Brian Caffo

Matched pairs data

Dependend

Marginal homogeneit

McNemar's

-

Relationship

Marginal odds

Conditiona versus marginal

Conditional

Mathematical Biostatistics Boot Camp 2: Lecture 11, Matched Two by Two Tables

Brian Caffo

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

October 3, 2013

Table of contents

1 Matched pairs data

2 Dependence

3 Marginal homogeneity

4 McNemar's test

6 Estimation

6 Relationship with CMH

Marginal odds ratios

8 Conditional versus marginal

Onditional ML

_ . . .

Estimation

Relationship with CMH

Marginal odd ratios

Conditional versus marginal

Conditiona MI

Mathematical Biostatistics Boot Camp 2: Lecture 11, Matched Two by Two Tables

Brian Caffo

Matched pairs data

Marginal

homogeneit

McNemar' test

Estimatio

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional ML

Matched pairs binary data

63

First	Secon		
survey	Approve	Disapprove	Total
Approve	794	150	944
Disapprove	86	570	656
Total	880	720	1600

	Co		
Controls	Exposed	Unexposed	Total
Exposed	27	29	56
Unexposed	3	4	7

30

Total

Coaca

33

Dependence

homogeneit

McNemar's

Estimatio

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional

- Matched binary can arise from
 - Measuring a response at two occasions
 - Matching on case status in a retrospective study
 - Matching on exposure status in a prospective or cross-sectional study
- The pairs on binary observations are dependent, so our existing methods do not apply
- We will discuss the process of making conclusions about the marginal probabilities and odds

Conditiona ML

Notation

time 2			time 2				
time 1	Yes	No	Total	time 1	Yes	No	Total
Yes	n_{11}	n_{12}	n_{1+}	Yes	π_{11}	π_{12}	π_{1+}
no	n_{21}	n_{22}	n_{2+}	no	π_{21}	π_{22}	π_{2+}
Total	n_{+1}	n_{+2}	n	Total	π_{+1}	$\pi_{\pm 2}$	1

- We assume that the $(n_{11}, n_{12}, n_{21}, n_{22})$ are multinomial with n trials and probabilities $(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22})$
- π_{1+} and π_{+1} are the marginal probabilities of a yes response at the two occasions
- $\pi_{1+} = P(\text{Yes} \mid \text{Time 1})$
- $\pi_{+1} = P(\text{Yes} \mid \text{Time 2})$

homogeneity

test

Latination

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional ML

- Marginal homogeneity is the hypothesis $H_0: \pi_{1+} = \pi_{+1}$
- Marginal homogeneity is equivalent to symmetry H_0 : $\pi_{12}=\pi_{21}$
- The obvious estimate of $\pi_{12}-\pi_{21}$ is $n_{12}/n-n_{21}/n$
- Under H_0 a consistent estimate of the variance is $(n_{12} + n_{21})/n^2$
- Therefore

$$\frac{(n_{12}-n_{21})^2}{n_{12}+n_{21}}$$

follows an asymptotic χ^2 distribution with 1 degree of freedom

Marginal homogeneity

McNemar's test

Estimation

Relationship

Marginal odds

Conditional versus marginal

Conditiona

McNemar's test

- The test from the previous page is called McNemar's test
- Notice that only the discordant cells enter into the test
 - n_{12} and n_{21} carry the relevant information about whether or not π_{1+} and π_{+1} differ
 - n_{11} and n_{22} contribute information to estimating the magnitude of this difference

McNemar's

Estimation

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional ML • Test statistic $\frac{(80-150)^2}{86+150} = 17.36$

• P-value = 3×10^{-5}

• Hence we reject the null hypothesis and conclude that there is evidence to suggest a change in opinion between the two polls

• In R

mcnemar.test(matrix(c(794, 86, 150, 570), 2), correct = FALSE)

The correct option applies a continuity correction

McNemar' test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional MI • Let $\hat{\pi}_{ij} = n_{ij}/n$ be the sample proportions

• $d = \hat{\pi}_{1+} - \hat{\pi}_{+1} = (n_{12} - n_{21})/n$ estimates the difference in the marginal proportions

• The variance of d is

$$\sigma_d^2 = \{\pi_{1+}(1-\pi_{1+}) + \pi_{+1}(1-\pi_{+1}) - 2(\pi_{11}\pi_{22} - \pi_{12}\pi_{21})\}/n$$

- $\frac{d-(\pi_{1+}-\pi_{+1})}{\hat{\sigma}_d}$ follows an asymptotic normal distribution
- Compare σ_d^2 with what we would use if the proportions were independent

Marginal homogeneity

McNemar's

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional

•
$$d = 944/1600 - 880/1600 = .59 - .55 = .04$$

•
$$\hat{\pi}_{11} = .50$$
, $\hat{\pi}_{12} = .09$, $\hat{\pi}_{21} = .05$, $\hat{\pi}_{22} = .36$

•
$$\hat{\sigma}_d^2 = \{.59(1 - .59) + .55(1 - .55) - 2(.50 \times .36 - .09 \times .05)\}/1600$$

•
$$\hat{\sigma}_d = .0095$$

• 95% CI -
$$.04 \pm 1.96 \times .0095 = [.06, .02]$$

• Note ignoring the dependence yields $\hat{\sigma}_d = .0175$

homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odds

Conditiona versus marginal

Conditional

Relationship with CMH test

 Each subject's (or matched pair's) responses can be represented as one of four tables.

	Response			Response	
Time	Yes	No	Time	Yes	No
First	1	0	First	1	0
Second	1	0	Second	0	1
	Response			Response	
	Resp	onse		Resp	onse
Time	Resp Yes	onse No	Time	Resp Yes	onse No
Time First			Time First		

McNemar's

Estimation

Relationship with CMH

Marginal odds

Conditional versus marginal

Conditiona

Result

- McNemar's test is equivalent to the CMH test where subject is the stratifying variable and each 2×2 table is the observed zero-one table for that subject
- This representation is only useful for conceptual purposes

Marginal homogeneit

McNemar's

Estimation

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional

- Consider the cells n_{12} and n_{21}
- Under H_0 , $\pi_{12}/(\pi_{12}+\pi_{21})=.5$
- Therefore, under H_0 , $n_{21} \mid n_{21} + n_{12}$ is binomial with success probability .5 and $n_{21} + n_{12}$ trials
- We can use this result to come up with an exact P-value for matched pairs data

Brian Caff

Matched pairs

Dependence

Marginal

McNemar's

Estimation

Relationship with CMH

Marginal odds

Conditiona versus marginal

Conditional

Consider the approval rating data

• H_0 : $\pi_{21} = \pi_{12}$ versus H_a : $\pi_{21} < \pi_{12}$ $(\pi_{+1} < \pi_{1+})$

• $P(X \le 86 \mid 86 + 150) = .000$ where X is binomial with 236 trials and success probability p = .5

• For two sided tests, double the smaller of the two one-sided tests

Conditional versus marginal

Conditional ML

Estimating the marginal odds ratio

The marginal odds ratio is

$$\frac{\pi_{1+}/\pi_{2+}}{\pi_{+1}/\pi_{+2}} = \frac{\pi_{1+}\pi_{+2}}{\pi_{+1}\pi_{2+}}$$

The maximum likelihood estimate of the margina log odds ratio is

$$\hat{\theta} = \log\{\hat{\pi}_{1+}\hat{\pi}_{+2}/\hat{\pi}_{+1}\hat{\pi}_{2+}\}$$

The asymptotic variance of this estimator is

$$\{(\pi_{1+}\pi_{2+})^{-1} + (\pi_{+1}\pi_{+2})^{-1} - 2(\pi_{11}\pi_{22} - \pi_{12}\pi_{21})/(\pi_{1+}\pi_{2+}\pi_{+1}\pi_{+2})\}/n$$

D

Marginal

McNemar' test

Estimatio

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditional

• In the approval rating example the marginal OR compares the odds of approval at time 1 to that at time 2

•
$$\hat{\theta} = \log(944 \times 720/880 \times 656) = .16$$

- Estimated standard error = .039
- ullet CI for the log odds ratio $= .16 \pm 1.96 \times .039 = [.084, .236]$

Brian Caffo

Matched pa

Dependend

Marginal homogeneit

McNemar's

Estimation

Relationship

Marginal odds

Conditional versus marginal

Conditional MI

Conditional versus marginal odds

Secon		
Approve Disapprove		Total
794	150	944
86	570	656
880	720	1600
	Approve 794 86	794 150 86 570

Conditional versus marginal

Conditional ML

Conditional versus marginal odds

- *n_{ii}* cell counts
- n total sample size
- π_{ij} the multinomial probabilities
- The ML estimate of the marginal log odds ratio is

$$\hat{\theta} = \log\{\hat{\pi}_{1+}\hat{\pi}_{+2}/\hat{\pi}_{+1}\hat{\pi}_{2+}\}$$

The asymptotic variance of this estimator is

Conditional MI

Conditional MI

Consider the following model

$$logit\{P(Person \ i \ says \ Yes \ at \ Time \ 1)\} = \alpha + U_i$$

 $logit\{P(Person \ i \ says \ Yes \ at \ Time \ 2)\} = \alpha + \gamma + U_i$

- Each U_i contains person-specific effects. A person with a large U_i is likely to answer Yes at both occasions.
- γ is the **log odds ratio** comparing a response of Yes at Time 1 to a response of Yes at Time 2
- γ is subject specific effect. If you subtract the log odds of a yes response for two different people, the U_i terms would not cancel

McNemar' test

Estimation

Relationship with CMH

Marginal odds

Conditiona versus marginal

Conditional MI

Conditional ML cont'd

- One way to eliminate the U_i and get a good estimate of γ is to condition on the total number of Yes responses for each person
 - If they answered Yes or No on both occasions then you know both responses
 - Therefore, only discordant pairs have any relevant information after conditioning
- ullet The conditional ML estimate for γ and its SE turn out to be

$$\log\{n_{21}/n_{12}\} \qquad \sqrt{1/n_{21}+1/n_{12}}$$

McNemar's

Estimation

Relationship with CMH

Marginal odds

Conditional versus marginal

Conditional MI

Distinctions in interpretations

- The marginal ML has a marginal interpretation. The effect is averaged over all of the values of U_i .
- The conditional ML estimate has a subject specific interpretation.
- Marginal interpretations are more useful for policy type statements. Policy makers tend to be interested in how factors influence populations.
- Subject specific interpretations are more useful in clinical applications. Physicians are interested in how factors influence individuals.