Бінарні відношення

У випадку, коли особа, що приймає рішення (ОПР), для деяких пар об'єктів може вказати, який з об'єктів пари кращий за іншого. У цьому випадку вважають, що ці два об'єкти знаходяться у бінарному відношенні.

Означення 1.1. Бінарним відношенням R, яке задане на множині Ω , називається довільна підмножина декартового добутку $\Omega \times \Omega$. Будемо говорити, що $x \in \Omega$ знаходиться у відношенні R з $y \in \Omega$ (позначатимемо це xRy), якщо пара $(x, y) \in R$. Якщо $x \in \Omega$ не знаходиться у відношенні R з $y \in \Omega$, тобто $(x, y) \in \Omega \times \Omega \setminus R$, то позначимо це $x\overline{R}y$.

Оскільки у багатьох практичних задачах прийняття рішень χ (ЗПР) множина альтернатив є скінченною (або стає скінченною після попереднього аналізу інформації), то крім безпосереднього завдання всіх пар, для яких виконується відношення R, використовують ще два основних способи завдання відношень — матрицею і графом.

Нехай множина $\Omega = \{x_1, ..., x_n\}$ є скінченною і містить n елементів. Матриця A(R) бінарного відношення R задається її елементами a_{ij} (R) = 1, якщо x_i Rx_j ; a_{ij} (R) = 0, якщо x_i $\overline{R}x_j$.

Приклад 1.1. Нехай $A = \{2, 8, 12, 18\}$. Наведіть приклади відношень на цій множині.

Розв'язок. Перший приклад, $R_I = \{(2,12), (8,18)\}$ — множина пар чисел з A, що закінчуються однаковими цифрами, $R_I \subset A \times A$.

Другий приклад, $R_2 = \{(2,8), (2,12), (2,18)\}$ — множина таких пар чисел з A, що перше без залишку ділить друге.

Функції вибору

Нехай задано скінченну множину альтернатив $\Omega = \{x_1, ..., x_n\}$ і ОПР, користуючись своїм особистим уявленням про кращі альтернативи, для кожної множини $X \subseteq \Omega$ вибирає підмножину кращих C(X).

Означення. Функцією вибору C, яка задана на множині Ω , називається довільне відображення, яке співставляє кожній підмножині $X \subseteq \Omega$ її частину C(X), $C(\emptyset) = \emptyset$.

Якщо на Ω задане деяке бінарне відношення R, то розглядаючи звуження цього бінарного відношення на будь-яку підмножину $X \subseteq \Omega$ можна задати множину мажорант на множині X, яка певним чином характеризує вибір ОПР. Ця ідея формалізації вибору приводить до такого означення.

Означення. Функція вибору $C^R(X)$, яка задана на Ω і породжена деяким бінарним відношенням R називається нормальною та визначається наступним чином:

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

$$A(R) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Побудувати функцію вибору $C^{\mathbb{R}}(X)$.

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

В другому випадку $X = \{x_2\}$. Тут вже $x = x_2$ та $y = x_2$. Звідси (1.1) прийме вигляд $C^R(\{x_2\}) = \{\{x_2\}: x_2\overline{R}x_2\}$. Оскільки в матриці A(R) елемент $a_{22}(R) = 1$, то x_2Rx_2 . Оскільки умова $x_2\overline{R}x_2$ не виконується, тому одержимо $C^R(\{x_2\}) = \{\{x_2\}: x_2\overline{R}x_2\} = \emptyset$. Записуємо це значення в другу комірку другого рядка таблиці.

X	$\{x_1\}$	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	$\{x_1\}$	Ø					

Аналогічно в третьому випадку $X = \{x_3\}$, $x = x_3$ та $y = x_3$. Формула (1.1) прийме вигляд $C^R(\{x_3\}) = \{\{x_3\}: x_3\overline{R}x_3\} = \{x_3\}$ в силу того, що $a_{33}(R) = 0$ і тому $x_3\overline{R}x_3$.

X	$\{x_1\}$	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	$\{x_1\}$	Ø	{x ₃ }				

$$A(R) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Побудувати функцію вибору $C^{R}(X)$.

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

В другому випадку $X = \{x_2\}$. Тут вже $x = x_2$ та $y = x_2$. Звідси (1.1) прийме вигляд $C^R(\{x_2\}) = \{\{x_2\}: x_2\overline{R}x_2\}$. Оскільки в матриці A(R) елемент $a_{22}(R) = 1$, то x_2Rx_2 . Оскільки умова $x_2\overline{R}x_2$ не виконується, тому одержимо $C^R(\{x_2\}) = \{\{x_2\}: x_2\overline{R}x_2\} = \emptyset$. Записуємо це значення в другу комірку другого рядка таблиці.

X	$\{x_1\}$	{x ₂ }	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	$\{x_1\}$	Ø					

Аналогічно в третьому випадку $X = \{x_3\}$, $x = x_3$ та $y = x_3$. Формула (1.1) прийме вигляд $C^R(\{x_3\}) = \{\{x_3\}: x_3\overline{R}x_3\} = \{x_3\}$ в силу того, що $a_{33}(R) = 0$ і тому $x_3\overline{R}x_3$.

X	{x ₁ }	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	{x ₁ }	Ø	{x ₃ }				

$$A(R) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Побудувати функцію вибору $C^{k}(X)$.

$$C^{R}(X) = \left\{ x \in X : y\overline{R}x, \forall y \in X \right\}, \ \forall X \subseteq \Omega. \tag{1.1}$$

Четвертий випадок відрізняється від вопередніх тим, що $X = \{x_1, x_2\}$ є двохелементною множиною. Тому змінні $x \in X$ та $y \in X$ в означенні 1.5 можуть прийняти вже по два значення x_1 або x_2 . Напишемо (1.1) у такому вигляді $C^R(\{x_1, x_2\}) = \{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} \cup \{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\}$. Оскільки в матриці A(R) елементи $a_{11}(R) = 0$ та $a_{21}(R) = 0$, то

$$A(R) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Побудувати функцію вибору $C^{R}(X)$.

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

Далі для $X = \{x_1, x_3\}$ (1.1) прийме вигляд

$$C^R(\{x_1,x_3\}) = \left\{x_1: \ x_1\overline{R}x_1 \wedge x_3\overline{R}x_1\right\} \cup \left\{x_3: \ x_1\overline{R}x_3 \wedge x_3\overline{R}x_3\right\} = \varnothing \cup \left\{x_3\right\} = \left\{x_3\right\}.$$

X	$\{x_1\}$	$\{x_2\}$	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	{x ₁ }	Ø	{x ₃ }	{x ₁ }	{x ₃ }		

$$A(R) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Побудувати функцію вибору $C^{\mathbb{R}}(X)$.

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

Далі для $X = \{x_1, x_3\}$ (1.1) прийме вигляд

$$C^R(\{x_1,x_3\}) = \left\{x_1: \ x_1\overline{R}x_1 \wedge x_3\overline{R}x_1\right\} \cup \left\{x_3: \ x_1\overline{R}x_3 \wedge x_3\overline{R}x_3\right\} = \varnothing \cup \left\{x_3\right\} = \left\{x_3\right\}.$$

X	$\{x_1\}$	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	{x ₁ }	Ø	{x ₃ }	{x ₁ }	{x ₃ }		

Для $X = \{x_2, x_3\}$ одержимо

$$C^{R}(\{x_2,x_3\}) = \left\{x_2: x_2\overline{R}x_2 \wedge x_3\overline{R}x_2\right\} \cup \left\{x_3: x_2\overline{R}x_3 \wedge x_3\overline{R}x_3\right\} = \varnothing.$$

X	{x ₁ }	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	$\{x_1\}$	Ø	{x ₃ }	{x ₁ }	{x ₃ }	Ø	

$$A(R) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Побудувати функцію вибору $C^{R}(X)$.

$$C^{R}(X) = \left\{ x \in X : y\overline{R}x, \forall y \in X \right\}, \ \forall X \subseteq \Omega. \tag{1.1}$$

Далі для $X = \{x_1, x_3\}$ (1.1) прийме вигляд

$$C^R(\{x_1,x_3\}) = \left\{x_1: \ x_1\overline{R}x_1 \wedge x_3\overline{R}x_1\right\} \cup \left\{x_3: \ x_1\overline{R}x_3 \wedge x_3\overline{R}x_3\right\} = \emptyset \cup \left\{x_3\right\} = \left\{x_3\right\}.$$

X	$\{x_1\}$	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	$\{x_1\}$	Ø	{x ₃ }	$\{x_1\}$	{x ₃ }		

Для $X = \{x_2, x_3\}$ одержимо

$$C^R(\{x_2,x_3\}) = \left\{x_2: \ x_2\overline{R}x_2 \wedge x_3\overline{R}x_2\right\} \cup \left\{x_3: \ x_2\overline{R}x_3 \wedge x_3\overline{R}x_3\right\} = \varnothing \ .$$

X	$\{x_1\}$	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	{x ₁ }	Ø	{x ₃ }	{x ₁ }	{x ₃ }	Ø	

В останньому випадку маємо трьохелементну множину $X = \{x_1, x_2, x_3\}$. Тому змінні $x \in X$ та $y \in X$ в означенні 1.5 приймають по три значення x_1, x_2 та x_3 . Формула (1.1) приймає вигляд

$$C^R(\{x_1,x_2,x_3\}) = \left\{x_1: \ x_1\overline{R}x_1 \wedge x_2\overline{R}x_1 \wedge x_3\overline{R}x_1\right\} \cup \left\{x_2: \ x_1\overline{R}x_2 \wedge x_2\overline{R}x_2 \wedge x_3\overline{R}x_2\right\} \cup \left\{x_3: \ x_1\overline{R}x_3 \wedge x_2\overline{R}x_3 \wedge x_3\overline{R}x_3\right\} = \varnothing \cup \varnothing \cup \varnothing = \varnothing.$$

X	{x ₁ }	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	$\{x_1\}$	Ø	{x ₃ }	{x ₁ }	{x ₃ }	Ø	Ø

9

Приклад 2. Нехай множина $\Omega = \{x_1, x_2, x_3\}$. На Ω задана функція вибору $C^R(X)$ (табл. 1.2). Перевірити, чи ϵ вона нормальною? Якщо так, то побудувати бінарне відношення R, яке її породжу ϵ .

X	$\{x_1\}$	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	$\{x_1\}$	Ø	{x ₃ }	{x ₁ }	{x ₃ }	Ø	{x2}

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

Для випадку двохелементної множини $X = \{x_1, x_2\}$ змінні $x \in X$ та $y \in X$ в означенні 1.5 приймають вже по два значення x_1 або x_2 . Маємо (1.1) у такому вигляді $C^R(\{x_1, x_2\}) = \{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} \cup \{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\}$. Оскільки за табл. 1.2 $C^R(\{x_1, x_2\}) = \{x_1\}$, то $\{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} = \{x_1\}$, а $\{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\} = \emptyset$. З першого виразу випливає $x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1$, тому в матриці A(R) елементи $a_{11}(R) = 0$ та $a_{21}(R) = 0$.

Приклад 2. Нехай множина $\Omega = \{x_1, x_2, x_3\}$. На Ω задана функція вибору $C^R(X)$ (табл. 1.2). Перевірити, чи є вона нормальною? Якщо так, то побудувати бінарне відношення R, яке її породжує.

X	{x ₁ }	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2,x_3,\emptyset\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	$\{x_1\}$	Ø	{x ₃ }	{x ₁ }	{x ₃ }	Ø	{x ₂ }

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

Для випадку двохелементної множини $X = \{x_1, x_2\}$ змінні $x \in X$ та $y \in X$ в означенні 1.5 приймають вже по два значення x_1 або x_2 . Маємо (1.1) у такому вигляді $C^R(\{x_1, x_2\}) = \{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} \cup \{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\}$. Оскільки за табл. 1.2 $C^R(\{x_1, x_2\}) = \{x_1\}$, то $\{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} = \{x_1\}$, а $\{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\} = \emptyset$. З першого виразу випливає $x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1$, тому в матриці A(R) елементи $a_{11}(R) = 0$ та $a_{21}(R) = 0$. З другого виразу одержимо $\overline{x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2} = x_1 R x_2 \vee x_2 R x_2$. Тому елементи $a_{12}(R) = 1$ або $a_{22}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{22}(R) = 1$, то $a_{12}(R)$ може приймати будь-яке значення 0 або 1.

Далі для $X = \{x_1, x_3\}$ (1.1) прийме вигляд

$$C^{R}(\{x_1,x_3\}) = \left\{x_1: x_1\overline{R}x_1 \wedge x_3\overline{R}x_1\right\} \cup \left\{x_3: x_1\overline{R}x_3 \wedge x_3\overline{R}x_3\right\}.$$

За табл. 1.2 $C^R(\{x_1,x_3\}) = \{x_3\}$, тому $\{x_1: x_1\overline{R}x_1 \wedge x_3\overline{R}x_1\} = \emptyset$, а $\{x_3: x_1\overline{R}x_3 \wedge x_3\overline{R}x_3\} = \{x_3\}$. З першого виразу одержимо $\overline{x_1\overline{R}x_1 \wedge x_3\overline{R}x_1} = x_1Rx_1 \vee x_3Rx_1$. Тому елементи $a_{11}(R) = 1$ або $a_{31}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{11}(R) = 0$, то $a_{31}(R) = 1$. З другого виразу випливає $x_1\overline{R}x_3 \wedge x_3\overline{R}x_3$, тому в матриці A(R) елементи $a_{13}(R) = 0$ та $a_{33}(R) = 0$.

Для $X = \{x_2, x_3\}$ одержимо

Приклад 2. Нехай множина $\Omega = \{x_1, x_2, x_3\}$. На Ω задана функція вибору $C^R(X)$ (табл. 1.2). Перевірити, чи ϵ вона нормальною? Якщо так, то побудувати бінарне відношення R, яке її породжу ϵ .

X	$\{x_1\}$	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	$\{x_1\}$	Ø	{x ₃ }	$\{x_1\}$	{x ₃ }	Ø	{x ₂ }

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

Для випадку двохелементної множини $X = \{x_1, x_2\}$ змінні $x \in X$ та $y \in X$ в означенні 1.5 приймають вже по два значення x_1 або x_2 . Маємо (1.1) у такому вигляді $C^R(\{x_1, x_2\}) = \{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} \cup \{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\}$. Оскільки за табл. 1.2 $C^R(\{x_1, x_2\}) = \{x_1\}$, то $\{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} = \{x_1\}$, а $\{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\} = \emptyset$. З першого виразу випливає $x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1$, тому в матриці A(R) елементи $a_{11}(R) = 0$ та $a_{21}(R) = 0$. З другого виразу одержимо $\overline{x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2} = x_1 R x_2 \vee x_2 R x_2$. Тому елементи $a_{12}(R) = 1$ або $a_{22}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{22}(R) = 1$, то $a_{12}(R)$ може приймати будь-яке значення 0 або 1.

Далі для $X = \{x_1, x_3\}$ (1.1) прийме вигляд

$$C^{R}(\lbrace x_{1},x_{3}\rbrace)=\bigl\{x_{1}:\ x_{1}\overline{R}x_{1}\wedge x_{3}\overline{R}x_{1}\bigr\}\cup\bigl\{x_{3}:\ x_{1}\overline{R}x_{3}\wedge x_{3}\overline{R}x_{3}\bigr\}.$$

За табл. 1.2 $C^R(\{x_1,x_3\}) = \{x_3\}$, тому $\{x_1: x_1\overline{R}x_1 \wedge x_3\overline{R}x_1\} = \emptyset$, а $\{x_3: x_1\overline{R}x_3 \wedge x_3\overline{R}x_3\} = \{x_3\}$. З першого виразу одержимо $\overline{x_1\overline{R}x_1 \wedge x_3\overline{R}x_1} = x_1Rx_1 \vee x_3Rx_1$. Тому елементи $a_{11}(R) = 1$ або $a_{31}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{11}(R) = 0$, то $a_{31}(R) = 1$. З другого виразу випливає $x_1\overline{R}x_3 \wedge x_3\overline{R}x_3$, тому в матриці A(R) елементи $a_{13}(R) = 0$ та $a_{33}(R) = 0$.

Для $X = \{x_1, x_2\}$ одержимо

$$C^R(\{x_2,x_3\}) = \left\{x_2: \ x_2\overline{R}x_2 \wedge x_3\overline{R}x_2\right\} \cup \left\{x_3: \ x_2\overline{R}x_3 \wedge x_3\overline{R}x_3\right\}.$$

За табл. 1.2 $C^R(\{x_2,x_3\})=\varnothing$, тому $\left\{x_2: x_2\overline{R}x_2\wedge x_3\overline{R}x_2\right\}=\varnothing$, а $\left\{x_3: x_2\overline{R}x_3\wedge x_3\overline{R}x_3\right\}=\varnothing$. З першого виразу одержимо

Приклад 2. Нехай множина $\Omega = \{x_1, x_2, x_3\}$. На Ω задана функція вибору $C^R(X)$ (табл. 1.2). Перевірити, чи є вона нормальною? Якщо так, то побудувати бінарне відношення R, яке її породжує.

X	$\{x_1\}$	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	$\{x_1\}$	Ø	{x ₃ }	$\{x_1\}$	{x ₃ }	Ø	{x ₂ }

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

Для випадку двохелементної множини $X = \{x_1, x_2\}$ змінні $x \in X$ та $y \in X$ в означенні 1.5 приймають вже по два значення x_1 або x_2 . Маємо (1.1) у такому вигляді $C^R(\{x_1, x_2\}) = \{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} \cup \{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\}$. Оскільки за табл. 1.2 $C^R(\{x_1, x_2\}) = \{x_1\}$, то $\{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} = \{x_1\}$, а $\{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\} = \emptyset$. З першого виразу випливає $x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1$, тому в матриці A(R) елементи $a_{11}(R) = 0$ та $a_{21}(R) = 0$. З другого виразу одержимо $\overline{x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2} = x_1 R x_2 \vee x_2 R x_2$. Тому елементи $a_{12}(R) = 1$ або $a_{22}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{22}(R) = 1$, то $a_{12}(R)$ може приймати будь-яке значення 0 або 1.

Далі для $X = \{x_1, x_3\}$ (1.1) прийме вигляд

$$C^{R}(\{x_1,x_3\}) = \left\{x_1: x_1\overline{R}x_1 \wedge x_3\overline{R}x_1\right\} \cup \left\{x_3: x_1\overline{R}x_3 \wedge x_3\overline{R}x_3\right\}.$$

За табл. 1.2 $C^R(\{x_1,x_3\}) = \{x_3\}$, тому $\{x_1: x_1\overline{R}x_1 \wedge x_3\overline{R}x_1\} = \varnothing$, а $\{x_3: x_1\overline{R}x_3 \wedge x_3\overline{R}x_3\} = \{x_3\}$. З першого виразу одержимо $\overline{x_1\overline{R}x_1 \wedge x_3\overline{R}x_1} = x_1Rx_1 \vee x_3Rx_1$. Тому елементи $a_{11}(R) = 1$ або $a_{31}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{11}(R) = 0$, то $a_{31}(R) = 1$. З другого виразу випливає $x_1\overline{R}x_3 \wedge x_3\overline{R}x_3$, тому в матриці A(R) елементи $a_{13}(R) = 0$ та $a_{33}(R) = 0$.

Для $X = \{x_2, x_3\}$ одержимо

$$C^{R}(\lbrace x_{2},x_{3}\rbrace) = \left\{x_{2}: x_{2}\overline{R}x_{2} \wedge x_{3}\overline{R}x_{2}\right\} \cup \left\{x_{3}: x_{2}\overline{R}x_{3} \wedge x_{3}\overline{R}x_{3}\right\}.$$

За табл. 1.2 $C^R(\{x_2, x_3\}) = \varnothing$, тому $\{x_2 : x_2 \overline{R} x_2 \wedge x_3 \overline{R} x_2\} = \varnothing$, а $\{x_3 : x_2 \overline{R} x_3 \wedge x_3 \overline{R} x_3\} = \varnothing$. З першого виразу одержимо $\overline{x_2 \overline{R} x_2 \wedge x_3 \overline{R} x_2} = x_2 R x_2 \vee x_3 R x_2$. Тому елементи $a_{22}(R) = 1$ або $a_{32}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{22}(R) = 1$, то $a_{32}(R)$ може приймати

Приклад 2. Нехай множина $\Omega = \{x_1, x_2, x_3\}$. На Ω задана функція вибору $C^R(X)$ (табл. 1.2). Перевірити, чи є вона нормальною? Якщо так, то побудувати бінарне відношення R, яке її породжує.

X	$\{x_1\}$	{x2}	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	$\{x_1\}$	Ø	{x ₃ }	$\{x_1\}$	{x ₃ }	Ø	{x ₂ }

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

Для випадку двохелементної множини $X = \{x_1, x_2\}$ змінні $x \in X$ та $y \in X$ в означенні 1.5 приймають вже по два значення x_1 або x_2 . Маємо (1.1) у такому вигляді $C^R(\{x_1, x_2\}) = \{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} \cup \{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\}$. Оскільки за табл. 1.2 $C^R(\{x_1, x_2\}) = \{x_1\}$, то $\{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} = \{x_1\}$, а $\{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\} = \emptyset$. З першого виразу випливає $x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1$, тому в матриці A(R) елементи $a_{11}(R) = 0$ та $a_{21}(R) = 0$. З другого виразу одержимо $\overline{x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2} = x_1 R x_2 \vee x_2 R x_2$. Тому елементи $a_{12}(R) = 1$ або $a_{22}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{22}(R) = 1$, то $a_{12}(R)$ може приймати будь-яке значення 0 або 1.

Далі для $X = \{x_1, x_3\}$ (1.1) прийме вигляд

$$C^{R}(\lbrace x_{1},x_{3}\rbrace)=\bigl\{x_{1}:\ x_{1}\overline{R}x_{1}\wedge x_{3}\overline{R}x_{1}\bigr\}\cup\bigl\{x_{3}:\ x_{1}\overline{R}x_{3}\wedge x_{3}\overline{R}x_{3}\bigr\}.$$

За табл. 1.2 $C^R(\{x_1,x_3\}) = \{x_3\}$, тому $\{x_1: x_1\overline{R}x_1 \wedge x_3\overline{R}x_1\} = \emptyset$, а $\{x_3: x_1\overline{R}x_3 \wedge x_3\overline{R}x_3\} = \{x_3\}$. З першого виразу одержимо $\overline{x_1\overline{R}x_1 \wedge x_3\overline{R}x_1} = x_1Rx_1 \vee x_3Rx_1$. Тому елементи $a_{11}(R) = 1$ або $a_{31}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{11}(R) = 0$, то $a_{31}(R) = 1$. З другого виразу випливає $x_1\overline{R}x_3 \wedge x_3\overline{R}x_3$, тому в матриці A(R) елементи $a_{13}(R) = 0$ та $a_{33}(R) = 0$.

Для $X = \{x_2, x_3\}$ одержимо

$$C^{R}(\lbrace x_{2}, x_{3}\rbrace) = \left\{x_{2}: x_{2}\overline{R}x_{2} \wedge x_{3}\overline{R}x_{2}\right\} \cup \left\{x_{3}: x_{2}\overline{R}x_{3} \wedge x_{3}\overline{R}x_{3}\right\}.$$

За табл. 1.2 $C^R(\{x_2,x_3\}) = \emptyset$, тому $\{x_2: x_2\overline{R}x_2 \wedge x_3\overline{R}x_2\} = \emptyset$, а $\{x_3: x_2\overline{R}x_3 \wedge x_3\overline{R}x_3\} = \emptyset$. З першого виразу одержимо $\overline{x_2\overline{R}x_2 \wedge x_3\overline{R}x_2} = x_2Rx_2 \vee x_3Rx_2$. Тому елементи $a_{22}(R) = 1$ або $a_{32}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{22}(R) = 1$, то $a_{32}(R)$ може приймати будь-яке значення 0 або 1. З другого виразу випливає $\overline{x_2\overline{R}x_3 \wedge x_3\overline{R}x_3} = x_2Rx_3 \vee x_3Rx_3$, тому в матриці A(R) елементи $a_{23}(R) = 1$ та $a_{33}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{33}(R) = 0$, то $a_{23}(R) = 1$.

Приклад 2. Нехай множина $\Omega = \{x_1, x_2, x_3\}$. На Ω задана функція вибору $C^R(X)$ (табл. 1.2). Перевірити, чи є вона нормальною? Якщо так, то побудувати бінарне відношення R, яке її породжує.

X	{x ₁ }	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	{x ₁ }	Ø	{x ₃ }	{x ₁ }	{x ₃ }	Ø	{x ₂ }

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

В останньому випадку маємо трьохелементну множину $X = \{x_1, x_2, x_3\}$. Тому змінні $x \in X$ та $y \in X$ в означенні 1.5 приймають по три значення x_1, x_2 та x_3 . Формула (1.1) приймає вигляд

$$C^R(\{x_1,x_2,x_3\}) = \left\{x_1: x_1\overline{R}x_1 \wedge x_2\overline{R}x_1 \wedge x_3\overline{R}x_1\right\} \cup \left\{x_2: x_1\overline{R}x_2 \wedge x_2\overline{R}x_2 \wedge x_3\overline{R}x_2\right\} \cup \left\{x_3: x_1\overline{R}x_3 \wedge x_2\overline{R}x_3 \wedge x_3\overline{R}x_3\right\}. \text{ За Згідно з табл. } 1.2$$

$$C^R(\{x_1,x_2,x_3\}) = \left\{x_2\right\}, \text{ тому } \left\{x_1: x_1\overline{R}x_1 \wedge x_2\overline{R}x_1 \wedge x_3\overline{R}x_1\right\} = \varnothing, \ \left\{x_2: x_1\overline{R}x_2 \wedge x_2\overline{R}x_2 \wedge x_3\overline{R}x_2\right\} = \left\{x_2\right\} \text{ та}$$

 $\{x_3: x_1\overline{R}x_3 \wedge x_2\overline{R}x_3 \wedge x_3\overline{R}x_3\} = \emptyset$. З першого виразу одержимо $\overline{x_1}\overline{R}x_1 \wedge x_2\overline{R}x_1 \wedge x_3\overline{R}x_1 = x_1^{\text{D}}x_1 \vee x_2Rx_1 \vee x_3Rx_1$. Тому елементи $a_{11}(R) = 1$ або $a_{21}(R) = 1$, або $a_{31}(R) = 1$. Оскільки ми вже раніше визначили, що $a_{11}(R) = 0$ та $a_{21}(R) = 0$, то $a_{31}(R) = 1$. З другого виразу одержимо $x_1\overline{R}x_2 \wedge x_2\overline{R}x_2 \wedge x_3\overline{R}x_2$. Тому елементи $a_{12}(R) = 0$, $a_{22}(R) = 0$ та $a_{32}(R) = 0$. Оскільки ми вже раніше визначили, що $a_{22}(R) = 1$, то ми получаємо суперечність. Таким чином, бінарного відношення, яке породжує функцію вибору $C^R(X)$ не існує, а $C^R(X)$

Приклад 2. Нехай множина $\Omega = \{x_1, x_2, x_3\}$. На Ω задана функція вибору $C^R(X)$ (табл. 1.2). Перевірити, чи є вона нормальною? Якщо так, то побудувати бінарне відношення R, яке її породжує.

X	$\{x_1\}$	{x ₂ }	{x ₃ }	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^{R}(X)$	{x ₁ }	Ø	{x ₃ }	{x ₁ }	{x ₃ }	Ø	{x ₂ }

$$C^{R}(X) = \{x \in X : y\overline{R}x, \forall y \in X\}, \forall X \subseteq \Omega.$$
 (1.1)

Для випадку двохелементної множини $X = \{x_1, x_2\}$ змінні $x \in X$ та $y \in X$ в означенні 1.5 приймають вже по два значення x_1 або x_2 . Маємо (1.1) у такому вигляді $C^R(\{x_1, x_2\}) = \{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} \cup \{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\}$. Оскільки за табл. 1.2 $C^R(\{x_1, x_2\}) = \{x_1\}$, то $\{x_1 : x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1\} = \{x_1\}$, а $\{x_2 : x_1 \overline{R} x_2 \wedge x_2 \overline{R} x_2\} = \varnothing$. З першого виразу випливає $x_1 \overline{R} x_1 \wedge x_2 \overline{R} x_1$, тому в матриці A(R) елементи $a_{11}(R) = 0$ та $a_{21}(R) = 0$.