Name: Esraa Nasser Abobakr Ali Email: esraanasser95@hotmail.com **Project:** Implementing EDF Scheduler

Analytical Methods

Tasks	Period	Execution Time	Number of occurrences in hyperperiod
Button_1_Monitor	50 ms	2.1 us	2
Button_2_Monitor	50 ms	2.1 us	2
Periodic_Transmitter	100 ms	55.7 us	1
UART_Receiver	20 ms	21 us	5
Load_1_Simulation	10 ms	5 ms	10
Load_2_ Simulation	100 ms	11.84 ms	1

1-Hyperperiod

Hyperperiod is the least common multiplier of all Periods= 100 ms

2-CPU Load

CPU Load= sum (tasks execution time * Times of task running during period)/period time

=
$$[(0.0021*2) + (0.0021*2) + (0.055*1) + (0.021*5) + (5*10) + (11.84*1)]/100=62.01%$$

3-System schedulability

A-using Rate Monotonic utilization bound

$$U = \sum_{i=1}^n \frac{C_i}{P_i} \leq n(2^{\frac{1}{n}} - 1) \qquad \begin{array}{l} \text{U = Total Utilization} \\ \text{C = Execution time} \\ \text{P = Periodicity} \\ \text{N = Number of tasks} \end{array}$$

R.H.S (URM) = n [2 $^{(1/n)}$ - 1] = 6 [2 $^{(1/6)}$ - 1] = 0.7347=73.47% L.H.S (U) = CPU load =62.01% Since U < URM (50.2% < 73.47%) then, System is Schedulable.

B- Using Time Demand Analysis

$$w_i(t) = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{p_k} \right\rceil e_k \quad \textit{for } 0 < t \leq p_i \quad \text{W = Worst response time} \\ \text{E = Execution time} \\ \text{P = Periodicity} \\ \text{T = Time instance}$$

T1{P:50, E:2.1us, D:50}

T2{P:50, E:2.1us, D:50}

T3{P:100, E:55.7us, D:100}

T4{P:20, E:21us, D:20}

T5{P:10, E:5ms, D:10}

T6{P:100, E:11.84ms, D:100

Reordering our tasks based on priorities

Tasks		Period	Execution Time	Priority
Button_1_Monitor	T1	50 ms	2.1 us	1
Button_2_Monitor	T2	50 ms	2.1 us	1
Periodic_Transmitter	T3	100 ms	55.7 us	0
UART_Receiver	T4	20 ms	21 us	2
Load_1_Simulation	T5	10 ms	5 ms	3
Load_2_ Simulation	T6	100 ms	11.84 ms	0

T5 =W
$$(10)$$
 = 5+0 = 5 ms < 10 ms
Load 1 Simulation task is schedulable

T4 =W (20) =
$$0.021+(20/10)$$
 *5 = $10.021 < 20$ MS UART Receiver task is schedulable.

T1 =W (50) =
$$0.0021+(50/10)$$
 *5+ $(50/20)$ * 0.021 = 25.0546 <50 Button 1 Monitor task is schedulable.

Button 2 Monitor task is schedulable.

T3 =W (100) = 0.0557+(100/10)*5+(100/20)*0.021+(100/50)*0.0021+(100/50)*0.0021=50.1691<100Periodic Transmitter task is schedulable.

T6 =W (100) = 11.84+(100/10) *5+(100/20) * 0.021+(100/50) * 0.0021+(100/50) * 0.0021+(100/100) *0.0557=62.0091 <100 Load 2 Simulation task is schedulable.

Then, System is Schedulable.

SEMSO

Keil

