

Curso: Tecnologia em Análise e Desenvolvimento de Sistemas - AMS

Período: 5º Ano

Disciplina: Sistemas Distribuídos Aplicado à Internet das Coisas

Professor: Profa. Dra. Ligia Rodrigues Prete

E-mail: ligia.prete@fatec.sp.gov.br

02 - Introdução ao Arduino

Arduino

- Criado em 2005, o objetivo, era elaborar um dispositivo que seja ao mesmo tempo barato, funcional e fácil de programar, sendo dessa forma acessível a estudantes e projetistas amadores.
- Além disso, foi adotado o conceito de hardware livre, o que significa que qualquer um pode montar, modificar, melhorar e personalizar o Arduino, partindo do mesmo hardware básico.

Arduino

 Assim, foi criada uma placa composta por um microcontrolador Atmel, e que pode ser facilmente conectada à um computador e programada via IDE (Integrated Development Environment, ou Ambiente de Desenvolvimento Integrado) utilizando uma linguagem baseada em C/C++, sem a necessidade de equipamentos extras além de um cabo USB.

Arduino Uno

Arduino Uno

Microcontroller	ATmega328P
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limit)	6-20V
Digital I/O Pins	14 (of which 6 provide PWM output)
PWM Digital I/O Pins	6
Analog Input Pins	6
DC Current per I/O Pin	20 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	32 KB (ATmega328P) of which 0.5 KB used by bootloader
SRAM	2 KB (ATmega328P)
EEPROM	1 KB (ATmega328P)
Clock Speed	16 MHz
LED_BUILTIN	13
Length	68.6 mm
Width	53.4 mm
Weight	25 g

Protoboard

- Uma placa de ensaio ou matriz de contato (protoboard) é uma placa com furos e conexões condutoras para montagem de circuitos elétricos experimentais.
- A grande vantagem da placa de ensaio na montagem de circuitos eletrônicos é a facilidade de inserção de componentes, uma vez que não necessita soldagem.
- Porém, a sua grande desvantagem é o seu "maucontato", e muitas vezes a pessoas preferem montar os seus circuitos com fios a usar a protoboard.

Protoboard

LED (Light Emitting Diode)

- O diodo emissor de luz, também conhecido pela sigla em inglês LED (*Light Emitting Diode*), é usado para a emissão de luz em locais e instrumentos onde se torna mais conveniente a sua utilização no lugar de uma lâmpada.
- Especialmente utilizado em produtos de microeletrônica como sinalizador de avisos.

LED (Light Emitting Diode)

 Os leds são polarizados e na maioria dos casos um led possui dois terminais, um positivo ou ânodo/anodo (terminal maior) e um negativo ou cátodo/catodo (terminal menor).

Usando LED (Light Emitting Diode)

 Para montar circuitos eletrônicos com Leds é importante conhecer algumas características técnicas do Led, como a tensão em volts e a corrente em amperes.

	LEDs		
Cor do LED	Tensão em Volts (V)	Corrente em Miliamperes (mA)	
Vermelho	1,8V - 2,0V	20 mA	
Amarelo	1,8V - 2,0V	20 mA	
Laranja	1,8V - 2,0V	20 mA	
Verde	2,0V - 2,5V	20 mA	
Azul	2,5V - 3,0V	20 mA	
Branco	2,5V - 3,0V	20 mA	

- Para aproveitar ao máximo o brilho do LED, sem causar danos e ao mesmo tempo manter seu circuito eletrônico bem equilibrado, sem grandes excessos ou falta de resistência, precisamos calcular o resistor adequado para o LED.
- O que devemos saber:
 - a tensão da fonte de alimentação (Arduino 3,3V ou 5V, pode ser pilha ou bateria);
 - a tensão suportada pelo LED em volts;
 - e a corrente suportada pelo seu LED em amperes.

- Para aproveitar ao máximo o brilho do LED, sem causar danos e ao mesmo tempo manter seu circuito eletrônico bem equilibrado, sem grandes excessos ou falta de resistência, precisamos calcular o resistor adequado para o LED.
- O que devemos saber:
 - a tensão da fonte de alimentação (Arduino 3,3V ou 5V, pode ser pilha ou bateria);
 - a tensão suportada pelo LED em volts;
 - e a corrente suportada pelo seu LED em amperes.

Fórmula: R = (V arduino – V led) / I

Onde:

- R é a resistência em ohms do resistor adequado para o LED;
- V arduino é a tensão em volts da fonte de alimentação;
- V led é a tensão em volts do LED;
- I é a corrente do LED em amperes.

Exemplo: LED difuso de 5mm de cor branca

- Tensão de alimentação 5V (Arduino);
- Tensão igual a 3V (Led);
- Corrente igual a 0.02A (amperes), ou seja, 20mA (miliamperes) do Led.

100 ohms: Marrom, Preto, Marrom, Dourado

	LEDs		
Cor do LED	Tensão em Volts (V)	Corrente em Miliamperes (mA)	
Vermelho	1,8V - 2,0V	20 mA	
Amarelo	1,8V - 2,0V	20 mA	
Laranja	1,8V - 2,0V	20 mA	
Verde	2,0V - 2,5V	20 mA	
Azul	2,5V - 3,0V	20 mA	
Branco	2,5V - 3,0V	20 mA	

http://blog.novaeletronica.com.br/calculadora-online-resistor-limitador-led/

Tabela Resistores

Jumpers

 Jumper é um pequeno condutor utilizado para conectar dois pontos de um circuito eletrônico.

Macho

Figura 01 – Jumpers com ponteiras (macho-macho)

Fêmea