C241 HW10 Mini

Zac Monroe

October 2018

1 Problem 1

Claim: The sum of three odd numbers is always odd.

Proof. Choose odd integers n_1, n_2, n_3 .

Since n_1 is odd, there exists an integer k_1 such that $n_1 = 2k_1 + 1$.

Similarly, there exists integers k_2 and k_3 with $n_2 = 2k_2 + 1$ and $n_3 = 2k_3 + 1$.

$$n_1 + n_2 + n_3 = 2k_1 + 1 + 2k_2 + 1 + 2k_3 + 1$$
$$= 2k_1 + 2k_2 + 2k_3 + 2 + 1$$
$$= 2(k_1 + k_2 + k_3 + 1) + 1$$

Since $k_1, k_2, k_3, 1 \in \mathbb{Z}, k_1 + k_2 + k_3 + 1 \in \mathbb{Z}$.

Since $n_1 + n_2 + n_3 = 2(k_1 + k_2 + k_3 + 1) + 1$ and $k_1 + k_2 + k_3 + 1 \in \mathbb{Z}$, $n_1 + n_2 + n_3$ is odd.