nmi

2024 spring: lecture 02: revisit rounding error wrt stability

theorem 01 wrt bound, aggregate error

suppose i = 1,...,n and $0 < \delta_i \le \mu_M$ and $e_i \in \{-1,+1\}$. additionally suppose $n\mu_M < 1$. then

$$\prod^{n}(1+\delta_{i})^{e_{-}i}=1+\Theta_{n},$$

where $|\Theta_n| \le \gamma_n = n\mu_M / (1 - n\mu_M)$. ie, Θ_n aggregates error and γ_n is its bound.

note: μ_{M} is rounding error. in FPS, μ_{M} = ½ ϵ_{M} , machine error.

proof-lite. (its just a sketch.)

then by binomial theorem \Rightarrow

$$(1 + n\mu_M)^n \le n\mu_M / (1 - n\mu_M).$$

more intensely:

Formal Proofs of Rounding Error Bounds

eg 01

forward stability

forward stability. ie, $\eta>0$ such that $||\Delta y||\leq \eta ||y||.$

$$\Delta y = \hat{y} - y$$

$$\phi: \mathbb{R} o \mathbb{R}$$
 , $x \overset{\phi}{\mapsto} x^3$

$$\hat{\phi}: \mathbb{F}
ightarrow \mathbb{F}$$
, $\hat{x} \overset{\hat{\phi}}{\mapsto} \hat{x}^3 \Rightarrow \hat{y} = \hat{\phi}(\hat{x}) = \hat{x}^3$

$$\hat{y} = \hat{x}^3 = (\hat{x} \otimes \hat{x}) \otimes \hat{x}$$

$$= (x(1 + \delta_x) \otimes x(1 + \delta_x)) \otimes (x(1 + \delta_x))$$

$$= x^2(1 + \delta_x)^2(1 + \delta_\infty) \otimes (x(1 + \delta_x))$$

$$= x^3(1 + \delta_x)^3(1 + \delta_\infty)^1(1 + \delta_\infty)^1$$

$$= x^3(1 + \theta_5) \text{ [theorem 01]}$$

$$\hat{y} - y = x^3(1 + \theta_5) - x^3 = x^3\theta_5$$
 $|\hat{y} - y| = |x^3| |\theta_5| \le |y| \gamma_5 \text{ [theorem 01]}$
 $\gamma_5 = \frac{n\mu_M}{1 - n\mu_M} = \frac{5\mu_M}{1 - 5\mu_M}.$
let $\eta = \gamma_5$, then $|\hat{y} - y| \le \eta |y|$. \checkmark

eg 02 numerical stability

numerical stability. ie, $\eta>0$ such that $|\Delta y|\leq \eta|y|$ and $\epsilon>0$ such that $|\Delta x|\leq \epsilon|x|$.

 $y=\phi(x)=x^3$. need Δx , Δy .

note: $\hat{y}=x^3(1+ heta_5), \gamma_5$ from eg 01.

$$\begin{split} \hat{y} + \Delta y &= \phi(x + \Delta x) \\ x^3(1 + \theta_5) + \Delta y &= (x + \Delta x)^3 = x^3 + 3x^2(\Delta x) + 3x(\Delta x)^2 + (\Delta x)^3 \\ &\Rightarrow \Delta y = 3x^2(\Delta x) + 3x(\Delta x)^2 + (\Delta x)^3 - x^3\theta_5 \end{split}$$

what η for $|\Delta y| \leq \eta |y|$?

 \Rightarrow what ϵ for $|\Delta x| \le \epsilon |x|$?

$$\begin{split} |\Delta y| &\leq 3|x|^2|\Delta x| + 3|x||\Delta x|^2 + |\Delta x|^3 + |x|^3\theta_5 \\ &\leq 3|x|^2\epsilon|x| + 3|x|\epsilon^2|x|^2 + \epsilon^3|x|^3 + |x|^3\gamma_5 \\ &\Rightarrow 3\epsilon|x|^3 + 3\epsilon^2|x|^3 + \epsilon^3|x|^3 + |x|^3\gamma_5 \Rightarrow (3\epsilon + 3\epsilon^2 + \epsilon^3 + \gamma_5)|y| \\ \Rightarrow |\Delta y| &\leq \eta|y| \Rightarrow \eta = 3\epsilon + 3\epsilon^2 + \epsilon^3 + \gamma_5 \end{split}$$

ie, take any $\epsilon>0$, any Δx such that $|\Delta x|\leq \epsilon|x|$. then let $\eta=3\epsilon+3\epsilon^2+\epsilon^3+\gamma_5$, $\Delta y=3x^2(\Delta x)+3x(\Delta x)^2+(\Delta x)^3-x^3\theta_5$.

by construction (ie, by choice), we know $|\Delta y| \leq \eta |y|, \hat{y} + \Delta y = \phi(x + \Delta x)$. \checkmark

ie, $\hat{\phi}(x) = \hat{x}^3$ is numerically stable.

also, "any" ϵ vs "the best, smallest" ϵ , η . note that the only part of the derived η that you cannot control is γ_5 , so choose $\epsilon \ll 1$ and η will barely above γ_5 . ie, $\eta = \gamma_5 \cdot c_0$ where $c_0 \geq 1$.

nmi

2024 spring: lecture 03: bisection, fixed-point iteration

root finding, bisection

given $f(x)=x^3+x-1$, find its root on the interval [0,1]. let a, b represent the endpoints of the interval considered and c as its bisector, $\frac{a+b}{2}$.

а	f(a)	b	f(b)	С	f(c)
0	-1	1	1	$\frac{1}{2}$	$-\frac{3}{8}$
$\frac{1}{2}$	$-\frac{3}{8}$	1	1	$\frac{3}{4}$	+
$\frac{1}{2}$	$-\frac{3}{8}$	$\frac{3}{4}$	+		

how will you stop this function? when is x good enough? or is when f(x) is good enough? thats on you! an error less than 0.5×10^{-p} for precision of p decimal places.

root finding, fixed-point iteration, usw

$$x_{n+1} = f(x_n)$$
 with n=0,1,2,...

$$\Rightarrow x_0, x_1, x_2, ... = x_0, f(x_0), f(f(x_0)), ...$$

$$\Rightarrow f(x_{fix}) = x_{fix}$$
.

eg, rearrange the previous $f(x) = x^3 + x - 1$

$$\Rightarrow$$
 x = 1 - x3 = g(x)

$$\Rightarrow x_1 = g(x_0), x_2 = g(x_1), x_3 = g(x_2), ...$$

image right shows cobweb pattern of convergence.

Figure 1.3 Geometric view of FPI. The fixed point is the intersection of g(x) and the diagonal line. Three examples of g(x) are shown together with the first few steps of FPI. (a) $g(x) = 1 - x^3$ (b) $g(x) = (1 - x)^{1/3}$ (c) $g(x) = (1 + 2x^3)/(1 + 3x^2)$

and heres another fpi, newton-raphson.

$$x_{n+1} = x_n - f(x_n)/f'(x_n) = g(x_n).$$

fpi, extended

for the first part of this revisitation, lets re-rig that failed example.

start by considering that $f(x) = x^3 + x - 1$ has three roots. (thats three roots - not necessarily three distinct roots.) so

$$f(x) = 0 \Rightarrow x = 1 - x^3 = g(x) \Rightarrow x_{n+1} = 1 - x_n^3$$
.

thats the one that barfs, so lets look at what happens when x^3 is on the left side of that equation - in colab... refer to blackboard for python notebook, demo_02_rootfinding.

what makes those last two methods increasingly better? #2 addresses that there are three roots and #3 reduces the order of g(x).

next time

newtons method

secant method