Al Tools Assignment: Al Tools and Applications

Theme: "Mastering the AI Toolkit" ★□

Objective & Guidelines

This assignment evaluates your understanding of **Al tools/frameworks** and their real-world applications through a mix of theoretical and practical tasks. You'll demonstrate proficiency in selecting, implementing, and critically analyzing Al tools to solve problems.

The assignment has three parts: theory, which tests the theoretical understanding of AI Tools; Practical, which tests the implementation skills of AI tools; and Ethics and optimization, which tests ethical AI development and AI software optimization skills.

The assignment should be handled as group work formed by 3-5 people. This is to enhance teamwork and AI engineering collaboration.

Tools & Resources

- Frameworks: TensorFlow, PyTorch, Scikit-learn, spaCy.
- Platforms: Google Colab (free GPU), Jupyter Notebook.
- Datasets: Kaggle, TensorFlow Datasets.

Part 1: Theoretical Understanding

1. TensorFlow vs PyTorch – Key Differences & When to Use

TensorFlow and **PyTorch** are the two most widely used deep learning frameworks, but they differ significantly:

Feature	TensorFlow	PyTorch
Execution	Static Graph (TF 1.x), Eager (TF 2.x)	Eager execution (dynamic graph)
Ease of Use	More verbose, but scalable	Intuitive and Pythonic
Production Ready	Excellent with TF Serving, TFLite	TorchScript is growing, but limited
Community	Enterprise (Google-backed)	Research-focused (Facebook-backed)
Tools	TensorBoard, TFX, TF Lite	PyTorch Lightning, TorchServe

When to Choose:

- Use **TensorFlow** for scalable production apps, mobile deployment, or TensorBoard integration.
- Use **PyTorch** for research, experimentation, and rapid prototyping.

2. Two Use Cases of Jupyter Notebooks in Al

- 1. **Exploratory Data Analysis (EDA)**: Jupyter lets you mix code, plots, and markdown for interactive data exploration—ideal for understanding patterns, outliers, or correlations.
- 2. **Prototyping Al Models**: You can quickly test and refine models, visualize training metrics, and compare results without needing a separate IDE.

3: How spaCy Enhances NLP over Basic Python

- **spaCy** offers tokenization, lemmatization, POS tagging, dependency parsing, and NER—far beyond basic string operations.
- It uses pre-trained models for fast and accurate parsing, making it suitable for real-world NLP tasks.
- For example, doc.ents can extract "iPhone 15" as a PRODUCT, which regular .split() or .find() can't do intelligently.

Comparative Analysis: Scikit-learn vs TensorFlow

Feature	Scikit-learn	TensorFlow
Target	Classical ML (SVM, Trees,	Deep Learning (CNNs, RNNs,
Apps	Regression)	GANs)
Ease of Use	Very beginner-friendly	More complex for new users
Community	Widely adopted in	Massive DL community,
	academia/industry	especially Google tools

Summary:

- Use **Scikit-learn** for quick ML pipelines and traditional algorithms.
- Use **TensorFlow** for deep learning, image processing, or when deploying large models.

Bonus Task

Al Tools - Multi-Task Demo Submission

- Deployed Models: I've deployed all three tasks in the Al Tools Multi-Task
 Demo using Streamlit.
 - o The demo includes:
 - Iris Classifier (Flower Species Prediction)
 - Image Classifier (Handwritten Digit Recognition)
 - Text-Based Task (e.g., Sentiment Analysis or Text Generation)
- **Live Demo Link**: You can explore and interact with all the models from the multi-task demo here: Al Tools Multi-Task Demo.
- Screenshots:

Iris Classification

Mnist Classifier

