§ 58. МЕТОДИ РЕЄСТРАЦІЇ ЙОНІЗУЮЧОГО ВИПРОМІНЮВАННЯ

- Оскільки наші органи чуття не можуть зареєструвати йонізуюче випромінювання, вченим довелося розробити низку пристроїв, які допомагають людині «побачити» радіацію. Із цього параграфа ви дізнаєтеся про деякі з них.
- Якими є пристрої для реєстрації йонізуючого випромінювання Загальний принцип реєстрації йонізуючого випромінювання полягає в реєстрації дії, яку чинять невидимі оком частинки.

Перелічимо основні способи реєстрації йонізуючого випромінювання.

Метод фотоемульсій. Швидка заряджена частинка, рухаючись у шарі фотоемульсії, внаслідок йонізації утворює вздовж траєкторії свого руху центри прихованого зображення. Після проявлення фотоплівки (фотоплатівки) на ній проступають зображення слідів первинної частинки та всіх заряджених частинок, що виникли в емульсії внаслідок ядерних взаємодій із первинною частинкою. За товщиною слідів у фотоемульсії та за їхніми довжинами можна визначити заряди частинок і їхню енергію.

Сцинтиляційні лічильники. Процес перетворення кінетичної енергії швидкої зарядженої частинки на енергію світлового спалаху називається сцинтиляцією. Саме такі спалахи й реєструють сцинтиляційними лічильниками.

Камера Вільсона. У початковому стані в цій камері міститься повітря з перенасиченою парою спирту. Якщо через робочий об'єм камери пролітає швидка заряджена частинка, то вздовж шляху її руху в газі утворюється ланцюжок йонів, на яких конденсується пара. Цей ланцюжок крапель можна зареєструвати, наприклад, сфотографувавши.

Принцип реєстрації частинок у бульбашковій камері подібний до способу спостереження в камері Вільсона. Відмінність полягає в тому, що робочим тілом у цьому випадку є перегріта рідина. Йони, які виникають уздовж шляху руху частинки, стають центрами кипіння — бульбашками, які теж можна сфотографувати.

Дія двох наступних типів детекторів — газорозрядних лічильників (їх іще називають лічильники Ґейґера — Мюллера) і йонізуючих камер — ґрунтується на схожих ефектах. У приладах обох типів робоче тіло — газ — поміщене в електричне поле з високою напругою. Під дією зарядженої частинки, що пролітає крізь газ, відбувається йонізація робочого тіла. У результаті крізь газ проходить електричний струм, який і фіксується стандартними приладами.★

🥤 Як захиститися від йонізуючого випромінювання

У більшості людей слово «радіація» асоціюється з небезпекою. І це, безумовно, правильно. Радіоактивне випромінювання може призвести до згубних наслідків. Утім учені з'ясували, що життя на Землі виникло й розвивається в умовах постійної дії радіації. Як це може бути? Виявилося, що незалежно від того, в якому куточку Землі живе людина, вона постійно зазнає впливу радіації, тому що в будь-якій місцевості завжди є певний радіаційний фон.

Радіаційний фон — це йонізуюче випромінювання земного та космічного походження. Радіаційний фон Землі складається з кількох компонентів. Це космічне випромінювання; випромінювання природних радіонуклідів, які містяться в земній корі, повітрі та інших об'єктах зовнішнього середовища; випромінювання штучних радіоактивних ізотопів. Унаслідок діяльності людини відбулося

таблиці таблиці наведено дані про відносну шкідливість випромінювання для людини від різних джерел радіації.

Джерела радіації	Відносна шкідливість випро- мінювання для людини
Космічне випромінювання	35
Зовнішнє природне опромінення	35
Внутрішнє природне опромінення	135
Будівельні матеріали	140
Медичні дослідження	140
Телевізори та монітори	0,1
Ядерні випробування	2,5
Атомна енергетика	0,2

Найбільш надійний захист від шкідливого впливу радіації — це побудова на шляху випромінювання перешкод. Найпростіше захиститися від α- і β-випромінювань. Хоча α- і β-частинки летять із величезною швидкістю, їхній потік легко зупиняє навіть тонка перешкода. Як показали експерименти, достатньо тонкого аркуша паперу (0,1 мм), щоб зупинити α-частинки; β-випромінювання повністю поглинається алюмінієвою пластинкою завтовшки 1 мм. Найбільш небезпечним є γ-випромінювання. Воно проникає крізь доволі товсті шари матеріалів. В окремих випадках для захисту від γ-випромінювання необхідні бетонні стіни завтовшки кілька метрів.★

Підбиваємо підсумки

Для реєстрації дози та визначення потужності дози йонізуючого випромінювання використовують різні типи вимірювальних пристроїв: сцинтиляційні лічильники; бульбашкові камери; камери Вільсона; йонізаційні камери та ін.

На всій поверхні Землі реєструється певний рівень радіації — природний радіаційний фон. Радіаційний фон Землі складається з таких компонентів: космічне випромінювання; випромінювання природних радіонуклідів; випромінювання штучних радіоактивних ізотопів.

Для запобігання шкідливому впливу різних видів радіоактивного випромінювання на організми використовують захисні перешкоди, різні завтовшки й виготовлені з різних матеріалів.

Контрольні запитання

1. Які прилади для вимірювання та реєстрації радіаційного випромінювання ви знаєте? 2. Який принцип покладено в основу роботи лічильників Ґейґера — Мюллера? 3. Що таке радіаційний фон? Із яких компонентів він складається? 4. Який техногенний фактор найбільше впливає на підвищення радіаційного фону? 5. Як захиститися від радіоактивного випромінювання?