- 2 Counterexample: Consider f(x) = x from $\mathbb{R} \to \mathbb{R}$, however the domain is imbued with the topology $d(x,y) = \min |x-y|$, 1. (expand and solidfy proof) Note that this metric on \mathbb{R} since
 - (a) $|x-y|, 1 \ge 0$ and |x-y| = 0 implies x = y
 - (b) if |x y| > 1 then |y x| > 1.
 - (c) 1 < 1 + 1 = 2.

Which in conjuction with the standard l_1 distance on \mathbb{R} being a metric implies d is a metric. Additionally, the topology generated by d is equivalent to the standard topology on \mathbb{R} since for any (traditional) open set $U \subseteq \mathbb{R}$ and $x \in U$ there exists $\epsilon > 0$ such that $x \in B_{\epsilon}(x) \subseteq U$. If $\epsilon < 1$ then $B_{\epsilon}(x)$ is in our constructed topology. Otherwise if $\epsilon \geq 1$ then we can trivially find $\epsilon' < 1$ such that $B_{\epsilon'}(x) \subset B_{\epsilon}(x)$. Therefore any open ball in the standard topology on \mathbb{R} can be constructed as a union of balls contained within our constructed topology. Therefore, our constructed topology works. Note that in our new topology for the domain that \mathbb{R} is a bounded set, as for $x, y \in \mathbb{R}$, $d(x, y) \leq 1$. Therefore $\sup_{x,y\in\mathbb{R}} d(x,y) = 1$, thus making \mathbb{R} have a diameter of 1. Additionally since \mathbb{R} is complete then it satisfies the conditions. However $f(\mathbb{R}) = \mathbb{R}$, and in the image topology \mathbb{R} is trivially unbounded. Therefore we have found a counterexample.

- 7 Let X be a bounded subset of ℓ_2 , with bound D.
 - Suppose $X \subset \ell_2$ is totally bounded, that $f \in X$, and $\epsilon > 0$. Then there exists $B_{\epsilon,d_{l_2}}(f_i)$ for $i \in [n]$ such that $X \subseteq \bigcup_{i=1}^n B_{\epsilon,d_{l_2}}(f_i)$. Therefore, there exists f_j such that $\sum_{i=1}^{\infty} |f_j(i) f(i)|^2 < \epsilon^2$. Therefore

$$\sqrt{\sum_{n=N_{\epsilon}}^{\infty} |f(n)|^2} \le \sqrt{\sum_{n=N_{\epsilon}}^{\infty} |f(n) - f_i(n)|^2} + \sqrt{\sum_{n=N_{\epsilon}}^{\infty} |f_i(n)|^2} < \epsilon + \epsilon$$

Therefore $\sum_{n=N_{\epsilon}}^{\infty} |f(n)|^2 \leq 4\epsilon^2$. Therefore we can choose $\epsilon/4 = \epsilon'$ and we're done.

- We want to show that X is totally bounded. Suppose for $\epsilon > 0$. Then there exists $N_{\epsilon} \in \mathbb{N}$ such that for all $f \in X$, $\sum_{n=N_{\epsilon}}^{\infty} |f(n)|^2 \leq \epsilon^2$. Note that $||f||_2 \leq \sqrt{\sum_{n=N_{\epsilon}}^{\infty} |f(n)|^2} + \sqrt{\sum_{n=1}^{N_{\epsilon}-1} |f(n)|^2} \leq D + \epsilon$. Note that if we take the closure of the ball B with radius $D + \epsilon$ in $\mathbb{C}^{N_{\epsilon}-1}$ and cover B with balls $x \in B$, $B_{\epsilon}(x) \subset \mathbb{C}^{N_{\epsilon}-1}$, then we can find an open subcover $B_{\epsilon}(x_i)$ where $i \in [n]$. Now for an arbitrary $y \in X$, for the first $N_{\epsilon}-1$ coordinates, we can find a j such that $\{y_n\}_{n=1}^{N_{\epsilon}-1} \in B_{\epsilon}(x_j)$. Therefore $d_2(y,x_j) \leq d(x_j,\{y_n\}_{n=1}^{N_{\epsilon}-1}) + \sqrt{\sum_{n=N_{\epsilon}}^{\infty} |y_n|^2} < 2\epsilon$. Now note that we can find $N_{\epsilon/2}$ for $\epsilon/2$ and this completes the proof.
- 8 (a) Suppose for contradiction that $\{b_{n_k}\}$ is a sequence which converges pointwise for all $x \in [0,1]$. Then one can construct the number $a \in [0,1]$ with the binary representation being $a_n = \begin{cases} 0 & n = n_k, k \equiv 0 \mod 2 \\ 1 & n = n_k, k \equiv 1 \mod 2. \end{cases}$ Then for the subsequence otherwise

of our subsequence $b_{n_{2k}}(a) = 0$ and $b_{n_{2k+1}}(a) = 1$. Since we have two subsequences which converge to different values, then our original subsequence of functions does not converge pointwise.

- (b) Note that convergence in the product topology is convergence for each projection. However a projection is simply evaluating a function at a specific $x \in [0, 1]$. Since we can always construct a number which every subsequence of (b_n) fails on then necessarily no subsequence converges in the product topology.
- 9 Let (X,d) be a compact metric space, and define $d_s: X^{\mathbb{N}} \times X^{\mathbb{N}} \to [0,\infty)$ to be a function on the space of sequences of $X^{\mathbb{N}}$ by

$$(x_n), (y_n) \in X^{\mathbb{N}}, d_s((x_n), (y_n)) = \sum_{i=1}^{\infty} d(x_n, y_n) 2^{-n}$$

- (a) Show that d_s is a metric:
 - i. Since $d(x_n, y_n) \ge 0$ and $2^{-n} \ge 0$ then $d(x_n, y_n)2^{-n} \ge 0$ and $\sum_{i=1}^{\infty} d(x_n, y_n)2^{-n} \ge 0$. If $d_s((x_n), (y_n)) = 0$, then each $d(x_n, y_n) = 0$ since all terms are positive, therefore if all $d(x_n, y_n) = 0$ for all n then $x_n = y_n$ for all n, thus $(x_n)_{n \in \mathbb{N}} = (y_n)_{n \in \mathbb{N}}$.
 - ii. Note that since $d(x_n, y_n) = d(y_n, x_n)$ for all $n \in \mathbb{N}$ then

$$d_s((x_n),(y_n)) = \sum_{n=1}^{\infty} d(x_n,y_n)2^{-n} = \sum_{n=1}^{\infty} d(y_n,x_n)2^{-n} = d_s((y_n),(x_n))$$

- iii. Note for $(x_n), (y_n), (z_n) \in X^{\mathbb{N}}, d(x_n, z_n) \leq d(x_n, y_n) + d(y_n, z_n)$ holds for all $n \in \mathbb{N}$. Additionally since $|d(x_n, y_n)| = d(x_n, y_n)$ then the series $\sum_{n=1}^{\infty} (d(x_n, y_n) + d(y_n, z_n))2^{-n}$ converges absolutely if it doesn't diverge to ∞ . Therefore if it doesn't diverge then via arbitrary rearrangement we have that $\sum_{i=1}^{n} d(x_n, z_n)2^{-n} \leq \sum_{i=1}^{n} d(x_n, y_n)2^{-n} + \sum_{i=1}^{n} d(y_n, z_n)2^{-n}$. If it does diverge then it goes to positive infinity. If $d_s((x_n), (y_n))$ is finite then the inequality holds. If $d_s((x_n), (y_n))$ is infinite then the inequality still holds. Therefore d_s obeys the triangle inequality
- (b) Consider an open set $U \in X^{\mathbb{N}}$. Then U is a sequence of open sets in X of which finitely many of them aren't X. Therefore let U_{k_1}, \dots, U_{n_k} be the sets which aren't X in U. Then select $x_{k_i} \in U_{k_i}$, and find ϵ_{k_i} such that $x_{k_i} \in B_{\epsilon_{k_i}}(x_{k_i}) \subseteq U_{k_i}$. Then, one can find the smallest $\epsilon_{k_i}, \epsilon'$ from our set, and take the radius of our open ball in d_s to be of radius $\frac{\epsilon'}{2^{k_n+1}}$. Note for any x_i which aren't in the finite set of non-X open sets in the sequence U, then any radius works, as any other point chosen will be contained in X. If $x_i = x_{k_j}$, then the worst case scenario where the sequence y with $d(y_{k_j}, x_{k_j}) = \epsilon_{k_j} * 2^{k_j}$ and all other $y_i = x_i$ is avoided as:

$$\frac{d(y_{k_j}, x_{k_j})}{2^{k_J}} < \frac{\epsilon'}{2^{k_n+1}}$$
$$d(y_{k_j}, x_{k_j}) < \epsilon' 2^{k_j - k_n - 1}$$
$$< \epsilon_{k_i}$$

Alex Valentino Homework 2
501

Note that $2^{k_j-k_n-1}$ is at most 0.5 by construction. Therefore every element is guarenteed to be within the required open balls, thus our topology induced by d_s is atleast as strong as the product topology.

(c) Note that since (X,d) is compact then it is sequentially compact. Also let the sequence of sequences be denoted $(x_{ij})_{i\in\mathbb{N},j\in\mathbb{N}}$, where x_i is a sequence in $X^{\mathbb{N}}$. Note that x_{0j} is a sequence in $X^{\mathbb{N}}$ as well. By the sequential compactness of X than x_{0j} has a convergent subsequence x_{0j_k} , which we shall say converges to l_1 . Note that x_{1j_k} is a sequence in X, which has a convergent subsequence, say, $x_{1j_{k_l}}$. Note these subscripts are getting out of hand, therefore we will define $f_{m,n}$ to be n-th term in the subsequence starting at x_{0j_k} within x_{mj} . We will denote l_i by $\lim_{n\to\infty} f_{i,n}$. Now for $\epsilon>0$, there exists some $r\in\mathbb{N}$ where by the diameter of X, D, is $\frac{D}{2^{2r}}<\frac{\epsilon}{2}$. Therefore we can choose the largest N such that for each $d(l_i, f_{i,N})<\frac{\epsilon}{1-2^{1-2r}}$. Therefore

$$\sum_{i=1}^{\infty} \frac{d(f_{i,N}, l_i)}{2^i} = \sum_{i=1}^{2r-1} \frac{d(f_{i,N}, l_i)}{2^i} + \sum_{i=1}^{\infty} \frac{d(f_{i,N}, l_i)}{2^i} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

- (d) We will show that $X^{\mathbb{N}}$ is compact under the product topology. Let $\{U_{\alpha}\}_{\alpha\in I}$ be a cover where I is an index set, and all $U_{\alpha}\subset X^{\mathbb{N}}$ are open in the product topology. We know for each $x\in U_{\alpha}$, there exists $\epsilon>0$ such that $B_{\epsilon,d_s}(x)\subset U$. Therefore we can write U_{α} as the union of d_s balls. Thus each U_{α} is open in the topology induced by d_s . Therefore since $(X^{\mathbb{N}}, d_s)$ is sequentially compact then $X^{\mathbb{N}}$ is compact with respect to d_s , and since our open cover is open with respect to d_s , there exists a subcover $U_{\alpha_1}, \dots, U_{\alpha_n}$ such that $X\subseteq \bigcup_{i=1}^n U_{\alpha_i}$. Thus $X^{\mathbb{N}}$ is compact with respect to the product topology.
- 12 Let A, B be compact, non-empty, and disjoint in the topological space X, and for every $b \in B$, there exists $f_b: X \to [0,1]$ continuous such that $f_b(b) = 1$, and vanishes on A. We want to show that there exists $U \subset A, V \subset B$ open such that $U \cap V = \emptyset$. Take the sets $V_b = \{f_b(x) > \frac{2}{3} : x \in X\}$ and $U_b = \{f(b) < \frac{1}{3} : x \in X\}$. Note that each U_b, V_b are open since f_b is open. Additionally by the compactness of B we can choose V_{b_1}, \ldots, V_{b_n} such that $B \subseteq \bigcup_{i=1}^n V_{b_i}$. Let this subcover be denoted B. Let $U = \bigcap_{i=1}^n U_{b_i}$. Note that U is non-empty since each U_b is guarenteed to contain A as $0 < \frac{1}{3} < f_b(x), x \in U_b$ by construction. Therefore if $x \in U \cap V$, then there exists j such that $x \in V_{b_j}$. However, $U_{b_j} \cap V_{b_j}$ have an empty intersection since they're two different level sets of f_{b_j} , a continuous function. Thus $U \cap V = \emptyset$.