Wigner 表示であそぼう

鳥居 優作

2016年4月20日

目次

1	はじめに	1
2	Wigner 関数	1
2.	.1 定義	1
2.		
2.	3 Wigner 関数の性質	2
3	Wigner 分布関数の時間発展	2
3.	$(\hat{A}\hat{B})_W$ の計算 \ldots	
3.	$f_W(q,p,t)$ の時間発展 \dots	3
4	具体的な問題	3
4.	.1 調和振動子系の Wigner-Moyal 方程式	3
4.	.2 数値計算	4

1 はじめに

Wigner 関数と呼ばれる表示を用いて運動の様子を見ることにする。量子の世界を古典的な分布関数の世界に置き換えて、直感的に物理を理解することが目的。誤植・間違った記述があるかもしれないので批判的に読んでください。

2 Wigner 関数

2.1 定義

Wigner 関数の定義は以下の通り:

$$f_W(q, p, t) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} ds \left\langle q - \frac{s}{2} \middle| \psi(t) \right\rangle \left\langle \psi(t) \middle| q + \frac{s}{2} \right\rangle e^{ips/\hbar}$$
 (2.1)

もしくは

$$f_W(q, p, t) = \int_{-\infty}^{\infty} d\overline{q}_{12} \langle q_1 | \psi(t) \rangle \langle \psi(t) | q_2 \rangle e^{-ip\overline{q}_{12}/\hbar}$$
(2.2)

とすることもできる.ここでは $q_{12}=(q_1+q_2)/2$, $\overline{q}_{12}=q_1-q_2$ である.

2.2 任意の演算子に対する Wigner 表示

任意の演算子 \hat{A} に対する Wigner 表示は

$$A_W(q_{12}, p) = \int_{-\infty}^{\infty} d\bar{q}_{12} \langle q_1 | \hat{A} | q_2 \rangle e^{-ip\bar{q}_{12}/\hbar}$$
(2.3)

である. ここで

$$\langle q_1 | \hat{A} | q_2 \rangle = \frac{1}{2\pi} \int dp A_W(q_{12}, p) e^{-ip\overline{q}_{12}}$$
 (2.4)

が成立している.

2.3 Wigner 関数の性質

3 Wigner 分布関数の時間発展

 $f_W(q,p,t)$ の時間発展方程式を導く. その準備として 2 つの演算子同士の積 $(\hat{A}\hat{B})$ の Wigner 変換がどのように計算できるかを考える.

$3.1 \quad (\hat{A}\hat{B})_W$ の計算

今回は式 (2.1) の流儀を採用する:

$$(\hat{A}\hat{B})_{W} = \int_{-\infty}^{\infty} ds \left\langle q - \frac{s}{2} \right| \hat{A}\hat{B} \left| q + \frac{s}{2} \right\rangle e^{ips/\hbar} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ds dq' \left\langle q - \frac{s}{2} \right| \hat{A} \left| q' \right\rangle \left\langle q' \right| \hat{B} \left| q + \frac{s}{2} \right\rangle e^{ips/\hbar} \quad (3.5)$$

ここで式 (2.4) を用いて変形する:

$$\frac{1}{(2\pi\hbar)^2} \int ds dq' dp' dp'' e^{ips/\hbar} e^{-ip'\left(q-q'-\frac{s}{2}\right)/\hbar} e^{-ip''\left(q'-q-\frac{s}{2}\right)/\hbar} A_W \left(\frac{q+q'}{2}-\frac{s}{4},p'\right) B_W \left(\frac{q+q'}{2}+\frac{s}{4},p''\right) (3.6)$$

 \exp の肩の変数に着目して A_W, B_W の変数を変形する:

$$\frac{1}{(2\pi\hbar)^2} \int ds dq' dp'' e^{ips/\hbar} e^{-ip'\left(q-q'-\frac{s}{2}\right)/\hbar} e^{-ip''\left(q'-q-\frac{s}{2}\right)/\hbar}
\times A_W \left(q + \frac{1}{2}\left(q'-q-\frac{s}{2}\right), p'\right) B_W \left(q - \frac{1}{2}\left(q-q'-\frac{s}{2}\right), p''\right)$$
(3.7)

これを並進演算子を用いて

$$\frac{1}{(2\pi\hbar)^{2}} \int ds dq' dp'' e^{ips/\hbar} e^{-ip'\left(q-q'-\frac{s}{2}\right)/\hbar} e^{-ip''\left(q'-q-\frac{s}{2}\right)/\hbar} \\
\times \left(e^{\frac{1}{2}\left(q'-q-\frac{s}{2}\right)\partial_{q}} A_{W}(q,p')\right) \left(e^{-\frac{1}{2}\left(q-q'-\frac{s}{2}\right)\partial_{q}} B_{W}(q,p'')\right) \tag{3.8}$$

と変形. さらに並進変換 $e^{a\partial_q}e^{pq}=e^{(p+a)q}$ を用いて

$$\frac{1}{(2\pi\hbar)^2} \int ds dq' dp'' e^{ips/\hbar} \times \left(A_W(q, p') e^{\frac{i\hbar}{2} \overleftarrow{\partial}_q \overrightarrow{\partial}_{p''}} e^{-ip'' \left(q' - q - \frac{s}{2}\right)/\hbar} \right) \left(e^{-ip' \left(q - q' - \frac{s}{2}\right)/\hbar} e^{-\frac{i\hbar}{2} \overleftarrow{\partial}_{p'} \overrightarrow{\partial}_q} B_W(q, p'') \right) \tag{3.9}$$

とする. ここで $\overleftarrow{\partial}$, $\overrightarrow{\partial}$ はそれぞれ左側, 右側に作用する演算子である. 次に q' の積分を計算する:

$$\frac{1}{2\pi\hbar} \int ds dp' dp'' e^{ips/\hbar} \times \left(A_W(q, p') e^{\frac{i\hbar}{2} \overleftarrow{\partial}_q \overrightarrow{\partial}_{p''}} e^{i(p'-p'')q/\hbar} \delta(p'' - p') e^{-\frac{i}{2}(p'' + p')s/\hbar} e^{-\frac{i\hbar}{2} \overleftarrow{\partial}_{p'} \overrightarrow{\partial}_q} B_W(q, p'') \right)$$
(3.10)

p" で積分:

$$\frac{1}{2\pi\hbar} \int ds dp' e^{ips/\hbar} \left(A_W(q, p') e^{\frac{i\hbar}{2} \overleftarrow{\partial}_q \overrightarrow{\partial}_{p'}} e^{-ip's/\hbar} e^{-\frac{i\hbar}{2} \overleftarrow{\partial}_{p'} \overrightarrow{\partial}_q} B_W(q, p') \right)$$
(3.11)

$$= \frac{1}{2\pi\hbar} \int ds dp' \Big(A_W(q, p') e^{\frac{i\hbar}{2} \overleftarrow{\partial}_q \overrightarrow{\partial}_{p'}} e^{i(p-p')s/\hbar} e^{-\frac{i\hbar}{2} \overleftarrow{\partial}_{p'} \overrightarrow{\partial}_q} B_W(q, p') \Big)$$
(3.12)

s で積分:

$$\int dp' \Big(A_W(q, p') e^{\frac{i\hbar}{2} \overleftarrow{\partial}_q \overrightarrow{\partial}_{p'}} \delta(p - p') e^{-\frac{i\hbar}{2} \overleftarrow{\partial}_{p'} \overrightarrow{\partial}_q} B_W(q, p') \Big)$$
(3.13)

最後に p' で積分:

$$\left(A_W(q,p)e^{\frac{i\hbar}{2}\overleftarrow{\partial}_q\overrightarrow{\partial}_p}e^{-\frac{i\hbar}{2}\overleftarrow{\partial}_p\overrightarrow{\partial}_q}B_W(q,p)\right)$$
(3.14)

つまり、 $e^{\frac{i\hbar}{2}\left(\overleftarrow{\partial}_{q}\overrightarrow{\partial}_{p}-\overleftarrow{\partial}_{p}\overrightarrow{\partial}_{q}\right)}=e^{\frac{i\hbar}{2}\Lambda}$ とおくと、

$$(\hat{A}\hat{B})_W = A_W(q, p)e^{\frac{i\hbar}{2}\Lambda}B_W(q, p) \tag{3.15}$$

$f_W(q, p, t)$ の時間発展

以上の結果を基に $f_W(q,p,t)$ の時間発展方程式を導く. Schrödinger 方程式

$$i\hbar\partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
 (3.16)

を用いて、式(2.2)の時間微分は以下のようにまとめられる:

$$i\hbar\partial_{t}f_{W}(q,p,t) = \int_{-\infty}^{\infty} d\overline{q}_{12} \langle q_{1}| i\hbar\partial_{t}(|\psi(t)\rangle \langle \psi(t)|) |q_{2}\rangle e^{-ip\overline{q}_{12}/\hbar}$$

$$= \int_{-\infty}^{\infty} d\overline{q}_{12} \langle q_{1}| i\hbar\partial_{t}(|\psi(t)\rangle) \langle \psi(t)|q_{2}\rangle e^{-ip\overline{q}_{12}/\hbar}$$
(3.17)

$$+ \int_{-\infty}^{\infty} d\overline{q}_{12} \langle q_1 | \psi(t) \rangle i\hbar \partial_t (\langle \psi(t) |) | q_2 \rangle e^{-ip\overline{q}_{12}/\hbar}$$
(3.18)

$$= \int_{-\infty}^{\infty} d\bar{q}_{12} \left\langle q_1 \middle| \left[\hat{H}, |\psi(t)\rangle \left\langle \psi(t) \middle| \right] \middle| q_2 \right\rangle e^{-ip\bar{q}_{12}/\hbar}$$
(3.19)

$$= (\hat{H} | \psi(t) \rangle \langle \psi(t) |)_W - (| \psi(t) \rangle \langle \psi(t) | \hat{H})_W$$
(3.20)

$$=H_W(q,p)e^{\frac{i\hbar}{2}\Lambda}f_W(q,p,t)-f_W(q,p,t)e^{\frac{i\hbar}{2}\Lambda}H_W(q,p)$$
(3.21)

4 具体的な問題

以上の定式化を具体的なモデルに落とし込み、数値計算で相空間上の運動を見る.

4.1 調和振動子系の Wigner-Moyal 方程式

ハミルトニアンを

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{q}^2 \tag{4.22}$$

とする. このハミルトニアンの Wigner 表示は

$$H_W(q,p) = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2 \tag{4.23}$$

である. これを (3.21) に代入:

$$i\hbar\partial_t f_W(q,p,t) = \left(\frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2\right) e^{\frac{i\hbar}{2}\Lambda} f_W(q,p,t) - f_W(q,p,t) e^{\frac{i\hbar}{2}\Lambda} \left(\frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2\right)$$
(4.24)

これを計算する. 面倒なので以下では $m=\omega=\hbar=1$ の単位系を採用.

$$\partial f_W(q, p, t) = (q\partial_p - p\partial_q)f_W(q, p, t) \tag{4.25}$$

のような偏微分方程式が導出される. これを数値的に解きたい.

4.2 数値計算

4.2.1 差分化

今回は簡単のため、普通に差分化する. 差分化した方程式は Moyal 方程式は

$$f(t_{n+1}) = k_1[q_l f(p_{m+1}) - p_m f(q_{l+1})] + [k_1(-q_l + p_m) + 1]f$$
(4.26)

となる. ここでいくつかの記号の省略ルールを示す:

- Wigner 表示の添字 W は省略
- ullet $f(q_l,p_m,t_n)$ のように差分化しており,q,p の幅は h_{qp},t の幅は $h_t.$
- $f(q_l, p_m, t_n) \rightarrow f, f(q_{l+1}, p_m, t_n) \rightarrow f(q_{l+1})$ などの表記を用いている.
- $h_t/h_{qp} = k_1$, $h_t/4h_{qp}^2 = k_2$.

これで数値計算が可能な形になった.

4.2.2 初期条件

初期関数として

$$f_0 = \sqrt{\frac{5}{\pi}} e^{5(q + \frac{1}{2})^2} \tag{4.27}$$

を用意する (やる気なさ過ぎ?). f_0 の Wigner 表示は

$$f_{0W} = \sqrt{\frac{2}{5\pi}} e^{-10(q^2 + q + \frac{p^2}{16} - \frac{1}{4})}$$
(4.28)

である.

この波束が調和型トラップによって振動するイメージ. もちろん、相空間上ではp方向の広がりもある.