MAT-042: Probabilidad condicional, teorema de Bayes e independencia

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Ejemplo:

Considere un lote con 80 artículos sin defectos y 20 defectuosos. Suponga que se selecciona 2 artículos. (a) con sustitución y (b) sin sustitución. Defina los eventos

$$A = \{ el \ 1er \ artículo \ es \ defectuoso \},$$

 $B = \{ el \ 2do \ artículo \ es \ defectuoso \}.$

Cuando escogemos con sustitución, tenemos

$$P(A) = P(B) = \frac{20}{100} = \frac{1}{5}.$$

Cuando escogemos sin sustitución, tenemos

$$\mathsf{P}(A) = \frac{20}{100} = \frac{1}{5},$$

pero, ¿Cambia P(B)?

Definición 1 (Probabilidad condicional):

Si A y B son dos eventos en Ω y $\mathsf{P}(B)>0$, entonces la probabilidad condicional de A dado B, escrito como $\mathsf{P}(A|B)$ es dada por:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Observación:

Note que $\mathrm{P}(B|B)=1$ es decir, B "actúa" como $\Omega.$ En efecto, note que $A=A\cap\Omega,$ así

$$P(A) = P(A|\Omega) = \frac{P(A \cap \Omega)}{P(\Omega)}.$$

Ocurrencias son calibradas con relación a B. En particular, si $A \cap B = \emptyset$, entonces

$$\mathsf{P}(A|B) = \mathsf{P}(B|A) = 0$$

En el ejemplo anterior, se desea calcular $\mathsf{P}(B|A)=\frac{19}{99},$ pues si A ya ha ocurrido sólo quedan 19 defectuosos entre los 99 artículos.

Reexpresando la probabilidad condicional tenemos

$$P(A \cap B) = P(A|B) P(B),$$

o bier

$$P(A \cap B) = P(B|A) P(A).$$

Estas expresiones permiten "contornar" cálculos complicados, por ejemplo¹

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

¹Este es un caso particular del Teorema de Bayes.

Ocurrencias son calibradas con relación a B. En particular, si $A \cap B = \emptyset$, entonces

$$\mathsf{P}(A|B) = \mathsf{P}(B|A) = 0$$

En el ejemplo anterior, se desea calcular $\mathsf{P}(B|A) = \frac{19}{99}$, pues si A ya ha ocurrido sólo quedan 19 defectuosos entre los 99 artículos.

Reexpresando la probabilidad condicional tenemos

$$P(A \cap B) = P(A|B) P(B),$$

o bien

$$\mathsf{P}(A\cap B)=\mathsf{P}(B|A)\,\mathsf{P}(A).$$

Estas expresiones permiten "contornar" cálculos complicados, por ejemplo¹

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}.$$

¹Este es un caso particular del Teorema de Bayes.

Observación:

El espacio de probabilidad definido por $\mathcal{A}\cap B$ permite notar que $\mathsf{P}(A|B)$ es una probabilidad. Es decir, satisface:

- (a) $P(A|B) \ge 0$.
- (b) $P(\Omega|B) = 1$.
- (c) Para $\{A_n\}_{n>1}$ sucesión disjunta

$$P\left(\bigcup_{n=1}^{\infty} A_n | B\right) = \sum_{n=1}^{\infty} P(A_n | B).$$

Probabilidad total

Resultado 1 (Teorema de probabilidad total):

Sea $(\Omega, \mathcal{A}, \mathsf{P})$ un espacio de probabilidad y sea C_1, C_2, \ldots , una partición contable de Ω , tal que $\mathsf{P}(C_i) \geq 0$, $\forall i$. Entonces, para todo $A \in \mathcal{A}$

$$P(A) = \sum_{i=1}^{\infty} P(A|C_i) P(C_i).$$

Demostración:

Como los C_i 's forman una partición, tenemos que

$$A = A \cap \Omega = A \cap \left(\bigcup_{i=1}^{\infty} C_i\right) = \bigcup_{i=1}^{\infty} (A \cap C_i)$$

además

$$P(A) = \sum_{i=1}^{\infty} P(A \cap C_i) = \sum_{i=1}^{\infty} P(A|C_i) P(C_i)$$

Probabilidad total

Resultado 1 (Teorema de probabilidad total):

Sea $(\Omega, \mathcal{A}, \mathsf{P})$ un espacio de probabilidad y sea C_1, C_2, \ldots , una partición contable de Ω , tal que $\mathsf{P}(C_i) \geq 0$, $\forall i$. Entonces, para todo $A \in \mathcal{A}$

$$P(A) = \sum_{i=1}^{\infty} P(A|C_i) P(C_i).$$

Demostración:

Como los C_i 's forman una partición, tenemos que

$$A = A \cap \Omega = A \cap \left(\bigcup_{i=1}^{\infty} C_i\right) = \bigcup_{i=1}^{\infty} (A \cap C_i),$$

además

$$\mathsf{P}(A) = \sum_{i=1}^{\infty} \mathsf{P}(A \cap C_i) = \sum_{i=1}^{\infty} \mathsf{P}(A|C_i) \, \mathsf{P}(C_i).$$

Teorema de Bayes

Resultado 2 (Teorema de Bayes):

Sea $(\Omega, \mathcal{A}, \mathsf{P})$ un espacio de probabilidad y sea $\{C_i\}$ partición contable de Ω , con $\mathsf{P}(C_i) \geq 0, \ \forall i.$ Entonces, para todo $A \in \mathcal{A}$, tenemos que

$$\mathsf{P}(C_i|A) = \frac{\mathsf{P}(A|C_i)\,\mathsf{P}(C_i)}{\sum_{i=1}^{\infty}\mathsf{P}(A|C_i)\,\mathsf{P}(C_i)}, \qquad \mathsf{P}(A) > 0.$$

Teorema de Bayes

Demostración:

Tenemos que

$$P(C_i|A) P(A) = P(A|C_i) P(C_i),$$

así

$$\mathsf{P}(C_i|A) = \frac{\mathsf{P}(A|C_i)\,\mathsf{P}(C_i)}{\mathsf{P}(A)}, \qquad \mathsf{P}(A) > 0.$$

Por el Teorema de Probabilidad total, sigue que

$$P(C_i|A) = \frac{P(A|C_i) P(C_i)}{\sum_{i=1}^{\infty} P(A|C_i) P(C_i)}.$$

Teorema de Bayes

Ejemplo:

Considere el lote de 20 artículos defectuosos y 80 sin defectos, desde los que se escoge 2 artículos sin reemplazo. Sea,

$$A = \{ \text{el 1er artículo es defectuoso} \},$$

$$B = \{ \text{el 2do artículo es defectuoso} \}.$$

Para calcular, P(B) podemos hacer²

$$\begin{split} \mathsf{P}(B) &= \mathsf{P}(B|A)\,\mathsf{P}(A) + \mathsf{P}(B|A^c)\,\mathsf{P}(A^c) \\ &= \frac{19}{99} \cdot \frac{1}{5} + \frac{20}{99} \cdot \frac{4}{5} \\ &= \frac{1}{5} \cdot \frac{1}{99}(19 + 20 \cdot 4) = \frac{1}{5} \end{split}$$

²Compare este resultado al **con** sustitución.

Definición 2 (Independencia):

Sea $(\Omega,\mathcal{A},\mathsf{P})$ un espacio de probabilidad y sean $A,B\in\mathcal{A}$. Se dice que A y B son independientes, si y sólo si

$$P(A \cap B) = P(A) \cdot P(B).$$

Observación:

Podemos entender la independencia como: la ocurrencia de un evento B no tiene efecto en la probabilidad de otro evento A. Es decir

$$P(A|B) = P(A)$$

Note también que

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$$

es decir la ocurrencia de A no tiene efecto en la probabilidad de B

Definición 2 (Independencia):

Sea $(\Omega,\mathcal{A},\mathsf{P})$ un espacio de probabilidad y sean $A,B\in\mathcal{A}.$ Se dice que A y B son independientes, si y sólo si

$$P(A \cap B) = P(A) \cdot P(B).$$

Observación:

Podemos entender la independencia como: la ocurrencia de un evento B no tiene efecto en la probabilidad de otro evento A. Es decir

$$\mathsf{P}(A|B) = \mathsf{P}(A).$$

Note también que

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B),$$

es decir la ocurrencia de A no tiene efecto en la probabilidad de B.

Resultado 3:

Si A y B son independientes, entonces también son independientes:

- (a) $A y B^c$.
- (b) $A^c y B$.
- (c) A^c y B^c .

Demostración: (solamente parte (a))

Para probar (a),³ note que

$$\begin{split} \mathsf{P}(A \cap B^c) &= \mathsf{P}(A) - \mathsf{P}(A \cap B) = \mathsf{P}(A) - \mathsf{P}(A)\,\mathsf{P}(B) \\ &= \mathsf{P}(A)(1 - \mathsf{P}(B)) = \mathsf{P}(A)\,\mathsf{P}(B^c). \end{split}$$

³Parte (b) y (c): Tarea.

Resultado 4:

Una colección de eventos A_1,\dots,A_n es mutuamente independiente, si para cualquier subcolección A_{i_1},\dots,A_{i_k} , tenemos

$$\mathsf{P}\left(\bigcap_{j=1}^k A_{i_j}\right) = \prod_{j=1}^k \mathsf{P}(A_{i_j}).$$

Ejemplo:

Se lanzan 3 dados de distinto color: blanco, rojo y negro ¿Cuál es la probabilidad de que el dado blanco salga 3, y los otros dos no?

 $\mathsf{Sean}\ A, B \ \mathsf{y}\ C$

$$\begin{split} A &= \{ \text{el resultado del dado blanco es 3} \}, \\ B &= \{ \text{el resultado del dado rojo es 3} \}, \end{split}$$

$$C = \{ \mathsf{el} \ \mathsf{resultado} \ \mathsf{del} \ \mathsf{dado} \ \mathsf{negro} \ \mathsf{es} \ \mathsf{3} \}.$$

Tenemos
$$P(A) = P(B) = P(C) = \frac{1}{6}$$
 y se pide calcular

$$\mathsf{P}(A \cap B^c \cap C^c) = \mathsf{P}(A) \, \mathsf{P}(B^c) \, \mathsf{P}(C^c) = \frac{1}{6} \cdot \frac{5}{6} \cdot \frac{5}{6} = \frac{25}{216}.$$

Ejercicio de probabilidades

Ejercicio:

En 28 tarjetas se escriben las 28 letras del abecedario. Se eligen sucesivamente, sin reemplazo, cuatro tarjetas al azar. Calcule la probabilidad de que:

- (a) Se obtenga en orden la palabra "DATO".
- (b) Se pueda escribir con las cuatro letras la palabra "DATO".

Ejercicio de probabilidades

Solución:

(a) Es claro que,

$$P(D.A.T.O) = P(D) P(A|D) P(T|D \cap A) P(O|D \cap A \cap T)$$
$$= \frac{1}{28} \cdot \frac{1}{27} \cdot \frac{1}{26} \cdot \frac{1}{25} = \frac{24!}{28!}$$

(b) Podemos reordenar las 4 letras obtenidas, es decir

$$p = 4! \frac{24!}{28!} = \frac{1}{\frac{28!}{4! \cdot 24!}} = \frac{1}{\binom{28}{24}}.$$

Observación

Este resultado se puede generalizar para palabras k < 28 letras distintas

(a)
$$p = \frac{(28-k)!}{28!}$$
, (b) $p = \frac{1}{\binom{28}{k}}$

Ejercicio de probabilidades

Solución:

(a) Es claro que,

$$\begin{split} \mathsf{P}(D.A.T.O) &= \mathsf{P}(D) \, \mathsf{P}(A|D) \, \mathsf{P}(T|D \cap A) \, \mathsf{P}(O|D \cap A \cap T) \\ &= \frac{1}{28} \cdot \frac{1}{27} \cdot \frac{1}{26} \cdot \frac{1}{25} = \frac{24!}{28!} \end{split}$$

(b) Podemos reordenar las 4 letras obtenidas, es decir

$$p = 4! \frac{24!}{28!} = \frac{1}{\frac{28!}{4! \cdot 24!}} = \frac{1}{\binom{28}{24}}.$$

Observación:

Este resultado se puede generalizar para palabras k < 28 letras distintas

(a)
$$p = \frac{(28-k)!}{28!}$$
, (b) $p = \frac{1}{\binom{28}{k}}$.

