定义1、设于为域下上的线性空间V到F的一个线性映射, 即十为 V到 F的一个映射,且满足: $f(\alpha+\beta)=f(\alpha)+f(\beta)$, $\forall \alpha,\beta \in V$; $f(k\alpha) = kf(\alpha)$ $\forall \alpha \in V, k \in F$ 则称十为V上一个线性函数 设 dim V=n, V中取一基α, ---, αn,则 $\alpha = \lambda_1 \alpha_1 + \cdots + \lambda_n \alpha_n$, $\forall \alpha \in V$ 设于为V上一线性函数,则 $f(\alpha) = \chi_1 f(\alpha_1) + \cdots + \chi_n f(\alpha_n)$ (1) 称为千在基 α,, ···, α, 下的表达式 任给 F中元素 a,,--, an 日曜一的f, s.t. $f(\alpha_i) = a_i$ i=1, ---, n $f(x) = a_1 X_1 + \cdots + a_n X_n$ Hom(V,F)称为V上的线性函数空间 沒 dim V=n, Itom(V,F)记为 V*, 称 V*是 V的对偶空间 dim V*=dim Hom(V,F)=(dim V)(dim F)=n $V^* \cong V$ V中取一基α,,..., αn, 求 V*的一个基 F中经定几个元素 V上线性函数 $1, 0, \dots, 0$ $f, s.t, f, (\alpha,) = 1, f, (\alpha_j) = 0, j \neq 1$ 0,0,--,1 | f_n , s.t. $f_n(\alpha_n)=1$, $f_n(\alpha_j)=0$, $j\neq n$ 设 k,f, + k2f2+ ··· + knfn=0 见 $k,f(\alpha_1)+\cdots+k_n+f(\alpha_n)=k_n=0$

 $C_{ij} = g_i(\alpha_j) = \sum_{k=1}^{n} b_{ki} f_k(\alpha_j) = b_{ji}$

:. $B = (A^{-1})'$

dim V=n, V*的对偶空间(V*)*,记作 V**,称为V的双重对偶定的dim V**=dim V*=dim V.

V中取一基α,,..., αη.

V*中关于α,,...,αn的对偶基 f,,..., fn

V**中关于f.,...,fn的对偶基, a,**,..., an**

V 同构映射0, V* 同构映射T, V**

 $\alpha = \sum_{i=1}^{n} \lambda_i \alpha_i \longrightarrow \sum_{i=1}^{n} \lambda_i \gamma_i f_i \longrightarrow \sum_{i=1}^{n} \lambda_i \alpha_i^{**} = : \alpha^{**}$

任给feV*, x**(f)=(嵩对ixi**)(f)=嵩对ixi**(f)

型 为 xxxxxx(产 f(x;)+;)

 $= \sum_{i=1}^{n} \chi_i \left(\sum_{j=1}^{n} f(\alpha_j) \alpha_i^{**}(f_i) \right)$

= 汽 χ : $f(\alpha)$ (α : 为对偶基)

= f (\(\frac{1}{2} \) \(\tau \)

=f(x)

习同构映射6: V → → V**

 $\alpha \longrightarrow \alpha^{**}, \alpha^{**}(f) = f(\alpha)$

不依赖于基的选择的目的映射积为一个自然目的

可把 α与以**等同起来,从而可将V与V*等同

·· V可看作 V*的对偶室间

:. V,与V*互为对偶空间