mit Konsmondaran zu Schwierigheten!

Zurich University of Applied Sciences

18. Januar 2019

Elektrizitätslehre 3

Klassen: ET

Semesterabschlussprüfung

Vorname:	Name:
Erreichte Punktezahl:	Note:

Bearbeitungszeit: 90 Minuten

Wichtige Hinweise

- Papierunterlagen und Taschenrechner sind erlaubt.
- Die Aufgaben müssen auf den Aufgabenblättern gelöst werden.
- Die Heftklammern dürfen nicht entfernt werden.
- Resultate ohne klar nachvollziehbaren Lösungsweg bzw. ohne Begründung geben keine Punkte.
- **Tipp**: Zuerst alle Aufgaben durchlesen und mit der einfachsten beginnen.
- Verwenden Sie keinen roten Stift, Bleistift ist erlaubt.
- Teilaufgaben sind unabhängig lösbar.

Aufgabe 1. Cosinus-förmige Signale und komplexe Zeiger (6P)

An einer komplexen Impedanz \underline{Z} wird der in Abb. 1 dargestellte Spannungsund Stromverlauf gemessen.

a) Bestimmen Sie den Real- und Imaginärteil der entsprechenden komplexen Impedanz $\underline{Z} = \frac{\underline{U}}{\underline{I}}$. (3 P)

$$a(t) = 5V \cdot cos(2\pi t t + 90^{\circ})$$
 $\hat{A} = 5V \cdot e^{390^{\circ}}$
 $i(A) = 2A \cdot cos(2\pi t t + 435^{\circ})$ $\hat{A} = 2A \cdot e^{3\pi 5^{\circ}}$

$$Z = \frac{\hat{\mathcal{Q}}}{\hat{\mathbf{z}}} = \frac{SV \cdot e^{\hat{\mathbf{z}}NV}}{SN \cdot e^{\hat{\mathbf{z}}NV}} = \frac{25R \cdot e^{\hat{\mathbf{z}}NV}}{SN \cdot e^{\hat{\mathbf{z}}NV}}$$

Welche der drei Bauelemente R, L und C sind nötig um die Impedanz \underline{Z} zu realisieren, skizzieren Sie das entsprechende Parallelersatzschaltbild für die Impedanz \underline{Z} . Begründen Sie Ihre Antwort! Die Bauteilwerte müssen nicht berechnet werden? (3 P)

Hautige Fehler: Phose felich objelesen.

Aufgabe 2. Reale Spule

(6P)

Abbildung 2: Messschaltung

An dieser Messschaltung wurden für eine reale Spule die folgenden Effektivwerte mit dem Oszilloskop gemessen:

 $\begin{array}{lll} f=0: & \text{Ch } 1=1.0\,\text{V} & \text{Ch } 2=0.9\,\text{V} \\ f=1\,\text{MHz}: & \text{Ch } 1=1.0\,\text{V} & \text{Ch } 2=0.8\,\text{V} \\ f=100\,\text{kHz}: & \text{Ch } 1=1.0\,\text{V} & \text{Ch } 2\approx0\,\text{V} & \longleftarrow \text{Resonanz der Spule} \end{array}$

a) Berechnen Sie näherungsweise die drei Parameter L, R_s und C_p des linearen Spulenersatzschaltbildes. **Hinweis:** Zeichnen Sie zuerst für jede Frequenz ein vereinfachtes Schema, das jeweils nur die dominierenden Elemente der Spule enthält.

$$f = 0:$$

$$| R_s | R_s = \frac{14}{99} \cdot 0.71 = 11.72$$

$$| M_s | R_s = \frac{14}{99} \cdot 0.71 = 11.72$$

$$| M_s | R_s = \frac{14}{99} \cdot 0.71 = 11.72$$

$$V_{c} = \sqrt{1 - g g^{2}} = \sqrt{936} = 9,6V$$

$$X_{c} = -\frac{96}{9,8}.7000R = -750R$$

$$C_{p} = \frac{1}{2\pi f \times c} = \frac{1}{2\pi f \times c} = \frac{9272 nF}{2\pi f \times c}$$

$$f = 100 \text{ MHz}: \qquad X_2 \cong X_C = 7500 \Omega = \omega \cdot L \Rightarrow L = \frac{7700}{257 \cdot 10^5} = \frac{12 \text{ m/H}}{2}$$

$$C_p = \frac{1}{7} L$$

$$C_h = \frac{1}{7} L$$

Howhy Feller: Ersote shall bilder orhomed, when with die
geeignete Holhode zur Borchung.

off wide die Formel fix die Resonant freguent
von Perallelschrieghreis mit verder spile vermen als.

um Rs zu Loreshon.

Aufgabe 3. Blindleistungskompensation

(6P)

Der Motor in der folgenden Abbildung nimmt am $230\,\mathrm{V},\,50\,\mathrm{Hz}$ -Netz eine Wirkleistung von $300\,\mathrm{W}$ und eine induktive Blindleistung von $100\,\mathrm{var}$ auf.

a) Zeichnen Sie ein qualitativ richtiges Zeigerdiagramm für alle Ströme und Spannungen unter der Annahme C=0. (2 P)

(2P)

b) Berechnen Sie die komplexe Impedanz des Motors.

$$\begin{aligned}
|2| &= \frac{|\mathcal{Y}|^2}{|5|} = \frac{(230V)^2}{|300^2 + 100^2|} = \frac{230V^2}{10^{5/2}VR} = \frac{767,3}{10^{5/2}VR} = \frac{767,3}{10^{5/2}VR} \\
&= 250V^2 = 267,3 \text{ Const.} \\
&= 250V^2 = 267,3 \text{ Co$$

 $2 = 167,3 \Omega \cdot e^{\frac{1}{3}} \cdot \frac{19,43}{2} \cdot e^{\frac{1}{3}} = \frac{158,7 + i52,53}{5,977 \cdot 10^{3}} \cdot \frac{1}{5} \cdot \frac{19,30}{5} \cdot e^{\frac{1}{3}} = \frac{1}{5,675 - i7,877} = \frac{1}{$

c) Der Kondensator im Schaltbild dient der Blindstrom-Kompensation. Wie gross muss er gewählt werden, damit für den Leistungsfaktor gilt $\cos(\varphi) = 1$? (2 P)

$$X_{L} = -X_{C}$$

$$X_{L} = \frac{U^{2}}{Q} = \frac{(230V)^{2}}{100VAR} = 529 \Omega$$

$$X_{C} = -\frac{1}{2\pi f C} \qquad C = -\frac{1}{2\pi f X_{C}} = \frac{1}{2\pi so \cdot ses}$$

$$C = 6,02VF$$

Häwhise Fehler: Impedan d. 17 hors hat dazu vorleitet,

den Blisdontal der Impedans por Senior Kondomater

zu Kompensieren, d.h. er unde die Kup. tri

Senior scheltung berechnet.

Autsuse Sevienkondensator mid Font: Sevenkoperatitet interswor!

Autgole a noi za wagegestillet.

Aufgabe 4. Frequenzgang

(6P)

a) Skizzieren Sie Amplituden- und Phasengang für die folgende normierte Übertragungsfunktion

$$\underline{H}(\omega) = -k \cdot \frac{j\frac{\omega}{\omega_1}}{\left(1 + j\frac{\omega}{\omega_1 Q_1} + \left(j\frac{\omega}{\omega_1}\right)^2\right) \cdot \left(1 + j\frac{\omega}{\omega_2 Q_2} + \left(j\frac{\omega}{\omega_2}\right)^2\right)},$$

mit k=0.1, $\omega_1=1\,\mathrm{kHz}$, $\omega_2=10\,\mathrm{kHz}$, $Q_1=Q_2=10$. Beschriften Sie die Achsen!

Hilfsskizze Amplitudengang

Howing Feller, Vovcuichen ignorial.

Aufgabe 5. Belasteter Übertrager

 \square Bandpass

(6P)

Gegeben ist das folgende Trafoersatzschaltbild mit Last.

- a) Von welchem Typ ist die Übertragungsfunktion $\underline{H}(f) = \frac{\underline{U}_2(f)}{\overline{U}_1(f)}$? Nur eine Antwort ist richtig, **begründen** Sie diese! (2P)
 - ☐ Tiefpass Die In dattinitat bildet bei tieden Frey.

☐ Hochpass

einen Kurschlus. Bei hohen Frequenzan ist sie hochobuniz und beeindrachtigt

die Obertrogung nicht.

Praziser; Dos Scholdbild besitat das

ver an fachte Erretzschaltbild

welcher genou einem Hochpass entspricht.

Howing Febler: a Usz vie Workagung, that boundst o 2'= in. 2 , 2'= in. 2 onshelt 2'= une 2 o Kaire Mrung von Note woh bordnang b) Geben Sie mit Hilfe von Formeln den Rechenweg an, um $\underline{U}_2(f)$ zu berechnen. In Ihren Formeln darf der Operator || für die Parallelschaltung von Impedanzen vorkommen. (4 P)

$$U_{2} = U_{0} \cdot \frac{R_{L}}{R_{L} + R_{C}U_{2}}$$

$$U_{0} = U_{1}^{"} \cdot \frac{j\omega l_{2}^{"} /\!/ (R_{C}u_{2} + R_{L})}{R_{C}u_{1}^{"} + \left[j\omega l_{2}^{"} /\!/ (R_{C}u_{2} + R_{L})\right]}$$

Aufgabe 6. Wellen auf Leitungen

(6P)

Eine Quelle mit dem Innenwiderstand $R_0 = 40\,\Omega$ wird an eine Leitung mit dem Wellenwiderstand $R_W = 50\,\Omega$ und der Signallaufzeit τ angeschlossen. Die Leitung ist mit einem Verbraucher abgeschlossen, dessen Innenwiderstand gleich $R_L = 600\,\Omega$ beträgt. Die Quelle erzeugt im Inneren einen Impuls mit der Spannung $\hat{u}_0 = 10\,\mathrm{V}$, siehe Bild unten.

Wegen der fehlenden Anpassung entstehen auf der Leitung Reflexionen, sodass der am Verbraucher ankommende Puls eine verfälschte Form besitzt. Die Pulsform $u_0(t)$ soll unverzerrt am Verbraucher ankommen. Dazu soll die

Schaltung durch einen einzelnen Zusatzwiderstand modifiziert werden.

- a) Für eine Modifikation gibt es zwei Varianten, skizzieren Sie diese in die Vorlage in Abb. 3. (2 P)
- b) Berechnen Sie für beide Varianten die Spannungsamplitude als auch die Stromamplitude des am Verbraucher ankommenden Impulses. (4 P)

Hændige Fehler: • R= 550 R • Ru unde aut 600 R goodst.

• Fehler in Barching sney bis Or und 12.

Problem: Anticobentyp zu wenig genöt.

Variante 1)

Abbildung 3: Vorlagen zum Einzeichnen der Varianten.

$$a_0 = \frac{R_W}{R_0 + R_W} = \frac{50}{50 + 10} = \frac{1}{2}$$

$$t_1 = 1 + V_2 = 1 + \frac{R_L - R_W}{R_W + R_2} = 1 + \frac{600 - 50}{650} = \frac{1200}{650} = \frac{1200}{650}$$

$$\hat{U}_L = \hat{U}_0 \cdot Q_0 + t_1 = 10V \cdot \frac{1}{2} \cdot \frac{120}{65} = 5V \cdot \frac{24}{13} = \frac{9,23V}{13}$$

$$(17)$$

$$\hat{A}_{L} = \frac{\hat{a}_{L}}{R_{L}} = \frac{9.23V}{600R} = 0,0.114R = 15,4 mR$$
 (19)

Variante 2:

$$Q_0 = \frac{R_W}{R_0 + R_W} = \frac{50}{40 + 50} = \frac{9,5556}{40 + 50}$$

$$\dot{a}_{i} = 1 + r_{i} = 1$$
 $\dot{a}_{i} = \dot{a}_{0} \cdot a_{0} \cdot \dot{\epsilon}_{i} = 10V \cdot 0,5556 = 5,556V$

$$u_{\ell} = u_{0} \cdot \alpha_{0} \cdot \xi_{\ell} = 10 V \cdot q_{s}^{s} \cdot 0$$

$$\hat{l}_{l} = \frac{\hat{u}_{l}}{R_{l}} = \frac{5,551V}{600R} = 0,0003R = \frac{9,3mA}{2}$$