Table Scan vs Index Scan

- for highly selective predicates
 - index scan asymptotically way better than table scan
- index scan higher per tuple overhead
 - break even at ${\sim}5\%$ output ratio
 - index scan better if filter ratio below $\sim 5\%$
- multi-column predicates
 - fetch/RID-list intersection

Use Cases for Indexes

Create Index

- create secondary (nonclustered) index on set of attributes
 - clustered: tuples sorted by index
 - nonclustered: sorted attribute with tuple references

CREATE INDEX ixStudLname ON Students USING btree (Lname ASC NULLS FIRST);

DROP INDEX ixStudLname;

- allows specifying uniqueness, order, indexing method
- anows specifying uniqueness, order, indexing method
- postgreSQL methods
 - [[Binary Search and BTree]]
 - hash
 - gist
 - gin

Classification of Index Structures

ND Access Methods

- Linearization of ND key space + 1D indexing
- Multi-dimensional trees and hashing (e.g.,
- Spatial index structures (e.g., R tree)