МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет

С. А. Скороходов

ДИФФЕРЕНЦИАЛЫ

Конспект по материалу 1 семестра Дисциплины – Математический Анализ

Студента группы 417/0424С1ИБг1 1 курса специалитета

Основная образовательная программа подготовки по направлению 10.05.02 «Информационная безопасность телекоммуникационных систем» (направленность «Системы подвижной цифровой защищенной связи»)

Нижний Новгород Издательство "Невыспавшийся Студент" 2025

Содержание

1 O	сновные понятия теории пределов и непрерывности функций мно-
ги	их переменных
1.	T T T T T T T T T T T T T T T T T T T
1.	10 1
	Частные случаи функций многих переменных
1.	T T T T T T T T T T T T T T T T T T T
	Предел функции многих переменных
	Двойной предел
	Геометрический смысл двойного предела
	Независимость предела от пути
	Примеры решения двойных пределов
1.	4 Понятие непрерывности функции многих переменных
	Приращение функции одной переменной
	Непрерывность функции многих переменных
	Непрерывность на языке « $\varepsilon - \delta$ »
	Приращение аргументов и функции
	Полное приращение функции
	Непрерывность по совокупности переменных
	Частное приращение функции
	Непрерывность по отдельной переменной
Л	ифференцирование функций многих переменных
2.	
	Функция многих переменных
	Частная производная
	Частные производные первого порядка
	Функция двух переменных
	Геометрический смысл
2.	
۷.	Необходимое и достаточное условие дифференцируемости функции од-
	ной переменной
	Определение функции многих переменных $y = f(\vec{x})$
	Необходимые условия дифференцируемости
	Достаточное условие дифференцируемости
	Теорема о связи между непрерывностью и дифференцированностью
	функции многих переменных
2.	
2.	
۷.	
2.5	Следствия
2.5	
	ременных
	Смешанная частная производная 2 и 3 порядков
	Теорема о равенстве смешанных производных

	Пример равенства смешанных производных	23
	Дифференциалы высших порядков	24
	Дифференциальные операторы	24
	Дифференциал 2-го порядка	24
	Операторная запись дифференциалов	25
	Обобщение на функции многих переменных	26
2.6	Производные второго порядка сложной функции	26
	Производная второго порядка по y	27
	Смешанная производная z''_{xy}	27
2.7	Дифференциалы сложной функции	28
	Свойство инвариантности дифференциала	29
	Дифференциал второго порядка	29
	Сравнение дифференциалов	30
	Формулы	30
2.8	Дифференцирование неявно заданной функции	31
	Теорема о существовании и дифференцируемости неявно заданной	
	функции (без доказательства)	31
2.9	Дифференцирование неявно заданной функции	32
	Теорема о существовании и дифференцируемости неявно заданной	
	функции (без доказательства)	33

ПРЕДИСЛОВИЕ

Настоящий конспект представляет собой краткие записи по курсу «Математический анализ» по теме «Дифференциалы», оформленный с использованием I^AT_EX. Он не претендует на статус полноценного учебного пособия и предназначен исключительно для личного использования при подготовке к занятиям и экзаменам.

Материал изложен с учётом программы курса, однако может содержать некоторые погрешности и упрощения. При использовании конспекта рекомендуется сверяться с дополнительными источниками и учебной литературой. Автор не несёт ответственности за результаты вашей сессии.

Распространение данного документа допускается только с личного согласия автора (Скороходов Сергей Александрович).

Выражаю особую признательность преподавателю дисциплины «Математический анализ» Семериковой Надежде Петровне за помощь в освоении курса и подготовке материалов для конспекта.

Для цитирования данного конспекта в работах, подготовленных в L^AT_EX, рекомендуется использовать библиографическую запись следующего вида:

```
@book{notediffserkin0,
  title = {Дифференциалы},
  author = {Скороходов, С.А.},
  publisher = {Издательство "Невыспавшийся Студент"},
  year = {2025},
  volume = {1},
  address = {Нижний Новгород},
  edition = {2-е изд., перераб.},
  language = {russian},
  url = {https://github.com/SerKinO/IBTS-math-1k1k-latex-differentials}}
```

І. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТИ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

1. Понятие к-мерного Евклидова пространства

Рассмотрим множество $\mathbb{R}^k = \mathbb{R} \cdot \mathbb{R} \cdot ... \cdot \mathbb{R}$ упорядоченных наборов действительных чисел длины k $(x_1, x_2, ..., x_k)$, где $x_1 \in \mathbb{R}$, $x_2 \in \mathbb{R}$, ..., $x_k \in \mathbb{R}$.

Упорядоченный набор $(x_1, x_2, ..., x_k)$ называется **точкой** или **вектором на множестве** \mathbb{R}^k и обозначается $\vec{x} = (x_1, x_2, ..., x_k)$, а действительные числа $x_1, x_2, ..., x_k$ называются координатными векторами или точками.

Пусть k=2, тогда множество \mathbb{R}^k определяет плоскость рис. 1а. Координаты любой точки на плоскости — это упорядоченная пара чисел (x_1, x_2) , эта пара чисел является координатами вектора, проведенного из начала координат в данную точку.

Рис. 1. Примеры \mathbb{R}^k пространств

Аналогично, если k=3, то упорядоченный набор (x_1,x_2,x_3) определяет точку или вектор в пространстве (Рис. 16).

Таким образом, элементами множества \mathbb{R}^k являются <u>векторы</u>. Над векторами вводятся следующие операции:

1. Сложение векторов

Если $\vec{x} = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$ и $\vec{y} = (y_1, y_2, ..., y_k) \in \mathbb{R}^k$, то суммой векторов $(\vec{x} + \vec{y})$, будет являться сумма соответствующих координат:

$$(\vec{x} + \vec{y}) = (x_1 + y_1, x_2 + y_2, ..., x_k + y_k)$$
(1.1.1)

2. Умножение вектора на скаляр

Если $\vec{x}=(x_1,x_2,...,x_k)$ и $\alpha\in\mathbb{R}$ - действительное число, то $\alpha\vec{x}\in\mathbb{R}^k$ – это вектор с координатами:

$$(\alpha \vec{x}) = (\alpha \cdot x_1, \alpha \cdot x_2, ..., \alpha \cdot x_k) \tag{1.1.2}$$

3. Скалярное произведение векторов

Если $\vec{x} = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$ и $\vec{y} = (y_1, y_2, ..., y_k) \in \mathbb{R}^k$, тогда *скалярным произве*-*дением векторов* называться скалярная величина, равная сумме произведений

одноименных координат:

$$(\vec{x} + \vec{y}) = x_1 y_1 + x_2 y_2 + \dots + x_k y_k = \sum_{i=1}^k x_i y_i$$
 (1.1.3)

4. Норма или длина вектора

Длина вектора $\vec{x} = (x_1, x_2, ..., x_k)$ вычисляется по формуле:

$$||\vec{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_k^2} = \sqrt{\sum_{i=1}^k x_i^2}$$
 (1.1.4)

5. Расстояние между двумя точками или векторами

Если $\vec{x} = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$ и $\vec{y} = (y_1, y_2, ..., y_k) \in \mathbb{R}^k$, то расстояние между точками $\rho(\vec{x}, \vec{y})$ определяется длиной вектора $(\vec{x} - \vec{y})$:

$$\rho(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_k - y_k)^2} = \sqrt{\sum_{i=1}^k (x_i - y_i)^2}$$

$$= \sqrt{\sum_{i=1}^k (x_i - y_i)^2} \quad (1.1.5)$$

Если в множестве \mathbb{R}^k введены рассмотренные выше операции с векторами, то оно называется **k-мерным Евклидовым пространством**.

2. Понятие функции многих переменных

Начнем с определения функции одной переменной.

Если каждому числу x из множества \mathbb{E} , которое является подмножеством действительных чисел \mathbb{R} , соответствует число y из множества Y, также являющегося подмножеством \mathbb{R} в соответствии с правилом f, то говорят, что на множестве \mathbb{E} задана функция y=f(x). Множество \mathbb{E} называют областью определения функции, а Y — множеством её значений.

Функция нескольких переменных определяется аналогично, только вместо одного числа используются несколько независимых переменных.

Определение функции к независимых переменных

Если каждому вектору $\vec{x}=(x_1,x_2,...,x_k)$ из множества $\mathbb{E}\subset\mathbb{R}^k$ соответствует число y из множества $Y\subset\mathbb{R}$ по правилу f, то на множестве \mathbb{E} задана функция нескольких переменных, которую обозначают как $y=f(\vec{x})$ или $y=f(x_1,x_2,...,x_k)$.

Здесь $x_1, x_2, ..., x_k$ — независимые переменные (аргументы функции), а y — зависимая переменная.

Множество $\mathbb{E}\subset\mathbb{R}^k$ называют областью определения функции, а множество $Y\subset\mathbb{R}$ — её множеством значений.

Частные случаи функций многих переменных

Рассмотрим функции двух и трех переменных. Для функции двух переменных:

- Если k = 2, то $y = f(x_1, x_2)$, что записывается как z = f(x, y);
- \cdot Если k=3, то $y=f(x_1,x_2,x_3)$, что записывается как w=f(x,y,z).

Особенно важна функция двух переменных z=f(x,y), где x и y — независимые переменные. Область определения этой функции — множество точек (x,y), принадлежащих некоторому подмножеству $\mathbb{E} \subset \mathbb{R}^2$. Зависимая переменная z принимает значения из множества $Z \subset \mathbb{R}$, которое откладывается по вертикальной оси в пространстве XYZ.

По определению функции, каждой паре $(x,y)\in\mathbb{E}$ ставится в соответствие единственное значение z по закону f. Это означает, что функция двух переменных имеет графическое представление в виде поверхности в пространстве. Эта поверхность состоит из всех значений функции во всех точках области определения \mathbb{E} .

Параболоид вращения (Рис. 2)

$$z = x^2 + y^2$$

O.О. $(x,y) \in \mathbb{R}, \, z \geqslant 0$ - множество значений

Рис. 2. Параболоид

Коническая поверхность (Рис. 3)

$$z^2 = x^2 + y^2$$

– это неявно заданная функция. Выразим из уравнения $z, z=\pm\sqrt{x^2+y^2}$ - получаем две явно заданные функции:

1.
$$z = \sqrt{x^2 + y^2}, (x, y) \in \mathbb{R}^2, z \ge 0$$

2.
$$z = -\sqrt{x^2 + y^2}, (x, y) \in \mathbb{R}^2, z \le 0$$

Рис. 3. Коническая поверхность

Сфера с цетром в начале (Рис. 4)

$$x^2 + y^2 + z^2 = R^2$$

Функция $z=\sqrt{R^2-x^2-y^2}$ задает верхнюю половину сферы. Здесь область определения $R^2-x^2-y^2\geqslant 0\Rightarrow x^2+y^2\leqslant R^2$ - круг радиуса R, а множество значений $0\leqslant z\leqslant R$.

Функция $z=-\sqrt{R^2-x^2-y^2}$ задает нижнюю половину сферы, область определения $x^2+y^2\leqslant R^2,$ а множество значений $-R\leqslant z\leqslant 0.$

Замечание: Функции, большего числа переменных, не имеют геометрического изображения.

Рис. 4. Сфера с цетром в начале

3. Понятие предела функции многих переменных

Предел функции одной переменной

Вспомним определение предела для функции одной действительной переменной. Пусть y=f(x), где $x\in\mathbb{E}\subset\mathbb{R}$. Точка x=a является предельной точкой множества \mathbb{E} ; она может как принадлежать \mathbb{E} , так и не принадлежать ему $(a\in\mathbb{E}$ или $a\notin\mathbb{E})$.

$$\lim_{x \to a} f(x) = A \Leftrightarrow (\forall \varepsilon > 0) (\exists \delta = \delta(\varepsilon) > 0) (\forall x \in \mathbb{E}, \ 0 < |x - a| < \delta) :$$

$$|f(x) - A| < \varepsilon \quad (1.3.1)$$

В определении предела неравенство $0<|x-a|<\delta$ означает, что $x\in(a-\delta,a+\delta)$ и $x\neq a$. Геометрический смысл модуля $|x-a|=\rho(x,a)$ — это расстояние между точками x и a на действительной оси, причём $0<\rho(x,a)<\delta$.

Предел функции многих переменных

Обобщим определение предела на случай функции многих переменных. Пусть $y=f(\vec{x})=f(x_1,x_2,\ldots,x_k)$ определена на множестве $\mathbb{E}\subset\mathbb{R}^k$. Точка $\vec{a}=(a_1,a_2,\ldots,a_k)$ является предельной для \mathbb{E} и может как принадлежать \mathbb{E} , так и не принадлежать ему $(\vec{a}\in\mathbb{E}$ или $\vec{a}\notin\mathbb{E}$).

Расстояние между точками в \mathbb{R}^k было введено в Раздел 1.1:

$$\rho(\vec{x}, \vec{a}) = \|\vec{x} - \vec{a}\| = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_k - a_k)^2}.$$
 (1.3.2)

Рис. 5. Интервал $(a - \delta, a + \delta)$ с выколотой точкой

Предел функции многих переменных обозначается следующим образом:

$$\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = A \quad \text{или} \quad \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2}} f(x_1, x_2, \dots, x_k) = A.$$
 (1.3.3)
$$\vdots$$

$$\vdots$$

$$x_k \to a_k$$

На языке « ε - δ » определение аналогично (1.3.1), но вместо чисел x и a используются векторы \vec{x} и \vec{a} , а модуль |x-a| заменяется на норму $||\vec{x}-\vec{a}||$:

$$(\forall \varepsilon > 0) (\exists \delta = \delta(\varepsilon) > 0) (\forall \vec{x} \in \mathbb{E}, \ 0 < ||\vec{x} - \vec{a}|| < \delta) : |f(\vec{x}) - A| < \varepsilon$$
 (1.3.4)

Замечание о пределах

Замечание. Поскольку определение предела (1.3.4) для функции многих переменных совпадает с определением для функции одной переменной, все теоремы о пределах, доказанные для случая одной переменной, переносятся на случай многих переменных.

Двойной предел

Рассмотрим предел функции двух переменных z = f(x,y), называемый двойным пределом. Пусть точка $M(x,y) \in \mathbb{E} \subset \mathbb{R}^2$ принадлежит области определения функции, а точка $M_0(a,b)$ является предельной для \mathbb{E} ($M_0 \in \mathbb{E}$ или $M_0 \notin \mathbb{E}$). Тогда:

$$A = \lim_{\substack{M \to M_0}} f(x, y) = \lim_{\substack{x \to a \\ y \to b}} f(x, y).$$
 (1.3.5)

Расстояние между точками M и M_0 вычисляется по формуле:

$$\rho(M, M_0) = \sqrt{(x-a)^2 + (y-b)^2} < \delta.$$

На языке « ε - δ » двойной предел записывается так:

$$(\forall \varepsilon > 0) (\exists \delta = \delta(\varepsilon) > 0) (\forall (x, y) \in \mathbb{E}, 0 < \sqrt{(x - a)^2 + (y - b)^2} < \delta) : \tag{1.3.6}$$

$$|f(x,y) - A| < \varepsilon \tag{1.3.7}$$

Геометрический смысл двойного предела

Рассмотрим геометрический смысл неравенства:

$$0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta = \delta(\varepsilon), \tag{1.3.8}$$

$$0 < (x - a)^{2} + (y - b)^{2} < \delta^{2}(\varepsilon). \tag{1.3.9}$$

Это задаёт круг радиуса $\delta(\varepsilon)$ с выколотым центром в точке $M_0(a,b)$. Такой круг называют δ -окрестностью точки M_0 (Рис. 6).

Для сравнения: в случае функции y=f(x) δ -окрестность точки a — это интервал $(a-\delta,a+\delta)$ с выколотой точкой a (Рис. 5).

Независимость предела от пути

Из определения двойного предела следует, что если предел существует, то он не зависит от пути, по которому точка M приближается к M_0 . Число возможных направлений бесконечно, в отличие от функции одной переменной, где таких направлений всего два (слева и справа от точки a).

Примеры решения двойных пределов

1. Вместо x и y подставляем предельные значения:

$$\lim_{\substack{x \to 1 \\ y \to 1 \\ y \to 2}} \frac{x \cdot y}{x^2 + y^2} = \frac{1 \cdot 2}{1^2 + 2^2} = \frac{2}{5}$$

2. По теореме и произведении бесконечно малых на ограниченную:

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x + y \cdot \sin \frac{1}{x}) = \lim_{\substack{x \to 0 \\ y \to 0}} x + \lim_{\substack{x \to 0 \\ y \to 0}} y \cdot \sin \frac{1}{x} = 0$$

3. Используя первый замечательный предел:

$$\lim_{\substack{x \to \infty \\ y \to 2}} \left(x \cdot \sin \frac{1}{xy} \right) \left[\infty \cdot 0 \right] = \lim_{\substack{x \to \infty \\ y \to 2}} \left(\frac{\sin \frac{1}{xy}}{\frac{1}{x}} \right) \left[\frac{0}{0} \right] =$$

$$= \lim_{\substack{x \to \infty \\ y \to 2}} \left(\frac{\sin \frac{1}{xy}}{\frac{1}{xy} \cdot y} \right) = \lim_{y \to 2} \frac{1}{y} = \frac{1}{2}$$

4. Покажем что предел не существует. Для этого выберем окрестность предельной точки $M_0(0,0)$ и предположим, что точка $M(x,y) \to M_0(0,0)$ по различным путям (выше уже было сказано, что число таких направлений бесконечно). Для простоты выберем две прямые: y=x и y=-x

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{x^2 + y^2} = \begin{vmatrix} y = x \\ x \to 0 \\ y \to 0 \end{vmatrix} = \lim_{x \to 0} \frac{x^2}{x^2 + x^2} = \lim_{x \to 0} \frac{x^2}{2x^2} = \frac{1}{2}$$

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{x^2 + y^2} = \begin{vmatrix} y = -x \\ x \to 0 \\ y \to 0 \end{vmatrix} = \lim_{x \to 0} \frac{x \cdot (-x)}{x^2 + (-x)^2} = \lim_{x \to 0} \frac{x^2}{2x^2} = -\frac{1}{2}$$

Таким образом, рассмотрели 2 частных предела, они не равны между собой, следовательно двойной предел не существует.

4. Понятие непрерывности функции многих переменных

Непрерывность функции одной переменной

Вспомним определение непрерывной функции одного действительного переменного. Функция y=f(x), где $x\in E\subset \mathbb{R}$, называется непрерывной в точке $x_0\in E$, если $\lim_{x\to x_0}f(x)=f(x_0)$, то есть предел f(x) при $x\to x_0$ равен значению функции в точке x_0 .

В этом случае предельная точка $x_0 \in E$, поэтому на языке $\varepsilon - \delta$ -определение принимает вид:

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall x \in E \subset \mathbb{R}, |x - x_0| < \delta) : |f(x) - f(x_0)| < \varepsilon$$
 (1.4.1)

Приращение функции одной переменной

Если в определении (1.4.1) $(x-x_0=\Delta x)$ приращение аргумента, $f(x)-f(x_0)=\Delta f(x_0)$ – приращение функции, то определение (1.4.1) можно записать в виде:

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall x \in E \subset \mathbb{R}, |\Delta x| < \delta) : |\Delta f(x_0)| < \varepsilon$$
(1.4.2)

Поэтому из непрерывной функции малым приращением аргумента соответствуют малые приращения функции.

Непрерывность функции многих переменных

Обобщим определения непрерывности функции одной переменной на случай функции многих переменных. Пусть на множестве $E \subset \mathbb{R}^k$ задана функция $y = f(\vec{x})$, где $\vec{x} = (x_1, x_2, ..., x_k) \in E \subset \mathbb{R}^k$ и пусть $\vec{x}_0 = (x_{0_1}, x_{0_2}, ..., x_{0_k}) \in E \subset \mathbb{R}^k$ - предельная точка множества E.

Функция $y = f(\vec{x})$ называется непрерывной в точке \vec{x}_0 , если:

$$\lim_{\vec{x} \to \vec{x}_0} f(\vec{x}) = f(\vec{x}_0) \qquad \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_1 \\ \dots \\ x_k \to a_k}} f(x_1, x_2, \dots, x_k) = f(x_{0_1}, x_{0_2}, \dots, x_{0_k})$$
(1.4.3)

Непрерывность на языке « $\varepsilon - \delta$ »

На языке « $\varepsilon - \delta$ » это определение получается из определения (1.4.1) при замене $x \to \vec{x}, \, x_0 \to \vec{x}_0$ и $|x - x_0| \to ||\vec{x} - \vec{x}_0||$.

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall \vec{x} \in E \subset \mathbb{R}^k, ||\vec{x} - \vec{x}_0|| < \delta) : |f(\vec{x}) - f(\vec{x}_0)| < \varepsilon$$
 (1.4.4)

Приращение аргументов и функции

В определении (1.4.4) обозначим:

$$\Delta \vec{x} = \vec{x} - \vec{x}_0 = (x_1 - x_{0_1}, x_2 - x_{0_2}, ..., x_k - x_{0_k}) = (\Delta x_1, \Delta x_2, ..., \Delta x_k)$$
(1.4.5)

вектор приращения аргументов.

$$\Delta f(\vec{x}) = f(\vec{x}) - f(\vec{x}_0) \tag{1.4.6}$$

— приращение функции, аналогичное (1.4.2), только здесь Δx заменяем на вектор $\Delta \vec{x}$, и соответственно $|\Delta x|$ заменяем на $||\Delta \vec{x}||$.

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall \vec{x} \in E \subset \mathbb{R}^k, ||\Delta \vec{x}|| < \delta) : |\Delta f(\vec{x}_0)| < \varepsilon$$
(1.4.7)

— здесь $||\Delta \vec{x}|| = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2 + \dots + (\Delta x_k)^2}$.

Полное приращение функции

Если дать приращение переменной \vec{x} в точке \vec{x}_0 по все независимым переменным одновременной т.е. $\vec{x}-\vec{x}_0=\Delta\vec{x}\Rightarrow\vec{x}=\vec{x}_0+\Delta\vec{x}=(x_1+x_{0_1},x_2+x_{0_2},...,x_k+x_{0_k})$, то приращение, которое получит функция $f(\vec{x})$ в точке \vec{x}_0 называется полным приращением функции (1.4.8).

$$\Delta f(\vec{x}_0) = f(\vec{x}) - f(\vec{x}_0) = f(\vec{x}_0 + \Delta \vec{x}) =$$

$$= f(x_1 + x_{0_1}, x_2 + x_{0_2}, ..., x_k + x_{0_k}) - f(x_{0_1}, x_{0_2}, ..., x_{0_k}) \quad (1.4.8)$$

Непрерывность по совокупности переменных

Тогда определение непрерывности (1.4.7) словами можно сформулировать так: Функция $y = f(\vec{x})$ непрерывна в точке \vec{x}_0 по совокупности переменные (т.е. по всем переменным $x_1, x_2, ..., x_k$ одновременно), если малым приращениям всех независимых переменных соответствует малое полное приращение функции.

Частное приращение функции

Для функции многих переменных приращение аргумента можно давать также только по отдельности переменной. Обозначим ее x_i , где $i=1,2,...,\vec{k}$, что означает либо по x_1 , либо по x_2 , ..., либо по x_k . Вектор приращений аргументов в этом случае принимает вид:

$$\Delta \vec{x} = (0, ..., 0, \Delta x_i, 0, ..., 0)$$

$$\vec{x} = \vec{x}_0 + \Delta \vec{x} = (x_{0_1}, ..., x_{0_{i-1}}, x_{0_i} + \Delta x_i, x_{0_{i+1}}, ..., x_{0_k})$$

Тогда приращение, которое получит функция в этом случае, называется **частным приращением функции** в точке \vec{x}_0 по переменной x_i и обозначается $\Delta_i f(\vec{x}_0)$:

$$\Delta_{i}f(\vec{x}_{0}) = f(\vec{x}_{0} + \Delta \vec{x}) - f(\vec{x}_{0}) = f(x_{0_{1}}, \dots, x_{0_{i-1}}, x_{0_{i}} + \Delta x_{i}, x_{0_{i+1}}, \dots, x_{0_{k}}) - f(x_{0_{1}}, \dots, x_{0_{i-1}}, x_{0_{i}}, x_{0_{i+1}}, \dots, x_{0_{k}})$$
(1.4.9)

Непрерывность по отдельной переменной

Функция $y=f(\vec{x})$ называется непрерывной в точке \vec{x}_0 по отдельной переменной $x_i,$ если:

$$\lim_{x_i \to x_{0_i}} f(x_{0_1}, ..., x_{0_{i-1}}, x_{0_i}, x_{0_{i+1}}, ..., x_{0_k}) =$$

$$= f(x_{0_1}, ..., x_{0_{i-1}}, x_{0_i}, x_{0_{i+1}}, ..., x_{0_k}), \quad (1.4.10)$$

здесь i=1,k, т.е. функция может быть непрерывной, либо по переменной $x_1,$ либо $x_2,$..., либо по x_k . В этом случае:

$$||\Delta \vec{x}|| = \sqrt{0 + \dots + 0 + (\Delta x_i)^2 + \dots + 0} = \sqrt{(\Delta x_i)^2} = |\Delta x_i|$$
 (1.4.11)

Тогда определение (1.4.7) принимает вид и значит:

$$(\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall \vec{x} \in E \subset \mathbb{R}^k, |\Delta x_i| < \delta) : |\Delta_i f(\vec{x}_0)| < \varepsilon$$
 (1.4.12)

Функция $y = f(\vec{x})$ называется непрерывной в точке \vec{x}_0 по переменной x_i , если малым приращением этой переменной Δx_i , соответствует малое частное приращение функции $\Delta_i f(\vec{x}_0)$.

Теорема и замечание

Теорема (без доказательства)

Если функция $y=f(\vec{x})$ непрерывна в точке \vec{x}_0 по совокупности переменных, то она будет непрерывна и по каждой переменной в отдельности. Обратно утверждение не всегда верно.

Замечание

Если функция $y=f(\vec{x})$ непрерывна по совокупности переменных, то для нее будет выполняться все теоремы о непрерывности, доказанные для функции одной переменной.

II. ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

1. Определение частных производных и их геометрический смысл

Функция одной переменной

Рассмотрим функцию y=f(x), где $x\in E\subset \mathbb{R}$ и $y\in E$. Запишем определение производной в точке x_0 . Для этого зададим приращение аргумента $\Delta x=x-x_0$ (или $x=x_0+\Delta x$) и вычислим приращение функции:

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0).$$

Производной функции в точке называется предел отношения приращения функции к приращению аргумента при $\Delta x \to 0$:

$$\lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = f'(x_0) = \frac{dy}{dx} \bigg|_{x = x_0} = \frac{df(x_0)}{dx}.$$
 (2.1.1)

Функция многих переменных

Теперь обобщим определение (2.1.1) на случай функции многих переменных $y = f(\vec{x}) = f(x_1, x_2, \dots, x_k)$. Поскольку дифференцирование проводится по одной переменной, зададим приращение в точке \vec{x}_0 только по переменной x_i . Вектор приращений имеет вид:

$$\Delta \vec{x} = (0, \dots, 0, \Delta x_i, 0, \dots, 0),$$

тогда:

$$\vec{x} = \vec{x}_0 + \Delta \vec{x} = \left(x_0^{(1)}, \dots, x_0^{(i-1)}, x_0^{(i)} + \Delta x_i, x_0^{(i+1)}, \dots, x_0^{(k)}\right).$$

Соответствующее частное приращение функции:

$$\Delta_i f(\vec{x}_0) = f\left(x_{0_1}, \dots, x_{0_{i-1}}, x_{0_i} + \Delta x_i, x_{0_{i+1}}, \dots, x_{0_k}\right) - f\left(x_{0_1}, \dots, x_{0_k}\right). \tag{2.1.2}$$

Частная производная

По аналогии с (2.1.1) определим частную производную как предел:

$$\exists \lim_{\Delta x_i \to 0} \frac{\Delta_i f(\vec{x}_0)}{\Delta x_i}.$$
 (2.1.3)

Если этот предел существует, то он называется частной производной функции $y = f(\vec{x})$ в точке \vec{x}_0 по переменной x_i и обозначается:

$$f'_{x_i}(\vec{x}_0) = \frac{\partial f(\vec{x}_0)}{\partial x_i}.$$
 (2.1.4)

Замечание: Запись $\frac{df(\vec{x}_0)}{dx_i}$ не используется для частных производных.

Частные производные первого порядка

Поскольку производная вычисляется по одной из k независимых переменных, функция $y = f(x_1, x_2, \dots, x_k)$ имеет k частных производных первого порядка:

$$\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_k}.$$
 (2.1.5)

Функция двух переменных

Рассмотрим частный случай z=f(x,y). В точке $M_0(x_0,y_0)$ зададим приращение Δx по переменной x. Частное приращение:

$$\Delta_x z(M_0) = f(x_0 + \Delta x, y_0) - f(x_0, y_0). \tag{2.1.6}$$

Частная производная по x:

$$\frac{\partial z(M_0)}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x z(M_0)}{\Delta x}.$$
 (2.1.7)

Аналогично для приращения Δy по y:

$$\frac{\partial z(M_0)}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}.$$
 (2.1.8)

Правила вычисления

При вычислении $\frac{\partial z}{\partial x}$ переменная y считается константой, и наоборот. Используются стандартные правила дифференцирования:

- Производная константы равна нулю.
- Константа выносится за знак производной.

Геометрический смысл

Функция z = f(x,y) задаёт поверхность в \mathbb{R}^3 . Точке $M_0(x_0,y_0)$ соответствует точка $N(x_0,y_0,z_0)$ на поверхности.

Производная по х (Рис. 8). При $y=y_0$ получаем сечение поверхности плоскостью, параллельной XOZ. Частная производная $\frac{\partial z}{\partial x}$ равна тангенсу угла α наклона касательной к этому сечению:

$$\operatorname{tg} \alpha = \frac{\partial z(M_0)}{\partial x}.$$

Производная по у (Рис. 9). Аналогично, при $x = x_0$:

$$\operatorname{tg} \beta = \frac{\partial z(M_0)}{\partial y}.$$

Рис. 9. Геометрический смысл $\frac{\partial z}{\partial y}$.

Рис. 8. Геометрический смысл $\frac{\partial z}{\partial x}$.

2. Дифференцируемые функции

Определение дифференцируемой функции y=f(x) в точке x_0

Функция y=f(x) называется **дифференцируемой в точке** x_0 , если её приращение в этой точке представимо в виде:

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = A \cdot \Delta x + \alpha(\Delta x) \to 0$$
 (2.2.1)

где $A=const,\ \alpha(\Delta x)$ - бесконечно малая при $\Delta x\to 0$, т.е. $\alpha(\Delta x)\cdot \Delta x$ - величина бесконечно малая, более высокого порядка малости, чем Δx .

Необходимое и достаточное условие дифференцируемости функции одной переменной

Существование конечной производной в точке x_0 .

Было доказано, что $A=f'(x_0)$ и определение дифференцируемой функции можно представить следующим образом:

$$\Delta f(x_0) = f'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x \qquad \alpha(\Delta x) \cdot \Delta x = O(\Delta x)$$
 (2.2.2)

Определение функции многих переменных $y = f(\vec{x})$

Функция
$$\boxed{y=f(\vec{x})}=f(x_1,x_2,...,x_k)$$
, где $\vec{x}\in\mathbb{E}\subset\mathbb{R}^k$ называется дифференци-

руемой в точке $\boxed{\vec{x}_0} = (x_{0_1}, x_{0_2}, ..., x_{0_k}) \in \mathbb{E} \subset \mathbb{R}^k$, если ее полное приращение:

$$\Delta f(\vec{x}_0) = f(\vec{x}_0 + \Delta \vec{x}) - f(\vec{x}_0) =$$

$$= f(x_{0_1} + \Delta x_1, x_{0_2} + \Delta x_2, ..., x_{0_k} + \Delta x_k) - f(x_{0_1}, x_{0_2}, ..., x_{0_k})$$

Также можно представить в виде:

$$\Delta f(\vec{x}_0) = \vec{A} \cdot \Delta \vec{x} + \vec{\alpha}(\Delta \vec{x}) \cdot \Delta \vec{x}$$
(2.2.3)

- $\vec{A} = (A_1, A_2, ..., A_k)$ постоянный вектор;
- · $\Delta \vec{x} = (\Delta x_1, \Delta x_2, \dots, \Delta x_k)$ вектор приращений;
- · $\vec{\alpha}(\Delta \vec{x}) = (\alpha_1(\Delta \vec{x}), \alpha_2(\Delta \vec{x}), ..., \alpha_k(\Delta \vec{x}))$, причем $\alpha_1(\Delta \vec{x}) \to \vec{0}$, при $\Delta \vec{x} \to \vec{0}$. ($\vec{0}$ ноль вектор);

Распишем в определении 2.2.3 скалярное произведение:

$$\vec{A} \cdot \Delta \vec{x} = A_1 \Delta x_1 + A_2 \Delta x_2 + \dots + A_k \Delta x_k = \sum_{i=1}^k A_i \Delta x_i$$
$$= \alpha_1 (\Delta \vec{x}) \cdot \Delta x_1 + \alpha_2 (\Delta \vec{x}) \cdot \Delta x_2 + \dots + \alpha_k (\Delta \vec{x}) \cdot \Delta x_k = \sum_{i=1}^k \alpha_i (\Delta x_i)$$

$$\vec{\alpha}(\Delta \vec{x}) \cdot \Delta \vec{x} = \alpha_1(\Delta \vec{x}) \cdot \Delta x_1 + \alpha_2(\Delta \vec{x}) \cdot \Delta x_2 + \dots + \alpha_k(\Delta \vec{x}) \cdot \Delta x_k = \sum_{i=1}^k \alpha_i(\Delta x) \Delta x_i$$

Тогда получаем определение дифференцируемой функции в **координатной фор**ме:

$$\Delta f(\vec{x}_0) = \sum_{i=1}^k A_i \cdot \Delta x_i + \sum_{i=1}^k \alpha_i (\Delta \vec{x}) \cdot x_i$$
(2.2.4)

Необходимые условия дифференцируемости

Если функция $y=f(\vec{x})$ дифференцируема в точке \vec{x}_0 , то она имеет в этой точке частные производные.

Доказательство: Запишем определение дифференцируемой функции в координатной форме 2.2.3.

$$\Delta f(\vec{x}_0) = \sum_{i=1}^k A_i \Delta x_i + \sum_{i=1}^k \alpha_i (\Delta \vec{x}) \cdot \vec{x}_i$$

Зададим вектор приращений $\Delta \vec{x}$ в виде: $\Delta \vec{x} = (0,...,0,\Delta x_i,0,...,0)$. Тогда полное приращение в записанной формуле будет совпадение с частным приращением в

точке \vec{x}_0 по переменой x_i и в сумме останется только два слагаемых:

$$\Delta f(\vec{x}_0) = \Delta_i f(\vec{x}_0) = A_i \cdot \Delta x_i + \alpha_i (\Delta \vec{x}) \cdot x_i \qquad \text{(поделим обе части на } \Delta x_i)$$

$$\frac{\Delta_i f(\vec{x}_0)}{\Delta x_i} = \frac{A_i \cdot \Delta x_i + \alpha_i (\Delta \vec{x}) \cdot \Delta x_i}{\Delta x_i} = A_i + \alpha_i (\Delta \vec{x}) \quad |_{\lim_{\Delta x_i \to 0}}$$

$$\lim_{\Delta x_i \to 0} \frac{\Delta_i f(\vec{x}_0)}{\Delta x_i} = \lim_{\Delta x_i \to 0} (A_i + \alpha_i (\Delta \vec{x})) = A_i + \lim_{\Delta x_i \to 0} \alpha_i (\Delta \vec{x}) = A_i$$

С другой стороны:
$$A_i = \lim_{\Delta x_i \to 0} \frac{\Delta_i f(\vec{x}_0)}{\Delta x_i} = \frac{\partial f(\vec{x}_0)}{\partial x_i} \Rightarrow A_i = \frac{\partial f(\vec{x}_0)}{\partial x_i}$$
 ($i = 1, 2, ..., k$).

Тогда получается, что координаты постоянного вектора \vec{A} равны частным производным функции $f(\vec{x})$ в точке \vec{x}_0 по всем независимым переменным.

$$\vec{A} = (\frac{\partial f(\vec{x}_0)}{\partial x_1}, \frac{\partial f(\vec{x}_0)}{\partial x_2}, ..., \frac{\partial f(\vec{x}_0)}{\partial x_k})$$
 (2.2.5)

Вектор, координатами которого являются частные производные, называется градиентом функции в точке \vec{x}_0 и обозначается grad $f(\vec{x}_0)$.

$$\vec{A} = \operatorname{grad} f(\vec{x}_0) = \left(\frac{\partial f(\vec{x}_0)}{\partial x_1}, \frac{\partial f(\vec{x}_0)}{\partial x_2}, ..., \frac{\partial f(\vec{x}_0)}{\partial x_k}\right)$$

Тогда из определений (2.2.2) и (2.2.3) получаем еще одно определение дифференцируемой функции.

$$\Delta f(\vec{x}_0) = \operatorname{grad} f(\vec{x}_0) \cdot \Delta \vec{x} + \vec{\alpha}(\Delta \vec{x}) \cdot \Delta \vec{x}$$
 (2.2.6)

$$\Delta f(\vec{x}_0) = \sum_{i=1}^k \frac{\partial f(\vec{x}_0)}{\partial x_i} \Delta x_i + \sum_{i=1}^k \alpha_i (\Delta \vec{x}) \cdot \Delta x_i$$
 (2.2.7)

Достаточное условие дифференцируемости

Если функция $y=f(\vec{x})$ имеет частные производные по всех переменным в окрестности точки $\vec{x}_0\in\mathbb{E}\subset\mathbb{R}^k$, причем частные производные:

$$\left(\frac{\partial f(\vec{x}_0)}{\partial x_1}, \frac{\partial f(\vec{x}_0)}{\partial x_2}, ..., \frac{\partial f(\vec{x}_0)}{\partial x_k}\right) - \text{непрерывна в точке } \vec{x}_0,$$

то функция $y = f(\vec{x})$ дифференцируема в точке \vec{x}_0 . (Без доказательства)

Рассмотрим частный случай k=2 и из определений (2.2.6) и (2.2.7) запишем определение дифференцируемой функции 2-х переменных в точке $\vec{x}_0=(x_{0_1},x_{0_2})$.

$$y = f(x_1, x_2), \quad \operatorname{grad} f(\vec{x}_0) = \left(\frac{\partial f(\vec{x}_0)}{\partial x_1}, \frac{\partial f(\vec{x}_0)}{\partial x_2}\right)$$

$$\Delta \vec{x} = (\Delta x_1, \Delta x_2), \qquad \vec{\alpha}(\Delta \vec{x}) = (\alpha_1(\Delta x_1, \Delta x_2), \alpha_2(\Delta x_1, \Delta x_2))$$

$$\begin{split} \Delta f(\vec{x}_0) &= \operatorname{grad} f(\vec{x}_0) \cdot \Delta \vec{x} + \vec{\alpha}(\Delta \vec{x}) \cdot \Delta \vec{x} = \\ &= \frac{\partial f(\vec{x}_0)}{\partial x_1} \Delta x_1 + \frac{\partial f(\vec{x}_0)}{\partial x_2} \Delta x_2 + \alpha_1 (\Delta x_1 \Delta x_2) \Delta x_1 + \alpha_2 (\Delta x_1 \Delta x_2) \Delta x_2 \end{split}$$

Рассмотрим функцию z = f(x,y), тогда в полученном определении заменим x_1 на x, а x_2 на y, $\Delta \vec{x} = (\Delta x, \Delta y)$, $\vec{\alpha}(\Delta \vec{x}) = (\alpha_1(\Delta x, \Delta y), \alpha_2(\Delta x, \Delta y))$.

Получаем определение дифференцируемой функции для двух переменных.

$$\Delta z(M_0) = \frac{\partial f(M_0)}{\partial x} \Delta x + \frac{\partial f(M_0)}{\partial y} \Delta y + \alpha_1(\Delta x, \Delta y) \Delta x + \alpha_2(\Delta x, \Delta y) \Delta y$$
 (2.2.8)

Теорема о связи между непрерывностью и дифференцированностью функции многих переменных

Если функции $y=f(\vec{x})$ дифференцируема в точке $\vec{x}_0\in\mathbb{E}\subset\mathbb{R}^k$, то она непрерывна в этой точке.

Доказательство: Запишем определение дифференцируемой функции в форме (2.2.3):

$$\Delta f(\vec{x}_0) = \vec{A} \cdot \Delta \vec{x} + \vec{\alpha}(\Delta \vec{x}) \cdot \Delta \vec{x}$$

, здесь $\vec{\alpha}(\Delta \vec{x}) \to \vec{0}$, при $\Delta \vec{x} \to \vec{0}$. Перейдем к пределу при $\Delta \vec{x} \to \vec{0}$.

$$\lim_{\Delta \vec{x} \to \vec{0}} \Delta f(\vec{x}_0) = \lim_{\Delta \vec{x} \to \vec{0}} \left(\vec{A} \cdot \Delta \vec{x} + \vec{\alpha} (\Delta \vec{x}) \cdot \Delta \vec{x} \right) = 0$$

т.е. малым приращениям аргументов ($\Delta \vec{x} = (\Delta x_1, \Delta x_2, ..., \Delta x_k) \to \vec{0}$) соответствует малое полное приращение функции. Это означает, что функция $y = f(\vec{x})$ непрерывна в точке \vec{x}_0 по совокупности переменных.

Замечание: Обратное утверждение не всегда верно, по аналогии с функцией y=|x| в точке x=0. Функция непрерывна при x=0, но в точке не имеет производной.

3. Дифференциальная функция многих переменных

Если функция y = f(x) дифференцируема в точке x_0 , что ее приращение представимо в виде:

$$\Delta f(x_0) = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x = A \cdot \Delta x + O(\Delta x)$$
, m.r. $\alpha(\Delta x) \to 0$ npu $\Delta x \to 0$

Приращение функции состоит из двух частей, $A\cdot \Delta x$ — линейной относительно Δx и величине более высокого порядка малости, чем Δx . Главная линейная часть называется дифференциалом функции и обозначается $dy = A\cdot \Delta x$, но $A = f'(x_0)$, а $\Delta x = dx$, тогда $dy = f'(x_0) dx$.

Рассмотрим функцию многих переменных $y = f(\vec{x}), \vec{x} \in E \subset \mathbb{R}^k$. Запишем определение дифференцируемой функции в точке x_0 в виде (2.2.6) и (2.2.7).

$$\Delta f(\vec{x}_0) = \left[\operatorname{grad} f(\vec{x}_0) \cdot \Delta \vec{x} \right] + \vec{\alpha}(\Delta \vec{x}) \cdot \Delta \vec{x}$$

$$\Delta f(\vec{x}_0) = \left[\sum_{i=1}^k \frac{\partial f(\vec{x}_0)}{\partial x_i} \Delta x_i \right] + \sum_{i=1}^k \alpha_i(\Delta \vec{x}) \cdot \Delta x_i$$

Выделенные части определения представляет линейную относительно $\Delta \vec{x}$ часть приращения функции, которая называется **дифференциалом**.

$$dy = \operatorname{grad} f(\vec{x}_0) \cdot \Delta \vec{x} = \sum_{i=1}^k \frac{\partial f(\vec{x}_0)}{\partial x_i} \Delta x_i =$$

$$= \frac{\partial f(\vec{x}_0)}{\partial x_1} \Delta x_1 + \frac{\partial f(\vec{x}_0)}{\partial x_2} \Delta x_2 + \dots + \frac{\partial f(\vec{x}_0)}{\partial x_k} \Delta x_k$$

Приращения независимых переменных обозначим через **дифференциал** независимых переменных: $\Delta x_1 = dx_1, \ \Delta x_2 = dx_2, \ ..., \ \Delta x_k = dx_k.$

Тогда дифференциалом функции многих переменных будет равен:

$$dy = \frac{\partial f(\vec{x}_0)}{\partial x_1} dx_1 + \frac{\partial f(\vec{x}_0)}{\partial x_2} dx_2 + \dots + \frac{\partial f(\vec{x}_0)}{\partial x_k} dx_k = \sum_{i=1}^k \frac{\partial f(\vec{x}_0)}{\partial x_i} dx_i$$

Выражения вида $\frac{\partial f(\vec{x}_0)}{\partial x_i} dx_i$ называются **частными дифференциальными** и обозначаются:

$$d_i f(\vec{x}_0) = \frac{\partial f(\vec{x}_0)}{\partial x_i} dx_i \quad (i = 1, ..., k)$$

Тогда полный дифференциал функции dy равен сумме частных дифференциалов по всех независимым переменным.

$$dy = \sum_{i=1}^{k} d_i f(x_0)$$

Примеры

1. $z = f(x,y) \implies d_x z = f'_x dx, \qquad d_y z = f'_y dy$ Тогда для функции двух переменных дифференциал равен:

$$dz = f'_x dx + f'_y dy = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

2. u = f(x, y, z) \Rightarrow $d_x u = \frac{\partial f}{\partial x} dx$, $d_y u = \frac{\partial f}{\partial y} dy$, $d_z u = \frac{\partial f}{\partial z} dz$ Для функции трех переменных дифференциал вычисляется по формуле:

$$du = f'_x dx + f'_y dy + f'_z dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

4. Производная сложной функции

Рассмотрим на примере функции двух переменных. Пусть задана функция z=f(u,v), а ее аргументы являются функциями переменных x и y: u=u(x,y) и v=v(x,y). Тогда получаем сложную функцию z=f(u(x,y),v(x,y)) независимых переменных x и y. Функции u=u(x,y) и v=v(x,y) независимых промежуточными аргументами.

В дальнейшем будем рассматривать функцию двух промежуточных и двух независимых переменных.

Теорема

Если функция z = f(u, v) дифференцируема в точке $(u_0, v_0) \in D \subset \mathbb{R}^2$, а функции $u = u(x,y), \ v = v(x,y)$ дифференцируемы в точке $(x_0, y_0) \in E \subset \mathbb{R}^2$, причем $u_0 = u(x_0, y_0)$ и $v_0 = v(x_0, y_0)$.

Тогда сложная функция z = f(u(x,y),v(x,y)) дифференцируема в точке (x_0,y_0) и ее частные производные в этой точке вычисляются по формулам:

$$\begin{split} \frac{\partial z(x_0,y_0)}{\partial x} &= \frac{\partial f(u_0,v_0)}{\partial u} \times \frac{\partial u(x_0,y_0)}{\partial x} + \frac{\partial f(u_0,v_0)}{\partial v} \times \frac{\partial v(x_0,y_0)}{\partial x} \\ \frac{\partial z(x_0,y_0)}{\partial u} &= \frac{\partial f(u_0,v_0)}{\partial u} \times \frac{\partial u(x_0,y_0)}{\partial u} + \frac{\partial f(u_0,v_0)}{\partial v} \times \frac{\partial v(x_0,y_0)}{\partial u} \end{split}$$

Доказательство: Воспользуемся определением дифференцируемой функции двух переменных (2.2.8).

$$\Delta z(M_0) = \frac{\partial f(M_0)}{\partial x} \Delta x + \frac{\partial f(M_0)}{\partial y} \Delta y + \alpha_1(\Delta x, \Delta y) \Delta x + \alpha_2(\Delta x, \Delta y) \Delta y \qquad (2.4.1)$$

где $a_1(\Delta x, \Delta y) \to 0$ и $\alpha_2(\Delta x, \Delta y) \to 0$, при $\Delta x \to 0$ и $\Delta y \to 0$.

Так как функция z = f(u, v) дифференцируема в точке (u_0, v_0) , то ее полное приращение запишем в виде:

$$\Delta z(u_0, v_0) = \frac{\partial f(u_0, v_0)}{\partial u} \Delta u + \frac{\partial f(u_0, v_0)}{\partial v} \Delta v + \alpha(\Delta u, \Delta v) \Delta u + \beta(\Delta u, \Delta v) \Delta v \quad (2.4.2)$$

где $\alpha(\Delta u, \Delta v) \to 0$ и $\beta(\Delta u, \Delta v) \to 0$, при $\Delta y \to 0$ и $\Delta v \to 0$. Т.к. функции u = u(x,y) и v = v(x,y) дифференцируемы в точке (x_0,y_0) , то их полные приращения имеют вид:

$$\Delta u(x_0, y_0) = \frac{\partial u(x_0, y_0)}{\partial x} \Delta x + \frac{\partial u(x_0, y_0)}{\partial y} \Delta y + \alpha_1(\Delta x, \Delta y) \Delta x + \beta_1(\Delta x, \Delta y) \Delta y$$
(2.4.3)

где $\alpha_1(\Delta x, \Delta y) \to 0$, $\beta_1(\Delta x, \Delta y) \to 0$ при $\Delta x \to 0$ и $\Delta y \to 0$.

$$\Delta v(x_0, y_0) = \frac{\partial u(x_0, y_0)}{\partial x} \Delta x + \frac{\partial v(x_0, y_0)}{\partial y} + \alpha_2(\Delta x, \Delta y) \Delta x + \beta_2(\Delta x, \Delta y) \Delta y \quad (2.4.4)$$

где $\alpha_2(\Delta x, \Delta y) \to 0$, $\beta_2(\Delta x, \Delta y) \to 0$ при $\Delta x \to 0$ и $\Delta y \to 0$.

Подставим $\Delta u(x_0,y_0)$ и $\Delta v(x_0,y_0)$ из выражений (2.4.2) и (2.4.4) в (2.4.1), кроме двух последних слагаемых $\alpha(\Delta u,\Delta v)\Delta u$ и $\beta(\Delta u,\Delta v)\Delta v$, иначе получается громоздкие выражения:

$$\Delta z(u_0, v_0) = \frac{\partial f(u_0, v_0)}{\partial u} \left(\frac{\partial u(x_0, y_0)}{\partial x} \Delta x + \frac{\partial u(x_0, y_0)}{\partial y} \Delta y + \frac{\partial u(x_0, y_0)$$

Соберем коэффициент при Δx и Δy и учтем, что $u_0 = u(x_0, y_0)$ и $v_0 = v(x_0, y_0)$ в левой части выражения (2.4.5).

Следствия

Полученные формулы можно обобщить на любое количество промежуточных аргументов и независимых переменных. Пусть задана по y.

$$y = f(u_1(x_1, x_2, ..., x_k), u_2(x_1, x_2, ..., x_k), ..., u_n(x_1, x_2, ..., x_k))$$
(2.4.6)

n — промежуточных аргументов $u_1, u_2, ..., u_n$ и k независимых переменных $x_1, x_2, ..., x_k$.

Тогда частные производные сложной функции по независимой переменным будет вычисляться по формуле:

$$\frac{\partial y}{\partial x_i} = \frac{\partial f}{\partial u_1} \times \frac{\partial u_1}{\partial x_i} + \frac{\partial f}{\partial u_2} \times \frac{\partial u_2}{\partial x_i} + \dots + \frac{\partial f}{\partial u_k} \times \frac{\partial u_k}{\partial x_i} \quad (i = 1, ..., k)$$
(2.4.7)

При вычислении частных производных от сложной функции <u>нужно запомнить</u>, что от функции f всегда берутся производные по промежуточным переменным, а промежуточные аргументы дифференцируются по независимым переменных x и y.

Полученные формулы являются обобщениями производной сложной функции одной переменной.

$$y = f(u(x)) \quad \Rightarrow \quad \frac{dy}{dx} = \frac{df}{du} \times \frac{du}{dx}$$

$$z = f(u(x,y)) \quad \Rightarrow \quad \frac{\partial z}{\partial x} = \frac{df}{du} \cdot \frac{\partial u}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{df}{du} \cdot \frac{\partial u}{\partial y}$$

$$z = f(u(x,y), v(x,y)) \quad \Rightarrow \quad \frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x},$$

$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$z = f(u(x,y), v(x,y), t(x,y)) \quad \Rightarrow \quad \frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial f}{\partial t} \cdot \frac{\partial t}{\partial x}$$

$$\frac{\partial z(x_0, y_0)}{\partial y} = \frac{\partial f(u_0, v_0)}{\partial u} \cdot \frac{\partial u(x_0, y_0)}{\partial y} + \frac{\partial f(u_0, v_0)}{\partial v} \cdot \frac{\partial v(x_0, y_0)}{\partial y}$$

$$(2.4.8)$$

5. Производные и дифференциалы высших порядков функции многих переменных

Частные производные 2 и 3 порядков

Пусть $y = f(x_1, x_2, \dots, x_k)$ имеет частные производные 1-го порядка по всем независимым переменным:

$$\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_k}.$$
 (2.5.1)

У каждой из таких производных могут существовать частные производные 1-го порядка по всем независимым переменным, которые называются **частными** производными 2-го порядка:

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_i^2} = f_{x_i x_i}^{"} = f_{x_i^2}^{"}, \quad (i = 1, \dots, k).$$
 (2.5.2)

Аналогичным образом определяются частные производные 3-го порядка:

$$\frac{\partial}{\partial x_i} \left(\frac{\partial^2 f}{\partial x_i^2} \right) = \frac{\partial^3 f}{\partial x_i^3} = f_{x_i x_i x_i}^{\prime\prime\prime} = f_{x_i^3}^{\prime\prime\prime} \quad (i = 1, ..., k)$$
 (2.5.3)

Смешанная частная производная 2 и 3 порядков

Частные производные, взятые по разным независимым переменным, называются **смешанными частными производными 2-го порядка**:

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_i x_i} = f_{x_i x_j}^{"} (i \neq j, \ i = 1, ..., k, \ j = 1, ..., k)$$
 (2.5.4)

Смешанные частные производные **3-го порядка** вычисляются по двум независимым переменным, либо по трем и т.д. Таким образом, можно получать частные производные любого порядка.

$$\begin{cases}
\frac{\partial}{\partial x_j} \left(\frac{\partial^2 f}{\partial x_i^2} \right) = \frac{\partial^3 f}{\partial x_i^2 \partial x_j}, & f_{x_i x_i x_j}^{(3)}, \\
\frac{\partial}{\partial x_n} \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right) = \frac{\partial^3 f}{\partial x_n \partial x_i \partial x_j} = f_{x_j x_i x_n}^{""}, & (i \neq j, i = 1, ..., k, j = 1, ..., k)
\end{cases}$$
(2.5.5)

Теорема о равенстве смешанных производных

Пусть функция $y = f(\vec{x})$ n — раз дифференцируема в точке $\vec{x}_0 \in E \subset \mathbb{R}$ в этой точке значение любой смешанной частной производной не зависит от порядка, в котором проводится последовательнее дифференцирование. (без доказательства)

Пример равенства смешанных производных

Пример: z = f(x, y)

 $z_{xy} = z_{yx}$ – смешанные частные производные 2 порядка.

 $z_{xxy}=z_{xyx}=z_{yxx}, \quad z_{xyy}=z_{yxy}=z_{yyx}$ — смешанные частные производные 3 порядка.

Дифференциалы высших порядков

Пусть функция $y=f(\vec{x})=f(x_1,x_2,\ldots,x_k)$ дифференцируема, и её первый дифференциал равен:

$$dy = \frac{\partial f(\vec{x})}{\partial x_1} dx_1 + \frac{\partial f(\vec{x})}{\partial x_2} dx_2 + \dots + \frac{\partial f(\vec{x})}{\partial x_k} dx_k. \tag{2.5.6}$$

Тогда:

 $d(dy) = d^2y, \;\;\;$ дифференциал 2-го порядка, $d(d^2y) = d^3y, \;\;\;$ дифференциал 3-го порядка,

 $d(d^{n-1}y) = d^ny$, дифференциал n-го порядка.

В случае независимых переменных можно вывести общую формулу для дифференциалов n-го порядка. Для частного случая, функции двух переменных z = f(x,y):

$$dz = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$
, где $dx = \Delta x$, $dy = \Delta y$ (2.5.7)

Дифференциальные операторы

Рассмотрим дифференциалы операторы $\frac{\partial}{\partial x}, \frac{\partial}{\partial y},$ определяющие частные производные. Дифференциальные операторы всегда действуют на функцию, перед которой они стоят.

$$\frac{\partial}{\partial x} \cdot f = \frac{\partial f}{\partial x} \qquad \frac{\partial}{\partial y} \cdot f = \frac{\partial f}{\partial y} \tag{2.5.8}$$

Запишем выражения (2.5.7) с помощью введенных дифференциальных операторов.

$$dz = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right) \cdot f \tag{2.5.9}$$

Дифференциал 2-го порядка

Вычислим по определению дифференциал 2-го порядка:

$$d^{2}z = d(dz) = d\left(\frac{\partial z}{\partial x}\right)dx + d\left(\frac{\partial z}{\partial y}\right)dy$$
 (2.5.10)

При вычислении дифференциалов dx и dy независимых переменных считаем константными ($dx = \Delta x, dy = \Delta y$), поэтому вычисляем дифференциалы только от функций $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ по формуле (2.5.7):

$$\begin{cases}
d\left(\frac{\partial f}{\partial x}\right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right) dx + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right) dy = \frac{\partial^2 f}{\partial x^2} dx - \frac{\partial^2 f}{\partial x \partial y} dy \\
d\left(\frac{\partial f}{\partial y}\right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right) dx + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right) dy = \frac{\partial^2 f}{\partial y \partial x} dx - \frac{\partial^2 f}{\partial y^2} dy
\end{cases}$$
(2.5.11)

$$\begin{split} d^2f &= \left(\frac{\partial^2 f}{\partial x^2} dx - \frac{\partial^2 f}{\partial x \partial y} dy\right) dx + \left(\frac{\partial^2 f}{\partial x \partial y} dx - \frac{\partial^2 f}{\partial y^2} dy\right) dy = \\ &= -\frac{\partial^2 f}{\partial x^2} dx^2 + \frac{\partial^2 f}{\partial y \partial x} dx \cdot dy + \frac{\partial^2 f}{\partial x \partial y} dy \cdot dx - \frac{\partial^2 f}{\partial y^2} dy^2 = \\ &= \frac{\partial^2 f}{\partial x^2} dx^2 + 2\frac{\partial^2 f}{\partial x \partial y} dx dy + \frac{\partial^2 f}{\partial y^2} dy^2. \end{split}$$

Получаем формулу дифференциала 2 порядка для формулы z=f(x,y).

$$d^{2}z = \frac{\partial^{2} f}{\partial x^{2}} dx^{2} + 2 \frac{\partial^{2} f}{\partial x \partial y} dx dy + \frac{\partial^{2} f}{\partial y^{2}} dy^{2}$$
 (2.5.12)

Операторная запись дифференциалов

Запишем эту формулу в операторном виде:

$$d^2z = \frac{\partial^2 f}{\partial x^2} dx^2 + 2 \frac{\partial^2 f}{\partial x \partial y} dx dy + \frac{\partial^2 f}{\partial y^2} dy^2 = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^2 \cdot f.$$

так как $\frac{\partial}{\partial x}$ и $\frac{\partial}{\partial y}$ — дифференциальные операторы и частные производные одновременно, то:

$$\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial y} \cdot f = \frac{\partial}{\partial x} \cdot \frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2}{\partial x \partial y} f,$$

где $\frac{\partial^2}{\partial x \, \partial y}$ — дифференциальный оператор 2-го порядка.

$$d^{2}z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{2}f$$
(2.5.13)

$$d^{3}z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{3}f$$
(2.5.14)

$$d^{n}z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{n}f, \quad n = 1, 2, 3, \dots$$
 (2.5.15)

Обобщение на функции многих переменных

Полученную по формуле (2.5.15) систему обобщают на дифференциалы высших порядков функции f со всеми числами независимых переменных $y = f(x_1, x_2, \ldots, x_k)$:

$$dy = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_k} dx_k = \left(\frac{\partial}{\partial x_1} dx_1 + \dots + \frac{\partial}{\partial x_k} dx_k\right) \cdot f$$
$$d^n y = \left(\frac{\partial}{\partial x_1} dx_1 + \frac{\partial}{\partial x_2} dx_2 + \dots + \frac{\partial}{\partial x_k} dx_k\right)^n \cdot f$$

6. Производные второго порядка сложной функции

Производные второго порядка сложной функции

Выведем формулы производных второго порядка сложной функции двух промежуточных аргументов u и v и двух независимых переменных x и y: z = f(u(x,y),v(x,y)).

$$z'_{x} = f'_{u}(u, v)u'_{x}(x, y) + f'_{v}(u, v)v'_{x}(x, y)$$
(2.6.1)

В формуле (2.6.1), выведенной в Раздел 2.4 частные производные по промежуточным аргументам $f_u'(u,v)$ и $f_v'(u,v)$ являются функциями, зависящими от u и v. Поэтому в (2.6.1) введем обозначения:

$$g(u,v) = f'_u(u,v)$$
 if $h(u,v) = f'_v(u,v)$ (2.6.2)

и перепишем выражение (2.6.1) в виде:

$$z'_{x} = g(u,v) \cdot u'_{x}(x,y) + h(u,v) \cdot v'_{x}(x,y) \quad |\frac{\partial}{\partial x}$$
 (2.6.3)

и вычислим частную производную по х

$$\begin{split} z_x'' &= (g(u,v) \cdot u_x'(x,y) + h(u,v) \cdot v_x'(x,y))_x' = \\ & (g(u,v))_x' \cdot u_x'(x,y) + g(u,v) \cdot (u_x'(x,y))_x' + \\ & + (h(u,v))_x' \cdot v_x'(x,y) + h(u,v) \cdot (v_x'(x,y))_x' = \\ &= (g(u,v))_x' \cdot u_x'(x,y) + g(u,v) \cdot u_{xx}''(x,y) + (h(u,v))_x' \cdot v_x'(x,y) + h(u,v) \cdot v_{xx}''(x,y) \end{split}$$

Вычислим производные сложных функций g(u,v) и h(u,v) по x, используя формулу (2.6.1):

Подставим в формулу
$$z''_{xx}$$

$$\begin{cases} (g(u,v))'_x = g'_u(u,v) \cdot u'_x(x,y) + g'_v(u,v) \cdot v'_x(x,y) \\ (h(u,v))'_x = h'_u(u,v) \cdot u'_x(x,y) + h'_v(u,v) \cdot v'_x(x,y) \end{cases}$$

$$\begin{split} z''_{xx} &= \left(g'_u(u,v)u'_x(x,y) + g'_x(u,v)v'_x(x,y)\right) \cdot u'_x(x,y) + g(u,v)u''_{xx}(x,y) + \\ &+ \left(h'_u(u,v)u'_x(x,y) + h'_x(u,v)v'_x(x,y)\right) \cdot v'_x(x,y) + h(u,v) \cdot v''_{xx}(x,y) = \\ &\text{подставляем выражения для } g(u,v) \text{ и } h(u,v) \text{ из } (2.6.2) \\ &= \left((f'_u)'_uu'_x + (f'_u)'_vv'_x\right) \cdot u'_x + f'_uu''_{xx} + \left((f'_v)u'_x + (f'_v)'_uu'_x\right) \cdot v'_x + f'_vv''_{xx} = \\ &= f''_{uu}u'^2_x + 2f''_{uv}u'_xv'_x + f''_{vv}v'^2_x + f'_uu''_{xx} + f'_vv''_{xx}. \end{split}$$

$$z''_{xx} = f''_{uu}u'^{2}_{x} + 2f''_{uv}u'_{x}v'_{x} + f''_{vv}v'^{2}_{x} + f'_{u}u''_{xx} + f'_{v}v''_{xx}$$
(2.6.4)

Производная второго порядка по у

Так как частная производная сложной функции первого порядка по y имеет аналогичный вид выражению (2.6.1). $z_y' = f_u'u_y' + f_v'v_y'$, то частную производную второго порядка по y, запишем аналогично (2.6.4), заменив x на y.

$$z_{yy}^{"} = f_{uu}^{"} u_y^{"} + 2f_{uv}^{"} u_y^{"} v_y^{'} + f_{vv}^{"} v_y^{"} + f_u^{'} u_{yy}^{"} + f_v^{'} v_{yy}^{"}$$
(2.6.5)

Смешанная производная $z_{xy}^{\prime\prime}$

Выведем смешанную производную z''_{xy} . Для этого выражение (2.6.1) для z'_x перепишем с учетом (2.6.2).

$$\begin{aligned} z_x' &= g(u,v)u_x' + h(u,v)v_x', \quad \frac{\partial}{\partial y} \\ z_{xy}'' &= \left(g(u,v)u_x'(x,y) + h(u,v)v_x'(x,y) \right)_y' = \\ &= \left(g(u,v) \right)_y' u_x'(x,y) + \left(u_x'(x,y) \right)_y' g(u,v) + \left(h(u,v) \right)_y' v_x'(x,y) + h(u,v) \left(v_x'(x,y) \right)_y' . \end{aligned}$$

Распишем производные по y от сложенных функций g(u,v) и h(u,v):

$$(g(u,v))'_{y} = g'_{u}(u,v)u'_{y}(x,y) + g'_{v}(u,v)v'_{y}(x,y),$$

$$(h(u,v))'_{y} = h'_{u}(u,v)u'_{y}(x,y) + h'_{v}(u,v)v'_{y}(x,y).$$

Подставляем в z''_{xy} :

$$\begin{split} z_x''y &= (g_u'(u,v)u_y'(x,y) + g_v'(u,v)v_y'(x,y)) \cdot u_x'(x,y) + g(u,v)u_{xy}''(x,y) + \\ &+ (h_u'(u,v)u_y'(x,y) + h_v'(u,v)v_y'(x,y)) \cdot v_x'(x,y) + h(u,v)v_{xy}''(x,y) = \\ &= (g_u'u_y' + g_v'v_y')u_x' + g(u,v)u_{xy}'' + (h_u'u_y' + h_v'v_y')v_x' + h(u,v) \cdot v_{xy}'' = \dots \end{split}$$

Подставим обозначения (2.6.2):

$$\begin{split} \dots &= \left((f'_u)'_u u'_y + (f'_u)'_v v'_y \right) u'_x + f'_u u''_{xy} + \left((f'_v)'_u u'_y + (f'_v)'_v v'_y \right) v'_x + f'_v u''_{xy} = \\ &= (f''_{uu} u'_y + f''_{uv} v'_y) u'_x + f''_u u''_{xy} + (f''_{uv} u'_y + f''_{vv} v'_y) v'_x + f'_v v''_{xy} = \\ &= f''_{uu} u'_y u'_x + f''_{uv} v'_y u'_x + f''_u u''_{xy} + f''_{uv} u'_y v'_x + f''_{vv} v'_y v'_x + f'_v v''_{xy} = \\ &= f''_{uu} u'_x u'_y + f''_{uv} (u'_x v'_y + u'_y v'_x) + f''_{vv} v'_x v'_y + f'_u u''_{xy} + f'_v v''_{xy} \end{split}$$

$$z_x''y = f_{uu}''u_x'u_y' + f_{uv}''(u_x'v_y' + u_y'v_x') + f_{vv}''v_x'v_y' + f_u'u_{xy}'' + f_v'v_{xy}''$$
(2.6.6)

7. Дифференциалы сложной функции

Дифференциал сложной функции

Рассмотрим сложную функцию двух промежуточных аргументов u и v и двух независимых переменных x и y и вычислим дифференциал этой функции.

$$z = f(u(x, y), v(x, y))$$

Вспомним формулу дифференциала функции z=z(x,y) независимых переменных x и y.

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy \tag{2.7.1}$$

Вычислим частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ для сложной функции:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \times \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \times \frac{\partial v}{\partial x}; \quad \frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \times \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \times \frac{\partial v}{\partial y}$$

и подставим в (2.7.1).

$$dz = \left(\frac{\partial f}{\partial u} \times \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \times \frac{\partial v}{\partial x}\right) dx + \left(\frac{\partial f}{\partial u} \times \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \times \frac{\partial v}{\partial y}\right) dy$$

Раскроем скобки и сгруппируем слагаемые при $\frac{\partial f}{\partial u}$ и $\frac{\partial f}{\partial v}$:

$$dz = \left(\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}dx + \frac{\partial f}{\partial u}\frac{\partial u}{\partial y}dy\right) + \left(\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}dx + \frac{\partial f}{\partial v}\frac{\partial v}{\partial y}dy\right) = \frac{\partial f}{\partial u}\underbrace{\left(\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy\right)}_{dx} + \frac{\partial f}{\partial v}\underbrace{\left(\frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy\right)}_{dx}$$
(2.7.2)

Так как u=u(x,y) и v=v(x,y) - функции переменных x и y, тогда из дифференциалы равны:

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy \quad \text{if} \quad dv = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy$$

Из выражения (2.7.2) получаем окончательный вид дифференциал dz:

$$dz = \frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv$$
 (2.7.3)

Свойство инвариантности дифференциала

Формула первого дифференциала имеют один и тот же вид, как для функции двух независимых переменных z=z(x,y)=f(x,y), так и для сложной функции двух промежуточных аргументов z=f(u,v). Это свойство первого дифференциала называется свойством инвариантности или сохранения формы дифференциала.

Отличие состоит только в том, что в выражении (2.7.1) dx и dy - это дифференциалы независимых переменных, т.е. $dx = \Delta x$ и $dy = \Delta y$ - const. В формуле (2.7.3) du и dv - это дифференциалы независимых переменных, т.е. $dx = \Delta x$ - дифференциалы функций u = u(x,y) и v = v(x,y):

$$du = u'_x dx + u'_y dy$$
 и $dv = v'_x dx + v'_y dy$

Дифференциал второго порядка

Выведем формулу дифференциала второго порядка для сложной функции z=f(u,v). По определению:

$$d^{2}z = d(dz) = d(\frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv)$$

Вычислим тот дифференциал, применяя правило суммы и произведения дифференциалов:

$$d^{2}z = d\left(\frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv\right) = d\left(\frac{\partial f}{\partial u}du\right) + d\left(\frac{\partial f}{\partial v}dv\right) =$$

$$= d\left(\frac{\partial f}{\partial u}\right)du + \frac{\partial f}{\partial u}d\left(du\right) + d\left(\frac{\partial f}{\partial v}\right)dv + \frac{\partial f}{\partial v}d\left(dv\right) \quad (2.7.4)$$

По определению $d(du)=d^2u$ и $d(dv)=d^2v$ - это дифференциалы 2-ого порядка от функций u=u(x,y) и v=v(x,y).

Дифференциалы $d\left(\frac{\partial f}{\partial u}\right)$ и $d\left(\frac{\partial f}{\partial v}\right)$ вычислим, применяя формулу (2.7.3).

$$\begin{split} d^2z &= \left(\frac{\partial^2 f}{\partial u^2}du + \frac{\partial^2 f}{\partial v\partial u}dv\right)du + \frac{\partial f}{\partial u}d^2u + \left(\frac{\partial^2 f}{\partial u\partial v}du + \frac{\partial^2 f}{\partial v^2}dv\right)dv + \frac{\partial f}{\partial v}d^2v = \\ &= \frac{\partial^2 f}{\partial u^2}du^2 + \frac{\partial^2 f}{\partial v\partial u}dvdu + \frac{\partial^2 f}{\partial u\partial v}dudv + \frac{\partial^2 f}{\partial v^2}dv^2 + \frac{\partial f}{\partial u}d^2u + \frac{\partial f}{\partial v}d^2v = \\ &= \frac{\partial^2 f}{\partial u^2}du^2 + 2\frac{\partial^2 f}{\partial u\partial v}dudv + \frac{\partial^2 f}{\partial v^2}dv^2 + \frac{\partial f}{\partial u}d^2u + \frac{\partial f}{\partial v}d^2v \end{split}$$

Дифференциал 2-ого порядка для сложной функции имеет вид:

$$d^{2}z = \frac{\partial^{2} f}{\partial u^{2}} du^{2} + 2 \frac{\partial^{2} f}{\partial u \partial v} du dv + \frac{\partial^{2} f}{\partial v^{2}} dv^{2} + \frac{\partial f}{\partial u} d^{2}u + \frac{\partial f}{\partial v} d^{2}v$$
(2.7.5)

Сравнение дифференциалов

Формула d^2z для функции z = f(x,y):

$$d^{2}z = \frac{\partial^{2} f}{\partial x^{2}} dx^{2} + 2 \frac{\partial^{2} f}{\partial x \partial y} dx dy + \frac{\partial^{2} f}{\partial y^{2}} dy^{2}$$
(2.7.6)

Сравнение формул (2.7.5) и (2.7.6) показывает, что форма дифференциала второго порядка сложной функции отличается от случая независимых переменных. В этом случае говорят о нарушении инвариантности формы высших дифференциалов сложной функции и в этом случае нельзя вывести общую формулу вычисления дифференциалов высших порядков.

Формулы

z = f(x,y) x, y — независимые переменные;

$$\begin{split} dz &= \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \\ d^2z &= \frac{\partial f}{\partial x} dx^2 + 2 \frac{\partial^2 f}{\partial x \partial y} dx dy + \frac{\partial^2 f}{\partial y^2} dy \end{split}$$

z = f(u,v), u = u(x,y), v = v(x,y) - зависимые аргументы:

$$\begin{split} dz &= \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv \\ d^2z &= \frac{\partial^2 f}{\partial u^2} du^2 + 2 \frac{\partial^2 f}{\partial u \partial v} du dv + \frac{\partial^2 f}{\partial v^2} dv^2 + \frac{\partial f}{\partial u} d^2 u + \frac{\partial f}{\partial v} d^2 v \end{split}$$

Частный случай:

 $z=f(u),\, u=u(x,\!y)$ – промежуточный аргумент:

$$dz = \frac{df}{du}du = f'_u du$$

$$d^2z = \frac{d^2f}{du^2}du^2 + \frac{df}{du}d^2u = f''_{uu}du^2 + f'_u d^2u$$

8. Дифференцирование неявно заданной функции

Рассмотрим неявно заданную функцию z = z(x,y) двух независимых переменных.

Определение: Уравнение (2.9.1) определяет функцию z = z(x,y) как неявно заданную функцию двух переменных, если при подстановке этой функции в уравнение (2.9.1) оно становится тождеством:

$$F(x,y,z) = 0 (2.8.1)$$

$$F(x,y,z(x,y)) \equiv 0 \tag{2.8.2}$$

Неявно заданную функцию из уравнения (2.9.1) можно найти при выполнении условий следующей теоремы.

Теорема о существовании и дифференцируемости неявно заданной функции (без доказательства)

Пусть функция F(x,y,z) и все ее частные производные $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$ и $\frac{\partial F}{\partial z}$ определены и непрерывны в некоторой окрестности точки $M_0(x_0,y_0,z_0)$, причем $F(M_0)=F(x_0,y_0,z_0)=0$, а частная производной $\frac{\partial F(M_0)}{\partial z}\neq 0$.

Тогда \exists окрестность точки M_0 такая, что уравнение (2.9.1) определяет неявно заданную функцию z=z(x,y), непрерывную и дифференцируемую в точке (x_0,y_0) , причем $z_0=z(x_0,y_0)$.

Для нахождения частных производных подставляем в уравнение (2.9.1) функцию z=z(x,y) и получаем тождество (2.9.2), которое дифференцируем по независимым переменных x и y.

$$F(x,y,z(x,y)) \equiv 0 \quad |\frac{\partial}{\partial x}|$$

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} = 0, \text{ откуда находим } \frac{\partial z}{\partial x}$$

$$-\frac{\partial F}{\partial x} = \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} \quad \Rightarrow \quad \boxed{\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}}$$

$$(2.8.3)$$

Аналогично, дифференцируя тождество (2.9.2) по y, найдем $\frac{\partial z}{\partial y}$:

$$\frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial y} = 0 \quad \Rightarrow \quad \boxed{\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}}$$
(2.8.4)

Для нахождения частных производных неявно заданной функции формулы (2.9.3) и (2.9.4) применять не будем а для каждого примера будем проводить данную процедуру.

Пример

Найти $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, если $z^3 - xz + y = 0$.

$$F(x,y,z) = z^3 - xz + y$$

$$z^3(x,y) - xz(x,y) + y = 0 \quad \left| \frac{\partial}{\partial x} \right| \left| \frac{\partial}{\partial y} \right|$$

$$3z^2(x,y)z_x' - z(x,y) - xz_x' = 0 \quad (3z^2 - x)z_x' = 0$$

$$z_x' = \frac{z}{3z^2 - x} \quad (3z^2 - x \neq 0, \text{ т.к. по условию теоремы } \frac{\partial F}{\partial z} = 3x^2 - x \neq 0)$$

$$\begin{cases} 3z^2(x,y)z_y' - xz_y' + 1 = 0 \\ (3z^2 - x)z_y' = -1 \end{cases} \Rightarrow z_y' = -\frac{1}{3z^2 - x}$$

Для нахождения частной производной 2-ого порядка дифференцируем найденные производные:

$$\begin{split} z_x' &= \frac{z(x,y)}{3z^2(x,y)-x} \quad \left| \frac{\partial}{\partial x} \right| \\ z_{xx}'' &= \frac{z_x'(3z^2-x)-z(6z\cdot z_x'-1)}{(3z^2-x)^2} = \frac{z-\frac{6z^3}{3z^2-x}+z}{(3z^2-x)^2} \quad \text{(подстановка } z_x') \\ &= \frac{2z-\frac{6z^3}{3z^2-x}}{(3z^2-x)^2} = \frac{2z(3z^2-x)-6z^3}{(3z^2-x)^3} \\ &= \frac{6z^3-2xz-6z^3}{(3z^2-x)^3} = -\frac{2xz}{(3z^2-x)^3} \\ z_y' &= -\frac{1}{3z^2(x,y)-x} \quad \left| \frac{\partial}{\partial y} \quad \left| \frac{\partial}{\partial x} \right| \\ z_{yy}'' &= \frac{6z\cdot z_y'}{(3z^2-x)^2} = \frac{6z\cdot \left(-\frac{1}{3z^2-x}\right)}{(3z^2-x)^2} = -\frac{6z}{(3z^2-x)^3} \\ z_{yx}'' &= \frac{6z\cdot z_x'-1}{(3z^2-x)^2} = \frac{6z^2}{(3z^2-x)^2} = \frac{6z^2-(3z^2-x)}{(3z^2-x)^3} \\ &= \frac{3z^2+x}{(3z^2-x)^3} \end{split}$$

9. Дифференцирование неявно заданной функции

Рассмотрим неявно заданную функцию z = z(x,y) двух независимых переменных.

Определение: Уравнение (2.9.1) определяет функцию z=z(x,y) как неявно заданную функцию двух переменных, если при подстановке этой функции в уравнение

(2.9.1) оно становится тождеством:

$$F(x,y,z) = 0 (2.9.1)$$

$$F(x,y,z(x,y)) \equiv 0 \tag{2.9.2}$$

Неявно заданную функцию из уравнения (2.9.1) можно найти при выполнении условий следующей теоремы.

Теорема о существовании и дифференцируемости неявно заданной функции (без доказательства)

Пусть функция F(x,y,z) и все ее частные производные $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$ и $\frac{\partial F}{\partial z}$ определены и непрерывны в некоторой окрестности точки $M_0(x_0,y_0,z_0)$, причем $F(M_0)=F(x_0,y_0,z_0)=0$, а частная производной $\frac{\partial F(M_0)}{\partial z}\neq 0$.

Тогда \exists окрестность точки M_0 такая, что уравнение (2.9.1) определяет неявно заданную функцию z=z(x,y), непрерывную и дифференцируемую в точке (x_0,y_0) , причем $z_0=z(x_0,y_0)$.

Для нахождения частных производных подставляем в уравнение (2.9.1) функцию z=z(x,y) и получаем тождество (2.9.2), которое дифференцируем по независимым переменных x и y.

$$F(x,y,z(x,y)) \equiv 0 \quad |\frac{\partial}{\partial x}|$$

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} = 0, \text{ откуда находим } \frac{\partial z}{\partial x}$$

$$-\frac{\partial F}{\partial x} = \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} \quad \Rightarrow \quad \boxed{\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial x}}}$$

$$(2.9.3)$$

Аналогично, дифференцируя тождество (2.9.2) по y, найдем $\frac{\partial z}{\partial y}$:

$$\frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial y} = 0 \quad \Rightarrow \quad \boxed{\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}}$$
(2.9.4)

Для нахождения частных производных неявно заданной функции формулы (2.9.3) и (2.9.4) применять не будем а для каждого примера будем проводить данную процедуру.

Пример

Найти $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, если $z^3 - xz + y = 0$.

$$F(x,y,z) = z^3 - xz + y$$

$$z^3(x,y) - xz(x,y) + y = 0 \quad \left| \frac{\partial}{\partial x} \right| \left| \frac{\partial}{\partial y} \right|$$

$$3z^2(x,y)z_x' - z(x,y) - xz_x' = 0 \quad (3z^2 - x)z_x' = 0$$

$$z_x' = \frac{z}{3z^2 - x} \quad (3z^2 - x \neq 0, \text{ т.к. по условию теоремы } \frac{\partial F}{\partial z} = 3x^2 - x \neq 0)$$

$$\begin{cases} 3z^2(x,y)z_y' - xz_y' + 1 = 0 \\ (3z^2 - x)z_y' = -1 \end{cases} \Rightarrow z_y' = -\frac{1}{3z^2 - x}$$

Для нахождения частной производной 2-ого порядка дифференцируем найденные производные:

$$\begin{aligned} & \boxed{z_x'} = \frac{z(x,y)}{3z^2(x,y)-x} & \left| \frac{\partial}{\partial x} \right| \\ & \boxed{z_{xx}''} = \frac{z_x'(3z^2-x)-z(6z\cdot z_x'-1)}{(3z^2-x)^2} = \left[\text{подставляем } z_x' \right] = \\ & = \frac{\frac{z}{3z^2-x}\cdot (3z^2-x)-6z^2 \cdot \frac{z}{3z^2-x}+z}{(3z^2-x)^2} = \\ & = \frac{2z-\frac{6z^3}{3z^2-x}}{(3z^2-x)^2} = \frac{2z\left(\frac{3z^2-x-3z^2}{3z^2-x}\right)}{(3z^2-x)^2} = -\frac{2xz}{(3z^2-x)^3} \\ & \boxed{z_y'} = -\frac{1}{3z^2(x,y)-x} & \left| \frac{\partial}{\partial y} \right| \left| \frac{\partial}{\partial x} \right| \\ & \boxed{z_{yy}''} = \frac{1}{(3z^2-x)^2} \cdot (3z^2-x)_y' = \frac{6z \cdot x_y'}{(3z^2-x)^2} = \frac{6z \cdot \left(-\frac{1}{3z^2-x}\right)}{(3z^2-x)^2} = -\frac{6z}{(3z^2-x)^3} \\ & \boxed{z_{yx}''} = \frac{1}{(3z^2-x)^2} \cdot (3z^2-x)_x' = \frac{6z \cdot z_x'-1}{(3z^2-x)^2} = \\ & = \frac{6z^2-(3z^2-x)}{3z^2-x} = \frac{6z^2-3z^2+x}{(3z^2-x)^3} = \frac{3z^2+x}{(3z^2-x)^3} \end{aligned}$$