Apprentissage par renforcement Cours1: MDP et Bandits

Sylvain Lamprier

UE RLD - Master DAC

2019

Apprentissage par renforcement

- Apprentissage supervisé
 - On dispose d'une vérité terrain permettant de juger chaque décision
 - ⇒ Minimiser les erreurs par rapport à cette vérité terrain
- Apprentissage non-supervisé
 - On ne dispose que de données non-étiquetées
 - → Maximiser un critère sur la structure des données
- Apprentissage semi-supervisé
 - On ne dispose que d'une partie des labels
 - → Mix entre supervisé et non-supervisé
- Apprentissage par renforcement
 - Apprentissage faiblement supervisé : on ne dispose que d'indicateurs de l'utilité des décisions prises
 - ⇒ Maximiser le reward cumulé

Agent Décisionnel

Apprentissage Supervisé (classification) :

Apprentissage par renforcement (prise de décision) :

Problème de décision

Ce contexte décrit des situations très générales et diverses :

- Un robot qui se déplace sur la lune
- Un logiciel qui joue eux échecs (ou au go, au backgammon, au poker,...)
- Un helicoptère qui apprend à voler
- Un joueur de foot (multi-agent)
- ...

Agent Décisionnel

Agent Décisionnel

Agent à réflexes simples

Agent basé sur un modèle de l'utilité espérée

Apprentissage par renforcement

MDP: Processus de décision de Markov

Markov Decision Process

Nous définissons un MDP comme un quadruplet $\{S, A, P, R\}$:

- S est l'ensemble d'états (states)
- \mathcal{A} est l'ensemble des actions. On note $\mathcal{A}(s)$ l'ensemble des actions dans l'état s tel que $\mathcal{A}(s) \in \mathcal{A}$
- \mathcal{P} est la fonction de transition : $\mathcal{P}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0; 1]$. Cette fonction définit une distribution de probabilité sur les transitions $\mathcal{P}(s, a, s') = P(s' = s_{t+1} | s = s_t, a_t = a)$.
- \mathcal{R} est la fonction de récompense (*reward*). $\mathcal{R}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow R$ telle que $R(s, a, s') = E[r_t | s_t = s, a_t = a, s_{t+1} = s']$

Exemple de problème : Recherche d'itinéraire

Cas Simple

- Recherche arborescente
- Méthodes Heuristiques
- A*, etc.

Transitions stochastiques, états non observables, etc.

RL, POMDP

Exemple de problème : Taquin

Combien d'états?

Exemple de problème : aspirateur

États? Transitions?

Exemple de problème : aspirateur

Exemple de problème : Backgammon

- Etats : etat du jeu + état des dés
- Actions : actions de déplacement
- Reward:
 - +100 si gagne
 - -100 si perd
- Entrainé sur 1.5 millions de parties
- Aussi bon que le meilleur joueur (du monde)

Exemple de problème : Mountain Car

- Etats: Position de la voiture + vitesse
- Actions : Accélération (avant ou arrière)
- Reward:
 - -1 à chaque "pas"
 - 1 si gagne

Exemple de problème : Bilboquet

Vidéo Bilboquet

Plan

- Semaine 1 : Bandits
 - R inconnu a priori
 - ⇒ Exploitation/Exploration
- Semaine 2 : MDPs connus
 - ⇒ Recherche de politiques optimales
- Semaine 3 : MDPs inconnus
 - Ni \mathcal{P} ni \mathcal{R} connus a priori
 - ⇒ Exploration de l'espace
 - ⇒ Model-based vs Model-free
 - → Méthodes Value-Based
- Semaine 4 : Policy gradients
 - Apprentissage probabiliste de politiques
- Semaine 5 : Actions continues
 - DPG, DDPG, etc.
- Semaine 6 : Model-based RL & Curiculum learning
 - Modélisation du monde & Plannification
 - Apprentissage progressif
- Semaine 7 : Imitation Learning
 - Imitation Learning : Utilisation de démonstrations humaines
 - Inverse Reinforcement, GANs

Renforcement vs Bandits

- Prise de décision en ligne
 - Apprentissage en continu
 - Décision Temps réel
 - Pas ou peu d'informations sur les entités manipulées
- ⇒ Problèmes de bandits-manchots multi-bras

- Problèmes de bandits = Problèmes d'apprentissage par renforcement
 - Reward immédiat
 - Etat courant ne dépend pas des actions passées
- Stochastique vs Adverse
- Stationnaire vs Non-stationnaire
- Bras inter-dépendents ou indépendents
- Prise en compte du contexte décisionnel?

- Problèmes de bandits = Problèmes d'apprentissage par renforcement
 - Reward immédiat
 - Etat courant ne dépend pas des actions passées
- Stochastique vs Adverse
- Stationnaire vs Non-stationnaire
- Bras inter-dépendents ou indépendents
- Prise en compte du contexte décisionnel?

- Problèmes de bandits multi-bras
 - K actions (bras) possibles à chaque pas de temps t, une seule effectuée : It
 - Resultat de l'action i au temps $t:\omega_{i,t}\in\Omega$ Seul le resultat du bras joué au temps t est observé : $\omega_{l_t,t}$
 - Fonction de reward $g:\Omega\to [0;1]$ définie pour estimer l'utilité du resultat d'une action
 - Hypothèse (cas stochastique) : les rewards obtenus pour chaque action sont i.i.d. et suivent une distribution inconnue ν_i d'espérance μ_i
 - Une stratégie de décision (ou politique) π détermine, en fonction des actions passées $I_1 \dots I_{t-1}$, l'action $I_t = \pi_t$ à effectuer à l'instant t
 - Objectif : Maximiser le reward cumulé sur la période d'actions 1..7 :

$$\pi^* = rg \max_{\pi} \sum_{t=1}^T g(\omega_{\pi_t,t})$$

- Notion centrale de regret :
 - Regret ρ_n d'avoir effectué les actions $\pi_1..\pi_n$ dans les n premiers pas de temps plutôt que l'action $i^* = \arg\max_i \mu_i$ de meilleure espérance :

$$\rho_n = \sum_{t=1}^n g(\omega_{i^*,t}) - \sum_{t=1}^n g(\omega_{\pi_t,t})$$

• Espérance de Regret $\mathbb{E}(\rho_n)$:

$$\mathbb{E}(\rho_n) = n \times \mu_i^* - \mathbb{E}(\sum_{t=1}^n \mu_{\pi_t})$$

Espérance empirique des rewards de i après x essais de i :

$$\widehat{\mu}_{i,x} = \frac{1}{x} \sum_{s=1}^{x} g_{i,s}$$

Avec $g_{i,s}$ le s-ième reward obtenu par le bras i.

 Plus on joue un bras, meilleure est l'estimation de son espérance de reward :

$$\lim_{\mathsf{X}\to\infty}\widehat{\mu}_{\mathsf{i},\mathsf{X}}=\mu_{\mathsf{i}}$$

- Proposition de politique π :
 - $\pi_t = \arg\max_{i \in K} \widehat{\mu}_{i, T_i(t)}$ avec $T_i(t)$ le nombre de fois que i a été joué au temps t
 - Qu'en pensez-vous?

- Proposition de politique π :
 - $\pi_t = \arg\max_{i \in K} \widehat{\mu}_{i, T_i(t)}$ avec $T_i(t)$ le nombre de fois que i a été joué au temps t
 - Qu'en pensez-vous?
 - ⇒ Pas d'exploration
 - ⇒ Risque de rester "bloqué" sur un bras sous-optimal

- Proposition de politique π :
 - $\pi_t = \arg\max_{i \in \mathcal{K}} \widehat{\mu}_{i, T_i(t)}$ avec $T_i(t)$ le nombre de fois que i a été joué au temps t
 - Qu'en pensez-vous?
 - ⇒ Pas d'exploration
 - ⇒ Risque de rester "bloqué" sur un bras sous-optimal
- ⇒ Définir un compromis entre :
 - Exploitation :
 - Récupération des gains fournis par le meilleur bras actuel
 - Exploration :
 - Découverte de nouveaux bras
 - Raffinement de l'estimation de bras \neq arg max_{$i \in K$} $\widehat{\mu}_{i,T_i(t)}$

Théorème [Lai & Robbins, 1985]

Il est possible de définir des stratégies tel que :

$$\mathbb{E}(\rho_n) \leq cKIn(n)$$

Avec
$$cpprox rac{1}{\Delta^*}$$
, où $\Delta^*=\mu^*-\max_{j:\mu_j<\mu^*}\mu_j$

- Un premier algo : Epsilon-greedy
- A chaque itération t :
 - Avec une probabilité de $1 \epsilon_t$, $\pi_t = \arg\max_{i \in K} \widehat{\mu}_{i,T_i(t)}$ (bras de meilleure espérance empirique)
 - Avec une probabilité de ϵ_t , $\pi_t =$ bras choisi au hasard
- Compromis exploitation-exploration défini par ϵ_t
 - Performances très dépendantes de ϵ_t
 - ϵ_t généralement décroissant en fonction de t
 - ⇒ De nombreuses variantes existent

- Un premier algo: Epsilon-greedy
- A chaque itération t :
 - Avec une probabilité de $1 \epsilon_t$, $\pi_t = \arg\max_{i \in K} \widehat{\mu}_{i,T_i(t)}$ (bras de meilleure espérance empirique)
 - Avec une probabilité de ϵ_t , $\pi_t =$ bras choisi au hasard
- Compromis exploitation-exploration défini par ϵ_t
 - Performances très dépendantes de ϵ_t
 - ϵ_t généralement décroissant en fonction de t
 - ⇒ De nombreuses variantes existent
- Est-il possible de spécifier ϵ_t de manière à garantir un regret logarithmique ?

Tuned Epsilon-greedy

Théorème [Auer et al., 2002]

Si $\epsilon_t = \min\{1; \frac{12}{d^2t}\}$ avec $d \in]0; \Delta^*]$, alors le regret instantané au temps n de la stratégie epsilon-greedy est dans le pire des cas en $O(\frac{K}{dn})$

Tuned Epsilon-greedy

Théorème [Auer et al., 2002]

Si $\epsilon_t = \min\{1; \frac{12}{d^2t}\}$ avec $d \in]0; \Delta^*]$, alors le regret instantané au temps n de la stratégie epsilon-greedy est dans le pire des cas en $O(\frac{K}{dn})$

 \Rightarrow Si on connaît Δ^* alors il est possible de définir une stratégie epsilon-greedy où $\mathbb{E}(\rho_n) \leq \frac{K}{\Delta^*} ln(n) + C$ (avec C une constante)

Tuned Epsilon-greedy

Théorème [Auer et al., 2002]

Si $\epsilon_t = \min\{1; \frac{12}{d^2t}\}$ avec $d \in]0; \Delta^*]$, alors le regret instantané au temps n de la stratégie epsilon-greedy est dans le pire des cas en $O(\frac{K}{dn})$

- \Rightarrow Si on connaît Δ^* alors il est possible de définir une stratégie epsilon-greedy où $\mathbb{E}(\rho_n) \leq \frac{K}{\Delta^*} ln(n) + C$ (avec C une constante)
 - Pb : Δ* n'est pas connu a priori ⇒ Définition d'un paramètre d efficace difficile

- Une stratégie centrale : UCB
 - Upper-Confidence Bound [Auer et al., 2002]

$$\pi_t = rg \max_i B_{t,T_i(t-1)}(i), \text{ avec } B_{t,s}(i) = \widehat{\mu}_{i,s} + \sqrt{\frac{2 \log t}{s}}$$

- Stratégie optimiste :
 - \Rightarrow $B_{t,T_i(t-1)}(i)$ représente une borne supérieure de $\widehat{\mu}_{i,T_i(t-1)}$ à l'iteration t

⇒ On choisit le bras qui serait le meilleur si les valeurs des bras étaient les meilleures possibles selon l'intervale de confiance

UCB : Borne supérieure du regret

- Stratégie optimiste :
 - Inégalités de Chernoff-Hoeffding pour des variables aléatoires indépendantes X_i ∈ [0,1] d'espérance μ :

$$P(\frac{1}{s}\sum_{i=1}^{s}X_i - \mu \ge \epsilon) \le \exp^{-2s\epsilon^2}$$
 et $P(\frac{1}{s}\sum_{i=1}^{s}X_i - \mu \le -\epsilon) \le \exp^{-2s\epsilon^2}$

On a alors pour tout bras i:

$$P(\widehat{\mu}_{i,T_{i}(t-1)} + \sqrt{\frac{2\log t}{T_{i}(t-1)}} \le \mu_{i}) \le t^{-4} \text{ et } P(\widehat{\mu}_{i,T_{i}(t-1)} - \sqrt{\frac{2\log t}{T_{i}(t-1)}} \ge \mu_{i}) \le t^{-4}$$

 \Rightarrow Cela définit un intervale de confiance de niveau 1 – 2 t^{-4} :

$$\mu_i - \sqrt{\frac{2\log t}{T_i(t-1)}} \le^{(a)} \widehat{\mu}_{i,\,T_i(t-1)} \le^{(b)} \mu_i + \sqrt{\frac{2\log t}{T_i(t-1)}}$$

• UCB choisit un bras sous-optimal i, i.e. $B_{t,s}(i) \geq B_{t,s^*}(i^*)$), si:

$$\widehat{\mu}_{i,T_{i}(t-1)} + \sqrt{\frac{2\log t}{T_{i}(t-1)}} \ge \widehat{\mu}_{i^{*},T_{i^{*}}(t-1)} + \sqrt{\frac{2\log t}{T_{i^{*}}(t-1)}}$$

 Si on est dans l'intervale de confiance, on a alors dans ce cas :

$$\mu_i + 2\sqrt{\frac{2\log t}{T_i(t-1)}} \geq \mu^*, \, \mathsf{soit}: T_i(t-1) \leq \frac{8\log t}{\Delta_i^2}$$

 Sinon, c'est que l'une des inégalités (a) ou (b) n'est pas vérifiée

• On pose, pour tout entier $u \ge 0$:

$$T_i(n) \le u + \sum_{t=u+1}^n \mathbb{I}(\exists s : u < s \le t, \exists s^* : 1 \le s^* \le t, B_{t,s}(i) \ge B_{t,s^*}(i^*))$$

- En choisissant $u=\frac{8\log n}{\Delta_i^2}$, on sait alors qu'un bras sous-optimal est choisi seulement si (a) ou (b) n'est pas vérifiée. Or :
 - (a) n'est pas vérifiée avec une proba de t^{-4}
 - ullet (b) n'est pas vérifiée avec une proba de t^{-4}
- Donc :

$$\mathbb{E}_{T_i(n)} \leq \frac{8 \log n}{\Delta_i^2} + \sum_{t=u+1}^n \left[\sum_{s=u+1}^t t^{-4} + \sum_{s=1}^t t^{-4} \right]$$
$$\leq \frac{8 \log n}{\Delta_i^2} + 1 + \frac{\pi^2}{3}$$

• On pose, pour tout entier $u \ge 0$:

$$T_i(n) \le u + \sum_{t=u+1}^n \mathbb{I}(\exists s : u < s \le t, \exists s^* : 1 \le s^* \le t, B_{t,s}(i) \ge B_{t,s^*}(i^*))$$

- En choisissant $u=\frac{8\log n}{\Delta_i^2}$, on sait alors qu'un bras sous-optimal est choisi seulement si (a) ou (b) n'est pas vérifiée. Or :
 - (a) n'est pas vérifiée avec une proba de t^{-4}
 - ullet (b) n'est pas vérifiée avec une proba de t^{-4}
- Donc :

$$\mathbb{E}_{T_i(n)} \leq \frac{8 \log n}{\Delta_i^2} + \sum_{t=u+1}^n \left[\sum_{s=u+1}^t t^{-4} + \sum_{s=1}^t t^{-4} \right]$$
$$\leq \frac{8 \log n}{\Delta_i^2} + 1 + \frac{\pi^2}{3}$$

⇒ Borne supérieure logarithmique sur l'espérance du nombre de tirages de chaque bras sous-optimal

 Borne du regret à partir de cette borne du nombre de tirages des bras sous-optimaux?

$$\mathbb{E}(\rho_n)$$

$$= n \times \mu^* - \mathbb{E}(\sum_{t=1}^n \mu_{\pi_t})$$

$$= n \times \mu^* - \sum_{i=1}^K \mathbb{E}_{T_i}(n) \times \mu_i$$

$$= \sum_{i=1}^K \mathbb{E}_{T_i}(n) \times (\mu^* - \mu_i)$$

$$= \sum_{i=1}^K \mathbb{E}_{T_i}(n) \times \Delta_i$$

$$\leq \sum_{i \in \{1..K\}: \mu_i < \mu^*}^K \frac{8 \log n}{\Delta_i} + \Delta_i (1 + \frac{\pi^2}{3})$$

$$\leq K \frac{8 \log n}{\Delta^*} + K \Delta^* (1 + \frac{\pi^2}{3})$$

UCB : Application à la publicité sur le Web

Exemple d'application d'UCB sur le Web : la publicité dans les moteurs de recherche [Pandey&Olston, 2007]

- Publicités A₁..A_k
- Requêtes (ou mots) Q₁..Q_m
- Revenu par clic $a_{i,j}$ pour chaque paire publicité A_i -requête Q_i
- Probabilité (inconnue) $p_{i,j}$ que les utilisateurs cliquent sur la publicité A_i pour la requête Q_i
- ⇒ Objectif : Maximiser les gains du moteur sur l'ensemble des n_i

recherches selon chaque requête
$$Q_j$$
 de la journée :
$$\sum_{i=1}^{n_j} \mathbb{I}(\text{clic sur la publicité } A_i \text{ affichée}) \times a_{i,j} \sim \sum_{i=1}^{n_j} p_{i,j} \times a_{i,j}$$

Choix de la publicité à afficher pour la i-ième recherche utilisant la requête Qi:

$$A_i = \underset{A_x \in A}{\operatorname{arg\,max}} (\hat{\rho}_{x,j}(i-1) + \sqrt{\frac{2\log(i)}{n_{x,j}(i-1)}}) \times a_{x,j}$$

Avec sur les i-1 premières recherches concernant la requête Q_i :

- $\hat{p}_{x,j}(i-1)$: l'estimation de la probabilité de clic sur la pub A_x
- $n_{x,i}(i-1)$: le nombre de fois où A_x a été affiché

UCB : Application à la collecte de données

Collecte de données temps réel sur les réseaux sociaux [Gisselbrecht et al., 2015]

- Plateformes de streaming des réseaux
- Ecoute d'un nombre limité d'utilisateurs en simultané
- Pb : choisir les k utilisateurs avec le meilleur potentiel d'utilité selon la fonction de reward considérée :

$$\pi^* = \arg\max_{\pi} \sum_{t=1}^n \sum_{i \in \pi_t} g(\omega_{i,t})$$

⇒ UCBV appliqué à la sélection de k bras simultanés (Combinatorial UCBV)

Problèmes de bandits : une variante d'UCB

- UCB-V [Audibert et al., 2007]
 - Intuition
 - Certains bras ont une variabilité des rewards plus importante que d'autres
 - Estimation des bras à plus grande variabilité plus difficile
 - ⇒ Meilleure prise en compte de ces bras par considération de la variance empirique des rewards
 - Variance Empirique :

$$\widehat{\sigma}_{i,x}^2 = \frac{1}{x} \sum_{s=1}^{x} (g_{i,s} - \widehat{\mu}_{i,x})^2$$

 UCB-V = UCB avec borne supérieure de l'intervale de confiance de la variance

$$\pi_t = \arg\max_i B_{t,T_i(t-1)}(i)$$

Avec

$$B_{t,s}(i) = \widehat{\mu}_{i,s} + \sqrt{\frac{2\log(t)\ \widehat{\sigma}_{i,s}^2}{s}} + \frac{\log(t)}{2s}$$

Problèmes de bandits : contexte de décision

- Contexte de décision
 - Contexte global variant à chaque itération
 - Contexte individuel (sur chaque bras) fixe (= profils des bras)
 - Contexte individuel variant à chaque itération
- Prise en compte du contexte
 - Contexte fixe (prise en compte globale)
 - ⇒ Accélérer la sélection des meilleurs bras en apprenant des "zones" de l'espace de représentation pertinentes
 - ⇒ Cold-start pour nouveaux bras entrant dans le pool
 - Contexte variable : Hypothèse de non-stationnarité des rewards
 - Prise en compte globale de contextes individuels : rewards des bras suivent une distribution commune définie sur leurs contextes individuels
 - Prise en compte individuelle d'un contexte global : chaque bras suit une distribution indépendante contionnellement au contexte global de la décision
 - ⇒ Prise en compte individuelle d'un contexte individuel : rewards de chaque bras dépendent de son état actuel

- Lin-UCB [Li et al., 2010]
 - UCB avec prise en compte individuelle du contexte
 - Contexte de décision pour un bras i à l'instant t : $x_{i,t}$
 - Recherche pour chaque bras des corrélations entre contextes de décision et rewards obtenus :

$$\mathbb{E}_{i}(g(\omega_{i,t})|x_{i,t}) = < x_{i,t}, \theta_{i}^{*} >$$

 Mise à jour des paramètres par Ridge Regression au fur et à mesure du processus

$$\hat{\theta}_i = \operatorname*{arg\,min}_{\theta_i} \| D_i \theta_i - c_i \|^2 + \| \theta_i \|^2$$

Avec D_i la matrice des contextes observés pour le bras i et c_i le vecteur des rewards obtenus correspondants

$$\Rightarrow \hat{\theta}_i = (D_i^T D_i + I)^{-1} D_i^T c_i$$

- Lin-UCB [Li et al., 2010]
 - Il peut être montré qu'avec une probabilité 1 $-\delta$:

$$|\langle x_{i,t}, \hat{ heta}_i \rangle - \mathbb{E}_i(g(\omega_{i,t})|x_{i,t})| \leq \alpha \sqrt{x_{i,t}^T (D_i^T D_i + I)^{-1} x_{i,t}}$$

Avec $\alpha = 1 + \sqrt{\log(2/\delta)/2}$

• On a donc une borne supérieure de l'intervale de confiance pour $< x_{i,t}, \hat{\theta}_i >$, qu'on peut donc utiliser à la manière d'UCB pour définir la politique π :

$$\pi_t = \arg\max_i \langle \mathbf{X}_{i,t}, \hat{\theta}_i \rangle + \alpha \sqrt{\mathbf{X}_{i,t}^T (\mathbf{D}_i^T \mathbf{D}_i + \mathbf{I})^{-1} \mathbf{X}_{i,t}}$$

Algorithm 1 LinUCB with disjoint linear models.

```
0: Inputs: \alpha \in \mathbb{R}_+
 1: for t = 1, 2, 3, \dots, T do
            Observe features of all arms a \in \mathcal{A}_t: \mathbf{x}_{t,a} \in \mathbb{R}^d
 3:
            for all a \in \mathcal{A}_t do
 4:
                if a is new then
 5:
                     \mathbf{A}_a \leftarrow \mathbf{I}_d (d-dimensional identity matrix)
 6:
                     \mathbf{b}_a \leftarrow \mathbf{0}_{d \times 1} (d-dimensional zero vector)
 7:
            end if
            \hat{\boldsymbol{\theta}}_a \leftarrow \mathbf{A}_a^{-1} \mathbf{b}_a
 8:
                p_{t,a} \leftarrow \hat{\boldsymbol{\theta}}_a^{\top} \mathbf{x}_{t,a} + \alpha \sqrt{\mathbf{x}_{t,a}^{\top} \mathbf{A}_a^{-1} \mathbf{x}_{t,a}}
10:
            end for
11:
            Choose arm a_t = \arg \max_{a \in A_t} p_{t,a} with ties broken arbi-
            trarily, and observe a real-valued payoff r_t
            \mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_{t,a_t} \mathbf{x}_{t,a_t}^{\top}
12:
13:
            \mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r_t \mathbf{x}_{t,a_t}
14: end for
```

Avec
$$A_i = D_i^T D_i + I$$
 et $b_i = D_i^T c_i$

Application à la recommendation de news personnalisée [Li et al., 2010]

 A_t : available articles at time t \mathbf{x}_t : user features (age, gender, interests, ...) a_t : the displayed article at time t r_{t,a_t} : 1 for click, 0 for no - click

Average reward is click-through rate (CTR)

- Alternative aux stratégies optimistes : Thompson Sampling [Thompson,1933],[Kaufmann et al., 2012]
- Maximisation de l'espérance de reward :

$$\pi_t = \arg\max_i \mathbb{E}(\mathbf{r}_{t,i}|i, \mathbf{x}_{i,t}, \mathcal{D})$$
 (1)

$$= \arg\max_{i} \int \mathbb{E}(r_{t,i}|i,x_{i,t},\theta) P(\theta|\mathcal{D}) d\theta$$
 (2)

Avec:

- $r_{t,i} = g(\omega_{i,\pi_t})$ le reward obtenu par i au temps t
- $\mathcal{D} = \{(i, t, x_{i,t}, r_t\} | i'ensemble des observations passées;$
- $\mathbb{E}(r_{t,i}|i,x_{i,t},\mathcal{D})$ l'espérance du reward obtenu par i au temps t en fonction des observations passées
- $P(\theta|\mathcal{D}) \propto P(\mathcal{D}|\theta)P(\theta)$ la probabilité postérieure des paramètres conditionnnellement aux paramètres
- $P(\mathcal{D}|\theta)$ la vraissemblance des observations selon les paramètres
- $P(\theta)$ un prior sur l'ensemble de paramètres θ ;

- Thompson Sampling en pratique
- A chaque iteration t:
 - **1** Échantillonnage des paramètres $\theta^* \sim P(\theta|\mathcal{D})$
 - Choix du bras qui maximise l'espérance du reward en fonction des paramètres et du contexte :

$$\pi_t = rg \max_i \mathbb{E}(r|i, \mathbf{x}_{i,t}, \theta^*)$$

- Thompson Sampling en pratique
- Cas linéaire [Agrawal & Goyal, 2013] :
 - $\mathbb{E}(r_t|i,x_{i,t},\theta) = <\theta,x_{i,t}>$
 - On suppose que les rewards observés suivent une loi normale : $P(\mathcal{D}_t|\theta) = \mathcal{N}(\theta\mathcal{X}_t, v^2)$, avec \mathcal{X}_t la matrice des contextes des bras choisis jusqu'à t
 - On suppose un prior gaussien sur les paramètres θ : $P(\theta) = \mathcal{N}(0, \sigma^2)$
 - \Rightarrow Posterieure normale : $P(\theta|\mathcal{D}_t) = \mathcal{N}(b_t A_t^{-1}, A_t^{-1})$, avec :

•
$$A(t) = \frac{1}{\sigma^2} + \frac{1}{V^2} \sum_{s=1}^{t-1} X_{\pi_i,s} X_{\pi_i,s}^T$$

•
$$b(t) = \frac{1}{v^2} \sum_{s=1}^{t-1} r_s x_{\pi_i,s}$$

- Thompson Sampling : Application a la selection de messages à publier
 - ⇒ Maximiser le nombre de retweets [Lage et al., 2013]
- A chaque ieration t:
 - Recuperation de la liste des articles candidats au temps t
 - Publication de l'article avec le plus fort potentiel selon ses caractéristiques et les paramètres du modèle
 - Observation de l'impact de la publication pendant une periode de temps donnée
 - Mise à jour du modèle selon le nombre de retweets observés
- Caractéristiques considérées :
 - Contenu : tf normalisé des termes
 - Nombre d'Hashtags
 - Nombre de destinataires
 - Taille du message

Bandits : Application dans les arbres de décision

Un processus de décision peut être représenté par un arbre :

- Noeud = situation dans un problème de décision
- Fils d'un noeud s_i = situation atteignable à partir de s_i selon une action
- Racine = situation de départ
- Feuilles = situations terminales
- Possiblement infini (si boucles dans le MDP correspondant ou si actions/etats continus)

Monde stochastique et/ou avec adversaire : comment évaluer les bonnes situations?

- Dans le cadre des jeux à deux joueurs : algorithmes minmax, alpha-beta, etc.
- ullet ... Mais souvent arbre trop grand \Rightarrow impossible à évaluer complètement
- Possibilité : s'arrêter à une profondeur donnée et retourner une estimation de la qualité de la situation à cette profondeur
- Problème : comment estimer la qualité d'une situation ?

Bandits : Application dans les arbres de décision

Monte-Carlo Tree Search

- Sélection : A chaque niveau de l'arbre connu, sélection d'une action selon une stratégie exploitation/exploration
- Expansion : Arrivé sur une feuille, création des situation filles du noeud
- Simulation : Jeu aléatoire jusqu'à situation de victoire ou de défaite (Rollout)
- Backpropagation : Mise à jour des scores des noeuds de l'arbre selon victoire ou défaite

Stratégie de Sélection classique : UCT (upper-confidence Tree)

$$\frac{w_i}{n_i} + c\sqrt{\frac{\ln N_i}{n_i}}$$

References

- [Agrawal & Goyal, 2013] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In ICML (3), pages 127–135, 2013
- [Audibert et al., 2007] J.-Y. Audibert, R. Munos, and C. Szepesvari. Tuning bandit algorithms in stochastic environments. In ALT'07, pages 150–165. 2007.
- [Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of the Multiarmed Bandit Problem. Mach. Learn. 47, 2-3 (May 2002), 235-256.
- [Gisselbrecht et al., 2015] Thibault Gisselbrecht, Ludovic Denoyer, Patrick Gallinari and Sylvain Lamprier.
 WhichStreams: A Dynamic Approach for Focused Data Capture from Large Social Media. ICWSM 2015: 130-139
- [Kaufmann et al., 2012] E.Kaufmann, N.Korda, and R.Munos. Thompson Sampling: an asymptotically optimal finite-time analysis. In ALT'12.
- [Lage et al., 2013] Ricardo Lage, Ludovic Denoyer, Patrick Gallinari et al. (2013) Choosing which message to publish on social networks: A Contextual bandit approach. In IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.
- [Lai & Robbins, 1985] Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules.
 Advances in Applied Mathematics ,6,4–22.
- [Li et al., 2010] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New York, NY, USA, 661-670.
- [Pandey & Olston, 2007] Sandeep Pandey and Christopher Olston. Handling advertisements of unknown quality in search advertising. Advances in Neural Information Processing Systems, 19:1065, 2007
- [Thompson, 1933] Thompson, William R. "On the likelihood that one unknown probability exceeds another in view of the evidence of two samples". Biometrika, 25(3-4):285–294, 1933.