Методы сбора, хранения, обработки и анализа данных

Лекция 1

Проектирование баз данных

Организационное

- 36 часов лекций
- 18 часов лабораторных работ
- Задания на лабораторные работы: diskstation.belstu.by
- Для студентов ФИТ / Преподаватели / Блинова
- Доклад по согласованной теме
- Итоговый контроль зачет
- Продолжение в следующем семестре

План курса

- Проектирование базы данных
- Специальные типы данных
- Расширенные возможности работы с данными
- Мониторинг и настройка
- Высокая доступность
- Информационная безопасность
- NoSQL решения
- Аналитика

ПРОЕКТИРОВАНИЕ БД

Требования к данным

- Многократное использование данных
- Простота и легкость использования
- Гибкость использования
- Быстрая обработка запросов на данные

OLTP и Хранилища данных

- OLTP данные, получаемые в результате повседневных транзакций
- Основные принципы:
 - Хранение в единственном месте
 - Обеспечение транзакционной поддержки

OLTP и Хранилища данных

- Хранилища данных поддержка принимаемых решений
- Основные принципы:
 - Предварительные вычисления
 - Частота обновления данных зависит от потребностей пользователей
 - Объединение данных из нескольких источников

Проектирование базы данных

- 1. Концептуальное проектирование
- 2. Логическое проектирование
- 3. Физическое проектирование
- 4. Физическая реализация
- 5. Оценка полученного результата

Команда

- Бизнес-аналитик
- Архитектор БД
- Системный архитектор
- Менеджер проекта

Бизнес-аналитик

- Излагает требования бизнеса в деталях
- Со стороны пользователя

Архитектор БД

- Разрабатывает техническую реализацию
- Проектирует размещение данных и доступ к ним
- Выбирает технологии хранения

Системный архитектор

- Обеспечивает проектирование полного интерфейса пользователей
- Отвечает за выбор промежуточных технологий

Менеджер проекта

- Координирует членов проекта
- Отвечает за сроки и деньги

Документация

- Перечень границ проекта
- Перечень отрицательного опыта пользователей
- Запросы пользователей
- Поддержка общедоступного хранилища документации с версионностью

Взаимодействие с заказчиком

- Внесение и одобрение изменений
- Опытные образцы
- Интервью с клиентами

Интервью с клиентами

- Кто будет использовать данные?
- Как данные будут использоваться?
- Что должно быть в отчетах?
- Где сейчас находятся данные?
- Сколько эти данные стоят?
- Интеграция новой БД с уже существующими данными?
- Правила, управляющие данными?
- Соглашения об уровне обслуживания?

Концептуальное проектирование

Цель – создание концептуальной модели данных исходя из представлений пользователей о предметной области

Концептуальное проектирование

- Отказ от выбора окончательной структуры на ранней стадии выполнения работ
- Определение сущностей
- Определение атрибутов и доменов
- Определение связей
- Определение бизнес-правил

Определение сущностей

- Человек
- Место
- Объект
- Идея
- Документ
- Другие сущности:
 - Протоколы или журналы
 - События

Определение сущностей

- После предварительного определения сущностей составить их список
- Сформировать список вопросов к клиенту по уточнению
- Уточнить список сущностей

Определение атрибутов и доменов

- Идентификаторы
- Описательная информация
- Указатели на расположение
- Связанная информация
- Допустимые значения

Определение связей

- Один-ко-многим
 - Имеет
 - Является
- Многие-ко многим

Определение бизнес-правил

- Набор правил, которые определяют деловое поведение заказчика
- Получение:
 - Изучение документации
 - Старый код
 - Интервью с заказчиком
- Идентификация основных процессов

Моделирование данных

- UML стандартная методология для определения и документирования программных систем
- IDEF1X Integration Definition For Information Modelling методология для реляционных данных
- IE Informational Engineering моделирование связей между таблицами

UML

- Модель описывает:
- Компоненты системы как **действия** (use-case)
- Пользователи системы как **исполнители** (actors)
- Отношения между исполнителями и действиями
- Действия могут быть связаны друг с другом:
 - Использует
 - Расширяет

UML

IDEF1X

- Сущность и атрибуты
 - Зависимые и независимые сущности
 - Первичные ключи
 - Вторичные ключи
 - Внешние ключи
 - Домены
- Связи
 - Идентифицирующая
 - Неидентифицирующая
 - Необязательная
 - Рекурсия
 - Многие-ко-многим

IDEF1X

Связи

- Идентифицирующая для определения зависимых сущностей
- Неидентифицирующая более общий вид связи
- Обязательная или необязательная
- Рекурсия
- Многие-ко-многим

Мощность связи

IE – Informational Engineering

Концептуальное проектирование

- 1. Определение сущностей и их документирование
- 2. Определение связей между сущностями и их документирование
- 3. Создание ER-модели предметной области
- 4. Определение атрибутов и их документирование:
 - имя атрибута и его описание;
 - домен атрибута;
 - тип и размерность значений;
 - значение, принимаемое для атрибута по умолчанию;
 - может ли атрибут иметь Null-значения;
 - является ли атрибут составным
- 5. Определение значений атрибутов и их документирование
- 6. Определение первичных ключей для сущностей и их документирование
- 7. Обсуждение концептуальной модели данных с конечными пользователями

Логическое проектирование

• Цель – преобразование концептуальной модели на основе выбранной модели данных в логическую модель, не зависимую от особенностей используемой в дальнейшем СУБД для физической реализации базы данных

Логическое проектирование

- 1. Выбор модели данных
- 2. Определение набора таблиц исходя из ER-модели и их документирование
- 3. Нормализация таблиц
- 4. Проверка логической модели данных на предмет возможности выполнения всех транзакций, предусмотренных пользователями
- 5. Определение требований поддержки целостности данных и их документирование:
 - обязательные данные
 - ограничения для значений атрибутов
 - целостность сущностей
 - ссылочная целостность
 - ограничения, накладываемые бизнес-правилами
- 6. Создание окончательного варианта логической модели данных и обсуждение его с пользователями

Нормализация

- Устранение NULL
- Устранение избыточности данных
- Устранение ненужного кодирования
- Максимизация кластерных индексов
- Уменьшение числа индексов на таблицу
- Хранение тонких таблиц

Нормализация

- 1 НФ:
- Все атрибуты должны быть элементарными
- Экземпляры сущности должны иметь одно и то же количество значений
- Все экземпляры сущности должны быть различны

- 2 НФ:
- Сущность должна соответствовать 1 НФ
- Каждый атрибут должен зависеть от ключа

• Пример (сущность – книга):

```
Book_ISBN
Book_Title
Id_Author
Author_First_Name
Author_Second_Name
Author_Royalty
```

```
Book_ISBN
Book_Title

Id_Author
Author_First_Name
Author_Second_Name

Book_ISBN
Id_Author
Author
Author_Royalty
```

- 3 HФ:
- Сущность должна соответствовать 2 НФ
- Каждый атрибут должен зависеть только ключа

• Пример:

```
Book_ISBN
Book_Title
Book_Price
Publisher_Name
Publisher_City

Book_ISBN
Book_Title
Book_Price
Id_Pablisher
Id_Pablisher
Publisher_Name
Publisher_City
```

- НФ Бойса-Кодда:
 - Все атрибуты полностью зависят от ключа
 - Сущность находится в НФБК, если каждый детерминант – ключ
- **Детерминант** любой атрибут или комбинация атрибутов, от которых функционально зависит любой другой атрибут или комбинация атрибутов
- Если набор столбцов является ключом, то необходимо внести ограничение уникальности

- 4 HΦ:
 - Сущность находится в НФБК
 - Не должно быть больше одной зависимости с многими значениями, представленной в сущности
- Проблемы:
 - Тройные отношения
 - Скрытые атрибуты с несколькими величинами
 - Атрибуты с предыдущими значениями

Тройные отношения

- Проведение докладов:
 - Зал
 - Сессия
 - Докладчик
- Проблемы:
 - Если один доклад делают два докладчика?
 - Если докладчику надо более одного зала?

Скрытые атрибуты с несколькими величинами

- Контакты:
 - Имя
 - Адреса
 - Телефоны
- Проблемы:
 - Разные типы телефонов и адресов (рабочий, домашний, факс и т.д.)
 - Связь номера телефона и адреса
 - Несколько партнеров с одним адресом

Атрибуты с предыдущими значениями

- Использование оборудования:
 - Сотрудник
 - Оборудование
- Проблемы:
 - Сотрудник получает и сдает оборудование
 - Оборудование может последовательно находиться у разных сотрудников

Денормализация

Используется для улучшения работы:

- Вычисленные атрибуты (TotalSum)
- Преимущественные значения (PreferredPhoneNumber)
- Отметка изменений (LastUsage)

Логическое проектирование

- Логическая схема базы данных для курсовых и дипломных проектов (IDEF1x):
 - Изобразить сущности, каждой дать имя
 - Изобразить связи
 - Вначале составляющие ключа, затем прочие атрибуты
 - Типы данных не указываются
 - РК и FK указываются

Использование данных

- Отчеты
- Ограничения
- Взаимодействие с внешними системами
- Планы преобразования данных

Отчеты

- Стандартные отчеты, которые пользователь получает во время своей работы
- Специализированные отчеты, результаты которых будут влиять на бизнес-процессы

Ограничения

- Тип приложения
- Стек технологий
- Количество внешних и внутренних пользователей
- Аппаратные средства серверы,
 ПО
- Физические ограничения облака, серверные, Интернет

Взаимодействие с внешними системами

- Определить внешние системы
- Описать взаимодействие
- Разработать промежуточный слой для взаимодействия
- Возможно, потребуется доработка внешних систем

Планы преобразования данных

- Средняя длина атрибутов
- % данных, заполненный для атрибута
- Первоначальное количество строк в таблице
- Скорость роста данных в таблицах
- Ожидаемый срок службы

Окончательный обзор проекта

- Планирование выполнения
 - —Этапы (контрольные точки)
 - -Список задач
 - -Очередность задач
 - -Время на каждую задачу
- Обзор и согласование документации

- Цель описание конкретной реализации базы данных
- Проблемы:
 - Размер и сложность данных
 - Поиск
 - Конкуренция за ресурс
 - Своевременность и частота отчетов
 - Бюджет

- Цель описание конкретной реализации базы данных
- Проблемы:
 - Размер данных
 - Сложность
 - Поиск
 - Конкуренция за ресурс
 - Своевременность и частота отчетов

- 1. Согласование архитектуры
- 2. Проектирование и разработка таблиц базы данных средствами выбранной СУБД
- 3. Реализация бизнес-правил в среде выбранной СУБД
- 4. Проектирование и реализация физической организации базы данных
- 5. Разработка стратегии защиты базы данных
- 6. Организация мониторинга функционирования базы данных и ее настройка

- Физическая схема базы данных для курсовых и дипломных проектов (IDEF1x):
 - К логической добавляются типы данных через двоеточие
 - Указываются индексируемые поля

Модель организации баз данных

Модели данных

- Реляционная
- NoSQL-модели
 - Ключ значение (Cassandra)
 - Сетевые (графовые, Gremlin)
 - Документные (MongoDB)
 - Табличные (с частичной поддержкой SQL)

ДОСТУП К ДАННЫМ ИЗ ПРИЛОЖЕНИЯ

Модели приложений

- Приложение база данных
- Приложение несколько баз данных
- SOA

Модель приложения

Модель приложения

SOA

- SOA Service-Oriented Architecture Сервис-ориентированная архитектура
- SOA модульный подход к разработке программного обеспечения, основанный на использовании распределённых, слабо связанных заменяемых компонентов, оснащённых стандартизированными интерфейсами для взаимодействия по стандартизированным протоколам

SOA

API для доступа к данным

- Доступ к данным прикладной программный интерфейс для СУБД
- Набор функций:
 - установление и закрытие соединения
 - обновление данных
 - передача запросов серверу
 - получение результатов выполнения запросов
 - получение кодов ошибок
 - характеристики структуры набора результата

Универсальный механизм доступа к данным

- Универсальный механизм доступа к данным обычно реализован в виде библиотек и дополнительных модулей – драйверов или провайдеров
- Библиотеки содержат стандартный набор функций или классов, подчиняющийся спецификации
- Дополнительные модули реализуют непосредственное обращение к функциям конкретных СУБД

Универсальный механизм доступа к данным

- Легко модифицировать, если необходима смена СУБД
- Изменяются только настройки доступа к данным
- Невозможность доступа к уникальной функциональности, специфичной для конкретной СУБД
- Снижение производительности приложений
- Усложнение процедуры поставки приложения

Microsoft Data Access Components

- ODBC Open Database Connectivity
- OLE DB Object Linking and Embedding Database
- ADO.NET

ADO.NET режимы работы с данными

- Постоянное подключение
- Отсоединенные данные

Постоянное подключение

- Установка соединения
- Подготовка и выполнение команды
- Работа с данными
 - чтение, запись
 - фильтрация, сортировка
 - тоже в пакетном режиме
 - блокировки, совместное использование
- Закрытие соединение и обработка ошибок

Постоянное подключение

- Работает в режиме удержания подключения к базе
- Обеспечивает максимальную гибкость и эффективность
- Обеспечивает минимальный расход оперативной памяти

Отсоединенные данные

- Загрузка данных с сервера
- Изменение данных в наборе на локальной машине
- Обновление данных на сервере на основе локальной копии

Отсоединенные данные

- Обеспечивает работу с данными в отсутствии подключения к БД
- Удобна для переноса данных по сети
- Расходует достаточно много памяти

Провайдеры данных

- Провайдеры (или поставщики) данных извлечение данных из источника данных
 - SQL Server .NET Data Provider
 - Oracle Data Provider
 - ODBC.NET Data Provider
 - OleDB.NET Data Provider

```
□using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.OracleClient;
using System.Data.ODBC;
using System.Data.OleDb;
```

Провайдеры данных

Провайдеры данных

- Обеспечивают большую производительность
- Позволяют работать со специфическими типами данных для данной СУБД
- Лучше выполняют специфические для данной СУБД функции
- Можно использовать неспециализированного провайдера данных
- Можно определить набор провайдеров данных (модель ProviderBase)

Вопросы?