Electrodynamics

Daniel T. McGuiness, PhD

Version: $\epsilon.1.000$

MCI

Table of Contents

Table of Contents

First Steps

Introduction

Final Examination

Point Distribution

Table of Contents

Resources

- The goal of this lecture is to give you the fundamentals of electrodynamics and improve your mathematical methods of solving problems.
- This lecture is a total of 2 SWS with a total of thirty (30) hours.
- There is a written exam at the end of the lecture series.
- There is **NO** assignment for this course

- The exam will consists of topics discussed in the lecture.
- You will be given the necessary functions and definitions needed to solve the questions.
- NO custom documents and/or formula sheets will be allowed.
 - You are allowed to bring a calculator to the exam.
- The exam will take 90 mins and will focus on more numerical aspects of electrodynamics.

Assessment Type	Overall Points	Breakdown	%
Final Exam	100		
		Q1	25
		Q2	25
		Q3	25
		Q4	25

Table 1: Assessment Grade breakdown for the lecture.

Covered Topic	Appointment
The Point of Electromagnetism	1
Vector Algebra	2 - 3
Electrostatics	4
Electric Fields in Matter	4
Magnetostatics	5
Magnetic Fields in Matter	6
Electrodynamics	6 - 7
Charge and Energy	8
Electromagnetic Waves	8 - 9

Table 2: Distribution of materials across the semester.

The Point of Electromagnetism

- The Four realms of Mechanics,
- History of Electromagnetism,
- The Four fundamental Forces,
- Unification of Electricity and Magnetism.

Vector Algebra

- Gradient,
- Divergence,
- Curl,
- Line Integrals.

Electrostatics

- The Electric Field,
- Curl and Divergnece of **E**,
- Electric Potential,
- Work and Energy.

Advanced Mathematical Methods

- Laplaces Equation,
- Method of Images,
- Separation of Variables,
- Multipole Expansion.

Electric Fields in Matter

- Polarisation,
- The Field of a Polarised object,
- The Four fundamental Forces,
- Dielectric Material Properties.

Magnetostatics

- Lorentz Force Law,
- Steady Currents,
- Divergence and Curl of **B**,
- Vector Potential.

Magnetic Fields in Matter

- Dia, Para, and Ferro magnets
- The Field of a Polarised object,
- Field of a Magnetised object,
- Auxiliary Field H.

Electrodynamics

- Electromotive Force
- Electromagnetic Induction,
- Maxwell's Equations,

Charge and Energy

- The continuity equation
- Poynting's Theorem,
- Newton's 3rd Law revised.

Electromagnetic Waves

- Waves in 1D
- EM Waves in a Vacuum
- Absorption and Dispersion,
- Wave guides.

Books

- Maggiore Michele "A modern introduction to classical electrodynamics" Oxford University Press (2023).
- Griffiths David J. "Introduction to Electrodynamics (4th Edition)" Cambridge University Press (2023).
- Cheng David Keun. "Field and Wave Electromagnetics" Pearson Education India (1989).
- Schaum's Electromagnetics