Shortest path algorithms

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2024/25

Weighted graphs

- A weighted graph is a graph, where each edge is associated with a weight
- Weights can be any numeric value, but some algorithms require
 - Non-negative weights
 - 'Euclidean' weights: weights that are proper distance metrics
- Weights often indicate distance or cost, but they can also represent positive relations (e.g., affinity between nodes)
- Weight of a path is the sum of wights of the edges on the path

Shortest path

- Finding shortest paths on a weighted (directed) graph is one of the most common problems in many fields
- Applications include
 - Navigation
 - Routing in computer networks
 - Optimal construction of electronic circuits, VLSI chips
 - Robotics, transportation, finance, ...

Shortest paths on unweighted graphs BFS

 A BFS search tree gives the shortest path from the source node to all other nodes

Shortest paths on unweighted graphs BFS

- A BFS search tree gives the shortest path from the source node to all other nodes
- The BFS is not enough on weighted graphs

Shortest paths on unweighted graphs BFS

- A BFS search tree gives the shortest path from the source node to all other nodes
- The BFS is not enough on weighted graphs
- Shortest-cost path may be longer in terms of nodes visited

Shortest paths on weighted graphs

variations of the problem

- Different versions of the problem:
 - Single source shortest path: find shortest path from a source node to all others
 - Single target (sometimes called sink) shortest path: find shortest path from all nodes to a target node
 - Source to target: from a particular source node to a particular target node
 - All pairs: shortest paths between all pairs of nodes
- Restrictions on weights:
 - Euclidean weights
 - Non-negative weights
 - Arbitrary weights

Dijkstra's algorithm intro

- Dijkstra's algorithm is a 'weighted' version of the BFS
- The algorithm finds shortest path from a single source node to all connected nodes
- Weights have to be non-negative
- It is a greedy algorithm that grows a 'cloud' of nodes for which we know the shortest paths from the source node
- The new nodes are included in the cloud in order of their shortest paths from the source node

the algorithm

- We maintain a list D of minimum know distances to each node
- At each step
 - we take closest node out of Q
 - update the distances of all nodes
- Can be more efficient if Q is implemented using a (adaptable) priority queue

```
1: D[s] \leftarrow 0
```

2: **for** each node $v \neq s$ **do**

3:
$$D[v] \leftarrow \infty$$

4: $Q \leftarrow nodes$

5: **while** Q is not empty **do**

6: Remove node u with min D[u] from Q

7: **for** each edge (u, v) **do**

8: **if** D[u] + w(u, v) < D[v] **then**

9: $D[v] \leftarrow D[u] + w(u, v)$

10: D contains the shortest distances from s

Dijkstra's algorithm and negative weights

complexity

- In general, complexity is $O(n \times t_{find min} + m \times t_{update kev})$
- With list-based implementation of O: $O(m + n^2) = O(n^2)$
- With a heap: $O((m+n)\log n)$

```
1: D[s] \leftarrow 0
6:
8:
9:
```

```
2: for each node v \neq s do
      D[v] \leftarrow \infty
4: Q \leftarrow nodes
5: while Q is not empty do
      Remove node u with min D[u] from O
      for each edge (u, v) do
          if D[u] + w(u, v) < D[v] then
```

D contains the shortest distances from s

 $D[v] \leftarrow D[u] + w(u, v)$

Shortest-path tree

- The way we introduced, the Dijkstra's algorithm does not give the shortest-path tree
- Similar to traversal algorithms, we can extract it from distances D
- Running time is $O(n^2)$ (or O(n + m))

```
\begin{array}{ll} \text{1: } T \leftarrow \varnothing \\ \text{2: } \textbf{for } u \in D - \{s\} \, \textbf{do} \\ \text{3: } & \textbf{for } \text{each } \text{edge } (\nu, u) \, \textbf{do} \\ \text{4: } & \textbf{if } D[u] == D[\nu] + w(\nu, u) \, \textbf{then} \\ \text{5: } & T \leftarrow T \cup (\nu, u) \end{array}
```

- The shortest path can be found more efficiently, if the graph is a DAG
- The algorithm is similar to Dijkstra's, but simpler and faster
- Only difference is we follow a topological order
- The algorithm will also work with negative edge weights

demonstration 6 ∞ 10 ∞

demonstration 6 10 ∞

demonstration 6 10 ∞

demonstration 6 4 5 11 7 2 3 4 5 6 6

10

Shortest-paths on directed graphs

with negative wights – without negative cycles

- Single-source shortest path problem can also be solved efficiently for any directed graph
 - including cycles (no DAG requirement)
 - including negative weights
 - excluding negative cycles
- The algorithms is known as Bellman-Ford algorithm
 - Similar to earlier algorithms, initialize D[s]=0, $D[\nu]=\infty$ for $\nu\neq s$
 - Make n passes over the edges
 - Update distances for each edge (relax edges)
 - Stop if there were no changes at the end of a pass

demonstration

	0
1	$\rightarrow 2$
1	$\rightarrow 4$
2	$\rightarrow 4$
2	\rightarrow 5
3	\rightarrow 2
3	$\rightarrow 4$
5	\rightarrow 3
5	$\rightarrow 4$

demonstration

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5	\rightarrow	$\overline{4}$

demonstration

	0
1	\rightarrow 2
1	$\rightarrow 4$
2	$\rightarrow 4$
2	\rightarrow 5
3	\rightarrow 2
3	$\rightarrow 4$
5	\rightarrow 3
5	\1

demonstration

cuzes		
1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5	\rightarrow	4

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3

demonstration

edges $1 \rightarrow 2$ $1 \rightarrow 4$ $2 \rightarrow 4$

demonstration

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5		1

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5

$$3 \rightarrow 2$$

$$3 \rightarrow$$

$$5 \rightarrow 3$$

$$\overline{5 o 4}$$

demonstration

	0	
1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5	$\overline{}$	4

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	1

demonstration

demonstration

	_	
1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3
5	$\overline{}$	4

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	$\overline{}$	3

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5	\rightarrow	3

demonstration

1	\rightarrow	2
1	\rightarrow	4
2	\rightarrow	4
2	\rightarrow	5
3	\rightarrow	2
3	\rightarrow	4
5		2

Summary

- Shortest path algorithms are one of the most applied graph algorithms
- We revised three algorithms
 - Dijkstra's: non-negative weights, general algorithm
 - For DAGs: unrestricted weights, following topological order
 - Bellman-Ford: no negative cycles, digraphs
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)

Next:

- Minimum spanning trees
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)

Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013). *Data Structures and Algorithms in Python*. John Wiley & Sons, Incorporated. ISBN: 9781118476734.

C. Cöltekin, SfS / University of Tübingen