# Práctica 5 Metaheurísticas. Algoritmos Meméticos para el problema de la selección de características

Jacinto Carrasco Castillo N.I.F. 32056356-Z jacintocc@correo.ugr.es

9 de julio de 2016

Curso 2015-2016 Problema de Selección de Características. Grupo de prácticas: Viernes 17:30-19:30 Quinto curso del Doble Grado en Ingeniería Informática y Matemáticas.

# Algoritmos considerados:

- 1. Algoritmo Memético con optimización cada 10 generaciones sobre todos los individuos
- 2. Algoritmo Memético con optimización cada 10 generaciones sobre el 10 % de los individuos
- 3. Algoritmo Memético con optimización cada 10 generaciones sobre el mejor  $10\,\%$  de los individuos

# Índice

| 1. | Descripción del problema                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                              |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 2. | Descripción de la aplicación de los algoritmos  2.1. Representación de soluciones  2.2. Función objetivo  2.3. Operadores comunes  2.3.1. Operador de cruce  2.3.2. Operador de mutación  2.3.3. Torneo  2.3.4. Operador de selección  2.3.5. Operador de reemplazamiento  2.3.6. Búsqueda local  2.4. Aplicación de la búsqueda local  2.4.1. Optimización de individuos de la población  2.4.2. Optimización de mejores individuos de la población | 5<br>5<br>7<br>7<br>8<br>9<br>10<br>10<br>11<br>11<br>12       |
| 3. | Estructura del método de búsqueda                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                             |
| 4. | Algoritmo de comparación                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                             |
| 5  | Procedimiento para desarrollar la práctica                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                             |
| J. | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                             |
| 6. |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16<br>17<br>17<br>17<br>18<br>18<br>19<br>19<br>20<br>21<br>21 |
|    | 6.4. Comparación algoritmos poblacionales                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>23<br>24                                                 |

|    | 6.4.3.      | Tiempos. |  | <br>• | <br> | • | <br>• | <br>• |  |  | • | <br>• | • | <br>• | • | • | 24         |
|----|-------------|----------|--|-------|------|---|-------|-------|--|--|---|-------|---|-------|---|---|------------|
| 7. | Bibliografí | a        |  |       |      |   |       |       |  |  |   |       |   |       |   |   | <b>2</b> 5 |

# 1. Descripción del problema

El problema que nos ocupa es un problema de clasificación. Partimos de una muestra de los objetos que queremos clasificar y su etiqueta, es decir, la clase a la que pertenece y pretendemos, en base a esta muestra, poder clasificar nuevas instancias que nos lleguen. La clasificación se realizará en base a una serie de características, que nos permitan determinar si un individuo pertenece a un grupo u otro. Por tanto, tendremos individuos de una población  $\Omega$  representados como un vector de características:  $\omega \in \Omega$ ;  $\omega = (x_1(\omega), \dots x_n(\omega))$ , donde  $\omega$  es un individuo de la población y  $x_i$ ,  $i = 1, \dots n$  son las n características sobre las que se tiene información. Buscamos  $f: \Omega \longrightarrow C = \{C_1, \dots, C_M\}$ , donde  $C = \{C_1, \dots, C_M\}$  es el conjunto de clases a las que podemos asignar los objetos.

El problema de clasificación está relacionado con la separabilidad de las clases en el sentido de que existirá la función f anteriormente mencionada siempre que las clases sean separables, es decir, siempre que un individuo con unas mismas características pertenzan a una misma clase. Sin embargo, si se diese que dos individuos  $\omega_1, \omega_2 \in \Omega$ ,  $(x_1(\omega_1), \ldots, x_n(\omega_1)) = (x_1(\omega_2), \ldots, x_n(\omega_2))$  y sin embargo  $f(\omega_1) \neq f(\omega_2)$ , no podrá existir f. En todo caso, querríamos obtener la mayor tasa de acierto posible.

Por tanto, tratamos, en base a unos datos, hallar la mejor f posible. De esto trata el aprendizaje supervisado: Se conocen instancias de los datos y las clases a las que pertenecen. Usaremos como técnica de aprendizaje supervisado la técnica estadística conocida como k vecinos más cercanos. Se trata de buscar los k vecinos más cercanos y asignar al objeto la clase que predomine de entre los vecinos. En caso de empate, se seleccionará la clase con más votos más cercana.

Pero no nos quedamos en el problema de clasificación, sino que buscamos reducir el número de características. Con esto pretendemos seleccionar las características que nos den un mejor resultado (por ser las más influyentes a la hora de decidir la categoría). Usaremos los datos de entrenamiento haciendo pruebas mediante diferentes metaheurísticas hasta obtener la mejor selección que seamos capaces de encontrar.

El interés en realizar la selección de características reside en que se aumentará la eficiencia, al requerir menos tiempo para construir el clasificador, y que se mejoran los resultados al descartar las características menos influyentes y que sólo aportan ruido. Esto hace también que se reduzcan los costes de mantenimiento y se aumente la interpretabilidad de los datos.

Las funciones de evaluación pueden estar basadas en la consistencia, en la Teoría de la Información, en la distancia o en el rendimiento de clasificadores. Nosotros usaremos el rendimiento promedio de un clasificador 3-NN.

# 2. Descripción de la aplicación de los algoritmos

# 2.1. Representación de soluciones

Para este problema tenemos varias formas posibles de representar las soluciones:

- Representación binaria: Cada solución está representada por un vector binario de longitud igual al número de características, donde las posiciones seleccionadas tendrán un 1 o True y las no seleccionadas un 0 o False. Esta opción, que será la que tomaremos, sólo es recomendable si no tenemos restricciones sobre el número de características seleccionadas.
- Representación entera: Cada solución es un vector de tamaño fijo  $m \leq n$  con las características seleccionadas.
- Representación de orden: Cada solución es una permutación de n elementos, ordenados según la importancia de cada característica.

En las dos últimas representaciones el espacio de soluciones es mayor que el espacio de búsqueda. Además, la representación binaria nos facilita la aplicación de los operadores de cruce o mutación, manteniendo la consistencia.

Para esta práctica, aunque la representación de las soluciones también venga dada por la representación binaria, tendremos en todo momento una población en forma de array estructurado. Esto es, un array donde cada elemento está formado a su vez por dos atributos: el cromosoma, es decir, el vector de valores booleanos que determinan la selección o no de una característica, y el valor o score del mismo. De esta manera podemos saber la tasa de acierto de un vector solución sin tener que volver a llamar a la función de evaluación; sólo llamaremos a esta función cuando surja el nuevo individuo de la población.

### 2.2. Función objetivo

La función objetivo será el porcentaje de acierto en el conjunto de test para el clasificador 3-NN obtenido usando las distancias de los individuos  $\omega$  en las dimensiones representadas por las características seleccionadas en el vector solución para el conjunto de entrenamiento. El objetivo será maximizar esta función. A la hora de buscar esta solución sólo estaremos manejando los datos de entrenamiento, luego aquí la función objetivo será la media de tasa de acierto para cada uno de los datos de entrenamiento con respecto a todos los demás, por lo que tenemos que usar la técnica de Leave-One-Out. Esta técnica consiste en quitar del conjunto de datos cada uno de los elementos, comprobar el acierto o no para este dato en concreto, y devolverlo al conjunto de datos. Así evitamos que los resultados estén sesgados a favor de la clase o etiqueta original, al contar siempre con un voto la clase verdadera.

La implementación de la función objetivo (obtener el score para Test) la he realizado basándome en el código paralelizado realizado para CUDA por Alejandro García Montoro para la función de Leave One Out. El pseudocódigo incluido se trata del esquema seguido para cada proceso, esto es, cada elemento en el conjunto de datos de entrenamiento, puesto que el método en Python para pasarle a la GPU los datos de entrenamiento, test, categorías y un puntero con la solución no tiene mayor interés.

Esto en CUDA lo que hace es guardarnos, para cada proceso, si se ha acertado o no. Posteriormente se pasa el vector con cada resultado (cada ejecución de este código) de nuevo a Python y se calcula el porcentaje de aciertos. Nótese que no se realiza la proyección por las características seleccionadas, esto lo hacemos al pasar los datos.

Para la función de evaluación de las posibles soluciones que se van generando durante la búsqueda utilizo el método realizado por Alejandro García Montoro para usar CUDA. El algoritmo es similar al anterior, pero incluye *Leave One Out*:

```
targetFunctionLeaveOneOut(data_train, categories_train):
BEGIN
    sample ← Get Process Number
    num_samples ← length(data_train)

EXIT IF sample > num_samples
    my_features ← data_train[sample]

k_nearest ← {{item: -1, distance:∞}, size=k}

FOR item IN data_train
    IF item ≠ sample THEN
        distance ← computeDistance(my_features, item)
        k_nearest ← update(item, distance)

END

class ← poll(classes of k_nearest)

RETURN class = categories_train[sample]

END
```

# 2.3. Operadores comunes

En esta práctica se ha seguido el mismo procedimiento que en la práctica 3 con relación a los operadores: programar los operadores en distintas funciones y pasarlo al algoritmo memético como argumento. Al considerar algoritmos meméticos basados en el algoritmo generacional de la práctica 3 ahora los operadores comunes son los propios de un algoritmo genético, siendo distintos únicamente los métodos para realizar las optimizaciones locales.

### 2.3.1. Operador de cruce

En la operación de cruce, como en el esquema generacional de la práctica 3, se hará una selección de tantos padres como individuos tenga la población. Sin embargo, sólo se cruzarán el 70 % de ellos, con lo que el operador cruza únicamente el 70 % primero del vector de padres a cruzar, manteniendo el 30 % restante como estaba. El operador implementado es la modificación sobre el cruce uniforme (HUX) puesto que, como se observa en la práctica 3, se obtienen mejores resultados que con el cruce clásico en dos puntos.

Operador de cruce uniforme Esta modificación del operador Half Cross Uniform (HUX) consiste en, dados dos padres, asignar a cada gen del hijo el valor del gen de los padres si éste coincide en ambos; si es distinto, asignamos al gen de cada uno de los hijos los valores True o False aleatoriamente. Esto significa que, para un gen en el que los padres tienen distintos valores, un hijo (aleatoriamente en cada gen) recibirá True y el otro False. Así maximizamos la distancia hamming entre los hijos, obteniendo mayor diversidad.

```
huxCrossOperator( parent_1, parent_2 ):
BEGIN
   FOR j IN {1,..., num_features} :
        IF parent_1[j] = parent_2[j] THEN
            desc_1[j] ← parent_1[j]
            desc_2[j] ← parent_1[j]

        ELSE
            gen ← random({True,False})
            desc_1[j] ← gen
            desc_2[j] ← not gen
        END
RETURN desc_1, desc_2
END
```

# 2.3.2. Operador de mutación

El operador de mutación se encarga de introducir diversidad en la población, favoreciendo la búsqueda en distintas zonas del espacio. Sin embargo, no podemos basar nuestra estrategia de búsqueda de buenas soluciones sólo en la mutación, pues esto nos haría explorar más zonas de búsqueda, sí, pero haciéndolo de forma aleatoria, no intensificando sobre regiones de las que se tenga información de que pueden ser buenas. Debido a esto, la probabilidad de mutación será baja, en concreto, de 0,001 por cada gen. Para ahorrar cálculos repetitivos he descartado la opción de hacer un random por cada gen que se somete al operador de mutación, mutando 1 gen seleccionado aleatoriamente por cada 1000 genes que pasen por el método en cuestión. Además, para el resto de dividir el número de genes de la población de hijos entre 1000 se genera un número aleatorio. Si este número es menor que el resto de la división por la probabilidad de realizar una mutación, mutaremos 1 gen más.

**Ejemplo** Sea una población de 30 individuos con 50 características. Esto hace un total de 1500 genes que pasarán por el proceso de mutación.  $\lfloor \frac{1500}{1000} \rfloor = 1$ , luego mutaremos un gen. Pero  $1500 \equiv 500 mod(100)$ , distinto de 0, luego si se cumple  $random() < \frac{1500 mod(1000)}{1000} = 0,5$ , modificamos un gen adicional.

La operación para mutar un bit de un determinado individuo es la ya conocida operación flip que nos hacía obtener los vecinos en las prácticas anteriores:

Por tanto, el operador de mutación nos queda de la siguiente manera:

```
mutate(descendants, mutation_prob):
BEGIN
    total_genes ← length(descendants)*num_features

num_gens_to_mutate ← floor(total_genes*mutation_prob)

IF random() < total_genes*mutation_prob-num_genes_to_mutate
    num_gens_to_mutate ← num_gens_to_mutate +1

individ ← {random(descendants), size = num_gens_to_mutate}}
genes ← {random({0,...,num_features-1}), size = num_gens_to_mutate}}
FOR (individ, gen) IN (individ,genes):
    individ[chromosome] ← flip(individ[chromosome], gen)
    individ[score] ← 0

END

RETURN descendants</pre>
```

Ajustando el valor del individuo mutado nos aseguramos que si el individuo mutado pertenecía a la población (estaba en el 30 % de la selección de padres que no se ha cruzado) se vuelve a evaluar y nos ahorramos hacerlo si el individuo no hubiera mutado.

### 2.3.3. Torneo

Para el sistema de elección necesitamos determinar cuál de dos individuos de la población es mejor y, por tanto cuál de ellos se reproducirá. En nuestro caso, entendemos que una solución es mejor que otra si tiene una mejor tasa de acierto o, en caso de tener la misma tasa de acierto, tiene seleccionadas menos características. Si se volviese a producir un empate, se devolvería uno de los dos candidatos al azar.

# 2.3.4. Operador de selección

El operador de selección para el algoritmo memético consiste en seleccionar aleatoriamente elementos de la población hasta obtener tantas parejas como elementos de la población y realizar el torneo entre estas parejas, quedándose con los vencedores.

# 2.3.5. Operador de reemplazamiento

En el operador de reemplazamiento, simplemente se intercambia la población actual por la de los descendientes, aunque como se da el elitismo, se reemplaza al peor individuo de la población de descendientes por el mejor de la población anterior si el mejor individuo de los descendientes no tuviese una mejor puntuación:

```
replaceOperator_generational(population, descendants):
BEGIN
  best \( \times \text{first(population)} \)
  IF best is better than best(descendants) THEN
        last(descendants) = best

  RETURN descendants
END
```

Para simplificar la lectura en el código y minimizar el número de operaciones, sobre todo usando los vectores de numpy, el orden es de menor a mayor, luego el mejor individuo se encuentra en la última posición. En el pseudocódigo se supone que los vectores están ordenados de mayor a menor tasa de acierto.

# 2.3.6. Búsqueda local

La aplicación de la búsqueda local se hace a individuos de la población cada 10 generaciones y es de baja intensidad, es decir, se intenta optimizar llevando a cabo una única iteración de la búsqueda local. Devolvemos también el número de iteraciones realizadas por la búsqueda local para, en el algoritmo memético, contabilizar las evaluaciones tanto de la búsqueda local como del algoritmo memético.

```
localSearch1Iteration(data, categories, solution) BEGIN

first_neig ← random{1,..., num_features}
  neighbours ← {flip(solution,i): i=first_neig,...,first_neig-1}
  found_better ← FALSE
  num_checks

FOR neig IN neighbours WHILE NOT found_better
  IF neigh is better than solution THEN
  found_better ← TRUE
```

```
solution ← neig
num_checks ← num_checks + 1
END

RETURN solution, num_checks
END
```

Se han obtenido también los resultados de los tres métodos pero realizando una búsqueda local de alta intensidad, es decir, aplicando la búsqueda local hasta que ésta no encontrase mejora. Esto hace que se aumente la intensificación pero pagando a cambio de realizar menos iteraciones de la parte evolutiva del proceso. El método de búsqueda sería el siguiente:

### 2.4. Aplicación de la búsqueda local

En este apartado se explica la aplicación de la búsqueda local según el algoritmo pedido en cada caso.

# 2.4.1. Optimización de individuos de la población

La selección de los individuos a optimizar es la misma tanto para cuando optimizamos localmente con probabilidad 1 (optimizamos todos los individuos) como para cuando lo hacemos con probabilidad 0,1. En lugar de ir por cada individuo y obtener un número aleatorio, optamos por, al igual que con el operador de mutación, seleccionar tantos individuos como esperamos obtener con la selección aleatoria, todos los individuos en el primer caso y un 10 % en el segundo. Por tanto, dada la probabilidad de aplicar la búsqueda local el primer método y el segundo tendrán el mismo operador de optimización.

# 2.4.2. Optimización de mejores individuos de la población

Para este método la única diferencia es que debemos ordenar en primer lugar el vector de la población según la puntuación, tomaremos la probabilidad como parámetro para seleccionar y optimizar un cierto número de individuos.

# 3. Estructura del método de búsqueda

En esta práctica el esquema general de los algoritmos es idéntico entre los distintos métodos propuestos pero también es igual que el esquema de los algoritmos genéticos de la

práctica 3 a excepción de la inclusión de la búsqueda local, que se incluye como operador. Se incluye en primer lugar la estructura de los algoritmos memético implementados y posteriormente los operadores de búsqueda local específicos de estos algoritmos.

```
memeticcAlgorithm(data, categories, operators):
BEGIN
   MAX CHECKS ← 1500
   MUTATION_PROBABILITY ← 0.001
   chromosomes \leftarrow {{random{T,F}: size = num_features }:size = 10}
   scores ← {score(data[chrom], categories): chrom ∈ chromosomes}
   population \leftarrow concatenate( (chromosomes, scores), by columns)
   sort(population, by scores)
   num\_checks \leftarrow 10
   num_generation \leftarrow 0
   WHILE num_checks < MAX_CHECKS DO
      selected_parents \( \tau \) selectionOperator(population)
      descendants \( \tau \) crossOperator(selected_parents)
      descendants ← mutationOperator(descendants, MUTATION_PROBABILITY)
      FOR desc IN descendants which are not evaluated:
         score(data[desc], categories)
         num\_checks \leftarrow num\_checks + 1
      replaceOperator(population, descendants)
      ls\_checks \leftarrow localSearchOperator(num\_generation, population, data,
          categories)
      num_generation \leftarrow num_generation + 1
      sort(population, by scores)
   END
END
```

Esta estructura básica hará más fácil la construcción de algoritmos meméticos, pues sólo tendremos que introducir los operadores de selección, cruce, mutación y reemplazamiento adecuados y modificar el operador de búsqueda local según el método a ejecutar. El funcionamiento será el visto en clase: en primer lugar se genera una población aleatoria, evaluamos y ordenamos con respecto a esta puntuación obtenida. Entonces, mientras el número de evaluaciones realizados sea menor que el máximo establecido (15000 en nuestro caso), se realiza el siguiente bucle:

- I Se seleccionan unos padres de la población con selectionOperator.
- II Estos padres se reproducen mediante crossOperator

- III Los cromosomas obtenidos se someten a una mutación aleatoria usando mutation-Operator
- IV Se evalúan los hijos.
- V Se produce un reemplazo en la generación.
- VI Se realiza una optimización local.
- VII Se reordena la población.

Finalmente, se devuelve el mejor individuo de la población existente al final de las evaluaciones.

# 4. Algoritmo de comparación

Como algoritmo de comparación tenemos el algoritmo greedy SFS. Partiendo de un vector con ninguna característica seleccionada, exploramos por el entorno y nos quedamos con el vecino que genera una mejor tasa de acierto. Repetimos este proceso hasta que ningún vecino aporta una mejora a la solución obtenida.

```
greedySFS(data, categories):
BEGIN
    solution ← {F,...,F: size = num_features}
    current_value ← getValue(data, categories, solution)

REPEAT
    neighbours ← {flip(solution,i): i ∈ characteristics}

    best_value ← máx_neighbours getValue(data, categories, ·)

IF best_value > current_value THEN
    solution ← argmax_neighbours getValue(data, categories, ·)

WHILE(best_value > current_value)

RETURN solution
END
```

# 5. Procedimiento para desarrollar la práctica

El código de la práctica está realizado en Python 3.5.1 y en CUDA. Como se ha comentado anteriormente, el código para el KNN está paralelizado usando el código de Alejandro García Montoro para usarlo con *leave-one-out* y añadiéndole un método para usarlo como función de evaluación de la solución obtenida para el conjunto de test. Esto ha permitido

reducir los tiempos considerablemente.

Los paquetes utilizados son:

- 1. scipy para leer de una manera sencilla la base de datos.
- 2. numpy para el manejo de vectores y matrices y tratar que sea algo más eficiente en lugar de las listas de Python.
- 3. ctype para importar el generador de números aleatorios en C disponible en la página web de la asignatura.
- 4. csv para la lectura y escritura de ficheros .csv con los que manejar más cómodamente los datos.
- 5. pycuda y jinja2 para la paralelización en CUDA.

La semilla con la que he realizado las ejecuciones es 3141592, insertada tanto en el generador en C como en el generador de números de numpy y en el propio de Python. He usado los dos porque pretendía usar el primero, que es con el que se realizan las particiones, pero al llegar a los métodos que usan los generadores de números pseudoaleatorios en su funcionamiento me dí cuenta de que tendría que repetir el código de importación del módulo en C para cada método, por lo que opté por usar en los métodos el random de numpy.

# 5.1. Ejecución del programa

La salida de cada ejecución (10 iteraciones de un algoritmo con una base de datos) se puede elegir entre mostrar por pantalla o redirigir a un archivo .csv para manejarlo posteriormente, por ejemplo para incluir la tabla en LATEX. Los parámetros que acepta el programa son:

- Base de datos: Será una letra W,L,A que representa cada una de las bases de datos a utilizar. Este parámetro es el único obligatorio.
- Algoritmo utilizado: Por defecto es el KNN. Para introducir uno distinto, se usa -a seguido de una tecla entre K,S,1,2,3 que se corresponden con KNN, greedy SFS, algoritmo memético con optimización local cada diez generaciones en todos los individuos, en un 10% aleatorio o en el 10% mejor, respectivamente.
- Semilla. Para incluir una semilla, se añade -seed seguido del número que usaremos como semilla. Por defecto es 3141592.
- Salida por pantalla o a fichero. Se utiliza con el parámetro opcional -write para escribir en un fichero en una carpeta llamada Resultados. El nombre del fichero será la primera letra de la base de datos utilizada seguida por las iniciales del algoritmo. Incluye también la media, el mínimo, el máximo y la desviación típica para cada columna.

■ -h o --help para mostrar la ayuda y cómo se introducen los parámetros.

Por tanto, la ejecución del programa se hará de la siguiente manera:

```
python Practica5.py base_de_datos [-a algoritmo -seed semilla -write T/F ]
```

Si por ejemplo queremos lanzar la base de datos de WDBC con optimización en todos los individuos, semilla 123456 y que los resultados se muestren por pantalla, escribimos

Si optamos por la base de datos Arrhythmia con optimización en el 10% mejor y guardar el resultado en un fichero:

Para mostrar la introducción de parámetros:

# 6. Experimentos y análisis de resultados

# 6.1. Descripción de los casos

Los casos del problema planteados son tres, cada uno de ellos asociado a una base de datos:

- WDBC: Base de datos con los atributos estimados a partir de una imagen de una aspiración de una masa en la mama. Tiene 569 ejemplos, 30 atributos y debemos clasificar cada individuo en dos valores.
- Movement Libras: Base de datos con la representación de los movimientos de la mano en el lenguaje de signos LIBRAS. Tiene 360 ejemplos y consta de 91 atributos.
- Arrhythmia: Contiene datos de pacientes durante la presencia y ausencia de arritmia cardíaca. Tiene 386 ejemplos y 254 atributos para categorizar en 5 clases. He reducido el número de características eliminando las columnas que tuvieran el mismo valor para todos los datos. Está explicado en la práctica 2 que tardaba excesivamente en la búsqueda local si se intentaba bajar el número de características deseleccionando aquellas que no influyesen en la tasa de acierto.

# 6.2. Resultados

### 6.2.1. KNN

|               |           | WDBC       |     |                     |           | Movement L | ibras |                   |           | Arrhythr   | nia   |                     |
|---------------|-----------|------------|-----|---------------------|-----------|------------|-------|-------------------|-----------|------------|-------|---------------------|
|               | %Clas. in | %Clas. out | red | Т                   | %Clas. in | %Clas. out | %red. | Т                 | %Clas. in | %Clas. out | %red. | Т                   |
| Partición 1-1 | 95,7895   | 95,7747    | 0   | 0,0407              | 65,5556   | 73,8889    | 0     | 0,0341            | 63,9175   | 60,9375    | 0     | 0,1014              |
| Partición 1-2 | 97,5352   | 94,0351    | 0   | 0,0119              | 73,8889   | 76,6667    | 0     | 0,0331            | 63,5417   | 61,8557    | 0     | 0,1094              |
| Partición 2-1 | 95,4386   | 97,1831    | 0   | 0,0116              | 74,4444   | 65,5556    | 0     | 0,0334            | 59,7938   | 64,0625    | 0     | 0,0967              |
| Partición 2-2 | 95,7747   | 96,8421    | 0   | 0,0114              | 68,3333   | 75         | 0     | 0,0331            | 64,0625   | 63,4021    | 0     | 0,1089              |
| Partición 3-1 | 96,1404   | 97,1831    | 0   | 0,0115              | 61,6667   | 76,6667    | 0     | 0,0335            | 63,9175   | 63,5417    | 0     | 0,0967              |
| Partición 3-2 | 97,5352   | 96,8421    | 0   | 0,0115              | 72,2222   | 80         | 0     | 0,0333            | 63,5417   | 63,4021    | 0     | 0,1087              |
| Partición 4-1 | 95,7895   | 96,1268    | 0   | 0,0115              | 74,4444   | 75         | 0     | 0,0335            | 63,4021   | 62,5       | 0     | 0,0967              |
| Partición 4-2 | 95,7747   | 97,193     | 0   | 0,0114              | 70        | 71,1111    | 0     | 0,0331            | 64,5833   | 64,9485    | 0     | 0,1088              |
| Partición 5-1 | 96,1404   | 95,0704    | 0   | 0,0115              | 68,8889   | 71,1111    | 0     | 0,0332            | 64,9485   | 63,5417    | 0     | 0,0968              |
| Partición 5-2 | 97,5352   | 95,0877    | 0   | 0,0114              | 70        | 76,6667    | 0     | 0,0333            | 63,0208   | 61,8557    | 0     | 0,1087              |
| Media         | 96,3453   | 96,1338    | 0   | 0,0144              | 69,9444   | 74,1667    | 0     | 0,0334            | 63,4729   | 63,0047    | 0     | 0,1033              |
| Max           | 97,5352   | 97,193     | 0   | 0,0407              | 74,4444   | 80         | 0     | 0,0341            | 64,9485   | 64,9485    | 0     | 0,1094              |
| Min           | 95,7747   | 94,0351    | 0   | 0,0114              | 61,6667   | 71,1111    | 0     | 0,0331            | 59,7938   | 60,9375    | 0     | 0,0967              |
| Desv. Típica  | 0,8014    | 1,0529     | 0   | $8.7 \cdot 10^{-3}$ | 3,9083    | 3,8349     | 0     | $3 \cdot 10^{-4}$ | 1,3382    | 1,1383     | 0     | $5.8 \cdot 10^{-3}$ |

En este caso el análisis es el mismo que en las prácticas anteriores. Con el KNN se ve cómo es la BD en general y qué tasas de acierto se obtiene seleccionando todas las categorías. Las diferentes iteraciones y sus resultados no son más que para particiones distintas, pues la solución es la misma para todas las ejecuciones del algoritmo. Se ve que en WDBC y Arrhythmia se obtienen porcentajes similares para la clasificación dentro de la muestra y fuera, como cabría esperar, pues las particiones se hacen equilibradamente, y sin embargo en Libras el porcentaje de acierto fuera de la muestra es superior. Esto se puede deber a que hay un gran número de clases y no tantos representantes de esas clases como en las dos primeras bases de datos.

6.2.2. SFS

|               |           | WDBC       |         |        |           | Movement L | ibras   |        |           | Arrhythm   | nia     |        |
|---------------|-----------|------------|---------|--------|-----------|------------|---------|--------|-----------|------------|---------|--------|
|               | %Clas. in | %Clas. out | red     | Т      | %Clas. in | %Clas. out | %red.   | Т      | %Clas. in | %Clas. out | %red.   | Т      |
| Partición 1-1 | 92        | 89,0845    | 93,3333 | 0,2245 | 71        | 75,5556    | 90      | 1,9763 | 86        | 76,5625    | 97,482  | 4,6152 |
| Partición 1-2 | 96        | 90,1754    | 93,3333 | 0,1951 | 75        | 62,7778    | 93,3333 | 1,3277 | 73        | 69,0722    | 98,2014 | 3,361  |
| Partición 2-1 | 95        | 91,5493    | 93,3333 | 0,1946 | 81        | 66,6667    | 88,8889 | 2,2523 | 76        | 68,2292    | 97,8417 | 3,9263 |
| Partición 2-2 | 96        | 93,6842    | 90      | 0,2707 | 75        | 74,4444    | 92,2222 | 1,5851 | 80        | 75,2577    | 98,2014 | 3,3409 |
| Partición 3-1 | 96        | 94,7183    | 90      | 0,2738 | 72        | 81,6667    | 92,2222 | 1,5394 | 82        | 72,3958    | 96,7626 | 6,2122 |
| Partición 3-2 | 96        | 94,7368    | 90      | 0,2702 | 75        | 71,6667    | 92,2222 | 1,434  | 83        | 72,6804    | 97,1223 | 5,5603 |
| Partición 4-1 | 98        | 95,0704    | 86,6667 | 0,3459 | 73        | 57,7778    | 93,3333 | 1,2212 | 80        | 73,9583    | 98,5611 | 2,6402 |
| Partición 4-2 | 95        | 93,3333    | 90      | 0,2696 | 77        | 68,8889    | 90      | 1,9021 | 80        | 68,5567    | 97,8417 | 4,0374 |
| Partición 5-1 | 96        | 94,0141    | 86,6667 | 0,3529 | 76        | 67,2222    | 92,2222 | 1,4372 | 75        | 69,7917    | 98,5611 | 2,6352 |
| Partición 5-2 | 96        | 91,9298    | 90      | 0,2669 | 81        | 70,5556    | 90      | 1,8991 | 76        | 74,7423    | 98,5611 | 2,6895 |
| Media         | 95,6      | 92,8296    | 90,3333 | 0,2664 | 75,6      | 69,7222    | 91,4444 | 1,6574 | 79,1      | 72,1247    | 97,9137 | 3,9018 |
| Max           | 98        | 95,0704    | 93,3333 | 0,3529 | 81        | 81,6667    | 93,3333 | 2,2523 | 86        | 76,5625    | 98,5611 | 6,2122 |
| Min           | 92        | 89,0845    | 86,6667 | 0,1946 | 71        | 57,7778    | 88,8889 | 1,2212 | 73        | 68,2292    | 96,7626 | 2,6352 |
| Desv. Típica  | 1,4283    | 1,9527     | 2,3333  | 0,0509 | 3,2       | 6,4082     | 1,4948  | 0,3147 | 3,8328    | 2,877      | 0,5976  | 1,1785 |

Para el SFS se obtienen buenos resultados comparándolos con el KNN, especialmente en Arrhythmia, debido a que al haber muchas características y relativamente pocas clases, seleccionando bien unas pocas características se obtienen muy buenos resultados, introduciendo ruido con otras.

# 6.2.3. Algoritmo memético con optimización sobre todos los individuos

|               |           | WDBC       | 7       |         |           | Movement   | Libras  |          |           | Arrhyth    | mia     |          |
|---------------|-----------|------------|---------|---------|-----------|------------|---------|----------|-----------|------------|---------|----------|
|               | %Clas. in | %Clas. out | red     | Т       | %Clas. in | %Clas. out | %red.   | Т        | %Clas. in | %Clas. out | %red.   | Т        |
| Particion 1-1 | 97,5439   | 95,7747    | 56,6667 | 82,8147 | 75        | 75,5556    | 51,1111 | 158,2981 | 79,3814   | 65,625     | 52,5692 | 654,9527 |
| Particion 1-2 | 99,2958   | 95,0877    | 46,6667 | 97,4404 | 78,8889   | 71,1111    | 47,7778 | 165,5432 | 70,8333   | 61,3402    | 50,5929 | 785,4513 |
| Particion 2-1 | 98,2456   | 96,1268    | 53,3333 | 88,7401 | 80,5556   | 67,7778    | 55,5556 | 148,4391 | 73,7113   | 67,1875    | 54,9407 | 610,674  |
| Particion 2-2 | 98,2394   | 94,7368    | 53,3333 | 88,9186 | 75        | 75         | 54,4444 | 150,8433 | 72,9167   | 63,4021    | 56,1265 | 780,0308 |
| Particion 3-1 | 98,5965   | 95,4225    | 56,6667 | 86,1501 | 71,1111   | 79,4444    | 54,4444 | 147,5585 | 72,1649   | 63,5417    | 53,7549 | 689,6296 |
| Particion 3-2 | 97,8873   | 95,7895    | 46,6667 | 97,4354 | 77,2222   | 80         | 56,6667 | 145,2306 | 75        | 66,4948    | 54,5455 | 829,8546 |
| Particion 4-1 | 99,2982   | 96,4789    | 56,6667 | 84,4387 | 80,5556   | 75,5556    | 57,7778 | 141,448  | 75,2577   | 63,0208    | 64,0316 | 493,0943 |
| Particion 4-2 | 97,5352   | 98,2456    | 46,6667 | 97,6009 | 77,7778   | 71,1111    | 51,1111 | 156,8219 | 74,4792   | 68,5567    | 52,9644 | 809,4174 |
| Particion 5-1 | 97,5439   | 94,3662    | 53,3333 | 88,7916 | 80        | 68,8889    | 47,7778 | 167,8981 | 75,7732   | 64,5833    | 56,917  | 612,984  |
| Particion 5-2 | 98,9437   | 97,193     | 50      | 94,8636 | 76,6667   | 73,3333    | 54,4444 | 153,5306 | 74,4792   | 65,4639    | 58,8933 | 653,5781 |
| Media         | 98,3129   | 95,9222    | 52      | 90,7194 | 77,2778   | 73,7778    | 53,1111 | 153,5612 | 74,3997   | 64,9216    | 55,5336 | 691,9667 |
| Max           | 99,2982   | 98,2456    | 56,6667 | 97,6009 | 80,5556   | 80         | 57,7778 | 167,8981 | 79,3814   | 68,5567    | 64,0316 | 829,8546 |
| Min           | 97,5352   | 94,3662    | 46,6667 | 82,8147 | 71,1111   | 67,7778    | 47,7778 | 141,448  | 70,8333   | 61,3402    | 50,5929 | 493,0943 |
| Desv. Típica  | 0,6629    | 1,1035     | 4       | 5,3711  | 2,8377    | 3,911      | 3,3259  | 8,1729   | 2,1954    | 2,0586     | 3,6064  | 102,249  |

Como pasa con los demás algoritmos implementados hasta ahora, se observa el incremento esperable con respecto al KNN y con respecto a SFS (salvo en Arrhythmia donde el algoritmo *greedy* sigue siendo más efectivo).

# 6.2.4. Algoritmo memético con probabilidad de optimización 0.1

|               |           | WDBC       | 7       |         |           | Movement   | Libras  |          |           | Arrhyth    | mia     |          |
|---------------|-----------|------------|---------|---------|-----------|------------|---------|----------|-----------|------------|---------|----------|
|               | %Clas. in | %Clas. out | red     | Т       | %Clas. in | %Clas. out | %red.   | Т        | %Clas. in | %Clas. out | %red.   | Т        |
| Particion 1-1 | 97,5439   | 95,7747    | 56,6667 | 84,5276 | 74,4444   | 75         | 54,4444 | 154,8033 | 77,3196   | 64,0625    | 62,0553 | 541,446  |
| Particion 1-2 | 99,6479   | 94,386     | 50      | 95,8134 | 82,2222   | 76,1111    | 63,3333 | 130,632  | 71,3542   | 58,7629    | 67,5889 | 641,6245 |
| Particion 2-1 | 98,2456   | 96,1268    | 66,6667 | 83,8883 | 79,4444   | 64,4444    | 50      | 165,4983 | 74,2268   | 61,4583    | 61,2648 | 590,3465 |
| Particion 2-2 | 97,8873   | 96,4912    | 56,6667 | 81,5165 | 76,1111   | 75,5556    | 55,5556 | 153,3831 | 73,9583   | 65,4639    | 66,4032 | 617,3759 |
| Particion 3-1 | 97,8947   | 96,4789    | 56,6667 | 85,0811 | 68,3333   | 77,2222    | 52,2222 | 158,3535 | 74,7423   | 65,1042    | 63,6364 | 564,3825 |
| Particion 3-2 | 97,5352   | 95,4386    | 53,3333 | 91,1654 | 79,4444   | 76,6667    | 52,2222 | 166,7048 | 76,0417   | 65,4639    | 65,6126 | 622,4327 |
| Particion 4-1 | 98,9474   | 95,4225    | 53,3333 | 90,2284 | 81,6667   | 74,4444    | 54,4444 | 156,0849 | 76,2887   | 69,2708    | 70,751  | 471,4687 |
| Particion 4-2 | 97,8873   | 94,0351    | 50      | 92,1495 | 80        | 73,3333    | 58,8889 | 143,8847 | 76,0417   | 65,4639    | 67,9842 | 616,7797 |
| Particion 5-1 | 97,5439   | 95,0704    | 46,6667 | 95,7547 | 79,4444   | 71,1111    | 51,1111 | 162,8499 | 75,2577   | 62,5       | 61,2648 | 608,6627 |
| Particion 5-2 | 98,2394   | 94,0351    | 63,3333 | 73,1791 | 77,7778   | 73,8889    | 51,1111 | 161,461  | 72,3958   | 62,8866    | 62,4506 | 691,9257 |
| Media         | 98,1373   | 95,3259    | 55,3333 | 87,3304 | 77,8889   | 73,7778    | 54,3333 | 155,3655 | 74,7627   | 64,0437    | 64,9012 | 596,6445 |
| Max           | 99,6479   | 96,4912    | 66,6667 | 95,8134 | 82,2222   | 77,2222    | 63,3333 | 166,7048 | 77,3196   | 69,2708    | 70,751  | 691,9257 |
| Min           | 97,5352   | 94,0351    | 46,6667 | 73,1791 | 68,3333   | 64,4444    | 50      | 130,632  | 71,3542   | 58,7629    | 61,2648 | 471,4687 |
| Desv. Típica  | 0,6489    | 0,8851     | 5,8119  | 6,6939  | 3,8873    | 3,5382     | 3,8952  | 10,4003  | 1,7475    | 2,698      | 3,0962  | 57,0462  |

Con la optimización local sólo en un  $10\,\%$  de los individuos se observa que los resultados son muy similares a optimizar toda la población. Sin embargo las diferencias en el tiempo de ejecución en la base de datos <code>Arrhythmia</code> sí que son significativas.

# 6.2.5. Algoritmo memético con optimización sobre los mejores individuos

|               |           | WDB        | C       |          |           | Movement   | Libras  |          |           | Arrhythi   | mia     |          |
|---------------|-----------|------------|---------|----------|-----------|------------|---------|----------|-----------|------------|---------|----------|
|               | %Clas. in | %Clas. out | red     | Т        | %Clas. in | %Clas. out | %red.   | Т        | %Clas. in | %Clas. out | %red.   | Т        |
| Particion 1-1 | 97,8947   | 95,4225    | 60      | 80,9875  | 71,1111   | 75,5556    | 53,3333 | 153,603  | 77,8351   | 64,5833    | 59,6838 | 531,7928 |
| Particion 1-2 | 99,2958   | 94,0351    | 70      | 77,6759  | 80        | 75         | 61,1111 | 140,6217 | 69,7917   | 61,8557    | 55,336  | 757,7418 |
| Particion 2-1 | 98,2456   | 96,1268    | 63,3333 | 80,2984  | 79,4444   | 68,3333    | 64,4444 | 123,4238 | 75,7732   | 64,0625    | 60,0791 | 590,3857 |
| Particion 2-2 | 98,2394   | 95,4386    | 50      | 91,9506  | 73,8889   | 77,2222    | 41,1111 | 200,9673 | 75        | 67,5258    | 49,8024 | 847,1155 |
| Particion 3-1 | 97,8947   | 95,0704    | 70      | 66,7825  | 70        | 75,5556    | 51,1111 | 164,7155 | 71,134    | 63,5417    | 54,9407 | 655,7046 |
| Particion 3-2 | 97,8873   | 96,4912    | 60      | 82,5852  | 81,1111   | 79,4444    | 55,5556 | 149,0093 | 77,0833   | 68,5567    | 59,6838 | 676,1302 |
| Particion 4-1 | 98,2456   | 95,0704    | 53,3333 | 87,4321  | 80,5556   | 70         | 54,4444 | 152,3956 | 68,5567   | 64,5833    | 56,5217 | 668,7804 |
| Particion 4-2 | 97,5352   | 94,0351    | 60      | 78,1363  | 80        | 71,1111    | 53,3333 | 154,4069 | 80,2083   | 65,9794    | 55,7312 | 724,4675 |
| Particion 5-1 | 97,193    | 95,4225    | 60      | 81,9738  | 77,7778   | 73,8889    | 54,4444 | 148,5065 | 76,2887   | 63,0208    | 57,3123 | 607,6495 |
| Particion 5-2 | 98,5916   | 94,7368    | 50      | 100,4913 | 77,7778   | 75,5556    | 51,1111 | 174,8954 | 73,4375   | 67,5258    | 49,4071 | 837,8101 |
| Media         | 98,1023   | 95,185     | 59,6667 | 82,8314  | 77,1667   | 74,1667    | 54      | 156,2545 | 74,5108   | 65,1235    | 55,8498 | 689,7578 |
| Max           | 99,2958   | 96,4912    | 70      | 100,4913 | 81,1111   | 79,4444    | 64,4444 | 200,9673 | 80,2083   | 68,5567    | 60,0791 | 847,1155 |
| Min           | 97,193    | 94,0351    | 50      | 66,7825  | 70        | 68,3333    | 41,1111 | 123,4238 | 68,5567   | 61,8557    | 49,4071 | 531,7928 |
| Desv. Típica  | 0,5481    | 0,7511     | 6,7412  | 8,5616   | 3,8446    | 3,2323     | 5,8836  | 19,6937  | 3,5412    | 2,0826     | 3,5925  | 97,9093  |

Con la optimización sobre los mejores individuos se obtienen resultados muy similares a los de los otros algoritmos meméticos, observando que en tiempos de ejecución se vuelve a los tiempos de ejecución en Arrhythmia de la aplicación de la BL a todos los individuos.

# 6.2.6. Comparación

|       |           | WDBO       | 7       |         |           | Movement   | Libras  |          |           | Arrhyth    | mia     |          |
|-------|-----------|------------|---------|---------|-----------|------------|---------|----------|-----------|------------|---------|----------|
|       | %Clas. in | %Clas. out | %red.   | Т       | %Clas. in | %Clas. out | %red.   | Т        | %Clas. in | %Clas. out | %red.   | Т        |
| KNN   | 96.3453   | 96.1338    | 0.0000  | 0.0144  | 69.9444   | 74.1667    | 0.0000  | 0.0334   | 63.4729   | 63.0047    | 0.0000  | 0.1033   |
| SFS   | 95.6000   | 92.8296    | 90.3333 | 0.2664  | 75.6000   | 69.7222    | 91.4444 | 1.6574   | 79.1000   | 72.1247    | 97.9137 | 3.9018   |
| AM1   | 98.3129   | 95.9222    | 52.0000 | 90.7194 | 77.2778   | 73.7778    | 53.1111 | 153.5612 | 74.3997   | 64.9216    | 55.5336 | 691.9667 |
| AM01  | 98.1373   | 95.3259    | 55.3333 | 87.3304 | 77.8889   | 73.7778    | 54.3333 | 155.3655 | 74.7627   | 64.0437    | 64.9012 | 596.6445 |
| AM01m | 98.1023   | 95.1850    | 59.6667 | 82.8314 | 77.1667   | 74.1667    | 54.0000 | 156.2545 | 74.5108   | 65.1235    | 55.8498 | 689.7578 |

# 6.3. Análisis de los resultados

# 6.3.1. Tasa In



En cuanto a la tasa de acierto dentro de la muestra se observa que los tres algoritmos meméticos se comportan mejor que el algoritmo de control KNN y que el SFS (con la excepción de la BD Arrhythmia). Sin embargo entre ellos las diferencias no son significativas y se limitan a pocas décimas no sólo en WDBC, donde ya se ha comentado en otras prácticas que es muy difícil obtener una mejora significativa debido al alto nivel de acierto que se obtiene en esta BD, sino también en Libras y Arrhythmia.

# 6.3.2. Tasa Out



Con respecto a la tasa de acierto fuera de la muestra también se obtienen resultados muy similares para los tres algoritmos, mejores que SFS en WDBC y Libras y que KNN en Arrhtyhmia.

### 6.3.3. Tasa reducción



Por la implementación de los algoritmos para la decisión de las mejores soluciones, podemos considerar que la reducción del número de características seleccionadas no ha sido un objetivo principal, luego se espera una tasa de reducción no muy elevada y simplemente aquellas que ofrezcan una mayor tasa de acierto. Como vemos en los resultados obtenidos, estas tasas se sitúan en torno a un 55 % de reducción y son similares a las obtenidas con los algoritmos genéticos. La tasa más elevada (a excepción del algoritmo SFS que por su naturaleza greedy obtiene tasas más altas) se corresponde con la optimización del 10 % de individuos seleccionados aleatoriamente en la base de datos Arrhythmia. En esta base de datos se suelen obtener una mayor tasa de acierto cuando la reducción es elevada, y es lo que se aprecia en la tabla de este algoritmo, donde la ejecución con la máxima reducción es la que tiene mayor tasa de acierto. En cambio vemos que en media aunque este algoritmo tenga una mayor tasa de reducción, la tasa de acierto es similar a la de los otros algoritmos meméticos.

### **6.3.4.** Tiempos

| DB                  | 0      | 1      | 2        | 3        | 4        |
|---------------------|--------|--------|----------|----------|----------|
| TW                  | 0.0144 | 0.2664 | 90.7194  | 87.3304  | 82.8314  |
| $\operatorname{TL}$ | 0.0334 | 1.6574 | 153.5612 | 155.3655 | 156.2545 |
| TA                  | 0.1033 | 3.9018 | 691.9667 | 596.6445 | 689.7578 |



AM - 1 AM - 0.1 AM - 0.1 mejor

No se han incluido los tiempos para KNN ni SFS debido a que no son relevantes con respecto a los algoritmos meméticos. Como se ha comentado previamente, en las bases de datos pequeñas los tiempos son muy similares y es en Arrhythmia donde la ejecución es más rápida para el algoritmo con optimización en un 10 % aleatorio. Aunque los algoritmos están implementados para que se pueda probar con diferentes parámetros, teniendo en cuenta que la población es de tamaño 10 y que en el tercer algoritmo sólo se optimiza el 10 % mejor, es decir, el mejor individuo, podríamos haber seleccionado el máximo de la población y haber evitado reordenar la población, con lo que hubiese tardado menos.

# 6.4. Comparación algoritmos poblacionales

En este apartado se comparan todos los algoritmos poblacionales implementados, tanto los genéticos de la práctica 3, como los meméticos que se piden en la práctica y la variante de los meméticos con la búsqueda local de alta intensidad, donde de la búsqueda local no se realiza sólo una iteración sino que se ejecuta hasta se alcanza un óptimo local.

|         |           | WDB        | C       |          |           | Movement   | Libras  |          |           | Arrhyth    | mia     |          |
|---------|-----------|------------|---------|----------|-----------|------------|---------|----------|-----------|------------|---------|----------|
|         | %Clas. in | %Clas. out | %red.   | Т        | %Clas. in | %Clas. out | %red.   | Т        | %Clas. in | %Clas. out | %red.   | Т        |
| AGG-H   | 98.4185   | 95.2200    | 48.0000 | 86.5553  | 79.8333   | 74.5556    | 56.4444 | 151.5060 | 76.8385   | 65.4360    | 69.2885 | 535.8592 |
| AGE-H   | 98.1725   | 95.8179    | 34.6667 | 121.4294 | 79.0000   | 74.3889    | 44.8889 | 198.5784 | 75.6508   | 65.0210    | 29.6443 | 950.9298 |
| AM1     | 98.3129   | 95.9222    | 52.0000 | 90.7194  | 77.2778   | 73.7778    | 53.1111 | 153.5612 | 74.3997   | 64.9216    | 55.5336 | 691.9667 |
| AM1AI   | 98.4538   | 95.3954    | 56.6667 | 89.5388  | 80.1667   | 73.9444    | 54.0000 | 169.1009 | 73.8332   | 65.3302    | 51.4229 | 944.9642 |
| AM01    | 98.1373   | 95.3259    | 55.3333 | 87.3304  | 77.8889   | 73.7778    | 54.3333 | 155.3655 | 74.7627   | 64.0437    | 64.9012 | 596.6445 |
| AM01AI  | 98.4188   | 95.6767    | 56.0000 | 87.1437  | 79.1667   | 74.5000    | 54.2222 | 154.2332 | 76.7359   | 64.0432    | 57.5494 | 679.6595 |
| AM01m   | 98.1023   | 95.1850    | 59.6667 | 82.8314  | 77.1667   | 74.1667    | 54.0000 | 156.2545 | 74.5108   | 65.1235    | 55.8498 | 689.7578 |
| AM01mAI | 98.5943   | 95.5709    | 58.6667 | 81.0817  | 81.0556   | 74.1667    | 57.0000 | 153.0862 | 77.4060   | 64.8169    | 53.6759 | 699.0004 |

# 6.4.1. Tasa In



En cuanto a la tasa de acierto dentro de la muestra, vemos que se obtiene de manera general una mejora de los algoritmos meméticos cuando se realiza la búsqueda local con una alta intensidad. En cuanto a la comparación de los algoritmos genéticos con los meméticos, vemos que el algoritmo genético generacional tiene unas tasas ligeramente superiores a las modificaciones con BL de baja intensidad, por lo que podríamos pensar en que es necesaria una mayor intensidad, quizá decrementando el número de generaciones que hay que esperar para que se realice la búsqueda local. El algoritmo con mejores resultados es el que realiza optimización local intensiva sobre los mejores individuos de la población.

# **6.4.2.** Tasa Out



En cuanto a la tasa de acierto fuera de la muestra se observa que todos los resultados son muy similares, con lo que no podemos realizar un análisis mayor que decir que los algoritmos con mejores resultados dentro de la muestra no se ven resentidos fuera y por tanto no hay un sobreajuste excesivo.

# 6.4.3. Tiempos

| DB                  | 0        | 1        | 2        | 3        | 4        | 5        | 6        | 7        |
|---------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| TW                  | 86.5553  | 121.4294 | 90.7194  | 89.5388  | 87.3304  | 87.1437  | 82.8314  | 81.0817  |
| $\operatorname{TL}$ | 151.5060 | 198.5784 | 153.5612 | 169.1009 | 155.3655 | 154.2332 | 156.2545 | 153.0862 |
| TA                  | 535.8592 | 950.9298 | 691.9667 | 944.9642 | 596.6445 | 679.6595 | 689.7578 | 699.0004 |





En las bases de datos de menor tamaño los tiempos son muy similares, a excepción del algoritmo genético estacionario (recordemos que todos los algoritmos restantes tienen un esquema generacional) que es un poco superior. En cuanto a la base de datos Arrhythmia, los algoritmos con BL de alta intensidad tardan más, con especial relevancia para el algoritmo con optimización en todos los individuos de la población, que tarda un tiempo semejante al genético estacionario. Donde menos se nota es en el algoritmo memético con optimización del mejor individuo, donde, al estar ya cerca de un óptimo local, esta intensificación es menos costosa en tiempo (tenemos que tener en cuenta que podríamos hacer más rápido este algoritmo para este caso concreto si en lugar de ordenar y coger sólo uno buscásemos directamente el mejor individuo). Vemos también que el algoritmo genético generacional es el que menos tarda y sin embargo el algoritmo da buenos resultados, lo que nos muestra el buen desempeño de los algoritmos genéticos para este problema incluso antes de introducir la búsqueda local.

# 7. Bibliografía

- Módulo en scikit para KNN
- Para realizar las tablas en L<sup>A</sup>T<sub>F</sub>X: Manual PGFPLOTSTABLE