Exercícios 3 e 4

// Exercício 3

a)

Resposta: k vale 1 ao final do loop

n	k	i
1	1	0

b)

Resposta: k vale 2 ao final do loop

n	k	i
2	1	1
2	2	0

c)

Resposta: k vale 3 ao final do loop

n	k	i
4	1	2
4	2	1
4	3	0

d)

Resposta: k vale 4 ao final do loop

n	k	i
8	1	4
8	2	2
8	3	1
8	4	0

e) **Resposta:** Comparando $log_{10}n$ com os resultados anteriores, houve uma diferença de 1 entre eles, pois o laço de repetição while continha uma condição onde i > 0, porém o log_bN possui de i > 0.

a)
$$\log_2 1 = 0$$

b)
$$\log_2 2 = 1$$

d)
$$log_28 = 3$$

// Exercício 4

a)

Resposta: k vale 1 ao final do loop

n	k	i
1	1	0

b)

Resposta: k vale 2 ao final do loop

n	k	i
10	1	1
10	2	0

C)

Resposta: k vale 3 ao final do loop

n	k	i
100	1	10
100	2	1
100	3	0

d)

Resposta: k vale 4 ao final do loop

n	k	i
1000	1	100
1000	2	10
1000	3	1
1000	4	0

- e) Resposta: Comparando log10n com os resultados anteriores, houve uma diferença de 1 entre eles, pois o laço de repetição while continha uma condição onde i > 0, porém o log₀N possui de i > 0. Além disso, um algoritmo de O(log₁₀n) possui mais eficiência que um algoritmo onde O(log₂n), sendo mais rápido.
- a) $\log_{10}1 = 0$

- b) $\log_{10} 10 = 1$ c) $\log_{10} 100 = 2$ d) $\log_{10} 1000 = 3$