Virtual Vaccine Passport Scanner for Remote Entry Approval

ECE 532 Group 3:

Mustafa Kanchwala
Guoxian Wu
Eduardo Stecca Ortenblad
Xuening Dong

Project Significance

- What's out there:
 - A Human scans the vaccine passport and allows or denies entry
- Why that's bad:
 - Risk of Exposure Very High!
 - Conflicts arising from enforcement High!
- What can be done:
 - A Hardware based remote server-controlled scanning & verification

Data Center Aspect

- Secure server stores vaccination information of:
 - Citizens @ national level
 - Employees @ corporation level
 - Residents @ building level
- Client terminals are placed near entry points
 - Once passport is scanned, information is fetched and validated
 - Allow or Deny decision is made and displayed at the client

Background

• Data Matrix:

- Two-dimensional code
- Black and white "cells"
- Either a square or rectangular pattern

Data matrix of "Wikipedia"

Purple: Finder pattern

Green: Data

Yellow: End of Massage & Padding

Red: Error Correction Code

Orange: Unused space

More Background

- REST APIs
 - GET Retrieve data
 - POST Create new data
 - PUT Update data
 - DELETE Delete data

[4]

- TLV (Type-Length-Value) Encoding:
 - Packets for network communication up to 128 bytes
 - Encoding and Decoding

Type	Length	Value
1 Byte	1 Byte	Length Bytes

Proposed System

System Overview

Module
Name

Admin Users
/ PC Client

Module
Normal
Workflow /
FPGA Client

Server

Module
Name

Custom IP

Tentative IP

Module
Name

Existing IP

Server

Module Name Custom IP

Module Name Tentative IP

Module Name Existing IP

Implementation Plan - Partitioning

PC 1	FPGA 1 (Client)	FPGA 2 (Server)	PC 2
Python scripts to implement - Data Matrix Code Generation - UART data transfer - TCP Client	Data Matrix IPVGA IPUART data transferTCP Client(Microblaze)TLV	Database parsing IPTCP Server(Microblaze)TLV	- UART connection to load database onto FPGA2

Implementation Plan

Milestone 1: Research and setup

- TLV/Data Matrix encoding/decoding rules defined
- Database/VGA control setup

Milestone 2: Basic functionality implementation

- Python script for TLV encoding/decoding
- TCP server and client
- Database/VGA/data matrix decoder IP implementation

Milestone 3: Finalize most units

- TLV on MicroBlaze
- Data Matrix decoder/database/VGA IP Testing
- PC FPGA communication

Implementation Plan

Milestone 4: Buffering

- Finalize IPs
- Test on PC-FPGA connection
- Catch up with any delayed milestone

Milestone 5 & Milestone 6: Integration

- Finalize all communications (PC-FPGA/ FPGA-FPGA)
- Test the overall dataflow

Testing and Integration Plan

Testbench/ILA/Software observation:

- VGA display
- Data Matrix decoding
- Database parsing

Full System Integration Testing:

- Integrate and test main functional IP blocks
- System level testbench to simulate the connection between hardware blocks.
- Use ILA to monitor the hardware and GDB debug to monitor the software.
- Compare the information displayed on VGA with the input information.

Risks and Uncertainties

SI no	Risk and Uncertainties	Contingency Plan
1	Challenges in hardware IP designDatabase IPVGA IPDataMatrix Decode IP	Create a backup software implementation in MicroBlaze. Use this approach to debug and resolve issues with hardware implementation
2	Challenges encountered when using image input for DataMatrix decoding IP	Use PC to pre-process the data into bits of 0s & 1s
3	Run out of memory on Nexys DDR	Optimize memory allocation to the BRAM and use space on DDR2 or Switch to Nexys Video Board
4	Proposed tasks are not completed as planned	Use Milestone 4 as a Buffer week

Reference

[1] "15 EU Countries & Iceland already issuing COVID-19 vaccine passports for travel - Finland & Hungary lagging behind," *SchengenVisaInfo.com*, 16-Jun-2021. [Online]. Available: https://www.schengenvisainfo.com/news/15-eu-countries-iceland-already-issuing-covid-19-vaccine-passports-for-travel-finland-hungary-lagging-behind/. [Accessed: 08-Feb-2022].

[2] N. Wells, "B.C. residents will require 2nd vaccine card for travel, Province says," *CBCnews*, 22-Oct-2021. [Online]. Available: https://www.cbc.ca/news/canada/british-columbia/bc-covid-travel-rules-1.6220473. [Accessed: 08-Feb-2022].

[3] "Data matrix," *Wikipedia*. [Online]. Available: https://en.wikipedia.org/wiki/Data Matrix. [Accessed: 08-Feb-2022].

[4] T. Naeem, "Rest API definition: What is a rest api integration (restful API)?," *Astera*, 28-Jan-2020. [Online]. Available: https://www.astera.com/type/blog/rest-api-definition/. [Accessed: 08-Feb-2022].