não usar				
1				
2				
3				
4				
T				

1. Considere o seguinte excerto de um programa escrito em *assembly* e a executar numa máquina com cache:

Considere que o registo %ebx aponta para o início de um array de inteiros (4 bytes) com os seguintes valores: -10, 30, 1024, -33, 0. Note que o ciclo termina quando o valor lido do array for 0. A frequência do relógio é de 2 GHz, o CPI_{CPU} é 2, a *miss rate* de instruções é de 4% e a de dados de 5%. Sabendo que o tempo de execução deste programa é de 150 ns, qual é a *miss penalty* (expressa em tempo)?

	quai e a miss penuity (expressa em tempo):					
2.	Indique se a afirmação abaixo é verdadeira ou falsa, justificando. "A técnica de <i>pipelining</i> , relativamente a uma arquitectura sequencial de ciclo único, acelera o desempenho de um processador pois diminui o CPI ao permitir o lançamento (<i>issue</i>) de várias instruções em cada ciclo do relógio.					

Nome: ______ Número:_____

3. A tabela abaixo apresenta na coluna da esquerda uma sequência de endereços (m=4) de acesso à memória gerados por um determinado programa. As 3 colunas seguintes referemse a um modo de mapeamento numa cache que usa o algoritmo de substituição LRU. Preencha-as indicando em que set/linha (dentro do set) mapeia cada endereço, qual a tag associada a essa linha depois deste acesso e indicando se se trata de um cold miss, colisão ou de um hit. Considere a cache inicialmente fria.

Addr	(S=2,E=2,B=2,m=4)	tag	cold miss/hit/colisão
1			
13			
0			
6			
8			

4.	Considere um processador com uma arquitectura sequencial, que executa apenas uma
	instrução de cada vez. Uma instrução poderá necessitar de vários ciclos de relógio para
	executar apenas se implicar acessos à memória: como este processador não suporta
	hierarquia de memória, poderá necessitar de esperar vários ciclos até que o acesso se
	complete. Caso contrário, uma instrução executa num único ciclo.
	Considere agora que se desenvolve outro processador, compatível a nível binário com o
	anterior, mas com uma arquitectura em pipeline. Indique, justificando, de que forma
	espera que, relativamente à versão sequencial do parágrafo anterior, varie cada um dos
	factores do modelo de desempenho: #I, CPI e f . Isto é indique se cada um destes
	parâmetros deverá aumentar, diminuir ou manter-se constante, porquê e de que forma é

que essa variação terá impacto no tempo de execução de um programa.

Nome: ______ Número: _____