Source

International Rectifier

IRLB8748PbF

Applications

- Optimized for UPS/Inverter Applications
- High Frequency Synchronous Buck
 Converters for Computer Processor Power
- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial use

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	Qg
30V	4.8m $Ω$	15nC

G	D	s
	IRLB8748PbF	
	I O LLOND	

Drain

Gate

Benefits

- Very Low RDS(on) at 4.5V V_{GS}
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current
- Lead-Free

Absolute Maximum Ratings

	Parameter	Max.	Units	
V_{DS}	Drain-to-Source Voltage	30	V	
V_{GS}	Gate-to-Source Voltage	± 20	\ \ \	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	92④		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	65	A	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	78	T ^	
I _{DM}	Pulsed Drain Current ①	370		
P _D @T _C = 25°C	Maximum Power Dissipation ®	75	w	
P _D @T _C = 100°C	Maximum Power Dissipation ®	38	7 W	
	Linear Derating Factor	0.5	W/°C	
T_J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)]	
	Mounting Torque, 6-32 or M3 screw ⑦	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		2.0	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.5		°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		62	1

IRLB8748PbF

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		21		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.8	4.8		V _{GS} = 10V, I _D = 40A ③
			5.5	6.8	mΩ	V _{GS} = 4.5V, I _D = 32A ③
V _{GS(th)}	Gate Threshold Voltage	1.35	1.8	2.35	V	$V_{DS} = V_{GS}$, $I_D = 50\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-7.1		mV/°C	$V_{DS} = V_{GS}, I_D = 30\mu$ A
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 24V, V_{GS} = 0V$
				150	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	A	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
gfs	Forward Transconductance	196			S	$V_{DS} = 15V, I_D = 32A$
Q_g	Total Gate Charge		15	23		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		3.6			$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		2.2		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		5.9			$I_D = 32A$
Q_godr	Gate Charge Overdrive		3.9			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		8.1			
Q _{oss}	Output Charge		11		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_{G}	Gate Resistance		2.0	3.5	Ω	
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 15V, V_{GS} = 4.5V$ ③
t _r	Rise Time		96		ns	$I_D = 32A$
t _{d(off)}	Turn-Off Delay Time		16		115	$R_G = 1.8\Omega$
t _f	Fall Time		34			
C _{iss}	Input Capacitance		2139			$V_{GS} = 0V$
C _{oss}	Output Capacitance		464		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		199			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy②		114	mJ
I _{AR}	Avalanche Current ①		32	Α
E _{AR}	Repetitive Avalanche Energy ①		7.5	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			92@		MOSFET symbol			
	(Body Diode)			924	Α	showing the			
I _{SM}	Pulsed Source Current			370	^	integral reverse			
	(Body Diode) ①			370		p-n junction diode.			
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 32A$, $V_{GS} = 0V$ ③			
t _{rr}	Reverse Recovery Time		23	35	ns	$T_J = 25^{\circ}C, I_F = 32A, V_{DD} = 15V$			
Q_{rr}	Reverse Recovery Charge		39	59	nC	di/dt = 200A/µs ③			
t _{on}	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)						

International TOR Rectifier

IRLB8748PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

IRLB8748PbF

International TOR Rectifier

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. On-Resistance vs. Gate Voltage

Fig 13a. Unclamped Inductive Test Circuit

Fig 13b. Unclamped Inductive Waveforms 6

Fig 13c. Maximum Avalanche Energy vs. Drain Current

Fig 14a. Switching Time Test Circuit

Fig 14b. Switching Time Waveforms

International TOR Rectifier

IRLB8748PbF

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16. Gate Charge Test Circuit

Fig 17. Gate Charge Waveform

IRLB8748PbF

International IOR Rectifier

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

VIEW A-A

- SI.

 DIMENSIONING AND TOLERANCING AS PER ASME Y14,5 M- 1994,
 DIMENSION'S ARE SHOWN IN INCHES [MILLIMETERS].
 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
 DIMENSION D, D1 & E DO NOT INCLIDE MOLD FLASH, MOLD FLASH
 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE
 MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DIMENSION b1, b3 & c1 APPLY TO BASE METAL ONLY.
 CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1 DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIM	ETERS	TERS INCHES			
	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	3.56	4.83	.140	.190		
A1	0.51	1.40	.020	.055		
A2	2.03	2.92	.080	.115		
b	0.38	1.01	.015	.040		
ь1	0.38	0.97	.015	.038	5	
b2	1.14	1.78	.045	.070		
b3	1,14	1.73	.045	.068	5	
с	0.36	0,61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
Ε	9.65	10,67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0.76	-	.030	8	
e	2.54 BSC		,100 BSC .200 BSC			
e1	5.08 BSC		.200 BSC			
H1	5.84	6.86	.230	.270	7,8	
L	12.70	14,73	.500	.580		
L1	3,56	4.06	.140	.160	3	
øР	3.54	4.08	.139	.161		
Q	2.54	3.42	.100	.135		

LEAD ASSIGNMENTS <u>HEXFET</u> ICBTs, CoPACK 1,- GATE 2.- COLLECTOR 3.- EMITTER DIODES 1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

International

TOR Rectifier

IRLB8748PbF

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\label{eq:tau_starting} \mbox{\mathbb{Q} Starting $T_J=25^{\circ}$C, $L=0.22m$H, $R_G=25\Omega$,} \\ \mbox{$I_{AS}=32A$.}$
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ④ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 78A.
- ⑤ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- ® R_θ is measured at T_J approximately 90°C.
- This is only applied to TO-220AB pakcage.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.04/2009

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: