

Epidemiología de enfermedades de cultivos en R (I)

Progreso temporal

Juan Pablo Edwards Molina (Prof. Responsable)
Pamela Dirchwolf (Coordinadora)

Relaciones patógeno - hospedante

Amorim, 1995

Proceso policiclo

Escala temporal

Patrones regulares

Sin ciclos 2°: Verticillium dahliae / Girasol

Muchos ciclos 2º Puccinia recondita / Trigo

Tipo de enfermedades

Interés simple o MONOCICLICAS

Interés compuesto o POLICICLICAS

Monocíclicas vs Policíclicas

Caracteristica	Monocíclicas	Policíclicas
Producción de inóculo secundario (mismo ciclo cultivo)	No	Si
Importancia de la cantidad de inóculo inicial	Alta	Baja: si la tasa de progreso es alta o si el tiempo de desarrollo es largo
Ejemplos típicos	"Patógenos de suelo" (Fusarium, Verticillium,)	"Patógenos foliares" Royas, Oidios, Manchas foliares

Interés simple

$$y = y_0 + R t$$

y : Nivel de enfermedad en el tiempo t R: Tasa de infección aparente y₀: Enfermedad en tiempo= 0 (Inóculo inicial)

Interés compuesto

$$y = y_0 \exp(r t)$$

y: Nivel de enfermedad en el tiempo t
r: Tasa de infección aparente
y₀: Enfermedad en t=0 (Inóculo inicial)

FACTOR DE CORRECCION (FC) = (1 - y)

Velocidad de aumento de la enfermedad (tasa absoluta)

por integración

Modelo	dy/dt	y
linear	r = QR Q = inóculo pre-existente R = tasa de infección QR = nro de contactos efectivos	$y = y_0 + QRt$
monomolecular	QR * (1-y) (1-y) = proporción de tejido sano	$y = 1 - (1 - y_0) * exp(-r_M t)$
exponencial	ry	$y = y_0^* \exp(r_E^*t)$
logístico	ry * (1-y)	$y = 1/(1 + ((1/y_0) - 1) * exp(-r_L t))$

Linearizando

Logístico

$$logito(y) = log(\frac{y}{1-y})$$

Monomolecular

$$monito(y) = log(\frac{1}{1-y})$$

Gompertz

Linearizando

$$y = 1 - (1 - y0) * exp(-r_M t)$$

$$y = 1/(1 + ((1/y_0) - 1) * exp(-r_L t))$$

$$y = exp(-(-log(y_0))exp(-r_G x))$$

Time

Parametrización de modelo logístico

