Exercice 1:

1. (a) Soit $n \in \mathbb{N}^*$. Calculer

$$\sum_{1 \leqslant i, j \leqslant n} \min(i, j).$$

(b) Calculer

$$\sum_{1 \le i, j \le n} (i+j).$$

2. En déduire le calcul de

$$\sum_{1\leqslant i,j\leqslant n} \max(i,j) \ \text{ puis de } \sum_{1\leqslant i,j\leqslant n} |i-j| \,.$$

Exercice 2:

Dans cet exercice, on pose $j = e^{\frac{2i\pi}{3}}$.

- 1. Soit $q \in \mathbb{C}$ et $n \in \mathbb{N}$. Rappeler la valeur de $\sum_{i=0}^{n} q^{i}$ si $q \neq 1$. Que vaut cette somme si q = 1?
- 2. Soit $k \in \mathbb{N}$. Que vaut j^k si k est un multiple de 3? Calculer $1 + j^k + j^{2k} = \sum_{i=0}^{2} (j^k)^i$ quand k n'est pas un multiple de 3. Que vaut cette somme si k est un multiple de 3?
- 3. Soit $p \in \mathbb{N}$. En déduire que

$$2^{p} + (1+j)^{p} + (1+j^{2})^{p} = 3\sum_{m=0}^{p} {p \choose 3m}.$$

 $(indication : on écrira 2^p sous la forme (1+1)^p)$

4. En déduire que

$$\sum_{m=0}^{p} \binom{p}{3m} = \frac{1}{3} \left(2^p + 2 \cos \left(\frac{p\pi}{3} \right) \right).$$

Exercice 3:

- 1. Soit $n \in \mathbb{N}^*$.
 - (a) Vérifier : $\forall k \in \mathbb{N}^*, \binom{n}{k} = \frac{n-k+1}{k} \times \binom{n}{k-1}$.
 - (b) En déduire le signe de $\binom{n}{k} \binom{n}{k-1}$ en fonction de k où $k \in [1, n]$.
 - (c) En déduire que, pour tout entier naturel p appartenant à $[0, \lfloor \frac{n}{2} \rfloor]$,

$$\forall k \in [p, n-p], \binom{n}{k} \geqslant \binom{n}{p}$$

2. On suppose ici $n \ge 5$. Montrer :

$$\sum_{k=2}^{n-2} \frac{1}{\binom{n}{k}} \le 2 \frac{(n-3)}{n(n-1)}.$$

3. Pour tout entier naturel n, on pose

$$u_n = \sum_{k=0}^n \frac{1}{\binom{n}{k}}.$$

Déduire de ce qui précède que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 2.