

LASER IMAGING

Field of the Invention

This invention relates to laser imaging.

Background of the Invention

WO02/068205, WO02/074548, WO2004/043704 and PCT/GB2004/003219, and also corresponding patent applications claiming the same priority dates, including US Patent Applications Nos. 10/344393 and 10/380381 (the content of each of which is incorporated herein by reference), describe laser imaging and also materials that can be used for that purpose. Examples that are provided typically involve the use high energy lasers.

There are many attractions in using non-contact near-IR sources, in particular diode lasers, to generate images from coatings for applications such as variable information packaging. Favourable attributes of diode lasers such as economy, portability and ease of use, are attractive for current needs in the packaging industry, such as in-store labelling.

By incorporating, into ink formulations, materials which absorb radiation from far-IR to mid-IR sources such as heat (~1 to 20 μm) and CO₂ laser (~10 μm), coatings have been produced which will generate a distinct coloured image on exposure to this wavelength of energy but not near-IR sources. By incorporating, into these same ink formulations, materials which absorb radiation from near-IR sources such as diode lasers (~1 μm), coatings have been produced which will generate a distinct coloured image on exposure to near, mid or far-IR irradiation.

Copper salts have been previously used (see US5840791A, US20030191223A and US20020016394A) as "laser light-active" compounds. They have been utilised in thermoplastic polymer mouldings, thermoplastic resin and thermoplastic polymer powder compositions etc., for laser marking of plastic components. Inorganic copper salts such as copper (II) hydroxy phosphate, copper (II) pyrophosphate and copper (II) sulphate, and organic copper salts such as copper (II) fumarate, copper (II) maleate and copper (II) oxalate, are known.

Summary of the Invention

The invention utilizes a metal salt as a functional IR-absorber/colour developer material which, on absorption of radiation from a laser source, can directly produce a colour-forming reaction when in combination with a component that will otherwise undergo the desired reaction on irradiation at a higher wavelength. For example, it can be used in combination with an oxymetal anion component in an applied coating, to

generate a distinct coloured image. Alternatively, a colour-forming component is used, to generate a distinct image.

According to this invention, the potential of utilizing diode and CO₂ lasers for imaging applications on, for example, of packaging can be realized. It has been shown that, by the application of liquid film-forming inks onto various substrates to produce coatings capable of distinct colour change, exposure to near-IR sources produces good results dependent primarily on the formulation of the ink.

Description of Preferred Embodiments

An essential component for use in the present invention is one or more metal salts. A preferred metal is copper. Other suitable salts are of monovalent or multivalent metals, e.g., a transition metal such as Fe or Zn. Poly-metal salts may also be used. They are characterized by the presence of two or more metal centres in oxide compounds and can typically be composed of a number of different transition metals and their oxides. For instance, a copper and molybdenum or copper and tungsten oxide binary metal salt will provide a single molecule diode laser imaging coating where an external near-IR absorber is not required. Thus, a near-IR absorber and a marking component are combined within the same molecule and in practice are retained intimately intact within individual discrete particles of the coating.

The IR absorber should be compatible with the colour change chemistry, have no or minimal absorption in visible region of the absorption spectrum, and be an efficient absorber of 800-2000nm (preferred λ_{max} around 1000nm). Preferably the IR absorber is inorganic in nature. It should have thermally stability greater than 200°C and good light stability and weatherability. It should be colourless or impart minimal colour in the finished coating formulation. Further preferred features of the IR absorber are that it should be water-stable, have minimal solubility in water, be compatible with water-based binders/ compatible with common organic solvents, environmentally friendly, readily available and non toxic.

Particularly suitable copper salts (which will be given below only for illustration) may be one or more of a range of materials, for example, copper (II) hydroxyl phosphate or copper (II) pyrophosphate. Suitable poly-metal salts are, for example, copper (II) molybdenum oxide, copper (II) tungsten oxide and others such as iron (III) molybdenum oxide and iron (III) tungsten oxide. A suitable ink formulation may comprise 1-50, e.g. 1-10 % w/w of the salt.

More generally, and using copper as an example, the following may be used, as salts having near-IR absorbing properties:

copper (II) phthalocyanines (various) e.g.

A,B,C,D-tetrakis(pyridinomethyl) Cu(II) phthalocyanine chloride, copper(II)

1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29h,31h-phthalocyanine,

5 copper(II) 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine,

copper(II) 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine, copper(II)

1,4,8,11,15,18,22,25-octabutoxy-29h,31h-phthalocyanine, copper(II)

2,3,9,10,16,17,23,24-octakis(octyloxy)-29h,31h-phthalocyanine, copper(II)

phthalocyanine, copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt, copper

10 phthalocyanine-3,4',4'',4'''-tetrasulfonic acid, tetrasodium salt, copper(II) 4,4',4'',4'''-

tetraaza-29h,31h-phthalocyanine, copper(II) 2,9,16,23-tetra-tert-butyl-29h,31h-

phthalocyanine, copper(II) 3,10,17,24-tetra-tert-butyl-1,8,15,22-

22 tetrakis(dimethylamino)-29h,31h-phthalocyanine, copper(II) tetrakis(4-

cumylphenoxy)phthalocyanine, poly(copper phthalocyanine), copper(II) 2,3-

15 naphthalocyanine, copper phthalocyanine rayon, Avecia Projet 830 NP, Projet 900

NP, Projet 825 LDI, Projet 830 LD, copper (II) hydroxide phosphate, copper (II)

pyrophosphate hydrate, copper (II) acetate, copper (II) acetate hydrate, copper (II)

hydroxide carbonate (copper carbonate basic), copper (II) acetyl acetonate, copper (II)

pyrophosphate hydrate, copper (II) acetate hydrate, copper (II) formate tetrahydrate,

20 copper (II) d-gluconate tetrahydrate, copper (II) oxalate hemihydrate, copper (II)

acrylate, copper (II) benzene sulphinate hydrate, copper (II) bis(6,6,7,7,8,8-

heptafluoro-2,2-dimethyl-3,5-dioctanedionate), copper (II) bis(2,2,6,6-tetramethyl-

3,5-heptanedionate), copper (II) citrate, copper(II) bromide, copper (II) chloride,

copper (II) chloride dihydrate, copper (II) fluoride, copper(II) fluoride hydrate, copper

25 (II) iodate, copper (II) cyclohexanebutyrate, copper (II) 3,5-diisopropylsalicylate

hydrate, copper (II) 2-ethylhexanoate, copper (II) hexafluoroacetylacetone hydrate,

copper (II) hydroxide, copper (II) isopropoxide, copper (II) methacrylate, copper (II)

methacryloxyethylacetate, copper (II) methoxide, copper (II) nitrate hydrate,

copper (II) oxide, copper (II) perchlorate hexahydrate, copper (II) 2-

30 pyrazinecarboxylate, copper (II) stearate, copper (II) sulphate hydrate, copper (II)

tartrate hydrate, copper (II) tetrafluoroborate hydrate, copper (II) trifluoroacetate

hydrate, copper (II) trifluoroacetylacetone, copper (II) trifluoromethanesulphonate,

alpha-(5-chloro-2-pyridylimino)-o-cresol copper(II) salt, alpha-(3,5-dichloro-2-

pyridylimino)-o-cresol copper (II) salt, alpha-(3-methyl-2-pyridylimino)-o-cresol

35 copper(II) salt, alpha-(4-methyl-2-pyridylimino)-o-cresol copper(II) salt, alpha-(6-

methyl-2-pyridylimino)-o-cresol copper(II) salt, alpha-(2-pyridylimino)-o-cresol copper(II) salt, ammonium tetrachlorocuprate(II) dihydrate, (9-anthrylethynyl)copper, copper disodium bathocuproinedisulfonate, benzenethiol copper(I) salt, benzoic acid, copper (II) salt dihydrate, 2-benzothiazolylacetylene copper(I) salt,

5 bis(ethylenediamine)copper(II) hydroxide, Bis(2-methoxy-6-(4-methyl-2-pyridinyliminomethyl)phenolato)copper, [bis(trimethylsilyl)acetylene](hexafluoroacetylacetone)copper(I), bis(triphenylphosphine)copper(I) borohydride, ((4-bromophenyl)-thio)-copper(I), bromotris(triphenylphosphine)copper(I), chlorophyllin sodium copper salt,

10 chlorotris(triphenylphosphine)copper(I), copper(I) acetate, copper bis(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate), copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate), copper(I) bromide, copper(I) bromide-dimethyl sulfide complex, copper(I) bromide methylsulfide complex, copper(I) 1-butanethiolate, copper(I) chloride, copper(I) chloride 1,5-cyclooctadiene complex, copper(I) cyanide,

15 copper(II) cyclohexanebutyrate, copper(II) 3,5-diisopropylsalicylate hydrate, copper(II) di(2-naphthoate), copper(II) 2-ethylhexanoate, copper(II) heptadecanoate palmitate, copper(II) hydroxyfluoride, copper(I) iodide, copper(I) iodide trimethylphosphite complex, copper naphthenate, copper(II) nitrate hemi(pentahydrate), copper(II) nonadecanoate stearate, copper(I) oxide, copper

20 oxychloride, copper(II) perchlorate hexahydrate, copper(II) phosphate dihydrate, copper(II) 2-pyrazinecarboxylate, copper(I) sulfide, copper(II) sulfide, copper(II) tetrafluoroborate hydrate, copper(I) thiocyanate, copper(I) thiophenolate, copper(II) trifluoroacetate hydrate, copper(II) trifluoroacetylacetone, copper(II) trifluoromethanesulfonate, copper(I) trifluoromethanesulfonate–benzene complex,

25 copper(I) trifluoromethanesulfonate toluene complex, copper-2(3)-9(10)-16(17)-23(24)-tetramethyl-2(3)-9(10)-16(17)-23-(24)-tetra-azoniaphthaloyanine tetrakis (methanosulfate), dibromo(1,10-phenanthroline)copper(II), dichloro(n-(2-pyridylmethylene)aniline-N,N')copper(II), diethylenetriamine-pentaacetic acid copper(II) trisodium salt, di- μ -hydroxo-bis(N,N,N',N'-

30 tetramethylethylenediamine)copper(II) chloride, 1,8-dihydroxy-2-nitroso-3,6-naphthalenedisulfonic acid copper complex, (N,N'-diisopropylacetamidinato)copper(I), ((3,4-dimethoxyphenyl)ethynyl)copper, dinitrato(1,10-phenanthroline)copper(II), ethyl alpha-acetyl-3-(fluorosulfonyl)benzoylacetate, copper(II), ethyl alpha-acetyl-3-(methoxycarbonyl)benzoylacetate, copper(II), ethyl alpha-acetyl-4-

(methoxycarbonyl)benzoylacetate, copper(II), ethyl benzoylacetate, copper(II), ethyl 2-chlorobenzoylacetate, copper(II),
5 (ethylcyclopentadienyl)(triphenylphosphine)copper(I), ethylenediaminetetraacetic acid copper(II) disodium salt, ethyl 2-fluorobenzoylacetate, copper(II), ethyl 3-(fluorosulfonyl)benzoylacetate, copper(II), ethyl 2-(4-(pentyloxy)benzoyl)acetate, copper(II), 3-(fluorosulfonyl)benzoic acid, copper(II) salt, hydrido(triphenylphosphine)copper(I) hexamer, 2-(1-hydroxyethylidene)-1-cyclopentanone, copper(II) complex, 8-hydroxyquinoline copper(II) salt, iodo(trimethyl phosphite)copper(I), pontamine copper blue, methyl acetoacetate
10 copper(II), methyl 3-oxoeicosanoate copper(II), 2-nitro-5,10,15,20-tetraphenyl-21h,23h-porphine copper(II), 2,3,7,8,12,13,17,18-octaethyl-21h,23h-porphine copper(II), oleic acid, copper(II) salt, 1-phenyl-3-(2-thienyl)-1,3-propanedione, copper(I) derivative, phthalic acid copper(II), salt, N-pyruvylideneglycinato(aquo)copper(II) dihydrate, tetraamminecopper(II) sulfate
15 monohydrate, tetrakis(acetonitrile)copper(I) hexafluorophosphate, 5,10,15,20-tetraphenyl-21h,23h-porphine copper(II), triphenylphosphine-copper(I) hydride hexamer, tris(ethylenediamine)copper(II) sulfate, calcoloid copper brown and others.

Copper minerals may also be used, such as ajoite, antlerite, arsentsumerite, arthurite, atacamite, aurichalcite, azurite, bayoldonite, boleite, bornite, bournonite, brass, brochantite, buttgenbachite, calciovoltborthite, caledonite, chalcanthite, chalcocite, chalcophyllite, chalcopyrite, chalcosiderite, chalcotrichite, chrysocolla, clinoclase, conichalcite, connellite, cornetite, covellite, cubanite, cumensite, cuprite, cuproadamite, cuproskłodowskite, cyanotrichite, diaboleite, dioptase, domeykite, duftite, Emplectite, enargite, graemite, kinoite, knaufite, kolwezite, ktenasite, libethenite, linarite, liroconite, malachite, meta-torbernite, meta-zeunerite, mixite, mottramite, olivenite, papagoite, plancheite, polybasite, pseudoboleite, pseudomalachite, quetzalcoatlite, rosasite, shattuckite, spangolite, tennantite, tetrahedrite, torbernite, tsumebite, turquoise, veszelyite, volborthite, zeunerite and others.

30 Other suitable metal salts for near-IR absorbing include compounds of aluminium, boron, cadmium, cobalt, gallium, indium, iron, lithium, lead, magnesium, manganese, nickel, silicon, silver, sodium, tin, titanium, vanadyl and zinc. Examples include aluminium 2,3-naphthalocyanine chloride, aluminium 1,4,8,11,15,18,22,25-octabutoxy-29h31hphthalocyanine triethylsiloxide, aluminium phthalocyanine
35 chloride, aluminium phthalocyanine hydroxide, aluminium 1,8,15,22-

tetrakis(phenylthio)-29h,31h-phthalocyanine chloride, aluminium 2,9,16,23-
tetrakis(phenylthio)-29h,31h-phthalocyanine chloride, aluminium 2,9,16,23-
tetrakis(phenylthio)-29h,31h-phthalocyanine chloride, aluminium 1,8,15,22-
tetraphenoxy-29h,31h-phthalocyanine chloride, aluminium 2,9,16,23-tetraphenoxy-
5 29h,31h-phthalocyanine chloride, chloroaluminium chlorophthalocyanine and others.

Further suitable compounds are boron sub-2,3-naphthalocyanine chloride,
boron subphthalocyanine chloride and others, and cadmium phthalocyanine and
others. Suitable cobalt compounds include cobalt(II) phthalocyanine, cobalt(II) 2,3-
naphthalocyanine, cobalt(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-
10 hexadecafluoro-29h,31h-phthalocyanine, ammonium cobalt(II) sulfate hexahydrate,
N,N'-bis[3-*tert*-butyl-5-(heptadecafluoroctyl)salicylidene]-*trans*-1,2-
cyclohexanediamino-cobalt(II), bis(cyclopentadienyl)cobalt(II),
bis(cyclopentadienyl)cobalt(III) hexafluorophosphate, (*R,R*)-(−)-*N,N'*-bis(3,5-di-*tert*-
butylsalicylidene)-1,2-cyclohexanediaminocobalt(II), (*S,S*)-(+)-*N,N'*-bis(3,5-di-*tert*-
butylsalicylidene)-1,2-cyclohexanediaminocobalt(II), [1,2-
15 bis(diphenylphosphino)ethane]dichlorocobalt(II), (1,1'-
bis(diphenylphosphino)ferrocene)dichlorocobalt(II),
bis(ethylcyclopentadienyl)cobalt(II), bis(ethylcyclopentadienyl)cobalt(III)
hexafluorophosphate, bis(pentamethylcyclopentadienyl)cobalt(II),
20 bis(pentamethylcyclopentadienyl)cobalt(III) hexafluorophosphate, bis(1,2,3-
propanetriyltriammine)cobalt(III) iodide, bis(salicylaldehyde)cobalt(II), *N,N'*-
bis(salicylidene)ethylenediaminocobalt(II), *N,N'*-bis(salicylidene)-1,2-
phenylenediaminocobalt(II) hydrate, bis(salicylidenediminato-3-
25 propyl)methylaminocobalt(II), cobalt(II) acetate, cobalt(II) acetylacetone, cobalt(III)
acetylacetone, cobalt(II) benzoylacetonate, cobalt boride, cobalt(II) bromide,
cobalt(II) carbonate hydrate, cobalt carbonyl, cobalt(II) chloride, cobalt(II) cyanide
dehydrate, cobalt(II) 2-ethylhexanoate, cobalt(II) fluoride, cobalt(III) fluoride,
cobalt(II) hexafluoroacetylacetone hydrate, cobalt(II) hydroxide, cobalt(II,III) oxide,
cobalt(II) iodide, cobalt naphthenate, cobalt(II) nitrate hexahydrate, cobaltocene,
30 cobalt(II) oxalate dehydrate, cobalt(II) oxide, cobalt(III) oxide, cobalt(II) perchlorate
hexahydrate, cobalt(II) phosphate hydrate, cobalt(III) sepulchrate trichloride,
cobalt(II) stearate, cobalt(II) sulfate heptahydrate, cobalt(II) tetrafluoroborate
hexahydrate, cobalt(II) thiocyanate, cobalt tris(2,2,6,6-tetramethyl-3,5-
heptanedionate), *trans*-dichlorobis(ethylenediamine)cobalt(III) chloride,
35 dichlorobis(triphenylphosphine)cobalt(II), *trans*-

dinitrobis(ethylenediamine)cobalt(III) nitrate, hexaamminecobalt(III) nitrate, hexammine cobalt(III) chloride, mercury(II) tetrathiocyanatocobaltate(II), 2,3,7,8,12,13,17,18-Octaethyl-21h,23h-porphine cobalt(II), pentaamminecarbonatocobalt(III) nitrate hemihydrate, pentaamminechlorocobalt(III) chloride, potassium hexacyanocobaltate(III), potassium hexacyanocobalt(II)-ferrate(II), protoporphyrin IX cobalt chloride, sodium cobaltcarborane, sodium hexanitrocobaltate(III), tetraethylammonium tetrabromo-cobaltate(II), tetraethylammonium tetrachloro-cobaltate(II), 5,10,15,20-tetrakis(4-methoxyphenyl)-21h,23h-porphine cobalt(II), 5,10,15,20-tetraphenyl-21h,23h-porphine cobalt(II),
meso-tetraphenylporphyrin cobalt(II) complex, trans-dichlorotriethylenetetraaminecobalt(III) chloride, tris(ethylenediamine)cobalt(III) chloride dehydrate, tris(ethylenediamine)cobalt(III) nitrate, tris(ethylenediamine)cobalt(III) sulfate and others.

Yet further compounds are gallium(III) 2,3-naphthalocyanine chloride, gallium(III)-phthalocyanine chloride, gallium(III) phthalocyanine hydroxide and others, and indium(III) phthalocyanine chloride and others.

Suitable iron compounds includen iron phthalocyanine compounds eg. iron(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecachloro-29h,31h-phthalocyanine, iron phthalocyanine, iron(II) phthalocyanine bis(pyridine) complex, iron(III) phthalocyanine chloride, dichlorotetrakis(pyridine)iron, (S)-(+) -acetyl-cyclopentadienyl-iron carbonyl triphenylphosphine complex, iron(III) phthalocyanine-4,4',4'',4'''-tetrasulfonic acid, compound with oxygen monosodium salt hydrate, black iron oxide, red iron oxide, yellow iron oxide, acetylferrocene, (aminomethyl)-phosphonic acid iron (II) salt, ammonium iron(III) citrate, ammonium iron(III) oxalate trihydrate, ammonium iron(III) sulfate dodecahydrate, ammonium iron(II) sulfate hexahydrate, ammonium iron(III) sulfate, benzenecyclopentadienyliron(II) hexafluorophosphate, benzoylferrocene, bis(*N,N'*-di-*tert*-butylacetamidinato)iron(II), bis(dicarbonyl(methylcyclopentadienyl)iron), [1,2-bis(diphenylphosphino)ethane]dichloroiron(II), is(pentamethylcyclopentadienyl)iron(II), bis(tetramethylcyclopentadienyl)iron(II), bromocyclopentadienyldicarbonyliron(II), cyclopentadienyldicarbonyl(methyl)iron(II), cyclopentadienyldicarbonyl(tetrahydrofuran)iron(II) tetrafluoroborate, cyclopentadienyl(fluorene)iron(II) hexafluorophosphate, cyclopentadienyl iron(II) dicarbonyl dimer, decamethylferrocene, 1,1'-diacetylferrocene,

dicarbonylcyclopentadienyliodoiron(II), diethylenetriaminepentaacetic acid iron(III) disodium salt hydrate, diironnonacarbonyl, 1,1'-dimethylferrocene, ethylenediaminetetraacetic acid ferric sodium salt, iron(III) citrate, ferrocene, ferrocenecarboxaldehyde, ferrocenecarboxylic acid, 1,1'-ferrocenedicarboxylic acid, 5 ferrous sulfate heptahydrate, iron(II) acetate, iron(II) acetylacetone, iron(III) acetylacetone, (+)-iron(II)l-ascorbate, iron(II) bromide, iron(III) bromide, iron(II) chloride, iron(III) chloride, iron(III) ferrocyanide, iron(II) fluoride, iron(III) fluoride, iron(II)D-gluconate dihydrate, iron(II,III) oxide, iron(II) iodide, iron(II) lactate hydrate, iron nickel oxide, iron(III) nitrate nonahydrate, iron(II) oxalate dihydrate, 10 iron(III) oxalate hexahydrate, iron(II) oxide, iron(III) oxide, iron(II) perchlorate hydrate, iron(III) perchlorate hydrate, iron(III) perchlorate hydrate, iron(III) phosphate, iron (III) pyrophosphate, iron(II) sulfate heptahydrate, iron(III) sulfate hydrate, iron(II) sulfide, iron(II) tetrafluoroborate hexahydrate, iron(III) p-toluenesulfonate hexahydrate, iron tris(2,2,6,6-tetramethyl-3,5-heptanedionate), 15 (nicotinamidomethyl)phosphonic acid iron(II) salt, 2,3,7,8,12,13,17,18-octaethyl-21h,23h-porphine iron(III) acetate, 2,3,7,8,12,13,17,18-octaethyl-21h,23h-porphine iron(III) chloride, tetraethylammonium tetrachloroferrate(III), 5,10,15,20-tetrakis(4-methoxyphenyl)-21h,23h-porphine iron(III) chloride, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin iron(III) chloride, 5,10,15,20- 20 tetrakis(pentafluorophenyl)porphyrin iron(III) chloride complex, *meso*-tetra(N-methyl-4-pyridyl)porphyrin iron, 5,10,15,20-tetraphenyl-21h,23h-porphine iron(III) chloride, *meso*-tetraphenylporphyrin iron(III) chloride complex, tricarbonyl(cyclooctatetraene)iron(II), tricarbonyl(2-methoxycyclohexadienylum)iron hexafluorophosphate, tricarbonyl(4-methoxy-1-methylcyclohexadienylum)iron 25 tetrafluoroborate, triirondodecacarbonyl, tris(2,2'-bipyridine)iron(II) hexafluorophosphate, tris(ethylenediamine)iron(II) sulfate and others.

Suitable lead compounds include lead(II) phthalocyanine, lead(II) tetrakis(4-cumylphenoxy)phthalocyanine, acetoxytrimethyllead(IV), benzylchlorodiphenyllead, benzyltriphenyllead, benzyltri(p-tolyl)lead, (4-biphenyl)triphenyllead, bis(4-chlorophenyl)dichlorolead, bis(4-chlorophenyl)diphenyllead, bis(4-(dimethylamino)phenyl)diphenyllead, bis-(2-ethylhexanoyloxy)diphenyllead, bis-(ethylthio)-lead, bis(2-furyl)diphenyllead, bis-(hexadecylthio)-lead (ii), bis-(methylthio)-lead, bis(2-thienyl)dichlorolead, bis(2-thienyl)diphenyllead, (4-bromobenzyl)triphenyllead, (4-bromophenyl)triethyllead, (3-bromophenyl)triphenyllead, (4-bromophenyl)triphenyllead, bromotriethyllead,

bromotrimethyllead(iv), bromotriphenyllead, (3-butenyl)dichloroethyllead, (3-but enyl)triethyllead, butyltriphenyllead, chlorodiphenyl(4-pentenyl)lead, (4-chlorophenyl)triphenyllead, chlorotricyclohexyllead, chlorotridodecyllead, chlorotrioctadecyllead, chlorotriphenyllead(iv), chlorotris(4-chlorophenyl)lead, 5 chlorotris(4-methoxyphenyl)lead, cyanotriethyllead, dichlorodiethyllead, dichlorodiphenyllead, diethyldiphenyllead, diethyldithiocarbamic acid lead salt, diethyllead dibromide, diethyllead selenite, di(2-furyl)bis(4-methoxyphenyl)lead, diiododiphenyllead, di(1-naphthyl)diphenyllead, 2,4-dinitrobenzenesulfonic acid lead salt, diphenyldi(1-pyrrolyl)lead, diphenyldi(p-tolyl)lead, diphenyllead dibromide, 10 (ethylthio)triphenyllead, ethyltriphenyllead, fluorotriphenyllead, (2-furyl)triphenyllead, 2-hexadecylsulfonyl-5-sulfobenzoic acid lead salt, hexaphenyldilead(iv), (4-(1-hydroxyethyl)phenyl)triphenyllead, (4-(2-hydroxyethyl)phenyl)triphenyllead, (2-(hydroxymethyl)phenyl)triphenyllead, (2-(hydroxymethyl)phenyl)triphenyllead, (3-(hydroxymethyl)phenyl)triphenyllead, (4-(hydroxymethyl)phenyl)triphenyllead, (2-hydroxyphenyl)triphenyllead, 15 iodotricyclohexyllead, iodotriphenyllead, iodotris(mesityl)lead, isobutyltriphenyllead, lead(IV) acetate, lead(II) acetate basic, lead(II) acetylacetone, lead(II) bromide, lead(II) carbonate, lead(II) carbonate basic, lead(II) chloride, lead(II) chromate, lead(II) citrate tribasic trihydrate, lead diethyldithiocarbamate, lead(II) fluoride, 20 lead(II) 2-hydroxy-2-methylpropionate, lead(II) iodate, lead(II) iodide, lead(II) methanesulfonate, lead(II) nitrate, lead(II) oxide, lead(IV) oxide, lead(II) perchlorate hydrate, lead(II) Salicylate, lead subacetate, lead(II) sulfate, lead(II) sulfide, lead tetraacetate, lead(II) tetrafluoroborate, lead(II) thiocyanate, lead(II) trifluoroacetate, (2-methoxyphenyl)triphenyllead, (4-methoxyphenyl)triphenyllead, (4-methoxy- 25 2,3,5,6-tetrafluorophenyl)triphenyllead, (methylthio)triphenyllead, lead(II,IV) oxide, (1-naphthyl)triphenyllead, 5-oxo-1-(4-sulfophenyl)-2-pyrazoline-3-carboxylic acid lead salt, para-tolyltriacetoxylead, (pentachlorophenyl)triphenyllead, (pentafluorophenyl)triphenyllead, phenethyltriethyllead, (phenethyl)triphenyllead, (propylthio)-triphenyllead, propyltriphenyllead, sodium lead alloy, tert- 30 butylchlorodiphenyllead, tert-butyltriphenyllead, tetraethyllead, tetrahexadecyllead, tetrakis(4-chlorophenyl)lead, tetrakis(4-(dimethylamino)phenyl)lead, tetrakis(4-ethoxyphenyl)lead, tetrakis(2-methoxyphenyl)lead, tetrakis(4-methoxyphenyl)lead, tetrakis(m-tolyl)lead, tetraphenyllead(iv), (thiophenoxy)triphenyllead, (p-tolyl)triphenyllead, tricyclohexyllead, triethyllead hydroxide, 35 triethyl(triphenylmethyl)lead, trimesityllead, triphenyl(phenylethynyl)lead(iv),

triphenyl(triphenylmethyl)lead, tris(2-ethoxyphenyl)lead, tris(4-ethoxyphenyl)lead, tris(1-naphthyl)lead, tris(1-pyrrolyl)lead, tri(o-tolyl)lead, tri(p-tolyl)lead and others.

Further examples are dilithium phthalocyanine, magnesium phthalocyanine, manganese(II) phthalocyanine, manganese(III) phthalocyanine chloride, manganese(III) phthalocyanine hydroxide and others.

5 Suitable nickel compounds include nickel(II) 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine, nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine, nickel(II) phthalocyanine, nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt, nickel(II) phthalocyanine-tetrasulfonic acid 10 tetrasodium salt, nickel(II) 2,11,20,29-tetra-*tert*-butyl-2,3-naphthalocyanine, nickel(II) tetrakis(4-cumylphenoxy)phthalocyanine, nickel(II) 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine, (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-dienen-1-n-4-n-8-n-11)nickel(II) ClO₄, allyl(cyclopentadienyl)nickel(II), ammonium nickel(II) sulfate hexahydrate, 15 bis(cyclopentadienyl)nickel(II), bis(1,3-diamino-2-propanol)nickel(II) thiocyanate, bis(n,n-diethylethylenediamine)nickel(II) thiocyanate, bis[5-[4-(dimethylamino)phenyl]imino]-8(5H)-quinolinone]nickel(II), bis(N,N-dimethyl-N'-5H-pyrido[2,3-*a*]phenothiazin-5-ylidene-1,4-phenylenediamine)nickel(II) diperchlorate, [1,2-bis(diphenylphosphino)ethane]dichloronickel(II), 20 [1,1'-bis(diphenylphosphino)ferrocene]dichloronickel(II), (1,3-bis[diphenylphosphino]propane)dichloronickel(II), bis(ethylcyclopentadienyl)nickel(II), bis(ethylenediamine)nickel(II) chloride hydrate, bis(methylcyclopentadienyl)nickel(II), bis(pentamethylcyclopentadienyl)nickel(II), N,N'-Bis(salicylidene)ethylenediaminonickel(II), 25 bis(tetramethylcyclopentadienyl)nickel(II), bis(triphenylphosphine)nickel(II) dichloride, chloro(cyclopentadienyl)(triphenylphosphine)nickel(II), chloro(ethylcyclopentadienyl)(triphenylphosphinenickel(II), cyclopentadienylnickel(II) carbonyl dimer, dibromobis(tributylphosphine)nickel(II), dibromobis(triphenylphosphine)nickel(II), dichlorobis(tributylphosphine)nickel(II), 30 dichlorobis(trimethylphosphine)nickel(II), dilithium tetrabromonickelate(II), hexaamminenickel(II) bromide, hexaamminenickel(II) iodide, hexaamminenickel(II) chloride, (5,7,7,12,14,14-hexamethyl-1-4,8,11-tetraazacyclotetradecanen-1-N-4-N-8-N-11)nickel(II) ClO₄, nickel(II) acetate tetrahydrate, nickel(II) acetylacetone, nickel(II) bis(2,2,6,6-tetramethyl-3,5-heptanedionate), nickel boride, nickel(II) bromide, nickel(II) bromide-ethylene glycol dimethyl ether complex, nickel(II) 35

bromide 2-methoxyethyl ether complex, nickel(II) carbonate basic hydrate, nickel(II) chloride, nickel(II) cyclohexanebutyrate, nickel(II) 2-ethylhexanoate, nickel(II) fluoride, nickel(II) hexafluoroacetylacetone hydrate, nickel(II) hydroxide, nickel(II) iodide, nickel(II) nitrate hexahydrate, nickel(II) octanoate hydrate, nickel on 5 silica/alumina, nickel(II) oxalate dihydrate, nickel(II) oxide, nickel(II) perchlorate hexahydrate, nickel(II) peroxide hydrate, nickel(II) phosphide, nickel(II) stearate, nickel(II) sulfamate tetrahydrate, nickel(II) sulfate heptahydrate, nickel sulfide, nickel(II) tetrafluoroborate solution, 2,3,7,8,12,13,17,18-Octaethyl-21h,23h-porphine nickel(II), potassium hexafluoronickelate(IV), potassium hexafluoronickelate(IV), 10 potassium nickel(IV) paraperiodate, potassium tetracyanonickelate(II), tetrabutylammonium bis(3,6-dichloro-1,2-benzenedithiolato)nickelate, tetrabutylammonium bis(4-methyl-1,2-benzenedithiolato)nickelate, tetraethylammonium tetrachloronickelate(II), 5,10,15,20-tetraphenyl-21h,23h-porphine nickel(II), 2,2'-thiobis(4-tert-octylphenolato)-n-butylamine nickel(II), 15 tris(ethylenediamine)nickel(II) chloride hydrate, tris(ethylenediamine)nickel(II) sulfate and others.

Suitable silicon compounds include methylsilicon(IV) phthalocyanine chloride, methylsilicon(IV) phthalocyanine hydroxide, silicon 2,3-naphthalocyanine bis(trihexylsilyl oxide), silicon 2,3-naphthalocyanine dichloride, silicon 2,3-20 naphthalocyanine dihydroxide, silicon 2,3-naphthalocyanine dioctyloxide, silicon 2,3,9,10,16,17,23,24-octakis(octyloxy)-29h,31h-phthalocyanine dihydroxide, silicon(IV) phthalocyanine bis(trihexylsilyl oxide), silicon phthalocyanine dichloride, silicon phthalocyanine dihydroxide, silicon 2,9,16,23-tetra-*tert*-butyl-29h,31h-phthalocyanine dihydroxide and others. Other phthalocyanines include silver 25 phthalocyanine and disodium phthalocyanine.

Suitable tin compounds include tin(II) 2,3-naphthalocyanine, tin(IV) phthalocyanine oxide, tin(IV) 2,3-naphthalocyanine dichloride, tin(II) phthalocyanine, tin(IV) phthalocyanine dichloride, tin(II) fluoride, tin(II) sulfide and others.

Suitable titanium compounds include titanium(IV) phthalocyanine dichloride, 30 titanyl phthalocyanine, titanium black and others.

Suitable vanadium compounds include vanadyl phthalocyanine compounds eg. vanadyl 2,11,20,29-tetra-*tert*-butyl-2,3-naphthalocyanine, vanadyl 3,10,17,24-tetra-*tert*-butyl-1,8,15,22-tetrakis(dimethylamino)-29h,31h-phthalocyanine, vanadyl 2,9,16,23-tetraphenoxy-29h,31h-phthalocyanine, vanadyl 5,14,23,32-tetraphenyl-2,3-35 naphthalocyanine and others.

Suitable zinc compounds include zinc

1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29h,31h-phthalocyanine,
zinc 1,4,8,11,15,18,22,25-octabutoxy-29h,31h-phthalocyanine, zinc
2,3,9,10,16,17,23,24-octakis(octyloxy)-29h,31h-phthalocyanine, zinc phthalocyanine,
5 zinc 2,11,20,29-tetra-*tert*-butyl-2,3-naphthalocyanine, zinc 2,9,16,23-tetra-*tert*-butyl-
29H,31H-phthalocyanine, zinc 2,9,16,23-tetrakis(phenylthio)-29h,31h-
phthalocyanine, zinc(II)tetranitrophthalocyanine and others.

Suitable binary metal salts include copper zinc iron oxide, copper-zinc alloy,
copper-tin alloy, zincaluminium₄copper₁, copper mercuric iodide, copper(I)
10 tetraiodomercurate(II), copper iron oxide, copper aluminium oxide, copper chromite,
copper(I) selenide, copper(II) selenide, copper(II) selenite dehydrate, copper niobate,
copper(I) telluride, copper(II) telluride, titanium-copper alloy, yttrium aluminium
oxide, yttrium barium copper oxide, yttrium barium copper hydroxy carbonate, yttrium
barium copper oxide carbonate, silver-copper, bismuth lead strontium calcium copper
15 oxide, bismuth strontium calcium copper oxide, copper (II) niobate, copper (II)
selenite dihydrate, copper (II) selenate pentahydrate, magnesium aluminium oxide,
lanthanum aluminium oxide, barium ferrite, iron(II) titanate, lithium iron(III) oxide,
nickel zinc iron oxide, yttrium iron oxide, aluminium-nickel alloy, nickel chromium
oxide, nickel cobalt oxide, zirconium-nickel alloy, bismuth cobalt zinc oxide,
20 cobalt(II) selenide, lithium cobalt(III) oxide, nickel cobalt oxide, bismuth lead
strontium calcium copper oxide, lead(II) niobate, lead(II) selenide, lead(II) tantalate,
lead(II) telluride, lead(II) titanate, lead(II) zirconate, silver chromium oxide, cobalt
aluminium oxide, antimony(III) selenide, antimony tin oxide, indium tin oxide,
strontium titanate, strontium zirconate, bismuth aluminium oxide bismuth zirconate,
25 bismuth titanium oxide, bismuth oxide, neodymium oxide, neodymium(III) titanate,
lithium niobate and others.

Suitable binary metal salts for dual purpose near-IR absorbing and laser
marking include copper (II) molybdenum oxide, copper (II) tungsten oxide, copper (II)
vanadium oxide, silver molybdenum oxide, silver tungsten oxide, potassium
30 molybdate, sodium molybdate dihydrate, strontium molybdate, zinc molybdate,
barium molybdate, bismuth(III) molybdate, cadmium molybdate, calcium molybdate,
lead(II) molybdate, lithium molybdate, magnesium molybdate, manganese(II)
molybdate, cadmium tungstate, calcium tungstate, cerium(III) tungstate, cesium
tungstate, lead(II) tungstate, lithium tungstate, magnesium tungstate, sodium
35 polytungstate, sodium tungstate dihydrate, cesium metavanadate, cesium

orthovanadate, sodium metavanadate, sodium pyrovanadate, sodium orthovanadate, potassium metavanadate, yttrium vanadate, silver metavanadate, magnesium tungsten oxide, potassium tungsten oxide, magnesium vanadium oxide, barium calcium tungsten oxide, barium strontium tungsten oxide, barium yttrium tungsten oxide, 5 nickel(II) molybdate, barium tungstate, nickel(II) molybdate, lead(II) metavanadate, lead(II) molybdate, lead(II) tungstate, bismuth iron molybdenum oxide, bismuth tungsten oxide, bismuth antimonide, wulfenite, powellite and others.

The above binary metal salts can also be used as near-IR absorbers in combination with other laser marking materials such as AOM.

10 Suitable metal salts for laser marking include molybdenum (VI), tungsten (VI), vanadium (VI) antimony (V) and iron compounds. Examples are ammonium molybdate tetrahydrate, ammonium octamolybdate, ammonium polymolybdate, ammonium decamolybdate, ammonium heptamolybdate, silicomolybdic acid hydrate, ammonium silicomolybdic acid, sodium 15 phosphomolybdate hydrate, ammonium phosphomolybdate hydrate, phosphomolybdic acid hydrate, ammonium tetrathiomolybdate, bis(acetylacetonato)dioxomolybdenum(VI), bis(diethyldithiocarbamato)dioxomolybdenum(VI), dicarbonyl(pentamethylcyclopentadienyl)molybdenum(V) dimer, 2,6- 20 diisopropylphenylimido-neophylidene[(s)-*o*-biphen] molybdenum(VI), molybdenum(VI) dichloride dioxide, molybdenum disilicide, molybdenum(VI) fluoride, molybdenum(VI) oxide, molybdenum(VI) tetrachloride oxide, molybdic acid, tungstic acid, silicotungstic acid, ammonium silicotungstic acid, ammonium metatungstate hydrate, ammonium (para)tungstate, ammonium tetrathiotungstate, 25 hydrogen tungstate, polymer-supported, bis(tert-butylimino)bis(dimethylamino)tungsten(VI), phosphotungstic acid hydrate, piperidine tetrathiotungstate, tungsten(VI) chloride, tungsten(VI) dichloride dioxide, tungsten(VI) fluoride, tungsten(IV) oxide, tungsten(VI) oxychloride, tungstosilicic acid hydrate, ammonium metavanadate, ammonium polyvanadate sodium metavanadate, 30 antimony(V) oxide, tetraphenylantimony(V) acetate, tetraphenylantimony(V) bromide antimony(V) sulphide, yellow iron oxide, red iron oxide and others.

Suitable oxy metal salt complexes for laser marking include Mo(VI), W(VI) and V(VI) compounds.

Examples are tetra(bis(2-ethylhexylamine))octamolybdate,

35 tetra(dicyclohexylamine)octamolybdate, tetra(bis(2-ethylhexylamine))octatungstate,

tetra(dicyclohexylamine)octatungstate, tetra(bis(2-ethylhexylamine))octavanadate, and tetra(dicyclohexylamine)octavanadate.

Other than the metal salt, compositions of and for use in the present invention may comprise materials of the type described in the publications identified above. In one particular embodiment of the invention, when a poly-metal salt is used in combination with an additional marking component, then a composite colour can be achieved. The marking component may be one or more of a range of materials such as, for example, dye precursor, colour developer + dye precursor, oxy metal salt, oxy metal salt + dye precursor, oxy metal complex, or oxy metal complex + dye precursor. Other suitable components include pigment precursors. Any of all such components may be polymeric or halogenated; cellulosic materials or sugars may also be used. Examples of charable polymers and sugars are polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, fructose, glucose, sucrose and starch.

All such active materials described above can be supported on inert materials such as alumina, titanium oxide, zinc oxide, kaolin or mica.

A preferred component for use in the invention is a compound including an oxymetal anion. In combination with a salt, this typically allows marking with a diode or CO₂ laser. A suitable oxymetal anion component may be one or more of a range of materials, for example, ammonium octamolybdate, bis[2-(ethylhexylamine)]molybdate or di(cyclohexylamine)molybdate. A suitable ink formulation comprises 10-50% w/w of this component.

A colour-forming component may be included. Such materials are well known to those of ordinary skill in the art. Examples of suitable colour-formers include one or more of a range of conventional materials such as electron-donating materials, e.g. phthalides, fluorans and leuco dyes, for example crystal violet lactone. Lewis acids, whether electron-accepting or acid-generating, may also be used; examples are hydroxybenzoate, bisphenol A, zinc stearate and others.

Compositions for use in the invention can be produced in solvent, non-solvent and solvent-less binder systems such as Tampoprinting inks, UV-curing inks etc. A suitable binder, which may be water-soluble, alkali-soluble or an emulsion polymer, examples being polyvinyl alcohol (as available as Gohsenol GH-17), acrylic emulsion (as available from Scott Bader as Texicryl 13-011), materials available as Ineos Elvacite 2013, 2028, 2043 or 30, polyvinyl butyral (available as Pioloform) and nitrocellulose, e.g. in an amount of 10-50% w/w.

Pigments such as fumed silica or zinc stearate may also be used, e.g. in an amount of 10-50% w/w. Other materials that may be used include any one or more of antioxidants, reducing agents, lubricating agents, surfactants, pigments, sensitizers and defoamers.

5 When formulated as an ink for use in the invention, e.g. as a solution, dispersion or suspension, a suitable carrier liquid or solvent may be aqueous or organic, and other components will be chosen accordingly. For example, the liquid may be or comprise water or an organic solvent such as isopropanol, methyl ethyl ketone, ethanol or ethyl acetate, optionally with amine and/or surfactant, e.g. in an amount of 20-80% w/w.
10 Compositions may be prepared by dispersion of components in water-based polymer binder solutions such as polyvinyl alcohol and film-forming emulsions such as acrylics. These compositions may be produced by using:

- 15 a) mechanical mixing, e.g. leading edge-trailing blade stirring
- b) ceramic ball grinding and milling
- c) silverson mixing
- d) glass bead mechanical milling, e.g. in an Eiger Torrance motormill
- e) Ultra Turrax homogeniser
- f) mortar and pestle grinding

In order to illustrate the invention, copper salts have been initially evaluated at
20 suitable concentrations using a range of appropriate ink formulations with inherent but chemically different colour change capabilities and characteristics. When coating onto various substrates, laser imaging at near-IR wavelengths (700-2000 nm) has been achieved.

By application of liquid film-forming inks onto various substrates, coatings
25 capable of distinct colour change can be produced. Exposure to near-IR sources can produce dramatically different results, dependent primarily on the formulation of the ink.

Due to the remarkable character of the ink/coatings in producing a black image on exposure to diode laser wavelengths, e.g. when including a copper salt and an oxymetal anion, this may be further exploited by differentiating between activating sources.
30 Further, due to the remarkable character of the ink/coatings in producing a coloured image on exposure to diode laser wavelengths when including copper salt and a colour-forming component, this may be further exploited by differentiation between activating sources and to produce a range of different colours.

A composition of or for use in the invention can be used to produce an IR-sensitive coating that can be applied by a range of methods such as flood-coating,
35

flexo/gravure etc. The coating can be applied to a range of substrates such as paper, paperboard, flexible plastic film, corrugate board etc.

Potential further media for the invention are UV-curable flexographic inks, UV-curable offset inks, conventional offset inks, melt-extrudable polymer and powder coatings.

The following Examples illustrate the invention. The following abbreviations are used:

	CHP	-	copper (II) Hydroxy Phosphate
	CPPH	-	copper (II) Pyrophosphate Hydrate
10	CMO	-	copper (II) Molybdenum Oxide
	CTO	-	copper (II) Tungsten Oxide
	CCB	-	copper Carbonate Basic
	COH	-	copper Oxalate Hemihydrate
	CAH	-	copper Acetate Hydrate
15	CAA	-	copper AcetylAcetonate
	CDGT	-	copper D-Gluconate Tetrahydrate
	CFT	-	copper Formate Tetrahydrate
	AOM	-	ammonium OctaMolybdate
	CMC	-	CarboxyMethyl Cellulose
20	CG	-	Cellulose Gum
	HPC	-	Hydroxy Propyl Cellulose

Example 1

Water-based inks of a PVOH solution-stabilised dispersion in acrylic emulsion, comprising a near IR-absorber and an oxymetal salt, have been evaluated. Strong, well-defined and distinct colour changes have been demonstrated with diode (~830 nm) and CO₂ (~10,000nm) lasers when the inks are applied with 1 or 2 x K-bar 2.5 on different substrates, i.e. paper, board or foil, and subjected to hot-air drying.

The composition (each component amount given in % w/w) and results are given in Tables 1a to 1e.

Table 1a

Texicryl 13-011	40	25	23
Gohsenol GH-17	-	1	1
AOM	-	27	24
CHP	5	-	6
Water	55	47	46
Unimaged	Off-white/green	White	Off-white/green
Exposed (~830 nm)	Burning	None	Black
Exposed (~10,000 nm)	Burning	Black	Black

10

Table 1b

Texicryl 13-011 (% nv)	26
Gohsenol GH-17	1
AOM	27
CPPH	6
Water etc.	40
Unimaged	Off-White Blue
Exposed (~830 nm)	Black
Exposed (10,000nm)	Black

Table 1c

Texicryl 13-567 (% nv)	30	30	30
Ammonia	3	3	3
Gohsenol GH-17	1	1	1
AOM	20	15	10
CHP	20	20	20
Water etc.	26	31	36
Unimaged	Off-White Green	Off-White Green	Off-White Green
Exposed (~830 nm)	Black	Black	Black
Exposed (10,000nm)	Black	Black	Black

15

Table 1d

Texicryl 13-567 (% nv)	32	32	32	32
Ammonia	5	5	5	5
Gohsenol GH-17	1	1	1	1
AOM	13	13	13	13
CHP	21	-	-	-
CPPH	-	21	-	-
CCB	-	-	21	-
COH	-	-	-	21
Water etc.	28	28	28	28
Unimaged	Off-White Green	Off-White Blue	Off-White Green	Off-White Pale Blue
Exposed (~830 nm)	Black	Black	Black	Black
Exposed (10,000nm)	Black	Black	Black	Black

Table 1e

Texicryl 13-567 (% nv)	32	32	32	32
Ammonia	5	5	5	5
Gohsenol GH-17	1	1	1	1
AOM	13	13	13	13
CAH	21	-	-	-
CAA	-	21	-	-
CDGT	-	-	21	-
CFT	-	-	-	21
Water etc.	28	28	28	28
Unimaged	Off-White Blue Green	Off-White Purple	Off-White Pale Blue	Off-White Blue Green
Exposed (~830 nm)	Black	Black	Black	Black
Exposed (10,000nm)	Black	Black	Black	Black

Example 2

Solvent-based inks of a stabilised dispersion in acrylic, alcohol/ester solution, comprising a near IR-absorber and an oxymetal salt but no conventional colour-former) have been evaluated. Strong, well-defined and distinct colour changes have been
5 demonstrated with the diode and CO₂ lasers when applied by K-bar on different substrates, as in Example 1.

The compositions (% w/w) and results are given in Table 2.

Table 2

Elvacite 2028	26	19	18
CHP	5	-	5
AOM	-	22	21
Fumed Silica	-	1	1
Ethanol	69	58	55
Unimaged	Off-white/green	White	Off/white/green
Exposed (~830 nm)	Burning	None	Black
Exposed (~10,000nm)	Slight burning	Black	Black

Example 3

Water-based inks comprising a near IR-absorber and an organic pigment precursor, i.e. dispersed Pergascript colour-formers Blue I2RN, Blue SRB- P and Red I6B in acrylic emulsion, have been evaluated. Strong, well-defined and distinct colour changes have been demonstrated with diode and CO₂ lasers when applied by K-bar on
15 different substrates, as in Example 1.

The composition (% w/w) and results are given in Table 3.

Table 3

Texicryl 13-011	40	40	40	38	38	38	38
Pergascript Red 16B	-	5	-	-	5	-	5
Pergascript Blue SRB-P	-	-	5	5	-	5	-
CHP	5	-	-	5	5	-	-
CPPH	-	-	-	-	-	5	5
Water	55	55	55	52	52	52	52
Unimaged	Off-white/green	Off-white	Off-white	Off-white/Green	Off-white/green	Off-white/green	Off-white/green
Exposed (~820 nm)	Burning	None	None	Pink/purple	Blue	Pink/purple	Blue
Exposed (~10,000 nm)	Slight burning	Weak pink/purple	Weak blue	Pink/purple	Blue	Pink/purple	Blue

Example 4

Water-based inks of a binary metal salt (that is a near IR-absorber and oxymetal salt) in PVOH solution-stabilised dispersion in acrylic emulsion have been evaluated. Strong, well-defined and distinct colour changes have been demonstrated with diode and

5 CO₂ lasers when the inks are applied with 1 or 2 x K-bar 2.5 on different substrates, as in Example 1.

The composition (each component amount given in % w/w) and results are given in Tables 4a and 4b.

Table 4a

Texicryl 13-011	38	38
CMO	10	-
CTO	-	10
Water	52	52
Unimaged	Green	Green/yellow
Exposed (~900 nm)	Black/brown	Brown
Exposed (10,000 nm)	Black/brown	Brown

10

Table 4b

Texicryl 13-011 (% nv)	38
ZMO	10
Water etc.	52
Unimaged	Grey / Brown
Exposed (~830 nm)	None
Exposed (10,000nm)	Black / brown

Example 5

This Example illustrates a N-IR absorber in combination with organic pigment
15 precursor and Lewis acid.

Table 5

Texicryl 13-567 (% nv)	14.9	14.9	14.9
Gohsenol GH-17	1	1	1
CHP	13.7	13.7	13.7
BHB	9.1	9.1	9.1
Pergascript Red I-6B	4.6	-	-
Pergascript Blue I-2RN	-	4.6	-
Pergascript Black IR	-	-	4.6
Water etc.	56.7	56.7	56.7
Unimaged	Off-White Green	Off-White Green	Off-White Green
Exposed (~830 nm)	Purple	Blue	Black
Exposed (10,000nm)	Purple	Blue	Black

Example 6

This Example illustrates a N-IR absorber in combination with organic pigment precursor and Lewis acid and oxy metal salt.

Table 6

Texicryl 13-567 (% nv)	13.7	13.7	13.7
Ammonia	2..2	2.2	2.2
Gohsenol GH-17	1	1	1
CHP	11.9	11.9	11.9
BHB	7.9	7.9	7.9
Pergascript Red I-6B	4.0	-	-
Pergascript Blue I-2RN	-	4.0	-
Pergascript Black IR	-	-	4.0
AOM	6.0	6.0	6.0
Water	53.3	53.3	53.3
Unimaged	Off-White Green	Off-White Green	Off-White Green
Exposed (~830 nm)	Dark Purple	Dark Blue	Dark Black
Exposed (10,000nm)	Dark Purple	Dark Blue	Dark Black

5

Example 7

This Example illustrates N-IR absorber in combination with inorganic pigment precursor.

Table 7

Texicryl 13-567 (% nv)	21.7
CHP	20.8
Yellow iron Oxide	10.4
Water	47.1
Unimaged	Yellow Mustard
Exposed (~830 nm)	Red Brown
Exposed (10,000nm)	Red Brown

10

Example 8

This Example illustrates a N-IR absorber in combination with functional hydroxylated or chlorinated polymer.

Table 8a

CMC	16.0	-	-	-
CG	-	4.4	-	-
HPC	-	-	10.0	-
Starch	-	-	-	10.0
CHP	20.0	16.6	20.0	20.0
Water	64.0	79.0	70.0	70.0
Unimaged	Off-White Green	Off-White Green	Off-White Green	Off-White Green
Exposed (~830 nm)	Dark Brown	Dark Brown	Dark Brown	Dark Brown
Exposed (10,000nm)	Dark Brown	Dark Brown	Dark Brown	Dark Brown

Table 8b

Polidene 33-065 (% nv)	45	-
Polidene 33-004 (% nv)	-	37.5
CHP	25	25
Water	30	37.5
Unimaged	Green Cream	Green Cream
Exposed (~830 nm)	DarkBrown	DarkBrown
Exposed (10,000nm)	Dark Brown	Dark Brown

Example 9

5 This example illustrates N-IR absorber in combination with functional hydroxylated sugar.

Table 9

Texicryl 13-567 (% nv)	21.7	21.7	21.7
D(-)-Fructose	20.8	-	-
D-(+)-Glucose	-	20.8	-
D-(+)-Saccharose	-	-	20.8
CHP	20.8	20.8	20.8
Water	36.7	36.7	36.7
Unimaged	Off-White Green	Off-White Green	Off-White Green
Exposed (~830 nm)	Dark Brown	Dark Brown	Dark Brown
Exposed (10,000nm)	Dark Brown	Dark Brown	Dark Brown