

Parallel and Distributed Transaction Processing

- Distributed Transactions
- Commit Protocol
- Concurrency Control in Distributed Databases
- Deadlock Hartannig/powcoder.com

Add WeChat powcoder

Distributed Transactions

- Transaction may access data at several sites.
 - Local transactions
 - Access/update data at only one database
- Global transactions
 Assignment Project Exam Help
 Access/update data at more than one database
- Key issue: how to ensure ACID properties for transactions in a system with global transactions spanning multiple database
- Add WeChat powcoder

 Each site has a local transaction manager who manages the execution of those transactions that access data stored in a local site:
 - Maintaining a log for recovery purposes.
 - Coordinating the execution and commit/abort of the transactions executing at that site.

Distributed Transactions (cont.)

- Each site has a transaction coordinator who coordinates the execution of the various transactions (both local and global) initiated at that site:
 - Starting the execution of transactions that originate at the site.
 - Distributing subtrensactione at appropriates ites for execution.
 - Coordinating the termination of each transaction that originates at the site powcoder.com
 - transaction must be committed at all sites or aborted at all sites (to ensure atomically) powcoder

Parallel and Distributed Transaction Processing

- Distributed Transactions
- Commit Protocol
- Concurrency Control in Distributed Databases
- Deadlock Hartannig/powcoder.com

Add WeChat powcoder

Commit Protocol

- The transaction coordinator must execute a commit protocol to ensure atomicity across sites.
 - A transaction which executes at multiple sites must either be committed at all the sites, or aborted at all the sites. Assignment Project Exam Help
 - I Not acceptable to have a transaction committed at one site and aborted at pagother wooder.com
- The two-phase commit (2PC) protocol is widely used.

Two Phase Commit Protocol (2PC)

- Assumes **fail-stop** model failed sites simply stop working, and do not cause any other harm, such as sending incorrect messages to other sites.
- Execution of the protocol is initiated by the transaction coordinater safter the dast Ptepjetthe txansactler has been reached.
 - All the sites at which the transaction has executed inform the transaction coordinator that it has completed.

 Add WeChat powcoder

 The protocol involves all the local sites (participants) at which
- the transaction executed.
- Let T be a transaction initiated at site S_i , and let the transaction coordinator at S_i be C_i .

Phase 1: Obtaining a Decision

- \Box C_i asks all participants to **prepare** to commit transaction T.
 - C_i adds the record **prepare** T> to the log and forces log to stable storage.
 - C_i sends prepare T messages to all sites at which T executes signment Project Exam Help
- Upon receiving message, transaction manager at that site determines if it the point the description.
 - if no,
 - adds a record We Chat the Wooder
 - sends abort T message to C_i
 - if yes,
 - ▶ adds the record <**ready** T> to the log
 - forces the log (with all log records for *T*) to stable storage
 - to keep its promise, even if the site crashes after sending ready T message

Phase 2: Recording the Decision

- T can be committed when C_i received a **ready** T message from **all** participants within a pre-specified interval of time, otherwise, T must be aborted.
- Occur).
- C_i sends a message tweechparticipa to the decision (commit or abort).
- Participants record the message in the log.

Two-Phase Commit Protocol

System Failure Modes

- Failures to centralized systems:
 - software errors, hardware errors, disk crashes
- Failures unique to distributed systems:

 - Failure of a site.

 Loss or correspion of messages

 Help
 - Handled by network transmission control protocols such as TCP-IP.
 - Failure of a Acimunication tiplowcoder
 - Handled by network protocols, by routing messages via alternative links.
 - **Network partition**
 - A network is said to be partitioned when it has been split into two or more subsystems that lack any connection between them.
- Network partitioning and site failures are generally indistinguishable.

Handling of Failures - Site Failure

- When site S_k fails and then recovers, it examines its log to determine the fate of transactions active at the time of the failure.
- \square Log contains **<commit** T> record: site executes **redo** (T)
- Log contains sabort Trecord: site executes undo (7)
- Log contains < ready T> record: site must consult the coordinator C_i or other site $\frac{1}{2}$ to $\frac{1}{2}$ the $\frac{1}{2}$ to $\frac{1}{2}$ to $\frac{1}{2}$ the $\frac{1}{2}$ the $\frac{1}{2}$ to $\frac{1}{2}$ the $\frac{1}{2}$ the $\frac{1}{2}$ to $\frac{1}{2}$ the $\frac{1}{2}$ the
 - If T committed, redo (That powcoder
 - If T aborted, **undo** (T)
- Log contains no control records concerning T implies that S_k failed before responding to the **prepare** T message from C_i .
 - Since the failure of S_k precludes the sending of such a response, C_i must abort T.
 - S_k must execute **undo** (T).

Handling of Failures-Coordinator Failure

- If coordinator C_i fails while the commit protocol for T is executing, then participants must decide on Ts fate:
 - 1. If an active site contains a **commit** *T*> record in its log, then *T* must be committed.
 - Assignment Project Exam Help

 If an active site contains an abort 7> record in its log, then T must be aborted. https://powcoder.com
 - 3. If some active participant does not contain a <**ready** *T*> record in its log the file failed wice the failed with the commit *T*. Can therefore abort *T*.
 - 4. If none of the above cases holds, then all active sites must have a <ready *T*> record in their logs, but no additional control records (such as <abore to the companion of the control records (such as abort T of <commit *T*>). In this case active sites must wait for *C_i* to recover, to find decision.

Handling of Failures-Coordinator Failure (Cont.)

- Blocking problem: T is blocked pending the recovery of site C_i .
 - T may hold system resources and other transactions may be forced to waitefart the blocke Exam Help
 - Data items may be unavailable not only on the failed site (*C*_i), but on active sites as well.

Add WeChat powcoder

Handling of Failures - Network Partition

- If the coordinator and all its participants remain in one partition, the failure has no effect on the commit protocol.
- If the coordinator and its participants belong to several partitions:
 - Sites that are not in the partition containing the coordinator think the coordinator has failed, and execute the protocol to deal with failure of the coordinator.
 - No harm Actult but bites may still have to wait for decision from coordinator.
 - The coordinator and the sites that are in the same partition as the coordinator think that the sites in the other partition have failed, and follow the usual commit protocol.
 - Again, no harm results.

Recovery and Concurrency Control

- In-doubt transactions have a <ready T>, but neither a <commit T>, nor an <abord T> log record, however, normal transaction processing cannot begin until all in-doubt transactions have been committed or rolled back.
- The recovering stempest determine the community poort status of such transactions by contacting other sites; this can slow and potentially blockhtepsverp.owcoder.com
- Solution: recovery algorithms can note lock information in the log.
 - Instead of <**ready** T>, write out <**ready** T, L>L= list of locks held by T when the log is written (read locks can be omitted).
 - After performing local recovery, for every in-doubt transaction T, all the locks noted in the <ready T, L> log record are reacquired.
 - After lock reacquisition, transaction processing can resume.

Parallel and Distributed Transaction Processing

- Distributed Transactions
- Commit Protocol
- Concurrency Control in Distributed Databases
- Deadlock Hartannig/powcoder.com

Add WeChat powcoder

Concurrency Control

- Modify centralized concurrency control schemes for use in distributed environment.
 - Consider locking protocols here.
- Main issua: soig reandootk conflicts bexdetected in a distributed database with replicated data?
- https://powcoder.com
 We assume that each site participates in the execution of a commit protocol to ensure global transaction atomicity.

 And we chat powcoder
- We assume all replicas of any item are updated.

Single-Lock-Manager Approach

- System maintains a *single* lock manager that resides in a *single* chosen site, say S_i .
- When a transaction needs to lock a data item, it sends a lock request to S and the lock manager determines whether the lock can be granted immediately.
 - If yes, the lottemanage weeks message to the site which initiated the request.

Add WeChat powcoder

If no, request is delayed until it can be granted, at which time a message is sent to the initiating site.

Single-Lock-Manager Approach (Cont.)

- The transaction can read the data item from any one of the sites at which a replica of the data item resides.
- Writes must be performed on all replicas of a data item
- Assignment Project Exam Help
 - Simple implementation
 - Simple deadittes in a polygoder.com
 - Centralized de adle ckthandling algerithms can be applied directly.
- Disadvantages of scheme:
 - Bottleneck: lock manager site becomes a bottleneck.
 - Vulnerability: system is vulnerable to lock manager site failure.

Distributed Lock Manager

- In this approach, functionality of locking is implemented by lock manager at *each* site.
 - Lock managers control access to local data items.
 - Locking is performed separately on each site accessed by transaction.
- Advantage: https://powcoder.com
 - Work is distributed and can be made robust to failures.
 Add WeChat powcoder
- Disadvantage:
 - Possibility of a global deadlock without local deadlock at any single site.
 - Lock managers cooperate for deadlock detection (to be discussed).

Distributed Lock Manager (cont.)

- If the data item is not replicated, like single-lock-manager approach.
- If the data item is replicated, several variants of this approach
 - Primarksoopynment Project Exam Help
 - Majority protocol https://powcoder.com
 - Biased protocol Add WeChat powcoder
 - Quorum consensus

Primary Copy

- Choose one replica as primary copy for each data item.
 - Node containing primary replica is called primary node.
 - Concurrency control decisions made at the primary copy only.
- When a transaction mental Project to Total training of the primary node of Q.
- □ Benefit https://powcoder.com
 - Simple implantation: poncurrency control for replicated data to be handled like that for unreplicated data.
- Drawback
 - primary copy failure results in loss of lock information and non-availability of data item, even if other replicas are available.

Majority Protocol

- If data item *Q* is replicated in *n* different nodes, then a lock-request message must be sent to **more than one-half** of the *n* nodes in which Q is stored.
- Lock is successfully acquired on the data item only if lock obtained at a majority of replicas. Exam Help
- Benefit
 - Resilient to **intiges tail presy condessing training** an continue as long as at least a majority of replicas are accessible.
- Drawback Add WeChat powcoder
 - Higher cost due to multiple messages: requires 2(n/2 + 1) messages for handling lock requests, and (n/2 + 1) messages for handling unlock requests.
 - Possibility of deadlock even when locking single item, e.g., each of 3 transactions may have locks on 1/3rd of the replicas of a data.

Biased Protocol

- The difference from the majority protocol is that requests for shared locks are given more favorable treatment than requests for exclusive locks.
- Shared locks. When a transaction needs to lock data item Q, it simply requests a lock partial the lock manager at one pole that contains a replica of Q.
- Exclusive lockshyllpsn: transaction degree to hock data item Q, it requests a lock on Q from the lock manager at all sites containing a replica of Q. Add WeChat powcoder
- Advantage
 - Imposes less overhead on read operations.
- Disadvantages
 - Additional overhead on writes.
 - Potential for deadlock (same as the majority protocol).

Quorum Consensus Protocol

- A generalization of both majority and biased protocols.
- Each node is assigned a weight.
 - Let *S* be the total weight of all nodes at which the item resides.
- Choose two values read quorum Q_r and write quorum Q_w for each item such that signmental project Exam Help
- To execute a read operation, enough replicas must be locked that their total weight is at least Q_r .
- To execute a write of the rands, Charles Personalist be locked so that their total weight is at least Q_w .
- Benefits: can choose Q_r and Q_w to tune relative overheads on reads and writes
 - With a small read quorum, reads need to obtain fewer locks.
 - If higher weights are given to some (more fail-safe) nodes, fewer nodes need to be accessed for acquiring locks.

Parallel and Distributed Transaction Processing

- Distributed Transactions
- Commit Protocol
- Concurrency Control in Distributed Databases
- Deadlock Haffafingpowcoder.com

Add WeChat powcoder

Deadlock Handling

- Reminder: Deadlocks can be detected by the wait-for graph.
- Common techniques for maintaining the wait-for graph in a distributed system require that each site keeps a local wait-for graph.

Assignment Project Exam Help

- The nodes correspond to all transactions (local or nonlocal) that are currently pither polying of requesting any of the items local to that site.
 - When a transaction T_i on site S_1 needs a resource in S_2 , it sends a request message to S_2 .
 - If the resource is held by T_j , the system inserts an edge T_i $\rightarrow T_j$ in the local wait-for graph of S_2 .

Deadlock Handling (cont.)

Example: T_2 and T_3 below have requested items at both sites.

- If any local waithforpgraph has a gycle deadlock has occurred.
- However, no cycles in any of the local wait-for cycles does not mean that there are now dead acknowled mean that there are now dead at the control of the contro
- Example: Each wait-for graph of S_1 and S_2 above is acyclic, a deadlock exists in the system because the union of the local wait-for graphs contains a cycle.

Global

Centralized Approach

- A global wait-for graph is constructed and maintained in a single site: the deadlock-detection coordinator.
 - Real graph: Real but unknown state of the system at any instance in time (due to communication delay).
 - Constructed graph: Approximation generated by the coordinator during the execution of its algorithm. https://powcoder.com
- The global wait-for graph can be constructed when:
 - a new edge is his erted in of the local wait-for graphs.
 - a number of changes have occurred in a local wait-for graph.
 - the coordinator needs to invoke cycle-detection.
- If the coordinator finds a cycle, it selects a victim and notifies all sites. The sites roll back the victim transaction.

False Cycles

- Suppose that starting from the state shown in figure.
 - 1. T_2 releases resources at site S_1
 - resulting in a message remove $T_1 \rightarrow T_2$ from the Transaction Manager at S to the Assignment Project Exam Help coordinator

- resulting in a message insert $T_2 \rightarrow T_3$ from S_2 to the cooled that WeChat powcoder
- Suppose further that the insert message reaches before the delete message
 - this can happen due to network delays
- The coordinator would then find a false cycle

$$T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1$$

The false cycle above never existed in reality.

 S_1

 S_2

coordinator

Unnecessary Rollbacks

- Unnecessary rollbacks can result from false cycles in the global wait-for graph; however, likelihood of false cycles is low.
- Unnecessary rollbacks may also result when deadlock has indeed occurred and a victim has been picked, and meanwhile one of the transactions was aborted for reasons unrelated to the deadlock. Assignment Project Exam Help
- Example: Site S_1 decides to abort T_2 .

 https://powcoder.com
 At the same time, the coordinator has discovered a cycle in the global wait for graph and has picked T_3 as a victim.
 - ▶ Both T_2 and T_3 are now rolled back, although only T_2

needed to be rolled back.

site S_1

