Introduction à OpenGL avec GLUT

Nikolas Stott

INRIA Saclay - CMAP, École Polytechnique, Université Paris-Saclay

9 février 2017

Plan

- OpenGL et GLUT : présentation
 - OpenGL : quoi et comment?
 - GLUT : quoi et comment ?
- 2 Les fonctions principales GLUT
- 3 La librairie mathématique Eigen

Qu'est ce qu'OpenGL?

OpenGL (Open Graphics Library) est une bibliothèque graphique 2D/3D pour des applications 3D (interactives) :

- Interface logicielle bas niveau avec le hardware graphique
- 150 commandes différentes pour spécifier objets et opérations

OpenGL est indépendant du hardware et utilisé dans différents langages à travers différentes bibliothèques :

- GLU/GLUT en C/C++
- Java OpenGL (JOGL) en Java
- WEBGL en Javascript

OpenGL ne gère pas le fenêtrage ou l'interface graphique.

Qu'est ce que GLUT?

GLUT (OpenGL Utility Toolkit) est une interface de programmation pour OpenGL qui gère le fenêtrage.

GLUT est simple, petit et utile pour apprendre à découvrir OpenGL.

GLUT contient les fonctionnalités suivantes :

- gestion de l'affichage de fenêtres de rendu OpenGL
- gestion du temps, d'événements et d'interaction utilisateur
- création rapide d'objets primitifs (cube, tétraèdre, sphère, cône, etc) pleins ou maillage seul.

Qu'est ce qu'OpenGL sait faire?

Modélisation/Visualisation

- Création de géométries complexes
- Habillage de la géométrie : couleur, texture, éclairage...
- Visualisation des objets

3D Animation

Animation

OpenGL permet d'animer :

- la caméra dans la scène
- les objets dans la scène
- le maillage des objets

La fonction Main

Contenu

```
La fonction main doit :
initialiser GLUT : glutInit(&argc,argv);
• paramétrer l'affichage avec glutInitDisplayMode( ... ); :
  GLUT_RGBA, GLUT_DEPTH, GLUT_SINGLE ou GLUT_DOUBLE
créer la fenêtre : glutCreateWindow("C'est bientôt fini ;)");
• initialiser les variables/objets du programme

  déclarer les fonctions

  de dessin : glutDisplayFunc( ... );

  de redimensionnement : glutReshapeFunc( ... );

  d'interaction souris : glutMouseFunc( ... );

  d'interaction clavier : glutKeyboardFunc( ... );

     • d'évolution autonome : glutIdleFunc( ... );

  de temporisation : glutTimerFunc( ... );
```

lancer la boucle infinie : glutMainLoop();

Autres fonctions (1)

Fonction de dessin

```
Donnée en paramètre de glutDisplayFunc(...)
```

Elle ne prend rien en paramètre.

Son rôle est de tracer l'image courante :

- effacer l'image précédente : glClear(GL_COLOR_BUFFER_BIT);
- dessiner ce que l'utilisateur souhaite
- demander de l'afficher : glFlush(); ou glSwapBuffers();

Fonction de redimensionnement

```
Donnée en paramètre de glutReshapeFunc( ... );
```

Elle prend en paramètre les dimensions du viewport.

Elle doit assurer la cohérence de la fenêtre de tracé :

- déclarer le viewport : glViewport(x1,y1,x2,y2);
- charger les paramètres caméra initiaux

Autres fonctions (2)

Fonction d'interaction souris

Donnée en paramètre de glutMouseFunc(...);

Elle prend en paramètre le bouton activé, l'état du bouton et la position écran lors de l'action.

- Le bouton prend les valeurs GLUT_LEFT/MIDDLE/RIGHT_BUTTON
- L'état prend les valeurs GLUT_UP et GLUT_DOWN

Fonction d'interaction clavier

Donnée en paramètre de glutKeyboardFunc(...);

Elle prend en paramètre la touche activée et la position écran de la souris lors de l'action.

Autres fonctions (3)

Fonction d'évolution autonome

```
Donnée en paramètre de glutIdleFunc( ... );
```

Appelée lorsqu'aucune action n'est déclenchée, elle ne prend aucun paramètre. C'est la fonction qui calcule le nouvel état du système, etc.

Fonction de temporisation

```
Donnée en paramètre de glutTimerFunc( ... );
```

Fonction avancée qui permet d'introduire des paramètres temporels dans le programme.

glutTimerFunc(DeltaT, timer, 0) appelle la fonction de temporisation timer au moins toutes les DeltaT ms.

Fonction d'actualisation

glutPostRedisplay(); est la fonction qui demande à GLUT de calculer et d'afficher une nouvelle image sur l'écran.

Commandes principales

Eigen::Vector3f v

- Vecteur de 3 floats x,y,z: Eigen : :Vector3f(x,y,z)
- Acces aux valeurs : v[i]
- Compatible avec les opérations standards sur des vecteur : 3*u 2*v est une syntaxe valide

Produit scalaire $\langle u, v \rangle$

- Calculé par u.dot(v)
- Norme d'un vecteur : sqrt(u.dot(u)) ou u.norm()
- Vecteur normalisé : $u_{norm} = u.normalized()$
- Autre version (inplace) : u.normalize()

Produit vectoriel $u \wedge v$

Calculé par u.cross(v)

TP:

Simulation d'une flotte de drones