

IRF7416

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- P-Channel Mosfet
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-10	^	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ - 10V	-7.1	A	
I_{DM}	Pulsed Drain Current ①	-45		
P _D @T _A = 25°C	Power Dissipation Power Dissipation	2.5	W	
	Linear Derating Factor	0.02	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy ②	370	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	-5.0	V/ns	
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance Ratings

	Parameter	Тур.	Max.	Units
$R_{ heta JA}$	Maximum Junction-to-Ambient®		50	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.024		V/°C	Reference to 25°C, I _D = -1mA
Б	Otatia Dania ta Canana Ca Baniatana			0.020		V _{GS} = -10V, I _D = -5.6A ④
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.035	Ω	V _{GS} = -4.5V, I _D = -2.8A ④
V _{GS(th)}	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
g _{fs}	Forward Transconductance	5.6			S	$V_{DS} = -10V, I_D = -2.8A$
1	Drain-to-Source Leakage Current			-1.0		V _{DS} = -24V, V _{GS} = 0V
I _{DSS}	Diam-to-Oddice Leakage Odiffent			-25	μA	V _{DS} = -24V, V _{GS} = 0V, T _J = 125°C
loss	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
I _{GSS}	Gate-to-Source Reverse Leakage			100	ш	V _{GS} = 20V
Qg	Total Gate Charge		61	92		$I_D = -5.6A$
Q _{gs}	Gate-to-Source Charge		8.0	12	nC	$V_{DS} = -24V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		22	32		V_{GS} = -10V, See Fig. 6 and 9 $\textcircled{4}$
t _{d(on)}	Turn-On Delay Time		18			V _{DD} = -15V
tr	Rise Time		49			$I_{D} = -5.6A$
t _{d(off)}	Turn-Off Delay Time		59		ns	$R_G = 6.2\Omega$
t _f	Fall Time		60			R _D = 2.7Ω, See Fig. 10 ④
C _{iss}	Input Capacitance		1700			V _{GS} = 0V
Coss	Output Capacitance		890		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		410			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			2.4		MOSFET symbol	
	(Body Diode)			-3.1	Α	showing the	
I _{SM}	Pulsed Source Current			-45	1 /	integral reverse	
	(Body Diode) ①	-	-45		p-n junction diode.	s	
V _{SD}	Diode Forward Voltage			-1.0	V	$T_J = 25^{\circ}C$, $I_S = -5.6A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		56	85	ns	$T_J = 25^{\circ}C, I_F = -5.6A$	
Q _{rr}	Reverse RecoveryCharge		99	150	nC	di/dt = 100A/µs ③	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting T_J = 25°C, L = 25mH R_G = 25 Ω , I_{AS} = -5.6A. (See Figure 12)
- $\label{eq:local_sd} \begin{tabular}{l} $I_{SD} \leq -5.6A, \ di/dt \leq 100A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ $T_J \leq 150^{\circ}C$ \end{tabular}$

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9a. Basic Gate Charge Waveform

Fig 10a. Switching Time Test Circuit

Fig 9b. Gate Charge Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Peak Diode Recovery dv/dt Test Circuit

- * Reverse Polarity for P-Channel
- ** Use P-Channel Driver for P-Channel Measurements

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 13. For P-Channel HEXFETS

SO-8 Package Details

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANGING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (a) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

Tape & Reel Information

SO8

Dimensions are shown in millimeters (inches)

International Rectifier