Introduction to Data Science With Probability and Statistics Lecture 15: The Normal Distribution

CSCI 3022 - Summer 2020 Sourav Chakraborty Dept. of Computer Science University of Colorado Boulder

What will we learn today?

- Normal Distribution
- ☐ Standard Normal Distribution
- □ Critical values
- ☐ A Modern Introduction to Probability and Statistics, Chapter 5, Section 5

Review from Last Time

A random variable X is continuous if for some function $f: \mathbb{R} \to \mathbb{R}$ and for any numbers a and b with $a \leq b$,

$$P(a \le X \le) = \int_a^b f(x) \, dx$$

The function must satisfy:

1)
$$f(x) \ge 0$$
 for all x,

1)
$$f(x) \ge 0$$
 for all x, 2) $\int_{-\infty}^{\infty} f(x) dx = 1$

The cumulative distribution function of X is defined such that:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

The Normal Distribution

The <u>normal distribution</u> (aka the Gaussian distribution) is probably the most important and widely used distributions in probability and statistics.

Many populations have distributions well-approximated by a normal distribution.

It is very important to check that Normal is a good approximation. And to justify!

Examples:

- · Height, weight
- Scores on a test
- Time it takes to travel

Normal Distribution

A continuous random variable X has a **normal (or Gaussian) distribution** with parameters μ and σ^2 if its probability density function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{(x-\mu)}{\sigma}\right)^2}$$

We say $X \sim N(\mu, \sigma^2)$

Let's play around with this distribution: https://academo.org/demos/gaussian-distribution/

4: mean

o: Standard deviation

When $\mu = 0$ and $\sigma^2 = 1$, the normal distribution is called the <u>standard normal distribution</u>.

What is the pdf of the standard normal distribution?

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

What is the cdf of the standard normal distribution?

$$F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{1} \frac{e^{-\frac{1}{2}t^{2}}}{\sqrt{2\pi}} dt$$
numerical approximation
is used.

A standard normal random variable is usually denoted Z.

Recall: The normal distribution does not have a closed form cumulative distribution function.

→ We use special notation to denote the cdf of the standard normal distribution:

Standard Normal

$$\Phi(z) = P(Z \le z)$$

 \rightarrow And usually we look up values for $\Phi(z)$ in a table.

Distribution
"Bell Curve"

15.0% 19.1% 15.0% 9.2% 4.4% 0.5% 0.5% 0.1% 15.0% 15

import scipy.stats as stats $\Phi(z) = stats.norm.cdf(z)$

The standard normal distribution rarely occurs in real life.

Instead, we take non-standard normal distribution, and standardize them using a simple transformation.

.0 .1 .2 .3 .4 .5 .6 .7	.5000 .5398 .5793 .6179 .6554 .6915 .7257 .7580 .7881	.5040 .5438 .5832 .6217 .6591	.5080 .5478 .5871 .6255 .6628	.5120 .5517 .5910 .6293 .6664	.5160 .5557 .5948 .6331 .6700	.5199 .5596 .5987 .6368	.5239 .5636 .6026	.5279 .5675 .6064	.5319 .5714	.5359 .5753
.1 .2 .3 .4 .5 .6	.5793 .6179 .6554 .6915 .7257 .7580	.5832 .6217 .6591 .6950 .7291	.5871 .6255 .6628	.5910 .6293	.5948 .6331	.5987				.5753
.2 .3 .4 .5 .6	.6179 .6554 .6915 .7257 .7580	.6217 .6591 .6950 .7291	.6255 .6628	.6293	.6331		.6026	6064		
.3 .4 .5 .6 .7	.6554 .6915 .7257 .7580	.6591 .6950 .7291	.6628			6368		.0004	.6103	.6141
.4 .5 .6 .7	.6915 .7257 .7580	.6950 .7291	NO COMPANS	.6664	.6700		.6406	.6443	.6480	.6517
.6	.7257 .7580	.7291	.6985			.6736	.6772	.6808	.6844	.6879
.6	.7580			.7019	.7054	.7088	.7123	.7157	.7190	.7224
.7			.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
	.7881	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
		.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
	0112	0246		0270	0292	.9394	.9406	.9418	.9429	.9441
1.5	.9332	.9345	.9357	.9370	.9382	.9505	.9515	.9525	.9535	.9545
1.6	.9452	.9463	.9474	.9484	.9495	.9599	.9608	.9616	.9625	.9633
1.7	.9554	.9564	.9573	.9582			.9686	.9693	.9699	.9706
1.8	.9641	.9649	.9656	.9664	.9671	.9678		.9756	.9761	.9767
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9730	.5701	.5707
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	,9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	,9997	.9997	.9997	.9997	.9998

Normal Distribution

Table C-1. Cumulative Probabilities of the Standard Normal Distribution.

Entry is area A under the standard normal curve from $-\infty$ to z(A)

$$P(Z \le 1.51) = \Phi(1.51)$$

= 0.9345

Source

Example: What is $P(Z \le 1.25)$?

$$P(Z \le 1.25) = \phi(1.25)$$

use either table OR.

python: stats.norm.cdf(1.25)

= 0.8944

Example: What is $P(Z \ge 1.25)$?

$$P(Z \ge 1.25) = 1 - P(Z \le 1.25)$$

= 1 - $\phi(1.25)$
= 0.1056

Example: What is $P(Z \le -1.25)$?

$$P(Z \le -1.25) = P(Z > 1.25)$$

= 0.1056

Example: What is $P(-0.38 \le Z \le 1.25)$?

$$P(-0.38 \le Z \le 1.25)$$

= $\phi(1.25) - \phi(-0.38)$
= $stats. norm.cdf(1.25)$
- $stats. norm.cdf(-0.38)$

Example: What is the 99th percentile of N(0, 1)?

In Python:

scipy.stats.norm.cdf
 scipy.stats.norm.pdf
 scipy.stats.norm.ppf

stats. norm.
$$cdf(2.32) = 0.99$$

Stats. norm. $ppf(0.5) = 0$

The Critical Value

We say z_{α} is the <u>critical value</u> of Z under the standard normal distribution that gives a certain tail area. In particular, it is the Z value such that exactly α of the area under the curve lies to the **right** of z_{α}

> Note that other books might use different conventions, so be careful and sanity check often.

What is the relationship between z_{α} and the cdf?

What is the relationship between z_{α} and percentiles?

The Critical Value

We say z_{α} is the <u>critical value</u> of Z under the standard normal distribution that gives a certain tail area. In particular, it is the Z value such that exactly α of the area under the curve lies to the **right** of z_{α}

> Note that other books might use different conventions, so be careful and sanity check often.

What is the relationship between z_{α} and the cdf?

$$\phi(z_{0.05}) = 1 - \infty$$

What is the relationship between z_{α} and percentiles?

eg:
$$\alpha = 0.05$$
; $Z_{0.05}$ is the 95% percentile value

Non-Standard Normal Distributions

Non-standard normal distributions can be turned into standard normal.

Proposition: If X is a normally distributed random variable with mean μ and standard deviation σ , then Z follows a standard normal distribution if we define:

Brake Lights

Example: The time it takes a driver to react to brake lights on a decelerating vehicle is important to understand. The article "Fast-Rise Brake Lamp as a Collision Prevention Device" suggests that reaction time for an in-traffic response to a brake signal from standard brake lights can be modeled as a normal distribution having a mean value of 1.25 seconds and standard deviation 0.46 seconds.

What is the probability that a reaction time is between 1.0 s and 1.75 s?

Brake Lights

Example: The time it takes a driver to react to brake lights on a decelerating vehicle is important to understand. The article "Fast-Rise Brake Lamp as a Collision Prevention Device" suggests that reaction time for an in-traffic response to a brake signal from standard brake lights can be modeled as a normal distribution having a mean value of 1.25 seconds and standard deviation 0.46 seconds.

What is the probability that a reaction time is between 1.0 s and 1.75 s?

$$R \sim N(1.25, 0.46^2)$$
 $P(1.0 \leq R \leq 1.75)$
 $= P(1.0 - \mu \leq R - \mu \leq 1.75 - \mu)$
 $= P(\frac{1.0 - \mu}{\sigma} \leq \frac{R - \mu}{\sigma} \leq \frac{1.75 - \mu}{\sigma})$

we want
$$R \sim N(1.25, 0.46^2)$$

to transform to $Z \sim N(0,1)$

Brake Lights - continued

Example: What is the probability that a reaction time is between 1.0 s and 1.75 s?

$$= P(-0.54 \le Z \le 1.09)$$

$$= \phi(1.09) - \phi(-0.54)$$

$$\approx 0.5674$$

Next Time:

Central Limit Theorem!