

wherein:

- each R₂ is independently selected from the group consisting of H and C₁-C₄ alkyl;

wherein each Z is independently selected from the group consisting of M, R₂, R_c, and R_H;

each R_H is independently selected from the group consisting of C_5 - C_{20} alkyl, C_5 - C_7 cycloalkyl, C_7 - C_{20} alkylaryl, C_7 - C_{20} arylalkyl, substituted alkyl, hydroxyalkyl, C_1 - C_{20} alkoxy-2-hydroxyalkyl, C_7 - C_{20} alkylaryloxy-2-hydroxyalkyl, $(R_4)_2$ N-alkyl, $(R_4)_2$ N-2-hydroxyalkyl, $(R_4)_3$ N-2-hydroxyalkyl,

each R₄ is independently selected from the group consisting of H, C₁-C₂₀ alkyl, C₅-C₇ cycloalkyl, C₇-C₂₀ alkylaryl, C₇-C₂₀ arylalkyl, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, piperidinoalkyl, morpholinoalkyl, cycloalkylaminoalkyl and hydroxyalkyl;

each R₅ is independently selected from the group consisting of H, C₁ -C₂₀ alkyl, C₅-C₇ [cycloalkyl, C₇-C₂₀ alkylaryl, C₇-C₂₀ arylalkyl, substituted alkyl, hydroxyalkyl, (R₄)₂N-alkyl, and [c](R₄)₃ N-alkyl;

wherein:

M is a suitable cation, preferably selected from the group consisting of Na, K, 1/2Ca, and 1/2Mg; each x is from 0 to about 5;

each y is from about 1 to about 5; and

provided that:

- the Degree of Substitution for group R_H is between about 0.001 and 0.1;
- the Degree of Substitution for group R_C wherein Z is H or M is between about 0.2 and 2.0;
- if any R_H bears a positive charge, it is balanced by a suitable anion; and
- two R₄'s on the same nitrogen can together form a ring structure selected from the group consisting of piperidine and morpholine.
- 13. A composition or component according to claim 12, wherein each $R_{\rm H}$ is independently selected from the group consisting of C_5 - C_{20} alkyl, C_5 - C_7 cycloalkyl, C_7 - C_{20} alkylaryl, C_7 - C_{20} arylalkyl, substituted alkyl, hydroxyalkyl, C_1 - C_{20} alkoxy-2-hydroxyalkyl, C_7 - C_{20} alkylaryloxy-2-hydroxyalkyl, $(R_4)_2$ N-alkyl, $(R_4)_2$ N-2-hydroxyalkyl, $(R_4)_3$ N-alkyl, $(R_4)_3$ N-2-hydroxyalkyl, and C_6 - C_{12} aryloxy-2-hydroxyalkyl and mixtures thereof.
- 14. A composition or component according to claim 12, wherein each $R_{\mathbf{H}}$ is independently