Linear transformation, coordinate and matrix representation

Let $T: V \to W$ be a linear transformation. Show that T(I) is linearly independent for any linearly independent finite subset I of V if and only if $ker(T) = \{0\}$.

Proof. The statement is an if and only if statement, so we will prove the following two directions.

 (\Rightarrow)

Assume that for any linearly independent finite subset I of V, T(I) is also linearly independent. We want to show that $ker(T) = \{0\}$.

Since T(0) = 0 by T being a linear transformation, we know that $0 \in ker(T)$. Therefore $\{0\} \subseteq ker(T)$.

Let $v \in ker(T)$, then T(v) = 0. We want to show that v = 0.

Assume $v \neq 0$ for the sake of contradiction, then we know that $\{v\}$ is a linearly independent finite subset of V. Then by the assumption, $\{T(v)\}$ is linearly independent, but we know that T(v) = 0, such that $\{0\}$ is a linearly independent.

However, we know that a set containing the zero vector is linearly dependent, therefore we have a contradiction. As a result, v = 0 and hence $ker(T) \subseteq \{0\}$.

Therefore $ker(T) = \{0\}$

 (\Leftarrow)

Assume $ker(T) = \{0\}$. Let $I = \{v_1, ..., v_n\}$ be a finite linearly independent subset of V. We want to show that $T(I) = \{T(v_1), ..., T(v_n)\}$ is linealry independent. Assume $a_1T(v_1) + ... + a_nT(v_n) = 0$ for some $a_i \in \mathbb{F}$, then

$$a_1T(v_1) + \dots + a_nT(v_n) = 0$$

 $T(a_1v_1 + \dots + a_nv_n) = 0$ by T being a linear transformation
 $a_1v_1 + \dots + a_nv_n = 0$ because $a_1v_1 + \dots + a_nv_n \in ker(T) = \{0\}$
 $a_1 = \dots = a_n = 0$ by I being linearly independent

Therefore T(I) is linearly independent.