Лекция 7

Формальные методы описания семантики

§36. Абстрактный синтаксис и структурная индукция

Утверждение. (*Метод математической индукции*.) Если высказывание P(1) истинно, а из истинности P(k) следует истинность высказывания P(k+1), то $(\forall n \in \mathbb{N})$: P(n) – истинно.

Примечание. Предположение истинности P(k), из которого выводится истинность P(k+1), называется *гипотезой индукции*.

Определение. Говорят, что функция $h: \mathbb{N} \longrightarrow A$ задана *индуктивно*, если вычисление h(n) определяется соотношениями:

- 1. h(1) = a;
- 2. h(k) = F(h(k-1)), где k > 1, $F: A \longrightarrow A$.

Легко доказать, что $(\forall k \in \mathbb{N}) : \exists_1 \ h(k)$.

Пример. Функция $\gamma: \mathbb{N} \longrightarrow \mathbb{Z}$ индуктивно определяет члены геометрической прогрессии с первым членом a и знаменателем q:

- 1. $\gamma(1) = a$;
- $2. \ \gamma(k) = q \cdot \gamma(k-1).$

Здесь $F(x) = q \cdot x$, $F : \mathbb{Z} \longrightarrow \mathbb{Z}$.

Пример. Функция $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ вычисляет числа Фибоначчи:

$$\varphi\left(k\right)=n$$
, где $\langle n,m\rangle=f\left(k\right)$.

При этом функция $f:\mathbb{N}\longrightarrow\mathbb{N}^2$ задана индуктивно:

- 1. $f(1) = \langle 1, 1 \rangle$;
- 2. $f(k) = \langle b, a+b \rangle$, где $\langle a, b \rangle = f(k-1)$.

Здесь $F(x,y) = \langle y, x+y \rangle$, $F: \mathbb{N}^2 \longrightarrow \mathbb{N}^2$.

Определение. Мы будем называть *абстрактным синтаксисом* упрощённую грамматику языка, в которой отсутствует информация, гарантирующая построение уникальных деревьев вывода.

Определение. Пусть $G = \langle T, N, S, P \rangle$ — грамматика. Мы будем называть *синтаксическим доменом*, соответствующим нетерминальному символу $X \in N$, множество синтаксических деревьев, полученных из X по правилам P.

Замечание. Синтаксические деревья – конечные. Они содержат терминальные символы в качестве листовых вершин.

Обозначение. Синтаксическое дерево, полученное по правилу $X \to u$, мы будем обозначать $d^{X \to u}$.

Абстрактный синтаксис языка While:

```
n \in \mathsf{Num} - \mathsf{числовые} константы;
x \in \mathsf{Var} - \mathsf{переменные};
a \in \mathsf{Aexp} — арифметические выражения;
b \in \mathsf{Bexp} – логические выражения:
S \in \mathsf{Stm} — операторы.
n ::= 0 \mid 1 \mid \dots \mid 9 \mid n \mid 0 \mid n \mid 1 \mid \dots \mid n \mid 9
x ::= var n
a ::= n \mid x \mid a_1 + a_2 \mid a_1 \cdot a_2 \mid a_1 - a_2
b ::= true \mid false \mid a_1 = a_2 \mid a_1 \leq a_2 \mid \neg b \mid b_1 \wedge b_2
S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \mid \text{while } b \text{ do } S
```

Пример. Вычисление факториала для начального значения, связанного с переменной x_2 .

$$x_1 := 1$$
; while $\neg (x_2 = 1)$ do $(x_1 := x_1 \cdot x_2; x_2 := x_2 - 1)$.

Утверждение. (*Метод структурной индукции*.) Если высказывание P истинно для деревьев нулевой глубины, а из истинности P для деревьев, глубина которых меньше k, следует истинность P для деревьев, глубина которых равна k, то P истинно для любого конечного дерева.

Понятие индуктивно заданной функции может быть расширено для структурной индукции.

Определение. Пусть D — синтаксический домен, соответствующий нетерминалу X.

Говорят, что функция $h:D\longrightarrow A$ задана *индуктивно*, если для каждого правила вида $X\to u$ определено соотношение:

$$h\left(d^{X o u}\right)=F^{X o u}\left(h\left(d_1
ight),\ldots,h\left(d_n
ight)
ight)$$
, где

n – количество вхождений X в u;

 d_1, \dots, d_n — дочерние по отношению к $d^{X \to u}$ синтаксические деревья, соответствующие вхождениям X в u;

 $F^{X o u}: A^n \longrightarrow A$ — некоторая функция, которая для случаев n=0 вырождается в константу.

Пример. Функция $\mathcal{N}: \mathsf{Num} \longrightarrow \mathbb{Z}:$

$$\mathcal{N}[0] = 0,
\mathcal{N}[1] = 1,
...$$

$$\mathcal{N}[9] = 9,
\mathcal{N}[n 0] = 10 \cdot \mathcal{N}[n],
\mathcal{N}[n 1] = 10 \cdot \mathcal{N}[n] + 1,
...$$

$$\mathcal{N}[n 9] = 10 \cdot \mathcal{N}[n] + 9.$$

Легко доказать, что $(\forall n)$: $\exists_1 \mathcal{N}(n)$.

§37. Системы переходов, семантики и семантические функции

Определение. Система переходов — это упорядоченная тройка

$$\langle \Gamma, T, \rhd \rangle$$

где Γ — это множество *конфигураций*, $T \subseteq \Gamma$ — множество *терминальных* конфигураций, а $\triangleright \subseteq \Gamma \times \Gamma$ — *отношение переходов*.

Для отношения переходов должно выполняться $(\forall \gamma \in T) \ (\nexists \gamma' \in \Gamma) : \gamma \rhd \gamma'.$

Все конфигурации $\gamma \in \Gamma \setminus T$ такие, что $(\nexists \gamma' \in \Gamma)$: $\gamma \rhd \gamma'$, называются тупиковыми.

Определение. Детерминированная система переходов — это система переходов $\langle \Gamma, T, \rhd \rangle$, для которой справедливо, что $((\forall \gamma \in \Gamma) (\exists_1 \ \gamma') : \gamma \rhd \gamma')$.

Определение. Семантика для синтаксического домена D — это кортеж

$$\langle D, \Sigma, \Sigma_{start}, \Sigma_{final}, \Gamma, \rhd \rangle$$
, где

 Σ – множество состояний вычисления;

 $\Sigma_{start} \subseteq \Sigma$ – множество входных состояний вычисления;

 $\Sigma_{final} \subseteq \Sigma$ – множество выходных состояний вычисления;

 $\left< \Gamma, \Sigma_{final}, \rhd \right>$ — система переходов, множество конфигураций Γ которой состоит из конфигураций вида:

- $-\langle d,\sigma \rangle$, означающей, что синтаксическая конструкция $d \in D$ должна быть выполнена для состояния $\sigma \in \Sigma$;
- $-\sigma$, представляющей одно из финальных состояний вычисления (это терминальная конфигурация, то есть $\sigma \in \Sigma_{final}$).

Замечание. Семантика является *детерминированной*, если система переходов $\left\langle \Gamma, \Sigma_{final}, \rhd \right\rangle$ — детерминированная.

Пример. Семантика для арифметических выражений языка While:

 $\langle \mathsf{Aexp}, \, \mathsf{Env} \cup \mathbb{Z}, \, \mathsf{Env}, \, \mathbb{Z}, \, \mathsf{\Gamma}, \, \rhd \rangle$, где

Аехр – синтаксический домен арифметических выражений;

 $\mathsf{Env} \cup \mathbb{Z}$ — множество состояний вычисления;

Env - множество начальных состояний вычисления;

 \mathbb{Z} — множество конечных состояний вычисления;

Г – множество конфигураций.

В случае естественной семантики («большие шаги») отношение переходов ⊳ задаёт, например, такие переходы:

$$\langle 6 \cdot (2-x), [x \mapsto 10] \rangle \triangleright -48,$$

 $\langle 10 \cdot 20, [x_1 \mapsto -1, x_2 \mapsto 4] \rangle \triangleright 200.$

Для редукционной семантики («малые шаги») отношение ⊳ содержит переходы:

$$\langle 6 \cdot (2-x), [x \mapsto 10] \rangle \rhd \langle 6 \cdot (2-10), [x \mapsto 10] \rangle,$$

 $\langle 10 \cdot 20, [x_1 \mapsto -1, x_2 \mapsto 4] \rangle \rhd \langle 200, [x_1 \mapsto -1, x_2 \mapsto 4] \rangle,$
 $\langle 200, [x_1 \mapsto -1, x_2 \mapsto 4] \rangle \rhd 200.$

Определение. Семантическая функция $\mathcal{S}:D\longrightarrow \left(\Sigma_{start}\hookrightarrow \Sigma_{final}\right)$, выражающая наблюдаемое поведение детерминированной семантики $\langle D, \Sigma, \Sigma_{start}, \Sigma_{final}, \Gamma, \rhd \rangle$, определяется как

$$\mathcal{S}\llbracket d \rrbracket \, (\sigma) = egin{cases} \sigma', & \text{если } \langle d, \sigma \rangle \rhd^\star \sigma'; \\ \text{undef} & \text{в противном случае.} \end{cases}$$

Определение. Говорят, что детерминированные семантики $\left\langle D, \Sigma, \Sigma_{start}, \Sigma_{final}, \Gamma, \rhd_1 \right\rangle$ и $\left\langle D, \Sigma, \Sigma_{start}, \Sigma_{final}, \Gamma, \rhd_2 \right\rangle$ эквивалентны,

если
$$(\forall d \in D) (\forall \sigma \in \Sigma_{start}) : (S_1 \llbracket d \rrbracket (\sigma) = \sigma') \Leftrightarrow (S_2 \llbracket d \rrbracket (\sigma) = \sigma'),$$

где S_1 и S_2 — семантические функции, выражающие наблюдаемое поведение этих семантик.

Определение. *Окружение* (environment) – это функция, отображающая множество переменных в множество их значений.

Пример. Множество Env окружений для языка While состоит из функций вида $Var \hookrightarrow \mathbb{Z}$, которые мы будем записывать в виде списка пар «переменная \mapsto значение»:

$$[x_1 \mapsto 2, x_2 \mapsto 3, x_3 \mapsto -10]$$

Обозначение. Если $f: X \longrightarrow Y, \ x \in X, \ y \in Y$, то функция $f[x \mapsto y]: X \longrightarrow Y$ определяется как $f[x \mapsto y](x') = \begin{cases} y, & \text{если } x = x'; \\ f(x') & \text{в противном случае.} \end{cases}$

Пример. Если имеется окружение σ , то в результате присвоения некоторого значения i переменной x получается окружение $\sigma[x \mapsto i]$.

Пример. Семантическая функция \mathcal{A} : Aexp \longrightarrow (Env \longrightarrow \mathbb{Z}) для арифметических выражений языка While (задаётся индуктивно):

$$\mathcal{A}\llbracket n \rrbracket (\sigma) = \mathcal{N} (n),
\mathcal{A}\llbracket x \rrbracket (\sigma) = \sigma (x),
\mathcal{A}\llbracket a_1 + a_2 \rrbracket (\sigma) = \mathcal{A}\llbracket a_1 \rrbracket (\sigma) + \mathcal{A}\llbracket a_2 \rrbracket (\sigma),
\mathcal{A}\llbracket a_1 \cdot a_2 \rrbracket (\sigma) = \mathcal{A}\llbracket a_1 \rrbracket (\sigma) \cdot \mathcal{A}\llbracket a_2 \rrbracket (\sigma),
\mathcal{A}\llbracket a_1 - a_2 \rrbracket (\sigma) = \mathcal{A}\llbracket a_1 \rrbracket (\sigma) - \mathcal{A}\llbracket a_2 \rrbracket (\sigma).$$

Пример. Если добавить в язык операцию «унарный минус», то определение функции $\mathcal A$ нужно расширить предложением:

$$\mathcal{A}\llbracket -a \rrbracket (\sigma) = -\mathcal{A}\llbracket a \rrbracket (\sigma).$$

Альтернативный способ, противоречащий индуктивному заданию функции:

$$\mathcal{A}\llbracket -a \rrbracket (\sigma) = \mathcal{A}\llbracket 0 - a \rrbracket (\sigma).$$

Пример. Семантическая функция \mathcal{B} : Вехр \longrightarrow (Env \longrightarrow T) для логических выражений языка While (задаётся индуктивно):

$$\mathcal{B}[\![\mathsf{false}]\!](\sigma) = \mathsf{tt},$$

$$\mathcal{B}[\![\mathsf{false}]\!](\sigma) = \mathsf{ff},$$

$$\mathcal{B}[\![a_1 = a_2]\!](\sigma) = \begin{cases} \mathsf{tt}, & \mathsf{ecnu} \ \mathcal{A}[\![a_1]\!](\sigma) = \mathcal{A}[\![a_2]\!](\sigma), \\ \mathsf{ff}, & \mathsf{ecnu} \ \mathcal{A}[\![a_1]\!](\sigma) \neq \mathcal{A}[\![a_2]\!](\sigma), \end{cases}$$

$$\mathcal{B}[\![a_1 \le a_2]\!](\sigma) = \begin{cases} \mathsf{tt}, & \mathsf{ecnu} \ \mathcal{A}[\![a_1]\!](\sigma) \le \mathcal{A}[\![a_2]\!](\sigma), \\ \mathsf{ff}, & \mathsf{ecnu} \ \mathcal{A}[\![a_1]\!](\sigma) > \mathcal{A}[\![a_2]\!](\sigma), \end{cases}$$

$$\mathcal{B}[\![\neg b]\!](\sigma) = \begin{cases} \mathsf{tt}, & \mathsf{ecnu} \ \mathcal{B}[\![b]\!](\sigma) = \mathsf{ff}, \\ \mathsf{ff}, & \mathsf{ecnu} \ \mathcal{B}[\![b]\!](\sigma) = \mathsf{tt}, \end{cases}$$

$$\mathcal{B}[\![b_1 \land b_2]\!](\sigma) = \begin{cases} \mathsf{tt}, & \mathsf{ecnu} \ \mathcal{B}[\![b_1]\!](\sigma) = \mathsf{tt} \ \mathsf{u} \ \mathcal{B}[\![b_2]\!](\sigma) = \mathsf{tt}, \\ \mathsf{ff}, & \mathsf{ecnu} \ \mathcal{B}[\![b_1]\!](\sigma) = \mathsf{ff} \ \mathsf{unu} \ \mathcal{B}[\![b_2]\!](\sigma) = \mathsf{ff}. \end{cases}$$

§38. Естественная семантика (семантика «больших шагов») В естественной семантике все переходы имеют вид $\langle d, \sigma \rangle \rhd \sigma'$. Это означает, что выполнение синтаксической конструкции d из состояния вычисления σ завершается, и результирующим состоянием будет σ' .

Определение. Правило естественной семантики $\left\langle D, \Sigma, \Sigma_{start}, \Sigma_{final}, \Gamma, \rightarrow \right\rangle$ записывается в виде

$$\dfrac{\left\langle \widehat{d_1},\; \widehat{\sigma_1} \right
angle
ightarrow \widehat{\sigma_1'}, \cdots, \left\langle \widehat{d_n},\; \widehat{\sigma_n}
ight
angle
ightarrow \widehat{\sigma_n'}}{\left\langle \widehat{d},\; \widehat{\sigma}
ight
angle
ightarrow \widehat{\sigma'}},\;$$
если ...

Здесь $\widehat{d},\widehat{d_i}\subseteq D$, $\widehat{\sigma},\widehat{\sigma_i}\subseteq \Sigma_{start}$, $\widehat{\sigma'_i}\subseteq \Sigma_{final}$ — обобщённые записи подмножеств множеств D и Σ (образцы с метапеременными).

При этом $\widehat{d_1}, \cdots, \widehat{d_n}$ – это либо непосредственные поддеревья \widehat{d} , либо деревья, сконструированные из непосредственных поддеревьев \widehat{d} .

Над чертой — *предпосылки*, под чертой — *следствия*, справа — *условия*, правила без предпосылок — *аксиомы* (записываются без гор. черты).

Пример. Естественная семантика для операторов языка While.

$$[\operatorname{assign}_{ns}] \qquad \langle x := a, \, \sigma \rangle \to \sigma \, [x \mapsto \mathcal{A}[\![a]\!] \, (\sigma)]$$

$$[\operatorname{skip}_{ns}] \qquad \langle \operatorname{skip}, \, \sigma \rangle \to \sigma$$

$$[\operatorname{comp}_{ns}] \qquad \frac{\langle S_1, \, \sigma \rangle \to \sigma', \quad \langle S_2, \, \sigma' \rangle \to \sigma''}{\langle S_1; \, S_2, \, \sigma \rangle \to \sigma''}$$

$$[\operatorname{if}_{ns}^{\operatorname{tt}}] \qquad \frac{\langle S_1, \, \sigma \rangle \to \sigma'}{\langle \operatorname{if} \, b \, \operatorname{then} \, S_1 \, \operatorname{else} \, S_2, \, \sigma \rangle \to \sigma'}, \, \operatorname{если} \, \mathcal{B}[\![b]\!] \, (\sigma) = \operatorname{tt}$$

$$[\operatorname{if}_{ns}^{\operatorname{ff}}] \qquad \frac{\langle S_2, \, \sigma \rangle \to \sigma'}{\langle \operatorname{if} \, b \, \operatorname{then} \, S_1 \, \operatorname{else} \, S_2, \, \sigma \rangle \to \sigma'}, \, \operatorname{если} \, \mathcal{B}[\![b]\!] \, (\sigma) = \operatorname{ff}$$

$$[\operatorname{while}_{ns}^{\operatorname{tt}}] \qquad \frac{\langle S, \, \sigma \rangle \to \sigma', \quad \langle \operatorname{while} \, b \, \operatorname{do} \, S, \, \sigma' \rangle \to \sigma''}{\langle \operatorname{while} \, b \, \operatorname{do} \, S, \, \sigma \rangle \to \sigma''}, \, \operatorname{если} \, \mathcal{B}[\![b]\!] \, (\sigma) = \operatorname{tt}$$

$$[\operatorname{while}_{ns}^{\operatorname{ff}}] \qquad \langle \operatorname{while} \, b \, \operatorname{do} \, S, \, \sigma \rangle \to \sigma, \, \operatorname{если} \, \mathcal{B}[\![b]\!] \, (\sigma) = \operatorname{ff}$$

Каждое правило семантики является схемой для порождения некоторого множества переходов.

Определение. Мы будем называть переходы, порождаемые правилами семантики, *экземплярами* этих правил.

Пример. Одним из экземпляров аксиомы [assign $_{ns}$] является переход $\langle x_1 := 1, [x_1 \mapsto 0, x_2 \mapsto 0] \rangle \to [x_1 \mapsto 1, x_2 \mapsto 0]$

Пример. Одним из экземпляров правила [comp_{ns}] является переход $\langle x_1 := 5; \ x_2 := 3, \ [x_1 \mapsto 4] \rangle \to [x_1 \mapsto 5, \ x_2 \mapsto 3]$

Вывод перехода $\langle d, \sigma \rangle \to \sigma'$ в некоторой семантике связан с построением дерева семантического вывода, корнем которого является выводимый переход, листьями — экземпляры аксиом семантики.

Пример. Дерево семантического вывода для перехода

$$\langle (x_3 := x_2; x_2 := x_1); x_1 := x_3, \sigma_1 \rangle \to \sigma_4$$

записывается так:

$$\frac{\langle x_3 := x_2, \, \sigma_1 \rangle \to \sigma_2, \quad \langle x_2 := x_1, \, \sigma_2 \rangle \to \sigma_3}{\langle x_3 := x_2; \, x_2 := x_1, \, \sigma_1 \rangle \to \sigma_3}, \quad \langle x_1 := x_3, \, \sigma_3 \rangle \to \sigma_4}{\langle (x_3 := x_2; \, x_2 := x_1); \, x_1 := x_3, \, \sigma_1 \rangle \to \sigma_4}, \quad \text{где}$$

$$\sigma_1 = [x_1 \mapsto 4, x_2 \mapsto 5],$$
 $\sigma_2 = [x_1 \mapsto 4, x_2 \mapsto 5, x_3 \mapsto 5],$
 $\sigma_3 = [x_1 \mapsto 4, x_2 \mapsto 4, x_3 \mapsto 5],$
 $\sigma_4 = [x_1 \mapsto 5, x_2 \mapsto 4, x_3 \mapsto 5].$

Пусть требуется построить дерево семантического вывода для некоторой синтаксической конструкции d из состояния вычисления σ . Для этого требуется найти правило семантики, левую часть следствия которого можно отождествить с конфигурацией $\langle d, \sigma \rangle$. При этом возможны два случая:

- 1. Если найденное правило является аксиомой, и условия этой аксиомы выполняются, то мы можем сразу же определить выходное состояние вычисления. Тем самым построение дерева семантического вывода завершается.
- 2. Если найденное правило содержит предпосылки, то мы пытаемся построить деревья семантического вывода для каждой предпосылки. В случае успешного построения этих деревьев мы обязаны проверить условия, связанные с правилом, и, если эти условия выполняются, мы можем определить выходное состояние вычисления.

Пример. Покажем процесс построения дерева вывода T для оператора

while
$$\neg (x_1 = 0)$$
 do $(x_2 := x_2 \cdot 2; x_1 := x_1 - 1)$

из состояния вычисления $\sigma_1 = [x_1 \mapsto 2, x_2 \mapsto 2].$

1. Согласно правилу $\left[\mathsf{while}_{ns}^{\mathsf{tt}} \right]$:

$$T = rac{T_1, \quad T_2}{\langle ext{while} \, \neg \, (x_1 = 0) \, ext{ do } \, (x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1) \, , \, \sigma_1
angle o \sigma_6}$$
, где $T_1 = rac{\cdots}{\langle x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1, \, \sigma_1
angle o \sigma_3},$ $T_2 = rac{\cdots}{\langle ext{while} \, \neg \, (x_1 = 0) \, ext{ do } \, (x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1) \, , \, \sigma_3
angle o \sigma_6}.$

2. Согласно правилу [comp $_{ns}$]:

$$T_1 = \frac{T_3, \quad T_4}{\langle x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1, \ \sigma_1 \rangle \to \sigma_3}$$
, где

$$T_3 = \langle x_2 := x_2 \cdot 2, \, \sigma_1 \rangle \to \sigma_2$$
 (аксиома [assign_{ns}]), $T_4 = \langle x_1 := x_1 - 1, \, \sigma_2 \rangle \to \sigma_3$ (аксиома [assign_{ns}]).

Учитывая, что
$$\sigma_1=[x_1\mapsto 2,\,x_2\mapsto 2]$$
, получаем $\sigma_2=\sigma_1\,[x_2\mapsto 4]=[x_1\mapsto 2,\,x_2\mapsto 4]$, $\sigma_3=\sigma_2\,[x_1\mapsto 1]=[x_1\mapsto 1,\,x_2\mapsto 4]$.

3. Согласно правилу $\left[\mathsf{while}_{ns}^{\mathsf{tt}} \right]$:

$$T_2 = rac{T_5, \quad T_6}{\langle ext{while} \ op (x_1 = 0) \ ext{do} \ (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1) \ , \ \sigma_3
angle op \sigma_6},$$
 где $T_5 = rac{\dots}{\langle x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1, \ \sigma_3
angle op \sigma_5},$ $T_6 = rac{\dots}{\langle ext{while} \ op (x_1 = 0) \ ext{do} \ (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1) \ , \ \sigma_5
angle op \sigma_6}.$

4. Согласно правилу [comp $_{ns}$]:

$$T_5 = rac{T_7, \quad T_8}{\langle x_2 := x_2 \cdot 2; \; x_1 := x_1 - 1, \; \sigma_3
angle
ightarrow \sigma_5}$$
, где

$$T_7 = \langle x_2 := x_2 \cdot 2, \, \sigma_3 \rangle \to \sigma_4$$
 (аксиома [assign_{ns}]), $T_8 = \langle x_1 := x_1 - 1, \, \sigma_4 \rangle \to \sigma_5$ (аксиома [assign_{ns}]).

Учитывая, что
$$\sigma_3=[x_1\mapsto 1,\ x_2\mapsto 4]$$
, получаем $\sigma_4=\sigma_3\,[x_2\mapsto 8]=[x_1\mapsto 1,\ x_2\mapsto 8]$, $\sigma_5=\sigma_4\,[x_1\mapsto 0]=[x_1\mapsto 0,\ x_2\mapsto 8].$

5. Согласно аксиоме $\left[\text{while}_{ns}^{\text{ff}} \right]$:

$$T_6 = \langle \text{while} \ \neg \ (x_1 = 0) \ \text{do} \ (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1) \ , \ \sigma_5 \rangle \to \sigma_6$$
, где

$$\sigma_6 = \sigma_5 = [x_1 \mapsto 0, x_2 \mapsto 8].$$

§39. Редукционная семантика (семантика «малых шагов»)

В редукционной семантике используются два вида переходов:

 $\langle d, \sigma \rangle \rhd \langle d', \sigma' \rangle$ — частичное выполнение синтаксической конструкции d из состояния вычисления σ (оставшаяся часть вычислений выражается промежуточной конфигурацией $\langle d', \sigma' \rangle$);

 $\langle d,\sigma \rangle \rhd \sigma'$ — выполнение синтаксической конструкции d из состояния вычисления σ завершается, и результирующим состоянием становится σ' .

Правила редукционной семантики записываются в том же виде, что и правила естественной семантики.

Из естественной семантики в редукционную также переходит понятие *дерева семантического вывода*.

Пример. Редукционная семантика для операторов языка While.

$$[\operatorname{assign}_{rs}] \qquad \langle x := a, \, \sigma \rangle \Rrightarrow \sigma \, [x \mapsto \mathcal{A}[\![a]\!] \, (\sigma)]$$

$$[\operatorname{skip}_{rs}] \qquad \langle \operatorname{skip}, \, \sigma \rangle \Rrightarrow \sigma$$

$$[\operatorname{comp}_{rs}^1] \qquad \frac{\langle S_1, \, \sigma \rangle \Rrightarrow \langle S_1', \, \sigma' \rangle}{\langle S_1; \, S_2, \, \sigma \rangle \Rrightarrow \langle S_1'; \, S_2, \, \sigma' \rangle}$$

$$[\operatorname{comp}_{rs}^2] \qquad \frac{\langle S_1, \, \sigma \rangle \Rrightarrow \sigma'}{\langle S_1; \, S_2, \, \sigma \rangle \Rrightarrow \langle S_2, \, \sigma' \rangle}$$

$$[\operatorname{if}_{rs}^{tt}] \qquad \langle \operatorname{if} b \, \operatorname{then} \, S_1 \, \operatorname{else} \, S_2, \, \sigma \rangle \Rrightarrow \langle S_1, \, \sigma \rangle, \, \operatorname{если} \, \mathcal{B}[\![b]\!] \, (\sigma) = \operatorname{tt}$$

$$[\operatorname{if}_{rs}^{ff}] \qquad \langle \operatorname{if} \, b \, \operatorname{then} \, S_1 \, \operatorname{else} \, S_2, \, \sigma \rangle \Rrightarrow \langle S_2, \, \sigma \rangle, \, \operatorname{если} \, \mathcal{B}[\![b]\!] \, (\sigma) = \operatorname{ff}$$

$$[\operatorname{while}_{rs}] \qquad \langle \operatorname{while} \, b \, \operatorname{do} \, S, \, \sigma \rangle \Rrightarrow \langle \operatorname{if} \, b \, \operatorname{then} \, (S; \, \operatorname{while} \, b \, \operatorname{do} \, S) \, \operatorname{else} \, \operatorname{skip}, \, \sigma \rangle$$

Пример. Дерево вывода для перехода

$$\langle (x_3 := x_2; x_2 := x_1); x_1 := x_3, \sigma \rangle \Rightarrow \langle x_2 := x_1; x_1 := x_3, \sigma' \rangle$$

записывается так:

$$\frac{\langle x_3 := x_2, \, \sigma \rangle \Rrightarrow \sigma'}{\langle x_3 := x_2; \, x_2 := x_1, \, \sigma \rangle \Rrightarrow \langle x_2 := x_1, \, \sigma' \rangle}, \, \text{где}$$

$$\frac{\langle x_3 := x_2; \, x_2 := x_1, \, \sigma \rangle \Rrightarrow \langle x_2 := x_1, \, \sigma' \rangle}{\langle (x_3 := x_2; \, x_2 := x_1); \, x_1 := x_3, \, \sigma \rangle \Rrightarrow \langle x_2 := x_1; \, x_1 := x_3, \, \sigma' \rangle}, \, \text{где}$$

$$\sigma = [x_1 \mapsto 4, \, x_2 \mapsto 5],$$

$$\sigma' = [x_1 \mapsto 4, \, x_2 \mapsto 5, \, x_3 \mapsto 5].$$

Определение. Последовательность семантического вывода для синтаксической конструкции d из состояния σ — это либо конечная последовательность конфигураций $\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_k$, либо бесконечная последовательность конфигураций $\gamma_0, \gamma_1, \gamma_2, \ldots$

При этом $\gamma_0 = \langle d, \sigma \rangle$, $\gamma_i \Rightarrow \gamma_{i+1}$ и γ_k — это либо терминальная, либо тупиковая конфигурация.

Определение. Говорят, что выполнение синтаксической конструкции d из состояния вычисления σ завершается, если существует конечная последовательность вывода, начинающаяся с $\langle d, \sigma \rangle$. При этом выполнение успешно, если $\langle d, \sigma \rangle \Rightarrow^\star \sigma'$.

Определение. Говорят, что выполнение синтаксической конструкции d из состояния вычисления σ зацикливается, если существует бесконечная последовательность вывода, начинающаяся с $\langle d, \sigma \rangle$.

Пример. Покажем процесс построения последовательности вывода для оператора

```
while \neg\,(x_1=0) do (x_2:=x_2\cdot 2;\ x_1:=x_1-1) из состояния вычисления \sigma_1=[x_1\mapsto 2,\ x_2\mapsto 2].
```

1. Согласно правилу [while r_s]:

2. Согласно правилу $[if_{rs}^{tt}]$:

```
\begin{array}{l} \langle \text{if} \ \neg \, (x_1 = 0) \ \text{then} \, (\\ (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1); \\ \text{while} \ \neg \, (x_1 = 0) \ \text{do} \, (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1) \\ ) \\ \text{else} \\ \text{skip}, \\ \sigma_1 \rangle \Rrightarrow \\ \langle (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1); \\ \text{while} \ \neg \, (x_1 = 0) \ \text{do} \, (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1), \\ \sigma_1 \rangle \end{array}
```

3. Согласно правилу $\left[\mathsf{comp}_{rs}^{1}\right]$:

```
\frac{\langle x_2 := x_2 \cdot 2, \, \sigma_1 \rangle \Rrightarrow \sigma_2}{\langle x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1, \, \sigma_1 \rangle \Rrightarrow \langle x_1 := x_1 - 1, \, \sigma_2 \rangle}{\langle (x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1);} while \neg (x_1 = 0) do (x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1), \sigma_1 \rangle \Rrightarrow \langle x_1 := x_1 - 1; while \neg (x_1 = 0) do (x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1), \sigma_2 \rangle

Учитывая, что \sigma_1 = [x_1 \mapsto 2, \, x_2 \mapsto 2], получаем \sigma_2 = \sigma_1 \, [x_2 \mapsto 4] = [x_1 \mapsto 2, \, x_2 \mapsto 4].
```

4. Согласно правилу $\left[\mathsf{comp}_{rs}^{1}\right]$:

$$\langle x_1 := x_1 - 1, \, \sigma_2 \rangle \Rrightarrow \sigma_3$$
 $\langle x_1 := x_1 - 1;$ while $\neg (x_1 = 0)$ do $(x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1),$ $\sigma_2 \rangle \Rrightarrow$ \langle while $\neg (x_1 = 0)$ do $(x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1), \, \sigma_3 \rangle$ Учитывая, что $\sigma_2 = [x_1 \mapsto 2, \, x_2 \mapsto 4]$, получаем $\sigma_3 = \sigma_2 [x_1 \mapsto 1] = [x_1 \mapsto 1, \, x_2 \mapsto 4].$

5. Согласно правилу [while r_s]:

6. Согласно правилу $[if_{rs}^{tt}]$:

```
 \begin{split} &\langle \text{if} \ \neg \, (x_1 = 0) \ \text{then} \, (\\ & (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1); \\ & \text{while} \ \neg \, (x_1 = 0) \ \text{do} \, (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1) \\ & ) \\ & \text{else} \\ & \text{skip}, \\ & \sigma_3 \rangle \Rrightarrow \\ & \langle (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1); \\ & \text{while} \ \neg \, (x_1 = 0) \ \text{do} \, (x_2 := x_2 \cdot 2; \ x_1 := x_1 - 1), \\ & \sigma_3 \rangle \end{aligned}
```

7. Согласно правилу $\left[\mathsf{comp}_{rs}^1\right]$:

```
\frac{\langle x_2 := x_2 \cdot 2, \, \sigma_3 \rangle \Rrightarrow \sigma_4}{\langle x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1, \, \sigma_3 \rangle \Rrightarrow \langle x_1 := x_1 - 1, \, \sigma_4 \rangle}{\langle (x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1);} while \neg (x_1 = 0) do (x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1), \sigma_3 \rangle \Rrightarrow \langle x_1 := x_1 - 1; while \neg (x_1 = 0) do (x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1), \sigma_4 \rangle

Учитывая, что \sigma_3 = [x_1 \mapsto 1, \, x_2 \mapsto 4], получаем \sigma_4 = \sigma_3 [x_2 \mapsto 8] = [x_1 \mapsto 1, \, x_2 \mapsto 8].
```

8. Согласно правилу $\left[\mathsf{comp}_{rs}^{1}\right]$:

$$\langle x_1 := x_1 - 1, \, \sigma_4 \rangle \Rrightarrow \sigma_5$$
 $\langle x_1 := x_1 - 1;$ while $\neg (x_1 = 0)$ do $(x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1),$ $\sigma_4 \rangle \Rrightarrow \langle \text{while } \neg (x_1 = 0) \text{ do } (x_2 := x_2 \cdot 2; \, x_1 := x_1 - 1), \, \sigma_5 \rangle$ Учитывая, что $\sigma_4 = [x_1 \mapsto 1, \, x_2 \mapsto 8]$, получаем $\sigma_5 = \sigma_4 \, [x_1 \mapsto 0] = [x_1 \mapsto 0, \, x_2 \mapsto 8].$

9. Согласно правилу [while r_s]:

10. Согласно правилу $[if_{rs}^{ff}]$:

```
\langle \text{if } \neg (x_1=0) \text{ then } (
(x_2:=x_2\cdot 2;\ x_1:=x_1-1);
\text{while } \neg (x_1=0) \text{ do } (x_2:=x_2\cdot 2;\ x_1:=x_1-1)
)
\text{else}
\text{skip},
\sigma_5 \rangle \Rrightarrow \langle \text{skip},\ \sigma_5 \rangle
```

11. И, наконец, по правилу [skip $_{rs}$]: $\langle \mathrm{skip}, \, \sigma_5 \rangle \Rrightarrow \sigma_5.$