Exercise 2 – Downloading Texts and Zipf's Law

2b)

Explanation of the steps in 1b):

In order to remove the preamble and appendix, I looked at the text as a whole. Since there was no markup indicating where the preamble and appendix started and ended, I had to decide that myself. For me, the actual text starts after the author's preface with the beginning of Chapter 1 and ends after the conclusion.

Then I searched the text for the strings indicating the start and end of the text and found out their position in the whole text string by using the .finditer()—method and adding the respective positions to a list. Then, by using the positions saved in the list, I was able to indicate that the actual text lies only between these two positions and saved this text in the variable only text.

2c)

In order to only get the words and tokenize afterwards in ex.1c, I substituted all the punctuation marks in the text by using re.sub(), substituting them with an empty string. Moreover, I casefolded the text so that only non-capital letters appear. I think this makes sense because later we want to examine the frequency of certain words in the text and for that it doesn't make a difference whether the word e.g. starts with a capital letter or not – i.e. I do not distinguish between capitalized words and non-capitalized ones.

$\overline{}$	- 1	١	
,	М	١	
/	u		

2d)	
word	absolute frequence
the	3702
and	3087
a	1829
to	1711
of	1434
he	1197
was	1168
it	1149
in	941
that	905
his	815

i	781
you	777
tom	688
with	647
but	580
they	558
for	525
had	512
him	434

2e)

frequency	number of words with this frequency
1	3767
2	1202
3	608
4	382
5	231
6	172
7	147
8	127
9	74
10	93
11-50	508
51-100	81
>100	104

2f)

	frequency n r*n
1	3702 3702
2	3087 6174
3	1829 5487
4	1711 6844
5	1434 7170
6	1197 7182
7	1168 8176
8	1149 9192
9	941 8469
10	905 9050
11	815 8965
12	781 9372
13	777 10101
14	688 9632
15	647 9705
16	580 9280
17	558 9486
18	525 9450
19	512 9728
20	434 8680

When calculating r*n, it becomes apparent in this example that r*n is not a constant here in this example. The values vary between 3072 at the lowest (word at rank 1) and 10101 at the highest (word at rank 13).

However, when we look closely, most r^*n calculations are situated somewhere between 7000 and 9999, which is not really a constant either, but there is not a high variance between the values here. Only five out of the 20 words do not comply to that, which are the first four words and word 13. For the first 4 words, the multiplying factor – the rank – is not high enough to come closer to the other values, for 13 it is a little bit too high.

2g)

