```
#Linear Regression Libaries
import numpy as np #numerical python
import pandas as pd #data processing
import seaborn as sns #for regression plot
from statsmodels.formula.api import ols
df = pd.read_csv('/content/bert_pares.csv') #upload the data
#Check the dataset
df.head(5) #print the first 5 rows
         days
                 sales pares_kawali pares_flowers
                                                        丽
      0
                9524.0
                               1008.0
                                               609.0
                                                        ılı
            2 19716.0
                               1041.0
                                               529.0
      1
      2
            3
                6354.0
                               1625.0
                                               281.0
              18706.0
                               1143.0
                                               1591.0
            5
              11462.0
                               1875.0
                                               1629.0
 Next steps:
              Generate code with df
                                       View recommended plots
                                                                       New interactive sheet
#check the names of columns
df.columns
Index(['days', 'sales', 'pares_kawali', 'pares_flowers'], dtype='object')
df.dtypes
\overline{\mathbf{x}}
                      int64
          days
          sales
                    float64
      pares_kawali float64
      pares_flowers float64
df.shape #(rows, columns)
→ (30, 4)
#Count ths missing values
df.isnull().sum()
\overline{2}
                    0
          days
                    0
          sales
      pares_kawali 3
      pares_flowers 1
#Replace the missing values with mean
df['sales'] = df['sales'].fillna(df['sales'].mean())
df['pares_kawali'] = df['pares_kawali'].fillna(df['pares_kawali'].mean())
df['pares_flowers'] = df['pares_flowers'].fillna(df['pares_flowers'].mean())
#Check for the missing values
df.isnull().sum()
```


#Compute for Summary Measures

df.describe()

$\overline{}$						_
_		days	sales	pares_kawali	pares_flowers	=
	count	30.000000	30.000000	30.000000	30.000000	ıl.
	mean	15.500000	13193.037037	1201.777778	1072.034483	
	std	8.803408	3981.672145	509.811347	464.005535	
	min	1.000000	5124.000000	206.000000	206.000000	
	25%	8.250000	10662.500000	853.500000	741.250000	
	50%	15.500000	13193.037037	1201.777778	1049.017241	
	75%	22.750000	16333.000000	1599.750000	1503.500000	
	max	30.000000	19716.000000	1949.000000	1895.000000	
	4					

#Compute for correlation coeffcient. Select the two variables the have the highest correlation (exclude days in the select #your y is sales, select the appropriate x df.corr()

days 1.000000 0.014172 0.200862 0.105899 II. sales 0.014172 1.000000 -0.151917 0.137831 pares_kawali 0.200862 -0.151917 1.000000 -0.003028 pares_flowers 0.105899 0.137831 -0.003028 1.000000	→		days	sales	pares_kawali	pares_flowers		
pares_kawali 0.200862 -0.151917 1.000000 -0.003028		days	1.000000	0.014172	0.200862	0.105899	11.	
• -		sales	0.014172	1.000000	-0.151917	0.137831		
pares_flowers		pares_kawali	0.200862	-0.151917	1.000000	-0.003028		
		pares_flowers	0.105899	0.137831	-0.003028	1.000000		

#generate a regression plot
sns.regplot(x="pares_flowers", y="sales", data=df, ci=None)

```
<Axes: xlabel='pares_flowers', ylabel='sales'>
        20000
        18000
        16000
        14000
       12000
        10000
         8000
         6000
                 250
                          500
                                  750
                                          1000
                                                   1250
                                                           1500
                                                                    1750
                                        pares_flowers
```

```
#model: sales = intercept + slope * x

df_cleaned = df.fillna(df.mean())

X = df_cleaned[['pares_flowers']]
y = df_cleaned['sales']

model = LinearRegression()
model.fit(X, y)

intercept = model.intercept_
slope = model.coef_[0]
```

```
print(f"Model equation: sales = {intercept:.2f} + {slope:.2f} * pares_flowers")

#project the sales for the 32nd day using linear regression

pares_flowers_32 = df_cleaned['pares_flowers'].mean()
predicted_sales = model.predict([[pares_flowers_32]])

print(f"Predicted sales for the 32nd day: {predicted_sales[0]:.2f}")

Model equation: sales = 11925.10 + 1.18 * pares_flowers
Predicted sales for the 32nd day: 13193.04
/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:2739: UserWarning: X does not have valid feature n warnings.warn(
```

End of the Exam

Start coding or generate with AI.


```
# -*- coding: utf-8 -*-
"""CANTONES FinalExam.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/108f13rxSpCH7IWhrYfgdiPop7Q1icSVb
#Linear Regression Libaries
import numpy as np #numerical python
import pandas as pd #data processing
import seaborn as sns #for regression plot
from statsmodels.formula.api import ols
df = pd.read csv('/content/bert pares.csv') #upload the data
#Check the dataset
df.head(5) #print the first 5 rows
#check the names of columns
df.columns
df.dtypes
df.shape #(rows, columns)
#Count ths missing values
df.isnull().sum()
#Replace the missing values with mean
df['sales'] = df['sales'].fillna(df['sales'].mean())
df['pares kawali'] = df['pares_kawali'].fillna(df['pares_kawali'].mean())
df['pares flowers'] =
df['pares_flowers'].fillna(df['pares flowers'].mean())
#Check for the missing values
df.isnull().sum()
#Compute for Summary Measures
df.describe()
#Compute for correlation coeffcient. Select the two variables the have
the highest correlation (exclude days in the selection)
#your y is sales, select the appropriate x
df.corr()
#generate a regression plot
```

```
sns.regplot(x="pares flowers", y="sales", data=df, ci=None)
#model: sales = intercept + slope * x
df cleaned = df.fillna(df.mean())
X = df cleaned[['pares flowers']]
y = df cleaned['sales']
model = LinearRegression()
model.fit(X, y)
intercept = model.intercept
slope = model.coef [0]
print(f"Model equation: sales = {intercept:.2f} + {slope:.2f} *
pares_flowers")
#project the sales for the 32nd day using linear regression
pares flowers 32 = df cleaned['pares flowers'].mean()
predicted sales = model.predict([[pares flowers 32]])
print(f"Predicted sales for the 32nd day: {predicted_sales[0]:.2f}")
"""##End of the Exam"""
```

```
{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec":
{ "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } },
"cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "id": "QuloJA5S9lYf" },
"outputs": [], "source": [ "#Linear Regression Libaries\n", "\n", "import numpy as np #numerical
python\n", "import pandas as pd #data processing\n", "import seaborn as sns #for regression
plot\n", "from statsmodels.formula.api import ols" ] }, { "cell_type": "code", "source": [ "df =
pd.read_csv('/content/bert_pares.csv') #upload the data" ], "metadata": { "id": "H-LtD-dY-Jua" },
"execution_count": 2, "outputs": [] }, { "cell_type": "code", "source": [ "#Check the dataset\n",
"\n", "df.head(5) #print the first 5 rows" ], "metadata": { "colab": { "base_uri":
"https://localhost:8080/", "height": 206 }, "id": "yvkwBlwT-jgg", "outputId": "b8b4914d-d05d-
41c6-c387-0df0f06f579f" }, "execution_count": 3, "outputs": [ { "output_type":
"execute_result", "data": { "text/plain": [ " days sales pares_kawali pares_flowers\n", "0 1 9524.0
1008.0 609.0\n", "1 2 19716.0 1041.0 529.0\n", "2 3 6354.0 1625.0 281.0\n", "3 4 18706.0
1143.0 1591.0\n", "4 5 11462.0 1875.0 1629.0" ], "text/html": [ "\n", "
\n", "
\n", "
```