11-442 / 11-642 / 11-742: Search Engines

**Learning to Rank: Neural Models** 

Jamie Callan Carnegie Mellon University callan@cs.cmu.edu

1

#### Introduction

#### Neural / deep learning ranking has become popular again

- Also studied in the 1990's (Kwok, 1995; Caid et al., 1995; ...)
- Many recent successes in other language technologies

#### How are neural models different from what we have seen so far?

- Fewer hand-crafted features and functions
- More complex methods for combining evidence / weights
- Many more parameters

#### Do they work for ad-hoc search?

- Systems from the 1990's were never best (but, also not terrible)
- Currently, they are better than feature-based learning-to-rank

2

© 2021 Jamie Calla

## Introduction: Overview of Neural Ranking Models

#### We cover several recent neural methods of ad-hoc retrieval

• DSSM Representation-based model

• DRMM, KMRM, Conv-KNRM Interaction-based models

• BERT reranking Interaction-based models

#### Our goals

- Learn about newer work on ad-hoc retrieval
- Identify general themes in neural ranking research
- Identify similarities and differences with older models

© 2021 Jamie Calla

3

#### Outline

Introduction

#### **Deep Structured Semantic Models (DSSM)**

**Deep Relevance Matching Model (DRMM)** 

**Kernel-based Neural Ranking Model (K-NRM)** 

Convolutional Kernel-based Neural Ranking Model (Conv-KNRM)

**BERT** reranking

**DeepCT** 

doc2query

© 2021 Jamie Ca

## Deep Structured Semantic Models (DSSM): Motivating Ideas



#### Often there is a vocabulary mismatch between the query and matching documents

- E.g., query is 'cat', but document contains 'kittens'
- Traditional retrieval models don't handle vocabulary gap well
  - One solution: Fix the query (e.g., pseudo relevance feedback)

#### DSSM addresses the vocabulary mismatch

- Map text (e.g., q or d) to a low-dimensional latent space
  - Word-based → concept-based (hopefully)
- Match query and document in the latent space
  - The matching process won't be sensitive to vocabulary choices

5

© 2021 Jamie Callan

5

## Deep Structured Semantic Models (DSSM): Architecture



#### DSSM uses a vocabulary of 500K terms (ignore all other terms)

• Reasonable for Web search

Mostly 0

 $\frac{\longleftarrow 500k \longrightarrow}{\text{(vector of qtf)}}$ 

 $\begin{array}{c} \longleftarrow 500k \longrightarrow \\ \text{(vector of tf)} \end{array} x$ 

Term Vector

(Huang, et al., 2013)

## Deep Structured Semantic Models (DSSM): Architecture



#### Map each word to a vector ('hashing')

- Add delimiters, then break the word into trigrams
  - 'deep' → '#deep#' → '#de', 'dee', 'eep', 'ep#'
  - 'deeper' → '#deeper#' → '#de', 'dee', 'eep', 'epe', 'per', 'er#'
- Each word is represented by a vector of trigrams

|        | <br>#de | <br>dee |   | eep | <br>epe | <br>ep# | <br>er# | <br>per |   |
|--------|---------|---------|---|-----|---------|---------|---------|---------|---|
| deep   | <br>1   | <br>1   |   | 1   | <br>0   | <br>1   | <br>0   | <br>0   | 0 |
| deeper | <br>1   | <br>1   | : | 1   | <br>1   | <br>0   | <br>1   | <br>1   | 0 |

- Vectors represent <u>lexical</u> or <u>orthographic</u> similarity
- 500K term vocabulary → 30K trigram vocabulary
- Low collision rate (e.g., 22 out of 500k terms)
- Robust to out-of-vocabulary problems

7

(Huang, et al., 2013)

7

## Deep Structured Semantic Models (DSSM): Architecture



### Map each word to a vector ('hashing')

- Add delimiters, then break the word into trigrams
  - 'deep' → '#deep#' → '#de', 'dee', 'eep', 'ep#'
  - 'deeper' → '#deeper#' → '#de', 'dee', 'eep', 'epe', 'per', 'er#'
- Each word is represented by a vector of trigrams



### Deep Structured Semantic Models (DSSM): Architecture

Word hashing layer width: 30K ngrams (ngram vocabulary)

Text vector length: 500K terms (term vocabulary)



Query: apple ale

9

## Deep Structured Semantic Models (DSSM): Architecture

Word hashing layer width: 30K ngrams (ngram vocabulary)

Text vector length: 500K terms (term vocabulary)



10 © 2021 Jamie Callan

### Deep Structured Semantic Models (DSSM): Architecture

#### The hashed representation captures orthographic similarity

- Spelling
- Case
- Hyphenation
- ..
- Similar to case conversion, stemming, etc

### It does not capture conceptual similarity

• E.g., cats and kittens

| trigrams | cat           | cats | bat         | bats      |
|----------|---------------|------|-------------|-----------|
| #ba      | $\mid 0 \mid$ | 0    | [1_         | 1         |
| bal      |               | 0    | 0           | 0         |
| all      | 0             | 0    | 0           | 0         |
| al#      |               | 0    | 0           | 0         |
| bat      | 0             | 0    | 1           | 1         |
| #ca      | 1             | 1    | 0           | 0         |
| cat      | 1             | 1    | 0           | 0         |
| at#      | {1            | 0    | 1           | 0         |
| ats      | 0             | 71   | 0           | 11        |
| ts#      | 0             | 1    | 0           | 1         |
|          |               |      | © 2021 Jami | ie Callan |

11

11

## Deep Structured Semantic Models (DSSM): Architecture



## Use a three-layer feed-forward neural network to create "semantic features" for each text

• Reasons for 300 and 128 dimensions are not explained



## **Deep Structured Semantic Models (DSSM): Hidden Layers**



Given input vector x and output vector y, layer i's weights are:

$$l_1 = W_1 x$$
  

$$l_i = f(W_i l_{i-1} + b_i), i = 2, ..., N - 1$$
  

$$y = f(W_N l_{N-1} + b_N)$$

The word hashing layer Non-linear projection layers

The activation function is tanh

$$f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$



(Huang, et al., 2013)

13

13

## Deep Structured Semantic Models (DSSM):





## Deep Structured Semantic Models (DSSM): Type of Neural IR Model



#### DSSM is a type of <u>representation-based</u> neural IR model

- Build an abstract representation  $\Phi(T)$  for each text T
- Match the abstract representations for T<sub>1</sub> and T<sub>2</sub>

## There are many models

- E.g., DSSM, C-DSSM
- E.g., ARC-I, ARC-II



© 2021 Jamie Callan

15

## **Deep Structured Semantic Models (DSSM): Training**



#### Trained using a query log

- T<sub>1</sub>: query
- T<sub>2</sub>: document title
- Clicked documents were treated as relevant
- Non-relevant documents were selected "randomly"
  - Randomly from the collection would be unrealistic
  - Randomly from the top N (e.g., N=20 or N=100) would be fine

(Huang, et al., 2013)

## Deep Structured Semantic Models (DSSM): Training



#### Query: apple pie

### Top titles with clicks (✓)

- 1. Perfect apple pie recipe | Pillsbury
- 2. Apple pie recipe | Taste of home
- 3. Apple pie by Grandma Ople
- 4. Scrumptious apple pie recipe
- 5. Apple pie recipe | Food network
- ✓ 6. Apple pie recipe | NYT cooking
- ✓ 7. Apple pie Martha Stewart
  - 8. Apple pie Wikipedia
  - 9. ...

#### **Training data**

- $p(T_6 | q) > p(T_1 | q)$
- $p(T_6|q) > p(T_2|q)$
- $p(T_6|q) > p(T_3|q)$
- ...
- $p(T_7 | q) > p(T_1 | q)$
- $p(T_7 | q) > p(T_2 | q)$
- $p(T_7 | q) > p(T_3 | q)$
- •

### Pairwise training

© 2021 Jamie Callan

#### 17

### Deep Structured Semantic Models (DSSM): Training

17



## "Trained using gradient-based numerical optimization"

• Minimize the loss function

the loss function
$$L(\Lambda) = -\log \prod_{(Q,D^+)} P(D^+|Q) \qquad P(D|Q) = \frac{\exp(\gamma R(Q,D))}{\sum_{D' \in D} \exp(\gamma R(Q,D'))}$$

(Maximize scores of clicked docs, ignore unclicked docs)

#### The learning algorithm is not our focus

• Assume that it uses many preference pairs...

$$p(T_6 | q) > p(T_1 | q)$$

to learn weights that give higher scores to clicked documents

(Huang, et al., 2013)

### Deep Structured Semantic Models (DSSM): Testing



#### Methodology

- 16,510 English queries from a commercial search engine
- Re-rank top 15 documents/query from another ranker
- Human relevance assessments on a scale of 0-4
- 2-fold cross-validation
- Metrics: NDCG @1, @3, @10

#### **Experimental results**

- 10-15% better than BM25 and several unsupervised models
  - Not surprising: Supervised is expected to beat unsupervised
- In our experiments, SVM-Rank > DSSM > BM25

19

(Huang, et al., 2013)

19

## **Deep Structured Semantic Models (DSSM): Summary**



#### **Key ideas**

- Orthographic → continuous term representation (unusual)
- No idf or document length
  - Perhaps not needed to re-rank the top 15 from a strong ranker
  - Perhaps not needed to re-rank <u>titles</u> (short, )

#### Why does it work?

- Unclear from their experiments and subsequent work
- They think it captures semantic structure, but don't say how
- Note: Just re-ranking the top 15 titles produced by another ranker
  - Could be learning site preferences, or …?

20

© 2021 Jamie Callan

#### **Outline**

Introduction

**Deep Structured Semantic Models (DSSM)** 

#### **Deep Relevance Matching Model (DRMM)**

**Kernel-based Neural Ranking Model (K-NRM)** 

Convolutional Kernel-based Neural Ranking Model (Conv-KNRM)

**BERT** reranking

**DeepCT** 

doc2query

21 © 2021 Jamie Callan

21

## Deep Relevance Matching Model (DRMM): Motivating Ideas



#### Much recent deep learning research uses word embeddings

• Represent a term by a weight vector (continuous representation)

#### Continuous representations are an old idea in IR

- LSI, LSA, PLSA, PIRCS, MatchPlus, ...
  - Not terrible, but not as good as BM25, vector space, ...
- Query term 'cat' matches document term 'kitten'
- Query term 'cat' matches document term 'dog'

#### Query & document terms that match exactly are a strong signal

• Prior work with continuous representations lost this signal

(Guo, et al., 2016)

#### Word2Vec

#### Word2vec is a popular method for creating continuous representations of terms

- Input: A lot of text
- Output: A vector-based term dictionary
  - Words that appear in similar contexts will have similar term vectors

#### **Examples of similar terms (English GoogleNews)**

- apple: apples, pear, fruit, berry, pears, strawberry
- pie: pies, cake, slice, cheesecake, biscuit
- man: woman, boy, teenager, girl, robber, men
- cat: cats, dog, kitten, feline, beagle, puppy

| cat  | kitten |
|------|--------|
| 0.14 | 0.13   |
| 0.01 | 0.02   |
| 0.00 | 0.01   |
| 0.38 | 0.35   |
| 0.01 | 0.00   |
| 0.00 | 0.01   |
| 0.27 | 0.29   |
| ::   | ::     |
| 0.67 | 0.60   |
|      |        |

÷300**> <**300>

© 2021 Jamia Call

23

23

## **Deep Relevance Matching Model (DRMM)**



#### **Key ideas**

- Continuous representations of terms (word2vec)
- Measure the interaction between each pair of terms (q<sub>i</sub>, d<sub>i</sub>)
- For each query term q<sub>i</sub>, bin interactions of different strengths
- Use a feed-forward network to combine signals for q<sub>i</sub>
- Aggregate scores for q<sub>i</sub>
- Modulate the influence of q<sub>i</sub> ("gating")
- Linear combination to produce a score for (q<sub>i</sub>, d<sub>i</sub>)

It's simpler than it sounds...

(Guo, et al., 2016)

# Deep Relevance Matching Model (DRMM): Query Representation





Use a continuous representation of query terms

- A 300-dimension vector for each term
- Standard word2vec

Embedding Layer

25

(Guo, et al., 2016)

25

## Deep Relevance Matching Model (DRMM): Document Representation



- $q_1 \longleftrightarrow 300 \Rightarrow$   $q_n \longleftrightarrow 300 \Rightarrow$
- $d_{1} = 300 \Rightarrow d_{m-1} \Rightarrow 300 \Rightarrow d_{m} = 300 \Rightarrow d_{m}$

Embedding Layer

Use a continuous representation of document terms

- A 300-dimension vector for each term
- Standard word2vec

(Guo, et al., 2016)

26

## **Deep Relevance Matching Model (DRMM): Local Interactions**





Compare each query term to each document term

- Cosine similarity of 300-dimension embedding vectors for (q<sub>i</sub>, d<sub>i</sub>)
- Values are in range [-1, 1]

Note: This is an interaction model

• It considers <u>many</u> local interactions between q and d

27

(Guo, et al., 2016)

27

## Deep Relevance Matching Model (DRMM): Pyramid (Histogram) Pooling





Layer

**Pooling** 

Bin values for (q<sub>i</sub>, d<sub>j</sub>) matches of different quality

- 1 bin for [1,1]
  - $-\,q_i$  and  $d_j$   $\underline{match\ exactly}$
- b bins for [-1, 1)
  - q<sub>i</sub> and d<sub>i</sub> match softly
  - $-E.g., [-1, -0.8) \dots [0.8, 1.0)$

How should values be binned?

(Guo, et al., 2016)

28

## Deep Relevance Matching Model (DRMM): Pyramid (Histogram) Pooling





They tried 3 types of histograms

- Count matches in range (CH)
  - Number of matches to q<sub>i</sub> in each range (e.g., [0.2, 0.4))
  - Essentially tf for each range
- Normalized count (NH)
  - Percentage of matches to q<sub>i</sub> in each quality range
- Log of count (LCH)
  - log (tf) for each range (most effective method)

(Guo, et al., 2016)

29

29

### Deep Relevance Matching Model (DRMM): Feed Forward Neural Network





Use a feedforward network to combine the scores from the 11 bins for q<sub>i</sub> into a match score

• 2 hidden layers

$$\begin{split} & \boldsymbol{z}_i^{(l)} = tanh(\boldsymbol{W}^{(l)} \boldsymbol{z}_i^{(l-1)} + \boldsymbol{b}^{(l)}) \\ & i {=} 1, \text{ ..., } \boldsymbol{n}, \text{ } l {=} l, \text{ ..., } L \end{split}$$

1 0.5 0 -0.5

Embedding Pyramid Feed Forward
Layer Pooling Matching

(Guo, et al., 2016)

## **Deep Relevance Matching Model (DRMM): Term Gating**





31

## **Deep Relevance Matching Model (DRMM):** Aggregation





## Deep Relevance Matching Model (DRMM): Type of Neural IR Model



#### DRMM is a type of interaction-based neural IR model

- Identify <u>local matches</u> between two pieces of text
  - E.g., cosine similarity of term vectors
- Learn interaction patterns for matching
  - Often hierarchical patterns
  - E.g., convolutional neural network

### There are many interaction-based models

- DRMM, DeepMatch, ARC-II
- MatchPyramid, K-NRM



33

### Deep Relevance Matching Model (DRMM): Computational Complexity



#### **Every** query matches every document

- There are <u>always</u> soft-matches
- The computational cost is too high to be practical for initial retrieval

#### DRMM is used in a re-ranking pipeline

- Use an efficient algorithm (e.g., Indri) to create a ranking
- Use DRMM to re-rank the top *n* documents

## **Deep Relevance Matching Model (DRMM): Training**



Pairwise training with hinge loss

$$\mathcal{L}(q, d^+, d^-; \Theta) = \max(0, 1 - s(q, d^+) + s(q, d^-))$$

*d*<sup>+</sup>: Relevant documents

 $d^-$ : Non-relevant documents

**Training data** 

Robust04: 600K documents, 50 queries
ClueWeb09-B: 34M documents, 150 queries

(Guo, et al., 2016)

35

### Deep Relevance Matching Model (DRMM): Effectiveness

35



#### DRMM is more effective than Indri and BM25

• Supervised vs unsupervised ... not surprising

Guo, et al. didn't compare to learning-to-rank systems (!) ... but we did

- DRMM is a little better than Rank-SVM
  - Should it be compared to a system that does query expansion?
- DRMM is about the same as Coordinate Ascent
  - A good list-wise LeToR algorithm

© 2021 Jamie Callan

36

## Deep Relevance Matching Model (DRMM): Where Does the Learning Occur?





37

## Deep Relevance Matching Model (DRMM): Where Does the Learning Occur?



#### DRMM learns how to combine evidence

• How to combine 'exact match', 'strong match' and 'weak match' signals

### The word embeddings are static

• Learning cannot propagate weights through the histogram layer



(Guo, et al., 2016)

## **Deep Relevance Matching Model (DRMM): Similarities and Differences**



#### Similarity to older models

- A bag-of-words model
- Exact-match of query terms to document terms
- log (tf)
- Idf
- Summation of scores for each query term

#### Differences with older models

- Exact- <u>and</u> soft-match of query terms and document terms
  - Continuous representations
- Binning for matches of different quality
  - A bin for exact matches
  - Bins for 'close' and 'far' matches
- Non-linear combination of match values of different quality

39 © 2021 Jamie Callar

39

#### **Outline**

#### Introduction

**Deep Structured Semantic Models (DSSM)** 

**Deep Relevance Matching Model (DRMM)** 

#### **Kernel-based Neural Ranking Model (K-NRM)**

Convolutional Kernel-based Neural Ranking Model (Conv-KNRM)

**BERT** reranking

**DeepCT** 

doc2query

40 © 2021 Jamie Cal

#### **For More Information**

- W. R. Caid, S. T. Dumais, and S. I. Gallant. Learned vector-space models for document retrieval. Information Processing and Management, 31(3), pp. 419-429, 1995.
- J. Guo, Y. Fan, Q. Ai, and W. B. Croft. A deep relevance matching model for ad-hoc retrieval. CIKM 2017.
- B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for matching natural language sentences. NIPS 2014.
- P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep structured semantic models for web search using clickthrough data. CIKM 2013.
- K. L. Kwok. A network approach to probabilistic information retrieval. ACM Transactions on Information Systems, 13(3), pp 324-353, 1995.
- L. Pang, Y. Lan, J. Guo, J. Xu, and X. Cheng. A deep investigation of deep IR models. SIGIR 2017 Neu-IR workshop.
- Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning semantic representations using convolutional neural networks for web search. WWW 2014.
- C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. End-to-end neural ad-hoc ranking with kernel pooling. SIGIR 2017.

1 © 2021 Jamie Callan