

AFCRC-TN-59-130

ASTIA DOCUMENT NO. AD 210493

NEW YORK UNIVERSITY

INSTITUTE OF MATHEMATICAL SCIENCES

LIBRARY

25 Waverly Place, New York 3, N.Y.

NEW YORK UNIVERSITY

Institute of Mathematical Sciences

Division of Electromagnetic Research

NOV 18 1958

RESEARCH REPORT NO. EM-120

Relation Between a Class of Two-Dimensional and Three-Dimensional Diffraction Problems

L. B. FELSEN and S. N. KARP

Contract No. AF 19(604)1717

JANUARY, 1959

NEW YORK UNIVERSITY

Institute of Mathematical Sciences
Division of Electromagnetic Research

Research Report No. EM-120

RELATION BETWEEN A CLASS OF TWO-DIMENSIONAL
AND THREE-DIMENSIONAL DIFFRACTION PROBLEMS

L. B. Felsen^{*} and S. N. Karp

L. B. Felsen

L. B. Felsen

S. N. Karp

S. N. Karp

Morris Kline

Morris Kline

Director

Dr. Wm W. Jacobs

The research reported in this document has been sponsored
by the Electronics Research Directorate of the Air Force
Cambridge Research Center, Air Research and Development
Command. The publication of this report does not necessarily
constitute approval by the Air Force of the findings or
conclusions contained herein.

Contract No AF-19(604)-1717

January, 1959

* This report is also being issued by the Microwave Research Institute of Polytechnic Institute of Brooklyn as Report R-694-58, PIB-622 under Contract AF-19(604)-4143.

ABSTRACT

By means of a certain transformation, a relationship is demonstrated between a class of two-dimensional and three-dimensional scalar or electromagnetic diffraction problems. The basic three-dimensional configuration consists of a perfectly reflecting half plane excited by a ring source centered about the edge and having a variation $\exp(\pm i\phi/2)$, where ϕ is the azimuthal variable; in addition, a perfectly reflecting rotationally symmetric obstacle whose surface is defined by $f(\rho, z) = 0$ (ρ, z are cylindrical coordinates), may be superposed about the edge (z-axis). This problem is shown to be simply related to the two-dimensional one for the line source excited configuration $f(y, z) = 0$, where y and z are Cartesian coordinates. Various special obstacle configurations are treated in detail.

For the general case of arbitrary electromagnetic excitation, the above-mentioned transformation is used to construct the solution for the diffraction by a perfectly conducting half plane from the knowledge of appropriate scalar solutions, namely those which obey the same equations and boundary conditions, and have the same excitations, as the Cartesian components of the electromagnetic field.

TABLE OF CONTENTS

	<u>Page</u>
I. Introduction	1
II. Relation Between Three-and Two-dimensional Problems	4
A. Scalar Problems	4
B. Electromagnetic Problems	9
1. Longitudinal Electric Currents	9
2. Longitudinal Magnetic Currents	11
3. Radial Electric Currents	12
4. Radial Magnetic Currents	14
III. Diffraction of Electromagnetic Fields by a Perfectly Conducting Half Plane	15
References	22

I. Introduction

This paper deals with the relationship between a special class of two-dimensional and three-dimensional diffraction problems. The basic three-dimensional configuration consists of a perfectly reflecting half plane excited by a ring source centered about the edge, with the plane of the loop oriented perpendicular to the edge, as shown in Fig. 1(a); the strength of the source, either scalar or electromagnetic, varies like $\sin(\phi/2)$ or $\cos(\phi/2)$, where ϕ is the azimuthal angular variable. Via the transformation

Fig. 1 - Basic equivalent configurations

to be described below, the cylindrical coordinate $\rho = r \sin \theta$ in Fig. 1(a) transforms into the y -coordinate in Fig. 1(b), while the Z -coordinate is preserved (the x -coordinate does not occur in the two-dimensional problem). The three-dimensional configuration in Fig. 1(a) is thereby transformed into the two-dimensional one in Fig. 1(b) consisting of a uniform line source parallel

Three-dimensional

(a) Sphere

(b) Cone

(c) Flat ring

Two-dimensional

(a) Cylinder

(b) Wedge

(c) Strip

Fig. 2 - Equivalent configurations

Three-dimensional

(d) Semi-infinite cylinder

Two-dimensional

(d) Semi-infinite plane

(e) Infinite coaxial cylinders

(e) Infinite parallel planes

(f) Array of discs

(f) Array of strips

Fig. 2 - Equivalent configurations.

to a perfectly reflecting infinite plane. It is evident that any surface with rotational symmetry about the Z-axis of Fig. 1(a), and described by the equation $f(\rho, Z) = 0$, is mapped by this transformation into the two-dimensional configuration $f(y, Z) = 0$ in the presence of the infinite plane at $y = 0$. Some special structures in this category are listed in Fig. 2. We shall show how we can generate solutions for such ring source excited three-dimensional configurations involving an infinite half plane, from the knowledge of the two-dimensional results.

As a further application it will be shown how the above-mentioned transformation can be employed to construct the electromagnetic field due to an arbitrary source distribution in the presence of a perfectly conducting half-plane. The construction is carried out explicitly in terms of the solutions of the corresponding scalar Dirichlet and Neumann problems. The problem has been solved previously by Heins¹, Senior², and Vandakurov³, for various dipole excitations through the use of methods which differ from each other and from the present one. The procedure we employ exhibits explicitly the modifications necessary in order to convert the scalar solutions into vector solutions. Thus, we start with the scalar wave functions corresponding to excitations which are Cartesian components of the arbitrarily prescribed vector excitation and which are assumed to be known. The vector solution is then constructed from these scalar solutions.

II. Relation Between Three-and Two-dimensional Problems

A. Scalar Problems

We define the even and odd Green's functions $G_e(\underline{r}; \underline{r}', \theta')$ and

$G_o(\underline{r}; \underline{r}', \theta')$ appropriate to the ring source excited half-plane in Fig. 1(a) as

$$G_e(\underline{r}; \underline{r}', \theta') = r' \sin \theta' \int_0^{2\pi} \left\{ \begin{array}{l} \cos(\phi'/2) \\ \sin(\phi'/2) \end{array} \right\} \mathcal{G}_e(\underline{r}, \underline{r}') d\phi', \quad \underline{r} = (r, \theta, \phi), \quad (1)$$

where $\mathcal{G}_e(\underline{r}, \underline{r}')$ and $\mathcal{G}_o(\underline{r}, \underline{r}')$ are the three-dimensional Green's functions satisfying the inhomogeneous wave equation

$$\left(\nabla_{r\theta}^2 + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + k^2 \right) \mathcal{G}_e(\underline{r}, \underline{r}') = - \frac{\delta(\underline{r}-\underline{r}') \delta(\theta-\theta') \delta(\phi-\phi')}{r'^2 \sin \theta'} \quad (2)$$

$$\nabla_{r\theta}^2 = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}, \quad (2a)$$

in the domain $0 \leq r < \infty$, $0 \leq \theta \leq \pi$, $0 \leq \phi \leq 2\pi$, with the boundary conditions on the half-plane

$$\frac{\partial \mathcal{G}_e}{\partial \phi} = 0, \quad \mathcal{G}_o = 0, \quad \text{at } \phi = 0, 2\pi, \quad (3a)$$

the edge condition⁴

$$\mathcal{G}_e \text{ finite at } \rho = r \sin \theta \rightarrow 0, \quad (3b)$$

and also the

$$\text{radiation condition at } r \rightarrow \infty. \quad (3c)$$

One notes from (1) that G_e and G_o are excited by ring sources with $\cos(\phi/2)$ and $\sin(\phi/2)$ variation, respectively. Since these sources generate fields which vary everywhere like $\cos(\phi/2)$ and $\sin(\phi/2)$, respectively, we may represent G_e as

$$G_e(\underline{r}; \underline{r}', \theta') = \left\{ \begin{array}{l} \cos(\phi'/2) \\ \sin(\phi'/2) \end{array} \right\} G(\underline{\rho}, \underline{\rho}'), \quad \underline{\rho} = (r, \theta), \quad (4)$$

whence G satisfies the following equation in view of (1), (2) and (4):

$$\left(\nabla_{r\theta}^2 - \frac{1}{4r^2 \sin^2 \theta} + k^2 \right) G(\underline{r}, \underline{\theta}) = - \frac{\delta(\underline{r} - \underline{r}') \delta(\underline{\theta} - \underline{\theta}')}{r'} \quad (5)$$

with boundary conditions as in (3b) and (3c).

We now introduce the transformation

$$G(\underline{r}, \underline{\theta}) = \sqrt{\frac{\underline{r}'}{\underline{r}}} \bar{G}(\underline{r}, \underline{\theta}) , \quad \underline{r} = r \sin \theta , \quad 0 \leq \underline{r} < \infty , \quad (6)$$

into (5), and find that \bar{G} satisfies

$$\left(\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + k^2 \right) \bar{G}(\underline{r}, \underline{\theta}) = - \frac{\delta(\underline{r} - \underline{r}') \delta(\underline{\theta} - \underline{\theta}')}{r'} \quad (7a)$$

If r and θ in (7a) are interpreted as cylindrical coordinates in a Cartesian (y, z) space where

$$\begin{aligned} y &= r \sin \theta , \quad 0 \leq y < \infty , \\ z &= r \cos \theta , \quad -\infty < z < \infty , \end{aligned} \quad (7b)$$

then one notes that (7a), together with the boundary conditions in (8) below, represents exactly the formulation for the two-dimensional Green's function problem in Fig. 1(b). This establishes the desired relationship between the ring-source-excited three-dimensional problem and the line-source-excited two-dimensional problem. To avoid confusion between the spherical and cylindrical coordinate interpretations of r , θ in (5) and 7(a), respectively, we shall henceforth employ the rectangular (y, z) coordinate notation for the equivalent two dimensional problem (see Fig. 1(b)). Concerning the boundary conditions on \bar{G} in (7a), we impose the radiation condition at infinity, as before, and on the infinite plane at $y = 0$, we require in view of (3b), (6), and (7b),

$$\bar{G} = 0 \quad \text{at} \quad y = 0 \quad (8)$$

Since this implies that $\bar{G} \propto y$ as $y \rightarrow 0$, it follows that $G \propto \sqrt{\rho}$ as $\rho \rightarrow 0$, in conformity with the familiar edge requirement.⁴

The basic transformation employed above can also be expressed as the following theorem and its converse which are verifiable by direct calculation.

Theorem: If

$$X = r \sin \theta \cos \phi; Y = r \sin \theta \sin \phi; Z = r \cos \theta; \quad (9)$$

$$\rho \equiv y = r \sin \theta; \quad Z \equiv z = r \cos \theta,$$

$$\frac{\partial^2 \bar{u}}{\partial \rho^2} + \frac{\partial^2 \bar{u}}{\partial z^2} + k^2 \bar{u} = 0; \quad \bar{u} = \bar{u}(\rho, z) \equiv \bar{u}(y, z),$$

$$U(X, Y, Z) = \frac{1}{\sqrt{\rho}} \exp(\pm i \phi/2) \bar{u}(\rho, z),$$

then

$$\left(\frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} + \frac{\partial^2}{\partial Z^2} + k^2 \right) U(X, Y, Z) = 0. \quad (9a)$$

Conversely, if (9a) is true, and $U(X, Y, Z) = \frac{1}{\sqrt{\rho}} \exp(\pm i \phi/2) \bar{u}(\rho, z)$ then
 $\bar{u}_{\rho\rho} + \bar{u}_{zz} + k^2 \bar{u} = 0.$

If the configuration also includes a surface of revolution S defined by the equation $f(\rho, z) = 0$, all previous considerations apply except that, in addition, the boundary conditions on S must be taken into account. Since the surface S is independent of the ϕ -coordinate, the boundary conditions need be imposed only on $\bar{G}(y, z; y', z')$ along the curve $f(y, z) = 0$. Let us assume the linear homogeneous boundary condition

$$G = \alpha \frac{\partial G}{\partial n} \text{ on } S, \quad \alpha = \text{constant}, \quad (10)$$

where n is the direction of the normal into S . Then the condition on \bar{G} is found via (6) as

$$\bar{G} = \alpha \left[\frac{\partial}{\partial n} - \frac{1}{2y} \left(\frac{\partial y}{\partial \bar{n}} \right) \right] \bar{G} \quad \text{on } \bar{S} , \quad (11)$$

where \bar{S} is the surface $f(y, z) = 0$ and \bar{n} the direction of the normal into \bar{S} .

One notes from (10) and (11) that for $\alpha = 0$

$$\bar{G} = 0 \quad \text{on } \bar{S} \quad \text{if } G = 0 \quad \text{on } S , \quad (12a)$$

while for $\alpha = \infty$,

$$\frac{\partial \bar{G}}{\partial \bar{n}} = \frac{1}{2y} \left(\frac{\partial y}{\partial \bar{n}} \right) \bar{G} \quad \text{on } \bar{S} \quad \text{if } \frac{\partial G}{\partial n} = 0 \quad \text{on } S . \quad (12b)$$

Thus, a Dirichlet condition ($\alpha = 0$) on S always implies the same condition on \bar{S} , whereas a Neumann condition ($\alpha = \infty$) on S leads generally to a mixed boundary condition on \bar{S} , unless the obstacles are confined completely to the planes $z = \text{constant}$, in which case $(\partial y / \partial \bar{n}) = \pm (\partial y / \partial z) = 0$.

We have therefore shown how the solutions for any two-dimensional Dirichlet type diffraction problem can be taken over to yield the solution for a corresponding three-dimensional Dirichlet problem with an azimuthal field variation as in (4). Typical examples for which exact two-dimensional solutions are known include the cylinder (Fig. 2(a)), the wedge (Fig. 2(b)),^{*} the slit (Fig. 2(c), with $b \rightarrow \infty$), the semi-infinite parallel plane region (Fig. 2(d)) and the infinite parallel plane region (Fig. 2(e)). Approximate solutions are available for the infinite array of strips (Fig. 2(f)), and others. The corresponding three-dimensional Dirichlet problems solved

* A detailed discussion of the relationship between the two-dimensional wedge problem and the corresponding three-dimensional cone problem is given in a report by Felsen.⁵

thereby via (4) and (6) are also shown in Fig. 2. Concerning the Neumann type boundary condition, solutions for the two-dimensional problems in Figs. 2(c) and 2(f) imply those for the corresponding three-dimensional case, as noted above. Moreover, for the configurations in Figs. 2(d) and 2(e), a Neumann condition on the cylindrical surfaces implies an impedance type boundary condition on the corresponding two-dimensional plane surface since on a plane $y = \text{constant}$, $(1/y) (\partial y / \partial \bar{n})$ is equal to a constant. This solution is known for the infinite parallel plane case. Similarly, the Neumann condition $\partial G / \partial r = 0$ at $r = a$ appropriate to a sphere of radius "a" has for its two-dimensional equivalent the known solution for a cylinder with $(\partial \bar{G} / \partial \bar{n}) = (1/2a) \bar{G}$, while that for a cone, $\partial G / \partial \theta = 0$ at $\theta = \theta_0$, leads to a simple two-dimensional wedge problem with $\partial \bar{G} / \partial \theta = (1/2) (\cot \theta_0) \bar{G}$.

B. Electromagnetic Problems

Now we show how the fields radiated in the presence of a perfectly conducting half-plane by electromagnetic ring source distributions with variations $\cos(\phi/2)$ or $\sin(\phi/2)$ can be inferred from the solution for a scalar line source in the presence of an infinite plane. The latter solution can, of course, be expressed simply in terms of the free space result plus its image. Several other boundary value problems are also discussed.

1. Longitudinal Electric Currents

The configuration is shown in Fig. 3. A source variation $\sin(\phi/2)$ is assumed since a tangential electric source current element of finite strength cannot exist on a perfectly conducting sheet. The vector electric field $\underline{\xi}(r; r', \theta')$ and magnetic field $\underline{\mathcal{H}}(r; r', \theta')$ radiated by this distribution of currents of unit strength are given in terms of the Hertzian vector $\underline{z}_0 G_0$

Fig. 3 - Ring of longitudinal current elements

by

$$\underline{E}(\underline{r}; \underline{r}', \theta') = - \frac{\underline{Z}}{ik} \nabla \times \nabla \times \left[\underline{z}_0 G_0(\underline{r}; \underline{r}', \theta') \right], \underline{H}(\underline{r}; \underline{r}', \theta') = \nabla \times \left[\underline{z}_0 G_0(\underline{r}; \underline{r}', \theta') \right], \quad (13)$$

where \underline{Z} is the characteristic impedance of free space and \underline{z}_0 a unit vector along the z-direction. A time dependence $\exp(-i\omega t)$ is implied. Since G_0 as given in (4) can be related to the two-dimensional problem in Fig. 1(b) via (6), (7a) and (8) we can write the solution as:

$$\underline{E}(\underline{r}; \underline{r}', \theta') = - \frac{\underline{Z}}{ik} \sqrt{\rho'} \nabla \times \nabla \times \left[\underline{z}_0 \frac{\sin(\phi/2)}{\sqrt{\rho}} \bar{G}(\underline{\rho}, \underline{\rho}') \right], \quad (14)$$

$$\bar{G}(\underline{\rho}, \underline{\rho}') = \frac{i}{4} \left[H_0^{(1)} \left(k \sqrt{(\rho - \rho')^2 + (z - z')^2} \right) - H_0^{(1)} \left(k \sqrt{(\rho + \rho')^2 + (z - z')^2} \right) \right], \quad (14a)$$

and similarly for \underline{H} . $H_0^{(1)}(w)$ in (14a) is the Hankel function of the first kind of order zero and argument w .

The electric field components along the ρ , ϕ , z directions are given from (13) by

$$\mathcal{E}_\rho = -\frac{\mathcal{Z}}{ik} \frac{\partial^2 G_0}{\partial z \partial \rho}, \quad \mathcal{E}_\phi = -\frac{\mathcal{Z}}{ik\rho} \frac{\partial^2 G_0}{\partial z \partial \phi}, \quad \mathcal{E}_z = -\frac{\mathcal{Z}}{ik} \left(\frac{\partial^2}{\partial z^2} + k^2 \right) G_0, \quad (15)$$

so that one verifies that \mathcal{E}_z and \mathcal{E}_ρ vanish on the half plane as required. Since $\bar{G} \propto \rho$ as $\rho \rightarrow 0$ one obtains the proper edge behavior⁴

$$\mathcal{E}_\rho \propto \rho^{-1/2} \sin(\phi/2), \quad \mathcal{E}_\phi \propto \rho^{-1/2} \cos(\phi/2), \quad \mathcal{E}_z \propto \rho^{1/2} \sin(\phi/2), \quad (16)$$

and analogously for \mathcal{H}_ρ and \mathcal{H}_ϕ (note: $\mathcal{H}_z \equiv 0$ from (13)).

It is noted from (15) that if G_0 vanishes on the cylindrical surfaces $\rho = a, b$, then \mathcal{E}_ϕ and \mathcal{E}_z vanish likewise. Thus, by inserting for \bar{G} in (14) the Dirichlet parallel plane Green's function (see Fig. 2(e)), we can construct the electromagnetic solution for the ring source excited perfectly conducting coaxial waveguide region whose center conductor is supported by a radial fin. The limiting cases $a \rightarrow 0$ or $b \rightarrow \infty$ are also admitted. By employing the parallel plane eigensolutions we may also determine those E mode functions in the coaxial waveguide whose \mathcal{E}_z component has an azimuthal variation $\sin(\phi/2)$ (only the E modes are excited by present source distribution since $\mathcal{H}_z \equiv 0$ as noted above); the cutoff wavelengths for these modes are identical with those for E modes in the parallel plane waveguide.

2. Longitudinal Magnetic Currents

The physical configuration is as in Fig. 3, where the source distribution is now taken as a ring of unit strength magnetic currents with variation $\cos(\phi/2)$. From considerations dual to those in the preceding section, we

write down the magnetic vector field \underline{H} for this case as

$$\underline{H}(r, r', \theta') = -\frac{Y}{ik} \sqrt{\rho} \cdot \nabla \times \left[\underline{z}_0 \frac{\cos(\phi/2)}{\sqrt{\rho}} \bar{G}(\rho, \rho') \right], \quad (17)$$

where \bar{G} is given in (14a). The corresponding expression for the electric field \underline{E} has a form dual to that given for \underline{H} in (13).

For the perfectly conducting waveguide with the radial fin (Fig. 2(e)), it is required that $\partial G_e / \partial \rho = 0$ at $\rho = a, b$ (cf. (15), with $\mathcal{E}, \mathcal{Z}, G_0$ replaced by \mathcal{H}, Y, G_e , respectively). The corresponding parallel plane problem therefore is one for which the impedance boundary condition (cf. (12b))

$$\frac{\partial \bar{G}}{\partial y} = \mp \frac{1}{2y} \bar{G} \text{ at } y = \frac{a}{b} \quad (18)$$

applies. By employing the parallel plane eigensolutions satisfying (18), we can construct via (17) those H mode functions whose H_z field component varies like $\cos(\phi/2)$ in the coaxial waveguide with the radial fin. Again, the cut-off wavelengths for these modes in the coaxial guide are identical with those for the H modes in the parallel plate guide with the impedance type boundary conditions (18).

3. Radial Electric Currents

The physical configuration for a ring of electric currents of unit strength directed radially with respect to some arbitrarily chosen origin along the edge of the half plane and varying like $\sin(\phi/2)$ is shown in Fig. 4. The electric and magnetic fields due to this current distribution are given in terms of a radial Debye potential function $\underline{r} G_0$ by

Fig. 4 - Ring of radial current elements.

$$\underline{\mathcal{E}}(\underline{r}; \underline{r}', \theta') = -\frac{Z}{ik} \nabla \times \nabla \times \left[\frac{\underline{r}}{\underline{r}'} G_o(\underline{r}; \underline{r}', \theta') \right], \underline{\mathcal{H}}(\underline{r}; \underline{r}', \theta') = \nabla \times \left[\frac{\underline{r}}{\underline{r}'} G_o(\underline{r}; \underline{r}', \theta') \right] \quad (19)$$

where $\underline{r} = \underline{r}_0 \underline{r}$, \underline{r}_0 is the radial unit vector, and G_o is related to \bar{G} in (14a) via (4) and (6) by $G_o = \sqrt{\rho'/\rho} \sin(\phi/2) \bar{G}(\underline{\rho}, \underline{\rho}')$.

One finds from (19) that the r , θ , ϕ - components of the electric field depend on G_o in (4) in the following manner:

$$\mathcal{E}_r \propto \left(\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + k^2 \right) G_o, \quad \mathcal{E}_\theta \propto \frac{1}{r} \frac{\partial^2}{\partial r \partial \theta} G_o, \quad \mathcal{E}_\phi \propto \frac{1}{r \sin \theta} \frac{\partial^2}{\partial r \partial \phi} G_o. \quad (20)$$

It is verified readily that the edge conditions (16) are satisfied as $\rho \rightarrow 0$. Furthermore, one notes that if G_o , and therefore \bar{G} , vanishes on the conical boundary $\theta = \text{constant}$, then \mathcal{E}_r and \mathcal{E}_ϕ likewise vanish. Thus, (19) remains valid when a perfectly conducting cone is superposed on the edge, with apex at the origin, as in Fig. 2(b), provided that one inserts for \bar{G} the corres-

ponding two-dimensional Dirichlet solution for the wedge.

If a perfectly conducting sphere with radius "a" and centered at the origin is superposed onto the half-plane (Fig. 2(a)), one notes from (20) that the required boundary conditions are met if $\partial G/\partial r = 0$ at $r = a$. The corresponding boundary condition on the cylinder in the equivalent two-dimensional problem is given as before by $\partial \bar{G}/\partial \bar{n} = (1/2a) \bar{G}$, leading again to a known boundary value problem.

4. Radial Magnetic Currents

The magnetic field radiated by a ring source of unit strength radial magnetic current elements as in Fig. 4 is obtained from an expression dual to that in (19) (a $\cos(\phi/2)$ source variation is assumed):

$$\underline{H}(r; r', \theta') = - \frac{\mathcal{Y}\sqrt{\rho'}}{ikr'} \nabla \times \nabla \times \left[\frac{r}{\underline{\rho}} \frac{\cos(\phi/2)}{\sqrt{\rho}} \bar{G}(\underline{\rho}, \underline{\rho}') \right] \quad (21)$$

with \bar{G} given in (14a). The corresponding expression for $\underline{\xi}$ has a form dual to that for \underline{H} in (19).

If a perfectly conducting sphere with radius "a" is centered at the origin as in Fig. 2(a), the required boundary conditions on \underline{H} in (21) are satisfied if $G = 0$ at $r = a$, leading to the equivalent two-dimensional Dirichlet problem for the cylinder. For a perfectly conducting conical boundary at $\theta = \theta_0$ (Fig. 2(b)), the required boundary condition is $\partial G/\partial \theta = 0$ at $\theta = \theta_0$, leading via (12b) to the previously mentioned equivalent two-dimensional wedge problem with $\partial \bar{G}/\partial \theta = (1/2) (\cot \theta_0) \bar{G}$.

III. Diffraction of Electromagnetic Fields by a Perfectly Conducting Half Plane

In the previous section we considered some electromagnetic problems arising from source distributions having a special angular dependence. However our basic formulas (equations (9) and (9a) of Section II, to be denoted by (2.9) and (2.9a)) can also be used to good purpose in deducing the effect of a conducting half-plane on general incident fields, as we shall see below.*

We consider the problem of diffraction of an arbitrary vector electromagnetic field by a perfectly conducting half-plane. The half-plane is defined by $Y = 0$, $X > 0$ as in Fig. 1(a). We use two sets of coordinates, the Cartesian coordinates X , Y , Z , and the cylindrical coordinates ρ , ϕ , Z , defined in (2.9):

$$X = \rho \cos \phi, \quad Y = \rho \sin \phi; \quad 0 \leq \phi \leq 2\pi. \quad (1)$$

The total electric field $\underline{\mathcal{E}}$ is expressed by means of its Cartesian components \mathcal{E}_X , \mathcal{E}_Y , \mathcal{E}_Z , which must obey the inhomogeneous wave equations

$$(\nabla^2 + k^2) \mathcal{E}_X = S_X; \quad (\nabla^2 + k^2) \mathcal{E}_Y = S_Y; \quad (\nabla^2 + k^2) \mathcal{E}_Z = S_Z, \quad (2)$$

the divergence condition

$$\nabla \cdot \underline{\mathcal{E}} = \frac{\partial \mathcal{E}_X}{\partial X} + \frac{\partial \mathcal{E}_Y}{\partial Y} + \frac{\partial \mathcal{E}_Z}{\partial Z} = 0 \quad \text{outside of source regions,} \quad (3)$$

and the following boundary conditions on the perfectly conducting half-plane and at infinity:

$$0 = \mathcal{E}_X(X, 0, Z) = \mathcal{E}_Z(X, 0, Z) = \frac{\partial}{\partial Y} \mathcal{E}_Y(X, 0, Z); \quad X > 0. \quad \left[\frac{\partial}{\partial Y} \mathcal{E}_Y(X, 0, Z) \equiv \frac{\partial}{\partial Y} \mathcal{E}_Y \Big|_{Y=0} \right] \quad (4)$$

* This problem was discussed by S. Karp in a paper⁷ presented at the Symposium on Electromagnetic Waves held at the University of Michigan, July 1955

$$\underline{\mathcal{E}}_X, \underline{\mathcal{E}}_Y, \underline{\mathcal{E}}_Z, \text{ outgoing at infinity} \quad (5)^*$$

Moreover, we require the edge conditions⁴

$$\underline{\mathcal{E}}_Z(\rho, \phi, Z) \rightarrow 0 \quad \text{as} \quad \rho \rightarrow 0 \quad , \quad (6)$$

no component of $\underline{\mathcal{E}}$ or $(\nabla \times \underline{\mathcal{E}})$ is as singular as $\frac{1}{\rho}$ at the edge. (7)

The functions S_X, S_Y, S_Z , in (2) represent the sources of the field, and are assumed to be given and to be confined to the interior of a finite region exterior to the half plane and its edge. Concerning (4) we note that the first two equalities express the boundary condition at a perfect conductor. The (redundant) condition $\frac{\partial \underline{\mathcal{E}}_Y}{\partial Y} = 0$ follows from (3) if we proceed to the limit $Y \rightarrow 0$ for $X > 0$, while requiring that $\underline{\mathcal{E}}_X$ and $\underline{\mathcal{E}}_Z \rightarrow 0$. The magnetic field $\underline{\mathcal{H}}$ corresponding to $\underline{\mathcal{E}}$ according to the Maxwell field equations is defined as $\underline{\mathcal{H}} = (1/i\kappa\gamma) \nabla \times \underline{\mathcal{E}}$, where γ is the characteristic impedance of free space. To facilitate subsequent discussions we introduce the incident field, $\underline{\mathcal{E}}_{\text{inc}}$. This field is defined as that outgoing wave solution of equation (2) which is regular except at the sources of the field. Since $\underline{\mathcal{E}}$ and $\underline{\mathcal{E}}_{\text{inc}}$ have the same sources we deduce from (2) that

$$(\nabla^2 + k^2) \nabla \cdot (\underline{\mathcal{E}} - \underline{\mathcal{E}}_{\text{inc}}) = \nabla \cdot \underline{S} - \nabla \cdot \underline{S} \equiv 0 \quad . \quad (2a)$$

Now the function $\nabla \cdot (\underline{\mathcal{E}} - \underline{\mathcal{E}}_{\text{inc}})$ is an outgoing wave at infinity, as follows from the outgoing behavior of the Cartesian components of $\underline{\mathcal{E}}$ and $\underline{\mathcal{E}}_{\text{inc}}$. Since it has no sources (by (2a)), it vanishes identically. Thus (3) can be replaced by:

$$\nabla \cdot \underline{\mathcal{E}} = \nabla \cdot \underline{\mathcal{E}}_{\text{inc}} = 0 \quad \text{outside of sources} \quad (3a)$$

$$\nabla \cdot \underline{\mathcal{E}} - \nabla \cdot \underline{\mathcal{E}}_{\text{inc}} \equiv 0 \quad \text{everywhere} \quad .$$

* If $k = k_1 + ik_2$, $k_2 > 0$, then we require instead that $\underline{\mathcal{E}}(\infty) = 0$.

Our method of analysis will be based on an assumed knowledge of the solutions of certain scalar boundary value problems in terms of which the electromagnetic solution will be expressed. In the scalar diffraction theory for a half-plane it is customary to solve problems of the type posed in (2.2) and (2.3) and summarized below for convenience:

$$\nabla^2 \phi + k^2 \phi = \text{source term} \quad (8)$$

$$\phi \text{ outgoing at } \infty \quad (9)$$

$$\phi(x, 0, z) = 0, \text{ or } \frac{\partial}{\partial y} \phi(x, 0, z) = 0, \text{ for } x > 0. \quad (10)$$

$$\phi \text{ finite as } \rho \rightarrow 0 \quad (11)$$

The pair of problems so expressed can be solved explicitly, as is well known. We can, therefore, construct directly a triplet of functions (E_x, E_y, E_z) , i.e., a vector \underline{E} , say, which satisfies conditions (2), (4) and (5), and such that \underline{E} is finite at the edge of the screen. Despite this, the vector \underline{E} fails to be a solution of Maxwell's equations, since it does not satisfy the divergence condition (3).

It is known that near the edge, functions of the type of (E_x, E_y, E_z) behave like

$$(c_1(z) \sqrt{\rho} \sin \phi/2, c_2(z) + c_3(z) \sqrt{\rho} \cos \phi/2, c_4(z) \sqrt{\rho} \sin \phi/2) \quad (12)$$

where the functions c_1, c_2, c_3 and c_4 depend on the particular excitation. Hence conditions (6) and (7) are actually fulfilled. In fact they are over-fulfilled, since we can allow appropriate infinities of E_x and E_y at the edge.

We now proceed to show how to construct the vector $\underline{\mathcal{E}}$, given the vector \underline{E} . To do this we define $\underline{e} = \underline{\mathcal{E}} - \underline{E}$, and then note that we must have, in virtue of (2)-(7) and (3a),

$$(\nabla^2 + k^2) \underline{e} = 0, \quad \underline{e} \equiv (e_X, e_Y, e_Z), \quad (13)$$

$$\psi \equiv \nabla \cdot \underline{e} + \nabla \cdot \underline{E} - \nabla \cdot \underline{\mathcal{E}}_{\text{inc}} = 0, \quad (14)$$

$$e_X(x, 0, z) = e_Z(x, 0, z) = \frac{\partial}{\partial y} e_Y(x, 0, z) = 0; \quad x > 0, \quad (15)$$

$$\underline{e} \text{ outgoing at } \infty, \quad (16)$$

$$e_Z(\rho, \phi, z) \rightarrow 0 \quad \text{as } \rho \rightarrow 0 \quad (17)$$

$$\underline{e}, (\nabla \times \underline{e}) \text{ not as singular as } \frac{1}{\rho} \text{ at } \rho = 0. \quad (18)$$

If such a vector \underline{e} can be found, then $\underline{e} + \underline{E}$ will satisfy all the conditions imposed upon $\underline{\mathcal{E}}$.

It is at this point that the basic formulas (2.9) and (2.9a) are employed. Let us set

$$e_X = \frac{1}{\sqrt{\rho}} \sin \phi/2 \quad F_1(\rho, z), \quad (19)$$

$$e_Y = \frac{1}{\sqrt{\rho}} \cos \phi/2 \quad F_2(\rho, z) \quad (20)$$

$$e_Z \equiv 0, \quad (21)$$

where

$$\left(\frac{\partial^2}{\partial \rho^2} + \frac{\partial^2}{\partial z^2} + k^2 \right) F_{1,2} = 0, \quad (22)$$

and where F_1 and F_2 are outgoing at infinity. Then (13), (15), (16) and (17)

are fulfilled. We can exclude the possibility that $F_1(0, Z) = 0$, or $F_2(0, Z) = 0$, for then the functions F_1 and F_2 would be identically zero, since they are sourceless radiating wave function in the Cartesian ρ, Z plane. Thus $e_X \rightarrow \rho^{-1/2} \sin(\phi/2) F_1(0, Z)$, $e_Y \rightarrow \rho^{-1/2} \cos(\phi/2) F_2(0, Z)$ near $\rho = 0$, and this is the expected form of edge singularity, and it is in accordance with (18), insofar as e is concerned. Condition (18) also restrict the singularity of $(\nabla \cdot e)$, of course, but this will be attended to after the solution is obtained.

We now have to fulfill condition (14). To this end we note that the function $\psi = \nabla \cdot e + \nabla \cdot E - \nabla \cdot \underline{E}_{inc}$, with e given in (19)-(21), is a scalar wave function which is outgoing at infinity. This follows from the fact that the Cartesian components of the vector $(e + E - \underline{E}_{inc})$, and therefore their derivatives as well, possess these properties. Furthermore, we know that ψ vanishes on the screen. [In fact $\nabla \cdot e = 0$ on the screen by (15), $\nabla \cdot E$ vanishes there because of (4), while $\nabla \cdot \underline{E}_{inc} = 0$ at the screen since the sources do not extend to the screen.] These properties of ψ ensure that it will vanish identically provided that it vanishes as the edge is approached radially. We shall therefore examine the behavior of ψ near the edge; as we shall see, the divergence will vanish there provided the functions F_1 and F_2 are suitably chosen.

First, as mentioned above, $\nabla \cdot \underline{E}_{inc} = 0$ near the edge. Next we observe from (12), that the singular part of the expansion of $\nabla \cdot E$ is given by the formula (note: $\frac{\partial}{\partial X}(\sqrt{\rho} \sin \phi/2) = - \frac{\partial}{\partial Y}(\sqrt{\rho} \cos \phi/2) = - \frac{1}{2\sqrt{\rho}} \sin \phi/2$)

$$\nabla \cdot E \rightarrow -\frac{1}{2} C_1(Z) \frac{1}{\sqrt{\rho}} \sin \phi/2 + \frac{1}{2} C_3(Z) \frac{1}{\sqrt{\rho}} \sin \phi/2 = \frac{C(Z)}{\sqrt{\rho}} \sin \phi/2 \quad (23)$$

where

$$c(z) = \frac{1}{2} \left[-c_1(z) + c_3(z) \right] \quad (23a)$$

Here the functions c_1, c_3 are known from the solution of the scalar problems.

We therefore require that the singular part of the expansion of $\nabla \cdot \underline{e}$ be given by

$$\nabla \cdot \underline{e} \rightarrow -c(z) \frac{1}{\sqrt{\rho}} \sin \phi/2, \quad (24)$$

so that $\nabla \cdot \underline{e} + \nabla \cdot \underline{E}$ will vanish as $\rho \rightarrow 0$. However, from (19), (20), (21) we have

$$\nabla \cdot \underline{e} \rightarrow \left[F_1(0, z) \frac{\partial}{\partial X} \left(\frac{1}{\sqrt{\rho}} \sin \phi/2 \right) + F_2(0, z) \frac{\partial}{\partial Y} \left(\frac{1}{\sqrt{\rho}} \cos \phi/2 \right) \right] \quad (25)$$

$$+ \frac{1}{\sqrt{\rho}} \sin \phi/2 \cos \phi \frac{\partial}{\partial \rho} F_1(0, z) + \frac{1}{\sqrt{\rho}} \cos \phi/2 \frac{\partial}{\partial \rho} F_2(0, z) \sin \phi$$

Since $F_1(0, z)$ and $F_2(0, z)$ do not both vanish, the bracketed term in (25) is $O(\rho^{-3/2})$; on the other hand the remaining part of the right side of (25) is $O(\rho^{-1/2})$. Equation (24) therefore implies that the bracketed term of (25) vanishes identically. But the coefficients of F_1 and F_2 in (25) are identical by the Cauchy-Rieman equations, since $(X + iY)^{-1/2} = \frac{1}{\sqrt{\rho}} (\cos \phi/2 - i \sin \phi/2)$.

Hence we conclude that

$$F_1(0, z) + F_2(0, z) = 0 \quad (26)$$

The uniqueness theorem for two dimensional scalar waves then implies that $F_1(\rho, z) + F_2(\rho, z) = 0$ for all ρ , since the functions F_1 and F_2 are sourceless and outgoing. Therefore also $\frac{\partial}{\partial \rho} F_1(0, z) = -\frac{\partial}{\partial \rho} F_2(0, z)$. We now compare the

second part of the right side of (25) with the right side of (24), and use the identity of $\frac{\partial F_1}{\partial \rho}(0, z)$ and $\frac{-\partial F_2}{\partial \rho}(0, z)$ to find

$$-C(z) \sin \phi/2 = \frac{\partial}{\partial \rho} F_2(0, z) \left[\sin \phi \cos \phi/2 - \cos \phi \sin \phi/2 \right] \quad (27)$$

$$= \frac{\partial}{\partial \rho} F_2(0, z) \sin \phi/2 .$$

Hence we have to determine $F_2(\rho, z) = -F_1(\rho, z)$ from the condition that

$$\frac{\partial}{\partial \rho} F_2(0, z) = -C(z) . \quad (28)$$

But $F_2(\rho, z)$ is an outgoing wave function of ρ and $Z(z)$ if these are regarded as Cartesian coordinates. Hence we can solve (28) with (22) by a direct application of Green's theorem to the half space region $\rho \geq 0$, utilizing the two-dimensional Neumann type half-space Green's function, as follows

$$F_2(\rho, z) = -\frac{i}{2} \int_{-\infty}^{\infty} C(z_0) H_0^{(1)}(k \sqrt{\rho^2 + (z-z_0)^2}) dz_0 = -F_1(\rho, z) \quad (29)$$

We can now insert (29) into (19) and (20), and this gives us the solution for the required vector \underline{e} . Then $\underline{E} = \underline{E} + \underline{e}$, where \underline{E} is composed of the familiar scalar solutions, and \underline{e} is given by quadratures in terms of the quantity

$$C(z) = \lim_{\rho \rightarrow 0} \frac{\sqrt{\rho}}{\sin \phi/2} \nabla \cdot \underline{E} . \quad (30)$$

If we use the fact that $F_1(\rho, z) = -F_2(\rho, z)$ it is easy to verify from (19), (20) and (21) that $\nabla \times \underline{e}$ is $O(\rho^{-1/2})$ at the edge, as required by (18). The analysis is therefore complete.

1. A. E. Heins, "The Excitation of a Perfectly Conducting Half-Plane by a Dipole Field". IRE Proceedings PGAP, Vol. AP-4, No. 3, pp. 294-296, July, 1956.
2. T. B. A. Senior, "The Diffraction of a Dipole Field by a Perfectly Conducting Half-Plane", Quart. Jour. Mech. Appl. Math., Vol. 6, p. 101-114, 1953.
3. Yu. V. Vandakurov, "Diffraction by a Perfectly Conducting Half-Plane of Electromagnetic Waves Emitted by an Arbitrarily Oriented Electric and Magnetic Dipole", J. Exp. Theor. Phys., Vol. 26, No. 1, 1944, p. 3-18. (AFCRC Tech. Translation No. 1, by Morris D. Friedman).
4. J. Meixner, "Die Kantenbedingung in der Theorie der Beugung Elektromagnetischer Wellen an Vollkommen Leitenden Ebenen Schirmen", Annalen Phys., 6. Folge, 6. Band, pp. 2-9, 1949. See also Z. fur Naturforschung 3a, 506 (1948).
5. L. B. Felsen, "Radiation from Source Distributions on Cones and Wedges", Microwave Research Institute, Polytechnic Institute of Brooklyn, Report R-74-57, May 1957, pp. 4-16.
6. L. B. Felsen, "Field Solutions for a Class of Corrugated Wedge and Cone Surfaces", Microwave Research Institute, Polytechnic Institute of Brooklyn, Electrophysics Group Memo. 32, July, 1957.
7. S. Karp, "An Analysis of Edge Behavior in Vector Diffraction Theory", IRE Transactions PGAP, Vol. AP-4, No. 3, July 1956, p. 579 (Abstract).

Commander
ARDC
Andrews AFB
Washington 25, D.C.
Attn: Major E. Wright, RDTCC

Director
U.S. Army Ordnance
Ballistic Research Labs.
Aberdeen Proving Ground,
Maryland
Attn: Ballistic Measurements
Lab.

Ballistic Research Labx
Aberdeen Proving Ground,
Maryland
Attn: Technical Information
Branch

Director
Evans Signal Laboratory
Belmar, New Jersey
Attn: Mr. O. C. Woodyard

U.S. Army Signal Engineering Labs.
Evans Signal Laboratory
Belmar, New Jersey
Attn: Technical Document Center

Massachusetts Institute of
Technology
Signal Corps Liaison Officer
Cambridge 39, Mass.
Attn: A.D. Bedrosian, Rm. 26-131

Commanding General, SIGFM/EL-PC
U.S. Army Signal Engineering Labs.
Fort Monmouth, New Jersey
Attn: Dr. Horst H. Kedesdy
Deputy Chief, Chem-Physics
Branch

Commander (4 copies)
Army Rocket & Guided Missile Agency
Redstone Arsenal, Alabama
Attn: Technical Library, ORDXR-OTL

Commanding General
U.S. Army Signal Engineering Labs.
Fort Monmouth, New Jersey
Attn: SIGFM/EL-AT

Department of the Army
Office of the Chief Signal Officer
Washington 25, D.C.
Attn: Research & Development
Division OCSigo

Office of Chief Signal Officer
Engineering & Technical Division
Washington 25, D.C.
Attn: SIGNET-5

Guided Missile Fuze Library
Diamond Ordnance Fuze Labs.
Washington 25, D.C.
Attn: R.D. Hatcher, Chief
Microwave Development Sec.

ASTIA (10 copies)
Arlington Hall Station
Arlington 12, Virginia

Library (2 copies)
Boulder Laboratories
National Bureau of Standards
Boulder, Colorado

National Bureau of Standards
Department of Commerce
Washington 25, D.C.
Attn: Mr. A. G. McNish

National Bureau of Standards
Department of Commerce
Washington 25, D.C.
Attn: Gustave Shapiro, Chief
Engineering Electronics Section

Office of Technical Services
Department of Commerce
Washington 25, D.C.
Attn: Technical Reports Section
(2 copies)

Director
National Security Agency
Washington 25, D.C.
Attn: R/D (331)

Hq., AFCRC (2 copies)
Laurence G. Hanscom Field
Bedford, Mass.
Attn: CROTLR-2 - P. Condon

Hq., AFCRC (5 copies)
Laurence G. Hanscom Field
Bedford, Mass.
Attn: CROTLS - J. Armstrong

Hq., AFCRC
Laurence G. Hanscom Field
Bedford, Mass.
Attn: CRRD - Carlyle J. Sletten (3)
Attn: Contract Files, CRRD (2 copies)

Director, Avionics Division (AV)
Bureau of Aeronautics
Department of the Navy
Washington 25, D.C.

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Attn: Mr. E. Johnston, Code 833E

Commander
U.S. Naval Air Missile Test Center
Point Mugu, California
Attn: Code 366

U.S. Naval Ordnance Laboratory
White Oak
Silver Spring 19, Maryland
Attn: The Library

Commander
U.S. Naval Ordnance Test Station
China Lake, California
Attn: Code 753

Librarian
U.S. Naval Postgraduate School
Monterey, California

Air Force Development Field
Representative
Naval Research Laboratory
Washington 25, D.C.
Attn: Code 1072

Director
U.S. Naval Research Laboratory
Washington 25, D.C.
Attn: Code 2027

Dr. J. I. Bohnert, Code 5210
U.S. Naval Research Laboratory
Washington 25, D.C.

Commanding Officer and Director
U.S. Navy Underwater Sound Lab.
Fort Trumbull, New London
Connecticut

Chief of Naval Research
Department of the Navy
Washington 25, D.C.
Attn: Code 427

Commanding Officer and Director
U.S. Navy Electronics Lab.
San Diego 52, California
Library

Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D.C.
Attn: Code Ad3

Chief, Bureau of Ordnance
Department of the Navy
Surface Guided Missile
Branch
Washington 25, D.C.
Attn: Code ReSl-e

Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D.C.
Attn: Fire Control Branch
(ReS4)

Department of the Navy
Bureau of Aeronautics
Technical Data Division
Code 4106
Washington 25, D.C.

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Attn: Code 817B

Commanding Officer
U.S. Naval Air Development
Center
Johnsville, Pennsylvania
Attn: NADC Library

Commander
U.S. Naval Air Test Center
Patuxent River, Maryland
Attn: ET-315, Antenna Branch

Director
Naval Ordnance Laboratory
Corona, California

Commanding Officer
U.S. Naval Ordnance Laboratory
Corona, California
Attn: Mr. W. Horenstein
Division 72

Airborne Instruments Lab., Inc.
160 Old Country Road
Mineola, New York
Attn: Dr. E. G. Fubine, Director
Research & Engineering Div.

Aircor, Inc.
354 Main Street
Winthrop, Mass.

Andrew Alford, Consulting Engrs.
299 Atlantic Avenue
Boston 10, Mass.

Avion Division
ACF Industries, Inc.
800 No. Pitt Street
Alexandria, Virginia
Attn: Library

Battelle Memorial Institute
505 King Avenue
Attn: Wayne E. Rife,
Project Leader
Electrical Engineering Div.
Columbus 1, Ohio

Bell Aircraft Corporation
Post Office Box One
Buffalo 5, New York
Attn: Eunice P. Hazelton
Librarian

Bell Telephone Labs., Inc.
Whippiany Laboratory
Whippiany, New Jersey
Attn: Technical Information
Library

Bendix Aviation Corporation
Pacific Division
11600 Sherman Way
North Hollywood, California
Attn: Engineering Library

Bendix Radio Division
Bendix Aviation Corporation
E. Joppa Road
Towson 4, Maryland
Attn: Dr. D. M. Allison, Jr.
Director, Engineering
& Research

Bjorksten Research Labs., Inc.
P. O. Box 265
Madison, Wisconsin
Attn: Librarian

Boeing Airplane Company
Pilotless Aircraft Division
P.O. Box 3707
Seattle 24, Washington
Attn: R. R. Barber
Library Supervisor

Boeing Airplane Company
Wichita Division Engineering
Library
Wichita, Kansas
Attn: Kenneth C. Knight
Librarian

Boeing Airplane Company
Seattle Division
Seattle 14, Washington
Attn: E. T. Allen
Library Supervisor

Convair, A Division of General
Dynamics Corporation
Fort Worth, Texas
Attn: K. G. Brown
Division Research Librarian

Convair, A Division of General
Dynamics Corporation
San Diego 12, California
Attn: Mrs. Dora B. Burke
Engineering Librarian

Cornell Aeronautical Lab., Inc.
445 Genesee Street
Buffalo 21, New York
Attn: Librarian

Dalmo Victor Company
A Division of Textron, Inc.
1-1 Industrial Way
Belmond, California
Attn: Mary Ellen Addems
Technical Librarian

Dorne and Margolin, Inc.
29 New York Avenue
Westbury, L.I., N.Y.

Douglas Aircraft Co., Inc.
P. O. Box 200
Long Beach 1, California
Attn: Engineering Library
(C-250)

Douglas Aircraft Co., Inc.
827 Lapham Street
El Segundo, California
Attn: Engineering Library

Douglas Aircraft Company, Inc.
3000 Ocean Park Boulevard
Santa Monica, California
Attn: Peter Duyan, Sr., Chief
Electrical/Electronics Section

Douglas Aircraft Company, Inc.
2000 North Memorial Drive
Tulsa, Oklahoma
Attn: Engineering Library, D-250
Electronics Communication, Inc.
1830 York Road
Timonium, Maryland

Emerson and Cuming, Inc.
869 Washington Street
Canton, Mass.
Attn: Mr. W. Cuming

Emerson Electric Mfg. Co.
8100 West Florissant Avenue
St. Louis 21, Missouri
Attn: Mr. E. R. Breslin, Librarian

Sylvania Electric Products, Inc.
Electronic Defense Laboratory
P. O. Box 205
Mountain View, California
Attn: Library

Aero Geo Astro Corp.
1914 Duke Street
Alexandria, Virginia
Attn: George G. Chadwick

Fairchild Aircraft Division
Fairchild Eng. and Airplane Corp.
Hagerstown, Maryland
Attn: Library

Farnsworth Electronics Company
3700 East Fontiac Street
Fort Wayne 1, Indiana
Attn: Technical Library

Federal Telecommunication Labs.
500 Washington Avenue
Nutley 10, New Jersey
Attn: Technical Library

The Gabriel Electronics
Division of the Gabriel Company
13 Crescent Road
Needham Heights 94, Mass.
Attn: Mr. Steven Galagan

General Electric Advanced Electronics
Center
Cornell University
Ithaca, New York
Attn: J. B. Travis

General Electric Company
Electronics Park
Syracuse, New York
Attn: Documents Library, B. Fletcher
Building 3-143A

General Precision Lab., Inc.
63 Bedford Road
Pleasantville, New York
Attn: Mrs. Mary G. Herbst, Librarian

Goodyear Aircraft Corp.
1210 Massillon Road
Akron 1, Ohio
Attn: Library D/120 Plant A

Granger Associates
Electronics Systems
966 Commercial Street
Palo Alto, California
Attn: John V. N. Granger, President

Grumman Aircraft Engineering
Corporation
Bethpage, L.I., N.Y.
Attn: Mrs. A. M. Gray, Libr.
Engineering Library,
Plant No. 5

The Hallicrafters Company
4401 West 5th Avenue
Chicago 24, Illinois
Attn: LaVerne LaGicia, Libr.

Hoffman Laboratories, Inc.
3761 South Hill Street
Los Angeles 7, California
Attn: Engineering Library

Hughes Aircraft Company
Antenna Department
Microwave Laboratory
Building 12, Room 2617
Culver City, California
Attn: M. D. Adcock

Hughes Aircraft Company
Florence and Teale Streets
Culver City, California
Attn: Dr. L. C. Van Atta
Associate Director
Research Laboratories

Hycon Eastern, Inc.
75 Cambridge Parkway
Cambridge, Mass.
Attn: Mrs. Lois Seulowitz,
Technical Librarian

International Business Machines Corp.
Military Products Division
590 Madison Avenue
New York 33, New York
Attn: C. Benton, Jr., General Manager
International Business Machines Corp.
Military Products Division
Owego, New York
Attn: Mr. D. I. Marr, Librarian
Department 459

International Resistance Company
401 N. Broad Street
Philadelphia 8, Pa.
Attn: Research Library

Jansky and Bailey, Inc.
1339 Wisconsin Avenue, N.W.
Washington 7, D.C.
Attn: Mr. Delmer C. Ports

Dr. Henry Jasik, Consulting Engrs.
298 Shames Drive
Brush Hollow Industrial Park
Westbury, New York

Electromagnetic Research Corp.
711 14th Street, N.W.
Washington 5, D.C.

Lockheed Aircraft Corporation
2555 N. Hollywood Way
California Division Engineering
Library
Department 72-25, Plant A-1,
Bldg. 63-1
Burbank, California
Attn: N. C. Harnois

The Martin Company
P. O. Box 179
Denver 1, Colorado
Attn: Mr. Jack McCormick

The Martin Company
Baltimore 3, Maryland
Attn: Engineering Library
Antenna Design Group

Maryland Electronic Mfg.
Corporation
1009 Calvert Road
College Park, Maryland
Attn: Mr. H. Warren Cooper

Mathematical Reviews
190 Hope Street
Providence 6, Rhode Island

The W. L. Maxson Corporation
460 West 34th Street
New York, New York
Attn: Miss Dorothy Clark

National Research Council
Radio & Electrical Engineering
Division
Ottawa, Ontario, Canada
Attn: Dr. G. A. Miller, Head
Microwave Section

McDonnell Aircraft Corporation
Lambert St. Louis Municipal
Airport
Box 516, St. Louis 3, Missouri
Attn: R. D. Detrich
Engineering Library

McMillan Laboratory, Inc.
Brownville Avenue
Ipswich, Massachusetts
Attn: Security Officer
Document Room

Melpar, Inc.
3000 Arlington Blvd.
Falls Church, Virginia
Attn: Engineering Technical
Library

Microwave Development Lab.
90 Broad Street
Babson Park 57, Mass.
Attn: N. Tucker,
General Manager

Microwave Radiation Co., Inc.
19223 South Hamilton Street
Gardena, California
Attn: Mr. Morris J. Ehrlich
President

Chance Vought Aircraft, Inc.
9314 West Jefferson Street
Dallas, Texas
Attn: Mr. H. S. White
Librarian

Northrop Aircraft, Inc.
Hawthorne, California
Attn: Mr. E. A. Freitas
Library Dept. 3145
1001 E. Broadway

Remington Rand Univ. - Division
of Sperry Rand Corporation
1900 West Allegheny Avenue
Philadelphia 29, Pa.
Attn: Mr. John F. McCarthy
R and D Sales & Contracts

North American Aviation, Inc.
12214 Lakewood Boulevard
Downey, California
Attn: Engineering Library
495-115

North American Aviation, Inc.
Los Angeles International Airport
Los Angeles 4th, California
Attn: Engineering Technical File

Page Communications Engineers, Inc.
710 14th Street, Northwest
Washington 4th, D.C.
Attn: Librarian

Philco Corporation Research Division
Branch Library
4700 Wissachickon Avenue
Philadelphia 44, Pa.
Attn: Mrs. Dorothy S. Collins

Pickard and Burns, Inc.
240 Highland Avenue
Needham 94, Mass.
Attn: Dr. J. T. DeBettencourt

Polytechnic Research & Development Co.
202 Tillary Street
Brooklyn 1, New York
Attn: Technical Library

Radiation Engineering Laboratory
Main Street
Maynard, Mass.
Attn: Dr. John Ruze

Radiation, Inc.
P. O. Drawer 37
Melbourne, Florida
Attn: Technical Library, Mr. M.L. Cox

Radio Corporation of America
RCA Laboratories
Rocky Point, New York
Attn: P. S. Carter, Lab. Library

RCA Laboratories
David Sarnoff Research Center
Princeton, New Jersey
Attn: Miss Fern Cloak, Librarian

Radio Corporation of America
Defense Electronic Products
Building 10, Floor 7
Camden 2, New Jersey
Attn: Mr. Harold J. Schrader, Staff Engr.
Organization of Chief Technical
Administrator

Ramo-Wooldridge Corporation
P. O. Box 4543 Airport Station
Los Angeles 4th, California
Attn: Margaret C. Whitnah, Chief Libr.
Research & Development Library

Hoover Electronics Company
110 West Timonium Road
Timonium, Maryland

Director, USAF Project RAND
Via: Air Force Liaison Office
The Rand Corporation
1700 Main Street
Santa Monica, California

Rantec Corporation
Calabasas, California
Attn: Grace Keener, Office Manager

Raytheon Manufacturing Co.
Missile Systems Division
Attn: Mr. Irving Goldstein
Bedford, Mass.

Raytheon Manufacturing Co.
State Road
Wayland Laboratory
Wayland, Mass.
Attn: Mr. Robert Borts

Raytheon Manufacturing Co.
Wayland Laboratory
Wayland, Mass.
Attn: Miss Alice G. Anderson
Librarian

Republic Aviation Corp.
Farmingdale, L.I., N.Y.
Attn: Engineering Library
Thru: Air Force Plant
Representative
Republic Aviation Corp.
Farmingdale, L.I., N.Y.

Rheem Manufacturing Company
9236 East Hall Road
Downey, California
Attn: J. C. Joerger

Trans-Tech, Inc.
P. O. Box 346
Rockville, Maryland
Attn: Mr. L. E. Shoemaker

Ryan Aeronautical Company
Lindbergh Field
San Diego 12, California
Attn: Library

Sage Laboratories, Inc.
159 Linden Street
Wellesley 81, Mass.

Sanders Associates, Inc.
95 Canal Street
Nashua, New Hampshire
Attn: Norman R. Wild

Sandia Corporation
Sandia Base
P. O. Box 5800
Albuquerque, New Mexico
Attn: Classified Document
Division

Division of Sperry Rand Corp.
Sperry Gyroscope Company
Great Neck, L.I., N.Y.
Attn: Florence W. Turnbull
Engineering Librarian

Stanford Research Institute
Menlo Park, California
Attn: Library, Engineering Div.

Sylvania Electric Products, Inc.
100 First Avenue
Waltham 4, Mass.
Attn: Charles A. Thornhill
Report Librarian, Waltham
Laboratories Library

Systems Laboratories Corporation
148-2 Ventura Blvd.
Sherman Oaks, California
Attn: Donald L. Margerum

TRG, Inc.
17 Union Square West
New York 3, New York
Attn: M. L. Henderson
Librarian

A. S. Thomas, Inc.
161 Devonshire Street
Boston 10, Mass.
Attn: A. S. Thomas, Pres.

Bell Telephone Laboratories
Murray Hill, New Jersey

Chu Associates
P. O. Box 387
Whitcomb Avenue
Littleton, Mass.

Microwave Associates, Inc.
South Avenue
Burlington, Mass.

Raytheon Manufacturing Co.
Missile Division
Hartwell Road
Bedford, Mass.

Radio Corporation of America
Aviation Systems Laboratory
22^o Crescent Street
Waltham, Mass.

Lockheed Aircraft Corporation
Missile Systems Division Research
Library
Box 404, Sunnyvale, California
Attn: Miss Eva Lou Robertson
Chief Librarian

The Rand Corporation
1700 Main Street
Santa Monica, California
Attn: Dr. W. C. Hoffman

Commander
AF Office of Scientific Research
Air Research & Development Command
14th Street & Constitution Ave.
Washington, D.C.
Attn: Mr. Otting, SRY

Westinghouse Electric Corp.
Electronics Division
Friendship Int'l Airport
Box 1897
Baltimore 3, Maryland
Attn: Engineering Library

Wheeler Laboratories, Inc.
122 Cutter Mill Road
Great Neck, New York
Attn: Mr. Harold A. Wheeler

Zenith Plastics Co.
Box 91
Cardena, California
Attn: Mr. S. S. Oleesky

Library Geophysical Institute
of the University of Alaska
College, Alaska

University of California
Berkeley 4, California
Attn: Dr. Samuel Silver,
Division of Elec. Eng.
Electronics Research Lab.

University of California
Electronics Research Lab.
332 Cory Hall
Berkeley 4, California
Attn: J. R. Whinnery

California Institute of Technology
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California
Attn: Mr. I. E. Newlan

California Institute of Technology
1201 E. California Street
Pasadena, California
Attn: Dr. C. Papas

Carnegie Institute of Technology (2 copies)
Schenley Park
Pittsburgh, Pennsylvania
Attn: Prof. A. E. Heins

Cornell University
School of Electrical Engineering
Ithaca, New York
Attn: Prof. G. C. Dalman

University of Florida
Department of Electrical Engineering
Gainesville, Florida
Attn: Prof. M. H. Latour, Library

Library
Georgia Institute of Technology
Engineering Experiment Station
Atlanta, Georgia
Attn: Mrs. J. H. Crosland, Librarian

Harvard University
Technical Reports Collection
Gordon McKay Library, 303A Pierce Hall
Oxford Street, Cambridge 38, Mass.
Attn: Mrs. E. L. Hufschmidt, Librarian

Harvard College Observatory
60 Garden Street
Cambridge 39, Mass.
Attn: Dr. Fred L. Whipple

University of Illinois
Documents Division Library
Urbana, Illinois

University of Illinois
College of Engineering
Urbana, Illinois
Attn: Dr. P. E. Mayes, Department of
Electrical Engineering

The John Hopkins University
Homewood Campus
Department of Physics
Baltimore 18, Maryland
Attn: Dr. Donald E. Kerr

Sandia Corporation
Attn: Organization 1423
Sandia Base
Albuquerque, New Mexico

Applied Physics Laboratory
The John Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland
Attn: Mr. George L. Seielstad

Massachusetts Institute of Technology
Research Laboratory of Electronics
Room 20B-221
Cambridge 39, Mass.
Attn: John H. Hewitt

Massachusetts Institute of Technology
Lincoln Laboratory
P. O. Box 73
Lexington 73, Mass.
Attn: Document Room A-229

University of Michigan
Electronic Defense Group
Engineering Research Institute
Ann Arbor, Michigan
Attn: J. A. Boyd, Supervisor
via: Facility Security Officer

University of Michigan
Engineering Research Institute
Radiation Laboratory
Attn: Prof. K. M. Siegel
912 N. Main Street
Ann Arbor, Michigan
via: Facility Security Officer

University of Michigan
Engineering Research Institute
Willow Run Laboratories
Willow Run Airport
Ypsilanti, Michigan
Attn: Librarian
via: Facility Security Officer

University of Minnesota
Minneapolis 14, Minnesota
Attn: Mr. Robert H. Stumm
Library

Northwestern University
Microwave Laboratories
Evanston, Illinois
Attn: R. E. Beam

Ohio State University Research
Foundation
1314 Kinnear Road
Columbus 8, Ohio
Attn: Dr. T. E. Tice, Dept. of E.E.

The University of Oklahoma
Research Institute
Norman, Oklahoma
Attn: Prof. C. L. Farrar, Chairman
Electrical Engineering

Polytechnic Institute of Brooklyn
Microwave Research Institute
55 Johnson Street
Brooklyn, New York
Attn: Dr. Arthur A. Oliner

Polytechnic Institute of Brooklyn
Microwave Research Institute
55 Johnson Street
Brooklyn, New York
Attn: Mr. A. E. Laemmle

Syracuse University Research Institute
Collendale Campus
Syracuse 10, New York
Attn: Dr. C. S. Grove, Jr.
Director of Engineering Research

The University of Texas
Electrical Engineering Research Lab.
P. O. Box 8026, University Station
Austin 12, Texas
Attn: Mr. John R. Gerhardt
Assistant Director

The University of Texas
Defense Research Laboratory
Austin, Texas
Attn: Claude W. Horton, Physics Library

University of Toronto
Department of Electrical Engineering
Toronto, Canada
Attn: Prof. G. Sinclair

Lowell Technological Institute
Research Foundation
P. O. Box 709, Lowell, Mass.
Attn: Dr. Charles R. Mingins

University of Washington
Department of Electrical Engineering
Seattle 5, Washington
Attn: G. Held, Associate Professor

Stanford University
Stanford, California
Attn: Dr. Chodorow
Microwave Laboratory

Physical Science Laboratory
New Mexico College of Agriculture
and Mechanic Arts
State College, New Mexico
Attn: Mr. H. W. Haas

Brown University
Department of E. E.
Providence, Rhode Island
Attn: Dr. C. M. Angulo

Case Institute of Technology
Cleveland, Ohio
Attn: Prof. S. Seeley

Columbia University
Department of E. E.
Morningside Heights
New York, New York
Attn: Dr. Schlesinger

McGill University
Montreal, Canada
Attn: Prof. G. A. Wooton
Director, The Eaton
Electronics Research Lab.

Purdue University
Department of E. E.
Lafayette, Indiana
Attn: Dr. Schultz

The Pennsylvania State University
Department of E. E.
University Park, Pennsylvania

University of Pennsylvania
Institute of Cooperative Research
3400 Walnut Street
Philadelphia, Pa.
Attn: Dept. of E. E.

Electronics Research Laboratory
Illinois Institute of Technology
3300 S. Federal Street
Chicago 16, Illinois
Attn: Dr. George I. Cohn

University of Tennessee
Ferris Hall
W. Cumberland Avenue
Knoxville 16, Tennessee

University of Wisconsin
Dept. of E. E.
Madison, Wisconsin
Attn: Dr. Scheibe

Seattle University
Dept. of E. E.
Broadway and Madison
Seattle 22, Washington
Attn: D. K. Reynolds

Dr. H. Unz
University of Kansas
Electrical Engineering Dept.
Lawrence, Kansas

Illinois Institute of Technology
Technology Center
Department of E. E.
Chicago 16, Illinois
Attn: Paul C. Yuen
Electronics Research Lab.

Advisory Group on Electronic
Parts
Room 103, Moore School Building
200 South 33rd Street
Philadelphia 4, Pennsylvania

Commander
Air Research & Development Command
Attn: RDTR
Andrews Air Force Base
Washington 25, D.C.

NOV 19 1959 Date Due

NYU

EM-

120 Felsen, L.B. & Karp S.N.

NYU

EM-

NYU

EM-

120 Felsen, L.B. & Karp, S.N.

AUTHOR

Relation between a class of
two-dimensional and three-
dimensional diffraction
problems.

DATE

BORROWER'S NAME

ROOM
NUMBER

Shamma

2/12/67

Shamma

**N. Y. U. Institute of
Mathematical Sciences**

25 Waverly Place

New York 3, N. Y.

