政治学方法論 | 一般化線形モデル

矢内 勇生

神戸大学 法学部/法学研究科

2014年12月24日

今日の内容

- 1 一般化線形モデル
 - イントロダクション
 - 指数型分布族 (exponential family of distribution)
 - 一般化線形モデル (generalized linear models)
- 2 ロジットとプロビット
 - ロジット(ロジスティック)回帰とプロビット回帰
- 3 Rによる一般化線形モデル
 - glm()
 - 応答変数がカテゴリ変数(三値以上)の場合

線形モデル

▶ 線形モデル:

$$E(Y_i) = \mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

$$Y_i \sim N(\mu_i, \sigma^2)$$

- $oldsymbol{ iny} \mathbf{x}_i^T$ は説明変数行列(計画行列, design matrix) \mathbf{X} の第 i 行
- ▶ 一般化線形モデル:線形モデルを拡張する
 - 1. 応答変数が正規分布以外の分布(離散型分布も含む)に従う場合も扱う
 - 2. 応答変数と説明変数の関係が線形でない場合も扱う

線形モデルから一般化線形モデルへの拡張

- 一般化線形モデル (generalized linear models: GLMs)
 - 1. 応答変数が正規分布以外の分布に従う場合も扱う
 - ▶ 正規分布は指数型分布族 → 指数型分布族に拡張 する
 - 2. 応答変数と説明変数の関係が線形でない場合も扱う
 - ト $\mathrm{E}(Y_i) = \mu_i$ と線形予測子 $\mathbf{x}_i^T \boldsymbol{\beta}$ を線形でない関数 g で結びつける

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta} \quad \text{or} \quad \mu_i = g^{-1}(\mathbf{x}_i^T \boldsymbol{\beta})$$

▶ q をリンク関数と呼ぶ

指数型分布族

▶ 指数型分布族:唯一の母数 θ をもつ確率変数 Y の確率密度 (質量)関数が次の形で表されるもの

$$f(y|\theta) = s(y)t(\theta) \exp[a(y)b(\theta)]$$

= $\exp[a(y)b(\theta) + c(\theta) + d(y)]$

- ▶ a, b, s, t は既知の関数
- $> s(y) = \exp[d(y)], t(\theta) = \exp[c(\theta)]$
- y と θ が対称
- ullet a(y)=y のもの:正準形 (canonical form)
- ▶ $b(\theta)$:自然母数 (natural parameter)
- ightharpoonup 注目する母数 heta 以外の母数:撹乱母数 (nuisance parameter)

指数型分布族 (exponential family of distribution)

指数型分布族に属する確率分布

- ▶ 正規分布
- ▶ ベルヌーイ分布、二項分布
- ポアソン分布
- ▶ 負の二項分布
- ▶ ベータ分布
- ▶ ガンマ分布
- ワイブル分布
- ▶ ウィッシャート分布
- ▶ ディリクレ分布
- etc.

指数型分布族 (exponential family of distribution)

正規分布 (normal distribution)

ightharpoonup 正規分布の確率密度関数: μ を母数、 σ^2 を撹乱母数とする

$$f(y|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(y-\mu)^2\right]$$

$$= \exp[\log(2\pi\sigma^2)^{-\frac{1}{2}}] \exp\left[-\frac{1}{2\sigma^2}(y^2 - 2y\mu + \mu^2)\right]$$

$$= \exp\left[y\frac{\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2) - \frac{y}{2\sigma^2}\right]$$

- ▶ $a(y) = y \rightarrow$ 正準形
- ▶ 自然母数: $b(\mu) = \mu/\sigma^2$
- $c(\mu) = -\frac{\mu^2}{2\sigma^2} \frac{1}{2}\log(2\pi\sigma^2)$
- $d(y) = -y/2\sigma^2$

二項分布 (binomial distribution)

ightharpoonup 1 回の試行の成功確率が π で、独立なn 回の試行のうち成功する回数を確率変数Yとする: $Y_i \sim \mathrm{Bin}(n_i,\pi_i)$

$$f(y|\pi) = \binom{n}{y} \pi^y (1-\pi)^{n-y}$$

$$= \exp\left[\log\binom{n}{y} \pi^y (1-\pi)^{n-y}\right]$$

$$= \exp\left[y\{\log \pi - \log(1-\pi)\} + n\log(1-\pi) + \log\binom{n}{y}\right]$$

- ▶ $a(y) = y \rightarrow$ 正準形
- ▶ 自然母数: $b(\pi) = \log \pi \log(1 \pi) = \log \frac{\pi}{1 \pi}$:ロジット
- $c(\pi) = n \log(1 \pi)$
- $d(y) = \log \binom{n}{y}$

指数型分布族 (exponential family of distribution)

ポアソン分布 (Poisson distribution)

▶ 決められた時間 (または空間) 内で特定の事象が起きる回数 を確率変数 Y とする: $Y_i \sim \text{Poisson}(\theta_i)$

$$f(y|\theta) = \frac{\theta^y \exp(-\theta)}{y!}$$

= \exp(y \log \theta - \theta - \log y!)

- ▶ $a(y) = y \rightarrow$ 正準形
- ▶ 自然母数: $b(\theta) = \log \theta$
- $c(\theta) = -\theta$
- $\rightarrow d(y) = -\log y!$

指数型分布族 (exponential family of distribution)

二項分布とポアソン分布のどちらを使うか

- ▶ 二項分布: $X_i \sim \text{Bin}(n_i, \pi_i)$
- ▶ ポアソン分布: $Y_i \sim \text{Poisson}(\theta_i)$
- ▶ 共通点:どちらも特定の事象が起きる回数を数えている
- ▶ 相違点:二項分布の X_i には上限があるが、ポアソン分布の Y_i には上限がない:
 - X_i:0以上 n_i以下の整数
 - ► Y_i:0以上の整数
 - ightarrow 事象の発生回数とは独立に試行回数 n_i が決められているときは二項分布、そうでなければポアソン分布
- ▶ どちらも過分散 (overdispersion) の可能性がある
 - ▶ 二項分布で過分散 → ベータ二項分布 (beta-binomial)
 - ▶ ポアソン分布で過分散 → 負の二項分布 (negative binomial)

一般化線形モデルの定義

指数型分布族の確率分布に従う確率変数 Y_1, \ldots, Y_n

1. 各 Y_i の確率分布が正準形で母数が 1 つ:

$$f(y_i|\theta_i) = \exp[y_i b_i(\theta_i) + c_i(\theta_i) + d_i(y_i)]$$

2. すべての Y_i が同じ確率分布(母数の値は異なってもよい)に 従う $\rightarrow Y_1, \dots, Y_n$ の同時分布:

$$f(y_1, \dots, y_n | \theta_1, \dots, \theta_n)$$

$$= \prod_{i=1}^n \exp[y_i b(\theta_i) + c(\theta_i) + d(y_i)]$$

$$= \exp\left[\sum_{i=1}^n y_i b(\theta_i) + \sum_{i=1}^n c(\theta_i) + \sum_{i=1}^n d(y_i)\right]$$

一般化線形モデルの(通常の)目的

- ▶ 目的: θ_i の推定ではない $\rightarrow \beta_1, \dots, \beta_k$ の推定(ただし、k < n)
- ullet μ_i を θ_i の関数、 $\mathrm{E}(Y_i) = \mu_i$ とし、次の関数 g を考える

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

$$\mu_i = g^{-1}(\mathbf{x}_i^T \boldsymbol{\beta})$$

- 1. g は単調な関数(単調増加、単調減少、または定数関数)
- 2. \mathbf{x}_{i}^{T} は 1 行 k 列の説明変数ベクトル
- 3. βはk行1列の母数ベクトル

一般化線形モデルの構成要素

- 1. 同一の確率分布(指数型分布族のもの)に従う応答変数 Y_1, \ldots, Y_n
- 2. 母数ベクトル β と説明変数行列X:

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix} = \begin{bmatrix} x_{11} & \cdots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nk} \end{bmatrix}$$

4調なリンク関数g:

$$g(\mu_i)=\mathbf{x}_i^Tm{eta}$$
 or $\mu_i=g^{-1}(\mathbf{x}_i^Tm{eta})$ ただし、 $\mu_i=\mathrm{E}(Y_i)$

ロジット(ロジスティック)回帰とプロビット回帰

潜在変数を使ったロジスティック回帰の定式化

ightharpoonup 応答変数 Y_i を、連続型の潜在変数 Z_i を使ってモデル化する

$$y_i = \begin{cases} 1 & (z_i > 0) \\ 0 & (z_i < 0) \end{cases}$$
$$z_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i$$

▶ ただし、 ϵ_i はロジスティック分布に従う:

$$\Pr(\epsilon_i < x) = \text{logit}^{-1}(x), \quad \forall x$$

したがって、

$$\Pr(y_i = 1) = \Pr(z_i > 0) = \Pr(\epsilon_i > -\mathbf{x}_i^T \boldsymbol{\beta}) = \operatorname{logit}^{-1}(\mathbf{x}_i^T \boldsymbol{\beta})$$

プロビット回帰モデル

▶ 応答変数 Y_i を、連続型の潜在変数 Z_i を使ってモデル化する

$$y_i = \begin{cases} 1 & (z_i > 0) \\ 0 & (z_i < 0) \end{cases}$$
$$z_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i$$

- ト ただし、 $\epsilon_i \sim N(0,1)$
- したがって、

$$\Pr(y_i = 1) = \Phi(\mathbf{x}_i^T \boldsymbol{\beta})$$

▶ ただし、Φ は標準正規分布の累積分布関数 (cdf: cumulative distribution function)

ロジット(ロジスティック)回帰とプロビット回帰

ロジットとプロビットの累積分布関数

ロジット(ロジスティック)回帰とプロビット回帰

ロジットとプロビットの違い

▶ 潜在変数 Z_i を使った回帰モデル:

$$y_i = \begin{cases} 1 & (z_i > 0) \\ 0 & (z_i < 0) \end{cases}$$
$$z_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i$$

- ▶ $\epsilon_i \sim N(0, 1.6^2)$ とする
- ▶ このモデルの推定結果はロジスティック回帰モデルとほぼ 一緒
- ロジスティック(ロジット)回帰 ≈ プロビット回帰の標準 偏差を 1.6 倍したもの

σ を推定できるか?

- ▶ 潜在変数を使った定式化で、より一般的に、 $\epsilon_i \sim \mathrm{N}(0,\sigma^2)$ とし、 σ を推定できるか?
- ▶ 答え:できない!
- 以下のモデルはすべて等しい:

$$z_{i} = \beta_{1} + \beta_{2}x_{i} + \epsilon_{i}, \quad \epsilon_{i} \sim N(0, 1.6^{2})$$

$$z_{i} = (10\beta_{1}) + (10\beta_{2})x_{i} + \epsilon_{i}, \quad \epsilon_{i} \sim N(0, 16^{2})$$

$$z_{i} = (100\beta_{1}) + (100\beta_{2})x_{i} + \epsilon_{i}, \quad \epsilon_{i} \sim N(0, 160^{2})$$

▶ σ を固定する必要 $\rightarrow \sigma = 1$: プロビット (一般化線形モデル σ σ は撹乱変数)

glm() で分析できるモデル

- ▶ 以下のモデルはすべて glm() で分析できる
 - ▶ 線形回帰モデル
 - ▶ ロジスティック(ロジット)回帰モデル
 - ▶ プロビット回帰モデル
 - ▶ ポアソン回帰モデル
 - ▶ ベータニ項分布モデル
 - ▶ 負の二項分布モデル
- ▶ 応答変数がカテゴリー変数の場合:他の関数を使う (後述)

glm()を使うときに特定すべきもの

- 1. 応答変数ベクトル;y
- 2. 線形予測子: $X\beta$
 - ▶ 説明変数行列(計画行列): X
 - ▶ 母数ベクトル:β
- 3. **リンク関数:glm の link を決める**
- 4. 応答変数の確率分布:glm の family を決める
- 5. 撹乱母数:線形予測子、リンク関数、確率分布に登場する、X 以外の母数

線形回帰モデル

▶ リンク関数:恒等関数 (identity function)

$$\mathbf{x}_i^T \boldsymbol{\beta} = g(\mu_i) = \mu_i$$

応答変数の確率分布:

$$Y_i \sim N(\mu_i, \sigma^2), \quad E(Y_i) = \mu_i$$

- ▶ familyの特定: family=gaussian(link="identity")
- ▶ 撹乱母数: σ²

ロジスティック回帰モデル

▶ リンク関数:ロジット関数 (logit function)

$$\mathbf{x}_i^T \boldsymbol{\beta} = g(\pi_i) = \text{logit}(\pi_i) = \log\left(\frac{\pi_i}{1 - \pi_i}\right)$$

▶ 応答変数の確率分布:

$$Y_i \sim \text{Bernoulli}(\pi_i), \quad E(Y_i) = \pi_i$$

▶ familyの特定: family=binomial(link="logit")

プロビット回帰モデル

▶ リンク関数:プロビット関数 (probit function)

$$\mathbf{x}_i^T \boldsymbol{\beta} = g(\pi_i) = \Phi^{-1}(\pi_i)$$

▶ 応答変数の確率分布:

$$Y_i \sim \text{Bernoulli}(\pi_i), \quad E(Y_i) = \pi_i$$

▶ familyの特定: family=binomial(link="probit")

ポアソン回帰モデル

▶ リンク関数:対数関数 (logarithmic function)

$$\mathbf{x}_i^T \boldsymbol{\beta} = g(\theta_i) = \log \theta_i$$

▶ 応答変数の確率分布:

$$Y_i \sim \text{Poisson}(\theta_i), \quad E(Y_i) = \theta_i$$

▶ family の特定: family=poisson(link="log")

応答変数がカテゴリ変数のモデル

- 応答変数が順序尺度のとき
 - ▶ 順序ロジット回帰 (ordered logit)
 - ▶ 順序プロビット回帰 (ordered probit)
- 応答変数が名義尺度のとき
 - ▶ 多項(順序なし)ロジット回帰 (multinomial or unordered logit)
 - ▶ 多項(順序なし)プロビット回帰 (multinomial or unordered probit)

Rでの分析法

- ▶ 順序ロジット・プロビットは以下の関数で分析可能
 - 1. MASS パッケージの polr()
 - 2. arm パッケージの bayespolr()
 - 3. ordinal パッケージの clm()
- ▶ 多項ロジット・プロビットは以下の関数で分析可能
 - ロジット
 - 1. mlogit パッケージの mlogit()
 - 2. VGAM パッケージの multinomial()
 - ▶ プロビット:MNP パッケージの mnp()