Course Code	21CSE422T	Course Name	Convolutional Neural Ne	trero also Eoran dotion	Course ategory	Professional Elective L T P C 2 1 0 3
Pre-requis			Co- requisite Nil		Progressive Courses	Nil
Course Offe	ering Department	DSBS		Data Book / Codes / Standards	Nil	

Course Learning Rationale (CLR): The purpose of learning this course is to:											rogra							
CLR-1 :	R-1: Learn the evolution of neural networks			1	2	3	4	5	6	7	8	9	10	11	12		Specif utcom	
CLR-2:	R-2: Utilize the knowledge for model development			ring Knowledge		ent of	stigations of olems		ciety			Y	uo					
CLR-3 :	R-3: Fine tune the performance with optimization techniques				Analysis			<u>o</u>	and so	- చ		Work		Finance	_			
CLR-4:	LR-4: Utilize class and build domain model for real-time programs		Design/development solutions			Usage					Team	& Fin		ırning				
CLR-5:	5: Construct CNN model for image based applications		Ana		devel	inve	Tool Us	engineer	Environment		al & T	ommunication		ng Lea				
			•	Engineering	Problem	Design/c	Conduct	Modern	eng	iron	S	ndividual &	in In	Project Mgt.	Ē	7-1)-2	5
Course	Outcomes (CO):	At the end of this course, learners will be able to:		Eng	Prol	Des	Sor	Мос	The	Env	Ethics	Indï	Son	Proj	Life	PSO	PS0-2	PSO.
CO-1:	Understand fundamentals of Neural Networks		-	-	-	-	-	-	1		-	-		-	1	1	-	
CO-2:	0-2: Understand fundamentals of CNN Architecture		-	-	-	-	-	-	1	-	-	-	-	-		2	-	
CO-3:	Apply performance optimization		-	-	-	-	-	-	1	-	-	-	-	-	-	-	2	
CO-4:	Compare different CNN Architectures		-	-	-	-	-	-	1	-	-	-	-	-	2	-	-	
CO-5:	Apply CNN in image classification		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

Unit-1: Introduction to AI & ML

Types of ML-Old versus new ML-Artificial neural networks-Activation functions The XOR problem-Training neural networks-Backpropagation and the chain rule-Batches Loss functions-The optimizer and its hyperparameters- Underfitting versus overfitting Feature scaling-Fully connected layers

- T1: Implement Simple Programs like vector addition in TensorFlow.
- T2: Implement a simple problem like regression model in Keras. T3: Implement a perceptron in TensorFlow/Keras Environment.

Unit-2: Fundamental CNN Architecture

Convolution Input padding-Calculating the number of parameters (weights)- Calculating the number of operations-Converting convolution layers into fully connected layers-The pooling layer-1x1 Convolution-Calculating the receptive field-Building a CNN model in TensorFlow.

- T1: Implement a CNN based classifier of handwritten digits: The Convolution Layer
- T2: Implement a CNN based classifier of handwritten digits: The Max Pooling Layer
- T3: Implement a CNN based classifier of handwritten digits: The Fully Connected Layer

Unit-3: Performance Optimization

Number of hidden layers -Number of neurons per hidden layer -Batch normalization -Advanced regularization and avoiding overfitting -Applying dropout operations with TensorFlow -Which optimizer to use? -Memory tuning - Appropriate layer placement -Building the second CNN by putting everything together - Dataset description and preprocessing -Creating the CNN model -Training and evaluating the network.

T1: Implement a CNN with Adam optimizer

T2: Implement a CNN and apply dropout operations with TensorFlow

T3 Implement a CNN with a validation technique

Unit-4: Popular CNN Model Architectures

Introduction to ImageNet -LeNet -AlexNet architecture -VGGNet architecture -VGG16 image classification code example -GoogLeNet architecture -Architecture insights -Inception module -ResNet architecture.

T1: Implement Image Net model for a Dataset

T2: : Traffic sign classifiers using AlexNet

T3: Implement VGGNet model for a Dataset

Unit-5: Image Classification

CNN model architecture-Cross-entropy loss (log loss)-Multi-class cross entropy loss-The train/test dataset split-Datasets-ImageNet-CIFAR-Loading CIFAR-Building the CNN graph-Learning rate scheduling-Introduction to the tf.data API-Main training loop-Model Initialization-Do not initialize all weights with zeros-Initializing with a mean zero distribution-Xavier-Bengio and the Initializer-Improving generalization by regularizing-L2 and L1 regularization.

T1: Implement Image classification with TensorFlow

T2: Build TensorFlow input pipelines for image

T3: Implement a CNN for Image processing L2 regularization

	1. Iffat Zafar, Giounona Tzanidou, Richard Burton, Nimesh Patel,		
	Leonardo Araujo," Hands-On Convolutional Neural Networks with	3. Charu C. Aggarwal. Neural Networks and Deep L	earning: A Textbook.
Learning	TensorFlow", ",Packt Publishing,,2018.	Springer. 2019.	
Resources	2. ,Mohit Sewak, Pradeep Pujari, Md. Rezaul Karim,"Practical	4.Stanford University	Course
	Convolutional Neural Networks: Implement Advanced Deep	http://cs231n.stanford.edu/2018/syllabus.html	
	Learning Models Using Python, ",Packt Publishing ,2018		

			Continuous Learnin	Cummativa					
	Bloom's Level of Thinking	CLA-1 Avera	native age of unit test 0%)		ong Learning CLA-2 – (10%)	Summative Final Examination (40% weightage)			
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	15%	-	15%	-	15%	-		
Level 2	Understand	25%	-	20%	-	25%	-		
Level 3	Apply	30%	-	25%	-	30%	-		
Level 4	Analyze	30%	-	25%	-	30%	-		
Level 5	Evaluate	=	-	10%	-	=	=		
Level 6	Create	-	-	5%	-	-	-		
	Total	10	0 %		100 %	100 %			

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Mr.Gowtham Kumar Jyayachandiran Assistant Vice President Nomura	1.	1. Dr.K.Arthi,DSBS						
	2.	2.						