Министерство ФГБОУ Югорский государственный университет Институт цифровой экономики

Отчет о лабораторной работе по дисциплине:
 Аппаратное обеспечение вычислительных систем
 «Устойчивость цифровых систем автоматического управления»
 Вариант 1

Студент гр. 1191б Аббазов В.Р.

Преподаватель Усманов Р.Т.

Ханты-Мансийск 2022 **Цель работы**: изучить основные способы определения устойчивости цифровых систем автоматического управления.

Задачи

- 1. Определить устойчивость разомкнутой и замкнутой систем автоматического управления, используя основное условие устойчивости.
- 2. Определить устойчивость разомкнутой системы автоматического управления, используя алгебраический критерий устойчивости Джури.
- 3. Определить устойчивость замкнутой системы автоматического управления, используя частотный критерий устойчивости Найквиста.

Результат работы:

Определить устойчивость разомкнутой и замкнутой систем автоматического управления, используя основное условие устойчивости.

Разомкнутая система:

$$W(z) = \frac{-215.6z + 100.3}{106.42z^3 + 100.409z^2 - 0.006z + 26.732}$$

$$Q(z) = 106.42z^3 + 100.409z^2 - 0.006z + 26.732$$

$$z_1 \approx -1.13765$$

$$z_2 = 0.097067 - 0.459759i$$

$$z_3 = 0.097067 + 0.459759i$$

 $|z_1| > 1 \rightarrow$ система не устойчива

Рисунок 1 — схема модели

Рисунок 2 — график сигнала разомкнутой системы

Замкнутая система:

$$\frac{W(z)}{W(z)+1} = \frac{-215.6z + 100.3}{106.42z^3 + 100.409z^2 - 0.006z + 26.732}$$

$$*\left(\frac{106.42z^3 + 100.409z^2 - 0.006z + 26.732}{-215.6z + 100.3} + 1\right)$$

$$= \frac{z^3 + 0.943516z^2 - 2.02599z + 1.19369}{z^3 + 0.943516z^2 - 0.0000563804z + 0.251193}$$

$$z_1 \approx -2.14647$$

$$z_2 = 0.601477 - 0.440841 i$$

$$z_3 = 0.601477 + 0.440841 i$$

$|z_1| > 1 \rightarrow$ система неустойчива

Рисунок 3— схема модели

Рисунок 4 — график сигнала замкнутой системы

Определить устойчивость разомкнутой системы автоматического управления, используя алгебраический критерий устойчивости Джури.

$$\alpha_1 \approx 0.251$$
 $\alpha_2 \approx -0.253$
 $\alpha_3 \approx 1.348$

106,420	100,409	-0,006	26,732	
99,705	100,411	-25,228		
93,322	125,817			
-76,306				

Таблица 1— таблица Джури

Критерий Джури (для того чтобы все нули (корни) характеристического полинома находились внутри единичного круга, необходимо и достаточно, чтобы при $a_0>0$ все элементы нулевого столбца таблицы Джури были положительны: $d_{0i}>0$, i=1, 2,...,n.) не соблюдён, следовательно не все корни находились внутри единичного круга и следовательно система неустойчива

Определить устойчивость замкнутой системы автоматического управления, используя частотный критерий устойчивости Найквиста.

Рисунок 5 — Корни разомкнутой системы

Поскольку разомкнутая система неустойчива и ее характеристическое уравнение R(s)=0 имеет 2 корней в правой полуплоскости амплитудно-фазовая частотная характеристика не охватывает точку (-1,j0) 1 раз замкнутая система неустойчива.

Вывод: в ходе работы выполнены все поставленные задачи. Проведено определение устойчивости замкнутых и разомкнутых цифровых систем автоматического управления с применением различных критериев.