Homework 1. Solutions

1 Show that the set of vectors $\{\mathbf{a}_1, \mathbf{a}_2 \dots, \mathbf{a}_m\}$ in vector space V is linear dependent if at least one of these vectors is equal to zero.

WLOG suppose that $\mathbf{a}_1 = 0$. Then

$$\lambda \mathbf{a}_1 + 0 \cdot \mathbf{a}_2 + \ldots + 0 \cdot \mathbf{a}_n = 0$$

where λ is an arbitrary real number. We see that there exists a linear combinations of vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ which is equal to zero and one of the coefficients $\{\lambda, 0, \dots, 0\}$ is not equal to zero. Hence vectors $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m)$ are linear dependent.

2 Show that any three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ in \mathbf{R}^2 are linear dependent. We will show it straightforwardly here.

Let three vectors

$$\mathbf{x}_1 = (a^1, a^2)$$

 $\mathbf{x}_2 = (b^1, b^2)$
 $\mathbf{x}_3 = (c^1, c^2)$

be linear independent. If vector $\mathbf{x}_1 = (a_1, a_2) = 0$ then nothing to prove. (See exercise 1). Let $\mathbf{x}_1 \neq 0$. WLOG suppose $a_1 \neq 0$. Consider

$$\mathbf{x}_2' = \mathbf{x}_2 - \frac{b_1}{a_1} \mathbf{x}_1 = (b^1, b^2) - \frac{b_1}{a_1} (a_1, a_2) = (0, b_2')$$

$$\mathbf{x}_3' = \mathbf{x}_3 - \frac{c_1}{a_1} \mathbf{x}_1 = (c^1, c^2) - \frac{c_1}{a_1} (a_1, a_2) = (0, c_2')$$

We see that vectors $\mathbf{x}_2', \mathbf{x}_3'$ are proportional—i.e. they are linear dependent:

$$0 = \mu_2 \mathbf{x}_2' + \mu_3 \mathbf{x}_3' = \mu_2 \left(\mathbf{x}_3 - \frac{c_1}{a_1} \mathbf{x}_1 \right) + \mu_3 \left(\mathbf{x}_3 - \frac{c_1}{a_1} \mathbf{x}_1 \right) = \mu_2 \mathbf{x}_2 + \mu_3 \mathbf{x}_3 - \left(\frac{\mu_2 b_1}{a_1} + \frac{\mu_3 c_1}{a_1} \right) \mathbf{x}_1 = 0,$$

where $\mu_2 \neq 0$ or $\mu_3 \neq 0$. (e.g. $\mu_2 = -c'_2, \mu_3 = b'_2$ if at least one of these numbers is not equal to zero)

It follows from the relation above that three vectors $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ are linear dependent.

(Compare with the solution of general statement in the next exercise.)

3 Let 3 vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ in vector space V can be expressed as a linear combination of 2 vectors $\{\mathbf{a}, \mathbf{b}\}$ of this vector space, i.e. 3 vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ belong to the span of 2 vectors $\{\mathbf{a}, \mathbf{b}\}$. Prove that three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linear dependent.

Let

$$\begin{cases}
\mathbf{x}_1 = \lambda_1 \mathbf{a} + \mu_1 \mathbf{b} \\
\mathbf{x}_2 = \lambda_2 \mathbf{a} + \mu_2 \mathbf{b} \\
\mathbf{x}_3 = \lambda_3 \mathbf{a} + \mu_3 \mathbf{b}
\end{cases} \tag{1}$$

If one of vectors is equal to zero then nothing to prove (See previous exercise).

 $\mathbf{x}_1 \neq 0$. WLOG suppose that $\lambda_1 \neq 0$. Thus vector \mathbf{a} can be expressed as a linear combination of vectors \mathbf{x}_1 and \mathbf{b} :

$$\mathbf{a} = \frac{1}{\lambda_1} \mathbf{x}_1 - \frac{\mu_1}{\lambda_1} \mathbf{b} \tag{2}$$

. (If $\lambda_1 = 0$ then $\mu \neq 0$ and we express the vector b as a linear combination of vectors \mathbf{x}_1 and \mathbf{a}). Now using the relations (1) and (2) we express vector \mathbf{x}_2 as linear combinations of vectors \mathbf{a} and \mathbf{x}_1 :

$$\mathbf{x}_2 = \lambda_2 \left(\frac{1}{\lambda_1} \mathbf{x}_1 - \frac{\mu_1}{\lambda_1} \mathbf{b} \right) + \mu_2 \mathbf{b} = \lambda_2' \mathbf{x}_1 + \mu_2' \mathbf{b}$$
 (3)

If $\mu'_2 = 0$ then everything is proved: vector $\mathbf{x}_1, \mathbf{x}_2$ are linear dependent. If $\mu'_2 \neq 0$ we express vector \mathbf{b} via vectors \mathbf{x}_1 and \mathbf{x}_2 :

$$\mathbf{b} = \frac{1}{\mu_2'} \mathbf{x}_2 - \frac{\lambda_2'}{\mu_2'} \mathbf{x}_1 \tag{4}$$

and using relations (4), (2) and (1) we express vector \mathbf{x}_3 in (1) as a linear combinations of vectors \mathbf{x}_1 and \mathbf{x}_2 , thus proving that vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linear dependent.

$$\mathbf{x}_3 = \lambda_3 \mathbf{a} + \mu_3 \mathbf{b} = \lambda_3 \left(\frac{1}{\lambda_1} \mathbf{x}_1 - \frac{\mu_1}{\lambda_1} \mathbf{b} \right) + \mu_3 \left(\frac{1}{\mu_2'} \mathbf{x}_2 - \frac{\lambda_2'}{\mu_2'} \mathbf{x}_1 \right) =$$

$$\lambda_3 \left(\frac{1}{\lambda_1} \mathbf{x}_1 - \frac{\mu_1}{\lambda_1} \left(\frac{1}{\mu_2'} \mathbf{x}_2 - \frac{\lambda_2'}{\mu_2'} \mathbf{x}_1 \right) \right) + \mu_3 \left(\frac{1}{\mu_1} \mathbf{x}_2 - \frac{\lambda'}{\mu'} \mathbf{x}_1 \right) = \lambda_3'' \mathbf{x}_1 + \mu_3'' \mathbf{x}_2$$

Vector \mathbf{x}_3 is a linear combination of vectors \mathbf{x}_1 and \mathbf{x}_2 . Hence these three vectors are linear dependent.

[†] In a similar way one can prove that any m+1 vectors are linear dependent if they belong to the span of m vectors (See the lemma and its proof in the subsection 1.3 of Lecture notes).

- **4** Let $\{a,b\}$ be two vectors in the linear space V such that
- i) these vectors are linear independent
- ii) for an arbitrary vector $\mathbf{x} \in V$ vectors $\{\mathbf{a}, \mathbf{b}, \mathbf{x}\}$ are linear dependent.

What is a dimension of the vector space V?

Is an ordered set $\{a, b\}$ a basis in the vector space V?

Recall that the dimension of vector space V is equal to n if there exist n linear independent vectors and any n+1 vectors are linear dependent.

Show that the dimension of the vector space under consideration is equal to 2.

On one hand there exist two linear dependent vectors **a** and **b**. This means that dimension of V is greater or equal than 2: $\dim V \geq 2$.

To prove that $\dim V = 2$ it remains to prove that any three vectors are linear dependent.

Show first that arbitrary vector $\mathbf{x} \in V$ can be expressed via vectors \mathbf{a}, \mathbf{b} , i.e. it belongs to the span of the vectors \mathbf{a} and \mathbf{b} . Indeed vectors $\{\mathbf{a}, \mathbf{b}, \mathbf{x}\}$ are linear dependent, hence

$$\mu_1 \mathbf{a} + \mu_2 \mathbf{b} + \mu_3 \mathbf{x} = 0$$
, where $\mu_1 \neq 0$, or $\mu_2 \neq 0$ or $\mu_3 \neq 0$.

If $\mu_3 = 0$ then $\mu_1 \neq 0$, or $\mu_2 \neq 0$ and $\mu_1 \mathbf{a} + \mu_2 \mathbf{b} = 0$, i.e. vectors \mathbf{a}, \mathbf{b} are linear dependent. Contradiction. Hence $\mu_3 \neq 0$, that is a vector \mathbf{x} can be expressed as a linear combination of vectors \mathbf{a}, \mathbf{b} , i.e. it belongs to the span of the vectors (\mathbf{a}, \mathbf{b}) .

Let $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ be a set of arbitrary 3 vectors. We just proved that any of these vectors belong to the span of the vectors $\{\mathbf{a}, \mathbf{b}\}$. Hence according to previous exercise these three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linear dependent. Thus we proved that any three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linear dependent.

Hence the dimension of the space V is equal to 2.

The vectors $\{\mathbf{a}, \mathbf{b}\}$ are two linear independent vectors in 2-dimensional vector space V. Hence it is a basis.

- **5** Let $\{e_1, e_2, e_3\}$ be a basis in 3-dimensional vector space V. Show that
- a) all vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are not equal to zero.
- b) an arbitrary vector $\mathbf{x} \in V$ can be expressed as a linear combination of the basis vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ in a unique way, i.e. if

$$\mathbf{x} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3 = a'^1 \mathbf{e}_1 + a'^2 \mathbf{e}_2 + a'^3 \mathbf{e}_3 \text{ then } a_1 = a'_1, a_2 = a'_2, a_3 = a'_3$$
 (5)

c)[†] Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be an ordered set of vectors in the vector space V such that an arbitrary vector $\mathbf{x} \in V$ can be expressed as a linear combination of the vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ in a unique way. Show that V is n-dimensional space and an ordered set $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis in V.

(Try first to prove it for n = 2, 3.)

- a) Suppose one of these vectors is equal to zero: $\mathbf{e}_1 = 0$. Then the vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ are linear dependent. (See the exercise 1).
- b) First prove the uniqueness of expansion (5) then the existence. Let \mathbf{x} be an arbitrary vector in V. Suppose

$$\mathbf{x} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3 = a'^1 \mathbf{e}_1 + a'^2 \mathbf{e}_2 + a'^3 \mathbf{e}_3$$
.

Then

$$0 = \mathbf{x} - \mathbf{x} = (a^1 - a'^1)\mathbf{e}_1 + (a^2 - a'^2)\mathbf{e}_2 + (a^3 - a'^3)\mathbf{e}_3$$

On the other hand vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ are linear independent. Hence all coefficients $(a^1 - a'^1), (a^2 - a'^2), (a^3 - a'^2)$ $a^{\prime 3}$) are equal to zero:

$$a^{1} - a^{\prime 1} = a^{2} - a^{\prime 2} = a^{3} - a^{\prime 3}$$
, i.e. $a^{1} = a^{\prime 1}, a^{2} = a^{\prime 2}, a^{3} = a^{\prime 3}$

We proved the uniqueness of an expansion. Now prove the existence. The vector space V is 3-dimensional. Hence any 4 vectors $\{e_1, e_2, e_3, x\}$ are linear dependent. Hence vector x can be expressed via the vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$. Indeed there exist coefficients $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ such that

$$\lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \lambda_3 \mathbf{e}_3 + \lambda_4 \mathbf{x} = 0 \tag{6}$$

and at least one of these coefficients is not equal to zero. Prove that $\lambda_4 \neq 0$. Suppose $\lambda_4 = 0$. Then it follows from (6) that vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ are linear dependent. Contradiction. Hence $\lambda_4 \neq 0$ and \mathbf{x} can be expressed via $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$:

$$\mathbf{x} = -\frac{\lambda_1}{\lambda_4}\mathbf{e}_1 - \frac{\lambda_2}{\lambda_4}\mathbf{e}_2 - \frac{\lambda_3}{\lambda_4}\mathbf{e}_3$$

c) † (See the proof of the Proposition 2 in the subsection 1.3)

6 Let {e₁, e₂, e₃} be a basis in 3-dimensional vector space. Show that it is a maximal set of linear $independent\ vectors\ in\ V$.

Denote by $S = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ the set of base vectors and by S' any set of the vectors which contain the set S. Given that $S \subseteq S'$ we have to prove that S' = S or S' is a set of linear dependent vectors.

If $S \subseteq S'$ and $S' \neq S$ then there exist a vector $\mathbf{x} \in S'$ such that \mathbf{x} does not coincide with base vectors. Vectors $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{x})$ are linear dependent because vector space V is 3-dimensional. We prove that the set S' contains subset of linear dependent vectors. Hence vectors in S' are linear dependent.

7 Let $\{e_1, e_2, e_3\}$ be a basis of 3-dimensional vector space V.

Is a set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ a basis of V in the case if

a) $\mathbf{e}'_1 = \mathbf{e}_2$, $\mathbf{e}'_2 = \mathbf{e}_1$, $\mathbf{e}'_3 = \mathbf{e}_3$; b) $\mathbf{e}'_1 = \mathbf{e}_1$, $\mathbf{e}'_2 = \mathbf{e}_1 + 3\mathbf{e}_3$, $\mathbf{e}'_3 = \mathbf{e}_3$; c) $\mathbf{e}'_1 = \mathbf{e}_1 - \mathbf{e}_2$, $\mathbf{e}'_2 = 3\mathbf{e}_1 - 3\mathbf{e}_2$, $\mathbf{e}'_3 = \mathbf{e}_3$;

d) $\mathbf{e}_1' = \mathbf{e}_2$, $\mathbf{e}_2' = \mathbf{e}_1$, $\mathbf{e}_3' = \mathbf{e}_1 + \mathbf{e}_2 + \lambda \mathbf{e}_3$ (where λ is an arbitrary coefficient)?

To analyse the cases we use the definition of basis: 3 vectors in 3-dimensional space form a basis if and only if these vectors are linear independent.

Case a) Vectors $\mathbf{e}_1' = \mathbf{e}_2, \mathbf{e}_2' = \mathbf{e}_1, \mathbf{e}_3' = \mathbf{e}_3$ are linear independent, since $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis. Hence $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ is a basis too.

Case b) Vectors $\mathbf{e}_1' = \mathbf{e}_1, \mathbf{e}_2' = \mathbf{e}_1 + 3\mathbf{e}_3, \mathbf{e}_3' = \mathbf{e}_3$ are linear dependent. Indeed there exists non-trivial linear combination of these vectors which is equal to zero:

$$\mathbf{e}_1' - \mathbf{e}_2' + 3\mathbf{e}_3' = \mathbf{e}_1 - (\mathbf{e}_1 + 3\mathbf{e}_3) + 3\mathbf{e}_3 = 0.$$

Hence it is not a basis.

Case c) First two vectors $\mathbf{e}_1' = \mathbf{e}_1 - \mathbf{e}_2$, $\mathbf{e}_2' = 3\mathbf{e}_1 - 3\mathbf{e}_2$ are already linear dependent. Hence these three vectors do not form a basis.

Case d) Check are vectors linear independent or not. Let $c_1\mathbf{e}_1' + c_2\mathbf{e}_2' + c_3\mathbf{e}_3' = 0$, i.e.

$$c_1\mathbf{e}'_1 + c_2\mathbf{e}'_2 + c_3\mathbf{e}'_3 = c_1\mathbf{e}_2 + c_2\mathbf{e}_1 + c_3(\mathbf{e}_1 + \mathbf{e}_2 + \lambda\mathbf{e}_3) = (c_2 + c_3)\mathbf{e}_1 + (c_1 + c_3)\mathbf{e}_2 + c_3\lambda\mathbf{e}_3 = 0$$
.

I-st case $\lambda \neq 0$. It follows from uniqueness of expansion of zero that $c_2 + c_3 = c_1 + c_3 = \lambda c_3 = 0$. Hence $c_3 = 0, c_1 = 0, c_2 = 0$. These three vectors are linear independent. This means that ordered triple $\{\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'\}$ is a basis.

II-nd case $\lambda = 0$. We have $c_2 + c_3 = c_1 + c_3 = 0$. Hence c_3 can be an arbitrary number and $c_1 = -c_3, c_2 = -c_3$. c_3 These three vectors are linear dependent. This means that ordered triple $\{\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'\}$ is not a basis.