Root Finding

Trial and Error

Start with x_0 (initial guess)

- 1. Guess x₁ (trial)
- 2. Is $|x_1 x_0| < \epsilon$? (error) \leftarrow 3. Improve x_4
- 3. Improve x₁

iterate until

$$|x_1 - x_0| < \varepsilon$$

$$a < x_0 < b$$

 $f(a) > 0$ and $f(b) < 0$

$$f(a) > 0$$
 and $f(c) < 0$
 $a < x_0 < c$

Note:

$$f(c) < 0$$
 and $f(b) < 0$

so root x_0 is not in [c, b]

$$f(a) > 0$$
 and $f(d) < 0$
 $a < x_0 < d$

Note:

$$f(c) < 0$$
 and $f(d) < 0$

so root x_0 is not in [d, c]

$$f(e) > 0$$
 and $f(d) < 0$
 $e < x_0 < d$

Note:

$$f(a) > 0$$
 and $f(e) > 0$

so root x_0 is not in [a, e]

Bisection Algorithm

Start with x₀ (initial guess)

- 1. bisect x₁
- 2. pick half with sign change
- 3. is $|x_1 x_0| < \varepsilon$?

$$x = \frac{1}{2}(a+b)$$

$$\begin{aligned} &\text{if} \quad f(a)f(x) < 0 \\ & x_0 \in [a,x] \\ & b \leftarrow x \\ & \text{else} \\ & x_0 \in [x,b] \\ & a \leftarrow x \end{aligned}$$

Newton-Raphson Algorithm

 \mathcal{X}_0 initial guess for root \mathcal{X} updated guess

$$x = x_0 + \Delta x$$

correction?

$$f(x = x_0 + \Delta x) \approx f(x_0) + \Delta x \frac{df}{dx} \Big|_{x_0}$$

$$f(x_0) + f'(x_0)\Delta x = 0$$

$$\Delta x = -\frac{f(x_0)}{f'(x_0)}$$

while
$$|f(x)| > \epsilon$$
 or $|x_n - x_{n-1}| > \epsilon$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_1)}$$

Newton-Raphson Advantages

Pros:

- Converges quickly (quadratic), hence fast
- Works best with analytical derivative (but you can use numerical ones

Cons:

- starting guess must be close to root
- can fail to converge in certain situations

Newton-Raphson Failure Mode

Newton-Raphson Failure Mode

