1

CONTENTS

1	Stability						
	1.1	Second order System					

2 Routh Hurwitz Criterion

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

1 STABILITY

1.1 Second order System

2 Routh Hurwitz Criterion

3 Compensators

4 NYOUIST PLOT

4.0.1. For the unity feedback system G(s), find the closed loop frequency response using constant M and N circles.

$$G(s) = \frac{1000}{(s+3)(s+4)(s+5)(s+6)} \quad (4.0.1.1)$$

Solution: M circle are constant magnitude loci and N circles are constant phase loci of the closed loop transfer function. let,

$$g(j\omega) = x + jy \tag{4.0.1.2}$$

T be the closed loop transfer function.

$$T = \frac{g(j\omega)}{1 + g(j\omega)} \tag{4.0.1.3}$$

$$T = \frac{x + jy}{1 + x + jy} \tag{4.0.1.4}$$

A. hence, magnitude is given by -

$$M = \frac{\sqrt{x^2 + y^2}}{\sqrt{(1+x)^2 + y^2}}$$
 (4.0.1.5)

rearranging,

$$\left[x - \frac{M^2}{1 - M^2}\right]^2 + y^2 = \left[\frac{M^2}{1 - M^2}\right]^2 \quad (4.0.1.6)$$

For different values of M, it represents a family of circles. The intersection of niquest plot with M circles plot gives the magnitude plot of

Fig. 4.0.1

closed loop system.

1

1

B. phase is given by -

$$\phi = \arctan \frac{y}{x} - \arctan \frac{y}{1+x}$$
 (4.0.1.7)

$$\tan \phi = \frac{y}{x^2} + x + y^2 \tag{4.0.1.8}$$

substituting $tan \phi = N$

$$N = \frac{y}{x^2} + x + y^2 \tag{4.0.1.9}$$

Fig. 4.0.1

For different values of N,it represents a family of circles. The intersection of niquest plot with N circles plot gives the phase plot of closed loop system.

Hence closed loop frequency response is -

Fig. 4.0.1