4 bit Parallol Binary Adder

Half Adder HA FULL Adder FA

=> Subtractors

Half Subracter Subtracts 2, bits of variables

$$D = A'B + AB' = A + B = (A+B)$$

$$B = A'B$$

Full Substractor

Substracts 3 one bit variables

A	В	C	DIA	Borrow	5 01-01/05/-
0	0	0	0	0	B = A'C+A'B AB' + BC'
0	0	1	1	1	D= A@B@C
0	1	0	1	1	
0	1	1	0	1	
)	0	0	F	O	
1	0	J	0	0	
i	1	0	0	0	
	1		1	l l	

4 bit Parallel Bit Subtractor

Parallel 4 Bit 1's complement Subtractor

If no carry is generated, then answer is in one's complement form and -ve

For final answer, invert the values $3_3S_2S_1S_6 \longrightarrow \overline{S_3S_2S_1S_6}$

Eg. = 0111

1) we invert 0110

and add

1101

+ 1001

1 0110

2) we add back

- 2) We add back the corry 1000 + 1000 | 0110 | 0111
- 3) which was the original difference

(Adding 1 to -> 29 I's complement complem)

