Линейная регрессия

Лекция 2

План лекции

- Понятие линейных моделей
- Измерение ошибки в задачах регрессии
- Обучение линейной регрессии
- Градиентный спуск
- Стохастический градиентный спуск
- Модификации градиентного спуска
- Предобработка данных
- Переобучение
- Оценка качества моделей
- Регуляризация

Понятие линейных моделей

• Линейная регрессионная модель:

$$a(\vec{x}_i) = w_0 + \sum_{j=1}^d w_j x_{ij}$$
,

где w_j — веса или весовые коэффициенты, w_0 — свободный коэффициент или сдвиг (bias).

• В векторном виде:

$$a(\vec{x}_i) = w_0 + \langle \vec{w}, \vec{x}_i \rangle,$$

где
$$\vec{w} = (w_1, ..., w_d), \vec{x}_i = (x_{i1}, ..., x_{id}).$$

В сокращенном векторном виде:

$$a(\vec{x}_i) = \langle \vec{w}, \vec{x}_i \rangle$$

• Функция потерь:

$$L(y, y_{pred}) = L(y, a)$$

• Среднеквадратичная ошибка (mean squared error, MSE):

$$L(y,a) = (a - y)^{2}$$

$$MSE(a,X) = \frac{1}{l} \sum_{i=1}^{l} L(y_{i}, a_{i}) = \frac{1}{l} \sum_{i=1}^{l} (a(\vec{x}_{i}) - y_{i})^{2}$$

Root mean squared error (RMSE):

$$RMSE(a, X) = \sqrt{\frac{1}{l} \sum_{i=1}^{l} (a(\vec{x}_i) - y_i)^2}$$

• Коэффициент детерминации:

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{l} (a(\vec{x}_{i}) - y_{i})^{2}}{\sum_{i=1}^{l} (y_{i} - \bar{y})^{2}} = 1 - \frac{\sigma^{2}}{\sigma_{y}^{2}}$$

где σ_y^2 – дисперсия y, σ^2 – дисперсия ошибки модели

• Среднее абсолютное отклонение (mean absolute error, MAE):

$$L(y,a) = |a - y|$$

$$MAE(a,X) = \frac{1}{l} \sum_{i=1}^{l} |a(\vec{x}_i) - y_i|$$

• Среднеквадратичная логарифмическая ошибка (mean squared logarithmic error, MSLE):

$$L(y,a) = \left(\log(a+1) - \log(y+1)\right)^2$$

• Средняя абсолютная процентная ошибка (mean absolute percentage error, MAPE):

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

• В случае использования среднеквадратичной ошибки (MSE):

$$\frac{1}{l} \sum_{i=1}^{l} (\langle \overrightarrow{w}, \overrightarrow{x}_i \rangle - y_i)^2 \to \min_{\overrightarrow{w}}$$

• В матричном виде:

$$\frac{1}{l} \|X\overrightarrow{w} - \overrightarrow{y}\|^2 \to \min_{\overrightarrow{w}},$$

где $X \in \mathbb{R}^{l \times d}$, $\overrightarrow{w} \in \mathbb{R}^d$, $\overrightarrow{y} \in \mathbb{R}^l$

• После дифференцирования данного функционала по вектору \overrightarrow{w} , приравнивания к нулю и решения уравнения, получаем:

$$\frac{\partial}{\partial \overrightarrow{w}} \left(\frac{1}{l} \| X \overrightarrow{w} - \overrightarrow{y} \|^2 \right) = 0 \rightarrow \overrightarrow{w}_{opt} = (X^T X)^{-1} X^T \overrightarrow{y}$$

– нормальное уравнение (normal equation)

- Пример: пусть даны три точки (2, 1), (3, 3), (5, 4)
- Требуется построить линейную регрессионную модель на основе нормального уравнения

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 5 \end{bmatrix}, \qquad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$
$$x_0 \quad x_1$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 5 \end{bmatrix}, \qquad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$
$$x_0 \quad x_1$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$X^T X = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 5 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 5 \end{bmatrix} =$$

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 5 \end{bmatrix}, \qquad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$
$$x_0 \quad x_1$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 5 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 10 \\ 10 & 38 \end{bmatrix}$$
$$2 \times 3 \qquad 3 \times 2 \qquad 2 \times 2$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$(X^TX)^{-1} =$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$(X^T X)^{-1} = \begin{bmatrix} 2.7 & -0.7 \\ -0.7 & 0.2 \end{bmatrix}$$

 $(X^TX)^{-1}X^T =$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$
$$(X^T X)^{-1} = \begin{bmatrix} 2.7 & -0.7 \\ -0.7 & 0.2 \end{bmatrix}$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$(X^T X)^{-1} = \begin{bmatrix} 2.7 & -0.7 \\ -0.7 & 0.2 \end{bmatrix}$$

$$(X^T X)^{-1} X^T = \begin{bmatrix} 1.29 & 0.57 & -0.85 \\ -0.28 & -0.07 & 0.36 \end{bmatrix}$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$(X^T X)^{-1} = \begin{bmatrix} 2.7 & -0.7 \\ -0.7 & 0.2 \end{bmatrix}$$

$$(X^T X)^{-1} X^T = \begin{bmatrix} 1.29 & 0.57 & -0.85 \\ -0.28 & -0.07 & 0.36 \end{bmatrix}$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y} =$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$(X^T X)^{-1} = \begin{bmatrix} 2.7 & -0.7 \\ -0.7 & 0.2 \end{bmatrix}$$

$$(X^T X)^{-1} X^T = \begin{bmatrix} 1.29 & 0.57 & -0.85 \\ -0.28 & -0.07 & 0.36 \end{bmatrix}$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y} = \begin{bmatrix} -0.43 \\ 0.93 \end{bmatrix} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y}$$

$$(X^T X)^{-1} = \begin{bmatrix} 2.7 & -0.7 \\ -0.7 & 0.2 \end{bmatrix}$$

$$(X^T X)^{-1} X^T = \begin{bmatrix} 1.29 & 0.57 & -0.85 \\ -0.28 & -0.07 & 0.36 \end{bmatrix}$$

$$\vec{w}_{opt} = (X^T X)^{-1} X^T \vec{y} = \begin{bmatrix} -0.43 \\ 0.93 \end{bmatrix} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

$$a(\vec{x}) = w_0 + w_1 x_1 = -0.43 + 0.93 x_1$$

$$a(\vec{x}) = -0.43 + 0.93x_1$$
, $a(1) = 0.5$, $a(5) = 4.2$

$$a(1) = 0.5$$

$$a(5) = 4.2$$

• Градиентом функции $f: \mathbb{R}^d \to \mathbb{R}^d$ называется вектор её частных производных $(\nabla - \text{оператор набла, оператор Гамильтона}):$

$$\nabla f(x_1, \dots, x_d) = \left(\frac{\partial f}{\partial x_j}\right)_{j=1}^d = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right)$$

 Градиент является направлением наискорейшего роста функции, а антиградиент (¬∇f) направлением наискорейшего убывания

• *Пример*: функция $y=x^2$, производная $\frac{dy}{dx}=2x$

• Пример: функция $y = -(\cos^2 x_1 + \cos^2 x_2)^2$

Алгоритм градиентного спуска:

- 1. Выбрать начальную точку $\overrightarrow{w}^{(0)}$
- 2. Повторять до сходимости:

$$\overrightarrow{w}^{(k)} = \overrightarrow{w}^{(k-1)} - \eta_k \nabla Q(\overrightarrow{w}^{(k-1)}),$$

где k — номер шага,

 $Q(\overrightarrow{w})$ – функция ошибки для набора параметров \overrightarrow{w} , η_k – скорость спуска (длина k-го шага).

- Условия останова:
 - ошибка не уменьшается в течение нескольких итераций
 - вектор весов почти перестает изменяться
 - достигнуто максимальное число итераций

- Скорость спуска:
 - слишком высокая \rightarrow переход через минимум
 - слишком низкая → медленная сходимость
- Варианты вычисления скорости спуска:
 - константная: $\eta_k = const$
 - линейное уменьшение (linear decay): $\eta_k = \eta_0 \left(1 \frac{k}{K} \right)$
 - экспоненциальное уменьшение (exponential decay):

$$\eta_k = \eta_0 e^{-\frac{k}{K}}$$

• Для среднеквадратичной ошибки:

$$\nabla Q(\overrightarrow{w}) = \nabla_{\overrightarrow{w}} \left(\frac{1}{l} \|X\overrightarrow{w} - \overrightarrow{y}\|^2 \right) = \frac{2}{l} X^T (X\overrightarrow{w} - \overrightarrow{y})$$

Стохастический градиентный спуск

• Функционал ошибки представим в виде суммы l функций ошибок:

$$Q(\overrightarrow{w}) = \frac{1}{l} \sum_{i=1}^{l} L_i(\overrightarrow{w})$$

• При градиентном спуске необходимо вычислять градиент всей суммы:

$$\nabla Q(\overrightarrow{w}) = \frac{1}{l} \sum_{i=1}^{l} \nabla L_i(\overrightarrow{w})$$

• Если выборка большая, вычисление градиента трудоемко

Стохастический градиентный спуск

• Оценить градиент суммы функций можно градиентом одного случайно взятого i_k слагаемого:

$$\nabla Q(\vec{w}) \approx \nabla L_{i_k}(\vec{w})$$

• Метод стохастического градиентного спуска (stochastic gradient descent, SGD):

$$\overrightarrow{w}^{(k)} = \overrightarrow{w}^{(k-1)} - \eta_k \nabla L_{i_k} (\overrightarrow{w}^{(k-1)})$$

• Градиентный спуск по мини-батчам (mini-batch gradient descent):

$$\nabla Q(\overrightarrow{w}) \approx \frac{1}{n} \sum_{j=1}^{n} \nabla L_{i_{kj}}(\overrightarrow{w}),$$

Метод моментов

• Направление антиградиента может меняться на каждом шаге:

Метод моментов

• Можно усреднять векторы антиградиента с нескольких предыдущих шагов с помощью вектора инерции:

$$\vec{h}_0 = 0,$$

$$\vec{h}_k = \alpha \vec{h}_{k-1} + \eta_k \nabla Q(\vec{w}^{(k-1)}),$$

где α – коэффициент момента.

$$\vec{w}^{(k)} = \vec{w}^{(k-1)} - \vec{h}_k$$

Метод Нестерова

• Можно вычислять градиент сразу в промежуточной точке:

$$\overrightarrow{w}^{(k)} = \overrightarrow{w}^{(k-1)} - \alpha \overrightarrow{h}_{k-1} - \eta_k \nabla Q \left(\overrightarrow{w}^{(k-1)} - \alpha \overrightarrow{h}_{k-1} \right)$$

Метод AdaGrad

 Разное изменение скорости для разных компонентов вектора весов:

$$\nabla Q \left(\overrightarrow{w}^{(k-1)} \right) = \left(\mathbf{g}_1^{k-1}, \dots, \mathbf{g}_d^{k-1} \right)$$

$$G_{kj} = G_{k-1,j} + (g_j^{k-1})^2$$

$$w_j^{(k)} = w_j^{(k-1)} - \frac{\eta_k}{\sqrt{G_{kj} + \varepsilon}} g_j^{k-1}$$

Модификации градиентного спуска

Метод RMSprop

• Проблема AdaGrad: переменная G_{kj} монотонно растёт, из-за чего шаги становятся всё медленнее и могут остановиться ещё до того, как достигнут минимум функционала

$$\nabla Q \left(\overrightarrow{w}^{(k-1)} \right) = \left(\mathbf{g}_1^{k-1}, \dots, \mathbf{g}_d^{k-1} \right)$$

$$G_{kj} = G_{k-1,j} + (g_j^{k-1})^2$$

$$w_j^{(k)} = w_j^{(k-1)} - \frac{\eta_k}{\sqrt{G_{kj} + \varepsilon}} \mathbf{g}_j^{k-1}$$

Модификации градиентного спуска

Метод RMSprop

• В методе RMSprop используется экспоненциальное затухание градиентов:

$$G_{kj} = \alpha G_{k-1,j} + (1 - \alpha) (g_j^{k-1})^2,$$

где $\alpha \in [0,1]$ – сглаживающая константа, часто $\alpha = 0.9$

Предобработка данных

- 1. Кодирование категориальных признаков
- 2. Нелинейные признаки
- 3. Нормализация признаков
- 4. Исключение выбросов
- 5. Проверка на дубликаты
- 6. Исключение шумовых признаков
- 7. Обработка пропущенных значений

1. Кодирование категориальных признаков

Бинаризация или one-hot encoding

- Пусть категориальный признак $f_j(x)$ принимает значения из множества $\mathbf{C} = \{c_1, \dots, c_m\}$
- Заменим его на m бинарных признаков $b_1(x), \dots, b_m(x),$ каждый из которых является индикатором одного из возможных категориальных значений:

$$b_i(x) = \left[f_j(x) = c_i \right]$$

1. Кодирование категориальных признаков

Бинаризация или one-hot encoding

id	color	One Hot Encoding	id	color_red	color_blue
1	red		1	1	Θ
2	blue		2	0	1
3	green		3	0	0
4	blue		4	0	1

color_green

2. Нелинейные признаки

• С помощью линейной регрессии можно восстанавливать нелинейные зависимости, если провести преобразование признакового пространства (полиномиальная регрессия):

$$\vec{x} = (x_1, \dots, x_d) \rightarrow \varphi(\vec{x}) = (\varphi_1(\vec{x}), \dots, \varphi_m(\vec{x}))$$

- Полиномиальные признаки:
 - полином второй степени:

$$\vec{x} = (x_1, x_2) \rightarrow \varphi(\vec{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$$

• полином третьей степени:

$$\vec{x} = (x_1, x_2) \rightarrow \varphi(\vec{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3)$$

- https://arachnoid.com/polysolve/
- sklearn.preprocessing.PolynomialFeatures

- Нормализация признаков приведение значений признаков к единой шкале
- Виды нормализации:
 - 1) Standard scaling (Z-score normalization)
 - 2) Минимаксная нормализация (Min-Max scaling)

1) Standard scaling (Z-score normalization) — мера относительного разброса значения признака, которая показывает, сколько стандартных отклонений составляет его разброс относительного среднего значения признака:

$$z = \frac{x - \mu}{\sigma}$$
, $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$, $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$

где μ — среднее значение признака, σ – стандартное отклонение

- Standard scaling приводит произвольное распределение к распределению со средним значением 0 и дисперсией 1
- «Правило трёх сигм» с вероятностью 0,9973 значение **нормально** распределённой случайной величины лежит в интервале ($\mu - 3\sigma, \mu + 3\sigma$)

2) Минимаксная нормализация (Min-Max scaling) — значения параметра приводятся к интервалу [0,1]:

$$x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

• Влияние на градиентный спуск:

4. Исключение выбросов

Выбросы (outliers) – объекты, которые не являются корректными примерами, например, из-за неправильно посчитанных признаков, ошибки сбора данных и т. п.

5. Проверка на дубликаты

- Дубликаты:
 - объекты с одинаковыми признаками
 - иногда это нормально
 - признаки с одинаковыми значениями (дублирование признаков)
 - корреляционный анализ
- Нечеткие дубликаты (near duplicates)

6. Исключение шумовых признаков

- Шумовые признаки (noisy features) признаки, не имеющие отношения к целевой переменной и к решаемой задаче
- *Пример* фаза луны в день первого экзамена

7. Обработка пропущенных значений

- Определить, почему данные пропущены
- Способы обработки:
 - Удалить все строки с пропущенными значениями
 - Проверить значимость признака
 - Подставить среднее (медиану)
 - Использовать модель машинного обучения для предсказания пропущенных значений
 - Линейная регрессия
 - Метод ближайшего соседа

Переобучение

- Цель машинного обучения?
- Точная подстройка модели под обучающие данные не гарантирует, что модель будет хорошо обобщать результаты обучения на новые, неизвестные ей данные
- Переобучение (overfitting) явление, при котором качество модели на новых, тестовых данных значительно хуже, чем на обучающих

Переобучение

Переобучение

Оценка качества моделей

- 1. Отложенная выборка
- Имеющиеся размеченные данные (т. е. данные с известными ответами) разделяются на три части:
 - обучающую (тренировочную, training)
 - проверочную (validation, development, evaluation)
 - контрольную (тестовую, test, evaluation)
- Проблема: результат зависит от конкретного разбиения

Оценка качества моделей

- 2. Перекрестная проверка (cross-validation)
- Размеченные данные случайным образом разбиваются на k блоков X_1, \dots, X_k примерно одинакового размера
- Обучается k моделей $a_1(x), ..., a_k(x)$, причем i-ая модель обучается на всех блоках, кроме i-го, а оценивается на i-м блоке
- Для получения итоговой оценки все результаты усредняются:

$$CV = \frac{1}{k} \sum_{i=1}^{k} Q(a_i(x), X_i)$$

Оценка качества моделей

Регуляризация

- Переобученные модели часто имеют большие значения весовых коэффициентов
- Для решения этой проблемы добавим к функционалу регуляризатор, который штрафует за слишком большую норму вектора весов:

$$Q_{\alpha}(\overrightarrow{w}) = Q(\overrightarrow{w}) + \alpha R(\overrightarrow{w}),$$

где α – параметр регуляризации

Регуляризация

Наиболее распространёнными являются L₂ и L₁-регуляризаторы:

• L_2 -регуляризатор — гребневая регрессия (ridge regression):

$$R(\vec{w}) = \|\vec{w}\|_2^2 = \sum_{i=1}^a w_i^2$$

- Перед обращением матрицы к ней добавляется диагональная матрица
- L₁-регуляризатор Lasso (least absolute shrinkage and selection operator) regression:

$$R(\vec{w}) = \|\vec{w}\|_1 = \sum_{i=1}^{a} |w_i|$$

Регуляризация

- Свободный коэффициент w_0 нет смысла регуляризовывать если мы будем штрафовать за его величину, то получится, что мы учитываем некие априорные представления о близости целевой переменной к нулю и отсутствии необходимости в учёте её смещения
- Нормальное уравнение в случае с L₂-регуляризатором:

$$\vec{w} = (X^T X + \alpha I)^{-1} X^T y$$

- Благодаря добавлению диагональной матрицы I к X^TX данная матрица оказывается положительно определённой, и поэтому её можно обратить
- Таким образом, при использовании L₂-регуляризации решение всегда будет единственным