Сеть и сетевые протоколы: L2-сеть

Ильмир Сахипов

О спикере:

- Руководитель центра управления сетью АО "Уфанет"
- Более 10 лет опыта в области телекоммуникаций
- Эксперт в решении сложных клиентских и сетевых инцидентов на мультивендорной мультисервисной операторской сети

Цели занятия

- Разобраться в основах работы канального уровня модели OSI
- Изучить различные среды, используемые для передачи данных
- Понять принципы работы протокола Ethernet
- Изучить протокол ARP
- Научиться работать с ARP-таблицами и проверять коннективити с помощью утилиты arping
- Ознакомится с проблематикой служебного трафика и методами ее решения через протоколы SRP и VLAN
- Научиться настраивать VLAN в Linux

План занятия

- (1) <u>Канальный уровень L2 в модели OSI</u>
- 2 Виды сред передачи данных
- Домен коллизий и широковещательный домен
- 4 Протокол Ethernet IEEE 802.3
- 5 Address Resolution Protocol (ARP)
- 6 Решение проблем широковещательного трафика STP & VLAN
- 7 Домашнее задание

Канальный уровень L2 в модели OSI

Цели темы

- Обзорно изучить канальный уровень L2 в модели OSI:
 назначение, решаемые проблемы, используемое оборудование
- Познакомиться с понятием сегмента сети
- Разобраться с разными типами передачи трафика, их особенностями и применением в бизнесе.

Канальный уровень (Data Link layer)

определяет способы передачи данных между

устройствами, находящимися в одном

сегменте сети

Уровни модели OSI

Прикладной уровень

Application layer

Уровень представления

Presentation layer

Сеансовый уровень

Session layer

Транспортный уровень

Transport layer

Сетевой уровень

Network layer

Канальный уровень

Data link layer

Физический уровень

Physical layer

определяет способы передачи данных между устройствами, находящимися в одном сегменте сети

Канальный уровень: решаемые проблемы

- Обнаружение ошибок физического уровня
- Одновременная передача данных разным устройствам
- Аппаратная адресация

Канальный уровень: единица данных

Frame (кадр)

Канальный уровень: примеры оборудования и протокола

Коммутатор

Сетевая карта

Сегмент сети

логически или физически обособленная часть сети

Целью разделения сети на сегменты является

Пример сети из двух сегментов

Сегмент сети А

Типы передачи трафика

1

Broadcast трафик

от одного хоста ко всем хостам в сети 2

Unicast трафик

от одного хоста к другому хосту

3

Multicast трафик

от одного хоста к некоторой ограниченной группе хостов

Типы передачи трафика: аналогия из жизни

Схема работы Broadcast трафика

- Для отправки используется широковещательный адрес
- Передается только в одном сегменте сети

Broadcast трафик: аналогия из жизни

Поиск человека в Торговом центре по громкой связи

Broadcast трафик: аналогия из жизни

Узнать, кто последний в очереди

Broadcast трафик

используют для служебного трафика

Использование Broadcast трафика

- Определения нужного адреса
- Получения настроек
- Поиска сервера DHCP

Схема работы Unicast трафика

- Для отправки используется конкретный адрес другого устройства
- Передается как в одном, так и в разных сегментах сети

Unicast трафик: аналогия из жизни

Звонок по мобильному телефону

Unicast трафик

используют для обмена данными по клиент-серверной модели

Схема работы Multicast трафика

- Для отправки используется адрес из специального диапазона, к которому привязана группа получателей
- Передается как в одном, так и в разных сегментах сети

Multicast трафик: аналогия из жизни

Доступ к вебинару только для тех, у кого есть ссылка

Multicast трафик

используют для рассылки сообщений ограниченной группе

Итоги

- Канальный уровень это второй уровень в модели OSI, который отвечает за обмен данными между устройствами в одном сегменте сети
- (2) Сегмент сети это логически или физически обособленный участок сети
- (3) Существует 3 типа трафика: broadcast, unicast и multicast:
 - для служебного трафика используется broadcast
 - для взаимодействия между 2 узлами используется unicast
 - для рассылки сообщений ограниченной группе используется multicast

Виды сред передачи данных

Цели темы

- Узнать о различных типах сред, используемых для передачи информации
- Познакомится с их ключевыми особенностями, достоинствами и недостатками
- Рассмотреть практические возможности применения различных сред

Виды сред

Общая среда разделяемая среда

Switched коммутируемая среда

Общая среда

метод реализации сетей, когда все устройства имеют

доступ к среде передачи данных, используя ее одновременно для приема и передачи

Сеть с общей средой

Коллизии

наложение двух и более кадров от станций, пытающихся передать кадр в один и тот же

момент времени в сети с общей

средой передачи данных

Возникновение коллизии в сети с общей средой

Плюсы и минусы сети с общей средой

Примеры использования

- построение сетей датчиков на производстве
- сигнализация

Коммутируемый доступ

метод построения сетей на основе выделения каналов приема-передачи от конечных устройств

к коммутаторам, которые обеспечивают маршрутизацию данных на основе

адреса получателя

Сеть с коммутируемым доступом

Стандарты связи

1

Полудуплексный режим 2

Дуплексный режим

Полудуплексный режим

один и тот же канал может использоваться или для передачи или для приема, но не одновременно

Сеть с коммутируемым доступом

Полудуплексный режим

Дуплексный режим

приём и передача могут осуществляться одновременно за счет физического разделения соответствующих каналов

Сеть с коммутируемым доступом

Дуплексный режим

Плюсы и минусы сети с коммутируемым доступом

Пример использования

Офисная сеть

Адресация в разных средах

Итоги

- ① Существует два типа среды передачи данных: коммутируемая среда и среда с общим доступом
- Среда с общий доступом позволяет без особых затрат развернуть сеть, но с увеличением количества абонентов возрастает количество коллизий и падает пропускная способность.
- Коммутируемая среда более затратна для реализации, однако позволяет полностью использовать возможную пропускную способность сети

Домен коллизий и широковещательный домен

Цели темы

- Изучить понятия домен коллизий и широковещательный домен
- Узнать о причинах возникновения домена коллизий
- Понять, для чего используется широковещательный домен

Домен коллизий

часть сети Ethernet, все узлы которой конкурируют за общую разделяемую среду передачи и,

следовательно, каждый узел которой может создать коллизию с любым другим узлом этой части сети

Домен коллизий

Чем больше узлов в сегменте Тем выше вероятность коллизий

Домен коллизий: аналогия из жизни

Телефонная конференция с большим количеством людей

Сетевые устройства и домен коллизий

Устройства первого уровня OSI концентраторы, повторители

Ретранслируют любой сигнал, и **продлевают** домен коллизий Устройства второго уровня OSI мосты, коммутаторы

Разделяют домен коллизий

Схема четырех доменов коллизий

- Устройства канального уровня L2 и сетевого уровня L3 ограничивают домен коллизий
- Устройства физического уровня L1 продлевают домен коллизий

Широковещательный домен

метод доставки сообщений, при котором сообщение получают сразу все участники обмена (связи)

Широковещательный домен ограничен сегментом сети

Ограничивающие устройства:

- Маршрутизаторы
- Коммутаторы с поддержкой виртуальных сетей

Итоги

- Домен коллизий это участок сети, где возникают коллизии. Его нужно уменьшать насколько возможно с помощью устройств уровня L2/L3
- широковещательный домен ограничен сегментом сети, в нем все устройства имеют доступ друг к другу по аппаратному адресу
- Все взаимодействие сети построено на основе широковещательного домена

Протокол Ethernet IEEE 802.3

Цели темы

- Познакомиться с протоколом IEEE 802.3 Ethernet
- Узнать что такое МАС-адрес
- Разобраться с форматом кадра Ethernet
- Понять, что означает MTU

Протоколы канального уровня отвечают за доставку данных внутри одного сегмента сети

Стандарт для сетей Ethernet

Сегмент сети (согласно IEEE 802.3)

электрически соединенные устройства, использующие общую среду

Способы соединения сегментов сети

Дословный перевод МАС

Media Access Control

контроль доступа к средствам массовой информации

МАС-адрес

аппаратный номер оборудования (компьютера, сервера, порта коммутатора и прочее), который

присваивается сетевой карте в момент его производства

В широковещательном домене сообщение фильтруется самим узлом по МАС-адресу

Формат кадра Ethernet

Формат кадра Ethernet

Дословный перевод MTU

Maximum Transmission Unit

Максимальная единица передачи

MTU

максимальный размер полезного блока данных одного пакета (англ. *payload*), который может быть

передан протоколом без фрагментации

Максимальный размер MTU

L5

Прикладные уровни

L4

Транспортный уровень

L3

Сетевой уровень

L2

Канальный уровень

L1

Физический уровень

Итоги

- В рамках одного сегмента проводной сети для передачи используется протокол Ethernet
- Сам протокол Ethernet для коммуникации устройств использует их MAC-адреса, обладает встроенным механизмом проверки корректности работы физического уровня L1
- МТU максимальный размер, который может быть передан протоколом без фрагментации, в большинстве сетей равен 1500 байт

Address Resolution Protocol

Цели тем

- Разобраться, для чего используются
 широковещательные сообщения в сетях ТСР/IР
- Понять взаимосвязь IP и MAC-адресов при работе протокола ARP
- Научиться работать с ARP таблицами в Linux
- Научиться проверять коннективити с помощью утилиты arping

Что делать, если в коммутатор уже невозможно подключить новых участников сети, или они удалены по расстоянию?

Необходимые действия

1

Создать несколько локальных сетей

(2)

Объединить эти локальные сети

Двухуровневая адресация

необходимость при объединении нескольких сетей

Двухуровневая адресация

необходима для глобальной адресации узлов интернет сети, при этом каждый узел имеет уникальный

локальный адрес внутри своей сети и каждая сеть имеет свой идентификатор

Как между собой связаны МАС и IP-адреса?

Дословный перевод ARP

Address Resolution Protocol

Протокол определения адреса

ARP

протокол в компьютерных сетях, предназначенный для определения IP-адреса по известному MAC-адресу узла и наоборот

<

 <tr>
 ⟨
 √

4

ARP

ARP таблица в Linux

```
# ip neigh show dev eth1

# ping -c 1 192.168.11.12
PING 192.168.11.12 (192.168.11.12) 56(84) bytes of data.
64 bytes from 192.168.11.12: icmp_seq=1 ttl=64 time=1.58 ms
--- 192.168.11.12 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.588/1.588/0.000 ms

# ip neigh show dev eth1
192.168.11.12 lladdr 08:00:27:23:22:97 REACHABLE
```

REACHABLE

Динамическая запись

ARP таблица в Linux

Добавление статической записи

```
# ip neigh add 192.168.11.100 lladdr 00:00:00:00:00:AA dev eth1
# ip neigh show dev eth1
192.168.11.100 lladdr 00:00:00:00:00:aa PERMANENT
```

PERMANENT

Статический характер записи

ARP таблица в Linux

Удаление записи

```
# ip neighb del 192.168.11.100 dev eth1
```

ARP таблица в Linux: альтернативный способ

Традиционная утилита ARP

arping

Опрос узлов на локальный сети L2

```
$ ping -c 1 10.0.2.3
PING 10.0.2.3 (10.0.2.3) 56(84) bytes of data.
...
--- 10.0.2.3 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 0ms
$ sudo arping -c 1 10.0.2.3
60 bytes from 52:54:00:12:35:03 (10.0.2.3): index=0 time=7.346 usec
--- 10.0.2.3 statistics ---
1 packets transmitted, 1 packets received, 0% unanswered (0 extra)
rtt min/avg/max/std-dev = 0.007/0.007/0.007/0.000 ms
```

Если протокол ICMP – зафильтрован, мы можем использовать утилиту ARPING

Tcpdump

утилита, позволяющая перехватывать и анализировать сетевой трафик, проходящий через компьютер,

на котором запущена данная программа

Опции tcpdump

1

Опция - е

печатает заголовки канального уровня в каждой выведенной строке

(3)

Опция - v

при парсинге и выводе печатает чуть больше информации 2

Опция - А

отображает на экране содержимое пакетов в формате ASCII

4

Опция - nn

отображает порты и ip-адреса цифрами вместо имен (localhost, ssh, http и т.д.)

Итоги

- В рамках одного сегмента сети для нахождения МАСадреса используются широковещательные запросы по протоколу ARP
- Протокол ARP сопоставляет IP и MAC-адреса и составляет динамическую таблицу соответствия.
- Редактирование таблицы возможно с помощью утилит arp и ip, при этом статические записи автоматически не удаляются
- (4) Связность устройств на канальном уровне L2 можно проверить с помощью утилиты arping. Универсальная утилита tcpdump может помочь в диагностике проблем на канальном уровне

Решение проблем широковещательного трафика: STP и VLAN

Цели темы

- Изучить проблемы, связанные с широковещательным трафиком и познакомиться с различных методами борьбы с ними
- Познакомиться с протоколом STP, понять основы его работы
- Разобраться с понятием VLAN и возможностями, которые предоставляет данная технология
- Научиться настраивать VLAN в Linux

Broadcast шторм

Размножение широковещательных сообщений

Работа сети парализована

Широковещательные пакеты должны составлять не более 10% от общего числа пакетов в сети

Дословный перевод STP

Spanning Tree Protocol Остовного дерева

STP

канальный протокол, основной задачей которого является устранение петель в топологии произвольной сети Ethernet

<

 <tr>
 ⟨
 √

4

Схема работы STP

Дословный перевод LAN

Local Area Network

Вычислительная сеть

LAN

локальная компьютерная сеть, соединяющая компьютеры на небольшой территории, такой как

офисные здания, университеты, здания

Схема LAN

Дословный перевод VLAN

Virtual Local Area
Network

Виртуальная локальная вычислительная сеть

VLAN

логически обособленный сегмент локальной сети внутри одной физической сети

Схема VLAN

Схема VLAN

Как решить проблему роста сети?

Исходная сеть

Варианты решения

1

Физическое разделение сетей **(2**)

Логическое (виртуальное) обособление

Решение # 1: физическое разделение сетей

Решение # 2: виртуальное разделение сетей

VLAN

технология, которая позволяет строить виртуальные сети с независимой от физических устройств топологией

Возможности VLAN

Объединить в единую сеть группы компьютеров, подключенных к разным коммутаторам

Возможности VLAN

Разделить на разные сети компьютеры, подключенные к одному коммутатору

Преимущества VLAN

- сокращение числа широковещательных запросов, которые снижают пропускную способность сети
- повышение безопасности каждой виртуальной сети
- создание новой виртуальной сети без прокладки кабеля и покупки коммутатора
- объединение в одну сеть компьютеров, подключенных к разным коммутаторам
- упрощение сетевого администрирования

Пример VLAN с однократным запуском

lsmod | grep 8021q

```
sudo modprobe 8021q # если появляется ошибка "Maybe you need to load the 8021q module"
# ip link add link eth0 name eth0.10 type vlan id 10
# ip -d link show eth0.10
[root@localhost ~]# ip -d link show eth0.10
  eth0.10@eth0 <BROADCAST, MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT gr
oup default glen 1000
   link/ether 52:02:a4:e3:26:b5 brd ff:ff:ff:ff:ff:ff promiscuity 0 vlan protocol 802.1Q id 10 <REORDER_HDR> addrgenmode eui64 numtxqueues 1 numrxque
   1 gso_max_size 65536 gso_max_segs 65535
# ip addr add 192.168.1.200/24 brd 192.168.1.255 dev eth0.10
# ip link set dev eth0.10 up
# ip link set dev eth0.10 down
# ip link delete eth0.10
```

Пример VLAN с однократным запуском

- загружаем модуль ядра 8021q
- создаем новый виртуальный интерфейс с нужной меткой
- назначаем ІР адрес
- поднимаем интерфейс
- после работы удаляем его

Пример VLAN с многократным запуском

```
# nano /etc/netplan/01-netcfg.yaml
network:
  version: 2
  ethernets:
    eth0:
      dhcp4: true
  vlans:
    vl.an200:
      id: 200
      link: eth0
      dhcp4: no
      addresses: [192.168.200.2/24]
      gateway4: 192.168.200.1
      routes:
        - to: 192.168.100.1/24
          via: 192.168.200.3
          on-link: true
```

Пример VLAN с многократным запуском

- включаем загрузку модуля ядра 8021q при старте системы
- создаем новую автоматическую конфигурацию виртуального интерфейса с нужной меткой:
- для Debian через конфигурацию /etc/network/interfaces
- для CentOS через создание конфигурации в /etc/sysconfig/network-scripts/ifcfg-vlan**
- для Ubuntu(версии начиная с 17.10) через редактирование /etc/netplan/*.yaml

Итоги

- На ранних этапах развития сетей широковещательных трафик представлял угрозу возникновения broadcast-шторма. Для борьбы с этим используются различные вариации протокола STP
- 2 В современных сетях широковещательных трафик может серьезно снижать пропускную способность сетей при большом количестве устройств в сегменте сети
- Уменьшение сегмента сети возможно с помощью физического изменения топологии и добавления новых

Итоги

- VLAN позволяет гибко настраивать сеть для достижения максимальных характеристик пропускной способности и безопасности
- В Linux VLAN можно настроить вручную либо через автоматическую сетевую конфигурацию (в зависимости от дистрибутива)

Общий итоги занятия

- Разобрались в основах работы канального уровня модели OSI
- Изучили различные среды, используемые для передачи данных
- Поняли принципы работы протокола Ethernet
- Изучили протокол ARP
- Научились работать с ARP-таблицами и проверять коннективити с помощью утилиты arping
- Познакомились с проблематикой служебного трафика и методами ее решения через протоколы SRP и VLAN
- Научились настраивать VLAN в Linux

Домашнее задание

Давайте посмотрим вашу практику после лекции

- (1) Практика состоит из обязательного теста и домашнего задания со звездочкой (необязательное)
- (2) В тесте 14 вопросов, на 10 нужно ответить верно. Есть 2 попытки
- **3** Вопросы по домашнему заданию со звездочкой задавайте в чате группы
- Задачи можно сдавать по частям.
 Зачёт по домашней работе ставят после того, как приняты все задачи

Задавайте вопросы. Оставляйте обратную связь по вебинару

