Fonctions

Eyal Shukrun

October 30, 2020

Une fonction est définie par trois choses:

- Un ensemble de départ
- Un ensemble d'arrivée
- Une équation

1 Definitions

1.1 Ensemble de définition

Soit $\mathbb{D} = \{1, 2, -2, 4, 5\}$ et $f(x) = x^2$

Pour chaque élement a de \mathbb{D} il existe $a^2 \in \mathbb{R}$

 Ici, \mathbb{D} est considéré comme le הגדרה de f(x) (l'ensemble des inputs, ou l'ensemble de départ) et \mathbb{R} est appelé מווח (l'ensemble des outputs, ou ensemble d'arrivée).

1.2 Image

f(x) est l'image (התמונה) de x a travers f.

L'ensemble des outputs est l'image de f elle même (par exemple, pour $f(x) = x^2$ définie sur $\{2, -2, 3, 5, 7\}$, $\{4, 9, 25, 49\}$ est l'image).

L'image d'une fonction est comprise dans son domaine d'arrivée.

2 Définir une fonction

2.1 Grâce à ses domaines de départ et d'arrivée

On peut définir une fonction en définissant son domaine de départ et les points qui lui correspondent.

Par exemple, pour la fonction $f(x) = x^2$ définie sur $\{-2, 2, 3, 4, 5\}$:

2.1.1 Avec un tableau

2.1.2 Avec des couples ordonnés

Le premier chiffre du couple correspond a l'input et le deuxième a l'output:

$$f = \{(-2,4), (2,4), (3,9), (4,16), (5,25)\}$$

Remarque: On note ce groupe f car il represente la fonction f.

Remarque: Si une fonction f est définie de \mathbb{D} a T $(f: D \to T)$, et que S est un sous ensemble de \mathbb{D} $(S \subseteq D)$, alors l'image de S par f est écrite f(S). f(S) contient toutes les images des éléments de S par f.

Attention: Pour qu'un ensemble de groupes ordonnés soit representatif d'une fonction, il est impératif de ne pas trouver deux tuples avec le meme premier élement.

2.2 Avec une équation

Pour définir une fonction, une équation n'est pas suffisante, il faut aussi préciser son domaine de définition.

$$f: Z \to Z$$
$$f(x) = x^2 + 7x - 15$$

3 Fonctions bijectives, surjectives et injectives

3.1 Fonctions bijectives

Une fonction bijective (פונקציה חד חד ערכית) est une fonction qui n'a qu'un seul input par output.

3.2 Fonctions surjectives

Une fonction surjective est une fonction pour laquelle chaque élément de l'ensemble d'arrivée est l'image d'au moins un élément de l'ensemble de départ, cela implique que $f: A \to B \Rightarrow f(A) = B$

4 Démonstrations

4.1 Prouver qu'une fonction est bijective

Pour prouver qu'une fonction est bijective, il suffit de prouver que:

$$f(a) = f(b) \Rightarrow a = b$$

4.2 Prouver que l'image d'une fonction appartient a un ensemble

Soit:

$$f: R \to R$$
$$f(x) = \frac{1}{2}x - \frac{1}{2}$$

Prouver que f(R) = R:

- **1. Prouver que** $f(R) \subseteq R$, il n'y a rien a prouver.
- **2. Prouver que** $R \subseteq f(R)$ **:**

Soit $y \in R$, prouvons que $y \in f(R)$

C'est a dire prouvons qu'il existe $x \in R$ tel que $f(x) \in R$.

C'est a dire prouvons qu'il existe pour tout $x \in R$ f(x) = y

$$x = 2(y + \frac{1}{2})$$

$$x = 2y + 1$$

$$f(x) = f(2y + 1)$$

$$f(2y + 1) = \frac{1}{2}(2y + 1) - \frac{1}{2}$$

$$f(2y + 1) = y + \frac{1}{2} - \frac{1}{2}$$

$$f(2y + 1) = y$$

5 Composition de fonctions

Soit une fonction f et une fonction g, tel que l'ensemble d'arrivée de f est compris dans l'ensemble de départ de g. Il existe donc une nouvelle fonction g(f(x)), qui est

une composition de f et g, notée $g \circ f$.

Remarque: $g \circ f$ n'est pas pareil que $f \circ g$, l'ordre compte (l'input rentre dans la fonction la plus a droite d'abord).

6 Fonctions inverses

Soit f une fonction bijective (pour chaque output, il n'existe qu'un seul input), existe t'il une fonction permettant de passer d'une output a l'input qui lui correspond ? C'est le principe de la fonction inverse (פּונקציה הפוכה), notée f^{-1} .

Ainsi,
$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

On peut aussi dire que $f^{-1} = \{(y,x) | (x,y) \in F\}$

6.1 Fonction identité

Une fonction identité (פונקצית זהות) est une fonction dont chaque input est son propre output.

Ainsi, la fonction $f^{-1} \circ f$ est une fonction identité.

Remarque: Pour tout $f: S \to D$, $f^{-1} \circ f = I_S$ (I_S est la fonction identi)