CSC320 - Tutorial 6

1. Complete the state diagram by adding transitions so that the constructed PDA recognizes the language L $(read, pop \rightarrow pvs N)$

L =
$$\{a^m b^n \mid m, n \ge 0 \text{ and (either } m = n \text{ or } m = n + 2 \text{)}$$

Chomsky Normal Form

A context-free grammar $G = (V, \Sigma, RS)$ is in chomsky normal form (CNF) if every rule is in the form:

 $A \rightarrow BC$ where A, B, $C \in V$ (B and C cannot be he start variable)

or

 $A \rightarrow a$ where $A \in V$ and $a \in \Sigma$

and

 $S \rightarrow \varepsilon$ is only permitted where S is the start variable

CNF Steps

- 1. Add a new start variable
- 2. Eliminate all ε -rules $(A \to \varepsilon)$
- 3. Eliminate all unit rules $(A \rightarrow B)$
- 4. Convert remaining rules to be in the form $A \rightarrow BC$ or $A \rightarrow a$

Push-down Automaton

A push-down automaton is defined as a 6-tuple (Q, Σ , Γ , δ , q_{0} , F)

- Q: finite set of states
- Σ: finite set of input alphabet
- Γ : finite stack alphabet ($\Sigma \subseteq \Gamma$)

$$\delta \colon Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Sigma_{\varepsilon})$$

 $q_0 \in Q$: start state

 $F \subseteq Q$: set of accept states

Convert the following CFG into CNF

$$S \rightarrow AAA \mid \varepsilon$$

$$A \rightarrow aa \mid Aa \mid \varepsilon$$

1. add new start state

$$S \rightarrow AAA \mid \varepsilon$$

$$A \rightarrow aa \mid Aa \mid \varepsilon$$

S. -> S

2. remove rule A → €

$$S_o \rightarrow S$$

$$A \rightarrow aa | Aa | a$$

this is ok because

3. remove rule s → €

$$S_{\bullet} \rightarrow S$$

$$S \rightarrow AAA |AA|A$$

$$S \rightarrow AAA |AA|A$$

$$A \rightarrow aa |Aa|a$$

So is the start variable
$$S \rightarrow S \mid \varepsilon \downarrow$$

$$A \rightarrow aa \mid Aa \mid a$$

4. remove unit rules

$$A \rightarrow \alpha \alpha | A\alpha | \alpha$$

5. fix-up remaining rules

$$A \rightarrow YY LAY A$$

$$X \rightarrow AA$$
 new rules $Y \rightarrow a$

3. Construct a PDA that recognizes the same language as the following context-free grammars

b.
$$S \to 0A0 | 1A1 | 1 | 0 | \epsilon$$

 $A \to 1A | 0A | \epsilon$

also from tutorial 5

a. $L_1 = \{w \mid w \text{ starts and ends with the same symbol } \}$

