Langages formels (sujet B) Examen du 27/02/2023 Durée: 1h15

Nom : _			

Consignes:

Prénom:

- Seule une page manuscrite recto-verso de taille A4 est autorisée. La calculatrice est interdite.
- Toute question admet au moins une réponse.
- Les mauvaises réponses seront sanctionnées par des points négatifs.

1. Soit l'automate A suivant :

- (a) (1 point) L'automate A est-il complet? oui non
- (b) (1 point) L'automate A est-il déterministe? \bullet oui \bigcirc nor
- (c) (3 points) Quels sont les mots reconnus par l'automate \mathcal{A} ?
 - baabba bbbabb bbbbbbb abbcca abbaab bbbbbb
- 2. (2 points) Soit l'automate \mathcal{B} suivant (une étoile \star après le nom d'un état indique un état final, et \downarrow un état initial) :

Quels sont les mots reconnus par l'automate \mathcal{B} ? \bigcirc bbabba \bigcirc aabaab \bigcirc abbaab \bigcirc baabba

- 3. (1 point) Soit l'expression régulière $r:=\mathtt{a}^{\star}\mathtt{b}\mathtt{a}^{\star}\mathtt{b} \ + \ \mathtt{a}^{\star}\mathtt{a} \ + \ \mathtt{b}.$ Quels mots ne sont pas dans le langage de r:
 - a aa aaa b bb bbb abb abaab
- 4. (3 points) Remplir la grille 6×6 suivante en mettant une lettre par case de sorte que les mots inscrits sur les lignes et colonnes correspondent aux langages réguliers de la définition.

	A	В	\mathbf{C}	D	E	F
1	b	a	a	a	b	a
2	a	a	a	a	a	a
3	b	С	а	С	b	С
4	a	a	a	a	a	С
5	a	a	а	a	b	C
6	С	С	a	a	a	a

Horizontalement

1.
$$(b + a)^*a$$

$$A. (ba)^*ac$$

B. $(aa + c)^*$

$$2.\ b^*a^*$$

$$3. (bc + ac)^*$$

E.
$$(ba)^* + (ac)^*$$

$$6 (a + b + c)^*$$

5. Soit l'automate C suivant (une étoile ★ après le nom d'un état indique un état final, et ↓ un état initial) :

(a) (2 points) Minimiser l'automate \mathcal{C} et donner sa représentation graphique :

(b) (1 point) Exprimer par une expression régulière simple le langage reconnu par l'automate \mathcal{C} :

Solution:
$$a^* + a^*bb^*a(a+b)^*$$

(c) (1 point) Exprimer en une phrase la plus concise possible le langage reconnu par l'automate \mathcal{C} :

Solution: Mots sur $\{a,b\}$ où le premier b est suivi plus tard d'un a i.e. mots ne terminant pas par b.

(d) (1 point) Donner deux mots non reconnus par C:

Solution: N'importe quel mot terminant par un b, par exemple b ou bab.

6. Soit l'automate D suivant (une étoile ★ après le nom d'un état indique un état final, et ↓ un état initial) :

(a) (2 points) Quelle est la table de l'automate obtenue avec l'algorithme de déterminisation vu en cours :

							a	b
	$\mid a \mid b$		$\mid a \mid b$		$\mid a \mid b$	\rightarrow A	B	\overline{C}
						B	B	D
\rightarrow A	B C	\rightarrow A	B C, D, E	\rightarrow A	A B	C	E	F
B	$\mid B \mid D$	B	$\mid B \mid D$	B	B C	\overline{D}	D	G
C	E C	C	B C, E	C	A D	$\stackrel{D}{E}$	$\mid E \mid$	C
D	D A	D	D C	D	E D			_
E	$\begin{bmatrix} E & F \end{bmatrix}$	$\stackrel{\mathcal{L}}{E}$	$\begin{bmatrix} E & E \end{bmatrix}$	E	$\begin{bmatrix} E & F \end{bmatrix}$	F	H	F
		L				G	$\mid B \mid$	F
F	$\mid F \mid C$			F	$\mid F \mid D$	H	H	I
						I	I	F
							1	

(b) (1 point) À quels ensembles d'états de l'automate \mathcal{D} correspondent les états obtenus lors de la déterminisation :

 \bigcirc

- (c) (1 point) L'ensemble des états finaux est : A, B, C, E, F, H, I
- 7. (1 point) Soit l'automate \mathcal{E} suivant, où 4 est le seul état final (non représenté ici). Modifier \mathcal{E} pour qu'il reconnaisse le langage complémentaire de celui reconnu par \mathcal{E} (faire apparaître les états finaux).

8. (3 points) Soit L le langage des mots bien parenthésés : par exemple (()())((())) $\in L$ mais (() $\notin L$ ou encore) ($\notin L$. Montrer que L n'est pas régulier en complétant la preuve suivante :

Supposons que L est régulier et soit un automate à n états qui reconnait L.

Soit
$$w :=$$
 $($ $)$ $\in L$.

 \bigcirc

Alors la reconnaissance de w par l'automate passe par les états q_0, q et q_f où q_0 est initial et q_f final, et tel que le chemin dans l'automate est de la forme

avec r+s+t=n+1 et s>0

D'où le mot _____ est dans L, contradiction puisque ce mot n'est pas bien pa-

renthésé car <u>il contient plus de parenthèses fermantes qu'ouvrantes</u>