Aplicación del Modelo Logístico a Datos de Población

Ramón Cherta González John Mauris López Ramos

Abstract

Este documento presenta un estudio sobre la aplicación del modelo logístico para el análisis de datos de población. Se determinan las constantes del modelo y se valida su precisión mediante comparación con datos históricos.

1 Resumen de la aplicación del Modelo logístico de datos de población.

[EPC15]

1.1 Planteamiento del Problema

Se desea determinar las constantes numéricas a y b de tal manera que la solución P(t) del problema de valor inicial

$$\frac{dP}{dt} = aP + bP^2, \quad P(0) = P_0 \tag{1}$$

se aproxime a los valores de la población en los tiempos $t_0 = 0, t_1, ..., t_n$.

1.2 Origen de la ecuación diferencial

En la asignatura se introdujo la ecuación diferencial:

$$\frac{dP}{dt} = kP \tag{2}$$

como modelo matemático para el crecimiento natural de la población, asumiendo tasas constantes de nacimiento y mortalidad. Ahora, supongamos que la población varía únicamente debido a nacimientos y muertes, definamos las tasas de natalidad y mortalidad de la siguiente manera:

• $\beta(t)$: es el número de nacimientos por unidad de población y por unidad de tiempo en el instante t.

• $\delta(t)$: es el número de muertes por unidad de población y por unidad de tiempo en el instante t.

La cantidad de nacimientos y muertes en el intervalo de tiempo $[t,t+\Delta t]$ está dado aproximadamente por:

- Nacimientos = $\beta(t)P(t)\Delta t$
- Muertes = $\delta(t)P(t)\Delta t$

Por tanto, el cambio ΔP en la población durante este intervalo es:

$$\Delta P = \beta(t)P(t)\Delta t - \delta(t)P(t)\Delta t \tag{3}$$

Dividiendo por Δt y tomando el límite cuando $\Delta t \to 0$, obtenemos la ecuación diferencial:

$$\frac{dP}{dt} = (\beta - \delta)P\tag{4}$$

Esta ecuación se conoce como la ecuación general de población.

Sin embargo, en muchos casos, la tasa de natalidad $\beta(t)$ no es constante sino que disminuye a medida que la población crece.Un modelo simple supone que esta tasa es una función lineal de P, dada por:

$$\beta = \beta_0 - \beta_1 P \tag{5}$$

donde β_0 y β_1 son constantes positivas. Si la tasa de mortalidad $\delta=\delta_0$ permanece constante, entonces la ecuación en (4) toma la forma:

$$\frac{dP}{dt} = (\beta_0 - \beta_1 P - \delta_0)P. \tag{6}$$

Reescribiéndola obtenemos la ecuación logística:

$$\frac{dP}{dt} = aP - bP^2,\tag{7}$$

donde $a = \beta_0 - \delta_0$ y $b = \beta_1$.

Si a y b son positivos, la ecuación (7) describe un crecimiento logístico. Es común expresar esta ecuación en la forma:

$$\frac{dP}{dt} = kP(M-P) \tag{8}$$

donde k = b y $M = \frac{a}{b}$, constantes.

1.3 Resolución del Problema de Valor Inicial

Reescribimos la ecuación logística:

$$\frac{1}{P}\frac{dP}{dt} = a + bP. (9)$$

Esto implica que los puntos $(P(t_i), \frac{P'(t_i)}{P(t_i)})$ deben situarse sobre una línea recta con intersección a en el eje y y pendiente b.

Este hecho proporciona un método para encontrar a y b. Si podemos estimar las derivadas P_1' , P_2' , correspondientes a los datos de población, entonces realizamos los siguientes pasos:

- 1. Graficar los puntos $(P_1, \frac{P_1'}{P_1}), (P_2, \frac{P_2'}{P_2}), \ldots$ en un plano con P en el eje horizontal.
- 2. Trazar una línea recta a través de estos puntos.
- 3. Determinar los valores de a y b midiendo la intersección con el eje y y la pendiente de la recta.

Para calcular las derivadas P'(t), utilizamos la aproximación:

$$P' \approx \frac{P_{i+1} - P_{i-1}}{t_{i+1} - t_{i-1}}. (10)$$

Con este procedimiento, logramos determinar las constantes a y b que mejor ajustan la **ecuación logística** a los datos de población, resolviendo así el **problema de valor inicial** planteado.

2 Investigaciones

2.1 Investigación A

[EPC15]

Verificando los valores de las pendientes: Usando (10),

$$1800: \quad P_1' = \frac{7.240 - 3.929}{20} = 0.166$$

$$1810: \quad P_2' = \frac{9.638 - 5.308}{20} = 0.217$$

$$1820: \quad P_3' = \frac{12.861 - 7.240}{20} = 0.281$$

$$1830: \quad P_4' = \frac{17.064 - 9.638}{20} = 0.371$$

$$1840: \quad P_5' = \frac{23.192 - 12.861}{20} = 0.517$$

$$1850: \quad P_6' = \frac{31.443 - 17.064}{20} = 0.719$$

$$1860: \quad P_7' = \frac{38.558 - 23.192}{20} = 0.768$$

$$1870: \quad P_8' = \frac{50.189 - 31.443}{20} = 0.937$$

$$1880: \quad P_9' = \frac{62.980 - 38.558}{20} = 1.221$$

$$1890: \quad P_{10}' = \frac{76.212 - 50.189}{20} = 1.301$$

$$1900: \quad P_{11}' = \frac{92.228 - 62.980}{20} = 1.462$$

Hallando los puntos $(P(t_i), \frac{P'(t_i)}{P(t_i)})$: (Ver Table 1) Gráfica de los puntos obtenidos: (Ver Figure 1) Ecuación de la recta ajustada mediante GeoGebra:

$$y = -0.0001714045365P + 0.0318603444775. (11)$$

Para resolver la ecuación logística utilizando los parámetros:

$$a = 0.0318910337799$$
$$b = -0.0001714045365$$
$$P(0) = 5308000$$

Paso 1: Separar variables Reescribir la ecuación diferencial:

$$\frac{dP}{dt} = aP + bP^2 \Longrightarrow \frac{dP}{P(a+bP)} = dt \tag{12}$$

Paso 2: Descomponer en fracciones parciales

$$\frac{1}{P(a+bP)} = \frac{1/a}{P} - \frac{b/a}{a+bP}$$
 (13)

Integramos ambos lados:

$$\int \left(\frac{1/a}{P} - \frac{b/a}{a+bP}\right) dP = \int dt \tag{14}$$

Paso 3: Integrar

$$\frac{1}{a}ln|P| - \frac{1}{a}ln|a + bP| = t + C$$
 (15)

donde C es la constante de integración.

Paso 4: Simplificar logaritmos

$$\ln\left|\frac{P}{a+bP}\right| = a(t+C)
\tag{16}$$

Exponenciemos ambos lados:

$$\frac{P}{a+bP} = Ae^{at}, A = e^{aC} \tag{17}$$

Paso 5: Despejar P(t)

$$P = Ae^{at}(a + bP) \Longrightarrow P = \frac{Aae^{at}}{1 - Abe^{at}}$$
 (18)

Paso 6: Aplicar la condición inicial $P(0) = P_0$ Sustituimos t = 0:

$$P_0 = \frac{Aa}{1 - Ab} \Longrightarrow A = \frac{P_0}{a + bP_0} \tag{19}$$

Paso 7: Sustituir en A la solución

$$P(t) = \frac{aP_0e^{at}}{(a+bP_0) - bP_0e^{at}}$$
 (20)

Solución final

$$P(t) = \frac{aP_0}{(a+bP_0)e^{-at} - bP_0}$$
 (21)

Al sustituir y resolver, obtenemos $P(100)\approx 77.25$ millones, una buena aproximación a los 76.212 millones que muestra la tabla.

2.2Investigación B

[EPC15]

Calculando los valores de las pendientes, usando (10):

$$1900: \quad P_1' = \frac{92.228 - 62.980}{20} = 1.4624$$

$$1910: \quad P_2' = \frac{106.022 - 76.212}{20} = 1.4905$$

$$1920: \quad P_3' = \frac{123.203 - 92.228}{20} = 1.54875$$

$$1930: \quad P_4' = \frac{132.165 - 106.022}{20} = 1.30715$$

$$1940: \quad P_5' = \frac{151.326 - 123.203}{20} = 1.40615$$

$$1950: \quad P_6' = \frac{179.323 - 132.165}{20} = 2.3579$$

$$1960: \quad P_7' = \frac{203.302 - 151.326}{20} = 2.5988$$

$$1970: \quad P_8' = \frac{226.542 - 179.323}{20} = 2.36095$$

$$1980: \quad P_9' = \frac{248.710 - 203.302}{20} = 2.2704$$

$$1990: \quad P_{10}' = \frac{281.422 - 226.542}{20} = 2.744$$

para el año 2000 no se conoce la población del 2010. Hallando los puntos $(P(t_i), \frac{P'(t_i)}{P(t_i)})$: (Ver Table 2)

Gráfica de los puntos obtenidos: (Ver Figure 2)

Ecuación de la recta:

$$y = -0.0000346P + 0.0187166329205 (22)$$

Al sustituir y calcular en la ecuación logística obtenemos $P(100) \approx 279.5$ millones y considerando que la tabla muestra que eran 281.422 millones se puede considerar una aproximación mejor que la anterior.

2.3 Investigación C

[EPC15]

Calculando los valores de las pendientes, usando (10):

$$1965: P'_{2} = \frac{3.721 - 3.049}{10} = 0.0672$$

$$1970: P'_{3} = \frac{4.103 - 3.358}{10} = 0.0745$$

$$1975: P'_{4} = \frac{4.473 - 3.721}{10} = 0.0752$$

$$1980: P'_{5} = \frac{4.882 - 4.103}{10} = 0.0779$$

$$1985: P'_{6} = \frac{5.249 - 4.473}{10} = 0.0776$$

$$1990: P'_{7} = \frac{5.679 - 4.882}{10} = 0.0797$$

$$1995: P'_{8} = \frac{6.127 - 5.249}{10} = 0.0878$$

Para los años 1960 y 2000 se desconocen los valores de la población en 1955 y 2005 respectivamente.

Hallando los puntos $(P(t_i), \frac{P'(t_i)}{P(t_i)})$: (Ver Table 3)

Gráfica de los puntos obtenidos: (Ver Figure 3)

Ecuación de la recta:

$$y = -0.0023718128125P + 0.0281327271638 (23)$$

Al sustituir y calcular en la ecuación logística obtenemos que en el 2025 el modelo predice una población de 8.09 mil millones y considerando que La División de Población de las Naciones Unidas predice una población mundial de 8.177 miles de millones para 2025 puede considerarse una buena aproximación.

References

[EPC15] C. Henry Edwards, David E. Penney, and David Calvis. *Differential Equations and Boundary Value Problems: Computing and Modeling*. Fifth. Pearson, 2015, pp. 85–86. ISBN: 978-0-321-79698-1.

Año	P_i (millones)	$\frac{P_i'}{P_i}$
1800	5.308	0.0313
1810	7.240	0.0300
1820	9.638	0.0291
1830	12.861	0.0289
1840	17.064	0.0303
1850	23.192	0.0310
1860	31.443	0.0244
1870	38.558	0.0243
1880	50.189	0.0243
1890	62.980	0.0207
1900	76.212	0.0192

Table 1: Tabla de los puntos $(P(t_i), \frac{P'(t_i)}{P(t_i)})$

Figure 1: Gráfica de los puntos obtenidos.

Año	$P_i(\mathbf{millones})$	$\frac{P_i'}{P_i}$
1900	76.212	0.01919
1910	92.228	0.01616
1920	106.022	0.01461
1930	123.203	0.01061
1940	132.165	0.01064
1950	151.326	0.01558
1960	179.323	0.01450
1970	203.302	0.01161
1980	226.542	0.01002
1990	248.710	0.01103
2000	281.422	-

Table 2: Tabla de los puntos $(P(t_i), \frac{P'(t_i)}{P(t_i)})$

Figure 2: Gráfica de los puntos obtenidos.

Año	P_i (millones)	$\frac{P_i'}{P_i}$
1960	3.049	-
1965	3.358	0.01999
1970	3.721	0.02002
1975	4.103	0.01833
1980	4.473	0.01741
1985	4.882	0.01590
1990	5.249	0.01519
1995	5.679	0.01546
2000	6.127	-

Table 3: Tabla de los puntos $(P(t_i), \frac{P'(t_i)}{P(t_i)})$

Figure 3: Gráfica de los puntos obtenidos.