

1. (currently amended) A compound of the formula I,

in which

W, X, Y are, independently of one another, O or S;

R9, R10, R11, R12 are, independently of one another, H, F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl, O-(C₂-C₆)-alkynyl, O-SO₂-(C₁-C₄)-alkyl, O-SO₂-phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkenyl, S-(C₂-C₆)-alkynyl, SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-NH₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, (C₀-C₆)-alkylene-COOR13, CON(R14)(R15), (C₀-C₆)-alkylene-N(R14)(R15), NH-COR13, NH-CO-phenyl, NH-SO₂-phenyl or phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15);

R13 is H, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl or (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl;

R1, R2 are, independently of one another, H, (C₁-C₆)-alkyl, where alkyl may be substituted by OH, O-(C₁-C₄)-alkyl or N(R14)(R15), or O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl, O-(C₂-C₆)-alkynyl, CO-(C₁-C₆)-alkyl, CO-(C₂-C₆)-alkenyl, CO-(C₂-C₆)-alkynyl, COOR13 or (C₀-C₆)-alkylene-COOR13;

R3, R4, R5, R6 are, independently of one another, H, OH, CF₃, NO₂, CN, OCF₃, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, O-(C₁-C₁₀)-alkyl, O-(C₂-C₁₀)-alkenyl, O-(C₂-C₁₀)-alkynyl, S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkenyl, S-(C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-

cycloalkyl-(C₁-C₄)-alkyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, Br, SO-phenyl, SO₂-phenyl, where the phenyl ring may be substituted by F, Cl, Br or R13, or OR13, COOR13, CON(R14)(R15), N(R14)(R15) or CO-heteroalkyl, or are O-SO-(C₁-C₆)-alkyl, O-SO₂-(C₁-C₆)-alkyl, O-SO₂-(C₆-C₁₀)-aryl, O-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OR13, R13, CF₃ or OCF₃, or are SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-(C₆-C₁₀)-aryl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or are SO₂-N(R14)(R15), COOR13, CO-heteroalkyl, N(R14)(R15) or heteroalkyl;

R14, R15 are, independently of one another, H, (C₁-C₆)-alkyl, where alkyl may be substituted by N(R13)₂, or are (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, CO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkylene-OCO-(C₁-C₆)-alkyl, CO-phenyl, COO-phenyl, COO-(C₁-C₆)-alkenyl-phenyl, OH, O-(C₁-C₆)-alkyl, O-(C₁-C₆)-alkenyl-phenyl or NH₂;

or the radicals R14 and R15 form with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 2 further heteroatoms from the group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl;

R16, R17 are, independently of one another, H, (C₁-C₆)-alkyl, where alkyl may be substituted by N(R13)₂, or are (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, CO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkylene-OCO-(C₁-C₆)-alkyl, CO-phenyl, COO-phenyl, COO-(C₁-C₆)-alkenyl-phenyl, OH, O-(C₁-C₆)-alkyl, O-(C₁-C₆)-alkenyl-phenyl or NH₂;

heteroalkyl is a 3-7-membered, saturated or up to triunsaturated heterocyclic ring which may comprise up to 4 heteroatoms which correspond to N, O or S, where the heterocyclic ring may be substituted at all sensible positions up to three times by F, Cl, Br, CN, oxo, (C₁-C₄)-alkyl, (C₀-C₄)-alkylene-COOR13, CON(R14)(R15), OR13, N(R14)(R15) or phenyl, where phenyl may be substituted by COOR13;

R7 is H, (C₁-C₆)-alkyl, where alkyl may be substituted by OR13 or N(R14)(R15), or is O-(C₁-C₆)-alkyl, CO-(C₁-C₆)-alkyl or (C₀-C₆)-alkylene-COOR13;

R8 is N(R18)(R19);

R18, R19 are, independently of one another, H, (C₁-C₁₀)-alkyl, (C₂-C₁₀)-alkenyl, (C₂-C₁₀)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₀)-aryl, (C₆-C₁₀)-aryl-(C₁-C₄)-alkyl, (C₆-C₁₀)-aryl-(C₂-C₄)-alkenyl, (C₆-C₁₀)-aryl-(C₂-C₄)-alkynyl, heteroaryl, heteroaryl-(C₁-C₄)-alkyl, heteroaryl-(C₂-C₄)-alkenyl, heteroaryl-(C₂-C₄)-alkynyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, CN, OR13, R13, CF₃, OCF₃, (C₆-C₁₀)-aryl, NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13 or CON(R14)(R15), and where aryl may be substituted more than once by F, Cl, CN, O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, CO-(C₁-C₆)-alkyl, CO-(C₂-C₆)-alkenyl, where alkyl and alkenyl may be substituted more than once by F, Cl, CH₃, OCH₃ or CN, or NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13, CON(R14)(R15), O-phenyl, phenyl or pyridyl; COOR13, CON-(R14)(R15), CO-heteroalkyl, CO-(C₆-C₁₀)-aryl or SO₂-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OH, (C₁-C₆)-alkyl, O-(C₁-C₆)-alkyl, CF₃, OCF₃, COOR13 or CON(R14)(R15);

or the radicals R18 and R19 form with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 2 further heteroatoms from the group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl;

or a pharmaceutically acceptable salt thereof,

provided the radicals R3, R4, R5, R6, R7, X, Y and R8 do not have the following meanings at the same time:

R3, R4 or R5 is CF₃;

R6 is H or CF₃;

R7 is H;

X is O; and

Y is O, S;

R8 is substituted or unsubstituted NH-phenyl wherein either the nitrogen atom or the phenyl ring is substituted or unsubstituted.

2. (previously presented) A compound of the formula I as claimed in claim 1, wherein said compound has the structure of compound Ia:

Ia

wherein

R9 is F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkynyl, O-(C₂-C₆)-alkenyl, O-(C₂-C₆)-alkynyl, O-SO₂-(C₁-C₄)-alkyl, O-SO₂-phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkenyl, S-(C₂-C₆)-alkynyl, SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-NH₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, -COOR13, (C₁-C₆)-alkylene-COOR13, CON(R14)(R15), -N(R14)(R15), (C₁-C₆)-alkylene-N(R14)(R15), NH-COR13, NH-CO-phenyl, NH-SO₂-phenyl or phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15);

R10, R11, R12 independently of one another are H, F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl, O-(C₂-C₆)-alkynyl, O-SO₂-(C₁-C₄)-alkyl, O-SO₂-phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkenyl, S-(C₂-C₆)-alkynyl, SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-NH₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, COOR13, (C₁-C₆)-alkylene-COOR13, CON(R14)(R15), N(R14)(R15), (C₁-C₆)-alkylene-N(R14)(R15), NH-COR13, NH-CO-phenyl, NH-SO₂-phenyl or phenyl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15);

- R13 is H, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl or (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl;
- R3, R4, R5, are independently of one another H, OH, CF₃, NO₂, CN, OCF₃, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, O-(C₁-C₁₀)-alkyl, O-(C₂-C₁₀)-alkenyl, O-(C₂-C₁₀)-alkynyl, S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkenyl, S-(C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, Br, SO-phenyl, SO₂-phenyl, where the phenyl ring may be substituted by F, Cl, Br or R13, or OR13, COOR13, CON(R14)(R15), N(R14)(R15) or CO-heteroalkyl, or O-SO-(C₁-C₆)-alkyl, O-SO₂-(C₁-C₆)-alkyl, O-SO₂-(C₆-C₁₀)-aryl, O-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OR13, R13, CF₃ or OCF₃, or SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-(C₆-C₁₀)-aryl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or SO₂-N(R14)(R15), COOR13, CO-heteroalkyl, N(R14)(R15) or heteroalkyl;
- R6 is OH, CF₃, NO₂, CN, OCF₃, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, O-(C₁-C₁₀)-alkyl, O-(C₂-C₁₀)-alkenyl, O-(C₂-C₁₀)-alkynyl, S-(C₁-C₆)-alkyl, S-(C₂-C₆)-alkenyl, S-(C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, Br, SO-phenyl, SO₂-phenyl, where the phenyl ring may be substituted by F, Cl, Br or R13, or OR13, COOR13, CON(R14)(R15), N(R14)(R15) or CO-heteroalkyl, or O-SO-(C₁-C₆)-alkyl, O-SO₂-(C₁-C₆)-alkyl, O-SO₂-(C₆-C₁₀)-aryl, O-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OR13, R13, CF₃ or OCF₃, or SO-(C₁-C₆)-alkyl, SO₂-(C₁-C₆)-alkyl, SO₂-(C₆-C₁₀)-aryl, where the phenyl ring may be substituted up to twice by F, Cl, Br, CN, OR13, R13, CF₃, OCF₃, COOR13 or CON(R14)(R15), or SO₂-N(R14)(R15), COOR13, CO-heteroalkyl, N(R14)(R15) or heteroalkyl;
- R14, R15 independently of one another are H, (C₁-C₆)-alkyl, where alkyl may be substituted by N(R13)₂, or (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl, CO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkyl, COO-(C₁-C₆)-alkylene-O-CO-(C₁-C₆)-alkyl, CO-phenyl, COO-phenyl, COO-(C₁-C₆)-alkenyl-phenyl, OH, O-(C₁-C₆)-alkyl, O-(C₁-C₆)-alkenyl-phenyl or NH₂;

or the radicals R14 and R15 form with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 2 further heteroatoms from the

group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl;

R16, R17	independently of one another are H, (C ₁ -C ₆)-alkyl, where alkyl may be substituted by N(R13) ₂ , or (C ₂ -C ₆)-alkenyl, (C ₂ -C ₆)-alkynyl, (C ₃ -C ₇)-cycloalkyl, (C ₃ -C ₇)-cycloalkyl-(C ₁ -C ₄)-alkyl, CO-(C ₁ -C ₆)-alkyl, COO-(C ₁ -C ₆)-alkyl, COO-(C ₁ -C ₆)-alkylene-OCO-(C ₁ -C ₆)-alkyl, CO-phenyl, COO-phenyl, COO-(C ₁ -C ₆)-alkenyl-phenyl, OH, O-(C ₁ -C ₆)-alkyl, O-(C ₁ -C ₆)-alkenyl-phenyl or NH ₂ ;
heteroalkyl	is a 3-7-membered, saturated or up to triunsaturated heterocyclic ring which may comprise up to 4 heteroatoms selected from N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, CN, oxo, (C ₁ -C ₄)-alkyl, COOR13, (C ₁ -C ₄)-alkylene-COOR13, CON(R14)(R15), OR13 or N(R14)(R15) or phenyl, where phenyl may be substituted by COOR13;
R8	is N(R18)(R19);
R18, R19	independently of one another are H, (C ₁ -C ₁₀)-alkyl, (C ₂ -C ₁₀)-alkenyl, (C ₂ -C ₁₀)-alkynyl, (C ₃ -C ₇)-cycloalkyl, (C ₃ -C ₇)-cycloalkyl-(C ₁ -C ₆)-alkyl, (C ₆ -C ₁₀)-aryl, (C ₆ -C ₁₀)-aryl-(C ₁ -C ₄)-alkyl, (C ₆ -C ₁₀)-aryl-(C ₂ -C ₄)-alkenyl, (C ₆ -C ₁₀)-aryl-(C ₂ -C ₄)-alkynyl, heteroaryl, heteroaryl-(C ₁ -C ₄)-alkyl, heteroaryl-(C ₂ -C ₄)-alkenyl, heteroaryl-(C ₂ -C ₄)-alkynyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, CN, OR13, R13, CF ₃ , OCF ₃ , (C ₆ -C ₁₀)-aryl, NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13 or CON(R14)(R15), and where aryl may be substituted more than once by F, Cl, CN, O-(C ₁ -C ₆)-alkyl, O-(C ₂ -C ₆)-alkenyl, (C ₁ -C ₆)-alkyl, (C ₂ -C ₆)-alkenyl, CO-(C ₁ -C ₆)-alkyl, CO-(C ₂ -C ₆)-alkenyl, where alkyl and alkenyl may be substituted more than once by F, Cl, CH ₃ , OCH ₃ or CN, or NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13, CON(R14)(R15), O-phenyl, phenyl or pyridyl; COOR13, CON-(R14)(R15), CO-heteroalkyl, CO-(C ₆ -C ₁₀)-aryl or SO ₂ -(C ₆ -C ₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OH, (C ₁ -C ₆)-alkyl, O-(C ₁ -C ₆)-alkyl, CF ₃ , OCF ₃ , COOR13 or CON(R14)(R15);

or the radicals R18 and R19 form together with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 3 heteroatoms

selected from the group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl;

or a pharmaceutically acceptable salt thereof,

provided the radical R8 is not substituted or unsubstituted NH-phenyl wherein either the nitrogen atom or the phenyl ring is substituted or unsubstituted.

3. (previously presented) A compound of the formula Ia as claimed in claim 2, wherein

R9, R10, R11 independently of one another are F or Cl;

R12 is H;

R13 is H, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₇)-cycloalkyl or (C₃-C₇)-cycloalkyl-(C₁-C₄)-alkyl;

R14, R15 independently of one another are H or (C₁-C₆)-alkyl, where alkyl may be substituted by N(R13)₂;

heteroalkyl is a 3-7-membered, saturated or up to triunsaturated heterocyclic ring which may comprise up to 4 heteroatoms selected from N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, CN, oxo, (C₁-C₄)-alkyl, COOR13, (C₁-C₄)-alkylene-COOR13, CON(R14)(R15), OR13 or N(R14)(R15) or phenyl, where phenyl may be substituted by COOR13;

R8 is N(R18)(R19);

R18, R19 independently of one another are H, (C₁-C₁₀)-alkyl, (C₂-C₁₀)-alkenyl, (C₂-C₁₀)-alkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₆)-alkyl, (C₆-C₁₀)-aryl, (C₆-C₁₀)-aryl-(C₁-C₄)-alkyl, (C₆-C₁₀)-aryl-(C₂-C₄)-alkenyl, (C₆-C₁₀)-aryl-(C₂-C₄)-alkynyl, heteroaryl, heteroaryl-(C₁-C₄)-alkyl, heteroaryl-(C₂-C₄)-alkenyl, heteroaryl-(C₂-C₄)-alkynyl, where alkyl, alkenyl, alkynyl and cycloalkyl may be substituted more than once by F, Cl, CN, OR13, R13, CF₃, OCF₃, (C₆-C₁₀)-aryl, NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13 or CON(R14)(R15), and where aryl may be substituted more than once by F, Cl, CN, O-(C₁-C₆)-alkyl, O-(C₂-C₆)-alkenyl,

(C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, CO-(C₁-C₆)-alkyl, CO-(C₂-C₆)-alkenyl, where alkyl and alkenyl may be substituted more than once by F, Cl, CH₃, OCH₃ or CN, or NH-C(=NR14)-N(R14)(R15), N(R14)(R15), C(=NR14)-N(R14)(R15), COOR13, CON(R14)(R15), O-phenyl, phenyl or pyridyl; COOR13, CON-(R14)(R15), CO-heteroalkyl, CO-(C₆-C₁₀)-aryl or SO₂-(C₆-C₁₀)-aryl, where aryl may be substituted up to twice by F, Cl, CN, OH, (C₁-C₆)-alkyl, O-(C₁-C₆)-alkyl, CF₃, OCF₃, COOR13 or CON(R14)(R15);

or the radicals R18 and R19 form together with the nitrogen atom to which they are bonded a 3-7-membered, saturated heterocyclic ring which may comprise up to 3 heteroatoms selected from the group of N, O or S, where the heterocyclic ring may be substituted up to three times by F, Cl, Br, OH, oxo, N(R16)(R17) or (C₁-C₄)-alkyl.

4. (previously presented) A pharmaceutical composition comprising one or more of the compounds as claimed in claim 1 and an acceptable carrier.

5. (withdrawn) A pharmaceutical composition comprising one or more of the compounds as claimed in claim 1, an acceptable carrier, and at least one other active ingredient.

6. (withdrawn) A pharmaceutical composition as claimed in claim 5, wherein the other active ingredient comprises one or more antidiabetics, hypoglycemic active ingredients, HMG-CoA reductase inhibitors, cholesterol absorption inhibitors, PPAR gamma agonists, PPAR alpha agonists, PPAR alpha/gamma agonists, fibrates, MTP inhibitors, bile acid absorption inhibitors, CETP inhibitors, polymeric bile acid adsorbents, LDL receptor inducers, ACAT inhibitors, antioxidants, lipoprotein lipase inhibitors, ATP-citrate lyase inhibitors, squalene synthetase inhibitors, lipoprotein(a) antagonists, lipase inhibitors, insulins, sulfonylureas, biguanides, meglitinides, thiazolidinediones, α -glucosidase inhibitors, active ingredients which act on the ATP-dependent potassium channel of the beta cells, CART agonists, NPY agonists, MC4 agonists, orexin agonists, H3 agonists, TNF agonists, CRF agonists, CRF BP antagonists, urocortin agonists, β 3 agonists, MSH (melanocyte-stimulating hormone) agonists, CCK agonists, serotonin reuptake inhibitors, mixed serotonergic and noradrenergic compounds, 5HT agonists, bombesin agonists, galanin antagonists, growth hormones, growth hormone-releasing compounds, TRH agonists, decoupling protein 2 or 3 modulators, leptin agonists, DA agonists (bromocriptine, Doprexin), lipase/amylase inhibitors, PPAR modulators, RXR modulators or TR- β agonists or amphetamines.

7. (original) A process for producing a pharmaceutical composition comprising mixing one or more of the compounds as claimed in claim 1 with an active ingredient and a pharmaceutically suitable carrier and converting this mixture into a suitable for administration.
8. (withdrawn) A method for reducing blood glucose, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.
9. (withdrawn) A method for treating type 2 diabetes, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.
10. (withdrawn) A method for treating disturbances of lipid and carbohydrate metabolism, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.
11. (withdrawn) A method for treatin arteriosclerotic manifestations, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.
12. (withdrawn) A method for treating insulin resistance, comprising administering to a subject in need thereof, one or more compounds claimed in claim 1.