Dates	Date: 31 / 3	10/2022
Frequency Edenance		
48.5 - 51.5 HZ		
* Estimation of load Parameters for estimates Demand factor		
Parameters for estimate	a d load	
-> Demand factor	0	
Raba O a la 1		
Ratio of max demand t	total connecte	dlo.ad
D.F = Max	demand	
Total	connected load	
Cum	individual tead e	. DA 121 .
- Startel As In 19		(tw)
- Should be less the	an I	
- <0.5 -> extraneous los		200
-> Load factor.		
	1 1	
L.F = Avg.	Damond	
il system is	peration 1.	
Ogenuin specific no. of ho	uxs.	
Cigenuin		

-	Batc.
3	737511977 - 1
	Aug Load = energy/unit consumed in day/month Lyear Duration (day/month/year).
	day month lyear
3	Duxation Colay Imonth 1 years.
3	- , F == 1 -> Ava == max demand
-	- LF == 1 -> Arg == max demands 1.F == 0.5 -> Arg is 50.12 of Max cagasity
3	Devovity Factor
-	> Diversity Factor
	Die E- com of individual max demand
	Div F = sum of individual max demand
	deraious subsection of system
	Max demand of
***************************************	entire system
0.0	1. 1/8 /amps 55 W each
	ii) 6 fans 60 w each
	ii) 2 refridgerator 200 Weach
	iv). 1 AC 1500 W
	v) 1 T.V 150 W
	vi) 1 Heater 1000 W
<u>a</u>) Calculate total amount of current taken
b	Iron the suppy at voltage of 230 V mg
	equipment are in use 5 hrs /day
	Ogenuin

Ogenuin

Date:

eg The domestic load in gresidential area is
wed in following manner.
i) Fluoroscent Comp 4 - 55W each
ii) 4 fans to Weach, 8 host day
iii) I refridgertox 300 W, 16 hast day
6 hrs Iday ii) 4 fans to weach, 8 hrs Iday iii) 1 refridgertox 300 w, 16 hrs Iday iv) I Heatx 1000 w, 2 hrs Iday v) TV: 150 w, 8 hrs Iday
Calculate connected bad so load factor
= 1950 W
Tot- Energy = 4x 55x 6 + 4x 20x 8 + 300x 16 + 1000x2 + 150x8
1000
= 11.56 kWh
Max dem /day = 1950 24 = 46.8 kWh
L.F = 11.56 = 10.247 46.8
C) genuin

COLUMN CO	Date.
eg i) 15 lens - 230 1	V -100W
(ii) 2 01/201 - 1	1 + 12)
ii) 5 Jans - 230	V 80 W
a) -> Effective resistan	L. His worked as
to have do and	Load
Dalan bald	
Determine total	unit consumed per day
3) if workshop 1's D → Cale menthy	of examy for a hysloty
- Cale Menthly	ale bill at the rate
	- Consider the most
30 days	
Avy/	
701 load = 1500 + 3	000 + 400 -4900 W
	100/2, (230) = 1 10.8 D
c) Tot unit cons	4.9 x 8 = 39-2 kwh/da
in 8 hrs	
	0/1 4 04
$=$ d) $B;U = 39.2 \times 30$	
= [26762]	
b) 1,-100 = 0.434A	72 = 1000 5 4.320A 7
230	
J3 = 80 0 3471	A
I = P = 4900 230	genuin
V = 230	= 21.3 A

1516.60		I	Date:	
P= VI cos9				
Long distance		Extra (Env.) UHV	Ligh	vollage
Teplosees Franspission a	nd_			
R = PL A	<u> </u>			
$A \downarrow \rightarrow I \downarrow$				
* Spin Effect	J	High v	o I fage	DC
ACtoDC A——A	.X		11121	
Can be used power flow	for	bi-dis	40ction	
uin				

+ Single line diagram of EPS (Flectrical (N) 3\$ Al generator 6GKV- cled Stepup transformer Primary transmission line 66 kV or 132 kV Step down T/R Consumers **Ogenuin**

Date: -> DC System: - 1 2 wise with mid-paint 1) DC sys - 2 wine Vde-i/a voltage on to = Internal resistance of conductor 2) DC systnem with mid point 2 wire Ogenuin

P= 2 ro I2
J P
2.1.
$P_2 = 2 \times_2 \left(\frac{P_2}{V_1}\right)^2$
1 Val
2 (Vdc) - (2)
27, p2 1 72 p2
VJ2 - VJ2
λ^{-1} λ^{-1} λ^{-1}
12 = 4 J
or of d
$q_1 = 4q_2$
-) A (system: - single - \$\phi\$ 3 - \$\phi\$
-) AC System:
3-p
Ogenuin

1) dingle plage AC - 2 wire system
Insinot Vs = Vm Sinot
P=Vxns Igns cosp
9. The same
Jams = P - P
Lams = Vans cos Ø Vm cos Ø
- V2
= V2 P Vm CDSØ
PL = 2 Zrus 14g
$l_{L} = 2 \left(\frac{l}{V_{m}/15} \right) \left(\frac{l}{V_{m}} \right)^{2} H_{S}$
(Vm 1/5) LOS 9/
$= 4 \rho^2 \qquad 9c$ $\sqrt{\sqrt{n^2 \cos^2 \phi}}$
Comparing with 2 wire DC
Jenuin System.

7	FOR A POWEN
7 7	24, = 2 4 Cos ² \$
7 7 7	where se is the resistance in case of DC system re- equivalent resistance of Al conductor.
חח	2) 30 3 wire star
	30 = A - D
3	Irms = I4 Vph = VL Iph = IL
	P3+ = 53 Vorms from Cosp VLorns = 53 Vphrms or 3 Vorms ph Ionsph alsp Vorms, Zons -> Phase quantity
ゴ コ	() genuin

Electrical Safety Date: 28/11/2022 bet Phase blood in cenies
7-10 A MCB -> Appliance safety lood safety
30 9100 9300 FLCB -> Human Safety
bet earth & neutral Jet earth & neutral Jet ELCB toips - ent & system will be disconnected
→ Limits of current from Croagle Current range → Reaction
-> Select conductor dimension - Standard Loire gauge
-> Gaurding live parts
-> Indian Standards for safety.
enuin

in

H

Date:
-> In 250 V, total flux 1500 lumers &
takes a control of all A CIIII
takes a current of o.4 A. Caladate
1) Lumen/Watt
(i) MSCP/Datt
MSCP= F
41
Nattage(W)=VI
$W = 250 \times 0.4 = 100 \omega$
N - 250 NO 19 - 100 W
1) MSCP = 1500 MSCP/Watt - 1500 4T
417 (471 × 100
1/ cumen/exatt = [500 = = 15]
100
> 500 W MSCP=1250 2.7 m above - the
sorting Calculate 1): Illumination directly
below the lamp at working plane
17 Lamp efficiency, sis) Illumination at
a point 3 m away in the horizontal
plane from vertically below the lamp
0 9-7M
genuin
5 3 m

			Dates	E
	-		Date:	7
1)	Illumination (E	<u> </u>		
	I=120 /2-2 Camp efficience	709		
(11)	Lamp efficience	y - Lum lu	minous plus	
	, , , ,	O	W	
		= MSCPX	<u>4 T</u>	
		W		
	1 1 101 101 101	= 31 lime	nlieatt	
(1)(2	$\frac{\mathcal{E}_{g}=1}{h^{2}} \cos^{3}\theta$		han - Co	
Y-PARJI	$\frac{1}{h^2}$	0	2-7	
	= 1270 x (2-7)2	3	ana and	
	272 / 5(12.7)	+32)		
4.271				
40.000				
				5
Ogenuin				

I long with a reflector is mounted 12 m
above the corter of a circular area
of 24 m diameter. If the combination
Condle Pours) of 1000 over the
CP (candle Povex) of 1000 over the
cir cular area. Cole mes & min
illumination produced on the area, h=12.
[2]
12m A 12m/B
i) f-cl - max illumination
h ²
= 1000
122
1000 7803
F(122+122)
Ogenuin Ogenuin