

캡스톤 디자인

얼굴 인식과 손동작 인식을 이용한 2차 문서 보안 서비스

얼굴로 1차 보안, 손동작으로 2차 보안

4팀

김기현 우신영 유병민 이승택

Contents

목차소개

SECOM DALC**●**M

주제 선정 배경

SECOM DALCOM

주제 선정 배경

급증하고 있는 스마트폰 악성앱

한국인터넷진흥원(KISA)

디지털 신분증 및 전자 문서 서비스의 보편화로 인한 개인정보 탈취 공격

2023 사이버 위협 전망 TOP5

이스트시큐리티

주제 선정 배경

기존 보안 방법의 취약함

취약함증가

주제 선정 배경

스마트폰 문서 보안에 대한 중요성 증가

새로운 보안 시스템 고안

얼굴인식 + 손동작인식 2차 보안 서비스

얼굴 인식 + 손동작 인식 2차 보안 서비스

문서 업로드 & 암호 설정

암호 해제 & 문서 확인

APP 에서 진행

얼굴 인식 암호 설정

얼굴 인식 암호 해제

WEB 에서 진행

손동작 인식 암호 설정

손동작 인식 암호 해제

시연 영상

서비스 흐름도

작업 진행 방법

선형 책임 도표 작성

14가지로 선형 책임 도표를 나누어 주 책임자와 보조 책임자 분리

01

진행 상황 모니터링 및 일정 관리

진행 상황에 맞추어 작업 공유

02

4.1.1. 선형 책임 도표∉

 \leftarrow

선형 책임 도표리		팀원 1← (김기현)←	팀원 2← (우신영)←	팀원 3← (유병민)←	팀원 4↔ (이승택)÷	(-				
1.0 주제 아이디어 생성↩		@	@	@	@ 4	€				
1.1 주제 선정↩		⊚ ⇔	@	@ <	@ @	¢-				
1.2 최종 주제 결정↩		@ ~	@ -2	@ <	@ <	←				
2.0 프로젝트 문제 정의↩		⊚ ←	⊚ ←	()	@ ~	e [±]				
2.1 프로젝트 목적 설정↩		⊚ ←	0 4	0 4	⊚ ←	←				
3.0 관련 기술 조사관							0.1			
3.0.1 관련 기술 동향 파악↩	8.2.2 이미지 인식 설계 및 도면 작성↩					@←	4	4	4	
3.0.2 관련 기술의 수요 및 전망 파악↩	8.3 테스트 케이스 작성↩					4	⊕	0 ←	4	
3.1 관련 제품 시장 조사₽	9.0 일정 요약↩					←	⊚ ⇔	₽	₽	
4.0 구현 가능성 분석↔	9.1 설계 문서 작성↩					⊚ ←	⊚ ⇔	⊚ ⇔	⊚ ⊲	
4.1 아이디어 타당성 분석↔	9.2 구현 방법 제안↩					⊚ ←	@ -2	@	@ ~	
4.2 아이디어 최종 결정↩	11.0 구현↩					@ -2	@ -2	@ -	@ -2	
5.0 아이디어 기반 요구사항 분석⊖	11.0.1 손동작 인식 파트 구현↩					-	4	O∈	@ ∈	
5.0.1 기능 요구사항 정의↩										
5.0.2 성능 규격 조건 설정↩	11.0.2 이미지 인식 구현↩					@↩	4	O←	4	
5.1 요구사항 세부사항 결정↩	12.1 테스트 케이스 기반 테스트↩					4	@ -	@ ←	4	
60 도자 하겨 보선실	12.2 결함 수정 및 회귀 테스트↩					⊚ ←	7	₽	⊚ ⊲	
	13.0 프로젝트 결과 작성↩					@ <-	@ -	@ -	@ -	
	13.1 최종 보고서 작성↩					O←	O	O₽	@ -	
	14.0 진행 상황 모니터링↩					4	₽	4	@ ←	
e la										

* ◎: 주 책임자 ○: 보조 책임자 ←

구현 - 손동작 인식

암호 설정

- 1. 웹캠 이미지를 받아옴
- 2. Mediapipe 기반 손 인식
- 3. 21가지 관절들의 위치, 가시성 데이터 수집

손동작 dataset 구성

학습

LSTM 레이어와 Dense 레이어를 쌓아 sequential model 생성

model 생성

암호 해제

- 1. 웹캠 이미지를 받아옴
- 2. Mediapipe 기반 손 인식
 - 3. 90프레임 단위로 유사도 검사

판단

SECOM DALC⊕M

구현 - 손동작 인식

암호 설정

- 1. 웹캠 이미지를 받아옴
- 2. Mediapipe 기반 손 인식
 - 3. 21가지 관절들의 위치, 가시성 데이터 수집

손동작 dataset 구성

Mediapipe가 예측하는 21가지 관절들

SECOM DALCOM

구현 - 손동작 인식

암호 설정

- 1. 웹캠 이미지를 받아옴
- 2. Mediapipe 기반 손 인식
- 3. 21가지 관절들의 위치, 가시성 데이터 수집

손동작 dataset 구성

20초 동안의 연속적인 손의 변화를 암호로 사용

1. 3초의 프레임 단위로 데이터 처리 및 저장 2. 시간의 흐름에 따라 연속적인 시퀀스 데이터 구성

SECOM DALC⊕M

구현 - 손동작 인식

학습

LSTM & Dense sequential model 생성

model 생성

LSTM 레이어와 Dense 레이어를 쌓아 Sequential 모델 생성

SECOM DALC⊕M

구현 - 손동작 인식

암호 해제

- 1. 웹캠 이미지를 받아옴
- 2. Mediapipe 기반 손 인식
 - 3. 90프레임 단위로 유사도 검사

판단

90% 이상의 confidence로 설정한 동작들 중 하나를 했다고 판단

과정을 반복하여 30번중 25번 이상이 true로 판단되면 암호 해제

SECOM DALC M

구현 - 손동작 인식

암호 해제

- 1. 웹캠 이미지를 받아옴
- 2. Mediapipe 기반 손 인식
 - 3. 90프레임 단위로 유사도 검사

판단

옳은 동작을 하면 판별하는 모습

SECOM DALC M

구현 - 얼굴 인식

1. MTCNN알고리즘을 이용한 얼굴 영역 검출

> 2. FaceNet 모델 유사도 판단

얼굴 유사도 판단

MTCNN 알고리즘

얼굴 영역 검출

SECOM DALC M

구현 - 얼굴 인식

암호 해제

- 1. MTCNN알고리즘을 이용한 얼굴 영역 검출
 - 2. FaceNet 모델 유사도 판단

FaceNet

얼굴 유사도 판단

얼굴 특징 벡터 간의 유사도 계산

SECOM DALC⊕M

구현 - FrontEnd & BackEnd

HTTP 통신

구현 - FrontEnd & BackEnd

BackEnd Spring

Client React

Mobile Android

결과 분석

설계에서 달라진 점 - 손동작 인식

암호 설정 시간 & 해제 판단 로직

암호 설정 시간 **7초**

암호 설정 시간 **20초**

90% 유사도의 동작이 5번 연속으로 실행됨

90% 유사도의 동작이 30번중 25번 실행됨

결과 분석

설계에서 달라진 점 - 얼굴 인식

모델 변경

LBPHFaceRecognizer

CNN 딥러닝

결과 분석 - 손동작 인식

성능 평가

모델의 학습 완료 그래프

결과 분석 - 손동작 인식

model 성능 평가

1~3 단계 손동작에 대한 혼동 행렬

False Positive : 실제로 Negative 인데 Positive로 예측한 경우 False Negative : 실제로 Positive 인데 Negative로 예측한 경우

결과 분석 - 손동작 인식

model 성능 평가

1~3 단계 손동작에 대한 혼동 행렬

True Positive : 실제로 Positive인데 Positive로 예측한 경우

True Negative: 실제로 Negative인데 Negative로 예측한 경우

결과 분석 - 얼굴 인식

model 성능 평가

동일한 이미지에 대해 같은 결과값을 내는가?

50번 모두 옳은 결과

결과 분석 - 얼굴 인식

model 성능 평가

닮은 인물들을 잘 구분해주는가?

각도가 다른 동일 인물을 동일하다고 판단하는가?

악세사리 착용 유무가 바뀌어도 동일인물로 판단하는가?

인물 일치율 : 48.16%

인물 일치율 : 58.16%

인물 일치율: 61.67%

결과 분석 - Backend & Frontend

테스트 케이스 별 확인

회원가입 확인

파일 업로드 확인

사진 업로드 확인

손동작 인식 암호 dataset 구성 확인

손동작 인식 암호 모델 생성 확인

손동작 인식 암호 해제 전달 여부 확인

얼굴 인식 암호 해제 전달 여부 확인

얼굴 인식과 손동작 인식을 이용한 2차 문서 보안 서비스

" 얼굴로 식별하고, 손동작으로 보호합니다 "

JOIN US