

Universidade do Minho, Escola de Engenharia, Departamento de Produção e Sistemas

EXAME DE MÉTODOS NUMÉRICOS

Curso de Engenharia: CIVIL

Recurso 22 de Julho de 2005 Duração: 3 horas

LEIA O ENUNCIADO COM ATENÇÃO
APRESENTE TODOS OS CÁLCULOS QUE TIVER DE EFECTUAR

1. Considere a seguinte figura que representa um lago:

em que h é a profundidade do lago, A(h) = 4.7h é a área da secção molhada, P(h) = 4+2h representa o perímetro molhado, R(h) é o raio hidráulico dado por $\frac{A(h)}{P(h)}$, S = 0.001 (inclinação longitudinal do lago), v = 0.02 (parâmetro de rugosidade da superfície do lago) e Q = 12.2 (vazão do lago).

Pretende-se determinar a profundidade h do lago pela aplicação da equação de Manning para verificação da capacidade da vazão de lagos:

$$Q = \frac{A(h) R(h)^{\frac{2}{3}} S^{\frac{1}{2}}}{v}.$$

Sabendo que $h \in [1,2]$, utilize o método mais adequado, considerando no critério de paragem $\varepsilon_1 = 10^{-1}$ e $\varepsilon_2 = 10^{-2}$, ou no máximo 2 iterações.

2. Considere a matriz dos coeficientes de um certo sistema linear

$$A = \left(\begin{array}{ccc} k & 3 & -1 \\ k & 6 & 1 \\ 1 & 5 & -7 \end{array} \right).$$

Com base numa das condições suficientes baseada na matriz A, para que valores de k se garante a convergência do método de Gauss-Seidel?

3. Considere-se um pórtico em L invertido com um apoio flexível de rotação:

a) Para os seguintes valores θ_i do ângulo, obtiveram-se os correspondentes f_i :

θ_i	0	$\pi/3$	$2\pi/3$	π		
f_i	0.5	-0.2453	-2.1067	-4.5841		

Pretende-se ajustar o modelo

$$f(\theta) = c_1 cos(\theta) + c_2 sen(\theta) + c_3 \theta$$

em que $c_3 = K/(PL)$ e K é constante, aos valores da tabela, utilizando a técnica dos mínimos quadrados.

Usando 4 casas decimais nos cálculos, apresente (na sua forma final) o sistema das equações normais que utilizaria para calcular c_1, c_2 e c_3 . Não resolva o sistema.

Nota: Use radianos nos cálculos.

b) Considere o modelo da alínea anterior, com $c_1 = 0.5$, $c_2 = 1$ e $c_3 = -1.3$.

Construa uma spline cúbica completa para aproximar $f(\theta)$, usando a informação disponível na tabela (cujos valores foram calculados com base no modelo dado).

Para $\theta = 0.82634$, temos uma situação de equilíbrio $f(\theta) \approx 0$. Para o mesmo valor de θ , que valor fornece a *spline*?

4. A equação diferencial

$$my'' + cy' + ky = 0$$

constitui um modelo para o sistema mecânico de massa, mola e amortecedor representado na figura:

em que y(t) exprime o deslocamento da mola em relação à sua posição de equilíbrio. Supondo $m=1,\ c=2,\ k=25,\ y(0)=1$ e y'(0)=-1, calcule o deslocamento ao fim de 0.5 segundos, usando h=0.25 e um método de passo único e de 2^a ordem.

5. Um fluido atravessa a secção de um tubo com uma velocidade v(r), sendo r a distância radial ao centro da secção. Determine a quantidade Q de fluido que atravessa esta secção por unidade de tempo, dada por:

$$Q = 2\pi \int_0^{r_0} r \, v(r) dr$$

em que $r_0 = 4.5$ é o raio da secção circular do tubo, usando os valores da tabela:

r	0	0.5	1	1.5	2	3	3.5	4	r_0
v(r)	3	2.9499	2.8942	2.8312	2.7584	2.5643	2.4199	2.1918	0

Use 4 casas decimais nos cálculos.

Estime também o erro de truncatura cometido no intervalo [2, 3].

\mathbf{FIM}