Линейные модели с дискретными предикторами Линейные модели...

Марина Варфоломеева, Вадим Хайтов

Кафедра Зоологии беспозвоночных, Биологический факультет, СПбГУ

Линейные модели с дискретными предикторами (дисперсионный анализ)

Вы сможете

- Объяснить, в чем опасность множественных сравнений, и как с ними можно бороться
- Рассказать, как в дисперсионном анализе моделируются значения зависимой переменной
- Интерпретировать и описать результаты, записанные в таблице дисперсионного анализа
- ▶ Перечислить и проверить условия применимости дисперсионного анализа
- Провести множественные попарные сравнения при помощи post hoc теста Тьюки, представить и описать их результаты
- ▶ Построить график результатов дисперсионного анализа

Дисперсионный анализ (Analysis Of Variance, ANOVA)

Дисперсионный анализ в широком смысле — анализ изменений непрерывной зависимой переменной в связи с разными источниками изменчивости (предикторами).

Мы использовали его для тестирования значимости предикторов в линейных моделях.

Дисперсионный анализ в узком смысле — это частный случай, когда в линейной модели используются только дискретные предикторы (факторы).

Он используется для сравнения средних значений зависимой переменной в дискретных группах, заданных факторами..

Пример: яйца кукушек

Различаются ли размеры яиц кукушек в гнездах разных птиц-хозяев?

Датасет cuckoos из пакета DAAG:

- ▶ species вид птиц-хозяев (фактор)
- ▶ length длина яиц кукушек в гнездах хозяев (зависимая переменная)

Открываем данные

```
library(DAAG)
data("cuckoos")

# Положим данные в переменную с коротким названием, чтобы меньше печатать
eggs <- cuckoos
head(eggs, 3)

# length breadth species id
# 1 21.7 16.1 meadow.pipit 21
# 2 22.6 17.0 meadow.pipit 22
# 3 20.9 16.2 meadow.pipit 23

# Сократим названия переменных
colnames(eggs) <- c('len', 'br', 'sp', 'id')
```


Изменим названия уровней фактора, чтобы было легче понять о каких птицах речь

Исследуем данные

```
# Пролущенных значений нет colSums(is.na(eggs))

# len br sp id
# 0 0 0 0

# Данные не сбалансированы (размеры групп разные)
table(eggs$sp)

# 
# ЛесЗав ЛугКон БелТряс Малин ЛесКон Крапив
```


Задание

Дополните код, чтобы построить график зависимости размера яиц кукушек (len) от вида птиц-хозяев (sp), в гнездах которых были обнаружены яйца. На графике должны быть изображены средние значения и их 95% доверительные интервалы, а цвет должен соответствовать виду птиц-хозяев.

```
theme_set( )
ggplot(data = , aes()) +
   stat_summary(geom = "pointrange", fun.data = mean_cl_normal)
```


Решение

```
library(ggplot2)
theme_set(theme_bw())
ggplot(data = eggs, aes(x = sp, y = len, colour = sp)) +
    stat_summary(geom = "pointrange", fun.data = mean_cl_normal)
```


"Некрасивый" порядок уровней на графике

На этом графике некрасивый порядок уровней: средние для разных уровней фактора eggs\$sp расположены, как кажется, хаотично.

Порядок групп на графике определяется порядком уровней фактора.

"старый" порядок уровней levels(eggs\$sp)

Меняем порядок уровней

Давайте изменим порядок уровней в факторе eggs\$sp так, чтобы он соответствовал возрастанию средних значений длины яиц eggs\$len.

```
# "старый" порядок уровней
levels(eggs$sp)

# [1] "ЛесЗав" "ЛугКон" "БелТряс" "Малин" "ЛесКон" "Крапив"

# переставляем уровни в порядке следования средних значений
eggs$sp <- reorder(eggs$sp, eggs$len, FUN = mean)
# "новый" порядок уровней стал таким
levels(eggs$sp)
```

```
# [1] "Крапив" "ЛугКон" "Малин" "БелТряс" "ЛесКон" "ЛесЗав"
```


График с новым порядком уровней

С новым порядком уровней нам легче визуально сравнивать друг с другом категории.

Поскольку, изменив порядок уровней, мы внесли изменения в исходные данные, придется полностью обновить график (т.к.ggplot() хранит данные внутри графика).

ggplot(data = eggs, aes(x = sp, y = len, colour = sp)) +

stat_summary(geom = "pointrange", fun.data = mean_cl_normal)

Понравившийся график, если понадобится, можно в любой момент довести до ума, а остальные удалить

```
ggplot(data = eggs, aes(x = sp, y = len, colour = sp)) +
   stat_summary(geom = "pointrange", fun.data = mean_cl_normal) +
   labs(x = "Вид хозяев", y = "Длина яиц кукушек, мм") +
   scale_colour_brewer(name = "Вид \nxозяев", palette = "Dark2") +
   scale_x_discrete(labels = c("Крапивник", "Луговой\nконек", "Малиновка",
   "Белая\nтрясогузка", "Лесной\nконек", "Лесная\nзавирушка")) +
   theme(legend.position = "none")
```


Мы могли бы сравнить длину яиц в гнездах резных хозяев при помощи t-критерия. У нас всего 6 групп. Сколько возможно между ними попарных сравнений?

Мы могли бы сравнить длину яиц в гнездах резных хозяев при помощи t-критерия. У нас всего 6 групп. Сколько возможно между ними попарных сравнений?

Всего возможно 15 сравнений.

Если для каждого сравнения вероятность ошибки первого рода будет $\alpha_{per\ comparison}=0.05$, то для группы из 15 сравнений — ?

Мы могли бы сравнить длину яиц в гнездах резных хозяев при помощи t-критерия. У нас всего 6 групп. Сколько возможно между ними попарных сравнений?

Всего возможно 15 сравнений.

Если для каждого сравнения вероятность ошибки первого рода будет $\alpha_{per\ comparison}=0.05$, то для группы из 15 сравнений — ?

Если предположить, что сравнения независимы (это не так), то $lpha_{family\ wise}=1-(1-0.05)^{15}=0.54$. Мы рискуем найти различия там где их нет с 54% вероятностью!

Для зависимых сравнений вероятность будет немного меньше, но все равно значительно больше 0.05

Поправка Бонферрони — очень жесткий способ коррекции.

Если нужно много сравнений, можно снизить $\alpha_{per\ comparison}$ до общепринятого уровня

$$\alpha_{per~comparison} = \frac{\alpha_{family~wise}}{n}$$

Поправка Бонферрони — очень жесткий способ коррекции.

Если нужно много сравнений, можно снизить $lpha_{per\ comparison}$ до общепринятого уровня

$$\alpha_{per~comparison} = \frac{\alpha_{family~wise}}{n}$$

Например, если хотим зафиксировать $\alpha_{family\ wise}=0.05$

C поправкой Бонферрони $\alpha_{per\ comparison} = 0.05/15 = 0.003$

Это очень жесткая поправка! Мы рискуем не найти достоверных различий, даже там, где они есть...

Ho есть выход. Вместо множества попарных сравнений можно использовать один тест — дисперсионный анализ (analysis of variation, ANOVA).

Линейные модели с дискретными предикторами

Для кодирования дискретных факторов в R используются две параметризации

Параметризация индикаторных переменных (dummy coding, treatment parametrization, reference cell model) в R обозначается contr.treatment.

С ней вы уже знакомы. Используется по умолчанию в R.

Параметризация эффектов (effects coding, sum-to-zero parameterization) в R обозначается **contr.sum**.

"Классическая" параметризация для дисперсионного анализа. Нужна, если хочется использовать т.наз. III тип сумм квадратов в многофакторном дисперсионном анализе со взаимодействием факторов.

Параметризация индикаторных переменных

Переменные-индикаторы

Фактор	Переменные-индикаторы						
sp	spЛугКон x_1	spМалин x_2	spБел ${\sf Tp}$ яс x_3	spЛесКон x_4	spЛеcЗав x_5		
Крапив	0	0	0	0	0		
ЛугКон	1	0	0	0	0		
Малин	0	1	0	0	0		
БелТряс	0	0	1	0	0		
ЛесКон	0	0	0	1	0		
ЛесЗав	0	0	0	0	1		

Переменных-индикаторов всегда на одну меньше, чем число уровней фактора.

Уровень "Крапив" будет базовым: для его кодирования не нужна отдельная переменная.

Уравнение модели в параметризации индикаторов

Фактор	Переменные-индикаторы						
sp	spЛугКон x_1	s рМалин x_2	spБел ${\sf Tp}$ яс x_3	spЛесКон x_4	spЛеcЗав x_5		
Крапив	0	0	0	0	0		
ЛугКон	1	0	0	0	0		
Малин	0	1	0	0	0		
БелТряс	0	0	1	0	0		
ЛесКон	0	0	0	1	0		
Лес3ав	0	0	0	0	1		

$$y_i = b_0 + b_1 x_{1i} + \ldots + b_5 x_{5i} + e_i$$

 $b_1,...,b_5$ — это отклонения от базового уровня для средних с другими уровнями фактора.

 $lacktriangledown b_0$ — это среднее значение отклика для базового уровня фактора.

Коэффициенты модели в параметризации индикаторов

Фактор	Переменные-индикаторы						
sp	spЛугКон x_1	s рМалин x_2	spБел T ряс x_3	spЛесКон x_4	spЛеcЗав x_5		
Крапив	0	0	0	0	0		
ЛугКон	1	0	0	0	0		
Малин	0	1	0	0	0		
БелТряс	0	0	1	0	0		
ЛесКон	0	0	0	1	0		
Лес3ав	0	0	0	0	1		

```
mod_treatment <- lm(len ~ sp, data = eggs)
round(coef(mod treatment), 2)</pre>
```

```
# (Intercept) spЛугКон spМалин spБелТряс spЛесКон spЛесЗав
# 21.12 1.17 1.44 1.77 1.96 1.99
```


Уравнение модели в параметризации индикаторов

Фактор	Переменные-индикаторы						
sp	spЛугКон x_1	s рМалин x_2	spБелТряс x_3	spЛесКон x_4	spЛеcЗав x_5		
Крапив	0	0	0	0	0		
ЛугКон	1	0	0	0	0		
Малин	0	1	0	0	0		
БелТряс	0	0	1	0	0		
ЛесКон	0	0	0	1	0		
ЛесЗав	0	0	0	0	1		

round(coef(mod_treatment), 2)

 $\widehat{len}_i = 21.12 + 1.17 sp_{\mathsf{ЛУГКОH}\ i} + 1.44 sp_{\mathsf{МалиH}\ i} + 1.77 sp_{\mathsf{БелТряс}\ i} + 1.96 sp_{\mathsf{ЛесКоH}\ i} + 1.99 sp_{\mathsf{ЛесЗав}\ i}$

^{# (}Intercept) spЛугКон spМалин spБелТряс spЛесКон spЛесЗав # 21.12 1.17 1.44 1.77 1.96 1.99

Уравнение модели в параметризации индикаторов

round(coef(mod_treatment), 2)

```
# (Intercept) spЛугКон spМалин spБелТряс spЛесКон spЛecЗав
# 21.12 1.17 1.44 1.77 1.96 1.99
```

$$\widehat{len}_i = 21.12 + 1.17 sp_{\mathsf{ЛугКон}\ i} + 1.44 sp_{\mathsf{Малин}\ i} + 1.77 sp_{\mathsf{БелТряc}\ i} + 1.96 sp_{\mathsf{ЛесКон}\ i} + 1.99 sp_{\mathsf{ЛесЗав}\ i}$$

Первый коэффициент — средний размер яиц кукушек в гнездах крапивников (на базовом уровне):

$$\widehat{len}_{\mathsf{Kpanub}}\ i = 21.12$$

Другие коэффициенты — разница размеров яиц кукушек в гнездах других хозяев и в гнездах крапивников (отклонения от базового уровня):

- $\widehat{len}_{\mathsf{ЛУГКон}\ i} = 21.12 + 1.17 sp_{\mathsf{ЛУГКон}\ i} = 22.29$
- $\widehat{len}_i = 21.12 + 1.44 sp_{\text{Малин } i} = 22.56$
- $\widehat{len}_i = 21.12 + 1.77 sp_{\mathsf{БелТряс}}\ _i = 22.89$
- $\widehat{len}_i = 21.12 + 1.96 sp_{\text{ЛесКон } i} = 23.08$
- $\widehat{len}_i = 21.12 + 1.99 sp_{\mathrm{ЛесЗав}}\ _i = 23.11$

Параметризация эффектов

Переменные-эффекты

Фактор	Переменные-эффекты							
sp	\sup_{x_1}	\sup_{x_2}	$\mathop{\rm sp3}_{x_3}$	$\mathop{\rm sp4}_{x_4}$	$\displaystyle \mathop{sp5}_{x_5}$			
Крапив	1	0	0	0	0			
ЛугКон	0	1	0	0	0			
Малин	0	0	1	0	0			
БелТряс	0	0	0	1	0			
ЛесКон	0	0	0	0	1			
ЛесЗав	-1	-1	-1	-1	-1			

Переменных-эффектов всегда на одну меньше, чем число уровней фактора.

Переменные закодированы при помощи -1, 0 и 1 (сумма кодов для возможных состояний одной переменной равна нулю).

Для последней группы все переменные-эффекты будут равны -1.

Уравнение модели в параметризации эффектов

Фактор	Переменные-эффекты							
sp	\sup_{x_1}	\sup_{x_2}	$\mathop{\rm sp3}_{x_3}$	$\mathop{\mathrm{sp4}}_{x_4}$	$\mathop{\rm sp5}_{x_5}$			
Крапив	1	0	0	0	0			
ЛугКон	0	1	0	0	0			
Малин	0	0	1	0	0			
БелТряс	0	0	0	1	0			
ЛесКон	0	0	0	0	1			
Лес3ав	-1	-1	-1	-1	-1			

$$y_i = b_0 + b_1 x_{1i} + \ldots + b_5 x_{5i} + e_i$$

- $lacktriangledown_0$ это общее среднее значение отклика.
- $b_1,...,b_5$ это отклонения от общего среднего для средних с другими уровнями фактора, кроме последнего.
- ightharpoonup для последнего уровня фактора отклонения от общего среднего это коэффициенты $b_1,...,b_5$, взятые с противоположным знаком.

Коэффициенты модели в параметризации эффектов

Фактор	Переменные-эффекты						
sp	$sp1 \\ x_1$	\sup_{x_2}	$\mathop{\mathrm{sp3}}_{x_3}$	$\mathop{\mathrm{sp4}}_{x_4}$	$\mathop{sp5}_{x_5}$		
Крапив	1	0	0	0	0		
ЛугКон	0	1	0	0	0		
Малин	0	0	1	0	0		
БелТряс	0	0	0	1	0		
ЛесКон	0	0	0	0	1		
Лес3ав	-1	-1	-1	-1	-1		
mod sum <-	lm(len	~ sp.	data =	eaas.	contrasts	= 1i	

```
mod_sum <- lm(len ~ sp, data = eggs, contrasts = list(sp = contr.sum))
round(coef(mod_sum), 2)</pre>
```

```
# (Intercept) sp1 sp2 sp3 sp4 sp5
# 22.51 -1.39 -0.22 0.05 0.38 0.57
```

Коэффициенты моделей будут разными в разных параметризациях, но предсказания будут совершенно одинаковыми.

Уравнение линейной модели в параметризации эффектов

Фактор	Переменные-эффекты						
sp	\sup_{x_1}	\sup_{x_2}	$\mathop{\rm sp3}_{x_3}$	$\mathop{\rm sp4}_{x_4}$	$\mathop{\rm sp5}_{x_5}$		
Крапив	1	0	0	0	0		
ЛугКон	0	1	0	0	0		
Малин	0	0	1	0	0		
БелТряс	0	0	0	1	0		
ЛесКон	0	0	0	0	1		
Лес3ав	-1	-1	-1	-1	-1		

round(coef(mod_sum), 2)

$$\widehat{len}_i = 22.51 - 1.39 sp_{1\ i} - 0.22 sp_{2\ i} + 0.05 sp_{3\ i} + 0.38 sp_{4\ i} + 0.57 sp_{5\ i}$$

Уравнение линейной модели в параметризации эффектов

round(coef(mod_sum), 2)

$$\widehat{len}_{i} = 22.51 - 1.39 sp_{1\ i} - 0.22 sp_{2\ i} + 0.05 sp_{3\ i} + 0.38 sp_{4\ i} + 0.57 sp_{5\ i}$$

Первый коэффициент — средний размер яиц кукушек по всем данным:

$$len = 22.51$$

Другие коэффициенты — отличие размеров яиц в гнездах хозяев от общего среднего.

Для всех хозяев, кроме последнего, эти отличия будут взяты со знаком "+":

- $\widehat{len}_{\mathsf{Kpanub}\ i} = 22.51 1.39 sp_{1\ i} = 21.12$
- $\widehat{len}_{\mathsf{\PiVrKoh}\ i} = 22.51 0.22sp_{2\ i} = 22.29$
- \widehat{len}_{Manuel} $i = 22.51 + 0.05sp_3$ i = 22.56
- $\widehat{len}_{\mathsf{FenTpgc}}_{i} = 22.51 + 0.38 sp_{4,i} = 22.89$
- $\widehat{len}_{\mathsf{ПесКон}} \ i = 22.51 + 0.57 sp_5 \ i = 23.08$

Для последнего уровня фактора отличия будут взяты со знаком "-", т.к. все переменные-эффекты будут принимать значение -1:

$$\widehat{len}_{\mathsf{Леc3aB}\ i} = 22.51 - 1.39 sp_{1\ i} - 0.22 sp_{2\ i} + 0.05 sp_{3\ i} + 0.38 sp_{4\ i} + 0.57 sp_{5\ i} = 23.12$$

t-тесты значимости коэффициентов

t-тесты значимости коэффициентов не информативны в моделях с дискретными предикторами

- Для модели в параметризации индикаторов t-тесты коэффициентов показывают значимость отличий средних в группах от среднего на базовом уровне.
- По значениям коэффициентов нельзя сказать влияет ли дискретный фактор целиком (исключение — фактор с двумя градациями).

coef(summary(mod_treatment))

```
Estimate Std. Error
                                    t value
                                                Pr(>|t|)
 (Intercept)
             21.120000
                        0.2337213 90.364038 6.199539e-108
 spЛvгКон
             1.173333
                        0.2698781
                                  4.347642
                                            3.006702e-05
 spМалин
              1.436250
                       0.3253263
                                  4.414799
                                            2.309832e-05
 spБелТряс 1.766667
                        0.3305318
                                  5.344922
                                            4.699402e-07
# spЛесКон
                        0.3305318
                                  5.929837
                                            3.309942e-08
             1.960000
# ѕрЛесЗав
              1.994286
                        0.3363824
                                  5.928627
                                            3.328637e-08
```

 Для модели в параметризации эффектов t-тесты коэффициентов показывают значимость отличий средних в группах от общего среднего – это сравнение редко имеет смысл.

coef(summarv(mod sum))

```
Estimate Std. Error
                                         t value
                                                      Pr(>|t|)
  (Intercept) 22.50842262 0.09003464 249.9973693 5.090356e-158
                                      -6.5800297
# sp1
              -1.38842262 0.21100553
                                                  1.492281e-09
# sp2
              -0.21508929 0.14228587
                                      -1.5116701
                                                  1.333850e-01
 Sas
              0.04782738 0.20554139
                                       0.2326898
                                                  8.164196e-01
           0.37824405 0.21100553
                                       1.7925789
                                                  7.569241e-02
# sp4
              0.57157738 0.21100553
                                       2.7088266
                                                  7.793598e-03
# sp5
```


Дисперсионный анализ

Общая изменчивость

Общая изменчивость SS_t — это сумма квадратов отклонений наблюдаемых значений y_i от общего среднего \bar{y}

Факторная (межгрупповая) изменчивость

Отклонения внутригрупповых средних от общего среднего в генеральной совокупности — это эффект фактора $\alpha_j=\mu_j-\mu_{\rm r}$ где j=1,2,...,p — это одна из p групп.

Мы оцениваем эффект фактора по реальным данным $\bar{y}_j - \bar{y}$

Структура общей изменчивости

$$SS_t = SS_x + SS_e$$

От изменчивостей к дисперсиям

$$SS_t = SS_x + SS_e \qquad MS_t \neq MS_x + MS_e$$

$$\begin{split} SS_t &= \sum\limits_{} \sum\limits_{} (\bar{y} - y_{ij})^2 \\ df_t &= n-1 \\ MS_t &= \frac{SS_t}{df} \end{split}$$

$$SS_x = \sum_j n_j (\bar{y}_j - \bar{y})^2$$

$$df_x = p - 1$$

$$MS_x = \frac{SS_x}{df_x}$$

$$\begin{split} SS_e &= \sum\limits_{} \sum\limits_{} (\bar{y}_j - y_{ij})^2 \\ df_e &= n - p \end{split}$$

$$MS_e &= \frac{SS_e}{df_e} \end{split}$$

MS_x и MS_e помогают тестировать значимость фактора

Если дисперсии остатков в группах равны и фактор имеет фиксированное число градаций:

$$E(MS_x) = \sigma^2 + \sum n_i \frac{(\mu_i - \mu)^2}{p-1} = \sigma^2 + \sigma_x^2$$

$$E(MS_e)=\sigma^2$$

MS_x и MS_e помогают тестировать значимость фактора

Если дисперсии остатков в группах равны и фактор имеет фиксированное число градаций:

$$E(MS_x) = \sigma^2 + \sum n_i \frac{(\mu_i - \mu)^2}{p-1} = \sigma^2 + \sigma_x^2$$

$$E(MS_e) = \sigma^2$$

Если зависимости нет, то $\mu_1=...=\mu_p$ — средние равны во всех p группах, и тогда $MS_x\sim MS_e$.

MS_x и MS_e помогают тестировать значимость фактора

Если дисперсии остатков в группах равны и фактор имеет фиксированное число градаций:

$$E(MS_x) = \sigma^2 + \sum n_i \frac{(\mu_i - \mu)^2}{p-1} = \sigma^2 + \sigma_x^2$$

$$E(MS_e) = \sigma^2$$

Если зависимости нет, то $\mu_1=\ldots=\mu_p$ — средние равны во всех p группах, и тогда $MS_x\sim MS_e$.

- $lackbox{ } H_0: \mu_1 = ... = \mu_p$ средние во всех p группах равны.
- $ightharpoonup H_A:\exists \ i,j:\mu_i
 eq \mu_j$ хотя бы одно среднее отличается от общего среднего.

$$F_{df_x,df_e} = \frac{MS_x}{MS_e}$$

Тестирование значимости фактора при помощи F-критерия

$$F_{df_x,df_e} = \frac{MS_x}{MS_e}$$

В однофакторном дисперсионном анализе $df_x = p-1$ и $df_e = n-p$.

Результаты дисперсионного анализа часто представляют в виде таблицы

Источник изменчивости	SS	df	MS	F
Название фактора	$SS_x = \sum n_j (\bar{y}_j - \bar{y})^2$	$df_x = p - 1$	$MS_x = \frac{SS_x}{df_x}$	$F_{df_x df_e} = \frac{MS_x}{MS_e}$
Случайная	$SS_e = \sum \sum{(\bar{y}_j - y_{ij})^2}$	$df_e=n-p$	$MS_e = \frac{SS_e}{df_e}$	
Общая	$SS_t = \sum \sum{(\bar{y} - y_{ij})^2}$	$df_t=n-1$		

Минимальное описание результатов в тексте должно содержать F_{df_x,df_e} и p.

Делаем дисперсионный анализ в R

eggs anova <- Anova (mod treatment)

library(car)

В R есть много функций для дисперсионного анализа. Мы рекомендуем Anova() (с большой буквы) из пакета car. Зачем? Эта функция умеет тестировать влияние факторов в определенном порядке. Когда факторов будет больше одного, это станет важно для результатов.

```
eggs_anova

# Anova Table (Type II tests)
#
# Response: len
# Sum Sq Df F value Pr(>F)
# sp 42.81 5 10.449 0.000000002852 ***
# Residuals 93.41 114
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Результаты дисперсионного анализа

Можно описать в тексте:

Длина яиц кукушек в гнездах разных птиц-хозяев значимо различается ($F_{5,114}=10.45,\ p<0.01$).

Можно представить в виде таблицы:

Длина яиц кукушек значимо различалась в гнездах разных птиц-хозяев (Табл. 1).

Табл. 1. Результаты дисперсионного анализа длины яиц кукушек в гнездах разных птиц-хозяев. SS — суммы квадратов отклонений, df — число степеней свободы, F — значение F-критерия, P — уровень значимости.

	SS	df	F	P
Хозяин	42.8	5	10.4	< 0.01
Остаточная	93.4	114		

Условия примененимости дисперсионного анализа

Результатам тестов можно верить, если выполняются условия применимости

Условия применимости дисперсионного анализа:

- Случайность и независимость наблюдений внутри групп
- Нормальное распределение остатков
- ▶ Гомогенность дисперсий остатков
- ▶ Отсутствие коллинеарности факторов (независимость групп)

Другие ограничения:

- Лучше работает, если размеры групп примерно одинаковы (т.наз. сбалансированный дисперсионный комплекс)
- Устойчив к отклонениям от нормального распределения (при равных объемах групп или при больших выборках)

Проверяем выполнение условий применимости

```
# Данные для графиков остатков mod_diag <- fortify(mod_treatment)
```

1) График расстояния Кука

25

```
ggplot(mod_diag, aes(x = 1:nrow(mod_diag), y = .cooksd)) +
geom_bar(stat = "identity")

0.08
0.06
0.06
0.02
0.00
```

1:nrow(mod diag)

75

100

▶ Выбросов нет

125

2) График остатков от предсказанных значений

```
ggplot(mod_diag, aes(x = .fitted, y = .stdresid)) + geom_jitter()
```

У нас один единственный дискретный предиктор, поэтому удобнее сразу боксплот

3) Графики остатков от предикторов в модели и не в модели

```
ggplot(mod_diag, aes(x = sp, y = .stdresid)) + geom_boxplot()
```

sp

БелТряс

ПесКон

Пес3ав

- Дисперсии почти одинаковые. Может быть, в одной из групп чуть больше

Малин

ЛугКон

-3 -

Крапив

4) Квантильный график остатков

```
library(car)
qqPlot(mod_treatment, id = FALSE)
```


Распределение остатков немного отличается от нормального

Пост хок тесты

Как понять, какие именно группы различаются

Дисперсионный анализ говорит нам только, есть ли влияние фактора, но не говорит, какие именно группы различаются.

Коэффициенты линейной модели в summary(mod_treatment) содержат лишь часть ответа — сравнение средних значених всех групп со средним на базовом уровне.

Если нас интересуют другие возможные попарные сравнения, нужно сделать пост хок тест.

Есть два способа понять, какие именно группы различаются

Линейные контрасты (linear contrasts)

- Гипотезы о межгрупповых различиях тестируются при помощи комбинаций из коэффициентов линейной модели.
- Набор гипотез (и сравнений) должен быть определен заранее.
- Делать можно вне зависимости от результатов дисперсионного анализа.

Этот способ за рамками курса.

Post hoc тесты

- Сравниваются все возможные группы.
- Нет четких заранее сформулированных гипотез.Делать можно, только если влияние
- Делать можно, только если влияние соответствующего фактора оказалось значимым.

Этот способ мы обсудим.

Разновидности пост хок тестов

Тесты без поправки на число сравнений:

▶ Наименьшая значимая разница Фишера (Fisher's Least Significant Difference)

Тесты с поправкой для уровня значимости α :

- ▶ Поправка Бонферрони (Bonferroni correction)
- Поправка Сидака (Sidak's correction)

Тесты, основанные на распределении стьюдентизированного размаха:

- Тест Тьюки (Tuckey's Honest Significant Difference, HSD)
- ▶ Тест Стьюдента-Ньюмена-Кьюлса (Student-Newman-Kewls test, SNK)
- Тест Даннета (Dunnet's test) используется для сравнения с контрольной группой.

Тесты, основанные на F-тестах:

- ► Критерий Дункана (Dunkan's test)
- ▶ Тест Шеффе (Scheffe's test)

Наименьшая значимая разница Фишера Fisher's Least Significant Difference

Используется t-критерий с $df=df_e=n-p$:

$$t = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MS_e(\frac{1}{n_i} + \frac{1}{n_j})}}$$

- Подразумевается равенство дисперсий в сравниваемых группах
- Не вносится поправка для уровня значимости, учитывающая множественность сравнений. (Считается, что тест "защищен" от ошибок І рода, т.к. выполняется после того, как в ANOVA была отвергнута гипотеза о равенстве всех внутригрупповых средних).

Осторожно! Этот тест слишком мягок, высока вероятность появления ошибок II рода (т.е. тест находит различия там, где их нет).

После ANOVA часто приходится сравнивать несколько групп

Фактор в дисперсионном анализе может задавать больше двух групп. (Например, фактор вид птицы-хозяина в нашем примере).

На самом деле t-распределение не годится для случая, когда приходится сравнивать больше, чем две группы одновременно.

Вспомните, t-распределение — это распределение стандартизованной разницы средних значений **из двух выборок**, взятых из одной генеральной совокупности.

Нужен способ описать более сложное распределение — для любого числа выборок.

Три выборки

Представьте, что мы берем из одной и той же генеральной совокупности три выборки.

Средние значения \bar{y}_1 , \bar{y}_2 и \bar{y}_3 в каждой из этих выборок скорее всего окажутся разными и не будут похожи на генеральное среднее μ .

Как оценить, какой может быть эта разница? Нужно построить распределение. Но какое?

Три выборки

Представьте, что мы берем из одной и той же генеральной совокупности три выборки.

Средние значения \bar{y}_1 , \bar{y}_2 и \bar{y}_3 в каждой из этих выборок скорее всего окажутся разными и не будут похожи на генеральное среднее μ .

Как оценить, какой может быть эта разница? Нужно построить распределение. Но какое?

- 1. Возьмем m выборок из одной генеральной совокупности
- 2. Отсортируем выборочные средние: $\bar{y}_1 \geq \bar{y}_2 \geq ... \geq \bar{y}_m$

Это можно записать как $\bar{y}_{max} \geq \bar{y}_2 \geq ... \geq \bar{y}_{min}$

3. Вычислим разницу максимального и минимального средних $\bar{y}_{max} - \bar{y}_{min}$

Если повторить 1-3 много раз, то получится распределение, которое показывает, чему может быть равна разница средних значений в выборках из одной генеральной совокупности.

Такое распределение можно построить для любого числа выборок m.

Распределение стьюдентизированного размаха Studentized range distribution

Это распределение стандартизованной разницы минимального и максимального средних **для любого числа выборок** из одной генеральной совокупности (форма зависит от df и от числа выборок m).

Формула для случая равных дисперсий и разных объемов групп:

$$q = \frac{\bar{y}_{max} - \bar{y}_{min}}{\sqrt{s^2 \frac{1}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

Стьюдентизированный t-критерий консервативнее обычного

Обычный t-критерий

$$t = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MS_e(\frac{1}{n_i} + \frac{1}{n_j})}}$$

Стьюдентизированный t-критерий

$$q = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MS_e~\frac{1}{2}~(\frac{1}{n_i} + \frac{1}{n_j})}} \label{eq:q}$$

При этом $\bar{y}_i > \bar{y}_j$, т.е. вычитается из большего меньшее среднее.

Стьюдентизированный t-критерий консервативнее обычного

Обычный t-критерий

Стьюдентизированный t-критерий

$$t = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MS_e(\frac{1}{n_i} + \frac{1}{n_j})}}$$

$$q = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MS_e~\frac{1}{2}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

При этом $\bar{y}_i > \bar{y}_j$, т.е. вычитается из большего меньшее среднее.

Значение q будет в 1.414 раз больше, чем t.

$$q = \frac{t}{\sqrt{\frac{1}{2}}} = \sqrt{2} \cdot t = 1.414 \cdot t$$

Тест Тьюки (Tuckey's Honest Significant Difference)

Используется стьюдентизированный t-критерий с $df=df_e=n-p$ и m=p (общее число групп):

$$q = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MS_e \frac{1}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

Требуется равенство дисперсий.

Пост хок тесты различаются по степени консервативности

Если посмотреть на критические значения t при сравнении средних при lpha=0.05(m=4 группы по 6 наблюдений, $df_e=20$), становится понятно, что тест Тьюки разумный компромисс среди пост хок тестов.

Тест	Критическое значение	
Шеффе ^а	3.05	
Бонферрони (4 группы)	2.93	
Тьюки (HSD) [♭]	2.80	
Бонферрони (3 группы)	2.63	
Даннет ^b	2.54	
Дункан ^{а, b}	2.22	
Фишер (LSD)	2.09	

^а $\{$ — Значение t соответствующее $F.\}$ ^b $\{$ — Для сопоставимости внесена поправка $\sqrt{2}.\}$

Пост хок тест Тьюки в R

- glht() "general linear hypotheses testing"
- ▶ linfct аргумент, задающий гипотезу для тестирования
- mcp() функция, чтобы задавать множественные сравнения (обычные пост хоки)
- ▶ sp = "Tukey" тест Тьюки по фактору sp

```
library(multcomp)
eggs_posthoc <- glht(mod_treatment, linfct = mcp(sp = "Tukey"))</pre>
```

Результаты попарных сравнений (тест Тьюки)

Таблица результатов пост хок теста практически нечитабельна. summary(eggs posthoc)

```
Simultaneous Tests for General Linear Hypotheses
# Multiple Comparisons of Means: Tukey Contrasts
# Fit: lm(formula = len ~ sp, data = eggs)
# Linear Hypotheses:
                      Estimate Std. Error t value Pr(>|t|)
# ЛугКон - Крапив == 0
                     1.17333
                                0.26988
                                          4.348
                                                 <0.001 ***
# Малин - Крапив == 0 1.43625
                              0.32533 4.415
                                                 <0.001 ***
                              0.33053 5.345
                                                 <0.001 ***
# БелТряс - Крапив == 0 1.76667
                                                 <0.001 ***
# ЛесКон - Крапив == 0 1.96000
                              0.33053
                                          5.930
# ЛесЗав - Крапив == 0 1.99429 0.33638
                                          5.929
                                                 <0.001 ***
# Малин - ЛугКон == 0
                      0.26292 0.26348
                                          0.998
                                                 0.9153
# БелТряс - ЛугКон == 0 0.59333 0.26988 2.199
                                                 0.2415
                              0.26988 2.915
# ЛесКон - ЛугКон == 0
                      0.78667
                                                 0.0466 *
                      0.82095 0.27701
# ЛесЗав - ЛугКон == 0
                                          2.964
                                                 0.0409 *
                      0.33042 0.32533 1.016
# БелТряс - Малин == 0
                                                 0.9093
# ЛесКон - Малин == 0 0.52375 0.32533 1.610
                                                 0.5870
                                0.33127
# ЛесЗав - Малин == 0
                      0.55804
                                          1.685
                                                 0.5378
# ЛесКон - БелТряс == 0 0.19333
                              0.33053
                                          0.585
                                                 0.9916
# ЛесЗав - БелТряс == 0 0.22762
                              0.33638
                                          0.677
                                                 0.9836
# ЛесЗав - ЛесКон == 0
                      0.03429
                                 0.33638
                                          0.102
                                                 1.0000
# Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# (Adjusted a values reported single step method)
```

Результаты пост хок теста

Результаты пост хок теста можно привести в виде текста...

Размер яиц кукушек в гнездах крапивника значимо меньше, чем в гнездах лугового конька (тест Тьюки, p < 0.01). Размер яиц кукушек в гнездах лесной завирушки, белой трясогузки, малиновки и лесного конька не различается, но яйца кукушек в гнездах этих хозяев крупнее, чем в гнездах у лугового конька или крапивника (тест Тьюки, от p < 0.01 до 0.05).

...или построить график

Данные для графика при помощи predict()

4 БелТряс 22.88667 22.42367 23.34967 # 5 ЛесКон 23.08000 22.61700 23.54300 # 6 ЛесЗав 23.11429 22.63504 23.59354

Задание

Создайте MyData вручную:

- предсказанные значения
- стандартные ошибки
- верхнюю и нижнюю границы доверительных интервалов

```
MyData <- data.frame(sp = factor(levels(eggs$sp), levels = levels(eggs$sp)))

X <- model.matrix()
betas <-
MyData$fit <- %*%
MyData$fit <- %*%
MyData$se <- sqrt(diag(X %*% vcov(mod_treatment) %*% t(X)))
t_crit <- qt(p = , df = nrow() - length(coef()))
MyData$lwr <- MyData$ -  * MyData$
MyData$upr <- MyData$ +  * MyData$</pre>
```

Решение:

```
MyData <- data.frame(sp = factor(levels(eggs$sp), levels = levels(eggs$sp)))
X <- model.matrix(~sp, data = MyData)
betas <- coef(mod_treatment)
MyData$fit <- X %*% betas
MyData$se <- sqrt(diag(X %*% vcov(mod_treatment) %*% t(X)))
t_crit <- qt(p = 0.975, df = nrow(eggs) - length(coef(mod_treatment)))
MyData$lwr <- MyData$fit - t_crit * MyData$se
MyData$upr <- MyData$fit + t_crit * MyData$se
MyData</pre>
```

```
# 1 Крапив 21.12000 0.2337213 20.65700 21.58300 # 2 ЛугКон 22.29333 0.1349391 22.02602 22.56065 # 3 Малин 22.55625 0.2262997 22.10795 23.00455 # 4 БелТряс 22.88667 0.2337213 22.42367 23.34967 # 5 ЛесКон 23.08000 0.2337213 22.61700 23.54300 # 6 ЛесЗав 23.11429 0.2419245 22.63504 23.59354
```


Столбчатый график

Можно привести результаты пост хок теста на столбчатом графике

Значимо различающиеся группы обозначим разными буквами

Take home messages

- Дисперсионный анализ линейная модель с дискретными предикторами, существует в нескольких параметризациях, которые отличаются трактовками коэффициентов
- При помощи дисперсионного анализа можно проверить гипотезу о равенстве средних значений в группах
- Условия применимости дисперсионного анализа
 - Случайность и независимость групп и наблюдений внутри групп
 - Нормальное распределение в группах
 - Гомогенность дисперсий в группах
- При множественных попарных сравнениях увеличивается вероятность ошибки первого рода, поэтому нужно вносить поправку для уровня значимости
- ▶ Post hoc тесты это попарные сравнения после дисперсионного анализа, которые позволяют сказать, какие именно средние различаются

Дополнительные ресурсы

- Quinn, Keough, 2002, pp. 173–207
- Logan, 2010, pp. 254–282
- Open Intro to Statistics, pp.236–246
- Sokal, Rohlf, 1995, pp. 179-260
- Zar, 2010, pp. 189-207

