27.08.2021

Digital Image Processing (CSE/ECE 478)

Lecture-3: Recap/Discussion

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Ravi Kiran

Sudipta Banerjee

Spatial Domain Processing

- Manipulating Pixels Directly in Spatial Domain
- ▶ 3 approaches
- ▶ 1. Point to Point

Linear Intensity Transforms

$$T(z) = z + K$$

$$T(z) = z - K$$

$$T(z) = Kz$$

$$T(z) = K_1 z + K_2$$

Piecewise-Linear Transformations

Power-Law Transformations

Shades of grey

a b c d

FIGURE 3.9

(a) Aerial image. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 3.0, 4.0, and$ 5.0, respectively. (Original image for this example courtesy of NASA.)

Power-Law Transformations

Demo:

https://colab.research.google.com/drive/11ql LOVKleZnONtPuxAryAf9WkUC7kEMI#scrollTo =aU5WQaqOpSCr&line=12&uniqifier=1

Intensity Slicing

Bit plane slicing

a b c d e f g h i

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

Digital Image Processing (CSE/ECE 478)

Lecture-4: Histogram Processing

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Piecewise-Linear Transformations

Histogram: An image representation + visualization

$$h_r(i) = n_i$$

i → intensity value, range [0,L-1] n_i → number of pixels with intensity i

Histograms

What can we infer from histograms?

Histogram viewing standard in most DSLR cameras

Histograms and Contrast

Histograms and Contrast

Histograms

Under exposure

Histograms

Over exposure

A low-contrast image and its histogram

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min} = 0$$
 and $a_{max} = 255$

$$f_{\rm ac}(a) = (a - a_{\rm low}) \cdot \frac{255}{a_{\rm high} - a_{\rm low}}$$

Suppose we have a <u>single</u> pixel with intensity 255 in the original intensity range. What happens?

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min}$$
 = 0 and a_{max} = 255
$$f_{ac}(a) = (a-a_{low}) \cdot \frac{255}{a_{high}-a_{low}}$$

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min}$$
 = 0 and a_{max} = 255
$$f_{ac}(a) = (a-a_{low}) \cdot \frac{255}{a_{high}-a_{low}}$$

Suppose we have a <u>single</u> pixel with intensity 0 in the original intensity range. What happens?

Contrast Stretching ver. 2

$$\begin{split} \hat{a}_{\mathrm{low}} &= \, \min \big\{ \, i \mid \mathsf{H}(i) \geq M \cdot N \cdot s_{\mathrm{low}} \big\} \, \\ \\ \hat{a}_{\mathrm{high}} &= \max \big\{ \, i \mid \mathsf{H}(i) \leq M \cdot N \cdot (1 - s_{\mathrm{high}}) \big\} \end{split}$$

$$f_{\text{mac}}(a) = \begin{cases} a_{\text{min}} & \text{for } a \leq \hat{a}_{\text{low}} \\ a_{\text{min}} + \left(a - \hat{a}_{\text{low}}\right) \cdot \frac{a_{\text{max}} - a_{\text{min}}}{\hat{a}_{\text{high}} - \hat{a}_{\text{low}}} & \text{for } \hat{a}_{\text{low}} < a < \hat{a}_{\text{high}} \\ a_{\text{max}} & \text{for } a \geq \hat{a}_{\text{high}} \end{cases}$$

Ver. 2

Are all intensities well represented?

Ver. 2

The issue with contrast stretching

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min}$$
 = 0 and a_{max} = 255
$$f_{ac}(a) = (a-a_{low}) \cdot \frac{255}{a_{high}-a_{low}}$$

Contrast Stretching

Histogram Equalization

Histogram of riginal image

Histogram Equalization - Example

64 x 64 image

3-bits / pixel

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Histogram Equalization - Example

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Histogram Equalization

Histogram Equalization v/s Contrast Enhancement

Histogram equalization

Histogram Equalization : A Visual Explanation

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$s_k = T(r_k) = \operatorname{round}\left((L-1)\sum_{j=0}^{j=k} p_r(r_j)\right)$$

Histogram Equalization (ver. 2)

$$h[i] = \text{constant}, \qquad 0 \leq i \leq L-1$$

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$S_k = T(r_k) = \text{round} \left((L-1) \sum_{j=0}^{j=k} p_r(r_j) \right)$$

$$\text{Ver. 2} \qquad s_k = T(r_k) = \text{round} \left((L-1) * \frac{cdf(r_k) - cdf_{min}}{1 - cdf_{min}} \right)$$

Histogram Equalization (ver. 2)

$$b[i] = \text{constant}, \qquad 0 \leq i \leq L-1$$

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$S_k = T(r_k) = \text{round} \left((L-1) \sum_{j=0}^{j=k} p_r(r_j) \right)$$

$$Ver. 2 \qquad s_k = T(r_k) = \text{round} \left((L-1) * \frac{cdf(r_k) - cdf_{min}}{1 - cdf_{min}} \right)$$

$$cdf_{min} = p_r(r_a) \text{ where } r_a = \min\{r_t | p_r(r_t) > 0\}; 0 \leqslant r_t \leqslant (L-1)$$

Histogram Equalization (default v/s ver. 2)

$$s_k = T(r_k) = \operatorname{round}\left((L-1)\sum_{j=0}^{j=k} p_r(r_j)\right)$$

Ver. 2
$$s_k = T(r_k) = \text{round}\left((L-1) * \frac{cdf(r_k) - cdf_{min}}{1 - cdf_{min}}\right)$$

 $cdf_{min} = p_r(r_a) \text{ where } r_a = \min\{r_t | p_r(r_t) > 0\}; 0 \le r_t \le (L-1)$

Histogram Equalization

Input gray levels

Image Courtesy: Gonzalez and Woods

Histogram specification

Histogram Specification / Matching [Section 3.3.2]

contrast enhancement. What's the difference?

Histograms for RGB images

Histogram Processing

Global to Point

Histogram: Discussion

- A visualization
- A useful statistical representation of image intensities
 - Not dependent on image size
- Drawbacks
 - No spatial information
 - Intensity-centric
 - Raw (unnormalized form): Image-size dependent
- Equalization:
 - An image 'normalization' approach
 - Improves global contrast, but can also boost noise

References

▶ GW Chapter – 3.3.1 to 3.3.3

Transformations of Random Variables

- http://www.randomservices.org/random/dist/Transformations.html
- Section 1 of http://www.cs.cmu.edu/~minx/transform.pdf
- Leibnitz Integration Rule :
 https://en.wikipedia.org/wiki/Leibniz_integral_rule#Alternative_derivation
- Univariate transformation of a random variable