THE OPERATIONAL AMPLIFIER (OP-AMP)

- The Ultimate: A phenomenal application of everything that we have learnt so far in this course
- Op-Amp: Operational Amplifier
- Hugely powerful block
- Capable of performing various circuit functions
- Original inventor: George Philbrick of Bell Labs in 1952 using vacuum tube technology

- Remarkable innovations in design in the form of an IC by Bob Widlar of Fairchild Semiconductors in 1963
- After that, *several improvements* took place, and the *most versatile design*, widely came to be known as the *741 op-amp*, originated
- Basically a three-stage architecture:
 - > The Input Stage
 - > The Gain Stage
 - > The Output Stage

• The Input Stage:

- > Should be capable of double-ended to singleended conversion
- > Should have moderate to high gain
- ➤ Must definitely have extremely large CMRR (this is the main requirement)
- ➤ Almost invariably a Differential Amplifier (DA)

• The Gain Stage:

- Can be any one of the many that we have studied in the chapter on Amplifiers
- > CC-CE Darlington configuration preferred
- > Should have moderate to large gain
- The Output Stage:
 - > Needed when the op-amp is expected to either source or sink large amount of current to or from the load

Basic Three-Stage Architecture of an Op-Amp

• 2 Input Terminals:

- $\succ V_1 (non-inverting [+])$
- $\triangleright V_2$ (inverting [-])
- 1 Output Terminal: V₀
- V₁, V₂, and V₀ can be simply DC, or simply ac, or a combination of both
- I₁, I₂: Input currents flowing into the + and -terminals respectively
- Dual symmetric power supplies $(V_S + and V_S -)$

- Refer to the *MacroModel*:
 - > R_i: *Input Resistance*
 - Very high (ideally infinite)
 - > R₀: *Output Resistance*
 - Very small (ideally zero)
 - ➤ A_{vOL}: *Open-Loop Gain*
 - Very large (ideally infinite)
- Input-Output Relation:

$$V_0 = A_{\text{vOL}}(V_1 - V_2)$$

- V_1 , V_2 , and V_0 are measured *w.r.t. ground*, but V_i is a *floating signal* (*difference* between V_1 and V_2)
- The *controlled source* in the *MacroModel* is *VCVS*
- For $V_1 > (<) V_2$, V_0 is **positive** (negative)
- Typical values for 741 op-amp:
 - $ightharpoonup A_{vOL} \sim 10^5 \ (100 \ dB), R_i > 1 \ MΩ, R_0 < 100 \ Ω,$ CMRR ~ 80-100 dB, V_S+ and V_S-: ±3 V to ±15 V

- V_1 , V_2 , and V_0 are measured *w.r.t. ground*, but V_i is a *floating signal* (*difference* between V_1 and V_2)
- The *controlled source* in the *MacroModel* is *VCVS*
- For $V_1 > (<) V_2$, V_0 is **positive** (negative)
- Typical values for 741 op-amp:
 - $ightharpoonup A_{vOL} \sim 10^5 \ (100 \ dB), R_i > 1 \ M\Omega, R_0 < 100 \ \Omega,$ CMRR $\sim 80\text{-}100 \ dB, V_S$ + and V_S -: $\pm 3 \ V \ to \pm 15 \ V$

- ➤ Uncompensated bandwidth typically larger than 1 MHz
- Such a *large gain* and *high bandwidth* system will be prone to *oscillations* (*instability*)
- ➤ Need adequate *compensation*
 - Compensated bandwidth drops to about 5-10 Hz
- History of 741 Op-Amp:
 - ➤ In 1965, Bob Widlar (remember Widlar current source?) of Fairchild Semiconductors (now defunct) first came up with the design of a monolithic (single substrate IC) op-amp

- Named it μA 709 (μA was the trademark of Fairchild Semiconductors)
- Almost immediately thereafter, a number of improvements were made on the original architecture, and μA 741 evolved
- ➤ It became so *popular* that *the term 741* became a *legend*
- ➤ All subsequent op-amp designs continued to be called 741!
- ➤ Initial design of course was based on bipolar technology, since at that time, MOSFETs were not even there!

- ➤ In *late 70s*, *JFET version* of op-amps came into existence, followed by the *MOSFET* version in the 80s
- The design pedagogy of the original version is a real beauty
- So many *brilliant innovations* were *incorporated* in the *design*, that it is a *learner's paradise*!
- ➤ In this chapter, we will do a *detailed analysis* of the *bipolar version* of the *741 op-amp*
- > So, sit tight and enjoy! :)

The schematic of the 741 bipolar op-amp (the pin numbers of the 741 chip is shown in parantheses).

• Steps of the Analysis:

- First, we need to do the *DC analysis*
- For this, we need to find the *reference branch*
- ➤ This branch should be from *rail-to-rail* (i.e., between the two power supplies)
- ➤ It should encounter only *base-emitter junctions* and *resistors*
 - \Rightarrow The branch Q_{11} - Q_{12} - R_5 is our *reference* branch
- The DC current flowing through this branch fixes the DC bias current of all other branches

- > Next is *identification of modules*
- $ightharpoonup Q_{10}$ - Q_{11} - R_4 can be identified as the *Widlar* current source
- \triangleright Current through Q_{10} is *same* as that of Q_9 , which forms a *mirror configuration* with Q_8
- \triangleright Current through Q_8 biases the DA, which is the combination of Q_1 - Q_4
- $ightharpoonup Q_5-Q_6-R_1-R_2$ combination can be identified as a ratioed mirror with the keep-alive resistor R_3 and the base current boost provided by Q_7

- ightharpoonup Output of the DA is fed to Q_{16} - Q_{17} - R_8 - R_9 combination, which is a CC-CE Darlington, and acts as the gain stage
- The *output of the gain stage* is fed to the *Class-AB output stage*, consisting of:
 - Q_{14} and Q_{20} : *Complementary output transistors*
 - Q₁₈-Q₁₉-R₁₀: *Prebias circuit for the output stage*
 - Q_{15} - Q_{21} - R_6 - R_7 : *Short-circuit protection circuit*
- \triangleright Q₁₃, Q₂₂-Q₂₄, and the unnumbered 50 kΩ resistor have *special roles*, which we will discuss about later

• DC Analysis:

- > Assumptions:
 - Neglect base current and Early effect
 - Both + and − input terminals grounded
 - * Recall that is is the most preferred DC biasing arrangement for DAs
 - lacksquare Q_1 - Q_2 , Q_3 - Q_4 , Q_8 - Q_9 , and Q_{10} - Q_{11} *perfectly matched*
 - $\pm 15 V$ power supply
- ightharpoonup Reference branch (Q₁₁-Q₁₂-R₅) current:

$$I_{REF} = I_{C11} = I_{C12} = [V_{CC} - V_{EB12} - V_{BE11} - (-V_{CC})]/R_5 = 733.3 \ \mu A$$

DC Biasing of the Main Branches

DC Biasing of the Main Branches

 $ightharpoonup Q_{10}$ - Q_{11} - R_4 combination is a Widlar current source:

$$\Rightarrow$$
 V_Tln(I_{REF}/I_{C10}) = I_{C10}R₄

$$\Rightarrow I_{C10} = (V_T/R_4)ln(I_{REF}/I_{C10})$$

Solution of this *transcendental equation*:

$$I_{C10} = 19 \ \mu A = I_{C9}$$

 \triangleright Q₁₂-Q₁₃ another *mirror*:

$$\Rightarrow I_{C13} = I_{C12} = I_{REF} = 733.3 \ \mu A$$

➤ Q₁₃ is a *special transistor*, having *split collectors* (A and B), with their *area ratios* 1:3

$$\Rightarrow$$
 I_{C13A} = 183.3 μ A and I_{C13B} = 550 μ A

> DC Biasing of the Input Stage:

• Q₈-Q₉ form a current mirror:

$$\Rightarrow$$
 $I_{C8} = I_{C9} = I_{C10} = 19 \mu A$

■ This is the *bias current* for the *DA*:

$$\Rightarrow I_{C1} = I_{C2} = I_{C3} = I_{C4}$$

$$= I_{C5} = I_{C6} = I_{C8}/2$$

$$= 9.5 \mu A$$

$$I_{C5} = I_{C6} (since R_1 = R_2)$$

- *Calculation* of I_{C7} little more *involved*
 - **♦** Neglecting base currents, $I_{C7} \approx I_{R3}$
 - Assuming $I_{S5} = 1$ fA: $V_{BE5} = V_T ln(I_{C5}/I_{S5}) = 597.3 \text{ mV}$
 - **riangle** The **drop** across R_3 :

$$V_{R3} = V_{BE5} + I_{C5}R_1 = 606.8 \text{ mV}$$

 $\Rightarrow I_{C7} \approx I_{R3} = V_{R3}/R_3 = 12.1 \text{ } \mu\text{A}$

> DC Biasing of the Gain Stage:

- $I_{C17} = I_{C13B} = 550 \mu A$
- This is a large current and the base current may not be negligible
- Assuming $\beta_{17} = 200$: $I_{B17} = I_{C17}/\beta_{17} = 2.75 \ \mu A$
- Assuming $I_{S17} = 1$ fA, the base voltage of Q_{17} , w.r.t.

the negative power supply (-V_{CC}):

$$V_{B17}$$
 (w.r.t. $-V_{CC}$) $\approx V_T ln(I_{C17}/I_{S17}) + I_{C17}R_8$
= 757.9 mV

■ Thus:

$$I_{R9} = V_{B17}/R_9$$

= 15.16 μ A
 $\Rightarrow I_{C16} = I_{R9} + I_{B17}$
= 17.9 μ A

- > Finally, the output stage:
 - Q₁₅-Q₂₁-R₆-R₇ neglected, since these are protection devices, and come into play only during accidental short-circuiting of the output

- To find the *idling current*, R_L is *removed*, thus making $I_L = 0$
 - \Rightarrow Standby (Idling) Current = $I_{C14} = I_{C20}$
- Q₁₈-Q₁₉-R₁₀ is an extremely cleverly and innovatively designed block
 - \clubsuit It produces a *prebias voltage* V_{BIAS} (close to $2V_{\gamma}$) between the bases of Q_{14} and Q_{20}
 - ❖ At the same time, it reduces the standby power dissipation of the output branch
- $I_{C13A} = 183.3 \mu A$, and *splits* into Q_{18} - Q_{19} combination
- Assuming $V_{BE18} = 0.7 \text{ V}$ and for the time being, neglecting I_{B18} :

$$I_{C19} \approx I_{R10} = V_{BE18}/R_{10} = 17.5 \ \mu A$$

■ Thus:

$$I_{C18} = I_{C13A} - I_{C19} = 165.8 \mu A (neglecting I_{B19})$$

- Since I_{C18} is *pretty high*, we need to now *fine tune* our analysis by *including* I_{B18}
- Assuming $I_{S18} = 1$ fA and $\beta = 200$:

$$\begin{split} I_{C19} &= I_{B18} + I_{R10} = I_{C18}/\beta_{18} + (V_T/R_{10})ln(I_{C18}/I_{S18}) \\ &= 17.6 \ \mu A \end{split}$$

- This is sufficiently close to our initial estimate of 17.5 μA
- Thus:

$$I_{C18} = I_{C13A} - I_{C19} = 165.7 \mu A$$
 which is *almost same* as our *original estimate*

$$V_{BIAS} = V_{BE18} + V_{BE19} = V_{BE14} + V_{EB20}$$

$$\Rightarrow V_{T} ln(I_{C18}/I_{S18}) + V_{T} ln(I_{C19}/I_{S19})$$

$$= V_{T} ln(I_{C14}/I_{S14}) + V_{T} ln(I_{C20}/I_{S20})$$

• Since $I_L = 0$:

$$\Rightarrow I_{C14} = I_{C20} = \sqrt{\frac{I_{S14}I_{S20}}{I_{S18}I_{S19}}} \sqrt{I_{C18}I_{C19}}$$

- The sizes of the output transistors are typically much larger than the other devices, to be able to supply large current to the load without overheating
- Assuming $I_{S14} = I_{S20} = 4I_{S18} = 4I_{S19}$: $I_{C14} = I_{C20} = 216 \mu A$
- Thus, the *idling* (*standby*) *power dissipation* of the *output branch* = $(30 \text{ V}) \times (216 \text{ } \mu\text{A}) = 6.5 \text{ mW}$

$$V_{BIAS} = V_{BE18} + V_{BE19} = V_{BE14} + V_{EB20}$$

$$\Rightarrow V_{T} \ln(I_{C18}/I_{S18}) + V_{T} \ln(I_{C19}/I_{S19})$$

$$= V_{T} \ln(I_{C14}/I_{S14}) + V_{T} \ln(I_{C20}/I_{S20})$$

• Since $I_L = 0$:

$$\Rightarrow I_{C14} = I_{C20} = \sqrt{\frac{I_{S14}I_{S20}}{I_{S18}I_{S19}}} \sqrt{I_{C18}I_{C19}}$$

- The sizes of the output transistors are typically much larger than the other devices, to be able to supply large current to the load without overheating
- Assuming $I_{S14} = I_{S20} = 4I_{S18} = 4I_{S19}$: $I_{C14} = I_{C20} = 216 \mu A$
- Thus, the *idling* (*standby*) *power dissipation* of the *output branch* = $(30 \text{ V}) \times (216 \text{ } \mu\text{A}) = 6.5 \text{ mW}$

- Assuming $I_{S18} = I_{S19} = 1$ fA: $V_{BIAS} = V_T ln[I_{C18}I_{C19}/(I_{S18}I_{S19})] = 1.285 \text{ V}$
- This produces a *DC bias* of ~ 643 mV across the *BE junctions* of Q_{14} and Q_{20} , keeping them at the *verge of conduction*
- Note that instead of the *prebias combination* used, if simply *two diodes* were used in *series*, then the *current* through that *branch* would have been *183.3* μA, resulting in a current of *733.2* μA in the *output branch*, thus creating *standby power dissipation* in the *output branch* of *22 mW* (*3.4 times*)
- Finally, $I_{C23A} = I_{C13A} = 183.3 \mu A$

Transistor(s)	Magnitude (μA)
I _{C1} , I _{C2} , I _{C3} , I _{C4} , I _{C5} , I _{C6}	9.5
I _{C7}	12.1
I _{C8} , I _{C9} , I _{C10}	19
I _{C11} , I _{C12}	733.3
I _{C13A} , I _{C23A}	183.3
I _{C13B} , I _{C17}	550
I _{C14} , I _{C20}	216
I _{C16}	17.9
I _{C18}	165.7
I _{C19}	17.6

The DC Bias Currents of Different Transistors

> The *DC power dissipation* of the circuit:

$$\begin{split} P_{DC} &= V_{CC} \times (I_{C12} + I_{C9} + I_{C8} + I_{C13A} + I_{C13B} + \\ &I_{C14} + I_{C7} + I_{C16}) + \\ &|-V_{CC}| \times (I_{C11} + I_{C10} + I_{C5} + I_{C7} + I_{C6} + \\ &I_{R9} + I_{C17} + I_{C23A} + I_{C20}) \\ &= 52.3 \text{ mW} \end{split}$$

- ➤ Note that the *reference branch* consumes the *highest DC power*, followed by the *Darlington branch*
- ➤ On the other hand, the *least DC power* is consumed by the *DA branch*

- ac Analysis:
 - > Primary Goal:
 - To find R_i , R_0 , and A_{vOL}
 - > We will adopt a *modular approach*:
 - Considering each stage individually
 - Finding the 2-port equivalent for each of them
 - Eventually joining them together to get the total response

> Assumed:

$$\beta_{\rm N} = 200$$
, $\beta_{\rm P} = 100$, $V_{\rm AN} = 130$ V, $V_{\rm AP} = 50$ V

- We will also *evaluate* the *required value* of the *compensation capacitor* C_C
- The *analysis* will be *simple* and *highly* approximate, however, the *results* will definitely lie within $\pm 10\%$ of the actual

> Input Stage:

- Differential-mode input v_{id} split into $+v_{id}/2$ and $-v_{id}/2$, and applied at the bases of Q_1 - Q_2
- All terminals having
 fixed DC potentials have
 been tied to ac ground
- Bases of Q₃-Q₄ are at ac
 ground due to perfect
 symmetry of the circuit

- $i_{c3} = i_{c5}$ (neglecting base current of Q_7)
- $i_{c6} = i_{c5}$ (ratioed mirror with $R_1 = R_2$)
- Output current:

$$i_0 = i_{c6} - i_{c4} = i_{c5} - i_{c4} = i_{c3} - i_{c4}$$

■ To find the *short-circuit transconductance* of this stage, we *short the output node to ground*

$$\mathbf{v}_{id}/2 = \mathbf{v}_1 + \mathbf{v}_3$$

• KCL at node A:

$$v_1/r_{\pi 1} + g_{m1}v_1 = v_3/r_{E3}$$

$$\Rightarrow \mathbf{v}_{1} = \frac{\mathbf{r}_{\pi 1}}{\mathbf{r}_{E3}} \frac{1}{1 + \mathbf{g}_{m1} \mathbf{r}_{\pi 1}} \mathbf{v}_{3} = \frac{\mathbf{r}_{\pi 1}}{\mathbf{r}_{E3}} \frac{1}{1 + \beta_{1}} \mathbf{v}_{3} \simeq \frac{\mathbf{r}_{\pi 1}}{\beta_{1}} \frac{1}{\mathbf{r}_{E3}} \mathbf{v}_{3} \simeq \frac{\mathbf{r}_{E1}}{\mathbf{r}_{E3}} \mathbf{v}_{3} = \mathbf{v}_{3}$$

$$\Rightarrow$$
 $v_{id} = 4v_3 \Rightarrow v_3 = v_{id}/4$

$$\Rightarrow i_{c3} = g_{m3}v_3 = g_{m3}v_{id}/4$$
 and $i_{c4} = -g_{m3}v_{id}/4$

$$\Rightarrow i_0 = i_{c3} - i_{c4} = +g_{m3}v_{id}/2$$

■ Thus, the *short-circuit transcoductance*:

$$G_{m1} \triangleq \frac{i_0}{v_{id}}\Big|_{v_0=0} = \frac{g_{m3}}{2} = \frac{I_{C3}}{2V_T} = 182.7 \ \mu \text{ }$$

■ Differential-mode input resistance:

$$R_{id} \triangleq \frac{V_{id}}{i_i} = 2 \times \frac{V_{id}/2}{i_i} = 2(\beta_1 + 1)(r_{E1} + r_{E3}) \approx 4\beta_1 r_{E1}$$
$$= \frac{4\beta_1 V_T}{I_{C1}} = 2.2 \text{ M}\Omega$$

- This is also the *input resistance* R_i of the *op-amp*
- The *output resistance* can be *calculated* by following our *standard procedure* of *nulling the independent sources*, *exciting the output by a test voltage source*, and *finding the current drawn from it*

- **Base** of Q_6 can be considered to be at a *fixed DC potential*, and thus, *ac ground*
- **By inspection**:

$$\begin{split} R_{04} &= r_{04}[1 + g_{m4}(r_{\pi 4}||r_{E2})] \\ R_{06} &= r_{06}[1 + g_{m6}(r_{\pi 6}||R_2)] \\ r_{04} &= V_{AP}/I_{C4} = 5.26 \text{ M}\Omega \\ g_{m4} &= I_{C4}/V_T = 365 \text{ }\mu\text{A/V} \\ r_{\pi 4} &= \beta_4/g_{m4} = 273.7 \text{ }k\Omega \\ r_{E2} &= V_T/I_{C2} = 2.74 \text{ }k\Omega \\ \Rightarrow R_{04} \approx 2r_{04} = 10.5 \text{ }M\Omega \end{split}$$

$$\begin{split} r_{06} &= V_{AN}/I_{C6} = 13.7 \text{ M}\Omega \\ g_{m6} &= I_{C6}/V_T = 365 \text{ } \mu\text{A/V} \\ r_{\pi 6} &= \beta_6/g_{m6} = 547.9 \text{ } k\Omega \\ \Rightarrow R_{06} \approx r_{06}(1 + g_{m6}R_2) = 18.7 \text{ } M\Omega \\ \Rightarrow R_{0d} &= R_{04}||R_{06} = 6.7 \text{ } M\Omega \end{split}$$

2-Port Equivalent of the Input Stage

➤ Gain Stage:

$$r_{E16} = V_T/I_{C16} = 1.45 \text{ k}Ω$$

$$r_{\pi 16} = \beta_{16}r_{E16} = 290.5 \text{ k}Ω$$

$$r_{E17} = V_T/I_{C17} = 47.3 \Omega$$

$$r_{\pi 17} = \beta_{17}r_{E17} = 9.45 \text{ k}Ω$$

$$⇒ R_{i17} = r_{\pi 17} + (\beta_{17} + 1)R_8$$

$$= 29.6 \text{ k}Ω$$

■ *Effective load resistance* of Q₁₆:

$$R_{L16} = R_9 || R_{i17} = 18.6 \text{ k}\Omega$$

■ Thus, the *input resistance* of the *gain stage*:

$$R_{i2} = R_{i16} = r_{\pi 16} + (\beta_{16} + 1)R_{L16} = 4.03 \text{ M}\Omega$$

- Next, we have to *calculate* the *short-circuit* transconductance $G_{m2} = i_0/v_{i2}$, with the *output* terminal shorted to ground
- *Voltage gain* of Q_{16} :

$$v_1/v_{i2} = R_{L16}/(R_{L16} + r_{E16}) = 0.93$$

• Overall transconductance of Q₁₇-R₈ combination (emitter degenerated stage):

$$G_{m17} = i_0/v_1 = g_{m17}/(1 + g_{m17}R_8) \approx 1/(r_{E17} + R_8)$$

= 6.8 mA/V

$$\Rightarrow$$
 $G_{m2} = i_0/v_{i2} = (i_0/v_1) \times (v_1/v_{i2}) = 6.3 \text{ mA/V}$

- Next is the *output resistance* R₀₂
- *From inspection*: $R_{02} = R_{013B} || R_{017}$

•
$$R_{013B} = r_{013B} = V_{AP}/I_{C13B} = 90.9 \text{ k}\Omega$$

•
$$r_{017} = V_{AN}/I_{C17} = 236.4 \text{ k}\Omega$$

• Since *base* of Q_{17} can be considered to be at *ac ground*, and $r_{\pi 17} >> R_8$:

$$R_{017} \approx r_{017}(1 + g_{m17}R_8) = r_{017}(1 + R_8/r_{E17})$$

= 736.2 k\O

■ Thus:

$$R_{02} = R_{013B} || R_{017} = 80.9 \text{ k}\Omega$$

2-Port Equivalent of the Gain Stage

> Output Stage:

- Analysis slightly different, since the transistors operate with large signal swings, typically from rail-to-rail, and small-signal analysis is not quite valid
- Will attempt an approximate analysis under some specific assumptions:
 - \diamond v₀ under *positive excursion*, with Q₁₄ *supplying current to* load (R₁) and Q₂₀ off
 - $Arr R_L = 5 \text{ k}\Omega \text{ and } i_L = 2 \text{ mA}$ $Arr v_0 = 10 \text{ V}$
- Ex.: Show that Q_{18} - Q_{19} - R_{10} combination effectively appears as a resistance $r_{eq} = 168.7 \Omega$
- $r_{E14} = V_T/I_{C14} = 13 \Omega$
- $r_{013A} = r_{023A} = V_{AP}/I_{C13A} = V_{AP}/I_{C23A} = 272.8 \text{ k}\Omega$

•
$$r_{E23A} = V_T/I_{C23A} = 141.8 \Omega$$

•
$$r_{\pi 23A} = \beta_{23A} r_{E23A} = 14.2 \text{ k}\Omega$$

•
$$R_{i14} = (\beta_{14} + 1)(r_{E14} + R_L) = 1 M\Omega$$

•
$$R' = r_{013A} || R_{i14} = 214.3 \text{ k}\Omega$$

• *Effective load* of Q_{23A} :

$$R_{L23A} = r_{eq} + R' = 214.5 \text{ k}\Omega$$

• R_{L23A} appears in *parallel* with r_{023A}

$$\Rightarrow$$
 R_{eq} = r_{023A}||R_{L23A} = 120.1 k Ω

$$\Rightarrow R_{i3} = r_{\pi 23A} + (\beta_{23A} + 1)R_{eq} = 12.1 \text{ M}\Omega$$

- Note the *enormously large input resistance* of the *output stage*, primarily due to *two factors*:
 - ***** Buffering action of Q_{23A} , putting its entire emitter load to base after multiplying it by β
 - \clubsuit Relatively large value of R_L
- Thus, the *choice* of putting Q_{23A} in the *signal path* is obvious
 - ❖ It also provides a *DC level shift* of ~ +0.7 V
- Note also that R_{i3} appears as the *load of the gain stage*, having an *output resistance* R_{02} of only 80.9 k Ω
 - \Rightarrow Negligible loading

- Since this stage is basically a *cascade of voltage followers*, hence, it would be *more prudent* to find the *overall voltage gain* of this stage, rather than the *short-circuit transconductance*
- Thus:

$$v_1/v_{i3} = R_{eq}/(R_{eq} + r_{E23A}) = 0.9988$$

 $v_2/v_1 = R'/(R' + r_{eq}) = 0.9992$
 $v_0/v_2 = R_L/(R_L + r_{E14}) = 0.9974$
 $\Rightarrow A_{v3} = v_0/v_{i3} = (v_0/v_2) \times (v_2/v_1) \times (v_1/v_{i3})$
 $= 0.9954 \approx 1$

 Note that in spite of keeping so many significant digits after the decimal point in all the intermediate results, the end result is still extremely close to unity ■ The *output resistance* R₀₃ can be *evaluated* from a *simple inspection* of the circuit:

$$R'' = r_{013A} || (r_{eq} + r_{E23A}) = 310.1 \Omega$$

 $\Rightarrow R_{03} = r_{E14} + R'' / (\beta_{14} + 1) = 14.5 \Omega$

 ${\rm r}_{\rm 013A}$

2-Port Equivalent of the Output Stage

> Overall Performance:

Just cascade the 2-port equivalents of the three stages

Complete 2-Port Representation of 741 Op-Amp

> Overall Performance:

Just cascade the 2-port equivalents of the three stages

Complete 2-Port Representation of 741 Op-Amp

Voltage gain of the input stage:

$$A_{v1} = v_{01}/v_{id} = -G_{m1}(R_{01}||R_{i2}) = -459.7$$

Voltage gain of the gain stage:

$$A_{v2} = v_{02}/v_{01} = -G_{m2}(R_{02}||R_{i3}) = -506.3$$

Voltage gain of the output stage:

$$A_{v3} \sim 1$$

■ Thus, the *overall voltage gain* of *741 op-amp*:

$$A_{vOL} = v_0/v_{id} = (v_0/v_{i3}) \times (v_{i3}/v_{i2}) \times (v_{i2}/v_{id})$$
$$= 2.33 \times 10^5 (107.3 \text{ dB})$$

Note:
$$v_{i3} = v_{02}$$
, and $v_{i2} = v_{01}$

■ This is an *excellent value*, in spite of the *significant loading effect* of the *gain stage* on the *input stage*

> Observations:

- A_{vOL} is actually the *differential-mode gain* (A_{dm})
- It is positive
 - \diamond *Positive* v_{id} produces *positive* v_0
 - ***** Bases of Q_1 and Q_2 are termed as non-inverting (+) and inverting (-) terminals respectively
- Input and output resistances are 2.2 M Ω and 14.5 Ω respectively, both of which are excellent values
- The *exact value* of A_{cm} is *slightly difficult to evaluate*, however, an *estimate of CMRR can be made*
- Using the *result* of our *simple analysis* of *DA*: $CMRR \approx 2g_{m1}r_{08} = 1923 (66 dB)$
- This is not too bad!
 - ❖ Actual value is much higher than this

• Compensation:

- Actual evaluation of the *frequency response* characteristic of 741 is a *huge task*, even with the *ZVTC technique*
- There will be *numerous poles and zeros*, out of which, some will be *important*, while others will be *inconsequential*
- ➤ However, there will of course be a *Dominant*Pole (DP), and rough calculation shows that it is ~ 1 MHz, which is the bandwidth of the uncompensated op-amp

- ➤ Now, ~ 100 dB open-loop gain with 1 MHz bandwidth is a ready recipe for disaster as far as the stability of the system is concerned
- ➤ Hence, for *unconditional stability* under *unity* negative feedback, e.g., voltage follower, compensation is imperative
- ➤ In 741, this task is accomplished by the technique of *Dominant Pole Compensation* (DPC) through the use of the *compensation* capacitor C_C, connected between the input and output of the gain stage

To obtain the *required value* of C_C , we use the cascade of the *2-port networks*, as was done earlier to compute the *overall voltage gain*

$$ightharpoonup$$
 Denote R' = R₀₁||R_{i2} = 2.5 MΩ and R'' = R₀₂||R_{i3} = 80.4 kΩ

The *simplified circuit* can be easily identified as the *three-legged creature*, and using the *ZVTC technique*:

$$R_C^0 = R' + R'' + G_{m2}R'R'' = 1.27 G\Omega$$

Now, to get an estimate of the *DPF* f_d, we assume that the *open-loop gain* is exactly 100 dB, and the *first pole* of the *uncompensated op-amp* is *exactly 1 MHz*

$$\Rightarrow$$
 f_d = 10 Hz

> Also, $f_d = \omega_d/(2\pi)$, with $\omega_d = 1/\tau$, and $\tau = R_C^0 C_C$

The *simplified circuit* can be easily identified as the *three-legged creature*, and using the *ZVTC technique*:

$$R_C^0 = R' + R'' + G_{m2}R'R'' = 1.27 G\Omega$$

Now, to get an estimate of the *DPF* f_d, we assume that the *open-loop gain* is exactly 100 dB, and the *first pole* of the *uncompensated op-amp* is *exactly 1 MHz*

$$\Rightarrow$$
 f_d = 10 Hz

Also, $f_d = \omega_d/(2\pi)$, with $\omega_d = 1/\tau$, and $\tau = R_C^0 C_C$

> Thus:

$$C_{\rm C} = \tau / R_{\rm C}^0 = 12.5 \text{ pF}$$

- ➤ Note that with this *compensation scheme*, the *open-loop bandwidth* of the *compensated op-amp* drops all the way down to *10 Hz*, from *1 MHz*
- ➤ However, this is not really a *limitation*, since the *open-loop gain* is *so high*, that even with *negative feedback*, *sufficiently high values of gain can be achieved*

\succ Unity-Gain Bandwidth (f_T) :

- Product of the dominant pole frequency and the open-loop gain
- This is also the *bandwidth* of the system when the *gain is unity* (hence the name!)
- Also known as the gain-bandwidth product (GBP)
- It is *1 MHz* for this case
- Note that under *DPC*, it's also the *first pole* of uncompensated system
- With negative feedback, the GBP remains constant \Rightarrow As gain \checkmark , bandwidth \uparrow , and vice-versa

A_{v0}: Midband Gain, ω_d : Compensated Bandwidth, ω_T : Unity-Gain Bandwidth N₁ and ω_1 , N₂ and ω_2 : Amount of Feedback and Corresponding Bandwidth A₁, A₂: Gain With Feedback N₁, N₂ $A_{v0}\omega_d = A_1\omega_1 = A_2\omega_2 = \omega_T$

• Protection Circuits:

- $ightharpoonup Q_{15}$ -R₆: *Overload protection circuit* for Q_{14}
- ➤ Similar to that discussed in the chapter on Output Stages
- R₆ senses the current being sourced by Q₁₄ to load
- When the *drop* across R_6 *approaches* V_{γ} of Q_{15} , it starts to *bypass* the *base current* of Q_{14}
 - ⇒ The current does not increase indefinitely
- \triangleright Protection scheme of Q_{20} is slightly different

- For the *previous case* of Q_{14} , the *load current* was *flowing out* of the circuit
- \succ However, for Q_{20} , the *load current* is *flowing* into the circuit
- Thus, the circuit should be *protected* by *limiting* the amount of this *current*
- \triangleright Here, R₇ senses the current being sunk by Q₂₀
- As soon as the *drop* across R_7 *approaches* V_{γ} of Q_{21} , it *turns on* and starts to *bypass* the *current* through Q_{20}

- ► Values of R_6 and R_7 are slightly different to account for the difference in V_{γ} for npn and pnp BJTs
- \succ Initially, this *shunted current* starts to *flow* through the *unnumbered* 50 kΩ resistor to $-V_{CC}$
- When the *drop* across this 50 k Ω resistor *approaches* V_{γ} of Q_{24} , it starts to *turn on*, which makes Q_{22} to *turn on* too (note that Q_{22} and Q_{24} form a *mirror*)
- Now, the *collector* of Q_{22} is *connected* to the *base* of Q_{16}

- Thus, Q₁₆ starts to *lose* its *base drive*, since a *part of it* is *shunted away* by Q₂₂
- ➤ Hence, Q₁₆ conducts less, and produces a chain reaction, which limits the current sinking capability of the output stage
- > Thus, the *circuit gets protected*
- \triangleright Now, about the *role played by Q*_{23B}
- > *Note*: $V_{B16} = V_{E23B}$, and $V_{C17} = V_{B23B}$

$$\Rightarrow$$
 $V_{EB23B} = V_{B16} - V_{C17}$

$$ightharpoonup$$
 Also, $V_{C17} = V_{B17} + V_{CB17}$

 \triangleright Noting that $V_{B17} = V_{E16}$:

$$V_{EB23B} = V_{B16} - V_{E16} - V_{CB17} = V_{BE16} - V_{CB17}$$

- \triangleright Under *normal operating condition*, $V_{BE16} \sim 0.7 \text{ V}$
- ➤ If Q_{17} also is in the *FA mode*, which is the *desired mode of operation*, then the *CB junction* of Q_{17} will be *reverse biased*
 - \Rightarrow V_{CB17} is *positive*
 - \Rightarrow V_{EB23B} < V_{BE16}, and Q_{23B} would *remain off*
- Now, if for any reason whatsoever, Q_{17} moves towards saturation, then V_{CB17} would decrease

 \triangleright Noting that $V_{B17} = V_{E16}$:

$$V_{EB23B} = V_{B16} - V_{E16} - V_{CB17} = V_{BE16} - V_{CB17}$$

- \triangleright Under *normal operating condition*, $V_{BE16} \sim 0.7 \text{ V}$
- ➤ If Q_{17} also is in the *FA mode*, which is the *desired mode of operation*, then the *CB junction* of Q_{17} will be *reverse biased*
 - \Rightarrow V_{CB17} is *positive*
 - \Rightarrow V_{EB23B} < V_{BE16}, and Q_{23B} would *remain off*
- Now, if for any reason whatsoever, Q_{17} moves towards saturation, then V_{CB17} would decrease

- As soon as V_{CB17} equals zero (corresponding to onset of saturation of Q_{17}):
 - \Rightarrow Q_{23B} would *turn on* and *rob* the *base drive* away from the base of Q₁₆
 - \Rightarrow Q₁₇ pushed back to the FA mode of operation
- ➤ This *chain of events* is *pretty complicated* indeed
- Thus, Q_{23B} prevents Q_{17} from saturating, and thus, ensures optimum performance of the circuit

• Anomalies and Limitations:

- > Common-Mode Rejection
- > Input Offset Voltage/Input Offset Current
- > Saturation Voltages
- > Minimum Allowed Supply Voltage
- > Slew Rate and Full-Power Bandwidth

> Common-Mode Rejection:

- An extremely important parameter (CMRR)
- Depends on:
 - \clubsuit The *output resistance* r_{08} of Q_8
 - ***** Matching of the input transistors $(Q_1-Q_2 \text{ and } Q_3-Q_4)$
- *Higher* $r_{08} \Rightarrow Better CMRR$
- More mismatch in the input transistors ⇒ Worse CMRR
- Exact calculation of A_{cm} is pretty tedious
- A *rough estimate* of A_{cm} can be *obtained* by noting that:
 - ***** For *common-mode input*, the *common collector point* of Q_1 - Q_2 is *not at ac ground*, but *connected to the collector* of Q_8
 - $r_{08} = V_{AP}/I_{C8} = 2.6 \text{ M}\Omega$

- Now, refer to the 2-port equivalent of the differentialinput stage, having the input resistance R_{i2} of the gain stage as its load
- Noting that the stage is basically CE(D):

$$\Rightarrow A_{cm} \simeq \frac{-(R_{01} || R_{i2})}{1/G_{m1} + 2r_{08}} = -0.48$$

■ Thus:

CMRR =
$$|A_{dm}/A_{cm}| = 4.85 \times 10^5 (113.76 \text{ dB})$$

which is *phenomenal*

- This figure is *much higher* than that *computed earlier*
- Of course, the *analysis* is *highly simplistic*
- Even then, the *actual value* may be *well above 100 dB*

> Input Offset Voltage/Input Offset Current:

- Created due to a *mismatch* between the *input* transistors
- For an *op-amp* with $A_{vOL} = 10^5$, operated with a *power* supply of ± 10 V, V_{id} needed to cause V_0 to reach either of these two extremes = $\pm 100 \, \mu V$
- The *mismatch* between the *input transistors* typically create a *voltage difference* between the *inputs*, known as the *Input Offset Voltage* (V_{OS})
- **Typical value** of V_{OS} for **741 op-amp** ~ 5-10 mV
- This would *cause* V_0 to *saturate* at either $+V_{CC}$ or $-V_{CC}$
- This is known as *saturation* or *latch-up* problem

- In 741, there is a *provision* to *eliminate* this *problem*, known as *offset nulling*
- Refer to the *circuit* of 741, and note *pin numbers* 1 and 5 *connected* to the *emitters* of Q_5 and Q_6
- Between these *two pins*, a *potentiometer* is connected, with its *wiper* connected to $-V_{CC}$
- This *potentiometer* is known as the *offset null resistor*
- It *eliminates* the *effect* of V_{OS} by *creating* an *unequal* division of bias currents in the two branches of the input circuit, just enough to balance the difference caused due to device mismatch

• Procedure:

- **Tie both inputs to ground**: V_0 would most likely **saturate** at either $+V_{CC}$ or $-V_{CC}$
- \diamond Next, *move the wiper* of the *potentiometer* in the *direction* that creates a *magnitude reduction* of V_0
- ❖ Towards the *end*, it will become *very sensitive*, and a *perfect nulling*, i.e., V₀ becoming *exactly zero*, *may not be possible*
- ❖ The typically expected minimum value of V₀ may be ~ 5-10 mV
- **!** Leave the *potentiometer setting* at the *best possible* achieved result
- * Done!

- The Input Offset Current (I_{OS}) :
 - ❖ *Difference* between the *base currents* (known as *Input Bias Currents* I_1 and I_2) of Q_1 and Q_2
 - **Extremely small** (~ tens to hundreds of nA)
- I_{OS} and V_{OS} are actually *interrelated*, since both of them are created due to *device mismatch*, and have almost *identical manifestations*

Both V_{os} and I_{os} are not used V_{os} (I_{os}) is used when the input is voltage (current)

Modeling of the Anomalies With Regard to V_{os} and I_{os}

> Saturation Voltages:

- An ideal op-amp should have rail-to-rail swing at the output
- The actual output swing of a real op-amp is never between rail-to-rail
- Refer to the *op-amp schematic*, in conjunction with the *schematics* of the *gain stage* and the *output stage*
- As V_{i2} of the *gain stage* becomes *positive*, V_{02} (= V_{i3}) goes *negative* with a *large gain*
 - \Rightarrow V₂ and V₀ *follow* V_{i3} due to *emitter follower* (CC) action
- With V_0 negative, Q_{14} turns off, and Q_{20} draws current from the load

■ Assuming that Q_{17} can **soft saturate**, and neglecting the **voltage drop** across R_8 , the **minimum possible value** of V_0 :

$$V_0^- = -V_{CC} + V_{CE17}(SS) + V_{EB23A} + V_{EB20} = -13.4 \text{ V}$$

- Note that it is about *two diode drops above* –V_{CC}
- Now, for *negative* V_{i2} , V_{02} *swings* to a *large positive value*, *followed by* V_2 and V_0
- With V_0 positive, Q_{20} turns off, and Q_{14} supplies current to load
- *Maximum positive limit* of V_0 is *reached* when Q_{13A} *soft saturates*:

$$V_0^+ = V_{CC} - V_{EC13A}(SS) - V_{BE14} = 14.1 \text{ V}$$

- Note again that it is *lower* than V_{CC} by *little more than* one diode drop
- Also, interesting to note is that the *positive* and *negative* peaks of V_0 are *not same*
 - ⇒ Maximum possible output swing is asymmetric
- These *two limits* of V₀ are known as *positive and negative saturation voltages* (V_{SAT}⁺ and V_{SAT}⁻ respectively)
- If the *input drive* to the *op-amp* and the *gain* are such that the *magnitude* of V_0 becomes *greater* than either V_{SAT}^+ or $|V_{SAT}^-|$, then V_0 would get *clipped* at either of these *two values*

➤ Minimum Allowed Supply Voltage:

- Circuit for 741 is *extremely robust*, and can be *operated* with a *very wide range* of *supply voltage*
- However, there is a *lower limit* of the *supply voltage*, below which it *can't be ensured* that *all transistors* operate in the *FA region*
- To find this, look for the *branch* containing the *most number of transistors*, since *that branch* would obviously *need the largest voltage* across it to *ensure* that all its *constituent transistors operate in the FA region*
- From the *circuit schematic* of 741, *this branch* can be very easily identified to be *either of the two sections of the input stage*

- Considering the *left branch*, neglecting the *potential dropped* across R₁, and not letting *CE voltage* of any of the *transistors* to *drop below* 0.7 V (*onset of saturation*), there would *four diode drops* (~ 2.8 V) *along this branch*
 - \Rightarrow 741 should work satisfactorily for power supply all the way down to about $\pm 3~V$
 - \Rightarrow Under this power supply, V_0^+ and V_0^- will be 2.1 V and -1.4 V respectively
- Thus, there is a wide range of power supply, starting from ± 3 V, for which 741 should work satisfactorily
 - ⇒ Shows the robustness of the circuit

> Slew Rate and Full-Power Bandwidth:

- This limitation is observed under large-signal operation, when the input signal swing is greater than the linear range of the input differential pair
- Recall: The linear range of a bipolar differential pair is $\sim \pm 4V_T$
- Beyond this, it basically acts like a switch, transferring the bias current between the two branches, depending on the sign of the input voltage
- Under such cases, the *compensation capacitor* C_C *limits* the *maximum possible rate of change* of V_0
- This is known as the *Slew Rate* (SR) of the op-amp: $SR = (dV_0/dt)_{max}$

- Two SRs are defined: SR^+ (positive SR) and SR^- (negative SR) for positive and negative excursions of V_0 respectively, generally expressed in $V/\mu sec$
- A *rough estimate* of these quantities can be obtained by referring to the *schematic* of the op-amp
- Assume that a *large negative signal* is applied at the *base* of Q_1 (w.r.t. the base of Q_2)
- This will instantly turn the Q_1 - Q_3 branch off
 - \Rightarrow Q₅, and thus, Q₆, *turn off*
 - \Rightarrow Entire bias current I_{C8} would flow through the Q_2 - Q_4 branch, and start to charge C_C

- Note that the rate of this charging would be constant (constant current charging)
 - \Rightarrow *Collector potential* of Q_{17} would *increase linearly* with time
- Due to *emitter follower* action of Q_{23A} and Q_{14} , V_0 would also start to *increase linearly with time*
 - \diamondsuit Q₂₀ remains off, since V₀ is in its positive excursion
- Thus:

$$SR^+ = I_{C8}/C_C = (19 \mu A)/12.5 \text{ pF}) = 1.52 \text{ V/}\mu\text{sec}$$

■ If the *frequency* of the *input signal* is such that the *required time rate of change* of V₀ is *more* than this, then V₀ won't be able to follow the input – rather, it will be *dictated* by the SR⁺, and will *change linearly with time*

- Similarly, when a *large positive signal* is applied at the *base* of Q₁ (w.r.t. the base of Q₂), Q₂-Q₄ branch would *instantly turn off*
 - \Rightarrow Entire bias current I_{C8} would flow through the Q_1 - Q_3 branch, pushing the same current through Q_5
 - \Rightarrow Q₆ would *carry the same current* (*mirror* with Q₅)
- This *current* would *flow* from the *output node* through C_C to Q_6
 - \Rightarrow C_C would *start to discharge*, and V₀ would *start to fall*, going into its *negative swing*
- Since the *same current* (I_{C8}) is used to *discharge* the *output node*:

$$SR^{+} = SR^{-} = 1.52 \text{ V/}\mu\text{sec}$$

Slew Rate Limitation of Op-Amps

- Situation becomes *more dramatic* if a *sinusoidal signal* is applied at the *non-inverting input* of the op-amp, connected in a *voltage-follower* configuration
- Let *input signal* $V_i = V_M sin(\omega t)$, with *large* V_M
 - ⇒ *Transistors* in the *differential input stage* act as *switches*
- Under *unity feedback*, V_0 would *follow* V_i $\Rightarrow dV_0/dt = dV_i/dt = V_M \omega \cos(\omega t)$
- The *maximum value* of this *derivative* occurs when $\omega t = n\pi$ (n = 0, 1, 2, ...)
 - \Rightarrow It occurs when the *signal crosses zero*
- So long as this rate remains smaller than SR, V₀ would follow V_i with fidelity

- However, as soon as dV_0/dt becomes $\geq SR$, V_0 won't be able to follow V_i anymore rather, it would start to become triangular
- **Note**: dV_0/dt with an **increase** of **either** V_M or ω or **both**
 - \Rightarrow What essentially matters is the product $V_M \omega$
- If this *product* keeps on *increasing* beyond the SR, then V₀ remains *triangular*, however, *two major observations* become apparent:
 - \diamond The zero crossings of V_0 do not quite coincide with those of V_i
 - ❖ The *peak-to-peak swing* of V_0 starts to become *smaller* than that of V_i due to V_0 *not getting enough time* to *reach its maximum possible value*

Normal Behavior

Onset of Slew Rate Limitation

Severely Slew Rate Limited

Aloke Dutta/EE/IIT Kanpur

- If $V_M \omega$ becomes *very large*, then there *may not be any output at all*
 - \Rightarrow V₀ would *become zero*, implying that the op-amp is *not able to keep up with the variation* of V_i at all!
- Mathematical Description:
 - ❖ Let the *gain* of the op-amp = A ⇒ $(dV_0/dt)_{max} = AV_Mω$
 - ❖ This must be *less* than the SR of the op-amp to get a *distortion-free output*
 - ***** *Maximum possible value* of $AV_M = V_{SAT}$
 - \Rightarrow The *maximum allowed value* of ω (= $\omega_{\rm M}$) of $V_{\rm i}$ for $V_{\rm 0}$ to be *without any distortion* due to *slew rate limitation*:

$$\omega_{\rm M} = {\rm SR/V_{\rm SAT}}$$

- This is an *extremely important relation*, and $\omega_{\rm M}$ is referred to as the *full-power bandwidth*
- It is a *constant* for a given op-amp
- This *derivation* is for V_0 *swinging* between $\pm V_{SAT}$
- If the *swing* of V_0 is *less* than this, then ω can be *increased* beyond ω_M , following the *relation*:

$$SR = \omega_M V_{SAT} = \omega_0 V_0 = \omega_0 A V_i$$

- ω_0 : Frequency till which V_0 won't have any slew rate limited distortion
- \Rightarrow Maximum amplitude of V_i (of frequency ω_0), beyond which slew rate limited distortion would set in at the output:

$$V_{i,max} = \omega_M V_{SAT} / (\omega_0 A)$$

