

AO4294

100V N-Channel MOSFET

General Description

Trench Power MV MOSFET technology

Low R_{DS(ON)}

Low Gate Charge

Optimized for fast-switching applications

Product Summary

100V I_D (at V_{GS} =10V) 11.5A $R_{\text{DS(ON)}}$ (at $V_{\text{GS}}\text{=}10\text{V})$ < 12mΩ $R_{DS(ON)}$ (at V_{GS} =4.5V) $< 15.5 m\Omega$

Form

Applications

Synchronus Rectification in DC/DC and AC/DC Converters

Industrial and Motor Drive applications

Orderable Part Number

Package Type

Minimum Order Quantity

AO4294 SO-8		SO-8	Tape & Reel	3000		
Absolute Maximum	Ratings T _A =25°C	unless otherwise noted				
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	100	V		
Gate-Source Voltage		V _{GS}	±20	V		
Continuous Drain Current	T _A =25°C		11.5			
	T _A =70°C	'D	9	A		
Pulsed Drain Current ^C		I _{DM}	46			
Avalanche Current C		l.o	20	А		

Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain	T _A =25°C		11.5		
Current	T _A =70°C	'D	9	A	
Pulsed Drain Current ^C		I _{DM}	46		
Avalanche Current ^C		I _{AS}	20	A	
Avalanche energy L=0.1mH ^C		E _{AS}	20	mJ	
V _{DS} Spike	10µs	V _{SPIKE}	120	V	
	T _A =25°C	P _D	3.1	W	
Power Dissipation B	T _A =70°C	- D	2.0	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics						
Parameter	Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient A	t ≤ 10s		31	40	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	59	75	°C/W	
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	16	24	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
STATIC I	PARAMETERS	•	·		•	•	•
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	I _D =250μA, V _{GS} =0V				V
	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V				1	μA
I _{DSS}	Zero Gate Voltage Drain Gurrent		T _J =55°C			5	μΛ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$		1.4	1.9	2.4	V
		V _{GS} =10V, I _D =11.5A	_		10	12	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		17.5	21	
		V_{GS} =4.5V, I_{D} =9.5A			12.5	15.5	mΩ
g FS	Forward Transconductance	V _{DS} =5V, I _D =11.5A			45		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.71	1	V
Is	Maximum Body-Diode Continuous Cur	/-Diode Continuous Current				4	Α
DYNAMI	C PARAMETERS						
C _{iss}	Input Capacitance			2420		pF	
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =50V, f=1MHz			170		pF
C _{rss}	Reverse Transfer Capacitance			11		pF	
R_g	Gate resistance	f=1MHz		0.2	0.55	0.9	Ω
SWITCH	ING PARAMETERS						
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =50V, I _D =11.5A			33	50	nC
Q _g (4.5V)	Total Gate Charge				15	25	nC
Q_{gs}	Gate Source Charge				7		nC
Q_{gd}	Gate Drain Charge				4		nC
t _{D(on)}	Turn-On DelayTime				8		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =4.35 Ω , R_{GEN} =3 Ω			3		ns
t _{D(off)}	Turn-Off DelayTime				25		ns
t _f	Turn-Off Fall Time				4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =11.5A, dI/dt=500A	I _F =11.5A, dI/dt=500A/μs		25		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =11.5A, dI/dt=500A/μs			110		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

initialT_J=25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

