Anonymous Identity-Based Broadcast Encryption

Let k denote the security parameter given to the setup algorithm such that a security level of 256 bits is achieved. Let G be some BDH parameter generator.

Setup(k): Given a security parameter $k \in \mathbb{Z}^+$ the algorithm works as follows:

- 1. Run G on input k to generate a prime q, two groups $\mathbb{G}_1, \mathbb{G}_2$ of order q, and an admissibile bilinear map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$. Choose a random generator $P \in \mathbb{G}$.
- 2. Pick a random $s \in \mathbb{Z}_q^*$ and set $P_{pub} = sP$
- 3. Choose a cryptographic hash function $H_1: \{0,1\}^* \to \mathbb{G}_1^*$. The security analysis will view H_1 as a random oracle.

The symmetric key space is $K = \{0, 1\}^{256}$. The ciphertext space is $C_i = \mathbb{G}_1^* \times \{0, 1\}^{256}$ **Extract:** For a given

$$d_{\text{ID}} = \{ (r_{\text{ID},i}, h_{\text{ID},i}) : i \in \{1, 2, 3\} \}, \text{ where } h_{\text{ID},i} = \left(h_i q_2^{-r_{\text{ID},i}} \right)^{\frac{1}{\alpha - \text{ID}}} \in \mathbb{G}_2$$

If ID = α , the PKG aborts. As before, we require that the PKG always use the same random values $\{r_{\text{ID},i}\}$ for ID.

Encrypt: To encrypt $m \in \{1,0\}^n$ using identity $\mathrm{ID} \in \mathbb{Z}_p$, the sender generates random $s \in \mathbb{Z}_p$, and sends the ciphertext

$$C = \left(g_1^s p_1^{-s \cdot \text{ID}}, \ e(p_1, q_2)^s, \ m \oplus H_2\{e(p_1, h_1)^s\}, \ e(p_1, h_2)^s e(p_1, h_3)^{s\beta}\right)$$
$$= (u, v, w, y)$$

Note that $u \in \mathbb{G}_1, v \in \mathbb{G}_T, w \in \{1,0\}^n$ and $y \in \mathbb{G}_T$. We set $\beta = H_1\{u,v,w\}$. Encryption does not require any pairing computations once $e(p_1,q_2)$, and $\{e(p_1,h_i)\}$ have been pre-computed or alternatively included in *params*.

Decrypt: To decrypt ciphertext C = (u, v, w, y) with ID, the recipient sets $\beta = H_1\{u, v, w\}$ and tests whether

$$y = e\left(u, h_{\text{ID},2}h_{\text{ID},3}^{\beta}\right)v^{r_{\text{ID},2} + r_{\text{ID},3}\beta}$$

If the check fails, the recipient outputs \perp . Otherwise, it outputs

$$m = w \oplus H_2\{e(u, h_{\text{ID},1}) v^{r_{\text{ID},1}}\}$$

Correctness: Assuming the ciphertext is well-formed for ID:

$$\begin{split} e\left(u,h_{\text{ID},2}h_{\text{ID},3}^{\beta}\right)v^{r_{\text{ID},2}+r_{\text{ID},3}\beta} \\ &= e\left(p_{1}^{s(\alpha-\text{ID})},\left(h_{2}h_{3}^{\beta}\right)^{\frac{1}{\alpha-\text{ID}}}q_{2}^{\frac{-\left(r_{\text{ID},2}+r_{\text{ID},3}\beta\right)}{\alpha-\text{ID}}}\right)e\left(p_{1},q_{2}\right)^{s\left(r_{\text{ID},2}+r_{\text{ID},3}\beta\right)} \\ &= e\left(p_{1}^{s(\alpha-\text{ID})},\left(h_{2}h_{3}^{\beta}\right)^{\frac{1}{\alpha-\text{ID}}}\right) = e\left(p_{1},h_{2}\right)^{s}e\left(p_{1},h_{3}\right)^{s\beta} \end{split}$$

Thus, the check passes. Moreover, as in the ANON-IND-ID CPA scheme,

$$e(u, h_{\text{ID}}) v^{r_{\text{ID},1}} = e\left(p_1^{s(\alpha-\text{ID})}, h^{\frac{1}{\alpha-\text{ID}}} q_2^{\frac{-r_{\text{ID},1}}{\alpha-\text{ID}}}\right) e(p_1, q_2)^{sr_{\text{ID},1}} = e(p_1, h)^s,$$

as required.