

"Dispositivos Lógicos Programáveis"

Prof. Dr. Emerson Carlos Pedrino
Circuitos Digitais - 024376
DC/UFSCar
São Carlos

PLDs

- Tecnologia extremamente poderosa para projeto de sistemas digitais nos dias de hoje.
- Definição básica: CI (arranjo de portas lógicas) usado para implementar circuitos digitais onde este pode ser configurado e reconfigurado pelo usuário final através de um software específico fornecido pelo seu fabricante.

- Podem lidar com qualquer tarefa computacional.
- Possuem no mínimo uma CPU embutida.
- Técnicas de programação: HDLs->Handel-C, Streams-C.
- Capacidade de Reconfiguração dinâmica.
- Exemplos de aplicações: processamento digital de imagens, reconhecimento de padrões, criptografia, experimentos em sala de aula, etc.

- Evolução do processo de projeto de sistemas digitais.
- Circuitos integrados VLSI.
- Ferramentas CAD->Aceleram o ciclo de projeto.
- Linguagens de hardware->Permitem a descrição de circuitos complexos.

Metodologias existentes para projeto de sistemas digitais

Metodologias existentes para projeto de CIs digitais

 PROM: primeiro tipo de chip programável pelo usuário para implementar funções lógicas.

PLAs->

PALs->

- PALs->CPLDs (Altera).
- MPGAs->FPGAs (Xilinx).

Diferenças Arquiteturais

- Tecnologia de programação.
- Arquitetura das células lógicas.
- Estrutura de roteamento.

Fusível->OTP->SPLDs

 Transistor MOS de "gate" flutuante (célula EPROM)->CPLDs

Exemplo de comutador programável

 FPGAs->utilizam transistores de passagens controlados por células SRAM ou Antifuse.

Antifuse

Exemplo de Arquitetura de um FPGA

CPLDs

Exemplo Comercial

FPGAs

Considerações sobre os blocos

- Granularidade (Grossa x Fina).
- LUT -> Pode ser imaginada como uma mem.
- LUTs->alta funcionalidade->2ⁿ, n=2^k, k=número de entradas da LUT.

Categorias Comerciais de FPGAs

Desempenhos (Sumário)

- Todas as interconexões discutidas gerarão atrasos em relação a um simples contato metálico utilizado nas interconexões de um MPGA, por exemplo.
- Também, em CPLDs os atrasos são mais previsíveis do que em FPGAs (interconexões segmentadas).
- Tamanhos dos blocos. Por exemplo, bloco maior->desperdício para implementar funções mais simples.

Computação Reconfigurável

- Sistemas computacionais reconfiguráveis->Plataformas cujas arquiteturas podem ser modificadas em tempo real para executar um algoritmo em *hardware* (forma mais eficiente).
- Sistema microprocessado->"overhead" de busca, decodificação e execução. Processamento genérico, menos eficientes que os sistemas dedicados. Flexíveis apenas na dimensão temporal.
- Sistemas reconfiguráveis são versáteis com desempenho de *hardware* dedicado.
- PLDs->flexíveis nas dimensões espacial e temporal.

Processo de Projeto para um PLD e técnicas de programação

Exemplos de Projetos Desenvolvidos

 Arquitetura pipeline reconfigurável através de instruções geradas por programação genética para processamento de imagens digitais utilizando FPGAs (Projeto FAPESP 17736-4).

Foto do Sistema

Sistema de Visão Monocromático

Sistema de Visão Monocromático

Arquitetura *Pipeline* para Processamento Morfológico de Imagens em Tempo Real

Sistema de Visão Artificial Colorido

Projeto de Iniciação Científica: FAPESP:
 2010/07179-8. Operação de um braço robótico por pessoas portadoras de necessidades especiais utilizando um Wiimote.

Projeto de Iniciação Científica - FAPESP: 2010/04675-4: Estudo comparativo das arquiteturas CUDA e FPGA para implementação de filtros lineares e nãolineares.

Reconhecimento de padrões de caracteres de mostradores digitais de ambientes industriais utilizando uma câmera e a biblioteca OpenCV. Iniciação Científica - Centro de Ciências Exatas e de Tecnologia, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	0	0
0	0	0	0	1	1	1	1	0	0
0	0	0	0	1	1	1	1	0	0
0	0	0	0	1	1	1	1	0	0
0	0	0	0	1	1	1	1	0	0
0	0	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0

 Sistema de baixo custo para reconhecimento de faces usando FPGAs e a biblioteca OpenCV. Iniciação Científica -Universidade Federal de São Carlos, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

AutoFaces

 Kit Didático de Desenvolvimento de Hardware via USB. Iniciação Científica -Universidade Federal de São Carlos.

DESENVOLVIMENTO DE ALGORITMOS INTELIGENTES PARA VISÃO ROBÓTICA UTILIZANDO O PROCESSADOR BLACKFIN. Iniciação científica - Centro de Ciências Exatas e de Tecnologia, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

 Desenvolvimento de algoritmos para operações de um braço robótico utilizando processamento digital de imagens. Iniciação científica - Centro de Ciências Exatas e de Tecnologia, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Implementação de Rede Sensorial BAN Microcontrolada com Suporte à Comunicação em Sistema Operacional Móvel ANDROID. Iniciação científica - Universidade Federal de São Carlos, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

E Muitos Outros...

■ Etc...©

Referências

Internet e Material do Professor.