Table 1: The Δ of model accuracy for creating significant improvements on tuning quality under sequential model-based tuners. $+\Delta$ and $-\Delta$ denote the improvements in tuning quality are the results of enhanced and worsened accuracy, respectively. M&P, R&P, M&E, and R&Erespectively denote the combined metric set of MAPE-performance, $\mu\text{RD-performance}$, MAPE-efficiency, and $\mu\text{RD-efficiency}$. "-" means no samples have reached that accuracy.

	MAPE		$\mu \mathrm{RD}$	
Range	$M\&P+\Delta$	$M\&P-\Delta$	$R\&P+\Delta$	$R\&P-\Delta$
>100	68.0 ± 57.6	55.6 ± 50.2	-	-
90 – 100	35.1 ± 25.0	27.3 ± 17.4	-	-
80-90	$38.3 {\pm} 23.2$	$15.3 {\pm} 12.6$	-	-
70 - 80	$30.5{\pm}18.2$	25.3 ± 20.0	-	-
60 - 70	$22.6 {\pm} 13.0$	$23.5 {\pm} 21.5$	-	-
50 – 60	$21.4 {\pm} 15.1$	20.3 ± 11.6	_	-
40 – 50	$23.5 {\pm} 11.7$	$9.2 {\pm} 6.8$	-	-
30 – 40	13.0 ± 7.8	$8.2 {\pm} 4.7$	$7.8 {\pm} 7.5$	$6.6 {\pm} 6.9$
20 – 30	$9.3 {\pm} 7.2$	4.7 ± 5.6	$4.8 {\pm} 5.4$	4.0 ± 4.3
10 - 20	$6.1 {\pm} 4.8$	$4.2 {\pm} 4.8$	1.9 ± 2.6	$1.4 {\pm} 1.5$
0 - 10	$0.7{\pm}1.1$	$0.6 {\pm} 0.9$	$0.6 {\pm} 0.7$	1.1 ± 0.9

	MAPE		$\mu \mathrm{RD}$	
Range	$M\&E+\Delta$	$M\&E-\Delta$	$R\&E+\Delta$	$R\&E-\Delta$
>100	60.1 ± 55.6	56.8 ± 50.8	-	-
90 – 100	$41.3 {\pm} 17.6$	27.9 ± 18.3	-	-
80-90	$36.8 {\pm} 21.1$	39.4 ± 24.3	-	-
70 - 80	$30.5 {\pm} 17.7$	$39.5{\pm}23.6$	-	-
60 - 70	$25.8 {\pm} 16.5$	25.0 ± 21.0	-	-
50 – 60	$23.7 {\pm} 16.1$	$20.1 {\pm} 15.3$	-	-
40 – 50	$18.9 {\pm} 13.1$	$15.8 {\pm} 11.5$	-	-
30 – 40	$13.4 {\pm} 9.9$	10.7 ± 7.8	8.3 ± 8.3	$6.0 {\pm} 6.3$
20 – 30	7.7 ± 6.8	$7.0 {\pm} 7.4$	$4.7 {\pm} 5.0$	$4.2 {\pm} 4.5$
10 - 20	$5.5 {\pm} 4.6$	$3.4 {\pm} 2.8$	$1.8 {\pm} 2.2$	1.5 ± 2.0
0 - 10	$0.8 {\pm} 1.4$	$0.8 {\pm} 1.2$	$1.0 {\pm} 0.8$	1.1 ± 0.9

Table 2: The Δ of model accuracy for creating significant improvements on tuning quality under batch model-based tuners. 0.0 ± 0.0 means we found no samples that can significantly improve the tuning for a range. The formats are the same as Table 1.

	MAPE		$\mu \mathrm{RD}$	
Range	$\overline{\text{M\&P+}\Delta}$	$M\&P-\Delta$	$R\&P+\Delta$	$R\&P-\Delta$
>100	72.6 ± 39.1	47.0 ± 29.1	_	
90 - 100	$80.6 {\pm} 18.3$	$39.7 {\pm} 5.0$	-	-
80-90	66.5 ± 13.3	31.1 ± 17.9	-	-
70 - 80	11.4 ± 9.0	0.0 ± 0.0	-	-
60 - 70	$41.5 {\pm} 10.2$	0.0 ± 0.0	-	-
50 – 60	$28.9 {\pm} 18.3$	0.0 ± 0.0	-	-
40 - 50	33.2 ± 13.7	13.7 ± 13.8	-	_
30 – 40	23.2 ± 9.7	18.0 ± 7.4	11.7 ± 11.2	12.0 ± 9.4
20 - 30	14.9 ± 7.0	$8.5 {\pm} 6.6$	10.0 ± 7.6	8.0 ± 8.9
10 - 20	$9.1 {\pm} 4.4$	$8.2 {\pm} 4.0$	4.8 ± 3.9	2.9 ± 2.9
0-10	$0.8 {\pm} 1.3$	$0.7{\pm}1.0$	$1.3 {\pm} 1.4$	$0.9{\pm}1.3$

	MAPE		$\mu \mathrm{RD}$	
Range	$\overline{\text{M\&E+}\Delta}$	$M\&E-\Delta$	$R\&E+\Delta$	$R\&E-\Delta$
>100	85.9±45.5	48.8±32.1	-	_
90 - 100	77.4 ± 25.0	87.9 ± 12.7	-	-
80-90	$68.2 {\pm} 14.8$	64.2 ± 20.8	-	-
70 - 80	50.6 ± 27.5	0.0 ± 0.0	-	-
60 - 70	$46.4{\pm}14.2$	$49.9 {\pm} 0.0$	-	-
50 – 60	$31.9 {\pm} 16.6$	20.5 ± 3.8	-	-
40 – 50	31.4 ± 13.9	$22.7 {\pm} 14.4$	-	-
30 – 40	$23.1 {\pm} 10.1$	$14.8 {\pm} 9.1$	$14.8 {\pm} 10.5$	10.7 ± 9.7
20 - 30	15.6 ± 8.6	$15.5 {\pm} 9.2$	10.6 ± 7.1	8.0 ± 7.0
10 - 20	$10.1 {\pm} 5.0$	$9.7 {\pm} 4.5$	$6.3 {\pm} 4.6$	$3.7 {\pm} 2.9$
0 - 10	1.1 ± 1.4	$1.1{\pm}1.7$	$1.6 {\pm} 1.0$	$0.6 {\pm} 0.7$