Ving 5,1 7 7 7 5 (10-12) 10-6 10-12 Yes it is an eigenvector and its eigenvalue 15 -2. Les compute det (A-4I) where A 5 the matrix. If this is then 4 is an eigenvalue,

det (3-4 0 -1)

det (-3 4 5-4) -1. det (-1 1) - 1. det (3 4) not an eigenvalue 15

True, There is no general for mula for quintic paynomials and higher 50 to solve de (A-XI)=o can be difficult (or impossible), But checking whether det(A-XI)=O for a given X is easy (though computationally impossible for large matrices). True, it A is duced to echelon form urthout aling then the pivots are genvalues, 23) The characteristic equation of an nxn matrix will always be an (at mest) n'th clique polyno il. The funda ental theorem of alge a the tells us that it will have exactly as many solutions for x as the degree if we allow for complex solutions. Thus a 2x2 matrix will have at most 2 distinct eigenvalues an nxn will have at most n eigenvalues

11) $\det \begin{pmatrix} 4 & 0 & 0 \\ 5 & 3-\lambda & 2 \\ -2 & 0 & 2-\lambda \end{pmatrix}$ $= (4-\lambda) \cdot \det(3-\lambda) = 2 - \lambda - 0 + 0$ $= (4-\lambda)(3-\lambda)(2-\lambda)$ $= (12+(+3)\lambda + \lambda^{2})(-\lambda)$ $= (\lambda^{2}-7\lambda + 12)(2-\lambda)$ $= 2\lambda^{2}-3-14\lambda + \lambda^{2}+24-12\lambda$ $= -x^3 + 9x - 26\lambda + 24$ 15) 4, 3, 3, 1 24) If A and B are similar then A = PBP' for some nvertible matrix
P. So cet(A) = det (PB") = d t(P) det B det (PT) = de P) de (P') det (B) = det(I) det(B) = 11. det(B) det(A) = cet B)

25) hel
$$A = \begin{pmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{pmatrix}$$
, $V_1 = \begin{pmatrix} 0.3 \\ 0.7 \\ 0.4 \end{pmatrix}$, $V_2 = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$

a) $Cet(0.6-\lambda)(0.7-\lambda) - 0.4 = 0$

$$V_1 - 1.3\lambda + 0.42 - 0.12 = 0$$

$$V_2 - 1.3\lambda + 0.3 = 0$$

$$V_{1,2} = 1.3 \pm \sqrt{1.3^2 - 4.0.3}$$

$$V_{1,2} = 1.3 \pm \sqrt{1.3^2 - 4.0.3}$$

$$V_{1,3} = 0.3 + 0.3 = 0$$

$$V_{1,4} = 1.3 \pm \sqrt{1.3^2 - 4.0.3}$$

$$V_{1,4} = 0.3 + 0.3 = 0$$

$$V_{1,4} = 0.3 + 0$$

The other eigenvector is then given by (A-03I) = 8 (0.6-0.3 0.3 ~ (0.3 03) 0.4 0.7-0.3 0.4 0.4/ So all solutions are of the form So a basis of R2 interms of these eigenvectors is $B = \left\{ \begin{pmatrix} 3_{12} \\ 1_{12} \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ $\vec{\chi} = \vec{V_1} + \vec{C} \cdot \vec{V_2}$ where $\vec{V_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\binom{1_2}{2} = \binom{3_1}{4} + \binom{2}{4} = \binom{2}{14}$ So is can be written as vi+ c. vs 0) A.Z = AV+ACZ $= 1. \vec{V}_1 + 0.3 \cdot \vec{C} \vec{V}_3$ $= \vec{V}_1 + D.3 \cdot \vec{c} \cdot \vec{V}_2$ $A^2 \vec{X} = A(\vec{V}_1 + D.3 \cdot \vec{c} \cdot \vec{V}_3)$ $= \vec{V}_1 + D.3 \cdot \vec{c} \cdot \vec{V}_3$ in general $A^k \vec{\lambda}_0 = \vec{V}_1 + O.3^k C \vec{V}_2 = \vec{\lambda}_k$ As K increases, 0.3^{K} . $\sqrt{3}$ tends to 350 $A^{K} \vec{\chi}_{0} = \vec{\chi}_{K} \rightarrow \sqrt{1} \quad as \quad K \rightarrow \infty$ Using formulas above and $c = \frac{1}{14}$, we get $\vec{x}_1 = \begin{pmatrix} \frac{9}{50} \\ \frac{1}{50} \end{pmatrix} = \begin{pmatrix} \frac{45}{55} \\ \frac{113}{50} \end{pmatrix} = \begin{pmatrix} \frac{113}{505} \\ \frac{113}{505} \end{pmatrix} = \begin{pmatrix} \frac{113}{505} \\ \frac{113}{505} \end{pmatrix} = \begin{pmatrix} \frac{113}{505} \\ \frac{113}{505} \\ \frac{113}{505} \end{pmatrix} = \begin{pmatrix} \frac{113}{505} \\ \frac{113}{505} \\$

19) We have dot (1-xI)=(x1-x)(x2-x)...(xn-x) Let x=0 so det(A-XI)=det A. Then, by the above formula, det A = (2,-0)(2,-0)...(2,-0) $=\lambda_1\lambda_2...\lambda_n$ So det A is the product of the eigenvalues. $A = \begin{pmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \end{pmatrix}, \ \overrightarrow{V_1} = \begin{pmatrix} .3 \\ .6 \end{pmatrix}, \ \overrightarrow{V_2} = \begin{pmatrix} .3 \\ -3 \end{pmatrix}, \ \overrightarrow{V_3} = \begin{pmatrix} .1 \\ .2 \end{pmatrix}$ 27) a) $A \cdot \vec{v}_1 = \begin{bmatrix} 0.5 \cdot 0.3 + 0.2 \cdot 0.6 + 0.3 \cdot 0.1 \\ 0.3 \cdot 0.3 + 0.8 \cdot 0.6 + 0.3 \cdot 0.1 \end{bmatrix}$ (0.2-0.3+ O-0,6 +0.4-0.1) $=\begin{pmatrix} 0.3 \\ 0.6 \\ 0.1 \end{pmatrix} = \sqrt{1}$ So AV = V $A\overrightarrow{V_{2}} = \begin{pmatrix} 0.5 \cdot 1 + 0.2 \cdot (-3) + 0.3 \cdot 2 \\ 0.3 \cdot 1 + 0.8 \cdot (-3) + 0.3 \cdot 2 \\ 0.2 \cdot 1 + 0 \cdot (-3) + 0.4 \cdot 2 \end{pmatrix}$ $=\begin{pmatrix} 0.5 \\ -1.5 \end{pmatrix} = \begin{pmatrix} 1.7 \\ 2 \end{pmatrix}$ So AV2 = 1V3 $A\overrightarrow{V}_{3} = \begin{bmatrix} -0.5 + 0 + 0.3 \\ -0.3 + 0 + 0.3 \end{bmatrix} = \begin{bmatrix} -0.2 \\ 0 \\ 0.2 \end{bmatrix} = \frac{1}{5} \cdot \overrightarrow{V}_{3}$ (-0,2+0+0.4) So A V3 = 173

all the vectors are eigenvectors b) The three vectors are linearly independent and each in P3 so they form a basis for R, therefor there must exist constants c, C2, C3 such that X = C,V, + C2V2+ C3V2 $\overrightarrow{\mathbf{W}}^{\mathsf{T}} = (1 \ 1 \ 1)$ $\vec{\mathbf{y}}^{T}\vec{\mathbf{z}} = \vec{\mathbf{y}}^{T}(c_{1}\vec{\mathbf{v}}_{1} + c_{2}\vec{\mathbf{v}}_{2} + c_{3}\vec{\mathbf{v}}_{3})$ = C, V, + C, V, + C, V, $\vec{w}^{T} \cdot \vec{v}_{1} = (1 \ 1 \ 1) (\frac{3}{6}) = (0.3 \ 0.6 \ 0.1)$ $\vec{\nabla} \vec{\nabla}_{2} = (1 - 3 2)$ $\vec{\nabla} \vec{\nabla}_{2} = (-1 0 1)$ $\vec{\nabla} \vec{X}_{0} = C_{1} \begin{pmatrix} 0.3 \\ 0.6 \\ 0.1 \end{pmatrix}^{T} \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}^{T} C_{3} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}^{T}$ The sum of the entries must be 1 since to was a probability-vedor. So $1 = C_1(0.3 + 0.6 + 0.1) + C_2(1-3+2) + C_3(-1+1)$

5.3
$$D = \begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix}$$
, $D = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$
 $A = PDP^{1}$
 $A^{4} = PD^{4}P^{-1} = P\begin{pmatrix} 2^{1} & 0 \\ 0 & 1 \end{pmatrix}P^{-1}$
 $= P\begin{pmatrix} 16 & 0 \\ 0 & 1 \end{pmatrix}P^{-1}$
 $= P\begin{pmatrix} 1^{1} & 0 \\ 0 & 1 \end{pmatrix}P^{-1}$
 $= P\begin{pmatrix} 1^{1} & 0 \\ 0 & 1 \end{pmatrix}P^{-1}$
 $= P\begin{pmatrix} 1^{1} & 0 \\ 0 & 1 \end{pmatrix}P^{-1}$
 $= P\begin{pmatrix} 1^{1} & 0 \\ 0 & 1 \end{pmatrix}P^{-1}$
 $= P\begin{pmatrix} 1^{1} & 0 \\ 2 & 5 \end{pmatrix}\begin{pmatrix} 1^{1} & 0 \\ 1^{1} & 2 \end{pmatrix}\begin{pmatrix} 1^{1} & 1 \end{pmatrix}\begin{pmatrix} 1^{1} & 0 \\ 1^{1} & 2 \end{pmatrix}\begin{pmatrix} 1^{1} & 1 \end{pmatrix}\begin{pmatrix} 1^{1} & 1 \end{pmatrix}\begin{pmatrix} 1^{1} & 1 \end{pmatrix}\begin{pmatrix}$

Eigenvalue $\lambda_2 = 1$ has $\begin{cases} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \end{cases}$ as a basis for its eigenspace. 7) $A = \begin{pmatrix} 1 & 0 \\ 6 & -1 \end{pmatrix}$. A is triangular so it diagonal consists of eigenvalues $\lambda_1 = 1: \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} = \vec{\delta} \qquad \qquad \begin{pmatrix} A - I \end{pmatrix} \vec{\chi} =$	basis	S has $\{1\}$ as a ace.	Eigen value for its eign	5)
A = 1: $A = 1:$ $A = 0$ $A = 0$ $A = 1:$ $A = 0$ $A = 1:$ $A =$		has $\begin{cases} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} & a \end{cases}$	Eigenvalue L	
$(A-I)\vec{x} = \vec{0}$ $(O O) \sim (O O)$ $(A-I)\vec{x} = \vec{0}$ $(O O) \sim (O O)$ $(O O) $	50 it eigenvalues	A is triangular diagonal consists of		7)
A corresponding eigenvector is then $ \frac{7}{1} = \begin{pmatrix} 3\\1 \end{pmatrix} $ $ \frac{1}{2} = -1: $ $ A+I)\vec{x} = \vec{6} $		$= 0$ $- (0 0) X_1 \text{ free}$ $(1 - \frac{1}{2}) X_2 = 1$	(O	
		esponding eigenvedor	A V ₁	
$\begin{pmatrix} 2 & 0 \\ 6 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 - 0 \\ x_2 + c \end{pmatrix}$		= 6 (1 0) X ₁ = 0 0 0) X ₂ free	$\lambda_{2} = -1;$ (A+I) (2 0) (6 0)	
A corresponding eigenvector is then $ \vec{V}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad$	is then		$\vec{V}_2 =$	
$P' = \frac{1}{det(P)} \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$ $= \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}$ $= \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$			J. J	
So then $A = \begin{pmatrix} 1 & 0 \\ 6 & -1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1_2 & -1_2 \\ 0 & 3_2 \end{pmatrix}$	3/2/		A = (1 0)	

S.S 1)
$$A = \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix}$$
 $det(A - XI) = 0$
 $(I - \lambda)(3 - \lambda) + 2 = 0$
 $3 - \lambda - 3\lambda + \lambda^2 + 2 = 0$
 $\lambda^2 + 4\lambda + S = 0$
 $\lambda^2 + 2\lambda + S = 0$

