

IBPSA Project 1

WP 3.1 Application and DESTEST for district energy models

Changes in WP3

- WP3.1: Development of DESTEST
- WP3.2: Application → Alessandro Maccarini

Development of DESTEST

Aim is to:

- 1. Develop typical or representative DES configurations
 - that can be used for testing different DES models (intermodel comparison, validation?)
 - that can be used for testing different DES implementations and approaches (f.i. central vs decentral storage)
- 2. Develop a test framework for testing individual DES models (f.i. substations, pipes, heatpumps ...)

Activities

- Main activities
 - 3 Coordination meetings
 - Many subgroup meetings
 - Finalization of common exercise 1
- Papers for BS2019
 - The influence of input data uncertainty on the district energy demand, Ina De Jaeger et al
 - Towards a DESTEST: a District Energy Simulation Test Developed in IBPSA Project 1, Dirk Saelens et al

Development of DESTEST

- Two tracks are working in parallel
 - Focus on building models: Ina De Jaeger
 - Focus on energy system models: Felix Bunning
- Common Exercises
 - Start with description of (very) simple neighborhood of buildings
 - Use this information to design thermal network(s)

Start simple: 16 identical buildings

- Thermal performance based on TABULA project for Belgium
- Two-zone model (day zone and night zone)
- Standard occupant (ISO 13790)
- Only heat demand for space heating

Participants

Modelling environment	Modeler	Affiliation of participant
Modelica IDEAS	Ina De Jaeger	KU Leuven / VITO / EnergyVille
Modelica Buildings	Alessandro Maccarini	Aalborg University
Modelica AixLib	Michael Mans	RWTH Aachen
Modelica BuildingSystems	Haris Shamsi	UCD Dublin
IDA ICE	Øystein Rønneseth, Igor Sartori	Sintef Norway
DIMOSIM	Enora Garreau	CSTB
Trnsys	Enora Garreau	CSTB

Profiles: September

Profiles: December

Load duration curve

Peak power & energy demand

Peak power

Annual energy demand

Next steps

- Replace nodes with other loads
 - Automated model generation with TEASER
 - Other types of single-family dwellings
 - Apartment blocks
 - Office buildings
 - Usage of different building standards and countries
 - •
- Change network layout, increase of complexity

NETWORKS: From building load to district heating system

- Building loads stored on github
- Derive network from loads:
 - Fix topology
 - Python: Automatically generate pipe dimensions, write to csv file

Modelica model generation

- Modelica: automatic parametrization from csv file
- automated process from building energy loads to simulationready Modelica model

Base for common excercise

- Defined building layout and radial network layout
- Comparison of heat losses for different models
- Used models:
 - Plug-flow pipe (IBPSA library)
 - Dynamic pipe (Buildings library)
 - Dimosim (CSTB)

Results

Heating losses

Numerical issues

Ongoing work

 Preparation of template to define new cases in a structured and coherent way

- Definition of new cases:
 - Different network typologies
 - Combined heating and cooling
 - Use of different central plant models and substation models

Investigation of numerical issues

Plan for breakout sessions

BS 1-1	Topic 1.1	
Chair: Felix / Ina	Feedback on Network Modeling	
	Feedback on Building Demand Modeling	
BS 1-2	Topic 1.2	
Chair: Ina	Feedback on Building Demand Modeling	
	Quantifying Uncertainty Propagation For District Energy Demand Using Realistic Variations On Input Data	
BS 2-1	Topic 2.1	
Chair: Alessandro	Joint 1.1 and 3: DHC substation and central plant models	
	Development of template for the collection of application case studies	
	Automated model generation and simplification for district heating and cooling grids	
	Update on Modesto	
BS 2-2	Topic 2.2	
Chair: Dirk	Definition of Next common exercise: pitches	
	Summary of ideas in BS2019 paper	
BS 2-3	Topic 2.3	
Chair: joint session	DESTEST parallel session with 1.1 [Numerics w. Felix, Michael Mans, 10 minutes]	
	Felix & Michael Mans: opportunitiy to discuss solver issues	
	Optimal control (explore collaboration with 1.2)	
	Development of simplified model for central plant in district heating models (WP 1.1)	
	models for substations (WP 1.1)	
BS 2-4	Topic 2.4	
Chair : Dirk	Definition of Next common exercise: continued + conclusion	
	planning of CE	
	definition of CE	
	commitments	
	planning of joint publications	

IEA Annex 71: Whole model empirical validation of a full-scale building including building service equipment and synthetic users → VALIDATION EXERCISE

Detailed specifications and the measured climate data will be released to modelling teams soon (spring 2019)

Participate? Contact Paul Strachan (or me): <paul@esru.strath.ac.uk>

IBPSA Project 1

WP3.1 wrap up

- Finalization and Communication of CE1 results:
 - Reporting existing work
 - What format to communicate results? CityGML, Energy ADE, geoJSON
- Discussion on substation models (with WP1.1)
- Free presentations
 - Automated model generation and simplification for district heating and cooling grids (Michael M.)
 - Update on Modesto (Annelies)
 - Application study cases (Konstantin)

WP3.1 wrap up

- Discussion on DESTEST future steps
 - Future steps in the demand calculations
 - Future steps in the distribution network modelling
 - Combination of buildings and distribution + system approach
 - Application of DESTEST description, also useful for benchmark testing of existing DES simulation tools as an emulator for BOPTEST

WP3.1 next steps

WP3.1 next steps

~ 5 months until Rome goals 1) -> finish common ex 1 10% deviation?

KPIs-> Tat substation, pressure diff critical
description (github mod file) (1st coordination
meeting)

online comparison for result 5 -> online comparison for results 3) = pitch individual ideas based on (2rd coordination)
first common ex Sagree on 1-2 new common excercises → first results for Rome

WP3.1 wrap up

- Publication plan
 - Extension of BS2019 paper to full journal paper