Kashish Bhagat

Out[4]: (38563, 9)

```
In [1]:
         #Import necessary libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings('ignore')
In [2]: #Importing dataset from csv to data frame
         df_traffic_data = pd.read_csv(r'C:\Users\welcome\Desktop\Final Year Projects\\
In [3]: |df_traffic_data.head()
Out[3]:
             date_time
                       holiday
                                temp rain_1h snow_1h clouds_all weather_main weather_description tr
              2012-10-
          0
                        None 288.28
                                                   0.0
                   02
                                         0.0
                                                             40
                                                                       Clouds
                                                                                   scattered clouds
              09:00:00
              2012-10-
          1
                   02
                        None 289.36
                                          0.0
                                                   0.0
                                                             75
                                                                       Clouds
                                                                                     broken clouds
              10:00:00
              2012-10-
          2
                        None 289.58
                                          0.0
                                                   0.0
                                                             90
                                                                       Clouds
                                                                                    overcast clouds
                   02
              11:00:00
              2012-10-
          3
                   02
                        None 290.13
                                         0.0
                                                   0.0
                                                             90
                                                                       Clouds
                                                                                    overcast clouds
              12:00:00
              2012-10-
                        None 291.14
                                         0.0
                                                   0.0
                                                             75
                                                                       Clouds
                                                                                     broken clouds
                   02
              13:00:00
In [4]: df_traffic_data.shape
```

```
In [5]: df traffic data.dtypes
Out[5]: date time
                                 object
        holiday
                                 object
                                float64
        temp
                                float64
        rain 1h
        snow_1h
                                float64
        clouds all
                                  int64
        weather main
                                 object
        weather description
                                 object
        traffic_volume
                                  int64
        dtype: object
In [6]: df_traffic_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 38563 entries, 0 to 38562
Data columns (total 9 columns):

Column Non-Null Count Dtype ----- - -----0 date_time 38563 non-null object 1 holiday 38563 non-null object 2 38563 non-null float64 temp 38563 non-null float64 3 rain 1h 4 snow_1h 38563 non-null float64 5 clouds all 38563 non-null int64 38563 non-null object 6 weather_main 7 weather_description 38563 non-null object 8 traffic volume 38563 non-null int64

dtypes: float64(3), int64(2), object(4)

memory usage: 2.6+ MB

No null value is present in the data.

In [7]: df_traffic_data.describe()

Out[7]:

	temp	rain_1h	snow_1h	clouds_all	traffic_volume
count	38563.000000	38563.000000	38563.000000	38563.000000	38563.000000
mean	281.351757	0.392733	0.000278	49.920364	3260.940409
std	13.216927	50.075055	0.009131	38.849106	1991.628329
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	272.858000	0.000000	0.000000	1.000000	1186.500000
50%	282.750000	0.000000	0.000000	64.000000	3378.000000
75%	291.540000	0.000000	0.000000	90.000000	4939.000000
max	308.240000	9831.300000	0.510000	100.000000	7280.000000

```
In [8]: df_traffic_data.describe(include='object')
```

Out[8]:

	date_time	holiday	weather_main	weather_description
count	38563	38563	38563	38563
unique	32607	12	11	38
top	2013-05-19 10:00:00	None	Clouds	sky is clear
freq	6	38515	12680	8848

```
In [9]: print("max date :" +df_traffic_data.date_time.max())
print("min date :" +df_traffic_data.date_time.min())
```

max date :2017-11-01 20:00:00 min date :2012-10-02 09:00:00

```
In [13]: g = sns.PairGrid(df[[ 'temp', 'clouds_all','traffic_volume']])
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
```

Out[13]: <seaborn.axisgrid.PairGrid at 0x2aa68dc1f48>


```
In [14]: g = sns.PairGrid(df[[ 'rain_1h', 'snow_1h']])
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
```

Out[14]: <seaborn.axisgrid.PairGrid at 0x2aa69ffc488>


```
In [16]: fig, (ax1, ax2) = plt.subplots(1,2,figsize=(20,13))
    fig.suptitle("Boxplot for traffic volume", fontsize=35)
    sns.boxplot(x="holiday", y="traffic_volume", data=df,ax=ax1)
    sns.boxplot(x="weather_main", y="traffic_volume", data=df,ax=ax2)
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x2aa6b69f648>

Boxplot for traffic volume

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x2aa6c4df0c8>

Countplot for Traffic Volume


```
In [18]: fig, (ax1) = plt.subplots(1,1,figsize=(25,7))
    fig.suptitle("Countplot for Weather Types", fontsize=35)
    sns.countplot(x="weather_main", data=df,ax=ax1)
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x2aa6bfcaf48>

Countplot for Weather Types


```
In [19]: fig, (ax1) = plt.subplots(1,1,figsize=(25,7))
    fig.suptitle("Countplot for Traffic Volume", fontsize=35)
    sns.countplot(x="weather_description", data=df,ax=ax1)
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x2aa6c055588>

Countplot for Traffic Volume


```
In [20]: f= plt.figure(figsize=(12,5))
    ax=f.add_subplot(121)
    sns.distplot(df[(df.holiday == "None")]["traffic_volume"],color='c',ax=ax)
    ax.set_title('Distribution of traffic for None Holdiay')

ax=f.add_subplot(122)
    sns.distplot(df[(df.holiday == "Christmas Day")]['traffic_volume'],color='r',ax.set_title('Distribution of traffic for Christmas Days')
```

Out[20]: Text(0.5, 1.0, 'Distribution of traffic for Christmas Days')


```
In [21]: f= plt.figure(figsize=(12,5))
    ax=f.add_subplot(121)
    sns.distplot(df[(df.holiday == "Memorial Day")]["traffic_volume"],color='c',a
    ax.set_title('Distribution of traffic for Memorial Holdiay')

ax=f.add_subplot(122)
    sns.distplot(df[(df.holiday == "Independence Day")]['traffic_volume'],color='ax.set_title('Distribution of traffic for Independence Days')
```

Out[21]: Text(0.5, 1.0, 'Distribution of traffic for Independence Days')

Out[23]: Text(0.5, 1, 'Distribution of charges and age for non-smokers')


```
In [24]: sns.lmplot(x="temp", y="traffic_volume", hue="weather_main", data=df, palette
ax.set_title('Smokers and non-smokers')
```

Out[24]: Text(0.5, 1, 'Smokers and non-smokers')


```
In [24]: #A very Clustered Data ....
```

```
In [25]: df['month']=pd.to_datetime(df['date_time']).dt.month
    df['day']=pd.to_datetime(df['date_time']).dt.day
    df['date']=pd.to_datetime(df['date_time']).dt.date
    df['year']=pd.to_datetime(df['date_time']).dt.year
    df['hour']=pd.to_datetime(df['date_time']).dt.hour
```

```
In [28]: df.groupby('year')['traffic_volume'].median().plot()
    plt.xlabel('Year ')
    plt.ylabel('Traffic')
    plt.title("Year Vs Traffic")
```

Out[28]: Text(0.5, 1.0, 'Year Vs Traffic')


```
In [30]:
    df.groupby('hour')['traffic_volume'].median().plot()
    plt.xlabel('Time of the traffic')
    plt.ylabel('Traffic')
    plt.title("Traffic At particular time.")
```

Out[30]: Text(0.5, 1.0, 'Traffic At particular time.')


```
In [32]: df.groupby('day')['traffic_volume'].median().plot()
    plt.xlabel('Day')
    plt.ylabel('Traffic')
    plt.title("Day with amout of traffic")
```

Out[32]: Text(0.5, 1.0, 'Day with amout of traffic')


```
In [36]: plt.scatter(df["hour"],df['traffic_volume'])
    plt.xlabel("Hour")
    plt.ylabel('traffic_volume')
    plt.show()
```



```
In [46]: fig, ax = plt.subplots(figsize=(20,20))
colors = ["#00e600", "#ff8c1a","#a180cc","#963867","#1e1f3d"]
sns.barplot(x="holiday", y="traffic_volume",hue="weather_main", palette=color
ax.set_title("Traffic Volume on Holidays and type of weather",fontdict= {'siz
ax.xaxis.set_label_text("Type of Holiday",fontdict= {'size':12})
ax.yaxis.set_label_text("Weather",fontdict= {'size':12})
plt.show()
```


In [48]: def file_len(fname):

with open(fname) as f:

pass

for i, l in enumerate(f):

```
return i + 1
         len_of_file = file_len(r'C:\Users\welcome\Desktop\Final Year Projects\Machine
         print (len_of_file)
         skipped = np.setdiff1d(np.arange(len_of_file), np.arange(0,len_of_file,80))
         print (skipped)
         38564
              1
                    2
                          3 ... 38561 38562 38563]
In [49]:
         series = pd.read_csv(r'C:\Users\welcome\Desktop\Final Year Projects\Machine L
         series.plot()
         plt.suptitle('Traffic volume year wise')
         plt.xlabel('Year')
         plt.ylabel('Traffic Volume')
         plt.show()
```

Traffic volume year wise


```
In [52]:
         def plotPerColumnDistribution(df, nGraphShown, nGraphPerRow):
             nunique = df.nunique()
             df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] #</pre>
             nRow, nCol = df.shape
             columnNames = list(df)
             nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow
             plt.figure(num = None, figsize = (6 * nGraphPerRow, 8 * nGraphRow), dpi =
             for i in range(min(nCol, nGraphShown)):
                 plt.subplot(nGraphRow, nGraphPerRow, i + 1)
                 columnDf = df.iloc[:, i]
                 if (not np.issubdtype(type(columnDf.iloc[0]), np.number)):
                     valueCounts = columnDf.value_counts()
                     valueCounts.plot.bar()
                 else:
                     columnDf.hist()
                 plt.ylabel('counts')
                 plt.xticks(rotation = 90)
                 plt.title(f'{columnNames[i]} (column {i})')
             plt.tight layout(pad = 1.0, w pad = 1.0, h pad = 1.0)
             plt.show()
```

```
# Correlation matrix
In [58]:
         def plotCorrelationMatrix(df, graphWidth):
               filename = df.dataframeName
             df = df.dropna('columns') # drop columns with NaN
             df = df[[col for col in df if df[col].nunique() > 1]] # keep columns wher
             if df.shape[1] < 2:</pre>
                 print(f'No correlation plots shown: The number of non-NaN or constant
                 return
             corr = df.corr()
             plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80, facecolor=
             corrMat = plt.matshow(corr, fignum = 1)
             plt.xticks(range(len(corr.columns)), corr.columns, rotation=90)
             plt.yticks(range(len(corr.columns)), corr.columns)
             plt.gca().xaxis.tick_bottom()
             plt.colorbar(corrMat)
             plt.title(f'Correlation Matrix for the Traffic Dataset', fontsize=15)
             plt.show()
```

In [54]: plotPerColumnDistribution(df_traffic_data, 10, 5)

In [59]: plotCorrelationMatrix(df_traffic_data, 8)


```
In [ ]:
```

data is collected over 6 years

```
In [12]: df=df_traffic_data.copy()
In [12]: df.columns
```

```
In [13]: df.clouds_all.hist(bins=50)
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x1c1f48969c8>

In [15]: df.temp.hist(bins=20)

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x1c1f5530708>


```
In [16]: #Transforming The Data Into Good form...
```

```
In [17]: import scipy.stats as stat
    from matplotlib import pylab
    from pylab import *
```

```
In [18]: def plot_data(df,feature):
    plt.figure(figsize=(10,6))
    plt.subplot(1,2,1) #1 row 2 columns
    df[feature].hist()
    plt.subplot(1,2,2) #1st row 2nd column 2nd index
    stat.probplot(df[feature],dist='norm',plot=pylab)
    plt.show()
```

```
In [19]: plot_data(df,'temp')
```


In [21]: plot_data(df,'traffic_volume')


```
In [25]: | from wordcloud import WordCloud, STOPWORDS
         import matplotlib.pyplot as plt
         stopwords = set(STOPWORDS)
         def show_wordcloud(data, title = None):
             wordcloud = WordCloud(
                 colormap='Dark2',
                 stopwords=stopwords,
                 max words=200,
                 max_font_size=40,
                 scale=3,
                 random_state=1 # chosen at random by flipping a coin; it was heads
             ).generate(str(data))
             fig = plt.figure(1, figsize=(12, 12))
             plt.imshow(wordcloud,interpolation='bilinear')
             plt.axis('off')
             if title:
                 fig.suptitle(title, fontsize=20)
                 fig.subplots adjust(top=2.3)
             plt.imshow(wordcloud)
             plt.show()
         show_wordcloud(df['weather_description'])
```


Checking the skewnwss of data

```
In [78]: def distribution_check(df,Cols):
    plt.figure(figsize=(18,15))
    fig = 1
    i = (len(Cols)//3)+1
    for col in Cols:
        sk = " Skewness : " + str(skew(df[col])) +"\nKurtosis :" + str(kurtos
        plt.subplot(i, 3, fig)
        sns.distplot(df[col]).set_title(sk)
        fig = fig+1
```

In [79]: from scipy.stats import skew,kurtosis,zscore
 distribution_check(df_traffic_data,['traffic_volume','temp','clouds_all'])

Univariate Analysis

```
In [26]: #Plotting frequency of each category in holiday column
    plt.figure(figsize = (8,6))
    sns.countplot(y='holiday', data = df_traffic_data)
    plt.show()
```



```
In [27]: #'None' is far greater than the other days. Removing None data to visualize to
holidays = df_traffic_data.loc[df_traffic_data.holiday != 'None']
plt.figure(figsize=(8,6))
sns.countplot(y='holiday', data= holidays)
plt.show()
```



```
In [29]: #Temperature is measured in Kelvin, changing to degree celsius to make it mor
#convert kelvin to celsius
#(OK - 273.15)
df_traffic_data['temp'] = (df_traffic_data['temp']-273.15)
plt.figure(figsize=(6,4))
sns.boxplot('temp', data = df_traffic_data)
plt.show()
```


In [30]: #There is one data point far away from the rest around -300 degrees celsius. #Eliminating will be eliminated in the data cleaning phase.

```
In [31]: #Plotting rain variable
   plt.figure(figsize=(6,4))
   sns.distplot(df_traffic_data.rain_1h)
   plt.show()
   #From the distribution, it shows that the data is extremely skewed. Most of the distribution.
```


In [32]: #Plotting observations with values less than 1mm rain shows that more than 40
plt.hist(df_traffic_data.rain_1h.loc[df_traffic_data.rain_1h<1])
plt.show()</pre>

In [33]: #Plotting snow variable indicates that data is again skewed and most of the o
 plt.hist(df_traffic_data.snow_1h)
 plt.show()

In [34]: #clouds_all indicates the cloud coverage for the give day and hour
sns.distplot(df_traffic_data.clouds_all)
plt.show()


```
In [35]: #exploring different categories in weather_main
sns.countplot(y='weather_main', data=df_traffic_data)
```

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x134fab87280>


```
In [36]: #exploring different categories in weather_description
   plt.figure(figsize=(10,8))
   sns.countplot(y='weather_description', data=df_traffic_data)
   plt.show()
```


Bivariate Analysis

Exploring relationship between traffic and other features

```
In [37]: #Exploring traffic volume on holidays
plt.figure(figsize=(10,8))
sns.boxplot(y='holiday',x='traffic_volume', data = holidays)
plt.show()
```



```
In [38]: #Plotting relationship between temp, rain_1h, snow_1h, cloud_all.
num_vars = ['temp','rain_1h','snow_1h','clouds_all','traffic_volume']
from pandas.plotting import scatter_matrix
scatter_matrix(df_traffic_data[num_vars],figsize=(10,8))
plt.show()
```


In [39]: #plotting temperature against traffic volume plt.figure(figsize=(10,8)) sns.set_style('darkgrid') sns.jointplot(y='traffic_volume', x='temp', data = df_traffic_data.loc[df_traplt.show()

<Figure size 720x576 with 0 Axes>


```
In [40]: #scatterplot between traffic_volume and temp
plt.figure(figsize=(8,6))
sns.scatterplot(y='traffic_volume', x='temp', data = df_traffic_data.loc[df_t
```

Out[40]: <matplotlib.axes._subplots.AxesSubplot at 0x134f96bc9a0>


```
In [41]: #Plotting traffic volume over clouds_all
    plt.figure(figsize=(14,8))
    sns.barplot(x='clouds_all', y = 'traffic_volume', data = df_traffic_data)
    plt.show()
```



```
In [42]: #Plotting weather_main over traffic volume
plt.figure(figsize=(8,6))
sns.barplot(x='weather_main', y = 'traffic_volume', data = df_traffic_data)
plt.show()
```


In [43]: #Plotting weather_description over traffic volume plt.figure(figsize=(12,8)) sns.barplot(y='weather_description', x = 'traffic_volume', data = df_traffic_ plt.show()

Feature engineering and Data cleaning

```
In [10]: #copying data to new data frame
    df_traffic_features = df_traffic_data.copy()

In [11]: #Extracting features from date_time variable
    df_traffic_features['date_time'] = pd.to_datetime(df_traffic_features.date_time)
    df_traffic_features['weekday'] = df_traffic_features.date_time.dt.weekday
    df_traffic_features['date'] = df_traffic_features.date_time.dt.date
    df_traffic_features['hour'] = df_traffic_features.date_time.dt.hour
    df_traffic_features['month'] = df_traffic_features.date_time.dt.month
    df_traffic_features['year'] = df_traffic_features.date_time.dt.year
    #Monday is 0 and Sunday is 6
In [12]: df=df_traffic_features.copy()
```

In [13]: df.head()

Out[13]:

	date_time	holiday	temp	rain_1h	snow_1h	clouds_all	weather_main	weather_description	tr
0	2012-10- 02 09:00:00	None	288.28	0.0	0.0	40	Clouds	scattered clouds	
1	2012-10- 02 10:00:00	None	289.36	0.0	0.0	75	Clouds	broken clouds	
2	2012-10- 02 11:00:00	None	289.58	0.0	0.0	90	Clouds	overcast clouds	
3	2012-10- 02 12:00:00	None	290.13	0.0	0.0	90	Clouds	overcast clouds	
4	2012-10- 02 13:00:00	None	291.14	0.0	0.0	75	Clouds	broken clouds	
4									•

```
In [14]: df.weather_main.unique()
```



```
In [18]: sns.set()
    season = df
    season['Date'] = df.date
    season['Year'] =pd.to_datetime( df['Date']).dt.year
    season['Month'] = pd.to_datetime(df['Date']).dt.month
    spivot = pd.pivot_table(season, index='month', columns = 'year', values = 'tr
    spivot.plot(figsize=(20,10), linewidth=3)
    plt.show()
```


In []:	
In []:	

```
In [47]: df_traffic_features.head()
```

				_
\cap	111	+	[17]	1 .
·	'u	··	4 /	

	date_time	holiday	temp	rain_1h	snow_1h	clouds_all	weather_main	weather_description	tra
0	2012-10- 02 09:00:00	None	15.13	0.0	0.0	40	Clouds	scattered clouds	
1	2012-10- 02 10:00:00	None	16.21	0.0	0.0	75	Clouds	broken clouds	
2	2012-10- 02 11:00:00	None	16.43	0.0	0.0	90	Clouds	overcast clouds	
3	2012-10- 02 12:00:00	None	16.98	0.0	0.0	90	Clouds	overcast clouds	
4	2012-10- 02 13:00:00	None	17.99	0.0	0.0	75	Clouds	broken clouds	

```
In [48]: #categorizing hours to different time periods like morning, afternoon etc
         def hour modify(x):
             Early_Morning = [4,5,6,7]
             Morning = [8,9,10,11]
             Afternoon = [12,13,14,15]
             Evening = [16,17,18,19]
             Night = [20,21,22,23]
             Late_Night = [24,1,2,3]
             if x in Early Morning:
                 return 'Early_Morning'
             elif x in Morning:
                 return 'Morning'
             elif x in Afternoon:
                 return 'Afternoon'
             elif x in Evening:
                 return 'Evening'
             elif x in Night:
                 return 'Night'
             else:
                 return 'Late_Night'
         df_traffic_features['hour'] = df_traffic_features.hour.map(hour_modify)
```

In [49]: #Traffic volume plotted against weekday. Weekends show less traffic volume.
plt.figure(figsize=(8,6))
sns.boxplot(x='weekday', y='traffic_volume', data = df_traffic_features)
plt.show()

In [50]: #aggreagating traffic volume over year and plotting df_date_traffic = df_traffic_features.groupby('year').aggregate({'traffic_vol plt.figure(figsize=(8,6)) sns.lineplot(x = df_date_traffic.index, y = df_date_traffic.traffic_volume, d plt.show()


```
In [51]: #Other holidays are very sparse compared to none holidays.
#Hence encoding the holidays as TRUE and none Holidays as FALSE

def modify_holiday(x):
    if x == 'None':
        return False
    else:
        return True
    df_traffic_features['holiday'] = df_traffic_features['holiday'].map(modify_ho
```

```
In [52]: #Outlier in temp which was detected earlier needs to be removed
df_traffic_features = df_traffic_features.loc[df_traffic_features.temp>-250]
```

```
In [53]: #Traffic volume difference during holiday and non holiday
    plt.figure(figsize=(8,6))
    sns.barplot(x='holiday', y='traffic_volume', data = df_traffic_features)
    plt.show()
```


In [54]: #clouds, rain and snow distribution over different weather conditions

Out[54]:	traffic_ve	olume	clouds_all	rain_1h	snow_1h
	mean	size	count	mean	mean
weather_description					

	mean	size	count	mean	mean	
weather_description						
SQUALLS	2061.750000	4	4	3.482500	0.000000	
Sky is Clear	3420.036215	1712	1712	0.000000	0.000000	
broken clouds	3564.464037	3879	3879	0.000000	0.000000	
drizzle	3073.518051	554	554	0.116986	0.000000	
few clouds	3619.433255	1708	1708	0.000000	0.000000	
fog	2833.751804	693	693	0.071558	0.000823	
freezing rain	4314.000000	2	2	0.000000	0.000000	
haze	3574.350453	993	993	0.037100	0.000000	
heavy intensity drizzle	3206.375000	56	56	0.101071	0.000000	
heavy intensity rain	3057.023256	387	387	2.936770	0.000000	
heavy snow	3085.862010	587	587	0.001295	0.000000	
light intensity drizzle	3338.663605	871	871	0.170034	0.000000	
light intensity shower rain	4351.545455	11	11	0.393636	0.000000	
light rain	3359.250089	2795	2795	0.134544	0.000082	
light rain and snow	3961.166667	6	6	0.211667	0.000000	
light shower snow	4570.750000	4	4	0.000000	0.000000	
light snow	3045.698027	1318	1318	0.049196	0.002269	
mist	2951.615268	4611	4611	0.251527	0.000939	
moderate rain	3171.570143	1333	1333	0.541028	0.000623	
overcast clouds	3339.694561	4302	4302	0.000000	0.000000	
proximity shower rain	4501.202128	94	94	0.080532	0.000000	
proximity thunderstorm	3005.149284	489	489	1.322311	0.000000	
proximity thunderstorm with drizzle	3131.500000	12	12	0.310000	0.000000	
proximity thunderstorm with rain	2507.026316	38	38	0.586053	0.000000	
scattered clouds	3875.658904	2791	2791	0.000000	0.000000	
shower drizzle	2010.000000	1	1	0.000000	0.000000	
shower snow	5664.000000	1	1	0.000000	0.000000	
sky is clear	3023.134193	8838	8838	0.000000	0.000000	
sleet	3882.000000	2	2	0.000000	0.000000	
smoke	3103.722222	18	18	0.585556	0.000000	

traffic_volume clouds_all rain_1h snow_1h

		mean	size	count	mean	mean	
	weather_description						_
	snow	2808.035176	199	199	0.028492	0.008894	
	thunderstorm	2701.500000	88	88	1.130341	0.000000	
	thunderstorm with drizzle	2297.000000	2	2	5.345000	0.000000	
	thunderstorm with heavy rain	2603.857143	56	56	3.294821	0.000000	
	thunderstorm with light drizzle	2463.375000	8	8	1.002500	0.000000	
	thunderstorm with light rain	2673.926829	41	41	0.867317	0.000000	
	thunderstorm with rain	3456.322581	31	31	2.028387	0.000000	
	very heavy rain	2568.833333	18	18	570.208333	0.000000	
In [55]: In [56]:	#The weather description mo #I will create following ne #thunderstorm - True where #fog - True where weather of #mist - True where weather #haze - True where weather	ew columns: weather des description description	ibes r script conta	ain, snow	w, thunder ains Thund else False t else Fal	rstorms, derstorm	fog, mis
In [57]:	<pre>#Any row containing "thunde df_traffic_features.loc[df_</pre>			-			cr.contai
In [58]:	<pre>weather = ['thunderstorm',' df_traffic_features.loc[np.</pre>	•	-	-	eatures['w	weather_d	descripti •
In [59]:	df_traffic_features.weather	_descriptio	on.val	ue_counts	5()		
Out[59]:	other 31491 mist 4611 haze 993 thunderstorm 765 fog 693 Name: weather_description,	dtype: into	64				
In [60]:	<pre>#creating dummy variables f df_traffic_features = pd.ge</pre>		_		_		

In [64]: sns.boxplot('rain_1h',data = df_traffic_features.loc[df_traffic_features.rain

Out[64]: <matplotlib.axes._subplots.AxesSubplot at 0x134f94f1d90>

In [65]: #Removing outlier in rain column and converting numeric data to categories
#rain value equal to 0.0 as no_rain
#rain value greater than 0.0 is cut into 3 quantiles

df_traffic_features = df_traffic_features.loc[df_traffic_features.rain_1h<200
df_traffic_features_temp = df_traffic_features.loc[df_traffic_features.rain_1
rain_q = pd.DataFrame(pd.qcut(df_traffic_features_temp['rain_1h'] ,q=3, label
df_traffic_cat = df_traffic_features.merge(rain_q,left_index=True, right_inde
df_traffic_cat['rain_1h_y'] = df_traffic_cat.rain_1h_y.cat.add_categories('no
df_traffic_cat['rain_1h_y'].fillna('no_rain', inplace = True) #no_rain is not

df_traffic_cat.drop(columns=['rain_1h_x'], inplace = True)
df_traffic_cat.rename(columns={'rain_1h_y':'rain_1h'}, inplace = True)</pre>

Out	[65]	:

df traffic cat.head()

	date_time	holiday	temp	snow_1h	clouds_all	traffic_volume	weekday	date	hour	mont
0	2012-10- 02 09:00:00	False	15.13	0.0	40	5545	1	2012- 10-02	Morning	1
1	2012-10- 02 10:00:00	False	16.21	0.0	75	4516	1	2012- 10-02	Morning	1
2	2012-10- 02 11:00:00	False	16.43	0.0	90	4767	1	2012- 10-02	Morning	1
3	2012-10- 02 12:00:00	False	16.98	0.0	90	5026	1	2012- 10-02	Afternoon	1
4	2012-10- 02 13:00:00	False	17.99	0.0	75	4918	1	2012- 10-02	Afternoon	1

```
In [66]: #Plotiing snow data shows that it is extremely skewed as observed during univ
sns.boxplot('snow_1h',data = df_traffic_features)
```

Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x134fb35e3d0>


```
In [67]: #only 63 observations have snow greater than 0.0, it can be encoded as no_sno
df_traffic_features.snow_1h[df_traffic_features.snow_1h>0].count()
#63 columns -> change to snow, no_snow
```

Out[67]: 63

```
In [68]: def modify_snow1h(x):
    if x==0:
        return 'no_snow'
    else:
        return 'snow'

df_date_traffic['snow_1h'] = df_traffic_cat.snow_1h.map(modify_snow1h)
```

13:00:00

```
In [69]: df_traffic_features.head()
```

ho	date	weekday	traffic_volume	clouds_all	snow_1h	rain_1h	temp	holiday	date_time]: _	Out[69]:
Morni	2012- 10-02	1	5545	40	0.0	0.0	15.13	False	2012-10- 02 09:00:00	0	
Morni	2012- 10-02	1	4516	75	0.0	0.0	16.21	False	2012-10- 02 10:00:00	1	
Morni	2012- 10-02	1	4767	90	0.0	0.0	16.43	False	2012-10- 02 11:00:00	2	
Afterno	2012- 10-02	1	5026	90	0.0	0.0	16.98	False	2012-10- 02 12:00:00	3	
Afterno	2012- 10-02	1	4918	75	0.0	0.0	17.99	False	2012-10-	4	