Estudo de Python e dados

Sergio Pedro Rodrigues Oliveira 06 October 2025

SUMÁRIO

1	Obj	etivo etivo						
2	Bás	sico sobre o DataFrame do Pandas						
	2.1	Introdução						
	2.2	Carregando seu primeiro conjunto de dados						
	2.3	Observando colunas, linhas e células						
		2.3.1 Obtendo subconjuntos de colunas						
		Obtendo subconjuntos de colunas pelo nome						
		Obter subconjuntos de colunas pela posição dos índices não funciona						
		mais no Pandas v0.20						
		2.3.2 Obtendo subconjuntos de linhas	1					
		Obtendo subconjuntos de linhas pelo rótulo dos índices: loc	1					
		Obtendo subconjuntos de linhas pelo número das linhas: iloc	1					
		Obtenção de subconjuntos de linhas com ix não funciona mais no Pandas						
		v0.20	1					
		2.3.3 Combinando tudo	1					
		Obtendo subconjuntos de colunas	1					
		Obtendo subconjuntos de colunas por intervalo	2					
		Fatiando colunas	2					
		Obtendo subconjuntos de linhas e de colunas	2					
		Obtendo subconjuntos de várias linhas e de colunas	2					
	2.4	Cálculos agrupados e agregados	2					
	2.1	2.4.1 Médias agrupadas	3					
		2.4.2 Condatodes de frequência agrupados	3					
	2.5	Plotagem básica	3					
	$\frac{2.6}{2.6}$	Conclusão	3					
	2.0	Conclusão	9					
3	Estr	rutura de dados do Pandas	3					
	3.1	Introdução	38					
		Mapa Conceitual	38					
	3.2	Criando seus próprios dados	3					
		3.2.1 Criando uma Series	3					
		3.2.2 Criando um Dataframe	4					
	3.3	Series	4					
		3.3.1 Series é semelhante a ndarray	5					
		3.3.1.1 Métodos de Series	5					
		3.3.2 Subconjuntos com booleanos: Series	5					
		3.3.3 Operações são alinhadas e vetorizadas automaticamente (Broadcasting)	5					
		3.3.3.1 Vetores de mesmo tamanho	59					
		3 3 3 9 Vetores com inteiros (escalares)	6					

			3.3.3.3 Vetores com tamanhos diferentes	61
			3.3.3.4 Vetores com rótulos de índice comuns (alinhamento automático)	62
	3.4	Datafr	came	64
		3.4.1	Subconjuntos com booleanos: DataFrames	64
		3.4.2	Operações são alinhadas e vetorizadas automaticamente (Broadcasting)	66
			Escalar	67
			Somar - método .add()	68
	3.5	Fazeno	do alterações em Series e em Dataframe	70
		3.5.1	Adicionando mais colunas	70
		3.5.2	Alterando diretamente uma coluna	73
		3.5.3	Descartando valores	78
	3.6	Expor	tando e importando dados	79
		3.6.1	pickle	79
			3.6.1.1 Series	79
			3.6.1.2 DataFrame	80
			3.6.1.3 Lendo dados de pickle	81
		3.6.2	CSV	82
			3.6.2.1 Exportando dados CSV	82
			3.6.2.2 Removendo os números das linhas de saída	83
			3.6.2.3 Importando dados CSV	83
		3.6.3	Excel	84
			3.6.3.1 Series	84
			3.6.3.2 DataFrame	85
			3.6.3.3 Bibliotecas que converte DataFrame em Excel	85
		3.6.4	Formato feather para interface com R	86
		3.6.5	Outros tipos de saída de dados	86
	3.7	Conclu	ısão	87
4	Intr	odução	à plotagem	88

LISTA DE FIGURAS

1 Plotagem básica no Pandas mostrando a expectativa de vida média no tempo.

36

LISTA DE TABELAS

1	Informações do método info() do Pandas
2	Tipos do Pandas versus tipos de Python
3	Diferentes métodos para indexação de linhas (ou de colunas)
4	Alguns dos atributos de uma Series
5	Alguns métodos que podem ser executados em uma Series
6	Tabela de métodos para obtenção de subconjuntos de DataFrame 65
7	Principais biblitecas de conversão de dados para Excel

1 Objetivo

O objetivo deste estudo é explorar e documentar as funcionalidades essenciais das principais bibliotecas científicas do Python, como NumPy, Pandas e outras, através de exemplos práticos e casos de uso selecionados. Pretende-se consolidar o conhecimento sobre a manipulação, análise e visualização de dados, servindo como um guia de referência pessoal para futuros projetos de programação científica.

2 Básico sobre o DataFrame do Pandas

2.1 Introdução

O Pandas é uma biblioteca Python de código aberto para análise de dados. Ele dá a Python a capacidade de trabalhar com dados do tipo planilha, permitindo carregar, manipular, alinhar e combinar dados rapidamente, entre outras funções.

Para proporcionar esses recursos mais sofisticados ao Python, o Pandas introduz dois novos tipos de dados: Series e DataFrame.

• DataFrame

Representa os dados de planilhas ou retangulares completos.

• Series

Corresponde a única coluna do DataFrame.

• Também podemos pensar em um DataFrame do Pandas como um dicionário ou uma coleção de objetos Series.

Por que você deveria usar uma linguagem de programação como Python e uma ferramenta como o Pandas para trabalhar com dados? Tudo se reduz à automação e à reprodutibilidade.

Objetivos do capítulo:

- 1. Carga de um arquivo de dados simples e delimitado.
- 2. Como contar quantas linhas e colunas foram carregadas.
- 3. Como delimitar quais tipos de dados foram carregados.
- 4. Observação de diferentes porções de dados criando subconjuntos de linhas e colunas.

2.2 Carregando seu primeiro conjunto de dados

Dado um conjunto de dados inicialmente o carregamos e começamos a observar sua estrutura e contéudo.

O modo mais simples de observar um conjunto de dados é analisar e criar subconjuntos de linhas e colunas específicas. Podemos ver quais tipos de informação estão armazenadas em cada coluna, e começar a procurar padrões por meio de estatísticas descritivas agregadas.

Como o **Pandas** não faz parte da biblioteca-padrão de Python, devemos dizer antes ao Python que carregue a biblioteca (import):

```
import pandas as pd
```

Quando trabalhamos com funções **Pandas**, usar o alias pd para pandas é uma prática comum.

Com a biblioteca carregada, podemos usar a função read_csv para carregar um arquivo de dados CSV. Para acessar a função read_csv do Pandas, usamos a notação de ponto.

```
# Por padrão, a função read_csv lerá um arquivo separado por vírgula;
# Nosso dados Gapminder estão separados por tabulações;
# Podemos usar o parâmetro sep a representar uma tabulação com \t
import pandas as pd # Importa a biblioteca pandas como 'pd'.

# --- Carregamento e Inspeção Inicial ---
df = pd.read_csv('./Data/Cap_01/gapminder.tsv', sep='\t')
# Carrega o arquivo TSV em um DataFrame, usando tabulação como separador.

# Usamos o método head para que Python nos mostre as 5 primeiras linhas
print(df.head())
```

	country	continent	year	lifeExp	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
1	Afghanistan	Asia	1957	30.332	9240934	820.853030
2	Afghanistan	Asia	1962	31.997	10267083	853.100710
3	Afghanistan	Asia	1967	34.020	11537966	836.197138
4	Afghanistan	Asia	1972	36.088	13079460	739.981106

• Função type():

Podemos verificar se estamos trabalhando com um DataFrame do Pandas usando a função embutida type (isto é, se ele vem diretamente de Python, e não de algum pacote, como o Pandas).

A função type () é conveniente quando começamos a trabalhar com vários tipos diferentes de objetos Python e precisamos saber em qual objeto estamos trabalhando no momento.

```
print(type(df))
```

<class 'pandas.core.frame.DataFrame'>

• Atributo shape:

No momento, o conjunto de dados que carregamos esta salvo como um objeto DataFrame do Pandas, e é relativamente pequeno.

Todo objeto DataFrame tem um atributo shape que nos dará o número de linhas e de colunas desse objeto.

O atributo **shape** devolve uma tupla¹ na qual o primeiro valor é o número de linhas e o segundo é a quantidade de colunas.

Com base nesse resultado anteior, podemos ver que nosso conjunto de dados Gapminder tem 1704 linhas e 6 colunas.

Como shape é um atributo de DataFrame, e não uma função ou um método, não há parênteses após o ponto. Se você cometer o erro de colocar parênteses depois do atributo shape, um erro será devolvido.

```
# Obtém o número de linhas e colunas
print(df.shape)
```

(1704, 6)

¹Uma tupla é semelhante a uma list, pois ambas podem armazenar informações heterogêneas. A principal diferença é que o conteúdo de uma tupla é "imutável", o que significa que ela não pode ser alterada. As tuplas também são criadas com parênteses, ().

• Atributo columns:

Em geral, quando observamos um conjunto de dados pela primeira vez, queremos saber quantas linhas e colunas há (acabamos de fazer isso).

Para ter uma noção de quais informações ele contém, devemos observar as colunas.

Os nomes das colunas, assim como shape, são especificados usando o atributo columns do objeto dataframe.

```
# Obtém os nomes das colunas
print(df.columns)
```

```
Index(['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap'], dtype='object')
```

• Atributo dtypes:

O objeto DataFrame do Pandas é semelhante a objetos do tipo DataFrame que se encontra em outras linguagens (por exemplo, Julia e R).

Toda coluna (Series) deve ser do mesmo tipo, enquanto cada linha pode conter tipos variados.

Em nosso exemplo atual, podemos esperar que a coluna country só contenha strings e que year contenha inteiros. No entanto, é melhor garantir que isso seja verdade usando o atributo dtypes ou o método info().

O atributo dtypes de um DataFrame Pandas retorna uma Series que descreve o tipo de dado de cada coluna do DataFrame. Ele é útil para inspecionar os tipos de dados inferidos ou atribuídos às suas colunas, o que é crucial para operações corretas e eficientes.

```
# Obtém o dtype de cada coluna
print(df.dtypes)
```

country object
continent object
year int64
lifeExp float64
pop int64
gdpPercap float64

dtype: object

• Método info():

O método info() de um DataFrame Pandas é uma ferramenta essencial para obter um resumo conciso e detalhado do seu DataFrame. Ele imprime um resumo conciso do DataFrame, incluindo:

Table 1: Informações do método info() do Pandas

Informação	Discrição
Tipo de índice	Informações sobre o índice
	(por exemplo, RangeIndex).
Número de entradas (linhas)	Quantas linhas seu DataFrame possui.
Número de colunas	Quantas colunas seu DataFrame tem.
Contagem de valores não nulos por coluna	Para cada coluna, informa quantos valores
	não são nulos.
	Isso é crucial para identificar dados faltantes.
Dtype (tipo de dado) de cada coluna	Semelhante ao atributo dtype,
	mas apresentado de forma mais organizada.
Uso de memória	A quantidade de memória que o DataFrame
	está utilizando.

Obtém mais informações sobre nossos dados
print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1704 entries, 0 to 1703
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	country	1704 non-null	object
1	continent	1704 non-null	object
2	year	1704 non-null	int64
3	lifeExp	1704 non-null	float64
4	pop	1704 non-null	int64
5	gdpPercap	1704 non-null	float64
dtyp	es: float64	(2), int64 (2) ,	object(2)

memory usage: 80.0+ KB

None

Table 2: Tipos do Pandas versus tipos de Python

Tipo do Pandas	Tipo de Python	Discrição
object int64 float64 datetime64	string int float datetime	Cadeia de caracteres, usado para representar texto. Números inteiros. Números com decimais. datetime trata-se de uma biblioteca-padrão de Python (ou seja, não é carregado por padrão e deve ser importado). Representa pontos específicos no tempo.

2.3 Observando colunas, linhas e células

Agora que somos capazes de carregar um arquivo de dados simples, queremos inspecionar o seu conteúdo. Podemos exibir o conteúdo do dataframe com print, mas com os dados de hoje em dia, com frequência, haverá células demais para ser possível compreender todas as informações exibidas. Em vez disso, a melhor maneira de observar nossos dados é inspecioná-los por partes, observando vários subconjuntos dos dados.

Já vimos que podemos usar o método head() de um dataframe para observar as cinco primeiras linhas de nossos dados. Isso é conveniente para ver se os dados foram carregados de modo apropriado e para ter uma noção de cada uma das colunas, seus nomes e o conteúdo. Às vezes, porém, talvez queiramos ver somente linhas, colunas e valores específicos de nossos dados.

2.3.1 Obtendo subconjuntos de colunas

Se quiser analisar várias colunas, especifique-as com base nos nomes, nas posições ou em intervalos.

Obtendo subconjuntos de colunas pelo nome

Se quiser observar apenas uma coluna específica de nossos dados, podemos acessá-la usando colchetes.

```
# Obtém somente a coluna country e a salva em sua própria variável
country_df = df['country']

# Mostra as 5 primeiras observações
print(country_df.head())
```

- 0 Afghanistan
- 1 Afghanistan
- 2 Afghanistan
- 3 Afghanistan
- 4 Afghanistan

Name: country, dtype: object

```
# Mostra as 5 últimas observações
print(country_df.tail())
```

```
1699 Zimbabwe
1700 Zimbabwe
1701 Zimbabwe
1702 Zimbabwe
1703 Zimbabwe
Name: country, dtype: object
```

Para específicar várias colunas pelo nome, devemos passar uma list Python entre os colchetes. Isso pode parecer um pouco estranho, pois haverá dois conjuntos de colchetes.

```
# Observando country, continent e year
subset = df[['country', 'continent', 'year']]
print(subset.head())
```

```
country continent year
0 Afghanistan Asia 1952
1 Afghanistan Asia 1957
2 Afghanistan Asia 1962
3 Afghanistan Asia 1967
4 Afghanistan Asia 1972
```

```
# Mostra as 5 últimas observações
print(subset.tail())
```

```
country continent year
1699 Zimbabwe Africa 1987
1700 Zimbabwe Africa 1992
1701 Zimbabwe Africa 1997
1702 Zimbabwe Africa 2002
1703 Zimbabwe Africa 2007
```

Mais uma vez, é possível optar por exibir todo o dataframe subset usando print.

Obter subconjuntos de colunas pela posição dos índices não funciona mais no Pandas v0.20

Ocasionalmente, talvez você queira obter uma coluna em particular com base em sua posição, e não em seu nome. Por exemplo, pode querer a primeira ("country") e a terceira ("year") colunas, ou somente a última ("gdpPercap").

No pandas v0.20 não é mais possível passar uma lista de inteiros entre colchetes para obter subconjuntos de colunas. Por exemplo, df[[1]], df[[0,-1]] e df[list(range(5))] não funcionam mais. Há outras formas de obter subconjuntos de colunas, mas não baseadas na técnica usada para obter subconjuntos de linhas.

2.3.2 Obtendo subconjuntos de linhas

Podemos obter subconjuntos de linhas de várias maneiras, pelos nomes ou pelos índices das linhas. A Table 3 apresenta uma visão geral rápida dos diversos métodos.

Table 3: Diferentes métodos para indexação de linhas (ou de colunas).

Método para obtenção de subconjuntos	Discrição
loc	Subconjunto baseado no rótulo do índice (nome da linha).
iloc	Subconjunto baseada no índice da linha (número da linha).
ix (não funciona mais no Pandas v0.20)	Subconjunto baseado no rótulo do índice ou no índice da linha.

Obtendo subconjuntos de linhas pelo rótulo dos índices: loc

Vamos observar uma parte de nossos dados Gapminder.

print(df.head())

	country	continent	year	${ t lifeExp}$	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
1	Afghanistan	Asia	1957	30.332	9240934	820.853030
2	Afghanistan	Asia	1962	31.997	10267083	853.100710
3	Afghanistan	Asia	1967	34.020	11537966	836.197138
4	Afghanistan	Asia	1972	36.088	13079460	739.981106

A esquerda do DataFrame exibido, vemos o que parece ser os números das linhas. Essa lista de valores sem coluna é o rótulo dos índices do dataframe.

Pense no rótulo dos índices como um nome de coluna, mas para linhas em vez de colunas. Por padrão, o Pandas preencherá os rótulos dos índices com os números das linhas (observe que a contagem começa em 0).

Um exemplo comum em que os rótulos dos índices das linhas não são iguais ao número das linhas ocorre quando trabalhamos com dados de séries temporais. Nesse caso, o rótulo dos índices será algum tipo de timestamp. Por exemplo, manteremos os valores default, que são os números das linhas.

Podemos usar o atributo loc do dataframe para obter subconjuntos de linhas com base no rótulo dos índices.

```
# Obtém a primeira linha
# Python começa a contar de 0
print(df.loc[0])
```

country Afghanistan continent Asia year 1952 lifeExp 28.801 pop 8425333 gdpPercap 779.445314 Name: 0, dtype: object

```
# Obtém a centesima linha
# Python começa a contar de 0
print(df.loc[99])
```

country Bangladesh continent Asia year 1967 lifeExp 43.453 pop 62821884 gdpPercap 721.186086 Name: 99, dtype: object

Para obtér a última linha, uma alternativa seria passar -1 para loc, porém acarretaria num erro. Ao passar -1 para loc causará um erro, pois o código procurará a linha cujo rótulo de índice (nesse caso, número da linha) seja "-1", e esse valor não existe no nosso exemplo.

Em vez disso, podemos usar um pouco de Python para calcular o número de linhas e passar esse valor para loc.

```
# Obtém a última linha (corretamente)
# Usar o primeiro valor dado por shape para obter o número de linhas
number_of_rows = df.shape[0]

# Subtrai 1 do valor, pois queremos obter o número do último índice
last_row_index = number_of_rows - 1

# Obtem agora o subconjunto usando o índice da última linha
print(df.loc[last_row_index])
```

```
country Zimbabwe
continent Africa
year 2007
lifeExp 43.487
pop 12311143
gdpPercap 469.709298
Name: 1703, dtype: object
```

Como alternativa, podemos usar o método tail para devolver a última linha, em vez de usar o default de 5.

```
# Método tail, devolvendo a última linha
print(df.tail(n=1))
```

```
country continent year lifeExp pop gdpPercap 1703 Zimbabwe Africa 2007 43.487 12311143 469.709298
```

Observe que, quando usamos tail() e loc, os resultados foram exibidos de modo diferentes. Vamos observar o tipo devolvido quando usamos esses métodos.

```
subset_loc = df.loc[0]
subset_head = df.head(n=1)

# type usando loc para uma linha
print("type usando loc para uma linha:")
print(type(subset_loc))

# type usando head para uma linha
print("\ntype usando head para uma linha:")
print(type(subset_head))
```

```
type usando loc para uma linha:
<class 'pandas.core.series.Series'>

type usando head para uma linha:
<class 'pandas.core.frame.DataFrame'>
```

No ínicio desse capítulo, mencionamos que o Pandas introduziu dois novos tipos de dados em Python. Conforme o método que usamos e a quantidade de linhas retornada, o Pandas devolverá um objeto diferente. O modo como o objeto é exibido pela tela pode ser um indicador do tipo, mas sempre é melhor usar a função type() por garantia.

Obtenção de subconjuntos com várias linhas. Assim como para as colunas, podemos selecionar várias linhas.

```
# Selecione a primeira, a centesima e a milésima linha
# Observe os colchetes duplos, semelhante a sintaxe usada para
#obter subconjuntos com várias colunas
print(df.loc[[0,99,999]])
```

	country	continent	year	lifeExp	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
99	Bangladesh	Asia	1967	43.453	62821884	721.186086
999	Mongolia	Asia	1967	51.253	1149500	1226.041130

Obtendo subconjuntos de linhas pelo número das linhas: iloc

iloc faz o mesmo que loc, mas é usado para obter subconjuntos com base no número de índice das linhas.

Em nosso exemplo atual, iloc e loc se comportarão exatamente do mesmo modo, pois os rótulos dos índices são os números das linhas. Tenha em mente, porém, que os rótulos dos índices não necessariamente têm de ser os números das linhas.

```
# Obtém a segunda linha
print(df.iloc[1])
```

country Afghanistan continent Asia year 1957 lifeExp 30.332 pop 9240934 gdpPercap 820.85303 Name: 1, dtype: object

```
# Obtém a centésima linha
print(df.iloc[99])
```

country Bangladesh continent Asia year 1967 lifeExp 43.453 pop 62821884 gdpPercap 721.186086 Name: 99, dtype: object

Observe que quando colocamos 1 na lista, na verdade, obtemos a segunda linha, e não a primeira. Isso está de acordo com o comportamento de indexação a partir do 0 de Python, o que significa que o primeiro item de um contêiner é o índice 0 (ou seja, o item 0 do contêiner).

Com iloc podemos passar -1 para **obter a última linha** - algo que não era possível com loc.

```
# Usando -1 para obter a última linha
print(df.iloc[-1])
```

country Zimbabwe
continent Africa
year 2007
lifeExp 43.487
pop 12311143
gdpPercap 469.709298
Name: 1703, dtype: object

Como antes, é possível passar uma lista de inteiros para obter várias linhas.

```
# Obtém a primeira, a centésima e a milésima linha
print(df.iloc[[0, 99, 999]])
```

	country	continent	year	${\tt lifeExp}$	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
99	Bangladesh	Asia	1967	43.453	62821884	721.186086
999	Mongolia	Asia	1967	51.253	1149500	1226.041130

Obtenção de subconjuntos de linhas com ix não funciona mais no Pandas v0.20

O atributo ix não funciona em versões de Pandas posteriores a v0.20, pois pode ser confuso. Apesar disso, faremos uma revisão rápida de ix nesta seção para que a explicação fique completa.

Podemos pensar em ix como uma combinação de loc e iloc, pois permite que tenhamos subconjuntos por rótulo ou por inteiro. Por padrão, ele procura rótulos. Se não puder encontrar o rótulo correspondente, ele recorrerá ao uso de indexação por inteiros. Isso pode ser causa de muitas confusões, e, assim, esse recurso foi removido.

O código que usa ix se parecerá exatamente com o código escrito quando loc e iloc são usados.

```
# Primeira linha
df.ix[0]

# Centésima linha
df.ix[99]

# Primeira, centésima e milésima linhas
df.ix[[0,99,999]]
```

2.3.3 Combinando tudo

Os atributos loc e iloc podem ser usados para obter subconjuntos de colunas, linhas ou de ambos.

A sintaxe geral de loc e iloc faz uso de colchetes com uma vírgula. A parte à esquerda da vírgula são os valores das linhas para o subconjunto; a parte à direita são os valores das colunas. Ou seja, df.loc[[rows],[columns]] ou df.iloc[[rows],[columns]].

Obtendo subconjuntos de colunas

Se quiser usar técnicas para obter subconjuntos somente de colunas, use a sintaxe de fatiamento (slicing) de Python. Temos de fazer isso porque, se estivermos gerando subconjuntos de colunas, teremos todas as linhas da coluna especificadas. Portanto precisamos de um método para capturar todas as linhas.

A sintaxe de fatiamento de Python usa dois-pontos, isto é, :. Se tivermos apenas dois-pontos sozinhos, o atributo se referirá a tudo. Assim, se quisermos obter somente a primeira coluna usando a sintaxe loc ou de iloc, podemos escrever algo como df.loc[:,[columns]] para obter o subconjunto da(s) coluna(s).

```
# Obtendo um subconjunto de colunas com loc
# Observe a posição dos dois-pontos
# Ele é usado para selecionar todas as linhas
subset = df.loc[:,['year','pop']]
print(subset.head())
```

```
year pop
0 1952 8425333
1 1957 9240934
2 1962 10267083
3 1967 11537966
4 1972 13079460
```

```
# Obtendo um subconjunto de colunas com iloc
# iloc nos permitirá usar inteiros
# -1 selecionará a última coluna
subset = df.iloc[:,[2,4,-1]]
print(subset.head())
```

	year	pop	gdpPercap
0	1952	8425333	779.445314
1	1957	9240934	820.853030
2	1962	10267083	853.100710
3	1967	11537966	836.197138
4	1972	13079460	739.981106

Obtendo subconjuntos de colunas por intervalo

Podemos usar a função embutida range para criar um intervalo de valores em Python. Desse modo, é possível especificar os valores de início e fim, e Python criará automaticamente um intervalo com os valores entre eles.

Por padrão, todo valor entro o início e o fim (inclusive à esquerda, não inclusive a direita) será criado, a comenos que você especifique um passo.

Em Python 3, a função range devolve um gerador.

Se estiver usando Python 2, a função range devolverá uma lista e a função xrange devolve um gerador.

Se observarmos o código apresentado antes, veremos que subconjuntos de colunas foram obtidos usando uma lista de inteiros. Como range devolve um gerador, é preciso convertê-lo em uma lista antes.

```
list(range(5))
```

Observe que, quando range (5) é achamado, cinco inteiros são devolvidos: 0-4.

```
# Cria um intervalo de inteiros de 0 a 4 inclusive, [0,5)
small_range = list(range(5))
print(small_range)
```

```
[0, 1, 2, 3, 4]
```

```
# Obtém um subconjunto de dataframe usando o intervalo
subset = df.iloc[:,small_range]
print(subset.head())
```

	country	continent	year	${ t lifeExp}$	pop
0	Afghanistan	Asia	1952	28.801	8425333
1	Afghanistan	Asia	1957	30.332	9240934
2	Afghanistan	Asia	1962	31.997	10267083
3	Afghanistan	Asia	1967	34.020	11537966
4	Afghanistan	Asia	1972	36.088	13079460

```
# Cria um intervalo de 3 a 5 incluvie, [3,5] ou [3,6)
small_range = list(range(3,6))
print(small_range)
subset = df.iloc[:,small_range]
print(subset.head())
```

```
[3, 4, 5]
lifeExp pop gdpPercap
0 28.801 8425333 779.445314
1 30.332 9240934 820.853030
2 31.997 10267083 853.100710
3 34.020 11537966 836.197138
4 36.088 13079460 739.981106
```

Pergunta (Desafio 1):

O que acontecerá se você especificar um intervalo que estiver além do número de colunas existente?

Resposta:

Erro do tipo IndexError.

Mais uma vez, observe que os valores são especificados de modo que o intervalo é inclusivo à esquerda, mas não a direita.

```
# Cria um intervalo de 0 a 5 inclusive, com inteiros alternados [0,6)
small_range = list(range(0,6,2))
subset = df.iloc[:,small_range]
print(subset.head())
```

```
country year pop
0 Afghanistan 1952 8425333
1 Afghanistan 1957 9240934
2 Afghanistan 1962 10267083
3 Afghanistan 1967 11537966
4 Afghanistan 1972 13079460
```

Converter um gerador em uma lista é um pouco complicado; podemos usar a sintaxe de fatiamento de Python para dar um jeito nisso.

Fatiando colunas

A sintaxe de fatiamento de Python, :, é semelhante à sintaxe de range. Em vez de usar uma função que especifique os valores de início, fim e o passo, delimitados por vírgula, separamos os valores com dois-pontos.

Se você entendeu o que estava acontecendo com a função range que usamos antes, o fatiamento então poderá ser visto como um atalho para fazer o mesmo.

Exemplo range:

```
small_range = list(range(3))
subset = df.iloc[:,small_range]
print(subset.head())
```

```
country continent year
0 Afghanistan Asia 1952
1 Afghanistan Asia 1957
2 Afghanistan Asia 1962
3 Afghanistan Asia 1967
4 Afghanistan Asia 1972
```

Exemplo fatiamento de Python:

```
# Fatia as três primeiras colunas
subset = df.iloc[:,:3]
print(subset.head())
```

```
country continent year
O Afghanistan Asia 1952
1 Afghanistan Asia 1957
2 Afghanistan Asia 1962
3 Afghanistan Asia 1967
4 Afghanistan Asia 1972
```

Exemplo range:

```
small_range = list(range(3,6))
subset = df.iloc[:,small_range]
print(subset.head())
```

```
lifeExp pop gdpPercap
0 28.801 8425333 779.445314
1 30.332 9240934 820.853030
2 31.997 10267083 853.100710
3 34.020 11537966 836.197138
4 36.088 13079460 739.981106
```

Exemplo fatiamento de Python:

```
# Fatia as colunas de 3 a 5 inclusive, [3,6)
subset = df.iloc[:,3:6]
print(subset.head())
```

```
lifeExp pop gdpPercap
0 28.801 8425333 779.445314
1 30.332 9240934 820.853030
2 31.997 10267083 853.100710
3 34.020 11537966 836.197138
4 36.088 13079460 739.981106
```

Exemplo range:

```
small_range = list(range(0,6,2))
subset = df.iloc[:,small_range]
print(subset.head())
```

```
    country
    year
    pop

    0
    Afghanistan
    1952
    8425333

    1
    Afghanistan
    1957
    9240934

    2
    Afghanistan
    1962
    10267083

    3
    Afghanistan
    1967
    11537966

    4
    Afghanistan
    1972
    13079460
```

Exemplo fatiamento de Python:

```
# Fatia as cinco primeiras colunas alternadamente
subset = df.iloc[:,:6:2]
print(subset.head())
```

```
    country
    year
    pop

    0 Afghanistan
    1952
    8425333

    1 Afghanistan
    1957
    9240934

    2 Afghanistan
    1962
    10267083

    3 Afghanistan
    1967
    11537966

    4 Afghanistan
    1972
    13079460
```

Obtendo subconjuntos de linhas e de colunas

Temos usado dois-pontos, :, em loc e em iloc à esquerda da vírgula. Quando fazemos isso, selecionamos todas as linhas de nosso dataframe. No entanto, podemos optar por colocar valores à esquerda da vírgula se quisermos selecionar linhas específicas, além de colunas específicas.

```
# Usando loc
print(df.loc[42,'country'])
```

Angola

```
# Usando iloc
print(df.iloc[42,0])
```

Angola

Certifique-se de que não se esquecerá das diferenças entre loc (rótulo do índice, nome) e iloc (índice, número).

Observe agora como ix pode ser confuso. É bom que ele não esteja mais funcionando.

Obtendo subconjuntos de várias linhas e de colunas

Podemos combinar a sintaxe de obtenção de subconjuntos de linhas e de colunas com a sintaxe de subconjuntos de várias linhas e várias colunas a fim de obter fatias de nossos dados.

```
# Obtém a primeira, a centésima e a milésima linha
# da primeira, quarta e sexta coluna;
# As colunas que esperamos obter são
# country, lifeExp e gdpPercap
print(df.iloc[[0,99,999],[0,3,5]])
```

```
country lifeExp gdpPercap
0 Afghanistan 28.801 779.445314
99 Bangladesh 43.453 721.186086
999 Mongolia 51.253 1226.041130
```

Atenção!!!

Em meu trabalho, tento passar os nomes das colunas para obter subconjuntos de dados, sempre que possível. Essa abordagem deixa o código mais legível, pois não será necessário observar o vetor de nomes das colunas para saber qual índice está sendo especificado.

Além disso, usar índices absolutos (número da coluna) pode resultar em problemas caso a ordem das colunas seja alterada por algum motivo.

Essa é somente uma regra geral, uma vez que haverá exceções em que usar a posição do índice será uma opção melhor (por exemplo, para concatenar dados).

```
# Se usarmos os nomes das colunas diretamente,
# o código será um pouco mais facil de ler
# Observe agora que temos que usar loc ao invés de iloc
print(df.loc[[0,99,999],['country','lifeExp','gdpPercap']])
```

```
country lifeExp gdpPercap
0 Afghanistan 28.801 779.445314
99 Bangladesh 43.453 721.186086
999 Mongolia 51.253 1226.041130
```

Usar loc sempre que possível!!!

Lembre-se de que podemos usar a sintaxe de fatiamento na parte referente às linhas dos atributos loc e iloc.

print(df.loc[10:13,['country','lifeExp','gdpPercap']])

	country	${\tt lifeExp}$	gdpPercap
10	Afghanistan	42.129	726.734055
11	Afghanistan	43.828	974.580338
12	Albania	55.230	1601.056136
13	Albania	59.280	1942.284244

2.4 Cálculos agrupados e agregados

Se você já trabalhou com outras bibliotecas numéricas ou linguagens, saberá que muitos cálculos estatísticos básicos estarão disponíveis na biblioteca ou embutidos na linguagem. Vamos observar novamente nossos dados Gapminder.

print(df.head(n=10))

	country	continent	year	lifeExp	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
1	Afghanistan	Asia	1957	30.332	9240934	820.853030
2	Afghanistan	Asia	1962	31.997	10267083	853.100710
3	Afghanistan	Asia	1967	34.020	11537966	836.197138
4	Afghanistan	Asia	1972	36.088	13079460	739.981106
5	Afghanistan	Asia	1977	38.438	14880372	786.113360
6	Afghanistan	Asia	1982	39.854	12881816	978.011439
7	Afghanistan	Asia	1987	40.822	13867957	852.395945
8	Afghanistan	Asia	1992	41.674	16317921	649.341395
9	Afghanistan	Asia	1997	41.763	22227415	635.341351

Perguntas estatísticas

Há várias perguntas iniciais que podemos nos fazer:

- 1. Para cada ano em nossos dados, qual era a expectativa de vida média? Qual é a expectativa de vida média, a população e o GDP?
- 2. E se estratificarmos os dados por continente e fizermos os mesmos cálculos?
- 3. Quantos países estão listados para cada continente?

2.4.1 Médias agrupadas

Para responder as perguntas que acabaram de ser propostas, precisamos fazer um cálculo **agrupado** (isto é, **agregado**). Em outras palavras, temos de fazer um cálculo, seja uma média ou uma contagem de frequência, mas aplicá-lo em cada subconjuntode uma variável.

Outro modo de pensar em cálculos agrupados é vê-los como um processo do tipo **separar-** aplicar-combinar.

- Inicialmente, separamos nossos dados em várias partes;
- Em seguida, aplicamos uma função (ou cálculo) de nossa escolha em cada parte separada;
- E, por fim, combinamos todos os cálculos individuais em um único dataframe.

Fazemos processamentos agrupados/agregados usando o método groupby nos dataframe.

```
# Para cada ano em nossos dados, qual era a expectativa de vida média?
# Para responder a essa pergunta,
# temos que separar nossos dados em partes, de acordo com o ano;
# em seguida, obtemos a coluna 'lifeExp' e calculamos a média

#Agrupamento (year)
#Separação/subconjunto (lifeExp)
#Aplicar (média)

print(df.groupby('year')['lifeExp'].mean())
```

```
year
1952
        49.057620
        51.507401
1957
1962
        53.609249
1967
        55.678290
1972
        57.647386
1977
        59.570157
1982
        61.533197
1987
        63.212613
1992
        64.160338
1997
        65.014676
2002
        65.694923
2007
        67.007423
Name: lifeExp, dtype: float64
```

Vamos detalhar a instrução que usamos nesse exemplo.

• Em primeiro lugar, criamos um objeto **agrupado**. Observe que, se exibíssemos o dataframe agrupado, o Pandas devolveria somente a posição na memória.

```
grouped_year_df = df.groupby('year')
print(type(grouped_year_df))
print(grouped_year_df)
```

```
<class 'pandas.core.groupby.generic.DataFrameGroupBy'>
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7d5532d17250>
```

• A partir dos dados agrupados, podemos obter um **subconjunto** das colunas de nosso interesse, nas quais queremos fazer os cálculos. Para responder à nossa pergunta, precisamos da coluna lifeExp. Podemos usar os métodos de obtenção de subconjuntos.

```
grouped_year_df_lifeExp = grouped_year_df['lifeExp']
print(type(grouped_year_df_lifeExp))
print(grouped_year_df_lifeExp)
```

```
<class 'pandas.core.groupby.generic.SeriesGroupBy'>
<pandas.core.groupby.generic.SeriesGroupBy object at 0x7d5532d6bd90>
```

Observe que agora temos uma série (pois pedimos apenas uma coluna) cujo conteúdo é agrupado (em nosso exemplo por ano).

• Por fim, sabemos que a coluna lifeExp é do tipo float64. Uma operação que podemos executar em um vetor de números e calcular a média para obter o resultado que desejamos.

```
mean_lifeExp_by_year = grouped_year_df_lifeExp.mean()
print(mean_lifeExp_by_year.head(n=10))
```

```
year
1952
        49.057620
1957
        51.507401
1962
        53.609249
1967
        55.678290
1972
        57.647386
1977
        59.570157
1982
        61.533197
1987
        63.212613
1992
        64.160338
1997
        65.014676
Name: lifeExp, dtype: float64
```

Podemos executar um conjunto semelhante de cálculos para a população e o GDP, pois eles são dos tipos int64 e float64, respectivamente. Mas e se quiséssemos agrupar e estratificar os dados com base em mais de uma váriavel? E se quiséssemos fazer o mesmo cálculo em várias colunas? Podemos partir do código anterior apresentado e usar uma lista.

```
# A barra invertida nos permite quebrar uma linha longa de código Python
# em várias linhas.
# df.groupby(['year','continent'])[['lifeExp','gdpPercap']].mean()
# é o mesmo que o código a seguir
multi_group_var = df.\
    groupby(['year','continent'])\
    [['lifeExp','gdpPercap']]\
    .mean()
print(multi_group_var.head(n=20))
```

		lifeExp	gdpPercap
year	continent		
1952	Africa	39.135500	1252.572466
	Americas	53.279840	4079.062552
	Asia	46.314394	5195.484004
	Europe	64.408500	5661.057435
	Oceania	69.255000	10298.085650
1957	Africa	41.266346	1385.236062
	Americas	55.960280	4616.043733
	Asia	49.318544	5787.732940
	Europe	66.703067	6963.012816
	Oceania	70.295000	11598.522455
1962	Africa	43.319442	1598.078825
	Americas	58.398760	4901.541870
	Asia	51.563223	5729.369625
	Europe	68.539233	8365.486814
	Oceania	71.085000	12696.452430
1967	Africa	45.334538	2050.363801
	Americas	60.410920	5668.253496
	Asia	54.663640	5971.173374
	Europe	69.737600	10143.823757
	Oceania	71.310000	14495.021790

Os dados de saída estão agrupados por ano e por continente. Para cada par ano-continente, calculamos a expectativa de vida média e o GDP médio.

Os dados também são exibidos de modo um pouco diferente. Observe que os "nomes das colunas" de ano e continente não estão na mesma linhaque os "nomes das colunas" de expectativa de vida e GPD. Há uma certa estrutura hierárquica entre os índices das linhas de ano e continente.

Caso precise "achatar" o dataframe, use o método reset_index.

```
flat = multi_group_var.reset_index()
print(flat.head(n=20))
```

	year	continent	lifeExp	gdpPercap
0	1952	Africa	39.135500	1252.572466
1	1952	Americas	53.279840	4079.062552
2	1952	Asia	46.314394	5195.484004
3	1952	Europe	64.408500	5661.057435
4	1952	Oceania	69.255000	10298.085650
5	1957	Africa	41.266346	1385.236062
6	1957	Americas	55.960280	4616.043733
7	1957	Asia	49.318544	5787.732940
8	1957	Europe	66.703067	6963.012816
9	1957	Oceania	70.295000	11598.522455
10	1962	Africa	43.319442	1598.078825
11	1962	Americas	58.398760	4901.541870
12	1962	Asia	51.563223	5729.369625
13	1962	Europe	68.539233	8365.486814
14	1962	Oceania	71.085000	12696.452430
15	1967	Africa	45.334538	2050.363801
16	1967	Americas	60.410920	5668.253496
17	1967	Asia	54.663640	5971.173374
18	1967	Europe	69.737600	10143.823757
19	1967	Oceania	71.310000	14495.021790

2.4.2 Condatodes de frequência agrupados

Outra tarefa comum relacionada aos dados é calcular frequências.

Podemos usar os métodos nunique e value_counts, respectivamente, para obter contadores de valores únicos e contadores de frequência em uma Series do Pandas.

• Método nunique:

```
# Uso de nunique (number unique, ou número de únicos)
# para calcular o número de valores únicos em uma série
print(df.groupby('continent')['country'].nunique())
```

continent Africa 52 Americas 25 Asia 33 Europe 30 Oceania 2

Name: country, dtype: int64

• Método value_counts:

```
# Nova série que mostra cada valor único
# e sua respectiva frequência (quantidade de ocorrências).
print(df['continent'].value_counts())
```

continent

Africa 624
Asia 396
Europe 360
Americas 300
Oceania 24

Name: count, dtype: int64

Resumo da diferença:

- nunique() diz quantos valores únicos existem. O resultado é um número.
- value_counts() diz quais são os valores únicos e quantas vezes cada um aparece. O resultado é uma série.

2.5 Plotagem básica

As visualizações são extremamente importantes em quase todos os passos do processamento de dados. Elas nos ajudam a identificar tendências nos dados quando estamos tentando entendêlos e limpá-los, além de contribuir para a apresentação de nossas descobretas finais.

Vamos observar as expectativas de vida anuais da população mundial novamente.

```
global_yearly_life_expectancy = df.groupby('year')['lifeExp'].mean()
print(global_yearly_life_expectancy)
```

```
year
1952
        49.057620
1957
        51.507401
1962
        53.609249
1967
        55.678290
1972
        57.647386
        59.570157
1977
1982
        61.533197
1987
        63.212613
1992
        64.160338
1997
        65.014676
2002
        65.694923
2007
        67.007423
Name: lifeExp, dtype: float64
```

Podemos usar o Pandas para criar algumas plotagens básicas.

global_yearly_life_expectancy.plot()

Figure 1: Plotagem básica no Pandas mostrando a expectativa de vida média no tempo.

2.6 Conclusão

Explicamos como carregar um conjunto de dados simples e começar a analisar observações específicas.

Tenha em mente que, quando fazemos análise de dados, o objetivo é gerar resultados reproduzíveis, sem fazer tarefas repetitivas. As linguagens de scripting lhe oferecem esses recursos e essa flexibilidade.

Nesse processo, conhecemos alguns dos recursos fundamentais de programação e as estruturas de dados que Python tem a nos oferecer.

Também vimos um modo rápido de obter estatísticas agregadas e fazer plotagens.

3 Estrutura de dados do Pandas

3.1 Introdução

O capítulo anterior apresentou os objetos Dataframe e Series do Pandas. Essas estruturas de dados assemelham-se aos contêineres de dados primitivos de Python (lista e dicionários, estruturas de dados básicas do Python que podem armazenar coleções de objetos) para indexação e rótulos, mas têm recursos adicionais que facilitam trabalhar com os dados.

Mapa Conceitual

- 1. Conhecimento prévio
 - 1. Contêineres (list e dict)
 - 2. Uso de funções
 - 3. Obtenção de subconjuntos e indexação
- 2. Carga de dados manual
- 3. Series
 - 1. Criando uma série
 - dict
 - ndarray
 - escalar
 - listas
 - 2. Fatiamento
- 4. Dataframe

3.2 Criando seus próprios dados

3.2.1 Criando uma Series

A Series do Pandas é um **contêiner unidimensional**, semelhante à list embutida de Python.

É o tipo de dado que representa cada coluna do Dataframe. A Table 2 lista os possíveis dtypes das colunas do Dataframe de Pandas. Cada coluna em um dataframe deve ter o mesmo dtypes.

Por ser possível pensar em dataframe como um dicionário de objetos Series, em que cada key é o nome da coluna e value é a Series, podemos concluir que uma Series é muito semelhante a uma list Python, exceto que todos os elementos devem ser do mesmo dtype. As pessoas que já usaram a biblioteca numpy perceberão que esse é o mesmo comportamento exibido por ndarray.

O modo mais fácil de criar uma Series é passando uma list Python.

Se passamos uma lista com tipos misturados, a representação mais comum será usada.

Em geral, dtype (tipo) da Series será um object.

```
import pandas as pd

s = pd.Series(['Banana', 42])
print(s)
```

0 Banana 1 42 dtype: object

Observe que o "número da linha" é exibido à esquerda. Na verdade, esse é o index da série. É semelhante ao nome e ao índice da linha que vimos sobre dataframes.

Isso implica que podemos atribuir realmente um "nome" aos valores de nossa série.

```
# Atribui valores de índice manualmente em uma série
# passando uma list Python
s = pd.Series(['Wes McKinney','Creator of Python'],
index=['Person','Who'])
print(s)
```

Person Wes McKinney Who Creator of Python

dtype: object

Perguntas

- 1. O que acontecerá se você usar outros contêineres Python como list, tuple, dict ou ate mesmo o ndarray da biblioteca numpy?
- Quando você usa uma list (lista) ou tuple (tupla) para criar uma Series, o pandas simplesmente pega os elementos na ordem em que eles aparecem e os usa para popular a Series. O índice padrão é gerado automaticamente, começando do 0 e indo até n-1, onde n é o número de elementos.

```
print("#------list------#")
s = pd.Series(['Wes McKinney', 'Creator of Pandas'])
print(s)

#------#
0     Wes McKinney
1     Creator of Pandas
dtype: object

print("#------tuple------#")
s = pd.Series(('Wes McKinney', 'Creator of Pandas'))
print(s)

#------tuple------#
0     Wes McKinney
1     Creator of Pandas
dtype: object
```

• O dict é um caso especial e muito útil. Quando você cria uma Series a partir de um dicionário, o pandas usa as chaves do dicionário como o índice da Series e os valores como os dados. Isso permite que você crie uma Series já com rótulos significativos, o que é ótimo para dados categorizados.

```
print("#-----#")
dict_dados = {'a':100,'b': 200, 'c':300}
s = pd.Series(dict_dados)
print(s)
```

```
#-----#
a 100
b 200
c 300
dtype: int64
```

• O ndarray² é o contêiner mais eficiente para o pandas. O pandas foi construído sobre o NumPy, então o ndarray é o formato subjacente de dados para a maioria das operações. Quando você usa um ndarray para criar uma Series, o processo é extremamente rápido, pois não há necessidade de converter o tipo de dado. O índice padrão também é gerado automaticamente.

```
print("#------#")
numpy_dados = np.array([5,6,7])
s = pd.Series(numpy_dados)
print(s)
```

#-----#
0 5
1 6
2 7
dtype: int64

²ndarray é o nome oficial do tipo de dado (a classe) que o NumPy usa para representar arrays multidimensionais. np.array() é a função que você chama para criar uma instância (um objeto) dessa classe ndarray.

- 2. O que acontecerá se você passar um index com os contêineres?
- Quando os dados vêm de uma list, tuple ou ndarray, o pandas simplesmente combina os dados com o index fornecido. O pandas espera que o index tenha o mesmo número de elementos que o contêiner de dados.

```
index_dados = ['a','b','c']
dados_lista = [100, 200, 300]
print("#-----#")
s = pd.Series(dados_lista,index=index_dados)
print(s)
#-----#
   100
   200
   300
С
dtype: int64
index dados = ['a','b','c']
dados_tupla = (100, 200, 300)
print("#-----#")
s = pd.Series(dados_tupla,index=index_dados)
print(s)
#-----#
   100
   200
С
   300
dtype: int64
index_dados = ['a','b','c']
dados_ndarray = np.array([100,200,300])
print("#-----#")
s = pd.Series(dados_ndarray,index=index_dados)
print(s)
#-----#
   100
b
   200
   300
dtype: int64
```

 Quando você passa um dict junto com um index, o pandas não usa as chaves do dicionário para criar o índice da Series. Em vez disso, ele usa o index fornecido para selecionar e reordenar os valores do dicionário.

```
index_dict = ['c','a','d','b']
dict_dados = {'a':100,'b': 200, 'c':300}

print("#-----dict-----#")
s = pd.Series(dict_dados,index=index_dict)
print(s)
```

```
#-----#
c 300.0
a 100.0
d NaN
b 200.0
dtype: float64
```

3. Passar um index quando usamos um dict sobrescreverá o índice? Ou ele ordenará os valores?

O index que você passa ao criar a Series não sobrescreve os rótulos do dicionário. Em vez disso, ele ordena os valores e determina quais deles serão incluídos na Series final.

3.2.2 Criando um Dataframe

Conforme mencionamos podemos pensar em um Dataframe como um dicionário de objetos Series. É por isso que os dicionários são o modo mais comum de criar um Dataframe.

key representa o nome da coluna, enquanto os values são o conteúdo.

- key representa o nome da coluna;
- Os values são o conteúdo.

```
scientists = pd.DataFrame({
   'Nome': ['Rosaline Franklin','William Gosset'],
   'Occupation':['Chemist','Statistician'],
   'Born':['1920-07-25','1876-06-13'],
   'Died':['1958-04-16','1937-10-16'],
   'Age':[37,61]
})
print(scientists)
```

```
Nome
                        Occupation
                                           Born
                                                       Died
                                                              Age
  Rosaline Franklin
                           Chemist
                                    1920-07-25
                                                 1958-04-16
                                                               37
1
      William Gosset
                     Statistician
                                    1876-06-13
                                                 1937-10-16
                                                               61
```

A ordem das colunas ao criar um DataFrame a partir de um dicionário não é garantida nas versões mais antigas do Python (anteriores ao 3.7). A partir do Python 3.7, a ordem de inserção dos elementos em dicionários é preservada.

Ordem das colunas e nome dos índices:

- Se consultarmos a documentação do Dataframe, veremos que é possível usar o parâmetro columns ou específicar a ordem das columas. Ordena as columas.
- Se quisermos usar colunas name para o índice da linha, podemos usar o parâmetro index. Nomeia o índice.

```
scientists = pd.DataFrame({
  'Occupation':['Chemist','Statistician'],
  'Born':['1920-07-25','1876-06-13'],
  'Died':['1958-04-16','1937-10-16'],
  'Age':[37,61]
},
index=['Rosaline Franklin','William Gosset'],
columns=['Occupation','Born','Died','Age'])
print(scientists)
```

	Occupation	Born	Died	Age
Rosaline Franklin	Chemist	1920-07-25	1958-04-16	37
William Gosset	Statistician	1876-06-13	1937-10-16	61

Antes do Python 3.7, os dicionários padrão (dict) não mantinham a ordem de inserção dos itens. Se você quisesse um dicionário que lembrasse a ordem em que os itens foram adicionados, precisava usar o OrderedDict(), classe do módulo collections.

from collections import OrderedDict

A partir do Python 3.7, os dicionários padrão passaram a manter a ordem de inserção por padrão. Isso significa que, na maioria dos casos, você não precisa mais usar o OrderedDict para essa finalidade.

Contudo, para efeito de estudo, segue o exemplo de uso do OrderedDict:

```
from collections import OrderedDict

# Observe os parênteses após OrderedDict

# Então passamos uma lista com duas tuplas

scientists = pd.DataFrame(OrderedDict([
    ('Nome', ['Rosaline Franklin','William Gosset']),
    ('Occupation', ['Chemist', 'Statistician']),
    ('Born', ['1920-07-25', '1876-06-13']),
    ('Died', ['1958-04-16', '1937-10-16']),
    ('Age', [37,61])

])

print(scientists)
```

```
Nome Occupation Born Died Age O Rosaline Franklin Chemist 1920-07-25 1958-04-16 37 William Gosset Statistician 1876-06-13 1937-10-16 61
```

3.3 Series

Vimos como o método de fatiamento afeta o type do resultado. Se usarmos o atributo loc para gerar o subconjunto com a primeira linha de nosso dataframe scientists, obteremos um objeto Series.

Vamos recriar inicialmente o nosso dataframe de exemplo:

```
scientists = pd.DataFrame({
  'Occupation':['Chemist','Statistician'],
  'Born':['1920-07-25','1876-06-13'],
  'Died':['1958-04-16','1937-10-16'],
  'Age':[37,61]
},
index=['Rosaline Franklin','William Gosset'],
columns=['Occupation','Born','Died','Age'])
print(scientists)
```

```
        Occupation
        Born
        Died
        Age

        Rosaline Franklin
        Chemist
        1920-07-25
        1958-04-16
        37

        William Gosset
        Statistician
        1876-06-13
        1937-10-16
        61
```

Agora selecionaremos um cientista pelo rótulo do índice da linha:

```
first_row = scientists.loc['William Gosset']

print("\nTipo do objeto: ")
print(type(first_row))

print("\nObjeto: ")
print(first_row)
```

```
Tipo do objeto:
<class 'pandas.core.series.Series'>

Objeto:
Occupation Statistician
Born 1876-06-13
Died 1937-10-16
Age 61
Name: William Gosset, dtype: object
```

Quando uma série é exibida (isto é, a sua representação em string), o índice é representado como a primeira "coluna", e os valores são mostrados a segunda "coluna". Há muitos atributos e métodos associados a um objeto Series.

Apresentação Objeto Series:

- Primeira coluna = índices (index)
- Segunda coluna = valores (values)

Dois exemplos de atributos são index e values:

• Atributo index:

```
# index é um atributo, não precisa de parênteses
print(first_row.index)
```

```
Index(['Occupation', 'Born', 'Died', 'Age'], dtype='object')
```

• Atributo values:

```
# values é um atributo, não precisa de parênteses
print(first_row.values)
```

```
['Statistician' '1876-06-13' '1937-10-16' np.int64(61)]
```

Um exemplo de um **método** de Series é keys, que é um alias (apelido) para o atributo index:

```
# keys é um método, precisa de parênteses
print(first_row.keys())
```

```
Index(['Occupation', 'Born', 'Died', 'Age'], dtype='object')
```

A essa altura, talvez você tenha perguntas sobre a sintaxe de index, values e keys.

- Podemos pensar nos atributos como propriedades de um objeto (nesse exemplo, nosso objeto é uma Series).
 index e values.
- Podemos pensar nos métodos como um cálculo ou uma operação executada.
 keys.

A sintaxe de subconjuntos para loc, iloc e ix é composta de todos os atributos. É por isso que essa sintaxe não depende de um conjunto de parênteses, (), mas de colchetes, [].

A sintaxe de subconjuntos para os indexadores loc, iloc e ix no pandas é feita usando colchetes, []. Isso ocorre porque eles são usados para a operação de indexação (seleção de dados), que é a sintaxe padrão de Python para esse fim, e não para a chamada de métodos, que usaria parênteses, ().

Como keys é um método, se quiséssemos obter a primeira chave (que é também o primeiro índice), usaríamos colchetes após a chamada do método.

```
# Obter o primeiro indice usando atributo index
print(first_row.index[0])
```

Occupation

```
# Obter a primeira key usando método keys
print(first_row.keys()[0])
```

Occupation

Alguns atributos de uma ${\tt Series}$ estão listados na Table 4.

Table 4: Alguns dos atributos de uma Series

Atributo de Series	Descrição
loc	Subconjunto usando o valor de índice.
iloc	Subconjunto usando a posição de índice.
ix	Subconjunto usando valor e/ou posição de índice.
dtype ou dtypes	Tipos de conteúdo de Series.
T	Transposta da série.
shape	Dimensões dos dados.
size	Número de elementos em Series.
values	ndarray ou dado semelhante de Series.

3.3.1 Series é semelhante a ndarray

- A estrutura de dados do Pandas conhecida como Series é muito semelhante ao numpy.ndarray.
- Por sua vez, muitos métodos e funções que atuam em um numpy funcionarão também em uma Series.
- As vezes, uma Series poderá ser referenciada como um "vetor".

3.3.1.1 Métodos de Series

Vamos inicialmente obter uma série da coluna "Age" de nosso dataframe scientists.

```
# Obtém a coluna "Age"
ages = scientists['Age']
print(ages)
```

Rosaline Franklin 37 William Gosset 61 Name: Age, dtype: int64

O numpy é uma biblioteca de processamento cientifíco que, em geral, lida com vetores numéricos. Como podemos pensar em uma Series como uma extensão de numpy.ndarray, há uma sobreposição de atributos e de métodos. Quando temos uma vetor de números, há cálculos comuns que podem ser executados.

Exemplos de métodos no Pandas:

16.97056274847714

mean() - Média:
 print(ages.mean())
49.0
min() - Mínimo:
 print(ages.min())
37
max() - Máximo:
 print(ages.max())
61
std() - Desvio-padrão:
 print(ages.std())

mean, min, max e std também são métodos em numpy.ndarray. Alguns métodos se Series estão listados na Table 5.

3.3.2 Subconjuntos com booleanos: Series

Podemos usar índices específicos para obter subconjuntos de nossos dados (como visto anteriormente). Apenas raramente, porém, saberemos o índice exato das linhas e colunas para obter um subconjunto dos dados. Em geral, você estará procurando valores que satisfaçam (ou não) aum cálculo ou uma observação em particular.

Table 5: Alguns métodos que podem ser executados em uma Series

Descrição
Concatena duas ou mais Series.
Calcula uma correlação com outra Series.*
Calcula uma covariância com outra Series.*
Calcula estatísticas resumidas.*
Devolve uma Series sem duplicações.
Determina se uma Series tem os mesmos elementos.
Obtém valores da Series; o mesmo que o atributo values.
Desenha um histograma.
Verifica se valores estão contidos em uma Series.
Devolve o valor mínimo.
Devolve o valor máximo.
Devolve a média aritmética.
Devolve a mediana.
Devolve $a(s) \mod a(s)$.
Devolve o valor em um dado quantil.
Substitui valores da Series por um valor especificado.
Devolve uma amostra aleatória de valores da Series.
Ordena valores.
Converte uma Series em um DataFrame.
Devolve a transposta.
Devolve um numpy.ndarray de valores únicos.

^{*}Indica se valores ausentes serão automaticamente descartados.

Para explorar esse processo, vamos usar um conjunto de dados maior.

```
scientists = pd.read_csv('./Data/Cap_02/scientists.csv')
```

Acabamos de ver como podemos calcular métricas descritivas básicas de vetores.

O método describe calculará várias estatísticas descritivas com uma única chamada de método.

```
ages = scientists['Age']
print(ages)
```

```
0 37

1 61

2 90

3 66

4 56

5 45

6 41

7 77

Name: Age, dtype: int64
```

• describe - Estatísticas básicas:

```
# Obtém estatísticas básicas
print(ages.describe())
```

```
count
          8.000000
mean
         59.125000
         18.325918
std
min
         37.000000
25%
         44.000000
50%
         58.500000
75%
         68.750000
         90.000000
max
```

Name: Age, dtype: float64

• mean - Média aritmética:

```
# Média de todas as idades
print(ages.mean())
```

59.125

E se quisermos obter o subconjunto de nossas idades identificando aquelas que estejam acima da média?

```
print(ages[ages > ages.mean()])

1    61
2    90
3    66
7    77
Name: Age, dtype: int64
```

Vamos analisar essa instrução e observar o que ages > ages.mean() devolve.

```
print(ages > ages.mean())
0
     False
1
      True
2
      True
3
      True
4
     False
5
     False
6
     False
7
      True
Name: Age, dtype: bool
```

print(type(ages > ages.mean()))

<class 'pandas.core.series.Series'>

mas também especificar um vetor com valores booleanos.

Essa instrução devolve uma Series com dtype igual a bool (booleano, verdadeiro ou falso). Em outras palavras, podemos não só obter subconjunto de valores usando rótulos e índices,

Python tem muitas funções e métodos. Conforme o modo como estão implementados, eles poderão devolver rótulos, índices ou booleanos. Tenha esse ponto em mente quando conhecer novos métodos e tentar combinar várias partes em seu trabalho.

Se quisermos podemos fornecer manualmente um vetor de bools para obter um subconjunto de nossos dados.

```
# Obtém os indices 0, 1, 4, 5 e 7
manual_bool_values = [True,True,False,True,True,False,True]
print(ages[manual_bool_values])
```

```
0 37
1 61
4 56
5 45
7 77
Name: Age, dtype: int64
```

3.3.3 Operações são alinhadas e vetorizadas automaticamente (Broadcasting)

Se você não tem familiaridade com programação, acharia estranho que ages > ages.mean() devolva um vetor sem nenhum laço for.

Muitos dos métodos que funcionam em Series (e em DataFrames também) são vetorizados, o que significa que atuam em todo vetor simultaneamente.

Essa abordagem deixa o código mais legível e, em geral, há otimizações disponíveis para deixar os cálculos mais rápidos.

3.3.3.1 Vetores de mesmo tamanho

Se você executar uma operação entre dois vetores de mesmo tamanho, o vetor resultante será um cálculo feito com os vetores, elemento a elemento.

```
# Soma vetores do mesmo tamanho
print(ages + ages)
0
      74
1
     122
2
     180
3
     132
4
     112
      90
5
      82
     154
Name: Age, dtype: int64
# Multiplica vetores do mesmo tamanho
print(ages * ages)
0
     1369
1
     3721
2
     8100
3
     4356
4
     3136
5
     2025
6
     1681
     5929
Name: Age, dtype: int64
```

3.3.3.2 Vetores com inteiros (escalares)

Ao executar uma operação em um vetor usando um escalar, esse será usado em todos os elementos do vetor.

```
# Soma vetor e um escalar
print(ages + 100)
0
     137
     161
1
2
     190
3
     166
     156
4
     145
     141
     177
Name: Age, dtype: int64
# Multiplicação de um vetor por um escalar
print(ages * 2)
0
      74
1
     122
2
     180
3
     132
     112
      90
5
      82
     154
Name: Age, dtype: int64
```

3.3.3.3 Vetores com tamanhos diferentes

Quando estiver trabalhando com vetores de tamanhos diferentes, o comportamento dependerá do type dos vetores.

Em uma Series, os vetores executarão uma operação de acordo com o índice correspondente. O resto do vetor resultante será preenchido com um valor "ausente", representado por NaN, que quer dizer "Not a Number" (não é um número).

Esse tipo de comportamento, é chamado de **Broadcasting**.

```
print(ages + pd.Series([1,100]))
```

```
0 38.0

1 161.0

2 NaN

3 NaN

4 NaN

5 NaN

6 NaN

7 NaN

dtype: float64
```

Com outros types, os formatos devem coincidir, ou retornará um erro.

```
import numpy as np
# Isto causará um erro
print(ages + np.array([1,100]))
```

3.3.3.4 Vetores com rótulos de índice comuns (alinhamento automático)

Um aspecto interessante no Pandas é o modo como o alinhamento de dados é quase sempre automático.

Se for possível, os dados sempre se alinharão de acordo com o rótulo do índice na execução de ações.

```
# ages conforme aparecem nos dados
print(ages)
0
     37
     61
1
2
     90
3
     66
4
     56
5
     45
     41
     77
Name: Age, dtype: int64
# ages invertendo a ordem dos índices
rev_ages = ages.sort_index(ascending=False)
print(rev_ages)
```

```
5 45
4 56
3 66
2 90
1 61
0 37
Name: Age, dtype: int64
```

7

6

77 41 Se executarmos uma operação usando ages e rev_ages, ela ainda será conduzida elemento a elemento, mas os vetores serão alinhados antes de a operação ser realizada.

```
# Saída de referência para mostrar o alinhamento dos rótulos de índice
print(ages * 2)
0
      74
1
     122
2
     180
3
     132
4
     112
5
      90
      82
6
7
     154
Name: Age, dtype: int64
# Observe que obtemos os mesmos valores
# apesar de o vetor estar invertido
print(ages + rev_ages)
0
      74
1
     122
2
     180
3
     132
4
     112
5
      90
6
      82
7
     154
Name: Age, dtype: int64
```

O índice é a referência para as operações e há um realinhamento (ordenamento).

3.4 Dataframe

O DataFrame é o objeto mais comum do Pandas. Podemos pensar nele como o modo Python de armazenar dados do tipo planilha.

Muitos dos recursos da estrutura de dados Series se aplicam ao DataFrame.

3.4.1 Subconjuntos com booleanos: DataFrames

Assim como pudemos obter um subconjunto de uma Series usando um vetor *booleano*, podemos obter um subconjunto de um DataFrame com um bool.

```
# Vetores booleanos servem para obter subconjuntos de linhas
print(scientists[scientists['Age'] > scientists['Age'].mean()])
```

	Name	Born	Died	Age	Occupation
1	William Gosset	1876-06-13	1937-10-16	61	Statistician
2	Florence Nightingale	1820-05-12	1910-08-13	90	Nurse
3	Marie Curie	1867-11-07	1934-07-04	66	Chemist
7	Johann Gauss	1777-04-30	1855-02-23	77	Mathematician

Quando você usa uma lista de booleanos para selecionar linhas em um DataFrame do Pandas, o número de valores True e False deve ser exatamente igual ao número total de linhas do DataFrame.

O conceito de *broadcasting* não se aplica aqui. A lista booleana atua como uma máscara de seleção, onde cada True ou False corresponde a uma linha específica. Se a máscara tiver um tamanho diferente do DataFrame, o Pandas não saberá quais linhas incluir ou ignorar, e isso resultará em um erro (IndexError).

```
# 8 valores passados como um vetor booleanos
# 3 linhas devolvidas
print(scientists.loc[[True,True,False,True,False,False,False,False]])
```

Occupation	Age	Died	Born	Name	
Chemist	37	1958-04-16	1920-07-25	Rosaline Franklin	0
Statistician	61	1937-10-16	1876-06-13	William Gosset	1
Chemist	66	1934-07-04	1867-11-07	Marie Curie	3

A Table 6 resumo os diversos tipos de métodos para obtenção de subconjuntos.

Table 6: Tabela de métodos para obtenção de subconjuntos de DataFrame

Sintaxe	Resultado da seleção
df[column_name]	Única coluna.
df[[column1,column2,]]	Várias colunas.
df.loc[row_label]	Linha pelo rótulo do índice da linha (nome da linha).
<pre>df.loc[[label1,label2,]]</pre>	Várias linhas pelos rótulos do índice.
df.iloc[row_number]	Linha pelo número da linha.
<pre>df.iloc[[row1,row2,]]</pre>	Várias linhas pelos números das linhas.
<pre>df.ix[label_or_number]</pre>	Linha pelo rótulo do índice ou pelo número.
<pre>df.ix[lab_num1,lab_num2,]</pre>	Várias linhas pelos rótulos de índice ou pelos números.
df[bool]	Linha baseada em bool.
df[bool1,bool2,]	Várias linhas baseadas em bool.
<pre>df[start:stop:step]</pre>	Linhas baseadas em notação de fatiamento.

^{*}Observe que ix não funciona mais depois do Pandas v
0.20.

3.4.2 Operações são alinhadas e vetorizadas automaticamente (Broadcasting)

O Pandas aceita *broadcasting*, disponibilizado pela biblioteca numpy. Essencialmente, ele descreve o que acontece quando realizamos operações entre objetos do tipo array, que é o caso de Series e DataFrame. Esses comportamentos dependem do tipo do objeto, de seu tamanho e de qualquer rótulo assoaciado a ele.

Inicialmente, vamos criar subconjuntos de nosso dataframe.

```
first_half = scientists[:4]
second_half = scientists[4:]
```

print(first_half)

	Name	Born	Died	Age	Occupation
0	Rosaline Franklin	1920-07-25	1958-04-16	37	Chemist
1	William Gosset	1876-06-13	1937-10-16	61	Statistician
2	Florence Nightingale	1820-05-12	1910-08-13	90	Nurse
3	Marie Curie	1867-11-07	1934-07-04	66	Chemist

print(second_half)

	Name	Born	Died	Age	Occupation
4	Rachel Carson	1907-05-27	1964-04-14	56	Biologist
5	John Snow	1813-03-15	1858-06-16	45	Physician
6	Alan Turing	1912-06-23	1954-06-07	41	Computer Scientist
7	Johann Gauss	1777-04-30	1855-02-23	77	Mathematician

Quando executamos uma ação em um dataframe com um escalar, há uma tentativa de aplicar a operação em cada célula do dataframe.

Escalar

Nesse exemplo, os números serão multiplicados por 2 e as strings serão **duplicadas** (esse é o comportamento usual do Python com strings).

```
# Multiplicar por um escalar
print(scientists * 2)
```

			Name	Born	\
0	Rosaline Frankl	inRos	aline Franklin	1920-07-251920-07-25	
1	William G	osset	William Gosset	1876-06-131876-06-13	
2	Florence NightingaleF	loren	ce Nightingale	1820-05-121820-05-12	
3	Mar	ie Cu	rieMarie Curie	1867-11-071867-11-07	
4	Rachel	Carso	nRachel Carson	1907-05-271907-05-27	
5		John	SnowJohn Snow	1813-03-151813-03-15	
6	Ala	n Tur	ingAlan Turing	1912-06-231912-06-23	
7	Johan	n Gau	ssJohann Gauss	1777-04-301777-04-30	
	Died	Age		Occupation	
0	1958-04-161958-04-16	74		${\tt ChemistChemist}$	
1	1937-10-161937-10-16	122	St	atisticianStatistician	
2	1910-08-131910-08-13	180		NurseNurse	
3	1934-07-041934-07-04	132		${\tt ChemistChemist}$	
4	1964-04-141964-04-14	112		BiologistBiologist	
5	1858-06-161858-06-16	90		PhysicianPhysician	
6	1954-06-071954-06-07	82	Computer Scien	tistComputer Scientist	
7	1855-02-231855-02-23	154	Math	.ematicianMathematician	

Somar - método .add()

Se seus dataframes tiverem somente valores numéricos e você quiser "somar" os valores célula a célula, o método add poderá ser usado.

O método .add() em pandas é uma maneira muito útil de somar dataframes elemento a elemento. Ele é especialmente flexível porque, ao contrário do operador +, ele tem um parâmetro chamado fill value.

Esse parâmetro é extremamente útil quando os dataframes têm índices (linhas) ou colunas diferentes. Se uma célula em um dataframe não tiver uma "correspondente" no outro dataframe, o fill_value será usado para preencher o valor ausente antes de fazer a soma. Isso evita que o resultado seja NaN (Not a Number) para essas células, que é o comportamento padrão do operador +.

```
# DataFrame 1
df1 = pd.DataFrame({
        'A': [10, 20, 30],
        'B': [40, 50, 60]
}, index=['X', 'Y', 'Z'])

print("DataFrame 1:")
print(df1)
```

```
DataFrame 1:

A B

X 10 40

Y 20 50

Z 30 60
```

```
# DataFrame 2
df2 = pd.DataFrame({
    'A': [5, 10, 15],
    'C': [2, 4, 6] # Note a coluna 'C', que não existe em df1
}, index=['X', 'Y', 'W']) # Note a linha 'W', que não existe em df1
print("DataFrame 2:")
print(df2)
```

```
DataFrame 2:
    A C
X 5 2
Y 10 4
W 15 6
```

```
# Usando .add() com fill_value
# Preenche os valores ausentes com 0 para que a soma ocorra
df_soma = df1.add(df2, fill_value=0)

print("Resultado da soma com .add(fill_value=0):")
print(df_soma)
```

```
Resultado da soma com .add(fill_value=0):
```

```
A B C
W 15.0 NaN 6.0
X 15.0 40.0 2.0
Y 30.0 50.0 4.0
Z 30.0 60.0 NaN
```

3.5 Fazendo alterações em Series e em Dataframe

Agora que já conhecemos várias maneiras de obter subconjuntos e fatiar nossos dados (veja Table 6), podemos alterar nossos objetos de dados.

3.5.1 Adicionando mais colunas

O type das colunas Born e Died é object, ou seja são strings.

```
print(scientists['Born'].dtype)
```

object

```
print(scientists['Died'].dtype)
```

object

É possível converter as strings em um tipo datatime apropriado para que possamos executar operações comuns de data e hora (por exemplo, obter as diferenças entre datas ou calcular a idade de uma pessoa).

Você pode fornecer o seu próprio format caso tenha uma data com um formato específico. Uma lista de variáveis format pode ser encontrada na documentação do módulo datetime de Python.

O formato da data que vamos trabalhar tem o aspecto "AAAA-MM-DD", portanto podemos usar o formato '%Y-%m-%d'.

```
# Formata a coluna 'Born' como datetime
born_datetime = pd.to_datetime(scientists['Born'], format='%Y-%m-%d')
print(born_datetime)
```

- 0 1920-07-25
- 1 1876-06-13
- 2 1820-05-12
- 3 1867-11-07
- 4 1907-05-27
- 5 1813-03-15
- 6 1912-06-23
- 7 1777-04-30

Name: Born, dtype: datetime64[ns]

```
died_datetime = pd.to_datetime(scientists['Died'], format='%Y-%m-%d')
print(died_datetime)
```

```
0 1958-04-16

1 1937-10-16

2 1910-08-13

3 1934-07-04

4 1964-04-14

5 1858-06-16

6 1954-06-07

7 1855-02-23

Name: Died, dtype: datetime64[ns]
```

Se quiséssemos, poderiamos criar um novo conjunto de colunas contendo as representações como datetime das datas que são object (string).

O exemplo a seguir usa a sintaxe de atribuição múltipla do Python.

```
scientists['born_dt'],scientists['died_dt'] = (born_datetime, died_datetime)
print(scientists.head())
```

	Name	Born	Died	Age	Occupation	born_dt	\
0	Rosaline Franklin	1920-07-25	1958-04-16	37	Chemist	1920-07-25	
1	William Gosset	1876-06-13	1937-10-16	61	Statistician	1876-06-13	
2	Florence Nightingale	1820-05-12	1910-08-13	90	Nurse	1820-05-12	
3	Marie Curie	1867-11-07	1934-07-04	66	Chemist	1867-11-07	
4	Rachel Carson	1907-05-27	1964-04-14	56	Biologist	1907-05-27	

died_dt

- 0 1958-04-16
- 1 1937-10-16
- 2 1910-08-13
- 3 1934-07-04
- 4 1964-04-14

print(scientists.shape)

(8, 7)

3.5.2 Alterando diretamente uma coluna

Podemos também atribuir um novo valor diretamente a uma coluna existente.

O exemplo nesta seção mostra como deixar aleatório o conteúdo de uma coluna.

Inicalmente, vamos observar os valores originais de Age.

```
print(scientists['Age'])
```

```
0
     37
1
     61
2
     90
3
     66
4
     56
     45
     41
     77
Name: Age, dtype: int64
Vamos agora embaralhar os valores.
import random
# Define uma semente (seed) para que a aleatoriedade seja sempre igual
random.seed(42)
random.shuffle(scientists['Age'])
print(scientists['Age'])
```

A mensagem SettingWithCopyWarning no código anterior nos informa que o modo apropriado de lidar com a instrução seria escrevê-la usando loc, ou podemos usar o método embutido sample para mostrar aleatoriamente o tamanho da coluna.

Neste exemplo, é necessário executar reset_index, pois sample usa somente índice da linha. Desse modo, se você tentar atribuir-lhe um novo valor ou usá-lo novamente, os valores "embaralhados" serão automaticamente alinhados ao índice e serão ordenados de novo como eram antes de sample.

O parâmetro drop=True em reset_index informa ao Pandas que não insira o índice nas colunas do dataframe, de modo que somente os valores sejam mantidos.

```
import random

# random_state é usado para deixar a 'aleatoriedade' menos aleatória
scientists['Age'] = scientists['Age'].\
    sample(len(scientists['Age']),random_state=24).\
    reset_index(drop=True) #Valores permanecem aleatórios

print(scientists['Age'])
```

```
0
      77
      45
1
2
      41
3
      56
4
      61
5
      37
6
      66
7
      90
Name: Age, dtype: int64
```

Observe que o método random.shuffle parece atuar diretamente na coluna. A documentação de random.shuffle menciona que a sequência será embaralhada "in place", o que significa que ela atuará diretamente na sequência. Compare isso com o método anterior, em que atribuímos os valores novos calculados a uma variável diferente antes que pudéssemos atribuí-los à coluna.

- len(scientists['Age']): Este argumento diz à função sample() para pegar uma amostra do mesmo tamanho que a coluna inteira. Em outras palavras, ele está pedindo para selecionar todos os valores da coluna, mas em uma ordem aleatória.
- random_state=24: Este é o equivalente a random.seed(). Usar random_state garante que a "aleatoriedade" seja reproduzível. Se você executar o código várias vezes com random_state=24, o embaralhamento será sempre o mesmo. Isso é extremamente útil para depuração e para garantir que seus resultados sejam consistentes.
- reset_index(): Reseta o índice da Series (ou DataFrame) para a ordem padrão (0, 1, 2, ...).
- drop=True: Este argumento é muito importante. Ele diz ao reset_index() para descartar o índice antigo. Se você não usar drop=True, o pandas adicionará o índice antigo como uma nova coluna no seu DataFrame, o que não é o que queremos aqui.

• "in-place" (no lugar): significa que uma função modifica o objeto original diretamente, sem criar uma nova cópia.

Podemos recalcular a idade "real" usando aritmética com datetime.

```
# Subtrair datas nos dá o número de dias
scientists['age_days_dt'] = (scientists['died_dt'] - \
    scientists['born_dt'])
print(scientists)
```

	Name	Born	Died	Age	Occupation	\
0	Rosaline Franklin	1920-07-25	1958-04-16	77	Chemist	
1	William Gosset	1876-06-13	1937-10-16	45	Statistician	
2	Florence Nightingale	1820-05-12	1910-08-13	41	Nurse	
3	Marie Curie	1867-11-07	1934-07-04	56	Chemist	
4	Rachel Carson	1907-05-27	1964-04-14	61	Biologist	
5	John Snow	1813-03-15	1858-06-16	37	Physician	
6	Alan Turing	1912-06-23	1954-06-07	66	Computer Scientist	
7	Johann Gauss	1777-04-30	1855-02-23	90	Mathematician	
	born_dt died_dt	age_days_dt				

```
born_dt died_dt age_days_dt
0 1920-07-25 1958-04-16 13779 days
1 1876-06-13 1937-10-16 22404 days
2 1820-05-12 1910-08-13 32964 days
3 1867-11-07 1934-07-04 24345 days
4 1907-05-27 1964-04-14 20777 days
5 1813-03-15 1858-06-16 16529 days
6 1912-06-23 1954-06-07 15324 days
7 1777-04-30 1855-02-23 28422 days
```

```
# Podemos converter o valor somente para o ano
# usando o método astype
scientists['age_years_dt'] = scientists['age_days_dt'].\
    astype('timedelta64[Y]')
print(scientists)
```

Correção:

o método astype ('timedelta64[Y]') nunca funcionou para converter dias em anos dessa forma. O problema principal é a variabilidade do ano. Diferente de um dia (24 horas) ou uma hora (60 minutos), um ano não tem uma duração fixa e precisa em dias. Ele pode ter 365 ou 366 dias (nos anos bissextos).

O tipo de dado timedelta64 foi projetado para lidar com diferenças de tempo exatas e fixas, como dias, horas, segundos, milissegundos, etc. Tentar usar uma unidade como "ano" (Y) ou "mês" (M) não seria preciso, porque o pandas não saberia se deve usar 365 ou 366 dias na conversão.

```
scientists['age_years_dt'] = scientists['age_days_dt'].\
  dt.total_seconds() / (365.25 * 24 * 60 * 60)
print(scientists)
```

		Name	Born	Died	Age	Occupation	\
0	Rosalin	ne Franklin	1920-07-25	1958-04-16	77	Chemist	
1	Will	liam Gosset	1876-06-13	1937-10-16	45	Statistician	
2	Florence 1	Nightingale	1820-05-12	1910-08-13	41	Nurse	
3	1	Marie Curie	1867-11-07	1934-07-04	56	Chemist	
4	Rad	chel Carson	1907-05-27	1964-04-14	61	Biologist	
5		John Snow	1813-03-15	1858-06-16	37	Physician	
6	1	Alan Turing	1912-06-23	1954-06-07	66	Computer Scientist	
7	Jo	ohann Gauss	1777-04-30	1855-02-23	90	Mathematician	
	born_dt	died_dt	age_days_dt	age_years_d	t		
0	1920-07-25	1958-04-16	13779 days	37.72484	6		
1	1876-06-13	1937-10-16	22404 days	61.33880	9		
2	1820-05-12	1910-08-13	32964 days	90.25051	3		
3	1867-11-07	1934-07-04	24345 days	66.652977			
4	1907-05-27	1964-04-14	20777 days	56.88432	6		
5	1813-03-15	1858-06-16	16529 days	45.25393	6		
6	1912-06-23	1954-06-07	15324 days	41.95482	5		
7	1777-04-30	1855-02-23	28422 days	77.81519	5		

Muitas funções e métodos do Pandas terão um parâmetro inplace que poderá ser definida com True caso você queira executar a ação "in place". Isso fará com que a dada coluna seja alterada diretamente, sem devolver nada.

3.5.3 Descartando valores

dtype='object')

Para descartar uma coluna, podemos selecionar todas as colunas que queremos usando as técnicas de obtenção de subconjuntos de colunas ou selecionar as colunas a serem descartadas com o método drop de nosso dataframe.

O argumento axis=1 (ou axis='columns') indica ao Pandas para procurar e remover nos eixos

verticais (colunas). Se você quisesse remover uma linha, usaria axis=0 (ou axis='index').

3.6 Exportando e importando dados

Em nossos exemplos até agora, importamos dados. Exportar e salvar conjuntos de dados enquanto os processamos também é uma prática comum. Conjuntos de dados são salvos como versões finais limpas ou como passos intermediários. As duas saídas podem ser usadas para análise ou como entrada para outra parte do fluxo de processamento de dados.

3.6.1 pickle

O Python tem uma maneira de executar pickle de dados. É o modo Python de serializar e salvar dados em formato binário.

A leitura de dados serializados também é uma operação compatível com versões anteriores.

3.6.1.1 Series

Muitos dos métodos de exportação para Series também estão disponíveis para DataFrame.

Os leitores que tiverem experiência com o numpy saberão que um método save está disponível para ndarrays.

Esse método (save) foi considerado obsoleto, e o método to_pickle deve ser usado como substituto.

```
names = scientists['Name']
print(names)
```

```
0
        Rosaline Franklin
1
           William Gosset
2
     Florence Nightingale
3
              Marie Curie
4
            Rachel Carson
                John Snow
5
6
              Alan Turing
7
             Johann Gauss
Name: Name, dtype: object
# Passar uma string como o path para salvar
names.to_pickle('../output/scientists_names_series.pickle')
```

A saída de pickle tem formato binário. Assim, se você tentar abri-la em um editor de texto, verá um conjunto de caracteres confusos.

Se o objeto que você estiver salvando for um passo intermediário em um conjunto de processamentos que você queira guardar, ou se souber que seus dados permanecerão no mundo Python, a operação de salvar um objeto em um pickle será otimizada para o Python, assim como no que concerne ao espaço de armazenamento em disco.

No entanto, essa abordagem implica que as pessoas que não usam Python não poderão ler os dados.

3.6.1.2 DataFrame

O mesmo método pode ser usado em objetos DataFrame.

scientists.to_pickle('../output/scientists_df.pickle')

3.6.1.3 Lendo dados de pickle

Para ler dados de pickle, podemos usar a função pd.read_pickle.

• Series:

```
# Para Series
scientist_names_from_pickle = pd.read_pickle('../output/scientists_names_series.pickle')
```

• DataFrame:

```
# Para DataFrame
scientists_from_pickle = pd.read_pickle('../output/scientists_df.pickle')
```

Os arquivos pickle são salvos em extensão .p, .pkl ou .pickle.

3.6.2 CSV

O formato CSV (*Comma-Separated Values*, Valores separados por vírgula) é o tipo mais flexível para armazenagem de dados.

Para cada linha, as informações das colunas são separadas com uma vírgula. Porém a vírgula não é o único tipo de delimitador. Alguns arquivos são delimitados com uma tabulação (TSV) ou até mesmo por ponto e vírgula.

O principal motivo para o CSV ser um formato de dados preferível para colaboração e compartilhamento de dados deve-se ao fato de qualquer programa ser capaz de abrir esse tipo de estrutura de dados. Ele pode ser aberto até mesmo em um editor de texto.

• Parâmetro sep

- Vírgula (default)
 Por default é a opção do sistema, não precisa ser declarado (explicitado).
- Ponto e vírgula (sep=';')
 Normalmente usado em alternativa ao separador com vírgula, pricipalmente em dados brasileiros, por conta dos números que usam vírgula.
- Tabulação (sep='\t')
 Muito usado para evitar mal-entendidos caso algum tipo de dado use virgula como separador.

3.6.2.1 Exportando dados CSV

Series e DataFrame têm um método .to_csv() para escrever um arquivo CSV. A documentação de Series e de DataFrame identifica muitos modos diferentes pelos quais podemos modificar o arquivo CSV resultante. Por exemplo, se quiser salvar um arquivo TSV porque há vírgulas em seus dados, você poderá alterar o parâmetro sep.

• Series:

```
# Salva (exporta) uma série em um CSV
names.to_csv('../output/scientist_name_series.csv')
• DataFrame:
```

```
# Salva (exporta) um DataFrame em um TSV
# que significa Tab-Separated Value (Valor Separado por Tabulação)
scientists.to_csv('../output/scientist_name_series.tsv', sep='\t')
```

3.6.2.2 Removendo os números das linhas de saída

Se você abrir o arquivo CSV ou TSV criado, perceberá que a primeira "coluna" parece ser o número de linhas do DataFrame. Muitas vezes ela não será necessária especialmente se você estiver trabalhando em colaboração com outras pessoas.

Tenha em mente que essa "coluna" está realmente salvando o "rótulo da linha", que poderá ser importante.

A documentação mostrará que há um parâmetro index com o qual podemos escrever os nomes das linhas.

• Parâmetro index

```
    True (index=True)
    Adiciona o rótulo das linhas do arquivo CSV.
```

```
# Escreve os nomes das linhas na saída CSV
scientists.to_csv('../output/scientist_name_series.tsv', index=True)
```

False (index=False)
 Excluí o rótulo das linhas do arquivo CSV.

```
# Não escreve os nomes das linhas na saída CSV
scientists.to_csv('../output/scientist_name_series.tsv', index=False)
```

3.6.2.3 Importando dados CSV

Importação de arquivos CSV. Essa operação usa a função do Pandas pd.read_csv().

```
import pandas as pd
nome_do_dataframe = pd.read_csv('caminho/para/seu/arquivo.csv')
```

3.6.3 Excel

O Excel, que provavelmente é o tipo de dado mais comum usado (ou o segundo mais comum, ficando depois dos CSVs), tem uma reputação ruim na comunidade de ciência de dados, principalmente porque informações sobre cores e outros supérfluos podem facilmente ser incluídos no conjunto de dados, sem mencionar os cálculos feitos uma só vez, que podem arruinar a estrutura retangular de um conjunto de dados.

O objetivo não é atacar o Excel, mas mostar uma ferramenta alternativa razoável para análise de dados. Em suma, quanto mais de seu trabalho você puder fazer com uma linguagem de scripting, mais fácil será escalar em direção a projetos maiores, identificar e corrigir erros e promover colaboração. Entretando não há rivais para a popularidade e a parcela do mercado do Excel. O Excel tem a sua própria linguagem scripting caso você tenha realmente que trabalhar com ele. Isso permitirá que você trabalhe com os dados de uma maneira mais previsível e reproduzível.

3.6.3.1 Series

A estrutura de dados Series não tem um método to_excel explicito.

Se você tiver uma Series que precise ser exportada para um arquivo Excel, uma opção é converter a Series em um DataFrame de uma só coluna.

```
# Converte a Series em um DataFrame
# antes de salvá-la em um arquivo Excel
names_df = names.to_frame()

import xlwt
# arquivo .xls
names_df.to_excel('../output/scientists_names_series_df.xls')

import openpyxl
# arquivo .xlsx
names_df.to_excel('../output/scientists_names_series_df.xlsx')
```

3.6.3.2 DataFrame

A documentação mostra várias maneiras de ajustar melhor a saída. Por exemplo, os dados podem estar em uma "planilha" específica usando o parâmetro sheet_name.

```
import openpyxl
# arquivo .xlsx

# Salvando um DataFrame em formato Excel
scientists.to_excel('../output/scientists_names_series_df.xlsx',
    sheet_name='scientists',
    index=False)
```

3.6.3.3 Bibliotecas que converte DataFrame em Excel

As bibliotecas que fazem a conversão de DataFrame para Excel são:

- xlwt
- openpyxl

Table 7: Principais biblitecas de conversão de dados para Excel

Biblioteca	Formato de Arquivo (Extensão)	Uso Principal
xlwt	.xls	Apenas escrever dados e formatação
	(Formato antigo do Excel 97-2003)	em arquivos antigos.
openpyxl	.xlsx	Ler e escrever dados, formatação,
	(Formato moderno do Excel 2007+)	fórmulas e gráficos nos formatos modernos.

- 3.6.4 Formato feather para interface com ${\sf R}$
- 3.6.5 Outros tipos de saída de dados

3.7 Conclusão

4 Introdução à plotagem