

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB201T- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

Sl. No.		Questions		Answer
Part - A				
1	Find the singular integral of the PDE $z = px + qy + p^2 - q^2$		$4z = y^2 - x^2$	
2	Find the complete integral of the PDE $\sqrt{p} + \sqrt{q} = \sqrt{x}$		$z = \frac{x^2}{2} + ax - \frac{4\sqrt{a}}{3}x^{\frac{3}{2}} + ay + c$	
3	Solve $yp = 2xy + \log q$		$z = x^2 + ax + \frac{e^{ay}}{a} + c$	
4	Find the con	aplete integral of $p + q = \sin x + \sin y$	z = ax	$x - \cos x - \cos y - ay + c$
5	Solve $p \tan x$	$+ q \tan y = \tan z$	($ \phi \left(\frac{\sin x}{\sin y}, \frac{\sin y}{\sin z} \right) = 0 $
Part - B				
6	Solve $(3z-4)$	y) p + (4x - 2z)q = 2y - 3x	$\phi(x^2 +$	$-y^2 + z^2, 2x + 3y + 4z = 0$
7	Solve $(x^2 - 1)^2$	$(yz) p + (y^2 - zx)q = z^2 - xy$	$\phi\left(\frac{x}{y}\right)$	$\left(\frac{z-y}{z-z}, xy + yz + zx\right) = 0$
8	Solve $(2z - y)$	(p + (x+z)q + 2x + y = 0)	$\phi(x^2 -$	$+y^2+z^2,z+2y-x)=0$
9	Solve $(y+z)$	p + (z+x)q = x + y	$\phi\left(\frac{x-y}{y-y}\right)$	$\left(-\frac{y}{z},(x+y+z)(x-y)^2\right) = 0$
10	Solve $x^2(y -$	$z)p + y^{2}(z - x)q = z^{2}(x - y)$	φ	$\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}, xyz\right) = 0$