The k-vector types of space group Fm-3m (225)

(Table for arithmetic crystal class m -3 mF)

Fm-3m- O_h^5 (225) to Fd-3c- O_h^8 (228)

Reciprocal-space group (Im-3m)*, No.229

Brillouin zone

k-vector description				ITA description				
CDML ¹		Conventional	Wyckoff			Coordinates		
Label	Primitive basis	basis	Position			Coordinates		
GM	0,0,0	0,0,0	2	а	m-3m	0,0,0		
X	1/2,0,1/2	0,1,0	6	b	4/mm.m	0,1/2,0		
L	1/2,1/2,1/2	1/2,1/2,1/2	8	С	3m	1/4,1/4,1/4		
W	1/2,1/4,3/4	1/2,1,0	12	d	-4m.2	1/4,1/2,0		
DT	u,0,u	0,2u,0	12	е	4m.m	0,y,0 : 0 < y < 1/2		
LD	u,u,u	u,u,u	16	f	.3m	x,x,x : 0 < x < 1/4		
V	1/2,u,1/2+u	2u,1,0	24	g	mm2	x,1/2,0 : 0 < x < 1/4		
SM	u,u,2u ex	2u,2u,0	24	h	m.m2	x,x,0 : 0 < x <= 3/8		
S	1/2+u,2u,1/2+u ex	2u,1,2u	24	h	m.m2	x,1/2,x : 0 < x < 1/8		
S~SM ₁ =[K M]			24	h	m.m2	x,x,0 : 3/8 < x < 1/2		
SM SM ₁ =[GM M]			24	h	m.m2	x,x,0 : 0 < x < 1/2		
Q	1/2,1/4+u,3/4-u	1/2,1-2u,2u	48	i	2	1/4,1/2-y,y : 0 < y < 1/4		
А	u,-u+v,v ex	-2u+2v,2u,0	48	j	m	x,y,0:0 < x < y <= 3/8 U U x,y,0:0 < x < 3/4-y < y < 1/2		
В	1/2+u,u+v,1/2+v	2v,1,2u	48	j	m	x,1/2,z : 0 <		

The k-vector Types of Space Groups								
	ex					z < x <= 1/4- z		
B~B ₁ =[K M W]			48	j	m	x,y,0 : 3/4-y <= x < y < 1/2		
A B ₁ =[GM M X]			48	j	m	x,y,0 : 0 < x < y < 1/2		
С	u,u,v ex	v,v,-v+2u	48	k	m	x,x,z : 0 < z < x <= 3/8- z/2		
J	u,v,u[GMXUL] ex	v,-v+2u,v	48	k	m	x,y,x: 0 < x < y <= 1/2-x U U x,y,x: 1/4 < y < 1/2, 1/2-y < x < 3/8-y/2		
J~J ₁ =[GM L X ₃] + [L K M]			48	k	m	x,x,z:0 < x < z <= 1/2-x U U x,x,z:0 < z < 1/4, 3/8- z/2 < x < 1/2- z		
C + J ₁ =[GM M X ₃] \ [GM L]			48	k	m	x,x,z:0 < z < 1/2 -x < 1/2, x!= z		
GP	u,v,w	-u+w+v,u+w- v,u-w+v	96	I	1	x,y,z: 0 < z < x < y < 1/2-x U U x,y,z: 0 < z < 1/2-y < x < y < 1/2 U U x,y,1/2-y: 1/4 < y < 1/2; 1/2-y < x < 1/4.		

The asymmetric unit of ITA is obtained from that used in these tables by reflection through the plane x,x,z.

The asymmetric unit is obtained from the representation domain of CDML by the equivalence [L K W M] ~[L U W X] through the two-fold rotation around the axis Q.

Wing: [GM L X_3] x,x,z: 0 < x < z < 1/2-x

¹ Cracknell, A. P., Davies, B.L., Miller, S. C., and Love, W. F. (1979). Kronecker Product Tables. Vol. 1. General Introduction and Tables of Irreducible Representations of Space Groups. New York: IFI/Plenum.

If you want to identify a **k**-vector you have to introduce:

1. The reciprocal bases: conventional ▼

2. The **k**- k_x k_y k_z vector:

Bilbao Crystallographic Server http://www.cryst.ehu.es

For comments, please mail to administrador.bcs@ehu.eus