Lecture 6

End-to-End ML Project

From Data Collection to Deployment Part 1

Suman Samui

Checklist: 8 Main steps

- Frame the problem & Look at a bigger picture
- Get the data
- Discover and visualize data to gain insights
- Prepare the data for Machine Learning Algos
- Explore different models and short-list the best one
- Fine-tune your models and combine them a greater solution
- Present your Solution
- Launch, Monitor and Maintain your system

Frame the Problem

- What is the basic objective of your project??
- How your solutions will be used?
- Supervised/unsupervised/Reinforcement Learning??
- Classification/Regression Task??
- Batch/Online Learning??
- Performance measure???
- Assumptions???

Get the data

Without data, there is no machine learning.

- •Where is your data?
- •How much data do you need?

Where from Real data can be collected?

• Provided by the project mentor (database application manager).

Third-party service providers

Data repository	Weblink
Kaggle Datasets	https://www.kaggle.com/data sets
UCI Machine Learning Repository:	https://archive.ics.uci.edu/ml/index .php
Amazon Datasets	https://registry.opendata.aws/

How much data do you need?

No definite Answer

 Rule of thumb is to collect and use much data as much as possible.

Data visualization to gain more insights

Silence Removal

Audio Length

Noise free or noisy

Prepare the data

Structured Dataset

(Data given in table format or comma separated numbers)

- Data cleaning

 Get rid of missing values
- Experimenting with Attribute combinations
- Feature Selection
- Feature Scaling

Unstructured Dataset

(Audio, Image, video files, etc.)

- Data Cleaning
- Feature Extraction
- Feature Selection
- Feature Scaling

Audio/Speech → Feature extraction

Feature Scaling

Different features have different ranges and statistical distribution

 If you normalize the features this will speed up the training process

• These scaling should be applied to training, dev, and testing sets (but using mean and variance of the train set). Target values don't need any normalization.

Two methods: Min-max scaling and Standardization

Feature Selection Methods

