

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 142 146

B1

⑫

EUROPEAN PATENT SPECIFICATION

⑯ Date of publication of patent specification: **31.08.88**

⑮ Int. Cl.⁴: **C 07 C 59/90, C 07 C 69/738,
C 07 C 69/76, C 07 C 69/62,
C 07 F 7/02, C 07 C 33/46,
C 07 C 25/22, C 07 D 261/04 //
A61K31/19**

⑯ Application number: **84113599.9**

⑯ Date of filing: **12.11.84**

⑯ Oxo-analogs of mevinolin-like antihypercholesterolemic agents.

⑯ Priority: **14.11.83 US 550707**

⑯ Proprietor: **MERCK & CO. INC.
126, East Lincoln Avenue P.O. Box 2000
Rahway New Jersey 07065-0900 (US)**

⑯ Date of publication of application:
22.05.85 Bulletin 85/21

⑯ Inventor: **Hoffman, William F.
740 Wikel Road
Lansdale Pennsylvania 19446 (US)
Inventor: Lee, Ta Jyh
1921 Supplee Road
Lansdale Pennsylvania 19446 (US)
Inventor: Stokker, Gerald E.
Plymouth Road
Gwynedd Valley Pennsylvania 19446 (US)**

⑯ Publication of the grant of the patent:
31.08.88 Bulletin 88/35

⑯ Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

⑯ Representative: **Abitz, Walter, Dr.-Ing. et al
Abitz, Morf, Gritschneider, Freiherr von
Wittgenstein Postfach 86 01 09
D-8000 München 86 (DE)**

B1

EP 0 142 146

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Courier Press, Leamington Spa, England.

Description**Summary of the Invention**

This invention is concerned with novel compounds of structural formula I:

5

10

wherein Z is a variety of mono- and bi-carbocyclic moieties with various substituents well known to those skilled in the art of 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase inhibitors useful in the treatment of familial hypercholesterolemia, hyperlipemia and atherosclerosis.

The invention is also concerned with novel processes for the preparation of the novel compounds; pharmaceutical formulations comprising a novel compound as active ingredient; and a method of treating familial hypercholesterolemia, hyperlipemia, and atherosclerosis.

Background of the Invention

Over the past several years a number of structurally related antihypercholesterolemic agents acting by inhibition of HMG-CoA reductase have been reported in the patent literature and elsewhere. The compounds have varied from the natural fermentation products, compactin and mevinolin,

25

30

35

Compactin ($R^2 = H$)Mevinolin ($R^2 = CH_3$)

40

(see GB-A-1,555,831, GB-A-2,055,100 and GB-A-2,073,199) to di- and tetrahydro derivatives thereof (see EP-A-0,052,366); to analogs with different esters in the 8-position of the polyhydronaphthalene moiety, to totally synthetic analogs, wherein the polyhydronaphthalene moiety is replaced by substituted mono- and bicyclic aromatics, and biphenyls (see EP-A-0,068,038). But in all instances the active compound included a 4-hydroxytetrahydropyran-2-one ring or the corresponding 3,5-dihydroxy acid, or derivatives thereof, formed by opening the pyranone ring such as:

50

or

II

IIa

60

4-hydroxytetrahydropyran-2-one

3,5-dihydroxy-acid

In all of these compounds the 3,5-dihydroxy acid or corresponding lactone moiety is present and the particular stereochemistry depicted is essential for manifestation of the optimum enzyme inhibitory activity.

Now with the present invention there are provided compounds structurally related to those lactones

0 142 146

and dihydroxy acids that do not have the 5-hydroxy functionality, do not form a lactone ring, and are incapable of stereochemical variation at the 5-position of the acid because the 5-carbon is not asymmetric. On the contrary, the 5-carbon carries an oxo function which greatly facilitates the total synthesis of active compounds in that by eliminating one asymmetric center it is unnecessary to separate diastereoisomers or

5 to conduct a stereoselective synthesis to obtain optimum enzyme inhibitory activity. It is believed that structures I are reduced *in situ* to generate the "active" inhibitors of structure II or IIa.

The active compounds of this invention are useful in either the racemic form or as the 3(R)-isomer. Those compounds produced by total synthesis are obtained initially as racemates, but may be resolved by standard methods into 3(R)- and 3(S)-isomers. Compounds of Structure I which are synthesized starting 10 from natural fermentation products such as mevinolin and its analogs are obtained as the optically pure 3(R)-isomers.

Detailed Description of the Invention

The novel compounds of this invention have structural formula:

15

20

wherein

R¹ is

- 25 1) hydrogen,
2) C₁₋₄alkyl,
3) 2,3-dihydroxypropyl,
4) alkali metal cation, such as Na⁺, or K⁺, or
5) ammonium of formula N⁺R³R⁴R⁵R⁶
- 30 wherein R³, R⁴, R⁵ and R⁶ are independently hydrogen or C₁₋₄alkyl or two of R³, R⁴, R⁵ and R⁶ are joined together to form a 5 or 6-membered heterocycle such as pyrrolidino or piperidino with the nitrogen to which they are attached;
- E is —CH₂CH₂—, —CH=CH—, or —(CH₂)₃—; and
Z is 1)

35

40

- wherein the dotted lines represent all of the possible oxidation states of the bicyclic system such as
45 naphthalene, dihydro-, tetrahydro-, hexahydro-, octahydro-, and decahydronaphthalene;

X is —O— or

50 wherein

R⁹ is H or C₁₋₃alkyl;
R⁷ is C₂₋₈alkyl; and
R⁸ is H or —CH₃;

55

2)

60

wherein R¹⁰, R¹¹ and R¹² are independently

- a) hydrogen,
b) halogen, such as bromo, chloro or fluoro,
c) C₁₋₄alkyl,
d) halo-C₁₋₄alkyl,

0 142 146

- 5 e) phenyl either unsubstituted or substituted with one or more of
 i) C₁₋₄alkoxy,
 ii) C₁₋₄alkyl,
 iii) C₂₋₈alkanoyloxy, or
 iv) halo-C₁₋₄alkyl,
 v) halo, such as bromo, chloro or fluoro,
 f) OR¹³ wherein R¹³ is
 i) hydrogen,
 ii) C₂₋₈alkanoyl,
 10 iii) benzoyl,
 iv) phenyl,
 v) halophenyl,
 vi) phenyl-C₁₋₃alkyl, either unsubstituted or substituted with one or more of halogen, C₁₋₄ alkoxy,
 C₁₋₄alkyl or halo-C₁₋₄alkyl,
 15 vii) C₁₋₉alkyl,
 viii) cinnamyl,
 ix) halo-C₁₋₄alkyl,
 x) allyl,
 xi) C₃₋₆cycloalkyl-C₁₋₃alkyl,
 20 xii) adamantyl-C₁₋₃alkyl,

wherein n is 0—2, and R¹⁴ is halo such as chloro, bromo or fluoro, or C₁₋₄ alkyl, and

- 40 wherein the dotted lines represent possible double bonds there being 0, 1 or 2 double bonds;
 m represents 1, 2 or 3; and
 R¹⁵ is
 1) methyl,
 2) hydroxy,
 3) C₁₋₄ alkoxy,
 45 4) oxo or
 5) halo;
 or they have structural formula

- wherein R¹ is hydrogen, an alkali metal cation or an ammonium cation and wherein R⁷ is 4-fluorobenzoyl, 4-tert-butylbenzoyl or 4-fluorophenylacetyl.
 Preferred embodiments of the novel compounds are those in which:
 65 R¹ is hydrogen, an alkali metal cation or an ammonium cation;

0 142 146

E is $-\text{CH}=\text{CH}-$ or $-\text{CH}_2\text{CH}_2-$; and
Z is

5

1)

10

wherein

15

is 2-methylbutyryl or 2,2-dimethylbutyryl;

20

2)

25

wherein R¹⁰, R¹¹ and R¹² are independently:

- a) halogen,
- b) C₁₋₄alkyl,
- c) halo-C₁₋₄alkyl,

30

d) phenyl with 1 to 3 substituents selected from halo, C₁₋₄alkyl or C₁₋₄alkoxy,

35

e) OR¹³, wherein R¹³ is

- i) phenyl,
- ii) halophenyl, or

iii) phenyl-C₁₋₃ alkyl, either unsubstituted or substituted with one or more of halogen, C₁₋₄ alkoxy, C₁₋₄ alkyl or halo-C₁₋₄ alkyl; or

35

40

3)

wherein n is 0, 1 or 2 and R¹⁴ is methyl and the ring system is naphthalene or 5,6,7,8-tetrahydro-naphthalene.

45

One novel process for preparing the novel compounds of this invention is particularly useful when starting with compounds with a pre-formed 4-hydroxytetrahydropyran-2-one moiety or the corresponding 3,5-dihydroxy acid and is illustrated as follows:

50

55

60

wherein R¹⁶ is C₁₋₄alkyl, especially methyl. After protecting the 4-hydroxyl of the lactone with a dimethyl-tert-butylsilyl group and preparing an alkyl ester by known procedures, the resulting 5-hydroxy of the open-chain acid is oxidized to the ketone. Suitable oxidizing agents include: pyridinium chlorochromate in a chlorinated alkane such as methylene chloride or chloroform at about 0° to about 25°C for about 1 to 4 hour; oxalyl chloride in dimethylsulfoxide at about -70° to about -40°C for about 0.25 to 0.5 hours; trifluoroacetic anhydride in dimethylsulfoxide at about -70° to -40°C for about 0.25 to 0.5 hour; and pyridinium dichromate in dimethyl formamide at 0° to 25°C for 1 to 8 hours.

0 142 146

The silyl ether group is then hydrolyzed by treatment with acetic acid and tetrabutylammonium fluoride in tetrahydrofuran.

A related procedure is available for preparing compounds of this invention wherein E represents $-\text{CH}_2-\text{CH}_2-$. It obviates the need for protection of the 3-hydroxy group before oxidizing the 5-hydroxy group and is represented as follows:

In the first step the dihydroxy compound is treated with activated manganese dioxide in a chlorinated hydrocarbon such as chloroform, methylene chloride, 1,2-dichloroethane or the like at about 0°C to 40°C preferably at ambient temperature for about 15 to 30 hours. The 5-oxo compound produced is then treated with tri-*n*-butyltin hydride and tetrakis(triphenylphosphine)palladium(0) in an ethereal solvent such as ether, THF, 1,2-dimethoxyethane or the like, at about ambient temperature for about 15 to 30 hours.

Alternatively, if the 3-hydroxy-5-oxo-carboxylic acid moiety is being synthesized, the 5-oxo group is realized directly by a process which is another embodiment of this invention and which is exemplified as follows:

40 The nitro compound is treated with a C₁₋₄alkyl 3-butenoate, preferably methyl 3-butenoate, and an aromatic isocyanate such as p-toluoyl isocyanate, p-chlorophenyl isocyanate, phenyl isocyanate or the like, preferably the latter, and a bit of triethylamine as a catalyst in an inert organic solvent such as toluene, benzene, xylene, or the like at about 15 to 30°C, preferably about room temperature for about 5 to about 24 hours.

The resulting isoxazoline is reduced catalytically with palladium on carbon, platinum oxide or the like in an inert organic solvent such as a C₁-₃ alkanol, acetic acid or the like containing a little water in the presence of boric acid at about 15 to 30°C and about 1—2 atmospheres of hydrogen pressure for about 1 to 6 hours.

The ester resulting from either of the foregoing synthetic schemes is readily saponified to the corresponding carboxylic acid salt by treatment with aqueous alkali such as potassium or sodium hydroxide to form the potassium or sodium salt respectively or with a quaternary ammonium hydroxide of formula $\text{HONR}^3\text{R}^4\text{R}^5\text{R}^6$ wherein none of the R groups is hydrogen to form the quaternary ammonium salt.

Acidifying any of these salts with a mineral acid results in the formation of the free carboxylic acid.

The acids are readily converted back to salts by treatment with the appropriate base or to esters by treatment with a C₁ to C₄ alkanol in the presence of a catalytic amount of an acid such as hydrogen chloride at about 50 to 100°C for about 3 to 6 hours.

The previously described salts are converted back to esters by treatment with an alkyl halide such as 2,3-dihydroxypropyl iodide in an aprotic solvent such as N,N-dimethylformamide, N-methylpyrrolidone or hexamethylphosphoramide at about 25 to 100°C for about 18 to 36 hours.

60 Those compounds, wherein Z is of the subtype (4), i.e., in which the polyhydronaphthalene moiety is substituted with hydroxy or oxa, halo or alkoxy are prepared from the corresponding substrate in which the 5-oxo group of the heptenoic acid is already in place. The processes, as applied to the 5-hydroxy analogs or the corresponding lactones, are disclosed in EP application 76601, British patents 2,111,052 and 2,075,013, EP application 74222, and Japanese published applications J58010572 and J57155995. Using those processes there are produced the following compounds:

65

O 142 146

<u>Double Bonds</u>	<u>R⁷</u>	<u>(R¹⁵)_m</u>
3,4:4a,5	1-methylpropyl	6-OH
3,4:4a,5	1,1-dimethylpropyl	6-OH
4,4a	1-methylpropyl	3-OH, 5-OH
4,4a	1,1-dimethylpropyl	3-OH, 5-OH
4,4a:5,6	1-methylpropyl	3-OH
4,4a:5,6	1,1-dimethylpropyl	3-OH
-	1-methylpropyl	6-OH
-	1,1-dimethylpropyl	6-OH
-	1-methylpropyl	3-OH
-	1,1-dimethylpropyl	3-OH
4,4a	1-methylpropyl	6-OH
4,4a	1,1-dimethylpropyl	6-OH
4,4a	1-methylpropyl	3-OH
4,4a	1,1-dimethylpropyl	3-OH
4a,5	1-methylpropyl	6-OH
4a,5	1,1-dimethylpropyl	6-OH
4a,5	1-methylpropyl	3-OH
4a,5	1,1-dimethylpropyl	3-OH
4,4a	1-methylpropyl	3-OH, 5=O
4,4a	1,1-dimethylpropyl	3-OH, 5=O
4,4a	1-methylpropyl	3=O, 5=O
4,4a	1,1-dimethylpropyl	3=O, 5=O
-	1-methylpropyl	3-OH, 5-OH
-	1,1-dimethylpropyl	3-OH, 5-OH
4,4a	1-methylpropyl	3-Cl, 5-Cl
4,4a	1,1-dimethylpropyl	3-Cl, 5-Cl
4,4a	1-methylpropyl	3-OCH ₃ , 5-OH
4,4a	1,1-dimethylpropyl	3-OCH ₃ , 5-OH
4,4a	1-methylpropyl	3-OC ₂ H ₅ , 5-OH
4,4a	1,1-dimethylpropyl	3-OC ₂ H ₅ , 5-OH
4,4a	1-methylpropyl	3-OC ₄ H ₉ , 5-OH
4,4a	1,1-dimethylpropyl	3-OC ₄ H ₉ , 5-OH
4,4a	1-methylpropyl	6-CH ₃ , 3-OH, 5-OH
4,4a	1,1-dimethylpropyl	6-CH ₃ , 3-OH, 5-OH

0 142 146

The novel pharmaceutical composition of this invention comprises at least one of the compounds of formula I in association with a pharmaceutical vehicle or diluent. The pharmaceutical composition can be formulated in a classical manner utilizing solid or liquid vehicles or diluents and pharmaceutical additives of a type appropriate to the mode of desired administration. The compounds can be administered by an oral route, for example, in the form of tablets, capsules, granules or powders, or they can be administered by a parenteral route in the form of injectable preparations.

A typical capsule for oral administration contains active ingredients (25 mg), lactose (75 mg) and magnesium stearate (15 mg). The mixture is passed through a 60 mesh sieve and packed into a No. 1 gelatin capsule.

A typical injectable preparation is produced by aseptically placing 25 mg of a water soluble salt of sterile active ingredient into a vial, aseptically freeze-drying and sealing. For use, the contents of the vial are mixed with 2 ml of physiological saline, to produce an injectable preparation.

The novel method of treating atherosclerosis, familial hypercholesterolemia, or hyperlipemia of this invention comprises administration of an effective antihypercholesterolemic amount of a compound of Formula I to a patient in need of such treatment.

The dose to be administered depends on the unitary dose, the symptoms, and the age and the body weight of the patient. A dose for adults is preferably between 20 and 2,000 mg per day, which can be administered in a single dose or in the form of individual doses from 1—4 times per day.

The compounds of this invention also have useful antifungal activities. For example, they may be used to control strains of *Penicillium sp.*, *Aspergillus niger*, *Cladosporium sp.*, *Cochliobolus miyabeanus* and *Helminthosporium cynodnotis*. For those utilities they are admixed with suitable formulating agents, powders, emulsifying agents or solvents such as aqueous ethanol and sprayed or dusted on the plants to be protected.

This invention can be illustrated by the following examples.

25

Example 1

7-[2(S),6(R)-Dimethyl-8(S)-(2(S)-methylbutyryloxy)-1,2,6,7,8,8a(R)-hexahydro-1(S)-naphthyl]-3(R)-hydroxy-5-oxoheptanoic acid

Step A: Preparation of 6(R)-[2-(8(S)-(2(S)-methylbutyryloxy)-2(S),6(R)-dimethyl-1,2,6,7,8,8a(R)-hexahydronaphthyl-1(S))-ethyl]-4(R)-(dimethyl-*tert*-butylsilyloxy)-3,4,5,6-tetrahydro-2H-pyran-2-one

Mevinolin (4.04 g, 0.01 mol) was dissolved in 25 ml of dry dimethylformamide (DMF) and treated with 2.7 g (0.04 mol) of imidazole and 3 g (0.02 mol) of dimethyl-*tert*-butylsilyl chloride, and the solution was stirred under nitrogen overnight. The mixture was poured into 200 ml of ether, washed with 2 × 50 ml of water, 1 × 25 ml of 1N hydrochloric acid, 1 × 25 ml of saturated aqueous sodium carbonate and 2 × 50 ml of brine, dried over MgSO₄ and concentrated to dryness. The residue was chromatographed on a "Still" column of silica gel (6.0 × 17.7 cm, 230—400 mesh) by elution with 45% ether in hexane (V/V) collecting 20 ml fractions. The fractions containing the product (21—52) were combined and concentrated to dryness to give 5.2 of oil.

40 Step B: Preparation of Methyl 7-[2(S), 6(R)-Dimethyl-8(S)-(2(S)-methylbutyryloxy)-1,2,6,7,8,8a(R)-hexahydro-1(S)-naphthyl]-3(R)-(tert-butyldimethylsilyloxy)-5(R)-hydroxyheptanoate

The silyl ether from Step A (1.03 g, 0.002 mol) was dissolved in 10 ml of methanol, treated with 2 ml of 1N aqueous sodium hydroxide and the mixture was stirred for 2 hours at room temperature. The methanol was evaporated under reduced pressure and the residue was freed of water by azeotropic distillation of 4 × 10 ml of toluene. The solid residue was dissolved in 5 ml of dry DMF, treated with 300 µl, (0.68 g, 0.0048 mol) of methyl iodide and the mixture was stirred overnight at room temperature. The mixture was poured into 100 ml of ether and washed with 20 ml of water and 20 ml of brine, dried (MgSO₄) and concentrated to dryness to give 1.0 g of residue (contained DMF). This material was chromatographed on a "Still" column of silica gel (6.0 × 17.7 cm, 230—400 mesh) by elution with 45% ether in hexane (V/V) collecting 20 ml fractions. Fractions 32—50 containing the major component were combined and concentrated to dryness to give 576 mg of oily product.

Step C: Preparation of Methyl 7-[2(S), 6(R)-Dimethyl-8(S)-(2(S)-methylbutyryloxy)-1,2,6,7,8,8a(R)-hexahydro-1(S)-naphthyl]-3(R)-(tert-butyldimethylsilyloxy)-5-oxoheptanoate

55 The ester from Step B (586 mg, 0.001 mol) was dissolved in 10 ml of methylene chloride and cooled to 0°C. Pyridine chlorochromate (0.56 g, 0.0026 mol) was added and the stirred mixture was allowed to warm spontaneously over 2 hours. Additional pyridine chlorochromate (224 mg, 0.001 mol) was added and stirring was continued another hour. The methylene chloride was evaporated *in vacuo*. The residue was suspended in 5 ml. ether, placed on top of a 4 × 40 cm column of silica gel (70—230 mesh) and eluted with 40% ether in hexane (V/V) collecting 15 ml fractions. Fractions 10—23 were combined and concentrated to 130 mg. of oily product.

Step D: Preparation of Methyl 7-[2(S), 6(R)-Dimethyl-8(S)-(2(S)-methylbutyryloxy)-1,2,6,7,8,8a(R)-hexahydro-1(S)-naphthyl]-3(R)-hydroxy-5-oxoheptanoate

65 The silyl ether from Step C (230 mg, 0.00024 mol) was dissolved in 5 ml of tetrahydrofuran (THF) and

0 142 146

treated with 54 μ l, (0.057 g, 0.00095 mol) of acetic acid and 710 μ l (1M in THF, 0.00071 mol) of tetrabutylammonium fluoride ($Bu_4N^+F^-$) and the mixture was stirred overnight at room temperature.

Another 57 μ l of acetic acid and 710 μ l of $Bu_4N^+F^-$ were added and stirring was continued an additional 24 hours. The mixture was poured into 100 ml of ether and washed with 1 \times 5 ml of 1N hydrochloric acid, 5 1 \times 10 ml of saturated aqueous sodium bicarbonate and 2 \times 10 ml of brine and dried ($MgSO_4$). Concentration to dryness gave 120 mg of an oil. The oil was chromatographed on a "Still" column of silica gel (1.5 \times 17.7 cm, 230—400 mesh) by elution with 5% acetone in methylene chloride (v/v) collecting 5 ml fractions. Fractions 12—20 containing the product were combined and concentrated to dryness to give 53 mg of solid (m.p. 64—66°C). Recrystallization of a sample from hexane gave material with m.p. 67—68°C.

10 Analysis for $C_{25}H_{38}O_6$ (434.55):
Calc: C, 69.09; H, 8.81.
Found: C, 69.30; H, 9.38.

15 **Step E: Preparation of 7-[2(S), 6(R)-Dimethyl-8(S)-(2(S)-methylbutyryloxy)-1,2,6,7,8,8a(R)-hexahydro-1(S)-naphthyl]-3(R)-hydroxy-5-oxoheptanoic acid**

The ester from Step D (43 mg, 0.0001 mol) was dissolved in 5 ml of methanol and treated with 2 ml of 0.1N sodium hydroxide (0.0002 mol) and stirred overnight at room temperature. The methanol was evaporated *in vacuo* and the residue was acidified with 1N hydrochloric acid and extracted with ether. The ether extract was washed with 3 \times 10 ml of brine and dried over $MgSO_4$. Concentration to dryness 20 provided 36 mg of solid which after recrystallization from ether/hexane had m.p. 102—103°C.

Analysis for $C_{24}H_{36}O_6$ (420.53):
Calc: C, 68.54; H, 8.63.
Found: C, 68.57; H, 8.88.

25

30

35

40

45

50

55

60

65

0 142 146

Employing the procedure substantially as described in Example 1, Steps A through E, but substituting for the mevinolin used in Step A, equimolar amounts of the lactones described in Table I there are produced the corresponding 5-oxo-carboxylic acids, salts, and esters also described in Table I in accordance with the following reaction scheme:

55

60

65

O 142 146

TABLE I

1)

<u>R⁷ C-</u>	<u>R⁸</u>	<u>X</u>	<u>a</u>	<u>b</u>
2(S)-methylbutyryl	-CH ₃	O	single	double
2(S)-methylbutyryl	-CH ₃	O	single	single
2(R)-methylbutyryl	-CH ₃	O	double	double
2,2-dimethylbutyryl	-CH ₃	O	double	double
2,2-dimethylbutyryl	-CH ₃	O	single	double
2,2-dimethylbutyryl	-CH ₃	O	single	single
acetyl	-CH ₃	O	double	double
2(S)-methylbutyryl	H	O	single	single
2,2-dimethylbutyryl	H	O	double	double
2,2-dimethylbutyryl	H	O	single	single
2,2-dimethylbutyryl	-CH ₃	NH	single	single
2-methyl-2-ethylbutyryl	-CH ₃	NH	single	single
2-methylbutyryl	-CH ₃	NH	single	single
4-fluorobenzoyl	-CH ₃	NH	single	single
4-fluorophenylacetyl	-CH ₃	NH	single	single
4-tert-butylbenzoyl	-CH ₃	NH	single	single
acetyl	-CH ₃	NH	double	double
acetyl	-CH ₃	NCH ₃	single	single
2,2-dimethylbutyryl	-CH ₃	NCH ₃	single	single
2,2-dimethylbutyryl	-CH ₃	NH	double	double

0 142 146

	R^{10}	R^{11}	R^{12}
15	6-(4-fluoro-3-methylphenyl)-	2-methyl	4-methyl
	6-(4-fluorophenyl)-	2-chloro	4-chloro
	6-(4-chlorophenyl)-	2-chloro	4-chloro
	6-(3,4-dichlorophenyl)-	2-chloro	4-chloro
20	6-(4-fluoro-3-methylphenyl)-	2-chloro	4-chloro
	6-(3,4-dichlorophenyl)-	2-methyl	4-methyl
	6-(3,5-dimethylphenyl)-	2-chloro	4-chloro
25	6-(3,4-dichlorophenyl)-	2-methyl	5-methyl
	6-(4-fluorophenyl)-	2-methyl	4-methyl
	6-(4-fluoro-3-methylphenyl)-	2-methyl	4-chloro
30	6-(4-fluorobenzylxy)	2-chloro	4-chloro
	6-(4-fluoro-3-methylphenyl)	2-chloro	4-methyl

	n	$\underline{\text{R}}^{14}$	
45	1	2-methyl	naphthyl
	0	-	naphthyl
50	2	2,6-dimethyl	naphthyl
	1	2-methyl	5,6,7,8-tetra- hydronaphthyl

55

Example 2

7-(4'-Fluoro-3,3',5-trimethyl-[1,1'-biphenyl]-2-yl)-3-hydroxy-5-oxoheptanoic acid

Step A: Preparation of Methyl 3-(4'-Fluoro-3,3',5-trimethyl-[1,1'-biphenyl]-2-yl)propionate

A solution of 1.716 g (13 mmol) of dimethyl malonate in 5 ml of DMF was added dropwise to a stirred suspension of sodium hydride (50% oil dispersion, 0.624 g, 13 mmol) in 15 ml of DMF and stirring was continued under nitrogen for 0.5 hour. The mixture was treated with ice bath cooling, with a solution of 3.1 g (11.8 mmol) of 2-chloromethyl-4'-fluoro-3,3',5-trimethyl-1,1'-biphenyl in 10 ml of DMF. The resulting mixture was stirred at 0°C for 10 minutes, at room temperature for 0.5 hour, and heated on a steam bath for 1 hour. Sodium chloride (0.759 g, 13 mmol) and 0.234 ml (13 mmol) of water were added to the reaction mixture and it was heated at reflux for 16 hours. The reaction mixture was cooled, poured into cold water and extracted with ether twice. The combined extracts were washed with dilute hydrochloric acid, dried

0 142 146

over $MgSO_4$, filtered and concentrated to dryness *in vacuo* to give 3.42 (11.38 mmol, 96%) of the desired product as a brown oil which was used directly in the next step without purification.

$\text{nmr} (\text{CDCl}_3) \delta$: 2.27 (6H, a methyl singlet and a methyl doublet), 2.3 (2H, m), 2.34 (3H, s), 2.9 (2H, m), 3.60 (3H, s), 6.84 (H, bs), 7.1—7.2 (4H, m).

5

Step B: Preparation of 3-(4'-fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl)propanol

A solution of 3.42 g (11.4 mmol) of the ester from Step A in 25 ml of ether was added dropwise to a stirred suspension of 0.38 g (10 mmol) of lithium aluminum hydride in 75 ml of ether at 0°C under nitrogen. After completion of the addition, the mixture was stirred at room temperature for 15 minutes, refluxed for 1 hour, cooled in ice and treated with successive additions of 0.4 ml of water, 0.35 ml of 20% (w/v) aqueous sodium hydroxide and 1.1 ml of water. The resulting mixture was stirred at 0°C for 0.5 hour, treated with anhydrous $MgSO_4$, stirred for 15 minutes and filtered. The filtrate was concentrated *in vacuo* to give 3.08 g (11.3 mmol) (99%) of pale yellow oily product which was used directly in the next step without purification.

$\text{nmr} (\text{CDCl}_3) \delta$: 1.45—1.7 (2H, m), 2.25 (6H, s), 2.33 (3H, s), 2.45—2.7 (2H, m), 3.45 (2H, t, $J=6\text{Hz}$), 6.85 (H, bs), 6.95—7.2 (4H, m).

10

Step C: Preparation of 2-(3-Bromopropyl)-4'-fluoro-3,3',5-trimethyl-1,1'-biphenyl

A solution of 1.08 g (4 mmol) of PBr_3 in 10 ml of ether was added dropwise to a stirred solution of 3.08 g (11.3 mmol) of the alcohol from Step B in 40 ml of ether at 0°C. The mixture was stirred at room temperature for 1 hour, refluxed for 0.5 hour, cooled to room temperature, poured into ice water and extracted with ether. The extract was washed with water and saturated aqueous sodium bicarbonate, dried over $MgSO_4$, filtered and evaporated to dryness *in vacuo*. The residue was purified by flash chromatography on silica gel (230—400 mesh) by elution with methylene chloride/hexane (1:3, v/v). Combination and evaporation of the appropriate fractions gave the desired bromide as a pale yellow oil, (1.9 g, 5.67 mmol, 48% overall Steps A, B and C).

$\text{nmr} (\text{CDCl}_3) \delta$: 1.7—2.0 (2H, m), 2.27 (6H, a methyl singlet and a methyl doublet), 2.35 (3H, s), 2.55—2.8 (2H, m), 3.23 (2H, t, $J=6\text{Hz}$), 6.85 (H, bs), 6.95—7.2 (4H, m).

15

Step D: Preparation of 4'-Fluoro-3,3',5-trimethyl-2-(3-nitropropyl)-1,1'-biphenyl

A solution of 1.90 g (5.66 mmol) of the bromopropyl compound from Step C in 5 ml of ether was added to a stirred suspension of 1.31 g (8.5 mmol) of silver nitrite in 5 ml of ether at 0°C. The resulting mixture was stirred under nitrogen at 0°C for 7 hours, warmed to room temperature and stirred for an additional 16 hours. Another 1.0 g of silver nitrite was added and stirring was continued for another 20 hours.

The reaction mixture was filtered and the filtrate was concentrated to leave a residue which was purified by flash chromatography on silica gel (230—400 mesh) by elution with methylene chloride/hexane (1:4, v/v) to give, first, the recovered starting bromide, then the desired product, (0.64 g, 2.12 mmol, 78%).

$\text{nmr} (\text{CDCl}_3) \delta$: 1.8—2.2 (2H, m), 2.30 (6H, a methyl singlet and a methyl doublet), 2.33 (3H, s), 2.5—2.7 (2H, m), 4.18 (2H, t, $J=6\text{Hz}$), 6.88 (H, bs), 7.0—7.2 (4H, m). IR (neat) 1550, 1500 cm^{-1} .

20

Step E: Preparation of Methyl 3-[2-(4'-fluoro-3,3',5-trimethyl[1,1'-biphenyl]-2-yl)ethyl]-4,5-dihydro-5-isoxazoleacetate

A solution of 0.1 g (1.0 mmol) of methyl 3-butenoate and 0.174 ml (1.6 mmol) of phenyl isocyanate in 1 ml of toluene was added with stirring to a solution of 0.240 g (0.8 mmol) of the nitropropyl compound from Step D and 2 drops of triethylamine in 1 ml of toluene. The resulting mixture was stirred at room temperature for 3 hours. Additional quantities of methyl 3-butenoate (0.1 ml), triethylamine (0.1 ml) and phenyl isocyanate (0.15 ml) were added successively and stirring was continued overnight (18 hours). The mixture was filtered and the filtrate was concentrated *in vacuo* to a residue which was purified by flash chromatography on silica gel (230—400 mesh), first being eluted with methylene chloride to remove the impurities. Continued elution with acetone/methylene chloride (1:50, v/v) gave the desired product (0.218 g, 0.57 mmol, 71%) as a pale viscous oil.

$\text{nmr} (\text{CDCl}_3) \delta$: 2.28 (6H, s), 2.32 (3H, s), 2.2—3.0 (6H, m), 3.70 (3H, s), 4.6—5.0 (H, m), 6.85 (H, bs), 7.0—7.2 (4H, m). IR (neat) 1735 cm^{-1} .

25

Analysis calculated for $C_{23}H_{28}FNO_3$: C, 72.04; H, 6.83; N, 3.65.

Found: C, 72.35; H, 6.99; N, 3.88.

30

Step F: Preparation of Methyl 7-(4'-fluoro-3,3',5-trimethyl-[1,1'-biphenyl]-2-yl)-3-hydroxy-5-oxoheptanoate

A mixture of 0.1 g (0.26 mmol) of the isoxazoline from Step E, 50 mg of 10% palladium on carbon catalyst and 48 mg (0.78 mmol) of boric acid in 3 ml of methanol and 0.3 ml of water was stirred under hydrogen (1 atmosphere) at room temperature for 2.5 hours. The mixture was filtered and the filtrate was poured into brine and extracted with ether. The ethereal extract was washed with 5% (w/v) aqueous sodium bicarbonate solution, dried ($MgSO_4$), filtered and evaporated to dryness to give 92 mg (0.23 mmol, 89%) as a pale yellow oil.

$\text{nmr} (\text{CDCl}_3) \delta$: 2.30 (6H, a methyl singlet and a methyl doublet), 2.33 (3H, s), 2.35—2.5 (6H, m), 2.75—2.85 (2H, m), 3.30 (H, d), 3.70 (3H, s), 4.37 (H, m), 6.83 (H, bs), 6.95—7.1 (4H, m). IR (neat) 3450, 1710 cm^{-1} .

0 142 146

Step G: Preparation of 7-(4'-fluoro-3,3',5-trimethyl-[1,1'-biphenyl]-2-yl)-3-hydroxy-5-oxoheptanoic acid
 Employing the procedure substantially as described in Example 1, Step E, the ester from Step G of this Example 2 is saponified to the subject 5-keto acid.

Employing the procedure substantially as described in Example 2, Steps A through G, but substituting
 5 for the chloromethylbiphenyl employed in Step A thereof, equimolar amounts of the chloromethyl compounds described in Table II, there are produced the 5-keto esters, salts and acids also described in Table II in accordance with the following reaction sequence:

0 142 146

TABLE II

5

10

15

20

25

30

35

40

45

50

55

	<u>R<sup>10</sup></u>	<u>R<sup>11</sup></u>	<u>R<sup>12</sup></u>
6-(4-fluorophenyl)-	2-chloro	4-chloro	
6-(4-chlorophenyl)-	2-chloro	4-chloro	
6-(3,4-dichlorophenyl)-	2-chloro	4-chloro	
6-(4-fluoro-3-methylphenyl)-	2-chloro	4-chloro	
6-(3,4-dichlorophenyl)-	2-methyl	4-methyl	
6-(3,4-dimethylphenyl)-	2-chloro	4-chloro	
6-(3,4-dichlorophenyl)-	2-methyl	5-methyl	
6-(4-fluorophenyl)-	2-methyl	4-methyl	
6-(4-fluoro-3-methylphenyl)-	2-methyl	4-chloro	
6-(4-fluorobenzylxy)	2-chloro	4-chloro	
6-(4-fluoro-3-methylphenyl)-	2-chloro	4-methyl	

<u>n</u>	<u>R<sup>14</sup></u>	
1	2-methyl	naphthyl
0	-	naphthyl
2	2,6-dimethyl	naphthyl
1	2-methyl	5,6,7,8-tetra- hydronaphthyl

Example 3

7-(2,4-Dichlorophenyl)-3-hydroxy-5-oxoheptanoic acid

Step A: Preparation of Methyl 7-(2,4-Dichlorophenyl)-3-hydroxy-5-oxo-6-heptenoate

Activated manganese dioxide (40 g) was added to a solution of methyl 7-(2,4-dichlorophenyl)-3,5-dihydroxy-6-heptenoate (6.8 g, 21.3 mmol) in chloroform (600 mL) and the black suspension was vigorously stirred at ambient temperature for 20 hours. After filtration and evaporation of the solvent the residual amber oil (4.5 g, 1 major spot on TLC with $F_0.61$ on Whatman MK6F silica using $\text{CHCl}_3-\text{MeOH}$,

0 142 146

19:1 as eluent) was chromatographed on a Still column to obtain the product (3.9 g, 58%) as a pale yellow oil which solidified on standing, m.p. 77—79°C;

5 $\text{nmr} (\text{CDCl}_3) \delta$: 2.57 (2H, d, $J=6\text{Hz}$, $-\text{CH}_2\text{CO}_2-$), 2.93 (2H, d, $J=6\text{Hz}$, $-\text{CH}_2-\text{CO}-$), 3.70 (3H, s, $-\text{CO}_2\text{CH}_3$), 4.4—4.8 (H, m, $-\text{CH(OH)}-$), 6.67 (H, d, $J=16\text{ Hz}$, $=\text{CH}-\text{CO}$), 7.1—7.7 (3H, m, ArH), 7.93 (H, d, $J=16\text{ Hz}$, $=\text{CH}$).

Analysis for $\text{C}_{14}\text{H}_{14}\text{Cl}_2\text{O}_4$.

Calc: C, 53.02; H, 4.45.

Found: C, 53.25; H, 4.50.

10 **Step B: Preparation of Methyl 7-(2,4-Dichlorophenyl)-3-hydroxy-5-oxoheptanoate**

Tributyltin hydride (450 μL , 1.7 mmol) was added dropwise over 1½ hours to a stirred solution of the ene-one ester from Step A (320 mg, 1 mmol) and tetrakis(triphenylphosphine)palladium(0) (35 mg, 0.03 mmol) in dry THF (5 mL) at ambient temperature under N_2 . After standing at 20°C overnight the light-brown solution was distributed between water (100 mL) and ether (150 mL). The organic layer was separated and washed with water ($2 \times 100\text{ mL}$), dried and evaporated. The residual oil (1 major spot on TLC with R_f 0.39 vis-a-vis 0.35 for the starting ene-one ester on Whatman MK6F silica using $\text{CHCl}_3-\text{MeOH}$; 99:1 as eluent) was chromatographed on a Still column to obtain the product (260 mg, 81%) as a pale amber gum;

15 $\text{nmr} (\text{CDCl}_3) \delta$: 2.5—2.525 (2H, m, $-\text{CH}_2\text{CO}_2-$), 2.57—2.73 (2H, m, $-\text{COCH}_2\text{C(OH)}-$), 2.77 (2H, t, $J=7.5\text{ Hz}$, AR— $\text{CH}_2\text{CH}_2\text{CO}-$), 2.98 (2H, t, $J=7.5\text{ Hz}$, AR— $\text{CH}_2\text{CH}_2\text{CO}-$), 3.71 (3H, s, $-\text{CO}_2\text{CH}_3$), 4.45—4.51 (H, m, $-\text{CH(OH)}-$).

20 Analysis for $\text{C}_{14}\text{H}_{16}\text{Cl}_2\text{O}_4$

Calc: C, 52.68; H, 5.05.

Found: C, 52.47; H, 5.20.

25 **Step C: Preparation of 7-(2,4-dichlorophenyl)-3-hydroxy-5-oxoheptanoic acid**

Employing the procedure substantially as described in Example 1, Step E, the ester from Step B of this Example 3 is saponified to the subject 5-oxo acid.

Claims for the Contracting States: BE CH DE FR GB IT LI LU NL SE

30

1. A compound of structural formula:

40 wherein:

R¹ is

- 1) hydrogen,
- 2) C_{1-4} alkyl,
- 3) 2,3-dihydroxypropyl,
- 4) alkali metal cation, or
- 5) ammonium of formula

50 wherein R³, R⁴, R⁵ and R⁶ are independently hydrogen or C_{1-4} alkyl or two of R³, R⁴, R⁵ and R⁶ are joined together to form a 5- or 6-membered heterocycle with the nitrogen to which they are attached;

E is $-\text{CH}_2\text{CH}_2$, $-\text{CH}=\text{CH}-$, or $-(\text{CH}_2)_3-$; and

Z is

55

60

wherein the dotted lines represent all of the possible oxidation states of the bicyclic system, X is $-\text{O}-$ or $-\text{NR}^9$ wherein R⁹ is hydrogen or C_{1-3} alkyl;

65 R⁷ is C_{2-8} alkyl; and

0 142 146

R⁸ is hydrogen or —CH₃;

5 2)

wherein R¹⁰, R¹¹ and R¹² are independently

- 10 a) hydrogen,
- b) halogen, such as bromo, chloro or fluoro,
- c) C₁₋₄alkyl,
- d) halo-C₁₋₄alkyl,
- e) phenyl either unsubstituted or substituted with one or more of
 - i) C₁₋₄alkoxy,
 - ii) C₁₋₄alkyl,
 - iii) C₂₋₈alkanoyloxy,
 - iv) halo-C₁₋₄alkyl, or
 - v) halo,
- f) OR¹³ wherein R¹³ is
 - i) hydrogen,
 - ii) C₂₋₈alkanoyl,
 - iii) benzoyl,
 - iv) phenyl,
 - v) halophenyl,
 - vi) phenyl-C₁₋₃alkyl, either unsubstituted or substituted with one or more of halogen, C₁₋₄alkoxy, C₁₋₄alkyl or halo-C₁₋₄alkyl,
 - vii) C₁₋₈alkyl,
 - viii) cinnamyl,
 - ix) halo-C₁₋₄alkyl,
 - x) allyl,
 - xi) C₃₋₆cycloalkyl-C₁₋₃alkyl, or
 - xii) adamantyl-C₁₋₃alkyl;

35

3)

40

wherein n is 0—2 and R¹⁴ is halo or C₁₋₄ alkyl; and

45

4)

50

wherein the dotted lines represent possible double bonds there being 0, 1 or 2 double bonds;

m represents 1, 2 or 3; and

R¹⁵ is

- 55 1) methyl,
- 2) hydroxy,
- 3) C₁₋₄ alkoxy,
- 4) oxo, or
- 5) halo.

60

65

O 142 146

2. A compound of structural formula

5

10

15

wherein R¹ is hydrogen, an alkali metal cation or an ammonium cation and wherein R⁷ is 4-fluorobenzoyl, 4-tert-butylbenzoyl or 4-fluorophenylacetyl.

3. The compound of Claim 1 wherein:

R¹ is hydrogen, an alkali metal cation or an ammonium cation;

20 E is —CH=CH— or —CH₂CH₂—; and

Z is

25

1)

30 wherein

is 2(S)-methylbutyryl or 2,2-dimethylbutyryl;

35

2)

40

wherein R¹⁰, R¹¹ and R¹² are independently

- a) halogen,
- b) C₁₋₄alkyl,
- c) halo-C₁₋₄alkyl,
- d) phenyl with 1 to 3 substituents selected from halo, C₁₋₄alkyl or C₁₋₄alkoxy,
- e) OR¹³, wherein R¹³ is
 - i) phenyl,
 - ii) halophenyl, or
 - iii) phenyl-C₁₋₃ alkyl, either unsubstituted or substituted with one or more of halogen, C₁₋₄ alkoxy, C₁₋₄ alkyl or halo-C₁₋₄ alkyl; or

55 3)

wherein n is 0, 1 or 2, and R¹⁴ is methyl, and the ring system is naphthyl, or 5,6,7,8-tetrahydronaphthyl.

60

O 142 146

4. The compound of Claim 1 selected from:

5

10

15

wherein R¹ is hydrogen, an alkali metal cation or an ammonium cation and wherein R⁷CO—, R⁸, X a and b have the following meanings:

20

25

30

35

40

45

50

55

60

	R ⁷ C—	R ⁸	X	a*	b
	2(S)-methylbutyryl	—CH ₃	O	single	double
	2(S)-methylbutyryl	—CH ₃	O	single	single
	2(R)-methylbutyryl	—CH ₃	O	double	double
	2,2-dimethylbutyryl	—CH ₃	O	double	double
	2,2-dimethylbutyryl	—CH ₃	O	single	double
	2,2-dimethylbutyryl	—CH ₃	O	single	single
	acetyl	—CH ₃	O	double	double
	2(S)-methylbutyryl	H	O	double	double
	2(S)-methylbutyryl	H	O	single	single
	2,2-dimethylbutyryl	H	O	double	double
	2,2-dimethylbutyryl	H	O	single	single
	2,2-dimethylbutyryl	—CH ₃	NH	single	single
	2-methyl-2-ethylbutyryl	—CH ₃	NH	single	single
	2-methylbutyryl	—CH ₃	NH	single	single
	acetyl	—CH ₃	NH	double	double
	acetyl	—CH ₃	NCH ₃	single	single
	2,2-dimethylbutyryl	—CH ₃	NCH ₃	single	single
	2,2-dimethylbutyryl	—CH ₃	NH	double	double

* When a = single bond, the rings are *trans*-fused.

65

O 142 146

5. The compound of claim 3 selected from:

5																		
10																		
15																		
20	<table border="0"> <thead> <tr> <th style="text-align: center;">R¹⁰</th> <th style="text-align: center;">R¹¹</th> <th style="text-align: center;">R¹²</th> </tr> </thead> <tbody> <tr> <td>6-(4-fluoro-3-methylphenyl)-</td><td>2-methyl</td><td>4-methyl</td></tr> <tr> <td>6-(4-fluorophenyl)-</td><td>2-chloro</td><td>4-chloro</td></tr> <tr> <td>6-(4-chlorophenyl)-</td><td>2-chloro</td><td>4-chloro</td></tr> <tr> <td>6-(3,4-dichlorophenyl)</td><td>2-chloro</td><td>4-chloro</td></tr> </tbody> </table>			R¹⁰	R¹¹	R¹²	6-(4-fluoro-3-methylphenyl)-	2-methyl	4-methyl	6-(4-fluorophenyl)-	2-chloro	4-chloro	6-(4-chlorophenyl)-	2-chloro	4-chloro	6-(3,4-dichlorophenyl)	2-chloro	4-chloro
R¹⁰	R¹¹	R¹²																
6-(4-fluoro-3-methylphenyl)-	2-methyl	4-methyl																
6-(4-fluorophenyl)-	2-chloro	4-chloro																
6-(4-chlorophenyl)-	2-chloro	4-chloro																
6-(3,4-dichlorophenyl)	2-chloro	4-chloro																
25	<table border="0"> <tbody> <tr> <td>6-(4-fluoro-3-methylphenyl)</td><td>2-chloro</td><td>4-chloro</td></tr> <tr> <td>6-(3,4-dichlorophenyl)</td><td>2-methyl</td><td>4-methyl</td></tr> <tr> <td>6-(3,5-dimethylphenyl)-</td><td>2-chloro</td><td>4-chloro</td></tr> </tbody> </table>			6-(4-fluoro-3-methylphenyl)	2-chloro	4-chloro	6-(3,4-dichlorophenyl)	2-methyl	4-methyl	6-(3,5-dimethylphenyl)-	2-chloro	4-chloro						
6-(4-fluoro-3-methylphenyl)	2-chloro	4-chloro																
6-(3,4-dichlorophenyl)	2-methyl	4-methyl																
6-(3,5-dimethylphenyl)-	2-chloro	4-chloro																
30	<table border="0"> <tbody> <tr> <td>6-(3,4-dichlorophenyl)-</td><td>2-methyl</td><td>5-methyl</td></tr> <tr> <td>6-(4-fluorophenyl)</td><td>2-methyl</td><td>4-methyl</td></tr> <tr> <td>6-(4-fluoro-3-methylphenyl)-</td><td>2-methyl</td><td>4-chloro</td></tr> </tbody> </table>			6-(3,4-dichlorophenyl)-	2-methyl	5-methyl	6-(4-fluorophenyl)	2-methyl	4-methyl	6-(4-fluoro-3-methylphenyl)-	2-methyl	4-chloro						
6-(3,4-dichlorophenyl)-	2-methyl	5-methyl																
6-(4-fluorophenyl)	2-methyl	4-methyl																
6-(4-fluoro-3-methylphenyl)-	2-methyl	4-chloro																
35	<table border="0"> <tbody> <tr> <td>6-(4-fluorobenzylxy)</td><td>2-chloro</td><td>4-chloro</td></tr> <tr> <td>6-(4-fluoro-3-methylphenyl)-</td><td>2-chloro</td><td>4-methyl</td></tr> </tbody> </table>			6-(4-fluorobenzylxy)	2-chloro	4-chloro	6-(4-fluoro-3-methylphenyl)-	2-chloro	4-methyl									
6-(4-fluorobenzylxy)	2-chloro	4-chloro																
6-(4-fluoro-3-methylphenyl)-	2-chloro	4-methyl																
40	<table border="0"> <tbody> <tr> <td>6-(4-fluoro-3-methylphenyl)-</td><td>2-chloro</td><td>4-methyl</td></tr> </tbody> </table>			6-(4-fluoro-3-methylphenyl)-	2-chloro	4-methyl												
6-(4-fluoro-3-methylphenyl)-	2-chloro	4-methyl																

6. The compound of claim 3 selected from:

45															
50															
55															
60	<table border="0"> <thead> <tr> <th style="text-align: center;">n</th> <th style="text-align: center;">R¹⁴</th> <th style="text-align: center;"></th> </tr> </thead> <tbody> <tr> <td>1</td><td>2-methyl</td><td>naphthyl</td></tr> <tr> <td>0</td><td>—</td><td>naphthyl</td></tr> <tr> <td>2</td><td>2,6-dimethyl</td><td>naphthyl</td></tr> </tbody> </table>			n	R¹⁴		1	2-methyl	naphthyl	0	—	naphthyl	2	2,6-dimethyl	naphthyl
n	R¹⁴														
1	2-methyl	naphthyl													
0	—	naphthyl													
2	2,6-dimethyl	naphthyl													
65	<table border="0"> <tbody> <tr> <td>1</td><td>2-methyl</td><td>5,6,7,8-tetrahydronaphthyl</td></tr> </tbody> </table>			1	2-methyl	5,6,7,8-tetrahydronaphthyl									
1	2-methyl	5,6,7,8-tetrahydronaphthyl													

O 142 146

7. An antihypercholesterolemic pharmaceutical composition comprising a pharmaceutical carrier and an effective antihypercholesterolemic amount of a compound as claimed in Claim 1 or 2.

8. The formulation of Claim 7 wherein the antihypercholesterolemic compound is as claimed in Claim 3.

5 9. The formulation of Claim 8 wherein the antihypercholesterolemic compound is as claimed in Claims 4, 5 or 6.

10. A process for the preparation of a compound of structural formula:

15 wherein R¹, E and Z have the meanings of R¹, E and Z 1), 2) and 3) in claim 1, which comprises treating a compound of structural formula:

20 wherein R¹⁶ is C₁₋₄alkyl, with an oxidizing agent to produce the compound of structural formula:

25 followed by desilylation to produce the compound of structural formula:

30 40 45 50 followed by treatment with alkali to produce the product wherein R¹⁶ is an alkali metal cation, followed by acidification to produce the compound wherein R¹⁶ is a hydrogen ion.

Claims for the Contracting State: AT

55 1. A process for the preparation of a compound of structural formula:

60 wherein:

R¹ is

65 1) hydrogen,

0 142 146

- 2) C₁₋₄alkyl,
 3) 2,3-dihydroxypropyl,
 4) alkali metal cation, or
 5) ammonium of formula

5

wherein R³, R⁴, R⁵ and R⁶ are independently hydrogen or C₁₋₄alkyl or two of R³, R⁴, R⁵ and R⁶ are joined together to form a 5- or 6-membered heterocycle with the nitrogen to which they are attached; E is —CH₂CH₂, —CH=CH—, or —(CH₂)₃—; and Z is

15

20

wherein the dotted lines represent all of the possible oxidation states of the bicyclic system, X is —O— or

25

wherein R⁹ is hydrogen or C₁₋₃alkyl;
 R⁷ is C₂₋₈alkyl; and
 R⁸ is hydrogen or —CH₃;

30

2)

35

wherein R¹⁰, R¹¹ and R¹² are independently
 a) hydrogen,
 b) halogen, such as bromo, chloro or fluoro,
 c) C₁₋₄alkyl,
 d) halo-C₁₋₄alkyl,
 e) phenyl either unsubstituted or substituted with one or more of
 i) C₁₋₄alkoxy,
 ii) C₁₋₄alkyl,
 iii) C₂₋₈alkanoyloxy, or
 f) OR¹³ wherein R¹³ is
 i) hydrogen,
 ii) C₂₋₈alkanoyl,
 iii) benzoyl,
 iv) phenyl,
 v) halophenyl,
 vi) phenyl-C₁₋₃alkyl, either unsubstituted or substituted with one or more of halogen, C₁₋₄alkoxy, C₁₋₄alkyl or halo-C₁₋₄alkyl,
 vii) C₁₋₉alkyl,
 viii) cinnamyl,
 ix) halo-C₁₋₄alkyl,
 x) allyl,
 xi) C₃₋₆cycloalkyl-C₁₋₃alkyl, or
 xii) adamantyl-C₁₋₃alkyl;

50

45

55

60

65

3)

0 142 146

wherein n is 0—2 and R¹⁴ is halo or C_{1—4} alkyl, which comprises treating a compound of structural formula:

5

10

15

20

25

30

35 followed by treatment with alkali to produce the product wherein R¹⁶ is an alkali metal cation, followed by acidification to produce the compound wherein R¹⁶ is a hydrogen ion.

2. A process for the preparation of a compound of structural formula

40

45

50

wherein R¹ is hydrogen, an alkali metal cation or an ammonium cation and wherein R⁷ is 4-fluorobenzoyl, 4-tert-butylbenzoyl or 4-fluorophenylacetyl, which comprises treating a compound of structural formula:

55

60

65

0 142 146

wherein R¹⁶ is C₁₋₄alkyl, with an oxidizing agent to produce the compound of structural formula:

followed by desilylation to produce the compound of structural formula:

followed by treatment with alkali to produce the product wherein R¹⁶ is an alkali metal cation, followed by acidification to produce the compound wherein R¹⁶ is a hydrogen ion.

3. The process of Claim 1 wherein:
 R¹ is hydrogen, an alkali metal cation or an ammonium cation;
 E is —CH=CH— or —CH₂CH₂—; and
 Z is

wherein

50 is 2(S)-methylbutyryl or 2,2-dimethylbutyryl;

- wherein R¹⁰, R¹¹ and R¹² are independently
 a) halogen,
 b) C₁₋₄alkyl,
 c) halo-C₁₋₄alkyl,
 d) phenyl with 1 to 3 substituents selected from halo, C₁₋₄alkyl or C₁₋₄alkoxy,
 e) OR¹³, wherein R¹³ is
 i) phenyl,

0 142 146

ii) halophenyl, or
 iii) phenyl-C₁₋₃ alkyl, either unsubstituted or substituted with one or more of halogen, C₁₋₄ alkoxy, C₁₋₄ alkyl or halo-C₁₋₄ alkyl; or

5

3)

10 wherein n is 0, 1 or 2, and R¹⁴ is methyl, and the ring system is naphthalene, or 5,6,7,8-tetrahydronaphthalene.

4. The process of Claim 1 for the preparation of a compound selected from:

15

20

25

wherein R¹ is hydrogen, an alkali metal cation or an ammonium cation and wherein R⁷CO—, R⁸, X, a and b have the following meanings:

30

35

40

45

50

55

60

65

	R ⁷ C—	R ⁸	X	a*	b
	2(S)-methylbutyryl	—CH ₃	O	single	double
	2(S)-methylbutyryl	—CH ₃	O	single	single
	2(R)-methylbutyryl	—CH ₃	O	double	double
	2,2-dimethylbutyryl	—CH ₃	O	double	double
	2,2-dimethylbutyryl	—CH ₃	O	single	double
	2,2-dimethylbutyryl	—CH ₃	O	single	single
	acetyl	—CH ₃	O	double	double
	2(S)-methylbutyryl	H	O	double	double
	2(S)-methylbutyryl	H	O	single	single
	2,2-dimethylbutyryl	H	O	double	double
	2,2-dimethylbutyryl	H	O	single	single
	2,2-dimethylbutyryl	—CH ₃	NH	single	single
	2-methyl-2-ethylbutyryl	—CH ₃	NH	single	single
	2-methylbutyryl	—CH ₃	NH	single	single
	acetyl	—CH ₃	NH	double	double
	acetyl	—CH ₃	NCH ₃	single	single
	2,2-dimethylbutyryl	—CH ₃	NCH ₃	single	single
	2,2-dimethylbutyryl	—CH ₃	NH	double	double

* When a = single bond, the rings are trans-fused.

0 142 146

5. The process of Claim 3 for the preparation of a compound selected from:

5																																																							
10																																																							
15	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center; width: 33.33%;"></th> <th style="text-align: center; width: 33.33%;">R^{10}</th> <th style="text-align: center; width: 33.33%;">R^{11}</th> <th style="text-align: center; width: 33.33%;">R^{12}</th> </tr> </thead> <tbody> <tr> <td style="text-align: right; vertical-align: bottom;">6-(4-fluoro-3-methylphenyl)-</td><td style="text-align: center; vertical-align: bottom;">2-methyl</td><td style="text-align: center; vertical-align: bottom;">4-methyl</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(4-fluorophenyl)-</td><td style="text-align: center; vertical-align: bottom;">2-chloro</td><td style="text-align: center; vertical-align: bottom;">4-chloro</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(4-chlorophenyl)-</td><td style="text-align: center; vertical-align: bottom;">2-chloro</td><td style="text-align: center; vertical-align: bottom;">4-chloro</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(3,4-dichlorophenyl)</td><td style="text-align: center; vertical-align: bottom;">2-chloro</td><td style="text-align: center; vertical-align: bottom;">4-chloro</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(4-fluoro-3-methylphenyl)</td><td style="text-align: center; vertical-align: bottom;">2-chloro</td><td style="text-align: center; vertical-align: bottom;">4-chloro</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(3,4-dichlorophenyl)</td><td style="text-align: center; vertical-align: bottom;">2-methyl</td><td style="text-align: center; vertical-align: bottom;">4-methyl</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(3,5-dimethylphenyl)-</td><td style="text-align: center; vertical-align: bottom;">2-chloro</td><td style="text-align: center; vertical-align: bottom;">4-chloro</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(3,4-dichlorophenyl)-</td><td style="text-align: center; vertical-align: bottom;">2-methyl</td><td style="text-align: center; vertical-align: bottom;">5-methyl</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(4-fluorophenyl)</td><td style="text-align: center; vertical-align: bottom;">2-methyl</td><td style="text-align: center; vertical-align: bottom;">4-methyl</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(4-fluoro-3-methylphenyl)-</td><td style="text-align: center; vertical-align: bottom;">2-methyl</td><td style="text-align: center; vertical-align: bottom;">4-chloro</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(4-fluorobenzylxy)</td><td style="text-align: center; vertical-align: bottom;">2-chloro</td><td style="text-align: center; vertical-align: bottom;">4-chloro</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">6-(4-fluoro-3-methylphenyl)-</td><td style="text-align: center; vertical-align: bottom;">2-chloro</td><td style="text-align: center; vertical-align: bottom;">4-methyl</td><td></td></tr> </tbody> </table>				R^{10}	R^{11}	R^{12}	6-(4-fluoro-3-methylphenyl)-	2-methyl	4-methyl		6-(4-fluorophenyl)-	2-chloro	4-chloro		6-(4-chlorophenyl)-	2-chloro	4-chloro		6-(3,4-dichlorophenyl)	2-chloro	4-chloro		6-(4-fluoro-3-methylphenyl)	2-chloro	4-chloro		6-(3,4-dichlorophenyl)	2-methyl	4-methyl		6-(3,5-dimethylphenyl)-	2-chloro	4-chloro		6-(3,4-dichlorophenyl)-	2-methyl	5-methyl		6-(4-fluorophenyl)	2-methyl	4-methyl		6-(4-fluoro-3-methylphenyl)-	2-methyl	4-chloro		6-(4-fluorobenzylxy)	2-chloro	4-chloro		6-(4-fluoro-3-methylphenyl)-	2-chloro	4-methyl	
	R^{10}	R^{11}	R^{12}																																																				
6-(4-fluoro-3-methylphenyl)-	2-methyl	4-methyl																																																					
6-(4-fluorophenyl)-	2-chloro	4-chloro																																																					
6-(4-chlorophenyl)-	2-chloro	4-chloro																																																					
6-(3,4-dichlorophenyl)	2-chloro	4-chloro																																																					
6-(4-fluoro-3-methylphenyl)	2-chloro	4-chloro																																																					
6-(3,4-dichlorophenyl)	2-methyl	4-methyl																																																					
6-(3,5-dimethylphenyl)-	2-chloro	4-chloro																																																					
6-(3,4-dichlorophenyl)-	2-methyl	5-methyl																																																					
6-(4-fluorophenyl)	2-methyl	4-methyl																																																					
6-(4-fluoro-3-methylphenyl)-	2-methyl	4-chloro																																																					
6-(4-fluorobenzylxy)	2-chloro	4-chloro																																																					
6-(4-fluoro-3-methylphenyl)-	2-chloro	4-methyl																																																					
40																																																							

6. The process of claim 3 for the preparation of a compound selected from:

45																							
50																							
55	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center; width: 33.33%;"></th> <th style="text-align: center; width: 33.33%;">n</th> <th style="text-align: center; width: 33.33%;">R^{14}</th> <th style="text-align: center; width: 33.33%;"></th> </tr> </thead> <tbody> <tr> <td style="text-align: right; vertical-align: bottom;">1</td><td style="text-align: center; vertical-align: bottom;">2-methyl</td><td style="text-align: center; vertical-align: bottom;">naphthyl</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">0</td><td style="text-align: center; vertical-align: bottom;">—</td><td style="text-align: center; vertical-align: bottom;">naphthyl</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">2</td><td style="text-align: center; vertical-align: bottom;">2,6-dimethyl</td><td style="text-align: center; vertical-align: bottom;">naphthyl</td><td></td></tr> <tr> <td style="text-align: right; vertical-align: bottom;">1</td><td style="text-align: center; vertical-align: bottom;">2-methyl</td><td style="text-align: center; vertical-align: bottom;">5,6,7,8-tetrahydronaphthyl</td><td></td></tr> </tbody> </table>				n	R^{14}		1	2-methyl	naphthyl		0	—	naphthyl		2	2,6-dimethyl	naphthyl		1	2-methyl	5,6,7,8-tetrahydronaphthyl	
	n	R^{14}																					
1	2-methyl	naphthyl																					
0	—	naphthyl																					
2	2,6-dimethyl	naphthyl																					
1	2-methyl	5,6,7,8-tetrahydronaphthyl																					
60																							
65																							

O 142 146

7. A process for the preparation of a compound of formula

5

10

wherein:

R¹ is

- 1) hydrogen,
- 2) C₁₋₄alkyl,
- 3) 2,3-dihydroxypropyl,
- 4) alkali metal cation, or
- 5) ammonium of formula

15

20

wherein R³, R⁴, R⁵ and R⁶ are independently hydrogen or C₁₋₄alkyl or two of R⁴, R⁵ and R⁶ are joined together to form a 5- or 6-membered heterocycle with the nitrogen to which they are attached;

E is —CH₂CH₂, or —(CH₂)₃—; and

25

Z is

30

1)

35

wherein R¹⁰, R¹¹ and R¹² are independently

- a) hydrogen,
- b) halogen, such as bromo, chloro or fluoro,
- c) C₁₋₄alkyl,
- d) halo-C₁₋₄alkyl,

40

e) phenyl either unsubstituted or substituted with one or more of

- i) C₁₋₄alkoxy,
- ii) C₁₋₄alkyl,
- iii) C₂₋₈alkanoyloxy,
- iv) halo-C₁₋₄alkyl, or
- v) halo,

45

f) OR¹³ wherein R¹³ is

- i) hydrogen,
- ii) C₂₋₈alkanoyl,
- iii) benzoyl,

50

iv) phenyl,

v) halophenyl,

vi) phenyl-C₁₋₃alkyl, either unsubstituted or substituted with one or more of halogen, C₁₋₄alkoxy,

C₁₋₄alkyl or halo-C₁₋₄alkyl,

vii) C₁₋₈alkyl,

viii) cinnamyl,

ix) halo-C₁₋₄alkyl,

x) allyl,

xi) C₃₋₆cycloalkyl-C₁₋₃alkyl, or

xii) adamantyl-C₁₋₃alkyl;

55

2)

65

0 142 146

wherein n is 0—2, and R¹⁴ is halo, or C₁₋₄ alkyl which comprises treating the compounds

10 to produce the compound of structural formula:

followed by catalytic reduction to produce the desired compound wherein R^1 is R^{16} ; followed by treatment with alkali to produce the product wherein R^1 is an alkali metal cation, followed by acidification to produce the compound wherein R^1 is a hydrogen ion.

8. The process of Claim 7 wherein:

R¹ is hydrogen, an alkali metal cation or an ammonium cation;

E is $\text{—CH}_2\text{CH}_2\text{—}$; and

Z is

wherein R¹⁰, R¹¹ and R¹² are independently

- 40 wherein R¹, R² and R³ are independently
a) halogen,
b) C₁₋₄alkyl,
c) halo-C₁₋₄alkyl,
d) phenyl with 1 to 3 substituents selected from halo, C₁₋₄alkyl or C₁₋₄alkoxy,
e) OR¹³, wherein R¹³ is
i) phenyl,
ii) halophenyl, or
iii) phenyl-C₁₋₃ alkyl, either unsubstituted or substituted with one or more of halogen, C₁₋₄ alkoxy,
45 C₁₋₄ alkyl, or halo-C₁₋₄ alkyl; or

wherein n is 0, 1, or 2, and R¹⁴ is methyl and the ring system is naphthalene or 5,6,7,8-tetrahydronaphthalene.

O 142 146

9. The process of Claim 8 for preparation of a compound selected from:

5			
10	R^{10}	R^{11}	R^{12}
15	6-(4-fluoro-3-methylphenyl)-	2-methyl	4-methyl
20	6-(4-fluorophenyl)-	2-chloro	4-chloro
25	6-(4-chlorophenyl)-	2-chloro	4-chloro
30	6-(3,4-dichlorophenyl)	2-chloro	4-chloro
35	6-(4-fluoro-3-methylphenyl)	2-chloro	4-chloro
40	6-(3,4-dichlorophenyl)	2-methyl	4-methyl
45	6-(4-fluorophenyl)	2-methyl	5-methyl
50	6-(4-fluoro-3-methylphenyl)	2-methyl	4-methyl
55	6-(4-fluorobenzoyloxy)	2-chloro	4-chloro
60	6-(4-fluoro-3-methylphenyl)-	2-chloro	4-methyl

10. The process of Claim 8 for the preparation of a compound selected from:

45			
50	n	R^{14}	
55	1	2-methyl	naphthyl
60	0	—	naphthyl
65	2	2,6-dimethyl	naphthyl
	1	2-methyl	5,6,7,8-tetrahydronaphthyl

0 142 146

11. A process for the preparation of a compound of structural formula:

wherein Z is as defined in Claim 1, which comprises treating a compound of structural formula:

with activated manganese dioxide to produce the compound of structural formula:

followed by treatment with tri-n-butyltin hydride and tetrakis (triphenylphosphine)palladium (0).

35 Patentansprüche für die Vertragsstaaten: BE CH DE FE GB IT LI LU NL SE

1. Eine Verbindung der Strukturformel:

worin:

- 50 R¹) Wasserstoff,
 - 2) C₁₋₄-Alkyl,
 - 3) 2,3-Dihydroxypropyl,
 - 4) ein Alkalimetallkation, oder
 - 5) ein Ammoniumkation der Formel N⁺R³R⁴R⁵R⁶ ist,
- wobei R³, R⁴, R⁵ und R⁶ unabhängig voneinander Wasserstoff oder C₁₋₄-Alkyl sind, oder zwei Reste von R³, R⁴, R⁵ und R⁶ miteinander unter Bildung eines 5- oder 6-gliedrigen Heterocyclus mit dem Stickstoff, an den sie gebunden sind, verbunden sind;
- 55 E—CH₂CH₂, —CH=CH— oder —(CH₂)₃— ist; und
Z

0 142 146

wobei die strichlierten Linien alle möglichen Oxydationszustände des bicyclischen Systems bedeuten, X —O— oder =NR⁹ ist, wobei R⁹ Wasserstoff oder C₁₋₃-Alkyl ist;
 R⁷ C₂₋₈-Alkyl ist; und
 R⁸ Wasserstoff oder —CH₃ ist;

5

2)

10

wobei R¹⁰, R¹¹ und R¹² unabhängig voneinander

- a) Wasserstoff,
- b) Halogen, wie Brom, Chlor oder Fluor,
- c) C₁₋₄-Alkyl,
- d) Halogen-C₁₋₄-Alkyl,
- e) Phenyl, das entweder unsubstituiert oder durch einen oder mehrere der Substituenten

15

- i) C₁₋₄-Alkoxy,

20

- ii) C₁₋₄-Alkyl,
- iii) C₂₋₈-Alkanoyloxy,

25

- iv) Halogen-C₁₋₄-Alkyl oder
- v) Halogen, substituiert ist, oder

30

- f) OR¹³, wobei R¹³

35

- i) Wasserstoff,
- ii) C₂₋₈-Alkanoyl,
- iii) Benzoyl,
- iv) Phenyl,
- v) Halogenphenyl,
- vi) Phenyl-C₁₋₃-alkyl, das entweder unsubstituiert oder durch einen oder mehrere Halogen-C₁₋₄-

40

Alkoxy-, C₁₋₄-Alkyl- oder Halogen-C₁₋₄-Alkylreste substituiert ist,

- vii) C₁₋₉-Alkyl,

- viii) Zinnamyl,

- ix) Halogen-C₁₋₄-alkyl,

- x) Allyl,

45

- xi) C₃₋₆-Cycloalkyl-C₁₋₃-alkyl, oder

50

- xii) Adamantyl-C₁₋₃-alkyl ist; sind,

40

3)

55

wobei n 0—2 ist, und R¹⁴ Halogen oder C₁₋₄-Alkyl ist; und

45

50

4)

55

wobei die strichlierten Linien mögliche Doppelbindungen bedeuten und 0, 1 oder 2 Doppelbindungen vorliegen, ist;

m 1, 2 oder 3 bedeutet; und

50

R¹⁵ 1) Methyl,

2) Hydroxy,

60

3) C₁₋₄-Alkoxy,

4) Oxo oder

5) Halogen ist.

65

O 142 146

2. Eine Verbindung der Strukturformel

15 worin R¹ Wasserstoff, ein Alkalimetallkation oder ein Ammoniumkation ist, und worin R⁷ 4-Fluorbenzoyl, 4-tert.-Butylbenzoyl oder 4-Fluorphenylacetyl ist.

3. Die Verbindung von Anspruch 1, worin

R¹ Wasserstoff, ein Alkalimetallkation oder ein Ammoniumkation ist;

E —CH=CH— oder —CH₂CH₂— ist; und

Z

wobei

30

wobei n 0, 1 oder 2 ist, und R¹⁴ Methyl ist, und das Ringsystem Naphthyl oder 5,6,7,8-Tetrahydronaphthyl ist, bedeutet.

O 142 146

4. Die Verbindung von Anspruch 1, ausgewählt aus:

5

10

15

20

25

30

35

40

45

50

55

60

65

worin R^1 Wasserstoff, ein Alkalimetallkation oder ein Ammoniumkation ist, und worin R^7CO- , R^8 , X , a und b die folgenden Bedeutungen haben:

	R^7C^-	R^8	X	a^*	b
20	2(S)-Methylbutyryl	-CH ₃	O	Einfachbindung	Doppelbindung
25	2(S)-Methylbutyryl	-CH ₃	O	Einfachbindung	Einfachbindung
	2(R)-Methylbutyryl	-CH ₃	O	Doppelbindung	Doppelbindung
	2,2-Dimethylbutyryl	-CH ₃	O	Doppelbindung	Doppelbindung
30	2,2-Dimethylbutyryl	-CH ₃	O	Einfachbindung	Doppelbindung
	2,2-Dimethylbutyryl	-CH ₃	O	Einfachbindung	Einfachbindung
	Acetyl	-CH ₃	O	Doppelbindung	Doppelbindung
	2(S)-Methylbutyryl	H	O	Doppelbindung	Doppelbindung
35	2(S)-Methylbutyryl	H	O	Einfachbindung	Einfachbindung
	2,2-Dimethylbutyryl	H	O	Doppelbindung	Doppelbindung
	2,2-Dimethylbutyryl	H	O	Einfachbindung	Einfachbindung
40	2,2-Dimethylbutyryl	-CH ₃	NH	Einfachbindung	Einfachbindung
	2-Methyl-2-ethylbutyryl	-CH ₃	NH	Einfachbindung	Einfachbindung
	2-Methylbutyryl	-CH ₃	NH	Einfachbindung	Einfachbindung
45	Acetyl	-CH ₃	NH	Doppelbindung	Doppelbindung
	Acetyl	-CH ₃	NCH ₃	Einfachbindung	Einfachbindung
	2,2-Dimethylbutyryl	-CH ₃	NCH ₃	Einfachbindung	Einfachbindung
50	2,2-Dimethylbutyryl	-CH ₃	NH	Doppelbindung	Doppelbindung

* Falls a eine Einfachbindung ist, sind die Ringe trans-kondensiert.

0 142 146

5. Die Verbindung von Anspruch 3, ausgewählt aus:

5			
10			
15	<u>R¹⁰</u>	<u>R¹¹</u>	<u>R¹²</u>
20	6-(4-Fluor-3-methylphenyl)-	2-Methyl	4-Methyl
25	6-(4-Fluorophenyl)-	2-Chlor	4-Chlor
30	6-(4-Chlorophenyl)-	2-Chlor	4-Chlor
35	6-(3,4-Dichlorophenyl)	2-Chlor	4-Chlor
	6-(4-Fluor-3-methylphenyl)	2-Chlor	4-Chlor
	6-(3,4-Dichlorophenyl)	2-Methyl	4-Methyl
	3-(3,5-Dimethylphenyl)-	2-Chlor	4-Chlor
	6-(3,4-Dichlorophenyl)-	2-Methyl	5-Methyl
	6-(4-Fluorophenyl)	2-Methyl	4-Methyl
	6-(4-Fluor-3-methylphenyl)-	2-Methyl	4-Chlor
	6-(4-Fluoroxyloxy)	2-Chlor	4-Chlor
	6-(4-Fluor-3-methylphenyl)-	2-Chlor	4-Methyl

6. Die Verbindung von Anspruch 3, ausgewählt aus:

40			
45			
50	<u>n</u>	<u>R¹⁴</u>	
55	1	2-Methyl	Naphthyl
60	0	-	Naphthyl
	2	2,6-Dimethyl	Naphthyl
	1	2-Methyl	5,6,7,8-Tetrahydro-naphthyl

7. Eine antihypercholesterinämische, pharmazeutische Zusammensetzung, enthaltend einen pharmazeutischen Träger und eine antihypercholesterinämisch wirksame Menge einer Verbindung wie in 65 Anspruch 1 oder 2 beansprucht.

0 142 146

8. Die Formulierung von Anspruch 7, wobei die antihypercholesterinämische Verbindung eine in Anspruch 3 beanspruchte Verbindung ist.

9. Die Formulierung von Anspruch 8, wobei die antihypercholesterinämische Verbindung eine in den Ansprüchen 4, 5 oder 6 beanspruchte Verbindung ist.

5 10. Ein Verfahren zur Herstellung einer Verbindung der Strukturformel:

10

worin R¹, E und Z die in Anspruch 1 angegebenen Bedeutungen von R¹, E und Z 1), 2) und 3) haben, welches
15 das Behandeln einer Verbindung der Strukturformel

20

25

worin R¹⁶ C₁₋₄-Alkyl ist, mit einem Oxydationsmittel unter Bildung der Verbindung der Strukturformel:

30

35

gefolgt von der Entsilierung unter Bildung der Verbindung der Strukturformel:

40

45

gefolgt von der Behandlung mit Alkali unter Bildung des Produktes, worin R¹⁶ ein Alkalimetallkation ist,
50 gefolgt von der Ansäuerung unter Bildung der Verbindung, worin R¹⁶ ein Wasserstoffion ist, umfaßt.

Patentansprüche für den Vertragsstaat: AT

1. Eine Verfahren zur Herstellung einer Verbindung der Strukturformel:

55

60

worin:

65 R¹ 1) Wasserstoff,
2) C₁₋₄-Alkyl,

O 142 146

- 3) 2,3-Dihydroxypropyl,
 4) ein Alkalimetallation, oder
 5) ein Ammoniumkation der Formel $N^+R^3R^4R^5R^6$ ist,
 wobei R^3, R^4, R^5 und R^6 unabhängig voneinander Wasserstoff oder C_{1-4} -Alkyl sind, oder zwei Reste von R^3, R^4, R^5 und R^6 miteinander unter Bildung eines 5- oder 6-gliedrigen Heterocyclus mit dem Stickstoff, an den sie gebunden sind, verbunden sind;
 $E—CH_2CH_2, —CH=CH—$ oder $—(CH_2)_3—$ ist; und
 Z

10

1)

15

wobei die strichlierten Linien alle möglichen Oxydationszustände des bicyclischen Systems bedeuten, X $—O—$ oder $=NR^9$ ist, wobei R^9 Wasserstoff oder C_{1-3} -Alkyl ist;

20 $R^7 C_{2-8}$ -Alkyl ist; und

R^8 Wasserstoff oder $—CH_3$ ist;

25

2)

- wobei R^{10}, R^{11} und R^{12} unabhängig voneinander
 a) Wasserstoff,
 30 b) Halogen, wie Brom, Chlor oder Fluor,
 c) C_{1-4} -Alkyl,
 d) Halogen- C_{1-4} -Alkyl,
 e) Phenyl, das entweder unsubstituiert oder durch einen oder mehrere der Substituenten
 i) C_{1-4} -Alkoxy,
 ii) C_{1-4} -Alkyl,
 iii) C_{2-8} -Alkanoyloxy,
 iv) Halogen- C_{1-4} -Alkyl oder
 v) Halogen, substituiert ist, oder
 f) OR^{13} , wobei R^{13}
 40 i) Wasserstoff,
 ii) C_{2-8} -Alkanoyl,
 iii) Benzoyl,
 iv) Phenyl,
 v) Halogenphenyl,
 vi) Phenyl- C_{1-3} -alkyl, das entweder unsubstituiert oder durch einen oder mehrere Halogen- C_{1-4} -Alkoxy-, C_{1-4} -Alkyl- oder Halogen- C_{1-4} -Alkylreste substituiert ist,
 vii) C_{1-9} -Alkyl,
 viii) Zinnamyl,
 ix) Halogen- C_{1-4} -alkyl,
 50 x) Allyl,
 xi) C_{3-6} -Cycloalkyl- C_{1-3} -alkyl, oder
 xii) Adamantyl- C_{1-3} -alkyl ist, sind; oder

55

3)

60 wobei $n = 0—2$ ist, und R^{14} Halogen oder C_{1-4} -Alkyl ist; bedeutet;

65

O 142 146

welches das Behandeln einer Verbindung der Strukturformel

5

10

worin R¹⁶ C₁₋₄-Alkyl ist, mit einem Oxydationsmittel unter Bildung der Verbindung der Strukturformel:

15

20

gefolgt von der Entsilyleierung unter Bildung der Verbindung der Strukturformel:

25

30

gefolgt von der Behandlung mit Alkali unter Bildung des Produktes, worin R¹⁶ ein Alkalimetallkation ist,
35 gefolgt von der Ansäuerung unter Bildung der Verbindung, worin R¹⁶ ein Wasserstoffion ist, umfaßt.
2. Ein Verfahren zur Herstellung einer Verbindung der Strukturformel

40

45

50 worin R¹ Wasserstoff, ein Alkalimetallkation oder ein Ammoniumkation ist, und worin R⁷ 4-Fluorbenzoyl, 4-tert.-Butylbenzoyl oder 4-Fluorphenylacetyl ist,
welches das Behandeln einer Verbindung der Strukturformel

55

60

65

0 142 146

worin R¹⁶ C₁₋₄-Alkyl ist, mit einem Oxydationsmittel unter Bildung der Verbindung der Strukturformel:

gefolgt von der Entsilyleierung unter Bildung der Verbindung der Strukturformel:

30 gefolgt von der Behandlung mit Alkali unter Bildung des Produktes, worin R¹⁶ ein Alkalimetallkation ist, gefolgt von der Ansäuerung unter Bildung der Verbindung, worin R¹⁶ ein Wasserstoffion ist, umfaßt.

3. Das Verfahren von Anspruch 1, worin R¹ Wasserstoff, ein Alkalimetallkation oder ein Ammoniumkation ist; E —CH=CH— oder —CH₂CH₂— ist; und

35 Z

45 wobei

50 2(S)-Methylbutyryl oder 2,2-Dimethylbutyryl ist;

wobei R¹⁰, R¹¹ und R¹² unabhängig voneinander

- 60 a) Halogen,
b) C₁₋₄-Alkyl,
c) Halogen-C₁₋₄-alkyl,
d) Phenyl mit 1 bis 3 Substituenten, ausgewählt aus Halogen, C₁₋₄-Alkyl oder C₁₋₄-Alkoxy, oder
e) OR¹³, wobei R¹³
65 i) Phenyl,

O 142 146

ii) Halogenphenyl oder

iii) Phenyl-C₁₋₃-alkyl ist, das entweder unsubstituiert oder durch einen oder mehrere Halogen-, C₁₋₄-Alkoxy-, C₁₋₄-Alkyl- oder Halogen-C₁₋₄-alkylreste substituierte ist, darstellen; oder

5

3)

10

wobei n 0, 1 oder 2 ist, und R¹⁴ Methyl ist, und das Ringsystem Naphthyl oder 5,6,7,8-Tetrahydronaphthyl ist, bedeutet.

4. Das Verfahren von Anspruch 1 zur Herstellung einer Verbindung, ausgewählt aus:

15

20

25

worin R¹ Wasserstoff, ein Alkalimetallkation oder ein Ammoniumkation ist, und worin R⁷CO—, R⁸, X, a und b die folgenden Bedeutungen haben:

30

	R ⁷ ^{II} C-	R ⁸	X	a*	b
35	2(S)-Methylbutyryl	-CH ₃	0	Einfachbindung	Doppelbindung
	2(S)-Methylbutyryl	-CH ₃	0	Einfachbindung	Einfachbindung
	2(R)-Methylbutyryl	-CH ₃	0	Doppelbindung	Doppelbindung
40	2,2-Dimethylbutyryl	-CH ₃	0	Doppelbindung	Doppelbindung
	2,2-Dimethylbutyryl	-CH ₃	0	Einfachbindung	Doppelbindung
	2,2-Dimethylbutyryl	-CH ₃	0	Einfachbindung	Einfachbindung
	Acetyl	-CH ₃	0	Doppelbindung	Doppelbindung
45	2(S)-Methylbutyryl	H	0	Doppelbindung	Doppelbindung
	2(S)-Methylbutyryl	H	0	Einfachbindung	Einfachbindung
	2,2-Dimethylbutyryl	H	0	Doppelbindung	Doppelbindung
50	2,2-Dimethylbutyryl	H	0	Einfachbindung	Einfachbindung
	2,2-Dimethylbutyryl	-CH ₃	NH	Einfachbindung	Einfachbindung
	2-Methyl-2-ethylbutyryl	-CH ₃	NH	Einfachbindung	Einfachbindung
55	2-Methylbutyryl	-CH ₃	NH	Einfachbindung	Einfachbindung
	Acetyl	-CH ₃	NH	Doppelbindung	Doppelbindung
	Acetyl	-CH ₃	NCH ₃	Einfachbindung	Einfachbindung
60	2,2-Dimethylbutyryl	-CH ₃	NCH ₃	Einfachbindung	Einfachbindung
	2,2-Dimethylbutyryl	-CH ₃	NH	Doppelbindung	Doppelbindung

* Falls a eine Einfachbindung ist, sind die Ringe trans-kon-densiert.

0 142 146

5. Das Verfahren von Anspruch 3 zur Herstellung einer Verbindung, ausgewählt aus:

	R^{10}	R^{11}	R^{12}
20	6-(4-Fluor-3-methylphenyl)-	2-Methyl	4-Methyl
	6-(4-Fluorphenyl)-	2-Chlor	4-Chlor
	6-(4-Chlorphenyl)-	2-Chlor	4-Chlor
25	6-(3,4-Dichlorphenyl)	2-Chlor	4-Chlor
	6-(4-Fluor-3-methylphenyl)	2-Chlor	4-Chlor
	6-(3,4-Dichlorphenyl)	2-Methyl	4-Methyl
30	5-(3,5-Dimethylphenyl)-	2-Chlor	4-Chlor
	6-(3,4-Dichlorphenyl)-	2-Methyl	5-Methyl
	6-(4-Fluorphenyl)	2-Methyl	4-Methyl
	6-(4-Fluor-3-methylphenyl)-	2-Methyl	4-Chlor
35	6-(4-Fluorbenzyloxy)	2-Chlor	4-Chlor
	6-(4-Fluor-3-methylphenyl)-	2-Chlor	4-Methyl

40 6. Das Verfahren von Anspruch 3 zur Herstellung einer Verbindung, ausgewählt aus:

O 142 146

7. Ein Verfahren zur Herstellung einer Verbindung der Formel

5

10 worin:

- R¹) Wasserstoff,
- 2) C₁₋₄-Alkyl,
- 3) 2,3-Dihydroxypropyl,
- 4) ein Alkalimetallkation, oder

15 5) ein Ammoniumkation der Formel N⁺R³R⁴R⁵R⁶ ist,
wobei R³, R⁴, R⁵ und R⁶ unabhängig voneinander Wasserstoff oder C₁₋₄-Alkyl sind, oder zwei Reste von R³, R⁴, R⁵ und R⁶ miteinander unter Bildung eines 5- oder 6-gliedrigen Heterocyclus mit dem Stickstoff, an den sie gebunden sind, verbunden sind;

E—CH₂CH₂ oder —(CH₂)₃— ist; und

20 Z

25

wobei R¹⁰, R¹¹ und R¹² unabhängig voneinander

- a) Wasserstoff,
- b) Halogen, wie Brom, Chlor oder Fluor,
- c) C₁₋₄-Alkyl,
- d) Halogen-C₁₋₄-Alkyl,
- e) Phenyl, das entweder unsubstituiert oder durch einen oder mehrere der Substituenten
 - i) C₁₋₄-Alkoxy,
 - ii) C₁₋₄-Alkyl,
 - iii) C₂₋₈-Alkanoyloxy,
 - iv) Halogen-C₁₋₄-Alkyl oder
 - v) Halogen, substituiert ist, oder
- f) OR¹³, wobei R¹³
 - i) Wasserstoff,
 - ii) C₂₋₈-Alkanoyl,
 - iii) Benzoyl,
 - iv) Phenyl,
 - v) Halogenphenyl,
 - vi) Phenyl-C₁₋₃-alkyl, das entweder unsubstituiert oder durch einen oder mehrere Halogen-C₁₋₄-Alkoxy-, C₁₋₄-Alkyl- oder Halogen-C₁₋₄-Alkylreste substituiert ist,
 - vii) C₁₋₉-Alkyl,
 - viii) Zinnamyl,
 - ix) Halogen-C₁₋₄-alkyl,
 - x) Allyl,
 - xi) C₃₋₈-Cycloalkyl-C₁₋₃-alkyl, oder
 - xii) Adamantyl-C₁₋₃-alkyl ist, sind;

55

2)

60

wobei n 0—2 ist, und R¹⁴ Halogen oder C₁₋₄-Alkyl ist; bedeutet; welches das Umsetzen der Verbindungen

65

0 142 146

unter Bildung der Verbindung der Strukturformel:

- 15 gefolgt von der katalytischen Reduktion unter Bildung der gewünschten Verbindung, worin R¹ R¹⁶ ist; gefolgt von der Behandlung mit Alkali unter Bildung des Produktes, worin R¹ ein Alkalimetallkation ist, gefolgt von der Ansäuerung unter Bildung der Verbindung, worin R¹ ein Wasserstoffion ist, umfaßt.

8. Das Verfahren von Anspruch 7, worin:

R¹ Wasserstoff, ein Alkalimetallkation oder ein Ammoniumkation ist;

- 20 E —CH₂CH₂— ist; und
Z

wobei R¹⁰, R¹¹ und R¹² unabhängig voneinander

- a) Halogen,
b) C₁₋₄-alkyl,
c) Halogen-C₁₋₄-alkyl,
d) Phenyl mit 1 bis 3 Substituenten, ausgewählt aus Halogen, C₁₋₄-Alkyl oder C₁₋₄-Alkoxy, oder
e) OR¹³, wobei R¹³
i) Phenyl,
ii) Halogenphenyl oder
iii) Phenyl-C₁₋₃-alkyl ist, das entweder unsubstituiert oder durch einen oder mehrere Halogen-, C₁₋₄-Alkoxy-, C₁₋₄-Alkyl- oder Halogen-C₁₋₄-alkylreste substituiert ist, darstellen; oder

- 45 wobei n 0, 1 oder 2 ist, und R¹⁴ Methyl ist, und das Ringsystem Naphthyl oder 5,6,7,8-Tetrahydronaphthyl ist, bedeutet.

50

55

60

65

0 142 146

9. Das Verfahren von Anspruch 8 zur Herstellung einer Verbindung, ausgewählt aus:

5			
10			
15			
	<u>R¹⁰</u>	<u>R¹¹</u>	<u>R¹²</u>
20	6-(4-Fluor-3-methylphenyl)-	2-Methyl	4-Methyl
	6-(4-Fluorphenyl)-	2-Chlor	4-Chlor
	6-(4-Chlorphenyl)-	2-Chlor	4-Chlor
25	6-(3,4-Dichlorphenyl)	2-Chlor	4-Chlor
	6-(4-Fluor-3-methylphenyl)	2-Chlor	4-Chlor
	6-(3,4-Dichlorphenyl)	2-Methyl	4-Methyl
	6-(3,5-Dimethylphenyl)-	2-Chlor	4-Chlor
30	6-(3,4-Dichlorphenyl)-	2-Methyl	5-Methyl
	6-(4-Fluorphenyl)	2-Methyl	4-Methyl
	6-(4-Fluor-3-methylphenyl)-	2-Methyl	4-Chlor
35	6-(4-Fluoroxyloxy)	2-Chlor	4-Chlor
	6-(4-Fluor-3-methylphenyl)-	2-Chlor	4-Methyl

40 10. Das Verfahren von Anspruch 8 zur Herstellung einer Verbindung, ausgewählt aus:

45			
50			
55			
	<u>n</u>	<u>R¹⁴</u>	
60	1	2-Methyl	Naphthyl
	0	-	Naphthyl
	2	2,6-Dimethyl	Naphthyl
65	1	2-Methyl	5,6,7,8-Tetrahydro-naphthyl

0 142 146

11. Ein Verfahren zur Herstellung einer Verbindung der Strukturformel:

5

10

worin Z wie in Anspruch 1 definiert ist,
welches das Behandeln einer Verbindung der Strukturformel:

15

20

25

mit aktiviertem Mangandioxid unter Bildung der Verbindung der Strukturformel:

30

35

gefolgt von der Behandlung mit Tri-n-butylzinnhydrid und Tetrakis(triphenylphosphin)palladium (O),
40 umfaßt.

Revendications pour les Etats contractants: BE CH DE FR GB IT LI LU NL SE

45

1. Un composé répondant à la formule développée:

50

55 dans laquelle:

R¹ est

- 1) un hydrogène,
- 2) un alkyle en C₁₋₄,
- 3) un 2,3-dihydroxypropyle,

60 4) un cation de métal alcalin ou

5) un ammonium de formule N⁺R³R⁴R⁵R⁶ dans laquelle R³, R⁴, R⁵ et R⁶ sont indépendamment un hydrogène ou un alkyle en C₁₋₄ ou deux de R³, R⁴, R⁵ et R⁶ sont réunis pour former un hétérocycle à 5 ou 6 chaînons avec l'azote auquel ils sont fixés;

E est —CH₂CH₂—, —CH=CH— ou —(CH₂)₃—; et

65 Z est

O 142 146

1)
5

- 10 où les pointillés représentent tous les états d'oxydation possibles du système bicyclique;
 X est —O— ou >NR⁹ où R⁹ est un hydrogène ou un alkyle en C₁₋₃;
 R⁷ est un alkyle en C₂₋₈; et
 R⁸ est un hydrogène ou —CH₃;

15

2)

20

où R¹⁰, R¹¹ et R¹² sont indépendamment

- a) un hydrogène,
- b) un halogène, tel que bromo, chloro ou fluoro,
- c) un alkyle en C₁₋₄,

25

d) un halogénoalkyle en C₁₋₄,

e) un phényle soit non substitué soit substitué par un ou plusieurs de

- i) alcoxy en C₁₋₄,
- ii) alkyle en C₁₋₄,
- iii) alcanoxyloxy en C₂₋₈,

30

iv) halogénoalkyle en C₁₋₄ ou

v) halogéno, tel que bromo, chloro ou fluoro,

f) OR¹³ où R¹³ est

- i) un hydrogène,
- ii) un alcanoyle en C₂₋₈,

35

iii) un benzoyle,

iv) un phényle,

v) un halogénophényle,

40

vi) un phényl-alkyle en C₁₋₃ soit non substitué soit substitué par un ou plusieurs halogènes, alcoxy en C₁₋₄, alkyles en C₁₋₄ ou halogénoalkyles en C₁₋₄,

vii) un alkyle en C₁₋₈,

viii) un cinnamyle,

ix) un halogénoalkyle en C₁₋₄,

x) un allyle,

xi) un cycloalkyl(C₃₋₆)-alkyle en C₁₋₃ ou

45

xii) un adamantyl-alkyle en C₁₋₃,

50

3)

où n est 0—2 et R¹⁴ est un halogéno ou un alkyle en C₁₋₄; et

55

4)

60

(R¹⁵)_m

où les pointillés représentent les doubles liaisons possibles, 0, 1 ou 2 doubles liaisons pouvant exister;
 m représente 1, 2 ou 3; et

65

R¹⁵ est

0 142 146

- 5 1) un méthyle,
 2) un hydroxy,
 3) un alcoxy en C₁₋₄,
 4) un oxo ou
 5) un halogéno.

10 2. Un composé répondant à la formule développée:

20 dans laquelle R¹ est un hydrogène, un cation de métal alcalin ou un cation ammonium et R⁷ est un 4-fluorobenzoyle, un 4-tert-butylbenzoyle ou un 4-fluorophénylacétyle.

25 3. Le composé de la revendication 1 où:

R¹ est un hydrogène, un cation de métal alcalin ou un cation ammonium;

E est —CH=CH— ou —CH₂CH₂—; et

Z est

30 1)

35 dans laquelle

40 est un 2(S)-méthylbutyryle ou un 2,2-diméthylbutyryle;

45 2)

50 où R¹⁰, R¹¹ et R¹² sont indépendamment:

- a) un halogène,
 b) un alkyle en C₁₋₄,
 c) un halogénoalkyle en C₁₋₄,
 d) un phényle ayant 1 à 3 substituants choisis parmi halogéno, alkyle en C₁₋₄ ou alcoxy en C₁₋₄,
 e) OR¹³, où R¹³ est

i) un phényle,

ii) un halogénophényle, ou

iii) un phényl-alkyle en C₁₋₃ soit non substitué soit substitué par un ou plusieurs halogènes, alcoxy en C₁₋₄, alkyles en C₁₋₄ ou halogénoalkyles en C₁₋₄; ou

60 3)

65 où n est 0, 1 ou 2 et R¹⁴ est un méthyle et le système cyclique est un naphtyle ou un 5,6,7,8-tétrahydronaphtyle.

O 142 146

4. Le composé de la revendication 1 choisi parmi:

5

10

15 où R^1 est un hydrogène, un cation de métal alcalin ou un cation ammonium et où R^7CO- , R^8 , X , a et b ont les significations suivantes:

20 R^7-C-

R^8 X a^* b

	2(S)-méthylbutyryle	-CH ₃	0	simple	double
25	2(S)-méthylbutyryle	-CH ₃	0	simple	simple
	2(R)-méthylbutyryle	-CH ₃	0	double	double
	2,2-diméthylbutyryle	-CH ₃	0	double	double
30	2,2-diméthylbutyryle	-CH ₃	0	simple	double
	2,2-diméthylbutyryle	-CH ₃	0	simple	simple
	acétyle	-CH ₃	0	double	double
35	2(S)-méthylbutyryle	H	0	double	double
	2(S)-méthylbutyryle	H	0	simple	simple
	2,2-diméthylbutyryle	H	0	double	double
40	2,2-diméthylbutyryle	H	0	simple	simple
	2,2-diméthylbutyryle	-CH ₃	NH	simple	simple
	2-méthyl-2-éthylbutyryle	-CH ₃	NH	simple	simple
45	2-méthylbutyryle	-CH ₃	NH	simple	simple
	acétyle	-CH ₃	NH	double	double
	acétyle	-CH ₃	NCH ₃	simple	simple
50	2,2-diméthylbutyryle	-CH ₃	NCH ₃	simple	simple
	2,2-diméthylbutyryle	-CH ₃	NH	double	double

55 * lorsque $a = \text{simple liaison}$, les cycles sont condensés en trans.

60

65

O 142 146

5. Le composé de la revendication 3 choisi parmi

5			
10		R^{10}	R^{11}
15		R^{12}	
20	6-(4-fluoro-3-méthylphényl)-	2-méthyl	4-méthyl
	6-(4-fluorophényl)-	2-chloro	4-chloro
	6-(4-chlorophényl)-	2-chloro	4-chloro
25	6-(3,4-dichlorophényl)-	2-chloro	4-chloro
	6-(4-fluoro-3-méthylphényl)-	2-chloro	4-chloro
	6-(3,4-dichlorophényl)-	2-méthyl	4-méthyl
30	6-(3,5-diméthylphényl)-	2-chloro	4-chloro
	6-(3,4-dichlorophényl)-	2-méthyl	5-méthyl
	6-(4-fluorophényl)-	2-méthyl	4-méthyl
35	6-(4-fluoro-3-méthylphényl)-	2-méthyl	4-chloro
	6-(4-fluorobenzylxy)-	2-chloro	4-chloro
	6-(4-fluoro-3-méthylphényl)-	2-chloro	4-méthyl

40 6. Le composé de la revendication 3 choisi parmi:

45			
50		$(R^{14})_n$	
55	n	R^{14}	
	—	2-méthyl	naphtyle
60	0	—	naphtyle
	2	2,6-diméthyl	naphtyle
65	1	2-méthyl	5,6,7,8-tétrahydronaphtyle

0 142 146

7. Une composition pharmaceutique antihypercholestérolémiantante comprenant un support pharmaceutique et une quantité antihypercholestérolémiantante efficace d'un composé comme revendiqué dans la revendication 1 ou 2.

5 8. La composition de la revendication 7, dans laquelle le composé antihypercholestérolémiant est comme revendiqué dans la revendication 3.

9. La composition de la revendication 8, dans laquelle le composé antihypercholestérolémiant est comme revendiqué dans les revendications 4, 5 ou 6.

10. Un procédé pour la préparation d'un composé répondant à la formule développée:

10

15

20

25

30

35

dans laquelle R¹⁶ est un alkyle en C₁₋₄, avec un agent oxydant pour produire le composé de formule développée:

40

45

50

suivi d'une désilylation pour produire le composé de formule développée:

suivie d'un traitement avec un alcali pour former le produit dans lequel R¹⁶ est un cation de métal alcalin, suivi d'une acidification pour produire le composé dans lequel R¹⁶ est un ion hydrogène.

55 Revendications pour l'Etat contractant: AT

1. Un procédé pour la préparation d'un composé répondant à la formule développée:

60

65 dans laquelle:

0 142 146

R¹ est

- 1) un hydrogène,
- 2) un alkyle en C₁₋₄,
- 3) un 2,3-dihydroxypropyle,
- 4) un cation de métal alcalin ou
- 5) un ammonium de formule N⁺R³R⁴R⁵R⁶ dans laquelle R³, R⁴, R⁵ et R⁶ sont indépendamment un hydrogène ou un alkyle en C₁₋₄ ou deux de R³, R⁴, R⁵ et R⁶ sont réunis pour former un hétérocycle à 5 ou 6 chainons avec l'azote auquel ils sont fixés;
- E est —CH₂CH₂—, —CH=CH— ou —(CH₂)₃—; et
- Z est

1)

15

où les pointillés représentent tous les états d'oxydation possibles du système bicyclique;

20 X est —O— ou >NR⁹ où R⁹ est un hydrogène ou un alkyle en C₁₋₃;

R⁷ est un alkyle en C₂₋₈; et

R₈ est un hydrogène ou —CH₃;

25

2)

30

où R¹⁰, R¹¹ et R¹² sont indépendamment

- a) un hydrogène,
- b) un halogène, tel que bromo, chloro ou fluoro,
- c) un alkyle en C₁₋₄,

35 d) un halogénoalkyle en C₁₋₄,

e) un phényle soit non substitué soit substitué par un ou plusieurs de

- i) alcoxy en C₁₋₄,
- ii) alkyle en C₁₋₄,
- iii) alcanoxyloxy en C₂₋₈,

40 iv) halogénoalkyle en C₁₋₄ ou

v) halogéno,

f) OR¹³ où R¹³ est

- i) un hydrogène,
- ii) un alcanoyle en C₂₋₈,

45 iii) un benzoyle,

iv) un phényle,

v) un halogénophényle,

vi) un phényl-alkyle en C₁₋₃ soit non substitué soit substitué par un ou plusieurs halogènes, alcoxy en C₁₋₄, alkyles en C₁₋₄ ou halogénoalkyles en C₁₋₄,

50 vii) un alkyle en C₁₋₉,

viii) un cinnamyle,

ix) un halogénoalkyle en C₁₋₄,

x) un allyle,

xi) un cycloalkyl(C₃₋₆)-alkyle en C₁₋₃,

55 xii) un adamantyl-alkyle en C₁₋₃,

en C₁₋₄, alkyles en C₁₋₄ ou halogénoalkyles en C₁₋₄,

vii) un alkyle en C₁₋₉,

viii) un cinnamyle,

ix) un halogénoalkyle en C₁₋₄,

x) un allyle,

xi) un cycloalkyl(C₃₋₆)-alkyle en C₁₋₃,

xii) un adamantyl-alkyle en C₁₋₃,

55

60 3)

65 où n est 0—2 et R¹⁴ est un halogéno ou alkyle en C₁₋₄, qui comprend le traitement d'un composé répondant à la formule développée:

0 142 146

5

- 10 dans laquelle R¹⁶ est un alkyle en C₁-C₄ avec un agent oxydant pour produire le composé de formule développée:

15

20

suivi d'une désilylation pour produire le composé de formule développée:

25

30

suivie d'un traitement avec un alcali pour former le produit dans lequel R¹⁶ est un cation de métal alcalin, suivi d'une acidification pour produire le composé dans lequel R¹⁶ est un ion hydrogène.

- 35 2. Un procédé pour la préparation d'un composé répondant à la formule développée:

40

45

- 50 dans laquelle R¹ est un hydrogène, un cation de métal alcalin ou un cation ammonium et où R⁷ est un 4-fluorobenzoyle, un 4-tert-butylbenzoyle ou un 4-fluorophénylacétyle, qui comprend le traitement d'un composé répondant à la formule développée:

55

60

65

0 142 146

dans laquelle R¹⁶ est un alkyle en C₁₋₄, avec un agent oxydant pour produire le composé de formule développée:

5

10

15

suivi d'une désilylation pour produire le composé de formule développée:

20

25

30

suivie d'un traitement avec un alcali pour produire le composé dans lequel R¹⁶ est un cation de métal alcalin, suivi d'une acidification pour produire le composé dans lequel R¹⁶ est un ion hydrogène.

3. Le procédé de la revendication 1 dans lequel:

R¹ est un hydrogène, un cation de métal alcalin ou un cation ammonium;

E est —CH=CH— ou —CH₂CH₂—; et

35 Z est

40 1)

45 dans laquelle

50

est un 2(S)-méthylbutyryle ou un 2-2-diméthylbutyryle;

55 2)

où R¹⁰, R¹¹ et R¹² sont indépendamment:

60

a) un halogène,

b) un alkyle en C₁₋₄,

c) un halogénoalkyle en C₁₋₄,

d) un phényle ayant 1 à 3 substituants choisis parmi halogéno, alkyle en C₁₋₄ ou alcoxy en C₁₋₄,

e) OR¹³, où R¹³ est

i) un phényle,

65 ii) un halogénophényle, ou

0 142 146

iii) un phényl-alkyle en C₁₋₃ soit non substitué soit substitué par un ou plusieurs halogènes, alcoxy en C₁₋₄, alkyles en C₁₋₄ ou halogénoalkyles en C₁₋₄; ou

5
3)

10 où n est 0, 1 ou 2 et R¹⁴ est un méthyle, et le système cyclique est un naphtalène ou un 5,6,7,8-tétrahydronaphtalène.

4. Le procédé de la revendication 1 pour la préparation d'un composé choisi parmi:

15

20

25

où R¹ est un hydrogène, un cation de métal alcalin ou un cation ammonium et R⁷CO—, R⁸, X, a et b ont les significations suivantes:

30

R⁸

x

a*

b

35

2(S)-méthylbutyryle

-CH₃

0

simple

double

40

2(S)-méthylbutyryle

-CH₃

0

simple

double

45

2(R)-méthylbutyryle

-CH₃

0

double

double

50

2,2-diméthylbutyryle

-CH₃

0

double

double

2,2-diméthylbutyryle

-CH₃

0

simple

simple

acétyle

-CH₃

0

double

double

55

2(S)-méthylbutyryle

H

0

double

double

2(S)-méthylbutyryle

H

0

simple

simple

2,2-diméthylbutyryle

H

0

double

double

50

2,2-diméthylbutyryle

H

0

simple

simple

2-méthyl-2-éthylbutyryle

-CH₃

NH

simple

simple

55

2-méthylbutyryle

-CH₃

NH

simple

simple

acétyle

-CH₃

NH

double

double

acétyle

-CH₃

NCH₃

simple

simple

60

2,2-diméthylbutyryle

-CH₃

NCH₃

simple

simple

2,2-diméthylbutyryle

-CH₃

NH

double

double

* lorsque a = simple liaison, les cycles sont condensés en trans.

65

0 142 146

5. Le procédé selon la revendication 3 pour la préparation d'un composé choisi parmi

	6-(4-fluoro-3-méthylphényl)-	2-méthyl	4-méthyl
20	6-(4-fluorophényl)-	2-chloro	4-chloro
	6-(4-chlorophényl)-	2-chloro	4-chloro
	6-(3,4-dichlorophényl)-	2-chloro	4-chloro
25	6-(4-fluoro-3-méthylphényl)-	2-chloro	4-chloro
	6-(3,4-dichlorophényl)-	2-méthyl	4-méthyl
	6-(3,5-diméthylphényl)-	2-chloro	4-chloro
30	6-(3,4-dichlorophényl)-	2-méthyl	5-méthyl
	6-(4-fluorophényl)-	2-méthyl	4-méthyl
	6-(4-fluoro-3-méthylphényl)-	2-méthyl	4-chloro
35	6-(4-fluorobenzylxy)-	2-chloro	4-chloro
	6-(4-fluoro-3-méthylphényl)-	2-chloro	4-méthyl

6. Le procédé de la revendication 3 pour la préparation d'un composé choisi parmi:

O 142 146

7. Un procédé pour la préparation d'un composé de formule:

5

10 dans laquelle

R¹ est

- 1) un hydrogène,
- 2) un alkyle en C₁₋₄,
- 3) un 2,3-dihydroxypropyle,
- 4) un cation de métal alcalin ou
- 5) un ammonium de formule N⁺R³R⁴R⁵R⁶ dans laquelle R³, R⁴, R⁵ et R⁶ sont indépendamment un hydrogène ou un alkyle en C₁₋₄ ou deux de R³, R⁴, R⁵ et R⁶ sont réunis pour former un hétérocycle à 5 ou 6 chaînons avec l'azote auquel ils sont fixés;

E est —CH₂CH₂—, ou —(CH₂)₃—; et

20 Z est

25

1)

où R¹⁰, R¹¹ et R¹² sont indépendamment

a) un hydrogène,

30 b) un halogène, tel que bromo, chloro ou fluoro,

c) un alkyle en C₁₋₄,

d) un halogénoalkyle en C₁₋₄,

e) un phényle soit non substitué soit substitué par un ou plusieurs de

i) alcoxy en C₁₋₄,

ii) alkyle en C₁₋₄,

iii) alcanoxyloxy en C₂₋₈,

iv) halogénoalkyle en C₁₋₄ ou

v) halogéno,

f) OR¹³ où R¹³ est

40 i) un hydrogène,

ii) un alcanoyle en C₂₋₈,

iii) un benzoyle,

iv) un phényle,

v) un halogénophényle,

45 vi) un phényl-alkyle en C₁₋₃ soit non substitué soit substitué par un ou plusieurs halogènes, alcoxy en C₁₋₄, alkyles en C₁₋₄ ou halogénoalkyles en C₁₋₄,

vii) un alkyle en C₁₋₉,

viii) un cinnamyle,

ix) un halogénoalkyle en C₁₋₄,

50 x) un allyle,

xi) un cycloalkyl(C₃₋₆)-alkyle en C₁₋₃ ou

xii) un adamantyl-alkyle en C₁₋₃,

55

2)

où n est 0—2 et R¹⁴ est un halogéno ou un alkyle en C₁₋₄ qui comprend la réaction des composés:

60

E

H

65

0 142 146

pour produire le composé de formule développée:

- 15 suivie d'une réduction catalytique pour produire le composé désiré dans lequel R¹ est R¹⁶; suivie d'un traitement avec un alcali pour former le produit dans lequel R¹ est un cation de métal alcalin, suivi d'une acidification pour produire le composé dans lequel R¹ est un ion hydrogène.

8. Le procédé de la revendication 7, dans lequel:

R¹ est un hydrogène, un cation de métal alcalin ou un cation ammonium;

20 E est —CH₂CH₂—; et

Z est

où R¹⁰, R¹¹ et R¹² sont indépendamment:

- 30 a) un halogène,
b) un alkyle en C₁₋₄,
c) un halogénoalkyle en C₁₋₄,
d) un phényle avec 1 à 3 substituants choisis parmi halogéno, alkyle en C₁₋₄ ou alcoxy en C₁₋₄,
e) OR¹³, où R¹³ est
35 i) un phényle,
ii) un halogénophényle, ou
iii) un phényl-alkyle en C₁₋₃ soit non substitué soit substitué par un ou plusieurs halogènes, alcoxy en C₁₋₄, alkyles en C₁₋₄ ou halogénoalkyles en C₁₋₄; ou

- 45 où n est 0, 1 ou 2 et R¹⁴ est un méthyle et le système cyclique est un naphtalène ou un 5,6,7,8-tétrahydronaphtalène.

50

55

60

65

O 142 146

9. Le procédé de la revendication 8 pour la préparation d'un composé choisi parmi:

5			
10		R¹⁰	R¹¹
15			R¹²
20	6-(4-fluoro-3-méthylphényl)-	2-méthyl	4-méthyl
	6-(4-fluorophényl)-	2-chloro	4-chloro
	6-(4-chlorophényl)-	2-chloro	4-chloro
25	6-(3,4-dichlorophényl)-	2-chloro	4-chloro
	6-(4-fluoro-3-méthylphényl)-	2-chloro	4-chloro
	6-(3,4-dichlorophényl)-	2-méthyl	4-méthyl
	6-(3,5-diméthylphényl)-	2-chloro	4-chloro
30	6-(3,4-dichlorophényl)-	2-méthyl	5-méthyl
	6-(4-fluorophényl)-	2-méthyl	4-méthyl
	6-(4-fluoro-3-méthylphényl)-	2-méthyl	4-chloro
35	6-(4-fluorobenzylxy)-	2-chloro	4-chloro
	6-(4-fluoro-3-méthylphényl)-	2-chloro	4-méthyl

40 10. Le procédé de la revendication 8 pour la préparation d'un composé choisi parmi:

45			
50		(R¹⁴)ₙ	
55	n	R¹⁴	
60	1	2-méthyl	naphtyle
	0	-	naphtyle
	2	2,6-diméthyl	naphtyle
65	1	2-méthyl	5,6,7,8-tétrahydronaphtyle

0 142 146

11. Un procédé pour la préparation d'un composé répondant à la formule développée:

5

10

dans laquelle Z est comme défini dans la revendication 1, qui comprend le traitement d'un composé de formule développée:

15

20

avec du dioxyde de manganèse activé pour produire le composé de formule développée:

25

30

35 suivi d'un traitement avec l'hydrure de tri-n-butylétain et le tétrakis(triphénylphosphine)palladium(0).

40

45

50

55

60

65