ALGORITMI E STRUTTURE DATI

Prof. Manuela Montangero

A.A. 2021/22

Algoritmi su stringhe:

String matching

"E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia."

Stringhe

Alfabeto: insieme di caratteri finito $\Sigma = \{c_1, c_2, ..., c_m\}$ Stringa su alfabeto Σ : sequenza lineare di elementi di Σ , $\alpha = s_0 s_1 s_2 ... s_n$, tale che $\forall i = 0, ..., n \ s_i \in \Sigma$ Insieme di stringhe definite su Σ : Σ^* (stella di Kleene e monodie l

Insieme di stringhe definite su Σ : Σ^* (stella di Kleene o monodie libero) insieme di tutte le stringhe di lunghezza finita sull'alfabeto Σ

Esempi:

- $\Sigma = \{0,1\}$, un stringa $\alpha = 1001010010$ è un numero binario, $\Sigma^* =$ insieme di tutti i numeri binari (di qualunque lunghezza)
- $\Sigma = \{a, c, g, t\}$, un stringa $\alpha = acctggtgca$ è una porzione di DNA
- $\Sigma = \{a, b, c, d, e, f, g, h, i, l, m, n, o, p, q, r, s, t, u, v, z\}$, una stringa $\alpha = algortimi$ è una parola contenente lettere dell'alfabeto italiano

Stringhe

DEFINIZIONI:

- ullet Stringa vuota (non ha caratteri): ϵ
- Accesso carattere i-esimo di una stringa α : $\alpha[i]$ o α_i (iniziamo a contare da indice zero)

$$\alpha = ALGORITMI \quad \alpha[3] = O$$

• Lunghezza di una stringa α : $|\alpha|$ = numero di caratteri di α ($|\epsilon|$ = 0)

$$\alpha = ALGORITMI \quad |\alpha| = 9$$

• β è una sottostringa di α se esistono due stringhe γ e β (eventualemente vuote) tale che $\alpha=\gamma\beta\delta$ ($\alpha[i\mathinner{.\,.} j]=\alpha[i]\alpha[i+1]\ldots\alpha[j]=\alpha_{i\mathinner{.\,.} j}$ sottostringa di α con i caratteri dall'i-esimo al j-esimo)

$$\alpha$$
 = ALGORITMI, β = ORI \longrightarrow γ = ALG e δ = TMI

• β è un suffisso di α se esiste una stringa γ (eventualemente vuota) tale che $\alpha=\gamma\beta$

$$\alpha = ALGORITMI$$
, $\beta = RITMI \longrightarrow \gamma = ALGO$

• β è un prefisso di α se esiste una stringa δ (eventualemente vuota) tale che $\alpha=\beta\delta$

$$\alpha = ALGORITMI$$
, $\beta = AL \longrightarrow \beta = GORITMI$

Stringhe

OPERAZIONI SULLE STRINGHE:

Concatenazione:

date su stringhe α e β sullo stesso alfabeto Σ ,

la concatenazione è $\gamma = \alpha \beta$ data dalla giustapposizione di α e β ($|\gamma| = |\alpha| + |\beta|$)

$$\alpha = IPPO$$

$$\beta = POTAMO$$

$$\gamma = IPPOPOTAMO$$

Potenza:

data una stringa α su un alfabeto Σ ,

la potenza k-esima è la concatenazione di α con se stessa k volte

$$\alpha = PIPPO$$

$$\alpha^3$$
 = PIPPOPIPPOPIPPO

OCCORRENZA:

ullet se eta è una sottostringa di lpha, allora lpha contiene (almeno) un'occorrenza di

$$\alpha$$
 = ALGORITMI, β = ORI —> γ = ALG e δ = TMI occorrenza di β in α

• se $\alpha = \gamma \beta \delta$ e $|\gamma| = k$, β occorre (ha un match) alla posizione k di α

$$\alpha$$
 = ALGORITMI, β = ORI \longrightarrow γ = ALG e δ = TMI

occorrenza di β in α alla posizione 3

ALLINEAMENTO:

L'allineamento di una stringa β alla posizione i della stringa α è la sovrapposizione (ideale) di β con la sottostringa $\alpha[i...i+|\beta|-1]$

ALLINEAMENTO con SUCCESSO (matching):

Esiste un'occorrenza della stringa β alla posizione i della stringa α

ALLINEAMENTO FALLITO

Non esiste un'occorrenza della stringa β alla posizione i della stringa α

PROBLEMA:

INPUT: Stringa $T \in \Sigma^*$ di n caratteri —> TESTO

Stringa $P \in \Sigma^*$ di $m \le n$ caratteri —> PATTERN

OUTPUT: le (eventuali) posizioni delle occorrenze di P in T

ESEMPIO:

T = perdindirindina

P = din

Occorrenze di P in T alle posizioni 3 e 11

perdindirindina

PROBLEMA:

INPUT: Stringa $T \in \Sigma^*$ di n caratteri —> TESTO

Stringa $P \in \Sigma^*$ di $m \le n$ caratteri —> PATTERN

OUTPUT: le (eventuali) posizioni delle occorrenze di P in T

Lower bound sul numero di confronti tra TESTO e PATTERN:

Ogni carattere del testo DEVE essere coinvolto in ALEMNO un confronto —> Lower bound $\Omega(|T|)$

 $T = 1^n$

P = 1 "saltando" anche solo un carattere di T si "perde" un'occorrenza di P in T

PROBLEMA:

INPUT: Stringa $T \in \Sigma^*$ di n caratteri —> TESTO

Stringa $P \in \Sigma^*$ di $m \le n$ caratteri —> PATTERN

OUTPUT: le (eventuali) posizioni delle occorrenze di P in T

ALGORITMO a FORZA BRUTA

IDEA:

proviamo tutti i possibili allineamenti del pattern nel testo e verifichiamo danno un successo o un fallimento

ALGORITMO a FORZA BRUTA

IDEA:

proviamo tutti i possibili allineamenti del pattern nel testo e verifichiamo danno un successo o un fallimento

1a possibilità —> indice 0 di T

2a possibilità —> indice 1 di T

3a possibilità —> indice 2 di T

ALGORITMO a FORZA BRUTA

IDEA:

proviamo tutte le possibili collocazioni del pattern nel testo e verifichiamo se determinano un'occorrenza o no

1a possibilità —> indice 0 di T

2a possibilità —> indice 1 di T

3a possibilità —> indice 2 di T

n-1 teri (

ultima possibilità —> indice n-m di T

ALGORITMO a FORZA BRUTA

IDEA:

proviamo tutte le possibili collocazioni del pattern nel testo e verifichiamo se determinano un'occorrenza o no

ALGORITMO a FORZA BRUTA

IDEA:

proviamo tutte le possibili collocazioni del pattern nel testo e verifichiamo se determinano un'occorrenza o no

Costo computazionale

contiamo solo i confronti tra caratteri delle due stringhe

If for viene eseguito n-m+1 volte $(n-m+1) \cdot m = nm - m^2 + m$

se
$$m \approx n \Rightarrow O(n)$$

se $m = n/c, c \in O(1) \Rightarrow O(n^2)$
se $m \in O(1) \Rightarrow O(n)$

ALGORITMO a FORZA BRUTA

Costo computazionale

se $m \approx n \Rightarrow O(n)$

se
$$m = n/c, c \in O(1) \Rightarrow O(n^2)$$

se $m \in O(1) \Rightarrow O(n)$

L'algoritmo Brute-Force testa anche posizioni in cui è impossibile che inizi una nuova occorrenza (e lo sa!)

è possibile che ci sia un'occorrenza del pattern nel testo in posizione i+1?

NO

L'algoritmo Brute-Force testa anche posizioni in cui è impossibile che inizi una nuova occorrenza (e lo sa!)

qual è il primo indice (dopo i) in cui è possibile che ci sia un'occorrenza del pattern nel testo?

T A A A B
$$\times \times \times \times \times$$

P \triangle A A A $\times \times \times \times \times \times$

L'algoritmo Brute-Force testa anche posizioni in cui è impossibile che inizi una nuova occorrenza (e lo sa!)

qual è il primo indice (dopo i) in cui è possibile che ci sia un'occorrenza del pattern nel testo?

Come determinare il prossimo allineamento?

shift: #posizioni di cui spostarsi a destra nel testo per provare un nuovo allineamento

Come determinare il prossimo allineamento?

se
$$P[0..j - s - 1] = P[s...j - 1]$$
?

Come determinare il prossimo allineamento?

se
$$P[0..j - s - 1] = P[s..j - 1]$$
?

Vale la pena riprovare con uno shift di s posizioni?

dipende da P[j-s] e P[j]

se
$$P[j] = P[j - s]$$
 non è possibile
perché $P[j - s] \neq T[i]$

se $P[j] \neq P[j-s]$ vale la pena provare

Come determinare il prossimo allineamento?

e se esiste più di un s per cui vale

$$P[0..j - s - 1] = P[s..j - 1] \in P[j] \neq P[j - s]$$
?

scegliamo l's più piccolo

Come determinare il prossimo allineamento?

e se non esiste tale s?

Come determinare il prossimo allineamento?

e se non esiste tale s?

il prossimo tentativo va fatto con uno shift di j+1 posizioni

Come determinare il prossimo allineamento?

e se abbiamo trovato un'occorrenza (quindi non c'è mismatch)?

Si ragiona in modo analogo, senza dover controllare cosa succede nella posizione m-esima

Come determinare il prossimo allineamento?

Analizzando il pattern (e basta!)

Per ogni $0 \le j \le |P|$ per ogni possibile posizione del mismatch, o se è stata trovata un'occorrenza del pattern

cerchiamo il più piccolo s tale che $0 \le s \le j+1$ e $A_P(j,s) = True$

minima lunghezza dello shift

$$A_P(j,s) = \begin{cases} \text{True} & \text{se } P[0..j-s-1] = P[s\mathinner{.\,.} j-1] \text{ AND } (P[j] \neq P[j-s] \text{ OR } j = |P|) \\ \text{True} & \text{se } s = j+1 \\ \text{False} & \text{altrimenti} \end{cases}$$

Come determinare il prossimo allineamento?

Analizzando il pattern (e basta!)

Non sono coinvolti confronti con il testo

```
Best-Prefix(P)
 m := |P|
 shift := new array[0..m]
                                               per ogni possibile posizione del mismatch (j < m),
 for j = 0 to m do \leftarrow
                                               o se è stata trovata un'occorrenza del pattern (j = m)
   s := 1
   while NOT A_P(j,s) do \leftarrow
                                               ricerca dello shift di
                                                                   il while termina al più tardi
                                                                       quando s = j+1
                                               minima lunghezza
     s := s+1
   shift[j] := s 
 return shift[]
                                             quando non inizia una nuova iterazione del while,
                                              il valore di s è il primo per cui A<sub>P</sub>(j,s) = True
```

```
Best-Prefix(P)
m := |P|
shift := new array[0..m]
for j = 0 to m do
s := 1
while NOT Ap(j,s) do
s := s+1
shift[j] := s
return shift[]
```

$$P = dindina \quad m = |P| = 7$$

j	P[0j-1]	shift[j]
0		1
1	d	
2	di	
3	din	
4	dind	
5	dindi	
6	dindin	
7	dindina	

```
Best-Prefix(P)
  m := |P|
  shift := new array[0..m]
  for j = 0 to m do
    s := 1
    while NOT AP(j,s) do
    s := s+1
    shift[j] := s
  return shift[]
```


P =	dindina	m=	P	=7
-----	---------	----	---	----

j	P[0j-1]	shift[j]
0		1
1	d	1
2	di	
3	din	
4	dind	
5	dindi	
6	dindin	
7	dindina	

```
Best-Prefix(P)
  m := |P|
  shift := new array[0..m]
  for j = 0 to m do
    s := 1
    while NOT AP(j,s) do
    s := s+1
    shift[j] := s
  return shift[]
```


P =	dindina	m=	P	=7
-----	---------	----	---	----

j	P[0j-1]	shift[j]
0		1
1	d	1
2	di	2
3	din	
4	dind	
5	dindi	
6	dindin	
7	dindina	

```
Best-Prefix(P)
  m := |P|
  shift := new array[0..m]
  for j = 0 to m do
    s := 1
    while NOT AP(j,s) do
    s := s+1
    shift[j] := s
  return shift[]
```


P = dindina m = P = 0

j	P[0j-1]	shift[j]
0		1
1	d	1
2	di	2
3	din	4
4	dind	
5	dindi	
6	dindin	
7	dindina	

```
Best-Prefix(P)
  m := |P|
  shift := new array[0..m]
  for j = 0 to m do
    s := 1
    while NOT AP(j,s) do
    s := s+1
    shift[j] := s
  return shift[]
```


P = dindina m = P = 0

j	P[0j-1]	shift[j]
0		1
1	d	1
2	di	2
3	din	4
4	dind	4
5	dindi	
6	dindin	
7	dindina	

```
Best-Prefix(P)
  m := |P|
  shift := new array[0..m]
  for j = 0 to m do
   s := 1
   while NOT AP(j,s) do
   s := s+1
  shift[j] := s
  return shift[]
```

Т	d	i	n	d	i	X			
Р	d	i	n	d	i	n	a		
	0					5			
						=			
						-			

P = dindina	m = P	= 7
-------------	---------	-----

j	P[0j-1]	shift[j]
0		1
1	d	1
2	di	2
3	din	4
4	dind	4
5	dindi	5
6	dindin	
7	dindina	

```
Best-Prefix(P)
  m := |P|
  shift := new array[0..m]
  for j = 0 to m do
    s := 1
    while NOT AP(j,s) do
    s := s+1
    shift[j] := s
  return shift[]
```


P =	dindina	m = P = 7	

j	P[0j-1]	shift[j]
0		1
1	d	1
2	di	2
3	din	4
4	dind	4
5	dindi	5
6	dindin	3
7	dindina	

```
Best-Prefix(P)
  m := |P|
  shift := new array[0..m]
  for j = 0 to m do
   s := 1
   while NOT AP(j,s) do
   s := s+1
  shift[j] := s
  return shift[]
```

Т	d	i	n	d	i	n	a		
Р	d	i	n	d	i	n	a		
	0							7	
								– j	

P = dindina	m = P = 7
-------------	-------------

j	P[0j-1]	shift[j]
0		1
1	d	1
2	di	2
3	din	4
4	dind	4
5	dindi	5
6	dindin	3
7	dindina	7

Sappiamo come determinare il prossimo tentativo di allineamento, qual'è il prossimo confronto da fare?

Evitiamo di ripetere confronti tra il testo e il pattern di cui conosciamo già l'esito

shift $\leq j$

Dall'allenamento precedente sappiamo che

$$P[0..j - s - 1] = T[i - j + s ... i - 1]$$

Il prossimo confronto interessante è tra

$$P[j-s] \in T[i]$$

Sappiamo come determinare il prossimo tentativo di allineamento

Evitiamo di ripetere confronti tra il testo e il pattern di cui conosciamo già l'esito

Il prossimo confronto interessante è tra P[0] e T[i+1]

Sappiamo come determinare il prossimo tentativo di allineamento

Evitiamo di ripetere confronti tra il testo e il pattern di cui conosciamo già l'esito

$$\mathbf{shift} = \mathbf{s} \le j \qquad P[j-s] \quad \mathbf{e} \quad T[i]$$

$$\begin{array}{c}
\text{prox indice} \\
\text{di P}
\end{array} \Rightarrow j-s$$

shift = s =
$$j + 1 P[0]$$
 e $T[i + 1]$

$$\begin{array}{c}
\text{prox indice} \\
\text{di P}
\end{array}$$

prox indice di P
$$next = max\{0, j - s\}$$

ALGORTIMO di KNUTH-MORRIS-PRATT (1975)

```
Knuth-Morris-Pratt(T,P)
n := |T|
m := |P|
 shift := Best-Prefix(P)
 for j = 0 to m do
 next[j] := max{0,j - sift[j]}
 i := 0 //indice che scorre T
 j := 0 //indice che scorre P
while i \leq m-n do
 while (j < m \ AND \ P[j] = T[i+j]) do
  j := j+1
  if j = m then print i
  i := i + shift[j]
  j := next[j]
 print -1
```

ALGORTIMO di KNUTH-MORRIS-PRATT

```
Knuth-Morris-Pratt(T,P)
                            non coinvolge
 shift := Best-Prefix(P)
                            caratteri del testo!
 for j = 0 to m do
  next[j] := max{0,j - sift[j]}
 i := 0 //indice che scorre T
 j := 0 //indice che scorre P
 while i \leq m-n do
  while (j < m \ AND | P[j] = T[i+j]
                                      do
   j := j+1
  if j = m then print i
  i := i + shift[j]
  j := next[j]
 print -1
```

Costo computazionale

contiamo solo i confronti tra caratteri delle due stringhe

ogni carattere del testo
viene associato ad AL PIÙ DUE
confronti con caratteri del
pattern:

- un match
- il mismatch che occorre quando il pattern è allineato con il carattere

... nel mondo reale...

Variazioni sul tema:

- String matching esatto VS string matching approssimato
- Single pattern string matching VS multiple pattern string matching

Alcune applicazioni (... solo alcune di quelle più famose...):

- Correttore ortografico e operazione "cerca"
- Filtri anti-SPAM
- Antivirus
- Motori di ricerca
- Software anti-plagio
- Bioinformatica e sequenziamento DNA
- Indagini forensi digitali
- Information Retrieval
-