Stats Yr2 Chapter 2: Probability Theory

Set Notation

Chapter Overview

1:: Set Notation

How sets are used to describe a sample space/event and how notation like $A \cap B$ is used to combine sets.

2:: Conditional Probability in Venn Diagrams

The notation P(A|B) means "the probability of A given that B happened". How we can find such probabilities using a Venn Diagram.

3:: Formula for Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

4:: Tree Diagrams

"I have 3 red and 4 green balls in a bag. I take one ball out the bag, keep it, then take another. **Given that** the second ball was green, determine the probability the first was red."

Teacher Notes: All of this is from the old S1. The chapter was effectively split into two: all the non-conditional probability content in Year 1 and the rest in Year 2. Set notation was not used in Year 1.

RECAP:: Using sets for sample spaces and events

Combining events/sets

 ξ = the whole sample space (1 to 6)

A =even number on a die thrown

B = prime number on a die thrown

	What does it mean in this context?	What is the resulting set of outcomes?
A'	?	.
$A \cup B$?	?
$A \cap B$?	?

Some fundamentals

S =the whole sample space (1 to 6)

A =even number on a die thrown

B = prime number on a die thrown

	What does it mean in this context?	What is the resulting set of outcomes?
$A \cap B'$?	.
$(A \cup B)'$?	
$(A \cap B)'$?	?

ξ

?

ξ

5

ζ

ŗ

ζ

ζ

ŗ

?

or alternatively...

ָּרָ יַּר

Venn Diagram can either contain:

- (a) The **specific outcomes** in each set
- (b) The number of items in the set (i.e. **frequencies**)
- (c) The **probability** of being in that set.

This will usually be stated or made obvious from the context.

[Textbook] A card is selected at random from a pack of 52 playing cards. Let A be the event that the card is an ace and D the event that the card is a diamond. Find:

a) $P(A \cap D)$ b) $P(A \cup D)$ c) P(A') d) $P(A' \cap D)$

? Venn Diagram

Think "A and D". ? a For union, I visualise this 'figure-of-8' shape: ? b ? d

Venn Diagram can either contain:

- (a) The **specific outcomes** in each set
- (b) The number of items in the set (i.e. **frequencies**)
- (c) The **probability** of being in that set.

This will usually be stated or made obvious from the context.

[Textbook] A card is selected at random from a pack of 52 playing cards. Let A be the event that the card is an ace and D the event that the card is a diamond. Find:

- a) $P(A \cap D)$ b) $P(A \cup D)$ c) P(A') d) $P(A' \cap D)$

$$P(A \cap D) = \frac{1}{52}$$

$$P(A \cup D) = \frac{16}{52}$$

$$P(A') = \frac{48}{52}$$

$$P(A' \cap D) = \frac{12}{52}$$

[Textbook] Given that P(A) = 0.3, P(B) = 0.4 and $P(A \cap B) = 0.25$,

a. Explain why events A and B are not independent.

Given also that P(C) = 0.2, that events A and C are mutually exclusive and that events B and C are independent,

- b. Draw a Venn diagram to illustrate the events A, B and C, showing the probabilities for each region.
- c. Find $P((A \cap B') \cup C)$

?

[Textbook] Given that P(A) = 0.3, P(B) = 0.4 and $P(A \cap B) = 0.25$,

a. Explain why events A and B are not independent.

Given also that P(C) = 0.2, that events A and C are mutually exclusive and that events B and C are independent,

- b. Draw a Venn diagram to illustrate the events A, B and C, showing the probabilities for each region.
- c. Find $P((A \cap B') \cup C)$

$$P(A) \times P(B) = 0.3 \times 0.4 = 0.12$$

b

$$P(A \cap B') = 0.05$$

$$P((A \cap B') \cup C) = 0.05 + 0.2 = 0.25$$

Test Your Understanding

May 2013 (R) Q6

(a) ?

The Venn diagram in Figure 1 shows three events A, B and C and the probabilities associated with each region of B. The constants p, q and r each represent probabilities associated with the three separate regions outside B.

The events *A* and *B* are independent.

(a) Find the value of p.

(3)

Test Your Understanding

May 2013 (R) Q6

(a) Using the above:

$$0.1 = (p + 0.1) \times 0.4$$

 $p + 0.1 = 0.25$
 $p = 0.15$

The Venn diagram in Figure 1 shows three events A, B and C and the probabilities associated with each region of B. The constants p, q and r each represent probabilities associated with the three separate regions outside B.

The events *A* and *B* are independent.

(a) Find the value of p.

(3)

Exercise 2.1

Pearson Stats/Mechanics Year 2 Pages 9-11

1 Use set notation to describe the shaded area in each of these Venn diagrams:

a

b

.

d

e

f

- 2 On copies of this Venn diagram, shade:
 - a $A \cup B'$
 - **b** $A' \cap B'$
 - $c (A \cap B)'$

- 3 On copies of this Venn diagram, shade:
 - **a** $(A \cap B) \cup C$
 - **b** $(A' \cup B') \cap C$
 - c $(A \cap B \cap C')'$

4 A card is chosen at random from a pack of 52 playing cards. C is the event 'the card chosen is a club' and K is the event 'the card chosen is a King'.

The Venn diagram shows the number of outcomes for each event.

Find:

a P(K)

- **b** P(C)
- c $P(C \cap K)$

- d $P(C \cup K)$
- e P(C')
- $f(K' \cap C)$

5 A and B are two events. P(A) = 0.5, P(B) = 0.2 and $P(A \cap B) = 0.1$. Find:

- a $P(A \cup B)$
- **b** P(B')
- c $P(A \cap B')$
 - **d** $P(A \cup B')$

Hint Draw a Venn diagram.

- 6 C and D are two events. P(D) = 0.4, $P(C \cap D) = 0.15$ and $P(C' \cap D') = 0.1$. Find:
 - a $P(C' \cap D)$
- **b** $P(C \cap D')$
- c P(C)

- **d** $P(C' \cap D')$
- 7 The probability that a member of a sports club plays hockey (*H*) is 0.5 and the probability that they play cricket (*C*) is 0.4. The probability that they play both is 0.25.
 - a Draw a Venn diagram to illustrate these probabilities.
 - b Find:
 - i P(*H* ∪ *C*)
- ii $P(H' \cap C)$
- iii $P(H \cup C')$

- 8 A bag contains 50 counters numbered from 1 to 50. The counters are either red or blue. A counter is picked at random. The two events R and E are the events 'counter is red' and 'counter is even-numbered' respectively. Given that n(R) = 17, n(E) = 30 and $n(R \cup E) = 40$,
 - a draw a Venn diagram to illustrate the outcomes.
 - **b** Find:
 - i *n*(*R* ∩ *E*)
 - ii $P(R' \cap E')$
 - iii $P((R \cap E)')$

Watch out n(R) represents the **number** of outcomes in the event R, whereas P(R) represents the **probability** that the event R occurs.

- **9** A, B and C are three events with P(A) = 0.55, P(B) = 0.35 and P(C) = 0.4. $P(A \cap C) = 0.2$. Given that A and B are mutually exclusive and B and C are independent,
 - a draw a Venn diagram to illustrate the probabilities.

(4 marks)

b Find:

i $P(A' \cap B')$ ii $P(A \cup (B \cap C'))$ (1 mark) (1 mark)

iii $P((A \cap C)' \cup B')$

(1 mark)

10 A, B and C are three events with P(A) = 0.25, P(B) = 0.4, P(C) = 0.45 and $P(A \cap B \cap C) = 0.1$. Given that A and B are independent, B and C are independent,

Problem-solving

 \emptyset is the empty set. $P(\emptyset) = 0$.

a draw a Venn diagram to illustrate the probabilities.

(4 marks)

b Find:

i $P(A' \cap (B' \cup C))$

(1 mark)

ii $P((A \cup B) \cap C)$

and $A \cap B' \cap C = \emptyset$.

(1 mark)

c State, with reasons, whether events A' and C independent.

(2 marks)

- 11 Members of a school book club read either murder mysteries (M), ghost stories (G) or epic fiction (E), P(M) = 0.5, P(G) = 0.4 and P(E) = 0.6. Given that no one reads both ghost stories and epic fiction and that $P(M \cap G) = 0.3$,
 - a draw a Venn diagram to illustrate these probabilities.

(4 marks)

b Find:

i $P(M \cup G)$

ii $P((M \cap G) \cup (M \cap E))$

(2 marks)

c Are the events G' and M independent? You must justify your answer.

(2 marks)

- 12 Given that events A and B are independent and that P(A) = x and P(B) = y, find, in terms of x and y:
 - a $P(A \cap B)$

(2 marks)

b $P(A \cup B)$

(2 marks)

c $P(A \cup B')$

(2 marks)

Challenge

Given that events A, B and C are all independent and that P(A) = x, P(B) = y and P(C) = z, find, in terms of x, y and z:

- a $P(A \cap B \cap C)$ b $P(A \cup B \cup C)$ c $P((A \cup B') \cap C)$

Homework Answers

Homework Answers

11 a

0.6

ii 0.5

c Not independent.

$$P(G' \cap M) = 0.2, P(G') \times P(M) = 0.6 \times 0.5 = 0.3$$

12 a xy

b x + y + xy **c** 1 - y + xy

Challenge

xyz

$$\mathbf{b} \quad x + y + z + xyz - xy - yz - xz$$

c = z - yz + xyz