AI1103: Assignment 7

Chitneedi Geetha Sowmya CS20BTECH11011

Download all latex codes from

https://github.com/Geetha495/Assignment7/blob/main/Assignment7.tex

Download all python codes from

https://github.com/Geetha495/Assignment7/blob/main/Assignment7.py

1 Problem

Suppose X is a positive random variable with the following probability density function,

$$f(x) = (\alpha x^{\alpha - 1} + \beta x^{\beta - 1})e^{-x^{\alpha} - x^{\beta}}; x > 0$$

for $\alpha > 0, \beta > 0$. Then the hazard function of X for some choices of α and β can be

- 1) an increasing function.
- 2) a decreasing function.
- 3) a constant function.
- 4) a non monotonic function

2 Solution

CDF of X,

$$F(x) = \int_{-\infty}^{x} f(t)dt \tag{2.0.1}$$

$$= \int_0^x f(t)dt$$
 as $x > 0$ (2.0.2)

$$= \int_{-\infty}^{t} \left((\alpha t^{\alpha - 1} + \beta t^{\beta - 1}) \times e^{-t^{\alpha} - t^{\beta}} \right) dt \quad (2.0.3)$$

$$= -e^{-t^{\alpha} - t^{\beta}} \Big|_0^x \tag{2.0.4}$$

$$=1-e^{-x^{\alpha}-x^{\beta}}\tag{2.0.5}$$

Hazard function,

$$h(x) = \frac{f(x)}{1 - F(x)}$$
 (2.0.6)

$$= \alpha x^{\alpha - 1} + \beta x^{\beta - 1} \tag{2.0.7}$$

As α, β are positive, h(x) is an increasing function. Correct option is 1.

1