Infineon TC275 GPIO (General-Purpose IO)

Architecture and Compiler for Embedded System LAB.
School of Electronics Engineering, KNU, KOREA
2021-05-11

Hitex ShieldBuddy TC275

- 1. LED 연결 정보 파악
 - ✓ 여러 LED를 사용하기 위해 Target Board가 아닌 Easy Module Shield V1 확장 보드의 LED를 사용한다.

- 1. LED 연결 정보 파악
 - ✓ LED는 Easy Module Shield V1 확장 보드의 Pin D12(RED)/D13(BLUE)과 연결되어 있다.
 - ✓ 타겟 보드는 Easy Module Shield V1 확장 보드의 Pin D12/D13을 통해 LED 출력을 보낼 수 있다.
 (정상적인 Switch 동작을 위해 VCC 및 GND도 연결해야 한다.)

- 1. LED 연결 정보 파악
 - ✓ TC275 보드의 Schematic과 Datasheet를 확인했을 때, Easy Module Shield V1 확장 보드의 **Pin D12/D13**과 연결되는 IO는 PORT10**의 Pin 1-2**다.
 - ✔ 해당 Pin의 출력이 High-level 일 때 LED는 켜지고, Low-level 일 때 LED는 꺼진다.

- 2. Data sheet 분석: IO 설정
 - ✓ LED RED를 사용하기 위해 연결된 Pin의 IO 설정이 필요하다.
 - ✓ LED RED 제어를 위한 출력 신호를 내보내기 위해 해당 Pin을 **General-purpose output**으로 설정해야 한다.

Pin	Symbol	Ctrl	Type	Function
169	P10.1	I	MP+/	General-purpose input
	TIN103		PU1/	GTM input
	MRST1A		VEXT	QSPI1 input
	T5EUDB			GPT120 input
	P10.1	00		General-purpose output
	TOUT103	01		GTM output
	MTSR1	02		QSPI1 output
	MRST1	О3		QSPI1 output
	EN01	04		MSC0 output
	VADCG6BFL1	O5		VADC output
	END03	06		MSC0 output
	_	07		Reserved

- 2. Data sheet 분석: IO 설정
 - ✓ LED BLUE를 사용하기 위해 연결된 Pin의 IO 설정이 필요하다.
 - ✓ LED BLUE 제어를 위한 출력 신호를 내보내기 위해 해당 Pin을 **General-purpose output**으로 설정해야 한다.

	1		1				
170	P10.2 I MP	MP/	General-purpose input				
	TIN104		PU1/	GTM input			
	SCLK1A		VEXT	QSPI1 input			
	T6INB			GPT120 input			
	REQ2			SCU input			
	RXDCAN2E			CAN node 2 input			
	SDI01			MSC0 input			
	P10.2	00]	General-purpose output			
	TOUT104	01		GTM output			
	_	02		Reserved			
	SCLK1	О3		QSPI1 output			
	EN00	04		MSC0 output			
	VADCG6BFL2	O5]	VADC output			
	END02	06		MSC0 output			
	_	07		Reserved			

- 2. Data sheet 분석: PORT 설정 (1)
 - ✔ P10_IOCR Register는 PORT10의 Input/Output을 설정한다.
 - ✓ LED가 PORT10의 Pin 1-2에 연결되어 있기 때문에 P10_IOCRO Register의 PC1, PC2 bits를 설정한다.

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note	
P00	F003 A000 _H	F003 A0FF _H	13 pins	
P01	F003 A100 _H	F003 A1FF _H	5 pins	
P02	F003 A200 _H	F003 A2FF _H	12 pins	
P10	F003 B000 _H	F003 B0FF _H	9 pins	
P11	F003 B100 _H	F003 B1FF _H	16 pins	

P10_IOCR0 Register 주소: F003_B010h (F003B000h + 10h)

P10_IOCR0 Register 구조:

Pn_IOCR0 (n=10-11)
Port n Input/Output Control Register 0

PC3

(F003 A610_H + n*100_H) Reset Value: 1010 1010_H
26 25 24 23 22 21 20 19 18 17 16
0 PC2 0

Field	Bits	Туре	Description
PC0, PC1, PC2, PC3	[7:3], [15:11], [23:19], [31:27]	rw	Port Control for Port n Pin 0 to 3 This bit field determines the Port n line x functionality (x = 0-3) according to the coding table (see Table 13-5).
0	[2:0], [10:8], [18:16], [26:24]	r	Reserved Read as 0; should be written with 0.

- 2. Data sheet 분석: PORT 설정 (2)
 - ✓ PORT10의 Pin 1-2를 General-purpose output (push-pull)으로 설정하기 위해 PC1, PC2 bits를 10000b로 설정한다.

Table 13-5 PCx Coding

PCx[4:0]	I/O	Characteristics	Selected Pull-up / Pull-down / Selected Output Function
10000 _B	Output	Push-pull	•
	Output	Pusii-puii	General-purpose output
10001 _B			Alternate output function 1
10010 _B			Alternate output function 2
10011 _B			Alternate output function 3
10100 _B			Alternate output function 4
10101 _B			Alternate output function 5
10110 _B			Alternate output function 6
10111 _B			Alternate output function 7
11000 _B		Open-drain	General-purpose output
11001 _B			Alternate output function 1
11010 _B			Alternate output function 2
11011 _B			Alternate output function 3
11100 _B			Alternate output function 4
11101 _B			Alternate output function 5
11110 _B			Alternate output function 6
11111 _B			Alternate output function 7

- 2. Data sheet 분석: PORT 출력 설정
 - ✓ P10_OMR Register는 PORT10의 출력을 설정한다.
 - ✓ PORT10의 Pin 1-2 출력을 설정하기 위해 P10_OMR Register의 PCL1-2 bit와 PS1-2 bit를 설정한다.
 - ✔ PCL1, PCL2 bit만 Set 하면 P10.1, P10.2 출력이 '0 (Low-level)'으로 Clear 된다.
 - ✔ PS1, PS2 bit만 Set 하면 P10.1, P10.2 출력이 '1 (High-level)'로 Set 된다.
 - ✓ PCL1, PCL2 bit와 PS1, PS2 bit를 동시에 Set 하면 P10.1, P10.2 출력이 Toggle 된다.

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note	
P00	F003 A000 _H	F003 A0FF _H	13 pins	
P01	F003 A100 _H	F003 A1FF _H	5 pins	
P02	F003 A200 _H	F003 A2FF _H	12 pins	
P10	F003 B000 _H	F003 B0FF _H	9 pins	
P11	F003 B100 _H	F003 B1FF _H	16 pins	
P12	F003 B200 _H	F003 B2FF _H	2 pins	
P13	F003 B300 _H	F003 B3FF _H	4 pins	
P14	F003 B400 _H	F003 B4FF _H	11 pins	
P15	F003 B500 _H	F003 B5FF _H	9 pins	
	-			

P10_OMR Register 주소: F003_B004h (F003B000h + 4h) P10_OMR Register 구조:

Pn_OMR (n=10-15)
Port n Output Modification Register (F003 A604_H + n*100_H)
0000 0000_H

Reset Value:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PS															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Table 13-9 Function of the Bits PCLx and PSx

PCLx	PSx	Function
0	0	Bit Pn_OUT.Px is not changed.
0	1	Bit Pn_OUT.Px is set.
1	0	Bit Pn_OUT.Px is reset.
1	1	Bit Pn_OUT.Px is toggled.

3. 프로그래밍

1) LED가 연결된 PORT10 Pin 1-2에 대한 IO 설정을 한다.

```
31 #define PORT10 BASE
                           (0xF003B000)
32 #define PORT10 IOCR0
                         (*(volatile unsigned int*)(PORT10_BASE + 0x10))
33 #define PORT10 OMR
                           (*(volatile unsigned int*)(PORT10 BASE + 0x04))
35 #define PC1
                           11
36 #define PC2
                           19
38 #define PCL1
                           17
39 #define PCL2
                           18
40 #define PS1
                           1
41 #define PS2
```

PORT10 IO 설정관련 레지스터 주소 및 비트 필드 정의

```
45  /* Initialize LED (RED & BLUE) */
46 void init_LED(void)
47  {
48     /* Reset PC1 & PC2 in IOCR0*/
49     PORT10_IOCR0 &= ~((0x1F) << PC1);
50     PORT10_IOCR0 &= ~((0x1F) << PC2);
51
52     /* Set PC1 & PC2 with push-pull(2b10000) */
53     PORT10_IOCR0 |= ((0x10) << PC1);
54     PORT10_IOCR0 |= ((0x10) << PC2);
55 }
```

PORT10 IO 설정 초기화 코드

- 3. 프로그래밍
 - 2) 동작에 따라 'main' 함수를 구현한다.

```
45 /* Initialize LED (RED & BLUE) */
46⊖ void init LED(void)
       /* Reset PC1 & PC2 in IOCR0*/
49
       PORT10 IOCR0 &= ~((0x1F) << PC1);
       PORT10 IOCR0 &= ~((0x1F) << PC2);
       /* Set PC1 & PC2 with push-pull(2b10000) */
       PORT10_IOCR0 |= ((0x10) << PC1);
       PORT10_IOCR0 |= ((0x10) << PC2);
55 }
57⊖ int core0 main(void)
       IfxCpu enableInterrupts();
       /* !!WATCHDOGO AND SAFETY WATCHDOG ARE DISABLED HERE!!
        * Enable the watchdogs and service them periodically if it is required
       IfxScuWdt disableCpuWatchdog(IfxScuWdt getCpuWatchdogPassword());
       IfxScuWdt disableSafetyWatchdog(IfxScuWdt getSafetyWatchdogPassword());
       /* Wait for CPU sync event */
       IfxCpu emitEvent(&g cpuSyncEvent);
       IfxCpu waitEvent(&g cpuSyncEvent, 1);
       volatile int cycle;
       init_LED();
       while(1)
           PORT10 OMR |= ((1<<PCL1) | (1<<PS1));
                                                            // Toggle LED RED
           for(cycle = 0; cycle < 5000000 ; cycle++);</pre>
                                                           // Delay
           PORT10 OMR |= ((1<<PCL2) | (1<<PS2));
                                                            // Toggle LED BLUE
           for(cycle = 0; cycle < 5000000 ; cycle++);</pre>
                                                           // Delay
       return (1);
```

4. 동작 확인

✔ Build 및 Debug 후 ('Resume' 버튼 클릭), LED 2개가 번갈아가며 깜빡이는 것을 확인한다.

LED 깜빡이는 시간을 1초로 맞추기

- Switch를 이용한 LED On/Off 제어
 - 1. 새로운 예제를 위한 프로젝트를 생성한다.
 - 2. 원하는 동작을 위해 레지스터와 메모리에 직접 접근해서 값을 써야한다.
 - 3. Switch 사용을 위해 Board Schematic과 Datasheet에서 Switch 연결 정보를 파악한다.
 - 4. Switch가 연결된 PORT의 메모리 맵을 분석한다.
 - 5. 분석 결과를 활용해 임베디드 프로그래밍을 한다.

- 1. Switch 연결 정보 파악
 - ✓ 타겟 보드인 ShieldBuddy TC275에는 사용 가능한 Switch가 없기 때문에 Easy Module Shield V1
 확장 보드의 Switch를 사용한다.

- 1. Switch 연결 정보 파악
 - ✓ Switch는 Easy Module Shield V1 확장 보드의 Pin D2/D3과 연결되어 있다.
 - ✓ Switch가 눌리면 연결된 Pin은 Low-level이 되고, Switch가 눌리지 않으면 연결된 Pin은 High-level이 된다.
 - ✓ 타겟 보드는 Easy Module Shield V1 확장 보드의 Pin D2/D3을 통해 Switch 입력을 받을 수 있다. (정상적인 Switch 동작을 위해 VCC 및 GND도 연결해야 한다.)

- 1. Switch 연결 정보 파악
 - ✓ TC275 보드의 Schematic과 Datasheet를 확인했을 때, Easy Module Shield V1 확장 보드의 **Pin D3**와 연결되는 IO는 **PORTO2의 Pin 1**다.

- 2. Data sheet 분석: IO 설정
 - ✓ Switch를 사용하기 위해 연결된 Pin의 IO 설정이 필요하다.
 - ✓ Switch 신호를 입력 받기 위해 해당 Pin을 General-purpose input으로 설정해야 한다.

2	P02.1	I	LP/PU1	General-purpose input
	TIN1		/ VEXT	GTM input
	REQ14			SCU input
	ARX2B			ASCLIN2 input
	RXDCAN0A			CAN node 0 input
	RXDA2			ERAY input
	CIFD1			CIF input
	P02.1	00		General-purpose output
	TOUT1	01		GTM output
	_	02		Reserved
	SLSO32	О3		QSPI3 output
	DSCGPWMP	04		DSADC output
	_	O5		Reserved
		O6		Reserved
	COUT60	07		CCU60 output

- 2. Data sheet 분석: PORT 설정 (1)
 - ✔ P02_IOCR Register는 PORT02의 Input/Output을 설정한다.
 - ✓ Switch가 PORT02의 Pin 1에 연결되어 있기 때문에 P02_IOCRO Register의 PC1 bits를 설정한다.

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note	
P00	F003 A000 _H	F003 A0FF _H	13 pins	
P01	F003 A100 _H	F003 A1FF _H	5 pins	
P02	F003 A200 _H	F003 A2FF _H	12 pins	
P10	F003 B000 _H	F003 B0FF _H	9 pins	
P11	F003 B100 _H	F003 B1FF _H	16 pins	
P12	F003 B200 _H	F003 B2FF _H	2 pins	
P13	F003 B300 _H	F003 B3FF _H	4 pins	
P14	F003 B400 _H	F003 B4FF _H	11 pins	
P15	F003 B500 _H	F003 B5FF _H	9 pins	

P02_IOCR0 Register 주소: F003_A210h (F003A200h + 10h)
P02_IOCR0 Register 구조:

P02_IOCR0
Port 02 Input/Output Control Register 0

1 011	V2 111	pau	atput	9011		ogist	01 0								
							(10) _H)			Res	et Va	lue: 1	010 1	1010 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		PC3				0				PC2				0	
		rw	-	-		r			-	rw				r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		PC1				0				PC0	1			0	
	:	гw				r			-	rw				r	

Field	Bits	Туре	Description
PC0, PC1, PC2, PC3	[7:3], [15:11], [23:19], [31:27]	rw	Port Control for Port n Pin 0 to 3 This bit field determines the Port n line x functionality (x = 0-3) according to the coding table (see Table 13-5).
0	[2:0], [10:8], [18:16], [26:24]	r	Reserved Read as 0; should be written with 0.

- 2. Data sheet 분석: PORT 설정 (2)
 - ✓ Easy Module Shield V1의 Switch는 pull-up device이다.
 - ✔ 따라서, PORT02의 Pin 1을 General-purpose input으로 설정할 때 PC1 bits를 0XX10b로 설정한다.

Table 13-5 PCx Coding

PCx[4:0]	I/O	Characteristics	Selected Pull-up / Pull-down / Selected Output Function
0XX00 _B	Input	_	No input pull device connected, tri-state mode
0XX01 _B			Input pull-down device connected
0XX10 _B			Input pull-up device connected1)
0XX11 _B			No input pull device connected, tri-state mode

- 2. Data sheet 분석: PORT 입력 확인
 - ✓ P02_IN Register는 PORT02의 입력을 저장한다.
 - ✔ PORT02의 Pin 1 입력을 확인하기 위해 PO2_IN Register의 P1 bit를 확인한다.
 - ✓ 입력이 High-level인 경우, P1 bit는 '1'이다.
 - ✓ 입력이 Low-level인 경우, P1 bit는 '0'이다.

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note					
P00	F003 A000 _H	F003 A0FF _H	13 pins					
P01	F003 A100 _H	F003 A1FF _H	5 pins					
P02	F003 A200 _H	F003 A2FF _H	12 pins					
P10	F003 B000 _H	F003 B0FF _H	9 pins					
P11	F003 B100 _H	F003 B1FF _H	16 pins					
P12	F003 B200 _H	F003 B2FF _H	2 pins					
P13	F003 B300 _H	F003 B3FF _H	4 pins					
P14	F003 B400 _H	F003 B4FF _H	11 pins					
P15	F003 B500 _H	F003 B5FF _H	9 pins					

P02_IN Register 주소: F003_A224h (F003A200h + 24h)

P02_IN Register 구조:

	IN (n: On In		egist	er	(F003	A024	ե _ս + ո	*100 _L	,)	Rese	t Val	ue: 00	000 X	XXX,
31	30	29	28	27	26	25			22		20	19	18	17	16
		'						0							'
		L	-	-			-	r	-		-	-	-		<u> </u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P15	P14	P13	P12	P11	P10	P 9	P8	P 7	P6	P 5	P4	P3	P2	P1	P0

Field	Bits	Туре	Description		
Px (x = 0-15)	Х	rh	Port n Input Bit x This bit indicates the level at the input pin Pn.x. 0 _B The input level of Pn.x is 0. 1 _B The input level of Pn.x is 1.		
0	[31:16]	r	Reserved		

3. 프로그래밍

1) Switch가 연결된 PORT02 Pin 1에 대한 IO 설정을 한다.

```
/* Define PORT02 Registers for Switch2 */
41 #define PORT02_BASE (0xF003A200)
42 #define PORT02_IOCR0 (*(volatile unsigned int*)(PORT02_BASE + 0x10))
43 #define PORT02_IN (*(volatile unsigned int*)(PORT02_BASE + 0x24))
44 
45 #define PC1 11
46 #define P1 1
```

PORT02 IO 설정관련 레지스터 주소 및 비트 필드 정의

PORT02 IO 설정 코드

- 3. 프로그래밍
 - 2) 동작에 따라 'main' 함수를 구현한다. (LED 관련 부분은 이전 강의내용을 참고한다.)

```
/* Define PORT10 Registers for LED */
32 #define PORT10 BASE
                            (0xF003B000)
   #define PORT10 IOCR0
                           (*(volatile unsigned int*)(PORT10 BASE + 0x10))
   #define PORT10 OMR
                           (*(volatile unsigned int*)(PORT10 BASE + 0x04))
35
   #define PC1
                           11
   #define PCL1
                           17
   #define PS1
39
   /* Define PORT02 Registers for Switch2 */
   #define PORT02 BASE
                           (0xF003A200)
   #define PORT02 IOCR0
                           (*(volatile unsigned int*)(PORT02 BASE + 0x10))
   #define PORT02 IN
                          (*(volatile unsigned int*)(PORT02 BASE + 0x24))
44
   #define PC1
                           11
   #define P1
                           1
```

```
50 /* Initialize LED (RED) */
51⊖ void init LED(void)
52
53
       /* Reset PC1 in IOCR0*/
54
       PORT10 IOCR0 &= ~((0x1F) << PC1);
55
56
       /* Set PC1 with push-pull(2b10000) */
57
       PORT10 IOCR0 |= ((0x10) << PC1);
58 }
59
60 /* Initialize Switch2 */
61⊖ void init Switch(void)
62 {
63
       /* Reset PC1 in IOCR0*/
64
       PORT02_IOCR0 &= ~((0x1F) << PC1);
65
66
       /* Set PC1 with push-pull(2b0xx10) */
67
       PORT02 IOCR0 |= ((0x2) << PC1);
```

```
70⊖ int core0 main(void)
71 {
72
       IfxCpu enableInterrupts();
73
740
       /* !!WATCHDOGO AND SAFETY WATCHDOG ARE DISABLED HERE!!
        * Enable the watchdogs and service them periodically if it is required
76
77
       IfxScuWdt disableCpuWatchdog(IfxScuWdt getCpuWatchdogPassword());
78
       IfxScuWdt disableSafetyWatchdog(IfxScuWdt getSafetyWatchdogPassword());
79
80
       /* Wait for CPU sync event */
       IfxCpu emitEvent(&g cpuSyncEvent);
82
       IfxCpu_waitEvent(&g_cpuSyncEvent, 1);
83
84
       init LED();
85
       init Switch();
86
       while(1)
88
89
           if( (PORT02 IN & (1<<P1) ) == 0)
                                                         // Switch2 is pushed
90
91
                PORT10 OMR |= (1<<PS1);
                                                         // LED RED on
92
           else
                PORT10 OMR |= (1<<PCL1);
                                                         // LED RED off
98
       return (1);
99
```

4. 동작 확인

✔ Build 및 Debug 후 ('Resume' 버튼 클릭), Switch를 누를 때 LED가 켜지는 것을 확인한다.

Switch is not pushed

Switch is pushed

SW1(D2) 누르면 BLUE LED 켜기

Q&A

Thank you for your attention

OOOOO Architecture and
Compiler
for Embedded Systems Lab.

School of Electronics Engineering, KNU

ACE Lab (hn02301@gmail.com)

