

Doing Data Science Right in Excel-Pervasive Utilities

Eina Ooka

September 25, 2018

Septem Ben File Mark & PROPRIETARY

- The Energy Authority serves public utilities nationwide for trading and analytics.
- Analytics team provides forecasting and analysis including:
 - Load and market forecasts
 - Portfolio risk and hedge analysis
 - Congestion and transmission analysis
 - IRP studies and many more...
- A few dozen analysts in the team

September 24, 2018 **2**

TEA Analytics ~ a few years ago ~

- Excel clutter
 - Accumulation of errors over time. Hard to detect them in enormous multi-tab models.
 - Duplicates of a same model for different versions (e.g., for different customers). When making changes, same changes needs to be made multiple times.
 - No version controls. Accumulation of badly named similar excel files and many no-longer used scripts and calculations.
 - For large dataset, it was slow.
- Multiple languages were used in addition to excel
 - VBA, R, matlab, python, ...
- No clear guideline for analytics quality control

My Goals

- Build out a data science platform that enables:
 - Analytics Quality Control
 - Efficient and rapid development of a solution into delivery
 - Encourage collaboration

Terminology

- A platform is the environment on which computer programs can run. For development process, it can be a constraint or an assistance.
- A computer program is written in a programming (or scripting) language. In our case, it is a model and an analysis written in scripting languages.

What's Needed in Data Science Process?

Data Science (Analytics) Lifecycle

September 24, 2018 CONFIDENTIAL & PROPRIETARY 6

Data Science Platforms

Excel - Jack of All Trades

Data Science Platforms

Excel or non-Excel?

Use Excel if

- Summary data
- Model- and data-light
- Share with others

 A quick task where a jack-all-trades is all you need.

Do Not Use Excel if

- Needs scripts
- Model-heavy
- Data-heavy
- Recurring Task

Need a team of masters

Analytics Quality Control

Aspirations for Model Design

- 1. Accurate
- 2. Robust
 - Do outliers affect the results too much?
- 3. Parsimonious
 - Is the model overly complicated?
- 4. Explainable
 - Simple understandable model is better than black box.
- 5. Consistency
 - Is the behavior consistent over time? Backcast.

Aspirations for Model Design

6. Adaptable

Can we use parts of the model on other projects?

7. Scalable

 Can we scale up the project to includes many other nodes, customers, etc...?

8. Accessible

Can other people understand and run the model?

9. Reproducible

Can we produce the same results later?

Common Language

- Efficiency gain
 - Collaborations between analysts

- Maintenance of a model over time
- Re-use and share codes
- Protect against loss of work
 - Others can easily inherit other's models
 - Hedge against a sudden leave of an analyst

Evaluations

MORE QUALITATIVE THAN QUANTITATIVE

Modeling Platform

We evaluated several scripting languages.

 Quantification by scoring was helpful but not the determining factor. For us, decision was more

subjective.

Our choice was R.

		R		Excel pl	us VBA	
	·		User Friendly data		Industry s	
			analysis, statistics and		all for	
	importance	Score	graphical models	Score		
		344		239		
Analysis & Computations		61		26		
Solid data analysis and statistics toolset	3	5		2		
Advanced visualizations	3	5		3	Good for s	
					visualizat	
interactivity	1	4	HTML widget	4	Auto refre	
Advanced data science tools	2	4		1		
Speed of computations	2	4	Not optimized for	2		
			speed			
Multithreading	1	3	Hard to use.	1	Can't be d	
Non-numeric data handling	2	4				
Data Handling		56		19		
Driver to basic type of data sources (SQL, excel)	3	5		4	Limited	
					N	
Driver to non-standard data sources (NoSQL, Spark)	1	4	Limited Capability	1		
Web scraping capability	2	4		1		
Working with large dataset (~a few gigabites)	2	4	Need discipline in	1		
			good coding			
Efficiency in meomry usage	2	3	Need discipline in	1		
			good coding			
Data cleaning and imputations	3	5				
Developments		93		76		
Readability	2	3		2		
Workable IDEs	3	5	Rstudio	5	Itself	
Version Control	2	5	Super easy with	1		

Data Platform

Dedicated to Analytics

- We evaluated on-premise and on-cloud databases including types of SQL & NoSQL.
- How does it perform w.r.t. R?
 - DBI compliant? Flexibility of NoSQL?
- Our choice was SQL Server.

INTERFACE: R				ON-PF	REMISE				OFF-PREMISE	
	Technology	Flatfile (rds)	Flatfile (csv)	SQL Server 2008	SQL Server 2016	Oracle (with RODBC)	MongoDB 3.4	Azure SQL Database	Azure DocumentDB (mongoDB API)	mongoDB 3.0
	Server Location	Jax	Jax	Jax	Jax	Jax	Jax	Cloud (East)	Cloud (East)	Cloud (West)
	Client Location	Jax	Jax	Jax	Jax	Jax	Jax	Jax	Jax	Jax
Data	Function									
mtcars	create a table	0.22	0.14	0.80	0.11	4.09	0.14	2.05	1.43	0.47
df (32 x 11)	pull all	0.19	0.22	0.01	0.02	0.03	0.02	0.25	0.25	0.17
	filter 1	NA	NA	0.02	0.01	0.04	0.02	0.22	0.23	0.15
	filter 2	NA	NA	0.03	0.01	0.01	0.02	0.22	0.22	0.15
	append data	NA	NA	0.03	0.10	3.99	0.03	0.72	0.28	0.10
	update entries	NA	NA	0.02	0.00	0.00	0.02	0.24	0.21	0.08
	remove rows	NA	NA	0.01	0.00	0.01	0	0.21	0.22	0.06
	aggregation	NA	NA	0.00	0.01	0.00	0.01	0.21	NOT AVAILABLE	0.07
	delete table	NA	NA	0.01	0.01	0.24	0.02	0.23	0.50	0.14
	Data size (MB)	0.002	0.002	0.008	0.008			0.008	0.000	
	Index size (MB)	NA	NA	0.008	0.008			0.008	0.008	
nycflights	create a table	6.8	28.0	954	664	435	30	11360	2523	83
df (336,776 x 19)	bulk insert	NA	NA	29	30		NA	NA	NA	NA
	pull all	1.5	15.0	9.0	9.7	16.7	44.6	23.2	331.9	10.0
	filter	NA	NA	0.5	0.2	0.1	0.7	0.3	1.0	1.4
	sort	NA	NA	10.4	10.4	16.7	Failed.	17.6	301.9	Failed.
	aggregation	NA	NA	0.8	0.2	0.1	1.2	0.3	NOT AVAILABLE	0.5
	Data size (MB)	6.8	35.8	38.5	37.4	35.0	31.7	43.2	307.9	174.7
	Index size (MB)	NA	NA	6.06	6.10		5.41	6.06	47.7	19.4
hedgefox - original	create a table	90	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ

Delivery Format

- If we simply deliver flat files or reports, no need for deployment platform.
 - R-markdown has made R reporting extremely easy and visually appealing.
 - There are numerous r packages that enable saving results in Excel.
- Deployment platform is necessary when a deliverable is a model with inputs/outputs.

Frequency

- One-time study
- Recurrent

Format

- CSV
- Excel
- Power point
- Documents
- Reports

Interactive (I/O)

- User Interface
- API

Data Science Deployment

- When non-utility data scientists say "deployment," they usually mean:
 - 1. The model is turned over to software developers to translate into a production language.
 - → We don't have software developers to spare...
 - 2. Deploy models on their own as APIs.
 - → We don't have web developers to spare...
- How do we create a user interface for our models without going back to Excel or relying on IT developers?

Deployment Platform

- We evaluated
 - Various "Data Science Platforms."
 - There were a lot fewer numbers to evaluate in 2015.
 - MS Azure
 - They were starting to push Azure ML and other services.
 - Various BI tools
 - R Shiny Server

- We chose R Shiny Server.
 - Shiny (r package): HTML wrapper and generate apps on a desktop.
 - Shiny Server: web service for hosting shiny apps.

Vision Deployment Platform Evaluation Criteria

User Interface

- Web-based or installed app?
- Visualization capability and its flexibility? Can we show r plots?
- Can we modify inputs and re-run the model from the interface?
- Download data or reports from dashboard.
- Interactive plots
- display on mobile devices

Ease of deployment

 How much IT help do we need at the time of deployment?

Data

- Can it connect to TEA's internal databases?
- Is there a limit to the size of data it can handle?

Accessibility

- Authentication? Differentiation in authentication levels?
- Is the dashboard accessible from internal and external users?

How many people can access the application concurrently?

Scalability

– How scalable? If so, does the price reflect it?

Languages

- F
- Python

API & Web Services

Can we call models from BI?

Other functions

- Scheduled runs?
- Version Control?
- Collaboration?

Technical Support

- Is technical support available?
- Are there online resources?
- How responsive are they?

Data Science Platforms

Source Control

- Git for
 - Source Control
- GitHub for
 - Managing Repositories
 - Project Management
 - Collaboration
 - Issue tracker

- Use of Git, together with Shiny was a game changer for us.
 - Eliminated accumulation of similarly named files or commentedout old scripts.
 - Easy differentiation between multiple (Dev, PROD, ...) environments.

Other Supporting Tools

- RStudio IDE (Integrated Development Environment)
 - In recent years, it has integrated many features necessary for efficient data science work.
- Task Scheduler with Batch Tasks
 - You can add arguments
 - Don't forget to output a run log.

- Setting up Dev, Staging and PROD environments.
- Set naming conventions and coding practice guidelines.
- Data Camp for new users within the group.

Case Study 1

AURORA MODELING

- PREVIOUS CUT&PASTE METHOD
- CURRENT ONE-CLICK REPORTING METHOD

Before...

AURORA Reporting Task

Current Reporting Process

AURORA Reporting Task

- Run the cost-production model and export all outputs into a database.
- Open R. Update the database names and "knit."
- Done.

```
C:/Users/murphyeo/Desktop/AURORAxmp - master - RStudio
File Edit Code View Plots Session Build Debug Tools Help
Q - Go to file/function
 BasicReport.Rmd* × ProtOutputs_Hour
                                     × 🖭 Untitled1* × 🖭 Untitled2 ×
                        Knit HTML
                                                    title: "AURORAXMD
      author: "Eina Ooka
      date: "Sep 16 2016"
      output: html_document
                                                                         ⊕ 
✓
       database.name <- "2016R1.1_WECC_Base_LT"
       RMT.name <- "RMT_2016R1_1_WECC_Base_LT1"
      # Functions
      source(file="../AURORAxmpReport_Functions.r")
      out.lst <- GetOutputs(database.name, RMT.name)
      hist.df <- GetHistorical()
      # Plot Resource Additions
   21 PlotResourceAdditions("WECC_NWPP", resmod.lst)
      PlotResourceAdditions("WECC_CA-MX", resmod.lst)
   24 ^
   25
       (Top Level) $
                                                                      R Markdown $
```

Resource Additions

RPS

Resource Type Outputs

Resource Stack

Resource Type Cash Flow

Market Prices

CPP Constraint Transmission

AURORAxmp WECC Results

Eina Ooka May 3 2016

Model Specifications

- Database: 2016R1.1_WECC_Base_LT Run ID: 2016R1 WECC Base LT
- Run Date: 5/2/2016 3:13:42 AM
- Run Time: 1491,1589 min
- AURORAxmp: x64 version of AURORAxmp 12.1.1015
- File Name: Project: D:016_AURORAxmp_1_LT.apz
- Sampling: 1st and 3rd Week; Mon, Wed, Fri, Sun; Every 3rd Hour

Load Growth

NWPP CA RMRG SRSG Canada

Resource Additions

Cumulative Resource Additions

Name	WECC_CA-MX	WECC_NWPP	WECC_RMRG	WECC_SRSG
CCCT	1410	15200	0	8400
SCCT	7590	0	0	2300
Solar	11100	8000	1400	8200
Storage	1125	0	0	0
Wind	900	9200	1505	600

Cumulative Resource Retirements

Fuel	WECC_CA-MX	WECC_NWPP	WECC_RMRG	WECC_SRSG
Coal	115	6631	1127	1375
FO	0	5	10	0
NG	10670	2069	361	277
PS	1325	0	0	0
UR	2300	0	0	0
WAT	1	47	0	0

Boardman, Centralia and a part of Colstrip is sheeduled to retire between 2020 and 2026.

WECC NWPP CA-MX RMRG SRSG

RPS

Because of imports and exports between states, renewable generation output percentages within each state may not coincide

Monthly Prices Hourly Hub Prices

Hourly Resource Types

AURORAxmp WECC Hourly Results

May 4, 2016

Model Specifications

- Database: 2016R1.1_WECC_Base_Hourly2017to2026
- · Run ID: 2016R1_WECC_Base_Hourly
- Run Date: 5/3/2016 8:09:22 PM
- Run Time: 149,5805 min
- AURORAxmp: x64 version of AURORAxmp 12.1.1015
- File Name: Project: D:016_AURORAxmp_1_Hourly.apz
- Inflation rate: 1.7%

Monthly Prices

NP15 Mid-C

Hourly Hub Prices

NP15 Mid-C 2017 2021 2026 Summer Fall Winter

CA NP-15

Hourly Resource Types

NP15 OR+WA+IDNorth+MTNW 2021 2026 2017 Spring Summer Fall Winter

Case Study 2

PORTFOLIO RISK MODEL

- PREVIOUS EXCEL & VBA FRUSTRATION
- CURRENT ALL-R DISCIPLINE

Portfolio Risk Model

Before...

- There were Stochastic Portfolio Model written in VBA with Excel Interface.
- Produced large excel and csv files.
- We had copied of similar models with some customizations, for each customer.
- We saved copies of old models in Archive folder.

Current Model

- Everything is in R.
 - The bulk of the model runs automatically overnight as a scheduled task.
 - Shiny UI enables on-demand analysis on the results.
- Differentiation between Dev, Staging, PROD environments.

GitHub Project Network View

Demo: Shiny App

SeptemBellFlue & PROPRIETARY

Looks "Good" by Default

- Shiny templates are easy to use.
- No knowledge in HTML or JavaScript necessary
- Excel-looking interface possible by creating input tables and color-formatted data.

Excel Interface

Update Price & Record Greeks FPC Date 9/12/2018 Heat Rate \$ 24.62 \$ 24.84 \$ 22.46 \$ 21.17 \$ 20.84 2.264 \$ Spark - LLH 1.00 0.13 0.15 0.25 0.00 0.18 0.11 0.14 0.01 3.05 5.76 1.36 1.75 \$ 13,61 Spark - 7x24 9.62 20.88 Spark - HLH 4.22 Spark - LLH 1.42 0.89 4.43 Delta Hedge Level 0.90 0.50 0.90 0.80 0.60 0.60 0.03 0.19 0.01 25 -25 -50 -100 -50 -50 -75 -2500

Shiny Interface

	Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-
Quarter	4	4	4	1	1	1	2	2	2	3	3	
Market												
On-Peak Power Price	26.45	25.85	31.75	29.10	25.75	20.25	17.40	17.75	22.75	36.65	44.95	2
Off-Peak Power Price	23.10	22.40	25.30	25.70	20.40	16.75	9.80	9.30	11.40	19.75	26.55	2
Gas Price	2.01	2.18	2.99	2.94	2.44	1.90	1.38	1.33	1.32	1.77	1.74	
Spark Spread												
On-Peak	5.580	4.334	4.209	1.831	2.444	1.500	3.234	3.489	8.027	17.187	25.981	10
Off-Peak	2.234	0.891	-2.246	-1.555	-2.903	-2.009	-4.372	-4.953	-3.324	0.288	7.578	- 1
On-Peak Delta												
Current Delta	1.000	1.000	1.000	0.829	0.974	0.811	0.226	0.302	1.000	1.000	1.000	- 1
Previous Delta												
Gamma	0.000	0.201	0.266	0.189	0.177	0.279	0.049	0.076	0.195	0.000	0.000	(
Off-Peak Delta												
Current Delta	0.979	0.976	0.364	0.516	0.000	0.174	0.032	0.012	0.194	0.847	1.000	(
Previous Delta												
Gamma	0.045	0.283	0.150	0.245	0.293	0.218	0.039	0.011	0.089	0.073	0.005	(
Trade Triggers Hedge Unwi	nd											
On-Peak Power (MW)	0	0	0	25	-25	-75						
Off-Peak Power (MW)	0	0	0	0	0	0						
Gas (mmBtu/day)	0	0	0	-2500	2500	7500						

My Desktop & Workflow

WHAT DOES IT LOOK LIKE IN REALITY?

Septem Bertany 35

Septem Ref Mark & PROPRIETARY 36

Septemble Lapton Label & PROPRIETARY 37

Septem Belle 24 PROPRIETARY

Take Away

- Choosing the right set of platforms can help broaden our capability.
- We need multiple platforms that all work seamlessly together.
- Graduating from Excel takes a discipline, and not all projects need to move away from Excel.
 But if you choose to do so, have a vision before investing into a tool.

Thank you!

Contact:

eooka@teainc.org

September 24, 2018 40

APPENDIX

SeptemBNF124FNT146L& PROPRIETARY

Resources

R

- R (<u>https://www.r-project.org/</u>)
- RStudio IDE (https://www.rstudio.com/products/RStudio/)

R Shiny

- R shiny (https://shiny.rstudio.com/)
- R Shiny Server (https://www.rstudio.com/products/rstudio-server-pro/)

Version Control

- Git (<u>https://git-scm.com/</u>)
- GitHub (<u>https://github.com/</u>)

Learn

DataCamp (<u>https://www.datacamp.com</u>)

DataCamp Recommendations

For R Beginners

- Introduction to R
 https://www.datacamp.com/courses/free-introduction-to-r
- Intermediate R
 - https://www.datacamp.com/courses/intermediate-r

- https://www.datacamp.com/courses/data-visualization-with-ggplot2-1
- Building Web Applications in R with Shiny
 - https://www.datacamp.com/courses/building-web-applications-in-r-with-shiny
- Reporting with Rmarkdown
 - https://www.datacamp.com/courses/reporting-with-r-markdown
- Working with the RStudio IDE
 - https://www.datacamp.com/courses/working-with-the-rstudio-ide-part-1

