[Microprocessor Applications] Lab 1: Board Test

Chester Sungchung Park
SoC Design Lab, Konkuk University

Webpage: http://soclab.konkuk.ac.kr

Outline

- □ Introduction
- ☐ Board test
 - Vivado
 - √ Creating projects
 - ✓ Creating block designs
 - √ Generating bitstream
 - SDK (SW Development Kit)
 - ✓ Running C applications

What's Together w/ ZYBO

- ① ZYBO Z7-20 (Z7-10)
- (2) USB-A to Micro-USB-B Cable
- 3 ZYBO Board Soft Case
- 4) ZYBO Board Hard Case

Connecting to ZYBO

☐ Connect J12 (USB-UART port) to the PC using the Micro USB cable.

☐ Run the Vivado

• From the Window desktop, double-click the 'Vivado 2017.4' icon.

☐ Get Started

Click 'Create Project'

- ☐ Create a New Vivado Project
 - · Click 'Next'

☐ Enter Project Name

Type 'Project name' and choose 'Project

location'

Click 'Next'

☐ Choose Project Type

Click 'RTL Project' and then click 'Next'

☐ Add Sources

Click 'Next'

☐ Add Constraints

Click 'Next'

□ Choose Default Part

- Select the 'Boards'
- Search for the 'zybo'
- Select the 'Zybo Z7-20' or 'Zybo Z7-10'
- Click 'Next'

- ☐ Check New Project Summary
 - · Click 'Finish'

- ☐ Create Block Design
 - Click 'Create Block Design'
 - Type 'Design name' and then click 'OK'

☐ Add Processing System

- Click the '+' (Add IP Button) and then type 'zynq' in the search field
- Double-click 'ZYNQ7 Processing System'

- ☐ Make external connection
 - Click 'Run Block Automation'

- ☐ Make external connection (cont'd)
 - Click 'processing_system7_0' > 'OK'

☐ Make connections

Connect 'FLCK_CLK0' with 'M_AXI_GP0_ACLK'

■ Validate Design

Right-click and then click 'Validate Design'

- ☐ Generate Output Products
 - Select the 'Design Sources' tab and then rightclick the block diagram
 - Click 'Generate Output Products' > 'Generate'

☐ Create HDL Wrapper

- Select the 'Sources' tap and then right-click 'design_1'
- Click 'Create HDL Wrapper' > 'OK'

☐ Generate Bitstream

- Click 'Generate Bitstream' at the bottom of the Flow Navigator.
- Click 'Yes' > 'OK'

- ☐ Generate Bitstream (cont'd)
 - Once the Bitstream Generation ends, choose
 'Open Implemented Design' > 'OK'

☐ Export Hardware for SDK

- Open the 'File' menu and choose
 'Export' > 'Export Hardware'
- Click 'Include bitstream' > 'OK'

□ Launch SDK

 Open the 'File' menu and then click 'Launch SDK' > 'OK'

- ☐ Create a C application project
 - Click 'File' > 'New' > 'Application Project'

☐ Create a C application project (cont'd)

Type <your project name> in the Project name

field

• The 'Board Support Package' field can be set up to use an existing BSP or a new BSP can be created based on the project name. (Do not modify)

- ☐ Create a C application project (cont'd)
 - Select 'Hello World' from the template list
 - Click 'Finish'

Review the source code 'helloworld.c'

- ☐ Power on the ZYBO
- ☐ Run the Tera Term
 - From the Window desktop, double-click the 'Tera' icon.
 - Select 'Serial' > 'COM(x): USB Serial Port(COM(x))' and then click 'OK'

- ☐ Set up serial port
 - Open the 'Setup' menu and then click 'Serial port'
 - Set 'Baud Rate' to 115200 and then click 'OK'

☐ Program FPGA

- Open the 'Xilinx' menu and then click 'Program FPGA'
- Click 'Program'

☐ Run the application

 Open the 'Run' > 'Run As' menu and then click 'Launch on Hardware (System Debugger)'

- ☐ Run the application (cont'd)
 - Check the output on 'Tera Term'
 - ✓ You should see 'Hello World' as shown below.

- Modify the application
 - Right-click 'print' in 'helloworld.c' and then click 'Open Declaration'

- ☐ Modify the application (cont'd)
 - Add 'ptr++;' at the end of the function.

```
lc helloworld.c
                                                lc print.c ⊠
                                                                        system.hdf
               system.mss
  ⊕ /* print.c -- print a string on the output device.
  ⊕ /*
     * print -- do a raw print of a string
    #include "xil printf.h"
  ovoid print(const char8 *ptr)
    #ifdef STDOUT BASEADDRESS
      while (*ptr != (char8)0) {
        outbyte (*ptr);
        ptr++:
        ptr++:
    #else
    (void)ptr;
    #endif
```

- ☐ Modify the application (cont'd)
 - Click 'File > Save All'
 - Check 'Build finished' on the 'Build Console'

- ☐ Run the application
 - Follow pp. 34~35 of this lab workbook

Appendix

☐ Rerun the application

- When you need to rerun the existing application after shutting down Vivado/SDK, you don't have to repeat all the steps shown in this lab workbook.
- You should simply follow p. 25 and pp. 30~38 of this lab workbook