SỞ GIÁO DUC VÀ ĐÀO TAO **BÌNH PHƯỚC**

KY THI CHỌN HỌC SINH GIỎI CẤP TỈNH LỚP 12 **NĂM HOC 2017-2018** MÔN THI: TOÁN

ĐỀ CHÍNH THỰC

(Đề thi gồm có 01 trang)

Thời gian: 180 phút (không kể thời gian giao đề) Ngày thi: 28/09/2017

Câu 1. (*THPT 4,0 điểm*; *GDTX 5,0 điểm*). Cho hàm số $y = \frac{2x-2}{x+1}$.

- a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
- **b**) Tìm điểm M thuộc (C) sao cho khoảng cách từ M đến đường thẳng $\Delta_1: 2x-y+4=0$ bằng $\frac{2}{3}$ lần khoảng cách từ M đến đường thẳng $\Delta_2: x-2y+5=0$.

Câu 2. (THPT 6,0 điểm; GDTX 6,0 điểm).

- a) Giải phương trình: $\frac{4\cos^3 x + 2\cos^2 x \left(2\sin x 1\right) \sin 2x 2\left(\sin x + \cos x\right)}{2\sin^2 x 1} = 0.$ b) Giải hệ phương trình: $\begin{cases} y^3(x^6 1) + 3y(x^2 2) + 3y^2 + 4 = 0\\ \left(4x + 3\right)\left(\sqrt{4 xy(x^2 1)} + \sqrt[3]{3x + 8} 1\right) = 9 \end{cases} \quad (x, y \in \mathbb{R}).$
- c) Tìm hệ số của số hạng chứa x^8 trong khai triển thành đa thức của $\left[1+x^2\left(1-x\right)\right]^{n+2}$. Biết rằng $C_{2n}^0 + C_{2n}^2 + \dots + C_{2n}^{2n} = 2048.$

Câu 3. (THPT 4,0 điểm; Thí sinh hệ GDTX không phải làm câu 3b, GDTX 3,0 điểm).

- a) Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A(-1;2). Gọi M,N lần lượt là trung điểm của các cạnh CD và AD, K là giao điểm của BM với CN. Viết phương trình của đường tròn ngoại tiếp tam giác BNK, biết đường thẳng BM có phương trình 2x + y - 8 = 0 và điểm B có hoành độ lớn hơn 2.
- **b**) Cho đường tròn (O) đường kính AB, một đường thẳng d không có điểm chung với đường tròn (O) và d vuông góc với AB kéo dài tại K (B nằm giữa A và K). Gọi C là một điểm nằm trên đường tròn (O), (C khác A và B). Gọi D là giao điểm của AC và d, từ D kẻ tiếp tuyến DE với đường tròn (E là tiếp DE)điểm và E, C nằm về hai phía của đường kính AB). Gọi F là giao điểm của EB và d, G là giao điểm của

AF và (O), H là điểm đối xứng của G qua AB. Chứng minh ba điểm F, C, H thẳng hàng.

Câu 4. (THPT 3,0 điểm; GDTX 4,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB = AD = a, CD = 2a. Biết rằng hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt đáy bằng 45° . Tính theo a thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SD và BC.

Câu 5. (THPT 2,0 điểm; GDTX 2,0 điểm).

Cho x > 0, y > 0 thỏa $x^4 + y^4 + 4 = \frac{6}{xy}$. Tìm giá trị nhỏ nhất của biểu thức $P = \frac{1}{1+2x} + \frac{1}{1+2y} + \frac{3-2xy}{5-x^2-y^2}$.

Câu 6. (THPT 1,0 điểm; Thí sinh hệ GDTX không phải làm câu 6). Cho dãy số (u_n) được xác định

$$\text{như sau: } \begin{cases} u_1 = a \geq 1 \\ u_{n+1} = u_n \left(u_n^{2017} + 1 \right), \forall n \in \mathbb{N}^*. \text{ Tìm } \lim \left(\frac{u_1^{2017}}{\sqrt{u_2} + \frac{u_2}{\sqrt{u_1}}} + \frac{u_2^{2017}}{\sqrt{u_3} + \frac{u_3}{\sqrt{u_2}}} + \ldots + \frac{u_n^{2017}}{\sqrt{u_{n+1}} + \frac{u_{n+1}}{\sqrt{u_n}}} \right).$$

Lưu ý: Thí sinh không được sử dụng tài liệu và máy tính bỏ túi, giám thị coi thi không giải thích gì thêm. Ho và tên thí sinh:.....Số báo danh:.....Số

SỞ GIÁO DỰC VÀ ĐÀO TẠO BÌNH PHƯỚC HƯỚNG DẪN CHẨM KÌ THI CHỌN HỌC SINH GIỎI CẤP TỈNH LỚP 12 NĂM HỌC 2017-2018

Hướng dẫn chấm gồm 07 trang

MÔN THI: TOÁN

Lưu ý: Điểm toàn bài lấy điểm lẻ đến 0,25; thí sinh làm cách khác đúng vẫn cho điểm tối đa.

Câu	ý: Điểm toàn bài lấy điểm lẻ đến 0,25; thí sinh làm cách khác đúng vấn cho Nội dụng	Điểm	
Cau	Nội dung	THPT	GDTX
1	Cho hàm số $y = \frac{2x-2}{x+1}$ a) Khảo sát và vẽ đồ thị (<i>C</i>) của hàm số. b) Tìm điểm <i>M</i> thuộc (<i>C</i>) sao cho khoảng cách từ <i>M</i> đến đường thẳng $\Delta_1: 2x-y+4=0 \text{ bằng } \frac{2}{3} \text{ lần khoảng cách từ } M \text{ đến đường thẳng}$ $\Delta_2: x-2y+5=0.$	4,0	5,0
	\oplus TXĐ: $D = \mathbb{R} \setminus \{-1\}$ \oplus Sự biến thiên $y' = \frac{4}{(x+1)^2} > 0, \forall x \neq -1$ nên hàm số đồng biến trên từng khoảng xác định.	0,5	0.5
	\oplus Ta có $\lim_{x \to -1^-} \frac{2x-2}{x+1} = +\infty$; $\lim_{x \to -1^+} \frac{2x-2}{x+1} = -\infty \Rightarrow \text{Dồ thị của hàm số nhận}$ đường thẳng có phương trình $x = -1$ là tiệm cận đứng. \oplus Ta có $\lim_{x \to -\infty} \frac{2x-2}{x+1} = 2$; $\lim_{x \to +\infty} \frac{2x-2}{x+1} = 2 \Rightarrow \text{Dồ thị của hàm số nhận đường}$ thẳng có phương trình $y = 2$ là tiệm cận ngang.	0,5	0.5
	Bảng biến thiên $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,5	0.5
1a	\oplus Điểm đặc biệt: $(-2;6), (-3;4)(0;-2), (1;0)$. \oplus Đồ thị hàm số nhận giao điểm hai tiệm cận $I(-1;2)$ là tâm đối xứng. \oplus Đồ thị:	0,5	1,0

1b		0,5	0,5
		0,5	0,5
		0,5	0,75
	$\label{eq:Voising} \left. \oplus \right. \text{V\'oi} x_{_{0}} = 0 \Rightarrow M\!\left(0;\!-2\right)\!; x_{_{0}} = -2 \Rightarrow M\!\left(\!-2;\!6\right)\!.$	0,5	0,75
	Giải PT: $\frac{4\cos^3 x + 2\cos^2 x (2\sin x - 1) - \sin 2x - 2(\sin x + \cos x)}{2\sin^2 x - 1} = 0$	2,0	2,0
2a	\oplus ĐK : $2\sin^2 x - 1 \neq 0 \Leftrightarrow \cos 2x \neq 0 \Leftrightarrow x \neq \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z}.$	0,25	0,25
		0,75	0,75
		1,0	1,0

	Giải hệ phương trình:		
	$\begin{cases} y^3(x^6 - 1) + 3y(x^2 - 2) + 3y^2 + 4 = 0\\ (4x + 3)\left(\sqrt{4 - xy(x^2 - 1)} + \sqrt[3]{3x + 8} - 1\right) = 9 \end{cases} (x, y \in \mathbb{R}).$	2,0	2,0
		1,0	1,0
2b		0,25	0,25
	Xét hàm số $g(x) = \sqrt{4+x} + \sqrt[3]{3x+8} - \frac{9}{4x+3} - 1$, với $x \in (-4; +\infty) \setminus \left\{-\frac{3}{4}\right\}$ Ta có $g'(x) = \frac{1}{2\sqrt{4+x}} + \frac{1}{\sqrt[3]{(3x+8)^2}} + \frac{36}{(4x+3)^2} > 0$ với $x \in (-4; +\infty) \setminus \left\{-\frac{3}{4}\right\}$. \Rightarrow Hàm số $y = g(x)$, đồng biến trên từng khoảng $\left(-4; -\frac{3}{4}\right)$ và $\left(-\frac{3}{4}; +\infty\right)$ \Rightarrow Trên mỗi khoảng $\left(-4; -\frac{3}{4}\right)$ và $\left(-\frac{3}{4}; +\infty\right)$ phương trình có tối đa một nghiệm. Mà $g(0) = g(-3) = 0 \Rightarrow$ phương trình chỉ có hai nghiệm là $x = 0, x = -3$. Với $x = 0 \Rightarrow y = 1$. Với $x = -3 \Rightarrow y = -\frac{1}{8}$. Vậy hệ phương trình có hai nghiệm là $\left(0; 1\right), \left(-3; -\frac{1}{8}\right)$.	0,75	0,75
2c	Tìm hệ số của số hạng chứa x^8 trong khai triển thành đa thức của $\left[1+x^2\left(1-x\right)\right]^{n+2}$. Biết rằng $C_{2n}^0+C_{2n}^2++C_{2n}^{2n}=2048$.	2,0	2,0

	$\Leftrightarrow C_{2n}^0 + C_{2n}^2 + \dots + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + \dots + C_{2n}^{2n-1}$	0,5	0,5
	Mặt khác ta có $(1+1)^{2n} = C_{2n}^0 + C_{2n}^1 + C_{2n}^2 + C_{2n}^3 + \dots + C_{2n}^{2n}$		
	Do đó $C_{2n}^0 + C_{2n}^2 + + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + + C_{2n}^{2n-1} = \frac{2^{2n}}{2} \Rightarrow C_{2n}^0 + C_{2n}^2 + + C_{2n}^{2n} = 2^{2n-1}$	0,5	0,5
	Kết hợp với giả thiết ta có $2^{2n-1} = 2048 \Leftrightarrow 2^{2n-1} = 2^{11} \Leftrightarrow n = 6.$		
		0,5	0,5
	Hệ số của x^8 chỉ xuất hiện ở các số hạng ứng với $k = 3$ và $k = 4$.	0.5	0.5
	Từ đó ta có hệ số của x^8 là $C_8^3.C_3^2 + C_8^4.C_4^0 = 238$.	0,5	0,5
	Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông $ABCD$ có $A\left(-1;2\right)$. Gọi M,N lần lượt là trung điểm của cạnh DC và AD , K là giao điểm của BM với CN . Viết phương trình đường tròn ngoại tiếp tam giác BNK , biết BM có phương trình $2x + y - 8 = 0$ và điểm B có hoành độ lớn hơn 2 .	2,0	3,0
	Gọi E = BM \cap AD \Rightarrow DM là đường trung bình của $\triangle EAB \Rightarrow DA = DE$.		
3a	Dựng AH \perp BM tại H \Rightarrow $AH = d(A; BM) = \frac{8}{\sqrt{5}}$.	0,75	1,0
	Trong tam giác vuông ABE: $\frac{1}{AH^2} = \frac{1}{AB^2} + \frac{1}{AE^2} = \frac{5}{4AB^2}$ $\Rightarrow AB = \frac{\sqrt{5}.AH}{2} = 4, \text{ ta có } B \in BM \Rightarrow B(b; 8 - 2b).$	0.75	10
	Ta có $AB = 4 \Leftrightarrow \sqrt{(b+1)^2 + (6-2b)^2} = 4 \Leftrightarrow b = 3$ hoặc $b = \frac{7}{5}$.	0,75	1,0
	Vì điểm B có hoành độ lớn hơn 2 nên chỉ nhận $b = 3 \Rightarrow B(3; 2)$.		
	Phương trình $AE: x + 1 = 0$. Ta có $E = AE \cap BM \Rightarrow E(-1; 10)$.		
	Mà D là trung điểm của $AE \Rightarrow D(-1; 6)$. Ta có N là trung điểm của		
	$AD \Rightarrow N(-1;4) \Rightarrow \text{Trung điểm I của BN có tọa độ } (1;3).$	0,5	
	Do tứ giác ABKN nội tiếp nên đường tròn ngoại tiếp tam giác BNK là		1,0
	đường tròn tâm I bán kính $IA = \sqrt{5} \Rightarrow (BNK) : (x-1)^2 + (y-3)^2 = 5$. Chú ý: Học sinh có thể sử dụng hệ thức lượng trong tam giác vuông để tính được $AB = 4$.		

	Cho đường tròn $ig(Oig)$ đường kính AB , một đường thẳng d không có điểm		
	chung với đường tròn (O) và d vuông góc với AB kéo dài tại K $(B$ nằm	2,0	
	giữa A và K). Gọi C là một điểm nằm trên đường tròn (O) , $(C$ khác A và		
	B). Gọi D là giao điểm của AC và d , từ D kẻ tiếp tuyến DE với đường tròn (E là tiếp điểm và E,C nằm về hai phía của AB). Gọi F là giao điểm		
	của EB và d , G là giao điểm của AF và $\Big(O\Big)$, H là điểm đối xứng của G		
	qua AB . Chứng minh F, C, H thẳng hàng.		
3b	Gọi H là giao điểm của FC với (O). Để chứng minh bài toán ta cần chứng minh H đối xứng với G qua AB.	0,5	
	Ta có $AEKF$ là tứ giác nội tiếp $\Rightarrow \widehat{EAK} = \widehat{EFK}$ mà $\widehat{EAK} = \widehat{DEF} \Rightarrow \widehat{EFK} = \widehat{DEF} \Rightarrow \Delta DEF$ cân tại $D \Rightarrow DE = DF$.	1,0	
	Ta có $DE^2 = DC.DA \Rightarrow DF^2 = DC.DA \Rightarrow \Delta DCF \sim \Delta DFA \Rightarrow \widehat{DCF} = \widehat{DFA}$.		
	Mặt khác $\widehat{DCF} = \widehat{ACH} = \widehat{AGH} \Rightarrow \widehat{DFA} = \widehat{HGA} \Rightarrow GH / / FD$ Mà $FD \perp AB \Rightarrow GH \perp AB$, Do AB là đường kính $\Rightarrow G, H$ đối xứng nhau qua AB , (đpcm).	0,5	
4	Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang với $\widehat{A} = \widehat{D} = 90^{\circ}$, $AB = AD = a$, $CD = 2a$. Biết rằng hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt đáy bằng 45° . Tính theo a thể tích khối chóp $S.ABCD$ và khoảng cách giữa hai đường thẳng SD và BC .	3,0	4,0
	Gọi O là giao điểm của AC và BD . Khi đó, SO là giao tuyến của hai mặt phẳng (SAC) ; (SBD) .		

Mặt khác, do hai mặt phẳng (SAC):(SBD) cùng vuông góc với mặt dấy nên SO \bot ($ABCD$). Gọi E là trung điểm của $CD\Rightarrow ABED$ là hình vuông cạnh a Mặt khác, do $BE \bot CD$; $BE = \frac{1}{2}CD\Rightarrow \Delta BCD$ vuông cần tại B . Do đó, $BC \bot OB\Rightarrow BC \bot (SOB)\Rightarrow BC \bot SB$ $\Rightarrow ((SBC).(ABCD)) = (SB.OB)= \hat{S}B\hat{O} = 48^{\circ}$. Ta có: $BD \Rightarrow \Delta DP^{\circ} + AB^{\circ} = a\sqrt{2}$. $AB//CD\Rightarrow \frac{OB}{OD} = \frac{AB}{CD} = \frac{1}{2}\Rightarrow OB = \frac{1}{3}BD = \frac{a\sqrt{2}}{3}$; $OD = \frac{2a\sqrt{2}}{3}$. Ta có: $S_{ABCD} = \frac{(2u+a)a}{2} = \frac{3a^2}{2}$; $SO = OB$, $\tan 48^{\circ} = \frac{a\sqrt{2}}{3}$. $\Rightarrow V_{S.ABCD} = \frac{1}{3}S_{ABCD}$; $SO = \frac{1}{3}\frac{3a^2}{2}\frac{a\sqrt{2}}{3} = \frac{a^4\sqrt{2}}{6}$. Gọi F là điểm đối xứng với B qua $A\Rightarrow BCDF$ là hình bình hành $\Rightarrow BC//DE$; $ZEDB = ZEDBC = 90^{\circ}$. Do đó $d(BC,SD) = d(BC,(SDF)) = d(B,(SDF)) = \frac{3}{2}d(O,(SDF))$. Trong mặt phảng (SOD) dụng $OH \bot SD$. Khi đó, ta có: $\frac{1}{OH^{\circ}} = \frac{1}{SO^{\circ}} + \frac{1}{DO^{\circ}}$ $\Rightarrow OH = \frac{SO.DO}{\sqrt{SO^2} + DO^2} = \frac{a\sqrt{2}}{\sqrt{\frac{a\sqrt{2}}{3}}} + \frac{2a\sqrt{10}}{2\sqrt{\frac{3}{3}}} = \frac{2a\sqrt{10}}{3}$ $\frac{Chú \cancel{\checkmark}}{3}$; $K\hat{e}$ $BI \bot SD \Rightarrow BI$ là đoạn vuống góc chung của SD và BC . $X\hat{e}t \triangle SBD$ ta có $BI.SD = SO.BD \Rightarrow BI = \frac{SO.BD}{SD} = \frac{a\sqrt{3}}{a\sqrt{10}} = \frac{a\sqrt{10}}{5}$. Cho các số thực $x, y > 0$ thỏa mãn $x^4 + y^4 + 4 = \frac{6}{xy}$. Tìm giá trị nhỏ nhất của biểu thức: $P = \frac{1}{1+2x} + \frac{1}{1+2y} + \frac{3-2xy}{5-x^2-y^2}$. \oplus Theo BDT $AM-GM$ ta có: $x^4 + y^4 + 4 \ge 2x^3y^2 + 4$ Do đó: $\frac{6}{xy} = x^4 + y^4 + 4 \ge 2x^3y^2 + 4 \Leftrightarrow 2x^3y^3 + 4xy - 6 \le 0$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \le 0 \Leftrightarrow xy \le 1$ \oplus Ta luôn có bất đảng thức phụ sau: $\frac{1}{1+2x} + \frac{1}{1+2y} + \frac{2}{2+xy}, \forall x, y > 0$. Thật vậy ta có: $\frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}$ $\Leftrightarrow 2+xy + 2(x+y) + xy(x+y) \ge 1+2x + 2y + 4xy \Leftrightarrow x^2y + y^2 + x + 1 \ge 3xy$ $\Leftrightarrow 2+xy + 2(x+y) + xy(x+y) \ge 1+2x + 2y + 4xy \Leftrightarrow x^2y + y^2 + x + 1 \ge 3xy$ $\Leftrightarrow 2 + xy + 2(x+y) + xy(x+y) \ge 1+2x + 2y + 4xy \Leftrightarrow x^2y + y^2 + x + 1 \ge 3xy$ $\Leftrightarrow 2 + xy + 2(x+y) + xy(x+y) \ge 1+2x + 2y + 4xy \Leftrightarrow x^2y + y^2 + x + 1 \ge 3xy$ $\Leftrightarrow 2 + xy + 2(x+y) + xy(x+y) \ge 1+2x + 2y + 4xy \Leftrightarrow x^2y + y^2 + x + 1 \ge 3xy$ $\Leftrightarrow 2 + xy + 2($				
		đáy nên $SO \perp (ABCD)$. Gọi E là trung điểm của $CD \Rightarrow ABED$ là hình vuông cạnh a Mặt khác, do $BE \perp CD$; $BE = \frac{1}{2}CD \Rightarrow \Delta BCD$ vuông cân tại B .	0,5	1,0
Ta có: $BD = \sqrt{AD^2 + AB^2} = a\sqrt{2}$. $AB / / CD \Rightarrow \frac{OB}{OD} = \frac{AB}{CD} = \frac{1}{2} \Rightarrow OB = \frac{1}{3}BD = \frac{a\sqrt{2}}{3}$; $OD = \frac{2a\sqrt{2}}{3}$. Ta có: $S_{ABCD} = \frac{(2a+a)a}{2} = \frac{3a^2}{2}$; $SO = OB$, $\tan 45^0 = \frac{a\sqrt{2}}{3}$. $\Rightarrow V_{S_{ABCD}} = \frac{1}{3}S_{ABCD}SO = \frac{1}{3}\frac{3a^2 a\sqrt{2}}{2} = \frac{a^3\sqrt{2}}{6}$. Gọi F là diễm đối xứng với B qua $A \Rightarrow BCDF$ là hình bình hành $\Rightarrow BC / / DF$; $\angle FDB = \angle DBC = 90^0$. Do đó $d(BC, SD) = d(BC, (SDF)) = d(B, (SDF)) = \frac{3}{2}d(O, (SDF))$. Trong mặt phẳng (SOD) dựng $OH \perp SD$. Khi đó, ta có:				
$AB / CD \Rightarrow \frac{OB}{OD} = \frac{AB}{CD} = \frac{1}{2} \Rightarrow OB = \frac{1}{3}BD = \frac{a\sqrt{2}}{3}; OD = \frac{2a\sqrt{2}}{3}.$ $Ta có: S_{ABCD} = \frac{1}{2}S_{ABCD} = \frac{3a^2}{2}; SO = OB, \tan 45^0 = \frac{a\sqrt{2}}{3}$ $\Rightarrow V_{S,ABCD} = \frac{1}{3}S_{ABCD}.SO = \frac{1}{3}\frac{3a^2}{2}\frac{a\sqrt{2}}{3} = \frac{a^3\sqrt{2}}{6}.$ $Goi \ F \ là diễm đối xứng với B qua A \Rightarrow BCDF \ là hình bình hành \Rightarrow BC / /DF; \(\angle FDB = \angle DBC = 90^0. $ $Do \ dố \ d(BC,SD) = d(BC,(SDF)) = d(B,(SDF)) = \frac{3}{2}d(O,(SDF)).$ $Trong mặt phẳng (SOD) dụng OH \(\perp SD, \text{Khi đố, ta có:} \) \left\{ \frac{OH \perp SD}{OH \perp FD} \Rightarrow OH \perp (SDF) \Rightarrow d(O,(SDF)) = OH. \text{ Ta có:} \frac{1}{OH^2} = \frac{1}{SO^2} + \frac{1}{DO^2} \right\} \Rightarrow OH = \frac{SO.DO}{\sqrt{SO^2 + DO^2}} = \frac{a\sqrt{2}}{\sqrt{3}} \frac{2a\sqrt{2}}{3} + \frac{2a\sqrt{10}}{3} \Rightarrow d(BC,SD) = \frac{a\sqrt{10}}{5}. Chú \circ \cdot $				
Ta cố: $S_{ABCD} = \frac{1}{3}S_{ABCD}SO = \frac{13a^2}{3}\frac{a\sqrt{2}}{2} = \frac{a^3\sqrt{2}}{6}$. Gọi F là điểm đối xứng với B qua $A \Rightarrow BCDF$ là hình bình hành $\Rightarrow BC//DF$; $\angle FDB = \angle DBC = 90^9$. Do đổi $d(BC,SD) = d(BC,(SDF)) = d(B,(SDF)) = \frac{3}{2}d(O,(SDF))$. Trong mặt phẳng (SOD) dựng $OH \perp SD$. Khi đổi, ta có: $\begin{cases} OH \perp SD \\ OH \perp SD \\ OH \perp FD \end{cases} \Rightarrow OH \perp (SDF) \Rightarrow d(O,(SDF)) = OH$. Ta có: $\frac{1}{0H^3} = \frac{1}{50^3} + \frac{1}{DO^3}$. $\Rightarrow OH = \frac{SODO}{\sqrt{SO^2 + DO^2}} = \frac{\frac{a\sqrt{2}}{3} \frac{2a\sqrt{2}}{3}}{\sqrt{\left(\frac{a\sqrt{2}}{3}\right)^2} + \left(\frac{2a\sqrt{2}}{3}\right)^2} = \frac{2a\sqrt{10}}{15} \Rightarrow d(BC,SD) = \frac{a\sqrt{10}}{5}$. Chú Ý: Kể $BI \perp SD \Rightarrow BI$ là đoạn vuông góc chung của SD và BC . Xét $\triangle SBD$ ta có $BI.SD = SO.BD \Rightarrow BI = \frac{SO.BD}{SD} = \frac{a\sqrt{2}}{3} \frac{a\sqrt{2}}{a\sqrt{10}} = \frac{a\sqrt{10}}{5}$. Cho các số thực $x, y > 0$ thỏa mặn $x^4 + y^4 + 4 = \frac{6}{xy}$. Tim giá trị nhỏ nhất của biểu thức: $P = \frac{1}{1 + 2x} + \frac{1}{1 + 2y} + \frac{3 - 2xy}{5 - x^2 - y^2}$. \Rightarrow Theo BDT AM - GM ta có: $x^4 + y^4 + 4 \geq 2x^2y^2 + 4$ Do đó: $\frac{6}{xy} = x^4 + y^4 + 4 \geq 2x^2y^2 + 4 \Leftrightarrow 2x^3y^3 + 4xy - 6 \leq 0$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(x^2y^2 + 2y + 3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow 2(xy - 1)(xy - 1)(xy + 3y + $		$AB/CD \Rightarrow \frac{OB}{OD} = \frac{AB}{CD} = \frac{1}{2} \Rightarrow OB = \frac{1}{3}BD = \frac{a\sqrt{2}}{3}; OD = \frac{2a\sqrt{2}}{3}.$	10	10
Gọi F là diềm đối xứng với B qua $A \Rightarrow BCDF$ là hình bình hành $\Rightarrow BC//DF$; $\angle FDB = \angle DBC = 90^\circ$. Do đó $d(BC,SD) = d(BC,(SDF)) = d(B,(SDF)) = \frac{3}{2}d(O,(SDF))$. Trong mặt phẳng (SOD) dựng $OH \perp SD$. Khi đó, ta có: $\begin{cases} OH \perp SD \\ OH \perp FD \Rightarrow OH \perp (SDF) \Rightarrow d(O,(SDF)) = OH.$ Ta có: $\frac{1}{OH^2} = \frac{1}{SO^2} + \frac{1}{DO^2} \end{cases}$ $\Rightarrow OH = \frac{SO.DO}{\sqrt{SO^2 + DO^2}} = \frac{\frac{a\sqrt{2}}{3} \frac{2a\sqrt{2}}{3}}{\sqrt{\left(\frac{a\sqrt{2}}{3}\right)^2 + \left(\frac{2a\sqrt{2}}{3}\right)^2}} = \frac{2a\sqrt{10}}{15} \Rightarrow d(BC,SD) = \frac{a\sqrt{10}}{5}.$ Chú $\acute{\mathbf{y}}$: $K\acute{\mathbf{e}}$ $BI \perp SD \Rightarrow BI$ là đoạn vuông góc chung của SD và BC . $X\acute{\mathbf{e}}t$ ΔSBD ta có $BI.SD = SO.BD \Rightarrow BI = \frac{SO.BD}{SD} = \frac{a\sqrt{2}}{3} \frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{5}.$ Cho các số thực $x, y > 0$ thòa mặn $x^4 + y^4 + 4 = \frac{6}{xy}$. Tìm giá trị nhỏ nhất của biểu thức: $P = \frac{1}{1+2x} + \frac{1}{1+2y} + \frac{3-2xy}{5-x^2-y^2}.$ \oplus Theo BDT $AM-GM$ ta có: $x^4 + y^4 + 4 \geq 2x^2y^2 + 4$ Do đó: $\frac{6}{xy} = x^4 + y^4 + 4 \geq 2x^2y^2 + 4 \Leftrightarrow 2x^3y^3 + 4xy - 6 \leq 0$ $\Leftrightarrow 2(xy-1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ \oplus Ta luôn có bất đẳng thức phụ sau: $\frac{1}{1+2x} + \frac{1}{1+2y} \geq \frac{2}{2+xy}, \forall x, y > 0$. Thật vậy ta có: $\frac{1}{1+2x} + \frac{1}{1+2y} \geq \frac{2}{2+xy}$ $\Leftrightarrow 2+xy+2(x+y)+xy(x+y) \geq 1+2x+2y+4xy \Leftrightarrow x^2y+y^2x+1 \geq 3xy$			1,0	1,0
Do đó $d(BC,SD) = d(BC,(SDF)) = d(B,(SDF)) = \frac{3}{2}d(O,(SDF)).$ Trong mặt phẳng (SOD) dựng $OH \perp SD$. Khi đó, ta có: $\begin{cases} OH \perp SD \\ OH \perp FD \Rightarrow OH \perp (SDF) \Rightarrow d(O,(SDF)) = OH. \text{ Ta có: } \frac{1}{OH^2} = \frac{1}{IDO^2} = \frac{1}{IDO^2} \\ \Rightarrow OH = \frac{SODO}{\sqrt{SO^2 + DO^2}} = \frac{\frac{a\sqrt{2}}{2} \frac{2a\sqrt{2}}{3}}{\sqrt{\left(\frac{a\sqrt{2}}{3}\right)^2} + \left(\frac{2a\sqrt{2}}{3}\right)^2} = \frac{2a\sqrt{10}}{15} \Rightarrow d(BC,SD) = \frac{a\sqrt{10}}{5}.$ Chú $\mathbf{\acute{v}}$: $K\dot{e}$ $BI \perp SD \Rightarrow BI$ là đoạn vuông góc chung của SD và BC . $X\dot{e}t$ ΔSBD ta $c\acute{o}$ $BI.SD = SO.BD \Rightarrow BI = \frac{SO.BD}{SD} = \frac{a\sqrt{2}}{3} \frac{a\sqrt{2}}{a\sqrt{10}} = \frac{a\sqrt{10}}{5}.$ Cho các số thực $x, y > 0$ thỏa mẫn $x^4 + y^4 + 4 = \frac{6}{xy}$. Tìm giá trị nhỏ nhất của biểu thức: $P = \frac{1}{1+2x} + \frac{1}{1+2y} + \frac{3-2xy}{5-x^2-y^2}.$ \oplus Theo BDT AM - GM ta có: $x^4 + y^4 + 4 \geq 2x^2y^2 + 4$ Do đó: $\frac{6}{xy} = x^4 + y^4 + 4 \geq 2x^2y^2 + 4 \Leftrightarrow 2x^3y^3 + 4xy - 6 \leq 0$ $\Leftrightarrow 2(xy-1)(x^2y^2 + xy + 3) \leq 0 \Leftrightarrow xy \leq 1$ \oplus Ta luôn có bất đẳng thức phụ sau: $\frac{1}{1+2x} + \frac{1}{1+2y} \geq \frac{2}{2+xy}, \forall x, y > 0$. Thật vậy ta có: $\frac{1}{1+2x} + \frac{1}{1+2y} \geq \frac{2}{2+xy}$ $\Leftrightarrow 2+xy+2(x+y)+xy(x+y) \geq 1+2x+2y+4xy \Leftrightarrow x^2y+y^2x+1 \geq 3xy$ 0.5		Gọi F là điểm đối xứng với B qua $A \Rightarrow BCDF$ là hình bình hành		
Trong mặt phẳng (SOD) dựng $OH \perp SD$. Khi đổ, ta có: $\begin{cases} OH \perp SD \\ OH \perp FD \end{cases} \Rightarrow OH \perp (SDF) \Rightarrow d\left(O,(SDF)\right) = OH. \text{ Ta có: } \frac{1}{OH^2} = \frac{1}{SO^2} + \frac{1}{DO^2} \end{cases}$ $\Rightarrow OH = \frac{SO.DO}{\sqrt{SO^2 + DO^2}} = \frac{\frac{a\sqrt{2}}{3} \frac{2a\sqrt{2}}{3}}{\sqrt{\left(\frac{a\sqrt{2}}{3}\right)^2 + \left(\frac{2a\sqrt{2}}{3}\right)^2}} = \frac{2a\sqrt{10}}{15} \Rightarrow d\left(BC,SD\right) = \frac{a\sqrt{10}}{5}.$ $\frac{Chú \acute{\mathbf{y}}: K\acute{e} BI \perp SD \Rightarrow BI \ l\grave{a} \ doạn vuông góc chung của SD và BC.}{\sqrt{2}} = \frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{5}.$ 2.0 $X\acute{e}t \Delta SBD \ ta c\acute{o} BI.SD = SO.BD \Rightarrow BI = \frac{SO.BD}{SD} = \frac{\frac{a\sqrt{2}}{3}.a\sqrt{2}}{\frac{a\sqrt{10}}{3}} = \frac{a\sqrt{10}}{5}.$ 2.0 1.0			0.5	
$\Rightarrow OH = \frac{SO.DO}{\sqrt{SO^2 + DO^2}} = \frac{\frac{a\sqrt{2}}{3} \frac{2a\sqrt{2}}{3}}{\sqrt{\left(\frac{a\sqrt{2}}{3}\right)^2 + \left(\frac{2a\sqrt{2}}{3}\right)^2}} = \frac{2a\sqrt{10}}{15} \Rightarrow d\left(BC, SD\right) = \frac{a\sqrt{10}}{5}.$ $\frac{Chú \acute{v}}{SO^2 + DO^2} = \frac{a\sqrt{2}}{\sqrt{\left(\frac{a\sqrt{2}}{3}\right)^2 + \left(\frac{2a\sqrt{2}}{3}\right)^2}} = \frac{2a\sqrt{10}}{15} \Rightarrow d\left(BC, SD\right) = \frac{a\sqrt{10}}{5}.$ $\frac{Chú \acute{v}}{SO} : K\mathring{e} BI \perp SD \Rightarrow BI \ l\grave{a} \ doan \ vu\^{o}ng \ g\'{o}c \ chung \ của \ SD \ v\grave{a} \ BC.$ $X\acute{e}t \ \Delta SBD \ ta \ c\'{o} \ BI.SD = SO.BD \Rightarrow BI = \frac{SO.BD}{SD} = \frac{a\sqrt{2}}{\frac{a\sqrt{10}}{3}} = \frac{a\sqrt{10}}{5}.$ $\frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{3}.$ $\frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{5}.$ $\frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{5}.$ $\frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{5}.$ $\frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{5}.$ $\frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{3}.$ $\frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{5}.$ $\frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{5}.$ $\frac{a\sqrt{10}}{3} = \frac{a\sqrt{10}}{3}.$		Trong mặt phẳng (SOD) dựng $OH \perp SD$. Khi đó, ta có:		1,0
Chú Ý: Kể BI \perp SD \Rightarrow BI là đoạn vuông góc chung của SD và BC. Xết \triangle SBD ta có BI.SD $=$ SO.BD \Rightarrow BI $=$ $\frac{SO.BD}{SD} = \frac{a\sqrt{2}}{a\sqrt{10}} \cdot a\sqrt{2} = \frac{a\sqrt{10}}{5}$. Cho các số thực $x, y > 0$ thỏa mãn $x^4 + y^4 + 4 = \frac{6}{xy}$. Tìm giá trị nhỏ nhất của biểu thức: $P = \frac{1}{1+2x} + \frac{1}{1+2y} + \frac{3-2xy}{5-x^2-y^2}$. \Rightarrow Theo BĐT AM-GM ta có: $x^4 + y^4 + 4 \ge 2x^2y^2 + 4$ Do đó: $\frac{6}{xy} = x^4 + y^4 + 4 \ge 2x^2y^2 + 4 \Leftrightarrow 2x^3y^3 + 4xy - 6 \le 0$ $\Rightarrow 2(xy-1)(x^2y^2 + xy + 3) \le 0 \Leftrightarrow xy \le 1$ \Rightarrow Ta luôn có bất đẳng thức phụ sau: $\frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}$, $\forall x, y > 0$. Thật vậy ta có: $\frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}$ $\Rightarrow 2+xy+2(x+y)+xy(x+y) \ge 1+2x+2y+4xy \Leftrightarrow x^2y+y^2x+1 \ge 3xy$		/a a /a		
$X\acute{e}t \ \Delta SBD \ ta \ c\acute{o} \ BI.SD = SO.BD \Rightarrow BI = \frac{SO.BD}{SD} = \frac{\frac{a\sqrt{2}}{3}.a\sqrt{2}}{\frac{a\sqrt{10}}{3}} = \frac{a\sqrt{10}}{5}.$ Cho các số thực $x, y > 0$ thỏa mãn $x^4 + y^4 + 4 = \frac{6}{xy}$. Tìm giá trị nhỏ nhất của biểu thức: $P = \frac{1}{1+2x} + \frac{1}{1+2y} + \frac{3-2xy}{5-x^2-y^2}.$ $\bigoplus \text{ Theo BDT } AM\text{-}GM \text{ ta có: } x^4 + y^4 + 4 \ge 2x^2y^2 + 4$ $Do \ d\acute{o}: \frac{6}{xy} = x^4 + y^4 + 4 \ge 2x^2y^2 + 4 \Leftrightarrow 2x^3y^3 + 4xy - 6 \le 0$ $\Leftrightarrow 2(xy-1)(x^2y^2 + xy + 3) \le 0 \Leftrightarrow xy \le 1$ $\bigoplus \text{ Ta luôn có bất đẳng thức phụ sau: } \frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}, \forall x, y > 0.$ $\text{Thật vậy ta có: } \frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}$ $\Leftrightarrow 2+xy+2(x+y)+xy(x+y) \ge 1+2x+2y+4xy \Leftrightarrow x^2y+y^2x+1 \ge 3xy$			1,0	
nhất của biểu thức: $P = \frac{1}{1+2x} + \frac{1}{1+2y} + \frac{3-2xy}{5-x^2-y^2}$. \oplus Theo BDT AM-GM ta có: $x^4 + y^4 + 4 \ge 2x^2y^2 + 4$ Do đó: $\frac{6}{xy} = x^4 + y^4 + 4 \ge 2x^2y^2 + 4 \Leftrightarrow 2x^3y^3 + 4xy - 6 \le 0$ $\Leftrightarrow 2(xy-1)(x^2y^2 + xy + 3) \le 0 \Leftrightarrow xy \le 1$ \oplus Ta luôn có bất đẳng thức phụ sau: $\frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}$, $\forall x, y > 0$. Thật vậy ta có: $\frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}$ $\Leftrightarrow 2+xy+2(x+y)+xy(x+y) \ge 1+2x+2y+4xy \Leftrightarrow x^2y+y^2x+1 \ge 3xy$ 0.5		$X\acute{e}t \ \Delta SBD \ ta \ c\acute{o} \ BI.SD = SO.BD \Rightarrow BI = \frac{SO.BD}{SD} = \frac{\frac{a\sqrt{2}}{3}.a\sqrt{2}}{\frac{a\sqrt{10}}{5}} = \frac{a\sqrt{10}}{5}.$,	1,0
5 Do đó: $\frac{6}{xy} = x^4 + y^4 + 4 \ge 2x^2y^2 + 4 \Leftrightarrow 2x^3y^3 + 4xy - 6 \le 0$ $\Leftrightarrow 2(xy-1)(x^2y^2 + xy + 3) \le 0 \Leftrightarrow xy \le 1$ \Leftrightarrow Ta luôn có bất đẳng thức phụ sau: $\frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}, \forall x, y > 0$. Thật vậy ta có: $\frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}$ $\Leftrightarrow 2+xy+2(x+y)+xy(x+y) \ge 1+2x+2y+4xy \Leftrightarrow x^2y+y^2x+1 \ge 3xy$ 0.5		Ay	2,0	2,0
$\Leftrightarrow 2(xy-1)(x^{2}y^{2}+xy+3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow \text{Ta luôn có bất đẳng thức phụ sau: } \frac{1}{1+2x} + \frac{1}{1+2y} \geq \frac{2}{2+xy}, \forall x, y > 0.$ Thật vậy ta có: $\frac{1}{1+2x} + \frac{1}{1+2y} \geq \frac{2}{2+xy}$ $\Leftrightarrow 2+xy+2(x+y)+xy(x+y) \geq 1+2x+2y+4xy \Leftrightarrow x^{2}y+y^{2}x+1 \geq 3xy$ 0.5		\oplus Theo BDT AM-GM ta có: $x^4 + y^4 + 4 \ge 2x^2y^2 + 4$		
$\Leftrightarrow 2(xy-1)(x^{2}y^{2}+xy+3) \leq 0 \Leftrightarrow xy \leq 1$ $\Leftrightarrow \text{Ta luôn có bất đẳng thức phụ sau: } \frac{1}{1+2x} + \frac{1}{1+2y} \geq \frac{2}{2+xy}, \forall x, y > 0.$ Thật vậy ta có: $\frac{1}{1+2x} + \frac{1}{1+2y} \geq \frac{2}{2+xy}$ $\Leftrightarrow 2+xy+2(x+y)+xy(x+y) \geq 1+2x+2y+4xy \Leftrightarrow x^{2}y+y^{2}x+1 \geq 3xy$ 0.5	5	Do đó: $\frac{6}{xy} = x^4 + y^4 + 4 \ge 2x^2y^2 + 4 \Leftrightarrow 2x^3y^3 + 4xy - 6 \le 0$		
Thật vậy ta có: $\frac{1}{1+2x} + \frac{1}{1+2y} \ge \frac{2}{2+xy}$ $\Leftrightarrow 2+xy+2(x+y)+xy(x+y) \ge 1+2x+2y+4xy \Leftrightarrow x^2y+y^2x+1 \ge 3xy$ 0.5		$\Leftrightarrow 2(xy-1)(x^2y^2+xy+3) \le 0 \Leftrightarrow xy \le 1$	0,5	0,5
$\Leftrightarrow 2 + xy + 2(x + y) + xy(x + y) \ge 1 + 2x + 2y + 4xy \Leftrightarrow x^2y + y^2x + 1 \ge 3xy$		J J		
			0,5	0,5

	Vậy $P = \frac{1}{1+2x} + \frac{1}{1+2y} + \frac{3-2xy}{5-x^2-y^2} \ge \frac{2}{2+xy} + \frac{3-2xy}{5-2xy}$ (theo AM-GM).		
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		
	2 4		
	Ta có: $f'(t) = \frac{-2}{(2+t)^2} - \frac{4}{(5-2t)^2} < 0, \forall t \in (0;1]$	0,5	0,5
	$\Rightarrow f(t)$ nghịch biến trên (0;1] nên $P \ge f(t) \ge f(1) = 1$		
	Vậy min $P = 1 \Leftrightarrow \begin{cases} x^2 y = y^2 x \\ xy = 1 \end{cases} \Leftrightarrow x = y = 1$	0,5	0,5
	Cho $a \ge 1$. Xét dãy số (u_n) xác định như sau: $\begin{cases} u_1 = a \\ u_{n+1} = u_n \left(u_n^{2017} + 1 \right), \forall n \in \mathbb{N}^*. \end{cases}$		
	Tìm $\lim \left(\frac{u_1^{2017}}{\sqrt{u_2} + \frac{u_2}{\sqrt{u_1}}} + \frac{u_2^{2017}}{\sqrt{u_3} + \frac{u_3}{\sqrt{u_2}}} + \dots + \frac{u_n^{2017}}{\sqrt{u_{n+1}} + \frac{u_{n+1}}{\sqrt{u_n}}} \right).$	1,0	1,0
	Mặt khác từ $u_1 = a \ge 1$ và $u_{n+1} = u_n \left(u_n^{2017} + 1 \right) \Rightarrow u_n > 0, \forall n \in \mathbb{N}^*$. Do đó $u_{n+1} - u_n = u_n^{2018} > 0, \forall n \in \mathbb{N}^* \Rightarrow \left(u_n \right)$ là dãy số tăng $\Rightarrow u_n > > u_2 > u_1 = a \ge 1$.	0,25	0,25
	$\oplus \text{ Ta có } u_{n+1} = u_n \left(u_n^{2017} + 1 \right) \Leftrightarrow u_n^{2018} = u_{n+1} - u_n.$		·
	Khi đó $\frac{u_n^{2017}}{\sqrt{u_{n+1}} + \frac{u_{n+1}}{\sqrt{u}}} = \frac{u_n^{2018}}{u_n \sqrt{u_{n+1}} + u_{n+1} \sqrt{u_n}}$		
6	$= \frac{u_{n+1} - u_n}{\sqrt{u_n} \sqrt{u_{n+1}} \left(\sqrt{u_n} + \sqrt{u_{n+n}}\right)} = \frac{\sqrt{u_{n+1}} - \sqrt{u_n}}{\sqrt{u_n} \sqrt{u_{n+1}}} = \frac{1}{\sqrt{u_n}} - \frac{1}{\sqrt{u_{n+1}}}$		
0	$V_{ay} = \frac{u_1^{2017}}{1} + \frac{u_2^{2017}}{1} + \dots + \frac{u_n^{2017}}{1}$		
	$\sqrt{\hat{a}y} \frac{u_1^{2017}}{\sqrt{u_2} + \frac{u_2}{\sqrt{u_1}}} + \frac{u_2^{2017}}{\sqrt{u_3} + \frac{u_3}{\sqrt{u_2}}} + \dots + \frac{u_n^{2017}}{\sqrt{u_{n+1}} + \frac{u_{n+1}}{\sqrt{u_n}}}$	0,25	0,25
	$= \left(\frac{1}{\sqrt{u_1}} - \frac{1}{\sqrt{u_2}}\right) + \left(\frac{1}{\sqrt{u_2}} - \frac{1}{\sqrt{u_3}}\right) + \dots + \left(\frac{1}{\sqrt{u_n}} - \frac{1}{\sqrt{u_{n+1}}}\right) = \frac{1}{\sqrt{u_1}} - \frac{1}{\sqrt{u_{n+1}}} = \frac{1}{\sqrt{a}} - \frac{1}{\sqrt{u_{n+1}}}$	0,25	0,23
	Ta đi xét 2 trường hợp sau: \oplus Trường hợp 1: Dãy (u_n) bị chặn trên $\Rightarrow (u_n)$ có giới hạn.		
	Giả sử giới hạn đó là a, lấy giới hạn 2 vế của giả thiết $u_{n+1} = u_n \left(u_n^{2017} + 1 \right)$		
	ta có: $a = a(a^{2017} + 1) \Leftrightarrow a = 0$ (mâu thuẫn với $u_n > a \ge 1, \forall n \in N^*$).	0,25	0,25
	\oplus Trường hợp 2: Dãy (u_n) không bị chặn trên. Mà (u_n) là dãy tăng $\Rightarrow \lim u_n = +\infty \Rightarrow \lim u_{n+1} = +\infty$.		
	Khi đó $\lim_{n \to \infty} \left[\frac{u_1^{2017}}{\sqrt{u_2} + \frac{u_2}{\sqrt{u_1}}} + \frac{u_2^{2017}}{\sqrt{u_3} + \frac{u_3}{\sqrt{u_2}}} + \dots + \frac{u_n^{2017}}{\sqrt{u_{n+1}} + \frac{u_{n+1}}{\sqrt{u_n}}} \right] = \lim_{n \to \infty} \left(\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{u_{n+1}}} \right) = \frac{1}{\sqrt{a}}.$	0,25	0,25