Chapter 2

Introduction to Logic Circuits

Contents

- Basic Logic Gates
- Boolean Algebra
- Canonical and Standard Forms
- Synthesis Using AND, OR and NOT Gates
- NAND and NOR Logic Networks
- Design examples

Logic Gates

- Basic Logic Gates
 - AND
 - **OR**
 - NOT
- Related Logic Gates
 - NAND (AND-NOT)
 - NOR (OR-NOT)
 - X-OR (Combination of AND, OR and NOT)
 - X-NOR (Equivalence)

OOO AND

- X AND Y.
 - X & Y are propositions.
 - ▶ A proposition can be either TRUE or FLASE.
- (Today is Tuesday) AND (Today is sunny).

AND in Logic

- AND may have many inputs.
- AND produces the value TRUE if all the inputs are TRUE.
- So, with the inputs: TANDT output is: T

T AND F output is: F

F AND T output is: F

F AND F output is: F

(Just like in the real world.)

TRUE = HIGH = ON = '1'

The AND Gate

- ▶ The gate is a circuit that performs a basic logic operation.
- Inputs are on the left, outputs are on the right of a logic symbol.
- The AND gate has two or more inputs and a single output.

The AND Gate

- An AND gate produces a HIGH output only when all the inputs are HIGH.
- ▶ A truth table is a convenient way to write down the definition of a logic operation.

Inp	Output	
Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for a 2-input AND gate

The AND Gate

Example of AND gate operation with a timing diagram showing input and output relationships

The AND Gate

- The logical AND function is equivalent to the multiplication in Boolean algebra.
- If the input variable is A, B and the output variable is X, then, for an AND gate,

$$X = AB \text{ or } X = A \cdot B$$

The OR Gate

Produces a HIGH on the output when any of the inputs is HIGH.

The OR Gate

Inp	Output	
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table for a 2-input OR gate

O O O The OR Gate in Boolean algebra O O

- The logical OR function is equivalent to the addition in Boolean algebra.
- X = A + B

Inverter

In Boolean algebra, for an inverter,

$$X = \overline{A}$$

$$X = A'$$

Can be read "Not A", "A complement", "A prime", "A bar"

Inverter

Input pulse

Output pulse

Timing Diagram

Digital Logic Gates

		-4-	,	
	x —	0	0	1
NAND	$V \longrightarrow F = (xy)'$	0	1	1
	, —	1	0	1
		1	1	0
		ж	у	E
	x —	0	0	1
NOR	$y \longrightarrow F = (x + y)'$	0	1	0
	,—	1	0	0
		1	1	0
		х	у	F
Exclusive-OR	V = V V' + V' V'	0	0	0
(XOR)	$F = xy' + x'y$ $= x \oplus y$	0	1	1
(AOK)	$y \longrightarrow x \oplus y$	1	0	1
	Mod 2 addition	1	1	0
		Х	у	F
Exclusive-NOR	F = xy + x'y'	0	0	1
or	$F = xy + x'y'$ $= (x \oplus y)'$	0	1	0
equivalence	, 1	1	0	0
		1	1	1

BOOLEAN ALGEBRA

OOO Boolean algebra

- 000
- In the 1850s, George Boole developed a mathematical system for formulating logic statements with symbols.
- Logic problems can be written and solved like an ordinary algebra.

Boolean Constants and Variables

- In Boolean algebra, there are only two constants.
 - True and False
 - ▶ 1 and o

Boolean <u>variables</u> are variables that store values that are Boolean constants.

O Properties of Boolean Algebra

- Duality
 - Interchange OR and AND operators
 - Replace 1's by o's and o's by 1's

e.g.
$$x + 0 = x \leftrightarrow x \cdot 1 = x$$

- Operator precedence
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR

O Properties of Boolean Algebra

Basic OR, AND operation

$$x + 0 = x \leftrightarrow x \cdot 1 = x$$

$$x + x' = 1 \leftrightarrow x \cdot x' = 0$$

$$x + x = x \quad \leftrightarrow \quad x \cdot x = x$$

$$x + 1 = 1 \longleftrightarrow x \cdot 0 = 0$$

Involution

$$(x')' = x$$

Commutative

$$x + y = y + x \leftrightarrow xy = yx$$

Associative

O O Properties of Boolean Algebra O O

Distributive

$$x(y+z) = xy + xz \longleftrightarrow x + yz = (x+y)(x+z)$$

DeMorgan

$$(x + y)' = x'y' \leftrightarrow (xy)' = x' + y' = x(1 + y + z) + yz$$
NOR
NAND
$$= x + xz + xy + yz = x(1 + y + z) + yz = x + yz$$

RHS = xx + xz + xy + yz

Absorption

$$x + xy = x \leftrightarrow x(x + y) = x$$

$$x(1+y) \qquad xx + xy = x + xy$$

O O Algebraic Manipulation

000

 Ex 2-1) Simplify the following Boolean functions to a minimum number of literals

1.
$$x(x' + y) = xx' + xy = 0 + xy = xy$$
 $xx' = 0$
2. $x + x'y = (x + x')(x + y)$ $x + yz = (x + y)(x + z)$ $x + x' = 1$
3. $(x + y)(x + y') = xx + xy + xy' + yy'$ $xx = x$ $x + xy + xy' + yy'$ $xx = x$ $x + xy + xy' + yy'$ $xx = x$ $x + xy + xy' + yy'$ $xx = x$ $x + xy + xy' + yy'$ $xx = x$ $x + xy + xy' + x$

function 4

Algebraic Manipulation

DeMorgan Law

$$(A + B + C)' = (A + x)'$$

$$= A'x'$$

$$= A'(B + C)'$$

$$= A'(B'C')$$

$$= A'B'C'$$

Generally,

$$(A + B + C + D + \cdots F)' = A'B'C'D' \cdots F'$$

$$(ABCD \cdots F)' = A' + B' + C' + D' + \cdots + F'$$

OOO Complement of a Function OOO

◆Ex 2-2) Find the complement of the functions $F_1 = x'yz' + x'y'z$, $F_2 = x(y'z' + yz)$ Sol.)

DeMorgan's Law
$$(x + y)' = x'y'$$

$$(xy)' = x' + y'$$

$$F'_{1} = (x'yz' + x'y'z)'$$

$$= (x'yz')'(x'y'z)'$$

$$= (x + y' + z)(x + y + z')$$

$$F'_{2} = [x(y'z' + yz)]'$$

$$= x' + (y'z' + yz)'$$

$$= x' + (y'z')'(yz)'$$

$$= x' + (y + z)(y' + z')$$

O O Complement of a Function O O

- Ex 2-3) Find the complement of the functions F1 And F2 Ex 2-2 by taking their duals and complementing each literal.
 - Find its dual (AND↔OR, 1↔0)
 Complement of each literal

$$F_1 = x'yz' + x'y'z$$

The dual of F_1 is (x' + y + z')(x' + y' + z)

Complement of each literal:

$$(x + y' + z)(x + y + z') = F_1'$$

$$F_2 = x(y'z' + yz)$$

The dual of F_2 is x + (y' + z')(y + z)

Complement of of each literal:

$$x' + (y + z)(y' + z') = F_2'$$

Minimization by Boolean Functions

Table 2-2Truth Tables for F₁ and F₂

x	y	Z	F ₁	F ₂
0	0	. 0	0	0
0	0	1	1 (1)	1 (1)
0	1	0	0	0
0	1	1	0	1 (2)
1	0	O	1(2)	1 (3)
1	0	1	1(3)	1 (4)
1	1	0	1(4)	0
1	1	1	1(5)	0

$$F_1 = x'y'z + xy'z' + xy'z + xyz' + xyz$$
(1) (2) (3) (4) (5)

Minimization by Boolean Functions

$$F_{1} = x'y'z + xy'z' + xy'z + xyz' + xyz' + xyz$$

$$= y'z(x' + x) + xy'(z' + z) + xy(z' + z)$$

$$= y'z + xy' + xy$$

$$= y'z + xy' + xy$$

$$= x(y' + y) + y'z = x + y'z$$
(1)+(3),(2)+(4),(4)+(5)
$$x + x = x$$

$$x + x' = 1$$

Fig. 2-1 Gate implementation of $F_1 = x + y'z$

Minimization by Boolean Functions

Fig. 2-2 Implementation of Boolean function F_2 with gates

(b) $F_2 = xy' + x'z$

CANONICAL AND STANDARD FORMS

Canonical Forms

Minterms and Maxterms

Table 2-3 *Minterms and Maxterms for Three Binary Variables*

		Minterms		Maxterms		
X	у	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1 1 1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

OOO Canonical SOP/POS Forms OOO

Table 2-4
Functions of Three Variables

X	У	Z	Function f ₁	Function f ₂
0	0	0	e capan o e de es	
0	0	int Jaids	may sali fi pamataos	0
0	1	0	0	0 100
0	1	1	0	office Inix proce
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	21	he 7 no point and	isoth adjizzers.

Canonical sum of product (SOP)

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

Canonical product of sum (POS)

$$f_1 = (x + y + z)(x + y' + z)(x' + y + z')(x' + y' + z) = M_0 M_2 M_3 M_5 M_6$$

$$f_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)(x' + y + z) = M_0 M_1 M_2 M_4$$

Canonical SOP Forms

Conversion from standard SOP to canonical SOP form

Ex 2-4) Express the Boolean function F=A+B'C in a sum of minterms.

$$A = A(B + B') = AB + AB'$$

$$= AB(C + C') + AB'(C + C')$$

$$= ABC + ABC' + AB'C + AB'C'$$

$$B'C = B'C(A + A') = AB'C + A'B'C$$

$$F = A + B'C$$

$$= ABC + ABC' + AB'C + AB'C'$$

$$+AB'C + AB'C'$$

$$= m_1 + m_4 + m_5 + m_6 + m_7$$

$$= \sum (1,4,5,6,7)$$

A	В	C	F
0	0	0	0
0	0	1	1
0	or harps	0	0
0	0.01	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Canonical POS Forms

Conversion from standard SOP to canonical POS form

• Ex 2-5) Express the Boolean function F = xy + x'z in a product of maxterm form.

F =
$$xy + x'z = (xy + x')(xy + z)$$

$$= (x' + x)(y + x')(x + z)(y + z)xy + x' = x' + xy = (x' + x)(x' + y)$$

$$= (x' + y)(x + z)(y + z)$$

$$= (x' + y)(x + z)(y + z)$$

$$= (x' + y)(x + z)(y + z)$$

$$xx' = 0, x + 0 = x let A = x' + y$$

$$x' + y = x' + y + zz' = (x' + y + z)(x' + y + z') = M_4 M_5$$

$$x + z = x + z + yy' = (x + y + z)(x + y' + z) = M_0 M_2$$

$$y + z = y + z + xx' = (x + y + z)(x' + y + z) = M_0 M_4$$

$$F = M_0 M_2 M_4 M_5 = \prod (0, 2, 4, 5)$$

O O Conversion between Canonical Forms O O

Relation between SOP and POS

$$m_i = M'_i$$
 and $m'_i = M_i$

$$F(x, y, z) = \sum (1, 3, 6, 7)$$

$$F'(x, y, z) = \sum (0, 2, 4, 5)$$

$$= m_0 + m_2 + m_4 + m_5$$

$$F = (F')' = (m_0 + m_2 + m_4 + m_5)'$$

$$= m'_0 m'_2 m'_4 m'_5 = M_0 M_2 M_4 M_5$$

Ex)
$$F = xy + xz'$$

= $\sum (1,3,6,7)$
= $\sum (0,2,4,5)$

Table 2-6 *Truth Table for F* = xy + x'z

NAME OF TAXABLE PARTY.				
	x	y	z	F
	0	0	0	0
	0	0	1	1
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	0
	1	1	0	1
	1	1	1	1

Standard SOP/POS Forms

- 000
- ♦ SOP (Sum of product): $F_1(x, y, z) = y' + xy + x'yz'$
- \bullet POS (Product of sum): $F_2(x, y, z) = x(y' + z)(x' + y + z)$

Fig. 2-3 Two-level implementation

• Ex) $F_3 = AB + C(D + E) = AB + CD + CE$

SYNTHESIS USING AND, OR AND NOT GATES

O Synthesis Using AND, OR and NOT Gates O O

x_1	x_2	$f(x_1,x_2)$	$(x_2) = m_0 + m_1 + m_3$ = $x'_1 x'_2 + x'_1 x_2 + x_1 x_2$ = $x'_1 (x'_2 + x_2) + x_2 (x'_1 + x_1)$
0	0	$1 m_0 = x_1' x_2'$	$= x_1' + x_2$ $= M_2$
0	1	$1 m_1 = x_1'x_2$	-
1	0	$0 M_2 = x_1 + x_2'$	
1	$1 \mid$	$1 m_3 = x_1 x_2$	

Figure 2.15. A function to be synthesized.

Two implementations of a function

(a) Canonical sum-of-products

(b) Minimal-cost realization

00

Three Variable Function

Row number	$ig x_1$	x_2	x_3	$f(x_1,x_2,x_3)$
0 1 2 3 4 5 6 7	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array}$	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$0 f = x'_1 x'_2 x_3 + x_1 x'_2 x'_3 + x_1 x'_2 x_3 + x_1 x_2 x_3$ $1 = x'_2 x_3 (x'_1 + x'_1) + x_1 x_3 (x'_2 + x_2)$ $0 = x'_2 x_3 + x_1 x_3$ $0 f = (x_1 + x_2 + x_3)(x_1 + x'_2 + x_3)$ $1 (x_1 + x'_2 + x'_3)(x'_1 + x'_2 + x'_3)$ $1 = \{(x_1 + x_3) + x_2 x'_2\}$ $1 (x'_2 + x'_3) + x_1 x'_1$ $0 = (x_1 + x_3) (x'_2 + x'_3)$

Two realizations of a function

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

NAND AND NOR LOGIC NETWORKS

O NAND and NOR Logic Networks

(a) NAND gates

$$x_1$$
 x_2
 $x_1 + x_2$

$$x_1$$
 x_2
 x_1
 x_2
 x_1
 x_2
 x_3
 x_4
 x_4
 x_5

(b) NOR gates

DeMorgan's theorem

$$x_1 \longrightarrow x_2 \longrightarrow x_2$$

Basic Gates Using NAND

00

NOT

$$x$$
 — \bigcirc

$$f = (xx)' = x'$$

AND
$$x_1 = (x_1 x_2)'$$
 $f = (x_1 x_2)'$

Basic Gates Using NOR

00

NOT x

$$x$$
 — \bigcirc

$$f = (xx)' = x'$$

OR
$$x_1 \longrightarrow f = \{(x_1 + x_2)'\}' = x_1 + x_2$$

Using NAND gates to implement a sum-of-products

Using NOR gates to implement a product-of sums

NOR-gate realization of the function

(b) NOR implementation

NAND-gate realization of the function

DESIGN EXAMPLES

O Three-way Light Control

<i>x</i> ₁ —		
x_2 —	Digital Logic	 f
x_3 —		

x_1	x_2	x_3	$\int f$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	$1 \mid$	$\mid 1 \mid$

SOP Implementation

(a) Sum-of-products realization

00

POS Implementation

$$f = (x_1 + x_2 + x_3)(x_1 + x_2' + x_3')(x_1' + x_2 + x_3')(x_1' + x_2' + x_3)$$

(b) Product-of-sums realization

Multiplexer Circuit

s X_1 X_2	$f(s, x_1, x_2)$
0 0 0 0 0 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0 1 0 0 1 1	$ \begin{vmatrix} c c c c c c c c c c c c c c c c c c $
1 0 0 1 0 1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (3) $\begin{bmatrix} x_1 \end{bmatrix}$
1 1 0 1 1 1	$ \begin{array}{c c} 0\\ 1 \end{array} $

Truth Table

(a)

(b) Circuit

00

Implementation of a multiplexer

(c) Graphical symbol

$$f = s'x_1 + sx_2$$

$$f = \begin{cases} x_1 & s = 0 \\ x_2 & s = 1 \end{cases}$$

5	$f(s, x_1, x_2)$
0	<i>X</i> ₁
1	<i>X</i> ₂

(d) More compact truth-table representation

Summary

- Basic gates including AND, OR, NOT are investigated in terms of the truth table, Boolean representation and the timing diagram.
- Several properties of Boolean algebra are found different from ordinary algebra.
- All logic function can be represented by canonical SOP/POS forms based on the truth table.
- Canonical forms can be converted to the minimized standard form by Boolean algebra.
- Instead of AND, OR and NOT gates, any logic functions can be implemented by only NOR or NAND