90	Cys	Phe	Ile	Leu	Ser 95	Phe
10	Phe	Ala	Leu	Cys 100	Gly	Pro	Gln	Met	Leu 105	Val	Phe	Leu	Arg	Val 110	Ile	Gly
	Gly	Leu	Leu 115	Ala	Leu	Ala	Ala	Val 120	Phe	Gln	Ile	Ile	Ser 125	Leu	Val	Ile
15	Tyr	Pro 130	Val	Lys	Tyr	Thr	Gln 135	Thr	Phe	Thr	Leu	His 140	Ala	Asn	Xaa	Ala
20	Val 145		Tyr	Ile	Tyr	Asn 150	Trp	Ala	Tyr	Gly	Phe 155		Trp	Ala	Ala	Thr 160
			Leu		165					170					175	
25			Asp	Leu 180	Leu	Gly	Asn	Ala	Lys 185	Pro	Arg	Tyr	Phe	Туг 190	Thr	Ser
	Ala															
30																
	(2)	INF	ORMA!													
35			(1)	(A) L B) T	ENGT YPE:	H: 2 ami	05 a no a			đs					
			(xi)		D) T					EQ I	D NO	: 49	5 :			
40	Met 1	Ala	Ala	Gly	Asp 5	Gln	Val	Phe	Ser	Gly 10	Ala	Gly	His	Val	Хаа 15	Glu
45	His	Val	Ala	Gly 20	Gly	Arg	His	Ala	Trp 25	Leu	Leu	Thr	Trp	Gln 30	Ser	Ala
	Cys	Pro	Ala 35	Asn	Arg	Leu	Ser	Leu 40	Val	Pro	Leu	Val	Pro 45	Ser	Ala	Ser
50	Met	Thr 50	Arg	Leu	Met	Arg	Xaa 55	Arg	Thr	Ala	Ser	Gly 60	Ser	Ser	Val	Ile
	Leu 65	Trp	Met	Ala	Pro	Ala 70	Ala	Ala	Pro	Thr	Pro 75	Ala	Arg	Ala	Pro	Glu 80
55	Ala	Ala	Pro	Thr	Pro 85	Ala	Arg.	Ala	Pro	Ala 90	Ala	Ala	Arg	Thr	Pro 95	Ala
60	Arg	Gly	Pro	Thr 100	Trp	Thr	Ser	Pro	Pro 105	Thr	Arg	Val	Leu	Leu 110	Gly	Thr

	Xaa	Pro	Gly 115	Pro	Ser	Pro	Trp	Arg 120	Ser	Pro	Ala	Arg	Arg 125	Pro	Ala	Gln
5	Leu	Pro 130	Pro	Pro	Asp	Ser	Asp 135	Leu	Cys	Ser	Gly	Pro 140	Leu	Leu	Pro	Gly
	Pro 145	Phe	Ser	Pro	Pro	Ala 150	Cys	His	Thr	Ala	Pro 155	Asn	Ser	Val	Leu	Ile 160
10	Gln	Ser	Leu	Phe	Cys 165	Lys	Ser	Glu	Leu	Trp 170	Trp	Arg	Gln	Met	Arg 175	Ser
15	Ile	Thr	Trp	Val 180	Pro	Ser	Pro	Lys	Ala 185	Gly	Trp	Arg	Trp	Thr 190	Lys	Gly
	Arg	Lys	Gln 195	Ala	Ser	Pro	His	Arg 200	Ile	Leu	Phe	His	Xaa 205			
20	(2)	INF	ORMA:	rion	FOR	SEQ	ID 1	NO: 4	196:							
25				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	47 a no a lin	mino cid ear	aci		: 49	6:			
										-						
30	Met 1	Ala	Leu	Thr	Leu 5	Leu	Pro	Ser	Val	Ser 10	Arg	Leu	Pro	Gly	Glu 15	Arg
30	1		Leu Ala		5					10					15	
30 35	1 Met	Ala		Ser 20	5 Gly	Leu	Pro	Tyr	Val 25	10 Leu	His	His	Lys	Ser 30	15 Ser	Leu
35	1 Met Met	Ala Lys	Ala Val	Ser 20 Ile	5 Gly Phe	Leu Phe	Pro	Tyr Tyr 40	Val 25 Pro	10 Leu Val	His Leu	His Pro	Lys Leu 45	Ser 30 Pro	15 Ser Ala	Leu Pro
	1 Met Met Asn	Ala Lys Gly 50	Ala Val 35	Ser 20 Ile Trp	5 Gly Phe Val	Leu Phe Pro	Pro Pro Arg 55	Tyr Tyr 40 Leu	Val 25 Pro Val	10 Leu Val Leu	His Leu Gly	His Pro Leu 60	Lys Leu 45 Gly	Ser 30 Pro	15 Ser Ala Gly	Leu Pro Asp
35	Met Met Asn Gln 65	Ala Lys Gly 50 Val	Ala Val 35 Thr	Ser 20 Ile Trp	Gly Phe Val Leu	Phe Pro Pro 70	Pro Pro Arg 55	Tyr 40 Leu Ser	Val 25 Pro Val Ser	10 Leu Val Leu Ser	His Leu Gly Ile 75 Val	His Pro Leu 60 Val	Lys Leu 45 Gly Asn	Ser 30 Pro Ser Tyr	15 Ser Ala Gly	Leu Pro Asp Thr
35 40	Met Met Asn Gln 65 Ser	Ala Lys Gly 50 Val	Ala Val 35 Thr	Ser 20 Ile Trp Tyr	Gly Phe Val Leu Lys 85	Leu Phe Pro Pro Ser	Pro Pro Arg 55 Ile	Tyr 40 Leu Ser	Val 25 Pro Val Ser	Leu Val Leu Ser Leu 90	His Leu Gly Ile 75 Val	His Pro Leu 60 Val	Lys Leu 45 Gly Asn	Ser 30 Pro Ser Tyr	Ser Ala Gly Gly His 95	Leu Pro Asp Thr 80
35 40	Met Met Asn Gln 65 Ser Thr	Ala Lys Gly 50 Val	Ala Val 35 Thr His	Ser 20 Ile Trp Tyr Gly Trp 100	Gly Phe Val Leu Lys 85 Ser	Phe Pro Pro To Thr	Pro Pro Arg 55 Ile Trp Arg	Tyr 40 Leu Ser Val	Val 25 Pro Val Ser Phe 105	10 Leu Val Leu Ser Leu 90 Gln	His Leu Gly Ile 75 Val	His Pro Leu 60 Val Tyr	Leu 45 Gly Asn Pro	Ser 30 Pro Ser Tyr Leu Leu 110	Ser Ala Gly Gly His 95 Leu	Leu Pro Asp Thr 80 Pro
35 40 45	1 Met Met Asn Gln 65 Ser Thr	Ala Lys Gly 50 Val Val	Ala Val 35 Thr His Ser Thr	Ser 20 Ile Trp Tyr Gly Trp 100 Pro	5 Gly Phe Val Leu Lys 85 Ser Asp	Leu Phe Pro 70 Ser Thr	Pro Pro Arg 55 Ile Trp Arg Gly	Tyr 40 Leu Ser Val Cys Glu 120	Val 25 Pro Val Ser Phe 105 Gly	10 Leu Val Leu Ser Leu 90 Gln	His Leu Gly Ile 75 Val Val	His Pro Leu 60 Val Tyr Trp	Lys Leu 45 Gly Asn Pro Asp Arg 125	Ser 30 Pro Ser Tyr Leu Leu 110	15 Ser Ala Gly Gly His 95 Leu	Leu Pro Asp Thr 80 Pro Ser

			Jium,			224			1,7,							
5			(i) :	(; (; (;	A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	4 am no a lin	ino cid ear	acid		: 49	7:			
10	Met 1	Val	Trp	Val	Leu 5	Trp	Ser	Ala	Pro	Ser 10	Leu	Ala	Pro	Pro	Trp 15	Val
	Gly	Pro	Суз	Trp 20	Pro	Ser	Thr	Gly	Asn 25	Суѕ	Суз	Leu	Cys	Glu 30	Val	Gly
15	Ala	Ala	Leu 35	Pro	Pro	Arg	Gly	Pro 40	Ser	Leu	Ser	Asp	Cys 45	Leu	Gly	Leu
20	Pro	Pro 50	Trp	Thr	Pro	Trp	Gly 55	Pro	Ala	Trp	Thr	Leu 60	Ala	Gln	Ser	Xaa
25	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO: 4	498:							
30				(A) L B) T D) T	ENGT YPE: OPOL	H: 9 ami OGY:	no a lin	ino cid ear	: acid EQ I		: 49	8:			
35	Met 1	Ser								_				Asn	Arg 15	Leu
	_															
		Ser	Thr	Leu 20	Asn	Glu	Tyr	Leu	Ile 25	Gln	Pro	Gln	Leu	His 30	Cys	Ser
40	Glu			20					25					30		
	Glu Ser	Ser	Gln 35	20 Arg	Leu	Thr	Leu	Lys 40	25 Trp	Gly	Cys	Ser	Ser 45	30 Leu	Gln	Arg
40	Glu Ser Asp	Ser Val	Gln 35 Gln	20 Arg Ala	Leu Val	Thr Pro	Leu Trp 55	Lys 40 Gly	25 Trp Leu	Gly Trp	Cys Gln	Ser Arg 60	Ser 45 Ala	30 Leu Tyr	Gln Pro	Arg Ser
	Ser Asp Leu 65	Ser Val Gly 50	Gln 35 Gln Pro	20 Arg Ala Thr	Leu Val Leu	Thr Pro Pro 70	Leu Trp 55 Ser	Lys 40 Gly Asp	25 Trp Leu Leu	Gly Trp Leu	Cys Gln Arg 75	Ser Arg 60 Pro	Ser 45 Ala His	30 Leu Tyr Ala	Gln Pro	Arg Ser Thr
45	Ser Asp Leu 65	Ser Val Gly 50 Leu Ser	Gln 35 Gln Pro Val	20 Arg Ala Thr Ser	Leu Val Val 85 FOR	Thr Pro 70 Ser SEQ CHAF	Leu Trp 55 Ser Val	Lys 40 Gly Asp His	25 Trp Leu Leu Thr	Gly Trp Leu Cys 90	Cys Gln Arg 75 Glu	Ser Arg 60 Pro	Ser 45 Ala His	30 Leu Tyr Ala	Gln Pro	Arg Ser Thr

	Met Phe Leu IIe Phe Val Tyr Phe Leu Lys Xaa Leu Phe Ser Ser Ser 1 5 10 15
5	Leu Pro Phe Leu Trp Leu 20
10	(2) INFORMATION FOR SEQ ID NO: 500:
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 500:
20	Arg Gly Gly Leu Cys Pro Leu Leu Val Pro Gly Pro Leu Ala Arg Gln 1 5 10 15
20	Glu Pro Ser Pro Ser Leu Gln Gly Cys Ser Glu Ser Pro Val Gly Met 20 25 30
25	Asp
30	(2) INFORMATION FOR SEQ ID NO: 501: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids
35	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 501:
	Met Gln Phe Leu Leu Thr Ala Phe Leu Leu Val Pro Leu Leu Ala Leu 1 5 10 15
40	Cys Asp Val Pro Ile Ser Leu Gly Phe Ser Pro Ser 20 25
45	(2) INFORMATION FOR SEQ ID NO: 502:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 502:
55	Pro Gly Lys Pro Gln Ala Cys Pro Glu Leu Thr Ser Val Leu Pro 1 5 10 15
	(2) INFORMATION FOR SEQ ID NO: 503:
60	(i) SEQUENCE CHARACTERISTICS:

								.9 aπ .no a		acid	s					
								lin								
5			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 50	3:			
3	Asn 1	Lys	Ser	Leu	Xaa 5	Ser	Cys	Leu	Phe	Val 10	Leu	His	Phe	Val	Leu 15	His
10	Cys	Xaa	Phe													
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID :	NO:	504:							
13			(i)	(A) I B) T	ENGT YPE:	H: 2 ami	ERIS 9 am no a lin	ino cid		ls					
20			(xi)					PTIO		EQ I	D NO	: 50	4:			
	Met 1	Glu	Lys	Thr	His 5	Arg	Leu	Arg	Ile	Arg 10	Asn	Pro	Cys	Leu	Gln 15	Phe
25	Ser	Ile	Leu	Asn 20	Leu	Phe	Leu	Leu	Lys 25	Met	Ile	Val	Ser			
30	(2)	INF				-		NO: ! ERIS								
35				(A) L B) T D) T	ENGT YPE : OPOL	H: 7 ami OGY:	5 am no a lin PTIO	ino cid ear	acid		: 50	5:			
40	Met 1	Val	Asp	Ile	Ser 5	Lys	Met	His	Met	Ile 10	Leu	Tyr	Asp	Leu	Gln 15	Gln
	Asn	Leu	Ser	Ser 20	Ser	His	Arg	Ala	Leu 25	Glu	Lys	Gln	Ile	Asp 30	Thr	Leu
45	Ala	Gly	Lys 35	Leu	Asp	Ala	Leu	Thr 40	Glu	Leu	Leu	Ser	Thr 45	Ala	Leu	Gly
	Pro	Ser 50	Ser	Phe	Gln	Asn	Pro 55	Ala	Ser	Ser	Pro	Ser 60	Ser	Trp	Thr	His
50	Glu 65	Glu	Glu	Pro	Gly	туr 70	Phe	Pro	Gln	Tyr	Xaa 75					
55	(2)	INFO	ORMAT	MOI	FOR	SEQ	ID N	NO: 5	306:							
			(i) :	-				ERIS			_					
								0 am no a		aCld	5					
50								lin								

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 506:															
5	Leu 1	Pro	Leu .	Ala	Glu 5	Leu :	Lys	Asn	Trp	Val 10						
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	0: 5	07:							
10			(i) S	(1	A) Li 3) T	NGTI PE:	i: 20 amir)7 ar 10 ac	mino cid	acio	ls					•
			(xi)	•	D) IN					EQ II	NO:	: 507	7:			
15	Met 1	Leu	Trp	Phe	Gly 5	Gly	Cys	Ser	Ala	Val 10	Asn	Ala	Thr	Gly	His 15	Leu
20	Ser	Asp	Thr	Leu 20	Trp	Leu	lle	Pro	11e 25	Thr	Phe	Leu	Thr	Ile 30	Gly	Tyr
	Gly	Asp	Val 35	Val	Pro	Gly	Thr	Met 40	Trp	Gly	Lys	Ile	Val 45	Cys	Leu.	Суѕ
25	Thr	Gly 50	Val	Met	Gly	Val	Cys 55	Cys	Thr	Ala	Leu	Leu 60	Val	Ala	Val	Val
30	Ala 65	Arg	Lys	Leu	Glu	Phe 70	Asn	Lys	Ala	Glu	Lys 75	His	Val	His	Asn	Phe 80
	Met	Met	Asp	Ile	G1n 85	Tyr	Thr	Lys	Glu	Met 90	Lys	Glu	Ser	Ala	Ala 95	Arg
35	Val	Leu	Gln	Glu 100	Ala	Trp	Met	Phe	Туг 105	Lys	His	Thr	Arg	Arg 110	Lys	Glu
	Ser	His	Ala 115	Ala	Arg	Arg	His	Gln 120	Arg	Xaa	Leu	Leu	Ala 125	Ala	Ile	Asn
40	Ala	Phe 130	-	Gln	Val	Arg	Leu 135	Lys	His	Arg	Lys	Leu 140	Arg	Glu	Gln	Val
45	Asn 145		Met	Val	Asp	11e 150		Lys	Met	His	Met 155	Ile	Leu	Tyr	Asp	Leu 160
					165					170					175	
50	Thr	Leu	Ala	Gly 180		Leu	Asp	Ala	Leu 185		Glu	Leu	Leu	Ser 190		Ala
	Leu	Gly	Pro 195	_	Gln	Leu	Pro	Glu 200		Ser	Gln	Gln	Ser 205		Xaa	
55																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	508:							
60			(i)	~	ENCE (A)					S: acio	ls					

	(B) TYPE: amino acid (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 508:	
5	Met Trp Arg Cys Arg Gly Lys Leu Ser Phe Pro Leu Phe Ala Val Val 1 5 10 15	
10	Ile Val Ser Cys Arg Lys Asp Gly Pro Asp Ala Ala Ala Ala Pro Ala 20 25 30	
	Val Xaa Lys Lys 35	
15	(2) INFORMATION FOR SEQ ID NO: 509:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 509: 	
25	Met Ala Leu Val Ala Leu Phe Thr Gln Leu Met Arg Xaa Leu Gly Arg 1 5 10 15	
	Cys Pro Gln	
30		
	(2) INFORMATION FOR SEQ ID NO: 510:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 510: 	
40	Met Thr Phe Pro Phe Glu Lys Glu Asn Ser Cys Phe Gln Cys Leu Leu	
	1 5 10 15	
45	Phe Asp Ser Trp Arg Glu Gln Thr Arg Thr Asn Ile Gln Pro Gln Arg 20 25 30	
50	(2) INFORMATION FOR SEQ ID NO: 511:	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 511: 	

```
Ala Leu Leu Asp Ser Phe Trp Leu Glu Val Gln Lys
                  20
5
     (2) INFORMATION FOR SEQ ID NO: 512:
             (i) SEQUENCE CHARACTERISTICS:
10
                   (A) LENGTH: 26 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 512:
15
     Met Cys Leu Ile His Phe Ile Lys Ile Ile Leu Val Phe Ile Leu Lys
     Leu Trp Leu Tyr Ser Gln Lys Cys Pro Lys
                 20
20
      (2) INFORMATION FOR SEQ ID NO: 513:
25
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 33 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 513:
30
     Met Ile His Val His Glu Trp Asn Asp Gln Met Leu Met Val Tyr Ile
                              10
      Phe Leu Tyr Pro Val Ser Ile Thr Phe Leu Asn Leu Cys Ser Leu Thr
35
                 20
                                     25
     Cys
40
      (2) INFORMATION FOR SEQ ID NO: 514:
             (i) SEQUENCE CHARACTERISTICS:
45
                   (A) LENGTH: 47 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 514:
50
     Leu Asn Glu Ser Tyr Val Ser Arg Ala Gly Gly Trp Phe Ser Met Phe
      1
                    5
     Xaa Leu Ile Phe Phe Leu Leu Ala Leu Gly Ser Xaa Leu Cys Leu Leu
55
     Leu Cys Leu Pro Ser Phe Asn Lys Thr Arg Arg Lys Gln Lys Pro
                  40 45
```

	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	io: 5	15:							
5			(i) 5 (xi)	() () ()	A) L: B) T D) T	ENGT YPE: OPOLA	H: 4: amin OGY:	3 am no ao line	ino a cid ear	acid		: 51!	5:			
10	Ser 1	Ser	Lys	Thr	Pro 5	Leu	Pro	Ser	Glu	Arg 10	Arg	Trp	Ile	Ser	Gly 15	Ser
	Ser	Leu	Met	Ala 20	Pro	Arg	Pro	Trp	Leu 25	Leu	Gly	Ile	Ala	Leu 30	Leu	Gly
15	Leu	Trp	Ala 35	Leu	Glu	Pro	Ala	Leu 40	Gly	His	Trp					
20	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	vo: 5	516:							
25				(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	ERIS ami no a lin PTIO	no a cid ear	cids	D NO	: 51	6:			
30	Leu 1	Asn	Trp													
35	(2)	INF	ORMA'	SEQU)	ENCE A) L	CHA ENGT	RACT H: 1	NO: ! ERIS' 74 a no a	rics mino		ds					
40			(xi)					lin PTIO		EQ I	D NO	: 51	7:			
	Phe 1	Ala	Phe	Cys	Ala 5	Glu	Leu	Met	Ile	Gln 10	Asn	Trp	Thr	Leu	Gly 15	Ala
45	Val	Asp	Ser	Gln 20	Met	Asp	Asp	Met	Asp 25	Met	Asp	Leu	Asp	Lys 30	Glu	Phe
	Leu	Gln	Asp 35	Leu	Lys	Glu	Leu	Lys 40	Val	Leu	Val	Ala	Asp 45	Lys	Asp	Leu
50	Leu	Asp 50	Leu	His	Lys	Ser	Leu 55	Val	Cys	Thr	Ala	Leu 60	Arg	Gly	Lys	Leu
55	Gly 65	Val	Phe	Ser	Glu	Met 70	Glu	Ala	Asn	Phe	Lys 75	Asn	Leu	Ser	Arg	Gly 80
	Leu	Val	Asn	Val	Ala 85	Ala	Lys	Leu	Thr	His 90	Asn	Lys	Asp	Val	Arg 95	Asp
60	Leu	Phe	Val	Asp 100	Leu	Val	Glu	Lys	Phe 105	Val	Glu	Pro	Cys	Arg 110	Ser	Asp

664

His Trp Pro Leu Ser Asp Val Arg Phe Phe Leu Asn Gln Tyr Ser Ala 120 5 Ser Val His Ser Leu Asp Gly Phe Arg His Gln Ala Ser Gly Thr Ala 130 135 Thr Trp Ala Pro Ser Ala Ala Ala Ser Cys Ala Cys Ile Met Thr Glu 150 155 10 Val Pro Pro Asn Ala Pro Pro Thr Leu Thr Ile Lys Leu Leu 170 15 (2) INFORMATION FOR SEQ ID NO: 518: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids 20 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 518: Met Trp Lys Asn Leu Gly Ser Gly Ser Val Phe Val Thr Trp Phe Ser 25 5 10 1 Leu Val Met Ile Leu Ser Gly Ile Gly Pro Leu Gly Asp Ala Glu Asp 30 Ser Ile Ser Asp Val Ser His Arg Leu Arg Pro 35 40 35 (2) INFORMATION FOR SEQ ID NO: 519: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid 40 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 519: Phe Gln Phe Pro Leu Leu Thr Ile Ala Leu Gln Phe Leu 1 5 45 (2) INFORMATION FOR SEQ ID NO: 520: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 520: 55 Met His Tyr Val Ile Val Leu Ser Leu Phe Val Val Leu Glu Lys Lys 1 5 Asn Lys Met Gly Ser Asp Gly Cys Leu Arg Lys Asn Gly Ser 60 25 20

5	(2) INFORMATION FOR SEQ ID NO: 521:
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 47 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 521:
	Met Ser Arg Ser Ile Val Leu Arg Gly Ser Leu Phe Leu Phe Phe Ser 1 5 10 15
15	His Tyr Thr Leu Lys Leu Leu Ser Val Ile Lys Gln Thr Asn Arg Lys 20 25 30
20	Ile Val Trp Glu Lys Pro Cys Ile Arg Leu Phe Tyr Xaa Val Leu 35 40 45
•	(2) INFORMATION FOR SEQ ID NO: 522:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 522:
50	Met Pro Leu Pro Val Leu Leu Cys Leu Thr Leu Pro Met Pro Leu Pro 1 5 10 15
35	Ser Ala Thr Ala Arg Gly Gly Asn Arg Thr 20 25
40	(2) INFORMATION FOR SEQ ID NO: 523:
4.5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 58 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 523:
***	Ser Ser Ile Pro Val Ser Ile Leu Ile Gly Met Lys Leu Ile Leu Tyr 1 5 10 15
50	Leu Leu Ile Thr Glu Ser Gly Ser His Glu Lys Lys Ser Phe Tyr Pro 20 25 30
55	Ser Phe Lys Tyr Met Phe Lys Ile Ile Tyr Val Ser Ala Tyr Cys 35 40 45

	(2)	INF	JKMA.	F.TOM	FOR	SEQ	TD I	NO: :	524:							
5				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS' 9 am no a lin PTIO	ino cid ear	acid		: 52	4:			
10	Asn 1	Arg	Thr	Leu	Leu 5	Phe	Leu	Ile	Leu	Phe 10	Val	Leu	Phe	Gly	Leu 15	Gly
	Tyr	Gly	Phe													
15																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	525:							
20				(A) L B) T D) T	ENGT YPE : OPOL	H: 4 ami OGY:	ERIS 0 am no a lin PTIO	ino cid ear	acid		: 52	5:			
25	Met 1	Phe	Leu	Leu	Val 5	Leu	Ser	Val	Phe	Cys 10	Asp	Phe	Met	Cys	Ser 15	Ile
30	Ala	Pro	Arg	Cys 20	His	Ala	Leu	Ser	Leu 25	Val	Ser	Leu	Arg	Ala 30	Gln	His
50	Leu	Ser	Leu 35	Phe	Ile	Thr	Cys	His 40								
35	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: !	526:							
40				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	ERIS' 7 am no a lin PTIO	ino cid ear	acid		: 52	6:			
45	Met 1	Leu	Leu	Phe	Ile 5	Leu	Leu	Thr	Leu	Ser 10	Ser	Gly	Cys	Arg	Leu 15	Leu
	Val	Ser	Ser	Trp 20	Lys	Thr	Phe	Leu	Pro 25	His	Phe	Ser	Leu	Pro 30	Gly	Pro
50	Arg	Glu	His 35	Pro	Glu	Gly	Ser	Arg 40	Thr	Trp	Phe	Phe	Arg 45	Тут	Trp	Glu
55	Pro	Gly 50	Ala	His	Cys	Leu	His 55	Cys	Ala							
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	10: 5	527 :							
50			(i) :	SEOUI	ENCE	CHAI	RACTI	ERIST	rics							

					A) L					acid	s					
					B) T D) T											
			(xi)	SEQ						FO T	ח אם	. 52	7 -			
5			,,,,	~						Y						
	Ala	Arg	Leu	Leu	Leu	Phe	Leu	Ser	Ser	Val	His	Pro	Ser	Ile	Met	Pro
	1				5					10					15	
				_												
10	Ser	Cys	Asn		Leu											
10				20												
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	vo: 5	528:							
15						_										
			(i)	SEQU	ENCE	CHA	RACT	ERIS'	rics	:						
					A) L					acid	s					
					B) T											
20					D) T								_			
20			(X1)	SEQ	UENC	E DE	SCRI	Prio	N: S	EQ I	D NO	: 52	8:			
	Met	Ser	Leu	Thr	Ser	Ser	T.em	Thr	Phe	T.ens	Ser	Hic	Tle	T.eu	Lou	Leu
	1	DCI	Deu	1111	5	Der	Deu	1111	FIIC	10	Ser	1113	116	neu	15	neu
	_				-										13	
25	Pro	Gln	Lys	Leu	Gln	Phe	Leu	Ser	Trp	Met	Glu	Arg	Gln	Gln	Arg	Cys
				20					25					30		
	Thr	Gly	Val	Ala	Lys	Tyr	Ala									
30			35													
50																
	(2)	INF	ORMA'	TION	FOR	SEO	ID I		529:							
						_										
35			(i)	SEQU	ENCE	CHA	RACT	ERIS'	rics	:						
				(A) L	ENGT	H: 1	28 a	mino	aci	ds					
					B) T											
					D) T								_			
40			(X1)	SEQ	UENC.	E DE	SCRI	PLTO	N: S	EQ I	D NO	: 52	9:			
	Met	Val	Leu	Ara	Leu	Tle	Gln	Len	Tle	Phe	Leu	Tle	Phe	Phe	Tle	His
	1		204	9	5	***	0111	200	110	10	LCu	116	1110	2110	15	1113
					_											
	Ile	Ile	Ile	Leu	Leu	Ile	Pro	Gly	Ser	Arg	Pro	Cys	Gly	Ser	Trp	Val
45				20					25					30		
	Asn	Asp		Xaa	Leu	Gly	Leu	Arg	Asp	Val	Thr	His	Leu	Ile	Tyr	Leu
			35					40					45			
50	***				-1		_	_	_	_		_	_			
<i>5</i> 0	His		Val	His	Gly	His		Pro	Trp	Cys	His		Tyr	Ile	Gln	Val
		50					55					60				
	Glu	Dhe	Ser	λla	Lou	Tlo	Clu	802	mh~	21-	Cln	Lou	C1	1 011	Dwo	nho
	65	rne	Ser	AIG	neu	70	Giu	Ser	1111	AIG	75	reu	GTĀ	Leu	PLO	80
55	7.5					, 0					, ,					50
	Ser	Trp	Val	Ara	Val	Ile	His	Pro	Phe	Leu	Val	Leu	Pro	Cvs	Leu	Tyr
		•		~	85					90					95	-,-
	Ser	Pro	Gly	Leu	Lys	Asn	Gly	Ile	Phe	Leu	Phe	Leu	Leu	Arg	Ala	Met
60				100					105					110		

	Pro Gly Gly Met Phe Pro Gly Asn Leu Glu Ala Phe Arg Val Pro Val
5	
10	(2) INFORMATION FOR SEQ ID NO: 530:
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 82 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 530:
20	Met Gly Ser Ser Val Leu Pro Phe Cys Val Cys Val Thr Ser Pro Ser 1 5 10 15
20	Leu Gly Gly Arg Cys Ile Gln Gly Arg Phe Ala Ser His Ser Lys Phe 20 25 30
25	Trp Gly Phe Gly Xaa Lys Thr Ala Ser Phe Gly Ala Val Gly Glu Thr 35 40 45
	Pro Pro Asp Gln Glu Pro Gln Lys Glu Thr Glu Pro Ala Thr Ser Ser 50 55 60
30	His Ala Arg Pro Trp Ala Arg Val Ile Gly Leu Arg Ile Trp Pro Gln 65 70 75 80
35	Pro Asn
40	(2) INFORMATION FOR SEQ ID NO: 531: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 531: Met Leu Leu Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala 1 5 10 15
50	Tyr Trp Thr Met 20
55	(2) INFORMATION FOR SEQ ID NO: 532: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 amino acids
60	(B) TYPE: amino acid(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 532:

(2) INFORMATION FOR SEQ ID NO: 535:

	Asn 1	Cys	Glu	Ile	Leu 5	Glu	Tyr	Cys	Tyr	Туr 10	Leu	Thr	Gln	Leu	Lys 15	
5	Ser	Met	Gly	Lys 20	Tyr	Leu	Ser	Ile	Pro 25	Thr	Val	Leu	Leu	Lys 30		11
10	Arg	Cys	Ser 35	Ile	Thr	Ala	Val	Ser 40	Asp	Ser	Ser	Thr	Ser 45	Trp	Ala	11
	Lys	Ala 50	Gln	Leu	Lys	Ile	Glu 55	Asn	Lys	Asp	Leu	Asp 60	Asn	Lys	Thr	Al
15	Lys 65	Gly	Gly	Gly	Gln	Glu 70	Ala	Leu	Thr	Cys	Thr 75					
20	(2)	INF	ORMA!													
			(I) .	(ENCE A) L B) T	ENGT	н: 6	0am	ino		s					
25			(xi)	(D) T	OPOL	OGY:	lin	ear	EQ II	D NO	: 53	3:			
	Met 1	Phe	Leu	Met	Arg 5	Met	His	Leu	Cys	Phe 10	Cys	Lys	Tyr	Cys	Cys 15	Sei
30	Phe	Ile	Val	Thr 20	Pro	Thr	Ser	Thr	Ser 25	Asn	Thr	Xaa	Ser	Tyr 30	Leu	Тт
35	Pro	Trp	Ile 35	Ser	Ala	Ser	Met	Ala 40	Gly	Arg	Gly	Ser	Xaa 45	Trp	Ala	Cys
	Thr	Leu 50	Asn	Ala	Val	Thr	Arg 55	Glu	Gly	Leu	Pro	Glu 60				
40	(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	O: 5	34:							
45			(i) S (xi)	(<i>I</i> (E	A) LE 3) TY 0) TO	NGTI PE: POLC	i: 39 amir XGY:	ami o ac line	no a id ar	cids		534	l:			
50	Met :	Ser :	Leu :	Leu .	Asn '	Thr 1	His '	Thr 1	Leu (Cys :	Phe '	Val	Leu	Phe	Cys 15	Phe
	Thr]	Leu :	Ser :	lle . 20	Asn (Gln (Glu 1	Lys 1	Leu 2	Ala i	Asn I	His	Leu i	Ala 30	Phe .	Arg
55	Ile I	Leu 1	Phe 1	Phe :	Ile V	/al 1	Phe									

```
(i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 2 amino acids
                     (B) TYPE: amino acid
 5
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 535:
      Met Leu
       1
10
      (2) INFORMATION FOR SEQ ID NO: 536:
15
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 36 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 536:
20
      Met Asp Gln Phe Lys Ile Phe Tyr Phe Leu Lys Ala Phe Phe Ala Cys
                                           10
      Cys Asn Val Gln Asp Pro Ser Pro Phe Met Gly Glu Thr Gly Ser Tyr
25
                   20
                                       25
                                                           30 ..
      Leu Asn Ile Gly
               35
30
      (2) INFORMATION FOR SEQ ID NO: 537:
              (i) SEQUENCE CHARACTERISTICS:
35
                     (A) LENGTH: 14 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 537:
40
      Met Phe Asp Phe Leu Ser Tyr Phe Lys Asp Leu Leu Ser Cys
        1
                                           10
45
      (2) INFORMATION FOR SEQ ID NO: 538:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 18 amino acids
                     (B) TYPE: amino acid
50
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 538:
      Met Gly Phe Gly Phe Val Leu Asn Ile Phe Ser Phe Phe Leu Xaa Pro
       1
                                           10
55
      Pro Leu
```

	(2)	INF	ORMA'	NOI	FOR	SEQ	ID 1	40: 5	539:							
5			(i) : (xi)	(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS 1 am no a lin PTIO	ino cid ear	acid		: 53	9:			
10	Leu 1	Leu	Leu	Trp	Thr 5	Leu	Leu	Ala	Xaa	Tyr 10	Xaa					
15	(2)	INF	ORMA:	SEQUI (ENCE A) L B) T	CHA ENGT YPE:	RACT H: 1	NO: ! ERIS 08 a no a lin	TICS mino cid		ds					
20			(xi)					PTIO		EQ I	ои о	: 54	0:			
	Met 1		Ala	Gln	Lys 5	Asp	Gln	Gln	Lys	Asp 10	Ala	Glu	Ala	Glu	Gly 15	Leu
25	Ser	Gly	Thr	Thr 20	Leu	Leu	Pro	Lys	Leu 25	Ile	Pro	Ser	Gly	Ala 30	Gly	Arg
30	Glu	Trp	Leu 35	Glu	Arg	Arg	Arg	Ala 40	Thr	Ile	Arg	Pro	Trp 45	Ser	Thr	Phe
		50					55					60				Cys
35	65					70			_	_	75					Phe 80
	vai	Pne	Leu	GIĀ	85	116	Leu	ıyr	cys	90	vai	Thr	ser	Pro	меt 95	Leu
40	Leu	Val	Ala	Leu 100	Ala	Val	Phe	Phe	Gly 105	Ala	Cys	Xaa				
45	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	NO: 5	541:							
50			(i) :	()	A) L B) T	ENGT YPE:	H: 1 ami	06 a no a	mino cid		ds					
50			(xi)					lin PTIO		EQ II	ои с	: 54	1:			
55	Phe 1	Val	Phe	Leu	Gly 5	Leu	Ile	Leu	Туг	Cys 10	Val	Val	Thr	Ser	Pro 15	Met
<i>JJ</i>	Leu	Leu	Val	Ala 20	Leu	Ala	Val	Phe	Phe 25	Gly	Ala	Суз	Туг	Ile 30	Leu	Туr
60	Leu	Arg	Thr 35	Leu	Glu	Ser	Lys	Leu 40	Val	Leu	Phe	Gly	Arg 45	Glu	Val	Ser

	Pro	Ala 50	His	Gln	Tyr	Ala	Leu 55	Ala	Gly	Gly	Ile	Ser 60	Phe	Pro	Phe	Phe
5	Trp 65	Leu	Ala	Gly	Ala	Gly 70	Ser	Ala	Val	Phe	Trp 75	Val	Leu	Gly	Ala	Thr 80
10	Leu	Val	Val	Ile	Gly 85	Ser	His	Ala	Ala	Phe 90	His	Gln	Ile	Glu	Ala 95	Val
10	Asp	Gly	Glu	Glu 100	Leu	Gln	Met	Glu	Pro 105	Val						
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	542:							
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 136 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 542:																
25	Met		Arg	Phe	Thr 5		Ala	Gly	Val	Leu 10	Pro	Asp	Ile	Glu	Gln 15	Phe
	Phe	Asn	lle	Gly 20	Asp	Ser	Ser	Ser	Gly 25	Leu	Ile	Gln	Thr	Val 30	Phe	Ile
30	Ser	Ser	Тут 35		Val	Leu	Ala	Pro 40	Val	Phe	Gly	Tyr	Leu 45	_	Asp	Arg
35	Тут	Asn 50	Arg	Lys	Tyr	Leu	Met 55	Cys	Gly	Gly	Ile	Ala 60	Phe	Trp	Ser	Leu
	Val 65		Leu	Gly	Ser	Ser 70		Ile	Pro	Gly	Glu 75	His	Phe	Trp	Leu	Leu 80
40	Leu	ı Leu	Thr	Arg	Gly 85		Val	Gly	Val	Gly 90		Ala	Ser	Tyr	Ser 95	Thr
	Ile	Ala	Pro	Thr 100		Ile	Ala	Asp	Leu 105		Val	Ala	Asp	Gln 110	Arg	Thr
45	Gly	Cys	Ser 115		Ser	Ser	Thr	Leu 120		Phe	Arg	Trp	Ala 125	Val	Val	Trp
50	Ala	130	Leu	Gln	Ala	Pro	Lys 135									
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	543 :							
55			(i)	4	(A) I (B) T	ENGT	TH: 4	124 a	mino acid		.ds					
60			(xi)	SEÇ				lir PTIC		EQ I	D NO): 54	3 :			

	Met 1	Ala	Gly	Asp	Trp 5	His	Trp	Ala	Leu	Arg 10	Val	Thr	Pro	Gly	Leu 15	GIY
5	Val	Val	Ala	Val 20	Leu	Leu	Leu	Phe	Leu 25	Val	Val	Arg	Glu	Pro 30	Pro	Arg
	Gly	Ala	Val 35	Glu	Arg	His	Ser	Asp 40	Leu	Pro	Pro	Leu	Asn 45	Pro	Thr	Ser
10	Trp	Trp 50	Ala	Asp	Leu	Arg	Ala 55	Leu	Ala	Arg	Asn	Pro 60	Ser	Phe	Val	Leu
15	Ser 65	Ser	Leu	Gly	Phe	Thr 70	Ala	Val	Ala	Phe	Val 75	Thr	Gly	Ser	Leu	Ala 80
	Leu	Trp	Ala	Pro	Ala 85	Phe	Leu	Leu	Arg	Ser 90	Arg	Val	Val	Leu	Gly 95	Glu
20	Thr	Pro	Pro	Суs 100	Leu	Pro	Gly	Asp	Ser 105	Cys	Ser	Ser	Ser	Asp 110	Ser	Leu
	Ile	Phe	Gly 115	Leu	Ile	Thr	Cys	Leu 120	Thr	Gly	Val	Leu	Gly 125	Val	Gly	Leu
25	Gly	Val 130		Ile	Ser	Arg	Arg 135	Xaa	Arg	His	Ser	Asn 140	Pro	Arg	Ala	Asp
30	Pro 145	Leu	Val	Cys	Ala	Thr 150	Gly	Leu	Leu	Gly	Ser 155	Ala	Pro	Phe	Leu	Phe 160
	Leu	Ser	Leu	Ala	Cys 165	Ala	Arg	Gly	Ser	Ile 170		Ala	Thr	Tyr	Ile 175	Phe
35	Ile	Phe	Ile	Gly 180	Glu	Thr	Leu	Leu	Ser 185	Met	Asn	Trp	Ala	Ile 190	Val	Ala
	Asp	Ile	Leu 195		Tyr	Val	Val	11e 200	Pro	Thr	Arg	Arg	Ser 205	Thr	Ala	Glu
40	Ala	Phe 210		Ile	Val	Leu	Ser 215	His	Leu	Leu	Gly	Asp 220	Ala	Gly	Ser	Pro
45	Tyr 225		Ile	Gly	Leu	11e 230		Asp	Arg	Leu	Arg 235	Arg	Asn	Trp	Pro	Pro 240
	Ser	Phe	Leu	Ser	Glu 245		Arg	Ala	Leu	Gln 250		Ser	Leu	Met	Leu 255	Cys
50	Ala	Phe	Val	Gly 260		Leu	Gly	Gly	Ala 265		Ser	Trp	Ala	Pro 270	Xaa	Ser
	Ser	Leu	Arg 275		Thr	Ala	Gly	Gly 280		Ser	Cys	Thr	Суs 285		Ala	Cys
55	Cys	Thr 290		Gln	Gly	Pro	Gln 295	Thr	Thr	Gly	Leu	Trp 300		Pro	Ser	Gly
60	Ala 305		Pro	Pro	Ala	Cys 310		Trp	Pro	Val	Cys 315		Ser	Glu	Arg	Leu 320

	Pro Leu Thr Tyr Leu His Ile Cys His Ser Xaa Pro Trp Ala His Pro 325 330 335												
5	Thr Lys Gly Leu Gly Leu Thr Pro Trp Pro Gly Pro Ala Ser Arg Gly 340 345 350												
	Thr Leu Gly Arg Val Pro Ala Pro Arg His Tyr Xaa Gly Ser Ser Gly 355 360 365												
10	Glu Glu Val Gly Val Gln Glu Gly Asp Pro Ser Pro Gln Gly Xaa Pro 370 375 380												
15	Gln Gly Leu Gly Ala Ile Cys Asn Gly Ile Lys Phe Val Ala Arg Pro 385 390 395 400												
15	Gln Val Pro Ala Leu Val Phe Leu Trp Val Ala Ser Asp Leu Ala Pro 405 410 415												
20	Arg Leu His Pro Arg Ala Pro Glu 420												
	(2) INFORMATION FOR SEQ ID NO: 544:												
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids												
30	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 544:												
	Met Phe Arg Phe Val Ile Cys Leu Phe Leu Trp Leu Val Leu Cys Arg 1 5 10 15												
35	Asp Ser Thr Ser Ala Ser Arg Ile Ala Leu Tyr Tyr Arg Ile Val Phe 20 25 30												
40	Leu Ile His Gln Cys Ser Ser 35												
40													
45	(2) INFORMATION FOR SEQ'ID NO: 545: (i) SEQUENCE CHARACTERISTICS:												
	(A) LENGTH: 58 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear												
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 545:												
	Met Leu Pro Trp Xaa Ala Gln Leu Leu Asp Arg Thr Ile Gly Pro Leu 1 5 10 15												
55	Tyr Leu Leu Phe Val Gln Phe Ser Pro Ala Phe Ser Arg Thr Ser Pro 20 25 30												
	Trp Arg Ser Pro Lys Asn Phe Arg Arg Leu Tyr Pro Pro Cys Thr Thr 35 40 45												
60	Ser Gly Cys Ala Ala Arg Trp Leu Phe Ser												

3	(2)	INF	ORMA!	TION	FOR	SEQ	ID I	10:	546:							
10				(A) I B) I D) I	ENGT YPE : OPOL	H: 3 ami OGY:	3 am no a lin	ino cid ear	acid		: 54	6:			
15	Met 1		Leu	Ser	Val 5	Leu	Leu	Pro	Leu	Cys 10	Leu	Leu	Gly	Pro	Gly 15	Arg
10	Phe	Thr	Ser	Gly 20	Gln	Lys	Pro	Leu	Asp 25	Thr	Pro	Gly	Leu	Gly 30		Pro
20	Phe															
25	(2)	INF		(ENCE A) I B) I	CHA ENGI	RACT H: 3	ERIS 67 a	TICS minc	: aci	ds					
30			(xi)	SEQ		OPOL E DE				EQ I	D NO	: 54	7:			
	Met 1	Ala	Lys	Pro	Gln 5	Val	Val	Val	Ala	Pro 10	Val	Leu	Met	Ser	Lys 15	Leu
35	Ser	Val	Asn	Ala 20	Pro	Glu	Phe	Tyr	Pro 25	Ser	Gly	Tyr	Ser	Ser 30	Ser	Tyr
40	Thr	Glu	Ser 35	Tyr	Glu	Asp	Gly	Cys 40	Glu	Asp	Tyr	Pro	Thr 45	Leu	Ser	Glu
	Tyr	Val 50	Gln	Asp	Phe	Leu	Asn 55	His	Leu	Thr	Glu	Gln 60	Pro	Gly	Ser	Phe
45	Glu 65	Thr	Glu	Ile	Glu	Gln 70	Phe	Ala	Glu	Thr	Leu 75	Asn	Gly	Cys	Val	Thr 80
	Thr	Asp	Asp	Ala	Leu 85	Gln	Glu	Leu	Val	Glu 90	Leu	Ile	Tyr	Gln	Gln 95	Ala
50	Thr	Ser	Ile	Pro 100	Asn	Phe	Ser	Tyr	Met 105	Gly	Ala	Arg	Leu	Cys 110	Asn	Tyr
55	Leu	Ser	His 115	His	Leu	Thr	Ile	Ser 120	Pro	Gln	Ser	Gly	Asn 125	Phe	Arg	Gln
	Leu	Leu 130	Leu	Gln	Arg	Cys	Arg 135	Thr	Glu	Tyr	Glu	Val 140	Lys	Asp	Gln	Ala
60	Ala 145	Lys	Gly	Asp	Glu	Val 150	Thr	Arg	Lys	Arg	Phe 155	His	Ala	Phe	Val	Leu 160

	Phe	Leu	Gly	Glu	Leu 165	Tyr	Leu	Asn	Leu	Glu 170	Ile	Lys	Gly	Thr	Asn 175	Gly
5	Gln	Val	Thr	Arg 180	Ala	Asp	Ile	Leu	Gln 185	Val	Gly	Leu	Arg	Glu 190	Leu	Leu
10	Asn	Ala	Leu 195	Phe	Ser	Asn	Pro	Met 200	qaA	Asp	Asn	Leu	11e 205	Cys	Ala	Val
10	Lys	Leu 210	Leu	Lys	Leu	Thr	Gly 215	Ser	Val	Leu	Glu	Asp 220	Ala	Trp	Lys	Glu
15	Lys 225	Gly	Lys	Met	Asp	Met 230	Glu	Glu	Ile	Ile	Gln 235	Arg	Ile	Glu	Asn	Val 240
	Val	Leu	Asp	Ala	Asn 245	Cys	Ser	Arg	Asp	Val 250	Lys	Gln	Met	Leu	Leu 255	Lys
20	Leu	Val	Glu	Leu 260	Arg	Ser	Ser	Asn	Trp 265	Gly	Arg	Val	His	Ala 270	Thr	Ser
25	Thr	Tyr	Arg 275	Glu	Ala	Thr	Pro	Glu 280	Asn	Asp	Pro	Asn	Туr 285	Phe	Met	Asn
23	Glu	Pro 290		Phe	Tyr	Thr	Ser 295	Asp	Gly	Val	Pro	Phe 300	Thr	Ala	Ala	Asp
30	Pro 305	Asp	Tyr	Gln	Glu	Lys 310	-	Gln	Glu	Leu	Leu 315	Glu	Arg	Glu	Asp	Phe 320
	Phe	Pro	Asp	Tyr	Glu 325	Glu	Asn	Gly	Thr	Asp 330	Leu	Ser	Gly	Ala	Gly 335	Asp
35	Pro	Tyr	Leu	Asp 340		Ile	Asp	Asp	Glu 345		Asp	Pro	Glu	Ile 350	Glu	Glu
40	Ala	Tyr	Glu 355	Lys	Phe	Cys	Leu	Glu 360	Ser	Glu	Arg	Lys	Arg 365	Lys	Gln	
40																
45	(2)	INF	ORMA' (i)		FOR ENCE	_				:						
				(A) I B) T D) T	YPE:	ami	no a	cid	ació	ls					
50			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NC	: 54	8:			
	Met 1		Arg	Leu	Asp 5	Ile	Ile	Asn	Ser	Leu 10	Val	Thr	Thr	Val	Phe 15	Met
55	Leu	Ile	Val	Ser 20	Val	Leu	Ala	Leu	Ile 25		Glu	Thr	Thr	Thr 30	Leu	Thr
	Val	Gly	Gly 35	Gly	Val	Phe	Ala	Leu 40		Thr	Ala	Val	Cys 45		Leu	Ala
60	Asp	Gly	Ala	Leu	Ile	Туr	Arg	Lys	Leu	Leu	Phe	Asn	Pro	Ser	Gly	Pro

	5	0				55					60				
5	Tyr Gli 65	n Lys	Lys	Pro	Val 70		Glu	Lys	Lys	Glu 75		Leu			
10	(2) INI		SEQU	ENCE (A) I (B) I	CHA ENGI	RACT TH: 4	ERIS 17 an	TICS nino ncid	: ació	ls					
15	Met Le		SEÇ		E DE Met	SCRI	PTIC	N: S		Gly			Pro	Arg 15	Ser
20	His Cy	s Trp	Gly 20		Pro	Leu	Ala	Cys 25		Thr	Phe	Val	Gln 30		His
	Gln Al	a Asp 35		Ser	His	Leu	Leu 40		Leu	Lys	His	Gln 45	Gly	Ala	
25															
	(2) INFORMATION FOR SEQ ID NO: 550:														
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 168 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 550:														
35	Met Le	ı Leu	Ser	Leu 5	Ala	Ala	Phe	Ser	Val 10	Ile	Ser	Val	Val	Ser 15	Tyr
40	Leu Ile		20 Gln					25					30		
45	Ala Tyr		Asp	Val	Asp	Ile 55	Thr	Leu	Ser	Ser	Glu 60		Phe	His	Asn
	Tyr Met	Asn	Ala	Ala	Met 70	Val	His	Ile	Asn	Arg 75	Ala	Leu	Lys	Leu	Ile 80
50	Ile Arg	, Leu	Phe	Leu 85	Val	Glu	Asp	Leu	Val 90	Asp	Ser	Leu	Lys	Leu 95	Ala
55	Val Phe	Met	Trp 100	Leu	Met	Thr	Tyr	Val 105	Gly	Ala	Val	Phe	Asn 110	Gly	Ile
	Thr Leu	Leu 115	Ile	Leu	Ala	Glu	Leu 120	Leu	Ile	Phe	Ser	Val 125	Pro	Ile	Val
60	Tyr Glu 130		Tyr	Lys	Thr	Gln 135	Ile	Asp	His	Tyr	Val 140	Gly	Ile	Ala	Arg

678

Asp Gln Thr Lys Ser Ile Val Glu Lys Ile Gln Ala Lys Leu Pro Gly 145 150 155 5 Ile Ala Lys Lys Lys Ala Glu Xaa 165 10 (2) INFORMATION FOR SEQ ID NO: 551: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 551: Ser Val Pro Phe His Leu Leu Val Val Leu Arg Ser Arg Ala Val Arg 10 20 Ala Arg Arg Arg Glu Pro Arg Ser Leu Pro Arg Pro Gly Asp Glu Glu Leu Gln Leu Leu Cys Gly Ala Arg Ser Asp Phe Leu Glu Arg 25 Cys Glu Glu Asp Trp Val Cys Leu Trp His His Ala Asp His Ala Ala 30 Phe Pro Gly Ser Phe Gln Cys His Gln Cys Gly Phe Leu Pro His Pro Gly Ser Ser Leu Cys His His Gln Leu Gln Asp Leu Gln Val Arg His 90 35 Pro Ser Cys Thr Glu Val Arg Arg Pro Ser Ile Gln Ser Leu Pro 105 Gly Arg Arg His Tyr Ser Val Leu Arg Ser Phe Pro 40 120 (2) INFORMATION FOR SEQ ID NO: 552: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 177 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 552: Met Val His Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp 10 55 Val Thr Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His 20 25 Thr Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile 40 60

	Ser	Met 50	Gly	Cys	Ala	Phe	Ile 55	Asn	Leu	Cys	Ile	Leu 60	Ala	Ser	Gln	His
5	Ala 65	Trp	Ala	Gln	Leu	Thr 70	Phe	Trp	Glu	Ala	Ser 75	Gln	Leu	Tyr	Leu	Let 80
	Phe	Leu	Ser	Leu	Thr 85	Leu	Ala	Thr	Val	Asn 90	Ala	Arg	Trp	Leu	Glu 95	Pro
10	Arg	Thr	Thr	Ala 100	Ala	Met	Trp	Ala	Leu 105	Gln	Thr	Val	Glu	Lys 110	Glu	Arg
15	Gly	Leu	Gly 115	Gly	Glu	Val	Pro	Gly 120	Ser	His	Gln	Gly	Pro 125	Asp	Pro	Тут
		130		Arg			135					140				
20	145			Tyr		150					155					160
25		Ser	Asn	Gly	Leu 165	Cys	Leu	Ala	Gly	Leu 170	Ala	Leu	Glu	Ile	Arg 175	Ser
25	Leu															
30	(2)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO: 5	553:							
			(i)	SEQU												
35			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	2 am no a lin PTIO	cid ear			. 55	3 :			
	Met			Ile										Tou	Cow	1 01
40	1		****	***	5	Deu	rne	1 y I	Cys	10	Mec	1111	rne	ьeu	15	Leu
	Glu	Gln	Asn	Ser 20	Ala	Thr	Val	Glu	Pro 25	Ser	Ser	His	Glu	Ile 30	Leu	His
45	Leu	Leu	Gln 35	Asn	Cys	Phe	Glu	Leu 40	Leu	Arg	Thr	Ser	Thr 45	Ser	Gln	Cys
	Thr	Glu 50	Gly	Ile	Pro	Cys	Ala 55	Lys	Ile	Pro	Glu	Trp 60	Val	Thr	His	Leu
50	Thr 65	Trp	Gln	Thr	Leu	Lys 70	Asn	Ser								
55	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	10: 5	54:							
			(i) s	EQUE												
								oam:	-	acid	5					
60								line								

		(xi)	SEQU	ENCE	DES	CRIF	MOIT	I: SE	EQ II	NO:	554	l:			
<u>.</u> .	Val Lev	Arg :	Ile	Ile 5	Cys	Leu	Trp	Pro	Cys 10	Gly	Thr	Thr	Leu	Pro 15	Leu
5	Val Glu	Lys i	Ala 1 20	His	Asp	Ser	His	Ser 25	Ala	Asp	Pro	Val	Cys 30	Pro	Gly
10	Leu Thr	35	His :	Leu	Pro	Val	Leu 40	Leu	Tyr	Val	Gln	Leu 45			
15	(2) IN	FORMAT			_				•						
		(2, 2	(<i>I</i>	A) LI B) T	ENGT: YPE:	H: 2		mino cid	aci	ds					
20		(xi)							EQ II	OM C	: 55	5:			
	Met Ly: 1	His	Ala	Asp 5	Pro	Arg	Ile	Gln	Gly 10	Tyr	Pro	Leu	Met	Gly 15	Ser
25	Pro Le	ı Leu	Met 20	Thr	Ser	Ile	Leu	Leu 25	Thr	Tyr	Val	Tyr	Phe 30	Val	Leu
30	Ser Le	Gly 35	Pro	Arg	Ile	Met	Ala 40	Asn	Arg	Lys	Pro	Phe 45	Gln	Leu	Arg
50	Gly Pho		Ile	Val	Тут	Asn 55	Phe	Ser	Leu	Val	Ala 60	Leu	Ser	Leu	Tyr
35	Ile Va	l Tyr	Glu	Phe	Leu 70	Met	Ser	Gly	Trp	Leu 75	Ser	Thr	Tyr	Thr	Trp 80
	Arg Cy	s Asp	Pro	Gln 85	Asp	Cys	Thr	Leu	Gly 90	Gln	Cys	Pro	Ser	Val 95	Pro
40	Ser Pro		Thr 100	Pro	Val	Thr	Lys	Ala 105	Tyr	Val	Val	Arg	Thr 110	Glu	Gln
45	Gly Th	115	Pro	Pro	Leu	Pro	Thr 120	Ala	Ala	Leu	Gln	Gly 125	Pro	Arg	Leu
,,	Trp Pho		Thr	His	Phe	Pro 135	Arg	Ala	Ala	Pro	Gly 140	Met	Trp	Pro	His
50	Cys Cys 145	s Leu	Pro	Leu	Gln 150	Ser	Trp	Gly	Leu	Lys 155	Gly	Leu	Tyr	Ser	Tyr 160
	Phe Pro) Leu	Pro	Ala 165	Leu	Lys	Leu	Gly	Arg 170	Gly	Ala	Leu	Arg	Ala 175	Gly
55	Pro Th		Gly 180	Leu	Val	Ala	Phe	Phe 185	Leu	Thr	Gln	Lys	Arg 190	Ser	Ala
60	Ile Me	Ser 195	Leu	Trp	Thr	Gln	Ser 200	His	Ser	Ser	Thr	Pro 205	His	Thr	Glu

	Ala	Val 210	Ala	Ser	Gly	Pro	Lys 215	Val	Arg	Val	Gly	Gly 220	Gly	Leu	Gly	Ile
5	Gln 225	Pro	Val	Glu	Ala	Ala 230	Tyr	Ser	Thr	Cys	Val 235	Leu	Ile	Lys	Ser	Asp 240
	Arg	Gly	Asn	His	Glu 245	Lys	Lys	Lys	Lys	Lys 250	Lys					
10																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID i	NO:	556:							
15				(T (B T (C	ENGT YPE : OPOL	H: 1 ami OGY:	9 am no a lin	ino cid ear	: acid EQ I		: 55	6:	•		
20	Gly 1	Leu	Ala	Gly	Leu 5	Cys	Gly	Gln	Leu	Ser 10	Ser	Pro	Ala	Leu	Cys 15	Val
25	Asn	Arg	Leu													
23																
	(2)	INF	ORMA	rion	FOR	SEQ	ID	NO:	557:							
30			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:						
				(A) L B) T	YPE:	ami	no a	mino cid	aci	ds					
35			(xi)	(A) L B) T D) T	YPE: OPOL	ami OGY:	no a lin	mino cid ear			: 5 5	7:			
35	Met 1	Ile		((SEQ	A) L B) T D) T UENC	YPE: OPOL E DE	ami OGY: SCRI	no a lin PTIO	mino cid ear N: S	aci EQ I	D NO			Arg	Gly 15	Gln
35	1	Ile Tyr	Thr	((SEQ Glu	A) L B) T D) T UENC Lys 5	YPE: OPOL E DE Trp	ami OGY: SCRI Gly	no a lin PTIO Leu	mino cid ear N: S	e aci EQ I Met 10	D NO	Tyr	Cys		15	
	1 Ala	Tyr	Thr	() () SEQ Glu Xaa 20	A) L B) T D) T UENC Lys 5	YPE: OPOL E DE Trp Ser	ami OGY: SCRI Gly Gly	no a lin PTIO Leu Phe	mino cid ear N: S Asn Ser 25	EQ I Met 10 Ser	D NO Glu Lys	Tyr Met	Cys Lys	Val 30	15 Val	
	1 Ala Ser	Tyr	Thr Ile Leu 35	() () () () () () () () () () () () () (A) L B) T D) T UENC Lys 5 Ser Glu Asn	YPE: OPOL E DE Trp Ser Lys	ami OGY: SCRI Gly Gly Tyr	no a lin PTIO Leu Phe Pro 40 Leu	mino cid ear N: S Asn Ser 25 Gln	EQ I Met 10 Ser	D NO Glu Lys Ile Ser	Tyr Met Tyr Val	Cys Lys Thr 45 Pro	Val 30 Leu	15 Val Cys	Ala Ser
40	Ala Ser Ser	Tyr Arg Cys	Thr Ile Leu 35	(((SEQ) Glu Xaa 20 Leu Leu	A) L B) T D) T UENC Lys 5 Ser Glu Asn	YPE: OPOL E DE Trp Ser Lys Met	ami OGY: SCRI Gly Gly Tyr	no a lin PTIO Leu Phe Pro 40 Leu	mino cid ear N: S Asn Ser 25 Gln	EQ I Met 10 Ser Ala	D NO Glu Lys Ile Ser	Tyr Met Tyr Val	Cys Lys Thr 45 Pro	Val 30 Leu Val	15 Val Cys Met	Ala Ser Gly
40 45	Ala Ser Ser Val 65	Tyr Arg Cys 50	Thr Ile Leu 35 Ala Val	((() () SEQUENTIAL	A) L B) T D) T UENC Lys 5 Ser Glu Asn	YPE: OPOLL OPOLL Trp Ser Lys Met	ami OGY: SCRI Gly Gly Tyr Trp 55	no a linn PTIO Leu Phe Pro 40 Leu	mino cid ear N: S Asn Ser 25 Gln Ala	EQ I Met 10 Ser Ala Lys	D NO Glu Lys Ile Ser Val 75	Tyr Met Tyr Val 60 Cys	Cys Lys Thr 45 Pro	Val 30 Leu Val Phe	15 Val Cys Met	Ala Ser Gly His
40 45	Ala Ser Ser Val 65 Arg	Tyr Arg Cys 50 Ser	Thr Ile Leu 35 Ala Val	(()) (SEQ) Glu Xaa 20 Leu Leu Ala Gln	A) L B) T D) T UENC Lys S Ser Glu Asn Leu 85	YPE: OPOL E DE Trp Ser Lys Met Gly 70 Leu	ami OGY: SCRI Gly Gly Tyr Trp 55 Thr	no a lin PTIO Leu Phe Pro 40 Leu Ile Glu	mino cid ear N: S Asn Ser 25 Gln Ala Glu	EQ I Met 10 Ser Ala Lys Glu Asp 90	D NO Glu Lys Ile Ser Val 75 Asn	Tyr Met Tyr Val 60 Cys	Cys Lys Thr 45 Pro Ser	Val 30 Leu Val Phe	15 Val Cys Met Phe Val 95	Ala Ser Gly His 80 Leu
40 45 50	Ala Ser Ser Val 65 Arg	Tyr Arg Cys 50 Ser	Thr Ile Leu 35 Ala Val Pro Asn	(((()))) SEQUENT SEQUE	A) L B) T D) T UENC Lys S Ser Glu Asn Leu 85 Lys	YPE::OPOLE OPOLE Trp Ser Lys Met Gly 70 Leu Glu	ami OGY: SCRI Gly Gly Tyr Trp 55 Thr Leu Arg	no a lin PTIO Leu Phe Pro 40 Leu Ile Glu Gly	minocid ear N: S Asn Ser 25 Gln Ala Glu Leu Lys 105	EQ I Met 10 Ser Ala Lys Glu Asp 90 Glu	D NO Glu Lys Ile Ser Val 75 Asn	Tyr Met Tyr Val 60 Cys Val	Cys Lys Thr 45 Pro Ser Ile Glu	Val 30 Leu Val Phe Ser Ile 110	15 Val Cys Met Phe Val 95 Cys	Ala Ser Gly His 80 Leu

		130					135					140				
5	11e 145	Arg	Trp	Asn	Asn	Тух 150	Ile	Ala	Gly	Arg	Ala 155	Phe	Val	Leu	Cys	Ser 160
-	Ala	Val	Ser	Asp	Phe 165	Asp	Phe	Ile	Val	Thr 170	Ile	Val	Val	Leu	Lys 175	Asn
10	Val	Leu	Ser	Phe 180	Thr	Arg	Ala	Phe	Gly 185	Lys	Asn	Leu	Gln	Gly 190	Gln	Thr
	Ser	Ązp	Val 195	Phe	Phe	Ala	Ala	Gly 200	Ser	Leu	Thr	Ala	Val 205	Leu	His	Ser
15	Leu	Asn 210	Glu	Val	Ile	Gly	Lys 215	Tyr	Хаа							
20	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	10: !	558:							
			(i)	SEQU												
				-	-	ENGT YPE:				acid	s					
25			(xi)			OPOL				EQ I	סמים	. 55	8 ·			
		_												~1	_	-1
	Leu 1	Leu	гàг	vaı	Leu 5	Cys	11e	Leu	Pro	10	Met	ьуs	vai	GIU	Asn 15	Glu
30	Ara	Tvr	Glu	Asn	Glv	Ara	Lvs	Ara	Leu	Lvs	Ala	Tvr	Leu	Ara	Asn	Thr
		-4-		20	,	3	_,_		25			-4-		30		
35	Leu	Thr	Asp 35	Gln	Arg	Ser	Ser	Asn 40	Leu	Ala	Leu	Leu	Asn 45	Ile	Asn	Phe
	Asp	Ile 50		His	Asp	Leu	Asp 55	Leu	Met	Val	Asp	Thr 60	Tyr	Ile	Lys	Leu
40	Tyr 65	Thr	Ser	Lys	Ser	Glu 70	Leu	Pro	Thr	Asp	Asn 75	Ser	Glu	Thr	Val	Glu 80
	Asn	Thr														
45																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	: OV	559:							
50			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:						
						ENGT YPE:				acid	s					
			1	(D) I	OPOL	OGY:	lin	ear	TO -			0			
55			(XI)	SEQ	UENC	e de	SCRI	P1.10	N: S	EQ I	ט אי ס	: 55	3:			
	Met 1	Val	Leu	Ile	Leu 5	Leu	Asn	Leu	Leu	Leu 10	Gly	Gln	Phe	Ser	Cys 15	
60	Ser	Pro	Ala	Ser 20	His	His	Cys	His	Pro 25	Leu	Pro	Thr	Glu	Met 30		Cys

	Ser	Ser	Asp 35	Trp	Gly	Phe	Asp	Ser 40	His	Thr	Val	Tyr	Pro 45	Ser	Суз	Val
5	Asp	Ala 50	Leu	Leu	Pro	Lys	Pro 55	Ser	Ala	Asn	Ser	Phe 60	Pro	Asn	Gly	Ser
10	Су s 65	His	Cys	Gln	Gly	Leu 70	Tyr	Asn	Gln	Gln	Gln 75	Gln	Asn	Leu	His	Ala 80
	Ala	Glu	Gly	Pro	Ala 85	Ser	Leu	Arg	Cys	Asn 90	Lys	Туг	Val	Ser	Thr 95	
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID:	NO:	560:							
20				(A) I B) I D) I	CHA ENGI YPE: OPOL	H: 5 ami OGY:	4 am no a lin	ino cid ear	acid		F.C.				
						E DE										
25	Met 1	Ile	Pro	Ala	Tyr 5	Ser	Lys	Asn	Arg	Ala 10	Tyr	Ala	Ile	Phe	Phe 15	Ile
	Val	Phe	Thr	Val 20	Ile	Gly	Asp	Ala	Pro 25	Gly	Ala	Val	Leu	Ser 30	Cys	Ala
30	Gly	His	Pro 35	Cys	Val	Gly	Phe	Ala 40	Ala	Val	Leu	Val	Ala 45	Pro	Leu	Thr
35	Val	Ala 50	Val	Ser	Ser	Xaa										
	(2)	INFO	ORMAT	CION	FOR	SEQ	ID I	10: <u>5</u>	661:							
40			(i) S	(.	A) L	CHAI ENGT YPE :	H: 1	08 au	mino		ds					
			(xi)			OPOLA E DES				EQ II	ONO:	: 561	l:			
45	Met 1					Pro								Arg	Ala 15	Leu
50	Cys	Leu	Phe	Pro 20	Arg	Val	Phe	Ala	Ala 25	Glu	Ala	Val	Thr	Ala 30	Asp	Ser
	Glu	Val	Leu 35	Glu	Glu	Arg	Gln	Lys 40	Arg	Leu	Pro	туг	Val 45	Pro	Glu	Pro
55	Tyr	Тут 50	Pro	Glu	Ser	Gly	Trp 55	Asp	Arg	Leu	Arg	Glu 60	Leu	Phe	Gly	Lys
60	Asp 65	Thr	Val .	Asn	Thr	Ser 70	Leu	Asn	Val	Tyr	Arg 75	Asn	Lys .	Asp .	Ala	Leu 80

	Ser	His	Phe	Val	Ile 85	Ala	Gly	Ala	Val	Thr 90	Gly	Ser	Leu	Phe	Arg 95	Ile
5	Asn	Val	Gly	Leu 100	Arg	Gly	Trp	Trp	Leu 105	Val	Ala	Xaa				
10	(2)			TION SEQUI	NCE	CHAI	RACTI	ERIST	rics	: acid:						
15			(xi)	(1	B) T D) T	YPE: OPOL	ami: OGY:	no a lin	cid ear			: 56	2:-			
	Met 1	Asn	Trp	Gly	Leu 5	Ser	Ile	Trp	Leu	His 10	Tyr	Tyr	Glu	Lys	Lys 15	Lys
20	Glu	Gln	Val	Phe 20	Leu	Val	Ile	Leu	Ala 25	His	Val	Val	Arg	Arg 30	Cys	Ala
25	Ser	Asp	Gly 35	Ile	Leu	Gln	Phe	Glu 40	Ser	Ser	Leu	.Leu	Lys 45	Met	Arg	Arg
	Ala	Pro 50														
30	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: !	563:							
35				(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	53 a no a lin	mino cid ear	aci		: 56	3:			
40	Met 1	Val	Lys	Val	Cys 5	Asn	Asp	Ser	Asp	Arg 10	Trp	Ser	Leu	Ile	Ser 15	Leu
	Ser	Asn	Asn	Ser 20	Gly	Lys	Asn	Val	Glu 25	Leu	Lys	Phe	Val	Asp 30	Ser	Leu
45	Arg	Arg	Gln 35	Phe	Glu	Phe	Ser	Val 40	Asp	Ser	Phe	Gln	Ile 45	Lys	Leu	Asp
50	Ser	Leu 50		Leu	Phe	Tyr	Glu 55	Суз	Ser	Glu	Asn	Pro 60	Met	Thr	Glu	Thr
	Phe 65	His	Pro	Thr	Ile	Ile 70	Gly	Glu	Ser	Val	Тут 75	Gly	Asp	Phe	Gln	Glu 80
55	Ala	Phe	Asp	His	Leu 85	Cys	Asn	Lys	Ile	Ile 90	Ala	Thr	Arg	Asn	Pro 95	Glu
	Glu	Ile	Arg	Gly 100	Gly	Gly	Leu	Leu	Lys 105	Tyr	Cys	Asn	Leu	Leu 110	Val	Arg
60	Gly	Phe	Arg	Pro	Ala	Ser	Asp	Glu	Ile	Lys	Thr	Leu	Gln	Arg	Tyr	Met

			115					120					125			
5	Суз	Ser 130	Arg	Phe	Phe	Ile	Asp 135	Phe	Ser	Asp	Ile	Gly 140	Glu	Gln	Gln	Arg
J	Lys 145	Leu	Glu	Ser	Tyr	Leu 150	Gln	Asn	His	Phe	Val 155	Gly	Leu	Glu	Asp	Arg 160
10	Lys	Tyr	Glu	Туг	Leu 165	Met	Thr	Leu	His	Gly 170	Val	Val	Asn	Glu	Ser 175	Thr
	Val	Cys	Leu	Met 180	Gly	His	Glu	Arg	Arg 185	Gln	Thr	Leu	Asn	Leu 190	Ile	Thr
15	Met	Leu	Ala 195	Ile	Arg	Val	Leu	Ala 200	Asp	Gln	Asn	Val	11e 205	Pro	Asn	Val
20	Ala	Asn 210	Val	Thr	Cys	Tyr	Tyr 215	Gln	Pro	Ala	Pro	Tyr 220	Val	Ala	Asp	Ala
20	Asn 225		Ser	Asn	Tyr	Туг 230	Ile	Ala	Gln	Val	Gln 235	Pro	Val	Phe	Thr	Cys 240
25	Gln	Gln	Gln	Thr	Тут 245	Ser	Thr	Trp	Leu	Pro 250	Cys	Asn	Xaa			
	(2)	TNE	ORMA'	TTON	FOR	SEO	TD 1	NO:	564.							
30	(2)	7141		SEQU						:						
							H: 1 ami			acid	ls					
35			(xi)	SEQ			OGY: SCRI			EQ I	D NC	: 56	4:			
	Met 1		Phe	Leu	Met 5	Trp	Leu	Met	Ser	Leu 10	Ala	Ile	Thr	Ser	Gln 15	
40	Pro	Met														
45	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	565:							
			(i)		A) I	ENGI	H: 8	0 an	uno	: acid	ls					
50			(xi)		D) I	OPOI	ami : OGY :SCRI	lin	ear	EQ I	D NC): 56	5:			
			Pro	Lys	_	Lys	Val	Gly	Thr		Gly	Lys	Lys	Gln		
55	Glu		Asn	Ara	5 Glu	Thr	Leu	Lvs	Phe	10 Tvr	Leu	Ara	Ile	Ile	15 Leu	Gly
				20	-14			-,,,	25			9		30		,
60	Ala	Asn	Ala 35	Ile	Тух	Cys	Leu	Val 40	Thr	Leu	Val	Phe	Phe 45	Tyr	Ser	Ser

	Ala	Ser 50	Phe	Trp	Ala	Trp	Leu 55	Ala	Leu	Gly	Phe	Ser 60	Leu	Ala	Val	Tyr
5	Gly 65	Ala	Ser	Tyr	His	Ser 70	Met	Ser	Ser	Met	Ala 75	Arg	Ala	Ala	Phe	Phe 80
10																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	vo: !	566:							
15			(i)	. (A) L B) T D) T	ENGT YPE: OPOL	H: 7 ami OGY:	3 am no a lin	ino cid ear	: acid EQ I		: 56	6:			
20	His 1	Leu	Lys	Asp	Val 5	Ile	Leu	Leu	Thr	Ala 10	Ile	Val	Gln	Val	Leu 15	Ser
25	Cys	Phe	Ser	Leu 20	Tyr	Val	Trp	Ser	Phe 25	Trp	Leu	Leu	Ala	Pro 30	Gly	Arg
	Ala	Leu	Туг 35	Leu	Leu	Trp	Val	Asn 40	Val	Leu	Gly	Pro	Trp 45	Phe	Thr	Ala
30	Asp	Ser 50	Gly	Thr	Pro	Ala	Pro 55	Glu	His	Asn	Glu	Lys 60	Arg	Gln	Arg	Arg
35	Gln 65		Arg	Arg	Gln	Met 70	Lys	Arg	Leu							
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: !	567:							
40			(i)	(A) L B) T	ENGT YPE:	H: 2 ami	ERIS 63 a no a lin	mino cid	: aci	ds					
45			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 56	7:			
	Met 1	Asp	Cys	Pro	Ala 5	Leu	Pro	Pro	Gly	Trp 10	Lys	Lys	Glu	Glu	Val 15	Ile
50	Arg	Lys	Ser	Gly 20	Leu	Ser	Ala	Gly	Lys 25	Ser	Asp	Val	Tyr	Туг 30	Phe	Ser
	Pro	Ser	Gly 35	Lys	Lys	Phe	Arg	Ser 40	ГЛЗ	Pro	Gln	Leu	Ala 45	Arg	Tyr	Leu
55	Gly	Asn 50	Thr	Val	Asp	Leu	Ser 55	Ser	Phe	Asp	Phe	Arg 60	Thr	Gly	Lys	Met
60	Met 65	Pro	Ser	Lys	Leu	Gln 70	Lys	Asn	Lys	Gln	Arg 75	Leu	Arg	Asn	Asp	Pro 80

	Leu	Asn	Gln	Asn	Lys 85	Gly	Lys	Pro	Asp	Leu 90	Asn	Thr	Thr	Leu	Pro 95	Ile
5	Arg	Gln	Thr	Ala 100	Ser	Ile	Phe	Lys	Gln 105	Pro	Val	Thr	Lys	Val 110	Thr	Asn
	His	Pro	Ser 115	Asn	Lys	Val	Lys	Ser 120	Asp	Pro	Gln	Arg	Met 125	Asn	Glu	Gln
10	Pro	Arg 130	Gln	Leu	Phe	Trp	Glu 135	Lys	Arg	Leu	Gln	Gly 140	Leu	Ser	Ala	Ser
15	Asp 145	Val	Thr	Glu	Gln	Ile 150	Ile	Lys	Thr	Met	Glu 155	Leu	Pro	Lys	Gly	Leu 160
	Gln	Gly	Val	Gly	Pro 165	Gly	Ser	Asn	Asp	Glu 170	Thr	Leu	Leu	Ser	Ala 175	Val
20	Ala	Ser	Ala	Leu 180	His	Thr	Ser	Ser	Ala 185	Pro	Ile	Thr	Gly	Gln 190	Val	Ser
	Ala	Ala	Val 195		Lys	Asn	Pro	Ala 200	Val	Trp	Leu	Asn	Thr 205	Ser	Gln	Pro
25	Leu	Cys 210	-	Ala	Phe	Ile	Val 215	Thr	Asp	Glu	Asp	Ile 220	Arg	Lys	Gln	Glu
30	Glu 225	Arg	Val	Gln	Gln	Val 230		Lys	Lys	Leu	Glu 235	Glu	Ala	Leu	Met	Ala 240
	Asp	Ile	Leu	Ser	Arg 245	Ala	Ala	Asp	Thr	Glu 250		Met	Asp	Ile	Glu 255	Met
35	Asp	Ser	Gly	Asp 260	Glu	Ala	Xaa									
40	(2)	INF						NO:								
			(1)	(A) I B) T	ENGI YPE :	TH: 7	ERIS 70 am ino a : lin	ino cid		ls					
45			(xi)					PTIO		EQ I	D NO	: 56	8:			
	Met 1	Met	Arg	Pro	Phe 5	Tyr	Leu	Leu	Leu	Pro 10	Val	Leu	Cys	Thr	Gln 15	Ala
50	Leu	Arg	Gln	Ser 20		Gly	Lys	Ser	Pro 25	Leu	Leu	Trp	Lys	Arg 30		Leu
55	Leu	Phe	Gly 35		Thr	His	Leu	Asn 40	Pro	Ser	Ala	Lys	Leu 45	Leu	Leu	Ser
	Gln	Met 50	_	Thr	Ser	Gly	Asn 55	Arg	Lys	Ser	Glu	Tyr 60		Lys	Tyr	Ala
60	Arg 65	Asn	Trp	Lys	Lys	His 70										

5	(2) INFORMATION FOR SEQ ID NO: 569:
3	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid
10	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 569:
	Met Pro Val Thr Ser Lys Arg Thr Leu Phe Phe Pro Asp Pro Cys Ser 1 5 10 15
15	Tyr Asp Thr Pro Pro Pro Asp Cys His Cys His Ser Phe Arg Ala Glu 20 25 30
	Leu Leu
20	
	(2) INFORMATION FOR SEQ ID NO: 570:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 104 amino acids
	(B) TYPE: amino acid (D) TOPOLOGY: linear
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 570:
	Met Asn Ser Arg Gly Met Trp Leu Thr Tyr Ala Leu Gly Val Gly Leu 1 5 10 15
35	Leu His Ile Val Leu Leu Ser Ile Pro Phe Phe Ser Val Pro Val Ala 20 25 30
	Trp Thr Leu Thr Asn Ile Ile His Asn Leu Gly Met Tyr Val Phe Leu 35 40 45
40	His Ala Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ser 50 55 60
45	Lys Ala Pro Asn Ser Leu Gly Thr Thr Gly Leu Trp Ser Thr Val Tyr 65 70 75 80
	Ile Phe Thr Glu Val Phe His Asn Phe Ser Asn Asn Ser Ile Phe Ser 85 90 95
50	Gly Lys Phe Leu Tyr Glu Val Xaa 100
55	(2) INFORMATION FOR SEQ ID NO: 571:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 132 amino acids(B) TYPE: amino acid
60	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 571:

	Met 1	Trp	Leu	Thr	Tyr 5	Ala	Leu	Gly	Val	Gly 10	Leu	Leu	His	Ile	Val 15	Leu
5	Leu	Ser	Ile	Pro 20	Phe	Phe	Ser	Val	Pro 25	Val	Ala	Trp	Thr	Leu 30	Thr	Asn
10	Ile	Ile	His 35	Asn	Leu	Gly	Met	Tyr 40	Val	Phe	Leu	His	Ala 45	Val	Lys	Gly
	Thr	Pro 50	Phe	Glu	Thr	Pro	Asp 55	Gln	Gly	Lys	Ala	Arg 60	Leu	Leu	Thr	His
15	Trp 65	Glu	Gln	Leu	Asp	Туг 70	Gly	Val	Gln	Phe	Thr 75	Ser	Ser	Arg	Lys	Phe 80
	Phe	Thr	Ile	Ser	Pro 85	Ile	Ile	Leu	Tyr	Phe 90	Leu	Ala	Ser	Phe	Тут 95	Thr
20	Lys	Tyr	Asp	Pro 100	Thr	His	Phe	Ile	Leu 105	Asn	Thr	Ala	Ser	Leu 110	Leu	Ser
25	Val	Leu	Ile 115	Pro	Lys	Met	Pro	Gln 120		His	Gly	Val	Arg 125	Ile	Phe	Gly
	Ile	Asn 130	Lys	Tyr												
30	(2)	INF	ORMA!	TION	FOR	SEQ	ID 1	NO:	572:							
			(i)		ENCE						ls a					
35			(xi)	(B) I D) I UENC	OPOL	OGY:	lin	ear	EQ I	D NO	: 57	2:			
40	Met 1	Asn	Lys	Trp	Ile 5		Glu	Met	His	Cys 10	Tyr	Leu	Val	Leu	Leu 15	Ser
	Val	Cys	Ser	Pro 20	Ser	Ala	Leu	Arg	Arg 25	Val	Arg	His	Thr	Leu 30	Ser	Arg
45																
50	(2)	*****	00143	TT 011	202				- 72							
50	(2)	INF		SEQU	ENCE	СНА	RACT	ERIS	TICS							
55			(xi)	(A) L B) T D) T UENC	YPE: OPOL	ami OGY:	no a lin	cid ear			: 57	3:			
	Met 1	Pro		_		Leu				_				Phe	Gln 15	Ser
60																

```
Ala Asp Ser Cys Glu Val Phe Leu Asn Cys Ser Leu
                 20
5
     (2) INFORMATION FOR SEQ ID NO: 574:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 40 amino acids
10
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 574:
     Met Lys Val Ser Thr Met Leu Trp Phe Leu Cys Trp Glu Gln Ser His
15
      1 5
                                        10
     Phe Leu Arg Glu Trp Glu Asp Leu Ser Thr Phe Leu Ile Leu Ile Gln
                             25
                  20
20
     Met Glu Cys Gln Tyr Gly Asn Ser
              35
25
      (2) INFORMATION FOR SEQ ID NO: 575:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 30 amino acids
                    (B) TYPE: amino acid
30
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 575:
      Met Gly Leu Pro Leu Met Ala Leu Met Trp Ser Thr Leu Pro Ala Ser
35
      Ala Gly Val Asn Phe Ile Leu Ala Leu Pro Leu Leu Xaa Leu
                              25
                 20
40
      (2) INFORMATION FOR SEQ ID NO: 576:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 29 amino acids
45
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 576:
      Met Lys Arg Gly Cys Leu Gly Leu Leu Phe Phe Ser Cys Cys Ser Ser
50
      Ala Pro Thr Met Leu Leu Cys Asp Tyr Leu Asn Trp Phe
                      25
                  20
55
      (2) INFORMATION FOR SEQ ID NO: 577:
             (i) SEQUENCE CHARACTERISTICS:
60
                    (A) LENGTH: 92 amino acids
```

			(xi)	(1	D) TV	YPE: OPOLA E DES	OGY:	line	ear	Q II	O NO:	: 57	7:			
5	Met 1	Lys	Leu	Leu	Leu 5	Gly	Ile	Ala	Leu	Leu 10	Ala	Tyr	Val	Ala	Ser 15	Val
10	Trp	Gly	Asn	Phe 20	Val	Asn	Met	Arg	Ser 25	Ile	Gln	Glu	Asn	Gly 30	Glu	Leu
	Lys	Ile	Glu 35	Ser	Lys	Ile	Glu	Glu 40	Met	Val	Glu	Pro	Leu 45	Arg	Glu	Lys
15	Ile	Arg 50	Asp	Leu	Glu	Lys	Ser 55	Phe	Thr	Gln	Lys	Туг 60	Pro	Pro	Val	Lys
	Phe 65	Leu	Ser	Glu	Lys	Asp 70	Arg	Lys	Arg	Ile	Leu 75	Xaa	Asn	Arg	Arg	Arg 80
20	Xaa	Val	Arg	Gly	Leu 85	Pro	Ser	Xaa	Leu	Thr 90	Asn	Ser				
25	(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO:	578:							
			(i)	_ ((A) I	CHA LENGI	H: 4	2 am	ino		ls					
30			(a)	(OPOL	.OGY :	lin	ear	EO T	ח אים	. 57	٥.			
30			(xi) Phe	SEQ	D) I UENC Leu	OPOL E DE Val	.OGY :	lin PTIO	ear N: S	Lys				Phe		Arg
30	1			SEQ	D) I UENC Leu 5	OPOL E DE Val	.OGY : SCRI Leu	lin PTIO Leu	ear N: S Ile	Lys 10	Ile	Ile	Ser		15	
	1 Leu	Leu	Phe	SEQ Ser Phe	D) TouENC	OPOL E DE Val	OGY: SCRI Leu Pro	lin PTIO Leu Leu	ear N: S Ile Ser 25	Lys 10 Phe	Ile	Ile	Ser	Ile	15	
35	1 Leu Arg	Leu Val	Phe Ile Met 35	SEQ Ser Phe 20 Val	D) TO THE TOTAL TO	Val Phe Leu	OGY: SCRI Leu Pro Asn	lin PTIO Leu Leu Ile 40	Ser 25 Leu	Lys 10 Phe	Ile	Ile	Ser	Ile	15	
35 40 45	1 Leu Arg	Leu Val	Phe Ile Met 35	SEQUENTION SEQUENTION	D) TO THE T	Val Phe	OGY: SCRI Leu Pro Asn ID RACTH: 7: ami	limprio Leu Leu Ile 40 NO: ERIS 0 am.no a	N: S Ile Ser 25 Leu TICS vino	Lys 10 Phe Phe	Ile	Ile	Ser	Ile	15	
35 40	1 Leu Arg	Val	Phe Ile Met 35 ORMA (i)	SEQUUE SE	D) 1	Phe Val SEQ CHARLENGT FYPE:	Pro Asn ID RACTH: 1 ami	lin PTIO Leu Leu Ile 40 NO: ERIS 0 an .no a .lir PTIO	Ser 25 Leu 579: TICS uno cid lear N: S	Lys 10 Phe Phe cacic	Ile Leu D NO	Pro	Ser Asn	Ile 30	15	Arg
35 40 45	1 Leu Arg	Leu Val INF	Phe Ile Met 35	SEQUUE SE	D) 1	Phe Leu SEQ CHA LENGT TYPE: TOPOL TE DE	Pro Asn ID RACTH: 1 ami	lin PTIO Leu Leu Ile 40 NO: ERIS 0 an .no a .lir PTIO	Ser 25 Leu 579: TICS uno cid lear N: S	Lys 10 Phe Phe cacic	Ile Leu D NO	Pro	Ser Asn	Ile 30	15	Arg
35 40 45	Leu Arg (2)	Val	Phe Ile Met 35 ORMA (i)	SEQUUSEQUUSEQUUSEQUUSEQUUSEQUUSEQUUSEQU	D) TO THE T	Phe Leu SEQ CHARLENGT	Pro Asn ID RACTI CH: TH: TH: TH: TH: TH: TH: TH: TH: TH: T	lim PTIO Leu Leu Ile 40 NO: ERIS 70 am no a lim PTIO His	N: S Ile Ser 25 Leu 579: TICS Lino Leid Lear N: S Ile	Lys 10 Phe Phe : acid	Ile Leu D NO	Pro	Ser Asn 9:	Ile 30	Trp Leu 15	Arg

	Leu Gln Gln Cys Arg Gln His Gln Val Leu Gln Glu Lys Asn Thr Lys 50 55 60
5	Lys Phe Asn Lys Lys 65 70
10	(2) INFORMATION FOR SEQ ID NO: 580: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 110 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 580:
	Met Leu Arg Leu Leu Leu Val Ala Phe Ala Leu Val Val Leu 1 5 10 15
20	Phe His Val Leu Leu Ala Pro Ile Thr Ala Leu Phe His Thr His Phe 20 25 30
25	Tyr Asp Arg Leu Gln Asp Ala Gly Ser Arg Trp Pro Glu Leu Tyr Leu 35 40 45
23	Tyr Ser Arg Ala Asp Glu Val Val Leu Ala Arg Asp Ile Glu Arg Met 50 55 60
30	Val Glu Ala Arg Leu Ala Arg Arg Val Leu Ala Arg Ser Val Asp Phe 65 70 75 80
	Val Ser Ser Ala His Val Ser His Leu Arg Asp Tyr Pro Thr Tyr Tyr 85 90 95
35	Thr Ser Leu Cys Val Asp Phe Met Arg Asn Cys Val Arg Cys 100 105 110
40	(2) INFORMATION FOR SEQ ID NO: 581:
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 581:
50	Met Phe Lys Leu Glu Glu Cys Gly Lys Thr Thr Phe Leu Leu Ser Met 1 5 * 10 15
50	Ala Leu Tyr Phe Trp Trp Ile Val Gln Thr Thr Lys Gly Cys 20 25 30
55	(2) INFORMATION FOR SEQ ID NO: 582:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 amino acids
60	(B) TYPE: amino acid

	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 582:													
5	Met Glu Ser Asp Ala Leu Leu Leu Thr Ile Phe Trp Ile Ile Ala Arg 1 5 10 15													
	Ser Ser Val Arg Ser Val Gly Lys Ser Ser Gln Arg Ser Phe Thr Thr 20 25 30													
10	Ile Thr Gln Leu Arg Ser Thr His Thr Gly Pro Ser Arg Arg Ser Tyr 35 40 45													
15	Leu Ile Trp Trp Asn Gly Gly Pro Lys Arg Thr Ile Ser Tyr Val Ser 50 55 60													
13	Arg Arg Phe Arg Ser Phe Arg 65 70													
20	(2) INFORMATION FOR SEQ ID NO: 583:													
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 583:													
30	Val Gly Leu Phe Gln Pro Lys Thr Phe Gln Val Pro Val Thr Asp Leu 1 5 10 15													
	Tyr Ile Phe Ile Lys Ile Tyr Ser Glu Ile Gly Pro Ile Met His Val 20 25 30													
35	Leu Cys Pro Gly Tyr Ser Gln Ser Pro Ser Thr Pro Pro Trp Thr 35 40 45													
40	(2) INFORMATION FOR SEQ ID NO: 584:													
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids													
45	(B) TYPE: amino acid(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 584:													
	Met Trp Phe Gly Ser Asp Arg Ser Asp Leu Arg Ile Gly Thr Ala Phe 1 5 10 15													
50	Leu Phe Asp Leu Val Cys Asp Leu Cys Ile His Ala Trp Lys Pro Pro 20 25 30													
55	Gly Leu Val Arg Phe Ser Phe 35													
	(2) INFORMATION FOR SEQ ID NO: 585:													

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 585:
,	Met Leu Asn Thr Ala Ser Leu Asn Leu Pro Trp Lys Val Gln Leu Phe
10	1 5 10 15 Ala His Ala
15	(2) INFORMATION FOR SEQ ID NO: 586:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 586:
25	Met Ser Ala Cys Leu Leu Leu Phe Leu Ala Phe Ser Trp Lys Arg Lys 1 5 10 15 Gly Leu Trp Ser Gly Pro Gly 20
30	(2) INFORMATION FOR SEQ ID NO: 587:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 587:
40	Met Leu Pro Pro Phe Ser Leu Val Tyr Thr His Phe Leu Val Ala Ser 1 5 10 15
	Leu Leu Pro Val Ile Leu Ala Val Phe Pro Asp Ser Ala Gln Ile Val 20 25 30
45	Pro Leu Leu Lys Pro Ile Pro Arg Pro Gln Pro Glu Val Ile Phe Pro 35 40 45
50	Ser Ser Glu Leu Leu Glu Gln Leu Leu Ser Val Gln Phe Val Trp Gl 50 55 60
50	Ala His Thr Val Ala 65
55	(2) INFORMATION FOR SEQ ID NO: 588:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 77 amino acids
60	(A) TYPE: amino acid

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 588:													
5	Met Gly Pro Pro Met Leu Gln Glu Ile Ser Asn Leu Phe Leu Ile Leu 1 5 10 15												
	Leu Met Met Gly Ala Ile Phe Thr Leu Ala Ala Leu Lys Glu Ser Leu 20 25 30												
10	Ser Thr Cys Ile Pro Ala Ile Val Cys Leu Gly Phe Leu Leu Leu Leu 35 40 45												
1.5	Asn Val Gly Gln Leu Leu Ala Gln Thr Lys Lys Val Val Arg Pro Thr 50 55 60												
15	Arg Lys Lys Thr Leu Ser Thr Phe Lys Glu Ser Trp Lys 65 70 75												
20	(2) INFORMATION FOR SEQ ID NO: 589:												
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 155 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 589: 												
30	Met Ala Leu Leu Ser Val Leu Arg Val Leu Leu Gly Gly Phe Phe 1 5 10 15												
	Ala Leu Val Gly Leu Ala Lys Leu Ser Glu Glu Ile Ser Ala Pro Val 20 25 30												
35	Ser Glu Arg Met Asn Ala Leu Phe Val Gln Phe Ala Glu Val Phe Pro 35 40 45												
40	Leu Lys Val Phe Gly Tyr Gln Pro Asp Pro Leu Asn Tyr Gln Ile Ala 50 55 60												
40	Val Gly Phe Leu Glu Leu Leu Ala Gly Leu Leu Leu Val Met Gly Pro 65 70 75 80												
45	Pro Met Leu Gln Glu Ile Ser Asn Leu Phe Leu Ile Leu Leu Met Met 85 90 95												
	Gly Ala Ile Phe Thr Leu Ala Ala Leu Lys Glu Ser Leu Ser Thr Cys 100 105 110												
50	115 120 125												
55	Gln Leu Leu Ala Gln Thr Lys Lys Val Val Arg Pro Thr Arg Lys Lys 130 135 140												
33	Thr Leu Ser Thr Phe Lys Glu Ser Trp Lys Xaa 145 150 155												

```
(2) INFORMATION FOR SEQ ID NO: 590:
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 24 amino acids
                    (B) TYPE: amino acid
5
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 590:
     Met Pro Glu Thr Arg Leu Gly His Arg Gln Gln Phe Ala Val Phe His
                                         10
10
     Leu Xaa Pro Val Pro Pro Cys Gly
                  20
15
      (2) INFORMATION FOR SEQ ID NO: 591:
             (i) SEQUENCE CHARACTERISTICS:
20
                    (A) LENGTH: 38 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 591:
      Met Leu Thr Phe Leu Phe Ser Ala Cys Ala Thr Cys Leu Gly Lys Leu
25
                       5
        1
      Ala Ser Pro Leu Ala Pro Val Gly Pro Gln Gln Arg Gly Xaa Pro Pro
                                       25
                  20
30
      Gly Pro Pro Leu Leu Ser
               35
35
       (2) INFORMATION FOR SEQ ID NO: 592:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 69 amino acids
 40
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 592:
       Met Asp Pro Phe His Tyr Asp Tyr Gln Thr Leu Arg Ile Gly Gly Leu
 45
                                          10
           5
       Val Phe Ala Val Val Leu Phe Ser Val Gly Ile Leu Leu Ile Leu Ser
                            25
       Arg Arg Cys Lys Cys Ser Phe Asn Gln Lys Pro Arg Ala Pro Gly Asp
 50
       Glu Glu Ala Gln Val Glu Asn Leu Ile Thr Ala Asn Ala Thr Glu Pro
                                55
 55
       Gln Lys Ala Glu Asn
        65
```

	(2) INFOR	RMATI	ON F	OR S	EQ I	D NC): 59	3:							
5		i) SE xi) S	(A) (B) (D)	LEI TYI	NGTH: PE: & POLOC	: 30 min 3Y:	8 am o ac line	ino id ar			593	:			
10	Asn Leu	Arg V	al A	arg I	eu G	Sly A	Asp'	Val	lle 10	Ser	Ile	Gln	Pro (Cys 15	Pro
	Asp Val	Lys 1	7yr (20	Gly 1	Lys <i>l</i>	Arg	Ile	His 25	Val	Leu	Pro	Ile	Asp 30	Asp	Thr
15	Val Glu	Gly 3 35	Ile 1	Thr (Gly i	Asn	Leu 40	Phe	Glu	Val	Тут	Leu 45	Lys	Pro	Tyr
20	Phe Leu 50	Glu i	Ala '	Tyr	Arg :	Pro 55	Ile	Arg	Lys	Gly	Asp 60	Ile	Phe	Leu	Val
20	Arg Gly 65	Gly	Met .	Arg	Ala 70	Val	Glu	Phe	Lys	Val 75	Val	Glu	Thr	Asp	Pro 80
25	Ser Pro	Tyr	Cys	Ile 85	Val	Ala	Pro	Asp	Thr 90	Val	Ile	His	Cys	Glu 95	Gly
	Glu Pro		100					105					110		
30	Tyr Asp	115					120					125			
35	Met Val		Leu	Pro	Leu	Arg 135		Pro	Ala	Leu	Phe 140	Lys	Ala	Ile	Gly
55	Val Lys 145				150					155	1				100
40	Lys Thr			165					170)				1/5	ı
	Phe Let	ı Ile	Asn 180		Pro	Glu	ılle	Met 185		. Lys	Lev	ı Ala	190	Glu	Ser
45	Glu Se	r Asn 195	Leu	Arg	Lys	Ala	Phe 200	e Glu	ı Glu	ı Ala	a Glu	1 Lys 205	s Asr	ı Ala	Pro
50	Ala Ile 21		Phe	Ile	Asp	Gl: 215		ı Ası	Ala	a Ile	220	a Pro	Lys	s Arg	, Glu
30	Lys Th	r His	Gly	Glu	Val 230		ı Arg	y Ar	g Ile	e Va:	1 Se:	r Glı	ı Leı	ı Let	240
55	Leu Me	t Asp	Gly	245		: Gli	n Ar	g Ala	a Hi: 25	s Va O	1 11	e Va	l Me	25!	a Ala
	Thr As	n Arg	260		n Ser	: Il	e As	p Pr 26	o Al 5	a Le	u Ar	g Ar	g Ph 27	e Gly	y Arg
60	Phe As	p Arg	g Glu	ı Va	l Asp	11	e Gl	A 11	e Pr	o As	p Al	a Th	r Gl	y Ar	g Lev

```
280
                                                     285
             275
     Glu Ile Leu Gln Ile His Thr Lys Asn Met Lys Leu Ala Asp Asp Val
                           295
5
     Asp Leu Glu Gln
     305
10
      (2) INFORMATION FOR SEQ ID NO: 594:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 22 amino acids
                     (B) TYPE: amino acid
15
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 594:
      Met Gln Ile Lys Leu Leu Lys Ser Val Lys Thr Val Phe Ala Ile Thr
                                10
20
                        5
      Leu Leu Val Leu Phe Leu
                   20
25
       (2) INFORMATION FOR SEQ ID NO: 595:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 24 amino acids
 30
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595:
       Met Phe Pro Lys Phe Cys Pro Ile Leu Ser Leu Val Asp Phe Ile Ser ...
 35
                                           10
       His Arg Asp Lys Pro Glu Thr Glu
                    20
 40
       (2) INFORMATION FOR SEQ ID NO: 596:
               (i) SEQUENCE CHARACTERISTICS:
 45
                      (A) LENGTH: 24 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596:
 50
       Met Leu Ile Glu Cys Ala Trp Gln Leu Met Phe Leu Leu Leu Lys Val
                         5
                                            10
        Glu Gln Leu Gly Ile Leu Asp Lys
  55
                     20
        (2) INFORMATION FOR SEQ ID NO: 597:
  60
```

```
(i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 1 amino acids
                      (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
  5
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 597:
       Met
        1
 10
       (2) INFORMATION FOR SEQ ID NO: 598:
              (i) SEQUENCE CHARACTERISTICS:
 15
                     (A) LENGTH: 8 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 598:
 20
       Met Cys Ile Met Ser Ala Leu Val
        1
                        5
 25
       (2) INFORMATION FOR SEQ ID NO: 599:
              (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 25 amino acids
                     (B) TYPE: amino acid
 30
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 599:
       Met Phe Leu Val Trp Phe Phe Trp Gly Leu Ile Ser Ala Leu Ser Asn
35
      Val His Thr Pro Ser Arg Leu Pro Ala
                   20
40
      (2) INFORMATION FOR SEQ ID NO: 600:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 27 amino acids
45
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 600:
      Met Xaa Gly Leu Ser Leu Ile Leu Thr Val Thr Leu Leu Ala Val Ser
50
                   5
                                  10
      Asp Ser Ala Ala Thr Cys Ile Val Ala Lys Gly
                   20
55
      (2) INFORMATION FOR SEQ ID NO: 601:
             (i) SEQUENCE CHARACTERISTICS:
60
                    (A) LENGTH: 61 amino acids
```

(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 601: 5 Met Trp Thr Arg Ser Ser Arg Cys Leu Leu Cys Ile Pro Gly Xaa 10 1 Ser Arg Arg Arg Ala Gly Ser Gly Met Lys Pro Arg Ser Trp Ser 25 10 Ala Trp Arg Pro Ser Gly Gly Thr Gly Thr Ser Ser Ser Gln Ser Ser Thr Gln Ser Arg Thr Leu Ser Ala Thr Ala Ser Pro Ala 55 15 (2) INFORMATION FOR SEQ ID NO: 602: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 602: Met Arg Glu Thr Ser Ile Arg Val Leu Leu Met Leu Pro Ala Leu Glu 30 Ser Thr Ser Gly Leu Ser Ala Phe Met Gly Leu Gly Thr 20 35 (2) INFORMATION FOR SEQ ID NO: 603: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 amino acids (B) TYPE: amino acid 40 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 603: Met Pro Pro Lys Gln Glu Leu Gly Ser Gly Val Gly Glu Leu Ala Lys 45 Asn Ser Lys Arg Gln His Trp Asn His Arg Trp Lys Lys Tyr Leu Lys 25 Leu Ile Arg Trp Glu Asp Gly Leu Leu Leu Glu Gly Leu Leu Val 50 Leu Glu His Cys Ala Thr Met Ala Trp Asp Cys Leu Met Arg Leu Glu 55 Leu Leu Lys Arg Leu 65

60

(2) INFORMATION FOR SEQ ID NO: 604:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 604:
10	Lys Ile Val Tyr Ile Leu Gly Asn Pro Leu Lys Phe Asn Ser Arg Val 1 5 10 15
15	Ile His His Leu Val Leu Gln 20
13	(2) INFORMATION FOR SEQ ID NO: 605:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 605:
25	Met Asn Leu His Gln Arg Arg Leu Leu Leu Ile Gly His Leu Met Thr 1 5 10 15
	Leu Val Lys Ala Ser Lys Ser Phe Ser Phe Thr Glu Ile Thr Ser Ser 20 25 30
30	Arg Lys Lys 35
35	(2) INFORMATION FOR SEQ ID NO: 606:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 606:
45	Leu Leu Gly Tyr Gly Leu Phe Gly His Cys Ile Val Leu Phe Ile Thr 1 5 10 15
	Tyr Asn Ile His Leu His Ala Leu Phe Tyr Leu Phe Trp Leu Leu Val 20 25 30
50	Gly Gly Leu Ser Thr Leu Arg Met Val Ala Val Leu Val Ser Arg Thr 35 40 45
	Val Gly Pro Thr Gln Arg Leu Leu Cys Gly Thr Leu Ala Ala Leu 50 55 60
55	His Met Leu Phe Leu Leu Tyr Leu His Phe Ala Tyr His Lys Val Xaa 65 70 75 80
60	Glu Gly Ile Leu Asp Thr Leu Glu Gly Pro Asn Ile Pro Pro Ile Gln 85 90 95

```
Arg Val Pro Arg Asp Ile Pro Ala Met Leu Pro Ala Ala Arg Leu Pro
                 100
                                     105
     Thr Thr Val Leu Asn Ala Thr Ala Lys Ala Val Ala Val Thr Leu Gln
 5
                                120
                                                    125
     Ser His ·
         130
10
      (2) INFORMATION FOR SEQ ID NO: 607:
             (i) SEQUENCE CHARACTERISTICS:
15
                   (A) LENGTH: 23 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 607:
20
      Met Leu Val Ile Phe Leu Phe Thr Ser Leu Leu Lys Ile Pro Ser Ser
       1
                      5
                                          10
      Val Pro Gly Leu Ile Asn Val
                  20
25
      (2) INFORMATION FOR SEQ ID NO: 608:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 6 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 608:
35
      Glu Leu Asp Tyr Ile Leu
       1
                      5
40
      (2) INFORMATION FOR SEQ ID NO: 609:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 232 amino acids
45
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 609:
      Met Ala Pro Pro Gly Trp Gln Xaa Xaa Xaa Xaa Trp Leu Ala Cys
50
      Pro Asp Arg Gly Glu Leu Ser Ser Arg Ser Pro Pro Cys Arg Leu Ala
55
      Arg Trp Ala Glu Gly Asp Arg Glu Thr Arg Thr Cys Leu Leu Glu Leu
                                  40
      Ser Ala Gln Ser Trp Gly Gly Arg Phe Arg Arg Ser Ser Ala Val Ser
               55
60
```

	Ala 65	Gly	Ser	Pro	Ser	Arg 70	Leu	His	Phe	Leu	Pro 75	Gln	Pro	Leu	Leu	Leu 80
5	Arg	Ser	Ser	Gly	Ile 85	Pro	Ala	Ala	Ala	Thr 90	Pro	Trp	Pro	Gln	Pro 95	Ala
	Gly	Leu	Pro	Val 100	Arg	Pro	Thr	Pro	Thr 105	Arg	Thr	Gly	Glu	Glu 110	Asp	Arg
10	Thr	Leu	Asp 115	Ile	Ser	Ile	Cys	Thr 120	Glu	Val	Leu	Ala	Gly 125	Thr	Glu	Gln
15	Pro	Pro 130	Pro	Pro	Arg	Met	Thr 135	Ser	Pro	Ser	Ser	Ser 140	Pro	Val	Phe	Arg
	Leu 145	Glu	Thr	Leu	Asp	Gly 150	Gly	Gln	Glu	Asp	Gly 155	Ser	Glu	Ala	Asp	Arg 160
20	Gly	Lys	Leu	Asp	Phe 165	Gly	Ser	Gly	Leu	Pro 170	Pro	Met	Glu	Ser	Gln 175	Phe
	Gln	Gly	Glu	Asp 180	Arg	Lys	Phe	Ala	Pro 185	Ser	Asp	Lys	Ser	Gln 190	Pro	Pro
25	Thr	Thr	Glu 195	Arg	Glu	Gln	Val	Pro 200	Val	Ser	Arg	Ile	Gln 205	Thr	Asp	Leu
30	Thr	Glu 210	Ile	Gly	Ser	Ser	Met 215	Arg	Ser	Pro	Gly	Val 220	Ser	Pro	Arg	Ile
	Trp 225		Asp	Phe	Gln	Ser 230	Thr	Xaa								
35	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: (510:							
40				(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	4 am no a lin	ino cid ear	acid		: 61	0:			
45	Met 1	Val	Leu	Leu	Leu 5	Leu	Leu	Ala	Tyr	Val 10	Leu	Leu	Thr	Tyr	Ile 15	Leu
	Leu	Leu	Asn	Met 20	Leu	Ile	Ala	Leu	Met 25	Xaa	Arg	Asp	Arg	Gln 30	Gln	Cys
50	Arg	His														
55	(2)	INFO	ORMA	rion	FOR	SEQ	ID N	10: (511:							
			(i) :		A) L	ENGT	H: 2	ERIS 1 am no a	ino .		s					
60					-			lin								

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 611:
     Met Val Phe Glu Gly Phe Ser Ser Ala Phe Cys Leu Ser Ser Thr Ala
                                         10
5
     Pro Thr Ser His Pro
                  20
10
      (2) INFORMATION FOR SEQ ID NO: 612:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 9 amino acids
15
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 612:
      Gly Lys Lys Asn Gln Leu Leu Val Ile
20
                        5
      (2) INFORMATION FOR SEQ ID NO: 613:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 29 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
30
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 613:
      Met Val Trp Val Leu Trp Ser Ala Pro Ser Leu Ala Pro Pro Trp Val
                        5
                                          10
35
      Gly Pro Cys Trp Pro Ser Thr Gly Asn Cys Cys Leu Cys
                   20
                                      25
40
      (2) INFORMATION FOR SEQ ID NO: 614:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 30 amino acids
                    (B) TYPE: amino acid
45
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 614:
      Met Ala Lys Arg Ser Pro Gly Gly Cys Gly Ser Gly Leu Ile Leu Leu
                       5
50
      Cys Cys Gln Pro Cys Arg Pro Thr Ser Ser Ala Pro Met Arg
                   20
                                     25
55
      (2) INFORMATION FOR SEQ ID NO: 615:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 113 amino acids
60
                    (B) TYPE: amino acid
```

```
(D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 615:
     Ile Thr Ile Ala Ile Gln Met Ile Cys Leu Val Asn Xaa Glu Leu Tyr
 5
                            10
     Pro Thr Phe Val Arg Asn Xaa Gly Val Met Val Cys Ser Ser Leu Cys
                                    25
10
     Asp Ile Gly Gly Ile Ile Thr Pro Phe Ile Val Phe Arg Leu Arg Glu
     Val Trp Gln Ala Leu Pro Leu Ile Leu Phe Ala Val Leu Gly Leu Leu
                  55
15
     Ala Ala Gly Val Thr Leu Leu Pro Glu Thr Lys Gly Val Ala Leu
                     70
     Pro Glu Thr Met Lys Asp Ala Glu Asn Leu Gly Arg Lys Ala Lys Pro
20
     Lys Glu Asn Thr Ile Tyr Leu Lys Val Gln Thr Ser Glu Pro Ser Gly
                           105
25
     Thr
30
      (2) INFORMATION FOR SEQ ID NO: 616:
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 18 amino acids
                   (B) TYPE: amino acid
35
                  (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 616:
     Thr Met Lys Asp Ala Glu Asn Leu Gly Arg Lys Ala Lys Pro Lys Glu
          5 . 10
40
     Asn Thr
45
      (2) INFORMATION FOR SEQ ID NO: 617:
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 21 amino acids
50
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 617:
     Pro Arg Val Arg Asn Ser Pro Glu Asp Leu Gly Leu Ser Leu Thr Gly
55
             5
     Asp Ser Cys Lys Leu
                 20
```

	(2)	INFO	RMAT	NOI	FOR	SEQ	ID 1	10: 6	518:							
5			(i) { (xi)	() ()	A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami: OGY:	2 am no a lin	ino a cid ear	acid		: 618	3:			
10	Gln 1	Ala	Asp	Asp	Leu 5	Gln	Ala	Thr	Val	Ala 10	Ala	Leu	Cys	Val	Leu 15	Arg
15	Gly	Gly	Gly	Pro 20	Trp	Ala	Gly	Ser	Trp 25	Leu	Ser	Pro	Lys	Thr 30	Pro	Gly
13	Ala	Met	Gly 35	Gly	Asp	Leu	Val	Leu 40	Gly	Leu	Gly	Ala	Leu 45		Arg	Arg
20	Lys	Arg 50	Leu	Leu												
25	(2)	INF	ORMA!	SEQU)	ENCE	CHA ENGT	RACT H: 2	ERIS 32 a	TICS mino	: aci	ds					
30			(xi)		D) T UENC					EQ I	D NO	: 61	9:			
	Glu 1	Gln	Glu	Lys	Ser 5	Leu	Ala	Gly	Trp	Ala 10	Leu	Val	Leu	Ala	Xaa 15	Xaa
35	Gly	Ile	Gly	Leu 20	Met	Val	Leu	His	Ala 25	Glu	Met	Leu	Trp	Phe 30	Gly	Gly
40	Cys	Ser	Ala 35	Val	Asn	Ala	Thr	Gly 40	His	Leu	Ser	Asp	Thr 45	Leu	Trp	Leu
	Ile	Pro 50	Ile	Thr	Phe	Leu	Thr 55	Ile	Gly	Tyr	Gly	Asp 60	Val	Val	Pro	Gly
45		Met	Tm	Gly	T	T 3 -										
	65			Gly	пуъ	70	Val	Cys	Leu	Cys	Thr 75	Gly	Val	Met	Gly	Val 80
		Cys				70					75				Gly Glu 95	80
50	Cys		Thr	Ala	Leu 85	70 Leu	Val	Ala	Val	Val 90	75 Ala	Arg	Lys	Leu	Glu	80 Phe
50 55	Cys Asn	Lys	Thr Ala	Ala Glu 100	Leu 85 Lys	70 Leu His	Val Val	Ala His	Val Asn 105	Val 90 Phe	75 Ala Met	Arg Met	Lys Asp	Leu Ile 110	Glu 95	80 Phe Tyr
	Cys Asn Thr	Lys Lys	Thr Ala Glu 115	Ala Glu 100 Met	Leu 85 Lys Lys	70 Leu His Glu	Val Val Ser	Ala His Ala 120	Val Asn 105 Ala	Val 90 Phe Arg	75 Ala Met Val	Arg Met Leu	Lys Asp Gln 125	Leu Ile 110 Glu	Glu 95 Gln	80 Phe Tyr

....

	Leu Lys His Arg Lys Leu Arg Glu Gln Val Asn Ser Met Val Asp Il 165 170 175
5	Ser Lys Met His Met Ile Leu Tyr Asp Leu Gln Gln Asn Leu Ser Se 180 185 190
10	Ser His Arg Ala Leu Glu Lys Gln Ile Asp Thr Leu Ala Gly Lys Le
10	Asp Ala Leu Thr Glu Leu Leu Ser Thr Ala Leu Gly Pro Arg Gln Le 210 215 220
15	Pro Glu Pro Ser Gln Gln Ser Lys 225 230
20	(2) INFORMATION FOR SEQ ID NO: 620: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids
25	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 620:
	Tyr Gln Ala His His Val Ser Arg Asn Lys Arg Gly Gln Val Val Gl 1 5 10 15
30	Thr Arg Gly Gly Phe Arg Gly Cys Thr Val Trp Leu Thr Gly Leu Se
35	Gly Ala Gly Lys 35
40	(2) INFORMATION FOR SEQ ID NO: 621: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 621: Leu Gln Cys Glu Ile Cys Gly Phe Thr Cys Arg Gln Lys Ala Ser Leu
50	Asn Trp His Met Lys Lys His Asp Ala Asp Ser Phe Tyr Gln Phe Ser
30	20 25 30 Cys Asn Ile Cys Gly Lys Lys Phe Glu Lys Lys Asp Ser Val Val Ala 35 40 45
55	His Lys Ala Lys Ser His Pro Glu Val 50 55
60	(2) INFORMATION FOR SEQ ID NO: 622:

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 19 amino acids
                    (B) TYPE: amino acid
5
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 622:
     Ile Thr Ser Thr Asp Ile Leu Gly Thr Asn Pro Glu Ser Leu Thr Gln
                     5
                                         10
10
      Pro Ser Asp
15
      (2) INFORMATION FOR SEQ ID NO: 623:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 19 amino acids
20
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 623:
      Asn Ser Thr Ser Gly Glu Cys Leu Leu Leu Glu Ala Glu Gly Met Ser
25
                        5
      Lys Ser Tyr
30
      (2) INFORMATION FOR SEQ ID NO: 624:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 51 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 624:
40
      Cys Ser Gly Thr Glu Arg Val Ser Leu Met Ala Asp Gly Lys Ile Phe
      Val Gly Ser Gly Ser Ser Gly Gly Thr Glu Gly Leu Val Met Asn Ser
                                       25
45
      Asp Ile Leu Gly Ala Thr Thr Glu Val Leu Ile Glu Asp Ser Asp Ser
                              40
      Ala Gly Pro
50
          50
      (2) INFORMATION FOR SEQ ID NO: 625:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 60 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
60
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 625:
```

	Ile 1	Gln	Тут	Val	Arg 5	Cys	Glu	Met	Glu	Gly 10	Cys	Gly	Thr	Val	Leu 15	Ala
5	His	Pro	Arg	Tyr 20	Leu	Gln	His	His	Ile 25	Lys	Tyr	Gln	His	Leu 30	Leu	Lys
10	Lys	Lys	Tyr 35	Val	Cys	Pro	His	Pro 40	Ser	Cys	Gly	Arg	Leu 45	Phe	Arg	Leu
	Gln	Lys 50	Gln	Leu	Leu	Arg	His 55	Ala	Lys	His	His	Thr 60				
15	(2)	INFO	ORMA'	noin	FOR	SEQ	ID 1	10: (526:							
20			(i) :	(A) L B) T	ENGT YPE :	H: 3 ami	l am no a	ino cid	: acid	s					
			(xi)				OGY: SCRI			EQ II	ON C	: 62	6:			
25	Asp 1	Gln	Arg	Asp	Tyr 5	Ile	Cys	Glu	Tyr	Cys 10	Ala	Arg	Ala	Phe	Lys 15	Ser
	Ser	His	Asn	Leu 20	Ala	Val	His	Arg	Met 25	Ile	His	Thr	Gly	Glu 30	Lys	
30																
	(2)	INFO	ORMAT	MOIT	FOR	SEQ	ID N	10: 6	527 :							
35				(1 (1	A) L B) T D) T	ENGT YPE : OPOLA	H: 2! amii OGY:	5 am no a line	ino a cid ear	acid			_			
40										SQ II						
40	Arg :	Ser	Ser	Arg	Ser 5	Lys	Thr	Gly	Ser	Leu 10	Gln	Leu	Ile	Cys	Lys 15	Ser
45	Glu 1	Pro	Asn	Thr 20	Asp	Gln	Leu	Asp	Tyr 25							
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	o: 6	28:							
50		((i) S	EQUE												
				(1	3) TY	PE:	H: 18 amir XGY:	no ac	id	acid	ls					
55		(xi)	SEQU	ENCE	DES	CRIF	TION	: SE	Q ID	NO:	628	:			
	Leu (Gln	Cys	Glu	Ile 5	Cys	Gly	Phe	Thr	Суs 10	Arg	Gln	Lys .	Ala	Ser 15	Leu
60	Asn 1	[rp	His	Met 20	Lys	Lys	His .	Asp	Ala 25	Asp	Ser	Phe	Tyr	Gln 30	Phe	Ser

	Cys	Asn	Ile 35	Cys	Gly	Lys	Lys	Phe 40	Glu	Lys	Lys	Asp	Ser 45	Val	Val	Ala
5	His	L уs 50	Ala	Lys	Ser	His	Pro 55	Glu	Val	Xaa	Ile	Thr 60	Ser	Thr	Asp	Ile
10	Leu 65	Gly	Thr	Asn	Pro	Glu 70	Ser	Leu	Thr	Gln	Pro 75	Ser	Asp	Xaa	Asn	Ser 80
10	Thr	Ser	Gly	Glu	Суs 85	Leu	Leu	Leu	Glu	Al a 90	Glu	Gly	Met	Ser	Lys 95	Ser
15	Tyr	Xaa	Cys	Ser 100	Gly	Thr	Glu	Arg	Val 105	Ser	Leu	Met	Ala	Asp 110	Gly	Lys
	Ile	Phe	Val 115	Gly	Ser	Gly	Ser	Ser 120	Gly	Gly	Thr	Glu	Gly 125	Leu	Val	Met
20	Asn	Ser	_	Ile	Leu	Gly	Ala 135	Thr	Thr	Glu	Val	Leu 140	Ile	Glu	Asp	Ser
25	Asp 145		Ala	Gly	Pro	Xaa 150	Gln	Arg	Asp	Tyr	Ile 155	Cys	Glu	Туг	Cys	Ala 160
25	Arg	Ala	Phe	Lys	Ser 165		His	Asn	Leu	Ala 170	Val	His	Arg	Met	Ile 175	His
30	Thr	Gly	Glu	Lys 180	His	Tyr	Xaa									
35	(2)	INF		SEQU	ENCE	CHA ENGI	ID : RACT TH: 6 : ami	ERIS	TICS uino		ls					
40			(xi)				OGY:			EQ I	D NC	: 62	9:			
	Gln 1		Val	Arg	Cys 5		Met	Glu	Gly	Cys 10	Gly	Thr	Val	Leu	Ala 15	His
45	Pro	Arg	Tyr	Leu 20			His		-		Gln			Leu 30	_	Lys
50	Lys	Тут	Val		Pro	His	Pro	Ser 40	_	Gly	Arg	Leu	Phe 45	Arg	Leu	Glr
50	Lys	Gln 50		Leu	Arg	His	Ala 55	Lys	His	His	Thr	Asp 60				
55	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	630:							
			(i)	_			RACT									
60							TH: 2 : ami			acio	ıs					

711

```
(D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 630:
      Pro Phe Lys Asp Asp Pro Arg Asp Glu Thr Tyr Lys Pro His Leu Glu
 5
                                  10
     Arg Glu Thr Pro Lys Pro Arg Arg Lys Ser Gly
10
      (2) INFORMATION FOR SEQ ID NO: 631:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 110 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 631:
20
      Glu Met Phe Asp Ser Leu Ser Tyr Phe Lys Gly Ser Ser Leu Leu Leu
      Met Leu Lys Thr Tyr Leu Ser Glu Asp Val Phe Gln His Ala Val Val
25
      Leu Tyr Leu His Asn His Ser Tyr Ala Ser Ile Gln Ser Asp Asp Leu
      Trp Asp Ser Phe Asn Glu Val Thr Asn Gln Thr Leu Asp Val Lys Arg
30
           50
                              55
     Met Met Lys Thr Trp Thr Leu Gln Lys Gly Phe Pro Leu Val Thr Val
35
      Gln Lys Lys Gly Lys Glu Leu Phe Ile Gln Gln Glu Arg Phe Phe Leu
      Asn Met Lys Pro Glu Ile Gln Pro Ser Asp Thr Arg Tyr Met
                                    105
40
      (2) INFORMATION FOR SEQ ID NO: 632:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 24 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 632:
50
     Leu Glu Lys Val Ala Ser Val Gly Asn Ser Arg Pro Thr Gly Gln Gln
     Leu Glu Ser Leu Gly Leu Leu Ala
55
                 20
     (2) INFORMATION FOR SEQ ID NO: 633:
```

```
(i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 18 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
 5
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 633:
      Val His Arg Glu Glu Ala Ser Cys Tyr Cys Gln Ala Glu Pro Ser Gly
                                           10
10
      Asp Leu
15
      (2) INFORMATION FOR SEQ ID NO: 634:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 22 amino acids
                     (B) TYPE: amino acid
20
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 634:
      Arg Pro Ala Leu Arg Gln Ala Gly Gly Gly Thr Arg Glu Pro Arg Gln
25
      Lys Arg Trp Ala Gly Leu
                   20
30
      (2) INFORMATION FOR SEQ ID NO: 635:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 12 amino acids
35
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 635:
      Ala Val Asn Phe Arg Pro Gln Arg Ser Gln Ser Met
40
      (2) INFORMATION FOR SEQ ID NO: 636:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 37 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
50
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 636:
      Met Ile Thr Asp Val Gln Leu Ala Ile Phe Ala Asn Met Leu Gly Val
               5
                                 10
55
     Ser Leu Phe Leu Leu Val Val Leu Tyr His Tyr Val Ala Val Asn Asn
                  20
                                      25
      Pro Lys Lys Gln Glu
              35
60
```

	(2)	TML	JKMA.	LTOM	FOR	SEQ	ו טו	vo: •	53/:							
5			(i)	(A) L B) T	CHAI ENGT YPE:	H: 3 ami	42 a no a	mino cid		ds					
10			(xi)	SEQ						EQ I	D NO	: 63	7:			
10	Glu 1		Met	Ala	Asp 5	Ser	Val	Lys	Thr	Phe 10	Leu	Gln	Asp	Leu	Ala 15	Arg
15	Gly	Ile	Lys	Asp 20	Ser	Ile	Trp	Gly	Ile 25	Cys	Thr	Ile	Ser	Lys 30	Leu	Asp
	Ala	Arg	Ile 35	Gln	Gln	Lys	Arg	Glu 40	Glu	Gln	Arg	Arg	Arg 45	Arg	Ala	Ser
20	Ser	Val 50		Ala	Gln	Arg	Arg 55	Ala	Gln	Ser	Ile	Glu 60	Arg	Lys	Gln	Glu
25	Ser 65		Pro	Arg	Ile	Val 70	Ser	Arg	Ile	Phe	Gln 75	Суѕ	Cys	Ala	Trp	Asn 80
	Gly	Gly	Val	Phe	Trp 85	Phe	Ser	Leu	Leu	Leu 90	Phe	Tyr	Arg	Val	Phe 95	Ile
30	Pro	Val	Leu	Gln 100	Ser	Val	Thr	Ala	Arg 105	Ile	Ile	Gly	Asp	Pro 110	Ser	Leu
	His	Gly	Asp 115	Val	Trp	Ser	Trp	Leu 120	Glu	Phe	Phe	Leu	Thr 125	Ser	Ile	Phe
35	Ser	Ala 130	Leu	Trp	Val	Leu	Pro 135	Leu	Phe	Val	Leu	Ser 140	Lys	Val	Val	Asn
40	Ala 145	Ile	Trp	Phe	Gln	Asp 150	Ile	Ala	Asp	Leu	Ala 155	Phe	Glu	Val	Ser	Gly 160
	Arg	Lys	Pro	His	Pro 165	Phe	Pro	Ser	Val	Ser 170	Lys	Ile	Ile	Ala	Asp 175	Met
45	Leu	Phe	Asn	Leu 180	Leu	Leu	Gln	Ala	Leu 185	Phe	Leu	Ile	Gln	Gly 190	Met	Phe
	Val	Ser	Leu 195	Phe	Pro	Ile				Gly		Leu	Val 205	Ser	Leu	Leu
50	His	Met 210	Ser	Leu	Leu	Tyr	Ser 215	Leu	Tyr	Cys	Phe	Glu 220	Tyr	Arg	Trp	Phe
55	Asn 225	Lys	Gly	Ile	Glu	Met 230	His	Gln	Arg	Leu	Ser 235	Asn	Ile	Glu	Arg	Asn 240
	Trp	Pro	Туг	Tyr	Phe 245	Gly	Phe	Gly	Leu	Pro 250	Leu	Ala	Phe	Leu	Thr 255	Ala
60	Met	Gln	Ser	Ser 260	Tyr	Ile	Ile	Ser	Gly 265	Cys	Leu	Phe	Ser	Ile 270	Leu	Phe

	Pro	Leu	Phe 275	Ile	Ile	Ser	Ala	Asn 280	Glu	Ala	Lys	Thr	Pro 285	Gly	Lys	Ala
5	Tyr	Leu 290	Phe	Gln	Leu	Arg	Leu 295	Phe	Ser	Leu	Val	Val 300	Phe	Leu	Ser	Asn
10	Arg 305	Leu	Phe	His	Lys	Thr 310	Val	Tyr	Leu	Gln	Ser 315	Ala	Leu	Ser	Ser	Ser 320
	Thr	Ser	Ala	Glu	Lys 325	Phe	Pro	Ser	Pro	His 330	Pro	Ser	Pro	Ala	Lys 335	Leu
15	Lys	Ala	Thr	Ala 340	Gly	His										
20	(2) INFORMATION FOR SEQ ID NO: 638:															
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 529 amino acids (B) TYPE: amino acid																
25	(D) TOPOLOGY: linear															
	Met 1	Ala	Lys	Phe	Met 5	Thr	Pro	Val	Ile	Gln 10	Asp	Asn	Pro	Ser	Gly 15	Trp
30	Gly	Pro	Cys	Ala 20	Val	Pro	Glu	Gln	Phe 25	Arg	Asp	Met	Pro	Туг 30	Gln	Pro
35	Phe	Ser	Lys 35	Gly	Asp	Arg	Leu	Gly 40	Lys	Val	Ala	Asp	Trp 45	Thr	Gly	Ala
	Thr	Туr 50	Gln	Asp	Lys	Arg	Туг 55	Thr	Asn	Lys	Tyr	Ser 60	Ser	Gln	Phe	Gly
40	Gly 65	Gly	Ser	Gln	Tyr	Ala 70	Tyr	Phe	His	Glu	Glu 75	Asp	Glu	Ser	Ser	Phe 80
	Gln	Leu	Val	Asp	Thr 85	Ala	Arg	Thr	Gln	Lys 90	Thr	Ala	Tyr	Gln	Arg 95	Asn
45	Arg	Met	Arg	Phe 100	Ala	Gln	Arg	Asn	Leu 105	Arg	Arg	Asp	Lys	Asp 110	Arg	Arg
50	Asn	Met	Leu 115	Gln	Phe	Asn	Leu	Gln 120	Ile	Leu	Pro	Lys	Ser 125	Ala	Lys	Gln
	Lys	Glu 130	Arg	Glu	Arg	Ile	Arg 135	Leu	Gln	Lys	Lys	Phe 140	Gln	Lys	Gln	Phe
55	Gly 1 4 5	Val	Arg	Gln	Lys	Trp 150	Asp	Gln	Lys	Ser	Gln 155	Lys	Pro	Arg	Asp	Ser 160
	Ser	Val	Glu	Val	Arg 165	Ser	Asp	Trp	Glu	Val 170	Lys	Glu	Glu	Met	Asp 175	Phe
60	Pro	Gln	Leu	Met	Lys	Met	Arg	туr	Leu	Glu	Val	Ser	Glu	Pro	Gln	Asp

				180)				185	5				190)	
5	Ile	e Glu	Cys 195	Cys	Gly	' Ala	Leu	Glu 200		туг	Asp	Lys	Ala 205		Asp	Arg
-	Ile	210	Thr	Arg	Ser	Glu	Lys 215		Leu	Arg	y Xaa	Xaa 220		Arg	Ile	Phe
10	His 225	Thr	Val	Thr	Thr	Thr 230		Asp	Pro	Val	. Ile 235		Lys	Leu	Ala	Lys 240
	Thr	Gln	Gly	' Asn	Val 245		Ala	Thr	Asp	250	ı Ile	Leu	Ala	Thr	Leu 255	
15	Ser	Cys	Thr	Arg 260		Val	Tyr	Ser	7rp 265) Ile	Val	Val	Gln 270		Val
20	Gly	Ser	Lys 275	Leu	Phe	Phe	Asp	Lys 280		Asp) Asn	Ser	Asp 285		Asp	Leu
	Leu	Thr 290	Val	Ser	Glu	Thr	Ala 295		Glu	Pro	Pro	Gln 300		Glu	Gly	Asn
25	Ser 305	Phe	Asn	Ser	Pro	Arg 310		Leu	Ala	Met	Glu 315	Ala	Thr	Tyr	Ile	Asn 320
					325					330					335	
30				340					345		Asp			350		
35			355					360			Gly		365			
		370					375				Gly	380				
40	385					390					Thr 395					400
45					405					410	Gln				415	
43				420					425		Asn			430		
50			435					440			Gly		445			
		450					45 5				Asp	460				
55	465					470					Glu 475					480
60					485					490	Leu				495	
UU	He	Cys	Met	Lys	Leu	Glu	Glu	Gly	Lys	Tyr	Leu	Ile	Leu	Lys	Asp	Pro

				500					505					510		
5	Asn :	Lys	Gln 515	Val	Ile	Arg		Tyr 520	Ser	Leu	Pro	Asp	Gly 525	Thr	Phe	Ser
10	(2)	INFO	ORMA'	rion	FOR	SEQ	ID N	O: 6	39:							
15				(A) L: B) T D) T	ENGT YPE: OPOL	H: 19 amir OGY:	94 ar no ao lino	mino cid ear	aci		: 63	9:			
20	Lys 1	Lys	Arg	His	Thr 5	Asp	Val	Gln	Phe	Туr 10	Thr	Glu	Val	Gly	Glu 15	Ile
	Thr	Thr	Asp	Leu 20	Gly	Lys	His	Gln	His 25	Met	His	Asp	Arg	Asp 30	Asp	Leu
25	Тух	Ala	Glu 35		Met	Glu	Arg	Glu 40	Met	Arg	His	Lys	Leu 45	Lys	Thr	Ala
30	Phe	Lys 50		Phe	Ile	Glu	Lys 55	Val	Glu	Ala	Leu	Thr 60		Glu	Glu	Leu
30	Glu 65	Phe	Glu	Val	Pro	Phe 70	Arg	Asp	Leu	Gly	Phe 75	Asn	Gly	Ala	Pro	Туr 80
35	Arg	Ser	Thr	Cys	Leu 85	Leu	Gln	Pro	Thr	Ser 90	Ser	Ala	Leu	Val	Asn 95	Ala
	Thr	Glu	ı Trp	Pro 100	Pro	Phe	Val	Val	Thr 105		Asp	Glu	Val	Glu 110		lle
40	His	₽h∈	2 Xaa 115		Val	Gln	Phe	His 120		Lys	Asn	Ph∈	Asp 125		Val	lle
45	Val	Тут		a Asp	Туг	Ser	Lys 135	Lys	Val	Thr	Met	11e		Ala	Ile	Pro
4 5	Val 145		a Sei	: Leu	Asp	Pro 150		Lys	Glu	Trp	Leu 155		ser	Cys	Asp	Leu 160
50	Lys	Тут	r Thu	c Glu	Gly 165		Gln	Ser	Leu	170		Thi	. Lys	Ile	Met 175	Lys
	Thr	Ile	e Val	l Asp 180		Pro	Glu	Gly	Phe 185		e Glu	Glr	n Gly	Gl ₃		Ser
55	Phe	Let	נ													

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 amino acids
_	(B) TYPE: amino acid
5	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 640:
10	Arg Ser Gly Leu Gly Leu Gly Ile Thr Ile Ala Phe Leu Ala Thr Le 1 5 10 15
	Ile Thr Gln Phe Leu Val Tyr Asn Gly Val Tyr Gln Tyr Thr Ser Pr 20 25 30
15	Asp Phe Leu Tyr Ile Arg Ser Trp Leu Pro Cys Ile Phe Phe Ser Gl
	Gly Val Thr Val Gly Asn Ile Gly Arg Gln Leu Ala Met Gly Val Pro
20	Glu Lys Pro His Ser Asp 65 70
25	(2) INFORMATION FOR SEQ ID NO: 641:
	(i) SEQUENCE CHARACTERISTICS:
30	(A) LENGTH: 101 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 641:
35	Val Thr Gln Pro Lys His Leu Ser Ala Ser Met Gly Gly Ser Val Glu 1 5 10 15
	Ile Pro Phe Ser Phe Tyr Tyr Pro Trp Glu Leu Ala Xaa Xaa Pro Xaa 20 25 30
40	Val Arg Ile Ser Trp Arg Arg Gly His Phe His Gly Gln Ser Phe Tyr 35 40 45
	Ser Thr Arg Pro Pro Ser Ile His Lys Asp Tyr Val Asn Arg Leu Phe 50 55 60
45	Leu Asn Trp Thr Glu Gly Gln Glu Ser Gly Phe Leu Arg Ile Ser Asn 65 70 75 80
50	Leu Arg Lys Glu Asp Gln Ser Val Tyr Phe Cys Arg Val Glu Leu Asp 85 90 95
	Thr Arg Arg Ser Gly 100
55	(2) INFORMATION FOR SEQ ID NO: 642:
	(i) SEQUENCE CHARACTERISTICS:
60	(A) LENGTH: 233 amino acids (B) TYPE: amino acid

	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 642:
5	Met Glu Ala Gln Gln Val Asn Glu Ala Glu Ser Ala Arg Glu Gln Leu 1 5 10 15
	Gln Xaa Leu His Asp Gln Ile Ala Gly Gln Lys Ala Ser Lys Gln Glu 20 25 30
10	Leu Glu Thr Glu Leu Glu Arg Leu Lys Gln Glu Phe His Tyr Ile Glu 35 40 45
	Glu Asp Leu Tyr Arg Thr Lys Asn Thr Leu Gln Ser Arg Ile Lys Asp 50 55 60
15	Arg Asp Glu Glu Ile Gln Lys Leu Arg Asn Gln Leu Thr Asn Lys Thr 65 70 75 80
20	Leu Ser Asn Ser Ser Gln Ser Glu Leu Glu Asn Arg Leu His Gln Leu 85 90 95
٠	Thr Glu Thr Leu Ile Gln Lys Gln Thr Met Leu Glu Ser Leu Ser Thr 100 105 110
25	Glu Lys Asn Ser Leu Val Phe Gln Leu Glu Arg Leu Glu Gln Gln Met 115 120 125
20	Asn Ser Ala Ser Gly Ser Ser Ser Asn Gly Ser Ser Ile Asn Met Ser 130 135 140
30	Gly Ile Asp Asn Gly Glu Gly Thr Arg Leu Arg Asn Val Pro Val Leu 145 150 155 160
35	Phe Asn Asp Thr Glu Thr Asn Leu Ala Gly Met Tyr Gly Lys Val Arg 165 170 175
	Lys Ala Ala Ser Ser Ile Asp Gln Phe Ser Ile Arg Leu Gly Ile Phe 180 185 190
40	Leu Arg Arg Tyr Pro Ile Ala Arg Val Phe Val Ile Ile Tyr Met Ala 195 200 205
45	Leu Leu His Leu Trp Val Met Ile Val Leu Leu Thr Tyr Thr Pro Glu 210 215 220
15	Met His His Asp Gln Pro Tyr Gly Lys 225 230
50	(2) INFORMATION FOR SEQ ID NO: 643:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids
55	(B) TYPE: amino acid(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 643:
60	Ile Arg His Glu Gln His Pro Asn Phe Ser Leu Glu Met His Ser Lys 1 5 10 15

PCT/US98/04493

	Gly	Ser	Ser	Leu 20	Leu	Leu	Phe	Leu	Pro 25	Gln	Leu	Ile	Leu	Ile 30	Leu	Pro
5	Val	Cys	Ala 35	His	Leu	His	Glu	Glu 40	Leu	Asn	Cys					
10	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	10: 6	544:							
			(i)	SEQU	ENCE	CHA	RACT	ERIS	rics	:						
15			(xi)	(B) T D) T	YPE: OPOL	H: 6 ami OGY: SCRI	no a lin	cid ear			: 64	4:			
20	Ser 1	Phe	Phe	Ile	Ser 5	Glu	Glu	Lys	Gly	His 10	Leu	Leu	Leu	Gln	Ala 15	Glu
20	Arg	His	Pro	Trp 20	Val	Ala	Gly	Ala	Leu 25	Val	Gly	Val	Ser	Gly 30	Gly	Leu
25	Thr	Leu	Thr 35	Thr	Cys	Ser	Gly	Pro 40	Thr	Glu	Lys	Pro	Ala 45	Thr	Lys	Asn
		Dho	Leu	Lve	Ara	Leu	Leu	Gln	Glu	Met	His	Ile	Arg	Ala	Asn	
	Tyr	50	Dea	L, S	5		55					60				

on page 116 , line N/A	ed to in the description
IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
ame of depositary institution American Type Culture Coll	lection
Address of depositary institution (including postal code and count	ראי)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit February 26, 1997	Accession Number 97897
C. ADDITIONAL INDICATIONS (leave blank if not applicated)	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)
E CERADATE FURNISHING OF INDICATIONS (lea	rve blank if not applicable)
E SERADATE FURNISHING OF INDICATIONS (lea	we blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (lea The indications listed below will be submitted to the International Number of Deposit")	rve blank if not applicable) al Bureau later (specify the general nature of the indications, e.g., "Accessi
E. SEPARATE FURNISHING OF INDICATIONS (lea	

A. The indications made below relate to the micros on page 116	organism referred to in the description , line N/A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Typ	pe Culture Collection
Address of depositary institution (including postal	code and country)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit May 15, 1997	Accession Number 209043
C. ADDITIONAL INDICATIONS (leave bla	ank if not applicable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH	INDICATIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDIC.	
The indications listed below will be submitted to the Number of Deposit")	he International Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	y For International Bureau use only
This sheet was received with the international a	11
Authorized officer Susan White PCT International Divisi	Authorized officer

(PCT Rule 13bis)

A. The indications made below relate to the microorganism on page 119 , line	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Cultu	ure Collection
Address of depositary institution (including postal code and 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	nd country)
Date of deposit September 4, 1997	Accession Number 209235
C. ADDITIONAL INDICATIONS (leave blank if not	t applicable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDIC	CATIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATION The indications listed below will be submitted to the Inter Number of Deposit")	NS (leave blank if not applicable) mational Bureau later (specify the general nature of the indications, e.g., "Accession in the indications in the indications in the indication in the indica
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred on page 122 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection
Address of depositary institution (including postal code and count. 12301 Parklawn Drive	ry)
Rockville, Maryland 20852 United States of America	
Date of deposit February 26, 1997	Accession Number 97898
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)
·	
E. SEPARATE FURNISHING OF INDICATIONS (leave	e blank if not applicable)
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

(PCT Rule 13bis)

on page 122 , nne No	Further deposits are identified on an additional sheet
lame of depositary institution American Type Culture C	Collection
Address of depositary institution (including postal code and co	untry)
12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
	200044
Date of deposit May 15, 1997	Accession Number 209044
C. ADDITIONAL INDICATIONS (leave blank if not appl	licable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	FIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	FIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (Neave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	Neave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	Neave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	Neave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	Neave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	Neave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit")	Neave blank if not applicable) onal Bureau later (specify the general nature of the indications, e.g., "Accessi
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	Neave blank if not applicable) onal Bureau later (specify the general nature of the indications, e.g., "Accessi For International Bureau use only
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit")	Neave blank if not applicable) onal Bureau later (specify the general nature of the indications, e.g., "Accessi
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit") For receiving Office use only This sheet was received with the international application	Deave blank if not applicable) onal Bureau later (specify the general nature of the indications, e.g., "Accessi For International Bureau use only This sheet was received by the International Bureau on:
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit") For receiving Office use only	Neave blank if not applicable) onal Bureau later (specify the general nature of the indications, e.g., "Accessi For International Bureau use only

A. The indications made below relate to the microorganism referred on page 126 , line N/A	d to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture College	ection
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	(עי
Date of deposit February 26, 1997	Accession Number 97899
C. ADDITIONAL INDICATIONS (leave blank if not applicable) D. DESIGNATED STATES FOR WHICH INDICATION	
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International Number of Deposit")	e blank if not applicable) Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism refer on page 126 , line N/A	red to in the description A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Co	ollection
Address of depositary institution (including postal code and counting 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	ntry)
Date of deposit May 15, 1997	Accession Number 209045
C. ADDITIONAL INDICATIONS (leave blank if not applic	cable) This information is continued on an additional sheet
·	
D. DESIGNATED STATES FOR WHICH INDICATI	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (let	eave blank if not applicable)
The indications listed below will be submitted to the Internation Number of Deposit")	nal Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White POT International Division	Authorized officer

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to on page 130 , line N/A	o in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Collect	ion
Address of depositary institution (including postal code and country) 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	
Date of deposit April 28, 1997	ccession Number 209011
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIONS	ARE MADE (if the indications are not for all designated Sulles)
E. SEPARATE FURNISHING OF INDICATIONS (leave blace the indications listed below will be submitted to the International Bus Number of Deposit")	
This sheet was received with the international application Authorized officer Susan White PCT International Division	For International Bureau use only This sheet was received by the International Bureau on: Authorized officer

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred on page $\frac{131}{1000}$, line $\frac{N/A}{1000}$	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	(דעי
Date of deposit February 26, 1997	Accession Number 97900
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referr on page 137 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Co	llection
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)
Date of deposit February 26, 1997	Accession Number 97901
C. ADDITIONAL INDICATIONS (leave blank if not applica-	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred on page 131 , line N/A	d to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Colle	ection
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y)
Date of deposit May 15, 1997	Accession Number 209046
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated states)
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International Number of Deposit")	e blank if not applicable) Burcau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred on page 137 , line N/A	to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Colle	ection
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	y)
Date of deposit May 15, 1997	Accession Number 209047
C. ADDITIONAL INDICATIONS (leave blank if not applicable) D. DESIGNATED STATES FOR WHICH INDICATION	
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International	blank if not applicable) Bureau later (specify the general nature of the indications, e.g., "Accession
Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

(PCT Rule 13bis)

on page 137	relate to the microorganism referred to	Further deposits are identified on an additional sheet	1
IDENTIFICATION OF I	DEPOSIT	Further deposits are identified on all the second	
me of depositary institution	American Type Culture Collec	tion	_
Idense of depositary institution	n (including postal code and country)		1
2301 Parklawn Drive Lockville, Maryland 20852 United States of America			
		Accession Number 209076	
Date of deposit May 22, 19	997	ACC0351011 T	
	ATIONS (leave blank if not applicable) This information is continued on an additional sheet	
D. DESIGNATED STAT	ES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated St	tates)
D. DESIGNATED STAT	ES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated St	tates)
		Mank if not applicable)	
E. SEPARATE FURNIS The indications listed below Number of Deposit")	SHING OF INDICATIONS (leav will be submitted to the International	e blank if not applicable) Bureau later (specify the general nature of the indications, e.g., "/	
E. SEPARATE FURNIS The indications listed below Number of Deposit") For rece		Mank if not applicable)	Accessi

(PCT Rule 13bis)

on page 140		Further deposits are identified on an additional sheet
IDENTIFICAT	ION OF DEPOSIT	, united of
me of depositary ir	American Type C	Culture Collection
ddress of denositar	y institution (including postal coa	de and country)
2301 Parklawn D ockville, Maryla Inited States of A	rive nd 20852	
		Accession Number 209215
ate of deposit A	August 21, 1997	Accession Number
		if not applicable) This information is continued on an additional sheet
C. ADDITIONA	L INDICATIONS (leave blank	if not applicable)
	ED STATES FOR WHICH I	NDICATIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATI	ED STATES FOR WHICH I	NDICATIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATI	ED STATES FOR WHICH I	INDICATIONS ARE MADE (if the indications are not for all designated States)
·		ATIONS does blook if not applicable)
·	FURNISHING OF INDICA	INDICATIONS ARE MADE (if the indications are not for all designated States) ATIONS (leave blank if not applicable) The International Bureau later (specify the general nature of the indications, e.g., "Access")
E. SEPARATE	FURNISHING OF INDICA sted below will be submitted to th	ATIONS (leave blank if not applicable) ne International Burcau later (specify the general nature of the indications, e.g., "Access
E. SEPARATE The indications lis Number of Deposit	FURNISHING OF INDICA	ATIONS (leave blank if not applicable) The International Bureau later (specify the general nature of the indications, e.g., "Access" For International Bureau use only This sheet was received by the International Bureau on:
E. SEPARATE The indications lis Number of Deposit	FURNISHING OF INDICA sted below will be submitted to the	ATIONS (leave blank if not applicable) The International Bureau later (specify the general nature of the indications, e.g., "Acce." For International Bureau use only

The indications made below on page 160	relate to the microorganism referred to in , line N/A	
IDENTIFICATION OF	DEPOSIT	Further deposits are identified on an additional sheet
ame of depositary institution	American Type Culture Collection	
2201 Parklawn Drive	n (including postal code and country)	
Rockville, Maryland 20852 Jnited States of America		· · · · · · · · · · · · · · · · · · ·
Date of deposit February 2	26, 1997 Acc	ession Number 97904
C ADDITIONAL INDIC	ATIONS (leave blank if not applicable)	This information is continued on an additional sheet
D. DESIGNATED STAT	ES FOR WHICH INDICATIONS	ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STAT	ES FOR WHICH INDICATIONS	ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STAT	ES FOR WHICH INDICATIONS	ARE MADE (if the indications are not for all designated States)
	CATIONS down high	nk if not applicable)
	CATIONS down high	
E. SEPARATE FURNIS The indications listed below Number of Deposit")	SHING OF INDICATIONS (leave blaw will be submitted to the International But	nk if not applicable) eau later (specify the general nature of the indications, e.g., "Access
E. SEPARATE FURNIS The indications listed below Number of Deposit") For rece	CATIONS down high	nk if not applicable)

(PCT Rule 13bis)

The indications made below relate to the microorganism refer on page 154 , line N/	Further deposits are identified on an additional sheet
IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional stress
ame of depositary institution American Type Culture Co	ollection
address of depositary institution (including postal code and cou	untry)
2301 Parklawn Drive Rockville, Maryland 20852 Jnited States of America	
	Accession Number 209139
Date of deposit July 3, 1997	/ Necession / Santa
C. ADDITIONAL INDICATIONS (leave blank if not appli	icable) This information is continued on an additional sheet
J. ADDITIONAL INDICATES	
TO STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	FIONS ARE MADE (if the indications are not for all designated States)
D. DESIGNATED STATES FOR WHICH INDICAT	FIONS ARE MADE (if the indications are not for all designated States)
TO THE PROPERTY OF THE PROPERT	(leave blank if not applicable)
TO THE PROPERTY OF THE PROPERT	(lerve blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	(leave blank if not applicable)
TO THE PROPERTY OF THE PROPERT	(leave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	(leave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	(leave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	(leave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	(leave blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation	(leave blank if not applicable) ional Bureau later (specify the general nature of the indications, e.g., "Acces.
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit")	(lerve blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit") For receiving Office use only	(leave blank if not applicable) ional Burcau later (specify the general nature of the indications, e.g., "Access — For International Bureau use only
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit") For receiving Office use only	(leave blank if not applicable) ional Bureau later (specify the general nature of the indications, e.g., "Access
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit")	(leave blank if not applicable) ional Burcau later (specify the general nature of the indications, e.g., "Access — For International Bureau use only
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit") For receiving Office use only	For International Bureau use only This sheet was received by the International Bureau on:
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit") For receiving Office use only This sheet was received with the international application Authorized officer Capan White	(leave blank if not applicable) ional Burcau later (specify the general nature of the indications, e.g., "Access — For International Bureau use only
E. SEPARATE FURNISHING OF INDICATIONS (The indications listed below will be submitted to the Internation Number of Deposit") For receiving Office use only This sheet was received with the international application	(leave blank if not applicable) ional Bureau later (specify the general nature of the indications, e.g., "Access For International Bureau use only This sheet was received by the International Bureau on:

The indication on page 1	53	, line	N/A	_ -
IDENTIFIC	ATION OF DE	EPOSIT	Further deposits are identified on an additional sheet]
ame of deposita	ry institution	American Type Culture	re Collection	
		including postal code and	country)	
2301 Parklawi kockville, Mar Jnited States o	yland 20852			
Date of deposit	May 15, 1997	7	Accession Number 209049	
C. ADDITIO	NAL INDICAT	TIONS (leave blank if not a	applicable) This information is continued on an additional sheet]
	<u>.</u>			
				•
D DESIGNA	TED STATES	FOR WHICH INDIC	ATIONS ARE MADE (if the indications are not for all designated Sto	tes)
D. DESIGNA	TED STATES	FOR WHICH INDIC.	CATIONS ARE MADE (if the indications are not for all designated Sto	tes)
D. DESIGNA	TED STATES	FOR WHICH INDIC.	CATIONS ARE MADE (if the indications are not for all designated Sto	tes)
D. DESIGNA	TED STATES	FOR WHICH INDIC	ATIONS ARE MADE (if the indications are not for all designated Sto	tes)
D. DESIGNA	TED STATES	FOR WHICH INDIC	ATIONS ARE MADE (if the indications are not for all designated Sto	tes)
				tes)
F. SEPARA	TE FURNISHI	NG OF INDICATION	IS (leave blank if not applicable)	
F. SEPARA	TE FURNISHI	NG OF INDICATION		
E. SEPARAT	TE FURNISHI	NG OF INDICATION	IS (leave blank if not applicable)	
E. SEPARAT	TE FURNISHI	NG OF INDICATION	IS (leave blank if not applicable)	
E. SEPARAT	TE FURNISHI	NG OF INDICATION	IS (leave blank if not applicable)	
E. SEPARAT	FE FURNISHI listed below will	NG OF INDICATION be submitted to the Intern	RS (leave blank if not applicable) Inational Burcau later (specify the general nature of the indications, e.g., "Ac	
E. SEPARAT	FE FURNISHI listed below will	NG OF INDICATION	SS (leave blank if not applicable) national Bureau later (specify the general nature of the indications, e.g., "Ac For International Bureau use only	cess
E. SEPARAT	For receiving	NG OF INDICATION be submitted to the Intern	IS (leave blank if not applicable) national Burcau later (specify the general nature of the indications, c.g., "Ac For International Burcau use only	cess
E. SEPARAT	For receiving	NG OF INDICATION be submitted to the Intern	IS (leave blank if not applicable) national Burcau later (specify the general nature of the indications, c.g., "Ac For International Burcau use only	cess

A. The indications made below relate to the microorganism referred on page 153 , line N/A	ed to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	llection
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	(יקז)
Date of deposit February 26, 1997	Accession Number 97903
C. ADDITIONAL INDICATIONS (leave blank if not applica	nble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (learn	ve blank if not applicable)
	al Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referre on page 142 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Coll	lection
Address of depositary institution (including postal code and country 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	רץ)
Date of deposit June 12, 1997	Accession Number 209119
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International Number of Deposit")	re blank if not applicable) I Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Susan White PCT International Division	Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 146 , line N/A				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet			
Name of depositary institution American Type Culture Col	lection			
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	ත)			
Date of deposit February 26, 1997	Accession Number 97902			
C. ADDITIONAL INDICATIONS (leave blank if not applicable	This information is continued on an additional sheet			
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (leave	e blank if not applicable)			
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession			
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer Susan White PCT International Division	Authorized officer			

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page 146 , line N/A					
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet				
Name of depositary institution American Type Culture C	ollection				
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	untry)				
Date of deposit May 15, 1997	Accession Number 209048				
C. ADDITIONAL INDICATIONS (leave blank if not applic	cable) This information is continued on an additional sheet				
D. DESIGNATED STATES FOR WHICH INDICATI	IONS ARE MADE (if the indications are not for all designated States)				
E. SEPARATE FURNISHING OF INDICATIONS (let	ave blank if not applicable)				
	nal Bureau later (specify the general nature of the indications, e.g., "Accessio				
For receiving Office use only	For International Bureau use only				
This sheet was received with the international application	This sheet was received by the International Bureau on:				
Authorized officer Susan White PCT International Division	Authorized officer				

	s made below relate to 50	the microorganism		in the description
B. IDENTIFIC	ATION OF DEPOS	SIT		Further deposits are identified on an additional sheet
Name of depositar	y institution Ame	erican Type Culture	e Collect	ion
Address of depos 12301 Parklawn Rockville, Mary	tary institution (includ	ling postal code and	country)	
United States of	America			
Date of deposit	May 15, 1997		A	ccession Number 209050
C. ADDITION	IAL INDICATION	S (leave blank if not ap	pplicable)	This information is continued on an additional sheet
D. DESIGNAT	ED STATES FOR	WHICH INDICA	ATIONS	ARE MADE (if the indications are not for all designated States)
1	E FURNISHING O			
The indications line Number of Deposit	sted below will be sub	mitted to the Interna	tional Bur	cau later (specify the general nature of the indications, e.g., "Accession
	For receiving Offic	e use only		For International Bureau use only
This sheet	was received with the int	ernational application		This sheet was received by the International Bureau on:
Authorized officer	Susan White PCT Interna	tional Division		Authorized officer

A. The indications made below relate to the microorganism referred to in the description on page 142 , line N/A				
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet 🔀			
Name of depositary institution American Type Culture Col	llection			
Address of depositary institution (including postal code and count 12301 Parklawn Drive Rockville, Maryland 20852 United States of America	try)			
Date of deposit February 12, 1998	Accession Number 209627			
C. ADDITIONAL INDICATIONS (leave blank if not applications)	ble) This information is continued on an additional sheet			
D. DESIGNATED STATES FOR WHICH INDICATION E. SEPARATE FURNISHING OF INDICATIONS (learn	ONS ARE MADE (if the indications are not for all designated States) we blank if not applicable)			
The indications listed below will be submitted to the Internationa Number of Deposit")	l Bureau later (specify the general nature of the indications, e.g., "Accession			
For receiving Office use only	For International Bureau use only			
This sheet was received with the international application	This sheet was received by the International Bureau on:			
Authorized officer Susan White PCT International Division	Authorized officer			

What Is Claimed Is:

5

10

15

20

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
 - (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
- (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
- The isolated nucleic acid molecule of claim 1, wherein the
 polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
 - 3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

- 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 10 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.
 - 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.
- A recombinant host cell produced by the method of claim 8.
 - 10. The recombinant host cell of claim 9 comprising vector sequences.
- 11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
- 30 (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (e) a secreted form of SEQ ID NO:Y or the encoded sequence included inATCC Deposit No:Z;
 - (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;

- (g) a variant of SEQ ID NO:Y;
- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEQ ID NO:Y.
- The isolated polypeptide of claim 11, wherein the secreted form or the
 full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
 - 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.

10

- 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
- 15 (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.
 - 16. The polypeptide produced by claim 15.

20

- 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polynucleotide of claim 1.
- 25 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
- (b) diagnosing a pathological condition or a susceptibility to a pathologicalcondition based on the presence or absence of said mutation.
 - 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
 - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
- 5 (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 10 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;
 - (c) detecting an activity in a biological assay; and
- 15 (d) identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 22.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/12, 5/10, 1/21, C07K 14/47, 16/18, C12Q 1/68, G01N 33/50, 33/53, 33/68, A61K 38/17

(11) International Publication Number:

WO 98/39448

(43) International Publication Date: 11 September 1998 (11.09.98)

(21) International Application Number:

PCT/US98/04493

A3

(22) International Filing Date:

6 March 1998 (06.03.98)

(30) Priority Data:

60/040,162	7 March 1997 (07.03.97)	US
60/040,333	7 March 1997 (07.03.97)	US
60/038,621	7 March 1997 (07.03.97)	US
60/040,161	7 March 1997 (07.03.97)	US
60/040,626	7 March 1997 (07.03.97)	US
60/040,334	7 March 1997 (07.03.97)	US
60/040,336	7 March 1997 (07.03.97)	US
60/040,163	7 March 1997 (07.03.97)	US
60/043,580	11 April 1997 (11.04.97)	US
60/043,568	11 April 1997 (11.04.97)	US
	•	

(Continued on the following page)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hills Road, Laytonsville, MD 20882 (US). FISCHER, Carrie, L. [US/US]; 5810 Hall Street, Burke, VA 22015 (US). SOP-PET, Daniel, R. [US/US]; 15050 Stillfield, Place, Centreville, VA 22020 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US). BEDNARIK, Daniel, P. [US/US]; 8822 Blue Sea Drive, Columbia, MD 21046 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US). YOUNG, Paul, E. [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Drive, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown, (88) Date of publication of the international search report:

MD 20874 (US). DUAN, Roxanne [US/US]; 4541 Fairfield Drive, Bethesda, MD 20814 (US), HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). FLORENCE, Kimberly, A. [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelburne Terrace #316, Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 Mount Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment #104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). ZENG, Zhizhen [CN/US]; 13950 Saddleview Drive, Gaithersburg, MD 20878 (US). KYAW, Hia [BU/US]; 520 Sugarbush Circle, Frederick, MD 21703 (US).

- (74) Agents: BROOKES, Anders, A. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.

26 November 1998 (26.11.98)

(54) Title: 186 HUMAN SECRETED PROTEINS

(57) Abstract

The present invention relates to 186 novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human secreted proteins.

oe pred-xag

60/043,314 11 april 1997 (11.04.97) 60/047,596 23 May 1997 (23.05.97) 60/056,637 22 August 1997 (22.08.97) 60/043,569 11 april 1997 (11.04.97) US US 60/047,612 23 May 1997 (23.05.97) US 60/056,903 22 August 1997 (22.08.97) 60/043,311 11 april 1997 (11.04.97) US 60/047,632 23 May 1997 (23.05.97) US 60/056,888 22 August 1997 (22.08.97) 60/043,671 11 april 1997 (11.04.97) US 60/047,601 23 May 1997 (23.05.97) US 60/056,879 22 August 1997 (22.08.97) 60/043,674 11 april 1997 (11.04.97) US US 60/047,595 23 May 1997 (23.05.97) US 60/056,880 22 August 1997 (22.08.97) 60/043,669 11 april 1997 (11.04.97) US US 60/047,599 23 May 1997 (23.05.97) US 60/056,894 22 August 1997 (22.08.97) 60/043,312 11 april 1997 (11.04.97) US US 60/047,588 23 May 1997 (23.05.97) US 60/056,911 22 August 1997 (22.08.97) 60/043,313 11 april 1997 (11.04.97) US US 60/047,585 23 May 1997 (23.05.97) US 60/056,636 22 August 1997 (22.08.97) US 60/043,672 11 april 1997 (11.04.97) 60/047,586 23 May 1997 (23.05.97) US 60/056,874 22 August 1997 (22.08.97) 60/043,578 11 april 1997 (11.04.97) US US 60/047,590 23 May 1997 (23.05.97) US 60/056,910 22 August 1997 (22.08.97) 60/043,576 11 april 1997 (11.04.97) US US 60/047,594 23 May 1997 (23.05.97) 60/056,864 22 August 1997 (22.08.97) US 60/043,670 11 april 1997 (11.04.97) US US 60/047,589 23 May 1997 (23.05.97) US 60/056,631 22 August 1997 (22.08.97) 60/047,600 23 May 1997 (23.05.97) US US 60/047,593 23 May 1997 (23.05.97) US 60/056,845 22 August 1997 (22.08.97) 60/047,615 23 May 1997 (23.05.97) US US 60/047,614 23 May 1997 (23.05.97) US 60/056,892 22 August 1997 (22.08.97) 60/047,597 23 May 1997 (23.05.97) US 60/047,501 23 May 1997 (23.05.97) US US 60/056,632 22 August 1997 (22.08.97) 60/047,502 23 May 1997 (23.05.97) US US 60/048,974 06 June 1997 (06.06.97) US 60/056,664 22 August 1997 (22.08.97) 60/047,633 23 May 1997 (23.05.97) US US 60/048,964 06 June 1997 (06.06.97) US 60/056,876 22 August 1997 (22.08.97) 60/047,583 23 May 1997 (23.05.97) US US 60/049,610 13 June 1997 (13.06.97) US 60/056,881 22 August 1997 (22.08.97) US 60/047,617 23 May 1997 (23.05.97) US 60/051,926 08 July 1997 (08.07.97) US 60/056,909 22 August 1997 (22.08.97) 60/047,618 23 May 1997 (23.05.97) US 60/052,874 16 July 1997 (16.07.97) US 60/056,875 22 August 1997 (22.08.97) 60/047,503 23 May 1997 (23.05.97) US US 60/055,724 18 August 1997 (18.08.97) US 60/056,862 22 August 1997 (22.08.97) 60/047,592 23 May 1997 (23.05,97) US 60/056,886 22 August 1997 (22.08.97) US 60/056,887 22 August 1997 (22.08.97) US 60/047,581 23 May 1997 (23.05.97) US 60/056,877 22 August 1997 (22.08.97) US 60/056,908 22 August 1997 (22.08.97) 60/047,584 23 May 1997 (23.05.97) US US 60/056,889 22 August 1997 (22.08.97) US 60/056,884 22 August 1997 (22.08.97) 60/047,500 23 May 1997 (23.05.97) US US 60/056,893 22 August 1997 (22.08.97) US 60/057,761 05 September 1997 (05 09.97).US 60/047,587 23 May 1997 (23.05.97) US 60/056,630 22 August 1997 (22.08.97) US 60/057,650 05 September 1997 (05 09.97).US 60/047,492 23 May 1997 (23.05.97) 60/056,878 22 August 1997 (22.08.97) US US 60/057,669 05 September 1997 (05 09.97).US 60/047,598 23 May 1997 (23.05.97) US 60/056,662 22 August 1997 (22.08.97) US 60/058,785 12 September 1997 (12.09.97) US 60/047,613 23 May 1997 (23.05.97) US 60/056,872 22 August 1997 (22.08.97) US 60/061,060 02 October 1997 (02.10.97) US 60/047,582 23 May 1997 (23.05.97) US 60/056,882 22 August 1997 (22.08.97) US

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU ABA ABBB BBF BBF CCF CCH CCU CCE DE	Albania Armenia Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany	ES FI FR GA GB GE GH GN IE IL IS IT JP KE KG KP KR LL LL	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia	LS LT LU LV MC MD MG MK ML MN MR MV MX NE NO NZ PL PT RO RU	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Romania Romania	SI SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
)K EE	Denmark Estonia	LK LR	Liechtenstein Sri Lanka Liberia	SD SE SG	Sudan Sweden Singapore		

PCT, JS 98/04493

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/12 C12N5/10 C12N1/21 C07K14/47 C07K16/18 C12Q1/68 G01N33/50 G01N33/53 G01N33/68 A61K38/17 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K C120 G01N A61K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X L. HILLIER ET AL.: "The WashU-Merck EST 1-3, Project" 7-11.21 EMBL SEQUENCE DATABASE, 25 January 1996, HEIDELBERG, FRG, XP002068330 yy50d03.sl Homo sapiens cDNA clone 276965 3'; Accession no. N39235; Χ L. HILLIER ET AL.: "The WashU-Merck EST 1-3, 7-11,21 Project" EMBL SEQUENCE DATABASE, 3 July 1995, HEIDELBERG, FRG, XP002068331 ym24h05.sl Homo sapiens cDNA clone 49109 3'; Accession no. H16400; -/--Χ Further documents are listed in the continuation of box C. Χ Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(a) or which is cited to establish the publication date of another "Y" document of particular relevance: the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document referring to an oral disclosure, use, exhibition or other means ents, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 8, 09, 98 17 June 1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, HORNIG H. Fax: (+31-70) 340-3016

International Application No
PCT, 23 98/04493

0.00		PCT, _3 98/04493
C.(Continua Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 679 716 A (MATSUBARA KENICHI ;OKUBO KOUSAKU (JP)) 2 November 1995 SEQ ID no.3616 see page 1144, line 10 - line 24; claims 1-6	1-3, 7-10,21
A	WO 97 07198 A (GENETICS INSTITUT) 27 February 1997 see the whole document	1-23
A	WO 97 04097 A (GENETICS INST) 6 February 1997 see the whole document	1-23
Α	US 5 536 637 A (JACOBS KENNETH) 16 July 1996 see the whole document	1-23
A	JACOBS K ET AL: "A novel method for isolating eukaryotic cDNA clones encoding secreted proteins." KEYSTONE SYMPOSIUM ON DENDRITIC CELLS: ANTIGEN PRESENTING CELLS OF T AND B LYMPHOCYTES, TAOS, NEW MEXICO, USA, MARCH 10-16, 1995. JOURNAL OF CELLULAR BIOCHEMISTRY SUPPLEMENT 0 (21A). 1995. 19. ISSN: 0733-1959, XP002027246 abstract no. C1-207 see abstract	1-23
A	WO 90 14432 A (GENETICS INST) 29 November 1990 see the whole document	1-23
A	WO 96 17925 A (IMMUNEX CORP) 13 June 1996 see the whole document	1-23
		·
i		

In' mational application No.

PCT/US 98/04493

Boxi	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inter	national Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
ر ننا	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 17 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	emational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-23 partially
Remar	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1. Claims: (1-23) partially

-An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group of SEQ ID nos. 11, 197; wherein said polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein encoding the sequence selected from the goup of SEQ ID nos. 313, 499 or the polypeptide encoded by the cDNA sequence included in ATCC Deposit no: 97897/209043, which is hybridizable to SEQ ID nos.11 and/or 197; a recombinant vector comprising said isolated nucleic acid molecule; a method of making a recombinant host cell comprising said isolated nucleic acid molecule; a recombinant host cell comprising said vector; an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group of SEQ ID nos. 313, 499; an isolated antibody that binds specifically to said isolated polyeptitdes; a recombinant host cell that expresses said isolated polypeptides; a method of making said polypeptides; a method for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of said polypeptides; a method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject using said polynucleotides and/or polypeptide sequences; a method for identifying a binding partner to said polypeptides; a gene corresponding to the cDNA sequences of SEQ ID nos.11 and/or 197; a method for identifying an activity in a biological assay, by using the expression of SEQ ID no. 313 and/or 499;

Inventions 2 to 186. Claims: (1-23) partially

-Idem as subject 1 but limited to gene nos. 2 to 186 respectively cDNA clone sequences HBGBW52 to HFAMH74. (Invention 2 is limited to SEQ ID nos.12,198,314 and 500; Invention 3 is limited to SEQ ID nos.13,199,315 and 501;; Invention 186 is limited to SEQ ID nos.196, 312, 498 and 614;)

nation on patent family members

International Application No
PCT, 5 98/04493

		• · · · · · · · · · · · · · · · · · · ·	<u> </u>
Patent document	Publication date	Patent family member(s)	Publication date
cited in search report EP 0679716 A	02-11-95	AU 8116494 A CA 2153480 A WO 9514772 A	13-06-95 01-06-95 01-06-95
WO 9707198 A	27-02-97	US 5707829 A AU 6712396 A AU 6768596 A EP 0839196 A EP 0851875 A WO 9704097 A	13-01-98 18-02-97 12-03-97 06-05-98 08-07-98 06-02-97
WO 9704097 A	06-02-97	US 5707829 A AU 6712396 A EP 0839196 A AU 6768596 A EP 0851875 A WO 9707198 A	13-01-98 18-02-97 06-05-98 12-03-97 08-07-98 27-02-97
US 5536637 A	16-07-96	US 5712116 A	27-01-98
WO 9014432 A	29-11-90	US 5580753 A AT 147436 T AU 637620 B AU 5928990 A CA 2056997 A DE 69029657 D DK 473724 T EP 0473724 A ES 2099096 T JP 4506006 T US 5734037 A US 5414071 A	03-12-96 15-01-97 03-06-93 18-12-90 24-11-90 20-02-97 14-04-97 11-03-92 16-05-97 22-10-92 31-03-98 09-05-95
WO 9617925 A	13-06-96	AU 4639396 A CA 2206488 A FI 972390 A NO 972455 A	26-06-96 13-06-96 05-06-97 06-08-97

					; 3
					·
		·			
			·		
				,	
·					