Регулярные графы

Пырэу Виталий

15 октября 2019 г.

Пусть n— число вершин в правой доле (оно равно числу вершин в левой, так как иначе совершенного паросочетания нет). Добавим в G фиктивные исток s и сток t. Соединим вершины первой доли с истоком (все ребра построенной сети имеют вес 1), а вершины второй доли со стоком. Все ребра двудольного графа присутствуют в сети. Покажем, что любой разрез в этой сети имеет пропускную способность не менее, чем n.

Фиксируем произвольный разрез (S, T).

Обозначим через L_s, L_t вершины левой доли, лежащие в S и T соответственно (аналогично определяется R_s, R_t). Рассмотрим ребра, выходящие из вершин множества L_s . Пусть N — множество вершин, смежных каким-то вершинам L_s . Поскольку граф d-регулярный, то вершины из N и L_s связаны $|L_s|d$ ребрами. Значит, вершин в N не менее, чем L_s (в противном случае, в N есть вершина степени >d по принципу Дирихле). Значит, в $N \cap R_t$ лежит не менее, чем $|L_s| - |R_s|$ вершин. Все ребра, соединяющие L_s и $N \cap R_t$ попадают в разрез и их как минимум $|L_s| - |R_s|$. Еще в разрез попадают $|L_t|$ ребер, выходящих из истока и $|R_s|$ ребер, входящих в сток. Всего этих ребер $\geq n$. Значит, поток величины n (величина максимального потока) точно есть (любой разрез имеет величину $\geq n$ и есть разрез величины n — например, $S = \{s\}$, а T — все остальное). Запустим, не теряя общности, алгоритм Диница для его нахождения (это необходимо для того, чтобы поток, проходящий по каждому ребру был либо 0, либо 1, а не дробный). Тогда по потоку можно восстановить паросочетания — в него войдут только насыщенные ребра. Это паросочетание совершенное.