JP08-254713

LAID-OPEN JAPAN PATENT

(11) Publication number:

08-254713

(43) Date of publication of application: October 1, 1996

(51) Int.CI.

G02F 1/136

H01L 29/786

(21) Application number: **07-056939**

(71) Applicant: TOSHIBA CORP

(22) Date of filing:

March 16, 1995 (72) Inventor:

Kaichi FUKUDA

(54) [Title of Invention]

THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF AND LIQUID CRYSTAL DISPLAY ELEMENT

(57) [Abstract]

[PURPOSE] To provide a thin film transistor having excellent characteristics, stability, insulatability, yield and processing matching property.

[CONSTITUTION] A gate electrode 2 is formed on one main surface of a glass substrate 1. A silicon oxynitride (SiO_xN_y) film 3a and silicon nitride (SiN_x) film 3b are laminated to form on the gate electrode 2, and a gate insulating film 3 is formed by these two layers. An a-Si film 4 is laminated to form on this gate insulating film 3. An SiN_x film is laminated on the a-Si film 4 to form a channel protective film 5. A pixel electrode 7 consisting of ITO (Indium Tin Oxide) is formed on the gate insulating film 3. A source electrode 8 is formed on the source region of a low-resistance semiconductor film 6 in the state of connecting this electrode to the pixel electrode 7, a drain electrode 9 is formed on the drain region, a protective film 10 is laminated to form. so as to obtain an active element substrate 12.

[Claims]

[Claim 1] In a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, it is characterized by forming the aforementioned gate insulating film in the laminated films of an acid silicon nitride film and a silicon nitride film, and this silicon nitride film being in contact with the aforementioned non-single crystal silicon.

[Claim 2] A thin film transistor according to Claim 1 characterized in that: an acid silicon nitride film mainly contains Si, N, O and H, wherein the concentration of N ranges from 0.1 to 0.8 at N/Si ratio and less than the concentration of O; and a silicon nitride film mainly contains Si, N and H, wherein the concentration of N ranges from 1.2 to 1.6 at N/Si ratio and the concentration of O is less than 5×10^{20} atoms/cm³.

[Claim 3] A thin film transistor according to Claim 1 or 2 characterized by doping any one of P or B into at least one part of an acid silicon nitride film.

[Claim 4] A thin film transistor according to any one of Claims 1 to 3 characterized in that a refractive index of an acid silicon nitride film ranges from 1.49 to 1.65 at wavelength of 632.8 nm.

[Claim 5] A thin film transistor according to any one of Claims 1 to 4 characterized in that: a thickness of an acid silicon nitride film ranges from 200 nm to 450 nm; and a thickness of a silicon nitride film ranges from 5 nm to 200 nm.

[Claim 6] In a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, it is characterized in that: the aforementioned gate insulating film is formed in the laminated films of a silicon oxide film, an acid silicon nitride film and a silicon nitride film; this acid silicon nitride film is arranged covering the upper part of the aforementioned silicon oxide film; this silicon nitride film is in contact with the aforementioned non-single crystal silicon.

[Claim 7] A thin film transistor according to Claim 6 characterized by doping any one of P or B into at least one part of a silicon nitride film.

[Claim 8] A thin film transistor according to Claim 6 or 7 characterized in that a silicon oxide film mainly contains Si, O and H, wherein the concentration of N is less than 5×10^{20} atoms/cm³.

[Claim 9] A thin film transistor according to any one of Claims 6 to 8 characterized in that: the total thickness of a silicon oxide film and an acid silicon nitride film ranges from 200 nm to 450 nm; and a thickness of an acid silicon nitride film is more than 100 nm; and a thickness of a silicon nitride film ranges from 5 nm to 200 nm.

[Claim 10] In a thin film transistor which uses non-single crystal silicon for an active layer that is formed on a gate insulating film formed on a gate electrode, and has an

inverted staggered structure with a channel protective film, it is characterized in that: a gate insulating film is formed in the laminated films of an acid silicon nitride film and a silicon nitride film; and this silicon nitride film is in contact with the aforementioned non-single crystal silicon; and the aforementioned channel protective film is self-matched to the aforementioned gate electrode.

[Claim 11] In a thin film transistor which uses non-single crystal silicon for an active layer that is formed on a gate insulating film formed on a gate electrode, and has an inverted staggered structure with a channel protective film, it is characterized by forming the aforementioned gate insulating film in the laminated films of a silicon oxide film, an acid silicon nitride film and a silicon nitride film; this acid silicon nitride film is arranged covering the upper part of the aforementioned silicon oxide film; this silicon nitride film being in contact with the aforementioned non-single crystal silicon; and self-matching the aforementioned channel protective film to the aforementioned gate electrode.

[Claim 12] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, it is characterized by: forming the aforementioned gate insulating film in the laminated films of an acid silicon nitride film and a silicon nitride film; this silicon nitride film being in contact with the aforementioned non-single crystal silicon; and forming this an acid silicon nitride film by the plasma CVD using a mixed gas of SiH₄, N₂O, N₂ or NH₃ as a material gas.

[Claim 13] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, it is characterized by: forming the aforementioned gate insulating film in the laminated films of an acid silicon nitride film and a silicon nitride film; this silicon nitride film being in contact with the aforementioned non-single crystal silicon; and forming the aforementioned acid silicon nitride film by the plasma CVD using a mixed gas of organic silane, O₂, N₂ or NH₃ as a material gas.

[Claim 14] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, it is characterized by: forming the aforementioned gate insulating film in the laminated films of an acid silicon nitride film and a silicon nitride film; this silicon nitride film being in contact with the aforementioned non-single crystal silicon; and forming the aforementioned acid silicon nitride film, silicon nitride film and non-single crystal silicon in the same reaction chamber of the plasma CVD successively.

[Claim 15] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, and a protective film

using an inorganic insulating film is formed on the surface, it is characterized by: forming the aforementioned gate insulating film in the laminated films of an acid silicon nitride film and a silicon nitride film; this silicon nitride film being in contact with the aforementioned non-single crystal silicon; and forming the aforementioned acid silicon nitride film, silicon nitride film, non-single crystal silicon and inorganic insulating film in the same reaction chamber of the plasma CVD successively.

[Claim 16] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, it is characterized in that: the aforementioned gate insulating film is formed in the laminated films of a silicon oxide film, an acid silicon nitride film and a silicon nitride film; this acid silicon nitride film is arranged covering the upper part of the aforementioned silicon oxide film; this silicon nitride film is in contact with the aforementioned non-single crystal silicon; the aforementioned silicon oxide film uses SiH₄ and O₂ as a main material gas using N₂ for a dilution gas; to form by the ordinary pressure CVD.

[Claim 17] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, it is characterized in that: the aforementioned gate insulating film is formed in the laminated films of a silicon oxide film, an acid silicon nitride film and a silicon nitride film; this acid silicon nitride film is arranged covering the upper part of the aforementioned silicon oxide film: this silicon nitride film is in contact with the aforementioned non-single crystal silicon; the aforementioned silicon oxide film uses organic silane, O₂, N₂ and NH₃ as a main material gas using N₂ for a dilution gas; to form by the ordinary pressure CVD.

[Claim 18] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, it is characterized in that: the aforementioned gate insulating film is formed in the laminated films of a silicon oxide film, an acid silicon nitride film and a silicon nitride film; this acid silicon nitride film is arranged covering the upper part of the aforementioned silicon oxide film; this silicon nitride film is in contact with the aforementioned non-single crystal silicon; the aforementioned silicon oxide film uses SiH₄ and N₂O as a main material gas; to form by the plasma CVD.

[Claim 19] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film, it is characterized in that: the aforementioned gate insulating film is formed in the laminated films of a silicon oxide film, an acid silicon nitride film and a silicon nitride film; this acid silicon nitride film is arranged covering the upper part of the aforementioned silicon oxide film: this silicon nitride film is in contact with the aforementioned non-single crystal silicon:

the aforementioned silicon oxide film uses organic silane and O_2 as a main material gas; to form by the plasma CVD.

[Claim 20] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film on a substrate, it is characterized in that: the aforementioned gate insulating film is formed in the laminated films of a silicon oxide film, an acid silicon nitride film and a silicon nitride film; this acid silicon nitride film is arranged covering the upper part of the aforementioned silicon oxide film; this silicon nitride film is in contact with the aforementioned non-single crystal silicon; and a substrate that the aforementioned silicon oxide film is formed is annealed in the vacuum of 10 Torr or less than or in the reduced pressure ambient atmosphere; and then an acid silicon nitride film is formed without exposing into the atomospheric air.

[Claim 21] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film on a substrate, it is characterized in that: the aforementioned gate insulating film is formed in the laminated films of a silicon oxide film, an acid silicon nitride film and a silicon nitride film; this acid silicon nitride film is arranged covering the upper part of the aforementioned silicon oxide film; this silicon nitride film is in contact with the aforementioned non-single crystal silicon; and the aforementioned acid silicon nitride film and non-single crystal silicon are formed in the same reaction chamber of the plasma CVD successively.

[Claim 22] In a manufacturing method of a thin film transistor which uses non-single crystal silicon for an active layer formed on a gate insulating film on a substrate, and a protective film using an inorganic insulating film is formed on the surface, it is characterized in that: the aforementioned gate insulating film is formed in the laminated films of a silicon oxide film, an acid silicon nitride film and a silicon nitride film; this acid silicon nitride film is arranged covering the upper part of the aforementioned silicon oxide film; this silicon nitride film is in contact with the aforementioned non-single crystal silicon; and an acid silicon nitride film, a silicon nitride film, a non-single crystal silicon and an inorganic insulating film are formed in the same reaction chamber of the plasma CVD successively.

[Claim 23] A liquid crystal display element characterized by using a thin film transistor according to any one of Claims 1 to 11 as a switching element.

(19) 日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出廢公開番号

特開平8-254713

(43)公開日 平成8年(1996)10月1日

(51) Int.Cl.4

徽別記号

庁内整理番号

FΙ

技術表示箇所

G02F 1/136 H01L 29/786 500

G02F 1/136

500

H01L 29/78

617T

審査請求 未請求 請求項の数23 〇L (全 12 頁)

(21)出顧番号

特願平7-56939

(22)出顧日

平成7年(1995) 3月16日

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 福田 加一

神奈川県横浜市磯子区新杉田町8 株式会

社東芝横浜事業所内

(74)代理人 弁理士 樺澤 蠠 (外2名)

(57)【要約】

【目的】 特性、安定性、絶縁性、歩留およびプロセス 整合性に優れた薄膜トランジスタを提供する。

【構成】 ガラス基板1の一主面上にゲート電極2を形 成する。ゲート電極2上に、酸窒化シリコン(SiOx N_V) 膜3a、窒化シリコン (SiN_X) 膜3bを積層形成 し、2層でゲート絶縁膜3とする。ゲート絶縁膜3上 に、a-Si膜4を積層形成する。a-Si膜4上に、 SiN_X 膜を積層して、チャネル保護膜 5 を形成する。 ゲート絶縁膜3上にITO (Indium Tin Oxide) の画素 電極7が形成する。低抵抗半導体膜6のソース領域上に は、画素電極7と接続した状態でソース電極8を形成 し、ドレイン領域上にはドレイン電極9を形成し、保護 膜10を積層形成し、能動素子基板12となる。

【特許請求の範囲】

【請求項1】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタにおいて、

前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接していることを特徴とする薄膜トランジスタ。

【請求項2】 酸窒化シリコン膜は、Si、N、O、H を主成分とし、Nの濃度が、N/Si比で0. I以上 0.8以下であり、かつ、Oの濃度よりも少なく、

窒化シリコン膜は、Si、N、Hを主成分とし、Nの濃度が、N/Si比で1、2以上1、6以下、Oの濃度が、 5×10^{20} atoms/cm 3 以下であることを特徴とする請求項」記載の薄膜トランジスタ。

【請求項3】 酸窒化シリコン膜は、少なくとも一部に PおよびBのいずれか一方をドービングしたことを特徴 とする請求項1または2記載の薄膜トランジスタ。

【請求項4】 酸窒化シリコン膜は、波長632.8nmでの屈折率が、1.49以上1.65以下であることを特徴とする請求項1ないし3いずれか記載の薄膜トランジスタ。

【請求項5】 酸窒化シリコン膜は、膜厚が200nm 以上450nm以下であり、

窒化シリコン膜は、膜厚が5 nm以上200 nm以下であることを特徴とする請求項1ないし4いずれか記載の 洒膜トランジスタ。

【請求項6】 ゲート絶縁膜上に活性層を形成し、この 活性層に非単結晶シリコンを用いた薄膜トランジスタに おいて、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接していることを特徴とする薄膜トラン ジスタ。

【請求項7】 酸化シリコン膜は、少なくとも一部にPおよびBのいずれか一方をドーピングしたことを特徴とする請求項6記載の薄膜トランジスタ。

【請求項8】 酸化シリコン膜は、Si、O、Hを主成分とし、Nの濃度が $5 \times 10^{20} atoms/cm^3$ 以下であることを特徴とする請求項6または7記載の薄膜トランジスタ。

【請求項9】 酸化シリコン膜および酸窒化シリコン膜の合計の膜厚は、200nm以上450m以下であり、かつ、前記酸窒化シリコン膜の膜厚は100nm以上であり、前記窒化シリコン膜の膜厚は5nm以上200nm以下であることを特徴とする請求項6ないし8いずれか記載の薄膜トランジスタ。

【請求項10】 ゲート電極上にゲート絶縁膜を形成

し、このゲート絶縁膜上に活性層を形成し、この活性層 に非単結晶シリコンを用い、この活性層上にチャネル保 護膜を有する逆スタガード型の薄膜トランジスタにおい て、

ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接し、かつ、前記チャネル保護膜が前記ゲート電極に自己整合されたことを特徴とする薄膜トランジスタ。

【請求項11】 ゲート電極上にゲート絶縁膜を形成し、このゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを活性層に用い、この活性層上にチャネル保護膜を有する逆スタガード型の薄膜トランジスタにおいて、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は前記酸化シリコン膜の上部を覆って配 置され、前記窒化シリコン膜が前記非単結晶シリコンに 接し、かつ、前記チャネル保護膜を前記ゲート電極に自 己整合させたことを特徴とする薄膜トランジスタ。

【請求項12】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、

この酸窒化シリコン膜は、原料ガスにSi H_4 、 N_2 O、 N_2 または NH_3 の混合ガスを用いたフラズマC VDによって形成することを特徴とする薄膜トランジスタの製造方法。

【請求項13】 ゲート絶線膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、

前記酸窒化シリコン膜は、原料ガスに有機シラン、

 O_2 、 N_2 または NH_3 の混合ガスを用いたフラズマC VDによって形成することを特徴とする薄膜トランジスタの製造方法。

【請求項14】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランシスクの製造方法において、

前記ゲート絶縁膜は、酸窓化シリコン膜および窒化シリコン膜の横層膜にて形成され、この窓化シリコン膜や前記非単結晶シリコンに接しており、

前記酸窒化シリコン膜、窒化シリコン膜、非単結品シリコンをプラズマCVDの同一反応室で連続的に形成することを特徴とする薄膜トランジスタの製造方法

【請求項15】 ゲート絶縁膜上に活性層を形成し、こ

の活性層に非単結晶シリコンを用い、表面に保護膜を形成し、この保護膜に無機絶縁膜を用いた薄膜トランジス タの製造方法において、

前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、

前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコン、無機絶縁膜をフラズマCVDの同一反応室で連続的に形成することを特徴とする薄膜トランジスタの製造力法

【請求項16】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、

前記酸化シリコン膜は、SiH4とO2を主な原料ガスとし、N2を希釈ガスに用い、常圧CVDで形成することを特徴とする薄膜トランジスタの製造方法。

【請求項17】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶繰膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

前記酸化シリコン膜は、有機シラン、 O_3 、 O_2 を主な原料ガスとし、 N_2 を希釈ガスに用い、常圧CVDで形成することを特徴とする薄膜トランジスタの製造方法。

【請求項18】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

前記酸化シリコン膜は、 SiH_4 と N_2 〇を主な原料ガスとし、プラズマCVDで形成することを特徴とする薄膜トランジスタの製造方法。

【請求項19】 ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を攫って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

前記酸化シリコン膜は、有機シランとOgを主な原料ガスとし、プラズマCVDで形成することを特徴とする薄膜トランジスタの製造方法。

【請求項20】 基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、

前記酸化シリコン膜の形成された基板を 1 () Torr以下の 真空または減圧雰囲気中でアニールし、

次いで大気に曝すことなく酸窒化シリコン膜を形成する ことを特徴とする薄膜トランジスタの製造方法。

【請求項21】 基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、

前記酸窒化シリコン膜、窒化シリコン膜、非単結品シリコンをプラズマCVDの同一反応室で連続的に形成することを特徴とする薄膜トランジスタの製造方法。

【請求項22】 基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用い、表面に保護膜を形成し、この保護膜に無機絶縁膜を用いた薄膜トランジスタの製造方法において、

前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン 膜および窒化シリコン膜の積層膜にて形成され、この酸 窒化シリコン膜は、前記酸化シリコン膜の上部を覆って 配置されるとともに、前記窒化シリコン膜は、前記非単 結晶シリコンに接しており、

酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコン、無機絶縁膜をフラズマCVDの同一反応室で連続的に形成することを特徴とする薄膜トランジスタの製造方法。

【請求項23】 請求項1ないし11いずれか記載の薄膜トランジスタをスイッチング素子として用いたことを特徴とする液晶表示素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、活性層に非単細品シリコンを用いた薄膜トランジスタ、その製造方法およご液晶表示素子に関する。

[00002]

【従来の技術】近年、液晶を用いた表示素子としては、

テレビジョン表示やグラフィックディスプレイなどを指向した大容量、高密度化が図られている。そして、このため、たとえばラビングによる配向処理がそれぞれ施された2枚の基板を、これら基板の配向方向が互いに90°をなすように平行に対向して配置し、この平行に配置した基板間に、ネマチックタイプの液晶組成物を挟持させた構成のいわゆるツイステッドネマチック(TN)型でアクティブマトリクス(AM)型の液晶表示素子(LCD)が独目されている。

【0003】そして、このアクティブマトリクス型液晶表示素子では、クロストークのない高コントラスト表示が行なえるように、各画素の駆動および制御を半導体スイッチで行なう方式が採用されている。そして、この半導体スイッチとしては透過型の表示が可能であり、また大面積化も容易であるなどの理由から、透明絶縁基板上に形成配置した非品質シリコン(a-Si)系の薄膜トランジスタ(TFT)が用いられており、この活性層にカンジスタは、活性層にa-Si層を用い、この活性層を挟んで下層にゲート電極、上層にソース電極およびドレイン電極を配置した逆スタガード構造が多く用いられている。

【0004】また、この薄膜トランジスタに用いるゲート絶縁膜には、窒化シリコン(SiN、)を使用するのが一般的である。

[0005]

【発明が解決しようとする課題】そして、これら SiN_X とa-SiとはプラスマCVDでの連続形成が可能であり、接合特性に優れ良質界面を形成できるので広く用いられているものの、 SiN_X はワイドギャッフがSe V程度とあまり広くないので絶縁性が十分ではない。

【0006】また、ゲート絶縁膜に別の構造を用いる構成として、たとえばボトムゲート薄膜トランジスタの場合には、酸化タンタル(TaO_x)や酸化シリコン(SiO_x)膜などを下層に配設して、a-Siと接する上層に SiN_x を用いる構成がある。このように TaO_x を SiN_x の単層の場合に比べ、リーク電流の低減や SiN_x の単層の場合に比べ、リーク電流の低減を SiN_x の SiN_x の SiN

【0007】しかしながら、通常、薄膜トランジスタは低触点のガラス基板上に形成するため、これらガラス基板内に含まれる不純物として $10^{19} \sim 10^{20} \rm cm^{-3}$ 程度のNaがNaイオンとなり、このNaイオンがゲート絶縁膜中に進入して、薄膜トランジスタの特性の不安定化を招く。なお、この点では SiN_x 膜がNaイオンのブロ

ッキング効果が高いのに対して、 $S \perp O_x$ 膜の場合には N a T a T a T a T が自由に移動してしまうことは良く知られて いる。したがって、ガラス表面にあらかじめ何らかの T a T a T a T b T b T b T a T b

【0008】本発明は、上記問題点に鑑みなされたもので、特性、安定性、絶縁性、歩留およびプロセス整合性に優れた薄膜トランジスタ、その製造方法および液晶表示素子を提供することを目的とする。

[0009]

【課題を解決するための手段】請求項 1 記載の薄膜トランジスタは、ゲート絶縁膜上に活性層を形成し、この活性層に非単結品シリコンを用いた薄膜トランジスタにおいて、前記ゲート絶縁膜は、酸空化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しているものである。

【0010】請求項2記載の薄膜トランジスタは、請求項1記載の薄膜トランジスタにおいて、酸窒化シリコン膜は、Si、N、O、日を主成分とし、Nの濃度が、N/Si比で0、1以上0、8以下であり、かつ、〇の濃度よりも少なく、窒化シリコン膜は、Si、N、日を主成分とし、Nの濃度が、N/Si比で1、2以上1、6以下、Oの濃度が、5×10²⁰atoms/cm³以下であるものである。

【0011】請求項3記載の薄膜トランジスタは、請求項1または2記載の薄膜トランジスタにおいて、機密化シリコン膜は、少なくとも一部にPおよびBのごすれか一方をドーピングしたものである。

【0012】請求項4記載の薄膜トランジスタは、請求項1ないし3いずれか記載の薄膜トランジスタにませ、 て、酸窒化シリコン膜は、波長632、8nmで、短折率が、1、49以上1、65以下であるものである

【0013】請求項5記載の薄膜トランジスタに、青水項1ないし4いずれか記載の薄膜トランジスタにローて、酸窒化シリコン膜は、膜厚が200nm以上 (150nm以下であり、窒化シリコン膜は、膜厚が5mm以下であるものである。

【0014】請求項6記載の薄膜トランジスタに、 ト絶縁膜上に活性層を形成し、この活性層にサヤー ニ リコンを用いた薄膜トランジスタにおいて、画。 絶縁膜は、酸化シリコン膜、酸窒化シリコン膜: ニュン 化シリコン膜の積層膜にて形成され、この酸等性 ン膜は、前記酸化シリコン膜の上部を覆って耐力に とともに、前記窒化シリコン膜は、前記非単な ンに接しているものである。

【0015】請求項7記載の薄膜トランジスツ:「二」

項6記載の薄膜トランジスタにおいて、酸化シリコン膜は、少なくとも一部にPおよびBのいずれか一方をドービングしたものである。

【0016】請求項8記載の薄膜トランジスタは、請求項6または7記載の薄膜トランジスタにおいて、酸化シリコン膜は、Si、O、Hを主成分とし、Nの濃度が 5×10^{20} atoms/cm 3 以下であるものである。

【0017】請求項9記載の薄膜トランジスタは、請求項6ないし8いずれか記載の薄膜トランジスタにおいて、酸化シリコン膜および酸窒化シリコン膜の合計の膜厚は、200nm以上450nm以下であり、かつ、前記酸窒化シリコン膜の膜厚は100nm以上であり、前記窒化シリコン膜の膜厚は5nm以上200nm以下であるものである。

【0018】請求項10記載の薄膜トランジスタは、ゲート電極上にゲート絶縁膜を形成し、このゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用い、この活性層上にチャネル保護膜を有する逆スタガード型の薄膜トランジスタにおいて、ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接し、かつ、前記チャネル保護膜が前記ゲート電極に自己整合されたものである。

【0019】請求項11記載の薄膜トランジスタは、ゲート電極上にゲート絶縁膜を形成し、このゲート絶縁膜と形成し、このが一ト絶縁膜上に活性層を形成し、この活性層上に非単結晶シリコンを活性層に用い、この活性層上にチャネル保護膜を有する逆スタガード型の薄膜トランジスタにおいて、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は前記酸化シリコン膜の上部を覆って配置され、かつ、前記チャネル保護膜を前記ゲート電極に自己整合させたものである。

【0020】請求項12記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、この酸窒化シリコン膜は、原料ガスに SiH_4 、 N_2O 、 N_2 または NH_3 の混合ガスを用いたプラズマCVDによって形成するものである。

【0021】請求項13記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、前記酸窒化シリコン膜は、原料ガスに有機シラン、O2、N2

または NH_3 の混合ガスを用いたフラズマCNDによって形成するものである。

【0022】諸求項14記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコンをプラズマCVDの同一反応窒で連続的に形成するものである。

【0023】請求項15記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用い、表面に保護膜を形成し、この保護膜に無機絶縁膜を用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸窒化シリコン膜の積層膜にて形成され、この窒化シリコン膜が前記非単結晶シリコンに接しており、前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコン、無機絶縁膜をブラズマCVDの同一反応窒で連続的に形成するものである。

【0024】請求項 16記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の止部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリコン膜は、<math>114と114と114と114と114と114と114と114と114と114と11402を主な原料ガスとし、1142を主な原料ガスとし、1142を主な原料ガスとし、1142002を主な原料ガスとのである、

【0025】請求項17記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリコン膜は、有機シラン、O3、O2を主な原料ガスとし、N2を希釈ガスに用い、常圧CVDで形成するものである。

【0026】請求項18記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリ

コン膜は、 $S i H_4 e N_2 O$ を主な原料ガスとし、フラズマC V Dで形成するものである。

【0027】請求項19記載の薄膜トランジスタの製造方法は、ゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜は、前記酸化シリコン膜のは、前記酸化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリコン膜は、有機シランとO2を主な原料ガスとし、ブラズマCVDで形成するものである。

【0028】請求項20記載の薄膜トランジスタの製造方法は、基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸化シリコン膜の形成された基板を10Torr以下の真空または減圧雰囲気中でアニールし、次いで大気に曝すことなく酸窒化シリコン膜を形成するものである。

【0029】請求項21記載の薄膜トランジスタの製造方法は、基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜および窒化シリコン膜の積層膜にて形成され、この酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記窒化シリコン膜は、前記非単結晶シリコンに接しており、前記酸窒化シリコン膜、窒化シリコン膜、非単結晶シリコンをプラズマCVDの同一反応室で連続的に形成するものである。

【0030】請求項22記載の薄膜トランジスタの製造方法は、基板上にゲート絶縁膜上に活性層を形成し、この活性層に非単結晶シリコンを用い、表面に保護膜を形成し、この保護膜に無機絶縁膜を用いた薄膜トランジスタの製造方法において、前記ゲート絶縁膜は、酸化シリコン膜、酸窒化シリコン膜は、前記酸化シリコン膜の上部を覆って配置されるとともに、前記酸化シリコン膜は、前記非単結晶シリコンに接しており、酸窒化シリコン膜、流流を変化シリコン膜、非単結晶シリコン、無機絶縁膜をブラズマCVDの同一反応室で連続的に形成するものである。

【0031】請求項23記載の液晶表示素子は、請求項 1ないし11いずれか記載の薄膜トランジスタをスイッ チング素子として用いたものである。

[0032]

【作用】本発明の薄膜トランジスタは、ゲート絶縁膜として、酸窒化シリコン膜および窒化シリコン膜を用い、この窒化シリコン膜が非単結晶シリコンに接しているため、酸窒化シリコン膜はワイドギャッフで絶縁性に優れ、不純物イオンブロック効果、耐水性を期待することができるとともに、窒化シリコン膜は非単結晶シリコンとの界面性も良い。

【0.0.3.3】また、本発明の薄膜トランジスタの製造方法は、ゲート絶縁膜として、酸窒化シリコン膜および窒化シリコン膜を用い、この窒化シリコン膜は、原料ガスに S_1H_4 、 N_2 O、 N_2 または NH_3 の混合ガスを用いたプラズマCVDによって形成するため、簡単な方法で、絶縁性に優れ、不純物イオンブロック効果、耐水性を期待することができるとともに、窒化シリコン膜は非単結晶シリコンとの接触性も得られる。

【0034】また、本発明の液晶表示素子は、請求項1 ないし11いずれか記載の薄膜トランジスタをスイッチ ング素子としたため、特性が安定して動作する。

[0035]

【実施例】以下、本発明の一実施例をアクティブマトリクス型の液晶表示素子に適用した場合について、図面を 参照して説明する。

【0036】図1はアクティブマトリクス型液晶表示装置(LCD)に用いる薄膜トランジスタ(TFT)を示す断面図であり、1は絶縁性基板でありたとえばガラス(コーニング社製7059)製のガラス基板で、このガラス基板1には一主面上にモリブデン・タンタル(Mol-Ta)からなるゲート電極2が形成される。

【0037】また、ゲート電極2上には、このゲート電極2を覆うように、膜厚 0.3μ mの酸窒化シリコン(SiO_XN_y)膜3aを積層形成し、さらに、膜厚 0.05μ mの窒化シリコン(SiN_X)膜3bを積層形成し、これら SiO_XN_y 膜3aおよび SiN_X 膜3bの2層でゲート絶縁膜3を構成する。

【0038】さらに、このゲート絶縁膜3上に、膜厚 0.05μ mの非晶質シリコン(a-Si)からなる活性層としての半導体膜であるa-Si膜4を積層形成する。そして、a-Si膜4上に、膜厚 0.3μ mのSiN $_X$ 膜3bを積層して、このSiN $_X$ 膜にレジストによるパターニングを施して、日下を主成分としたエッチング溶液で所定の形状に加工し、レジストを取り除きチーネル保護膜5を形成する。

【0039】ここで、これらゲート絶縁膜3、ョードi 膜4およびチャネル保護膜5の横層形成のプロセスこう いて説明する。

【0.0.4.0】まず、 $S.i.O_x$ N_y 膜3a、 $S.i.N_x$ 顧3b。a-S.i 膜4およびチャネル保護膜 5 の形成 7法としては、たとえば全てをフラズマC V D 法にて形成する。これら $S.i.O_x$ Ny 膜3a、 $S.i.N_x$ 膜3b、a-S.i 順4お

よびチャネル保護膜5の積層形成には、それぞれに個別 の反応室を割り当て、それら反応室を直列につないだイ ンライン式のCVD装置で形成するのが最も一般的な方 法である。一方、最も生産性を高めるにはこれら全ての 膜を同一の反応室で、同一設定温度で積層形成するのが 有効である。そして、プラズマCVDで形成する薄膜 は、 SiN_x 膜、a-Si 膜とともに応力の大きい場合 が多く、従来のゲート絶縁膜の大部分にSiN、膜を用 いる構成では、一つの反応室でSiNx膜とa-Si膜 を交互に積層すると、反応室の内壁から膜の剥がれが生 じ、パーティクル発生要因となり、同一反応室での積層 膜形成が生産性で有利なことは明らかであっても、実際 上は量産に使用することができない。しかし、SiOv N_V 膜3aは応力を小さくすることが容易であり、SiN χ 膜3hに比して密着製が優れるため、積層膜に占めるS $\mathsf{i}\,\mathsf{N}_{\mathsf{X}}$ 膜の膜厚を少なくすることができるので、 $\mathsf{S}\,\mathsf{i}\,\mathsf{O}$ x Ny 膜3aを導入して積層膜を形成する場合には、同一 反応室での形成が十分に可能になる。

【0.041】次に、a-Si 膜 4 およびチャネル保護膜 5上にたとえば膜厚0.05 μ mの低抵抗半導体膜 6 を成膜し、半導体膜 4 および低抵抗半導体膜 6 を加工して、チャネル領域、ソース領域およびびドレイン領域を形成する。

【0042】また、ゲート絶繰膜3上には1TO (Indi um Tin Oxide) からなる画案電極7が形成される。

【0043】そして、低抵抗半導体膜6のソース領域上には、画素電極7と接続した状態でソース電極8が形成され、ドレイン領域上にはドレイン電極9が形成され、さらに、保護膜10を積層形成する。こうして、ゲート電極2、ゲート絶繰膜3、a-Si膜4、ソース電極8、ドレイン電極9および保護膜10にてスイッチング素子としての薄膜トランジスタ(TFT)口を形成し、能動素子基板12となる。

【0044】また、図2に示すように、絶縁性基板であるガラス基板1の一主面上には、1TOからなる共通電極21が形成され、対向基板22が構成される。

【0045】そして、能動素子基板12の一主面上に全面にたとえば低温キュア型のボリイミド(PI)からなる配向膜25が形成し、また、対向基板23の一主面上に全面にたとえば同様に低温キュア型のPIからなる配向膜26を形成する。また、能動素子基板12と対向基板23との一主面上には、各々の配向膜25、26を所定の方向に布などで擦ることにより、ラビングによる配向処理がそれぞれ施される。さらに、能動素子基板12と対向基板23とは互いの一主面側が対向し、かつ、互いの配向膜25、26の配向軸が概略90°をなすように配置し、これら能動素子基板12と対向基板23との間隙に液晶27を封入挟持する。

【0046】ここで、能動素子基板12と対向基板23とを組み合わせる際には、配向膜25、26のラビング方向は、良視角方向が正面方向に向くように設定される。そし

て、能動素子基板12と対向基板23の他主面側には、それ ぞれ偏光板28. 29を被着し、液晶表示装置(LCD)30 を構成し、能動業子基板12と対向基板23のどちらか一方 の他主面側から照明を行なう。

【0047】次に、図3を参照して、上述の液晶表示装置30を製造するフラズマCVD装置31の構成を説明する。

【0048】このプラズマCVD装置31は、中央に真空中でのガラス基板1の搬送を行なう搬送機構を備えた共通室32を有し、この共通室32の周囲を放射状に取り囲むように4つの反応室33~36、加熱室37および2つの搬出人室38、39が配設されている。

【0049】そして、成膜を行なう各反応室33~36には、直径150㎜の円形高周波電機およびこの円形高周波電機に対向しガラス基板1をクランプするサセフタを備えており、 SiH_4 、 H_2 、 NH_3 、 N_2 O、 N_2 、 PH_3 、 NF_3 およびAr のガス供給系と、ドライボンプからなる排気系とが接続されている。また、試料であるガラス基板1は加熱したサセフタにクランフされ、ガラス基板1の表面温度が所望の温度となるように測御されている。

【0.050】一方、成膜を行なわない共通室32、加熱室37、搬出入室38、39には、 N_2 のガス供給系とドライボンプからなる排気系とが接続されている。そして、ガラス基板1は搬出入室38、39のいずれかに搬入され、共通室32を経て、加熱室37にて加熱され、約1.0分の加熱後、再び共通室32を経て反応室33に導入される。また、反応室33では、基板温度3.2.0℃にて膜厚0. 3.8.mのSiO $_X$ N $_X$ 膜3a、膜厚0. 0.5.2mのSiN $_X$ 膜3b、膜厚0. 0.5.2mのSiN $_X$ 灰のチャネル保護膜5.8を積層形成する。

【0051】なお、これらの間、反応室33のサセフタの設定温度は一定に保つ。順種によって温度を変えることも可能だが、温度安定化を図る待機時間だけスルーフットが落ちるので現実的ではない。

【0.05.2】そして、ガラス基板 1 は、三たび共通室 32 を経て搬出入室 38、39 のいずれかにより搬出される。なお、反応室 $34 \sim 36$ は反応室 32 と同様に $S.i.O_X$ 下、 膜 3b、a-S.i 下 操 4 および $S.i.O_X$ に のチャネル保護膜 5.0 4 層形成に使用するようになっており、並行処理が行なわれる。

成する方法がある。すなわち、図3のプラズマCVD装置に対応させると、2層のゲート絶縁膜3およびa-Si膜4の3層を反応室33で形成し、共通室32を経て反応室35にガラス基板1を移動させてSiNxのチャネル保護膜5を形成し、その後共通室32を経て搬出させる。同様の処理を反応室34および反応室36でも実施して並行処理する。この場合、ゲート絶縁膜3からチャネル保護膜5の4層を一括して形成するものに比較すると生産性では若干劣るが、特性に優れた薄膜トランジスタロの製造が可能になる。

【0.0.5.4】いずれの場合も、 $S.i.O_x.N_y$. 膜3aを用いることで、ゲート絶縁膜3と半導体膜4との積層形成を同一の反応室 $33\sim36$ で実質的に行なえるので、従来の個別の反応室による積層膜形成に比べて生産性が向上する。

【0055】次に、 SiO_XN_Y 膜3aの形成プロセスについて説明する。

【0056】図3に示すプラズマCVD装置31で反応室 $33\sim36$ においてガラス基板1を加熱したサセプタにクランプさせ320℃に調節する。なお、ガラス基板1の温度は300℃から360℃の範囲であることが望ましい。そして、ガラス基板1に対向するシャワー電極から、原料ガスとして SiH_4 、 N_2 Oおよび N_2 をそれぞれ20、120、400 sccm導入し、排気バルブの開度を調節して気圧をたとえば1. 2 Torrに調圧する。この状態で、13. 56 MHz の高周波電力200 Wを印加するとシャワー電極およびサセブタ間に放電が生じ、 SiO_x N_y 膜3a3かガラス基板1上に堆積される。

【0.057】なお、ガス流量は堆積する膜の組成に大きく影響する。すなわち、 N_2 〇は主に〇級として、 N_2 はN源として働くので、これらガス流量の調節によって所望の組成の膜を得ている。また、成膜時の気圧は $0.5 \sim 5$ Torr程度の広範囲で成膜が可能であるが、この気圧も膜の組成に大きく影響する。一般に、高圧で成膜するほどNが減って〇が多く取り込まれる傾向がある。さらに、サセブタとシャワー電極との電極間隔は1.0 mmの範囲で、膜厚の均一性に優れる間隔を選択すると良く、最適の電極間隔は圧力との相関が強く、概間隔が必要となる。実際、上述の成膜条件では2.0 mm程度が適当である。また、放運の周波数をたとえば2.7 MH 2.4 1 MH 2 あるいは5.4 MH 2 と高くする場合にも狭い電極間隔が必要となる。

【0058】また、 SiO_xN_y 膜3aの原料ガスには N_2 の代わりに NH_3 を用いることも可能であり、 NH_3 は N_2 に比較して分解が容易であるため、少量でも膜にNが取り込まれる。さらに、 NH_3 中のHも膜に取り込まれて N_2 系とは異なるエッチング速度の膜が得られるので、使い分けることでエッチング速度の制御が可能になる。

【0059】一方、原料ガスにSiH4の代わりに有機 シランを用いると、堆積表面での流動性によって、ステ ップカバレージに優れたSiO $_{\chi}$ N_{χ} 膜3aが得られる, たとえばボトムゲート薄膜トランジスタにする場合に は、ゲート電極とから連続する図示しない配線にテーバ 加工を施さなくても土分な被覆がなされ、完全ではない までも平坦化ができる。もちろんトップゲート薄膜トラ ンジスタの場合でもステップカバレージに優れたゲート 絶縁膜3は有効である。なお、有機シランとしては、具 体的にはTEOS (Tetraethylorthosilicate : Si [OC₂ H₅]₄), TMS (Trimethylsilicate : S iH [OCH3] 3), TRIES (Triethyisilicat e: SiH [OC₂ H₅]₃, Hexamethyldisilazane: [CH3] 3 SiNHSi [CH3] 3 . Hexamethyldi silane: [XH3]3 SiSi [CH3]3), Hexamet hyldisiloxane: [CH3] 3 SiOSi [CH3] 3 などが良く、特にTEOSは半導体の分野ではSiOy 膜の原料として最も広く知られている材料であり、安価 に入手可能である。なお、これらの原料ガスの〇源とし てはN2 Oでは酸化能力が弱いので(), を用いることが 望ましく、窒化能力も〇2の酸化能力に対抗する必要が あるので N_2 よりもは NH_3 の方が良く、 N_2 $いやN_2$ の場合には大流量が必要となる。

【0060】また、有機シランの供給にはバブリングが必要な場合が多いが、このバブリングにはNy または日e、Arなどの不活性ガスを用いる。半導体分野において、TEOSを代表とする有機シランから作製するSi O2 膜では膜中の水分、あるいは、後から水を取り込む吸湿性がしばしば問題となる。薄膜トランジスタロでもゲート絶縁膜3に水分が含まれているものを用いれば、薄膜トランジスタロの安定性などに不具合を生ずる。ところが、この発明のように膜中にNを導入すれば、ステップカバレージ性の良好さを維持して、かつ、水の諸問題を解決できる。

【0061】上述のものでも、不純物と水のブロックを 両立させるにはSiO、N、膜3aの組成に最も効果的な 範囲があり、SiOxNx膜3aはSi、N、〇およびH を主成分とし、組成はN/Si比が0.1~0.8であ り、O/SiがN/Siよりも多いと良い。さらに、こ の範囲内でも、絶縁特性はワイドギャッフの広いSiO x 膜3bに近い方が優れるので、N/Si比がり、3~ 0. 5、O/Si比が1. 2~1. 5の範囲とすること が望ましい。具体的には、たとえばSiOが1、25で Nが0. 45程度の組成が適当である。これら組成の調 整には、ガスの流量、圧力、放電ハワーおよび電極間隔 の少なくともいずれかを変えることによって行なう 【0062】一方、活性層であるa-Si膜4上接する Si N_X 膜3bの組成は、Si、Nおよび口を主成分と し、組成はN/Si比が1、2以上とするが、薄膜トラ ンジスタロの信頼性を考慮した場合、科学量論的組成の

1.33以上とするとなお好ましい。 SiN_X 膜3b中に は不純物としてOが取り込まれるが、Oの含有量を5× 10²⁰atoms/cm³ 以下としないと、a-Si膜4との良 好な界面が形成できない。また、SiOχ Ny 膜3aの上 にSiNx膜3bを形成するので、特に、同一の反応室33 ~36にて成膜する場合には、SiOx Nv 膜3aの成膜後 にN₂ Oを速やかに除去するよう注意が必要である。こ の場合、短時間で除去するには高真空排気よりもたとえ ば N_2 ガスによるパージ方式が効果的である。ただし、 〇含有量を少なくするほど良いというものではなく、パ ージ時間を長く取ることは生産性に影響するので、薄膜 トランジスタ11の特性に影響のない範囲に抑えればよ い。また、 SiO_XN_V 膜3aと SiN_X 膜3bとを同一の 反応室33~36にて成膜する場合の間のパージ時間は、そ れぞれ5秒以上、60秒以下が好ましく、SiNx膜3b 中のO含有量の適切な範囲は、5×1018atoms/cm3以 上5×10²⁰aloms/cm³以下である。

【0063】また、SiOx Ny 膜3aの膜厚を決めるも のとしてO/SiとN/Siとを規定したが、この他に 日の含有量が成膜温度や圧力で大幅に変化する。これら Si、N、〇の各組成と日含有量をも含めた膜質を規定 する量として屈折率があり、SiOx Ny 膜3aの屈折率 は1. 49~1. 65の範囲であることが望ましい。そ して、Si、NおよびOの組成比が前述の値を満足して も、たとえば日が多量に含まれる膜は絶縁特性に劣る。 このような構造が粗な膜は屈折率が小さいので、屈折率 を上述の範囲におさめることで良好な効果が得られる。 なお、この屈折率は波長632.8 n m での値である。 【0064】さらに、SiOv Ny 膜3aの全部または一 部に、PまたはBをドーピングすると、PSG、BS G、BPSGと同様に不純物イオン、特にNaイオンを ゲッタリングする効果が得られる。薄膜トランジスタ11 はガラス基板1上に形成するので、ガラスからのNaイ オンを捕らえる機能を設けておけば、薄膜トランジスタ 口の信頼性が増す。具体的には、 SiO_xN_y 膜3aをさ らに2層に分割し、ガラス基板1あるいはゲート電極2 に近い側にのみPをドーピングをする。そして、Naイ オンは $S i O_X N_Y$ 膜3aのPがドーピングされたS i O $_{\chi}$ N_{γ} 層にゲッタリングされ、薄膜トランジスタロの特 性の変動などに悪影響をおよぼさなくなる。なお、Pを ドーピングするとゲート絶縁膜3の絶縁などの電気特性 はやや劣るので、非ドーピング層を積層することでこれ を補う。具体例として、ボトムゲート薄膜トランジスタ の場合には、PをドーピングしたSiOx Nv 層は30 ~80 n m程度で、ゲート電極2の直上に形成し、この ゲート電極2の上を非ドーピングのSi〇 $_{\chi}$ N_{χ} 層で覆 いこれら2つのSiOx Ny 層でSiOx Ny 膜3aとす

【0.0.6.5】また、ドービング層とゲート電極の間に薄層の非ドーピング $S.i.O_x.N_y$ 層を挿入し、ドービング

層を非ドーピング層でサンドイッチすることも効果的であり、 SiO_XN_Y 膜3aへのPのドーピングは原料ガスにPH $_3$ を添加することで容易であり、Rをドーヒングする場合には、B $_2$ H $_6$ またはBF $_3$ などを用いればよい。ただし、これらPあるいはBのドーヒングを施した膜を形成する反応室 $33\sim36$ と、a-Si 層斗を形成する反応室 $33\sim36$ とは別にすることが好ましい。

【0067】次に、他の実施例を図4を参照して説明する。この図4に示す実施例も図1に示す実施例と同様に図2に示す液晶表示装置30の一部を構成する。

【0068】この図4に示す実施例は、図1に示す実施例において、ゲート絶縁膜3として、ゲート電極2を覆うように、膜00、15 μ mの酸化シリコン(SiOx)膜3c主に膜厚0、15 μ mの酸窒化シリコン(SiOxNy)膜3dを積層形成し、このSiOxNy膜3d上に膜厚0、05 μ mの酸窒化シリコン(SiNx)膜3eを形成し、そして、膜厚0、05 μ mのa-Si膜4を形成したものである。【0069】このように、ゲート絶縁膜3の一部にフィドギャップの広いSiOx膜3cを用いることで絶縁性、耐圧をさらに改善し、一方で、SiOx膜の弱点である吸湿性や不純物イオンの可動性をSiOxNy膜3iとの環面性や不純物イオンの可動性をSiOxNy膜3iとの環面時性はSiNx膜3cで確保している。

【0070】ここで、この薄膜トランジスタロニケート 絶縁膜3、a-Si膜4およびチャネル保護膜5、環層 形成のプロセスについて説明する。

【0071】まず、 SiO_x 膜3con形成は、常生・ V D、滅圧C V D、ブラズマC V D あるいはK F β などの任意の方法により形成する。また、次に軍 χ : β SiO χ N χ 膜3d との間に興密を維持すると、 χ : χ は特には必要とせず、 χ SiO χ N χ 膜3d 、SiN χ 際 χ e、 χ = Si膜 χ およびチャネル保護膜 χ は、 χ は す実施例と同様に、たとえばフラズマC χ N χ で る。

【0072】また、SiO_x 膜3cの形成に常り、 法、減圧CVDの熱CVDプロセスを用いる。 基板1を概ね400℃以上に加熱必要がある。 ィクル発生が少なく、ビンボール欠落の少ない。 繰膜3が得られる。具体的には、たとえば4000年に 熱したガラス基板 1 に S i H_4 、 O_2 および N_2 をそれぞれ 1 0 0 sccm、 2 slm 、 2 0 slm 導入すると、 S i O_X 膜3cが形成される。この場合の N_2 は希釈ガスであって成膜に直接は寄与しない。

【0073】さらに、常圧CVD法で原料ガスにSiH 4 膜の代わりに有機シランを用いると、堆積表面での流 動性によって、ステップカバレージに優れたSiOx膜 が得られる。たとえばボトムゲート薄膜トランジスタの 場合には、ゲート電極2から連続した図示しない配線に テーパー加工を施さなくても、十分な被覆がなされ、完 全ではないまでも平坦化できる。もちろんトップゲート 薄膜トランジスタの場合でもステップカバレージに優れ たゲート絶縁膜3は有効である。なお、有機シランの具 体例としては、前述のTEOS、TMS、TRIESな どであり、これらの原料ガスの Ω 源としては Ω_2 だけで は参加能力が弱いのでオゾナイザで育成させた〇』をも 用いることが必要である。なお、常圧CVD法で有機シ ランから作製したSiOx 膜は特に吸湿性に富んでいる ので、薄膜トランジスタに適用する場合、耐水性の高い $S i O_X N_Y$ 膜3dとの組み合わせが必要である。

【0074】次に、 SiO_x 膜3cの形成にプラズマCV Dを用いる場合について説明する。この場合も、前述のプラズマCV D装置31で、反応33 \sim 36において加熱したサセプタにガラス基板1をクランプさせて320 $\,$ に調節する。そして、ガラス基板1の温度は30 $\,$ 0 $\,$ でから36 $\,$ 0 $\,$ での範囲であることが望ましい。この場合、熱C V Dに比べて低温にて形成でき、ガラス基板1 へのダメージが少ない点が有利である。

【0076】また、成膜時の圧力は0.5~5 Torr程度の広範囲で成膜が可能だが、低圧成膜の方が膜中への日の取り込みが少なく良質な絶縁膜となるので0.6~1.8 Torrが適当である。そして、サセフタとシャワー電極との間の電極間隔は10mmから40mmの範囲で、膜厚の均一性に優れる間隔を選択すると良い。なお、最適の電極間隔は圧力との相関が強く、概ね圧力に反比例し、高圧で成膜する場合ほど狭い電極間隔が必要となる。

【0077】そして、常圧CVDと同様、フラズマCVDにおいても、 SiO_x 膜3cの原料ガスに SiH_4 の代わりに有機シランを用いると、堆積表面での流動性によって、ステップカバレージに優れた SiO_x N_y 膜3dが

得られる。この場合の有機シランの具体例は前述のTEOS、TMS、TRIESなどがある。なお、これらの原料ガスのO源としては N_2 Oでは参加能力が弱いので O_2 が好ましく、やはり吸湿性が高いので S_1 O_x N_y 膜3dと S_1 O_x N_y 底3dと S_1 O_x N_y になった。

【0078】次に、上述の方法によって形成したSiO x 膜3c上にSiOvNv膜3dを形成するときは以下の点 で注意する必要がある。このSiOx膜3cは、形成方法 によって程度の差歯あるものの、成膜終了時点において すでに膜中に水分を内包しており、フラズマじて口より は常圧CVD、SiH4 系よりは有機シラン系となるほ ど水を含んでいる。また、大気に曝した場合には吸湿も する。したがって、 $\mathbf{S} + \mathbf{O}_{\chi} \cdot \mathbf{N}_{\chi}$ 膜3dの<math>8成に際しては 事前にこの水分を放出させることが必要である。この水 分を放出させる方法としては、真空または 1 O Torr以下 の滅圧雰囲気中でアニールし、その後、大気に曝するこ となく SiO_XN_V 膜3dで覆ってしまうと良い。なお、 SiO_X 膜3cと SiO_X N_Y 模3dの形成が別装置である ときはもちろんのこと、同じ装置で連続形成するときに も一度アニール処理でSiOx膜3c中の水分を追い出す ことが望ましい。また、アニール温度はSiO、N、膜 3dの形成温度よりも10℃~40℃高温で行なうことが 好ましく、1~2分でもガラス基板1の昇温だけなら可 能であるが水分脱離に関しては不十分であるので、アニ ール時間は5分以上できれば10分以上必要である。

【0.0.7.9】一方、 $S.i.O_x$ 腕3cの組成は、S.i.(Oおよび日を主成分とし、 $S.i.O_x$ 腕中には形成方法によってはNが取り込まれるが、良好な絶縁特性を得るためにはNの含有量を $5.\times1.0^{20}$ a toms/cm 3 以下とすべきである。

【0080】また、ゲート絶縁膜3を構成する SiO_X 膜3c、 SiO_X Ny 膜3dと SiN_X 膜3eの膜厚は、 SiO_X Ny 膜3dと SiN_X 膜3eの膜厚は、 SiO_X Ny 膜3dの合計膜厚が200 n m以上450 n m以下であり、かつ、 SiO_X Ny 膜3dの膜厚が100 n m以上、 SiN_X 膜3eの膜厚が5 n m以上200 n m以下とするのが好ましい。そして、絶縁性は SiO_X 膜3cと SiO_X Ny 膜3dとで、耐水性と不純物イオンのブロックを SiO_X Ny 膜3dとで、耐水性と不純物イオンのブロックを SiO_X Ny 膜3dで、a-Si 膜4との界面特性は SiN_X 膜3eに分担させる。また、 SiO_X 膜3cは絶縁性が確実でピンホール欠落密度が少ないため、絶縁性が確実になる。さらに、 SiO_X 膜3c、 SiO_X 院3c、 SiO_X 院3c SiO_X 院4c SiO_X SiO_X SiO

【0081】また、他の実施例を図5を参照して説明する。この図5に示す実施例も図1に示す実施例と同様に図2に示す液晶表示装置30の一部を構成する。

【0082】この図5に示す実施例は、図1に示す実施例において、薄膜トランジスタ11の形状に特徴があり、 チャネル保護膜5の幅はゲート電極2に裏面露光を用い て自己整合しているものである。

【0083】そして、ゲート絶縁膜3の構成は、図1に示す実施例と同様に SiO_XN_Y 膜3aと SiN_X 膜3hの積層である。

【0084】この様にチャネル保護膜5の幅、すなわち チャネル長とゲート電極2の幅を一致させた薄膜トラン ジスタ11は、ゲート・ソース間の寄生容量が少ない利点 がある。しかし、チャネル保護膜5の長さよりゲート電 [極2の大きい薄膜トランジスタに比べて、ガラス基板] からの汚染に弱い。すなわち、ガラス基板しからたとえ ばNaなどの不純物イオンが拡散しても、チャネル保護 膜5は大きなゲート電極2によって保護されて影響を受 けない、または軽減されている。これに対して自己整合 型の薄膜トランジスタロでは、チャネル保護膜5に不純 物イオン拡散に対して強い構造にしておく必要がある が、SiOχ Nv 膜3aとSiNχ 膜3hの積層型のゲート 絶縁膜3とすることで、薄膜トランジスタロの特性の信 頼性向上に、特に顕著な効果が現れる。もちろん、Pや BをSiOv Nv 膜3aの一部にドービングすることで不 純物に対する効果がより向上する。

【0085】さらに、他の実施例を図6を参照して説明する。この図6に示す実施例も図4に示す実施例と同様に図2に示す液晶表示装置30の一部を構成する。

【0086】この図6に示す実施例は、図4に示す実施例において、チャネル保護膜5の幅はゲート電極2に裏面露光を用いて自己整合しているものである。

【0.087】そして、ゲート絶縁膜3.0構成は、 SiO_x 膜3c、 SiO_x N_y 膜3dおよび SiN_x 膜3eを積層したもので、図5に示す実施例と同様の効果を有している。

【0088】上記いずれの実施例においても、歩留まりが向上するため、低コスト化につながり、また、薄膜トランジスタロの特性が安定化して、より厳しい駆動条件下での使用を可能とする。

【0089】なお、上記実施例では液晶表示装置につい

て説明したが、a-Si密着センサなどにも適用できる。

[0090]

【発明の効果】本発明によれば、ゲート絶縁膜として、酸窒化シリコン膜および窒化シリコン膜を用い、この窒化シリコン膜が非単結晶シリコンに接しているため、酸窒化シリコン膜はワイドギャッフで絶縁性に優れ、不純物イオンブロック効果、耐水性を期待することができるとともに、窒化シリコン膜は非単結晶シリコンとの界面性も良く、特性を向上できる。

【図面の簡単な説明】

【図1】本発明の一実施例を用いたアクティブマトリクス型液晶表示素子に用いる薄膜トランジスタを示す断面図である。

【図2】同上液晶表示装置の構成を示す断面図である。

【図3】同上液晶表示装置を製造するプラズマCVD装置を示す構成図である。

【図4】同上他の実施例のアクティブマトリクス型液晶 表示素子に用いる薄膜トランジスタを示す断面図である。

【図 5 】同上また他の実施例のアクティブマトリクス型 液晶表示素子に用いる薄膜トランジスタを示す断面図で ある。

【図6】同上さらに他の実施例のアクティブでトリクス 型液晶表示素子に用いる薄膜トランジスタを示す断面図 である。

【符号の説明】

- 3 ゲート絶縁膜
- 3a 酸窒化シリコン膜
- 3b 窒化シリコン膜
- 3c 酸化シリコン膜
- 3d 酸窒化シリコン膜
- 3e 窒化シリコン膜
- 4 活性層としてのa-Si膜
- 11 スイッチング素子としての薄膜トランジスタ

[図5]

【図6】

[図1]

æ

[图2]

