# **Lecture 14: Turing Machine Variants**

CSC 320: Foundations of Computer Science

**Quinton Yong** 

quintonyong@uvic.ca



# Formal Definition: Turing Machine with Stop

A Turing machine with stop is a 7-tuple  $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$  where

- **Q** : set of states
- Σ : input alphabet (not containing blank symbol Δ)
- $\Gamma$ : tape alphabet ( $\sqcup \in \Gamma$  and  $\Sigma \in \Gamma$  as well as other symbols)
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$ : transition function

  - Tape head is **not forced to move** left or right, Can **stay** at current position on tape

- $q_0 \in Q$ : single start state
- $q_{accept} \in Q$ : single accept state
- $q_{reject} \in Q$ : single reject state (with  $q_{reject} \neq q_{accept}$ )

## **Equivalence of TM with Stop**

The computational power of TMs and TMs with stop are equivalent:

- Every **TM** is can be converted into an **equivalent TM with stop** by not changing anything
  - (TMs are a special case of TMs with stop where S is never used)
- Every TM with stop can be converted into an equivalent TM by replacing a stop transition with two transitions (move right, then move back)



No matter what we read after moving right, don't change tape then move back

# **Multitape Turing Machines**



Similar to original TM but with:

- Multiple tapes (some finite k tapes)
- Each tape has its own tape head (which can also stop)
- Initial configuration:
  - Input w on tape 1, all other tapes blank
  - All tape heads at the beginning of respective tapes

# **Multitape Turing Machines**

The **transition function** for a multitape Turing machine M with k tapes is defined as follows:

$$\delta: \mathbf{Q} \times \Gamma^k \to \mathbf{Q} \times \Gamma^k \times \{\mathbf{L}, \mathbf{R}, \mathbf{S}\}^k$$

A transition  $\delta(q_i, a_1, ..., a_k) = (q_i, b_1, ..., b_k, L, ..., R)$  means

- If M is in state  $q_i$  and tape heads 1 through k points at cells with content  $a_1, \ldots, a_k$  then
  - M changes to state  $q_i$
  - Replaces  $a_1, ..., a_k$  with  $b_1, ..., b_k$
  - Each tape head moves L, R, or S as specified

# Formal Definition: Multitape Turing Machine

A multitape Turing machine with k tapes is a 7-tuple  $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$  where

- **Q** : set of states
- Σ : input alphabet (not containing blank symbol □)
- $\Gamma$ : tape alphabet ( $\sqcup \in \Gamma$  and  $\Sigma \in \Gamma$  as well as other symbols)
- $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$ : transition function
- $q_0 \in Q$ : single start state
- $q_{accept} \in Q$ : single accept state
- $q_{reject} \in Q$ : single reject state (with  $q_{reject} \neq q_{accept}$ )

# **Equivalence of Multitape Turing Machines**

The computational power of TMs and multitape TMs are equivalent:

- Every TM is can be converted into an equivalent multitape TM by not changing anything
  - (TMs are a **special case** of multitape TMs with k = 1)

We will show that every multitape TM can be converted into an equivalent TM

# **Multitape TM to Single-tape TM**

**Idea** of converting multitape TM M with k tapes to single-tape TM S

- On single tape, use symbol # to split up tape into # tapes
- Use · on a symbol to represent tape head location in each tape
  - E.g. For tape alphabet  $\{0, 1, a, b, \sqcup\}$ , add tape symbols  $\{\dot{0}, \dot{1}, \dot{a}, \dot{b}, \dot{\sqcup}\}$



# **Multitape TM to Single-tape TM**



#### **Computation** on input $w = w_1 w_2 \dots w_n$

• Prepare the tape of S to represent all k tapes of M

$$\# \dot{w}_1 w_2 ... w_n \# \dot{\sqcup} \# \dot{\sqcup} \# ... \#$$

- Simulating a transition of M
  - Determine symbols under "virtual tape heads" by scanning left to right
  - Execute transition via second scan (update cells and positions)
  - If a tape needs more room, shift tape content to the right to **add a** ⊔

# **Turing Machine Equivalence Corollary**

A language  $\boldsymbol{L}$  is **Turing-recognizable** if and only if

some **single-tape Turing machine** recognizes it if and only if

some multitape Turing machine recognizes it

# **Deterministic Turing Machines**

All the TM variants so far have been **deterministic TMs**:

- In a **state** and reading **tape symbol**, there is **exactly one transition** (write symbol, move tape head, and go to next state)
- For an input string, there is one branch of computation
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$  in single-tape TM



# **Nondeterministic Turing Machines (NTM)**

A **nondeterminisic TM** (**NTM**) is defined just like the single-tape TM, but the transition function is defined as:

$$\delta: \mathbf{Q} \times \Gamma \to \mathcal{P}(\mathbf{Q} \times \Gamma \times \{L, R\})$$

- In a state and reading tape symbol, there can be multiple transitions
- Can go to different states, write different symbols, move tape head in different directions



A nondeterministic TM accepts if any branch of computation accepts

# **Computation on NTMs**



**Note:** Branches may end in **accept**, **reject**, or branches can be infinite length since TM can enter **infinite loop** 

# **Equivalence of Nondeterministic Turing Machines**

The computational power of **deterministic TMs** and **nondeterministic TMs** with stop are equivalent:

- For each deterministic TM, there exists a nondeterministic TM which recognizes the same language
  - A deterministic TM is just a **special case** of an NTM
- For each nondeterministic TM, there exists a deterministic TM which recognizes the same language
  - We will show how to simulate an NTM on a deterministic TM

For each **nondeterministic TM**, there exists a **deterministic TM** which recognizes the same language

**Proof**: Simulate a **nondeterministic TM** N with a (deterministic) **multitape TM** D

**Idea**: **D** executes the computation of **every branch** in the computation tree of **N** in a **breadth first search** manner, until an accept state is encountered

We cannot execute in DFS manner. A branch which infinitely loops is infinitely long, and we would get stuck in execution.



- During execution, we need a way to address nodes in the computation tree
- Every node can have at most  $\boldsymbol{b}$  children, where  $\boldsymbol{b}$  is the number of **possible** options in transition function
  - Each state has finite possible options since Q,  $\Gamma$ , and **directions** are finite
- Assign symbols  $\Gamma_b = \{1, 2, ..., b\}$  to all possible options
  - E.g:  $\mathbf{1} = (\text{go } q_i, \text{ write } \sqcup, \text{ move } \mathbf{R})$ ,  $\mathbf{2} = (\text{go } q_i, \text{ write } \sqcup, \text{ move } \mathbf{L})$ ,  $\mathbf{3} = (\text{go } q_i, \text{ write } 0, \text{ move } \mathbf{L})$ , ... for all possibilities



Each node has a string address over  $\Gamma_b$  which are the choices made at each step

- Root has address  $oldsymbol{arepsilon}$
- ullet Address  $oldsymbol{31}$  corresponds to taking  $oldsymbol{3^{rd}}$  option at root, followed by  $oldsymbol{1^{st}}$  option

**Note**: Some **addresses may not exist** (are invalid) since not all transition options are available in a state



#### BFS order of nodes can be enumerated using addresses:

- E.g. Suppose a maximum of **4** possible transition options in TM
- BFS order: ε, 1, 2, 3, 4, 11, 12, 13, 14, 21, 22, ...

In the above example, some addresses are invalid (non-existent sequence of configurations in TM)

The multitape TM  $\boldsymbol{D}$  we use to simulate NTM  $\boldsymbol{N}$  uses three tapes:

- Tape 1: contains input string (never changes)
- **Tape 2**: used to simulate N's tape on its current branch of nondeterministic computation
- **Tape 3**: Keeps track of location (address) in N's computation tree



Simulating NTM **N** on **D**:

- 1. Initially, tape 1 contains input w, tape 2 and tape 3 are empty
- 2. Copy input on **tape 1** to **tape 2** and set **tape 3** to  $\varepsilon$
- 3. Simulate the **computation branch** described by tape 3 address (start to finish)
  - If computation path has invalid choice in transition function, go to step 4
  - If computation path leads to reject, go to step 4
  - If computation path leads to accept, then halt and output accept
- Replace address on tape 3 with next address in BFS ordering. Simulate next branch of N's computation by going to step 2



















































# **Turing Machine Equivalence Corollary**

A language  $\boldsymbol{L}$  is **Turing-recognizable** if and only if

some single-tape Turing machine recognizes it

if and only if

some multitape Turing machine recognizes it

if and only if

some nondeterministic Turing machine recognizes it

#### **Nondeterministic Deciders**

#### Recall that:

- A decider is a deterministic Turing machine which always halts
- A language is **decidable** if there exists a decider which decides it

A nondeterministic TM is called a **nondeterministic decider** if **all branches of computation halt on all inputs** 

#### **Nondeterministic Deciders**

Theorem: A language L is decidable if and only if a nondeterministic TM decides it

#### **Proof:**

 $\Rightarrow$ 

- Deterministic TMs are just a **special case** of NTMs
- Therefore, if a deterministic TM decides L, then there is an NTM which decides L

 $\Leftarrow$ 

- If an NTM decides L, then it halts on all branches of computation on all inputs
- When simulating it with a deterministic TM  $m{D}$ ,  $m{D}$  will also halt always halt since there are no branches which infinitely loop
- ullet Therefore, if an NTM decides  $oldsymbol{L}$ , then there is a deterministic TM which decides  $oldsymbol{L}$