Hierarchical linear regression

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information October 19, 2020

Outline

Last time:

Model comparison using WAIC / approximate LOO-CV

Today (and forthcoming):

- Hierarchical and generalized linear models
- Mixture models
- Modal approximations, EM and related algorithms

Logistics

Second half of the semester

Rough outline of the rest of the semester:

- Hierarchical regression, GLMs, mixtures (2-3 weeks)
- Graphical models; Bayes and Markov networks (2 weeks)
- Time series models; HMM and Kalman filters (2 weeks)
- Gaussian processes (1 week)
- ???

Midterm and "participation"

- Midterm: an assignment spanning the various topics we've covered
 - Not longer than a regular homework, but less restricted to a particular topic
- Solution presentations
 - Pick a problem from a list (or choose your own)
 - Prepare a solution and give a short presentation of it at the beginning of class

Hierarchical linear models

Recap: linear regression as a Bayesian model

Remember the basic framework we had for a linear model in the Bayesian setting:

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta \cdot \mathsf{x}_i$
 $\sigma \sim \text{HalfCauchy}(\phi)$
 $\beta_i \sim \text{Normal}(0, \sigma_\beta)$
 $\alpha \sim \text{Normal}(0, \sigma_\alpha)$

(different prior choices possible, of course!)

Recap: hierarchical models

Recall the idea of a hierarchical model:

- Observations are grouped into clusters
- Model parameters for each group come from a prior distribution dependent on population-level hyperparameters
- Allows for "partial pooling"; clusters don't all have the same model parameters, but some information is shared across clusters
- Effect: shrinkage toward population parameters, especially for clusters with few observations

Non-Bayesian terminology

There are a few pieces of terminology that are common in the frequentist statistical literature that correspond to these Bayesian concepts:

- fixed-effects: the pooled model; same coefficients across all groups
- random-effects: an unpooled model; varying model coefficients across groups
- mixed-effects: a hierarchical model; effects are varying, but not completely decoupled (also, can have some effects pooled, some not)

Example

Example from BDA sec. 15.2: US presidential election forecasting

- US presidential elections carried out on a state-by-state basis
- Idea: forecast the vote shares in each state based on state, regional, national variables
- Example variables:
 - Vote share from previous year
 - Economic growth
 - Demographic data

Example

Preliminary model: fixed effects (fully pooled)

- Fit an ordinary linear regression (with some normalizing priors) to all of the predictors, pooling all years 1948 - 1988
- Hold out 1992 for testing
- Evaluate model with a posterior predictive check
- Upgrade to a hierarchical model
- Compare the models by their forecasts and by WAIC/LOO

Model structure

Model structure for the fixed-effects model:

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta \cdot x_i$
 $\beta_i \sim \text{Normal}(0, 1)$
 $\sigma \sim \text{HalfCauchy}(5)$
 $\alpha \sim \text{Normal}(0, 0.2)$

y = Democratic vote share by state

 $x_i = \text{various national/state predictors, region code}$

A posterior predictive check

One of the clear problems: the model cannot account for correlations between states in a single year

- In a year where candidate A performs better than expected in State X, we expect them to also do better than expected in State Y
- When fitting the model, our fixed-effects model treats all years as equivalent
- To detect this, BDA examines the average national residuals
 - For each sampled β , compute the residual $(y_i \mu_i)$
 - Average residuals across states ("nationwide realized residual"); root-sum-square
 - Compute the same for draws y^{rep} from posterior predictive

A posterior predictive check

The fixed-effects model "fails" the posterior predictive check: the residuals from replicated values are considerably smaller than those from observed values, suggesting that there is additional variability in the observations that is not captured by the model.

A hierarchical model

In the book, the model is expanded by adding 11 national yearly predictors and 44 regional ones:

$$y_{i,t} \sim \text{Normal}(\mu_i, \sigma)$$
 $\mu_{i,t} = \alpha + \beta \cdot x_i + \delta_t + \gamma_{r(i),t}$
 $\delta_t \sim \text{Normal}(0, \tau_{\delta})$
 $\gamma_{r(i),t} \sim \text{Normal}(0, \tau_{\gamma_r})$
 $\beta_i \sim \text{Normal}(0, 1)$
 $\sigma \sim \text{HalfCauchy}(5)$
 $\tau \sim \text{HalfCauchy}(5)$
 $\alpha \sim \text{Normal}(0, 0.2)$

I'm going to do something simpler: δ_t only

Our hierarchical model

$$y_{i,t} \sim \text{Normal}(\mu_i, \sigma)$$
 $\mu_{i,t} = \alpha + \beta \cdot x_i + \delta_t$
 $\delta_t \sim \text{Normal}(0, \tau_\delta)$
 $\beta_i \sim \text{Normal}(0, 1)$
 $\tau_\delta \sim \text{HalfCauchy}(5)\sigma$
 $\sim \text{Normal}(0, 0.2)$

Our hierarchical model

Some preliminary notes:

- Notice: β not directly affected by the hierarchical structure (still the same β estimated for all years)
- ullet Mean of δ not estimated, only variance
- Partial pooling on δ_t , not on β

Notes on the hierarchical model

Some observations:

- Principal effect on forecasting: more uncertainty
- Similar state-by-state point predictions why? No estimate for δ_{1992}
- Real world models: use polling data, etc. to estimate values for the extra variables, incorporate these into the forecast
- Still, some improvement in certain forecast quantities; e.g., mode of electoral vote share matches true values

Summary

Today:

• Hierarchical linear models, partial pooling

Next:

- More on hierarchical regression
- GLMs
- Mixture models