Kotlin

Algoritmos Aleatórios

A1. Two Fer (2-Fer)	2
A2. Troca Troca	2
A3. Ajuste Salarial	2
A4. FizzBuzz	3
A5. Área de uma circunferência	3
A6. Salário Líquido Professor	4
A7. Volume da caixa	4
A8. Conversão em Real	4
A9. Conversão em Dólar	5
A10. Soma dos Quadrados	5
A11. Quadrado da Soma	5
A12. Velocidade do Projétil	5
A13. Eleição Sindical	6
A14. Média do Aluno	6
A15. Somando Naturais	6
A16. Ordenando Inteiros	7
A17. Palíndromo	7
A18. Scrabble Score	8
A19. Algarismos Romanos	9
A20. JoKenPo	10
A21 Podra-papolitosoura-lagarto-Spock (Rôpus)	10

A1. Two Fer (2-Fer)

Two-fer ou 2-Fer é a abreviação de dois para um (em inglês). Um programa 2-Fer deve se comportar de forma que dado um nome, retorne-se uma String com a mensagem: *Um para <nome>, um para mim!*. Onde *<nome>* por padrão deve ser a palavra "você" e deve ser substituído pelo nome recebido caso um nome seja informado.

Exemplo

Nome digitado	String retornada	
Alice	Um para Alice, um para mim.	
Bob	Um para Bob, um para mim.	
<nulo apenas="" espaços="" ou=""></nulo>	Um para você, um para mim.	
José	Um para José, um para mim.	

Instruções

- Crie um programa com nome TwoFer;
- O programa deverá conter duas funções, uma principal e outra com o comportamento do Two Fer.
- > O programa deverá solicitar via console que o usuário informe um nome;
- > O programa deverá **permitir** que nenhum nome seja informado.
- > O programa deverá **imprimir** no console o resultado do TwoFer. A função principal que **deverá** realizar esta impressão.

A2. Troca Troca

- Crie um programa que leia dois valores para as variáveis A e B
- > Efetue a troca dos valores de forma que a variável A passe a possuir o valor da variável B
- A variável B passe a possuir o valor da variável A.
- Apresente os valores após a efetivação do processamento da troca.

A3. Ajuste Salarial

- > Crie um programa que leia o valor numérico correspondente ao salário mensal de um trabalhador.
- > Também faça a leitura do valor do percentual de reajuste a ser atribuído.
- > Apresente o valor do novo salário após o armazenamento do cálculo em memória.

A4. FizzBuzz

Um programa **FizzBuzz** deve se comportar de forma que dado um intervalo de números informado pelo usuário, seja impresso cada número do intervalo em uma linha, porém com algumas exceções:

- > Números divisíveis por 3 devem aparecer no console como Fizz ao invés do número.
- > Números divisíveis por 5 devem aparecer como **Buzz** ao invés do número.
- Números divisíveis por 3 e 5 devem aparecer como **FizzBuzz** ao invés do número.

Instruções

- Crie um programa com nome FizzBuzz.
- > O programa deverá conter duas funções, uma principal e outra com o comportamento do FizzBuzz.
- O programa deverá solicitar via console que o usuário informe um número inicial e o número final do intervalo, essa responsabilidade é da função principal.
- Caso o número final for igual ou menor que o número inicial, uma mensagem de aviso ao usuário deve ser impressa no terminal e o programa deve ser encerrado.
- > A função fizzBuzz deverá receber os valores do intervalo e executar o comportamento do programa.

A5. Área de uma circunferência

- > Crie um programa que calcule a área de uma circunferência e apresente a medida da área calculada.
- Para fazer o cálculo da área de uma circunferência, é necessário conhecer primeiramente a fórmula que executa o cálculo, sendo A = πR2, em que A é a variável que conterá o resultado do cálculo da área, π é o valor da constante pi (3.14159265) e R é o valor da variável que representa o raio.
- > Estabeleça o seguinte:
 - Ler um valor para o raio.
 - \circ Estabelecer que π venha a possuir o valor **3.14159265**.
 - \circ Efetuar o cálculo da área, elevando ao quadrado o valor da variável e multiplicando esse valor por π .
 - o Imprimir o valor da variável.

A6. Salário Líquido Professor

- Crie um programa que calcule o salário líquido de um professor.
- > Para elaborar o programa, é necessário possuir alguns dados, como:
 - Valor da hora-aula.
 - Número de horas trabalhadas no mês e;
 - Percentual de desconto do INSS.
- > Em primeiro lugar, deve-se estabelecer o seu salário bruto para fazer o desconto e ter o valor do salário líquido, logo deve-se:
 - Estabelecer a leitura das horas trabalhadas no mês.
 - Estabelecer a leitura do valor hora-aula.
 - Estabelecer a leitura do percentual de desconto.
 - o Calcular o salário bruto, sendo a multiplicação das horas trabalhadas pelo valor hora-aula.
 - o Calcular o total de desconto com base no valor do percentual de desconto dividido por 100.
 - o Calcular o salário líquido, deduzindo o desconto do salário bruto.
 - Apresentar os valores dos salários bruto e líquido.

A7. Volume da caixa

Crie um programa que calcule e apresente o valor do volume de uma caixa retangular.

Utilize a fórmula:

VOLUME = COMPRIMENTO * LARGURA * ALTURA.

A8. Conversão em Real

- > Crie um programa que apresente o valor da conversão em real (R\$) de um valor lido em dólar (US\$).
- O programa deve solicitar o valor da cotação do dólar.
- > Também a quantidade de dólares disponível com o usuário.
- > Armazenar em memória o valor da conversão antes da apresentação.

A9. Conversão em Dólar

- Crie um programa que apresente o valor da conversão em dólar (US\$) de um valor lido em real (R\$).
- O programa deve solicitar o valor da cotação do dólar.
- > Também a quantidade de reais disponível com o usuário.
- Armazenar em memória o valor da conversão antes da apresentação.

A10. Soma dos Quadrados

- Construir um programa que leia três valores numéricos inteiros
- > Apresentar como resultado, armazenado em memória, o valor da soma dos quadrados dos três valores lidos.

A11. Quadrado da Soma

- > Construir um programa que leia três valores numéricos inteiros.
- > Apresentar como resultado, armazenado em memória, o valor do quadrado da soma dos três valores lidos.

A12. Velocidade do Projétil

Construir um programa que calcule, armazene e apresente em metros por segundo o valor da velocidade de um projétil que percorre uma distância de quilômetros a um espaço de tempo em minutos.

Utilize a fórmula:

VELOCIDADE = (DISTANCIA * 1000) / (TEMPO * 60)

A13. Eleição Sindical

Em uma eleição sindical concorreram ao cargo de presidente três candidatos. Durante a apuração dos votos foram computados votos nulos e em branco, além dos votos válidos para cada candidato.

Dito isto crie um programa com as características a seguir:

- > Faça a leitura da quantidade de votos válidos para cada candidato, além de ler também a quantidade de votos nulos e em branco.
- > Ao final da votação o programa deve apresentar:
- > O número total de eleitores, considerando os votos válidos, nulos e em branco;
- > O percentual correspondente de:
 - votos válidos em relação à quantidade de eleitores;
 - o votos válidos do candidato A em relação à quantidade de eleitores;
 - o votos válidos do candidato B em relação à quantidade de eleitores;
 - o votos válidos do candidato C em relação à quantidade de eleitores;
 - o votos nulos em relação à quantidade de eleitores;
 - o votos em branco em relação à quantidade de eleitores.

A14. Média do Aluno

- > Crie um programa que realize a leitura dos valores de quatro notas escolares bimestrais de um aluno.
- > Calcular a média desse aluno e apresentar a mensagem "Aprovado" se a média obtida for maior ou igual a 5;
- Caso contrário, apresentar a mensagem "Reprovado".
- Informar também, após a apresentação das mensagens, o valor da média obtida pelo aluno

A15. Somando Naturais

- > Crie um programa que apresente a soma de todos os valores de um intervalo informado.
- > O intervalo deve conter 100 números naturais.
- Imprima o intervalo informado e o resultado da sua soma.

A16. Ordenando Inteiros

- > Elaborar um programa que leia 12 elementos numéricos inteiros em um array.
- > Coloque-os em ordem decrescente e apresente os elementos ordenados.

A17. Palíndromo

- Crie um programa que aceite uma palavra, frase ou número.
- > Imprima a palavra e se ela é ou não um palíndromo.
- > Palíndromo é uma palavra, frase ou número que permanece igual quando lida de trás para frente.

Exemplo 1

- > Entrada: x = 121
- > Saída: true
- > Explicação: 121 ao contrário é 121, logo é palíndromo

Exemplo 2

- > Entrada: x = -121
- > Saída: false
- > Explicação: Ao contrário -121 é 121-, logo não é palíndromo

Exemplo 3

- > Entrada: x = 10
- > Saída: false
- > Explicação: Ao contrário 10 é 01, logo não é palíndromo

A18. Scrabble Score

- ightharpoonup É um jogo que calula o "score" de uma palavra com base nas letras que a palavra contém.
- > Receba a palavra pelo terminal do usuário.
- > O programa deve ser **Case Insensitive** (interpretar letras maiúsculas e minusculas igualmente.)
- > Não se preocupe com acentos e caracteres especiais. Realize os testes do programa apenas com as letras citadas na tabela de letras.
- > Ignore espaços vazios.

Tabela de Letras

Letra	Valor
A, E, I, O, U, L, N, R, S, T	1
D, G	2
B, C, M, P	3
F, H, V, W, Y	4
К	5
J, X	8
Q, Z	10

Exemplos

Palavra	Cálculo	Scrabble Score
cabbage	C + A*2+B*2+G+E	14
RONALDO	R + O * 2 + N + A + L + D	8
Otorrinolaringologista	O*5+T*2+R*3+I*3+N*2+L*2+A*2+G*2+S	24
marcio M + A + R + C + I + O		10

A19. Algarismos Romanos

Os algarismos romanos são representados por sete símbolos diferentes: I, V, X, L, C, D e M. Por exemplo, $\mathbf{2}$ é escrito como \mathbf{II} em algarismo romano. $\mathbf{12}$ é escrito como \mathbf{XII} , que é simplesmente X + II. O número $\mathbf{27}$ é escrito como \mathbf{XXVII} , que é XX + V + II.

Símbolo	Valor	Símbolo	Valor
I	1	С	100
V	5	D	500
х	10	М	1000
L	50		

Os algarismos romanos são geralmente escritos do maior para o menor, da esquerda para a direita. No entanto, o numeral para quatro não é **IIII**. Em vez disso, o número quatro é escrito como **IV**. Como o 1 vem antes do 5, nós o subtraímos, resultando em 4. O mesmo princípio se aplica ao número 9, escrito como **IX**. Existem seis instâncias em que a subtração é usada:

- ➤ I pode ser colocado antes de V (5) e X (10) para formar 4 e 9.
- > X pode ser colocado antes de L (50) e C (100) para fazer 40 e 90.
- > C pode ser colocado antes de D (500) e M (1000) para fazer 400 e 900.

Crie um programa que, dado um numeral romano, converta-o para um número inteiro

Exemplo 1

> Entrada: s = "III"

> Saída: 3

> Explicação: III = 3.

Exemplo 2

> Entrada: s = "LVIII"

➤ Saída: 58

➤ Explicação: L = 50, V = 5, III = 3.

Exemplo 3

> Entrada: s = "MCMXCIV"

> Saída: 1994

Explicação: M = 1000, CM = 900, XC = 90 e IV = 4.

A20. JoKenPo

- > Jokenpo é uma brincadeira japonesa, onde dois jogadores escolhem um dentre três possíveis itens:
 - Pedra, Papel ou Tesoura.
- > Crie um programa que seja um juiz de Jokenpo que dada a jogada dos dois jogadores informa o resultado da partida.
- As regras são as seguintes:
 - o Pedra empata com Pedra e ganha de Tesoura
 - o Tesoura empata com Tesoura e ganha de Papel
 - o Papel empata com Papel e ganha de Pedra

A21. Pedra-papel-tesoura-lagarto-Spock (Bônus)

- > Pedra-papel-tesoura-lagarto-Spock é uma adaptação do JoKenPo na série **The Big Bang Theory**.
- > Crie um programa que seja um juiz de Jokenpo (Sheldon Cooper) que dada a jogada dos dois jogadores informa o resultado da partida.
- As regras são as seguintes:
 - Tesoura corta papel
 - o Papel cobre pedra
 - Pedra esmaga lagarto
 - Lagarto envenena Spock
 - Spock esmaga (ou derrete) tesoura
 - Tesoura decapita lagarto
 - Lagarto come papel
 - Papel refuta Spock
 - Spock vaporiza pedra
 - Pedra amassa tesoura