

Transformátory (silové)

Miloslava Tesařová

Západočeská univerzita v Plzni Katedra elektroenergetiky a ekologie

Princip transformátoru

 Φ – magnetizační indukční tok.

Převod transformátoru

Převod transformátoru:

= podíl indukovaných napětí na primární a sekundární straně

$$U_I = U_{iI} = \sqrt{2} \pi f \Phi N_1$$

$$U_2 = U_{i2} = \sqrt{2} \pi f \Phi N_2$$

$$P = \frac{U_1}{U_2} = \frac{U_{i1}}{U_{i2}} = \frac{N_1}{N_2}$$

Při zanedbání ztrát na trafu: výkon na primáru = výkon na sekundáru

$$3 \times U_1 \times I_1 = 3 \times U_2 \times I_2$$
 \Rightarrow $U_1 / U_2 = I_2 / I_1$ \Rightarrow $P = \frac{I_2}{I_1}$

$$U_1 / U_2 = I_2 / I_1$$

$$\Rightarrow$$
 $P = \frac{I_2}{I_1}$

Převod transformátoru

V praxi definujeme tyto převody:

- a) Jmenovitý převod
 - poměr jmenovitých napětí trafa, např. 110/23 kV

$$P = U_1 / U_2$$

- jmen. sekundární napětí U_2 je u snižujících traf o 5% vyšší než jmen. napětí sítě Un2 (zčásti se kompenzuje úbytek napětí na trafu, což napomáhá udržení napětí v dovol. mezích v celé síti)

- b) Fiktivní převod
 - poměr jmenovitých napětí sítí, např. 110/22 kV

$$P = U_{n1} / U_{n2}$$

- c) Skutečný převod
 - poměr skutečně nastavených závitů pomocí přepínače odboček

$$P = N_1/N_2$$

Náhradní schéma trafa

 U_1 - napájecí napětí primární strany transformátoru

 U_{21} - svorkové napětí sekundární strany přepočtené na primární stranu

 U_i - vnitřní indukované napětí, $U_i = U_{i1} = U_{i21}$

 I_I - primární proud

 I_{21} – sekundární proud přepočtený na primární stranu

 I_{θ} – proud naprázdno

Iμ – magnetizační proud

 I_{Fe} – proud na krytí ztrát v železe

 R_{1-} odpor vinutí primární cívky

 R_{21} – odpor vinutí sekundární cívky přepočtený na prim. stranu

 $X_{\delta l}$ – rozptylová reaktance primárního vinutí

 X_{621} – rozptylová reaktance sekundárního vinutí přepočtená na primární

R_{Fe} - odpor zahrnující ztráty v železe

 X_{μ} – magnetizační reaktance

 Z_{2I} – impedance zátěže

Trafo 110 kV \pm 8x2% / 23 kV

$$S_{nT} = 25 \text{ MVA}$$

$$u_k = 10,7 \%$$

Třífázové trafo

Trojvinuťové s nevyvedeným terciárem do trojúhelníka YN yn 0 (d)

Jmenovitá napětí, převod, regulační rozsah

Jmenovitý výkon

vn/nn vyráběné do výkonu 2,5 MVA 110/22 kV do 63 MVA

Napětí (impedance) nakrátko u_{k%}

Proud naprázdno i_{0%}

Ztráty - nakrátko ΔP_k - naprázdno ΔP_0

Veličina	Tolerance	
Napěťový poměr	Menší z následujících hodnot: a) ± 0,5% garantovaného poměru napětí b) ± 1/10 měřené impedance nakrátko na hlavní odbočce.	
Impedance nakrátko	±10% garantované impedance nakrátko	
Ztráty naprázdno	+15% garantovaných ztrát naprázdno	
Ztráty při zátěži	+15% garantovaných ztrát při zátěži	
Celkové ztráty (se zátěží i naprázdno)	+10% garantovaných celkových ztrát	
	(naprázdno i se zátěží)	
Proud naprázdno	+30% garantovaného proudu naprázdno	

Zapojení vinutí + hodinové číslo

Tabulka 5: Tolerance některých parametrů transformátoru podle IEC 76-1.

vvn/vvn YNynd

vvn/vn YNd1(d) nebo YNyn0(d)

vn/vn a vn/nn Dyn

vn/nn do 400 kVA Yyn0 nebo YZn1

Proud naprázdno i_{0%} - cca do 1% In

Ztráty naprázdno ΔP_0

- Joulovy ztráty v primárním vinutí (zanedbatelné)
- ztráty v železe vířivými proudy a hysterézí

Napětí (impedance) nakrátko u_{k%}

$$u_{k\%} = U_{k1} / U_{n1f}$$
 pro $R_T << X_T$ $u_{k\%} = U_{k1} / U_{n1f} = (Z_T \cdot In) / U_{n1f}$

vn/nn 4 − 6 %

velká trafa cca 8 – 15 %

Ztráty nakrátko ΔP_k

- Joulovy ztráty v primárním a sekundárním vinutí

Ztráty transformátoru

Ztráty naprázdno ΔP_0 (v železe)

$$\Delta P_0 = 3 \cdot G \cdot U_f^2 = G \cdot U^2$$

Omezení ztrát - konstrukcí (lakem izolované plechy o tloušťce do cca 0,5 mm)
- materiálem mag. jádra (tzv. orientované plechy, amorfní materiály)

Spékání lakem izolovaných plechů → omezení vibrací a hluku traf

Materiály magnetických jader

- neorientované plechy válcované za tepla (do r. 1960)
- orientované plechy válcované za studena
- vysoce orientované plechy, tenké cca 0,2 mm
- amorfní plechy (slitina Fe, Si, B, rychlé ochlazení tekutého kovu zamezí růstu krystalického zrna) tenké cca 0,02 mm, až 1/3 ztráty oproti předcházejícím plechům

Ztráty transformátoru

Ztráty nakrátko Δ P_k (v mědi) – cca 3 až 4 x vyšší než ΔP₀

$$\Delta P_{kn} = 3 \cdot R \cdot I_n^2$$

Celkové ztráty v závislosti na zatížení trafa – cca 1% Sn

$$\Delta P_{celk} = \Delta P_0 + \Delta P_k \cdot \left(\frac{I}{I_n}\right)^2$$
, kde

I-skutečný proud

I_n – jmenovitý proud

DTR 22/0,42 kV 400 kVA	TR se standardními ztrátami	TR s redukovanými ztrátami
P _o (W)	930	610
P _k (W)	6000	4600

Ztráty transformátoru

Optimální zatížení trafa

- zatížení trafa cca 70% Sn a méně

Podle počtu fází – třífázové

- jednofázové
- velké 3f transformátory mohou být sestaveny ze tří 1f traf

Podle zapojení do soustavy

- snižovací
- zvyšovací (vyvedení výkonu od generátoru)

tzv. bloková trafa – vyvedení bloku elektrárny (mezi G a trafem obvykle zapouzdřené vodiče)

Podle počtu vinutí

- dvojvinuťové (primární a sekundární vinutí)
- trojvinuťové (primární, sekundární a terciární vinutí)
 - s vyvedeným terciárem, např. elektrárny
 - s nevyvedeným terciárem, např. TR 110/22 kV terciár do uzavřeného trojúhelníka (omezení nesymetrie)
- autotransformátory, např. VVV /VVN

Podle uspořádání magnetického obvodu

plášťové

- jádrové

Podle izolačního média vinutí

- olejové velké výkony, účinnější chlazení
- suché menší výkony, lze umístit i v patře či na střeše, vyšší požární bezpečnost

	Olejový DTR	Suchý DTR
VÝHODY	+Cena +Dlouhá životnost (min. 25 let) +Nízká hlučnost +Nízké ztráty +U hermetického provedení takřka nulové náklady na údržbu +"zelené transformátory" – plněné syntetickým nebo rostlinným olejem -> nízká hořlavost	+Minimální zatížení životního prostředí +Levná montáž a provoz +Menší požární riziko +Vysoká krátkodobá přetížitelnost +Příznivé možnosti zakrytování +Žádné chladící kapaliny
NEVÝHODY	-Vybudování záchytné olejové jámy nebo vany -Horší montáž	-Vyšší pořizovací náklady -Větší rozměry -Hlučnost
POUŽITÍ	 Tam, kde nehrozí nebezpečí vzniku požáru a výbuchu Mimo chráněné oblasti Pro venkovní i vnitřní transformační stanice 	 Průmyslové i občanské stavby (nemocnice, hotely, divadla, letiště, metra,)- tam, kde se netoleruje znečištění ŽP (blízkost zdrojů pitné vody), nebezpečí vzniku požáru a výbuchu Pro venkovní a sloupové transformační stanice

Podle umístění

- venkovní velké výkony
- vnitřní menší výkony, hasicí systémy, větrání, oddělení od rozvodných zařízení

Podle umístění

- venkovní velké výkony
- vnitřní menší výkony, hasicí systémy, větrání, oddělení od rozvodných zařízení

Venkovní dvou-sloupová trafostanice

Kiosková trafostanice se 2 transformátory

Podle řízení napětí

- regulovatelné pod zatížením
 - přepínač odboček lze přepnout bez vypnutí trafa
 - vvn/vvn, 110 kV/vn
 - výjimečně i vn/nn nejméně cca 3x dražší!

- regulovatelné bez zatížení
 - přepínač odboček lze přepnout pouze při vypnutém trafu
 - vn/vn a vn/nn

Transformátor 110 kV / vn

Chlazení transformátoru

4- písmenné označení způsobu chlazení

- 1. písmeno vnitřní chladicí médium v kontaktu s vinutím
- 2. písmeno způsob oběhu vnitřního chladicího média
- 3. písmeno vnější chladicí médium (vnější chladicí soustava)
- 4. písmeno způsob oběhu vnějšího chladicího média

Chladicí médium

O olej

A vzduch

W voda

K jiná kapalina

Způsob oběhu

N přirozená cirkulace

F nucená cirkulace (čerpadlo, větrák)

ONAN - olejové trafo, nádoba chlazená vzduchem

použití: trafa vn/nn

ONAF - olejové trafo, nádoba ofukovaná vzduchem

použití: velká trafa vvn/vn, vvn/vvn

Ofukem pomocí ventilátorů se dá zvýšit zatížení trafa až o 40%

Přenosová soustava Phase shift transformers (PST)

Distribuční soustava

- trafa vn/nn regulovatelná pod zatížením (OLTC)
- nn strana kovová fólie
- olejová hermetizovaná trafa pružná nádoba bez konzervátoru, hermeticky uzavřená, zabránění pronikání vlhkosti a O₂

Přenosová soustava Phase shift transformers (PST)

Ovlivnění toků po vedeních vlivem Phase Shifting Transformer

Složení Phase Shifting Transformer z jednotek

Při regulaci je možné dosáhnout vlivem modulu a úhlu přídavného regulačního napětí různých výsledných funkcí transformátoru:

Regulace napětí na PST - modul, úhel

Vliv PST na přerozdělení toku výkonu v regionu střední Evropa

Zdroj: OTE

Děkuji za pozornost, doplnění prezentovaných informací a vaše dotazy.

Miloslava Tesařová

Západočeská univerzita v Plzni Katedra elektroenergetiky a ekologie