Sequential Classical Control

Final Project CS 780

TABLE OF CONTENTS

- 1 Imitation Learning
- **2** Motivation
- 3 Environments
- 4 Approaches
- 5 Results

Imitation Learning

General Definition: Imitation learning (IL) techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations (states) and actions.[3]

Imitation Learning Paradigms

- Behavior Cloning (BC):
 Methods learn a mapping from states to actions as a supervised learning problem [5]
- Inverse Reinforcement Learning (IRL):
 Attempt to recover the reward function the agent is trying to optimize. Then optimize that reward function.

Motivation

- Training robots or control systems
- Less need for domain knowledge
- Some tasks are very challenging to program, but can be learned

Environments

- Mountain Car [1]
- Cart Pole
- Acrobot

CRF

- Linear Chain CRF
- Infinite state space
- Probabilistic re-weighting of sequences.

Bidirectional LSTM

- Data augmentation
- · Breaks with adversarial data

- Generative Adversarial Imitation Learning [2]
- Based upon GANs
- · One of the most advanced frameworks in IL today
- · Generalizes well and is scale-able

Table: Mountain Car

Accuracy	Reward
1.00 ± 0.00	-99 ± 5.92
0.97 ± 0.013	-108.5 ± 6.47
0.978 ± 0.003	-106.7 ± 7.78
$\textbf{0.995} \pm \textbf{0.005}$	-105.25 ± 7.73
NA	-200 \pm 0
	1.00 ± 0.00 0.97 ± 0.013 0.978 ± 0.003 0.995 ± 0.005

Table: Cart Pole

Metric	Accuracy	Reward
Expert	1.00 ± 0.00	200 ± 0.00
CRF	0.99 ± 0.024	200 ± 0.00
LSTM	0.999 ± 0.0008	200 ± 0.00
GAIL	0.99 ± 0.0013	200 ± 0.00
Random	NA	26.45 ± 5.25

Table: Acrobot

Metric	Accuracy	Reward
Expert	1.00 ± 0.00	-103.1 ± 27.53
CRF	0.976 ± 0.013	-91.95 ± 16.69
LSTM	0.99 ± 0.0036	-85.5 ± 10.34
GAIL	0.9957 ± 0.0031	-96 ± 23.65
Random	NA	-500 \pm 0

Going Forward

- · Results with adversarial data
- Comparison of run-time CRF vs InfoGAIL [4]

Citations

- [1] Greg Brockman et al. OpenAl Gym. 2016. eprint: arXiv:1606.01540.
- [2] Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. 2016. arXiv: 1606.03476 [cs.LG].
- [3] Ahmed Hussein et al. "Imitation Learning: A Survey of Learning Methods". In: ACM Comput. Surv. 50.2 (Apr. 2017). ISSN: 0360-0300. DOI: 10.1145/3054912. URL: https://doi.org/10.1145/3054912.
- [4] Yunzhu Li, Jiaming Song, and Stefano Ermon. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations. 2017. arXiv: 1703.08840 [cs.LG].
- [5] Dean A Pomerleau. "Efficient training of artificial neural networks for autonomous navigation". In: *Neural computation* 3.1 (1991), pp. 88–97.