

Prof. S. Shakya

- If the future states of a process are independent of the past and depend only on the present, the process is called a Markov process
- A discrete state Markov process is called a Markov chain.
- A Markov Chain is a random process with the property that the next state depends only on the current state.

- Since the system changes randomly, it is generally impossible to predict the exact state of the system in the future.
- However, the statistical properties of the system's future can be predicted.
- In many applications it is these statistical properties that are important current state depends only the current state.
- M/M/m queues can be modeled using Markov processes.
- The time spent by the job in such a queue is Markov process and the number of jobs in the queue is a Markov chain.

A simple example is the nonreturning random walk, where the walkers are restricted to not go back to the location just previously visited.

Markov chains is a mathematical tools for statistical modeling in modern applied mathematics, information science

Why Study Markov Chains?

Markov chains are used to analyze trends and predict the future. (Weather, stock market, genetics, product success, etc.

100

Markov Chains

As we have discussed, we can view a stochastic process as sequence of random variables

$$\{X_1, X_2, X_3, X_4, X_5, X_6, X_7, \ldots\}$$

Suppose that X_7 depends only on X_6 , X_6 depends only on X_5 , X_5 on X_4 , and so forth. In general, if for all i,j,n,

$$P(X_{n+1} = j | X_n = i_n, X_{n-1} = i_{n-1}, ..., X_0 = i_0) = P(X_{n+1} = j | X_n = i_n),$$

then this process is what we call a Markov chain.

M

Markov Chains

- •The conditional probability above gives us the probability that a process in state i_n at time n moves to i_{n+1} at time n + 1.
- •We call this the transition probability for the Markov chain.
- •If the transition probability does not depend on the time n, we have a stationary Markov chain, with transition probabilities

$$P_{ij} = P(X_{n+1} = j | X_n = i)$$

Now we can write down the whole Markov chain as a matrix P:

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ P_{21} & P_{22} & \dots & P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n1} & P_{n2} & & P_{nn} \end{bmatrix}$$

M

Markov Chains

The probability of going from state i to state j in n time steps is

$$p_{ij}^{(n)} = \Pr(X_n = j \mid X_0 = i)$$

and the single-step transition is

$$p_{ij} = \Pr(X_1 = j \mid X_0 = i).$$

For a time-homogeneous Markov chain:

$$p_{ij}^{(n)} = \Pr(X_{n+k} = j \mid X_k = i)$$

and

$$p_{ij} = \Pr(X_{k+1} = j \mid X_k = i).$$

Key Features of Markov Chains

- A sequence of trials of an experiment is a Markov chain if
 - 1) the outcome of each experiment is one of a set of discrete states;
 - the outcome of an experiment depends only on the present state, and not on any past states;
 - 3) the transition probabilities remain constant from one transition to the next.

■ The Markov chain has network structure much like that of website, where each node in the network is called a state and to each link in the network a transition probability is attached, which denotes the probability of moving from the source state of the link to its destination state.

- The process attached to a Markov chain moves through the states of the networks in steps, where if a any time the system is in state i, then with probability equal to the transition probability from state i, to state j, it moves to state j.
- We will model the transitions from one page to another in a web site as a Markov chain.
- The assumption we will make, called Markov property, is that the probability of moving from source page to a destination page doesn't depend on the route taken to reach the source.

M

Internet application

- The <u>PageRank</u> of a webpage as used by <u>Google</u> is defined by a Markov chain.
- It is the probability to be at page i in the stationary distribution on the following Markov chain on all (known) webpages. If N is the number of known webpages, and a page i has k_i links then it has transition probability $\frac{\alpha}{k_i} + \frac{1-\alpha}{N}$

for all pages that are linked to and $\frac{1-\alpha}{N}$ for all pages that are not linked to.

The parameter α is taken to be about 0.85

Internet application

- Markov models have also been used to analyze web navigation behavior of users.
- A user's web link transition on a particular website can be modeled using first- or secondorder
- Markov models and can be used to make predictions regarding future navigation and to personalize the web page for an individual user.

Example website to illustrate PageRank

Example of a rank sink

M

Markov Process

• Markov Property: The state of the system at time t+1 depends only on the state of the system at time t

$$\Pr[X_{t+1} = x_{t+1} / X_1 \cdots X_t = x_1 \cdots x_t] = \Pr[X_{t+1} = x_{t+1} / X_t = x_t]$$

• Stationary Assumption: Transition probabilities are independent of time (t)

$$\Pr[X_{t+1} = b / X_t = a] = p_{ab}$$

Simple Example

Weather:

· raining today

40% rain tomorrow

60% no rain tomorrow

· not raining today

20% rain tomorrow

80% no rain tomorrow

Stochastic FSM:

Markov Process Simple Example

Weather:

· raining today

40% rain tomorrow

60% no rain tomorrow

· not raining today [

20% rain tomorrow

80% no rain tomorrow

The transition matrix:

$$P = \begin{pmatrix} 0.4 & 0.6 \\ 0.2 & 0.8 \end{pmatrix}$$
• Stochastic matrix:
Rows sum up to 1
• Double stochastic matrix:

Double stochastic matrix:

Rows and columns sum up to 1

Coke vs. Pepsi Example

- Given that a person's last cola purchase was Coke, there is a 90% chance that his next cola purchase will also be Coke.
- If a person's last cola purchase was Pepsi, there is an 80% chance that his next cola purchase will also be Pepsi.

transition matrix:

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$$

Coke vs. Pepsi Example (cont)

Given that a person is currently a Pepsi purchaser, what is the probability that he will purchase Coke two purchases from now?

Pr[Pepsi
$$\rightarrow$$
? \rightarrow Coke] =

Pr[Pepsi \rightarrow Coke \rightarrow Coke] + Pr[Pepsi \rightarrow Pepsi \rightarrow Coke] =

0.2 * 0.9 + 0.8 * 0.2 = 0.34

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.9 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.1 \\ 0.8 \end{bmatrix} = \begin{bmatrix} 0.83 & 0.17 \\ 0.34 & 0.66 \end{bmatrix}$$
Pepsi \rightarrow ? ? \rightarrow Coke

Coke vs. Pepsi Example (cont)

Given that a person is currently a Coke purchaser, what is the probability that he will purchase Pepsithree purchases from now?

$$P^{3} = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.83 & 0.17 \\ 0.34 & 0.66 \end{bmatrix} = \begin{bmatrix} 0.781 & 0.219 \\ 0.438 & 0.562 \end{bmatrix}$$

- Coke vs. Pepsi Example (cont)
 Assume each person makes one cola purchase per week
- •Suppose 60% of all people now drink Coke, and 40% drink Pepsi
- ·What fraction of people will be drinking Coke three weeks from now?

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix} \qquad P^3 = \begin{bmatrix} 0.781 & 0.219 \\ 0.438 & 0.562 \end{bmatrix}$$

$$Pr[X_3 = Coke] = 0.6 * 0.781 + 0.4 * 0.438 = 0.6438$$

 Q_i - the distribution in week i

 $Q_0 = (0.6, 0.4)$ - initial distribution

$$Q_3 = Q_0 * P^3 = (0.6438, 0.3562)$$

Coke vs. Pepsi Example (cont)

Simulation:

