Stat 571B Experimental Design

Topic 9: Graeco-Latin Square Design

Montgomery: chapter 4

Prof. Lingling An University of Arizona

Outline

- Graeco-Latin Square
 - Example
 - Model and SAS code

Graeco-Latin Square: An Example

An experiment is conducted to compare four gasoline additives by testing them on four cars with four drivers over four days. Only four runs can be conducted in each day. The response is the amount of automobile emission.

Treatment factor: gasoline additive, denoted by A, B, C and D.

Block factor 1: driver, denoted by 1, 2, 3, 4.

Block factor 2: day, denoted by 1, 2, 3, 4.

Block factor 3: car, denoted by α , β , γ , δ .

	days				
drivers	1	2	3	4	
1	A	B	C	D	
2 3 4	B	A	$D_{\scriptscriptstyle \parallel}$	C	
3	C	D	A	B	
4	D	C	B	A	

	days				
drivers	1	2	3	4	
1	α	eta	γ	δ	
2	δ	γ	β	α	
3	β	α	.δ	γ	
4	γ	δ	lpha	eta	

	days					
		2		4		
1	$A\alpha = 32$	$B\beta = 25$	$C\gamma = 31$	$D\delta = 27$		
2	$B\delta = 24$	$A\gamma = 36$	$D\beta = 20$	$C\alpha = 25$		
3	$C\beta = 28$	$D\alpha = 30$	$A\delta = 23$	$B\gamma = 31$		
4	$D\gamma = 34$	$B\beta = 25$ $A\gamma = 36$ $D\alpha = 30$ $C\delta = 35$	$B\alpha = 29$	$A\beta = 33$		

Graeco-Latin Square

- Consider a p x p Latin square, and superpose on it a second p x p Latin square in which the treatments are denoted by Greek/Latin letters.
- If the two squares when superimposed have the property that each Greek letter appears once and only once with each Latin letter, the two Latin squares are said to be orthogonal.
- the superimposed square is called Graeco-Latin square.
- Graceo-Latin squares exist for all p ≥3, but 6 x 6
 Graeco-Latin square does not exist.

Graeco-Latin Square Design Matrix:

driver	day	additive	car
1	1	A	α
1	2	B	$\boldsymbol{\beta}$
1	3	C	γ
1	4	D	δ
÷	÷	:	÷
4	1	D	γ
4	2	C	δ
4	3	B	α
4	4	A	β

Model and Assumptions

$$y_{ijkl} = \mu + \alpha_i + \tau_j + \beta_k + \zeta_l + \epsilon_{ijkl} \begin{cases} i = 1, 2, \dots, p \\ j = 1, 2, \dots, p \\ k = 1, 2, \dots, p \\ l = 1, 2, \dots, p \end{cases}$$
 μ - grand mean
$$\alpha_i \text{ - } i \text{th block 1 effect (row effect)} \qquad \sum \alpha_i = 0$$

$$\tau_j \text{ - } j \text{th treatment effect} \qquad \sum \tau_j = 0$$

$$\beta_k \text{ - } k \text{th block 2 effect (column effect)} \qquad \sum \beta_k = 0$$

$$\zeta_l \text{ - } l \text{th block 3 effect (Greek letter effect)} \qquad \sum \zeta_l = 0$$

Completely additive model (no interaction)

 $\epsilon_{iik} \sim N(0, \sigma^2)$ (independent)

Estimation and ANOVA

Rewrite observation as:

$$\begin{split} y_{ijkl} &= \overline{y}_{....} + (\overline{y}_{i...} - \overline{y}_{....}) + (\overline{y}_{.j..} - \overline{y}_{....}) + (\overline{y}_{..k.} - \overline{y}_{....}) + \\ &(\overline{y}_{...l} - \overline{y}_{....}) + (y_{ijkl} - \overline{y}_{i...} - \overline{y}_{.j..} - \overline{y}_{..k.} - \overline{y}_{...l} + 3\overline{y}_{....}) \\ &= \hat{\mu} + \hat{\alpha}_i + \hat{\tau}_j + \hat{\beta}_k + \hat{\zeta}_l + \hat{\epsilon}_{ijkl} \end{split}$$

Partition SS_T into:

$$\begin{split} &p \sum (\overline{y}_{i...} - \overline{y}_{...})^2 + p \sum (\overline{y}_{.j..} - \overline{y}_{...})^2 + p \sum (\overline{y}_{..k.} - \overline{y}_{...})^2 + \\ &p \sum (\overline{y}_{...l} - \overline{y}_{...})^2 + \sum \sum \hat{\epsilon}_{ijkl}^2 \\ &= \mathrm{SS}_{\mathrm{Row}} + \mathrm{SS}_{\mathrm{Treatment}} + \mathrm{SS}_{\mathrm{Col}} + \mathrm{SS}_{\mathrm{Greek}} + \mathrm{SS}_{\mathrm{E}} \\ &\text{with degree of freedom } p-1, \, p-1, \, p-1, \, p-1 \text{ and } (p-3)(p-1), \\ &\text{respectively.} \end{split}$$

Analysis of Variance Table

Source of	Sum of	Degrees of	Mean	F_0		
Variation	Squares	Freedom	Square			
Rows	$SS_{ m Row}$	p-1	MS_{Row}			
Treatment	$SS_{\mathrm{Treatment}}$	p-1	$MS_{\mathrm{Treatment}}$	F_0		
Column	SS_{Column}	p-1	MS_{Column}			
Greek	SS_{Greek}	p-1	MS_{Greek}			
Error	SS_E	(p-3)(p-1)	MS_{E}			
Total SS $_{ m T}$ p^2-1						
${\rm SS_T} = \sum \sum y_{ijkl}^2 - y_{}^2/p^2; \qquad \qquad {\rm SS_{Row}} = \frac{1}{p} \sum y_{i}^2 - y_{}^2/p^2;$						
$\mathrm{SS}_{\mathrm{Treatment}} = \tfrac{1}{p} \sum y_{.j}^2 - y_{}^2/p^2 \qquad \qquad \mathrm{SS}_{\mathrm{Column}} = \tfrac{1}{p} \sum y_{k.}^2 - y_{}^2/p^2$						
${ m SS}_{ m Greek} = rac{1}{p} \sum y_{l}^2 - y_{}^2/p^2;$ ${ m SS}_{ m Error} = { m Use}$ subtraction;						
Decision Rule: If $F_0 > F_{\alpha,p-1,(p-3)(p-1)}$ then reject H_0						

Sas Code and Output

```
data new;
input row col trt greek resp @@;
datalines;
1 1 1 1 32 1 2 2 2 25
1 3 3 3 31 1 4 4 4 27
2 1 2 4 24 2 2 1 3 36
2 3 4 2 20 2 4 3 1 25
3 1 3 2 28 3 2 4 1 30
3 3 1 4 23 3 4 2 3 31
4 1 4 3 34 4 2 3 4 35
4 3 2 1 29 4 4 1 2 33
proc glm data=new;
class row col trt greek;
model resp=row col trt greek;
run;
```

Overall ANOVA table

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	296.7500000	24.7291667	2.83	0.2122
Error	3	26.1875000	8.7291667		
Corrected Total	15	322.9375000			

Type III model ANOVA

Source	DF	Type III SS	Mean Square	F Value	Pr > F
row	3	90.6875000	30.2291667	3.46	0.1674
col	3	68.1875000	22.7291667	2.60	0.2263
trt	3	36.6875000	12.2291667	1.40	0.3942
greek	3	101.1875000	33.7291667	3.86	0.1481

Model adequacy checking is as same as previous models

 Multiple comparison can be carried out using similar methods.

Last slide

• Read Section: 4.3

