第2次讨论课 (YAO G. W.)

¶ 内容

- 1. 幂零变换;
- 2. 极小多项式;
- 3. Jordan标准型.

¶ 教学要求

- 1. 掌握幂零变换和幂零矩阵的性质;
- 2. 会求极小多项式,并利用极小多项式确定Jordan标准型;
- 3. 给定矩阵A,会求其Jordan标准型J并过渡矩阵P,使得 $P^{-1}AP = J$.

Exercise 1 设 σ 是实数域上3维线性空间V的一个线性变换,它关于V的某个基的矩阵是

$$\left(\begin{array}{ccc}
6 & -3 & -2 \\
4 & -1 & -2 \\
10 & -5 & -3
\end{array}\right)$$

- (1) 求 σ 的极小多项式m(x),并将m(x)在 $\mathbb{R}[x]$ 内分解为两个首项系数为1的不可约多项式的乘积: $m(x) = m_1(x)m_2(x)$;
 - (2) 令 $\mathbf{W}_i = \{ \xi \in \mathbf{V} | m_i(\sigma) \xi = 0 \}, i = 1, 2, 证明: \mathbf{W}_i 是 \sigma$ 的不变子空间,并且 $\mathbf{V} = \mathbf{W}_1 \oplus \mathbf{W}_2$;
 - (3) 在每一个子空间 \mathbf{W}_i 中选取一个基,凑成 \mathbf{V} 的基,使得 σ 关于这个基的矩阵里只出现3个非零元素。

Exercise 2 设 σ 是n维复线性空间V上的线性变换,试证明存在可对角化的线性变换 τ 和幂零变换v,使得

$$\sigma = \tau + \upsilon$$
,

且满足 $\tau v = v \tau$ 。

如果已知 σ 在 \mathbf{V} 的某个基下的矩阵是

$$\left(\begin{array}{ccc}
3 & 1 & -1 \\
2 & 2 & -1 \\
2 & 2 & 0
\end{array}\right)$$

试求出 τ 和v, 使得 $\sigma = \tau + v$ 。

Exercise 3 设 σ 是n维复线性空间**V**上的线性变换,举一个5阶矩阵为例,说明 σ 的r($\leq n$)维不变子空间的一般方法。

Exercise 4 试证明满足 $A^m = I$ 的n阶矩阵A(其中m是某个正整数)相似于对角矩阵。

Exercise 5 设 σ 是n维复线性空间**V**上的线性变换, σ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵是A。

- (1) 怎样求包含 α_1 的最小不变子空间?
- (2) ∀ $\alpha \in \mathbf{V}, \alpha \neq 0$,怎样求包含 α 的最小不变子空间?

举一个4阶矩阵的例子,算一下。

Exercise 6 (1)设 N_1 和 N_2 都是3阶矩阵。证明 N_1 与 N_2 相似当且仅当它们有相同的特征多项式以及极小多项式;

(2) 设 N_1 和 N_2 都是3阶幂零矩阵。证明 N_1 与 N_2 相似当且仅当它们有相同的极小多项式。

如果 N_1 和 N_2 都是4阶矩阵,上述论断是否还成立?为什么?举出两个4阶幂零矩阵说明之。

Exercise 7 设6阶复方阵A的特征多项式为 $f(x) = (x-2)^2(x+3)^4$,极小多项式为 $m(x) = (x-2)(x+3)^3$,试写出A的Jordan标准形。如果极小多项式为 $m(x) = (x-2)(x+3)^2$,A的Jordan标准形有几种可能的形式?

Exercise 8 求可逆矩阵P和Jordan标准形J,使得 $P^{-1}AP = J$:

$$(1). \ A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 6 & -1 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right), \quad (2). \ A = \left(\begin{array}{cccc} 3 & 2 & 1 \\ 0 & 4 & -1 \\ 0 & 1 & 2 \end{array}\right).$$