- 1. (20%) Let A, B be two arrays of length n where $A[1] < A[2] < \cdots < A[n]$ and $B[1] > B[2] > \cdots > B[n]$.
 - (a) Give an O(1)-time algorithm that can find the index k so that A[k] B[k] is minimized.
 - (b) Prove that any algorithm that can find the index k so that A[k] + B[k] is minimized requires $\Omega(n)$ time.
- 2. (30%) Give asymptotic upper bounds for the following T(n), and justify your answers. You may assume that T(1) = 1.
 - (a) $T(n) = T(\lceil n/3 \rceil) + T(\lceil n/4 \rceil) + O(n)$.
 - (b) $T(n) = T(\lceil n/3 \rceil + 5) + T(\lceil n/4 \rceil + 7) + O(n)$.
 - (c) $T(n) = T(|n/2|) + T(\lceil n/2 \rceil) + O(\log n)$.
- 3. (10%) Let Q be the convex polygon illustrated in Figure 1. Answer the following questions by calculating cross products as we did in the lecture.

Figure 1: The convex polygon Q.

- (a) Let p = (4, 2). Is $p \in Q$? By $p \in Q$, we mean that p is on the boundary of Q or in its interior. If not, what is the convex hull of $Q \cup \{p\}$?
- (b) Let p = (3,2). Is $p \in Q$? If not, what is the convex hull of $Q \cup \{p\}$?

4. (15%) Given an n by n matrix $A \in \mathbb{R}^{n \times n}$. Finding the $monotonic^1$ path from A[1][1] to A[n][n] so that the sum of values on the cells visited by the path is minimized, i.e. the shortest monotonic path.

Figure 2: An illustration of the monotonic path.

- (a) Devise a polynomial-time algorithm that can output the length of the shortest monotonic path. By polynomial-time algorithms, we mean those algorithms whose running time is $O(n^c)$ for some constant $c \geq 0$. Give the pseudocode of your algorithm.
- (b) Devise a polynomial-time algorithm that can output the cells visited by the shortest monotonic path.
- (c) Explain why your algorithms are correct and analyze their running time.
- 5. (10%) Give an array A of n real numbers. Devise an $O(n \log n)$ -time algorithm that can output the longest bitonic subsequence S of A. We say a subsequence S is bitonic if there exists an index k so that S[i] < S[j] for every i < j, $j \le k$ and S[i] > S[j] for every i < j, $i \ge k$.
 - (a) Give the pseudocode of your algorithm.
 - (b) Explain why your algorithm is correct and analyze its running time.
- 6. (15%) Give a bag and n stones where the i-th stone has weight w_i and value v_i . We would like to place some of the n stones into the bag so that the total value of the selected stones is maximized and the total weight of the selected stones does not exceed m, a given parameter.

¹By monotonic path, we mean a path that goes only upward and rightward.

- (a) Devise an O(mn)-time algorithm that can answer whether there exists a subset of the n stones whose total weight is k, for any $k \leq m$. Give the pseudocode of your algorithm.
- (b) Devise an O(mn)-time algorithm that can calculate the maximum value of the stones that you can pack into the bag. Give the pseudocode of your algorithm.
- (c) Explain why your algorithms are correct.