Bit Sum Problem KPS

No Author Given

No Institute Given

The system for adding two bits is defined as follows:

$$sk\Pi_{Add}(n) = (A, L, IO, \mu, C_1, C_2, C_3),$$

where:

- $A = \{a_0, a_1, \dots, a_{21}\}$ is the alphabet.
- $-L = \{1, 2, 3\}$ is the label set for compartments.
- IO: No external input/output symbols are required, as the result is stored in compartment C_3 .
- $-\mu = [[[\]_3]_2]_1$ is the membrane structure.
- Compartments:

 - $C_1 = (1, w_{1,0}, R_1)$, where $w_{1,0} = \{a_x, a_y\}$ contains the input bits. $C_2 = (2, w_{2,0}, R_2)$, where $w_{2,0} = \{\}$ serves as an intermediary workspace. $C_3 = (3, w_{3,0}, R_3)$, where $w_{3,0} = \{\}$ stores the final result.

Rules for Each Compartment

Rules in C_1 (Initialization and Data Movement)

$$r_{1,1}: a_x \to (a_x, 2), \quad a_y \to (a_y, 2).$$

These rules send the input bits a_x, a_y to C_2 .

Rules in C_2 (Addition Logic) For every a_i , the addition rules are:

$$r_{2,i}: 2a_i \to a_{i+1}(3), \quad \forall i \in \{0, 1, \dots, 20\}.$$

These rules consume two identical input symbols and produce the next symbol, which is sent to C_3 .

Rules in C_3 (Result Storage)

$$r_{3,1}: a_i \to a_i, \quad \forall i \in \{0, 1, \dots, 21\}.$$

This rule simply stores the result.

Step-by-Step Process

- 1. Initialization: Input bits a_x, a_y are placed in C_1 . Rules $r_{1,1}$ transfer the bits to C_2 .
- 2. Addition: In C_2 , rules $r_{2,i}$ perform the addition. Two symbols a_x and a_y are consumed to produce the result a_{x+y} , which is sent to C_3 .
- 3. **Result:** C_3 contains the final result a_{x+y} , which represents the sum of the two bits.

References