To find following the Machine Learning Regression method using R² value

- 1. Multiple Liner Regression R² Value = 0.93586
- 2. SUPPORT VECTOR MACHINE: -

S.NO	HYPER	LINEAR	POLY	RBF	SIGMOID
	PARAMETER	R² value	R² value	R² value	R² value
1	C10	-0.03964	-0.05366	-0.0568	-0.05471
2	C100	0.10646	-0.0198	-0.05072	-0.03045
3	C500	0.59289	0.11468	-0.02432	0.07057
4	C1000	0.78028	0.26616	0.00676	0.18506
5	C2000	0.87677	0.481	0.06751	0.39706
6	<mark>C3000</mark>	0.89567	0.637	0.12322	0.59136

The SVM Regression use R^2 Value (Linear and hyper parameter(C3000)) = 0.89567

3. Decision Tree Regressor

S.No	criterion	splitter	max_features	R2 Value
1	squared_error	best	sqrt	0.947384
2	squared_error	random	sqrt	0.6957094
3	squared_error	best	Log2	-0.273004
4	squared_error	random	Log2	0.113433
5	friedman_mse	best	sqrt	0.3817558
6	friedman_mse	random	sqrt	-0.062193
7	friedman_mse	best	Log2	-0.579297
8	friedman_mse	random	Log2	-1.389746
9	absolute_error	best	sqrt	0.6228174
10	absolute_error	random	sqrt	0.716373
11	absolute_error	best	Log2	0.6065498
12	absolute_error	random	Log2	0.681547
13	poisson	best	sqrt	-0.456443
14	poisson	random	sqrt	-0.414985
15	poisson	best	Log2	0.2261589
16	poisson	random	Log2	0.5276283

Decision tree R^2 Value (squared_error, best, sqrt) = 0.947384