Correlation and Regression

Correlation

Correlation

A correlation is a relationship between two variables. The data can be represented by the ordered pairs (x, y) where x is the independent (or explanatory) variable, and y is the dependent (or response) variable.

A scatter plot can be used to determine whether a linear (straight line) correlation exists between two variables.

Example:

X	1	2	3	4	5
У	-4	-2	-1	0	2

Linear Correlation

Negative Linear Correlation

Positive Linear Correlation

The **correlation coefficient** is a measure of the strength and the direction of a linear relationship between two variables. The symbol r represents the sample correlation coefficient. The formula for r is

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}.$$

The range of the correlation coefficient is -1 to 1. If x and y have a strong positive linear correlation, r is close to 1. If x and y have a strong negative linear correlation, r is close to -1. If there is no linear correlation or a weak linear correlation, r is close to 0.

Linear Correlation

Strong positive correlation

Calculating a Correlation Coefficient

Calculating a Correlation Coefficient

In Words

1. Find the sum of the *x*-values.

2. Find the sum of the *y*-values.

3. Multiply each *x*-value by its corresponding *y*-value and find the sum.

4. Square each *x*-value and find the sum.

5. Square each y-value and find the sum. $\sum y^2$

6. Use these five sums to calculate the correlation coefficient.

 $\sum X$

 $\sum y$

 $\sum xy$

 $\sum x^2$

 $r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}.$

Continued.

Example:

Calculate the correlation coefficient r for the following data.

X	У	XY	x^2	y^2
1	-3	-3	1	9
2	-1	-2	4	1
3	0	0	9	0
4	1	4	16	1
5	2	10	25	4
$\sum x = 15$	$\sum y = -1$	$\sum xy = 9$	$\sum x^2 = 55$	$\sum y^2 = 15$

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}} = \frac{5(9) - (15)(-1)}{\sqrt{5(55) - 15^2}\sqrt{5(15) - (-1)^2}}$$

$$= \frac{60}{\sqrt{50}\sqrt{74}} \approx 0.986$$

There is a strong positive $= \frac{60}{\sqrt{50}\sqrt{74}} \approx 0.986$ Inere is a strong positive linear correlation between x and y.

Example:

The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday.

- a.) Display the scatter plot.
- b.) Calculate the correlation coefficient *r*.

Hours, x	0	1	2	3	3	5	5	5	6	7	7	10
Test score, y	96	85	82	74	95	68	76	84	58	65	75	50

Continued.

Example continued:

Hours, x	0	1	2	3	3	5	5	5	6	7	7	10
Test score, y	96	85	82	74	95	68	76	84	58	65	75	50

Continued.

Example continued:

Hours, x	0	1	2	3	3	5	5	5	6	7	7	10
Test score, y	96	85	82	74	95	68	76	84	58	65	75	50
XY	0	85	164	222	285	340	380	420	348	455	525	500
x^2	0	1 .	4	9	9	25	25	25	36	49	49	100
y^2	9216	7225	6724	5476	9025	4624	5776	7056	3364	4225	5625	2500

$$\sum x = 54$$

$$\sum y = 908$$

$$\sum xy = 3724$$

$$\sum x^2 = 332$$

$$\sum x = 54$$
 $\sum y = 908$ $\sum xy = 3724$ $\sum x^2 = 332$ $\sum y^2 = 70836$

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}} = \frac{12(3724) - (54)(908)}{\sqrt{12(332) - 54^2}\sqrt{12(70836) - (908)^2}} \approx -0.831$$

There is a strong negative linear correlation.

As the number of hours spent watching TV increases, the test scores tend to decrease.

Once the sample correlation coefficient r has been calculated, we need to determine whether there is enough evidence to decide that the population correlation coefficient ρ is significant at a specified level of significance.

One way to determine this is to use Table 11 in Appendix B.

If |r| is greater than the critical value, there is enough evidence to decide that the correlation coefficient ρ is significant.

n	$\alpha = 0.05$	$\alpha = 0.01$
4	0.950	0.990
5	0.878	0.959
6	0.811	0.917
7	0.754	0.875

For a sample of size n = 6, ρ is significant at the 5% significance level, if |r| > 0.811.

Finding the Correlation Coefficient ho

In Words

- 1. Determine the number of pairs of data in the sample.
- 2. Specify the level of significance.
- 3. Find the critical value.
- 4. Decide if the correlation is significant.
- 5. Interpret the decision in the context of the original claim.

In Symbols

Determine n.

Identify α .

Use Table 11 in Appendix B.

If |r| > critical value, the correlation is significant. Otherwise, there is not enough evidence to support that the correlation is significant.

Example:

The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday.

The correlation coefficient $r \approx -0.831$.

Hours, x	0	1	2	3	3	5	5	5	6	7	7	10
Test score, y	96	85	82	74	95	68	76	84	58	65	75	50

Is the correlation coefficient significant at $\alpha = 0.01$?

Continued.

Example continued:

Appendix B: Table 11

	0	001
v~	3.1	\times 31
$I \sim$	$-\upsilon$.	831
		At any

$$n = 12$$

$$\alpha = 0.01$$

n	$\alpha = 0.05$	$\alpha = 0.01$
4	0.950	0.990
5	0.878	0.959
6	0.811	0.917
	THE RESERVE THE PROPERTY OF THE PROPERTY OF THE PARTY OF	

10	0.632	0.765
11	0.602	0.735
12	0.576	0.708
13	0.553	0.684

Because, the population correlation is significant, there is enough evidence at the 1% level of significance to conclude that there is a significant linear correlation between the number of hours of television watched during the weekend and the scores of each student who took a test the following Monday.

A hypothesis test can also be used to determine whether the sample correlation coefficient r provides enough evidence to conclude that the population correlation coefficient ρ is significant at a specified level of significance.

A hypothesis test can be one tailed or two tailed.

```
H_0: \rho \ge 0 (no significant negative correlation) H_a: \rho < 0 (significant negative correlation)
```

Left-tailed test

```
H_0: \rho \le 0 (no significant positive correlation)

H_a: \rho > 0 (significant positive correlation)
```

Right-tailed test

$$H_0: \rho = 0$$
 (no significant correlation)

Two-tailed test

 $H_a: \rho \neq 0$ (significant correlation)

The t-Test for the Correlation Coefficient

A *t*-test can be used to test whether the correlation between two variables is significant. The test statistic is *r* and the standardized test statistic

$$t = \frac{r}{\sigma_r} = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

follows a *t*-distribution with n-2 degrees of freedom.

In this text, only two-tailed hypothesis tests for ρ are considered.

Using the t-Test for the Correlation Coefficient ρ

In Words

In Symbols

- 1. State the null and alternative State H_0 and H_a . hypothesis.
- 2. Specify the level of significance.

Identify α .

3. Identify the degrees of freedom.

d.f. = n - 2

4. Determine the critical value(s) and rejection region(s).

Use Table 5 in Appendix B.

Using the t-Test for the Correlation Coefficient ρ

In Words

- 5. Find the standardized test statistic.
- 6. Make a decision to reject or fail to reject the null hypothesis.
- 7. Interpret the decision in the context of the original claim.

In Symbols

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

If t is in the rejection region, reject H_0 . Otherwise fail to reject H_0 .

Example:

The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday.

The correlation coefficient $r \approx -0.831$.

Hours, x	0	1	2	3	3	5	5	5	6	7	7	10
Test score, y	96	85	82	74	95	68	76	84	58	65	75	50

Test the significance of this correlation coefficient significant at $\alpha = 0.01$?

Continued.

Example continued:

$$H_0: \rho = 0$$
 (no correlation) $H_a: \rho \neq 0$ (significant correlation)

The level of significance is $\alpha = 0.01$.

Degrees of freedom are d.f. = 12 - 2 = 10.

The critical values are $-t_0 = -3.169$ and $t_0 = 3.169$.

The standardized test statistic is

At the 1% level of significance, there is enough evidence to conclude that there is a significant linear correlation between the number of hours of TV watched over the weekend and the test scores on Monday morning.

Correlation and Causation

The fact that two variables are strongly correlated does not in itself imply a cause-and-effect relationship between the variables.

If there is a significant correlation between two variables, you should consider the following possibilities.

- 1. Is there a direct cause-and-effect relationship between the variables? Does *x* cause *y*?
- 2. Is there a reverse cause-and-effect relationship between the variables? Does y cause x?
- 3. Is it possible that the relationship between the variables can be caused by a third variable or by a combination of several other variables?
- 4. Is it possible that the relationship between two variables may be a coincidence?

Linear Regression

Residuals

After verifying that the linear correlation between two variables is significant, next we determine the equation of the line that can be used to predict the value of *y* for a given value of *x*.

Each data point d_i represents the difference between the observed y-value and the predicted y-value for a given x-value on the line. These differences are called **residuals**.

A regression line, also called a line of best fit, is the line for which the sum of the squares of the residuals is a minimum.

The Equation of a Regression Line

The equation of a regression line for an independent variable *x* and a dependent variable *y* is

$$\hat{y} = mx + b$$

where \hat{y} is the predicted y-value for a given x-value. The slope m and y-intercept b are given by

$$m = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2}$$
 and $b = \overline{y} - m\overline{x} = \frac{\sum y}{n} - m\frac{\sum x}{n}$

where \bar{y} is the mean of the y-values and \bar{x} is the mean of the x-values. The regression line always passes through (\bar{x}, \bar{y}) .

Example:

Find the equation of the regression line.

\boldsymbol{X}	y	XY	x^2	y^2
1	-3	-3	1	9
2	-1	-2	4	1
3	0	0	9	0
4	1	4	16	1
5	2	10	25	4
$\sum x = 15$	$\sum y = -1$	$\sum xy = 9$	$\sum x^2 = 55$	$\sum y^2 = 15$

$$m = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2} = \frac{5(9) - (15)(-1)}{5(55) - (15)^2} = \frac{60}{50} = 1.2$$

Continued.

Example continued:

$$b = \overline{y} - m\overline{x} = \frac{-1}{5} - (1.2)\frac{15}{5} = -3.8$$

The equation of the regression line is

Example:

The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday.

- a.) Find the equation of the regression line.
- b.) Use the equation to find the expected test score for a student who watches 9 hours of TV.

Hours, x	0	1	2	3	3	5	5	5	6	7	7	10
Test score, y	96	85	82	74	95	68	76	84	58	65	75	50
XY	0	85	164	222	285	340	380	420	348	455	525	500
x^2	0	1	4	9	9	25	25	25	36	49	49	100
y^2	9216	7225	6724	5476	9025	4624	5776	7056	3364	4225	5625	2500

$$\sum x = 54$$

$$\sum y = 908$$

$$\sum xy = 3724$$

$$\sum x^2 = 332$$

$$\sum xy = 3724$$
 $\sum x^2 = 332$ $\sum y^2 = 70836$

Example continued:

$$m = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2} = \frac{12(3724) - (54)(908)}{12(332) - (54)^2} \approx -4.067$$

$$b = \bar{y} - m\bar{x}$$

$$= \frac{908}{12} - (-4.067)\frac{54}{12}$$

$$\approx 93.97$$

$$\hat{y} = -4.07x + 93.97$$

Continued.

Example continued:

Using the equation $\hat{y} = -4.07x + 93.97$, we can predict the test score for a student who watches 9 hours of TV.

$$\hat{y} = -4.07x + 93.97$$
$$= -4.07(9) + 93.97$$
$$= 57.34$$

A student who watches 9 hours of TV over the weekend can expect to receive about a 57.34 on Monday's test.

Measures of Regression and Prediction Intervals

Variation About a Regression Line

To find the total variation, you must first calculate the total deviation, the explained deviation, and the unexplained deviation.

Total deviation = $y_i - \bar{y}$ Explained deviation = $\hat{y}_i - \bar{y}$ Unexplained deviation = $y_i - \hat{y}_i$

Variation About a Regression Line

The **total variation** about a regression line is the sum of the squares of the differences between the *y*-value of each ordered pair and the mean of *y*.

Total variation =
$$\sum (y_i - \bar{y})^2$$

The **explained variation** is the sum of the squares of the differences between each predicted *y*-value and the mean of *y*.

Explained variation =
$$\sum (\hat{y}_i - \bar{y})^2$$

The **unexplained variation** is the sum of the squares of the differences between the *y*-value of each ordered pair and each corresponding predicted *y*-value.

Unexplained variation =
$$\sum (y_i - \hat{y}_i)^2$$

Total variation = Explained variation + Unexplained variation

Coefficient of Determination

The coefficient of determination r^2 is the ratio of the explained variation to the total variation. That is,

$$r^2 = \frac{\text{Explained variation}}{\text{Total variation}}$$

Example:

The correlation coefficient for the data that represents the number of hours students watched television and the test scores of each student is $r \approx -0.831$. Find the coefficient of determination.

$$r^2 \approx (-0.831)^2$$

 ≈ 0.691

About 69.1% of the variation in the test scores can be explained by the variation in the hours of TV watched. About 30.9% of the variation is unexplained.

The Standard Error of Estimate

When a \hat{y} -value is predicted from an x-value, the prediction is a point estimate.

An interval can also be constructed.

The **standard error of estimate** s_e is the standard deviation of the observed y_i -values about the predicted \hat{y} -value for a given x_i -value. It is given by

$$s_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}}$$

where *n* is the number of ordered pairs in the data set.

The closer the observed *y*-values are to the predicted *y*-values, the smaller the standard error of estimate will be.

The Standard Error of Estimate

Finding the Standard Error of Estimate

In Words

- 1. Make a table that includes the column heading shown.
- 2. Use the regression equation to calculate the predicted *y*-values.
- 3. Calculate the sum of the squares of the differences between each observed *y*-value and the corresponding predicted *y*-value.
- 4. Find the standard error of estimate.

In Symbols

$$(x_i, y_i, \hat{y}_i, (y_i - \hat{y}_i), (y_i - \hat{y}_i), (y_i - \hat{y}_i)^2$$

$$\hat{y} = mx_i + b$$

$$\sum (y_i - \hat{y}_i)^2$$

$$s_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}}$$

The Standard Error of Estimate

Example:

The regression equation for the following data is $\hat{y} = 1.2x - 3.8$.

Find the standard error of estimate.

X_{i}	y_i	$\hat{\mathcal{Y}_i}$	$(y_i - \hat{y_i})^2$
1	-3	-2.6	0.16
2	-1	-1.4	0.16
3	0	-0.2	0.04
4	1	1	0
5	2	2.2	0.04
			$\Sigma = 0.4$

_Unexplained _variation

$$s_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}} = \sqrt{\frac{0.4}{5 - 2}} \approx 0.365$$

The standard deviation of the predicted *y* value for a given *x* value is about 0.365.

The Standard Error of Estimate

Example:

The regression equation for the data that represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday is

$$\hat{y} = -4.07x + 93.97.$$

Find the standard error of estimate.

Hours, X_i	0	1	2	3	3	5	
Test score, y_i	96	85	82	74	95	68 73.62 31.58	
$\hat{y_i}$	93.97	89.9	85.83	81.76	81.76		
$(y_i - \hat{y_i})^2$	4.12	24.01	14.67	60.22	175.3		
Hours, X_i	5	5	6	7	7	10	
Test score, y_i	76	84	58	65	75	50	
$\hat{\mathcal{Y}}_i$	73.62	73.62	69.55	65.48	65.48	53.27	
$(\mathbf{v}_{\cdot} - \hat{\mathbf{v}})^2$	5.66	107 74	133 4	0.23	90.63	10.69	

The Standard Error of Estimate

Example continued:

$$\sum (y_i - \hat{y}_i)^2 = 658.25$$
Unexplained variation

$$S_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{658.25}{12-2}} \approx 8.11$$

The standard deviation of the student test scores for a specific number of hours of TV watched is about 8.11.

Two variables have a **bivariate normal distribution** if for any fixed value of *x*, the corresponding values of *y* are normally distributed and for any fixed values of *y*, the corresponding *x*-values are normally distributed.

A prediction interval can be constructed for the true value of *y*.

Given a linear regression equation $\hat{y} = mx + b$ and x_0 , a specific value of x, a *c*-prediction interval for y is

$$\hat{y} - E < y < \hat{y} + E$$

where

$$E = t_c s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \overline{x})^2}{n\sum x^2 - (\sum x)^2}}.$$

The point estimate is \hat{y} and the margin of error is E. The probability that the prediction interval contains y is c.

Construct a Prediction Interval for y for a Specific Value of x

In Words

1. Identify the number of ordered pairs in the data set *n* and the degrees of freedom.

In Symbols

d.f. = n - 2

- 2. Use the regression equation and the given x-value to find the point estimate \hat{y} .
- $\hat{y} = mx_i + b$

3. Find the critical value t_c that corresponds to the given level of confidence c.

Use Table 5 in Appendix B.

Construct a Prediction Interval for y for a Specific Value of x

In Words

4. Find the standard error of estimate s_e .

5. Find the margin of error *E*.

6. Find the left and right endpoints and form the prediction interval.

In Symbols

$$s_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$$

$$E = t_c s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \bar{x})^2}{n \sum x^2 - (\sum x)^2}}$$

Left endpoint: $\hat{y} - E$ Right endpoint: $\hat{y} + E$ Interval: $\hat{y} - E < y < \hat{y} + E$

Example:

The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday.

Hours, x	0	1	2	3	3	5	5	5	6	7	7	10
Test score, y	96	85	82	74	95	68	76	84	58	65	75	50

$$\hat{y} = -4.07x + 93.97$$
 $S_e \approx 8.11$

Construct a 95% prediction interval for the test scores when 4 hours of TV are watched.

Example continued:

Construct a 95% prediction interval for the test scores when the number of hours of TV watched is 4.

There are n-2=12-2=10 degrees of freedom.

The point estimate is

$$\hat{y} = -4.07x + 93.97 = -4.07(4) + 93.97 = 77.69.$$

The critical value $t_c = 2.228$, and $s_e = 8.11$.

$$\hat{y} - E < y < \hat{y} + E$$

$$77.69 - 8.11 = 69.58$$
 $77.69 + 8.11 = 85.8$

You can be 95% confident that when a student watches 4 hours of TV over the weekend, the student's test grade will be between 69.58 and 85.8.

Multiple Regression

Multiple Regression Equation

In many instances, a better prediction can be found for a dependent (response) variable by using more than one independent (explanatory) variable.

For example, a more accurate prediction of Monday's test grade from the previous section might be made by considering the number of other classes a student is taking as well as the student's previous knowledge of the test material.

A multiple regression equation has the form

$$\hat{y} = b + m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots + m_k x_k$$

where $x_1, x_2, x_3, ..., x_k$ are independent variables, b is the y-intercept, and y is the dependent variable.

* Because the mathematics associated with this concept is complicated, technology is generally used to calculate the multiple regression equation.

Predicting y-Values

After finding the equation of the multiple regression line, you can use the equation to predict *y*-values over the range of the data.

Example:

The following multiple regression equation can be used to predict the annual U.S. rice yield (in pounds).

$$\hat{y} = 859 + 5.76x_1 + 3.82x_2$$

where x_1 is the number of acres planted (in thousands), and x_2 is the number of acres harvested (in thousands).

(Source: U.S. National Agricultural Statistics Service)

- a.) Predict the annual rice yield when $x_1 = 2758$, and $x_2 = 2714$.
- b.) Predict the annual rice yield when $x_1 = 3581$, and $x_2 = 3021$.

Predicting y-Values

Example continued:

a.)
$$\hat{y} = 859 + 5.76x_1 + 3.82x_2$$

= $859 + 5.76(2758) + 3.82(2714)$
= $27,112.56$

The predicted annual rice yield is 27,1125.56 pounds.

b.)
$$\hat{y} = 859 + 5.76x_1 + 3.82x_2$$

= $859 + 5.76(3581) + 3.82(3021)$
= $33,025.78$

The predicted annual rice yield is 33,025.78 pounds.