CS 65500 Advanced Cryptography

Lecture 4: Semi-Honest GMW - I

Instructor: Aarushi Goel

Spring 2025

Agenda

- Secret Sharing Schemes

- Seuve Two-Party computation of linear functions

- GMW Protocol

Reminder: HWI is due tonight!

Semi-Honest Secure Two-Party Computation

Definition: A protocol T securely computes a function f in the semi-honest model, it Fa pair of two n.u. PPT simulator algorithms S_A and S_B , such that for every security parameter K, and \forall inputs $x, y \in \{0,1\}^K$, it holds that: SA(n,f(n,y)),f(n,y) $\approx 2 \text{ view (e), out_B(e)}$ SB(y, f(x,y)), f(x,y)} ≈ { ViewB(e), outA(e)} where e ~ [A(n) \ B(y)]}

Oblivious Transfer (07)

Also called 1-out-g-2 DT:

Input: (ao, a,) b
Output:

a_b

Security: Alice doesn't learn b. Bob doesn't learn a_{1-b}

Obhvious Transfer (OI) Can be genualized to 1-out-of-k OI: Bob Alice Input: $(a_1, a_{2i} - a_k)$ $b \in [K]$ Output: \bot a_b Security: Alice doesn't learn b.

Bob doesn't learn $fa_i f_{i \neq b}$

Exercise: Think about how you can use 1-out-of-2 07 to disign 1-out-of-K OT.

Correctness: Any subset of K shares can be combined to reconstruct the secret S.

Security: Any subset of $\leq K-1$ shares reveal no information about the secret s.

Secret Sharing (K1n)

- Definition: A (K,n) secret sharing consists of a pair of PPT algorithms (Share, Reconstruct) S.t.,

 Share(S) \rightarrow $(S_1, --., S_n)$
 - Reconstruct $(S'_{i1}, --., S'_{ik})$ is such that, if $\{S'_{i1}, --., S'_{ik}\} \subseteq \{S_i, --., S_n\}$, then it outputs S.
 - $\forall s,s'$ and for any subset of at most K-1 indices $X \subset [1,n]$, |x| < K the following distributions are statistically close: $\{(Si \mid i \in X); (S_1, \dots, S_n) \leftarrow Share(S)\},$ $\{(S_i' \mid i \in X); (S_1', \dots, S_n') \leftarrow Share(S)\}$

(n,n) Secret Shaving: Construction

An (n,n) secret sharing scheme for SESO113 based on XOR.

Share (s): sample random bits $(S_1 - S_n)$, $S_1 \oplus S_2 \oplus - - \oplus S_n = S$.

Reconstruct (s',,__, Sn'): Output S, \(\Theta\) S'_2 \(\Darrow\) --. \(\Phi\) Sn'

This is also known as the additive secret sharing scheme.

Sewrity?

What if SEIF?

Linearity of Additive Secret Sharing

Given additive secret shares S,---. Sn of a secret s and additive secut shares $r_1 - - \cdot \cdot r_n$ of a secret r, the parties can obtain secret shares of $u = s \oplus r$ as follows:

 S_1, x_1

 S_2, A_2

53, 23

S4, 24

U1= S1 + 91 U2= S2 + 2

uz= Sz⊕ Rz

U4=Sy A Ry

→ Does not require additional interaction → can compute shares of any linear function of S and I.

Secure Two-Party Computation of Linear Functions

Alia

Input:

Function:

Protocol:

sample bits x4, xB

S.t., xA + xB = x

Sample bits yt, ys S.E., y=yt & ys

Compute ZB= L(xB, yB)

compute Z = L(xA,yA)

 $Z = Z^A \oplus Z^B$

Output: Z=ZA + ZB

Secure Two-Party Computation of General Functions

Alia

x1, __ , xm E [0,13 m

Function: $f: \{0,1\}^{2m} \longrightarrow \{0,1\}^2$

Input:

Output: f(x1, --, nm, y1, --, ym) = 21, --, Ze

Bob

y,,..., ym E{0113m

Function Representation

Function f: $50,13^{2m} \rightarrow 50,13^{d}$ can be represented as a Boolean circuit:

Function Representation

Function $f: foig^{2m} \rightarrow foig^{2}$ can be represented as a Boolean circuit:

Input wures: $\chi_{1,---,\chi_{m}}$, $\chi_{1,---,\chi_{m}}$ Dutput wires: $\chi_{1,---,\chi_{d}}$

Gates: Since NAND gates are compute, we will assume that the circuit only comprises of AND and NOT gates.

GMW Protocol. for secure two-party computation of $f(a_1, -a_m, b, -b_m)$

Oded Goldreich

Silvio Micali

Avi Wigderson

Building Blocks 1. (2,2) Secret sharing
2. 1-out-of 4 Oblivious transfer

GMW Protocol

The invariant maintained throughout this proteol is that for every wise w in the circuit, Alice and Bob should have shares w_A , w_B , such that Reconstruct (w_A , w_B) = w when using additive secret sharing, this simply means $w_A \oplus w_B = w$

3-step Protocoli

- 1 Input Sharing
- 2. Circuit Evaluation
- 3. Destput Reconstruction.

GMW Protocol: Input Sharing

Alia

Bob

Inputs: x1, __ , xm

y1, --, ym

Hielm]:

Share (xi) -> xi, xiB

Vie[m]:

Share (yi) - yi, yis

 $\chi_1^{B}, \ldots, \chi_m^{D}$

yn, --, ym

GMW Protowol: Circuit Evaluation

NOT gate

compute who = uh +1

Notice that $w^A \oplus w^B = u^A \oplus I \oplus u^B = \overline{u}$ \implies invariant is maintained []

GMW Protowel: Circuit Evaluation

AND gate

$$\frac{u}{v}$$

Alice holds ut, vt

Bob holds u^B, v^B

Idea 1: Can they simply multiply thun respective shares of us v to obtain shares of w?

GMW Protocol: Circuit Evaluation

What do we want to compute? Shares of w what do we have? Shares of u, v

$$W = u \cdot v = (u^{A} \oplus u^{B}) \cdot (v^{A} \oplus v^{B})$$

$$= u^{A} \cdot v^{A} \oplus u^{B} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{B} \cdot v^{A}$$

$$= u^{A} \cdot v^{A} \oplus u^{B} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{B} \cdot v^{A}$$

$$= u^{A} \cdot v^{A} \oplus u^{B} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{B} \cdot v^{A}$$

$$= u^{A} \cdot v^{A} \oplus u^{B} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{B} \cdot v^{A}$$

$$= u^{A} \cdot v^{A} \oplus u^{B} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{A} \cdot v^{A} \oplus u^{B} \cdot v^{A}$$

$$= u^{A} \cdot v^{A} \oplus u^{B} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{A} \cdot v^{A} \oplus u^{B} \cdot v^{A}$$

$$= u^{A} \cdot v^{A} \oplus u^{B} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{A} \cdot v^{B} \oplus u^{A} \cdot v^{A} \oplus u^{A} \oplus u^{A} \cdot v^{A} \oplus u^{A} \oplus u^{A} \oplus u^{A} \cdot v^{A} \oplus u^{A} \oplus u^{A}$$

GMW Protowol: Ciruit Evaluation

How to compute shares of u.vb+ ub.v4?

Alice samples 14 foils

Alius input to OT:

$$a_{0} = r \oplus ((u^{A} \cdot 1) \oplus (V^{A} \cdot 0))$$

$$a_{10} = r \oplus ((u^{A} \cdot 0) \oplus (V^{A} \cdot 1))$$

1-out-g-4 Oblivious transfer

Bob's input to DT: (u^B, v^B)

Ahu sets hu share of $u^A \cdot v^B + u^B \cdot v^A$ to be a

Bob sets his share of $u^A \cdot v^B + u^B \cdot v^A$ to be the output of OT

GMW Protowol: Circuit Evaluation

AND gate

- Alie holds u^A, v^A

- Sample ut joils and use

the following inputs to OT:

$$a_{00} = r \oplus (u^{A} \cdot 0) \oplus (v^{A} \cdot 0)$$

$$a_{0} = r \oplus ((u^{A} \cdot 1) \oplus (v^{A} \cdot 0))$$

$$a_{10} = r \oplus ((u^{A} \cdot 0) \oplus (v^{A} \cdot 1))$$

use (uB, VB) as Enput the the OT protocol.

Let s be the output

of this OT.

Invariant is maintained!

GMW Protocol: Output Reconstruction

Alia

Bob

For all output wres: Z,, --, Zu!

* it [U]

Zi = zi B + Zi