第8章相似理论

1. 设 A 是 3 阶方阵,有 3 阶可逆矩阵 P,使得 $P^{-1}AP = \begin{bmatrix} 1 & 2 & A^* & A^$

$$P^{-1}A^*P=($$
).

2.
$$\[\mathcal{L} \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & -3 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 2 & 1 & -5 \\ 0 & 1 & 0 \\ 1 & 1 & -4 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 5 & 1 & -2 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 1 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & -3 \end{bmatrix}, \mathbf{A}$$

$$\begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$$
,则在 A,B,C,D 中与 Λ 相似的矩阵有().

(A)A,C

(B)A,D

(C)B,C

(D)B,D

3. 已知 $P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix}$, α_1 是矩阵 A 属于特征值 $\lambda = 2$ 的特征向量, α_2 , α_3 是矩阵 A 属于特

征值 $\lambda = 6$ 的线性无关的特征向量,那么矩阵P不能是().

$$(A)[\boldsymbol{\alpha}_1, -\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3]$$

(B)
$$[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2 - 2\boldsymbol{\alpha}_3]$$

 $(C)[\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_2]$

(D)
$$[\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3]$$

4. 设 A, B 均为 n 阶矩阵, A 可逆且 $A \sim B$, 则下列命题中:

$$\bigcirc AB \sim BA;$$

$$(2)A^2 \sim B^2$$
:

$$(4)A^{-1} \sim B^{-1}$$
.

正确的个数为().

(A)1

$$(D)4$$

5. 设 $\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ a & 4 & b \end{bmatrix}$,若 \mathbf{A} 有二重特征值 $\lambda = 2$,且 \mathbf{A} 可相似对角化,则 $a+b+c = \underline{}$

微信公众号: 神灯考研 客服微信: KYFT104 QQ群: 118105451

6. 设 A 是 3 阶矩阵, $b = [9,18,-18]^T$,方程组 Ax = b 有通解 $k_1[-2,1,0]^T + k_2[2,0,1]^T + [1,2,-2]^T$

其中 k_1 , k_2 是任意常数, 求 A 及 A^{100} .

- 7. 设 3 阶矩阵 A 的每行元素之和均为 0,又存在线性无关的向量 α , β ,使得 $A\alpha = 3\beta$, $A\beta = 3\alpha$.
- (1) 证明 A 可相似对角化;
- (2) 当 $\alpha = [0, -1, 1]^{T}, \beta = [1, 0, -1]^{T}$ 时,求矩阵 A.
- 8. 设 $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \end{bmatrix}$ 的一个特征值为 1,求一个正交矩阵 Q,使(AQ)^T(AQ) 为对角矩阵.
 - 9. 设

$$\mathbf{A} = \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & -2 & -2 \\ -2 & 2 & 0 \\ -2 & 0 & 0 \end{bmatrix},$$

问 A,B 是否相似?并说明理由.

10. 设A为 3 阶矩阵, α_1 , α_2 , α_3 为线性无关的 3 维列向量,且满足

$$A\alpha_1 = \frac{1}{2}\alpha_1 + \frac{2}{3}\alpha_2 + \alpha_3$$
, $A\alpha_2 = \frac{2}{3}\alpha_2 + \frac{1}{2}\alpha_3$, $A\alpha_3 = -\frac{1}{6}\alpha_3$.

- (1) 求矩阵 B,使得 $A[\alpha_1,\alpha_2,\alpha_3] = [\alpha_1,\alpha_2,\alpha_3]B$;
- (2) 证明 A 与(1) 中的 B 相似;
- (3) 求 A 的特征值并计算 $\lim A^n$.
- 11. 设矩阵 $A = \begin{bmatrix} 2 & a & 2 \\ 5 & b & 3 \\ 1 & 1 & 1 \end{bmatrix}$,已知 $\lambda_1 = 1$ 与 $\lambda_2 = -1$ 是 A 的特征值,问 A 能否相似对角化?

若不能相似对角化,则说明理由;若能相似对角化,则求一个可逆矩阵 P,使 $P^{-1}AP$ 为对角矩阵.

1. 下列矩阵中不可相似对角化的是(

(B)
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & -3 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ -2 & -2 & -2 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -3 & -3 & -3 \end{bmatrix}$$

 $\begin{bmatrix} c & d \end{bmatrix}$ 是 2 阶实矩阵,条件 ①ad -bc < 0,②b,c 同号,③b = c,④b,c 异号,则①,②,

③,④中是 A 相似于对角矩阵的充分条件的所有序号为(

3. 设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
,矩阵 \mathbf{B} 相似于矩阵 \mathbf{A} ,记 $r(\mathbf{B} - \mathbf{E}) = r_1$, $r(\mathbf{B} + \mathbf{E}) = r_2$, $r(\mathbf{B} + 2\mathbf{E}) = r_3$

 r_3 ,则().

 $(A)r_1 < r_2 < r_3$

(B) $r_2 < r_1 < r_3$

 $(C)r_3 < r_2 < r_1$

(D) $r_1 < r_3 < r_2$

4. 设 A, B 是 n 阶实对称可逆矩阵,则存在 n 阶可逆矩阵 P,使下列关系式

(1)PA = B;

 $(2)P^{-1}ABP = BA;$ $(3)P^{-1}AP = B;$

$$(3)P^{-1}AP = B$$
:

$$\mathbf{\Phi}^{\mathrm{T}} \mathbf{A}^{2} \mathbf{P} = \mathbf{B}^{2}.$$

成立的个数为(

(A)1

(B)2

(C)3

(D)4

5. 设 $\mathbf{A} = [\alpha_1, \alpha_2, \alpha_3], \alpha_1, \alpha_2, \alpha_3$ 为线性无关的 3 维列向量, \mathbf{P} 为 3 阶矩阵,且 $\mathbf{P}\mathbf{A} = [-\alpha_1, -2\alpha_2, \alpha_3]$ $-3\alpha_3$],则|P-E|=(

(A)6

(B) - 6

(C)24

6. 已知 A 为 2 阶方阵,可逆矩阵 $P = [\alpha, \beta]$ 使得 $P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, Q = [\beta, \alpha], p Q^{-1}A^*Q =$

8. 若 A 为 $n(n \ge 2)$ 阶实对称矩阵,且满足 $E - 2A + A^2 - 2A^3 = O$,其中 E 为 n 阶单位矩阵,则

9. 设矩阵
$$Q = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & 1 & -1 \\ & -1 & 2 \end{bmatrix}$, $AQ = QD$, E 是 3 阶单位矩阵,则 $A^3 - 3A^2 + 2$

5E =

10. 设 $A \in n$ 阶矩阵,满足 $A^2 = A$,且 $r(A) = r(0 < r \le n)$.证明:

$$A \sim \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}$$

其中 E_r 是 r 阶单位矩阵.

- 11. 设向量 $\alpha = [1,1,1]^T$, $\beta = [1,2,3]^T$, $A = \alpha \beta^T$, $B = \beta \alpha^T$.
- (1) 证明矩阵 A 与 B 相似;
- (2) 求一个可逆矩阵 P,使 $P^{-1}AP = B$.

12. 设 3 阶 实 对 称 矩 阵 A 的 各 行 元 素 之 和 均 为 3,向 量 $\alpha_1 = [-1,2,-1]^T, \alpha_2 = [0,-1,1]^T$ 是 方程组 Ax = 0 的两个解.

- (2) 求正交矩阵 Q 和对角矩阵 Λ ,使得 $Q^{T}AQ = \Lambda$.
- 13. 设n 阶实对称矩阵A 满足

 $A^4 + 6A^3 + 9A^2 - 6A - 10E = 0$

求 A^k , k 为任意正整数.

14. 已知 A 是 3 阶实对称矩阵,且 tr(A) = -6, AB = C,其中

微信公众号: 神灯考研 客服微信: KYFT104 QQ群: 118105451

^{7.} 已知 3 阶实对称矩阵 A 有特征值 $\lambda_1 = 3$,其对应的特征向量为 $\xi_1 = [-3,1,1]^T$,且 r(A) = 1,

$$B = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 1 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & -12 \\ 0 & 12 \\ 0 & -12 \end{bmatrix},$$

求矩阵A.

15. 设
$$\mathbf{A} = \begin{bmatrix} 8 & -2 & -2 \\ -2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$$
,求一个实对称矩阵 \mathbf{B} ,使 $\mathbf{A} = \mathbf{B}^2$.

16. 设 3 阶矩阵 $\mathbf{A} = [\alpha_1, \alpha_2, \alpha_3]$,已知 $\mathbf{A}^2 = [\alpha_1, \alpha_2, -3\alpha_1 + \alpha_2 - 2\alpha_3]$,记 $\mathbf{A}^{100} = [\beta_1, \beta_2, \beta_3]$,将 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 写成 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 的线性组合.

17. 设
$$\begin{cases} x_n = x_{n-1} + 2y_{n-1}, \\ y_n = 4x_{n-1} + 3y_{n-1} \end{cases}$$
 $(n = 1, 2, 3, \dots)$, 且 $x_0 = 2, y_0 = 1,$ 求 x_{100} .

18. 设矩阵
$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$
, $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, 且 $M = P^{-1}A^*P$, 求 M 的特征值与特征向量.

- 19. 设 A 是 3 阶方阵, α 是 3 维列向量. 若 α , $A\alpha$, $A^2\alpha$ 线性无关,且满足 $A^3\alpha-2A^2\alpha-A\alpha+2\alpha=$ 0,求:
 - (1)A 的特征值;
 - (2)A 的特征向量(用 A 与 α 表示).
 - **20.** 设 A 是 3 阶矩阵, α_1 , α_2 , α_3 是 3 维列向量, $\alpha_1 \neq 0$,且满足

$$A\alpha_1 = 2\alpha_1$$
, $A\alpha_2 = \alpha_1 + 2\alpha_2$, $A\alpha_3 = \alpha_2 + 2\alpha_3$.

- (1) 证明 α_1 , α_2 , α_3 线性无关;
- (2) 判断 \mathbf{A} 能否相似于对角矩阵,说明理由.

- 1. 已知 3 阶实对称矩阵 A 的特征值为 $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1, \xi_1 = [0, 1, 1]^T$ 为对应于 $\lambda_1 = -1$ 的 特征向量, α 是3维列向量.记 $W_1:\alpha$ 是对应于 $\lambda_2=\lambda_3=1$ 的特征向量; $W_2:\alpha$ 非零且与 ξ_1 正交,则 W_1 是 W_2 的(
 - (A) 充分非必要条件

(B) 必要非充分条件

(C) 充要条件

- (D) 既非充分也非必要条件
- 2. 设A是 3 阶方阵, A^TA 相似于矩阵 $\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$,其中 A^T 表示A的转置,E表示 3 阶单位矩阵. 若 $r(5E-A^{\mathrm{T}}A)=k+r(2E-AA^{\mathrm{T}}), \qquad (4.1)$

则 k 等于(

$$(A) - 3$$

$$(C) - 2$$

3. 设 A, B 均为 n 阶矩阵, A 有 n 个互不相同的特征值, AB = BA. 证明: B 相似于对角矩阵.

关注微信公众号【神灯考研】, 获取更多考研资源!

4. 设
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
,矩阵 B 满足 $AB = A - B$,求可逆矩阵 P ,使 $P^{-1}AP$ 与 $P^{-1}BP$ 均为对角矩阵,

并写出这两个对角矩阵.

5. 设矩阵
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
可逆,3 阶矩阵 \mathbf{B} 满足
$$\mathbf{B}\mathbf{A} = \begin{bmatrix} 2a_{11} & a_{11} + a_{12} & a_{11} + a_{13} \\ 2a_{21} & a_{21} + a_{22} & a_{21} + a_{23} \\ 2a_{31} & a_{31} + a_{32} & a_{31} + a_{33} \end{bmatrix},$$

证明:矩阵 B 可相似对角化,并求一个可逆矩阵 P(HA) 的元素表示)及对角矩阵 Λ ,使 $P^{-1}BP = \Lambda$.

微信公众号【神灯考研】考研人的精神家园

微信公众号: 神灯考研

客服微信: KYFT104

QQ群: 118105451