6		winding a second length of a second material about the first layer coil at a first
7	pitch to form	a second layer coil; and
o		heating the first layer coil and the second layer coil to a temperature for removing
9	any distortion	in the first layer coil and the second layer coil.
1	22.	(New) The method of Claim 21 wherein the core member is molybdenum and the
2	respective firs	at layer coil and second layer coil is tungsten.
1	23.	(New) The method of Claim 21 further including the steps of dissolving the first
·2	material to le	ave the first layer coil and second layer coil, inserting an electrode rod of a second
3	material in the	e first layer coil and affixing the electrode rod to the first layer coil.
1	24.	(New) The method of Claim 23 wherein the dissolving of the first material is done
2	with aqua reg	ia liquid.
1	25.	(New) The method of Claim 24 wherein the first layer coil is affixed to the
2	electrode rod	by welding.
1	26.	(New) A method for producing an electrode used for a discharge lamp, including:
2		a winding step for winding at least one refractory metal wire around a core
3	member and f	Forming n layers of coils one by one, n being larger than one;
4		a shape stabilizing step for stabilizing a shape of the n number of layers of coils;
5		a cutting step for cutting the formed n layers of coils and the core member;
6		a removing step for removing the core member after the cutting step;
7		a rod inserting step for inserting an electrode rod into a space from which the core

member has been removed, the electrode rod being made of refractory metal; and

8

9		a welding step for fixing the formed n layers of coils to the inserted electrode rod.
1	27.	(New) The method of Claim 26,
2		wherein in the winding step, a refractory metal wire forming an $(m+1)$ th layer is
3	wound along	a spiral valley between adjacent turns in a coil of an mth layer, m satisfying an
4	inequality 0<	m <n, a="" an="" coil="" each="" given="" in="" layer="" number="" of="" order="" ordinal="" representing="" td="" the<="" to="" which=""></n,>
5	layer has been found and	
6		wherein refractory metal wires forming the $(m+1)$ th layer and the m th layer are
7	wound in the same turning direction.	
1	28.	(New) The method of Claim 27,
2		wherein the removing step is performed by immersing the core member, around
3	which the n number of layers have been formed, into a liquid that dissolves the core member but	
4	does not disso	olve each refractory metal wire.
1	29.	(New) The method of Claim 28,
2		wherein the core member is made of molybdenum, and each refractory metal wire

is made of tungsten.

3