1

Matrix theory Assignment 11

Shivangi Parashar

Abstract—This document contains the concept of sub space.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment11/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment11/ Assignment 11.tex

1 Problem

Which of the following set of vectors

$$\alpha = (a_1, a_2, \dots, a_n)$$

in \mathbb{R}^n are subspace of \mathbb{R}^n $(n \ge 3)$?

- a)All α such that $a_1 \ge 0$
- b)All α such that $a_1 + 3a_2 = a_3$
- c)All α such that $a_2 = a_1^2$
- d)All α such that $a_1a_2 = 0$
- e)All α such that a_2 is rational

2 Solution

Table 0 lists the summary of which set of vectors in \mathbf{R}^n are subspace of \mathbf{R}^n $(n \ge 3)$.

$\alpha = (a_1, a_2, \dots, a_n)$	
Vector space	Subspace summary
$\alpha = (a_1, a_2, a_3, a_4, \dots, a_n); a_1 \ge 0$	Not a subspace. Scalar multiplication is not satisfied. $-1(\alpha) \neq \alpha$
$\alpha = (a_1, a_2, a_3, a_4, \dots, a_n); a_1 + 3a_2 = a_3$	It is a subspace
$\alpha = (a_1, a_2, a_3, a_4, \dots, a_n); a_2 = a_1^2$	Not a subspace. Addition is not satisfied. $(a_1 + b_1)^2 \neq a_1^2 + b_1^2$
$\alpha = (a_1, a_2, a_3, a_4, \dots, a_n); a_1 a_2 = 0$	Not a subspace. Addition is not satisfied. $a_1b_1 \neq 0$
$\alpha = (a_1, a_2, a_3, a_4, \dots, a_n);$ a_2 is rational	Not a subspace. Scalar multiplication is not satisfied. $a_2 \neq \sqrt{2}a_1$

TABLE 0: Summary