

KOMISJA Arkusz zawiera informacje prawnie chronione **EGZAMINACYJNA** do momentu rozpoczęcia egzaminu.

WPISUJE ZDA KOD	AJĄCY PESEL	miejsce na naklejkę
		na naklejkę
		dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY

Przykładowy arkusz egzaminacyjny

DATA: 18 grudnia 2014 г.

CZAS PRACY: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 21 stron (zadania 1–18). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań 1.–5. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0–1)

Wielomian $W(x) = 2x^3 - bx^2 - 1$ jest podzielny przez dwumian x+1. Wynika stąd, że

A. b = -3

B. b = -1

C. b = 1

D. b = 3

Zadanie 2. (0-1)

Okrąg o równaniu $(x+2)^2 + (y-2)^2 = 4$ ma dwa punkty wspólne z prostą o równaniu

A. x = 0

B. v = 0

C. y = -x

 $\mathbf{D.} \ \ y = x$

Zadanie 3. (0–1)

Funkcja określona dla każdej liczby rzeczywistej x wzorem $f(x) = x^5 + 5x - 1$

A. ma więcej niż dwa minima lokalne.

B. ma dokładnie dwa minima lokalne.

C. ma dokładnie jedno minimum lokalne.

D. nie ma minimum lokalnego.

Zadanie 4. (0–1)

Każda liczba x należąca do przedziału otwartego $x \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$ spełnia nierówność

A. $tg x > \sin x$

B. $\cos x > \sin x$

 $\mathbf{C.} \, \cos x > \operatorname{tg} x$

 $\mathbf{D.} \ \operatorname{tg} x > \cos x$

Zadanie 5. (0–1)

Funkcja f jest określona dla wszystkich liczb rzeczywistych wzorem $f(x)=3^{x-2}+3$. Prosta l ma równanie y=3,3. Ile punktów wspólnych mają wykres funkcji f i prosta l?

A. Zero.

B. Jeden.

C. Dwa.

D. Nieskończenie wiele.

BRUDNOPIS (nie podlega ocenie)

_	Nr zadania	1.	2.	3.	4.	5.
Wypełnia	Maks. liczba pkt	1	1	1	1	1
egzaminator	Uzyskana liczba pkt					

W zadaniu 6. zakoduj we wskazanym miejscu wynik zgodnie z poleceniem.

Zadanie 6. (0–2)

Dane są liczby a, b takie, że a-b=4 i ab=7. Oblicz a^3b+ab^3 . Zakoduj w kratkach poniżej kolejno, od lewej do prawej, cyfry setek, dziesiątek i jedności otrzymanego wyniku.

Cyfra	setek	dziesiątek	jedności

Rozwiązania zadań 7.–18. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 7. (0–2)

Długości boków prostokąta są równe 3 oraz 5. Oblicz sinus kąta ostrego, który tworzą przekątne tego prostokąta.

	Nr zadania	6.	7.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 8. (0–2)

Oblicz granicę
$$\lim_{n\to\infty} \left(\frac{n^2}{n+2} - \frac{(n+2)^2}{n+444} \right)$$
.

Zadanie 9. (0–2)

Funkcja f jest określona wzorem $f(x) = \frac{x^2}{x-4}$ dla każdej liczby rzeczywistej $x \neq 4$. Oblicz pochodną funkcji f w punkcie x = 12.

	Nr zadania	8.	9.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 10. (0–3)

Funkcja f jest określona wzorem $f(x) = x^4$ dla każdej liczby rzeczywistej x. Wyznacz równanie prostej stycznej do wykresu funkcji f, która jest równoległa do prostej y = 4x + 7.

Zadanie 11. (0–3)

Wyznacz wszystkie liczby rzeczywiste x, spełniające równanie $\sin 5x - \sin x = 0$.

	Nr zadania	10.	11.
	Maks. liczba pkt	3	3
egzaminator	Uzyskana liczba pkt		

Zadanie 12. (0–3)

Niech P_n oznacza pole koła o promieniu $\frac{1}{2^n}$, dla $n \ge 1$. Oblicz sumę wszystkich wyrazów ciągu (P_n) .

Zadanie 13. (0–3)

Wykaż, że jeżeli $a > b \ge 1$, to $\frac{a}{2+a^3} < \frac{b}{2+b^3}$.

	Nr zadania	12.	13.
Wypełnia	Maks. liczba pkt	3	3
egzaminator	Uzyskana liczba pkt		

Zadanie 14. (0–4)

Wykaż, że jeżeli α, β, γ są kątami wewnętrznymi trójkąta i $\sin^2 \alpha + \sin^2 \beta < \sin^2 \gamma$, to $\cos \gamma < 0$.

Zadanie 15. (0–3)

Punkt *E* jest środkiem boku *BC* prostokąta *ABCD*, w którym AB > BC. Punkt *F* leży na boku *CD* tego prostokąta oraz $\angle AEF = 90^{\circ}$. Udowodnij, że $\angle BAE = \angle EAF$.

	Nr zadania	14.	15.
Wypełnia	Maks. liczba pkt	4	3
egzaminator	Uzyskana liczba pkt		

Zadanie 16. (0–5)

Oblicz prawdopodobieństwo warunkowe, że w trzykrotnym rzucie symetryczną sześcienną kostką do gry otrzymamy co najmniej jedną "jedynkę", pod warunkiem że otrzymamy co najmniej jedną "szóstkę".

	Nr zadania	16.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 17. (0–6)

Dany jest okrąg o_0 o równaniu $(x-3)^2 + (y-1)^2 = 1$. W pierwszej "ćwiartce" układu współrzędnych istnieją dwa okręgi o_1 , o_2 styczne zewnętrznie do okręgu o_0 i jednocześnie styczne do obu osi układu współrzędnych. Oblicz odległość środków okręgów o_1 oraz o_2 .

Odpowiedź:

	Nr zadania	17.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 18. (0–7)

Okno na poddaszu ma mieć kształt trapezu równoramiennego, którego krótsza podstawa i ramiona mają długość po 4 dm. Oblicz, jaką długość powinna mieć dłuższa podstawa tego trapezu, aby do pomieszczenia wpadało przez to okno jak najwięcej światła, czyli aby pole powierzchni okna było największe. Oblicz to pole.

	Nr zadania	18.
Wypełnia	Maks. liczba pkt	7
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)

