CMPT-335 Discrete Structures

BOOLEAN ALGEBRA

Boolean Algebra

- Boolean algebra provides the operations and the rules for working with the set {0, 1}
- These are the rules that underlie electronic circuits, and the methods we will discuss are fundamental to VLSI design
- We are going to focus on three operations:
- Boolean complementation (negation),
- Boolean sum (OR, disjunction)
- Boolean product (AND, conjunction)

Boolean Operations

•The complement (negation) is denoted by a bar It is defined by

$$\overline{1} = 0; \quad \overline{0} = 1$$

•The Boolean sum (disjunction), denoted by + or by OR, or by ∨ has the following values:

$$1+1=1$$
, $1+0=1$, $0+1=1$, $0+0=0$

•The Boolean product (conjunction), denoted by \cdot or by AND, or by & or by \wedge has the following values:

$$1 \cdot 1 = 1$$
, $1 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot 0 = 0$

- Let $B = \{0, 1\}$. The variable x is called a Boolean variable if it assumes values only from B
- A function $f: B^n \to B$ from $B^n = \{(x_1, ..., x_n) | x_i \in B, i = 1, ..., n\}$ to B is called a Boolean function of degree n (A Boolean function of n variables)
- Boolean functions can be represented using expressions made up from Boolean variables and Boolean operations

- The Boolean expressions in the variables $x_1, x_2, ..., x_n$ are defined recursively as follows:
- \triangleright 0, 1, $x_1, x_2, ..., x_n$ are Boolean expressions.
- > If E_1 and E_2 are Boolean expressions, then \overline{E}_1 , (E_1E_2) , and (E_1+E_2) are Boolean expressions
- Each Boolean expression represents a Boolean function.
 The values of this function are obtained by substituting 0 and 1 for the variables in the expression

- For example, we can create Boolean expression in the variables x, y, and z using the "building blocks" 0, 1, x, y, and z, and the construction rules:
- \triangleright Since x and y are Boolean expressions, so is xy
- ightharpoonup Since z is a Boolean expression, so is \overline{z}
- Since xy and \overline{z} are Boolean expressions, so is $xy + \overline{z}$
- ... and so on...

• Example 1. Give a Boolean expression for the Boolean function F(x, y) as defined by the following table:

X	У	F(x, y)
0	0	0
0	1	1
1	0	0
1	1	0

Solution:

$$F(x, y) = \overline{x}y = \overline{x} \& y$$

• Example 2. Give a Boolean expression for the Boolean function F(x, y, z) as defined by the following table:

x	у	z	F(x, y, z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Solution:

$$F(x, y, z) = (xz + y) = (x & z) \lor y$$

$$\dots = \overline{(xz + y)} = \overline{(xz)}\overline{y} = \overline{(x & z)} & \overline{y} = \overline{(x & z)} = \overline{(xz)}\overline{y} = \overline{(xz)}\overline{$$

 $... = (\overline{x} + \overline{z})\overline{y} = (\overline{x} \vee \overline{z})\&\overline{y}$

• Example 3. Give a Boolean expression for the Boolean function F(x, y) as defined by the following table:

X	у	F(x, y)
0	0	О
0	1	1
1	0	1
1	1	О

Solution:

$$F(x, y) = \overline{x}y + x\overline{y} = (\overline{x} \& y) \lor (x \& \overline{y})$$

$$\dots = (x + y) \mod 2 = XOR(x, y)$$

Minterms and Disjunctive Normal Form (A sum of Products Form)

- There is a simple method for deriving a Boolean expression for a Boolean function that is defined by a table. This method is based on minterms
- A literal is a Boolean variable or its complement. A **minterm** (an elementary conjunction) of the Boolean variables $x_1, x_2, ..., x_n$ is a Boolean product (conjunction) $y_1y_2...y_n$, where $y_i = x_i$ or $y_i = \overline{x_i}$
- Hence, a minterm is a product of n literals, with one literal for each variable. For example,

$$x_1x_2\overline{x}_3$$
; $x_1x_2x_3$; $\overline{x}_1x_2\overline{x}_3$; $x_1\overline{x}_2x_3$

Minterms and Disjunctive Normal Form (A sum of Products Form)

 A Disjunctive Normal Form (DNF) (also referred to as a Sum of Products Form) is a representation of a Boolean function (a logical formula) through a disjunction of conjunctions of its literals (variables and their negations)

Minterms and Disjunctive Normal Form (A Full Sum of Products Form)

- A Full Disjunctive Normal Form (FDNF) (a Full Sum of Products Form-FSPF) is such a DNF-FSPF where each of its variables appears exactly once in every minterm either without negation or with negation, thus it is a disjunction of minterms
- Any FDNF-FSPF of n variables contains the same amount of minterms as the number of 1s among the values of the corresponding function

Algorithm for finding FDNF (FSPF)

- 1) Distinguish in the table, which determines a Boolean function $f(x_1,...,x_n)$ those k rows where $f(x_1,...,x_n)=1$
- 2) Create literals $y_1^{(j)},...,y_n^{(j)},j=1,...,k$ corresponding to these rows using the following rule: if $x_i^{(j)}=1$ then $y_i^{(j)}=x_i$ otherwise $y_i^{(j)}=\overline{x}_i$ (if $x_i^{(j)}=0$) and create minterms $(y_1^{(j)}\cdot y_2^{(j)}\cdot...\cdot y_n^{(j)}),j=1,...,k$
- 3) Create a disjunction of these minterms, which is FDNF

$$(y_1^{(1)}...y_n^{(1)}) \vee (y_1^{(2)}...y_n^{(2)}) \vee ... \vee (y_1^{(k)}...y_n^{(k)}) = f(x_1,...,x_n)$$

Finding FDNF (FSPF)

• Example 1. Create FDNF-FSPF for the Boolean function $f(x_1, x_2)$, which is defined by the following table:

x_1	x_2	$f(x_1, x_2)$
0	0	0
0	1	1
1	0	1
1	1	0

Solution:

$$f(x_1, x_2) = y_1^{(1)} y_2^{(1)} + y_1^{(2)} y_2^{(2)} = \overline{x}_1 x_2 + x_1 \overline{x}_2 = (\overline{x}_1 \& x_2) \lor (x_1 \& \overline{x}_2)$$

$$\dots = (x_1 + x_2) \operatorname{mod} 2 = \operatorname{XOR}(x_1, x_2)$$

Finding FDNF (FSPF)

• Example 2. Create FDNF-FSPF for the Boolean function F(x, y, z) as defined by the following table:

F(x, y, z)X y 0 ()0 0 0 0 0 0 $\mathbf{0}$ 0 0 $\mathbf{0}$ $\mathbf{0}$ 0 0

1

1

Solution:

 $= \overline{x} \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot z + x \cdot \overline{y} \cdot \overline{z} =$

 $= (\overline{x} \& \overline{y} \& \overline{z}) \lor (\overline{x} \& \overline{y} \& z) \lor (x \& \overline{y} \& \overline{z})$

- The Boolean functions F and G of n variables are equal if and only if $F(b_1, b_2, ..., b_n) = G(b_1, b_2, ..., b_n)$ whenever $b_1, b_2, ..., b_n$ belong to B
- Two different Boolean expressions that represent the same function are called equivalent
- For example, the Boolean expressions xy, xy + 0, and $xy \cdot 1$ are equivalent

- The complement of the Boolean function f is the function \overline{f} , where $\overline{f}(x_1,...,x_n) = \overline{f(x_1,...,x_n)}$
- Let f and g be Boolean functions of degree n. The Boolean sum f+g and Boolean product fg are then defined by

$$f + g = f(x_1, ..., x_n) + g(x_1, ..., x_n)$$
$$f \cdot g = f(x_1, ..., x_n) \cdot g(x_1, ..., x_n)$$

- •Question: How many different Boolean functions of degree 1 are there?
- •Solution: There are four of them, F_0 , F_1 , F_2 , and F_3 :

X	F_0	F_1	F_2	F_3
0	0	0	1	1
1	0	1	0	1

•Question: How many different Boolean functions of degree 2 are there?

•Solution: There are 16 of them, F_1 , F_2 , F_3 , ..., F_{16} :

x_1	x_2	F_0	F_1	$oldsymbol{F_2}$	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	$ F_{15} $
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- Question: How many different Boolean functions of degree n are there?
- Solution:
- There are 2^n different n-tuples of 0s and 1s.
- A Boolean function is an assignment of 0 or 1 to each of these 2^n different n-tuples
- Therefore, there are 2^{2^n} different Boolean functions

Identities

• There are useful identities of Boolean expressions that can help us to transform an expression A into an equivalent expression B, e.g.:

Identity Name	AND Form	OR Form			
Identity Law	1X = X	0+X=X			
Null (or Dominance) Law	0x = 0	1+ <i>x</i> = 1			
Idempotent Law	XX = X	X+X=X			
Inverse Law	$x\overline{x} = 0$	$X + \overline{X} = 1$			
Commutative Law	xy = yx	X+y=y+X			
Associative Law	(XY)Z = X(YZ)	(X+Y)+Z=X+(Y+Z)			
Distributive Law	X+YZ=(X+Y)(X+Z)	X(y+z) = Xy+Xz			
Absorption Law	X(X+Y)=X	X+XY=X			
DeMorgan's Law	$(\overline{XY}) = \overline{X} + \overline{Y}$	$(\overline{X+Y}) = \overline{XY}$			
Double Complement Law	$\overline{\overline{X}} = X$				

Definition of a Boolean Algebra

- All the properties of Boolean functions and expressions that we have discovered also apply to other mathematical structures such as propositions and sets and the operations defined on them
- If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure
- For this purpose, we need an abstract definition of a Boolean algebra

Definition of a Boolean Algebra

- Definition: A Boolean algebra is a set B with two binary operations \vee and \wedge , elements 0 and 1, and a unary operation such that the following properties hold for all x, y, and z in B:
- $x \lor 0 = x$ and $x \land 1 = x$ (identity laws)
- $x \lor (-x) = 1$ and $x \land (-x) = 0$ (domination laws)
- $(x \lor y) \lor z = x \lor (y \lor z)$ and $(x \land y) \land z = x \land (y \land z)$ and (associative laws)
- $x \lor y = y \lor x$ and $x \land y = y \land x$ (commutative laws)
- $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ and $x \land (y \lor z) = (x \land y) \lor (x \land z)$ (distributive laws)

Logic Gates

• Electronic circuits consist of so-called gates. There are three basic types of gates:

Logic Gates

•Example: How can we build a circuit that computes the function $xy + \overline{x}y$?

