A Content-

- 1 Linean Algebra
- 2 Calculus
 - 3 Co-Ordinate Geometry
 - 4 Optimization

* Flow -

- (1) Why are we studying this topic! How is this related to ML?
- 2) Understand the concept
- (3) Visualization of the problem sol
- (4) Maths behind the concept
- 5 Code (wherever needed possible)

Introduction

- Two types of problems in ML

(i) Classification - categornizing an incoming mail

(ii) Regnession - Paedicting paice of a house

BHK Agen Locality Parking ____ Paice
4 100 Posh 2 3.6

1 Our Core Example - Fish Sorting Mechanism

A what if a human (newly employed) is going to this job ? Itow will helshe leath which one is big fish | small fish 9

\$ Process:

1) Training - A supervisor will show him her which are Taxining big vs. small fishes for a large no. of fishes.

2) testing - The new employee will identify | label the Test big I small fishes while the supervisor watches.

3 Deploy-

If they perform well then helshe will be deployed else helshe will be put back into the training.

-> We do exactly the same process to deploy an ML Program (ML Model)

\$\text{Let's have a look at a sample datar.}

73 VG(VC		featy9	res Ind	ependent '	Jaqiables	- label / Dependent
length	width	colun	weight		type	or target
25	10	Red	150		5	>> Data point /

25	10	Red	150	5	- tariget >> Datapoint/
300	100	Black	2000	В	Record

Step-1: Splitting Torain-Test Data

-> We will first divide out data into two parts - Trining Data.

This split may be 60:40 70:30) 80:20 On any other combination

Step-2: Visualize the data - For simplicity, we will take inst two features- size gracight

After visualizing the data points in form of a scatter plot, we can say that if our ML program can draw find a line that seperates these two types of dots

then its job will be done. Therefore 'Learning' of machine is nothing but finding this line boundary.

— This line is also known as 'seperator' I boundary!

'classifier'

... We need to study the maths of a straight line.

-> some questions:

-> some questions:

(i) What it is not possible to draw a straight-line that perfectly seperate the dots?

-> We might need to draw a cyarve. OK

-> We need to compromise with the accuracy.

2) What if there whe more than two types ?
eg. small | medium | large fishes

-> We will have two classifiers

What if an extra feature is added ?

What if an extend feature is added ? eg, if we took length, windth & weight, how would the graph look ? -> 3D why 309 Because there are 3 features.

.: Features are also called 'Dimensions'

* What if we add one more feature? Now the space becomes 4D which is beyond visualization, but what will happen with our seperators (boundary) ?

space/m. of features classifier

At the end, we must leasn maths behind the straight line because all the hyperplanes agre nothing but studight lines in higher dimensions.