Construction-free median lattice rules

Takashi Goda

School of Engineering, University of Tokyo

Joint work with Pierre L'Ecuyer (Montréal)

MCQMC 2022, Linz, Austria, July 2022

Problem setting

Approximate the integral

$$I(f) = \int_{[0,1)^s} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \quad \approx \quad I(f; P_N) = \frac{1}{N} \sum_{n=0}^{N-1} f(\mathbf{x}_n)$$

with a point set $P_N = \{x_0, x_1, \dots, x_{N-1}\} \subset [0, 1)^s$.

The quantity on the right is called **quasi-Monte Carlo integration** over P_N .

Lattice rules

Definition (rank-1 lattice rules)

Given $N \ge 2$ and $\mathbf{z} \in \{1, \dots, N-1\}^s$, define $P_N := P_{N,\mathbf{z}}$ by

$$\mathbf{x}_n = \left\{\frac{n\mathbf{z}}{N}\right\}, \quad n = 0, 1, \dots, N-1,$$

where $\{\cdot\}$ takes the fractional part of each component. QMC integration over $P_{N,z}$ is called **rank-1 lattice rule** with generating vector z.

Lattice rules

Definition (rank-1 lattice rules)

Given $N \geq 2$ and $\mathbf{z} \in \{1, \dots, N-1\}^s$, define $P_N := P_{N,\mathbf{z}}$ by

$$\mathbf{x}_n = \left\{\frac{n\mathbf{z}}{N}\right\}, \quad n = 0, 1, \dots, N-1,$$

where $\{\cdot\}$ takes the fractional part of each component. QMC integration over $P_{N,z}$ is called **rank-1 lattice rule** with generating vector z.

Figure 1: 2-d lattices with N = 31, $z_1 = 1$ and $z_2 = 1, 3, 4, 7, 15$.

Periodic functions and dual lattice

Let $f:[0,1)^s \to \mathbb{R}$ be periodic with an absolutely convergent Fourier series

$$f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^s} \hat{f}(\mathbf{k}) e^{2\pi i \mathbf{k} \cdot \mathbf{x}},$$

with $\hat{f}(\mathbf{k}) = \int_{[0,1)^s} f(\mathbf{x}) e^{-2\pi i \mathbf{k} \cdot \mathbf{x}} d\mathbf{x}$ being the **k**-th Fourier coefficient.

Periodic functions and dual lattice

Let $f:[0,1)^s \to \mathbb{R}$ be periodic with an absolutely convergent Fourier series

$$f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^s} \hat{f}(\mathbf{k}) e^{2\pi i \mathbf{k} \cdot \mathbf{x}},$$

with $\hat{f}(\mathbf{k}) = \int_{[0,1)^s} f(\mathbf{x}) e^{-2\pi i \mathbf{k} \cdot \mathbf{x}} d\mathbf{x}$ being the **k**-th Fourier coefficient. The error is

$$I(f; P_{N,z}) - I(f) = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{\mathbf{k} \in \mathbb{Z}^s} \hat{f}(\mathbf{k}) \exp(2\pi i \mathbf{k} \cdot \mathbf{x}_n) - \hat{f}(\mathbf{0})$$

$$= \sum_{\mathbf{k} \in \mathbb{Z}^s \setminus \{\mathbf{0}\}} \hat{f}(\mathbf{k}) \frac{1}{N} \sum_{n=0}^{N-1} \exp\left(2\pi i \frac{n}{N} \mathbf{k} \cdot \mathbf{z}\right)$$

$$= \sum_{\mathbf{k} \in P_{N,z}^{\perp} \setminus \{\mathbf{0}\}} \hat{f}(\mathbf{k}),$$

where $P_{N,z}^{\perp} := \{ \mathbf{k} \in \mathbb{Z}^s \mid \mathbf{k} \cdot \mathbf{z} \equiv 0 \pmod{N} \}$ denotes the **dual lattice** of $P_{N,z}$.

Korobov spaces

- $\alpha > 1/2$: decay of Fourier coefficients (smoothness).
- $\gamma = {\gamma_u}_{u \subset {1,...,s}}$: non-negative weights [Sloan/Woźniakowski 1998].
- For $\mathbf{k} \in \mathbb{Z}^s$, write supp $(\mathbf{k}) = \{1 \le j \le s \mid k_j \ne 0\}$ and define

$$r_{\alpha,\gamma}(\mathbf{k}) := \gamma_{\operatorname{supp}(\mathbf{k})} \prod_{j \in \operatorname{supp}(\mathbf{k})} \frac{1}{|k_j|^{\alpha}}.$$

Definition

The weighted Korobov space $H_{s,\alpha,\gamma}^{\text{kor}}$ is a RKHS with norm

$$\|f\|_{s,\alpha,\gamma}^{\mathrm{kor}} = \left(\sum_{oldsymbol{k}\in\mathbb{Z}^s} \frac{|\hat{f}(oldsymbol{k})|^2}{(r_{\alpha,\gamma}(oldsymbol{k}))^2}\right)^{1/2}.$$

Koksma-Hlawka type inequality

$$|I(f; P_{N,z}) - I(f)| = \left| \sum_{\boldsymbol{k} \in P_{N,z}^{\perp} \setminus \{\boldsymbol{0}\}} \hat{f}(\boldsymbol{k}) \right| = \left| \sum_{\boldsymbol{k} \in P_{N,z}^{\perp} \setminus \{\boldsymbol{0}\}} \frac{\hat{f}(\boldsymbol{k})}{r_{\alpha,\gamma}(\boldsymbol{k})} \cdot r_{\alpha,\gamma}(\boldsymbol{k}) \right|$$

$$\leq \left(\sum_{\boldsymbol{k} \in P_{N,z}^{\perp} \setminus \{\boldsymbol{0}\}} \frac{|\hat{f}(\boldsymbol{k})|^{2}}{(r_{\alpha,\gamma}(\boldsymbol{k}))^{2}} \right)^{1/2} \left(\sum_{\boldsymbol{k} \in P_{N,z}^{\perp} \setminus \{\boldsymbol{0}\}} (r_{\alpha,\gamma}(\boldsymbol{k}))^{2} \right)^{1/2}$$

$$\leq ||f||_{s,\alpha,\gamma}^{\text{kor}} \left(\sum_{\boldsymbol{k} \in P_{N,z}^{\perp} \setminus \{\boldsymbol{0}\}} (r_{\alpha,\gamma}(\boldsymbol{k}))^{2} \right)^{1/2}.$$

Thus it is natural to study how to find good z such that the second factor, denoted by $S_{\alpha,\gamma}(z)$, becomes small.

How to construct good **z**? (quick review)

- Korobov (1959): introduced greedy **component-by-component (CBC)** algorithm; for $1 \le j \le s$, one component $z_j \in \{1, \dots, N-1\}$ is optimized while the earlier components z_1, \dots, z_{j-1} are fixed.
- Sloan/Reztsov (2002): reintroduced and popularized CBC.
- Kuo (2003): gave an error bound of $\mathcal{O}(N^{-\alpha+\varepsilon})$ for CBC.
- Nuyens/Cools (2006): introduced fast CBC using FFT.
- Dick/TG (2021): studied stability of CBC (i.e., an error bound for $H_{s,\alpha',\gamma'}^{\text{kor}}$ while z is constructed for $H_{s,\alpha,\gamma}^{\text{kor}}$ with $\alpha \neq \alpha'$ and $\gamma \neq \gamma'$).
- Ebert/Kritzer/Nuyens/Osisiogu (2021): introduced α -free CBC.

Limitation of CBC

To make fast CBC work well, the weights γ are modeled by a small number of parameters.

- Product weights: $\gamma_u = \prod_{j \in u} \gamma_j$
- Order-dependent weights: $\gamma_u = \Gamma_{|u|}$
- Product and order-dependent (POD) weights: $\gamma_u = \Gamma_{|u|} \prod_{j \in u} \gamma_j$
- Smoothness-driven POD (SPOD) weights:

$$\gamma_u = \sum_{oldsymbol{ au} \in \{1,...,lpha\}^{|u|}} \Gamma_{\|oldsymbol{ au}\|_1} \prod_{j \in u} \gamma_{j, au_j}$$

The latter two choices are motivated by PDEs with random coefficients [Kuo/Schwab/Sloan 2012; Dick/Kuo/Le Gia/Nuyens/Schwab, 2014].

Most of the generating vectors are good

For a given application, we may not know what is an appropriate choice for α and γ . Even more, an efficient CBC does not exist for general weights.

However, good news is that **most of the possible z's are good** for any α and γ [Dick/Sloan/Wang/Woźniakowski 2006; Kritzer/Kuo/Nuyens/Ullrich 2019]. This fact can be shown by averaging argument and Markov inequality.

Recall that our error criterion is

$$\mathcal{S}_{lpha,\gamma}(oldsymbol{z}) = \left(\sum_{oldsymbol{k} \in P_{N,oldsymbol{z}}^{\perp} \setminus \{oldsymbol{0}\}} (r_{lpha,\gamma}(oldsymbol{k}))^2
ight)^{1/2}.$$

Let α and γ be given and N be a prime. For $1/(2\alpha) < \lambda \le 1$, we have

$$\frac{1}{(N-1)^s}\sum_{z_1,\ldots,z_s=1}^{N-1}(\mathcal{S}_{\alpha,\gamma}(\boldsymbol{z}))^{2\lambda}\leq \frac{1}{N-1}\sum_{\emptyset\neq u\subseteq\{1,\ldots,s\}}\gamma_u^{2\lambda}(2\zeta(2\alpha\lambda))^{|u|}.$$

This implies that the average of $(S_{\alpha,\gamma}(z))^{2\lambda}$ over all admissible z is of $\mathcal{O}(N^{-1})$ for any $1/(2\alpha) < \lambda \leq 1$.

Markov inequality states that a proportion of the admissible z which satisfy

$$\mathcal{S}_{\alpha,\gamma}(\boldsymbol{z}) \leq \inf_{1/(2\alpha) < \lambda \leq 1} \left(\frac{1}{\eta(N-1)} \sum_{\emptyset \neq u \subseteq \{1,...,s\}} \gamma_u^{2\lambda} (2\zeta(2\alpha\lambda))^{|u|} \right)^{1/(2\lambda)} =: (*)$$

is greater than or equal to $1 - \eta$, for any $0 < \eta < 1$.

Why not consider avoiding bad generating vectors, instead of searching for good ones?

Median helps

Construction-free median lattice rules

Let N be a prime and r be odd.

- **①** Draw $\mathbf{z}_1, \dots, \mathbf{z}_r \in \{1, \dots, N-1\}^s$ uniformly and independently.
- **2** Approximate I(f) by $median(I(f; P_{N,z_1}), \dots, I(f; P_{N,z_r}))$.

Taking the median plays a role in filtering bad z out adaptively (with very high prob.) without specifying α and γ !

This median approach for scrambled nets is studied by Pan/Owen (2021).

A probabilistic error guarantee

Given z_1, \ldots, z_r , the error is

$$\begin{split} |&\operatorname{median}(I(f; P_{N, z_1}), \dots, I(f; P_{N, z_r})) - I(f)| \\ &\leq \operatorname{median}(|I(f; P_{N, z_1}) - I(f)|, \dots, |I(f; P_{N, z_r}) - I(f)|) \quad \text{(Jensen)} \\ &\leq ||f||_{s, \alpha, \gamma}^{\operatorname{kor}} \operatorname{median}(\mathcal{S}_{\alpha, \gamma}(\boldsymbol{z}_1), \dots, \mathcal{S}_{\alpha, \gamma}(\boldsymbol{z}_r)). \end{split}$$

In order to have $\operatorname{median}(\mathcal{S}_{\alpha,\gamma}(\mathbf{z}_1),\ldots,\mathcal{S}_{\alpha,\gamma}(\mathbf{z}_r)) > (*)$, at least half of $\mathbf{z}_1,\ldots,\mathbf{z}_r$ must satisfy $\mathcal{S}_{\alpha,\gamma}(\mathbf{z}_j) > (*)$. Thus, under a random choice of $\mathbf{z}_1,\ldots,\mathbf{z}_r$ (with replacement), such a "failure event" probability is very small!

A probabilistic error bound [TG/L'Ecuyer, 2022]

Let z_1, \ldots, z_r be chosen independently and randomly. For any α , γ and $f \in H_{s,\alpha,\gamma}^{\text{kor}}$, we have

$$|\operatorname{median}(I(f; P_{N, z_1}), \dots, I(f; P_{N, z_r})) - I(f)|$$

$$\leq ||f||_{s, \alpha, \gamma}^{\operatorname{kor}} \times \inf_{1/(2\alpha) < \lambda \leq 1} \left(\frac{1}{\eta(N-1)} \sum_{\emptyset \neq u \subseteq \{1, \dots, s\}} \gamma_u^{2\lambda} (2\zeta(2\alpha\lambda))^{|u|} \right)^{1/(2\lambda)}$$

with a probability of at least

$$1-(4\eta)^{(r+1)/2}/4$$

for any $0 < \eta < 1/4$.

Numerical experiments

Smooth, periodic test function

$$f_{eta, \omega}(\mathbf{x}) = \prod_{j=1}^{s} \left[1 + \omega_j \left((2\beta + 1) \binom{2\beta}{\beta} x_j^{\beta} (1 - x_j)^{\beta} - 1 \right) \right]$$

with s = 50 and $\beta = 5$. We set r = 11 for our median rule.

Figure 2: Absolute error for $\omega_j = j^{-6}$ (left) and $\omega_j = (s - j + 1)^{-6}$ (right).

Non-periodic functions?

Higher order digital nets constructed by the digit interlacing [Dick 2008; TG/Dick 2015; etc] require the interlacing factor (essentially corresponding to smoothness of integrands) as an input.

High-order polynomial lattice rules [Niederreiter 1992; Dick/Pillichshammer 2005] do not. The precision n is required instead, which can be as large as machine precision. Therefore they are a good candidate to have an analogous result for non-periodic functions (a median rule with a prob. error bound without specifying smoothness and weights).

In fact, for a class of weighted non-periodic function spaces, we could establish the corresponding result, see [TG/L'Ecuyer 2022].

High-order polynomial lattice rules

Definition (High-order polynomial lattice rules)

Let $m, n \geq 2$ with $n \geq m$ be given. For $p \in \mathbb{F}_b[x]$ with $\deg(p) = n$ and $q \in (\mathbb{F}_b[x])^s$ with $\deg(q_j) < n$, define $P_{b^m} := P_{b^m,p,q}$ by

$$\mathbf{x}_h = \nu_n \left(\frac{h(x)\mathbf{q}(x)}{p(x)} \right), \quad h = 0, 1, \dots, b^m - 1,$$

where $\nu_n: \mathbb{F}_b((x^{-1})) \to [0,1)$ is given by

$$\nu_n\left(\sum_{i=w}^{\infty} \frac{a_i}{x^i}\right) = \sum_{i=\max(1,w)}^n \frac{a_i}{b^i}$$

and is applied componentwise to a vector.

Examples

Figure 3: 2-d high-order polynomial lattices with $N=2^5$ (b=2 and m=5), n=52, $p(x)=x^{52}+x^3+1$ (irreducible) and $q_1(x),q_2(x)$ being both random.

Numerical experiments

1-d smooth, non-periodic test function

$$f_1(x) = x^3(1/4 + \log x)$$
 and $f_2(x) = xe^{x/4}$.

Figure 4: Absolute error for f_1 (left) and f_2 (right).

Future works?

- What about median of randomly shifted lattice rules?
- 2 Looking only at the median seems wasteful.

Thank you for your attention!

For more details, please refer to

 TG & P. L'Ecuyer, Construction-free median quasi-Monte Carlo rules for function spaces with unspecified smoothness and general weights, SIAM Journal on Scientific Computing (in press). arXiv:2201.09413