

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2024

Peter Philip,

Paula Reichert, Lukas Emmert

Analysis 2 (Statistik) Hausaufgabenblatt 2

Aufgabe 1 (10 Punkte)

Sei $n \in \mathbb{N}$ und $(x^k)_{k \in \mathbb{N}}$ eine Folge in \mathbb{K}^n mit $x^k = (x_1^k, x_2^k, ..., x_n^k)$. Zeigen Sie, dass die Folge $(x^k)_{k \in \mathbb{N}}$ genau dann eine Cauchy-Folge in \mathbb{K}^n ist, wenn jede Koordinatenfolge $(x_j^k)_{k \in \mathbb{N}}$, j = 1, 2, ..., n, eine Cauchy-Folge ist.

Aufgabe 2 (10 Punkte)

Wir betrachten den Vektorraum \mathbb{R}^n .

(a) Zeigen Sie, dass die Funktionen

$$||x||_1 := |x_1| + |x_2| + \dots + |x_n|,$$

$$||x||_{\infty} := \max\{|x_1|, |x_2|, ..., |x_n|\}$$

zwei Normen auf \mathbb{R}^n definieren.

(b) Sei jetzt n=2. Zeichnen Sie die folgenden Mengen:

(i)
$$B^1(0,1) := \{x \in \mathbb{R}^2 | ||x||_1 < 1\},$$

(ii)
$$B^{\infty}(0,1) := \{x \in \mathbb{R}^2 | ||x||_{\infty} < 1\}.$$

Aufgabe 3 (10 Punkte)

Es sei $(x^k)_{k\in\mathbb{N}}$ eine Folge in \mathbb{R}^n mit $x^k=(x_1^k,x_2^k,...,x_n^k).$

- (a) Zeigen Sie, dass $(x^k)_{k\in\mathbb{N}}$ konvergiert genau dann, wenn $(x^k)_{k\in\mathbb{N}}$ eine Cauchy-Folge ist.
- (b) Wir nehmen an, dass

$$|x_j^k - x_j^{k+1}| \le (j+1)^{-k}$$

für alle $j \in \{1, 2, ..., n\}$ und alle $k \in \mathbb{N}$. Zeigen Sie, dass $(x^k)_{k \in \mathbb{N}}$ konvergiert.

Hinweis: Eine Folge in \mathbb{R} konvergiert genau dann, wenn sie eine Cauchyfolge ist.