CS F364 Design & Analysis of Algorithms

ALGORITHMS - COMPLEXITY

-Reductions

- Transitivity of Reduction
 - Polynomial-Time Reductions and Implications
 - Example

PROBLEMS - REDUCTION

- Reduction is a mechanism for capturing the relation "at least as hard as" between problems.
 - "at least as hard as" refers to "at least as hard to solve as"
 - o Typically this would mean "requires at least as much time to solve as" or "requires at least as much space to solve as".

Openition:

- Let π_1 and π_2 be decision problems with input sets $I(\pi_1)$ and $I(\pi_2)$ respectively.
- We say, π_1 reduces to π_2 ,
 - oif there is a function $f: I(\pi_1) \longrightarrow I(\pi_2)$ such that
 - o for every $x \in I(\pi_1)$,
 - $\pi_1(x) = 1$ if and only if $\pi_2(f(x)) = 1$

PROBLEMS - REDUCTION

- We are usually interested in efficient reductions:
 - i.e. the function mapping inputs to inputs should be "efficiently" computable
 - i.e. f should be computable in polynomial time.
- Thus we say π_1 (polynomially) reduces to π_2
 - oif there is a polynomial-time computable function $f: I(\pi_1) \dashrightarrow I(\pi_2)$ such that
 - o for every $x \in I(\pi_1)$,
 - $\pi_1(x) = 1$ if and only if $\pi_2(f(x)) = 1$
- We use $\Pi_1 \preceq \Pi_2$
 - to denote that π_1 (polynomially) reduces to π_2

PROBLEMS - REDUCTION - EXAMPLE

- Problem Definition: Hamiltonian Cycle (HAM)
 - Given a graph G= (V,E) is there a simple cycle including all vertices in V?
- o Claim: **HAM** ≾ **TSP**_d
 - where TSP_d is the decision version of TSP: i.e. is there a tour of length < k, for some +ve k?
- Implication: **TSP** is as hard as **HAM**.

PROBLEMS - REDUCTION - EXAMPLE

- Reduction:
 - Given a graph G= (V,E)
 - Construct a graph G' = (V, V x V, w) such that
 - o w(u,v)=1 if $(u,v) \in E$
 - o =2 otherwise
- o Verify:
 - G has a Hamiltonian cycle iff
 there is a tour in G' (as in TSP) of length <= |V|.

REDUCTIONS: TRANSITIVITY

- Transitivity of Reduction:
 - If $\pi_1 \lesssim \pi_2$ and $\pi_2 \lesssim \pi_3$ then $\pi_1 \lesssim \pi_3$
- Proof: Construct a composite function from $I(\pi_1)$ to $I(\pi_3)$ given mappings
 - o $f_{12}: I(\pi_1) --> I(\pi_2)$ and $f_{23}: I(\pi_2) --> I(\pi_3)$
- o Example:
 - Definition VERTEX COVER:
 - o Given a graph G = (V,E) a vertex cover for G is a subset S of V, such that for any (u1,u2) in E, u1 is in S OR u2 is in S.
 - Problem VERTEX _COVER_d:
 - o Given a graph G = (V,E) and a positive integer k < |V|, is there a vertex cover for G of size <= k?