Matice

$$(AB)^T = B^T A^T$$

 \mathbf{DEF} Matice je symetrická $A=A^T$

 \mathbf{DEF} Matice je diagonální pokud je $\forall i,j,i\neq j:A_{i,j}=0$

DEF Matije je horní trouhelníková pokud má pod diagonálou nuly

 $\mathbf{DEF}\ Rank(A) =$ počet nenulových řádků po převedení na REF

DEF Matice je regulární, pokud soustava Ax = 0 má jediné řešení a to x = 0jinak je singulární.

DEF Inverzní matice A^{-1} k matici A je taková matice, že $AA^{-1} = A^{-1}A = I_n$

 \mathbf{THM} JeliAregulární, tak k ní existuje inverzní matice a ta je určená jednoznačně.

- $(A^{-1})^{-1} = A$ $(A^{-1})^T = (A^T)^{-1}$ $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$ $(AB)^{-1} = B^{-1} A^{-1}$