Hoja de problemas 6

18/10/2023

Curvas algebraicas

- 1. Calcular la multiplicidad de intersección $\operatorname{mult}_p(L,C)$ en los siguentes casos:
 - (a) $p = (0,0) \in \mathbb{A}^2$, y L y C son los curvas afines

$$L = V(X + Y),$$
 $C = V((X + Y)^{2} + (X - Y)^{3} + X^{4}).$

(b) $p = (1:1:1) \in \mathbb{P}^2$, y L y C son los curvas proyectivas

$$L = V(X - Y),$$
 $C = V(X^3 + Y^3 - 2Z^3).$

- 2. Sea $L = V(X) \subset \mathbb{A}^2$ y $C = V(Y^2 X^3) \subset \mathbb{A}^2$.
 - (a) Calcular la multiplicidad de intersección de L y C en todos puntos de intersección $L\cap C$.
 - (b) Los completados proyectivos $\overline{L}, \overline{C} \subset \mathbb{P}^2$ de L y C intersectan en un punto p en la recta en el infinito. Calcular $\operatorname{mult}_p(\overline{L}, \overline{C})$.
- 3. Sea $C=V(F)\subset \mathbb{P}^2$ una curva, y suponemos que F es una ecuación minimal de C. Sea L una recta en \mathbb{P}^2 parametrizada de $\varphi:\mathbb{P}^1\to\mathbb{P}^2$, donde $A_0,A_1,A_2\in k[X_0,X_1,X_2]$ son homogéneos de grado 1, y

$$\varphi(t_0:t_1)=(A_0(t_0,t_1):A_1(t_0,t_1):A_2(t_0,t_1))$$

Si $p \in L \cap C$, demonstrar:

- (a) La definición de $\operatorname{mult}_p(L,C)$ no depende de la ecuación minimal F.
- (b) La definición de mult_p(L,C) no depende de la parametrización φ .
- 4. Sea $C \subset \mathbb{P}^2$ una curva irreducible de grado $d \geq 2$ y $p \in C$. Demonstrar que $\operatorname{mult}_p(C) < d$.