

SMART-Seq

cecilia 1, Suzie Alarcon1, Alessandro Sette1

¹La Jolla Institute for Immunology

dx.doi.org/10.17504/protocols.io.bwu5pey6

This protocol details the cell lysis / Oligot-dT priming, reverse transcription, PCR preamplification and quality Check cDNA and tagmentation reaction.

d2bxbg4xf.docx

DOI

dx.doi.org/10.17504/protocols.io.bwu5pey6

cecilia, Suzie Alarcon, Alessandro Sette 2021. SMART-Seq. protocols.io https://dx.doi.org/10.17504/protocols.io.bwu5pey6

(i)

Ð

SmartSeq

Cell lysis, Oligot-dT priming, Reverse transcription, PCR preamplification, Quality Check cDNA, Tagmentation reaction, ASAPCRN

protocol ,

Jul 24, 2021

Dec 01, 2021

Jul 24, 2021 Urmilas

Nov 30, 2021

51837

Part of collection

SmartSeg

REAGENTS:

Scientific Catalog #Invitrogen 14190-144

Yaqian Xu

1

Citation: cecilia, Suzie Alarcon, Alessandro Sette SMART-Seq https://dx.doi.org/10.17504/protocols.io.bwu5pey6

- X TrypLE™ Express Enzyme (1X), no phenol red Thermo
- Fisher Catalog #12604021
- RNaseZap Ambion Catalog #AM9780
 - **⊠**DNA-OFF™ **Takara Bio**
- Inc. Catalog #9036
 - **⊠**Triton™ X-100 **Sigma**
- Aldrich Catalog #T9284
 - ⊠ dNTP Mix (dATP, dCTP, dGTP, and dTTP, each at 10mM) Thermo Fisher
- Scientific Catalog #R0192
- First-strand buffer (5×; 250 mM Tris-HCl, pH 8.3, at room temperature (25 °C); 375 mM KCl; 15 mM MgCl2; Invitrogen, cat. no. 18064-014)
 - Superscript II Invitrogen Thermo
- Fisher Catalog #18064-014
- DTT (Invitrogen, cat. no. 18064-014) M
- Inhibitor Takarabio Catalog #2313A
 - Betaine BioUltra ≥99.0% (NT) Sigma
- Aldrich Catalog #61962
 - 🛭 1 M Magnesium Chloride (MgCl2) Sigma
- Aldrich Catalog #M8266
 - X Kapa HiFi Hotstart Readymix Kapa
- Biosystems Catalog #KK2601

Critical: A HotStart DNA polymerase is necessary to minimize the background amplification when working with single cells and is more practical when working with automated liquid-handling platforms.

- Coulter Catalog #A63881
- Ethanol 99.5% (vol/vol); Kemethyl, cat. no. SN366915-06)

Caution: It is flammable; handle it using appropriate safety equipment.

- ⊠ Elution Buffer
- (EB) Qiagen Catalog #19086
- Inc. Catalog #FC-121-1003
- samples illumina Catalog #FC-131-1096
 - Nextera XT Index Kit (24 indexes 96 samples) Illumina,
- Inc. Catalog #FC-131-1001

Cell Lysis / Oligot-dT Priming

6m 20s

1

Timing: ~15 min (for eight-strip tubes)

Dilute the oligo-dT30VN primer to [M]10 Micromolar (μ M) by adding \Box 10 μ L of [M]100 Micromolar (μ M) oligo-dT primers and \Box 90 μ L of nuclease-free water to a tube and mix well.

2

Prepare cell lysis buffer by adding 1 µL of RNase inhibitor to 19 µL of a 0.2% (vol/vol) Triton X-100 solution.

If you are working with purified RNA, this step can be omitted and a corresponding volume of water can be used instead.

3

Isolate single cells in the lowest possible volume (preferably $\leq 20.5 \, \mu L$, possibly $20.3 \, \mu L$) or pipet the appropriate amount of RNA into a $20.2 \, mL$ thin-walled PCR tube. Single cells can be obtained either by using a micro capillary pipette or via FACS.

4

Place each single cell into a $\blacksquare 0.2$ mL thin-walled PCR tube containing $\blacksquare 2$ μ L of cell lysis buffer, $\blacksquare 1$ μ L of oligo-dT primer and $\blacksquare 1$ μ L of dNTP mix.

5 × 10s

Quickly vortex the tube to mix, and then spin down the solution (\blacksquare 700 g for \bigcirc 00:00:10 at & Room temperature) and immediately place it & On ice. 6

Incubate the samples at § 72 °C for © 00:03:00 and immediately put the tube back § On ice .

7 Spin down the samples (☐700 g for ⊙ 00:00:10 at & Room temperature) to collect the liquid at the bottom of the tubes, and then put them immediately back § On ice.

The oligo-dT primer is now hybridized to the poly(A) tail of all the mRNA molecules.

Purified RNA:

Xul RNA up to 2.5ul

oligo-dT Primer (10uM) 1ul

1ul dNTP (10mM)

<u>xul</u> <u>H20</u> 4.5ul Total

§ 72 °C for ⊙ 00:03:00 , snap cool.

Reverse Transcription

Prepare the RT mix for all reactions plus one additional reaction by combining and mixing the reagents listed in the table below.

Α	В	С
Component	Volume (ul)	Final Conc
Superscipt II	0.50	100 U
RNAse inhibitor (40 U/ul)	0.25	10 U
Superscript II FS buffer (5X)	2.00	1X
DTT (100 mM)	0.50	5 mM
Betaine (5 M)	2.00	1 M
MgCl2 (1 M)	0.06	6 mM
TSO (100uM)	0.10	1 uM
H20	0.29	-
Total	5.70	-

Add $\Box 5.7 \, \mu L$ of RT mix to Samples for a total of $\Box 10 \, \mu L$.

10

Spin and incubate as follows:

Α	В	С	D
Cycle	Temperature	Time	Purpose
	(°C)		
1	42	90 min	RT and template-switching
2-11	50	2 min	Unfolding of RNA secondary structures
	42	2 min	Completion/continuation of RT and template-switching
12	70	15 min	Enzyme inactivation
13	4	Hold	Safe storage

PCR preamplification

11

Prepare the PCR mix for all reactions plus one additional reaction by combining and mixing the following components:

Α	В	С
Component	Volume	Final concentration
	(µl)	
First-strand reaction	10	-
KAPA HiFi HotStart ReadyMix (2×)	12.50	1×
IS PCR primers (10 μM)	0.25	0.1 μΜ
Nuclease-free water	2.25	-
Total volume	25	-

12

Add $\Box 15 \,\mu L$ of PCR mix to each tube from Step 12, which contains the first-strand reaction and perform the PCR in a thermal cycler by using the following program:

A	В	С	D	E
Cycle	Denature	Anneal	Extend	Hold
1	98 °C, 3 min	_	_	-
2-19 (see below)	98 °C, 20 s	67 °C, 15 s	72 °C, 6 min	-
20	-	_	72 °C, 5 min	-
21	-	-	-	4 °C

Α	В	С
Input Amount Total RNA	Input Amount, Cells	Typical No. of PCR Cycles
10 ng	1,000 cells	12
1 ng	100 cells	12
500 pg	50 cells	13
100 pg	10 cells	15
10 pg	1 cell	18

Ampure Cleanup

13 Perform a typical Ampure cleanup using 1:1 ratio of Ampure:cDNA.

Elute using $\Box 17.5 \,\mu L$ EB solution and pipette $\Box 15 \,\mu L$ to transfer to a new tube.

Quality Check cDNA

15 Run a High Sensitivity Bioanalyzer Chip to check for quality of cDNA.

16 A good library should be free of short (<500 bp) fragments and should show a peak at 1.5–2 kb.

(a) Representative example of the cDNA size distribution obtained from the successful cDNA preamplification from a single MEF cell (mouse). The profile has a peak ~1.5~2 kb with a small number of fragments below 500 bp and a small amount of primer dimers. (b) Representative example of the primer dimer-dominated cDNA profile from a single HEK293T cell (human). Amplification of full-length cDNA is visible but a large peak of primer dimers that were not removed by bead purification dominates the profile.
(c) Data from a single T cell (human) with a "hedgehog" pattern, most probably due to the formation of TSO concatamers. (d) Data from a single interneuron (mouse), with a wide distribution of fragments indicative of RNA degradation before library preparation.

Tagmentation Reaction 10m

17 Setup the tagmentation RXN as follows:

Α	В	С
Component	Volume (μl)	Final concentration
Tagment DNA buffer (TD, 2×)	10	1×
Amplicon tagment mix	5	-
DNA from PCR	Variable	-
Nuclease-free water	Variable	-
Total volume	20	_

18

Incubate in a thermal cycler at § 55 °C for © 00:05:00 and bring to § 4 °C HOLD.

5m

5m

19

Add $\Box 5 \mu L$ of NT buffer to the $\Box 20 \mu L$ RXN and mix.

20

Incubate at & Room temperature for © 00:05:00.

Enrichment of Tagmented cDNA

21 Prepare the following PCR RXN as follows:

Α	В	
Component	Volume (µl)	
DNA	25	
Nextera PCR master mix	15	
Index 1 primers (N7xx)	5	
Index 2 primers (N5xx)	5	
Total volume	50	

22 Run the PCR RXN on a thermal cycler with the following conditions:

Α	В	С	D	Е
Cycle	Denature	Anneal	Extend	Hold
1	-	_	72 °C, 3 min	-
2	95 °C, 30 s	_	_	_
3-14*	95 °C, 10 s	55 °C, 30 s	72 °C, 30 s	_
15	_	_	72 °C, 5 min	_
16	_	_	_	4
				°C

^{*}for 1ng, 8-12 cycles could be used

Expected results:

23

Using Single Cell (thus, purified RNA should yield better stats)

Sequence reads from each individual cell are normally in the range of 1–20 million, depending on the level of multiplexing in the sequencing. When sequencing 50-bp single-end reads, we find that normally 60% of reads map uniquely to the genome (20% multimapping and 20% with no match); of the uniquely mapping reads, >60% of the reads map to annotated RefSeq exons, 20% intronic and 20% intergenic, but these values depend on the completeness of the gene annotations. The read coverage across transcripts should be even.