I. TRANSFORMARI ELEMENTARE

1. I KANSFURWAKI ELEMENTAKE		
1) Care din urmatoarele operatii efectuate asupra unei	2) Numim matrice elementara o matrice:	3) O matrice elementara este obligatoriu:
matrice este transformare elementara:		
	a) cu rangul egal cu 1;	a) patratica;
a) adunarea unei linii la o coloana;	b) care se obtine din matricea unitate prin transformari	b) dreptunghiulara;
b) inmultirea unei linii cu scalarul $\alpha = 0$	elementare;	<u>c)</u> inversabila;
c) schimbarea a doua linii intre ele;	c) cu determinantul nenul;	<u>d</u>) nesingulara.
d) adunarea unei linii la o alta linie.	<u>d)</u> obtinuta din matricea unitate printr-o singura	
	transformare elementara.	
4) Transformarile elementare se pot aplica:	5) Fie B o matrice obtinuta prin transformari elementare	6) Matricele A si B se numesc echivalente daca:
1) Transformative elementarie se por aprica.	din matricea A. Atunci:	o) Manifeste 11 St B Se namese comvarence auca.
a) numai matricelor patratice;	$\mathbf{a)} \text{ rang } \mathbf{A} = \text{rang } \mathbf{B};$	a) au acalagi rang:
1 '	1 - 5	a) au acelasi rang;
b) oricarei matrice;	b) rang $\mathbf{A} \neq \text{rang } \mathbf{B}$;	b) B se obtine din A prin transformari elementare;
c) numai matricelor inversabile;	c) rang $\mathbf{A} < \text{rang } \mathbf{B}$;	c) sunt ambele patratice si de acelasi ordin;
d) numai matricelor cu rang nenul.	d) rang $\mathbf{A} > \text{rang } \mathbf{B}$.	d) au determinanti nenuli.
7) Daca A,B sunt matrice echivalente (A B) atunci:	8) Fie $\mathbf{A} \in M_n(\mathbf{R})$. Daca rang $\mathbf{A} = \mathbf{r}$, atunci prin	9) Fie $\mathbf{A} \in M_n(\mathbf{R})$ cu det $\mathbf{A} \neq 0$. Atunci:
	transformari elementare se obtine:	,,
a) A,B sunt matrice patratice;	a) cel putin r coloane ale matricei unitate;	a) rang $A = n$;
b) rang A = rang B;	b) cel mult r coloane ale matricei unitate;	b) A este echivalenta cu matricea unitate $I_n(A - I_n)$;
<u>c)</u> daca determinantul lui $\mathbf{A} = 0$ rezulta, si det $\mathbf{B} = 0$;	c) exact r coloane ale matricei unitate;	c) prin transf. elementare putem determina inversa A ⁻¹ .
d) daca det $\mathbf{A} = 1$ rezulta ca si det $\mathbf{B} = 1$.	d) toate coloanele matricei unitate.	d) forma Gaus-Jordan a matricei A este I _n .
10) Pentru a afla inversa unei matrice $\mathbf{A} \in M_n(\mathbf{R})$ prin	11) Daca $\mathbf{A} \in M_n(\mathbf{R})$ cu det $\mathbf{A} = 1$ atunci forma Gauss-	12) Metoda de aflare a inversei unei matrice A cu
transformari elementare, acestea se aplica:	Jordan asociata va avea:	transformari elementare se poate aplica:
a) numai liniilor;	a) o singura linie a matricei unitate \mathbf{I}_{n_i}	a) oricarei matrice $\mathbf{A} \in M_n(\mathbf{R})$;
b) numai coloanelor;	b) toate liniile si coloanele matricei unitate I_{n_i}	b) numai matricelor patratice;
c) atat liniilor cat si coloanelor;	c) o singura coloana a matricei unitate I _{n;}	c) maricelor patratice cu det $\mathbf{A} \neq 0$;
d) intai liniilor apoi coloanelor.	d) numai o linie si o coloana a maricei unitate I _{n.}	d) tuturor matricelor cu rang $\mathbf{A} \neq 0$.
13) Pentru aflarea inversei unei matrice $\mathbf{A} \in M_n(\mathbf{R})$ prin	14) Fie $\mathbf{A} \in M_n(\mathbf{R})$ si \mathbf{B} matricea atasata acesteia in	15) Fie $\mathbf{A} \in M_n(\mathbf{R})$ si \mathbf{B} matricea atasata lui \mathbf{A} pentru
transformari elementare, acestea se aplica:	metoda aflarii inversei lui A prin transf elementare. Atunci:	determinarea lui A-1 prin transformari elementare. Daca
	incloda ariam inverser fur A prin transf cicinentare. Atuner.	· ·
a) direct asupra lui A;		$\begin{bmatrix} -\frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & -4 \end{pmatrix} \text{ atunci:} $
b) asupra matricei transpuse A^{T} ;	a) $\overline{\mathbf{B}} \in M_n(\mathbf{R})$;	$\begin{bmatrix} B \end{bmatrix}_{1} \begin{bmatrix} M \\ 0 \end{bmatrix}_{1} \begin{bmatrix} A \end{bmatrix}$ atunci:
<u> </u>	$\underline{\mathbf{b}}, \overline{\mathbf{B}} \in M_{n,2n}(\mathbf{R});$	
<u>c</u>) matricei atasate $B = [AM_n]$;		$ \frac{1}{\mathbf{a}} \mathbf{A}^{-1} = \begin{pmatrix} 1 & -4 \\ 2 & 3 \end{pmatrix} \text{b) } \mathbf{A}^{-1} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}_{\mathbf{c}} \mathbf{A}^{-1} = \begin{pmatrix} 3 & 2 \\ -4 & 1 \end{pmatrix} $
- "-	c) $\overline{\mathbf{B}} \in M_{2n,n}(\mathbf{R});$	
d) matricei atasate $\overline{\mathbf{B}} = [\mathbf{I}_n \mathbf{M}^{\mathrm{T}}]$.		$\begin{vmatrix} 1 & 1 & -1 & -1 & 2 & 3 & 1 & 1 & -4 & 1 & -4 & 1 & 1 & -4 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $
- " -	d) $\overline{\mathbf{B}} \in M_{2n,2n}(\mathbf{R});$	$\begin{bmatrix} \underline{a} \\ \underline{A} \end{bmatrix} A = \begin{pmatrix} 2 \\ 3 \\ \end{pmatrix} b A \qquad (7b) A \qquad (7b) A$
		d) A ⁻¹ nu exista.
16) Fie $\mathbf{A} \in M_n(\mathbf{R})$ si \mathbf{B} matricea atasata lui \mathbf{A} pentru	17) Aducand matricea A la forma Gauss-Jordan obtinem:	18) Daca matricea $\mathbf{A} \in M_{2,3}(\mathbf{R})$ este echivalenta cu
'	17) I tauculia matricca II la forma Gauss sordan obtinem.	1 1 1
determinarea lui A-1 prin transformari elementare. Daca	a) A-1.	$\begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$
$(1 \ 0 \ 0 \ 1 \ 2 \ 3)$	a) A ⁻¹ ;	matricea $\mathbf{A}' = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ atunci:
$\overline{\mathbf{B}} = \begin{bmatrix} 0 & 0 & 1 \mathbf{M} & 2 & 1 \\ \end{bmatrix}$ atunci:	b) rang A ;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
B o o rio 2 i jatunci.	c) det A ;	$\underline{\mathbf{a}}$ rang $\mathbf{A} = 2$;
$\begin{bmatrix} - & 0 & 1 & 0 & 2 & 1 & 3 \end{bmatrix}$	\mathbf{d}) \mathbf{A}^{T} .	b) rang $\mathbf{A} = 1$;
$(1 \ 2 \ 3)$ $(1 \ 3 \ 2)$ $(1 \ 2 \ 3)$		c) rang $A = 3$;
a) $\mathbf{A}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix} \mathbf{b}) \mathbf{A}^{-1} = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 3 & 1 & 3 \end{pmatrix} \mathbf{c} \mathbf{A}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$		$\underline{\mathbf{d}} \text{ rang } \mathbf{A} = \text{rang } \mathbf{A}.$
a) $\mathbf{A}^{-1} = \begin{bmatrix} 3 & 2 & 1 \\ b \end{bmatrix} \mathbf{A}^{-1} = \begin{bmatrix} 2 & 2 & 1 \\ \mathbf{c} \end{bmatrix} \mathbf{A}^{-1} = \begin{bmatrix} 2 & 1 & 3 \\ \end{bmatrix}$		<u>wj</u> 10115 11 10115 11 .
$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$		
d) A ⁻¹ nu exista.		

19) Daca matricea $A \in M_3(\mathbf{R})$ este echivalenta cu matricea	20)Daca A este echivalenta cu matricea unitate I_3 (A I_3),	21) Pivotul unei transformari elementare este intotdeauna:
(-1 1 0)	atunci:	a) nenul;
	$\mathbf{a)} \text{ rang } \mathbf{A} = 3;$	b) egal cu 0;
$\mathbf{A}^{\cdot} = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ atunci rang \mathbf{A} este:	$\begin{array}{c} \mathbf{a} \mathbf{j} \text{ rang } \mathbf{A} = \mathbf{J}, \\ \mathbf{b} \mathbf{j} \text{ det } \mathbf{A} \neq \mathbf{I}_3; \end{array}$	c) egal cu 1;
	$\begin{array}{c} \mathbf{D} \mathbf{f} \text{ det } \mathbf{A} \neq \mathbf{I}_3, \\ \mathbf{c}) \mathbf{A} = \mathbf{I}_3; \end{array}$	d) situat pe diagonala matricei.
a) 2; b) 3; c) 1; d) 0.	$\begin{array}{l} \mathbf{c}(\mathbf{A} - \mathbf{I}_3), \\ \mathbf{d}(\mathbf{A}^{-1} = \mathbf{I}_3). \end{array}$	d) Situat pe diagonala matricei.
22) Daca matricea A este echivalenta cu A ` = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	23) Daca matricea A este echivalenta cu matricea A ` = $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	24)Daca matricele A si A ` sunt echivalente (AA `) atunci:
$\begin{pmatrix} 0 & 0 & -1 \end{pmatrix}$	0 1 0 atunci:	a) au acelasi rang;
atunci:	$\left[\begin{pmatrix} 0 & 0 & \alpha \end{pmatrix} \right]$	b) sunt obligatoriu matrice inversabile;
a) rang $A = 3$;	a) rang $A = 0 <=> \alpha = 0$	c) sunt obligatoriu matrice patratice;
b) rang $\mathbf{A} = 1$;	b) rang $A = 1 <=> \alpha = 1$	<u>d)</u> se obtin una din alta prin transformari elementare.
$\underline{\mathbf{c}}$ det $\mathbf{A} \neq 0$;	<u>c)</u> rang $A \ge 2$, (\forall) $\alpha \in \mathbb{R}$;	
<u>d</u>) A este inversabila.	d) rang $A = 3 \ll \alpha \neq 0$.	
25) Fie $\mathbf{A} \in M_3(\mathbf{R})$ cu det $\mathbf{A} = \alpha$. Atunci forma Gauss-Jordan	26) Doua sisteme liniare de ecuatii se numesc echivalente	27) Matricea unui sistem liniar oarecare, in forma explicita
a lui A:	daca:	are:
a) are acelasi rang cu matricea A , (\forall) $\alpha \in \mathbf{R}$;	a) au acelasi numar de ecuatii;	a) forma Gauss-Jordan;
b) are acelasi rang cu matricea A, numai pt $\alpha = 0$;	b) au acelasi numar de necunoscute;	b) coloanele variabilelor principale, coloanele matricei
c) coincide cu $I_3 \le \alpha \ne 0$;	c) au aceleasi solutii;	unitate;
d) are cel mult doua coloane ale matricei unitate I_3 daca $\alpha = 0$	<u>d</u>) matricele lor extinse sunt echivalente.	c) toate elementele de pe liniile variabilelor secundare nule
		d) elementele corespunzatoare de pe coloanele variabilelor
		secundare, negative.
28) Metoda Gauss-Jordan de rezolvare a sistemelor liniare	29) Fie A si A matricea, respectiv matricea largita a unui	30) Pentru a obtine matricea unui sistem liniar sub forma
prin transformari elementare se aplica:	sistem liniar. Aplicand metoda Gauss-Jordan de rezolvare,	explicita, se aplica transformari elementare:
a) numai sistemelor patratice;		a) numai coloanelor corespunzatoare variabilelor secundare;
b) oricarui sistem liniar;	se aplica transformari elementare asupra:	b) numai coloanei termenilor liberi;
c) numai daca rangul matricei sistemului este egal cu	a) liniilor lui \mathbf{A} si coloanelor lui $\overline{\mathbf{A}}$;	c) tuturor liniilor si coloanelor matricei extinse;
numarul de ecuatii;	b) liniilor si coloanelor lui \overline{A} ;	d) pentru a face coloanele variabilelor principal alese,
d) doar sistemele compatibile nedeterminate.	c) liniilor lui \overline{A} ;	coloanele matricei unitate.
·		
	d) coloanei termenilor liberi din \overline{A} .	
31) Aplicand metoda Gauss-Jordan unui sistem liniar de	32) Matricea extinsa corespunzatoare unui sistem liniar in	33) Matricea extinsa corespunzatoare unui sistem liniar in
ecuatii, matricea extinsa \overline{A} este echivalenta cu matricea \overline{A}	$(1 \ 2 \ 0 \ -1 \ 4)$	$\begin{pmatrix} 1 & 0 & -1 & 0 & 1 \end{pmatrix}$
$(2 \ 1 \ -1 \ 0.3)$	forma explicita este $\overline{A} = \begin{bmatrix} 0 & 1 & 1 & 1 & M2 \end{bmatrix}$. Atunci	forma explicita este $\overline{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \text{ M} \end{bmatrix}$. Atunci sistemul
$= \begin{pmatrix} 2 & 1 & -1 & 0 & 3 \\ 3 & 0 & 2 & 1 & 1 \end{pmatrix}$. Atunci sistemul liniar:	forma explicita este $\overline{A} = \begin{pmatrix} 1 & 2 & 0 & -1 & 4 \\ 0 & 1 & 1 & 1 & M2 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$. Atunci	forma explicita este $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & \mathbf{M} \\ 0 & 0 & 2 & 1 & 3 \end{pmatrix}$. Atunci sistemul
	sistemul liniar:	liniar:
a) este incompatibil;	a) este incompatibil;	a) sistemul este compatibil nedeterminat;
b) este compatibil nedeterminat;	b) este compatibil determinat;	b) variabilele principale alese sunt x1, x2, x4;
c) are solutia de baza: x1=4, x2=2, x3=-1, x4=0; d) are o infinitate de solutii.	c) are solutia de baza x1=1, x2=2, x3=-1, x4=0;	c) sistemul este incompatibil;
u) are o millitate de solutil.	d) are o infinitate de solutii.	<u>d</u>)solutia de baza cores. este $x1=1$, $x2=2$, $x3=0$, $x4=3$.
34) Un sistem liniar de 2 ecuatii cu 4 necunoscute, cu rangul	35) un sistem liniar cu 2 ecuatii si 3 necunoscute admite	36) Sistemele liniare de ecuatii care admit solutii de baza
matricei sistemului egal cu 2, are solutia de baza: X=(2,0,0,-	solutia de baza $\mathbf{X} = (0, -1, 0)^{\mathrm{T}}$. Stiind ca x2, x3 sunt variabile	sunt numai cele:
1) ^T . Atunci este:	principale, atunci solutia x este:	
· · · · · · · · · · · · · · · · · · ·	1 1 1,	a) compatibile nedeterminate;
a) admisibila si nedegenerata;	a) admisibila;	
a) admisibila si nedegenerata;b) admisibila si degenerata;	a) admisibila; b) neadmisibila;	b) compatibile determinate; c) incompatibile;

d) neadbisibila si degenerata.	d) nedegenerata.	
37) Formei explicite a unui sistem liniar ii corespunde	38) Matricea extinsa corespunzatoare formei explicite a	39) Pentru a se obtine solutia de baza din forma explicita a
matricea $\overline{A} = \begin{pmatrix} 1 & 0 & -1 & 1 & N \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix}$. Atunci solutia	unui sistem liniar este $\overline{A} = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 1 & 0 & 2 & 1 \end{pmatrix}$. Atunci	unui sistem liniar de ecuatii: a) variabilele principale se egaleaza cu 0;
corespunzatoare este:	solutia de baza corespunzatoare este:	b) variabilele secundare se egaleaza cu 0;
a) $x1=2+\alpha-\beta$, $x2=-2+\alpha-\beta$, $x3=\alpha$, $x4=\beta$;	N. (1.1.1.0)T	c) toate variabilele se egaleaza cu 0;
b) $x1=2-\alpha+\beta$, $x2=-2-\alpha+\beta$, $x3=\alpha$, $x4=\beta$;	a) $\mathbf{X} = (1 \ 1 \ -1 \ 0)^{\mathrm{T}};$ b) $\mathbf{X} = (1 \ 0 \ 2 \ 1)^{\mathrm{T}};$	d) se atribuie variabilelor secundare valori nenule distincte.
$\underline{\mathbf{c}}$) x1=2+\alpha-\beta, x2=-2-\alpha+\beta, x3=\alpha, x4=\beta;	c) $\mathbf{X} = (1 \ 1 \ 0 \ 0)^{\mathrm{T}};$	
d) $x1=2-\alpha-\beta$, $x2=-2+\alpha+\beta$, $x3=\alpha$, $x4=\beta$.	$\mathbf{\underline{d})} \mathbf{X} = (0 \ 1 \ 0 \ 1)^{\mathrm{T}}.$	
40) Solutia de baza $\mathbf{X} = (\alpha, 0, \beta, 0)^T$ a unui sistem liniar de	41) Solutia de baza $\mathbf{X} = (0,0, \alpha, \beta)^{\mathrm{T}}$ corespunzatoare unui	42) Fie n _B si n _E numarul solutiilor de baza distincte,
doua ecuatii este neadmisibila daca:	sistem liniar cu 2 ecuatii principale si 4 necunoscute este	respectiv al formelor explicite, corespunzatoare unui sistem liniar compatibil nedeterminat. Atunci:
a) $\alpha > 0$ si $\beta > 0$;	degenerata daca:	innai compation nedeterminat. Attinci.
b) $\alpha < 0$ si $\beta < 0$;	a) $\alpha=0, \beta\neq 0;$	a) $n_B \le n_E$;
$\underline{\mathbf{c}} \cdot \alpha > 0 \text{ si } \beta < 0;$	b) $\alpha \neq 0$, $\beta = 0$;	b) $n_B \ge n_E$;
$\underline{\mathbf{d}}$) $\alpha < 0$ si $\beta > 0$.	$\underline{\mathbf{c}}$) $\alpha=0$, $\beta=0$;	c) intotdeauna $n_B = n_E$; d) obligatoriu $n_B > n_E$.
	d) $\alpha \neq 0$, $\beta \neq 0$.	d) vongatoria n _B · n _E .
43) Fie solutia de baza $\mathbf{X} = (1, \alpha, 0, \beta)^T$ corespunzatoare	44) Forma explicita a unui sistem liniar are matricea de	45) Forma explicita a unui sistem liniar are matricea de
variabilelor principale x1 si x4. Atunci x este admisibila	forma $\overline{A} = \begin{pmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3M2 \\ 0 & 1 & 0 & 1 & -1 \end{pmatrix}$. Atunci solutia de baza	forma $\overline{\mathbf{A}} = \begin{pmatrix} 2 & 0 & -1 & 1 & \mathbf{M} \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$. Atunci solutia de baza
degenerata daca:	forma $A = \begin{bmatrix} 0 & 0 & 1 & 3M2 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$. Atunci solutia de baza	
\mathbf{a}) $\alpha > 0$, $\beta = 0$;	corespunzatoare X este:	corespunzatoare X este: a) admisibila;
b) $\alpha=0$, $\beta=0$;	a) $X=(1 \ 2 \ -1 \ 0)^T$;	b) degenerata;
c) $\alpha=0$, $\beta>0$;	b) $\mathbf{X} = (1 - 1 \ 2 \ 0)^{\mathrm{T}}$;	c) neadmisibila;
d) $\alpha > 0$, $\beta > 0$.	c) $X=(1\ 2\ 0\ -1)^T$; d) $X=(-1\ 2\ 1\ 0)^T$	d) nedegenerata.
46) Fie $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 0 & 2 & 2 \\ 0 & 1 & 0 & -1 \text{M}2 \\ 0 & 0 & 0 & 0 & \alpha \end{pmatrix}$ maricea corespunzatoare	47) Fie $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & -1\mathbf{M}1 \\ 0 & 0 & \alpha & 0 \end{pmatrix}$ matricea corespunzatoare	48) Fie $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & -1\mathbf{M}1 \\ 0 & 0 & \alpha & \beta \end{pmatrix}$ matricea corespunzatoare formei
formei explicite a unui sistem liniar. Atunci sistemul este incompatibil daca:	formei explicite a unui sistem liniar. Atunci sistemul este:	explicite a unui sistem liniar. Atunci sistemul este compatibil nedeterminat daca:
0) 0=0.	a) compatibil nedeterminat, daca $\alpha = 0$;	a) $\alpha = 0$, $\beta \neq 0$;
a) α =0; b) α =1;	b) compatibil determinat, daca $\alpha=1$; c) incompatibil, daca $\alpha \neq 0$;	b) $\alpha \neq 0$, $\beta = 0$;
<u>c)</u> α=-1;	d) incompatibil, daca $\alpha = 0$.	$\underline{\mathbf{c}} \cdot \alpha = 0, \ \beta = 0;$
<u>d</u>) α=2.		d) $\alpha \neq 0$, $\beta \neq 0$.
49) Fie $\mathbf{X} = (1, 1\alpha, 0, 0)^{\mathrm{T}}$ solutia de baza a unui sistem liniar de ecuatii corespunzatoare variabilelor principale x1, x2, x3.	50) Un sistem liniar de 2 ecuatii si 4 necunosute are matricea corespunzatoare unei forme explicite de forma:	51) Un sistem de <i>m</i> ecuatii liniate cu <i>n</i> necunoscute, m <n, are="" intodeauna:<="" td=""></n,>
Atunci:	$\overline{\mathbf{A}}$ = . Atunci solutia de baza corespunzatoare X este:	a) mi mult de C_n^m forme explicite;
 a) X este admisibila, daca α>0; b) X este degenerata, daca α=0; 	a) admisibila, daca $\alpha=1$, $\beta=0$;	b) cel mult C_n^m forme explicite;
c) X este neadmisibila, daca α = -1;	b) degenerata, daca $\alpha < 0$, $\beta = 0$;	i i
$\overrightarrow{\mathbf{d}}$) X este nedegenerata, daca $\alpha = 1$.	c) neadmisibila, daca $\alpha > 0$ si $\beta \ge 0$;	c) exact C_n^m forme explicite;
	1 - /	d) m+n forme explicite.

	d) nadaganarata daga akon si B ko	
52) II. sistem de constituir	d) nedegenerata, daca $\alpha < 0$ si $\beta \le 0$.	500 O solutio de la secución de la s
52) Un sistem de <i>m</i> ecuatii liniare cu <i>n</i> necunoscute, m <n,< td=""><td>53) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare</td><td>54) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare</td></n,<>	53) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare	54) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare
are intotdeauna:	cu <i>n</i> encunoscute, m <n, are:<="" daca="" degenerata="" este="" td=""><td>cu <i>n</i> encunoscute, m<n, are:<="" daca="" este="" nedegenerata="" td=""></n,></td></n,>	cu <i>n</i> encunoscute, m <n, are:<="" daca="" este="" nedegenerata="" td=""></n,>
a) exact C_n^m solutii de baza;	a) accept me accompanyate manufact	2) 20024 2000
b) cal mult C^m calutii de baza:	a) exact m componente nenule;	a) exact m componente nenule;
b) cel mult C_n^m solutii de baza;	b) mai mult de m componente nenule;	b) mai mult de m componente nenule;
c) cel putin C_n^m solutii de baza;	c) mai putin de m componente nenule; d) mai mult de n-m componente nenule.	c) mai putin de m componente nenule;
d) m+n solutii de baza.	<u>aj</u> mai muit de n-m componente nenuie.	<u>d</u>) n-m componente nenule.
55) Pentru a transforma un sistem liniar de ecuatii intr-unul	56) Metoda grafica se foloseste in rezolvarea sistemelor de	57) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare
echivalent se folosesc transformari elementare asupra:	inecuatii liniare cu:	cu <i>n</i> encunoscute, m <n, admisibila="" are:<="" daca="" este="" td=""></n,>
a) liniilor matricei sistemului;	a) doua necunoscute;	a) majoritatea componentelor pozitive;
b) coloanelor matricei sistemului;	b) mai mult de 3 necunoscute;	b) mai mult de m componente pozitive:
c) liniilor si coloanelor matricei sistemului;	c) oricate necunoscute;	c) mai putin de m componente negative;
d) termenilor liberi ai sistemului.	d) exact 3 necunoscute.	d) toate componentele negative.
58) Fie A o matrice nenula de tipul (m,n) . Atunci matricea A	59) Pentru a transforma un sistem liniar de ecuatii in unul	60) O solutie de baza a unui sistem liniar se obtine:
admite inversa daca:	echivalent, se folosesc:	a) dand variabilelor principale valoarea 0;
a) det $A \neq 0$;	a) transf. elem. aplicate liniilor matricei atasate sistemului;	b) dand variabilelor secundare valoarea 0;
b) m=n si det $\mathbf{A} \neq 0$;	b) trans elem aplicate liniilor si coloanelor matr. atasate	c) dand variabilelor principale valori nenule;
c) det A =0 si m=n;	sist	d) dand variabilelor secundare valori strict pozitive.
$\frac{\mathbf{d}}{\mathbf{d}} \det \mathbf{A} = 1 \text{ si m=n.}$	c) operatii de adunare a coloanelor matricei atasate sist;	dy dand variable for secundare valori strict pozitive.
uj dot it i si iii ii.	d) toate operatiile care se pot efectua asupra unei matrice.	
II.ELEMENTE DE ALGEBRA LINIARA	a) toute operating the bot por election months into income	
1) Un spatiu liniar X se numeste spatiu liniar real daca:	2) Fie $(P_n(X),+,\cdot)$ spatiul liniar al polinoamelor de grad cel	3) Fie $(P_n(X),+,\cdot)$ spatiul liniar al polinoamelor de grad cel
1) on opens man 12 of name of opens man four data.	mult n. Atunci operatiile "+" si "." reprezinta:	mult n. Atunci dimensiunea sa este:
a) elementele sale sunt numere reale;	a) adunarea si inmultirea polinoamelor;	
b) corpul peste care este definit coincide cu multimea	b) adunarea polinoamelor si_inmultirea polinoamelor cu	a) n;
numerelor naturale;	scalari reali;	b) n=1;
c) multimea X este nevida;	c) adunarea numerelor reale si inmultirea polinoamelor;	\overrightarrow{c}) $\overrightarrow{n^2}$;
<u>d</u>) operatiile definite pe X sunt operatii cu numere reale.	d) adunarea polinoamelor si inmultirea nr reale.	d) 2n.
4) Multimea solutiilor unui sistem liniar formeaza un spatiu	5) Fie vectorii x1, x2,, xk \in \mathbb{R}^n a.i. α 1x1+ α 2x2++ α kxk	6) Fie vectorii x1, x2,, xk € R ⁿ a.i. α1x1+α2x2++αkxk
liniar daca sistemul este:	$=0_n$. Atunci x1,x2,,xk sunt liniar independenti numai daca:	$=0_n$. Atunci x1,x2,,xk sunt liniar dependenti daca:
a) incomparabil;		<u></u>
b) omogen;	\mathbf{a}) $(\forall)\alpha = 0$, $\mathbf{i} = 1, k$	a) $\alpha_i = 0$, (\forall) $i = 1, k$
c) compatibil determinat;	$b) (\exists) \alpha = 0;$	\mathbf{b} $(\exists) \alpha_i \neq 0;$
d) patratic, cu rangul matricei egal cu nr. Necunoscutelor.	c) $\alpha_i \neq 0$, $(\forall) i = \overline{1, k}$	<u>c)</u> k>n;
		$\frac{1}{k}$
	d) k>n.	$\underline{\mathbf{d}}_{\alpha_i} \neq 0, (\forall)_i = \overline{1, k}$
7) Fie X un spatiu liniar si vectorii x1,x2,x3 € X a.i.	8) Vectorii x1, x2,, xk € R ⁿ sunt liniar independenti.	9) Fig. x1, $x2,x2 \in \mathbb{R}^3$ vectori oarecare a.i. $x3=x1-2x2$.
$x1+x2+\alpha x3=0x$. Atunci vectorii sunt:	Atunci:	Atunci:
a) liniar dependenti, daca α=0;	<u>a)</u> x1,x2,,xk-1 sunt liniar independenti;	a) coordonatele lui x3 sunt 1 si -2;
b) liniar independenti, daca α≠0;	$b)$ xi $\neq 0$ n, (\forall) i= $\overline{1,n}$;	b) x_1, x_2, x_3 nu formeaza o baza in \mathbb{R}^3
<u>c</u>) liniar dependenti, daca $\alpha \neq 0$;	\mathbf{c}) k \leq n;	c) x1,x2,x3 sunt liniar dependenti;
d) liniar independenti, daca α =0.	'' '' ''	d) deoarece $x1-2x2-x3=0 \Rightarrow x1,x2,x3$ sunt liniar indep.

11) Fie vectorii x1, x2, ..., xk € Rⁿ .At. ei form o baza daca:

12) Fie $\mathbf{B} = \{x_1, x_2,...,x_k\}$ o baza in spatiul liniar \mathbf{X} . Atunci:

 $\underline{\mathbf{a}}$) dim $\mathbf{X} = \mathbf{k}$;

b) dim X > k;

c) dim X < k;

b) xi≠0n si k=n;

a) sunt liniar independenti si k≠n;

c) sunt liniar independenti si k=n;

10) Fie **B** si **B**' doua baze din spatiul liniar **R**³ si **S** matricea

schimbarii de baza. Atunci S este:

a) patratica;

b) inversabila;

c) dreptunghiulara;	$1 \times 1 \times 10^{-3} \times 1 \times 10^{-3}$	$\sqrt{\frac{1}{k}}$
<u>d</u>) nesingulara (det $S\neq 0$).	d) k=n si $\alpha i \neq 0$, $(\forall) i = 1, k$	$\mathbf{d}) \text{ xi } \neq 0 \text{ x, } (\forall) \text{ i=}^{1,k}$
13) Fie S matricea de trecere de la o baza B la baza B' si $u_{\rm B}$	14) Fie $\mathbf{B} = \{x1, x2,, xk\}$ o baza in \mathbf{R}^n . Atunci:	15) In spatiul liniar R ⁿ exista:
respectib $u_{\rm B}$ coordonatele vectorului u in cele doua baze.		
Atunci au loc relatiile:	a) x1,x2,,xk sunt liniar independenti;	a) cel mult n baze;
a) $u_{\rm B} = S u_{\rm B'} \text{si} u_{\rm B'} = S^{-1} u_{\rm B}$	b) k <n;< td=""><td>b) exact n baze;</td></n;<>	b) exact n baze;
b) $u_{\rm B} = {\bf S}^{\rm T} u_{\rm B} {\rm Si} u_{\rm B} = {\bf S}^{-1} u_{\rm B}$	\mathbf{c} $\mathbf{k} = \mathbf{n}$;	c) o singura baza;
$\underline{\mathbf{c}} \underline{\mathbf{u}}_{\mathrm{B}} = \mathbf{S}^{\mathrm{T}} u_{\mathrm{B}} \underline{\mathrm{Si}} u_{\mathrm{B}} = (\mathbf{S}^{\mathrm{T}})^{-1} u_{\mathrm{B}}$	d) k>n.	<u>d</u>) o infinitate de baze.
d) $u_{\rm B} = \mathbf{S}^{-1} u_{\rm B} \operatorname{si} u_{\rm B} = \mathbf{S}^{\rm T} u_{\rm B}$		
16) Fie operatorul liniar L: $\mathbb{R}^2 \to \mathbb{R}^3$ si $0_2, 0_3$ vectorii nuli ai	17) Daca L: $\mathbb{R}^m \to \mathbb{R}^n$ este un operator liniar, atunci:	18) Fie L: $\mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ un operator liniar si <i>ker</i> L nucleul sau.
celor 2 spatii. Atunci:		Daca x1,x2 € ker L, atunci:
a) $L(02) = 02$;	a) obligatoriu m>n;	$\mathbf{a)} \times 1 + \times 2 \in \ker L;$
b) $L(03) = 03$;	b) obligatoriu m <n;< td=""><td></td></n;<>	
\mathbf{c}) L(02) = 03;	c) m si n unt numere naturale oarecare, nenule;	
d) $L(03) = 03$.	d) obligatoriu m=n.	$\underline{\mathbf{c}}$) $\alpha \mathbf{x} 1 + \beta \mathbf{x} 2 \in \ker \mathbf{L}, (\forall) \alpha, \beta \in \mathbf{R};$
· · · ·	, ,	d) $L(x1) = x2$.
19) Fie L: $\mathbb{R}^n \to \mathbb{R}^m$ un operator liniar si ker L nucleul sau.	20) Daca L: $\mathbb{R}^m \to \mathbb{R}^n$ este un operator liniar si A matricea	21) Fie L: $\mathbb{R}^n \to \mathbb{R}^n$ un operator liniar si x un vector propriu
Daca x € ker L, atunci:	sa fata de o pereche de baze B,B ` atunci:	pt. L. Atunci:
$\underline{\mathbf{a}}) L(\mathbf{x}) = 0_{\mathbf{m}};$	$\underline{\mathbf{a}}$ $\mathbf{A} \in M$ m,n(\mathbf{R});	$\underline{\mathbf{a}}(\exists !) \lambda \in \mathbf{R} \text{ a.i. } L(\mathbf{x}) = \lambda \mathbf{x};$
b) $L(\alpha x) = 0_m, (\forall) \alpha \in \mathbf{B};$	b) $A \in Mn, m(\mathbf{R})$;	b) $L(\lambda x)=x, (\forall) \lambda \in \mathbf{R};$
c) $L(\alpha x) = 0_m$, doar pt $\alpha = 0$;	c) B,B sunt baze in R ^m ;	$(\mathbf{c}) \times 0$;
$d) L(x) = 0_n.$	d) B este baza in \mathbb{R}^m si \mathbb{B} ' este baza in \mathbb{R}^n	$\underline{\mathbf{d}} L(\mathbf{x}) = \lambda \ \mathbf{x}, (\forall) \ \lambda \in \mathbf{R}.$
22) Fie L: $\mathbb{R}^n \to \mathbb{R}^n$ un operator liniar si x un vector propriu	23) Matricea atasata unei forme liniare $f: \mathbb{R}^n \to \mathbb{R}$ este o	24) Daca $f: \mathbb{R}^n \to \mathbb{R}$ este o forma liniara, atunci:
corespunzator valorii proprii λ . Atunci:	matrice:	a) $f(x_1+x_2) = x_1 + x_2$; $(\forall) x_1, x_2 \in \mathbb{R}^n$
1 1	a) patratica:	
$\underline{\mathbf{a}}$ $L(\mathbf{x}) = \lambda \mathbf{x}$;	b) coloana;	b) $f(x1+x2) = f(x1) + f(x2); x1,x2 ∈ Rn;$
b) daca $L(x) = 0n$, atunci $x=0n$;	(c) linie;	c) $f(\alpha x) = \alpha x$, $(\forall) \alpha \in \mathbf{R}$ si $(\forall) x \in \mathbf{R}^n$;
$\underline{\mathbf{c}}) L(\lambda x) = \lambda 2x;$	d) inversabila.	$\underline{\mathbf{d}}) f(\alpha x) = \alpha f(x), (\forall) \alpha \in \mathbf{R} \text{ si } (\forall) x \in \mathbf{R}^{n}.$
<u>d</u>) daca $L(x) = 0n$, atunci $\lambda = 0$.	′	
25) Fie L: $\mathbb{R}^n \to \mathbb{R}^m$ un operator liniar. Atunci L devine	26) Fie Q: $\mathbb{R}^n \to \mathbb{R}$ o forma patratice si A matricea asociata	27) Fie forma patratica $\begin{cases} Q: R^3 \to R \\ Q(x) = x_1^2 + 2x_2^2 + x_3^3 - 2x_1 x_2 \end{cases}$
forma liniara daca:	acesteia. Atunci:	2/) File forma patratica $Q(x) = x^2 + 2x^2 + x^3 - 2x x$
a) $n = 1$;	$\mathbf{\underline{a}} \mathbf{\underline{A}} \mathbf{A} = \mathbf{A}^{\mathrm{T}}$	<u> </u>
\mathbf{b}) m = 1;	b) $\mathbf{A} \in M$ n,1(\mathbf{R});	$(\forall) x = (x_1, x_2, x_3)^{\mathrm{T}} \in \mathbf{R}^3$. Atunci matricea asociata lui Q este:
c) $n = 1$ si $m = 1$;	$\underline{\mathbf{c}}$ $\mathbf{A} \in Mn(\mathbf{R})$;	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$
d) n=m.	d) A este inversabila.	$\begin{vmatrix} \mathbf{c} \\ \mathbf{A} \end{vmatrix} = \begin{vmatrix} -1 & 2 & 0 \end{vmatrix}$
28) Forma patratica Q: $\mathbb{R}^2 \to \mathbb{R}$ are matricea asociata \mathbb{A} =	29) Forma patratica Q: $\mathbb{R}^3 \to \mathbb{R}$ are forma canonica asociata	30) Forma patratica Q: $\mathbb{R}^2 \to \mathbb{R}$ are matricea asociata \mathbb{A} =
	, 1	
$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$. Atunci Q are expresia:	$Q(y)=2y_1^2+y_2^2+\alpha y_3^3$. Atunci:	$\begin{bmatrix} 1 & 2 \\ 2 & -3 \end{bmatrix}$. Atunci forma canonica asociata este:
(1 -1)		
	a) Q este pozitiv definita daca $\alpha > 0$;	Nici una: $Q(y) = -y_1^2 - y_2^2$ sau $-y_1^2 + 3y_2^2$ sau $2y_1^2 - y_2^2$
$\mathbf{c)} Q(\mathbf{x}) = 2x_1^2 - x_2^2 + 2x_1x_2$	c) Q este semipozitiv definita daca $\alpha = 0$;	1
	d) Q nu pastreaza semn constant daca $\alpha < 0$.	$sau -3y_1^2 + 7y_2^2$
31) Forma patratica Q: $\mathbb{R}^2 \to \mathbb{R}$ are forma canonica asociata	$1 2 \Delta_1 2 \Delta_2 2$	33) Fie A matricea asociata formei patratice Q: $\mathbb{R}^n \to \mathbb{R}$ si
$Q(y) = ay_1^2 + by_2^2$. Atunci Q este negativ definita daca:	32) Fie Q(y)= $\frac{1}{\Delta_1} y_1^2 + \frac{\Delta_1}{\Delta_2} y_2^2 + \frac{\Delta_2}{\Delta_3} y_3^2$ forma canonica	$\Delta_1, \Delta_2,, \Delta_n$ minorii principali ai lui A . Pentru a aplica
$Q(y) = ay_1 + by_2$. Attuici Q este negativ definita daca.		1 . 2 "
	asociata formei patratice Q: $\mathbb{R}^3 \to \mathbb{R}$. Atunci:	metoda lui Jacobi de aducere la forma canonica, trebuie
c) a<0, b<0		obligatoriu ca:
	a) daca $\Delta_1 > 0, \Delta_2 > 0, \Delta_3 > 0$, Q este pozitiv definita;	\
	, , , , , , , , , , , , , , , , , , , ,	Nici una.

d) daca $\Delta_1 < 0$	$0, \Delta_2 > 0, \Delta_3 < 0$, Q este negativ definita.
-------------------------------	---------------------------------	----------------------------

24) Eamerai matmatica comocomo (Dn Dian	
34) Formei patratice oarecare ($\mathbf{y} \cdot \mathbf{K} \rightarrow \mathbf{K} \cap \mathbf{S} \mathbf{e}$	poate asocia.

- **b)** msi multe forme canonice, dar cu acelasi nr de coeficienti pozitivi, repectiv negativi.
- **c)** o matrice patratica si simetrica.
- 37) Forma patratica Q: $\mathbb{R}^3 \to \mathbb{R}$ are forma canonica asociata: $Q(y) = -y_1^2 + y_2^2 y_3^2$. Atunci:
- **c)** (∃)x1,x2 € \mathbb{R}^3 a.i. Q(x1)<0 si Q(x2)>0
- 40) Metoda lui Jacobi de a obtine forma canonica, se poate aplica in cazul formelor patratica:
- a) pozitiv definite;
- **c)** negativ definite.
- 43) Pentru a se determina valorile proprii ale operatorului L: $\mathbf{R}^n \to \mathbf{R}^n$ cu matricea corespunzatoare \mathbf{A} , se rezolva ecuatia:

$$\underline{\mathbf{c}}) \det \left(\mathbf{A}^T - \lambda I_n \right) = 0$$

- 46) Fie operatorul liniar L: $\mathbb{R}^2 \to \mathbb{R}^2$. Atunci:
- $\underline{\mathbf{c}}$) operatorului nu i se poate atasa ecuatia caracteristica.
- 49)Operat. L: $\mathbb{R}^2 \to \mathbb{R}^2$ are valorile proprii $\lambda_1 = 1, \lambda_2 = 2$. Atunci:
- **c)** daca x1,x2 sunt vectori proprii pentru λ_1 , respectiv λ_2 => x1,x2 sunt liniar independenti.
- **d)** exista o baza fata de care matricea operatoului are forma $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

35) Forma patratica
$$\begin{cases} Q: \mathbf{i}^{n} \to \mathbf{i} \\ Q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} \end{cases}$$
 spunem ca

este pozitiv definita daca:

b)
$$Q(x)>0$$
, $(\forall) x \in \mathbb{R}^n$, $x \neq 0$.

38) Forma patratica $\begin{cases} Q: \mathbf{i}^{n} \to \mathbf{i} \\ Q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} \end{cases}$ are forma

canonica asociata Q(y)= $\alpha_1y_1^2+\alpha_2y_2^2+...+\alpha_ny_n^2$. Atunci Q este degenerata daca:

- (\mathbf{c}) (\exists) α 1=0, pentru i= $\overline{1,n}$.
- 41) Fie operatorul liniar $\begin{cases} L: \mathbf{i}^{-3} \to \mathbf{i}^{-2} \\ L(x) = (x_1 + x_3, 2x_1 x_2)^T \end{cases}$

 $(\forall)x=(x1,x2,x3)^T\in \mathbf{R}^3$. Atunci matricea operatorului in bazele canonice ale celor doua spatii are forma:

$$\mathbf{\underline{b}}) \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

44) Operatorul liniar L: $\mathbf{R}^2 \to \mathbf{R}^2$ are matricea $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$

Atunci ecuatia caracteristica pt obtinerea valorilor proprii are forma:

$$\begin{vmatrix} 1 - \lambda & 3 \\ 2 & -1 - \lambda \end{vmatrix} = 0$$

47) Operatorul liniar L: $\mathbf{R}^2 \to \mathbf{R}^2$ are matricea $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ -1 & -2 \end{pmatrix}$ Atunci, valorile proprii ale lui L sunt:

$$\underline{\mathbf{c}}$$
 $\lambda_1 = 2, \lambda_2 = -2$

36) Forma patratica $\begin{cases} Q: \mathbf{i}^{n} \to \mathbf{i} \\ Q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} \end{cases}$ spunem ca

este seminegativ definita daca:

- **b)** $Q(x) \le 0$, $(\forall) x \in \mathbb{R}^n$, $x \ne 0$.
- 39) Fie Q(y)= $\alpha_1 y_1^2 + \alpha_2 y_2^2 + \alpha_3 y_3^2$ forma canonica asociata formei patratice Q: $\mathbf{R}^3 \to \mathbf{R}$. Atunci Q nu pastreaza semn constant daca:
- **<u>a</u>**) α 1>0, α 2<0, α 3>0; **d**) α 1>0, α 2<0, α 3 \in **R**.
- 42) Matricea operatorului L: $\mathbf{R}^2 \to \mathbf{R}^2$ fata de baza canonica din \mathbf{R}^2 are expresia $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$. Atunci operatorul L are expresia:
- **b)** $L(x) = (x_1 + 2x_2 x_1)^T$.
- 45) Fie operatorul liniar L: $\mathbf{R}^2 \to \mathbf{R}^2$ cu matricea $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ Atunci ecuatia caracteristica corecpunzatoare:

$$\mathfrak{C} \lambda^2 - 2\lambda + 1 = 0$$

48) Fie $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ matricea atasata operatorului L: $\mathbf{R}^2 \rightarrow \mathbf{R}^2$

- **b)** valorile proprii ale lui L sunt $\lambda_1 = 0, \lambda_2 = 2$;
- **<u>d</u>)** sistemul caracteristic atasat este $\begin{cases} (1-\lambda)x_1 + x_2 = 0 \\ x_1 + (1-\lambda)x_2 = 0 \end{cases}$
- 51) Care din urmatoarele afirmatii sunt adevarate?
- a) orice spatiu liniar este grup abelian;
- b) orice grup abelian este spatiu liniar;
- c) exista spatii liniare care nu sunt grupuri abeliene;

	50) Fie operatorul $\begin{cases} L: \mathbf{i}^{2} \to \mathbf{i}^{2} \\ L(x) = (x_{1} + x_{2}, x_{1})^{T} \end{cases}$ Atunci: a) kerL={(0,0) ^T }	d) exista grupuri abeliene care nu sunt spatii liniare.
52) Fie vectorii x1,x2,,xm € R ^m si A matricea componentelor acestora. Atunci:	53) In spatiul R ⁿ o multime de vectori liniar independenti poate avea:	54) Fie vectorii x1,x2,,xm € R ^m si A matricea componentelor acestora. Atunci sunt liniar dependenti daca:
<u>a)</u> vectorii sunt liniar independenti daca rang $A = m$; <u>b)</u> vectorii sunt liniar dependenti daca rang $A < m$.	a) cel mult n vectori; c) exact n vectori.	<u>c)</u> rang A < m; <u>d)</u> det A =0.
55) Fie vectorii x1,x2,,xm € R ^m si A matricea componentelor acestora. Atunci sunt liniar independenti daca:	56) Fie vectorii x1,x2,,xm € Rⁿ liniar independenti.Atunci vectorii :	57) Multimea x1,x2,,xm este formata din vectori liniar dependenti. Atunci:
$\underline{\mathbf{a}} \text{ rang } \mathbf{A} = \mathbf{m};$ $\underline{\mathbf{d}} \text{ det } \mathbf{A} \neq 0.$	c) formeaza o baza in \mathbb{R}^n , numai daca m=n; d) nu contin vector nul.	b) cel putin un vector se poate exprima ca o combinatie liniara de ceilalti; d) poate contine vector nul.
58) Fie vectorii x1,x2,,xn € R ⁿ , n>3, liniar independenti. Atunci:	59) Care din urmatoarele afirmatii sunt adevarate: a) orice submultime a unei multimi de vectori liniar independenti este tot liniar independenta;	60) Coordonatele unui vector din R ⁿ : a) sunt unice relativ la o baza fixata;
a) vectorii x1,x2,,xn formeaza o baza in \mathbb{R}^n ; b) vectorii x1,x2,,xk sunt liniar independenti, (\forall) k= $\overline{1,n}$.	b) o submultime a unei multimi de vectori linair dependenti este tot liniar dependenta; c) coordonatele unui vector in baza canonica din R ⁿ coincid cu componentele acestuia. d) daca o multime de vectori nu contine vectorul nul, atunci	b) se schimba la schimbarea bazei; c) sunt aceleasi in orice baza.
61) Un sistem de n vectori din R ⁿ , care contine vectorul nul:	este liniar independenta. 62) Coordonatele unui vector in 2 baze care difera printr-un singur vector sunt:	63) Dimensiunea unui spatiu vectorial este egala cu:
b) este liniar dependent; c) nu formeaza o baza in R ⁿ .	a) diferite.	 a) numarul vectorilor dintr-o baza; b) numarul maxim de vectori liniar independenti.
 64) Matricea schimbarii de baza este: a) o matrice patratica; b) o matrice inversabila; c) formata din coordonatele vectorilor unei baze 	65) Fie aplicatia L: R ^m → R ⁿ .Atunci L este un operator liniar daca:	66) Aplicatia L: $\mathbf{R}^m \to \mathbf{R}^n$ este un operator liniar. Care din afirmatiile de mai jos sunt adevarate: a) $L(x_1+x_2)=L(x_1)+L(x_2), (\forall)x_1,x_2 \in \mathbf{R}^m$;
descompusi in cealalta baza.	c) $L(x_1+x_2)=L(x_1)+L(x_2)$ si $L(\alpha x)=\alpha L(x), (\forall)x, x_1, x_2 \in \mathbb{R}^m$	b) $L(\alpha x) = \alpha L(x), (\forall) x \in \mathbb{R}^m, (\forall) \alpha \in \mathbb{R};$ d) $L(\alpha x 1 + x 2) = \alpha L(x 1) + L(x 2), (\forall) x 1, x 2 \in \mathbb{R}^m \text{ si } (\forall) \alpha \in \mathbb{R}$ 69) Fie L: $\mathbb{R}^3 \to \mathbb{R}^2$ un operator liniar. Atunci:
67) Fie x1 si x2 vectori proprii pt operatorul liniar L: R ⁿ → R ⁿ corespunzatori la 2 valori proprii distincte. Atunci:	68) Fie L: R ^m → R ⁿ un operator liniar si A matricea sa. Atunci:	 c) nu se poate pune problema valorilor proprii pentru L; d) matricea lui L este dreptunghiulara.
a) x1 si x2 sunt liniar independenti.	 a) A ∈ Mm,n(R) 71) Fie operatorul liniar L: R^m → Rⁿ liniar oarecare. Atunci: 	72) Unui operator liniar L: $\mathbb{R}^m \to \mathbb{R}^n$ i se poate asocia:
70) Operatorul L: $\mathbf{R}^n \to \mathbf{R}^n$ are n valori proprii distincte λ_1 , λ_2 ,, λ_n carora le corespund vectorii proprii x1,x2,,xn. Atunci: a) x1,x2,,xn formeaza o baza in \mathbf{R}^n ; d) x1,x2,,xn sunt liniar independenti.	a) ker L ⊂ R ^m ; d) ker L este subspatiu liniar.	a) o matrice unica relativ la o pereche de baze fixate;
73) Nucleul unui operator liniar L: R ^m → R ⁿ este: a) un subspatiu liniar; b) o multime de vectori din R ^m	 74) Un operator liniar L: Rⁿ → Rⁿ are: a) cel mult n valori proprii distincte; d) o infinitate de vectori proprii, pt fiecare valoare proprie. 	75) In spatiul R ⁿ o multime de vectori liniar independenti poate fi formata din: a) mai putin de n vectori;

		c) excat n vectori.
76) Fie vectorii x1,x2,,xm € R , vectorii liniar indep.Atunci	77) Coordonatele unui vector din R ⁿ :	78) Un sistem de m vectori din R ⁿ care contine vectorul nul:
c) formeaza o baza in R ⁿ , daca m=n.	a) sunt unice relativ la o baza;	a) este intotdeauna liniar independent;
,	b) sunt in numar de n;	$\underline{\mathbf{d}}$) nu formeaza o baza in \mathbf{R}^{n} .
	,	
79) Dimensiunea unui spatiu liniar este egala cu:	80) Matricea unei forme patratice oarecare este o matrice:	81) Daca avem relatia x1=αx2 atunci vectorii:
a) numarul vectorilor dintr-o baza.	b) patratica;	c) x1 si x2 sunt liniar independenti, (\forall) $\alpha \in \mathbf{R}$.
	c) simetrica.	, , , , ,
82) O forma patratica este pozitiv definita daca forma	83) O solutie de baza a unui sistem se obtine:	84) O forma liniara este pozitiv definita daca:
canonica atasata acesteia:		
a) are coeficientii pozitivi;	b) dand variabilelor secundare, valoarea 0	<u>d</u>) pozitiva definire se refera numai la formele patratice.
85) Daca suma a n vectori din R ⁿ este egala cu vectorul nul	86) Daca vectorii x1,x2xn formeaza o baza in spatiul	87) Matricea asociata unui operator liniar oarecare L: R ^m
atunci:	liniar X, atunci:	→R ⁿ :
b) vectorii sunt liniar independenti;	b) x1,x2xn sunt liniar independenti;	b) depinde de bazele considerate in cele doua spatii;
c) cel putin unul se srie ca o combinatie liniara de restul.	$\underline{\mathbf{c}}$) dim $\mathbf{X} = \mathbf{n}$;	
<u>d</u>) nu formeaza o baza in R ⁿ .	<u>d</u>) x1,x2xn-1 sunt liniar independenti.	
88) Nucleul unui operator liniar L: $\mathbb{R}^m \to \mathbb{R}^n$: b) contine to	tdeauna vectorul nul al spatiului R ^m ; c) este subspatiu lini	iar; <u>d)</u> nu contine vectorul nul al spatiului R ^m .
III.ELEMENTE DE PROGRAMARE LINIARA		
1) O problema de programare liniara are intotdeauna:	2) In forma vectoriala, o problema de programare liniara	3) In forma standard o problema de prgramare liniara are
a) functia obiectiv liniara;	are vectorii P1,P2,Pn definiti de:	intotdeauna:
<u>c)</u> restrictiile liniare.	b) coloanele matricei A corespunzatoare sistemului de	c) restrictiile de tip ecuatie.
	restrictii.	
4) Intr-o problema de programare liniara conditiile de	5) Pt a aplica algoritmul Simplex de rezolvare a unei probl.	6) Pt a aduce o problema de programare liniara de maxim la
negativitate cer ca:	de programare liniara, aceasta trebuie sa fie in forma:	una de minim se foloseste realtia:
<u>d)</u> necunoscutele problemei sa fie negative.	c) standard.	$\underline{\mathbf{c}}) \max(f) = -\min(-f)$
7) O multime $M \subset \mathbf{R}^n$ se numeste convexa daca:	8) Combinatia liniara " $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$ " este convexa	9) Daca $M \subset \mathbb{R}^n$ este o multime convexa spunem ca $x \in M$
$\underline{\mathbf{c}}$ $(\forall) x_1, x_2 \in M$ si $(\forall) \lambda \in [0,1]$ avem	daca:	este varf (punct extrem) al multimii M daca:
	<u> </u>	Nici una.
$\lambda x_1 + (1 - \lambda) x_2 \in M .$	b) $\lambda_i \in [0,1], (\forall) i = \overline{1,3} \text{ si } \lambda_1 + \lambda_2 + \lambda_3 = 1$	
10) Fie S _A multimea solutiilor admisibile al unei probleme	11) Fie S _A si S _{AB} multimea solutiilor admisibile, respectiv	12) Fie S _A , S _{AB} , S _O multimile solutiilor admisibile., de baza
de programare liniara. Atunci:	multimea solutiilor admisibile de baza a unei probleme de	admisibile, respectiv optime pentru o problema de
<u>a)</u>	programare liniara. Atunci, daca x € S _{AB} rezulta ca:	programare liniara. Atunci:
$(\forall)x_1, x_2 \in S_A \Rightarrow \lambda x_1 + (1 - \lambda)x_2 \in S_A, (\forall)\lambda \in [0, 1]$	$\underline{\mathbf{b}}(\forall) x_1, x_2 \in S_A, x_1 \neq x_2 \text{ avem}$	$\underline{\mathbf{d}}$ S_A , S_O sunt multimi convexe.
	$x_1 \neq \lambda_1 + (1 - \lambda)x_2, (\forall)\lambda \in [0, 1].$	
13) In rezolvarea unei probleme de programare liniara cu	14) Daca x1 si x2 sunt 2 solutii optime distincte (x1,x2€	15) O problema de programare liniara cu cerinte de minim
algoritmul Simplex se aplica:	S _o) ale unei probleme de programare liniata, atunci:	are urmatorul tabel Simplex:
a) intai criteriul de intrare in baza, apoi criteriul de iesire	$\mathbf{a}) \ \lambda x_1 + (1 - \lambda) x_2 \in S_O, (\forall) \lambda \in [0, 1];$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
din baza;	b) So are o infinitate de elemente;	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
<u>d</u>) criteriul de optim la fiecare etapa a algoritmului.	(\underline{c}) f(x1)=f(x2), cu f(x) functia objectiv.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		P ₂ -1 3 0 1 3 2 1
		$\begin{bmatrix} z_j - c_j \end{bmatrix} -1 \begin{bmatrix} 0 & 0 & 4 & -4 & 1 \end{bmatrix}$
		a) Intra in baza P ₃ ;
		c) iese din baza P ₁ .

16) Fie urmatorul tabel simplex al unei probleme de programare liniara:	17) O problema de programare liniara are urmetorul tabel Simplex:	18) O probl. De programare liniara cu cerinte de minim are urm.tabel Simplex:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Atunci solutia optima a problemei este: $\underline{\mathbf{c}}$) $\mathbf{x}_0 = (0,1,3,0)^T$ 21) Care din elementele urm.tabel Simplex nu sunt corecte? $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Atunci: c) f=6 si solutia optima este $x_0 = (1,2,0,0)^T$; d) problema admite solutie optima unica. 22) In urm.tabel Simplex pt o problema de transport cu cerinte de minim: $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23) In tab. Simplex de mai jos, cu cerinte de minim pentru functia obiectiv B C _B P ₀ 2	24) In tabelul simplex de mai jos $ \begin{array}{c c c c c c c c c c c c c c c c c c c $

28) Din tabelul Simplex de mai jos pt o problema de programare liniara cu cerinte de minim:	29) Din tabelul Simplex de mai jos pt o problema de programare liniara cu cerinte de minim:	30) In tabelul Simplex de mai jos pt o problema de programare liniara cu cerinte de minim:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c }\hline B & C_B & P_0 & \frac{2}{P_1} & \frac{1}{P_2} & \frac{3}{P_3} & \frac{0}{P_4} & \frac{0}{P_5} \\ \hline P_3 & 3 & 4 & 0 & 1 & 1 & 0 & 1 \\ P_1 & 2 & 1 & 1 & -1 & 0 & 0 & -2 \\ \hline P_1 & 0 & 3 & 0 & 2 & 0 & 1 & 1 \\ \hline z_j - c_j & 14 & 0 & 0 & 0 & 0 & -1 \\ \hline \textbf{a)} & x_0 = (1,0,4,3,0)^T \text{ este solutie optima.} \\ \hline \textbf{c)} & \text{problema are o infinitate de solutii optime.} \\ \hline 34) & \text{Cantitatile } \delta_{ij} & \text{din criteriul de optim al problemelor de transport se calculeaza pentru:} \\ \hline \textbf{c)} & \text{celulele nebazice.} \\ \hline \end{array}$	$\begin{array}{ c c c c c c c }\hline B & C_B & P_0 & \frac{2}{P_1} & \frac{1}{P_2} & \frac{1}{P_3} & \frac{1}{P_4} & \frac{1}{P_5} \\ \hline P_3 & -1 & 3 & 2 & 0 & 1 & -2 & -2 \\ \hline P_1 & 0 & 1 & 3 & 1 & 0 & 1 & 3 \\ \hline z_i - c_i & -3 & -4 & 0 & 0 & 2 & 2 \\ \hline \textbf{a)} \ \ poate \ intra \ in \ baza \ P_4 \ sau \ P_5 \ ; \\ \hline \textbf{b)} \ \ va \ iesi \ din \ baza \ numai \ P_2 \ ; \\ \hline \textbf{d)} \ \ solutia \ \ de \ baza \ admisibila \ gasita \ este \ x_0 = (0,1,3,0,0)^T \ . \\ \hline 35) \ \ Intr-o \ problema \ de \ transport \ ciclul \ celulei \ care \ intra \ in \ baza \ este : \\ \hline \end{array}$
36) Solutia unei probleme de transport este optima daca: $\underline{\mathfrak{C}}$ (\forall) $\delta_{ij} \leq 0$. 31) Problema de transport de forma: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39) O solutie de baza admisibila a unei probleme de transport este degenerata daca: $\underline{\mathbf{b}}) (\exists) \ x_{ij} = 0, \ cu \ (i,j) \ celula \ bazica.$ 32) Solutia de baza admisibila a unei probleme de transport este data de tabelul: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a) x_{11} . 41) O solutie de baza admisibila a unei probleme de transport cu 2 depozite si 5 centre de desfacere este degenerata daca are: b) 7 componente egale cu 0; c) cel mult 5 componente nenule. 37) O solutie de baza admisibila a unei probleme de transport este data de tabelul. C1

liniara formeaza totdeauna o multime.	programare liniara formeaza o multime:	a) nenegative.	
 c) convexa. 62) Pentru aplicarea algoritmului Simplex, solutia de baza initiala a unei probleme de programare liniara trebuie sa fie: a) admisibila. 65) Intr-o problema de transport metoda perturbarii se aplica atunci cand: a) solutia initiala este degenerata; b) pe parcursul rezolvarii se obtine o solutie degenerata. 68) Pentru o problema de programare liniara, multimea S_A a solutiilor admisibile si multimea S_{AB} a solutiilor admisibile de baza satisfac relatiile: 	 a) finita. 63) O solutie de baza admisibila a unei probleme de transport cu m depozite si n centre (m<n) are:<="" li=""> a) cel mult m+n-1 componente nenule. 66) O problema de transport pt care exista δ_{ij} = 0 pt o variabila nebazica a solutiei optime are: b) mai multe solutii optime. 69) O problema de programare liniara poate avea: a) optim (finit sau nu) sau nici o solutie admisibila. </n)>	64) Pentru o problema de transport care din urmatoarele afirmatii sunt adevarate? a) admite totdeauna o solutie de baza admisibila; c) are totdeauna optim finit. 67) Metoda grafica de rezolvare a problemelor de programare liniara se aplica pt probleme: c) cu doua necunoscute. 70) Pentru a aplica algoritmul de rezolvare a unei probleme de transport trebuie ca:	
$\begin{array}{c} \underline{\mathbf{c}} S_A \supset S_{AB} \\ \underline{\mathbf{d}} S_A \cup S_{AB} = S_A \end{array}$		b) problema sa fie echilibrata si sa avem o solutie de baza initiala nedegenerata.	
 71) Pt a rezolva o problema de transport neechilibrata: a) se introduce un nou depozit, daca cererea este mai mare decat oferta; b) se introduce un nou centru, daca cererea este mai mica decat oferta. 	72) Pentru o problema de programare liniara care din urmatoarele afirmatii sunt adevarate: d) multimea solutiilor admisibile este convexa.	73) Intr-o problema de programare liniara nu se folosesc variabile de compensare cand: c) restrictiile sunt de forma "=" d) sistemul initial de restrictii este in forma standard.	
74) O problema de programare liniara de minim are mai multe sol. optime daca avem satisfacut criteriul de optim si: b) exista vectori Pj care nu fac parte din baza, cu $z_j - c_j = 0$, care au coordonate pozitive.	75) O problema de programare liniara de minim admite optim infinit daca: a) criteriul de optim nu este satisfacut si vectorii din afara bazei au toate coordonatele negative.	76) O problema de programare liniara de minim admite solutie optima unica daca: a) criteriul de optim este satisfacut si toti vectorii din afara bazei au diferentele $z_j - c_j < 0$; c) criteriul de optim este satisfacut si vectorii din afara bazei cu diferentele $z_j - c_j = 0$ au coordonatele negative.	
77) In forma standard, o probl. de programare liniara are: a) numarul restrictiilor cel mult egal cu al necunoscutelor; b) restrictiile de tip ecuatie.	78) Daca matricea unei problema de programare liniara in forma standard are rangul egal cu nr. restrictiilor atunci: b) restrictiile sunt idependente.	79) Pentru a aduce o problema de programare liniara la forma standard se folosesc: b) variabile de compensare.	
80) Solutiile optime ale unei probleme de programare liniara formeaza totdeauna o multime: c) convexa.	81) O solutie de baza admisibila nedegenerata are intotdeauna componentele principale: b) stricti pozitive.	82) O probl. De transport cu 3 centre si 4 depozite, are solutia de baza initiala nedegenerata, daca aceasta are: b) 6 componente pozitive.	
83) O problema de programare liniara poate fi rezolvata cu algoritmul Simplex numai daca: a) este in forma standard.	84) Pentru a rezolva o problema de transport trebuie ca: b) problema sa fie echilibrata.	 85) Metoda celor 2 faze se aplica: b) Pentru determinarea unei solutii de baza admisibile a problemei initiale; d) cu o functie obiectiv diferita de functia initiala. 	
86) O problema de transport: a) are intotdeauna solutie optima finita; c) poate avea mai multe solutii optime.			
 87) Pentru a determina solutia initiala a unei probleme de transport: a) se aplica metoda diagonalei; d) problema trebuie sa fie echilibrata. 	88) Pentru aplicarea algoritmului Simplex este necesar ca: b) sistemul in forma standard sa aiba cel putin o solutie de baza admisibila.	89) Solutia unei probleme de transport este optima daca: b) toate cantitatile $\delta_{ij} \leq 0$	
90) Criteriul de optim al unei probleme de programare de minim este satisfacut daca:	91) O problema de transport are optim infinit:	92) O problema de transport are intotdeauna:	
a) toate diferentele $z_j - c_j \le 0$; d) toti vectorii Pj din afara bazei au diferentele $z_j - c_j \le 0$.	b) niciodata.	a) optim finit;b) cel putin o solutie de baza admisibila.	
$\underline{\mathbf{u}}_j$ to the vector in 1 j unit at at a vazet au uniciente te $z_j = c_j \le 0$.			

93) Functia obiectiv a problemei artificiale are: a) totdeuna optim finit; d) coeficienti negativi. 96) Intr-o problema de transport vom avea costuri de transport egale cu 0 daca: b) problema initiala este neechilibrata.	94) Daca functia artificiala are a) problema initiala nu are solu b) in baza au ramas variabilele 97) Intr-o problema de transpor corespunzatoare lui: a) $\delta_{ij} > 0$, maxim.	tii; artificiale.	95) Intr-o problema de transport coeficientii functiei obiectiv reprezinta: c) cheltuieli de transport. 98) Ciclul unei celule nebazice este format: a) din cel putin 4 celule; c) dintr-un numar par de celule.
99) Problemele de transport: a) sunt cazuri particulare de p 100) Intr-o problema de transport criteriul de iesire se aplica:		c) au numai optim finit.	
IV. SERII NUMERICE. SERII DE PUITERI			
1) Fie seria $\sum_{n=1}^{\infty} a_n$ convergenta. Atunci, asociind termenii	2) Care din urmatoarele operati serii divergente:	ii poate modifica natura unei	3) Suma unei serii convergente se modifica at. cand: b) adaugam un nr.finit de termeni;
in grupe finite: b) seria ramane convergenta; d) suma seriei nu se modifica.	a) asocierea termenilor seriei ir	n grupe finite.	c) suprimam un nr. finit de termeni ai seriei; d) inmultim termenii seriei cu un scalar ennul.
4) Fie seria numerica $\sum_{n=1}^{\infty} a_n, a_n \in \mathbf{i}$. Care din afirmatiile	5) Fie $(S_n)_{n \in Y}$ sirul sumelor pa	artiale atasat seriei $\sum_{n=1}^{\infty} a_n$	6) Fie $(S_n)_{n \in Y}$ sirul sumelor pariale atasat seriei $\sum_{n=1}^{\infty} a_n$ si
de mai jos sunt adevarate:	Daca $\lim_{n\to\infty} S_n = 2$, atunci:		$\lim_{n\to\infty} S_n = S_{\text{. Atunci seria:}}$
a) daca $\sum_{n=1}^{\infty} a_n$ converge, atunci $\lim_{n \to \infty} a_n = 0$;	a) seria converge; d) seria are suma S=2		a) converge, daca $S \neq \pm \infty$; d) converge, daca S=1.
$\underline{\mathbf{d}}$) daca $\lim_{n\to\infty} a_n \neq 0$, atunci seria $\sum_{n=1}^{\infty} a_n$ diverge.			
7) Fie seria geometrica $\sum_{n=0}^{\infty} aq^n$ cu a $\neq 0$. Atunci seria: a) converge, pentru q \in (-1,1);	8) Seria armonica generalizata b) divergenta, daca α<0; c) convergenta, daca α>1; d) divergenta, daca α=1.	$\sum_{n=1}^{\infty} \frac{1}{n^a}$ este o serie:	9) Fie $(S_n)_{n\in\mathbb{Y}}$ sirul sumeolor partiale atasat unei serii de termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $(a_n \ge 0)$. Atunci sirul $(S_n)_{n\in\mathbb{Y}}$ este intotdeauna:
10) Fie seriile cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ si $\sum_{n=1}^{\infty} b_n$ astfel incat $a_n \le b_n$, $(\forall) n \in \mathbf{Y}^*$		11) Fie seria cu termeni pozi	tivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si seria armonica $\sum_{n=1}^{\infty} \frac{1}{n}$. Atunci:
Atunci: a) $\sum_{n=1}^{\infty} a_n$ converge daca $\sum_{n=1}^{\infty} b_n$; d) $\sum_{n=1}^{\infty} b_n$ diverge dace	ca $\sum_{n=1}^{\infty} a_n$ diverge.	b) $\sum_{n=1}^{\infty} a_n \text{ diverge daca } a_n \ge$	1
12) Fie seriile cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ si $\sum_{n=1}^{\infty} b_n$. Daca	13) Criteriile de comparatie se b) cu termeni pozitivi.	aplica seriilor:	15) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$. Daca $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$, atunci:
$\lim_{n\to\infty}\frac{a_n}{b_n}=1, \text{ atunci:}$	14) Fie seriile de termeni poziti	ivi $\sum_{n=1}^{\infty} a_n$ si $\sum_{n=1}^{\infty} b_n$, care	$\underbrace{\mathbf{a}}_{n\to\infty} \lim_{n\to\infty} \sqrt[n]{a_n} = \frac{1}{2}$
$\underbrace{\mathbf{a}}_{n=1} \operatorname{daca} \sum_{n=1}^{\infty} a_n(C) \Rightarrow \sum_{n=1}^{\infty} b_n(C);$	satisfac relatia $\lim_{n\to\infty} \frac{a_n}{b_n} = k$. At	tunci:	$\underbrace{\mathbf{b}}_{n=1}^{\infty} a_n \text{ converge.}$

	T	
b) daca $\sum_{n=1}^{\infty} b_n(D) \Rightarrow \sum_{n=1}^{\infty} a_n(D)$.	a) daca $k \in (0,1)$ seriile au aceeasi natura. b) $k=2$ si $\sum_{n=0}^{\infty} a_n(C) \Rightarrow \sum_{n=0}^{\infty} b_n(C)$.	17) Pentru seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ avem $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda$.
16) Fie seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, si notam cu	$ \underbrace{\mathbf{c}}_{n=1} \text{ k=1 si } \sum_{n=1}^{\infty} b_n(D) \Rightarrow \sum_{n=1}^{\infty} a_n(D). $	Atunci: c) daca $\lambda \ge 2 \Rightarrow \sum_{n=0}^{\infty} a_n$, diverge.
$\lambda_1 = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ si $\lambda_2 = \lim_{n \to \infty} \sqrt[n]{a_n}$. Atunci:	n=1 $n=1$	$\underline{\mathbf{d}} \text{ daca } \lambda \in \left(0, \frac{1}{2}\right) \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ converge.}$
c) $\lambda_1 = \lambda_2$; d) daca $\lambda_2 = \sqrt{2} \Rightarrow \lambda_1 = \sqrt{2}$.		$\left(\begin{array}{c}2\end{array}\right)$
18) Pentru seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ avem	19) Fie $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ astfel incat $\lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}} - 1 \right) = 2$.	20) Fie $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ astfel incat $\lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu$.
$\lim_{n\to\infty} \sqrt[n]{a_n} = \sqrt{2}$. Atunci:	Atunci:	Atunci:
$\underline{\mathbf{c}} \sum_{n=1}^{\infty} a_n \text{ diverge; } \underline{\mathbf{d}} \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \sqrt{2}$	$\mathbf{a)} \sum_{n=1}^{\infty} a_n \text{ converge.}$	$\underline{\mathbf{d}}) \operatorname{daca} \ \mu \in (1,2) \Rightarrow \sum_{n=1}^{\infty} a_n(C)$
21) Seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ are sirul sumelor	22) In aplicarea criteriului lui Raabe-Duhamel seriei $\sum_{n=1}^{\infty} a_n$	23) Fie seria alternata $\sum_{n=1}^{\infty} (-1)^n a_n$ cu $a_n \ge 0$. Criteriul lui
partiale $(S_n)_{n \in Y}$ marginit. Atunci:	$a_n \ge 0$ se cere calculul limitei:	Leibniz afirma ca seria:
$\mathbf{a}) \sum_{n=1}^{\infty} a_n \text{ converge};$	$\underline{\mathbf{c}} \lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}} - 1 \right).$	a) converge, daca $a_n > 0$ monoton descrescator.
b) sirul $(S_n)_{n \in Y}$ converge.	(11+1)	
24) Fie seria $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, $a_n \ge 0$ astfel incat $\lim_{n \to \infty} a_n = 0$.	25) Seria $\sum_{n=1}^{\infty} u_n$ este o serie alternata daca :	26) Fie seria de termeni oarecare $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbf{i}$. Care din
Atunci seria converge daca:	$\mathbf{\underline{b}} \ u_n \mathbf{g} u_{+1} \le 0, (\forall) n \in \mathbf{Y} \ ;$	urmatoarele afirmatii sunt adevarate?
b) $(a_n)_{n \in Y}$ este monoton descrescator.	$\mathbf{d}) \ u_n = (-1)^{n+1} a_n, a_n \ge 0.$	$ \underline{\mathbf{b}} \text{ daca } \sum_{n=1}^{\infty} a_n (C) \Rightarrow \sum_{n=1}^{\infty} a_n(C) ; $
27) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbf{i}$ astfel incat $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \frac{1}{2}$. A	atunei:	$\underbrace{\mathbf{c}}_{n=1} \operatorname{daca} \sum_{n=1}^{\infty} a_n(D) \Rightarrow \sum_{n=1}^{\infty} a_n (C).$
a) seria $\sum_{n=1}^{\infty} a_n $ converge; b) seria $\sum_{n=1}^{\infty} a_n$ converge;	$\lim_{n\to\infty} \sqrt[n]{ a_n } = \frac{1}{2}$	
28) O serie cu termeni oarecare $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbf{i}$ se	29) Fie seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$. Atunci:	30) Seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ are limita
numeste semiconvergenta daca:	a) daca $\sum_{n=0}^{\infty} a_n(C)$ rezulta $\sum_{n=0}^{\infty} a_n (C)$;	$\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu \text{ Atunci daca:}$
$\underline{\mathbf{b}} \sum_{n=1}^{\infty} a_n(C) \text{ si } \sum_{n=1}^{\infty} a_n (D)$		a_{n+1} a_{n+1}
L	i	

31) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$, $a_n \in \mathbf{i}$ are $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = 1$.	b) daca $\sum_{n=1}^{\infty} a_n(D)$ rezulta $\sum_{n=1}^{\infty} a_n (D)$;	$\underline{\mathbf{c}}$) $\mu = 0$ rezulta $\sum_{n=1}^{\infty} a_n$ diverge;
Atunci: b) $\lim_{n \to \infty} \sqrt[n]{ a_n } = 1$; c) seria converge pentru $x \in (-1,1)$	$\underline{\mathbf{c}} \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n .$	$\underline{\mathbf{d}} \mu = 3 \text{ rezulta } \sum_{n=1}^{\infty} a_n \text{ converge.}$
	32) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n, a_n \in \mathbf{i}$ are limita	33) Seria de puteri $\sum_{n=1}^{\infty} a_n (x - x_0)^n$ cu $a_n \in \mathbf{i}$ are
34) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$ are raza de convergenta	$\lim_{n\to\infty} \sqrt[n]{ a_n } = 0 \text{ Atunci:}$	$\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = +\infty \text{ Atunci seria:}$
r=1. Atunci seria: c) converge, pentru $x \in (-2,0)$; d) diverge, daca $x \in (3,\infty)$	b) seria converge, pentru $(\forall)x \in \mathbf{i}$; $\mathbf{d)} \lim_{n \to \infty} \frac{ a_{n+1} }{ a } = 0.$	$ a_n $ $\underline{\mathbf{c}}$ are raza de convergenta r=0; $\underline{\mathbf{d}}$ converge numai in/pentru x=x0.
	$ a_n $	
35) Seria de puteri $\sum_{n=1}^{\infty} a_n (x - x_0)^n \text{ are } \lim_{n \to \infty} \sqrt[n]{ a_n } = 0$	36) Seria de puteri $\sum_{n=1}^{\infty} a_n (x - x_0)^n$ are raza de	37) Fie seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ cu $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \frac{1}{2}$. Atunci
Atunci seria: d) converge, (\forall) x \in R .	convergenta r >0. Atunci teorema lui Abel afirma ca seria converge pe intervalul: b) (x0-r,x0+r)	b) raza de convergenta este r=2; d) seria diverge $(\forall)x \in (-\infty, -2) \cup (2, +\infty)$
38) Fie seria de puteri $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$. Atunci coeficientii	39) Fie r raza de convergenta a seriei de puteri $\sum_{n=1}^{\infty} a_n x^n$.	40) Seria de puteri $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ are raza de convergenta
seriei sunt dati de relatia: c) $a_n = (-1)^n \frac{1}{n}$	Atunci seria: a) converge (\forall) $x \in \mathbb{R}$, daca $r = +\infty$; c) converge intotdeauna in $x = 0$.	r=1. Atunci domeniul maxim de convergenta a seriei este: b) $x \in (-1,1]$
41) Fie seria de puteri $\sum_{n=1}^{\infty} a_n x^n$, a carei raza de convergenta este r > 0 finita. Atunci:	42) Seria Taylor atasata unei functii $f(x)$ in punctul $x0$: b) este o serie de puteri; d) are coeficientii de forma $a_n = \frac{f^{(n)}(x_0)}{n!}$.	44) Fie $f: I \subseteq i \rightarrow i$ o functie oarecare. Care din conditiile de mai jos sunt necesare pt a-i atasa acesteia o serie Taylor in punctul x0: a) obligatoriu x0 \in I;
<u>a)</u> seria converge, $(∀)$ x ∈ $(-r,r)$	n:	\mathbf{b}) $\mathbf{f}(\mathbf{x})$ admite derivate de orice ordin in \mathbf{x} 0.
$\lim_{n\to\infty} \sqrt[n]{ a_n } = \frac{1}{r};$	43) Seria MacLaurin atasata unei functii f(x):	45) Coeficientii numerici ai unei serii MacLaurin atasate unei functii f(x) au forma:
$\underline{\mathbf{d}} \lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \lim_{n \to \infty} \sqrt[n]{ a_n }.$	c) este o serie de puteri centrata in 0; d) este un caz particular de serie Taylor.	b) $a_n = \frac{f^{(n)}(0)}{n!}$
46) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ satisface proprietatea $\lim_{n\to\infty} a_n = 1$. Atunci seria: c) converge, (\forall) x \in (-1,1)		
47) Seria de puteri $\sum_{n=1}^{\infty} (-1)^n x^n$:	48) Pentru a studia convergenta unei serii alternate se aplica: c) criteriul lui Leibniz.	49) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ este convergenta pe R numai
c) are raza de convergenta r = 1;		daca:
$\underline{\mathbf{d}}$) converge, (\forall) $\mathbf{x} \in (-1,1)$		b) raza de convergenta $r = +\infty$;

		$\underline{\mathbf{c}} \lim_{n \to \infty} \sqrt[n]{ a_n } = 0.$
50) Seria de puteri $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converge numai in x0,	51) Fie seria numerica $\sum_{n=0}^{\infty} a_n$ pentru care $\lim_{n\to\infty} a_n = 0$.	52) Daca pentru sirul numerelor partiale $\lim_{n\to\infty} S_n = 1$ atunci
daca si numai daca: a) raza de convergenta r=0;	Atunci seria: d) nu se poate preciza natura seriei.	seria $\sum_{n=1}^{\infty} a_n$: a) este convergenta si are suma S=1.
$\underline{\mathbf{c}} \lim_{n \to \infty} \sqrt[n]{ a_n } = +\infty.$,
53) Daca pentru seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ sirul sumelor partiale	54) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \lambda$. Atunci seria	55) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \left(\frac{a_{n+1}}{a_n} - 1 \right) = \mu$.
este marginit, atunci seria: a) este convergenta.	b) converge daca $\lambda < 1$; c) converge, daca $\lambda = 0$	Atunci seria: a) este divergenta, daca $\mu = 0$; d) este convergenta, daca $\mu = +\infty$.
56) Fie seria $\sum_{n=1}^{\infty} (-1)^n a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} a_n = 0$. Atunci	57) Fie seria $\sum_{n=1}^{\infty} a_n$, si $\lim_{n\to\infty} a_n = 1$. Atunci seria:	58) Seria $\sum_{n=1}^{\infty} a_n$ este divergenta daca:
seria: c) este convergenta, daca $a_n \ge a_{n+1}$ pentru price $n \in \mathbf{Y}^*$.	d) nu se poate preciza natura seriei; se aplica criteriul lui Raabe-Duhamel.	
59) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \sqrt[n]{a_n} = \lambda$. Atunci seria:	60) Fie seria $\sum_{n=1}^{\infty} a_n$, cu $\lim_{n\to\infty} \left(\frac{a_n}{a_{n+1}} - 1\right) = 0$. Atunci seria:	61) Fie seria $\sum_{n=1}^{\infty} a_n x^n$ si $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 0$. Atunci seria:
b) este divergenta, pentru $\lambda > 1$. c) este convergenta, pentru $\lambda = \frac{1}{\sqrt{2}}$.	b) este divergenta, pentru $a_n \ge 0$.	a) este convergenta, (\forall) $x \in \mathbb{R}$.
$\sqrt{2}$ d) este divergenta, daca $\lambda = +\infty$.		
62) Pentru seria $\sum_{n=1}^{\infty} a_n x^n$ avem $\lim_{n\to\infty} \sqrt[n]{a_n} = \lambda = \rho$. Atunci	63) Seria $\sum_{n=1}^{\infty} a_n x^n$ are raza de convergenta r=0. Atunci	64) Daca seria $\sum_{n=1}^{\infty} a_n (x - x_0)^n$ are raza de convergenta r=0,
raza de convergenta r este: $\underline{\mathbf{a}}$) $\mathbf{r} = \frac{1}{\rho}$; $\underline{\mathbf{c}}$) $\mathbf{r} = 0$, daca $\rho = +\infty$; $\underline{\mathbf{d}}$) $\mathbf{r} = 1$, daca $\rho = 1$.	seria: a) este convergenta, numai in x=0.	atunci seria: b) este divergenta, $(\forall) x \in \mathbf{R} \setminus \{x0\}$; c) este convergenta, numai in $x=x0$.
65) Seria $\sum_{n=1}^{\infty} a_n (x - x_0)^n$ are $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 0$. Atunci seria:		67) O serie cu termeni pozitivi: b) este divergenta, daca termenul general nu tinde la 0;
a) este convergenta, (\forall) x \in R	c) diverge, daca $\lim_{n\to\infty} a_n \neq 0$.	<u>c)</u> are totdeauna sirul numerelor partiale crescator.

68) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda$. Atunci seria	69) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu$.	70) O serie cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$:
a) diverge, daca $\lambda > 2$; b) converge, daca $\lambda < 1$.	Atunci seria este divergenta, daca:	a) converge, daca $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 0$;
71) Seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ este:	$\begin{array}{l} \mathbf{b}) \ \mu = \frac{1}{2}; \\ \mathbf{d}) \ \mu = -\infty. \end{array}$	b) diverge, daca $\lim_{n\to\infty} a_n = 1$;
n=1		$\underline{\mathbf{c}}$) diverge, daca $\lim_{n\to\infty} a_n = +\infty$.
a) convergenta, daca $\lim_{n \to \infty} \sqrt[n]{a_n} = 0$; b) divergenta, daca $\lim_{n \to \infty} \sqrt[n]{a_n} = 2$;	72) Fie seria $\sum_{n=1}^{\infty} a_n$ cu $\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = 0$. Atunci seria	73) O serie de puteri $\sum_{n=1}^{\infty} a_n x^n$ are raza de convergenta r=2.
$\underline{\mathbf{c}}) \text{ convergenta, daca } \lim_{n \to \infty} \sqrt[n]{a_n} = 1.$	b) este divergenta, daca $a_n \ge 0$.	Atunci seria: a) converge pt $x \in (-2,2)$ d) diverge, daca $x > 2$.
74) O serie de termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$:	75) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ are $\lim_{n\to\infty} \sqrt[n]{ a_n } = +\infty$. Atunci	76) Fie o seria oarecare cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$
b) diverge, daca $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \sqrt{2}$;	seria: b) converge, numai pentru x=0;	si $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$. Atunci:
<u>d</u>) diverge, daca $\lim_{n\to\infty} \sqrt[n]{a_n} = 2$.	d) diverge, pentru $x \neq 0$.	a) $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$; c) Raabe-Duhamel pt a det. natura seriei
77) Seria armonica generalizata $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ cu $\alpha \in \mathbb{R}$:	78) Fie seria cu termeni alternanti $\sum_{n=1}^{\infty} (-1)^n a_n$, $a_n \ge 0$.	79) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$, are raza de convergenta
b) diverge, daca $\alpha < 1$; d) converge, daca $\alpha = 2$.	Daca $\lim_{n\to\infty} a_n = 1$, atunci:	r=1. Atunci seria: b) diverge, pentru $x \in (-\infty, -2) \cup (0, +\infty)$;
<u></u>	b) seria diverge conform criteriului general de divergenta.	d) converge, pentru $x \in (-2,0)$.
80) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$ are raza de convergenta	81) Seria de puteri $\sum_{n=1}^{\infty} a_n(x+1)^n$, are raza de convergenta	82) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ are raza de convergenta r =0.
r=1. Atunci seria:	r=∞. Atunci seria:	Atunci seria: b) converge, numai pentru x=0;
b) diverge, pentru $x \in (-\infty, 0) \cup (2, +\infty)$; c) converge, pentru $x \in (0, 2)$.	$\underline{\mathbf{c}}$) converge, pentru $\mathbf{x} \in \mathbf{R}$.	$\underline{\mathbf{d}}$) diverge, $(\forall) x \in \mathbf{R}$.
V. FUNCTII REALE DE N VARIABILE		
1) Fie punctele $P_1(1,1)$, $P_2(2,2) \in \mathbb{R}^2$. Atunci distanta dintre	2) Fie punctele $P1(x1,x2)$ si $P2(y1,y2) \in \mathbb{R}^2$. Atunci distanta	3) Fie $P(x1,x2) \in \mathbb{R}^2$; Atunci distanta de la $O(0,0)$ la P este:
ele este egala cu:	b) d(P1,P2)= $\sqrt{(x_1-x_2)^2} + \sqrt{(y_1-y_2)^2}$.	b) $d(O,P) = \sqrt{x_1^2 + x_2^2}$.
$\underline{\mathbf{c}}) d(P_1, P_2) = \sqrt{2} .$		7 7 V 1 2
4) Fie sirul $(x_n)_{n \in Y} \in \mathbf{i}^{-2}$ cu termenul general de forma	5) Fie sirul $(x_n)_{n \in Y} \in \mathbf{i}^{-2}$ cu termenul general	6) Fie sirul de puncte $(x_n)_{n \in Y} \in \mathbf{i}^n$. Atunci sirul:
$x_n = \left(\frac{1}{n}, \frac{n}{n+1}\right). \text{ Atunci}$	$x_n = \left(\frac{(-1)^n}{n}, \frac{n}{n+1}\right).\text{At.: } \mathbf{b}).\text{sirul diverge/limita x0} = (0, \infty)$	b) converge, daca toate sirurile coordonatelor converg; d) diverge, numai daca toate sirurile de coordonte diverg.
b) limita sirului este x0=(0,1)) v() Cara din urmatagrala afirmatii cunt adayarata:
7) Fie $f(x,y)$ o functie de 2 variabile si notam cu lg limita globala, respectiv 11,12 limitele partiale ale acesteia intr-un puct $(x0,y0)$. Care din urmatoarele afirmatii sunt adevarate: a) daca (\exists) lg atunci (\exists) 11,12 si 11=12=lg; c) daca (\exists) 11,12 si 11 \neq 12 atunci nu exista lg.		
<u>uf</u> waw (¬) is manor (¬) ii, iii iii iis, <u>of</u> waw (¬) ii, iii oi ii. ⊤iii munor na oniom is.		

8) Fie $f: D \subseteq \mathbf{i}^2 \to \mathbf{i}$ si $(x0,y0) \in D$. Atunci derivata partiala a lui $f(x,y)$ in raport cu variabila x in punctul $(x0,y0)$ se calculeaza cu relatia: $\mathbf{b} \underbrace{\frac{\partial f}{\partial x}(x_0,y_0)} = \lim_{x \to x_0} \frac{f(x,y_0) - f(x_0,y_0)}{x - x_0}.$ 11) Fie functia $f(x,y) = xy2$, care din urmatoarele egalitati sunt corecte?	9) Fie functia $f(x,y) = \frac{x^2}{y}$. Atunci: a) $\frac{\partial f}{\partial x} = \frac{2x}{y}$; d) $\frac{\partial f}{\partial x} = \frac{x^2}{y^2}$. 12) Diferentiala de ordin I a functiei $f(x,y) = xy2$ calculata in punctul P0(1,2) are expresia:	10) Derivatele partiale ale functiei $f(x,y)=\ln(xy)$ sunt: b) $\frac{\partial f}{\partial x} = \frac{1}{x}$; d) $\frac{\partial f}{\partial x} = \frac{1}{y}$. 13) Diferentiala de ordin I a functiei $f(x,y)=xy2+2x3y$ in punctul P0(1,1) are expresia:
	$\underline{\mathbf{c}}) df(P0) = 4dx + 4dy$	$\mathbf{b)} df(P0) = 7dx + 4dy.$
14)Diferentiala de ordin I a functiei $f(x,y) = xe^y$ are expresia c) $df(x,y) = e^y dx + xe^y dy$;	15) Fie (x,y) oo functie care satisface criteriul lui Schwartz si care are $\frac{\partial^2 f}{\partial x \partial y} = xy^2$. Atunci: b) $\frac{\partial^2 f}{\partial y \partial x} = xy^2$	16) Fie H(x,y)= $\begin{pmatrix} 6x & -2 \\ -2 & 6y \end{pmatrix}$ hessiana atasata functiei f(x,y). Daca P1(2,-1) si P2(-2,-1) sunt puncte critice ale lui f,atunci c) P1 nu este punct de extrem, iar P2 este punct de maxim;
17) Punctele critice ale functiei $f(x,y) \in C2(\mathbf{R}2)$ se obtin: $\frac{\partial f}{\partial x} = 0$ $\frac{\partial f}{\partial y} = 0$	18) Functia f(x,y) are derivatele partiale ordinul I de forma: b) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$; d) $H(x,y) = \begin{pmatrix} 2 \ln y & 2y + \frac{2x}{y} \\ 2\left(y + \frac{x}{y}\right) & 2x - \frac{x^2}{y^2} \end{pmatrix}$ c) $\frac{\partial^2 f}{\partial y^2} = 2x - \frac{x^2}{y^2}$ 21) Fie $H(P0) = \begin{pmatrix} 2\alpha & \beta \\ \beta & 1 \end{pmatrix}$ hessiana atasata functiei f(x,y) in	19) Functia $\begin{cases} f: i^{2} \rightarrow i \\ f(x, y) = xy + 1 \end{cases}$ are: c) un singur punct critic; d) hessiana de forma $H(x,y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
20) Functia $\begin{cases} f: i^2 \to i \\ f(x, y) = x + y + 1 \end{cases}$ are: b) nici un punct critic.	21) Fie H(P0)= $\begin{pmatrix} 2\alpha & \beta \\ \beta & 1 \end{pmatrix}$ hessiana atasata functiei f(x,y) in punctul critic P0. Atunci P0: a) este punct de minim local, daca α = β =1; c) nu este punct de extrem local, daca α =1 si β =2.	22) Fie P0 un punct critic al functiei f(x,y) si hessiana corespunzatoare acestuia de forma: $H(P0) = \begin{pmatrix} 3 & 2\alpha \\ 2\alpha & 1 \end{pmatrix}$. Atunci P0 va fi punct de minim pt functia f daca: c) $\alpha = \frac{\sqrt{3}}{2}$; d) $\alpha = \frac{1}{2}$.
23) Hessiana functiei $f(x,y)$ in punctul critic P0, este de forma $H(P0) = \begin{pmatrix} \alpha & -\beta \\ -\beta & -1 \end{pmatrix}$. Atunci P0 este punct de maxim local pentru f daca: Nici una	24) Hessiana functiei $f(x,y)$ in punctul critic P0 are forma: $H(P0) = \begin{pmatrix} \alpha + 2 & -\sqrt{2}\alpha \\ -\sqrt{2}\alpha & \alpha^2 \end{pmatrix}$ P0 de minim local pt f daca: b) $\alpha > -2$ si $\alpha^3 > 0$;	25) Daca functia $f(x,y)$ are derivatele partiale de ordin I de forma $\begin{cases} \frac{\partial f}{\partial x} = x(x+2y-1) \\ \frac{\partial f}{\partial y} = y(2x+y-1) \end{cases}$, atunci f are:
26) Fie H(P0)= $\begin{pmatrix} \alpha & 2-\alpha \\ 2-\alpha & 1 \end{pmatrix}$ hessiana functiei f(x,y) in punctul critic P0. Atunci pentru : b) α =4 \Rightarrow nu se poate preciza natura lui P0; c) α = $\frac{1}{2}$ \Rightarrow P0 nu este punct de extrem local; d) α =3 \Rightarrow P0 este puct de minim local.	27) Hessiana atasata functiei $f(x,y)$ are forma $H(x,y) = \begin{pmatrix} 2y^3 & 6xy^2 \\ 6xy^2 & 6x^2y^2 \end{pmatrix}$; Atunci diferentiala de ordin II a funtiei are forma: c) $d^2 f(x,y) = 2y^3 dx^2 + 12xy^2 dxdy + 6x^2y^2 dy^2$	28) Differentiala de ordin I a functiei $f(x,y)$ are forma $df(x,y)=(x+y)dx+(x+2)dy$. Atunci functia $f(x,y)$; c) are punctul critic unic $P(-2,2)$ 29) Fie $H(x,y)=\begin{pmatrix} 2y & 2x \\ 2x & 0 \end{pmatrix}$ hessiana atasata functiei $f(x,y)$. Atunci diferentiala de ordin II a functiei $f(x,y)$. d) $d^2 f(x,y) = 2ydx^2 + 4xdxdy$

30) Fie H(x,y)= $\begin{pmatrix} 2y & 2x \\ 2x & 0 \end{pmatrix}$ hessiana atasata functiei f(x,y).	$\begin{pmatrix} \alpha-1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	32) Fie P0 punct critic al functiei f(x,y) si
Daca P1(1,-1), P2(-1,1) sunt punctele critice ale lui f, atunci	31) Fie H(P0)= $\begin{bmatrix} 0 & \alpha & 0 \\ 0 & 0 & \alpha+1 \end{bmatrix}$ hessiana corespunzatoare	$d^2 f(P_0) = -2dx^2 + dy^2$. Atunci:
c) P1,P2 nu sunt puncte de extrem local.	functiei $f(x,y,z)$ in punctul critic P0. Atunci:	c) P0 nu este punct de extrem local.
<u> </u>	a) P0 este punct de minim local, daca $\alpha > 1$;	34)) Fie P0 un punct critic al functiei f(x,y,z) si
33) Fie P0 un punct critic al functiei $f(x,y)$ si	1	$d^2 f(P_0) = dx^2 + 4dy^2 + d^2 z$. Atunci:
$d^2 f(P_0) = 4dx^2 - dxdy + dy^2$. Atunci:	c) P0 nu este punct de extrem local, daca $\alpha = \frac{1}{2}$;	a) P0 este punct de minim local.
<u>a)</u> P0 este punct de minim local.	<u>d</u>) P0 este punct de minim local, daca α =-2.	
35) Functia f(x,y) are derivatele partiale de ordin I de forma	36) Diferentiala de ordin I a functiei $f(x,y,z)=xy+y^2z$ are	37) Diferentiala de ordin I a functiei $f(x,y,z)=xyz$ are forma:
$\frac{\partial f}{\partial x} = x^2 - 3x + 2 \text{ respectiv } \frac{\partial f}{\partial y} = y^2 - 1 \text{ Atunci numarul}$	forma: b) $df(x,y,z)=ydx+(x+2yz)dy+y^22z$;	$\underline{\mathbf{c}}$ df(x,y,z)=yzdx+xzdy+xydz;
$\frac{\partial x}{\partial y}$ punctelor critice ale lui f este: d) 4.	$= \underbrace{\text{prin}(x,y,z)}_{\text{prin}} \underbrace{\text{prin}(x,y,z)}_{\text{prin}$	the contract of the contract o
38) Functia oarecare $f(x,y,z)$ satisface conditiile din criteriul	$x^2 + y^2 + x - y$	40) Fie functia f(x,y)=e ^{xy} .Atunci:
lui Schwarz. Atunci au loc egalitatile:	39) Fie functia $f(x,y) = \frac{x^2 + y^2 + x - y}{x + y}$ si	
$\partial^2 f \partial^2 f \partial^2 f$	· · · · · · · · · · · · · · · · · · ·	$\mathbf{c} \cdot \frac{\partial f}{\partial x} = y e^{xy} .$
b) $\frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x}$; d) $\frac{\partial^2 f}{\partial y \partial z} = \frac{\partial^2 f}{\partial z \partial y}$.	$ l_1 = \lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right), \ l_2 = \lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) \text{ limitele} $	
	iterate ale functiei in O(0,0). Atunci:	$\begin{pmatrix} 2 & 0 & -1 \end{pmatrix}$
41) F: C 4: C x+v A4 :	<u>d)</u> 11=1, 12=-1.	42) Fie H(P0)= $\begin{bmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ hessiana atasata functiei
41) Fie functia $f(x,y) = e^{x+y}$. Atunci:	43) Fie functia f(x,y,z)=x+y+z. Atunci: b) functia f nu are puncte critice;	
	c) functia f nu are puncte de extrem local.	f(x,y,z) in punctul critic P0. Atunci:
44) Daca P0(x0,y0) este punct critic pentru functia $f(x,y)$	(2, 0)	c) P0 nu este punct de extrem local. 48) Metoda multiplicarilor lui Lagrange se foloseste la
atunci:	45) Fie H(P0)= $\begin{pmatrix} \alpha & \beta \\ \beta & 0 \end{pmatrix}$ hessiana atasata functiei f(x,y) in	determinarea punctelor de extrem local, in cazul functiilor:
$\int \partial f(\mathbf{p}) \cdot \partial f(\mathbf{p}) = 0$	(,)	<u>d</u>) ale caror variabile sunt supuse la o serie de legaturi.
b) $\frac{\partial f}{\partial x}(P_0) = 0$ si $\frac{\partial f}{\partial y}(P_0) = 0$; c) df(P0)=0	punctul critic P0. Atunci, daca: Nici una	
$(2y^3 - 6xy^{\alpha})$	$(2y 2x \alpha)$	49) Fie functia f(x,y)=x2+y2 cu variabilele satisfacand
46) Fie H(x,y)= $\begin{pmatrix} 2y^3 & 6xy^{\alpha} \\ \beta xy^2 & 6x^2y \end{pmatrix}$ matricea hessiana atasata	47) Fie H(x,y,z)= βx 0 3z ² hessiana atasata	legatura x+y=1. Atunci functia lui Lagrange atasata are
functiei $f(x,y)$. Atunci, daca functia $f(x,y)$ satisface criteriul	47) Fie H(x,y,z)= $\begin{pmatrix} 2y & 2x & \alpha \\ \beta x & 0 & 3z^2 \\ 0 & \gamma z^2 & 6yz \end{pmatrix}$ hessiana atasata	expresia:
lui Schwarz avem:	functiei $f(x,y,z)=x^2y+yz^3$. Decoarece f satisface criteriul	$c) L(x,y) = x2 + y2 + \lambda (x + y - 1)$
$\underline{\mathbf{a}}$ $\alpha = 3, \beta = 6;$	lui Schwarz avem: $\underline{\mathbf{c}}$) $\alpha = 0$, $\beta = 2$, $\gamma = 3$.	
50) Criteriul lui Schwarz afirma ca functia f(x,y) are:	51) Care din urmatoarele afirmatii sunt adevarate:	53) O functie $f: \mathbf{i}^n \to \mathbf{i}$ are intotdeauna:
c) derivatele partiale mixte de ordinul 2 egale.	b) orice punct de extrem local este punct critic;	d) numarul punctelor critice si de extrem nu depinde de n.
	c) in un punct critic derivatele partiale de ordinul I sunt nule	uj namarui puncteioi eritice si de extrem nu depinde de n.
52) O functie $f: \mathbf{i}^n \to \mathbf{i}$ are intotdeauna:	<u>d)</u> punctele de ectrem local se gasesc printre pct. critice. 54) Hessiana atasata functiei oarecare $f: \mathbf{i} \to \mathbf{i}$:	55) Punctul P0∈ R ⁿ este punct critic pentru functia
a) n derivate partiale de ordinul I;	a) este o matrice patratica de ordinul n; $\rightarrow 1$.	$f: \mathbf{i}^n \to \mathbf{i}$ daca derivatele partiale:
d) n2 derivate partiale de ordinul II.	d) este formata cu derivatele partiale de ordin II ale functiei	c) de ordin I se anuleaza in P0.
56) Fie $f: i^2 \rightarrow i$. Criteriul lui Schwarz afirma ca:	57) Criteriul luii Schwarz implica faptul ca functia	58) O functie oarecare $f: \mathbf{i}^n \to \mathbf{i}$ are:
and the second s	$f: \mathbf{i}^n \to \mathbf{i}$ are:	<u>d)</u> numarul punctelor critice si de extrem nu depinde de n.
	a) matricea hessiana simetrica;	1

a) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$; d) deriv. part.de ordin II - continue	b) derivatele partiale de ordinul II mixte, egale.	
 59) Daca punctul P0 este punct de maxim pentru functia f, atunci: b) d2f(P0) este negativ definita d) P0 este punct critic pentru f. 	60) Daca punctul P0 este punct de minim pentru functia f, atunci: a) d2f(P0) este pozitiv definita; d) P0 este punct critic pentru functia f.	61) Daca Δ_1, Δ_2 sunt minorii diagonali ai hessienei H(P0), atunci punctul critic P0(x0,y0) este punct de minim daca: a) $\Delta_1 > 0, \Delta_2 > 0$.
62) Daca Δ_1, Δ_2 sunt minorii diagonali ai hessienei H(P0), atunci punctul critic P0(x0,y0) este punct de maxim daca: d) $\Delta_1 < 0, \Delta_2 > 0$;	63) Daca $\Delta_1, \Delta_2, \Delta_3$ sunt minorii diagonali ai hessienei H(P0), atunci punctul critic P0(x0,y0,z0) este punct de maxim daca: b) $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0$.	64)Daca $\Delta_1, \Delta_2, \Delta_3$ sunt minorii diagonali ai hessienei H(P0), atunci punctul critic P0(x0,y0,z0) este punct de minim daca: a) $\Delta_1 > 0, \Delta_2 > 0, \Delta_3 > 0$
 65) O functie oarecare f(x,y) are: b) 2 derivate partiale de ordinul I si 4 derivate partiale de ordinul II; d) 2 derivate partiale de ordinul II mixte (dreptunghiulare). 	66) O functie oarecare f(x,y,z) are: (a) 3 derivate partiale de ordinul I si 9 derivate partiale de ordinul II; (b) 6 derivate partiale de ordinul 2 mixte (dreptunghiulare).	67) Punctele critice ale functiei $f(x,y)$; $ \frac{\partial f}{\partial y} = 0 $ $ \frac{\partial f}{\partial y} = 0 $ $ \frac{\partial f}{\partial y} = 0 $