Análise de Desempenho de Computadores

Definições

Se dissermos que um computador é mais rápido do que outro, qual o significado:

Para um usuário

Para um Chefe de CRC

Para um usuário

- •Interessa o tempo de resposta ou
- •o tempo de execução (execution time) ou
- •latência (*Latency*)

Para um Chefe de CRC

- •Interessa o total de trabalho realizado em uma unidade de tempo ou
- •Taxa de saída (throughput) ou
- •Largura de banda (bandwidth)

Análise de Desempenho de Computadores

Definições

Se dissermos que um computador é mais rápido do que outro, qual o significado:

Para um usuário

Um determinado programa roda mais rápido do que outro

Para um Chefe de CRC

Um sistema executa mais tarefas por hora

Considere as possíveis respostas a um problema:

- a) Aumenta o throughput
- b) Diminui o execution time
- c) ambos

Considere os problemas:

- 1) Aumento do clock da máquina
- 2) Múltiplos processadores para trabalhos diferentes
- 3) Processamento paralelo de problemas científicos

Em geral => se tempo de resposta diminui, a taxa aumenta

- 1) Aumento do clock da máquina
- 3) Processamento paralelo de problemas científicos

Resposta c => ambos melhoram

2) Múltiplos processadores para trabalhos diferentes

Resposta a => Aumenta o throughput nada vai mais rápido, só a quantidade de trabalhos realizadas é que aumenta

Performance = ______ Execution Time

Algumas definições

Algumas definições

Se uma máquina A executa um programa em 10 segundos e B o mesmo programa em 15 segundos, Quanto A é mais rápida que B?

Algumas definições

Se uma máquina A executa um programa em 10 segundos e B o mesmo programa em 15 segundos, Quanto A é mais rápida que B?

$$n = \frac{\text{Performance de A}}{\text{Performance de B}} = \frac{\text{Execution Time B}}{\text{Execution Time A}} = \frac{15}{10} = 1,5$$

$$\text{A máquina A é 1,5 vezes mais rápida que B}$$

Algumas definições

Caso Comum e Caso não Comum

Queremos melhorar o desempenho de uma CPU para somas, entretanto apenas um dos casos abaixo pode ser melhorado. Qual a melhor opção ?

Caso A => Soma com Overflow

Caso B => Soma sem Overflow

Algumas definições

Para quantificar o princípio anterior, usaremos a Lei de Amdahl

A **Lei de Amdahl** é a lei que governa o ganho de desempenho na utilização de processadores:

- quer seja paralelos em relação a apenas um;
- quer seja na execução de apenas uma tarefa.

Seu nome deriva do arquiteto de computadores **Gene Amdahl.**

"O ganho de desempenho que pode ser obtido melhorando uma determinada parte do sistema é limitado pela fração de tempo que essa parte é utilizada pelo sistema durante a sua operação."

Algumas definições

Caso Comum e Caso não Comum

Queremos melhorar o desempenho de uma CPU para somas, entretanto apenas um dos casos abaixo pode ser melhorado. Qual a melhor opção ?

Caso A => Soma com Overflow

Caso B => Soma sem Overflow

Podemos melhorar a performance da CPU para as somas considerando o caso A, que é mais raro (caso não comum), a performance geral entretanto, poderia ser otimizada considerando-se o caso mais geral ou o caso comum (a soma sem overflow).

Algumas definições

Speedup

speedup = Performance do todo com o melhoramento

Performance do todo sem o melhoramento

OU

speedup = Execution time sem o melhoramento

Execution time com o melhoramento

O speedup nos diz quão rápido um trabalho em uma máquina otimizada será, se comparado à não utilização de um determinado melhoramento.

De A até B gasta-se 20 horas, a única maneira é a pé. De B até C, um trecho de 400 Km.

De A até B gasta-se 20 horas, a única maneira é a pé. De B até C, um trecho de 400 Km.

- 1 Andando a pé, à velocidade de 8 Km / hora
- De bicicleta, à velocidade de 20 Km / hora
- 3 Em um carro 1.0, à velocidade de 100 Km / hora
- 4 Em uma Ferrari 458, à velocidade de 350 Km / hora
- 5 Em um Bloodhound SSC, à velocidade de 1600 Km / hora

Parte de 400 Km		Horas para 2 parte	Speedup 2 parte	Horas toda viagem	Speedup Toda Viagem
	8 km/h				
	20 km/h				
	100 km/h				
0 × 3	350 km/h				
	1600 km/h				

Parte de 400 Km		Horas para 2 parte	Speedup 2 parte	Horas toda viagem	Speedup Toda Viagem
	8 km/h	50			
	20 km/h	20			
	100 km/h	4			
0 73	350 km/h	1.14			
	1600 km/h	0.25			

Parte de 400 Km		Horas para 2 parte	Speedup 2 parte	Horas toda viagem	Speedup Toda Viagem
厉	8 km/h	50	50/10 = 1		
	20 km/h	20	50/20 = 2.5		
	100 km/h	4	50/4 = 12.5		
0 × 5	350 km/h	1.14	50/1.14= 43.9		
	1600 km/h	0.25	50/0.25= 200		

Parte de 400 Km		Horas para 2 parte	Speedup 2 parte	Horas toda viagem	Speedup toda Viagem
M	8 km/h	50	50/10 = 1	70	
	20 km/h	20	50/20 = 2.5	40	
	100 km/h	4	50/4 = 12.5	24	
8 A3	350 km/h	1.14	50/1.14= 43.9	21.14	
The second secon	1600 km/h	0.25	50/0.25= 200	20.25	

Parte de 400 Km		Horas para 2 parte	Speedup 2 parte	Horas toda viagem	Speedup toda Viagem
历	8 km/h	50	50/10 = 1	70	70/70 = 1.0
	20 km/h	20	50/20 = 2.5	40	70/40= 1.8
	100 km/h	4	50/4 = 12.5	24	70/24= 2.9
@ 1 3-	350 km/h	1.14	50/1.14= 43.9	21.14	70/21.14= 3.3
	1600 km/h	0.25	50/0.25= 200	20.25	70/20.25= 3.45

A lei de Amdahl depende de 2 fatores:

1) A fração de tempo de computação que pode ser convertida para tirar vantagem do melhoramento

No exemplo, 50/70. Iremos chamar de Fração melhorada ou **Fm. Fm** será sempre < 1.

2) O melhoramento obtido executando-se a melhoria. Que significa o quão rápido a tarefa será se o melhoramento for implantado..

Corresponde ao "speedup para a segunda parte" no exemplo Iremos chamar de Speedup sobre a Fração melhorada ou $\mathbf{Sup}_{\mathsf{Fm}}$. O $\mathbf{Sup}_{\mathsf{Fm}}$ será sempre >= 1

O tempo de execução da máquina original com o melhoramento será o tempo da parte não melhorada + o tempo da parte melhorada:

Execution time $_{novo}$ = Execution time $_{velho}$ * ((1 - Fm) + Fm / Sup $_{Fm}$)

O Speedup total do sistema será a relação entre os tempos de execução:

Sup total =
$$\frac{1}{(1 - Fm) + Fm / Sup_{Fm}}$$

Mas não nos interessa saber o tempo absoluto.

Podemos normalizar dividindo-se todas as parcelas pelo tempo total e Trabalhando apenas com as porcentagens ou as Frações:

Podemos usar a fração melhorada expressa em termos normalizados, isto é, dividindo-se pelo tempo total do processo:

$$Fm = 40 / 100 = 0.4$$

A parte não melhorada e normalizada corresponde então a:

$$(100 - 40) / 100 = 0.6$$

Um exemplo simples:

Considere que um processo qualquer demore 100 segundos.

Podemos melhorar uma parte, correspondente a 40 segundos, em 10 vezes.

Qual o Speedup total do sistema?

Execution Time_{novo} =
$$(100 - 40) + 40/10 = 64$$

Sup total =
$$\frac{\text{Execution time}_{\text{velho}}}{\text{Execution time}_{\text{nove}}} = \frac{100}{64} = 1.56$$

Como a Fm irá melhorar 10 vezes, significa que será:

$$0,4 / 10 = 0.04$$

Sup total =
$$\frac{\text{Execution time}_{\text{velho}}}{\text{Execution time}_{\text{novo}}} = \frac{1}{0.6 + 0.4/10} = \frac{1}{0,64} = 1.56$$

$$\text{Sup}_{\text{total}} = \frac{1}{(1 - \text{Fm}) + (\text{Fm})} = \frac{1}{0.64} = 1.56$$

Exercícios

1

Considere que a memória cache seja 5 vezes mais rápida que a memória principal.

Se ela será utilizada 90% do tempo, qual o Speedup total proporcionado pelo uso da Cache?

Fração melhorada = 0.9

$$S = 1 / [(1 - 0.9) + (0.9 / 5)] = 1 / 0.1 + 0.18$$

 $S = 1 / 0.28 = 3.57$

Isso quer dizer que será executado 3,57 vezes mais rápido do que se não tivesse cache.

3

Podemos substituir um processador por outro 5 vezes mais rápido por 5 vezes o seu preço.

Sabe-se que o processador será utilizado em 50% do tempo, o restante deverá aguardar operações de I/O.

Se o processador corresponde a 1/3 do preço da máquina, essa alteração é válida?

(Obs.: Use uma simples relação custo/ganho)

$$S = 1 / [0.5 + (0.5 / 5)] = 1 / 0.6 = 1.67$$

Custo =
$$(5/3) + (2/3) = 7/3 = 2.33$$

Não é interessante, o custo dobra e a melhora é pequena

2

Considere que um processador sofrerá o acoplamento de um coprocessador aritmético.

Este coprocessador é capaz de tornar as operações 5 vezes mais rápidas.

- a) Qual o Speedup se utilizarmos o coprocessador 50% do tempo?
- b) Qual deveria ser a utilização do coprocessador para obtermos uma melhoria total de 2 vezes?
- c) Considere que iremos utilizar o coprocessador 50% do tempo, quantas vezes esse coprocessador deverá tornar as operações mais rápidas se eu preciso de uma melhoria total mínima de 2.5 vezes?

a)
$$S = 1 / [(1 - 0.5) + (0.5 / 5)] = 1 / (0.5 + 0.1) = 1 / 0.6 = 1.67$$

b)
$$2 = 1 / [(1 - F) + (F / 5)] -> 1 - F + 0.2F = 0.5 -> -0.8F = -0.5 = 0.625$$

c) Resultado não faz sentido, ou seja, não é possível essa configuração

$$S1 = 1 / [(1 - 0.2) + (0.2 / 10)] = 1 / 0.82 = 1.21$$

S2 = 1 /
$$[(1 - 0.5) + (0.5 / 2)]$$
 = 1 / $(0.5 + 0.25)$ = 1 / 0.75 = 1.33

As implementações em FP (ponto flutuante). Em especial as operações de raiz quadrada, variam significativamente em performance.

Suponha que as FPSQR (raízes em FP) são responsáveis por 20% do tempo de execução em uma máquina.

Nossa proposta é adicionar um hardware (coprocessador) que acelere esta operação por um fator de 10.

Existe uma outra proposta que é a de melhorar todas as operações de FP. As operações de FP são responsáveis por 50% do tempo de execução.

Os projetistas acreditam que podem melhorar as instruções de FP por um fator de 2 usando os mesmos recursos que usariam para as FPSQR).

Qual a melhor alternativa? Segunda alternativa

5

Suponha que tenhamos melhorado uma parcela do tempo de execução de uma máquina por um fator de 10.

Esse modo melhorado é usado 50% do tempo medido como porcentagem "quando o melhoramento está implementado".

- a) Qual o Speedup obtido com o melhoramento?
- b) Qual a porcentagem de tempo de execução inicial foi convertida para esse modo rápido?

- a) S = Novo / Velho -> Fator = Melhoria + Velho -> (0,5 * 10) + 0,[£]
- b) F = Velho / Novo = 5 / 5,5 = 0,9 = 90%