Speech motor planning: Evidence from neurodegenerative disorder

S.C. Angela Xu¹*, Donna C. Tippett², Brenda Rapp^{1,2}, and Kyrana Tsapkini^{2,1}

- ¹ Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
- ² Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- *Email of corresponding author: angela.xu@jhu.edu

Introduction

- **Speech motor planning**: critical in speech production; take place after phonological/phonetic encoding and before speech motor execution. Levels of processing **Disorders**
- Apraxia of speech (AOS) is a disorder that affects speech motor planning → distorted speech sounds, substitutions, insertions, inconsistent errors, groping behaviors, and deviations in tone, stress, or rhythm.
- AOS: typically co-occurs with aphasia (higher-level language disorder) and dysarthria (motor execution disorder).
- Phonological/phonetic Aphasia encoding **Motor planning** Apraxia of speech (AOS) Motor execution Figure 1. Processes and relevant disorders in speech production.

lvPPA (n = 12) nfvPPA (n = 12)

67.58 (5.28)

16.50 (2.43)

2.71 (1.64)

4.13 (3.16)

66.75 (9.47)

16.17 (2.89)

3.67 (2.45)

svPPA (n = 7)

65.14 (9.21)

16.67 (1.03)

4.86 (3.13)

5.25 (3.08)

- However, there is no consensus in the neural substrates underlying speech motor planning.
 - Post-stroke AOS: associated with lesions to left precentral gyrus (PrCG) (Basilakos et al, 2015, 2018; Takakura et al., 2019).
 - Neurodegenerative disease: left premotor cortex and supplemental motor cortex (Utianski et al., 2018; Cordella et al., 2019).
- The specific **processes** involved in speech motor planning are often **underspecified**.
- This study: investigated AOS in individuals with Primary Progressive Aphasia (PPA, a neurodegenerative disorder affecting language), a less studied population.
 - Address issues specifically concerning the PPA phenotypes, evaluate if more diffuse damage profiles can provide additional insights into the nature of the speech planning processes

Research questions:

- 1. Which brain areas are uniquely associated with AOS in PPA?
- 2. What do the areas associated with AOS reveal about the specific processes that are impaired?

Methods

Participants: 34 PPA individuals (19 females; 12 lvPPA, 12 nfvPPA, 7 svPPA, 1 mixed, 2 unclassifiable) Data:

- Behavioral data
 - Oral picture naming: Boston Naming Test (BNT; Williams et al., 1989)
 - Single word repetition: subtest 2 of
 - FTD-CDR 6.29 (3.17) Apraxia Battery for Adults (ABA2) (Dabul, 2000) Table 1. Demographics of PPA participants. ■ 20 triplets of words, such as "thick, thicken, thickening"

 - Length effect scores (difference in total item scores between the longest and shortest words in each triplet)

Mean (SD)

Years of education

Years post onset

- Speech language pathologist (SLP) ratings: for expressive aphasia, AOS, and dysarthria
 - Based on audio recordings of BNT, ABA2, and picture description
 - Using an in-house scale of 0-3 (0 = absent, 3 = severe)
- Neuroimaging: T1-weighted MPRAGE structural scans

Analysis 1: Neural underpinnings of speech and language disorders

- * Whole-brain voxel-based morphometry (VBM) on the T1-weighted images using FSL-VBM (Douaud et al., 2007) \rightarrow identify voxels significantly correlated (p < .05) with each SLP ratings, controlling for the other two ratings
 - > Correction for multiple comparison: permutation-based non-parametric testing using threshold-free cluster enhancement (TFCE)

Analysis 2: Relationship between volume of significant clusters and SLP ratings

- ❖ Multiple regression analysis → test if each cluster of significant voxels accounted for unique variance in SLP ratings
 - > SLP ratings ~ cluster 1 volume + cluster 2 volume + ...

Analysis 3: Brain areas associated with length effect

- ❖ Multiple regression analysis → evaluate if length effects were uniquely associated with specific brain areas
 - ➤ length effect ~ cluster 1 volume + cluster 2 volume + ...

Results

Analysis 1: Neural underpinnings of speech and language disorders

L R L R L R L R L R L R L R L R L R L R	Voxels correlated with AOS ratings (corrected_p < 0.05)												
y=-65 $y=-50$ $y=-35$ $y=-20$ $y=-5$ $y=10$ $y=25$ $y=40$	L	R	L	R L	R	L R	. L R	L R	L R	L R	L		
	-80)	y=-65	y=-5	50	y=-35	y=-20	y=-5	y=10	y=25	y=40		

	Siza (mm2)	Center of Mass			
		Size (mm3)	X	у	Z
Expressive aphasia	cluster 1	18784	-38.2	-2.31	-18
Lapressive apitasia	cluster 2	992	-25	-27.6	-9.77
	cluster 1	2480	-56.2	-45.1	19.8
AOS	cluster 2	2000	-60.1	-8.12	16.6
	cluster 3	896	14.4	-72.2	-5.82

Table 2. Clusters associated with expressive aphasia and AOS ratings.

Figure 3. VBM results: Voxels significantly associated with AOS ratings.

- **Expressive aphasia**: associated with bilateral, left-lateralized cortical volumes in the temporal lobes.
- **Dysarthria:** no voxels associated with dysarthria ratings at p < .05, likely due to small sample size (ony 4 PPA participants with dysarthria diagnosis).
- AOS: associated with cortical volume in the left PrCG, postcentral gyrus (PoCG), supramarginal gyrus (SMG), and angular gyrus (AG).

Analysis 2: Relationship between volume of significant clusters and SLP ratings

The sensorimotor PrCG/PoCG cluster (p = 0.006) and the parietal SMG/AG cluster (p = 0.003) both accounted for unique variance in AOS ratings, suggesting that multiple processes contribute to speech motor planning.

Analysis 3: Brain areas associated with length effect

Length effect score (phonological working memory): associated with volume of the parietal cluster (p = 0.003) - larger cortical volumes associated with smaller **length effects**, but not with the sensorimotor cluster (p = 0.598).

Figure 3. Volume of parietal SMG/AG cluster vs length effect scores.

Discussion

- AOS was significantly correlated with cortical volume in
 - left PrCG, the motor cortex.
 - left PoCG, the somatosensory cortex.
 - left SMG, associated with phonological WM.
 - left AG, associated with attentional control and serial order representation and processing.
 - The neural data indicates that speech motor planning consists of multiple dissociable sub-processes.
 - Novel evidence of the role of SMG/AG in speech motor planning from PPA.
- Phonological WM, as measured by length effect, was uniquely associated with the SMG/AG (and not sensorimotor areas).

Future directions

Guenther, F. H. (2016). Neural control of speech. Mit Press.

- Investigate the other processes that are involved in speech motor planning, in particular the one(s) supported by the sensorimotor cluster.
- Investigate whether if the phonological working memory involved in speech motor planning is input-/output-specific, using a picture naming task (output phonological WM) and a WM probe task (input phonological WM).

References

Basilakos, A., Rorden, C., Bonilha, L., Moser, D., & Fridriksson, J. (2015). Patterns of poststroke brain damage that predict speech production errors in apraxia of speech and aphasia dissociate. Stroke, 46(6), 1561-1566. Basilakos, A., Smith, K. G., Fillmore, P., Fridriksson, J., & Fedorenko, E. (2018). Functional characterization of the human speech articulation network. Cerebral Cortex, 28(5), 1816-1830.

Utianski, R. L., Duffy, J. R., Clark, H. M., Strand, E. A., Boland, S. M., Machulda, M. M., ... & Josephs, K. A. (2018). Clinical progression in four cases of primary progressive apraxia of speech. American Journal of Speech-Language Pathology, 27(4), 1303-1318. Supported by: National Institutes of Health through awards R01 DC014475, R01 AG068881, and R01 AG075404.