HW - due 12/5/Mon midnigre	
ch 16.4	
. a graphic matroid MSI	
G = (v, c)	
an undirected graph	
$M_{ct} = (S, I)$ where	
S=F	it x x aadx
$S = E$ a subset of E called $Z \in I$ $I \subseteq 2^{S}$	
<u> </u>	
prove that this definition @316.4	
insuer)	
6.4 Cruphic matroid - MSTP	
•	
P(Oriven an undirected graph $G = (V, E)$	Det of matroid M= (S, I)
M -/- T\	
M _G = (s, I)	OS: a finite set \$ \$\varphi\$ OS: a finite set \$\varphi\$ OS: a finite set \$\varphi\$
S=E	$2-1$) if $2 \in I$ then all subset of $2 \in I$
a Subset of E outled $ ilde{m{x}}$ $E{f I}$ in $m{x}$ is again	lic $(2-2)$ if $(2,)$ for such that (2) > (1) then
·	ヨacx-y such that (きa3 U7)6I
2-1) proce I=2 3 is a subset of edge	
50 suled at 2 can not make a	z Cycle
2-2) @ @ G = (V,E) 1 5 7 3 V = 2 a,b,, 0 0 0 E = 2 1,2.	1
1 5 7 3 V=2a,b,.,	e,t3
© , ♥ Ø E = \$ 1, 2, .	. ₎ 5,63
1. 5=6= \$1, 2, ,63	= \$1,5,33 =zex-7123U76I = \$2,53
I= 20, 21, 2,53	= 21,5,33 = 3ex-7123U16I = 22,53 143
を1、5、3、43) oetin も2、5 3、24、33 3	ne New graphs using I, Y
£2,53,24,333	() () () () () () () () () ()
Gr=CV	$G_{\chi} = (V, \chi)$ observation: H of these in $G_{K} = 3$
@ (@
1 5 3	
6 6 (Ø _ O _ Ø
a forest	a fivest
コスナガ\ thereve mu	ust be (u', v) (u) (v)
	ne nee

(u, v) & tree (У익 - С 연겨두 2 - м	1. x , y e I 2. Gx, Gy 3. a, V a, 1 1 221 24 74	121,219 V Tree QU,13 EI

ch >2.3 Stack
2. DFS (q,5)
0.45
Give an implementation of DFS (G,5) that cases a stack explicitly, your code should
consist of 2 parts:
(1) initialization
(3) an iterative parts that explicitly uses push and pop operations.
<u> </u>
Answer
050.00
DFS (G ₁ S)
1. for each V & V I CT) perpendition 2. Visited (V) \(\to \) fake (white)
1. Visited (V) & fake (white)
3.5 L Ø
4 pash (\$, s)
5. While (6 \$ \$ \$)
6. $u \leftarrow pop(5)$ 7 if visited $(u) = fuller ten$
17 VISING (W) = TANK (O)
7 it visited (u) = = fute ten 8 visited (u) = true 9 for earn w GAdj [u]
10 if visted (ii) = = Ayuse then push (S, W)
pun (s), w)
E
prim's Ald Losaumin)
Prints mg E-seem 6
BES 3
<u> </u>
- confine of
·

Qijlustrais	AG
tor	i = (to n - (do
	select.
L	