Ridge Regression: Regularizing Linear Models

Nipun Batra

IIT Gandhinagar

July 30, 2025

Outline

Problem: What happens when we have too many features or complex polynomials?

High-Degree Polynomial

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \ldots + c_n x^n$$

Problem: What happens when we have too many features or complex polynomials?

High-Degree Polynomial

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \ldots + c_n x^n$$

Problem: What happens when we have too many features or complex polynomials?

High-Degree Polynomial

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \ldots + c_n x^n$$

Issues:

• Large coefficients $|c_i|$ can cause instability

Problem: What happens when we have too many features or complex polynomials?

High-Degree Polynomial

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \ldots + c_n x^n$$

Issues:

- Large coefficients $|c_i|$ can cause instability
- Overfitting to training data

Problem: What happens when we have too many features or complex polynomials?

High-Degree Polynomial

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \ldots + c_n x^n$$

Issues:

- Large coefficients |c_i| can cause instability
- Overfitting to training data
- Poor generalization to new data

Problem: What happens when we have too many features or complex polynomials?

High-Degree Polynomial

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \ldots + c_n x^n$$

Issues:

- Large coefficients |c_i| can cause instability
- Overfitting to training data
- Poor generalization to new data

Problem: What happens when we have too many features or complex polynomials?

High-Degree Polynomial

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \ldots + c_n x^n$$

Issues:

- Large coefficients |c_i| can cause instability
- Overfitting to training data
- · Poor generalization to new data

The Key Insight

Solution: Penalize large coefficients to encourage simpler models!

Pop Quiz: Overfitting Intuition

Quick Quiz 1

A linear model with coefficients [0.1, 0.2, -0.1] vs [10.2, -15.6, 23.4]. Which is likely to generalize better?

a) [10.2, -15.6, 23.4] (larger coefficients)

Answer: b) Smaller coefficients typically indicate a more stable, generalizable model!

Pop Quiz: Overfitting Intuition

Quick Quiz 1

A linear model with coefficients [0.1, 0.2, -0.1] vs [10.2, -15.6, 23.4]. Which is likely to generalize better?

- a) [10.2, -15.6, 23.4] (larger coefficients)
- b) [0.1, 0.2, -0.1] (smaller coefficients)

Answer: b) Smaller coefficients typically indicate a more stable, generalizable model!

Pop Quiz: Overfitting Intuition

Quick Quiz 1

A linear model with coefficients [0.1, 0.2, -0.1] vs [10.2, -15.6, 23.4]. Which is likely to generalize better?

- a) [10.2, -15.6, 23.4] (larger coefficients)
- b) [0.1, 0.2, -0.1] (smaller coefficients)
- c) Both are equivalent

Answer: b) Smaller coefficients typically indicate a more stable, generalizable model!

Constrained Form

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$ subject to $\|\boldsymbol{\theta}\|^2 \leq S$

Interpretation: Find best fit while keeping coefficients "small"

Constrained Form

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$ subject to $\|\boldsymbol{\theta}\|^2 \leq S$

Interpretation: Find best fit while keeping coefficients "small"

Constrained Form

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$ subject to $\|\boldsymbol{\theta}\|^2 \leq S$

Interpretation: Find best fit while keeping coefficients "small"

Constrained Form

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$ subject to $\|\boldsymbol{\theta}\|^2 \leq S$

Interpretation: Find best fit while keeping coefficients "small"

Penalized Form

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \lambda \|\boldsymbol{\theta}\|^2$

Interpretation: Balance fit quality vs coefficient size

Constrained Form

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$ subject to $\|\boldsymbol{\theta}\|^2 \leq S$

Interpretation: Find best fit while keeping coefficients "small"

Penalized Form

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \lambda \|\boldsymbol{\theta}\|^2$

Interpretation: Balance fit quality vs coefficient size

Constrained Form

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$ subject to $\|\boldsymbol{\theta}\|^2 \leq S$

Interpretation: Find best fit while keeping coefficients "small"

Penalized Form

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \lambda \|\boldsymbol{\theta}\|^2$

Interpretation: Balance fit quality vs coefficient size

Key Insight

These formulations are **equivalent!** Different λ values correspond to different constraint budgets S.

Ridge Regression Objective

$$\mathcal{L}(\boldsymbol{\theta}) = \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2}_{\text{Data Fit}} + \underbrace{\lambda\|\boldsymbol{\theta}\|^2}_{\text{Complexity Penalty}}$$

Ridge Regression Objective

$$\mathcal{L}(\boldsymbol{\theta}) = \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2}_{\text{Data Fit}} + \underbrace{\lambda\|\boldsymbol{\theta}\|^2}_{\text{Complexity Penalty}}$$

Ridge Regression Objective

$$\mathcal{L}(\boldsymbol{\theta}) = \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2}_{\text{Data Fit}} + \underbrace{\lambda\|\boldsymbol{\theta}\|^2}_{\text{Complexity Penalty}}$$

Components:

Data Fit: How well model fits training data

Ridge Regression Objective

$$\mathcal{L}(\boldsymbol{\theta}) = \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2}_{\text{Data Fit}} + \underbrace{\lambda\|\boldsymbol{\theta}\|^2}_{\text{Complexity Penalty}}$$

Components:

- Data Fit: How well model fits training data
- Penalty: Discourages large coefficients

Ridge Regression Objective

$$\mathcal{L}(\boldsymbol{\theta}) = \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2}_{\text{Data Fit}} + \underbrace{\lambda\|\boldsymbol{\theta}\|^2}_{\text{Complexity Penalty}}$$

Components:

- Data Fit: How well model fits training data
- Penalty: Discourages large coefficients
- λ (lambda): Controls the trade-off

Ridge Regression Objective

$$\mathcal{L}(\boldsymbol{\theta}) = \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2}_{\text{Data Fit}} + \underbrace{\lambda\|\boldsymbol{\theta}\|^2}_{\text{Complexity Penalty}}$$

Components:

- Data Fit: How well model fits training data
- Penalty: Discourages large coefficients
- λ (lambda): Controls the trade-off

Ridge Regression Objective

$$\mathcal{L}(\boldsymbol{\theta}) = \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2}_{\text{Data Fit}} + \underbrace{\lambda\|\boldsymbol{\theta}\|^2}_{\text{Complexity Penalty}}$$

Components:

- Data Fit: How well model fits training data
- Penalty: Discourages large coefficients
- λ (lambda): Controls the trade-off

λ behavior:

• $\lambda = 0$: No regularization (ordinary least squares)

Ridge Regression Objective

$$\mathcal{L}(\boldsymbol{\theta}) = \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2}_{\text{Data Fit}} + \underbrace{\lambda\|\boldsymbol{\theta}\|^2}_{\text{Complexity Penalty}}$$

Components:

- Data Fit: How well model fits training data
- Penalty: Discourages large coefficients
- λ (lambda): Controls the trade-off

λ behavior:

- $\lambda = 0$: No regularization (ordinary least squares)
- λ small: Slight regularization

Ridge Regression Objective

$$\mathcal{L}(\boldsymbol{\theta}) = \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2}_{\text{Data Fit}} + \underbrace{\lambda\|\boldsymbol{\theta}\|^2}_{\text{Complexity Penalty}}$$

Components:

- Data Fit: How well model fits training data
- Penalty: Discourages large coefficients
- λ (lambda): Controls the trade-off

λ behavior:

- $\lambda = 0$: No regularization (ordinary least squares)
- λ small: Slight regularization
- λ large: Heavy regularization (coefficients shrink toward 0)

Pop Quiz: Ridge Parameter

Quick Quiz 2

What happens to the coefficients as λ increases in Ridge regression?

a) Coefficients become larger to minimize error

Answer: b) Ridge penalty $\lambda \|\theta\|^2$ forces coefficients to shrink!

Pop Quiz: Ridge Parameter

Quick Quiz 2

What happens to the coefficients as λ increases in Ridge regression?

- a) Coefficients become larger to minimize error
- b) Coefficients shrink toward zero

Answer: b) Ridge penalty $\lambda \|\theta\|^2$ forces coefficients to shrink!

Pop Quiz: Ridge Parameter

Quick Quiz 2

What happens to the coefficients as λ increases in Ridge regression?

- a) Coefficients become larger to minimize error
- b) Coefficients shrink toward zero
- c) Coefficients remain unchanged

Answer: b) Ridge penalty $\lambda \|\theta\|^2$ forces coefficients to shrink!

Lagrangian Approach

Starting from the constrained formulation:

Minimize $\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$ subject to $\|\boldsymbol{\theta}\|^2 \leq S$

Lagrangian Approach

Starting from the constrained formulation:

Minimize
$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$$
 subject to $\|\boldsymbol{\theta}\|^2 \leq S$

Lagrangian:

$$L(\boldsymbol{\theta}, \mu) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \mu(\|\boldsymbol{\theta}\|^2 - S)$$

where $\mu \geq 0$ is the Lagrange multiplier.

Lagrangian Approach

Starting from the constrained formulation:

Minimize
$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$$
 subject to $\|\boldsymbol{\theta}\|^2 \leq S$

Lagrangian:

$$L(\boldsymbol{\theta}, \mu) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \mu(\|\boldsymbol{\theta}\|^2 - S)$$

where $\mu \geq 0$ is the Lagrange multiplier.

Key Insight

Setting $\lambda=\mu$ gives us the penalized form! Different constraint budgets S correspond to different penalty strengths λ .