I INTRODUCTION I 1

1 Introduction I

Definition 1.1 (Symmetric function). A function $\varphi(x_1,\ldots,x_n)$ is called *symmetric* if

$$\varphi(x_1,\ldots,x_n)=\varphi(x_{\omega(1)},\ldots,x_{\omega(n)})$$

for all $\omega \in S_n$.

Definition 1.2 (Elementary symmetric polynomial).

$$\sigma_1 = \sigma_1(x_1, \dots, x_n) = x_1 + \dots + x_n$$

$$\sigma_2 = \sigma_2(x_1, \dots, x_n) = x_1 x_2 + \dots + x_1 x_n + x_2 x_3 + \dots + x_{n-1} x_n$$

$$\vdots$$

$$\sigma_k = \sigma_k(x_1, \dots, x_n) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} \dots x_{i_k}$$

$$\vdots$$

$$\sigma_n = \sigma_n(x_1, \dots, x_n) = \prod_{i=1}^n x_i$$

Theorem 1.3. For any symmetric function $\psi(x_1,\ldots,x_n)$, there exists a unique polynomial $P(t_1,\ldots,t_n)$ such that $\psi(x_1,\ldots,x_n)=P(\sigma_1,\ldots,\sigma_n)$.

Definition 1.4 (Vieta formulae). Suppose $f(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_0$ has roots r_1, \ldots, r_n . Then,

$$r_{1} + r_{2} + \dots + r_{n} = -a_{n-1}$$

$$\sum_{1 \leq i < j \leq n} r_{i} r_{j} = a_{n-2}$$

$$\vdots$$

$$\sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} r_{i_{1}} r_{i_{2}} \cdots r_{i_{k}} = (-1)^{k} a_{n-k}$$

$$\vdots$$

$$r_{1} r_{2} \cdots r_{n} = (-1)^{n} a_{0}$$

Corollary 1.5. The discriminant D of $f \in R[x]$, where R is a ring and $f = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$, is a polynomial in a_1, \ldots, a_n and coefficients from R (i.e. $D \in R[a_1, \ldots, a_n]$).

Note: Any cubic equation can be converted to a depressed cubic by

$$x^{3} + Ax^{2} + Bx + c = \left(x + \frac{A}{3}\right)^{3} + p\left(x + \frac{A}{3}\right) + q.$$

Theorem 1.6 (Vieta's method). Using the trigonometric identity $\cos 3\varphi = 4\cos^3\varphi - 3\cos\varphi$, we can solve certain cubic equations. For example, consider $4x^3 - 3x = -\frac{1}{2}$. Let $x = \cos\varphi$. Then

$$\cos 3\varphi = -\frac{1}{2} \iff 3\varphi = \pm \frac{2\pi}{3} + 2\pi k \quad \text{for } k \in \mathbb{Z}$$

$$\iff \varphi = \pm \frac{2\pi}{9} + 2\pi k$$

$$\iff x \in \left\{\cos \frac{2\pi}{9}, \cos \frac{4\pi}{9}, \cos \frac{8\pi}{9}\right\}.$$

In general, we can use this method to solve $4x^3-3x=a \implies x=\cos\varphi,\ \cos3\varphi \text{ and }\cos:\mathbb{C}\to\mathbb{C}$ is now a complex function. For $x^3+px+q=0$, set x=ky such that $\frac{k^3}{pk}=\frac{-4}{3}\implies k=\pm\frac{\sqrt{-4p}}{3}$.

1 INTRODUCTION I 2

Definition 1.7 (Ferrari's resolvent). Let $f(x) = x^4 + ax^2 + bx + c$, and assume $b^2 - 4ac \neq 0$. Consider a parameter y. Then

$$f(x) = \left(x^2 + \frac{y}{2}\right)^2 + (a - y)x^2 + bx + c - \frac{y^2}{4}$$

$$\implies D = b^2 - 4(a - y)\left(c - \frac{y^2}{4} = 0\right)$$

and hence we obtain Ferrari' resolvent:

$$y^3 - ay^2 - 4cy + 4ac - b^2 = 0.$$

Solving the resolvent allows one to reduce solving f to solving a system of quadratics.