Experiment 26:

Data Replication Techniques

Synchronous Replication

- Data is copied to the replica immediately after a write operation.
 Ensures strong
- consistency but may
- introduce latency.

 Used in high-availability systems where data integrity is critical.

Asynchronous Replication

- · Data is copied after the write operation completes.
- Improves performance but may lead to data loss in case of failure.
- Suitable for disaster recovery and distributed systems.

 PAGE 1 →

Near-Real-Time Replication

- A middle-ground between synchronous and
- asynchronous replication.

 Replication occurs within a short delay after changes are made.
- Used in eventual consistency systems like NoSQL databases.

Snapshot Replication

- · Periodic snapshots of the database are replicated to another server.

 • Efficient for read-heavy
- workloads but not ideal for frequent updates.

 Used in data warehousing
- and backup systems.

Transactional Replication

- Only committed transactions are
- replicated.
 Provides real-time, consistent copies of data.
 Common in financial applications that require high consistency.

Merge Replication

- Data changes from multiple sources are combined into a single replica.

 • Useful in mobile
- applications and distributed environments.
- Requires conflict resolution strategies.

PAGE 3

Peer-to-Peer Replication

- · All nodes in the network maintain a full copy of the
- Ensures high availability and load balancing.
 Used in blockchain and distributed databases.

Log-Based Replication

- Replicates changes based on database logs (e.g., binlogs in MySQL).
 Efficient for incremental
- updates and streaming
- replication.

 Used in real-time analytics and event-driven systems.

PAGE 4