Fault Collapsing

- Introduction
- Equivalence Fault Collapsing
 - Fanout-free circuits
 - Circuits with fanouts
- Dominance Fault Collapsing
 - Fanout-free circuits
 - Circuits with fanouts
- Checkpoint Theorem (1976)
- Conclusion

Fault Dominance

- Detecting set of fault f (T_f) = set of all test patterns that detect fault f
- Fault f dominates fault g if the detecting set of f contains that of g

$$\bullet \quad T_f \supseteq T_g$$

- Example: C/1 fault dominates A/1 fault
 - C/1 detecting set {00, 01, 10} contains A/1 detecting set {01}
 - C/1 is dominating fault; A/1 is dominated fault

Input		Output							
Α	В	good A/0 C/0 B/0 A/1 C/1							
0	0	0	0	0	0	0	1	0	
0	1	0	0	0	0	1	1	0	
1	0	0	0	0	0	0	1	1	
1	1	1	0	<u>0</u>	0	1	1	1	

Quiz

Q: Is dominance relation transitive?
if f dominates g, and g dominates h, then f dominates h?

A:

Q: Is dominance relation symmetric? if *f* dominates *g*, then *g* dominates *f*?

A:

 $f \leftrightarrow g$: equivalence $f \rightarrow g$: dominance

Dominance Fault Collapsing, DFC

- DFC reduces fault list using fault dominance relation
 - If a test pattern detects a dominated fault, then it must detect its dominating fault. So dominating faults can be removed for ATPG
- Example:
 - C/1 fault can be removed. Similarly, A/0, B/0 also removed.
 - Minimum {A/1, B/1, C/0} 3 faults remains after DFC

Input		Output							
Α	В	Good A/0 C/0 B/0 A/1 C/1							
0	0	0	0	0	0	0	1	0	
0	1	0	0	0	0	<u>1</u>	1	0	
1	0	0	0	0	0	0	1	1	
1	1	1	<u>0</u>	0	0	1	1	1	

Minimum 3 faults after DFC

DFC on Elementary Gates

- 2-input AND/OR/NAND/NOR elementary gates
 - Originally 6 faults → 4 faults after EFC → 3 faults after DFC
- For *n*-input elementary gate,
 - n+1 stuck-at faults after DFC

DFC on Fanout-free Circuits

- Two observations:
 - O All gate input faults removed; except primary inputs
 - ② All gate output faults removed; except all-Pl gates
- This is also applicable to other elementary gates. Why? FFT

DFC Rules for Fanout-free Circuits

DFC Rules

- (1) one DFC collapsed fault for every primary input
- (2) one DFC collapsed fault for each all-PI gate output*

*all-Pl gate = gate inputs are all Pl

- Example
 - Original 14 faults → 8 faults after EFC → 5 faults after DFC

Quiz

Q: Please perform DFC on this fanout-free circuit. (Please label their stuck-values)

Fault Collapsing

- Introduction
- Equivalence Fault Collapsing
 - Fanout-free circuits
 - Fanout
- Dominance Fault Collapsing
 - Fanout-free circuits
 - Circuits with fanout
- Checkpoint Theorem
- Conclusion

Fanout Stem and Branches

- Fanout branch faults do NOT always dominate fanout stem faults
- Example: F/1 fault dominates E/1. but L/1 fault does not dominate E/1
- Stem analysis of fanout faults is time consuming

Input			Output							
A	В	С	good	E/0	F/0	L/0	E/1	F/1	L/1	
0	0	0	0	0	0	0	1	1	0	
0	0	1	1	0	0	1	1	1	1	
0	1	0	1	0	0	1	1	1	1	
0	1	1	1	0	0	1	1	1	1	
1	0	0	0	0	0	0	0	1	0	
1	0	1	0	0	0	1	0	0	0	
1	1	0	0	0	0	1	0	0	0	
1	1	1	0	0	0	1	0	0	0	

Hard to Analyze Dominance between Stem and Branches

How to Handle Circuits w/ Fanouts?

- Approximate solution: Partition circuit into fanout-free subcircuits
 - DFC each subcircuit independently
- Example:
 - J is consider input because inverter G₃ is ignored
 - Original 18 faults, → after EFC 10 faults → after DFC 7 faults
 - NOTE: this solution is NOT optimal
 - J/0 is equivalent to F/1, which dominates E/1

Simple_DFC Algorithm

- Linear time
- Does NOT guarantee minimum DFC
 - No stem analysis


```
Simple DFC (N) /*N is a netlist*/
 0. fault_list = { };
 1. foreach gate or PI or PO g in N
 2.
       if ((g \text{ is PI and fanout stem}) \parallel (g \text{ is PO and fanout branch})) then
 3.
          fault_list = fault_list \cup g output stuck-at 0 and 1;
 4.
       else if (g is gate) then
 5.
          foreach gate input i of gate g
               h = \text{backtrace inverters starting from } i;
 6.
 7.
               if (h is PI or fanout branch) then /* rule #1 */
 8.
                  if (gate g is AND) \parallel (gate g is NAND) then
 9.
                    fault list = fault list \cup i stuck-at 1;
10.
                  else if (gate g is OR) \parallel (gate g is NOR)
11.
                    fault_list = fault_list \cup i stuck-at 0;
12.
                  end if
13.
               end if
14.
          end foreach
15.
          if (every gate input of g has a fault) then /* rule #2 */
16.
             if (gate g is AND) \parallel (gate g is NOR) then
17.
                fault_list = fault_list \cup g output stuck-at 0;
18.
             else if (gate g is OR) \parallel (gate g is NAND) then
19.
                fault_list = fault_list \cup g output stuck-at 1;
20.
             end if
21.
          end if
22.
       end if
23. end foreach
24. return (fault_list);
```

Quiz

Q: Please perform DFC on this circuit. (Please label their stuck- values)


```
Simple DFC (N) /*N is a netlist*/
 0. fault list = \{\};
 1. foreach gate or PI or PO g in N
       if ((g \text{ is PI and fanout stem}) \parallel (g \text{ is PO and fanout branch})) then
 3.
          fault list = fault list \cup g output stuck-at 0 and 1;
       else if (g \text{ is gate}) then
          foreach gate input i of gate g
               h = \text{backtrace inverters starting from } i;
               if (h is PI or fanout branch) then /* rule #1 */
                  if (gate g is AND) \parallel (gate g is NAND) then
 9.
                    fault list = fault list \cup i stuck-at 1;
                  else if (gate g is OR) \parallel (gate g is NOR)
11.
                    fault list = fault list \cup i stuck-at 0;
12.
                  end if
13.
               end if
14.
          end foreach
15.
          if (every gate input of g has a fault) then /* rule #2 */
16.
             if (gate g is AND) \parallel (gate g is NOR) then
17.
                fault list = fault list \cup g output stuck-at 0;
18.
             else if (gate g is OR) \parallel (gate g is NAND) then
19.
                fault list = fault list \cup g output stuck-at 1;
20.
             end if
          end if
21.
        end if
23. end foreach
24. return (fault list);
```

Fault Collapsing

- Introduction
- Equivalence Fault Collapsing
 - Fanout-free circuits
 - Fanout
- Dominance Fault Collapsing
 - Fanout-free circuits
 - Circuits with fanout
- Checkpoint Theorem
- Conclusion

Checkpoint Theorem [Breuer 76]

If a test detects all SSF on all checkpoints, this test detects all SSF in the circuit.

- Checkpoints = primary inputs + fanout branches
- Example:
 - 10 faults on checkpoints
 - Originally 18 faults, after EFC 10 faults, after DFC 7 faults

Proof

- Partition circuit into fanout-free subcircuits
- Use dominance relationship to remove faults from right to left until
 - (1) PI

*can be changed to other elementary gates

Chkpt are Simple Alternative to EFC/DFC

Fault Collapsing

- Introduction
- Equivalence Fault Collapsing
 - Fanout-free circuits
 - Fanout
- Dominance Fault Collapsing
 - Fanout-free circuits
 - Circuits with fanout
- Checkpoint Theorem
- Conclusion

Example ATPG Report

	uncollapsed	Collapsed (typically EFC)
Total Faults	1,234	800
Detected faults	1,000	700
Untestable faults	230	98
Aborted faults	4	2
Fault Coverage	1,000/1,234	700/800

CollapseRatio $= \frac{\text{number of } collapsed \text{ faults}}{\text{number of } uncollapsed \text{ faults}} \times 100\%$ $= \frac{800}{1234} \approx 64.8\%$

uncollapsed F.C. $= \frac{\text{detected } uncollapsed faults}{\text{total } uncollapsed faults} \times 100\%$

Collapsed F.C. $= \frac{\text{detected } collapsed \text{ faults}}{\text{total } collapsed \text{ faults}} \times 100\%$

Why DFC not Used in Practice?

- Because DFC fault coverage is pessimistic. A test pattern can detect
 a dominating fault without detecting its dominated fault
- Example: ABC=100 does NOT detect dominated fault E/1, but it detects dominating fault F/1
 - since F/1 is removed, this is not counted in DFC coverage

Input			Output							
A	В	С	good	E/0	F/0	L/0	E/1	F/1	L/1	
0	0	0	0	0	0	0	1	1	0	
0	0	1	1	0	0	1	1	1	1	
0	1	0	1	0	0	1	1	1	1	
0	1	1	1	0	0	1	1	1	1	
1	0	0	0	0	0	0	0	<u>1</u>	0	
1	0	1	0	0	0	1	0	0	0	
1	1	0	0	0	0	1	0	0	0	
1	1	1	0	0	0	1	0	0	0	

Conclusions

- Fault collapsing reduces size of fault list
 - Speed up ATPG, Shorten test length
- DFC Rules:
 - (1) one fault on PI (2) one fault on output of all-PI gate
- DFC is more aggressive the EFC
 - but DFC not often used because its FC is pessimistic
- Checkpoint Theorem:
 - Detecting all checkpoint faults is good enough
 - Checkpoints are (1) PI, (2) fanout branches

FFT

- Q1: We only show DFC rule on AND gate fanout-free circuits.
 - Does it also applicable to other elementary gates? Please show why the other faults can be reduced

Q2: Can we DFC on XOR gate? How about EFC?

References

• [Breuer 76] M. A. Breuer and A. D. Friedman, Diagnosis & Reliable Design of Digital Systems. Woodland Hills, CA: Computer Science Press, 1976.