

P. 1: Instructions on Course Final Project Sec 2 – Sample/default IoT Course Projects

COMPSCI 147
Internet-of-Things; Software and Systems

3 DEFAULT PROJECTS TO CHOOSE FROM

1. Health Monitoring

2. Smart Building

3. Outdoor Plant Monitoring

1. HEALTH MONITORING

- Vital sign and activity monitoring
 - Step counts, sitting too long, fall detection, ...
 - Heart rate, respiration rate, ...

HEALTH MONITORING

- Vital sign and activity monitoring
 - Heart rate, respiration rate, ...
 - Step counts, sitting too long, fall detection, ...

Possible ways to make it more challenging:

- Display colored dashboard on OLED
- Adding extra functionalities such as calculating SpO2 (i.e., Oxygen Saturation) using PPG, or sleep monitoring using 3D Acc and Gyr
- Real-time streaming at the user interface
- Building also a cloud-connected mobile app

•

2. SMART BUILDING

- Activity detection (using sound and PIR) and ambient light monitoring of buildings
 - Instead of actuators like light, show their status on an OLED. Assume at 100% usage they consume 50W Power.
 - Measure ambient activity and sound to automatically reduce electricity consumption when actuators are not required.
 - Have custom sound commands (Ex: 2claps turn on light) to control actuators.
 - Use NTP protocol to get current time from NTP servers. In the OLED interface, show average energy-usage across days of the week.

SMART BUILDING

Idays of the week.

- Activity detection (using sound and PIR) and ambient light monitoring of buildings
 - Instead of actuators like light, show their status on an LCD display. Assume at 100% usage they consume 50W Power.
 - Measure ambient activity and sound to automatically reduce electricity consumption when actuators are not required.
 - Have custom sound commands (Ex: 2claps turn on light) to control actuators.

Possible ways to make it more challenging:

- Use external (high frequency) ADC + microphone to perform signal processing on the audio data to understand if it is a human voice and extract control commands.
- Building a cloud-connected mobile app to control actuators

•

User Interface Cloud

Cloud Services
(e.g., data analytics Visualization)

3. OUTDOOR PLANT MONITORING

- Measure soil and environment characteristics
 - Use OLED to report current condition and when watering is required
 - Use UV sensor to decide if sunlight is adequate
 - Develop a composite score combing the conditions and show it in the display
 - Analyze humidity and UV data, along with weather forecast to decide with what probability watering is required. Report probability for immediate requirement, and in the next 7 days.
 - Analyze rate of change in humidity and UV to make prediction more realistic.

OUTDOOR PLANT MONITORING

- Measure soil and environment characteristics
 - Use LCD to report current condition and when watering is required
 - Use UV sensor to decide if sunlight is adequate
 - Develop a composite score combing the conditions and show it in the UX
 - Analyze humidity and UV data, along with weather forecast to decide with what probability watering is required. Report probability for immediate requirement, and in the next 7 days.

Possible ways to make it more challenging:

- OLED display to plot real-time information
- Building also a cloud-connected mobile app
 Send push notification for any immediate action like storm warning, excessive UV exposure

User Interface

Cloud Services
(e.g., data analytics, Visualization)

Point

Prepare ahead

 Depending on the selected project, very likely you have to buy 1 or 2 additional sensors/actuators.

• If you have some hardware lying around, please feel free to think of innovative projects beyond what is provided as default.

 Refer to the "Project Requirements" slide to understand the 4 major components.