Name:	
-------	--

Lab 0: Introduction to Work

In this lab, you will take a closer look at **work**, what that term means, and how to use it in practical applications. This module will set you up with a better understanding of how we can manipulate this simple equation in simple (but powerful) ways. Work through these steps at your own pace and when you feel comfortable, move on to the next video.

Λ 1		Llaina	tha	followin	200	notion	for	woul	,
U. I	-	USING	uie	IOHOWI	ng eq	uation	101	WULK	À

$$W = F \cdot d$$

Complete the sentence:

Work is the product of t	exerted on a	body and the	
the	e object moves in	the	_ direction.

0.2 - Draw a picture (free-body diagram) of a person doing work. Make it clear what force is being applied and how the object is moving across a distance.

0.3 - Fill in the following table with the missing information:

If force	stays the same	and distance	increases	then work must	
If force	goes down	and distance	stays the same,	then work must	
If force	increase	and distance	,	then work must	stay the same.
If force	decrease	and distance	,	then work must	stay the same.
If force		and distance	increase,	then work must	stay the same.
If force		and distance	decrease,	then work must	stay the same.