NAME : SHALIN JAIN

ROLL NO. : 180107055

EXR NO. : 2

DATE : 17/01/2021

TITLE : HAMMER - MILL

AIM & OBJECTIVE:

To study the operation of Hammer-Hill and determine the Power consumption for crushing a material of known Wi...

THEORY:

Hammer-Hills are specified at high speeds for pulverizing and disentegration. The rotor shaft may be vertical or horizontal. The rotor runs in a housing containing grunding plates or lines.

The grinnding-action results son from impact and attrition between lumps or particles of the material being used. The fitness factors can be regulated by changing notor-speed, feed rade, etc..

BOND CRUSHING & WORK-INDEX ...

A more realistic way of estimating the power origined for for cousting and grinding is.

$$\frac{P}{m} = \frac{K_b}{Dp}$$
 $\frac{P}{m} = \frac{K_b}{Dp}$
 $\frac{P}{m} = \frac{R_b}{Dp}$
 $\frac{P}{m} = \frac{R_b}{Dp}$

Wi is defined as the gross-energy in KW/ ton. This leads to a relation b/w K_b and W_i ;

Now, using (1) and (2); we get;
$$\frac{P}{m} = 0.3162 \times 10^{\circ} \left[\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pb}}} \right]$$

SCHEMATIC DIGRAM:

OBSERVATION TABLE :

With Load:

SAMPLE CALCUTION ...

$$P_{L} = P_{W} = \frac{11 \times 3600}{t_{c} \times E_{mc}} = \frac{11 \times 3600}{125 \times 3200} = 0.099 \text{ kW}$$

So,
$$P_{act} = P_L - P_{NL} = 0.0146 \text{ KW}$$

$$P_{cal} = m \times K_b \times \left[\frac{1}{\sqrt{D_{P_b}}} - \frac{1}{\sqrt{D_{P_a}}} \right]$$

$$m = \frac{W_f}{t_c} \times \frac{3600}{1000} = \frac{0.2 \times 3600}{125 \times 1000} = 0.00576 \text{ tows/h}$$

$$N_{0}\omega$$
, $D_{PA} = 4.75 \text{ mm}$
 $A_{PB} = 250 \text{ ym} = 0.25 \text{ mm}$

$$\eta = \frac{\text{Part}}{\text{Post}} \times 100 = \frac{0.0146 \times 100}{0.0357} = \frac{40.8\%}{0.0357}$$

Similarly for sel S.no2; we get;

CALCULATION TABLE ;

S.no.	PN L(KW)	PL (KW)	Pact (Kw)	Pcal(Kw)	Y
1.	0.084	0.000	0.0146	0.0357	40-8 %
0	0-084	0.093	0.0097	0.0375	25.8./
2.	0 - 00				,,

RESULT:

For Set 1, we got an efficiency of 40.8°/0 and Set 2 we got an efficiency of 25.8°/0

PRECAUTIONS

- 1.) Never our the apparatus if power supply is less than \$\\\\$ 180 \mathbb{V} \frac{\text{smd}}{\text{smd}} \text{ or more than 230 \mathbb{V}_0
- 2.) Clean the hammers before operating.
- 3) Make sure that all the nuits and bolts are properly fixed...

