ANNÉE UNIVERSITAIRE 2020/2021 1 ÈRE ANNÉE MI ALGEBRE I

SÉRIE TD N≗2

ENSEMBLES ET APPLICATIONS

Exercice1:

Soit l'ensemble $A = \{n \in \mathbb{Z}/-5 \le n \le 7\}$.

Et soient *B* et *C* deux sous-ensembles de *A* telles que :

$$B = \{n \in A/\exists k \in \mathbb{Z}; \ n = 2k + 1\} \quad \text{ et } \quad C = \{n \in A/\ n \ge 0\}.$$

- 1- Déterminer les ensembles A, B et C.
- 2- Déterminer les sous-ensembles -C, C-B, $C\cap B$, $C\cup B$, $C\Delta B$, C_AB , C_AC , $C_A(B\cup C)$, $\mathcal{P}(C_A(B\cup C))$, ensuite et parmi ces sous-ensembles, trouver une partition de l'ensemble A.

Exercice 2:

On considère les deux ensembles : $A = \left\{ \frac{\pi}{3} + 2 \frac{k\pi}{5} / k \in \mathbb{Z} \right\}$ et $B = \left\{ \frac{\pi}{6} + 2 \frac{k\pi}{5} / k \in \mathbb{Z} \right\}$.

- Démonter que : $A \cap B = \emptyset$.

Exercice 3:

Soient F et G deux sous-ensembles d'un ensemble E. Démonter les propositions suivantes :

$$F \subset G \Leftrightarrow \mathcal{P}(F) \subset \mathcal{P}(G)$$

$$\mathcal{P}(F \cap G) \subset \mathcal{P}(F) \cap \mathcal{P}(G)$$

$$\mathcal{P}(F) \cup \mathcal{P}(G) \subset \mathcal{P}(F \cup G)$$

$$\mathcal{P}(F \cup G) \subset \mathcal{P}(F) \cup \mathcal{P}(G) \Rightarrow (F \subset G \vee G \subset F)$$

Exercice 4:

Soient A et B deux sous-ensembles d'un ensemble E. Démonter les propositions suivantes :

$$card(C_E A) = card(E) - card(A)$$

 $card(A - B) = card(A) - card(A \cap B)$
 $card(A \cup B) = card(A) + card(B) - card(A \cap B)$
 $card(A \triangle B) = card(A) + card(B) - 2card(A \cap B)$

Exercice 5:

Soit f l'application de l'ensemble $\{1,2,3,4,5\}$ dans lui-même définie par :

$$f(1) = 4$$
, $f(2) = 1$, $f(3) = 2$, $f(4) = f(5) = 5$

- -Déterminer f(A) lorsque : $A = \{1,2\}, A = \{1,3,4\}, A = \{1,2,5\}.$
- -Déterminer $f^{-1}(A)$ lorsque : $A = \{2\}, A = \{1,5\}, A = \{3\}, A = \{3,4\}.$

Soit $g: \mathbb{R} \to \mathbb{R}$ définie par $: g(x) = x^2$.

- -Déterminer les ensembles : g([-3,1]), g([-2,-1]), $g([-3,1] \cup [1,4])$.
- -Déterminer les ensembles : $g^{-1}([1, +\infty[), g^{-1}([-4,4]), g^{-1}(]-\infty, 2] \cup [4,7])$.

Exercice 6:

Soit l'application $f: E \to F$ telles que : $E = \{1,2,3,4\}$ et $F = \{0,1,3,5,7,10\}$ définie par son graphe $G(f) = \{(1,3), (2,5), (3,5), (4,0)\}$.

- -Déterminer les ensembles : f(E), $f(\{1,2,3\})$, $f(\{4\})$.
- -Déterminer les ensembles : $f^{-1}(\{5\})$, $f^{-1}(\{0,1,3\})$, $f^{-1}(\{1,10\})$.

Exercice 7:

Soit $f: E \to F$ une application, avec E et F sont deux ensembles non vides. Et soient A et B deux parties de E. Démontrer que :

$$A \subset B \Longrightarrow f(A) \subset f(B)$$

 $f(A \cap B) \subset f(A) \cap f(B)$
 $f(A \cup B) = f(A) \cup f(B)$
 $f \text{ est injective } \Longrightarrow f(A \cap B) = f(A) \cap f(B)$
 $f \text{ est bijective } \Longleftrightarrow f(C_E A) = C_F f(A)$

Exercice 8:

Soit $f: E \to F$ une application, avec E et F sont deux ensembles non vides. Et soient A et B deux parties de F. Démontrer que :

$$A \subset B \Longrightarrow f^{-1}(A) \subset f^{-1}(B)$$

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

$$f^{-1}(C_F A) = C_E f^{-1}(A)$$

Exercice 9:

Soient $f: E \to F$ et Soit $g: F \to G$ deux applications, démontrer les implications suivantes :

$$g \circ f$$
 injective $\Rightarrow f$ injective $g \circ f$ surjective $\Rightarrow g$ surjective $\Rightarrow g$ surjective $\Rightarrow g$ injective $\Rightarrow g$ surjective

Exercice 10:

Soient les deux applications $f: \mathbb{N} \to \mathbb{N}$ et $g: \mathbb{N} \to \mathbb{N}$ définis par :

$$\forall k \in \mathbb{N}, \quad f(k) = 2k$$

$$g(k) = \begin{cases} \frac{k}{2} & \text{si } k \text{ est pair} \\ \frac{k-1}{2} & \text{si } k \text{ est impair} \end{cases}$$

- 1- Etudier l'injectivité, la surjectivité, la bijectivité de f et g.
- 2- Déterminer les applications $f \circ g$ et $g \circ f$, ensuite étudier leur injectivité, surjectivité et bijectivité.

Exercice 11:

Soient l'application $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$f(x) = \frac{2x}{1 + x^2}$$

f est elle injective ? surjective ?

- Montrer que $f(\mathbb{R}) = [-1,1]$.
- Montrer que la restriction $g: [-1,1] \rightarrow [-1,1]$ est une bijection.
- Retrouver ce résultat en étudiant les variations de f.