

STB26NM60N, STP26NM60N

N-channel 600 V, 0.135 Ω typ., 20 A MDmesh™ II Power MOSFETs in D²PAK and TO-220 packages

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ΙD
STB26NM60N	600 V	0.165 Ω	20 A
STP26NM60N	600 V	0.165 12	20 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Applications

• Switching applications

Description

These devices are N-channel Power MOSFETs developed using the second generation of MDmesh™ technology. This revolutionary Power MOSFET associates a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STB26NM60N	OCNIMCONI	D²PAK	Tape and reel
STP26NM60N	26NM60N	TO-220	Tube

Contents

1	Electric	al ratings	3
2		cal characteristics	
	2.1		
3	Test cir	cuits	
4	Packag	e information	g
	4.1		
	4.2	D2PAK packaging information	12
	4.3	TO-220 type A package information	14
5	Revisio	n history	16

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	600	V
V_{GS}	Gate-source voltage	±30	V
ΙD	Drain current (continuous) at T _C = 25 °C	20	Α
ΙD	Drain current (continuous) at T _C = 100 °C	12.6	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	80	Α
Ртот	Total dissipation at T _C = 25 °C	140	W
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature range	FF to 1F0	°C
Tj	Operating junction temperature range	-55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter		Value		
Symbol			TO-220	Unit	
R _{thj-case}	Thermal resistance junction-case	0.89		°C/W	
R _{thj-amb}	Thermal resistance junction-ambient	62.5		°C/W	
R _{thj-pcb} (1)	Thermal resistance junction-pcb	30		°C/W	

Notes

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AS}	Single pulse avalanche current (pulse width limited by T _{jmax})	6	Α
E _{AS}	Single pulse avalanche energy (starting T _J =25 °C, I _D =I _{AS} , V _{DD} =50 V)	610	mJ

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 20~A,~di/dt \leq 400~A/\mu s,~V_{DS(peak)} \leq V_{(BR)DSS},~V_{DD} = 80\%~V_{(BR)DSS}$

 $^{^{(1)}}$ When mounted on FR-4 board of 1inch², 2oz Cu, t < 10 s.

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0 V	600			V
	Zaro goto voltago drain	V _{GS} = 0 V, V _{DS} = 600 V			1	
I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 ^{\circ}\text{C}^{(1)}$			100	μΑ	
Igss	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±0.1	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 10 A		0.135	0.165	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1800	-	pF
Coss	Output capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz},$	-	115	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0 V		6	-	pF
Coss eq.	Equivalent output capacitance	V _{GS} = 0 V, V _{DS} = 0 to 480 V	-	310	-	pF
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 20 \text{ A},$	-	60	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	8.5	-	nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior"	-	30	-	nC
Rg	Gate input resistance	f=1 MHz, I _D =0 A	-	2.8	-	Ω

Notes:

 $^{(1)}C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

⁽¹⁾Defined by design, not subject to production test.

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 10 \text{ A}, R_G = 4.7 \Omega,$	1	13	-	ns
tr	Rise time	V _{GS} = 10 V (see Figure 13: "Test circuit for	ı	25	1	ns
t _{d(off)}	Turn-off delay time	resistive load switching times" and		85	-	ns
t _f	Fall time	Figure 18: "Switching time waveform")	-	50	-	ns

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		20	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		80	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 20 A, V _{GS} = 0	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/μs	-	370		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 15: "Test circuit for		5.8		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	31.6		Α
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/µs	-	450		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$ (see Figure 15: "Test circuit for	-	7.5		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	32.5		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 10: Normalized gate threshold voltage vs temperature AM03321v1 $V_{GS(th)}$ (norm) 1.1 $ID = 250 \,\mu A$ 1.0 0.9 0.8 0.7 -50 -25 50 75 100 0 25 TJ(°C)

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

Figure 14: Test circuit for gate charge behavior

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 D2PAK (TO-263) type A package information

Figure 19: D²PAK (TO-263) type A package outline

Table 9: D²PAK (TO-263) type A package mechanical data

	bie 9. D-FAR (10-203) tyl	mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Figure 20: D²PAK (TO-263) recommended footprint (dimensions are in mm)

4.2 D2PAK packaging information

Figure 21: Tape outline

Figure 22: Reel outline

Table 10: D2PAK tape and reel mechanical data

Таре				Reel		
Dim.	n	nm	Dim.	mm		
Dim.	Min.	Max.	Dim.	Min.	Max.	
A0	10.5	10.7	А		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
E	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1	Base q	uantity	1000	
P2	1.9	2.1	Bulk quantity 10		1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

4.3 TO-220 type A package information

Figure 23: TO-220 type A package outline

Table 11: TO-220 type A mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

5 Revision history

Table 12: Document revision history

Date	Revision	Changes	
29-Apr-2009	1	First release.	
17-Dec-2009	2	Added new package, mechanical data: D2PAK	
20-Jun-2011	3	Inserted device in I²PAK.	
13-Mar-2012	4	Updated P _{TOT} and derating factor in <i>Table 2</i> . Update R _{thj-case} for TO-220FP in <i>Table 3</i> . Update <i>Figure 10</i> and <i>Figure 15</i> . Update <i>Section 5: Packaging mechanical data</i> .	
20-Jun-2012	5	Updated title on the cover page. Minor text changes.	
09-Sep-2013	6	 The part numbers STI26NM60N and STW26NM60N have been moved to the separate datasheets Modified: V_{GS} value in <i>Table 2</i>. 	
12-Dec-2016	7	The part number STF26NM60N has been moved to a separate datasheet. Modified Table 2: "Absolute maximum ratings", Table 3: "Thermal data", Table 5: "On/off states", Table 6: "Dynamic" and Table 7: "Switching times". Modified Section 2.1: "Electrical characteristics (curves)". Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

STB26NM60N STP26NM60N