Создание и архитектура MLсистем

Гущин Александр DMIA Production ML 🚀 весна 2021

Архитектура ML решений

Все это вместе образует Систему.

Архитектура - это устройство таких систем.

"Hidden Technical Debt in Machine Learning Systems" paper

Machine Learning Systems by Jeff Smith

Зачем нам думать об этом?

- 0. Архитектура описывает конечный предмет, который мы должны построить
- 1. Выбор архитектуры диктует слабые и сильные стороны решения и пути его модификации в будущем
- 2. Плохая архитектура породит технический долг и приведет к проблемам в её работе, поддержке, и доработке
- 3. Для эффективной работы в команде нужно общее понимание, как именно устроена ваша система

Технический долг — накопленные в программном коде или архитектуре проблемы, связанные с пренебрежением к качеству при разработке программного обеспечения и вызывающие дополнительные затраты труда в будущем.

ML-системы имеют дополнительные "возможности" для создания технического долга. ML Engineer сталкивается с этим в первую **очередь**.

Например — unstable data dependencies, feedback loops, glue code, pipeline jungles, dead experimental codepaths, fixed thresholds in dynamic systems, entanglement (CACE principle), etc.

"Hidden Technical Debt in Machine Learning Systems" paper

Для начала, MLE приобретают все проблемы & best practices из Software engineering

- Clean Architecture: A Craftsman's Guide to Software Structure and Design, Robert C. Martin; Short video about it
- A Philosophy of Software Design (2018), John Ousterhout
- Figure from https://www.freecodecamp.org/news/a-quick-introduction-to-clean-architecture-990c014448d2/

Создание ML систем

Best Practices for ML Engineering by Martin Zinkevich

To make great products: do machine learning like the great engineer you are, not like the great machine learning expert you aren't.

- Make sure your pipeline is solid end to end.
- Start with a reasonable objective.
- Add common-sense features in a simple way.
- Make sure that your pipeline stays solid.

ML system development is divided in the following phases:

- Before Machine Learning
- ML Phase I: Your First Pipeline
- ML Phase II: Feature Engineering
- ML Phase III: Slowed Growth, Optimization Refinement, and Complex Models

https://developers.google.com/machine-learning/guides/rules-of-ml

От требований к архитектуре

- Требования к расчету фичей
 - на лету или предварительно?
 - с помощью каких программных средств?
- Требования к обучению
 - как часто?
 - на каких ресурсах?
- Требования к выдаче прогнозов
 - каким способом?
 - как быстро?
 - минимальное допустимое качество?
- Tradeoff скорость/надежность разработки
- Требования к автономности
- Требования к доступной кастомизации
- Требования к обработке приватных данных

И прочее, прочее, прочее

Препроцессинг фичей

Обычно есть два подхода:

- Считаем фичи в режиме реального времени
- Требуется рассчитывать некоторые фичи заранее

Использование имеющихся источников порождает задачи интеграции и накладывает на них ограничения - например, по времени ответа.

Feature Store - служит для сохранения фичей. Используется и во время обучения, и во время расчета прогнозов

Например, https://docs.hopsworks.ai/latest/

Обучение

- Наиболее распространено переобучение по расписанию Запускаем код с помощью cronjob, планировщиков задач < практика на нашем курсе
- Другой вариант обучение на лету (например, с помощью Kafka и Tensorflow)

Например, https://towardsdatascience.com/machine-learning-in-production-using-apache-airflow-91d25a4d8152

Выдача прогнозов

MODEL-as-SERVICE

- Просто: Пишем REST API обертку на питоне **<— практика на нашем курсе**
- Быстро: Переписываем код на Go/C++, используем gRPC

Figure source

MODEL-as-DEPENDENCY

- В приложениях с монолитной архитектурой
- В приложениях на телефон

PRECOMPUTE SERVING PATTERN

MODEL-ON-DEMAND

Примеры

- Пример задачи: практика на нашем курсе
- Архитектура
 - 1. Данные обновляются ежедневно и доступны для скачивания из Object-storage
 - 2. Обучение происходит по расписанию
 - 3. Прогноз в режиме реального времени с помощью запросов по REST API

Пример 2

- Требование: периодичность ответного действия на прогноз фиксирована.
- Примеры задач
 - ежедневный прогноз LTV пользователей для предотвращения оттока
 - ежечасный прогноз погоды
 - ежечасный прогноз потребления электроэнергии
- Архитектура
 - 1. Данные собираются из различных источников и складываются в хранилище, обновляются постоянно (DWH)
 - 2. Обучение по расписанию скачиваем свежие данные (SQL), готовим датасет, обучаем модель
 - 3. Прогноз по расписанию, загружаем результат в базу данных

Пример 3

- Требования: big data, сервисы с большой нагрузкой, где требуется высокая скорость ответа
- Примеры задач
 - карты время в пути из точки А в точку Б
 - рекламная крутилка
 - классификация спама в почте
- Архитектура
 - 1. Данные собираются из различных источников (например, HDFS), фичи рассчитываются (например, Spark) и складываются в Feature Store
 - 2. Обучение по расписанию скачиваем свежие данные, готовим датасет, обучаем модель
 - 3. Прогноз в режиме реального времени с помощью запросов по gRPC, код может быть переписан на компилируемых языках

Когда ML - дополнение к имеющимся сервисам, а не центральная часть

Часто ML-системы возникают не на пустом месте, а поверх уже существующей инфраструктуры:

- 1. Уже есть Data Warehouse
- 2. Уже есть бэкенд и устоявшиеся подходы к разработке

В таком случае типично использование имеющихся инструментов и подходов. Пример - использование Airflow для запуска пайплайнов по обучению моделей, когда он используется в компании для ETL. Или деплой на AWS Sagemaker/OpenShift/Heroku, когда они используются разработчиками, и так далее.

Это может быть как плохо (бывают неудобные инструменты), так и хорошо (не нужно возводить все с нуля).

Саммари

- 1. Архитектура это описание и устройство программных систем
- 2. Технический долг накопленные в программном коде или архитектуре проблемы, связанные с пренебрежением к качеству при разработке программного обеспечения и вызывающие дополнительные затраты труда в будущем.
- 3. ML системы имеют свойство накапливать особенный технический долг, который требует особенной работы по его выплате (помимо обычного техдолга разработки)
- 4. Начинать разговор об архитектуре удобно с набора требований к системе. Одни из основных ML-специфичных это требования к расчету фичей, к обучению моделей и к выдаче прогнозов.