Семинар 3. Выбор модели по Байесу

Курс: Байесовские методы в машинном обучении, 2016

1. Рассмотрим модель BetaMix-Binomial:

$$\begin{aligned} p(k,q|N,\boldsymbol{w},\boldsymbol{a},\boldsymbol{b}) &= p(k|N,q)p(q|\boldsymbol{w},\boldsymbol{a},\boldsymbol{b}), \\ p(k|N,q) &= C_N^k q^k (1-q)^{N-k}, \\ p(q|\boldsymbol{w},\boldsymbol{a},\boldsymbol{b}) &= \sum_j w_j \operatorname{Beta}(q|a_j,b_j), \ a_j,b_j > 0, \ w_j \ge 0, \ \sum_j w_j = 1. \end{aligned}$$

Требуется вычислить апостериорное распределение $p(q|k, N, \boldsymbol{w}, \boldsymbol{a}, \boldsymbol{b})$, а также найти обоснованность модели $p(k|N, \boldsymbol{w}, \boldsymbol{a}, \boldsymbol{b})$.

- 2. Для модели BetaMix-Binomial вычислить прогноз для k_1 успехов в новых N_1 испытаниях, т.е. найти $p(k_1|N_1,k,N,\boldsymbol{w},\boldsymbol{a},\boldsymbol{b})$. Пусть имеется M моделей BetaMix-Binomial, т.е. заданы распределения $p(k,q|N,\boldsymbol{w}_m,\boldsymbol{a}_m,\boldsymbol{b}_m)$, $m=\overline{1,M}$. Требуется вычислить байесовский прогноз $p(k_1|N_1,k,N,\{\boldsymbol{w}_m,\boldsymbol{a}_m,\boldsymbol{b}_m\}_{m=1}^M)$ для всей совокупности моделей.
- 3. Пусть дискретная случайная величина x принимает значения $1, 2, \ldots, l$ с вероятностью q_1, q_2, \ldots, q_l соответственно. Пусть далее в N независимых испытаниях с величиной x значение 1 выпало k_1 раз, значение $2 k_2$ раз, \ldots , значение $l k_l$ раз. Требуется найти вероятность данного события $p(k_1, k_2, \ldots, k_l | \boldsymbol{q}, N)$, подобратья априорное сопряженное распределение на \boldsymbol{q} , найти апостериорное распределение $p(\boldsymbol{q}|\boldsymbol{k}, N)$, обоснованность модели $p(\boldsymbol{k}|N)$ и прогнозное распределение $p(\boldsymbol{k}_1|N_1, \boldsymbol{k}, N)$.
- 4. Рассмотрим задачу моделирования уровней смертностей в городах от заданного заболевания. Пусть N_i население i-го города, а x_i число зафиксированных смертей за определенный период времени, $i=1,\ldots,N$. Пусть θ_i уровень смертности в i-ом городе. Составим следующую вероятностную модель:

$$p(X, \Theta | \mathbf{N}, \boldsymbol{\alpha}) = \prod_{i=1}^{N} p(x_i | \theta_i, N_i) p(\theta_i | \boldsymbol{\alpha}),$$

$$p(x_i | \theta_i, N_i) = C_{N_i}^{x_i} \theta_i^{x_i} (1 - \theta_i)^{N_i - x_i},$$

$$p(\theta_i | \boldsymbol{\alpha}) = \text{Beta}(\theta_i | \boldsymbol{\alpha}).$$

Требуется найти обоснованность модели $p(X|N, \alpha)$, а также байесовсвкую оценку для параметра θ_i в виде мат.ожидания $p(\theta_i|X, N, \alpha)$.

5. Рассмотрим задачу моделирования уровней подготовки в школах по ЕГЭ по заданному предмету Пусть N_i – количество учеников в i-ой школе, а x_{ij} – оценка по ЕГЭ j-го ученика в i-ой школе. Пусть средняя оценка по школе θ_i и оценка x_{ij} связаны как $p(x_{ij}|\theta_i) = \mathcal{N}(x_{ij}|\theta_i,\beta^{-1})$, где велечина β известна. Требуется по аналогии с предыдущей задачей составить вероятностную модель описания данных с введением общего априорного распределения на θ_i для всех школ, выбираемого в семействе сопряженных. Требуется также записать обоснованность введенной модели и найти байесовскую оценку для θ_i как мат.ожидания апостериорного распределения $p(\theta_i|X)$.