LUYỆN TẬP MỘT SỐ KIẾN THỨC VỀ PHÉP BIẾN ĐỔI Z

Bài 1: Cho hệ LTI có hàm truyền

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n} = \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad |z| > \frac{1}{2}$$

- a. Biểu diễn điểm cực và điểm không của H(z) trên mặt phẳng z.
- b. Biết rằng nếu tín hiệu lối vào có dạng $x(n)=z^n$ thì $y(n)=H(z)z^n$.

Xác định tín hiệu lối ra của hệ thống, biết tín hiệu lối vào là

$$x[n] = (\frac{3}{4})^n + 3(2)^n$$

Gợi ý: x(n) là biểu diễn tuyến tính của hàm dưới dạng zⁿ.

Đáp án: 0,5 điểm/ý x 2 ý = 1 điểm

a)

$$H(z)=\frac{z}{z-\frac{1}{2}}$$

Setting the numerator equal to zero to obtain the zeros, we find a zero at z = 0. Setting the denominator equal to zero to get the poles, we find a pole at $z = \frac{1}{2}$.

b)
$$y[n] = \frac{1}{1 - \frac{1}{2}(\frac{4}{3})} \left(\frac{3}{4}\right)^n + 3\left[\frac{1}{1 - \frac{1}{2}(\frac{1}{2})}\right] (2)^n$$

$$= 3(\frac{3}{4})^n + 4(2)^n$$

Bài 2: Cho chuỗi

$$x[n] = 2^n u[n]$$

- a) x(n) có thể tính tổng tuyệt đối không?
- b) Biến đổi Fourier của x(n) có hội tụ không?
- c) Trong khoảng r nào thì biến đổi Fourier của r⁻ⁿx(n) hội tụ?
- d) Xác định biến đổi Z của x(n).
- e) Xác định x₁(n) biết

$$2^{n}u[n] \stackrel{\mathcal{I}}{\longleftrightarrow} X(z),$$

$$x_{1}[n] \stackrel{\mathcal{J}}{\longleftrightarrow} X(3e^{j\Omega}) = X_{1}(e^{j\Omega})$$

Đáp án: 0,5 điểm/ý x 5 ý = 2,5 điểm

(a) To see if x[n] is absolutely summable, we form the sum

$$S_N = \sum_{n=0}^{N-1} |x[n]| = \sum_{n=0}^{N-1} 2^n = \frac{1-2^N}{1-2}$$

Since $\lim_{N\to\infty} S_N$ diverges, x[n] is *not* absolutely summable.

(b) Since x[n] is not absolutely summable, the Fourier transform of x[n] does not converge.

(c)
$$S_N = \sum_{n=0}^{N-1} \left(\frac{2}{r}\right)^n = \frac{1 - \left(\frac{2}{r}\right)^N}{1 - \left(\frac{2}{r}\right)}$$

 $\lim_{N\to\infty} S_N$ is finite for |r|>2. Therefore, the Fourier transform of $r^{-n}x[n]$ converges for |r|>2.

(d)
$$X(z) = \sum_{n=0}^{\infty} 2^n z^{-n} = \sum_{n=0}^{\infty} (2z^{-1})^n$$

= $\frac{1}{1 - 2z^{-1}}$ for $|2z^{-1}| < 1$

Therefore, the ROC is |z| > 2.

(e)
$$X_1(e^{j\Omega}) = \frac{1}{1 - \frac{2}{3}e^{-j\Omega}}$$

Therefore, $x_1[n] = (\frac{2}{3})^n u[n]$.

<u>Bài 3</u>: Cho hệ thống thời gian rời rạc có các điểm cực và điểm không được biểu diễn như trên hình:

Xác định vùng ROC có thể trong các trường hợp sau:

- a) x(n) là tín hiệu phía phải.
- b) Biến đổi Fourier của x(n) hội tụ
- c) Biến đổi Fourier của x(n) không hội tụ
- d) x(n) là tín hiệu phía trái

Đáp án: 0,5 điểm/ý x 4 ý = 2 điểm

- (a) Since x[n] is right-sided, the ROC is given by $|z| > \alpha$. Since the ROC cannot include poles, for this case the ROC is given by |z| > 2.
- (b) The statement implies that the ROC includes the unit circle |z| = 1. Since the ROC is a connected region and bounded by poles, the ROC must be

$$\frac{2}{3} < |z| < 2$$

- (c) For this situation there are three possibilities:
 - (i) $|z| < \frac{1}{3}$
 - (ii) $\frac{1}{3} < |z| < \frac{2}{3}$
 - (iii) |z| > 2
- (d) This statement implies that the ROC is given by $|z| < \frac{1}{3}$.

Bài 4:

- a) Xác định biến đổi Z của hai tín hiệu sau:
 - (i) $x_1[n] = (\frac{1}{2})^n u[n]$
 - (ii) $x_2[n] = -(\frac{1}{2})^n u[-n-1]$
- b) Biểu diễn điểm không, điểm cực, và vùng ROC trên mặt phẳng Z
- c) Lặp lại phần (a) và (b) với hai tín hiệu
 - $(i) x_3[n] = 2u[n]$
 - (ii) $x_4[n] = -(2)^n u[-n-1]$
- d) Trong 4 tín hiệu ở phần (a) và (c), tín hiệu nào có biến đổi Fourier hội tu?

Đáp án: 0,5 điểm/ý x 4 ý = 2 điểm

(a) (i)
$$X_1(z) = \sum_{n=-\infty}^{\infty} x_1[n]z^{-n} = \sum_{n=0}^{\infty} (\frac{1}{2}z^{-1})^n$$

= $\frac{1}{1 - \frac{1}{2}z^{-1}}$,

with an ROC of $\left|\frac{1}{2z}\right| < 1$, or $|z| > \frac{1}{2}$.

(ii)
$$X_2(z) = \sum_{n=-\infty}^{-1} (\frac{1}{2})^n z^{-n}$$

Letting n = -m, we have

$$X_{2}(z) = -\sum_{m=1}^{\infty} \left(\frac{1}{2}\right)^{-m} z^{m}$$

$$= -\sum_{m=1}^{\infty} (2z)^{m} = -\frac{2z}{1-2z}$$

$$= \frac{1}{1-\frac{1}{2}z^{-1}},$$

with an ROC of |2z| < 1, or $|z| < \frac{1}{2}$.

(b) i)

ii)

(i)
$$X_3(z) = 2 \sum_{n=0}^{\infty} z^{-n} = 2 \left(\frac{1}{1 - z^{-1}} \right) = \frac{2z}{z - 1}$$
. The ROC is $|z| > 1$,

(ii)
$$X_4(z) = -\sum_{n=-\infty}^{-1} 2^n z^{-n} = -\sum_{n=1}^{\infty} 2^{-n} z^n$$

= $-\sum_{n=1}^{\infty} \left(\frac{z}{2}\right)^n = -\frac{z/2}{1-(z/2)} = \frac{z}{z-2}$,

with an ROC of |z/2| < 1, or |z| < 2

(d) For the Fourier transform to converge, the ROC of the z-transform must include the unit circle. Therefore, for $x_1[n]$ and $x_4[n]$, the corresponding Fourier transforms converge.

<u>Bài 5</u>: Điểm không và điểm cực của hàm truyền hệ thống được biểu diễn trên hình:

- a) Vẽ đáp ứng biên độ khi điểm không z=0 tăng từ 1 đến 3.
- b) Số các điểm không có ảnh hưởng đến đáp ứng pha không?

Đáp án: 0,5 điểm/ý x 2 ý = 1 điểm

(a) When H(z) = z/(z - a), i.e., the number of zeros is 1, we have

$$H(e^{j\Omega}) = \frac{\cos \Omega + j \sin \Omega}{(\cos \Omega - a) + j \sin \Omega}$$

Therefore,

$$|H(e^{j\Omega})| = \frac{1}{1 + a^2 - 2a\cos\Omega},$$

When $H(z) = z^2/(z - a)$, i.e., the number of zeros is 2, we have

$$H(e^{j\Omega}) = \frac{\cos 2\Omega + j \sin 2\Omega}{(\cos \Omega - a) + j \sin \Omega}$$

Therefore,

$$|H(e^{j\Omega})| = \frac{1}{1+a^2-2a\cos\Omega}$$

Hence, we see that the magnitude of $H(e^{j\Omega})$ does not change as the number of zeros increases.

(b) For one zero at z = 0, we have

$$H(z) = \frac{z}{z - a},$$

$$H(e^{j\Omega}) = \frac{e^{j\Omega}}{e^{j\Omega} - a}$$

We can calculate the phase of $H(e^{j\Omega})$ by $[\Omega - \sphericalangle (\text{denominator})]$. For two zeros at 0, the phase of $H(e^{j\Omega})$ is $[2\Omega - \sphericalangle (\text{denominator})]$. Hence, the phase changes by a linear factor with the number of zeros.

<u>Bài 6</u>: Tính biến đổi Z và biểu diễn điểm không, điểm cực, vùng ROC của các chuỗi sau:

- (a) $(\frac{1}{3})^n u[n]$
- **(b)** $\delta[n+1]$

Đáp án: 0,5 điểm/ý x 2 ý = 1 điểm

(a)
$$(\frac{1}{3})^n u[n] \stackrel{Z}{\longleftrightarrow} \sum_{n=0}^{\infty} (\frac{1}{3})^n z^{-n}$$

$$= \sum_{n=0}^{\infty} (3z)^{-n} = \frac{1}{1 - \frac{1}{3}z^{-1}} = \frac{z}{z - \frac{1}{3}}$$

Therefore, there is a zero at z = 0 and a pole at $z = \frac{1}{3}$, and the ROC is

$$\left|\frac{1}{3z}\right| < 1$$
 or $|z| > \frac{1}{3}$,

(b)
$$\delta[n+1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta[n+1]z^{-n} = z,$$

