

第7章 文件与外排序

2012-1-4 Slide 7-2

学习目标

- ◆ 掌握文件的相关概念;文件的各种组织方法及特点;查询、 更新操作及其算法。
- ◆ 掌握外部排序的一般过程,熟练掌握适合外存特点的归并排序的相关技术。

本章主要内容

- ▶ 7.1 文件及文件操作
- ▶ 7.2 文件组织
- ▶ 7.3 磁盘文件的归并排序
- ▶ 7.4 磁带文件的归并排序
- ▶ 本章小结

7.1 文件及文件操作

- → 相关概念
 - ■文件是用于表示驻留在外存储器中的数据,是同性质记录 的有序集合。

■关键字 主关键字

次关键字

记录	学号	姓名	性别	年龄	数学	语文	物理	其它
Α	003	张 三	男	18	90	80	80	
В	800	李 四	女	17	90	90	80	
С	009	王 五	女	19	89	70	93	
D	010	陈中	男	19	66	77	68	
E	011	孙 二	男	18	91	88	78	
F	012	林 森	女	20	60	59	67	

7.1 文件及文件操作

- ◆ 文件的逻辑结构和物理结构
 - ■逻辑结构: 呈现给用户, 描述记录间的逻辑关系;
 - ■物理结构:存储结构,记录在存储器中的组织,连续,链 式等
- → 文件操作
 - ■操作: INSERT DELETE MODIFY
 - RETRIEVE
 - ■检索方式: 实时 or 成批
 - ■更新方式: 实时 or 成批
 - ■查询方式:
 - ●Q1:简单查询 Q2:范围查询
 - ●Q3:函数查询 Q4:布尔查询

7.2 文件的组织

- ▶ 文件的组织方式
 - ■顺序方式、索引方式、散列方式、链接方式
- → 顺序方式:
 - ■文件的各个记录按逻辑顺序存放在外存的连续区内
 - ■记录的顺序往往是按主关键字的大小排列的
 - ■适合于Q1型查询,且检索与更新是成批进行的
 - ■适合磁带或磁盘
 - ■磁盘文件:
 - •由柱面和磁道组成

7.2 文件的组织

▶ 索引方式:

■"索引"指的是记录的关键字值与记录驻留在外存的地址 组成数对的集合。每个数对称为一个索引项。

■索引文件在存储器上分两区:索引区和数据区

■查找记录:分两步进行

■删除记录: 只删除索引

■插入记录: 先存数据, 然后登记索引并重新排序

■建立文件:按数据存入先后顺序建立索引,最后索引排序

■示例:

人事档案示意文件

序	13 25	记录	记录	交位置
号	姓名	内容	柱面号	盘面号
1	An Cai	•••	1	1

柱面索引

柱面的最大关键字	柱面号
Cai Long	1

盘面索引

盘面的最大关键字	盘面号
Pi Hong	1

7.2 文件的组织

→ 散列方式:

■用散列(HASH)法组织的文件。特点是用一个散列函数 H(key),将关键字key映射为记录的地址,即 记录地址 = HASH(key)

■基本步骤:

- •确定记录数
- ●存储单位(桶)记录数
- 确定桶数
- ●设计HASH(key)函数

- ▶ 链接方式: 多重索引, 在记录中保存链接
- ▶ 倒排方式: 在索引中保存链接

▶ 外部排序的概念

- ■是指在排序的过程中,数据的主要部分存放在外存储器上 ,借助内存储器(作为工作单元),来调整外存储器上数据 的位置。
- ▶ 外部归并排序重点研究的问题
 - ■如何进行多路归并以减少文件的归并遍数;
 - ■如何巧妙地运用内存的缓冲区使I/O和CPU尽可能并行工作
 - ■根据外存的特点选择较好的产生初始归并段的方法。

→ 分类:

- ■磁盘和磁带归并排序
- ■磁盘是随机存储设备;磁带是顺序存储设备

- ▶ 外部排序归并方法的一般过程: 分两个阶段
 - ■第一阶段:
 - ●首先,将文件中的数据分段输入到内存,在内存中采用内部排序方法对其进行排序(排序完的文件段,称为归并段run),
 - ●然后将有序段写回外存。
 - 整个文件经过在内存逐段排序又逐段写回外存,这样 在外存中形成多个初始的归并段。

■第二阶段:

对这些初始归并段采用某种归并排序方法,进行多遍归并,最后形成整个文件的单一归并段(整个文件有序)。

- → 示例: 设有一个包含4500个记录的输入文件。现用一台其内存至多可容纳750个记录的计算机对该文件进行排序。输入文件放在磁盘上,磁盘每个页块可容纳250个记录,这样全部记录可存储在4500/250=18个页块中。输出文件也放在磁盘上,用以存放归并结果。
- ◆ 由于内存中可用于排序的存储区域能容纳750 个记录,因此内存中恰好能存3个页块的记录。
- ◆ 在外排序一开始,把18块记录,每3块一组,读入内存。利用某种内排序方法进行内排序,形成初始归并段,再写回外存。总共可得到6个初始归并段。然后一趟一趟进行归并排序。

- → 若把内存区域等份地分为3个缓冲区。其中的两个为输入缓冲区,一个为输出缓冲区,可以在内存中利用简单2路归并函数 mergesort()实现2路归并。
- ◆ 首先,从参加归并排序的两个输入归并段 R1 和 R2 中分别读入一块,放在输入缓冲区1 和输入缓冲区2 中。然后在内存中进行2路归并,归并结果顺序存放到输出缓冲区中。
- ▶ 当输出缓冲区装满250个记录时,就输出到磁盘。
- → 如果归并期间某个输入缓冲区空了,就立即向该缓冲区继续 装入所对应归并段的一块记录信息,使之于另一个输入缓冲 区的剩余记录归并,直到R1和R2归并为R12、R3和R4归并 为R34、R5和R6归并为R56为止。
- → 再把R12和R34归并为R1234,最后把R1234和R56归并为 R123456(如下页图示)

初始 归并段

第一趟 归并结果

第二趟 归并结果

第三趟 归并结果

→ 归并的趟数

m个归并段的归并过程

- m个初始段进行2路归并,需要[log₂m]趟归并;
- 一般地,m个初始段,采用K路归并,需要「log_Km」趟 归并。
- 显然,K越大,归并遍数越少,可提高归并的效率。

- ▶ 多路归并——减少归并遍数
 - 在 K路归并时,从 K 个关键字中选择最小记录时,要比较 K-1 次。若记录总数为 n , 每遍要比较 n*(K-1)次, 「log_Km 」遍要比较的次数为:

$$n*(K-1)\lceil \log_K m \rceil = n*(K-1)\lceil \log_2 m / \log_2 K \rceil$$

- 可以看出,随着K增大,(K-1)/log₂K 也增大,当归并路数多时,CPU 处理的时间也随之增多。当K值增大到一定程度时,可能使CPU处理时间大于因K值增大而减少归并遍数所节省的时间。
- 为此可以
 - (1) 选择好的排序方法,以减少排序中比较次数;
 - (2)选择好的初始归并段形成方法,增大归并段长度 提高排序的效率。

- → K路平衡归并与败者树----过程&分析:
 - 第一次建立选择树的比较所花时间为:

$$O(K-1) = O(K)$$

- 而后每次重新建造选择树所需时间为 : O(log₂K)
- n 个记录处理时间为初始建立选择树的时间加上 n-1 次重建选择树的时间

$$O((n-1) \cdot \log_2 K) + O(K) = O(n \cdot \log_2 K)$$

■ 这就是K路归并一遍所需的CPU处理 时间。归并遍数为 log_km,总时间为

 $O(n \cdot log_2 K \cdot log_K m) = O(n \cdot log_2 m)$

(K 路归并 CPU 时间与 K 无关---选择树太好了)

- ▶ 并行操作的缓冲区处理----使I/0和 CPU 处理尽可能重叠
 - 对k个归并段进行 k 路归并至少需要k个输入和1个输出缓冲区。要使输入、输出和归并同时进行, k+1个缓冲区是不够的, 需要2(k+1)个缓冲区实现并行操作。

▶ 并行操作的缓冲区处理----使I/0和 CPU 处理尽可能重叠

- ▶ 初始归并段的生成
 - 任何内部排序算法都可作为生成初始归并段的算法
 - 初始归并段的长度≥缓冲区的长度?!
- ▶ 选择树法
- ◆ 假设初始待排序文件为输入文件FI,初始归并段文件为输出文件FO,内存缓冲区为W,可容纳P个记录。FO,W初始为空,则置换-选择如下:
- → (1) 从FI输入P个记录到缓冲区W;
- ◆ (2)从W中选择出关键字最小的记录MIN;
- → (3)将MIN记录输出到FO中去;
- → (4)若FI不空,则从FI输入下一个记录到W;
- → (5)从W中所有关键字比MIN关键字大的记录中选出最小关键字记录,作 为新的MIN;
- ◆ (6)重复(3)~(5),直到在W中选不出新的MIN为止。得到一个初始归并段, 输出归并段结束标志到FO中
- ◆ (7)重复(2)~(6), 直到W为空, 由此得到全部初始归并段。

▶ 示例:缓冲区的长度P=4,输入序列为:

15 19 04 83 12 27 11 25 16 34 26 07 10 90 06 ...

注意:如果新输入记录的关键字小于最后输出记录的关键字

则新输入记录不能成为当前归并短的一部分;他要等待生

成下一个归并段时供选择。

步	1	2	3	4	5	6	7	8	9	10	11	12	13	•••
缓	15	15	15	(11)	(11)	(11)	(11)	(11)	(11)	11	11	(06)	•••	•••
冲区	19	19	19	19	25	(16)	(16)	(16)	(16)	16	16	16	•••	•••
内	04	12	27	27	27	27	34	(26)	(26)	26	26	26	•••	•••
容	83	83	83	83	83	83	83	83	(07)	10	90	90	•••	•••
输出结			0	4 12	15 1	.9 25	27 3	4 83	07 10) 11	16	•••		
果	$\begin{bmatrix} \pi \\ \mathbb{R} \end{bmatrix}$ \mathbf{R}_1													

▶ 采用选择树法生成初始归并段的平均长度是缓冲区长度的两

7.4 磁带文件的归并排序

- → 与磁盘不同,磁带是顺序存储设备,读取信息块的时间与信息块的位置有关。研究磁带排序,需要了解信息块的分布。
- → K路平衡归并排序
 - 磁带机数量: 2K

输入:	T_1 ,	T ₂ ,	\dots, T_k	输出↑
输出:	T_{k+1}	$\mathbf{T}_{\mathbf{k}\perp'}$	T_{2k}	输入

磁带机	T ₁	T ₂		T _k
ı	R ₁	R ₂	•••	R_k
归 并	R_{k+1}	R _{k+2}		R _{2k}
円 段				
· · · · · · · · · · · · · · · · · · ·	R _{mk+1}	•••		

$\begin{array}{l} \textbf{T}_1 : \textbf{R}_1(1000), \textbf{R}_3(1000), \textbf{R}_5(1000) \\ \textbf{T}_2 : \textbf{R}_2(1000), \textbf{R}_4(1000), \textbf{R}_6(1000) \\ \textbf{T}_3 : \varnothing \\ \textbf{T}_4 : \varnothing \end{array}$	
T ₁ : Ø T ₂ : Ø T ₃ : R ₁ (2000),R ₃ (2000) T ₄ : R ₂ (2000)	
T_1 : $R_1(4000)$ T_2 : $R_2(2000)$ T_3 : \emptyset T_4 : \emptyset	T ₁ : Ø T ₂ : Ø T ₃ : R ₁ (6000) T ₄ : Ø

7.4 磁带文件的归并排序

→ 多阶段归并排序

■ K+1台磁带机,实现 k 路归并

$$F_n^{(k)} = 0$$
 $F_n^{(k)} = 1$
 $F_n^{(k)} = F_{n-1}^{(k)} + F_{n-2}^{(k)} + \cdots + F_{n-k}^{(k)}$

$$t_{1}^{j} = F_{j+k-2}^{(k)}$$

$$t_{2}^{j} = F_{j+k-3}^{(k)} + F_{j+k-2}^{(k)}$$
...

$$t_{k-1}^{j} = F_{j}^{(k)} + F_{j+1}^{(k)} + \dots + F_{j+k-2}^{(k)}$$

$$i = (k) - \pi(k) + \pi(k)$$

$$t_k^j = F_{j-1}^{(k)} + F_j^{(k)} + \dots + F_{j+k-2}^{(k)}$$

$$F_{G(j+k-2)}^{(k)} = t_1^{j} + t_2^{j} + \dots + t_{j+k-2}^{(k)}$$

i 遍后	$\mathbf{t_1}$	$\mathbf{t_2}$	t_3
开始	13(1L)	21(L)	空
1	空	8(1L)	13(2L)
2	8(3L)	空	5(2L)
3	3(3L)	5(5L)	空
4	空	2(5L)	3(8L)
5	2(13L)	空	1(8L)
6	1(13L)	1(21L)	空
7	空	空	1(34L)

步	t ₁	T ₂	t ₃	总段数
n	0	0	1	1
n-1	1	1	0	2
n-2	2	0	1	3
n-3	0	2	3	5
n-4	3	5	0	8
n-5	8	0	5	13
n-6	0	8	13	2
n-7	13	21	0	34

本章小结

- ▶ 基本概念
 - ■文件、属性和域、关键字、主关键字、次关键字
- ▶ 文件的逻辑结构
- ▶ 文件的物理结构
- ▶ 文件的操作
 - ■检索方式和更新方式
- ▶ 文件的组织方式包括那些?各有什么特点?适合什么场合?

本章小结

- ▶ 内部排序过程中不涉及数据的内、外存交换,待排序的记录 全部存放在内存中;
- → 若待排序的文件很大,就无法将整个文件的所有记录同时调入内存进行排序;
- → 外部排序的实现,主要是依靠数据的内、外存交换和"内部归并"。
- ◆ 外部排序基本上包括相对独立的两个阶段:初始归并段的形成;多路归并。
- ▶ 外部排序主要研究的技术问题是:
 - ■如何进行多路归并以减少文件的归并遍数;
 - ■如何运用内存的缓冲区使I/O和CPU尽可能并行工作;
 - ■根据外存的特点选择较好的产生初始归并段的方法。

