case1 :
$$x>0$$
 , $x>0$ then $|x+y| = x+y$ and $|x|+|y| = x+y$

case2 :
$$x<0$$
, $y<0$ then $|x + y| = -(x+y) = -x + (-y)$ and $|-x| + |-y| = -(x) + (-y)$

case3 :
$$x>0$$
, $y<0$ then $|x + (-y)| = x + (-y)$
 $|x|+|y| = x + (-y)$

case4 :WLOG x<0, y>0 follows the same prinsiple.

Case5: x = 0 , y = 0 then |x+y| = 0 and |x|+|y| = 0

since we have proved all cases, hence |x|+|y| = x+y

17.

if n is odd, then it can be written as 2a+1, a is an integer.

$$2a+1 = (k-2)(k+3) = 2k+3-2 = 2k+1$$

assume there exists b integer and we are trying to disprove that it forms the odd number 2b+1 different from n

if n = x, then 2b+1= 2k+1, leads to b = k, then there exists unique number k for (k-2)(k+3) forms only odd number.

given:

 $(x+1/x)^2 >= 0$ (squaring a number is always non negative)

then:

$$x^2+2(1/x)^*x +1/x^2 >=0$$

$$x^2 + 1/x^2 >= 2 #$$

21.

geometric means =
$$sqr(x+y)$$

harmonic mean = $2xy /(x + y)$

we can prove this conjucture using a series of steps as follows:

$$(x-y)^2 >= 0$$

$$x^2 -2xy -y^2 >= 0$$

$$x^2 +2xy - y^2 >= 4xy +4xy$$

$$(x+y)^2 >= 4xy$$
 *xy

$$xy(x+y)^2 >= 4x^2 y^2$$

$$xy >= 4x^2 y^2 / (x+y)^2$$

$$sqr(xy) >= 2xy/x+y #$$

after computing some vaules the conjucture is $sqr((x^2 + y^2)/2) >= 1/2(x+y)$

$$sqr((x^2 + y^2)/2) >= 1/2(x+y)$$
 ^2
 $(x^2 + y^2)/2 >= 1/4(x+y)^2$ *2
 $(x^2 + y^2) >= 1/2(x+y)^2$
 $2(x^2 + y^2) >= x^2 + 2xy + y^2$

$$x^2 + y^2 - 2xy >= 0$$

$$(x-y) >= 0 ###$$

25.

conjecture: last digit of x^4 is always one of this set(0,1,6,5)

proof:

for x can be written in the form of 10a+b, then

$$x^4 = (10a+b)^4$$

 $(10a+b)^4 = (10a)^4 + 4(10a)^3 + 6(10a)^2 + 4(10a)^3 + 6(10a)^4$

last digit is determined by b^4

b 2 3 4 5 0 1 6 7 8 16 b^4 1 81 256 625 1296 2401 4096 6561 0

conjecture proved!

for $n^3 < 100$ when n = 0, 1, 2 , 3, 4 there exists no n^2 that satisfy the equation.

28.
$$(2x)^2 + (5y)^2 = 14$$

for x^2 values that under 14 are when x = 0, 1, 2, 3 for y^2 values that under 14 are when y = 0, 1, 2, 3

from the equation y can't execeeds the value 0 to satisfy the equation.

For
$$x = 0$$
 $(0)^2 + (0)^2 != 14$
For $x = 1$ $(1)^2 + (0)^2 != 14$
For $x = 2$ $(2)^2 + (0)^2 != 14$
For $x = 3$ $(3)^2 + (0)^2 != 14$

therefore there is no solution to the equation.

30. $x = m^2 - n^2$ y = 2mn $z = m^2 + n^2$

$$x^2 = m^4 - 2n^2 m^2 + n^4$$

 $y^2 = 4m^2 n^2$
 $z^2 = m^4 + 2n^2 m^2 + n^4$

$$x^2 + y^2 = m^4 - 2n^2 m^2 + n^4 + 4m^2 n^2$$

= $m^4 + 2n^2 m^2 + n^4$
= $z^2 \#2$

since there is infinte pairs of n and m, then there are infinte many solutions