Neural Networks

Biological Inspirations

- Human brain is known to be the most intelligent learning model
- One way to build intelligent machines is to try to imitate the human brain.
- Neural network is a machine learning model which mimics the behavior of human brain

Biological Neuron

- Dendrites: nerve fibres carrying electrical signals to the cell
- Cell body: computes a non-linear function of its inputs
- Axon: one long fiber that carries the electrical signal from the cell body to other neurons
- Synapse: the point of contact between the axon of one cell and the dendrite of another, regulating a chemical connection whose strength affects the input to the cell.

Neural Network Representation

- An ANN is composed of processing elements, organized in different ways to form the network's structure.
- Each element receives inputs, processes inputs and delivers a single output.
- The input can be raw input data or the output of other elements. The output can be the final result (e.g. 1 means yes, 0 means no) or inputs to other elements.

The Network

- Each ANN is composed of a collection of processing elements grouped in layers. A typical structure is shown below
- Note the three layers: input, intermediate (called the hidden layer) and output.
- Several hidden layers can be placed between the input and output layers.

Perceptrons

- The first neural network model
 - Input layer & output layer only (no hidden layer)
- A perceptron takes a vector of real-valued inputs, calculates a linear combination of these inputs, then outputs using a step function
- Given real-valued inputs x_1 through x_n , the output(activation function) $o(x_1, ..., x_n)$ is

$$o(x_1, ..., x_n) = 1$$
 if $w_0 + w_1x_1 + ... + w_nx_n > 0$
-1 otherwise

where w_i is a real-valued constant, or weight.

Perceptrons

To simplify notation, we imagine an additional dummy input $x_0 = 1$, allowing us to write the above inequality as

$$\sum_{i=0}^{n} w_i x_i > 0$$
 instead of $w_0 + w_1 x_1 + ... + w_n x_n > 0$

■ Learning a perceptron involves choosing values for the weights w₀, w₁,..., w_n.

 We can view the perceptron as representing a linear decision surface in the ndimensional space (linear classifier)

$$o(x_1, ..., x_n) = 1$$
 if $w_0 + w_1x_1 + ... + w_nx_n > 0$
-1 otherwise

 The perceptron outputs a 1 for instances lying on one side of the hyperplane and outputs a –1 for instances lying on the other side

A single perceptron can be used to represent many Boolean functions

AND function:

<training examples=""></training>			
Χ1	X 2	output	
0	0	-1	
0	1	-1	
1	0	-1	
1	1	1	

Decision hyperplane:

$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

-0.8 + 0.5 $X_1 + 0.5 X_2 = 0$

<test results=""></test>			
X ₁	X ₂	$\Sigma w_i x_i$	output
0	0	-0.8	- 1
0	1	-0.3	-1
1	0	-0.3	-1
1	1	0.2	1

OR function:

The two-input perceptron can implement the OR function when we set the weights: $w_0 = -0.3$, $w_1 = w_2 = 0.5$

<pre><training examples=""></training></pre>			
\mathbf{x}_1	x_2	output	
0	0	-1	
0	1	1	
1	0	1	
1	1	1	

Decision hyperplane:

$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

-0.3 + 0.5 $X_1 + 0.5 X_2 = 0$

<test results=""></test>			
X ₁	X ₂	$\Sigma w_i x_i$	output
0	0	-0.3	-1
0	1	0.2	1
1	0	0.2	1
1	1	0.7	1

XOR function:

It's impossible to implement the XOR function by a single perception.

<training examples=""></training>			
Χ1	X 2	output	
0	0	-1	
0	1	1	
1	0	1	
1	1	-1	

A multi-layer network of perceptron can represent XOR function.

Criticism and Downfall

- Some sets of positive and negative examples cannot be separated by any hyperplane.
 Those that can be separated are called *linearly separated set of examples*. [Seymour Papert and Marvin Minsky, 1968]
- Perceptrons are painfully limited. Perceptrons are linear classifiers and thus they can not even learn a simple XOR function
- Interest in NN close to fully disappeared
- Beginning of the

Dark age of Artificial Intelligence

How to Train Perceptrons?

- Let us begin by understanding how to learn the weights for a single perceptron.
- We consider two learning methods in perceptron:
 - Perceptron training rule(PTR) : step activation function
 - Delta rule : linear activation function
- Similar update rules with different activation functions

Perceptron training rule

 Classification(Supervised learning): Network is provided with a set of examples of correct network behavior(inputs/targets)

$$(x_1,t_1), (x_2,t_2), \dots (x_n,t_n)$$

- Output of perceptron(o_i) is computed using input(x_i) & weight vector(W)
 - output is a step function

$$O_i = f(x_i, W)$$
 $O(x_1, ..., x_n) = 1 \text{ if } \sum_{i=0}^n w_i x_i > 0$ -1 otherwise

Training in neural networks (in perceptron) is to determine a weight vector(\mathbf{W}) that causes the neural network(perceptron) to produce the correct output(o_i) (+1/-1 in Perceptron) for each of the given training examples(x_i)

compute **W** such that $t_i = o_i \ \forall i$

Perceptron training rule

Perceptron training rule:

- 1) Begin with random weights,
- 2) Compute the output of perceptron from training examples
- 3) Modifying the perceptron weights whenever it misclassifies an example.
- This process is repeated until the perceptron *classifies* all training examples correctly.
- Weights are modified at each step according to the perceptron training rule, which
 revises the weight w_i associated with input x_i according to the rule.

$$W_i \leftarrow W_i + \Delta W_i$$
 where $\Delta W_i = \eta (t_i - O_i) X_i$

- Here:
 - \cdot t_i is target output value for the *i*-th training example
 - o_i is perceptron output (1 or -1) of the *i*-th training example
 - η is small constant (e.g., 0.1) called *learning rate*

Perceptron training rule

- The role of the **learning rate**(η) is to moderate the degree to which weights are changed at each step. It is usually set to some small value (e.g. 0.1)
- We can prove that the algorithm will converge if
 - 1) training data is linearly separable and
 - 2) η is sufficiently small.
- If the data is not linearly separable, convergence is not guaranteed.
- Problems of Perceptron Rule: Although the perceptron rule finds a successful weight vector when the training examples are linearly separable, it fails to converge if the examples are not linearly separable.

Delta Rule

Delta training rule: the output o is given by

$$O = W_0 + W_1 X_1 + \cdots + W_n X_n$$

- > Remember: In Perceptron Training Rule, o is step function
- Delta rule (DR) is similar to the Perceptron Training Rule (PTR), with some differences:
 - 1. DR can be derived for any continuous differentiable output/activation function o, whereas in PTR only works for threshold/step output function
 - 2. Error in DR is not restricted to having values of 0, 1, or 1 (as in PTR), but may have any value
 - 3. DR is based on gradient descent method

Basics of Gradient Descent Method

- Suppose we have a loss(error) function E(w)
- We want to find w values which minimize E(w)
 - Maximize: gradient ascent
- Gradient Descent Rule:

$$w \leftarrow w - \eta \frac{\partial}{\partial w} E(w)$$

• η is called the learning rate. A small positive number, e.g. $\eta = 0.05$

Basics of Gradient Descent Method

Derivation of the Gradient Descent Rule

Given error(loss) function E(w), this vector derivative is called the *gradient* of E(w) with respect to the vector $< w_1, ..., w_n >$, written $\frac{\partial}{\partial w} E(w)$

$$\frac{\partial}{\partial w}E(w) = \begin{pmatrix} \frac{\partial}{\partial w_1}E(w) \\ \vdots \\ \frac{\partial}{\partial w_n}E(w) \end{pmatrix}$$

- Notice $\frac{\partial}{\partial w} E(w)$ is itself a vector, whose components are the partial derivatives of Ewith respect to each of the w_i .
- The training rule for gradient descent is

$$w_i \leftarrow w_i - \eta \frac{\partial}{\partial w_i} E(w)$$
 where w_i is the *i*-th weight

Gradient Descent Method

- The gradient descent algorithm is as follows:
 - 1) Pick an initial random weight vector.
 - 2) Compute Δw_i for each weight

$$\Delta \mathbf{w_i} = -\eta \, \frac{\partial}{\partial w_i} E(w)$$

3) Update each weight w_i by adding Δw_i ,

$$W_i \leftarrow W_i + \Delta W_i$$

- 4) then repeat the process.
- Because the error surface in perceptron contains only a single global minimum, delta update rule in perceptron will converge to a global optimal weight vector with minimum error

The Error/Loss Function of Perceptron

 We define the *error function* of neural network with a weight vector. The Error function (E[w]) can be defined as the following squared error

$$E[W] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

where D is set of training examples, t_d is the target output for the training example d and o_d is the output of the neural network for the training example d. o_d is a function of w (weights).

■ Here we characterize E as **a function of weight vector** because the neural network output o_d depends on this weight vector.

Derivation of Delta Rule

• We have to compute $\frac{\partial}{\partial w_i} E(w)$

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\ &= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_{d \in D} (t_d - o_d) (-x_{i,d}) \quad \text{since } o = w_0 + w_1 x_1 + \dots + w_n x_n \end{split}$$

where $x_{i,d}$ denotes the single input component x_i for the training example d

The final weight update rule in Delta Rule:

where
$$\Delta w_i = -\eta \frac{\partial}{\partial w_i} E(w) = \eta \sum_{d \in D} (t_d - o_d) x_{i,d}$$

The Error Surface of Perceptron

- Here the axes w₀,w₁ represents possible values for the two weights
- The vertical axis indicates the error E relative to some fixed set of training examples

Perceptron Rule vs Delta Rule(Adaline)

Delta Rule

- One pass through all the weights for the whole training set is called an epoch of training of training.
- After many epochs, the network outputs match the targets for all the training data and the training process ceases. We then say that the training process has converged to a solution.
- If the problem is linearly separable, then both PTR and DR will find a set of weights in a finite number of iterations that solves the problem correctly.
- If the problem is NOT linearly separable, then the DR will find a set of weights in a finite number of iterations that minimizes the error while PTR keeps oscillating.

Proper values of learning rate are important

- If learning rate(η value in update rule) is too large, the **gradient descent** search runs the risk of overstepping the minimum in the error surface
- For this reason, we sometimes **gradually reduce** the value of η as the number of gradient descent steps grows.

