This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

The Human Leukocyte Platelet-activating Factor Receptor

cDNA CLONING, CELL SURFACE EXPRESSION, AND CONSTRUCTION OF A NOVEL EPITOPE-BEARING ANALOG*

(Received for publication, June 12, 1991, and in revised form, October 14, 1991)

Dieter Kunzt, Norma P. Gerards, and Craig Gerards

From the Department of Pediatrics and the Ina Sue Perlmutter Laboratory, Children's Hospital, the Department of Medicine, Beth Israel Hospital, and the Thorndike Laboratory, Harvard Medical School, Boston, Massachusetts 02115

A human myeloid transcript of approximately 4 kilobases was cloned as a cDNA from an expression library based on homology with the guinea pig cDNA recently described by Honda et al. (Honda, Z-I., Nakamura, M., Miki, I., Minami, M., Watanabe, T., Seyama, Y., Okado, H., Tok, H., Ito, K., Miyamato, T., and Shimizu, T. (1991) Nature 349, 342-346) as a receptor for platelet-activating factor (PAF). The cloned DNA confers high affinity binding sites for plateletactivating factor when transfected into COS-7 cells and has binding and desensitization properties similar to the human leukocyte receptor. Southern analysis using this cDNA indicates that the PAF receptor gene is present as a single copy in the human genome. The deduced protein sequence predicts seven hydrophobic regions for the PAF receptor, characteristic of the rhodopsin gene family, and is 83% identical to the deduced protein sequence of the corresponding guinea pig molecule. A modified human PAF receptor cDNA was constructed by inserting an additional 30 nucleotides after the 5'-ATG, encoding the amino acid sequence MDYKDDDDKEF, which is specifically recognized by a monoclonal antibody. The modified cDNA encodes a functional PAF receptor and is detected by antibody on the membrane of transfected COS-7 cells. The use of this construct supports the structural model for the rhodopsin-like superfamily of receptors which places the NH2-terminal sequence on the extracellular side of the membrane, and should additionally be useful for affinity purification of the receptor protein.

The phospholipid, platelet-activating factor (PAF), displays a wide variety of biological functions in vivo, including

The nucleotide sequence(s) reported in this paper has been submitted to the GenBankTM/EMBL Data Bank with accession number(s)

Current address: Dept. of Pharmacology, Biocenter of the University of Basel, Klingelbergstresse 70, CH-4056 Basel, Switzerland.

§ To whom correspondence should be addressed: Pulmonary Div., Dept. of the Pediatrics, Children's Hospital, 320 Longwood Ave., Boston, MA 02115. Tel.: 617-735-6174; Fax: 617-730-0422.

I Recipient of a Faculty Scholar's Award from R. J. R. Nabiaco.

The abbreviations used are: PAF, platelet-activating factor; kb, kilobase; PCR, polymerase chain reaction.

granulocyte activation and chemotaxis, platelet activation, enhancement of vascular permeability, smooth muscle contraction, bronchospasm, and hypotension (1-4). These anaphylactoid actions occur in response to nanomolar quantities of PAF, and are mediated by specific receptors which are pharmacologically coupled to GTP-binding proteins (5-7). Pharmacologic studies with antagonist compounds and binding parameters suggest that there may be multiple receptors for PAF (8, 9).

Platelet-activating factor is known to be made up of a complex group of structurally related phospholipids characterized by an ether linkage at the sn-1 position, an acetyl moiety at sn-2 and a choline head group at sn-3 (10-12). Variations in the alkyl chain length have been observed or synthesized at both the 1 and 2 positions, and there are stereospecific requirements for biological function as well. No pharmacologic subclassification of PAF receptors has arisen from structure-activity studies with PAF analogs.

Recently Honda et al. (13), reported the molecular cloning of a guinea pig lung receptor for PAF identified by expression in Xenopus occytes. Because of questions arising in the human system relating to the number and identity of PAF receptor(s), we screened a U937 myeloid cell expression library using a probe prepared from guinea pig lung cDNA. In this article, we report the cloning and expression of a high affinity human receptor for PAF, and present immunohistochemical data on the topology of the receptor in transfected cell membranes.

EXPERIMENTAL PROCEDURES

Materials—Reagents and enzymes used in the construction of cDNA were products of Boehringer Mannheim. pCDM8 vector and Recherichia coli MC1061/p3 were the gift of Dr. Brian Seed, Harvard Medical School. PCR reagents and the thermal cycler were products of Perkin-Elmer Cetus. WEB2066 was provided by Boehringer Ingleheim. COS-7 cells were obtained from the American Type Culture Association. [*H]Hexadecyl-PAF (60 Ci/mmol) was obtained from Du Pont-New England Nuclear. Northern and Southern hybridizations were performed with GeneScreen Plus membranes using protocols recommended by Du Pont-New England Nuclear. Anti-Flag M5 antibody was a generous gift from Immunex. Peroxidase-labeled anti-mouse IgG was a product of Vector Laboratories.

Molecular Cloning of a Myeloid PAF Receptor—Oligonucleotides corresponding to the 5'- and 3'-coding sequences for the guines pig PAF receptor were prepared containing BamHI sites (5'-CCGGATC CGAGCCATGGAGTTAAACAGA-3', sense; 5'-CCGGATCCAGCA AGCAGCAACTAATT-3', antisense). Guines pig lung total RNA (2 µg) (14) was reverse transcribed with 20 units of avian myeloblastosis virus reverse transcriptase and 1 µg of oligo(dT) primer (15). This mixture was next added to a PCR reaction mixture containing 1 µM each of the sense and antisense primers described above, according to the recommendations provided with AmpliTaq DNA polymerase. Five cycles of PCR were performed with oligonucleotide hybridization at 45°C, and 30 subsequent cycles performed at 55°C. The band at approximately 1 kb was isolated following agarose gel electrophoresis

This work was supported by National Institutes of Health Grant HL 36162. While this manuscript was in review, Nakamura et al. (34) and Ye et al. (35) also reported cDNA sequences for the human PAF receptor. The sequences reported are identical to the one reported herein, with the exception of a T → C substitution at nucleotide 471 which makes no change in the amino acid. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

of a portion of the reaction mixture (GeneClean, Bio101, La Jolla, CA), and was labeled using random primers and [*P]dCTP. This probe was used to screen a U937 cDNA library constructed in the expression vector pCDM8 as previously described (16). The colonies were hybridized under conditions of low stringency using 25% formamide, 5 × SSC, 1 × Denhardt's solution, and 0.1% sodium pyrophosphate at 37 °C for 18 h. Filters were washed in 2 × SSC at room temperature for 30 min with three exchanges and autoradiograms exposed for 24 h at -70 °C using an image intensifying screen. Positively hybridizing colonies in the primary library were purified and characterized. A clone, CS1, was identified by sequence analysis to contain a full length coding sequence with significant similarities to the guinea pig lung PAF receptor cDNA. This clone was extensively sequenced on both strands using the dideoxy technique with double stranded template (17). Several partial length clones were also characterized from an HL60 cell library (generous gift of Dr. Stuart Orkin, Harvard Medical School), and these sequences all yielded an unamhiguous structure.

Genomic DNA and RNA Analyses-Genomic DNA was prepared from peripheral blood leukocytes (18) and 7.5-µg aliquots were digested with restriction enzymes in 20-µl aliquots overnight at 37 °C. Samples were electrophoresed at 5 V/cm through 0.9% agarose gels in 1 × TAE (Tris acetate/EDTA) buffer and blotted to GeneScreen Plus membranes by capillary action according to the manufacturer's instructions. Hybridization was performed in 50% formamide at 42 °C overnight using 106 cpm/ml of [32P]dCTP-labeled insert of clone CS1. Final washing conditions were 0.2 × SSC and room temperature for 30 min. Autoradiographs were prepared using an image intensifying screen for 24 h at -70 °C. Polyadenylated RNA was prepared with oligo(dT)-cellulose (Collaborative Research, Bedford, MA) (19) using RNA from undifferentiated U937 cells, from U937 cells differentiated for 72 h with 1 mm dibutyryl-cAMP, or from bronchiectatic human lung parenchyma resected from a patient with cystic fibrosis. Samples of 2 µg were denatured using formaldehyde and electrophoresed through 0.9% agarose. Transfer to GeneScreen Plus membranes, hybridization, and washing were accomplished as described above. Autoradiographs were prepared using an image intensifying screen at -70 °C for 7 days.

Construction of Flag-PAF Receptor cDNA—The Flag/pCDM8 construct was created to allow COS cell expression of Flag fusion proteins (20). A synthetic duplex oligonucleotide, 5'-AGCTTCCA GCA GCC ATG GAC TAC AAG GAC GAC GAT GAC AAA GAATTC-3', bearing a HindIII site and an EcoRI site, was ligaaed to a modified pCDM8 vector containing a pBluescript polylinker. The oligonucleotide bears the consensus sequence corresponding to the human NK-2 receptor (21) 5' to the ATG at position 15, which subsequently encodes the Flag sequence, MDYKDDDDKEF. An insert encoding the human PAF receptor was prepared by PCR using a primer which mutated the normal initiating methionine to a leucine (ATG — CTG), placing the PAF receptor sequence downstream from the initiating methionine ATG for the Flag sequence.

COS Cell Expression of the Human Myeloid PAF Receptor—COS-7 cells were plated at a density of 10° cells/10-cm dish following trypsinization, and were grown for 18-24 h in Dulbecco's modified Regle's medium supplemented with nonessential amino acids, sodium pyruvate, 6 mm glutamine, and 10% fetal calf serum. Cells were transfected with 2 µg of plasmid in 3 ml of Dulbecco's modified Bagle's medium containing 10% NuSerum (Collaborative Research), 1 mM chloroquine (freshly prepared, Sigma), and 400 µg/ml of DEAEdextran (Sigma). Transfections were incubated at 37 °C in an atmosphere of 5% CO2 in air for 2.5-3 h. The cells were then shocked with 10% dimethyl sulfoxide in phosphate-buffered saline for 5-10 min at room temperature and returned to media containing 10% fetal calf serum. 72-90 h following transfection the cells were washed with binding buffer consisting of 0.15 M choline chloride, 10 mM Tris-HCl, pH 7.5, 10 mm MgCl₂, and 0.25% bovine serum albumin, and incubated in the same buffer with 2 nm H-labeled PAF and appropriate concentrations of unlabeled PAF or WEB2086 for 30 min at 4 or 22 °C. Uptake of radiolabeled ligand as a function of time was determined at 4 °C. Desensitization of binding was performed by preincubating transfected cells with increasing concentrations of unlabeled PAF for 20 min at 4 °C, washing, and subsequently incubating with 2 nm ³H-labeled PAF for 30 min at 4 °C. Cells were washed with binding buffer, solubilized with 0.5% Triton X-100, scraped into scintillation vials, and cell-associated ligand determined by scintillation counting. Nonspecific binding was determined in the presence of 10 μ M unlabeled PAF. The K_d was determined from Scatchard analysis of the data obtained from duplicate points and

three separate transfection experiments.

Immunohistochemical Staining of Flag-PAF Receptor in COS-7 Cells—COS-7 cells transfected with the Flag-PAF receptor/pCDM8 plasmid described above were incubated for 20 min at 22 °C with 0 or 3 µM PAF in binding buffer. They were subsequently incubated with 10 µg/ml of anti-Flag M5 monoclonal antibody in Tris-buffered saline containing 1 mm CaCl₂ (TBS/Ca), 3% bovine serum albumin, 0.5% normal horse serum, and 0.1% sodium azide for 1 h at 4 °C. Cells were washed 3× with TBS/Ca, fixed with 2% paraformaldehyde in phosphate-buffered saline for 15 min at 4 °C, and incubated with biotinylated horse anti-mouse IgG followed by peroxidase-labeled avidin-biotin complex as recommended by the manufacturers. Cells were stained with 0.05% diaminobenzidine and 0.01% H₂O₂ in TBS/Ca, counterstained with methylene blue, coverslipped with Permount, and photographed.

RESULTS

The guinea pig lung PAF receptor cDNA (13) was prepared by PCR and used to identify an analogous human clone by hybridization with a U937 cell expression library. The longest clone obtained, pCS1, contains a cDNA of approximately 2.8 kb which hybridizes to a single transcript in U937 cell RNA of approximately 4 kb (Fig. 1, lane A). Differentiation of the cells with 1 mM dibutyryl-cAMP for 72 h leads to an apparent decrease in abundance of this message (lane B). The same ~4-kb transcript is observed in human lung, as shown in lane C.

Analysis of genomic DNA with pCS1 under conditions of high stringency reveals a single restriction fragment hybridizing with the probe. As depicted in Fig. 2, digests using BamHI, EcoRV, HindIII, or PstI yield prominent hybridization signals. Analysis of murine genomic DNA digested with the same restriction enzymes, and hybridized and washed under conditions of high stringency reveals a similar pattern, although the fragments are not always the same size (data not shown). These data suggest that pCS1 encodes a single copy gene common to mouse and man. Prolonged exposure of Southern blots reveals a faint background of cross-hybridizing bands, which may reflect related genes (data not shown).

The cDNA and deduced protein sequences of clone CS1 are presented in Fig. 3. The longest open reading frame encodes a protein of 342 amino acids, and search of the EMBL and GenBank data base releases through 1990 revealed no closely related structures. Examination of the deduced protein sequence reveals seven hydrophobic regions interspersed with polar peptide segments characteristic of rhodopsin type G protein-dependent receptors. In contrast to all other identified members of the rhodopsin family of receptors reported to date, including the PAF receptor from guinea pig, the aminoterminal domain of the human PAF receptor does not contain an N-linked glycosylation site. An Asn-X-Thr/Ser sequence is observed at positions 169–171, and a second potential N-linked glycosylation site is found at positions 333–335 at the COOH terminus.

Clone pCS1 in the expression vector pCDM8 was trans-

Fig. 1. Northern analyses of myeloid cell and lung RNA. Two μg of polyadenylated RNA was analyzed under denaturing conditions as described under "Experimental Procedures." Lane A, undifferentiated U937 cells; lane B, U937 cells differentiated for 72 h with 1 mM dibutyryl-cAMP; lane C, human lung parenchyma. A single transcript of ~4 kb was observed to hybridize with cDNA clone pCS1 under conditions of high stringency.

Fig. 2. Southern analysis of human genomic DNA. Samples of human genomic DNA (7.5 µg) were electrophoresed following restriction enzyme digestion with BamHI (lane A), EcoRV (lane B), HindIII (lane C), or Pst (lane D). Hybridization with radiolabeled cDNA (clone pCS1) at 42 °C with 50% formamide was followed by washing with high stringency buffer (0.2 × SSC, 24 °C, 30 min). Autoradiographs were exposed 18-24 h at -70 °C. The numerals in the left column mark the positions of standards (in kb): 12 (12.216), 10 (10.180), 9 (9.162), 7 (7.126), 6 (6.108), 5 (5.090).

fected into COS-7 cells, and the cultures examined for evidence of specific binding of ³H-labeled PAF. This cDNA confers specific binding to COS-7 cells which is not evident in nontransfected cells or in cells transfected with a different cDNA. The rate of uptake of 2 nm 3H-labeled PAF as a function of time at 4 °C is shown in Fig. 4. Under the conditions used, binding approaches equilibrium within 30-40 min. When excess unlabeled PAF is added after 20 min of incubation, approximately 50% of the radiolabeled ligand is displaced following an additional 25 min. As shown in Fig. 5A, binding is saturable, and Scatchard analysis of the data indicates a single class of binding sites with an apparent K_d of 5.3 nm (Table I). Specific binding of ³H-labeled PAF to transfected COS-7 cells is blocked by the PAF receptor antagonist, WEB2086, with an ED₈₀ of $\sim 5 \times 10^{-6}$ M (Fig. 5B), further supporting the conclusion that clone CS1 encodes a human PAF receptor. When saturation of binding experiments are performed at 4°C instead of 22°C, the calculated K, is essentially identical (5.6 versus 5.3 nm) but the apparent number of sites per cell is 8- to 10-fold lower (Table I).

Previous studies of the biological activities of PAF have shown this receptor to be very strongly desensitized to subsequent re-stimulation by ligand (22). In order to determine whether this phenomonon is an intrinsic property of the receptor, PAF receptor-transfected COS-7 cells were preincubated for 20 min at 4 °C with increasing concentrations of PAF, washed, and subsequently incubated with 2 nm ³H-labeled PAF. As shown by the data in Fig. 6, cells preincubated with as little as 1 nm PAF bind only ~30% as much ligand as untreated cells. At this concentration, however, the data presented in Fig. 5A indicate that only ~10% of the available receptor sites are bound.

We constructed a Flag-PAF receptor cDNA plasmid, in which the initiating methionine of the natural PAF receptor is mutated to a leucine by PCR and ligated to pCDM8 containing a 5' adapter encoding the Flag sequence, MDYK-DDDDKEF. The Flag sequence, including the NH₂-terminal methionine residue, is specifically recognized by a monoclonal

10 20 30 40 50 COS ATT GIT TAK AGC ATC ATC TIT GTO CTC GGG GTC ATT GGT AAT GGC TAK GTC TAT GTT TAK GGC TAK GTT TAK GGC TAK GTC TAK GT 170 180 190 200 210
THE ANG GTO AAC CITE ACC ATG GOG GAC ATG CITE THE ATC ACC CITE CAC CITE
PAR MET VAI ARE LET TO HET ALS ARE HET LEU PIN LEU ILS THE LEU PIN 220 230 240 250 260 270
TOC NITE GET AND THE CAN AND CAN GOT AND THE LITE COM THE COMMENT OF THE CAN AND THE CAN A 330 340 350 360 370
GGC GTC ATC ACT SAT AAC GGC TTC CAG GGA GTA ACT GGG GCC ATT AAG ACT GGG
GGC GTA ATC ACT SAT AAC ACC STC CAG GGA GTA ACT GGG GCC ATT AACT AGG ACT ACT AND ACT GGG GGA GTA ACT GGG GCC ATT ACT GCG GCC ATT A 440 450 460 470 480 ATT GTG GGA GCT GCA TCC TAC TTC CTC GTC TCC GTC TAC ACC ACC GTG CCC 490 500 510 520 530 540
GAC AGT GCT GGC TCA GGC AAC GTC ACT CGC TGC TTT GAG CAT TAC GAG AAG GGC
AAP Set Ale Gly Set Gly Aen Val Thr ATQ Cys Phe Glu His Tyr Glu Lys Gly 400 610 620 610 640 THE CITE ATE CITE THE TAC AND CITE OF A ATE ATE COT ACC THE CITE ATE CAD SSO 650 670 680 690 700 | CO CTO CAG CAG CAG CAG CAG CAG CAG CTO TOG ATC GTA CCC CTO CAG CAG CAG CAG CAG CAG CAG CAG CTO TOG ATC GTO ATT AAT GAT GCA CAT CMG GTC ACC CTC TGC CTC CTT AGC ACC AAC TGT GTC TTA Lie Aen And Ala Hin Gin Wal The Less Con Lou Less And The Aen Con Wal Lou THE TO THE CTT C

FIG. 3. cDNA and deduced protein sequence for the human PAF receptor. Clone pCS1 was sequenced extensively on both strands, and clones from the U937 and HL60 cDNA libraries were identical. The complete coding sequence is depicted, and the deduced protein structure contains 342 amino acids. Primers encompassing the first and last 18 nucleotides depicted are useful in PCR, yielding full length human PAF receptor cDNA.

FIG. 4. Kinetics of binding of ³H-labeled PAF to transfected COS-7 cells. COS-7 cells 72 h after transfection with clone pCS1 were incubated with 2 nm ³H-labeled PAF at 4 °C as detailed under "Experimental Procedures." Each point represents the mean of duplicate determinations. Nonspecific binding was assessed by binding in the presence of 10 µM PAF.

antibody, M5, in the presence of millimolar concentrations of calcium (20). Transfection of the Flag-PAF receptor/pCDM8 construct into COS-7 cells also confers specific PAF receptor activity (Fig. 5A). Scatchard analysis suggests a slightly lower binding affinity for the ligand, but a similar number of sites per cell (Table I). Thus expression of the Flag-PAF receptor molecule is comparable to the unmodified receptor when transfected into COS cells, and is presumably oriented in a similar manner on the cell membrane. In order to confirm the model for this receptor protein, as illustrated in Fig. 7 which is based on the structure of rhodopsin, transfected cells were stained with the M5 monoclonal antibody followed by secondary antibody and horseradish peroxidase-labeled avidin-biotin complex. As indicated in Fig. 8, the epitope appears to be localized on the extracellular side of the membrane. Nontransfected cells show no staining with this antibody.

DISCUSSION

The U937 cell line is a human lymphoma clone with myeloid characteristics (23), and contains receptors for many proinflammatory mediators including C5a anaphylatoxin, the bacterial chemotaxin, formyl-Met-Leu-Phe, leukotrienes B, and D4, and interleukin-8, as well as PAF (16). Expression of many of these receptors may be modulated positively or negatively by driving differentiation of the cells towards macrophage-like cells with phorbol esters, or towards cells with the phenotype of monocytes and neutrophils with dibutyrylcAMP (24). The human PAF receptor cDNA was cloned from an undifferentiated U937 cell library by hybridization with the cDNA corresponding to the guinea pig PAF receptor (13). As indicated by the data shown in Fig. 1, differentiation of the cells towards monocytes or neutrophils appears to diminish the abundance of this mRNA. In contrast, expression of the C5a receptor is increased by treatment with dibutyrylcAMP (16).

Northern blots generated using RNAs from a number of guinea pig tissues, including lung, indicate that the guinea pig PAF receptor cDNA hybridizes with mRNAs of 2.2, 3.0, and 4.0 kb (13). Northern blots of human lung RNA, in contrast, show only a single hybridizing transcript at 4 kb, the same size as obtained with U937 cells (Fig. 1). Size fractionation of the guinea pig RNAs by sucrose density gradient centrifugation followed by expression in Xenopus oocytes indicated that the 3.0-kb transcript encodes a functional PAF receptor (13). The human PAF receptor mRNA, however, appears closest in size to the largest of the guinea pig transcripts. It is possible that the lack of expression of the 2.2- and 4.0-kb transcripts in the oocyte relates to mRNA stability or structure, or that

Fig. 5. A, binding of ²H-labeled PAF to transfected COS-7 cells. pCS1-transfected COS-7 cells (closed circles) or Flag-PAF receptor/pCDM8-transfected cells (open circles) were incubated with 2 nm ³H-labeled PAF and increasing concentrations of unlabeled PAF as described under ⁴Experimental Procedures. The apparent K_d values by Scatchard analyses are presented in Table I. B, binding was competed effectively by the PAF receptor antagonist WEB2086. Each point represents the mean of duplicate determinations. Nonspecific binding was determined in the presence of 10 μM PAF.

TABLE I

Binding parameters of the human PAF and Flag-PAF receptors transfected in COS-7 cells

Values for K_d and B_{max} were determined from Scatchard analyses of displacement of binding data for each of the constructs transfected into COS-7 cells as described under "Experimental Procedures."

	Temperature	K,	B
	•c	nM	fmol/dish
PAF	4	5.6	387
	22	5.3	2350
Flag-PAF	22	13.5	2654

the PAF receptor mRNA processing is different in guinea pigs and humans.

Southern blot analysis (Fig. 2) indicates that the human PAF receptor gene exists in a single copy. A similar result

FIG. 6. PAF receptor desensitization. Clone pCS1-transfected COS-7 cells were preincubated for 20 min at 4 °C with increasing concentrations of PAF, washed, and incubated with 2 nm ³H-labeled PAF as described under "Experimental Procedures." Each point represents the mean of duplicate determinations. Nonspecific binding was assessed in the presence of 10 µM PAF and these values were subtracted from total binding to obtain the points shown.

Fig. 7. Model of the PAF receptor. The rhodopsin gene family model proposes an exterior amino-terminal region, seven membrane-spanning helices, and a cytoplasmic carboxyl terminus. Special features of the PAF receptor highlighted in the Figure are 9 cysteinyl (C) residues found in the hydrophobic helices, absence of a canonical amino-terminal glycosylation site, and presence of a conserved glycosylation site in the extracellular loop between segments M4 and M5.

was obtained with Southern blots of mouse DNA, although some of the restriction fragments were different sizes. In the guinea pig, it is also possible that the multiple mRNAs observed on Northern blots reflect multiple genes for the PAF receptor in this species. As indicated previously, prolonged exposure of Southern blots of human DNA reveals multiple weakly hybridizing bands. The multiplicity of these bands and the weakness of hybridization suggest that these are related genes as opposed to additional PAF receptor genes. If multiple PAF receptors exist in humans, they may derive from alternative splicing of the mRNA.

Analysis of the deduced amino acid sequence of the human PAF receptor, as noted previously, indicates seven hydrophobic sequences alternating with more polar regions, characteristic of the seven membrane spanning protein members of the

FIG. 8. Immunohistochemical staining of the human PAF receptor transfected in COS-7 cells. COS-7 cells transfected with the Flag-PAF receptor/pCDM8 construct were stained with M5 anti-Flag monoclonal antibody, followed by biotinylated anti-mouse and avidin-biotin horseradish peroxidase, as described under "Experimental Procedures." Antibody staining of the PAF receptor is localized to the perimeter of the cell (indicated by arrows), characteristic of a cell surface epitope.

FIG. 9. Comparison of human and guinea pig PAF receptor protein sequences. The 342-amino acid human sequence is shown, with the nonidentical residues found in the guinea pig indicated. The seven predicted membrane-spanning domains are indicated by bars over the sequence.

rhodopsin family (Fig. 7) (25) The human sequence is ~83% identical to the guinea pig at the amino acid level (Fig. 9). The highest frequency of differences occurs in the COOH-terminal cytoplasmic tail with 18 residues differing among 45. A similar pattern is observed for the receptors for substance P and neurokinin A (26, 27), suggesting less genetic pressure to maintain particular amino acid sequences in this region for effective ligand binding and signal transduction

Unique to the human PAF receptor among this class of molecules is the absence of an N-linked glycosylation site in the NH₂-terminal putative extracellular sequence (25). As noted previously, an N-linked glycosylation site occurs at positions 169-171, as it does in the guinea pig, in the putative third extracellular loop. A second glycosylation site exists at positions 333-335, in the COOH-terminal cytoplasmic tail, although this position may not be glycosylated because of its presumed intracellular location. The presence of 12 cysteine residues is also unusual for G-protein coupled receptors. Two of these residues are found in conserved positions in the first and second extracellular loops. By analogy with rhodospin (28), a disulfide bond should link residues 90 and 173. Nine of the remaining 10 cysteine residues are found in putative membrane-spanning segments. Ng and Wong (29) have reported that thiol titrants such as para-chloromercuribenzoate and N-ethyl maleimide are capable of altering the affinity of

PAF binding to its receptor. Taken together, these data suggest that there may be free thiol groups in the membrane pore created by the seven transmembrane segments and suggest a potential approach to mapping the PAF-binding site.

Another novel feature in the predicted primary structure of the human PAF receptor is the replacement of a highly conserved asparagine residue in the seventh membrane-spanning segment by aspartic acid. In nearly all G-protein-coupled rhodopsin family receptors reported to date, this asparagine residue is part of a ubiquitous region with the sequence NPXXY; indeed, we have previously exploited this homology to clone the human C5a receptor cDNA (16). Interestingly, the only other reported sequence containing an aspartic acid instead of an asparagine at this position occurs in the thromboxane A2 receptor (30). As these are the only two lipid receptors of this family whose sequences are known to date, we aligned the thromboxane A2 and PAF sequences and observed that while the protein sequences are only 19% identical, the nucleotide sequences are 50% identical. Therefore, it is conceivable that these sequences may define a new subclass of the rhodopsin family, and may be useful in low stringency screening to identify receptors for other lipid mediators, including the leukotrienes and prostaglandins.

The ligand-binding properties of the human PAF receptor, expressed in COS-7 cells, are similar to those observed using platelets and neutrophils. The K_d for the human platelet PAF receptor was reported by Hwang et al. (5) as 4.9 nm, compared with 5.3 nm for the transfected molecule (Table I), and similar to that reported for the cloned guinea pig receptor also expressed in COS-7 cells (13). Uptake of radiolabeled ligand by the receptor at 4 °C on intact COS cells (Fig. 4) was somewhat slower than that observed previously using platelet membranes (5). This may reflect the use of intact cells in our experiments. The PAF receptor antagonist, WEB2086, blocks H-labeled PAF binding, as it does for the guinea pig molecule (13), with an ED₅₀ of 5×10^{-6} M.

Additionally, we find 8- to 10-fold higher apparent binding sites per cell when studies are performed at 22 °C instead of at 4 °C (Table I). This may reflect receptor-dependent metabolism of the ligand as described by Homma et al. (31), and by Tokumura et al. (32). Uptake is exquisitely sensitive to preexposure to PAF, since a 20-min treatment at 4 °C with 1 nM PAF, which results in occupancy of only ~10% of the available receptor sites, blocks subsequent binding of radiolabeled ligand by at least 70%. These findings may reflect internalization of the ligand-receptor complex or some other modification of the receptor (e.g. phosphorylation) which renders it unavailable for ligand binding. Indeed, the PAF receptor expressed in COS cells may be a useful system in which to study cellular utilization of PAF as facilitated by its receptor, since no significant uptake occurs on untransfected cells and nonspecific binding is very low.

Because of the utility of the Flag sequence in detection and purification of the C5a anaphylatoxin made in E. coli (20), we constructed a Flag-PAF expression plasmid with pCDM8. When transfected into COS-7 cells, the M5 monoclonal antibody, which recognizes the amino acid sequence MDYK-DDDDKEF, was used to localize the epitope to the extracellular surface, providing additional support for the rhodopsinbased model for this class of molecules. Previous support of this structure has only been provided by the β -adrenergic receptor, in which a similar approach was utilized (33). This construct should also be useful for studies of ligand-induced changes in receptor localization. Preliminary experiments indicate that PAF pretreatment appears to cause available

epitopes to polarize to one end of the cell. Additional experiments using appropriately labeled secondary antibodies or protein A can be used to extend these studies to examine such phenomena as ligand-induced metabolism of the receptor and purification of the receptor protein.

Acknowledgment-We thank Dr. Peter F. Weller, Harvard Medical School, for assistance with the immunohistochemical techniques.

REFERENCES

- 1. Henson, P. M. (1970) J. Exp. Med. 131, 287-304
- 2. Snyder, F. (1987) Platelet-activating Factor and Related Lipid Mediators, Plenum Publishing Corp., NY
- 3. Hanahan, D. J. (1986) Annu. Rev. Biochem. 55, 483-509
- 4. Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1990) J. Biol. Chem. 265, 17381-17384
- 5. Hwang, S-B., Lee, C-S. C., Cheah, M. J., and Shen, T. Y. (1983) Biochemistry 22, 4756-4763
- 6. Lad, P. M., Olson, C. V., and Grewal, I. S. (1985) Biochem. Biophys. Res. Commun. 129, 632-638
- 7. Hwang, S-B., Lam, M-H., and Pong, S-S. (1986) J. Biol. Chem. 261, 532-537
- 8. Hwang, S-B. (1988) J. Biol. Chem. 263, 3225-3233
- Paulson, S. K., Wolf, J. L., Novotney-Barry, A., and Cox, C. P. (1990) Proc. Soc. Exp. Biol. Med. 195, 247-254
- 10. Pinkard, R. N., Farr, R. S., and Hanahan, D. J. (1979) J. Immunol. 123, 1847-1857
- 11. Blank, M. L., Snyder, F., Byers, L. W., Brooks, B., and Muirhead, E. E. (1979) Biochem. Biophys. Res. Commun. 90, 1194-2000

 12. Benveniste, J., Tence, M., Varenne, P., Bidault, J., Boulet, C., and Polonsky, J. (1979) C. R. Acad. Sci. Ser. D 289, 1057-1060
- 13. Honda, Z-I., Nakamura, M., Miki, I., Minami, M., Watanabe, T. Seyama, Y., Okado, H., Toh, H., Ito, K., Miyamoto, T., and Shimizu, T. (1991) Nature 349, 342-346
- 14. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. (1979) Biochemistry 18, 5294–5299
- 15. Gubler, U., and Hoffman, B. (1983) Gene (Amst.) 25, 263-269
- 16. Gerard, N. P., and Gerard, C. (1991) Nature 349, 614-617
- 17. Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 5463-5467
- Baas, F., Bikker, H., vanOmmen, G-J. B., and deVijlder, J. J. M. (1984) Hum. Genet. 67, 301
- 19. Aviv, H., and Leder, D. (1972) Proc. Natl. Acad. Sci. U. S. A. 69, 1408-1412
- 20. Gerard, N. P., and Gerard, C. (1990) Biochemistry 29, 9274-9281
- Gerard, N. P., Eddy, R. L., Jr., Shows, T. B., and Gerard, C. (1990) J. Biol. Chem. 265, 20455-20462 Stimler, N. P., Bloor, C. M., Hugli, T. E., Wykle, R. L., McCall,
- C. E., and O'Flaherty, J. T. (1981) Am. J. Pathol. 105, 64-69 23. Sundstrom, C., and Nilsson, K. (1976) Int. J. Cancer 17, 565-
- 24. Harris, P., and Ralph, P. (1985) J. Leukocyte Biol. 37, 407-422
- Dohlman, H. G., Thorner, J., Caron, M. G., and Lefkowitz, R. J. (1991) Annu. Rev. Biochem. 60, 653-688
- Gerard, N. P., Eddy, R. L., Jr., Shows, T. B., and Gerard, C. (1990) J. Biol. Chem. 265, 20455-20462
- 27. Gerard, N. P., Garraway, L. A., Eddy, R. L., Showa, T. B., Iijima, H., Paquet, J-L., and Gerard, C. (1991) Biochemistry, 80, 10640-10646
- 28. Karnik, S. S., Sakmar, T. P., Chen, H-B., and Khorana, H. G.
- (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8459-8463
- 29. Ng, D. S., and Wong, K. (1988) Eur. J. Pharmacol. 154, 47-52
 30. Hirata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R.,
 Nakanishi, S., and Naruniyai, S. (1991) Nature 349, 617-620
- 31. Homma, H., Tokumura, A., and Hanahan, D. J. (1987) J. Biol. Chem. 262, 10582–10587
 Tokumura, A., Tutsumi, T., Yoshida, J., and Tsukatani, H. (1990)
- Biochim. Biophys. Acta 1044, 91-100
 Wang, H., Lipfert, L., Malbon, C. C., and Bahouth, S. (1989) J. Biol Chem. 264, 14424-14431
- 34. Nakamura, M., Hondo, Z.-L., Izumi, T., Sakanaka, C., Mutoh, H., Minami, M., Bito, H., Seyama, Y., Matsumoto, T., Noma, M., and Shimizu, T. (1991) J. Biol. Chem. 266, 20400-20405
- 35. Ye, R. D., Prossnits, E. R., Zou, A. M., and Cochrane, C. G. (1991) Biochem. Biophys. Res. Commun. 180, 105-111

results of DLAST

BLASTN 2.2.8 [Jan-05-2004]

Reference:

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

RID: 1079535895-1755-55097089079.BLASTQ3

Query=

(1860 letters)

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or phase 0, 1 or 2 HTGS sequences)
2,102,977 sequences; 10,130,642,339 total letters

If you have any problems or questions with the results of this search please refer to the ${\tt BLAST\ FAQs}$

Taxonomy reports

Distribution of 91 Blast Hits on the Query Sequence

Sequences producing significant alignments:	Score (bits)	E Value	
qi 13159911 emb AL159140.4 CNS01RGP Human chromosome 14 DNA qi 15282112 emb AL162471.3 CNS01RHU Human chromosome 14 DNA	3663 3640	0.0	
gi 34190130 gb BC032831.2 Homo sapiens cDNA clone MGC:2673	3489	0.0	
gi 21928412 dbj AB065563.1 Homo sapiens gene for seven tra	3128	0.0	
gi 32165519 gb AY288418.1 Homo sapiens G protein-coupled r	2920	0.0	
gi 32261308 ref NM 022571.3 Homo sapiens G protein-coupled	2920	0.0	LUG
qi 2810988 qb M76676.1 HUMNPIIY20 Homo sapiens leukocyte pl	2700	0.0	LUG
gi 29611577 gb AY255588.1 Homo sapiens leukocyte platelet	<u>108</u> 2	0.0	
gi 38565931 gb BC062104.1 Mus musculus cDNA clone IMAGE:68	<u>803</u>	0.0	<u>_</u>
<u>qi 32165533 qb AY288425.1 </u> Mus musculus G protein-coupled r <u>qi 32964966 qb AC110170.6 </u> Mus musculus chromosome 12, clon	<u>803</u> 803	0.0	
gi 32306523 ref NM 181752.1 Mus musculus G protein-coupled	<u>803</u>	0.0	
gi 32165543 gb AY288430.1 Rattus norvegicus G protein-coup	783	0.0	
gi 32401462 ref NM_181771.1 Rattus norvegicus G protein-co	783	0.0	LU
gi 32563165 emb BX004994.6 Zebrafish DNA sequence from clo	137	9e-29	LUG
gi 6031165 ref NM 001480.2 Homo sapiens galanin receptor 1	46	0.25	
gi 24648696 ref NM 169955.1 Drosophila melanogaster CG1082	46	0.25	
gi 24648694 ref NM 142709.1 Drosophila melanogaster CG1082	46	0.25	
gi 34895453 ref NM 184181.1 Oryza sativa (japonica cultiva gi 33589379 gb BT009988.1 Drosophila melanogaster RE47636	46	0.25 0.25	
gill4090356 dbi AP003233.3 Oryza sativa (japonica cultivar	46	0.25	
gi 21629409 gb AC100863.2 Homo sapiens chromosome 18, clon	46	0.25	-
gi 23171864 gb AE003734.2 Drosophila melanogaster chromoso	$\frac{46}{46}$	0.25 0.25	
gi 25140120 gb AC096709.19 Homo sapiens chromosome 18, clo gi 17861010 gb AC008308.8 Drosophila melanogaster, chromos	46	0.25	
gill62589721gblAC008309.71 Drosophila melanogaster, chromos	46	0.25	
gi 44355566 gb AY541036.1 Homo sapiens galanin receptor 1	46	0.25	
gi 3064071 gb U90658.1 HSGALNRS1 Homo sapiens galanin recep	46	0.25	
gi 1297337 gb U53511.1 HSU53511 Homo sapiens galanin recept	46	0.25	
gi 775209 gb U23854.1 HSU23854 Human galanin receptor mRNA,	46	0.25	LU
gi 559047 gb L34339.1 HUMGALAREC Human galanin receptor mRN gi 12328514 dbi AP002909.2 Oryza sativa (japonica cultivar	$\frac{46}{46}$	0.25 0.25	
<u>qi 12328514 dbj AP002909.2 </u> Oryza sativa (japonica cultivar <u>qi 22296778 qb AC121870.2 </u> Mus musculus BAC clone RP24-121D	44	0.98	
gi 13677146 gb AC013726.7 Homo sapiens BAC clone RP11-400N	44	0.98	•
qi 29609103 dbj AP005043.1 Streptomyces avermitilis genomi qi 5001541 qb AC005520.2 AC005520 Homo sapiens PAC clone RP	44	0.98 0.98	
Gil21212029[emb]AL662811.20] Mouse DNA sequence from clone	44	0.98	
gi[33457241 gb AC127554.4] Mus musculus BAC clone RP24-323K	42	3.9	
gi 21618432 gb BC032702.1 Homo sapiens G protein-coupled r gi 28630143 gb AC124170.3 Mus musculus BAC clone RP23-155H	42	3.9 3.9	LUG
gi 38089509 ref XM 357908.1 Mus musculus similar to SON pr	42	3.9	
gi 37533899 ref NM 196270.1 Oryza sativa (japonica cultiva	42	3.9	U
gi 23325376 gb AE014636.1 Bifidobacterium longum NCC2705 s	42	3.9 3.9	•
gi 31431814 gb AE017089.1 Oryza sativa (japonica cultivar	42	3.9	
gi 24418066 gb AC009108.10 Homo sapiens chromosome 16 clon	42	3.9 3.9	
gi 44886087 dbj AB164051.1 Oryzias latipes cGK I beta mRNA gi 44886085 dbj AB164050.1 Oryzias latipes cGK I alpha mRN	42	3.9	
gi 44886085 dbj AB164050.1 Oryzias latipes cGK I alpha mRN gi 29366932 gb AC009033.10 Homo sapiens chromosome 16 clon	42	3.9	

```
gi|13424739|gb|AE005972.1|
                            Caulobacter crescentus CB15 sect...
                                                                     40
                                                                          3.9
gi | 21108849|gb|AE011898.1| Xanthomonas axonopodis pv. citri...
                                                                    42
                                                                          3.9
gi|21108642|gb|AE011876.1| Xanthomonas axonopodis pv. citri... gi|21115400|gb|AE012537.1| Xanthomonas campestris pv. campe...
                                                                          3.9
                                                                     42
                                                                     42
                                                                          3.9
gi|21741993|emb|AL662970.2|OSJN00174 Oryza sativa genomic D...
                                                                     42
                                                                          3.9
                                                                                U
                                                                     42
qi|32975800|dbj|AK065782.1| Oryza sativa (japonica cultivar...
                                                                          3.9
qi|18057076|gb|AC024591.4| Homo sapiens chromosome 16 clone...
                                                                     42
                                                                          3.9
                                                                    42
gi|29609643|dbj|AP005045.1| Streptomyces avermitilis genomi...
                                                                                L U:G
                                                                     42
gi|455487|dbj|D21062.1|MUSGPCR21 Mus musculus GPCR21 mRNA f...
                                                                          3.9
                                                                                LU
gi|22531332|emb|AJ420781.1|XLA420781 Xenopus laevis mRNA fo...
                                                                     42
                                                                          3.9
                                                                     42
qi|1545939|emb|X94402.1|FRCB1B F.rubripes CB1B gene for can...
                                                                          3.9
gi|1890580|emb|Z79692.1|RMEXPGNS R.meliloti exp gene cluster
                                                                     42
                                                                          3.9
gi|15140691|emb|AL603645.1|RME603645 Rhizobium meliloti (Si...
                                                                     42
                                                                          3.9
gi|24418991|emb|AL939105.1|SCO939105 Streptomyces coelicolo...
                                                                     42
                                                                          3.9
                                                                    42
                                                                          3.9
qi|5679837|emb|AJ243961.1|OSA243961 Oryza sativa chromosome...
                                                                                U
                                                                     42
                                                                          3.9
gi|6634702|emb|AJ131718.1|ZMA131718 Zea mays mRNA for legum...
gi|17430467|emb|AL646076.1| Ralstonia solanacearum GMI1000 ...
                                                                     42
                                                                          3.9
                                                                     42
gi|1834557|emb|284846.1|HS284846 H.sapiens gene encoding im...
                                                                          3.9
gi|1834538|emb|Z84827.1|HSZ84827 H.sapiens gene encoding im...
                                                                    _42
                                                                          3.9
                                                                                _42
gi|13625390|gb|AF346834.1|AF346834 Mus musculus forkhead pr...
                                                                          3.9
gi|4902626|emb|AL033397.7|HS27K12 Human DNA sequence from c...
                                                                    42
                                                                          3.9
                                                                                LUG
                                                                     42
                                                                          3.9
gi|10444099|gb|AF283762.1|AF283762 Mus musculus mouse-thyro...
gi|10140611|gb|AC078839.4|AC078839 Genomic Sequence For Ory...
                                                                     42
                                                                          3.9
                                                                     42
gi|12706033|gb|AY022817.1| Oryza sativa microsatellite MRG5...
                                                                          3.9
                                                                                L G
                                                                    42
gi|632504|gb|U18550.1|HSU18550 Human GPR3 G protein-coupled...
                                                                          3.9
                                                                    42
gi|16605732|emb|AL591003.16| Mouse DNA sequence from clone ...
                                                                          3.9
gi|10334464|emb|AL355296.12| Human DNA sequence from clone ...
                                                                    42
                                                                          3.9
                                                                                LUG
                                                                    42
                                                                          3.9
qi|6680064|ref|NM 008154.1| Mus musculus G-protein coupled ...
                                                                                qi|6465842|emb|AL096774.9|HSDJ144C9 Human DNA sequence from...
                                                                          3.9
                                                                    42
                                                                                 П
                                                                    42,
                                                                          3.9
gi|1061125|emb|X83956.1|HSACCAGEN H.sapiens ACCA gene
                                                                    42
                                                                          3.9
gi|8218068|emb|AL078590.28|HSA557H15 Human DNA sequence fro...
                                                                                 L G
                                                                    42
                                                                          3.9
 gi|602311|gb|L32831.1|HUMGPCRD Homo sapiens G protein-coupl...
                                                                                 LUG
                                                                          3.9
 gi|31377791|ref|NM 005281.2| Homo sapiens G protein-coupled...
                                                                     42
 gi|21738486|emb|AL671858.6| Mouse DNA sequence from clone R...
                                                                     42
                                                                          3.9
                                                                                 LU
                                                                     42
                                                                          3.9
 gi|18875347|ref|NM 133202.1| Mus musculus thyrotropin relea...
```

Alignments

Score = 3663 bits (1848), Expect = 0.0 Identities = 1775/1860 (95%) Strand = Plus / Minus

Query: 61 caggtccccagcgccacccctccggccgagcccagctccccgcggcggccgctagc 120

Sbjct:	129127		129068
Query: Sbjct:		ccccggccccgagccaccactccgacctagcggccgccgccccggtgcgggatgaggag	
Query: Sbjct:		atccgcggccgccactgggccccatggaggagccgcagccgccccgcccaccagcgagca	
Query: Sbjct:		tggccttactgggcagccagcactccggcgccccctccgcggccggc	
Query: Sbjct:		cttcctccgcggccacggcggcgtgctctccttcagcaccgtggcgaccgcggcgctgg	360 128828
Query: Sbjct:		ggaacctgagcgacgcaagcggaggcggcacagctgccgcnnnnnnnnnn	
Query:	421	nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	480
Sbjct:	128767	gcgggtccggggcggcggggggggggggggggggggggg	128708
Query: Sbjct:		nnnnnccgctgctgtcgcacggagctgcagtggcggcccaggcgctcgtcctcctgctca 	
Query:	541	tcttcctgctgtctagccttggcaactgcgcggtgatgggggtgattgtgaagcaccggc	600
Sbjct:	128647	tcttcctgctgtctagccttggcaactgcgcggtgatgggggtgattgtgaagcaccggc	128588
Query:		agetecgeaccgteaccaacgcetteatcetgtegetgtecetateggatetgeteacgg	
Sbjct:	128587	agetecgeacegteaceaaegeetteateetgtegetgteeetateggatetgeteaegg	128528
Query:		cgctgctctgcctgccgccgccttcctggacctcttcactccgcccgggggttcggcgc	
Sbjct:	128527	cgctgctctgcctgccgccgccttcctggacctcttcactccgcccgggggttcggcgc	128468
Query:		ctgccgccgcggggccctggcgcgcttctgcgccgccagccgcttcttcagctcgt	
Sbjct:	128467	ctgccgccgcggggccctggcgcggcttctgcgccgccagccgcttcttcagctcgt	128408
Query:	781	gcttcggcatcgtgtccacgctcagcgtggcgctcatctcgttggaccgttactgcgcta	840

•

Sbjct:	128407		128348
Query:	841	tcgtgcggcgcgcggggagaagatcggccgccgcgcgcgc	900
Sbjct:	128347		128288
Query:	901	cctggctgacggccctgggcttctccttgccctgggagctgctcggggaac	960
Sbjct:	128287		128228
Query:	961	tcgcggcgcagagcttccacggctgcctctaccggacctccccggaccccgcgcagc	1020
Sbjct:	128227	tcgcggcgcagagcttccacggctgcctctaccggacctccccggaccccgcagc	128168
Query:	1021	tgggcgcggccttcagcgtggggctggtggtggcctgctacctgctgcccttcctgctca	1080
Sbjct:	128167	tgggcgcggccttcagcgtggggctggtggtggcctgctacctgctgcccttcctgctca	128108
Query:	1081	tgtgcttctgccactaccacatctgcaagacggtgcgcctgtcggacgtgcgcgtgcggc	1140
Sbjct:	128107	tgtgcttctgccactaccacatctgcaagacggtgcgcctgtcggacgtgcgcgtgcggc	128048
Query:	1141	cggtgaacacctacgcgcgcgtgctgcgcttcttcagcgaggtgcgcacggccaccaccg	1200
Sbjct:	128047	cggtgaacacctacgcgcgtgctgcgcttcttcagcgaggtgcgcacggccaccaccg	127988
Query:	1201	tcctcatcatgatcgtcttcgtcatctgctgctgggggccctactgcttcctggtgctgc	1260
Sbjct:	127987	tcctcatcatgatcgtcttcgtcatctgctgctgggggccctactgcttcctggtgctgc	127928
Query:	1261	tggccgccgcccggcaggcccagaccatgcaggccccctcgctcctcagcgtggtggccg	1320
Sbjct:	127927	tggccgccgccggcaggcccagaccatgcaggccccctcgctcctcagcgtggtggccg	127868
Query:	1321	tctggctgacctgggccaatggggccatcaaccctgtcatctacgccatccgcaatccca	1380
Sbjct:	127867	tctggctgacctgggccaatggggccatcaaccctgtcatctacgccatccgcaatccca	127808
Query:	1381	acatttcgatgctcctagggcgcaaccgcgaggagggctaccggactaggaatgtggacg	1440
Sbjct:	127807	acatttcgatgctcctagggcgcaaccgcgaggagggctaccggactaggaatgtggacg	127748
Query	: 1441	ctttcctgcccagccagggcccgggtctgcaagccagaagccgcagtcgccttcgaaacc	1500
Sbjct	: 127747	7 ctttcctgcccagccagggcccgggtctgcaagccagaagccgcagtcgccttcgaaacc	127688
Query	: 1501	gctatgccaaccggctggggcctgcaacaggatgtcctcttccaacccggccagcggag	1560

```
Sbjct: 127687 gctatgccaaccggctgggggcctgcaacaggatgtcctcttccaacccggccagcggag 127628
          tggcaggggacgtggccatgtgggcccgcaaaaatccagttgtacttttctgccgagagg 1620
Query: 1561
          Sbjct: 127627 tggcaggggacgtggccatgtgggcccgcaaaaatccagttgtacttttctgccgagagg 127568
          gaccaccagagccggtgacggcagtgaccaaacagcctaaatccgaagctggggatacca 1680
Query: 1621
          Sbjct: 127567 gaccaccagagccggtgacggcagtgaccaaacagcctaaatccgaagctggggatacca 127508
          gcctctaagacggttggaatggccagcttatgaaggcaaatttccactcgcattatttaa 1740
Query: 1681
          Sbjct: 127507 gcctctaagacggttggaatggccagcttatgaaggcaaatttccactcgcattatttaa 127448
          tgatggaagattctgggggagagttgtggatttcataaagccaaacatttaaagctagag 1800
Query: 1741
          Sbjct: 127447 tgatggaagattctgggggagagttgtggatttcataaagccaaacatttaaagctagag 127388
          acgggggggggcttaccactttccccaaacataaaagacaatgtcccttcttcaaaag 1860
Query: 1801
          Sbjct: 127387 acggggggggcttaccactttccccaaacataaaagacaatgtcccttcttcaaaag 127328
library RPCI-11 from chromosome 14 of Homo sapiens
          (Human), complete sequence
       Length = 149326
 Score = 3640 bits (1836), Expect = 0.0
 Identities = 1772/1860 (95%)
 Strand = Plus / Plus
         cgctcctgcgtaaacacgcggttccctcggcaacgctggaacccacgtcaaaggctccgc 60
Query: 1
          Sbjct: 57931 cgctcctgcgtaaacacgcggttccctcggcaacgctggaacccacgtcaaaggctccgc 57990
          caggtccccagcgaccgccaccctccggccgagcccagctccccgcggcggccgctagc 120
Query: 61
          Sbjct: 57991 caggtccccagcgaccgccaccctccggccgagcccagctccccgcggcggccgctagc 58050
          ccccggccccgagccaccactccgacctagcggccgcccccggtgcgggatgaggag 180
Query: 121
          Sbjct: 58051 ccccggccccgagccaccactccgacctagtggccgcccccggtgcgggatgaggag 58110
          atccgcggccgccactgggccccatggaggagccgcagccgcccccccaccagcgagca 240
Query: 181
          ពាណីដែរមិនអាជីវិសាយដែលបំណែង សេវិយាយមេបើសែវ
Sbjct: 58111 atccgcggccgccactgggccccatggaggagccgccgccccgcccaccagcgagca 58170
```

Query:	241	tggccttactgggcagccagcactccggcgccccctccgcggccggc	300
Sbjct:	58171	tggccttactgggcagccagcactccggcgccccctccgcggccggc	58230
Query:	301	cttcctccgcggccacggcggccgtgctctccttcagcaccgtggcgaccgcggcgctgg	360
Sbjct:	58231	cttcctccgcggccacggcggccgtgctctccttcagcaccgtggcgaccgcggcgctgg	58290
Query:	361	ggaacctgagcgacgcaagcggaggcgcacagctgccgcnnnnnnnnnn	420
Sbjct:	58291	ggaacctgagcgacgcaagcggaggcggcacagctgccgctcccggtggcggcgcttg	58350
Query:	421	nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	480
Sbjct:	58351	gcgggtccggggcggcggcggtgaggcggcggcgctaggcccgagg	58410
Query:	481	nnnnccgctgctgtcgcacggagctgcagtggcggcccaggcgctcgtcctcctgctca	540
Sbjct:	58411		58470
Query:	541	tcttcctgctgtctagccttggcaactgcgcggtgatggggggtgattgtgaagcaccggc	600
Sbjct:	58471		58530
Query:	601	agetecgeaccgteaccaacgeetteatectgtegetgtecetateggatetgeteacgg	660
Sbjct:	58531		58590
Query:	661	cgctgctctgcctgccgccttcctggacctcttcactccgcccgggggttcggcgc	720
Sbjct:	58591	cgctgctctgcctgccgccgccttcctggacctcttcactccgcccgggggttcggcgc	58650
Query:	721	ctgccgccgcggggccctggcggcttctgcgccgccagccgcttcttcagctcgt	780
Sbjct:	58651		58710
Query:	781	gcttcggcatcgtgtccacgctcagcgtggcgctcatctcgttggaccgttactgcgcta	840
Sbjct:	58711		58770
Query:	841	tcgtgcggccgccgcgggagaagatcggccgccgcgcgcg	900
Sbjct:	58771		58830
Query:	901	cctggctgacggccctgggcttctccttgccctgggagctgctcgggggcgccccgggaac	960
Sbjct:	58831		58890

Query:		tcgcggcgcagagcttccacggctgcctctaccggacctccccggaccccgcgcagc	
Sbjct:	58891	tegeggeggegeagagetteeaeggetgeetetaeeggaeeteeeeggaeeeegegeage	58950
Query:		tgggcgcggccttcagcgtggggctggtggtggcctgctacctgctgcccttcctgcta	
Sbjct:		tgggcgcggccttcagcgtgggctggtggcctgctacctgctgcccttcctgctca	
Query:		tgtgcttctgccactaccacatctgcaagacggtgcgcctgtcggacgtgcgcgtgcgccllllllllll	
-			1200
Query: Sbjct:		cggtgaacacctacgcgcgtgctgcgcttcttcagcgaggtgcgcacggccaccaccg	
Ouerus	1201	tcctcatcatgatcgtcttcgtcatctgctgctgggggccctactgcttcctggtgctgc	1260
_			
Query:	1261	tggccgccgcccggcaggcccagaccatgcaggccccctcgctcctcagcgtggtggccg	1320
•		tggccgccgccggcaggccagaccatgcaggcccctcgctcctcagcgtggtggccg	
Query:	1321	tctggctgacctgggccaatggggccatcaaccctgtcatctacgccatccgcaatccca	1380
Sbjct:	59251		59310
Query:	1381	acatttcgatgctcctagggcgcaaccgcgaggagggctaccggactaggaatgtggacg	1440
Sbjct:	59311	acatttcgatgctcctagggcgcaaccgcgaggagggctaccggactaggaatgtggacg	59370
		ctttcctgcccagccagggcccgggtctgcaagccagaagccgcagtcgccttcgaaacc	
Sbjct:	59371	ctttcctgcccagccagggcccgggtctgcaagccagaagccgcagtcgccttcgaaacc	59430
		gctatgccaaccggctgggggcctgcaacaggatgtcctcttccaacccggccagcggag	
		gctatgccaaccggctgggggcctgcaacaggatgtcctcttccaacccggccagcggag	
		tggcaggggacgtggccatgtgggcccgcaaaaatccagttgtacttttctgccgagagg	
		gaccaccagagccggtgacggcagtgaccaaacagcctaaatccgaagctggggatacca 	

```
Query: 1681 gcctctaagacggttggaatggccagcttatgaaggcaaatttccactcgcattatttaa 1740
        Sbjct: 59611 gcctctaagacggttggaatggccagcttatgaaggcaaatttccactcgcattatttaa 59670
Query: 1741 tgatggaagattctgggggagagttgtggatttcataaagccaaacatttaaagctagag 1800
        111144544441111411141144144
Sbjct: 59671 tgatggaagattctgggggagagttgtggatttcataaagccaaacatttaaagctagag 59730
Query: 1801 acgggggaggcttaccactttccccaaacaacataaaagacaatgtcccttcttcaaaag 1860
        Sbjct: 59731 acgggggaggcttaccactttccccaaacataaaagacaatgtcccttcttcaaaag 59790
>gi|34190130|gb|BC032831.2| LU Homo sapiens cDNA clone MGC:26730 IMAGE:4825908, c
      Length = 2557
 Score = 3489 bits (1760), Expect = 0.0
 Identities = 1687/1772 (95%)
Strand = Plus / Plus
        gccgagcccagctccccgcgcgccgctagcccccggccccgagccaccactccgacct 148
Query: 89
        gccgagcccagctcccgcggcggccgctagccccgggccccgagccaccactccgacct 60
Sbjct: 1
Query: 149 agcggccgcccccggtgcgggatgaggagatccgcggccgccactgggccccatgga 208
        agcggccgccgccccggtgcgggatgaggagatccgcggccgccactgggccccatgga 120
Sbjct: 61
        Query: 209
        Query: 269 cgccccctccgcggccggccacctggcgggacttcctccgcggccacggcggtgct 328
        Sbjct: 181 cgcccctccgcggccggccacctggcgggacttcctccgcggccacggcggccgtgct 240
Query: 329 ctccttcagcaccgtggcgaccgcggcgctggggaacctgagcgacgcaagcggaggcgg 388
        Sbjct: 241 ctccttcagcaccgtggcgaccgcggcgctggggaacctgagcgacgcaagcggaggcgg 300
        Query: 389
        Sbjct: 301 cacagetgeegeteeeggtggeggeettggegggteeggggcagegegggaggeggg 360
1111111111111111111111
Sbjct: 361 ggcggcggtgaggcggccgctaggcccggaggcggcgccgctgctgtcgcacggagctgc 420
Query: 509 agtggcggcccaggcgctcgtcctcctgctcatcttcctgctgtctagccttggcaactg 568
```

.. . ._.

0014710004

Sbjct:			480
Query: Sbjct:		cgcggtgatggggtgattgtgaagcaccggcagctccgcaccgtcaccaacgccttcat	
Query: Sbjct:		cctgtcgctgtccctatcggatctgctcacggcgctgctctgcctgc	
Query: Sbjct:		ggacctetteacteegeeeggggtteggegeetgeegeegeegeggggeeetggegeg	748 660
Query: Sbjct:			808 720
Query: Sbjct:			868 780
Query: Sbjct:		ccgccgccgcgctgcagctgctggcgggcgcctggctgacggccctgggcttctcctt	
Query: Sbjct:		gccctgggagctgctcggggcgccccgggaactcgcggcggcgcagagcttccacggctg	988 900
Query: Sbjct:		cctctaccggacctccccggaccccgcgcagctgggcgcgccttcagcgtggggctggt	•
		ggtggcctgctacctgctgcccttcctgctcatgtgcttctgccactaccacatctgcaa	
		gacggtgcgcctgtcggacgtgcgcgtgcggccggtgaacacctacgcgcgcg	
		cttcttcagcgaggtgcgcacggccaccaccgtcctcatcatgatcgtcttcgtcatctg	
000	1220	ctactagaaaccctactacttcctaatactactagccgccgcccqqcaqqcccagaccat	1288

```
Query: 1289 gcaggcccctcgctcctcagcgtggtggccgtctggctgacctgggccaatggggccat 1348
       Sbjct: 1201 gcaggccccctcgctcctcagcgtggtggccgtctggctgacctgggccaatggggccat 1260
Query: 1349 caaccctgtcatctacgccatccgcaatcccaacatttcgatgctcctagggcgcaaccg 1408
       Sbjct: 1261 caaccetgtcatctacgccatccgcaatcccaacatttcgatgctcctagggcgcaaccg 1320
Query: 1469 gcaagccagaagccgcagtcgccttcgaaaccgctatgccaaccggctgggggcctgcaa 1528
       Sbjct: 1381 gcaagccagaagccgcagtcgccttcgaaaccgctatgccaaccggctgggggcctgcaa 1440
Query: 1529 caggatgtcctcttccaacccggccagcggagtggcaggggacgtggccatgtgggcccg 1588
       Sbjct: 1441 caggatgtcctcttccaacccggccagcggagtggcaggggacgtggccatgtgggcccg 1500
Query: 1589 caaaaatccagttgtacttttctgccgagagggaccaccagagccggtgacggcagtgac 1648
       Sbjct: 1501 caaaaatccaqttqtacttttctqccqaqaqqqaccaccaqaqccggtgacggcagtgac 1560
Query: 1649 caaacagcctaaatccgaagctggggataccagcctctaagacggttggaatggccagct 1708
       Sbjct: 1561 caaacagcctaaatccgaagctggggataccagcctctaagacggttggaatggccagct 1620
Query: 1709 tatgaaggcaaatttccactcgcattatttaatgatggaagattctgggggagagttgtg 1768
       Sbjct: 1621 tatgaaggcaaatttccactcgcattatttaatgatggaagattctgggggagagttgtg 1680
Sbjct: 1681 gatttcataaagccaaacatttaaagctagagacgggggaggcttaccactttccccaaa 1740
Query: 1829 caacataaaagacaatgtcccttcttcaaaag 1860
       Sbjct: 1741 caacataaaagacaatgtcccttcttcaaaag 1772
```

>gi|21928412|dbj|AB065563.1| Homo sapiens gene for seven transmembrane helix rec cds, isolate:CBRC7TM_126 Length = 1590

Score = 3128 bits (1578), Expect = 0.0

Identities = 1505/1590 (94%)
Strand = Plus / Plus

Query:	40	aacccacgtcaaaggetccgccaggtccccagcgaccgccacccctccggccgagcccag	
Sbjct:	1	aacccacgtcaaaggctccgccaggtccccagcgaccgccacccctccggccgagcccag	60
Query:	100		159
Sbjct:	61	ctcccgcggcgccgctagcccccggccccgagccaccactccgacctagcggccgccg	120
Query:	160	ccccggtgcggatgaggagatccgcggccgccactgggccccatggaggagccgcagc	
Sbjct:	121	ccccggtgcggatgaggagatccgcggccgccactgggccccatggaggagccgcagc	180
Query:	220	cgcccgcccaccagcgagcatggccttactgggcagccagc	
Sbjct:	181	cgcccgcccaccagcgagcatggccttactgggcagccagc	240
Query:	280	cggccggcccacctggcgggacttcctccgcggccacggcggccgtgctctccttcagca	
Sbjct:	241	cggccggcccacctggcgggacttcctccgcggccacggcggccgtgctctccttcagca	300
Query:	340	ccgtggcgaccgcggcgctggggaacctgagcgacgcaagcggaggcggcacagctgccg	399
Sbjct:	301	ccgtggcgaccgcggcgctggggaacctgagcgacgcaagcggaggcggcacagctgccg	360
Query:	400	cnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	
Sbjct:	361	ctcccggtggcggccttggcgggtccggggcagcgcgggaggcgggggggg	420
Query:	460	nnnnnnnnnnnnnnnnnnnnnnnnnccgctgctgtcgcacggagctgcagtggcggccc	
Sbjct:	421	ggcggccgctaggccggaggcggcgccgctgctgtcgcacggagctgcagtggcggccc	480
Query:	520	aggcgctcgtcctcctgctcatcttcctgctgtctagccttggcaactgcgcggtgatgg	
Sbjct:	481	aggcgctcgtcctcctgctcatcttcctgctgtctagccttggcaactgcgcggtgatgg	540
Query:	580	gggtgattgtgaagcaccggcagctccgcaccgtcaccaacgccttcatcctgtcgctgt	
Sbjct:	541	gggtgattgtgaagcaccggcagctccgcaccgtcaccaacgccttcatcctgtcgctgt	600
Query	: 640	ccctatcggatctgctcacggcgctgctctgcctgcccgccgccttcctggacctcttca	
Sbjct	: 601	ccctatcggatctgctcacggcgctgctctgcctgcccgccgccttcctggacctcttca	660
Query	: 700	ctccgcccgggggttcggcgcctgccgccgcggggccctggcgcgcttctgcgccg	759

Sbjct:	661		720
Query:	760	ccagccgcttcttcagctcgtgcttcggcatcgtgtccacgctcagcgtggcgctcatct	819
Sbjct:	721	ccagccgcttcttcagctcgtgcttcggcatcgtgtccacgctcagcgtggcgctcatct	780
Query:	820	cgttggaccgttactgcgctatcgtgcggccgccgcgggagaagatcggccgccgccgcg	879
Sbjct:	781	cgttggaccgttactgcgctatcgtgcggccgccgcgggagaagatcggccgccgcgcg	840
Query:	880	cgctgcagctgctggcggcgcctggctgacggccctgggcttctccttgccctgggagc	939
Sbjct:	841	cgctgcagctgctggcgggcgcctggctgacggccctgggcttctccttgccctgggagc	900
Query:	940	tgctcggggcgccccgggaactcgcggcggcgcagagcttccacggctgcctctaccgga	999
Sbjct:	901	tgctcggggcgccccgggaactcgcggcggcgcagagcttccacggctgcctctaccgga	960
Query:	1000	cctccccggaccccgcgcagctgggcgcggccttcagcgtggggctggtggtggcctgct	1059
Sbjct:	961	cctcccggaccccgcgcagctgggcgcggccttcagcgtggggctggtggtggcctgct	1020
Query:	1060	acctgctgcccttcctgctcatgtgcttctgccactaccacatctgcaagacggtgcgcc	1119
Sbjct:	1021	acctgctgcccttcctgctcatgtgcttctgccactaccacatctgcaagacggtgcgcc	1080
Query:	1120	tgtcggacgtgcgcgtgcggccggtgaacacctacgcgcgcg	1179
Sbjct:	1081	tgtcggacgtgcgcgtgcggtgaacacctacgcgcgcgtgctgcgcttcttcagcg	1140
Query:	1180	aggtgcgcacggccaccaccgtcctcatcatgatcgtcttcgtcatctgctgctgggggc	1239
Sbjct:	1141	aggtgcgcacggccaccaccgtcctcatcatgatcgtcttcgtcatctgctgctgggggc	1200
Query:	1240	cctactgcttcctggtgctgctggccgccggccggcaggcccagaccatgcaggcccct	1299
Sbjct:	1201	cctactgcttcctggtgctgctggccgccggccggcaggcccagaccatgcaggccccct	1260
Query:	1300	cgctcctcagcgtggtggccgtctggctgacctgggccaatggggccatcaaccctgtca	1359
Sbjct	1261	cgctcctcagcgtggtggccgtctggctgacctgggccaatggggccatcaaccctgtca	1320
		tctacgccatccgcaatcccaacatttcgatgctcctagggcgcaaccgcgaggagggct	
Sbjct	: 132	tctacgccatccgcaatcccaacatttcgatgctcctagggcgcaaccgcgaggagggct	1380
Query	: 142	accggactaggaatgtggacgctttcctgcccagccagggcccgggtctgcaagccagaa	1479

```
Sbjct: 1381 accggactaggaatgtggacgctttcctgcccagccagggcccgggtctgcaagccagaa 1440
Query: 1480 gccgcagtcgccttcgaaaccgctatgccaaccggctgggggcctgcaacaggatgtcct 1539
       Sbjct: 1441 gccgcagtcgccttcgaaaccgctatgccaaccggctgggggcctgcaacaggatgtcct 1500
Query: 1540 cttccaacccggccagcggagtggcaggggacgtggccatgtgggcccgcaaaaatccag 1599
       Sbjct: 1501 cttccaacccggccagcggagtggcaggggacgtggccatgtgggcccgcaaaaatccag 1560
Query: 1600 ttgtacttttctgccgagagggaccaccag 1629
       Sbjct: 1561 ttgtacttttctgccgagagggaccaccag 1590
                   Homo sapiens G protein-coupled receptor 135 (GPR13
>gi;32165519|gb|AY288418.1|
       cds
      Length = 1485
Score = 2920 bits (1473), Expect = 0.0
Identities = 1400/1485 (94%)
Strand = Plus / Plus
Sbjct: 1
        teeggegeeecteegeggeeggeeacetggeggaetteeteegeggeeacggeggee 323
Query: 264
        teeggegeeecteegeggeeggeeactggeggaetteeteegeggeeacggeggee 120
Sbjct: 61
Query: 324 gtgctctccttcagcaccgtggcgaccgcggcgctggggaacctgagcgacgcaagcgga 383
        Sbjct: 121 gtgctctccttcagcaccgtggcgaccgcggcgctggggaacctgagcgacgcaagcgga 180
        Query: 384
        11111111111111111
Sbjct: 181 ggcggcacagctgccgctcccggtggcggcccttggcgggtccggggcagcgcgggag 240
111111111111111111
Sbjct: 241 gcgggggcggtgaggcggccgctaggcccggaggcggcgccgctgctgtcgcacgga 300
Query: 504 gctgcagtggcggcccaggcgctcgtcctcctgctcatcttcctgctgtctagccttggc 563
        Sbjct: 301 gctgcagtggcggcccaggcgctcgtcctcctgctcatcttcctgctgtctagccttggc 360
Query: 564 aactgcgcggtgatgggggtgattgtgaagcaccggcagctccgcaccgtcaccaacgcc 623
```

1 1 /mt_ = 1 -- 1

02/17/2004

Sbjct:	361		120
Query:		ttcatcctgtcgctgtccctatcggatctgctcacggcgctgctctgcctgc	
Sbjct:	421	ttcatcctgtcgctgtccctatcggatctgctcacggcgctgctctgcctgc	480
	684	ttcctggacctcttcactccgcccgggggttcggcgcctgccgccgccgcggggccctgg	
Sbjct:	481	ttcctggacctcttcactccgcccgggggttcggcgcctgccgccgccgcggggccctgg	
Query: Sbjct:		cgcggcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcgtgtccacgctc	
Query: Sbjct:			863 660
Query:	864	atcggccgccgcgcgcgctgcagctgctggcgggcgcctggctgacggccctgggcttc	923
Sbjct:			
Query:	924	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	983
Sbjct:	721		780
Query:	984	ggctgcctctaccggacctccccggaccccgcgcagctgggcgcggccttcagcgtgggg	1043
Sbjct:	781	ggctgcctctaccggacctcccggaccccgcgcagctgggcgcggccttcagcgtgggg	840
Query:	1044	ctggtggtggcctgctacctgctgcccttcctgctcatgtgcttctgccactaccacatc	
Sbjct:		ctggtggtggcctgctacctgctgcccttcctgctcatgtgcttctgccactaccacatc	
		tgcaagacggtgcgcctgtcggacgtgcgcgtgcggcggtgaacacctacgcgcgcg	
-			
		ctgcgcttcttcagcgaggtgcgcacggccaccgtcctcatcatgatcgtcttcgtc	
		atctgctgctgggggccctactgcttcctggtgctgctggccgccggccg	
0	. 120		1343

```
Sbjct: 1081 accatgcaggccccctcgctcctcagcgtggtggccgtctggctgacctgggccaatggg 1140
Query: 1344 gccatcaaccctgtcatctacgccatccgcaatcccaacatttcgatgctcctagggcgc 1403
       Sbjct: 1141 gccatcaaccctgtcatctacgccatccgcaatcccaacatttcgatgctcctagggcgc 1200
Query: 1464 ggtctgcaagccagaagccgcagtcgccttcgaaaccgctatgccaaccggctgggggcc 1523
       Sbjct: 1261 ggtctgcaagccagaagccgcagtcgccttcgaaaccgctatgccaaccggctgggggcc 1320
Query: 1524 tgcaacaggatgtcctcttccaacccggccagcggagtggcaggggacgtggccatgtgg 1583
       Sbjct: 1321 tgcaacaggatgtcctcttccaacccggccagcggagtggcaggggacgtggccatgtgg 1380
Query: 1584 gcccgcaaaaatccagttgtacttttctgccgagagggaccaccagagccggtgacggca 1643
       Sbjct: 1381 gcccgcaaaaatccagttgtacttttctgccgagagggaccaccagagccggtgacggca 1440
Query: 1644 gtgaccaaacagcctaaatccgaagctggggataccagcctctaa 1688
       Sbjct: 1441 gtgaccaaacagcctaaatccgaagctggggataccagcctctaa 1485
>gi|32261308|ref|NM 022571.3| LUG Homo sapiens G protein-coupled receptor 135 (G
      Length = \overline{1}485
Score = 2920 bits (1473), Expect = 0.0
Identities = 1400/1485 (94%)
 Strand = Plus / Plus
Sbjct: 1
Query: 264 tccggcgccccctccgcggccggccacctggcgggacttcctccgcggccacggcggcc 323
       {{\}}}
       teeggegeeceteegeggeeggeeacetggeggaetteeteegeggeeacggeggee 120
Sbjct: 61
Query: 324 gtgctctccttcagcaccgtggcgaccgcggcgctggggaacctgagcgacgcaagcgga 383
       Sbjct: 121 gtgctctccttcagcaccgtggcgaccgcggcgctggggaacctgagcgacgcaagcgga 180
111111111111111111
```

Sbjct:	181	ggcggcacagctgccgctcccggtggcggcggccttggcgggtccgggggcagcgcgggag	240
Query:	444	nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	503
Sbjct:	241	gcgggggcggcggtgaggcggctaggccggaggcggcgccgctgctgtcgcacgga	300
Query:	504	gctgcagtggcggcccaggcgctcgtcctcctgctcatcttcctgctgtctagccttggc	563
Sbjct:	301	gctgcagtggcggcccaggcgctcgtcctcctgctcatcttcctgctgtctagccttggc	360
Query:	564	aactgcgcggtgatggggtgattgtgaagcaccggcagctccgcaccgtcaccaacgcc	623
Sbjct:	361		420
Query:	624	ttcatcctgtcgctgtccctatcggatctgctcacggcgctgctctgcctgc	683
Sbjct:	421		480
Query:	684	ttcctggacctcttcactccgcccgggggttcggcgcctgccgccgcgggggccctgg	743
Sbjct:	481		540
Query:	744	cgcggcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcgtgtccacgctc	803
Sbjct:	541		600
Query:	804	agcgtggcgctcatctcgttggaccgttactgcgctatcgtgcggccgccgcgggagaag	863
Sbjct:	601		660
Query:	864	atcggccgccgcgcgctgcagctgctggcgggcgcctggctgacggccctgggcttc	923
Sbjct:	661		720
Query:	924	tccttgccctgggagctgctcgggggcgcccgggaactcgcggcggcagagcttccac	983
Sbjct:	721		780
Query:	984	ggctgcctctaccggacctcccggaccccgcgcagctgggcgcgccttcagcgtgggg	1043
Sbjct:	781	ggctgcctctaccggacctcccggaccccgcgcagctgggcgcgccttcagcgtggg	840
Query:	1044	ctggtggtggcctgctacctgctgcccttcctgctcatgtgcttctgccactaccacatc	1103
Sbjct:	841		900
Query:	1104	tgcaagacggtgcgcctgtcggacgtgcgcgtgcggccggtgaacacctacgcgcgcg	1163

```
Query: 1164 ctgcgcttcttcagcgaggtgcgcacggccaccaccgtcctcatcatgatcgtcttcgtc 1223
       Sbjct: 961 ctgcgcttcttcagcgaggtgcgcacggccaccaccgtcctcatcatgatcgtcttcgtc 1020
Query: 1224 atctgctgctgggggccctactgcttcctggtgctgctggccgccgcccggcaggcccag 1283
       Query: 1284 accatgcaggcccctcgctcctcagcgtggtggccgtctggctgacctgggccaatggg 1343
       Sbjct: 1081 accatgcaggcccctcgctcctcagcgtggtggccgtctggctgacctgggccaatggg 1140
Query: 1344 gccatcaaccctgtcatctacgccatccgcaatcccaacatttcgatgctcctagggcgc 1403
       Sbjct: 1141 gccatcaaccctgtcatctacgccatccgcaatcccaacatttcgatgctcctagggcgc 1200
Query: 1464 ggtctgcaagccagaagccgcagtcgccttcgaaaccgctatgccaaccggctgggggcc 1523
       Sbjct: 1261 ggtctgcaagccagaagccgcagtcgccttcgaaaccgctatgccaaccggctgggggcc 1320
Query: 1524 tgcaacaggatgtcctcttccaacccggccagcggagtggcaggggacgtggccatgtgg 1583
        Sbjct: 1321 tgcaacaggatgtcctcttccaacccggccagcggagtggcaggggacgtggccatgtgg 1380
Query: 1584 gcccgcaaaaatccagttgtacttttctgccgagagggaccaccagagccggtgacggca 1643
        Sbjct: 1381 gcccgcaaaaatccagttgtacttttctgccgagagggaccaccagagccggtgacggca 1440
Query: 1644 gtgaccaaacagcctaaatccgaagctggggataccagcctctaa 1688
        Sbjct: 1441 gtgaccaaacagcctaaatccgaagctggggataccagcctctaa 1485
>qi|2810988|qb|M76676.1|HUMNPIIY20 LUG Homo sapiens leukocyte platelet-activatin
        complete cds
      Length = 1481
 Score = 2700 \text{ bits } (1362), \text{ Expect = } 0.0
 Identities = 1384/1489 (92%), Gaps = 10/1489 (0%)
 Strand = Plus / Plus
Query: 152 ggccgccgccccggtgcgggatgaggagatccgcggccgccactgggccccatggagga 211
```

...

Sbjct:	1	ggccgccgccccggtgcgggatgaggagatccgcggccgccactgggccccatggagga	60
Query: Sbjct:		gccgcagccgccccaccagcgagcatggccttactgggcagccagc	
Query: Sbjct:		cccctccgcggccggccacctggcgggacttcctccgcggccacggcggccgtgctct	
Query: Sbjct:		cttcagcaccgtggcgaccgcggcgctggggaacctgagcgacgcaagcggaggcggcac 	
Query: Sbjct:		agctgccgcnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	
Query: Sbjct:		nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnncegetgetgtegeaeggagetgeagt	
Query: Sbjct:		ggcggcccaggcgctcgtcctcctgctcatcttcctgctgtctagccttggcaactgcgc	
Query: Sbjct:		ggtgatgggggtgattgtgaagcaccggcagctccgcaccgtcaccaacgccttcatcct	
Query: Sbjct:		gtcgctgtccctatcggatctgctcacggcgctgctctgcctgc	
Query:			
Query:		tetgegeegee-ageegettetteagetegtgetteggeategtgteeaegeteagegte	i
Query Sbjct			l
Query	: 870	cgccgccgcgctgcagctgctggcgggcgcctggctgacggccctgggcttctcctt	g 929 I

```
Sbjct: 716 cgccgccgcgctgcagctgctggcgggcgcctggctgacggccctgggcttctccttg 775
Query: 930 ccctgggagctgctcgggggcgccccgggaactcgcggcggcgcagagcttccacggctgc 989
      Sbjct: 776 ccctgggagctgctcggggcgccccgggaactcgcggggccagagcttccacggctgc 835
Query: 990 ctctaccggacctcccggaccccgcgcagctgggcgcggccttcagcgtggggctggtg 1049
      Sbjct: 836 ctctaccggacctcccggaccccgcgcagctgggcggccccttcagcgtggggctggtg 895
Query: 1050 gtggcctgctacctgctgcccttcctgctcatgtgcttctgccactaccacatctgcaag 1109
      Sbjct: 896 gtggcctgctacctgctgcccttcctgctcatctgctactgccactaccacatctgcaag 955
Query: 1170 ttcttcagcgaggtgcgcacggccaccaccgtcctcatcatgatcgtcttcgtcatctgc 1229
       Sbjct: 1015 ttcttcagcgaggtgcgcaccgccaccgtcctcatcatgatcgtcttcgtcatctgc 1074
Query: 1290 caggcccctcgctcctcagcgtggtggccgtctggctgacctgggccaatggggccatc 1349
       Sbjct: 1135 caggcccctcgctcctcagcgtggtggccgtctggctgacctgggccaatggggccatc 1194
Query: 1350 aaccctgtcatctacgccatccgcaatcccaacatttcgatgctcctagggcgcaaccgc 1409
       ការក្រោយប្រជាពិសាយមួយប្រជាពិសាយប្រជាពិស័យមន្ទីរ
Sbjct: 1195 aaccctgtcatctacgccatccgcaatcccaacatttcgatgctcctagggcgcaaccgc 1254
Query: 1470 caagccagaagccgcagtcgccttcgaaaccgctatgccaaccggctgggggcctgcaac 1529
       Sbjct: 1315 caagccagaagccgcagtcgccttcgaaaccgctatgccaaccggctgggggcctgcaac 1374
Query: 1530 aggatgtcctcttccaacccggccagcggagtggcaggggacgtggccatgtgggcccgc 1589
       Sbjct: 1375 aggatgtcctcttccaacccggccagcggagtggcaggggacgtggccatgtggg-ccgc 1433
Query: 1590 aaaaatccagttgtacttttctgccgagagggaccaccagagccggtga 1638
```

Sbjct: 1434 aaaaatccagttgtacttttctgccgaga-ggaccaccagagccggtga 1481

```
Homo sapiens leukocyte platelet-activating factor
>qi|29611577|gb|AY255588.1|
       partial cds
     Length = 546
Score = 1082 bits (546), Expect = 0.0
Identities = 546/546 (100%)
Strand = Plus / Plus
Query: 498 cacggagetgcagtggcggcccaggcgctcgtcctcctgctcatcttcctgctgtctagc 557
       cacqqaqctqcaqtqqcqqcccaqqcqctcqtcctcctqctcatcttcctqctgtctaqc 60
Sbjct: 1
       cttggcaactgcgcggtgatgggggtgattgtgaagcaccggcagctccgcaccgtcacc 617
Query: 558
       cttggcaactgcgcggtgatggggtgattgtgaagcaccggcagctccgcaccgtcacc 120
Sbjct: 61
       aacqccttcatcctqtcqctqtccctatcqqatctqctcacqqcgctqctctqcctqccc 677
Query: 618
       Query: 678 gccgccttcctggacctcttcactccgccgggggttcggcgcctgccgccgcggggg 737
       Sbjct: 181 gccgccttcctggacctcttcactccgcccgggggttcggcgcctgccgccgcggggg 240
       ccctggcgcgcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcgtgtcc 797
Query: 738
       Sbjct: 241 ccctggcgcgcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcgtgtcc 300
       acgctcagcgtggcgctcatctcgttggaccgttactgcgctatcgtgcggccgccgcgg 857
Query: 798
       acgctcagcgtggcgctcatctcgttggaccgttactgcgctatcgtgcggccgccgcgg 360
Sbjct: 301
ggcttctccttgccctgggagctgctcggggcgccccgggaactcgcggcgcgcagagc 977
Query: 918
       ggcttctccttgccctgggagctgctcgggggcgccccgggaactcgcggcgcgcagagc 480
Sbjct: 421
       ttccacggctgcctctaccggacctccccggaccccgcgcagctgggcgcgccttcagc 1037
Query: 978
       Sbict: 481
Query: 1038 gtgggg 1043
       11111
```

the transfer of the first control of

```
Sbjct: 541 gtgggg 546
```

```
Length = 3076
Score = 803 \text{ bits } (405), \text{ Expect = } 0.0
Identities = 771/893 (86%)
Strand = Plus / Plus
        gggccctggcgcgcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcgtg 794
Query: 735
        gggccctggcgcagcttctgcgcagccagccgcttcttcagttcgtgtttcggaatcgta 513
Sbjct: 454
Query: 795 tccacgctcagcgtggcgctcatctcgttggaccgttactgcgctatcgtgcggccgccg 854
        Sbjct: 514 tccacgttcagcgtggcgctcatctcgctggaccgctactgcgccatcgtgcggccgccg 573
Query: 855 cgggagaagatcggccgccgcgcgcgctgcagctgctggcggcgcctggctgacggcc 914
        Query: 915 ctgggcttctccttgccctgggagctgctcgggggcgccccgggaactcgcggcgcgcag 974
        Sbjct: 634 ctgggcttctccctgccctgggacctgctcagggcaccccgggagccccccgctccgcag 693
Query: 975 agcttccacggctgcctctaccggacctccccggaccccgcgcagctgggcggccttc 1034
        Sbjct: 694 agcttccaccgctgcctttacagaacctccccagaccctgcgcagctgggcgtcgcctac 753
Query: 1035 agcgtggggctggtggcctgctacctgctgcccttcctgctcatgtgcttctgccac 1094
        11111111 11111111111 111111 111111 1
Sbjct: 754 agcgtgggactggtggttgctacttgctgcccttcctactgatgtgtttctgccgc 813
Query: 1095 taccacatctgcaagacggtgcgcctgtcggacgtgcgcgtgcggtgaacacctac 1154
        Sbjct: 814 taccacatctgcaagaccgtgcgcctgtcggacgtgcgcgtgcggccgatgaccacttac 873
Query: 1155 gcgcgcgtgctgcgcttcttcagcgaggtgcgcaccggccaccaccgtcctcatcatgatc 1214
        Sbjct: 874 gcgcgcgtgctgcgcttcttcagcgaggtgcgcacagccaccaccgtgctcatcatgatt 933
Query: 1215 gtcttcgtcatctgctgctgggggccctactgcttcctggtgctgctggccgcccgg 1274
         Sbjct: 934 atctttgtcatgtgctgctggggtccctactgcttcctggtgctgctggccgccgacccgg 993
Query: 1275 caggcccagaccatgcaggcccctcgctcctcagcgtggtggccgtctggctgacctgg 1334
         Sbjct: 994 cagggtcaggccacgcaggctccctcgctgctcaatgtggcggctgtttggctgacctgg 1053
```

0014710004

```
Query: 1335 qccaatqqqqccatcaacctqtcatctacqccatccqcaatcccaacatttcqatqctc 1394
        Sbjet: 1054 qccaatqqqqctatcaacccqqtcatatatqccatccqcaaccccaacatttccatqctc 1113
Query: 1395 ctagggcgcaaccgcgaggagggctaccggactaggaatgtggacgctttcctgcccagc 1454
         Sbjct: 1114 ctaggacgcaaccgcgaagaagggtacaggactagaaacatggatgcttttttgcctagc 1173
Query: 1455 cagqqcccqqqtctqcaaqccaqaaqccqcagtcqccttcqaaaccgctatqccaaccgg 1514
         Sbjct: 1174 caaggcctaggttttcaagccagaagtcgcaatcgccttcgaaatggctgtgccaacagg 1233
Query: 1515 ctgggggcctgcaacaggatgtcctcttccaacccggccagcggagtggcaggggacgtg 1574
         1 111111 111
Sbjct: 1234 cttqqqqcttqcaqcaqqatqccttcttccaacccaqctaqtqqqtcaggaqgggaagtg 1293
Query: 1575 gccatgtgggcccgcaaaaatccagttgtacttttctgccgagagggaccacc 1627
         Sbjct: 1294 gtcatgtgggctcgaaaaaatccagttgtgctcttcttccgagagggtccacc 1346
 Score = 260 \text{ bits (131), Expect} = 9e-66
 Identities = 185/203 (91%)
 Strand = Plus / Plus
Query: 486 ccgctgctgtcgcacggagctgcagtggcggcccaggcgctcgtcctcctgctcatcttc 545
        Sbjct: 223 ccgctgctatggcacggggcagcggtggccgcccaggcgctcgtgctcctgctcatcttc 282
Query: 546 ctgctgtctagccttggcaactgcgcggtgatgggggtgattgtgaagcaccggcagctc 605
         Sbjct: 283 ttgctqtctagcctgggcaactgcgcggtgatgggggtgatcgtgaagcatcggcagctg 342
Query: 606 cgcaccqtcaccaacgccttcatcctgtcgctgtccctatcggatctgctcacggcgctg 665
        Sbjct: 343 cgcacggtcacaaacgccttcatcctgtcgctgtccctgtcggacctgctcactgcgctg 402
Query: 666 ctctgcctgccgccgccttcct 688
        14414111 414111111111111
Sbjct: 403 ctctgcctacccgccgccttcct 425
cds
        Length = 1374
 Score = 803 bits (405), Expect = 0.0
 Identities = 771/893 (86%)
```

Strand = Plus / Plus

Query:	735	gggccctggcgcgcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcgtg	794
Sbjct:	421	gggccctggcgcagcttctgcgcagccagccgcttcttcagttcgtgtttcggaatcgta	480
Query:	795	tccacgctcagcgtggcgctcatctcgttggaccgttactgcgctatcgtgcggccgccg	854
Sbjct:	481	tccacgttcagcgtggcgctcatctcgctggaccgctactgcgccatcgtgcggccgccg	540
Query:	855	cgggagaagatcggccgccgccgcgcgctgcagctgctggcgggcg	914
Sbjct:	541	cgggacaagctgggccggcggcgcgctgcagctgctggcaggagcgtggttggctgcg	600
Query:	915	ctgggcttctccttgccctgggagctgctcgggggcgccccgggaactcgcggcgcag	
Sbjct:	601	ctgggcttctccctgccctgggacctgctcagggcaccccgggagccccccgctccgcag	660
Query:	975	agcttccacggctgcctctaccggacctccccggaccccgcgcagctgggcgcgccttc	
Sbjct:		agcttccaccgctgcctttacagaacctccccagaccctgcgcagctgggcgtcgcctac	
Query:	1035	agcgtggggctggtggcctgctacctgctgcccttcctgctcatgtgcttctgccac	
Sbjct:		agcgtgggactggtggcttgctacttgctgcccttcctactgatgtgtttctgccgc	
		taccacatctgcaagacggtgcgcctgtcggacgtgcgcgtgcggccggtgaacacctac	
		taccacatctgcaagaccgtgcgcctgtcggacgtgcgcgtgcggccgatgaccacttac	
Query:	1155	gcgcgcgtgctgcgcttcttcagcgaggtgcgcaccgccaccaccgtcctcatcatgatc	
Sbjct:	841	gcgcgcgtgctgcgcttcttcagcgaggtgcgcacagccaccaccgtgctcatcatgatt	900
Query:	1215	gtcttcgtcatctgctgctgggggccctactgcttcctggtgctgctggccgcccgg	1274
		atctttgtcatgtgctgctggggtccctactgcttcctggtgctgctggccgcgacccgg	
		caggcccagaccatgcaggcccctcgctcctcagcgtggtggccgtctggctgacctgg	
		cagggtcaggccacgcaggctccctcgctgctcaatgtggcggctgtttggctgacctgg	
		gccaatggggccatcaaccctgtcatctacgccatccgcaatcccaacatttcgatgctc	
		gccaatggggctatcaacccggtcatatatgccatccgcaaccccaacatttccatgctc	1080
Query:	1395	ctagggcgcaaccgcgaggagggctaccggactaggaatgtggacgctttcctgcccagc	: 1454

```
Sbjct: 1081 ctaqqacqcaaccqcqaaqaaqgqtacaqqactagaaacatqqatqcttttttqcctaqc 1140
Query: 1455 cagggcccgggtctgcaagccagaagccgcagtcgccttcgaaaccgctatgccaaccgg 1514
         Sbjct: 1141 caaggcctaggttttcaagccagaagtcgcaatcgccttcgaaatggctgtgccaacagg 1200
Query: 1515 ctgggggcctgcaacaggatgtcctcttccaacccggccagcggagtggcaggggacgtg 1574
         11 1111 111 111 111111 1 11111111111 11 11 11 11 11 11
Sbjct: 1201 cttggggcttgcagcaggatgccttcttccaacccagctagtgggtcaggaggggaagtg 1260
Query: 1575 gccatgtgggcccgcaaaaatccagttgtacttttctgccgagagggaccacc 1627
          Sbjct: 1261 gtcatgtgggctcgaaaaaatccagttgtgctcttcttccgagagggtccacc 1313
 Score = 260 \text{ bits (131)}, Expect = 9e-66
 Identities = 185/203 (91%)
 Strand = Plus / Plus
Query: 486 ccgctgctgtcgcacggagctgcagtggcggcccaggcgctcgtcctcctgctcatcttc 545
         Sbjct: 190 ccgctgctatggcacggggcagcggtggccgcccaggcgctcgtgctcctgctcatcttc 249
Query: 546 ctgctgtctagccttggcaactgcgcggtgatgggggggtgattgtgaagcaccggcagctc 605
          Sbjct: 250 ttgctgtctagcctgggcaactgcgcggtgatgggggtgatcgtgaagcatcggcagctg 309
Query: 606 cgcaccgtcaccaacgccttcatcctgtcgctgtccctatcggatctgctcaccggcgctg 665
         Sbjct: 310 cgcacggtcacaaacgccttcatcctgtcgctgtccctgtcggacctgctcactgcgctg 369
Query: 666 ctctgcctgcccgccgccttcct 688
         1111111 1111111111111
Sbjct: 370 ctctgcctacccgccgccttcct 392
                        D Mus musculus chromosome 12, clone RP23-301G24, compl
>gi|32964966|gb|AC110170.6|
        Length = 173081
 Score = 803 bits (405), Expect = 0.0
 Identities = 771/893 (86%)
 Strand = Plus / Minus
           gggccctggcgcgcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcgtg 794
 Query: 735
           Sbjct: 35355 gggccctggcgcagcttctgcgcagccagccgcttcttcagttcgtgtttcggaatcgta 35296
           tccacqctcagcqtqgcqctcatctcqttqqaccqttactqcqctatcqtqcqqccqccg 854
 Query: 795
```

Sbjct:	35295	tccacgttcagcgtggcgctcatctcgctggaccgctactgcgccatcgtgcggccgccg	35236
Query: Sbjct:		cgggagaagatcggccgccgcgcgcgctgcagctgctggcgggcg	
Query: Sbjct:		ctgggcttctccttgccctgggagctgctcggggcgcccgggaactcgcggcggcgcag	974 35116
Query: Sbjct:		agettecaeggetgeetetaeeggaeeteeeeggaeeeeggeagetgggegeette	
Query: Sbjct:		agcgtggggctggtggtcgctgctacctgctgcccttcctgctcatgtgcttctgccac	
Query: Sbjct:		taccacatctgcaagacggtgcgcctgtcggacgtgcgcgtgcggccggtgaacacctac	
		gcgcgcgtgctgcgcttcttcagcgaggtgcgcacggccaccaccgtcctcatcatgatc	
Query: Sbjct:		gtcttcgtcatctgctgctgggggccctactgcttcctggtgctgctggccgcccgg	
Query: Sbjct:		caggcccagaccatgcaggccccctcgctcctcagcgtggtggccgtctggctgacctgg	
_		gccaatggggccatcaaccctgtcatctacgccatccgcaatcccaacatttcgatgctc	
		ctagggcgcaaccgcgaggagggctaccggactaggaatgtggacgctttcctgcccagc	
		cagggcccgggtctgcaagccagaagccgcagtcgccttcgaaaccgctatgccaaccgg	
Query	: 1515	ctgggggcctgcaacaggatgtcctcttccaacccggccagcggagtggcaggggacgtg	1574

```
Sbjct: 34575 cttggggcttgcagcaggatgccttcttccaacccagctagtgggtcaggagggaagtg 34516
Query: 1575 gccatgtgggcccgcaaaaatccagttgtacttttctgccgagagggaccacc 1627
           Sbjct: 34515 gtcatgtgggctcgaaaaaatccagttgtgctcttcttccgagagggtccacc 34463
 Score = 260 \text{ bits (131), Expect} = 9e-66
 Identities = 185/203 (91%)
 Strand = Plus / Minus
           ccgctgctgtcgcacggagctgcagtggcggcccaggcgctcgtcctcctgctcatcttc 545
Query: 486
           Sbjct: 35586 ccgctgctatggcacggggcagcggtggccgcccaggcgctcgtgctcctgctcatcttc 35527
           ctgctgtctagccttggcaactgcgcggtgatggggggtgattgtgaagcaccggcagctc 605
Query: 546
            Sbjct: 35526 ttgctgtctagcctgggcaactgcgcggtgatgggggtgatcgtgaagcatcggcagctg 35467
           cgcaccgtcaccaacgccttcatcctgtcgctgtccctatcggatctgctcacggcgctg 665
Query: 606
           Sbjct: 35466 cgcacggtcacaaacgccttcatcctgtcgctgtccctgtcggacctgctcactgcgctg 35407
           ctctqcctqccqccqccttcct 688
Query: 666
           Sbjct: 35406 ctctgcctacccgccgccttcct 35384
 Score = 58.0 bits (29), Expect = 7e-05
 Identities = 45/49 (91%), Gaps = 1/49 (2%)
 Strand = Plus / Minus
           tcctgcgtaaacacgcggttccctcggcaacgc-tggaacccacgtcaa 51
Query: 4
           18881118811 | 1111881111111811 | 1 1118811111
Sbjct: 35943 tcctgcgtaaataggcggttccctcggcaacgcctagaacccacgtcaa 35895
>qi|32306523|ref|NM 181752.1| LU Mus musculus G protein-coupled receptor 135 (Gpr
         Length = 1374
 Score = 803 bits (405), Expect = 0.0
 Identities = 771/893 (86%)
 Strand = Plus / Plus
 Query: 735 gggccctggcgcgcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcgtg 794
           Sbjct: 421 gggccctggcgcagcttctgcgcagccagccgcttcttcagttcgtgtttcggaatcgta 480
 Query: 795 tccacgctcagcgtggcgctcatctcgttggaccgttactgcgctatcgtgcggccgccg 854
```

Sbjct:	481		540
Query:	855	cgggagaagatcggccgccgcgcgctgcagctgctggcgggcg	914
Sbjct:	541	cgggacaagctgggccggcgcgcgcgctgcagctgctggcaggagcgtggttggctgcg	600
Query:	915	ctgggcttctccttgccctgggagctgctcgggggcgccccgggaactcgcgggcgcag	974
Sbjct:	601	ctgggcttctccctgccctgggacctgctcagggcaccccgggagccccccgctccgcag	660
Query:	975	agcttccacggctgcctctaccggacctccccggaccccgcgcagctgggcgcgccttc	1034
Sbjct:	661	agcttccaccgctgcctttacagaacctccccagaccctgcgcagctgggcgtcgcctac	720
Query:	1035	agcgtggggctggtggcctgctacctgctgcccttcctgctcatgtgcttctgccac	
Sbjct:	721	agcgtgggactggtggcttgctacttgctgcccttcctactgatgtgtttctgccgc	780
		taccacatctgcaagacggtgcgcctgtcggacgtgcgcgtgcggccggtgaacacctac	
Sbjct:	781	taccacatctgcaagaccgtgcgcctgtcggacgtgcgctgcggccgatgaccacttac	840
Query:	1155	gcgcgcgtgctgcgcttcttcagcgaggtgcgcacggccaccaccgtcctcatcatgatc	
Sbjct:	841	gcgcgcgtgctgctcttcagcgaggtgcgcacagccaccaccgtgctcatcatgatt	900
		gtcttcgtcatctgctgctgggggccctactgcttcctggtgctgctggccgcccgg	
Sbjct:	901	atctttgtcatgtgctgctggggtccctactgcttcctggtgctgctggccgcgacccgg	960
Query:	1275	caggcccagaccatgcaggcccctcgctcctcagcgtggtggccgtctggctgacctgg	
Sbjct:	961	cagggtcaggccacgcaggctccctcgctgctcaatgtggcggctgtttggctgacctgg	1020
		gccaatggggccatcaaccctgtcatctacgccatccgcaatcccaacatttcgatgctc	
		gccaatggggctatcaacccggtcatatatgccatccgcaaccccaacatttccatgctc	
		ctagggcgcaaccgcgaggagggctaccggactaggaatgtggacgctttcctgcccagc	
		ctaggacgcaaccgcgaagaagggtacaggactagaaacatggatgcttttttgcctagc	
		cagggcccgggtctgcaagccagaagccgcagtcgccttcgaaaccgctatgccaaccgg 	
SDJCt:	1141		
A	1616	strangent acabacagatatectettecaacecageageageageageageageageageageageageagea	157

```
Sbjct: 1201 cttqqqqcttqcaqcaggatqccttcttccaacccaqctagtgggtcaggaggggaagtg 1260
Query: 1575 gccatgtgggcccgcaaaaatccagttgtacttttctgccgagagggaccacc 1627
        Sbjct: 1261 gtcatgtgggctcgaaaaatccagttgtgctcttcttccgagagggtccacc 1313
Score = 260 \text{ bits (131)}, Expect = 9e-66
Identities = 185/203 (91%)
Strand = Plus / Plus
Query: 486 ccgctgctgtcgcacggagctgcagtggcggcccaggcgctcgtcctcctgctcatcttc 545
       Sbjct: 190 ccgctgctatggcacggggcagcggtggccgcccaggcgctcgtgctcctgctcatcttc 249
Query: 546 ctgctgtctagccttggcaactgcgcggtgatgggggtgattgtgaagcaccggcagctc 605
        Sbjct: 250 ttgctgtctagcctgggcaactgcgcggtgatgggggtgatcgtgaagcatcggcagctg 309
Query: 606 cgcaccgtcaccaacgccttcatcctgtcgctgtccctatcggatctgctcacggcgctg 665
        Sbjct: 310 cgcacggtcacaaacgccttcatcctgtcgctgtccctgtcggacctgctcactgcgctg 369
Query: 666 ctctgcctgcccgccgccttcct 688
        11111111
Sbjct: 370 ctctgcctacccgccgccttcct 392
>qi|32165543|gb|AY288430.1| LU Rattus norvegicus G protein-coupled receptor 135 (
        complete cds
       Length = 1374
 Score = 783 \text{ bits } (395), Expect = 0.0
 Identities = 797/931 (85%)
 Strand = Plus / Plus
Query: 733 cggggccctggcggcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcg 792
        Sbjct: 419 cggggccctggcgcagcttctgcgccgccagccgcttcttcagttcgtgtttcggcatcg 478
Query: 793 tgtccacgctcagcgtggcgctcatctcgttggaccgttactgcgctatcgtgggccgc 852
         Sbjct: 479 tctccacgttcagcgtggcgctcatctcgctggaccgctactgcgccatcgtgcggccgc 538
```

Query:	913	ccctgggcttctccttgccctgggagctgctcgggggcgccccgggaactcgcggcggcgc	
Sbjct:	599	cgctcggcttctccctgccctgggagctgctccgggcaccccggggagcccccgactccgc	658
Query:	973	agagettecaeggetgeetetaeeggaeeteeeeggaeeeegegeagetgggegegeet	
Sbjct:	659	agagcttccaccgctgcctttacagaacctccccagaccctgcgcagctgggcgccgctt	/18
		tcagcgtggggctggtggcctgctacctgctgcccttcctgctcatgtgcttctgcc	
Sbjct:	719	acagcgtggggctggtggcttgctacctgctgcccttcctgctgatgtttctgcc	778
Query:	1093	actaccacatctgcaagacggtgcgcctgtcggacgtgcgcggtgcggcggtgaacacct	1152
Sbjct:	779	gctaccacatctgcaagactgtgcgcctgtcggacgtgcgtg	838
Query:	1153	acgcgcgcgtgctgcgcttcttcagcgaggtgcgcacggccaccaccgtcctcatcatga	1212
Sbjct:	839	atgcgcgcgtgctgcgctttttcagcgaggtgcgcaccgccaccaccgtgctcatcatga	898
Query:	1213	tcgtcttcgtcatctgctgctgggggccctactgcttcctggtgctgctgccgcccc	1272
Sbjct:	899	ttgtctttgtcatctgctgctggggcccctactgcttcctggtgttgttggctgctaccc	958
Query:	1273	ggcaggcccagaccatgcaggccccctcgctcctcagcgtggtggccgtctggctgacct	1332
Sbjct:	959		1018
Query:	1333	gggccaatggggccatcaaccctgtcatctacgccatccgcaatcccaacatttcgatgc	1392
Sbjct:	1019	gggccaatggagctatcaacccggtcatatatgccatccgcaaccctaacatttctatgt	1078
Query:	1393	tectagggegeaacegegaggagggetaceggactaggaatgtggaegettteetgeeea	1452
Sbjct:	1079		1138
Query:	1453	gccagggcccgggtctgcaagccagaagccgcagtcgccttcgaaaccgctatgccaacc	: 1512
Sbjct:	1139		1198
Query:	1513	ggctgggggcctgcaacaggatgtcctcttccaacccggccagcggagtggcaggggac	g 157:
Sbjct:	1199		125
Query	: 157	3 tggccatgtgggcccgcaaaaatccagttgtacttttctgccgagagggaccaccagag	c 163
			1

```
Query: 1633 cggtgacggcagtgaccaaacagcctaaatc 1663
        1 11 1 111111 111111111 111111
Sbjct: 1319 cagttatggcagtctacaaacagcataaatc 1349
Score = 258 bits (130), Expect = 3e-65
Identities = 189/214 (88%)
Strand = Plus / Plus
Ouery: 481 nnnnnccqctqctqtcqcacggagctgcagtggcgcccaggcgctcgtcctcctgctca 540
           Sbjct: 185 cggcaccgctgctttggcacggggcagcagtggccgcccaggcgctcgtgctcctgctca 244
Query: 541 tcttcctgctgtctagccttggcaactgcgcggtgatgggggtgattgtgaagcaccggc 600
        Sbjct: 245 tcttcttactgtctagcctgggaaactgcgcggtgatgggggtgatcgtgaagcaccggc 304
Query: 601 agctccgcaccgtcaccaacgccttcatcctgtcgctgtccctatcggatctgctcacgg 660
        Sbjct: 305 agctgcgcacggtcaccaacgccttcatcctatcgctgtccctgtcggacctgctcactg 364
Query: 661 cgctgctctgcctgcccgccgccttcctggacct 694
        11111111111 | 111111111111111 | 11111
Sbjct: 365 cgctgctctgcttacccgccgccttcctcgacct 398
                      LU Rattus norvegicus G protein-coupled receptor 135
>gi|32401462|ref|NM 181771.1|
       Length = 1374
 Score = 783 \text{ bits } (395), \text{ Expect = } 0.0
 Identities = 797/931 (85%)
 Strand = Plus / Plus
         cggggccctggcgcgcttctgcgccgccagccgcttcttcagctcgtgcttcggcatcg 792
Query: 733
         Sbjct: 419 cggggccctggcgcagcttctgcgccgccagccgcttcttcagttcgtgtttcggcatcg 478
Query: 793 tgtccacgctcagcgtggcgctcatctcgttggaccgttactgcgctatcgtgcggccgc 852
         Sbjct: 479 tctccacgttcagcgtggcgctcatctcgctggaccgctactgcgccatcgtgcggccgc 538
Query: 913 ccctgggcttctccttgccctgggagctgctcgggggcgccccgggaactcgcggcggcgc 972
         Sbjct: 599 cgctcggcttctccctgccctgggagctgctccgggcaccccggggagcccccgactccgc 658
```

```
Query: 973 agagettecacggetgeetetaceggaceteceeggacecegegcagetgggegeget 1032
                   Sbjct: 659 agagettecacegetgeetttacagaacetececagaeeetgegeagetgggegeegett 718
Query: 1033 tcagcgtggggctggtggtggcctgctacctgctgcccttcctgctcatgtgcttctgcc 1092
                     Sbjct: 719 acagcgtggggctggtggtggcttgctacctgctgcccttcctgctgatgtgtttctgcc 778
Query: 1093 actaccacatctgcaagacggtgcgcctgtcggacgtgcgcgtgcggccggtgaacacct 1152
                     Query: 1153 acgcgcgcgtgctgcgcttcttcagcgaggtgcgcaccggccaccaccgtcctcatcatga 1212
                   Sbjct: 839 atgcgcgcgtgctgcgctttttcagcgaggtgcgcacggccaccaccgtgctcatcatga 898
Query: 1213 tcgtcttcgtcatctgctggtggggccctactgcttcctggtgctgctgctgccgccc 1272
                    Sbjct: 899 ttgtctttgtcatctgctgctggggcccctactgcttcctggtgttgttggctgctaccc 958
Query: 1273 ggcaggcccagaccatgcaggcccctcgctcctcagcgtggtggccgtctggctgacct 1332
                    Sbjct: 959 ggcagggtcagaccacacaggctccctcgctgctcaatgtggcagctgtttggctgacct 1018
Query: 1333 gggccaatggggccatcaacctgtcatctacgccatccgcaatcccaacatttcgatgc 1392
                    1141141111 11 45441111 11111 43 1111114111 11 11411444 111
Sbjct: 1019 gggccaatggagctatcaacccggtcatatatgccatccgcaaccctaacatttctatgt 1078
Query: 1393 tcctagggcgcaaccgcgaggagggctaccggactaggaatgtggacgctttcctgccca 1452
                    1181841 1188118111 11811 11 11811 11 1181 1 1181 1 1181 1
Sbjct: 1079 tcctaggtcgcaaccgcgaagagggatataggactagaaacatggatgtttttttgccta 1138
Query: 1453 gccagggcccgggtctgcaagccagaagccgcagtcgccttcgaaaccgctatgccaacc 1512
                    Sbjct: 1139 gccaaggcctaggttttcaggccagaagtcgcaatcgccttcgaaatggctgtgccaaca 1198
 Query: 1513 ggctgggggcctgcaacaggatgtcctcttccaacccggccagcggagtggcaggggacg 1572
                    fills filles that therefor a statement is the fill.
                                                                                                   1 111111 1
 Sbjct: 1199 ggcttggggcttgcagcaggatgccttcttccaaccccgctagtgggtcaggaggggaag 1258
 Query: 1573 tggccatgtgggcccgcaaaaatccagttgtacttttctgccgagagggaccaccagagc 1632
                     111 | 1111 | 1111 | 11 | 1111 | 1111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 
 Sbjct: 1259 tggtcatgtgggctcgaaaaacccagttgtgctcttcttccgagaggatccaccagacc 1318
 Query: 1633 cggtgacggcagtgaccaaacagcctaaatc 1663
                                            1 11 1 111111
 Sbjct: 1319 cagttatggcagtctacaaacagcataaatc 1349
```

Length = 3056

the transfer of the second sections and

```
Score = 258 \text{ bits } (130), Expect = 3e-65
Identities = 189/214 (88%)
Strand = Plus / Plus
Query: 481 nnnnnccgctgctgtcgcacggagctgcagtggcggcccaggcgctcgtcctcctgctca 540
             Sbjct: 185 cggcaccgctgctttggcacggggcagcagtggccgcccaggcgctcgtgctcctgctca 244
Query: 541 tcttcctgctgtctagccttggcaactgcgcggtgatgggggggtgattgtgaagcaccggc 600
         Sbjct: 245 tcttcttactgtctagcctgggaaactgcgcggtgatgggggtgatcgtgaagcaccggc 304
Query: 601 agctccgcaccgtcaccaacgccttcatcctgtcgctgtccctatcggatctgctcacgg 660
         Sbjct: 305 agctgcgcacggtcaccaacgccttcatcctatcgctgtccctgtcggacctgctcactg 364
Query: 661 cgctgctctgcctgccgcccttcctggacct 694
         11111111111 1 1111111111111111111
Sbjct: 365 cgctgctctgcttacccgccgccttcctcgacct 398
>gi|32563165|emb|BX004994.6| D Zebrafish DNA sequence from clone DKEY-24J15 in lin
           complete sequence
        Length = 211945
 Score = 137 bits (69), Expect = 9e-29
 Identities = 159/189 (84%)
 Strand = Plus / Minus
Query: 1059 tacctgctgcccttcctgctcatgtgcttctgccactaccacatctgcaagacggtgcgc 1118
                         Sbjct: 94318 tacctgcttcccttcgccctcatgtgcttctgccactacaacatctgcaaaacagtccgg 94259
Query: 1119 ctgtcggacgtgcgcgtgcggtgaacacctacgcgcgcgtgctgcgcttcttcagc 1178
           Sbjct: 94258 ctgtcggagatcagggtgcggccggtcaccacttacgcgcacctgttgcgcttctacagc 94199
Query: 1179 gaggtgcgcacggccaccaccgtcctcatcatgatcgtcttcgtcatctgctgctggggg 1238
           Sbjct: 94198 gagatgcgcaccgcgaccaccgtgctcatcatgattgtgttcagcatcttctgctggggg 94139
Query: 1239 ccctactgc 1247
           111111111
 Sbjct: 94138 ccctactgc 94130
 >qi|6031165|ref|NM 001480.2| LUG Homo sapiens galanin receptor 1 (GALR1), mRNA
```

02/17/200A

```
Score = 46.1 \text{ bits } (23), \text{ Expect = } 0.25
Identities = 32/35 (91%)
Strand = Plus / Plus
Query: 1057 gctacctgctgcccttcctgctcatgtgcttctgc 1091
           Sbjct: 1395 gctacctgctgccgctcctgctcatctgcttctgc 1429
>gi|24648696|ref|NM 169955.1| LU Drosophila melanogaster CG10823-PB [Drosophila m
           (CG10823) mRNA, complete cds
         Length = 1752
 Score = 46.1 bits (23), Expect = 0.25
 Identities = 23/23 (100%)
 Strand = Plus / Plus
Query: 1048 tggtggcctgctacctgctgccc 1070
           1111111111111
Sbjct: 1346 tggtggcctgctacctgctgccc 1368
>gi|24648694|ref|NM 142709.1| LU Drosophila melanogaster CG10823-PA [Drosophila m
            (CG10823) mRNA, complete cds
          Length = 4523
 Score = 46.1 \text{ bits } (23), \text{ Expect = } 0.25
 Identities = 23/23 (100%)
 Strand = Plus / Plus
Query: 1048 tggtggcctgctacctgctgccc 1070
            1111111111111111111111111
Sbjct: 1346 tggtggcctgctacctgctgccc 1368
>qi|34895453|ref|NM 184181.1| U Oryza sativa (japonica cultivar-group) P0037C04.21
            mRNA
          Length = 1020
 Score = 46.1 bits (23), Expect = 0.25
 Identities = 29/31 (93%)
  Strand = Plus / Minus
 Query: 1196 caccgtcctcatcatgatcgtcttcgtcatc 1226
            Sbjct: 991 caccgtcctcatcatcctcgtcttcgtcatc 961
```

Drosophila melanogaster RE47636 full insert cDNA

>gi|33589379|qb|BT009988.1| Length = 4808

Length = 199285

```
Score = 46.1 bits (23), Expect = 0.25
Identities = 23/23 (100%)
Strand = Plus / Plus
Query: 1048 tggtggcctgctacctgctgccc 1070
          111111111111111111111111
Sbjct: 1387 tggtggcctgctacctgctgccc 1409
clone:P0037C04
        Length = 137879
Score = 46.1 bits (23), Expect = 0.25
 Identities = 29/31 (93%)
 Strand = Plus / Minus
Query: 1196 caccgtcctcatcatgatcgtcttcgtcatc 1226
          Sbjct: 73349 caccgtcctcatcatcctcgtcttcgtcatc 73319
Length = 175527
 Score = 46.1 bits (23), Expect = 0.25
 Identities = 32/35 (91%)
 Strand = Plus / Plus
           gctacctgctgcccttcctgctcatgtgcttctgc 1091
Query: 1057
            Sbjct: 141358 gctacctgctgccgctcctgctcatctgcttctgc 141392
>qi|23171864|qb|AE003734.2| LID Drosophila melanogaster chromosome 3R, section 72
           complete sequence
        Length = 241480
 Score = 46.1 bits (23), Expect = 0.25
 Identities = 23/23 (100%)
 Strand = Plus / Minus
Query: 1048 tggtggcctgctacctgctgccc 1070
           111111111111111111111111
Sbjct: 66542 tggtggcctgctacctgctgccc 66520
                         D Homo sapiens chromosome 18, clone RP11-707P24, comp
>gi|25140120|gb|AC096709.19|
```

```
Score = 46.1 bits (23), Expect = 0.25
Identities = 32/35 (91%)
Strand = Plus / Minus
            gctacctgctgcccttcctgctcatgtgcttctgc 1091
Query: 1057
            Sbjct: 154584 gctacctgctgccgctcctgctcatctgcttctgc 154550
>qi|17861010|qb|AC008308.8| D Drosophila melanogaster, chromosome 3R, region 93C-9
            BACR10M16, complete sequence
         Length = 195868
 Score = 46.1 bits (23), Expect = 0.25
 Identities = 23/23 (100%)
 Strand = Plus / Minus
            tggtggcctgctacctgctgccc 1070
Query: 1048
            111111111111
Sbjct: 140664 tggtggcctgctacctgctgccc 140642
>gi|16258972|gb|AC008309.7| Drosophila melanogaster, chromosome 3R, region 93D-9
           BACR06L13, complete sequence
         Length = 162770
 Score = 46.1 bits (23), Expect = 0.25
 Identities = 23/23 (100%)
 Strand = Plus / Minus
Query: 1048 tggtggcctgctacctgctgccc 1070
            Sbjct: 26083 tggtggcctgctacctgctgccc 26061
                           Homo sapiens galanin receptor 1 mRNA, complete cds
>qi|44355566|qb|AY541036.1|
         Length = 1050
 Score = 46.1 bits (23), Expect = 0.25
 Identities = 32/35 (91%)
 Strand = Plus / Plus
Query: 1057 gctacctgctgcccttcctgctcatgtgcttctgc 1091
           111111111111111 11111111111 1111111111
Sbjct: 623 gctacctgctgccgctcctgctcatctgcttctgc 657
Length = 1796
 Score = 46.1 bits (23), Expect = 0.25
```

```
Identities = 32/35 (91%)
Strand = Plus / Plus
Query: 1057 gctacctgctgcccttcctgctcatgtgcttctgc 1091
           11111111111111
Sbjct: 1721 gctacctgctgccgctcctgctcatctgcttctgc 1755
                               Homo sapiens galanin receptor (Gall-R) mRNA,
>gi|1297337|gb|U53511.1|HSU53511
         Length = 1053
 Score = 46.1 \text{ bits (23), Expect} = 0.25
 Identities = 32/35 (91%)
 Strand = Plus / Plus
Query: 1057 gctacctgctgcccttcctgctcatgtgcttctgc 1091
           11111111111111
Sbjct: 623 gctacctgctgccgctcctgctcatctgcttctgc 657
>qi|775209|qb|U23854.1|HSU23854 LU Human galanin receptor mRNA, complete cds
         Length = 1050
 Score = 46.1 bits (23), Expect = 0.25
 Identities = 32/35 (91%)
 Strand = Plus / Plus
Query: 1057 gctacctgctgcccttcctgctcatgtgcttctgc 1091
           Sbjct: 623 gctacctgctgccgctcctgctcatctgcttctgc 657
>gi[559047|gb]L34339.1|HUMGALAREC LU Human galanin receptor mRNA, complete cds
         Length = 1053
 Score = 46.1 bits (23), Expect = 0.25
 Identities = 32/35 (91%)
 Strand = Plus / Plus
Query: 1057 gctacctgctgcccttcctgctcatgtgcttctgc 1091
            Sbjct: 623 gctacctgctgccgctcctgctcatctgcttctgc 657
 >gi|12328514|dbj|AP002909.2| D Oryza sativa (japonica cultivar-group) genomic DNA,
             clone: P0044F08
          Length = 141528
 Score = 46.1 bits (23), Expect = 0.25
  Identities = 29/31 (93%)
  Strand = Plus / Minus
```

```
Query: 1196 caccgtcctcatcatgatcgtcttcgtcatc 1226
           1111111111111111 11111111111111111
Sbjct: 24919 caccgtcctcatcatcctcgtcttcgtcatc 24889
                          Mus musculus BAC clone RP24-121D5 from 9, complete s
>gi|22296778|gb|AC121870.2|
         Length = 191747
 Score = 44.1 bits (22), Expect = 0.98
 Identities = 22/22 (100%)
 Strand = Plus / Minus
            cgctagccccggccccgagcc 135
Query: 114
             11111111111
Sbjct: 162779 cgctagccccggccccgagcc 162758
>gi|13677146|gb|AC013726.7| D Homo sapiens BAC clone RP11-400N9 from 2, complete s
         Length = 214647
 Score = 44.1 \text{ bits } (22), \text{ Expect} = 0.98
 Identities = 22/22 (100%)
 Strand = Plus / Plus
Query: 1059 tacctgctgcccttcctgctca 1080
           111111111111111111111111
Sbjct: 938 tacctgctgcccttcctgctca 959
Length = 299925
 Score = 44.1 bits (22), Expect = 0.98
 Identities = 22/22 (100%)
 Strand = Plus / Minus
            ctccgcggccacggcggccgtg 326
 Query: 305
            4111111111111111111111
 Sbjct: 61594 ctccgcggccacggcggccgtg 61573
 >gi|5001541|gb|AC005520.2|AC005520
          Length = 151123
  Score = 44.1 bits (22), Expect = 0.98
  Identities = 22/22 (100%)
  Strand = Plus / Plus
             ggaggagccgcagccgcccgc 227
 Query: 206
```

```
1111111111111111111111111
Sbjct: 28563 ggaggagccgcagccgcccgc 28584
sequence
         Length = 226642
 Score = 44.1 bits (22), Expect = 0.98
 Identities = 22/22 (100%)
 Strand = Plus / Minus
Query: 1050 gtggcctgctacctgctgccct 1071
            11111111111111111111
Sbjct: 37854 gtggcctgctacctgctgccct 37833
>gi|33457241|gb|AC127554.4| D Mus musculus BAC clone RP24-323K23 from chromosome 8
           sequence
         Length = 178416
 Score = 42.1 \text{ bits } (21), \text{ Expect = } 3.9
 Identities = 21/21 (100%)
 Strand = Plus / Minus
Query: 719 gcctgccgccgcggggcc 739
           111111111111111111111
Sbjct: 6735 gcctgccgccgcgggggcc 6715
>gi|21618432|gb|BC032702.1| LUG Homo sapiens G protein-coupled receptor 3, mRNA
           IMAGE:5247608), complete cds
          Length = 2145
 Score = 42.1 bits (21), Expect = 3.9
 Identities = 27/29 (93%)
 Strand = Plus / Plus
Query: 1347 atcaaccctgtcatctacgccatccgcaa 1375
            111111111 111111111111 111111
 Sbjct: 969 atcaaccctatcatctacgccttccgcaa 997
                            D Mus musculus BAC clone RP23-155H5 from 8, complete s
 >gi|28630143|gb|AC124170.3|
          Length = 235023
  Score = 42.1 bits (21), Expect = 3.9
  Identities = 21/21 (100%)
  Strand = Plus / Minus
              gcctgccgccgcggggcc 739
 Query: 719
```

03/17/2004

```
1111111111
Sbjct: 224800 gcctgccgccgcgcggggcc 224780
>gi[38089509|ref[XM 357908.1] LU Mus musculus similar to SON protein (SON3) (Nega
           element-binding protein) (NRE-binding protein) (DBP-5)
           (Bax antagonist selected in saccharomyces 1) (BASS1)
           (LOC384869), mRNA
          Length = 1047
 Score = 42.1 \text{ bits } (21), \text{ Expect = } 3.9
 Identities = 21/21 (100%)
 Strand = Plus / Plus
Query: 719 gcctgccgccgcggggcc 739
           1111111111111111111111
Sbjct: 10 gcctgccgccgcggggcc 30
>qi|37533899|ref|NM 196270.1| U Oryza sativa (japonica cultivar-group) Centrin (OS
           mRNA
          Length = 2565
 Score = 42.1 bits (21), Expect = 3.9
 Identities = 24/25 (96%)
 Strand = Plus / Minus
Query: 749 cttctgcgccgccagccgcttcttc 773
            111111111111 11111111111111
Sbjct: 135 cttctgcgccgtcagccgcttcttc 111
>gi|23325376|qb|AE014636.1| D Bifidobacterium longum NCC2705 section 23 of 202 of
             genome
           Length = 11431
 Score = 42.1 \text{ bits } (21), \text{ Expect = } 3.9
 Identities = 21/21 (100%)
  Strand = Plus / Plus
 Query: 308 cgcggccacggcggccgtgct 328
             1111111111111111111111
 Sbjct: 7922 cgcggccacggcggccgtgct 7942
 >gi|32567975|qb|AC105258.2| D Oryza sativa (japonica cultivar-group) chromosome 5
              complete sequence
           Length = 71145
  Score = 42.1 \text{ bits (21), Expect} = 3.9
  Identities = 21/21 (100%)
  Strand = Plus / Plus
```

. . .

me emt at ant

A 14 7 12 A A A

```
Query: 304 cctccgcggccacggcggccg 324
           11111111111111111111111
Sbjct: 20100 cctccgcggccacggcggccg 20120
                        D Oryza sativa (japonica cultivar-group) chromosome 10
>qi|31431814|qb|AE017089.1|
           of the complete sequence
        Length = 300029
Score = 42.1 bits (21), Expect = 3.9
 Identities = 24/25 (96%)
Strand = Plus / Plus
           cttctgcgccgccagccgcttcttc 773
           Sbjct: 67166 cttctgcgccgtcagccgcttcttc 67190
Length = 168656
 Score = 42.1 bits (21), Expect = 3.9
 Identities = 21/21 (100%)
 Strand = Plus / Plus
            gcctgccgccgcggggcc 739
            Sbjct: 134923 gcctgccgccgcggggcc 134943
>gi|44886087|dbj|AB164051.1| Oryzias latipes cGK I beta mRNA for cGMP-dependent pr
          beta, complete cds
         Length = 2506
 Score = 42.1 bits (21), Expect = 3.9
 Identities = 21/21 (100%)
 Strand = Plus / Minus
Query: 1198 ccgtcctcatcatgatcgtct 1218
          Sbjct: 891 ccgtcctcatcatgatcgtct 871
>gi|44886085|dbj|AB164050.1| Oryzias latipes cGK I alpha mRNA for cGMP-dependent p
           alpha, complete cds
         Length = 2579
 Score = 42.1 bits (21), Expect = 3.9
 Identities = 21/21 (100%)
 Strand = Plus / Minus
```

```
Query: 1198 ccgtcctcatcatgatcgtct 1218
          Sbjct: 964 ccgtcctcatcatgatcgtct 944
>gi|29366932|gb|AC009033.10|
                           ■ Homo sapiens chromosome 16 clone RP11-140I24, compl
         Length = 158628
 Score = 42.1 bits (21), Expect = 3.9
 Identities = 21/21 (100%)
 Strand = Plus / Minus
            ccttcctggacctcttcactc 702
Query: 682
            1111111111111111111
Sbjct: 72712 ccttcctggacctcttcactc 72692
Length = 11923
 Score = 42.1 bits (21), Expect = 3.9
 Identities = 21/21 (100%)
 Strand = Plus / Plus
Query: 1251 ctggtgctgctggccgccgcc 1271
           1111111111111111111111
Sbjct: 6287 ctggtgctgctggccgcc 6307
Lambda
          K
           0.711
                    1.31
    1.37
Gapped
Lambda
          K
                    1.31
           0.711
    1.37
Gap Penalties: Existence: 5, Extension: 2
Number of Hits to DB: 14,905,373
Number of Sequences: 2102977
Number of extensions: 5816
Number of successful extensions: 19
Number of sequences better than 10.0: 0
Number of HSP's better than 10.0 without gapping: 0
Number of HSP's successfully gapped in prelim test: 18
length of query: 1860
 length of database: 10,130,642,339
A: 0
X1: 11 (20.0 bits)
X2: 15 (30.0 bits)
X3: 25 (50.0 bits)
```

S1: 12 (25.0 bits)

03/17/2004

11

Disclaimer | Write to the Help Desk NCBI | NLM | NIH

Mar 11 2004 07:26:05

//

Disclaimer | Write to the Help Desk NCBI | NLM | NIH

Mar 11 2004 07:26:05


```
pathway [goid 0007186] [evidence IEA];
                    go process: biological_process unknown [goid 0000004]
                     [evidence ND] [pmid 1374385]"
                     /codon start=1
                     /product="putative leukocyte platelet-activating factor
                     receptor"
                     /protein_id="NP_072093.2"
                     /db xref="GI:32261309"
                     /db_xref="GeneID:64582"
                     /db xref="LocusID:64582"
                     /db xref="MIM: 607970"
                     /translation="MEEPOPPRPPASMALLGSOHSGAPSAAGPPGGTSSAATAAVLSF
                     STVATAALGNLSDASGGGTAAAPGGGGLGGSGAAREAGAAVRRPLGPEAAPLLSHGAA
                     VAAQALVLLLIFLLSSLGNCAVMGVIVKHRQLRTVTNAFILSLSLSDLLTALLCLPAA
                     FLDLFTPPGGSAPAAAAGPWRGFCAASRFFSSCFGIVSTLSVALISLDRYCAIVRPPR
                     EKIGRRRALOLLAGAWLTALGFSLPWELLGAPRELAAAQSFHGCLYRTSPDPAQLGAA
                     FSVGLVVACYLLPFLLMCFCHYHICKTVRLSDVRVRPVNTYARVLRFFSEVRTATTVL
                     IMIVFVICCWGPYCFLVLLAAARQAQTMQAPSLLSVVAVWLTWANGAINPVIYAIRNP
                     NISMLLGRNREEGYRTRNVDAFLPSQGPGLQARSRSRLRNRYANRLGACNRMSSSNPA
                     SGVAGDVAMWARKNPVVLFCREGPPEPVTAVTKQPKSEAGDTSL"
                     358..1161
    misc feature
                     /gene≃"GPR135"
                     /note="7tm 1; Region: 7 transmembrane receptor (rhodopsin
                     family)"
                     /db xref="CDD:5814"
                     <976..1230
    misc feature
                     /gene="GPR135"
                     /note="KOG4220; Region: Muscarinic acetylcholine receptor
                     [Signal transduction mechanisms]"
                     /db xref="CDD:21996"
                     complement (14)
    variation
                     /replace="T"
                     /replace="G"
                     /db xref="dbSNP:1752428"
                     105
    <u>variation</u>
                     /gene="GPR135"
                     /replace="C"
                     /replace="A"
                     /db xref="dbSNP:3742645"
                     248
    variation
                     /gene="GPR135"
                     /replace="T"
                     /replace="C"
                     /db xref="dbSNP: 3742646"
                     complement (1442)
     variation
                     /replace="G"
                     /replace="A"
                     /db xref="dbSNP:1752427"
ORIGIN
        1 atggaggage egeageegee eegeecacea gegageatgg cettactggg cagecageae
       61 teeggegeee ceteegegge eggeeeacet ggegggaett ceteegegge caeggeggee
      121 gtgctctcct tcagcaccgt ggcgaccgcg gcgctgggga acctgagcga cgcaagcgga
      181 ggcggcacag ctgccgctcc cggtggcggc ggccttggcg ggtccggggc agcgcgggag
      241 gcgggggcgg cggtgaggcg gccgctaggc ccggaggcgg cgccgctgct gtcgcacgga
      301 gctgcagtgg cggcccaggc gctcgtcctc ctgctcatct tcctgctgtc tagccttggc
      361 aactgcgcgg tgatgggggt gattgtgaag caccggcagc tccgcaccgt caccaacgcc
      421 ttcatcctgt cgctgtccct atcggatctg ctcacggcgc tgctctgcct gcccgccgcc
      481 tteetggace tetteactee geeegggggt teggegeetg eegeegeege ggggeeetgg
      541 egeggettet gegeegeeag eegettette agetegtget teggeategt gteeaegete
      601 agcgtggcgc tcatctcgtt ggaccgttac tgcgctatcg tgcggccgcc gcgggagaag
```

NCBI Sequence Viewer

```
661 ateggeegee geegegeget geagetgetg gegggegeet ggetgaegge cetgggette 721 teettgeet gggagetget eggggegee egggaacteg eggeggega gagetteeae 781 ggetgeetet aceggaeete eeeggaeeee gegeagetgg gegeggeett eagegtggg 841 etggtggtgg eetgetaeet getgeeette etgeteatgt gettetgeea etaceaete 901 tgeaagaegg tgegeetge ggaeggeeg gtgeggeegg tgaacaeeta eggegegtg 961 etgegettet teagegaggt gegeaeggee aceaeegtee teateatgat egtetteegt 1021 atetgetget gggggeeeta etgetteetg gtgetgetgg eegeegeegg geaggeeeag 1081 aceatgeagg eeeeeteete etgeteete gtgetgetgg eegeegeegg ggeeaatggg 1141 geeateaaee etgteateta egeeateege aateeeaaea tttegatget eetagggege 1201 aacegegagg agggetaeeg gaetaggaat gtggaegett teetgeeag eeagggeeeg 1261 ggtetgeaag eeagaageeg eagtegeett egaaaeeget teetgeeag getggggee 1321 tgeaaeagga tgteetette eaaeeeggee ageggagtgg eaggggaegt ggeeatgtgg 1381 geeegeaaaa ateeagttgt aetttetge egaageggae eaceaggee ggtgaeegea 1441 gtgaeeaaae ageetaaate egaagetggg gataeeagee tetaa
```

Disclaimer | Write to the Help Desk NCBI | NLM | NIH

Mar 11 2004 07:26:05

SEARCH

Search for products using a keyword, CAS number, or Cayman catalog number.

CZMES

Other resources

· Order Terms

Printed Catalog

Enter the catalog numbers

to your shopping cart.

of products you wish to add

©

· MSDSs Distributors

ORDER

Home

Features

- · What sets our kits apart?
- · COX-3 News
- · PGE2-FPIA

Products

- Product Lines
- Advanced Product Search
- New Products
- · Assay Kits
- Promotional Products
- · Cayman Challenge
- · Analysis Tools
- · Assay Service

Corporate Info

- · Company Profile
- · Conferences
- Employment
- · Favorite Links

Literature Request

- · New Product Update
- · Print Catalog
- · Poster Request
- · Scientific Illustrations

Contact Us

- · Customer Service
- · Technical FAQ
- · Technical Services
- Distributors
- Funds Request
- · Website Feedback

Other

- Site Map
- Browser Recommendation
- Order Terms
- · Privacy Statement

© 2004 Cayman Chemical

1180 Fast Elisworth Road Ann Arhar Michiann 49109

160600 PAF Receptor (human) **Monoclonal** Antibody

Description

Antigen: human amino _{pr}acids 260-269 an(dLGFQDSKFHQ)1 2 3 ·

orffost: mouse · Cross-

reactivity: (+) human,

PAF receptor ·

Applications: flow

cytometry,

may not work for

Clone designation:

11A4 (done 21) · PAF

is a potent

phospholipid mediator

which exerts diverse

biological actions by

interaction with a G

protein-coupled PAF

receptor. The PAF

receptor has been

cloned from a number

of species including

human, rat, and

quinea pig and is

Related Products

LOGIN bovine, and porcine email password COURT immunocytochemistry; REGISTER New to Cayman? Western blot · IgG2a · Click here to discover the benefits of becoming a registered user. RECISTER

NEW PRODUCT IDEAS

VIEW

SHOPPING CART

empty.

Your shopping cart is

Do you have any new product ideas?

SUGGEST

RECENTLY BROWSED

in catalog number order

· PAF Receptor (human) **Monoclonal Antibody**

OHIL ALDOL, PHENISON TOTOL

toll free 800.364.9897 direct dial 734.971.3335 protein coupied in receptor. The PAF receptor has been cloned from a number of species including human, rat, and guinea pig and is characterized as a 7transmembrane receptor which induces phosphoinositol turnover through Gprotein coupling.1 2 3 4 5 Northern blot analysis reveals that the receptor is expressed in leukocytes, placenta, lung, spleen, small intestine, kidney, liver, and brain.3 4 In leukocyte cell populations the receptor is found on platelets, myocytes, neutrophils, and Bcells, whereas resting T-cells and natural killer cell lines do not express the PAF receptor.6 Human monocytes treated with INF-y have a 2-6 fold increase in PAF receptor expression compared to untreated cells.7

1 Nakamura, M., Honda, Z.,

Helping to make your research possible by providing quality biochemicals and assays for research in

- & cancer
- inflammation
- neuroscience
- nitric oxide
- oxidative injury
- endocrinology

and much more.

izumi, 1., et al. Molecular cloning and expression of platelet-activating factor receptor from human leukocytes. J. Biol. Chem. 266, 20400-20405 (1991). ² Kunz, D., Gerard, N.P., and Gerard, C. The human leukocyte platelet-activating factor receptor. cDNA cloning, cell surface expression, and construction of a novel epitope-bearing analog. J. Biol. Chem. 267, 9101-9106 (1992). ³ Ye, R.D., Prossnitz, E.R., Zou, A., et al. Characterization of a human cDNA that encodes a functional receptor for platelet activating factor. Biochem. Biophys. Res. Commun. 180, 105-111 (1991). ⁴ Bito, H., Honda, Z., Nakamura, M., et al. Cloning, expression and tissue distribution of rat plateletactivating-factor-receptor cDNA. Eur. J. Biochem. 227, 211-218 (1994). ⁵ Honda, Z., Nakamura, M., Miki, I., et al. Cloning by functional expression of platelet-activating factor receptor from guinea-plg lung. Nature 349, 342-346 (1991).Müller, E., Dagenais, P.,

```
Alami, N., et al. Identification
and functional
characterization of platelet-
activating factor receptors in
human leukocyte populations
using polyclonal anti-peptide
antibody. Proc. Natl. Acad.
Sci. USA 90, 5818-5822
(1993).
7 Queilet, S., Müller, E., and
Rola-Pleszczynski, M. IFN-y
up-regulates platelet-
activating factor receptor
gene expression in human
monocytes. J. Immunol. 152,
5092-5099 (1994).
General
References
There
are
no
general
references
associated
with
this
```

Download
Product
Insert
126 Kb PDF

Download
Material
Safety
Data
Sheet
(MSDS) 8
Kb PDF

Printerfriendly

product.

version
of this
page
small PDF
(usually
less than
100 Kb)
• US
Letter
paper 8½*
× 11*
• A4
paper

21cm × 29.7cm

Pricing Information

Pricing
is
for
North
America
only.
Other
customers
should
contact
a
distributor
in
their
region.

This
product
is
also
available
in
bulk
quantities.
Please
contact
our
Sales

Department

<sales@caymanchem.com>
for
a
quote.

Item
total
\$0.00 •
Shopping
cart
total
\$0.00

Size Price Quantity

Pricing updated 2004-03-16

1 ea \$150.00

Update and View Cart

Home

Custom Primers | Technical Resources

Online Catalog - Invitrogen Clones

Ultimate™ ORF Browser:

Advanced Search for Ultimate™ ORF Clones

Invitragen Clanes

Search Clones

Constance "

Utmate" ORF Browser

Important Gene Formés

Clone Collections

Utmate** OFF Oures

Genestorm & Cones

Full Length Clones

670ms

BACAMCCOmes

Search By Sequence Browse By Gene Ontology

33 total records for G-Protein Coupled Receptors

Buy	Clone ID	Species	D-0-14	Gene Symbol
Γ	10H3294	Human	complement component 5 receptor 1 (CSa ligand); complement component-5 receptor-2 (CSa ligand)	CSR1
Γ	IOH12614	Human	purinergic receptor P2Y, G-protein coupled, 11	P2RY11
ſ.	IOH22483	Kuman	done NGC:33224 IMAGE:5267661, mRNA, complete cds.	RDC1
τ.	IOH1403	2 Human	Similar to putative nuclear protein ORF1-FL49	ORF1-FL49
Γ.	80H114B	4 Human	glycoprotein Ib (platelet), alpha polypeptide	GP18A
Г	10H1987	Human	tachytinin receptor 1 isoform short; (IK-1 receptor; Tachytinin receptor 1 (substance P receptor; neurolinin-1 receptor); tachytinin 1 receptor (substance P receptor, neurolinin 1 receptor); neurolinin 1 receptor	TACRI
	* BOH1305	Mumman M	similar to POSSIBLE GUSTATORY RECEPTOR CLOKE PTE01	rociizis:
	SOH331	Human	coequiation factor II (thrombin) receptor-like 1	F281.1
Γ	10H962	1 Human	vescective intestinal peptide receptor 2	VIPR2
Γ		29. Humar	endothelin receptor type A	EDNRA
C	808226	3Z Human	Similar to perathyroid hormone receptor 1, clone NGC:34562 BNAGE:S180885, mRNA, complete cds.	PTHR1
ſ	_ 30H135	83 Huma	Delity blood group	. •
ſ	80H45	15 Humo	Cholecystotisis & receptor	CCKBR
1		033 Stum e	endothelist differentiation, tyrophosphatidic acid G-protein-coupled receptor 4; G protein-coupled receptor; LPA receptor EDG4; Lyrophosphatidic acid receptor EDG4	. 60G4
1	20HT	966 Hum	CD97 antigen teoform 2 precursor; festincyte antigen CD97; seven-span Grandmembrane protein	CD17
1	C 10102	1622 Hum	 dermyl peptide receptor-like Lj lipenin A4 receptor (formyl peptide receptor existed) 	* PPRLE
	10002	2662 Hum	edrenemedullin receptor	ADKR
	_ 10Hz	3232 Num	super concerved receptor expressed in brain 3	SRE63

Customer Service: 1800 786 1236 Technical Support: 318 219 1123 318 798 1849

Info@fabgennix.com www.fabgennix.com

New Item

Novel Orphan retinal G-protein coupled Receptor (GPCR-75) selective antibodies

Anti-GPCR-75Antibodies (GPCR75-100P, GPCR75-101AP and GPCR75-112AP)

ecently a novel human G-protein coupled receptor gene has been characterized and mapped to chromosome 2p16. This gene codes for a 540 amino acid protein in retinal pigment epithelium (RPE) and cells surrounding retinal arterioles. In contrast, the Northern blot data obtained from mouse sections suggest the expression of transcripts in photoreceptor inner segments and I outer plexiform layer. The transcripts of the GPCR-75 gene (7kb) are also found in abundance in brain sections. So far, no mutations in GPCR-75 protein were identified in patients suffering from Doyne's honeycomb retinal dystrophy (DHRD), an inherited retinal degeneration disease that maps to chromosome

The GPCR-75 protein is approximately 78 kDa (540 amino acids) protein that is primarily expressed in human retinal pigment epithelium 2p16(1). (RPEs). The GPCR-75 sequence analyses suggest the presence of 7 trans-membrane domains, a characteristic feature of GPCR. The protein has putative N-glycosylation sites near the extra cellular N-terminal end of the proteins. The protein has a large 3 intra cellular loop which might be the site for interaction of G-proteins. The short carboxy terminal is intracellular and has putative post-translational modification lipid

The Anti-GPCR-75-selective antibodies were generated against conserved sequences near N- and C-termini of the protein that are unique modification sites. to GPCR-75 protein. The polyclonal antibody strongly labels a 78 kDa protein in RPE cell extracts. Anti-GPCR-75-selective antibody is also available in affinity-purified form for confocal, Western blotting and immunocytochemical analyses. FabGennix Int. Inc. will also conjugate antibodies with fluorescent probes upon request at extra charge. FabGennix Int. Inc. will also provides antibodies against proteins that are involved in retinal degenerative diseases such as various Anti-PDE antibodies, Anti-MERTK, Anti-Phospho-MERTK, EGF-containing fibulin like intracellular protein (EFEMP1), Anti-Myocilin (TIGR), Anti-Bestrophin, Anti-ELVOL4 and a Usher syndrome specific Anti-USH2a antibodies etc. FabGennix Int. Inc employs cyclic peptide methodology for generating antibodies, which results in higher titer and specificity (2). FabGennix Int. Inc., will also provide Western blot positive controls for most of these antibodies in ready-to-use buffer for easy identification of respective proteins. Limited quantities of antigens are also available. Please enquire for their availability before ordering.

101 tespoente branc			Ta adadha	Quantity	volume	Price
O-tolog #	Host Species		0.000 .000		400	
Catalog #	Cobbit	Polycional antisera	IR.M.H			\$ 195.00
GPCR75-100P		Folydonal anderes	R, M, H	100 ug	150 ul	\$ 225.00
GPCR75-101AP	Rabbit	Lauring barring a 19 a			150 ul	\$ 225.00
GPCR75-112AP	Rebbit		R, M, H	1.04-8		
		WB positive control	Rat	For 5 App		
PC-GPCR75	N/A	THE POSITION COLLEGE	ala	250 ug	inquire	\$ 65.00
P-GPCR75	N/A	Antigenic peptides	lua	1		

R = set; M = mouse; H = human; C = chicken; shortk = monkey; * not all variants are labeled equally

Immunogen:

Synthetic cyclic poptide (GPCR75-101AP = PNATSLHVPHSQEGNSTS-amide; GPCR75-112AP =

STSLOBOLODIJHTATLYTC-emide).

Concentration: OPCR75-101AP, GPCR-112AP 1gG concentration 0.75-1.25 ang/asl in 50% antibody stabilization buffer.

Applications:

Antibody GPCR75-100/GPCR75-101AP are ideal for WB, DAM and EHC assays. The dilutions for this antibody is for

softwares only, investigators are expected to determine the optimal conditions for appelling assessment in the optimal conditions for appelling assessment in his/her inhometery. Distribus: WB > 1:500; immunoprecipitation & i.p pull-down assesys > 1:250

Reactivity: Protocols:

This antibody detects a single 78 kDs Outher GPCR75 protein in human RPE cell extracts. Standard protocol for various applications (WB; BAM and HIC) of this antibody is provided with the

product specification shoot, however, Pub Gennix Int. Inc. strongly recommends investigators to

aptimize conditions for use of this antibody in their laboratories.

Form/Storage:

The antisorum is supplied in antibody stabilization buffer with 0.02% sodium azide or thimerosal/merthiolate as preservative. The affinity-putited antibodies are purified on antigen-speharose affinity column and supplied as 1-1.25 mg/ml (gG in antibody stabilization buffer containing preservatives with low viscosity and cryogenic properties. For long-term storage of antibodies, store at -20°C. Now these antibodies can be stored at -20°C and immediately with out thewing. FebGennix Inc. does not recommend storage of very dilute antibody solutions enless they are prepared in specially formulated multi use entitledy dilution buller (Cat & DiuOBuller). Working solutions of entibodies in DiluOBuffer should be filtered through 0.45µ filter effer every use for long-term storage.

Turuclin B. E., Krischner L. S., Bellingham J., Baffi. J. Taymanas S. E., Gregor B. K., Czaky K., Stratakis C. A., Gregory-Evens C. Y. Blochem. Biophys. Res. Commun. 260, 174-180, 1999.

Farooqui, S. M., Brock. W. J., A. Hamdl., Presad. C. (1991) J. Neurochem. 57, 1363-1369.

* For users who may require large amounts of OPCR75-100P or OPCR75-101AP, please enquire about bulk material disco This Product is for Research Use Only and is NOT intended for use in humans or clinical diagnosis.

78 kDa Orphan Receptor-75 in human RPE cells. Antibody GPCR-100P (1:400)

061901-0020SF1001Z-rev10.00

78 HDa GP-75

生工有限公司: Rat Taste Recotor 2 (TR2) Antibodies

Rat Taste Receptor 2 (TR2) Antibodies

Rat Taste Receptor 2 (TR2) Antibodies

Cat. # TR21-P, Rat TR2 Control Peptide # 1, SIZE: 100 ug/100 ul

FORM: Œ Soln Œ Lyophilized Lot # 3113P

Cat. # TR21-S, Rabbit Anti-rat TR2 antiserum # 1, SIZE: 100 ul neat antiserum

FORM: Œ Soln Œ Lyophilized. Lot # 38889S

Cat. # TR21-A, Rabbit Anti-rat TR2 Ab # 1 (affinity pure) SIZE: 100 ug

FORM: Œ Soln Œ Lyophilized. Lot # 38889A

Higher vertebrates are believed to possess at least five basic tastes: Sweet, bitter, sour, salty, and unami (the taste of monosodium glutamate). Taste receptor cells that may selectively reside in various parts of the tongue and respond to different tastants and perceive these taste modalities. Circumvallate papillae, found at the very back of the tongue, are particularly sensitive to biter substances. Foliate papillae, found at the posterior lateral edge of the tongue, are sensitive to sour and bitter. Fungiform papillae at the front of the tongue specialize in sweet taste.

Recently, two novel taste receptors, TR1 and TR2, have been cloned with distinct topographical distribution in taste receptor cells and taste buds. TRs are members of a new group of 7 TM domain containing GPCR distantly related to other chemosensory receptors (Ca+-sensing receptor (CaSR, a family of putative hormone receptor (V2R), and metabotropic glutamate receptors). TR1 is expressed in all fungiform taste buds, whereas TR2 localized to the circumvallate taste buds. Both receptors do not co-localize with gustducin.

Source of Antigen and Antibodies

TR1 (rat 840 aa) and TR2 (rat 843 aa) share ~40% homology with each other, and ~30% with CaSR, and 22-30% with V2R pheromone receptors and mGLURs. Rat TR are 7 TM domain containing protein with an extra long N-terminal, extracellular domain (1). A 19 AA Peptide (designated TR21-P; control peptide) sequence near the C-terminus of rat TR2(1) was selected for antibody production. The peptide was coupled to KLH, and antibodies generated in rabbits. Antibody has been affinity purified using control peptide-Sepharose.

Form & Storage

Control peptide Solution is provided in PBS, pH 7.4 at 1 mg/ml (100 ug/100 ul). Antiserum is supplied as neat serum (100 ul soln or lyophilized). Affinity pure antibodies were purified over the peptide-Sepharose column and supplied as 1 mg/ml soln in PBS, pH 7.4 and 0.1% BSA as stabilizer (100 ul in solution or Lyophilized).

The peptides and antibodies also contain 0.1% sodium azide as preservative. Lyophilized products should be reconstituted in 100 ul water and gently mixed for 15 min at room temp. All peptide/antibody

生工有限公司: Rat Taste Recortor 2 (TR2) Antibodies

received in solution or

reconstituted from lyophilized vials should be stored frozen at -20oC or below in suitable aliquots. It is not recommended to store diluted solutions. Avoid repeated freeze and thaw.

Recommended Usage

Western Blotting (1:1K-5K for neat serum and 1-10 ug/ml for affinity pure antibody using ECL technique).

ELISA: Control peptide can be used to coat ELISA plates at 1 ug/ml and detected with antibodies (1:10-50K for neat serum and 0.5-1 ug/ml for affinity pure).

Histochemistry & Immunofluorescence: We recommend the use of affinity purified antibody at 1-20 ug/ml in paraformaldehyde fixed sections of tissues (1).

Specificity & Cross-reactivity

The 19 AA rat TR21-P control peptide is specific for rat TR2. It has no significant sequence homology with TR1 or gustducin or pheromone receptors. Antibody cross-reactivity in various species has not been studied. The TR21-P control peptide is available to confirm specificity of antibodies.

References:

1. Hoon MA et al (1999) Cell 96, 541-555; Lindemann B (1999) Nature Med. 5, 381-382

"Neat Antisera" are the unpurified antiserum and it is suitable for ELISA and Western.
"Affinity pure" antibodies have been over the antigen-affinity column and recommended for immunohistochemical applications.

"Control peptides" can not be used for Western as they are very short peptides. They are intended for ELISA or antibody competition studies.

List of Related Products

採購找生工,預算最輕鬆。

回頁首回

全省免付费服務事線: 0800-072-222 | 電話: (02)27474876 | 传真: (02)28238024

網站:www.mdbio.com.tw | 電子郵件:mdbio@mdbio.com.tw

中華民國92年06月09日更新