学院	<u> </u>	学号	任课老!	师	考场教室	选课号//	座位号
	·····密·······	封线…	以	内······答···	题	无······效···	••••
电子科技大	学 2013	-2014 学	年第 <u>2</u> 学	×期期 <u>末</u>	_考试 <u>B</u>	卷答案及	设评分细则
课程名称: _算法	分析与设计	考试形式:	闭卷_考试	日期: <u>201</u> 4	<u>1</u> 年月 _	日 考试时	†长: <u>120</u> 分钟
课程成绩构成:	平时10	_%, 期中_	10%,	实验	10 %,	期末70)%
本试卷试题由	6部分构	成,共 <u>7</u>	_页。				
题号	_	=	三	四	五.	六	合计
得分							
得分 一、判断题(共10分,共5题,每题2分) 2、对于0-1 背包问题,贪心算法之所以不能得到最优解是因为在这种情况下,它无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。(T) 4、备忘录方法和动态规划方法都采用自底向上的计算过程,而分治与递归算法采用自顶向下的计算过程。(F) 5、与分治算法相比,动态规划算法的最大不同点是重叠子问题性质。(T) 得分 二、选择题(每小题2分,共10分)							
1、动态规划算法							
A、 最优子结构性质与贪心选择性质 B、重叠子问题性质与贪心选择性质 C、最优子结构性质与重叠子							
问题性质 D、预排序与递归调用							
2、下列算法中通常以广度优先方式系统搜索问题解的是(D)。							
A、分支界限算法 B、动态规划法 C、贪心法 D、回溯法							
3、适于递归实现	上的算法有(C):					
A、并行算法	B、近似算	法 C、	分治法	D、回溯流	去		
5、二分搜索算法	是利用(A)实现的	的算法。				

学院	姓名	学号	任课老师	考场教室	选课号/座位号
	密·	封线	以	答题	··无·······效······
A、分》	台策略 B、动态	规划法 C、贪心	去 D、回溯:	法	
得多	子 三、简答题 <i>及</i>	&计算(共 40 分)			
1、试扫	苗述贪心算法的概	念、贪心方法的抽象	象化控制。(6ヶ	})	
贪心算	法总是作出在当前		也就是说贪心	算法并不从整体最	优考虑,它所作出的选择只
是在某	种意义上的局部最	贵优选择 (2 分)。			
void G	Greedy(a[], n) {				
//a(1:	n)包含 n 个输入				
soluti	on = Φ //将	解向量 solution 初]始化为空(1分)	
for(j=	=1; j=n; ++j) {				
x = Se	elect(a[j]); (1	分)			
if Fea	asible(solution,	x) {solution=un:	on(solution,	x); }(1分)	
}; //f	Cor				
return }// Gr	n solution; (1分 reedy	^)			
0					
· H	A	/H ()	1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T 15 / A . I . I II	1. (5.1)
2、用名	合并排序算法对数	组{12,1,8,5,6,4,5}从	、小到大排序,	要求给出排序过程	量。(5 分)
	解答:	12 1	85 64 5		(1分)
		1 12	58 46 5		(1分)
		15812	456		(1分)
		14 5 5 6 8 1	2		(2分)

学院	姓名	学号	任课老师	考场教室	选课号/座位号	

3、对下列函数按渐进关系 0 从小到大排列: 要求写出比较过程。(8 分)

$$f_1(n) = 2^n, f_2(n) = n^{1/3}, f_3(n) = n^n, f_4(n) = \log n, f_5(n) = 2^{\sqrt{\log n}}$$

$$f_4 < f_5$$

(2分)

$$f_5 < f_2$$

(2分)

$$f_2 < f_1$$

(2分)

$$f_1 < f_3$$

(2分)

$$f_4(n) = \log_2 n$$
 $f_5(n) = 2^{\sqrt{\log_2 n}}$ $f_2(n) = n^{1/3}$ $f_1(n) = 10^n$ $f_3(n) = n^n$

4、请给出 Kruskal 算法求解图中最小生成树的主要步骤。(7分)

解答: 首先置
$$T=\{\phi\}$$
, (2分)

将 G 的 n 个顶点看成 n 个独立的联通分支,将边按升序次序排列 (2分)

依次查看每一条边,如果边 e 不会产生回路的化,则将边 e 加入边集合 T, (2分)

直到所有边查看完成为止。 (1分)

5、 用数学归纳法证明二分搜索算法的递归关系式T(n)=2T(n/2)+1的渐近解为T(n)=O(n)。(7分)

证明:假设当k < n时, $T(k) \le c_1 k - c_2$,其中 c_1 和 c_2 为常数。 (2分)

$$T(n) = 2T(n/2) + 1$$

$$\leq 2[c_1(n/2) - c_2] + 1$$

$$= c_1 n - (2c_2 - 1)$$

$$\leq c_1 n - c_2 \text{ if } c_2 \geq 1$$

.....(第二步2分)

.....(第三步1分)

.....(第四步 2 分)

学院	姓名	学号	任课老师	考场教室	选课号/座位号	
	r de	40. 44	151 - 1 -	Arr HE	T 3-4	
	""	對线	······································		·尤效	

因此, 命题得证。

得 分

四、给定一个包含{a,c,h,i,o,q,}字符集的文本文件,每个字符在文件中出现频率如下表所示,文件共有个字符,试用 huffman 编码对该文本文件进行编码,要求画出编码的 huffman 树,给出每个字符的 huffman 编码,并求解编码后文件的 bit 长度。(10 分)

字符	a	с	h	i	0	q
次数	45	13	12	16	9	5

解:

(左子树 3 分) ... (右子树 3 分)

a:0 c: 101 h:100 i: 111 o: 1101 q: 1100(huffman 编码 2 分)

学院	姓名	学号	任课老师	考场教室	选课号/座位号	
	密	封线		…答题	··无········效·······	
编码后文件	长度 = (5+9)	× 4 + (12 + 13	$+16) \times 3 + 45 \times 1 =$	224 bit	(2分)	

得 分

五、用 Dijkstra 算法求解下图中从 S 到 T 的最短路径,图中边旁边的数字代表该条边的长度。 计算中要求给出计算步骤和最后的最短路径以及它的长度。(共 10 分)

解答: 令 O 为探索集有: $O={S}$ $O={S, 2};$ S 到 2 的最短路径是 2 $O={S, 2, 3};$ S 到 3 的最短路径是 3 (1分) S 到 1 的最短路径为 4 $O={S, 2, 3, 1};$ (1分) S 到 8 的最短路径是 8 $O={S, 2, 3, 1, 8};$ (1分) $O=\{S, 2, 3, 1, 8, 6\};$ S 到 6 的最短路径是 10 (1分) $O=\{S, 2, 3, 1, 8, 6, 10\};$ S 到 10 的最短路径是 10 (1分) S 到 4的最短路径是 11 $O=\{S, 2, 3, 1, 8, 6, 10, 4\};$ (1分) O={S, 2, 3, 1, 8, 6, 10, 4, 5}; S 到 5 的最短路径是 14 (1分) O={S, 2, 3, 1, 8, 6, 10, 4, 5, T}; S 到 T 的最短路径是 14 (1分) S 到 T 的最短路径是: S->2->8->T (1分) (1分) 最短路径是14

得 分

六、一个果农想将自己种植的 N 种水果运到市场上出售,现该果农只有一辆存储容量为 C 吨的卡车。每种水果单箱的重量分别为 $W = \{w_1, w_2, ..., w_N\}$ (吨),每种水果单箱的价值分别为 $V = \{v_1, v_2, ..., v_N\}$,每种水果该卡车最多能存储 1 箱。(共 20 分)

- (a)请用动态规划算法求解在满足该卡车存储容量情况下,该果农获得的最大出售水果价值,写出递归表达式,描述解题过程。(10分)
- (b) 设 N=4, $V = \{6, 10, 8, 6\}$, $W = \{2,4,3,4\}$, C=9, 请用动态规划算法求出最大水果出售价值,并画出其求解图、并给出最优解与最优值。(10 分)

解答:

(a)

添加一变量i

定义 m(i,j) = 卡车容量为j, 由1, …, i 个水果装入卡车问题的最优值

情况 1: m(i,j) 不选择第 i 个水果.

(2分)

m(i,j)为 $\{1, \dots, i-1\}$ 个水果装入卡车所产生的最大价值,当重量限制为 j 情况 2: m(i,j) 选择第 i 个物品.

新的重量限制为 = j - wi; m(i,j) 为新重量限制下, $\{1, \dots, i-1\}$ 个水果装入卡车所产生的最大价值 (2分)

$$m(i,j) = \begin{cases} 0 & \text{if } i = 0 \\ m(i-1,j) & \text{if } w_i > j \\ \max \left\{ m(i-1,j), v_i + m(i-1,j-w_i) \right\} & \text{otherwise} \end{cases}$$

(第一行2分,第二行2分,第三行2分)

(b)

(0)									
0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0
0	0	6	6	6	6	6	6	6	6
0	0	6	6	10	10	16	16	16	16
0	0	6	8	10	14	16	18	18	24
0	0	6	8	10	14	16	18	18	24

(上表中每行1分,共6分)

学院	姓名	学号	任课老师	考场教室	选课号/座位号	<u></u>
	密	…封线	以内	·答········.题········无·	效	
最优解:	选择商品 1, 2, 3					(2分)
最优值 2	24					(2分)