(12) Find the tungent plane to $f(x,y) = 4x^2 + y^2$ at (1,1,5).

$$f_{x}(x,y) = 8x$$
 $f_{x}(1,1) = 8$
 $f_{y}(x,y) = 2y$ $f_{y}(1,1) = 2$

Equation of temperat plane is

$$Z = f(y) + f_{x}(y)(x-1) + f_{y}(y)(y-1)$$

$$z = 5 + 8(x-1) + 2(y-1)$$

$$Z = 5 + 8x - 8 + 2y - 2$$

- Equation for tangent plane at (1,1).

Section 14.7 (H) Find local max/min/saddle points of f(x,y) = x3+3xy+y3 $\nabla f = \langle 3\chi^2 + 3y, 3y^2 + 3\chi \rangle = 3\langle \chi^2 + y, y^2 + \chi \rangle = \langle 0, 0 \rangle$ critical points we need to solve The system To find the $\begin{cases} \lambda_5 + \lambda = 0 \\ \lambda_5 + \lambda = 0 \end{cases}$ $\Rightarrow \chi^2 + y - (y^2 + \chi) = 0$ Because x2+y=0, $\Rightarrow \chi^2 - y^2 + (\chi - y) = 0$ y is not positive $\Rightarrow (x-y)(x+y)-(x-y)=0$ > Because y2+x=0, x is not positive. $\Rightarrow (x-y)(x+y-1) = 0$ Hence This term is x=y negative, i.e. not 0 Putting x=y into x2+y=0 gives y2+y=0 => y(y+1)=0 Critical Points (0,0) and (-1,-1) = 0 y=-1 Need the following: $f_{xx} = 6x$ fyy = 64

Point (0,0): $f_{xx}f_{yy} - f_{xy}^2 = 0.0 - 3^2 = -9 < 0$ Thus there is a saddle point at (0,0) Point (-1,-1): $f_{xx}f_{yy} - f_{xy}^2 = (-6)(-6) - 3^2 = 36 - 9 = 27 > 0$ Theen because $f_{xx} = -6 < 0$ there is a local maximum at (-1,-1)

 $f_{xy} = 3$

(24) $f(x,y) = \ell^{2}\cos y$ $\nabla f = \langle 2\ell^{2}\cos y \rangle, -\ell^{2}\sin y \rangle = \langle 0,0 \rangle$ Since $\ell^{2}\times >0$, we can only have $\nabla f = \langle 0,0 \rangle$ for Those χ for which $\chi = 0$ and $\chi = 0$. As no such $\chi = 0$ exist, there are no critical points, hence two extrema.

28) Find local max/min and saddle points of
$$f(x,y) = e^{x}(x^{2}-y^{2}) + e^{x}2x, -e^{x}2y$$

$$= \langle e^{x}(x^{2}+2x-y^{2}), -2ye^{x} \rangle = \langle 0,0 \rangle$$

$$= \langle e^{x}(x^{2}+2x-y^{2}), -2ye^{x} \rangle = \langle 0,0 \rangle$$

$$= \langle e^{x}(x^{2}+2x-y^{2}) = 0$$

$$= \langle e^{x}(x^{2}+2x-y^{2}) = 0$$
Because $e^{x} > 0, -2ye^{x} = 0$ implies $y = 0$

Then we have $e^{x}(x^{2}+2x-0^{2}) = 0$

$$= \langle e^{x}(x^{2}+2x) = 0$$

$$= \langle e^{x}(x^{2}+2x-y) = 0$$

$$= \langle e^{x}(x^{2}+2x-y)$$