

Michael D. Watson, Ph.D., NASA MSFC System Engineering Management Office

Jonathan E. Pryor, NASA MSFC Sensors, Imaging and Optics Branch

Outline

- System Engineering Characteristics
- System Engineering Framework
 - Mission Context
 - System Physics
 - Organizational Structure
 - Policy and Law
- System Engineering of Photonics System Application
 - Space Launch System (SLS) Imagery System
- Summary

System Engineering of Photonic Systems

- System Engineering seeks to obtain Elegant Systems which function
 - Effectively in their intended application and environment
 - Most efficiently as compared to options fitting the system context
 - Robustly in application and operation
 - Avoiding Unintended Consequences

System Engineering of Autonomous Systems

- Elegant System Engineering requires
 - Understanding the Mission Context
 - System Applications
 - System Environments (operational, test, abort, etc.)
 - Understanding the Physics of the System
 - System Interactions with themselves and with their environments are governed by their physics
 - Information Theory provides linkages between physical state representations and actual physical states
 - Managing the organizational influences on system design and the system context influences on the organization
 - Understanding Policy and Law Constraints
 - Environment Protection Agency (EPA) Regulations
 - National Space Policy
 - International Space Treaties and agreements
 - Space Debris, Contamination, Property

Mission Context

- Establishes Mission Type
 - Astronomy
 - Earth Observing
 - Space Infrastructure (e.g., communication, navigation)
 - Solar Observing
 - Planetary Observing
 - Planetary Lander

Mission Type/ Mission Environmer	Astronomy	Earth Observing	Space Infrastructur	Solar Observing *	Planetary Observin	Planetary Landing
	Astronomy	Earth Observing	Space Infrastructur	Solar Observing	Planetary Observing	Planetary Landing
Low Earth Orbit	X	X	X	X		
Geo Stationary Orbit	X	X	X			
Lunar Orbit					X	
Lunar Surface			Χ			X
Interplanetary Space (including Lagrange	3.5					
Points)	X		X	X	X	X
Planetary Orbit			X		Х	
Planetary Surface	-		Х			X

Mission Context: Mission Environment

- Space Environment
 - Thermal
 - Ultra-Violet (UV)
 - Oxygen
 - Space Radiation
- Low Earth Orbit (LEO)
 - Atomic Oxygen
 - Micro Meteorite and Orbital Debris (MMOD)
- Medium Earth Orbit (MEO)
 - Van Allen Radiation Belt
- Geosynchronous Earth Orbit

(GEO)

- Lunar Orbit
 - Gravity well not uniform
- Lunar Surface
 - Dust
- Interplanetary Space (including Lagrange Points)
 - Similar to GEO
 - Micro Meteorite
- Planetary Orbit
 - Atmospheric Interactions
 - MMOD
- Planetary Surface
 - Dust
 - Atmosphere

Mission Context: Launch Environment

- Launch Site Environment
 - Tropical Environment
 - Humidity
 - 8% 100% RH
 - Temperature
 - 0 °C 50 °C operating range
 - High Salinity

- Temperatures can approach 50° C 95° C due to aero thermal heating
- □ 130 -140 dB acoustic environment
- □ 3000 7000 g shock environment

Optical System Physics

- Optics integration into the launch vehicle or spacecraft bus is driven by geometrical stability
- Optical Transfer Function (OTF) captures the effects of the vehicle interactions and the environmental interactions with the optical system

 - The spatial filter, s_f, represents the optical system and is driven by:
 - Thermal gradients
 - Vibrations
 - Mechanical misalignment
 - Contamination (outgassing, dust)
 - From within the optical system, vehicle interactions, and the mission environment

Optical System Physics

- \square Pupil function, p_f , is affected by
 - \blacksquare thermal expansion (α_{ν})
 - Heat transfer rate (Q)
 - Temporal vibration (d(t))
 - \square Shock (α_{shock})
- \square Thus, pf = f(λ , α_v , \dot{Q} , d(t), α_{shock})
- Contamination
 - Can induce intensity variations or blockages within the pupil function
 - Can induce aberrations on the image plane

Optical System Physics

- Downlink of data
 - Digital Effects
 - Bandwidth
 - Storage Size
 - Gibbs Phenomena

Organizational Structure and Information Flow

- Optical system design, development, and testing is the responsibility of the Optical Engineer
- System Engineer is responsible for engineering of the optical system interactions with the launch vehicle or spacecraft bus and the environment
- □ The Optical Engineer must interact and communicate with other disciplines in an effective manner
 - Understand and participate in vehicle/bus decision structure
 - Ensure supporting disciplines understand the importance of optical tolerances
 - Translate optical tolerances/sensitivities in other disciplines terms
 - 1 mil = .001" \neq 1 μ m (1 mil = 25.4 μ or 1 μ m = .0394 mil)
 - Minute movements (thermal, shock, vibration) can make a large difference in optical performance
- Relationship varies with mission type
 - Is the spacecraft bus designed for the optical mission?
 - Are the optics in support of a broader mission?

Policy and Law

- National Environmental Policy Act (NEPA)
 - Environmental Protection Agency (EPA) Regulations
 - Executive Order 12114
- National Space Policy
- International Space Treaties and agreements
 - Outer Space Treaty: United Nations' Treaty of Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies
 - Planetary exploration conducted "so as to avoid their harmful contamination and also adverse changes in the environment of the Earth resulting from the introduction of extraterrestrial matter."
- Applicability depends on Mission Context

- Mission Context
 - Support to the launch vehicle
 - Provide video data for analysis of separation tracking events and identification of any debris anomalies or physical malfunctions
 - Focus on events only identifiable from video data
 - Video data fit within the launch vehicle telemetry bandwidth

- Optical System Physics
 - System Design
 - Camera system selection based on
 - Image Quality
 - Detector
 - Output Data Type
 - Low-Light Resolution
 - Data buffers to manage data flow and optimize bandwidth utilization
 - Camera Location
 - View of identified areas of interest
 - Mounting location on continuing Stage
 - Sets
 - Camera Angle
 - Field of View
 - Image Size (magnification) based on spatial distance from object
 - Resolution (aberration limits)
 - Depth of Focus
 - CAD is useful for vehicle integration

- Optical System Physics
 - System Design
 - Housings
 - Critical design to ensure stability in the flight environment
 - Tightly coupled with the vehicle structure
 - Protect optical system from aerodynamic effects, thermal, shock, and vibration
 - Preserve optical performance
 - Prevent optical system damage

- Optical System Physics
 - System Design
 - Image Jitter
 - Time varying spatial motion
 - J0(p,kx,ky)
 - Imaging is not high resolution
 - Identify and track objects of specified size only over a few frames
 - Jitter can be minimized by
 - Minimizing exposure time (image capture) time
 - Minimizes spatial movement of camera during capture
 - Depth of Field requirements also drive aperture/ISO settings
 - Mechanical design
 - No moving lens parts (i.e., auto focus, fixed aperture)
 - Noise dampening layer between components
 - Firmly mount lens and camera within housing

- Optical System Physics
 - System Design
 - Data System
 - High quality image compression necessary to fit into vehicle telemetry stream
 - Bandwidth must be shared with other systems
 - Cabling must operate in launch environment
 - Protect connections from vibration/shock induced degradations
 - Minimize signal drop over length
 - Controller
 - Camera on/off
 - Data Flow
 - Illumination components
 - Electrical power conversion from vehicle electrical power system

Organizational Structure

- Mechanical Design and Manufacturing are critical interfacing organizations
 - Must properly understand design and tolerances of the optical system
 - Mechanical
 - Strength of material
 - Fracture control
 - Optical
 - Jitter dampening
 - Off gassing over the flight envelope thermal and pressure environments
 - Optical clarity of windows
- Avionics and Software interfaces are also critical
 - Vehicle commands
 - Vehicle electrical power
 - Data telemetry flow
- Operations interfaces
 - Data routing to the control center
- Imaging team interfaces
 - Primary customer
- Manufacturing schedules are an important driver in having the optical system ready for integration onto the vehicle

- Policy and Law
 - Imagery system is a support to the launch vehicle
 - National Space Policy
 - NEPA
 - Affects cleaning agents and materials selection
 - Planetary Protection
 - Does not apply since SLS core stage does not achieve orbit

Summary

- System Engineering Framework applies well to Photonic Systems
 - Mission Context
 - Establishes mission environment based on mission type and launch vehicle
 - Optical System Physics
 - Optical Transfer Function (OTF)
 - Organizational Structure
 - Must interface with the other disciplines for the launch vehicle or spacecraft bus
 - Do the optics define the mission or support the mission?
 - Policy and Law
 - Various laws apply depending on the Mission Context
 - EPA regulations constrain available chemicals and materials
- SLS imagery system
 - Mission Context defines key design parameters
 - Optical System Physics
 - Jitter control
 - Data Flow
 - Organizational Relationships
 - Mechanical Design, Manufacturing, Avionics, Software, Operations
 - Policy and Law
 - Primarily NEPA