

Meng-Gen Tsai plover@gmail.com

July 19, 2021

Contents

Chapter I: Algebraic Integers	2
I.1. The Gaussian Integers	2
Exercise I.1.1	2
Exercise I.1.4	2
Exercise I.1.5	2
I.2. Integrality	3
Exercise I.2.1	3
Exercise I.2.2	3
Exercise I.2.3	4
Exercise I.2.4	5
Exercise I.2.7. (Stickelberger's discriminant relation)	6
I.3. Ideals	7
Exercise I.3.4	7
Exercise I.3.5	8
Exercise I.3.6	8
I.4. Lattices	9
Exercise I.4.1	9
Exercise I.4.2	9
emapter viri detail ametrems and discrete	11
VII.1. The Riemann Zeta Function	11
Exercise VII.1.4	11

Chapter I: Algebraic Integers

I.1. The Gaussian Integers

Exercise I.1.1.

 $\alpha \in \mathbb{Z}[i]$ is a unit if and only if $N(\alpha) = 1$.

Proof.

- (1) (\Longrightarrow) Since α is a unit, there is $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$. So $N(\alpha\beta) = N(1)$, or $N(\alpha)N(\beta) = 1$. Since the image of N is nonnegative integers, $N(\alpha) = 1$.
- (2) (\Leftarrow) $N(\alpha) = \alpha \overline{\alpha}$, or $1 = \alpha \overline{\alpha}$ since $N(\alpha) = 1$. That is, $\overline{\alpha} \in \mathbb{Z}[i]$ is the inverse of $\alpha \in \mathbb{Z}[i]$. (Or we solve the equation $N(\alpha) = a^2 + b^2 = 1$, and show that all four solutions $(\pm 1 \text{ and } \pm i)$ are units.)
- (3) Conclusion: a unit $\alpha = a + bi$ of $\mathbb{Z}[i]$ is satisfying the equation $N(\alpha) = a^2 + b^2 = 1$ by (1)(2). That is, the only unit of $\mathbb{Z}[i]$ are ± 1 and $\pm i$.

Exercise I.1.4.

Show that the ring $\mathbb{Z}[i]$ cannot be ordered.

Proof. Similar to the fact that i cannot be ordered in \mathbb{C} . Thus i cannot be ordered in $\mathbb{Z}[i]$ either. \square

Exercise I.1.5.

Show that the only units of the ring $\mathbb{Z}[\sqrt{-d}] = \mathbb{Z} + \mathbb{Z}\sqrt{-d}$, for any rational integer d > 1, are ± 1 .

Proof.

(1) Define the norm N on $\mathbb{Z}[\sqrt{-d}]$ by

$$N(x + y\sqrt{-d}) = (x + y\sqrt{-d})(x - y\sqrt{-d}) = x^2 + y^2d,$$

i.e., by $N(z) = |z|^2$. It is multiplicative.

(2) Similar to Exercise I.1.1,

$$x+y\sqrt{-d}\in\mathbb{Z}[\sqrt{-d}]$$
 is a unit $\Longleftrightarrow N(x+y\sqrt{-d})=x^2+y^2d=1$ $\iff x^2=1$ and $y=0$ $\iff x=\pm 1$ and $y=0$.

Hence the only units of the ring $\mathbb{Z}[\sqrt{-d}]$ are ± 1 (d > 1).

I.2. Integrality

Exercise I.2.1.

Is $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ an algebraic integer?

Proof.

- (1) $\alpha := \frac{3+2\sqrt{6}}{1-\sqrt{6}} = -3-\sqrt{6}$. Since the set of all algebraic integers is a ring, α is an algebraic integer.
- (2) Or show that α satisfies a monic equation $x^2 + 6x + 3 = 0 \in \mathbb{Z}[x]$.

Exercise I.2.2.

Show that, if the integral domain A is integrally closed, then so is the polynomial ring A[t].

Proof.

(1) Suppose A is integrally closed in B. Show that A[t] is integrally closed in B[t]. Suppose $f \in B[t]$ is integral over A[t]. Write

$$f^{n} + g_{1}f^{n-1} + \dots + g_{n-1}f + g_{n} = 0$$

where n > 0 and $g_i \in A[t]$. Hence

$$f^{n} + g_{1}f^{n-1} + \dots + g_{n-1}f = -g_{n} \in A[t]$$

$$\Longrightarrow f(\underbrace{f^{n-1} + g_{1}f^{n-1} + \dots + g_{n-1}}_{:=q}) \in A[t].$$

It is possible to show that $fg \in A[t]$ implies that $f \in A[t]$ and $g \in A[t]$ by using the fact that A is integrally closed in B.

(2) Suppose f, g are monic polynomials in B[t]. Show that $fg \in A[t]$ implies that $f \in A[t]$ and $g \in A[t]$. Write

$$f = \prod (t - \xi_i), \qquad g = \prod (t - \eta_i)$$

in some splitting field F of f and g containing the quotient field of B. Note that each ξ_i and each η_j is a root of a monic equation fg in A[t]. Since A is integrally closed in B, $\xi_i, \eta_j \in A$. Hence $f, g \in A[t]$.

(3) To apply part (2), we need to remedy leading coefficients of f and g. Take an integer $m > \max\{\deg(f), \deg(g_1), \ldots, \deg(g_n)\}$. Let $f_0 = t^m + f$ be a monic polynomial in B[t]. Hence

$$(f_0 - t^m)^n + g_1(f_0 - t^m)^{n-1} + \dots + g_n = 0$$

$$\Longrightarrow f_0^n + h_1 f_0^{n-1} + \dots + h_n = 0$$

where

$$h_n = t^{mn} + (-1)^{n-1} g_1 t^{m(n-1)} + \dots + g_n \in A[t]$$

is also monic. So

$$f_0^n + h_1 f_0^{n-1} + \dots + h_{n-1} f = -h_n \text{ is monic in } A[t]$$

$$\Longrightarrow f_0(\underbrace{f_0^{n-1} + h_1 f^{n-1} + \dots + h_{n-1}}_{:=h_0}) \in A[t] \text{ where}$$

 f_0 and h_0 both are monic in B[t].

Now we can apply part (2) safely.

(4) In part (1), we let B be the quotient field of A and thus the quotient field of A[t] is B(t). Hence

$$f \in B(t)$$
 integral over $A[t]$
 $\Longrightarrow f \in B(t)$ integral over $B[t]$ $(A[t] \subseteq B[t])$
 $\Longrightarrow f \in B[t]$ $(B[t]$ is a UFD)
 $\Longrightarrow f \in B[t]$ integral over $A[t]$
 $\Longrightarrow f \in A[t]$. $((1))$

Exercise I.2.3.

In the polynomial ring $A = \mathbb{Q}[x,y]$, consider the principal ideal $\mathfrak{p} = (x^2 - y^3)$. Show that \mathfrak{p} is a prime ideal, but A/\mathfrak{p} is not integrally closed.

Proof.

- (1) It is easy to show that $x^2 y^3$ is irreducible in A. Hence $\mathfrak{p} = (x^2 y^3)$ is prime since A is a UFD.
- (2) By substituting $x = t^3$, $y = t^2$, $A/\mathfrak{p} \cong \mathbb{Q}[t^3, t^2]$, with quotient field $\mathbb{Q}(t)$ (by noting $t = \frac{x}{y}$). Note that $\mathbb{Q}[t]$ is a UFD, thus is already integrally closed. So the integral closure will be $\mathbb{Q}[t] \supsetneq \mathbb{Q}[t^3, t^2]$. It suggests that A/\mathfrak{p} might not be integrally closed.
- (3) (Reductio ad absurdum) If not, then the element $\frac{x}{y}$ satisfies a monic equation $t^2 y = 0 \in (A/\mathfrak{p})[t]$. So $\frac{x}{y} \in A/\mathfrak{p}$ or $t \in \mathbb{Q}[t^3, t^2]$, which is absurd.

Note.

- (1) Serre's criterion for normality.
- (2) Hence smoothness is the same as normality for affine curves in $\mathbb{Q}[x,y]$. Note that $x^2 y^3$ is an irreducible cubic with a cusp at the origin (0,0).
- (3) There is an affine variety $X \in \mathbb{Q}[x,y,z]$ such that X is normal but not smooth. $(X = V(x^2 + y^2 z^2)$ for example.)

Exercise I.2.4.

Let D be a squarefree rational integer $\neq 0, 1$ and d the discriminant of the quadratic number field $K = \mathbb{Q}(\sqrt{D})$. Show that

$$d = \begin{cases} D & \text{if } D \equiv 1 \pmod{4}, \\ 4D & \text{if } D \equiv 2, 3 \pmod{4}. \end{cases}$$

and that an integral basis of K is given by $\{1, \sqrt{D}\}$ in the second case, by $\{1, \frac{1+\sqrt{D}}{2}\}$ in the first case, and by $\{1, \frac{d+\sqrt{d}}{2}\}$ in both case.

Proof.

- (1) The Galois group of $K|\mathbb{Q}$ has two elements, the identity and an automorphism sending \sqrt{D} to $-\sqrt{D}$.
- (2) Note that $\alpha \in \mathcal{O}_K$ iff $\operatorname{Tr}_{K|\mathbb{Q}}(\alpha), N_{K|\mathbb{Q}}(\alpha) \in \mathbb{Z}$ (by noting that the equation $x^2 \operatorname{Tr}_{K|\mathbb{Q}}(\alpha)x + N_{K|\mathbb{Q}}(\alpha) = 0$ has a root $x = \alpha$). So given $\alpha = x + y\sqrt{D} \in \mathcal{O}_K$, we have

$$\operatorname{Tr}_{K|\mathbb{Q}}(\alpha) = 2x \in \mathbb{Z},$$

 $N_{K|\mathbb{Q}}(\alpha) = x^2 - Dy^2 \in \mathbb{Z}.$

- (3) So $4(x^2 Dy^2) = (2x)^2 D(2y)^2 \in \mathbb{Z}$. So $D(2y)^2 \in \mathbb{Z}$ since $2x \in \mathbb{Z}$. So $2y \in \mathbb{Z}$ since D is squarefree $\neq 0, 1$. Let r = 2x, s = 2y. Then $r^2 Ds^2 \equiv 0 \pmod{4}$. Note that a square $\equiv 0, 1 \pmod{4}$.
- (4) If $D \equiv 1 \pmod{4}$, then

$$r^{2} - Ds^{2} \equiv r^{2} - s^{2} \pmod{4}$$

$$\Rightarrow r \text{ and } s \text{ has the same parity}$$

$$\Rightarrow \mathcal{O}_{K} = \left\{ \frac{r + s\sqrt{D}}{2} : r \equiv s \pmod{2} \right\}$$

$$\Rightarrow \mathcal{O}_{K} = \left\{ \frac{r - s}{2} + s \cdot \frac{1 + \sqrt{D}}{2} : r \equiv s \pmod{2} \right\}$$

$$\Rightarrow \mathcal{O}_{K} = \mathbb{Z} + \mathbb{Z} \frac{1 + \sqrt{D}}{2}.$$

So $\left\{1, \frac{1+\sqrt{D}}{2}\right\}$ is an integral basis of K. Hence

$$d = \begin{vmatrix} 1 & \frac{1+\sqrt{D}}{2} \\ 1 & \frac{1-\sqrt{D}}{2} \end{vmatrix}^2 = D.$$

(5) If $D \equiv 2, 3 \pmod{4}$, then

$$r^2 - Ds^2 \equiv r^2 + 2s^2 \text{ or } r^2 + s^2 \pmod{4}$$

 $\Longrightarrow \text{both } r \text{ and } s \text{ are even}$
 $\Longrightarrow \text{both } x \text{ and } y \text{ are rational integers}$
 $\Longrightarrow \mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\sqrt{D}.$

So $\{1, \sqrt{D}\}$ is an integral basis of K. Hence

$$d = \begin{vmatrix} 1 & \sqrt{D} \\ 1 & -\sqrt{D} \end{vmatrix}^2 = 4D.$$

(6) By (4)(5), $\left\{1, \frac{d+\sqrt{d}}{2}\right\}$ is an integral basis of K for any case.

Exercise I.2.7. (Stickelberger's discriminant relation)

The discriminant d_K of an algebraic number field K is always $\equiv 0 \pmod{4}$ or $\equiv 1 \pmod{4}$. (Hint: The discriminant $\det(\sigma_i \omega_j)$ of an integral basis ω_j

is a sum of terms, each prefixed by a positive or a negative sign. Writing P (resp. N) for the sum of the positive (resp. negative) terms, one find $d_K = (P - N)^2 = (P + N)^2 - 4PN$.)

Proof (Hint).

(1) Let S_n be the symmetric group of degree n, and A_n be the alternating group of degree n. So

$$\det(\sigma_i \omega_j) = \sum_{\pi \in S_n} \left(\operatorname{sgn}(\pi) \prod_{i=1}^n \sigma_i \omega_{\pi(i)} \right)$$
$$= \underbrace{\sum_{\pi \in A_n} \prod_{i=1}^n \sigma_i \omega_{\pi(i)}}_{:=P} - \underbrace{\sum_{\pi \in S_n - A_n} \prod_{i=1}^n \sigma_i \omega_{\pi(i)}}_{:=N}.$$

- (2) Note that $\sigma_i(P+N) = P+N$ and $\sigma_i(PN) = PN$ for all σ_i . Hence $P+N, PN \in \mathbb{Q}$. Therefore $P+N, PN \in \mathbb{Q} \cap \mathcal{O}_K = \mathbb{Z}$.
- (3) By (1)(2),

$$d_K = \det(\sigma_i \omega_j)^2$$

$$= (P - N)^2$$

$$= (P + N)^2 - 4PN$$

$$\equiv 0, 1 \pmod{4}.$$

I.3. Ideals

Exercise I.3.4.

A Dedekind domain with a finite number of prime ideals is a principal ideal domain. (Hint: If $\mathfrak{a} = \mathfrak{p}_1^{\nu_1} \cdots \mathfrak{p}_r^{\nu_r} \neq 0$ is an ideal, then choose elements $\pi_i \in \mathfrak{p}_i \setminus \mathfrak{p}_i^2$ and apply the Chinese remainder theorem for the cosets $\pi_i^{\nu_i}$ (mod $\mathfrak{p}_i^{\nu_i+1}$).)

Proof.

- (1) The hint gives all.
- (2) The existence of π_i is guaranteed by Theorem I.3.3 (the unique prime factorization). The Chinese remainder theorem shows that there is one element $\pi \in \mathcal{O}$ such that $\pi = \pi_i^{\nu_i} \pmod{\mathfrak{p}_i^{\nu_i+1}}$ for each i.

(3) Hence $\mathfrak{p} = (\pi)$ since they have the same prime factorization.

Exercise I.3.5.

The quotient ring \mathcal{O}/\mathfrak{a} of a Dedekind domain by an ideal $\mathfrak{a} \neq 0$ is a principal ideal domain. (Hint: For $\mathfrak{a} = \mathfrak{p}^n$ the only proper ideals of \mathcal{O}/\mathfrak{a} are given by $\mathfrak{p}/\mathfrak{p}^n, \ldots, \mathfrak{p}^{n-1}/\mathfrak{p}^n$. Choose $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$ and show that $\mathfrak{p}^{\nu} = \mathcal{O}\pi^{\nu} + \mathfrak{p}^n$.)

Proof.

- (1) By the Chinese remainder theorem, it suffices to show the case $\mathfrak{a} = \mathfrak{p}^n$ where \mathfrak{p} is prime.
- (2) There is a natural correspondence between

 $\{\text{ideals of } \mathcal{O}/\mathfrak{p}^n\} \longleftrightarrow \{\text{ideals of } \mathcal{O} \text{ containing } \mathfrak{p}^n\}.$

Hence the proper ideals of $\mathcal{O}/\mathfrak{p}^n$ are given by $\mathfrak{p}/\mathfrak{p}^n, \dots, \mathfrak{p}^{n-1}/\mathfrak{p}^n$.

(3) Similar to Exercise I.3.4, choose $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$ and thus $\mathfrak{p}^{\nu} = \mathcal{O}\pi^{\nu} + \mathfrak{p}^n$ $(\nu = 1, \dots, n-1)$ since they have the same prime factorization. Hence $\mathfrak{p}^{\nu}/\mathfrak{p}^n = (\pi^{\nu} + \mathfrak{p}^n)$ is principal.

Exercise I.3.6.

Every ideal of a Dedekind domain can be generated by two elements. (Hint: Use Exercise I.3.5.)

Proof.

- (1) Given an ideal $\mathfrak{a} \neq 0$ of a Dedekind domain \mathcal{O} . (Nothing to do if $\mathfrak{a} = 0 = (0)$.) So \mathcal{O}/\mathfrak{a} is a principal ideal domain (Exercise I.3.5).
- (2) Take any $\alpha \in \mathfrak{a} \setminus \{0\}$. So $(\alpha)/\mathfrak{a} = (\beta \pmod{\mathfrak{a}})$ is a principal ideal for some $\beta \in \mathcal{O}$. So $\mathfrak{a} = (\alpha, \beta)$ is generated by two elements.

I.4. Lattices

Exercise I.4.1.

Show that a lattice Γ in \mathbb{R}^n is complete if and only if the quotient \mathbb{R}^n/Γ is compact.

Proof.

- (1) (\Longrightarrow) Define a natural homeomorphism $\varphi : \mathbb{R}^n/\Gamma \to \mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ by sending (x_1, \ldots, x_n) to $(x_1 \pmod 1), \ldots, x_n \pmod 1)$ (where $\mathbb{S}^1 \subseteq \mathbb{R}^2$ is a unit circle). Note that $\mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ is compact.
- (2) (\iff) Let V_0 be the linear subspace of V which is spanned by the set Γ . Since the vector space V/V_0 is contained in a compact set V/Γ ,

$$\dim(V/V_0) = 0$$

(otherwise V/V_0 is unbounded). Hence $V_0 = V$ or Γ is complete.

Exercise I.4.2.

Show that Minkowski's lattice point theorem cannot be improved, by giving an example of a centrally symmetric convex set $X \subset V$ such that $\operatorname{vol}(X) = 2^n \operatorname{vol}(\Gamma)$ which does not contain any nonzero point of the lattice Γ . If X is compact, however, then the statement $\operatorname{vol}(X) > 2^n \operatorname{vol}(\Gamma)$ does remain true in the case of equality.

Proof.

- (1) Let $V = \mathbb{R}^n$, $\Gamma = \mathbb{Z}^n$ be a complete lattice in V, and $X = (-1,1)^n \subseteq \mathbb{R}^n$ be a centrally symmetric convex set in V. Hence $\operatorname{vol}(X) = 2^n \operatorname{vol}(\Gamma)$ and X does not contain any nonzero point of Γ .
- (2) Suppose X is compact. Consider $X_{\nu} = (1 + \frac{1}{m})X$ for each $\nu \in \mathbb{Z}_{>0}$. Thus X_{ν} is again a centrally symmetric convex set in V and

$$\operatorname{vol}(X_{\nu}) = \left(1 + \frac{1}{\nu}\right) \operatorname{vol}(X)$$
$$\geq \left(1 + \frac{1}{\nu}\right) 2^{n} \operatorname{vol}(\Gamma)$$
$$\geq 2^{n} \operatorname{vol}(\Gamma).$$

Minkowski's lattice point theorem shows that there is one nonzero lattice point $\gamma_{\nu} \in \Gamma$ for $\nu = 1, 2, 3 \dots$

(3) By the compactness of X_1 , there is a subsequence of $\{\gamma_{\nu}\}$ converging to $\gamma \in X_1$. Since Γ is discrete (Proposition I.4.2), there are infinitely many ν such that $\gamma = \gamma_{\nu} \in X_{\nu}$. (In particular, $\gamma \neq 0$.) Hence $\gamma \in X$ by the compactness of X.

Chapter VII: Zeta Functions and L-series

VII.1. The Riemann Zeta Function

Exercise VII.1.4.

For the power sum

$$s_k(n) = 1^k + 2^k + 3^k + \dots + n^k$$

one has

$$s_k(n) = \frac{1}{k+1}(B_{k+1}(n) - B_{k+1}(0)).$$

Proof. By Exercise VII.1.3,

$$x^{k} = \frac{1}{k+1}(B_{k+1}(x) - B_{k+1}(x-1)).$$

Hence the telescoping sum is

$$s_k(n) = \sum_{x=1}^n x^k$$

$$= \sum_{x=1}^n \frac{1}{k+1} (B_{k+1}(x) - B_{k+1}(x-1))$$

$$= \frac{1}{k+1} (B_{k+1}(n) - B_{k+1}(0)).$$