

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen XIV

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Rafael Ortega Ríos.

Descripción Parcial 2.

Fecha 19 de Diciembre de 2023.

Ejercicio 1. Se consideran las funciones $f_1, f_2 :]0, 1[\to \mathbb{R}$ dadas por:

$$f_1(t) = 1$$
 $f_2(t) = \begin{cases} 1 & \text{si } t \in]0, \frac{2}{3}], \\ 0 & \text{si } t \in]\frac{2}{3}, 1[.] \end{cases}$

¿Son estas funciones linealmente independientes en el intervalo]0, 1[?

Aplicando la definición de independencia lineal, buscamos $c_1, c_2 \in \mathbb{R}$ tales que:

$$c_1 f_1(t) + c_2 f_2(t) = 0, \quad \forall t \in [0, 1].$$

Tomando $t \in]2/3, 1]$, se tiene:

$$0 = c_1 f_1(t) + c_2 f_2(t) = c_1 \cdot 1 + c_2 \cdot 0 = c_1 \Longrightarrow c_1 = 0.$$

Tomando $t \in [0, \frac{2}{3}]$, se tiene:

$$0 = c_1 f_1(t) + c_2 f_2(t) = 0 \cdot 1 + c_2 \cdot 1 = c_2 \Longrightarrow c_2 = 0.$$

Por tanto, $c_1 = c_2 = 0$, lo que implica que f_1 y f_2 son linealmente independientes en el intervalo [0, 1[.

Ejercicio 2. Se considera la ecuación diferencial

$$ax + by + (cx + dy)y' = 0,$$

con $a,b,c,d\in\mathbb{R}^+$. ¿En qué casos se puede afirmar que $\mu(x,y)=e^{x+y}$ es un factor integrante?

Definimos:

$$P: \quad \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto ax + by$$

$$Q: \quad \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto cx + dy$$

Sea Ω el dominio del factor integrante. Para que $\mu(x,y)$ sea un factor integrante de la ecuación diferencial, se debe cumplir que:

- $\mu(x,y) \neq 0$, $\forall (x,y) \in \Omega$. Si $\mu(x,y) = e^{x+y}$, lo tenemos garantizado.
- Se cumpla la condición de exactitud tras multiplicar la ecuación diferencial por $\mu(x,y)$:

$$\frac{\partial(\mu P)}{\partial y} = \frac{\partial(\mu Q)}{\partial x}.$$

Calculamos las derivadas parciales de la condición de exactitud:

$$\frac{\partial(\mu P)}{\partial y} = \frac{\partial \mu}{\partial y} P + \mu \frac{\partial P}{\partial y},$$
$$\frac{\partial(\mu Q)}{\partial x} = \frac{\partial \mu}{\partial x} Q + \mu \frac{\partial Q}{\partial x}.$$

Por tanto, la condición de exactitud se traduce en:

$$\frac{\partial \mu}{\partial y}P - \frac{\partial \mu}{\partial x}Q = \mu \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right).$$

En nuestro caso concreto, las derivadas son:

$$\frac{\partial \mu}{\partial y}(x,y) = e^{x+y} = \mu(x,y), \qquad \qquad \frac{\partial \mu}{\partial x}(x,y) = e^{x+y} = \mu(x,y),$$

$$\frac{\partial P}{\partial y}(x,y) = b, \qquad \qquad \frac{\partial Q}{\partial x}(x,y) = c.$$

Por tanto, en nuestro caso concreto, la condición de exactitud se traduce en:

$$\mu(x,y)(ax+by-cx-dy) = \mu(x,y)(c-b) \qquad \forall (x,y) \in \Omega.$$

Como $\mu(x,y) \neq 0$ para todo $(x,y) \in \Omega$, la condición de exactitud queda:

$$x(a-c) + y(b-d) = c-b$$
 $\forall (x,y) \in \Omega$

Por tanto, lo único que hemos de imponer sobre los coeficientes de la ecuación diferencial es que se cumpla la ecuación siguiente:

$$x(a-c) + y(b-d) = c-b \quad \forall (x,y) \in \Omega$$

Como 1, x, y son linealmente independientes, tenemos que:

$$\begin{cases} a - c &= 0, \\ b - d &= 0, \\ c - b &= 0. \end{cases}$$

Por tanto, tenemos que a = b = c = d. Por tanto, lo único que hemos de imponer sobre los coeficientes de la ecuación diferencial es:

$$a = b = c = d$$
.

Ejercicio 3. Dada una función $a \in C(\mathbb{R})$, se supone que φ_1, φ_2 son las soluciones de la ecuación x'' + a(t)x = 0 que cumplen las condiciones iniciales

$$\varphi_1(0) = 1,
\varphi_2(0) = 0,
\varphi_2'(0) = 1.$$
 $\varphi_1'(0) = 0,
\varphi_2'(0) = 1.$

Demuestra que la función

$$x(t) = \varphi_2(t) \int_0^t e^s \varphi_1(s) \ ds - \varphi_1(t) \int_0^t e^s \varphi_2(s) \ ds + 2024 \varphi_2(t)$$

pertenece a $C^2(\mathbb{R})$ y encuentra una ecuación diferencial de la que es solución.

El dominio de la ecuación diferencial descrita en el enunciado es \mathbb{R}^2 . Por tanto, por ser φ_1, φ_2 las soluciones de dicha ecuación diferencial para distintas condiciones

iniciales, por el Teorema de Existencia y Unicidad visto en el Capítulo 4, tenemos que dichas soluciones están definidas en todo \mathbb{R} . Además, como φ_1, φ_2 son soluciones, tenemos que:

$$\varphi_1, \varphi_2 \in C^2(\mathbb{R}).$$

En particular, por ser $\varphi_1, \varphi_2 \in C(\mathbb{R})$, por el Teorema Fundamental del Cálculo tenemos que dichas integrales son de clase 1. Por tanto, al x suma de productos de funciones de clase C^1 , tenemos que $x \in C^1(\mathbb{R})$. Para argumentar que $x \in C^2(\mathbb{R})$, hemos de calcular su derivada (notemos que para derivar las integrales usamos el Teorema Fundamental del Cálculo):

$$x'(t) = \varphi_2'(t) \int_0^t e^s \varphi_1(s) \ ds + \underline{\varphi_2(t)} e^{\underline{t}} \varphi_1(t) - \varphi_1'(t) \int_0^t e^s \varphi_2(s) \ ds - \underline{\varphi_1(t)} e^{\underline{t}} \varphi_2(t) + 2024 \varphi_2'(t)$$

En primer lugar, tenemos que $\varphi'_1, \varphi'_2 \in C^1(\mathbb{R})$. Además, como los integrandos son producto de funciones continuas, tenemos que las integrales son de clase C^1 . Por tanto, $x' \in C^1(\mathbb{R})$, de forma que $x \in C^2(\mathbb{R})$. Calculamos ahora x''(t):

$$x''(t) = \varphi_2''(t) \int_0^t e^s \varphi_1(s) \ ds + \varphi_2'(t) e^t \varphi_1(t) - \varphi_1''(t) \int_0^t e^s \varphi_2(s) \ ds - \varphi_1'(t) e^t \varphi_2(t) + 2024 \varphi_2''(t)$$

$$\stackrel{(*)}{=} -a(t) \varphi_2(t) \int_0^t e^s \varphi_1(s) \ ds + \varphi_2'(t) e^t \varphi_1(t) + a(t) \varphi_1(t) \int_0^t e^s \varphi_2(s) \ ds - \varphi_1'(t) e^t \varphi_2(t) - 2024 a(t) \varphi_2(t)$$

$$= -a(t) \left[\varphi_2(t) \int_0^t e^s \varphi_1(s) \ ds - \varphi_1(t) \int_0^t e^s \varphi_2(s) \ ds + 2024 \varphi_2(t) \right] + e^t [\varphi_2'(t) \varphi_1(t) - \varphi_1'(t) \varphi_2(t)]$$

$$\stackrel{(**)}{=} -a(t) x(t) + e^t [\varphi_2'(t) \varphi_1(t) - \varphi_1'(t) \varphi_2(t)]$$

donde en (*) hemos usado que φ_1, φ_2 son soluciones de la ecuación diferencial, y en (**) hemos usado la definición de x(t). Por tanto, una ecuación diferencial de la que x(t) es solución es:

$$x'' = -a(t)x + e^{t}[\varphi_2'(t)\varphi_1(t) - \varphi_1'(t)\varphi_2(t)] \qquad \text{con dominio } \mathbb{R}^2$$

No obstante, veamos ahora que se puede simplificar aún más, ya que podemos conseguir que no dependa de φ_1 ni φ_2 , puesto que ese término es constante. Tenemos dos opciones:

Derivando: Derivemos dicho término, que sabemos que es de clase 1 en \mathbb{R} por ser producto y restas de funciones de clase C^1 .

$$\frac{d}{dt}\left(\varphi_2'\varphi_1 - \varphi_1'\varphi_2\right) = \varphi_2''\varphi_1 + \varphi_2'\varphi_1'' - \varphi_1''\varphi_2 - \varphi_1'\varphi_2' \stackrel{(*)}{=} = -a\varphi_2\varphi_1 + a\varphi_1\varphi_2 = 0$$

Por tanto, al ser dicha derivada nula en todo \mathbb{R} , tenemos que dicho término es constante. Evaluando en 0, tenemos:

$$\varphi_2'(0)\varphi_1(0) - \varphi_1'(0)\varphi_2(0) = 1 \cdot 1 - 0 \cdot 0 = 1$$

Usando la Fórmula de Jacobi-Liouville: Tenemos que:

$$W(\varphi_1, \varphi_2) = \begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1' & \varphi_2' \end{vmatrix} = \varphi_1 \varphi_2' - \varphi_1' \varphi_2$$

Por tanto, el término que estamos estudiando es dicho Wronskiano. Evaluando en 0, tenemos:

$$W(\varphi_1, \varphi_2)(0) = \begin{vmatrix} \varphi_1(0) & \varphi_2(0) \\ \varphi'_1(0) & \varphi'_2(0) \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

Por la Fórmula de Jacobi-Liouville, como φ_1, φ_2 son soluciones de la ecuación diferencial, tenemos que:

$$W(\varphi_1, \varphi_2)(t) = W(\varphi_1, \varphi_2)(0) \cdot \exp\left(\int_0^t 0 \ ds\right) = 1 \cdot e^0 = 1 \quad \forall t \in \mathbb{R}$$

donde hemos empleado que el coeficiente que acompaña a x' en la ecuación original es 0.

En cualquier caso, hemos probado que dicho término es constantemente igual a 1:

$$\varphi_2'(t)\varphi_1(t) - \varphi_1'(t)\varphi_2(t) = 1 \qquad \forall t \in \mathbb{R}$$

Por tanto, la ecuación diferencial de la que x(t) es solución es:

$$x'' = -a(t)x + e^t$$
 con dominio \mathbb{R}^2

No obstante, esta es no es la única solución de dicha ecuación. Aunque no sea necesario darlas, considerando la condición inicial:

$$x(0) = 0 \qquad x'(0) = 2024$$

tenemos que x(t) es la única solución de la ecuación diferencial descrita que cumple dichas condiciones iniciales.

Ejercicio 4. Encuentra todas las funciones continuas $f: \mathbb{R} \to \mathbb{R}$ que cumplen las desigualdades

$$0 \leqslant f(t) \leqslant \frac{1}{1+t^2}F(t), \quad \forall t \in \mathbb{R},$$

con $F(t) = \int_0^t f(s) \ ds$.

Distinguimos en función del valor de t:

■ Restringuiendo a \mathbb{R}^- , veamos que $f\Big|_{\mathbb{R}^-} = 0$. Como $f(t) \ge 0$ para todo $t \in \mathbb{R}$, tenemos que:

$$\int_{a}^{b} f(t) dt \geqslant 0 \qquad \forall a, b \in \mathbb{R}, a < b$$

Por tanto, para t < 0, tenemos que:

$$F(t) = \int_0^t f(s) \ ds = -\int_t^0 f(s) \ ds \le 0$$

Por tanto, tenemos que:

$$0 \leqslant f(t) \leqslant 0 \qquad \forall t < 0$$

Por tanto, $f\Big|_{\mathbb{R}^-} = 0$.

■ Restringuiendo a \mathbb{R}_0^+ , veamos también que $f\Big|_{\mathbb{R}^+} = 0$.

Como $t^2 \geqslant 0$ para todo $t \in \mathbb{R}$, tenemos que:

$$\frac{1}{1+t^2} \leqslant \frac{1}{1+0} = 1 \qquad \forall t \in \mathbb{R}$$

Por tanto, buscamos las funciones f continuas tales que:

$$0 \leqslant f(t) \leqslant 1 \cdot F(t) \qquad \forall t \in \mathbb{R}$$

Para t > 0, tenemos que:

$$0 \leqslant f(t) \leqslant 1 \cdot |F(t)| \quad \forall t \geqslant 0$$

Por tanto, y usando un Lema visto en la demostración del Teorema de Existencia y Unicidad del Capítulo 5, tenemos que:

$$f(t) = 0 \qquad \forall t \geqslant 0$$

Por tanto, $f\Big|_{\mathbb{R}^+_0} = 0$.

Por tanto, la única función continua que cumple las desigualdades dadas es la función nula.

Ejercicio 5. El espacio vectorial de soluciones de la ecuación x'' + 4x = 0 se denota por Z_x . De igual modo, Z_y será el espacio vectorial de soluciones de y'' + 2y' + 5y = 0. Demuestra que la transformación

$$\Psi: Z_x \to Z_y, \quad x \mapsto y, \quad y(t) = e^{-t}x(t)$$

define un isomorfismo. Encuentra bases de Z_x y Z_y y calcula la matriz que representa a Ψ en esas bases.

Buscamos en primer lugar base de Z_x . El polinomio característico de la primera ecuación es:

$$\lambda^2 + 4 = 0 \iff \lambda^2 = -4 \iff \lambda = \pm 2i$$

Trabajamos con el valor propio $\lambda=2i$. Sabemos que e^{2it} es solución (compleja) de la ecuación diferencial. Tenemos que:

$$e^{2it} = \cos(2t) + i\sin(2t)$$

Por tanto, dos soluciones reales de la primera ecuación diferencial son:

$$\begin{cases} x_1(t) = \cos(2t) \\ x_2(t) = \sin(2t) \end{cases}$$

Además, son linealmente independientes, ya que:

$$W(x_1, x_2)(t) = \begin{vmatrix} \cos(2t) & \sin(2t) \\ -2\sin(2t) & 2\cos(2t) \end{vmatrix} = 2 \begin{vmatrix} \cos(2t) & \sin(2t) \\ -\sin(2t) & \cos(2t) \end{vmatrix} = 2 \left(\cos^2(2t) + \sin^2(2t)\right) = 2 \neq 0$$

Por tanto, tenemos que:

$$\mathcal{B}_x = \{\cos(2t), \sin(2t)\}$$
 $Z_x = \mathcal{L}\{\mathcal{B}_x\}$

Buscamos ahora base de \mathbb{Z}_y . El polinomio característico de la segunda ecuación es:

$$\lambda^2 + 2\lambda + 5 = 0 \Longleftrightarrow \lambda = \frac{-2 \pm \sqrt{4 - 20}}{2} = -1 \pm 2i$$

Trabajamos con el valor propio $\lambda = -1 + 2i$. Sabemos que $e^{(-1+2i)t}$ es solución (compleja) de la ecuación diferencial. Tenemos que:

$$e^{(-1+2i)t} = e^{-t}(\cos(2t) + i\sin(2t))$$

Por tanto, dos soluciones reales de la segunda ecuación diferencial son:

$$\begin{cases} y_1(t) = e^{-t}\cos(2t) \\ y_2(t) = e^{-t}\sin(2t) \end{cases}$$

Además, son linealmente independientes. Por tanto, tenemos que:

$$\mathcal{B}_y = \left\{ e^{-t} \cos(2t), e^{-t} \sin(2t) \right\} \qquad Z_y = \mathcal{L} \left\{ \mathcal{B}_y \right\}$$

Veamos ahora que Ψ es una aplicación lineal. Dados $\lambda_1,\lambda_2\in\mathbb{R}$ y $x_1,x_2\in Z_x,$ tenemos que:

$$\Psi(\lambda_1 x_1 + \lambda_2 x_2) = e^{-t} (\lambda_1 x_1 + \lambda_2 x_2)
= \lambda_1 e^{-t} x_1 + \lambda_2 e^{-t} x_2
= \lambda_1 \Psi(x_1) + \lambda_2 \Psi(x_2)$$

Por tanto, Ψ es una aplicación lineal. Además, tenemos que:

$$\Psi(x_1(t)) = e^{-t}\cos(2t) = y_1(t)$$

$$\Psi(x_2(t)) = e^{-t}\sin(2t) = y_2(t)$$

Por tanto, la matriz que representa a Ψ en las bases dadas es:

$$\mathcal{M}(\Psi, \mathcal{B}_x, \mathcal{B}_y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = Id_2$$

Por tanto, como Ψ es lineal con $|\Psi|=1\neq 0$, tenemos que Ψ es un isomorfismo.