New Results Concerning Collective Motion in Triaxial Nuclei

Robert POENARU^{1,2}

¹IFIN-HH Magurele, Romania

²Doctoral School of Physics Bucharest, Romania

UB Faculty of Physics 2022 Meeting June 20, 2022

Table of Contents

Nuclear Shapes

Nuclear Deformation

Most of the nuclei are either *spherical* or *axially symmetric* in their ground-state.

Deformation parameter β (Bohr, 1969): preserves axial symmetry

Figure 1: spherical: $\beta = 0$ prolate: $\beta > 0$ oblate: $\beta < 0$

Nuclear Triaxiality

Non-axial shape

Deviations from symmetric shapes can occur across the chart of nuclides \rightarrow **triaxial nuclei**.

The triaxiality parameter γ (Bohr, 1969): departure from axial symmetry

Figure 2: The (β, γ) plane divided into six equivalent parts, depicting nuclear surfaces.

Fingerprints for Triaxiality

- Experimentally, stable triaxial nuclei represent a real challenge
- Clear signatures for confirming stable triaxiality in nuclei
 - Chiral symmetry breaking (Frauendorf, 1997)
 - **Wobbling motion** (Bohr & Mottelson, 1975)

Wobbling Motion (WM)

- Unique to non-axial nuclei
- Predicted 50 years ago for even-A nuclei
- First experimental evidence for ¹⁶³Lu (Ødegård, 2001)
- Currently: confirmed wobblers within the mass regions $A \approx [100, 130, 160, 180]$.

Experimental Evidence

Wobbling nuclei (up to date) *Poenaru, 2022, in progress*

Energy of Deformed Nuclei

Collective Motion

- A nucleus droplet can generate angular momentum from the rotation and vibration of the droplet itself
- Each individual nucleon contributes to the total angular momentum → collectiveness
- a triaxial nucleus can rotate about any of the three axes
- rotation about the axis with the largest moment of inertia (MOI) is energetically the most favorable: $E_{\rm rot} \propto {\hbar^2 \over 2 {\cal I}_{\rm max}} I(I+1)$
- MOI anisotropy \rightarrow the *main rotation* around \mathcal{J}_{max} is disturbed by the other two axes \rightarrow *total motion has an oscillating behavior*

