Несобственные интегралы, зависящие от параметра

Теорема (о перестановке двух несобственных интегралов). Пусть

- (a) функция f(x,y) непрерывна на $[a,+\infty)\times[c,+\infty),$
- (b) интеграл $\int_{a}^{+\infty} f(x,y) dx$ сходится равномерно относительно $y \geqslant c$,
- (c) интеграл $\int_{c}^{+\infty} f(x,y) dy$ сходится равномерно относительно $x \geqslant a$,
- (d) один из интегралов $\int_a^{+\infty} dx \int_c^{+\infty} |f(x,y)| \, dy$ или $\int_c^{+\infty} dy \int_a^{+\infty} |f(x,y)| \, dx$ определён.

Тогда

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx = \int_{a}^{+\infty} dx \int_{c}^{+\infty} f(x,y) dy.$$

Следствие. Если

- (a) функция $f(x,y)\geqslant 0$ и непрерывна на $[a,+\infty)\times [c,+\infty),$
- (b) интеграл $I(y) = \int_a^{+\infty} f(x,y) \, dx$ непрерывная функция на $y \geqslant c$,
- (c) интеграл $I(x) = \int_{0}^{+\infty} f(x,y) dy$ непрерывная функция на $x \geqslant a$,
- (d) один из повторных интегралов $\int_a^{+\infty} dx \int_c^{+\infty} f(x,y) \, dy$ или $\int_c^{+\infty} dy \int_a^{+\infty} f(x,y) \, dx$ определён, то существует и второй повторный интеграл и

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx = \int_{c}^{+\infty} dx \int_{c}^{+\infty} f(x,y) dy.$$

Пример. Вычислить $\int_0^\infty \frac{\sin x}{x} dx$.

Разрывный множитель Дирихле:

$$\int_0^\infty \frac{\sin ax}{x} \, dx = \begin{cases} \frac{\pi}{2}, & a > 0; \\ 0, & a = 0; \\ -\frac{\pi}{2}, & a < 0. \end{cases}$$

Пример. Вычислить интеграл Эйлера–Пуассона: $\int_0^\infty e^{-x^2} dx$.

Пример. Вычислить интегралы Лапласа: $(k \neq 0)$

$$y(a) = \int_0^\infty \frac{\cos ax}{k^2 + x^2} dx, \quad a \geqslant 0, \qquad z(a) = \int_0^\infty \frac{x \sin ax}{k^2 + x^2} dx, \quad a > 0.$$

Эйлеровы интегралы

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} \, dx \qquad \qquad - \text{ интеграл Эйлера 1 рода (В-функция)}$$

$$\Gamma(a) = \int_0^{+\infty} x^{a-1} e^{-x} \, dx \qquad \qquad - \text{ интеграл Эйлера 2 рода (Г-функция)}$$

Свойства В-функции:

- Область определения: a > 0, b > 0
- Симметричность: B(a,b) = B(b,a)
- ullet Формула приведения: $\mathrm{B}(a+1,b)=rac{a}{a+b}\mathrm{B}(a,b)$
- Представление в форме интеграла 1 рода: $B(a,b) = \int_0^{+\infty} \frac{t^{a-1}}{(1+t)^{a+b}} dt$

Свойства Г-функции:

- Область определения: a > 0
- Непрерывность
- Дифференцируемость
- Формула приведения: $\Gamma(a+1) = a\Gamma(a)$
- ullet Связь с В-функцией: $\mathrm{B}(a,b)=rac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$
- Формула дополнения: $\Gamma(a)\Gamma(1-a) = \frac{\pi}{\sin a\pi}, \ 0 < a < 1$