BEST AVAILABLE COPY

SOLIDUS SURFACE AND PHASE EQUILIBRIA DURING THE SOLIDIFICATION OF ALLOYS IN THE Al_2O_3 — ZrO_2 — Y_2O_3 SYSTEM

S. N. Lakiza, L. M. Lopato, and V. P. Smirnov

UDC 546-31:621:641:831

The projection of the solidus surface in the Al_2O_3 — ZrO_2 — Y_2O_3 phase equilibrium diagram was plotted. The scheme of alloy solidification indicates that the primarily congruent modes of phase transformation in the limiting binary systems are retained in the ternary system.

The structure of the limiting binary systems [1-14], phase triangulation [15], liquidus surface [16], and isothermal sections at 1250, 1450, 1600, 1650, and 1800°C [17-20] are known for the Al_2O_3 — ZrO_2 — Y_2O_3 system. Authors of the isothermal section at 1800°C [18] maintain that all phases of the system are in the solid state at that temperature. However, a ternary eutectic has been found at 1715 \pm 20°C [16] including the phases $Al_2O_3(A) + F + Y_3Ai_5O_{12}(Y_3A_5)$, where F is a ZrO_2 -based solid solution with the fluorite structure containing various amounts of Y_2O_3 . A proposed variant of the isothermal section [18] should be directed at least to this temperature.

The objective of the present work was to construct a projection of the solidus surface on the concentration triangle, and study the solidification processes in $Al_2O_3-ZrO_2-Y_2O_3$ alloys.

TABLE 1. Phase Compositions and Initial Melting Temperatures of Specimens in the 50 Al_2O_3 50 $ZrO_2-Y_2O_3$ Section, Indicating the Location of Phase Fields on the Solidus Surface of the $Al_2O_3-ZrO_2-Y_2O_3$ Phase Equilibrium Diagram

. С	omposition, mole 9	Phase	Solidus Temperature,		
Al ₂ O ₃	ZrO ₂	Y ₂ O ₃	composition	°C	
48,5 47,5 45,0 42,5 40,0 37,5 35,0 33,5 32,5 30,0 27,5 25,0 22,5 21,0 20,0 17,5 15,0 12,5 16,0 7,5 5,0 2,5	48,5 47,5 45,0 42,5 40,0 37,5 35,0 35,5 30,0 27,5 25,0 22,5 21,0 20,0 17,5 15,0 12,5 10,0 7,5 5,0	3,0 5,0 10,0 15,0 20,0 25,0 30,0 33,0 35,0 40,0 45,0 50,0 55,0 60,0 65,0 70,0 75,0 80,0 85,0	A+T+E A+T A+F A+F+Y ₃ A ₃ The same Y ₃ A ₃ +F The same Y ₃ A ₄ +F Y ₄ A+F Y ₄ A+F Y ₅ A+F Y ₅ A+F The same Y ₅ A+F The same	1750 1745 1730 1715 1710 1715 1740 1865 1845 1840 1870 1860 1850 1940 1915 1905 1910 1915 1925 1925	

Institute of Materials Science Problems, Ukrainian Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya. Nos. 1/2(377), pp. 71-76, January-February, 1975. Original article submitted September 13, 1993.

Fig. 1. Projection of the solidus surface (a) and the equilibrium solidification diagram for alloys (b) of the Al_2O_3 — ZrO_2 — Y_2O_3 system.

TABLE 2. Coordinates of the Apices of the Conodal Triangles for the Solid Phases on the Solidus Surface of the Al₂O₃—ZrO₂—Y₂O₃ System, According to Data Obtained by Microprobe Analysis

Phase field	Compositions of the equilibrium phases, mole %						
	Al ₂ O ₃	Y ₃ A ₅	F	YA	Y ₂ A	, c	
A+F+Y3A3 Y3A3+F+YA YA+F+Y3A Y3A+F+C	0,1/0,06*	0,5/37,4 1,4/40,5	80,8/19,2 60,7/39,3 59,2/40,8 44,0/56,0	0,80/50,4 0,03/50,2	1,0/67,3 0,3/67,7	19,1/80,9	

^{*}The concentration of ZrO₂ is given before, and of Y₂O₃ after the slash.

のできる。 1911年 - 1912年 - 1912年

Fig. 2. Reaction scheme for the equilibrium solidification of specimens in the $Al_2O_3-ZrO_2-Y_2O_3 \ system.$

The starting materials, and methods of preparing and studying the specimens, are described in [15,16]. Coordinates of the apices of the conodal triangles were determined by microprobe analysis using the "Kamebaks SX-50" unit of the firm "Kameka" (France).

The results of the investigation are shown Fig. 1 in the form of a projection of the solidus surface on the concentration triangle (a), and a solidification diagram (b), for the system. The beginning melting temperatures and phase compositions of alloys in the 50 mole % Al_2O_3 :50 mole % $ZrO_2-Y_2O_3$ section, characterizing the positions of the phase fields on the solidus surface, are given in Table 1.

No ternary compounds or ternary solid solution fields are observed in the Al_2O_3 — ZrO_2 — Y_2O_3 system. The solidus surface consists of five isothermal three-phase fields corresponding to four invariant equilibria of the eutectic type and one of the peritectic type, ruled surfaces representing the end of solidification of the binary eutectics A + T, A + F, and $Y_4Al_2O_9(Y_2A) + C$ (where T = solid solution based on tetragonal ZrO_2 containing various amounts of Y_2O_3 and C = solid solution based on $C-Y_2O_3$ containing various amounts of ZrO_2), and the ruled surface F'T'T''F'' formed by the sides of the conodal triangles based on the equilibrium phases T and F, whose compositions lie close to the ZrO_2 corner and vary along the curves T'T'' and F'F'' (Fig. 1a). Data on the coordinates of the conodal triangles are given in Table 2. The microprobe data are confirmed by the results of x-ray diffraction analysis [15].

Between the liquidus and solidus surfaces, the ternary equilibrium diagram contains volumes in which solidification of the binary eutectics A + T, A + F, $A + Y_3A_5$, $Y_3A_5 + F$, $Y_3A_5 + A$, $Y_4A_5 + Y_5A_5 + A$, $Y_5A_5 +$

Figure 2 shows the scheme of reactions for the equilibrium solidification of specimens in the Al_2O_3 – ZrO_2 – Y_2O_3 system. Equilibrium solidification of the alloys is basically characterized by four invariant transformations at 1910 (E₁), 1850 (E₂). 1830 (E₃), and 1750°C (E₄). A transition from the incongruent three-phase transformation $L_p + F = C$ to the congruent transformation L = F + C occurs along the monovariant curve pE_1 . This is terminated by the four-phase invariant transformation $L_{E_1} = Y_2A + F + C$. A three-phase equilibrium characteristic of a metatectic process F = T + L occurs along the limiting curve m_2P as the temperature decreases from 2260 to 1745°C, and is followed by the four-phase invariant equilibrium $L_p + T = F + A$ at this temperature. The monovariant process L = F + A, which takes place immediately after the peritectic reaction P, occurs with decreasing temperature along the limiting curve PE_4 and is congruent in nature. The point E_4 corresponds to the composition of the liquid which participates in the four-phase invariant equilibrium $L_{E_4} = A + F + Y_3F_5$ (1715°C). Two additional three-phase congruent processes are terminated at this point: $L = A + Y_3A_5$, and $L = Y_3A_5 + F$.

REFERENCES

- F. Schmid and D. Viechnicki, "Oriented eutectic microstructures in the Al₂O₃—ZrO₂ system," J. Mater. Sci., 5, No. 6, 470-473 (1970).
- G. R. Fischer, L. J. Manfredo, R. N. McNally, et al., "The eutectic and liquidus in the Al₂O₃—ZrO₂ system," J. Mater. Sci., 16, No. 12, 3447-3451 (1981).
- J. Echigoya, Y. Takabayashi, K. Sasaki, et al., "Solidification microstructure of Y₂O₃—added Al₂O₃—ZrO₂ eutectic," Trans. Jpn. Inst. Metals, 27, No. 2, 102-107 (1986).
- 4. A. V. Shevchenko, L. M. Lopato, G. I. Gerasimyuk, et al., "The HfO₂—ZrO₂—Al₂O₃ system," Izv. Akad. Nauk. SSSR, Neorg. Mater., 26, No. 4, 839-842 (1990).
- 5. V. S. Stubican, R. J. Hink, and S. P. Ray, "Phase equilibrium and ordering in the system ZrO₂—Y₂O₃," J. Am. Cer. Soc., 61, No. 1/2, 17-21 (1978).
- 6. A. V. Shevchenko, V. D. Tkachenko, L. M. Lopato, et al., "Method for determining phase transformation temperatures with the use of solar heating," Poroshk. Metall., No. 1, 91-95 (1986).
- 7. A. V. Shevchenko, L. M. Lopato, T. V. Obolonchik, et al., "Liquidus surface of the HfO₂—ZrO₂—Y₂O₃ system," Izv. Akad. Nauk. SSSR, Neorg. Mater., 23, No. 3, 452-456 (1987).
- 8. N. A. Toropov, I. A. Bondar', F. Ya. Galakhov, et al., "Phase equilibria in the yttrium oxide—alumina system," Izv. Akad. Nauk. SSSR, Ser. Khim., No. 7, 1158-1164 (1964).
- D. Viechnicki and F. Schmid, "Investigation of the eutectic point in the system Al₂O₃—Y₃Al₅O₁₂," Mater. Res. Bull.,
 No. 2, 129-135 (1969).
- J. L. Caslavski and D. J. Viechnicki, "Melting behavior and metastability of yttrium aluminum garnet (YAG) and YAlO₃ determined by optical differential thermal analysis," J. Mater. Sci., 15, No. 7, 1709-1718 (1980).