Working with valuations

Thibaut Verron

Johannes Kepler University, Institute for Algebra, Linz, Austria

Séminaire Calcul Formel, Limoges 27 février 2020

Part 1: Signature Gröbner bases over Tate algebras

joint work with Xavier Caruso¹ and Tristan Vaccon²

- 1. Institut de Mathématiques de Bordeaux, Bordeaux, France
- 2. XLIM, Université de Limoges, Limoges, France

Séminaire Calcul Formel, Limoges 27 février 2020

• Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.01X - 1

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.01X 1LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix} -100Xg \\ 100X \\ -10000g \\ 10000 \end{pmatrix}$$

- ▶ It terminates, but...
- $g \simeq 1$, but $f \mod g \not\simeq 0$

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.0001X 1LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix}
-10000Xg \\
10000X \\
-100000000g \\
100000000$$

- ▶ It terminates, but...
- $g \simeq 1$, but $f \mod g \not\simeq 0$

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.000001X 1LT(g)
- ► The usual way:

- ► It terminates, but...
- ▶ $g \simeq 1$, but $f \mod g \not\simeq 0$

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.01X 1LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix} -100Xg \\ 100X \\ -10000g \\ 10000 \end{pmatrix}$$

- ► It terminates, but...
- $ightharpoonup g \simeq 1$, but $f \mod g \not\simeq 0$

► Another way?

$$f = X^{2}$$

$$\begin{pmatrix} +X^{2}g \\ 0.01X^{3} \\ +0.01X^{3}g \\ 0.0001X^{4} \\ \end{pmatrix}$$

- It does not terminate, but...
- ► The sequence of reductions tends to 0

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo g = 0.0001X 1LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix}
-100000Xg \\
100000X \\
-100000000g$$

- ► It terminates, but...
- $ightharpoonup g \simeq 1$, but $f \mod g \not\simeq 0$

► Another way?

$$f = X^{2}$$

$$(+X^{2}g)$$

$$0.0001X^{3}$$

$$(+0.0001X^{3}g)$$

$$0.000000001X^{4}$$

$$(...)$$

- It does not terminate, but...
- ► The sequence of reductions tends to 0

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo $g = 0.000\,001X 1$ LT(g)
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix}
-1000000Xg \\
1000000X \\
-10000000000000000g
\end{pmatrix}$$

- ► It terminates, but...
- $ightharpoonup g \simeq 1$, but $f \mod g \not\simeq 0$

► Another way?

$$f = X^{2}$$

$$\left(+X^{2}g\right)$$

$$0.000\ 0.01X^{3}$$

$$\left(+0.000\ 0.01X^{3}g\right)$$

$$0.000\ 0.000\ 0.000\ 0.001X^{4}$$

$$\left(\cdots\right)$$

- It does not terminate, but...
- ► The sequence of reductions tends to 0

- Question: in $\mathbb{R}[X]$, reduce $f = X^2$ modulo $g = 0.000\,001X 1$
- ► The usual way:

$$f = X^{2}$$

$$\begin{pmatrix} -1000000Xg \\ 1000000X \\ -10000000000000000g \\ 100000000000000000g \end{pmatrix}$$

- ► It terminates, but...
- $ightharpoonup g \simeq 1$, but $f \mod g \not\simeq 0$

► Another way?

$$f = X^{2}$$

$$\begin{pmatrix} +X^{2}g \\ 0.000001X^{3} \\ +0.000001X^{3}g \\ 0.0000000000001X^{4} \\ \dots$$

- It does not terminate, but...
- ▶ The sequence of reductions tends to 0
- ▶ This work: make sense of this process for convergent power series in $\mathbb{Z}_p[[X]]$

Valued fields and rings: basic definitions

Valuation: function val :
$$k \to \mathbb{Z} \cup \{\infty\}$$
 with:

$$val(ab) = val(a) + val(b)$$

$$ightharpoonup \operatorname{val}(a+b) \ge \min(\operatorname{val}(a),\operatorname{val}(b))$$

Examples: 1
$$\overset{\bullet}{\pi}$$
 $\overset{\circ}{\circ}$ $\overset{\circ}{\circ}$ $\begin{cases} val(a) = 3 \\ \circ \\ a = a_3\pi^3 + a_4\pi^4 + \dots \end{cases}$

Examples: 1
$$\overset{\bullet}{\sigma}$$
 $\overset{\circ}{\circ}$ $\begin{cases} val(a) = 3 \\ a = a_3\pi^3 + a_4\pi^4 + \dots \end{cases}$ $\overset{\bullet}{b} = b_{-3}\pi^{-3} + b_{-2}\pi^{-2} + \dots$

Ring K°	$ \xrightarrow{\text{Frac}} $	Uniformizer π	Residue field K°/π
$\mathbb{Z}_{(p)}$	Q	<i>p</i> prime	\mathbb{F}_p
\mathbb{Z}_p	\mathbb{Q}_p	p prime	$\mathbb{F}_{ ho}$
$\mathbb{C}[x]_{(x-lpha)}$	$\mathbb{C}(x)$	$x - \alpha$	\mathbb{C}
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-lpha))$	$x - \alpha$	\mathbb{C}

Ring K°		eld <i>K</i> Ur	iiformizer π	Residue field <i>K</i>	Γ°/π Complete
$\mathbb{Z}_{(p)}$		Q	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	(\mathbb{Q}_p	p prime	\mathbb{F}_p	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	\mathbb{C}	C(x)	$x - \alpha$	$\mathbb C$	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x$	$(\alpha - \alpha)$	$x - \alpha$	$\mathbb C$	\checkmark

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

Ring K°	$ \begin{array}{c} & Frac \\ \hline & val \ge 0 \end{array} $ Field K	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	Q	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	p prime	$\mathbb{F}_{ ho}$	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x - \alpha$	\mathbb{C}	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x - \alpha$	$\mathbb C$	\checkmark

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

Frac

Ring K° val	≥ 0 Field K	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	$\mathbb Q$	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	p prime	$\mathbb{F}_{ ho}$	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x - \alpha$	$\mathbb C$	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-lpha))$	$x - \alpha$	$\mathbb C$	\checkmark

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

Ring K° \longleftarrow	$\frac{\overline{\text{Frac}}}{\text{val} \geq 0} \text{Field } K$	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	Q	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	p prime	\mathbb{F}_p	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x - \alpha$	$\mathbb C$	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x - \alpha$	\mathbb{C}	\checkmark

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

Frac

Ring K° $\stackrel{\text{Val}}{\longleftarrow}$	$\stackrel{\longrightarrow}{\longrightarrow} \text{ Field } K$	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	Q	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	p prime	\mathbb{F}_p	\checkmark
$\mathbb{C}[x]_{(x-lpha)}$	$\mathbb{C}(x)$	$x - \alpha$	$\mathbb C$	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x - \alpha$	$\mathbb C$	\checkmark

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \cdots$$

Ring K° Frac \forall val ≥ 0	\rightarrow Field K	Uniformizer π	Residue field K°/π	Complete
$\mathbb{Z}_{(p)}$	Q	p prime	\mathbb{F}_p	×
\mathbb{Z}_p	\mathbb{Q}_p	<i>p</i> prime	\mathbb{F}_p	\checkmark
$\mathbb{C}[x]_{(x-\alpha)}$	$\mathbb{C}(x)$	$x - \alpha$	\mathbb{C}	×
$\mathbb{C}[[x-\alpha]]$	$\mathbb{C}((x-\alpha))$	$x - \alpha$	$\mathbb C$	\checkmark

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \cdots$$

- ▶ Metric and topology defined by "a is small" \iff "val(a) is large"
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \cdots$$

Tate Series

$\mathbf{X} = X_1, \ldots, X_n$

Definition

► $K\{X\}^{\circ}$ = ring of series in **X** with coefficients in K° converging for all $\mathbf{x} \in K^{\circ}$ = ring of power series whose general coefficients tend to 0

Motivation

Introduced by Tate in 1971 for rigid geometry (p-adic equivalent of the bridge between algebraic and analytic geometry over \mathbb{C})

Examples

Polynomials (finite sums are convergent)

$$\sum_{i,j=0}^{\infty} \pi^{i+j} X^{i} Y^{j} = 1 + \pi X + \pi Y + \pi^{2} X^{2} + \pi^{2} XY + \pi^{2} Y^{2} + \cdots$$

Term ordering for Tate algebras

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- ► Starting from a usual monomial ordering $1 <_m \mathbf{X}^{\mathbf{i}_1} <_m \mathbf{X}^{\mathbf{i}_2} <_m \dots$
- ▶ We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

Term ordering for Tate algebras

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- ▶ Starting from a usual monomial ordering $1 <_m \mathbf{X}^{i_1} <_m \mathbf{X}^{i_2} <_m \dots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

Term ordering for Tate algebras

$$\mathbf{X}^{\mathbf{i}}=X_1^{i_1}\cdots X_n^{i_n}$$

- ▶ Starting from a usual monomial ordering $1 <_m \mathbf{X}^{i_1} <_m \mathbf{X}^{i_2} <_m \dots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

LT(f)Isomorphism $K\{\mathbf{X}\}^\circ/\langle\pi\rangle\simeq\mathbb{F}[\mathbf{X}]$ $f\mapsto \bar{f}$ $f=\overline{a_2}XY+a_1X+a_0\cdot 1+a_3X^2Y^2+\dots$ compatible with the term order

compatible with the term order

Gröbner bases

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- Standard equivalent characterizations:
 - 1. G is a Gröbner basis of I
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G \exists sequence of reductions converging to 0

Gröbner bases

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- ▶ Standard equivalent characterizations and a surprising one:
 - 1. G is a Gröbner basis of I
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G
- \exists sequence of reductions converging to 0

$$\pi f \in I \implies f \in I$$

4. \overline{G} is a Gröbner basis of \overline{I} in the sense of $\mathbb{F}[\mathbf{X}]$

Gröbner bases

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- Standard equivalent characterizations and a surprising one:
 - 1. *G* is a Gröbner basis of *I*

If I is saturated:

- 2. for all $f \in I$, f is reducible modulo G
- 3. for all $f \in I$, f reduces to zero modulo G

$$\pi f \in I \implies f \in I$$

 \exists sequence of reductions converging to 0

- 4. \overline{G} is a Gröbner basis of \overline{I} in the sense of $\mathbb{F}[X]$
- Every Tate ideal has a finite Gröbner basis
- ightharpoonup It can be computed using the usual algorithms (reduction, Buchberger, F_4)
- ▶ In practice, the algorithms run with finite precision and without loss of precision

No division by π

Buchberger's algorithm

- 1. $G \leftarrow \{f_1,\ldots,f_m\}$
- 2. $B \leftarrow \{\text{S-pol of } g_1 \text{ and } g_2 \text{ for } g_1, g_2 \in G\}$
- 3. While $B \neq \emptyset$:
- 4. Pop v from B
- 5. $w \leftarrow \text{reduction of } v \text{ modulo } G$
- 6. If w = 0:
- 7. Pass
- 8. Else:
- 9. $B \leftarrow B \cup \{S\text{-pol of } w \text{ and } g \text{ for } g \in G\}$
- 10. $G \leftarrow G \cup \{w\}$
- 11. Return G

Problem: useless and redundant computations, infinite reductions to 0

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + p_m f_m$$
 $q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + q_m f_m$

$$S\text{-Pol}(p,q) = \mu p - \nu q$$

Problem: useless and redundant computations, infinite reductions to 0

► 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + p_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + q_m f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + q_m f_m$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_l e_l + \dots + q_m e_m$$

S-Pol
$$(p, q) = \mu p - \nu q$$

S-Pol $(\mathbf{p}, \mathbf{q}) = \mu (p_1 \mathbf{e}_1 + \dots + p_k \mathbf{e}_k + \dots + p_m \mathbf{e}_m) - \nu (q_1 \mathbf{e}_1 + \dots + q_l \mathbf{e}_l + \dots + q_m \mathbf{e}_m)$

Problem: useless and redundant computations, infinite reductions to 0

- ▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- 2nd idea: the largest term of the representation is enough [Faugère 2002; Gao, Volny, Wang 2010; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + 0 f_m$$

$$\mathbf{p} = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m$$

$$= \mathsf{LT}(p_k) \mathbf{e}_k + \mathsf{smaller terms}$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + 0 f_m$$

$$\mathbf{q} = q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m$$

$$= \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$$

S-Pol
$$(p, q) = \mu p - \nu q$$

S-Pol $(\mathbf{p}, \mathbf{q}) = \mu (p_1 \mathbf{e}_1 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m) - \nu (q_1 \mathbf{e}_1 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m)$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k - \nu \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$

Problem: useless and redundant computations, infinite reductions to 0

- ▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- ▶ 2nd idea: the largest term of the representation is enough [Faugère 2002 ; Gao, Volny, Wang 2010 ; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + 0 f_m$$

$$\mathbf{p} = p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m$$

$$= \mathsf{LT}(p_k) \mathbf{e}_k + \mathsf{smaller terms}$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + 0 f_m$$

$$\mathbf{q} = q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m$$

$$= \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$$

S-Pol
$$(p, q) = \mu p - \nu q$$

S-Pol $(\mathbf{p}, \mathbf{q}) = \mu (p_1 \mathbf{e}_1 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m) - \nu (q_1 \mathbf{e}_1 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m)$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k - \nu \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k + \mathsf{smaller terms}$ if $\mu \mathsf{LT}(p_k) \mathbf{e}_k \geq \nu \mathsf{LT}(q_l) \mathbf{e}_l$

Problem: useless and redundant computations, infinite reductions to 0

- ▶ 1st idea: keep track of the representation of the ideal elements [Möller, Mora, Traverso 1992]
- 2nd idea: the largest term of the representation is enough [Faugère 2002; Gao, Volny, Wang 2010; Arri, Perry 2011... Eder, Faugère 2017]

Example with a S-polynomial

$$p = p_1 f_1 + p_2 f_2 + \dots + p_k f_k + \dots + 0 f_m$$

$$q = q_1 f_1 + q_2 f_2 + \dots + q_l f_l + \dots + 0 f_m$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_l e_l + \dots + 0 e_m$$

$$= LT(p_k) e_k + \text{smaller terms}$$

$$q = q_1 e_1 + q_2 e_2 + \dots + q_l e_l + \dots + 0 e_m$$

$$= LT(q_l) e_l + \text{smaller terms}$$

$$\mathfrak{s}(p) =$$
 signature of p

S-Pol
$$(p, q) = \mu p - \nu q$$

S-Pol $(\mathbf{p}, \mathbf{q}) = \mu (p_1 \mathbf{e}_1 + \dots + p_k \mathbf{e}_k + \dots + 0 \mathbf{e}_m) - \nu (q_1 \mathbf{e}_1 + \dots + q_l \mathbf{e}_l + \dots + 0 \mathbf{e}_m)$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k - \nu \mathsf{LT}(q_l) \mathbf{e}_l + \mathsf{smaller terms}$
 $= \mu \mathsf{LT}(p_k) \mathbf{e}_k + \mathsf{smaller terms}$ if $\mu \mathsf{LT}(p_k) \mathbf{e}_k \geq \nu \mathsf{LT}(q_l) \mathbf{e}_l$ Regular S-polynomial

Buchberger's algorithm, with signatures

- G ← {(**e**₁, f₁), ..., (**e**_m, f_m)}
 B ← {S-pol of p₁ and p₂ for p₁, p₂ ∈ G}
- 3. While $B \neq \emptyset$:
- 4. Pop (\mathbf{u}, \mathbf{v}) from B with smallest \mathbf{u}
- 5. $w \leftarrow \text{regular reduction of } (\mathbf{u}, v) \text{ modulo } G$
- 6. If w = 0:
- 7. Pass
- 8. Else:
- 9. $B \leftarrow B \cup \{\text{regular S-pol of } (\mathbf{u}, w) \text{ and } p \text{ for } p \in G\}$
- 10. $G \leftarrow G \cup \{(\mathbf{u}, w)\}$
- 11. Return G

Buchberger's algorithm, with signatures

```
1. G \leftarrow \{(\mathbf{e}_1, f_1), \dots, (\mathbf{e}_m, f_m)\}
```

2.
$$B \leftarrow \{S\text{-pol of } p_1 \text{ and } p_2 \text{ for } p_1, p_2 \in G\}$$

3. While $B \neq \emptyset$:

Pop (\mathbf{u}, \mathbf{v}) from B with smallest \mathbf{u} Need to order the signatures! 4.

- $w \leftarrow \text{regular reduction of } (\mathbf{u}, v) \text{ modulo } G$ 5.
- If w=0: 6.
- Pass 7.
- 8. Else:
- $B \leftarrow B \cup \{\text{regular S-pol of } (\mathbf{u}, w) \text{ and } p \text{ for } p \in G\}$ 9.
- $G \leftarrow G \cup \{(\mathbf{u}, w)\}$ 10.
- 11. Return G

Signature orderings

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Examples (polynomial case):

- $\mu \mathbf{e}_i <_{\text{pot}} \nu \mathbf{e}_j \iff i < j, \text{ or if equal, } \mu < \nu$ $Position \quad \text{over} \quad \text{Term}$
- $\mu \mathbf{e}_i <_{\text{top}} \nu \mathbf{e}_j \iff \mu < \nu, \text{ or if equal, } i < j$ Term over Position
- $\mu \mathbf{e}_i <_{\text{dopot}} \nu \mathbf{e}_j \iff \deg(p) < \deg(q), \text{ or if equal, } i < j, \text{ or if equal, } \mu < \nu$ Degree over Position over Term

Signature orderings

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances

Examples (polynomial case):

• $\mu \mathbf{e}_i <_{pot} \nu \mathbf{e}_j \iff i < j$, or if equal, $\mu < \nu$ Position over Term

- ► Theoretically convenient
- Incremental
- ► Rarely the most efficient

- $\mu \mathbf{e}_i <_{\text{top}} \nu \mathbf{e}_j \iff \mu < \nu, \text{ or if equal, } i < j$ Term over Position
 - Term over Position
- ► Better in practice
- ► Theoretically complicated
- $\mu \mathbf{e}_i <_{\text{dopot}} \nu \mathbf{e}_j \iff \deg(p) < \deg(q), \text{ or if equal, } i < j, \text{ or if equal, } \mu < \nu$ Degree over Position over Term
 - ► "F5-ordering" for homogeneous systems and degree order
 - ► Avoid going too high in degree, still incremental
 - ▶ Best of both worlds

Buchberger's algorithm, incremental variant

```
1. Q \leftarrow (f_1, \ldots, f_m)
 2. G \leftarrow \emptyset
 3. For f \in Q
     G \leftarrow G \cup \{f\}
 5. B \leftarrow \{S\text{-pol of } f \text{ and } g \text{ for } g \in G\}
 6.
     While B \neq \emptyset:
 7.
                 Pop v from B
                 w \leftarrow \text{reduction of } v \text{ modulo } G
 8.
 9.
            If w=0:
10.
                       Pass
11.
                 Else:
                       B \leftarrow B \cup \{S\text{-pol of } w \text{ and } g \text{ for } g \in G\}
12.
13.
                      G \leftarrow G \cup \{w\}
14. Return G
```

Signature orderings for Tate series

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances
- ▶ Difficulty with Tate series: multiplying by π should decrease the signature

Orders for Tate series:

- $\mu \mathbf{e}_i <_{\mathrm{pot}} \nu \mathbf{e}_j \iff i < j, \text{ or if equal, } \mu < \nu$ Position over Term
- ho μ $\mathbf{e}_i <_{\mathrm{top}} \nu$ $\mathbf{e}_j \iff \mu < \nu,$ or if equal, i < jTerm over Position

- ► Theoretically convenient
- Incremental
- ► Rarely the most efficient
- ► Better in practice
- ► Theoretically complicated

Signature-based algorithm, PoT ordering

```
1. Q \leftarrow (f_1, \ldots, f_m)
 2. G \leftarrow \emptyset
 3. For f \in Q
          G_S \leftarrow \{(0,g) : g \in G_S\} \cup \{(1,f)\}
 4.
 5. B \leftarrow \{\text{S-pol of } (1, f) \text{ and } p \text{ for } p \in G_S\}
       While B \neq \emptyset:
 6.
 7.
                 Pop (u, v) from B with smallest u
 8.
                 w \leftarrow \text{regular reduction of } (u, v) \text{ modulo } G_S
           If w=0:
 9.
                      Pass
10.
                Else:
11.
                      B \leftarrow B \cup \{\text{regular S-pol of } (u, w) \text{ and } p \text{ for } p \in G_S\}
12.
                      G_S \leftarrow G_S \cup \{(u, w)\}
13.
           G \leftarrow \{v : (u, v) \in G_S\}
14.
15. Return G
```

Signature orderings for Tate series

Signature orderings:

- Necessary for correctness and termination of the algorithms
- Different choices lead to different performances
- \blacktriangleright Difficulty with Tate series: multiplying by π should decrease the signature

Orders for Tate series:

 $\mu \mathbf{e}_i <_{pot} \nu \mathbf{e}_j \iff i < j, \text{ or if equal, } \mu < \nu$ Position over Term

- ► Theoretically convenient
- Incremental
- Rarely the most efficient

- $\mu \mathbf{e}_i <_{\text{top}} \nu \mathbf{e}_j \iff \mu < \nu, \text{ or if equal, } i < j$ Term over Position
- Better in practice
 - ► Theoretically complicated
- $\mu \mathbf{e}_i <_{\text{vopot}} \nu \mathbf{e}_j \iff \text{val}(p) < \text{val}(q), \text{ or if equal, } i < j, \text{ or if equal, } \mu < \nu$ Valuation over Position over Term
 - ► Analogue of the F5 ordering for the valuation
 - ► Allows to delay (or avoid) high valuation computations

Signature-based algorithm, VoPoT ordering

- 1. $Q \leftarrow (f_1, \ldots, f_m)$
- 2. $G \leftarrow \emptyset$
- 3. While $\exists f \in Q$ with smallest valuation:
- 4. $G_S \leftarrow \{(0,g) : g \in G_S\} \cup \{(1,f)\}$
- 5. $B \leftarrow \{\text{S-pol of } (1, f) \text{ and } p \text{ for } p \in G_S\}$
- 6. While $B \neq \emptyset$:
- 7. Pop (u, v) from B with smallest u
- 8. $w \leftarrow \text{regular reduction of } (u, v) \text{ modulo } G_S$
- 9. If val(w) > val(f):
- 10. $Q \leftarrow Q \cup w$
- 11. Else:
- 12. $B \leftarrow B \cup \{\text{regular S-pol of } (u, w) \text{ and } p \text{ for } p \in G_S\}$
- 13. $G_S \leftarrow G_S \cup \{(u, w)\}$
- 14. $G \leftarrow \{v : (u, v) \in G_S\}$
- 15. Return *G*

Conclusion and perspectives

Results:

- Possible to design signature-based algorithms for Tate algebras
- Two algorithms with two orders
- ▶ Implemented in Sage, working towards including them in the distribution

Future work:

- Reduction of Tate series is very different from reduction of polynomials
- Design algorithms to perform those reductions more efficiently
- Goal: being able to take advantage of e.g. delaying reductions in VoPoT

References:

- ► Caruso, Vaccon and Verron, 'Gröbner bases over Tate algebras' (2019)
- Caruso, Vaccon and Verron, 'Signature-based algorithms for Gröbner bases over Tate algebras' (2020) [preprint]

Part 2: Integral bases of P-recursive sequences

joint work with Shaoshi Chen¹, Lixin Du^{1,2} and Manuel Kauers²

- 1. Chinese Academy of Sciences, Beijing, China
- 2. Johannes Kepler University, Linz, Austria

Séminaire Calcul Formel, Limoges 27 février 2020

Ring K° Frac $val \geq 0$	Field <i>K</i>	Valuation at	_
\mathbb{Z}_p $\mathbb{C}[[x-lpha]]$	\mathbb{Q}_p $\mathbb{C}((x-lpha))$	p prime $x - \alpha$	Local integrality
\mathbb{Z} Denom. $\in \{\pm 1\}$ $\mathbb{C}[x]$ Denom. $\in \mathbb{C}$	\mathbb{Q} $\mathbb{C}(x)$	All primes $ All x - \alpha $	
$\mathcal{O}_{\mathbb{C}[X]}$ Denom. of minpoly $\in \mathbb{C}$	$\overline{\mathbb{C}(x)}$	All $x - \alpha$	Global
	Sol. of diffeq with poly. coefs.		integrality

Ring K° \longleftarrow val ≥ 0 \iff "no po	$\xrightarrow{le^n}$ Field K	Valuation at	
\mathbb{Z}_p $\mathbb{C}[[x-lpha]]$	\mathbb{Q}_p $\mathbb{C}((x-lpha))$	p prime $x - \alpha$	Local integrality
\mathbb{Z} Denom. $\in \{\pm 1\}$	Q	All primes)
$\mathbb{C}[x]$ Denom. $\in \mathbb{C}$	$\mathbb{C}(x)$	All $x - \alpha$	
$\mathcal{O}_{\mathbb{C}[X]}$ Denom. of minpoly $\in \mathbb{C}$ \iff "no pole"	$\overline{\mathbb{C}(x)}$	All $x - \alpha$	Global integrality
	Sol. of diffeq with poly. coefs.		3.3,

$\operatorname{Ring} K^{\circ} \xrightarrow{\qquad \qquad \text{Frac}} $ $\operatorname{val} \geq 0 \iff \text{``no'}$	Field K pole"	Valuation at	
\mathbb{Z}_p	\mathbb{Q}_p	p prime	Local integrality
$\mathbb{C}[[x-\alpha]]$ $\mathbb{Z} \text{ Denom. } \in \{\pm 1\}$	$\mathbb{C}((x-lpha))$ \mathbb{Q}	$x - \alpha$ All primes) "
$\mathbb{C}[x]$ Denom. $\in \mathbb{C}$	$\mathbb{C}(x)$	All $x - \alpha$	
$\mathcal{O}_{\mathbb{C}[X]}$ Denom. of minpoly $\in \mathbb{C}$ \iff "no pole"	$\overline{\mathbb{C}(x)}$	All $x - \alpha$	Global
"No pole" [Kauers Koutschan 2015]	Sol. of diffeq with poly. coefs.	All $x - \alpha$	integrality
This work : "val ≥ 0 "	Sol. of rec. with poly. coefs.		

Polynomial algebras:

▶ "Algebraic equations": C(x)[y], commutative: xy = yx

Algebraic case (finite extension):

- ▶ Given $\alpha(x) \in \overline{C(x)}$ or equivalently given $P \in C[x][y]$
- Question: What are integral elements of $C(x)(\alpha) = C(x)[y]/\langle P \rangle$?
- ▶ Answer: *Q* is integral iff for all $\alpha(x)$ sol of *P*, $(Q(\alpha))(x)$ does not have any pole
- ▶ Integral elements form a C[x]-algebra in C(x)[y]

Can we compute a basis of that set as a C[x]-module?

- Yes: Trager's algorithm, van Hoeij's algorithm
- ► Application: computation of integrals [Trager 1984]

Polynomial and Ore algebras:

- ▶ "Algebraic equations": C(x)[y], commutative: xy = yx
- "Differential equations": $C(x)\langle D\rangle$, non-commutative: Dx = xD + 1

Differential case:

- ▶ Given $L \in C[x]\langle D \rangle$
- ▶ Question: What are integral elements of $C(x)\langle D \rangle / \langle L \rangle$?
- ► Answer: *B* is integral iff for all $\alpha(x)$ sol of *L*, $(B \cdot \alpha)(x)$ does not have any pole
- ▶ Integral elements form a C[x]-module in $C(x)\langle D \rangle$

Can we compute a basis of that C[x]-module?

- Yes: adaptation of van Hoeij's algorithm [Kauers, Koutschan 2015]
- ► Application: computation of integrals [Chen, van Hoeij, Kauers, Koutschan 2018]

Polynomial and Ore algebras:

- ▶ "Algebraic equations": C(x)[y], commutative: xy = yx
- "Differential equations": $C(x)\langle D \rangle$, non-commutative: Dx = xD + 1
- ▶ "Recurrence equations": $C(n)\langle S \rangle$, non-commutative: Sn = (n+1)S

Recurrence case:

- ▶ Given $L \in C[x]\langle S \rangle$
- ▶ Question: What are integral elements of $C(x)\langle S \rangle / \langle L \rangle$?
- ► Answer: *B* is integral iff for all $\alpha(x)$ sol of *L*, $(B \cdot \alpha)(x)$... ???

Polynomial and Ore algebras:

- ► "Algebraic equations": C(x)[y], commutative: xy = yx
- "Differential equations": $C(x)\langle D\rangle$, non-commutative: Dx = xD + 1
- ▶ "Recurrence equations": $C(n)\langle S \rangle$, non-commutative: Sn = (n+1)S

Recurrence case:

- ▶ Given $L \in C[x]\langle S \rangle$
- ▶ Question: What are integral elements of $C(x)\langle S \rangle / \langle L \rangle$?
- ► Answer: *B* is integral iff for all $\alpha(x)$ sol of L, $(B \cdot \alpha)(x)$ has "valuation" ≥ 0 everywhere
- ▶ Integral elements form a C[x]-module in $C(x)\langle D \rangle$

Can we compute a basis of that C[x]-module?

- ► Yes: adaptation of van Hoeij's algorithm [Chen, Du, Kauers, V. 2020]
- Application: computation of sums?

Local algorithm:

Input.
$$L \in C[x]\langle D \rangle$$
 with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$
- 2. For $d \in \{1, ..., r\}$:
- 3. While B_i is not integral at α
- 4. $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1, \ldots, a_{d-1} \in C$ such that $A := \frac{1}{x-\alpha} (a_1 B_1 + \cdots + a_{d-1} B_{d-1} - B_d)$ is integral at α
- 6. $B_d \leftarrow A$
- 7. Return B_1, \ldots, B_r

Local algorithm:

Input.
$$L \in C[x]\langle D \rangle$$
 with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

1.
$$B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$$

$$B_1,\ldots,B_r \leftarrow 1,\ldots,D^{r-1}$$

- 2. For $d \in \{1, ..., r\}$:
- 3. While B_i is not integral at α

4.
$$B_i \leftarrow (x - \alpha)B_i$$

5. While there exists $a_1, \ldots, a_{d-1} \in C$

such that
$$A := \frac{1}{x-\alpha} (a_1 B_1 + \cdots + a_{d-1} B_{d-1} - B_d)$$
 is integral at α

6.
$$B_d \leftarrow A$$

7. Return B_1, \ldots, B_r

Local algorithm:

$$f_1, \ldots, f_r \in C((x-\alpha))$$
 basis of solutions of L

Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$
- $B_1,\ldots,B_r\leftarrow 1,\ldots,D^{r-1}$

- 2. For $d \in \{1, ..., r\}$:
- 3. While B_i is not integral at α

 $B_i \cdot f_j$ has a pole at α for some j

- 4. $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1, \ldots, a_{d-1} \in C$ such that $A := \frac{1}{x-\alpha} (a_1 B_1 + \cdots + a_{d-1} B_{d-1} - B_d)$ is integral at α
- 6. $B_d \leftarrow A$
- 7. Return B_1, \ldots, B_r

Local algorithm:

$$f_1, \ldots, f_r \in C((x-\alpha))$$
 basis of solutions of L

Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$
- $B_1,\ldots,B_r\leftarrow 1,\ldots,D^{r-1}$

- 2. For $d \in \{1, ..., r\}$:
- While B_i is not integral at α

 $B_i \cdot f_i$ has a pole at α for some j

- $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1, \ldots, a_{d-1} \in C$

such that $A := \frac{1}{x-\alpha} (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d)$ is integral at α

 $B_d \leftarrow A$ 6.

$$\iff \forall j, (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d) \cdot f_j(\alpha) = 0$$

7. Return
$$B_1, \ldots, B_r \iff \forall j, a_1 B_1 \cdot f_j(\alpha) + \ldots a_{d-1} B_{d-1} \cdot f_j(\alpha) = B_d \cdot f_j(\alpha)$$

Linear system of equations

Local algorithm:

$$f_1, \ldots, f_r \in C((x-\alpha))$$
 basis of solutions of L

Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

1.
$$B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$$

$$B_1,\ldots,B_r\leftarrow 1,\ldots,D^{r-1}$$

- 2. For $d \in \{1, ..., r\}$:
- While B_i is not integral at α 3.

$$B_i \cdot f_j$$
 has a pole at α for some j

4.
$$B_i \leftarrow (x - \alpha)B_i$$

5. While there exists $a_1, \ldots, a_{d-1} \in C$

such that
$$A:=\frac{1}{x-\alpha}\left(a_1B_1+\cdots+a_{d-1}B_{d-1}-B_d\right)$$
 is integral at α

$$B_d \leftarrow A$$

7. Return
$$B_1, \ldots, B_r$$
 $\iff \forall j, (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d) \cdot f_j(\alpha) = 0$
 $\iff \forall j, a_1B_1 \cdot f_j(\alpha) + \ldots a_{d-1}B_{d-1} \cdot f_j(\alpha) = B_d \cdot f_j(\alpha)$

Global algorithm: loop over all $\alpha \in C$

Local algorithm:

$$f_1, \ldots, f_r \in C((x-\alpha))$$
 basis of solutions of L

Input. $L \in C[x]\langle D \rangle$ with order $r, \alpha \in C$

Output. B_1, \ldots, B_r basis of $C(x)\langle D \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(x)\langle D \rangle / \langle L \rangle$ $B_1,\ldots,B_r\leftarrow 1,\ldots,D^{r-1}$
- 2. For $d \in \{1, ..., r\}$:
- While B_i is not integral at α $B_i \cdot f_i$ has a pole at α for some j
- $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1, \ldots, a_{d-1} \in C$

such that $A := \frac{1}{x-\alpha} (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d)$ is integral at α

 $B_d \leftarrow A$

7. Return
$$B_1, \ldots, B_r$$
 $\iff \forall j, (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d) \cdot f_j(\alpha) = 0$
 $\iff \forall j, a_1B_1 \cdot f_j(\alpha) + \ldots a_{d-1}B_{d-1} \cdot f_j(\alpha) = B_d \cdot f_j(\alpha)$

Linear system of equations

Global algorithm: loop over all $\alpha \in C$

Nothing happens at all but finitely many of them (roots of the leading coefficient of L)

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

	-1	0	1	2	3	4	•••
		1	0	0			
		0	1	0			
		0	0	1			

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n](S)$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

	-1	0	1	2	3	4	
		1	0	0	-1		
		0	1	0	0		
		0	0	1	-3		

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n](S)$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

	-1	0	1	2	3	4	
		1	0	0	-1	×	0 = -2
		0	1	0	0	0	0 = 0
		0	0	1	-3	×	0 = -6

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

	-1	0	1	2	3	4	
		1	0	0	-1	×	0 = -2
		0	1	0	0	0	0 = 0
		0	0	1	-3	×	0 = -6
		0	0	0	0	1	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n](S)$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

		4	3	2	1	0	-1	
\neg	0 = -2	×	-1	0	0	1		
Ь	0 = 0	0	0	0	1	0		
기	0 = -6	×	-3	1	0	0		
		1	0	0	0	0		
\downarrow	0 = 0	0	0	-1	3	0		

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n](S)$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

Ī	 -1	0	1	2	3	4	
		1	0	0	-1	×	0 = -2
		0	1	0	0	0	
		0	0	1	-3		
		0	0	0	0	1	
		0	3	-1	0	0	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

$$(n-1)(n+1)u_n = -(n-3)u_{n+1} - (n-1)u_{n+3}$$

•••	-1	0	1	2	3	4	
		1	0	0	-1	×	0 = -2
0 = 4	×	0	1	0	0	0	
		0	0	1	-3		
	0	0	0	0	0	1	
0 = 10	×	0	3	-1	0	0	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

$$(n-1)(n+1)u_n = -(n-3)u_{n+1} - (n-1)u_{n+3}$$

_								
		-1	0	1	2	3	4	
_			1	0	0	-1	×	0 = -2
\subset	0 = 4	×	0	1	0	0	0	
			0	0	1	-3		
		0	0	0	0	0	1	
	0 = 10	×	0	3	-1	0	0	
		1	0	0	0	0	0	
\hookrightarrow	0 = 0	0	5	-6	2	0	0	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

Natural action: L acts on $\mathbb{C}^{\mathbb{Z}}$ via $(n \cdot u)_k = ku_k$, $(S \cdot u)_k = u_{k+1}$

If $(u_n)_{n\in\mathbb{Z}}\in\mathbb{C}^{\mathbb{Z}}$ is a solution, then for all $n\in\mathbb{Z}$:

$$(n-1)u_{n+3} = -(n-3)u_{n+1} - (n-1)(n+1)u_n$$

$$(n-1)(n+1)u_n = -(n-3)u_{n+1} - (n-1)u_{n+3}$$

	-1	0	1	2	3	4	
		1	0	0	-1	×	0 = -2
0 = 4		0	1	0	0		
		0	0	1	-3		
	0	0	0	0	0	1	
0 = 10		0	3	-1	0		
	1	0	0	0	0	0	
	0	5	-6	2	0	0	

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	
1	0	0				
0	1	0				
0	0	1				

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	
1	0	0	-q - 1			
0	1	0	0			
0	0	1	$\frac{3-q}{q-1}$			

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	
1	0	0	-q - 1	$\frac{(q+1)(q-2)}{q}$		
0	1	0	0	-q-2		
0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$		

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	• • •
1	0	0	-q - 1	$\frac{(q+1)(q-2)}{q}$	$\frac{(q-2)(1-q)}{q}$	
0	1	0	0	-q-2	$\frac{(q-1)(q+2)}{q+1}$	
0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$	$rac{6+\ldots}{q(q+1)}$	

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	• • •
1	0	0	-q - 1	$\frac{(q+1)(q-2)}{q}$	$\frac{(q-2)(1-q)}{q}$	
0	1	0	0	-q-2	$\frac{(q-1)(q+2)}{q+1}$	
0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$	$\frac{6+\ldots}{q(q+1)}$	

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: *L* acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	
1	0	0	-q - 1	$\frac{(q+1)(q-2)}{q}$	$\frac{(q-2)(1-q)}{q}$	
0	1	0	0	-q-2	$\frac{(q-1)(q+2)}{q+1}$	
0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$	$\frac{6+\ldots}{q(q+1)}$	
q	0	0	-q(q + 1)	(q+1)(q-2)	(q-2)(1-q)	• • •
0	0	q	$\frac{q(3-q)}{q-1}$	$\frac{(q-3)(q-2)}{q-1}$	$\frac{6+\ldots}{q+1}$	

$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3 \in \mathbb{C}[n]\langle S \rangle$$
 with $Sn = (n+1)S$

- ▶ Deformed action: L acts on $\mathbb{C}(q)^{\mathbb{Z}}$ or $\mathbb{C}((q))^{\mathbb{Z}}$ via $(n \cdot u)_k = (k+q)u_k$
- Recover usual solutions by setting q = 0

0	1	2	3	4	5	
1	0	0	-q - 1	$\frac{(q+1)(q-2)}{q}$	$\frac{(q-2)(1-q)}{q}$	
0	1	0	0	-q-2	$\frac{(q-1)(q+2)}{q+1}$	
0	0	1	$\frac{3-q}{q-1}$	$\frac{(q-3)(q-2)}{q(q-1)}$	$\frac{6+\ldots}{q(q+1)}$	ر
q	0	0	-q(q + 1)	(q+1)(q-2)	(q-2)(1-q)	
0	0	q	$\frac{q(3-q)}{q-1}$	$\frac{(q-3)(q-2)}{q-1}$	$\frac{6+\ldots}{q+1}$	
$\frac{q-3}{q-1}$	0	-q - 1	0	0	(q+1)(q+3)	⋯ ←

P-recursive sequences: what are poles?

In practice, robust solutions of an operator look like this:

Only finitely many changes

P-recursive sequences: what are poles?

In practice, normalized robust solutions of an operator look like this:

Only finitely many changes

- ► Given $L \in C[n]\langle S \rangle$ with order r, it has r independent normalized solutions $u^{(1)}, \ldots, u^{(r)}$ in $C((q))^{\mathbb{Z}}$
- ▶ $B \in C(n)\langle S \rangle / \langle L \rangle$ acts on those solutions
- ▶ Valuation of *B* at $\alpha \in \mathbb{Z}$: min of the valuations of $B \cdot u^{(i)}$ at α
- ▶ *B* is integral iff it has non-negative valuation everywhere

Van Hoeij's algorithm for finding integral bases (recurrence case)

Local algorithm: exactly the same!

$$u^{(1)}, \ldots, u^{(r)} \in C((q))^{\mathbb{Z}}$$
 basis of solutions of L

Input. $L \in C[n]\langle S \rangle$ with order $r, \alpha \in \mathbb{Z}$

Output. B_1, \ldots, B_r basis of $C(n)\langle S \rangle / \langle L \rangle$ integral at α

- 1. $B_1, \ldots, B_r \leftarrow \text{basis of } C(n)\langle S \rangle / \langle L \rangle$
- $B_1,\ldots,B_r\leftarrow 1,\ldots,S^{r-1}$

- 2. For $d \in \{1, ..., r\}$:
- 3. While B_i is not integral at α

 $B_i \cdot u^{(j)}$ has val < 0 at α for some j

- 4. $B_i \leftarrow (x \alpha)B_i$
- 5. While there exists $a_1, \ldots, a_{d-1} \in C$

such that $A := \frac{1}{x-\alpha} \left(a_1 B_1 + \cdots + a_{d-1} B_{d-1} - B_d \right)$ is integral at α

 $B_d \leftarrow A$

$$\iff \forall j, (a_1B_1 + \cdots + a_{d-1}B_{d-1} - B_d) \cdot u^{(j)} \text{ has val } > 0 \text{ at } \alpha$$

7. Return B_1, \ldots, B_r

Linear system of equations

Global algorithm: loop over all $\alpha \in \mathbb{Z}$

Nothing happens at all but finitely many of them (roots of the leading and trailing coefficients of L)

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$

Basis of solutions in $C((q))^{\mathbb{N}}$:

	0	1	2	3	4	5	
и	• • •	0 0	0 0	-1+O(a)	$-2q^{-1} + O(1)$	$-2a^{-1}+O(1)$	
u		•	0	· · · · · · · · · · · · · · · · · · ·	29 (1)	29 10(1)	
v	0	1	0	0	-2+O(q)	-2+O(q)	
	0	0	•	•	•	•	
W	0	0	1	-3+O(q)	$-6q^{-1}+O(1)$	$-6q^{-1}+O(1)$	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	
$(B \cdot u)_3$	-1+O(q)	
$(B \cdot v)_3$	0 0	
$(B \cdot w)_3$	-3+O(q)	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	
$(B \cdot u)_3$	-1+O(q)	$-2q^{-1} + O(1)$	
$(B \cdot v)_3$	0 0	-2+O(q)	
	•	$-6q^{-1} + O(1)$	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	
$(B \cdot u)_3$	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	
$(B \cdot v)_3$	0 0	-2+O(q)	$ \begin{array}{c} \bullet \\ \circ \\ -2q + O(q^2) \end{array} $	
	•	$-6q^{-1} + O(1)$	•	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	
$(B \cdot u)_3$	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	
$(B \cdot v)_3$	0 0	-2+O(q)	$ \overset{\bullet}{\circ} \circ \\ -2q + O(q^2) $	
	•	$-6q^{-1} + O(1)$	•	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	(n-3)S-2	
$(B \cdot u)_3$	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	$q+O(q^2)$	
$(B \cdot v)_3$	0 0	-2+O(q)	$0 \\ 0 \\ -2q + O(q^2)$	0.00 0.00 $-2q+O(q^2)$	
$(B \cdot w)_3$	-3+O(q)	$-6q^{-1} + O(1)$	-6+O(q)	$3q+O(q^2)$	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	(n-3)S-2	$S-\frac{2}{n-3}$
$(B \cdot u)_3$	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	$q+\overset{ullet}{O}(q^2)$	1+O(q)
$(B \cdot v)_3$	0 0	-2+O(q)	$\begin{matrix} \bullet \\ \circ \\ -2q + O(q^2) \end{matrix}$	$\begin{matrix} \bullet \\ \circ \\ -2q + O(q^2) \end{matrix}$	-2+O(q)
		$-6q^{-1} + O(1)$			

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	(n-3)S-2	$S-\frac{2}{n-3}$	
$(B \cdot u)_3$	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	$q+O(q^2)$	1 + O(q)	
$(B \cdot v)_3$	0	-2+O(q)	$\begin{array}{c} \bullet \\ \circ \\ -2q + O(q^2) \end{array}$	$\begin{array}{c} \bullet \\ \circ \\ -2q + O(q^2) \end{array}$	-2+O(q)	
$(B \cdot w)_3$	-3+O(q)	$-6q^{-1} + O(1)$	-6+ <i>O</i> (<i>q</i>)	$3q+O(q^2)$	3+O(q)	

Example:
$$L = (n-1)(n+1) + (n-3)S^2 + (n-1)S^3$$
, $\alpha = 3$

В	1	S	(n-3)S	(n-3)S-2	$S-\frac{2}{n-3}$	S^2
$(B \cdot u)_3$	-1+O(q)	$-2q^{-1} + O(1)$	-2+O(q)	$q+O(q^2)$	1 + O(q)	
$(B \cdot v)_3$	0 0	-2+O(q)	$-2q + O(q^2)$	$-2q + O(q^2)$	-2+O(q)	
$(B \cdot w)_3$	-3+O(q)	$-6q^{-1} + O(1)$	-6+ <i>O</i> (<i>q</i>)	$3q+O(q^2)$	3+ <i>O</i> (<i>q</i>)	•••

Application and perspectives

Why do we care?

- ▶ In the differential case, integral bases can be used to compute integrals
- We hope that in the recurrence case, they can be used to compute sums
- ► Future work: /s/hope/prove/

What if it is the wrong definition for that?

- ► The definitions and the algorithm generalize to valued vector spaces
- No particularly restricting hypothesis
- ▶ So if the definition is wrong, we only have to find the correct one!

References

- ► Kauers and Koutschan, 'Integral D-finite Functions' (2015)
- Chen, van Hoeij, Kauers and Koutschan, 'Reduction-based Creative Telescoping for Fuchsian D-finite Functions' (2018)
- ► Chen, Du, Kauers and Verron, 'Integral P-Recursive Sequences' (2020) [preprint]

Application and perspectives

Why do we care?

- ▶ In the differential case, integral bases can be used to compute integrals
- We hope that in the recurrence case, they can be used to compute sums
- ► Future work: /s/hope/prove/

What if it is the wrong definition for that?

- ► The definitions and the algorithm generalize to valued vector spaces
- No particularly restricting hypothesis
- So if the definition is wrong, we only have to find the correct one!

References

- Kauers and Koutschan, 'Integral D-finite Functions' (2015)
- Chen, van Hoeij, Kauers and Koutschan, 'Reduction-based Creative Telescoping for Fuchsian D-finite Functions' (2018)
- ► Chen, Du, Kauers and Verron, 'Integral P-Recursive Sequences' (2020) [preprint]

Thank you for your attention