

Chap. 15) System Security

경희대학교 컴퓨터공학과

방재훈

Security Problem

There is no perfectly secure system!

- ✓ Protection can only increase the effort needed to do something bad. It cannot prevent it
- ✓ Every system has holes, it just depends on what they look like
- ✓ Even assuming a technically perfect system, there are always the four Bs:
 - Burglary: steal it
 - Bribery: find whoever has access to what you want and bribe them
 - Blackmail: or photograph them in a compromising position
 - Bludgeoning: or just beat them until they tell you

Security service

- ✓ CIA
 - Confidentiality
 - Integrity
 - Availability
- ✓ Authentication, Authorization, Access control, Nonrepudiation

Cracker's Basic Steps

- Gather information
 - ✓ as much information about your site as possible
- Use port scanner
 - ✓ to gather information about what services are running on hosts
 - ✓ Search for weak security services
- Get a login account
 - ✓ Doesn't matter whose account
- Get root privilege
 - ✓ Bugs in programs or badly configured systems
- Keep root privilege
 - ✓ Leave some sort of backdoor for future access

Physical Security

Hardware security

- ✓ Restrict access to equipments
 - Smart card (ID card)
 - Bio-metric access control

BIOS security

- ✓ Set a boot password
- ✓ Prevent booting from CD-ROM or floppy drives

Session security

- ✓ Some shells (e.g. tcsh) provide the automatic logout facility if there is no activity during the specified time period
- √ vlock (for locking a virtual terminal) / xlock
- ✓ Screen savers

Account Security

Authentication

- ✓ Make sure we know who we are talking to
- ✓ Usually done with passwords
 - First line of defense and single biggest security hole
- ✓ Problems in passwords:
 - Users who write their password on paper for all to see
 - Type password slowly that others can see
 - Dumb passwords like "password"
 - Passwords should be long and obscure unfortunately easily forgotten and usually written down
- ✓ Passwords should not be stored in a directly-readable form
 - Use some sort of one-way-transformation (a "secure hash") and store that
- ✓ Cf) CHAP (Challenge Handshake Authentication Protocol)

Account Security (Cont'd)

Authentication alternatives

- ✓ Some alternatives
 - Physical keys: badges, smart cards, ...
 - Biometric keys: Fingerprints, iris prints, facial profiles, voice prints, hand geometry, signature analysis ...
 - Passwords using images
- ✓ Should not be forgeable or copiable
- ✓ Can be stolen, but the owner should know if it is
 - Need to invalidate old one

Account Security (Cont'd)

Authorization

- ✓ Determine if x is allowed to do y
 - Can be represented as an "access matrix"
- ✓ Access control lists (ACLs)
 - With each object, indicate which users are allowed to perform which operations
 - Simple and used in almost all file systems
- √ Capabilities
 - With each users, indicate which resources may be accessed and in what ways
 - Frequently do both naming and protection: Can only "see" an object if you have a capability for it
 - Used in systems that need to be very secure

File System Security

Setuid/setgid programs

- ✓ Badly written setuid programs may contain a security hole
 - Know of all setuid and setgid programs on your system
 - Setuid programs that are not needed should be deleted
 - Never allow setuid/setgid files in user's home directories
 - Use nosuid option in fstab file for home file system and for NFS-mounted file system
 - Maintain a check on any new setuid programs:
 find / -type f -perm 2000 -o perm 4000 -o perm 6000
 - Never write setuid/setgid shell programs

File System Security (Cont'd)

Search paths

- ✓ Many users include the current directory in their search path
- ✓ A cracker could place programs with the same name as standard commands everywhere they have write access in directory hierarchy
 - The fake program may have malicious code, or capture data from the user pretending to be the real application
- ✓ Place current directory last in the path
 - Alternatively use full path names (e.g. /bin/su)
- ✓ Current directory SHOULD NOT be in the search path for root user

File System Security (Cont'd)

Other countermeasures

- ✓ Carefully specify default permissions: umask
- ✓ Put a limitation on the file system usage: quota
- ✓ Check file system integrity regularly: find, tripwire, ...
 - Files without known owners may indicate unauthorized access: find / -nouser -o nogroup
 - Files with "other" write permission (o+w) may indicate a problem: find / -type f —perm 2
- ✓ Use encrypted file system
 - CFS (Cryptographic File System)
 - TCFS (Transparent CFS), etc.
- ✓ Backup file system: tar, dd, ...
- ✓ Monitor system logs

Network Security

Use secure protocols

- ✓ Don't let the plain password float around the network
- ✓ Secure shell (ssh) suite of programs encrypts the communications of many of protocols
 - ssh (telnet), slogin (rlogin), sftp (ftp)
- ✓ Use secure http (https) for secure connection
- ✓ Secure Socket Layer (SSL) provides data encryption of all data that passes between clients and server
- ✓ IPsec protocol: encrypt every IP packet
 - Required for IPv6, optional for IPv4

Network Security (Cont'd)

TCP wrappers

- ✓ Monitors/filters Internet services such as telnet, ftp, finger, etc.
- ✓ Similar to Internet super daemon, inetd
- ✓ Before connecting the client to the service program, log the activity and check if it should be permitted
 - /etc/hosts.allow, /etc/hosts.deny
- ✓ You should be able to detect cracking intention or activity from the log.

Network Security (Cont'd)

Firewalls

- √ Firewall
 - Creates a filter or protective layer between an organization's internal networks and any external networks to which they are connected
- ✓ ipchain: packet filtering firewall
 - Examine each packet header to decide the action
 - e.g. block incoming ICMP echo requests:
 ipchains –A input –i eth0 –p icmp –s 0/0 –d 0/0 –l –j REJECT
- ✓ Proxy firewall
 - Standard: require client-side configuration. Client connects to a special port
 - Transparent: similar to packet filter firewall, but controls traffic

Firewall

- A firewall is placed between trusted and untrusted hosts
- The firewall limits network access between these two security domains

Security Threats

Physical threats

- ✓ Acts of nature: floods, fire, earthquake, explosion, etc.
- ✓ Intruder takes computers, dig up network cable, or access system consoles

Logical threats

- ✓ Caused by problems with computer software
 - Misuse by people (e.g. easy-to-guess passwords)
 - Bugs in programs or in their interaction with each other

Operational threats

- ✓ No security policy, incomplete enforcement
- Denial of service
 - ✓ Prevent computer from providing services through
 - wasting resources of computer
 - flooding services on your system, thus preventing them from providing service to legitimate clients

Dictionary attacks

- ✓ crack, nutcrack, John the Ripper, etc.
- ✓ crack program found 10-20% of passwords could be guessed, using a password list containing variations on login names, user's first and last names and a list of 1800 common first names

Login spoofing

- ✓ Simulate login process
- ✓ Need to have the login sequence start with a key combination that user programs cannot catch
 - CTRL-ALT-DEL in Windows 2000.

Trojan horses

- ✓ A seemingly innocent program contains code to perform an unexpected and undesirable function
- ✓ To have the Trojan horse run, the person planting it first has to get the program carrying it executed
 - Attract attention and encourage people to download and execute it

Logic bomb

- ✓ A piece of code written by one of a company's programmers and secretly inserted into the OS
- ✓ OK as long as the programmer feeds it its daily password
- ✓ If the programmer is suddenly fired, the logic bomb explodes
 - clear the disk, erase files at random, encrypt essential files, etc.

Trap door

- ✓ Created by the code inserted into the system by a system programmer to bypass some normal check
 - What happens if the programmer leaves the company?
 - Some special key sequences lead you to the "debug" mode in your mobile phone
- ✓ Need to have code reviews as standard practice.
- ✓ Difficult to do in open-source software

Stack and Buffer overflow

✓ What's the problem of the following codes?

```
void A(char *src)
   char B[1024];
   strcpy(B, src);
   printf(src); printf("\n");
int main(int argc, char *argv[])
   if (argc > 1) {
          A(argv[1]);
   return 0;
```


- Stack and Buffer overflow (Cont'd)
 - ✓ Do array bounds checking!

Virus and worms

- ✓ Virus is a program that can reproduce itself by attaching its code to another program
- ✓ Worms are like viruses but are also capable of spreading itself from machine to machine via network
- ✓ Types
 - memory resident viruses: e.g. intercept system call traps to infect other programs
 - boot sector viruses
 - device driver viruses: officially loaded at boot time
 - macro viruses: Microsoft Office

Malware

The Morris Internet Worm

Packet sniffing

- ✓ Listens to ethernet traffic over LAN
- ✓ Ethernet adapter in promiscuous mode
 - Need root privilege
- ✓ Can see all data passing between hosts on the network
- ✓ Can gather usernames and passwords
 - telnet, ftp, httpd, pop3, imap, etc.
- ✓ tcpdump and sniffit are software sniffers

IP spoofing

✓ Steal an authorized IP and use it

Cracker Host A Host B

Denial of service: internal attacks

- ✓ Use up all resources and make system crash
- ✓ Attacking resources: disk, memory, process, ...
- ✓ Examples
 - Shell script: while (1) { mkdir foo; cd foo; }
 - C: while (1) { fork(); ((int *) malloc(100000))[40] = 1; }
- ✓ Done by a local user, and in most cases by accident

Denial of service: external attacks

- ✓ Application level
 - Mail bombing
 - Buffer overflow
 - Java Applet attack
- ✓ Protocol level
 - TCP SYN flooding
 - Ping flooding
- ✓ Network level
 - UDP Storming
- Distributed DOS (DDOS)
 - ✓ Use multiple machines

Intrusion Detection

- Detect attempts to intrude into computer systems
- Detection methods:
 - ✓ Auditing and logging
 - ✓ Tripwire
 - UNIX software that checks if certain files and directories have been altered
 - I.e. password files
- System call monitoring

Basic Concept of Cryptography

What is cryptography

- ✓ The science of obfuscating data
- ✓ Can provide authentication, confidentiality, data integrity and etc.
- ✓ Cryptography algorithm is open, but key MUST be confidential

Two kinds of cryptography

- ✓ Shared key cryptography
- ✓ Public key cryptography

Basic Concept of Cryptography (Cont'd)

- Shared key cryptography
 - ✓ Both of peers share the same key
 - ✓ DES(Data Encryption Standard) (Cf. AES)
 - Bit operation (key size : 64bit, 128 bit)
 - Can provide authentication and confidentiality
 - How can distribute the shared key secret and keep it secret?

Basic Concept of Cryptography (Cont'd)

Public key cryptography

- ✓ Both of peers have its own private key and public keys.
- ✓ Key pair
 - well known 'Public Key' and secret 'Private Key'
- ✓ Can provide confidentiality and authentication
- ✓ RSA: well known algorithm (Cf. ECC)

Applied Cryptography for Network

Digital Signature

- ✓ minimize encryption processing
- √ for authentication & integrity (not confidentiality)

Applied Cryptography for Network (Cont'd)

Validity of key

- ✓ DES < several hours</p>
- ✓ RSA < several days
 </p>
- √ How can keep the connection secure?

Security

- ✓ System security
 - Create DES key every session
 - Transfer DES key by RSA security
- ✓ Connection (session) security
 - One time key created by DES
- ✓ applied for SSL, TLS, IPsec and etc.

Applied Cryptography for Network (Cont'd)

Key exchange

Data transfer

Virtual Private Network (VPN)

- Virtual
 - ✓ **No** physical infrastructure **dedicated** to the private network
- Private
 - ✓ Keep data confidential so that it can be received by an intended receiver.

VPN Technologies

- Tunneling
 - ✓ PPTP, L2TP, L2F, MPLS, IPsec and etc.
- Authentication
 - ✓ Radius, CHAP, PKI and etc.
- Access Control
 - ✓ PKI and etc.
- Data Security
 - ✓ IPsec, PKI, SSL, TSL and etc.

Mobile & Embedded System Lab. @ KHU

- Research topic: Mobile & Embedded System Security
 - ✓ Security for Mobile Systems
 - Android/iOS/Tizen
 - Malware analysis
 - ✓ Security for Embedded Systems
 - loT device security
 - Hardware-assisted security
 - Embedded Linux security

Security services

- ✓ Integrity
- ✓ Authentication
- ✓ Authorization
- ✓ Access control
- ✓ Confidentiality (cryptography)

Attacks

✓ Dictionary attacks, login spoofing, Trojan horses, logic bomb, trap door, stack and buffer overflow, virus and worms, packet sniffing, IP spoofing, DoS (Denial of Service), DDoS (Distributed DoS)

Summary (Cont'd)

Network security

- ✓ Secure protocols
 - IP layer: IPsec
 - Transport layer: SSL (Secured Sockets Layer), TLS (Transport Layer Security)
 - Application layer: ssh, sftp, https
- ✓ TCP wrappers
- ✓ Firewall
- ✓ IDS (Intrusion Detection System)

Cryptography

- ✓ Shared key cryptography
 - DES (Data Encryption Standard) algorithm
- ✓ Public key cryptography
 - Well-known Public key vs. secret Private key
 - RSA algorithm
- √ Digital signature

