Inferência aproximada: o valor de uma premissa

Motivação

Em Inferência Estatística, em geral temos como ponto de partida um modelo estatístico e um conjunto de dados, e nossa tarefa é produzir inferências ótimas. A otimalidade dos procedimentos e estimativas obtidos é contingente na adequação das premissas feitas à realidade. Em Modelagem Estatística, vamos primeiro desafiar a ideia de um modelo fixo e construir vários modelos para o mesmo fenômeno, buscando sempre confrontar os ajustes obtidos aos dados no sentido de checar a adequação das premissas feitas. Nesta primeira lição, veremos o que pode ser feito sob poucas premissas acerca do processo gerador dos dados (data generating process, DGP).

Os dados

Vamos analizar medições da concentração (em partes por milhão, ppm) de um composto químico em n=100 amostras de bateladas de um determinado produto.

```
conc <- read.csv("../data/chem.csv", header = FALSE)$V1</pre>
```

Vamos explorar um pouco os dados plotando um histograma.

```
hist(conc, probability = TRUE,
    main = "Concentração em ppm",
    xlab = "X")
```

Concentração em ppm

Será que os dados apresentam alguma tendência em relação ao número da batelada (índice da observação)?

plot(conc, type = "b", lwd = 2)

Estatísticas descritivas

Vamos olhar quartis, amplitude e desvio padrão:

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.490 5.185 9.230 12.975 17.530 58.110

sd(conc)
```

Inferência

[1] 10.58646

Vamos raciocinar sobre algumas quantidades, a saber a média (\bar{X}_n) e a mediana (\hat{M}) amostrais. Em particular, vamos pensar sobre como construir intervalos de confiança para essas quantidades.

```
## Ver exercícios ao final
med_app <- function(x, gamma = 0.95){</pre>
  ## Aproximação normal usando o método Delta.
  dens <- density(x)</pre>
  app.pdf <- approxfun(dens)</pre>
  med.hat <- median(x)</pre>
  n <- length(x)</pre>
  sd.approx \leftarrow 1/(4 * n * (app.pdf(med.hat))^2)
  pars <- c(med.hat, sqrt(sd.approx))</pre>
  return(
  c(med.hat, qnorm(p = c(1 - gamma, 1 + gamma)/2,
         mean = pars[1], sd = pars[2]))
  )
}
med_np <- function(x, gamma = 0.95){</pre>
  ## método não-paramétrico, baseado na binomial
  med.hat <- median(x)</pre>
  return(
    c(med.hat, sort(x)[qbinom(p = c(1 - gamma, 1 + gamma)/2, size = length(x), prob = 0.5)])
```

Agora, vamos aplicar estas funções aos nossos dados. Primeiro, a média amostral:

```
Nivel <- 0.95

xbar <- mean(conc)

c(xbar, xbar + c(-1, 1) * qnorm(p = (1 + Nivel)/2) * sd(conc)/length(conc))
```

[1] 12.97450 12.76701 13.18199

Depois, a mediana:

```
med_np(conc)
```

[1] 9.23 7.68 12.32

```
med_app(conc)
```

[1] 9.230000 7.190032 11.269968

Investigando a função de distribuição empírica

Um ótimo descritor de uma distribuição de probabilidade é a função de distribuição acumulada (f.d.a.) também chamada de *cumulative distribution function*, CDF:

$$F(x) := \Pr(X \le x).$$

Como discutido nos exercícios abaixo, podemos aproximar F a partir da amostra através do estimador

$$Y_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le x)$$

Vamos ver como ficam as estimativas usando os dados sob análise:

```
fda.empirica <- ecdf(conc)
plot(fda.empirica)</pre>
```

ecdf(conc)

Desta forma, se o alvo inferencial é $\Pr(X \leq 30)$, podemos obter uma estimativa fazendo

```
( P30.hat <- fda.empirica(30) )
```

[1] 0.94

Para quantificar a incerteza, podemos fazer (porquê?)

```
P30.hat + c(-1, 1) * qnorm(p = (1 + Nivel)/2) * (P30.hat * (1-P30.hat))/length(conc)
```

[1] 0.9388946 0.9411054

Para finalizar, vamos olhar o que acontece se fizermos (i) uma transformação e (ii) uma premissa paramétrica:

```
lg.conc <- log(conc)
hist(lg.conc, probability = TRUE,
    main = "Concentrações transformadas",
    xlab = "log(X)")</pre>
```

Concentrações transformadas


```
mu.hat <- mean(lg.conc)
sd.hat <- sd(lg.conc)

plot(fda.empirica)
curve(plnorm(x, meanlog = mu.hat, sdlog = sd.hat), min(conc), max(conc), lwd = 3, lty = 2, cancel to the state of th
```

ecdf(conc)

Exercícios de fixação

1. Tome X_1, X_2, \ldots, X_n uma amostra de uma distribuição conjunta F_n . Sejam $\theta_i := E[X_i]$ e $v_i := \text{Var}(X_i)$. Considere a média amostral $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$. Deduza que para $\varepsilon > 0$:

$$\Pr\left(\left|\bar{X}_n - \frac{1}{n}\sum_{i=1}^n \theta_i\right| \ge \varepsilon\right) \le \frac{\sum_{i=1}^n v_i + 2\sum_{i < j} \operatorname{Cov}(X_i, X_j)}{(n\varepsilon)^2},$$

e argumente sobre o que acontece à medida que $n \to \infty$ sob as premissas de (a) independência (b) indentidade de distribuição. O que precisamos assumir sobre v_i ? E sobre as covariâncias?

2. O método Delta. Suponha que Y_1, Y_2, \ldots é uma sequência de variáveis aleatórias i.i.d. para as quais vale um teorema central do limite, isto é,

$$\sqrt{n} \frac{(Y_n - \mu)}{\sigma} \implies \text{Normal}(0, 1),$$

onde $\mu := E[Y_1]$ e $\sigma := \sqrt{\operatorname{Var}(Y_1)}$ e a convergência é em distribuição. Tome $g : \mathcal{Y} \to \mathbb{R}$ uma função tal que $g'(\mu) \neq 0$. Prove que

$$\sqrt{n} \frac{(g(Y_n) - g(\mu))}{\sigma|g'(\mu)|} \implies \text{Normal}(0, 1).$$

Dica: use o teorema de Taylor, o teorema do mapeamento contínuo e o teorema de Slutsky.

- 3. Tome X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição com f.d.a. (cdf) comum F. Para $x \in \mathbb{R}$, defina $Y_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \leq x)$. Mostre que
 - a. $E[\mathbb{I}(X_i \leq x)] = F(x)$ e que $Var(\mathbb{I}(X_i \leq x)) = F(x)[1 F(x)].$
 - b. $\sqrt{(n)}(Y_n(x) F(x)) \implies \text{Normal } (0, F(x)[1 F(x)]).$
 - c. Considere a função $g(t) = F^{-1}(t)$ para $t \in (0,1)$, isto é a inversa generalizada de F. Calcule g'(t) em termos de F e da densidade f.
 - d. Finalmente, use o resultado do item 2 para deduzir que

$$\sqrt{n}\left(F^{-1}(Y_n(x)) - x\right) \implies \text{Normal}\left(0, \frac{p(1-p)}{[f(x)]^2}\right),$$

para p = F(x).

4. Use o resultado anterior para construir um intervalo de confiança de $\gamma \times 100\%$ aproximado para a mediana amostral.

Dica: f(x) pode ser bem estimada em qualquer ponto x usando o método do histograma. Seja $\{B_k := (t_k, t_{k+1}) : t_k = t_0 + hk, k \in \mathbb{Z}\}$ e defina para $x \in B_k$ uma função constante em B_k $\hat{f}(x, t_0, h) := \frac{v_k}{nh}$, onde v_k é o numéro de observações que estão no intervalo B_k . Sob condições de regularidade², temos que quando $h \to 0$, $\hat{f}(x, t_0, h) \to f(x)$, isto é, o estimador

¹mensurável.

²Basicamente queremos que $nh \to \infty$

da densidade é consistente³. No R, podemos fazer

```
amostra <- rnorm(100)
dens <- density(amostra)
app.pdf <- approxfun(dens)</pre>
```

para obter uma pdf aproximada usando como amostra um conjunto de v.a.s. normal padrão, por exemplo.

5. (**Desafio**) A discussão dos itens anteriores supõe amostras grandes, para as quais faça sentido falar em teorema central do limite. Agora vamos estudar uma maneira de construir um intervalo de confiança para a mediana que seja válido para amostras finitas. Suponha uma amostra aleatória de tamanho n ímpar de uma distribuição F e considere sua versão ordenada:

$$X_{(1)}, X_{(2)}, \dots, X_{\left(\frac{n+1}{2}\right)}, \dots, X_{(n)}.$$

Seja \tilde{X} a mediana de F, i.e., $F(\tilde{X}) = \Pr(X \leq \tilde{X}) = 1/2$. Defina $\pi_m = \Pr(Y \leq \tilde{X})$.

a. Mostre que

$$\Pr(X_i > \tilde{X}) = \sum_{j=0}^{i-1} \binom{n}{j} \pi_m^j (1 - \pi_m)^{n-j}.$$

b. Argumente que $\pi_m \geq 1/2$. Em seguida, escreva $\pi_m = 1/2 + \varepsilon$ e mostre que para $2(j-1) \leq n$ vale que

$$\pi_m^j (1 - \pi_m)^{n-j} \le 2^{-n},$$

e que, então,

$$\Pr(X_{(i)} > \tilde{X}) \le 2^{-n} \sum_{i=0}^{i-1} \binom{n}{j}.$$

c. Use os resultados anteriores para mostrar que sempre existem $l \leq u \in \{1, ..., n\}$ tais que

$$\Pr\left(X_{(l)} \le \tilde{X} \le X_{(u)}\right) \ge 2^{-n} \sum_{j=0}^{i-1} \binom{n}{j}.$$

d. Para terminar, use os resultados anteriores para construir um intervalo de confiança de $\gamma \times 100\%$ para \tilde{X} .

Referências

- Seção 6.4.3 de Evans & Rosenthal (2023).
- Capítulo 5 de Hahn & Meeker.

 $^{^3\}mathrm{E}$ assintoticamente não-viesado. Para mais detalhes, veja essas notas