

Perbandingan Berganda

Dosen: Dr. Utami Dyah Syafitri

Review FAKTOR TUNGGAL DALAM RAL, RAK, dan RBSL

ILUSTRASI (1) Faktor tunggal dalam RAL

Penerapan perlakuan terhadap unit percobaan dilakukan secara acak terhadap seluruh unit percobaan. Suatu percobaan dilakukan untuk melihat pengaruh empat jenis varietas gandum (V1, V2, V3, dan V4) terhadap produktivitas gandum (kg/plot). Masing-masing varietas diulang **lima** kali. Dengan demikian unit percobaan yang dilibatkan sebanyak 5x4 = 20 unit percobaan.

Sumber					
keragaman	db	JK	KT	Fhit	$F_{0.05(3,16)}$
Varietas	3	188.200	62.733	5.690	3.24
Galat	16	176.400	11.025	Tol	ak Ho
Total	19	364.600		101	akiio

Mana yang berbeda? V1 dg V2, V1 dg V3, V1 dg V4, dst

ILUSTRASI (2) Faktor tunggal dalam RAKL

- Suatu percobaan melibatkan tiga varietas baru (V2, V3, V4) dan satu varietas standar (V1)
- Dengan mempertimbangkan lahan yang digunakan, peneliti memutuskan menggunakan rancangan acak kelompok lengkap dengan jumlah blok sebanyak tiga
- Respon yang diukur adalah produktivitas

Sumber						
keragaman	db	JK	KT	Fhit	Ftabe	1
Perlakuan	3	6,63	2,21	5 , 525	F(0,05;3;6)	4,76
Kelompok	2	9,78	4,89	12,225	F90,05;2;6)	5,14
Galat	6	2,4	0,4			
Total	11	18,81				

Tolak Ho

Mana yang berbeda? V1 dg V2, V1 dg V3, V1 dg V4, dst

Uji lanjut

ILUSTRASI (3) Faktor tunggal dalam RBSL

Suatu penelitian melibatkan 4 perlakuan (A,B,C,D), dimana penempatan perlakuan diacak berdasarkan posisi baris dan lajur. Dengan demikian diperlukan empat posisi baris dan empat posisi lajur. Oleh karena posisi perlakuan tersarang pada posisi baris dan lajur maka banyak unit percobaan yang diperlukan adalah 4x4 unit percobaan.

Sumber keragaman	JK	db	KT	Fhit	Ftabel
Baris	12.67	3	4.22	6.21*	4.76
Kolom	14.24	3	4.75	6.98*	
Perlakuan	27.21	3	9.07	13.34*	
Galat	4.08	6	0.68		
Total	58.21	15		Tolak H	10

Mana yang berbeda? P1 dg P2, P1 dg P3, P1 dg P4, dst

Perbandingan Berganda (Multiple Comparison)

Perbandingan terencana

LSD, Bonferonni, Kontras, & Polinomial ortogonal

LSD, Tukey, Duncan

Note: Uji lanjut dilakukan jika uji F signifikan pada α tertentu

Kembali ke ilustrasi (1) percobaan produktivitas gandum

Descriptive Statistics: Produktivitas/plot

Variable	Varietas	N	Mean	SE Mean	StDev
Produktivitas/plot	V1	5	20.40	1.66	3.71
	V2	5	28.60	1.84	4.12
	V3	5	22.40	1.21	2.70
	V4	5	25.00	1.10	2.47

Uji Least Significance Difference (LSD) atau Beda Nyata Terkecil (BNT)

Hipotesis yang diuji: H0: $\mu_I = \mu_j$ vs H1: $\mu_i \neq \mu_j$

Statistik uji:

$$LSD = t_{\alpha/2(dbG)} s_d$$

- → Ulangan sama: $s_d = \sqrt{\frac{2KTG}{r}}$
- → Ulangan tidak sama: $s_d = \sqrt{KTG(\frac{1}{r_i} + \frac{1}{r_j})}$
- \rightarrow Tolak H0 jika $|x_i x_i| > LSD$

Penyelesaian (1)

Hipotesis yang diuji: H0: $\mu_1 = \mu_2$ vs H1: $\mu_1 \neq \mu_2$

Statistik uji:

Ulangan sama:

$$s_{d} = \sqrt{\frac{2KTG}{r}} = \sqrt{\frac{2(11)}{5}} = 2,098$$

$$LSD = t_{\alpha/2(dbG)} s_{d} = t_{0.025(16)} 2.098$$

$$= (2.120)(2.098) = 4.447$$

Keputusan: Karena $|\bar{x}_1 - \bar{x}_2| = |20.4-28.6| = 8.2 >$ **LSD** = **4.447** maka Tolak H0.

Artinya rataan varietas 1 dan 2 berbeda

Penyelesaian (2)

• Hipotesis yang diuji: H0: $\mu_2 = \mu_3$ vs H1: $\mu_2 \neq \mu_3$

Keputusan: Karena $|\bar{x}_2 - \bar{x}_3| = |28.6-22.4| = 6.2 > LSD = 4.447$ maka Tolak H0. Artinya rataan produltivitas varietas 2 dan 3 berbeda pada taraf signifikan 5%.

• **Hipotesis yang diuji**: H0: $\mu_1 = \mu_3$ vs H1: $\mu_1 \neq \mu_3$

Keputusan: Karena $|\bar{x}_1 - \bar{x}_3| = |20.4-22,4| = 2 < LSD = 4.447$ maka belum cukup bukti untuk menolak H0. Artinya rataan produtivitas varietas 1 dan 3 sama

Misused of LSD

 Digunakan untuk membandingkan berdasarkan data, sebagai misal membandingkan dua perlakuan yang mempunyai rataan terbesar dan terkecil

• Membuat semua kemungkinan perbandingan rataan perlakuan -> jika terdapat k perlakuan makanya banyak perbandingan adalah g = k(k-1)/2, sehingga family error rate sebesar 1-(1- α) g

Family vs Individual error rate of LSD

Banyakny a grup	Banyaknya perbandinga n (g)	Individu al error rate	Family error rate
2	2	0.05	0.050
3	3	0.05	0.143
4	6	0.05	0.265
5	10	0.05	0.401
6	15	0.05	0.537
7	21	0.05	0.659
8	28	0.05	0.762

Departemen Statistika FMIPA IPB

Kapan sebaiknya menggunakan LSD atau BNT?

- Selected pairwise comparison
- Valid untuk dua kondisi:
 - Digunakan untuk perbandingan yang terencana, sebagai misal membandingkan perlakuan baru dengan kontrol
 - Digunakan untuk "adjacent ranked means", suatu prosedur untuk menentukan yang terbaik (pick the winner)

Contoh kasus (1)

 Suatu percobaan dilakukan untuk membandingkan lima insektisida baru dengan standar insektisida yang ada sebagai kontrol. Masingmasing insektisida disemprotkan ke dalam suatu tempat yang terdapat 100 ekor lalat. Setelah 5 menit, dihitung berapa banyak lalat yang mati. Masing-masing perlakuan diulang tiga kali

Data yang diperoleh sbb:

Insektisida	Rata-rata lalat yang terbunuh	Beda baru-kontrol		
Kontrol	10	-		
1	30	20		
2	15	5		
3	12	2		
4	25	15		
5	35 25			
	KTG = 54			

Ujilah apakah tingkat efektifitas masing-masing insektisida yang baru berbeda dibandingkan dengan kontrol? Gunakan taraf nyata 5%

Penyelesaian

$$s_d = \sqrt{(2 \text{ KTG / r})} = \sqrt{(2 (54)/3)} = 6$$

$$dbG = p(r-1) = 6(3-1) = 12$$

LSD =
$$t_{\alpha/2(dbG)}$$
 $s_d = t_{0.025(12)}$ $s_d = (2.179)(6) = 13.073$

Hipotesis yang diuji:

1. H₀: μ₀=μ₁ vs H₁: μ₀≠μ₁

2. H₀:
$$\mu_0 = \mu_2$$
 vs H₁: $\mu_0 \neq \mu_2$

3. H₀:
$$\mu_0 = \mu_3$$
 vs H₁: $\mu_0 \neq \mu_3$

4. H₀:
$$\mu_0 = \mu_4$$
 vs H₁: $\mu_0 \neq \mu_4$

5. Ho:
$$\mu_0 = \mu_5$$
 vs H1: $\mu_0 \neq \mu_5$

Keputusan:

1.
$$|\overline{y_0} - \overline{y_1}| = 20 > LSD^*$$
, Tolak H0

2.
$$|\overline{y_0} - \overline{y_2}| = 5 < LSD$$
, Terima H0

3.
$$|\overline{y_0} - \overline{y_3}| = 2 < LSD$$
, Terima H0

4.
$$|\overline{y_0} - \overline{y_4}| = 15 > LSD^*$$
, Tolak H0

5.
$$|\overline{y_0} - \overline{y_5}| = 25 > LSD^*$$
, Tolak H0

Kesimpulan: insektisida yang memberikan tingkat efektifitas yang berbeda dibandingkan dengan kontrol adalah insektisida 1, 4, dan 5

Contoh kasus (2)

·Seorang pemulia ingin mengetahui tingkat resistensi 6 varietas gandum terhadap serangan suatu jamur. Masing-masing varietas ditanam pada 4 pot yang berbeda dengan 5 benih untuk masing-masing pot. Sehingga secara total terdapat 24 pot.

Data yang diperoleh sbb:

Varietas	Peringkat (i)	Rataan respon (g/pot)	Beda y _{i-1} - y _i						
6	1	95-3							
4	2	94	1.3						
5	3	75	19						
2	4	69	6						
1	5	50.3	18.7						
3	6	24	26.3						
KTG = 120									

Tabel t-student

21

22

23

24

25 26

27

28

29

30

31

32

33

34

35 36 37

38

39

40

41

42

43

44

45

47

48

0.6864

0.6858

0.6853

0.6848

0.6844

0.6840

0.6837

0.6834

0.6830

0.6828

0.6822

0.6820

0.6818

0.6816

0.6814

0.6812

0.6810

0.6807

0.6805

0.6802

0.6801

0.6800

0.6799

0.6796

0.6795

1.3232

1.3212

1.3195

1.3178

1.3163

1.3150

1.3137

1.3125

1.3114

1.3104

1.3095

1.3086

1.3077

1.3070

1.3062

1.3055

1.3049

1.3042

1.3036

1.3031

1.3025

1.3020

1.3016

1.3011

1.3007

1.3002

1.2998

1.2994

1.2991

t-Student	-			t ₀	_	
				-0		
Grados de libertad	0.25	0.1	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3137	12.7062	31.8210	63.6559
2	0.8165	1.8856	2.9200	4.3027	6.9645	9.9250
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8408
4	0.7407	1.5332	2.1318	2.7765	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9979	3.4995
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.6884	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.6876	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.6870	1.3253	1.7247	2.0860	2.5280	2.8453

1.7207

1.7171

1.7139

1.7109

1.7081

1.7056

1.7033

1.7011

1.6991

1.6973

1.6955

1.6939

1.6924

1.6909

1.6896

1.6883

1.6871

1.6860

1.6849

1.6839

1.6829

1.6820

1.6811

1.6802

1.6794

1.6787

1.6772

1.6766

2.0687

2.0639

2.0595

2.0555

2.0518

2.0484

2.0452

2.0423

2.0369

2.0345

2.0301

2.0281

2.0262

2.0244

2.0227

2.0211

2.0195

2.0167

2.0154

2.0141

2.0106

2.0096

2.8314

2.8188

2.8073

2.7970

2.7874

2.7787

2.7707

2.7633

2.7564

2.7500

2.7440

2.7385

2.7333

2.7284

2.7238

2.7195

2.7154

2.7116

2.7079

2.7045

2.7012

2.6981

2.6951

2.6923

2.6896

2.6870

2.6846

2.6822

2.6800

2.5176

2.5083

2.4922

2.4851

2.4727

2.4671

2.4620

2.4573

2.4448

2.4345

2.4314

2.4286

2.4258

2.4233

2.4208

2.4066

2.4049

Penyelesaian

$$s_d = \sqrt{(2 \text{ KTG / r})} = \sqrt{(2 (120)/4)} = 7.746$$

$$dbG = p(r-1) = 6(4-1) = 18$$

LSD =
$$t_{\alpha/2(dbG)}$$
 $s_d = t_{0.025(18)}$ $s_d = (2.101)(7.746) = 16.274$

Hipotesis yang diuji:

1. Ho: $\mu_6 = \mu_4$ vs H1: $\mu_6 \neq \mu_4$

2. Ho:
$$\mu_4 = \mu_5$$
 vs H1: $\mu_4 \neq \mu_5$

3. H₀:
$$\mu_5 = \mu_2$$
 vs H₁: $\mu_5 \neq \mu_2$

4. Ho:
$$\mu_2 = \mu_1$$
 vs H1: $\mu_2 \neq \mu_1$

5. H₀:
$$\mu_1 = \mu_3$$
 vs H₁: $\mu_1 \neq \mu_3$

Keputusan:

1.
$$|\overline{y_6} - \overline{y_4}| = 1.3 > LSD$$

2.
$$|\overline{y_4} - \overline{y_5}| = 19 < LSD*$$

3.
$$|\overline{y_5} - \overline{y_2}| = 6 < LSD$$

4.
$$|\overline{y_2} - \overline{y_1}| = 18.7 > LSD*$$

5.
$$|\overline{y_1} - \overline{y_3}| = 26.3 > LSD*$$

Kesimpulan: Tingkat resistensi yang berbeda antara varietas 4 dan 5, varietas 1 dan 2, serta varietas 1 dan 3

Uji Tukey (BNJ=Beda Nyata Jujur)

- Dikenal tidak terlalu sensitif → baik digunakan untuk memisahkan perlakuanperlakuan yang benar-benar berbeda
- Perbedaan mendasar dgn LSD terletak pada penentuan nilai α , dimana jika misalnya ada 4 perlakuan dan ditetapkan $\alpha = 5\%$, maka setiap pasangan perbandingan perlakuan akan menerima kesalahan sebesar: $\alpha / (2x6)\% = 0.413\%$.

$$BNJ = q_{\alpha;p;dbg} s_{\overline{Y}}$$
 $s_{\overline{Y}} = \sqrt{KTG/r}$

• Jika jumlah ulangan tidak sama, nilai r dapat didekati dengan rataan harmonik (r_h):

$$r_h = \frac{t}{\sum_{i=1}^{t} 1/r_i}$$

Langkah pembandingan Tukey

- Urutkan rataan perlakuan dari yang terkecil sampai yang terbesar atau sebaliknya
- 2. Nilai awal i=1 (dari kiri) dan j =1 (dari kanan)
- 3. Hitung beda antara rataan perlakuan terkecil ke-i dengan terbesar ke-j kemudian bandingkan dengan nilai BNJ, jika beda rataan perlakuan lebih kecil lanjutkan ke langkah 5 dan jika tidak lanjutkan ke langkah 4
- 4. Berikan j = j+1, jika j<p kembali ke langkah 3
- 5. Garis mulai rataan perlakuan ke-i sampai ke perlakuan ke-j
- 6. Berikan i = i+1, jika i<p kembali ke langkah 3
- 7. Stop

Lihat kembali contoh kasus 2

- Misalkan dari semua kombinasi, ingin mengetahui varietas mana yang berbeda
- Penyelesaian:

$$s_{\bar{Y}} = \sqrt{KTG/r} = \sqrt{120/4} = 5.477$$

$$BNJ = q_{(\alpha;p;dbg)} s_{\bar{Y}} = q_{(0.05;6;18)} s_{\bar{Y}}$$

$$= (4.49)(5.477) = 24.593$$

Tabel Tukey

Table: Q scores for Tukey's method

	$\alpha = 0.05$										$\alpha =$	0.01							
k df	2	3	4	5	6	7	8	9	10	k df	2	3	4	5	6	7	8	9	10
1	18.0	27.0	32.8	37.1	40.4	43.1	45.4	47.4	49.1	1	90.0	135	164	186	202	216	227	237	246
2	6.08	8.33	9.80	10.88	11.73	12.43	13.03	13.54	13.99	2	13.90	19.02	22.56	25.37	27.76	29.86	31.73	33.41	34.93
3	4.50	5.91	6.82	7.50	8.04	8.48	8.85	9.18	9.46	3	8.26	10.62	12.17	13.32	14.24	15.00	15.65	16.21	16.71
4	3.93	5.04	5.76	6.29	6.71	7.05	7.35	7.60	7.83	4	6.51	8.12	9.17	9.96	10.58	11.10	11.54	11.92	12.26
.5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99	5	5.70	6.98	7.80	8.42	8.91	9.32	9.67	9.97	10.24
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49	6	5.24	6.33	7.03	7.56	7.97	8.32	8.61	8.87	9.10
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16	7	4.95	5.92	6.54	7.00	7.37	7.68	7.94	8.17	8.37
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92	8	4.75	5.64	6.20	6.62	6.96	7.24	7.47	7.68	7.86
9	3.20	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74	9	4.60	5.43	5.96	6.35	6.66	6.91	7.13	7.33	7.49
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60	10	4.48	5.27	5.77	6.14	6.43	6.67	6.87	7.05	7.21
11	3.11	3.82	4.26	4.57	4.82	5.03	5.20	5.35	5.49	11	4.39	5.15	5.62	5.97	6.25	6.48	6.67	6.84	6.99
12	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.27	5.39	12	4.32	5.05	5.50	5.84	6.10	6.32	6.51	6.67	6.81
13	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.32	13	4.26	4.96	5.40	5.73	5.98	6.19	6.37	6.53	6.67
14	3.03	3.70	4.11	4.41	4.64	4.83	4.99	5.13	5.25	14	4.21	4.89	5.32	5.63	5.88	6.08	6.26	6.41	6.54
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20	15	4.17	4.84	5.25	5.56	5.80	5.99	6.16	6.31	6.44
16	3.00	3.65	4.05	4.33	4.56	4.74	4.90	5.03	5.15	16	4.13	4.79	5.19	5.49	5.72	5.92	6.08	6.22	6.35
17	2.98	3.63	4.02	4.30	4.52	4.70	4.86	4.99	5.11	17	4.10	4.74	5.14	5.43	5.66	5.85	6.01	6.15	6.27
18	2.97	3.61	4.00	4.28	4.49	4.67	4.82	4.96	5.07	18	4.07	4.70	5.09	5.38	5.60	5.79	5.94	6.08	6.20
19	2.96	3.59	3.98	4.25	4.47	4.65	4.79	4.92	5.04	19	4.05	4.67	5.05	5.33	5.55	5.73	5.89	6.02	6.14
20	2.95	3.58	3.96	4.23	4.45	4.62	4.77	4.90	5.01	20	4.02	4.64	5.02	5.29	5.51	5.69	5.84	5.97	6.09
24	2.92	3.53	3.90	4.17	4.37	4.54	4.68	4.81	4.92	24	3.96	4.55	4.91	5.17	5.37	5.54	5.69	5.81	5.92
30	2.89	3.49	3.85	4.10	4.30	4.46	4.60	4.72	4.82	30	3.89	4.45	4.80	5.05	5.24	5.40	5.54	5.65	5.76
40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.73	40	3.82	4.37	4.70	4.93	5.11	5.26	5.39	5.50	5.60
60	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.65	60	3.76	4.28	4.59	4.82	4.99	5.13	5.25	5.36	5.45
120	2.80	3.36	3.68	3.92	4.10	4.24	4.36	4.47	4.56	120	3.70	4.20	4.50	4.71	4.87	5.01	5.12	5.21	5.30
- 00	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39	4.47	- 00	3.64	4.12	4.40	4.60	4.76	4.88	4.99	5.08	5.16

Hipotesis yang diuji:

H0: $\mu_i = \mu_j$ vs H1: $\mu_I \neq \mu_j$, untuk semua i,j

 $i=4, j=1 | \overline{y_5} - \overline{y_6} | = 20.3 < BNJ$

Hasil pembandingan:

i=1					j=1
$\overline{y_3}$	$\overline{y_1}$	$\overline{y_2}$	$\overline{y_5}$	$\overline{\mathcal{y}_4}$	$\overline{y_6}$
24	50.3	69	75	94	95.3

Keputusan:

 $i=1, j=5 | \overline{y_3} - \overline{y_1} | = 26.3 > BNJ*$

$$i=1, j=1 | \overline{y_3} - \overline{y_6}| = 71.3 > BNJ^*$$
 $i=2, j=1 | \overline{y_1} - \overline{y_6}| = 45 > BNJ^*$ $i=3, j=1 | \overline{y_2} - \overline{y_6}| = 70 > BNJ^*$ $i=1, j=2 | \overline{y_3} - \overline{y_4}| = 70 > BNJ^*$ $i=2, j=2 | \overline{y_1} - \overline{y_4}| = 43.7 > BNJ^*$ $i=3, j=2 | \overline{y_2} - \overline{y_4}| = 51 > BNJ^*$ $i=1, j=3 | \overline{y_3} - \overline{y_5}| = 75 > BNJ^*$ $i=2, j=3 | \overline{y_1} - \overline{y_5}| = 24.7 > BNJ^*$ $i=3, j=3 | \overline{y_2} - \overline{y_5}| = 6 < BNJ$ $i=1, j=4 | \overline{y_3} - \overline{y_2}| = 45 > BNJ^*$ $i=2, j=4 | \overline{y_1} - \overline{y_2}| = 18.7 < BNJ$

Kesimpulan

Varietas 1 dan 2 mempunyai tingkat resistensi yang sama sedangkan varietas 1 dan varietas 5 mempunyai tingkat resistensi yang sama. Disisi lain kelompok varietas 4, 5, dan 6 juga mempunyai tingkat resistensi yang sama.

Uji Duncan (DMRT=Duncan Multiple Range Test)

 Memberikan segugus nilai pembanding yang nilainya meningkat sejalan dengan jarak peringkat dua bua perlakuan yang akan diperbandingkan

$$R_p = r_{\alpha;p;dbg} s_{\overline{Y}}$$
 $s_{\overline{Y}} = \sqrt{KTG/r}$

dimana $r_{\alpha;p;dbg}$ adalah nilai tabel Duncan pada taraf α , jarak peringkat dua perlakuan p, dan derajat bebas galat sebesar dbg.

• Jika jumlah ulangan tidak sama, nilai r dapat didekati dengan rataan harmonik (r_h) seperti sebelumnya.

Tabel Duncan

Table 8 Upper $\alpha = 0.05$ points of Duncan's multiple range tests

					k				
df	2	3	4	5	6	7	8	9	10
1	17.969	17.969	17.969	17.969	17.969	17.969	17.969	17.969	17.969
2	6.085	6.085	6.085	6.085	6.085	6.085	6.085	6.085	6.085
3	4.501	4.516	4.516	4.516	4.516	4.516	4.516	4.516	4.516
4	3.926	4.013	4.033	4.033	4.033	4.033	4.033	4.033	4.033
5	3.635	3.749	3.796	3.814	3.814	3.814	3.814	3.814	3.814
6	3.460	3.586	3.649	3.680	3.694	3.697	3.697	3.697	3.697
7	3.344	3.477	3.548	3.588	3.611	3.622	3.625	3.625	3.625
8	3.261	3.398	3.475	3.521	3.549	3.566	3.575	3.579	3.579
9	3.199	3.339	3.420	3.470	3.502	3.523	3.536	3.544	3.547
10	3.151	3.293	3.376	3.430	3.465	3.489	3.505	3.516	3.522
11	3.113	3.256	3.341	3.397	3.435	3.462	3.480	3.493	3.501
12	3.081	3.225	3.312	3.370	3.410	3.439	3.459	3.474	3.484
13	3.055	3.200	3.288	3.348	3.389	3.419	3.441	3.458	3.470
14	3.033	3.178	3.268	3.328	3.371	3.403	3.426	3.444	3.457
15	3.014	3.160	3.250	3.312	3.356	3.389	3.413	3.432	3.446
16	2.998	3.144	3.235	3.297	3.343	3.376	3.402	3.422	3.437
17	2.984	3.130	3.222	3.285	3.331	3.365	3.392	3.412	3.429
18	2.971	3.117	3.210	3.274	3.320	3.356	3.383	3.404	3.421
19	2.960	3.106	3.199	3.264	3.311	3.347	3.375	3.397	3.415
20	2.950	3.097	3.190	3.255	3.303	3.339	3.368	3.390	3.409
21	2.941	3.088	3.181	3.247	3.295	3.332	3.361	3.385	3.403
22	2.933	3.080	3.173	3.239	3.288	3.326	3.355	3.379	3.398
23	2.926	3.072	3.166	3.233	3.282	3.320	3.350	3.374	3.394
24	2.919	3.066	3.160	3.226	3.276	3.315	3.345	3.370	3.390
25	2.913	3.059	3.154	3.221	3.271	3.310	3.341	3.366	3.386
26	2.907	3.054	3.149	3.216	3.266	3.305	3.336	3.362	3.382
27	2.902	3.049	3.144	3.211	3.262	3.301	3.332	3.358	3.379
28	2.897	3.044	3.139	3.206	3.257	3.297	3.329	3.355	3.376
29	2.892	3.039	3.135	3.202	3.253	3.293	3.326	3.352	3.373
30	2.888	3.035	3.131	3.199	3.250	3.290	3.322	3.349	3.371
31	2.884	3.031	3.127	3.195	3.246	3.287	3.319	3.346	3.368
32	2.881	3.028	3.123	3.192	3.243	3.284	3.317	3.344	3.366
33	2.877	3.024	3.120	3.188	3.240	3.281	3.314	3.341	3.364
34	2.874	3.021	3.117	3.185	3.238	3.279	3.312	3.339	3.362
35	2.871	3.018	3.114	3.183	3.235	3.276	3.309	3.337	3.360
36	2.868	3.015	3.111	3.180	3.232	3.274	3.307	3.335	3.358
37	2.865	3.013	3.109	3.178	3.230	3.272	3.305	3.333	3.356
38	2.863	3.010	3.106	3.175	3.228	3.270	3.303	3.331	3.355
39	2.861	3.008	3.104	3.173	3.226	3.268	3.301	3.330	3.353
40	2.858	3.005	3.102	3.171	3.224	3.266	3.300	3.328	3.352
48	2.843	2.991	3.087	3.157	3.211	3.253	3.288	3.318	3.342
60	2.829	2.976	3.073	3.143	3.198	3.241	3.277	3.307	3.333
80	2.814	2.961	3.059	3.130	3.185	3.229	3.266	3.297	3.323
120	2.800	2.947	3.045	3.116	3.172	3.217	3.254	3.286	3.313
240	2.786	2.933	3.031	3.103	3.159	3.205	3.243	3.276	3.304
Inf	2.772	2.918	3.017	3.089	3.146	3.193	3.232	3.265	3.294

Lihat kembali contoh kasus 2

 Misalkan dari semua kombinasi, ingin mengetahui varietas mana yang berbeda

• Penyelesaian:
$$s_{\bar{y}} = \sqrt{KTG/r} = \sqrt{120/4} = 5.477$$

$$R_6 = r_{(0.05;6;18)} s_{\bar{Y}} = (3.32)(5.477) = 18.184$$

 $R_5 = r_{(0.05;5;18)} s_{\bar{Y}} = (3.27)(5.477) = 17.911$
 $R_4 = r_{(0.05;4;18)} s_{\bar{Y}} = (3.21)(5.477) = 17.582$
 $R_3 = r_{(0.05;3;18)} s_{\bar{Y}} = (3.12)(5.477) = 17.089$
 $R_2 = r_{(0.05;2;18)} s_{\bar{Y}} = (2.97)(5.477) = 16.267$

Hipotesis yang diuji:

H0: $\mu i = \mu j$ vs H1: $\mu i \neq \mu_j$, untuk semua i,j

• Hasil pembandingan:

$\frac{i=1}{y_3}$	7/-	<u>v</u> -	V.	<u>v.</u>	j=1
24	50.3	<i>y</i> ₂ 69	$\overline{y_5}$ 75	y ₄ 94	у ₆ 95.3

Keputusan:
$$|\mathbf{z}| = 1, |\mathbf{z}| = 1, |\mathbf{z}$$

Kesimpulan

Varietas 4 dan 6 mempunyai tingkat resistensi yang sama, sedangkan kombinasi lainnya mempunyai tingkat resistensi yang berbeda

Terima kasih