FishErIes Size and functional TYpe model (FEISTY) in R

Ken H Andersen and Karline Soetaert Yixin Zhao

2024

Introduction

The R package **FEISTY** is to document the FEITY model and for further model development and research. This document describes how to run the FEISTY model in R.

DESCRIBE IT BETTER

existing parameter data sets

Several functions to create suitable parameter inputs are included:

- setupBasic creates a basic three-species setup as described in Petrik et al (2019)
- setupBasic2 creates a basic three-species setup as setupBasic(), but generalised to: more realistic sizes, Generalized size-based feeding, the possibility of more than 3 size groups in each group
- setup Vertical makes a basic four-species setup that distinguishes between visual and twilight predators and that includes vertical distribution of zooplankton
- setupPelagicSpecies makes a basic setup with just pelagic fish, and with feeding preferences according to the size ratios of predators and prey.

blabla

Example

The model is first run with the default 3-functional group prameters, created with setupBasic(). Then two similar parameter datasets are created, with rates doubled or halved.

```
p <- setupBasic()
knitr::kable(p$resources, digits=2)</pre>
```

	K	r	mc	mLower	mUpper	u0
smallZoo	100	1	0.00	NA	NA	NA
largeZoo	100	1	0.02	NA	NA	NA
benthos	5	1	0.25	NA	NA	NA
Spare_position	0	1	5.59	NA	NA	NA

knitr::kable(p\$fishes, digits=2)

	mc	mLower	mUpper	Z	psiMature	mortF	mort0	Cmax	metabolism	V
$\frac{1}{\text{smallPel}_1}$	0.02	0.0	0.5	500	0.0	0.00	0.1	51.72	7.81	149.69
$smallPel_2$	11.18	0.5	250.0	500	0.5	0.30	0.1	10.94	2.63	43.19
$largePel_1$	0.02	0.0	0.5	500	0.0	0.00	0.1	51.72	7.81	149.69
$largePel_2$	11.18	0.5	250.0	500	0.0	0.03	0.1	10.94	2.63	43.19
$largePel_3$	5590.17	250.0	125000.0	500	0.5	0.30	0.1	2.31	0.89	12.46
demersals_1	0.02	0.0	0.5	500	0.0	0.00	0.1	51.72	7.81	149.69
$demersals_2$	11.18	0.5	250.0	500	0.0	0.03	0.1	10.94	2.63	43.19
${\rm demersals}_3$	5590.17	250.0	125000.0	500	0.5	0.30	0.1	2.31	0.89	12.46

knitr::kable(p\$groups, digits=2)

	epsRepro	epsAssim
smallPel	0.01	0.7
largePel	0.01	0.7
demersals	0.01	0.7

Function paramAddPhysiology is used to change the allometric rates:

```
p2 <- paramAddPhysiology(p, ac = 40, am = 8, ae=140)
p3 <- paramAddPhysiology(p, ac = 10, am = 2, ae=35)
```

The model can now be run for all parameter sets; the reulst for the last 20 years are shown.

```
out1 <- simulateFEISTY(p=p, times=seq(0, 200, length.out=1000),bCust=T)
out2 <- simulateFEISTY(p=p2, times=seq(0, 200, length.out=1000),bCust=T)
out3 <- simulateFEISTY(p=p3, times=seq(0, 200, length.out=1000),bCust=T)
# plot(out1, out2, out3, which=5:12, lty=1, lwd=2, subset=time>180)
# plot(out1, out2, out3, which=c("smallZoo", "largeZoo", "smallBenthos",
# "totBiomass.smallPel", "totBiomass.largePel", "totBiomass.Demersals"),
# lty=1, lwd=2, subset=time>180)
```

Appendix 1. The size-based model

Fish dynamics

For each fish stage, the dynamics of its biomass reads (see de Roos et al., 2008):

$$\frac{dC_i}{dt} = G_i - F_i + (e_{a_i} - m_i) \cdot C_i - r_{p_i} \cdot C_i$$

where C_i is expressed e.g. in gWW/m2.

The losses due to growth are:

$$F_{i} = \frac{g_{i} - m_{i}}{1 - \frac{1}{z_{i}}^{1 - m_{i}/g_{i}}} \cdot C_{i}$$

and the growth in each stage is:

$$G_1 = \sum_{i=1}^{N} \{ \psi_{repro} \cdot r_{p_i} \cdot C_i \}$$

$$G_i = F_{i-1} \quad for \ i > 1$$

Here $g = (1 - \psi_{mat}) \cdot e^+$ is the energy available for growth, $e_a^+ = max(0, e_a)$, and $z_i = \frac{s_{i+1}}{s_i}$ is the size ratio of the stages.

Available energy for growth or reproduction comes from assimilated food (left term) minus basal respiration (right term):

$$e_a = \psi_{Ass} \cdot \frac{E}{c_{max} + E} \cdot c_{max} - \mu$$

 c_{max} is the maximum consumption rate, and the encounter rates, E, are calculated as:

$$E = \nu \cdot (\theta \times C)$$

with ν the clearance rate, and $\theta_{i,j}$ the feeding preference matrix for consumer i feeding on prey j.

Reproduction (r_p) only occurs when there is an energy surplus:

$$r_p = \psi_{mat} \cdot e^+$$

Total mortality is the sum of predation mortality, basal mortality and fishing-induced mortality:

$$m = \theta^t \times \left\{ \frac{c_{max} * \nu}{c_{max} + E} \cdot C \right\} + m_0 + m_F$$

The maximal consumption rate (c_{max_i}) , clearance rate (or encounter rate, ν_i) and metabolism rate (μ_i) is, for each fish stage estimated as a function of its mean size (m_i) :

$$c_{max_i} = a_c \cdot m_i^{b_c}; \quad \nu_i = a_e \cdot m_i^{b_e}; \quad \mu_i = a_\mu \cdot m_i^{b_\mu}$$

Resource dynamics

Logistic growth or chemostat-like dilution describes how the resource density evolves over time:

$$\frac{dR}{dt} = r \cdot R \cdot (1 - \frac{R}{K}) - m_R \cdot R,$$

$$\frac{dR}{dt} = r \cdot (K - R) - m_R \cdot R,$$

where the second term in each equation is the resource mortality due to feeding by fishes.

References

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Van Denderen et al. 2020. Emergent global biogeography of marine fish food webs. Global Ecology and Biogeography, DOI: 10.1111/geb.13348

Petrik, CM, Stock, CA, Andersen, KH, van Denderen, PD, Watson, JR 2019. Bottom-up drivers of global patterns of demersal, forage, and pelagic fishes. Progress in Oceanography, 176, 102124. DOI: 10.1016/j.pocean.2019.102124

De Roos, A.M., Schellekens, T., Van Kooten, T., Van De Wolfshaar, K., Claessen, D., Persson, L., 2008. Simplifying a physiologically structured population model to a stage-structured biomass model. Theor. Popul Biol. 73, 47–62.