TP555 - AI/ML

Lista de Exercícios #9

k-Means

- 1. Cite alguns exemplos de aplicações reais do algoritmo k-Means.
- 2. Neste exercício, você irá utilizar o algoritmo k-Means com k = 3 para encontrar manualmente os centróides ótimos para o conjunto de dados de treinamento abaixo. Considere os centróides iniciais, C0, C1 e C2, dados ao lado. Utilize a distância Euclidiana para encontrar o cluster a que cada exemplo de entrada pertence. Apresente todos os cálculos necessários para se encontrar os centróides ótimos.

		, iprocessive to deep oo calculoo noococamoo	•					
(1	x2		CO		C1		C2	
1	4		x1	x2	x1	x2	x1	x2
4	3		5	3	1	3	3	4
4	5							
3	6							
6	7							
3	3							
2	5							
2	2							
2	3							
		•						

Em seguida, faça o seguinte

- A. Crie uma figura mostrando os dados de treinamento.
- B. Utilizando os centróides iniciais dados acima, instancie um objeto da classe KMeans da biblioteca SciKit-Learn.

km = KMeans(n_clusters=3, init=init_clusters)

C. Treine o modelo e imprima os centróides ótimos. Os valores encontrado pelo KMeans devem ser os mesmos que você encontrou manualmente. Os valores ótimos podem ser impressos como mostrado abaixo.

for i in range(0,3): print('Centroid %d: (%1.2f, %1.2f)' % (i,km.cluster_centers_[i][0],km.cluster_centers_[i][1]))

D. Quantas iterações foram necessárias para se treinar o modelo? (Dica: a documentação da classe KMeans pode ser acessada via:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)

- E. Crie uma figura com os dados de treinamento indicando através de cores ou marcadores diferentes à que clusters cada um deles pertence além de mostrar os centróides encontrados pelo k-Means.
- 3. Crie um conjunto de dados de treinamento utilizando a função *make_blobs* como mostrado abaixo.

X, y = make_blobs(n_samples=150, n_features=2, centers=5, cluster_std=1.0, shuffle=True, random_state=42)

Em seguida, faça o seguinte

- A. Crie uma figura mostrando os dados de treinamento.
- B. Após inspecionar a figura, decida quantos clusters devem ser utilizados com o algoritmo do k-Means.
- C. Instancie um objeto da classe KMeans da biblioteca SciKit-Learn.

km = KMeans(n_clusters=????, init=init_clusters)

- D. Treine o modelo e imprima os centróides ótimos.
- E. Quantas iterações foram necessárias para se treinar o modelo? (Dica: a documentação da classe KMeans pode ser acessada via: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)
- F. Crie uma figura com os dados de treinamento indicando através de cores ou marcadores diferentes à que clusters cada um deles pertence, além de mostrar os centróides encontrados pelo k-Means.
- 4. Neste exercício, você irá utilizar o algoritmo do k-Means para clusterizar os dados da modulação digital QPSK, ou seja, realizar a detecção de símbolos QPSK. Os símbolos QPSK são dados pela figura e tabela abaixo.

bits	Símbolo (I + jQ)				
00	$\frac{1}{\sqrt{2}} + j \frac{1}{\sqrt{2}}$				
$-\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}$					
10	$\frac{1}{\sqrt{2}} - j \frac{1}{\sqrt{2}}$				
11	$-\frac{1}{\sqrt{2}}-j\frac{1}{\sqrt{2}}$				

O resultado do seu *'clusterizador'* (neste caso, um detector) pode ser comparado com a curva da taxa de erro de símbolo (SER) teórica, a qual é dada por

SER =
$$erfc\left(\sqrt{\frac{Es}{2N0}}\right) - \frac{1}{4}erfc\left(\sqrt{\frac{Es}{2N0}}\right)^2$$
.

Utilizando a classe KMeans do módulo cluster da biblioteca sklearn, faça o seguinte

- A. Construa um detector para realizar a detecção dos símbolos QPSK.
 - a. Gere N = 1000000 símbolos QPSK aleatórios.
 - b. Passe os símbolos através de um canal AWGN.
 - c. Detecte a probabilidade de erro de símbolo para cada um dos valores do vetor Es/N0 = [-2, 0, 2, 4, 6, 8, 10,12, 14, 16, 18, 20].
- B. Apresente um gráfico comparando a SER simulada e a SER teórica versus os valores de Es/N0 definidos acima.
- C. Podemos dizer que a curva simulada se aproxima da curva teórica da SER?

(**Dica**: Como a ordem dos *centróides* encontrados pelo k-Means é aleatória, o valor do símbolo que o *centróide* representa pode ser encontrado através de estimativa por máxima verossimilhança (do inglês, maximum likelihood - ML), ou seja, testa-se o *centróide* de um símbolo detectado contra todos os símbolos possíveis, sendo o símbolo escolhido aquele que apresentar o menor erro.)

(**Dica**: A função **erfc** pode ser importada da seguinte forma: from scipy.special import erfc).

(**Dica**: A função *train_test_split* pode dividir qualquer número de vetores de entrada em vetores de treinamento e teste. Veja o exemplo abaixo onde três vetores de entrada, a, e c, são divididos em vetores de treinamento e teste.

Split array into random train and test subsets.
a_train, a_test, b_train, b_test, c_train, c_test = train_test_split(a, b, c, random_state=42)

Para mais informações, leia a documentação da função *train_test_split*: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.

(**Dica**: Uma rápida revisão sobre taxa de erro de símbolo pode ser encontrada no link: http://www.dsplog.com/2007/11/06/symbol-error-rate-for-4-qam/).

5. Neste exercício, você irá aprender e utilizar 2 métodos para se escolher o parâmetro k, ou seja, o número de clusters. Crie um conjunto de dados utilizando o trecho de código abaixo.

N = 1000

Generating the sample data from make blobs

This particular setting has one distinct cluster and 3 clusters placed close # together.

X, y = make_blobs(n_samples=N, n_features=2, centers=4, cluster_std=1, center_box=(-10.0, 10.0), shuffle=True, random_state=1)

Leia as referências abaixo para aprender sobre os métodos do cotovelo e da silhueta. Em seguida, faça o seguinte

A. Plote os dados do conjunto de testes.

- B. Visualmente, quantos clusters você acha que seriam necessários para agrupar os dados?
- C. Utilizando o método do cotovelo (do inglês, *Elbow Method*), encontre o valor mais apropriado para k.
- D. Com o(s) resultado(s) do método do cotovelo, crie uma figura com os dados de treinamento indicando através de cores ou marcadores diferentes à que clusters cada um deles pertence, além de mostrar os centróides encontrados pelo k-Means.
- E. Utilizando o método da silhueta (do inglês, *Silhouette Method*), encontre o(s) valor(es) mais apropriado(s) para k.
- F. Com o(s) resultado(s) do método da silhueta, crie uma figura com os dados de treinamento indicando através de cores ou marcadores diferentes à que clusters cada um deles pertence, além de mostrar os centróides encontrados pelo k-Means.

Referências

- [1] 'Elbow Method', https://itemporal.com/kmeans-and-elbow-method/
- [2] 'Elbow and Silhouette Methods',

https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-70850 5d204eb

[3] 'Elbow and Silhouette Methods',

https://medium.com/@masarudheena/4-best-ways-to-find-optimal-number-of-clusters-for-clustering-with-python-code-706199fa957c

- 6. Neste exercício, iremos verificar como o aprendizado semi-supervisionado funciona, usando clustering e classificação. Faça o seguinte:
 - a. Carregue a base de dados de dígitos do SciKit-Learn. Use o código abaixo para isso.

from sklearn.datasets import load digits

X_digits, y_digits = load_digits(return_X_y=True)

- b. A separe em dois conjuntos, treinamento e validação, com 80% e 20%, respectivamente.
- c. Treine um Regressor Logístico com apenas 50 amostras do conjunto de treinamento. Você pode usar as primeiras 50 amostras.
- d. Qual o score obtido?
- e. Agora, usando kMeans com k=50, encontre as 50 imagens mais representativas, ou seja, as imagens mais próximas de cada um dos k centróides.
- f. De posse destas 50 imagens mais representativas, as rotule e treine novamente um Regressor Logístico.
- g. Qual o score obtido?

- h. Usando as imagens mais representativas, propague seus rótulos para todas as outras instâncias que pertencem ao mesmo cluster.
- Treine um novo Regressor Logístico com esta base de treinamento rotulada com as imagens mais representativas.
- j. Qual o score obtido?
- k. Você deve ter percebido um pequeno aumento no score, mas provavelmente deveríamos ter propagado os rótulos apenas para os exemplos mais próximos do centróide, porque, ao propagar para o cluster inteiro, certamente incluímos alguns **outliers**. Vamos apenas propagar os rótulos até as amostras que estejam dentro do 75º percentil mais próximo do centróide. (**Dica**: Use a função percentile da biblioteca NumPy.)
- I. Treine um novo Regressor Logístico com esta base de treinamento.
- m. Qual o score obtido?
- n. Realize algumas iterações de aprendizado ativo e verifique a melhoria do score.

Aprendizado ativo

Para continuar melhorando seu modelo e seu conjunto de treinamento, a próxima etapa pode ser fazer algumas rodadas de aprendizado ativo: isto é, quando um especialista humano interage com o algoritmo de aprendizado, fornecendo rótulos quando o algoritmo precisa deles. Existem muitas estratégias diferentes para a aprendizagem ativa, mas uma das mais comuns é chamada de amostragem de incerteza:

- O modelo é treinado com os exemplos rotulados reunidos até agora, e esse modelo é usado para fazer previsões em todos exemplos não rotulados.
- Os exemplos para as quais o modelo é mais incerto (ou seja, quando sua probabilidade estimada é mais baixa) devem ser rotulados pelo especialista.
- Em seguida, você apenas repete esse processo repetidamente, até que a melhoria do desempenho deixe de valer o esforço de rotulagem.

Outras estratégias incluem rotular os exemplos que resultam na maior mudança do modelo, ou a maior queda no erro de validação do modelo, ou os exemplos em que diferentes modelos discordam (por exemplo, um SVM, uma floresta aleatória e assim por diante).