Homework 1

Problem 1. Show the Venn-diagram representation for the following sets:

(a)
$$(A \cup B) - C$$

(b)
$$\overline{A \oplus (B \cap C)}$$

Problem 2. For any sets A, B and C, prove that

$$A \cup B = A \cup C, A \cap B = A \cap C \text{ implies } B = C.$$

Solution. (Proof by contradiction)

Suppose $B \neq C$. As B and C are symmetric, then without loss of generality, take $x \in B - C$:

- 1. if $x \in A$: then $x \in A \cap B$ and $x \notin A \cap C$;
- 2. if $x \notin A$: then $x \in A \cup B$ and $x \notin A \cup C$.

neither of the above case could be true. Thus the assumption $B \neq C$ is not correct, which leads to B = C.

Problem 3. 1. Show that \mathcal{R} is symmetric iff $\mathcal{R}^{-1} \subseteq \mathcal{R}$.

2. Show that \mathcal{R} is transitive iff $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.

Proof. We prove the first statement and omit the second one.

$$\mathcal{R} \text{ is symmetric}
\iff \forall x \forall y (x \mathcal{R} y \longrightarrow y \mathcal{R} x)
\iff \forall x \forall y (y \mathcal{R}^{-1} x \longrightarrow y \mathcal{R} x)
\iff \mathcal{R}^{-1} \subseteq \mathcal{R}$$

Problem 4. Prove that $\mathcal{P}(A) \approx 2^A$, where A is any set and $2^A = \{f \mid f : A \to \{0,1\} \text{ is a function.}\}$

Solution. Check the slides.

Problem 5. A and B are countable sets. Prove that

- 1. $A \cup B$ is countable
- 2. $A \times B$ is countable

Solution.(Hint) As $A \leq \omega$ and $B \leq \omega$, suppose $f: A \to \omega$, and $g: B \to \omega$ are both injective functions.

Then

1.

$$h(x) = \begin{cases} 2 \cdot f(x) & x \in A \\ 2 \cdot g(x) + 1 & x \in B - A \end{cases}$$

and then prove that h(x) is injective.

2. $h(\langle x, y \rangle) = \langle f(x), g(y) \rangle$.

Then prove that h(x) is injective.

Function h shows $A \times B \leq \omega \times \omega$.

As we know $\omega \times \omega \approx \omega$, we finally get $A \times B \leq \omega$.