CONCEPTOS DE BASES DE DATOS

Modelo Relacional (MR)

UNIDAD III

Departamento Ingeniería de Sistemas Facultad de Informática Universidad Nacional del Comahue

Introducción al MR

- Es un Modelo Lógicos basados en Registros.
- Esta basado en la lógica de predicado y en la teoría de conjuntos.
- Es el modelo más utilizado en la actualidad para modelar problemas reales y administrar datos dinámicamente.

Introducción al MR

El modelo relacional tiene que ver con tres aspectos de los datos:

Estructura de datos.

- Integridad de datos.
- Manejo de datos.

MR- Estructura de Datos

- En cuanto a la estructura de los datos veremos:
 - Relaciones
 - Propiedades de las relaciones
 - Claves
 - Esquema de una BD Relacional

- El modelo relacional se basa en el concepto matemático de relación, que gráficamente se representa mediante una tabla.
- Representa la base de datos como una colección de relaciones.

Persona

Nombre	Apellido	Dirección	
Juan	Perez	Av. Argentina 300	
Micaela	Lopez	Santa Fé 856	

- Relaciones: son las tablas (entidades y relaciones del MER).
- Atributos: son las columnas de la tabla (son los datos que representan las entidades o relaciones).
- Tipo de dato o Dominio del dato: es el conjunto de valores que pueden tener los atributos.
- Tuplas: es por lo que esta compuesta cada relación (son las filas de la tabla).

Antes de seguir... REPASEMOS!

Es la **RELACION** que modela a PERSONA

Persona

Persona

Nombre	Apellido	Dirección	
Juan	Perez	Av. Argentina 300	
Micaela	Lopez	Santa Fé 856	

Son las **TUPLAS** representado las personas reales

- Propiedades:
 - Cada relación tiene un nombre único.
 - Los valores de los atributos son atómicos, es decir que en cada tupla, cada atributo toma un solo valor.
 - No hay dos atributos que se llamen igual dentro de una misma relación.

- Propiedades:
 - El orden de los atributos no importa: los atributos no están ordenados.
 - Cada tupla es distinta de las demás: no hay tuplas duplicadas.
 - El orden de las tuplas no importa: las tuplas no están ordenadas.

Dijimos: "Cada tupla es distinta de las demás"

¿Cómo lo logramos?

- Sabemos que no puede haber tuplas repetidas, es decir, se deben identificar de modo único.
- La forma de identificarlas es mediante los valores de sus atributos.

 El concepto de claves permite diferenciar las tuplas

DNI	Nombre	Apellido	Legajo
17.456.123	Juan	Perez	44652
22.679.284	Lucrecia	Artos	44321
12.923.591	Marcela	Gomez	44539

¿Cuál podría ser la clave?

□ Claves Foráneas

- Es un atributo o un conjunto de atributos de una relación cuyos valores coinciden con los valores de la clave primaria de alguna otra relación.
- Sirven para representar relaciones entre los datos.

 Una PERSONA se relaciona con un DEPARTAMENTO ya que toda persona de mi empresa "TRABAJA" en un departamento.

ESTO SE LEE:

LOS DATOS DE LAS PERSONAS <u>HACEN REFERENCIA</u> A LOS DATOS DE LOS DEPARTAMENTOS

Conceptos de Bases de Datos

 El modelo relacional representa una base de datos como una colección de tablas.

Entonces, de un conjunto de entidades y relaciones pertenecientes a una representación del MER, obtendremos un conjunto de las tablas correspondientes a la información contenida en el MER.

- Derivación de Entidades
 - Crearemos una tabla por cada entidad incluida en el MER

PERSONAS (Legajo, TipoDoc, NroDoc, Apellido, Nombre, Dirección)

- Relaciones de 1 a 1
- Relaciones de 1 a Muchos (o Muchos a 1)
- Relaciones de Muchos a Muchos
- Relaciones con Atributos

Relaciones de 1 a 1

Para cada relación 1:1 entre dos entidades (no débiles) se agrega a la relación de alguna de las entidades, como clave foránea, la clave primaria de la otra entidad relacionada.

PROYECTOS (Número, Denominación, NroDpto *)

Clave

Foránea

DEPARTAMENTOS (NroDpto, Nombre)

Se especifica una restricción que define que la clave foránea agregada debe ser única (no se puede repetir). Si no, no estaríamos ante un caso 1:1

Relaciones de 1 a Muchos

Para cada relación 1: N entre dos entidades (no débiles) se agrega a la relación correspondiente a la entidad del lado N la clave primaria de la otra entidad relacionada

Clave

Foránea

PROYECTOS (Número, Denominación, NroDpto)

DEPARTAMENTOS (NroDpto, Nombre)

Relaciones de Muchos a Muchos

- Para cada vinculo M:N entre dos entidades se crea una relación R.
- Los atributos de la relación R serán las claves primarias de las entidades relacionadas más los atributos propios del vínculo.
- La clave primaria de la relación R será el conjunto de todos los atributos que sean claves primarias de las entidades relacionadas.

Cuántas claves primarias tiene? Claves Foráneas????

Conceptos de Bases de Datos

Relaciones Ternarias

Se aplican las reglas vistas en relaciones N:M, teniendo en cuenta las 3 entidades participantes de la relación

DOCENTES(Legajo, DNI, Apellido, Nombre)

CURSOS(ID, Nombre)

AULAS(Nro, Capacidad)

DICTA(Legajo, IDCurso, NroAula, Anio)

- Generalización Especialización
 - Crear una relación (tabla) R para la entidad padre E y una relación (tabla) R_i para cada entidad especializada E_i.
 - La relación (tabla) R tiene todos los atributos de la entidad E.
 - Cada relación (tabla) R_i tiene todos los atributos de la entidad E_i correspondiente.
 - Todas las relaciones (tablas) (tanto R como cada R_i) comparten la misma clave primaria de la entidad padre E.

Generalización - Especialización

Entidades Débiles

- Para cada entidad débil D y su respectivo vínculo con la entidad fuerte E se define una relación R.
- La relación R tiene todos los atributos de la entidad débil D más los atributos que conforman la clave primaria de la entidad fuerte E.
- La clave primaria de la relación R está formada por los atributos de la clave primaria de la entidad propietaria E más los atributos de la clave parcial de D.

Entidades Débiles

PRESTAMOS (NumPrestamo, ValorTotal)

PAGOS (NumPrestamo, NumPago, Monto)

Pensemos...

Cuál es la diferencia de una derivación 1:N entre entidades fuertes????

Se economiza la relación

Conceptos de Bases de Datos

MR - Ejercicio

Practiquemos con el ejercicio 1 del Practico 2:

Se desea modelar información referida a distribución de productos de electrónica. Se sabe que:

- Para cada cliente se almacenará: Numero de cliente (único), saldo, límite de crédito, descuento.
- Para cada fábrica: Número de fábrica (único) y teléfono de contacto.
- Para cada artículo: Número de artículo (único), descripción del artículo, fábricas que lo distribuyen y stock en cada fábrica.
- Además, un cliente puede tener muchas direcciones de envío. Cada dirección se compone de calle, número y localidad, cómo clave de la dirección de envío se eligió un ID único. Se restringe que una dirección pertenece a un único cliente.
- De cada pedido se sabe su número de pedido, una dirección de envío del cliente que realiza el pedido, fecha de pedido. Del pedido también se conoce el o los artículos pedidos juntos con sus cantidades.

Material de Lectura

Material en Pedco: Apunte Unidad III http://pedco.uncoma.edu.ar/file.php/1548/2014/Apuntes/Apunte_Unidad_3.pdf