### KNN - Exercise 1 - Solution





$$D(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$



N-dimension

$$D(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}$$

# Manhattan distance 2-dimension

$$D(p,q) = |p_1 - q_1| + |p_2 - q_2|$$



N-dimension

$$D(p,q) = |p_1 - q_1| + |p_2 - q_2| + \dots + |p_n - q_n|$$

#### KNN - Exercise 1 - Solution



|            |           |            |           | from tomato (6,4) |              |  |
|------------|-----------|------------|-----------|-------------------|--------------|--|
|            | sweetness | crunciness | class     | L2 distances      | L1 distances |  |
| apple      | 10        | 9          | fruit     | 6,40              | 9,00         |  |
| bacon      | 1         | 4          | protein   | 5,00              | 5,00         |  |
| banana     | 10        | 1          | fruit     | 5,00              | 7,00         |  |
| carrot     | 7         | 10         | vegetable | 6,08              | 7,00         |  |
| celery     | 3         | 10         | vegetable | 6,71              | 9,00         |  |
| cheese     | 1         | 1          | protein   | 5,83              | 8,00         |  |
| green bean | 3         | 7          | vegetable | 4,24              | 6,00         |  |
| grape      | 8         | 5          | fruit     | 2,24              | 3,00         |  |
| orange     | 7,5       | 3          | fruit     | 1,80              | 2,50         |  |
| pear       | 9         | 6          | fruit     | 3,61              | 5,00         |  |
| nuts       | 3         | 5          | protein   | 3,16              | 4,00         |  |
| shrimp     | 1         | 3          | protein   | 5,10              | 6,00         |  |
| fish       | 2         | 1          | protein   | 5,00              | 7,00         |  |
| lettuce    | 1         | 8,5        | vegetable | 6,73              | 9,50         |  |
| cucumber   | 2         | 8          | vegetable | 5,66              | 8,00         |  |

L2: k=1 fruit, k=3 (fruit, fruit, protein): fruit k=5 (fruit, fruit, protein, fruit, vegetable): fruit



#### KNN - Exercise 1 - Solution



|            |           |            |           | from tomato (6,4) |              |  |
|------------|-----------|------------|-----------|-------------------|--------------|--|
|            | sweetness | crunciness | class     | L2 distances      | L1 distances |  |
| apple      | 10        | 9          | fruit     | 6,40              | 9,00         |  |
| bacon      | 1         | 4          | protein   | 5,00              | 5,00         |  |
| banana     | 10        | 1          | fruit     | 5,00              | 7,00         |  |
| carrot     | 7         | 10         | vegetable | 6,08              | 7,00         |  |
| celery     | 3         | 10         | vegetable | 6,71              | 9,00         |  |
| cheese     | 1         | 1          | protein   | 5,83              | 8,00         |  |
| green bean | 3         | 7          | vegetable | 4,24              | 6,00         |  |
| grape      | 8         | 5          | fruit     | 2,24              | 3,00         |  |
| orange     | 7,5       | 3          | fruit     | 1,80              | 2,50         |  |
| pear       | 9         | 6          | fruit     | 3,61              | 5,00         |  |
| nuts       | 3         | 5          | protein   | 3,16              | 4,00         |  |
| shrimp     | 1         | 3          | protein   | 5,10              | 6,00         |  |
| fish       | 2         | 1          | protein   | 5,00              | 7,00         |  |
| lettuce    | 1         | 8,5        | vegetable | 6,73              | 9,50         |  |
| cucumber   | 2         | 8          | vegetable | 5,66              | 8,00         |  |

L1: k=1 fruit, k=3 (fruit, fruit, protein): fruit k=5 (fruit, fruit, protein, fruit, protein): fruit



### KNN - Exercise 2 - Solution



L2: k=5 (vegetable, fruit, fruit, vegetable, fruit): fruit....uhm...



#### - Exercise 2 - Solution KNN



|            |           |            |           | beetroots (6.5,8) |
|------------|-----------|------------|-----------|-------------------|
|            | sweetness | crunciness | class     | L2 distances      |
| apple      | 10        | 9          | fruit     | 3,640             |
| bacon      | 1         | 4          | protein   | 6,801             |
| banana     | 10        | 1          | fruit     | 7,826             |
| carrot     | 7         | 10         | vegetable | 2,062             |
| celery     | 3         | 10         | vegetable | 4,031             |
| cheese     | 1         | 1          | protein   | 8,902             |
| green bean | 3         | 7          | vegetable | 3,640             |
| grape      | 8         | 5          | fruit     | 3,354             |
| orange     | 7,5       | 3          | fruit     | 5,099             |
| pear       | 9         | 6          | fruit     | 3,202             |
| nuts       | 3         | 5          | protein   | 4,610             |
| shrimp     | 1         | 3          | protein   | 7,433             |
| fish       | 2         | 1          | protein   | 8,322             |
| lettuce    | 1         | 8,5        | vegetable | 5,523             |
| cucumber   | 2         | 8          | vegetable | 4,500             |

L2: k=5 (vegetable, fruit, fruit, vegetable, fruit) average dist. v = 2,851 average dist. f = 3,399



vegetable



## KNN - Exercise 3 - Solution



Maximal cosine similarity. Nearest neighbour assigns class fruit



#### KNN - Exercise 4 - Solution

Suppose you want to build a nearest neighbors classifier to predict whether a beverage is a coffee or a tea using two features: the volume of the liquid (in milliliters) and the caffeine content (in grams). You collect the following data:

| volume (ml) | caffeine (g)    | label  | L2 from (120; 0,013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-------------|-----------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 238         | 0,026           | tea    | 118,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 100         | 0,011           | tea    | 20,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 120         | 0,040           | coffee | 0,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 237         | 0,095           | coffee | 117,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             | 1897.4.2000.4.4 |        | 100 Carlo Carlo 100 - 100 Carlo 100 |  |

- What is the label for a test point with Volume = 120, Caffeine = 0.013? (k=1, L2 distance)
   Coffee
- Why your correct answer may still be wrong?
   One feature (Volume) dominate the distance
- 3. How would you fix the problem?



#### KNN - Exercise 5 - Solution

Suppose you want to build a nearest neighbors classifier to predict whether a beverage is a coffee or a tea using two features: the volume of the liquid (in milliliters) and the caffeine content (in grams). You collect the following data:

| volume (ml) | caffeine (g) | label  | L2 from (120; 0,013) |  |
|-------------|--------------|--------|----------------------|--|
| 238         | 0,026        | tea    | 118,00               |  |
| 100         | 0,011        | tea    | 20,00                |  |
| 120         | 0,040        | coffee | 0,03                 |  |
| 237         | 0,095        | coffee | 117,00               |  |

Query: (120; 0,013) corresponds to 0,00011 g/ml

- What is the label for a test point with Volume = 120, Caffeine = 0.013? (k=1, L2 distance)
   Coffee
- Why your correct answer may still be wrong?
   One feature (Volume) dominate the distance
- 3. How would you fix the problem?



g / ml

0.00011

0,00011

0,00033

#### KNN - Exercise 5 - Solution

Suppose you want to build a nearest neighbors classifier to predict whether a beverage is a coffee or a tea using two features: the volume of the liquid (in milliliters) and the caffeine content (in grams). You collect the following data:

| L2 from (120; 0,013)    | label  | caffeine (g) | volume (ml) |
|-------------------------|--------|--------------|-------------|
| 118,00                  | tea    | 0,026        | 238         |
| 20,00                   | tea    | 0,011        | 100         |
| 0,03                    | coffee | 0,040        | 120         |
| 117,00                  | coffee | 0,095        | 237         |
|                         |        |              |             |
|                         | mean   | 0,043        | 173,75      |
|                         | stdv   | 0,0366       | 74,0647     |
| L2 from (-0,726; -0,819 |        |              |             |
| 1,63                    |        | -0,464058    | 0,867484    |
| 0,28                    |        | -0,873522    | -0,995751   |
| 0,74                    |        | -0,081893    | -0,725717   |
| 2,74                    |        | 1,419473     | 0,853983    |

- What is the label for a test point with Volume = 120, Caffeine = 0.013? (k=1, L2 distance)
   Coffee
- Why your correct answer may still be wrong?
   One feature (Volume) dominate the distance
- 3. How would you fix the problem?
  Rescale the features to
  zero mean and unit variance (Z-score
  normalization)

# KNN vs Perceptron - Test Solutions

#### KNN

assumption: similar/close samples have the same label

the 'learning' process stores....all the training samples

are there issues related to data dimensionality?

is it a multiclass classifier? yes

generalization guarantee: when the number of samples (n) goes to ∞ ....the theoretical error (risk) remains lower than twice the bias error (risk)

#### Perceptron

assumption: the data are linearly separable (i.e. there exist one hyperplane separating positive and negative samples without errors)

the learning process stores....the vector [w,b]

are there issues related to data dimensionality?

is it a multiclass classifier? no - only binary problems

can we prove a guarantee when n goes to ∞ ....?



# Perceptron - Exercise 2 - Solution

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i) > 0 \Longleftrightarrow \mathbf{x}_i \; \text{ is classified correctly}$$

$$(4,3,6)^T \in \mathcal{N}, \quad (2,-2,3)^T \in \mathcal{P}, \quad (1,0,-3)^T \in \mathcal{P}, \quad (4,2,3)^T \in \mathcal{N}$$

| pattern                                                                  | output          | classification | update          | new weight vector |  |  |
|--------------------------------------------------------------------------|-----------------|----------------|-----------------|-------------------|--|--|
|                                                                          |                 |                |                 | $(1,0,0,0)^T$     |  |  |
| $(1,4,3,6)^T \in \mathcal{N}$                                            | $f_{step}(1)$   | false positive | $-(1,4,3,6)^T$  | $(0,-4,-3,-6)^T$  |  |  |
| $(1,2,-2,3)^T\in\mathcal{P}$                                             | $f_{step}(-20)$ | false negative | $+(1,2,-2,3)^T$ | $(1,-2,-5,-3)^T$  |  |  |
| $(1,1,0,-3)^T \in \mathcal{P}$                                           | $f_{step}(8)$   | true positive  | unchanged       | unchanged         |  |  |
| $(1,4,2,3)^T \in \mathcal{N}$                                            | $f_{step}(-26)$ | true negative  | unchanged       | unchanged         |  |  |
| $(1,4,3,6)^T \in \mathcal{N}$                                            | $f_{step}(-40)$ | true negative  | unchanged       | unchanged         |  |  |
| $(1,2,-2,3)^T\in\mathcal{P}$                                             | $f_{step}(-2)$  | false negative | $+(1,2,-2,3)^T$ | $(2,0,-7,0)^T$    |  |  |
| $(1,1,0,-3)^T \in \mathcal{P}$                                           | $f_{step}(2)$   | true positive  | unchanged       | unchanged         |  |  |
| $(1,4,2,3)^T \in \mathcal{N}$                                            | $f_{step}(-12)$ | true negative  | unchanged       | unchanged         |  |  |
| $(1,4,3,6)^T \in \mathcal{N}$                                            | $f_{step}(-19)$ | true negative  | unchanged       | unchanged         |  |  |
| $(1,2,-2,3)^T\in\mathcal{P}$                                             | $f_{step}(16)$  | true positive  | unchanged       | unchanged         |  |  |
| finished weight vector $(2.0 - 7.0)^T$ classifies all patterns correctly |                 |                |                 |                   |  |  |

finished, weight vector (2,0,-7,0)' classifies all patterns correctly

# Perceptron - Exercise 3 - Solution

$$(1,1)^T \in \mathcal{P}, \quad (1,0)^T \in \mathcal{N}, \quad (0,0)^T \in \mathcal{P}, \quad (0,1)^T \in \mathcal{N}$$

| pattern                        | output         | classification | update                   | new weight vector          |
|--------------------------------|----------------|----------------|--------------------------|----------------------------|
| 1000 NEWS                      |                |                |                          | $(1,0,0)^T$                |
| $(1,1,1)^T \in \mathcal{P}$    | $f_{step}(1)$  | true positive  | unchanged                | unchanged                  |
| $(1,1,0)^T \in \mathcal{N}$    | $f_{step}(1)$  | false positive | $-(1,1,0)^T$             | $(0,-1,0)^T$               |
| $(1,0,0)^T \in \mathcal{P}$    | $f_{step}(0)$  | true positive  | unchanged                | unchanged                  |
| $(1,0,1)^T \in \mathcal{N}$    | $f_{step}(0)$  | false positive | $-(1,0,1)^T$             | $(-1,-1,-1)^{\mathcal{T}}$ |
| $(1,1,1)^T \in \mathcal{P}$    | $f_{step}(-3)$ | false negative | $+(1,1,1)^{\mathcal{T}}$ | $(0,0,0)^T$                |
| $(1,1,0)^{ T} \in \mathcal{N}$ | $f_{step}(0)$  | false positive | $-(1,1,0)^{\mathcal{T}}$ | $(-1,-1,0)^T$              |
| $(1,0,0)^T \in \mathcal{P}$    | $f_{step}(-1)$ | false negative | $+(1,0,0)^T$             | $(0,-1,0)^T$               |

finished, weight vector  $(0,-1,0)^T$  occurs twice