

TD de programmation structurée 1ère année 2012-2013

Projet d'informatique : 1A PET s2 problème du voyageur de commerce par la méthode de l'arbre couvrant minimum

Exemple algorithme de PRIM

Structure de donnée : listes d'adjacence

Un graphe orienté à 6 sommets et 14 arcs.

Ce graphe représente un graphe

- non orienté : chaque arête sont représentées par deux arcs, un dans chaque sens
- non complet : certaines paires de sommets ne sont pas reliées

Algorithme de PRIM

On cherche l'ACM à partir du sommet s0.

Etat initial de l'algorithme (avant la boucle) :

C = { s0 } fileACM=[]

Rappel:

C contient les sommets pas encore atteints, qu'il est possible d'atteindre fileACM contient les arrêtes (arcs) formant l'ACM

Après le premier passage dans la boucle (tour d'initialisation). $C = \{ s1, s3 \}$ fileACM=[]

Sommet déjà atteint.

Sommet pouvant être atteint (appartient à C)

Arc dans fileACM

Après le 3^{ème} passage dans la boucle.

 $C = \{ s3, s4 \}$

fileACM=[a0_1 ; a1_2]

Après le $2^{\grave{e}me}$ passage dans la boucle : on a sélectionné l'arc de moindre coût permettant d'atteindre s1 ou s3.

 $C = \{ s3, s2, s4 \}$

fileACM=[a0 1]

Sommet pouvant être atteint (appartient à C)

Arc dans fileACM

Après le 4ème passage dans la boucle.

 $C = \{ s4, s5 \}$

fileACM=[a0_1 ; a1_2 ; a0_3]

Après le 5^{ème} passage dans la boucle.

 $C = \{ s5 \}$

fileACM=[a0_1; a1_2; a0_3; a1_4]

Après le $6^{\text{ème}}$ passage dans la boucle (fin de l'algorithme). C = {} fileACM=[a0_1; a1_2; a0_3; a1_4; a3_5]

Sommet déjà atteint.

Sommet pouvant être atteint (appartient à C)

Arc dans fileACM