

Selective Sampling-based Scalable Sparse Subspace Clustering

Shín Matsushíma

María Brbíć

OVERVIEW _____

Sparse Subspace Clustering (SSC)

- ✓ high performance clustering for high dimensional data
- © quadratic complexity w.r.t. number of data points

Selective Sampling-based Scalable Sparse Subspace Clustering (S⁵C)

- ✓ Theoretical Guarantee → Theoretical Scalability
- ✓ Low computational cost → Experimental Scalability
- ✓ Good clustering performance

SUBSPACE CLUSTERING

Assumption: high-dimensional data points lie in the union of lowdimensional subspaces.

Goal: identify subspaces and assign data points to the subspaces

Algorithm:

- 1. Representation learning
- 1.5. Derive an affinity graph
- 2. Spectral clustering

Representation of

Application:

Clustering images Clustering documents...

_____KEY IDEA

Represent data point as linear combination among a small number of subsamples {■, ■, ■}

→Perform selective sampling for subsamples so that all data points are represented well

S5C ALGORITHM

- 1. Randomly sample a datapoint
- 2. Solve min $\left(c_2 + c_5 + c_7 \right) \left(c_7 \right)$ among current collection of subsamples {■, ■ , ■}
- 3. Find selective sample that helps representation of
- 4. Add to current collection of subsamples { ■, , }
- 5. Repeat 1.-4. T times starting from {}
- 6. Solve $\min \left(c_2 + c_5 + c_7 \right) \left(c_2 \right)$

O(N) algorithm!

w.r.t. final subsamples for all data points

Iteratively select samples which seems to help better representations!

- 1. Initialize N-by-L matrix V as a random orthogonal matrix
- 2. V ← L V
- 3. Orthogonalize V by QR decomposition
- 4. Repeat 2.-3. until convergence
- 5. Apply K means for V

Graph Laplacian L has O(N) nonzero elements \rightarrow O(N) algorithm!

-RELATED WORK-

	SSC	SSC-OMP	SSSC	S ⁵ C
Theoretical Scalability	Χ	Х	X	✓
Experimental Scalability	X	✓	✓	✓

THEORETICAL GUARANTEES -

S⁵C Algorithm performs perfect clustering in O(N) running time in high probability under some generative model

Required number of subsample is O(1) w.r.t. N

SDP property <

Semi Random model

Data points are uniformly randomly generated from unit ball in each subspace

- 1. c_{i'} for i-th data is nonzero only when i and i' shares the same subspace
- 2. c is not all zeros
- -0.1 → +0.3 → +0.8 → ≒

CLUSTERING PERFOEMANCE

	Nystrom	AKK	SSC	SSC-OMP	SSC-ORGEN	SSSC	S⁵C
Yale B	76.8	85.7	33.8	35.9	37.4	59.6	39.3
Hopkins 155	21.8	20.6	4.1	23.0	20.5	21.1.	14.6
COIL-100	54.5	53.1	42.5	57.9	89.7	67.8	45.9
Letter-rec	73.3	71.7	/	95.2	68.6	68.4	67.7
CIFAR-10	76.6	75.6	/	/	82.4	82.4	75.1
MNIST	45.7	44.6	/	/	28.7	48.7	40.4
Devanagari	73.5	72.8	/	/	58.6	84.9	67.2

SPARSE SUBSPACE CLUSTERING

Challenge: Quadratic complexity in the number of data points!

+ L1 regularizer on c

theoretically proven

SDP property

 \rightarrow perfect clustering is

SCALABILITY Number of Datapoints

EXPERIMENTAL

→ represent data point as linear combination among all data points

 \rightarrow only those data points in the same subspace will remain