Zusammenfassung: Hardware Modelling

Inhaltsverzeichnis

Hardware Design Hardwarebeschreibungssprachen (HDLs)	1 1
VHDL	2
Hardware Modelling	2
An dieser Zusammenfassung kann gerne auf Github mitgewirkt werden!	

Hardware Design

Wann eine Hardware-Implementierung sinnvoll ist:

- wenn Off-the-shelf-Hardware die Erfordernisse nicht erfüllt (Performance, Effizienz, Sicherheit, Größe)
- wenn lange Entwicklungszeiten und hohe Kosten toleriert werden können
- wenn der mögliche Gewinn die Kosten übersteigt

Tabelle 1: Hardware vs. Software

	Hardware	Software
Ausführung	gleichzeitig	sequentiell
Aktive Teile	alle	nur verwendete
		Code-Zeile
Mehr Instruktionen	mehr Hardware	mehr Rechenzeit
führen zu		
Begrenzende Größe	Fläche	Zeit

Hardwarebeschreibungssprachen (HDLs)

HDLs auf dem Y-Diagramm:

- meistens auf der RTL- oder Logic-Ebene des Y-Diagramms (siehe VO Digital Design)
- meistens auf der Verhaltens- oder Strukturachse des Y-Diagramms

- in seltenen Fällen auch auf algorithmischer Ebene
- tieferliegende Ebenen werden durch Tools realisiert

Aufgaben von HDLs:

- höhere Abstraktion \rightarrow geringere Produktivitätslücke
- Dokumentation (ursprünglicher Zweck von VHDL)
- Kommunikation

Produktivitäts-/Verifikations-Lücke:

- 1. Durch bessere Technologie könnten immer mehr Gatter auf einen Chip passen
- 2. Es können aber nur begrenzt komplexe Schaltungen entworfen werden
- 3. und nur noch weniger komplexe Schaltungen verifiziert werden

Der Unterschied zwischen (1) und (2) ist die Produktivitätslücke, der Unterschied zwischen (1) und (3) die Verifikationslücke.

VHDL

Hardware Modelling