

What is claimed is:

1. A process for detecting a complementary DNA fragment which comprises the steps of:
 - 5 bringing single-stranded sample DNA fragments having a radioactive label in a liquid phase into contact with a DNA micro-array having at least two defined areas in each of which a group of nucleotide derivatives and analogues thereof are fixed under such condition that a group of nucleotide derivatives and analogues thereof fixed in one area differs from a group of nucleotide derivatives and analogues thereof fixed in another area, so that DNA fragments complementary to a group of nucleotide derivatives and analogues thereof are fixed by hybridization to the area in which the group is fixed;
 - 10 removing unfixed sample DNA fragments from the DNA micro-array;
 - 15 keeping the DNA micro-array in contact with a radiation image storage panel containing a stimulable phosphor in areas corresponding to the areas on which groups of nucleotide derivatives or analogues thereof are fixed, so that the corresponding areas of the stimulable phosphor sheet can absorb and store radiation energy of the radioactive label coming from the fixed DNA fragments through the openings;
 - 20 irradiating the radiation image storage panel with a stimulating light, so that the image storage panel releases a stimulated emission from the area in which the radiation energy is stored;
 - 25 detecting the stimulated emission photoelectrically to obtain a series of electric signals; and
 - 30 processing the electric signals to locate the area in which the complementary DNA fragments are fixed.

2. The process of claim 1, in which area on the radiation image storage panel other than the area of stimulable phosphor is covered by a barrier member.

5 3. The process of claim 1, in which the radiation
image storage panel is irradiated with a stimulating
light after it is separated from the DNA micro-array.

10 4. A kit for detecting complementary DNA fragments comprising a DNA micro-array having at least two defined areas in each of which a group of nucleotide derivatives and analogues thereof are fixed under such condition that a group of nucleotide derivatives and analogues thereof fixed in one area differs from a group of nucleotide derivatives and analogues thereof fixed in another area, and a radiation image storage panel containing a stimulable phosphor in areas corresponding to the areas on which groups of nucleotide derivatives or analogues thereof are fixed.

20 5. A composite structure comprising a DNA micro-
array having at least two defined areas in each of which
a group of nucleotide derivatives and analogues thereof
are fixed under such condition that a group of nucleotide
derivatives and analogues thereof fixed in one area dif-
fers from a group of nucleotide derivatives and analogues
thereof fixed in another area, and a radiation image
storage panel containing a stimulable phosphor in areas
corresponding to the areas on which groups of nucleotide
derivatives or analogues thereof are fixed, overlaid in
order, the radiation image storage panel be positioned in
relation to the DNA micro-array in such condition that
the areas containing stimulable phosphor of the radiation
image storage panel face the areas of the micro-array in
which groups of nucleotide derivatives and analogues
thereof are fixed.