PHYSICS

3rd grade of secondary

Chapter N° 13

Dinámica

1ra Ley de newton

3ra Ley de newton

DINÁMICA

Es el estudio de la causa del movimiento acelerado de un cuerpo.

Ejemplo.

La causa del movimiento acelerado es una fuerza resultante no nula

I N E R C I A

Es aquella propiedad de todos los cuerpos por la cual tienden a mantener su reposo inicial o su velocidad inicial, es decir, tanto el módulo como la dirección de la velocidad tienden a mantenerse constantes.

SEGUNDA LEY DE NEWTON

A mayor fuerza, mayor aceleración.

A mayor masa, menor aceleración.

$$a = \frac{F_R}{m}$$

$$F_R = m \cdot a$$

 $a = \text{m\'odulo de la aceleraci\'on } (m/s^2)$ $F_R = \text{m\'odulo de la fuerza resultante } (N)$ m = masa (kg)

Determine el módulo de la aceleración del bloque de 8 kg.

RESOLUCIÓN

Realizamos el DCL

Hallamos F_R:

$$F_{Resul.} = 32 N$$

$$a = \frac{F_{\text{Resul.}}}{m}$$

$$a = \frac{32 \text{ N}}{8 \text{ kg}}$$

$$\therefore \mathbf{a} = 4 \, m/s^2$$

Determine el módulo de la aceleración con la que avanza el bloque.

RESOLUCIÓN

Realizamos el DCL

Hallamos F_R:

$$F_{R} = 20 N + 10 N - 12 N$$

$$F_{R.} = 18N$$

$$a = \frac{F_{\text{Resul.}}}{m}$$

$$a = \frac{18 \text{ N}}{10 \text{ kg}}$$

$$\therefore a = 1,8 m/s^2$$

Determine el módulo de la fuerza \vec{F} si el bloque de 10 kg acelera a razón de 7m/s^2 .

RESOLUCIÓN

Realizamos el Diagrama de cuerpo libre.

La \vec{F}_R y la \vec{a} tienen la misma dirección.

Hallamos F_R :

$$F_{Resul.} = F - 30 N$$

$$F_R = m \cdot a$$

$$F - 30N = 10kg \cdot 7 \, m/s^2$$
$$70 \, N = F - 30 \, N$$

$$\therefore F = 100 N$$

Determine el módulo de la aceleración de la esfera de 10 kg. $(g = 10 \text{ m/s}^2)$

Realizamos el DCL.

$$Fg = mg$$

$$Fg = 10kg \times 10 \frac{m}{s^2}$$

$$Fg = 100N$$

Hallamos F_R:

$$F_{Resul.} = 135 N - 100 N$$

$$F_{Resul.} = 35 N$$

$$a = \frac{F_{\text{Resul.}}}{m}$$

$$a = \frac{35 \text{ N}}{10 \text{ kg}}$$

$$\therefore a = 3, 5 m/s^2$$

Determine la masa del bloque si este tiene una aceleración de módulo 10 m/s²

RESOLUCIÓN

Realizamos el DCL

Hallamos F_R:

$$F_{Resul.} = 72 N - 22 N$$

$$F_{Resul.} = 50 N$$

$$F_R = m \cdot a$$

$$50N = m \cdot 10 \frac{m}{s^2}$$

$$\therefore \mathbf{m} = \mathbf{5} \, \mathbf{kg}$$

Un obrero traslada una caja con un ángulo de 53° con la horizontal como muestra la figura, si el piso es rugoso y ofrece una fuerza de resistencia de 12N. ¿Cuál es la aceleración que presenta la caja?

RESOLUCIÓN

Realizamos el DCL.

Al descomponer 50 N:

Del ⊿Notable 37° y 53°

$$5k = 50 \text{ N} \rightarrow k = 10 \text{ N}$$

$$F_{x} = 3k = 30 \text{ N}$$

$$F_{\rm v} = 4k = 40 \, \rm N$$

Hallamos F_R:

$$F_{Resul.} = 30 N - 12 N$$

$$F_{Resul.} = 18 N$$

$$a = \frac{F_{\text{Resul.}}}{m}$$

$$a = \frac{18 \text{ N}}{6 \text{ kg}}$$

$$\therefore a = 3 m/s^2$$

Un ascensor de 250kg asciende por medio de una fuerza de 3 000N ¿Cuál es el módulo de la aceleración? Que presenta en el instante mostrado (g = 10 m/s²)

RESOLUCIÓN

Realizamos el DCL

$$Fg = mg$$

$$Fg = 250 \text{ kg} \times 10 \frac{\text{m}}{\text{s}^2}$$

$$Fg = 2500 \text{N}$$

La \vec{F}_R y la \vec{a} tienen la misma dirección.

Hallamos F_R:

$$F_{Resul.} = 3000 N - 2500 N$$

$$F_{Resul.} = 500 N$$

2da. Ley de Newton:

$$a = \frac{F_{\text{Resul.}}}{m}$$

$$a = \frac{500 \text{ N}}{250 \text{ kg}}$$

$$\therefore a = 2 m/s^2$$