${\rm CS}652$ Smalltalk VM Operational Semantics

Terence Parr

April 3, 2015

$T \bowtie x$	Resolve x in scope T	
$o \in X$	o is instance of X	
$\mathbf{v} \in \mathtt{STObject}$	a single object	
$oldsymbol{l}_i \in exttt{STObject}$	the i^{th} argument or local variable object	
$o_{class} \in \mathtt{STMetaClassObject}$	Metaclass (type) of object o	
$o_{class_{class}} = o_{class}$	A metaclass object is its own type	
$o_{superclass} \in \texttt{STMetaClassObject}$	Superclass (type) of object o	
o_{field_i}	The i^{th} field of object o	
$f_{literal_i}$	The i^{th} literal of method f	
$f_s^{block_i} \in exttt{BlockDescriptor}$	The i^{th} block of method f associated with instance self= s	
$f_s^{block_i}[extsf{-}, extsf{-}, extsf{-}] \in extsf{BlockContext}$	The i^{th} block of method f invoked with self= s	
$f_s^{block_i}[_,_,_]^d \in exttt{BlockContext}$	The i^{th} block of method f invoked with self= s and having depth d counting from zero at the method block; e.g., $f [x [y]]$ has a method block at depth 0 with x and a nested block at depth 1 with y	
$\gamma \in \texttt{MethodContext}^*$	Stack of method invocations growing to the right	
$\delta \in \mathtt{STObject}^*$	Operand stack of objects growing to the right	
S	The state of the VM system dictionary	
(\mathbb{S},γ)	VM state is the system dictionary and a method invocation stack with zero or more elements	
$(\mathbb{S}, \gamma) \Rightarrow (\mathbb{S}', \gamma')$	VM state transition	
$(\mathbb{S}, \gamma) \Rightarrow^* (\mathbb{S}', \gamma')$	Zero-or-more state transitions	
$f_s[ip, l_0,l_{n-1}, \delta]$	Method invocation context that derived from sending message f to receiver s (self); $f \in \texttt{MethodContext}; l_i$ is local variable or argument, indexed from 0 and arguments first; δ is the operand stack; f can also represent a nested code block not just a method	
$f[ip, l_0, l_{n-1}, \delta]$	Same as previous but the receiver is unknown or irrelevant	
$f[ip,_,_]$	A method invitation context with "don't care" for locals and operand stack	

Figure 1: Smalltalk VM Bytecode Specification Notation

Bytecode Instruction	Transition	
initial state	$state_0 = (\mathbb{S}[\mathtt{nil}, \mathtt{true}, \mathtt{false}, \mathtt{Transcript}], \mathtt{main}_m[0, \epsilon, \epsilon])$	
	for $m \in \text{MainClass}$; program terminates if $\exists state_0 \Rightarrow^* (S', \epsilon)$	
nil	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{nil}])$	
self	$(\mathbb{S}, \gamma f_s[ip, \neg, \delta]) \Rightarrow (\mathbb{S}, \gamma f_s[ip+1, \neg, \delta s])$	
true	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{true}])$	
false	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{false}])$	
${\tt push_char}\ c$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip + 3, \underline{\ }, \delta c])]$	
$\mathtt{push_int}\ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \underline{\ }, \delta i])$	
${\tt push_float}\ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \underline{\ }, \delta \ intBitsToFloat(i)])$	
$\mathtt{push_field}\ i$	$(\mathbb{S}, \gamma f_s[ip, -, \delta]) \Rightarrow (\mathbb{S}, \gamma f_s[ip + 3, -, \delta s_{field_i}])$	
${\tt push_local}\ 0, i$	$(\mathbb{S}, \gamma f[ip, \cdots l_i \cdots, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \cdots l_i \cdots, \delta l_i])$	
${\tt push_local}\ n>0, i$	$(\mathbb{S}, \gamma g^{block}[\underline{\ }, \cdots \underline{\ }i_i \cdots, \underline{\ }]^{d-n} \cdots g^{block'}[ip, \underline{\ }, \underline{\ }]^{d-1} \cdots g^{block''}[ip, \underline{\ }, \delta]^d) \ \Rightarrow$	
	$(\mathbb{S}, \gamma \cdots g^{block''}[ip+5, _, \delta l_i]^d)$	
${\tt push_literal}\ i$	$(\mathbb{S}, \gamma f[ip, J, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, J, \delta f_{literal_i}])$	
${\tt push_global}\ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \underline{\ }, \delta \mathbb{S}[f_{literal_i}]])$	
${\tt push_array}\ n$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta a_1a_n]) \Rightarrow (\mathbb{S}, \gamma f[ip+3, \underline{\ }, \delta A]) \text{ where } A = Array(a_1a_n)$	
$\mathtt{store_field}\;i$	$(\mathbb{S}, \gamma f_s[ip, \neg, \delta \mathbf{v}]) \Rightarrow (\mathbb{S}[s_{field_i} = \mathbf{v}], \gamma f_s[ip + 3, \neg, \delta \mathbf{v}])$	
$\mathtt{store_local}\ n, i$	$(\mathbb{S}, \gamma f[ip, \cdots l_i \cdots, \delta \mathbf{v}]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \cdots l_{i-1}\mathbf{v} l_{i+1} \cdots, \delta \mathbf{v}])$	
pop	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta])$	
$\mathtt{send}\ n, i$	$(\mathbb{S}, \gamma f[ip, \neg, \delta r p_1p_n]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \neg, \delta] \left(r_{class} \bowtie f_{literal_i}\right)_r [0, p_1p_n, \epsilon])$	
$\mathtt{send_super}\ n, i$	$(\mathbb{S}, \gamma f[ip, \neg, \delta r p_1p_n]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \neg, \delta] (r_{superclass} \bowtie f_{literal_i})_r[0, p_1p_n, \epsilon])$	
$\mathtt{block}\; i$	$(\mathbb{S}, \gamma f[ip, \cdot, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \cdot, \delta f_s^{block_i}])$	
block_return	$(\mathbb{S}, \gamma f[ip, \mathbf{x}, \delta] \ g^{block}[\mathbf{x}, \mathbf{y}, \delta' \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \mathbf{x}, \delta \mathbf{v}])$	
$(method\ local)$ return	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta] \ g[\underline{\ }, \underline{\ }, \delta' \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \underline{\ }, \delta \mathbf{v}])$	
$(method\ nonlocal)$ return	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta] \ g_s[\underline{\ }, \underline{\ }, \underline{\ }] \ \cdots \ h[\underline{\ }, \underline{\ }, \underline{\ }] \ g_s^{block}[\underline{\ }, \underline{\ }, \delta' \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \underline{\ }, \delta \mathbf{v}])$	
$dbg\; i, loc$	$(\mathbb{S}, \gamma f[ip, _, _]) \Rightarrow (\mathbb{S}[file=f_{literal_i}, line=loc[31:8], col=loc[7:0]], \gamma f[ip+7, _, _])$ Set VM current filename to $f_{literal_i}$ and split loc into char position (indexed from 0) from lower 8 bits and line number from the upper 24 bits.	

Figure 2: Smalltalk VM State Transition Rules

Smalltalk fragment	Visitor method result	Side-effects
ϵ	$\epsilon \; (ext{object Code.None})$	
class T : S []	ϵ	
main	$\mid main \mid$	
	self	
	return	
f <pri>f <pri>fitive:#primitive-name></pri></pri>	ϵ	
f [body]	ϵ	$f_{code} =$
		body
		pop
		self
		return
operator [body]	ϵ	$operator_{code} =$
		body
		pop
		self
		return
$a:x b:y \cdots c:z [body]$	ϵ	$a:b:c:_{code} =$
		body
		pop
		self
[args locals]	i block i	return
	block i	$\mathbf{f}_{block_i} =$
$\mathtt{f}^{block}{}_{i}$		nil
[body]	\mid block i	$ t block_{-}$ return $ t f_{block_i} = t$
	DIOGR V	body
$\mathtt{f}^{block}{}_{i}$		block_return
$instr_1.instr_2.\cdots instr_n$	$ instr_1 $	DIOCK_1 et ul li
	pop	
	$instr_2$	
	pop	
	$instr_n$	
	1	

 ${\bf Figure~3:~Smalltalk~Class/Method/Block~Compilation~Rules}$

Smalltalk fragment	Visitor method result	Side-effects
class T $[\mathbf{x} \cdots [\cdots \ x := expr]]$	expr	
$f:x [\cdots x:=expr$	$egin{array}{c} \mathtt{store_field} \ i \ expr \end{array}$	
- []	$ullet$ store_local $0,i$	
$f[x \cdots x := expr$	expr	
	$ig $ store_local $0,i$	
$\underbrace{\mathbf{f} : \mathbf{x}} \left[\underbrace{\cdots} \right] \cdots x := expr$	expr	
$\Delta = \#scopes$	\mid store_local Δ, i	
$f [\cdots \underbrace{[\mathbf{x} \cdots [\cdots x:=expr]}]$	expr	
\sim	store_local Δ, i	
$expr$	expr	
	return	
$ extsf{f} [\cdots exprw]$	$\mid expr \mid$	$f_{literal_i} = w$
	ullet send $0,i$	-
f [\cdots super w	$\mid expr \mid$	$f_{literal_i} = "w"$
•	$send_super 0, i$	
$f [\cdots expr_1 \ op \ expr_2]$	$ expr_1 $	$f_{literal_i} = "op"$
Tt cupri op cupri	$\left \begin{array}{c} expr_1 \\ expr_2 \end{array} \right $	$-interat_i$ of
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
£ [ŕ	£ "a
$f \left[\cdots expr \ w_1:x_1 \ w_2:x_2 \cdots w_n:x_n\right]$	expr	$f_{literal_i} = "w_1: w_2: \cdots w_n:"$
_	\mid send n,i	
$f [\cdots super w_1:x_1 w_2:x_2 \cdots w_n:x_n]$	expr	$f_{literal_i} = "w_1: w_2: \cdots w_n:"$
	$ullet$ send_super n,i	
	I	

Figure 4: Smalltalk Expression Compilation Rules