(A)
$$\frac{5}{6}$$

(B)
$$\frac{3}{5}$$

(C)
$$\frac{\sqrt{2}}{3}$$

(D)
$$\frac{\sqrt{5}}{3}$$

64 of 91 CONICSECTION 2. The equation of the ellipse with its centre at (1, 2), focus at (6, 2) and passing through the point (4, 6)

(A)
$$\frac{(x-1)^2}{45} + \frac{(y-2)^2}{20} = 1$$

(B)
$$\frac{(x-1)^2}{20} + \frac{(y-2)^2}{45} = 1$$

(C)
$$\frac{(x-1)^2}{25} + \frac{(y-2)^2}{16} = 1$$

(D)
$$\frac{(x-1)^2}{16} + \frac{(y-2)^2}{25} = 1$$

The eccentricity of the ellipse which meets the straight line $\frac{x}{7} + \frac{y}{2} = 1$ on the axis of x and the straight 3.

line $\frac{x}{3} - \frac{y}{5} = 1$ on the axis of y and whose axes lie along the axes of coordinates, is

(A)
$$\frac{3\sqrt{2}}{7}$$

(B)
$$\frac{2\sqrt{6}}{7}$$

(C)
$$\frac{\sqrt{3}}{7}$$

The curve represented by x = 3 (cos $t + \sin t$), y = 4 (cos $t - \sin t$), is (A) ellipse (B) parabola (C) hyperbola

FREE Download Study Package from website: www.tekoclasses.com Minimum area of the triangle by any tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ with the coordinate axes is

(A)
$$\frac{a^2 + b^2}{2}$$

(B)
$$\frac{(a+b)^2}{2}$$

(D)
$$\frac{(a-b)^2}{2}$$

A circle has the same centre as an ellipse & passes through the focii F_1 & F_2 of the ellipse, such that the two curves intersect in 4 points. Let 'P' be any one of their point of intersection. If the major axis of the ellipse is 17 & the area of the triangle PF_1F_2 is 30, then the distance between the focii is:

Q is a point on the auxiliary circle corresponding to the point P of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2}$ of the perpendicular dropped from the focus S onto the tangent to the auxiliaryy circle at Q then the ∆ SPT is :

(A) isosceles

- (B) equilateral
- (C) right angled
- (D) right isosceles

x - 2y + 4 = 0 is a common tangent to $y^2 = 4x & \frac{x^2}{4} + \frac{y^2}{h^2} = 1$. Then the value of 'b' and the other common tangent are given by:

(A)
$$b = \sqrt{3}$$
; $x + 2y + 4 = 0$

(B)
$$b = 3$$
; $x + 2y + 4 = 0$

(C)
$$b = \sqrt{3}$$
; $x + 2y - 4 = 0$

(D)
$$b = \sqrt{3}$$
; $x - 2y - 4 = 0$

10.

common tangent are given by:

(A) $b = \sqrt{3}$; x + 2y + 4 = 0(B) b = 3; x + 2y + 4 = 0(C) $b = \sqrt{3}$; x + 2y - 4 = 0(D) $b = \sqrt{3}$; x - 2y - 4 = 0The locus of point of intersection of tangents to an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the points whose the sum of eccentric angles is constant, is:

(A) a hyperbola

(B) an ellipse

(C) a circle

(D) a straight line

A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{x^2}{18} + \frac{y^2}{32} = 1$ intersects the major & minor axes in points

A & B respectively. If C is the centre of the ellipse, then the area of the triangle ABC is:

(A) 12 sq. units

(B) 24 sq. units

(C) 36 sq. units

(D) 48 sq. units

The normal at a variable point P on an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ of eccentricity 'e' meets the axes of the ellipse in Q and R then the locus of the mid-point of QR is a conic with an eccentricity e' such that:

(A) e' is independent of e 11.

(B)
$$e' = 1$$

(C)
$$e' = e'$$

(D)
$$e' = 1/e$$

	12.	v = mx + c is a norma	I to the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2}$	= 1. if c^2 is equal to :		LION
		$(a^2 - b^2)^2$	(B) $\frac{(a^2 - b^2)^2}{a^2 m^2}$	$(a^2 - b^2)^2 m^2$	$(a^2 - b^2)^2 m^2$	NICSECTION
		(A) $\frac{1}{a^2m^2 + b^2}$	$(B) \frac{1}{a^2m^2}$	(C) $\frac{1}{a^2+b^2m^2}$	$(D) \frac{1}{a^2 m^2 + b^2}$	NO
	13.	An arc of a bridge is se highest part of the brid from the centre of the (A) 11/4 m	lge is 3 meter from the h	axis horizontal. The leng norizontal. The best app (C) 7/2 m	pth of the base is 9 meter and the proximation of the Pillar 2 meter (D) 2 m	65 of 91 CC
	14.	Point 'O' is the centre ellipse. If OF = 6 & the	of the ellipse with major diameter of the inscribe	or axis AB & minor axis ed circle of triangle OCF	CD. Point F is one focus of the is 2, then the product (AB) (CD)) ()
		IS (A) 64	(B) 12	(C) 65	(D) 3	Ξ
_	15.	principal axes. Then: (A) Ellipse bulges	to a circle les a line segment betwo	·	sum of the lengths of its sem	1, внор
www.tekoclasses.com	16.	The locus of the point	which divided this line i	into portions of lengths	xed perpendicular straight lines a & b is: (D) none of these e angle between the normals a	22
teka	17.	The line $2x + y = 3 cu$ these points, then tan	ts the ellipse $4x^2 + y^2 = \theta$	5 at P and Q. If θ be the	e angle between the normals a	t 68 6
W.		(A) 1/2	(B) 3/4	(C) 3/5	(D) 5	o,
-	18.	are		+ $y^2 = 2$, then the possible $(C) \left\{ -2, \frac{1}{2} \right\}$	e values of the slope of this chord [IIT – 2003] $(D) \begin{cases} 2 - \frac{1}{2} \end{cases}$	32 00 000,
websi	19.	(A) {-1, 1} A tangent is drawn to	o ellipse $x^2 + 2y^2 = 2$.	,	point of portion of the tangent	<u>.</u>
I Study Package from website:		intercepted between c (A) $\frac{1}{2x^2} + \frac{1}{4y^2} = 1$	(B) $\frac{1}{4x^2} + \frac{1}{2y^2} = 1$	(C) $\frac{x^2}{2} + \frac{y^2}{4} = 1$	[IIT - 2004] (D) $\frac{x^2}{4} + \frac{y^2}{2} = 1$	Sir) PH: (0
	20.	$x^2 + 2y^2 = 2$ between th	Int of the intercept of the coordinate axes, is $(B) \frac{1}{4x^2} + \frac{1}{2y^2} = 1$		an external point to the ellipse [IIT - 2004] $(D) \frac{1}{2v^2} + \frac{1}{v^2} = 1$	(S. R. K.
	21.	^ ,	semi-minor axis, F and	2, ,	FBF' is a right angle. Then, the [IIT - 2005]	KARIYA
vnloae	21. Part : ((A) $\frac{1}{4}$	(B) $\frac{1}{\sqrt{3}}$	(C) $\frac{1}{\sqrt{2}}$ (D) $\frac{1}{2}$		R. K
Dov	Part : ((A) $\frac{1}{4}$ (B) $\frac{1}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{2}}$ (D) $\frac{1}{2}$ (B) May have more than one options correct The tangent at any point 'P' on the standard ellipse with focil as S & S' meets the tangents at the				
FREE	22.	The tangent at any povertices A & A' in the (A) (AV) (A'V') = b^2 (C) \angle V'SV = 90^9	pint 'P' on the standard points $V \& V'$, then :	ellipse with focii as S (B) (AV) (A' V') = a ² (D) V' S' VS is a cycli	& S' meets the tangents at the c quadrilateral	MATHS : SU
	23.	Identify the statements which are True. (A) the equation of the director circle of the ellipse, $5x^2 + 9y^2 = 45$ is $x^2 + y^2 = 14$. (B) the sum of the focal distances of the point $(0, 6)$ on the ellipse $\frac{x^2}{25} + \frac{y^2}{36} = 1$ is 10.				
		(B) the sum of the	e focal distances of the	point (0 [,] 6) on the ellips	$e^{\frac{X^2}{25}} + \frac{y^2}{36} = 1 \text{ is } 10.$	
		(C) the point of inflies on the tan	tersection of any tanger gent at the vertex.	nt to a parabola & the pe	erpendicular to it from the focus again in the point $(at_2^2, 2 at_2)$ if	တ္တ
	24.	· =)	rametric equation is $x = (B) x^2 + 6x - y + 8 = (D) y^2 + 6x - 2y + 4 = (D) x^2 + 6x - 2y + 4 = (D) x^2 + 6x - 2y + 4 = (D) x^2 + 6x - 2y + 4 = (D) x^2 + $		

(C)
$$\tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{1-e}{1+e}$$

(D)
$$\tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{\sqrt{a^2 - b^2}}{b^2} [a - \sqrt{a^2 - b^2}] \text{ when } a > b$$

26. If the distance between the focii of an ellipse is equal to the length of its latus rectum, the eccentricity of the ellipse is:

(A)
$$\frac{\sqrt{5}+1}{2}$$

(B)
$$\frac{\sqrt{5}-1}{2}$$

(C)
$$\frac{\sqrt{5}-2}{2}$$

(D)
$$\frac{2}{\sqrt{5}+1}$$

XERCISE-

- 98930 58881, BHOPAL, (M.P.) Let use consider an ellipse whose major and minor axis are 3x + 4y - 7 = 0 and 4x - 3y - 1 = 0 respectively 'P' be a variable point on the ellipse at any instance, it is given that distance of 'P' from major and minor axis are 4 and 5 respectively. It is also given that maximum distance of 'P' from minor axis is $5\sqrt{2}$, then find its eccentricity.
 - Prove that the area of the triangle formed by the three points on an ellipse, whose eccentric angle are

$$\theta$$
, ϕ , and ψ , is 2 ab $\sin \frac{\phi - \psi}{2} \sin \frac{\psi - \theta}{2} \sin \frac{\theta - \phi}{2}$

- Find the equation of tangents to the ellipse $\frac{x^2}{50} + \frac{y^2}{32} = 1$ which passes through a point (15, –4)
- FREE Download Study Package from website: www.tekoclasses.com + $\frac{y^2}{32}$ = 1 which passes through a point (15, -4).

 = 1 in such a way that tangent at 'P' intersect x = $\frac{25}{3}$ gh a fixed point. Find that fixed point.

 If the ends of major axis in the points T and T'. Prove hrough the foci of the ellipse. If 'P' be a moving point on the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ in such a way that tangent at 'P' intersect x = at Q then circle on PQ as diameter passes through a fixed point. Find that fixed point
 - Any tangent to an ellipse is cut by the tangents at the ends of major axis in the points T and T'. Prove that the circle, whose diameter is TT' will pass through the foci of the ellipse.
 - tangents at P and Q
 - Find the equation of the largest circle with centre (1, 0) that can be inscribed in the ellipse $x^2 + 4y^2 = 16$.
 - If P is a variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose foci are S and S', then prove that the locus

of the incentre of $\triangle PSS'$ is an ellipse whose eccentricity is $\sqrt{\frac{2e}{1+e'}}$ where e is the eccentricity of the given ellipse.

- MATHS : SUHAG R. KARIYA (S. R. K. The tangent at a point P (a cos θ , b sin θ) of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, meets its auxiliary circle in two points, the chord joining which subtends a right angle at the centre. Show that the eccentricity of the ellipse is $(1 + \sin^2\theta)^{-1/2}$.
- A circle of radius r is concentric with the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Prove that the common tangent is inclined to the major axis at an angle $\tan^{-1} \sqrt{\left(\frac{r^2 b^2}{a^2 r^2}\right)}$. 10.

11. 'a' & 'b' respectively. A line OPQ is drawn to cut the inner circle in P & the outer circle in Q. PR is drawn parallel to the y-axis & QR is drawn parallel to the x-axis. Prove that the locus of R is an ellipse touching the two circles. If the focii of this ellipse lie on the inner circle, find the ratio of inner: outer radii & find also the eccentricity of the ellipse.

line,
$$px + qy + 1 = 0$$
 is $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right) (p^2a^2 + q^2b^2 - 1) = (px + qy + 1)^2$.

- 15.
- Common tangents are drawn to the parabola $y^2 = 4x$ & the ellipse $3x^2 + 8y^2 = 48$ touching the parabola at A & B and the ellipse at C & D. Find the area of the quadrilateral.

 A tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets the ellipse $\frac{x^2}{a} + \frac{y^2}{b} = a + b$ in the points P and Q; prove that the tangents at P and Q are at right angles.

 Let P be a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for which the area of the Δ PON is the maximum where O is the origin and N is the foot of the perpendicular from O to the tangent at P. Find the maximum area and eccentric angle of point P.
- Find the equation of the largest circle with centre (1, 0) that can be inscribed in the ellipse $x^2 + 4y^2 = 16$. [IIT 1999]
- PH: (0755)- 32 Let P be point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, 0 < b < a. Let the line parallel to y-axis passing through P meet the circle $x^2 + y^2 = a^2$ at the point Q such that P and Q are on the same side of x-axis. For two positive real numbers r and s. Find the locus of the point R on PQ such that PR: RQ = r: sas P varies over the ellipse. [IIT - 2001]
- Prove that in an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre TEKO CLASSES, H.O.D. MATHS : SUHAG R. KARIYA (S. R. K. Sir) of the ellipse to the point of contact meet on the corresponding directrix.

nswers

- **10.** B 11. C **12.** C
- **16.** A **17.** B
 - **18.** A **19.** A **20.** B **21.** C
- **4.** (3,0) **6.** $\left(\frac{25}{4},\frac{16}{3}\right)$ **11.** $\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}$

(M.P.)

24. AB 25. ABD **22.** ACD **23.** ACD **26.** BD

18.
$$(x-1)^2 + y^2 = \frac{11}{3}$$
 19. $\frac{x^2}{a^2} + \frac{y^2(r+s)^2}{(ra+sb)^2} = 1$