FEATURES

Avalanche Rugged Technology

■ Rugged Gate Oxide Technology

■ Lower Input Capacitance

■ Improved Gate Charge

■ Extended Safe Operating Area

■ 175°C Operating Temperature

■ Lower Leakage Current: 10 µA(Max.) @ V_{DS} = 100V

■ Lower $R_{DS(ON)}$: 0.155 Ω (Typ.)

 $BV_{DSS} = 100 V$ $R_{DS(on)} = 0.2 \Omega$ $I_D = 9.2 A$

Absolute Maximum Ratings

Symbol	Characteristic	- 1	Value	Units	
V _{DSS}	Drain-to-Source Voltage		100	V	
1	Continuous Drain Current (T _c =25℃) Continuous Drain Current (T _c =100℃)		9.2		
l _o			6.5	<u> </u>	
I _{DM}	Drain Current-Pulsed	0	37	Α	
V_{GS}	Gate-to-Source Voltage		±20	٧	
Eas	Single Pulsed Avalanche Energy	2	113	mJ	
I _{AR}	Avalanche Current	0	9.2	Α	
E _{AR}	Repetitive Avalanche Energy	①	4.5	mJ	
d∨/dt	Peak Diode Recovery dv/dt	3	6,5	V/ns	
5	Total Power Dissipation (T _c =25℃)		45	W	
P_{D}	Linear Derating Factor		0.3	w/c	
-yy-	Operating Junction and		FF A. 147F		
T_J , T_STG	Storage Temperature Range		- 55 to +175		
	Maximum Lead Temp. for Soldering		200	T C	
T _L	Purposes, 1/8" from case for 5-seco	nds	300		

Thermal Resistance

Symbol	Characteristic	Тур.	Max.	Units	
R _{eJC}	Junction-to-Case	- 11	3.31		
Recs	Case-to-Sink	0.5	Name .	°¢w	
R _{eJA}	Junction-to-Ambient	-	62.5		

Electrical Characteristics (T_C=25°C unless otherwise specified)

Symbol	Characteristic	Min.	Тур.	Max.	Units	Test Condition	
BV _{DSS}	Drain-Source Breakdown Voltage	100		_	٧	V _{GS} =0V,I _D =250 μ A	
ΔΒV/ΔΤ,	Breakdown Voltage Temp. Coeff.		0.12	-	W°C	l _o =250 μ A See Fig 7	
V _{GS(th)}	Gate Threshold Voltage	2.0	-	4.0	٧	V _{DS} =5V,I _D =250 μA	
	Gate-Source Leakage, Forward		~_	100	nA	V _{GS} =20V	
GSS	Gate-Source Leakage, Reverse		-	-100	11/5	V _{GS} =-20V	
,	Desir to Source Leakers Correct		-	10		V _{DS} =100V	
DSS	Drain-to-Source Leakage Current	rain-to-Source Leakage Current 100 µ,	μА	V _{DS} =80V,T _C =150℃			
R _{DS(on)}	Static Drain-Source On-State Resistance			0.2	Ω	V _{GS} =10V,I _D =4.6A	
g _{fs}	Forward Transconductance		6.35	1	σ	V _{DS} =40V,I _D =4.6A ④	
C _{iss}	Input Capacitance	-	370	480		V =0VV =26V f =4MU=	
Coss	Output Capacitance		95	110	pF	V _{GS} =0V,V _{DS} =25V,f =1 MHz See Fig 5	
C _{rss}	Reverse Transfer Capacitance		38	45			
t _{d(on)}	Turn-On Delay Time		14	40		V _{pp} =50V,I _p =9.2A,	
t,	Rise Time		14	40	ns	77	
t _{d(off)}	Turn-Off Delay Time		36	90		R ₆ =18Ω See Fig 13 ④⑤	
ţ	Fall Time		28	70			
Qg	Total Gate Charge	-	16	22	nC	V _{DS} =80V,V _{GS} =10V,	
Q_{gs}	Gate-Source Charge	-	2.7	-		I _D =9.2A	
Q_{gd}	Gate-Drain("Miller") Charge		7.8			See Fig 6 & Fig 12 @ 5	

Source-Drain Diode Ratings and Characteristics

Symbol	Characteristic		Min.	Тур.	Max.	Units	Test Condition
Is	Continuous Source Current				9.2	Λ.	Integral reverse pn-diode
I _{SM}	Pulsed-Source Current	1		-	37	Α	in the MOSFET
V _{SD}	Diode Forward Voltage	4	_		1.5	V	T _J =25℃,I _S =9.2A,V _{GS} =0V
t _{rr}	Reverse Recovery Time		_	98		ns	T _J =25℃,I _F =9.2A
Q _{rr}	Reverse Recovery Charge			0.34		μC	di _r /dt=100A/µs ④

Notes :

- ① Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature
- ② L=2mH, I_{AS} =9.2A, V_{DD} =25V, R_{G} =27 Ω , Starting T_{J} =25 $^{\circ}$ C
- 3 $I_{so} \le 9.2A$, di/dt $\le 300A/\mu s$, $V_{oo} \le BV_{oss}$, Starting T, =25°C
- ④ Pulse Test : Pulse Width = 250

 µs, Duty Cycle ≤ 2%
- 5 Essentially Independent of Operating Temperature

- ▶ 汇集 8,000 家半导体厂商,坐拥 70,000,000 个电子元器件 datasheet
- 涉及详细参数,器件、封装、应用图,参考设计,中文PDF。
- 🕨 工程师首选 datasheet 全球数据中心,你能想到我们就能搜到

集成电路查询网:www.datasheet5.com

- 国内唯一一家电路图分享、交易平台,让电路体现你电子行业的价值
- 聚焦万量级热门免费电路,哪怕你是一个初学者,手把手教你创造出实物。

电路城:www.cirmall.com

- 百万电子行业工程师(创客)知识交流平台,电路图免费分享乐园
- 百万精品电路图为你倾心准备
- > 工程师的驿站、技术达人停泊的港湾

电子电路图网:www.cndzz.com

- 依托全球电子业 16 年的 Findchips 充当幕后器件搜索引擎
- ▶ 国内首家实时 BOM 批量比价平台,让你站在最高的舞台纵观电子行业

批量器件比价:www.bom2buy.com

Fig 9. Max. Safe Operating Area

Operation in This Area

Is limited by R le (co)

100 µs

101 100 µs

102 100 µs

103 100 µs

104 105 PK

2. T_y = 175 °C

2. T_y = 175 °C

3. Single Palse

V_{IS} , Drain–Source Voltage [V]

Fig 12. Gate Charge Test Circuit & Waveform

Fig 13. Resistive Switching Test Circuit & Waveforms

Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

