

CS918: LECTURE 14

Efficiency and Evaluation of Information Retrieval

Arkaitz Zubiaga, 19th November, 2018

RECAP: INDEXING WITH POSITIONAL INDICES

• In the postings, store for each term the position(s) in which tokens of it appear:

```
    <term, number of docs containing term;</li>
    doc1: position1, position2 ...;
    doc2: position1, position2 ...;
    etc.>
```


RECAP: INDEXING WITH POSITIONAL INDICES

- With positional indices:
 - We can search for queries of any length, e.g. "to be or not be"
 - We can issue proximity queries, e.g. "Student" AROUND(5)
 "Warwick"

RECAP: TF-IDF WEIGHTING HAS MANY VARIANTS

Term frequency		Document frequency		Normalization	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$				

WARWICK

RECAP: COMPUTING COSINE SCORES

```
CosineScore(q)
```

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term *t*
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- for each pair $(d, tf_{t,d})$ in postings list
- 6 **do** Scores[d]+ = $w_{t,d} \times w_{t,q}$
- 7 Read the array *Length*
- 8 **for each** *d*
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 **return** Top *K* components of *Scores*[]

RECAP: VECTOR SPACE RANKING

- OK, but... are we going to compute similarity for a query wrt 17 million documents?!?!
- We need to be more efficient...

QUESTION ABOUT COSINE-BASED RANKING

Somebody asked:

What if I create an HTML page with just "University of Warwick" in it?

Will that rank 1st for a query "University of Warwick"?

QUESTION ABOUT COSINE-BASED RANKING

• If we only rely on cosine similarity:

```
doc and query = "University of Warwick" will lead to max similarity (cosine = 1)
```

- Maybe fine for corporate search engine (we have a control of the docs).
- A (web) search engine needs more:
 - Adversarial Information Retrieval (classify spam, those trying to deceive us).
 - We can use more features, beyond text (e.g. PageRank).

INTUITION OF PAGERANK

Recursively weight web pages based on links:
 site is important if other important sites have links to it.

I can then combine these weights with cosine scores.

WARWICK

INTUITION OF PAGERANK

- If I create a page with just "University of Warwick":
 - I will most likely be one of those purple sites.

Red and orange (reputable sites) will not link me.

 NB: more on PageRank on Data Analytics and/or Data Mining, here we focus on textual IR.

LECTURE 14: CONTENTS

- How to speed up vector speed ranking.
- Putting together a complete search system.
- Evaluation of Information Retrieval.
 - MAP and NDCG.

SPEEDING UP VECTOR SPACE RANKING

EFFICIENT COSINE RANKING

- Find **k documents** in the collection with **largest query-document cosines**.
 - e.g. k=10
- We need two things to achieve efficient ranking:
 - Compute cosine for each query-doc pair efficiently.
 - Choose K largest cosines efficiently.
 - ideally without computing cosines for all docs in collection!

EFFICIENT COSINE RANKING

- Basically, we're trying to solve the K-nearest neighbour problem for a query vector.
- This is **challenging for high-dimensional spaces** with many data points (documents).
 - Brevity of queries helps make the task easier.

BOTTLENECK

- Primary **bottleneck** is in **cosine computation**.
- Can we avoid all this computation?
 - Yes, but may sometimes get it wrong.
 - a doc not in top K may creep into the list of K output docs.
 - Is this such a bad thing?

COSINE SIMILARITY IS ONLY A PROXY

- Cosine matches docs to query.
- Thus cosine is anyway a proxy for similarity.
- Let's try to get a list of K docs "close" to the actual top K by cosine measure, not necessarily the closest K.

GENERIC APPROACH

- Find a set A of contenders, with K < |A| << N
- A does not necessarily contain the top K, but has many docs from among the top K.
- Return the top K docs in A.

• Will look next at several schemes following this approach.

INDEX ELIMINATION

- Basic algorithm; cosine computation algorithm **only** considers docs **containing at least one query term**.
- Take this further:
 - Only consider high-idf query terms.
 - Only consider docs containing many query terms.
 - Champion lists.
- And of course, for frequent queries, cache results.

HIGH-IDF QUERY TERMS ONLY

- For a query such as: weather in the uk.
 - Only accumulate scores from weather and uk
- Intuition: "in" and "the" contribute little to the scores and so don't alter rank-ordering much.
 - Postings of low-idf terms (in, the) have many docs, hence we eliminate them from set A of contenders.

DOCS CONTAINING MANY QUERY TERMS

- For multi-term queries, only compute scores for docs containing several of the query terms.
 - e.g. at least 3 out of 4.
- Used by some web search engines (e.g. early Google).
- Easy to implement.

EXAMPLE: 3 OR MORE OF 4 QUERY TERMS

Query: Antony Brutus Caesar Calpurnia

• We will **only compute** cosine scores for docs **8**, **16** and **32**.

CHAMPION LISTS

- For each dictionary term **t**, precompute the **r** docs of highest weight in **t**'s postings.
 - This is the **champion list for t**.
 - When user searches for t, consider only docs in champion list.
- Note that r has to be chosen at index building time.

CHAMPION LISTS: EXAMPLE AND LIMITATION

- Query: "university london"
 - Both terms are frequent: university (5M results), london (10M results).
 - Precompute (say r = 500):
 - 500 top results for "university".
 - 500 top results for "london".
 - At query time, only look at those 1,000 results.

- Limitation: top K results for query " t_1 t_2 " may not be in champion lists of t_1 or t_2 .
 - We need to choose **r** carefully.

CACHE RESULTS FOR FREQUENT QUERIES

- If I have users issuing the search query "London" every 10 seconds.
 - I can store a pregenerated ranking for "London".
 - Update cached results every X hours.

• I only need to bother computing cosine scores for less frequent queries.

STATIC QUALITY SCORES

- We want top-ranked documents to be both relevant and authoritative.
 - **Relevance** is being captured by **cosine scores**.
 - Authority is typically a query-independent property, e.g.:
 - Document is linked to from top newspapers.
 - Scientific paper with many citations.
 - Many mentions in social media.
 - PageRank.

MODELLING AUTHORITY

- Assign a query-independent quality score in [0,1] to each document d.
 - We call this g(d).
- Basically, we will normalise {citation count, link count, social media mentions, pagerank,...}

NET SCORE

- The **net score** is a simple, total score combining **relevance and authority.**
 - net-score(q,d) = g(d) + cosine(q,d)

Now we seek the top K docs by net score

PARAMETRIC AND ZONE INDICES

- So far, index = sequence of terms.
- We may also want to index metadata, such as:
 - Author
 - Title
 - Language
 - Format (e.g. query: warwick filetype:pdf)
 - URL (e.g. query: NLP site:warwick.ac.uk)

ZONE

• A **zone** is a region of the doc that can contain an arbitrary amount of text, e.g. title, abstract, author, publication date, URL.

- We can also build inverted indices on zones.
 - e.g. search for docs with **UK in the title**, hosted in **theguardian.com** and **published in 2016**.

EXAMPLE OF ZONE INDICES

• We can encode zones in separate dictionaries:

• Or as part of the postings:

TIERED INDICES

- Break postings up into a hierarchy of lists:
 - **Tier 1:** Most important
 - ...
 - Tier n: Least important
- Can be done by g(d) or another measure.

• At query time use top tier. If it yields fewer than K docs, use lower tier.

EXAMPLE OF TIERED INDEX

BUILDING AN ENTIRE SEARCH ENGINE

EVALUATING SEARCH ENGINES

EVALUATING AN IR SYSTEM

- An information need is translated into a query.
- Relevance of results is assessed relative to the information need not the query, e.g.:
 - **Information need:** I'm looking for information on whether eating chocolate is an effective way to sleep better.
 - Query: chocolate better sleep effective
- We want to evaluate whether the results address the information need, not whether it has the words in the query.

EVALUATING RANKED RESULTS

- **Evaluation** of a result set, having:
 - a benchmark document collection.
 - a benchmark set of queries.
 - manual judgements/annotations of whether documents are relevant (R) to queries (or not relevant, NR).
- Note: manual judgements of all query-doc pairs as R/NR is often unfeasible (e.g. 1 million docs, 1000 queries → 1 billion pairs!).
 - Judgements usually done only for a sample (e.g. subset containing query words)

RANKED RESULTS: VISUALISING PERFORMANCE

- The system can return any number of results.
- For every rank k, we can compute precision (how many of those k are relevant?) and recall (how many of those actually relevant did we output?).
- By taking those precision/recall scores **over different k positions**, we can **produce a precision-recall curve**.

A PRECISION-RECALL CURVE

PRECISION-RECALL CURVE

- Why does the P-R curve look like this?
 - Say we return 20 results, our collection has 5 relevant documents.

1: R, 2: NR, 3: NR, 4: R, 5: NR, 6: NR, 7: NR, 8: R,...

- As we go down in the ranking:
 - Precision decreases (we include mistakes).
 - But occasionally goes up (we included a good result).
 - Recall/coverage increases (higher % of actual R docs included).

QUANTIFYING EVALUATION

• Precision-Recall (P-R) curves are good for visualisation, but we often want a single score to quantify performance.

PRECISION AT K

- A **simple approach** is <u>precision@k</u>, i.e. ratio of relevant items within the top k results.
 - Good if ranking is not important, however these have the same precision@5 of 0.4:
 (regardless of relevant items being the top 2 or the bottom 2 items)
 - 1: R, 2: R, 3: NR, 4: NR, 5: NR
 - 1: NR, 2: NR, 3: NR, 4: R, 5: R
- Better metrics when ranking is important: MAP, NDCG.

MAP: MEAN AVERAGE PRECISION

- I issue Q queries in my system.
 - I get an AP (average precision) for each query.
 - I get the mean of all Q AP's.
- Average precision: up to position k, compute the average Precision@K for all positions {1..k}, then get the mean of all these k scores.
- It weighs performance on top positions higher (precision on top 1 item is being counted in every iteration {1..k}).

- Running example, 1 IR system, 2 different queries:
 - 1: R, 2: R, 3: NR, 4: NR, 5: NR
 - 1: NR, 2: NR, 3: NR, 4: R, 5: R

- Running example, 1 IR system, 2 different queries:
 - 1: R, 2: R, 3: NR, 4: NR, 5: NR
 - 1: NR, 2: NR, 3: NR, 4: R, 5: R
- Query 1:
 - Precision@1: 1/1 = 1
 - Precision@2: 2/2 = 1
 - Precision@3: 2/3 = 0.67
 - Precision@4: 2/4 = 0.5
 - Precision@5: 2/5 = 0.4

$$AP_{01} = (1+1+0.67+0.5+0.4)/5 = 0.713$$

- Running example, 1 IR system, 2 different queries:
 - 1: R, 2: R, 3: NR, 4: NR, 5: NR
 - 1: NR, 2: NR, 3: NR, 4: R, 5: R
- Query 2:
 - Precision@1: 0/1 = 0
 - Precision@2: 0/2 = 0
 - Precision@3: 0/3 = 0
 - Precision@4: 1/4 = 0.25
 - Precision@5: 2/5 = 0.4

$$AP_{Q2} = (0+0+0+0.25+0.4)/5 = 0.13$$

• Running example, 1 IR system, 2 different queries:

• 1: R, 2: R, 3: NR, 4: NR, 5: NR

• 1: NR, 2: NR, 3: NR, 4: R, 5: R

- $AP_{O1} = 0.713$
- $AP_{Q2} = 0.13$
- MAP@5 = $(AP_{Q1} + AP_{Q2}) / 2 = (0.713 + 0.13) / 2 = 0.422$

NDCG: NORMALISED DISCOUNTED CUMULATIVE GAIN

- NDCG: graded degrees of relevance, normalised wrt ideal/perfect output.
- We first compute DCG_k : $DCG_k = \sum_{i=1}^k \frac{rel_i}{\log_2(i+1)}$
- We then normalise it to get NDCG_k: $nDCG_k = \frac{DCG_k}{IDCG_k}$

• where $IDCG_{\nu} = DCG_{\nu}$ for the ideal system (all k elements are relevant)

- Running example, 1 IR system, 2 different queries:
 - 1: R, 2: R, 3: NR, 4: NR, 5: NR
 - 1: NR, 2: NR, 3: NR, 4: R, 5: R
- Query 1:
 - $DCG_{5.01} = 1 / log_2(2) + 1 / log_2(3) + 0 + 0 + 0 = 1.631$
- Query 2:
 - $DCG_{5.02} = 0 + 0 + 0 + 1 / log_2(5) + 1 / log_2(6) = 0.818$
- $IDCG_5 = 1/\log_2(2) + 1/\log_2(3) + 1/\log_2(4) + 1/\log_2(5) + 1/\log_2(6) = 2.948$

- Running example, 1 IR system, 2 different queries:
 - 1: R, 2: R, 3: NR, 4: NR, 5: NR
 - 1: NR, 2: NR, 3: NR, 4: R, 5: R
- Query 1:
 - $NDCG_{5.01} = DCG_{5.01} / IDCG_5 = 1.631 / 2.948 = 0.553$
- Query 2:
 - $NDCG_{5.02} = DCG_{5.02} / IDCG_5 = 0.818 / 2.948 = 0.277$
- Global NDCG₅ = (0.553 + 0.277) / 2 = 0.415

- What's good about NDCG is it can consider different levels of relevance (e.g. 0-5), not just R vs NR:
 - 1: 4, 2: 5, 3: 2, 4: 0, 5: 2
 - 1: 2, 2: 4, 3: 0, 4: 1, 5: 5

- Weighted example:
 - 1: 4, 2: 5, 3: 2, 4: 0, 5: 2
 - 1: 2, 2: 4, 3: 0, 4: 1, 5: 5
- Query 1:
 - $DCG_{5.01} = 4 / log_2(2) + 5 / log_2(3) + 2 / log_2(4) + 0 + 2 / log_2(6) = 8.928$
- Query 2:
 - $DCG_{5,Q2} = 2 / log_2(2) + 4 / log_2(3) + 0 + 1 / log_2(5) + 5 / log_2(6) = 6.889$
- $ICDG_5 = 5 / log_2(2) + 5 / log_2(3) + 5 / log_2(4) + 5 / log_2(5) + 5 / log_2(6) = 15.472$

- Weighted example:
 - 1: 4, 2: 5, 3: 2, 4: 0, 5: 2
 - 1: 2, 2: 4, 3: 0, 4: 1, 5: 5
- Query 1:
 - $NDCG_{5.01} = DCG_{5.01} / IDCG_5 = 8.928 / 15.472 = 0.577$
- Query 2:
 - $NDCG_{5.02} = DCG_{5.02} / IDCG_5 = 6.889 / 15.472 = 0.445$
- Global NCDG₅ = (0.577 + 0.445) / 2 = 0.511

MAP vs NDCG

- Both consider top results are more important.
- MAP is simple, easy to understand, widely used.
- NDCG can consider different levels of relevance.
 - Instead of just relevant (1) vs non-relevant (0).
 - NDCG can take relevance scores from e.g. 0 to 5.
 - Especially used in these cases.
 - MAP can only handle 0's and 1's.

MAP and NDCG

- Note: MAP and NDCG not only used in information retrieval.
 - Useful for any ranking problem.
 - e.g. to evaluate system that ranks universities.
 - e.g. to evaluate system that predicts Premier League table.
 - e.g. to evaluate recommender systems (forthcoming lecture!)

RESOURCES

- Text REtrieval Conference (TREC) datasets: http://trec.nist.gov/data.html
 - Including:
 - Relevance judgements for web search: http://trec.nist.gov/data/webmain.html
 - Relevance judgements for Twitter search: http://trec.nist.gov/data/microblog.html

ASSOCIATED READING

• Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval (Vol. 1, No. 1, p. 496). Cambridge: Cambridge university press. **Chapters 6-8**.

https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf