STA 5/2 HN3 Due Ned 2/5

Ti Mi, ymist

1. (a) Let $f(y) = y^{1/2}$, 1 = q < p $\frac{d^2f(y)}{dy^2} = \frac{p}{q} \times (\frac{p}{q} - 1) \times y^{\frac{p}{q} - 2} > 0 \quad \text{for } y \in (0, +\infty)$ 50 = f(y) is strictly convex

Jenson: E[fy]] > J[E[y]] for convex fy)

$$= \sum_{E} (Y^{a})^{PA} \int_{-\infty}^{\infty} |E(Y^{a})|^{PA}$$

$$= \sum_{E} (Y^{e})^{P} \int_{-\infty}^{\infty} |E(Y^{a})|^{PA}$$

$$= (Y^{e})^{P} \int_{-\infty}^{\infty} |E(Y^{a})|^{PA}$$

- (b) since $g(Y) = \frac{1}{Y}$ is strictly convex in $Y \in (0, +\infty)$ $E[\frac{1}{Y}] \gg \frac{1}{E[Y]}$
- (c) since h(Y) = log Y is strictly conserve in Tt 601 too)

 E[10gY] = log E[]

The part for
$$W = (W_1, W_2, W_3)$$
 is

$$P(W) = \frac{1}{2} W_1^{\alpha_1 - 1},$$

where $D(x) = \frac{1}{2} V_1^{\alpha_2 - 1}$,

$$V(x) = \frac{1}{2} V_1^{\alpha_2 - 1},$$

$$V(x) = \frac{1}{2} V_1^$$

Therefore: ECWi) = di tor i \{1,>13}

Variance:
$$Var(M) = E(M) - E(M)$$

Similarly, $E(M) = \iiint M_1 P(M) dM_1 dM_2 dM_3$

$$= \frac{(d)}{|I_1|} [di) \times \frac{P(M_1 + M_2) P(M_3)}{P(M_2 + M_3)}$$

$$= \frac{(M_1 + M_1) dM_1}{(M_2 + M_3)} \times \frac{P(M_1 + M_2) P(M_3)}{P(M_2 + M_3)}$$

$$= \frac{(M_1 + M_1) dM_1}{(M_2 + M_3)} \times \frac{P(M_1 + M_2)}{(M_2 + M_3)} \times \frac{P(M_2 + M_3)}{(M_2 + M_3)} \times \frac{P(M_1 + M_2)}{(M_2 + M_3)}$$

$$= \frac{(M_1 + M_2) P(M_2) P(M_3)}{(M_2 + M_3)} \times \frac{P(M_1 + M_2) P(M_2)}{P(M_2 + M_3)} \times \frac{P(M_1 + M_2)}{P(M_2 + M_3)} \times \frac{P(M_2 + M_3)}{P(M_3 + M_3)} \times \frac{P(M_1 + M_2)}{P(M_2 + M_3)} \times \frac{P(M_2 + M_3)}{P(M_3 + M_3)} \times \frac{P(M_1 + M_2)}{P(M_2 + M_3)} \times \frac{P(M_1 + M_3)}{P(M_2 + M_3)} \times \frac{P(M_1 + M_2)}{P(M_2 + M_3)} \times \frac{P(M_1 + M_3)}{P(M_2 + M_3)} \times \frac{P(M_1 + M_3)}{P(M_1 + M_3)} \times \frac{P(M_1 + M_3)}{P(M_1 + M_3)} \times \frac{P(M_1 + M_3)}{P(M_1 + M_3)} \times \frac{P($$

$$=\frac{(d+1)d}{(d+1)d} + 2\frac{d}{(d+1)d} + \frac{(d+1)d}{(d+1)d} - \left[\frac{d}{d} + 2\frac{d}{d} + \frac{d^2}{d}\right]$$

$$= \frac{(d+dz)^2 + d_1 + d_2}{(do+1)d_0} - \frac{(d+d)^2}{do^2}$$

$$= E[W_1^2] + E[W_1W_2] - E[W_1][E[W_1] + E[W_2]]$$

$$= \frac{(\alpha_1+1)\alpha_1}{(\alpha_0+1)\alpha_0} + \frac{\alpha_1\alpha_1}{(\alpha_0+1)\alpha_0} - \frac{\alpha_1}{\alpha_0} \left(\frac{\alpha_0}{\alpha_0} + \frac{\alpha_1}{\alpha_0}\right)$$

3. (a) if
$$X$$
 and Y are independent,

$$P(X,Y) = P(X) P(Y)$$

$$E(XY) = \iint XY P(XY) dXdY$$

$$= \iint XY P(XY) dXdY$$

$$= \iint XY P(XY) dX dY$$

$$= \iint X$$

$$= E(XX) - E(X)E(X)$$

$$= E(XX) - E(X)E(X)$$

(b)
$$Cov(x, \gamma) = Cov(a+b\gamma, \gamma)$$

= $E[(a+b\gamma - E(a+b\gamma))(\gamma - E(\gamma))]$

$$Cor(x,T) = \frac{Cov(x,T)}{\sqrt{Var(x)Var(T)}} = \frac{b \cdot Var(T)}{\sqrt{b} \cdot Var(T)} = \pm 1$$

(c) i. OoV
$$(A_1 + b_1 X_1, A_2 + b_2 X_2)$$

$$= \mathbb{E}[(A_1 + b_1 X_1 - \mathbb{E}(A_1 + b_1 \times 1)) (A_2 + b_2 \times 2 - \mathbb{E}(A_2 + b_2 \times 1))]$$

$$= b_1 b_2 \mathbb{E}[(X_1 - \mathbb{E}X_1) (X_2 - \mathbb{E}X_2)]$$

$$= b_1 b_2 \mathbb{E}[(X_1 - \mathbb{E}X_1) (X_2 - \mathbb{E}X_2)]$$

$$= b_1 b_2 \mathbb{E}[(X_1 - \mathbb{E}X_1) (X_2 - \mathbb{E}X_2)]$$

$$= b_1 b_2 \mathbb{E}[(X_1 - \mathbb{E}X_1) (X_2 - \mathbb{E}X_2)]$$

$$= b_1 b_2 \mathbb{E}[(X_1 - \mathbb{E}X_1) (X_2 - \mathbb{E}X_2)]$$

ii. $\mathbb{E}(X_1 + X_2 + X_3) = \mathbb{E}[(X_1 + X_2 + X_3) \mathbb{E}(X_1 + X_2 + X_3) \mathbb{E}(X_1 + X_2 + X_3) \mathbb{E}(X_1 + X_2 + X_3)]$

$$= \mathbb{E}(X_1 + X_2 + X_3) + \mathbb{E}(X_1 + X_2 + X_3)$$

$$= \mathbb{E}(X_1 + X_2 + X_3) + \mathbb{E}(X_1 + X_2 + X_3)$$

$$= \mathbb{E}(X_1 + X_2 + X_3) + \mathbb{E}(X_1 + X_2 + X_3)$$

$$= \mathbb{E}(X_1 + X_2 + X_3) + \mathbb{E}(X_1 + X_2 + X_3)$$

$$= \underbrace{\overset{2}{\cancel{5}}}_{1} Vov(x_1) + \underbrace{\overset{2}{\cancel{5}}}_{1} Cov(x_1, x_1)$$

$$= \underbrace{\overset{2}{\cancel{5}}}_{1} \underbrace{\overset{2}{\cancel{5}}}_{1} Cov(x_1, x_1)$$

4. (a) Since
$$3, \times_{1}, \times_{2}, \times_{3}$$
 W N(0,1)
 $E(Y_{1}) = E(3+\times_{1}) = 0$
 $E(Y_{2}) = E(2+\times_{2}) = 0$
 $E(Y_{3}) = E(2+\times_{3}) = Var(3)+(E2)+E(X_{3})=1$
 $Var(Y_{1}) = EY_{1}^{2}-(EY_{1})^{2}=EY_{1}^{2}=E(3+26\times_{1}+X_{1}^{2})$
 $= E3_{1}^{2}+2E2EX_{1}+EX_{1}^{2}$
 $= 2$

= 3 + 1 - 1

(P) $\otimes A(X) = \begin{bmatrix} C(X^2,Y^1) & C(X^2,Y^2) & C(X^2,Y^2) \\ C(X^2,Y^1) & C(X^2,Y^2) & C(X^2,Y^2) \end{bmatrix}$

= 3

Var(Y1) = EY1 - (EY1) = EY1 = E(3+23x1+x1)

Var()) = E/3-(E/3) = E/3-1 = E(2+24) 2+ 4/3-1 = E2++>E/3 E2+ E/3-1

c([,]=) = E[,]- E[, E] = E(Z+x)(Z+x2) | since x, LZ x218

 $C(Y_1,Y_3) = EY_1Y_3 - EY_1EY_3 = E(Z+X_1)(Z+X_3)$ EXX = EXEX = EXEX =

EXIZ=EXIEZ EXXZ= EXEZ

= FE+ EZ EXI+ EZ EX2+ EXIEX2

= E& + BZEXY + EXIET EXIEX

$$= \int x_1 p(x) dx \int z^2 p(z) dz$$

$$= Ext E z$$

$$thus, \quad c(T_1, T_3) = E z^3 = 0$$

$$Similary, \quad c(T_2, T_3) = 0$$

$$cov(T_1) = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

EXIZ= JXZPCX, B) OXDZ

(C) $C(T_1,T_3)=0$, indicating that T_1 and T_3 have no linear relationship, however, it does not mean that T_1 and T_3 are independent.

We can see X1 and X3 as noise, and they the sketch of the relationship between II and Is is like the randomly scottered points around the line $f(z) = z^2$, resulting from the noise x_1 and x_3 .

> T. Therefore, Is and I are not independent.

5. (a)
$$E[f(T)] = \int f(Y) P(Y) dY$$

$$= \int f(Y) \int P(X) dX dY$$

$$= \int f(Y) P(Y) dX dX$$

$$= \int E(f(Y)) (X) P(X) dX$$

$$= E[E(f(Y)) (X)) P(X) dX$$

$$= E[E(f(Y)) (X)) P(X) dX$$

$$= f(X) \int g(X,T) P(Y) (X) dY$$

= JW E(g(x,Y) |x)