Collaborative filtering for drug discovery

Dumitru Erhan

Department of Computer Science and Operations Research
University of Montreal

Credits

- Pierre-Jean L'Heureux
- Yoshua Bengio
- Olivier Delalleau
- Shi-Yi Yue & AstraZeneca

Motivation

- amazon.com
 - Customer ratings, tags
 - ullet Customers also bought TM
 - What do customers ultimately buy?
 - Items to go with / items instead of
- last.fm, radiolibre.ca
 - Ratings
 - Recommended artists, songs
- **\$\$\$**

Motivation II

- Preferences of a user == 1 task
- Preferences of many users == many tasks
- Previous work:
 - Multi-task NNets (Caruana)
 - Bayesian approaches (Baxter)
 - Theory (Baxter)
 - "Modern" (==kernel) ways (Evgeniou)
- Learn a new task by using intelligently information from other tasks

Drug Discovery

- Complicated, expensive process
- High-Throughput Screening (\$\$\$)
- Interested in QSAR (Quantitative structure-activity relationship)
- Bunch of molecules ("items"), a target ("user")
- Virtual Screening (saves \$\$\$)

Drug Discovery II

- Assume:
 - lots of molecules
 - a family of "related" targets
 - a new target
- Dense "user-item" ratings table
- Few rows
- Predict new (very long!) row

Formally speaking

- Data:

 - lacksquare M targets $t_j, j = 1 \dots M$
 - lacksquare Set of ratings/activity values R_{ij}
- Accuracy function: Lift
- Wanted: a model that generalizes well to data for a new target wrt to the accuracy function

The Lift

- ightharpoonup N = number of molecules
- a_s = number of actives at a given thr.
- $N_s =$ number of molecules at a given thr.
- Lift = $100 \cdot \frac{a_s/N_s}{a/N}$

Testing hypotheses

- Given a multi-target dataset
- For each target:
 - TrainValidSet = OtherTData [+ DataFromThisT]
 - TestSet = TheRestOfDataFromThisT
- Two cases:
 - 1. tfraction = 0, is Lift > 100?
 - 2. tfraction > 0, is Lift > single-target Lift?

Neural Network Approach

Figure 1: Collaborative Filtering Neural Network

Kernel Approach

- What if we defined two kernels:
 - 1. $K_X(x_i, x_k)$
 - **2.** $K_T(t_j, t_m)$
- and combined them?
- Correct way of doing it:

$$K[(x_i, t_j), (x_k, t_m)] = K_X(x_i, x_k) \cdot K_T(t_j, t_m)$$

- Tensor product in the feature space
- Kernels: identity, gaussian, correlation, quadratic, polynomial, etc.

JRank

- Kernel Perceptron Ranker
- A set of learned parameters for each pair:

$$F((x_{new}, t_{new}); \alpha) = \sum_{i,j} \alpha_{i,j} K([(x_{new}, t_{new}), (x_i, t_j)]$$

- A set of learned thresholds used for ordinal regression (by binning F)
- Standard perceptron algorithm, updates when the bin is wrong

Support Vector Machine

- Interpret dataset as classification problem
- Can then use the standard SVM routines:

$$W(\alpha) = \sum_{i,j} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K[(\mathbf{x}, \mathbf{t})_i, (\mathbf{x}, \mathbf{t})_j]$$

- Problem 1: explosion in number of datapoints
- Problem 2: quadratic optimization problem
- Problem 3: choice of kernels limited

Target selection

- Problem: VERY BIG dataset
- Select "related" targets by "direct activity correlation"

Figure 2: Pairwise Correlation of Biological Activ-

Experimental Results – NNet

Experimental Results – JRank

Experimental Results – SVM

Experimental Results – Comparison

Experimental Results V

- tfraction = 0: 3 out of 7 targets with Lifts = 130...160
- NNet & JRank: lifts are close to 100
- Degree of influence

Discussion

- MT NNet and MT JRank don't work as expected
- MT SVM works as well as ST SVM (which is state-of-the-art)
- Encouraging fact: at tfraction=0 Lifts are > 100
- Means "inductive transfer" is happening!
- Need to find better way to exploit it

Future Work

- Other target descriptors + more targets
- Better NNet
- Better kernels
- Ordinal regression with SVM, other SVM approaches

Conclusions

- Collaborative filtering
- Learning a new task
- Drug discovery
- Virtual screening, new target
- NNets, JRank, SVMs

The Conclusion

It's all about the Benjamins!

(with apologies to Puff Daddy)

References

- Rich Caruana, "Multitask Learning." *Machine Learning*, vol. 28(1), pp. 41–75, 1997.
- Jonathan Baxter, "A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling." *Machine Learning*, vol. 28(1), pp. 7–39, 1997.
- Jonathan Baxter, "A Model of Inductive Bias Learning.", J. Artif. Intell. Res. (JAIR), vol. 12, pp. 149–198, 2000
- Theodoros Evgeniou and Massimiliano Pontil, "Regularized multi–task learning". KDD 2004, pp. 109–117
- Justin Basilico and Thomas Hofmann, "Unifying collaborative and content-based filtering." ICML 2004.