機械学習さまざまな予測性能評価

Pythonによる機械学習入門 第13章

	CONTENTS
13.1	回帰の予測性能評価
13. 2	分類の予測性能評価
13.3	K分割交差検証
13.4	第13章のめとめ
13.5	練習問題
13.6	練習問題の解答

13.1 回帰の予測性能評価

P458~P463

13. 1. 1

平均絶対誤差(MAE)の復習

P458~P458

回帰の 評価指標 决定係数 平均絶対誤差

平均2乗誤差

	1件目	2件目	3件目
1. 予測の値	1	3	-1
2. 実際の値	2	0	1
3. (予測結果)-(実際)の値	-1	3	-2
4. 3の結果の絶対値	1	3	2

平均絶対誤差 MAE

(1+3+2) / 3 = 2

13. 1. 2

平均2乗誤差(MSE)

P459~P459

回帰の 評価指標 決定係数

平均絶対誤差

平均2乗誤差

	1件目	2件目	3件目
1. 予測の値	1	3	-1
2. 実際の値	2	0	1
3. (予測結果) - (実際)の値	-1	3	-2
4. 3の2乗値	1	9	4

平均2乗誤差 MSE

(1+9+4)/3 = 14/3

平均絶対誤差

プラスかマイナスかの場合分けが必要

平均2乗誤差

2乗するだけなので計算が楽

誤差を2乗するので 外れ値が評価に与える影響が大きくなる

ただし

```
コード13-1 データとモデルの準備
# 欠損値があるままでは学習できないので欠損値処理だけ行う
import pandas as pd
# cinema.csvを読み込む
df = pd.read_csv('cinema.csv')
# 欠損値を平均値で穴埋め
df = df.fillna(df.mean())
# 特徴量
x = df.loc[:, 'SNS1':'original']
# 正解データ
t = df['sales']
# 線形回帰をインポート
from sklearn.linear_model import LinearRegression
# 線形回帰モデルを作成しインスタンスを生成
model = LinearRegression()
# 学習
model.fit(x, t)
```

cinema.csv

cinema_id	SNS1	SNS2	actor	original	sales
1375	291	1044	8808.994029	0	9731
1000	363	568	10290.70937	1	10210
1390	158	431	6340.388534	1	8227
1499	261	578	8250.485081	0	9658
1164	209	683	10908.53955	0	9286
1009		866	9427.21452	0	9574
1417	153	362	7237.639848	1	7869
1688	473	856		1	9804
1503	117	114	8843.854509	1	9023

特徴量 **正解** データ

データの各列の内容

列名	意味
cinema_id	映画作品のID
SNS1	公開後10日以内にSNS1でつぶやかれた数
SNS2	公開後10日以内にSNS2でつぶやかれた数
actor	主演俳優の昨年のメディア露出度。actorの値が大きいほどりしゅつしている
original	原作があるかどうか(あるなら1、ないなら0)
sales	最終的な興行収入(単位:万円)

コード13-2 平均2乗誤差を計算する

```
from sklearn.metrics import mean_squared_error # 訓練データでのMSE値 # モデルに予測させる pred = model.predict(x) # 予測値と実際値でMSEを計算 mse = mean_squared_error(pred, t) mse
```

実行結果

151986.03957624524

平均2乗誤差の計算

```
mean_squared_error( 予測結果,正解データ )
```

※ 事前に from sklearn.metrics import mean_squared_error でインポートする必要がある。

2 乗平均平方根誤差

 $RMSE = \sqrt{MSE}$

コード13-3 RMSEの計算

import math
math.sqrt(mse) # RMSEの計算

実行結果

389.8538695155471

2 乗平均平方根誤差(RMSE)

外れ値を敏感に検知する

平均絶対誤差(MAE)

外れ値があってもそれほど変化しない

コード13-4 予測結果と実際の誤差を検証する from sklearn.metrics import mean absolute error yosoku = [2, 3, 5, 7, 11, 13] # 予測結果をリストで作成 target = [3, 5, 8, 11, 16, 19] # 実際の結果をリストで作成 mse = mean squared error(yosoku, target) print('rmse:{}'.format(math.sqrt(mse))) print('mae:{}'.format(mean absolute error(yosoku, target))) print('外れ値の混入') yosoku = [2, 3, 5, 7, 11, 13, 46] # 実際には23だけど46と予測 target = [3, 5, 8, 11, 16, 19, 23]mse = mean squared error(yosoku, target) print('rmse:{}'.format(math.sqrt(mse))) print('mae:{}'.format(mean absolute error(yosoku, target)))

実行結果

rmse:3.8944404818493075 mae:3.5

外れ値の混入

rmse:9.411239481143202

mae:6.285714285714286

ほぼ同じ

外れ値の影響を受けて乖離している

P464~P472

13. 2. 1

適合率と再現率

P464~P471

分類における 性能評価の指標 適合率

再現率

リスクとコスト のどちらかを重視する 予測モデルの性能の指標 降水 予測 コスト

傘を持ち歩く

リスク

雨に降られる

■適合率

雨が降ると予測した件数のうち、実際に雨が降った件数の比率

実際に雨が降った日

雨と予測した日

<浅木さんの場合>

		予	測
		降らない	降る
中欧	降らなかった	40	30
実際	降った	2	28

雨の適合率 = 28/(28+30)=約0.48

<松田くんの場合>

		予	測
		降らない	降る
中欧	降らなかった	69	1
実際	降った	20	10

雨の適合率=10/(1+10)=約0.90

コストを抑えたい

実際に雨が降った件数のうち、雨が降ると予測した件数の比率

<浅木さんの場合>

		予	測
		降らない	降る
実際	降らなかった	40	30
大院	降った	2	28

雨の再現率=28/(2+28)=約0.93

リスクを押 さえたい <松田くんの場合>

		予	測
		降らない	降る
実際	降らなかった	69	1
夫院	降った	20	10

雨の再現率=10/(20+10)=約0.33

自分が作りたい予測モデルが実際に運用されているところを イメージして、適合率を重視するべきなのか、 再現率を重視すべきなのかを判断する必要がある

```
コード13-5 データの準備
# データの準備
# Survived.csvの読み込み
df = pd.read_csv('Survived.csv')
# 欠損値を平均値で穴埋め
df = df.fillna(df.mean())
# 特徴量
x = df[['Pclass', 'Age']]
# 正解データ
t = df['Survived']
コード13-6 モデルの準備
# モデルの準備
# 決定木をインポート
from sklearn import tree
# 決定木モデルを生成
model = tree.DecisionTreeClassifier(
```

max_depth = 2, random_state = 0)

学習

model.fit(x, t)

Survived.csv

Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	male	22	1	0	A/5 21171	7.25		S
2	1	1	female	38	1	0	PC 17599	71.2833	C85	С
3	1	3	female	26	0	0	STON/02. 3101282	7.925		S
4	1	1	female	35	1	0	113803	53.1	C123	S
5	0	3	male	35	0	0	373450	8.05		S
6	0	3	male		0	0	330877	8.4583		Q
7	0	1	male	54	0	0	17463	51.8625	E46	S

各列の意味

列名	意味
Passengerld	乗客ID
Pclass	チケットクラス(1等、2等、3等)
Age	年齢
Parch	同乗した、自身の親と子供の総数
Fare	運賃
Emberked	搭乗港
Survived	1:生存、0:死亡
Sex	性別
SibSp	同乗した兄弟や配偶者の総数
Ticket	チケットID
Cabin	部屋番号

コード13-7 再現率と適合率を一括で計算

```
# classification_report関数のインポート
from sklearn.metrics import classification_report
# 予測
pred = model.predict(x)
# 再現率と適合率を求める
out_put = classification_report(y_pred = pred, y_true = t)
# 表示
print(out_put)
```



```
コード13-8 classification_report関数にパラメータ引数を指定
# パラメータ引数を指定
out_put = classification_report(y_pred = pred,
             y_true = t, output_dict = True)
# out_putをデータフレームに変換
pd.DataFrame(out_put)
                                      戻り値をディクショナリ型で出力
 実行結果
                 死亡
                         生存
                                       macro avg weighted avg
                                accuracy
```

適合率

	•	•	accurac)	macro arg	norghica avg
precision	0.778742	0.558140	0.672278	0.668441	0.694066
recall	0.653916	0.701754	0.672278	0.677835	0.672278
f1-score	0.710891	0.621762	0.672278	0.666326	0.676680
support	549.000000	342.000000	0.672278	891.000000	891.000000

f1-score = F値

13. 2. 2

適合率と再現率の平均と解釈できる指標

P471~P472

適合率と再現率はトレードオフの関係

一方が大きくなるようにチューニングするともう一方は低下する傾向が強い

2つの指標を同時にモデルチューニング時の指標にするのは難しい

同時に考えたいときは、f1-scoreを利用する

f1-scoreは必ず0以上1以下となり、1に近いほど予測精度が高い

P473~P484

13.3.1

ホールドアウト法の問題点

P473~P475

ホールドアウト法

学習に利用するデータと予測性能をテストするデータに分割すること

ホールドアウト法の問題点

外れ値が訓練データに混ざっているとき

適切なチューニングができていても、 検証データではいい結果が得られない。

モデルの性能の悪い原因が、 本質的なチューニングなのか、 分割時のデータの型よりなのか、 がわからない。

K分割交差検証の「K」には3以上の整数が入る

13. 3. 2

P475~P481

3つの決定係数 の平均をとる

決定係数は0.65

```
コード13-9 K分割交差検証のためのデータ準備
# cinema.csvの読み込み
df = pd.read_csv('cinema.csv')
# 学習できないので欠損値処理だけ行う
# 欠損値を平均値で穴埋め
df = df.fillna(df.mean())
# 特徴量
x = df.loc[:, 'SNS1':'original']
# 正解データ
t = df['sales']
コード13-10 KFoldの処理で分割時の条件を指定
# KFoldをインポート
from sklearn.model_selection import KFold
# インスタンスを生成
kf = KFold(n_splits = 3, shuffle = True, random_state = 0)
```

今回は3分割

実行結果

{'fit_time': array([0.01177454, 0.01562929, 0.]),
 'score_time': array([0., 0., 0.]),
 'test_score': array([0.72465051, 0.71740834,0.75975591]),
 'train score':array([0.76928501, 0.76368104, 0.75780074])}

検証データでの 3回の決定係数値

(今回は決定係数)

コード13-12 平均値を計算する

平均値を計算する
sum(result['test_score']) / len(result['test_score'])

実行結果

0.733938254177434

K分割検証

・分割条件の指定

変数 = KFold(n_splits = 分割数, shuffle = True, randam_state = 整数)

- ※ from sklearn.model_selection import KFold を事前に行っている
- ※ shuffle = False を指定するとランダムに分割されない
- ※ random_state はランダム分割時の乱数固定
- ·K分割交差検証

cross_validate(モデル変数,特徴量データ,正解データ,cv=分割条件,scoring='評価仕様',return_train_score=True)

- ※ from sklearn.model_selection import cross_validate を事前にしている
- ※ モデル変数は事前に作成済みの学習モデル(学習する前の状態)
- ※ 評価指標は、"r2" や "accuracy" などを指定できる
- ※ 評価指標はリスト形式で指定すると、複数個を同時に検証できる
- ※ return_train_score = False を指定すると、訓練データの予測性能は計算しない

P481~P483

分割したデータの中で、正解データの偏りが発生しやすくなって、結局いいモデルが作れなくなってしまう


```
コード13-13 StratifieldFoldのインポート
# StratifieldKFoldのインポート
from sklearn.model_selection import StratifiedKFold
# StratifieldKFoldインスタンスを生成(引数はKFoldと同じ)
skf = StratifiedKFold(n_splits = 3, shuffle = True,random_state = 0)
```