Vector Test Question Bank

- 1. Vector \vec{a} has initial point (4, -3) and terminal point (3, -4). Write the vector in component form and sketch it on the graph paper below.
- 2. Vector \vec{v} has initial point (11, 12) and terminal point (12, 11). Determine if \vec{v} and \vec{a} are equivalent.
- 3. Let $u = \langle -3, 5 \rangle$ and $\vec{v} = \langle 1, 4 \rangle$ and $\vec{w} = \langle 6, -3 \rangle$. Find
 - a) $\vec{u} + \vec{v} + \vec{w}$
 - b) $\vec{u} 2\vec{v}$

 - c) $\frac{\vec{v} + \vec{w}}{3}$ d) $\vec{w} \vec{u} \vec{v}$
- 4. Given $\vec{u} = \langle -4, -5 \rangle$, find
 - a) $\|\vec{u}\|$
 - b) $||3\vec{u}||$
 - c) $\| -3\vec{u} \|$
 - d) $-3||\vec{u}||$
- 5. Given $\vec{u} = \langle -4, -5 \rangle$,
 - a) find a unit vector in the direction of \vec{u}
 - b) find a vector in the direction \vec{u} with length 10
 - c) find a vector parallel to \vec{u}
 - d) find a vector perpendicular to \vec{u}
- 6. Determine if \vec{a} and \vec{b} are parallel, perpendicular, or neither.
 - a) $\vec{a} = \langle \frac{1}{2}, \frac{2}{3} \rangle$, $\vec{b} = \langle -4, 3 \rangle$
 - b) $\vec{a} = 3\hat{i} 10\hat{j}, \ \vec{b} = 10\hat{i} 3\hat{j}$
 - c) $\vec{a} = \langle \tan \theta + 1, \sec \theta \rangle, \vec{b} = \langle \tan \theta 1, -\sec \theta \rangle$
- 7. Given vector $\vec{a} = 5\hat{i} 10\hat{j}$, determine the angle \vec{a} makes with the positive
- 8. If vector \vec{x} has magnitude 12 and makes an angle of $3\pi/4$ with the positive x axis, find the components of x and write as $a\hat{i} + b\hat{j}$.
- 9. If vector \vec{w} has length 20 and makes a 37.2° angle with the positive x axis, find the x and y components of w.
- 10. If two tugboats pull a ship, one with a force of 30N applied at an angle of 20° N of E, and one with a force of 40N applied at an angle of 60° N of W, find the resultant force vector acting on the cruise ship. Write the vector in component form and also as a magnitude/angle.