Prof. Dr. Leif Kobbelt

Stefan Dollase, Ira Fesefeldt, Alexandra Heuschling, Gregor Kobsik

Lösung - Übung 11

Aufgabe 4 (Ford-Fulkerson Methode):

UNIVERSITY Computergraphik und Multimedia

Lehrstuhl für Informatik 8

8 + 2 = 10 Punkte

Betrachten Sie das folgende Flussnetzwerk mit Quelle q und Senke s:

- a) Berechnen Sie den maximalen Fluss in diesem Netzwerk mithilfe der Ford-Fulkerson Methode. Geben Sie dazu jedes Restnetzwerk sowie nach jeder Flussvergrößerung den aktuellen Zustand des Flussnetzwerks an. Die vorgegebene Anzahl an Lösungsschritten muss nicht mit der benötigten Anzahl solcher Schritte übereinstimmen.
- b) Geben Sie außerdem den Wert des maximalen Flusses an.

Schritt 1:

A	Restnetzwerk:	C
q	D	S
E	F	G

Schritt 2:

Nächstes Flussnetzwerk mit aktuellem Fluss:

Schritt 3:

Restnetzwerk:

(A)

B

(c)

(q

(D)

S

 $\left(\mathsf{E} \right)$

F

G

Schritt 4:

Nächstes Flussnetzwerk mit aktuellem Fluss:

Schritt 5:

Restnetzwerk:

В

C

Schritt 6:

Nächstes Flussnetzwerk mit aktuellem Fluss:

Schritt 7:

Restnetzwerk:

В

С

Schritt 8:

Nächstes Flussnetzwerk mit aktuellem Fluss:

Schritt 9:

Restnetzwerk:

В

C

Schritt 10:

Nächstes Flussnetzwerk mit aktuellem Fluss:

Schritt 11:

Restnetzwerk:

В

C

Schritt 12:

Nächstes Flussnetzwerk mit aktuellem Fluss:

Schritt 13:

Restnetzwerk:

Ε

Der maximale Fluss hat den Wert:

Lösung

a)

Schritt 0:

Schritt 1:

Schritt 3:

Schritt 5:

Schritt 7:

Schritt 8:

Nächstes Flussnetzwerk mit aktuellem Fluss:

Schritt 9:

Schritt 10:

Nächstes Flussnetzwerk mit aktuellem Fluss:

Schritt 11:

Schritt 12:

Schritt 13:

Restnetzwerk:

b) Der maximale Fluss hat den Wert: 13

Lehrstuhl für Informatik 8

Computergraphik und Multimedia

8 + 2 = 10 Punkte

Gegeben ist folgendes Flussnetzwerk G:

Aufgabe 5 (Algorithmus von Dinic):

- **a)** Berechnen Sie den Fluss von *G* mithilfe von Dinics Algorithmus. Geben Sie dafür stets in jeder Iteration erst das Niveaunetzwerk, dann den Sperrfluss und anschließend den aktualisierten Fluss im Flussnetzwerk an. Sie können dafür unten stehende Vorlagen nutzen.
- b) Was ist der Wert des maximalen Flusses des Flussnetzwerkes G?

Niveaunetzwerk mit Sperrfluss Niveaunetzwerk mit Sperrfluss Niveaunetzwerk mit Sperrfluss Niveaunetzwerk mit Sperrfluss

Fluss im Flussnetzwerk

Fluss im Flussnetzwerk

Fluss im Flussnetzwerk

Fluss im Flussnetzwerk

Aufgabe 6 (Programmierung in Python - Graphalgorithmen):

5 + 5 + 6 + 4 = 20 Punkte

Bearbeiten Sie die Python Programmieraufgaben. In dieser praktischen Aufgabe werden Sie sich mit Graphalgorithmen auseindersetzen. Diese Aufgabe dient dazu einige Konzepte der Vorlesung zu wiederholen und zu vertiefen. Zum Bearbeiten der Programmieraufgabe können Sie einfach den Anweisungen des Notebooks blatt11-python.ipynb folgen. Das Notebook steht in der .zip-Datei zum Übungsblatt im Lernraum zur Vergügung.

Ihre Implementierung soll immer nach dem # YOUR CODE HERE Statement kommen. Ändern Sie keine weiteren

Laden Sie spätestens bis zur Deadline dieses Übungsblatts auch Ihre Lösung der Programmieraufgabe im Lernraum hoch. Die Lösung des Übungsblatts und die Lösung der Programmieraufgabe muss im Lernraum an derselben Stelle hochgeladen werden. Die Lösung des Übungsblatts muss dazu als .pdf-Datei hochgeladen werden. Die Lösung der Programmieraufgabe muss als .ipynb-Datei hochgeladen werden.

Übersicht der zu bearbeitenden Aufgaben:

- a) Implementierung von Edmonds-Karp
 - breadth first search()
 - edmonds karp impl()
- b) Labyrinthe: Generieren und Lösen
 - create_graph()
 - extract assignment()

Hinweise:

Uns ist ein kleiner Fehler in der Beschreibung der Aufgabe a) create graph() unterlaufen. Die Beispiele, sowie Unittests sind korrekt und nicht von diesem Fehler betrofen. Aus Kompabilitätsgrunden möchten wir kein neues Notebook hochladen und die Beschreibung an dieser Stelle korrigieren:

Folgende Schritte sind zu beachten:

- Einfügen einer Kante von der Quelle 's' zu jedem Studenten. Die Kapazität dieser Kanten ist 1.
- Einfügen einer Kante von jedem Tutorium zu der Senke 't'. Die Kapazität dieser Kanten ist c.
- Verbinden der Studenten mit den ausgewählten Tutorien. Die Kapazität dieser Kanten ist 1.

Lösung

Die Lösung der Programmieraufgaben finden Sie im Lernraum. Die Datei trägt den Namen blatt11-pythonsolution.ipynb.