Predicción del precio de la libra de carne bovina en Nicaragua

Roger Paguaga / Wilberth Smith

14 de mayo de 2025

1. Introducción

Este proyecto busca predecir el precio por libra (USD) de carne bovina en Nicaragua, utilizando datos históricos de producción y exportación.

Cabe mencionar que los datos están basados en simulaciones y no representan los verdaderos valores del país. Están estructurados a través de una serie histórica que se origina de forma mensual desde el año 2010 hasta diciembre 2024, con la finalidad de crear un modelo predictivo que estime los primeros 5 meses del año 2025.

2. Datos

Variable	Tipo	Unidad	Periodicidad	Uso típico
Año	Temporal	Año	Anual	Tendencia a largo plazo
Mes	Temporal	Mes 1-12	Mensual	Estacionalidad
Precio_USD_Libra	Numérica	USD/libra	Mensual	Análisis de rentabilidad
Produccion_Millones_Libras	Numérica	Millones de libras	Mensual/Anual	Capacidad productiva
Exportacion_Millones_Libras	Numérica	Millones de libras	Mensual/Anual	Dependencia de mercados externos

Figura 1: Descripcion de variables

2.1. Fuente y Estructura

Base estrucuturada de forma mensual desde los años (2010-2024) con:

- 180 registros
- Variables incorporadas:
 - Precio (USD/libra)
 - Producción (millones de libras)
 - Exportación (millones de libras)

Variable	Observaciones	promedio	desviación tipica	Minimo	25%	50%	75%	Maximo
Preio_USD_Libra	180	3.35	0.45	2.57	2.98	3.31	3.71	4.29
Produccion_Millones _Libras	180	310.11	39.82	242.43	275.86	307.23	345.6	385.52
Exportacion_Millones _Libras	180	133.35	22.31	97.63	113.64	131.22	151.79	176.19

Figura 2: EDA Variables

2.2. Análisis Estadístico del Precio

- El precio promedio: 3.35 USD/libra (= 0.45), con una variación de 0.46 centavos por libra.
- Rango histórico: [2.57 4.29] USD/libra

- Estacionalidad mensual:
 - Mes más caro: Septiembre (+12% sobre la media)
 - Mes más económico: Diciembre (-8 % sobre la media)
- Distribución no normal (asimetría positiva de 0.68)

2.3. Preprocesamiento

- Eliminación de outliers (método IQR)
- \blacksquare Creación de feature: Ratio P/E = $\frac{\text{Producción}}{\text{Exportación}}$
- Escalado estándar de variables numéricas

3. Metodología

Dado que los datos son temporales (2010-2024), y la principal accion es predecir el valor de la libra de carne se aplicaran algoritmos matematicos para determinar que modelo se ajusta mejor a los datos, se tomara en consideracion la metrica estadistica ${\bf R}^2$ la cual nos indicara la proporción de la variación total en la variable dependiente (lo que se quiere predecir) puede ser explicada por el modelo de predicción.

3.1. Algoritmos

Los algoritmos que se pondran a prueba son considerados mejores para realizar predicciónes porque combinan modelos de aprendizaje robustos como RandomForestRegressor y GradientBoostingRegressor, que son altamente eficaces para capturar relaciones no lineales y manejar datos complejos, con técnicas de optimización de hiperparámetros como GridSearchCV, RandomizedSearchCV y BayesSearchCV. Estas técnicas permiten ajustar automáticamente los parámetros del modelo para encontrar la combinación que maximiza el rendimiento predictivo, lo que generalmente resulta en modelos más precisos y generalizables. En conjunto, estos enfoques no solo aprovechan la potencia de los algoritmos de ensamble, sino que también mejoran sistemáticamente su desempeño mediante búsqueda eficiente de configuraciones óptimas.

- RandomForestRegressor con GridSearchCV
- RandomForestRegressor con RandomizedSearchCV
- RandomForestRegressor con BayesSearchCV
- \blacksquare GradientBoostingRegressor con GridSearchCV
- GradientBoostingRegressor con Randomized-SearchCV
- GradientBoostingRegressor con BayesSearchCV

3.2. Flujo de Trabajo

- 1. División de datos (80 % entrenamiento 20 % prueba)
- 2. Optimización de hiperparámetros con GridSearch
- 3. Validación cruzada (5 folds)

4. Resultados

4.1. Comparación de Modelos

 Cuadro 1: Métricas de Evaluación

 Modelo
 R²

 RandomForestRegressor con GridSearchCV
 0.935

 RandomForestRegressor con RandomizedSearchCV
 0.933

 RandomForestRegressor con BayesSearchCV
 0.933

 GradientBoostingRegressor con GridSearchCV
 0.924

 GradientBoostingRegressor con RandomizedSearchCV
 0.940

 GradientBoostingRegressor con BayesSearchCV
 0.924

4.2. Análisis Predictivo

- GradientBoostingRegressor con Randomized-SearchCV mostró mejor desempeño ($R^2 = 0.940$)
- Variables clave para la predicción:
 - Exportación (38 % de importancia)
 - Ratio P/E (24 % de importancia)
 - Producción (19% de importancia)
- \blacksquare Error promedio de predicción: ± 0.15 USD/libra

Cuadro 2: Predicción de precios usando Random Forest (2025)

2025-1	2025-2	2025-3	2025-4	2025-5
3.3468	3.4509	3.5040	3.5529	3.5486

Figura 3: proyeccion de precio de libra de enero a mayo 2025

5. Conclusión

El modelo final (GradientBoostingRegressor con el hiperparametro RandomizedSearchCV) logró:

• Alta precisión predictiva ($R^2 = 0.940$)

- Capacidad para capturar relaciones no lineales
- Robustez frente a outliers

Referencias

- 1. Breiman, L. (2001). Random Forests. *Machine Learning*, 45(1), 5-32.
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of statistics, 1189-1232.