EE 4301 - Communication Systems 1

Lecture 14

Dr. C.K.W.Seneviratne

Department of Electrical and Information Engineering,

University of Ruhuna

July 31, 2023

• Number of sidebands produced in FM spectrum is increased with β .

$$\beta = \frac{\Delta f}{f_m} = \frac{k_f A_m}{f_m}$$

- When the frequency of the modulating wave is fixed, but it's amplitude is varied
 - variation occurred in the frequency deviation Δf

• Number of sidebands produced in FM spectrum is increased with β .

$$\beta = \frac{\Delta f}{f_m} = \frac{k_f A_m}{f_m}$$

• Number of sidebands produced in FM spectrum is increased with β .

$$\beta = \frac{\Delta f}{f_m} = \frac{k_f A_m}{f_m}$$

- When the amplitude of the modulating wave is fixed, but it's frequency is varied
 - the frequency deviation Δf remains constant

Number of sidebands produced in FM spectrum is increased with β.

$$\beta = \frac{\Delta f}{f_m} = \frac{k_f A_m}{f_m}$$

- CARSON's RULE: the FM wave is effectively limited to a finite number of significant side frequencies with specified amount of distortion.
 - For large values of β , bandwidth approaches to slightly greater than Δf
 - For small values of β , bandwidth approaches to $2f_m$

$$B_T = 2(\Delta f + f_m) = 2\Delta f \left(1 + \frac{1}{\beta}\right)$$
 where $\beta = \frac{\Delta f}{f_m}$

- Alternative assessment method: based on retaining the maximum number of significant side frequencies whose amplitude all are greater than some selected value.
- This value is 1 percent of unmodulated carrier amplitude.

$$B_T = 2n_{max}f_m$$

- B_T transmission bandwidth
- f_m modulating frequency
- n_{max} is the largest value of the integer n that satisfies the $|J_n(\beta)| > 0.01$

Number of Significant Side-Frequencies of a Wide-Band FM Signal for Varying Modulation Index

Modulation Index $oldsymbol{eta}$	Number of Significant Side-Frequencies 2n _{max}
0.1	2
0.3	4
0.5	4
1.0	6
2.0	8
5.0	16
10.0	28
20.0	50
30.0	70

Universal curve for evaluating 1 percent bandwidth of FM wave

 Bandwidth requirement for arbitrary modulating waveform (maximum frequency W) is estimated by

$$B_T = 2(D+1)W$$

Deviation ratio

$$D = \frac{\Delta f}{W}$$

- $-\Delta f$ is the maximum frequency deviation
- W is the highest modulation frequency