Cheetah Optimizer Algorithm

By: Alex Taylor and Om Patel

Agenda

- Overview
- Original Algorithm
- Benchmarking for Original Algorithm
- Modifications for TSP
- Benchmarking for TSP Algorithm
- TSP Art

Overview

Inspired by the cheetahs' qualities:

- Long searching/scanning followed by fast chase
- Built-in exploration vs exploitation
- Cheetah's energy limits, random step sizes, prey movements when chasing

Original Algorithm

Algorithm 1: The CO Algorithm

Main Points:

- Send out some of the cheetahs on a hunt
- Searching
- Sit-and-Wait
- Attack
- Giving up the hunt
- Resting at home before new hunts

```
Define the problem data, dimension (D), and the initial population size (n)
      Generate the initial population of cheetahs X_i (i = 1, 2, ..., n) and evaluate the fitness of each cheetah
      Initialize the population's home, leader and prey solutions
      it \leftarrow 1
       MaxIt \leftarrow desired maximum number of iterations
      T \leftarrow 60 \times [D/10]
      while it \leq MaxIt do
          Select m (2 \le m \le n) members of cheetahs randomly
10:
          for each member i \in m do
11:
          Define the neighbor agent of member i
            for each arbitrary arrangement j \in \{1, 2, ..., D\} do
12:
13:
                Calculate \hat{r}, \check{r}, \alpha, \beta, and H
14:
                r_2, r_2 \leftarrow \text{random numbers are chosen uniformly from 0 to 1}
15:
16:
                   r_4 \leftarrow a random number is chosen uniformly from 0 to 3
17:
                   if H \ge r_4 then
                       Calculate the new position of member i in arrangement j using Equation (3) //Attack
18:
19:
20:
                      Calculate the new position of member i in arrangement j using Equation (1) //Search
21:
                   end
22:
                else
                   Calculate the new position of member i in arrangement j using Equation (2) //Sit-and-wait
23:
24:
                end
25:
             end
26:
            Update the solutions of member i and the leader
27:
          end
28:
29:
          if t > rand \times T and the leader position doesn't change for a time, then //Leave the prey and go back home
30:
             Implement the leave the prey and go back home strategy and change the leader position
31:
            Substitute the position of member i by the prey position
32:
            t \leftarrow 0
33:
          end
34:
          it \leftarrow it + 1
         Update the prey (global best) solution
36:
```

- Implemented 8 functions from CEC 2005
 - 3 Unimodal functions for exploitation
 - 5 Multimodal functions for exploration
 - 3 Basic Multimodal functions
 - 2 Expanded Multimodal functions
- Overlapping functions from CEC 2010 & CEC 2013

- Replicated the experiment settings and parameters
 - Function Evaluations/Iterations: 300,000
 - Population Size: 6
 - Search Agents: 2
 - Dimensions: 30
- Low Replication Transparency
 - No reasoning for the number of function evaluations
 - Led to us picking our own number of simulations 10
 - No Information about tuning random variables

Function	 Template Paper Mean	Template Paper STD	Cheetah Mean	Cheetah STD
 f1	5.7e-13	1.76e-12	2.78607e-11	 3.41241e-11
f2	3.25e-5	1.27e-5	1.8998e-6	1.3808e-6
f3	802000.0	411000.0	2.53999e5	84051.9
f6	51.0	66.1	23.784	32.457
f9	2.03e-10	8.37e-10	1.79093	1.30992
f10	199.0	55.3	169.153	34.2995
f13	1.32	0.304	13.2556	10.0221
f14	12.8	0.332	0.658255	0.42255
L				ii

Convergence Curves for f3(unimodal)
Julia implementation pictured on left

Convergence Curves for f10(multimodal)
Julia implementation pictured on left

Convergence Curves for f13(multimodal)
Julia implementation pictured on left

Algorithm TSP Modifications

- 1. The original algorithm iterates through dimensions
 - a. No longer search vs attack per dimension, instead one choice for the whole cheetah that iteration.
- 2. How do we implement Search and Attack for the whole Cheetah then?
 - a. Some sort of swaps?
 - i. One swap = Too Few
 - ii. Every city swap = Too Many
 - iii. Solution: dim/3 swaps

Search Modifications

- Simple Implementation
- Random Search of the Search Space
- Conclusion: Random swap of the cities' within one cheetah's order

$$X_{i,j}^{t+1} = X_{i,j}^t + \hat{r}_{i,j}^{-1}.\alpha_{i,j}^t$$

Attack Modifications

- Simple Implementation
- Based on leader and neighbor values
- Conclusion: Find pairs of cities present in the leader and neighbor cheetahs and put those cities together within the current cheetah
 - Side note: Leader cheetah weighted heavier than neighbor(7:1)

$$X_{i,j}^{t+1} = X_{B,j}^t + \check{r}_{i,j}.\beta_{i,j}^t$$

Algorithm TSP Modifications

- 3. Certain calculations omitted
 - a. Checks between leader and prey
 - b. Clamping bounds
 - c. Other small optimization calculations
 - d. Solution: Keep the core ideas present
- 4. M Value altered
 - a. A higher number of search agents lead us to better results almost across the board

■ Article Navigation

Benchmarking Metaheuristic Optimization Algorithms on Travelling Salesman Problems

Deniz Tosoni, University of Applied Sciences and Arts Northwestern Switzerland, Switzerland, deniz.tosoni@students.fhnw.ch

Christopher Galli, University of Applied Sciences and Arts Northwestern Switzerland, Switzerland, christopher.galli@students.fhnw.ch

<u>Thomas Hanne</u>, University of Applied Sciences and Arts Northwestern Switzerland, Switzerland, <u>thomas.hanne@fhnw.ch</u>

<u>Rolf Dornberger</u>, University of Applied Sciences and Arts Northwestern Switzerland, Switzerland, <u>rolf.dornberger@fhnw.ch</u>

- 10 instances of the from TSPLIB were used
 - Ranged in complexity and size (various scenarios)
- 6 algorithms were compared against
 - ACO Optimized, ACO, GA, PSO, SA, TS
- Benchmarking Approach
 - 10 simulations on each instance
 - 1000 iterations for each simulation
 - 100 populations size for population-based methods

NC STATE UNIVERSITY

```
tsp = readTSPLIB(:Eil51)
fitness values = []
for in 1:10
    best_fitness = cheetah_TSP(tsp.weights, tour_cost, size(tsp.nodes, 1), iter, pop_size, agents)
    push!(fitness values, best fitness)
end
# Compute metrics
best_fitness = minimum(fitness_values)
average_fitness = mean(fitness_values)
avg_delta_percentage = ((average_fitness - tsp.optimal) / tsp.optimal) * 100
println("Best: ", best_fitness)
println("Average: ", average_fitness)
println("Average Delta: ", avg_delta_percentage)
# Store results
results[tsp_instances[1]] = (best = best_fitness, average = average_fitness, avg_delta = avg_delta_percentage)
```

NC STATE UNIVERSITY

Pr144

Pr152

58537

73682

277456

337027

300546

355993

413.43%

383.15%

TSP Model	Route Cost	 ACO 0	ptimized Best	ACO Opti	mized Avg	ACO Optimized A	ا Avg ∆% ا	ACO Best	ACO Avg	 ACO Avg Δ% 	PSO Best	PSO Avg PSO Avg	PSO Avg ∆%	CO Bes	CO A	rg CO Avg Δ%
Eil51	426	İ	441	i	449		5.4%	451	457	7.3%	856	961	125.59%	596.	657.	1 54.2488
Berlin52	7542	1	7548	1	7689		1.95%	7757	8001	6.1%	14786	16460	118.2%	11010.	11644.	7 54.398
Eil76	538		553	1	562		4.48%	577	579	7.6%	1396	1561	190.22%	1058.	1181.	3 119.572
Eil101	629	I	669	1	691		9.9%	704	725	15.18%	2163	2421	284.94%	1667.	1820.	7 189.459
Pr76	108159	1	114169	1	116751		7.94%	122567	124262	14.89%	316878	359243	232.14%	242133.	2.612786	5 141.569
Pr107	44303		45970	1	46240		4.37%	45768	45993	3.81%	312766	349933	686.86%	142531.	1.603326	5 261.9
Pr124	58537		60203	1	60992		4.19%	64462	65631	12.12%	408894	470387	703.57%	314959.	3.435216	5 481.943
Pr136	96772	[105322	1	107519	1	11.11%	110390	111386	15.10%	515092	584403	503.90%	434923.	4.538256	5 368.964
Pr144	58537	l	59705	1	60342		3.08%	59525	59729	2.04%	512336	573211	879.23%	429347.	4.579366	5 682.301
Pr152	73682	l	78180	1	78784		6.92%	77650	78422	6.43%	668545	738097	901.73%	556877.	5.84076	5 692.69
1 1		1														
				-						l						
TSP Mode	l Route (Cost	GA Best	GA Avg	GA Avg Δ	SA Best	SA A	lvg SA	Avg Δ%	TS Best	TS Avg	TS Avg A	% CO Be	est	CO Avg	CO Avg Δ%
TSP Mode	- i	Cost	GA Best 	GA Avg 8930	GA Avg Δ ¹	-j	 	Nyg SA .	Avg Δ% 	TS Best	TS Avg	TS Avg A	- 	est 	CO Avg	CO Avg Δ%
i	1					* 445	4	67		 į			% 630	0.0	——i	 i
Eil5	1 2	426	8349	8930	17.51	% 445 % 8498	4 92	 67 79	9.65%	537	562	32	% 636 % 10873).0 3.0	662.5	55.5164
Eil5 Berlin5	1 2 :	426 7542	8349 8390	8930 8498	17.51 ⁴	% 445 % 8498 % 601	4 92 6	967 279 328	9.65% 23.03%	537 9438	562 10208	32 35.35	% 636 % 10873 % 1105).0 3.0 5.0	662.5 11716.0	55.5164 55.3434
Eil5 Berlin5 Eil7	1 2 : 6 1	426 7542 538	8349 8390 784	8930 8498 860	17.51 ⁴ 18.4 ⁴ 59.87 ⁹	% 445 % 8498 % 601 % 715	4 92 6	67 279 328 361	9.65% 23.03% 16.65%	537 9438 745	562 10208 783	32 35.35 45.48	% 636 % 10873 % 1105 % 1742	0.0 3.0 5.0	662.5 11716.0 1189.8	55.5164 55.3434 121.152
Eil5 Berlin5 Eil7	1 2 : 6 1 6 10	426 7542 538 629	8349 8390 784 1122	8930 8498 860 1240	17.51 ¹ 18.4 ¹ 59.87 ¹	% 445 % 8498 % 601 % 715 % 150864	4 92 6	 67 79 628 61 80	9.65% 23.03% 16.65% 21.05%	537 9438 745 963	562 10208 783 1071	32 35.35 45.48 70.19	% 636 % 10873 % 1105 % 1742 % 246928	0.0 3.0 5.0 2.0 3.0 2.	662.5 11716.0 1189.8 1829.5	55.5164 55.3434 121.152 190.859
Eil5 Berlin5 Eil7 Eil10	1 2 5 6 101 6 44	426 7542 538 629 8159	8349 8390 784 1122 161513	8930 8498 860 1240 175464	17.51; 18.4; 59.87; 97.12; 62.23;	% 445 % 8498 % 601 % 715 % 150864 % 110474	4 92 6 7		9.65% 23.03% 16.65% 21.05%	537 9438 745 963 226031 113250	562 10208 783 1071 261316	35.35 35.48 45.48 70.19	% 636 % 10873 % 1105 % 1742 % 246928 % 139038	3.0 3.0 5.0 2.0 3.0 2.	662.5 11716.0 1189.8 1829.5 60515e5	55.5164 55.3434 121.152 190.859 140.863

177458

23529

203.16%

219.34%

298368

257020

330267

315339

464.20% | 409448.0 |

327.97% | 563426.0 |

4.5334e5

5.90565e5

674.451

701.505

151187

209951

TSP Model	Route Cost	CO Best	CO Avg	CO Avg Δ%	CO 30 Best	 C0 30 Avg	 CO 30 Avg Δ%
Eil51	426	630.0	662.5	55.5164	457.0	475.3	11.5728
Berlin52	7542	10873.0	11716.0	55.3434	7792.0	8302.0	10.0769
Eil76	538	1105.0	1189.8	121.152	665.0	701.6	30.4089
Eil101	629	1742.0	1829.5	190.859	904.0	1008.0	60.2544
Pr76	108159	246928.0	2.60515e5	140.863	136618.0	1.47728e5	36.5843
Pr107	44303	139038.0	1.55417e5	250.805	46734.0	48361.3	9.16033
Pr124	58537	329739.0	3.49454e5	491.994	98833.0	1.08478e5	83.7679
Pr136	96772	428091.0	4.52932e5	368.04	169516.0	1.9575e5	102.279
Pr144	58537	409448.0	4.5334e5	674.451	180482.0	2.22957e5	280.882
Pr152	73682	563426.0	5.90565e5	701.505	111475.0	184890.0	150.93

Overall Algorithm Thoughts

- Not too many unique ideas, just rephrased older ideas
 - Ex. Hunt Time = SA's temperature
- Outperformed by existing algorithms
- Interesting in theory but in execution doesn't provide much innovation
- Can still be used to create meaningful art!

How was it made?

- Stipples were created by StippleGen2
- Converted SVG to coordinates using PathToPoints tool
- ChatGPT to transform points into a distance matrix
- Greedy approach to initialize the population position
 - Produced more efficient & quicker results
- Plotted the tour with using a scatter for cities dots and lines to visualize to connect the cities

Predator

TSP Art

Thank you! Any questions?