Proximity Variational Inference

Jaan Altosaar ¹, Rajesh Ranganath, David Blei Princeton University, Columbia University

Rajesh Ranganath

David Blei

¹Contact: altosaar@princeton.edu

Variational Inference

Given

- Data set x
- Model $p(\mathbf{x},\mathbf{z})$ with latent variables $\mathbf{z} \in \mathbb{R}^d$

Goal

• Infer posterior $p(\mathbf{z} \mid \mathbf{x})$

Recipe for Variational Inference

- Write down the model $p(\mathbf{x}, \mathbf{z})$
- ullet Write down the approximate family $q(\mathbf{z};oldsymbol{\lambda})$
- Optimize the evidence lower bound objective:

$$\mathcal{L}(oldsymbol{\lambda}) = \mathbb{E}_{q(\mathbf{z};oldsymbol{\lambda})}[\log p(\mathbf{x},\mathbf{z}) - \log q(\mathbf{z};oldsymbol{\lambda})]$$

• Result: approximate posterior $q(\mathbf{z}; \boldsymbol{\lambda}^*)$

Bernoulli factor model

z

x

$$z_{ik} \sim \text{Bernoulli}(\pi)$$

 $x_i \sim \text{Normal}(z_i^{\top} \mu, \sigma^2 = 1)$

Optimal update for approximate posterior:

$$q^*(z_{ik} = 1) \propto \exp(\mathbb{E}_{-z_{ik}}[-\frac{1}{2\sigma^2}(x_i - z_i^{\top}\mu_j)^2])$$

• The probability that z_{ik} is 1 goes to 0 when cluster means μ are initialized away from x

Bernoulli factor model in 2D:

Gradient ascent using proximity operators

$$egin{aligned} U(oldsymbol{\lambda}_{t+1}) = & \mathcal{L}(oldsymbol{\lambda}_t) +
abla \mathcal{L}(oldsymbol{\lambda}_t)^ op (oldsymbol{\lambda}_{t+1} - oldsymbol{\lambda}_t) \ & 1 & 1 & 1 & 1 \end{pmatrix}^ op (oldsymbol{\lambda}_{t+1})^ op (oldsymbol{\lambda}_{t+1} - oldsymbol{\lambda}_t) \end{aligned}$$

$$-rac{1}{2
ho}(oldsymbol{\lambda}_{t+1}-oldsymbol{\lambda}_t)^ op(oldsymbol{\lambda}_{t+1}-oldsymbol{\lambda}_t)$$
 $\Rightarrow oldsymbol{\lambda}_{t+1}^*=oldsymbol{\lambda}_t+
ho
abla_t(oldsymbol{\lambda}_t)$

Proximity operators for variational inference

$$egin{aligned} U(oldsymbol{\lambda}_{t+1}) = & \mathcal{L}(oldsymbol{\lambda}_t) +
abla \mathcal{L}(oldsymbol{\lambda}_t)^ op (oldsymbol{\lambda}_{t+1} - oldsymbol{\lambda}_t) \ & - rac{1}{2
ho} (oldsymbol{\lambda}_{t+1} - oldsymbol{\lambda}_t)^ op (oldsymbol{\lambda}_{t+1} - oldsymbol{\lambda}_t) \ & - k \cdot d(f(oldsymbol{\lambda}_t), f(oldsymbol{\lambda}_{t+1})) \end{aligned}$$

Examples of proximity statistics $f(\lambda)$

- Entropy $H(q(\mathbf{z}; \lambda))$
- ullet Kullback-Leibler divergence $\mathit{KL}(q(\mathbf{z};oldsymbol{\lambda})||p(\mathbf{z}))$
- Mean/variance $\mathbb{E}_q[z], \operatorname{Var}(\mathbf{z})$

Recipe for Proximity Variational Inference

- 1. Design proximity statistic for variational parameters $f(\lambda)$
- 2. Choose distance function d
- 3. Optimize $\mathcal{L}_{proximity}$

$$egin{aligned} \mathcal{L}_{ ext{proximity}}(oldsymbol{\lambda}_{t+1}) = & \mathbb{E}_q[\log p(\mathbf{x},\mathbf{z})] - \mathbb{E}_q[\log q(oldsymbol{\lambda}_{t+1})] \ - k \cdot d(f(oldsymbol{\lambda}_{t-m}),f(oldsymbol{\lambda}_{t+1})). \end{aligned}$$

TensorFlow example

Robustness to local optima

Reduced sensitivity to initialization

Bernoulli factor model

Bernoulli factor model

Sigmoid Belief Network

- Sigmoid Belief Network; a neural net model with latent variables
- Binarized MNIST dataset
- One to Three stochastic layers of 200 dimensions
- Badly initialize weights to −100

Inference Method	ELBO	Held-out Log-likelihood
Variational Inference	-226.9	-212.1
PVI, Entropy constraint	-165.7	-139.7
PVI, KL constraint	-190.6	-189.6
PVI, Mean/variance constraint	-153.2	-128.7

Inference Method	ELBO	Held-out Log-likelihood
Variational Inference	-222.8	-208.3
PVI, Entropy constraint	-167.5	-139.1
PVI, KL constraint	-188.8	-173.8
PVI, Mean/variance constraint	-185.6	-149.7

Data
Variational Inference
PVI, Entropy constraint
PVI, KL constraint
PVI, Mean/variance constraint

Data Variational Inference	2
PVI, Entropy constraint	7
PVI, KL constraint	
PVI, Mean/variance constraint	2

Sigmoid Belief Network

Summary

- Easy to implement and test which proximity constraints can fix issues with variational inference
- Email me for TensorFlow code: altosaar@princeton.edu
- Preprint will be on arXiv soon