Содержание

Задание6
1 Гидравлический расчет трубопровода
1.1 Определение диаметров труб всасывающей и нагнетательной
линии8
1.2 Построение графика потребного напора8
2 Расчет рабочего колеса центробежного насоса
2.1 Исходные данные для расчета
2.2 Описание модельного насоса
2.3 Дополнительные исходные данные для расчета рабочего колеса
2.4 Определение основных геометрических и кинематических параметров на входе в рабочее колесо
2.5 Определение основных геометрических и кинематических параметров на выходе из рабочего колеса
2.6 Проектирование меридионального сечения рабочего колеса
3 Индивидуальное задание на тему «Оценка экономичности совместно работающих насосов»22
Заключение24
Список литературы

Введение

Насос - гидравлическая машина, предназначенная для сообщения механической энергии протекающей через нее жидкости. Центробежный насос является лопастной гидромашиной, проточная часть которой состоит из трех основных элементов: подвода потока жидкости к колесу, лопастного колеса и отвода потока от него к следующей ступени насоса или выходному патрубку.

Лопастные насосы представляют собой наиболее распространенный класс машин, используемых практически во всех отраслях народного хозяйства.

В ходе выполнения курсовой работы, студент будет вести инженерные расчеты, приближенные к реальным. Будет необходимо самостоятельно подобрать насос по заранее рассчитанным параметрам.

Курсовая работа по дисциплине «Лопастные машины и передачи» – это самостоятельная работа студента, направленная на получение необходимых в дальнейшей работе знаний по проектированию и расчету гидравлических систем, решению реальных рабочих задач.

Рисунок 1 – Насосная установка

Насос перекачивает воду с температурой $t=30\,^{\circ}C$ из приемного резервуара в напорный на высоту $h=25\,$ м, в количестве $Q=95\,$ л/с. Избыточное давление в приемном и напорном резервуаре равно $p_1=0\,$ атм, $p_2=0.6\,$ атм. Длина всасывающей линии $l_{\rm BC}=10\,$ м; длина нагнетательной линии $l_{\rm H}=360\,$ м. На всасывающем и нагнетательном трубопроводах имеются местные сопротивления: вход в трубу, снабженный приемной сеткой и клапаном, плавные повороты на 90 градусов, вентиль при полном открытии, диафрагма, расходомерсчетчик, выход под уровень.

Параметры жидкости:

- плотность $\rho = 995,7$ кг/м³ ([1], таблица 1, стр. 19);
- кинематический коэффициент вязкости $\nu = 0.8046 \cdot 10^{-6}$ м²/с ([1], таблица 1, стр.19).

Для заданных условий необходимо:

- 1) Подобрать насос в соответствии с ГОСТ, т.е. произвести следующие расчеты:
- а) определить диаметры и подобрать трубопроводы в соответствии с видом перекачиваемой жидкости;
- б) определить потребный напор, который должен развивать насос;
- в) построить характеристику установки (график потребного напора $H_{\text{потр}} = f(Q)$);

- г) подобрать центробежный насос по каталогу;
- д) построить совместную характеристику насоса и установки;
- е) определить рабочую точку насоса и проверить правильность выбора насоса на данную сеть по коэффициенту полезного действия насоса;
- ж) определить диаметр обточки рабочего колеса и построить характеристику насоса при обточке рабочего колеса;
- з) построить характеристики насосов выбранного типа установленных последовательно или параллельно, если количество выбранных насосов больше одного, и определить рабочую точку.
- 2) Произвести гидравлический расчет рабочего колеса и профилирование лопастей, т.е. произвести следующие расчеты:
 - а) описать устройство и принцип действия насоса;
- б) определить дополнительные исходные данные для расчета рабочего колеса;
- в) определить основные геометрические и кинематические параметры на входе в рабочее колесо;
- г) определить основные геометрические и кинематические параметры на выходе из рабочего колеса;
- д) выполнить необходимые расчеты для проектирования меридионального сечения рабочего колеса;
 - е) выполнить чертеж рабочего колеса центробежного насоса.

- 1 Гидравлический расчет трубопровода
- 1.1 Определение диаметров труб всасывающей и нагнетательной линии

Выбираю допустимую скорость движения жидкости во всасывающем и напорном трубопроводе для воды ([1], таблица 6, стр.23):

$$--\upsilon_{\text{доп.вс}} = 1.0 \text{ м/с,}$$

 $--\upsilon_{\text{доп.н}} = 3.0 \text{ м/c.}$

Определяю внутренний расчетный диаметр трубопровода во всасывающем и напорном трубопроводах по формуле

$$d = \sqrt{rac{4 \cdot Q_{
m p}}{\pi \cdot
u_{
m доп}}},$$
 $d_{
m BC} = \sqrt{rac{4 \cdot Q_{
m p}}{\pi \cdot
u_{
m доп. BC}}} = \sqrt{rac{4 \cdot 0,095}{\pi \cdot 1}} = 0,35 \, {
m M};$
 $d_{
m HaII} = \sqrt{rac{4 \cdot Q_{
m p}}{\pi \cdot
u_{
m доп. HaII}}} = \sqrt{rac{4 \cdot 0,095}{\pi \cdot 3}} = 0,2 \, {
m M}.$

Принимаю трубу для всасывающего трубопровода стальную бесшовную горячекатанную по ГОСТ 8732-78 ([1], таблица 9, стр.26), с внутренним диаметром $d_{\rm p.вc} = 359$ мм.

Принимаю трубу для напорного трубопровода стальную электросварную по ГОСТ 8732-78 ([1], таблица 9, стр.26), с внутренним диаметром $d_{\text{p.вc}} = 207$ мм.

Определяю действительные скорости движения жидкости в трубопроводах

$$\upsilon_{\text{\tiny BC}} = \frac{4 \cdot Q_{\text{\tiny p}}}{\pi \cdot d_{\text{\tiny p.BC}}^2} = \frac{4 \cdot 0,095}{\pi \cdot 0,359^2} = 0,94 \text{ m/c};$$

$$\upsilon_{\text{\tiny HAII}} = \frac{4 \cdot Q_{\text{\tiny p}}}{\pi \cdot d_{\text{\tiny p.HAII}}^2} = \frac{4 \cdot 0,095}{\pi \cdot 0,207^2} = 2,82 \text{ m/c}.$$

1.2 Построение графика потребного напора

Определяю коэффициент эквивалентной шероховатости трубопроводов: для стальной сварной новой трубы K_9 = 0,03 мм ([1], таблица 13, стр.30).

На всасывающем трубопроводе имеются следующие местные сопротивления ([1], стр.32-33):

- а) вход в трубу, снабженный приемной сеткой и клапаном $\zeta_{\text{\tiny BX}}=3.8;$
- б) обратный клапан шарикового типа $\zeta_{\text{ок}} = 55$
- в) плавный поворот на 90° $\zeta_{\rm K} = 0.15$;
- г) плавный поворот на $90^{\circ} \zeta_{K} = 0.15;$
- д) вентиль с прямым затвором при полном открытии $\zeta_{\scriptscriptstyle B} = 5$;

Т.о. суммарный коэффициент местных сопротивлений во всасывающем трубопроводе равен

$$\sum_{BC} \zeta_{BC} = \zeta_{BX} + 2 \cdot \zeta_{K} + \zeta_{3p} = 3.8 + 55 + 2 \cdot 0.15 + 5 = 64.1.$$

На напорном трубопроводе имеются следующие местные сопротивления:

- а) задвижка при полном открытии $\zeta_{3дB}=0,15;$
- б) плавный поворот на 90° $\zeta_{\mbox{\tiny K}} = 0.15;$
- в) диафрагма со степенью сужения трубы k=0.9 $\zeta_{\rm д}=0.13$;
- г) расходомер-счетчик $\zeta_{pc}=10$
- д) выход из трубы под уровень $\zeta_{\text{вых}} = 1$;

Т.о. суммарный коэффициент местных сопротивлений в напорном трубопроводе равен

$$\sum_{H} \zeta_{H} = \zeta_{J,3} + 3 \cdot \zeta_{K} + \zeta_{AT} + \zeta_{B} + \zeta_{BLIX},$$

$$\sum_{H} \zeta_{H} = 0.15 + 0.15 + 0.13 + 10 + 1 = 11.43.$$

Определяю режим движения жидкости по трубопроводам при расчетном значении подачи $Q_{\rm p}$ по числу Рейнольдса

$$Re = \frac{\upsilon \cdot d_{\rm p}}{\upsilon},$$

$$Re_{\rm BC} = \frac{\upsilon_{\rm BC} \cdot d_{\rm p.BC}}{\upsilon} = \frac{0.94 \cdot 0.359}{0.8048 \cdot 10^{-6}} = 419309;$$

$$Re_{\rm HAII} = \frac{\upsilon_{\rm HAII} \cdot d_{\rm p.HAII}}{\upsilon} = \frac{2.82 \cdot 0.207}{0.8048 \cdot 10^{-6}} = 725323.$$

Определяю пределы режимов движения:

$$\frac{10 \cdot d_{\text{p.BC}}}{K_{9}} = \frac{10 \cdot 359}{0,03} = 119667;$$

$$\frac{10 \cdot d_{\text{p.HaII}}}{K_{9}} = \frac{10 \cdot 207}{0,03} = 69000;$$

$$\frac{500 \cdot d_{\text{p.BC}}}{K_{9}} = \frac{500 \cdot 359}{0,03} = 5983333;$$

$$\frac{500 \cdot d_{\text{p.HaII}}}{K_{9}} = \frac{500 \cdot 207}{0,03} = 3450000;$$

Следовательно, определяю коэффициент гидравлического трения по формуле для области доквадратичного сопротивления

$$\lambda_{\text{BC}} = 0.11 \left(\frac{K_3}{d_{\text{p.BC}}} + \frac{68}{Re}\right)^{0.25} = 0.11 \left(\frac{0.03}{359} + \frac{68}{419309}\right)^{0.25} = 0.0138,$$

$$\lambda_{\text{HAII}} = 0.11 \left(\frac{K_3}{d_{\text{p.BC}}} + \frac{68}{Re}\right)^{0.25} = 0.11 \left(\frac{0.03}{207} + \frac{68}{725323}\right)^{0.25} = 0.0137.$$

Определяю потери напора в трубопроводах как сумму потерь на трение и местные сопротивления по формулам

$$\Delta h_{\text{\tiny II.H}} = \left(\lambda_{\text{\tiny BC}} \cdot \frac{l_{\text{\tiny BC}}}{d_{\text{\tiny p.BC}}} + \sum \zeta_{\text{\tiny BC}}\right) \cdot \frac{\upsilon_{\text{\tiny BC}}^{\ 2}}{2 \cdot g} = \left(0.0138 \cdot \frac{10}{0.359} + 64.1\right) \cdot \frac{0.94^2}{2 \cdot 9.81};$$

$$\Delta h_{\text{\tiny II.H}} = \left(\lambda_{\text{\tiny H}} \cdot \frac{l_{\text{\tiny H}}}{d_{\text{\tiny p.H}}} + \sum \zeta_{\text{\tiny H}}\right) \cdot \frac{\upsilon_{\text{\tiny H}}^{\ 2}}{2 \cdot g} = \left(0.0137 \cdot \frac{360}{0.207} + 11.43\right) \cdot \frac{2.82^2}{2 \cdot 9.81};$$

$$\Delta h_{\text{\tiny II.H}} = 14.29 \text{ M}.$$

Определяю потребный напор насоса $H_{\mathrm{потр}}$ при расчетном значении подачи Q_{p}

$$H_{\text{потр}} = h + \frac{p_2 - p_1}{\rho \cdot g} + \Delta h_{\text{п.вс}} + \Delta h_{\text{п.нап}}$$

где h - разность уровней жидкости в приемном и напорном резервуарах, м; p_2 и p_1 – давление на выходе и на входе в насос, Π а.

$$H_{\text{потр}} = 25 + \frac{0.6 \cdot 10^5}{995.7 \cdot 9.81} + 2.9 + 14.29 = 48.3 \text{ M}.$$

Выбираю насос по заданной подаче Q=95 л/с = 342 м³/ч и потребному напору $H_{\text{потр}}=48,3$ м. Для данной схемы необходимо устанавливать насос типа Kordis KRM 150-125-400 со следующими техническими параметрами:

 Подача (номин.), м ³ /ч	360.
 Напор, м	50.
 Мощность, потребляемая насосом (макс.), кВт	90.
 Частота вращения, об/мин	1450.
 Диаметр рабочего колеса, мм	419 мм.
**	•

Характеристики данного насоса приведены на рисунке 2.

Окончательная проверка правильности выбора насоса производится при нахождении рабочего режима (рабочей точки). Определение рабочей точки производится совмещением на одном графике в одинаковом масштабе рабочей характеристики самого насоса с характеристикой насосной установки (характеристикой сети).

Характеристика сети представляет график зависимости потребного напора от расхода жидкости в трубопроводе $H_{\text{потр}} = f(Q)$ при изменении расхода от Q = 0 до $Q_{max} = Q_{\text{p}} = 111 \, \text{п/c} \approx 400 \, \text{м}^3/\text{ч}$ (для удобства построения значения подачи буду использовать в м $^3/\text{ч}$) с шагом $\Delta Q = 50 \, \text{м}^3/\text{ч}$. Результаты расчета заносим в таблицу 1.

Рисунок 2 – Характеристики насоса Kordis KRM 150-125-400

Таблица 1 - Результаты расчетов характеристики установки

таолица т - гезультаты расчетов характеристики установки									
Q,	$v_{\rm Bc}$,	Re _{BC}	$\lambda_{ m BC}$	$\Delta h_{\scriptscriptstyle \Pi.BC},$	$v_{\scriptscriptstyle{\mathcal{H}}},$	Reн	$\lambda_{_{ m H}}$	$\Delta h_{\scriptscriptstyle \Pi.H},$	$H_{\text{потр}}$,
\mathbf{M}^3/\mathbf{q}	_M /c			M	M/C			M	M
0	0	0	-	0	0	0	-	0	31,14
50	0,14	62450	0,02	0,065	0,41	105454	0,018	0,37	31,6
100	0,27	120439	0,0176	0,24	0,83	213481	0,016	1,39	32,8
150	0,41	182890	0,0161	0,55	1,24	318936	0,015	2,96	34,6
200	0,55	245340	0,0152	0,99	1,65	424391	0,0145	5,1	37,2
250	0,69	307791	0,0145	1,57	2,06	529845	0,0141	7,8	40,5
300	0,82	365780	0,0141	2,21	2,48	637872	0,139	11,14	44,5
350	0,96	428231	0,0137	3,03	2,89	743327	0,0136	14,96	49,14
400	1,1	490681	0,0134	3,98	3,3	848782	0,0135	19,35	54,47

Т.к. режимная точка A совпадает с точкой пересечения характеристик насоса и трубопровода, точкой P, то обточка не требуется.

- 2 Расчет рабочего колеса центробежного насоса
- 2.1 Исходные данные для расчета

Рассчитать рабочее колесо насоса при известных:

- подаче Q = 0.095 м³/с (подача, соответствующая режимной точке A);
- напоре H = 48,3 м, (напор, соответствующий режимной точке A);
- числе оборотов вращения рабочего колеса n = 1450 об/мин;
- рабочее колесо однопоточное.

2.2 Описание модельного насоса

Рабочее колесо является основным элементом насоса и в значительной мере определяет его конструкцию.

Выбранный насос KRM 150-125-400 имеет следующее устройство (рисунок 4) и принцип действия.

Рисунок 4 – Насос

Конструктивные особенности насосов Kordis KRM:

- 1. Фланцы могут быть выполнены в соответствии со стандартами ГОСТ, ISO, DIN, ASME; конструкция патрубков и фланцев рассчитана на рабочее давление до 25 кгс/см² для насосов в консольном и моноблочном исполнении, и до 16 кгс/см² для насосов в консольномоноблочном исполнении с патрубками «в линию».
- 2. Большой выбор типоразмеров насоса и возможность подрезки рабочего колеса позволяют подобрать насос в точном соответствии с техническими требованиями гидравлической системы заказчика.
- 3. Динамически отбалансированное рабочее колесо закрытого типа обеспечивает низкие значения виброактивности ротора насоса, что позволяет экономить энергию и уменьшать эксплуатационные расходы.
- 4. Сменные кольца щелевых уплотнений выполнены из современных износостойких материалов со специальными антизадирными покрытиями, что снижает динамические нагрузки на ротор и опоры насоса, увеличивая срок службы подшипников и уплотнений.
- 5. Камера уплотнения допускает установку как сальниковых, так и одинарных торцовых уплотнений, в том числе картриджного типа.
- 6. Рабочее колесо разгружено от осевых сил с помощью специальных разгрузочных отверстий на заднем диске колеса для снижения нагрузки на подшипники и увеличения их срока службы).
- 7. Энергоэффективная гидравлика проточной части насосов оптимизирована с использованием новейших методов компьютерного моделирования и обеспечивает высокий КПД.
- 8. Конструкция корпуса с выемной роторной частью и съёмным кронштейном подшипникового узла позволяет проводить техническое обслуживание без демонтажа корпуса насоса и подводящих трубопроводов.
- 9. Вал жёсткой конструкции с увеличенной прочностью на изгиб обеспечивает минимальные значения вибрации и биения для увеличения срока службы уплотнения и подшипников.
- 10. Стандартные или усиленные (со сроком службы не менее 100 000 часов) подшипники со смазкой в масляной ванне, в том числе с системой охлаждения (опция).

Высокая степень унификации основных узлов насосов различных типоразмеров и исполнений значительно упрощает их техническое обслуживание.

Широкое материальное исполнение позволяет применять насосы для различных сред, в том числе и агрессивных.

Принцип работы консольно-моноблочных насосов:

В процессе работы агрегатов электрический мотор передает вращающее усилие на рабочее колесо через вал. При этом в приемный патрубок поступает жидкость, которая, под действием центробежной силы, выбрасывается в выходной патрубок. Центробежная сила образуется в результате движения рабочего колеса.

Принцип работы консольно-моноблочного насоса. Когда жидкость поступает в выходной патрубок, в центральной части колеса образуется разрежение, из-за чего в устройстве появляется разность давлений между центром насоса и выходом из него. В результате перепада давлений жидкость поступает из приемного патрубка внутрь корпуса насоса. В корпусе жидкость снова поддается воздействию центробежной силы. После этого цикл повторяется.

Высокая точность конструкции консольно-моноблочного агрегата исключает необходимость в его частом обслуживании или ремонте.

2.3 Дополнительные исходные данные для расчета рабочего колеса

Определяю коэффициент быстроходности по формуле

$$n_{\rm s} = 3,65 \cdot n \cdot \frac{\sqrt{Q}}{H^{\frac{3}{4}}} = 3,65 \cdot 1450 \cdot \frac{\sqrt{0,095}}{48.3^{\frac{3}{4}}} = 89,04 \frac{\text{об}}{\text{мин}},$$

где n — заданное число оборотов рабочего колеса, об/мин.

В зависимости от величины коэффициента быстроходности определяю тип центробежного насоса, и вид проточной части рабочего колеса ([1], таблица19, с.48) как центробежный нормальный насос.

Определяю приведённый диаметр на входе $D_{1\pi}$ в рабочее колесо по эмпирической формуле

$$D_{1\pi} = K_{\text{BX}} \cdot \sqrt[3]{\frac{Q}{n}} = 4 \cdot \sqrt[3]{\frac{0,095}{1450}} = 0,161 \text{ M},$$

где $K_{\text{вх}} = 3,5...7$ - коэффициент входной воронки рабочего колеса:

- для одноступенчатых насосов и первой ступени многоступенчатых насосов $K_{\text{вх}} = 4,0...4,5;$
- для промежуточных ступеней многоступенчатых насосов $K_{\text{вх}} = 3.5...4.0$;
- при малых размерах рабочего колеса ($D_1 < 70$ мм) $K_{\rm вx} = 4,5...5,0$. Определяю гидравлический КПД по формуле Ломакина

$$\eta_{\Gamma} = 1 - \frac{0.42}{(\lg(D_{1\pi} \cdot 10^3) - 0.172)^2} = 1 - \frac{0.42}{(\lg(0.161 \cdot 10^3) - 0.172)^2},$$

$$\eta_{\Gamma} = 0.9.$$

Определяю объёмный КПД по формуле

$$\eta_{\rm o} = \frac{1}{1 + 0.68 \cdot n_{\rm s}^{-0.67}} = \frac{1}{1 + 0.68 \cdot 89.04^{-0.67}} = 0.97,$$

 $n_{\rm s}$ — расчетный коэффициент быстроходности, об/мин. где

Определяю механический КПД насоса по формуле

$$\eta_{\text{MEX.BH}} = \frac{\eta_{\text{MEX.BH}}}{0.97 \dots 0.99} = \frac{0.906}{0.98} = 0.925,$$

$$\eta_{\text{MEX.BH}} = \frac{1}{1 + 820 \cdot n_{\text{S}}^{-2}} = \frac{1}{1 + 820 \cdot 89.04^{-2}} = 0.906.$$

 $\eta_{\text{мех.вн}}$ — внешний механический КПД. где

Определяю общий (полный) КПД по формуле

$$\eta = \eta_{\text{mex}} \cdot \eta_0 \cdot \eta_{\Gamma} = 0.925 \cdot 0.97 \cdot 0.9 = 0.806.$$

Определяю мощность на валу рабочего колеса по формуле

$$N = \frac{\rho \cdot g \cdot Q_{p} \cdot H}{\eta} = \frac{995,7 \cdot 9,81 \cdot 0,095 \cdot 48,3}{0,806} = 55587 \text{ BT,}$$

 $g = 9.81 \text{ м/c}^2$ – ускорение свободного падения. где

Определяю крутящий момент на валу насоса по формуле

$$M = \frac{N}{\omega} = \frac{55587}{152,84} = 366,3 \text{ H} \cdot \text{м},$$

$$\omega = \frac{2 \cdot \pi \cdot n}{60} = \frac{2 \cdot 3,14 \cdot 1450}{60} = 152,84 \text{ c}^{-1},$$
 где ω – угловая скорость вращения рабочего колеса, \mathbf{c}^{-1} .

Определяю диаметр вала из расчета на чистое кручение по пониженному допускаемому напряжению без учета влияния изгиба

$$d_{\rm B} = \sqrt[3]{\frac{16 \cdot M}{\pi \cdot [\tau]}} = \sqrt[3]{\frac{16 \cdot 366,3}{3,14 \cdot 15 \cdot 10^6}} = 0,0499 \text{ M},$$

где [т] – допускаемое напряжение на кручение; для консольных насосов принимают пониженное значение 15...20 МПа ([1] с.50).

Полученный результат расчета диаметра вала $d_{\rm B}$ округляю до ближайшего большего значения из стандартного ряда ([1] c.50) $d_{\rm B} = 50$ MM.

Определяю диаметр и длину втулки (ступицы) рабочего колеса по формулам

 $d_{\text{ct}} = (1,2 \dots 1,4) \cdot d_{\text{в}} = 0,06 \dots 0,07$ мм; принимаю $d_{\text{ct}} = 65$ мм, $l_{\rm cT} = (1 \dots 1,5) \cdot d_{\rm cT} = 0,065 \dots 0,0975$ мм; принимаю $l_{\rm cT} = 80$ мм. где $d_{\rm B}$ – принятый диаметр вала из стандартного ряда.

- 2.4 Определение основных геометрических и кинематических параметров на входе в рабочее колесо
- 1) Определяю расход через колесо с учетом утечек, которые учитываются объемным КПД, по формуле

$$Q' = \frac{Q}{\eta_0} = \frac{0.095}{0.97} = 0.0979.$$

2) Определяю абсолютную скорость по эмпирической формуле $\upsilon_0' = \alpha_0 \cdot \sqrt[3]{Q' \cdot n^2} = 0.06 \cdot \sqrt[3]{0.0979 \cdot 1450^2} = 3.54 \text{ м/c,}$ где $\alpha_0 = 0.06 -$ эмпирический коэффициент.

3) Определяю диаметр входной воронки рабочего колеса

$$D_0' = \sqrt{\frac{4 \cdot Q'}{\pi \cdot \upsilon_0'} + d_{\text{CT}}^2} = \sqrt{\frac{4 \cdot 0,0979}{3,14 \cdot 3,54} + 0,065^2} = 0,1986 \text{ M}.$$

Полученный диаметр D_0' округляю до ближайшего большего стандартного значения ([1] c.50) $D_0 = 200$ мм.

4) Уточняю величину абсолютной скорости υ_0 на входе по формуле

$$\upsilon_0 = \frac{4 \cdot Q'}{\pi \cdot (D_0^2 - d_{\text{CT}}^2)} = \frac{4 \cdot 0,0979}{3,14 \cdot (0,200^2 - 0,065^2)} = 3,486 \text{ m/c}.$$

5) Определяю диаметр входа в рабочее колесо для тихоходных центробежных насосов по формуле

$$D_1 = 0.9 \cdot D_0 = 180$$
 мм.

6) Определяю окружную скорость потока жидкости на входе в рабочее колесо

$$u_1 = \frac{\pi \cdot n \cdot D_1}{60} = \frac{3,14 \cdot 1450 \cdot 0,18}{60} = 13,67 \text{ m/c}.$$

7) Определяю меридиональную скорость на входе в рабочее колесо при условии, что поток входит в межлопастные каналы без закрутки, но с учетом стеснения

$$v_{M1} = v_0 \cdot K_1 = 3,486 \cdot 1,3 = 4,532 \text{ M/c},$$

где $K_1 = 1..1,3$ – коэффициент стеснения на входе в первом приближении в промышленных центробежных насосах ([1] c.52).

8) Определяю ширину рабочего канала на входе по формуле

$$b_1 = \frac{Q^{'}}{\pi \cdot D_1 \cdot v_{\text{M}1}} = \frac{0,0979}{3,14 \cdot 0,18 \cdot 4,532} = 0,0382 \text{ M}.$$

9) Определяю угол, под которым поток жидкости входит в межлопастные каналы рабочего колеса по формуле

$$\beta_1 = \operatorname{arctg}(\frac{v_{\text{M1}}}{u_1 - v_{\text{H1}}}) = \operatorname{arctg}(\frac{4,532}{13,67 - 0}) = 18,34^{\circ}.$$

где $v_{u1} = 0$ – окружная составляющая абсолютной скорости в центробежных одноступенчатых консольных насосах.

Реальный угол лопасти на входе получают с учетом значения угла атаки $\delta = 3...10^{\circ}$ (с целью уменьшения гидравлических потерь в области рабочего колеса и улучшения его кавитационных качеств):

$$\beta_{1\pi} = \beta_1 + \delta = 18,34 + 5,66 = 24^{\circ}.$$

10) Строю треугольник скоростей на входе (рисунок 5), принимая, что поток входит радиально в рабочую полость, т.е. угол $\alpha_1 = 90^\circ$.

Рисунок 5 – Треугольник скоростей

- 2.5 Определение основных геометрических и кинематических параметров на выходе из рабочего колеса

1) Определяю теоретический напор насоса по формуле
$$H_{\scriptscriptstyle \rm T} = \frac{H}{K_{\rm z} \cdot \eta_{\scriptscriptstyle \rm T}} = \frac{48,3}{0,8 \cdot 0,9} = 67,08 \; {\rm M}.$$

 $K_z \approx 0.8$ – коэффициент, учитывающий неравномерность распределения относительной скорости между лопастями ([1] с.53).

2) Угол лопасти на выходе из рабочего колеса.

Угол установки лопасти на выходе из рабочего колеса β2 определяет конструктивный тип рабочего колеса и является одним из наиболее значимых геометрических параметров, который влияет гидравлические качества каналов рабочего колеса, на напор ступени насоса и форму его напорной характеристики H-Q.

Принимаю угол лопасти на выходе из рабочего колеса $\beta_{2\pi} = 25^{\circ}$ ([1] c.53).

3) Определяю окружную скорость потока на выходе по формуле

$$u_{2} = \frac{v_{\text{M2}} \cdot \text{ctg}\beta_{2\pi}}{2} + \sqrt{\left(\frac{v_{\text{M2}} \cdot \text{ctg}\beta_{2\pi}}{2}\right)^{2} + H_{\text{T}} \cdot g},$$

$$u_{2} = \frac{3,83 \cdot \text{ctg}25^{0}}{2} + \sqrt{\left(\frac{3,830 \cdot \text{ctg}25^{0}}{2}\right)^{2} + 67,08 \cdot 9,81} = 30,09 \frac{\text{M}}{\text{c}}.$$

где $\upsilon_{_{M}2}=$ 4,86 м/с - меридиональная скорость на выходе из рабочего колеса;

$$v_{M2} = v_0 \cdot K_2 = 3,486 \cdot 1,1 = 3,83 \frac{M}{c}$$

 $K_2 = 1,05...1,1$ — коэффициент стеснения на выходе из рабочего колеса, принимаю $K_2 = 1,1$ ([1] c.54).

4) Определяю выходной диаметр рабочего колеса по формуле
$$D_2 = \frac{u_2 \cdot 60}{\pi \cdot n} = \frac{30,085 \cdot 60}{3.14 \cdot 1450} = 0,397 \text{ м}.$$

5) Определяю ширину межлопастного канала по формуле

$$b_2 = \frac{Q'}{\pi \cdot D_2 \cdot v_{M2}} = \frac{0,0979}{3,14 \cdot 0,397 \cdot 3,83} = 0,0205 \text{ M}.$$

6) Определяю число лопастей рабочего колеса по эмпирической формуле

$$z = 6.5 \cdot \frac{D_2 + D_1}{D_2 - D_1} \cdot \sin \frac{\beta_{1\pi} + \beta_{2\pi}}{2},$$

$$z = 6.5 \cdot \frac{397 + 180}{397 - 180} \cdot \sin \left(\frac{24 + 25}{2}\right) = 7.03.$$

Округляю до ближайшего целого значения z = 7.

7) Уточняю угол лопасти на выходе из рабочего колеса по округленному числу лопастей по формуле

$$\beta_{2\pi} = 2 \cdot \arcsin \frac{z \cdot (D_2 - D_1)}{6.5 \cdot (D_2 + D_1)} - \beta_{1\pi},$$

$$\beta_{2\pi} = 2 \cdot \arcsin \left(\frac{7 \cdot (397 - 180)}{6.5 \cdot (397 + 180)} \right) - 24 = 23.8^{\circ}.$$

8) Уточняю значения по уточненному углу лопасти на выходе из рабочего колеса $\beta_{2\pi}$

$$u_2 = \frac{3,83 \cdot \text{ctg23,8}^0}{2} + \sqrt{\left(\frac{3,83 \cdot \text{ctg23,8}^0}{2}\right)^2 + 67,08 \cdot 9,81,}$$

$$u_2 = 30,36.$$

$$D_2 = \frac{u_2 \cdot 60}{\pi \cdot n} = \frac{30,36 \cdot 60}{3,14 \cdot 1450} = 0,4 \text{ м,}$$

$$b_2 = \frac{Q'}{\pi \cdot D_2 \cdot v_{M2}} = \frac{0,0979}{3,14 \cdot 0,4 \cdot 3,83} = 0,0204 \text{ M}.$$

- 9) Принимаю толщину лопасти на входе $\delta_1 = 7$ мм и выходе $\delta_2 = 7$ мм ([1] c.55).
- 10) Уточняю значения коэффициентов стеснения потока лопастями на входе в рабочее колесо и выходе из него по формулам

$$K_{1}^{'} = \frac{1}{1 - \frac{z \cdot \delta_{1}}{\pi \cdot D_{1} \cdot \sin \beta_{1\pi}}} = \frac{1}{1 - \frac{7 \cdot 7}{3,14 \cdot 180 \cdot \sin 24^{0}}} = 1,27,$$

$$K_{2}^{'} = \frac{1}{1 - \frac{z \cdot \delta_{2}}{\pi \cdot D_{2} \cdot \sin \beta_{2\pi}}} = \frac{1}{1 - \frac{7 \cdot 7}{3,14 \cdot 400 \cdot \sin 23,8^{0}}} = 1,1.$$

Определяю отклонения

$$\frac{\left|K_{1}^{'} - K_{1}\right| \cdot 100}{K_{1}} = \frac{\left|1,27 - 1,3\right| \cdot 100}{1,3} = 2,3\% \le 5\%$$

$$\frac{\left|K_{2}^{'} - K_{2}\right| \cdot 100}{K_{2}} = \frac{\left|1,1 - 1.1\right| \cdot 100}{1,1} = 0\% \le 5\%$$

Условие выполняется, следовательно расчет верен.

11) Строю треугольник скоростей на выходе из рабочего колеса (рисунок 6) для определения относительной и абсолютной скоростей на выходе, а также окружной составляющей абсолютной скорости.

Рисунок 6 – Треугольник скоростей

2.6 Проектирование меридионального сечения рабочего колеса

Профилирование канала в меридиональном сечении ведется таким образом, чтобы получить плавное изменение меридиональной скорости от входа в рабочее колесо к выходу.

Профилирование лопастей насоса представляет продолжение геометрического расчета его рабочей части в поперечном сечении. Для упрощения выполнения профилирования необходимо задаюсь цилиндрической формой лопасти.

Методика профилирования цилиндрических лопастей по точкам ([1]).

1) Разбиваю область между входным и выходным радиусами рабочего колеса на k частей, и нахожу изменение радиуса

$$\Delta R = \frac{R_2 - R_1}{k} = \frac{400 - 180}{2 \cdot 5} = 22 \text{ MM}.$$

2) Определяю изменение меридиональной скорости по длине от входной до выходной кромок по формуле

$$\Delta v_{\rm M} = \frac{v_{\rm M2} - v_{\rm M1}}{k} = \frac{3,83 - 4,532}{5} = -0,1404 \text{ m/c}.$$

3) Определяю изменение рабочего угла по длине от входной до выходной кромок по формуле

$$\Delta \beta_{\pi} = \frac{\beta_{2\pi} - \beta_{1\pi}}{k} = \frac{24 - 23.8}{5} = 0.04^{\circ}$$

4) Определяю угол охвата лопасти θ заполняя таблицу 4.

Таблица 4 – Результаты расчета при профилировании лопасти

	,		, 	1		1 1	1				
ΔR ,	R_i ,	$v_{{}_{\mathrm{M}i}}$,	b_i ,	$\beta_{i\pi}$,	$tg\beta_{i\pi}$	B_{i}	A	$\Delta \theta$	θ		
M	M	_M /c	M	град	БР іл	БР іл	в Р ил		71	град	ирад
0	0,09	4,532	0,0382	24	0,445	24,97	_	Ī			
0,022	0,112	4,3916	0,0317	23,96	0,444	20,11	23,54	29,7			
0,022	0,134	4,2512	0,0274	23,92	0,4435	16,83	20,335	25,6	107.6		
0,022	0,156	4,1108	0,00243	23,88	0,443	14,47	16,515	20,8	107,6		
0,022	0,178	3,9704	0,00221	23,84	0,442	12,71	13,59	17,1			
0,022	0,2	3,83	0,00204	23,8	0,441	11,34	11,435	14,4			

Расчет произведу с помощью следующих формул:

а) ширина рабочего канала

$$b_i = \frac{Q'}{2 \cdot \pi \cdot R_i \cdot v_{\text{mi}}}$$

б) промежуточные величины

$$B = \frac{1}{R_i \cdot \mathsf{tg}\beta_{\mathsf{in}}};$$
$$A = \frac{B_i + B_{i+1}}{2}.$$

в) угол лопасти между соседними точками

$$\Delta \theta = A \cdot \Delta R$$
.

г) угол охвата лопасти

$$\theta = \sum \Delta \theta$$

3 Индивидуальное задание на тему «Оценка экономичности совместно работающих насосов»

Под совместной работой насосов понимается параллельная или последовательная их работа на данную сеть [4].

Параллельная работа насосов. Представим себе, что в сеть жидкость подается не одним, а двумя насосами, подключенными к ней параллельно (при параллельном соединении увеличиваете подача жидкости в сеть).

Будем считать, что насосы одинаковые и характеристика H—Q каждого из них изображается кривой 1 (рисунок 7). Суммарная характеристика 2 двух параллельно работающих насосов получается сложением их подач при одинаковых напорах. Нанося на эти характеристики характеристику R сети, получим рабочие точки A_1 и A_2 , которые определяют количество воды, подаваемое в сеть одним и двумя параллельно работающими насосами. Из рисунка видно, что подача одного насоса равна Q_1 , а двух насосов — Q_2 .

Последовательная работа насосов. В тех случаях, когда необходимо преодолеть сопротивление сети, превышающее напор одного насоса, применяют последовательную работу насосов.

Рисунок 7 — Характеристики совместной работы центробежных насосов При индивидуальной работе насосов на трубопровод рабочей точкой одного из них будет A_1 , (подача Q_1), а другого — A_2 (подача Q_2). При совместной работе насосов точка A_1 , займет положение A_3 , а точка A_2 — положение A_4 , причем подача насосов будет одинаковой и равна Q. Суммарный напор, развиваемый обоими насосами, будет H.

На рисунке 7 видно, что при помощи последовательного включения насосов в трубопровод можно не только достичь увеличения напора перекачивающей установки, но и повысить её подачу.

Оценка экономичности совместно работающих насосов. Рассмотрим сначала случай параллельной работы насосов. Предположим, что параллельно работают два насоса и что рабочие параметры H, η и N каждого из них известны. Тогда суммарная полезная мощность совместно работающих насосов составит

$$\sum N_{\Pi} = \frac{1}{102} (G_1 H_1 + G_2 H_2).$$

Суммарная потребляемая мощность будет равна

$$\sum N = N_1 + N_2.$$

Средний полный КПД параллельно работающих насосов

$$\eta_{\rm cp} = \frac{\sum N_{\rm II}}{\sum N} = \frac{G_1 H_1 + G_2 H_2}{\frac{G_1 H_1}{\eta_1} + \frac{G_2 H_2}{\eta_2}}.$$

Так как при параллельном соединении насосов величины напоров существенно не отличаются друг от друга, то для упрощения можно принять $H_1 = H_2 = H$. Тогда уравнение примет вид

$$\eta_{\rm cp} = \frac{G_1 H_1}{\frac{G_1}{\eta_1} + \frac{G_2}{\eta_2}}.$$

Из уравнений видно, что для обеспечения возможно большей экономичности параллельно работающих насосов при переменной подаче жидкости в системе необходимы следующие условия;

- 1) насосы больших мощностей должны работать в режимах с наибольшим КПД.;
- 2) подача жидкости в сеть должна регулироваться насосом наименьшей мощности;
- 3) изменение режима работы регулируемого насоса не должно вызывать существенного изменения его КПД или отношение полезной мощности этого насоса к его КПД должно оставаться постоянным в диапазоне наиболее вероятных режимов работы.

При последовательной работе уравнения примут вид

$$\eta_{\rm cp} = \frac{G_1}{G_1} = G,
\eta_{\rm cp} = \frac{H_1 + H_2}{\frac{H_1}{\eta_1} + \frac{H_2}{\eta_2}}.$$

Заключение

Для насосной установки был проведен гидравлический расчет трубопровода, а именно: определены диаметры напорного и всасывающего трубопровода, скорости движения жидкости, рассчитаны местные сопротивления, построены графики потребного напора, и определен потребный напор.

В соответствии с потребным напором и заданной подачей был подобран насос, для которого позднее была просчитана обточка.

Расчет рабочего колеса центробежного насоса состоял из определения и уточнения диаметров на входе и на выходе в рабочее колесо, расхода, окружной, меридиональной скоростей, углов входа потока жидкости...

Результатом расчета стал теоретический чертеж рабочего колеса.

В ходе выполнения курсовой работы по дисциплине «Лопастные машины и передачи» были получены практические знания, необходимые будущему инженеру-гидравлику.

Список литературы

- 1) Лопастные машины и передачи: Учебно-методическое пособие к курсовой работе по одноименной дисциплине для студентов специальности 1-36 01 07 «Гидропневмосистемы мобильных и технологических машин» дневной и заочной форм обучения / авт.-сост. Ю.А. Андреевец, Ю.В. Гомель: ГГТУ им. П.О. Сухого, 2016.- 73 с.
- 2) Руководство по эксплуатации H49.1118.00.00.000 РЭ. Насосы центробежные химические типа X и агрегаты электронасосные на их основе. ОАО "ГМС Насосы".
- 3) Д.Н. Андрианов, Л.И. Шульга. Центробежные насосы: Часть 2. Практическое руководство к практическим занятиям по курсу "Гидравлика, гидропривод и гидропневмоавтоматика" для студентов машиностроительных специальностей Гомель: УО ГГТУ им. П.О. Сухого, 2005. -47 с. (м/ук 3314).
- 4) Характеристики поршневых и пластинчатх насосов [электронный ресурс]. poznayka.org. www.fluidbusiness.ru.