Authenticated Encryption

2019. 4.9

Contents

- Introduction
- Symmetric-key cryptography
 - Block ciphers
 - Symmetric-key algorithms
 - Cipher block modes
 - Stream cipher
- Public-key cryptography
 - o RSA
 - o Diffie-Hellman
 - o ECC
 - Digital signature
 - Public key Infrastructure

- Cryptographic hash function
 - Attack complexity
 - Hash Function algorithm
- Message Integrity and Authentication
 - Message authentication code
 - Authenticated encryption
 - Digital signature
- Key establishment
 - o server-based
 - Public-key based
 - Key agreement (Diffie-Hellman)

Block cipher mode for MAC?

- □ In CBC mode, changes of any block of a plaintext affect the computation of the next block.
- ☐ Then, can we use the result of the final block as MAC?

Reminder: Block cipher operation modes

□ CBC mode

Cipher Block Chaining (CBC) mode encryption

Reminder: Block cipher operation modes

CTR mode

Counter (CTR) mode encryption

CBC-MAC Computation

MAC computation (assuming N blocks)

```
C_0 = E_K(IV \oplus P_0),
C_1 = E_K(C_0 \oplus P_1),
C_2 = E_K(C_1 \oplus P_2),...
C_{N-1} = E_K(C_{N-2} \oplus P_{N-1}) = MAC
```

- Alice sends plaintext and MAC with IV to Bob.
- Bob does the same computation and verifies that result agrees with MAC
- Note: Bob must know the key K
 - Guarantee message integrity and authentication

Does a CBC-MAC work?

- Suppose Alice has 4 plaintext blocks
- Alice computes

$$C_0 = E_K(IV \oplus P_0), C_1 = E_K(C_0 \oplus P_1),$$

 $C_2 = E_K(C_1 \oplus P_2), C_3 = E_K(C_2 \oplus P_3) = MAC$

- \square Alice sends IV,P₀,P₁,P₂,P₃ and MAC to Bob
- Suppose an attacker changes P₁ to X
- Bob computes

$$C_0 = E_K (IV \oplus P_0), C_1 = E_K (C_0 \oplus X),$$

 $C_2 = E_K (C_1 \oplus P_2), C_3 = E_K (C_2 \oplus P_3) = MAC \neq MAC$

- □ That is, error <u>propagates</u> into **MAC**
- An attacker can't make MAC == MAC without K

Cipher-based Message Authentication(CMAC)

- CBC with a single symmetric key has a limitation.
 - When a message is one block size, P_0 , then $MAC=E_K(IV \oplus P_0)$.
 - If an attacker make the following two block size message, (P₀, P₀ ⊕ MAC ⊕ IV), then the MAC of this message is also MAC.
- So, the CMAC uses two keys: a k-bit encryption key K and a b-bit constant K₁, where b is the cipher block length.

Message length is integer multiple of block size b

Message length is not integer multiple of block size b

Authenticated Encryption

- Many applications require both message confidentiality and authentication together.
- □ Authenticated encryption is to do encryption that simultaneously provide message confidentiality authentication.

Authenticated Encryption methods

- The simple answer is to do two computations, encryption and MAC, for the same message, using two keys.
- Note: we shouldn't use a single key for encryption and authentication for CBC.
 - As a simple example, message integrity can't be verified when we send ciphertext and MAC that are computed from a single key.

Which order of two computations?

- Hashing and then Encryption
- Authentication and then Encryption
 - Using two keys
- Encryption and then Authentication
 - O Using two keys
- Encryption and Authentication independently

Counter with CBC-MAC (CCM)

- It is a NIST standard specifically to support IEEE 802.11 WiFi.
- A variation of "encryption and authentication(MAC)" approach.
- □ Algorithms: AES + CTR + CMAC (authentication)
- □ A single key is used for both encryption and MAC computation.

Galois/Counter Mode (GCM)

- As a NIST standard, it is designed for parallel computation.
- Encryption in a variant of CTR mode.
- □ The standard is also used only for MAC, known as GMAC.
- □ GCM uses two functions:
 - o GHASH: a keyed hash
 - o GCTR: CTR mode encryption

Figure 1: GHASH_H $(X_1 || X_2 || ... || X_m) = (Y_m)$

two inputs

outputs: 128 bit MAC

Parallel computation

- □ GMASHH(X) function can be expressed as $(X_1 \cdot H^m) \oplus (X_2 \cdot H^{m-1}) \oplus ... \oplus (X_{m-1} \cdot H^2) \oplus (X_m \cdot H^1)$
- □ If the same hash key is used to authenticate multiple messages, the values H_m can be precalculated one time for use for each message.
- □ Then the blocks of data (X₁,..., X_m) can be processed in parallel.

Message of arbitrary length

Figure 2: GCTR_K (ICB, $X_1 || X_2 || ... || X_n^*$) $\neq Y_1 || Y_2 || ... || Y_n^*$.

two inputs

outputs: ciphertext

Figure 3: GCM-AE_K (IV, P, A) = (C, T).

