UYB103 Programlama I

Bölüm 1- Genel Kavramlar

Bilgisayarın Temel Birimleri

Bellek: hücrelerden oluşur ve bilginin kısa süreli olarak saklanmasını sağlar. Amaç bilgiye kısa süre içinde kullanılacak bilgiye hızlı erişmektir.

Aritmetik ve Mantıksal Ünite: Bellek içinde saklanmış olan bilgi MİÜ içinde bulunan AMÜ yardımıyla işenir

MİÜ - RAM

İkincil Saklama Ünitesi

Bilgisayarın Temel Birimleri

- Giriş Üniteleri: bilgisayara veri girişini sağlayan bölümlerdir (fare, klavye, tarayıcılar)
- Çıkış Üniteleri: bilgisayarımızdan veri çıkışı yaptığımız bölümlerdir
- Merkezi İşlemci Ünitesi (MİÜ):
 - Bellek: hücrelerden oluşur ve bilginin kısa süreli olarak saklanmasını sağlar. Amaç bilgiye kısa süre içinde kullanılacak bilgiye hızlı erişmektir.
 - Aritmetik ve Mantıksal Ünite: Bellek içinde saklanmış olan bilgi MİÜ içinde bulunan AMÜ yardımıyla işenir
- İkincil Saklama: bilgi daha uzun süreli olarak saklanmak istenirse bu amaçla ikincil saklama üniteleri kullanılır (disk, teyp, CD, flash disk)

Bilgisayarın Alfabesi

Bilgisayarın Alfabesi

(Binary System)

- Bizler iletişim kurmak için 29 harf ve 10 rakamdan oluşan bir sistem kullanırız.
- Tüm sözlü iletişimimiz bu karakterlerin çeşitli varyasyonlarda oluşturduğu formlarda olur.

ABCÇDEFGĞHIİ JKLMNOÖPRSŞ TUÜVYZ

- Bilgisayarlar da benzer şekilde kendi alfabelerini kullanırlar.
- Bilgisayarların kullandığı alfabeye, makine dili (machine language) adı verilir.
- Bu alfabe sadece 0 ve 1 rakamlarından oluşur

 $01100 \\ 10110 \\ 11110$

Bilgi Saklama

- Bilgisayarda bilgi saklamaya yarayan en küçük elektronik bilgi alanı bit olarak adlandırılır.
- Bir bit içinde 1 ya da 0 değeri taşıyabilen elektronik bilgi saklama alanıdır.
 - O Sıfır değeri içeren bir bit
 - 1 Bir değeri içeren bir bit

- Bir bit içinde saklanan 1 ya da 0 değeri;
 - ✓ Bir devrenin açık ya da kapalı olmasını
 - ✓ Bir ifadenin doğru ya da yanlış olmasını
 - ✓ Bir cevabın evet ya da hayır olmasını tanımlamak için kullanılabilmektedir

Bayt (Byte)

- Veri saklarken, 8 bitin yanyana getirilerek kullanımı çok yaygın bir hale gelmiştir ve bu nedenle sekiz bitlik veri gruplarına bayt (byte) adı verilmiştir.
- Bir baytlık bilgi alanı, içindeki her bir bitlik bilgi alanına farklı değerler atayarak, değişik bilgileri saklayabilir.
- Bir bayt alanı içinde 256 (2^8) farklı bilginin (durumun) saklanması mümkündür.
- Böylece karakterlerin ve sayıların 1 bayt bilgi alanı içinde tanımlanması mümkün.

2lik Sayı Sistemi

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
	1	1	1	1	1	0	1

ņ	Bölüm	Kalan
125	62	1
62	31	0
31	15	1
15	7	1
7	3	1
3	1	1
1	0	1

10luk Sayı Sistemi

10 ³	10 ²	10 ¹	10°
1000	100	10	1
	1	2	5

ņ	Bölüm	Kalan
125	12	5
12	1	2
1	0	1

2lik Sayı Sisteminden 10luk Sisteme Geçiş

$$(125)_{10} = (1111101)_2$$

125
=
$$(1*2)^0+(0*2)^1+(1*2)^2+(1*2)^3+(1*2)^4+(1*2)^5+(1*2)^6$$

Bellek Kapasitesi Dönüştürme Oranı

kapasite	sembol	NV.	deger
1 bit	Bit	=	0 veya 1
1 byte	Byte	=	8 bit
1 Kilobyte	KB	=	1024 bytes
1 Megabyte	МВ	=	1024 KB
1 Gigabyte	GB	=	1024 MB
1 Terabyte	ТВ	=	1024 GB
1 Petabyte	PB	=	1.024 TB

Alfasayısal Değerler ve Özel Karakterler

- Alfasayısal değerler: karakterlerin ve sayısal değerlerin tamamını kapsayan değerler kümesidir.
 - 1,2 gibi sayısal değerleri içerebileceği gibi, A,B gibi alfabetik karakterleri de kapsar
- Alfasayısal değerlerinin ve noktalama işaretleri gibi diğer özel karakterlerin bilgisayar sisteminde saklanması ve kullanılması amacıyla her bir değere karşılık gelen bir sayısal değer atanmıştır.
- Bu değerler ASCII (American Standard Code for Information Exchange) kod tablosunda tanımlanmıştır.

ASCII Kod Tablosu

-	0	1	2	3	4	5	6	7	8	9
0	nul	soh	stx	etx	eot	enq	ack	bel	bs	ht
1	nl	vt	ff	cr	so	si	dle	dcl	dc2	dc3
2	dc4	nak	syn	etb	can	em	sub	esc	fs	gs
3	rs	us	<u>ام</u>		:	#	\$	%	&	4
4	()	*	+	,	•		/	0	1
5	2	3	4	5	6	7	8	9	:	•,
6	٧	Ш	۸	? :	@	Α	В	O	D	ш
7	F	G	Ξ	_	7	K	ш	М	N	0
8	P	Ø	R	ഗ	Т	٥	٧	W	X	Υ
9	Z	[\]	<	ı	*	а	b	O
10	đ	е	f	g	h	-	j	k	_	m
11	n	0	р	q	r	S	t	u	V	w
12	X	y	Z	{		}	?	del		

Algoritmalar

- Bilgisayara bir işin nasıl yapılması gerektiği ile ilgili tüm ayrıntıların detaylı ve düzenli bir biçimde aktarılması gerekir.
- Bilgisayarlara bir işin nasıl yapılması gerektiğini algoritmalar (algorithms) ile tanımlarız.
- Algoritmalar yaptırılmak iştenilen işin hangi adımları takip edilerek gerçekleştirilmesi gerektiğini anlatan adımlardır.
- Bu adımlar daha sonra bilgisayarın anlayabileceği program komutlarına dönüştürülecektir
- Bir algoritmayı **akış şeması (flow charts**) yardımı ile görsel olarak düzenleyebiliriz.

Akış Şeması

 Akış şemaları: algoritmalarda verilen her adımın görsel olarak anlatılması amacıyla kullanılan yöntemlerden biridir.

 Akış şemaları ile, bilgisayarın çözmesini istediğimiz problem ile ilgili, olabilecek bütün adımları tanımlarız

Akış Şeması

Komut

İşlem (process): Yapılması istenen işlemle ilgili tanımlamalar dikdörtgen şeklindeki kutucuklar yardımıyla gösterilir. İşlemlerle ilgili komutlar kutu içine yazılır.

Karar (decision): Bazı kararlara bağlı olarak farklı yolların izlenebileceği durumlarda baklava şeklindeki bu gösterim kullanılır. Bu şekil içinde tanımlanan koşula göre farklı kararların alınması sağlanır.

Akış Şeması

Veri (data): Tanımlanan işlemler bazı verileri kullanıyorsa ve bu verilerin farklı bir ortamda tutulması gerekiyorsa bu şekil kullanılır. Her farklı veri grubu için farklı isim verilmelidir.

 Doküman: Program sırasında çıktı olarak gösterilmek istenen veriler ve işlemler bu şekil ile tanımlanır.

 Bağlantı: Genellikle büyük yazılımlar için hazırlanan akış şemaları bir sayfada görüntülenemez. Anlaşılabilirliği artırmak ve bir sonraki sayfada işlemlerin hangi noktadan devam edeceğini göstermek amacıyla bağlantılar kullanılır.

 Başla/Bitir: Akış şemasının komutlarının başlangıç ve bitiş noktaları bu gösterim kullanılarak belirlenir.

Telefon Etme Algoritması?

- 1. Başla
- 2. Ahizeyi kaldır
- Sinyali kontrol et, sinyal yoksa arızaya haber ver ve 9. adım'a git
- 4. Eğer telefon numarası yurt dışında ise iki kere sıfır tuşuna bas ve ülke ve alan kodunu tuşla ve 6. adıma git
- 5. Eğer telefon numarası şehir dışında ise bir kere sıfır tuşuna bas ve alan kodunu tuşla
- 6. Telefon numarasını tuşla
- 7. Eğer hat meşgul ise ya da cevap vermiyorsa 9.adıma git
- 8. Telefon konuşmasını gerçekleştir
- 9. Telefonu kapat
- 10. Bitiş

Telefon Etme Algoritması Akış Şeması

Neden C?

```
* the standard library. It provides input and output functionality
 5 #include <stdio.h>
                                 ion. This outputs "Hello, world" to
    * Function (methor
    * standard output
                                ked.
10
  void sayHello() {
                                  he specified text (with optional
12
    // printf() in
      // formatting o
13
       printf("Hello, we
14
15 }
16
17 /3
    * This is a "main function". The compiled program will run the code
    * defined here.
```

Neden C?

- Neden C sorusuna cevap olabilecek birkaç madde:
 - C dili ona harcadığınız her türlü emeğe değecek kadar güzel ve güçlü bir dildir
 - C dili bir klasiktir. Bugün kullandığımız birçok teknoloji doğrudan ya da dolaylı olarak C temellidir. Özellikle işletim sistemi, sürücü ve derleyici gibi sistem yazılımları için C (C++) dili vazgeçilmezdir.
 - 3. C dili ile programlama temellerini çok iyi öğrenebilirsiniz.
 - 4. C öğrenmekle, C++ öğrenmek için çok güzel ve çok büyük bir adım atmış olursunuz.
 - 5. C dilini öğrendikten sonra diğer dilleri kavramanız daha kolay olacaktır.

Programlama Dilleri ve Seviyeleri

Programlama dilleri seviyelerine göre üç kısıma ayırabiliriz:

- 1. Düşük seviyeli diller (Makine dili, Assembly dili)
- 2. Orta seviyeli diller (C)
- 3. Yüksek seviyeli diller (Visual Basic, MS Access)

NOT:

Bir programlama dilinin seviyesi, o programlama dilinin ne kadar iyi bir programlama dili olduğunun bir göstergesi <u>değildir</u>.

Bir dilin seviyesi o dilin makine diline olan yakınlığının bir ölçüsüdür

Bir dil makine diline ne kadar yakınsa o kadar düşük seviyeli bir dildir

Bir dil makine diline ne kadar uzaksa o kadar yüksek seviyeli bir dildir

Makine Dilinde (Merhaba Dünya kodu)

01001000 01100101 01101100 01101100
01101111001000000101011101101111
01110010 01101100 01100100 00100001
00100000

Assembly Dili (Merhaba Dünya kodu)

```
DATA
         SEGMENT
         MESSAGE DB "HELLO WORLD!!!$"
03
   ENDS
04
05
   CODE SEGMENT
06
       ASSUME DS:DATA CS:CODE
   START:
          MOU
              AX, DATA
              DS, AX
          MOU
          LEA
              DX, MESSAGE
          MOV
              AH,9
          INT
              21H
          MOU
              AH, 4CH
          INT
              21H
   ENDS
   END START
```

C Dilinde (Merhaba Dünya kodu)

```
#include <stido.h>
int main()
{
    printf ("Merhaba Dunya");
    return (0);
}
```

Editörler

- Editörler, kodlarımızı yazmak için kullandığımız programlara verdiğimiz genel isimdir.
- Editörler kullanarak aşağıda listelenen eylemleri yapabiliriz:
 - ➤ Kodlarımızı düzenleriz
 - ➤ Kodlarımızı kaydederiz
 - >Kodlarımızı derleriz
 - ➤ Kodlarımızı çalıştırarak hatalarını ayıklarız
- Editörler bize daha hızlı, etkili ve güvenli kod yazmamızı sağlamaktır.

Dev-C++

İndirme linki: https://sourceforge.net/projects/orwelldevcpp/?source=typ redirect