PAD-R182 432
VERTICAL HINDSHEAR BELOW 55 KILOMETERS IN THE VICIMITY OF BERLIN GERMANY. (U) ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE. L LEVITY ET AL. AUG 86 AMSMI/TR-RD-RE-86-9 SBI-AD-E951 031 F/G 4/2 NL



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A





TECHNICAL REPORT RD-RE-86-9

VERTICAL WINDSHEAR BELOW 5.5 KILOMETERS IN THE VICINITY OF BERLIN, GERMANY

. . , NOA 95/ OE/

L. Levitt, O. M. Essenwanger Research Directorate Research, Development, and Engineering Center



AUGUST 1986



U.S. ARMY MISSILE COMMAND

Redstone Arsenal, Alabama 35898-5000

Approved for public release; distribution is unlimited.

# **DISCLAIMER NOTICE**

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

|  |  |  | THIS PAGE |
|--|--|--|-----------|
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |

| REPORT (                                                                   | OCUMENTATIO                                                            | N PAGE                                              |                    | -                  | Form Approved<br>OMB No 0704-0188 |
|----------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|--------------------|--------------------|-----------------------------------|
| 1a. REPORT SECURITY CLASSIFICATION                                         |                                                                        | 16 RESTRICTIVE                                      | MARKINGS           |                    | Exp. Date Jun 30, 1986            |
| Unclassified                                                               |                                                                        | <u> </u>                                            |                    |                    |                                   |
| 2a. SECURITY CLASSIFICATION AUTHORITY                                      | Approved for                                                           |                                                     |                    | distribution       |                                   |
| 2b. DECLASSIFICATION / DOWNGRADING SCHEDU                                  | LE                                                                     | is unlimite                                         | ed.                |                    |                                   |
| 4. PERFORMING ORGANIZATION REPORT NUMBE                                    | R(S)                                                                   | 5. MONITORING                                       | ORGANIZATION R     | EPORT NU           | JMBER(S)                          |
| TR-RD-RE-86-9                                                              |                                                                        |                                                     |                    |                    |                                   |
| 6a. NAME OF PERFORMING ORGANIZATION Research Dir                           | 6b. OFFICE SYMBOL (If applicable)                                      | 7a NAME OF MONITORING ORGANIZATION                  |                    |                    |                                   |
| Res, Dev, and Eng Ctr  6c. ADDRESS (City, State, and ZIP Code)             | AMSMI-RD-RE                                                            | 7b ADDRESS (Cit                                     | v State and ZIP    | Code)              |                                   |
| Commender                                                                  |                                                                        | יט אטטאבאז(כאנ                                      | y, 3(8(e, 8110 211 | cooe,              |                                   |
| US Army Missile Command<br>ATTN: AMSMI-RD-RE<br>Redstone Arsenal, AL 35898 |                                                                        |                                                     |                    |                    |                                   |
| 8a. NAME OF FUNDING/SPONSORING<br>ORGANIZATION                             | 8b OFFICE SYMBOL<br>(If applicable)                                    | 9 PROCUREMENT                                       | I INSTRUMENT ID    | ENTIFICAT          | ION NUMBER                        |
| 8c. ADDRESS (City, State, and ZIP Code)                                    |                                                                        | 10 SOURCE OF F                                      | UNDING NUMBER      | RS                 |                                   |
| ,                                                                          |                                                                        | PROGRAM                                             | PROJECT            | TASK               | WORK UNIT                         |
|                                                                            |                                                                        | ELEMENT NO.                                         | NO                 | NO                 | ACCESSION NO                      |
| 11. TITLE (Include Security Classification)                                |                                                                        | <u> </u>                                            | <u> </u>           | 1                  |                                   |
| Vertical Windshear Below 5.5 Ki                                            | lometers in the                                                        | Vicinity of                                         | Berlin, Ger        | rmany              |                                   |
| 12 PERSONAL AUTHOR(S) L. Levitt and Q. M. Essenwanger                      |                                                                        |                                                     |                    |                    |                                   |
| 13a TYPE OF REPORT 13b TIME CO                                             | OVERED<br>TO                                                           | 14 DATE OF PEPO<br>1986 Augus                       |                    | Day) 15            | PAGE COUNT                        |
| 16. SUPPLEMENTARY NOTATION                                                 | <del></del>                                                            |                                                     |                    |                    |                                   |
|                                                                            |                                                                        |                                                     |                    |                    |                                   |
| 17 COSATI CODES                                                            | 18 SUBJECT TERMS (                                                     | Continue on revers                                  | e if necessary and | didentify          | by block number)                  |
| FIELD GROUP SUB-GROUP                                                      |                                                                        |                                                     | •                  |                    |                                   |
|                                                                            |                                                                        |                                                     |                    |                    |                                   |
| 19 ABSTRACT (Continue on reverse if necessary                              | and identify by block i                                                | number)                                             | <del></del>        |                    |                                   |
| To have the common of the country                                          | and racinity by brock .                                                |                                                     |                    |                    |                                   |
| Vertical windshear below 5.5                                               |                                                                        |                                                     |                    |                    |                                   |
| taken at the Berlin-Templehof A                                            |                                                                        |                                                     |                    |                    |                                   |
| windspeed and wind direction che direction from one measurement            |                                                                        |                                                     |                    |                    |                                   |
| windspeed (scalar shear), diffe                                            |                                                                        |                                                     |                    |                    |                                   |
| shear were tabulated for various                                           |                                                                        |                                                     |                    |                    |                                   |
| surface), 850mb (1.5 km), 700mb                                            |                                                                        |                                                     |                    |                    |                                   |
| percent values of the scalar st                                            | fferences, a                                                           | nd vector s                                         | hear ar            | e also included.   |                                   |
| The results are presented by mo                                            |                                                                        |                                                     |                    |                    |                                   |
| the windshear in the layer surf                                            |                                                                        |                                                     |                    |                    |                                   |
| <b>20.8, 31.4, 38.2, 44.2, and 4h. 24.2 knots for July.</b> The small      |                                                                        |                                                     |                    |                    |                                   |
| 20 DISTRIBUT UN AVAILABILITY OF ABSTRACT                                   |                                                                        | 2" ABSTRAC" SE                                      | CURTY CLASSIFIC    | ATION              |                                   |
| UNCLASSIFIED UNL MITED - SAME AS F                                         | PPT DT/C GSERS                                                         | 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL |                    |                    |                                   |
|                                                                            |                                                                        | L                                                   |                    | <u></u>            |                                   |
| DD FORM 1473, 84 MAR 83 A                                                  | 'Riedit on <mark>may be</mark> used ur<br>- All other editions are ill |                                                     | SEC , RITY         | CLA <u>SS</u> IFIC | ATON OF THIS PAGE                 |

Continued from Block 19 (Abstract),

and are (annual averages) 7.5, 15.7, 18.5, 21.6, and 24.9 knots. The largest windshear magnitudes were associated with the surface to 5.5 km layer and are 31.9, 57.0, 59.6, 76.8, and 77.7 knots, decreasing to 17.8, 32.6, 38.4, 44.8, and 49.2 knots in July for the selected thresholds.

**መስለተዋለው የመለከት የእስከ እንደነት እንደነት እን**ደነት እንደነት እስከ እርስ እንደነት እንደነት እንደነት እንደነት እንደነት እንደነት እና እና እና እና እና እና እና እና እ

### ACKNOWLEDGMENT

The authors would like to thank Mr. Helmut P. Dudel and Dr. Dorathy A. Stewart for helpful suggestions. Thanks also go to Ms. Gloria McCrary for her careful typing of the manuscript.



| Accesi   | on For                     |         |  |  |  |  |  |
|----------|----------------------------|---------|--|--|--|--|--|
| NTIS     | CRA&                       | H       |  |  |  |  |  |
| DTIC     | TAB                        |         |  |  |  |  |  |
|          | our.ced                    |         |  |  |  |  |  |
| Justilio | ation                      |         |  |  |  |  |  |
| Ву       |                            |         |  |  |  |  |  |
| Dist 1b  | ition/                     |         |  |  |  |  |  |
| A        | vailabilit                 | y Codes |  |  |  |  |  |
| Dist     | Dist Avail and for Special |         |  |  |  |  |  |
| A-1      |                            |         |  |  |  |  |  |

### TABLE OF CONTENTS

|      |                  | Page |
|------|------------------|------|
| ı.   | INTRODUCTION     | 1    |
| II.  | METHODS AND DATA | 2    |
| III. | DATA DISCUSSION  | 2    |
| IV.  | SUMMARY          | 6    |
|      | REFERENCES       | 60   |

### LIST OF TABLES

| <u>Table</u> | <u>Title</u>                                                                                                                                                 | Page |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1            | Percent Occurrence of the Differences in Windspeed (Knots)<br>Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT<br>(1974-78, 1981).                | 7    |
| 2            | Percent Occurrence of the Differences in Windspeed (Knots)<br>Between 1000mb (Near Surface) and 850mb (1500M) at Berlin,<br>1200 Hours GMT (1974-78, 1981).  | 8    |
| 3            | Percent Occurrence of the Differences in Windspeed (Knots)<br>Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT<br>(1974-78, 1981).                | 9    |
| 4            | Percent Occurrence of the Differences in Windspeed (Knots)<br>Between 1000mb (Near Surface) and 700mb (3000M) at Berlin,<br>1200 Hours GMT (1974-78, 1981).  | 10   |
| 5            | Percent Occurrence of the Differences in Windspeed (Knots)<br>Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200<br>Hours GMT (1974-78, 1981).          | 11   |
| 6            | Percent Occurrence of the Differences in Windspeed (Knots)<br>Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200<br>Hours GMT (1974-78, 1981).          | 12   |
| 7            | Percent Occurrence of the Differences in Windspeed (Knots)<br>Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200<br>Hours GMT (1974-78, 1981).          | 13   |
| 8            | Percent Occurrence of the Differences in Windspeed (Knots)<br>Between 1000mb (Near Surface) and 500mb (5500M) at Berlin,<br>1200 Hours GMT (1974~78, 1981).  | 14   |
| 9            | Percent Occurrence of the Differences in Windspeed (Knots) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).                      | 15   |
| 10           | Percent Occurrence of the Differences in Wind Direction (Degrees) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).               | 16   |
| 11           | Percent Occurrence of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 17   |
| 12           | Percent Occurrence of the Differences in Wind Direction (Degrees) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).               | 18   |

# LIST OF TABLES (Continued)

| Table | <u>Title</u>                                                                                                                                                 | Page |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 13    | Percent Occurrence of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 19   |
| 14    | Percent Occurrence of the Differences in Wind Direction (Degrees) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 20   |
| 15    | Percent Occurrence of the Differences in Wind Direction (Degrees) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 21   |
| 16    | Percent Occurrence of the Differences in Wind Direction (Degrees) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 22   |
| 17    | Percent Occurrence of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 23   |
| 18    | Percent Occurrence of the Differences in Wind Direction (Degrees) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).               | 24   |
| 19    | Percent Occurrence of the Windshear (Knots) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).                                     | 25   |
| 20    | Percent Occurrence of the Windshear (Knots) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).                       | 26   |
| 21    | Percent Occurrence of the Windshear (Knots) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).                                     | 27   |
| 22    | Percent Occurrence of the Windshear (Knots) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).                       | 28   |
| 23    | Percent Occurrence of the Windshear (Knots) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).                               | 29   |
| 24    | Percent Occurrence of the Windshear (Knots) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).                               | 30   |
| 25    | Percent Occurrence of the Windshear (Knots) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981)                                | 31   |

# LIGI OF TABLES (Continued)

| Table | <u>Title</u>                                                                                                                                                                    | Page |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 26    | Percent Occurrence of the Windshear (Knots) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).                                          | 32   |
| 27    | Percent Occurrence of the Windshear (Knots) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).                                                        | 33   |
| 28    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (knots) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).               | 34   |
| 29    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (Knots) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 35   |
| 30    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (Knots) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).               | 36   |
| 31    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (Knots) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 37   |
| 32    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (Knots) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 38   |
| 33    | 50, 90, 95, 97.5, and 99th Percentile Valuer of the Differences in Windspeed (Knots) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 39   |
| 34    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (Knots) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 40   |
| 35    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (Knots) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 41   |
| 36    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (Knots) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).               | 42   |
| 37    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).        | 43   |

# LIST OF TABLES (Continued)

| Table | <u>Ti tle</u>                                                                                                                                                                          | Page |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 38    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 44   |
| 39    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).               | 45   |
| 40    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 46   |
| 41    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 47   |
| 42    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 48   |
| 43    | 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 49   |
| 44    | 50, 90, 95, 97.5, and 99th Percentile Values of the Difference in Wind Direction (Degrees) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).  | 50   |
| 45    | 50, 90, 95, 97.5, and 99th Percentile Values of the Difference in Wind Direction (Degrees) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).                | 51   |
| 46    | 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (Knots) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).                                     | 52   |
| 47    | 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (Knots) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).                       | 53   |
| 48    | 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (Knots) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).                                     | 54   |

## LIST OF TABLES (Continued)

| Table | Title                                                                                                                                                            | Page |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 49    | 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (Knots) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 55   |
| 50    | 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (Knots) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 56   |
| 51    | 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (Knots) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 57   |
| 52    | 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (Knots) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).         | 58   |
| 53    | 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (Knots) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981). | 59   |
| 54    | 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (Knots) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).               | 60   |

#### I. INTRODUCTION

The vertical variation of the horizontal wind has been extensively studied in the boundary layer below 100m. Much less data are available concerning windshear for altitudes above this height in the troposphere. Studies such as Alfuth and Alsobrook [1] provided frequency distributions of vector windshear in 1/2 km intervals from 3 km to as high as 27 km, and Essenwanger [2], [3], derived vector windshears for layers from surface to 2 km and above 8 km for application to missile design. Grossman and Beran [4] analyzed low-level windshear at selected U.S. airports in the layers surface to 150m and 150m to 300m for a 9 year period with particular emphasis on the occurrence of extreme windshears which may affect aircraft takeoff and landing.

The purpose of this report is to provide information of vertical windshear for selected atmospheric layers between surface and approximately 5.5 km for one location, Berlin, Germany. The data that are presented in this report are unique for several reasons. The windshear analysis was performed for specific altitudes that have not been included in other reports (i.e., 2 to 5.5 km).

The windshear calculations presented here also take into account the contribution of wind direction changes ("angular shear magnitude") which constitutes a different approach than in other reports devoted to windshear. Grossman and Beran [4] have calculated "total vector windshear" (length of the horizontal difference vector). Alfuth and Alsobrook [1] calculated the total vector windshear divided by the thickness of the layer and called that simply the "vector windshear." This approach was criticized by Essenwanger [5] who could show that the transformation of the vector windshear from one shear interval to another interval is not a linear function or ratio. Essenwanger [2], [3] utilized a functional relationship between total vector windshear and thickness of the layer which had previously been derived.

It should be noted that Arritt and Frank [6] calculated windshear for some of the same atmospheric layers reported here (boundary layer- 700mb, 850-700mb, 700-500mb). They do not outline their computational procedure, but claim that both speed and direction are taken into account. However, only the results of evaluating these parameters in a multiple regression scheme to predict rainfall amount are discussed, and no windshear statistics are reported.

Ohring et.al. [7] reported the results of deriving vertical windshears from the gradients of satellite radiance observations. A number of limitations with these methods still exist, e.g., trying to determine small horizontal gradients over small distances, uncertainties in transmission functions, and differences between the thermal windshear (as determined by satellite) and actual windshear. Also, these methods were applied to the lower stratosphere to eliminate the deleterious effects of cloud contamination. Therefore, a climatology of windshear as derived by satellite has not yet appeared in the literature.

#### II. METHODS AND DATA

という まっちょう 一年 東京の教育となって、まるののはない、 ないのであるとなる

All observations were taken at the Berlin-Templehof airport at 1200 Greenwhich Mean Time (GMT), and the period of record is 1974-78, and 1981.

The following notations were used:

$$V_8 = V_2 - V_1$$
 (scalar shear)
$$\Delta \theta = \theta_2 - \theta_1, \quad |\Delta \theta| \leq 180 \text{ degrees (angular difference)}$$

$$\Phi_8 = 2 \sqrt{V_1 V_2} \quad \sin (\Delta \theta/2) \text{ (angular shear magnitude)}$$

$$S = \sqrt{V_8 2 + \Phi_8 2} \quad \text{(total vector shear)}$$

where  $V_1$ ,  $\theta_1$ ,  $V_2$ , and  $\theta_2$  are windspeed and direction at two different pressure levels, respectively. See Essenwanger [8] for a derivation of the equation for total vector shear. The frequency distributions of the scalar shear, angular differences, and vector shear were tabulated for all but one of the possible permutations of five pressure levels: Surface (10m), 1000mb (near surface), 850mb (1.5 km), 700mb (3 km), and 500mb (5.5 km). The 50, 90, 95, 97.5 and 99 percent values of the scalar shear, angular differences, and vector shear are also included. The permutation of surface and 1000mb was omitted because discussion of the boundary layer is beyond the scope of this report.

### III. DATA DISCUSSION

Tables 1-9 display the percent occurrence of the differences in windspeed for the following atmospheric layers (in order of presentation): Surface and 1.5 km, near surface and 1.5 km, surface and 3 km, near surface and 3 km, 1.5 km and 3 km, 3 km and 5.5 km, 1.5 km and 5.5 km, near surface and 5.5 km, and surface and 5.5 km. For the layer between surface and 1.5 km (Table 1), windspeed differences of greater than 5 knots occurred with a frequency of 85.3 percent, decreasing to 65.5 percent in summer. The percent occurrence of windspeed differences greater than or equal to 15 knots occurred with a frequency of 49.5 percent in winter, decreasing to 12 percent in summer. For the layer between surface and 3 km (Table 3), windspeed differences of less than or equal to 5 knots and greater than or equal to 15 knots occurred with a frequency of 10.9 percent and 56.1 percent respectively in winter, compared to 27.7 percent and 26.2 percent in summer. These statistics are reflective of the anticipated increase of windspeed with height for the particular layers of interest. The largest windspeed differences occurred when considering the thickest atmospheric layer of surface to 5.5 km (Table 9), e.g., windspeed differences of greater than 11 knots occurred with a frequency of 82.8 percent in winter and 58.5 percent in summer. The percent occurrence of windspeeds greater than or equal to 15 knots for this layer was 77.5 percent in summer, decreasing to 46.5 percent in summer.

Variation of wind direction with height is another important factor in the boundary-layer; the surface wind will tend to blow across the isobars toward lower pressure. Warm advection tends to increase frictional wind veering, while cold advection has the opposite effect. However, in the free atmosphere (where surface friction no longer plays a role), the wind approaches the gradient wind, i.e., it blows approximately parallel to the isobars.

Tables 10 through 18 disclose the percent occurrence of the differences in wind direction for the same sequence of atmospheric layers as indicated above. Note that wind directions are reported to the nearest 5 degrees. For the layer surface to 1.5 km, windspeed differences of less than 30 degrees and 30 to 55 degrees occurred with a frequency of 36.1 percent and 38.3 percent respectively in winter, compared to 55.7 percent and 27.7 percent in summer (Table 10). Evaluating the layer from just above the surface (1000mb pressure level) to 1.5 km, wind direction differences are somewhat smaller due to the decreasing effect of friction. (Similar results are noted for other layers when 1000mb is substituted for the surface). The highest percentage of 60 to 85 degree wind direction differences were noted for the surface to 3 km layer (Table 12) and surface to 5 km layer (Table 18), which is approximately 20 percent for both of these layers. Wind direction differences of less than 30 degrees between 1.5 km and 3 km occurred with a frequency of 77.2 percent in winter and 78.7 percent in summer, which is the highest percentage for any of the layers that were considered here (Table 15).

We learn from Tables 19 through 27 the percent occurrence of windshear for each of the atmospheric layers. A windshear of less than 5 knots occurred with a frequency of 7 percent in winter and 21.6 percent in summer for the layer surface to 1.5 km. Considering all observations, the percent occurrence of windshear greater than or equal to 30 knots (not shown in Table 19) between surface and 1.5 km at Berlin is 5 percent. A windshear of 24 knots between surface and 1.5 km is exceeded in 4 percent of the cases in summer and 30 percent in winter. For the layer between surface and 3 km, a windshear of less than 30 knots occurs 96.5 percent of the time in summer in contrast to 75.5 percent during winter, which is a reflection of the increase in differences in windspeed and direction during fall and winter. It should be noted that a windshear of less than 15 knots for this layer occurs with a frequency of 28.4 percent in winter and 58.5 percent in summer, in contrast to 42.1 percent and 80.5 percent respectively for the layer surface to 1.5 km. The layer that exhibited the smallest windshear magnitude is 1.5 km to 3 km, with a windshear of less than 15 knots occurring with a frequency of 85.3 percent in winter and 93.3 percent in summer. Only 11.4 percent of all observations of windshear between 1.5 km and 3 km were greater than or equal to 15 knots. The seasonal differences in windshear for this layer are quite evident when considering shears of smaller magnitude, e.g., 28 percent occurrence of windshear less than or equal to 5 knots during winter as compared with 44 percent occurrence during summer. Approximately 17 knots is the 95th percentile of the windshear between 3 km and 5.5 km during summer, but corresponds to the 74th percentile for winter.

Tables 28 through 54 list the vertical differences in windspeed, wind direction, and shear for the various atmospheric layers for the selected thresholds 50, 90, 95, 97.5, and 99%. The windspeed differences between surface and 1.5 km for these thresholds at Berlin are 20.8, 31.4, 38.2, 44.2, and 46.1 knots for January decreasing to 9.5, 18.7, 22.5, 24.0, and 24.2 knots for July (Table 28). The windspeed differences from surface to 3 km for the selected thresholds are 19.0, 35.5, 39.0, 45.5, and 46.0 knots for January, decreasing to 10.0, 21.1, 23.5, 29.3, and 30.0 knots for July (Table 30). The annual average windspeed differences from 1.5 to 3 km are 4.0, 11.0, 13.0, 15.0, and 18.0 knots (Table 32), increasing to 7.0, 20.0, 25.0, 29.0, and 36.0 knots respectively from 3 to 5.5 km for the selected percentile values (Table 33). The 90th percentile of the windspeed difference from 3 to 5.5 km range from 10.0 knots to 26.0 knots (annual average of 20.0 knots). For the layer 1.5 to 3 km, the 90th percentile of windspeed differences range from 17.4 to 31.5 knots (annual average 28.0 knots), as compared with a range of 27.0 to 50.5 knots (annual average 45.0 knots) for the 99th percentile. For the layer surface to 5.5 km, the 90th percentile of windspeed differences range from 27.4 to 55.0 knots (annual average 43.0 knots), with the 99th percentile ranging from 41.0 knots to 70.2 knots (annual average 63.1 knots). Some of the monthly fluctuations in percentile values, particulary the wind direction differences, may be attributed to an increase in wind variability during stable atmospheric conditions when the winds are weak (i.e., during summer, when boundary-layer winds may become uncoupled with winds above). The seasonal variations appear to be realistic. considering the limited period of record, observational errors, etc.

TO DO DO SERVICES TO SERVICE TO LOCALIDADE

Considering all observations, the wind direction difference percentile values for surface to 1.5 km layer are (in sequence) 30.0, 80.0, 110.0, 135.0, and 160.0 degrees (Table 37). The wind direction difference percentile values are 35.0, 120.0, 145.0, 160.0, and 170.0 degrees from surface to 3 km (Table 39), 15.0, 60.0, 80.0, 105.0, and 145.0 degrees from 1.5 to 3 km, (Table 41) and 10.0, 50.0, 70.0, 96.0, and 130.0 degrees from 3.0 to 5.5 km (Table 42). For the layer 1.5 to 5.5 km (Table 43), the 90th percentile ranges from 67.5 to 121.0 degrees (100 degrees annual average), and the 95th percentile ranges from 87.3 to 150.0 degrees (130 degrees annual average). The wind direction difference percentile values are 45.0, 140.0 160.0, 170.0, and 175.0 degrees (annual averages) for the layer surface to 5.5 km (Table 45). The range of percentile values for the individual months for this layer is fairly small.

The magnitude of the windshear at Berlin in the layer from surface to 1.5 km for the selected thresholds are 20.8, 31.4, 38.2, 44.2, and 46.1 knots for January, decreasing to 9.5, 18.7, 22.5, 24.0, and 24.2 knots for July (Table 46). These shear magnitudes are only slightly higher than the vertical differences in windspeed, but the difference between increase of windspeed in the vertical and vertical windshear is apparently larger for stronger winds (January). The magnitudes of the windshear in the layer from surface to 3 km (Table 48) are 24.1, 41.2, 44.7, 56.4, and 59.9 knots in January, and are 13.1, 24.4, 29.4, 31.8, and 34.4 knots in July for the selected thresholds. The windshears in the layer from 1.5 to 3 km (Table 50) are 7.5, 15.7, 18.5, 21.6, and 24.9 knots, and for the layer from 3 to 5.5 km (Table 51) are 10.5, 22.5, 28.4, 33.7, and 40.0 knots. It is no surprise

that the largest windshear magnitudes are associated with the surface to 5.5 km layer. For this layer, the magnitude of the windshear for the selected thresholds are 31.9, 57.0, 59.6, 76.8, and 77.7 knots in January decreasing to 17.8, 32.6, 38.4, 44.8, and 49.2 knots in July.

#### IV. SUPPLARY

The vertical variation of the horizontal wind (vector windshear) in the troposphere has been studied for one location, Berlin-Templehof airport in Germany. Although studies of this nature are most often made in the boundary layer, data from tropospheric measurements are relatively scant. In this study, the vector windshear represents the deviation of the wind (taking into account both windspeed and direction changes) from one altitude point to another.

Frequency distribution and selected percentile values of the scalar shear, angular differences, and total vector shear for all possible permutations (except surface to 1000mb) for the 5 pressure levels are presented in detail (monthly. seasonal, annual averages): Surface, 1000mb (near surface), 850mb (1.5 km), 700mb (3 km), and 500mb, (5.5 km). Monthly and seasonal variation of these parameters are clearly evident from these data. The 95 percent values of the scalar shear, angular differences, and total vector shear for each of the atmospheric layers are listed below in a summary table.

Summary Table: 95 percent values of the windspeed differences (WSD), wind direction differences (WDD), and windshear (WSH) for the specified atmospheric layers at Berlin, 1200 Hours CMT (1974-78, 1981).

| Atmospheric Layer     | WSD (Kn) | WDD (Deg) | WSH (Kn) |
|-----------------------|----------|-----------|----------|
| Surface - 1.5 km      | 27.0     | 110.0     | 29.6     |
| Near surface - 1.5 km | 25.0     | 95.0      | 28.0     |
| Surface - 3 km        | 33.0     | 145.0     | 21.8     |
| Near surface - 3 km   | 32.0     | 140.0     | 36.3     |
| 1.5 - 3 km            | 13.0     | 80.0      | 18.5     |
| 3 - 5.5 km            | 25.0     | 70.0      | 28.4     |
| 1.5 - 5.5 km          | 34.0     | 130.0     | 40.9     |
| Near surface - 5.5 km | 49.0     | 155.0     | 53.9     |
| Surface - 5.5 Km      | 51.0     | 160.0     | 55.2     |

Although surface to 1.5 km and 1.5 to 3 km are both 1.5 km thick layers, the frequency distribution of angular differences, scalar shear, and therefore the vector shear are quite different for these 2 layers. The frequency of occurrence of angular differences of greater than or equal to 30 degrees for the surface to 1.5 km layer in winter is 63.9 percent compared to 22.8 percent for the layer 1.5 to 3 km. The magnitude of the vector windshear is roughly twice as large in the layer surface to 1.5 km compared with the layer 1.5 to 3 km. Therefore, to assume the same change of windspeed and direction (and consequently the \*ame vector shear) for every atmospheric layer of equivalent thickness is not appropriate in many instances when considering the deviation of the wind from one altitude level to another.

The data for this single station in Central Europe may serve as a guide. It is intended to expand this study to other locations.

TABLE 1. Percent Occurrence of the Differences in Windspeed (knots) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GHT (1974-78, 1981).

|           | • TO 2 | 3 FQ 5 | 4 TN 4 | 4 LU 11 | 12 70 14 | 6 <b>8</b> 15 |
|-----------|--------|--------|--------|---------|----------|---------------|
| JANUARY   | 9.47   | 3.16   | 9.47   | 8.42    | 4.47     | <b>60.</b> 00 |
| FEBRUARY  | 7.92   | 13.84  | 16.83  | 16.63   | 11.48    | 32.67         |
| MARCH     | 10.19  | 15.74  | 10.19  | 16-67   | 11.11    | 36.11         |
| APPIL     | 10.26  | 14.79  | 25.22  | 12.17   | 17.39    | 12.17         |
| MAY       | 16.07  | 19.64  | 26.79  | 17.05   | 4.62     | 9.82          |
| June      | 23.26  | 17.77  | 18.40  | 13.45   | 15.12    | 9.30          |
| JULT      | 13.19  | 24.37  | 25.27  | 12.09   | 9.89     | 13.19         |
| AUGUST    | 7.62   | 15.24  | 21.99  | 24.76   | 17.14    | 13.33         |
| SEPTEMBER | 13.33  | 14.07  | 12.59  | 19.26   | 13.33    | 27.41         |
| OCTOBER   | 6.15   | 11.85  | 17.78  | 14.07   | 12.59    | 35.56         |
| HOVERGER  | 5.99   | 10.26  | 4.27   | 13.55   | 6.49     | 50.77         |
| DECEMBER  | 4.49   | 4.49   | 6.74   | 13.43   | 13.44    | 57.30         |
| FALL      | 4.30   | 12.14  | 11.87  | 15.76   | 11.11    | 39.79         |
| MINTFR    | 7.37   | 7.37   | 11.23  | 12.94   | 11.59    | 44.47         |
| SPRING    | 14.93  | 16.72  | 20.90  | 15.52   | 12.44    | 14.10         |
| SUMMER    | 14.16  | 20.21  | 21.97  | 17.30   | 14.14    | 12.06         |
| AMMIAI    | 11.40  | 14.04  | 16.29  | 14 44   | 12.34    | 30. 19        |

TABLE 2. Percent Occurrence of the Differences in Windspeed (knots) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 70 2       | ) 10 5 | 6 77 8 | 9 TO L1 | 12 10 14 | GE 15 |
|-----------|--------------|--------|--------|---------|----------|-------|
| JAMUARY   | 10.53        | 7.37   | 11.59  | 7.37    | 10.53    | 52.63 |
| FEBRUARY  | 9.90         | 17.50  | 17.42  | 16.83   | 13.86    | 21.78 |
| MARCH     | 12.04        | 20.37  | 12.04  | 13.49   | 16.67    | 25.00 |
| MRIL      | 21.74        | 18.26  | 26.96  | 6.76    | 15.65    | 10.43 |
| MAY       | 16.96        | 20.57  | 21.43  | 10.75   | 4.25     | 8.04  |
| JUNE      | 23.26        | 27.07  | 13.45  | 16.28   | 9.30     | 0.14  |
| JULY      | 16.40        | 39.77  | 21.98  | 14.29   | 5.49     | 10.94 |
| AUGUST    | 13.33        | 22.86  | 20.95  | 23.51   | 13.33    | 5.71  |
| SEPTEMBER | 15.56        | 14.61  | 22.22  | 16.30   | 10.37    | 20.74 |
| OC TOBE R | 13.33        | 17.04  | 17.79  | 11.11   | 14.07    | 26.67 |
| HOYENG SO | 11.11        | 10.26  | 5.98   | 11.11   | 10.26    | 51.26 |
| DECEMBER  | 3.37         | 10.11  | 12.36  | 13.48   | 7.47     | 52.61 |
| FALL      | 13.44        | 14.21  | 15.76  | 12.92   | 11.63    | 32.04 |
| MINTER    | <b>8.</b> 07 | 12.63  | 14.04  | 12.61   | 10.86    | 41.75 |
| SPRING    | 17.01        | 22.39  | 20.30  | 13.13   | 12.84    | 14.33 |
| SUMMER    | 17.30        | 27.30  | 19.15  | 18.44   | 9.57     | 8.10  |
| AMMUAL    | 14.64        | 14.85  | 17.30  | 14.12   | 11.13    | 24.36 |

TABLE 3. Percent Occurrence of the Differences in Windspeed (knots) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 10 5 | 3 TO 5 | 6 TO 8 | 9 TO 11 | 12 TO 14 | 68 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 2.11   | 2.11   | 4.32   | 10.53   | 13.44    | 65.26 |
| FEBRUARY  | 7.92   | 10.89  | 15.84  | 12.07   | 10.69    | 41.50 |
| MARCH     | 7.41   | 5.56   | 12.96  | 12.04   | 10.17    | 51.85 |
| APRIL     | 14.78  | 16.52  | 9.57   | 16.52   | 8.70     | 33.91 |
| MAY       | 14.29  | 13.49  | 13.39  | 10.76   | 15.10    | 26.79 |
| JUNE      | 16.29  | L7.44  | 14.60  | 13.99   | 6.96     | 26.74 |
| JULY      | 10.99  | 15.38  | 10.60  | 4.87    | 17.58    | 27.47 |
| AUGUST    | 13.33  | 10.40  | 11.43  | 11.43   | 28.57    | 24.76 |
| SEPTEMBER | 9.63   | 12.59  | 10.37  | 11.05   | 11.11    | 44.44 |
| OCTOBER   | 4.63   | 7.63   |        | 8.87    | 11.95    | 51.11 |
| MBYENGER  | 5.13   | 7.40   | 7.49   | 11.97   | 7.49     | 50.12 |
| DECEMBER  | 3.37   | 5.62   | 3.37   | 7.67    | 16.85    | 42.92 |
| FALL      | 0.27   | 10.59  | 9.04   | 10.05   | 10.34    | 50.90 |
| WINTER    | 4.50   | 6.32   | 0.77   | 10.53   | 13.60    | 34.14 |
| SPAING    | 12.24  | 11.74  | 11.94  | 15.22   | 11.34    | 37.31 |
| SUMMER    | 13.48  | 14.10  | 15.96  | 11.79   | 10.44    | 26.24 |
| ANNUAL    | 9.62   | 10.70  | 11.25  | 12.10   | 13.11    | 43.13 |

TABLE 4. Percent Occurrence of the Differences in Windspeed (knots) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TG 2 | 3 TQ 5 | 6 TO 9 | 4 12 11 | 12 TO 14 | GB 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 4.21   | 5.26   | 9.42   | 11.50   | 11.54    | 56.75 |
| FERRUARY  | 4.40   | 10.59  | 10.01  | 14.87   | 10.39    | 36.63 |
| MARCH     | 7.41   | 9.26   | 13.09  | 12.96   | 7.41     | 49.07 |
| APRIL     | 18.20  | 14.52  | 0.70   | 15.45   | 10.43    | 30.43 |
| MAY       | 14.29  | 16.76  | 17.86  | 12.50   | 12.50    | 25.34 |
| JUNE      | 18.60  | 17-44  | 19.77  | 11.63   | 15.12    | 17.44 |
| JALY      | 14-29  | 15.30  | 18.66  | 12.04   | 12.09    | 27.47 |
| AVGUST    | 14.29  | 12.30  | 17.14  | 18.10   | 19.05    | 19.05 |
| SEPTEMBER | 11.05  | 14.07  | 7.41   | 17.04   | 19.56    | 34.07 |
| OC TORER  | 11.45  | 13.33  | 4.44   | 17.34   | 4.15     | 45.19 |
| HOVEYSER  | 7.69   | 10.26  | 0.55   | 11.97   | 9.40     | 52.14 |
| DECEMBES  | 4.49   | 5.42   | 10.11  | 2.49    | 15.73    | 55.26 |
| FALL      | 10.59  | 12.66  | 6.72   | 15.50   | 11.:1    | 43.41 |
| MINTER    | 6.32   | 7.37   | 12.63  | 11.23   | 12.65    | 44.82 |
| SPRING    | 13.43  | [4.33  | 13.43  | 11.73   | 10.15    | 34.93 |
| SUMMFR    | 15.60  | 14.19  | 15.44  | 14.18   | 15.60    | 21.29 |
| ANIUAL    | 11.49  | 12.41  | 12.34  | 14.11   | 12.10    | 37.78 |

Percent Occurrence of the Differences in Windspeed (knots) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TU 2 | 3 FQ 5 | 6 TN 8 | 5 TO 11 | 12 TO 14 | GB 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 33.60  | 27.00  | 25.26  | 10.53   | 5.26     | 5.26  |
| FEGRUARY  | 28.71  | 24.73  | 20.79  | 13.46   | 0.91     | . 49  |
| MARCH     | 26.85  | 31.48  | 17.59  | 11.11   | 7-41     | 5.56  |
| APRIL     | 24.35  | 37.39  | 17.39  | 13.04   | 5.22     | 2.61  |
| MAY       | 33.93  | 30.36  | 14.27  | 16.07   | 4.46     | .89   |
| JUNE      | 40.04  | 22.09  | 15.12  | 11.63   | 2.33     | 0.00  |
| JULY      | 35.16  | 10.77  | 19.70  | 10.99   | 2-20     | 1.10  |
| AUGUST    | 32.38  | 36.10  | 16.19  | 7.62    | 4.76     | .95   |
| SEPTEMBER | 24.44  | 31.65  | 20.74  | 11.11   | 4.39     | 2.76  |
| OCTORER   | 37.04  | 27.41  | 17.70  | 4.15    | 5.19     | 4.44  |
| MOVEMBER  | 14.00  | 36.75  | 14.66  | 11.97   | 7.49     | 5.13  |
| DECEMBER  | 30.34  | 34.63  | 15.73  | 12.36   | 2.25     | 4.49  |
| FALL      | 27.13  | 31.78  | 19.38  | 10.14   | 7.24     | 4.13  |
| MINTER    | 30.09  | 27.02  | 20.70  | 12.20   | 5.61     | 3,51  |
| SPRING    | 24.34  | 33.13  | 16.42  | 13.43   | 5.67     | 2.99  |
| SUIMFR    | 38.30  | 30.85  | 17.02  | 9.43    | 3.19     | .71   |
| AMMUAL    | 30.72  | 30.38  | 10.79  | 11.48   | 5.54     | 2.75  |

TABLE 6. Percent Occurrence of the Differences in Windspeed (knots) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 10 2 | 3 TO 5 | 6 70 8 | 9 TO 11 | 12 TO 14 | GB 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 14.74  | 17.69  | 16.84  | 5.25    | 16.84    | 24.42 |
| FEBRUARY  | 12.87  | 14.85  | 15.84  | 24.75   | 10.89    | 20.79 |
| MARCH     | 12.04  | 20.37  | 17.59  | 12.04   | 15.95    | 25.00 |
| APRIL     | 15.65  | 17.39  | 17.39  | 14.78   | 7.83     | 26.96 |
| YAY       | 21.43  | 24.11  | 13.39  | 16.96   | 3.57     | 20.54 |
| JUNE      | 30.23  | 31.40  | 19.77  | 11.63   | 7.33     | 4.65  |
| JULY      | 24.18  | 24.57  | 15.38  | 16.48   | 7.89     | 5.44  |
| AUGUST    | 28.57  | 21.70  | 14.29  | 15.24   | 12.34    | 7.62  |
| SEPTEMACE | 12.59  | 24.44  | 16.30  | 22.96   | 6.15     | 15.56 |
| OCTOBER   | 17.04  | 21.49  | 17.04  | 17.04   | 7.41     | 20.00 |
| Pacharon  | 17.09  | 12.82  | 16.24  | 14.53   | 14.53    | 24.79 |
| DECEMBER  | 11.24  | 21.35  | 19.10  | 13.45   | 13.49    | 21.35 |
| FALL      | 15.50  | 19.70  | 16.54  | 16.35   | 7.82     | 19.90 |
| MINIER    | 12.93  | 17.39  | 17.19  | 14.74   | 13.68    | 23.51 |
| SPRING    | 16.42  | 20.60  | 16.12  | 14.63   | 4.06     | 24.18 |
| SUMMER    | 27.66  | 26.95  | 16.31  | 14.54   | 8.51     | 6.03  |
| ANTIUAL   | 17.84  | 21.19  | 16.57  | 15.75   | 7.93     | 18./7 |

<mark>የቀመነት</mark> እንዲያለው የመጀመር እንደ የመጀመር የሚያስፈርር እና ለመመር የሚያስፈርር እና ለመመር የሚያስፈርር እና ለመመር የሚያስፈርር ለመመር የሚያስፈርር እና ለመመር የሚያስፈር የመጀመር የመጀመር

TABLE 7. Percent Occurrence of the Differences in Windspeed (knots) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TO 2 | 3 TO 5 | 6 TO 8 | 9 TO 11 | 12 TO 14 | GB 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 8.42   | 15.79  | 11.58  | 5.26    | 13.68    | 45.26 |
| FEBRUARY  | 10.89  | 11.88  | 11.66  | 10.89   | 10.89    | 43.56 |
| MARCH     | 9.26   | 11.11  | 11.11  | 13.89   | 7.41     | 47.22 |
| APRIL     | 14.78  | 10.43  | 9.57   | 13.41   | 7.83     | 43.48 |
| MAY       | 9.82   | 11.61  | 22.32  | 12.50   | 11.61    | 32.14 |
| JUNE      | 22.09  | 25.58  | 13.95  | 11.63   | 12.79    | 13.45 |
| JULY      | 19.78  | 21.46  | 15.39  | 7.69    | 12.04    | 23.09 |
| AUGUST    | 23.81  | 16.19  | 14,29  | 9.52    | 11.43    | 24.75 |
| SEPTEMBER | 14.07  | 11.11  | 12.57  | 12.59   | 8.15     | 41.48 |
| OCTOBER   | 15.56  | 17.04  | 18.52  | 8.15    | 6.15     | 32.59 |
| NOVERBER  | 12.82  | 13.58  | 6.54   | 12.62   | 7.69     | 45.15 |
| DECEMBER  | 11.24  | 15.73  | 7.57   | 14.61   | 15.73    | 34.83 |
| FALL      | 14.21  | 13.95  | 12.92  | 11.11   | e.01     | 39.79 |
| WINTER    | 10.18  | 14.39  | 10.53  | 10.13   | 13.33    | 41.40 |
| SPRING    | 11.34  | 11.04  | 14.33  | 13.43   | 8.96     | 40.90 |
| SUNNER    | 21.99  | 20.92  | 14.54  | 9.57    | 12.06    | 20.92 |
| ANNUAL    | 14.27  | 14.62  | 13.11  | 11.17   | 10.32    | 36.31 |

TABLE 8. Percent Occurrence of the Differences in Windspeed (knots) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TU 2 | 3 10 5 | 6 IN 8 | 9 10 11 | 12 10 14 | G# 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 0.00   | 5.26   | 2.11   | 6.32    | 6.32     | HO.UU |
| FEBRUARY  | 7.92   | 13.86  | 5.94   | 3.96    | 7.32     | 60.40 |
| MARCH     | 2.70   | 5.56   | 6.48   | 7.41    | 8.33     | 69.44 |
| APRIL     | 7.83   | 9.57   | 0.70   | 8.70    | 8.70     | 56.52 |
| MAY       | 9.82   | 11.61  | 4.46   | 14.29   | 10.71    | 49.11 |
| JUNE      | 13.95  | 15.12  | 12.79  | 13.95   | 8.14     | 36.05 |
| JULY      | 10.99  | 7.69   | 10.79  | 8.79    | 15.30    | 46.15 |
| AUGUST    | 9.52   | 12.35  | 10.48  | 12.36   | 9.52     | 45.71 |
| SEPTEMBER | 3.70   | 4.44   | 14.07  | 9.63    | 8.15     | 60.00 |
| OCTOBER   | 5.19   | 5.93   | 11.11  | 8.89    | \$.15    | 60.74 |
| NOVEMBER  | 5.98   | 5.79   | 9.40   | 4.27    | 5.94     | 68.38 |
| DECEMBER  | 3.37   | 3.37   | 3.37   | 3.37    | 5.62     | 80.70 |
| FALL      | 4.91   | 5.43   | 11.63  | 7.75    | 7.49     | 62.79 |
| WINTER    | 3.86   | 7.12   | 3.56   | 4.56    | 6.67     | 73.33 |
| SPRING    | 6.87   | 8.96   | 6.57   | 10.15   | 9.25     | 58.21 |
| SUMMER    | 11.35  | 11.70  | 11.35  | 11.70   | 10.79    | 42.91 |
| ANNUAL    | 6.59   | 8.22   | 8.53   | 3.53    | 8.53     | 59.58 |

TABLE 9. Percent Occurrence of the Differences in Windspeed (knots) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TU 2 | 3 10 5 | 6 TO 8 | 9 10 11 | L2 TO 14 | GE 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 0.00   | 4.21   | 1.05   | 5.24    | 6.32     | A3.16 |
| FEBRUARY  | 9.90   | 4.95   | 6.93   | 5.94    | 7.92     | 64.36 |
| PARCH     | .93    | 6.48   | 4.63   | 10.19   | 5.50     | 72.22 |
| APRIL     | 9.57   | 7.93   | 5.22   | 10.43   | 4.35     | 62.61 |
| MAY       | 12.50  | A.93   | 7.36   | 8.01    | 15.18    | 50.00 |
| JUNE      | 12.79  | 15.12  | 10.47  | 15.12   | 8.14     | 38.97 |
| JULY      | 6.59   | 8.79   | 14.29  | 5.49    | 14.27    | 50.55 |
| AUGUST    | 7.62   | 10.48  | 6.57   | 12.33   | 13.33    | 49.52 |
| SEPTEMBER | 3.70   | 5.17   | 8.15   | 10.37   | 8.67     | 63.70 |
| OCTOSER   | 3.70   | 6.67   | 7.41   | 6.67    | 10.37    | 65.19 |
| NOVEMBER  | 4.27   | 4.27   | 6.64   | 6.64    | 7.69     | 70.09 |
| DECEMBER  | 1.12   | 4.49   | 2.25   | 4.49    | 1.12     | 86.52 |
| FALL      | 3.38   | 5.43   | 7.49   | 8.01    | 9.04     | 66.15 |
| WINTER    | 3.86   | 4.56   | 3.51   | 5.26    | 5.26     | 77.54 |
| SPRING    | 7.76   | 7.75   | 5.07   | 9.55    | 9.35     | 61.49 |
| SUMMER    | 6.67   | 11.35  | 10.25  | 10.99   | 12.06    | 46.45 |
| ANNUAL    | 5.97   | 7.14   | 6.59   | 6.46    | 8.09     | 63.15 |

TABLE 10. Percent Occurrence of the Differences in Wind Direction (Degrees) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0-29  | 30-59 | 60-59 | 90-119 | 120-149 | 150-180 |
|-----------|-------|-------|-------|--------|---------|---------|
| JANUARY   | 38.95 | 40.00 | 13.68 | 3.15   | 4.21    | 0.00    |
| FEBRUARY  | 37.62 | 28.71 | 18.51 | 5.94   | 1.98    | 6.93    |
| MARCH     | 47.22 | 35.19 | 13.59 | 1.65   | .93     | .93     |
| APRIL     | 60.00 | 28.70 | 2.61  | 3.48   | 2.61    | 2.61    |
| HAY       | 52.68 | 28.57 | 8.93  | 4.46   | 4.46    | .89     |
| JUNE      | 53.49 | 27.91 | 8.14  | 5.81   | 1.16    | 3.49    |
| JULY      | 56.04 | 25.37 | 15.36 | 1.19   | 1.10    | 0.00    |
| AUGUST    | 57.14 | 25.57 | 7.62  | 4.76   | 1.90    | 0.00    |
| SEPTEMBER | 57.04 | 20.74 | 11.85 | 5.19   | 3.70    | 1.48    |
| OCTOBER   | 45.93 | 32.59 | 14.07 | 1.48   | 5.19    | .74     |
| NOVEMBER  | 46.15 | 35.75 | 11.11 | 3.42   | .85     | 1.71    |
| DECEMBER  | 31.46 | 47.19 | 14.61 | 4.49   | 1.12    | 1.12    |
| FALL      | 49.87 | 29.72 | 12.40 | 3.36   | 3.36    | 1.29    |
| WINTER    | 36.14 | 38.25 | 15.79 | 4.56   | 2.46    | 2.81    |
| SPRING    | 53.43 | 30.75 | 8.36  | 3.28   | 2.69    | 1.49    |
| SUMMER    | 55.67 | 27.66 | 10.28 | 3.90   | 1.42    | 1.06    |
| ANNUAL    | 49.03 | 31.42 | 11.64 | 3.72   | 2.56    | 1.63    |

TABLE 11. Percent Occurrence of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0-29  | 30-59 | 60-89 | 90-117 | 120-149 | 150-180 |
|-----------|-------|-------|-------|--------|---------|---------|
| JANUARY   | 44.21 | 36.84 | 13.68 | 4.21   | 1.05    | 0.00    |
| FEBRUARY  | 44.55 | 27.72 | 14.85 | 6.93   | 3.96    | 1.98    |
| MARCH     | 52.78 | 30.56 | 12.96 | 2.78   | .93     | 0.00    |
| APRIL     | 60.87 | 27.83 | 4.35  | 1.74   | 3.46    | 1.74    |
| MAY       | 56.25 | 28.57 | 7.14  | 4.46   | 3.57    | 0.00    |
| JUNE      | 55.81 | 25.58 | 9.30  | 5.81   | 2.33    | 1.16    |
| JULY      | 62.64 | 25.27 | 8.79  | 3.30   | 0.00    | 0.00    |
| AUGUST    | 66.67 | 22.36 | 5.71  | 2.86   | .95     | . 45    |
| SEPTEMBER | 59.26 | 22.96 | 8.15  | 6.67   | 1.46    | 1.48    |
| OCTOBER   | 52.59 | 28.15 | 13.33 | 2.96   | 2.22    | .74     |
| NOVEMBER  | 47.86 | 41.03 | 6.84  | 1.71   | 2.56    | 0.00    |
| DECEMBER  | 37.08 | 41.57 | 15.73 | 3.37   | 1.12    | 1.12    |
| FALL      | 53.49 | 30.23 | 9.56  | 3.88   | 2.07    | .78     |
| WINTER    | 42.11 | 35.09 | 14.74 | 4.91   | 2.11    | 1.05    |
| SPRING    | 56.72 | 29.96 | 8.06  | 2.79   | 2.69    | .60     |
| SUMMER    | 62.06 | 24.47 | 7.80  | 3.90   | 1.06    | .71     |
| ANNUAL    | 53.69 | 29.71 | 9.93  | 3.56   | 2.02    | . 78    |

TABLE 12. Percent Occurrence of the Differences in Wind Direction (Degrees) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0-29  | 30-59 | 60~69 | 90-119 | 120-149 | 150-160 |
|-----------|-------|-------|-------|--------|---------|---------|
| JANUARY   | 27.37 | 36.84 | 22.11 | 4.21   | 3.16    | 6.32    |
| FEBRUARY  | 26.73 | 26.71 | 21.78 | 11.88  | 5.94    | 4.95    |
| MARCH     | 38.89 | 25.93 | 13.89 | 9.26   | 8.33    | 3.70    |
| APRIL     | 36.52 | 32.17 | 12.17 | 5.22   | 6.96    | 6.96    |
| MAY       | 43.75 | 18.75 | 16.07 | 8.93   | 7-14    | 5.36    |
| JUNE      | 37.21 | 30.23 | 16.28 | 2.33   | 8.14    | 5.81    |
| YULY      | 45.05 | 29.67 | 12.09 | 7.59   | 5.49    | 0.00    |
| AUGUST    | 39.05 | 33.33 | 11.43 | 9.52   | 3.81    | 2.86    |
| SEPTEMBER | 45.19 | 24-44 | 6.67  | 8.15   | 8.89    | 6.67    |
| OCTOBER   | 45.19 | 27.41 | 10.37 | 8.39   | 4.44    | 3.70    |
| NOVEMBER  | 41.03 | 34.19 | 15.36 | 5.13   | .85     | 3.42    |
| DECEMBER  | 25.84 | 43.82 | 16.85 | 3.37   | 8.99    | 1.12    |
| FALL      | 43.93 | 28.42 | 10.59 | 7.49   | 4.91    | 4.65    |
| WINTER    | 26.67 | 36.14 | 20.35 | 6.67   | 5.96    | 4.21    |
| SPRING    | 39.70 | 25.67 | 14.03 | 7.76   | 7.46    | 5.37    |
| SUMMER    | 40.43 | 31.21 | 13.12 | 6.74   | 5.67    | 2.94    |
| ANNUAL    | 38.25 | 30.02 | 14.20 | 7.21   | 5.97    | 4.34    |

TABLE 13. Percent Occurrence of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0-29  | 30-59 | 60-89 | 90-119 | 120-149 | 150-160 |
|-----------|-------|-------|-------|--------|---------|---------|
| JANUARY   | 29.47 | 40.00 | 16.84 | 5.26   | 6.32    | 2.11    |
| FEBRUARY  | 24.75 | 33.66 | 23.76 | 9.90   | 3.96    | 3.40    |
| MARCH     | 37.96 | 29.63 | 12.04 | 10.17  | 6.48    | 3.70    |
| APRIL     | 40.00 | 30.43 | 11.30 | 5.22   | 5.22    | 7.83    |
| MAY       | 44.64 | 20.54 | 16.96 | 6.25   | 6.25    | 5.36    |
| JUNE      | 36.37 | 32.56 | 10.47 | 8.14   | 6.98    | 3.47    |
| JULY      | 45.05 | 32.97 | 12.09 | 4.40   | 4.40    | 1.10    |
| AUGUST    | 42.86 | 37.48 | 14.29 | 6.67   | 1.90    | 3.61    |
| SEPTEMBER | 43.70 | 25.93 | 0.15  | 6.67   | 8.89    | 6.67    |
| OCTOBER   | 41.48 | 31.65 | 11.11 | 8.87   | 3.70    | 2.46    |
| NOVEMBER  | 45.30 | 35.90 | 10.26 | 4.27   | .85     | 3.42    |
| DECEMBER  | 32.58 | 41.57 | 14.61 | 3.37   | 5.62    | 2.25    |
| FALL      | 43.41 | 31.01 | 9.82  | b.72   | 4.65    | 4.39    |
| WINTER    | 28.77 | 38.25 | 18.60 | 6.32   | 5.26    | 2.61    |
| SPRING    | 40.90 | 26.87 | 13.43 | 7.16   | 5.97    | 5.07    |
| SUMMER    | 42.20 | 31.91 | 12.41 | 6.38   | 4,26    | 2.34    |
| ANNUAL    | 39.26 | 31.73 | 13.27 | 6.67   | 5.04    | 4.03    |

TABLE 14. Percent Occurrence of the Differences in Wind Direction (Degrees) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 9-29  | 30-59 | 69-89 | 40-114 | 120-149 | 150-180 |
|-----------|-------|-------|-------|--------|---------|---------|
| JANUARY   | 71.50 | 21.05 | 5.24  | 1.05   | 1.05    | 0.00    |
| FEBRUARY  | 69.31 | 15.84 | 10.89 | 1.98   | .44     | .99     |
| MARCH     | 48.52 | 17.59 | 9.24  | 2.78   | .43     | .93     |
| APRIL     | 72.17 | 13.91 | 7.83  | 2.61   | 2.61    | .27     |
| MAY       | 70.54 | 14.29 | 10.71 | 2.48   | .89     | . 89    |
| JUNE      | 69.77 | 18.60 | 4.65  | 4.65   | 0.00    | 2.33    |
| JULY      | 73.63 | 19.76 | 5.49  | 0.00   | 0.00    | 1.10    |
| AUGUST    | 77.14 | 15.24 | 3.81  | 1.90   | 1.90    | 0.00    |
| SEPTEMBER | 71.11 | 17-04 | 5.19  | 2.76   | 1.48    | 2.22    |
| OCTOBER   | 77.04 | 16.30 | 2.96  | 3.70   | 0.00    | 0.00    |
| NOVEMBER  | 87.16 | 6.84  | 5.13  | 0.00   | . 95    | 0.00    |
| DECEMBER  | 80.90 | 13.46 | 3.37  | 2.25   | 0.00    | 0.00    |
| FALL      | 78.04 | 13.79 | 4.39  | 2.33   | .78     | .78     |
| WINTER    | 73.68 | 16.64 | 6.67  | 1.75   | .70     | . 35    |
| SPRING    | 70.45 | 15.22 | 9.25  | 2.69   | 1.49    | . 30    |
| SUMMER    | 73.76 | 17.73 | 4.61  | 2.13   | .71     | 1.06    |
| ANNUAL    | 74.17 | 15.67 | 6.21  | 2.25   | .93     | .73     |

TABLE 15. Percent Occurrence of the Differences in Wind Direction (Degrees) Retween 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0-29  | 30-59 | 60-89 | 90-119 | 120-149      | 150-100         |
|-----------|-------|-------|-------|--------|--------------|-----------------|
| JAHUARY   | 62.11 | 14.74 | 1.16  | 0.00   | <b>v.a</b> ú | 0 <b>. છ</b> ેલ |
| FEBRUARY  | 67.33 | 16.63 | 10.87 | 3.75   | .99          | 3.30            |
| MARCH     | 80.56 | 13.69 | 3.70  | 0.00   | 1.85         | 0.99            |
| APRIL     | 70.43 | 17.13 | 6.96  | 2.61   | .87          | 0.00            |
| MAY       | 72.32 | 19.64 | 4.46  | .64    | 1.79         | . 89            |
| JUNE      | 69.77 | 18.60 | 3.49  | 3.44   | 2.33         | 2.33            |
| JULY      | 83.52 | 12.09 | 1.19  | 1.10   | 1.10         | 1.10            |
| AUGUST    | 81.90 | 12.34 | 2.56  | 1.90   | 0.00         | . 95            |
| SEPTEMBER | 80.74 | 14.37 | 2.2?  | 2.22   | .74          | 0.06            |
| OCTOBER   | 77.78 | 11.11 | 7.11  | .74    | .74          | 2.22            |
| NOVEMBER  | 84.62 | 9.40  | 3.42  | . 45   | 1.71         | 0.00            |
| DECENSER  | 13.15 | 11.24 | 4.49  | 1.12   | 0.00         | 0.00            |
| FALL      | 80.83 | 11.63 | 4.39  | 1.29   | 1.03         | .78             |
| WINTER    | 77.19 | 14.37 | 6.32  | 1.75   | .35          | 0.00            |
| SPRENG    | 74.32 | 17-61 | 5.07  | 1.19   | 1.49         | •30             |
| SUMMER    | 70.72 | 14.18 | 2.48  | 2.13   |              | 1.42            |
| ANNUAL    | 77.89 | 14.35 | 4.58  | 1.55   | 1.01         | .62             |

TABLE 16. Percent Occurrence of the Differences in Wind Direction (Degrees) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0-29  | 30-59 | 60-89 | 90-114 | 120-149 | 150-190 |
|-----------|-------|-------|-------|--------|---------|---------|
| JANUARY   | 55.79 | 27.37 | 10.53 | 3.16   | 2.11    | 1.05    |
| FEBRUARY  | 47.52 | 21.78 | 10.49 | 9.90   | 4.95    | 4.95    |
| MARCH     | 50.00 | 23.15 | 12.96 | 6.46   | 2.79    | 4.63    |
| APRIL     | 40.70 | 23.48 | 13.04 | 4.35   | 6.09    | 4.35    |
| MAY       | 50.00 | 21.43 | 10.71 | 6.25   | 5.36    | 6.25    |
| JUNE      | 47.67 | 25.56 | 10.47 | 5.81   | 5.81    | 4.65    |
| JULY      | 62.64 | 20.00 | 8.79  | 3.30   | 1.10    | 3. 10   |
| AUGUST    | 52.30 | 31.43 | 4.76  | 4.76   | 3.01    | 2.86    |
| SEPTEMBER | 55.56 | 22.96 | 11.11 | 5.43   | 2.96    | 1.43    |
| OCTOSER   | 54.07 | 22.22 | 12.59 | 6.67   | 2.76    | 1.48    |
| NOVERGER  | 70.09 | 19.66 | 3.42  | 3.42   | 1.71    | 1.71    |
| DECEMBER  | 65.17 | 16.85 | 13.40 | 1.12   | 2.25    | 1.12    |
| FALL      | 59.43 | 21.71 | 9.30  | 5.43   | 2.58    | 1.55    |
| WINTER    | 55.79 | 22.11 | 11.50 | 4.71   | 3.16    | 2.45    |
| SPRING    | 44.55 | 22.69 | 12.24 | 5.67   | 4.73    | 5.07    |
| SUMMER    | 54.26 | 26.24 | 7.80  | 4.61   | 3.55    | 3.55    |
| ANNUAL    | 54.93 | 23.04 | 10.24 | 5.20   | 3. + 3  | 3.10    |

TABLE 17. Percent Occurrence of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0-29  | 30~59 | 60-87 | 90-119 | 120-149 | 150-150 |
|-----------|-------|-------|-------|--------|---------|---------|
| JANUARY   | 29.47 | 31.56 | 10.95 | 7.37   | 6.32    | 6.32    |
| FEBRUARY  | 24.75 | 22.77 | 15.84 | 17.52  | 12.87   | 5.94    |
| MARCH     | 30.56 | 24.07 | 12.04 | 14.81  | 11.11   | 7.11    |
| APRIL     | 30.43 | 25.70 | 6.70  | 11.33  | 12.17   | 8.70    |
| MAY       | 29.46 | 29.46 | 9.73  | 9.82   | 11.61   | 10.71   |
| JUNE      | 32.56 | 25.50 | 15.12 | 5.61   | 8.14    | 12.79   |
| JULY      | 41.76 | 28.57 | 10.79 | 7.69   | 5.49    | 5.44    |
| AUGUST    | 35.24 | 29.52 | 17-14 | 7.62   | 4,76    | 5.71    |
| SEPTEMBER | 36.30 | 24.44 | 14.81 | 6.89   | 6.67    | 8.49    |
| OCTOBER   | 35.56 | 23.70 | 14.81 | 14.07  | 5,19    | 6.67    |
| HUVEMBER  | 36.75 | 31.62 | 15.38 | 7.69   | 5.13    | 3.42    |
| DECEMBER  | 31.40 | 30.34 | 17.79 | 10.11  | 5.62    | 4.49    |
| FALL      | 36.18 | 26.36 | 14,79 | 10.34  | 5.68    | 6.46    |
| WINTER    | 28.42 | 28.07 | 17.54 | 11.93  | 8.42    | 5.61    |
| SPRING    | 30.15 | 27.45 | 9.85  | 11.94  | 11.64   | 6.76    |
| SUAMER    | 36.52 | 29.01 | 14.54 | 7.04   | 6.03    | 7.50    |
| ANHUAL    | 32.97 | 27.39 | 14-12 | 10.40  | 7.91    | 7.21    |

TABLE 18. Percent Occurrence of the Differences in Wind Direction (Degrees) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0-29  | 39-59 | 60-69 | 90-119 | 120-149 | 150-169 |
|-----------|-------|-------|-------|--------|---------|---------|
| JANUARY   | 26.32 | 31.50 | 22.11 | 6.32   | 6.32    | 7.37    |
| FEBRUARY  | 25.74 | 15.81 | 14.85 | 17.52  | 19.81   | 3.96    |
| MARCH     | 30.56 | 23.15 | 12.04 | 12.96  | 12.04   | 9.26    |
| APRIL     | 30.43 | 25.22 | 12.17 | 12.17  | 11.30   | 8.70    |
| MAY       | 30.36 | 23.21 | 11.61 | 10.71  | 8.93    | 15.18   |
| JUNE      | 31.40 | 17.44 | 22.09 | 9.30   | 5.81    | 13.95   |
| JULY      | 39.56 | 29.67 | 12.09 | 7.69   | 6.59    | 4.40    |
| AUGUST    | 35.24 | 27.62 | 15.24 | 10.48  | 5.71    | 5.71    |
| SEPTEMBER | 33.33 | 28.15 | 13.33 | 7.41   | 11.11   | 6.67    |
| OCTOBER   | 33.33 | 26.67 | 14.91 | 11.85  | 8.15    | 5.19    |
| NOVEMBER  | 36.75 | 29.06 | 13.69 | 10.26  | 5.78    | 4.27    |
| DECEMBER  | 28.09 | 26.97 | 22.47 | 11.24  | 4.44    | 6.74    |
| FALL      | 34.37 | 27.91 | 13.95 | 9.82   | 8.53    | 5.43    |
| WINTER    | 26.67 | 25.61 | 19.65 | 11.93  | 10.18   | 5.96    |
| SPRING    | 30.45 | 23.86 | 11.94 | 11.94  | 10.75   | 11.04   |
| SUMMER    | 35.46 | 25.19 | 16.31 | 9.22   | 6.03    | 7.80    |
| ANNUAL    | 31.69 | 25.76 | 15.21 | 10.71  | 8.92    | 7.53    |

ALL RESOURCE RESERVED INSTRUMENT DESIGNATION

TABLE 19. Percent Occurrence of the Windshear (knots)
Between Surface and 850mb (1500M) at Berlin,
1200 Hours GMT (1974-78, 1981).

|           | 0 TO 2 | 3 10 5 | 6 10 6 | 4 10 11 | 12 10 14 | G# 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 4.21   | 4.21   | 7.37   | 10.53   | 3.16     | 70.53 |
| FEBRUARY  | 2.97   | 6.93   | 13.86  | 16.83   | 18.81    | 40.59 |
| MARCH     | 1.85   | 9.26   | 12.96  | 19.44   | 14.61    | 41.67 |
| APRIL     | 7.83   | 14.78  | 20.87  | 20.00   | 15.65    | 20.67 |
| HAY       | 7.14   | 16.07  | 25.00  | 19.64   | 13.39    | 18.75 |
| JUNE      | 9.30   | 16.28  | 17.44  | 20.93   | 17.44    | 18.60 |
| JULY      | 5.49   | 19.78  | 19.75  | 23.08   | 12.09    | 19.78 |
| AUGUST    | 4.76   | 10.48  | 20.00  | 22.86   | 21.90    | 20.00 |
| SEPTEMBER | 3.70   | 13.33  | 12.59  | 18.52   | 17.76    | 34.07 |
| OCTOBER   | 3.70   | 9.15   | 15.56  | 15.56   | 14.07    | 42.96 |
| NOVEMBER  | .05    | 6.84   | 7.69   | 12.82   | 6.84     | 64.76 |
| DECEMBER  | 0.00   | 2.25   | 8.99   | 11.24   | 13.48    | 64.04 |
| FALL      | 2.84   | 9.56   | 12.14  | 15.76   | 13.10    | 46.51 |
| WINTER    | 2.46   | 4.56   | 10.18  | 12.98   | 11.93    | 57.89 |
| SPRING    | 5.67   | L3.43  | 19.70  | 19.70   | 14.63    | 26.87 |
| SUMMER    | 6.38   | 15.25  | 19.15  | 22.34   | 17.38    | 19.50 |
| ANNUAL    | 4.27   | 10.71  | 15.21  | 17-61   | 14.20    | 38.01 |

TABLE 20. Percent Occurrence of the Windshear (knots) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TD 2 | 3 TO 5 | 6 TO 8 | 9 73 11 | 12 70 14 | G# 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| YNAUNAL   | 4.21   | 5.26   | 9.47   | 8.42    | 11.58    | 61.05 |
| FEBRUARY  | 4.95   | 9.90   | 14.05  | 19.80   | 17.82    | 32.67 |
| MARCH     | 2.76   | 10.19  | 17.59  | 19.44   | 18.52    | 31.48 |
| APRIL     | 10.43  | 15.65  | 23.48  | 16.52   | 16.52    | 17.39 |
| MAY       | 6.25   | 24-11  | 21.43  | 20.54   | 13.34    | 14.29 |
| JUNE      | 10.47  | 19.77  | 18.60  | 19.77   | 16.28    | 15.12 |
| JULY      | 7.69   | 23.05  | 24.18  | 23.09   | 6.54     | 15.35 |
| AUGUST    | 7.62   | 16.19  | 20.95  | 25.71   | 15.24    | 14.29 |
| SEPTEMBER | 4.44   | 14-07  | 20.00  | 19.26   | 14.81    | 27.41 |
| OCTOBER   | 4.44   | .13.33 | 14.81  | 17.04   | 17-04    | 33.33 |
| NOVERSER  | 1.71   | 7.69   | 10.26  | 11.97   | 6.34     | 61.54 |
| DECEMBER  | 0.00   | 3.37   | 7.87   | 20.22   | 8.49     | 59.55 |
| FALL      | 3.62   | 11.89  | 15.25  | 16.21   | 13.18    | 39.79 |
| WINTER    | 3.16   | 6.32   | 10.89  | 10.14   | 12.98    | 50.53 |
| SPRING    | 6.57   | 16.72  | 20.90  | 10.51   | 16.12    | 20.70 |
| SUMMER    | 0.51   | 19.50  | 21.26  | 23.05   | 12.77    | 14.59 |
| ANNUAL    | 5.35   | L3.59  | 17.07  | 18.39   | 13.81    | 31.81 |

TABLE 21. Percent Occurrence of the Windshear (knots) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TO 2 | 3 TO 5 | 6 70 8 | 9 TO 11 | 12 TO 14 | GE 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 1.05   | 0.00   | 3.16   | 7.37    | 7.37     | 81.05 |
| FEBRUARY  | 1.98   | 6.93   | 9.90   | 10.87   | 15.84    | 54.46 |
| MARCH     | .93    | 3.70   | 5.56   | 8.33    | 12.96    | 68-52 |
| APRIL     | 2-61   | 5.22   | 16.52  | 16.52   | 9.57     | 49.57 |
| MAY       | 4.46   | 6.25   | 10.71  | 20.54   | 16.07    | 41.96 |
| JUNE      | 4-65   | 9.30   | 19.77  | 10.47   | 16-26    | 39.53 |
| JULY      | 3.30   | 6.79   | 15.38  | 15.35   | 15.38    | 41.76 |
| AUGUST    | 3.81   | 4.76   | 16-19  | 13.33   | 19.05    | 42.86 |
| SEPTEMBER | .74    | 5.19   | 10.37  | 14.81   | 11.85    | 57.04 |
| OCTOBER   | 3.70   | 7-4L   | 6-67   | 10.37   | 10.37    | 61.48 |
| NOVEMBER  | 0.00   | 4.27   | 7.69   | 6.84    | 11.11    | 70.09 |
| DECEMBER  | 0.00   | 2.25   | 1.12   | 5.62    | 10.11    | 60.40 |
| FALL      | 1.55   | 5.69   | 8-27   | 10.45   | 11.11    | 62.53 |
| WINTER    | 1.05   | 3.16   | 4.91   | 8.07    | 11.23    | 71.58 |
| SPRING    | 2.69   | 5.07   | 11.04  | 15.72   | 12.84    | 53.13 |
| SUMMER    | 3.90   | 7.45   | 17.02  | 13.12   | 17.02    | 41.49 |
| ANNUAL    | 2.25   | 5.35   | 10,16  | 11.57   | 12.86    | 57.49 |

TABLE 22. Percent Occurrence of the Windshear (knots) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin. 1200 Hours GMT (1974-78, 1981).

|           | 0 TO 2 | 3 TO 5 | 6 10 8 | 9 TO 11 | 12 TO 14 | GE 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 1.05   | 1.05   | 4.21   | 7.37    | 8.42     | 77.69 |
| FEBRUARY  | 2.97   | 4.95   | 10.57  | 10.87   | 17.82    | 52.48 |
| HARCH     | 0.00   | 5.48   | 6.48   | 9.26    | 12.04    | 65.74 |
| APRIL     | .87    | 7.83   | 14.79  | 18.26   | 10.43    | 47.03 |
| MAY       | 5.36   | 6.25   | 14.29  | 16.76   | 18.75    | 38.39 |
| JUNE      | 4.65   | 9.30   | 23.26  | 10.47   | 16.28    | 36.05 |
| JULY      | 1.10   | 12.09  | 19.75  | 15.33   | 15.38    | 36.26 |
| AUGUST    | 1.90   | 8.57   | 17-14  | 14.27   | 22.86    | 35.24 |
| SEPTEMBER | 1.48   | 8.15   | 7.41   | 17.73   | 13.33    | 51.35 |
| OCTOBER   | 2.96   | 9.63   | 7.41   | 13.33   | 9.63     | 57-04 |
| NOVERBER  | 0.00   | 5.98   | 5.98   | 8.55    | 12.82    | 66.57 |
| DECEMBER  | 0.00   | 3.37   | 2.25   | 10.11   | 10.11    | 74.15 |
| FALL      | 1.55   | 3.01   | 6.95   | 13.44   | 11.89    | 58.14 |
| WINTER    | 1.40   | 3.16   | 5.76   | 9.47    | 12.28    | 67.72 |
| SPRING    | 2.09   | 6.87   | 11.94  | 14.93   | 13.73    | 50.45 |
| SUMMER    | 2.48   | 9,93   | 19.86  | 13.48   | 18.44    | 35.02 |
| ANNUAL    | 1.86   | 7.06   | 10.56  | 12.95   | 13.89    | 53.37 |

TABLE 23. Percent Occurrence of the Windshear (knots) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TO 2 | 3 10 5 | 6 17 9  | 9 TO L1 | 12 TO 14 | G <b>E</b> 15 |
|-----------|--------|--------|---------|---------|----------|---------------|
| JANUARY   | 6.32   | 17.89  | 28.42   | 15.79   | 10.53    | 21.05         |
| FEBRUARY  | 9.90   | 19.60  | 24.75   | 21.78   | 10.89    | 12.37         |
| MARCH     | 9.26   | 22.22  | 20.37   | 20.37   | 7-41     | 20.37         |
| APRIL     | 8.70   | 24.35  | 25 - 22 | 19.13   | 13.04    | 9.57          |
| HAY       | 9.82   | 29.45  | 16.76   | 25.00   | 11.61    | 7.14          |
| JUNE      | 11.63  | 33.72  | 29.07   | 16.28   | 4.65     | 4.65          |
| JULY      | 13.19  | 31.37  | 23.08   | 18.68   | 5.49     | 7.69          |
| AUGUST    | 12.38  | 29.52  | 30.46   | 12.38   | 7.62     | 7.02          |
| SEPTEMBER | 11.11  | 25.19  | 22.22   | 14.07   | 14.07    | 13.33         |
| OCTOBER   | 14.81  | 22.22  | 24.44   | 14.37   | 11.85    | 12.59         |
| HOVEMBER  | 4.27   | 29.91  | 26.50   | 16.24   | 12.82    | 10.26         |
| DECEMBER  | 5.62   | 23.60  | 35.96   | 14.61   | 10.11    | 10.11         |
| FALL      | 10.34  | 25.55  | 24.29   | 14.73   | 12.92    | 12.14         |
| WINTER    | 7.37   | 20.35  | 29.47   | 17.54   | 10.53    | 14.74         |
| SPRING    | 9.25   | 25.37  | 20.90   | 21.49   | 10.75    | 12.24         |
| SUMMER    | 12.41  | 31.56  | 27.56   | 15.60   | 6.03     | 6.74          |
| ANNUAL    | 9.85   | 25.68  | 25.29   | 17.30   | 10.32    | 11.56         |

TABLE 24. Percent Occurrence of the Windshear (knots) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TO 2 | 3 70 5 | 6 TN 8 | 9 TO 11 | 12 TU 14 | GT 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 0.00   | 1.05   | 0.00   | 4.21    | 4.21     | 90.53 |
| FEBRUARY  | 0.00   | 4.95   | 4.95   | 1.98    | 11.88    | 76.24 |
| MARCH     | 0.00   | .93    | 1.85   | 5.55    | 5.50     | 86-11 |
| APRIL     | .87    | 5.22   | 4.35   | 5.22    | 7.83     | 76.52 |
| MAY       | 2.68   | 4.46   | 4.46   | 5.36    | 18.75    | 64.29 |
| JUNE      | 1.16   | 5.14   | 10.47  | 6.14    | 16.28    | 55.81 |
| JULY      | 1.10   | 6.59   | 7.69   | 8.79    | 10.99    | 64.84 |
| AUGUST    | 1.90   | 4.76   | 7.62   | 8.57    | 12.38    | 64.76 |
| SEPTEMBER | 1.46   | .74    | 3.70   | 3.70    | 6.89     | 81.45 |
| OCTOBER   | 0.00   | 3.70   | 2.76   | 7.41    | 11.11    | 74.31 |
| NOVEMBER  | 0.00   | .85    | 3.42   | 7.69    | 5.98     | 82.35 |
| DECEMBER  | 0.00   | 2.25   | 0.00   | 0.00    | 4.49     | 93.26 |
| FALL      | •52    | 1.81   | 3.36   | 6.20    | 8.79     | 79.33 |
| WINTER    | 0.00   | 2.91   | 1.75   | 2.11    | 7.02     | 862   |
| SPRING    | 1.19   | 3.58   | 3.59   | 5.37    | 10.75    | 75.52 |
| SUNNER    | 1.42   | 5.38   | 8.51   | 8.51    | 13.12    | 62.06 |
| ANNUAL    | .78    | 3.49   | 4.17   | 5.57    | 9.45     | 76.11 |

TABLE 25. Percent Occurrence of the Windshear (knots) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|              | 0 TO 2 | 3 10 5 | 6 10 9 | 9 TO LL | 12 TO 14 | GE 15 |
|--------------|--------|--------|--------|---------|----------|-------|
| JANUARY      | 0.00   | 0.00   | 2.11   | 3.15    | 5.26     | 89-47 |
| FEBRUARY     | .99    | 2.97   | 5.94   | 6.93    | 6.93     | 76.24 |
| MARCH        | .93    | 0.00   | 2.78   | 4.63    | 4.63     | 87.04 |
| APRIL        | .87    | 5.22   | 6.96   | 4.35    | 5.22     | 77.39 |
| MAY          | 3.57   | 3.57   | 2.68   | 8.43    | 15.13    | 66.07 |
| JUNE         | 1.16   | 6.98   | 9.30   | 12.77   | 15.12    | 54.65 |
| <b>J</b> ULY | 2.20   | 5.49   | 9.49   | 6.57    | 10.99    | 64.94 |
| AUGUST       | 2.86   | 3.81   | 7.62   | 10.48   | 13.33    | 61.90 |
| SEPTEMBER    | 2.22   | 0.00   | 4.44   | 4.44    | 10.37    | 78.32 |
| OCTOBER      | .74    | 2.22   | 2.76   | 10.37   | 9.63     | 74.07 |
| NOVEMBER     | .85    | •85    | 4.27   | 4.27    | 6.44     | #2.91 |
| DECEMBER     | 0.00   | 2.25   | 0.00   | 0.00    | 2.25     | 95.51 |
| FALL         | 1.29   | 1.03   | 3.88   | 6.45    | 9.04     | 78.29 |
| WINTER       | •35    | 1.75   | 2.81   | 3.51    | 4.91     | 86.67 |
| SPRING       | 1.79   | 2.99   | 4.15   | 5.97    | 8.36     | 76.72 |
| SUMMER       | 2.13   | 5.32   | 6.87   | 9.93    | 13.12    | 60.34 |
| ANNUAL       | 1.40   | 2.64   | 4.81   | 6-44    | 8.84     | 75.67 |

TABLE 26. Percent Occurrence of the Windshear (knots) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TO 2 | 3 fu 5 | 6 10 6 | 9 TH 11 | 12 TO 14 | GE 15 |
|-----------|--------|--------|--------|---------|----------|-------|
| JANUARY   | 1.05   | 9.47   | 5.26   | 5.25    | 11.58    | 67.37 |
| FEBRUARY  | 1.96   | 4.95   | 10.59  | 5.94    | 14.85    | 61.37 |
| MARCH     | 0.00   | 5.48   | 6.45   | 12.04   | 8.33     | 66.67 |
| APRIL     | 4.35   | 9.57   | 6.96   | 5.22    | 7.83     | 65.39 |
| MAY       | -89    | 5.36   | 11.61  | 17.86   | 14.29    | 50.00 |
| JUNE      | 0.00   | 10.47  | 22.09  | 19.77   | 15.12    | 32.56 |
| JULY      | 8.79   | 12.09  | 12.09  | 12.09   | 12.09    | 42.86 |
| AUGUST    | 3.81   | 12.38  | 12.38  | 17.14   | 10.48    | 43.81 |
| SEPTEMBER | 2.22   | 10.37  | 7.41   | 10.37   | 10.37    | 59.26 |
| OCTOBER   | 1.48   | 5.93   | 14.81  | 10.37   | 10.37    | 57.04 |
| NOVEMBER  | 4.27   | 1.71   | 8.55   | 10.25   | 10.26    | 64.76 |
| DECEMBER  | 0.00   | 3.37   | 4.49   | 11.24   | 19.10    | 61.80 |
| FALL      | 2.55   | 6.20   | 10.34  | 10.34   | 10.34    | 60.21 |
| WINTER    | 1.05   | 5.96   | 7.02   | 7.37    | 15.09    | 63.51 |
| SPRING    | 1.79   | 7.16   | 8.36   | 11.64   | 10.15    | 60.90 |
| SUMMER    | 4.20   | 11.70  | 15.25  | 16.31   | 12.41    | 40.07 |
| ANNUAL    | 2.40   | 7.60   | 10.16  | 11.33   | 11.79    | 56.71 |

TABLE 27. Percent Occurrence of the Windshear (knots) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 0 TO 2 | 3 TO 5 | 6 th s | 9 TO 11 | . 12 TO 14 | GE 15 |  |
|-----------|--------|--------|--------|---------|------------|-------|--|
| JANUARY   | 4.21   | 11.58  | 18.95  | 9.47    | 15.79      | 40.00 |  |
| FEBRUARY  | 2.97   | 11.85  | 15.84  | 22.77   | 13.86      | 32.67 |  |
| MARCH     | 4.63   | 9.26   | 16.67  | 14.31   | 19.44      | 35.19 |  |
| APRIL     | 7.83   | 14.78  | 10.43  | 20.97   | 11.30      | 34.78 |  |
| MAY       | 9.82   | 15.07  | 17.86  | 17.86   | 8.93       | 79.46 |  |
| BRUL      | 8.14   | 30.23  | 27.91  | 15.12   | 9.30       | 9.30  |  |
| JULY      | 16.48  | 20.38  | 15.48  | 23.05   | 9.89       | 13.19 |  |
| AUGUST    | 12.38  | 20.75  | 20.95  | 13.33   | 17.14      | 15.24 |  |
| SEPTEMBER | 3.70   | 17.75  | 19.26  | 22.22   | 9.63       | 27.41 |  |
| OCTOBER   | 4.44   | 15.56  | 17.04  | 19.26   | 16.30      | 27.41 |  |
| NOVEMBER  | 2.56   | 15.38  | 13.65  | 18.30   | 11.97      | 37.61 |  |
| DECEMBER  | 1.12   | A.99   | 72.47  | 15.73   | 12.36      | 39.33 |  |
| FALL      | 3.62   | 16.29  | 16.90  | 20.16   | 12,00      | 30.49 |  |
| WINTER    | 2.81   | 10.58  | 18.95  | 16.14   | 14.04      | 37.19 |  |
| SPRING    | 7.40   | 13.43  | 14.93  | 17.91   | 13.13      | 33.13 |  |
| SUMMER    | 12.41  | 23.76  | 21.63  | 17.02   | 12.41      | 12.77 |  |
| ANNUAL    | 6.36   | 15.98  | 17.84  | 18.00   | 13.03      | 28.78 |  |

TABLE 28. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (knots) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 50TH PEPC   | POIH PERC | 95TH PEFC | 97.5 PEPC | 99TH PERC |
|-----------|-------------|-----------|-----------|-----------|-----------|
| JANUAFY   | 17.5        | 78.5      | 35.0      | 39.4      | 40.0      |
| FEBRUARY  | 10.0        | 24.3      | 27.0      | 29.0      | 32.0      |
| MARCH     | 11.0        | 25.0      | 27.4      | 36.3      | 44.0      |
| APRIL     | 7.5         | 16.0      | 19.3      | 20.1      | 24.5      |
| "AY       | 7.0         | 14.2      | 18.0      | 19.4      | 21.4      |
| JUNE      | 6.0         | 14.0      | 18.6      | 20.9      | 26.3      |
| JULY      | 6.0         | 17.9      | 17.0      | 20.3      | 21.9      |
| LUGUST    | 9.0         | 15.5      | 15.3      | 20.0      | 21.0      |
| SEPTEMBER | 10.0        | 21.0      | 27.0      | 30.4      | 34.1      |
| UCTOBER   | 11.C        | 22.5      | 27.9      | 34.3      | 39.5      |
| HOVEMBER  | 17.0        | 27.0      | 30.0      | 31.J      | 34.0      |
| PECEMBER  | 18.0        | 27.0      | 37.6      | 33.7      | 42.0      |
| WINTER    | 14.0        | 27.0      | 37.0      | 37.1      | 42.0      |
| SPRING    | <b>e.</b> c | C.81      | 21.5      | 25.0      | 36.4      |
| SUMMER    | 5.0         | 16.0      | 13.0      | 20.0      | 24.4      |
| FALL      | 12.0        | 24.0      | 28.0      | 31.5      | 36.3      |
| ARNUAL    | 10.0        | 23.0      | 27.0      | 31.9      | 37.1      |

TABLE 29. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (knots) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|            | SOTH PERC | 901H PERC | 95TH PERC | 97.5 PERC | 99TH PERC |
|------------|-----------|-----------|-----------|-----------|-----------|
| JAHUARY    | 15.5      | 26.0      | 32.0      | 37.0      | 37.0      |
| FEBRUARY   | 9.0       | 20.1      | 24.0      | 25.4      | 32.0      |
| MARCH      | 10.0      | 22.2      | 25.8      | 35.3      | 40.0      |
| APRIL      | 6.0       | 14.5      | 19.0      | 20.1      | 23.2      |
| MAY        | 6.0       | 14.0      | 16.8      | 16.0      | 19.4      |
| JUNE       | 5.0       | 13.0      | 17.3      | 20.1      | 26.0      |
| JULY       | 6.0       | 15.1      | 17.0      | 18.3      | 19.0      |
| AUGUST     | 7.0       | 12.5      | 16.0      | 17.4      | 20.0      |
| SEPTEMMER  | 8.0       | 20.5      | 24.0      | 27.3      | 32.5      |
| OCTOBER    | 9.0       | 20.5      | 25.0      | 31.1      | 35.4      |
| NOVENBER   | 15.0      | 24.0      | 27.2      | 30.0      | 33.2      |
| UF CF MBER | 15.5      | 27.0      | 35.0      | 36.1      | 42.0      |
| WINTER     | 12.0      | 26.0      | 32.0      | 35.3      | 40.3      |
| SPRING     | 7.0       | 16.0      | 20.0      | 24.0      | 35.4      |
| SUMMER     | 6.0       | 13.0      | 17.0      | 18.0      | 20.7      |
| FALL       | 10.0      | 21.0      | 27.0      | 29.3      | 33.1      |
| ANNUAL     | 6.0       | 21.0      | 25.0      | 28.2      | 35.0      |

TABLE 30. 50, 90, 95, 97.5, and 99th Percentile Values of the Difference in Windspeed (knots) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH *ERC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANULRY   | 19.0      | 35.5      | 39.0      | 45.5      | 4ê.3      |
| PERUARY   | 12.0      | 28.1      | 30.0      | 35.0      | 28.0      |
| MIRCH     | 15.0      | 27.3      | 34.2      | 38.2      | 46.0      |
| APRIL     | 10.5      | 23.0      | 25.5      | 28.1      | 31.2      |
| TAY       | 9.0       | 20.0      | 22.0      | 23.2      | 25.4      |
| JUNE      | 8.3       | 20.5      | 27.3      | 29.5      | 33.7      |
| JULY      | 10.3      | 21.1      | 23.5      | 29.3      | 30.0      |
| AUSUST    | 12.3      | 19.5      | 24.3      | 27.C      | 25.0      |
| SEPTEMBER | 12.5      | 31.0      | 33.0      | 41.5      | 46.0      |
| JCTC8EP   | 15.0      | 28.5      | 32.3      | 38.4      | 44.4      |
| NOVERBER  | 18.5      | 34.0      | 33.2      | +0.0      | 41        |
| DECEMBER  | 18.3      | 33.0      | 41.7      | 44.7      | 47.3      |
| +INTER    | 16.0      | 33.0      | 38.3      | 43.1      | 47.0      |
| SERLING   | 11.0      | 24.0      | 27.0      | 31        | 39.1      |
| Suddes    | 10.0      | 21.2      | 24.2      | 28.0      | 30.4      |
| FALL      | 15.0      | 32.0      | 35. 1     | 40.0      | 44.1      |
| ANNUAL    | 13.0      | 28.0      | 13.0      | 39.0      | 44.0      |

TABLE 31. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (knots) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH PERC | 95TH PERC | 97.5 PERC | 99TH PFKL |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUARY   | 17.0      | 35.0      | 37.0      | +5.5      | 48.0      |
| FEBRUARY  | 11.0      | 25.1      | 29.0      | 32.7      | Ja.u      |
| MARCH     | 13.0      | 26.0      | 32.4      | 34.6      | 43.0      |
| APRIL     | 9.0       | 23.0      | 24.3      | 26.0      | 31.1      |
| MAY       | 8.0       | 20.0      | 21.4      | 23.0      | 24.1      |
| JUNE      | 7.0       | 19.6      | 26.3      | 28.5      | 31.7      |
| JULY      | 9.0       | 20.1      | 22.5      | 29.6      | 30.0      |
| AUGUST    | 10.0      | 16.5      | 22.0      | 23.0      | 25.0      |
| SEPTEMBER | 11.0      | 26.5      | 32.0      | 39.1      | 44.1      |
| OCTOBER   | 13.5      | 26.5      | 32.0      | 35.1      | 38.0      |
| NOVEMBER  | 16.0      | 32.0      | 37.2      | 34.0      | 42.4      |
| DECEMBER  | 16.0      | 31.0      | 40.5      | 44.2      | 45.2      |
| WINTER    | 14.5      | 30.0      | 36.3      | 41.4      | 47.0      |
| SPRING    | 10.0      | 23.0      | 25.3      | 39.8      | 36.4      |
| SUMMER    | 4.0       | 19.0      | 23.0      | 27.0      | 30.0      |
| FALL      | 13.0      | 29.3      | 34.0      | 30.0      | 40.0      |
| ANNUAL    | 11.5      | 26.0      | 32.0      | 36.0      | 40.1      |

TABLE 32. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (knots) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | POTH PERC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUARY   | 5.0       | 11.5      | 14.3      | 18.4      | 19.0      |
| FEBRUARY  | 4.5       | 11.1      | 12.3      | 13.3      | 13.0      |
| MARCH     | 5.0       | 12.0      | 16.0      | 17.9      | 24.0      |
| APRIL     | 4.0       | 10.5      | 13.3      | 14.3      | 17.2      |
| MAY       | 3.0       | 10.0      | 11.4      | 13.0      | 14.1      |
| JUNE      | 2.0       | 10.0      | 10.3      | 11.3      | 13.0      |
| JULY      | 4.0       | 9-1       | 10.5      | 12.0      | 12.0      |
| AUGUST    | 3.5       | 9.5       | 12.0      | 13.0      | 14-0      |
| SEPTEMBER | 4.5       | 12.0      | 13.0      | 14.4      | 16-1      |
| OCTOBER   | 4.0       | 11.5      | 14.0      | 18.4      | 20-4      |
| NOVEMBER  | 5.0       | 12.3      | 14.2      | 15.0      | 29.0      |
| DECEMBER  | 4.0       | 10.0      | 12.9      | 15.2      | 16.2      |
| WINTER    | 4.0       | 11.0      | 13.0      | 15.1      | 19.4      |
| SPRING    | 4.0       | 11.0      | 13.0      | 16-0      | 18.7      |
| SUMMER    | 3.0       | 10.0      | 11.0      | 12.3      | 13.2      |
| FALL      | 5.0       | 12.0      | 14.0      | L7.3      | 19.1      |
| ANNUAL    | 4.0       | 11.0      | 12.0      | 15.0      | 18.0      |

TABLE 33. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (knots) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | POTH PERC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| YAMUARY   | 9.0       | 21.3      | 26.3      | 30.5      | 33.0      |
| FEERUARY  | 9.0       | 21.3      | 26.0      | 32.3      | 39.0      |
| MARCH     | 8.0       | 19.2      | 22.5      | 26.ó      | 36.0      |
| APRIL     | 8.5       | 26.3      | 32.0      | 34.4      | 45.2      |
| MAY       | 6.3       | 20.0      | 21.4      | 25.4      | 28.6      |
| JUNE      | 4.0       | 10.3      | 15.2      | 20.2      | 21.3      |
| JULY      | 5.0       | 12.0      | 14.5      | 18.3      | 19.0      |
| AUGUST    | 5.0       | 13.5      | 16.0      | 17.4      | 23.0      |
| SEPTEMBER | 8.0       | 19.3      | 26.3      | 38.0      | 50.0      |
| OCTOBER   | 7.5       | 22.5      | 27.3      | 34.0      | 35.8      |
| NOVEMBER  | 9.0       | 22.3      | 27.2      | 28.0      | 35.9      |
| DECEMBER  | e. 0      | 19.0      | 22.9      | 25.5      | 27.4      |
| WINTER    | 9.0       | 21.0      | 25.3      | 29.0      | 36.2      |
| SPRING    | 0.8       | 21.0      | 26.2      | 32.0      | 37.4      |
| SUMMER    | 5.0       | 13.0      | 15.0      | 18.0      | 23.0      |
| FALL      | 8.0       | 21.0      | 28.0      | 30.7      | 39.1      |
| ANNUAL    | 7.0       | 20.0      | 25.0      | 29.0      | 36.0      |

TABLE 34. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (knots) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH PERC | 95TH PERC | 47.5 PERC | WATH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| YNAUFAL   | 13.5      | 31.0      | 36.5      | 43.7      | 47.0      |
| FFBRUARY  | 12.5      | 28.2      | 33.0      | 34.4      | 45.0      |
| MARCH     | 14.0      | 28.0      | 13.4      | 19.6      | 41.0      |
| APRIL     | 12.0      | 31.5      | 41.3      | 47.1      | 50.5      |
| MAY       | 10.0      | 27.2      | 30.4      | 34.2      | 38.5      |
| TONE      | 6.0       | 17.4      | 24.6      | 29.2      | 30.0      |
| JULY      | 7.0       | 19.1      | 22.9      | 26.3      | 27.0      |
| AUGUST    | 7.0       | 20.0      | 24.3      | 27.4      | 33.0      |
| SEPTEMBER | 11.0      | 30.5      | 34.0      | 40.4      | 48.8      |
| UCTUBER   | 9.0       | 29.5      | 37.5      | 44.4      | 46.5      |
| HOVEMBER  | 13.0      | 31.3      | 37.2      | 41.0      | 42.7      |
| DECEMBER  | 11.5      | 23.0      | 28.5      | 30.7      | 34.8      |
| #INTER    | 13.0      | 24.5      | 33.3      | 41.1      | 47.3      |
| SPRING    | 11.5      | 29.0      | 34.0      | 41.4      | 47.4      |
| SUMMER    | 7.0       | 20.0      | 24.0      | 27.9      | 10.5      |
| FALL      | 11.0      | 30.3      | 37.0      | 41.0      | 45.1      |
| ANNUAL    | 11.0      | 28.0      | 34.0      | 40.2      | 45.0      |

TABLE 35. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (knots) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 901H PE 2C | 95TH PERC | 37.5 PERC | 99TH PERC |
|-----------|-----------|------------|-----------|-----------|-----------|
| JANUARY   | 24.5      | 49.0       | 56.0      | 62.9      | 66.0      |
| FEBRUARY  | 17.5      | 40.1       | 45.0      | 49.0      | 53.0      |
| MARCH     | 21.0      | 41.0       | 50.4      | 53.3      | 56.0      |
| APRIL     | 17.0      | 41.5       | 49.0      | 53.L      | 64.2      |
| MAY       | 14.0      | 33.4       | 36.0      | 43.2      | 48.6      |
| JUNE      | 10.0      | 26.2       | 42.6      | 45.0      | 46.4      |
| JULY      | 13.5      | 29.1       | 34.5      | 43.6      | 45.0      |
| AUGUST    | 13.5      | 27.5       | 35.0      | 39.0      | 40.0      |
| SEPTEMBER | 18.5      | 45.5       | 51.0      | 55.0      | 56.7      |
| OCTOBEP   | 18.0      | 44.0       | 54.5      | 60.4      | 62.4      |
| HOVEMBER  | 24.0      | 51.6       | 58.2      | 60.9      | 61.2      |
| UECEMBER  | 24.5      | 42.0       | 54.8      | 69.2      | 61.9      |
| WINTER    | 25.0      | 45.0       | 53.0      | 57.4      | 65.2      |
| SPFING    | 10.0      | 38.0       | 46.0      | 23.0      | 59.2      |
| SUMMER    | 13.0      | 28.0       | 35.2      | 43.0      | 46.0      |
| FALL      | 20.0      | 46.0       | 55.0      | 59.0      | 61.0      |
| AMNUAL    | 19.C      | 41.0       | 49.0      | 55.0      | 61.0      |

TABLE 36. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Windspeed (knots) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 50TH PERC | 4014 PERC | 95TH PERC | 97.5 PEFC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUAPY   | 26.0      | 51.5      | 56.3      | 66.3      | 66 • U    |
| FESRUARY  | 22.3      | 41.1      | 45.0      | 50.0      | 57.0      |
| наесн     | 73.0      | 42.6      | 51.0      | 54.7      | 59.0      |
| APPIL     | 18.5      | 42.5      | 52.0      | 53.3      | 70.2      |
| YAM       | 14.0      | 34.2      | 38.0      | 43.3      | 50.4      |
| 10.1E     | 11.0      | 27.4      | 44.6      | 47.2      | 4 - 3     |
| JULY      | 15.0      | 30.1      | 36.9      | 44.1      | 47.0      |
| AUGUST    | 14.0      | 29.0      | 35.5      | 39.1      | 41.0      |
| SEPTEMBER | 19.5      | 47.0      | 53.0      | 55.4      | 57.1      |
| OCTOBER   | 20.0      | 46.0      | 59.0      | 61.4      | 67.8      |
| NOVENBER  | 26.0      | 55.0      | 59.3      | 64.5      | 64.0      |
| ивсемара  | 27.0      | 46.0      | 55.9      | 5.50      | 63.9      |
| WINTER    | 26.0      | 47.0      | 55.3      | 57.6      | 66.0      |
| SPRING    | 19.0      | 39.0      | 47.8      | 53.0      | 62.5      |
| SUMMER    | 14.C      | 29.0      | 37.1      | 44.0      | 46.0      |
| FALL      | 22.0      | 49.0      | 56.4      | 61.J      | 64.0      |
| ANNUAL    | 20.0      | 43.0      | 51.0      | 57.0      | 63.1      |

TABLE 37. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 9914 PESC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUARY   | 35.0      | 80.0      | 111.3     | 125.3     | 135.0     |
| FERRUARY  | 35.0      | 190.5     | 150.0     | 147.4     | 170.0     |
| AARCH     | 30.0      | 70.0      | 85.0      | 89.5      | 110.0     |
| APPIL     | 20.0      | 62.5      | 115.0     | 145.0     | 166.5     |
| MAY       | 25.0      | 0.56      | 119.0     | 135.0     | 143.0     |
| JUNE      | 20.0      | 86.9      | 118.0     | 150.3     | 158.5     |
| JULY      | 25.0      | 65.0      | 77.2      | 89.5      | 115.0     |
| AUGUST    | 20.0      | 70.0      | 91.3      | 101.7     | 130.0     |
| SEPTEMBER | 22.5      | 92.5      | 112.5     | 145.0     | 176.8     |
| 9010653   | 30.0      | 82.5      | 120.0     | 136.9     | 153.8     |
| NOVENSER  | 30.0      | 70.0      | 90.0      | 110-0     | 153.4     |
| DECHMBER  | 35.0      | 80.0      | 100.0     | 109.0     | 142.2     |
| RIMIER    | 35.0      | 87.5      | 125.0     | 150.0     | 165.8     |
| SPRING    | 25.0      | 75.0      | 110.0     | 135.0     | 155.3     |
| SUMMER    | 20.0      | 75.0      | 95.0      | 115.0     | 141.8     |
| FALL      | 30.0      | 76.5      | 110.0     | 135.0     | 152.6     |
| AMMIAL    | 30.0      | 80.0      | 110.0     | 135.0     | 160.0     |

TABLE 38. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|                | SOTH PERC | SOTH PERC | 95TH PEKC | 97.5 PERC | 99TH PERC |
|----------------|-----------|-----------|-----------|-----------|-----------|
| TRAUPAL        | 32.5      | 79.0      | 86.3      | 105.5     | 115.0     |
| FERRUARY       | 35.0      | 75.5      | 125.0     | 140.0     | 150.0     |
| MARCH          | 25.0      | 65.0      | 80.0      | 34.5      | 110.0     |
| APFIL          | 70.0      | 60.0      | 108.3     | 140.6     | 166.5     |
| YAF            | 20.0      | 91.0      | 105.0     | 121.0     | 126.3     |
| JUNE           | 20.0      | 79.0      | 101.5     | 123.0     | 144.9     |
| JULY           | 22.5      | 60.5      | 77.2      | 96.9      | 115.C     |
| AUGUS T        | 20.e      | 57.5      | 82.5      | 97.5      | 135.0     |
| SEPTEMBER      | 25.0      | 90.0      | 119.0     | 123.3     | 167.0     |
| UCTOBER        | 25.0      | 75.0      | 92.5      | 121.9     | 140.3     |
| HOAEABES       | 30.0      | 60.0      | 75.7      | 95.7      | 127.0     |
| DECEMBER       | 35.0      | 70.0      | 72.0      | 110.1     | 148.3     |
| KINTED .       | 35.0      | 80.0      | 100.0     | 125.3     | 145.5     |
| SPRING         | 25.0      | 70.0      | 105.0     | 125.0     | 141.9     |
| SUMMER         | 20.0      | 66.0      | 90.0      | 110.0     | 135.7     |
| FALL           | 25.0      | 70.0      | 711.8     | 120.0     | 135.7     |
| <b>∆</b> HYU∆L | 25.0      | 70.0      | 95.C      | 120.0     | 140.0     |

TABLE 39. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH PERC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUARY   | 45.0      | 107.5     | 151.3     | 166.9     | 170-3     |
| FEBRUARY  | 45.0      | 120.0     | 145.0     | 169.3     | 120.0     |
| MARCH     | 35.0      | 120-0     | 137.0     | 148.0     | 160.0     |
| APRIL     | 35.0      | 132.5     | 155.0     | 161.3     | 170.4     |
| MAY       | 25.0      | 131.0     | 149.0     | 167.0     | 180.0     |
| SKUL      | 35.0      | 130.0     | 150.0     | 155.8     | 161.4     |
| שערא      | 30.0      | 90.0      | 119.5     | 137.8     | 145-0     |
| AUGUST    | 35.0      | 95.0      | 126.3     | 147.5     | 160-0     |
| SEPTEMBER | 40.3      | 137.5     | 152.5     | 163.3     | 120-3     |
| OCTOBER   | 35.0      | 110.0     | 122.5     | 155.5     | 166-3     |
| NOVERBER  | 32.5      | 85.0      | 105.5     | 150.0     | 167.5     |
| DECEMBER  | 45.0      | 100.3     | 134.5     | 141.1     | 147.8     |
| WINTER    | 45.0      | 120.0     | 141.3     | 165.0     | 175.8     |
| SPRING    | 35.0      | L27.5     | 150.0     | 161.9     | 175.0     |
| SUMMER    | 35.0      | 100.0     | 135.0     | 150.0     | 160-0     |
| FALL      | 35.0      | 111.5     | 145.0     | 160.0     | 170-7     |
| ANNUAL    | 35.3      | 120.0     | 145.0     | 160.0     | 170.0     |

TABLE 40. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | POTH PEPC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUARY   | 40.0      | 100.0     | 122.5     | 143.3     | 150.0     |
| FEBRUARY  | 45.0      | 100.3     | 140.0     | 154.8     | 120.0     |
| MARCH     | 35.0      | 115.0     | 132.0     | 155.0     | 165.0     |
| APRIL     | 35.0      | 122.5     | 155.3     | 105.6     | 170.8     |
| MAY       | 35.0      | 120.0     | 149.0     | 165.7     | 180.0     |
| JUNE      | 35.0      | 121.0     | 141.5     | 150.0     | 150.0     |
| JULY      | 30.0      | 85.5      | 117.3     | L35.3     | 135.0     |
| AUGUST    | 35.0      | 90.0      | 127.5     | 155.9     | 170.0     |
| SEPTEMBER | 35.0      | 135.0     | 156.3     | 170.0     | 176.8     |
| UCTOSE?   | 35.0      | 107.5     | 121.3     | 153.8     | 166.4     |
| HOVEMBER  | 30.0      | 81.5      | 100.5     | 155.0     | 175.9     |
| DECEMBER  | 40.0      | 90.0      | 129.5     | 133.4     | 152.2     |
| HINTER    | 40.0      | 100.3     | 131.3     | 150.0     | 170.0     |
| SPRING    | 35.C      | 120.0     | 151.3     | 165.0     | 171.8     |
| SUMMER    | 35.0      | 97.0      | 130.5     | 150.0     | 169.0     |
| FALL      | 35.0      | 106.5     | 145.0     | 161.6     | 170.7     |
| ANNUAL    | 35.0      | 110.0     | 140.0     | 160.0     | 170.0     |

ASSOCIATE PROPERTY RECOVERS RECOVERS WAS DONE OF THE PROPERTY RECOVERS RECOVERS RECOVERS RECOVERS

TABLE 41. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH PERC | 95TH PEAC | 97.5 PERC | 99TH PEAC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| YRAUNAL   | 15.0      | 45.0      | 62.5      | 87.5      | 100.0     |
| FEBRUARY  | 15.0      | 70.0      | 75.0      | 97.4      | 120.0     |
| MARCH     | 15.0      | 70.3      | 88.0      | 115.0     | 145.0     |
| APRIL     | 15.0      | 65.7      | 91.3      | 122.5     | 147.3     |
| YAM       | 20.0      | 75.0      | 85.0      | 98.3      | 141.8     |
| BAUL      | 15.0      | 60.0      | 98-0      | 116.8     | 157.5     |
| JULY      | 10.3      | 40.5      | 65.0      | 77.3      | 85.0      |
| AUGUST    | 15.0      | 55.3      | 68.2      | 111.9     | 120.0     |
| SEPTEMBER | 15.0      | 67.5      | 101-3     | 146.3     | 162.0     |
| OCTOBER   | 15.0      | 42.5      | 68.5      | 93.3      | 105.0     |
| NOVERBER  | 10.0      | 31.5      | 60.0      | 65.3      | 91.1      |
| DECEMBER  | 10.0      | 45.3      | 65.0      | 74.5      | 91.6      |
| WINTER    | 10.0      | 55.0      | 71.3      | 90.0      | 106.5     |
| SPRING    | 15.0      | 65.0      | 86.3      | 116.9     | 148.5     |
| SUMMER    | 15.0      | 55.0      | 75.0      | 110.3     | 146.3     |
| FALL      | 10.0      | 46.5      | 76.8      | 101.5     | 145.0     |
| ANNUAL    | 15.0      | 60.0      | 80.0      | 105.0     | 145.0     |

TABLE 42. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH PERC | 95TH PERC | 97.5 PERC | 99TH PERC |  |
|-----------|-----------|-----------|-----------|-----------|-----------|--|
| JANUARY   | 10.3      | 37.5      | 45.3      | 76.7      | 80.3      |  |
| FEBRUARY  | 15.0      | 70.5      | a5.0      | 97.4      | 105-0     |  |
| MARCH     | 15.0      | 41.3      | 64.0      | 76.5      | 145.0     |  |
| APRIL     | 15.0      | 57.5      | 68.3      | 91.3      | 116-5     |  |
| MAY       | 15.0      | 51.0      | 68-0      | 96.3      | 129.8     |  |
| JUNE      | 15.0      | 67.0      | 119.5     | 138.0     | 156.5     |  |
| JULY      | 10.3      | 35.0      | 50.0      | 101.9     | 120-0     |  |
| AUGUST    | 15.0      | 45.0      | 75.0      | 85.5      | 110.0     |  |
| SEPTEMBER | 12.5      | 50.0      | 57.5      | 95.0      | 110.3     |  |
| OCTOBER   | 10.0      | 60.3      | 65.0      | 101.3     | 151.8     |  |
| NOVEMBER  | 10.0      | 36.3      | 60.7      | 80.0      | 120.0     |  |
| DECEMBER  | 10.0      | 45.3      | 62.3      | 06+L      | 74.7      |  |
| WINTER    | 10.5      | 50.0      | 71.3      | 85.0      | 100-8     |  |
| SFRING    | 15.0      | 50.0      | 66.3      | 93.8      | 132.0     |  |
| SUMMER    | 10.3      | 45.0      | 71.0      | 115.0     | 158.6     |  |
| FALL      | 10.0      | 50.0      | 65.0      | 94.9      | 130.0     |  |
| ANNUAL    | 10.0      | 50.0      | 70.0      | 96.1      | 130.0     |  |

TABLE 43. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH PERC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUARY   | 25.0      | 67.5      | 90.0      | 131.9     | 135.0     |
| FFBRUARY  | 32.5      | 111.0     | 145.0     | 192.4     | 145.0     |
| MARCH     | 25.0      | 96.0      | 141.0     | 161.5     | 165.0     |
| APRIL     | 30.0      | 120.3     | 137.5     | 156.7     | 170.0     |
| · 44 ·    | 25.0      | 121.0     | 150.0     | 151.9     | 170.6     |
| 7NNE      | 30.0      | 121.0     | 148.0     | 155.8     | 170.7     |
| JULY      | 20.0      | 75.5      | 99.0      | 155.4     | 140.0     |
| TZUSUA    | 25.0      | 90.0      | 126.3     | 142.5     | 160.0     |
| SEPTEMBER | 25.0      | 92.5      | 111.3     | 1-1-9     | 170.3     |
| OCTOBER   | 22.5      | 110.0     | 115.0     | 140.3     | 148.5     |
| HOVEHBER  | 20.0      | 59.0      | 106.5     | 120.0     | 166.7     |
| VECEMBER  | 20.0      | 75.0      | 87.3      | 128.4     | 141.7     |
| WINTER    | 25.0      | 90.0      | 126.3     | 145-5     | 156.5     |
| SPRING    | 30.0      | 115.0     | 146.3     | 151.7     | 170.0     |
| YUMMER    | 25.G      | 91.0      | 135.0     | 155.0     | 165.7     |
| FALL      | 20.0      | 85.0      | 115.0     | 140.0     | 156.3     |
| ANNUAL    | 25.0      | 100.0     | 130.0     | 151-1     | 165.0     |

TABLE 44. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | POTH PERC | 95TH PERC | 97.5 PERC | SKRG HTPP |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JAHUARY   | 50.0      | 122.5     | 150.0     | 160.0     | 170.0     |
| FFJRUARY  | 65.0      | 140.0     | 150.0     | 152.1     | 170.0     |
| MARCH     | 50.C      | 135.0     | 170.0     | 176.5     | 190.      |
| APRIL     | 50.0      | 142.5     | 162.5     | 170.0     | 175.0     |
| MAY       | 45.0      | 151.0     | 165.0     | 170.0     | 175.6     |
| JUNE      | 45.0      | 152.0     | 170.0     | 175.8     | 180.0     |
| JULY      | 30.0      | 120.0     | 147.3     | 166.4     | 170.0     |
| AUGUST    | 42.5      | 120.0     | 151.3     | 161.9     | 165.0     |
| SEPTEMBER | 40.0      | 142.5     | 155.0     | 161.9     | 166.6     |
| OCTURER   | 45.0      | 127.5     | 150.0     | 166.7     | 176.8     |
| иплеилез  | 35.0      | 111.5     | 127.3     | 160.0     | 171.7     |
| DECEMBER  | 45.0      | 115.0     | 147.3     | 171.1     | 175.6     |
| WINTER    | 50.0      | 135.0     | 150.0     | 170.0     | 175.0     |
| SPRING    | 50.0      | 145.0     | 165.0     | 171.9     | 180.0     |
| SUMMER    | 46.0      | 140-0     | 155.5     | 177.3     | 180.0     |
| FALL      | 40.0      | 125.0     | 151.9     | 165.0     | 170.0     |
| ANNUAL    | 45.0      | 135.0     | 155.0     | 170.0     | 175.0     |

TABLE 45. 50, 90, 95, 97.5, and 99th Percentile Values of the Differences in Wind Direction (Degrees) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | 50TH PERC | POTH PERC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| YNAUPAL   | 50.0      | 137.5     | 145.0     | 173.0     | 170.0     |
| FEBRUARY  | 70.C      | 135.3     | 145.0     | 172.4     | 100.0     |
| MARCH     | 50.0      | 140.0     | 170.0     | 175.5     | 180.0     |
| AFRIL     | 50.0      | 140.0     | 155.3     | 175.0     | 175.8     |
| 444       | 50.0      | 155.0     | 165.0     | 106.0     | 175.6     |
| JIME      | 66.0      | 157.3     | 170.0     | 175.0     | 175.0     |
| JULY      | 35.0      | 123.5     | 145.0     | 155.4     | 170.0     |
| AUGUST    | 45.0      | 125.0     | 150.0     | 158.3     | 165.0     |
| SEPTEMATA | 40.0      | 140.3     | 155.3     | 165.0     | 171.8     |
| UCTOBES   | 40.0      | 130.0     | 146.3     | 170.0     | 180.0     |
| NOVEMBER  | 40.0      | 116.5     | 132.3     | 150.0     | 160.0     |
| DECEMBER  | 5c.0      | 120.0     | 161.8     | 175.0     | 1,5.6     |
| winter    | 50.0      | 135.0     | 157.5     | 170.6     | 175.8     |
| SPRING    | 50.0      | 150.0     | 165.0     | 175.0     | 180.0     |
| SUMMER    | 45.0      | 140.0     | 160.5     | 177.0     | 170.9     |
| FALL      | 40.0      | 130.0     | 159.0     | 160.0     | 170.0     |
| ANTIUAL   | 45.0      | 140.0     | 160.0     | 170.0     | 175.0     |

TABLE 46. 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (knots) Between Surface and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH PERC | 95TH PERC | 97.5 PEPC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| YAKUPAL   | 20.8      | 31.4      | 34.2      | 44.2      | 46.1      |
| FEBRUARY  | 13.5      | 27.5      | 29.4      | 31.5      | 40.6      |
| MARCH     | 13.0      | 26.3      | 31.8      | 37.8      | 46.8      |
| APRIL     | 10.2      | 18.3      | 21.7      | 23.9      | 29.6      |
| MAY       | 9.1       | 16.9      | 18.4      | 20.0      | 23.1      |
| JUNE      | 9.7       | 18.2      | 20.7      | 24.0      | 27.0      |
| JULY      | 9.5       | 18.7      | 22.5      | 24.0      | 24.2      |
| AUGUST    | 11.0      | 17.6      | 19.8      | 23.5      | 25.5      |
| SEPTEMBER | 12.6      | 24.5      | 23.4      | 32.3      | 36.9      |
| OCTOBER   | 13.4      | 25.5      | 29.1      | 38.5      | 42.7      |
| нпуемвек  | 19.1      | 28.5      | 31.6      | 30.5      | 38.3      |
| 0606#864  | 21.2      | 33.7      | 43.6      | 46.1      | 47.3      |
| WINTER    | 16.6      | 30.0      | 37.9      | 43.2      | 47.3      |
| SPRING    | 10.7      | 19.8      | 25.9      | 30.0      | 38.0      |
| SUMMER    | 10.3      | 18.1      | 21.8      | 23.7      | 25.3      |
| FALL      | 14.0      | 27.2      | 30.5      | 35.0      | 40.0      |
| ANNUAL    | 12.3      | 26.2      | 27.6      | 34.8      | 42.3      |

TABLE 47. 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (knots) Between 1000mb (Near Surface) and 850mb (1500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | POTH PERC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUARY   | 19.7      | 29.1      | 35.G      | 44.0      | 46.1      |
| FEBRUARY  | 11.8      | 25.8      | 20.3      | 31.4      | 40.5      |
| MARCH     | 11.9      | 24.0      | 30.2      | 37.4      | 48.5      |
| APRIL     | 9.0       | 17.9      | 21.3      | 24.1      | 27.8      |
| YAF       | 6.3       | 15.5      | 18.0      | 13.7      | 21.3      |
| JUNE      | 6.8       | 16.7      | 19.1      | 22.1      | 26.2      |
| JULY      | 8.2       | 17.7      | 20.8      | 24.0      | 24.2      |
| AHGUST    | 9.2       | 16.0      | 18.9      | 20.3      | 23.6      |
| SCPTEMBER | 11.0      | 23.3      | 27.3      | 31.7      | 36.3      |
| OCTOBES   | 12.1      | 24.0      | 28.5      | 35.4      | 40.7      |
| >nvE#9£3  | 17.7      | 27.6      | 30.4      | 33.2      | 37.4      |
| DECEMBER  | 19.6      | 31.4      | 43.5      | 44.3      | 46.0      |
| SINTER    | 15.6      | 24.5      | 34.8      | +3.1      | 46.4      |
| PRING     | 9.7       | 18.4      | 23.7      | 27.3      | 37.6      |
| SUMMER    | 9.0       | 16.4      | 19.4      | 21.4      | 24.0      |
| - ALL     | 12.5      | 25.4      | 29.2      | 33.1      | 37.4      |
| ANNUAL    | 11.2      | 24.6      | 28.0      | 32.8      | 40.7      |

TABLE 48. 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (knots) Between Surface and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTIL PERC | 331H PERC | 95TH PERC | 97.5 PERC | YOTH PERC |
|-----------|------------|-----------|-----------|-----------|-----------|
| JANUARY   | 24.1       | 41.2      | 44.7      | 56.4      | 59.9      |
| FEBRUARY  | 15.6       | 31.4      | 36.6      | 35.→      | 40.6      |
| MARCH     | 16.3       | 31.6      | 39.7      | 42.0      | 48.0      |
| APRIL     | 15.0       | 27.2      | 30.1      | 31.9      | 37.9      |
| 144       | 12.7       | 23.4      | 25.6      | 27.4      | 32.1      |
| JUNE      | 12.7       | 25.7      | 20.8      | 32.1      | 33.9      |
| JULY      | 13.1       | 24.4      | 29.4      | 31.5      | 34.4      |
| AUGUST    | 13.8       | 23.2      | 27.0      | 28.7      | 32.1      |
| SEPTEMBER | 16.4       | 33.)      | 37.9      | 42.9      | 46.0      |
| JCTOBER   | 17.9       | 31.1      | 37.5      | 44.7      | 42.7      |
| HCAEMRES  | 21.2       | 37.4      | 40.2      | 42.5      | 48.9      |
| SECEMBER  | 21.7       | 30.5      | 48.5      | 50        | 51.3      |
| ·INTER    | 20.5       | 36.7      | 42.4      | 50.1      | 54.6      |
| THEIMS    | 15.3       | 27.3      | 31.2      | 5 B . •   | 42.9      |
| SUMMER    | 13.1       | 25.1      | 20.B      | 31.5      | 24.6      |
| FALL      | 17.7       | 34.5      | 39.4      | 92.7      | 46.4      |
| ANNUAL    | 16.4       | 32.1      | 37.3      | 41.3      | 45.1      |

TABLE 49. 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (knots) Between 1000mb (Near Surface) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|                | SOTH PERC | GOTH PESC | 951H PERC | 37.5 PERC | 99TH PERC |
|----------------|-----------|-----------|-----------|-----------|-----------|
| YAKUNAL        | 23.4      | 39.2      | 42.9      | 56.4      | 59.9      |
| PEBRUARY       | 16.1      | 30.7      | 33.3      | 36.3      | 39.6      |
| 13.8CH         | 17.9      | 31.1      | 37.7      | +0.5      | 43.1      |
| APRIL          | 14.3      | 27.2      | 29.1      | 51.9      | 39.2      |
| MAY            | 12.9      | 23.2      | 26.0      | 26.5      | 31.ŭ      |
| JUNE           | 12.0      | 25.1      | 29.4      | 31.3      | 33.1      |
| JULY           | 12.0      | 23.3      | 28.4      | 31.3      | 32.0      |
| AUGUST         | 13.1      | 22.3      | 25.5      | 25.9      | 27.3      |
| SEPTEMBER      | 15.5      | 43.3      | 37.2      | 41.1      | 46.3      |
| <b>OCTOSER</b> | 17.1      | 30.4      | 36.5      | 40.6      | 46.4      |
| NOVEMBER       | 19.8      | 35.5      | 39.6      | 42.2      | 48.5      |
| DECEMBER       | 19.4      | 35.5      | 49.1      | 50.2      | 51.0      |
| WINTER         | 19.5      | 36.1      | 42.3      | 50.1      | 53.8      |
| SPRI.4G        | 15.0      | 27.4      | 31.0      | 37.0      | 41.5      |
| SUMMER         | 12.4      | 23.2      | 27.1      | 31.0      | 32.2      |
| FALL           | 17.3      | 33.0      | 33.6      | 40.3      | 46.U      |
| ANNUAL         | 15.2      | 30.9      | 36.3      | 40.0      | 47.3      |

TABLE 50. 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (knots) Between 850mb (1500M) and 700mb (3000M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH PERC | 95TH PERC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUARY   | 8.3       | 19.3      | 22.1      | 27.5      | 27.6      |
| FEERUARY  | 8.5       | 15.2      | 17.5      | 21.5      | 24.0      |
| MARCH     | 8.9       | 18.3      | 20.5      | 22.1      | 28.2      |
| APRIL     | 7.7       | 14.6      | 17.1      | 17.9      | 20.3      |
| AAY       | 7.3       | L4.3      | 16.9      | 21.1      | 24.5      |
| 104E      | 6.2       | 11.6      | 14.7      | 16.1      | 15.3      |
| JULY      | 5.2       | 12.3      | 15.5      | 17.5      | 15.7      |
| AUGUST    | 6.5       | 13.0      | 16.3      | 17-1      | 18.3      |
| SEPTEMBER | E.3       | 16.3      | 19.4      | 22.7      | 25.7      |
| CCTGSER   | 7.5       | 16.1      | 18.7      | 22.3      | 25-1      |
| NCYEMBER  | 7.6       | 14.8      | 18.7      | 20-3      | 22.4      |
| DECEMBER  | 7.3       | 14.5      | 16.0      | 20.6      | 43.7      |
| WINTER    | 8.1       | 17-2      | 20.2      | 24.1      | 27.5      |
| SPRING    | 6.2       | 15.3      | 18.5      | 21.0      | 25.0      |
| SUMMER    | 6.3       | 12.5      | 15.7      | 16.6      | 18.2      |
| ELL       | 7.7       | 16.3      | 19.1      | 22.2      | 23.6      |
| ANNUAL    | 7.5       | 15.7      | 18.5      | 21.6      | 24.9      |

TABLE 51. 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (knots) Between 700mb (3000M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERG | 90TH PERC | 95TH PERC     | 97.5 PEPC | 99TH PERC |
|-----------|-----------|-----------|---------------|-----------|-----------|
| YAAUMAL   | 13        | 25.5      | 29.2          | 33.3      | 34.7      |
| FEBRUARY  | 11.7      | 24.8      | 34.4          | 37.7      | 49.1      |
| MARCH     | 12.3      | 23.0      | 2 <b>9.</b> 9 | 39.3      | 42.4      |
| APRIL     | 11.2      | 29.4      | 34.5          | 41.5      | 46.4      |
| YAN       | 10.3      | 21.2      | 27.5          | 30.5      | 33.2      |
| TONE      | 7.2       | 14.0      | 20.5          | 23.3      | 23.9      |
| JULY      | 7.7       | 15.7      | 17.3          | 22.0      | 23.0      |
| AUSUST    | 8 - 4     | 15.5      | 17.3          | 17.8      | 23.4      |
| SEPTENSER | 10.2      | 21.7      | 30.7          | 41.0      | 51.1      |
| OCTOBER   | 16.7      | 23.1      | 30.ė          | 34.5      | 39.4      |
| NOVERSER  | 11.5      | 23.5      | 25.1          | 29.7      | 27.5      |
| DECEMBER  | 12.5      | 22.4      | 27.1          | 29.9      | 30.3      |
| WINTER    | 12.4      | 24.6      | 29.2          | 34.5      | 37.3      |
| SPRING    | 11.2      | 24.4      | 31.7          | 36.5      | 44.4      |
| SUMMER    | 7.7       | 15.6      | 17.7          | 21.6      | 23.9      |
| FALL      | 10.7      | 22.9      | 29.3          | 34.3      | 40.2      |
| ANNUAL    | 13.5      | 22.5      | 25. •         | 39.?      | ٠٥.٥      |

TABLE 52. 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (knots) Between 850mb (1500M) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 9014 PERC | 95711 8530 | 97.5 2680 | 99TH PERC |
|-----------|-----------|-----------|------------|-----------|-----------|
| YNAUNAL   | 20.3      | 39.2      | 46.7       | 50.0      | 53.5      |
| FEBRUARY  | 18.4      | 37.a      | 41.1       | 54.2      | 58.9      |
| HARCH     | 21.3      | 35.5      | 43.3       | 44.5      | 51.7      |
| APRIL     | 18.6      | 3913      | 50.6       | 53.7      | 57.1      |
| YAE       | 14.7      | 34.0      | 40.6       | 44.3      | 46.3      |
| JUNE      | 11.3      | 21.9      | 30.0       | 31.3      | 35.7      |
| JULY      | 13.2      | 25.5      | 27.3       | 31.2      | 33.0      |
| AUGUST    | 12.5      | 25.4      | 29.2       | 53.4      | 30.0      |
| SEPTEMBER | 17.5      | 35.2      | 41.5       | 47.7      | 56.7      |
| OCTOBER   | 16.6      | 30.1      | 42.7       | 17.2      | 53.2      |
| NOVEMBES  | 10.8      | 35.4      | 40.0       | 42.5      | 47.2      |
| December  | 18.3      | \$2.3     | 37.1       | 45.1      | 47.à      |
| WINTER    | 19.0      | 31.1      | 44.1       | + i • 1   | 57.0      |
| SPRING    | 18.3      | 36.2      | 43.4       | 50.8      | 55.7      |
| SUMMER    | 12:1      | 25.6      | ?9.0       | 33.0      | 37.0      |
| FALL      | 17.5      | 3>.5      | -1.0       | 41.3      | 52.4      |
| ANTIGAL   | 16.5      | 25.1      | 40.5       | 40.6      | 52.3      |

TABLE 53. 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (knots) Between 1000mb (Near Surface) and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 90TH PERC | 75TH 9FRC | 97.5 PERC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| JANUARY   | 31.9      | 57.0      | 59.5      | 76.8      | 77.7      |
| FEBRUARY  | 25.7      | 47.6      | 55.3      | 56.7      | 57.7      |
| MARCH     | 29.8      | 49.1      | 55.0      | 59.0      | 65.5      |
| APPIL     | 24.8      | 47.8      | 53.2      | 61.3      | 73.0      |
| MAY       | 18.7      | 33.7      | 44.7      | 47.3      | 54.7      |
| JUNE      | 15.5      | 36.4      | 45.4      | 47.4      | 48.4      |
| JOLY      | 1.7.8     | 32.6      | 39.4      | 44.3      | 49.2      |
| AUGUST    | 18.8      | 35.3      | 38.1      | 42.4      | 44.3      |
| SEFTEMBER | 22.9      | 49.3      | 55.3      | 59.4      | 59.9      |
| остовея   | 23.6      | 50.5      | 59.7      | 25.3      | 70.3      |
| NOVEMBER  | 30.0      | 55.7      | 61.5      | 64.9      | es •'3    |
| DECEMBER  | 32.0      | 47.3      | 60.3      | 77.3      | 74.2      |
| WINTER    | 30.5      | 52.2      | 57.3      | 69.0      | 76.3      |
| SPFING    | 24.0      | 46.0      | 52.1      | 59.1      | 71.9      |
| SUMMER    | 17.7      | 36.0      | 39.5      | 45.3      | 49.3      |
| FALL      | 26.1      | 52.0      | 57.1      | 63.9      | 67,0      |
| ANNUAL    | 24.3      | 47.2      | 55.2      | 60.3      | 68.7      |

TABLE 54. 50, 90, 95, 97.5, and 99th Percentile Values of the Windshear (knots) Between Surface and 500mb (5500M) at Berlin, 1200 Hours GMT (1974-78, 1981).

|           | SOTH PERC | 907H 058C | OSTH PERC | 77.5 PLRC | 99TH PERC |
|-----------|-----------|-----------|-----------|-----------|-----------|
| YSAURAL   | 22.4      | 55.5      | 59.2      | 77.4      | 77.7      |
| FEBRUARY  | 26.3      | +5.5      | 53.2      | 55.3      | 58.4      |
| ARCH      | 28.5      | 47.0      | 54.6      | 50.9      | 59.5      |
| APRIL     | 24.3      | 77.7      | 53.2      | 52.5      | 71.9      |
| YAY       | 19.1      | 39.0      | 44.3      | 47.2      | 54.7      |
| JUNE      | 16.6      | 36.3      | 44.6      | 46.3      | 47.6      |
| JULY      | 17.9      | 31.0      | 37.7      | 44.2      | 46.3      |
| AUGUST    | 16.1      | 34.4      | 39.2      | 41.5      | 45.5      |
| SEPTEMBER | 23.2      | 43.7      | 53.2      | 54.9      | 60.0      |
| GCTOBER   | 23.5      | + d . 9   | 57.3      | 63.9      | 67.8      |
| NOVEMBER  | :4.7      | 53.5      | 59.2      | 62.9      | 66.2      |
| PECEMBER  | 30.2      | 45.4      | 65.5      | 70.7      | 71.6      |
| MINTED    | 30.2      | 51.2      | 57.2      | 07.3      | 74.3      |
| SPRING    | 23.2      | 45.6      | 50.8      | 57.7      | 70.0      |
| SUMMER    | 17.5      | 34.7      | 40.1      | 45.5      | 46.9      |
| ENLL      | 25.4      | \$ 1.0    | 57./      | 61.2      | 54.4      |
| ANHUAL    | 20        | 46.5      | \$4.7     | 59.7      | 67.7      |

## REFERENCES

- 1. Alfuth, W., and P. Alsobrook, 1961: Empirical frequency distributions of wind components at constant altitude levels. ABMA Climatological Ringbook (individual stations).
- 2. Essenwanger, O. M., 1974a: Use of radiosonde data to derive atmospheric windshears for small increments. Proc. of the 38th Meeting of the Structure and Material Panel, AGARD Report.
- 3. Essenwanger, O. M., 1974b: Regional distribution of vertical windshear for small increments below 20 km. Preprints of the 6th Conference on Aerospace and Aeronautical Meteorology. Published by American Meteorological Society, p. 74-81.
- 4. Grossman, R. L., and D. W. Beran, 1975: An investigation of extreme low-level windshear at selected stations in the conterminous United States.

  J. Appl. Meteor., 14: 506-512.
- 5. Essenwanger, O. M., and E. R. Reiter, 1969: Power spectrum, structure function, vertical windshear, and turbulence in troposphere and stratosphere. Arch. Met, Geoph. Biokl., Ser. A, 18: 17-24.
- 6. Arritt, R. W., and W. M. Frank, 1985: Experiments in probability of precipitation amount forecasting using model output statistics. Mon. Wea. Rev., 113: 1837-1851.
- 7. Ohring, G., Neeman, B., and L. D. Duncan, 1981: Direct determination of windshears from gradients of satellite radiance observations. <u>J. Appl.</u> Meteor., 20: 1336-1343.
- 8. Essenwanger, O. M., 1986: Elements of Statistical Analysis, World Survey of Climatology, Volume 1B, Elsevier, Amsterdam, p. 337.

## DISTRIBUTION

|                                            | No. Copies |
|--------------------------------------------|------------|
| Commander                                  |            |
| US Army Test and Evaluation Command        |            |
| ATTN: NBC Directorate                      |            |
| AMSTE-EL                                   | 1          |
| -BAF                                       | 1          |
| Mr. Alfred H. Edwards                      | 1          |
| Aberdeen Proving Ground, MD 21005          |            |
| Commander                                  |            |
| US Army Ballistics Research Laboratories   |            |
| ATTN: AMXBR-B/LA/Ken Richer                | 3          |
| Aberdeen Proving Ground, MD 21005          | •          |
| US Army Materiel Systems Analysis Activity |            |
| ATTN: AMXSY-MP                             | 1          |
| Aberdeen Proving Ground, MD 21005          |            |
| US Army Materiel Command                   |            |
| ATTN: AMCDE-R                              |            |
| Dr. Gordon Bushy                           | 1          |
| Dr. James Bender                           | 1          |
| 5001 Eisenhower Avenue                     |            |
| Alexandria, VA 22333                       |            |
| Director                                   |            |
| Defense Advanced Research Projects Agency  |            |
| 1400 Wilson Blvd                           | 1          |
| Arlington, VA 22209                        |            |
| Office of Naval Research/Code 221          |            |
| ATTN: D. C. Lewis                          | 1          |
| 800 N. Quincy Street                       |            |
| Arlington, VA 22217                        |            |
| National Climatic Center                   |            |
| ATTN: Technical Library                    | 1          |
| Arcade Bldg                                | -          |
| Asheville, NC 28801                        |            |
| USAFETAC/OL-A                              |            |
| Federal Bldg                               | 1          |
| Asheville, NC 28801                        |            |
| Commander                                  | 1          |
| US Army Armament Command                   | -          |
| Rock Island, IL 61202                      |            |
|                                            |            |

| USAFETAC/ECE/Ms. Snelling                    | 1      |
|----------------------------------------------|--------|
| Scott AFB, IL 62225                          |        |
|                                              |        |
| USAFETAC/DO/LTCOL Incrocci                   | 1      |
| Scott AFB, IL 62225                          |        |
|                                              | _      |
| USAFETAC/ECA/Mr. Charles Glauber             | 1      |
| Scott AFB, IL 62225                          |        |
| Commander/Director                           |        |
| Corps of Engineers                           |        |
| Waterways Experiment Station                 |        |
| ATTN: WESEN/Mr. Lundien                      | 1      |
| P. O. Box 231                                |        |
| Vickshurg, MS 39180                          |        |
|                                              |        |
| Commander                                    |        |
| US Naval Air Development Center              | 1      |
| Warminster, PA 18974                         |        |
|                                              |        |
| Commander                                    |        |
| US Army Tank Automotive R&D Command          | •      |
| ATTN: DRDTA-RCAF/Mr. Spratke                 | 2      |
| Warren, MI 48090                             |        |
| Naval Surface Weapons Center                 |        |
| ATTN: WR42/Mary Tobin                        | 1      |
| White Oak, MD 20910                          | _      |
| , , , , , , , , , , , , , , , , , , ,        |        |
| US Army Electronics Command                  |        |
| Atmospheric Sciences Laboratory              |        |
| ATTN: DELAS-AS/Dr. Holt                      | 1      |
| DELAS-DD/Mr. Rachele/Mr. Lindberg            | 2      |
| DELAS-EO-ME/Dr. Snider                       | 1      |
| DELAS-AS-P/Mr. Hines/Dr. White/Mr. Kobaylshi | 3<br>2 |
| DELAS-EO-S/Dr. Duncan/Dr. Avara              |        |
| DELAS-BE/Mr. Horning                         | 1      |
| White Sands Missile Range, NM 88002          |        |
| Commander                                    |        |
| Missile Electronic Warfare                   |        |
| ATTN: DELEW-M-STO/Mr. Larsen                 | 1      |
| DELEW-TAS/Mr. Stocklos/Mr. Lee               | 2      |
| White Sands Missile Range, NM 88002          |        |
| •                                            |        |
| US Air Force Avionics Laboratory             |        |
| ATTN: ASD/WE, MAJ Crandall                   | 1      |
| AFAL/WE, CPT Pryce/Mr. Winn                  | 2      |
| AFAL/RWI, Dr. Sowers, CPT Smith              | 2      |
| Wright-Patterson AFB, OH 45433               |        |

| Chief of Naval Operations ATTN: Code 427 Department of the Navy Washington, DC 20350                                                                      | 1           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Chief, US Weather Bureau<br>ATTN: Librarian<br>Washington, DC 20350                                                                                       | 1           |
| Commander US Naval Air Systems Command Washington, DC 20360                                                                                               | 1           |
| Chief of Naval Research Department of the Navy Washington, DC 20360                                                                                       | 1           |
| USAF/AFOSR/NP ATTN: LTC G. Wepfer Bolling AFB Washington, DC 20332                                                                                        | ì           |
| HQS, Dept of the Army Directorate of Army Research                                                                                                        |             |
| ATTN: DAMA-ARZ  DAMA-ARZ-D  Dr. Frank D. Verderame  Washington, DC 20310                                                                                  | 2<br>1<br>1 |
| Director, Naval Research Laboratory ATTN: Code 5300/Radar Division Code 5370/Radar Geophysics Br Code 5460/Electromagnetic Prop. Br. Washington, DC 20390 | 1<br>1<br>1 |
| Commander US Army Training & Doctrine Command ATTN: ATORI Fort Monroe, VA 23351                                                                           | 1           |
| Commander US Army Electroniucs R&D Command ATTN: DELCT/Dr. Buser/Mr. Rhode Fort Monmouth, NJ 07703                                                        | 2           |
| Commander US Army Artillery Combat Development Agency Fort Sill, OK 73504                                                                                 | 1           |

TOTAL (II SECONDE FOR LOS VIVES IN PASSON NATIONAL SELECTION SELECTION SECOND SECOND SECOND SECOND SECOND SECOND SELECTION SECOND SECON

| Commander                                   |   |
|---------------------------------------------|---|
| US Army Artillery & Missile School          |   |
| ATTN: Target Acquisition Dept               | 1 |
| Fort Sill, OK 73504                         |   |
|                                             |   |
| Commander                                   |   |
| US Army Cold Regions Research and           |   |
| Engineering Laboratories                    |   |
| ATTN: Environmental Research Branch         |   |
| CRREL-RP/Mr. Berger                         | 2 |
| Hanover, NH 03755                           | - |
| manover, an US/SS                           |   |
| Air Force Combusing Inharatories            |   |
| Air Force Geophysics Laboratories           | • |
| ATTN: OPI/Mr. Selby/Mr. Falcone             | 2 |
| OPA/Dr. Fenn                                | 1 |
| CRXL                                        | 1 |
| LKI/Mr. Gringorten/Mr. Lenhard/Mr. Grantham | 3 |
| LYS/Mr. Hawkins                             | 1 |
| LYW/Mrs. Dyer/Mr. Donaldson                 | 2 |
| Hanscom AFB, MA 01731                       |   |
|                                             |   |
| Deputy Commander                            |   |
| Strategic Defense Command                   |   |
| ATTN: ATC-D/O/R/T                           | 4 |
| P. O. Box 1500                              | • |
| Huntsville, AL 35807                        |   |
| nancytics and 37007                         |   |
| National Aeronautics & Space Administration |   |
| ATTN: R-AERO-Y                              | 1 |
|                                             | • |
| Marshall Space Flight Center, AL 35812      |   |
|                                             |   |
| Commander                                   |   |
| US Armament Development & Test Center       |   |
| Det 10, 2 Wea Sq                            | _ |
| ATTN: MAJ F. Lomax/CPT Kelly                | 2 |
| Eglin AFB, FL 32542                         |   |
|                                             |   |
| ADTC/XRCE (D. Dingus)                       | i |
| Eglin AFB, FL 32542                         |   |
|                                             |   |
| AFATL/LMT                                   | 1 |
| Eglin AFB, FL 32542                         | _ |
|                                             |   |
| Commander                                   |   |
| US Army OTEA                                | 1 |
| ATTN: CSTE-STS-I/F                          | 1 |
|                                             |   |
| 5600 Columbia Pk                            |   |
| Falls Church, VA 22041                      |   |

| US Army Engineering Topographic Lab Earth Sciences Division ATTN: ETL-GS-ES, Dr. Krause Fort Belvoir, VA 22060          | 1 |
|-------------------------------------------------------------------------------------------------------------------------|---|
| Director US Army Night Vision Laboratory ATTN: Dr. R. Shurtz/Dr. W. Trussell, Jr. Fort Belvoir, VA 22060                | 2 |
| Commander USA Mobility Equipment R&D Command ATTN: DRDME-ZK/Dr. Steinbach Fort Belvoir, VA 22060                        | 1 |
| Commander US Army Communications-Electronics Combat Development Agency Fort Huachuca, AZ 85613                          | 1 |
| US Army Combat Development Experimentation Command Engr. Sys. Branch/Mr. Egger Fort Hunter-Liggett, CA 93928            | 1 |
| Commander US Army Combined Arms Combat Development Activity Fort Leavenworth, KS 66027                                  | 1 |
| Navy Representative National Climatic Center Arcade Bldg Asheville, NC 28801                                            | ì |
| National Bureau of Standards Boulder Laboratories ATTN: Library Boulder, CO 80302                                       | 1 |
| Commander US Army Foreign Science and Technology Center Federal Office Bldg 220 7th Street NE Charlottesville, VA 22901 | 1 |
| Commander Naval Weapons Center ATTN: Code 3173, Dr. A. Shlanta Mr. Robert Moore China Lake, CA 93555                    | 1 |

| US Naval Surface Weapons Center ATTN: Ms. Susan Masters Dahlgren, VA 22448                                                                                  | 1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| US Army Armament R&D Command ATTN: DRDAR-SCF-DD, 65S/M. Rosenbluth Dover, NJ 07801                                                                          | 1 |
| Commander ARRADCOM ATTN: DRDAR-SCF-IM/J. Heberley Dover, NJ 07801                                                                                           | 1 |
| Commander US Army Dugway Proving Ground ATTN: Meterology Division Dugway, UT 84022                                                                          | 1 |
| Commander US Army Edgewood Arsenal ATTN: SMUEA-CS-0 Edgewood Arsenal, MD 21010                                                                              | 1 |
| Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035                                              | 1 |
| DA, ODCSLOG US Army Logistics Evaluation Agency New Cumberland Army Depot New Cumberland, PA 17070                                                          | 1 |
| US Army Research, Development and Standardization Group (UK) ATTN: Warren E. Grabau Box 65                                                                  | 2 |
| Peputy for Science and Technology Director of Defense Research and Engineering ATTN: Military Asst for Environmental Sciences Pentagon Washington, DC 20301 | 1 |
| Director Environmental & Life Sciences Division ATTN: DDR&E/Col Paul D. Try/Room 3D129 Pentagon Washington, DC 20301                                        | 1 |

| Commander                                       | 1 |
|-------------------------------------------------|---|
| US Army Material Systems Analysis Activity      |   |
| ATTN: AMXSY-AAF, Mr. Doug Smith                 |   |
| Aberdeen Proving Ground, MD 21005               |   |
| Office of Assistant Chief of Staff              |   |
| for Intelligence                                |   |
| ATTN: DAMI-ISP/COL Beck                         | 1 |
|                                                 | 1 |
| Pentagon                                        |   |
| Washington, DC 20310                            |   |
| Pacific Missile Test Center                     |   |
| Code 3253/ATTN: Charles Phillips                | 1 |
| Point Mugu, CA 93042                            |   |
| Fornt Hugu, CA 93042                            |   |
| Commander                                       |   |
| US Army Research Office                         |   |
| ATTN: Dr. R. Lontz/Dr. Flood/Dr. Frank Dedlucia | 3 |
| Dr. James Mink/Dr. Hermann Robl                 | 2 |
|                                                 | 2 |
| P. 0. Box 12211                                 |   |
| Research Triangle Park, NC 27709                |   |
| Director                                        |   |
| Atmospheric Sciences Program                    |   |
| National Sciences Foundation                    | 1 |
|                                                 |   |
| Washington, DC 20550                            |   |
| Director                                        |   |
| Bureau of Research and Development              | 1 |
| Federal Aviation Agency                         | • |
|                                                 |   |
| Washington, DC 20553                            |   |
| Director of Meterological Systems               |   |
| Office of Applications (FM)                     | 1 |
| National Aeronautics & Space Admin.             | - |
| Washington, DC 20546                            |   |
| washington, DC 20346                            |   |
| Director of Defense Research                    |   |
| and Engineering                                 |   |
| Engineering Technology/Mr. L. Weisberg          | 1 |
| Washington, DC 20301                            | • |
|                                                 |   |
| Office of Chief                                 |   |
| Communications-Electronics, DA                  |   |
| ATTN: Electronics Systems Directorate           | 1 |
| Washington, DC 20315                            |   |
|                                                 |   |
| Office of US Naval Weather Service              | - |
| US Naval Air Station                            | 1 |
| Washington, DC 20390                            |   |
| Office Asst Secretary of Defense                |   |
| Research and Engineering                        |   |
| AITN: Technical Library                         | 1 |
| ·                                               |   |
| Washington, DC 20301                            |   |

| Dr. Richard Gome |                                    |    |
|------------------|------------------------------------|----|
| Office, Chief of | Engineers                          |    |
| Room 6203        |                                    | 1  |
| 20 Massachusetts | Avenue NW                          |    |
| Washington, DC   | 20314                              |    |
|                  |                                    |    |
| HQ DA/OACSI      |                                    |    |
| ATTN: DAMI-ISP   | Mr. Lueck                          | 1  |
| Washington, DC   | 20310                              |    |
| ITT Research Ins | titute                             |    |
| ATTN: GACIAC     |                                    |    |
| 10 W. 35th Stree | ıt.                                |    |
| Chicago, IL 600  |                                    |    |
|                  | , • •                              |    |
| AMSMI-RD,        | Dr. McCorkle                       | 1  |
| •                | Dr. Rhoades                        | 1  |
| -RD-AC           |                                    | 5  |
| -RD-CS-R,        | Reference                          | 15 |
| -RD-CS-T.        | Record Copy                        | 1  |
| -GC-IP.          | Mr. Bush                           | 1  |
| -RD-TI,          | Mr. Leonard                        | 1  |
| -RD-DP,          | Mr. Fronefield                     | ī  |
| -RD-DE           |                                    | i  |
|                  | Mr. T. Honeycutt                   | i  |
| -RD-DE-SD        |                                    | 1  |
| -RD-DE-PA        |                                    | 1  |
| -RD-DE-PA        |                                    | ī  |
| -RD-SD           |                                    | 1  |
| -RD-ST           |                                    | 1  |
| -RD-ST-DC        |                                    | 1  |
| -RD-PR           |                                    | 1  |
| -RD-PR-M         |                                    | 1  |
| -RD-TE           |                                    | 1  |
| -RD-TE-P         |                                    | 1  |
| -RD-TE-F         |                                    | 1  |
| -RD-SS           |                                    | i  |
| -RD-SS-SD        |                                    | ì  |
| -RD-SS-AT        |                                    | 1  |
| -RD-AS           |                                    | 1  |
| -RD-AS-MM        |                                    | 1  |
| -RD-AS           |                                    | 1  |
| -RD-AS-SS        |                                    | ı  |
| -RD-GC           |                                    | 1  |
| -RD-RE,          | Dr. Hartman/Dr. Bennett/Ms. Romine | 3  |
| •                | Dr. Essenwanger                    | 15 |
| •                | Mr. Levitt                         | 15 |
|                  | Dr. Stewart                        | 25 |
|                  | Mr. Betts                          | 3  |
| -RD-RE-QP        |                                    | 1  |
| -RD-RE-OP        |                                    | 1  |

\$277. ( ) \$55555 ST \$2255 ST \$2555 ST \$

## 

A 40 45" 1 "

2 c. 2 p.2 p.2 a.4 . 2 p.4 p.4 p.4