PHYS 416 - Chapter 7

Due Tuesday, April 14, 2020 at 11:59 PM

Wave Equation

A. Modify advect to use Dirichlet boundary conditions. What happens when the wave hits the boundary? Physically, is this what would you expect to happen? Explain why or why not. Note: be careful about grid spacing when you go from periodic to Dirichlet boundary conditions.

B. a. Create a program called wave.m/.py, that is used to solve the wave equation,

$$\frac{\partial^2 A}{\partial t^2} = c^2 \frac{\partial^2 A}{\partial x^2}$$

and uses the method:

$$A_i^{n+1} = 2A_i^n - A_i^{n-1} + \frac{c^2\tau^2}{h^2} (A_{i+1}^n - 2A_i^n + A_{i-1}^n)$$
 (1)

assuming Dirichlet Boundary conditions at both ends, i.e.

$$A\left(x=-\frac{L}{2},t\right)=0$$
 and $A\left(x=\frac{L}{2},t\right)=0$

and initial conditions are:

$$A(x,0) = \cos[k(x-x_o)] \exp\left[-\frac{(x-x_o)^2}{2\sigma^2}\right] \text{ and } \frac{\partial}{\partial t} A(x,0) = 0$$

Assume c=1. [Hint: Start with advect.m/.py]

b. You will notice in part (a) that once the wave starts moving, it splits it to 2 parts, one part moving left and the other moving right. Make a simple change to the initial condition so that the wave moves to the right instead.

[Turn in the programs and sample plots. If you like, you can combine the program for parts a and b into one with an option for the initial condition.]

Physics of Traffic Flow

7.11 Modify the traffic program so that it uses the initial conditions

$$\rho(x, t = 0) = \frac{\rho_m}{2} \left[1 + \cos\left(\frac{4\pi x}{L}\right) \right]$$

Plot the density versus position for a variety of times and show that the cosine wave turns into a sawtooth wave. In nonlinear acoustics, this is referred to as an N-wave. If you have ever been to a very loud rock concert, you may have heard one of these.

[Turn in the program and the sample plots]

7.12 Suppose that we have a uniform density of traffic with a small congested area. Modify the traffic program so that the initial conditions are

$$\rho(x, t = 0) = \rho_0 \left[1 + \alpha \exp\left(-\frac{x^2}{2\sigma^2}\right) \right]$$

where $\alpha = \frac{1}{5}$, $\sigma = \frac{L}{8}$ and ρ_0 are constants.

(a) Show that for light traffic, (e.g., $\rho_0 = \frac{\rho_m}{4}$) the perturbation moves forward.

- (b) Show that for heavy traffic, (e.g., $\rho_0 = \frac{3\rho_m}{4}$) the perturbation moves backward. Interpret this result physically.
- (c) Show that for $\rho_0 \sim \frac{\rho_m}{2}$) the perturbation is almost stationary; it drifts and distorts slightly. [Turn in the program and the sample plots]

All of the following are 1 credit optional exercises

7.8. Call $x_c(t)$ the position of a given car; then

$$\frac{dx_c(t)}{dt} = v(\rho(x_c(t), t))$$

(a) Show that

$$x_c(t) = \begin{cases} x_c(0) & t < -\frac{x_c(0)}{v_m} \\ v_m t - 2\sqrt{-x_c(0)v_m t} & t > -\frac{x_c(0)}{v_m} \end{cases}$$

by using the solution to the stoplight problem, i.e.,

by using the solution to the stophight problem, i.e.,
$$\rho(x,t) = \begin{cases} \rho_m & \text{for } x \leq -v_m t \\ \frac{1}{2} \left(1 - \frac{x}{v_m t}\right) \rho_m & \text{for } -v_m t < x < v_m t \\ 0 & \text{for } x \geq v_m t \end{cases}$$
And $v(\rho) = v_m (1 - \frac{\rho}{\rho_m})$ [Note that initially the car's location is < 0.] [Pencil]

(b) Modify the trafd.m/.py program to also plot the analytic solution from (a) along with the numerical solution. [Turn in the program and sample plots.]

High resolution methods for Hyperbolic Equations

C. Test the high-resolution methods (advecth, that also needs hires and limiter) on how they deal with the original Gaussian wave form. Use N=50, and τ =0.01. How do they compare to the methods we used earlier such as the Lax and Lax-Wendroff methods?

Modify the limiter program to use the so-called *superbee* method

$$\phi(\theta) = \max(0, \min(1, 2\theta), \min(2\theta))$$

compare the results to the other limiter methods for both the 2square waves and the Gaussian initial waveform.

[Note: Be careful how you implement MATLAB's max and min functions],

D. Modify your traffic program to use the limiter methods. In this case, the velocity (u) is defined as the average velocity in the cell, a good approximation is to use

$$u_i = \frac{1}{2}(u_{i-1} - u_{i+1})$$

Compare the results you get with the various methods.