Preferenze Privacy degli Utenti

Parte IV

Indice

1	Intr	roduzione	2
	1.1	Rilascio diretto	3
	1.2	Controllo di accesso interattivo	4
		1.2.1 Interazione senza condizioni da parte del client	4
		1.2.2 Negoziazione $multi$ -step	4
		1.2.3 Interazione a due step	5
	1.3	Preferenze degli utenti	6
2	Cos	t-sensitive Trust Negotiation	7
3	Poi	nt-based Trust Management Model	9
4	Log	ic-based Minimal Credential Disclosure	11
5	Pri	vacy Preferences in Credential-based Interactions	14
	5.1	Client porfolio	14
		5.1.1 Client portfolio - proprietà	15

Introduzione

Privacy dell'identità degli utenti

Gli utenti preferiscono restare anonimi o comunque non condividere troppe informazioni quando operano nel cloud. Alcuni scenari:

- Tecniche di comunicazione anonima
- Privacy in location-based services (protezione della location quando sensibile)
- Attribute-based control access: è un problema lato server, non ci si basa più su chi un tente sia (l'identità) ma sugli attributi che ha (certificati che l'utente presenta)
- Supporto alle preferenze privacy degli utenti: problema lato utente; se mi viene chiesto un documento d'identità, non è che do al server tutto il portafoglio

Gli utenti potrebbero voler specificare le proprie scelte in termini di politiche del trattamento dei dati, quando:

- condividono delle proprie risorse con server esterni (ad esempio i social media)
- vengono rilasciate informazioni nelle interazioni digitali (ad esempio lascio la carta di credito per accedere a un servizio)
- \rightarrow Due aspetti di **protezione:**
- rilascio diretto: regola quando, a chi e perchè un utente rilascia informazioni (es. sto comprando qualcosa)
- uso secondario: regola l'uso e la profilazione dei dati da terze parti; anche questo deve essere sotto il controllo dell'utente

1.1 Rilascio diretto

La community di ricerca ha sviluppato diverse tecniche per regolare le interazioni tra parti sconosciute, definendo dei meccanismi di attribute-based access control: consistono in una dipedenza dell'accesso rispetto alle proprietà che un utente ha. Quello che gli utenti possono fare dipende dagli attributi che possiedono, verificati attraverso i certificati.

L'access control non risponde più si o no, ma risponde con i requisiti che il richiedente deve soddisfare per avere l'accesso. Non solo i server vanno protetti ma anche gli utenti, per questo vanno introdotte delle **forme di negoziazione**.

Esempio

Se vogliamo cambiare filosofia, in un sistema aperto (non so chi è l'utente) se voglio chiedere "tu soddisfi i requisiti per ottenere l'accesso?", nascono una serie di problematiche:

- come specificare l'autorizzazione
- engine per il controllo della politica
- anche la politica potrebbe essere confidenziale (non voglio dirti che faccio certi controlli)
- come chiedere le cose all'utente
- l'utente può avere delle controrichieste (hai la certificazione per chiedermi la carta di credito? la cripti?)

Questo dialogo deve terminare, deve essere **corretto** e **minimale** nei termini delle informazioni rilasciate; tipicamente vengono usati linguaggi basati sul paradigma logico.

1.2 Controllo di accesso interattivo

Il client è colui che richiede il servzio (utente), ha con sé:

- portfolio (credenziali e proprietà)
- stato (stato di informazioni che vuole mantenere)
- politica

Lo stesso vale per il server, cioè colui che offre il servizio.

1.2.1 Interazione senza condizioni da parte del client

La policy del server sta ad indicare ciò che il client deve dimostrare, tramite i certificati, per poter accedere al servzio.

1.2.2 Negoziazione multi-step

In questo caso c'è una negoziazione tra client e server \to bisogna stabilire fiducia tra le due parti.

Il server per essere privacy-friendly dovrebbe chiedere i dati tutti assieme.

1.2.3 Interazione a due step

Per essere *gentili* con l'utente viene fatta una distinzione tra i prerequsiti per l'accesso (necessari ma non sufficenti) e il requisito vero e proprio con eventuale controrichiesta da parte dell'utente.

Esistenti/emegenti tecnologie di supporto a ABAC

- U-Prove/Idemix: fornisce avanzate tecnologie di gestione dei certificati (i certificati odierni ti permettono di estrapolare dal certificato solo l'informazione che voglio fornire all'altra parte, senza fornire tutto il certificato).
- XACML: standard di oggi per l'interoperabilità delle politiche di controllo degi accessi

1.3 Preferenze degli utenti

Le specifiche di controllo degli accessi non sempre si adattano bene con il problema lato utente:

- + sono espressive, potenti e permettono all'utente di specificare se determinate informazioni possono o non possono essere rilasciate
- - non permettono agli uenti di esprimere che preferirebbero rilasciare determinate informazioni piuttosto che altre, nel contesto in cui ne sia data la possibilità
- ightarrow È necessario fornire agli utenti strumenti per definire in modo efficace le preferenze sulla privacy riguardo al rilascio delle loro informazioni

Desiderata

- Context-based preferences: sono disposto a rilasciare un'informazione solo se mi trovo in un certo contesto (lascio la carta solo quando devo pagare)
- Forbidden disclosures: certe cose insieme non le rilascio
- Associazioni sensibili: associazioni che sono sensibili, perche sono quasi identifier o perché non voglio che tu le veda
- Limited disclosure: se mi chiedi di essere maggiorenne, te lo dimostro ma non voglio dirti la mia età
- Instance-based preferences: se la mia carta sta per scaedere, preferisco lasciarti quella
- History-based peferences: magari ho già rilasciato qualcosa in passato
- Proof-based preferences: preferisco darti la prova che possiedo un passaporto invece che il passaporto stesso
- Non-linkability preferences: preferisco lasciarti informzioni che, linkate con terze parti, mi identificano di meno

Esistono diversi approcci per regolare la preferenza sulla privacy per gli utenti, che andiamo a vedere nei prossimi capitoli.

Cost-sensitive Trust Negotiation

- Due parti (client e server) interagiscono per stabilire fiducia reciproca tramite lo scambio di credenziali $\rightarrow trust \ negotation \ protocol$
- Il **rilascio di una credenziale** è regolato da una politica che specifica dei prerequisiti da soddisfare affinché la credenziale possa essere rilasciata
- Credenziali e politiche sono associate ad un costo
 - → più sono sensibili, più il costo è maggiore

L'obiettivo è di **minimizzare i costi totali** di rilascio di credenziali e politiche durante la *trust negotation*.

Con $c_1 \leftarrow s_1$ si intende *io rilascio se tu hai*. Il rettangolo nel *policy graph* corrisponde ad un AND.

Conclusioni

- La cost-sensitive trust negotation offre un meccanismo per il rilascio delle credenziali in base alla loro sensibilità. Si concentra sulla negoziazione stessa piuttosto che sul controllo da parte dell'utente.
- Supporta soltanto specifiche sulle credenziali; sensitive association e forbidden releases non possono essere specificate.
- Questo tipo di approccio (minimizzazione del costo totale) ha un'applicabilità limitata; inolte, la combinazione lineare dei costi potrebbe non essere desiderabile.

Point-based Trust Management Model

- Il server assegna dei punti a ciascuna credenziale
 - rappresentano il livello di affidabilità del proprietario
 - devono essere tenuti privati
- Il server richiede una **soglia minima di punti totali** per offrire accesso alla risorsa; deve essere tenuto privata
- Il client assegna a ciascuna sua credenziale un **punteggio** (privato), che indica la **sensibilità** della credenziale

 \rightarrow l'obiettivo è trovare un sottoinsieme delle credenziali del client che soddisfa la soglia stabilita dal server che ha valore di privacy minimo per il client

Threshold of accessing a resource: 10

SERVER

	College ID	Driver's license	Credit card	SSN
Point value	3	6	8	10

CLIENT

	College ID	Driver's license	Credit card	SSN
Sensitivity score	10	30	50	100

Client's options:

• SSN [Points: 10; Sensitivity: 100]

• College ID, Credit card [Points: 11; Sensitivity: 60]

• Driver's license, Credit card [Points: 14; Sensitivity: 80]

Conclusioni

- Il calcolo della soluzione viene ottenuto convertendo il problema convertendolo al *problema dello zaino*, utilizzando un protocollo sicuro che interagisce con entrambe le parti (client e server), in modo che i punteggi privati non vengano rivelati da una parte all'altra.
- Si concentra sulla negoziazione piuttosto che sul controllo da parte dell'utente
- sensitive association e forbidden disclosure non possono essere specificate
- il client e il server devono concordarsi sull'universo dei possibili tipi di credenziali (potrebbe compromettere la confidenzialità delle politiche del server)

Logic-based Minimal Credential Disclosure

- Le parti sono coinvolte in una trust negotiation nella quale il rilascio di credenziali è regolato da politiche (problema di bilanciare il linguaggio con la difficoltà delle regole)
- Ogni credenziale è un singolo attributo
- Combinando le politiche si ottengono diversi *negotiation paths* (set di credenziali per il rilascio) che soddisfano la negoziazione (sia il server che il client possono chiedere qualcosa)
- \rightarrow Si usa l'approccio logico per pem
rettere agli utenti di specificare le preferenze sulla privacy e selezion
are un *negotiation path*.

Alice's policy	On-line book shop's policy		Negotiation paths
$\begin{array}{c} c_{name} \leftarrow TRUE \\ c_{bbdate} \leftarrow c_{bbb} \\ c_{telephone} \leftarrow c_{bbb} \\ c_{email} \leftarrow c_{bbb} \\ c_{pcode} \leftarrow c_{bbb} \\ c_{id} \leftarrow c_{bbb} \\ c_{passport} \leftarrow c_{bbb} \land c_{obs} \\ c_{baccount} \leftarrow c_{bbb} \land c_{obs} \\ c_{cedit_card} \leftarrow c_{bbb} \land c_{obs} \\ c_{pin} \leftarrow c_{bbb} \land c_{obs} \\ \end{array}$	c_{osc} $c_{osc} \leftarrow TRUE$	S ₁ S ₂ S ₃ S ₄ S ₅ S ₆ S ₇ S ₈ S ₉	Name Name
	e represented as binary vectors at disclose; 1 means disclose	$S_{10} \\ S_{11} \\ S_{12}$	1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1

Nella colonna di *Alice's Policy* sappiamo che Alice sarà disposta a rilasciare determinate informazioni a patto che la controparte abbia determinati certificati.

Ciascuna delle righe di *negotiation paths* corrisponde a un possibile rilascio di credenziali al server, con lo scopo di soddisfare *purchase*. Ogni strategia può essere vista come un vettore binario.

- Preferenza di default: non rilasciare una credenziale è meglio che rilasciarla.
- I set di rilascio sono confrontati secondo la **Pareto composition** $(>_P)$: S_i domina S_j se S_i ha valori migliori o uguali di S_j , ripsettano le preferenze di rilascio delle credenziali ed è strettamente migliore rispetto ad almeno una credenziale (rilascia qualcosa in meno)

Example

$$S_5$$
: [0,0,0,0,0,1,0,1,1,0,0] S_9 : [1,0,0,0,0,1,0,1,1,0,0]
 $S_5[i] = S_9[i], i = 2,...,11 \text{ and } S_5[1] \succ_1 S_9[1]$
 $\Longrightarrow S_5 \text{ dominates } S_9 (S_5 \succ_P S_9)$

La gerarchia specifica le preferenze di rilascio delle credenziali $(c_i \rightarrow c_j)$ significa che preferiamo rilasciare c_i rispetto a c_j

È possibile esprimere preferzne condizionate in relazione a cosa ho rilasciato precedentemente.

Le righe arancione vengono scartate sulle preferenze degli utenti; le righe rosse sono scartate perché rilasciano più informazioni di quelle necessarie.

Disclosure sets

Transitive combination of preferences

```
S_1 dominates S_2
S_5 dominates S_6

bname

baccount

credit_card

\downarrow

pin

we user has to choose between S_1, S_5
```

Conclusioni

- Gli utenti sono coinvolti nella scelta del disclosure set
- Vengono assunti solo attributi (non si ragiona in termini di credenziali)
- La specifica di preferenze su gruppi di attributi non è sempre facile
- \bullet Credenziali possession-sensitive non sono considerate
- Forbidden releases non sono supportati

Privacy Preferences in Credential-based Interactions

Obiettivo

Abilitare gli utenti a regolare efficientemente il rilascio delle loro proprietà è credenziali

- Identificare i requisiti e i concetti che necesitano di catturati
- Organizzare le proprietà e credenziali dell'utente nel user portofolio
- Permettere all'utente di specificare quanto valuta le componenti del portfolio

5.1 Client porfolio

Le informazioni del client formano il Client portfolio; è composto da:

- Credenziale: certificato rilasciato e certificato da una terza parte;
 - certifica delle proprietà
 - ha un tipo, identificatore e un'entità che la rilascia
- Dichiarazione: credenziale self-signed (rilasciata da me stesso)

Si definisce una gerarchia di astrazione di tipi di credenziali.

5.1.1 Client portfolio - proprietà

- Credential indipendent: il valore è sempre lp stesso indipendentemente da chi lo rilascia
- Credential dipendent: il valore dipende dalla credenziale che lo certifica (es: passaporto)
- Atmoic: rilasciate unitamente
- Non atomic: le proprietà possono essere rilasciate disgiuntamente