Haorui Zhang

Assignment 6

CS 453

We can prove that for any k≥ 3, if a tree T has fewer than k leaves, then the max degree Δ(T) among the vertices of T must satisfy Δ(T) < k. For n = number of vertices, and n_i = number of vertices with degree of i. If a tree T has fewer than k leaves, then n₁ < k and n₁ is the number of leaves in the T.
Let for all j ≥ k, n_i = 0. This means n = ∑_{i=1}[∞] n_i = 0. Then ∑_{i=1}ⁿ (2 - j)n_i = 0. This means that

the total degree with vertices with degrees $j \ge k$ doesn't exist. Therefore, if a tree T has fewer than k leaves, then the max degree $\Delta(T)$ among the vertices of T must satisfy $\Delta(T) < k$.

2.

- a. Since r is the root, L(u) = D(r,u) and L(v) = D(r,v). D(u,v) is the length of the unique u-v path. If r is on the unique u, v path, then r is an ancestor of v. Therefore, D(u,v) = D(u,r) + D(r,v). Since r is root, D(u,r) is essentailly same as D(r,u) and D(u,v) = D(r,u) + D(r,v) = L(u) + L(v)
- b. If L(u) + L(v) = D(u, v), then D(u, v) = D(r, u) + D(r, v). Since both D(r, u) and D(r, v) passes through r, r must be on the unique u, v-path.
- c. If D(u,v) = 2H, then it means u and v have the maximum of levels of tree. It means they are both the end of the tree. Therefore, they are leaves and they must be non-parents.
- d. If D(u,v)=2H, then u, and v must be two leaves with the maximum of levels of vertices. If either of u, v is a parent, then one of they have at least one child and can't has level of less than H. Therefore, D(u,v)<2H if either u, or v is a parent. So if D(u,v)=2H, then u and v must be non-parents.

3.

- a. If b is the number of parents in the tree, then for each parent node in this tree, there are q edges and q children nodes connect to this node. Each children node, if they are not parent, have no edge connect to them. Therefore, there are q*b+0*n edges in this tree, for n leaf nodes.
- b. For q-ary tree and b parents, there are (q-1)*b+1 non-parents node. Therefore, there are b+(q-1)*b+1 vertices.
- c. For q-ary tree and b parents, there are (q-1)*b+1 non parents nodes.
- 4. There are $10^{12} + 1 nodes$
 - a. The height of the T:
 - i. Lower bound: 1
 - ii. Upper bound: 10^{12}
 - b. The height of the saturated tree T:
 - i. Lower bound: $floor(log_2(10^{12}))$
 - ii. Upper bound: $(10^{12} + 1)/2$