













Aromatic group participation





 $k_2/k_1 = 10^{11}$ 

Norbornene Solvolysis occurs with complete retention of stereochemistry!





$$( )_{n} \stackrel{\mathsf{E}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{V}, \mathsf{\delta}, \mathsf{\epsilon}...-\\ \mathsf{elimination} \\ \hline (n = 0, 1, 2, ...) \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{B} \\ \mathsf{B} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{B} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{A}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{C}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{C}}{\longrightarrow} \underbrace{ \begin{array}{c} \mathsf{A} \\ \mathsf{C} \end{array} }_{(n = 0, 1, 2, ...)} ( )_{n} \stackrel{\mathsf{C}}{\longrightarrow} \underbrace{$$

general mechanism for E1 elimination

rate = k[alkyl halide]



general mechanism for E2 elimination

rate =  $k[B^-][alkyl halide]$ 



### (Stereoselective reaction)

Me



(For steric reasons, E-alkenes are

⊕
usually lower in energy than Z-alkenes)
○H₂



The new  $\pi$ -bond can only form if the vacant p-orbital of the

Carbocation and breaking C-H bond are aligned parallel.

### **E**1

#### Two steps

- 1) C-LG breaks
- 2) C-H breaks C-C (pi) forms



#### **Carbocation** intermediate

Carbocation stabilized by electron **donating** groups

Assisted by **good** leaving groups

No strict requirement on stereochemistry of C–H and C–LG



of bicyclic structure

PhMgBr HO Ph 
$$H_2SO_4, H_2O$$
 Ph  $H_2O_4$  Ph  $H_2O_4$ 



H and Br must be anti-periplanar for E2 elimination: two possible conformations



**E2** 

### One step

C-H breaks, C-C (pi) forms C-LG breaks, all at same time



No intermediate (concerted)

C-H and C-LG are anti





### Eliminations of quaternary ammonium salts



### E1cB, Step 1:



 $\alpha$  = alpha carbon (attached to LG)

 $\beta$  = beta carbon (attached to H)

E1cB, Step 2:

base

to LG)  $\beta$  = beta carbon

 $\alpha$  = alpha carbon (attached

conjugate base

LG = leaving group (e.g. Br)

#### **Bonds Bonds Formed Broken**

 $C_{\beta}-H$ 

**Bonds** 

**Broken** 

 $C_{\alpha}$ -LG

B-H

 $C_{\alpha}-C_{\beta}(\pi)$ 

**Bonds Formed** 



alkene product

LG = leaving group (e.g. Br)

### E1cB

Two steps

- 1) C-H breaks
- 2) C-LG breaks C-C (pi) forms



#### **Carbanion** intermediate

Carbanion stabilized by electron withdrawing groups

Assisted by **poor** leaving groups

No strict requirement on stereochemistry of C-H and C-LG

# Summary of alkyl halide reactivity

|                    | Poor nucleophile<br>(e.g. H <sub>2</sub> O, ROH) <sup>a</sup> | Weakly basic nucleophile (e.g. I <sup>-</sup> , RS <sup>-</sup> ) | Strongly basic,<br>unhindered nucleophile<br>(e.g. RO <sup>-</sup> ) | Strongly basic,<br>hindered nucleophile<br>(e.g. DBU, DBN, <i>t</i> -BuO <sup>-</sup> |
|--------------------|---------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $H_3C-X$           | no reaction                                                   | S <sub>N</sub> 2                                                  | S <sub>N</sub> 2                                                     | S <sub>N</sub> 2                                                                      |
| H <sub>3</sub> C X | no reaction                                                   | S <sub>N</sub> 2                                                  | S <sub>N</sub> 2                                                     | E2                                                                                    |
| X                  | no reaction                                                   | S <sub>N</sub> 2                                                  | E2                                                                   | E2                                                                                    |
| <b>&gt;</b> _x     | S <sub>N</sub> 1, E1 (slow)                                   | S <sub>N</sub> 2                                                  | E2                                                                   | E2                                                                                    |
| ->-x               | E1 or S <sub>N</sub> 1                                        | S <sub>N</sub> 1, E1                                              | E2                                                                   | E2                                                                                    |
|                    | E1cB                                                          | E1cB                                                              | E1cB                                                                 | E1cB                                                                                  |