

Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

April 27, 2023

Lehrstuhl Informatik 2 Fakultät für Informatik

Sortieren nochmal

- mit Quicksort haben wir einen (in Erwartung) schnellen randomisierten Sortieralgorithmus kennengelernt
- mit Heapsort lernen wir einen effizienten deterministischen Sortieralgorithmus kennen
- Hilfsmittel ist eine (ansatzweise) raffinierte Datenstruktur

Heaps

- ein Heap ist eine Datenstruktur in Form eines gewurzelten Baums
- die Knoten sind von 1 bis *n* durchnumeriert
- Knoten 1 ist die Wurzel
- die Kinder von Knoten i sind 2i und 2i + 1, falls diese Werte $\leq n$ sind
- jeder Knoten hat also höchstens zwei Kinder
- der Elternknoten von Knoten $i \ge 2$ ist der Knoten $\lfloor i/2 \rfloor$

Beispiel

- ein Heap mit 6 Knoten
- Knoten 1 ist der Wurzelknoten

Repräsentation im Speicher

- ein Heap kann im Speicher einfach in einem Array $\mathbf{A} = (A_1, \dots, A_n)$ der Länge n dargestellt werden
- die Indizierung der Eltern/Kinder wird mit den Speicherstellen des Arrays identifiziert

Max-Heaps (und Min-Heaps)

- in den Knoten des Heaps speichern wir vergleichbare Werte
- ein Max-Heap hat die Eigenschaft, daß der Wert eines Kindknotens niemals größer ist als der Wert des Elternknotens
- ein Min-Heap hat die Eigenschaft, daß der Wert eines Kindknotens niemals kleiner ist als der Wert des Elternknotens
- wir befassen uns im folgenden nur mit Max-Heaps

Erzeugen eines Max-Heaps

- Aufgabe: ein Array $\mathbf{A} = (A_1, ..., A_n)$ soll in einen Max-Heap überführt werden
- BuildMaxHeap(A) löst dieses Problem für uns
- Hilfsfunktion MaxHeapify(A, i): die Nachkommen von Knoten i sind bereits Max-Heaps, aber möglicherweise ist der Wert A_i kleiner als der Wert eines Kindes

MaxHeapify(A, i)

- **1.** Falls A_i nicht kleiner ist als seine Kinder (oder kein Kind hat), halte.
- 2. Sonst bestimme das größere Kind Ai
- **3.** Vertausche die Werte A_i und A_j
- 4. MaxHeapify(A, j)

Definition

Die Höhe eines Knotens i ist der maximale direkte Abstand von einem Blatt.

Lemma

Die Höhe der Wurzel ist $O(\log n)$.

Proposition

Wenn der Knoten i Höhe h hat, benötigt MaxHeapify(A, i) Laufzeit O(h).

Korollar

MaxHeapify hat Laufzeit $O(\log n)$.

Aufbau eines max-heaps aus einem Array

- aus einem beliebigen gegebenen Array A möchten wir einen max-heap machen
- dazu arbeiten wir "von hinten nach vor"
- die letzte Hälfte der Einträge werden jedenfalls Blätter
- auf die anderen Einträge wenden wir MaxHeapify an

BuildMaxHeap(A)

- **1.** Für $i = \lfloor n/2 \rfloor, ..., 1$
- 2. MaxHeapify(\mathbf{A} , i)

Proposition

BuildMaxHeap hat Laufzeit O(n)

Heapsort(A)

- 1. BuildMaxHeap(A)
- **2.** Für i = n, n 1, ..., 2
- 3. vertausche A_1 und A_i
- **4.** MaxHeapify $((A_1, ..., A_{i-1}), 1)$

Satz

Heapsort sortiert ein gegebenes Array in Zeit $O(n \log n)$

Priority queues

- max-heaps haben weitere Anwendungen
- wir versehen die Datenstruktur mit weiteren Operationen
- ExtractMax (findet und) entfernt das maximale Element
- IncreaseKey erhöht den Wert eines Elements
- Insert fügt ein neues Element mit einem gegebenen Wert ein

ExtractMax(A)

- **1.** falls n = 0, abbrechen; falls n = 1, gib A_1, \emptyset aus
- **2.** vertausche A_1 und A_n
- **3.** MaxHeapify $((A_1, ..., A_{n-1}), 1)$
- **4.** gib A_n und $(A_1, ..., A_{n-1})$ aus

IncreaseKey(A, i, α)

- **1.** falls $\alpha < A_i$, brich ab
- **2.** setzte $A_i = \alpha$
- **3.** solange *i* > 1
- 4. setze $j = \lfloor i/2 \rfloor$
- 5. falls $A_j \geq \alpha$, halte
- **6.** falls $A_i < \alpha$, vertausche A_i und α
- 7. setze i = j

$j = Elternknoten von A_i$

$Insert(A, \alpha)$

- **1.** füge ein Element $A_{n+1} = -\infty$ zu A hinzu
- **2.** wende IncreaseKey $((A_1, ..., A_{n+1}, n+1, \alpha)$ an

Proposition

Die Operationen ExtractMax, IncreaseKey, Insert haben Laufzeit $O(\log n)$.

Zusammenfassung

- \blacksquare Heapsort ist ein deterministischer Sortieralgorithmus mit Laufzeit $O(n \log n)$
- wesentlicher Baustein ist die max-heap Datenstruktur
- diese haben wir zu einer Priority Queue erweitert